Ejercicios de la sección 5.3 Sistemas de coordenadas

(Para hacer en clase: 1, 8, 10, 11, 14, 16.)

(Con solución o indicaciones: 2, 7, 9, 12, 13, 15.)

En los ejercicios 1 a 4, halla el vector \mathbf{x} cuyo vector de $\triangleright 11$. coordenadas respecto a la base \mathcal{B} dada es el vector $[\mathbf{x}]_{\mathcal{B}}$

▶1.
$$\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \begin{pmatrix} -4 \\ 6 \end{pmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

▶2.
$$\mathcal{B} = \left\{ \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \end{pmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 8 \\ -5 \end{pmatrix}$$

3.
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 4 \\ -7 \\ 0 \end{pmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}$$

4.
$$\mathcal{B} = \left\{ \begin{pmatrix} -1\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\-5\\2 \end{pmatrix}, \begin{pmatrix} 4\\-7\\3 \end{pmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} -4\\8\\-7 \end{pmatrix}$$

En los ejercicios 5 a 8, halla el vector de coordenadas de \mathbf{x} respecto a la base $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$.

5.
$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$

6.
$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} 5 \\ -6 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$

▶7.
$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} -3 \\ 4 \\ 9 \end{pmatrix}$, $\mathbf{b}_3 = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} 8 \\ -9 \\ 6 \end{pmatrix}$

▶8.
$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
, $\mathbf{b}_2 = \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix}$, $\mathbf{b}_3 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$

En los ejercicios 9 y 10, usa una matriz inversa para encontrar $[x]_{\mathcal{B}}$ para las x y \mathcal{B} dadas.

▶9.
$$\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -5 \end{pmatrix}, \begin{pmatrix} -4 \\ 6 \end{pmatrix} \right\}, \mathbf{x} = \begin{pmatrix} 2 \\ -6 \end{pmatrix}$$

▶10.
$$\mathcal{B} = \left\{ \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 6 \\ 7 \end{pmatrix} \right\}, \mathbf{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

En los ejercicios 11 y 12, indica para cada enunciado si es verdadero o falso. Justifica tus respuestas. A menos que se diga lo contrario ${\mathcal B}$ es una base de un subespacio vectorial V de \mathbf{R}^m .

- (a) Si \mathbf{x} está en V y si la base \mathcal{B} de V tiene n vectores entonces $[\mathbf{x}]_{\mathcal{B}}$ está en \mathbf{R}^n .
- Si $P_{\mathcal{B}}$ es la matriz de cambio de coordenadas de \mathcal{B} a la base canónica entonces $[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}} \cdot \mathbf{x}$
- Si la base \mathcal{B} de V tiene 3 elementos, entonces V y \mathbb{R}^3 son isomorfos.

- (a) Si \mathcal{B} es la base canónica de \mathbf{R}^m entonces el vector de coordenadas de un \mathbf{x} de \mathbf{R}^m relativas a \mathcal{B} es el propio x.
- (b) La correspondencia $[x]_{\mathcal{B}} \mapsto x$ se llama función de coordenadas.
- (c) En algunos casos, un plano en R³ puede ser isomorfo a \mathbb{R}^2 .
- ▶13. Halla la matriz canónica de la aplicación lineal de R² en ${\bf R}^2$ que asigna a cada vector ${\bf x}$ su vector de coordenadas relativas a la base $\mathcal{B}=\left\{\begin{pmatrix}1\\-4\end{pmatrix}$, $\begin{pmatrix}-2\\9\end{pmatrix}\right\}$; es decir, la matriz
- ▶14. Para los vectores v_1, v_2, v_3, x dados, demuestra que $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es una base de $H = \operatorname{Gen}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ y halla las coordenadas de x relativas a \mathcal{B} .

$$\mathbf{v}_1 = \begin{pmatrix} -6 \\ 4 \\ -9 \\ 4 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 8 \\ -3 \\ 7 \\ -3 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} -9 \\ 5 \\ -8 \\ 3 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 4 \\ 7 \\ -8 \\ 3 \end{pmatrix}$$

En los ejercicios 15 y 16, halla la matriz de cambio de coordenadas de \mathcal{B} a la base canónica de \mathbf{R}^n

▶15.
$$\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ -9 \end{pmatrix}, \begin{pmatrix} 1 \\ 8 \end{pmatrix} \right\}$$

▶16.
$$\mathcal{B} = \left\{ \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix}, \begin{pmatrix} 8 \\ -2 \\ 7 \end{pmatrix} \right\}$$

Pistas y soluciones de ejercicios seleccionados de la sección 5.3

- **2.** Por definición de coordenadas: $\mathbf{x} = 8\left(\frac{4}{5}\right) 5\left(\frac{6}{7}\right) = \left(\frac{2}{5}\right)$.
- 7. Hay que resolver el sistema cuya matriz ampliada es $[\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \ \mathbf{x}]$. El vector solución es $[\mathbf{x}]_{\mathcal{B}}$. El resultado es $[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$
- **9.** $[\mathbf{x}]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} \mathbf{x} = \begin{pmatrix} 3 & -4 \\ -5 & 6 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ -6 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}.$
- 12. (a) Todo vector de \mathbf{R}^m es su propio vector de coordenadas respecto a la base canónica, (b) La función de coordenadas es la inversa de esa, $\mathbf{x}\mapsto [\mathbf{x}]_{\mathcal{B}}$, (c) Un plano que pase por el origen.
- 13. La matriz canónica de la función de coordenadas $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}} \text{ es } P_{\mathcal{B}}^{-1} = \begin{pmatrix} 1 & -2 \\ -4 & 9 \end{pmatrix}^{-1} = \begin{pmatrix} 9 & 2 \\ 4 & 1 \end{pmatrix}.$
- **15.** $P_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2] = \begin{pmatrix} 2 & 1 \\ -9 & 8 \end{pmatrix}.$