

Pós-graduação em Ciência da Computação Centro de Informática Universidade Federal de Pernambuco

An artificial neuron implemented on an actual quantum processor

Francesco Tacchino, Chiara Macchiavello, Dario Gerace and Daniele Bajoni

Resumo dos principais momentos

- 1 Introdução
- 2 Resultados
- **3** Método

Introdução

Introdução

- Redes Neurais Artificiais
 - Reconhecimento de padrões
 - Classificação de imagens
- Redes Neurais Artificiais com conceitos da Mecânica Quântica
 - Redes Neurais Quânticas

Introdução

Modelo simples de um neurônio artificial chamado "perceptron"

Figura: Exemplo de um modelo simples de um neurônio artificial proposto por R. Rosenblatt

O autores apresentaram uma prosposta de uma estrutura genérica para representar um nerônio quântico

O nerônio apresentado pelo autores aceita dois vetores, o vetor de entrada \vec{i} e o vetor com os pesos \vec{w} , onde cada elemento, seja \vec{i}_i ou \vec{w}_i , pertence ao conjunto $\{-1, 1\}$.

$$\vec{i} = \begin{pmatrix} i_0 \\ i_1 \\ \vdots \\ i_{m-1} \end{pmatrix}, \vec{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_{m-1} \end{pmatrix}$$

Dessa forma, são definidos os seguintes estados quânticos:

$$|\psi_i\rangle = \frac{1}{\sqrt{m}}\sum_{i=0}^{m-1}i_j|j\rangle; |\psi_w\rangle = \frac{1}{\sqrt{m}}\sum_{i=0}^{m-1}w_j|j\rangle.$$

Os autores utilizam dois operadores os quais eles chamam de U_i e U_w , Figura é possível observar um circuito para N=4. É importante destacar que para definir o circuito desses operadores, os autores apresentaram duas estratégias uma por força bruta e outra que utiliza Hipergrafos

Método

Método

Para realizar o treinamento, os autores definiram uma função O, que combina os vetores de entrada e de peso

$$O(i, w) = |\sum_{j} i_{j} w_{j}|^{2} = |c_{m-1}|^{2}$$

Após a aplicação dessa função é verificado o valor obtido, caso esse valor seja maior que 0.75 ou menor que 0.3, então é considerado de boa qualidade

Pós-graduação em Ciência da Computação Centro de Informática Universidade Federal de Pernambuco

An artificial neuron implemented on an actual quantum processor

Francesco Tacchino, Chiara Macchiavello, Dario Gerace and Daniele Bajoni

