Série d'exercices : Modulation et démodulation d'amplitude

Exercice 1:

 $u(t) = 4 \times \left[1 + 0,8\cos\left(1,6.10^{2}.t\right)\right]\cos\left(2,5.10^{4}.t\right)$ L'expression d'une tension modulée est :

- 1. Cette tension est-elle modulée en amplitude, en fréquence ou en fréquence ?
- **2.** Quelles sont les fréquences de porteuse F_p et du signal modulant f?
- 3. En se basant sur l'amplitude de la tension modulé $U_m(t)$. Déterminer la valeur du taux de modulation. Conclusion.

Exercice 2 : Soit une tension modulé en amplitude :

$$u_s(t) = A \times [1 + m\cos(2\pi f.t)] \cos(2\pi F_p.t)$$
 avec m le taux de modulation.

La figure ci-dessous représente les variations de U_S(t) en fonction du temps .

- 1. Déterminer la fréquence de la porteuse F_p et f la fréquence du signal modulant.
- 2. Que représente la courbe qui représente les variations des maximums de la tension modulée?
- **3.** Calculer le taux de modulation :
- 4. Rappeler les conditions d'une bonne modulation et vérifier qu'elles sont réalisées;
- 5. Déterminer la valeur de la constante A.

- vérifier la qualité de la modulation, au cours d'une séance de TP, le professeur a utilisé avec ses élève ; un circuit intégré multiplieur (X) en appliquant une tension sinusoïdale $u_1(t) = P_m \cdot cos(2\pi F_P \cdot t)$ à son entrée E_1 et une tension $u_2(t) = U_0 + s(t)$ à son entrée E_2 , avec U_0 la composante continue de la tension et $s(t) = S_m \cdot cos(2\pi f s. t)$ la tension modulante (fig 1). La courbe de la figure 2 représente la tension de sortie $u_s(t) = k$. $u_1(t)$. $u_2(t)$ visualisée par les élèves sur
- caractérisant le multiplieur X. 1- Montrer en précisant les expressions de A et m, que
 - la tension $u_s(t)$ s'écrit sous la forme

$$us(t) = A[1 + m.cos(2\pi fst)].cos(2\pi F_P.t)$$

- 2- En exploitant la courbe de la figure 2 :
- **2-1-** Trouver la fréquence F_P de la porteuse et f_S la fréquence de la tension modulante.
- 2-2- Déterminer le taux de modulation et en déduire la qualité de la modulation

II- Démodulation

Pour recevoir une onde radio, modulée en amplitude de fréquence $f_0 = 594kHz$, on utilise le dispositif simplifié

représenté par le schéma de la figure 3.

Parmi les réponses proposées préciser, sans aucune justification, la réponse juste:

1. La partie 3 du dispositif comporte une antenne et une bobine d'inductance $L_1 = 1$, 44 mH et de résistance négligeable qui est montée en parallèle avec un condensateur de capacité C variable.

1.1. La partie 2 sert à :

recevoir et sélectionner l'onde de la fréquence f_0 , la capacité C doit être fixée sur la valeur :

- **■** 499pF
- 4,99pF

- 49,9pF
- **■** 0,499pF

2. La partie 3 joue le rôle du détecteur d'enveloppe. La capacité du condensateur utilisé dans cette partie est $C_2 = 50nF$.

- **2.1.** La dimension du produit R_2C_2 est
 - \blacksquare [L]
- \blacksquare [T⁻¹]
- **[**T]

2.2. La moyenne des fréquences des ondes sonores est 1 kHz. La valeur de la résistance 2R qui permet d'avoir une bonne démodulation de l'onde radio étudiée est :

- **20** kΩ
- **35** kΩ
- **5** kΩ

10 kΩ

Exercice 4 : La figure 1 représente le montage utilisé dans un dispositif de réception constitué de trois parties.

- 1. Préciser le rôle de la partie 3 dans ce montage.
- **2.** Déterminer l'expression du produit LC en fonction de F_p pour que la sélection de l'onde soient bonne.
- **3.** Montrer que l'intervalle auquel doit appartenir la valeur de la résistance R pour une bonne détection de l'enveloppe de la

tension modulante dans ce montage est : $4\pi^2 L$. $F_p \ll R < \frac{4\pi^2 L F_p^2}{f_s}$

CODDECTION

 •••••
,
•••••