Math 445 Homework 3 Solutions

- 11. When applying the Pollard ρ method, starting from a_1 , suppose we find that a_1, \ldots, a_{17} are all distinct, mod n, but then $a_{18} \equiv a_{11}$. Find the smallest k for which $a_{2k} \equiv a_k$. Since $a_{18} \equiv a_{11}$, $a_{19} = f(a_{18}) \equiv f(a_{11}) = a_{12}$, and, in fact, $a_{k+7} \equiv a_k$ for every $k \geq 7$. (This can be formally proved by induction.) This, in turn, implies (formally, again, by induction on m) that $a_{k+7m} \equiv a_k$ for all $m \geq 1$ and $k \geq 11$. In fact, these are the only pairs of terms of the sequence $\{a_n\}_{n=1}^{\infty}$ that are mutually congruent after a_{11} , the terms keep going around in a circle with a period of 7. So, to solve the problem, we wish to have 2k = k + 7m for some $m \geq 1$ and $k \geq 11$, i.e., k = 7m for some $m \geq 1$ and $k \geq 11$. The first m which works is therefore m = 2, with k = 14; $a_{28} \equiv a_{14}$, and no smaller k works.
- 12. Show that if n=pq is a product of distinct primes and $de\equiv 1\pmod{(p-1)(q-1)}$, then $A^{de}\equiv A\pmod{n}$.

We'll show that $A^{de} \equiv A \pmod p$ and $A^{de} \equiv A \pmod q$, i.e., p and q both divide $A^{de} - A$. Then since p and q are distinct primes, (p,q) = 1, and so $n = pq|A^{de} - A$. By hypothesis, de - 1 = k(p-1)(q-1), so de = 1 + k(p-1)(q-1). Given A, one of three things is true: (1) (A,p) = (A,q) = 1, (2) exactly one of p,q divides A, WOLOG p|A (since there is no distinction between them) and (A,q) = 1, or (3) p,q|A, so n = pq|A.

In case (1), Fermat's Little Theorem tells us that $A^{p-1} \equiv 1 \pmod p$ and $A^{q-1} \equiv 1 \pmod q$, so $A^{de} = (A^{p-1})^{k(q-1)}A \equiv 1^{k(q-1)}A \equiv A \pmod p$ and $A^{de} = (A^{q-1})^{k(p-1)}A \equiv 1^{k(p-1)}A \equiv A \pmod p$, so $A^{de} \equiv 0 \equiv A \pmod p$, while, as in (1), $A^{de} \equiv A \pmod q$. Finally, in case (3), $A \equiv 0 \pmod p$ and $A \equiv 0 \pmod q$, so $A^{de} \equiv 0 \equiv A \pmod p$ and the same for q. So in all cases, $A^{de} \equiv A \pmod p$ and $A \equiv A \pmod p$.

- 13. If $p^2|n$ for some $p \geq 2$, then there are $a \not\equiv b \pmod n$ for which $a^k \equiv b^k \pmod n$ for every $k \geq 2$.
 - Since $p^2|n$, we have $n=p^2s$ for some integer s. Set a=0 and b=ps; then $a\not\equiv b\pmod n$, since $n\not\mid px=b-a=ps$. (This is where $p\geq 2$ is used; n>ps so n cannot divide ps.) But $b^2=p^2x^2=nx\equiv 0=a^2$, and, in fact, $n=p^2x|b^k$ for every $k\geq 2$, since $b^k=p^kx^k=(p^2x)(p^{k-2}x^{k-1})$, so $a^k=0\equiv b^k$ for all $k\geq 2$.
- 14. If n|m, and (10, m) = 1, then the period of the decimal expansion of 1/n divides the period of the decimal expansion of 1/m.

Translating this into the language of orders, if n|m and (10,m)=1, then we wish to show that $\operatorname{ord}_n(10)|\operatorname{ord}_m(10)$. Setting $s=\operatorname{ord}_m(10)$, it is enough to show that $10^s\equiv 1\pmod n$, since we know that $\operatorname{ord}_n(10)$ divides any such exponent. But by definition, $10^s\equiv 1\pmod m$, so $m|10^s-1$, so $10^s-1=mx$ for some x. But since n|m, m=ny for some y, so $10^s-1=mx=(ny)x=n(xy)$, so $n|10^s-1$, so $10^s\equiv 1\pmod n$, as desired.

15. For every n > 2, $\operatorname{ord}_{3^n}(10) = 3^{n-2}$.

We show first that for every $n \ge 2$, $10^{3^{n-2}} = 1 + k3^n$ for some k with (k,3) = 1. We proceed by induction. For n = 2, $10^{3^{2-2}} = 10^{3^0} = 10^1 = 10 = 1 + 1 \cdot 3^2$, so k = 1 and (1,3) = 1. Now suppose that $10^{3^{n-2}} = 1 + k3^n$ for some k with (k,3) = 1. Then

$$10^{3^{(n+1)-2}} = 10^{3^{n-2} \cdot 3} = (10^{3^{n-2}})^3 = (1+k3^n)^3$$

$$= 1 + 3(1)^2(k3^n) + 3(1)(k3^n)^2 + (k3^n)^3$$

$$= 1 + k3^{n+1} + k^23^{2n+1} + k^33^{3n}$$

$$= 1 + (k + k^23^n + k^33^{2n-1})3^{n+1}$$

with $k + k^2 3^n + k^3 3^{2n-1} \equiv k + k^2 (0) + k^3 (0) \equiv k \pmod{3}$ (since $n, 2n - 1 \ge 1$). So $(k + k^2 3^n + k^3 3^{2n-1}, 3) = (k, 3) = 1$, so $10^{3^{(n+1)-2}} = 1 + K3^{n+1}$ with (K, 3) = 1, as desired. So by induction, for $n \ge 2$, $10^{3^{n-2}} = 1 + k3^n$ for some k with (k, 3) = 1.

Since $10^{3^{n-2}}=1+k3^n, 10^{3^{n-2}}\equiv 1\pmod{3^n}$, so $\operatorname{ord}_{3^n}(10)|3^{n-2}$. So either $\operatorname{ord}_{3^n}(10)=3^{n-2}$ or $\operatorname{ord}_{3^n}(10)=3^m$ for some m< n-2. But we know from above that $10^{3^m}-1=k3^{m+2}$ for some k with (k,3)=1. So if $\operatorname{ord}_{3^n}(10)=3^m$, then $3^n|10^{3^m}-1$, so $10^{3^m}-1=s3^n$ for some s. But then $k3^{m+2}=s3^n$, so cancelling powers of 3, $k=s3^{n-(m+2)}=s3^{(n-2)-m}=s3^r$ for some $r\geq 1$. So 3|k, so (k,3)=3, a contradiction. So $\operatorname{ord}_{3^n}(10)=3^{n-2}$, as desired.