Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική

Βασίλης Διονύσης Μουστάκας Πανεπιστήμιο Κρήτης

1. Δράσεις ομάδων και αναπαραστάσεις (συνέχεια)

Σε ότι ακολουθεί υποθέτουμε ότι \mathbb{F} είναι ένα αυθαίρετο σώμα. Ας δούμε μερικά σημαντικά παραδείγματα αναπαραστάσεων.

Παράδειγμα 1.5. Έστω G μια ομάδα.

(α) Κάθε διανυσματικός χώρος V διάστασης 1 γίνεται G-πρότυπο θέτοντας

$$qv = v$$

για κάθε $g \in G$ και $v \in V$. Η αντίστοιχη αναπαράσταση ονομάζεται τετριμμένη αναπαράσταση (trivial representation) της G και την συμβολίζουμε με (ρ^{triv}, V) .

- (β) Η αναπαράσταση μεταθέσεων που επάγεται από την δράση της G στον εαυτό της με αριστερό πολλαπλασιασμό ονομάζεται κανονική αναπαράσταση (regular representation) της G και την συμβολίζουμε με $(\rho^{\rm reg}, \mathbb{F}[G])$. Όπως θα δούμε σε επόμενη παράγραφο, η κανονική αναπαράσταση αποτελεί ένα από τα σημαντικότερα παραδείγματα αναπαραστάσεων.
- (γ) Έστω H υποομάδα της G. Η αναπαράσταση μεταθέσεων που επάγεται από τη δράση της G στο σύνολο των αριστερών συμπλόκων της H ονομάζεται αναπαράσταση συμπλόκου (coset representation). Στην περίπτωση όπου $H=\{\epsilon\}$ είναι η τετριμμένη υποομάδα, τότε η αναπαράσταση συμπλόκου εξειδικεύεται στην κανονική αναπαράσταση. Όπως θα δούμε σε επόμενη ενότητα, η αναπαράσταση συμπλόκου είναι ειδική περίπτωση μιας επαγόμενης αναπαράστασης (induced representation) μεγάλου ενδιαφέροντος.

Για τα υπόλοιπα παραδείγματα υποθέτουμε ότι $G = \mathfrak{S}_n$.

(δ) Ο πίνακας της μετάθεσης (1 2) στην κανονική αναπαράσταση της \mathfrak{S}_3 ως προς την βάση $\{(1)(2)(3),(1\ 2),(2\ 3),(1\ 3),(1\ 2\ 3),(1\ 3\ 2)\}$ του $\mathbb{F}[\mathfrak{S}_3]$ είναι

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Γιατί; Ποιοί είναι οι υπόλοιποι; Τι παρατηρείτε;

Ημερομηνία: 2 Οκτωβρίου 2025.

(στ) Έστω H η υποομάδα της \mathfrak{S}_3 που παράγεται από την μετάθεση (2 3). Ο πίνακας της μετάθεσης (1 2) στην αντίστοιχη αναπαράσταση συμπλόκου ως προς τη βάση $\{H,(1\ 2)H,(1\ 3)H\}$ είναι

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Γιατί; Ποιοί είναι οι υπόλοιποι; Τι παρατηρείτε;

(ζ) Εκτός από την τετριμμένη αναπαράσταση, η συμμετρική ομάδα έχει μια ακόμη αναπαράσταση διάστασης 1, η οποία προκύπτει με φυσικό τρόπο. Ένας διανυσματικός χώρος V διάστασης 1 γίνεται \mathfrak{S}_n -πρότυπο θέτοντας

$$\pi v = \operatorname{sign}(\pi)v,$$

για κάθε $\pi \in \mathfrak{S}_n$ και $v \in V$, όπου $\mathrm{sign}(\pi)$ είναι το πρόσημο¹ της μετάθεσης π . Η αναπαράσταση αυτή ονομάζεται αναπαράσταση προσήμου (sign representation) και την συμβολίζουμε με $(\rho^{\mathrm{sign}}, V)$.

(η) Η αναπαράσταση μεταθέσεων που επάγεται από την προφανή δράση της \mathfrak{S}_n στο [n] ονομάζεται αναπαράσταση καθορισμού (defining representation) και την συμβολίζουμε με $(\rho^{\mathrm{def}}, \mathbb{F}[1,2,\ldots,n])$. Για $\pi \in \mathfrak{S}_n$, ως προς τη συνήθη βάση έχουμε

$$\left(
ho^{\mathrm{def}}(\pi) \right)_{ij} = egin{cases} 1, & \operatorname{an} \pi_j = i \\ 0, & \mathrm{διαφορετικά} \end{cases}$$

για κάθε $1 \le i, j \le n$ (γιατί;). Πίνακες αυτής της μορφής ονομάζονται πίνακες μετάθεσης (permutation matrices). Ποιοί είναι οι πίνακες μετάθεσης για n=3; Τι παρατηρείτε;

Επιστρέφοντας στο τρέχον παράδειγμα με την αναπαράσταση της \mathfrak{S}_3 ως ομάδα συμμετρίας του τριγώνου Δ , ας "αλλάξουμε οπτική", γράφοντας του πίνακες στην νέα βάση

$$\{\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2 - \mathbf{e}_1, \mathbf{e}_3 - \mathbf{e}_1\}$$

του \mathbb{R}^3 . Ως προς αυτή την βάση έχουμε

$$(1)(2)(3) \leadsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (1 \ 2 \ 3) \leadsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad (1 \ 3 \ 2) \leadsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$

¹Μια μετάθεση ονομάζεται άρτια (αντ. περιττή) αν μπορεί να γραφεί ως γινόμενο άρτιου (αντ. περιττού) πλήθους αντιμεταθέσεων, δηλαδή κύκλων μήκους 2. Το πρόσημο μιας μετάθεσης ορίζεται να είναι 1 ή -1, ανάλογα με το αν είναι άρτια ή περιττή, αντίστοιχα. Θα δούμε περισσότερα για το πρόσημο μιας μετάθεσης σε επόμενη παράγραφο.

Συνεπώς, έχουμε μια διάσπαση

$$\mathbb{R}^3 = \mathbb{R}[\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \oplus \mathbb{R}[\mathbf{e}_2 - \mathbf{e}_1, \mathbf{e}_3 - \mathbf{e}_1], \tag{1.2}$$

η οποία "σέβεται" τη δράση της συμμετρικής ομάδας. Επιπλέον, παρατηρούμε ότι η \mathfrak{S}_3 δρα στον υπόχωρο $\mathbb{R}[\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3]$ τετριμμένα.

Ορισμός 1.6. Έστω (ρ, V) αναπαράσταση μιας ομάδας G και W ένας υπόχωρος του V. Το ζεύγος (ρ, W) ονομάζεται υποαναπαράσταση (ή G-υποπρότυπο, στην γλώσσα των προτύπων) της V αν ο W είναι G-αναλλοίωτος, δηλαδή αν για κάθε $g \in G$ ισχύει ότι

$$\rho(q)(w) \in W$$

για κάθε $w \in W$.

Στην αναπαράσταση καθορισμού (όπως και στην περίπτωση της αναπαράστασης του τρέχοντος παραδείγματος) ο υπόχωρος

$$W = \mathbb{F}[1 + 2 + \dots + n] = \{c(1 + 2 + \dots + n) : c \in \mathbb{F}\}\$$

είναι \mathfrak{S}_n -αναλλοίωτος, διότι

$$\pi \cdot (1+2+\cdots+n) = \pi_1 + \pi_2 + \cdots + \pi_n = 1+2+\cdots+n \in W,$$

για κάθε $\pi \in \mathfrak{S}_n$. Συνεπώς, βρήκαμε μια μονοδιάστατη υποαναπαράσταση της $\mathbb{F}[1,2,\ldots,n]$ η οποία είναι "αντίγραφο" της τετριμμένης αναπαράστασης. Γενικότερα, κάθε αναπαράσταση μεταθέσεων σ' ένα σύνολο $S=\{s_1,s_2,\ldots,s_n\}$ περιέχει την μονοδιάστατη υποαναπαράσταση $\mathbb{F}[s_1+s_2+\cdots+s_n]$.

Ορισμός 1.7. Μια αναπαράσταση η οποία περιέχει μια γνήσια υποαναπαράσταση, που δεν είναι ο τετριμμένος υπόχωρος, ονομάζεται αναγωγική (reducible). Διαφορετικά, την αποκαλούμε ανάγωγη αναπαράσταση (irreducible representation).

Κάθε μονοδιάσταση αναπαράσταση είναι κατ' ανάγκη ανάγωγη (γιατί;) και κάθε αναπαράσταση μεταθέσεων είναι αναγωγική.

Πρόταση 1.8. Έστω G μια ομάδα. Μια αναπαράσταση (ρ, V) πεπερασμένης διάστασης της G είναι αναγωγική αν και μόνο αν υπάρχει μια βάση του V τέτοια ώστε ο πίνακας της $\rho(g)$ ως προς αυτή την βάση να είναι μπλόκ-άνω τριγωνικός, για κάθε $g \in G$.

Απόδειξη. Έστω $\dim(V)=n$. Για την κατεύθυνση " \Rightarrow ", υποθέτουμε ότι W είναι υποαναπαράσταση του V με βάση $\{w_1,w_2,\ldots,w_k\}$. Συμπληρώνουμε την βάση αυτή με στοιχεία του V, για να πάρουμε μια βάση $\{w_1,w_2,\ldots,w_k,v_{k+1},\ldots,v_n\}$ του V. Για κάθε $g\in G$, ο πίνακας $\rho(g)$ ως προς αυτή την βάση έχει την ζητούμενη μορφή, διότι

$$\rho(g)(w_i) \in W$$

για κάθε $1 \le i \le k$.

Αντιστρόφως, υποθέτουμε ότι υπάρχει μια βάση του V ως προς την οποία, για κάθε $g \in G$

$$\rho(g) = \begin{pmatrix} A & * \\ 0 & B \end{pmatrix}$$

όπου A,B είναι τριγωνικοί πίνακες. Αν ο A είναι $k\times k$, τότε ο υπόχωρος που παράγεται από τα πρώτα k στοιχεία της βάσης αυτής είναι G-αναλλοίωτος (γιατί;) και το ζητούμενο έπεται.

Στο τρέχον παράδειγμα, είδαμε ότι ο υπόχωρος $\mathbb{R}[\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3]$ είναι μια υποαναπαράσταση. Μιμούμενοι την απόδειξη της Πρότασης 1.8, μπορούμε να επεκτείνουμε τη βάση με τον προφανή τρόπο

$$\{\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_3\}$$

και υπολογίζοντας τους πίνακες των στοιχείων της \mathfrak{S}_3 ως προς αυτή τη βάση βρίσκουμε

$$(1)(2)(3) \leadsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (1\ 2\ 3) \leadsto \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} \quad (1\ 3\ 2) \leadsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

όπως προέβλεψε η Πρόταση 1.8. Αλλά, ο υπόχωρος $\mathbb{R}[\mathbf{e}_2,\mathbf{e}_3]$ δεν είναι \mathfrak{S}_3 -αναλλοίωτος, διότι

$$(1\ 2) \cdot \mathbf{e}_2 = \mathbf{e}_1 \notin \mathbb{R}[\mathbf{e}_2, \mathbf{e}_3]$$

και κατ' επέκταση δεν αποτελεί υποαναπαράσταση. Συνεπώς, η διάσπαση

$$\mathbb{R}^3 = \mathbb{R}[\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3] \oplus \mathbb{R}[\mathbf{e}_2, \mathbf{e}_3]$$

δεν "σέβεται" της δράση της συμμετρικής ομάδας, σ' αντίθεση με αυτή της Διάσπασης (1.2), γεγονός το οποίο εξηγεί γιατί οι αντίστοιχοι πίνακες της τελευταίας περίπτωσης είναι μπλοκδιαγώνιοι.