

Formularium

Academiejaar 2024 - 2025

Timo Vandevenne

Dit document is nog niet klaar, als we nieuwe formules zien zal ik deze toevoegen.

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	P Druk
	V Volume
	R Gasconstante
	T Temperatuur [K]
$\Delta \mathbf{U} = q + \mathbf{w}$	ΔU Verandering van interne energie
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$w = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie
$\Delta H_{rxn}^0 = \sum i\Delta H_f^0(prod.) - \sum j\Delta H_f^0(reag.)$	$(\Delta H_{rxn}^0 > 0: \text{ endotherme reactie})$
J • • • • • • • • • • • • • • • • • • •	$\mathbf{H_f^0}$ Standaardvormingsenthalpie
	\mathbf{i}, \mathbf{j} coefficiënten in reactievergelijking
$q = ms\Delta T$	m massa [g]
	s Specifieke warmte $\left[\frac{J}{a^{\circ}C}\right]$
$q = C\Delta T$	ΔT Temperatuurverandering
•	C Warmtecapaciteit
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$ $q_{rxn} = n\Delta H_{rxn}^{0}$	
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\nu = h\frac{c}{\lambda}}$	E Energie [J]
<i>A</i>	h constante van Planck = $6.62 \cdot 10^{-34}$ Js
	$ \mathbf{v} $ frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\mathbf{v} - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
,	vastgehouden
De Broglie: $\lambda = \frac{h}{n} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
p ma	m Massa bewegend deeltje [kg]
	u Snelheid
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
,	y _i Molfractie gas [%]
Wet van Raoult: $P_i = x_i P_i^0$	x _i Molfractie vloeistof [%]
·	P _i Dampdruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	$\mathbf{C_i}$ Concentratie
	H _i Henry constante
	\mathbf{k} gegeven constante bij bep. temp

$v = k[A]^x[B]^y$	$aA+bB \rightleftharpoons cC+dD$
	\mathbf{v} Reacties nelheid $\left[\frac{M}{a}\right]$
	k Snelheidsconstante [Eenheid afh. van reactieorde]
	$\mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{b}$ indien elementaire stap
$[C]^c[D]^d$	-
$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
	[X] Concentratie van stof X $[M] = \left[\frac{mol}{l}\right]$
	Q Reactieconstante, K met actuele concentraties
	(Q>K: systeem naar links voor evenwicht)
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
P	• Concentratieverandering
	Druk & volumeverandering
	• Temperatuursverandering \rightarrow K verandert
	• Katalysator & inert gas hebben geen invloed
$\Delta T_b = iK_b m$	$\Delta T_{ m b}$ Kookpuntsverhoging
$\Delta T_f = iK_f m$ $\Delta T_f = iK_f m$	$\Delta \mathbf{K_f}$ Vriespuntsverlaging
$\Delta I_f = i I I_f m$	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing
	$\mathbf{K_b}, \mathbf{K_f}$ karakteristiek van het oplosmiddel
	_
$\pi \equiv iMRT$	\mathbf{m} Molaliteit [mol/kg] $\boldsymbol{\pi}$ Osmotische druk
$\frac{\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^{0}}{pH = -\log[H^{+}] = -\log[H_{3}O^{+}]}$	ΔP Dampdrukverlaging
$K_a = \frac{[H^+][A^-]}{[HA]}$	$\mathbf{K_a}$ Aciditeitsconstante ($m{pK_a} = -\log K_a$)
$\Lambda_a = \frac{1}{[HA]}$	$\mathbf{K_a}$ Actumens constante $(p\mathbf{K_a} - \log \mathbf{K_a})$