Name:

J#:

Date:

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard E1.

Mark:

Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

Solution:

$$-4x_1 - x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 0$$
$$-x_1 + 4x_2 + x_3 = 4$$

Standard E2.

Mark:

Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} -1 & 0 & -1 \\ 3 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 3 & -1 & 0 \\ -1 & 1 & 2 \\ 0 & 2 & 6 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & -3 \\ 0 & 1 & 3 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \\ 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Standard E3.

Mark:

Solve the following linear system.

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 5$$
$$-2x_3 - 4x_4 = 3$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = -1$$

Solution: Let $A = \begin{bmatrix} 4 & 4 & 3 & -6 & 5 \\ 0 & 0 & -2 & -4 & 3 \\ 2 & 2 & 1 & -4 & -1 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. It follows that the system

is inconsistent with no solutions (since the bottom row implies the contradiction 0 = 1).

Standard E4.

Mark:

Find a basis for the solution set to the homogeneous system of equations given by

$$3x + 2y + z = 0$$
$$x + y + z = 0$$

Solution: Let $A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$.

Standard V1.

Mark:

Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus q) = c \odot (f' + q') = c(f' + q')' = cf'' + cq'' = cf' \oplus cq' = c \odot f \oplus c \odot q.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

Determine if
$$\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$$
 belongs to the span of the set $\left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

Solution: Since

$$RREF\left(\begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & -2 \\ -3 & -6 & 0 & 4 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

contains the contradiction 0 = 1, $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ is not a linear combination of the three vectors.

Standard V3.

Does span $\left\{ \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\12\\-9 \end{bmatrix}, \begin{bmatrix} 1\\4\\-3 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\} = \mathbb{R}^3$?

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 4 & 2 \\ 4 & -9 & -3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

has a zero row, the vectors fail to span \mathbb{R}^3 .

Standard V4.

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

Standard S1.

Mark:

Determine if the set of polynomials $\{-3x^3 - 8x^2, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Solution:

$$RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 2 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

Determine if the set $\left\{ \begin{bmatrix} 3 \\ -1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 0 \\ 5 \end{bmatrix} \right\} \text{ is a basis of } \mathbb{R}^4.$

Solution:

$$RREF\left(\begin{bmatrix} 3 & 2 & 1 & -1 \\ -1 & 0 & -1 & 3 \\ 2 & 2 & 0 & 0 \\ 3 & 4 & -1 & 5 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}2\\0\\-2\\0\end{bmatrix},\begin{bmatrix}3\\1\\3\\6\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\0\\1\end{bmatrix}\right\}\right)$. Find a basis of W.

Solution:

$$RREF\left(\begin{bmatrix} 2 & 3 & 0 & 1\\ 0 & 1 & 0 & 2\\ -2 & 3 & 1 & 0\\ 0 & 6 & 1 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2}\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & -11\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then $\left\{ \begin{bmatrix} 2\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\3\\6 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$ is a basis of W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$,	and compute $RREF(A) =$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 0	$\begin{bmatrix} \frac{1}{2} \\ \frac{3}{2} \\ 0 \end{bmatrix}$. Since there are two pivot
columns, dim $W=2$.		_		_	

Additional Notes/Marks