Nazwisko i imię (DRUKOWANYMI LITERAMI)	Nr albumu		Data egzaminu B	
1. Wpisując PRAWDA albo FAŁSZ, zaznaczyć wartość logiczną ka	ażdego z nas	tępujących trzech zdań:		3
1. Jeżeli 4 jest podzielne przez 6, to 4 jest podzielne przez 2.				
2. Jeżeli 12 jest podzielne przez 6, to 12 jest podzielne przez 2.				
3. Jeżeli 17 jest podzielne przez 6, to 17 jest podzielne przez 2.				
2. Formułę zdaniową $(\sim p \Rightarrow q) \Rightarrow [(p \lor \sim q) \Rightarrow (p \land q)]$ zapisać w postać (i tylko tę postać) zapisać za pomocą funktora NAND (czyl			nie, tę uproszczoną	8
3. Zbadać formalną poprawność następującego rozumowania: Jeśli logikę. Zatem Stefan jest matematykiem.	Stefan jest 1	natematykiem, to Stefan zn	a logikę. Stefan zna	7
4. Sprawdzić, czy formuła $[p \Rightarrow (q \lor r)] \Rightarrow [(q \land r) \Rightarrow p]$ jest tautol	ogią.			7
5. Indukcyjnie wykazać, że liczba $2^{n+2}3^n + 5n - 4$ jest podzielna p	orzez 25 dla l	każdej liczby $n \in \mathbb{N}$.		8

6. Uzasadnić, że równość $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$ jest prawdziwa dla dowolnych zbiorów A, B, C i D, albo, za pomocą przykładu, wykazać, że nie jest ona prawdziwa.

7. Dana jest funkcja $f: X \to Y$ oraz podzbiory A i B zbioru X. Wykazać, że $f(A) - f(B) \subseteq f(A - B)$. Na przykładzie pokazać, że zbiory f(A) - f(B) i f(A - B) nie muszą być równe.

7

8. Korzystając z twierdzenia Cantora-Bernsteina (lub w inny sposób), udowodnić równoliczność zbiorów $(-1;1) \cup \{10,2017\}$ i $(0;1) \cup \{-2017,3,4\}$.

8

9. Diagram Hassego relacji podzielności w zbiorze $\{1, 2, 3, ..., 12\}$ przedstawiono na załączonym rysunku. Wskazać elementy minimalne, elementy maksymalne, element najmniejszy (jeśli taki istnieje), element największy (jeśli taki istnieje), ograniczenia dolne, ograniczenia górne, kres dolny i kres górny zbioru $B = \{1, 2, 3, 4, 6\}$.

10. Dane są funkcje $f: X \to Y$ i $g: Y \to Z$. Wykazać, że jeśli f i g są różnowartościowe, to także funkcja $g \circ f: X \to Z$ jest różnowartościowa. Zbadać, czy z faktu, że funkcja $g \circ f: X \to Z$ jest różnowartościowe? Podać odpowiedni przykład.