ĐỀ SỐ 1 - THPT CHU VĂN AN

 \hat{Cau} 1: Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Khẳng định nào sau đây đúng?

A.
$$\overline{AG} = \frac{1}{3} \left(\overline{AB} + \overline{AC} + \overline{AD} \right)$$

B.
$$\overline{AG} = \frac{2}{3} \left(\overline{AB} + \overline{AC} + \overline{AD} \right)$$

C.
$$\overline{AG} = -\frac{1}{3} \left(\overline{AB} + \overline{AC} + \overline{AD} \right)$$

D.
$$\overline{AG} = -\frac{2}{3} \left(\overline{AB} + \overline{AC} + \overline{AD} \right)$$

Câu 2: Cho hình chóp tứ giác đều *S.ABCD* có tất cả các cạnh đều bằng a. Số đo góc giữa hai đường *BC*, *SA* bằng:

Câu 3: Viết phương trình tiếp tuyến của đồ thị hàm số $y = x^4 + x$ biết tiếp tuyến vuông góc với

đường thẳng
$$d: y = \frac{-1}{5}x$$

A.
$$y = 2x - 3$$

B.
$$y = 5x + 4$$

C.
$$y = 2x - 5$$

D.
$$y = 5x - 3$$

Câu 4: Trong không gian cho các đường thẳng a,b,c và mặt phẳng (P). Mệnh đề nào sau đây **sai**?

A.Nếu $a \perp b$ và $b \perp c$ thì a / / c.

B.Nếu $a \perp b, c \perp b$ và a cắt c thì b vuông góc với mặt phẳng chứa a và c.

C.Nếu a//b và $b \perp c$ thì $c \perp a$.

D.Nếu $a \perp (P)$ và b//(P) thì $a \perp b$.

Câu 5: Tính $I = \lim (3-n) \sqrt{\frac{n^2}{n^4 + 5}}$.

A.
$$I = 0$$

B.
$$I = -\infty$$

C.
$$I = 1$$

D.
$$I = -1$$

Câu 6: Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a, góc $ADC = 60^{\circ}$. Gọi O là giao điểm của AC và BD, $SO \perp (ABCD)$ và SO = 3a. Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng:

A. 60°

B. 75°

C. 30°

D. 45°

Câu 7: Cho hình chóp O.ABC có OA,OB,OC đôi một vuông góc, OB = OC = a. Biết góc giữa hai mặt phẳng (ABC) và (OBC) bằng 45° . Tính độ dài cạnh OA.

A. $\frac{a\sqrt{2}}{2}$

B. $\frac{a}{2}$

C. *a*

D. $a\sqrt{2}$

Câu 8: Cho dãy số có tổng của n số hạng đầu tiên được tính bởi công thức $S_n = 4n - n^2$. Số hạng thứ tư của dãy số bằng:

A. −3

B. 6

C. 3

D. -6

Câu 9: Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BD và A'D' bằng:

A. 90°

B. 0°

C. 60°

D. 45°

Câu 10: Tính $I = \lim_{x \to 1^+} \frac{3x + 2}{1 - x}$

A. $I = +\infty$

B. $I = -\infty$

C. I = 0

D. I = -3

Câu 11: Cho tứ diện đều ABCD. Cosin góc giữa AB và mp(BCD) bằng:

A. $\frac{\sqrt{3}}{2}$

B. $\frac{\sqrt{3}}{3}$

c. $\frac{1}{3}$

D. $\frac{\sqrt{2}}{3}$

Câu 12: Cho hàm số $y = 3x^3 + x^2 + 1$. Tìm tập hợp các giá trị x thỏa mãn $y' \le 0$.

A.
$$\left(-\infty; \frac{-9}{2}\right] \cup \left[0; +\infty\right)$$
 B. $\left[\frac{-2}{9}; 0\right]$

C.
$$\left(-\infty; \frac{-2}{9}\right] \cup \left[0; +\infty\right)$$
 D. $\left[\frac{-9}{2}; 0\right]$

Câu 13: Tính $\lim_{x \to -\infty} (4x^2 - 5x^3 + 1)$.

A. $+\infty$ B. $-\infty$ Câu 14: Cho hàm số $f(x) = \begin{cases} \frac{-x^2 + 3x + 4}{x - 4} \Leftrightarrow x \neq 4 \\ mx + 3 \Leftrightarrow x = 4 \end{cases}$. Tìm các giá trị của tham số m để hàm số liên tục

A.
$$m = \frac{1}{2}$$

A.
$$m = \frac{1}{2}$$
 B. $m = \frac{-1}{2}$

C.
$$m = -2$$

D.
$$m = 2$$

Câu 15: Tính $I = \lim \frac{(2-3n)^2(n-4)}{(n+1)^3}$.

A.
$$I = 9$$

B.
$$I = -9$$

C.
$$I = -3$$

D.
$$I = 3$$

Câu 16: Cho hình chóp *S.ABC* có cạnh bên SA vuông góc với đáy, tam giác *ABC* vuông tại B. Khẳng định nào sau đây đúng?

A.
$$AB \perp (SBC)$$

B.
$$BC \perp (SAB)$$

C.
$$SA \perp (SBC)$$

D.
$$AC \perp (SAB)$$

Câu 17: Cho hình chóp *S.ABCD* có đáy *ABCD* là hình vuông tâm O, cạnh a. Đường thẳng SO vuông góc với mặt phẳng đáy và $SO = \frac{a\sqrt{3}}{2}$. Tính góc giữa (SCD) và (ABCD).

A. 90°

B. 45°

C. 60°

D. 30°

Câu 18: Ba số khác nhau là số hạng thứ nhất, thứ hai và thứ ba của một cấp số nhân, đồng thời lần lượt là số hạng thứ nhất, thứ 9 và thứ 21 của một cấp số cộng. Biết số hạng đầu của hai cấp số là 8. Tính công bội của cấp số nhân.

A. 1

C. $\frac{2}{3}$

Câu 19: Trong không gian cho đường thẳng Δ không nằm trong mặt phẳng (P). Đường thẳng Δ vuông góc với mặt phẳng (P) nếu:

- **A.** Δ vuông góc với đường thẳng a mà a/(P).
- **B.** Δ vuông góc với mặt phẳng (Q) mà $(Q) \perp (P)$.
- C. Δ vuông góc với mọi đường thẳng nằm trong mặt phẳng (P).
- **D.** Δ vuông góc với hai đường thẳng phân biệt nằm trong mặt phẳng (P).

Câu 20: Tiếp tuyến của đồ thị hàm số $f(x) = x^3$ tại điểm có hoành độ bằng 2 và có hệ số góc bằng:

- **A.** k = 12

- **D.** k = -12

Câu 21: Trong các hàm số sau đây, hàm số nào có đạo hàm bằng $12x(2x^2+1)^2$?

- **A.** $(x^2+1)^3$
- **B.** $2x^2 + 1$
- C. $(2x^2+1)^2$ D. $(2x^2+1)^3$

Câu 22: Tính đạo hàm của hàm số $y = \frac{2x+1}{x-1}$.

- B. $\frac{-3}{(x-1)^2}$ C. $\frac{3}{(x-1)^2}$ D. $\frac{-3}{x-1}$

Câu 23: Cho dãy số (u_n) với $u_n = \sqrt{n^2 + an - 3} - \sqrt{n^2 + n}$, trong đó a là tham số thực. Tìm a để $\lim u_n = 3$.

A. 7

B. 6

C. 4

D. 5

Câu 24: Dãy số (u_n) nào sau đây là cấp số cộng:

- **A.** $u_n = n^2 + 5$ **B.** $u_n = \frac{2}{n+1}$
- C. $u_n = 5 3n$ D. $u_n = \cos 3n$

Câu 25: Dãy số (u_n) nào sau đây là dãy số bị chặn:

- **A.** $u_n = 3^n 2$ **B.** $u_n = \frac{2n+7}{n+3}$
- C. $u_n = \frac{n^2 + 2}{n + 3}$ D. $u_n = n^2 + 1$

Câu 26: Dãy số (u_n) nào sau đây là dãy số tăng:

- **A.** $u_n = 3^{-n} + 1$
- $\mathbf{B} \cdot u_{..} = \sin n$
- $C. u_n = 2n 3$
- **D**. $u_n = \frac{n+2}{n+1}$

Câu 27: Hai mặt phẳng vuông góc với nhau khi và chỉ khi:

- A. Hai mặt phẳng lần lượt chứa hai đường thẳng vuông góc với nhau.
- B. Mỗi đường thẳng nằm trong mặt phẳng này vuông góc với một đường thẳng nằm trong mặt phẳng kia
- C. Mặt phẳng này chứa đường thẳng vuông góc với mặt phẳng kia
- D. Mọi đường thẳng nằm trong mặt phẳng này đều vuông góc với mặt phẳng kia

Câu 28: Dãy số (u_n) nào sau đây là cấp số nhân:

- **A.** $u = 3^{n^2+1}$
- **B**. $u_n = 2n + 1$
- $C. u_{..} = n^2$
- $\mathbf{D}. \begin{cases} u_1 = 5 \\ u_2 = 3u_2, \forall n \in \mathbb{N}^* \end{cases}$

Câu 29: Trong không gian cho đường thẳng Δ và điểm A . Có bao nhiều mặt phẳng đi qua A và vuông góc với đường thẳng Δ đã cho?

A. 2

B.Vô số

C.Không có

D.1

Câu 30: Cho hình chóp S.ABCD có ABCD là hình thoi tâm O và SA = SC, SB = SD. Trong các khẳng định này khẳng định nào sai?

A. $SA \perp BD$

B. $SC \perp BD$

 $\mathbf{C}.AC \perp SA$

D. $AC \perp BD$

Câu 31: Cho cấp số cộng có số hạng đầu bằng 1 , số hạng thứ tư bằng 7 . Tổng 10 số hạng đầu của cấp số cộng đó bằng:

A.81

B.100

C.101

D. 80

Câu 32: Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, cạnh bên SA vuông góc với đáy, I là trung điểm AC. Khẳng định nào sau đây là sai?

 $\mathbf{A}.(SAB)\perp(ABC)$

 $\mathbf{B}.(SAC)\perp(SAB)$

 $C.(SAC) \perp (ABC)$

 $D.(SBI) \perp (SAC)$

Câu 33: Chon mệnh đề đúng trong các mệnh đề sau:

A.Nếu $\lim |u_n| = +\infty$ thì $\lim u_n = -\infty$

B.Nếu $\lim u_n = 0$ thì $\lim |u_n| = 0$

C.Nếu $\lim u_n = -a$ thì $\lim |u_n| = a$

D.Nếu $\lim |u_n| = +\infty$ thì $\lim u_n = +\infty$

Câu 34: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAvuông góc với đáy và $SA = a\sqrt{2}$. Tính góc giữa đường thẳng SC và mặt phẳng (SAB)

 $A.45^{\circ}$

B. 30°

C.90°

 $D.60^{\circ}$

Câu 35: Cho hàm số $f(x) = x^3 + 2x$. Tính f'(x)

A. $f'(x) = 3x^2 + 2x$

B. $f'(x) = 3x^2$

C. $f'(x) = x^2 + 2$

D. $f'(x) = 3x^2 + 2$

Câu 36: Cho cấp số cộng là dãy số tăng có 3 số hạng. Biết tổng các số hạng bằng 12, tích của chúng bằng 28. Công sai của cấp số cộng bằng:

A. 2

B. 4

C. 3

D.1

Câu 37: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, cạnh bên SA vuông góc với đáy và SA = a. Góc giữa hai mặt phẳng (SAD) và (SBC) bằng:

A. 45°

B.30°

 $C.60^{\circ}$

D.90°

Câu 38: Cho hàm số $f(x) = \begin{cases} 3x-2 & khi & x < 1 \\ x^2+4 & khi & x \ge 1 \end{cases}$. Chọn khẳng định đúng trong các khẳng định sau:

- **A**. Hàm số liên tục trên $[1; +\infty)$
- **B**.Hàm số liên tục trên \mathbb{R}
- C. Hàm số liên tục tại điểm x=1
- **D**. Hàm số liên tục trên $(-\infty;1]$

Câu 39: Trong các giới hạn sau đây giới hạn nào bằng 0?

- **A.** $\lim \frac{n-6n^3}{4n^2+9}$ **B.** $\lim \frac{3n^2+n+1}{\sqrt{n^4+2n^2}}$ **C.** $\lim \frac{n^2-4n^3}{5n^3+7}$ **D.** $\lim \frac{n+4}{3n^2+5n}$

Câu 40: Tính $I = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 5x}}{2x - 1}$

- A. I = 0
- **B**. $I = \frac{1}{2}$
- C. $I = -\frac{1}{2}$

Câu 41: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA vuông góc với mặt phẳng đáy và SA = 2a. Biết AB = 2AD = 2DC = 2a. Gọi α là góc giữa hai mặt phẳng (SAB) và (SBC). Tính $\tan \alpha$

 $\mathbf{A}.\sqrt{2}$

B. $2\sqrt{2}$

 $\mathbf{D}.\frac{\sqrt{2}}{2}$

Câu 42: Cho a và b là các số thực thỏa mãn $\lim_{x\to -1} \frac{x^2 + ax + b}{x+1} = 3$. Tính a+b

A.9

B.6

C.8

D. 7

- Câu 43: $\lim_{x \to -\infty} \left(\sqrt{4x^2 + 3x + 1} + mx \right) = +\infty \text{ nếu} :$
 - **A**. m < 2
- \mathbf{B} . m > 2
- $C. m \ge 2$
- $\mathbf{D}. m \leq 2$
- **Câu 44**: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, $SA = a\sqrt{2}$. Gọi M,N lần lượt là hình chiếu vuông góc của điểm A trên cạnh SB,SD. Góc giữa mặt phẳng (AMN) và đường thẳng SB bằng

A. 45°

B.120°

C.90°

D. 60°

Câu 45:Cho f(x) là một đa thức thỏa mãn $\lim_{x\to 2} \frac{f(x)-15}{x-2} = 3$. Tính $\lim_{x\to 2} \frac{f(x)-15}{\left(x^2-4\right)\left(\sqrt{2f(x)+6}+3\right)}$

A. $\frac{1}{10}$

B. $\frac{1}{6}$

 $C.\frac{1}{12}$

D. $\frac{1}{8}$

Câu 46:Cho hàm số $y = \frac{1}{3}x^3 + (2m+1)x^2 - mx - 4$. Tìm tất cả các giá trị của m để $y' \ge 0$ với mọi $x \in \mathbb{R}$

 $\mathbf{A}.\,m\in\left(-\infty;-1\right]\cup\left[-\frac{1}{4};+\infty\right)$

 $\mathbf{B}. m \in \left[-1; \frac{1}{4}\right]$

 $\mathbf{C}. m \in \left[-1; -\frac{1}{4}\right]$

 $\mathbf{D}. m \in \left(-1; -\frac{1}{4}\right)$

Câu 47: Cho hàm số $y = \frac{x+1}{2x-1}$, có đồ thị (H). Gọi $A(x_1; y_1)$, $B(x_2; y_2)$ là hai điểm phân biệt thuộc (H) sao cho tiếp tuyến của (H) tại A, B song song với nhau. Tính độ dài nhỏ nhất của đoạn thẳng AB

A.3

B. $3\sqrt{2}$

 $\mathbf{C}.\sqrt{6}$

D. 6

Câu 48: Tiếp tuyến của đồ thị hàm số y = f(x) tại hai điểm có hoành độ bằng 2 có phương trình là y = 3x - 3 thì tiếp tuyến của đồ thị hàm số $y = x^2 f(x)$ tại điểm có hoành độ bằng 2 có phương trình nào trong các phương trình sau:

- **A.** y = 12x + 2
- **B.** v = 24x + 40
- C. y = 12x 2
- **D**. y = 24x 36

Câu 49: Tính $I = \lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{3}{n^2} + \frac{5}{n^2} + \dots + \frac{2n+1}{n^2} \right)$

- $\mathbf{A}.I = +\infty$
- **B**. $I = \frac{1}{2}$
- **C**. I = 1

D. I = 0

Câu 50: Cho hàm số $f(x) = \sqrt{x^2 + 2x}$. Bất phương trình $f'(x) \ge f(x)$ có bao nhiều nghiệm nguyên?

 $\mathbf{A}.0$

B.1

C. 3

D. 2