228 Ac β^- decay 1987Da28

Type Author Citation Literature Cutoff Date
Full Evaluation Khalifeh Abusaleem NDS 116, 163 (2014)

31-Dec-2012

Parent: 228 Ac: E=0; J^{π}=3+; T_{1/2}=6.15 h 2; Q(β ⁻)=2134 3; % β ⁻ decay=100.0 228 Ac-Q(β ⁻) from 2012Wa38.

1987Da28: Radiochemically separated ²²⁸Ac source. 17% Ge, 10% Ge(Li), and LEPS detectors to measure Eγ, γ-γ, and Iγ. 1984Da05: ²²⁸Ac source was prepared using radiochemical separation from ²²⁸Ra sources primarily isolated from Th(No3)4. Measured E_γ and I_γ for 242 γ-rays using two HPGe and a planar HPGe detectors. However, neither levels in ²²⁸Th nor scheme are presented in this work. These are presented in 1987Da28 (same working group).

2006Xu10: Observed β -delayed fission of ²²⁸Ac. ²²⁸Ac source was chemically prepared from Thorium solution, then exposed to mica foils (α -detector) and HPGe (γ -detector) for 720 days. 17 α -events were observed. These were interpreted from ²²⁸Ac fission based on analysis of β - decay energy and fissility systematics. Also, several γ -rays were observed and interpreted from the β - decay of ²²⁸Ac. These γ -rays are presented in figure 2 of 2006Xu10. However, no γ - uncertainty, intensity, or level energies are given. Probability of β -delayed fission (N_{βDF}/N_β) was found to be 5×10⁻¹² 2.

²²⁸Th Levels

```
2009So02: discussion of log ft.

1992Li05: measured absolute I\gamma.

1987Da28: measured E\gamma, I\gamma, \gamma\gamma. Earlier report: 1984Da05.

1983Sc13, 1982Sa36: measured absolute I\gamma.

1982Ma52, 1960Ar06, 1957Bj56: measured ce.

1979Bo30: measured E\gamma; not included in E\gamma calculation because five out of twelve E\gamma disagree with measurements of 1987Da28 and 1979He10 (deviation>3 x \sigma).

1979He10: measured E\gamma.

1974De14: measured E\gamma, I\gamma, \beta\gamma(\theta), \beta\gamma(\text{circ pol})(\theta).

1974Da17: measured E\gamma, I\gamma, \gamma\gamma. Deduced levels and J\gamma.

1971He23: measured E-conversion electron, I-conversion electron. Deduced J\gamma and Icc and polarity.

The decay scheme is that proposed by 1987Da28.

CC calculated using BrIcc v2.3S published in 2008Ki07.
```

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	0+	
57.763 [#] 4	2+	
186.827 [#] 4	4+	
328.006 [@] 4	1-	
378.178 [#] <i>11</i>	6+	
396.083 [@] 5	3-	
519.195 [@] 6	5-	
831.822 & <i>10</i>	0^+	
874.48 <mark>&</mark> <i>3</i>	2+	J^{π} : γ s to 0 ⁺ and 4 ⁺ in g.s. band (1987Da28).
938.61 ^a 5	0_{+}	J^{π} : 2 ⁺ in 1987Da28 while no ruling out of 0 ⁺ .
944.200 13	1-	TT 4- (400FD 40)
968.335 ^a 25	2-	J^{π} : γ s to 1 ⁻ (1987Da28).
968.45	4+	E(level): Level from ε decay.
968.972 ^b 5	2+	
979.507 <i>14</i>	2+	J^{π} : 0 or 2 from γ s to 0 ⁺ and 2 ⁺ levels in g.s. and 1 ⁻ and 3 ⁻ levels of the octupole band (1987Da28).
1016.386 23	3-	J^{π} : (2 ⁺) in 1987 Da28 from γ to 0 ⁺ g.s.
1022.531 ^b 6	$(3)^{+}$	

²²⁸Ac β^- decay 1987Da28 (continued)

²²⁸Th Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
1059.94 7	4-	-	
1091.020 ^b 9	4+		
1122.949 ^c 6	2-		J^{π} : \approx Member of a rotational band (1987Da28).
1153.465 <i>10</i>	2+	0.29 ns 2	$T_{1/2}$: from 1974De14.
1168.377 ^c 5	3-		
1174.50 ^b 7	(5^+)		
1175.45 5	2+		J^{π} : γ s to 0^{+} , 2^{+} , and 4^{+} in g.s. and to 2^{+} level (1987Da28).
1200.5 10			E(level): Placement suggested by ²²⁸ Pa decay.
1226.566 ^c 8	4-		
1297.440 ^c 11	(5)		TT
1344.082 11	3-		J^{π} : γ s to 1 ⁻ and 5 ⁻ (1987Da28).
1416.09 <i>7</i> 1431.981 <i>6</i>	(3 ⁻) 4 ⁺		J^{π} : E2 and M1 γ s $K^{\pi}=2^+$ band (1987Da28). γ -ray to 1 ⁻ level supports 3 ⁺ rather than
1431.961 0	4		4^+ (1987Da28).
1450.35 <i>3</i>	4-		
1531.478 6	3+		
1539.24 9	2+		
1617.78 7	4+		
1638.283 ^d 10	2+		Quasiparticle configuration= $((\pi \ 3/2^+[651])(\pi \ 1/2^+[660]))$ or configuration= $((\pi \ 3/2^+[651])(\pi \ 1/2^+[400]))$ suggested for this level. J^{π} : γ s to 0^+ and 4^+ levels of the g.s. (1987Da28).
1643.119 <i>16</i>	(3-)		γ : γ s to 0 and 4 levels of the g.s. (1987Da28).
1646.005 11	3+		
1682.754 19	$(2^+,3^+,4^+)$		
1683.71 7	(4-)		
1688.398 ^d 11	$2^{+},3^{+}$		
1724.288 6	2+		
1735.508 24	4+		
1743.87 <i>3</i>	4+		
1758.24 12	2+		
1760.17 ^d 3	$2^{(+)},3^{(+)}$		
1795.65 8	4 ⁺ 2 ⁺		
1797.66 8 1893.02 <i>4</i>	3 ⁺		
1899.97 <i>6</i>	(2^+)		Quasiparticle configuration= $((\pi \ 3/2[651])(\pi \ 1/2[660]))$ or configuration= $((\pi \ 3/2[651])(\pi \ 1/2[660]))$
10,,,,,,	(2)		3/2[651])(π 1/2[400])) suggested for this level.
			J^{π} : γ s to 0^+ and 4^+ levels of g.s. (1987Da28).
1906.63 <i>10</i>	(2^{+})		
1928.66 7	3+		
1937.18 9	2+,3,4+		
1944.83 ^d 3	3+		
1958.72 22	(2+)		
1987.46 10	4 ⁺		1007D 20
2010.20 5	(2+)		1987Da28 suggests that this is the 4 ⁺ level of K^{π} =2 ⁺ rotational band built on the 1900.0 level. However, the relatively strong 887.33 γ to the 1123-keV level would then have M2 mult.
2013.6 3	2+,3,4+		_
2022.64 9	2+		J^{π} : From 1987Da28.
2030.39 11	2+ 2 4+		
2037.00 <i>17</i> 2123.1 <i>3</i>	2 ⁺ ,3,4 ⁺ (2 ⁺)		
4143.1 J	(4)		

$^{228}{ m Ac}\,eta^-$ decay 1987Da28 (continued)

²²⁸Th Levels (continued)

 † From 1971He23 and 1974Da17. ‡ From Adopted Levels.

β^- radiations

E(decay)	E(level)	Ι <i>β</i> ^{-†‡}	Log ft	Comments
(11 3)	2123.1	0.0042 10	4.9 5	av Eβ=2.73 76
(97 3)	2037.00	0.0062 10	7.58 9	av E β =25.15 81
(104 3)	2030.39	0.019 3	7.18 8	av E β =26.94 82
(111 3)	2022.64	0.054 6	6.82 6	av E β =29.04 82
(120 3)	2013.6	0.0029 9	8.19 <i>14</i>	av E β =31.51 83
(124 3)	2010.20	0.28 3	6.25 6	av E β =32.44 83
(147 3)	1987.46	0.038 <i>3</i>	7.34 5	av E β =38.72 84
$(175 \ 3)$	1958.72	0.0033 7	8.64 10	av E β =46.79 86
(189 3)	1944.83	0.251 14	6.86 <i>4</i>	av E β =50.75 86
$(197 \ 3)$	1937.18	0.046 5	7.66 <i>6</i>	av E β =52.94 87
(205 3)	1928.66	0.056 7	7.63 6	av E β =55.39 87
$(227 \ 3)$	1906.63	0.034 5	7.98 <i>7</i>	av E β =61.79 88
$(234 \ 3)$	1899.97	0.077 6	7.67 4	av E β =63.71 91
$(241 \ 3)$	1893.02	0.117 7	7.53 4	av E β =65.77 89
(336 3)	1797.66	0.045 6	8.40 6	av E β =94.51 93
(338 3)	1795.65	< 0.01	>9.1	av E β =95.13 93
$(374 \ 3)$	1760.17	0.119 10	8.13 4	av E β =106.17 95
(376 3)	1758.24	0.062 13	8.42 10	av E β =106.77 95
(390 3)	1743.87	0.389 18	7.673 23	av E β =111.29 95
(398 3)	1735.508	0.133 8	8.17 <i>3</i>	av E β =113.94 96
(410 3)	1724.288	1.76 5	7.087 17	av E β =117.50 96
(446 3)	1688.398	2.43 15	7.07 3	av E β =129.00 97
$(450 \ 3)$	1683.71	0.164 17	8.25 5	av E β =130.51 97
(451 3)	1682.754	1.12 5	7.420 22	av E β =130.82 97
(488 3)	1646.005	4.19 19	6.958 22	av E β =142.79 99
(491 3)	1643.119	3.0 8	7.11 12	av E β =143.73 99
(496 <i>3</i>)	1638.283	1.15 5	7.542 21	av E β =145.32 99
(516 3)	1617.78	0.095 9	8.68 5	av E β =152.1 10
(603 3)	1531.478	7.6 4	7.003 24	av E β =181.0 11
(684 3)	1450.35	0.60 7	8.29 6	av E β =208.9 11
(702 3)	1431.981	1.2 4	8.03 15	av E β =215.3 11
(718 3)	1416.09	0.060 8	9.36 6	av E β =220.9 11
(790 3)	1344.082	0.217 15	8.95 3	av E β =246.4 11
(837 3)	1297.440	0.058 13	$9.97^{1u} 10$	av E β =260.3 10
(907 3)	1226.566	0.67 4	8.66 <i>3</i>	av E β =288.8 11
(959 3)	1175.45	0.17 3	9.34 8	av E β =307.6 11
(960 3)	1174.50	< 0.005	>10.9	av E β =307.9 11
(066.2)	1160 277	2 11 7	0.001.77	$I\beta^-$: From 1987Da28.
(966 3)	1168.377	3.11 7	8.091 11	av E β =310.2 11
(981 3)	1153.465	5.8 9	7.84 7	av E β =315.7 12
(1011 3)	1122.949	5.90 <i>14</i>	7.883 12	av E β =327.0 12

[#] Band(A): g.s. Rotational band.

® Band(B): $K^{\pi}=0^{-}$ octupole band.

& Band(C): $K^{\pi}=0^{+}$ two octupole phonon band.

^a Band(D): $K^{\pi}=1^{-}$ octupole band.

^b Band(E): $K^{\pi}=2^{+}$ γ -vibrational band.

^c Band(F): $K^{\pi}=2^{-}$ octupole band. ^d Band(G): $K^{\pi}=2^{+}$ rotational band on quasiparticle state.

228 Ac β^- decay 1987Da28 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ι <i>β</i> -†‡	Log ft	Comments
(1043 3)	1091.020	0.26 5	9.29 9	av Eβ=338.9 12
(1074 3)	1059.94	0.070 11	9.90 7	av $E\beta = 350.6 \ 12$
(1111 3)	1022.531	3.11 15	8.306 22	av $E\beta = 364.7 \ 12$
(1118 <i>3</i>)	1016.386	0.33 5	9.29 7	av $E\beta = 367.0 \ 12$
(1154 3)	979.507	0.14 4	9.71 <i>13</i>	av $E\beta = 381.0 \ 12$
(1165 3)	968.972	29.9 10	7.395 16	av $E\beta = 385.0 \ 12$
(1166 3)	968.335			av E β =385.3 12
(1190 <i>3</i>)	944.200	0.041 23	10.29 25	av E β =394.4 12
$(1260 \ 3)$	874.48	0.21 8	9.67 <i>17</i>	av E β =421.2 12
(1615 <i>3</i>)	519.195	0.01 5	$12.2^{1u} 22$	av E β =536.9 12
(1738 3)	396.083	11.65 24	8.435 10	av E β =609.7 12
(1756 3)	378.178	0.116 <i>18</i>	10.45 7	av E β =616.9 12
(1806 3)	328.006	0.59 17	10.75 ¹ <i>u</i> 13	av E β =609.3 12
(1947 3)	186.827	0.6 5	9.9 4	av $E\beta = 694.3 \ 13$
(2076 3)	57.763	7 5	8.9 <i>4</i>	av E β =747.0 13

 $^{^{\}dagger}$ Deduced from intensity balance in the level scheme. ‡ Absolute intensity per 100 decays.

 $\frac{^{228} {\rm Ac}\,\beta^- \ {\rm decay} \qquad {\rm 1987 Da28} \ ({\rm continued})}{\gamma(^{228} {\rm Th})}$

Iy normalization: From absolute Iy, based on measurements by 1992Li05, 1983Sc13 and 1982Sa36. This normalization leads to I β (g.s.)=6% 6, although consistent with zero as expected from the spin change ΔJ =3, it may indicate that some g.s. transitions are missing from the level scheme.

$\mathrm{E}_{\gamma}^{ \ddagger}$	${ m I}_{\gamma}$ # l	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	δ	$lpha^\dagger$	$I_{(\gamma+ce)}^{l}$	Comments
(18.4)	0.014 4	1450.35	4-	1431.981	4+	[E1]		6.47	0.11 3	ce(L)/(γ +ce)=0.513 7; ce(M)/(γ +ce)=0.268 5; ce(N+)/(γ +ce)=0.0851 15 ce(N)/(γ +ce)=0.0690 13; ce(O)/(γ +ce)=0.0141 3; ce(P)/(γ +ce)=0.00195 4; ce(Q)/(γ +ce)=5.60×10 ⁻⁵ 11
42.46 5	0.009 3	1688.398	2+,3+	1646.005	3+	[M1]		46.3		$I_{(\gamma+ce)}$, I_{γ} : deduced from branching ratio in Pa decay. $\alpha(L)$ =35.0 5; $\alpha(M)$ =8.43 13; $\alpha(N+)$ =2.89 5 $\alpha(N)$ =2.25 4; $\alpha(O)$ =0.533 8; $\alpha(P)$ =0.1034 15; $\alpha(Q)$ =0.00986 15 Mult.: From intensity balance at 1646 level, multipolarity cannot be pure E2. Some E2 admixture, however, cannot be ruled out.
^x 56.96 5 57.766 ^{&} 5	$0.019 \ 4$ $0.47^{f} \ 3$	57.763	2+	0.0	0+	E2		153.1		o/L)=112.0.16; o/M)=20.7.5; o/N;)=10.25.15
57./66~ 3	0.473 3	37./03	2'	0.0	U.	E2		153.1		$\alpha(L)$ =112.0 16 ; $\alpha(M)$ =30.7 5 ; $\alpha(N+)$ =10.35 15 $\alpha(N)$ =8.22 12 ; $\alpha(O)$ =1.83 3 ; $\alpha(P)$ =0.302 5 ; $\alpha(Q)$ =0.000869 13 Mult.: $\alpha(L)$ exp=124 11 (1971He23); L12/L3=1.42 (1982Ma52), 1.14 8 (1960Ar06), 1.15 15 (1957Bj56); theory: $\alpha(K)$ =114, L12/L3=1.23.
77.34 3	0.026 5	1168.377	3-	1091.020	4+	[E1]		0.232		$\alpha(L)=0.1747$ 25; $\alpha(M)=0.0426$ 6; $\alpha(N+)=0.01416$ 20 $\alpha(N)=0.01118$ 16; $\alpha(O)=0.00252$ 4; $\alpha(P)=0.000435$ 7; $\alpha(Q)=2.30\times10^{-5}$ 4
99.509 ^{&} 6	1.26 ^f 7	1531.478	3+	1431.981	4+	M1		3.84		$\alpha(L)$ =2.90 4; $\alpha(M)$ =0.699 10; $\alpha(N+)$ =0.240 4 $\alpha(N)$ =0.186 3; $\alpha(O)$ =0.0442 7; $\alpha(P)$ =0.00857 12; $\alpha(Q)$ =0.000815 12 Mult.: $\alpha(L12)$ exp=3.0 3 (1971He23), 2.0 3 (1960Ar06); L3 not seen (1960Ar06).
100.41 3	0.093 13	1122.949	2-	1022.531	(3)+	(E1+M2)	≈0.23	≈3.10		$\alpha(L) \approx 2.27$; $\alpha(M) \approx 0.615$; $\alpha(N+) \approx 0.215$ $\alpha(N) \approx 0.1676$; $\alpha(O) \approx 0.0393$; $\alpha(P) \approx 0.00738$; $\alpha(Q) \approx 0.000589$ Mult., δ : $\alpha(L3) \exp \approx 0.43$ (1971He23); theory: $\alpha(L3)(E1) = 0.0213$, $\alpha(L3)(M2) = 8.66$. $\alpha(L3) \exp$ could also fit M1+E2; however, level scheme requires
114.56 7	0.0098 21	1646.005	3+	1531.478	3+	[M1,E2]		9 4		$\Delta \pi$ =yes. $\alpha(K)=5$ 5; $\alpha(L)=3.2$ 13; $\alpha(M)=0.8$ 4; $\alpha(N+)=0.28$ 13 $\alpha(N)=0.22$ 10; $\alpha(O)=0.051$ 22; $\alpha(P)=0.009$ 4; $\alpha(Q)=0.00030$ 24
129.065 ^{&} 1	2.42 ^c 9	186.827	4+	57.763	2+	E2		3.74		$\alpha(K)=0.264$ 4; $\alpha(L)=2.54$ 4; $\alpha(M)=0.697$ 10;

S

228 Ac β^- decay	1987Da28 (continued)

γ (228Th) (continued)

4	#1				_	. @		+	1	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#l}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
										α (N+)=0.236 4 α (N)=0.187 3; α (O)=0.0417 6; α (P)=0.00696 10; α (Q)=4.23×10 ⁻⁵ 6 Mult.: L12/L3=1.94 14 (1960Ar06), 1.7 2 (1957Bj56). K/L=0.10 1 (1971He23), 0.12 3 (1957Bj56); theory: L12/L3=1.70, K/L=0.10.
135.54 5	0.018 4	1226.566	4-	1091.020	4+	E1 ^h		0.238		$\alpha(K)=0.185\ 3;\ \alpha(L)=0.0401\ 6;\ \alpha(M)=0.00970\ 14;$ $\alpha(N+)=0.00325\ 5$ $\alpha(N)=0.00256\ 4;\ \alpha(O)=0.000585\ 9;\ \alpha(P)=0.0001053\ 15;$ $\alpha(Q)=6.66\times10^{-6}\ 10$
										Mult.: $\alpha(K)\exp \approx 3$ (1971He23); theory: $\alpha(K)=0.185$, discrepant $\alpha(K)$ for E1 γ -ray.
^x 137.91 5	0.024 5					M1		7.44		$\alpha(K)=5.94$ 9; $\alpha(L)=1.135$ 16; $\alpha(M)=0.273$ 4; $\alpha(N+)=0.0937$ 14
										$\alpha(N)$ =0.0728 11; $\alpha(O)$ =0.01724 25; $\alpha(P)$ =0.00335 5; $\alpha(Q)$ =0.000318 5
										Mult.: α (K)exp=5.5 17, K/L=5.6 27 (1971He23).
141.02 3	0.050 8	519.195	5-	378.178	6+	E1 ^h		0.217		$\alpha(K)$ =0.1689 24; $\alpha(L)$ =0.0362 5; $\alpha(M)$ =0.00875 13; $\alpha(N+)$ =0.00294 5
										α (N)=0.00231 4; α (O)=0.000529 8; α (P)=9.53×10 ⁻⁵ 14; α (Q)=6.10×10 ⁻⁶ 9
										Mult.: $\alpha(K)$ exp=0.7 5 (1971He23); theory: $\alpha(K)$ (E1)=0.171
145.849 <i>10</i>	0.158 ^f 8	1168.377	3-	1022.531	$(3)^{+}$	E1 <i>h</i>		0.200		$\alpha(K)$ =0.1561 22; $\alpha(L)$ =0.0332 5; $\alpha(M)$ =0.00802 12; $\alpha(N+)$ =0.00269 4
										α (N)=0.00212 3; α (O)=0.000485 7; α (P)=8.76×10 ⁻⁵ 13; α (O)=5.66×10 ⁻⁶ 8
										Mult.: $\alpha(K)$ exp=1.3 4 (1971He23); theory: $\alpha(K)$ =0.158. ce not seen by 1960Ar06.
153.977 10	0.722 ^c 21	1122.949	2-	968.972	2+	E1		0.1757		$\alpha(K)$ =0.1375 20; $\alpha(L)$ =0.0289 4; $\alpha(M)$ =0.00697 10; $\alpha(N+)$ =0.00234 4
										$\alpha(N)=0.00184$ 3; $\alpha(O)=0.000422$ 6; $\alpha(P)=7.65\times10^{-5}$ 11; $\alpha(O)=5.02\times10^{-6}$ 7
										$\alpha(Q)=3.02\times10^{-7}$ Mult.: $\alpha(K)$ exp=0.095 16 (1971He23); theory: $\alpha(K)=0.129$.
168.65 ⁿ 10	0.010 ⁿ 3	1344.082	3-	1175.45	2+	[E1]		0.1414		$\alpha(K)=0.1111$ 16; $\alpha(L)=0.0229$ 4; $\alpha(M)=0.00552$ 8; $\alpha(N+)=0.00186$ 3
										$\alpha(N)=0.001458 \ 2I; \ \alpha(O)=0.000335 \ 5; \ \alpha(P)=6.11\times10^{-5} \ 9; \ \alpha(O)=4.10\times10^{-6} \ 6$
										I_{γ} : Total intensity (I_{γ} =0.013 3) placed from 1344.1 level by 1987Da28. Alternate placement from 1928.6 level suggested by 228 Pa decay.
168.65 ⁿ 10	0.0030 ⁿ 7	1928.66	3 ⁺	1760.17	$2^{(+)},3^{(+)}$	[M1,E2]		2.7 15		$\alpha(K)=1.8\ 16$; $\alpha(L)=0.70\ 7$; $\alpha(M)=0.18\ 3$; $\alpha(N+)=0.062\ 10$ $\alpha(N)=0.049\ 8$; $\alpha(O)=0.0111\ 15$; $\alpha(P)=0.00200\ 12$;

- 1											
								γ ⁽²²⁸ Th) (cor	ntinued)	_	
	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} # l	E_i (level)	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	$lpha^\dagger$	$I_{(\gamma+ce)}^{l}$	Comments
	173.964 ^{&} 13	0.035 5	1153.465	2+	979.507	2+	M1+E2	1.2 +11-6	2.2 9		I_{γ} : Total intensity (I_{γ} =0.013 3) placed from 1344.1 level by 1987Da28. Alternate placement from 1928.6 level suggested by ²²⁸ Pa decay. $\alpha(K)$ =1.4 10; $\alpha(L)$ =0.63 3; $\alpha(M)$ =0.166 14;
	1/3.904** 13	0.033 3	1133.403	2.	979.307	2.	WII+E2	1.2 +11-0	2.2 9		α (N+)=0.056 5 α (N)=0.044 4; α (O)=0.0101 7; α (P)=0.00180 5; α (Q)=8.E-5 5
											Mult., δ : from α (K)exp=1.5 δ (1971He23); also fits E1+M2 with δ =0.35 $I2$, level scheme requires $\Delta\pi$ =no. Theory: α (K)(E1)=0.104, α (K)(E2)=0.203, α (K)(M1)=3.26, α (K)(M2)=12.9.
	184.54 2	0.070 8	1153.465	2+	968.972	2+	E0+M1		63 8	4.5 8	$\alpha(K)$ =53 7; $\alpha(L)$ =10.2 13; $\alpha(M)$ =0.126; $\alpha(N+)$ =0.0462 Mult.: K/L=4.0 5, L1/L2=33 6, L1/L3>>50
1											(1974De14), α (K)exp=53 7 (1971He23); measured α (K)exp yields an E0 transition with an admixture of: 5.4% M1 with K/L=5.2, L1/L2=30, L1/L3=3300, or 1.4% E2 with K/L=5.0, L1/L2=16.5, L1/L3=58. Thus the ratios support E0+M1 transition. α : from α (K)exp.
	191.353 10	0.123 ^f 8	378.178	6+	186.827	4+	E2		0.776		$\alpha(K)$ =0.1710 24; $\alpha(L)$ =0.443 7; $\alpha(M)$ =0.1209 17; $\alpha(N+)$ =0.0409 6 $\alpha(N)$ =0.0324 5; $\alpha(O)$ =0.00726 11; $\alpha(P)$ =0.001224 18; $\alpha(Q)$ =1.375×10 ⁻⁵ 20 Mult.: $\alpha(K)$ exp=0.24 7, K/L=1.0 5; theory: $\alpha(K)$ (E2)=0.174, K/L(E2)=0.39, $\alpha(K)$ (M1)=2.49,
	199.407 <i>10</i>	0.315 ^f 5	1168.377	3-	968.972	2+	E1 h		0.0950		$\alpha(K)(E2)=0.17+, K/E(E2)=0.37, \alpha(K)(M1)=2.47, K/L(M1)=5.25.$ $\alpha(K)=0.0752 \ 11; \alpha(L)=0.01502 \ 21; \alpha(M)=0.00362 \ 5;$
											$\alpha(N+)=0.001220\ 17$ $\alpha(N)=0.000956\ 14;\ \alpha(O)=0.000221\ 3;$ $\alpha(P)=4.05\times10^{-5}\ 6;\ \alpha(Q)=2.84\times10^{-6}\ 4$ Mult.: ce(K), ce(L) not seen (1971He23,1960Ar06), suggests E1 mult.
	204.026 10	0.112 ^f 15	1226.566	4-	1022.531	(3) ⁺	E1		0.0900		$\alpha(K)$ =0.0713 10; $\alpha(L)$ =0.01419 20; $\alpha(M)$ =0.00342 5; $\alpha(N+)$ =0.001152 17 $\alpha(N)$ =0.000903 13; $\alpha(O)$ =0.000208 3; $\alpha(P)$ =3.83×10 ⁻⁵ 6; $\alpha(Q)$ =2.70×10 ⁻⁶ 4
	209.253 6	3.89 ^c 7	396.083	3-	186.827	4+	E1		0.0848		Mult.: α (L)exp<0.23 (1971He23); theory: α (L)(E1)=0.0143, α (L)(E2)=0.342. α (K)=0.0672 10; α (L)=0.01333 19; α (M)=0.00321 5; α (M)=0.001082 16
											α (N+)=0.001082 <i>16</i> α (N)=0.000848 <i>12</i> ; α (O)=0.000196 <i>3</i> ; α (P)=3.60×10 ⁻⁵ <i>5</i> ; α (Q)=2.55×10 ⁻⁶ <i>4</i>

7

²²⁸Ac β⁻ decay 1987Da28 (continued)

228 Ac β^- decay	1987Da28 (continued)

γ (²²⁸Th) (continued)

						-			
E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathtt{J}_{i}^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
214.85 5	0.76 11	1153.465	2+	938.61	0+				Mult.: from K/L and L subshell ratios in ²²⁸ Pa ε decay. Other: K/L=2.4 4 (1971He23). E _γ : From figure 4 in 1987Da28.
214.85 ^a 10	0.029 4	2010.20	(2^{+})	1795.65	4+	[E2]		0.516	
223.85 10	0.054 5	1450.35	4-	1226.566	4-	M1+E2 ^h	-0.18^{h} 5	1.85 4	$\alpha(K)=1.47 \ 4; \ \alpha(L)=0.285 \ 5; \ \alpha(M)=0.0688 \ 10; \ \alpha(N+)=0.0236 \ 4$ $\alpha(N)=0.0184 \ 3; \ \alpha(O)=0.00434 \ 7; \ \alpha(P)=0.000839 \ 13;$ $\alpha(Q)=7.80\times10^{-5} \ 18$ Mult.: $\alpha(K)=xp=1.7 \ 5, \ K/L=4.2 \ 19 \ (1971He23); theory:$
231.42 10	0.025 4	1175.45	2+	944.200	1-	[D,E2]		1.1 7	$\alpha(K)=1.56 \ 3, \ K/L=5.2.$
257.52 10	0.030 3	1431.981	4 ⁺	1174.50		$(M1)^{h}$		1.285	$\alpha(K)$ =1.028 <i>15</i> ; $\alpha(L)$ =0.194 <i>3</i> ; $\alpha(M)$ =0.0466 <i>7</i> ; $\alpha(N+)$ =0.01600 23
									$\alpha(N)=0.01243\ 18;\ \alpha(O)=0.00294\ 5;\ \alpha(P)=0.000571\ 8;$ $\alpha(Q)=5.42\times10^{-5}\ 8$
263.58 10	0.040 4	1431.981	4+	1168.377	3-	E1 h		0.0498	$\alpha(K)$ =0.0397 6; $\alpha(L)$ =0.00760 11; $\alpha(M)$ =0.00182 3; $\alpha(N+)$ =0.000617 9 $\alpha(N)$ =0.000482 7; $\alpha(O)$ =0.0001119 16; $\alpha(P)$ =2.08×10 ⁻⁵ 3;
0									$\alpha(Q)=1.553\times10^{-6} 22$
270.245 ^{&} 2	3.46 ^c 6	328.006	1-	57.763	2+	E1		0.0470	$\alpha(K)$ =0.0376 6; $\alpha(L)$ =0.00716 10; $\alpha(M)$ =0.001717 24; $\alpha(N+)$ =0.000581 9
									$\alpha(N)=0.000454$ 7; $\alpha(O)=0.0001054$ 15; $\alpha(P)=1.96\times10^{-5}$ 3; $\alpha(Q)=1.473\times10^{-6}$ 21
278.95 ⁿ 5	0.160 ⁿ 21	1153.465	2+	874.48	2+	(M1,E2)		0.6 4	Mult.: $\alpha(K)\exp=0.029\ 4\ (1971He23)$; theory: $\alpha(K)=0.0379$. $\alpha(K)=0.5\ 4$; $\alpha(L)=0.12\ 3$; $\alpha(M)=0.031\ 6$; $\alpha(N+)=0.0107\ 22$ $\alpha(N)=0.0083\ 16$; $\alpha(O)=0.0019\ 5$; $\alpha(P)=0.00036\ 10$;
									$\alpha(Q)=2.4\times10^{-5}$ 19 Mult.: $\alpha(K)\exp(\text{doublet})=0.18$ 4 (1960Ar06), $\alpha(L)\exp(279\gamma+282\gamma)=0.37$ 7 (1971He23); theory:
278.95 ^{na} 5	0.031 ⁿ 5	1431.981	4+	1153.465	2+	[E2]		0.211	$\alpha(K)(M1)=0.872, \ \alpha(K)(E2)=0.0854.$ $\alpha(K)=0.0842 \ 12; \ \alpha(L)=0.0935 \ 14; \ \alpha(M)=0.0252 \ 4;$
									$\alpha(N+)=0.00853$ 12 $\alpha(N)=0.00675$ 10; $\alpha(O)=0.001521$ 22; $\alpha(P)=0.000261$ 4; $\alpha(O)=5.39\times10^{-6}$ 8
									γ not placed here by 1987Da28; this alternate placement is suggested in ²²⁸ Pa decay.
282.00 ^{&} 3	0.072 ^f 19	1450.35	4-	1168.377	3-	M1+E2 ^h	-0.51 ^h 12	0.83 7	$\alpha(K)$ =0.65 6; $\alpha(L)$ =0.138 6; $\alpha(M)$ =0.0337 11; $\alpha(N+)$ =0.0115 4 $\alpha(N)$ =0.0090 3; $\alpha(O)$ =0.00211 7; $\alpha(P)$ =0.000403 16; $\alpha(Q)$ =3.4×10 ⁻⁵ 3
321.646 ^{&} 8	0.226 ^b 11	1153.465	2+	831.822	0+	[E2]		0.1369	$\alpha(K)$ =0.0635 9; $\alpha(L)$ =0.0540 8; $\alpha(M)$ =0.01444 21; $\alpha(N+)$ =0.00490 7 $\alpha(N)$ =0.00387 6; $\alpha(O)$ =0.000875 13; $\alpha(P)$ =0.0001514 22;

 ∞

						<u> </u>	$y(^{228}\text{Th})$ (con	tinued)	
E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	J_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.@	δ	$lpha^\dagger$	Comments
326.04 20	0.033 5	1758.24	2+	1431.981	4 +	[E2]		0.13	$\alpha(Q)$ =3.88×10 ⁻⁶ 6 Mult.: $\alpha(K)$ exp=0.49 8 (1971He23) indicating mainly M1 transition ($\alpha(K)$ (M1)=0.590) which is not in agreement with the level scheme. 1960Ar06 did not see ce(K) suggesting that the $\alpha(K)$ exp may be unreliable.
(327.44)	0.033 3	1450.35	4-	1122.949		[E2]		0.1299	$\alpha(K)$ =0.0613 9; $\alpha(L)$ =0.0505 7; $\alpha(M)$ =0.01349 19; $\alpha(N+)$ =0.00458 7 $\alpha(N)$ =0.00361 5; $\alpha(O)$ =0.000818 12; $\alpha(P)$ =0.0001417 20; $\alpha(Q)$ =3.72×10 ⁻⁶ 6 $\alpha(Q)$ =3.72×10 ⁻⁶ 6 $\alpha(Q)$ =3.72×10 deduced from branching ratio in $\alpha(Q)$ =28 Pa decay. Iy deduced from branching ratio in $\alpha(Q)$ =218 Pa decay. Iy deduced from branching ratio in $\alpha(Q)$ =228 Pa decay. Iy from Equivalent By: Ey from E(level).
328.000 6	2.95 ^f 12	328.006	1-	0.0	0+	E1		0.0305	$\alpha(\text{K})$ =0.0245 4; $\alpha(\text{L})$ =0.00455 7; $\alpha(\text{M})$ =0.001089 16; $\alpha(\text{N}+)$ =0.000369 6 $\alpha(\text{N})$ =0.000288 4; $\alpha(\text{O})$ =6.71×10 ⁻⁵ 10; $\alpha(\text{P})$ =1.256×10 ⁻⁵ 18; $\alpha(\text{Q})$ =9.82×10 ⁻⁷ 14 Mult.: $\alpha(\text{K})$ exp=0.037 8 (1971He23); theory $\alpha(\text{K})$ =0.0245.
332.370& 4	0.40 ^c 4	519.195	5-	186.827	4+	E1 ^h		0.0297	$\alpha(K)$ =0.0238 4; $\alpha(L)$ =0.00441 7; $\alpha(M)$ =0.001056 15; $\alpha(N+)$ =0.000358 5 $\alpha(N)$ =0.000280 4; $\alpha(O)$ =6.51×10 ⁻⁵ 10; $\alpha(P)$ =1.219×10 ⁻⁵ 17; $\alpha(Q)$ =9.56×10 ⁻⁷ 14 Mult.: ce(K) not seen by 1960Ar06. $\alpha(K)$ exp=0.41 8 (1971He23) does not agree with [E1] required by the level scheme or E1 measured in 228 Pa decay.
338.320 ^{&} 3	11.27 ^b 19	396.083	3-	57.763	2+	E1		0.0285	$\alpha(K)=0.0229 \ 4; \ \alpha(L)=0.00424 \ 6; \ \alpha(M)=0.001014 \ 15; \ \alpha(N+)=0.000344 \ 5 \ \alpha(N)=0.000269 \ 4; \ \alpha(O)=6.25\times10^{-5} \ 9; \ \alpha(P)=1.172\times10^{-5} \ 17; \ \alpha(Q)=9.22\times10^{-7} \ 13 \ Mult.: \ \alpha(K)=0.019 \ 2 \ (1960Ar06); \ theory: \ \alpha(K)=0.0231.$
340.96 5	0.369 ^c 21	1431.981	4+	1091.020	4+	E2+M1 ^h	-5.2 ^h 18	0.133 21	$\alpha(K)$ =0.072 19; $\alpha(L)$ =0.0451 21; $\alpha(M)$ =0.0119 5; $\alpha(N+)$ =0.00405 16 $\alpha(N)$ =0.00319 13; $\alpha(O)$ =0.00073 3; $\alpha(P)$ =0.000127 7; $\alpha(Q)$ =4.2×10 ⁻⁶ 10 Mult.: $\alpha(K)$ exp=0.66 7 (1971He23) suggests an M1 transition.
356.94 10	0.0170 18	1531.478	3+	1174.50	(5 ⁺)	[E2]		0.1015	However, ce(K) not seen by 1960Ar06. $\alpha(K)$ =0.0517 8; $\alpha(L)$ =0.0368 6; $\alpha(M)$ =0.00977 14; $\alpha(N+)$ =0.00331 5 $\alpha(N)$ =0.00261 4; $\alpha(O)$ =0.000593 9; $\alpha(P)$ =0.0001033 15; $\alpha(O)$ =3.07×10 ⁻⁶ 5

228 Ac β^- decay	1987Da28 (continued)
γ (²²⁸ Tl	n) (continued)

							$\gamma^{(2)}$	²⁸ Th) (conti	nued)	
	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} # l	E_i (level)	${\rm J}_i^\pi$	E_f	\mathbf{J}_f^{π}	Mult.@	δ	α^{\dagger}	Comments
	372.57 ^a 20 377.99 10	0.0067 <i>15</i> 0.025 <i>3</i>	2010.20 1531.478	(2 ⁺) 3 ⁺	1638.283 1153.465		[D,E2] [M1,E2]		0.28 <i>19</i> 0.27 <i>18</i>	Mult.: $\alpha(K) \exp = 1.9 \ 9 \ (1971 He 23)$ does not agree with multipolarity deduced from level scheme. Theory: $\alpha(K) = 0.0523$. $\alpha(K) = 0.20 \ 16$; $\alpha(L) = 0.049 \ 19$; $\alpha(M) = 0.012 \ 5$; $\alpha(N+) = 0.0041 \ 15$
	384.63 <i>20</i> 389.12 <i>15</i>	0.0067 <i>15</i> 0.0103 <i>15</i>	2022.64 1928.66	2 ⁺ 3 ⁺	1638.283 1539.24		[D,E2] [M1,E2]		0.25 <i>18</i> 0.25 <i>17</i>	$\alpha(N)=0.0032 \ 11; \ \alpha(O)=0.0007 \ 3; \ \alpha(P)=0.00014 \ 6;$ $\alpha(Q)=1.1\times10^{-5} \ 8$ $\alpha(K)=0.19 \ 15; \ \alpha(L)=0.044 \ 18; \ \alpha(M)=0.011 \ 4; \ \alpha(N+)=0.0038 \ 14$ $\alpha(N)=0.0029 \ 11; \ \alpha(O)=0.0007 \ 3; \ \alpha(P)=0.00013 \ 6;$
	397.94 <i>10</i> 399.62 <i>10</i>	0.027 <i>3</i> 0.029 <i>3</i>	1937.18 1743.87	2 ⁺ ,3,4 ⁺ 4 ⁺	1539.24 1344.082		[D,E2] [E1]		0.0200	$\alpha(Q)=1.0\times10^{-5} 8$ $\alpha(K)=0.01613 \ 23; \ \alpha(L)=0.00292 \ 4; \ \alpha(M)=0.000697 \ 10;$ $\alpha(N+)=0.000236 \ 4$ $\alpha(N)=0.000185 \ 3; \ \alpha(O)=4.31\times10^{-5} \ 6; \ \alpha(P)=8.11\times10^{-6} \ 12;$
2	409.462 ^{&} 6	1.92 ^c 4	1431.981	4+	1022.531	(3)+	E2+M1	-5.4 ^h 8	0.080 4	$\alpha(Q)=6.58\times10^{-7}$ 10 $\alpha(K)=0.048$ 3; $\alpha(L)=0.0236$ 5; $\alpha(M)=0.00618$ 12; $\alpha(N+)=0.00210$ 5 $\alpha(N)=0.00165$ 4; $\alpha(Q)=0.000378$ 8; $\alpha(P)=6.69\times10^{-5}$ 15; $\alpha(Q)=2.69\times10^{-6}$ 16
	416.30 20	0.0132 <i>21</i>	1539.24	2+	1122.949	2-	[E1]		0.0183	Mult.: $\alpha(K)\exp=0.058\ 9$, $K/L=2.0\ 4$ (1971He23), $\alpha(K)\exp=0.049$ 4 (1960Ar06). Theory: $\alpha(K)=0.049\ 4$, $K/L=2.02\ 14$. $\alpha(K)=0.01482\ 21$; $\alpha(L)=0.00267\ 4$; $\alpha(M)=0.000637\ 9$; $\alpha(N+)=0.000216\ 3$ $\alpha(N)=0.0001686\ 24$; $\alpha(O)=3.94\times10^{-5}\ 6$; $\alpha(P)=7.43\times10^{-6}\ 11$;
	419.42 10	0.021 3	1646.005	3 ⁺	1226.566	4-	[E1]		0.0181	$\alpha(Q)=6.07\times10^{-7} 9$ $\alpha(K)=0.01460 \ 2I; \ \alpha(L)=0.00262 \ 4; \ \alpha(M)=0.000626 \ 9;$ $\alpha(N+)=0.000213 \ 3$ $\alpha(N)=0.0001659 \ 24; \ \alpha(O)=3.88\times10^{-5} \ 6; \ \alpha(P)=7.31\times10^{-6} \ 11;$
	440.44 5	0.121 8	1531.478	3+	1091.020	4+	M1		0.295	$\alpha(Q)=5.98\times10^{-7}$ 9 $\alpha(K)=0.237$ 4; $\alpha(L)=0.0442$ 7; $\alpha(M)=0.01061$ 15; $\alpha(N+)=0.00364$ 5 $\alpha(N)=0.00283$ 4; $\alpha(O)=0.000670$ 10; $\alpha(P)=0.0001300$ 19; $\alpha(Q)=1.234\times10^{-5}$ 18
	449.15 ^{&} 5	0.048 5	968.45	4+	519.195	5-				Mult.: $\alpha(K)\exp=0.26$ 9 (1971He23); theory: $\alpha(K)=0.252$. Limit of E2 admixture $\delta<0.8$. $\alpha(K)=0.0331$ 5; $\alpha(L)=0.01653$ 24; $\alpha(M)=0.00432$ 6; $\alpha(N+)=0.001469$ 21 $\alpha(N)=0.001157$ 17; $\alpha(O)=0.000264$ 4; $\alpha(P)=4.68\times10^{-5}$ 7; $\alpha(Q)=1.86\times10^{-6}$ 3
1	452.47 10	0.015 5	1431.981	4+	979.507	2+	[E2]		0.0544	E _{γ} : Placement from ε decay. $\alpha(K)$ =0.0326 5; $\alpha(L)$ =0.01613 23; $\alpha(M)$ =0.00422 6;

Ac B	decay	198/Da28 (continued)

$\gamma(\frac{228}{\text{Th}})$ (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\#l}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
							_			$\alpha(N+)=0.001433 \ 20$ $\alpha(N)=0.001128 \ 16; \ \alpha(O)=0.000258 \ 4; \ \alpha(P)=4.57\times10^{-5} \ 7;$ $\alpha(Q)=1.83\times10^{-6} \ 3$
457.17 <i>15</i>	0.0150 23	1683.71	(4-)	1226.566	4-	[M1,E2]		0.16 11		$\alpha(K)$ =0.12 10; $\alpha(L)$ =0.028 13; $\alpha(M)$ =0.007 3; $\alpha(N+)$ =0.0023 10 $\alpha(N)$ =0.0018 8; $\alpha(O)$ =0.00043 18; $\alpha(P)$ =8.E-5 4; $\alpha(Q)$ =6.E-6 5
463.004 ^{&} 6	4.40 ^c 7	1431.981	4+	968.972	2+	E2		0.0514		$\alpha(K) = 0.0312 \ 5; \ \alpha(L) = 0.01495 \ 21; \ \alpha(M) = 0.00390 \ 6; \\ \alpha(N+) = 0.001326 \ 19 \\ \alpha(N) = 0.001044 \ 15; \ \alpha(O) = 0.000238 \ 4; \ \alpha(P) = 4.24 \times 10^{-5} \ 6; \\ \alpha(Q) = 1.744 \times 10^{-6} \ 25 \\ \text{Mult:} \ \alpha(K) = 0.036 \ 4, \ K/L = 3.0 \ 7 \ (1971 \text{He}23); \\ \alpha(K) = 0.028 \ 3 \ (1960 \text{A} \text{r06}); \ \text{theory:} \ \alpha(K) = 0.0316, \\ \alpha(K) = 0.0316, \ K/L = 0.0316,$
x466.40 <i>10</i>	0.029 3									K/L=2.1.
470.25 20	0.013 3	1638.283	2+	1168.377	3-	[E1]		0.01428		$\alpha(K)$ =0.01157 17; $\alpha(L)$ =0.00205 3; $\alpha(M)$ =0.000489 7; $\alpha(N+)$ =0.0001661 24 $\alpha(N)$ =0.0001295 19; $\alpha(O)$ =3.03×10 ⁻⁵ 5; $\alpha(P)$ =5.74×10 ⁻⁶ 8;
471.76 <i>15</i>	0.033 <i>3</i>	1416.09	(3-)	944.200	1-	[E2]		0.049		$\alpha(Q) = 4.79 \times 10^{-7} 7$
474.75 10	0.022 3	1643.119	(3^{-})	1168.377		[M1,E2]		0.14 10		$\alpha(K)$ =0.11 9; $\alpha(L)$ =0.025 12; $\alpha(M)$ =0.006 3; $\alpha(N+)$ =0.002
										$\alpha(N)=0.0016\ 7;\ \alpha(O)=0.00038\ 17;\ \alpha(P)=7.E-5\ 4;$ $\alpha(O)=6.E-6\ 5$
478.33 ^a 5	0.209 15	874.48	2+	396.083	3-	E1		0.01380		$\alpha(K)$ =0.01119 16; $\alpha(L)$ =0.00198 3; $\alpha(M)$ =0.000471 7; $\alpha(N+)$ =0.0001601 23 $\alpha(N)$ =0.0001249 18; $\alpha(O)$ =2.92×10 ⁻⁵ 4; $\alpha(P)$ =5.54×10 ⁻⁶ 8; $\alpha(O)$ =4.63×10 ⁻⁷ 7
480.94 ⁱ 20	0.023 5	1450.35	4-	968.972	2+	[M2]		0.645		$\alpha(K)$ =0.484 7; $\alpha(L)$ =0.1200 17; $\alpha(M)$ =0.0300 5; $\alpha(N+)$ =0.01038 15 $\alpha(N)$ =0.00807 12; $\alpha(O)$ =0.00191 3; $\alpha(P)$ =0.000367 6; $\alpha(Q)$ =3.29×10 ⁻⁵ 5 Not reported in ²²⁸ Pa decay.
490.33 <i>15</i> 492.37 <i>10</i>	0.0111 <i>23</i> 0.0235 <i>23</i>	1906.63 1646.005	(2 ⁺) 3 ⁺	1416.09 1153.465	(3 ⁻) 2 ⁺	[M1,E2]		0.13 9		$\alpha(K)$ =0.10 8; $\alpha(L)$ =0.022 11; $\alpha(M)$ =0.0055 24; $\alpha(N+)$ =0.0019 8 $\alpha(N)$ =0.0015 7; $\alpha(O)$ =0.00034 15; $\alpha(P)$ =7.E-5 3; $\alpha(Q)$ =5.E-6 4
497.49 ⁱ 15	0.0059 18	1724.288	2+	1226.566	4-	[M2]		0.581		$\alpha(K)$ =0.438 7; $\alpha(L)$ =0.1075 15; $\alpha(M)$ =0.0269 4; $\alpha(N+)$ =0.00928 13 $\alpha(N)$ =0.00722 11; $\alpha(O)$ =0.001705 24; $\alpha(P)$ =0.000328 5; $\alpha(Q)$ =2.95×10 ⁻⁵ 5 E_{γ} , I_{γ} : In ²²⁸ Pa decay this γ is assigned to this level based on the level scheme, and is given an intensity upper limit.

 $^{228}Ac\,\beta^{-}~decay~~ 1987Da28~(continued)$

 $\gamma(\frac{228}{\text{Th}})$ (continued)

228 Ac β^- decay	1987Da28 (continued)
•	

γ (²²⁸Th) (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\#l}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.@	δ	α^{\dagger}	Comments
									$\alpha(N)=0.0001119\ 16;\ \alpha(O)=2.62\times10^{-5}\ 4;\ \alpha(P)=4.97\times10^{-6}\ 7;$ $\alpha(Q)=4.19\times10^{-7}\ 6$ Mult.: Ice not seen (1971He23), upper limit in Ice suggests E1.
508.959 ^{&} 17	0.45 5	1531.478	3 ⁺	1022.531	(3)+	E2(+M1)	>+1.1	0.08 4	$\alpha(K)=0.06\ 3;\ \alpha(L)=0.015\ 5;\ \alpha(M)=0.0038\ 10;\ \alpha(N+)=0.0013\ 4$ $\alpha(N)=0.0010\ 3;\ \alpha(O)=0.00024\ 7;\ \alpha(P)=4.4\times10^{-5}\ 13;$
515.06 10	0.049 5	1629 292	2+	1122 040	2-	IE11		0.01100	$\alpha(Q)=3.0\times10^{-6}\ I6$ Mult., δ : $\alpha(K)$ exp=0.06 3 (1971He23); theory: $\alpha(K)$ (E2)=0.0264, $\alpha(K)$ (M1)=0.171.
313.00 10	0.049 3	1638.283	2.	1122.949	2	[E1]		0.01190	$\alpha(K)$ =0.00966 14; $\alpha(L)$ =0.001695 24; $\alpha(M)$ =0.000403 6; $\alpha(N+)$ =0.0001371 20 $\alpha(N)$ =0.0001069 15; $\alpha(O)$ =2.50×10 ⁻⁵ 4; $\alpha(P)$ =4.75×10 ⁻⁶ 7;
ρ,									$\alpha(Q)=4.02\times10^{-7} 6$
520.151 ^{&} 16	0.067 5	1643.119	(3-)	1122.949	2-	(M1)		0.189	$\alpha(K)$ =0.1516 22; $\alpha(L)$ =0.0282 4; $\alpha(M)$ =0.00676 10; $\alpha(N+)$ =0.00232 4
									α (N)=0.00180 3; α (O)=0.000426 6; α (P)=8.27×10 ⁻⁵ 12; α (Q)=7.86×10 ⁻⁶ 11
523.131 ^{&} a 16	0.103 8	1646.005	3 ⁺	1122 040	2-	[ID1]		0.01152	Mult.: $\alpha(K) \exp = 0.31 \ 12 \ (1971 He23)$; theory: $\alpha(K) = 0.161$.
523.131	0.103 8	1646.005	3.	1122.949	2	[E1]		0.01153	$\alpha(K)$ =0.00937 14; $\alpha(L)$ =0.001641 23; $\alpha(M)$ =0.000390 6; $\alpha(N+)$ =0.0001327 19
									$\alpha(N)=0.0001035 \ 15; \ \alpha(O)=2.42\times10^{-5} \ 4; \ \alpha(P)=4.60\times10^{-6} \ 7; \ \alpha(Q)=3.91\times10^{-7} \ 6$
540.76 10	0.026 3	1059.94	4-	519.195	5-	[M1,E2]		0.10 7	Mult.: $\alpha(K)\exp \le 0.08$ (1971He23); theory: $\alpha(K)(E1)=0.0094$, $\alpha(K)(E2)=0.0251$, $\alpha(K)(E3)=0.0610$, $\alpha(K)(M1)=0.158$. $\alpha(K)=0.08$ 6; $\alpha(L)=0.017$ 9; $\alpha(M)=0.0042$ 19; $\alpha(N+)=0.0014$ 7
									$\alpha(N)=0.0011$ 5; $\alpha(O)=0.00026$ 12; $\alpha(P)=5.0\times10^{-5}$ 25; $\alpha(Q)=4.E-6$ 3
546.47 5	0.201 13	874.48	2+	328.006	1-	[E1]		0.01058	$\alpha(K)$ =0.00860 12; $\alpha(L)$ =0.001500 21; $\alpha(M)$ =0.000357 5; $\alpha(N+)$ =0.0001212 17
									$\alpha(N)=9.45\times10^{-5}\ 14;\ \alpha(O)=2.22\times10^{-5}\ 4;\ \alpha(P)=4.21\times10^{-6}\ 6;$ $\alpha(O)=3.60\times10^{-7}\ 5$
548.73 15	0.023 3	1724.288	2+	1175.45	2+	[M1,E2]		0.10 7	$\alpha(K)=0.08$ 6; $\alpha(L)=0.017$ 8; $\alpha(M)=0.0041$ 18; $\alpha(N+)=0.0014$ 7 $\alpha(N)=0.0011$ 5; $\alpha(O)=0.00025$ 12; $\alpha(P)=4.8\times10^{-5}$ 24;
									$\alpha(Q)=4.E-6.3$
555.12 10	0.046 5	1646.005	3 ⁺	1091.020	4 ⁺	[M1,E2]		0.10 7	$\alpha(K)$ =0.07 6; $\alpha(L)$ =0.016 8; $\alpha(M)$ =0.0039 18; $\alpha(N+)$ =0.0013 6 $\alpha(N)$ =0.0010 5; $\alpha(O)$ =0.00025 12; $\alpha(P)$ =4.7×10 ⁻⁵ 23; $\alpha(Q)$ =4.E-6 3
562.500 ^{&} 4	0.87 ^c 3	1531.478	3+	968.972	2+	E2+M1	+1.6 ^h 6	0.07 3	$\alpha(K) = 0.050 \ 23; \ \alpha(L) = 0.012 \ 4; \ \alpha(M) = 0.0030 \ 8; \ \alpha(N+) = 0.0010$
									$\alpha(N)=0.00081 \ 20; \ \alpha(O)=0.00019 \ 5; \ \alpha(P)=3.5\times10^{-5} \ 10; \ \alpha(O)=2.6\times10^{-6} \ 12$
									Mult.: α (K)exp=0.048 <i>10</i> (1971He23); E1+M2 mixture requires δ =0.39.

²²⁸Ac β⁻ decay 1987Da28 (continued)

γ (²²⁸Th) (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	$lpha^\dagger$	Comments
570.91 10	0.182 ^e 24	1724.288	2+	1153.465 2+	(M1)	0.1472	$\alpha(K)$ =0.1182 17; $\alpha(L)$ =0.0219 3; $\alpha(M)$ =0.00525 8; $\alpha(N+)$ =0.00180 3 $\alpha(N)$ =0.001401 20; $\alpha(O)$ =0.000332 5; $\alpha(P)$ =6.44×10 ⁻⁵ 9; $\alpha(Q)$ =6.12×10 ⁻⁶ 9 Mult.: $\alpha(K)$ exp=0.20 8 (1971He23); theory: $\alpha(K)$ =0.125. 1987Da28 assigns this γ to be the 1539.2 to 968.4 transition on the basis of coin with 911.2 γ . However, the E(level) difference is 570.25 9. In ²²⁸ Pa decay this γ is assigned to the 1724.3 level; energy, intensity, multipolarity, and coin results agree with this assignment.
572.14 <mark>&</mark> 8	0.150 16	968.335	2-	396.083 3-	[M1,E2]	0.09 6	$\alpha(K)=0.07\ 5$; $\alpha(L)=0.015\ 7$; $\alpha(M)=0.0036\ 17$; $\alpha(N+)=0.0012\ 6$ $\alpha(N)=0.0010\ 5$; $\alpha(O)=0.00023\ 11$; $\alpha(P)=4.3\times10^{-5}\ 21$; $\alpha(Q)=3.6\times10^{-6}\ 25$
583.41 5	0.111 10	979.507	2+	396.083 3-	[E1]	0.00932 13	α =0.00932 13; α (K)=0.00759 11; α (L)=0.001313 19; α (M)=0.000312 5; α (N+)=0.0001061 α (N)=8.27×10 ⁻⁵ 12; α (O)=1.94×10 ⁻⁵ 3; α (P)=3.69×10 ⁻⁶ 6; α (Q)=3.18×10 ⁻⁷ 5
(590.4)	0.017 3	1743.87	4+	1153.465 2+	[E2]	0.0292	$\alpha(K)$ =0.0197 3; $\alpha(L)$ =0.00703 10; $\alpha(M)$ =0.00180 3; $\alpha(N+)$ =0.000613 9 $\alpha(N)$ =0.000481 7; $\alpha(O)$ =0.0001107 16; $\alpha(P)$ =2.00×10 ⁻⁵ 3; $\alpha(Q)$ =1.056×10 ⁻⁶ 15 $\alpha(Q)$ =1.056×10 ⁻⁶ 17 E _{γ} , $\alpha(Q)$ =1.056×10 ⁻⁶ 18 E _{γ} , $\alpha(Q)$ =1.056×10 ⁻⁶ 19 $\alpha(Q)$ =10 $\alpha(Q)$ 0
610.64 10	0.023 5	938.61	0+	328.006 1	[E1]	0.00853 12	If deduced from branching ratio in ²²⁸ Pa decay. α =0.00853 12; α (K)=0.00695 10; α (L)=0.001198 17; α (M)=0.000284 4; α (N)=7.54×10 ⁻⁵ 14 α (N)=7.54×10 ⁻⁵ 11; α (O)=1.769×10 ⁻⁵ 25; α (P)=3.37×10 ⁻⁶ 5; α (Q)=2.93×10 ⁻⁷ 4
616.22 & 3	0.080 5	944.200	1-	328.006 1			
620.38 <i>5</i> 623.27 ^{<i>a</i>} 20	0.080 <i>5</i> 0.011 <i>3</i>	1016.386 1646.005	3 ⁻ 3 ⁺	396.083 3 ⁻ 1022.531 (3) ⁺	[M1,E2]	0.07 5	$\alpha(K)=0.06 \ 4; \ \alpha(L)=0.012 \ 6; \ \alpha(M)=0.0028 \ 13; \ \alpha(N+)=0.0010 \ 5$ $\alpha(N)=0.0008 \ 4; \ \alpha(O)=0.00018 \ 9; \ \alpha(P)=3.4\times10^{-5} \ 17; \ \alpha(Q)=2.9\times10^{-6} \ 20$
627.23 20 629.40 5 *634.18 10	0.014 <i>3</i> 0.045 <i>5</i> 0.0106 <i>21</i>	1643.119 1646.005	(3 ⁻) 3 ⁺	1016.386 3 ⁻ 1016.386 3 ⁻	[D,E2]	0.07 5	
640.34 ^{&} 3	0.054 5	968.335	2-	328.006 1	[E2]	0.0245	$\alpha(K)$ =0.01700 24; $\alpha(L)$ =0.00556 8; $\alpha(M)$ =0.001416 20; $\alpha(N+)$ =0.000482 7 $\alpha(N)$ =0.000378 6; $\alpha(O)$ =8.73×10 ⁻⁵ 13; $\alpha(P)$ =1.589×10 ⁻⁵ 23; $\alpha(Q)$ =8.98×10 ⁻⁷ 13
648.84 ^{ma} 10	0.040 ^m 4	1168.377	3-	519.195 5	[E2]	0.0238	$\alpha(K)=0.01659 \ 24; \ \alpha(L)=0.00536 \ 8; \ \alpha(M)=0.001363 \ 19; \ \alpha(N+)=0.000464 \ 7 \ \alpha(N)=0.000364 \ 5; \ \alpha(O)=8.40\times10^{-5} \ 12; \ \alpha(P)=1.532\times10^{-5} \ 22; \ \alpha(Q)=8.75\times10^{-7} \ 13$
648.84 ^m 10	0.040 <mark>m</mark> 4	1617.78	4+	968.972 2+			a(4) 0.10/10 10
651.51 ^{&} 3	0.090 8	979.507	2+	328.006 1-	[E1]	0.00754 11	α =0.00754

228 Ac β^- decay	1987Da28 (continued)

γ (²²⁸Th) (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	J_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
660.1 3	≈0.005	1682.754	(2+,3+,4+)	1022.531	(3)+	[M1,E2]	0.06 4	$\alpha(N)=6.62\times10^{-5} \ 10; \ \alpha(O)=1.555\times10^{-5} \ 22; \ \alpha(P)=2.97\times10^{-6} \ 5; \\ \alpha(Q)=2.60\times10^{-7} \ 4 \\ \alpha(K)=0.05 \ 4; \ \alpha(L)=0.010 \ 5; \ \alpha(M)=0.0024 \ 12; \ \alpha(N+)=0.0008 \ 4 \\ \alpha(N)=0.0006 \ 3; \ \alpha(O)=0.00015 \ 8; \ \alpha(P)=2.9\times10^{-5} \ 15; \\ \alpha(Q)=2.5\times10^{-6} \ 17$
663.82 10	0.028 6	1059.94	4-	396.083	3-	(M1+E2) ^h	0.06 4	$\alpha(K)=0.05 4$; $\alpha(L)=0.010 5$; $\alpha(M)=0.0024 12$; $\alpha(N+)=0.0008 4$ $\alpha(N)=0.0006 3$; $\alpha(O)=0.00015 8$; $\alpha(P)=2.9\times10^{-5} 15$; $\alpha(Q)=2.5\times10^{-6} 17$
666.45 ⁿ 10	0.057 ⁿ 6	1646.005	3+	979.507	2+	[M1,E2]	0.06 4	$\alpha(X)=2.5\times 10^{-17}$ $\alpha(X)=0.010$ 5; $\alpha(M)=0.0024$ 11; $\alpha(N+)=0.0008$ 4 $\alpha(N)=0.0006$ 3; $\alpha(O)=0.00015$ 7; $\alpha(P)=2.8\times 10^{-5}$ 15; $\alpha(Q)=2.4\times 10^{-6}$ 16 $\alpha(Q)=2.4\times 10^{-6}$ 16 $\alpha(Q)=2.4\times 10^{-6}$ 17 Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both $\alpha(Q)=2.4\times 10^{-6}$ 17 decays. $\alpha(Q)=2.4\times 10^{-6}$ 18 $\alpha(Q)=2.4\times 10^{-6}$ 19 $\alpha(Q)=2.4\times 10^{-6}$
666.45 ⁿ 10	0.005 ⁿ 2	1893.02	3+	1226.566	4-	[E1]	0.00722 11	α =0.00722 11; α (K)=0.00590 9; α (L)=0.001007 15; α (M)=0.000239 4; α (N+)=8.13×10 ⁻⁵ 12 α (N)=6.33×10 ⁻⁵ 9; α (O)=1.487×10 ⁻⁵ 21; α (P)=2.84×10 ⁻⁶ 4; α (Q)=2.50×10 ⁻⁷ 4 I _γ : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both ²²⁸ Ac and ²²⁸ Pa decays. This placement of the γ suggested by ²²⁸ Pa decay.
672.00 15	0.026 8	1688.398	2+,3+	1016.386	3-			γ listed in table I of 1987Da28 as deexciting the 1683.8 level; however, on level scheme (fig. 4) shown as deexciting the 1688.4 level.
674.16 ^{<i>j</i>}	≤0.109	1643.119	(3-)	968.972	2+	[E1]	0.00707 10	α =0.00707 <i>10</i> ; α (K)=0.00577 <i>8</i> ; α (L)=0.000985 <i>14</i> ; α (M)=0.000233 <i>4</i> ; α (N+)=7.95×10 ⁻⁵ <i>12</i> α (N)=6.19×10 ⁻⁵ <i>9</i> ; α (O)=1.454×10 ⁻⁵ <i>21</i> ; α (P)=2.78×10 ⁻⁶ <i>4</i> ; α (Q)=2.44×10 ⁻⁷ <i>4</i> E _{γ} : deduced from E(level).
674.75 ^{<i>j</i>}	2.1 7	1643.119	(3-)	968.335	2-	[M1,E2]	0.06 4	$\alpha(K)$ =0.05 3; $\alpha(L)$ =0.009 5; $\alpha(M)$ =0.0023 11; $\alpha(N+)$ =0.0008 4 $\alpha(N)$ =0.0006 3; $\alpha(O)$ =0.00014 7; $\alpha(P)$ =2.7×10 ⁻⁵ 14; $\alpha(Q)$ =2.4×10 ⁻⁶ 16 $\alpha(Q)$ =2.4×10 ⁻⁶ 17 $\alpha(Q)$ =2.4×10 ⁻⁶ 18 $\alpha(Q)$ =2.4×10 ⁻⁶ 19 $\alpha(Q)$ 2.4×10 ⁻⁶ 19 $\alpha(Q)$ 2.5×10
677.11 10	0.062 5	1646.005	3+	968.972	2+	[M1,E2]	0.06 4	$\alpha(K)$ =0.05 3; $\alpha(L)$ =0.009 5; $\alpha(M)$ =0.0023 11; $\alpha(N+)$ =0.0008 4 $\alpha(N)$ =0.0006 3; $\alpha(O)$ =0.00014 7; $\alpha(P)$ =2.7×10 ⁻⁵ 14; $\alpha(O)$ =2.3×10 ⁻⁶ 16
(684.0)	0.019 5	1743.87	4+	1059.94	4-	[E1]	0.00688 10	$\alpha = 0.00688 \ 10; \ \alpha(K) = 0.00562 \ 8; \ \alpha(L) = 0.000957 \ 14;$

					²²⁸ Ac	e^{β^-} decay 198	87Da28 (cont	inued)
						γ ⁽²²⁸ Th) (co	ontinued)	
E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
688.10 ^{ao} 5	0.067 5	874.48	2+	186.827	4+	[E2]	0.0210	$\alpha(M)=0.000227 \ 4; \ \alpha(N+)=7.72\times10^{-5} \ 11$ $\alpha(N)=6.02\times10^{-5} \ 9; \ \alpha(O)=1.413\times10^{-5} \ 20; \ \alpha(P)=2.70\times10^{-6} \ 4;$ $\alpha(Q)=2.38\times10^{-7} \ 4$ $E_{\gamma,I_{\gamma}}$: γ not reported in this decay. Placement suggested by 228 Pa decay. Iy deduced from branching ratio in 228 Pa decay. $\alpha(K)=0.01490 \ 21; \ \alpha(L)=0.00455 \ 7; \ \alpha(M)=0.001153 \ 17;$
688.10 ^a 5	0.067 5	1016.386	3-	328.006	1-			$\alpha(N+)=0.000393$ 6 $\alpha(N)=0.000308$ 5; $\alpha(O)=7.12\times10^{-5}$ 10; $\alpha(P)=1.303\times10^{-5}$ 19; $\alpha(Q)=7.79\times10^{-7}$ 11 γ not placed here by 1987Da28; this placement of the γ
(692.5)	0.0056 7	1893.02	3 ⁺	1200.5		(M1+E2+E0)	0.05 4	suggested in 228 Pa decay. Poor fit in the level scheme. Ignored in the intensity balance. $\alpha(K)=0.04$ 3; $\alpha(L)=0.009$ 5; $\alpha(M)=0.0021$ 10; $\alpha(N+)=0.0007$ 4
(0)2.0)	0.0050 /	10/3/02		1230.0		(0.00	$\alpha(N) = 0.0006 \ 3; \ \alpha(O) = 0.00013 \ 7; \ \alpha(P) = 2.6 \times 10^{-5} \ 13;$ $\alpha(Q) = 2.2 \times 10^{-6} \ 15$ Mult.: $\alpha(K) = 0.0148, \ \alpha(K)(M1) = 0.0751. \ \alpha(K) = 0.0148, \ \alpha(K) \ $
699.08 <i>15</i>	0.037 5	1643.119	(3-)	944.200	1-	[E2]	0.020	Tu decay. If decaded from oraniening ratio in Tu decay.
701.747 ^{&} 14	0.173 10	1724.288	2+	1022.531	(3)+	(M1) ^h	0.0850	$\alpha(K)$ =0.0684 10; $\alpha(L)$ =0.01261 18; $\alpha(M)$ =0.00302 5; $\alpha(N+)$ =0.001036 15 $\alpha(N)$ =0.000805 12; $\alpha(O)$ =0.000191 3; $\alpha(P)$ =3.70×10 ⁻⁵ 6; $\alpha(Q)$ =3.52×10 ⁻⁶ 5
707.41 5	0.155 ^f 15	1226.566	4-	519.195	5-	(E2) ^h	0.0198	$\alpha(K)$ =0.01417 20; $\alpha(L)$ =0.00422 6; $\alpha(M)$ =0.001067 15; $\alpha(N+)$ =0.000364 5 $\alpha(N)$ =0.000285 4; $\alpha(O)$ =6.59×10 ⁻⁵ 10; $\alpha(P)$ =1.209×10 ⁻⁵ 17; $\alpha(Q)$ =7.38×10 ⁻⁷ 11
718.48 <i>15</i>	0.019 4	1944.83	3 ⁺	1226.566	4-	(E1) ^h	0.00628 9	$\alpha(Q)=7.58\times10^{-5} II$ $\alpha=0.00628 \ 9; \ \alpha(K)=0.00513 \ 8; \ \alpha(L)=0.000870 \ I3;$ $\alpha(M)=0.000206 \ 3; \ \alpha(N+)=7.02\times10^{-5} \ I0$ $\alpha(N)=5.46\times10^{-5} \ 8; \ \alpha(O)=1.284\times10^{-5} \ I8; \ \alpha(P)=2.46\times10^{-6} \ 4;$ $\alpha(Q)=2.18\times10^{-7} \ 3$
726.863 15	0.62 8	1122.949	2-	396.083	3-	(E2)	0.0187	$\alpha(K)$ =0.01349 19; $\alpha(L)$ =0.00393 6; $\alpha(M)$ =0.000990 14; $\alpha(N+)$ =0.000337 5 $\alpha(N)$ =0.000264 4; $\alpha(O)$ =6.12×10 ⁻⁵ 9; $\alpha(P)$ =1.125×10 ⁻⁵ 16; $\alpha(Q)$ =7.00×10 ⁻⁷ 10
737.72 5	0.037 4	1760.17	2 ⁽⁺⁾ ,3 ⁽⁺⁾	1022.531	(3)+	[M1,E2]	0.05 3	Mult.: $\alpha(K)\exp\approx0.012$ (1971He23); theory: $\alpha(K)=0.0136$. $\alpha(K)=0.037$ 24; $\alpha(L)=0.007$ 4; $\alpha(M)=0.0018$ 9; $\alpha(N+)=0.0006$ 3 $\alpha(N)=0.00048$ 23; $\alpha(O)=0.00011$ 6; $\alpha(P)=2.2\times10^{-5}$ 11; $\alpha(Q)=1.9\times10^{-6}$ 12 Mult.: $\alpha(K)\exp=0.28$ 14 (1971He23); theory: $\alpha(K)(M1)=0.0637$,

228 Ac β^- decay	1987Da28 (continued)

γ (228Th) (continued)

					/ () ()		
$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} # l	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ	$lpha^\dagger$	Comments
755.315 ^{&} 4	1.00 ^b 3	1724.288	2+	968.972 2+	M1		0.0700	$\alpha(K)(E2)=0.0133$, $\alpha(K)(M2)=0.147$. Unconfirmed $\alpha(K)$ exp seems to indicate E0 admixture. $\alpha(K)=0.0563$ 8; $\alpha(L)=0.01036$ 15; $\alpha(M)=0.00248$ 4; $\alpha(N+)=0.000851$ 12
(770.04)	0.0063 8	1893.02	3+	1122.949 2	[E1]		0.00552 8	$\alpha(N)$ =0.000661 10 ; $\alpha(O)$ =0.0001566 22 ; $\alpha(P)$ =3.04×10 ⁻⁵ 5 ; $\alpha(Q)$ =2.90×10 ⁻⁶ 4 Mult.: $\alpha(K)$ exp=0.055 9 (1971He23), 0.057 8 (1960Ar06); theory: $\alpha(K)$ (M1)=0.0599. α =0.00552 8 ; $\alpha(K)$ =0.00452 7 ; $\alpha(L)$ =0.000762 11 ; $\alpha(M)$ =0.000180 3 ; $\alpha(N+)$ =6.14×10 ⁻⁵ 9 $\alpha(N)$ =4.78×10 ⁻⁵ 7 ; $\alpha(O)$ =1.124×10 ⁻⁵ 16 ; $\alpha(P)$ =2.15×10 ⁻⁶ 3 ; $\alpha(Q)$ =1.93×10 ⁻⁷ 3 E _{γ} ,I $_{\gamma}$: γ not reported in this decay. Placement suggested by 2^{28} Pa decay. I γ deduced from branching ratio in 2^{28} Pa decay.
772.291 & 5	1.49 ^c 3	1168.377	3-	396.083 3-	E2+M1	$-3.4^{h} + 8 - 27$	0.021 3	$\alpha(K)$ =0.0154 22; $\alpha(L)$ =0.0039 4; $\alpha(M)$ =0.00096 9; $\alpha(N+)$ =0.00033 3 $\alpha(N)$ =0.000256 22; $\alpha(O)$ =6.0×10 ⁻⁵ 6; $\alpha(P)$ =1.11×10 ⁻⁵
774.1 2	≈0.06	831.822	0+	57.763 2+	[E2]		0.01649	11; $\alpha(Q)=7.9\times10^{-7}$ 12 Mult.: $\alpha(K)\exp=0.016$ 7 (1971He23), 0.019 3 (1960Ar06); theory: $\alpha(K)=0.0157$ 24. $\alpha(K)=0.01204$ 17; $\alpha(L)=0.00333$ 5; $\alpha(M)=0.000835$ 12; $\alpha(N+)=0.000285$ 4 $\alpha(N)=0.000223$ 4; $\alpha(O)=5.17\times10^{-5}$ 8; $\alpha(P)=9.54\times10^{-6}$
776.56 <i>10</i> (778.23)	0.019 <i>6</i> 0.022 <i>6</i>	1944.83 1297.440	3 ⁺ (5) ⁻	1168.377 3 ⁻ 519.195 5 ⁻	[M1,E2]		0.040 25	14; $\alpha(Q)=6.19\times10^{-7}$ 9 $\alpha(K)=0.032$ 20; $\alpha(L)=0.006$ 4; $\alpha(M)=0.0016$ 8; $\alpha(N+)=0.0005$ 3
782.142 ^{&} 5	0.485 ^c 19	968.972	2+	186.827 4+	[E2]		0.01615	$\alpha(N)$ =0.00042 20; $\alpha(O)$ =0.00010 5; $\alpha(P)$ =1.9×10 ⁻⁵ 10; $\alpha(Q)$ =1.6×10 ⁻⁶ 11 E _y ,I _y : γ not reported in this decay. Placement suggested by ²²⁸ Pa decay. Iy deduced from branching ratio in ²²⁸ Pa decay. $\alpha(K)$ =0.01182 17; $\alpha(L)$ =0.00324 5; $\alpha(M)$ =0.000812 12; $\alpha(N+)$ =0.000277 4
791.49 ⁿ 25	0.010 ⁿ 3	1760.17	2(+),3(+)	968.972 2+	[M1,E2]		0.039 23	$\alpha(N)$ =0.000217 3; $\alpha(O)$ =5.03×10 ⁻⁵ 7; $\alpha(P)$ =9.29×10 ⁻⁶ 13; $\alpha(Q)$ =6.07×10 ⁻⁷ 9 Mult.: $\alpha(K)$ exp=0.024 3 (1960Ar06), 0.07 3 (1971He23) inconsistent with each other and with E2 assignment required by level scheme. $\alpha(K)$ =0.031 19; $\alpha(L)$ =0.006 3; $\alpha(M)$ =0.0015 7; $\alpha(N+)$ =0.00051 25

228 Ac β^- decay	1987Da28 (continued)
	·

γ (²²⁸Th) (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	$lpha^\dagger$	Comments
791.49 ⁿ 25	0.013 ⁿ 3	1944.83	3+	1153.465	2+	(M1)		0.0618	$\alpha(N)$ =0.00040 19; $\alpha(O)$ =9.E-5 5; $\alpha(P)$ =1.8×10 ⁻⁵ 9; $\alpha(Q)$ =1.6×10 ⁻⁶ 10 γ placed here with I γ =0.023 7 by 1987Da28. $\alpha(K)$ =0.0497 7; $\alpha(L)$ =0.00915 13; $\alpha(M)$ =0.00219 3; $\alpha(N+)$ =0.000751 11 $\alpha(N)$ =0.000584 9; $\alpha(O)$ =0.0001382 20; $\alpha(P)$ =2.68×10 ⁻⁵ 4 $\alpha(Q)$ =2.56×10 ⁻⁶ 4
792.8	≈0.08	979.507	2+	186.827	4+	[E2]		0.01572	I _γ : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both 228 Ac and 228 Pa decays This placement suggested by 228 Pa decay. Mult.: $\alpha(K)\exp(doublet)=0.054$ 11 (1973Ku09), I _γ (doublet)=3.8; theory: $\alpha(K)(M1)=0.0497$. $\alpha(K)=0.01154$ 17; $\alpha(L)=0.00313$ 5; $\alpha(M)=0.000784$ 11;
									$\alpha(N+)=0.000267 \ 4$ $\alpha(N)=0.000209 \ 3; \ \alpha(O)=4.85\times10^{-5} \ 7; \ \alpha(P)=8.98\times10^{-6} \ 1.$ $\alpha(Q)=5.91\times10^{-7} \ 9$
794.947 ^{&} 5	4.25 ^b 7	1122.949	2-	328.006	1-	E2+M1	-4.4 ^h 10	0.0179 14	$\alpha(K)$ =0.0133 12; $\alpha(L)$ =0.00340 19; $\alpha(M)$ =0.00085 5; $\alpha(N+)$ =0.000289 16 $\alpha(N)$ =0.000226 12; $\alpha(O)$ =5.3×10 ⁻⁵ 3; $\alpha(P)$ =9.8×10 ⁻⁶ 6; $\alpha(Q)$ =6.8×10 ⁻⁷ 6 Mult.: $\alpha(K)$ exp=0.0118 20, K/L=1.6 7 (1971He23),
813.77 <i>15</i>	0.0070 16	1688.398	2+,3+	874.48	2+	[M1,E2]		0.036 22	$\alpha(K)\exp(0.0139 \ 19 \ (1960Ar06); \text{ theory:}$ $\alpha(K)(E2)=0.0116, \ \alpha(K)(M1)=0.0524.$ $\alpha(K)=0.029 \ 18; \ \alpha(L)=0.006 \ 3; \ \alpha(M)=0.0014 \ 7;$ $\alpha(N+)=0.00047 \ 23$ $\alpha(N)=0.00037 \ 18; \ \alpha(O)=9.E-5 \ 5; \ \alpha(P)=1.7\times10^{-5} \ 9;$
816.71 <i>10</i>	0.030 3	874.48	2+	57.763	2+	[M1,E2]		0.036 21	$\alpha(Q)=1.5\times10^{-6} 9$ $\alpha(K)=0.028 \ 18; \ \alpha(L)=0.006 \ 3; \ \alpha(M)=0.0014 \ 7;$ $\alpha(N+)=0.00047 \ 23$ $\alpha(N)=0.00037 \ 18; \ \alpha(O)=9.E-5 \ 5; \ \alpha(P)=1.7\times10^{-5} \ 9;$ $\alpha(Q)=1.5\times10^{-6} \ 9$
824.934 ^{&} 23	0.050 5	1344.082	3-	519.195	5-	[E2]		0.01452	$\alpha(K)$ =0.01074 15; $\alpha(L)$ =0.00283 4; $\alpha(M)$ =0.000706 10; $\alpha(N+)$ =0.000241 4 $\alpha(N)$ =0.000188 3; $\alpha(O)$ =4.38×10 ⁻⁵ 7; $\alpha(P)$ =8.12×10 ⁻⁶ 12 $\alpha(O)$ =5.48×10 ⁻⁷ 8
830.486 ^{&} 8	0.540 ^d 21	1226.566	4-	396.083	3-	E2(+M1) ^h	-7.7 ^h 9	0.0150 3	$\alpha(K)$ =0.01117 22; $\alpha(L)$ =0.00287 5; $\alpha(M)$ =0.000715 12; $\alpha(N+)$ =0.000244 4 $\alpha(N)$ =0.000191 3; $\alpha(O)$ =4.43×10 ⁻⁵ 8; $\alpha(P)$ =8.24×10 ⁻⁶ 14 $\alpha(Q)$ =5.69×10 ⁻⁷ 12 Mult.: $\alpha(K)$ exp=0.020 11 (1971He23); theory: $\alpha(K)$ =0.0113 2.

228 Ac β^- decay 1987Da28 (continued)

$\gamma(^{228}\text{Th})$ (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f J	I_f^{π} Mult. @	α^{\dagger}	Comments
835.710 ^{&} 6	1.61 ^c 6	1022.531	(3)+	186.827 4	+ E2 ^h	0.01415	$\alpha(K)$ =0.01050 <i>15</i> ; $\alpha(L)$ =0.00274 <i>4</i> ; $\alpha(M)$ =0.000683 <i>10</i> ; $\alpha(N+)$ =0.000233
840.377 ^{&} 7	0.91 ^c 4	1168.377	3-	328.006 1	- E2 ^h	0.01400	$\alpha(N)=0.000182\ 3;\ \alpha(O)=4.24\times10^{-5}\ 6;\ \alpha(P)=7.86\times10^{-6}\ 11;\ \alpha(Q)=5.34\times10^{-7}\ 8$ Mult.: $\alpha(K)=\infty0.015\ (1971He23);\ theory:\ \alpha(K)=0.0106.$ $\alpha(K)=0.01039\ 15;\ \alpha(L)=0.00270\ 4;\ \alpha(M)=0.000673\ 10;\ \alpha(N+)=0.000230$
							$\alpha(N)=0.000180 \ 3; \ \alpha(O)=4.18\times10^{-5} \ 6; \ \alpha(P)=7.75\times10^{-6} \ 11; \ \alpha(Q)=5.29\times10^{-7} \ 8$ Mult.: $\alpha(K)\exp\leq0.026 \ (1971He23); \ theory: \ \alpha(K)=0.0105.$
^x 853.17 <i>10</i>	0.0088 ^k 18						
853.17 ^a 10	$0.0031^{k} 4$	1944.83	3+	1091.020 4	+ [M1,E2]	0.032 19	$\alpha(K)$ =0.025 16; $\alpha(L)$ =0.0050 25; $\alpha(M)$ =0.0012 6; $\alpha(N+)$ =0.00042 20 $\alpha(N)$ =0.00033 16; $\alpha(O)$ =8.E-5 4; $\alpha(P)$ =1.5×10 ⁻⁵ 8; $\alpha(Q)$ =1.3×10 ⁻⁶ 8 I_{γ} : from branching ratio in ²²⁸ Pa decay.
870.46 ^{&} 4	0.044 4	1893.02	3 ⁺	1022.531 (3	B) ⁺ M1 ^h	0.0481	$\alpha(K)$ =0.0387 6; $\alpha(L)$ =0.00710 10; $\alpha(M)$ =0.001699 24; $\alpha(N+)$ =0.000583 9 $\alpha(N)$ =0.000453 7; $\alpha(O)$ =0.0001073 15; $\alpha(P)$ =2.08×10 ⁻⁵ 3; $\alpha(O)$ =1.99×10 ⁻⁶ 3
873.17 <i>15</i>	0.031 6	1059.94	4-	186.827 4	+ [E1]	0.00440 7	$\alpha = 0.00440 \ 7; \ \alpha(K) = 0.00361 \ 5; \ \alpha(L) = 0.000601 \ 9; \ \alpha(M) = 0.0001421 \ 20; \ \alpha(N+) = 4.84 \times 10^{-5} \ 7 \ \alpha(N) = 3.77 \times 10^{-5} \ 6; \ \alpha(O) = 8.87 \times 10^{-6} \ 13; \ \alpha(P) = 1.704 \times 10^{-6} \ 24;$
							$\alpha(Q)=1.546\times10^{-7} 22$
874.44 ^{&} 7	0.047 10	874.48	2+	0.0	+ [E2]	0.01294	$\alpha(K)$ =0.00968 14; $\alpha(L)$ =0.00245 4; $\alpha(M)$ =0.000608 9; $\alpha(N+)$ =0.000208 3 $\alpha(N)$ =0.0001623 23; $\alpha(O)$ =3.78×10 ⁻⁵ 6; $\alpha(P)$ =7.03×10 ⁻⁶ 10; $\alpha(O)$ =4.90×10 ⁻⁷ 7
877.46 10	0.014 3	1899.97	(2+)	1022.531 (3	B) ⁺ [M1,E2]	0.030 18	$\alpha(K)=0.024$ 15; $\alpha(L)=0.0047$ 23; $\alpha(M)=0.0011$ 6; $\alpha(N+)=0.00039$ 19 $\alpha(N)=0.00030$ 15; $\alpha(O)=7.E-5$ 4; $\alpha(P)=1.4\times10^{-5}$ 7; $\alpha(Q)=1.2\times10^{-6}$ 8
880.76 10	0.0062 18	938.61	0+	57.763 2	+ [E2]	0.01276	$\alpha(K)=0.00030\ 13,\ \alpha(O)=1.E=3\ 4,\ \alpha(\Gamma)=1.4\times10^{-7},\ \alpha(Q)=1.2\times10^{-8}$ $\alpha(K)=0.00956\ 14;\ \alpha(L)=0.00240\ 4;\ \alpha(M)=0.000597\ 9;\ \alpha(N+)=0.000204\ 3$ $\alpha(N)=0.0001594\ 23;\ \alpha(O)=3.71\times10^{-5}\ 6;\ \alpha(P)=6.90\times10^{-6}\ 10;$ $\alpha(Q)=4.83\times10^{-7}\ 7$
887.33 10	0.027 3	2010.20	(2^{+})	1122.949 2			
901.23 <i>15</i>	0.016 3	1297.440	(5)	396.083 3	E2]	0.01220	$\alpha(K)$ =0.00917 13; $\alpha(L)$ =0.00227 4; $\alpha(M)$ =0.000564 8; $\alpha(N+)$ =0.000192 3 $\alpha(N)$ =0.0001504 21; $\alpha(O)$ =3.50×10 ⁻⁵ 5; $\alpha(P)$ =6.53×10 ⁻⁶ 10; $\alpha(O)$ =4.63×10 ⁻⁷ 7
904.20 ^{&} 4	0.77 ^d 3	1091.020	4+	186.827 4 ⁻	+ E2 ^h	0.01212	$\alpha(K)$ =0.00912 13; $\alpha(L)$ =0.00225 4; $\alpha(M)$ =0.000559 8; $\alpha(N+)$ =0.000191 3 $\alpha(N)$ =0.0001492 21; $\alpha(O)$ =3.47×10 ⁻⁵ 5; $\alpha(P)$ =6.48×10 ⁻⁶ 9; $\alpha(Q)$ =4.60×10 ⁻⁷ 7 Mult.: $\alpha(K)$ exp=0.027 10 (1971He23), ce(K) not seen (1960Ar06);
							$\alpha(K)$ exp does not agree with $\alpha(K)$ exp measured in ²²⁸ Pa ε decay.

228 Ac β^- decay	1987Da28 ((continued)
-----------------------------	------------	-------------

γ (228Th) (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
911.204 ^{&} 4	25.8 ^b 4	968.972	2+	57.763 2+	E2		0.01194	$\alpha(K)=0.00900\ 13;\ \alpha(L)=0.00221\ 3;\ \alpha(M)=0.000549\ 8;$ $\alpha(N+)=0.000187\ 3$ $\alpha(N)=0.0001463\ 2I;\ \alpha(O)=3.41\times10^{-5}\ 5;\ \alpha(P)=6.36\times10^{-6}$ $9;\ \alpha(Q)=4.53\times10^{-7}\ 7$ $Mult.:\ \alpha(K)exp=0.0104\ 10,\ K/L=4.6\ 5\ (1971He23),$ $\alpha(K)exp=0.0092\ 9\ (1960Ar06);\ theory:\ \alpha(K)=0.0091,$
918.97 <i>10</i>	0.027 3	2010.20	(2+)	1091.020 4+				K/L=4.04. δ =+24 8 from ²²⁸ Pa decay. Mult.: α (K)exp=1.1 2 (1971He23) indicates E0 component; however, then the relatively strong 887.33 γ to 1123 2- level must be M2.
921.98 ^{ma} 10	0.0147 ^m 21	979.507	2+	57.763 2+	[M1,E2]		0.027 15	$\alpha(K)=0.021$ 13; $\alpha(L)=0.0041$ 20; $\alpha(M)=0.0010$ 5; $\alpha(N+)=0.00034$ 16 $\alpha(N)=0.00027$ 13; $\alpha(O)=6.E-5$ 3; $\alpha(P)=1.2\times10^{-5}$ 6; $\alpha(Q)=1.1\times10^{-6}$ 7 Mult.: $\alpha(K)\exp(2.0)$ 4 (1971He23) may indicate an E0 component. Total intensity placed here by 1987Da28.
921.98 ^{ma} 10 (924.03)	0.0147 ^m 21 0.0075 10	1944.83 1893.02	3 ⁺ 3 ⁺	1022.531 (3) 968.972 2 ⁺	+ [M1,E2]		0.026 15	This placement suggested by 228 Pa decay. $\alpha(K)=0.021$ 13 ; $\alpha(L)=0.0041$ 20 ; $\alpha(M)=0.0010$ 5 ; $\alpha(N+)=0.00034$ 16 $\alpha(N)=0.00026$ 13 ; $\alpha(O)=6.E-5$ 3 ; $\alpha(P)=1.2\times10^{-5}$ 6 ; $\alpha(Q)=1.1\times10^{-6}$ 7 $E_{\gamma}I_{\gamma}$: γ not reported in this decay. Placement suggested by 228 Pa decay. I_{γ} deduced from branching ratio in 228 Pa decay.
930.93 ^m 10 930.93 ^m 10 939.87 ^a 15 944.196 ^{&} 14	0.0124 ^m 18 0.0124 ^m 18 0.009 3 0.095 8	1450.35 1899.97 2030.39 944.200	4 ⁻ (2 ⁺) 2 ⁺ 1 ⁻	519.195 5 ⁻ 968.972 2 ⁺ 1091.020 4 ⁺ 0.0 0 ⁺				This placement of γ suggested in 228 Pa decay.
947.982 ^{&} 11	0.106 8	1344.082	3-	396.083 3	[M1,E2]		0.025 14	$\alpha(K)$ =0.020 12; $\alpha(L)$ =0.0038 19; $\alpha(M)$ =0.0009 5; $\alpha(N+)$ =0.00032 15 $\alpha(N)$ =0.00025 12; $\alpha(O)$ =6.E-5 3; $\alpha(P)$ =1.1×10 ⁻⁵ 6; $\alpha(Q)$ =1.0×10 ⁻⁶ 6
958.61 <mark>&</mark> 4	0.28^{f} 4	1016.386	3-	57.763 2 ⁺				
964.766 ^{&} 10	4.99 ^c 9	1022.531	(3)+	57.763 2+	E2+M1	-7.2 ^h 10	0.01119 23	$\alpha(K)$ =0.00853 19; $\alpha(L)$ =0.00199 4; $\alpha(M)$ =0.000492 9; $\alpha(N+)$ =0.000168 3 $\alpha(N)$ =0.0001312 23; $\alpha(O)$ =3.06×10 ⁻⁵ 6; $\alpha(P)$ =5.74×10 ⁻⁶ 11; $\alpha(Q)$ =4.28×10 ⁻⁷ 10 Mult.: $\alpha(K)$ exp=0.0084 9 (1971He23); theory: $\alpha(K)$ =0.00821.
968.971 <mark>&</mark> <i>17</i>	15.8 ^b 3	968.972	2+	0.0 0+	E2		0.01061	$\alpha(K)$ =0.00806 <i>12</i> ; $\alpha(L)$ =0.00191 <i>3</i> ; $\alpha(M)$ =0.000472 <i>7</i> ;

228 Ac β^- decay	1987Da28 (continued)
-----------------------------	----------------------

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	α^{\dagger}	Comments
							α (N+)=0.0001610 23 α (N)=0.0001258 18; α (O)=2.93×10 ⁻⁵ 5; α (P)=5.49×10 ⁻⁶ 8; α (Q)=4.04×10 ⁻⁷ 6
							Mult.: $\alpha(L)$ exp=0.0016 3 (1971He23); theory: $\alpha(K)$ =0.00815, $\alpha(L)$ =0.0194; $\alpha(K)$ exp used in normalization of the ce spectra.
975.96 <i>5</i>	0.050 5	1944.83	3+	968.972 2+	M1 ^h	0.0356	$\alpha(E)$ =0.0174, $\alpha(E)$ =0.00524 8; $\alpha(M)$ =0.001254 18;
							α(N+)=0.000430 6
							$\alpha(N)=0.000334\ 5;\ \alpha(O)=7.91\times10^{-5}\ 11;\ \alpha(P)=1.537\times10^{-5}\ 22;$
070 40 10	0.026.3	070 507	2+	0.0 0+	EE O	0.01020	$\alpha(Q)=1.468\times10^{-6}\ 21$
979.48 <i>10</i>	0.026 3	979.507	2+	$0.0 0^{+}$	[E2]	0.01039	$\alpha(K)$ =0.00791 11; $\alpha(L)$ =0.00186 3; $\alpha(M)$ =0.000460 7; $\alpha(N+)$ =0.0001568 22
							$\alpha(N)=0.000130822$ $\alpha(N)=0.000122518; \alpha(O)=2.86\times10^{-5}4; \alpha(P)=5.36\times10^{-6}8;$
							$\alpha(O)=3.96\times10^{-7} 6$
987.71 20	0.077 13	1174.50	(5^{+})	186.827 4+	[M1,E2]	0.022 13	$\alpha(K)$ =0.018 10; $\alpha(L)$ =0.0035 17; $\alpha(M)$ =0.0008 4; $\alpha(N+)$ =0.00029 14
							$\alpha(N)=0.00022 \ 11; \ \alpha(O)=5.2\times10^{-5} \ 25; \ \alpha(P)=1.0\times10^{-5} \ 5; \ \alpha(Q)=9.E-7 \ 6$
988.63 20	0.077 13	1175.45	2+	186.827 4+	[E2]	0.01021	$\alpha(K)$ =0.00778 11; $\alpha(L)$ =0.00182 3; $\alpha(M)$ =0.000449 7;
							$\alpha(N+)=0.0001534 22$
							$\alpha(N)=0.0001198 \ I7; \ \alpha(O)=2.79\times10^{-5} \ 4; \ \alpha(P)=5.24\times10^{-6} \ 8;$
1000 (0.15	0.007	101102	2+	044.200.1-			$\alpha(Q)=3.89\times10^{-7} 6$
1000.69 15	0.005	1944.83	3 ⁺	944.200 1			γ not seen in ²²⁸ Pa decay. I γ <0.002 from upper limit in ²²⁸ Pa decay.
1013.58 <i>20</i> 1016.44 ^{mo} <i>15</i>	0.0046 13	2030.39	2 ⁺	1016.386 3 ⁻ 0.0 0 ⁺			
1016.44 ^m 15	$0.019^{m} 3$ $0.019^{m} 3$	1016.386 1344.082	3 ⁻ 3 ⁻	$0.0 0^{+}$ $328.006 1^{-}$			
1010.44 13	0.019 3	1987.46	3 4 ⁺	968.972 2 ⁺			
1017.92 20	0.0037 13	1416.09	(3-)	396.083 3			
1033.248 9	0.201 13	1091.020	4+	57.763 2 ⁺	E2 ^h	0.00938 14	α =0.00938 14; α (K)=0.00720 10; α (L)=0.001643 23; α (M)=0.000404
1033.210	0.201 13	1071.020		37.703 2	LL2	0.00/30 17	6; $\alpha(N+)=0.0001380$
							$\alpha(N)=0.0001078\ 15;\ \alpha(O)=2.52\times10^{-5}\ 4;\ \alpha(P)=4.73\times10^{-6}\ 7;$
							$\alpha(Q)=3.58\times10^{-7} 5$
1039.65 <i>15</i>	0.044 9	1226.566	4-	186.827 4+			
1040.92 <i>15</i>	0.044 9	2010.20	(2^{+})	968.972 2+			
1053.09 ^a 20	0.013 4	2022.64	2+	968.972 2+			
1054.11 20	0.018 5	1450.35	4-	396.083 3			
1062.55 15	0.010 3	1937.18	$2^+,3,4^+$	874.48 2+			
1065.18 ^{&} 4	0.132 10	1122.949	2-	57.763 2+			
1074.71 15	0.010 3	1906.63	(2 ⁺)	831.822 0+			
1088.18 <i>15</i>	0.0059 13	1416.09	(3 ⁻)	328.006 1			
1095.679 ^{&} 20	0.129 10	1153.465	2+	57.763 2+	[M1,E2]	0.017 9	$\alpha(K)$ =0.014 8; $\alpha(L)$ =0.0026 13; $\alpha(M)$ =0.0006 3; $\alpha(N+)$ =0.00022 10 $\alpha(N)$ =0.00017 8; $\alpha(O)$ =4.0×10 ⁻⁵ 19; $\alpha(P)$ =8.E-6 4; $\alpha(Q)$ =7.E-7 4
1103.41 ^{ai} 10	0.0150 23	1431.981	4+	328.006 1	[E3]	0.0195	$\alpha(K)$ =0.01377 20; $\alpha(L)$ =0.00429 6; $\alpha(M)$ =0.001090 16; $\alpha(N+)$ =0.000373 6

228 Ac β^- decay 1987Da28 (continued)

$\gamma(^{228}\text{Th})$ (continued)

${\rm E}_{\gamma}{^{\ddagger}}$	I_{γ} # l	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.@	$lpha^\dagger$	Comments
							$\alpha(N)=0.000292 \ 4; \ \alpha(O)=6.78\times10^{-5} \ 10; \ \alpha(P)=1.256\times10^{-5} \ 18; \ \alpha(Q)=8.16\times10^{-7} \ 12; \ \alpha(IPF)=3.24\times10^{-8} \ 5$
1110.610 ^{n&} 10	0.285 ⁿ 23	1168.377	3-	57.763 2+	E1 ^h	0.00288 4	α =0.00288 4; α (K)=0.00237 4; α (L)=0.000388 6; α (M)=9.15×10 ⁻⁵ 13; α (N+)=3.20×10 ⁻⁵ 5 α (N)=2.43×10 ⁻⁵ 4; α (O)=5.73×10 ⁻⁶ 8; α (P)=1.104×10 ⁻⁶ 16;
							$\alpha(Q)=1.025\times10^{-7}\ 15;\ \alpha(IPF)=7.72\times10^{-7}\ 11$ I _{γ} : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both 228 Ac and 228 Pa decays.
1110.610 ⁿ 10	0.019 ⁿ 10	1297.440	(5)-	186.827 4+	E1 ^h	0.00288 4	α =0.00288 4; α (K)=0.00237 4; α (L)=0.000388 6; α (M)=9.15×10 ⁻⁵ 13; α (N+)=3.20×10 ⁻⁵ 5 α (N)=2.43×10 ⁻⁵ 4; α (O)=5.73×10 ⁻⁶ 8; α (P)=1.104×10 ⁻⁶ 16; α (O)=1.025×10 ⁻⁷ 15; α (IPF)=7.72×10 ⁻⁷ 11
							I _γ : Intensity of the doublet divided by evaluator by comparison with branching ratios and the intensities of the doublet as measured in both ²²⁸ Ac and ²²⁸ Pa decays.
1117.63 <i>10</i>	0.054 8	1175.45	2+	57.763 2+			•
1135.24 15	0.0098 15	1531.478	3 ⁺	396.083 3			
1142.85 <i>15</i> 1148.12 <i>15</i>	0.0103 <i>21</i> 0.0059 <i>13</i>	1539.24 2022.64	2 ⁺ 2 ⁺	396.083 3 ⁻ 874.48 2 ⁺			
1148.12 13 1153.52 & 4	0.0039 13	1153.465	2+	$0.0 0^{+}$			
1157.14 15	0.139 10	1344.082	3-	186.827 4+			
1164.50 8	0.065 5	1683.71	(4-)	519.195 5	(M1+E2) ^h	0.015 8	$\alpha(K)$ =0.012 7; $\alpha(L)$ =0.0023 11; $\alpha(M)$ =0.00055 24; $\alpha(N+)$ =0.00019 9 $\alpha(N)$ =0.00015 7; $\alpha(O)$ =3.4×10 ⁻⁵ 16; $\alpha(P)$ =7.E-6 3; $\alpha(Q)$ =6.E-7 4; $\alpha(PF)$ =2.2×10 ⁻⁶ 10
1175.31 <i>10</i>	0.024 3	1175.45	2+	$0.0 0^{+}$			u()
1190.81 20	0.0062 16	2022.64	2+	831.822 0+			
1217.03 ^a 10 1229.40 15	0.021 <i>3</i> 0.0075 <i>23</i>	1735.508	4 ⁺	519.195 5			
1245.05 ^a 20	0.0075 25	1416.09 1431.981	(3^{-}) 4^{+}	186.827 4 ⁺ 186.827 4 ⁺	[M1,E2]	0.013 6	$\alpha(K)=0.010\ 5;\ \alpha(L)=0.0019\ 9;\ \alpha(M)=0.00046\ 20;\ \alpha(N+)=0.00017\ 8$
	0.073 10	1431.701	7	100.027 +	[1411,12]	0.013 0	$\alpha(N)$ =0.00012 6; $\alpha(O)$ =2.9×10 ⁻⁵ 13; $\alpha(P)$ =5.6×10 ⁻⁶ 25; $\alpha(Q)$ =5.E-7 3; $\alpha(IPF)$ =1.2×10 ⁻⁵ 5
1247.08 ^{&} a 4	0.50 ^g 3	1643.119	(3-)	396.083 3-	(M1)	0.0187	$\alpha(K)$ =0.01505 21; $\alpha(L)$ =0.00274 4; $\alpha(M)$ =0.000654 10; $\alpha(N+)$ =0.000242 4
0.							$\alpha(N)=0.0001743\ 25;\ \alpha(O)=4.13\times10^{-5}\ 6;\ \alpha(P)=8.02\times10^{-6}\ 12;$ $\alpha(Q)=7.69\times10^{-7}\ 11;\ \alpha(IPF)=1.771\times10^{-5}\ 2$
1250.04 4 10	0.062 5	1646.005	3+	396.083 3			
1276.69 <i>10</i> 1286.27 <i>20</i>	0.014 <i>3</i> 0.050 <i>10</i>	1795.65	4 ⁺ 3 ⁻	519.195 5 ⁻ 57.763 2 ⁺			
1286.27 20	0.030 10	1344.082 1683.71		396.083 3	(M1+E2) ^h	0.012 6	$\alpha(K)=0.009$ 5; $\alpha(L)=0.0018$ 8; $\alpha(M)=0.00042$ 18; $\alpha(N+)=0.00017$ 7
1207.00 20	0.080 13	1083./1	(4-)	390.083 3	(IVII+E2)	0.012 0	$\alpha(N)$ =0.009 3; $\alpha(L)$ =0.0016 6; $\alpha(N)$ =0.00042 16; $\alpha(N+)$ =0.00017 /

					2	²²⁸ Ac	β^- decay	1987	7Da28 (conti	nued)	
							γ (228T	Th) (co	ntinued)		
	${\rm E}_{\gamma}{}^{\ddagger}$	$I_{\gamma}^{\#l}$	$E_i(level)$	J_i^π	\mathbf{E}_f	$\underline{\mathbf{J}_f^{\pi}}$	Mult.@	δ	α^{\dagger}	$I_{(\gamma+ce)}^{l}$	Comments
											$\alpha(N)$ =0.00011 5; $\alpha(O)$ =2.7×10 ⁻⁵ 12; $\alpha(P)$ =5.1×10 ⁻⁶ 23; $\alpha(Q)$ =4.7×10 ⁻⁷ 24; $\alpha(IPF)$ =2.0×10 ⁻⁵ 9 γ listed in table I of 1987Da28 as deexciting the 1682.8 level; however, on level scheme (fig. 4) shown as deexciting the 1683.8 level. The energy fit is much better from the 1683.8 level.
	1309.71 20	0.019 6	1638.283	2+	328.006						
	1315.34 <i>10</i> <i>x</i> 1337.33 <i>20</i>	0.015 <i>3</i> 0.0049 <i>15</i>	1643.119	(3-)	328.006		[E2]		0.006		
١	1344.59 <i>15</i> 1347.50 <i>15</i>	0.0090 18	1531.478	3 ⁺ 4 ⁺	186.827						γ is uncertain in ²²⁸ Pa decay with I γ = 0.16 5.
- 1	1347.30 <i>13</i> 1357.78 ^a <i>15</i>	0.015 <i>3</i> 0.020 <i>4</i>	1743.87 1735.508	4+ 4+	396.083 378.178						γ is uncertain in Pa decay with $1\gamma = 0.16$ 3.
	1365.70 15	0.014 3	1743.87	4 ⁺	378.178						
	1374.19 <i>10</i>	0.014 4	1431.981	4+	57.763		[E2]				
	^x 1378.23 <i>10</i> ^x 1385.39 <i>10</i>	0.0059 <i>18</i> 0.0106 <i>21</i>									
	1401.49 10	0.012 3	1797.66	2+	396.083						
2	1415.66 ⁱ 10	0.021 4	1743.87	4 ⁺	328.006	1-	[E3]		0.01141		$\alpha(K)$ =0.00849 12; $\alpha(L)$ =0.00217 3; $\alpha(M)$ =0.000543 8; $\alpha(N+)$ =0.000202 3 $\alpha(N)$ =0.0001450 21; $\alpha(O)$ =3.39×10 ⁻⁵ 5; $\alpha(P)$ =6.36×10 ⁻⁶ 9; $\alpha(Q)$ =4.71×10 ⁻⁷ 7; $\alpha(IPF)$ =1.604×10 ⁻⁵ 23
	1430.95 <i>10</i> ^x 1434.22 <i>15</i> ^x 1438.01 <i>10</i>	0.035 <i>7</i> 0.0080 <i>23</i> 0.0059 <i>15</i>	1617.78	4+	186.827	4+					
	1451.40 15	0.0106 21	1638.283	2+	186.827	4+					
	1459.138 ^{&} 15	0.83 ^g 8	1646.005	3+	186.827		E2 ^h		0.00498 7		α =0.00498 7; α (K)=0.00391 6; α (L)=0.000771 11; α (M)=0.000187 3; α (N+)=0.0001108 16 α (N)=4.97×10 ⁻⁵ 7; α (O)=1.167×10 ⁻⁵ 17; α (P)=2.23×10 ⁻⁶ 4; α (Q)=1.89×10 ⁻⁷ 3; α (IPF)=4.71×10 ⁻⁵ 7
	1469.71 <i>15</i> *1480.37 <i>15</i>	0.020 <i>4</i> 0.016 <i>3</i>	1797.66	2+	328.006	1-					
	1495.910 ^{&} 20	0.868 4	1682.754	(2+,3+,4+)	186.827	4+	(E2) ^h		0.00477 7		$\alpha = 0.00477 \ 7; \ \alpha(K) = 0.00374 \ 6; \ \alpha(L) = 0.000732 \ 11;$ $\alpha(M) = 0.0001769 \ 25; \ \alpha(N+) = 0.0001177$ $\alpha(N) = 4.71 \times 10^{-5} \ 7; \ \alpha(O) = 1.107 \times 10^{-5} \ 16;$ $\alpha(P) = 2.11 \times 10^{-6} \ 3; \ \alpha(Q) = 1.81 \times 10^{-7} \ 3;$ $\alpha(IPF) = 5.72 \times 10^{-5} \ 8$
	1501.57 <i>5 x</i> 1529.05 <i>10</i>	0.46 ^e 3 0.057 6	1688.398	2+,3+	186.827	4+					() <i>6.1.2</i> 6
	1537.89 ^a 10	0.047 5	1724.288	2+	186.827	4+					
	1548.65 ^{&} 4	0.038 4	1735.508	4+	186.827	4+					

$\nu(^{228}{\rm Th})$	(continued)
/ 111/	(Continued)

²²⁸Ac β⁻ decay 1987Da28 (continued)

						/(111)	, (continued	2	
	${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#l}$	E_i (level)	J_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	$lpha^\dagger$	Comments
	1557.11& 4	0.178 13	1743.87	4+	186.827 4+	(E2+M1) ^h	+1.2 ^h 2	0.0070 6	α =0.0070 6; α (K)=0.0055 5; α (L)=0.00102 8; α (M)=0.000245 19; α (N+)=0.000198 15 α (N)=6.5×10 ⁻⁵ 5; α (O)=1.54×10 ⁻⁵ 12; α (P)=2.98×10 ⁻⁶ 23; α (Q)=2.75×10 ⁻⁷ 24; α (IPF)=0.000114 9
	1559.85 20	0.020 4	1617.78	4+	57.763 2 ⁺				
	1571.52 20	0.0057 16	1758.24	2+	186.827 4+	L			
	1573.26 ^{&} 5	0.033 3	1760.17	2 ⁽⁺⁾ ,3 ⁽⁺⁾	186.827 4+	(E2) ^h		0.00438 7	$\alpha = 0.00438 \ 7; \ \alpha(K) = 0.00342 \ 5; \ \alpha(L) = 0.000660 \ 10; \\ \alpha(M) = 0.0001592 \ 23; \ \alpha(N+) = 0.0001356 \\ \alpha(N) = 4.24 \times 10^{-5} \ 6; \ \alpha(O) = 9.97 \times 10^{-6} \ 14; \\ \alpha(P) = 1.91 \times 10^{-6} \ 3; \ \alpha(Q) = 1.650 \times 10^{-7} \ 24; \\ \alpha(IPF) = 8.12 \times 10^{-5} \ 12$
	1580.53 ^{&} 3	0.60 ^g 4	1638.283	2+	57.763 2+	(M1,E2)		0.007 3	$\begin{array}{l} \alpha \! = \! 0.007 \; 3; \; \alpha(\mathrm{K}) \! = \! 0.0057 \; 24; \; \alpha(\mathrm{L}) \! = \! 0.0011 \; 4; \\ \alpha(\mathrm{M}) \! = \! 0.00025 \; 10; \; \alpha(\mathrm{N}+) \! = \! 0.00022 \; 9 \\ \alpha(\mathrm{N}) \! = \! 7.\mathrm{E} \! - \! 5 \; 3; \; \alpha(\mathrm{O}) \! = \! 1.6 \! \times \! 10^{-5} \; 6; \; \alpha(\mathrm{P}) \! = \! 3.1 \! \times \! 10^{-6} \; 12; \\ \alpha(\mathrm{Q}) \! = \! 2.9 \! \times \! 10^{-7} \; 13; \; \alpha(\mathrm{IPF}) \! = \! 0.00013 \; 5 \\ \mathrm{Mult.:} \; \alpha(\mathrm{K}) \mathrm{exp} \! = \! 0.012 \; 7 \; (1971\mathrm{He}23); \; \mathrm{theory:} \\ \alpha(\mathrm{K})(\mathrm{M}1) \! = \! 0.0087, \; \alpha(\mathrm{K})(\mathrm{E}2) \! = \! 0.00343. \end{array}$
	1588.20 ^{&} 3	3.228 8	1646.005	3+	57.763 2+	E2 ^h		0.00431 6	α =0.00431 6; α (K)=0.00337 5; α (L)=0.000647 9; α (M)=0.0001561 22; α (N+)=0.0001396 2 α (N)=4.15×10 ⁻⁵ 6; α (O)=9.77×10 ⁻⁶ 14; α (P)=1.87×10 ⁻⁶ 3; α (Q)=1.622×10 ⁻⁷ 23; α (IPF)=8.62×10 ⁻⁵ 12 Mult.: α (K)exp=0.0050 16 (1971He23); theory: α (K)=0.00340.
ı	1609.41 <i>15</i>	0.0077 15	1987.46	4+	378.178 6 ⁺				
	1625.06 ^{&} 5	0.255 18	1682.754	$(2^+,3^+,4^+)$	57.763 2+				
	1630.627 ^{&} 10	1.51 ^g 4	1688.398	2+,3+	57.763 2+	(M1,E2)		0.007 3	$\alpha = 0.007 \ 3; \ \alpha(K) = 0.0053 \ 22; \ \alpha(L) = 0.0010 \ 4; \\ \alpha(M) = 0.00023 \ 9; \ \alpha(N+) = 0.00024 \ 9 \\ \alpha(N) = 6.2 \times 10^{-5} \ 24; \ \alpha(O) = 1.5 \times 10^{-5} \ 6; \ \alpha(P) = 2.9 \times 10^{-6} \\ 11; \ \alpha(Q) = 2.7 \times 10^{-7} \ 12; \ \alpha(IPF) = 0.00016 \ 6 \\ \text{Mult.: from } \alpha(K) \exp(1625\gamma + 1630\gamma) = 0.0062 \ 20 \\ (1971 \text{He}23); \ \text{theory: } \alpha(K)(M1) = 0.0090, \\ \alpha(K)(E2) = 0.0034.$
	1638.281 ^{&} 10	0.478 3	1638.283	2+	0.0 0+	(E2) ^h		0.00410 6	α =0.00410 6; α (K)=0.00319 5; α (L)=0.000608 9; α (M)=0.0001463 21; α (N+)=0.0001539 2 α (N)=3.89×10 ⁻⁵ 6; α (O)=9.16×10 ⁻⁶ 13; α (P)=1.755×10 ⁻⁶ 25; α (Q)=1.533×10 ⁻⁷ 22; α (IPF)=0.0001039
	1666.523 ^{&} 13	0.178 <i>13</i>	1724.288	2+	57.763 2+	M1 ^h		0.00895 13	α =0.00895 13; α (K)=0.00702 10; α (L)=0.001269 18; α (M)=0.000303 5; α (N+)=0.000351 5

²²⁸Ac β⁻ decay 1987Da28 (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.@	δ	α^{\dagger}	Comments
									$\alpha(N)=8.08\times10^{-5}\ 12;\ \alpha(O)=1.91\times10^{-5}\ 3;\ \alpha(P)=3.72\times10^{-6}$ 6; $\alpha(Q)=3.58\times10^{-7}\ 5;\ \alpha(IPF)=0.000247\ 4$
^x 1671.64 <i>15</i>	0.0041 13								
1677.67 ^{&} 3	0.054 5	1735.508	4+	57.763	2+				
^x 1684.01 20	0.015 5					h			
1686.09 ^{&} 7	0.095 8	1743.87	4+	57.763	2+	(E2) ^h		0.00391 6	α =0.00391 6; α (K)=0.00303 5; α (L)=0.000573 8; α (M)=0.0001378 20; α (N+)=0.0001688 2 α (N)=3.67×10 ⁻⁵ 6; α (O)=8.64×10 ⁻⁶ 12; α (P)=1.655×10 ⁻⁶ 24; α (Q)=1.455×10 ⁻⁷ 21; α (IPF)=0.0001217
1700.59 20	0.0101 23	1758.24	2+	57.763	2+				
1702.43 ^{&} 5	0.048 5	1760.17	$2^{(+)},3^{(+)}$	57.763	2+				
1706.19 <i>10</i>	0.0085 10	1893.02	3+	186.827	4+	M1+E2 ^h	+0.42 ^h 4	0.00776 16	$\begin{array}{l} \alpha = 0.00776 \ 16; \ \alpha(\mathrm{K}) = 0.00605 \ 13; \ \alpha(\mathrm{L}) = 0.001097 \ 22; \\ \alpha(\mathrm{M}) = 0.000262 \ 6; \ \alpha(\mathrm{N}+) = 0.000346 \ 7 \\ \alpha(\mathrm{N}) = 6.99 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 1.65 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 3.21 \times 10^{-6} \\ 7; \ \alpha(\mathrm{Q}) = 3.07 \times 10^{-7} \ 7; \ \alpha(\mathrm{IPF}) = 0.000256 \ 6 \end{array}$
1713.47 20	0.0054 10	1899.97	(2+)	186.827	4+				γ not seen in ²²⁸ Pa decay. I γ <0.002 from upper limit in ²²⁸ Pa decay.
^x 1721.4 3	0.0057 21								•
1724.21 <mark>&</mark>	0.029 3	1724.288	2+	0.0	0^{+}				
1738.22 25	0.018 4	1795.65	4+	57.763					
1740.4 3	0.011 3	1797.66	2+	57.763					
1742.0 3	0.0080 23	1928.66	3+	186.827	4+				
^x 1745.28 20 1750.54 20	0.0065 8 0.0080 8	1937.18	2+,3,4+	186.827	1 +				
1758.11 10	0.0035 4	1944.83	2 ,3,4 3 ⁺	186.827		E2+M1 ^h	-9^{h} 1	0.00371 6	α =0.00371 6; α (K)=0.00285 5; α (L)=0.000533 8;
1738.11 10	0.055 4	1944.83	3.	180.827	4.	E2+WII"	-9* 1	0.00371 0	α =0.003/1 6; α (K)=0.00283 3; α (L)=0.000333 8; α (M)=0.0001281 19; α (N+)=0.000195 3 α (N)=3.41×10 ⁻⁵ 5; α (O)=8.03×10 ⁻⁶ 12; α (P)=1.542×10 ⁻⁶ 23; α (Q)=1.369×10 ⁻⁷ 20; α (IPF)=0.0001515
1772.2 <i>3 x</i> 1784.4 <i>3 x</i> 1787.3 <i>5</i>	0.0018 <i>5</i> 0.0059 <i>10</i> 0.0013 <i>5</i>	1958.72	(2+)	186.827	4+				
1795.1 5	0.0021 8	2123.1	(2^{+})	328.006	1-				
1797.5 5	0.0021 8	1797.66	2+	0.0	0_{+}	[E2]			
1800.86 20	0.0044 8	1987.46	4 ⁺	186.827					
1823.22 <i>10</i> 1826.7 <i>3</i>	0.044 <i>4</i> 0.0021 <i>8</i>	2010.20 2013.6	(2^+) $2^+,3,4^+$	186.827 186.827					
1826.7 <i>3</i> 1835.43 <i>10</i>	0.0021 8	1893.02	2*,3,4* 3 ⁺	57.763		E2+M1 ^h	+2.9 ^h 3	0.00382 10	a=0.00383
1833.43 10	0.038 4	1893.02	3.	31./03	Δ.	E2+M1"	+2.9° 3	0.00382 10	α =0.00382 10; α (K)=0.00291 8; α (L)=0.000536 14; α (M)=0.000128 4; α (N+)=0.000246 7 α (N)=3.42×10 ⁻⁵ 9; α (O)=8.06×10 ⁻⁶ 21; α (P)=1.55×10 ⁻⁶ 4; α (Q)=1.41×10 ⁻⁷ 4; α (IPF)=0.000202 6

 228 Ac β^- decay 1987Da28 (continued)

E_{γ}^{\ddagger}	I_{γ} # l	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
1842.13 10	0.042 4	1899.97	(2+)	57.763	2+	M1+E2 ^h	-0.86^{h} 14	0.0055 4	α =0.0055 4; α (K)=0.00420 25; α (L)=0.00076 5; α (M)=0.000182 11; α (N+)=0.000363 21 α (N)=4.9×10 ⁻⁵ 3; α (O)=1.15×10 ⁻⁵ 7; α (P)=2.23×10 ⁻⁶ 13; α (Q)=2.10×10 ⁻⁷ 13; α (IPF)=0.000301 18
1850.13 20	0.0044 8	2037.00	$2^+,3,4^+$	186.827	4+				
1870.83 10	0.0243 23	1928.66	3+	57.763	2+	(M1+E2) ^h		0.0051 18	α =0.0051 18; α (K)=0.0038 14; α (L)=0.00070 24; α (M)=0.00017 6; α (N+)=0.00036 13 α (N)=4.4×10 ⁻⁵ 15; α (O)=1.1×10 ⁻⁵ 4; α (P)=2.0×10 ⁻⁶ 7; α (Q)=1.9×10 ⁻⁷ 8; α (IPF)=0.00030 11
1879.6 <i>3</i>	0.0013 5	1937.18	$2^+,3,4^+$	57.763	2+				
1887.10 5	0.090 8	1944.83	3+	57.763		E2+M1 ^h	-9.1 ^h 1	0.00333 5	$\alpha = 0.00333 \ 5; \ \alpha(K) = 0.00251 \ 4; \ \alpha(L) = 0.000462 \ 7; \\ \alpha(M) = 0.0001107 \ 16; \ \alpha(N+) = 0.000243 \ 4 \\ \alpha(N) = 2.95 \times 10^{-5} \ 5; \ \alpha(O) = 6.95 \times 10^{-6} \ 10; \ \alpha(P) = 1.336 \times 10^{-6} \\ 19; \ \alpha(Q) = 1.201 \times 10^{-7} \ 17; \ \alpha(IPF) = 0.000205 \ 3$
1900.07 20	0.0028 5	1899.97	(2^{+})		0+				
1907.18 20 *1915.9 4 *1919.5 3	0.0119 <i>10</i> 0.0008 <i>3</i> 0.0021 <i>5</i>	1906.63	(2+)	0.0	0+				
1929.78 20	0.0199 21	1987.46	4+	57.763	2+				
1936.3 <i>3</i>	0.0021 5	2123.1	(2^{+})	186.827	4+				
^x 1944.20 20	0.0021 5		(a.b.)						
1952.33 <i>15</i> 1955.9 <i>5</i>	0.059 <i>5</i> 0.0008 <i>3</i>	2010.20 2013.6	(2^+) $2^+,3,4^+$	57.763					
1955.9 3	0.0008 3	1958.72	(2^+)	57.763 0.0	0+				
1965.24 20	0.0013 3	2022.64	2+	57.763					
1971.9 3	0.0036 8	2030.39	2 ⁺	57.763					
1979.3 <i>3 x</i> 2000.9 <i>5</i>	0.0018 <i>5</i> 0.0010 <i>3</i>	2037.00	2+,3,4+	57.763					
2029.4 5	0.0018 5	2030.39	2+	0.0	0_{+}				

[†] Additional information 1.

[‡] From 1987Da28, unless otherwise noted.

[#] From 1987Da28, unless otherwise noted. The relative Iy of 1987Da28 have been normalized to the absolute measurements of 1992Li05, 1983Sc13 and 1982Sa36 at the three γ 's with $I\gamma > 10\%$ (338.324 γ $I\gamma = 11.27\%$ 19, 911.205 γ $I\gamma = 25.8\%$ 4 and 968.987 γ $I\gamma = 15.8\%$ 3, giving a normalization factor of 0.0258 5).

[®] From adopted Iy and the Ice data of 1960Ar06 and 1971He23 (as noted with $\alpha(\exp)$) normalized to theoretical values for: $\alpha(L)(E2)$ for 129.065y, $\alpha(K)(E1)$ for 209.253 γ and α (K)(E2) for 968.971 γ .

[&]amp; Weighted average of measurements by 1987Da28, 1979He10. The measurements of 1979He10 have been corrected by using the calibration line Eγ from 1995HeZZ.

 228 Ac β^- decay 1987Da28 (continued)

- ^a Energy fit poor, E γ not included in the least squares fit to obtain E(level).
- ^b Weighted average of absolute intensity measurements of 1992Li05, 1983Sc13, 1982Sa36.
- ^c Weighted average of measurements by 1992Li05, 1987Da28, 1983Sc13, 1982Sa36.
- ^d Weighted average of measurements by 1987Da28, 1983Sc13, 1982Sa36.
- ^e Weighted average of measurements by 1987Da28, 1983Sc13.
- f Weighted average of measurements by 1987Da28, 1982Sa36.
- g Weighted average of measurements by 1992Li05, 1987Da28, 1983Sc13.
- ^h From ²²⁸Pa ε decay.
- ⁱ The adopted J^{π} require that this γ have an unreasonable multipolarity (M2 or E3). The placement of this transition is therefore questionable.
- j γ 's of approximately same energy and intensity are reported in both 228 Ac and 228 Pa decays. On the basis of coin with 911.2 γ , it is suggested in 228 Ac decay that the γ feeds the 2⁺ 968.97 level. In ²²⁸Pa decay, the γ is placed feeding the 3⁻ 968.37 level. The energy of the γ (E γ =674.65 5) agrees with decay to the 968.37 level. Possibly the γ is a doublet feeding both the 968.97 and 968.37 levels. Iy(doublet)=0.101 8.
- ^k The energy of the 853-keV transition from the 1944.9 level is expected to be 853.877 12 from E(level); the expected intensity is $I\gamma = 0.0031$ 4 from branching ratio in 228 Pa decay. Therefore, the 853.17 10 γ with I γ =0.0119 18 reported by 1987Da28 seems to be a doublet with part of the intensity belonging to a γ unplaced in level scheme.
- ¹ Absolute intensity per 100 decays.
- ^m Multiply placed with undivided intensity.
- ⁿ Multiply placed with intensity suitably divided.
- ^o Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

²²⁸Ac β⁻ decay 1987Da28

Decay Scheme

²²⁸Ac β – decay 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch & Multiply placed: undivided intensity given Legend @ Multiply placed: intensity suitably divided $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \ \text{Decay (Uncertain)} \end{array}$ 6.15 h 2 $Q_{\beta} = 2134 \ 3$ $\%\beta^{-}=100$ $^{228}_{89}\mathrm{Ac}_{139}$ $I\beta^ \mathsf{Log}\; ft$ 0.251 6.86 1944.83 0.046 7.66 1937.18 0.056 7.63 1928.66 0.0347.98 1906.63 0.077 7.67 1899.97 0.117 7.53 1893.02 $2^{(+)},3^{(+)}$ 0.119 8.13 1760.17 1539.24 0.060 9.36 1416.09 0.67 8.66 1226.566 1200.5 3.11 8.091 1168.377 5.8 7.84 1153.465 0.29 ns 2 5.90 7.883 1122.949 0.26 9.29 1091.020 3.11 8.306 $(3)^{+}$ 1022.531 29.9 7.395 968.972 10.29 0.041 944.200 0.21 9.67 874.48 0+831.822 9.9 186.827 0.6 7 8.9 57.763 0.0 $^{228}_{90}\mathrm{Th}_{138}$

$^{228}{ m Ac}~eta^-~{ m decay}$ 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch & Multiply placed: undivided intensity given Legend @ Multiply placed: intensity suitably divided $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 6.15 h 2 γ Decay (Uncertain) Q_{β} = 2134 3 $\%\beta^{-}=100$ 1 139.5 (E2) (1002) $^{228}_{89}\mathrm{Ac}_{139}$ 0000 (21 W) 6+11 1 146.57 020 1 1401.40 020 72 Mars 10030 102 43 0.00, 151 23 0.00, 151 0 138.25 ° 19.2 | 38.29 ° 19.8 | 38.09 ° 19.8 $I\beta^-$ Log ft0.045 8.40 1797.66 < 0.01 >9.1 1795.65 0.119 8.13 1760.17 0.062 8.42 1758.24 0.389 1743.87 7.673 1.2 8.03 1431.981 0.217 8.95 1344.082 5.8 7.84 1153.465 0.29 ns 2 0.070 9.90 1059.94 1022.531 8.306 3.11 29.9 7.395 968.972 12.2^{1u} 0.01 519.195 11.65 8.435 396.083 0.116 10.45 378.178 0.59 10.75^{1u}

 $^{228}_{90} Th_{138}$

328.006

186.827

57.763

0.0

0.6

7

9.9

8.9

 0^{+}

228 Ac β^- decay 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

Legend

228 Ac β^- decay 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch & Multiply placed: undivided intensity given Legend @ Multiply placed: intensity suitably divided $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma}' < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) 6.15 h 2 $\%\beta^{-}=100$ $^{228}_{89}\mathrm{Ac}_{139}$ $\underline{I\beta^-}$ $\underline{\text{Log } ft}$ 3.0 7.11 1643.119 1638.283 1617.78 1.15 7.542 0.095 8.68 1539.24 7.6 7.003 1531.478 1450.35 0.60 8.29 1431.981 1.2 8.03 0.67 1226.566 8.66 < 0.005 > 10.91174.50 3.11 8.091 1168.377 5.8 7.84 1153.465 0.29 ns 2 5.90 7.883 1122.949 0.26 9.29 1091.020 3.11 8.306 1022.531 0.33 9.29 1016.386 968.972 29.9 7.395 968.335 0.041 10.29 944.200 0.01 12.2^{1u} 519.195 11.65 8.435 396.083 10.75^{1u} 0.59 328.006 9.9 0.6 186.827 8.9 57.763 7 0+0.0

 $^{228}_{\ 90}Th_{138}$

228 Ac β $^-$ decay 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch & Multiply placed: undivided intensity given Legend @ Multiply placed: intensity suitably divided $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \end{array}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ γ Decay (Uncertain) 6.15 h 2 $Q_{\beta^-}=21343$ $\%\beta^{-}=100$ $^{228}_{89}\mathrm{Ac}_{139}$ $I\beta^-$ Log ft1.2 8.03 1431.981 1416.09 0.060 9.36 0.217 8.95 1344.082 0.058 9.97^{1u} $(5)^{-}$ 1297.440 0.67 8.66 1226.566 0.179.34 1175.45 < 0.005 >10.9 1174.50 3.11 8.091 1168.377 5.8 1153.465 7.84 0.29 ns 2 0.26 9.29 1091.020 3.11 8.306 1022.531 0.14 9.71 979.507 29.9 7.395 968.972 0.041 10.29 944.200 12.2^{1u} 0.01 519.195 11.65 8.435 396.083 10.75^{1u} 0.59 328.006 0.6 9.9 186.827 7 8.9 57.763 0^+ 0.0 $^{228}_{90}\mathrm{Th}_{138}$

228 Ac β^- decay 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 decays through this branch & Multiply placed: undivided intensity given

@ Multiply placed: intensity suitably divided

Legend

$$^{228}_{90}\mathrm{Th}_{138}$$

²²⁸Ac β – decay 1987Da28

Decay Scheme (continued)

Intensities: $I_{(\gamma+\mathit{ce})}$ per 100 decays through this branch & Multiply placed: undivided intensity given Legend @ Multiply placed: intensity suitably divided $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ 6.15 h 2 $Q_{\beta} = 2134 3$ $\%\beta^{-}=100$ $^{228}_{89}\mathrm{Ac}_{139}$ Ιβ- $\underline{\text{Log } ft}$ 29.9 7.395 968.972 968.45 968.335 0.041 10.29 944.200 938.61 0.21 9.67 874.48 831.822 0^+ 12.2^{1u} 0.01 519.195 - 328" | - 2 11.65 8.435 396.083 0.116 10.45 378.178 0.59 10.75^{1u} 328.006 186.827 0.6 9.9 8.9 7 57.763 0.0 $^{228}_{\,90}\mathrm{Th}_{138}$

²²⁸Ac β⁻ decay 1987Da28

Band(F): K^π=2⁻ octupole band

(5) 1297.440

<u>2</u>-

938.61

Band(C): $K^{\pi}=0^+$ two octupole phonon band

²²⁸Ac β^- decay 1987Da28 (continued)

Band(G): $K^{\pi}=2^+$ rotational band on quasiparticle state

3⁺ 1944.83

$$^{228}_{\,90}\mathrm{Th}_{138}$$