Claims:

1. A compound of Formula I, or a salt, solvate, or hydrate thereof:

$$R^1$$
 R^2
 R^3
 R^4
 CN

I

wherein

- 5 R¹ and R² are each independently selected from H, OH, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₆alkylCO₂, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), C₁₋₆alkyl(C=O)NH, C₁₋₆alkyl(C=O)N(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, O-Si(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl), NO₂, CF₃, OCF₃ and halo, or R¹ and R² together represent O-C₁₋₆alkyl-O, thereby forming a ring;
- R³ is selected from H, OH, C₁₋₆alkyl, C₁₋₆alkoxy, C₁₋₆alkylCO₂, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), C₁₋₆alkyl(C=O)NH, C₁₋₆alkyl(C=O)N(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, O-Si(C₁₋₆alkyl)(C₁₋₆alkyl)(C₁₋₆alkyl), NO₂, halo and CH₂-S-(CH₂)_n Ar;

 R^4 is selected from $C(X)R^5$, SO_3Ar , NH_2 , $NH-C_{1-6}$ alkyl, $N(C_{1-6}$ alkyl)(C_{1-6} alkyl), $P(O)(OH)_2$, $P(O)(OC_{1-6}$ alkyl)₂, and $C(NH_2)=C(CN)_2$;

X is selected from O,S, NH and N-C₁₋₆alkyl;

R⁵ is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH, (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁₋₆alkoxy, N-morpholino and N-pyrrolidino; and

20 Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4 substituents, independently selected fromOH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH,

 $S-C_{1-6}$ alkyl, NO_2 , CF_3 , OCF_3 and halo;

n is 0 to 4; and

25 p is 1-4.

15

2. The compound according to claim 1, wherein R¹ and R² are each independently selected from H, OH, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkylCO₂, NH₂, NH-

 C_{1-4} alkyl, C_{1-4} alkyl(C=O)NH, C_{1-4} alkyl(C=O)N(C_{1-4} alkyl), SH, S- C_{1-4} alkyl, O-Si(C_{1-4} alkyl)(C_{1-4} alkyl)(C_{1-4} alkyl), NO₂, CF₃, OCF₃ and halo, or R¹ and R² together represent O- C_{1-6} alkyl-O, thereby forming a ring.

- The compound according to claim 2, wherein R¹ and R² are each independently selected from the group consisting H, OH, OCH₃, CH₃CO₂, O-Si(CH₃)₂(^tBu), S-Me, SH, CH₃CONH, CH₃CONCH₃, and NO₂.
 - 4. The compound according to claim 3, wherein R^1 and R^2 are both OH or R^1 and R^2 are both OCH₃.
- 5. The compound according to claim 4, wherein R¹ is OCH₃ and R² is OH.
 - 6. The compound according to claim 1, wherein R³ is selected from H, OH, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkylCO₂, NH₂, NH-C₁₋₄alkyl, N(C₁₋₄alkyl)(C₁₋₄alkyl), C₁₋₄alkyl(C=O)NH, C₁₋₄alkyl(C=O)N(C₁₋₄alkyl), SH, S-C₁₋₄alkyl, NO₂ and halo.
- 15 7. The compound according to claim 6, wherein R³ is selected fromselected from H, OH, OCH₃, CH₃CO₂, SH, SMe, NO₂, CH₃CONH, CH₃CONCH₃, and halo.
- 8. The compound according to claim 1, wherein R¹, R², and R³ are each independently selected from H, C₁₋₄alkylCO₂, C₁₋₆alkyl(C=O)NH, and C₁₋₆alkyl(C=O)N(C₁₋₆alkyl), provided that at least one of R¹, R², and R³ is not hydrogen.
 - 9. The compound according to claim 1, wherein R^4 is selected from $C(X)R^5$ and $C(NH_2)=C(CN)_2$.
 - 10. The compound according to claim 9, wherein R^4 is $C(X)R^5$.

11. The compound according to claim 10, wherein X is selected from Selected from O and S.

- 12. The compound according to claim 10, wherein R⁵ is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH and C₁₋₄alkoxy.
- 5 13. The compound according to claim 12, wherein p is 1-3.
 - 14. The compound according to claim 13, wherein R⁵ is selected from selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH and OCH₃.
 - 15. The compound according to clam 14, wherein p is 1-2.
- 16. The compound according to claim 1, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally selected fromselected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo.
 - 17. The compound according to claim 14, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally selected from Selected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo.
 - 18. The compound according to any of claims 16 and 17, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents optionally selected fromselected from OH, C₁₋₄alkyl, C₁₋₄alkoxy, NH₂, NH-C₁₋₄alkyl, N(C₁₋₄alkyl)(C₁₋₄alkyl), SH, S-C₁₋₄alkyl, NO₂, CF₃, OCF₃ and halo.
 - 19. The compound according to claim 18, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents optionally selected from OH, OCH₃, NH₂, NHCH₃, N(CH₃)₂, SH, SCH₃, CF₃, OCF₃ and halo.
 - 20. A compound selected from:

20

$$\begin{array}{c} \text{MeO} \\ \text{HO} \\ \text{HO} \\ \text{CN} \\ \text{CN} \\ \text{CN} \\ \text{CN} \\ \text{S} \\ \text{MeO} \\ \text{HO} \\ \text{CN} \\ \text{CN} \\ \text{S} \\ \text{MeO} \\ \text{HO} \\ \text{CN} \\ \text{S} \\ \text{MeO} \\ \text{CN} \\ \text{CN} \\ \text{S} \\ \text{MeO} \\ \text{CN} \\ \text{CN} \\ \text{S} \\ \text{MeO} \\ \text{CN} \\ \text{CN} \\ \text{S} \\ \text{CN} \\ \text{CN} \\ \text{S} \\ \text{CN} \\$$

$$\begin{array}{c} \text{MeO} \\ \text{HO} \\ \text{OMe} \\ \text{HO} \\ \text{OMe} \\ \text{ONE} \\ \text{NH}_2 \\ \text{CN} \\ \text{NH}_2 \\ \text{CN} \\ \text{HO} \\ \text{OCH}_3 \\ \text{NH}_3 \\ \text{CO} \\ \text{HO} \\ \text{OCH}_3 \\ \text{NH} \\ \text{OOMe} \\ \text{OOMe} \\ \text{NH} \\ \text{OOMe} \\ \text{NH} \\ \text{OOMe} \\ \text{OOMe} \\ \text{NH} \\ \text{OOMe} \\ \text{OOMe} \\ \text{NH} \\ \text{OOMe} \\$$

5

5

5

-141-

$$\begin{array}{c} \text{MeO} \\ \text{OMe} \\ \text{OMe} \\ \text{OH} \\ \text{OH$$

5

21. A composition comprising a compound according to any one of claims 1 to 20 in admixture with a pharmaceutically acceptable diluent or carrier.

22. A use of a compound capable of modulating cell proliferation according to any one of claims 1 to 20 to prepare a medicament to modulate cell proliferation.

- A use of a compound capable of inhibiting cell proliferation
 according to any one of claims 1 to 20 to inhibit cell proliferation.
 - 24. A use of a compound capable of inhibiting cancer cell proliferation according to any one of claims 1 to 20 to inhibit cancer cell proliferation.
 - 25. A use of a compound according to any one of claims 1 to 20 to treat cancer.
- 10 26. A use according to claim 24 or 25 wherein said cancer is a hematopoietic cell cancer.
 - 27. A use according to claim 24 or 25 wherein said cancer is a leukemia, a lymphoma, a myeloma or a carcinoma.
- 28. A use according to claim 27 wherein said leukemia is acute lymphoblastic leukemia, Philadelphia+ leukemia, Philadelphia- leukemia, acute myelocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia or juvenile myelomonocyte leukemia.
 - 29. A use according to claim 27 wherein said leukemia is acute lymphoblastic leukemia.
- 30. A method of modulating cell proliferation comprising administering an effective amount of a compound capable of modulating cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.

31. A method of inhibiting cell proliferation comprising administering an effective amount of a compound capable of inhibiting cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.

- 32. A method of inhibiting cancer cell proliferation comprising administering an effective amount of a compound capable of inhibiting cancer cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.
- 33. A method of treating cancer comprising administering an effective amount of a compound capable of inhibiting cancer cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.
 - 34. A method according to claim 32 or 33 wherein said cancer is a hematopoietic cell cancer.
- 15 35. A method according to claim 32 or 33 wherein said cancer is a leukemia, a lymphoma, a myeloma or a carcinoma.
- 36. A method according to claim 35 wherein said leukemia is acute lymphoblastic leukemia, aggressive Philadelphia+ leukemia, acute myelocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia or juvenile myelomonocyte leukemia,
 - 37. A method according to claim 35 wherein said leukemia is acute lymphoblastic leukemia.