#### kaviyadevi 20106064

### In [1]: #to import libraries

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

### In [2]: #to import dataset

data1=pd.read\_csv(r"C:\Users\user\Downloads\18\_world-data-2023 - 18\_world-data-20
data1

### Out[2]:

| d<br>s<br>e | Birth<br>Rate | Calling<br>Code | Capital/Major<br>City | Co2-<br>Emissions | <br>Out of<br>pocket<br>health<br>expenditure | Physicians<br>per<br>thousand | Population | Population:<br>Labor force<br>participation<br>(%) | re |
|-------------|---------------|-----------------|-----------------------|-------------------|-----------------------------------------------|-------------------------------|------------|----------------------------------------------------|----|
| 0           | 32.49         | 93.0            | Kabul                 | 8,672             | <br>78.40%                                    | 0.28                          | 38,041,754 | 48.90%                                             |    |
| 0           | 11.78         | 355.0           | Tirana                | 4,536             | <br>56.90%                                    | 1.20                          | 2,854,191  | 55.70%                                             | 1  |
| 0           | 24.28         | 213.0           | Algiers               | 150,006           | <br>28.10%                                    | 1.72                          | 43,053,054 | 41.20%                                             | 3  |
| ٧           | 7.20          | 376.0           | Andorra la<br>Vella   | 469               | <br>36.40%                                    | 3.33                          | 77,142     | NaN                                                |    |
| 0           | 40.73         | 244.0           | Luanda                | 34,693            | <br>33.40%                                    | 0.21                          | 31,825,295 | 77.50%                                             |    |
|             |               |                 |                       |                   | <br>                                          |                               |            |                                                    |    |
| 0           | 17.88         | 58.0            | Caracas               | 164,175           | <br>45.80%                                    | 1.92                          | 28,515,829 | 59.70%                                             |    |
| 0           | 16.75         | 84.0            | Hanoi                 | 192,668           | <br>43.50%                                    | 0.82                          | 96,462,106 | 77.40%                                             | 1  |
| 0           | 30.45         | 967.0           | Sanaa                 | 10,609            | <br>81.00%                                    | 0.31                          | 29,161,922 | 38.00%                                             |    |
| 0           | 36.19         | 260.0           | Lusaka                | 5,141             | <br>27.50%                                    | 1.19                          | 17,861,030 | 74.60%                                             | 1  |
| 0           | 30.68         | 263.0           | Harare                | 10,983            | <br>25.80%                                    | 0.21                          | 14,645,468 | 83.10%                                             | 2  |

In [3]: #to display top 5 rows
 data=data1.head()
 data

Out[3]:

|   | Country     | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Calling<br>Code | Ca |
|---|-------------|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|-----------------|----|
| 0 | Afghanistan | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         | 93.0            |    |
| 1 | Albania     | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 355.0           |    |
| 2 | Algeria     | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 213.0           |    |
| 3 | Andorra     | 164              | AD           | 40.00%                   | 468               | NaN                     | 7.20          | 376.0           |    |
| 4 | Angola      | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 244.0           |    |

5 rows × 35 columns

# **DATA CLEANING AND PREPROCESSING**

```
In [4]:
        data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 35 columns): Column Non-Null Count Dtype ----------0 Country 5 non-null object 1 Density 5 non-null object (P/Km2)Abbreviation 5 non-null 2 object 3 Agricultural Land( %) 5 non-null object 4 Land Area(Km2) 5 non-null object 5 Armed Forces size 4 non-null object Birth Rate 5 non-null 6 float64 7 Calling Code float64 5 non-null Capital/Major City object 8 5 non-null 9 Co2-Emissions 5 non-null object 10 CPI 4 non-null object 11 CPI Change (%) object 4 non-null 12 Currency-Code 5 non-null object 13 Fertility Rate float64 5 non-null 14 Forested Area (%) 5 non-null object 15 Gasoline Price 5 non-null object 16 GDP 5 non-null object Gross primary education enrollment (%) 17 5 non-null object 18 Gross tertiary education enrollment (%) 4 non-null object 19 Infant mortality 5 non-null float64 20 Largest city 5 non-null object 21 Life expectancy 4 non-null float64 22 Maternal mortality ratio 4 non-null float64 23 Minimum wage 5 non-null object 24 Official language 5 non-null object 25 Out of pocket health expenditure 5 non-null object Physicians per thousand 26 5 non-null float64 27 Population 5 non-null object 28 Population: Labor force participation (%) 4 non-null object 29 Tax revenue (%) 4 non-null object 30 Total tax rate 4 non-null object 31 Unemployment rate 4 non-null object 32 Urban population 5 non-null object 33 Latitude float64 5 non-null 34 Longitude 5 non-null float64 dtypes: float64(9), object(26)

memory usage: 1.5+ KB

In [5]: #to display summary of statistics(here to know min max value)
data.describe()

#### Out[5]:

|       | Birth<br>Rate | Calling<br>Code | Fertility<br>Rate | Infant<br>mortality | Life<br>expectancy | Maternal<br>mortality<br>ratio | Physicians<br>per<br>thousand | Latitude   |
|-------|---------------|-----------------|-------------------|---------------------|--------------------|--------------------------------|-------------------------------|------------|
| count | 5.000000      | 5.000000        | 5.000000          | 5.0000              | 4.000000           | 4.000000                       | 5.000000                      | 5.000000   |
| mean  | 23.296000     | 256.200000      | 3.180000          | 26.0200             | 70.125000          | 251.500000                     | 1.348000                      | 26.885984  |
| std   | 13.974456     | 114.850773      | 1.819821          | 22.6048             | 8.793321           | 273.791283                     | 1.277134                      | 22.075793  |
| min   | 7.200000      | 93.000000       | 1.270000          | 2.7000              | 60.800000          | 15.000000                      | 0.210000                      | -11.202692 |
| 25%   | 11.780000     | 213.000000      | 1.620000          | 7.8000              | 63.575000          | 87.750000                      | 0.280000                      | 28.033886  |
| 50%   | 24.280000     | 244.000000      | 3.020000          | 20.1000             | 70.600000          | 176.500000                     | 1.200000                      | 33.939110  |
| 75%   | 32.490000     | 355.000000      | 4.470000          | 47.9000             | 77.150000          | 340.250000                     | 1.720000                      | 41.153332  |
| max   | 40.730000     | 376.000000      | 5.520000          | 51.6000             | 78.500000          | 638.000000                     | 3.330000                      | 42.506285  |

## **EDA and DATA VISUALIZATION**

In [7]: sns.pairplot(data)

Out[7]: <seaborn.axisgrid.PairGrid at 0x243acf56c70>



```
In [9]: sns.distplot(data['Birth Rate'])
```

Out[9]: <AxesSubplot:xlabel='Birth Rate', ylabel='Density'>



In [13]: sns.heatmap(df.corr())

Out[13]: <AxesSubplot:>



# **TRAINING MODEL**

```
In [14]: x=df[['Density\n(P/Km2)', 'Calling Code','Physicians per thousand','Latitude','Lo
y=df['Birth Rate']

In [15]: #to split my dataset into trainning and test
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [16]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[16]: LinearRegression()
In [17]: #to find intercept
          print(lr.intercept_)
          57.90989886488829
          coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [18]:
          coeff
Out[18]:
                                 Co-efficient
                 Density\n(P/Km2)
                                   -0.190671
                     Calling Code
                                   -0.052737
                                   -0.002004
           Physicians per thousand
                         Latitude
                                   -0.150838
                       Longitude
                                   -0.058416
In [19]:
          prediction = lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[19]: <matplotlib.collections.PathCollection at 0x243b29fe8e0>
           40
           35
           30
           25
           20
           15
           10
            5
            0
                7.5
                      10.0
                            12.5
                                  15.0
                                         17.5
                                               20.0
                                                      22.5
                                                            25.0
In [20]:
          print(lr.score(x_test,y_test))
```

-0.794617062937226

## RIDGE AND LASSO REGRESSION