

Lecture 0: Introduction

Prof. Ioannis Savidis

Introduction

- ☐ Integrated circuits: many transistors on one chip.
- □ Very Large Scale Integration (VLSI): bucketloads!
- ☐ Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- ☐ Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- ☐ Rest of the course: How to build a good CMOS chip

0: Introduction

CMOS VLSI Design 4th Ed.

Silicon Lattice

- ☐ Transistors are built on a silicon substrate
- ☐ Silicon is a Group IV material
- ☐ Forms crystal lattice with bonds to four neighbors

0: Introduction

CMOS VLSI Design 4th Ed.

-

Dopants

- Silicon is a semiconductor
- ☐ Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- ☐ Group V: extra electron (n-type)
- ☐ Group III: missing electron, called hole (p-type)

0: Introduction

CMOS VLSI Design 4th Ed.

Power Supply Voltage

- ☐ GND = 0 V
- □ In 1980's, $V_{DD} = 5V$
- $\hfill \square \hfill \hfil$
 - High $\ensuremath{V_{\text{DD}}}$ would damage modern tiny transistors
 - Lower $V_{\rm DD}$ saves power
- \bigvee $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

0: Introduction

CMOS VLSI Design 4th Ed.

3-input NAND Gate

- ☐ Y pulls low if ALL inputs are 1
- ☐ Y pulls high if ANY input is 0

0: Introduction

CMOS VLSI Design 4th Ed.

15

CMOS Fabrication

- ☐ CMOS transistors are fabricated on silicon wafer
- ☐ Lithography process similar to printing press
- ☐ On each step, different materials are deposited or etched
- □ Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

0: Introduction

CMOS VLSI Design 4th Ed.

- ☐ Chips are built in huge factories called fabs
- ☐ Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation Unauthorized use not permitted

0: Introduction

CMOS VLSI Design 4th Ed

24

Fabrication Steps

- Start with blank wafer
- ☐ Build inverter from the bottom up
- ☐ First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

0: Introduction

CMOS VLSI Design 4th Ed.

Oxidation Grow SiO₂ on top of Si wafer - 900 - 1200 C with H₂O or O₂ in oxidation furnace p substrate 0: Introduction CMOS VLSI Design 4th Ed. 23

	Lithography	
•	toresist through n-well mask osed photoresist	
		.
		Photoresist SiO ₂
p su	ubstrate	
0: Introduction	CMOS VLSI Design 4th Ed.	25

Strip Photoresist Strip off remaining photoresist Use mixture of acids called piranah etch Necessary so resist doesn't melt in next step sio2 p substrate 0: Introduction CMOS VLSI Design 4th Ed. 27

Layout

- ☐ Chips are specified with set of masks
- ☐ Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- \Box Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μ m in 0.6 μ m process

0: Introduction

CMOS VLSI Design 4th Ed.

Summary

- ☐ MOS transistors are stacks of gate, oxide, silicon
- □ Act as electrically controlled switches
- Build logic gates out of switches
- ☐ Draw masks to specify layout of transistors
- □ Now you know everything necessary to start designing schematics and layout for a simple chip!

0: Introduction

CMOS VLSI Design 4th Ed.

About these Notes

- ☐ Lecture notes © 2011 David Money Harris
- ☐ These notes may be used and modified for educational and/or non-commercial purposes so long as the source is attributed.

0: Introduction

CMOS VLSI Design 4th Ed.