2. Context-Free Languages

- □ 2.1 Context-free Grammars
 - Derivation
 - Parse tree
 - Ambiguity
 - Chomsky normal form
- 2.2 Pushdown Automata
 - CFG = PDA
 - Deterministic PDA
- □ 2.3 Properties of Context-free Languages
 - Pumping lemma for CFL's
 - Closure properties
 - Decision properties

2.1 Context-Free Grammars

Context-free Grammar

Derivations

□ Parse Trees

Ambiguity

☐ Chomsky normal form

Context-Free Grammar

- Context-Free Languages (CFL's) played a central role in natural languages since the 1950's and in compilers since the 1960's
- Context-Free Grammars (CFG's) are the basis of BNF syntax
- Today CFL's are increasingly important for XML and their DTD's

Palindromes

- \square $L_{pal} = \{ w \in \Sigma^* \mid w = w^R \}$
 - e.g. otto $\in L_{pal}$, $1001 \in L_{pal}$
- L_{pal} is not regular, proven by Pumping Lemma testing
- \square Inductively define L_{pal} over $\Sigma = \{0, 1\}$ as
 - Basis: ε, 0, 1 are palindromes
 - Induction: if w is a palindrome, so are 0w0 and 1w1. Nothing else is a palindrome.

Grammar for Palindromes

□ Use context-free grammar to formally express recursive definitions of palindromes

```
1. P \rightarrow \varepsilon
```

$$2. P \rightarrow 0$$

3.
$$P \rightarrow 1$$

4.
$$P \rightarrow 0P0$$

5.
$$P \rightarrow 1P1$$

- 0, 1 are terminals
- P is a variable (or non-terminal, or syntactic category)
- P is in this grammar also a start variable
- 1-5 are productions (or rules)

Formal Definition of CFG's

☐ A context-free grammar is a quadrupleG = {V, T, P, S}

Where

V is a finite set of variables

T is a finite set of terminals

P is a finite set of productions of the form $A \rightarrow \alpha$, where A is a variable and $\alpha \in (V \cup T)^*$

S ∈ V is the start variable

Examples

- \Box G_{pal}=({P}, {0,1}, A, P), where A={P→ε, P→0, P→1, P→0P0, P→1P1}
- □ Sometimes we group productions with the same head, e.g. $P \rightarrow \epsilon \mid 0$ | 1 | 0P0 | 1P1.

Context-Free Grammars

- generate strings by repeated replacement of non-terminals with string of terminals and non-terminals
 - write down start variable (non-terminal)
 - replace a non-terminal with the righthand-side of a rule that has that nonterminal as its left-hand-side.
 - repeat above until no more nonterminals

Example

□A simple grammar generates strings of 0's and 1's such that each block of 0's is followed by at least as many 1's.

 $S \rightarrow AS \mid \epsilon$

 $A \rightarrow 0A1 \mid A1 \mid 01$

 $\square S \Rightarrow AS \Rightarrow A \Rightarrow 0A1 \Rightarrow 0A11 \Rightarrow 00111$

□a derivation of the string 00111

Derivations

- Let G=(V, T, P, S) be a CFG, $A \in V$, $\alpha, \beta, \gamma \in (V \cup T)^*$, and $A \rightarrow \gamma \in P$
- □ Then we can write $\alpha A\beta \Rightarrow \alpha \gamma \beta$, and say that $\alpha A\beta$ derives $\alpha \gamma \beta$
 - E.g. $011AS \Rightarrow 0110A1S$
- ☐ We define ⇒* be the reflexive and transitive closure of ⇒:
 - Basis: $\alpha \Rightarrow \alpha$
 - Induction: if $\alpha \Rightarrow \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow \gamma$

Example

- \square 011AS \Rightarrow * 011AS
- \square 011AS \Rightarrow * 0110A1S
- \square 011AS \Rightarrow 011A1S \Rightarrow 011011S \Rightarrow 011011
- Note: at each step, we might have a choice of variable to replace, and we might have several rules to apply for the variable to be replaced

Leftmost and Rightmost Derivations

- Leftmost derivation: at each step, replace the leftmost variable by its production body
 - $\begin{array}{c} \blacksquare \quad S \underset{lm}{\Rightarrow} AS \underset{lm}{\Rightarrow} A1S \underset{lm}{\Rightarrow} 011S \underset{lm}{\Rightarrow} 011AS \underset{lm}{\Rightarrow} 0110A1S \underset{lm}{\Rightarrow} \\ 0110011S \underset{lm}{\Rightarrow} 0110011 \end{array}$
- Rightmost derivation: at each step, replace the rightmost variable by its production body
 - $\begin{array}{c} \blacksquare \quad \mathsf{S} \underset{rm}{\Rightarrow} \mathsf{AS} \underset{rm}{\Rightarrow} \mathsf{AAS} \underset{rm}{\Rightarrow} \mathsf{AA} \underset{rm}{\Rightarrow} \mathsf{A0A1} \underset{rm}{\Rightarrow} \mathsf{A0011} \underset{rm}{\Rightarrow} \\ \mathsf{A10011} \underset{rm}{\Rightarrow} \mathsf{0110011} \end{array}$

Language of a CFG

☐ The language of G = (V, T, P, S), denoted L(G) is:

$$\{w \in \Sigma^* : S \Rightarrow^* w\}$$

- I.e. the set of strings over T* derivable from the start variable.
- ☐ If G is a CFG, we call L(G) a contextfree language.

Aside: Notation

- □ a, b, ... are terminals.
- □ ..., y, z are strings of terminals.
- Greek letters are strings of variables and/or terminals, often called sentential forms.
- ☐ A, B, ... are variables.
- ..., Y, Z are variables or terminals.
- S is typically the start variable.

CFG Example

- ☐ Arithmetic expressions over {+, *,
 - (,), a}
 - (a + a) * a
 - \blacksquare a * a + a + a + a + a
- □ A CFG generating this language:

$$<$$
expr $> \rightarrow <$ expr $> * <$ expr $>$

$$\langle expr \rangle \rightarrow \langle expr \rangle + \langle expr \rangle$$

$$<$$
expr $> \rightarrow (<$ expr $>) | a$

CFG Example

□ A derivation of the string: a+a*a

```
\langle expr \rangle \Rightarrow \langle expr \rangle * \langle expr \rangle
    \Rightarrow <expr> + <expr> * <expr>
    \Rightarrow a + <expr> * <expr>
    \Rightarrow a + a * <expr>
    \Rightarrow a + a * a
```

$$<$$
expr $> \rightarrow <$ expr $> * <$ expr $> <$ expr $> \rightarrow <$ expr $> + <$ expr $> <$ expr $> \rightarrow (<$ expr $>) | a$

Parse Tree

☐ Easier way to picture derivation: parse tree

grammar encodes grouping information; this is captured in the parse tree.

Constructing Parse Tree

- \square Nodes = variables, terminals, or ε .
 - Interior nodes are variables
 - Leaf nodes are variables, terminals, or ε
 - A leaf can be ε only if it is the only child of its parent.
- A node and its children (from left to right) must form the head and body of a production

The Yield of a Parse Tree

- The yield of a parse tree is the string of leaves from left to right.
- □ Important are those parse trees where:
 - The yield is a terminal string
 - The root is labeled by the start variable
- We shall see the yields of these important parse trees is the language of the grammar.

Example

Equivalence of Parse Trees and Derivations

- ☐ The following about a grammar G = (V, T, P, S) and a terminal string w are all equivalent:
 - \blacksquare S \Rightarrow * w (i.e., w is in L(G))

 - There is a parse tree for G with root S and yield w.

From Trees to Derivations

- □ Induction on the height of the parse tree.
 - **Basis**: (Height = 1) Tree is root A and leaves w = $a_1, a_2,...,a_k$. Then A→w must be a production, so A \overrightarrow{lm} w and A \overrightarrow{m} w.
 - **Induction**: (Height > 1) Tree is root A with children $X_1, X_2, ..., X_k$. Those X_i 's that are variables are roots of shorter trees.
 - □ Thus, the IH says that they have LM derivations of their yields. Construct a LM derivation of w from A by starting with $A \Longrightarrow X_1 X_2 ... X_k$, then using LM derivations from each X_i that is a variable, in the order from left to right.
 - RM derivation analogous.

From Derivations to Trees

- Induction on length of the derivation.
 - **Basis**: One step. There is an obvious parse tree.
 - **Induction**: More than one step.
 - \square Let the first step be $A \Rightarrow X_1X_2...X_k$.
 - \square Subsequent changes can be reordered so that all changes to X_1 and the sentential forms that replace it are done first, then those for X_2 , and so on (i.e., we can rewrite the derivation as a LM derivation).
 - \square The derivations from those X_i 's that are variables are all shorter than the given derivation, so the IH applies.
 - □ By the IH, there are parse trees for each of these derivations.
 - Make the roots of these trees be children of a new root labeled A.

Example

- □ Consider derivation $S \Rightarrow AS \Rightarrow AAS \Rightarrow$ AA $\Rightarrow A1A \Rightarrow A10A1 \Rightarrow 0110A1 \Rightarrow$ 0110011
 - Subderivation from A is: $A \Rightarrow A1 \Rightarrow 011$
 - Subderivation from S is: $S \Rightarrow AS \Rightarrow A \Rightarrow 0A1 \Rightarrow 0011$
 - Each has a parse tree, put them together with new root S.

Ambiguity

- A CFG is ambiguous if there is a terminal string that has multiple leftmost derivations from the start variable.
 - Equivalently: multiple rightmost derivations, or multiple parse trees.

Remove Ambiguity

- □ Good news: sometimes we can remove ambiguity "by hand"
- □ Bad news: there is no algorithm to do it
- More bad news: some CFL's have only ambiguous CFG's
- ☐ E.g. forces correct precedence in parse tree grouping

```
<expr> \rightarrow <expr> + <term> | <term> <term> \rightarrow <term> * <factor> | <factor> \rightarrow (<expr> ) | a
```

Example

□ parse tree for a + a * a in new grammar:

Inherent Ambiguity

- A CFL L is inherently ambiguous if every CFG for L is ambiguous.
- Ambiguity of the grammar implies that at least some strings in its language have different structures (parse trees).
 - Thus, such a grammar is unlikely to be useful for a programming language, because two structures for the same string (program) implies two different meanings.
 - Common example: the easiest grammars for arithmetic expressions are ambiguous and need to be replaced by more complex, unambiguous grammars.
 - An inherently ambiguous language would be absolutely unsuitable as a programming language, because we would not have any way of fixing a unique structure for all its programs.

Example

There indeed exist inherent ambiguous languages. E.g.

```
L={a^nb^nc^md^m|n\ge 1, m\ge 1} ∪ {a^nb^mc^md^n|n\ge 1, m\ge 1}
S → AB | C
A → aAb | ab
B → cBd |cd
C → aCd | aDd
D → bDc | bc
```

- Useful to deal only with CFGs in a simple normal form
- Most common: Chomsky Normal Form (CNF)
- Definition: every production has form

$$A \rightarrow BC$$
 or

$$A \rightarrow a$$
 or $S \rightarrow \epsilon$

where A, B, C are any non-terminals (and B, C are not S) and a is any terminal.

Theorem: Every CFL is generated by a CFG in Chomsky Normal Form.

Proof: Transform any CFG into an equivalent CFG in CNF. Four steps:

- add a new start symbol
- \blacksquare eliminate "\varepsilon-productions" $A \rightarrow \varepsilon$
- eliminate "unit productions" A → B
- convert remaining rules into proper form

- add a new start symbol
 - add production $S_0 \rightarrow S$
- \square remove "\varepsilon-productions" $A \rightarrow \varepsilon$
 - for each production with A on rhs, add productions with each occurrence of A removed. E.g. for the rule R → uAvAw, add R → uvAw | uAvw | uvw
- \square eliminate "unit productions" $A \rightarrow B$
 - for each production with B on lhs: B → u, add the rule A → u

- convert remaining rules into proper form
 - replace production of form:

with:
$$A \rightarrow u_1 U_2 u_3 ... u_k$$
 with:
$$A \rightarrow U_1 A_1 \qquad U_1 \rightarrow u_1$$

$$A_1 \rightarrow U_2 A_2$$

$$A_2 \rightarrow U_3 A_3 \qquad U_3 \rightarrow u_3$$

$$\vdots$$

$$A_{k-2} \rightarrow U_{k-1} U_k \qquad U_{k-1} \rightarrow u_{k-1}$$

$$U_k \rightarrow u_k$$

$$U_k \rightarrow u_k$$

Example 2.7

 $S \rightarrow ASA \mid aB$

 $A \rightarrow B \mid S$

 $B \rightarrow b \mid \epsilon$

Cleaning Up Grammars

- ☐ Eliminate useless symbols. In order for a symbol X to be useful, it must:
 - 1. Derive some terminal string (possibly X is a terminal).
 - 2. Be reachable from the start symbol; i.e., S $\Rightarrow^* \alpha X\beta$.
 - Note that X wouldn't really be useful if α or β included a symbol that didn't satisfy (1), so it is important that (1) be tested first, and symbols that don't derive terminal strings be eliminated before testing (2).

Eliminate Useless Symbols (1)

- ☐ Finding symbols that don't derive any terminal string
- □ Recursive construction:
 - Basis: A terminal surely derives a terminal string.
 - Induction: If A is the head of a production whose body is X₁X₂ ... X_k, and each X_i is known to derive a terminal string, then surely A derives a terminal string.
- Keep going until no more symbols that derive terminal strings are discovered.

Example

 $S \rightarrow AB \mid C$

 $A \rightarrow 0B \mid C$

 $B \rightarrow 1 \mid A0$

 $C \rightarrow AC \mid C1$

Eliminate Useless Symbols (2)

- Finding symbols that cannot be derived from the start symbol
- Another recursive algorithm:
 - Basis: S is "in".
 - Induction: If variable A is in, then so is every symbol in the production bodies for A.
- Keep going until no more symbols derivable from S can be found.