TD2 : Plus d'applications linéaires : noyaux et images

Exercice 1:

Soit

$$\varphi: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x_1, x_2, x_3) \mapsto (x_1 + x_2 + x_3, -x_1 + 2x_2 + 2x_3)$

On appelle (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) celle de \mathbb{R}^2 .

- 1. Montrer que φ est linéaire.
- 2. Donner la dimension et une base de $\ker \varphi$, et la dimension et une base de $\operatorname{Im}(\varphi)$.

Exercice 2:

Même exercice avec

$$\varphi: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x_1, x_2, x_3) \mapsto (-2x_1 + x_2 + x_3, x_1 - 2x_2 + x_3)$

Exercice 3:

Soit

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \mapsto (x-y, -3x+3y)$$

On admet que f est linéaire.

- 1. Montrer que f n'est ni surjective, ni injective.
- 2. Trouver une base de l'image et du noyau.

Exercice 4:

Encore pareil avec

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x_1, x_2, x_3) \mapsto (x_1 - x_3, 2x_1 + x_2 - 3x_3, -x_2 + 2x_3)$

Exercice 5:

Encore pareil avec

$$f: \mathbb{R}^4 \to \mathbb{R}^3$$

 $(x_1, x_2, x_3, x_4) \mapsto (x_1 + x_2, x_3 + x_4, x_1 + x_2 + x_3 + x_4)$

Exercice 6:

Soit $n \in \mathbb{N}^*$. Encore pareil avec

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i$