

Instituto Federal de Minas Gerais Campus Ouro Branco

Organização, Arquitetura e Abstrações

Professor: Saulo Henrique Cabral Silva

Desafio

- Variedade de produtos
 - Microcomputadores de único chip até supercomputadores
 - Variam no custo e no desempenho
- Ritmo rápido da mudança que caracteriza a tecnologia dos computadores
 - Desde os materias dos componentes até a organização paralela na combinação desses componentes.

Organização e Arquitetura

- Arquitetura de Computador refere-se a atributos de um sistema visíveis a um programador.
 - Impactam a <u>execução da lógica</u> de um programa.
 - Conjunto de instruções; número de bits usados para representar os tipos de dados.
- Organização de Computador refere-se às unidades operacionais e suas interconexões.
 - Sinais de controle, interfaces entre computador e periféricos.
- Muitos fabricantes de computador oferecem uma família de modelos de computador, todos com a mesma arquitetura mas com diferenças na organização.

Organização e Arquitetura

• Questão Arquitetural: "Será que um computador terá uma instrução de multiplicação?"

 Questão Organizacional: "Será que a instrução será implementada por uma <u>unidade de</u>

<u>multiplicação</u>

especial? Ou por um mecanismo que faça uso <u>repetido da unidade</u> de adição do sistema?"

Organização e Arquitetura

- Em microcomputadores, o relacionamento entre arquitetura e organização é muito próximo.
 - As mudanças na tecnologia não apenas influenciam a organização, como resultam em arquiteturas mais poderosas e mais flexíveis.
 - Geralmente com menor requisito para compatibilidade de geração
 - a geração.
 - Exemplo arquitetura RISC.

ESTRUTURA E FUNÇÃO (NÍVEL COMPUTADOR)

Estrutura e Função

- O Computador é um sistema complexo
 - Milhões de componentes eletronicos elementares.
- Precisamos reconhecer a natureza hierárquica dos sistemas mais complexos.
 - Temos um conjunto de subsistemas inter-relacionados
 - Até alcançar um nível mais baixo de subsistema elementar
- Estrutura Modo como os componentes são interrelacionados
- Função Operação individual de cada componente como parte da estrutura

Função

- Existem 4 Funções bem definidas que os computadores podem realizar:
 - Processamento de dados
 - Os dados podem estar representados de formas variadas, tanto em tamanho quanto em formatos
 - Armazenamento
 - Short-term
 - Long-term
 - Movimentação de dados
 - Input-output (I/O) Quando os dados são recebidos ou enviados para um dispositivo periférico conectado diretamento ao computador
 - Comunicação quandos os dados são enviados a longa distâncias para dispositivos remotos.
 - Controle
 - Uma unidade que controle os recursos disponíveis no computador e realize a organização (orquestra) dos compoenntes em resposta a execução de uma instrução.

Visão funcional do computador

Estrutura

- Quanto a estrutura interna do computador, existem 4 componentes estruturais principais:
 - Unidade central de processamento (CPU)
 - Memória principal
 - -E/S
 - Interconexão do sistema

Figure 1.1 A Top-Down View of a Computer

ABSTRAÇÕES

Afetado por:

- Afetado por:
 - 1. Algoritmo (técnicas, estruturas, otimizações,...);

- Afetado por:
 - 1. Algoritmo (técnicas, estruturas, otimizações,...);

2. Linguagem, compilador e arquitetura;

- Afetado por:
 - 1. Algoritmo (técnicas, estruturas, otimizações,...);

2. Linguagem, compilador e arquitetura;

3. Processador e sistema de memória;

- Afetado por:
 - 1. Algoritmo (técnicas, estruturas, otimizações,...);

2. Linguagem, compilador e arquitetura;

3. Processador e sistema de memória;

4. Sistema de E/S (inclusive SO).

Desempenho de um programa (algoritmo)

- Algoritmo
 - Determina o número de instruções do código fonte;

- número de operações de entrada e saída;

Afetado por:

- Linguagem, compilador e arquitetura
 - Determinam o número de instruções de máquina para cada instrução em nível da fonte
 - Aspectos relacionados ao longo desta disciplina em outras do curso

- Próprio processador
 - Processador

 Sistema de memória determinam a velocidade com que as instruções podem ser executadas

 Características serão discutidas nesta disciplina

- Sistema de E/S (hardware e sistema operacional)
 - Determina a velocidade em que as operações de E/S podem ser executadas

Características serão discutidas nesta disciplina.

Camadas (Visão simplificada)

Aplicação – S.O - Hardware

Níveis de programação

- Representação para Hardware
 - Bits;
 - Instruções e dados codificados
- Linguagem Assembly
 - Representação textual das instruções
- Linguagem de alto nível
 - Próximo do domínio do problema;
 - portabilidade

Componentes de um computador

- 5 componentes
 - Entrada
 - Saída
 - Memória(principal, secundária, cache)
 - Caminho de dados e controle → processador

Abstrações

- Abstrações ajudam a tratar complexidade
 - Revelam detalhes quando necessário
 - Uma das abstrações mais importantes é a interface entre o hardware e o software de nível mais baixo

 Arquitetura do conjunto de instruções (ISA – Instruction Set Architecture)

ISA

ISA

- Instruções, registradores, acesso a memória, E/S
- Em outras palavras, a ISA descreve a linguagem de máquina que o processador do computador é capaz de entender e executar.

- Implementação
 - Hardware que obedece a abstração de uma ISA

