ENTROPY: EXPECTED SURPRISE

One Bobsled Race To Go

- Scenario 1
 - 2 teams tied for total time after 3 races
- Scenario 2
 - Swiss team is ahead by 22 seconds after 3 races
 - Announcer says there is only a 10% chance the American team will catch up and win gold
- NBC cuts to a commercial
- Comes back with a different sport!
- How much do you wonder about bobsled result?

Later You Find Out

- Scenario 1: teams were tied
 - 1a: American team got gold
 - 1b: American team got silver
- Scenario 2: Swiss team way ahead
 - 2a: American team got gold
 - 2b: American team got silver
- How surprising is each of these outcomes?
- On average: how much surprise do you expect in each scenario?
- How much "information" do you get from learning the result?

Measuring Surprisal

- If outcome is unexpected, surprise is higher
- Assign probabilities to possible outcomes
 - Each probability is in (0, 1)
 - Sum of probabilities is 1
- Quantify surprise of outcome a as
 - $-\log(pr(a))$

Expected Surprise

- Scenario 1: teams were tied
 - With probability ½ Americans win
 - Surprise –log(½)
 - With probability ½ Americans lose
 - Surprise –log(½))
 - Expected surprise
 - $\frac{1}{2}(-\log(\frac{1}{2})) + \frac{1}{2}(-\log(\frac{1}{2}))$
- Scenario 2: Swiss way ahead
 - With probability .1 Americans win
 - Surprise –log(.1)
 - With probability .9 Americans lose
 - Surprise –log(.9)
 - Expected surprise
 - $.1(-\log(.1))) + .9* -\log(.9)$
- Which has greater expected surprise?

The General Formula

- Mutually exclusive outcomes $x_1, x_2, ..., x_n$
- $-\sum_{i=1}^{n} pr(x_i) * \log(x_i)$
 - $-(x_1, x_2) = .5, .5$
 - $-\frac{1}{2}\log(\frac{1}{2}) \frac{1}{2}\log(\frac{1}{2}) = 1$
 - $-(x_1, x_2) = .1, .9$
 - $-.1*\log(.1) .9*\log(.9) = 0.469$

Summary

- Surprisal is a measure of an outcome
- Expected (average) surprisal is a measure of a process with uncertain outcome
- Shannon defined "information" as expected surprisal, the uncertainty that will be resolved once outcome is revealed
- How much information in a message depends on what you knew before you got the message