

Identificação de funções orgânicas

Prof. André Oliveira

CEFET-MG - Unidade Contagem / Ensino Remoto Emergencial - 2020

Funções orgânicas e grupos funcionais

- Vimos na primeira aula que as substâncias orgânicas existem em grande número e suas estruturas são muito diversificadas.
- Devido a esta diversidade, é conveniente dividi-los em categorias, chamadas funções, que podem ser identificadas de acordo com a presença de certos grupos ou características próprias, que chamaremos de grupos funcionais.

Hidrocarbonetos

- Hidrocarbonetos (HC's) constituem a função orgânica mais simples: são os compostos contendo unicamente carbono e hidrogênio.
- São divididos em subcategorias, dentre as quais destacamos:
 - Alcanos: HC´s saturados
 - Alcenos: HC´s contendo uma ligação C=C
 - Alcinos: HC´s contendo uma ligação C≡C
 - Cicloalcanos: HC´s de cadeia fechada sem ligação múltipla
 - Dienos, trienos e polienos: HC´s contendo duas ou mais ligações C=C
 - Hidrocarbonetos aromáticos: HC´s contendo o anel benzênico

Funções oxigenadas

Álcoois: apresentam um carbono sp³ ligado a OH.

(Representa-se uma cadeia carbônica genérica por R; usa-se Ar para especificar cadeias aromáticas)

Éteres: apresentam oxigênio entre carbonos (cadeia heterogênea). As cadeias podem ser iguais ou diferentes.

$$R_1$$
— O — R_2 R — O — Ar Ar_1 — O — Ar_2

Fenóis: apresentam um anel benzênico ligado a OH

Enóis: apresentam um carbono sp² (não aromático) ligado a OH

Funções oxigenadas

Cetonas: apresentam uma carbonila (C=0) entre carbonos.

$$R_1$$
 C
 R_2

Aldeídos: apresentam uma carbonila ligada a H.

Ácidos carboxílicos: apresentam uma carbonila ligada a OH (grupo carboxila). Podem se apresentar na forma de sais.

Ésteres: apresentam uma carbonila ligada a OR.

Funções nitrogenadas

Aminas: apresentam uma nitrogênio ligado a carbono (sem carbonila). Também podem se apresentar na forma de sais (sais de amônio).

Amidas: apresentam uma nitrogênio ligado a carbonila.

Funções nitrogenadas

Nitrilas: apresentam o grupo C≡N

$$R$$
— C \equiv N

Nitrocompostos: apresentam o grupo NO₂ ligado a carbono.

Funções halogenadas

Haletos de alquila e de arila: apresentam halogênio (F, Cl, Br, I) ligado a cadeia alifática (haletos de alquila) ou aromática (haletos de arila).

Haletos de acila: apresentam halogênio ligado a carbonila.

9

Outras funções menos comuns

Tioéteres: têm estrutura análoga aos éteres, com S em lugar de O.

$$R_1-S-R_2$$

Anidridos: apresentam o grupo (C=0)OC=0.

$$R_1$$
 O R_2

Iminas: apresentam o nitrogênio com ligação dupla.

$$\stackrel{\mathsf{R}_1}{\underset{\mathsf{R}_2}{\longleftarrow}} \mathsf{N}_{\mathsf{R}_3}$$

Identifique as funções a partir dos grupos funcionais.

Capsaicin (responsible for "hot" taste of hot peppers)

Identifique as funções a partir dos grupos funcionais.

Epibatidine (poison from frog *Epipedobates anthonyi*)

Identifique as funções a partir dos grupos funcionais.

Tubocurarine chloride (used as a paralyzing arrow poison from bark of the S. American vine Chondrodendron tomentosum)

Identifique as funções a partir dos grupos funcionais.

Nepetalactone (from catnip plant, Nepeta cataria)

RESUMO DA AULA