Importing dependencies

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
```

Data Collection and Analysis

```
In [5]:
          diabetes_data = pd.read_csv('diabetes.csv')
In [7]:
          #prinrting the first five row of our data
In [6]:
          diabetes_data.head()
Out[6]:
            Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age O
         0
                     6
                            148
                                           72
                                                         35
                                                                     33.6
                                                                                            0.627
                                                                                                    50
                             85
                                           66
                                                         29
                                                                     26.6
                                                                                            0.351
                                                                                                    31
                     8
                            183
                                           64
                                                          0
                                                                     23.3
                                                                                            0.672
                                                                                                    32
                     1
                             89
                                                         23
                                                                     28.1
                                                                                                    21
                                           66
                                                                 94
                                                                                            0.167
                     0
                            137
                                           40
                                                         35
                                                                168 43.1
                                                                                            2.288
                                                                                                    33
In [8]:
          #number of rows and columns in this data set
          diabetes_data.shape
         (768, 9)
Out[8]:
In [9]:
          #getting the stststical measures if the data
          diabetes data.describe()
```

Out[9]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Diabetes Pedigree
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	76
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	

```
Pregnancies
                                Glucose BloodPressure SkinThickness
                                                                         Insulin
                                                                                      BMI DiabetesPedigree
                   17.000000
                             199.000000
                                            122.000000
                                                           99.000000
                                                                     846.000000
                                                                                  67.100000
            max
In [10]:
           diabetes data['Outcome'].value counts()
                500
Out[10]:
                268
          Name: Outcome, dtype: int64
         0--> Non Diabetic
         1--> Diabetic
In [12]:
           diabetes data.groupby('Outcome').mean()
                    Pregnancies
                                   Glucose BloodPressure SkinThickness
                                                                            Insulin
Out[12]:
                                                                                        BMI DiabetesPedigre
          Outcome
                 0
                       3.298000 109.980000
                                                68.184000
                                                              19.664000
                                                                         68.792000 30.304200
                 1
                       4.865672 141.257463
                                                70.824627
                                                              22.164179 100.335821 35.142537
In [14]:
           #seperaring Data and Lables
           X = diabetes data.drop(columns = 'Outcome', axis = 1)
           Y = diabetes data['Outcome']
In [15]:
           print(X)
                                        BloodPressure
                                                        SkinThickness
                                                                         Insulin
                                                                                    BMI
                Pregnancies
                              Glucose
          0
                           6
                                  148
                                                    72
                                                                     35
                                                                                0
                                                                                   33.6
          1
                           1
                                   85
                                                    66
                                                                     29
                                                                                0
                                                                                   26.6
          2
                           8
                                                                                0
                                                                                   23.3
                                  183
                                                    64
                                                                     0
          3
                                                                     23
                                                                              94
                                                                                   28.1
                           1
                                   89
                                                    66
          4
                           0
                                  137
                                                    40
                                                                     35
                                                                              168
                                                                                   43.1
          763
                         10
                                  101
                                                    76
                                                                             180
                                                                                   32.9
                                                                    48
          764
                                  122
                                                    70
                                                                     27
                                                                               0
                                                                                  36.8
                           2
                           5
                                                    72
                                                                     23
                                                                             112
                                                                                   26.2
          765
                                  121
          766
                           1
                                  126
                                                    60
                                                                     0
                                                                                   30.1
                                                    70
                                                                                   30.4
          767
                           1
                                   93
                                                                     31
                                                                                0
                DiabetesPedigreeFunction
                                            Age
          0
                                    0.627
                                             50
          1
                                    0.351
                                             31
          2
                                    0.672
                                             32
          3
                                    0.167
                                             21
          4
                                     2.288
                                             33
          763
                                     0.171
                                             63
          764
                                    0.340
                                             27
```

```
765
                           0.245
                                  30
        766
                           0.349
                                  47
       767
                           0.315
                                  23
        [768 rows x 8 columns]
In [16]:
        print(Y)
       0
             1
        1
             0
        2
             1
        3
             0
             1
        4
        763
             0
        764
             0
        765
             0
       766
             1
       767
       Name: Outcome, Length: 768, dtype: int64
       Data Standardization
In [17]:
        scaler = StandardScaler()
In [18]:
        scaler.fit(X)
       StandardScaler()
Out[18]:
In [19]:
        standardized data = scaler.transform(X)
In [20]:
        print(standardized_data)
        [[ 0.63994726  0.84832379  0.14964075  ...  0.20401277  0.46849198
          1.4259954 ]
        [-0.84488505 -1.12339636 -0.16054575 \dots -0.68442195 -0.36506078
         -0.19067191]
        -0.10558415]
        [ 0.3429808
                    -0.27575966]
        1.17073215]
        [-0.84488505 -0.8730192
                              0.04624525 ... -0.20212881 -0.47378505
         -0.87137393]]
In [21]:
        X = standardized_data
        Y = diabetes_data['Outcome']
In [22]:
        print(X , Y)
```

1.4259954]

[0.63994726 0.84832379 0.14964075 ... 0.20401277 0.46849198

```
[-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078
          -0.19067191]
          -0.10558415]
          [ 0.3429808
                      -0.27575966]
          [-0.84488505 \quad 0.1597866 \quad -0.47073225 \quad \dots \quad -0.24020459 \quad -0.37110101
            1.17073215]
                                  0.04624525 ... -0.20212881 -0.47378505
          [-0.84488505 -0.8730192
           -0.87137393]] 0
               1
         3
               0
               1
               . .
         763
               0
         764
         765
               0
         766
               1
         767
        Name: Outcome, Length: 768, dtype: int64
        Train Test Split
In [23]:
         X_train , X_test ,Y_train ,Y_test = train_test_split(X ,Y ,test_size = 0.2 ,stratify =
In [24]:
         print(X.shape , X_train.shape , X_test.shape)
         (768, 8) (614, 8) (154, 8)
        Trianing the model
In [27]:
          clasifier = svm.SVC(kernel = 'linear')
In [28]:
         #training the support vector machine Classifier
         clasifier.fit(X_train,Y_train)
        SVC(kernel='linear')
Out[28]:
        Model Evaluating
        Accuray score
In [31]:
         #accuracy score on training data
         X train prediction = clasifier.predict(X train)
         training_data_accurcy = accuracy_score(X_train_prediction , Y_train)
```

print('Accuracy Score of the training data',training_data_accurcy)

Accuracy Score of the training data 0.7866449511400652

In [33]:

12/17/21, 5:51 PM

```
X test prediction = clasifier.predict(X test)
In [34]:
          test data accuracy = accuracy score(X test prediction , Y test)
In [35]:
          print('Accuracy score for Test data ' , test_data_accuracy)
          Accuracy score for Test data 0.7727272727272727
         Making a prediticive System
In [50]:
           input_data = (1,85,66,29,0,26.6,0.351,31)
           #chaniging input dat tor numpy array
           input_data_as_numpy = np.asarray(input_data)
           #reshape the array as we are prediting for one instance
           input data reshaped = input data as numpy.reshape(1,-1)
In [51]:
          #standardizing the input data
          std data = scaler.transform(input data reshaped)
          print(std_data)
          predition = clasifier.predict(std_data)
          print(predition)
           \begin{bmatrix} [-0.84488505 & -1.12339636 & -0.16054575 & 0.53090156 & -0.69289057 & -0.68442195 \end{bmatrix} 
            -0.36506078 -0.19067191]]
          [0]
In [52]:
          if (predition[0] == 0):
```

The person is not diabetic

print('The person is not diabetic')

print('The person is diabetic')