Computational Stats

Group III

Trabalho 1

Exercício 1

1. Considere que uma variável continua X com a seguinte função de densidade:

$$f(x) = \begin{cases} \frac{4}{3}(x^3 + x) & 0 < x < 1 \\ 0, & \text{for all others } x \text{ values} \end{cases}$$

Agora considerando a variavel aliatória Y = g(X), em que $g(x) = log(x^2 + 4)$. Estime o valor P(1.3 < Y < 1.5) usando o método de monte carlo e estime o valor do desvio padrão da estimativa

$$P(1.3 < Y < 1.5) = P(1.3 < g(x) < 1.5)$$

$$D(g(x)) = D(\log(x^2 + 4)) = [\min(\log(x^2 + 4), +\infty)] \quad , \quad \min(\log(x^2 + 4)) = \log(4) = 1.386294 >$$

Onde D(g(x)) é o dominio de g(x). Uma vez que D(g(x)) está definido no intervalo $[min(log(x^2+4), +\infty[$ afimar o seguinte:

$$P(1.3 < g(x) < log(4)) = 0 \implies P(1.3 < g(x) < 1.5) \equiv P(log(4) < g(X) < 1.5)$$

Que se pode desenvolver :

$$P(\log(4) < \log(x^2 + 4) < 1.5) = P(4 < x^2 + 4 < e^{1.5}) = P(0 < x^2 < e^{1.5} - 4) = P(0 < x < \sqrt{e^{1.5} - 4})$$

Agora, sabemos que a probabilidade que queriamos calcular pode ser obtida através do seguinte integral:

$$\int_0^{\sqrt{e^{1.5}-4}} \frac{4}{3} (x^3+x) dx$$

O qual puderá ser escrito com a seguinte mudança de variável:

Mudança de Variável

$$z(x) = xc$$
 , $z(\sqrt{e^{1.5} - 4}) = 1$ $\implies c = \frac{1}{\sqrt{e^{1.5} - 4}}$ $x = z\sqrt{e^{1.5} - 4}$ $\implies x' = \sqrt{e^{1.5} - 4}$

No que resulta no seguinte integral:

$$\int_0^{\sqrt{e^{1.5}-4}} \frac{4}{3} (x^3+x) dx \quad \equiv \quad \frac{4}{3} \int_0^1 ((z\sqrt{e^{1.5}-4})^3 + z\sqrt{e^{1.5}-4}) \cdot \sqrt{e^{1.5}-4} \ dz \equiv \frac{4}{3} (e^{1.5}-4) \int_0^1 (z^3(e^{1.5}-4)+z) \cdot 1 \ dx$$

Onde pudemos usar o método de monte carlo para estimar

$$\int_0^1 (z^3(e^{1.5} - 1) + z).1 \ dx$$

, assumindo que z segue uma distribuição U(0,1).

$$\int_0^1 (z^3(e^{1.5} - 4) + z) \cdot 1 \, dx \quad \approx \quad \hat{\theta} = \frac{\sum_{i=1}^n (z_i^3 \cdot (e^{1.5} - 4) + z_i)}{n}$$

Calculo do estimador $\hat{\theta}$ do valor esperado do integral anterior.

```
int_func <- function(z){
   res=(z^3)*(exp(1.5)-4)+z
}

#z follows an uniform

sample <- runif(1000)
int_est <- mean(int_func(sample))
prob_value <- (4/3)*(exp(1.5)-4)*int_est</pre>
```

Assim sendo:

$$P(1.3 < x < 1.5) = 0.3960328$$

Cálculo do desvio padrão do estimador da probabilidade

$$var(P(1.3 < Y < 1.5)) = \left(\frac{4}{3}(e^{1.5} - 4)\right)^2 .var(\theta)$$

```
varEstimator <- (1/(length(sample)^2))*sum(((4/3)*(exp(1.5)-4)*int_func(sample)-prob_value)^2)
df <- data.frame(
  probEstimated = prob_value,
  stdMC = sqrt(varEstimator)
)
knitr::kable(df)</pre>
```

probEstimated	stdMC	
0.3960328	0.0083966	

Exercise 2

2.1

$$E(e^{x+y}) = E(e^x + e^y)$$

Sendo:

$$E(X) = \int_D x.f(x) dx$$

, onde X é uma variável aletória e f(x) a sua função densidade de probabilidade. Temos:

$$\int_0^\infty \int_0^\infty \mathrm{e}^{x+y} \cdot \frac{2}{\sqrt{2\pi}} \cdot \mathrm{e}^{\frac{-x^2}{2}} \cdot \frac{2}{\sqrt{2\pi}} \cdot \mathrm{e}^{\frac{-y^2}{2}} \, \mathrm{d}x \, \mathrm{d}y \quad = \quad \frac{2}{\pi} \int_0^\infty \int_0^\infty \mathrm{e}^x \cdot \mathrm{e}^{\frac{-x^2}{2}} \cdot \mathrm{e}^y \cdot \mathrm{e}^{\frac{-y^2}{2}} \, \mathrm{d}x \, \mathrm{d}y$$

Fazendo as seguintes mudanças de variável:

$$\alpha = e^{-x} \implies x = -log(\alpha)$$

 $\beta = e^{-y} \implies y = -log(\beta)$

Ficamos com os seguintes limites de integração para α :

$$\lim_{x \to \infty} e^{-x} = 0$$
$$\lim_{x \to 0} e^{-x} = 1$$

e para β :

$$\lim_{x \to \infty} e^{-y} = 0$$
$$\lim_{x \to 0} e^{-y} = 1$$

Substituindo na equação, temos:

$$\begin{split} &\frac{2}{\pi} \int_{1}^{0} \int_{1}^{0} \mathrm{e}^{-log(\alpha)}.\mathrm{e}^{\frac{-(-log^{2}(\alpha))}{2}}.(-\frac{1}{\alpha}).\mathrm{e}^{-log(\beta)}.\mathrm{e}^{\frac{-(-log^{2}(\beta))}{2}}.(-\frac{1}{\beta})\mathrm{d}\alpha\mathrm{d}\beta \\ &= \frac{2}{\pi}.(-\int_{0}^{1} \mathrm{e}^{-log(\alpha)}.\mathrm{e}^{\frac{-(-log^{2}(\alpha))}{2}}.\frac{1}{\alpha}\mathrm{d}\alpha).(-\int_{0}^{1} \mathrm{e}^{-log(\beta)}.\mathrm{e}^{\frac{-(-log^{2}(\beta))}{2}}.\frac{1}{\beta}\mathrm{d}\beta) \\ &= \frac{2}{\pi}.\int_{0}^{1} \mathrm{e}^{-log(\alpha)}.\mathrm{e}^{\frac{-log^{2}(\alpha)}{2}}.\frac{1}{\alpha}\mathrm{d}\alpha\int_{0}^{1} \mathrm{e}^{-log(\beta)}.\mathrm{e}^{\frac{-log^{2}(\beta)}{2}}.\frac{1}{\beta}\mathrm{d}\beta \\ &= \frac{2}{\pi}.\int_{0}^{1} \mathrm{e}^{-log(\alpha).(1+\frac{1}{2}log(\alpha))}.\frac{1}{\alpha}\mathrm{d}\alpha.\int_{0}^{1} \mathrm{e}^{-log(\beta).(1+\frac{1}{2}log(\beta))}.\frac{1}{\beta}\mathrm{d}\beta \\ &= \frac{2}{\pi}.\int_{0}^{1} \mathrm{e}^{-log(\alpha).(1+\frac{1}{2}log(\alpha))}.\frac{1}{\alpha}.\mathrm{1d}\alpha.\int_{0}^{1} \mathrm{e}^{-log(\beta).(1+\frac{1}{2}log(\beta))}.\frac{1}{\beta}.\mathrm{1d}\beta \\ &= \frac{2}{\pi}.\int_{0}^{1} \mathrm{e}^{-log(\alpha).(1+\frac{1}{2}log(\alpha))}.\frac{1}{\alpha}.\frac{1}{1-0}\mathrm{d}\alpha.\int_{0}^{1} \mathrm{e}^{-log(\beta).(1+\frac{1}{2}log(\beta))}.\frac{1}{\beta}.\frac{1}{1-0}\mathrm{d}\beta \end{split}$$

Sendo:

$$h_1(\alpha) = e^{-\log(\alpha) \cdot (1 + \frac{1}{2}\log(\alpha))} \cdot \frac{1}{\alpha} \cdot \frac{1}{1 - 0}$$
$$g_1(\alpha) = e^{-\log(\alpha) \cdot (1 + \frac{1}{2}\log(\alpha))} \cdot \frac{1}{\alpha}$$
$$f_1(\alpha) = \frac{1}{1 - 0}$$

$$h_2(\beta) = e^{-\log(\beta) \cdot (1 + \frac{1}{2}\log(\beta))} \cdot \frac{1}{\beta} \cdot \frac{1}{1 - 0}.$$
$$g_2(\beta) = e^{-\log(\beta) \cdot (1 + \frac{1}{2}\log(\beta))} \cdot \frac{1}{\beta}$$
$$f_2(\beta) = \frac{1}{1 - 0}$$

Onde:

$$f_1(\alpha), f_2(\beta) \sim \mathcal{U}(1,0)$$

e,

$$f_1(\alpha), f_2(\beta) \ge 0$$

Estamos em condições de aplicar Monte Carlo:

$$\begin{cases} \theta_1 = \int_D h_1(\alpha) d\alpha = \int_D g_1(\alpha).f_1(\alpha) d\alpha = E(g_1(X)) \\ \theta_2 = \int_D h_2(\beta) d\beta = \int_D g_2(\beta).f_2(\beta) d\beta = E(g_2(Y)) \end{cases}$$

Se tivermos uma amostra aleatória $x_1,...,x_n$ da variavél aleatória X com densidade f, um estimador θ é:

$$\begin{cases} \hat{\theta_1} = \sum_{i=1}^n \frac{g_1(x_i)}{n} \\ \hat{\theta_2} = \sum_{i=1}^n \frac{g_2(y_i)}{n} \end{cases}$$

Finalmente:

$$E(\hat{e^{x+y}}) = \hat{\theta} = \frac{2}{\pi}.\hat{\theta_1}.\hat{\theta_2}$$

A variância de $\hat{\theta}$ será:

$$v = Var(\frac{2}{\pi}.\hat{\theta_1}.\hat{\theta_2}) = \frac{4}{\pi^2}.Var(\hat{\theta_1}).Var(\hat{\theta_2})$$

Aplicando o método de Monte Carlo, ficamos com:

$$\begin{cases} \hat{V}ar(\hat{\theta}_1) = \frac{1}{n^2} \sum_{i=1}^n (g_1(x_i) - \hat{\theta}_1)^2 \\ \hat{V}ar(\hat{\theta}_2) = \frac{1}{n^2} \sum_{i=1}^n (g_2(y_i) - \hat{\theta}_2)^2 \end{cases}$$

Substituindo na equação inicial:

$$\hat{v} = \frac{4}{\pi^2} \cdot \sum_{i=1}^n \frac{(g_1(x_i) - \theta)^2}{n} \cdot \sum_{i=1}^n \frac{(g_2(y_i) - \theta)^2}{n}$$

Implementação do método:

Determinação do estimador e do estimador da variancia

```
set.seed(1)
n<-1000
u1<-runif(n)
u2<-runif(n)
g1<-function(x){exp(-log(x)*(1+(1/2)*log(x)))*(1/x)}
g2<-function(y){exp(-log(y)*(1+(1/2)*log(y)))*(1/y)}
teta<-(2/pi)*mean(g1(u1))*mean(g2(u2))
teta1<-mean(g1(u1))
teta2<-mean(g2(u2))

v<-(4/(pi^2))*(mean((g1(u1)-teta1)^2)/n)*(mean((g2(u2)-teta2)^2)/n)
df <- data.frame(
   probEstimated = teta,
   varianceMC = v
)</pre>
knitr::kable(df)
```

probEstimated	varianceMC	
7.874321	8.3e-06	

2.2

Dado que:

X, Y random variables with p.d.f.:

$$f(x) = \frac{2}{sqrt(2\pi)}e^{-\frac{x^2}{2}}$$
 , $0 < x < +\infty$

precisamos de estimar o parâmetro θ com o Método de Monte Carlo utilizando uma variável que não seja Uniforme, onde o parâmetro θ é definido como:

$$\theta = E(e^{X+Y})$$

Trabalhar o estimador

$$\theta = E(e^{X+Y}) \quad = E(e^X \times e^Y) \quad = E(e^X) \times E(e^Y)$$

$$= \int_0^{+\infty} e^x \frac{2}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \times \int_0^{+\infty} e^y \frac{2}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$

Este integral não as condições para o Método de Monte Carlo ser aplicado, e portanto é necessário trabalhar o integral de maneira a que seja possível aplicar o método.

Mudança de variável

Ao aplicar a seguinte mudança de variável:

$$x = \varphi(t) = \sqrt{t}$$
$$t = \varphi^{-1}(x) = x^2$$

$$\varphi'(t) = (\sqrt{t})' = (t^{\frac{1}{2}})' = \frac{1}{2}t^{-\frac{1}{2}}$$

$$\lim_{t \to +\infty} \sqrt{t} = +\infty$$

$$\lim_{t \to 0} \sqrt{t} = 0$$

podemos reorganizar o integral da seguinte maneira:

$$x = \varphi(t) = t_x$$
 , $y = \varphi(t) = t_y$

$$\int_{0}^{+\infty} e^{\sqrt{t_x}} \frac{2}{\sqrt{2\pi}} e^{-\frac{1}{2}t_x} \frac{1}{2} t_x^{-\frac{1}{2}} dt_x \times \int_{0}^{+\infty} e^{\sqrt{t_y}} \frac{2}{\sqrt{2\pi}} e^{-\frac{1}{2}t_y} \frac{1}{2} t_y^{-\frac{1}{2}} dt_y$$

Re-ordenando a equação, estamos agora em condições de aplicar o Método de Monte Carlo uma vez que o integral é definido pela multiplicação de:

- 1. uma p.d.f. f(x) conhecida
- 2. uma outra função q(x)

$$\int_{0}^{+\infty} e^{\sqrt{t_x}} \frac{2}{\sqrt{2\pi}} t_x^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}t_x} dt_x \times \int_{0}^{+\infty} e^{\sqrt{t_y}} \frac{2}{\sqrt{2\pi}} t_y^{-\frac{1}{2}} \frac{1}{2} e^{-\frac{1}{2}t_y} dt_y$$

onde:

$$g(x) = e^{\sqrt{x}} \frac{2}{\sqrt{2\pi}} x^{-\frac{1}{2}}$$
 and $f(x) = \frac{1}{2} e^{-\frac{1}{2}x}$

onde f(x) é a função distribuição densidade de uma variável Exponencial com $\lambda = \frac{1}{2}$:

$$X \sim Exp(\frac{1}{2})$$

Portanto, é agora necessário gerar amostras aleatórias de $X \sim Exp(\frac{1}{2})$

Gerar uma variável com distribuição Exponencial utilizando o Método da Transformação Inversa

Comecemos com a função distribuição cumulativa de uma variável Exponencial, que é definida por:

$$F(X) = 1 - e^{-\lambda x}, \quad x \in \mathbb{R}$$

Tendo em consideração que o resultado de F(X) é um número real entre 0 e 1, e que:

- 1. F(X) é uma função monótona não decrescente
- 2. F(X) é uma função contínua

é sabido que F(X) é invertível.

Implementação do método

```
set.seed(1)
lambda <- 0.5
N <- 1000
samples <- runif(N)

inverseExp <- function(u, lambda){
    -(1/lambda)*log(1-u)
}

values <- inverseExp(samples, lambda)

hist(values, breaks=100, freq = F)
lines(density(rexp(1000,0.5)))</pre>
```

Histogram of values


```
g <- function(x){
    exp(sqrt(x))*(2/(sqrt(2*pi)))*x^(-1/2)
}

X <- runif(N)
Y <- runif(N)
EX <- mean(g(inverseExp(X, lambda)))
EY <- mean(g(inverseExp(Y, lambda)))

theta2 <- EX*EY

vEX <- (1/(N^2))*sum((g(inverseExp(X, lambda))-EX)^2)
vEY <- (1/(N^2))*sum((g(inverseExp(Y, lambda))-EY)^2)

vtheta <-vEX*vEY

df <- data.frame(
    probEstimated = theta2,
    varianceMC = vtheta
)

knitr::kable(df)</pre>
```

probEstimated	varianceMC	
7.901322	2.4e-06	

2.3

$$\hat{\theta} = E(e^{x+y}) \ var(\hat{\theta}) = \frac{4}{\pi^2} \cdot \sum_{i=1}^n \frac{(g_1(x_i) - \hat{\theta})^2}{n} \cdot \sum_{i=1}^n \frac{(g_2(y_i) - \hat{\theta})^2}{n}$$

novo estimador:

$$\hat{\theta_c} = \hat{\theta} - \beta.(c - \mu)$$

$$E(C) \quad = \quad \mu \ var(\hat{\theta_c}) = var(\hat{\theta}) + \beta^2.var(C) - 2\beta cov(\hat{\theta},C)$$

Queremos minimazar a variância, minimizando a variável β : para tal derivamos $var(\hat{\theta}_c)$ em ordem a β o que resulta na expressão: $var(\hat{\theta}_c)' = 2\beta var(C) - 2cov(\hat{\theta}, C)$

Com $var(\hat{\theta_c})'=0$ iremos obter os extremos. $\beta=\frac{-2cov(\hat{\theta_c}C)}{2var(C)}$

Calculo auxiliares:

b)
$$var(\hat{\theta}) = Var\left(\frac{2}{\pi}.(\hat{\theta_1}.\hat{\theta_2})\right) = \frac{4}{\pi^2}.Var(\hat{\theta_1}).Var(\hat{\theta_2})$$

$$E(C) = E\left(\frac{1}{n} \cdot \sum_{i=0}^{n} u_i v_i\right) = \frac{1}{n} \sum_{i=0}^{n} (E(u) \cdot E(v)) = E(u) \cdot E(v) = \int_0^1 u \, du \cdot \int_0^1 v \, dv$$
$$var(C) = \frac{1}{n} \cdot \left(\int_0^1 f_c(x)^2 - E(C)^2\right)$$

$$Cov(\hat{\theta}, C) = cov\left(\frac{1}{n}\sum_{i=1}^{n}g(U_i, V_i), \frac{1}{n}\sum_{i=1}^{n}U_i, V_i\right) =$$

$$= \frac{1}{n^2}\sum_{i=1}^{n}cov\left(g(U_i, V_i), U_i, V_i\right) - \sum_{i=1}^{n}\sum_{j=1}^{n}cov\left(g(U_i, V_i), U_j V_j\right) =$$

Como os indices $i \neq j$ então $g(U_i, V_i)$ será independente de $U_i V_i$ e a sua covariância será Zero.

$$= \frac{1}{n^2} \sum_{i=1}^{n} cov (g(U_i, V_i), U_i, V_i) - 0 =$$

$$= \frac{1}{n} (E(g(U, V))UV)) - \frac{\theta}{4n}$$

$$E(g(U,V))UV) = \int_0^1 \int_0^1 uv.g(u,v) \; du \; dv$$

que será estimado em r pelo método de monte carlo

```
res_final <- data.frame(integer(), double(), double(), double())</pre>
n <- 10
while(kk<6) {</pre>
    if(kk!=1) {
      if(kk\%2!=0)
        n<-n*2
      else
        n<-n*5
    set.seed(1)
    u1<-runif(n)
    u2<-runif(n)
    g1 < -function(x) \{ exp(-log(x)*(1+(1/2)*log(x)))*(1/x) \}
    g2 < -function(y) \{ exp(-log(y)*(1+(1/2)*log(y)))*(1/y) \}
    teta1<-mean(g1(u1))
    teta2 < -mean(g2(u2))
    teta < -(2/pi)*mean(g1(u1))*mean(g2(u2))
    teta_var<-(4/(pi^2))*((mean((g1(u1)-teta1)^2))/n)*((mean((g2(u2)-teta2)^2))/n)
    df <- data.frame(</pre>
      probEstimated = teta,
      varianceMC = teta_var
    g1_b < -function(x) \{ exp(-log(x)*(1+(1/2)*log(x))) \}
    g2_b < -function(y) \{ exp(-log(y)*(1+(1/2)*log(y))) \}
    covar_tc<-((1/n^2)*mean(g1_b(u1)*g2_b(u2)*u1*u2))-teta/(4*n^2)
    c_{var}<-(7/(n*144))
    beta<-covar_tc/(c_var)
    tetac<-(teta - (beta*((1/4) - mean(u1*u2))))
    tetac_var<-(teta_var+(beta^2)*c_var-2*beta*covar_tc)</pre>
    res<-data.frame(n, teta, teta_var, tetac, tetac_var)
```

```
res_final<-rbind(res_final,res)
    kk<-kk+1
}
knitr::kable(res_final)</pre>
```

10 7.114578 0.0728507 6.962646 0.0401382 50 7.444414 0.0024827 7.432106 0.0021721 100 7.604431 0.0006777 7.598763 0.0006353 500 7.839631 0.0000307 7.839400 0.0000303					
50 7.444414 0.0024827 7.432106 0.0021721 100 7.604431 0.0006777 7.598763 0.0006353 500 7.839631 0.0000307 7.839400 0.0000303	n	teta	teta_var	tetac	tetac_var
100 7.604431 0.0006777 7.598763 0.0006353 500 7.839631 0.0000307 7.839400 0.0000303	10	7.114578	0.0728507	6.962646	0.0401382
500 7.839631 0.0000307 7.839400 0.0000303	50	7.444414	0.0024827	7.432106	0.0021721
	100	7.604431	0.0006777	7.598763	0.0006353
1000 7.874321 0.0000083 7.874559 0.0000083	500	7.839631	0.0000307	7.839400	0.0000303
	1000	7.874321	0.0000083	7.874559	0.0000083