

FCC PART 15.247 INDUSTRY CANADA RSS-210, ISSUE 7, JUNE 2007 TEST AND MEASUREMENT REPORT

For

Connect One Ltd.

20 Atir Yeda St, Kfar Saba, 44643, Israel

FCC ID: XM5-SM2144N2 IC: 8516A-SM2144N2

Report Type:

Product Type:

Original Report

Wireless 802.11b/g Module

Test Engineer: Dennis Huang

Report Number: R0907163-247

Report Date: 2009-08-14

Boni Baniqued

Reviewed By: Senior RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp.

(84) 1274 Anvilwood Ave

Sunnyvale, CA 94089, USA

Tel: (408) 732-9162, Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" ...

TABLE OF CONTENTS

1	Ge	neral Information	5
	1.1	Product Description for Equipment under Test (EUT)	5
	1.2	Mechanical Description of EUT	5
	1.3	EUT Photo	5
	1.4	Objective	
	1.5	Related Submittal(s)/Grant(s)	6
	1.6	Test Methodology	
	1.7	Measurement Uncertainty	
	1.8	Test Facility	
2	Sys	stem Test Configuration	
	2.1	Justification	8
	2.2	EUT Exercise Software	8
	2.3	Special Accessories	
	2.4	Equipment Modifications	
	2.5	Internal Parts List and Details	
	2.6	Interface Ports and Cabling	
3	Sur	mmary of Test Results	
4		C §15.203 & IC RSS-Gen §7.1.4 – Antenna Requirement	
	4.1	Applicable Standard	
	4.2	Result	
5	FC	C §15.207 & IC RSS-GEN §7.2.2- Conducted Emissions	11
	5.1	Applicable Standard	
	5.2	Test Setup	
	5.3	Test Procedure	
	5.4	Test Equipment List and Details	
	5.5	Test Setup Block Diagrams	
	5.6	Environmental Conditions	
	5.7	Test Results	
6	FC	C §15.247(a) (2) & RSS-210 § A8.2 (a) – 6 dB Occupied Bandwidth	
	6.1	Applicable Standard	
	6.2	Measurement Procedure	15
	6.3	Test Results	
7	FC	C §15.247(b) & RSS210 § A8.4 – Peak Output Power	
	7.1	Applicable Standard	
	7.2	Measurement Procedure	16
	7.3	Test Results	16
8	FC	C §15.247(d) & RSS-210 § A8.5 – Out of Band Emissions	17
	8.1	Applicable Standard	17
	8.2	Measurement Procedure	17
	8.3	Test Result	17
9	FC	C §15.247(e) & RSS-210 § A8.2 (b) - Power Spectral Density	18
	9.1	Applicable Standard	
	9.2	Measurement Procedure	18
	9.3	Test Results	
1() FC	C §15.205, §15.209, §15.247(c) & IC RSS-Gen §4.9 - Spurious Radiated Emissions	
	10.1	Applicable Standard	19
	10.2	Test Setup	
	10.3	EUT Setup	20

10.4	Test Procedure	20
10.5	Corrected Amplitude & Margin Calculation	21
10.6	Test Equipment List and Details	21
10.7	Test Setup Block Diagram	21
10.8	Environmental Conditions	22
10.9	Test Results	
10.10	Radiated Emissions Test Plot & Data	22
11 IC I	RSS-210 § 2.6 Receiver Spurious Radiated Emissions	
11.1	Applicable Standard	
11.2	Test Setup	
11.3	Test Procedure	
11.4	Corrected Amplitude & Margin Calculation	35
11.5	Test Equipment List and Details	
11.6	Environmental Conditions	
11.7	Test Results	
11.8	Radiated Emissions Test Plots and Data	37
12 FC	C §15.247 (i), § 2.1091 & RSS-102 - RF Exposure	
12.1	Applicable Standard	
12.2	MPE Prediction	
12.3	Test Result	39
13 EX	HIBIT A – FCC & IC Equipment Labeling Requirements	40
13.1	FCC ID Label Requirements	
13.2	IC Label Requirements	
13.3	FCC ID & IC Label	41
13.4	FCC ID and IC Label Location	
14 EX	HIBIT B – Test Setup Photographs	
14.1	Conducted Emissions –Front View	
14.2	Conducted Emissions – Side View	42
14.3	Tx and Rx Spurious Radiated Emissions (Below 1 GHz) – Front View	43
14.4	Tx and Rx Spurious Radiated Emissions (Below 1 GHz) – Rear View	43
14.5	Tx and Rx Spurious Radiated Emissions (Above 1 GHz) – Front View	44
14.6	Tx and Rx Spurious Radiated Emissions (Above 1 GHz) – Rear View	44
15 EX	HIBIT C - EUT Photographs	45
15.1	EUT Top View	
15.2	EUT Bottom View	
15.3	EUT with Supporting Board View	
15.4	AC/DC Adapter	
15.5	EUT Top View without shielding	
15.6	EUT Bottom View	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	R0907163-247	Original	2009-08-14	

1 General Information

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *Connect One Ltd.* and their product, *model: iW-Sm2144N2 FCC ID: XM5-SM2144N2*, *IC: 8516A-SM2144N2* or the "EUT" as referred to this report. The EUT is a secure embedded Wireless LAN bridge that easily connects embedded devices to 802.11b/g Wireless LANs. Operating frequency: 2.412-2.462 GHz

1.2 Mechanical Description of EUT

The EUT measures approximately 18 mm (L) x 15 mm (W) x 5 mm (H) and weighs approximately 6 g.

*The data gathered are from a typical production sample provided by the manufacturer with serial number: R0907163-1 assigned by BACL.

1.3 EUT Photo

Please refer to Exhibit C for addition EUT photographs.

1.4 Objective

This report is prepared on behalf of *Connect One Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules and Industry Canada RSS-210 Issue 7, June 2007.

The objective is to determine compliance with FCC and IC standards, rules and limits for this device including:

- RF Exposure
- Antenna Requirement
- Conducted Emissions
- Spurious Emissions at Antenna Port
- Radiated Spurious Emissions
- Restricted Band
- Receiver Spurious Emissions
- 6 dB Bandwidth & 99% Bandwidth
- Maximum Peak Output Power
- 100 kHz Bandwidth of Frequency Band Edge
- Power Spectral Density

1.5 Related Submittal(s)/Grant(s)

No related submittals.

1.6 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values range from ± 2.0 for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL.

Detailed instrumentation measurement uncertainties can be found in BACL report QAP-018.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.8 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2001670.htm

2 System Test Configuration

2.1 Justification

The host system was configured for testing according to ANSI C63.4-2003.

The EUT was tested in the testing mode to represent worst-case results during the final qualification test.

2.2 EUT Exercise Software

The EUT is programmed with the following settings that were used during testing:

Channel	Low CH 2412 MHz	Middle CH 2437 MHz	High CH 2462 MHz
802.11b Data Rate	1 Mbps	1Mbps	1Mbps
802.11g Data Rate	6 Mbps	6Mbps	6Mbps

2.3 Special Accessories

There were no special accessories were required, included, or intended for use with EUT during these tests.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Internal Parts List and Details

Manufacturers	Descriptions	Models	Serial Numbers	
Connect One Ltd	PCB Assembly Nano Socket iWiFi	E204460	M1 S 94V-0	
Connect One Ltd	PCB Assembly Supporting Board	IIEVB-363	E229342	

2.6 Interface Ports and Cabling

N/A

3 Summary of Test Results

Results reported relate only to the product tested.

FCC Part 15C& RSS-210/RSS-Gen Rules	Description of Test	Result	
FCC §15.203 IC RSS-Gen §7.1.4	Antenna Requirement	Compliant	
FCC § 15.207 (a) IC RSS-Gen §7.2.2	Conducted Emissions	Compliant	
FCC §15.247 (a)(2) IC RSS-210 §A8.2 (a)	6 dB Bandwidth & 99% Bandwidth	Compliant *	
FCC §15.247 (b)(3) IC RSS-210 § A8.4	Maximum Peak Output Power	Compliant *	
FCC § 15.247 (d) IC RSS-210 § A8.5	Out of Band Emissions (Conducted)	Compliant *	
FCC §15.247 (e) RSS-210 §A8.2 (b)	Power Spectral Density	Compliant *	
FCC §15.205, §15.209 & §15.247(d) IC RSS-Gen §4.9	Radiated Spurious Emissions	Compliant	
FCC §15.205 IC RSS-210 § 2.6	Restricted Band	Compliant	
RSS-210 § 2.6 IC RSS-Gen § 6	Receiver Spurious Emissions	Compliant	
FCC§15.247 (i), §2.1091 IC RSS-102	RF Exposure	Compliant	

 $Note: *Refer to 802.11\ b/g\ module: FCC\ ID: U9R-W2SW0001,\ IC: 7089A-W2SW0001;\ Report\ \#: R0708036.$

4 FCC §15.203 & IC RSS-Gen §7.1.4 – Antenna Requirement

4.1 Applicable Standard

For intentional device, according to FCC Part §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Per IC RSS-Gen §7.1.4, A transmitter can only be sold or operated with antennas with which it was certified. A transmitter maybe certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in IC RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to IC RSS-210 Annex 8 or RSS-210 Annex 9, the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to IC RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

4.2 Result

Report Number: R0907163-247

The EUT has maximum gain of 2.1dBi antenna, which in accordance to sections FCC Part 15.203 and IC RSS-Gen §7.1.4, is considered sufficient to comply with the provisions of these sections. Please refer to the EUT photos.

5 FCC §15.207 & IC RSS-GEN §7.2.2- Conducted Emissions

5.1 Applicable Standard

FCC Part 15.207 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted I	Limit (dBuV)
(MHz)	Quasi-Peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

5.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4 – 2003 measurement procedure. The specification used was FCC Part15.207 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT AC/DC power adapter was connected with LISN-1 which provided 120 V / 60 Hz AC power.

5.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP". Average readings are distinguished with an "Ave".

5.4 Test Equipment List and Details

Manufacturers	Description	Models	Serial Numbers	Calibration Dates
Solar Electronics	LISN	9252-R-24-BNC	511205	2009-06-09
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100338	2009-02-28

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

5.5 Test Setup Block Diagrams

Conducted Emission

5.6 Environmental Conditions

Temperature:	22 °C	
Relative Humidity:	33 %	
ATM Pressure:	102.0kPa	

^{*}The testing was performed by Dennis Huang on 2009-07-20.

5.7 Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC & IC standard's</u> conducted emissions limits for consumer devices, with the *worst* margin reading of:

Connection: 9 VDC from AC/DC adapter connected to 120 V/ 60 Hz					
Margin Frequency Conductor Range (dB) (MHz) (Line/Neutral) (MHz)					
-26.93	0.479	Line	0.15 to 30		

Please refer to the following plots and data:

120V/60 Hz Line:

Quasi-Peak Measurement

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.479	29.43	Quasi-Peak	L	56.36	-26.93
0.448	29.36	Quasi-Peak	L	56.92	-27.56
0.497	28.14	Quasi-Peak	L	56.05	-27.91
0.432	28.24	Quasi-Peak	L	57.20	-28.97
0.308	30.41	Quasi-Peak	L	60.02	-29.61
0.391	27.64	Quasi-Peak	L	58.03	-30.40

Average Measurement

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.448	8.84	Average	L	46.92	-38.08
0.479	3.54	Average	L	46.36	-42.83
0.497	3.02	Average	L	46.05	-43.03
0.432	3.30	Average	L	47.20	-43.91
0.391	3.03	Average	L	48.03	-45.00
0.308	4.57	Average	L	50.02	-45.45

120V/60 Hz Neutral:

Quasi-Peak Measurement

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)
0.476	29.23	Quasi-Peak	N	56.41	-27.18
0.467	29.31	Quasi-Peak	N	56.57	-27.25
0.473	29.10	Quasi-Peak	N	56.45	-27.35
0.434	28.63	Quasi-Peak	N	57.19	-28.55
0.260	32.47	Quasi-Peak	N	61.44	-28.96
0.374	28.89	Quasi-Peak	N	58.41	-29.52

Average Measurement

Frequency (MHz)	Corrected Reading (dBuV)	Measurement Type	Conductor (L/N)	Limit (dBuV)	Margin (dB)	
0.473	3.61	Average	N	46.45	-42.84	
0.467	3.60	Average	N	46.57	-42.97	
0.476	3.39	Average	N	46.41	-43.02	
0.434	3.30	Average	N	47.19	-43.88	
0.374	3.58	Average	N	48.41	-44.83	
0.260	5.88	Average	N	51.44	-45.56	

6 FCC §15.247(a) (2) & RSS-210 § A8.2 (a) – 6 dB Occupied Bandwidth

6.1 Applicable Standard

According to \$15.247(a)(2) and RSS-210 A8.2 (a), systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

6.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emissions bandwidth. (6 dB bandwidth for DTS)
- 4. Repeat above procedures until all frequencies measured were complete.

6.3 Test Results

Please refer to the following report for test results:

Report Number: R0708036

7 FCC §15.247(b) & RSS210 § A8.4 – Peak Output Power

7.1 Applicable Standard

According to \$15.247(b) (3) and RSS210 \$48.4 (4) for systems using digital modulation in the 902–928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

7.2 Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.

7.3 Test Results

Please refer to the following report for test results:

Report Number: R0708036

8 FCC §15.247(d) & RSS-210 § A8.5 – Out of Band Emissions

8.1 Applicable Standard

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c)).

RSS210§ A8.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emissions limits specified in Tables 2 and 3.

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 Test Result

Please refer to the following report for test results:

Report Number: R0708036

9 FCC §15.247(e) & RSS-210 § A8.2 (b) - Power Spectral Density

9.1 Applicable Standard

According to §15.247 (e) and RSS-210 § A8.2 (b), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Measure the power spectral density as follows:
 - A. Tune the analyzer to the highest point of the maximized fundamental emission. Reset the analyzer to a RBW = 3 kHz, VBW > RBW, span = 10 kHz, sweep = 340 sec.
 - B. From the peak level obtained in (A), derive the field strength, E, by applying the appropriate antenna factor, cable loss, pre-amp gain, etc.
- 4. $P = (E \times d) \text{ squared } / (30 \times G)$
 - G = the numeric gain of the transmitting antenna over an isotropic radiator.
 - d = the distance in meters from which the field strength was measured.
 - P = the power in watts for which you are solving:
- 5. Using the equation listed in (4), calculate a power level for comparison to the + 8 dBm limit.

9.3 Test Results

Please refer to the following report for test results:

Report Number: R0708036

10 FCC §15.205, §15.209, §15.247(c) & IC RSS-Gen §4.9 - Spurious Radiated Emissions

10.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	960 – 1240	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	1300 - 1427	5.35 - 5.46
2.1735 - 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 - 7.75
4.125 – 4.128	37.5 - 38.25	1645.5 - 1646.5	8.025 - 8.5
4.17725 – 4.17775	73 – 74.6	1660 - 1710	9.0 - 9.2
4.20725 - 4.20775	74.8 - 75.2	1718.8 - 1722.2	9.3 - 9.5
6.215 - 6.218	108 – 121.94	2200 - 2300	10.6 - 12.7
6.26775 – 6.26825	123 – 138	2310 - 2390	13.25 - 13.4
6.31175 – 6.31225	149.9 - 150.05	2483.5 - 2500	14.47 - 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 - 2900	15.35 - 16.2
8.362 - 8.366	156.7 – 156.9	3260 - 3267	17.7 - 21.4
8.37625 - 8.38675	162.0125 -167.17	3.332 - 3.339	22.01 - 23.12
8.41425 - 8.41475	167.72 – 173.2	3 3458 – 3 358	23.6 - 24.0
12.29 – 12.293	240 - 285	3.600 - 4.400	31.2 - 31.8
12.51975 – 12.52025	322 - 335.4		36.43 - 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 - 614		

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

IC RSS-GEN §4.9 the measurement method shall be described in the test report. The same parameter, peak power or average power, used for the transmitter output power measurement shall be used for unwanted emission measurements. The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate or carrier frequency), or from 30 MHz, whichever is the lower, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

10.2 Test Setup

The radiated emissions tests were performed in the 3-meter open area test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C and RSS-210 limits.

10.3 EUT Setup

The radiated emissions tests were performed using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15C and RSS-210 limits.

The spacing between the peripherals was 3 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

10.4 Test Procedure

For the radiated emissions test, the EUT was connected to the DC power source, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meters away from the testing antenna, which is varied from 1-4 meters, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

10.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

10.6 Test Equipment List and Details

Manufacturers	Description	Models	Serial Numbers	Calibration Dates	
Agilent	Spectrum Analyzer	E4440A	US44303352	2009-04-27	
Sunol Sciences	Antenna	JB1	A020106-1	2009-04-17	
A.R.A	Horn Antenna	DRG-118/A	1132	2008-07-28	
Ducommun	Pre-Amplifier	ALN-09173030-01	990297-01R	2009-03-04	
HP	Pre-Amplifier	8447D	2944A06639	2009-06-05	

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

10.7 Test Setup Block Diagram

Radiated Emissions

Report Number: R0907163-247 Page 21 of 47 FCC Part 15.247 & IC RSS-210 Test Report

10.8 Environmental Conditions

Temperature:	22°C
Relative Humidity:	31 %
ATM Pressure:	101.1kPa

^{*}The testing was performed by Dennis Huang on 2009-07-22.

10.9 Test Results

According to the data hereinafter, the EUT <u>complied with the FCC and IC requirements</u>, and had the worst margin readings of:

802.11b Mode:

Low Channel: 2462 MHz

Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)		
-9.78	105.676	Vertical	30 to 1000 MHz		
-3.05	4874	Vertical	Above 1 GHz		

10.10 Radiated Emissions Test Plot & Data

30 MHz - 1 GHz measured at 3 meters

Worst Case: Low Channel 2412 MHz

Frequency (MHz)	Corrected Quasi-Peak (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
815.994	32.56	109	Н	358	46	-13.44
719.961	35.98	106	Н	188	46	-10.02
287.988	33.42	100	Н	8	46	-12.58
623.990	34.60	124	Н	204	46	-11.40
105.676	33.72	205	V	348	43.5	-9.78
30.015	18.24	134	V	246	40.0	-21.76

Above 1 GHz:

2412 - 2462 MHz, Measured at 3 meters, 1 GHz – 25 GHz

802.11b Mode

Low Channel: 2412 MHz

Fraguancy	S.A. Detector	Table	Test Antenna			Cable Pre-	Cord.	FCC & IC			
(MHz)	Reading (dBuV)	(PK/AV)	A zimuth	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Gain (dB)	Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4824	44.90	AV	42	1.0	V	33.1	9.75	37	50.75	54	-3.25
4824	41.64	AV	40	1.7	Н	33.1	9.75	37	47.49	54	-6.51
4824	48.65	PK	42	1.0	V	33.1	9.75	37	54.50	74	-19.50
4824	46.27	PK	39	1.7	Н	33.1	9.75	37	52.12	74	-21.88

Middle Channel: 2437 MHz

Frequency	Reading Detector A	Dotootor	Table	Test Antenna			Cable Pre-	Cord.	FCC & IC		
(MHz)		Agimuth	Height	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Gain (dB)	Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)	
4874	45.10	PK	33	1.0	V	33.1	9.75	37	50.95	54	-3.05
4874	43.54	PK	36	1.6	Н	33.1	9.75	37	49.39	54	-4.61
4874	48.34	PK	33	1.0	V	33.1	9.75	37	54.19	74	-19.81
4874	47.44	PK	36	1.6	Н	33.1	9.75	37	53.29	74	-20.71

High Channel: 2462 MHz

Frequency	S.A.	Detector	Table	Test Antenna			Cable	Cable Pre-	Cord.	FCC & IC	
(MHz)	Reading (dBuV)	Detector (PK/AV)	A zimuth	Height	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Gain (dB)	Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4924	40.92	PK	40	1.0	V	33.1	9.75	37	46.77	54	-7.23
4924	40.25	PK	37	1.6	Н	33.1	9.75	37	46.10	54	-7.90
4924	45.84	PK	40	1.0	V	33.1	9.75	37	51.69	74	-22.31
4924	45.09	PK	37	1.6	Н	33.1	9.75	37	50.94	74	-23.06

802.11g Mode

Low Channel 2412 MHz

Frequency	S.A.	Detector	Table	Т	est Anten	na	Cable	Pre-	Cord.	FCC (& IC
(MHz)	Hz) Reading (PK/AV)	Azimuth	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Gain	Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)	
-	-	-	-	ı	-	ı	1	ı	-	-	_*

Middle Channel 2437 MHz

Engguenav	S.A.	Detector	Table	Т	est Anten	na	Cable	Pre-	Cord.	FCC	& IC
(MHz)	Panding	(PK/AV)	Azimuth	Haight	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Gain T		Limit (dBuV/m)	Margin (dB)
-	-	-	ı	-	-	ı	-	ı	-	-	_*

High Channel 2462 MHz

Encarronar			Table Test Antenna		Cable Pre-		Cord.	FCC & IC				
Frequency (MHz)	Reading (dBuV)	dBuV)	leading (PK/AV) A	Δ zimuth	Height (m)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Gain (dB)	Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4924	46.45	PK	30	1.0	V	33.1	9.75	37	52.30	74	-21.70	
4924	44.15	PK	32	1.7	Н	33.1	9.75	37	50.00	74	-24.00	
4924	29.54	AV	30	1.0	V	33.1	9.75	37	35.39	54	-18.61	
4924	28.00	AV	32	1.7	Н	33.1	9.75	37	33.85	54	-20.15	

^{*}Note: All above 1 GHz emission levels on Low and Middle Channel are at the noise floor and/or more than 20 dB below the limit.

Out of Band Emissions: Restricted band near band edge 802.11b Mode

Lowest Channel: 2412 MHz

Vertical – Peak

Vertical - Average

Horizontal - Peak

Horizontal - Average

Highest Channel: 2462 MHz

Vertical - Peak

Vertical - Average

Horizontal - Peak

Horizontal - Average

802.11g Mode

Lowest Channel: 2412 MHz

Vertical - Peak

Vertical - Average

Horizontal - Peak

Horizontal - Average

Highest Channel: 2462 MHz

Vertical - Peak

Vertical - Average

Horizontal - Peak

Horizontal - Average

11 IC RSS-210 § 2.6 Receiver Spurious Radiated Emissions

11.1 Applicable Standard

As per RSS-210 § 2.6

Tables 2 and 3 show the general field strength limits of unwanted emissions, where applicable, for transmitters and receivers operating in accordance with the provisions specified in this RSS. Transmitters whose wanted emissions are also within the limits shown in Tables 2 and 3 may operate in any of the frequency bands of Tables 2 and 3, other than the restricted bands of Table 1 and the TV bands, and shall be certified under RSS-210. (Note: Devices operating below 490 kHz all of whose emissions are at least 40 dB below the limit given in Table 3 are Category II devices subject to RSS-310.) Unwanted emissions of transmitters and receivers are permitted to fall into Table 1 and TV frequencies but intentional emissions are prohibited. See the note of Table 2 for further details.

Table 2: General Field Strength Limits for Transmitters and Receivers at Frequencies above 30 MHz

Frequency (MHz)	Field Strength Microvolts/m at 3 meters (watts, e.i.r.p.)					
(IVIHZ)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Note: Transmitting devices are not permitted in Table 1 bands or in TV bands (54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz, and 614-806 MHz). Prohibition of operation in TV bands does not apply to momentary devices, or to medical telemetry devices in the band 174-216 MHz, and to perimeter protection systems in the bands 54-72 and 76-88 MHz. The perimeter protection devices are to meet Table 3 field strengths limits.

Table 3: General Field Strength Limits for Transmitters at Frequencies below 30 MHz (Transmit)

Frequency (fundamental or spurious)	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector.

11.2 Test Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2003.

11.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

11.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

11.5 Test Equipment List and Details

Manufacturers	Description	Models	Serial Numbers	Calibration Dates
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-03-25
Sunol Sciences	Antenna	JB1	A020106-1	2009-04-17
A.R.A	Horn Antenna	DRG-118/A	1132	2008-07-28
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-07-01
Ducommun	Pre-Amplifier	ALN-09173030-01	990297-01R	2009-03-04
НР	Pre-Amplifier	8447D	2944A06639	2009-06-05

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

11.6 Environmental Conditions

Report Number: R0907163-247

Temperature:	22°C
Relative Humidity:	31 %
ATM Pressure:	101.2kPa

^{*}The testing was performed by Dennis Huang on 2009-07-22 at chamber 3.

11.7 Test Results

According to the recorded data, the EUT complied with RSS-210 Standard, and had the worst margin reading of:

Receiving Mode:

Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range
-13.33	719.963	Horizontal	30 MHz to 1 GHz
-	-	-	Above 1 GHz*

^{*}Note: All above 1 GHz emission levels are at the noise floor and/or more then 20 dB below the limit.

Please refer to the following plot and data:

11.8 Radiated Emissions Test Plots and Data

30 MHz – 1 GHz (Middle Channel measured at 3 meters)

Frequency (MHz)	Quasi-Peak (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
719.963	32.67	131	Н	30	46	-13.33
288.041	24.56	100	Н	182	46	-21.44
30.013	17.66	181	V	14	40.0	-22.34
39.122	9.85	278	V	232	40.0	-30.15
996.785	20.86	278	V	220	54.0	-33.14

Above 1 GHz (Middle Channel measured at 3 meters)

		T 11	Test Antenna			C Pre-		IC RSS-Gen			
Frequency (MHz)	Indicated Reading (dBµV)	Table Azimuth (degree)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Loss Amp.	Cord. Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
-	1	-	-	1	-	-	-	-	-	-	_*
-	-	-	-	-	-	-	_	-	-	-	_*

^{*}Note: All emission levels are at the noise floor and/or more then 20 dB below the limit.

12 FCC §15.247 (i), § 2.1091 & RSS-102 - RF Exposure

12.1 Applicable Standard

According to §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)					
Limits for General Population/Uncontrolled Exposure									
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	$*(180/f^2)$	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz

Before equipment certification is granted, the procedure of RSS-102 must be followed concerning the exposure of humans to RF fields.

According to RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 - 300	28	0.073	2*	6
300 – 1 500	1.585 f ^{0.5}	$0.0042 \text{ f}^{0.5}$	f / 150	6
1 500 – 15 000	61.4	0.163	10	6
15 000 – 150 000	61.4	0.163	10	$616000 / f^{1.2}$
150 000- 300 000	$0.158 ext{ f}^{0.5}$	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	$616000 / f^{1.2}$

Note: f is frequency in MHz

^{* =} Plane-wave equivalent power density

^{*} Power density limit is applicable at frequencies greater than 100 MHz

12.2 MPE Prediction

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R =distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal (dBm): 14.77 Maximum peak output power at antenna input terminal (mW): 29.991 Prediction distance (cm): 20 Prediction frequency (MHz): <u>2437</u> Maximum Antenna Gain, typical (dBi): 2.1 Maximum Antenna Gain (numeric): 1.62 Power density of prediction frequency at 20.0 cm (mW/cm²): 0.00966 Power density of prediction frequency at 20.0 cm (W/m²): 0.0966 1.0

MPE limit for uncontrolled exposure at prediction frequency (mW/cm²): 1.0

MPE limit for uncontrolled exposure at prediction frequency (W/m²): 10

12.3 Test Result

FCC: Compliant, the power density level at 20 cm is 0.00966 mW/cm², which is below the uncontrolled exposure limit of 1.0 mW/cm².

IC: The power density level at 20 cm distance is 0.0966 W/m^2 , which is below the uncontrolled exposure limit of 10 W/m^2 .