16.317: Microprocessor Systems Design I

Fall 2015

Homework 2 Solution

Addrass

1. (60 points) (75 points) Assume the state of the x86 registers and memory are:

	Address				
EAX: 00000010H	20100H	10	00	80	00
EBX: 00000020H	20104H	10	10	FF	FF
ECX: 00000030H	20108H	08	00	19	91
EDX: 00000040H	2010CH	20	40	60	80
CF: 1	20110H	02	00	AB	0F
ESI: 00020100H	20114H	30	00	11	55
EDI: 00020100H	20118H	40	00	7C	EE
	2011CH	FF	00	42	D2
	20120H	30	00	30	90

What is the result produced in the destination operand by each of the instructions listed below? Assume that the instructions execute in sequence.

ADD AX, 00FFH

Solution:
$$AX = AX + 00FFH = 0010H + 00FFH = 010FH, CF = 0$$

ADC CX, AX

Solution:
$$CX = CX + AX + CF = 0030H + 010FH + 0 = 013FH, CF = 0$$

INC BYTE PTR [20100H]

Solution: Increment byte at address 20100

$$\rightarrow$$
 (byte at 20100h) = 10 + 1 = **11H**

SUB DL, BL

Solution:
$$DL = DL - BL = 40H - 20H = 20H$$
, $CF = 0$

SBB DL, [20114H]

Solution: DL = DL – (byte at 20114h) – CF =
$$20H - 30H - 0 = F0H$$

16.317: Microprocessor Systems Design I Fall 2015

1 (cont.)

DEC BYTE PTR [EDI+EBX]

Solution: Decrement byte at address EDI+EBX = 00020100h+00000020h = 00020120h

Instructor: M. Geiger Homework 2 Solution

→ (byte at 20120h) = 30H - 1 = 2FH

NEG BYTE PTR [EDI+0018H]

Solution: Negate byte at address 00020100h + 0018h = 00020118h

 \rightarrow (byte at 20118h) = -40H = -0100 0000₂ = 1011 1111₂ + 1 = 1100 0000₂ = **C0H**

MUL DX

Solution: (DX,AX) = DX * AX (unsigned multiplication of 16-bit values)

$$\rightarrow$$
 (DX,AX) = 00F0 * 010F = 240 * 271 = 65040 = 0000FE10H

 \rightarrow DX = upper 16 bits of result = 0000H; AX = lower 16 bits of result = FE10H

IMUL BYTE PTR [ESI+0006h]

Solution: AX = AL * byte at address ESI+0006h (signed multiplication of 8-bit values)

$$\rightarrow$$
 Address = $00020100h + 0006h = 20106H$; byte = FF

$$\rightarrow$$
 AX = 10H * FFH = 16 * -1 (must account for signs!) = -16

DIV BYTE PTR [ESI+0008h]

Solution: Divide AX by byte at address ESI+0008h; AL = quotient, AH = remainder (unsigned integer division of 8-bit values)

$$\rightarrow$$
 Address = 00020100h + 0008h = 20108h; byte = 08H

$$\rightarrow$$
 Dividing FFF0 / 08H = 65520 / 8 = 8190 R0 = 1FFEH R0 (keep only lowest byte)

 \rightarrow AL = FEH, AH = 00H

IDIV BYTE PTR[ESI+0010H]

Solution: Divide AX by byte at address ESI+0010h; AL = quotient, AH = remainder (signed integer division of 8-bit values)

$$\rightarrow$$
 Address = $00020100 + 0010h = 20110h$; byte = 02

$$\rightarrow$$
 Dividing 00FEH / 02H = 254 / 2 = 127 R0

$$\rightarrow$$
 AL = 7FH, AH = 00H

Instructor: M. Geiger Homework 2 Solution Fall 2015

2. (40 points) (25 points, +1 extra credit point per correct instruction) Assume the state of the 80386DX's registers and memory are:

EAX: 00005555H	Address
EBX: 00045010H	45100H OF F0 00 FF
ECX: 00000010H	
EDX: 0000AAAAH	45200H 30 00 19 91
ESI: 000000F2H	
EDI: 00000200H	45210H AA AA AB 0F
	45220H 55 55 7C EE
	45300H AA 55 30 90

What is the result produced in the destination operand by each of the instructions listed below? Assume that the instructions execute in sequence.

AND BYTE PTR [45300H], 0FH

Solution: Byte at address 45300h = Byte at 45300H AND 0FH

$$\rightarrow$$
 (45300h) = AAH AND 0FH = **0AH**

SAR DX, 8

Solution: DX = DX >> 8 (arithmetic shift)

$$\rightarrow$$
 DX = AAAAH >> 8 = **FFAAH**; CF = last bit shifted out = 1

OR [EBX+EDI], AX

Solution: Word at address EBX+EDI = Word at EBX+EDI OR AX

- \rightarrow EBX+EDI = 00045010h+00000200h = 45210H
- \rightarrow (45210H) = AAAAH OR 5555H = **FFFFH**

SHL AX, 2

Solution: AX = AX << 2

- \rightarrow AX = 5555H << 2 bits = 0101 0101 0101 0101 << 2
- \rightarrow AX = 0101 0101 0101 0100 = **5554H**, CF = last bit rotated out = **1**

16.317: Microprocessor Systems Design I Fall 2015

Instructor: M. Geiger Homework 2

2 (cont.)

XOR AX, [ESI+EBX]

Solution: AX = AX XOR (Word at address ESI+EBX)

- \rightarrow ESI+EBX = 000000F2h + 00045010h = 45102H
- \rightarrow AX = 5554H XOR FF00H = **AA54H**

NOT BYTE PTR [45300H]

Solution: Flip all bits of byte at 45300h

 \rightarrow (45300H) = NOT 0AH = **F5H**

SHR AX, 4

Solution: AX = AX >> 4 (logical shift)

- \rightarrow AX = AA54H >> 4 = 1010 1010 0101 0100 >> 4
- \rightarrow AX = 0000 1010 1010 0101 = **0AA5H**, CF = last bit rotated out = **0**