Aula Prática 9

ASA 2024/2025

Q1 (CLRS Ex. 24.1-4) Modifique o algoritmo Bellman-Ford de forma a que d[v] fique com $-\infty$ para todos os vértices v para os quais existe um ciclo de peso negativo no caminho desde a origem até v.

Solução:

```
Bellman-Ford-tagCycles(G,w,s)
1: InitializeSingleSource(G,S)
2: for i = 1 to |G.V| - 1 do
      for each (u, v) \in G.E do
3:
         Relax(u,v,w)
4:
      end for
5:
6: end for
7: NoNegCycle \leftarrow true
8: L \leftarrow \{\}
9: for each ((u, v) \in G.E do
      if d[v] > d[u] + w(u, v) then
10:
        L \leftarrow L \cup \{v\}
11:
12:
        NoNegCycle \leftarrow \mathbf{false}
      end if
13:
14: end for
15: for each v \in L do
      DFS_visit(G, v) to mark v and all reached states with d = -\infty
17: end for
18: return NoNegCycle
```

Q2 (R1 08/09 II.3) Considere a execução do algoritmo de Johnson, sobre o grafo dirigido e pesado da figura abaixo. Indique o valor dos pesos dos arcos, após o procedimento de repesagem.

Solução:

$h(v_1)$	$h(v_2)$	$h(v_3)$	$h(v_4)$	$h(v_5)$	$h(v_6)$
0	-2	-1	-5	0	-3

$\hat{w}(v_1,v_2)$	$\hat{w}(v_1,v_3)$	$\hat{w}(v_2, v_3)$	$\hat{w}(v_2,v_4)$	$\hat{w}(v_3,v_5)$	$\hat{w}(v_4, v_6)$	$\hat{w}(v_5,v_4)$	$\hat{w}(v_5, v_6)$	
0	3	0	0	3	0	6	2	

Q3 (CLRS Ex. 25.3-1) Aplique o algoritmo de Johnson para encontrar os caminhos mais curtos entre todos os pares de vértices do grafo. Mostre os valores de h e \hat{w} produzidos pelo algoritmo.

Solução:

h(A)	h(B)	h(C)	h(D)	h(E)	h(F)
-5	-3	0	-1	-6	-8

$\hat{w}(A, E)$	$\hat{w}(B,A)$	$\hat{w}(B,D)$	$\hat{w}(C,B)$	$\hat{w}(C,F)$	$\hat{w}(D,A)$	$\hat{w}(D, E)$	$\hat{w}(E,B)$	$\hat{w}(F,B)$	$\hat{w}(F,C)$
0	3	0	5	0	0	8	4	0	2

Q4 (CLRS Ex. 25.3-3) Suponha que $w(u,v) \ge 0$ para todos os arcos $(u,v) \in E$. Qual a relação entre as funções de peso $w \in \hat{w}$.

Solução:

No algoritmo de Johnson, quando o Bellman-Ford é aplicado com $w(u,v) \geq 0$, o $\delta(s,v) = h(v) = 0$, dado que existe sempre um arco w(s,v) = 0 para todo o $v \in V$.

Assim, com a repesagem dos arcos $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$, ficamos com $\hat{w}(u,v) = w(u,v)$, dado que h(u) = h(v) = 0.

Q5 (CLRS Ex. 25.3-6) O Professor Michener alega que não é necessário adicionar o novo vértice de origem na linha 1 do algoritmo de Johnson. Ele alega que podemos usar G' = G e s pode ser qualquer vértice.

Indique um exemplo de um grafo G dirigido e pesado onde a ideia do professor resultaria em resultados incorrectos para o algoritmo de Johnson. De seguida, mostre que se o grafo G é fortemente ligado (todos os vértices são atíngiveis a partir de todos os outros vértices), então os resultados devolvidos pelo algoritmo de Johnson com a modificação sugerida estão correctos.

Solução:

Se o vértice s for o B, o C ou o D, o vértice A não é alcançável, ficando $h(A) = \infty$, o que causará resultados incorrectos.

Se G for um SCC, ou seja, cada vértice é alcançável a partir de qualquer outro vértice, qualquer vértice pode ser o vértice inicial s para correr o Bellman-Ford, dando o valor correcto para a função h().

Q6 (R1 08/09 II.2) Considere os algoritmos para o cálculo de caminhos mais curtos. Indique se cada uma das seguintes afirmações é verdadeira (V) ou falsa (F).

- 1. O algoritmo de Bellman-Ford permite detectar ciclos negativos.
- 2. Se a relaxação dos arcos de um grafo dirigido e acíclico for efectuada de acordo com a ordenação topológica dos respectivos vértices, é possível determinar os caminhos mais curtos de fonte única em tempo $\Theta(V+E)$.
- 3. No algoritmo de Dijkstra, quando um vértice u é extraído da fila de prioridade, d[u] e $\pi[u]$ já têm o respectivo valor final, mesmo em grafos contendo arcos com peso negativo.
- 4. O algoritmo de Dijkstra produz os valores finais correctos, mesmo que o ciclo principal seja executado apenas |V|-2 vezes.
- 5. Se num grafo existir mais do que um componente fortemente ligado (SCC), têm obrigatoriamente que existir dois vértices u e v, tal que $\delta(u, v) = \infty$.
- 6. Os caminhos mais curtos obedecem sempre à desigualdade triangular.
- 7. Em grafos em que os pesos dos arcos sejam todos diferentes e inteiros positivos, existe apenas um caminho mais curto entre qualquer par de vértices.
- 8. O tempo de execução do algoritmo de Bellman-Ford é $O(VE^2)$.

Solução:

1	2	3	4	5	6	7	8
V	V	F	F	V	V	F	V