The Distributive Property states that a(b+c)=ab+bc where a is $\in \mathbb{R}$ Brackets

$$(a+b)c=ab+bc$$
 This is a Python List = $[1,2,3,4]$ This is a Python Dictionary $\{"Emon":28\}$

Large Brackets

$$\begin{pmatrix} \frac{1}{\frac{1}{2}} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{\frac{1}{2}} \\ \frac{1}{\frac{1}{2}} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{1 + \frac{1}{x^2 + 1}} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{1 + \frac{1}{x^2 + 1}} \\ \frac{1}{1 + \frac{1}{x^2 + 1}} \end{pmatrix}$$

$$\frac{dy}{dx} \Big|_{x = 2}$$

${\bf Tables}$

f	a	b	c	d
f'	1	2	3	4

f	a	b	с	d
f'	1	2	3	4

Table 1: First Numbered Table

Table 2: Second Numbered Table

f	a
f'	This is an increasing function
	f'(x)This is an increasing func-
	tion $f'(x)$ This is an increasing
	function $f'(x)$ This is an increas-
	ing function $f'(x)$

Array or Numbered Equations:

$$x^{2} + 3 = 3x + 2$$
$$x^{12} + 31 = 3x + 2^{x}$$
$$0 = 3x + 2$$

$$x^2 + 3 = 3x + 2 \tag{1}$$

$$x^{12} + 31 = 3x + 2^x \tag{2}$$

$$0 = 3x + 2 \tag{3}$$

$$x^{2} + 3 = 3x + 2$$
$$x^{12} + 31 = 3x + 2^{x}$$
$$0 = 3x + 2$$

$$x^2 + 3 = 3x + 2 \tag{4}$$

$$x^{12} + 31 = 3x + 2^x (5)$$

$$0 = 3x + 2 \tag{6}$$