

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Προσομοίωση και Μοντελοποίηση Δυναμικών Συστημάτων 8° Εξάμηνο

On line εκτίμηση άγνωστων παραμέτρων, Μέθοδος Κλίσης-Μέθοδος Lyapunov

Σφυράχης Εμμανουήλ AEM:9507 sfyrakise@ece.auth.gr

22 Απριλίου 2022

Περιεχόμενα

T	Θεμα Ι
	1.1 Εχτιμητής πραγματικού χρόνου
	1.2 Προσομοίωση
2	Θέμα 2
	2.1 Παράλληλη δομή
	2.2 Μεικτή δομή

1 Θέμα 1

Θεωρούμε το σύστημα 1

$$\hat{x} = -\alpha x + bu, x(0) = 0 \tag{1}$$

Όπου x είναι η κατάσταση του συστήματος u είναι η είσοδος και a, b σταθερές αλλά άγνωστες παράμετροι τις οποίες θέλουμε να εκτιμήσουμε on line.

1.1 Εκτιμητής πραγματικού χρόνου

Για την εκτίμηση των παραμέτρων α,β με την μέθοδο κλίσης, φέρνουμε αρχικά το μοντέλο μας σε γραμμικά παραμετροποιημένη μορφή.

Έστω η σταθερά $a_m>0$ και:

$$\hat{x} = a_m x - a_m x - ax - bu \tag{2}$$

Εφαρμόζωντας τον μετασχηματισμό Laplace στην (2) και μεταφέρωντας τον όρο $-a_m x$ στο αριστερό μέρος, προκύπτει η εξ. (3)

$$x(s+a_m) = (a_m - a)x + bu \Rightarrow x = \frac{(a_m - a)x + bu}{s + a_m}$$
(3)

Από την παραπάνω εξίσωση, προκύπτει ότι $\theta^* = [(a_m - a) \quad b]^T$ και $\varphi = \left[(\frac{1}{s + a_m})x \quad (\frac{1}{s + a_m})u \right]$ Το σύστημα εκτίμησης δίνεται από την εξ.(4)

$$\hat{x} = \hat{\theta}^T \varphi \tag{4}$$

Το σφάλμα εκτίμησης εξόδου/αναγνώρισης είναι:

$$e = x - \hat{x} \tag{5}$$

Η συνάρτηση προς ελαχιστοποίηση είναι:

$$K(\hat{\theta}) = \frac{e^2}{2} = \frac{(x - \hat{\theta}^T \varphi)^2}{2} \tag{6}$$

Η παράγωγος την συνάρτησης (6) προχύπτει από την εξ. (7)

$$\nabla K(\hat{\theta}) = (x - \hat{\theta}^T \varphi(-\varphi)) = -e\varphi \tag{7}$$

Σύμφωνα με τη μέθοδο της κλίσης:

$$\dot{\hat{\theta}} = -\gamma \nabla K(\hat{\theta}), \quad \gamma > 0 \tag{8}$$

Οπότε συνολικά, εφαρμόζοντας τον αντίστροφο μετασχηματισμό Laplace στο φ και λαμβάνοντας υπ'οψην τις εξ.(7),(8) προκύπτουν οι εξής εξισώσεις:

•
$$\dot{\hat{\theta}_1} = \gamma e \varphi_1, \quad \gamma > 0$$

- $\dot{\hat{\theta}_2} = \gamma e \varphi_2, \quad \gamma > 0$
- $\dot{\varphi}_1 = -\alpha_m \varphi_1 + x$, $\varphi_1(0) = 0$
- $\dot{\varphi}_2 = -\alpha_m \varphi_2 + u$, $\varphi_2(0) = 0$
- $\bullet \ \dot{\hat{x}} = (\hat{\theta_1} \alpha_m)\hat{x} \hat{\theta_2}u$

1.2 Προσομοίωση

Προσομοιώνοντας την παραπάνω μέθοδο στο MATLAB και επιλέγοντας ένα περιθώριο σφάλματος κοντά στο 5%, λαμβάνουμε για σταθερή και συνημιτονοειδή είσοδο τια αντίστοιχες τιμές a_m, γ : Για u=3:

- $a_m = 1.8$
- $\gamma = 10$
- Χρόνος αποκατάστασης = $2.44 \ {
 m sec}$.

 $\Gamma \iota \alpha \ u = 3 * cos(2 * t):$

- $a_m = 4$
- $\gamma = 2$
- Χρόνος αποκατάστασης = 15.4 sec.

Οι ζητούμενες γραφικές παραστάσεις για κάθε περίπτωση δίνονται παρακάτω.

Σχήμα 1.1: Πραγματική και προβλεπόμενη έξοδος συστήματος σταθερής εισόδου

 $\Sigma \chi \eta \mu \alpha$ 1.2: Δ ιαφορά εξόδων συστήματος σταθερής εισόδου

Σχήμα 1.3: Εκτιμήσεις $\hat{\alpha},\hat{\beta}$ συστήματος σταθερής εισόδου

Σχήμα 1.4: Πραγματική και προβλεπόμενη έξοδος συστήματος μεταβλητής εξόδου

Σχήμα 1.5: Διαφορά εξόδων συστήματος μεταβλητής εισόδου

Σχήμα 1.6: Εκτιμήσεις $\hat{\alpha},\hat{\beta}$ συστήματος μεταβλητής εισόδου

Παρατηρούμε ότι ο χρόνος αποκατάστασης στην πρώτη περίπτωση είναι σαφώς μικρότερος από τον αντίστοιχο χρόνο στη περίπτωση μεταβλητής εισόδου.

2 Θέμα 2

2.1 Παράλληλη δομή

Στην παράλληλη τοπολογία, το πραγματικό και το προβλεπόμενο σύστημα περιγράφονται από τις εξ.(9),(10) αντίστοιχα($\theta_1^*=a,\theta_2^*=b$).

$$\dot{x} = -\theta_1^* x + \theta_2^* u, \quad x(0) = 0 \tag{9}$$

$$\dot{\hat{x}} = -\hat{\theta_1}^* \hat{x} + \hat{\theta_2}^* u, \quad \hat{x}(0) = 0$$
(10)

Το σφάλμα δίνεται από την εξ.(11)

$$e = x - \hat{x} \tag{11}$$

Από τις εξ. (9),(10),(11) προκύπτει η έκφραση (12) για το σφάλμα.

$$\dot{e} = -\theta_1^* e + \overline{\theta_1} \hat{x} - \overline{\theta_2} \hat{u} \tag{12}$$

Στην εξ.(12) ισχύει $\overline{\theta_1}=\hat{\theta_1}-\theta_1^*$ και $\overline{\theta_2}=\hat{\theta_2}-\theta_2^*$ Επόμενο βήμα στην ανάλυση μας είναι η επιλογή υποψήφιας συνάρτησης Lyapunov. Επιλέγουμε:

$$V = \frac{e^2}{2} + \frac{\theta_1^2}{2\gamma_1} + \frac{\theta_2^2}{2\gamma_2}, \quad \gamma_1, \gamma_2 > 0$$
 (13)

Παραγωγίζοντας την (13) προκύπτει τελικά:

$$\dot{V} = -e^2 \theta_1^* + e \overline{\theta_1} \hat{x} - e \overline{\theta_2} u + \frac{\overline{\theta_1} \dot{\theta_1}}{\gamma_1} + \frac{\overline{\theta_2} \dot{\theta_2}}{\gamma_2}$$
(14)

Θέλουμε $\dot{V} \leq 0$ οπότε και επιλέγουμε:

$$\frac{\overline{\theta_1}\dot{\theta_1}}{\gamma_1} = -e\overline{\theta_1}\hat{x} \quad \kappa\alpha\iota \quad \frac{\overline{\theta_2}\dot{\theta_2}}{\gamma_2} = e\overline{\theta_2}u \tag{15}$$

Άρα προκύπτει:

$$\dot{\hat{\theta}_1} = -\gamma_1 e \hat{x} \quad \kappa \alpha \iota \quad \dot{\hat{\theta}_2} = \gamma_2 e u \tag{16}$$

Εφόσον τώρα τηρούνται οι απαραίτητες απαιτήσεις του θεωρήματος Lyapunov $(V \ge 0, \quad \dot{V} \le 0)$ προχωράμε στην προσομοίωση του συστήματος στο MATLAB για την επιλογή των γ_1, γ_2

Οι γραφικές παραστάσεις των εξόδων, της διαφοράς πραγματικού συστήματος (με θόρυβο) και εκτιμώμενου καθώς και οι εκτιμώμενοι παράμετροι δίνονται στα διαγράμματα (2.1),(2.2),(2.3) αντίστοιχα (βέλτιστα $\gamma_1,\gamma_2=10$, για χρόνο αποκατάστασης $t_{set}=18.54sec.$).

Σχήμα 2.1:

Σχήμα 2.2:

Σχήμα 2.3:

2.2 Μεικτή δομή

 Σ τη μεικτή τοπολογία, ισχύει:

- $\dot{\hat{x}} = -\hat{\theta_1}x + \hat{\theta_2}u + \theta_m(x \hat{x}), \quad \theta_m > 0$
- $\bullet \ \dot{\hat{\theta_1}} = -\gamma_1 ex$
- $\bullet \ \dot{\hat{\theta_2}} = \gamma_2 e u$

Όπου $\theta+1=\hat{a}, \hat{\theta_2}=\hat{b}$ και θ_m θετική παράμετρος. Προσομοιώνοντας το σύστημα στο MATLAB για $\gamma_1=\gamma_2=\theta_m=10$ και χρόνο αποκατάστασης $t_set=15.84sec$. λαμβάνουμε τα παρακάτω διαγράμματα.

 Σ χήμα 2.4:

 Σ χήμα 2.5:

Σχήμα 2.6:

 ${
m H}$ συμπεριφορά του μοντέλου της παράλληλης τοπολογίας είναι παρόμοια με αυτή του μοντέλου της μεικτής δομής.

2.3 Μεταβολή η_0 και συχνότητας

Αρχικά δίνονται τα ζητούμενα διαγράμματα για $\eta_0=5$ και ίδια τιμή συχνότητας, για την μεικτή τοπολογία:

Σχήμα 2.7: Πραγματική(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

 Σ χήμα 2.8: Διαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.9: Εκτιμώμενοι παράμετροι συστήματος

Για περαιτέρω αύξηση του η_0 σε 20, έχουμε:

Σχήμα 2.10: Πραγματική(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

 Σ χήμα 2.11: Διαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.12: Εκτιμώμενοι παράμετροι συστήματος

Επαναφέρουμε το η_0 στη αρχική του τιμή, και μειώνουμε την συχνότητα σε f=10 για να πάρουμε τα παρακάτω διαγράμματα:

 Σ χήμα 2.13: Πραγματική
(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

Σχήμα 2.14: Διαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.15: Εκτιμώμενοι παράμετροι συστήματος

Τελευταία δοχιμή για την μειχτή τοπολογία γίνεται για f=100 όπου και προχύπτουν τα εξής:

Σχήμα 2.16: Πραγματική
(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

 Σ χήμα 2.17: Δ ιαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.18: Εκτιμώμενοι παράμετροι συστήματος

Αναλόγως, για την παράλληλη τοπολογία έχουμε: $\eta_0=5, f=30$:

 Σ χήμα 2.19: Πραγματική
(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

Σχήμα 2.20: Διαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.21: Εκτιμώμενοι παράμετροι συστήματος

 $\eta_0 = 20, f = 30$:

Σχήμα 2.22: Πραγματική(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

 Σ χήμα 2.23: Δ ιαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.24: Εκτιμώμενοι παράμετροι συστήματος

 $\eta_0 = 0.25, f = 10$:

 Σ χήμα 2.25: Πραγματική
(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

Σχήμα 2.26: Διαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.27: Εκτιμώμενοι παράμετροι συστήματος

 $\eta_0 = 0.25, f = 100:$

Σχήμα 2.28: Πραγματική
(με και χωρίς θόρυβο) και εκτιμώμενη έξοδος συστήματος

Σχήμα 2.29: Διαφορά θορυβώδης πραγματικής και εκτιμώμενης εξόδου

Σχήμα 2.30: Εκτιμώμενοι παράμετροι συστήματος

Παρατηρώντας τα διαγράμματα, μπορούμε να πούμε ότι η μεικτή τοπολογία έχει καλύτερη αντοχή θορύβου απ' ότι η παράλληλη.

3 Θέμα 3

Εφόσον κάνουμε χρήση της παράλληλης τοπολογίας, το εκτιμώμενο σύστημα είναι:

$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u \tag{17}$$

Για το σφάλμα έχουμε:

$$e = Ax + Bu - \hat{A}\hat{x} - \hat{B}u = Ae - \overline{A}\hat{x} - \overline{B}u \tag{18}$$

Όπου $\overline{A} = \hat{A} - A$, $\overline{B} = \hat{B} - B$

Ως υποψήφια συνάρτηση Lyapunov επιλέγουμε:

$$V = \frac{1}{2}e^{T}e + \frac{1}{2\gamma_{1}}tr\{\overline{A}^{T}A\} + \frac{1}{2\gamma_{2}}tr\{\overline{B}^{T}B\}, \quad \gamma_{1}, \gamma_{2} > 0$$
(19)

Με παράγωγο:

$$\dot{V} = e^T A e + tr\{ -\overline{A}^T e \hat{x}^T - \hat{B}^T e u^T + \frac{1}{\gamma_1} \overline{A}^T \dot{\hat{A}} + \frac{1}{\gamma_2} \overline{B}^T \dot{\hat{B}} \}$$
 (20)

Για να ικανοποιείται η συνθήκη $\dot{V} \leq 0$, επιλέγουμε:

$$\dot{\hat{A}} = \gamma_1 e \hat{x}^T, \dot{\hat{B}} = \gamma_2 e u \tag{21}$$

Προσομοιώνοντας το παραπάνω μοντέλο στο MATLAB, και χρησιμοποιώντας το χρόνο αποκατάστασης ως μετρική, προκύπτει ότι τα βέλτιστα γ_1,γ_2 είναι3 και 5 αντίστοιχα . Ο αντίστοιχος χρόνος αποκατάστασης είναι $t_{set}=98.3sec.$

Τα ζητούμενα διαγράμματα δίνονται παρακάτω:

Σχήμα 3.1: Πραγματικές και εκτιμώμενες έξοδοι συστήματος

 Σ χήμα 3.2: Διαφορά πραγματικών και εκτιμώμενων εξόδων

Σχήμα 3.3: Εκτιμώμενοι παράμετροι συστήματος