ДЗ 6

Биктимиров Данила, группа 204

1. Пусть x < y. Тогда $x \le \frac{1}{3}$ и $\frac{2}{3} \le y$, чтобы принимались сигналы от концов, а также расстояние между точками не больше $\frac{2}{3}$, чтобы отрезок между ними покрывался. Иными словами, $y-x \le \frac{2}{3}$. Отсюда имеем для этого случая пределы интегрирования $0 \le x \le \frac{1}{3}, \frac{2}{3} \le y \le x + \frac{2}{3}$. Берём удвоенный интеграл от совместной плотности (произведения плоскостей), так как есть ещё симметричный случай y < x.

Получается

$$8\int_0^{\frac{1}{3}} x dx \int_{\frac{2}{3}}^{x+\frac{2}{3}} y dy = \frac{19}{243}$$

2. Для точки X на сфере мы будем использовать X'для обозначения точки, противоположной X. Это точка, которая находится дальше всего от X (диаметральная ей).

После того, как выбраны три точки A, B, C, область, в которой нужно выбрать D, чтобы ABCD (покрытие) содержал O, представляет собой сферический треугольник A'B'C', противоположный ABC. Следовательно, вероятность успеха - это просто ожидаемая площадь (сферического) треугольника A'B'C', нормализованная так, чтобы поверхность сферы имела площадь 1. Это явно совпадает с ожидаемой площадью ABC, и фактически это также ожидаемая область A'BC, A'BC'и так далее, поскольку все эти треугольники охватываются тремя равномерно выбранными точками на сфере. Сейчас существует 8 таких треугольников, и их общая площадь равна 1, поэтому ожидаемая площадь каждого из них составляет $\frac{1}{8}$.

Ответ, таким образом, $\frac{1}{8}$.