TelME: Teacher-leading Multimodal Fusion Network for Emotion Recognition in Conversation

Peizhen Li

Faculty of Science and Engineering Macquarie University

Aug 30, 2024

Outline

- 1 Introduction
- 2 Feature Extraction
- 3 Knowledge Distillation
- 4 Multimodal Fusion

Introduction

- · Task: emotion recognition in conversation
- Motivation: improve the efficacy of weak non-verbal modalities
- Solution and contributions:
 - cross-modal knowledge distillation
 - attention-based modality shifting fusion

Model Overview

Feature Extraction

Text (encoder: modified Roberta)

$$C_k = [\langle s_i \rangle, t_1, \langle s_j \rangle, t_2, \cdots, \langle s_i \rangle, t_k]$$

$$P_k = \text{Now} \langle s_i \rangle \text{ feels} \langle mask \rangle$$

$$F_{T_k} = TextEncoder(C_k \langle /s \rangle P_k)$$
 (1)

Audio (encoder: data2vec)

$$F_{a_k} = AudioEncoder(a_k) \tag{2}$$

Vision (encoder: Timesformer)

$$F_{v_k} = VisualEncoder(v_k) \tag{3}$$

$$F_{T_k}, F_{a_k}, F_{v_k} \in \mathbb{R}^{1 \times d}$$

Knowledge Distillation

$$L_{student} = L_{cls} + \alpha L_{response} + \beta L_{feature}$$

$$L_{response} = L_{inter} + L_{intra}$$

$$L_{feature} = \frac{1}{B} \sum_{i=1}^{B} KL(P_i||Q_i)$$

$$L_{inter} = \frac{\tau^2}{B} \sum_{i=1}^{B} d(Y_{i,:}^s, Y_{i,:}^t), \quad L_{intra} = \frac{\tau^2}{C} \sum_{i=1}^{C} d(Y_{:,j}^s, Y_{:,j}^t)$$
(4)

$$Y_{i,:}^{t} = softmax(Z_{i,:}^{t}/\tau), \ Y_{i,:}^{s} = softmax(Z_{i,:}^{s}/\tau), \ d(\mu, v) = 1 - \rho(\mu, v)$$

$$P_{i} = \frac{exp(M_{i,j}/\tau)}{\sum_{l=1}^{B} exp(M_{i,l}/\tau)}, \ Q_{i} = \frac{exp(M'_{i,j}/\tau)}{\sum_{l=1}^{B} exp(M'_{i,l}/\tau)}, \ \forall i, j \in B$$
$$Z^{s}, Z^{t} \in \mathbb{R}^{B \times C}, \ M, M' \in \mathbb{R}^{B \times B}$$

Knowledge Distillation

```
class Logit_Loss(nn.Module):
   def init (self. beta=1.0, gamma=1.0, tau=4.0); ...
   def forward(self, z s, z t):
        v s = (z s / self.tau).softmax(dim=1)
        y_t = (z_t / self.tau).softmax(dim=1)
        inter loss = self.tau**2 * inter class relation(y s, y t)
        intra loss = self.tau**2 * intra class relation(v s, v t)
        kd_loss = self.beta * inter_loss + self.gamma * intra_loss
        return kd_loss
class Feature Loss(nn.Module):
   def init (self. temp=1.0):--
   def forward(self. other embd. text embd);
        text embd = F.normalize(text embd, p=2, dim=1)
        other_embd = F.normalize(other_embd, p=2, dim=1)
        target = torch.matmul(text embd, text embd.transpose(0,1))
        x = torch.matmul(text embd, other embd.transpose(0,1))
        log_q = torch.log_softmax(x / self.t, dim=1)
        p = torch.softmax(target / self.t, dim=1)
        return F.kl div(log g. p. reduction='batchmean')
```

Attention-based Modality Shifting Fusion

$$Z_k = F_{T_k} + \lambda \cdot H_k \tag{5}$$

$$H_k = g_{AV}^k \cdot (W_2 \cdot F_{attention}^k + b_2), \ g_{AV}^k = R(W_1 \cdot \langle F_{T_k}, F_{attention}^k \rangle + b_1)$$

$$\lambda = \min(\frac{||F_k||_2}{||H_k||_2} \cdot \theta, 1)$$

Experimental Results

Models	MELD: Emotion Categories								IEMOCAP
	Neutral	Surprise	Fear	Sadness	Joy	Disgust	Anger	F1	F1
DialogueRNN (Majumder et al., 2019)	73.50	49.40	1.20	23.80	50.70	1.70	41.50	57.03	62.75
ConGCN (Zhang et al., 2019)	76.70	50.30	8.70	28.50	53.10	10.60	46.80	59.40	64.18
MMGCN (Hu et al., 2021b)	-	-	-	-	-	-	-	58.65	66.22
DialogueTRM (Mao et al., 2021)	-	-	-	-	-	-	-	63.50	69.23
DAG-ERC (Shen et al., 2021)	-	-	-	-	-	-	-	63.65	68.03
MM-DFN (Hu et al., 2022a)	77.76	50.69	-	22.94	54.78	-	47.82	59.46	68.18
M2FNet (Chudasama et al., 2022)	-	-	-	-	-	-	-	66.71	69.86
EmoCaps (Li et al., 2022)	77.12	63.19	3.03	42.52	57.50	7.69	57.54	64.00	71.77
UniMSE (Hu et al., 2022b)	-	-	-	-	-	-	-	65.51	70.66
GA2MIF (Li et al., 2023a)	76.92	49.08	-	27.18	51.87	-	48.52	58.94	70.00
FacialMMT (Zheng et al., 2023)	80.13	59.63	19.18	41.99	64.88	18.18	56.00	66.58	-
TelME	80.22	60.33	26.97	43.45	65.67	26.42	56.70	67.37	70.48

Thank you very much! Q&A