Московский Физико-Технический Институт

Отчет по эксперименту

1.4.5 Изучение колебаний струны

Выполнил: Студент 1 курса ФАКТ Группа Б03-504 Подмосковнов Лев

Теоритические сведения

Формула для расчёта скорости распространения волны в среде

$$u = \sqrt{\frac{T}{\rho_l}}$$

Формула для расчёта частоты п-ой гармоники

$$\nu_n = \frac{n}{2L} \sqrt{\frac{T}{\rho_l}}$$

Ход работы

Визуальное наблюдение стоячих волн

Скорость распространения волн: u = 137 м/cЧастота первой грамоники: $\nu_1 = 137 \; \Gamma$ ц

ν_1 , Γ ц	ν_2 , Γ ц	ν_3 , Гц	ν_4 , Гц 4	ν_5 , Γ ц
137	274	411	549	682

Визуальное наблюдение стоячих волн

Регистрация стоячих волн с помощью осциллографа

n	$ u_n$, Гц
1	136.99
2	263.16
3	434.78
4	555.56
5	689.66
6	869.57
7	1000
8	1111.11
9	1250
10	1428.57

	n	ν_n , Гц
	1	166.67
	2	336.40
	3	504.70
	4	674.00
	5	843.80
	6	1012.20
ſ	7	1183.50
	8	1354.90
	9	1526
	10	1698.50
=		

n	ν_n , Гц
1	190
2	381
3	572.4
4	763
5	954.6
6	1146
7	1338.7
8	1533
9	1725
10	1920

$$\begin{array}{c|cccc} n & \nu_n, \, \Gamma {\rm II} \\ \hline 1 & 209 \\ 2 & 419 \\ \hline 3 & 629 \\ 4 & 839 \\ \hline 5 & 1049 \\ \hline 6 & 1259 \\ \hline 7 & 1472 \\ \hline 8 & 1683 \\ \hline 9 & 1895 \\ \hline 10 & 2108 \\ \hline \end{array}$$

$$\begin{array}{c|cccc} n & \nu_n, \, \Gamma \Pi \\ \hline 1 & 229 \\ 2 & 458 \\ \hline 3 & 688 \\ 4 & 917 \\ \hline 5 & 1147 \\ \hline 6 & 1377 \\ \hline 7 & 1608 \\ \hline 8 & 1840 \\ \hline 9 & 2071 \\ \hline 10 & 2303 \\ \hline \end{array}$$

$$m = 1087, 2 \ \Gamma$$

$$m = 1574, 6 \Gamma$$
 $m = 2071, 8 \Gamma$

$$m = 2071, 8 \text{ I}$$

$$m = 2566, 2 \ \Gamma$$

$$m = 3060, 1$$
 г

Фигура Лиссажу с одним самопересечением

Благодаря высокой добротности струны, возможно возбуждение её колебаний при кратных частотах генератора, меньших, чем ν_1 . Для наблюдения явления переключим осциллограф в режим (X-Y) и настроим установку на наблюдение основной гармоники. Затем уменьшим частоту возбуждения в два раза, установивна генераторе $\nu=\frac{1}{2}\nu_1$. На экране осциллографа наблюдается фигура Лиссажу с одним самопересечением

Обработка результатов

Зависимость ν_n и их аппроксимация линейной функцией по МНК.

Зависимость u^2 от T

Из аппроксимации прямой получаем погонную плотность: $\rho_l = (582 \pm 4) \ {\rm MF/M}.$

Вывод

В работе были изучены поперечные стоячие волны на тонкой натянутой струне, были измерены собственные частоты её колебаний, измерена скорость распространения волн в струне и линейная плотность струны. Экспериментальные графики зависимостей $\nu_n(n)$ и $u^2(T)$ хорошо ложатся на аппроксимирующие прямые, но эти прямые не проходят через начало координат. Однако отклонение аппроксимирующих прямых от начала координат по оси ординат мало ($\sim 1\%$) по сравнению с значениями ординат экспериментальных точек. Отличие измеренного значения линейной плотности струны от указанного на установке составляет 6%. Само значение ρ измерено с достаточно высокой точностью $\varepsilon_{\rho} = 7 \cdot 10^{-3}$ %. Отличие ρ от указанного на установке значения более, чем на погрешность, может быть связано с:

- 1) Неточностью определения собственных частот ν_n из-за возникновения нелинейных эффектов при резонансе, и, как следствие, неточностью в определении скорости распространения u волны в струне.
- 2) Неучтением погрешностей измерения собственных частот.
- 3) Недостаточным количеством экспериментальных точек на графике $u^2(T)$, то есть недостаточным количеством опытов по измерению собственных частот струны в зависимости от силы натяжения нити T.