Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 141,327 (2017)	22-Mar-2017

 $Q(\beta^{-})=-6280 \text{ syst}; S(n)=8180 \text{ syst}; S(p)=3014 25; Q(\alpha)=8926 15$

Estimated $\Delta Q(\beta^{-})=240$, $\Delta S(n)=120$ (2017Wa10).

 $S(2n)=15120\ 280\ (syst),\ S(2p)=5079\ 20,\ Q(\varepsilon p)=126\ 23\ (2017Wa10).$

Isotopic identification and assignment:

1975Og01: ²⁰⁸Pb(⁵⁰Ti,2n) excitation function.

1984Og02: ²⁰⁸Pb(⁵⁰Ti,2n); ²⁰⁸Pb(⁴⁹Ti,n) SF observed.

1984Og02, 1985Mu11: daughter of ²⁶⁰Sg.

1985He06: 208 Pb(50 Ti,2n),E=4.75-5.15 MeV/nucleon; 207 Pb(50 Ti,n),E=4.85 MeV/nucleon; parent of 252 No (8410 α).

1985So03: ²⁴⁹Cf(¹²C,5n),E=85 MeV, SF observed.

Theoretical calculations: consult the Nuclear Science References (NSR) database for about 125 theory references.

2014Li15, 2012Jo05: nuclear structure theory references.

²⁵⁶Rf Levels

Cross Reference (XREF) Flags

 260 Sg α decay (4.95 ms) 208 Pb(50 Ti, 2 n γ) В

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments	
0.0#	0+	6.67 ms <i>10</i>	AB	$%\alpha$ =0.32 17 (1997He29); %SF=99.68 17 $T_{1/2}$: weighted average of 6.9 ms 2 (2013Ri07, 2012Gr12 from time difference between recoil and fission events), 6.9 ms 4 (2011Ro20, from time distribution of fission events in SF decay of 783 events), 6.70 ms 9 (2008Dr05), 6.2 ms 2 (1997He29), 6.7 ms 2 (1984Og02). Other measurements: 5 ms (from SF activity, 1975Og01); 7.4 ms +9-7 (from SF activity, 1985He06); 10 ms +47-4 (from α activity, 1985He06); 6.3 ms +27-14 (from SF activity following 260 Sg α decay, 1985Mu11); 9 ms 2 (from SF activity, 1985So03). The α branching was determined by 1997He29 as (0.32±0.17)%. Authors' earlier measurement: (2.2 +7.3-1.8)% (1985He06).	
44 [#] 1	(2+)		AB	E(level): deduced from Harris fit of rotational band members (2012Gr12). Others: \approx 46 (2009Je01), 51 35 from ²⁶⁰ Sg α decay. J ^{π} : α hindrance factor; systematics of first excited-state energies of even-even nuclei.	
148 [#] 2	(4^{+})		В	E(level): deduced from Harris fit of rotational band members (2012Gr12).	
309 [#] 2	(6 ⁺)		В		
527 # 2	(8 ⁺)		В		
799 <mark>#</mark> 2	(10^{+})		В		
≈946	(3^{-})		В	E(level), J^{π} : from (electron)(900 γ) (2009Je01), possible member of $K^{\pi}=2^{-}$ band.	
≈1120 [‡]	(5 ⁻)	25 [‡] μs 2	В	%IT=?; %SF=? J ^π : assigned by 2013Ri07 as K ^π =(5 ⁻) with possible 2-qp configuration=(π1/2[521]⊗π9/2[624]) ₅ . T _{1/2} : 2011Ro20 state that their observed isomer of 17 μs 5 (half-life from time distribution of conversion electrons and maximum likelihood method) may correspond to the 25-μs 2 isomer in 2009Je01, although, the isomer population	

Continued on next page (footnotes at end of table)

ratio of $\approx 5\%$ 2 (with respect to that of 256 Rf g.s.) is much smaller than $\approx 27\%$ deduced by 2011Ro20 from data in 2009Je01. Due to its low population and several other arguments against its assignment as a 2-qp isomer, 2011Ro20 suggest that their observed $17-\mu s$ isomer is more likely a 4-qp state.

Adopted Levels, Gammas (continued)

²⁵⁶Rf Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
1122 [#] 3	(12^{+})		В	
≈1400 [‡]	(8-)	17 [‡] μs 2	В	%IT=?; %SF=? E(level): isomer not found in 2011Ro20, perhaps due to low statistics. J^{π} : assigned by 2013Ri07 as $K^{\pi}=(8^{-})$ with possible 2-qp configuration= $(\pi 7/2[514]\otimes \pi 9/2[624])_{8-}$.
1493 [#] 3	(14^{+})		В	$T_{1/2}$: other: 13.2 μ s 33 (2010Be16).
1910 [#] 4	(16^{+})		В	
>2200 [‡]		27 [‡] μs 5	В	%IT=?; %SF=? E(level): isomer not found in 2011Ro20, perhaps due to low statistics. $T_{1/2}$: other: 36.5 μ s 86 (2010Be16). Possible 4-qp state (2009Je01,2013Ri07).
2369 [#] 4	(18^{+})		В	
2868 [#] 5	(20^+)		В	

 $^{^{\}dagger}$ From Ey data in 2012Gr12, unless otherwise stated.

$\gamma(^{256}Rf)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
44	(2+)	(44 [†] <i>I</i>)	100	0.0	0+	[E2]	1.83×10 ³ 22	$\alpha(L)=1.30\times10^3$ 16; $\alpha(M)=3.8\times10^2$ 5 $\alpha(N)=111$ 14; $\alpha(O)=29$ 4; $\alpha(P)=4.9$ 6; $\alpha(Q)=0.0157$ 16
148	(4 ⁺)	$(104^{\dagger} I)$	100	44	(2+)	[E2]	31.5 <i>15</i>	$\alpha(L)$ =22.4 11; $\alpha(M)$ =6.6 4 $\alpha(N)$ =1.91 9; $\alpha(O)$ =0.502 24; $\alpha(P)$ =0.086 4; $\alpha(O)$ =0.000476 20
309	(6 ⁺)	161 <i>I</i>	100	148	(4 ⁺)	[E2]	4.51 <i>14</i>	$\alpha(K)$ =0.093 3; $\alpha(L)$ =3.15 10; $\alpha(M)$ =0.92 3 $\alpha(N)$ =0.266 9; $\alpha(O)$ =0.0701 22; $\alpha(P)$ =0.0121 4; $\alpha(Q)$ =9.78×10 ⁻⁵ 25
527	(8+)	218 <i>I</i>	100	309	(6 ⁺)	[E2]	1.33 3	$\alpha(K)$ =0.1204 17; $\alpha(L)$ =0.861 21; $\alpha(M)$ =0.249 6 $\alpha(N)$ =0.0721 18; $\alpha(O)$ =0.0190 5; $\alpha(P)$ =0.00334 8; $\alpha(O)$ =3.68×10 ⁻⁵ 8
799	(10 ⁺)	272 1	100	527	(8+)	[E2]	0.589 12	$\alpha(K)=0.1016$ 15; $\alpha(L)=0.349$ 8; $\alpha(M)=0.1003$ 21 $\alpha(N)=0.0290$ 6; $\alpha(O)=0.00767$ 16; $\alpha(P)=0.00136$ 3; $\alpha(Q)=1.93\times10^{-5}$ 4
≈946	(3^{-})	900 <i>1</i>		44	(2^{+})			E_{ν} : from 2009Je01.
1122	(12+)	323 1	100	799	(10 ⁺)	[E2]	0.333 6	$\alpha'(K)$ =0.0832 12; $\alpha(L)$ =0.179 4; $\alpha(M)$ =0.0510 10 $\alpha(N)$ =0.0147 3; $\alpha(O)$ =0.00390 8; $\alpha(P)$ =0.000701 13; $\alpha(O)$ =1.213×10 ⁻⁵ 20
1493	(14+)	371 <i>I</i>	100	1122	(12+)	[E2]	0.218 4	$\alpha(K)$ =0.0692 10; $\alpha(L)$ =0.1069 19; $\alpha(M)$ =0.0302 6 $\alpha(N)$ =0.00870 15; $\alpha(O)$ =0.00231 4; $\alpha(P)$ =0.000419 8; $\alpha(Q)$ =8.51×10 ⁻⁶ 14
1910	(16^+)	417 2	100	1493	(14^{+})			,
2369	(18^{+})	459 2	100	1910	(16^{+})			
2868	(20^{+})	499 2	100	2369	(18^{+})			

[‡] From 2009Je01. Level energy deduced from (electron)(900 γ) coin. Half-life from recoil-electron-electron-electron-fission(t). Isomers at ≈1120 and ≈1400 keV interpreted by 2009Je01 as possible 2-qp states, while the one at >2000 keV is interpreted as possible 4-qp state. See also 2011Ro20 where only one isomer of 17 μ s 5 was seen and interpreted as possible 4-qp state.

[#] Band(A): K^{π} =0⁺ band. Band assignment from 2012Gr12.

Adopted Levels, Gammas (continued)

γ (256Rf) (continued)

 † Calculated value from Harris fit in a rotational band. ‡ Theoretical values from BrIcc code (2008Ki07) using "Frozen orbital" approximation.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{256}_{104}\mathrm{Rf}_{152}$

Adopted Levels, Gammas

$$^{256}_{104}\mathrm{Rf}_{152}$$