Should We Fine-Tune or RAG? Evaluating Different Techniques to Adapt LLMs for Dialogue

Simone Alghisi[†], Massimo Rizzoli[†], Gabriel Roccabruna, Seyed Mahed Mousavi, Giuseppe Riccardi

Signals and Interactive Systems Lab, University of Trento, Italy {s.alghisi, massimo.rizzoli, giuseppe.riccardi}@unitn.it

https://arxiv.org/abs/2406.06399

San Diego Machine Learning Ryan Chesler

Overview of Large Language Models

- Huge models trained against text crawls of the internet to guess the next token
- Able to learn structure of language and some factual knowledge from all of the information it is trained against
- Cannot know anything about stuff that happened outside of its training set

Figure 1: The Transformer - model architecture.

Overview of Retrieval Augmented Generation

- Motivation: Give the large language model the relevant context to respond correctly
- Done by creating a knowledge store and then using a retrieval system to extract information related to the users query and passing to the LLM
- Heavily reliant on the strength of being able to retrieve the correct documents

Phases of LLMs

PRE-TRAINING

All Weights and Params Modified

1,000 x H100 (80GB) GPUs 10,000 hours of training Trained using Internet Data USD ~\$10M

These are the Foundation or Base Models

Analogy 12 Years of Primary and Secondary Schooling

FINETUNING

All Weights and Params Modified

A lot less GPU memory needed A lot less hours of training Trained using Tasked-Based Data A lot less costs involved

Instruct-Tuning (CoT)

Using tasked-based public data

(Task-Specific) Finetuning
Using tasked-based private data

Distillation

Using big LLMs to create responses, then use that to train smaller models

Analogy
6 Years of University
Bachelors and Masters (Bootcamp)

VECTOR DATABASE

Document Embedding

Complements LLMs for More Precise Responses

Uses Similarity Search on Private Documents

Uses LLMs for Coherence and Stylistic Responses

Analogy Private Notes, References, And Training Materials

ICL

In-Context Learning

Inference Advanced Prompt Engineering

Uses Few Shot Learning

Analogy At Work, the "Job", Applied Skills

Fine-tuning

- Training a model to do something more specific than just guess the next token
- Training it to follow instructions or teach it new information
- Huge downside that if your data is more narrow than the first phase it might lose its ability to do other language tasks

https://huggingface.co/datasets/OpenAssistant/oasst1

Should We Fine-Tune or RAG?

- "Our analysis shows that there is no universal best-technique for adapting large language models as the efficacy of each technique depends on both the base LLM and the specific type of dialogue"
- Evaluated across four domains
 - Open-Domain Dialogue
 - Knowledge-Grounded Dialogue
 - Task-Oriented Dialogue
 - Question Answering

Open Domain Dialogue

Daily Dialog - https://arxiv.org/abs/1710.03957

A: I'm worried about something.

B: What's that?

A: Well, I have to drive to school for a meeting this morning, and I'm going to end up getting stuck in rush-hour traffic.

B: That's annoying, but nothing to worry about. *Just breathe deeply when you feel yourself getting upset.*

A: Ok, I'll try that.

B: Is there anything else bothering you?

A: Just one more thing. A school called me this morning to see if I could teach a few classes this weekend and I don't know what to do.

B: Do you have any other plans this weekend?

A: I'm supposed to work on a paper that'd due on Monday.

B: Try not to take on more than you can handle.

A: You're right. I probably should just work on my paper. Thanks!

Figure 1: An example in **DailyDialog** dataset. Some text is shortened for space. Best viewed in color.

Knowledge-Grounded Dialogue

Wizard of Wikipedia - https://arxiv.org/abs/1811.01241

Topic:	Lifeguard						
Apprentice:	So I am a lifeguard. Know anything about saving lives in water?						
Wizard:	I'm impressed! It's a big responsibility to supervise other people's safety in the water! Tell me more.						
Apprentice:	Well, I help make sure people do not drown or get injured while in or near the water						
Knowledge:	A lifeguard is a rescuer who supervises the safety and rescue of swimmers, surfers, Lifeguards are strong swimmers and trained in CPR/AED first aid, certified in water						
	In some areas, the lifeguard service also carries out mountain rescues, or may function as the primary EMS provider.						
Wizard:	I've heard that in some places, lifeguards also help with other sorts of emergencies, like mountain rescues! Is that part of your job too?						
Apprentice:	I have! I feel like you know much about this! What brings you to know so much?						
Wizard:	Oh, that's about the extent of my knowledge. I've just been around beaches and I've always admired lifeguards. I'm not a super strong swimmer myself.						

Task-Oriented Dialogue

Ninth Dialog System Technology Challenge: DSTC9 - https://arxiv.org/abs/2011.06486

Task #1	Knowledge-seeking Turn Detection					
Goal	To decide whether to continue existing flow or trigger					
	the knowledge access branch for a given utterance					
	and dialog history					
Input	Current user utterance, dialog context, and domain					
ē	API and knowledge sources					
Output	Binary class (requires knowledge access or not)					
Task #2	Knowledge Selection					
Goal	To select proper knowledge sources from the domain					
	knowledge-base given dialog context at each turn					
	with knowledge access					
Input	Current user utterance, dialog context, and the entire					
	set of knowledge candidates					
Output	Ranking of top- k knowledge candidates					
Task #3	Knowledge-grounded Response Generation					
Goal	To generate a system response for a given triple					
	of input utterance, dialog context, and the selected					
	knowledge sources					
Input	Current user utterance, dialog context, and selected					
₹ 1	knowledge sources					
Output	Generated system response					

Question Answering

NarrativeQA - https://huggingface.co/datasets/deepmind/narrativega

```
"document": {
    "id": "23jncj2n3534563110",
    "kind": "movie",
    "url": "https://www.imsdb.com/Movie%20Scripts/Name%20of%20Movie.html",
    "file_size": 80473,
    "word count": 41000,
    "start": "MOVIE screenplay by",
    "end": ". THE END",
    "summary": {
        "text": "Joe Bloggs begins his journey exploring...",
        "tokens": ["Joe", "Bloggs", "begins", "his", "journey", "exploring",...],
        "url": "http://en.wikipedia.org/wiki/Name_of_Movie",
        "title": "Name of Movie (film)"
    },
    "text": "MOVIE screenplay by John Doe\nSCENE 1..."
3,
"question": {
    "text": "Where does Joe Bloggs live?",
    "tokens": ["Where", "does", "Joe", "Bloggs", "live", "?"],
3,
"answers": [
    {"text": "At home", "tokens": ["At", "home"]},
    {"text": "His house", "tokens": ["His", "house"]}
```

Methods and Results

- In-context learning vs fine-tuning
- Evaluated for retrieved knowledge vs gold knowledge
- Automatic evaluation

Model	Technique	External	Perplexity					
	_	Knowledge	ODD	KGD	TOD	QA		
Llama 2_C	In-Context Learning	No Know. Retrieved Know. Gold Know.	64.13	35.17 33.10 24.40	25.15 24.72 23.81	1442.26 625.08 298.16		
	Fine-Tuning	No Know. Retrieved Know. Gold Know.	5.67 ± 0.01	7.63 ± 0.01 6.95 ± 0.01 4.38 ± 0.01	0.05 ± 0.01 3.97 ± 0.01 5			
Mistral _I	In-Context Learning	No Know. Retrieved Know. Gold Know.	14.19	15.31 14.75 9.81	9.82 9.76 9.37	91.42 42.58 16.74		
	Fine-Tuning	No Know. Retrieved Know. Gold Know.	$\textbf{6.41} \pm \textbf{0.01}$	8.67 ± 0.01 7.78 ± 0.01 5.17 ± 0.01	$3.56 \pm 0.01 \\ 3.61 \pm 0.01 \\ 3.58 \pm 0.01$	$14.11 \pm 0.01 \\ 5.97 \pm 0.01 \\ \textbf{4.88} \pm \textbf{0.01}$		

Human evaluation

• Checked for contextualization, appropriateness, correctness, validity

75 manual annotators using Prolific

Model	Technique	External Knowledge	Contextualization			Appropriateness			Validity	
1.20.00			ODD	KGD	TOD	QA	ODD	KGD	TOD	QA
Llama 2_C	In-Context Learning	No Know. Retrieved Know.	85	70 75	70 65	50 70	80	70 75	60 45	10 35
		Gold Know.		90	40	90		85	45	80
	Fine-Tuning	No Know.	45	60	70	15	50	65	60	15
		Retrieved Know.		65	90	45		80	80	45
		Gold Know.		80	85	85		65	85	75
$\mathbf{Mistral}_I$	In-Context Learning	No Know.	90	80	70	20	85	85	65	20
		Retrieved Know.		75	65	40		65	60	25
		Gold Know.		90	55	75		70	55	80
	Fine-Tuning	No Know.	55	90	85	25	55	80	80	20
		Retrieved Know.		95	85	30		85	90	40
		Gold Know.		80	75	70		65	70	70
Ground-Truth			95	80	95	90	100	85	95	90

Hallucinations

Figure 1: Percentage of LLM responses (y-axis) for each error type (*Not Contextualized* and *Not Appropriate*) and their explanation (Generic, Hallucinated, and Incoherent) (x-axis), for Llama2 $_C$ and Mistral $_I$, adapted with In-Context Learning and Fine-Tuning in Open-Domain Dialogues (ODDs).

Figure 2: Percentage of LLM responses (y-axis) for each error type (*Not Contextualized* and *Not Appropriate*) and their explanation (Generic, Hallucinated, and Incoherent) (x-axis), for Llama 2_C and Mistral $_I$, adapted with In-Context Learning and Fine-Tuning in Knowledge-Grounded Dialogues (KGDs).