2021Wa16

....

 $\Delta Q(\beta^{-})=720$, $\Delta S(n)=300$, $\Delta S(p)=840$, $\Delta Q(\alpha)=860$ (syst,2021Wa16).

 $Q(\beta^{-})=22190 \text{ syst}$; S(n)=1920 syst; S(p)=22300 syst; $Q(\alpha)=-21440 \text{ syst}$

S(2n)=2090 810, $Q(\beta^-n)=21440 670 \text{ (syst,} 2021\text{Wa} 16)$.

Isotope discovery (2012Th10): Ir(p,X)³⁵Na at CERN (1983La12).

³⁵Na production:

2019Ah07,2022Ah02: 9Be(48Ca,X) at RIKEN.

2002LuZT: Ta(48Ca,X) at GANIL.

³⁵Na decay measurements:

2022Cr03: ${}^9\mathrm{Be}({}^{48}\mathrm{Ca,X})$ at FRIB. Measured $\mathrm{T}_{1/2}$.

2013StZY: 9 Be(48 Ca,X) at RIKEN. Measured $T_{1/2}$ and β^- -delayed γ rays.

1983La12,1984La03: Ir(p,X) at CERN. Measured $T_{1/2}$ and β^- -delayed neutrons.

³⁵Na mass measurements: None.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J, π , mass, $T_{1/2}$, etc.): 2024Lu06,

2023Zh15, 2023Ba27, 2022Ot01, 2020Ch21, 2020Ts03, 2013Li39, 2013Sh05, 2009Ly01, 2004Ge02, 2004Lu10, 2002Sa08, 1007M 25, 1004P 10, 1004P 21, 1004P 21, 1004P 22, 1005F 22, 1005F 22, 1005F 23, 1005F

1997Mo25, 1991Pa19, 1991Pa21, 1989Ly01, 1987SaZQ, 1985Ly02, 1975Ca27.

35Na Levels

Cross Reference (XREF) Flags

A ⁹Be(⁴⁸Ca,³⁵Na) B C(³⁶Mg,³⁵Naγ)

E(level) $J^{\pi \dagger}$ $T_{1/2}$ XREF 0.0^{\ddagger} $(3/2^+)$ 2.1 ms 4 AB

Comments

 $\%\beta^{-}=100; \%\beta^{-}n>0; \%\beta^{-}2n=?; \%\beta^{-}3n=?; \%\beta^{-}4n=?$

 35 Na β^- -delayed neutrons have been observed by 1983La12. Experimental $\%\beta^-$ n values are unknown.

Theoretical $\%\beta^-$ 0n=1.4, $\%\beta^-$ 1n=73.5, $\%\beta^-$ 2n=20.1, $\%\beta^-$ 3n=4.8 (2021Mi17). Theoretical $\%\beta^-$ 0n=14.0, $\%\beta^-$ 1n=73.0, $\%\beta^-$ 2n=10.0, $\%\beta^-$ 3n=3.0 (2019Mo01).

 $T_{1/2}$: weighted average of 2.4 ms 3 (stat) 2 (syst) (2022Cr03, implant-β correlation), 2.4 ms 3 (stat) 6 (syst) (2013StZY, implant-β correlation), and 1.5 ms 5 (1983La12,1984La03, decay curve of βn-coin).

 $373^{\ddagger} 5 (5/2^{+})$ B $1014^{\ddagger} 17 (7/2^{+})$ B

 γ (35Na)

$$\frac{\text{E}_{i}(\text{level})}{373}$$
 $\frac{\text{J}_{i}^{\pi}}{(5/2^{+})}$ $\frac{\text{E}_{\gamma}^{\dagger}}{373}$ $\frac{\text{E}_{f}}{0.0}$ $\frac{\text{J}_{f}^{\pi}}{(3/2^{+})}$ $\frac{1014}{(7/2^{+})}$ $\frac{161}{641}$ $\frac{16}{16}$ $\frac{16}{373}$ $\frac{16}{(5/2^{+})}$

 $^{^\}dagger$ From Monte-Carlo shell-model calculations using the SPDF-M effective interaction (2014Do05).

[‡] Band(A): K^{π} =(3/2⁺) rotational band predicted by the shell model (2014Do05).

[†] From C(36Mg,35Nay).

Adopted Levels, Gammas

<u>Level Scheme</u>

Adopted Levels, Gammas

Band(A): K^{π} =(3/2⁺) rotational band predicted by the shell model (2014Do05)

