Kompetisi Sains Nasional 2021 Tingkat Nasional Jenjang SMA/MA Sederajat Hari Pertama

Muhammad Jilan Wicaksono Wildan Bagus Wicaksono

Updated 18 Nopember 2021

Catatan

Ucapan selamat kepada seluruh peraih medali di Kompetisi Sains Nasional 2021 dan selamat berjuang kembali di pelatnas :D. Ucapan terima kasih kepada Rizky Maulana Hakim yang telah membantu mengoreksi dan memberikan saran. Saran, koreksi, maupun kritik lainnya dapat dikirimkan melalui:

• Email: wildanarteji@gmail.com,

• Facebook: Wildan Bagus W

• Instagram: wildan.wicaksono_32

KSN 2021 Matematika SMA/MA Sederajat Hari Pertama

240 menit

Soal 1. Pada papan tulis tertulis secara berurutan angka-angka berikut:

Andi harus menempatkan tanda + atau - di antara setiap dua angka yang berurutan dan menghitung nilai dari ekspresi yang dihasilkan. Sebagai contoh, Andi bisa menempatkan tanda + dan - sebagai berikut:

$$1+2-3+4+5+6+7-8-9=5$$
.

Tentukan bilangan positif ganjil terkecil yang tidak mungkin bisa diperoleh oleh Andi.

- Soal 2. Diberikan segitiga lancip ABC. Titik D dan E berturut-turut merupakan titik tengah segmen AB dan AC. Misalkan L_1 dan L_2 berturut-turut lingkaran luar segitiga ABC dan ADE. Garis CD memotong lingkaran L_1 dan L_2 pada M ($M \neq C$) dan N ($N \neq D$). Jika DM = DN, buktikan bahwa ABC segitiga sama kaki.
- Soal 3. Sebuah bilangan asli disebut $prima\ berpangkat$ jika bilangan tersebut dapat dituliskan dalam bentuk p^k , dengan p prima dan k bilangan bulat positif. Tentukan nilai n terbesar yang mungkin sehingga ada barisan bilangan prima berpangkat a_1, a_2, \dots, a_n dengan $a_i = a_{i-1} + a_{i-2}$ untuk semua $3 \le i \le n$.
- **Soal 4.** Misalkan x, y, z bilangan real positif dengan x + y + z = 3. Buktikan

$$2\sqrt{x+\sqrt{y}}+2\sqrt{y+\sqrt{z}}+2\sqrt{z+\sqrt{x}}\leq \sqrt{8+x-y}+\sqrt{8+y-z}+\sqrt{8+z-x}.$$

Soal 1. Pada papan tulis tertulis secara berurutan angka-angka berikut:

Andi harus menempatkan tanda + atau - di antara setiap dua angka yang berurutan dan menghitung nilai dari ekspresi yang dihasilkan. Sebagai contoh, Andi bisa menempatkan tanda + dan - sebagai berikut:

$$1+2-3+4+5+6+7-8-9=5$$
.

Tentukan bilangan positif ganjil terkecil yang tidak mungkin bisa diperoleh oleh Andi.

Solusi. Jawabannya adalah 43.

Tinjau bahwa $1+2+3+\cdots+9=45$. Misalkan S adalah jumlah bilangan yang tanda sebelum bilangan tersebut dirubah dari + menjadi -. Sebagai contoh, pada 1+2-3+4+5+6+7-8-9, maka S=3+8+9=20. Misalkan pula bilangan asli yang dihasilkan dari suatu ekspresi adalah A. Maka A=45-2S yang dimana bilangan ganjil di interval [1,45] Dari sini kita tinggal mencari semua kemungkinan nilai dari A. Tinjau bahwa 1 adalah satu-satunya bilangan yang tidak dapat dapat dirubah dari 1 menjadi -1.

- Jika $A = 1 \iff S = 22$, ambil S = 22 = 9 + 8 + 5.
- Jika $A = 3 \iff S = 21$, ambil S = 9 + 8 + 4.
- Jika $A = 5 \iff S = 20$, ambil S = 9 + 8 + 3.
- Jika $A = 7 \iff S = 19$, ambil S = 9 + 8 + 2.
- Jika $A = 9 \iff S = 18$, ambil S = 8 + 7 + 3.
- Jika $11 \le A \le 25 \iff 10 \le S \le 17$, dapat dipilih dua bilangan i dan S-i agar S=i+(S-i) sedemikian sehingga $2 \le i, S-i \le 9$ dan $S \ne 2i$ (untuk S ganjil cukup jelas ada i sedemikian sehingga $i \ne S-i$. Jika ada i sehingga i = S-i, maka pilih kedua bilangan tersebut i+1 dan S-i-1).
- Jika 27 $\leq A \leq$ 41 \iff 2 \leq 5 \leq 9, cukup pilih satu bilangan yang dirubah dari + menjadi –, yaitu S sendiri.

Dengan demikian, semua bilangan ganjil yang mungkin menjadi nilai A adalah semmua bilangan ganjil interval [1,41], sehingga diperoleh bilangan asli ganjil terkecil yang tidak bisa adalah 43. Cukup jelas kita tidak bisa menempatkan tanda — sebelum angka 1.

Jadi, bilangan positif ganjil terkecil yang tidak mungkin bisa diperoleh Andi adalah 43.

Soal 2. Diberikan segitiga lancip ABC. Titik D dan E berturut-turut merupakan titik tengah segmen AB dan AC. Misalkan L_1 dan L_2 berturut-turut lingkaran luar segitiga ABC dan ADE. Garis CD memotong lingkaran L_1 dan L_2 pada M ($M \neq C$) dan N ($N \neq D$). Jika DM = DN, buktikan bahwa ABC segitiga sama kaki.

Bukti. Disini terdapat tiga alternatif solusi.

Alternatif 1.

Misalkan panjang MD = DN = a, AE = EC = b, AD = DB = c, dan NC = x. Tinjau L_1 , dari Power of Point di titik D, maka

$$CD \cdot MD = BD \cdot DA \iff (x+a)a = c^2.$$
 (1)

Tinjau L_2 , dari Power of Point di titik C, maka

$$CN \cdot CD = CE \cdot CA \iff x(x+a) = 2b^2.$$
 (2)

Jumlahkan (1) dan (2), maka $(x+a)^2 = c^2 + 2b^2$. Dari aturan kosinus $\triangle ACD$,

$$\cos A = \cos \angle CAD = \frac{AD^2 + AC^2 - CD^2}{2 \cdot AD \cdot AC} = \frac{c^2 + (2b)^2 - (a+x)^2}{2 \cdot c \cdot 2b}$$
$$= \frac{c^2 + 4b^2 - c^2 - 2b^2}{4bc}$$
$$= \frac{2b^2}{4bc}$$
$$\cos A = \frac{b}{2c}.$$

Dari aturan cosinus $\triangle ABC$,

$$BC^{2} = AB^{2} + AC^{2} - 2 \cdot AB \cdot AC \cdot \cos A = (2c)^{2} + (2b)^{2} - 2 \cdot 2c \cdot 2b \cdot \frac{b}{2c}$$

$$= 4c^{2} + 4b^{2} - 4b^{2}$$

$$= 4c^{2}$$

$$= AB^{2}.$$

Maka AB = BC sehingga terbukti $\triangle ABC$ sama kaki.

Alternatif 2.

Perhatikan bahwa $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{2}$ dan $\angle BAC = \angle DAE$. Maka $\triangle ADE \sim \triangle ABC$. Misalkan DA = c, AE = b, dan DE = a. Maka BD = c, EC = b, dan juga

$$\frac{DE}{BC} = \frac{AD}{AB} = \frac{1}{2} \implies BC = 2DE = 2a.$$

Dengan menggunakan Power of Point titik D dan lingkaran L_1 didapat

$$AD \cdot BD = MD \cdot DC \iff c^2 = DN \cdot DC.$$

Dengan menggunakan Power of Point titik C dan lingkaran L_2 didapat

$$CE \cdot CA = CN \cdot CD = (CD - ND)CD = CD^2 - ND \cdot CD$$

yang ekuivalen dengan

$$2b^2 = CD^2 - c^2 \iff CD^2 = 2b^2 + c^2$$
.

Dari Teorema Stewart pada $\triangle ABC$,

$$CD^2 \cdot AB = AC^2 \cdot DB + BC^2 \cdot AD - AD \cdot DB \cdot AB$$

$$(2b^2 + c^2) \cdot 2c = (2b)^2 \cdot c + (2a)^2 \cdot c - c \cdot c \cdot 2c$$
 (bagi kedua ruas dengan $2c$)
$$2b^2 + c^2 = 2b^2 + 2a^2 - c^2$$

$$2c^2 = 2a^2$$

$$c^2 = a^2$$

$$c = a.$$

Maka $AB = 2c = 2a = BC \implies AB = BC$ sehingga terbukti $\triangle ABC$ sama kaki.

Alternatif 3.

Perhatikan bahwa $\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{2}$ dan $\angle DAE = \angle BAC$. Maka $\triangle ADE \sim \triangle ABC$ yang berakibat $DE \parallel BC$. Selain itu, tinjau AD = DB dan ND = DM, maka AMBN jajargenjang. Karena ACBM siklis dan DNEA siklis, kita punya

$$\angle BAC = \angle BMC = \angle BMN = \angle MNA = \angle DNA = \angle DEA = \angle BCA.$$

Kita punya $\angle BAC = \angle BCA \iff BA = BC$ sehingga terbukti $\triangle ABC$ sama kaki.

Komentar. Selain solusi diatas, kita dapat menggunakan sudut berarah (directed angle), yaitu

$$\angle BAC = \angle BMC = \angle BMN = \angle ANM = \angle AND = \angle AED = \angle ACB$$

yang memberikan konklusi yang sama.

Soal 3. Sebuah bilangan asli disebut $prima\ berpangkat$ jika bilangan tersebut dapat dituliskan dalam bentuk p^k , dengan p prima dan k bilangan bulat positif.

Tentukan nilai n terbesar yang mungkin sehingga ada barisan bilangan prima berpangkat a_1, a_2, \dots, a_n dengan $a_i = a_{i-1} + a_{i-2}$ untuk semua $3 \le i \le n$.

Solusi. Jawabannya adalah 7. Disini terdapat 2 alternatif.

Alternatif 1.

Andaikan $n \geq 8$. Kita membagi 4 kasus berdasarkan paritas dua nilai awal dari barisan a_i , yaitu a_1 dan a_2 .

Kasus 1. Jika a_1 dan a_2 keduanya genap, maka $a_3=a_1+a_2$ juga genap. Maka haruslah $a_1=2^{b_1}, a_2=2^{b_2},$ dan $a_3=2^{b_3}$ untuk suatu bilangan asli b_1, b_2, b_3 . Cukup jelas $b_1, b_2 < b_3$. Maka $2^{b_1}+2^{b_2}=2^{b_3}$. Jika $b_2 \neq b_3$, maka

$$2^{\max\{b_1,b_2\}-\min\{b_1,b_2\}}+1=2^{b_3-\min\{b_1,b_2\}}.$$

Karena $b_3 > \min\{b_1, b_2\}$, maka ruas kanan bernilai genap. Sedangkan, $\max\{b_1, b_2\} - \min\{b_1, b_2\} > 0$ sehingga ruas kiri bernilai ganjil. Maka kontradiksi.

Jika $b_1 = b_2$, maka

$$2^{b_3} = 2^{b_1} + 2^{b_1} = 2^{b_1+1}.$$

Sehingga kita punya $b_3 = b_1 + 1$ dan

$$a_4 = b_2 + b_3 = 2^{b_1} + 2^{b_1+1} = 2^{b_1} \cdot 3$$

yang jelas a_4 bukan prima berpangkat karena terdapat dua faktor prima berbeda yang membagi a_4 . Maka dalam kasus ini tidak mungkin.

Kasus 2. Jika a_1 dan a_2 keduanya ganjil, maka $a_3=a_1+a_2$ genap. Selanjutnya, kita peroleh a_4 ganjil, a_5 ganjil, dan a_6 genap. Misalkan $a_3=2^{b_3}$, $a_4=p_4^{b_4}$, $a_5=p_5^{b_5}$, dan $a_6=2_6^{b_6}$ untuk suatu prima ganjil p_4 , p_5 dan suatu bilangan asli b_3 , b_4 , b_5 , b_6 . Maka

$$2^{b_3} + p_4^{b_4} = p_5^{b_5} (1)$$

$$p_4^{b_4} + p_5^{b_5} = 2^{b_6}. (2)$$

Jumlahkan (1) dan (2), diperoleh

$$2^{b_3} + 2p_4^{b_4} + p_5^{b_5} = p_5^{b_5} + 2^{b_6} \iff 2^{b_3} + 2p_4^{b_4} = 2^{b_6} \iff 2^{b_3-1} + p_4^{b_4} = 2^{b_6-1}.$$

Jelas ruas kiri bernilai lebih besar dari 1, artinya $b_6 \geq 2$. Maka ruas kanan bernilai genap. Agar ruas kiri bernilai genap, maka haruslah 2^{b_3-1} bernilai ganjil jika dan hanya jika $b_3=1$. Maka

$$1 = 2^{b_6 - 1} - p_4^{b_4}. (3)$$

Jika $b_6 \ge 3$ dan $b_4 \ge 2$, maka menurut Mihailescu (atau Catalan's Conjecture), solusi $1 = a^b - c^d$ hanyalah (a, b, c, d) = (3, 2, 2, 3). Maka persamaan (3) tidak ada mungkin.

• Jika $b_6 = 2$, maka

$$p_4^{b_4} = 2^{b_6 - 1} - 1 = 2 - 1 = 1,$$

jelas tidak mungkin.

• Jika $b_4 = 1$, maka $p_4 = 2^{b_6 - 1} - 1$. Dari (2), kita peroleh

$$a_5 = p_5^{b_5} = 2^{b_6} - p_4^{b_4} = 2^{b_6} - 2^{b_6-1} + 1 = 2^{b_6-1} + 1.$$

Selain itu, kita punya $a_3 + a_4 = a_5$ yang berarti

$$2^{b_3} + 2^{b_6 - 1} - 1 = 2^{b_6 - 1} + 1 \iff 2^{b_3} = 2 \iff b_3 = 1.$$

Padahal, $a_3=2^{b_3}=2=p_1^{a_1}+p_2^{a_2}\geq 6$, maka tidak mungkin. Maka dalam kasus ini tidak mungkin.

Kasus 3. Jika a_1 genap dan a_2 ganjil, maka $a_3 = a_1 + a_2$ ganjil. Selanjutnya, kita punya a_4 genap. Maka haruslah $a_1 = 2^{b_1}$, $a_2 = p_2^{b_2}$, $a_3 = p_3^{b_3}$, dan $a_4 = 2^{b_4}$ untuk suatu bilangan asli b_1, b_2, b_3, b_4 dan suatu prima ganjil p_2, p_3 . Kita punya

$$2^{b_1} + p_2^{b_2} = p_3^{b_3} \tag{1}$$

$$p_2^{b_2} + p_3^{b_3} = 2^{b_4}. (2)$$

Jumlahkan (1) dan (2), kita peroleh

$$2^{b_1} + 2p_2^{b_2} + p_3^{b_3} = p_3^{b_3} + 2^{b_4} \iff 2^{b_1 - 1} + p_2^{b_2} = 2^{b_4 - 1}.$$

Seperti **Kasus 2**, maka $b_1 = 1$ dan $b_2 \ge 2$ yang memberikan $1 = 2^{b_4-1} - p_2^{b_2}$ dan untuk $b_4 \ge 3$ dan $b_2 \ge 2$ tidak ada solusi.

- Jika $b_4 = 2$, maka $p_2^{b_2} = 1$ yang jelas tidak mungkin.
- $\bullet\,$ Jika $b_2=1,$ maka $p_2=2^{b_4-1}-1.$ Kita peroleh

$$a_1 = 2$$
, $a_2 = 2^{b_4 - 1} - 1$, $a_3 = 2^{b_4 - 1} + 1$, $a_4 = 2^{b_4}$, $a_5 = 2^{b_4 - 1} \cdot 3 + 1$, $a_6 = 2^{b_4 - 1} \cdot 5$, $a_7 = 2^{b_4 + 2} + 2$.

Tinjau $a_7 = 2(2^{b_4+1}+1)$. Karena $2^{b_4+1}+1$ ganjil, maka ada prima ganjil p sehingga $p \mid 2^{b_4+1}+1$. Akibatnya, a_7 pasti bukan prima berpangkat karena ada dua prima berbeda yang membagi a_7 .

Kasus 4. Jika a_1 ganjil dan a_2 genap, maka $a_3 = a_1 + a_2$ ganjil. Selanjutnya, kita punya a_4 ganjil dan a_5 genap. Perhatikan barisan a_2, a_3, a_4, a_5 seperti pada Kasus 3 (seolaholah $(a_2, a_3, a_4, a_5) \rightarrow (a_1, a_2, a_3, a_4)$). Maka kita peroleh $a_2 = 2$ dan kita tinggal meninjau kasus $p_3 = 2^{b_5-1} - 1$. Maka

$$a_1 = p_1^{a_1}, \quad a_2 = 2, \quad a_3 = 2^{b_5 - 1} - 1, \quad a_4 = 2^{b_5 - 1} + 1, \quad a_5 = 2^{b_5}, \quad a_6 = 2^{b_5 - 1} \cdot 3 + 1,$$

$$a_7 = 2^{b_5 - 1} \cdot 5 + 1, \quad a_8 = 2^{b_5 + 2} + 2.$$

Dengan alasan yang sama seperti **Kasus 3**, maka a_8 bukan prima berpangkat.

Demikian dari semua kasus, untuk $n \geq 8$ mengakibatkan kontradiksi. Jadi, $n \leq 7$. Untuk n=7, ambil $a_1=5, a_2=2$ dan memberikan

$$a_3 = 7$$
, $a_4 = 9$, $a_5 = 16$, $a_6 = 25$, $a_7 = 41$.

Maka untuk n=7 dapat terpenuhi.

Jadi, nilai n terbesar yang diminta adalah $\boxed{7}$.

Alternatif 2.

Perhatikan bahwa n=7 memenuhi dengan barisan 5, 2, 7, 9, 16, 25, 41. Andaikan ada $n\geq 8$ yang memenuhi. Kita bagi 4 kasus.

Kasus 1. Jika a_1 genap dan a_2 ganjil. Misal $a_i = p_i^{b_i}$ dimana p_i prima dan b_i bilangan asli. Maka $a_1 = 2^{b_1}$ dan $a_2 = p_2^{b_2}$ dimana p_2 prima ganjil. Maka $a_3 = 2^{b_1} + p_2^{b_2}$ dan

$$a_4 = a_2 + a_3 = 2^{b_1} + 2p_2^{b_2} \equiv 0 \pmod{2}.$$

Maka $a_4 = 2^{b_4} = 2^{b_1} + 2p_2^{b_2}$ dengan $1 \le b_1 < b_4$. Kita punya

$$2^{b_1-1} \left(2^{b_4-b_1} - 1 \right) = p_2^{b_2}.$$

Karena $p_2 > 2$, maka $2^{b_1-1} \left(2^{b_4-b_1}-1\right) \equiv 1 \pmod 2$ sehingga haruslah $b_1 = 1$. Kita punya

$$p_2^{b_2} = 2^{b_1 - 1} (2^{b_4 - b_1} - 1) = 2^{b_4 - 1} - 1.$$

Maka

$$a_1 = 2$$
, $a_2 = 2^{b_4 - 1} - 1$, $a_3 = 2^{b_4 - 1} + 1$, $a_4 = 2^{b_4}$, $a_5 = 2^{b_4 - 1} \cdot 3 + 1$, $a_6 = 2^{b_4 - 1} \cdot 5$, $a_7 = 2^{b_4 + 2} + 2$.

Tinjau a_7 genap sehingga haruslah

$$2^{b_7} = 2^{b_4+2} + 2 \iff 2^{b_7-1} = 2^{b_4+1} + 1.$$

Perhatikan bahwa ruas kanan bernilai ganjil, sehingga haruslah 2^{b_7-1} bernilai ganjil jika dan hanya jika $b_7=1$. Namun, kontradiksi bahwa $1=2^{b_4+1}+1$.

Kasus 2. Jika a_1 ganjil dan a_2 genap. Misalkan $a_i = p_i^{b_i}$ dengan p_i prima dan b_i bilangan asli. Maka $a_1 = p_1^{b_1}$ dan $a_2 = 2^{b_2}$ dengan $p_1 > 2$. Kita punya

$$a_3 = p_1^{b_1} + 2^{b_2}$$

$$a_4 = p_1^{b_1} + 2^{b_2+1}$$

$$a_5 = 2p_1^{b_1} + 3 \cdot 2^{b_2}$$

Tinjau $a_5 \equiv 0 \pmod{2}$, maka $a_5 = 2^{b_5}$ dan diperoleh

$$2^{b_5} = 2p_1^{b_1} + 3 \cdot 2^{b_2} \iff 2^{b_5 - 1} = p_1^{b_1} + 3 \cdot 2^{b_2 - 1}.$$

Karena $1 \le b_2 < b_5$, maka

$$p_1^{b_1} + 3 \cdot 2^{b_2 - 1} = 2^{b_5 - 1} \equiv 0 \pmod{2}.$$

Karena $p_1 > 2$, maka haruslah $b_2 = 1$. Maka

$$2^{b_5-1} = p_1^{b_1} + 3 \iff p_1^{b_1} = 2^{b_5-1} - 3.$$

Kita punya

$$a_1 = 2^{b_5 - 1} - 3$$
, $a_2 = 2$, $a_3 = 2^{b_5 - 1} - 1$, $a_4 = 2^{b_5 - 1} + 1$, $a_5 = 2^{b_5}$
 $a_3 = 3 \cdot 2^{b_5 - 1} + 1$, $a_7 = 5 \cdot 2^{b_5 - 1} + 1$, $a_8 = 8 \cdot 2^{b_5 - 1} + 2$.

Tinjau $a_8 \equiv 0 \pmod{2}$, maka

$$2^{b_8} = 2^{b_5+2} + 2 \iff 2^{b_8-1} = 2^{b_5+1} + 1.$$

Karena $1 \le b_5 < b_8$, maka $2^{b_5+1} + 1 = 2^{b_8-1} \equiv 0 \pmod{2}$, maka $2^{b_5+1} + 1 \equiv 0 \pmod{2}$ yang dimana kontradiksi.

Kasus 3. Jika a_1 dan a_2 keduanya ganjil. Misal $a_i=p_i^{b_i}$ dengan p_i prima dan b_i bilangan asli. Maka $a_1=p_1^{a_1}$ dan $a_2=p_2^{a_2}$ dimana $p_1,p_2>2$ sehingga $a_3=a_1+a_2$ genap. Maka $a_3=2^{b_3}$. Kita punya

$$a_4 = 2^{b_3} + p_2^{b_2}$$

$$a_5 = 2^{b_3+1} + p_2^{b_2}$$

$$a_6 = 3 \cdot 2^{b_3} + 2p_2^{b_2}.$$

Tinjau a_6 genap, maka $a_6 = 2^{b_6}$ dengan $1 \le b_3 < b_6$. Kita punya

$$2^{b_6} = 3 \cdot 2^{b_3} + 2p_2^{b_2} \iff 2^{b_6 - 1} = 3 \cdot 2^{b_3 - 1} + p_2^{b_2} \iff 2^{b_3 - 1} \left(2^{b_6 - b_3} - 3 \right) = p_2^{b_2}.$$

Karena ruas kanan bernilai ganjil, maka $b_3=1$ dan kita punya $a_3=2$. Padahal $a_3=a_1+a_2=p_1^{a_1}+p_2^{a_2}\geq 6$, kontradiksi.

Kasus 4. Jika a_1 dan a_2 keduanya genap. Misalkan $a_i = p_i^{b_i}$ dengan p_i prima dan b_i bilangan asli. Maka $a_1 = 2^{b_1}$ dan $a_2 = 2^{b_2}$. Maka $a_3 = 2^{b_1} + 2^{b_2}$ genap. Kita punya $a_3 = 2^{b_3}$ sehingga

$$2^{b_3} = 2^{b_1} + 2^{b_2}$$

dengan $1 \le b_1, b_2 < b_3$. ika $b_2 \ne b_3$, maka

$$2^{\max\{b_1,b_2\}-\min\{b_1,b_2\}}+1=2^{b_3-\min\{b_1,b_2\}}$$

Karena $b_3 > \min\{b_1, b_2\}$, maka ruas kanan bernilai genap. Sedangkan, $\max\{b_1, b_2\} - \min\{b_1, b_2\} > 0$ sehingga ruas kiri bernilai ganjil. Maka kontradiksi.

Jika $b_1 = b_2$, maka

$$2^{b_3} = 2^{b_1} + 2^{b_1} = 2^{b_1+1}.$$

Sehingga kita punya $b_3 = b_1 + 1$ dan

$$a_4 = b_2 + b_3 = 2^{b_1} + 2^{b_1 + 1} = 2^{b_1} \cdot 3$$

yang jelas a_4 bukan prima berpangkat karena terdapat dua faktor prima berbeda yang membagi a_4 . Kontradiksi.

Jadi, n = 7 merupakan n terbesar yang memenuhi.

Soal 4. Misalkan x, y, z bilangan real positif dengan x + y + z = 3. Buktikan

$$2\sqrt{x+\sqrt{y}} + 2\sqrt{y+\sqrt{z}} + 2\sqrt{z+\sqrt{x}} \le \sqrt{8+x-y} + \sqrt{8+y-z} + \sqrt{8+z-x}.$$

Bukti.

Menurut $AM \geq GM$, kita punya

$$\sum_{\text{cyc}} 2\sqrt{x + \sqrt{y}} \le \sum_{\text{cyc}} 2\sqrt{x + \frac{y+1}{2}}$$

$$= \sum_{\text{cyc}} \sqrt{4x + 2y + 2}$$

$$= \sum_{\text{cyc}} \sqrt{4x + 2(3 - x - z) + 2}$$

$$= \sum_{\text{cyc}} \sqrt{8 + 2x - 2z}.$$

Menurut $AM \leq QM$,

$$\sum_{\text{cyc}} \sqrt{8 + 2x - 2z} = \frac{1}{2} \sum_{\text{cyc}} \left(\sqrt{8 + 2x - 2z} + \sqrt{8 + 2z - 2y} \right)$$
$$\leq \frac{1}{2} \sum_{\text{cyc}} 2\sqrt{\frac{8 + 2x - 2z + 8 + 2z - 2y}{2}}$$
$$= \sum_{\text{cyc}} \sqrt{8 + x - y}.$$

Kita simpulkan bahwa

$$\sum_{\text{cyc}} 2\sqrt{x + \sqrt{y}} \le \sum_{\text{cyc}} \sqrt{8 + 2x - 2z} \le \sum_{\text{cyc}} \sqrt{8 + x - y}$$

yang telah membuktikan yang diinginkan. Kesamaan terjadi jika dan hanya jika x=y=z=1.

14