6. Transporte Aéreo

Uma companhia aérea possui três tipos de aviões e é obrigada a servir quatro rotas aéreas. A tabela fornece a capacidade máxima (em números de passageiros) de cada tipo de aeronave, o número de aviões disponíveis de cada tipo, bem como o número de viagens por dia que cada tipo de avião pode fizer em uma determinada rota. Por exemplo: um avião do tipo 1 pode realizar três viagens na rota 1 ou duas viagens na rota 2, etc., e não muda de rota em um mesmo dia. Na tabela é dado o número de passageiros que necessariamente terá que ser transportado em cada rota.

Viagens Diárias em Cada Rota

Tipo de Aeronave	Capacidade	# Aeronaves	1	2	3	4
1	40	7	3	2	2	1
2	60	8	4	3	3	2
3	100	6	5	4	4	2

Demanda Diária de Passageiros

650

710

610

950

6. Transporte Aéreo

O custo operacional por viagem para cada avião nas diferentes rotas é dado pela tabela:

Custos por viagem (R\$)

Tipo de Aeronave	1	2	3	4
1	1.500,00	1.900,00	2.100,00	2.800,00
2	2.100,00	2.600,00	2.800,00	3.700,00
3	3.200,00	3.700,00	3.900,00	5.800,00

Formular e resolver um modelo de programação linear que permita alocar os aviões às diversas rotas, visando a minimizar o custo operacional do sistema.

Decisões:

 x_{ij} - quantidade de aeronaves do tipo i que são alocadas à rota j. Variável inteira, não negativa.

 y_{ij} - quantidade de viagens que as aeronaves do tipo i realizam na rota j. Variável inteira, não negativa.

▶ Restrições:

1) Não usar mais aeronaves do que o disponível

$$x_{11} + x_{12} + x_{13} + x_{14} \le 7$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 8$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 6$$

2) Atender à demanda de cada rota

$$40 y_{11} + 60 y_{21} + 100 y_{31} \ge 650$$

$$40 y_{12} + 60 y_{22} + 100 y_{32} \ge 710$$

$$40 y_{13} + 60 y_{23} + 100 y_{33} \ge 610$$

$$40 y_{14} + 60 y_{24} + 100 y_{34} \ge 950$$

3) Vínculo entre as variáveis de decisão

$$y_{11} \le 3 x_{11}$$

$$y_{12} \le 2 x_{12}$$

$$y_{13} \le 2 x_{13}$$

$$y_{14} \le 1 x_{14}$$

• • •

$$y_{33} \le 4 x_{33}$$

$$y_{34} \le 2 x_{34}$$

4) Domínio das variáveis de decisão

$$x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24}, x_{31}, x_{32}, x_{33}, x_{34} \ge 0$$
, inteiro

$$y_{11}, y_{12}, y_{13}, y_{14}, y_{21}, y_{22}, y_{23}, y_{24}, y_{31}, y_{32}, y_{33}, y_{34} \ge 0$$
, inteiro

▶ Função objetivo: minimizar o custo total da operação

$$\min C = 1500 \ y_{11} + 1900 \ y_{12} + 2100 \ y_{13} + 2800 \ y_{14} + 2100 \ y_{21} + 2600 \ y_{22} + 2800 \ y_{23} + 3700 \ y_{24} + 3200 \ y_{31} + 3700 \ y_{32} + 3900 \ y_{33} + 5800 \ y_{34}$$

Solução ótima

Viagens por rota (y_ij)

				• • • • • • • • • • • • • • • • • • • •
Tipo de Aeronave	1	2	3	4
Actonave				
1	4,00	0,00	0,00	1,00
2	0,00	2,00	2,00	12,00
3	5,00	6,00	5,00	2,00
Transportados	660	720	620	960

Passageiros Transportados

Aeronaves por rota (x_ij)

Tipo de Aeronave	1	2	3	4
1	2,00	0,00	0,00	1,00
2	0,00	1,00	1,00	6,00
3	1,00	2,00	2,00	1,00

Custo

133.300,00

• Qual seria a solução do problema se a demanda fosse 50% maior, e houvesse uma penalidade por demanda não transportada em cada rota, sendo $p_1 = 25$, $p_2 = 30$, $p_3 = 35$, $p_4 = 60$?

Nova Variável de Decisão:

 z_j - quantidade de passageiros que deixam de ser transportados na rota j. Variável inteira, não negativa.

Restrições:

1) Não usar mais aeronaves do que o disponível:

$$x_{11} + x_{12} + x_{13} + x_{14} \le 7$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 8$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 6$$

2) Atender à demanda de cada rota:

$$40 y_{11} + 60 y_{21} + 100 y_{31} + z_1 \ge 990$$

$$40 y_{12} + 60 y_{22} + 100 y_{32} + z_2 \ge 1080$$

$$40 y_{13} + 60 y_{23} + 100 y_{33} + z_3 \ge 930$$

$$40 y_{14} + 60 y_{24} + 100 y_{34} + z_4 \ge 1440$$

3) Vínculo entre as variáveis de decisão

$$y_{11} \le 3 \ x_{11}$$
$$y_{12} \le 2 \ x_{12}$$

$$y_{13} \le 2 x_{13}$$

$$y_{14} \le 1 x_{14}$$

...

$$y_{33} \le 4 x_{33}$$

$$y_{34} \le 2 x_{34}$$

4) Domínio das variáveis de decisão

$$x_{11}, x_{12}, x_{13}, x_{14}, x_{21}, x_{22}, x_{23}, x_{24}, x_{31}, x_{32}, x_{33}, x_{34} \ge 0$$
, inteiro $y_{11}, y_{12}, y_{13}, y_{14}, y_{21}, y_{22}, y_{23}, y_{24}, y_{31}, y_{32}, y_{33}, y_{34} \ge 0$, inteiro

$$z_1,z_2,z_3,z_4\geq 0, inteiro$$

 Função objetivo: minimizar o custo total da operação e a penalidade total por passageiros não transportados

$$\min C = 1500 \ y_{11} + 1900 \ y_{12} + 2100 \ y_{13} + 2800 \ y_{14} + 2100 \ y_{21} + 2600 \ y_{22} + 2800 \ y_{23} + 3700 \ y_{24} + 3200 \ y_{31} + 3700 \ y_{32} + 3900 \ y_{33} + 5800 \ y_{34} + 25 \ z_1 + 30 \ z_2 + 35 \ z_3 + 60 \ z_4$$

Solução ótima

Total

Viagens por rota

				ро: : о та	
	Tipo de Aeronave	1	2	3	4
	1	0	0	0	0
	2	0	0	0	0
	3	0	0	0	12
Passageiros	Transportados	0	0	0	1200
Demanda	Não Atendida	990	1080	930	240

990

Custo 173.700,00

Aeronaves por rota

930

1440

0

1080

Tipo de Aeronave	1	2	3	4
1	0	0	0	7
2	0	0	0	0
3	0	0	0	6

OBS: a penalidade por demanda não atendida é baixa, e compensa não transportar...