

Билеты по геометрии

2 семестр, преподаватель Солынин А. А. Записали Костин П.А. и Щукин И.В. 1

 $^{^{1}}$ Данный документ неидеальный, прошу сообщать о найденных недочетах вконтакте (можно присылать скрины неточностей с указанием билетов)

Содержание

1	Метрические пространства. Примеры.	4
2	Открытые и замкнутые множества. Свойства	5
3	Внутренность и вшеность множества.	7
4	Замыкание множества.	9
5	Топологические пространства. Примеры.	10
6	База топологии. Критерий базы.	13
7	Топология произведения пространств.	15
8	Равносильные определения непрерывности.	16
9	Прообраз топологии. Индуцированная топология.	17
10	Инициальная топология. Топология произведения как инициальная.	18
11	Финальная топология. Фактортопология. Приклеивание.	19
12	Гомеоморфизм.	20
13	Связность топологического пространства и множества.	21
14	Связность отрезка.	22
15	Связность замыкания. Связность объединения.	23
16	Связность и непрерывные отображения.	24
17	Связность произведения пространств	25
18	Компоненты Связности.	26
19	Линейная связность	27
20	Компактность. Примеры.	28
21	Простейшие свойства компактности.	29

22	Компактность произведения пространств.	30
23	Компактность и хаусдорфовость	31
24	Лемма Лебега. Компактность отрезка.	32
25	Критерий компактности подмножеств евклидова пространства.	33
26	Теорема Вейерштрасса. Примеры.	34
27	Вторая аксиома счётности и сепарабельность.	35
28	Теорема Линделёфа.	36
2 9	Первая аксиома счётности.	37
30	Из компактности следует секвенциальная компактность (с первой ${f AC}$).	38
31	Из секвенциальной компактности следует компкатность (со второй ${ m AC}$).	40
32	Полнота и вполне ограниченность метрических пространств.	41
33	Из полноты и вполне ограниченности следует компактность	42
34	Аксиомы отделимости.	43
35	Нормальность метрического пространства.	44
36	*Задачи из практик	45

1 Метрические пространства. Примеры.

Опр

$$X$$
 - мн-во $(X \neq \varnothing)$ $\rho: X \times X \to \mathbb{R}$ (метрика)

Пара (X, ρ) назыв. метр. пр-вом, если:

1.
$$\rho(x,y) \geqslant 0$$
 и $\rho(x,y) = 0 \Leftrightarrow x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3. нер-во
$$\triangle$$
 $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$

Примеры

- 1. $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ со станд. ρ
- 2. Ha \mathbb{R}^2
 - (a) $\rho_1((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|$ манхэттенская метрика

(b)
$$\rho_{\infty} = max\{|x_1 - x_2|, |y_1 - y_2|\}$$

(c)
$$\rho_p = (|x_1 - x_2|^p + |y_1 - y_2|^p)^{\frac{1}{p}}$$

- (d) ρ_2 евклидова метрика
- 3. X город без односторонних дорог, $\rho(A,B)$ min время, за которое можно добраться от A до B
- 4. Х мн-во

$$ho(a,b)=egin{cases} 0, & a=b \ 1, & a
eq b \end{cases}$$
 - дискретная метрика

Упр

Доказать, что это метрики

2 Открытые и замкнутые множества. Свойства

Опр

Открытый шар с центром в x_0 и радиусом \mathcal{E} (окр. x_0):

$$B(x_0, \mathcal{E}) = \{ x \in X \mid \rho(x, x_0) < \mathcal{E} \}$$

Опр

 $U \subset X$, U - открыто, если:

$$\forall x \in U \quad \exists \mathcal{E} : B(x, \mathcal{E}) \subset U$$

Опр

 $Z \subset X$ Z— замкнуто, если:

 $X \setminus Z$ - открытое мн-во

Теорема (св-ва откр. мн-в)

1. $\{U_{\alpha}\}_{\alpha\in A}$ - семейство откр. мн-в

$$\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2. $U_1,...,U_n$ - откр.(конеч. число)

$$\Rightarrow \bigcap_{i=1}^n U_i - \text{откр.}$$

3. \emptyset , X – откр.

Док-во

1.
$$\forall x \in \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_0 : x \in U_{\alpha_0}$$

$$U_{\alpha_0}$$
 – otkp. $\Rightarrow \exists \mathcal{E} \colon B(x, \mathcal{E}) \subset U_{\alpha_0}$

$$B(x,\mathcal{E}) \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2.
$$\forall x \in \bigcap_{i=1}^{n} U_i \Rightarrow \forall i \quad x \in U_i$$

$$\exists \mathcal{E}_i : B(x, \mathcal{E}_i) \subset U_i$$

$$\mathcal{E} = \min_{i=1,\dots,n} \{\mathcal{E}_i\} \quad B(x,\mathcal{E}) \subset B(x,\mathcal{E}_i) \subset U_i$$

$$B(x,\mathcal{E}) \subset \bigcap_{i=1}^{n} U_i \Rightarrow \bigcap_{i=1}^{n} U_i - \text{откр}$$

Пример

$$U_i = \left(-\frac{1}{i}, \frac{1}{i}\right)$$

 $\bigcap_{i=1}^{\infty} U_i = \{0\}$ - объясняет, почему должно быть конечное число в пересечении

Лемма

$$B(x_0,r)$$
— открыто \forall метр. пр-ва $X \quad \forall x_0 \quad \forall r > 0$

Док-во

$$x \in B(x_0, r) \Rightarrow \rho(x_0, x) = d < r$$

Возьмём $\mathcal{E} = \frac{r - d}{2}$
 $B(x, \mathcal{E}) \subset B(x_0, r)$?

*/ Здесь очень внимательно надо смотреть на предположение, x_1 лежит в предполагаемой области за пределами шарика $B(x_0,r)$ */

$$\exists x_1 \in B(x, \mathcal{E}) \setminus B(x_0, r)$$

$$\rho(x_1, x) < \mathcal{E} = r - d$$

$$\rho(x_0, x) = d$$

$$\rho(x_1, x_0) \geqslant r$$

$$rho(x_1, x_0) \geqslant \rho(x_1, x) + \rho(x, x_0)$$

$$\rho(x_1, x_0) \geqslant r \quad \text{if} \quad \rho(x_1, x) + \rho(x, x_0) < r$$

противореч. нер-ву \triangle

Теорема (св-ва замкнутых мн-в)

1.
$$\{F_i\}_{i \in A}$$
— замкн.
$$\Rightarrow \bigcap_{i \in A} F_i$$
— замкн.

2.
$$F_1,...,F_n$$
— замкн.
$$\Rightarrow \bigcup_{i=1}^n F_i$$
— замкн.

 $3. \varnothing$ и X замкн.

Док-во (1)

$$F_i = X \setminus U_i, \quad U_i$$
 - откр.
$$\bigcap F_i = \bigcap (X \setminus U_i) = X \setminus \bigcup U_i$$

3 Внутренность и вшеность множества.

Опр

X - метр. про-во, $A\subset X,\quad x_0\in X$ x_0 - назыв. внутреней относ. A (в X), если:

$$\exists \mathcal{E} > 0 : B(x_0, \mathcal{E}) \subset A$$

Опр

 x_0 - назыв. внешней относ. A, если x_0 - внутр. для $\overline{A} = X \setminus A$

$$\exists \mathcal{E} > 0 : B(x_0, \mathcal{E}) \cap A = \emptyset$$

Опр

Остальные точки - граничные x_0 - граничная, если:

$$\forall \mathcal{E} > 0 \ B(x_0, \mathcal{E}) \ \cap \ A \neq \emptyset$$
 и $B(x_0, \mathcal{E}) \not\subset A$

 $\operatorname{Int} A$ - внутренность A - мн-во внутр. точек

 $\operatorname{Ex} A$ - внешность A - мн-во внешних точек

 $\partial A = \operatorname{Fr} A$ - граница A - мн-во гр. точек

Теорема

Следующие определения эквививалентны:

- 1. Int A мн-во внутр. т.
- 2. Наибольшее (по включению) откр. мн-во, содерж. в А
- 3. тах (по включению) откр. мн-во, содерж. в А
- 4. Int $A = \bigcup U_i$, $U_i \text{откр.}$ $U_i \subset A$
- 5. Int $A = (X \setminus \operatorname{Ex} A) \setminus \partial A$

Док-во

- $(2)\Leftrightarrow (4)\Leftrightarrow (3)$ т.к объед. откр. откр.
- $(1) \Leftrightarrow (4)$:
- (\Rightarrow) :

 $x_0\in$ мн-во внутр. т. $\subset\bigcup U_i,\quad U_i$ - откр. $U_i\subset A$

 $\exists \mathcal{E} > 0 : B(x_0, \mathcal{E})$ - откр. $\subset A$ (по определению Int A)

$$(\Leftarrow)$$
:

$$\exists i: x_0 \in U_i \subset A \quad x_0 \in \bigcup U_i$$
 $\exists \mathcal{E}: B(x_0, \mathcal{E}) \subset U_i \subset A \Rightarrow x_0$ - внутр. т. А

Теорема

Следующие определения эквививалентны:

- 1. $\operatorname{Ex} A$ мн-во внеш. т.
- 2. $\operatorname{Ex} A = \operatorname{Int}(X \setminus A)$
- 3. $\operatorname{Ex} A$ max (по вкл.) откр. мн-во, не пересек. с A
- 4. Ex $A = \bigcup U_i$, $U_i \text{otkp.}$ $U_i \cap A = \emptyset$

Относительно внутр.

$$A\subset X\Rightarrow (A,\rho)$$
 — метр. пр-во $B\subset A$ — $\operatorname{Int}_A B
eq \operatorname{Int}_X B$

Пример

$$X = \mathbb{R}, \quad \rho -$$
станд.

$$A = [0,1] \quad B = [0,\frac{1}{2})$$

$$\operatorname{Int}_X B = (0, \frac{1}{2}) \quad \operatorname{Int}_A B = [0, \frac{1}{2})$$

4 Замыкание множества.

Теорема

Следующие определения эквививалентны:

1. Cl
$$A = \{x \in X \mid \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \emptyset\}$$

2.
$$Cl A = Int A \cup \partial A$$

3. Cl
$$A = \cap F_i$$
, $F_i - \text{замк}$ $F_i \supset A$

4.
$$\operatorname{Cl} A = \min (\text{по вкл.})$$
 замк. $\supset A$

Док-во

$$(3) \Leftrightarrow (4)$$
 - пересеч. замкн. - замкн.

$$(1) \Leftrightarrow (2)$$
 - очевидно

$$(1) \Rightarrow (3)$$
:

$$\forall \mathcal{E} > 0 \quad x : B(x, \mathcal{E}) \cap A \neq \emptyset$$

$$\exists x \notin F$$
- замк. $F \supset A$ $x \in X \setminus F$ - откр.

$$\exists \mathcal{E} > 0: B(x, \mathcal{E}) \subset X \setminus F \subset X \setminus A$$

$$\Rightarrow x$$
 - внеш. противореч.

$$(3) \Leftarrow (1)$$
:

$$x \in \cap F_i$$

$$\exists \mathcal{E} > 0 : B(x, \mathcal{E}) \cap A = \emptyset$$

$$B(x,\mathcal{E})$$
 - откр. (по л.) — замк - $F=X\setminus B(x,\mathcal{E})$ — $F\supset A$

$$x \not\in F$$
 - противореч.

Замечание

1. A - откр.
$$\Leftrightarrow A = IntA$$

2. A - замк.
$$\Leftrightarrow A = ClA$$

3. Int
$$A \subset A \subset ClA$$

 $\partial A = ClA \setminus IntA$

Пример

$$X = \mathbb{R}; \quad A = \emptyset$$

Int $A = \emptyset$ Ex $A = \emptyset$ $\partial A = \mathbb{R}$

Пример

Канторово мн-во - замк.

5 Топологические пространства. Примеры.

Опр

X - мн-во $\Omega \subset 2^X = \{A \subset X\}$ - мн-во подмн-в X (X,Ω) - назыв. топологическим пр-вом, если:

1.
$$\forall \{U_i\}_{i \in I} \in \Omega \Rightarrow \bigcup_{i \in I} U_i \in \Omega$$

2.
$$U_1, U_2, ..., U_n \Rightarrow U_1 \cap U_2 \cap ... \cap U_n \in \Omega$$

3.
$$\varnothing$$
; $X \in \Omega$

 Ω - топология на X $U \in \Omega$ - называется открытым мн-вом

Опр

 (X,Ω) - топ. пр-во; $F\subset X$ F - называется замкнутым, если $X\setminus F\in\Omega$

Теорема

- 1. $\bigcap_{i\in I}F_i$ замкн., если F_i замкн.
- 2. $F_1 \cup F_2$ замкн., если F_1, F_2 замкн.
- $3. \varnothing, X$ замкн.

Примеры

- 1. (X, ρ) топ. пр-во
- 2. Дискр. пр-во: $\Omega=2^X$ Нетрудно заметить, что все его элементы открыты по определению (можно сравнить с мешком гороха, где каждая горошина сама по себе). Также они замкнуты
- 3. Антидискр. пр-во: $\Omega = \{\varnothing, X\}$ (можно сравнить с запутанным клубком ниток) Замкнуты только x и \varnothing

Опр

 (X,Ω) - метризуемо, если \exists метрика $\rho: X \times X \to \mathbb{R}_X$ $\Omega=$ мн-во откр. подмн. в ρ Антидискретное - не метризуемо, если |X|>1

4. Стрелка

$$X = \mathbb{R}$$
 или $\mathbb{R}_+ = \{x \geqslant 0\}$
 $\Omega = \{(a, +\infty)\} \cup \{\varnothing\} \cup \{X\}$

5. Связное двоеточие

$$X = \{a, b\}$$

$$\Omega = \{\emptyset, X, \{a\}\}$$

6. Топология конечных дополнений (Зариского)

Х - беск. мн-во

Замкнутые конечные мн-ва и Х

$$Ω = {A \mid X \setminus A \text{ конечно}}$$

y_{TB}^*

Вариации топологии Зарицкого:

(a) $\mathbb{C}^n=\{(z_1,...,z_n)\mid z_i\in CC\}$ $F\subset\mathbb{C}^n$ - замкн., если F является мн-вом решений системы:

$$\begin{cases} f_1(z_1,...,z_n) = 0 \\ f_2(z_1,...,z_n) = 0 \\ ... \\ f_k(z_1,...,z_n) = 0 \end{cases}$$

 $f_1,...,f_k$ - мн-ны от n переменных

$$\underbrace{\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1}_{f} = 0$$
 - эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$$
 - в С непусто, поэтому используем их

Любое пересечение замкнутых замкнуто?

$$F \longleftrightarrow \begin{cases} f_1(z_1, ..., z_n) = 0 \\ f_2(z_1, ..., z_n) = 0 \\ ... \\ f_k(z_1, ..., z_n) = 0 \end{cases} \qquad G \longleftrightarrow \begin{cases} g_1(z_1, ..., z_n) = 0 \\ g_2(z_1, ..., z_n) = 0 \\ ... \\ g_k(z_1, ..., z_n) = 0 \end{cases}$$

$$F \cup G \longleftrightarrow \begin{cases} f_1(z_1, ..., z_n) = 0 \\ f_2(z_1, ..., z_n) = 0 \\ ... \\ f_k(z_1, ..., z_n) = 0 \\ g_1(z_1, ..., z_n) = 0 \\ g_2(z_1, ..., z_n) = 0 \\ ... \\ g_k(z_1, ..., z_n) = 0 \end{cases}$$

Теорема* (Гильберта о базисе)

Мн-во решений бесконечной системы равносильно мн-ву решений конечной системы

здесь когда-нибудь возможно будет алгебраическая формулировка с примером

Теорема* (Гильберта)

Любой идеал можно представить как конечную систему мнов

здесь когда-нибудь возможно будет дополнение

Теорема* (Гильберта о нулях)

K - алгебраически замкнутое поле \Rightarrow замкнутые мн-ва в K^n - идеалы в $K[x_1,...,x_n]$ - биекция

6 База топологии. Критерий базы.

Опр

X - топ. пр-во;
$$A\subset X$$
 Int $A=\cup U, \quad U\in \Omega \quad U\subset A$ Cl $A=\cap F, \quad F-$ замк. $F\supset A$ $\partial A=\operatorname{Cl} A\setminus\operatorname{Int} A$

Опр

$$x_0 \in X$$

Окрестностью x_0 назыв. $\forall U \in \Omega : x_0 \in U$

Опр

$$x_0$$
 назыв. внутренней т. А, если $\exists U_{x_0} \subset A$ x_0 назыв. внешей т. А, если $\exists U_{x_0} \cap A = \varnothing$ x_0 назыв. граничной, если $\forall U_{x_0} \quad (U_{x_0} \not\subset A)$ и $(U_{x_0} \cap A \neq \varnothing)$

Опр

$$(X,\Omega)$$
 - топ. пр-во $\mathcal{B}\subset\Omega$ \mathcal{B} назыв. базой топологии, если:

$$\forall U \in \Omega \quad \exists \{V_i\} \in \mathcal{B} : \quad U = \bigcup_{i \in I} V_i$$

Пример

$$X=\mathbb{R}^n$$
 или другое метр. пр-во $\mathcal{B}=\{B(x_0,\mathcal{E})|x_0\in X,\mathcal{E}>0\}$ - база топологии $orall U$ - откр. $orall x_0\in U$ $\exists \mathcal{E}:B(x_0,\mathcal{E})\subset U$

$$\bigcup_{x_0 \in U} B(x_0, \mathcal{E}) = U$$

Теорема (Критерий базы)

X - мн-во
$$\mathcal B$$
 - нек. совокупность подмн-в X $\mathcal B$ - база $\Omega \Leftrightarrow$

1.
$$\bigcup_{U_i \in \mathcal{B}} U_i = X$$

2.
$$\forall U, V \in \mathcal{B} \quad \forall x \in U \cap V \quad \exists W \in \mathcal{B} : x \in W; W \subset U \cap V$$

Док-во

 (\Rightarrow) :

очевидно

 (\Leftarrow) :

$$\Omega = \{ \bigcup_{i \in I} U_i \mid U_i \in \mathcal{B} \}$$

1.
$$\bigcup_{j \in J} (\bigcup_{i \in I_j}) = \bigcup_{i,j} U_i$$

2.
$$(\bigcup_{j} U_{j}) \cap (\bigcup_{i} U_{i}) = \bigcup_{i,j} (U_{i} \cap U_{j}) = \bigcup_{i,j} (\bigcup_{x \in U_{i} \cap U_{j}} W_{x})$$

$$x \in W_x \subset U_i \cap U_j$$

$$\bigcup_{x \in U_i \cap U_j} W_x = U_i \cap U_j \quad W_x \in \mathcal{B}$$

3.
$$\emptyset = \bigcup_{i \in \emptyset} U_i \quad X = \bigcup_{U_i \in \mathcal{B}} U_i$$

Теорема (База окр. точки)

X - мн-во, $\forall x \in X \quad \exists \mathcal{B}_x \subset 2^x$

- 1. $x \in U \quad \forall U \in \mathcal{B}_x$
- 2. $U, V \in \mathcal{B}_x \to \exists W \in \mathcal{B}_x : W \subset U \cap V$
- 3. $y \in U \quad (U \in \mathcal{B}_x) \to \exists V \in \mathcal{B}_y : \quad V \subset U \text{ T.e. } \mathcal{B}_x \neq \varnothing \to \bigcup_{x \in X} \mathcal{B}_x -$ база нек. топологии

Док-во

^{*}здесь когда-нибудь будет док-во*

7 Топология произведения пространств.

Пример (- конструкция)

Даны
$$X,Y$$
 - топ. пр-ва $(X,\Omega_X); \quad (Y,\Omega_Y)$

Введем базу топ. на $X \times Y$:

$$\mathcal{B} = \{ U \times V \mid U \in \Omega_X; \quad V \in \Omega_Y \}$$

Это топология:

$$\Omega_{X \times Y} = \{ \bigcup_{i \in I} U_i \times V_i \mid U_i \in \Omega_X; \quad V_i \in \Omega_Y \}$$

Для объединения - очевидно, для пересечения:

$$(\bigcup_{i \in I} U_i \times V_i) \cap (\bigcup_{j \in J} S_j \times T_j) = \bigcup_{i \in I} \underbrace{(U_i \cap S_j)}_{j \in \Omega_X} \times \underbrace{(V_i \cap T_j)}_{\in \Omega_Y} \in \Omega_{XXY}$$

8 Равносильные определения непрерывности.

Опр

$$(X, \rho);$$
 (Y, d) - метр. пр-ва $f: X \to Y$ f - назыв. непрерывна в т. x_0 , если:
$$\forall \mathcal{E} > 0 \quad \exists \ \delta > 0 : \text{если} \rho(x, x_0) < \delta \Rightarrow d(f(x), f(x_0)) < \mathcal{E}$$

$$\forall c > 0 \quad \exists \ b > 0 : \operatorname{echa} \rho(x, x_0) < b \Rightarrow a(f(x), f(x_0)) < c$$

f - непрерывна, если она непр. в каждой точке

Теорема

f - непр в
$$x_0\Leftrightarrow$$

$$\forall U-\text{откр.}\subset Y:U\ni f(x_0)\quad \exists V\subset X-\text{откр.}:\quad x_0\in V\text{ и }f(V)\subset U$$

Док-во

f - непр. в
$$x_0$$

$$\Rightarrow \forall \mathcal{E} > 0 \quad \exists \delta > 0 : f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E})$$

$$\Rightarrow \forall U - \text{ откр. } \subset Y : \quad f(x_0) \in U \Rightarrow \exists \mathcal{E} > 0 :$$

$$f(x_0) \in B(f(x_0), \mathcal{E}) \subset U \Rightarrow \exists \delta > 0 :$$

$$f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E}) \subset U \quad B(x_0, \delta) = V$$
 $\leftarrow \forall$ обрывается

Опр

$$X,Y$$
 - топологические пр-ва, $x_0 \in X, f: X \to Y$ f назыв. непр. в т. x_0 , если \forall откр. $U \ni f(x_0)$: \exists откр. $V: x_0 \in V$ и $f(V) \subset U$

Теорема

$$X,Y$$
 - метрич. (тополог.), $f:X\to Y$. f - непр \Leftrightarrow $\forall U$ откр. в Y $f^{-1}(U)=\{x:f(x)\in U\}$

Док-во

здесь когда-нибудь будет док-во

Пример*

здесь когда-нибудь будет пример

9 Прообраз топологии. Индуцированная топология.

Опр

Пусть заданы (X,Ω_1) и (X,Ω_2) Тогда Ω_1 сильнее (тоньше) Ω_2 , если $\Omega_1 \supset \Omega_2$

Или: id : $(X, \Omega_1) \xrightarrow{\text{непр.}} (X, \Omega_2)$

y_{TB}

f:X o Y - отобр. мн-в, (Y,Ω_Y) - топ. пр-во

Вопрос: можно ли ввести топологию на X, чтобы отображение стало непрерывным? Да можно, если Ω_X - дискретная

 Ω_X - самая слабая топ.: f - непр.

 $\forall U \in \Omega_Y \quad f^{-1}(U)$ должен быть открытым в X

Вопрос: не является ли совокупность $f^{-1}(U)$ уже топологией?

Теорема

 $\{f^{-1}(U)\}$ - топология на X и она назыв. прообразом Ω_Y

Док-во

1.
$$f^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i)$$
 (*)

2.
$$f^{-1}(U_1 \cap U_2) = f^{-1}(U_1) \cap f^{-1}(U_2)$$

3.
$$f^{-1}(\emptyset) = \emptyset$$
 $f^{-1}(Y) = X$

$$(*): f^{-1}(\bigcup_{i \in I} U_i) = \{x \mid f(x) \in \bigcup_{i \in I} U_i\} = \{x \mid \exists i \in I : f(x) \in U_i\}$$

Опр

$$(X,\Omega_X)$$
 - топ. пр-во

$$A \subset X$$

 $\Omega_A = \{U \cap A \mid U \in \Omega_X\}$ - индуцированная топология на А

10 Инициальная топология. Топология произведения как инициальная.

Опр

$$orall i\in I \quad f_i:X o Y_i$$
 (Y_i,Ω_i) - топ. пр-во
$$\{f_{i1}^{-1}(U_1)\cap f_{i2}^{-1}(U_2)\cap\ldots\cap f_{ik}^{-1}(U_k)\mid U_j\in\Omega_{ij}\} \text{ - база нек. топологии}$$
 $j=1,\ldots,k\in\mathbb{N}$

 Ω_X - соотв. топология (инициальная топология)

Опр

$$\{f_i^{-1}(U)\}$$
 - предбаза топологии

Пример

здесь когда-нибудь будет пример

Теорема

Топология произведения совпадает с инициальной

Док-во

здесь когда-нибудь будет док-во

Опр

$$\prod_{i \in I} x_i = \{f : I \to \bigcup_{i \in I} x_i \mid f(i) \in X_i\}$$

$$p_k : \prod_{i \in I} x_i \to X_k \quad k \in I$$

$$p_k(f) = f(k)$$

$$\Rightarrow если X_i - топ. \to \prod_{i \in I} X_i - топ.$$

Пример

^{*}когда-нибудь билет будет понят и поправлен*

^{*}здесь когда-нибудь будет пример*

11 Финальная топология. Фактортопология. Приклеивание.

когда-нибудь бидет будет поправлен

Опр

$$\forall i \in I \quad f_i: \ X_i \to Y$$
 - отобр. (X_i, Ω_i) Хотим завести на Y топологию: $\forall f_i$ - непр. Топ на Y самая сильная $U \subset Y \quad \forall i \in I \quad f_i^{-1}(U) \in \Omega_i$ $\Omega_Y = \{U \mid \forall i \ f_i^{-1}(U) \in \Omega_i\}$ $\varnothing, Y \in \Omega_Y$ $f_i^{-1}(U_1 \cap U_2) = f_i^{-1}(U_1) \cap f_i^{-1}(U_2)$ $f_i^{-1}(\bigcup_{k \in K} U_k) = \bigcup_{k \in K} f_i^{-1}(U_k)$

Пример

Приклеивание

X,Y - пр-ва

 $A \subset X$ $f: A \to Y$ - отобр.

Хотим получить $X \cup_f Y$ - приклеивание

 $X \cup_f Y = X \cup Y / \sim \forall a \ a \sim f(a)$

U - откр. в $X \cup_f Y$, если $U \cap X$ - откр. в X и

 $U \cap Y$ - откр. в Y (если f - инъект.)

12 Гомеоморфизм.

Опр

 $f:X\to Y$ - гомеоморфизм $(X\simeq Y),$ если:

- 1. f непр.
- 2. f биекция
- 3. f^{-1} непр.

Примеры

$$\frac{1}{1} \cdot \left(-\frac{\pi}{2}; \ \frac{\pi}{2}\right) \simeq \mathbb{R} \qquad (f(x) = \operatorname{tg} x)$$

2. Не гомеоморфизм (3 пункт):

$$[0,\ 2\pi)\stackrel{f}{ o}S'=\{z\in\sigma\mid |z|=1\}$$
 $f(t)=e^{it}=\cos t+i\sin t,\quad f$ - непр. и биект.

Предположение

 \simeq - отношение эквив.

Теорема

Если
$$(X, \Omega_X) \simeq (Y, \Omega_Y)$$
, то: $f_*: \Omega_X \to \Omega_Y$ - биекция, $f_*(U) = f(U)$

Док-во

13 Связность топологического пространства и множества.

Опр

X называется несвязным, если \exists откр. $U_1, U_2 \neq \varnothing \in X$:

$$X = U_1 \cup U_2, \qquad U_1 \cap U_2 = \emptyset$$

Упр

Написать определение связного, как не несвязного

Опр

 $A\subset X,\,A$ называется связным, если A связно как топол. пр-во с индуцированной топологией

A несв., если \exists открытые $U_1, U_2 \subset X$:

$$\begin{array}{c} (U_1 \cup A) \cap (U_2 \cup A) = A & U_1 \cap U_2 \supset A \\ (U_1 \cup A) \cup (U_2 \cup A) = \varnothing & & U_1 \cup U_2 \cup A = \varnothing \\ U_1 \cup A \neq \varnothing & & U_1 \cup A \neq \varnothing \\ U_2 \cup A \neq \varnothing & & U_2 \cup A \neq \varnothing \end{array}$$

14 Связность отрезка.

Теорема

[0,1] - связен

Док-во

15 Связность замыкания. Связность объединения.

Теорема

$$(X,\Omega)$$
 - топ. пр-во, $A\subset X$ - связно
$$\Rightarrow \forall B:\quad A\subset B\subset\operatorname{Cl} A\quad\Rightarrow B\text{ - связно}$$

Следствие

Если А - связ., то ClA - связ.

Док-во

здесь когда-нибудь будет док-во

Теорема

$$(X,\Omega)$$
 - топ. пр-во, $A,B\subset X$ - связны,
$$A\cap B\neq\varnothing\Rightarrow A\cup B$$
 - связно

Док-во

16 Связность и непрерывные отображения.

Теорема

$$(X,\Omega_X),\ (Y,\Omega_Y)$$
 - топ. пр-ва, $f:X o Y$ - непр.,
$${\rm X}\text{ - связно}\Rightarrow {\rm f}({\rm x})\text{ - связно}$$

Док-во

здесь когда-нибудь будет док-во

Следствие

Связность - топологическое св-во

Примеры

здесь когда-нибудь будут примеры

Следствие

X - связно
$$\Leftrightarrow$$
 $\not\exists$ сюръект. непр. $f:X \to \{0,1\}$

Док-во

17 Связность произведения пространств

Теорема*

$$\{X_i\}_{i\in I}$$
 - топ. пр-во
$$\Rightarrow \forall i \quad X_i \text{ - cb. } \Leftrightarrow \prod_{i\in I} X_i \text{ - cbяз.}$$

Теорема

$$X, \ Y$$
 - топ. пр-ва

$$X \times Y$$
 - связн. \Leftrightarrow X, Y - связн.

Замечание

Любое конечное произведение связных топ. пр-в связно

Теорема

$$\prod_{i \in I} X_i$$
 - связно $\Leftrightarrow \forall i \in I \quad X_i$ - связно

Док-во

^{*}здесь когда-нибудь будет док-во*

18 Компоненты Связности.

Опр

Х - топ. пр-во

Компонентой связности т. $x_0 \in X$ назыв. наиб. по включению связное множество, ее содерж.

Опр (другое определение)

А - компонента связности 👄

- 1. А связно
- 2. $\forall B \underset{\neq}{\supset} A \Rightarrow B$ несвязно

Пример

здесь когда-нибудь будет пример

Следствие

Компоненты связности могут не быть открытыми

Теорема

- 1. $\forall x, y \in X \quad K_x = K_y$ или $K_x \cap K_y = \emptyset$
- 2. компоненты связности замк.

Док-во

здесь когда-нибудь будет док-во

Опр*

X - топ. пр-во назыв. вполне несвязным, если $\forall x \in X : K_x = \{x\}$

19 Линейная связность

Опр

X - топ. пр-во, $f:[0,1] \to X$ - непр. f называется путем в X

f(0) - начало пути

f(1) - конец пути

Опр

Х называется лин. связным, если ∀две точки Х можно соединить путём

Замечание

Начало и конец пути меняются: g(t) := f(1-t)

Пример

здесь когда-нибудь будет пример

Теорема

Х - топ. пр-во

X - лин. св. $\Rightarrow X$ - св.

Док-во

здесь когда-нибудь будет док-во

Пример

здесь когда-нибудь будет пример

Опр

Компоненты лин. связности - тах лин. св. мн-ва

Замечание

Компоненты лин. связности не всегда замкнуты

Теорема*

A, B - лин. св. $A \cap B \neq \varnothing \rightarrow A \cup B$ - лин.св.

Теорема*

X, Y - топ. пр-во; $f: X \to Y$ - непр.

X - лин. св. $\rightarrow f(x)$ - лин. св.

20 Компактность. Примеры.

Опр

 $({\rm X},\,\Omega)$ - топ. пр-во

 ${\bf X}$ - компакт, если из любого открытого покрытия ${\bf X}$ можно выбрать конечное подпокрытие

$$\forall \{U_i\}_{i\in I}, \quad U_i \in \Omega$$

$$\bigcup_{i \in I} U_i = X \to \exists n \in \mathbb{N} \quad \exists \{i_1, ..., i_n\}_{ij \in I} : \bigcup_{k=1}^n U_{ik} = X)$$

Примеры

- 1. Конечное топ. пр-во всегда компактно
- 2. Дискретное бесконечное множ. не комп.
- 3. Антидискр. мн-во комп.
- 4. Топология зарицкого комп. (выберем окр. мн-во, оно покрывается конечным набором мн-в, для каждой из остальных также)
- 5. $X = \mathbb{R}$ с топологией стрелки не компакт $(U_n = (-n, \infty))$
- 6. (\mathbb{R} , станд.) не компакт $(U_n = (n, \infty))$
- 7. [0, 1] компакт

Опр

$$(X,\Omega)$$
 - топ. пр-во

 $A \subseteq X$ - компактно, если оно комп. в индуц. топ.

Теорема

X - комп.
$$A \subseteq X$$
 - замк. $\Rightarrow A$ - комп.

Док-во

^{*}здесь когда-нибудь будет док-во*

21 Простейшие свойства компактности.

Теорема

$$f:X o Y,\quad A\subset X$$
 - компакт $\Rightarrow f(A)$ - комп. в ${
m Y}$

Док-во

здесь когда-нибудь будет док-во

Следствие

Компактность - топологическое св-во

22 Компактность произведения пространств.

Теорема (А.Н. Тихонов)

$$\{X_i\}_{i\in I}$$
 - комп. $\Leftrightarrow \prod_{i\in I} X_i$ - комп.

Теорема

$$X, Y$$
 - комп $\Leftrightarrow X \times Y$ - комп.

Док-во

23 Компактность и хаусдорфовость

Опр

Х называется хаусдорфовым, если:

$$\forall x_1 \neq x_2 \in X \quad \exists U_{x_1}, U_{x_2} : \quad U_{x_1} \cap U_{x_2} = \varnothing$$

Пример

здесь когда-нибудь будет пример

Теорема

X - хаусдорф. A - комп \in X \Rightarrow A - замк.

Док-во

$$X\setminus A\text{ - откр?}$$

$$x_0\in X\setminus A$$

$$\forall x_1\in A\Rightarrow \exists U_{x_0}\ni x_0;\ V_{x_1}\ni x_1$$

$$U_{x_0}\cap V_{x_1}=\varnothing$$

$$\bigcup_{x_1\in A}V_{x_1}\subset A\Rightarrow x_1,x_2,...,x_k:\ \bigcup_{i=1}^kV_{x_i}\supset A$$

$$U_{x_0}=\bigcap_{i=1}^kU_{x_i}\text{ - искомая окр. }U_{x_0}\cap A=\varnothing$$

(Иначе
$$U_{x_0} \cap V_{x_i} \neq \emptyset$$
, $U_{x_i} \cap V_{x_i} \neq \emptyset$)

Теорема

f:X o Y непр., биекция

X - комп.

Ү - хаусдорф.

 $\Rightarrow f$ - гомеоморф.

Док-во

24 Лемма Лебега. Компактность отрезка.

Теорема (Лемма Лебега)

$$X = [0,1] \subset \bigcup_{i \in I} U_i \qquad \{U_i\}_{i \in I}$$
 - откр. покр. X

$$\Rightarrow \exists \mathcal{E} > 0 : \forall x_0 \ \exists i \in I : B(x_0, \mathcal{E}) \subseteq U_i$$

(${\mathcal E}$ зависит от покр., называется числом Лебега)

Док-во

здесь когда-нибудь будет док-во

Следствие

[0,1] - компактен

Док-во

25 Критерий компактности подмножеств евклидова пространства.

Теорема

$$A \subset \mathbb{R}^n$$

$$A$$
 - комп. $\Leftrightarrow A$ - замк и огр.

Опр

A - огр., если
$$\exists N: A \subset B(0,N)$$

Док-во

$$(\Rightarrow)$$
:
$$A$$
 - замк. т.к. \mathbb{R}^n - хаусдорф.

A - orp.
$$\{B(0,n)\}_{n\in\mathbb{N}}$$

$$(\Leftarrow)$$
:
$$A\subset [-N,N]\times [-N,N]\times ...\times [-N,N]=K,\, \text{т.к. огр K - компакт}$$
 (каждый отрезок компактен, произведение комп. компактно)

A - замк. в $K \Rightarrow A$ - комп.

26 Теорема Вейерштрасса. Примеры.

Теорема (Вейерштрасса)

K - компакт.,
$$f:K\to\mathbb{R}$$
 - непр.
$$\Rightarrow \exists x_0\in K: \quad \forall x\in K \quad f(x)\leqslant f(x_0) \quad (x_0-max)$$

Док-во

$$f(K)$$
 - комп. $\subset \mathbb{R} \Rightarrow f(K)$ - замк. и огр \Rightarrow $\sup f(K) \in f(K)$ (замк.) $\sup f(K) \neq \infty$ (огр.) $\sup f(K) = f(x_0)$

Пример (задача Дидоны)

здесь когда-нибудь будет пример

Пример (искусственный)

здесь когда-нибудь будет пример

Пример (задача Фвньяна)

здесь когда-нибудь будет пример

27 Вторая аксиома счётности и сепарабельность.

Опр

X - обл. II А.С., если в X \exists счетная база

Опр

X - назыв сепараб., если
$$\exists A \subset X$$
: $|A| \leqslant \aleph_0$ и $ClA = X$

Опр

A - всюду плотно, если $\operatorname{Cl} A = X$

Примеры

здесь когда-нибудь будут примеры

Теорема

X - II А.С.
$$\rightarrow$$
 X - сепараб.

Док-во

здесь когда-нибудь будет док-во

Упр

II А.С. и сепарабельность - топологические св-ва

28 Теорема Линделёфа.

Теорема

X - II A.C. \Rightarrow из \forall откр. покр. X можно извлечь не более чем счетное подпокрытие

Док-во

29 Первая аксиома счётности.

Опр

База окр-тей точки:

$$\forall x \quad \exists \{U_{x_i}\}_{i \in I_x}$$

1.
$$U_{x_i} \in \Omega; \quad x \in U_{x_i}$$

2.
$$\forall U \in \Omega : x \in U \quad \exists U_{x_i} : x \in U_{x_i} \subset U$$

Замечание

Если выделить мн-во всех окрестностей точки, то это будет база топологии

Опр

Если \exists база окр-тей:

 $\forall x \ \{U_{x_i}\}_{i \in I_x}$ не более чем счетное \Rightarrow X удовл. І А.С.

Примеры

здесь когда-нибудь будут примеры

30 Из компактности следует секвенциальная компактность (с первой AC).

Опр

$$x_0 = \lim_{n \to \infty} x_n$$
, если $\forall U_{x_0} \quad \exists N : \forall n > N \quad x_n \in U_{x_0}$

Замечание

 x_0 может быть не один

Опр

A называется секвенциально замкнутым, если $\forall \{x_n\}_{n=1}^{\infty} \quad \forall x_0 = \lim_{n \to \infty} x_n$ $x_0 \in A$

Опр

Секвенциальное замыкание - min секвенциально замкнутое мн-во, содержащее данное ($\S\operatorname{Cl} A$)

Теорема (б/д)

- 1. $\S \operatorname{Cl} A \subset \operatorname{Cl} A$
- 2. Если X I A.C. $\Rightarrow \S \operatorname{Cl} A = \operatorname{Cl} A$

Опр

 $f: X \to Y$ называется секвенциально непрерывным, если $\forall x_0 = \lim_{n \to \infty} x_n \Rightarrow f(x_0) = \lim_{n \to \infty} f(x_n)$

Теорема

- 1. f непр \Rightarrow f секв. непр.
- 2. X, Y I А.С. \Rightarrow непр. \Leftrightarrow секв. непр.

Опр

X называется секв. компактным, если \forall посл-ти можно выделить сх. подпосл.

Сх. подпосл. - посл-ть, имеющая хотя бы один предел

Опр

$$x_0$$
 - т. накопления, A, если $forall U_{x_0} \quad |U_{x_0} \cap A| = \infty$

Теорема

Следующие утверждения равносильны:

- 1. Х компактно
- 2. ∀ беск. подмн-во А имеет точку накопления
- 3. Х секв. компактно
- 4. $\forall F_1\supset F_2\supset\dots$ замкнуты $(\forall F_i\neq\varnothing)\Rightarrow \overset{\infty}{F_k}\neq\varnothing$

Док-во

^{*}здесь когда-нибудь будет док-во*

31 Из секвенциальной компактности следует компкатность (со второй AC).

32 Полнота и вполне ограниченность метрических пространств.

Опр

Фунд. послед.

$$\{X_n\}$$
 - фунд., если $orall \mathcal{E}>0 \quad \exists N: orall n, m>N:
ho(X_n,X_m)<\mathcal{E}$

Опр

Х назыв. полным, если ∀ фунд. послед. сходится

Пример

здесь когда-нибудь будет пример

Опр

$$\{X_i\}_{i\in I}$$
 - \mathcal{E} -сеть, если $\forall x \quad \exists x_i : \rho(x,x_i) < \mathcal{E}$

Опр

X назыв. вполне огранич., если $\forall \mathcal{E} > 0 \quad \exists$ конечная \mathcal{E} -сеть

Теорема

$$X$$
 - метр. \Rightarrow сепар. \Leftrightarrow 2 А.С.

Док-во

^{*}здесь когда-нибудь будет док-во*

33 Из полноты и вполне ограниченности следует компактность

Теорема

Следующие определения равносильны (Х - метрическое)

- $1. \, X$ компактно
- $2. \ X$ секв. компактно
- $3. \, X$ полно и вполне огр.

Док-во

здесь когда-нибудь будет док-во

Теорема

X - сепарабельно $\Rightarrow X$ - II A.C.

34 Аксиомы отделимости.

Теорема (Колмогорова)

 $\forall x,y \in X: x \neq y \;\Rightarrow\; \exists U \in \Omega,$ содержащая x или y

Теорема (Тихонова)

$$\forall x, y \in X : x \neq y \Rightarrow \exists U \in \Omega : x \in U, \quad y \notin U$$

Теорема (Хаусдорфа)

$$\forall x, y \in X \quad \exists U_x, U_y : \ U_x \cap U_y = \varnothing$$

Теорема (3)

$$\forall x \in X$$
 и замкнуто $F \subseteq X, \ x \notin F$ $\exists U_x \text{ и } U_F: \ U_x \cap U_F = \varnothing$

Теорема (4)

$$F_1,F_2$$
 - замк. : $F_1\cap F_2=\varnothing$ $\exists U_{F_1}$ и $U_{F_2}:U_{F_1}\cap U_{F_2}=\varnothing$ $T_2\Rightarrow T_1\Rightarrow T_0$

Примеры

здесь когда-нибудь будут примеры

Опр

здесь когда-нибудь будет определение

Теорема

здесь когда-нибудь будет теорема

Док-во

здесь когда-нибудь будет док-во

Замечание

здесь когда-нибудь будет замечание

Упр

здесь когда-нибудь будет упражнение

35 Нормальность метрического пространства.

Теорема

$$X$$
 - метрич. $\Rightarrow X$ - норм

Теорема (б/д)

$$X$$
 - норм: II A.C. $\Rightarrow X$ метризуемо

<u>Лемма*</u> (Урысона)

$$X$$
 - норм. пр-во, $F_1\cap F_2\neq\varnothing,\ F_1,F_2$ - замкн. $\Rightarrow\exists f:X\to\mathbb{R}$ непр. $f|_{F_1}=0;\quad f|_{F_2}=1$

36 *Задачи из практик

Задача

- 1. $X \xrightarrow{f} Y$ f непр, $Y \xrightarrow{g} Z$ g непр Доказать, что $g \circ f: X \to Z$ непр
- 2. $f:(X,\Omega) \to (Y,)$ непр., биект. ф-ия, такая что $\forall o \in \Omega \quad f(o) \in \mathcal{A}$ -ть, что f гомеоморфизм

Задача

Пусть
$$f:(X,\Omega)\to (Y,\tau)$$
 непр. Предположим, что (X,Ω) - св. пр-во, д-ть, что (Y,τ) тоже

Лемма

$$f:X o Y,\,A_i\subset Y,\,i\in I,\,$$
тогда:
$$f^{-1}(\cup_{i\in I}A_i)=\cup_{i\in I}f^{-1}(A_i)$$

$$f^{-1}(\cap_{i\in I}A_i)=\cap_{i\in I}f^{-1}(A_i)$$

Упр

$$d:X imes X o \mathbb{R},$$
 знаем $d(x,y)+d(y,z)\geqslant d(x,z)$ Д-ть, что $\delta(x,y)=\dfrac{d(x,y)}{1+d(x,y)}$ - метрика

Опр

 $(X,\Omega),\sim$ - отношение эквивалентности

$$X \stackrel{\pi}{\to} X/\sim \qquad x \mapsto [x]$$

Мы хотим опр. топ. на X/\sim :

- 1. Она максимальная
- 2. $\pi:X\to X/\sim$ непр. $(X/\sim,) \text{ откр. в } X/\sim, \text{ т.е. } o \text{ элемент из}$ $\Leftrightarrow \pi^{-1}(o)\in\Omega$ откр. в X
- 1. Д-ть, что это топология
- 2. Д-ть, что $(X,\Omega) \stackrel{\pi}{\to} (X,)$ непр. ф-ия

Упр

$$(X,d),\,(X,\Omega_d)$$
 Д-ть для $o\in\Omega_d,$ если $o=\bigcup_{i\in I}B(x_i,r_i),$ то эьо топология $d(x,y)=|x-y|$

Упр

$$(\mathbb{R},d_{|\ |}),\,d_{|\ |}(x,y)=|x-y|$$

$$\to (\mathbb{R},\Omega_d),\quad \mathbb{R},\quad \sim$$
 описать $(\mathbb{R}/\sim,)\quad x\sim y\Leftrightarrow x-y\in\mathbb{Z}$

Задача

- 1. Д-ть, что (A, Ω_A) топ. пр-во
- 2. Д-ть, что $(A, \Omega_A) \to (X \to \Omega)$ непр.

y_{TB}

$$([0,1],\Omega_{[0,1]})$$
 - это св. пр-во

Задача

Пусть (X,Ω) - св. пр-во, д-ть, что лин. св.

y_{TB}

X - топ. пр-во лин. св
$$\Rightarrow$$
 X - св.
Д-ть, для перехода от $[0,1] \to X$ к ($[0,1], \Omega_{\text{станд.}}$)

Задача

Пусть на
$$\Im(\gamma)\subset X$$
 индуц. топ. Д-ть, что $\overline{\gamma}$ непр., $\overline{\gamma}:[0,1]\to\Im(\gamma)$

Теорема

$$f: X \to Y$$
 непр, сюр., X - св $\Rightarrow Y$ - св.

Задача

$$\overline{(\mathbb{R}^2,d)},$$
 есть $(\mathbb{R}^2,\Omega_d),~(R,\Omega_{||})$
Д-ть, что не существет гомеоморфизма между \mathbb{R} и \mathbb{R}^2

Задача

$$(\mathbb{R}, \Omega_{||}), \mathbb{Q} \subset \mathbb{R}$$

1. замыкание $\mathbb{Q} = \mathbb{R}$

2.
$$\int (Q) = \emptyset$$

Задача

Пусть $f: X \to Y$ непр. биект. Ф-ия, такая что $\forall F$ замкню в X, F(x) замкн. в Y Д-ть, что f - гомеоморфизм

Задача (1)

Пусть X - компактно, $A\subset X$ - замкнуто. Д-ть, что A компакт

Задача (2)

 $\overline{\Pi}$ усть $X \xrightarrow{f} Y$ - непр. сюр. ф-ия и X - компакт. Д-ть, что Y компакт

Задача (3)

Пусть Y - "компакт" и Хаусдорф. Пусть $A\subset Y,$ А комп. Д-ть, что А замкнуто

Задача (4)

Пусть $f: X \to Y$ - непр. биект. и X - компакт, Y - Хаусдорф. Д-ть, что f гомеоморфизм

Задача

 $[0,1]\subset (\mathbb{R},\Omega_d)$ $d(x,y)=|x-y|,\,o$ откр. в $\Omega_d^{[0,1]},$ если $\exists v$ откр. в \mathbb{R} т.ч. $o=V\cup [0,1]$ Пусть ([0,1], au) т.ч.

- $1. \supset \Omega_d^{[0,1]}$ в ней больше откр.
- 2. ([0,1],) лин. св. пр-во

Д-ть, что = $\Omega_d^{[0,1]}$. Подсказка:

- 1. Д-ть, что id : $([0,1],\tau) \to ([0,1],\Omega_d^{[0,1]})$ непр.
- 2. Д-ть, что \exists сюр. непр. ф-ия $\Omega:([0,1],\Omega_d^{[0,1]}) \to ([0,1],)$
- 3. Д-ть, что = $\Omega_d^{[0,1]}$

Задача

$$(\mathbb{R}, \Omega_d)$$
 и $\forall x, y \in \mathbb{R}, x \sim y$, если $x - y \in 2\pi\mathbb{Z}$ $(\{..., -4\pi, -2\pi, 0, ...\})$ $(\mathbb{R}, \Omega_d) \stackrel{P}{\to} (\mathbb{R}/\sim, \widetilde{\Omega}_d)$ $x \mapsto [x]C$ $(\mathbb{R}^2, \Omega_d) \supset S^1 = \{(x, y) \in \mathbb{R} \mid x^2 + y^2 = 1\}$ $(S^1, \Omega_d^{S^1})$

Д-ть, что \exists - гомеоморфизм т.ч. $f:(\mathbb{R}/\sim,\widetilde{\Omega}_d) \to (S^1,\Omega_d^{S^1})$

Задача (Декартова топология)

$$(X,\Omega),\quad (Y,)$$
 - топ. пр-ва Д-ть, что $(X\times Y,"\Omega\times")$ - станд. откр. в $X\times Y$ это $u\times v,$ где $u\in\Omega,$ $v\in$, а общий откр. в $X\times Y$ - это O

$$O = \bigcup_{\substack{u_i \in \Omega \\ v_i \in }} u_i \times v_i$$

Д-ть, что мн-во откр. определяет топологию на $X \times Y$

Задача

$$\overline{S}=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}$$
 S как топ. подпр-во (\mathbb{R}^2,Ω_d)
$$S^1_\mathbb{Q}\subset S^1,\qquad S^1_\mathbb{Q}=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\quad x,y\in\mathbb{Q}\}$$
 Д-ть, что $S^1_\mathbb{Q}=S^1$

Задача

Д-ть, что любая непрерывная ф-ия $f:S^1\to\mathbb{R}$ владеет следующими св-ми:

1.
$$\exists (x,y) \in S^1$$
 такой что $f(x,y)=f(-x,-y),$ где
$$S^1=\{(x,y)\in \mathbb{R}^2\mid x^2+y^2=1\}\subset \mathbb{R}^2$$

2. Д-ть, что $\forall F$ замкн. в S^1 f(F) замкн. в $\mathbb R$

Задача

Пусть X - топ. пр-во. Д-ть, что X Хаусдорф

$$\Leftrightarrow \triangle(x) = \{(x, y) \in X \times X \mid x = y\} \subset C \times X$$

является замкн. в $X \times X$

Задача

Пусть X,Y - лин. св.. Д-ть, что $X\times Y$ лин. св.

Задача

Пусть (x,d) - метр. пр-во, $A\subset X$ - плотное подмн-во (т.к. $\overline{A}=x)$

- 1. Предположим, что $|A|=\mathbb{N}$, д-ть, что (X,Ω_d) имеет стандартную супербазу
- 2. \mathbb{R} , $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$

$$x, y \mapsto |x - y|$$

Задача

 (X,Ω) - топ. пр-во, $A\subset B\subset X$ подмн-во. Д-ть, что $\int (A)\subset \int (B),\quad \overline{A}\subset \overline{B}$

Правда ли, что $\overline{\int A} = \int (\overline{A})$?

Задача

 $D=\{p+\sqrt{2}q\mid p,q\in\mathbb{Z}\}\subset\mathbb{R}$, где \mathbb{R} со станд. топ. Д-ть, что $\overline{D}=\mathbb{R}$

- 1. Д-ть, что $D \subset (\mathbb{R}, +, *)$ подкольцо
- 2. Пусть $u = \sqrt{2} 1 \in D$, пусть $a < b \in \mathbb{R} \ |u| < 1$ Д-ть, что $\exists n \in \mathbb{N}$ т.ч. $0 < u^n < b a \ (u^n \underset{n \to \infty}{\to} 0)$

Задача

Пусть $\mathbb R$ со станд. топ. $\mathbb Z\subset\mathbb R$, подгруппа: определим отн. экв. \sim на $\mathbb R$ $a\sim b\Leftrightarrow a-b\in\mathbb Z$

Д-ть, что \mathbb{R}/\sim (с факт. топ.) гомеоморфно $S^1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}\subset\mathbb{R}^2$ (инд. топ.)

Задача

Дано Канторово мн-во

Д-ть, что $K=\cap_{n=0}^{\infty}A_n$ компакт (с инд. топ. от [0,1]) Д-ть, что K - это метр. пр-во

Задача

какие-то буквы Д-ть, что $\exists ! t \in K : f(t) = t$