Licenciatura em Engenharia Informática Sistemas Operativos 1- Exame – 11 de Junho de 2014 Departamento de Informática - Universidade de Évora

Justifique cuidadosamente todas as suas respostas

- **1.** Descreva graficamente o modelo de 7 estados e explique as transições de um processo dos estados "SUSPEND" para outros estados.
- **2.** Indique as principais diferenças entre *Threads user level* e Threads de Kernel.
- **3.** Considere a seguinte tabela com o instante de chegada de cada processo à fila *ready* e com a duração do tempo de serviço no CPU:

Proc	t de chegada	t de serviço
1	0	60
2	10	40
3	20	30
4	30	10
5	40	10

Calcule o tempo médio para terminar um processo (*turnaround time*) para o algoritmo RR – round robin, quantum Q=20. Admita (se necessário) que num instante em que se interrompe um processo (se o algoritmo de escalonamento o impuser), primeiro passa-se o processo do CPU (*RUN*) para a fila de *READY* e só depois se testa se há processos novos para entrar na fila de *ready* (*de NEW para READY*).

- **4.** Usando semáforos, e indicando a sua inicialização, implemente um solução para o seguinte problema: considere uma centro comercial com uma lotação de 500 pessoas, onde existe um *fastfood* com um máquina e com espaço para 20 sandes. Cada pessoa entra no centro comercial, vai ao *fastfood*, e, se houver sandes na máquina paga e retira uma; atrás da máquina existe um cozinheiro de sandes que sempre que exista um espaço vago na máquina prepara um nova sandes e a coloca na máquina. Implemente em pseudo-código os processos "cozinheiro" e "cliente", cumprindo as restrições enunciadas. Considere os seguintes procedimentos que pode usar: entrar_centro_comercial(), sair_centro_comercial(), entrar_fastfood(), sair_fastfood(), tirar_e_pagar_sandes(), fazer_sandes().
- **5.** Considere um sistema com as seguintes matrizes de alocação; matriz dos pedidos; vector dos recursos totais; e vector das disponibilidades:

	A	В	C	D
P1	0	1	0	0
P2	3	4	0	0
Р3	1	1	4	1
P4	0	0	0	2

	A	В	C	D
P1	1	0	2	1
P2	0	3	3	3
Р3	0	2	2	1
P4	2	2	2	0

Rec	tot		
3	8	9	6
Disp			

Indique se existe deadlock.

- **6.** Considere um sistema de gestão de memória paginado com page table de 3 níveis; com TLB de 5 ns de tempo de acesso, com um *Hit Ratio de 98%*, qual o tempo de acesso da RAM que garante um tempo médio de acesso inferior a 100 ns?
- 7. Indique a hipótese correta. Um sistema de memória paginada...

A – pode ter fragmentação interna

B - permite ter um processo com dimensão superior à memória física RAM.

C – usa ou, o algoritmo BEST FIT ou o NEXT FIT

- D precisa de usar uma TLB (Table Lookaside Buffer) para se aplicar a tabelas de paginação multinível
- **8.** Num sistema de gestão de memória virtual com paginação, admita que o número de frames reservadas para as páginas é de 4 por processo. Aplique o algoritmo de substituição de páginas OPT (algoritmo ótimo) aos seguintes pedidos de um dos processos:

2 4 1 5 1 3 5 4 5 1 2 3 5 4 1 6 2 6 3 6 4 6

- **9.** Considere um sistema de ficheiros indexado com i-nodes, com: blocos de 4KB; endereços (de i-nodes e blocos) de 4 bytes; e cada entrada num diretório tem 20 Bytes para o nome e 4 para o endereço. Considere um sistema de i-nodes com 4 apontadores diretos e um indireto simples.
- a) Indique a dimensão máxima dos ficheiros.
- b) Indique o número máximo de ficheiros e subdiretórios dentro de um diretório.