

Parallel Computing with MATLAB

Jiro Doke, Ph.D. Senior Application Engineer

Sarah Wait Zaranek, Ph.D. MATLAB Product Marketing

A Question to Consider

Do you want to speed up your algorithms or deal with large data? If so...

- Do you have a multi-core or multi-processor computer?
- Do you have a high-end graphics processing unit (GPU)?
- Do you have access to a computer cluster?

Utilizing Additional Processing Power

- Built-in multithreading (implicit)
 - Core MATLAB and Image Processing Toolbox
 - Utility for specific matrix operations (linear algebra, fft, filter, etc)
 - No necessary code change
- Parallel computing tools (explicit)
 - Parallel Computing Toolbox
 - MATLAB Distributed Computing Server
 - Broad utility controlled by the MATLAB user

Agenda

Introduction to Parallel Computing Tools

- Using Multi-core/Multi-processor Machines
- Using Graphics Processing Units (GPUs)
- Scaling Up to a Cluster

Going Beyond Serial MATLAB Applications

Parallel Computing on the Desktop

- Use Parallel Computing Toolbox
- Speed up parallel applications on local computer
- Take full advantage of desktop power by using CPUs and GPUs (up to 12 workers in R2011b)
- Separate computer cluster not required

Scale Up to Clusters, Grids and Clouds

Parallel Computing enables you to ...

Agenda

Introduction to Parallel Computing Tools

Using Multi-core/Multi-processor Machines

- Using Graphics Processing Units (GPUs)
- Scaling Up to a Cluster

Programming Parallel Applications

Using Additional Cores/Processors (CPUs)

Support built into Toolboxes

Example:

Built-in Support for Parallelism in Other Tools

- Use built-in support for Parallel Computing Toolbox in Optimization Toolbox
- Run optimization in parallel
- Use pool of MATLAB workers

Other Tools Providing Parallel Computing Support

- Optimization Toolbox
- Global Optimization Toolbox
- Statistics Toolbox
- Simulink Design Optimization
- Bioinformatics Toolbox
- Model-Based Calibration Toolbox
- ...

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Using Additional Cores/Processors (CPUs)

Ease of Use

Support built into Toolboxes

Simple programming constructs: parfor

Running Independent Tasks or Iterations

- Ideal problem for parallel computing
- No dependencies or communications between tasks
- Examples include parameter sweeps and Monte Carlo simulations

Example:

Parameter Sweep of ODEs

- Parameter sweep of ODE system
- Use pool of MATLAB workers
- Convert for to parfor
- Interleave serial and parallel code

Damped spring oscillator

$$m\ddot{x} + b_{1,2,...} \dot{x} + k_{1,2,...} x = 0$$

- Sweep through different values of **b** and **k**
- Record peak value for each simulation

Tips for using parfor

- Requirement: Task and order independence
- Classification of Variables
 - One of the most common type of problems people run into when working with PARFOR.
 - At runtime, MATLAB needs determine how each variable would get treated.
 - Documentation: Parallel Computing Toolbox → User's Guide → Parallel for-Loops → Advanced Topics
- http://blogs.mathworks.com/loren/2009/10/02/usingparfor-loops-getting-up-and-running/

Using Additional Cores/Processors (CPUs)

Ease of Use

Support built into Toolboxes

Simple programming constructs: parfor

 Full control of parallelization: jobs and tasks

Agenda

- Introduction to Parallel Computing Tools
- Using Multi-core/Multi-processor Machines

Using Graphics Processing Units (GPUs)

Scaling Up to a Cluster

Gaining Performance with More Hardware

What is a Graphics Processing Unit (GPU)

- Originally for graphics acceleration, now also used for scientific calculations
- Massively parallel array of integer and floating point processors
 - Typically hundreds of processors per card
 - GPU cores complement CPU cores
- Dedicated high-speed memory

^{*} Parallel Computing Toolbox requires NVIDIA GPUs with Compute Capability 1.3 or greater, including NVIDIA Tesla 10-series and 20-series products. See http://www.nvidia.com/object/cuda_gpus.html for a complete listing

Example: GPU Computing in the Parallel Computing Toolbox

Solve 2nd order wave equation:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

 Send and create data on the GPU

Benchmark: Solving 2D Wave Equation

CPU vs GPU

Summary of Options for Targeting GPUs

 Use GPU array interface with MATLAB built-in functions

 Execute custom functions on elements of the GPU array

Create kernels from existing CUDA code and PTX files

Greater Control

Webinar: "GPU Computing with MATLAB"

http://www.mathworks.com/company/events/webinars/wbnr59816.html

Agenda

- Introduction to Parallel Computing Tools
- Using Multi-core/Multi-processor Machines
- Using Graphics Processing Units (GPUs)

Scaling Up to a Cluster

Setting Up Cluster Computing (for System Admins)

MATLAB Distributed Computing Server

- All-product install
- Worker license per process
- License by packs: 8, 16, 32, 64, etc.
- No additional toolbox licenses needed

Why scale up to a cluster?

- Solve larger, computationally-intensive problems with more processing power
- Solve memory-intensive problems
- Schedule computations to offload from your local machine

Example:

Scheduled Processing

- Offload processing to workers (local or cluster)
- Regain control of MATLAB after offloading
- Monitor progress of scheduled job
- Retrieve results from job

Damped spring oscillator

$$m\ddot{x} + b_{1,2,...} \dot{x} + k_{1,2,...} x = 0$$

- Sweep through different values of **b** and **k**
- Record peak value for each simulation

Distributing Large Data

Remotely Manipulate Array from Client MATLAB

Distributed Array Lives on the Workers

Client-side Distributed Arrays and SPMD

- Client-side distributed arrays
 - Class distributed
 - Can be created and manipulated directly from the client.
 - Simpler access to memory on labs
 - 100s of built-in functions that operate on distributed arrays, including client-side visualization functions

spmd

- Block of code executed on workers
- Worker specific commands
- Explicit communication between workers using MPI
- Mixture of parallel and serial code

Summary

- Speed up parallel applications on desktop by using Parallel Computing Toolbox
- Take full advantage of CPU and GPU hardware
- Use MATLAB Distributed Computing Server to
 - Scale up to clusters, grids and clouds
 - Work with data that is too large to fit on to desktop computers

For more information

Visit

www.mathworks.com/products/parallel-computing