

How to get ...

Parametric Curve

Curve fully determined by parameters (no data)

$$NDVI(t) = f(a, b, c, d, e)$$

Non-Parametric — Gaussian Process Regression (Kriging)

Non-Parametric: Curve also depends on data

$$NDVI(t) = f(data, tuning-parameters)$$

Non-Parametric — LOESS / LOWESS

A generalization of the Savitzky-Golay Filter

(allows for non-equidistant points and interpolation)

Non-Parametric — Smoothing Splines

$$\hat{m} := \operatorname*{argmin}_{f \in \mathcal{F}} \underbrace{\sum_{i=1}^{n} \left(Y_{i} - f\left(x_{i}\right)\right)^{2}}_{\in \operatorname{Squares}} + \lambda \operatorname{smoothness}$$

Similar Whittaker (but more general)

1. Interpolation

2. Robust Reweighting

- 1. initial curve
- 2. give lower weight to outliers (high residuals)
- 3. re-fit curve

3. Other Scl-Classes

Label	Classification		
0	NO_DATA		
1	SATURATED_OR_DEFECTIVE		
2	DARK_AREA_PIXELS		
3	CLOUD_SHADOWS		
4	VEGETATION		
5	NOT_VEGETATED		
6	WATER		
7	UNCLASSIFIED		
8	CLOUD_MEDIUM_PROBABILITY		
9	CLOUD_HIGH_PROBABILITY		
10	THIN_CIRRUS		
11	SNOW		

SCL = Scene Classification Layer

ETH zürich

D-MATH — Seminar for Statisti D-USYS — Crop Science

4. Correction

- get "true" NDVI
- get table:

"truth"	observed	scl-class	B2-B10	weather
"truth"	observed	scl-class	B2-B10	weather

4. Correction

- get "true" NDVI
- get table:

"truth"	observed	scl-class	B2-B10	weather
"truth"	observed	scl-class	B2-B10	weather

- Random Forest
- predict/correct NDVI
- weather yes or no?

5. Uncertainty Estimation

Table with residuals:

	residuals	observed	scl-class	B2-B10	weather
	residuals	observed	scl-class	B2-B10	weather
- 1					

- Random Forest
- predict residuals
- $weights = \frac{1}{|residual|}$

6. Robust Fit to Corrected NDVI

Reminder: Original Situation

500

1000

1500

GDD

2000

Overfitted?

Use all years for training

