

A1 Formulas.

• products and lengths and angles:

$$\circ \mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta \quad \circ \|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$$

• projection and scalar component:

$$\circ \operatorname{proj}_{\mathbf{v}}(\mathbf{w}) = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v} \quad \circ \operatorname{comp}_{\mathbf{v}}(\mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|}$$

• scalar triple product:

$$\circ \ \mathbf{v} \cdot (\mathbf{w} \times \mathbf{r}) = \mathbf{r} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{r} \times \mathbf{v})$$

A2 Formulas.

- distance from point X to plane ₱ with normal n:
 - $\circ \frac{|\mathbf{A}\mathbf{X} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$ where A is on \mathcal{P}
- distance from point X and to line ℓ with direction v:
 - $\circ \frac{\|\mathbf{A}\mathbf{X} \times \mathbf{v}\|}{\|\mathbf{v}\|} \text{ where } \mathbf{A} \text{ is on } \mathbf{\ell}$
- distance between non–parallel lines ℓ_1 and ℓ_2 :
 - $\circ \frac{|\mathbf{AB} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$ where A is on ℓ_1 , B is on ℓ_2 , \mathbf{n} is common normal