université *BORDEAUX

ANNEE UNIVERSITAIRE 2020-2021 SESSION 1 D'AUTOMNE DECEMBRE 2020

MENTION: BIO-INFORMATIQUE

Code UE: 4TBI701U

Intitulé de l'épreuve :Initiation à l'exploration des images

numériques

Date: 17/12/2020 Heure: 9h00 Durée: 1h30

Documents : autorisés / non autorisés Epreuve de M :TAVEAU Jean-Christophe Collège Sciences et technologies

Masters

1. Traitement d'images

1.1. Luminosité et Contraste

Pour corriger la luminosité et le contraste d'une image 8-bit, la fonction de transfert suivante a été utilisée : y = 3 * x + 15.

Q1: Dessiner cette fonction de transfert pour x compris entre 0 et 255. Faire attention au fait que l'image résultante est en 8-bit. Calculer les coordonnées X et Y des deux points qui délimitent la région dans laquelle la fonction de transfert est linéaire et les placer sur le dessin.

Q2 : Quel aspect aura l'image traitée par cette fonction de transfert en termes de luminosité et contraste ?

1.2. Histogramme et Filtres linéaires

Toutes les questions de cette section se rapportent aux images de la Fig. 1.

▼Fig. 1: Images 256x256 en 8-bit. Les images contiennent des pixels de valeur 0 (noir) et 200 (gris clair). A) Image dont la moitié gauche est gris clair et l'autre moitié noire. B) Échiquier à 64 cases dont 32 noires et 32 gris clair.

Q3 : L'image de la Fig. 1A a une taille calculée de 64Ko (indiquée sur la Fig. 1A). Faites le calcul exact en octets puis en Kilo-octets. Y a t-il une différence ? Justifiez.

Q4 : Dessinez les histogrammes des deux images de la Fig. 1. Mettre les valeurs et les hauteurs des pics sur le dessin. Sont-ils identiques ou différents ? Justifiez.

 $\mathbf{Q5}$: Si on applique un filtre moyen 3x3 à la Fig.1A, dessinez le nouvel histogramme en calculant les positions en X et les hauteurs (en Y) de tous les pics présents. Justifiez vos calculs.

Q6: Question **identique** à la **question** 5 mais pour l'image de la Fig. 1B après filtration par un filtre moyen 3x3. Ne pas calculer les hauteurs de pics

Q7 : Est-ce que ces histogrammes sont identiques ou différents ? Justifiez votre réponse.

Note : Pour vos calculs de convolution, on normalisera le résultat (c'est à dire que le résultat est divisé par le nombre de "cases" dans le masque de convolution).

Note : Pour les problèmes de bord, on considère que l'image est infinie (le bas et le haut, les côtés droit et gauche se "touchent") et forme un tore.

2. Images et Machine Learning (ML)

2.1. k-Nearest Neighbors k = 4

Le jeu de données suivant a été obtenu après analyse d'images et mesures de Solidité et d'Aspect Ratio.

[0.8,1.0], [3.0,1.0], [1.2,1.7], [1.0,1.1] et les labels correspondants : 1,2,3,1.

Q8 : Décrivez le k-NN (famille de ML?, principe général).

Q9: Indiquez à quelle classe appartient le vecteur suivant [2.0, 1.25]. Donnez tous les calculs intermédiaires. Justifiez.

3, 2,18 Rat.

Un perceptron avec ses différents poids calculés lors de la phase d'apprentissage est présenté en Fig. 2.

 $\mathbf{Q10}$: Combien de valeurs possibles génère le perceptron en sortie. Quelles sont ces valeurs ? Justifiez.

Q11: Calculer la valeur en sortie du perceptron pour le vecteur d'entrée [-0.5, 0.75,-3.0]. Donnez le détail des calculs.

Fig. 2: Perceptron. A) Schéma du perceptron avec ses différents poids : w1 = 2.2, w2 = 1.1, w3 = 0.12 et le biais est égal à 0.7. B) Fonction en escalier (*step function*) utilisé par ce perceptron.