МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки «Прикладная математика и информатика» Магистерская программа «Системное программирование»

Отчет по лабораторной работе

«Начальная настройка весов нейронных сетей с

применением автокодировщиков»

Выполнили: студенты группы 381603м4 Гладилов, Волокитин, Левин, Новак

СОДЕРЖАНИЕ

1	ОПИСАНИЕ АВТОКОДИРОВЩИКОВ	3
2	ПРОВЕДЕННЫЕ ЭКСПЕРИМЕНТЫ	4
2.1	Автокодировщик для полностью связанной сети	4
2.2	Автокодировщик для сверточной сети	5
3	РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ	6
4	ИТОГИ	7

.

1 Описание автокодировщиков

Большое количество параметров способны повлиять на точность и скорость обучения. Количество изображений, глубина сети, начальная настройка весов сети, при неудачном выборе одного из них мы можем получить неудачный эксперимент. Учитывая, что в современных задачах время на обучение сети может достигать недель, были предложены некоторые способы для предварительной настройки параметров сети, например начального приближения весов и уменьшения шумов на данных.

Автокодировщик (Autoencoder) – нейронная сеть, которая пытается максимально приблизить значения выходного сигнала к входному, т.е. наилучшим образом аппроксимировать тождественное преобразование.

Общую логику работы с автокодировщиком можно описать следующим образом:

- Реализация двух частей сети:
 - о Кодирующая
 - о Декодирующая
- Обучение сети на нашем наборе данных. Целью является максимально приблизить выходную картинку к входной.
- Конфигурация основной сети, слои которой аналогичны со слоями кодирующей части
- Инициализация весов начальными значениями, полученными из автокодировщика
- Тренировка основной сети

2 Проведенные эксперименты

Для проведения экспериментов нами были выбраны две сети, показавшие одни из самых высоких результатов в предыдущих работах. Одна полностью связанная и одна сверточная сети. К сожалению, в библиотеке Caffe нет поддержки слоя unpooling, для решения этой проблемы мы видоизменили конфигурацию, убрав pooling слои.

2.1 Автокодировщик для полностью связанной сети

Рис. 1. Автокодировщик для полносвязанной сети

Параметры:

• Вход: 150х150

Скрытый слой: 1000

2.2 Автокодировщик для сверточной сети

Рис. 2. Автокодировщик для сверточной сети

Параметры:

- Свертка1: kernel_size 3x3; num_output 40
- Свертка2: kernel_size 3x3; num_output 64

3 Результаты экспериментов

Конфигурация сети	Точность
FCNN	0.7878
CNN	0.788333

4 Итоги

В данной лабораторной работе нами были реализованы автокодировщики для нескольких типов сетей. В целом, на данной задаче добиться существенных различий по сравнению со случайным заполнением нам не удалось.