L2S4 - Calcul matriciel

Correction des exercices

qkzk

2021/01/28

Correction des exercices de TD de L2S4 Calcul Matriciel

Exercices non corrigés

- 17
- 18
- 19
- 23 question 2
- 29 question 2
- 30
- 32
- 34
- 36
- 39
- 43
- 44
- 46
- 48

Généralités sur les matrices, opérations matricielles

Exercice 1

Écrire en extension la matrice $A = (a_{ij})$ de \mathcal{M}_4 définie pour tout $(i,j) \in [1..4]^2$ par

$$a_{ij} = \frac{1}{i+j-1}$$

$$A = (a_{ij}) \text{ de } \mathcal{M}_4, \forall (i,j) \in [1..4] \text{ par } a_{ij} = \frac{1}{i+j-1}$$

a[i,j]: élément de A en ligne i et colonne j

Donc on remplit la matrice :

$$A = \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

Exercice 2

Soit $A = (2^{(j-1)(k-1)})_{1 \le j,k \le n}$. Écrire A en extension pour n = 3

Soit $A=(2^{(j-1)(k-1)})_{1\leq j,k\leq n}$. Écrire A en extension pour n=3

$$A = \begin{bmatrix} 2^0 & 2^0 & 2^0 \\ 2^0 & 2^1 & 2^2 \\ 2^0 & 2^2 & 2^4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 8 \end{bmatrix}$$

Exercice 3

Donner la taille des matrices suivantes, et indiquer celles qui sont échelonnées, échelonnées réduites.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 3 & 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 4 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix} C = (\text{pas le courage})$$

Correction exercice 3

- A est de taille 5×5
- A n'est pas échelonnée, ni réduite.
- B est de taille 3×5 , elle est échelonnée mais pas réduite.
- C est de taille 5×10 (!) elle est échelonnée et réduite.

Exercice 4

Dans chacun des cas calculer A + B, AB, BA

1.
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} -2 & 4 \\ 3 & 1 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

Correction Exercice 4

1.
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix}, B = \begin{pmatrix} -2 & 4 \\ 3 & 1 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 0 & 7 \\ 2 & 1 \end{pmatrix}$$

$$AB = \begin{pmatrix} 5 & 11 \\ 2 & -4 \end{pmatrix}$$

$$BA = \begin{pmatrix} -8 & -6 \\ 5 & 9 \end{pmatrix}$$

2.
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$

$$A + B = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$

$$AB = \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$$

$$BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

3.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

$$A + B = \begin{pmatrix} 4 & 2 \\ 3 & 7 \end{pmatrix}$$

$$AB = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$$

$$BA = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}$$

Exercice 5

On pose:

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} B = \begin{pmatrix} 2 & 5 & 7 \\ 3 & 9 & 2 \end{pmatrix} C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 1 \end{pmatrix}$$

- 1. Calculer si c'est possible $A \cdot B$ et $B \cdot A$
- 2. Calculer de deux manières différentes ${}^{t}(B \cdot C)$
- 3. Que peut-on en dire de la matrice ${}^tB \cdot B$?

1. Calculer si c'est possible $A \cdot B$ et $B \cdot A$

AB est défini $(2,2)\times(2,3)$ mais BA n'est pas définie $(2,3)\times(2,2)$

$$AB = \begin{pmatrix} 11 & 32 & 13 \\ 19 & 55 & 24 \end{pmatrix}$$

2. Calculer de deux manières différentes $^t(B \cdot C)$

$$BC = \begin{pmatrix} -12 & 16 \\ -1 & 17 \end{pmatrix}$$

$$^{t}(BC) = \begin{pmatrix} -12 & -1\\ 16 & 17 \end{pmatrix}$$

2. Calculer de deux manières différentes ${}^t(B \cdot C)$

$$^{t}(BC) = {}^{t}C \cdot {}^{t}B$$

$${}^tC = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

$${}^{t}B = \begin{pmatrix} 2 & 3 \\ 5 & 9 \\ 7 & 2 \end{pmatrix}$$

$${}^tC^tB = \begin{pmatrix} -12 & -1\\ 16 & 17 \end{pmatrix}$$

3. Que peut-on dire de la matrice ${}^tB \cdot B$?

Une matrice de cette forme est toujours symétrique :

$$^{t}(^{t}B \cdot B) = ^{t}B \cdot ^{t}(^{t}B) = ^{t}B \cdot B$$

$${}^{t}B = \begin{pmatrix} 2 & 3 \\ 5 & 9 \\ 7 & 2 \end{pmatrix} B = \begin{pmatrix} 2 & 5 & 7 \\ 3 & 9 & 2 \end{pmatrix}$$

$${}^{t}B^{t}B = \begin{pmatrix} 13 & 37 & 20 \\ 37 & 106 & 53 \\ 20 & 53 & 53 \end{pmatrix}$$

Exercice 6

énoncé interminable... désolé... pas le courage

1. Combien le fleuriste a besoin de fleurs de chaque type ?

La démarche consiste à

- remarquer que les relations sont linéaires (pas de prix au carré!).
- noter A la matrice exprimant les quantités nécessaires :

$$A = \begin{pmatrix} 10 & 10 & 3 & 7 \\ 8 & 0 & 10 & 5 \\ 5 & 5 & 0 & 10 \end{pmatrix}$$

- Faire très attention à l'orientation de la matrice. Les types de fleurs sont en colonne !
- noter $C\ (commande)$ la matrice ligne exprimant la commande :

$$C = (51 \ 48 \ 37)$$

Il lui faut, pour les roses blanches : $51 \times 10 + 48 \times 8 + 37 \times 5 = 1079$ roses blanches

On peut donc généraliser et les quantités nécessaires sont données par $C\cdot A$:

$$C \cdot A = \begin{pmatrix} 51 & 48 & 37 \end{pmatrix} \begin{pmatrix} 10 & 10 & 3 & 7 \\ 8 & 0 & 10 & 5 \\ 5 & 5 & 0 & 10 \end{pmatrix}$$

$$C \cdot A = \begin{pmatrix} 1079 & 695 & 633 & 967 \end{pmatrix}$$

2. Quel est le prix de la commande?

Cette fois on note P la matrice colonne :

$$P = \begin{pmatrix} 23 \\ 19 \\ 15 \end{pmatrix}$$

Le prix de la commande est donné par :

$$C \cdot P = (2640)$$

Ce qui donne, en détaillant : $51 \times 23 + 48 \times 19 + 37 \times 15 = 2640$ €

Exercice 7

Vérifier l'associativité du produit matriciel avec :

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & -1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix}, C = \begin{pmatrix} -2 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Correction Exercice 7

Il faut vérifier que (AB)C = A(BC).

Il suffit de poser les calculs et on trouve les résultats suivants :

$$AB = \begin{pmatrix} -2 & 0 & -5 \\ -1 & 3 & 2 \end{pmatrix}$$

$$(AB)C = \begin{pmatrix} 4 & -12 \\ 5 & 3 \end{pmatrix}$$

$$BC = \begin{pmatrix} -2 & 3\\ 3 & -5\\ 2 & 2 \end{pmatrix}$$

$$A(BC) = \begin{pmatrix} 4 & -12 \\ 5 & 3 \end{pmatrix}$$

5

Exercice 8

Déterminer toutes les matrices X de $\mathcal{M}_2(\mathbb{R})$ vérifiant :

$$1. \ \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

1.
$$\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
2.
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{1.} \, \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} X = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

On pose
$$X = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$$

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{cc} x & y \\ z & t \end{array}\right] = \left[\begin{array}{cc} z & t \\ 2z & 2t \end{array}\right]$$

Donc
$$\begin{bmatrix} z & t \\ 2z & 2t \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow z = t = 0$$

et
$$X = \left[\begin{array}{cc} x & y \\ 0 & 0 \end{array} \right]$$

On a l'exemple de deux matrices non nulles dont le produit vaut 0. On dit que ces matrices divisent zéro.

$$2. \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} x & y \\ z & t \end{array}\right] = \left[\begin{array}{cc} x+z & y+t \\ z & t \end{array}\right]$$

Donc
$$\begin{bmatrix} x+z & y+t \\ z & t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

et
$$\begin{cases} x + z = 1 \\ y + t = 0 \\ z = 0 \\ t = 1 \end{cases}$$
 donc
$$\begin{cases} x = 1 \\ y = -1 \\ z = 0 \\ t = 1 \end{cases}$$
 et $X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$

Dans le second cas, X est en fait l'inverse de $\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right]$

Exercice 9

Résoudre dans $\mathcal{M}_2(\mathbb{R})$ le système :

$$\begin{cases} X+Y &= \begin{pmatrix} -3 & 1\\ -1 & 3 \end{pmatrix} \\ X+2Y &= \begin{pmatrix} 6 & 4\\ 5 & 3 \end{pmatrix} \end{cases}$$

Correction Exercice 9

Notons A et B les deux matrices de $\mathcal{M}_2(\mathbb{R})$ des seconds membres.

On cherche alors à résoudre le système :

$$(S) \Leftrightarrow \left\{ \begin{array}{rcl} X+Y & = & A \\ X+2Y & = & B \end{array} \right.$$

$$(S) \Leftrightarrow \left\{ \begin{array}{lcl} Y & = & B-A \\ X & = & A-Y = 2A-B \end{array} \right.$$

Il vient donc
$$Y = \begin{bmatrix} 9 & 3 \\ 6 & 0 \end{bmatrix}$$
 et $X = \begin{bmatrix} -12 & -2 \\ -7 & 3 \end{bmatrix}$

Exercice 10

On considère
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -3 \\ 0 & -1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & -1 \\ 3 & 1 & -2 \end{pmatrix}$.

1. Calculer $AB, BA, (A+B)^2$ et $A^2 + 2AB + B^2$. Que remarquez-vous ?

2. Calculer ${}^{t}(AB)$ et ${}^{t}A \cdot {}^{t}B$

Correction Exercice 10

1. Calculer $AB, BA, (A+B)^2$ et $A^2 + 2AB + B^2$. Que remarquez-vous ?

$$A \cdot B = \begin{pmatrix} 3 & 0 & -2 \\ -7 & -2 & 4 \\ -1 & 0 & 1 \end{pmatrix}, \ B \cdot A = \begin{pmatrix} 0 & -3 & 2 \\ 1 & 2 & 1 \\ 2 & 6 & 0 \end{pmatrix}, \ A + B = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & -4 \\ 3 & 0 & -2 \end{pmatrix}, \ (A + B)^2 = \begin{pmatrix} 6 & 0 & -4 \\ 12 & 1 & 4 \\ -6 & 0 & 10 \end{pmatrix}, \ A^2 = \begin{pmatrix} 0 & 1 & -2 \\ -2 & 3 & -4 \\ 1 & -1 & 3 \end{pmatrix}, \ B^2 = \begin{pmatrix} 3 & 2 & -2 \\ -4 & -2 & 3 \\ -8 & -5 & 6 \end{pmatrix}, \ A^2 + 2AB + B^2 = \begin{pmatrix} 9 & 3 & -8 \\ -20 & -3 & 7 \\ -9 & -6 & 11 \end{pmatrix}$$

 $AB \neq BA \Rightarrow$ pas d'identité remarquable ou de binôme de Newton.

2. Calculer ${}^{t}(AB)$ et ${}^{t}A \cdot {}^{t}B$

$${}^{t}A = \begin{pmatrix} 3 & 11 & -1 \\ 0 & 4 & 0 \\ -2 & -8 & 1 \end{pmatrix}, {}^{t}B = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 3 & 0 \end{pmatrix}, {}^{t}(A \cdot B) \begin{pmatrix} -1 & 1 & 3 \\ -1 & 0 & 1 \\ 1 & -1 & -2 \end{pmatrix}, {}^{t}A \cdot {}^{t}B \begin{pmatrix} 0 & 1 & 2 \\ -3 & 2 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$

On a toujours ${}^t(A \cdot B) = {}^t B \cdot {}^t A$ mais on s'arrête là car $AB \neq BA$

Exercice 11

On considère la matrice $A = \begin{pmatrix} 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Déterminer A^n pour tout $n \in \mathbb{N}^*$.

Correction exercice 11

Déterminer A^n pour tout $n \in \mathbb{N}^*$.

Et, pour tout $n \geq 4$, $A^n = A^4 \cdot A^{n-4} = O_3 \cdot A^{n-4} = O_4$

Comme $n \ge 4, n-4 \ge 0$ et A^{n-4} est bien définie.

Remarques

Une matrice carrée $N \neq O$ telle que $N^p = O$ pour $p \in \mathbb{N}^*$ est dite nilpotente. C'est le cas de toute matrice triangulaire dont les coefficients diagonaux sont nuls.

7

Remarquons donc qu'on peut diviser zéro chez les matrices carrées...

Exercice 12

On considère la matrice $A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{pmatrix}$.

- 1. Calculer A^2
- 2. Déterminer la matrice B telle que $A^2 = A + B$
- 3. a) Démontrer que AB = B
 - b) En déduire que $\forall n \in \mathbb{N}^*$ on a $A^n = A + (n-1)B$

Correction Exercice 12

1. Calculer A^2

$$A^2 = \begin{pmatrix} 3 & 4 & 6 \\ 2 & 5 & 6 \\ -2 & -4 & -5 \end{pmatrix}$$

2. Déterminer la matrice B telle que $A^2 = A + B$

$$A^{2} = A \cdot B \Leftrightarrow B = A^{2} - A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$$

3. a) Démontrer que AB = B

On calcule AB et il vient B.

3. b) En déduire que $\forall n \in \mathbb{N}^*$ on a $A^n = A + (n-1)B$

Nous allons faire un raisonnement par récurrence pour $n \in \mathbb{N}^*$

- 1. La propriété est vraie au rang n = 1: A + 0B = A.
- 2. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que $A^n = A + (n-1)B$ Alors, $A^{n+1} = A \cdot A^n = A(A + (n-1)B) = A^2 + (n-1)AB = A + B + (n-1)B = A + nB$ La propriété est donc vraie au rang n+1
- 3. D'après le principe de récurrence elle est vraie à tous les rangs $n \geq 1$.

Exercice 13

On considère la matrice $A = \begin{pmatrix} 2 & 2 & 2 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1. Calculer A^2 et A^3 . Que remarquez-vous?
- 2. Pour tout entier $n \in \mathbb{N}^*$, conjecturer l'expression de A^n en fonction de la matrice A.
- 3. Vérifier cette conjecture grâce à une récurrence.

Correction Exercice 13

1. Calculer A^2 et A^3 . Que remarquez-vous?

On obtient :

$$A^2 = \begin{pmatrix} 4 & 4 & 4 \\ -2 & -2 & -2 \\ 2 & 2 & 2 \end{pmatrix} = 2A$$

et

$$A^{3} = \begin{pmatrix} 8 & 8 & 8 \\ -4 & -4 & -4 \\ 4 & 4 & 4 \end{pmatrix} = 2^{2}A$$

2. Pour tout entier $n \in \mathbb{N}^*$, conjecturer l'expression de A^n en fonction de la matrice A.

On conjecture que $A^n = 2^{n-1}A$, $\forall n \in \mathbb{N}^*$.

3. Vérifier cette conjecture grâce à une récurrence.

Prouvons le par récurrence sur $n \in \mathbb{N}^*$.

Pour n=1, la propriété est vraie.

Supposons qu'il existe $n \in \mathbb{N}^*$ tel que :

$$A^n = 2^{n-1}A$$

Alors,

$$A^{n+1} = A^n \times A = 2^{n-1}A^2 = 2^{n-1} \times 2A = 2^nA$$

Et, d'après le principe de récurrence, la propriété est vraie pour tout $n \in \mathbb{N}g^*$.

Exercice 14

On considère la matrice : $A=\begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}$, α désignant un paramètre réel donné.

- 1. Calculer A^2 puis A^3 .
- 2. a) Trouver une matrice B telle que $A = \alpha I_3 + B$
 - b) Calculer B^2 et B^3 . En déduire $B^k, \forall k \geq 3$.
- 3. En déduire l'expression de A^n en fonction de n.

Correction Exercice 14

1. Calculer A^2 puis A^3 .

$$A^2 = \left(\begin{array}{ccc} \alpha^2 & 2\alpha & 1\\ 0 & \alpha^2 & 2\alpha\\ 0 & 0 & \alpha^2 \end{array}\right)$$

et

$$A^3 = \left(\begin{array}{ccc} \alpha^3 & 3\alpha^2 & 3\alpha \\ 0 & \alpha^3 & 3\alpha^2 \\ 0 & 0 & \alpha^3 \end{array}\right)$$

9

2. a) Trouver une matrice B telle que $A = \alpha I_3 + B$

On pose
$$B = A - \alpha I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

2. b) Calculer B^2 et B^3 . En déduire $B^k, \forall k \geq 3$.

Il vient:

$$B^2 = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$$

puis

$$B^3 = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

On en déduit que pour $k \geq 3$, $B^k = B^{k-3} \times B^3 = O_3$

3. En déduire l'expression de A^n en fonction de n.

On applique le binôme de Newton pour αI_3 et B^n qui commutent.

$$A^{n} = (\alpha I_{3} + B)^{n} = \sum_{k=0}^{n} {n \choose k} (\alpha I_{3})^{n-k} B^{k}$$

Or, on sait que $B^k = 0_3$ pour $k \ge 3$ donc $A^n = \sum_{k=0}^{2} {n \choose k} (\alpha I_3)^{n-k} B^k = \alpha^n I_3 + n\alpha^{n-1} B + \frac{n(n-1)}{2} \alpha^{n-2} B^2$.

On a utilisé : $B^0 = I_3$, $\binom{n}{0} = \binom{n}{n} = 1$, $\binom{n}{1} = \binom{n}{n-1} = n$, $\binom{n}{2} = \binom{n}{n-2} = \frac{n(n-1)}{2}$.

Donc
$$A^n = \begin{pmatrix} \alpha^n & n\alpha^{n-1} & \frac{n(n-1)}{2}\alpha^{n-2} \\ 0 & \alpha^n & n\alpha^{n-1} \\ 0 & 0 & \alpha^n \end{pmatrix}$$

Exercice 15

On considère la matrice $A=\begin{pmatrix}1&1&a\\1&1&b\\-\frac12&-\frac12&c\end{pmatrix}$, où a,b,c sont des nombres réels.

- 1. Déterminer a,b,c pour que A^2 soit la matrice nulle.
- 2. On considère la matrice $M = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 2 & 4 \\ -\frac{1}{2} & -\frac{1}{2} & -1 \end{pmatrix}$.

On veut calculer M^n pour tout $n \in \mathbb{N}^*$.

- a. Trouver P telle que $M = P + I_3$
- b. Par récurrence :
 - i. Exprimer M^2 et M^3 en fonction de I_3 et P
 - ii. Démontrer que, pour tout $n \in \mathbb{N}^*$, $M^n = I_3 + nP$
- c. Retrouver ce résultat avec la formule du binôme de Newton.

Correction Exercice 15

3. On pose $S_n = M + \cdots + M^n$, avec $n \in \mathbb{N}^*$.

Exprimer
$$S_n$$
 en fonction de n . (Rappel: $1 + \cdots + n = \frac{n(n+1)}{2}$)

1. Déterminer a, b, c pour que A^2 soit la matrice nulle.

$$A^{2} = \begin{pmatrix} 2 - \frac{a}{2} & 2 - \frac{a}{2} & a + b + ac \\ 2 - \frac{b}{2} & 2 - \frac{b}{2} & a + b + bc \\ -1 - \frac{c}{2} & -1 - \frac{c}{2} & c^{2} - \frac{a+b}{2} \end{pmatrix}$$

Donc $A^2 = O_3 \Rightarrow a = 4, b = 4$ et c = -2 (première colonne). On vérifie immédiatement que ces paramètres fonctionnent dans tous les coefficients.

2. a. Trouver P telle que $M = P + I_3$

 $P = M - I_3$ donc P est la solution obtenue à la question précédente (surprise).

2.b.i. Exprimer M^2 et M^3 en fonction de I_3 et P

 I_3 commute avec toutes les matrices carrée de taille 3 donc on peut appliquer les identités remarquables.

Il vient
$$M^2 = (I_3 + P)^2 = I_3^2 + 2I_3P + P^2 = I_3 + 2P$$
, car $P^2 = O_3$

puis
$$M^3 = M \times M^2 = (I_3 + P)(I_3 + 2P) = (I_3 + 3P + P^2) = I_3 + 3P$$

2.b.ii. Démontrer que, pour tout $n \in \mathbb{N}^*$, $M^n = I_3 + nP$

Prouvons ce résultat par récurrence. On a déjà initialisé aux rangs 1, 2 et 3.

Supposons qu'il existe un entier naturel non nul n tel que $M^n = I + nP$,

alors
$$M^{n+1} = M \times M^n = (I_3 + P)(I_3 + nP) = I_3^2 + (n+1)P + nP^2 = I_3 + (n+1)P$$

2.c. Retrouver ce résultat avec la formule du binôme de Newton.

On applique le binôme de Newton avec I_3 et P qui commutent :

$$M^{n} = (I_{3} + P)^{n} = \sum_{k=0}^{n} {n \choose k} (I_{3})^{n-k} P^{k} = \sum_{k=0}^{1} {n \choose k} (I_{3})^{n-k} P^{k} = I_{3} + nP$$

car $P^{k} = O_{3}$ si $k \ge 2$ et ${n \choose 1} = n$.

3. Exprimer S_n en fonction de n.

$$S_n = (I_3 + P) + (I_3 + 2P) + \dots + (I_3 + nP) = nI_3 + (1 + 2 + \dots + n)P = nI_3 + \frac{n(n+1)}{2}P.$$

On a utilisé l'indication :
$$1+2+\cdots+n=\frac{n(n+1)}{2}.$$

Exercice 16

Voir énoncé

Correction Exercice 16

1. $M^2(a,b)$

$$M(a,b)^2 = \begin{pmatrix} a+b & b \\ -b & a-b \end{pmatrix}^2 = \begin{pmatrix} (a+b)^2 - b^2 & b(a+b) + b(a-b) \\ -b(a+b) - b(a-b) & -b^2 + (a-b)^2 \end{pmatrix} = \begin{pmatrix} a^2 + 2ab & 2ab \\ -2ab & a^2 - 2ab \end{pmatrix}$$

11

2. a) $B \text{ tq } M = aI_2 + bB$

$$B = M(a,b) - aI_2 = \begin{pmatrix} b & b \\ -b & -b \end{pmatrix}$$

2. b) B^2

$$B^2 = O_2$$
 donc $B^k = O_2, \forall k \geq 2$

2. c) $M^n(a,b)$ avec le binôme de Newton

 aI_2 commute, comme I_2 avec toute matrice carrée de taille 2 donc avec B.

$$\forall n > 0, M^n(a, b) = \sum_{k=0}^n \binom{n}{k} a^{n-k} I_2 B^k$$

$$M^{n}(a,b) = \sum_{k=0}^{1} \binom{n}{k} a^{n-k} B^{k}$$

$$M^n(a,b) = a^n I_2 + na^{n-1}bB$$

$$M^n(a,b) = \begin{pmatrix} a^n + na^{n-1}b & na^{n-1}b \\ -na^{n-1}b & a^n - na^{n-1}b \end{pmatrix}$$

2. d) Toujours valable pour n = 0?

Oui.
$$M^0(a,b) = I_2$$

3. a) $X_{n+1} = MX_n$

$$U_{n+1} = 3U_n + 2V_n$$
 et $V_{n+1} = -2U_n - V_n$

$$X_{n+1} = \begin{pmatrix} 3U_n + 2V_n \\ -2U_n - V_n \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} U_n \\ V_n \end{pmatrix} = M(3,2)X_n$$

Cela fonctionne pour M = M(3, 2)

3. b) $X_n = M^n X_0$

Par récurrence. Le résultat est vrai au rang 1.

Supposons qu'il existe un naturel n tel que $X_n = M^n X_0$ alors $X_{n+1} = M \times M^n X_0 = M^{n+1} X_0$ Ce qui prouve le résultat pour tout n.

3. c) U_n et V_n en fonction de n.

On a
$$M^n = \begin{pmatrix} 1+2n & 2n \\ -2n & 1-2n \end{pmatrix}$$

Matrices inversibles et rang d'une matrice

Exercice 17

à préparer

Exercice 18

à préparer

Exercice 19

à préparer

Exercice 20

Soient A et B deux matrices carrées $n \times n$ telles que $AB = A + I_n$.

Montrer que A est inversible et déterminer son inverse en fonction de B

Correction Exercice 20

 $AB = A + I_n, A, B, I_n \in \mathcal{M}_n(\mathbb{R})$. Mq A est inversible et déterminer son inverse en fonction de B

$$AB = A + I_n \Leftrightarrow AB - A = I_n \Leftrightarrow A(B - I_n) = I_n$$

Donc A est inversible (il existe une matrice C telle que $AC = I_n$) et son inverse est $B - I_n$.

Exercice 21

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

- 1. Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité de taille 3.
- 2. En déduire que A est inversible et calculer son inverse.

Correction Exercice 21

1. Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité de taille 3.

$$A^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Et
$$A - A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Donc $A^2 = A + 2I_3$

2. En déduire que A est inversible et calculer son inverse.

$$A^2 = A + 2I_3$$
 donc $A^2 - A = I_3$ et $\frac{1}{2}(A^2 - A) = I_3$

Aussi
$$A \times \frac{1}{2}(A - I_3) = I_3$$

A est inversible et son inverse est
$$\frac{1}{2}(A - I_3) = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

Exercice 22

On considère la matrice $P = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$

- 1. Calculer P^2 , P^3 puis $P^3 2P^2 8P$.
- 2. En déduire que la matrice P est inversible et déterminer P^{-1} .

Correction Exercice 22

1. Calculer P^2 , P^3 puis $P^3 - 2P^2 - 8P$.

On trouve
$$P^2 = \begin{pmatrix} 7 & 0 & 2 \\ 0 & 8 & 1 \\ 3 & 1 & 5 \end{pmatrix} P^3 = \begin{pmatrix} 7 & 16 & 4 \\ 24 & -7 & 10 \\ 6 & 10 & 11 \end{pmatrix}$$

On remplace et $P^3 - 2P^2 - 8P = -15I_3$.

2. En déduire que la matrice P est inversible et déterminer P^{-1} .

On factorise P dans l'égalité précédente et $P(P^2-2P-8I_3)=-15I_3$ donc

$$P \times \frac{-1}{15} (P^2 - 2P - 8I_3) = I_3$$

Donc
$$P$$
 est inversible et $P^{-1}=\frac{-1}{15}(P^2-2P-8I_3)$

Détails

$$P^{2} = \begin{pmatrix} 7 & 0 & 2 \\ 0 & 8 & 1 \\ 3 & 1 & 5 \end{pmatrix}$$
$$P^{3} = \begin{pmatrix} 7 & 16 & 4 \\ 24 & -7 & 10 \end{pmatrix}$$

$$P^3 = \begin{pmatrix} 7 & 16 & 4 \\ 24 & -7 & 10 \\ 6 & 10 & 11 \end{pmatrix}$$

$$P^{-1} = \frac{-1}{15} \begin{pmatrix} -3 & -4 & 2\\ -6 & 2 & -1\\ 3 & -1 & -7 \end{pmatrix}$$

14

Exercice 23

Déterminer l'inverse de la matrice
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$$

Question 2 à préparer

Correction Exercice 23

Inverse de A

Beaucoup d'approches sont possibles : résolution d'un système 3×3 par pivot de Gauss, Réduction de Gauss-Jordan (la même chose écrite autrement), cofacteurs, formule explicite en 3×3 .

- La formule est indigeste. Je l'ai apprise une fois dans ma vie, juste avant qu'on ne me la demande. Je l'ai oubliée aussitôt.
- Les cofacteurs sont faciles mais sujets à beaucoup d'étourderies et nous n'avons pas encore vu le déterminant.
- Utilisons donc une réduction... de Gauss-Jordan.

On génère la matrice augmentée [A|I]

$$\begin{pmatrix} (1) & 0 & 2 & | & 1 & 0 & 0 \\ 2 & -1 & 3 & | & 0 & 1 & 0 \\ 4 & 1 & 8 & | & 0 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & -1 & -1 & | & -2 & 1 & 0 \\ 0 & 1 & 0 & | & -4 & 0 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & (1) & 0 & | & -4 & 0 & 1 \\ 0 & -1 & -1 & | & -2 & 1 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -4 & 0 & 1 \\ 0 & 0 & 1 & | & 6 & -1 & -1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & | & -11 & 2 & 2 \\ 0 & 1 & 0 & | & -4 & 0 & 1 \\ 0 & 0 & 1 & | & 6 & -1 & -1 \end{pmatrix}$$

Conclusion

A est inversible et
$$A^{-1} = \begin{pmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{pmatrix}$$

Je vous recommande donc d'utiliser cette méthode pour inverser les matrices de taille supérieure ou égale à 3. Pour la taille 2, utilisez la formule.

Systèmes linéaires

Exercice 24

Résoudre le système suivant d'inconnues x, y et z:

$$\begin{cases} x + 3y + 5z &= 22 \\ -x + 2y + 3z &= 12 \\ -12x + y - z &= -13 \end{cases}$$

Correction Exercice 24 question 1

Résoudre
$$\begin{cases} x + 3y + 5z &= 22 \\ -x + 2y + 3z &= 12 \\ -12x + y - z &= -13 \end{cases}$$

Il faut parfois avoir beaucoup de confiance en soi... ici tout se simplifie dans les moments critiques (aucun moyen de le deviner, je vous le dis).

$$\begin{cases} x + 3y + 5z &= 22 \\ -x + 2y + 3z &= 12 \\ -12x + y - z &= -13 \end{cases}$$

$$L_1 \leftarrow L_1 + L_2; L_3 \leftarrow L_3 + 12L_1$$

$$\Leftrightarrow \begin{cases} x + 3y + 5z = 22 \\ 5y + 8z = 34 \\ 37y + 59z = 251 \end{cases}$$

$$\begin{cases} x + 3y + 5z = 22 \\ 5y + 8z = 34 \\ 37y + 59z = 251 \end{cases}$$

$$L_3 \leftarrow 5L_3 - 37L_2$$

$$\Leftrightarrow \begin{cases} x + 3y + 5z = 22 \\ 5y + 8z = 34 \\ -z = -3 \end{cases} \Leftrightarrow \begin{cases} x + 3y + 5z = 22 \\ 5y + 8z = 34 \\ z = 3 \end{cases}$$

$$(-z = -3)$$

$$\Leftrightarrow \begin{cases} x + 3y + 5z = 22 \\ 5y = 34 - 8 \times 2 = 10 \end{cases} \Leftrightarrow \begin{cases} x = -3y - 5z + 22 \\ y = 2 \\ z = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 1 \\ y = 2 \\ z = 3 \end{cases}$$

Exercice 25

énoncé trop long

Correction Exercice 25

Nombre d'employés, techniciens, cadres?

On note x le nombre d'employés, y le nombre de techniciens et z celui des cadres.

- Personnes $\Leftrightarrow x + y + z = 60$
- Salaires: 1500x + 2600y + 4200z = 114000
- Augmentations: $1.064 \times 1500x + 1.045 \times 2600y + 1.045 \times 4200z = 1.056 \times 114000$
- Différence entre salaires augmentés et salaires de départ : $0.064 \times 1500x + 0.045 \times 2600y + 0.045 \times 4200z = 0.056 \times 114000$

système

$$\begin{cases} x + y + z = 60 \\ 15x + 26y + 42z = 1140 \\ 96x + 117y + 189z = 6384 \end{cases}$$

 L_3 se simplifie par 3.

$$\begin{cases} x + y + z = 60 \\ 15x + 26y + 42z = 1140 \\ 32x + 39y + 63z = 2128 \end{cases}$$

$$L_3 \leftarrow L_3 - 2L_2$$

$$\begin{cases} x + y + z = 60 \\ 15x + 26y + 42z = 1140 \\ 2x - 13y - 21z = -152 \end{cases}$$

$$\begin{cases} x + y + z = 60 \\ 15x + 26y + 42z = 1140 \\ 2x - 13y - 21z = -152 \end{cases}$$

$$L_2 \leftarrow L_2 - 15L_1; L_3 \leftarrow L_3 - 2L_1 \qquad L_3 \leftarrow 15L_2 + 11L_3$$

$$\begin{cases} x + y + z = 60 \\ 11y + 27z = 240 \\ -15y - 23z = -272 \end{cases} \Leftrightarrow \begin{cases} x + y + z = 60 \\ 11y = -27z + 240 \\ 152z = 608 \end{cases}$$

$$\begin{cases} x = -y - z + 60 \\ 11y = 132 \\ z = 4 \end{cases} \Leftrightarrow \begin{cases} x = 44 \\ y = 12 \\ z = 4 \end{cases}$$

$$\begin{cases} x = -y - z + 60 \\ 11y = 132 \\ z = 4 \end{cases} \Leftrightarrow \begin{cases} x = 44 \\ y = 12 \\ z = 4 \end{cases}$$

Exercice 26

Résoudre (S) en discutant selon les valeurs du paramètre a:

$$(S) \Leftrightarrow \begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases}$$

Correction Exercice 26

$$(S) \Leftrightarrow \begin{cases} ax + y + z = 1 \\ x + ay + z = a \\ x + y + az = a^2 \end{cases}.$$

Avant de se lancer il faut décider d'un pivot.

La meilleure approche est d'échanger les lignes 1 et 2: z, y, x

$$(S) \Leftrightarrow \begin{cases} x + ay + z = a \\ ax + y + z = 1 \\ x + y + az = a^2 \end{cases}.$$

26.2

On réalise les opérations suivantes :

 $L_2 \leftarrow L_2 - aL_1, L_3 \leftarrow L_3 - L_1$. Il vient :

$$(S) \Leftrightarrow \begin{cases} x + ay + z &= a \\ (1 - a^2)y + (1 - a)z &= 1 - a^2 \\ (1 - a)y + (a - 1)z &= a^2 - a \end{cases}$$

Supposons $a \neq 1$ afin de diviser par 1 - a. Nous devrons traiter ce cas a = 1 plus tard. On divise les secondes et troisième ligne par 1 - a.

26.3

Remarquons que $1 - a^2 = (1 - a)(1 + a)$ et $a^2 - a = a(a - 1) = -a(1 - a)$. Il vient :

Si
$$a \neq 1, (S) \Leftrightarrow$$

$$\begin{cases}
x + ay + z &= a \\
(1+a)y + z &= 1+a \\
y - z &= -a
\end{cases}$$

Dans ce système on fait l'opération $L_3 \leftarrow L_2 + L_3$

Si
$$a \neq 1$$
, $(S) \Leftrightarrow$

$$\begin{cases}
x + ay + z &= a \\
(1+a)y + z &= 1+a \\
(2+a)y &= 1
\end{cases}$$

26.4

On suppose de plus que $a \neq -2$ et alors

Si
$$a \neq 1$$
 et $a \neq -2$, $(S) \Leftrightarrow \begin{cases} y = \frac{1}{2+a} \\ z = y+a \\ x = a-ay-az \end{cases}$

Si
$$a \neq 1$$
 et $a \neq -2$, $(S) \Leftrightarrow \begin{cases} x = \frac{-a-1}{2+a} \\ y = \frac{1}{2+a} \\ z = \frac{1+2a+a^2}{2+a} \end{cases}$

On vérifie aisément que cette solution fonctionne dans le premier système.

26.5

Il reste à traiter les cas a = 1 et a = -2.

Si a=1 les trois lignes sont identiques : x+y+z=1. On obtient un plan de solutions dans l'espace. Si a=-2 le système s'écrit :

$$(S) \Leftrightarrow \begin{cases} -2x + y + z = 1\\ x - 2y + z = -2\\ x + y - 2z = 4 \end{cases}$$

La somme des trois lignes donne : 0x + 0y + 0z = 3 ce qui est impossible. Il n'y alors pas de solution.

Exercice 27

Résoudre les systèmes suivants :

1.

$$(S): \begin{cases} x + 2y + 2z = 2\\ 3x - 2y - z = 5\\ 2x - 5y + 3z = -4\\ x + 4y + 6z = 0 \end{cases}$$

2.

(S):
$$\begin{cases} x + 2y - z + 3w = 3\\ 2x + 4y + 4z + 3w = 9\\ 3x + 6y - z + 8w = 10 \end{cases}$$

Manque la question 3

27.1

$$\begin{pmatrix}
1 & 2 & 2 & 2 & 2 \\
3 & -2 & -1 & 5 \\
2 & -5 & 3 & -4 \\
1 & 4 & 6 & 0
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
1 & 2 & 2 & 2 \\
0 & -8 & -7 & -1 \\
0 & -9 & -1 & -8 \\
0 & 2 & 4 & -2
\end{pmatrix}$$

$$\Leftrightarrow \left(\begin{array}{ccc|c} 1 & 2 & 2 & 2 \\ 0 & -8 & -7 & -1 \\ 0 & -9 & -1 & -8 \\ 0 & 2 & 4 & -2 \end{array}\right) \Leftrightarrow \left(\begin{array}{ccc|c} 1 & 2 & 2 & 2 \\ 0 & 8 & 7 & 1 \\ 0 & 9 & 1 & 8 \\ 0 & 1 & 2 & -1 \end{array}\right)$$

$$\Leftrightarrow \left(\begin{array}{ccc|c} 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -9 & 9 \\ 0 & 0 & -17 & 17 \end{array}\right) \Leftrightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

27.1 fin

$$\Leftrightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{array}\right)$$

Les solutions sont x = 2, y = 1, z = -1

27.2

2.

$$(S): \begin{cases} x + 2y - z + 3w = 3 \\ 2x + 4y + 4z + 3w = 9 \\ 3x + 6y - z + 8w = 10 \end{cases}$$

$$\Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 3 & 3 \\ 2 & 4 & 4 & 3 & 9 \\ 3 & 6 & -1 & 8 & 10 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 3 & 3 \\ 0 & 0 & 6 & -3 & 3 \\ 0 & 0 & 2 & 2 & 4 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 3 & 3 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & -1 & 1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 3 & 3 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & -3 & -3 \end{pmatrix}$$

27.2 fin

$$\Leftrightarrow \begin{pmatrix} 1 & 2 & -1 & 3 & 3 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & -3 & -3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$(S): \begin{cases} x = 1 - 2y \\ y \in \mathbb{R} \\ z = 1 \\ w = 1 \end{cases}$$

Application au calcul de l'inverse d'une matrice

Exercice 28

On considère la matrice $B = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$.

- 1. Calculer B^2 En déduire que B est inversible et préciser B^{-1} .
- 2. Résoudre dans \mathbb{R} le systeme :

$$\begin{cases} x + 2y - 2z = 1 \\ 2x + y - 2z = 3 \\ 2x + 2y - 3z = 4 \end{cases}$$

Correction Exercice 28

1. Calculer B^2 En déduire que B est inversible et préciser B^{-1} .

On obtient
$$B^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I^2$$

Donc B est inversible et $B^{-1} = B$.

2. Résoudre dans \mathbb{R} le systeme : $\begin{cases} x + 2y - 2z = 1 \\ 2x + y - 2z = 3 \\ 2x + 2y - 3z = 4 \end{cases}$

Ce système est équivalent à BX = C avec $C = {}^t (1,3,4)$ donc, en multipliant par l'inverse de B on obtient $B^2X = BC$ soit $X = {}^{t} (-1, -3, -4)$

Exercice 29

On considère (S) $\begin{cases} x+2y-4z=a\\ -x-y+5z=b\\ 2x+7y-3z=c \end{cases}$ où $(a,b,c)\in\mathbb{R}^3$

- 1. Résoudre (S)
- 2. On pose $A = \begin{pmatrix} 1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3 \end{pmatrix}$. En utilisant 1. montrer que A est inversible et calculer A^{-1} .

Correction Exercice 29

1. Système

On pose le système augmenté :
$$\begin{pmatrix} 1 & 2 & -4 & a \\ -1 & -1 & 5 & b & b \\ 2 & 7 & -3 & c \end{pmatrix} \text{ On fait } L2 \leftarrow L2 + L1 \text{ et } L3 \leftarrow L3 - 2L1 \begin{pmatrix} 1 & 2 & -4 & a \\ 0 & 1 & 1 & a+b \\ 0 & 3 & 5 & c-2a \end{pmatrix} L3 \leftarrow L3 - 3L2 \begin{pmatrix} 1 & 2 & -4 & a \\ 0 & 1 & 1 & a+b \\ 0 & 0 & 2 & c-5a-3b \end{pmatrix}$$

21

1. suite

$$\begin{pmatrix} 1 & 2 & -4 & a \\ 0 & 1 & 1 & a+b \\ 0 & 0 & 2 & c-5a-3b \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -4 & a \\ 0 & 2 & 2 & 2a+2b \\ 0 & 0 & 2 & c-5a-3b \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 2 & -4 & a \\ 0 & 2 & 2 & 7a+5b-c \\ 0 & 0 & 2 & c-5a-3b \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & -16a-11b+3c \\ 0 & 2 & 0 & 7a+5b-c \\ 0 & 0 & 2 & 5a-3b+c \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 & -16a-11b+3c \\ 0 & 2 & 0 & 7a+5b-c \\ 0 & 0 & 2 & 5a-3b+c \end{pmatrix}$$

$$\text{donc } A^{-1} = \frac{1}{2} \begin{pmatrix} -32 & -22 & 6 \\ 7 & 5 & -1 \\ -5 & -3 & 1 \end{pmatrix}$$

Manque la question 2

Exercice 30

à préparer

Déterminant

Exercice 31

Sans aucun calcul donner le déterminant des matrices suivantes (cf énoncé)

Correction Exercice 31

- $\det(I_3) = 1^3 = 1$
- $\det(M_1) = -\det(I_3) = -1$ (échange des colonnes 1 et 2).
- $\bullet \det(M_2) = 2 \times 1 \times 1 = 2$
- $\det(2I_3) = 2^3 \det(I_3) = 8$
- $det(N_1) = 0$ (colonne nulle)
- $det(N_2) = 0$ (deux colonnes égales)
- $det(N_3) = 0$ (les colonnes sont liées : $C_3 = 2C_1$)

Exercice 32

à préparer

Exercice 33

Correction Exercice 33

Correction A

On effectue la combinaison linéaire $C_2 \leftarrow C_2 + 2C_1 + 2C_3$ et on développe par rapport à C_2

23

$$det(A) = \begin{vmatrix} \frac{1}{2} & -\frac{2}{3} & -\frac{1}{3} \\ \frac{3}{4} & 0 & -1 \\ 1 & 0 & 1 \end{vmatrix} = \frac{2}{3} \begin{vmatrix} \frac{3}{4} & -1 \\ 1 & 1 \end{vmatrix} = \frac{2}{3} \times \frac{7}{4} = \frac{7}{6}$$

Correction B.

On effectue la combinaison linéaire $L_2 \leftarrow L_1 - L_3$ et on développe par rapport à C_2

$$det(B) = \left| \begin{array}{ccc} 3 & 0 & -4 \\ 1 & 0 & 2 \\ -1 & 1 & 1 \end{array} \right| = -1 \times \left| \begin{array}{ccc} 3 & -4 \\ 1 & 2 \end{array} \right| = -10$$

Correction C

On effectue les combinaisons linéaires $L_1 \leftarrow L_1 - 4L_3$ et $L_2 \leftarrow L_2 - L_3$

on développe par rapport à C_2

$$det(C) = \left| \begin{array}{ccc} -6 & 0 & -12 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{array} \right| = -1 \times \left| \begin{array}{ccc} -6 & -12 \\ 1 & 2 \end{array} \right| = -1 \times 0 = 0$$

Exercice 34

à préparer

Exercice 35

$$A = \begin{pmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{pmatrix}$$

- 1. Montrer que $det(A) = (a+3)(a-1)^3$
- 2. Pour quelle valeur du paramètre a, A est-elle inversible ?

Correction Exercice 35

1. Montrer que $det(A) = (a+3)(a-1)^3$

$$det(A) = \begin{vmatrix} a & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{vmatrix} = \begin{vmatrix} a+3 & a+3 & a+3 & a+3 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{vmatrix}$$

$$= (a+3) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & a & 1 & 1 \\ 1 & 1 & a & 1 \\ 1 & 1 & 1 & a \end{vmatrix} = (a+3) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & a-1 & 0 & 0 \\ 0 & 0 & a-1 & 0 \\ 0 & 0 & 0 & a-1 \end{vmatrix}$$

$$= (a+3)(a-1)^3$$

2. Pour quelle valeur du paramètre a, A est-elle inversible ?

 $det(A)=(a+3)(a-1)^3$ doncAinversible si, et seulement si $a\neq -3$ et $a\neq 1$

Exercice 36

à préparer

Exercice 37

Voir énoncé

Correction Exercice 37

1.

On développe directement par rapport à la première ligne et il vient :

$$\det(A) = -1 \times (4 \times \lambda - 3 \times 4) - 1 \times (4 \times (-3) - 3 \times (-3)) = -4\lambda + 15.$$

A est inversible si et seulement si det $A\neq 0 \Longleftrightarrow \lambda\neq \frac{15}{4}.$

2.

a.
$$A^2 = \begin{pmatrix} 1 & 0 & 4 - \lambda \\ 0 & 1 & -16 + 4\lambda \\ -12 + 3\lambda & 12 - 3\lambda & -15 + \lambda^2 \end{pmatrix}$$

b. Pour que $A^2 = I_3$ il faut que les coefficients diagonaux soient égaux à 1 et les autres à 0. Ce qui donne $-12 + 3\lambda = 0$ et $-16 + 4\lambda = 0$ et $-15 + \lambda^2 = 1$.

L'unique solution est évidemment $\lambda = 4$.

3. Calcul direct signifie sans doute: en utilisant les comatrices.

Rappel : la comatrice de A est matrice des cofacteurs.

Le cofacteur A_{ij} est le déterminant de A dans lequel on a barré la ligne i et la colonne j.

$$A^{-1} = \frac{1}{\det A}^{t} \operatorname{com}(A) = \frac{1}{15 - 4\lambda}^{t} \begin{pmatrix} 12 - 3\lambda & 12 - 4\lambda & -3 \\ 3 - \lambda & 3 & 3 \\ 1 & -4 & -4 \end{pmatrix} = \frac{1}{15 - 4\lambda} \begin{pmatrix} 12 - 3\lambda & 3 - \lambda & 1 \\ 12 - 4\lambda & 3 & -4 \\ -3 & 3 & -4 \end{pmatrix}$$

Pour $\lambda = 4$ on obtient $A^{-1} = A$ et donc $A^2 = I_3$

Exercice 38

Voir énoncé

Correction Exercice 38

1.

$$\det A = 13 \neq 0 \text{ donc } A \text{ est inversible et } A^{-1} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{\det(A)} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \frac{1}{13} \left(\begin{array}{cc} 5 & -1 \\ 3 & 2 \end{array}\right).$$

2.

$$\det A = ac. \text{ Si } ac \neq 0, A^{-1} = \frac{1}{ac} \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$$

3.

 $\det A = 0$ car la première et troisième colonne sont opposées. A n'est pas inversible.

4.

 ${\cal B}$ est triangulaire dont sont déterminant est le produit des coefficients diagonaux.

 $\det B = 1 \times 3 \times 0 \times 1 = 0$. B n'est pas inversible (ouf).

Exercice 39

à préparer

Exercice 40

Voir énoncé

Correction Exercice 40

1.

Le système est de Cramer si le déterminant de la matrice associée est non nul. Calculons le.

$$\det A = \left| \begin{array}{ccc} 1 & 1 & m \\ 1 & m & -1 \\ 1 & 1 & -1 \end{array} \right| = \left| \begin{array}{ccc} 0 & 0 & m+1 \\ 0 & m-1 & 0 \\ 1 & 1 & -1 \end{array} \right|$$

On a fait $L_1 \leftarrow L_1 - L_3$ et $L_2 \leftarrow L_2 - L_3$.

On développe maintenant par rapport à la première ligne et il vient :

$$\det A = (m+1)(0-(m-1)) = -(m+1)(m-1)$$
. $\det A = 0 \Longrightarrow m = 0$ ou $m = 1$

Le système est de Cramer si, et seulement si, $m \neq 1$ et $m \neq -1$.

2.

Formules de Cramer : si le système est de Cramer, il a une unique solution donnée par :

$$x_k = \frac{\det A_k}{\det A}.$$

où ${\cal A}_k$ est obtenue en remplaçant la k-ième colonne de ${\cal A}$ par le second membre.

2 *x*

$$x = \frac{\det A_1}{-(m+1)(m-1)} = \frac{1}{-(m+1)(m-1)} \begin{vmatrix} m & 1 & m \\ 1 & m & -1 \\ 1 & 1 & -1 \end{vmatrix}$$

$$x = \frac{1}{-(m+1)(m-1)} \begin{vmatrix} m & 1 & 2m \\ 1 & m & 0 \\ 1 & 1 & 0 \end{vmatrix} = \frac{2m \times (1-m)}{-(m+1)(m-1)} = \frac{2m}{(m+1)}$$

2. *y*

$$y = \frac{\det A_2}{-(m+1)(m-1)} = \frac{1}{-(m+1)(m-1)} \begin{vmatrix} 1 & m & m \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{vmatrix}$$

$$y = \frac{1}{-(m+1)(m-1)} \begin{vmatrix} 1 & m-1 & m \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{vmatrix} = \frac{-(m-1)}{-(m+1)(m-1)} \times 0 = 0$$

2. z

$$z = \frac{\det A_3}{-(m+1)(m-1)} = \frac{1}{-(m+1)(m-1)} \begin{vmatrix} 1 & 1 & m \\ 1 & m & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$z = \frac{1}{-(m+1)(m-1)} \begin{vmatrix} 1 & 1 & m-1 \\ 1 & m & 0 \\ 1 & 1 & 0 \end{vmatrix} = \frac{(m-1)(1-m)}{-(m+1)(m-1)} = \frac{m-1}{m+1}$$

3.

$$\operatorname{Pour} m = 1, \, S \Longleftrightarrow \left\{ \begin{array}{lll} x + y + z & = & 1 \\ x + y - z & = & 1 \\ x + y - z & = & 1 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{lll} x + y & = & 1 \\ z & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{lll} y & = & 1 - x \\ z & = & 0 \end{array} \right.$$

On ne peut aller plus loin. Il y a une droite de solutions.

Pour
$$m = -1$$
, $S \iff \begin{cases} x + y - z &= -1 \\ x - y - z &= 1 \\ x + y - z &= 1 \end{cases}$

Les lignes 1 et 3 étant incompatibles, il n'y a aucune solution.			
_			

Diagonalisation

Exercice 41

voir énoncé

Correction Exercice 41

0. Rappels

Les valeurs propres λ d'une matrice M sont les racines du polynôme caractéristique (ie les solutions de $\det(M - \lambda I_n) = 0$) et les vecteurs propres, des vecteurs $non \ nuls \ X$ tels que $MX = \lambda X$

1.

On pose
$$P(\lambda) = \det(A - \lambda I_2) = \begin{vmatrix} 4 - \lambda & 4 \\ 1 & 4 - \lambda \end{vmatrix} = (4 - \lambda)^2 - 4 = (4 - \lambda - 2)(4 - \lambda + 2) = (2 - \lambda)(6 - \lambda)$$

Les valeurs propres sont les solutions de $P(\lambda) = 0$ soit 2 et 6.

Pour $\lambda = 2$, on cherche les vecteurs propres en résolvant $(A - 2I_2)X = 0.(S)$

$$S \Longleftrightarrow \left\{ \begin{array}{rcl} 2x + 4y & = & 0 \\ x + 2y & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{rcl} y & = & -2x \end{array} \right.$$

Il suffit d'en décrire un, ou de décrire une base si la dimension du sous-espace propre dépasse 1.

1. suite

On donne donc $X_2 = t(1 - 2)$. Les vecteurs propres pour $\lambda = 2$ sont donc les vecteurs kX_2 pour $k \neq 0$

Pour $\lambda=6$, on cherche les vecteurs propres en résolvant $(A-2I_6)X=0.(S)$

$$S \Longleftrightarrow \left\{ \begin{array}{rcl} -2x + 4y & = & 0 \\ x - 2y & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{rcl} y & = & 2x \end{array} \right.$$

On donne donc $X_6 = {}^t$ (1 2). Les vecteurs propres pour $\lambda = 2$ sont donc les vecteurs kX_6 pour $k \neq 0$

1. Conclusion

Conclusion (non demandée):

A est diagonalisable (2 valeurs propres distinctes en dimension 2) et sa matrice diagonale est $D = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$

La matrice de passage est $P = \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix}$ et on a $A = PDP^{-1}$

2.

On fait exactement la même chose que dans la question précédente pour trouver comme valeurs propres -2 et 7.

Ainsi, B, matrice carrée de taille 2 a 2 valeurs propres distinctes et est diagonalisable.

2. Suite

On résout (B+2I)X=0 pour trouver les vecteurs propres associés à la valeur propre -2.

Il vient : 4x + 5y = 0 donc t(5 - 4) est un vecteur propre de B pour la valeur propre -2.

2. Fin

On résout (B-7I)X=0 pour trouver les vecteurs propres associés à la valeur propre -2.

Il vient : -x + y = 0 donc $^t(1 - 1)$ est un vecteur propre de B pour la valeur propre 7.

3.

Cette fois c'est plus intéressant.

Valeurs propres. On pose
$$P(\lambda) = det(C - \lambda I_3) = \begin{vmatrix} 3 - \lambda & 2 & 0 \\ -1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)[-\lambda(3 - \lambda) + 2] = (1 - \lambda)(\lambda^2 - 3\lambda + 2) = -(\lambda - 1)^2(\lambda - 2)$$

Les valeurs propres sont 1 et 2. Attention, C est une matrice de taille 3 qui n'a que deux valeurs propres distinctes, elle peut ne pas être diagonalisable.

3. suite

Cherchons un vecteur propre pour $\lambda = 2$ (toujours commencer par le facteur de degré 1, c'est le plus facile...)

On résout $(C-2I_3)X=0(S)$

$$S \Longleftrightarrow \left\{ \begin{array}{rcl} x + 2y & = & 0 \\ z & = & 0 \end{array} \right.$$

et $^{t}(1 - 2 0)$ est un vecteur propre pour la vp 2.

3. fin

Cherchons 2 vecteurs propres libres pour la valeur propre 1. Attention, il se peut qu'on ne trouve qu'un et que les autres soient liés avec lui...

Cela signifie que C n'est alors pas diagonalisable.

On résout $(C - I_3)X = 0(S)$

$$S \Longleftrightarrow \begin{cases} 2x + 2y &= 0 \\ -x - y &= 0 \\ 0 &= 0 \end{cases}$$

Donc, ${}^{t}(1 \quad 1 \quad 0)$ et ${}^{t}(1 \quad 1 \quad 1)$ sont deux vecteurs propres libres de C.

En définitive cette matrice est diagonalisable.

Exercice 42

voir énoncé

Correction Exercice 42

1.

Rebelotte. Sans tous les détails fastidieux...

$$P(\lambda) = (1 - \lambda)^2 - 4 = \lambda^2 - 2\lambda - 3$$

Les valeurs propres sont -1 et 3.

Taille 2 avec 2 valeurs propres distinctes : diagonalisable.

On résout $(A + I_2)X = 0$ et ${}^t(1 - 1)$ est un vecteur propre pour la valeur propre -1.

On résout $(A - 3I_2)X = 0$ et $^t(1 - 1)$ est un vecteur propre pour la valeur propre 3.

1. fin

Donc
$$A = PDP^{-1}$$
 avec $\begin{vmatrix} -1 & 0 \\ 0 & 3 \end{vmatrix}$ et $P = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ donc $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

2.

$$P(\lambda) = (7 - \lambda)(-5 - \lambda) - 36 = \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$$

L'unique valeur propre est 1.

Taille 2 avec 1 valeur propre : peut-être pas diagonalisable.

On résout $(A - I_2)X = 0$ et t(3 - 2) est une base de vecteur propre pour la valeur propre 1.

Le sous-espace propre n'a pas la dimension souhaitée et la matrice n'est pas diagonalisable.

On peut aussi remarquer que si B était diagonalisable, sa matrice diagonale serait l'identité, ce qui, une fois remplacé dans PDP^{-1} ne serait pas possible.

3.

$$P(\lambda) = (3 - \lambda)^2 (7 - \lambda)$$

Seulement deux valeurs propres en taille 3, peut-être pas diagonalisable.

Pour la valeur propre 3 : on trouve deux vecteurs propres libres $^t(1 \ 0 \ 1)$ et $^t(0 \ 1 \ 0)$.

Pour la valeur propre 7 : on trouve le vecteur propre t(0 1 1).

Finalement cette matrice est diagonalisable.

3. fin

On a donc

$$P = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) D = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 7 \end{array}\right)$$

et

$$P^{-1} = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{array}\right)$$

Exercice 43

à préparer

Exercice 44

à préparer

Exercice 45

voir énoncé

Correction Exercice 45

1.

$$P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -\lambda & 3 & 2 \\ -2 & 5 - \lambda & 2 \\ 2 & -3 & -\lambda \end{vmatrix}.$$
 On fait $L_2 \leftarrow L_2 - L_1$ pour faire apparaître un zéro et simplifier les coefficients.

Il vient :
$$P(\lambda) = \begin{vmatrix} -\lambda & 3 & 2 \\ \lambda - 2 & 2 - \lambda & 0 \\ 2 & -3 & -\lambda \end{vmatrix}$$

Maintenant qu'on a deux coefficients opposés ligne 2, on développe par rapport à cette ligne.

1. fin

$$P(\lambda) = -(\lambda - 2) \begin{vmatrix} 3 & 2 \\ -3 & -\lambda \end{vmatrix} + (2 - \lambda) \begin{vmatrix} -\lambda & 2 \\ 2 & -\lambda \end{vmatrix} = (2 - \lambda) \left[(-3\lambda + 6) + (\lambda^2 - 4) \right] = (2 - \lambda) \left[\lambda^2 - 3\lambda + 2 \right]$$

On factorise $\lambda^2 + 3\lambda - 2 = (2 - \lambda)(1 - \lambda)$ avec Δ et $P(\lambda) = (2 - \lambda)^2(1 - \lambda)$.

Le déterminant de A est P(0) = 4.

2. a.

Les valeurs propres de A sont les racines de P: 1 et 2.

2. b

On cherche pour chaque valeur propre un sous espace propre de même dimension que sa multiplicité.

La multiplicité est la puissance avec laquelle elle apparaît dans le polynôme caractéristique.

Commençons par $\lambda = 1$

On résout le système, de la même manière que dans les 5 exercices précédents, on cherche une solution au système :

$$S_1 \Longleftrightarrow \begin{cases} -x + 3y + 2z &= 0\\ -2x + 4y + 2z &= 0\\ 2x - 3y - z &= 0 \end{cases}$$

On remarque aisément que $X_1 = (1, 1, -1)$ est une solution de ce système.

2. b suite

Les plus motivés peuvent envisager un pivot de Gauss qui dira la même chose.

Donc X_1 est un vecteur propre pour la valeur propre $\lambda = 1$.

Pour $\lambda = 2$, on cherche 2 vecteurs propres libres.

En effet, la multiplicité est 2...

On résout alors :
$$S_2 \iff \begin{cases} -2x + 3y + 2z = 0 \\ -2x + 3y + 2z = 0 \\ 2x - 3y - 2z = 0 \end{cases}$$

Les trois lignes ayant le bon goût d'être équivalentes, il suffit d'en garder une. On cherche alors deux solutions libres à l'équation de plan 2x - 3y - 2z = 0.

31

(1,0,1) et (3,2,0) sont deux solutions libres de cette équation.

2. b. fin

Conclusion : on a trouvé deux vecteurs propres pour $\lambda = 2$.

La matrice A est bien diagonalisable avec

$$P = \begin{pmatrix} -1 & 1 & 3 \\ 1 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \text{ qui v\'erifient } A = PDP^{-1}$$

2. c

$$A^n = (PDP^{-1})^n.$$

On montre par une récurrence triviale que $A^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$.

Exercice 46

à préparer

Exercice 47

voir énoncé

Correction Exercice 47

1.

$$P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1/2 & 3/2 - \lambda & -1/2 \\ -1/2 & 1/2 & 3/2 - \lambda \end{vmatrix}.$$

On fait $L_2 \leftarrow L_2 + L_3$ pour faire apparaître un zéro et simplifier les coefficients.

Il vient :
$$P(\lambda) = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 1 - \lambda \\ -1/2 & 1/2 & 3/2 - \lambda \end{vmatrix}$$

On développe par rapport à L_2

1. suite

$$P(\lambda) = (2 - \lambda) \begin{vmatrix} 1 - \lambda & 0 \\ -1/2 & 3/2 - \lambda \end{vmatrix} - (1 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ -1/2 & 1/2 \end{vmatrix} = (2 - \lambda)(1 - \lambda)(3/2 - \lambda) - (1 - \lambda)(1/2(1 - \lambda) + 1/2)$$

$$= (1 - \lambda)[(2 - \lambda)(3/2 - \lambda) - 1/2(2 - \lambda)] = (1 - \lambda)(2 - \lambda)[(3/2 - \lambda) - 1/2] = (1 - \lambda)(2 - \lambda)(1 - \lambda) = (1 - \lambda)^2(2 - \lambda)$$

Les valeurs propres de A sont 1, avec la multiplicité 2 et 2 avec la multiplicité 1.

1. suite encore...

Vecteurs propres pour $\lambda = 1$

On résout le système, (A - I)X = O:

$$S_1 \Longleftrightarrow \left\{ \begin{array}{cccc} y & = & 0 \\ (1/2)x + (1/2)y - (1/2)z & = & 0 \\ (-1/2)x - (1/2)y + (1/2)z & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} y & = & 0 \\ x - z & = & 0 \\ x - z & = & 0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{cccc} x & = & z \\ y & = & 0 \end{array} \right.$$

Donc les vecteurs propres sont tous colinéaires à (1,0,1).

Le sous-espace propre associé à la valeur propre 1, qui est de multiplicité 2, est donc de dimension 1. Cela prouve (pour la question d'après) que la matrice n'est pas diagonalisable.

1. fin

Continuous avec $\lambda = 2$

On résout le système, (A - I)X = O:

$$S_{1} \iff \begin{cases} -x+y & = 0 \\ (1/2)x - (1/2)y - (1/2)z & = 0 \\ (-1/2)x + (1/2)y - (1/2)z & = 0 \end{cases} S_{1} \iff \begin{cases} -x+y & = 0 \\ x-y-z & = 0 \\ -x+y-z & = 0 \end{cases} S_{1} \iff \begin{cases} -x+y & = 0 \\ -x+y+z & = 0 \\ x-y+z & = 0 \end{cases}$$

$$S_1 \Longleftrightarrow \left\{ \begin{array}{rcl} x & = & y \\ x & = & y \\ z & = & 0 \end{array} \right.$$

On obtient, par exemple, le vecteur propre (1,1,0).

2.

Nous l'avons justifié dans la question précédente.

3. a

On calcule le déterminant de P et il vaut -2.

L'inverse de P est $P^{-1} = 1/2 \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$. Arrivé ici, j'imagine que vous n'avez plus besoin des détails.

3. b

Le produit
$$T = P^{-1}AP$$
 vaut : $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

On calcule
$$T^2 = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $T^3 = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$.

3. b suite

Prouvons, par récurrence que
$$T^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}, \forall n \in \mathbb{N}.$$

C'est trivialement vrai pour n=0 et nous l'avons justifié pour n=1 et n=2.

3. b. fin

Supposons qu'il existe un naturel
$$n$$
 tel que $T^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$,

alors
$$T^{n+1} = T \times T^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^{n+1} & 0 & 0 \\ 0 & 1 & n+1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Ce qui prouve la formule, d'après le principe de récurrence.

3.c

$$T = P^{-1}AP \iff A = PTP^{-1} \forall n \in \mathbb{N}$$

Le lecteur qui apprécie les produits de matrice n'a plus qu'à remplacer pour obtenir une expression de chaque coefficient de A

Exercice 48

à préparer

Exercice 49

voir énoncé

Correction Exercice 49

1. a)

La diagonalisation est similaire à toutes les précédentes.

Pour calculer le polynôme caractéristique on peut effectuer la transformation $L_2 \leftarrow L_2 + L_3$ et développer par rapport à L_2 .

On obient après simplification : $P(\lambda) = (1 - \lambda)^2 (2 - \lambda)$

Les valeurs propres sont 1 et 2 avec multiplicités respectives 2 et 1.

Les vecteurs propres s'obtiennent en posant et résolvant les systèmes, il vient :

Pour $\lambda = 2$, (1, -1, 1) est un vecteur propre.

Pour $\lambda = 1$, (1,0,1) et (1,-1,0) sont des vecteurs propres libres.

La matrice A est donc diagonalisable cas la somme des dimensions de ses sous-espaces propres est 3 (la dimension de l'espace).

Matrice de passage

On a donc
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
 et $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ qui vérifient $A = PDP^{-1}$

De plus
$$P^{-1} = \begin{pmatrix} -1 & -1 & 1\\ 1 & 1 & 0\\ 1 & 0 & -1 \end{pmatrix}$$

 A^n

On a donc
$$A^n = PD^nP^{-1}$$
 avec $D^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

2. u_n, v_n, w_n

Le systeme s'exprime, en posant $X_n = {}^t (u_n, v_n, w_n)$:

$$X_{n+1} = AX_n \text{ et } X_0 = t(1,1,1)$$

Donc, par récurrence sur $n \in \mathbb{N}, X_n = A^n X_0 = PD^n P^{-1} X_0$

Calculer l'expression de u_n, v_n et w_n demande d'effectuer tous les produits avec $n \in \mathbb{N}$ quelconque.

Cet entraînement est laissé aux lecteurs les plus téméraires...