Digital Electronic Circuits Section 1 (EE, IE)

Lecture 5

Recap.: Shanon's Expansion Theorem

$$F(x_1, x_2, x_3, ..., x_N) = x_1'.F(0, x_2, x_3, ..., x_N) + x_1.F(1, x_2, x_3, ..., x_N)$$

$$F(x_1, x_2, x_3, ..., x_N) = x_1' \cdot [x_2' \cdot F(0, 0, x_3, ..., x_N) + x_2 \cdot F(0, 1, x_3, ..., x_N)] + x_1 \cdot [x_2' \cdot F(1, 0, x_3, ..., x_N) + x_2 \cdot F(1, 1, x_3, ..., x_N)]$$

$$+ x_1 \cdot [x_2' \cdot F(1, 0, x_3, ..., x_N) + x_2 \cdot F(1, 1, x_3, ..., x_N)]$$
Nesting

$$F(x,y) = x'.F(0,y) + x.F(1,y) = x'.[y'.F(0,0) + y.F(0,1)] + x.[y'.F(1,0) + y.F(1,1)]$$

$$F(x,y) = x'.y'.F(0,0) + x'.y.F(0,1) + x.y'.F(1,0) + x.y.F(1,1)$$

Truth Table to Boolean Function: Minterm

$$F(x,y) = x + x'.y$$

X	у	F(x,y)	
0	0	0	x'.y'
0	1	1	⇒ x'.y
1	0	1	⇒ x.y'
1	1	1	⇒ x.y

$$F(x,y) = x'.y'.F(0,0) + x'.y.F(0,1) + x.y'.F(1,0) + x.y.F(1,1) = x'.y + x.y' + x.y$$

- Product term containing all variables of a function (primed, unprimed): fundamental product or standard product or minterm.
- Minterms of F(x,y): x'.y', x'.y, x.y', x.y (also designated as m_0 , m_1 , m_2 , m_3 , respectively)
- The minterm designation m_i corresponds to decimal eqv. of x,y combination of a row.

[Decimal Eqv. =
$$B_3.2^3 + B_2.2^2 + B_1.2^1 + B_0.2^0$$
]

 Boolean function: Taking OR of minterms associated with 1 in function output.

Minterm: More Example

X	у	Z	minterm	Notation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_{5}
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

$$F(x,y,z)=(x+y).(x+z)$$

	X	y	Z	F(x,y,z)
	0	0	0	0
	0	0	1	0
	0	1	0	0
>	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1

Sum of Product (SOP): Canonical Form

$$F(x,y,z) = x'yz + xy'z' + xy'z + xyz' + xyz'$$

$$F(x,y,z) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$F(x,y,z) = \sum m(3,4,5,6,7)$$

Truth Table to Boolean Function: Maxterm

X	у	<i>F</i> (<i>x</i> , <i>y</i>)	
0	0	0	\Rightarrow $x + y$
0	1	1	x + y'
1	0	1	x' + y
1	1	1	x' + y'

$$F(x,y) = [x' + y' + F(1,1)].[x' + y + F(1,0)]$$
$$.[x + y' + F(0,1)].[x + y + F(0,0)]$$
$$= 1.1.1.(x + y) = x + y$$

- Sum term containing all variables of a function (primed, unprimed): fundamental sum or standard sum or Maxterm.
- Maxterms of F(x,y): x+y, x+y', x'+y, x'+y' (also designated as M_0 , M_1 , M_2 , M_3 , respectively)
- The Maxterm designation M_i corresponds to decimal eqv. of x,y combination of a row.
- Boolean function: Taking AND of Maxterms associated with 0 in function output.

$$F(x_1, x_2, x_3, ..., x_N) = [x_1' + F(1, x_2, x_3, ..., x_N)].[x_1 + F(0, x_2, x_3, ..., x_N)]$$

Maxterm: More Example

X	у	Z	Maxterm	Notation
0	0	0	x+y+z	M_{0}
0	0	1	x+y+z'	M_1
0	1	0	x+y'+z	M_2
0	1	1	x+y'+z'	M_3
1	0	0	x'+y+z	M_4
1	0	1	x'+y+z'	M_{5}
1	1	0	x'+y'+z	M_6
1	1	1	x'+y'+z'	M_7

	X	y	Z	F(x,y,z)
>	0	0	0	0
>	0	0	1	0
>	0	1	0	0
	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1

Product of Sum(POS): Canonical Form

$$F(x,y,z) = (x+y+z).(x+y+z')$$
$$.(x+y'+z)$$

$$F(x,y,z) = M_0.M_1.M_2$$

 $F(x,y,z) = \prod M(0,1,2)$

More on Canonical Forms

We have seen, (i) $F(x,y) = x + x'.y = \sum m(1,2,3) = \prod M(0)$ and (ii) $F(x,y,z) = (x + y).(x + z) = \sum m(3,4,5,6,7) = \prod M(0,1,2)$

From example(ii) Truth Table (T.T.):

$$F'(x,y,z) = \sum m(0,1,2) = m_0 + m_1 + m_2$$

 $F(x,y,z) = (F'(x,y,z))' = (m_0 + m_1 + m_2)' = m_0'.m_1'.m_2'$ (De Morgan's Th.)
We already noted, $F(x,y,z) = \prod M(0,1,2) = M_0.M_1.M_2$

Extending to any T.T., $m_i' = M_i$

$$F(x,y) = x + x'.y = x.(y + y') + x'.y = x'.y + x.y' + x.y$$

$$F(x,y,z) = (x + y).(x + z) = (x + y + z.z').(x + z + y.y')$$

$$= (x + y + z).(x + y + z').(x + z + y).(x + z + y')$$

$$= (x + y + z).(x + y + z').(x + y' + z)$$

Getting minterms and Maxterms algebraically

Conversion between Canonical Forms

Ex. (ii) Truth Table

X	y	Z	F(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Two Level Implementation

$$Y = F(A,B,C) = \sum m(3,5,6,7)$$

$$Y = F(A, B, C) = \prod M(0,3,6)$$

SOP: 3-level implementation

$$Y = ABC + D(E + F)$$

NAND - NAND, NOR - NOR Implementation

$$A.B + C.D + E.F = ((A.B + C.D + E.F)')'$$

= $((A.B)'.(C.D)'.(E.F)')'$

$$(A + B).(C + D).(E + F) = (((A + B).(C + D).(E + F))')'$$

= $((A + B)'+(C + D)'+(E + F)')'$

Positive and Negative Logic

Positive Logic	Negative Logic
OR	AND
AND	OR
NAND	NOR
NOR	NAND

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ M. Morris Mano, and Michael D. Ciletti, Digital Design 5e, Pearson