Álgebra y Geometría analítica II

Primer cuatrimestre de 2020

DEFINICIÓN:

Sea E un espacio vectorial. Y sea $\langle \; ; \; \rangle$ una función tal que $\langle \; ; \; \rangle$: $ExE \to R$ que opera entre dos vectores del espacio vectorial y devuelve un número real. Diremos que dicha función es un PRODUCTO INTERNO en E sí y sólo si:

$$1. \forall \vec{v}, \vec{w} \in E: \langle \vec{v}; \vec{w} \rangle = \langle \vec{w}; \vec{v} \rangle$$

2.
$$\forall \vec{v}$$
, \vec{w} , $\vec{u} \in E$: $\langle \vec{v} ; \vec{w} + \vec{u} \rangle = \langle \vec{v} ; \vec{w} \rangle + \langle \vec{v} ; \vec{u} \rangle$

$$3. \forall \vec{v}, \vec{w} \in E \ y \ \forall k \in R: \langle \vec{v}; k. \vec{w} \rangle = k. \langle \vec{v}; \vec{w} \rangle$$

4.
$$\forall \vec{v} \in E : \langle \vec{v} ; \vec{v} \rangle \ge 0 \ y \ \langle \vec{v} ; \vec{v} \rangle = 0 \iff \vec{v} = \overrightarrow{0_E}$$

Sea E un espacio vectorial y $\langle ; \rangle$ un producto interno definido en E : Diremos que el par $(E, \langle ; \rangle)$ es un espacio Euclídeo

ALGUNOS EJEMPLOS DE ESPACIOS EUCLÍDEOS:

Ejemplo 1:
$$(R^n; \langle ; \rangle)$$
 con $\langle (x_1, x_2, ..., x_n) ; (y_1, y_2, ..., y_n) \rangle = x_1.y_1 + x_2.y_2 + ... + x_n.y_n$

$$R^n \text{ con el producto interno usual (Producto escalar)}$$

Ejemplo 2:
$$(R^2; \langle ; \rangle)$$
 con $\langle (x_1, x_2); (y_1, y_2) \rangle = x_1 \cdot y_1 + x_2 \cdot y_1 + x_1 \cdot y_2 + 2x_2 \cdot y_2$

Ejemplo 3:
$$(R^{mxn}; \langle ; \rangle)$$
 con $\langle A; B \rangle = tr[A.B^t]$

Ejemplo 4:
$$(P_2; \langle ; \rangle)$$
 con $\langle p; q \rangle = p(1).q(1) + p(0).q(0) + p(-1).q(-1)$

Ejemplo 5:
$$(P_2; \langle ; \rangle)$$
 con $\langle a_2 x^2 + a_1 x + a_0 ; b_2 x^2 + b_1 x + b_0 \rangle = a_2 b_2 + a_1 b_1 + a_0 b_0$

Recordemos..

 \mathbb{R}^n con el producto interno usual (Producto escalar)

- ightharpoonup Ortogonalidad entre dos vectores $\Leftrightarrow \vec{v} \cdot \vec{w} = 0$
- > Norma o Longitud de un vector $\Leftrightarrow \|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$
- ightharpoonup Ángulo entre dos vectores $\Leftrightarrow \cos \alpha = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \cdot \|\vec{w}\|}$

¿Para qué necesitamos la ortogonalidad en espacios que no sean \mathbb{R}^n ?

Más adelante hablaremos de algunas de sus ventajas

ALGUNAS DEFINICIONES

 $(E, \langle ; \rangle)$: Espacio euclídeo con un producto interno definido

- ightharpoonup Ortogonalidad entre dos vectores $\Leftrightarrow \langle \vec{v}; \vec{w} \rangle = 0$
- > Norma o Longitud de un vector $\Leftrightarrow ||\vec{v}|| = \sqrt{\langle \vec{v}; \vec{v} \rangle}$
- ightharpoonup Ángulo entre dos vectores $\Leftrightarrow \cos \alpha = \frac{\langle \vec{v}; \vec{w} \rangle}{\|\vec{v}\|.\|\vec{w}\|}$

ALGUNAS PROPIEDADES:

- \Box Designaldad de Cauchy-Schwarz: $|\langle \vec{v}; \vec{w} \rangle| \leq ||\vec{v}|| \cdot ||\vec{w}||$
- \square Designaldad Triangular: $|||\vec{v}|| ||\vec{w}|| \le ||\vec{v} + \vec{w}|| \le ||\vec{v}|| + ||\vec{w}||$

EJEMPLO 1:

Justificar por qué la siguiente función no es un Producto interno en \mathbb{R}^2 :

$$\langle (x_1, x_2); (y_1, y_2) \rangle = x_1. y_1$$

Veremos que no se cumple una de las condiciones:

$$4. \forall \vec{v} \in E : \langle \vec{v}; \vec{v} \rangle \ge 0 \ y \ \langle \vec{v}; \vec{v} \rangle = 0 \ \Longleftrightarrow \vec{v} = \overrightarrow{0_E}$$

Sea
$$\vec{v} = (x_1, x_2) \in R^2 : \langle \vec{v}; \vec{v} \rangle = \langle (x_1, x_2); (x_1, x_2) \rangle = x_1 \cdot x_1 = (x_1)^2 \ge 0$$

$$\langle \vec{v}; \vec{v} \rangle = 0 \iff (x_1)^2 = 0 \iff x_1 = 0 \iff \vec{v} = (0, x_2) \quad \forall x_2 \in R$$

No se cumple.. Para probarlo doy un contraejemplo:

 $\exists \ \vec{v} = (0,3) \in \mathbb{R}^2 \ ; \ \langle \vec{v} ; \vec{v} \rangle = 0 \ \text{y no se cumple que } \vec{v} = (0,0)$

EJEMPLO 2:

Sean $\vec{v} = (0,1) \ y \ \vec{w} = (-1,2)$. Hallar lo pedido en cada espacio euclídeo:

1)
$$(R^2; \langle ; \rangle)$$
 con el producto usual. a) $\|\vec{v}\| = ?$ b) Ángulo entre $\vec{v} \ y \ \vec{w} = ?$

a)
$$\|\vec{v}\| = ?$$

a)
$$\|\vec{v}\| = \sqrt{(0,1).(0,1)} = \sqrt{0^2 + 1^2} = 1 \implies \|\vec{v}\| = 1$$

$$\|\vec{v}\| = \sqrt{\langle \vec{v} ; \vec{v} \rangle}$$

b)
$$\cos \alpha = \frac{\langle \vec{v} ; \vec{w} \rangle}{\|\vec{v}\|, \|\vec{w}\|} = \frac{\langle (0,1); (-1,2) \rangle}{\|(0,1)\|, \|; (-1,2)\|} = \frac{2}{1,\sqrt{5}} \implies \alpha \cong 27^{\circ}$$

$$\cos \alpha = \frac{\langle \vec{v} ; \vec{w} \rangle}{\|\vec{v}\| \cdot \|\vec{w}\|}$$

2)
$$(R^2; \langle ; \rangle)$$
 con $\langle (x_1, x_2); (y_1, y_2) \rangle = x_1.y_1 + x_2.y_1 + x_1.y_2 + 2x_2.y_2$

a)
$$\|\vec{v}\| = ?$$
 b) Ángulo entre $\vec{v} \ y \ \vec{w} = ?$

a)
$$\|\vec{v}\| = \sqrt{\langle (0,1); (0,1) \rangle} = \sqrt{0.0 + 1.0 + 0.1 + 2.1.1} = \sqrt{2}$$
 $||\vec{v}\|| = \sqrt{2}$

b)
$$\cos \alpha = \frac{\langle \vec{v} ; \vec{w} \rangle}{\|\vec{v}\|, \|\vec{w}\|} = \frac{\langle (0,1) ; (-1,2) \rangle}{\|(0,1)\|, \|(-1,2)\|} = \frac{3}{\sqrt{2}, \sqrt{5}} \implies \alpha \cong 18^{\circ}$$

EJEMPLO 3:

Sean
$$p = x^2 + 1$$
 y $q = 1 + 2x - x^2$.

Hallar ||p|| y decidir si ambos vectores son ortogonales, en cada espacio euclídeo:

1)
$$(P_2; \langle ; \rangle)$$
 con $\langle a_2 x^2 + a_1 x + a_0 ; b_2 x^2 + b_1 x + b_0 \rangle = a_2 b_2 + a_1 b_1 + a_0 b_0$

$$||p|| = \sqrt{\langle x^2 + 1; x^2 + 1 \rangle} = \sqrt{1.1 + 0.0 + 1.1} = \sqrt{2} \implies ||p|| = \sqrt{2}$$

$$||p|| = \sqrt{\langle p; p \rangle}$$

$$\langle p; q \rangle = \langle x^2 + 1; 1 + 2x - x^2 \rangle = 1.(-1) + 0.2 + 1.1 = 0 \implies p \ y \ q \ \text{son ortogonales}$$

2)
$$(P_2; \langle ; \rangle)$$
 con $\langle p; q \rangle = p(1).q(1) + p(0).q(0) + p(-1).q(-1)$

$$||p|| = \sqrt{\langle x^2 + 1; x^2 + 1 \rangle} = \sqrt{2.2 + 1.1 + 2.2} = 3 \implies ||p|| = 3$$

$$\langle p; q \rangle = \langle x^2 + 1; 1 + 2x - x^2 \rangle = 2 \cdot 2 + 1 \cdot 1 + 2 \cdot (-2) = 1 \neq 0 \implies p \ y \ q \ \text{NO son ortogonales}$$

EJEMPLO 4:

Sea $(E; \langle ; \rangle)$ un espacio euclídeo con un cierto producto interno definido.

Sean \vec{u} , \vec{v} \vec{y} \vec{w} vectores de \vec{E} tales que: $\langle 2\vec{u} + \vec{w}; -3\vec{v} + 2\vec{u} \rangle = 4$ y se sabe que \vec{v} \vec{y} \vec{w} son ortogonales y $\langle \vec{u}; \vec{w} \rangle = \langle \vec{v}; \vec{u} \rangle = 8$. Hallar $||\vec{u}||$

$$\langle 2\vec{u} + \vec{w}; -3\vec{v} + 2\vec{u} \rangle = 4$$

Aplicamos propiedad del Producto interno (Distrib. para la suma)

$$\langle 2\vec{u}; -3\vec{v} \rangle + \langle 2\vec{u}; 2\vec{u} \rangle + \langle \vec{w}; -3\vec{v} \rangle + \langle \vec{w}; 2\vec{u} \rangle = 4$$

Aplicamos propiedad del Producto interno (Extracción Escalar)

$$(-6)\langle \vec{u}; \vec{v} \rangle + 4\langle \vec{u}; \vec{u} \rangle - 3\langle \vec{w}; \vec{v} \rangle + 2\langle \vec{w}; \vec{u} \rangle = 4$$

Datos: \vec{v} \vec{y} \vec{w} son ortogonales \vec{v} $(\vec{u}; \vec{w}) = (\vec{v}; \vec{u}) = 8$

$$(-6).8 + 4\langle \vec{u}; \vec{u} \rangle - 3.0 + 2.8 = 4$$

$$\|\vec{u}\| = \sqrt{\langle \vec{u}; \vec{u} \rangle}$$

$$4\langle \vec{u}; \vec{u} \rangle = 36 \implies \langle \vec{u}; \vec{u} \rangle = 9 \implies ||\vec{u}||^2 = 9 \implies ||\vec{u}|| = 3$$