

MIT AUDIO-DATEN DIE BELIEBTHEIT VORHERSAGEN

ADRIANO ELIA, 09.05.2025

PROJEKTKONTEXT & ZIELSETZUNG

Datengrundlage

- Öffentlicher Datensatz von kaggle.com
- Ca. 90.000 Songs und deren Metadaten sowie Audio-Eigenschaften

Datenqualität

• Strukturiert und sauber, wenig Aufbereitung nötig

Ziel

 Die Beliebtheit eines Songs auf Spotify anhand von reinen Audio-Daten vorhersagen

ZIELVARIABLE & KLASSIFIZIERUNG

4 Klassen für Beliebtheitswert

• Unknown (0), **Low** (<25), **Medium** (25-75) und **High** (75>)

MERKMALE & ZUSAMMENHÄNGE

- Lautstärke, "Tanzbarkeit", 4/4 Beat, positive Vibes => eher höhere Beliebtheit
- Instrumentalität, Acapella/Podcasts, Dauer, Live sowie Akustik => eher niedrigere Beliebtheit

Positive correlation with Popularity

Negative correlation with Popularity

DIE EINFLUSSREICHSTEN MERKMALE

Akustik, Instrumentalität und die Länge des Album Namen?

• Im Machine-Learning-Modell als einflussreich auf die Vorhersage der Beliebtheit eingestuft

Top 10 Predictors of Track Popularity

EVALUATION

Qualität des Vorhersagemodells

- Mittelmäßige Testwerte (0,63 Genauigkeit im Durchschnitt der 4 Kategorien)
- Ungleichgewicht der Kategorien der Zielvariable zeigt sich trotz Berücksichtigung im Modell deutlich
- "Medium" = hohe Anzahl Daten = genaue Vorhersage;
 High = niedrige Anzahl Daten = ungenaue Vorhersage

AUSBLICK

Weitere Möglichkeiten

- Weitere Methoden zur Verringerung des Ungleichgewichts anwenden ("Over-/Undersampling")
- Weitere Merkmale erzeugen ("Feature Engineering")
- Datenlage erhöhen (weiterer Spotify-Datensatz hinzuziehen)
- Alternativen Modellansatz testen
 - Regressionsmodell statt Klassifizierung nutzen und Beliebtheit als Wert von 0-100 vorhersagen, statt in Kategorien einzuteilen

EVALUATIONSMETRIKEN & LEARNING CURVE

0.70

0.65

Nur falls von Interesse

• (links evaluation scores, rechts learning curve, beides vom finalen RandomForestClassifier)

10000

	precision	recall	f1-score	support
High	0.32	0.59	0.42	242.0
Low	0.62	0.45	0.52	2747.0
Medium	0.78	0.74	0.76	6376.0
Unknown	0.41	0.71	0.52	1189.0
accuracy	0.66	0.66	0.66	0.66

1.00 0.95 F1-Score (weighted) 0.40 0.40 0.40 0.40

20000

Learning Curve

30000

Training Set Size

40000

train validation

50000