ECN 7060 Examen Intra 2020

2020-10-15

- 1. (20 points) Soit $\mathcal{J} = \{(-\infty, x] : x \in \mathbb{R}\} \cup \{(y, \infty) : y \in \mathbb{R}\} \cup \{(x, y] : x, y \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
 - a. Prouvez que \mathcal{J} est une semialgèbre et non une algèbre.
 - b. Prouvez que $\sigma(\mathcal{J}) = \mathcal{B}$.
- 2. (10 points) Trouvez
 - a. $\limsup_{n\to\infty} \{n, n+1, \ldots\}$. b. $\liminf_{n\to\infty} \left[-\frac{1}{n}, 1+\frac{1}{n}\right]$.

 - c. au moins trois points distincts qui appartiennent à l'ensemble

$$\{x \in \mathbb{R} \colon 1 \in \limsup_{n \to \infty} \{e^{2\pi i n x}\}\}.$$

Bonus: donnez une expression simple pour l'ensemble.

3. (10 points) Soit (Ω, \mathcal{F}, P) l'espace de probabilité pour la loi uniforme sur $\Omega = [0, 1]$. Pour chaque $n \in \mathbb{N}$, définissez $X_n : \Omega \to \mathbb{R}$ par

$$X_n(\omega) = (-1)^n (1 + \frac{1}{n})\omega.$$

- a. Trouvez $\liminf_{n\to\infty} E[X_n]$.
- b. Trouvez $E[\liminf_{n\to\infty} X_n]$.
- 4. (15 points) Soit (Ω, \mathcal{F}, P) l'espace de probabilité où $\Omega = \mathbb{N} = \{1, 2, \ldots\}, \mathcal{F} = 2^{\Omega}$ et P est la probabilité telle que $P(\{\omega\}) = 2^{-\omega}$. Soit $X_n \colon \Omega \to \mathbb{R}$ la suite de variables aléatoires sur (Ω, \mathcal{F}, P) telle que

$$X_n(\omega) = \begin{cases} 0 & \omega < n \\ 2^n & \omega \ge n. \end{cases}$$

- a. Trouvez la variable aléatoire $X\colon \Omega\to \mathbb{R}$ telle que $X_n\stackrel{p.s.}{\to} X$ et démontrez la convergence.
- b. Trouvez $E[X_n]$, $\lim_{n\to\infty} E[X_n]$ (si elle existe) et E[X].
- c. Pourquoi le théorème de convergence monotone n'implique pas $E[X_n] \to E[X]$?
- d. Qu'est-ce que le théorème de convergence dominante permet de conclure sur la suite X_n ?
- 5. (30 points) Soit X_n une suite de variables aléatoires indépendantes où chaque X_n a une loi Poisson ayant une moyenne λn .
 - a. Dérivez la fonction caractéristique de X_1 .
 - b. Trouvez $E[X_1]$ et $E[X_1^2]$ en utilisant la fonction caractéristique. Trouvez $Var[X_1]$.
 - c. Trouvez la loi de $X_1 + X_2$ en utilisant la fonction caractéristique.
 - d. Démontrez que $\mathcal{L}(X_1)$ est infiniment divisible, c'est à dire que pour chaque $n \in \mathbb{N}$, sa loi peut être exprimée comme la loi d'une somme de n variables aléatoires iid.
 - e. Démontrez que $n^{-1}X_n \stackrel{p}{\to} \lambda$.
 - f. Démontrez que la loi de $(n\lambda)^{-1/2}(X_n-n\lambda)$ converge à la loi gaussienne ayant une movenne zéro et une variance unitaire.

6. (15 points) Si A_1, A_2, \ldots, A_n sont des événements indépendants, montrez que la probabilité pour qu'aucun des A_i ne soit réalisé est au plus égale à $\exp(-\sum_{i=1}^n P(A_i))$.