Modern Cryptography and Its Applications

1 Introduction

ch1 in textbook

Yanwei Yu

E-mail: ywyu@ustc.edu.cn

Outline

- Introduction to Information security
- X.800 standard
- security attacks, services, mechanisms
- Implementation of Security Services
- models for network (access) security

Background

- Information Security requirements have changed in recent times
- traditionally provided by physical and administrative mechanisms
- computer use requires automated tools to protect <u>files</u> and other <u>stored information</u>
- use of networks and communications links requires measures to <u>protect data during</u> <u>transmission</u>

Definitions

- Computer Security
 - to protect data and to prevent hackers
- Network Security
 - to protect data during their transmission
- Internet Security
 - to protect data during their transmission over a collection of interconnected networks

Aim of Course

- our focus is on Internet Security
- Internet Security consists of methods/techniques to prevent, detect, and correct security attacks that involve the transmission & storage of information

American and international standards

- PKCS Public Key Cryptography Standards
- IEEE Institute of Electrical and Electronics Engineers
- ANSI American National Standards Institute
- ISO International Organization for Standardization
- NIST National Institute of Standards and Technology
- FIPS Federal Information Processing Standards

OSI Security Architecture

- ITU-T(International Telecommunication Union Telecommunication Standardization Sector) X.800 "Security Architecture for OSI(Open Systems Interconnection)"
- defines a systematic way of defining and providing security requirements
- provides a useful, abstract overview of concepts we will study

Aspects of Security

- consider three aspects of information security:
 - security attack
 - security mechanism/method
 - security service

Security Attack/threat

 any action that threaten the security of information owned by an organization

- can focus of generic types of attacks
 - passive: Prevent
 - active: Detect, Recover

Passive Attacks

Passive Attacks

Security Service

- Used to <u>resolve security attacks</u>
- using one or more security mechanisms
- Provide the similar functions normally associated with physical documents
 - which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction, etc.

Security Services

• X.800:

- "a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers"

• RFC 2828:

- "a processing or communication service provided by a system to give a specific kind of protection to system resources"
- security services implement security policies and are implemented by security
 mechanisms.

2021/3/8

Security Services (X.800)

- Data Confidentiality(机密性)
 Bob Charlie
 Data Integrity
- Message Authentication(认证)^{Bob}○
 & User Authentication
- Non-Repudiation(不可抵赖性) protection against denial by one of the parties in a communication
- Access Control prevention of the unauthorized use of a resource
- Availability

Protecting data

in transit

- confidentiality
- integrity
- authentication
- non-repudiation

at rest

- access control
 - identification
 - authorization
 - auditing (审计)
- availability

Security Mechanism - Our Focus

- designed to detect, prevent, or recover from a security attack
- no single mechanism_that will support all services required
- Consist of cryptographic techniques

Security Mechanisms (X.800)

- specific security mechanisms:
 - realized in some protocol layer
 - encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding(填充), routing(路由) control, notarization(公证)
- pervasive(普遍的) security mechanisms:
 - not limited in any OSI security service or protocol layer
 - trusted functionality(功能), security labels, event detection, security audit trails(跟踪), security recovery

2021/3/8

Table 1.4 Relationship Between Security Services and Mechanisms

MECHANISM Authentication exchange Digital signature Routing control Access control Data integrity SERVICE Peer entity authentication Y Y Y Data origin authentication Y Y Y Access control Confidentiality Y Y Traffic flow confidentiality Y Y Y Data integrity Y Y Y Nonrepudiation Y Y Y Availability Y Y

no single mechanism that will support all services required

Implementation of Security Services

- Data Confidentiality
- Data Integrity
- Authentication

Confidentiality: Cipher

message X (明文)

Key Management:

- Secure distribution and share of <u>Secret key</u>
 - Confidentiality
- Secure distribution of <u>public key</u>
 - Authentication

2021/3/8

ciphertext Y

Data Integrity: Hash Function

 Hash function Basic Requirements

- 1) Public description, no key.
- 2) h(m) can be applied to any size m.
- 3) h(m) produces fixed length output.
- 4) h(m) is easy to compute (hw and sw).

arbitrary length

m message hash h function hash value h(m)

hardware and software

fixed length

Message Authentication: MAC -Message Authentication Codes

MAC=C(k,m)

– HMAC: keyed hash functions

- CMAC: Cipher **Block Chaining** MAC

Example

Identification (User Authentication)

- On the basis of
 - What you know: password, PINS
 - What you have: magnetic card, smart card
 - What you are: fingerprints, handprints, voiceprints, keystroke timing, retinal scanners

Non-repudiation

Non-repudiation

Relations among security services

Model for Network Security

Model for Network Security

- using this model requires us to:
 - 1. design a suitable algorithm for the security transformation
 - 2. generate the secret information (keys) used by the algorithm
 - 3. develop methods to distribute and share the secret information
 - 4. specify a protocol enabling the principals to use the transformation and secret information for a security service

Model for Network Access Security

Computing resources (processor, memory, I/O) Data

Information System

Processes (进程)

Software

Internal security controls

Opponent

-human (e.g., cracker)

—software (e.g., virus, worm)

Access Channel

Gatekeeper function

Model for Network Access Security

- using this model requires us to:
 - 1. select appropriate gatekeeper functions to identify users: login
 - 2. implement security controls to ensure only authorised users access designated information or resources: monitor in realtime.

Summary

- have considered:
 - definitions for:
 - · computer, network, internet security
- X.800 standard
- security attacks, services, mechanisms
- Implementation of Security Services
- models for network (access) security

Review Questions

- **1.1** What is the OSI security architecture?
- 1.2 List and briefly define categories of security services.
- **1.3** List and briefly define categories of security mechanisms

Thanks!

