Curs 9 Partea I – GPSS

Autor: lect. dr. Florentina Suter

In cursul trecut s-a lucrat cu un model in care serviciul era realizat de un singur punct de servire. In acest laborator va fi simulat un serviciu cu doua puncte de servire in paralel.

Problemă: O centrală telefonică are două linii externe. Apelurile sosesc la fiecare 100 ± 60 secunde (adică intervalele de timp intre chemări sunt uniform repartizate pe intervalul [40,160]) și o convorbire durează 180 ± 60 secunde. Când este ocupată linia, cel care sună încearcă din nou după ce au trecut 5 ± 1 minute. Se cere o histogramă cu distribuția timpului necesar unui apel ca să aibă succes. Să se ruleze programul pentru 200 de apeluri.

Definiție: Histograma este o reprezentare grafică bidimensională a repartiției unei caracteristici asociate unei populații.

Histograma se desenează in raport cu doua axe: axa orizontală este împărțită în clase (intervale) de frecvență și este asociată valorilor caracteristicii, iar axa verticală corespunde numărului de elemente din populație.

Histograma consta dintr-o succesiune de dreptunghiuri, fiecare dintre acestea având ca bază un interval de frecvență. Înălțimea unui dreptunghi este proporțională cu numărul de elemente din populație a căror caracteristică are valori în intervalul care definește baza dreptunghiului.

Sugestii pentru rezolvare:

- 1. Se va defini o entitate STORAGE.
- 2. Se va inițializa graficul. La definirea histogramei parametrul A va fi M1 specificând astfel faptul că datele reprezentate in histograma reprezintă valori ale unui timp. Ceilalți operanzi din definiția graficului pot fi aleși: 100, 100, 20.
- 3. Se vor genera clienții după o distribuție uniformă pe intervalul [100-60, 100+60].
- 4. Cu ajutorul unei instrucțiuni GATE, având operatorul SNF, se verifică dacă clienții găsesc o linie liberă din entitatea STORAGE.
- 5. Daca da, are loc o convorbire, dacă nu, sunt trimiși la un bloc ADVANCE care va simula durata așteptării.
- 6. După ce au așteptat, cu ajutorul unui bloc TRANSFER necondiționat sunt trimiși să verifice din nou dacă există vreo linie liberă.

Instrucțiuni noi:

STORAGE – instrucțiune care definește o entitate de depozitare sau un punct de servire cu mai multe unități de servire în paralel. Forma generală este:

Etichetă STORAGE A

Unde:

- Etichetă este numele entității STORAGE și este un element obligatoriu;
- A este capacitatea entității STORAGE și este obligatorie;

GATE – este o instrucțiune care deviază fluxul tranzacțiilor în funcție de starea unei entități. Are forma generală:

Unde:

- Etichetă este un element opțional;
- O este un operator condițional și este obligatoriu. Valorile lui pot fi:
 - FNV pentru un test cu succes facilitatea specificată de operandul A trebuie să nu fie disponibilă;
 - FV pentru un test cu succes facilitatea specificată de operandul A trebuie să fie disponibilă;
 - SE pentru un test cu succes entitatea storage specificată de operandul A trebuie să fie goală;
 - SF pentru un test cu succes entitatea storage specificată de operandul A trebuie să fie plină;
 - SNE pentru un test cu succes entitatea storage specificată de operandul A trebuie să nu fie goală;
 - SNF pentru un test cu succes entitatea storage specificată de operandul A trebuie să nu fie plină;
 - SNV pentru un test cu succes entitatea storage specificată de operandul A trebuie să nu fie disponibilă;
 - SV pentru un test cu succes entitatea storage specificată de operandul A trebuie să fie disponibilă.
- A este numele sau numărul entității care va fi testată și este obligatoriu;
- B este numărul blocului destinație în cazul în care testul nu are succes. Este opțional.

ENTER – este blocul care simulează intrarea unei tranzacții intr-o entitate STORAGE. Forma generală este:

Etichetă ENTER A.B

Unde:

- Etichetă este un element opțional;
- A este numele sau numărul entității STORAGE și este obligatoriu;
- B este numărul de unități cu care descrește capacitatea disponibilă a entității STORAGE și este opțional. Daca B nu exista este considerat a fi 1.

LEAVE – este blocul prin care se simulează eliberarea entității STORAGE de către un anumit număr de tranzacții. Forma generală este:

Etichetă LEAVE A,B

Unde:

- Etichetă este un element opțional;
- A este numele sau numărul entității STORAGE și este obligatoriu;
- B este numărul de unități eliberate din entitatea STORAGE. Este opțional si daca nu exista este considerat a fi 1.

TABLE – este o instrucțiune care inițializează o histograma. Forma generală este:

Etichetă TABLE A,B,C,D

Unde:

- Etichetă este numele histogramei și este un element obligatoriu;
- A este argumentul histogramei, elementul care furnizează datele pentru distribuția de probabilitate. Este obligatoriu;
- B este limita superioară a primei clase de frecvență. Este obligatoriu;
- C este lungimea unei clase de frecvență. Este obligatoriu;
- D este numărul claselor de frecvență. Este obligatoriu.

TABULATE – determină crearea unei histograme. Forma generală este: Etichetă TABULATE A

- Etichetă este un element opțional;
- A este numele sau eticheta histogramei şi este obligatoriu.

TRANSFER – este blocul care determină saltul unei tranzacții la un alt bloc. Forma generală este:

Etichetă TRANSFER A,B

Unde:

- Etichetă este un element opțional;
- A este modul de transferare și este opțional. Dacă lipsește, transferul se face necondiționat;
- B este eticheta sau numărul blocului
- 2. Scrieți un program care sa rezolve problema de mai sus completând modelul inițial astfel: după ce a avut loc o convorbire, clientul trebuie sa trimită un fax. Exista un singur aparat de fax si durata de utilizare a lui este de 10±3 minute. Sa se determine statisticile cozii formate pentru utilizarea faxului si histograma timpului petrecut de client in sistem.