Координаты точек на тригонометрической окружности

Использование радианной меры при измерении углов позволяет для каждой точки P_{α} тригонометрической окружности указать длину дуги P_0P_{α} . Это дает возможность определить отображение множества действительных чисел $\mathbb R$ на единичную окружность, т. е. поставить в соответствие каждой точке P_{α} действительное число. Это можно осуществить следующим образом.

Сначала множество действительных чисел $\mathbb R$ отображают на координатную прямую. За единицу длины на координатной прямой принимается радиус окружности. Затем, вообразив эту прямую в виде нерастяжимой нити, закрепленной на окружности в точке P_0 , «наматывают» ее на тригонометрическую окружность так, что начало координат на прямой переходит в начало отсчета углов на окружности. При этом луч, на котором отложены положительные числа, наматывается в положительном направлении, а луч, на котором отложены отрицательные числа, наматывается в отрицательном направлении (рис. 3). При этом точки координатной прямой переходят соответственно в точки окружности. Таким образом, каждой точке прямой ставится в соответствение некоторая точка окружности.

Поскольку после полного оборота числам вида α и $\alpha+2\pi k$, $k\in\mathbb{Z}$, соответствует одна и та же точка тригонометрической окружности, считается, что все они изображаются на окружности одной точкой.

Отметим некоторые своиства приведенного отооражения.

1°. Числам α и β соответствует одна и та же точка тригонометрической окружности тогда и только тогда, когда разность $\alpha-\beta$ кратна 2π , т. е. $\alpha - \beta = 2\pi k, k \in \mathbb{Z}$.

2°. Точки, соответствующие противоположным числам α и $-\alpha$, симметричны относительно прямой OP_0 , где точка P_0 — начало отсчета углов на окружности, а O — центр окружности.

3°. Точки, соответствующие числам $\underline{\alpha}$ и $\alpha + \pi(2k+1)$, $k \in \mathbb{Z}$, диаметрально противоположны, т. е. симметричны относительно центра окружности.

Пример Пописать взаимное расположение на тригонометрической окружности точек, соответствующих числам:

- 1) $\frac{\pi}{4}$ и $\frac{9\pi}{4}$; 2) $\frac{\pi}{4}$ и $-\frac{\pi}{4}$; 3) $\frac{\pi}{6}$ и $\frac{7\pi}{6}$; 4) $\frac{3\pi}{4}$ и $-\frac{9\pi}{4}$. \triangle 1) Так как $\frac{9\pi}{4} = \frac{2\pi + \frac{\pi}{4}}{4}$, т. е. $\frac{9\pi}{4} \frac{\pi}{4} = 2\pi$, то этим числам соответствует одна точка.
- 2) Числа $\frac{\pi}{4}$ и $-\frac{\pi}{4}$ противоположны, поэтому соответствующие им точки симметричны относительно оси Ох.
- 3) Так как $\frac{7\pi}{6} = \pi + \frac{\pi}{6}$, то соответствующие им точки диаметрально противоположны.

Координаты точек единичной окружности в декартовой системе координат

Определим в декартовой системе координат Оху координаты некоторых точек окружности радиуса 1 с центром в начале коор-

Пример Рассмотрим случаи, когда луч OP_{α} составляет с положительным направлением оси Ох углы:

1) 0; 2)
$$\frac{\pi}{6}$$
; 3) $\frac{\pi}{4}$; 4) $\frac{\pi}{3}$; 5) $\frac{\pi}{2}$.

- \triangle 1) Если $\alpha=0$, то точка P_{α} совпадает с точкой $P_{0}=(1;0)$. 2) Пусть $\alpha=\frac{\pi}{6}$. Найдем координаты точки P_{α} . Для этого опустим перпендикуляр $P_{\alpha}P$ из этой точки на ось Ox. Рассмотрим прямоугольный треугольник $OP_{\alpha}P$ (рис. 6). Поскольку координаты точки P_{α} численно равны длинам катетов этого треугольника, то остается найти длины $P_{\alpha}P$ и OP. Гипотенуза $\overrightarrow{OP}_{lpha}$ равна радиусу окружности, т. е. равна 1. Катет $\overrightarrow{P}_{lpha}P$ лежит против угла $\frac{\pi}{6}$, поэтому $P_{\alpha}P=\frac{1}{2}$. По теореме Пифагора для треугольника $OP_{\alpha}P$ получим $OP = \sqrt{OP_{\alpha}^2 - \sqrt[3]{P_{\alpha}^2}} = \frac{\sqrt{3}}{2}$. Следовательно, $P_{\alpha} = \left(\frac{\sqrt{3}}{2}; \frac{1}{2}\right)$. \checkmark
 - 3) Пусть $\alpha = \frac{\pi}{4}$. Как и в предыдущем случае, опустим перпендикуляр $P_{lpha}P$ из точки P_{lpha} на ось Ox. Соответственно, катеты прямоугольного равнобедренного треугольника $OP_{lpha}P$ (рис. 7)

0p1-1