Assignment 1 MAT 458

Q8: It is sufficient to show that for $\{(x_n,y_m)\} \to (0,0)$ then $B(x_n,y_m) \to 0$. Consider the mapping $B_x(y) = B(x,y)$. We know that there must exist some C_x that satisfies $\|B_x(y)\| \le C_x \|y\|$. By the uniform boundedness principle, we have that there is a maximal C such that $\|B_x(y)\| \le C \|y\|$ for all x,y. Therefore we have that $\|B(x_n,y_m)\| \le C \|B_{x_n}(y_m)\| \to 0$ as $y_m,x_n \to 0$. Therefore B(x,y) is continuous.