SABANCI UNIVERSITY, CS 302 Automata Theory, Spring 2023 Midterm Examination QUESTION 1 (50 pts)

Name:

Surname:

Closed <u>book</u> and <u>notes</u> (of paper and electronic kind); Calculators are <u>not</u> allowed and all phones must be switched off; Duration: 60 minutes

Consider the language $L \subseteq \{0,1\}^*$ where in each string of L every 0 is followed precisely by two 1's.

(a) (15 pts) Write down a regular expression E corresponding to this language L.

(b) (35 pts) <u>Sketch</u> (i) an epsilon-NFA **X**; (ii) an NFA **Y** (without epsilon-transitions); (iii) a DFA **Z** and (iv) a **minimal state** DFA **W** that all accept

epsiton-transitions); (iii	i) a DFA Z ana (iv) a minima	i State DFA	w mai an	ассері
the language $oldsymbol{L}$.	E	state inp	ut next	state
(a,b) (a,b) (a,b) (a,b)	$0 \longrightarrow (9_2) \xrightarrow{1} (9_3) \xrightarrow{1} (9_4)$	>90	90,9	
	$(92) \rightarrow (93) \rightarrow (94)$	*91	0 92	
1 4	1	92	0 Ø	
$\langle \rangle$ $\langle q_0 \rangle$ $\langle q_1 \rangle$ $\langle q_2 \rangle$	93 5 (94)	93	1 93 0 0 1 94, 94	
0		94	0 92	-
1		,		1
		State	input	next state
2> (A) -> (B)	9194 J 0	90,91	O	92 3
0/ 11		> 10) 11	1	90,91 A
	10000	928	0	Ø
	X M	12	1	93 🏽 🤇
		93	0	Ø
	/	- ۱٫٫۰۰۰	1	9101

Z=W is already minimal.

PAGE 2

SABANCI UNIVERSITY, CS 302 Automata Theory, Spring 2023 Midterm Examination QUESTION 2 (50 pts)

Name:

Surname:

Closed <u>book</u> and <u>notes</u> (of paper and electronic kind); Calculators are <u>not</u> allowed and all phones must be switched off; Duration: 60 minutes

- (a) (10 pts) For a non-deterministic finite automaton (NFA) A state the definition of the language L(A) accepted by A in terms of its extended transition function δE $L(A) = \{ w \in \Sigma^* \mid SE(Q_0, w) \cap F \neq \emptyset \} \text{ or } SE(A) \iff SE(Q_0, s) \cap F \neq \emptyset$ (b) (15 pts) State the pumping lemma for regular languages.
- (c) (25 pts) Consider the languages L_1 and L_2 below:

 $L_1 = (\omega \in \{0,1\}^* | \omega = 0^n 1^m ; n+m = an odd number ; n,m nonnegative integers)$

 $L_2 = (\omega \in \{0,1\}^* | \omega = 0^n 1^m ; n > 3m ; n,m \text{ nonnegative integers})$

For each case **state** whether the language is a **regular** or an **irregular context-free language**. If it is regular exhibit an accepting NFA (or a regular expression), if it is not then exhibit a CFG that generates it.

b) pumping length n>0 st.
$$\forall w \in L$$
, $|w| \ge n$ and there is a decomposition $w = xyz$ where $|xy| \le n$, $|y| > 0$ and $|xy| \le L$ for all $i = 0,1,2,---$

