Signetics

74LS283 Adder

4-Bit Full Adder With Fast Carry Product Specification

Logic Products

FEATURES

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Fast internal carry lookahead

DESCRIPTION

The '283 adds two 4-bit binary words (A_n plus B_n) plus the incoming carry. The binary sum appears on the Sum outputs ($\Sigma_1 - \Sigma_4$) and the outgoing carry (C_{OUT}) according to the equation:

$$\begin{aligned} &C_{\text{IN}} + (A_1 + B_1) + 2(A_2 + B_2) \\ &+ 4(A_3 + B_3) + 8(A_4 + B_4) \\ &= \Sigma_1 + 2\Sigma_2 + 4\Sigma_3 + 8\Sigma_4 + 16C_{\text{OUT}} \\ &\text{Where (+) = plus.} \end{aligned}$$

Due to the symmetry of the binary add function, the '283 can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic) – see Function Table. In case of all active LOW operands the results $\Sigma_{1}-\Sigma_{4}$ and C_{OUT} should be interpreted also as active LOW. With active HIGH inputs, C_{IN} cannot be left open; it must be held LOW when no ''carry in'' is

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74LS283	13ns	20mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE V _{CC} = 5V ±5%; T _A = 0°C to +70°C
Plastic DIP	N74LS283N
Plastic SO-16	N74LS283D

NOTE:

For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74LS
A, B	Inputs	2LSul
C _{IN}	Input	1LSul
All	Outputs	10LSul

NOTE:

A 74LS unit load (LSuI) is $20\mu A$ IIH and -0.4mA IIL.

intended. Interchanging inputs of equal thus C_{IN} , A_1 , B_1 can arbitrarily be asweight does not affect the operation, signed to pins 5, 6, 7, etc.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Adder 74LS283

LOGIC DIAGRAM

FUNCTION TABLE

PINS	CIN	A ₁	A ₂	A ₃	A ₄	B ₁	B ₂	B ₃	B ₄	Σ1	Σ2	Σ3	Σ4	C _{OUT}
Logic levels	L	L	н	L	Н	Н	L	L	Н	н	н	L	L	н
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

	PARAMETER	74LS	UNIT
V _{CC}	Supply voltage	7.0	V
VIN	Input voltage	-0.5 to +7.0	٧
IN	Input current	-30 to +1	mA
V _{OUT}	Voltage applied to output in HIGH output state	-0.5 to +V _{CC}	٧
TA	Operating free-air temperature range	0 to 70	°C

H = HiGH voltage level L = LOW voltage level

Adder 74LS283

RECOMMENDED OPERATING CONDITIONS

	DADAMETER		74LS			
	PARAMETER	Min	Nom	Max	UNIT	
Vcc	Supply voltage	4.75	5.0	5.25	٧	
ViH	HIGH-level input voltage	2.0			٧	
V _{IL}	LOW-level input voltage			+0.8	٧	
I _{IK}	Input clamp current			-18	mA	
Гон	HIGH-level output current			-400	μА	
loL	LOW-level output current			8	mA	
TA	Operating free-air temperature	0		70	°C	

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER		TEST CONDITIONS ¹		74LS283			
		TEST COND	Min	Typ ²	Max	UNIT	
V _{OH}	HIGH-level output voltage	V _{CC} = MIN, V _{IH} = MIN, V _I	V _{CC} = MiN, V _{IH} = MIN, V _{IL} = MAX, i _{OH} = MAX		3.4		V
.,	LOW level and a series	V _{CC} = MIN, V _{IH} = MIN,	I _{OL} = MAX		0.35	0.5	>
VOL	LOW-level output voltage	V _{IL} = MAX	I _{OL} = 4mA (74LS)		0.25	0.4	v
VIK	Input clamp voltage	V _{CC} = MIN, I _I = I _{IK}				-1.5	>
	Input current at maximum input voltage	V _{CC} = MAX, V _I = 7.0V	A, B inputs			0.2	mA
l)			C _{IN} input			0.1	mA
		V _{CC} = MAX, V ₁ = 2.7V	A, B inputs			40	μΑ
I _{IH}	HIGH-level input current		C _{IN} input			20	μΑ
	1000		A, B inputs			-0.8	mA
IIL	LOW-level input current	$V_{CC} = MAX, V_1 = 0.4V$	C _{IN} input			-0.4	mA
los	Short-circuit output current ³	V _{CC} = MAX	V _{CC} = MAX			-100	mA
			Condition 1		22	39	mA
Icc	Supply current ⁴ (total)	V _{CC} = MAX	Condition 2		19	34	mA
			Condition 3		19	34	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.
- 3. Ios is tested with V_{OUT} = +0.5V and V_{CC} = V_{CC} MAX + 0.5V. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
- 4. I_{CC} should be measured with all outputs open and the following conditions:
 - Condition 1: All inputs grounded.
- Condition 2: All B inputs LOW, other inputs at 4.5V.
- Condition 3: All inputs at 4.5V.

AC WAVEFORMS

December 4, 1985 5-477

Adder 74LS283

AC ELECTRICAL CHARACTERISTICS $T_A = 25$ °C, $V_{CC} = 5.0$ V

			7	UNIT		
	PARAMETER	TEST CONDITIONS	$C_L = 15pF, R_L = 2k\Omega$			
			Min	Max	7	
t _{PLH} t _{PHL}	Propagation delay C_{IN} to Σ_1	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C _{IN} to Σ ₂	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C _{IN} to Σ ₃	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay C _{IN} to Σ ₄	Waveforms 1 & 2		24 24	ns	
t _{PLH} t _{PHL}	Propagation delay A_I or BV_I to Σ_I	Waveforms 1 & 2		24 24	ns	
t _{PLH}	Propagation delay C _{IN} to C _{OUT}	Waveform 2		17 22	ns	
t _{PLH}	Propagation delay A _I or B _I to C _{OUT}	Waveforms 1 & 2		17 17	ns	

TEST CIRCUITS AND WAVEFORMS

 $V_M = 1.3V$ for 74LS; $V_M = 1.5V$ for all other TTL families.

Input Pulse Definition

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

 R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value. C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 R_T = Termination resistance should be equal to Z_{OUT} of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

 $t_{\mbox{\scriptsize TLH}},~t_{\mbox{\scriptsize THL}}$ Values should be less than or equal to the table entries.

P44411 V	INPUT PULSE REQUIREMENTS							
FAMILY	Amplitude	Rep. Rate	Pulse Width	tTLH	t _{THL}			
74	3.0V	1MHz	500ns	7ns	7ns			
74LS	3.0V	1MHz	500ns	15ns	6ns			
74S	3.0V	1MHz	500ns	2.5ns	2.5ns			