Ejercicios

- I. Para cada una de las siguientes ecuaciones, determinar en cada caso, si es posible, el o los valores que debe tomar la variable x para que sean verdaderas:
 - 1. 2x + 1 = 5
 - 2. -5x 2 = 3
 - 3. 6x + 2 = x
 - 4. 6(x+2) 5(x-4) = 2(x+6)
 - 5. -2(x-3(5x-4)) = 7(x-4)
 - 6. $\frac{x}{6} + 2 = 2$
 - 7. $\frac{x}{7} 1 = 8$
 - 8. $\frac{11x}{6} \frac{5}{6} = 1$
 - 9. $\frac{5x}{3} + \frac{x}{4} = -0.5$
 - 10. $x(\frac{1}{2}+3)-2(\frac{x+2}{5})=8x+6$
 - 11. $-5\left(\frac{x-2}{5}\right) + 8\left(\frac{x-8}{7}\right) = \frac{x+2}{5}$
 - 12. $x^2 = 4$
 - 13. $x^2 = -1$
 - 14. (x+1)(x-2) = 3
 - 15. $x^2 + 2x = 5x + 10$
 - 16. $x(x+1) 6x + \frac{2}{3} = x$
- II. Sea f(x) la función definida por:

$$f(x) = 2x^2 - x - 6$$

- 1. Determinar los valores de:
 - a) f(0) b) f(3) c) f(-1) d) f(0.5) e) $f(-\frac{1}{2})$ f) $f(\sqrt{2})$
- 2. ¿Para qué valores de x se cumple que f(x) = 0? ¿Y para f(x) = -5?
- 3. Teniendo en cuenta lo calculado previamente, dar un gráfico de la función indicando sus raíces.

<u>Consejo:</u> Para obtener un mejor gráfico, puede ser útil calcular algunos valores más de la función. Por ejemplo, $f(\frac{1}{4}) = -\frac{49}{8}$ nos da el punto

 $(\frac{1}{4}, -\frac{49}{8})$, que es el vértice de la parábola que grafica f(x).

III. Para cada una de las siguientes funciones, dar sus raíces, si es que existen.

a)
$$f_1(x) = x^2 - 2$$

b)
$$f_2(x) = x^2 - 4x + 2$$

c)
$$f_3(x) = 3x^2 - 30x + 48$$

d)
$$f_4(x) = \frac{3}{2}(x^2 - 2x - 15)$$

e)
$$f_5(x) = \frac{3x^2}{2} + x$$

f)
$$f_6(x) = (x+5)(x-2) \cdot (-\frac{2}{5})$$

g)
$$f_7(x) = x^2 + 1$$

h)
$$f_8(x) = -x^2 + 1$$

i)
$$f_9(x) = -x^2 - x - 5$$

j)
$$f_{10}(x) = x(x+5)$$

Consejo: Dada una función de la forma $ax^2 + bx + c$, definimos:

$$\Delta = b^2 - 4ac$$

A este número lo llamamos discriminante, y lo denotamos con la letra griega delta mayúscula (Δ). Nos ayuda a determinar si existen raíces reales o no, tal que:

- · Si $\Delta > 0$, entonces existen exactamente 2 raíces reales.
- · Si $\Delta = 0$, entonces existe exactamente 1 raíz real.
- · Si $\Delta < 0$, entonces no existen soluciones reales.

IV. Sea g(x) la función definida por

$$g(x) = x^4 - \frac{5x^3}{6} - \frac{31x^2}{2} - \frac{74x}{3} - 10$$

Sabiendo que

$$(x^2 - 3x - 10) \cdot (x^2 + \frac{13}{6}x + 1) = x^4 - \frac{5x^3}{6} - \frac{31x^2}{2} - \frac{74x}{3} - 10.$$

¿Cuáles son las raíces de g(x)?

Respuestas

I.
$$1. x = 2$$

2.
$$x = -1$$

3.
$$x = -\frac{2}{5}$$

4.
$$x = 20$$

5.
$$x = -\frac{4}{21}$$

6.
$$x = 0$$

7.
$$x = 63$$

8.
$$x = 1$$

9.
$$x = -\frac{6}{23}$$

10.
$$x = -\frac{68}{49}$$

11.
$$x = -132$$

12.
$$x = \pm 2$$

13. No hay soluciones reales.

14.
$$\begin{cases} x_1 = -2 \\ x_2 = 3 \end{cases}$$

15.
$$\begin{cases} x_1 = -5 \\ x_2 = 5 \end{cases}$$

15.
$$\begin{cases} x_1 = -2 \\ x_2 = 5 \end{cases}$$
16.
$$\begin{cases} x_1 = 3 + 5\sqrt{3} \\ x_2 = 3 - 5\sqrt{3} \end{cases}$$

1. a)
$$f(0) = -6$$

b)
$$f(3) = 9$$

c)
$$f(-1) = -3$$

d)
$$f(0.5) = -6$$

e)
$$f(-\frac{1}{2}) = -5$$

f)
$$f(\sqrt{2}) = -2 - \sqrt{2}$$

f)
$$f(\sqrt{2}) = -3$$

f) $f(\sqrt{2}) = -2 - \sqrt{2}$
2. Las raíces de $f(x)$ son $\begin{cases} x_1 = -\frac{3}{2} \\ x_2 = 2 \end{cases}$

Los valores para los cuales f(x) = -5 son $\left\{ \begin{array}{l} x_1 = -\frac{1}{2} \\ x_2 = 1 \end{array} \right.$

III.

a)
$$\begin{cases} x_1 = -2 \\ x_2 = 2 \end{cases}$$

b)
$$\begin{cases} x_1 = -\sqrt{2} \\ x_2 = \sqrt{2} \end{cases}$$

$$c) \begin{cases} x_1 = 2 \\ x_2 = 8 \end{cases}$$

$$d) \begin{cases} x_1 = -3 \\ x_2 = 5 \end{cases}$$

e)
$$x = -\frac{2}{3}$$

$$f) \begin{cases} x_1 = -5 \\ x_2 = 2 \end{cases}$$

$$h) \begin{cases} x_1 = -1 \\ x_2 = 1 \end{cases}$$

j)
$$x = -5$$

IV. Las raíces de g(x) son $\begin{cases} x_1 = -2 \\ x_2 = -\frac{3}{2} \\ x_3 = -\frac{2}{3} \\ x_4 = 5 \end{cases}$

$$x_2 = -\frac{3}{2}$$

$$x_3 = -\frac{2}{3}$$

$$x_4 = 5$$