Representable cylindric algebras of dimension ω : the aspects of canonicity and axiomatisability

Daniel Rogozin

1 Intro

2 The problem itself

Suppose $C \in \mathbf{RCA}_{\omega}$, whether C^+ has a complete, ω -dimensional representation? [6]

3 Boolean algebras with operators and cylindric algebras, a bit of the backgroud

Let $a \in \mathcal{B}$ be an element of a Boolean algebra \mathcal{B} , a is called an atom, if for every $b \in \mathcal{B}$ b < a implies b = 0. That is, an atom is a minimal non-zero element. At(\mathcal{B}) is the set of all atoms of \mathcal{B} .

Let \mathcal{B} be a Boolean algebra and \mathcal{F} a field of sets such that $h: \mathcal{B} \to \mathcal{F}$ is a representation of \mathcal{B} , then \mathcal{B} is a complete representation of \mathcal{B} , if for every $A \subseteq \mathcal{B}$ whenever ΣA we have the following:

$$h(\Sigma A) = \bigcup h[A]$$

Theorem 1. Let \mathcal{B} be a Boolean algebra, then \mathcal{B} is atomic iff \mathcal{B} is completely representable. See [4, Corollary 6].

Definition 1.

- 1. Let $\mathcal{B} = \langle B, +, -, 0, 1 \rangle$ be a Boolean algebra. An operator is an n-ary function $\Omega : B^n \to B$ satisfying the following conditions:
 - Normality: for all $b_0, \ldots, b_{n-1} \in B$, if $b_1 = 0$ for some i < n, then

$$\Omega(b_0,\ldots,b_{i-1},0,b_{i+1},\ldots,b_{n-1})=0$$

• Additivity: for all $b_0, \ldots, b_{n-1}, b, b' \in B$ we have

$$\Omega(b_0,\ldots,b_{i-1},(b+b'),b_{i+1},\ldots,b_{n-1}) = \Omega(b_0,\ldots,b_{i-1},b,b_{i+1},\ldots,b_{n-1}) + \Omega(b_0,\ldots,b_{i-1},b',b_{i+1},\ldots,b_{n-1})$$

2. Let I be an index set, a Boolean algebra with operators (BAO) is an algebra $\langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I}\rangle$ such that $\langle B, +, -, 0, 1 \rangle$ is a Boolean algebra and for each $i \in I$ Ω_i is an operator.

Definition 2. Let $\mathcal{B} = \langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I} \rangle$ be a BAO, then

1. An operator Ω is completely additive, if for each $b_0, \ldots, b_{n-1} \in B$ and $X \subseteq B$, one has

$$\Omega(b_0, \dots, b_{i-1}, \sum X, b_{i+1}, \dots, b_{n-1}) = \sum_{x \in X} \Omega(b_0, \dots, b_{i-1}, x, b_{i+1}, \dots, b_{n-1})$$

- 2. \mathcal{B} is completely additive, if for each $i \in I$ Ω_i is additive,
- 3. A class K of BAOs is completely additive, if every $B \in K$ is completely additive.

3.1 Atom structures and canonical extensions

Definition 3. Let I be an index set and $\{\Omega_i\}_{i\in I}$ a set of function symbols

- 1. An atom structure is a relational structrure $\mathcal{F} = \langle W, \{R_i\}_{i \in I} \rangle$ such that R_i is a n+1-ary relation symbol, where $\Omega_{i \in I}$ is an n-ary function symbol,
- 2. Let \mathcal{B} be an atomic BAO of the signature I, the atom structure of \mathcal{B} , written as \mathfrak{AtB} , is an atom structure $\langle \operatorname{At}(\mathcal{B}), \{R_i\}_{i \in I} \rangle$ such that for each $a, b_0, \ldots, b_{n+1} \in \operatorname{At}(\mathcal{B})$ and for each $i \in I$

$$\mathfrak{AtB} \models R_i(a, b_0, \dots, b_{n+1}) \text{ iff } \mathcal{B} \models a \leqslant \Omega_i(b_0, \dots, b_{n+1})$$

3. Let $\mathcal{F} = \langle W, \{R_i\}_{i \in I} \rangle$ be an atom structure, the complex algebra of \mathcal{F} , written as $\mathbf{Cm}\mathcal{F}$, is a $BAO \langle \mathcal{P}(W), \cup, -, \emptyset, W, \{\Omega_{R_i}\}_{i \in I} \rangle$ such that for all $X_0, \dots, X_{n-1} \subseteq W$ and for each $i \in I$

$$\Omega_{R_i}(X_0,\ldots,X_{n-1}) = \{a \in W \mid \exists b_0 \in X_0 \ldots \exists b_{n-1} \in X_{n-1} \mathcal{F} \models R_i(a,b_0,\ldots,b_{n-1})\}$$

The following duality is due to Thomason [12].

Fact 1.

- 1. Let \mathcal{B} be a complete atomic BAO, then $\mathcal{B} \cong \mathfrak{Cm}(\mathbf{At}(\mathcal{B}))$,
- 2. Let \mathcal{F} be an atom structure, then $\mathcal{F} \cong \mathfrak{At}(\mathfrak{Cm}(\mathcal{B}))$.

Let A be a non-empty subset of a Boolean algebra \mathcal{B} , A is a *filter*, if A is closed under finite infima and upward closed. A is an ultrafilter, if it has no non-trivial extensions. That is, if $A \subseteq A'$, then $A' = \mathcal{B}$. This is a well-known fact that every filter can be extended to a maximal one using Zorn's lemma.

The following definition is due to, for example, [13, Definition 5.40].

Definition 4. Let $\mathcal{B} = \langle B, +, -, 0, 1, \{\Omega_i\}_{i \in I}\rangle$ be a BAO and $\mathbf{Uf}(\mathcal{B})$ the set of its ultrafilters. The ultrafilter frame of \mathcal{B} (or canonical frame) is a relational structure $\mathcal{F}_{\mathcal{B}} = \langle \mathbf{Uf}(\mathcal{B}), R_{\Omega_i} \rangle$ such that for each ultrafilters $\beta_0, \ldots, \beta_{n-1}, \gamma$ one has

$$\mathbf{Uf}(\mathcal{B}) \models R_{\Omega_i}(\beta_0, \dots, \beta_{n-1}, \gamma) \text{ iff } \{\Omega(b_0, \dots, b_{n-1}) \mid b_0 \in \beta_0, \dots, b_{n-1} \in \beta_{n-1}\} \subseteq \gamma.$$

Definition 5. Let \mathcal{B} be a BAO, then

- 1. The canonical extension of \mathcal{B} is a complex algebra of the canonical frame $\mathfrak{Cm}(\mathcal{F}_{\mathcal{B}})$ denoted as \mathcal{B}^+ ,
- 2. The class of BAOs is canonical, if it is closed under canonical extensions.

Theorem 2. Let A, B be BAOs,

- 1. There exists $\iota : \mathcal{A} \hookrightarrow \mathcal{A}^+$ such that $\iota : a \mapsto \{\gamma \in \mathbf{Uf}(\mathcal{A}) \mid a \in \gamma\}$.
- 2. $i: \mathcal{A} \hookrightarrow \mathcal{B} \text{ implies } i^+: \mathcal{A}^+ \hookrightarrow \mathcal{B}^+$

Fact 2.

4 Cylindric algebras and cylindric set algebras

Let α be an ordinal. Let αU be the set of all functions mapping α to a non-empty set U. We denote $x(i) = x_i$ for $x \in {}^{\alpha}U$ and $i < \alpha$.

A subset of ${}^{\alpha}U$ is an α -ry relation on U. For $i, j < \alpha$, the i, j-diagonal D_{ij} is the set of all elements of ${}^{\alpha}U$ such that $y_i = y_i$.

If $i < \alpha$ and X is an α -ry relation on U, then the i-th cylindrification C_iX is the set of all elements of U that agree with some element of X on each coordinate except, perhaps, the i-th one. To be more precise,

$$C_i X = \{ y \in {}^{\alpha}U \mid \exists x \in X \forall i < \alpha \ (i \neq j \Rightarrow y_j = x_j) \}.$$

We define the following equivalence relation for $i < \alpha$ and $x, y \in {}^{\alpha}U$:

$$x \equiv_i y \Leftrightarrow \forall j \in \alpha \ (i \neq j \Rightarrow x(i) = y(j))$$

Then one may reformulate the definition of the i-th cylindrification in the following way:

$$C_i X = \{ y \in {}^{\alpha}U \mid \exists x \in X \ x \equiv_i y \}$$

According to this version of the definiton, one may think of the cylindrification as an S5 modal operator.

The following definition is due to, e.g., [11]:

Definition 6. Let $(A_i)_{i\in I}$ be a family of algebras (of an abstract signature) and A is a subalgebra of $\prod_{i\in I} A_i$, then A is a subdirect product, if every projection is onto. That is, for every $i\in I$, $\pi_i[A] = A_i$.

Definition 7. A cylindic set algebra of dimension α is an algebra consisting of a set S of α -ry relation on some base set U with the constants and operations $0 = \emptyset$, $1 = {}^{\alpha}U$, \cap , -, the diagonal elements $\{D_{ij}\}_{i,j<\alpha}$, the cylindrifications $\{C_i\}_{i<\alpha}$. A generalised cylindric set algebra of dimension α is a subdirect of cylindric algebras that have dimension α .

Definition 8. A cylindric algebra of dimension α is an algebra $\mathcal{C} = \langle \mathcal{B}, \{c_i\}_{i < \alpha}, \{d_{ij}\}_{i,j < \alpha} \rangle$ such that

- \mathcal{B} is a Boolean algebra, for each $i, j < \alpha$ c_i is an operator and $d_{ij} \in \mathcal{B}$
- For each $i < \alpha$, $a \le c_i a$, $c_i (a \land c_i b) = c_i a \land c_i b$ and $d_{ii} = 1$
- For every $i, j < \alpha$, $c_i c_j a = c_j c_i a$
- If $k \neq i, j < \alpha$, then $d_{ij} = c_k(d_{ij} \wedge d_{jk})$
- If $i \neq j$, then $c_i(d_{ij} \wedge a) \wedge c_i(d_{ij} \wedge -a) = 0$

 $\mathbf{C}\mathbf{A}_{\alpha}$ is the class of all cylindric algebras of dimension α .

Definition 9. Let $A = \langle A, +, -, 0, 1, (c_i)_{i < \alpha}, (d_i j)_{i,j < \alpha} \rangle \in \mathbf{C} \mathbf{A}_{\alpha}$ and $\beta < \alpha$, then the β -reduct of A is an algebra $A_{\beta} = \langle A, +, -, 0, 1, (c_i)_{i < \beta}, (d_i j)_{i,j < \beta} \rangle$,

One may define a representation of a cylindric algebra explicitly in the following way:

Definition 10. Let \mathcal{A} be a cylindric algebra of dimension α . A representation of \mathcal{A} over the non-empty domain X is a map $f: \mathcal{A} \hookrightarrow 2^{\alpha U}$ such that:

- 1. $f(1) = \bigcup_{i \in I} {}^{\alpha}X_i$ for some disjoint family $\{X_i\}_{i \in I}$ where each $X_i \subseteq X$
- 2. $h: A \to 2^{f(1)}$ is a representation of a Boolean reduct
- 3. for all $\lambda, \eta < \alpha, x \in h(d_{\lambda \eta})$ iff $x_{\lambda} = x_{\eta}$
- 4. for all $\lambda < \alpha$ and $a \in \mathcal{A}$, $x \in h(c_{\lambda}(a))$ iff there is $y \in X$ such that $x[\lambda \mapsto y] \in h(a)$

An α -dimensional cylindric algebra C is representable, if it is isomorphic to a generalised cylindric set algebra of dimension α . Such is isomorphism is a representation of C. \mathbf{RCA}_{α} is the class of all representable cylindric algebras that have dimension α . In particular, we are interested in the case when $\alpha = \omega$.

Definition 11. Given a cylindric algebra of dimension α C, let x be a term of its signature, the substitution operator s_i^i have the following definition:

$$s_{j}^{i}x = \begin{cases} x, if \ i = j \\ c_{i}(d_{ij} \land x), otherwise \end{cases}$$

It is well known that \mathbf{RCA}_{α} is a variety, \mathbf{RCA}_{α} ($\alpha \leq 2$) is finitely axiomatisable and \mathbf{RCA}_{α} ($2 < \alpha < \omega$) has no finite axiomatisation, see [3].

Let $\mathcal{A} \in \mathbf{CA}_{\omega}$, then \mathcal{A} has a *complete representation*, if this representation preserves all existing suprema. In other words, \mathcal{A} is completely representable.

Let us concretise the definition of a canonical extension for $\mathbf{C}\mathbf{A}_{\alpha}$ -type BAOs.

Definition 12. Let $C = \langle C, +, -, 0, 1, \{d_{ij}\}_{i,j < \alpha}, \{c_i\}_{i < \alpha} \rangle$ A be a BAO of type \mathbf{CA}_{α} Let $\mathbf{Uf}(C)$ be the set of all ultrafilters of \mathfrak{BC} , the Boolean part of C.

Let us define $C_i : Uf(C) \to Uf(C)$ for each $i, j < \alpha$ as

- 1. $\mathbf{C}_i \mathcal{X} = \{ \mathcal{F} \in \mathbf{Uf}(\mathcal{C}) \mid \exists \mathcal{F}' \in \mathbf{Uf}(\mathcal{C}) \ (a \in \mathcal{F} \Rightarrow c_i a \in \mathcal{F}' R) \},$
- 2. $D_{ij} = \{ \mathcal{F} \in \mathbf{Uf}(\mathcal{C}) \mid d_{ij} \in \mathcal{F} \}.$

The structure $C^+ = \langle \mathbf{Uf}(C), \cup, -, \varnothing, C, \mathbf{C}_{i < \alpha}, \{D_{ij}\}_{i,j < \alpha} \rangle$ is called the canonical extension of C.

4.1 Closed elements

The following definitions and facts are due to Henkin, Monk, and Tarski [2].

Let $A \in \mathbf{CA}_{\alpha}$ and $x \in A$. Recall that the dimension of x is the set of all ordinals $\gamma < \alpha$ such that $c_{\gamma}x \neq x$. More formally,

$$\Delta x = \{ \gamma \mid \gamma < \alpha \& c_{\gamma} x \neq x \}$$

Let us discuss some metamathematical intuitions standing behind the notion of a dimension. Let Θ be a first-order theory and $\mathcal{C}/\equiv_{\Theta}$ its Lindenbaum-Tarski algebra. Let φ be a formula in the signature of Θ . Then $\Delta(\varphi/\Theta)$ consists of all $\kappa < \alpha$ such that $\exists x_{\kappa}\varphi \leftrightarrow \varphi$ is not valid in Θ . That is, $\Delta(\varphi/\Theta)$ contains ordinals κ for which x_{κ} is free in φ . Moreover, $\Delta(\varphi/\Theta)$ consists only of those ordinals for which x_{κ} is free in every $\psi \in \varphi/\Theta$.

In particular, an element x is called zero-dimensional if $\Delta x = 0$. Zero-dimensional elements correspond to equivalence classes of sentences in the Lindenbaum-Tarski algebra of a given first-order theory. Thus, the set of zero-dimensional elements form a Boolean algebras of sentences associated with Θ .

Definition 13. Let \mathcal{A} be an α -dimensional cylindric algebra. Let α be an ordinal and Γ a subset α , then an element $x \in \mathcal{A}$ is Γ -closed if $\Delta x \cdot \Gamma = \emptyset$. Alternatively, x is a Γ -cylinder.

 $\operatorname{Cl}_{\Gamma} \mathcal{A}$ is the set of all Γ -closed elements.

Metamathematically, Γ -closed elements reflect universal closures (is it correct?).

4.2 Neat reducts

Let $C = \langle C, +, -, 0, 1, \{d_{ij}\}_{i,j<\beta}, \{c\}_{c<\beta} \rangle$ be a β -dimensional cylindic algebra and $\alpha \leq \beta$ an ordinal. The α -th reduct of C, denoted as $\mathfrak{Ro}_{\alpha}C$, is an algebra having the form

$$\mathfrak{Ro}_{\alpha}\mathcal{C} = \langle C, +, -, 0, 1, \{d_{ij}\}_{i,j < \alpha}, \{c\}_{c < \alpha} \rangle$$

 \mathcal{B} is a subreduct of \mathcal{C} , denoted as $\mathcal{B} \subseteq^r \mathcal{C}$, if $\mathcal{B} \subseteq \mathfrak{Rd}_{\gamma}\mathcal{C}$ for some $\gamma \leqslant \beta$.

Definition 14. Let C be a β -dimensional cylindic algebra and α an ordinal such that $\alpha \leq \beta$. The neat α -reduct of C, denoted as $\mathfrak{Nr}_{\alpha}C$, is the subalgebra A of $\mathfrak{Rd}_{\alpha}C$ with $A = \operatorname{Cl}_{\kappa}C$ where $\alpha + \kappa = \beta$.

Let \mathbb{K} be a class of β -dimensional cylindic algebras, then we put

$$\mathbf{Nr}_{\alpha}\mathbb{K} = \{\mathfrak{Mr}_{\alpha}\mathcal{C} \mid \mathcal{C} \in \mathbb{K}\}$$

An algebra \mathcal{B} is a neat subreduct of \mathcal{C} , or \mathcal{B} is neatly embeddable to \mathcal{C} if there exists an ordinal $\gamma \leqslant \alpha$ such that $\mathcal{C} \subseteq \mathfrak{Rd}_{\gamma}\mathcal{B}$.

One may define neat reducts alternatively as follows. Let \mathcal{C} be a β -dimensional cylindic algebra and α an ordinal such that $\alpha \leq \beta$. The neat α -reduct of \mathcal{C} is the α -dimensional cylindric algebra having the form

$$\mathfrak{Nr}_{\alpha}\mathcal{C} = \langle \{a \in \mathcal{C} \mid \forall j (\alpha \leqslant j \& j < \beta \Rightarrow c_j a = a)\}, +, -, 0, 1, \{d_{ij}\}_{i,j < \alpha}, \{c_{\gamma}\}_{\gamma} \rangle$$

5 Completely representable cylindric algebras of dimension ω

Definition 15. Let \mathcal{A} be a BAO of type \mathbf{CA}_{ω} , an \mathcal{A} -pre-network is a pair $\mathcal{N} = \langle N, l \rangle$, where N is a set of nodes and $l : {}^{\omega}N \to \mathrm{At}(\mathcal{A})$.

 \mathcal{N} is a network, if the following conditions hold, for all $x, y \in {}^{\omega}N$ and $i, j < \omega$:

1.
$$l(x) \leqslant d_{ij}$$
 iff $x_i = x_j$

2.
$$x \equiv_i y \text{ implies } l(x) \leqslant c_i l(y)$$

Let $\mathcal{N}_1 = \langle N_1, l_1 \rangle$ and $\mathcal{N}_2 = \langle N_2, l_2 \rangle$ be networks, then $\mathcal{N}_1 \subseteq \mathcal{N}_2$ if $N_1 \subseteq N_2$ and $l_1 = l_2 \upharpoonright_{N_1}$. Let $\Lambda \in \text{Lim}$ and $\{\mathcal{N}_{\lambda}\}_{{\lambda}<\Lambda}$ a sequence of networks such that

$$\langle N_0, l_0 \rangle \subseteq \langle N_1, l_1 \rangle \subseteq \dots \langle N_{\lambda}, l_{\lambda} \rangle \subseteq \dots$$
 for $\lambda < \Lambda$

then the limit of the sequence $\{\mathcal{N}_{\lambda}\}_{{\lambda}<\Lambda}$ is the network

$$\mathcal{N} = \langle N, l \rangle = \bigcup_{\lambda < \Lambda} \langle N_{\lambda}, l_{\lambda} \rangle$$

with nodes $N = \bigcup_{\lambda < \Lambda} N_{\lambda}$ and labelling $l = \bigcup_{\lambda < \Lambda} l_{\lambda}$, that is, for any $\lambda \in \Lambda$ and $x \in {}^{\omega}N$ one has $l(x) = l_{\lambda}(x)$.

The elements of ${}^{\omega}N$ are called ω -dimensional hyperedges of a network. One may identify a complete representation of an atomic cylindric-type algebra \mathcal{A} with a set $\{\mathcal{N}_a \mid a \in \operatorname{At}(\mathcal{A})\}$ of \mathcal{A} -networks with the following additional condition:

• For each $a \in At(A)$ there exists $x \in {}^{\omega}N_a$ such that $l_a(x) = a$ and for each $z \in {}^{\omega}N_a$ and $b \in At(A)$, $i < \omega$ with $l_a(z) \le c_i b$ there exists $y \in {}^{\omega}N_a$ such that $z \equiv_i y$ and $l_a(y) = b$.

We define a complete representation h of a cylindric-type algebra \mathcal{A} as follows, for any $b \in \mathcal{A}$:

$$h(b) = \{x \mid \exists a \in \operatorname{At}(\mathcal{A}), x \in {}^{\omega}N_a, l_a(x) \leqslant b\}$$

Let us define an atomic game.

Definition 16. Let $n \leq \omega$ an A be an atomic BAO of type $\mathbf{C}\mathbf{A}_{\omega}$ that has countably atoms. The game $\mathcal{G}_n(A)$ is defined as follows. The game has two players: \forall (Abelard, he/his) and \exists (Héloïse, she/her). A play of the game $\mathcal{G}_n(A)$ is the sequence of networks

$$\mathcal{N}_0 \subseteq \mathcal{N}_1 \subseteq \mathcal{N}_2 \subseteq \cdots \subseteq \mathcal{N}_k \subseteq \ldots$$
 for $k < n$

The game consists of the following stages:

1. (Zero round)

 \forall picks an atom $a \in At(A)$ and \exists plays a network \mathcal{N}_0 . If there is no $x \in {}^{\omega}N_0$ such that $l_0(x) = a$, then \forall wins the play.

2. (Successor round)

Let k < n such that $k + 1 < \kappa$ and a network $\mathcal{N}_{\lambda} = \langle N_k, l_k \rangle$ has been already played. $\forall \ picks \ i \leq k, \ x \in {}^{\omega}N_k, \ a \in \operatorname{At}(\mathcal{A}) \ such \ that \ l_k(x) \leq c_i a.$ We denote this move as (i, x, a). $\exists \ responds \ with \ a \ network \ \mathcal{N}_{k+1} \supseteq \mathcal{N}_k$. $\forall \ wins, \ if \ there \ is \ no \ node \ c \in N \ such \ that \ l_{\lambda+1}(x[i/c]) = a, \ then \ \forall \ wins$

3. The limit of the play is defined as $\bigcup_{k < n} \mathcal{N}_k$. \forall wins the play, if there exists m < n such that \exists does not win the m-th round. Otherwise, \exists wins the play.

Theorem 3. Let \mathcal{A} be an atomic ω -dimensional cylindric-type algebra and κ a cardinal such that $|\operatorname{At}(\mathcal{A})| = \kappa$, then the following are equivalent:

- 1. A is completely representable.
- 2. \exists has a winning strategy in $\mathcal{G}_{\kappa+\omega}$.

Proof.

1. \Rightarrow If \mathcal{A} is completely representable, then its Boolean reduct is completely representable as well by Theorem 1. \exists maintains that embedding to win the play. TODO: write down this proof in more detail

2. ←

Suppose \exists has a winning strategy in $\mathcal{G}_{\kappa+\omega}(\mathcal{A})$. In every round \forall picks all possible $i < \omega$, $a \in \operatorname{At}(\mathcal{A})$, all possible hyperedges and all appropriate atoms and \exists has a proper response for every \forall 's move.

For each atom consider a play of the game with fewer than $\kappa + \omega$ nodes. For each $a \in \text{At}(\mathcal{A})$ we associate a network \mathcal{N}_a , the resulting network of a corresponding game. Consider the set $\{\mathcal{N}_a \mid a \in \text{At}(\mathcal{A})\}$.

Let a be an atom, consider the network $\mathcal{N}_a = \langle V, l_a \rangle$. If there was not $x \in V$ such that $l_a(x) = a$, then \forall would have a winning strategy, but that is not true, such an x does exist. The second item of this criterion follows from the presence of a winning strategy for \exists as well.

So we define a map rep:

$$rep(a) = \{x \mid \exists b \in At(\mathcal{A}) \ x \in {}^{\omega}N_a, l_a(x) \leqslant b\}.$$

We check that rep preserves cylindrifications and diagonal elements. Let $i, j < \omega$ and $a \in \mathcal{A}$:

(a) Suppose $x \in \operatorname{rep}(c_i a)$, then there exists an atom b such that $x \in {}^{\omega}N_b$ with $l_b(x) \leq c_i a$. Then there exists $y \equiv_i x$ with $l_b(y) \leq a$, so $x \in \mathbf{C}_i(\operatorname{rep}(a))$.

Let $x \in \mathbf{C}_i(\operatorname{rep}(a))$. We need $x \in (\operatorname{rep}(c_i a))$, that is, one needs to find an atom c such that $l_c(x) \leq c_i a$.

We already know that there exists $y \equiv_i x$ such that $y \in \operatorname{rep}(a)$, that is, there exists an atom b such that $y \in {}^{\omega}N_b$ and $l_b(y) \leqslant a$.

(b) If $x \in \text{rep}(d_{ij})$, so there exists an atom b with $x \in {}^{\omega}N_a$ and $l_b(x) \leq d_{ij}$, then $x_i = x_j$, then $x \in D_{ij}$.

If $A \in \mathbf{CA}_n$ is atomic, then we have the following criterion of complete representability

formulated in terms of back-and-forth games, see [7, Theorem 3.3.3 and Corollary 3.3.5]. Here, the definition of a network for the case of $\mathbf{C}\mathbf{A}_n$ is the same as Definition 15, but hyperedges have length n.

Theorem 4. Let \mathcal{A} be an atomic BAO of type \mathbf{CA}_n such that $|\operatorname{At}(\mathcal{A})| = \kappa$, where κ is an arbitrary cardinal. Then the following are equivalent:

- 1. A is completely representable iff \exists has a winning strategy in $\mathcal{G}_{\kappa+\omega}(\mathcal{A})$.
- 2. \exists has a winning strategy in $\mathcal{G}_m(\mathcal{A})$ for every $m < \omega$ iff \mathcal{A} is elementarily equivalent to a completely representable cylindric algebra.

Now we formulate the Lyndon conditions for BAOs of type $\mathbf{C}\mathbf{A}_{\omega}$, but we need their analogues for the finite case which are due to [5, Theorem 34]. Let \mathcal{A} be an atomic BAO of type $\mathbf{C}\mathbf{A}_n$. lc_k^n is a first-order sentence such that $\mathcal{A} \models lc_k^n$ iff \exists has a winning strategy in the game $\mathcal{G}_k(\mathcal{A})$ of length $k < \omega$.

Consider the following set of formulas:

$$LC_{\omega} = \{ lc_n^n \mid n < \omega \}$$

We shall think of LC_{ω} as the Lyndon conditions for atomic cylindric algebras of dimension ω .

Let us recall the definition of an ultraproduct, see [8, Section 9.5]. Let I be an index set, U an ultrafiler over I, an $(\mathcal{A}_i)_{i\in I}$ a family of structures of the same signature. The ultraproduct of $(\mathcal{A}_i)_{i\in I}$ modulo U, denoted as $\Pi_U \mathcal{A}_i$, is an algebra of the same signature whose elements are elements of the direct product $\Pi_{i\in I}\mathcal{A}_i$ factorised through an equivalence relation \sim such that for every $a, b \in \Pi_{i\in I}\mathcal{A}_i$:

$$a \sim b \Leftrightarrow \{i \in I \mid a(i) = b(i)\} \in U$$

Lemma 1. Let \mathcal{A} be an atomic BAO of type $\mathbf{C}\mathbf{A}_{\omega}$ such that for every $n < \omega$ $\mathcal{A}_n \models lc(n,n)$, then \exists has a winning strategy in $\mathcal{G}_{\omega}(\Pi_U \mathcal{A})$, where $\Pi_U \mathcal{A}$ is a non-principal ultrapower of \mathcal{A} and U is a non-principal ultrafilter over ω .

Proof. HALP!!!!!!!

Theorem 5. What's going on? :(

Theorem 6. Let A be a BAO of type CA_{ω} :

- 1. \exists has a winning strategy in $\mathcal{G}_m(\mathcal{A})$ $(m < \omega)$, then \exists has a winning strategy in $\mathcal{G}_{\omega}(\Pi_U \mathcal{A})$, where $\Pi_U \mathcal{A}$ is the non-principal ultrapower of \mathcal{A} modulo U, an ultrafilter over ω .
- 2. \exists has a winning strategy in $\mathcal{G}_m(\mathcal{A})$ (for every $m < \omega$) iff \mathcal{A} is elementarily equivalent to a completely representable cylindric algebra of dimension ω .

Proof.

The argument uses Łoś's Theorem, see [8, Theorem 9.5.1].

1.

2.

Theorem 7. The elementary closure of the class of completely representable cylindric algebras of dimension ω is axiomatised with the axioms of CA_{ω} and the Lyndon conditions.

6 The result itself

Lemma 2. Let \mathcal{A} be a BAO of type \mathbf{CA}_{α} and \mathcal{B} be a β -dimensional cylindric algebra such that $\beta \leqslant \alpha$ and \mathcal{A} neatly embeds to \mathcal{B} by a complete embedding.

- 1. A^+ neatly embeds to B^+ by a complete embedding.
- 2. A is atomic.

Proof.

- 1. See [2, Remark 2.7.25].
- 2. Is it true?

Theorem 8 (This assumption is by Ian Hodkinson).

Let \mathcal{A} be a BAO of type $\mathbf{C}\mathbf{A}_{\omega}$ such that \mathcal{A} neatly embeds into $\mathbf{C}\mathbf{A}_{\omega+\omega}$ by a complete embedding. Then \mathcal{A} is completely representable as $\mathbf{C}\mathbf{A}_{\omega}$.

Proof. Suppose $\mathcal{A} \subseteq \mathfrak{Nr}_{\omega}\mathcal{B}$, where $\mathcal{B} \in \mathbf{RCA}_{\omega+\omega}$ and the inclusion map $\rho: \mathcal{A} \hookrightarrow \mathfrak{Nr}_{\omega}\mathcal{B}$ is a complete embedding, that is:

$$\rho(\sum_{i\in I} a_i) = \sum_{i\in I} (\rho a_i)$$
, if $\sum_{i\in I} a_i$ exists.

Let us show that A is atomic.

Consider $\rho(\mathcal{A})$. Let us show that \exists has a winning strategy on $\mathcal{G}_{\kappa+\omega}(\rho(\mathcal{A}))$

Lemma 2 and Theorem 8 imply the following theorem.

Theorem 9. Let $C \in \mathbf{RCA}_{\omega}$, then $C^+ \in \mathbf{RCA}_{\omega}$. That is, \mathbf{RCA}_{ω} is closed under canonical extensions.

Proof.

7 (Lack of) canonical axiomatisation of CA_{ω}

Here we are going to show that $\mathbf{C}\mathbf{A}_{\omega}$ fails to have a canonical axiomatisation, the similar results for $\mathbf{R}\mathbf{R}\mathbf{A}$ and $\mathbf{R}\mathbf{C}\mathbf{A}_n$ for finite $n \geq 3$ have been shown by Hodkinson and Venema [9] and by Bulian and Hodkinson respectively [1].

8 Notes on the canonicity of RRA

Definition 17.

A relation algebra is an algebra $\mathcal{R} = \langle R, 0, 1, +, -, ;, \overset{\smile}{,}, \mathbf{1}' \rangle$ such that $\langle R, 0, 1, +, - \rangle$ is a Boolean algebra and the following equations hold, for each $a, b, c \in R$:

- 1. a;(b;c) = (a;b);c
- 2. (a + b); c = (a; c) + (b; c)
- 3. $a; \mathbf{1}' = a$
- 4. $a^{\smile} = a$
- 5. $(a + b)^{\smile} = a^{\smile} + b^{\smile}$
- 6. $(a;b)^{\smile} = b^{\smile}; a^{\smile}$
- 7. a^{\smile} ; $(-(a;b)) \leq -b$

where $a \leq b$ iff a + b = b. RA denotes the class of all relation algebras.

We will adapting the following proof of the fact that **RRA** is canonical ¹ to our case. This proof is due to Monk, but that was describe in McKenzie's thesis [10].

1. A relation algebra \mathcal{A} is representable iff \mathcal{A} neatly embeds to some ω -dimensional cylinric algebra,

¹This idea is by Ian Hodkinson

- 2. If \mathcal{A} neatly embeds in \mathcal{A} then \mathcal{A}^+ neatly embeds in \mathcal{B}^+ ,
- 3. $\mathbf{C}\mathbf{A}_{\alpha}$ is closed under canonical extensions,
- 4. Voilá.

Definition 18. Let $C \in \mathbf{CA}_{\alpha}$, where $\alpha \geqslant 3$. The relation algebra reduct of C, written as $\mathfrak{Ra}(C)$, is the algebra having the form

$$\langle \operatorname{dom}(\mathfrak{Nr}_2(\mathcal{C})), 0, 1, +, -, \mathbf{1}', \smile, ; \rangle$$

where:

- 1. +, -, 0, and 1 are defined as usual in C,
- 2. $\mathbf{1}' = d_{01} \in \mathfrak{Nr}_2(\mathcal{C}),$
- 3. $r^{\smile} = s_0^2 s_1^0 s_2^1 r$ for $r \in \mathfrak{Mr}_2(\mathcal{C})$,
- 4. Let $r, s \in \mathfrak{Mr}_2(\mathcal{C})$, then $r; s = c_2(s_2^1 r \cdot s_2^0 s)$

Moreover, $\mathfrak{Nr}_{\beta}(\mathcal{C})$ and $\mathfrak{Ra}(\mathcal{C})$ are closed under these operations. There is also the following fact by due to Henkin, Monk, and Tarski [3]:

Theorem 10. Let $C \in \mathbf{CA}_{\alpha}$ for $\alpha \geq 4$, then $\mathfrak{Ra}(C)$ is a relation algebra.

The following characterisation results are by Henkin, Monk, and Tarski [3, 5.3.13, 5.3.16] as well:

Theorem 11.

- 1. $\mathbf{R}\mathbf{A} = \mathbf{S}\mathfrak{R}\mathfrak{a}\mathbf{C}\mathbf{A}_4$,
- 2. $\mathbf{RRA} = \bigcap_{3 \leq n < \omega} \mathbf{S}\mathfrak{R}\mathfrak{a}\mathbf{C}\mathbf{A}_n = \mathbf{S}\mathfrak{R}\mathfrak{a}\mathbf{C}\mathbf{A}_\alpha$, where α is an infinite ordinal.

Let $\mathcal{C} \in \mathcal{CA}_{\alpha}$, then $\mathcal{R} \in \mathbf{RA}$ neatly embeds to \mathcal{C} , if \mathcal{R} is isomorphic to some subalgebra of $\mathfrak{Ra}(\mathcal{C})$.

Theorem 12. RRA is closed under canonical extensions.

Proof. Let $\mathbf{R} \in \mathbf{RRA}$. By the second item of 11, every representable relation algebra is isomorphic to some subalgebra of the relation algebra reduct \mathfrak{RaC} for some $\mathcal{C} \in \mathbf{CA}_{\omega}$. But neat embeddings repsect canonical extensions, so if $\mathbf{R} \hookrightarrow_n \mathcal{C}$, so is $\mathbf{R}^+ \hookrightarrow_n \mathcal{C}^+$. \mathbf{CA}_{α} is closed under canonical extensions, so is \mathbf{RRA} .

References

- [1] Jannis Bulian and Ian Hodkinson. Bare canonicity of representable cylindric and polyadic algebras. Annals of Pure and Applied Logic, 164(9):884–906, 2013.
- [2] L Henkin, J D Monk, and A Tarski. Cylindric Algebras Part I. North-Holland, 1971.
- [3] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric algebras. part ii. *Journal of Symbolic Logic*, 53(2):651–653, 1988.

- [4] Robin Hirsch and Ian Hodkinson. Complete representations in algebraic logic. *Journal of Symbolic Logic*, pages 816–847, 1997.
- [5] Robin Hirsch and Ian Hodkinson. Step by step-building representations in algebraic logic. *The Journal of Symbolic Logic*, 62(1):225–279, 1997.
- [6] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [7] Robin Hirsch and Ian Hodkinson. Completions and complete representations. In *Cylindric-like Algebras and Algebraic Logic*, pages 61–89. Springer, 2013.
- [8] Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
- [9] Ian Hodkinson and Yde Venema. Canonical varieties with no canonical axiomatisation. Transactions of the American Mathematical Society, 357(11):4579–4605, 2005.
- [10] Ralph McKenzie. The representation of relation algebras. PhD Thesis, University of Colorado, 1968.
- [11] Hanamantagouda P Sankappanavar and Stanley Burris. A course in universal algebra. Graduate Texts Math, 78, 1981.
- [12] Steven K Thomason. Categories of frames for modal logic. The journal of symbolic logic, 40(3):439–442, 1975.
- [13] Yde Venema, Maarten de Rijke, and Patrick Blackburn. *Modal logic*. Cambridge tracts in theoretical computer science 53. Cambridge University Press, 4. print. with corr edition, 2010.