

Rob J Hyndman

Forecasting using

11. Dynamic regression

OTexts.com/fpp/9/1/

Outline

- 1 Regression with ARIMA errors
- 2 Example: Japanese cars
- 3 Using Fourier terms for seasonality
- 4 Example: Sales of petroleum & coal products

Regression models

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- Usually, we assume that n_t is WN.
- Now we want to allow n_t to be autocorrelated.

Regression models

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- Usually, we assume that n_t is WN.
- Now we want to allow n_t to be autocorrelated.

$$y_t=b_0+b_1x_{1,t}+\cdots+b_kx_{k,t}+n_t$$
 where $(1-\phi_1B)(1-B)n_t=(1-\theta_1B)e_t$ and e_t is white noise

Regression models

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- Usually, we assume that n_t is WN.
- Now we want to allow n_t to be autocorrelated.

$$y_t=b_0+b_1x_{1,t}+\cdots+b_kx_{k,t}+n_t$$
 where $(1-\phi_1B)(1-B)n_t=(1-\theta_1B)e_t$ and e_t is white noise

Regression models

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- Usually, we assume that n_t is WN.
- Now we want to allow n_t to be autocorrelated.

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$
 where $(1-\phi_1 B)(1-B)n_t = (1-\theta_1 B)e_t$ and e_t is white noise

Regression models

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- Usually, we assume that n_t is WN.
- Now we want to allow n_t to be autocorrelated.

$$y_t=b_0+b_1x_{1,t}+\cdots+b_kx_{k,t}+n_t$$
 where $(1-\phi_1B)(1-B)n_t=(1- heta_1B)e_t$ and e_t is white noise .

$$y_t = b_0 + b_1 x_{1,t} + \dots + b_k x_{k,t} + n_t$$
 where $(1 - \phi_1 B)(1 - B)n_t = (1 - \theta_1 B)e_t$

- Be careful in distinguishing n_t from e_t
- n_t are the "errors" and e_t are the "residuals" In ordinary regression, n_t is assumed to be
 - white noise and so $n_t = e_t$.
- After differencing all variables
 - $y'_t = b_1 x'_{1,t} + \cdots + b_k x'_{k,t} + n'_t.$
- Now a regression with ARMA(1,1) error

Example: $n_t = ARIMA(1,1,1)$

$$y_t = b_0 + b_1 x_{1,t} + \dots + b_k x_{k,t} + n_t$$
 where $(1 - \phi_1 B)(1 - B)n_t = (1 - \theta_1 B)e_t$

- Be careful in distinguishing n_t from e_t .
- \blacksquare n_t are the "errors" and e_t are the "residuals".
- In ordinary regression, n_t is assumed to be white noise and so $n_t = e_t$.

After differencing all variables

$$y'_t = b_1 x'_{1,t} + \dots + b_k x'_{k,t} + n'_t.$$

Example: $n_t = ARIMA(1,1,1)$

$$y_t = b_0 + b_1 x_{1,t} + \dots + b_k x_{k,t} + n_t$$
 where $(1 - \phi_1 B)(1 - B)n_t = (1 - \theta_1 B)e_t$

- Be careful in distinguishing n_t from e_t .
- n_t are the "errors" and e_t are the "residuals".
- In ordinary regression, n_t is assumed to be white noise and so $n_t = e_t$.

After differencing all variables

$$y'_t = b_1 x'_{1,t} + \dots + b_k x'_{k,t} + n'_t.$$

Example: $n_t = ARIMA(1,1,1)$

$$y_t = b_0 + b_1 x_{1,t} + \dots + b_k x_{k,t} + n_t$$
 where $(1 - \phi_1 B)(1 - B)n_t = (1 - \theta_1 B)e_t$

- Be careful in distinguishing n_t from e_t .
- \blacksquare n_t are the "errors" and e_t are the "residuals".
- In ordinary regression, n_t is assumed to be white noise and so $n_t = e_t$.

After differencing all variables

$$y'_t = b_1 x'_{1,t} + \dots + b_k x'_{k,t} + n'_t.$$

Example: $n_t = ARIMA(1,1,1)$

$$y_t = b_0 + b_1 x_{1,t} + \dots + b_k x_{k,t} + n_t$$
 where $(1 - \phi_1 B)(1 - B)n_t = (1 - \theta_1 B)e_t$

- Be careful in distinguishing n_t from e_t .
- \blacksquare n_t are the "errors" and e_t are the "residuals".
- In ordinary regression, n_t is assumed to be white noise and so $n_t = e_t$.

After differencing all variables

$$y'_t = b_1 x'_{1,t} + \cdots + b_k x'_{k,t} + n'_t.$$

Example: $n_t = ARIMA(1,1,1)$

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$
 where $(1 - \phi_1 B)(1 - B)n_t = (1 - \theta_1 B)e_t$

- Be careful in distinguishing n_t from e_t .
- \blacksquare n_t are the "errors" and e_t are the "residuals".
- In ordinary regression, n_t is assumed to be white noise and so $n_t = e_t$.

After differencing all variables

$$y'_t = b_1 x'_{1,t} + \cdots + b_k x'_{k,t} + n'_t.$$

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$
 where $\phi(B)(1-B)^d n_t = \theta(B)e_t$

After differencing all variables

$$y_t'=b_1x_{1,t}'+\cdots+b_kx_{k,t}'+n_t'$$
 where $\phi(B)n_t= heta(B)e_t$ and $y_t'=(1-B)^dy_t,$ etc.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$
 where $\phi(B) (1-B)^d n_t = heta(B) e_t$

After differencing all variables

$$y_t'=b_1x_{1,t}'+\cdots+b_kx_{k,t}'+n_t'.$$
 where $\phi(B)n_t= heta(B)e_t$ and $y_t'=(1-B)^dy_t,$ etc.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$y_t = b_0 + b_1 x_{1,t} + \cdots + b_k x_{k,t} + n_t$$
 where $\phi(\mathcal{B})(1-\mathcal{B})^d n_t = \theta(\mathcal{B})e_t$

After differencing all variables

$$y_t'=b_1x_{1,t}'+\cdots+b_kx_{k,t}'+n_t'.$$
 where $\phi(B)n_t=\theta(B)e_t$ and $y_t'=(1-B)^dy_t,$ etc.

- OLS no longer the best way to compute coefficients as it does not take account of time-relationships in data.
- Standard errors of coefficients are incorrect most likely too small. This invalidates tests and prediction intervals.

- OLS no longer the best way to compute coefficients as it does not take account of time-relationships in data.
- Standard errors of coefficients are incorrect most likely too small. This invalidates tests and prediction intervals.

- OLS no longer the best way to compute coefficients as it does not take account of time-relationships in data.
- Standard errors of coefficients are incorrect most likely too small. This invalidates tests and prediction intervals.
 - Second problem more serious because it can lead to misleading results.
 - If standard errors obtained using OLS too small, some explanatory variables may appear to be significant when in fact, they are not. This is known as "spurious regression"

- OLS no longer the best way to compute coefficients as it does not take account of time-relationships in data.
- Standard errors of coefficients are incorrect most likely too small. This invalidates tests and prediction intervals.
- Second problem more serious because it can lead to misleading results.
- If standard errors obtained using OLS too small, some explanatory variables may appear to be significant when in fact, they are not. This is known as "spurious regression."

- OLS no longer the best way to compute coefficients as it does not take account of time-relationships in data.
- Standard errors of coefficients are incorrect most likely too small. This invalidates tests and prediction intervals.
- Second problem more serious because it can lead to misleading results.
- If standard errors obtained using OLS too small, some explanatory variables may appear to be significant when, in fact, they are not. This is known as "spurious regression."

- Estimation only works when all predictor variables are deterministic or stationary and the errors are stationary.
- So difference stochastic variables as required until all variables appear stationary. Then fit model with ARMA errors.
- auto.arima() will handle order selection and differencing (but only checks that errors are stationary).

- Estimation only works when all predictor variables are deterministic or stationary and the errors are stationary.
- So difference stochastic variables as required until all variables appear stationary. Then fit model with ARMA errors.
- auto.arima() will handle order selection and differencing (but only checks that errors are stationary).

- Estimation only works when all predictor variables are deterministic or stationary and the errors are stationary.
- So difference stochastic variables as required until all variables appear stationary. Then fit model with ARMA errors.
- auto.arima() will handle order selection and differencing (but only checks that errors are stationary).

Outline

- 1 Regression with ARIMA errors
- **2** Example: Japanese cars
- 3 Using Fourier terms for seasonality
- 4 Example: Sales of petroleum & coal products

■ We will fit a linear trend model:

$$y_t = a + bx_t + n_t$$

where $x_t = t - 1963$.

- 2 auto.arima chooses an AR(1) model for n_t .
- Full model is

$$y_t = a + bx_t + n_t$$
 where $n_t = \phi_1 n_{t-1} + e_t$

and e_t is a white noise series.

We will fit a linear trend model:

$$y_t = a + bx_t + n_t$$

where $x_t = t - 1963$.

- **2** auto.arima chooses an AR(1) model for n_t .
- 3 Full model is

$$y_t = a + bx_t + n_t$$
 where $n_t = \phi_1 n_{t-1} + e_t$

and e_t is a white noise series.

We will fit a linear trend model:

$$y_t = a + bx_t + n_t$$

where $x_t = t - 1963$.

- **2** auto.arima chooses an AR(1) model for n_t .
- 3 Full model is

$$y_t = a + bx_t + n_t$$
 where $n_t = \phi_1 n_{t-1} + e_t$

and e_t is a white noise series.

Parameter		Estimate	Standard	
			Error	
AR(1)	ϕ_{1}	0.736	0.152	
Intercept	а	1662.	504.1	
Slope	b	463.6	32.31	

■ We need to check that the residuals (e_t) look like white noise.

Parameter	Parameter		Standard	
			Error	
AR(1)	ϕ_{1}	0.736	0.152	_
Intercept	a	1662.	504.1	
Slope	b	463.6	32.31	

■ We need to check that the residuals (e_t) look like white noise.


```
> fit2 <- auto.arima(x)</pre>
ARIMA(0,1,0) with drift
Coefficients:
       drift
      0.4530
s.e. 0.0836
sigma^2 estimated as 0.1749:
log likelihood = -13.68
AIC = 31.36 AICc = 31.9
                             BTC = 33.8
```

Example: Japanese cars

Example: Japanese cars

Outline

- 1 Regression with ARIMA errors
- 2 Example: Japanese cars
- 3 Using Fourier terms for seasonality
- 4 Example: Sales of petroleum & coal products

Any periodic function of period *m* can be approximated using

$$\sum_{k=1}^{K} \left\{ \sin \left(\frac{2\pi kt}{m} \right) + \cos \left(\frac{2\pi kt}{m} \right) \right\}$$

- The approximation can be made exact with large *K*.
- Each *k* represents a harmonic.
- fourier generates a matrix of Fourier terms.

Example

fit <- auto.arima(y, seasonal=FALSE,
 xreg=fourier(y, K=3))</pre>

Any periodic function of period *m* can be approximated using

$$\sum_{k=1}^{K} \left\{ \sin \left(\frac{2\pi kt}{m} \right) + \cos \left(\frac{2\pi kt}{m} \right) \right\}$$

- The approximation can be made exact with large *K*.
- Each *k* represents a harmonic.
- fourier generates a matrix of Fourier terms.

Example

fit <- auto.arima(y, seasonal=FALSE,
 xreg=fourier(y, K=3))</pre>

Any periodic function of period *m* can be approximated using

$$\sum_{k=1}^{K} \left\{ \sin \left(\frac{2\pi kt}{m} \right) + \cos \left(\frac{2\pi kt}{m} \right) \right\}$$

- The approximation can be made exact with large *K*.
- Each *k* represents a harmonic.
- fourier generates a matrix of Fourier terms.

Example

fit <- auto.arima(y, seasonal=FALSE,
 xreg=fourier(y, K=3))</pre>

Any periodic function of period *m* can be approximated using

$$\sum_{k=1}^{K} \left\{ \sin \left(\frac{2\pi kt}{m} \right) + \cos \left(\frac{2\pi kt}{m} \right) \right\}$$

- The approximation can be made exact with large *K*.
- Each *k* represents a harmonic.
- fourier generates a matrix of Fourier terms.

Example

fit <- auto.arima(y, seasonal=FALSE,
 xreq=fourier(y, K=3))</pre>

Any periodic function of period *m* can be approximated using

$$\sum_{k=1}^{K} \left\{ \sin \left(\frac{2\pi kt}{m} \right) + \cos \left(\frac{2\pi kt}{m} \right) \right\}$$

- The approximation can be made exact with large *K*.
- Each *k* represents a harmonic.
- fourier generates a matrix of Fourier terms.

Example

```
fit <- auto.arima(y, seasonal=FALSE,
    xreg=fourier(y, K=3))</pre>
```

Outline

- 1 Regression with ARIMA errors
- **2** Example: Japanese cars
- 3 Using Fourier terms for seasonality
- 4 Example: Sales of petroleum & coal products

1990 Series clearly non-stationary, so difference.

1985

1990

1985

$$y'_t = b_1 x'_{1,t} + b_2 x'_{2,t} + b_3 x'_{3,t} + n_t$$

- $y_t = \log \text{ petroleum sales}$
- $x_{1,t} = \log$ chemical sales
- $x_{2,t} = \log \text{ coal production}$
- $\mathbf{x}_{3,t} = \log \text{ motor vehicle and parts sales.}$

- model for n_t .
- Full model is $y_t = b_1 x_{1,t} + b_2 x_{2,t} + b_3 x_{3,t} + n_t$
 - $(1 \Phi_1 B^{12})(1 B)n_t = (1 + \theta_1 B)(1 + \Theta_1 B^{12} + \Theta_2 B^{24})$

$$y'_t = b_1 x'_{1,t} + b_2 x'_{2,t} + b_3 x'_{3,t} + n_t$$

- $y_t = \log \text{ petroleum sales}$
- $x_{1,t} = \log$ chemical sales
- $x_{2,t} = \log \text{ coal production}$
- $\mathbf{x}_{3,t} = \log \text{ motor vehicle and parts sales.}$
- auto.arima selects an ARIMA(0,0,1)(1,0,2)₁₂ model for n_t .
- Full model is $y_t = b_1 x_{1,t} + b_2 x_{2,t} + b_3 x_{3,t} + n_t$ $(1 - \Phi_1 B^{12})(1 - B)n_t = (1 + \theta_1 B)(1 + \Theta_1 B^{12} + \Theta_2 B^{24})e_t$

$$y_t' = b_1 x_{1,t}' + b_2 x_{2,t}' + b_3 x_{3,t}' + n_t$$

- $y_t = \log \text{ petroleum sales}$
- $x_{1,t} = \log$ chemical sales
- $x_{2,t} = \log \text{ coal production}$
- $\mathbf{x}_{3,t} = \log \text{ motor vehicle and parts sales.}$
- auto.arima selects an ARIMA(0,0,1)(1,0,2)₁₂ model for n_t .
- Full model is $y_t = b_1 x_{1,t} + b_2 x_{2,t} + b_3 x_{3,t} + n_t$ $(1 - \Phi_1 B^{12})(1 - B) n_t = (1 + \theta_1 B)(1 + \Theta_1 B^{12} + \Theta_2 B^{24}) e_t.$

Parameter		Estimate	S.E
MA(1)	θ_1	0.331	0.058
Seasonal AR(1)	Φ_{1}	0.916	0.053
Seasonal MA(1)	Θ_1	-0.661	0.086
Seasonal MA(2)	Θ_2	-0.116	0.068
Log Chemicals	b_1	0.296	0.065
Log Coal	b_2	-0.029	0.013
Log Vehicles	<i>b</i> ₃	-0.014	0.023

- AIC = -913.8
- Consider dropping motor vehicles and parts variable: AIC= −915.6.

Parameter		Estimate	S.E
MA(1)	θ_1	0.331	0.058
Seasonal AR(1)	Φ_1	0.916	0.053
Seasonal MA(1)	Θ_1	-0.661	0.086
Seasonal MA(2)	Θ_2	-0.116	0.068
Log Chemicals	b_1	0.296	0.065
Log Coal	b_2	-0.029	0.013
Log Vehicles	<i>b</i> ₃	-0.014	0.023

- \blacksquare AIC = -913.8
- Consider dropping motor vehicles and parts variable: AIC = -915.6.

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- When future predictors are unknown, they need to be forecast first.
- Forecasts of macroeconomic variables may be obtained from the national statistical offices.
- Separate forecasting models may be needed for other explanatory variables.
- Some explanatory variable are known into the future (e.g., time, dummies).

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- When future predictors are unknown, they need to be forecast first.
- Forecasts of macroeconomic variables may be obtained from the national statistical offices.
- Separate forecasting models may be needed for other explanatory variables.
- Some explanatory variable are known into the future (e.g., time, dummies).

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- When future predictors are unknown, they need to be forecast first.
- Forecasts of macroeconomic variables may be obtained from the national statistical offices.
- Separate forecasting models may be needed for other explanatory variables.
- Some explanatory variable are known into the future (e.g., time, dummies).

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- When future predictors are unknown, they need to be forecast first.
- Forecasts of macroeconomic variables may be obtained from the national statistical offices.
- Separate forecasting models may be needed for other explanatory variables.
- Some explanatory variable are known into the future (e.g., time, dummies).

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- When future predictors are unknown, they need to be forecast first.
- Forecasts of macroeconomic variables may be obtained from the national statistical offices.
- Separate forecasting models may be needed for other explanatory variables.
- Some explanatory variable are known into the future (e.g., time, dummies).