Examining Forms of Inductive Bias Towards 'Simplicity' in Genetic Algorithms to Enhance Evolvability of Boolean Functions

Hetvi Jethwani, Sumeet Agarwal

Indian Institute of Technology, Delhi

16th June 2021

Outline

Components
Evolvability
Metabiology
COLT and AIT
Framework
Conclusion
Future work

Figure: Scan to visit paper pdf

Motivation

- o Keratin, a protein found in human hair, nails, and skin, is about 550 amino acids long- out of $\approx (20)^{500}$ possible combinations, nature somehow stumbled upon this particular arrangement.
- Definitely not tractable to explore the whole space
- How exactly does nature 'reduce' this exponential possibility to weed out potentially good combinations?

Motivation

- In a sense, we're "learning" what's fit and what's not enabled by some constraints
- o These 'constraints' are known as priors or the inductive bias
- Typically represent selectivity for low-complexity structures

Goal

- o Existing approaches which seek to incorporate such priors-
 - 1. As a restricted case of PAC learnability Valiant (2009)
 - Meta-biology evolving software Chaitin (2011), Hernández-Orozco et al. (2018)
- We propose common framework to examine how these different priors affect the notion of evolvability of boolean function classes

1: A Computational Learning Theory (COLT) description

Evolution is modelled as a learning problem guided by aggregate fitness

Facilitated by restricting the search space to a chosen class of functions (such as conjunctions)

Simpler classes like conjunctions are shown to be more evolvable

Figure: Visualization of this framework [Kaushal (2018)]

2: The algorithmic information theory (AIT) approach

Impose the universal distribution over the mutation neighbourhood- probability of picking an algorithmically simpler structure is exponentially more

Figure: Framework proposed by Hernández-Orozco et al. (2018)

Finding common ground

Framework: Soft \rightarrow Hard

How does the Valiant (2009) notion of inductive bias translate to the setting proposed in Hernández-Orozco et al. (2018)?

- o Represent individuals as $2^n \times 1$ matrices, each representing minterms of a boolean function of n variables.
- o Soft constraint: G.A. similar to Hernández-Orozco et al., 2018
- Hard constraint: restriction on the algorithmic information of individuals- our 'prior' here becomes a threshold on the Kolomogorov complexity or BDM value.

But before we go on..

Can the "hard constraint" in the sense of belonging to a certain function class be emulated using a threshold on the information content?

Toy-example

Each boolean function is mapped to a binary string using its minterm representation

Evolving to: X AND (~y) ≘ (0010) [BDM 8.2576 bits]; Threshold: 8.3 bits

At generation G: x OR (~y) \cong (1011) [BDM: 8.2576 bits]

mutation

1 bit shift	(1011)	(1111)	(0011)	(1001)	(1010)
BDM	8.2576	7.9308	8.3392	8.4067	8.2587
Edit dist.	2	3	1	3	1

Red boxes are excluded from mutation neighbourhood because of the BDM threshold

selection

At generation G+1: (~y) ≘ (1010) [BDM: 8.2587 bits]

..and we keep iterating

Observations

Observations

- o Classes are actually 'separable' by BDM
- Thesholded setting converges faster than no threshold, and as it becomes tighter, faster convergence
- Extinctions/Time-outs also increase
- Conjunctions converge considerably faster than parity functions
- o Threshold weaker form of bias than the full universal distribution, but leads to a notable speed-up

Conclusion

- o Is it plausible to assume knowledge of a distribution over an exponentially large space?
- o Restriction on realisable functional mechanisms (such as conjunctions) may be a more plausible constraint

Further directions

- What's a feasible way to tune the BDM threshold?
- o Exploring modifications of the representation space because the current one would require space exponential in n

References

Cepelewicz, J. (n.d.). Computer science and biology explore algorithmic evolution.

> https://www.quantamagazine.org/computer-science-andbiology-explore-algorithmic-evolution-20181129/

- Chaitin, G. (2011). Goedel's Way: Exploits into an undecidable world. CRC Press. https://cds.cern.ch/record/1486394
- Delahaye, J.-P. & Zenil, H. (2012). Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1), 63-77.
- Hernández-Orozco, S., Kiani, N. A. & Zenil, H. (2018). Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity. Royal Society Open Science, 5(8), 180399. https://doi.org/10.1098/rsos.180399

Kaushal, S. (n.d.). Mathematical models of evolvability.