Nazwa kwalifikacji: Eksploatacja układów automatyki przemysłowej

Oznaczenie kwalifikacji: ELM.04

Numer zadania: 01

Kod arkusza: **ELM.04-01-23.01-SG**

Wersja arkusza: SG

	33
Lp.	Elementy podlegające ocenie/kryteria oceny
R.1	Rezultat 1: Obliczenia granicznych wartości rezystancji dla czujników Pt100 – tabela 2.
	Wpisane odpowiednio w wierszu: Uwaga! Jako prawidłowe należy również uznać wartości wpisane z tolerancją ±0,02 Ω
R.1.1	1 ÷ 5 wartości R _{Tmin} dla czujników Pt100 klasy A są wyliczone: 1 - 99,85 Ω; 2 - 107,59 Ω; 3 - 115,27 Ω; 4 - 122,91 Ω; 5 - 130,49 Ω
R.1.2	6 ÷ 11 wartości R _{Tmin} dla czujników Pt100 klasy A są wyliczone: 6 - 138,03 Ω; 7 - 145,50 Ω; 8 - 152,92 Ω; 9 - 160,29 Ω; 10 - 167,62 Ω; 11 - 174,89 Ω
R.1.3	1 ÷ 5 wartości R _{Tmax} dla czujników Pt100 klasy A są wyliczone: 1 - 100,15 Ω; 2 - 107,99 Ω; 3 - 115,81 Ω; 4 - 123,57 Ω; 5 - 131,31 Ω
R.1.4	6 ÷ 11 wartości R _{Tmax} dla czujników Pt100 klasy A są wyliczone: 6 - 138,99 Ω; 7 - 146,64 Ω; 8 - 154,24 Ω; 9 - 161,81 Ω; 10 - 169,34 Ω; 11 - 176,83 Ω
R.1.5	1 ÷ 5 wartości R _{Tmin} dla czujników Pt100 klasy B są wyliczone: 1 - 99,70 Ω; 2 - 107,36 Ω; 3 - 114,96 Ω; 4 - 122,50 Ω; 5 - 129,98 Ω
R.1.6	6 ÷ 11 wartości R _{Tmin} dla czujników Pt100 klasy B są wyliczone: 6 - 137,40 Ω; 7 - 144,76 Ω; 8 - 152,04 Ω; 9 - 159,28 Ω; 10 - 166,46 Ω; 11 - 173,57 Ω
R.1.7	1 ÷ 5 wartości R _{Tmax} dla czujników Pt100 klasy B są wyliczone: 1 - 100,30 Ω; 2 - 108,22 Ω; 3 - 116,12 Ω; 4 - 123,98 Ω; 5 - 131,82 Ω
R.1.8	6 ÷ 11 wartości R _{Tmax} dla czujników Pt100 klasy B są wyliczone: 6 - 139,62 Ω; 7 - 147,38 Ω; 8 - 155,12 Ω; 9 - 162,82 Ω; 10 - 170,50 Ω; 11 - 178,15 Ω
R.2	Rezultat 2: Określenie klasy badanych czujników Pt100 i ocena ich przydatności do dalszej eksploatacji – tabela 3.
R.2.1	1 zaznaczono tylko <i>Poza klasami A i B</i>
R.2.2	1 określona sprawność czujnika - <i>Do wymiany</i>
R.2.3	2 zaznaczono tylko Spełnia klasę B
R.2.4	2 określona sprawność czujnika - <i>Sprawny</i>
R.2.5	3 zaznaczono tylko Spełnia klasę B
R.2.6	3 określona sprawność czujnika - Sprawny
R.3	Rezultat 3: Uzupełniony schemat połączeń podzespołów układu regulacji temperatury po modernizacji – rysunek 7.
B 6 1	Zgodnie z dokumentacją techniczną podzespołów automatyki podaną w arkuszu egzaminacyjnym narysowane połączenie:
R.3.1	sieci zasilającej z trójfazowym wyłącznikiem RCD
R.3.2	sieci zasilającej z jednofazowym wyłącznikiem RCD
R.3.3	przekaźnika SSR z wyjściami trójfazowego wyłącznika RCD
R.3.4	modułu grzewczego z wyjściami przekaźnika SSR
R.3.5	modułu grzewczego w układzie gwiazdy
R.3.6 R.3.7	zasilania regulatora RE z wyjściami jednofazowego wyłącznika RCD
	zacisków wyjść regulacyjnych regulatora RE z zaciskami sterowania przekaźnika SSR
R.3.8	czujnika RTD Pt100 z zaciskami 6, 7 i 8 regulatora RE czujnika RTD Pt100 w układzie trójprzewodowym
R.3.9	Rezultat 4: Nazwy i wartości obliczonych nastaw regulatora temperatury w układzie po
R.4	modernizacji wg reguł Zieglera-Nicholsa
	Uwzględnono:
D 1 1	nazwę parametru K _P - współczynnik wzmocnienia
R.4.1	
R.4.2	wartość $K_P = 2,4 \text{ V/V}$

R.4.3	nazwę parametru T _I - <i>stała całkowania</i> lub <i>czas zdwojenia</i>
R.4.4	wartość T _I = 30 s
R.4.5	nazwę parametru T _D - stała różniczkowania lub czas wyprzedzenia
R.4.6	wartość T _D = 7,5 s
R.5	Rezultat 5: Wykaz czynności związanych z przeglądem regulatora – tabela 5.
	Uwaga! Zapisy należy również uznać jeśli ich treść oddaje merytorycznie brzmienie odpowiadającego kryterium. Zapisane:
R.5.1	sprawdzić stan mocowania mechanicznego wszystkich podzespołów oraz częstotliwość przeprowadzania minimum 1 raz w miesiącu
R.5.2	sprawdzić stan izolacji przewodów pod kątem uszkodzeń i zabrudzeń oraz częstotliwość przeprowadzania minimum 1 raz w miesiącu
R.5.3	sprawdzić pod kątem czystości i czytelności panel frontowy regulatora oraz częstotliwość przeprowadzania minimum 1 raz na kwartał
R.5.4	sprawdzić nastawy regulatora i ewentualnie skorygować oraz częstotliwość przeprowadzania minimum 1 raz na kwartał
R.5.5	sprawdzić działanie regulatora przeprowadzając test grzania oraz częstotliwość przeprowadzania minimum 1 raz na kwartał
R.5.6	sprawdzić poprawność generowania alarmów oraz częstotliwość przeprowadzania minimum 1 raz na kwartał
R.5.7	dokręcić wszystkie zaciski regulatora oraz częstotliwość przeprowadzania minimum 1 raz na rok