Exercise 1

(a) Frequency tables comparing city fuel efficiency over 30 mpg and the three possible categorical predictors follow.

Table of cylinders by cityover30mpg				
cylinders	cit	cityover30mpg		
Frequency Expected	0	1	Total	
eight	5 3.674	0 1.326	5	
four	104 111.69	48 40.309	152	
six	24 17.635	0 6.3646	24	
Total	133	48	181	

Table of fuel by cityover30mpg				
fuel	cit	cityover30mpg		
Frequency Expected	0	1	Total	
diesel	7 11.757	9 4.2431	16	
gas	126 121.24	39 43.757	165	
Total	133	48	181	

Table of drive by cityover30mpg				
drive	cit	cityover30mpg		
Frequency Expected	0	1	Total	
fwd	67 83.768	47 30.232	114	
rwd	66 49.232	1 17.768	67	
Total	133	48	181	

From the cylinders table, we can see that no six or eight cylinder vehicles have city fuel efficiency over 30 mpg, and roughly 1/3 of the four cylinder vehicles do. From the fuel table, we can see that more than half of the diesel-powered vehicles had city fuel efficiency over 30 mpg, and only about 1/4 of gas-powered vehicles did. In terms of drive train, nearly all of the rear wheel drive vehicles had city fuel efficiency of 30 mpg or less, while just over 40% of the front wheel drive vehicles had city fuel efficiency over 30 mpg.

Based on these results, we expect fuel and drive will be useful predictors of city fuel efficiency over 30 mpg. The complete separation for six and eight cylinder vehicles would be problematic for using the cylinders variables, though based on the results we should expect that six and eight cylinder vehicles would be less fuel efficient.

(b) Here we use backward elimination starting with all three categorical predictors in model. With all predictors in the model, the algorithm fails to converge due to the separation in the six and eight cylinder vehicles. This is the reason for the warning. The cylinders variables can be removed without significant loss of information as indicated by the residual chi-square test and the Wald chi-square test used in backward elimination. Neither of the other two terms could be removed without losing significantly more information than expected due to chance, so our final model will contain fuel and drive.

WARNING: The validity of the model fit is questionable.

Residual Chi-Square Test					
Chi-Square DF Pr > ChiSq					
2.1211	2	0.3463			

	Summary of Backward Elimination					
Step	Effect Removed	Number Wald DF In Chi-Square Pr > Chi				
1	cylinders	2	2	0.0025	0.9987	

(c) Results for our final model follow.

Model Information			
Data Set	WORK.AUTOS		
Response Variable	cityover30mpg		
Number of Response Levels	2		
Model	binary logit		
Optimization Technique	Fisher's scoring		

For the final model containing the fuel and cylinder predictors we see that both the fuel and drive parameter estimates are statistical significant and positive. The global tests for non-zero betas also concur that at least one of the betas should be significantly different from zero. The fuel coefficient compares diesel to gas and the drive coefficient compares front wheel drive to rear wheel drive.

We can also see that the AIC for this model is much lower than for the intercept only model, indicating a better fit than a constant model.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	211.388	157.469		
SC	214.586	167.065		
-2 Log L	209.388	151.469		

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	57.9184	2	<.0001		
Score	43.6686	2	<.0001		
Wald	14.4814	2	0.0007		

Analysis of Maximum Likelihood Estimates						
Danamatan		DE	Estimate	Standard	Wald	Du Chica
Parameter		DF	Estimate	Error	Chi-Square	Pr > CmSq
Intercept		1	-5.2504	1.2690	17.1172	<.0001
fuel	diesel	1	3.0322	1.1005	7.5918	0.0059
drive	fwd	1	4.7115	1.2690	13.7849	0.0002

Hosmer and Lemeshow's test is insignificant at a .05 level, so we conclude there are no issues of lack of fit in this model. As with the parameter estimates, the odds ratios are both statistically significant. For fuel, we estimate that the odds of a diesel fuel car to have city fuel efficiency over 30 mpg was about 20.74 times that of a gas fuel car in 1985. Front wheel drive cars are estimated to have had odds of over 30 mpg city fuel efficiency about 111 times that of rear wheel drive cars. Neither confidence interval contains 1, but the intervals are pretty wide. While we can determine the odds of city fuel efficiency over 30 mpg was significantly higher for diesel cars than gas cars and significantly higher for front wheel drive cars than for rear wheel drive cars, we do not have a very precise measure for the actual odds ratio.

Odds Ratio Estimates				
Effect	Point Estimate	95% Confiden		
fuel diesel vs gas	20.744	2.400	179.323	
drive fwd vs rwd	111.220	9.247	>999.999	

Hosmer and Lemeshow Goodness-of-Fit Test				
Chi-Square	DF	Pr > ChiSq		
0.4729	1	0.4916		

Exercise 2

(a) The model with all four continuous predictors definitely fits the data better than a constant model. The AIC for this model is 52.745, which is quite a bit smaller than the AIC of 204.216 for the constant model.

Model Information			
Data Set	WORK.AUTOS		
Response Variable	cityover30mpg		
Number of Response Levels 2			
Model binary logit			
Optimization Technique	Fisher's scoring		

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	204.216	52.745			
SC	207.387	68.598			
-2 Log L	202.216	42.745			

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiSq						
Likelihood Ratio	159.4713	4	<.0001			
Score	62.2535	4	<.0001			
Wald	11.9662	4	0.0176			

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	16.0666	10.8570	2.1899	0.1389
price1k	1	0.0380	0.2551	0.0222	0.8815
rpm	1	0.00340	0.00165	4.2583	0.0391
enginesize	1	0.1425	0.1161	1.5068	0.2196
hp	1	-0.6630	0.2083	10.1288	0.0015

The global tests are all significant, indicating the present of one or more significant parameter estimates. From the parameter estimates and odds ratios, we can see that rpm and hp are both significant and so we would likely want to retain them. price1k and enginesize are both insignificant both in their parameter estimates and odds ratios, so we may be able to remove one or both of those terms.

Odds Ratio Estimates					
Effect	Point 95% Wald Confidence Limit				
price1k	1.039	0.630	1.712		
rpm	1.003	1.000	1.007		
enginesize	1.153	0.918	1.448		
hp	0.515	0.343	0.775		

(b) Using backward selection, price1k, enginesize and rpm are all removed at the .05 level leaving only the hp term in the model. The residual chi-square tests follow showing that an insignificant amount of information is removed as price1k, enginesize and rpm are removed.

Residual Chi-Square Test				
Chi-Square DF Pr > ChiSq				
0.0223	1	0.8814		

Residual Chi-Square Test				
Chi-Square DF Pr > ChiSq				
3.1063	2	0.2116		

Residual Chi-Square Test				
Chi-Square	DF	Pr > ChiSq		
5.2055	3	0.1574		

Summary of Backward Elimination						
Step	tep Removed DF Number Wald Chi-Square Pr > Chi					
1	price1k	1	3	0.0222	0.8815	
2	enginesize	1	2	2.0385	0.1534	
3	rpm	1	1	2.2338	0.1350	

(c) In the final model, we can see that hp term is significant and negative with an estimate of -.396, so the expected log odds for greater than 30 mpg city fuel efficiency decreased as horsepower increased. The global tests also agree that there are significant non-constant terms in the model.

The AIC for this model is 53.54, which is a lot smaller than the AIC of 210.15 for the constant model, so this model fits the data far better than a constant model.

Model Information			
Data Set	WORK.AUTOS		
Response Variable	cityover30mpg		
Number of Response Levels	2		
Model	binary logit		
Optimization Technique	Fisher's scoring		

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	210.147	53.538		
SC	213.335	59.913		
-2 Log L	208.147	49.538		

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	158.6087	1	<.0001		
Score	56.9695	1	<.0001		
Wald	15.4881	1	<.0001		

Analysis of Maximum Likelihood Estimates					
			Standard	Wald	
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept	1	28.8604	7.1140	16.4578	<.0001
hp	1	-0.3961	0.1007	15.4881	<.0001

From Hosmer and Lemeshow's test, we see no evidence of a lack of fit. The p-value of .82 is highly insignificant. From the odds ratio estimate we would expect the odds of having city fuel efficiency over 30 mpg in 1985 to be multiplied by .673 for a one unit increase in horsepower, and the estimate is clearly significant since the interval is entirely less than 1. Put another way, for a one unit increase in horsepower, we would expect a 32.7% decrease in the odds of having city fuel efficiency over 30 mpg.

Odds Ratio Estimates					
Effect	Point 95% Wald cet Estimate Confidence Limits				
hp	0.673	0.552	0.820		

Hosmer and Lemeshow Goodness-of-Fit Test							
Chi-Square	Chi-Square DF Pr > ChiSq						
5.1159 6 0.5290							

Exercise 3

(a) We start by considering the full model—the model with all of the potential predictors included. Based on these results, we conclude that we need to account for underdispersion because the scaled deviance of .2826 is much less than 1.

Model Information				
Data Set	WORK.AUTOS			
Distribution	Poisson			
Link Function	Log			
Dependent Variable	hwaympg			

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	167	47.2017	0.2826				
Scaled Deviance	167	47.2017	0.2826				
Pearson Chi-Square	167	48.0247	0.2876				
Scaled Pearson X2	167	48.0247	0.2876				
Log Likelihood		13538.0357					
Full Log Likelihood		-486.7354					
AIC (smaller is better)		991.4708					
AICC (smaller is better)		992.5551					
BIC (smaller is better)		1020.0051					

After accounting for the additional dispersion parameter, we see numerous significant terms in the type three analysis and insignificant price1k and rpm terms. We should consider removing each of them separately. The type 1 analysis would lead us to a similar conclusion about terms we might consider removing. Here, the scale has been estimated from the data, so we need to focus on the F tests in the type 1 and type 3 analyses.

Model Information				
Data Set	WORK.AUTOS			
Distribution	Poisson			
Link Function	Log			
Dependent Variable	hwaympg			

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	167	47.2017	0.2826				
Scaled Deviance	167	167.0000	1.0000				
Pearson Chi-Square	167	48.0247	0.2876				
Scaled Pearson X2	167	169.9118	1.0174				
Log Likelihood		47897.6940					
Full Log Likelihood		-486.7354					
AIC (smaller is better)		991.4708					
AICC (smaller is better)		992.5551					
BIC (smaller is better)		1020.0051					

	LR Statistics For Type 1 Analysis									
Source	Deviance Num DF Den DF F Value Pr > F Chi-Squa					Chi-Square	Pr > ChiSq			
Intercept	247.2911									
fuel	228.5468	1	167	66.32	<.0001	66.32	<.0001			
drive	128.2710	1	167	354.78	<.0001	354.78	<.0001			
hp	55.9285	1	167	255.95	<.0001	255.95	<.0001			
enginesize	51.0173	1	167	17.38	<.0001	17.38	<.0001			
cylinders	47.3348	2	167	6.51	0.0019	13.03	0.0015			
price1k	47.2817	1	167	0.19	0.6651	0.19	0.6645			
rpm	47.2017	1	167	0.28	0.5955	0.28	0.5948			

LR Statistics For Type 3 Analysis								
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq		
fuel	1	167	14.92	0.0002	14.92	0.0001		
drive	1	167	8.98	0.0032	8.98	0.0027		
hp	1	167	40.17	<.0001	40.17	<.0001		
enginesize	1	167	5.54	0.0197	5.54	0.0186		
cylinders	2	167	6.34	0.0022	12.69	0.0018		
price1k	1	167	0.25	0.6158	0.25	0.6151		
rpm	1	167	0.28	0.5955	0.28	0.5948		

When we remove rpm from the model, we see that price1k is still highly insignificant

Model Information				
Data Set	WORK.AUTOS			
Distribution	Poisson			
Link Function	Log			
Dependent Variable	hwaympg			

Criteria For Assessing Goodness Of Fit							
Criterion		Value	Value/DF				
Deviance	168	47.2817	0.2814				
Scaled Deviance	168	168.0000	1.0000				
Pearson Chi-Square	168	48.0811	0.2862				
Scaled Pearson X2	168	170.8407	1.0169				
Log Likelihood		48102.8610					
Full Log Likelihood		-486.7754					
AIC (smaller is better)		989.5508					
AICC (smaller is better)		990.4130					
BIC (smaller is better)		1014.9146					

	LR Statistics For Type 1 Analysis									
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq			
Intercept	247.2911									
fuel	228.5468	1	168	66.60	<.0001	66.60	<.0001			
drive	128.2710	1	168	356.30	<.0001	356.30	<.0001			
hp	55.9285	1	168	257.05	<.0001	257.05	<.0001			
enginesize	51.0173	1	168	17.45	<.0001	17.45	<.0001			
cylinders	47.3348	2	168	6.54	0.0018	13.08	0.0014			
price1k	47.2817	1	168	0.19	0.6644	0.19	0.6638			

LR Statistics For Type 3 Analysis								
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq		
fuel	1	168	15.02	0.0002	15.02	0.0001		
drive	1	168	9.21	0.0028	9.21	0.0024		
hp	1	168	45.30	<.0001	45.30	<.0001		
enginesize	1	168	9.51	0.0024	9.51	0.0020		
cylinders	2	168	6.48	0.0019	12.97	0.0015		
price1k	1	168	0.19	0.6644	0.19	0.6638		

Retaining rpm and removing price1k instead, we see that rpm is highly insignificant, thus we will remove both from the model. Our final model will contain fuel, drive, hp, enginesize, and cylinders.

Model Information					
Data Set WORK.AUT					
Distribution	Poisson				
Link Function	Log				
Dependent Variable	hwaympg				

Criteria For Assessing Goodness Of Fit									
Criterion	DF	Value	Value/DF						
Deviance	171	56.8097	0.3322						
Scaled Deviance	171	171.0000	1.0000						
Pearson Chi-Square	171	58.0791	0.3396						
Scaled Pearson X2	171	174.8209	1.0223						
Log Likelihood		41647.0350							
Full Log Likelihood		-499.7304							
AIC (smaller is better)		1015.4607							
AICC (smaller is better)		1016.3078							
BIC (smaller is better)		1040.9598							

LR Statistics For Type 1 Analysis										
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq			
Intercept	255.4529									
fuel	237.4928	1	171	54.06	<.0001	54.06	<.0001			
drive	133.0720	1	171	314.31	<.0001	314.31	<.0001			
hp	70.3837	1	171	188.69	<.0001	188.69	<.0001			
enginesize	61.2341	1	171	27.54	<.0001	27.54	<.0001			
cylinders	56.8497	2	171	6.60	0.0017	13.20	0.0014			
rpm	56.8097	1	171	0.12	0.7291	0.12	0.7286			

LR Statistics For Type 3 Analysis									
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq			
fuel	1	171	20.98	<.0001	20.98	<.0001			
drive	1	171	9.38	0.0026	9.38	0.0022			
hp	1	171	19.22	<.0001	19.22	<.0001			
enginesize	1	171	31.24	<.0001	31.24	<.0001			
cylinders	2	171	6.61	0.0017	13.22	0.0013			
rpm	1	171	0.12	0.7291	0.12	0.7286			

(b) The type one and type 3 analysis F statistics clearly show that the terms in the model are statistically significant. There are some noticeable changes in the scale estimates as we remove

terms in this case, so we cannot compare the AIC for this model with the previous ones. If we had obtained a scale estimate and held that constant across models, we could compare directly.

Model Information					
Data Set	WORK.AUTOS				
Distribution	Poisson				
Link Function	Log				
Dependent Variable	hwaympg				

Criteria For Assessing Goodness Of Fit									
Criterion	DF	Value	Value/DF						
Deviance	172	56.8497	0.3305						
Scaled Deviance	172	172.0000	1.0000						
Pearson Chi-Square	172	58.1627	0.3382						
Scaled Pearson X2	172	175.9726	1.0231						
Log Likelihood		41861.0578							
Full Log Likelihood		-499.7504							
AIC (smaller is better)		1013.5007							
AICC (smaller is better)		1014.1557							
BIC (smaller is better)		1035.8124							

Analysis Of Maximum Likelihood Parameter Estimates										
Parameter		DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq		
Intercept		1	4.1363	0.0858	3.9681	4.3045	2322.81	<.0001		
fuel	diesel	1	0.1389	0.0279	0.0842	0.1936	24.80	<.0001		
fuel	gas	0	0.0000	0.0000	0.0000	0.0000				
drive	fwd	1	0.0678	0.0222	0.0244	0.1113	9.37	0.0022		
drive	rwd	0	0.0000	0.0000	0.0000	0.0000				
hp		1	-0.0022	0.0004	-0.0031	-0.0013	25.41	<.0001		
enginesize		1	-0.0034	0.0005	-0.0045	-0.0023	39.02	<.0001		
cylinders	eight	1	0.1135	0.0709	-0.0256	0.2525	2.56	0.1097		
cylinders	four	1	-0.1260	0.0375	-0.1995	-0.0526	11.32	0.0008		
cylinders	six	0	0.0000	0.0000	0.0000	0.0000				
Scale		0	0.5749	0.0000	0.5749	0.5749				

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

In our final model, we can see that all parameter estimates are significantly different from 0 with the exception of the estimate comparing eight and six cylinder cars. The positive estimate for

diesel fuel indicates higher highway fuel efficiency for diesels than gas powered cars. The positive estimate for front wheel drive indicates higher highway fuel efficiency for front wheel drive cars than rear wheel drive cars. The negative estimates for hp and engine size indicate reduced fuel efficiency as horsepower and engine size increase. The negative estimate for four cylinders indicates a reduction in expected highway fuel efficiency compared to six cylinder vehicles.

Quantitatively, we need to exponentiate the parameter estimates to get the expected multiplicative change in highway fuel efficiency as these predictors change. After taking the exponential of the significant parameter estimates, we see that we expect multiplicative factors of 1.15 for diesel as compared to gas, 1.07 for front wheel drive as compared to rear wheel drive, .9978 for a one unit increase in horsepower, .997 for a one unit increase in engine size, and .882 for four cylinders as compared to six cylinders.

LR Statistics For Type 1 Analysis									
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq		
Intercept	255.4529								
fuel	237.4928	1	172	54.34	<.0001	54.34	<.0001		
drive	133.0720	1	172	315.93	<.0001	315.93	<.0001		
hp	70.3837	1	172	189.66	<.0001	189.66	<.0001		
enginesize	61.2341	1	172	27.68	<.0001	27.68	<.0001		
cylinders	56.8497	2	172	6.63	0.0017	13.27	0.0013		

LR Statistics For Type 3 Analysis										
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq				
fuel	1	172	24.18	<.0001	24.18	<.0001				
drive	1	172	9.41	0.0025	9.41	0.0022				
hp	1	172	26.19	<.0001	26.19	<.0001				
enginesize	1	172	38.93	<.0001	38.93	<.0001				
cylinders	2	172	6.63	0.0017	13.27	0.0013				