

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
7. Juli 2005 (07.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/061443 A2

(51) Internationale Patentklassifikation⁷: **C07C 237/42**,
271/10, 271/26, 275/24, 275/28, 309/66, 311/06, 323/60,
327/34, 333/04, 333/08, A01N 37/18

(21) Internationales Aktenzeichen: PCT/EP2004/014392

(22) Internationales Anmeldedatum:
17. Dezember 2004 (17.12.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10360395.6 19. Dezember 2003 (19.12.2003) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **BASF Aktiengesellschaft** [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **WITSCHEL, Matthias** [DE/DE]; Höhenweg 12b, 67098 Bad Dürkheim (DE). **PUHL, Michael** [DE/DE]; Bürstädtler Str. 95, 68623 Lampertheim (DE). **HAMPRECHT, Gerhard** [DE/DE]; Rote-Turm-Str.28, 69469 Weinheim (DE). **PARRA RAPADO, Liliana** [ES/DE]; Zeller Str.14, 77654 Offenburg (DE). **MIBLITZ, Ulf** [DE/DE]; Mandelring 74, 67433 Neustadt (DE). **ZAGAR, Cyril** [DE/DE]; Untere Clignetstr. 8, 68167 Mannheim (DE). **PLATH, Peter** [DE/DE]; Hans-Balcke-Str.13, 67227 Frankenthal (DE).

REINHARD, Robert [DE/DE]; Wielandstrasse 30, 67065 Ludwigshafen (DE). **SIEVERNICH, Bernd** [DE/DE]; Bertolt-Brecht-Str. 18a, 67454 Hassloch (DE). **LIEBL, Rex** [US/DE]; Im unteren Grain 3, 67146 Deidesheim (DE).

(74) Gemeinsamer Vertreter: **BASF Aktiengesellschaft**; 67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

[Fortsetzung auf der nächsten Seite]

(54) Title: BENZOYL-SUBSTITUTED PHENYLALANINE AMIDES

(54) Bezeichnung: BENZOYLSUBSTITUIERTE PHENYLALANIN-AMIDE

I

(57) Abstract: The invention relates to benzoyl-substituted phenylalanine amides of formula (I), wherein the variables R¹ to R¹⁵ have the meanings indicated in the description, the agriculturally useful salts thereof, methods and intermediate products for the production thereof, as well as the use of said compounds or substances containing said compounds for controlling undesired plants.

(57) Zusammenfassung: Die vorliegende Erfindung betrifft benzoylsubstituierte Phenylalanin-Amide der Formel I in der die Variablen R¹ bis R¹⁵ die in der Beschreibung genannten Bedeutungen haben, sowie deren landwirtschaftlich brauchbaren Salze,

WO 2005/061443 A2

Verfahren und Zwischenprodukte zu ihrer Herstellung, sowie die Verwendung dieser Verbindungen oder diese Verbindungen enthaltende Mittel zur Bekämpfung unerwünschter Pflanzen.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Benzoylsubstituierte Phenylalanin-Amide

Beschreibung

5 Die vorliegende Erfindung betrifft benzoylsubstituierte Phenylalanin-Amide der Formel I

in der die Variablen die folgenden Bedeutungen haben:

- 10 R^1 Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy,
Nitro, Hydroxycarbonyl, C₁-C₆-Alkoxy carbonyl, C₁-C₆-Halogenalkylthio
oder Phenyl;
- 15 R^2, R^3, R^4, R^5 Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-
Alkoxy, C₁-C₆-Halogenalkoxy, Nitro, Amino, C₁-C₆-Alkylamino, Di(C₁-C₆-
alkyl)amino, C₁-C₆-Alkylthio oder C₁-C₆-Alkoxy carbonyl;
- 20 R^6, R^7 Wasserstoff, Hydroxy oder C₁-C₆-Alkoxy;
- 25 R^8 C₁-C₆-Alkyl, C₁-C₄-Cyanoalkyl oder C₁-C₆-Halogenalkyl;
- 30 R^9 OR¹⁶, SR¹⁷ oder NR¹⁸R¹⁹;
- R^{10} Wasserstoff oder C₁-C₆-Alkyl;
- R^{11}, R^{12} Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Hydroxy, Nitro, Hydroxy-
C₁-C₄-alkyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, Tri(C₁-C₆-alkyl)silyloxy-C₁-C₄-alkyl,
C₁-C₄-Alkylthio, (Hydroxycarbonyl)C₁-C₆-alkyl, (C₁-C₆-Alkoxy carbonyl)-
C₁-C₆-alkyl, (Hydroxycarbonyl)-C₂-C₆-alkenyl, (C₁-C₆-Alkoxy carbonyl)-
C₂-C₆-alkenyl, (Hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-Alkoxy carbonyl)-

2

C₁-C₄-alkoxy, (C₁-C₄-Alkylcarbonyl)oxy-C₁-C₄-alkyl, Hydroxycarbonyl-C₁-C₄-alkoxy-C₁-C₄-alkyl, (C₁-C₄-Alkylsulfonyl)oxy-C₁-C₄-alkyl,
 C₁-C₄-Alkyl-O-C(O)-[C₁-C₄-alkyl-O]₃-C₁-C₄-alkyl, Carbamoyloxy-C₁-C₄-alkyl, (C₁-C₄-Alkylaminocarbonyl)oxy-C₁-C₄-alkyl, [Di(C₁-C₄-alkyl)aminocarbonyl]oxy-C₁-C₄-alkyl, [(C₁-C₄-Halogenalkylsulfonyl)-aminocarbonyl]oxy-C₁-C₄-alkyl, Benzyloxy, wobei der Phenylring durch 1 bis 3 Reste aus der Gruppe Halogen und C₁-C₄-Alkyl substituiert sein kann,
 Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, C₁-C₄-Alkylsulfonyl-amino, C₁-C₄-Halogenalkylsulfonylamino, C₁-C₄-Alkylcarbonylamino, Carbamoylamino, (C₁-C₄-Alkylamino)-carbonylamino, [Di(C₁-C₄-alkyl)-amino]carbonylamino, [(C₁-C₄-Halogenalkylsulfonyl)aminocarbonyl]-amino, Phenyl oder Heterocyclyl, wobei der Phenyl- und der Heterocyclrest der zwei letztgenannten Substituenten ein bis drei Reste aus folgender Gruppe tragen kann: Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxycarbonyl und C₁-C₆-Alkoxy carbonyl;

5
 10
 15

R¹³, R¹⁴, R¹⁵ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Hydroxy, Nitro, C₁-C₆-Alkylthio oder Benzyloxy;
 20

R¹⁶, R¹⁷, R¹⁸ Wasserstoff, C₁-C₆-Alkyl, Tri(C₁-C₆-alkyl)silyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Halogenalkinyl, Formyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₂-C₆-Alkinylcarbonyl, C₁-C₆-Alkoxy carbonyl, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxycarbonyl, C₁-C₆-Alkylamino carbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, C₁-C₆-Halogenalkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-amino-carbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl, Di-(C₁-C₆-alkyl)-aminothiocarbonyl, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl oder N-(Di-C₁-C₆-alkylamino)-imino-C₁-C₆-alkyl,
 25
 30
 35

wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxy carbonyl, Ami-
 40

3

nocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;

- 5 Phenyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl,
 Phenoxy carbonyl, Phenylaminocarbonyl, Phenylsulfonylaminocarbonyl,
 N-(C₁-C₆-Alkyl)-N-(phenyl)-aminocarbonyl, Phenyl-C₁-C₆-alkylcarbonyl,
 Heterocyclyl, Heterocyclyl-C₁-C₆-alkyl, Heterocyclylcarbonyl, Hetero-
 cyclylcarbonyl-C₁-C₆-alkyl, Heterocyclyoxy carbonyl, Heterocyclylamino-
 carbonyl, Heterocyclylsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-
 10 (heterocyclyl)-aminocarbonyl oder Heterocyclyl-C₁-C₆-alkylcarbonyl,
 wobei der Phenyl- und der Heterocyclyl-Rest der 17 letztgenann-
 ten Substituenten partiell oder vollständig halogeniert sein kann
 und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro,
 Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-
 15 Halogenalkoxy;
 SO₂R²⁰;
 -C(O)-[C₁-C₄-alkyl-O]₃-C₁-C₄-Alkyl; oder
 -C(O)-O-C₁-C₄-Alkyl-O-Phenyl, wobei der Phenylrest gegebenenfalls
 20 durch ein bis drei Reste aus der Gruppe Halogen und C₁-C₄-Alkyl sub-
 stituiert sein kann;
- 25 R¹⁹ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-
 Halogenalkenyl, C₃-C₆-Halogenalkinyl,
 wobei die genannten Alkyl- und Cycloalkylreste partiell oder vollständig
 halogeniert sein können und/oder eine bis drei der folgenden Gruppen
 tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-
 Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl,
 C₁-C₄-Alkoxy carbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-
 (C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy; oder
- 30 Phenyl, Phenyl-C₁-C₆-alkyl, Heterocyclyl oder Heterocyclyl-C₁-C₆-alkyl,
 wobei der Phenyl- und der Heterocyclyl-Rest der 4 letztgenannten Sub-
 stituenten partiell oder vollständig halogeniert sein kann und/oder eine
 bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl,
 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;
- 35 R²⁰ C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder Phenyl,
 wobei der Phenylrest partiell oder vollständig halogeniert sein kann
 und/oder eine bis drei der folgenden Gruppen tragen kann: C₁-C₆-Alkyl,
 C₁-C₆-Halogen-alkyl oder C₁-C₆-Alkoxy;
- 40

sowie deren landwirtschaftlich brauchbaren Salze.

Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung von Verbindungen der Formel I, Mittel welche diese enthalten sowie die Verwendung die-

5 ser Derivate oder diese enthaltende Mittel zur Schadpflanzenbekämpfung.

Aus der Literatur, beispielsweise aus WO 03/066576, sind herbizid wirksame Phenylalaninderivate, welche in β -Position unsubstituiert sind oder ggf. durch Halogen substituierte Alkyl-, Alkenyl- oder Alkinylreste tragen, bekannt.

10 Benzoylsubstituierte Aminosäureamide mit pharmazeutischer Wirksamkeit werden u.a. in WO 97/05865, GB 2369117, JP 10/298151 und JP 03/294253 beschrieben.

15 Die herbiziden Eigenschaften der bisher bekannten Verbindungen bzw. die Verträglichkeiten gegenüber Kulturpflanzen können jedoch nur bedingt befriedigen. Es lag daher dieser Erfindung die Aufgabe zugrunde, neue, insbesondere herbizid wirksame, Verbindungen mit verbesserten Eigenschaften zu finden.

20 Demgemäß wurden die benzoylsubstituierten Phenylalanin-Amide der Formel I sowie deren herbizide Wirkung gefunden.

25 Ferner wurden herbizide Mittel gefunden, welche die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.

30 Die Verbindungen der Formel I enthalten je nach Substitutionsmuster zwei oder mehr Chiralitätszentren und liegen dann als Enantiomeren oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

35 Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es auf die Art des Salzes in der Regel nicht ankommt. Im allgemeinen kommen die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

40 Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammo-

5

- nium, wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, Hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, 2-(2-
- 5 Hydroxyeth-1-oxy)eth-1-ylammonium, Di-(2-hydroxyeth-1-yl)-ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C₁-C₄-alkyl)-sulfoxonium, in Betracht.
- 10 Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

15

- Die für die Substituenten R¹-R²⁰ oder als Reste an Phenyl- oder Heterocyclringen genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also z.B.
- 20 alle Alkyl-, Alkenyl-, Alkinyl-, Cyanoalkyl-, Halogenalkyl-, Halogenalkenyl-, Halogenalkinyl-, Alkoxy-, Halogenalkoxy-, Alkoxyalkyl-, Alkylcarbonyl-, Alkenylcarbonyl-, Alkinylcarbonyl-, Alkoxycarbonyl-, Alkenyloxycarbonyl-, Alkinyloxycarbonyl-, Alkylamino-, Alkylaminocarbonyl-, Alkenylaminocarbonyl-, Alkinylaminocarbonyl-, Alkylsulfonylamino-carbonyl, Dialkylaminocarbonyl-, N-Alkenyl-N-alkylaminocarbonyl-, N-Alkinyl-N-
- 25 alkylamino-carbonyl-, N-Alkoxy-N-alkylaminocarbonyl-, N-Alkenyl-N-alkoxyaminocarbonyl-, N-Alkinyl-N-alkoxyaminocarbonyl-, Dialkylaminothiocarbonyl, Alkylcarbonylalkyl, Alkoxyiminoalkyl, N-(Alkylamino)-iminoalkyl, N-(Dialkylamino)-iminoalkyl, Phenylalkyl-, Phenylcarbonylalkyl-, N-Alkyl-N-phenylaminocarbonyl-, Phenylalkylcarbonyl, Heterocyclalkyl-, Heterocyclcarbonylalkyl-, N-Alkyl-N-
- 30 heterocyclaminocarbonyl-, Heterocyclalkylcarbonyl-, Alkylthio- und Alkylcarbonyloxy-Teile können geradkettig oder verzweigt sein.

- Sofern nicht anders angegeben tragen halogenierte Substituenten vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.

Ferner bedeuten beispielsweise:

- 40 - C₁-C₄-Alkyl sowie die Alkylteile von C₁-C₆-Alkyliminoxy-C₁-C₄-alkyl, Hydroxy(C₁-C₄-alkyl), Tri(C₁-C₆-alkyl)silyloxy-C₁-C₄-alkyl, (C₁-C₄-Alkylcarbonyl)oxy-C₁-

- C₄-alkyl, Hydroxycarbonyl-C₁-C₄-alkoxy-C₁-C₄-alkyl, (C₁-C₄-Alkylsulfonyl)oxy-C₁-C₄-alkyl, C₁-C₄-Alkyl-O-C(O)-[C₁-C₄-alkyl-O]₃-C₁-C₄-alkyl, Carbamoyloxy-C₁-C₄-alkyl, (C₁-C₄-Alkylaminocarbonyl)oxy-C₁-C₄-alkyl, [Di(C₁-C₄-alkyl)aminocarbonyl]-oxy-C₁-C₄-alkyl, [(C₁-C₄-Halogenalkylsulfonyl)aminocarbonyl]oxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonylamino, -C(O)-[C₁-C₄-alkyl-O]₃-C₁-C₄-alkyl, -C(O)-O-C₁-C₄-Alkyl-O-Phenyl: z.B. Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl und 1,1-Dimethylethyl;
- 5
- C₁-C₆-Alkyl sowie die Alkylteile von C₁-C₆-Alkylsulfonylaminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, (C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl, N-(Di-C₁-C₆-alkyl-amino)-imino-C₁-C₆-alkyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, N-(C₁-C₆-Alkyl)-N-phenylaminocarbonyl, Heterocycl-C₁-C₆-alkyl, Heterocycl-carbonyl-C₁-C₆-alkyl, N-(C₁-C₆-Alkyl)-N-heterocyclaminocarbonyl, Tri(C₁-C₆-alkyl)silyloxy-C₁-C₄-alkyl, Tri(C₁-C₆-alkyl)silyl, (Hydroxycarbonyl)-C₁-C₆-alkyl, (C₁-C₆-Alkoxy carbonyl)-C₁-C₆-alkyl:
- 10
- 15
- 20
- 25
- 30
- 35
- 40
- C₁-C₄-Alkylcarbonyl sowie die Alkylcarbonyl-Teile von (C₁-C₄-Alkylcarbonyl)oxy, (C₁-C₄-Alkylcarbonyl)oxy-C₁-C₄-alkyl, C₁-C₄-Alkylcarbonylamino: z.B. Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl oder 1,1-Dimethylethylcarbonyl;
- C₁-C₆-Alkylcarbonyl, sowie die Alkylcarbonylreste von C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, Phenyl-C₁-C₆-alkylcarbonyl und Heterocycl-C₁-C₆-alkylcarbonyl: C₁-C₄-Alkylcarbonyl, wie voranstehend genannt, sowie z.B. Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 2,2-Dimethylpropylcarbonyl, 1-Ethylpropylcarbonyl, Hexylcarbonyl, 1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl, 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl, 1,3-Dimethylbutylcarbonyl, 2,2-Dimethylbutylcarbonyl, 2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl,

- 1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl, 1,1,2-Trimethylpropylcarbonyl,
1,2,2-Trimethylpropylcarbonyl, 1-Ethyl-1-methylpropylcarbonyl oder 1-Ethyl-2-
methyl-propylcarbonyl;
- 5 - C₃-C₆-Cycloalkyl sowie die Cycloalkylteile von C₃-C₆-Cycloalkylcarbonyl: mono-
cyclischer, gesättigter Kohlenwasserstoff mit 3 bis 6 Ringgliedern, wie Cyclopro-
pyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;
- 10 - C₃-C₆-Alkenyl sowie die Alkenylteile von C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-
Alkenylaminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl und N-(
C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)aminocarbonyl: z.B. 1-Propenyl, 2-Propenyl,
1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-
1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-
Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butene, 3-Methyl-1-butene,
15 1-Methyl-2-butene, 2-Methyl-2-butene, 3-Methyl-2-butene, 1-Methyl-3-butene,
2-Methyl-3-butene, 3-Methyl-3-butene, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-
propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-
Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-
Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-
20 pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1-
Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl,
1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-
pentenyl, 1,1-Dimethyl-2-butene, 1,1-Dimethyl-3-butene, 1,2-Dimethyl-1-butene,
1,2-Dimethyl-2-butene, 1,2-Dimethyl-3-butene, 1,3-Dimethyl-1-butene, 1,3-
25 Dimethyl-2-butene, 1,3-Dimethyl-3-butene, 2,2-Dimethyl-3-butene, 2,3-
Dimethyl-1-butene, 2,3-Dimethyl-2-butene, 2,3-Dimethyl-3-butene, 3,3-
Dimethyl-1-butene, 3,3-Dimethyl-2-butene, 1-Ethyl-1-butene, 1-Ethyl-2-butene,
1-Ethyl-3-butene, 2-Ethyl-1-butene, 2-Ethyl-2-butene, 2-Ethyl-3-butene, 1,1,2-
30 Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl
und 1-Ethyl-2-methyl-2-propenyl;
- C₂-C₆-Alkenyl sowie die Alkenylteile von C₂-C₆-Alkenylcarbonyl, (Hydroxycarbo-
nonyl)-C₂-C₆-alkenyl, (C₁-C₆-Alkoxy carbonyl)-C₂-C₆-alkenyl: C₃-C₆-Alkenyl wie vor-
anstehend genannt sowie Ethenyl;
- 35 - C₃-C₆-Alkinyl sowie die Alkinylteile von C₃-C₆-Alkinyloxycarbonyl, C₃-C₆-
Alkinylaminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(
C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxyaminocarbonyl: z.B. 1-Propinyl, 2-Propinyl, 1-
Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-
40 Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-

- Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;
- 5 - C₂-C₆-Alkinyl sowie die Alkinylteile von C₂-C₆-Alkinylcarbonyl: C₃-C₆-Alkinyl wie voranstehend genannt sowie Ethinyl;
- 10 - C₁-C₄-Cyanoalkyl: z.B. Cyanomethyl, 1-Cyanoeth-1-yl, 2-Cyanoeth-1-yl, 1-Cyanoprop-1-yl, 2-Cyanoprop-1-yl, 3-Cyanoprop-1-yl, 1-Cyanoprop-2-yl, 2-Cyanoprop-2-yl, 1-Cyanobut-1-yl, 2-Cyanobut-1-yl, 3-Cyanobut-1-yl, 4-Cyanobut-1-yl, 1-Cyanobut-2-yl, 2-Cyanobut-2-yl, 1-Cyanobut-3-yl, 2-Cyanobut-3-yl, 1-Cyano-2-methyl-prop-3-yl, 2-Cyano-2-methyl-prop-3-yl, 3-Cyano-2-methyl-prop-3-yl und 2-Cyanomethyl-prop-2-yl;
- 15 - C₁-C₄-Halogenalkyl sowie die Halogenalkylreste von [(C₁-C₄-Halogenalkylsulfonyl)aminocarbonyloxy-C₁-C₄-alkyl, C₁-C₄-Halogenalkylsulfonylamino, [(C₁-C₄-Halogenalkylsulfonyl)aminocarbonyl]amino: ein C₁-C₄-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, Brommethyl, Iodmethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl, 1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl und Nonafluorbutyl];
- 20 - C₁-C₆-Halogenalkyl sowie die Halogenalkylreste von C₁-C₆-Halogenalkylsulfonylaminocarbonyl, C₁-C₆-Halogenalkylthio: C₁-C₄-Halogenalkyl wie vorstehend genannt, sowie z.B. 5-Fluorpentyl, 5-Chlorpentyl, 5-Brompentyl, 5-Iodpentyl, Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl und Dodecafluorhexyl;
- 25 -
- 30 -
- 35 -

- C₃–C₆-Halogenalkenyl: ein C₃–C₆-Alkenylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, z.B. 2-Chlorprop-2-en-1-yl, 3-Chlorprop-2-en-1-yl, 2,3-Dichlorprop-2-en-1-yl, 3,3-Dichlorprop-2-en-1-yl, 2,3,3-Trichlor-2-en-1-yl, 2,3-Dichlorbut-2-en-1-yl, 2-Bromprop-2-en-1-yl, 3-Bromprop-2-en-1-yl, 2,3-Dibromprop-2-en-1-yl, 3,3-Dibromprop-2-en-1-yl, 2,3,3-Tribrom-2-en-1-yl oder 2,3-Dibrombut-2-en-1-yl;
- C₃–C₆-Halogenalkinyl: ein C₃–C₆-Alkinylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, z.B. 1,1-Difluor-prop-2-in-1-yl, 3-Iod-prop-2-in-1-yl, 4-Fluorbut-2-in-1-yl, 4-Chlorbut-2in-1-yl, 1,1-Difluorbut-2-in-1-yl, 4-Iodbut-3-in-1-yl, 5-Fluorpent-3-in-1-yl, 5-Iodpent-4-in-1-yl, 6-Fluorhex-4-in-1-yl oder 6-Iodhex-5-in-1-yl;
- C₁–C₄-Alkoxy sowie die Alkoxyteile von (C₁–C₄-Alkoxycarbonyl)–C₁–C₄-alkoxy, Hydroxycarbonyl–C₁–C₄-alkoxy–C₁–C₄-alkyl, (Hydroxycarbonyl)–C₁–C₄-alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1-Methyl-ethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy;
- C₁–C₆-Alkoxy sowie die Alkoxyteile von N–(C₁–C₆-Alkoxy)–N–(C₁–C₆-alkyl)–aminocarbonyl, N–(C₃–C₆-Alkenyl)–N–(C₁–C₆-alkoxy)–aminocarbonyl, N–(C₃–C₆-Alkinyl)–N–(C₁–C₆-alkoxy)–aminocarbonyl und C₁–C₆-Alkoxyimino–C₁–C₆-Alkyl: C₁–C₄-Alkoxy wie voranstehend genannt, sowie z.B. Pentoxy, 1-Methyl-butoxy, 2-Methylbutoxy, 3-Methoxylbutoxy, 1,1-Dimethyl-propoxy, 1,2-Dimethyl-propoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methyl-pentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Di-methyl-butoxy, 1,2-Dimethyl-butoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethyl-butoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Tri-methylpropoxy, 1,2,2-Trimethyl-propoxy, 1-Ethyl-1-methylpropoxy und 1-Ethyl-2-methylpropoxy;
- C₁–C₄-Halogenalkoxy: ein C₁–C₄-Alkoxyrest wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Brommethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentfluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlor-propoxy, 2-Brompropoxy, 3-Brompropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2,3-Dichlorpropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, 2,2,3,3-Pentafluorpropoxy, Heptafluorpropoxy, 1-(Fluormethyl)-2-fluorethoxy,

10

1-(Chlormethyl)-2-chlorethoxy, 1-(Brommethyl)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy und Nonfluorbutoxy;

5 C₁-C₆-Halogenalkoxy: C₁-C₄-Halogenalkoxy wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy und Dodecafluorhexoxy;

10 C₁-C₆-Alkoxy-C₁-C₄-alkyl: durch C₁-C₆-Alkoxy wie vorstehend genannt substituiertes C₁-C₄-Alkyl, also z.B. für Methoxymethyl, Ethoxymethyl, Propoxymethyl, (1-Methylethoxy)methyl, Butoxymethyl, (1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, (1,1-Dimethylethoxy)methyl, 2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(Propoxy)ethyl, 2-(1-Methylethoxy)ethyl, 2-(Butoxy)ethyl, 2-(1-Methylpropoxy)ethyl, 2-(2-Methylpropoxy)ethyl, 2-(1,1-Dimethylethoxy)ethyl, 2-(Methoxy)-propyl, 15 2-(Ethoxy)propyl, 2-(Propoxy)propyl, 2-(1-Methylethoxy)propyl, 2-(Butoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)propyl, 2-(1,1-Dimethylethoxy)propyl, 3-(Methoxy)propyl, 3-(Ethoxy)-propyl, 3-(Propoxy)propyl, 3-(1-Methylethoxy)-propyl, 3-(Butoxy)propyl, 3-(1-Methylpropoxy)propyl, 3-(2-Methylpropoxy)propyl, 3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)-butyl, 20 2-(Ethoxy)butyl, 2-(Propoxy)-butyl, 2-(1-Methylethoxy)butyl, 2-(Butoxy)butyl, 2-(1-Methylpropoxy)butyl, 2-(2-Methylpropoxy)butyl, 2-(1,1-Dimethylethoxy)butyl, 3-(Methoxy)butyl, 3-(Methoxy)butyl, 3-(Ethoxy)-butyl, 3-(Propoxy)butyl, 3-(1-Methylethoxy)butyl, 3-(Butoxy)-butyl, 3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl, 3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)-butyl, 4-(Ethoxy)butyl, 4-(Propoxy)butyl, 4-(1-Methylethoxy)butyl, 4-(Butoxy)butyl, 4-(1-Methylpropoxy)butyl, 4-(2-Methylpropoxy)butyl und 4-(1,1-Dimethylethoxy)-butyl;

25 C₁-C₄-Alkoxycarbonyl sowie die Alkoxycarbonylteile von C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl, Di-(C₁-C₄-alkyl)-amino-C₁-C₄-alkoxycarbonyl, (C₁-C₄-Alkoxycarbonyl)-C₁-C₄-alkoxy: z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl, Butoxycarbonyl, 1-Methylpropoxycarbonyl, 2-Methylpropoxycarbonyl oder 1,1-Dimethylethoxycarbonyl;

35 C₁-C₆-Alkoxycarbonyl sowie die Alkoxycarbonylteile von (C₁-C₆-Alkoxycarbonyl)-C₁-C₆-alkyl, (C₁-C₆-Alkoxycarbonyl)-C₂-C₆-alkenyl: C₁-C₄-Alkoxycarbonyl, wie voranstehend genannt, sowie z.B. Pentoxy carbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methyl-butoxycarbonyl, 2,2-Dimethylpropoxycarbonyl, 1-Ethylpropoxycarbonyl, Hexoxy-carbonyl, 1,1-Dimethylpropoxycarbonyl, 1,2-Dimethylpropoxycarbonyl, 1-Methyl-pentoxy carbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methyl-pentoxy carbonyl, 1,1-

11

- Dimethylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl, 3,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-1-methyl-propoxycarbonyl oder 1-Ethyl-2-methyl-propoxycarbonyl;
- 5 C₁-C₄-Alkylthio: z.B. Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio;
- 10 10 C₁-C₆-Alkylthio: C₁-C₄-Alkylthio wie voranstehend genannt, sowie z.B. Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Dimethylpropylthio, 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio, 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio, 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethylbutylthio, 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio, 1-Ethyl-1-methylpropylthio und 1-Ethyl-2-methylpropylthio;
- 15 15 20 C₁-C₆-Alkylamino sowie die Alkylaminoreste von N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl: z.B. Methylamino, Ethylamino, Propylamino, 1-Methylethylamino, Butylamino, 1-Methylpropylamino, 2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino, 1-Methylbutylamino, 2-Methylbutylamino, 3-Methylbutylamino, 2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino, 1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino, 1-Methylpentylamino, 2-Methylpentylamino, 4-Methylpentylamino, 1,1-Dimethylbutylamino, 1,2-Dimethylbutyl-amino, 1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino, 2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino, 1-Ethylbutylamino, 2-Ethylbutylamino, 1,1,2-Trimethylpropylamino, 1,2,2-Trimethylpropylamino, 1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-methylpropylamino;
- 25 25 30 Di-(C₁-C₄-alkyl)-amino: z.B. N,N-Dimethylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Di-(1-methylethyl)-amino, N,N-Dibutylamino, N,N-Di-(1-methylpropyl)amino, N,N-Di-(2-methylpropyl)-amino, N,N-Di-(1,1-dimethylethyl)-amino, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino, N-Butyl-N-methylamino, N-Methyl-N-(1-methylpropyl)amino, N-Methyl-N-(2-methylpropyl)amino, N-(1,1-Dimethyl-ethyl)-N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino, N-Ethyl-N-(1-methylpropyl)amino, N-Ethyl-N-(2-methylpropyl)-amino, N-Ethyl-N-
- 35 35 40

12

- (1,1-dimethyl-ethyl)amino, N-(1-Methylethyl)-N-propylamino, N-Butyl-N-propylamino, N-(1-Methylpropyl)-N-propylamino, N-(2-Methylpropyl)-N-propylamino, N-(1,1-Dimethyl-ethyl)-N-propylamino, N-Butyl-N-(1-methylethyl)amino, N-(1-Methylethyl)-N-(1-methylpropyl)amino, N-(1-Methylethyl)-N-(2-methyl-propyl)amino, N-(1,1-Dimethyl-ethyl)-N-(1-methylethyl)amino, N-Butyl-N-(1-methylpropyl)amino, N-Butyl-N-(2-methylpropyl)amino, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)amino und N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;
- 10 - Di(C₁-C₆-alkyl)amino sowie die Dialkylaminoreste von N-(Di-C₁-C₆-alkylamino)-imino-C₁-C₆-alkyl: Di-(C₁-C₄-alkyl)-amino wie voranstehend genannt sowie: z.B. N,N-Dipentyl-amino, N,N-Dihexylamino, N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino, N-Methyl-N-hexylamino und N-Ethyl-N-hexylamino;
- 15 - (C₁-C₄-Alkylamino)carbonyl sowie die (Alkylamino)carbonyl-Teile von (C₁-C₄-Alkylaminocarbonyl)oxy-C₁-C₄-alkyl, (C₁-C₄-Alkylamino)carbonylamino: z.B. Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, 1-Methylethylaminocarbonyl, Butylaminocarbonyl, 1-Methylpropylaminocarbonyl, 2-Methylpropylaminocarbonyl oder 1,1-Dimethylethylaminocarbonyl;
- 20 - Di(C₁-C₄)alkylaminocarbonyl sowie die Di(C₁-C₄)alkylaminocarbonyl-Teile von [Di(C₁-C₄-alkyl)aminocarbonyl]oxy-C₁-C₄-alkyl, [Di(C₁-C₄-alkyl)amino]carbonyl-amino: z.B. N,N-Dimethylaminocarbonyl, N,N-Diethyl-aminocarbonyl, N,N-Di-(1-methylethyl)aminocarbonyl, N,N-Dipropylaminocarbonyl, N,N-Dibutylamino-carbonyl, N,N-Di-(1-methylpropyl)aminocarbonyl, N,N-Di-(2-methylpropyl)amino-carbonyl, N,N-Di-(1,1-dimethylethyl)aminocarbonyl, N-Ethyl-N-methylamino-carbonyl, N-Methyl-N-propylaminocarbonyl, N-Methyl-N-(1-methyl-ethyl)amino-carbonyl, N-Butyl-N-methylaminocarbonyl, N-Methyl-N-(1-methyl--propyl)amino-carbonyl, N-Methyl-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminocarbonyl, N-Ethyl-N-propylaminocarbonyl, N-Ethyl-N-(1-methyl-ethyl)aminocarbonyl, N-Butyl-N-ethylaminocarbonyl, N-Ethyl-N-(1-methyl-propyl)aminocarbonyl, N-Ethyl-N-(2-methylpropyl)aminocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)aminocarbonyl, N-(1-Methylethyl)-N-propylaminocarbonyl, N-Butyl-N-propylaminocarbonyl, N-(1-Methylpropyl)-N-propylaminocarbonyl, N-(2-Methylpropyl)-N-propylaminocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminocarbonyl, N-Butyl-N-(1-methylethyl)aminocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)aminocarbonyl, N-Butyl-N-(1-methylpropyl)-aminocarbonyl, N-Butyl-N-(2-methylpropyl)aminocarbonyl, N-Butyl-N-(1,1-

13

dimethyl-ethyl)aminocarbonyl, N-(1-Methylpropyl)-N-(2-methylpropyl)aminocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)aminocarbonyl oder N-(1,1-Dimethylethyl)-N-(2-methylpropyl)aminocarbonyl;

5

- (C₁—C₆—Alkylamino)carbonyl: (C₁—C₄—Alkylamino)carbonyl, wie voranstehend genannt, sowie z.B. Pentylaminocarbonyl, 1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methylbutylaminocarbonyl, 2,2-Dimethylpropylamino-carbonyl, 1-Ethylpropylaminocarbonyl, Hexylaminocarbonyl, 1,1-Dimethylpropylaminocarbonyl, 1,2-Dimethylpropylaminocarbonyl, 1-Methylpentylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylamino-carbonyl, 1,1-Dimethylbutylaminocarbonyl, 1,2-Dimethylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbonyl, 2,2-Dimethylbutylaminocarbonyl, 2,3-Dimethylbutyl-aminocarbonyl, 3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-Ethylbutylaminocarbonyl, 1,1,2-Trimethylpropylaminocarbonyl, 1,2,2-Trimethylpropylaminocarbonyl, 1-Ethyl-1-methylpropylaminocarbonyl oder 1-Ethyl-2-methylpropylaminocarbonyl;

10

20 - Di-(C₁—C₆—alkyl)-aminocarbonyl: Di-(C₁—C₄—alkyl)-aminocarbonyl, wie voran-stehend genannt, sowie z.B. N-Methyl-N-pentylaminocarbonyl, N-Methyl-N-(1-methylbutyl)-aminocarbonyl, N-Methyl-N-(2-methylbutyl)-aminocarbonyl, N-Methyl-N-(3-methylbutyl)-aminocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethylpropyl)-aminocarbonyl, N-Methyl-N-hexylaminocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-methylpentyl)-aminocarbonyl, N-Methyl-N-(2-methylpentyl)-aminocarbonyl, N-Methyl-N-(3-methylpentyl)-aminocarbonyl, N-Methyl-N-(4-methylpentyl)-aminocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)- amino-carbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminocarbonyl, N-Methyl-N-(1-ethyl-butyl)-aminocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminocarbonyl, N-Methyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminocarbonyl, N-Ethyl-N-pentylaminocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminocarbonyl, N-Ethyl-N-(3-methylbutyl)-aminocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethylpropyl)-aminocarbonyl, N-Ethyl-N-hexylaminocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminocarbonyl,

25

30

35

40

14

N-Ethyl-N-(1,2-dimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-methylpentyl)-aminocarbonyl, N-Ethyl-N-(2-methylpentyl)-aminocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(2,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminocarbonyl, N-Ethyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl, N-Ethyl-N-(1-ethyl-2-methylpropyl)-aminocarbonyl, N-Propyl-N-pentylaminocarbonyl, N-Butyl-N-pentylaminocarbonyl, N,N-Dipentylaminocarbonyl, N-Propyl-N-hexylaminocarbonyl, N-Butyl-N-hexylaminocarbonyl, N-Pentyl-N-hexylaminocarbonyl oder N,N-Dihexylaminocarbonyl;

15 Di-(C₁-C₆-alkyl)-aminothiocarbonyl: z.B. N,N-Dimethylaminothiocarbonyl, N,N-Diethylaminothiocarbonyl, N,N-Di-(1-methylethyl)aminothiocarbonyl, N,N-Dipropylaminothiocarbonyl, N,N-Dibutylaminothiocarbonyl, N,N-Di-(1-methylpropyl)-amino-thiocarbonyl, N,N-Di-(2-methylpropyl)-aminothiocarbonyl, N,N-Di-(1,1-dimethyl-ethyl)-aminothiocarbonyl, N-Ethyl-N-methylaminothiocarbonyl, N-Methyl-N-propyl-aminothiocarbonyl, N-Methyl-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-methylaminothiocarbonyl, N-Methyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-methylaminothiocarbonyl, N-Ethyl-N-propylaminothiocarbonyl, N-Ethyl-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-ethylaminothiocarbonyl, N-Ethyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-propylaminothiocarbonyl, N-(1-Methylpropyl)-N-propylaminothiocarbonyl, N-(2-Methylpropyl)-N-propylaminothiocarbonyl, N-(1,1-Dimethylpropyl)-N-propylaminothiocarbonyl, N-(1,1-Dimethylethyl)-N-propylaminothiocarbonyl, N-Butyl-N-(1-methylethyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1-Methylethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminothiocarbonyl, N-Butyl-N-(1-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(2-methylpropyl)-aminothiocarbonyl, N-Butyl-N-(1,1-dimethylethyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminothiocarbonyl, N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminothiocarbonyl, N-Methyl-N-pentylaminothiocarbonyl, N-Methyl-N-(1-methylbutyl)-aminothio-carbonyl, N-Methyl-N-(2-methylbutyl)-

15

aminothiocarbonyl, N-Methyl-N-(3-methylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylpropyl)-aminothiocarbonyl, N-Methyl-N-hexyl-aminothiocarbonyl, N-Methyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(2-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Methyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,2-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,2-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl, N-Methyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Methyl-N-ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1,2,2-trimethylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethyl-1-methylpropyl)-aminothiocarbonyl, N-Methyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl, N-Ethyl-N-pentyl-aminothiocarbonyl, N-Ethyl-N-(1-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethylpropyl)-aminothiocarbonyl, N-Ethyl-N-hexylaminothiocarbonyl, N-Ethyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1,2-dimethylpropyl)-aminothiocarbonyl, N-Ethyl-N-(1-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(2-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(3-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(4-methylpentyl)-aminothiocarbonyl, N-Ethyl-N-(1,1-dimethylbutyl)-amino-thiocarbonyl, N-Ethyl-N-(1,2-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1,3-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2,2-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(1-ethylbutyl)-aminothiocarbonyl, N-Ethyl-N-(2-ethylbutyl)-aminothiocarbonyl, N-Propyl-N-pentylaminothiocarbonyl, N-Butyl-N-pentylaminothiocarbonyl, N,N-Dipentylaminothiocarbonyl, N-Propyl-N-hexyl-aminothiocarbonyl, N-Butyl-N-hexylaminothiocarbonyl, N-Pentyl-N-hexyl-aminothiocarbonyl oder N,N-Dihexylaminothiocarbonyl;

- Heterocycl, sowie die Heterocycliteile von Heterocycl-C₁-C₆-alkyl, Heterocyclcarbonyl, Heterocyclcarbonyl-C₁-C₆-alkyl, Heterocycloxycarbonyl, Hete-

16

rocyanylaminocarbonyl, Heterocyflylsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(heterocyflyl)-aminocarbonyl und Heterocyflyl-C₁-C₆-alkylcarbonyl:
ein gesättigter, partiell ungesättigter oder aromatischer 5– oder 6–gliedriger heterocyclischer Ring, der ein bis vier gleiche oder verschiedene Heteroatome,
ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, enthält, und
über C oder N gebunden sein kann, z.B.

C–gebundene, 5–gliedrige, gesättigte Ringe wie
Tetrahydrofuran–2–yl, Tetrahydrofuran–3–yl, Tetrahydrothien–2–yl, Tetrahydrothien–3–yl, Tetrahydropyrrol–2–yl, Tetrahydropyrrol–3–yl, Tetrahydropyrazol–3–yl, Tetrahydro-pyrazol–4–yl, Tetrahydroisoxazol–3–yl, Tetrahydroisoxazol–4–yl, Tetrahydroisoxazol–5–yl, 1,2–Oxathiolan–3–yl, 1,2–Oxathiolan–4–yl, 1,2–Oxathiolan–5–yl, Tetrahydroisothiazol–3–yl, Tetrahydroisothiazol–4–yl, Tetrahydroisothiazol–5–yl, 1,2–Dithiolan–3–yl, 1,2–Dithiolan–4–yl, Tetrahydroimidazol–2–yl, Tetrahydroimidazol–4–yl, Tetrahydrooxazol–2–yl, Tetrahydrooxazol–4–yl, Tetrahydrooxazol–5–yl, Tetrahydrothiazol–2–yl, Tetrahydrothiazol–4–yl, Tetrahydrothiazol–5–yl, 1,3–Dioxolan–2–yl, 1,3–Dioxolan–4–yl, 1,3–Oxathiolan–2–yl, 1,3–Oxathiolan–4–yl, 1,3–Oxathiolan–5–yl, 1,3–Dithiolan–2–yl, 1,3–Dithiolan–4–yl, 1,3,2–Dioxathiolan–4–yl;

N–gebundene, 5–gliedrige, gesättigte Ringe wie:
Tetrahydropyrrol–1–yl, Tetrahydropyrazol–1–yl, Tetrahydroisoxazol–2–yl, Tetrahydroisothiazol–2–yl, Tetrahydroimidazol–1–yl, Tetrahydrooxazol–3–yl, Tetrahydrothiazol–3–yl;

C–gebundene, 5–gliedrige, partiell ungesättigte Ringe wie:
2,3–Dihydrofuran–2–yl, 2,3–Dihydrofuran–3–yl, 2,5–Dihydrofuran–2–yl, 2,5–Dihydrofuran–3–yl, 4,5–Dihydrofuran–2–yl, 4,5–Dihydrofuran–3–yl, 2,3–Dihydrothien–2–yl, 2,3–Dihydrothien–3–yl, 2,5–Dihydrothien–2–yl, 2,5–Dihydrothien–3–yl, 4,5–Dihydrothien–2–yl, 4,5–Dihydrothien–3–yl, 2,3–Dihydro–1H–pyrrol–2–yl, 2,3–Dihydro–1H–pyrrol–3–yl, 2,5–Dihydro–1H–pyrrol–2–yl, 2,5–Dihydro–1H–pyrrol–3–yl, 4,5–Dihydro–1H–pyrrol–2–yl, 4,5–Dihydro–1H–pyrrol–3–yl, 3,4–Dihydro–2H–pyrrol–2–yl, 3,4–Dihydro–2H–pyrrol–3–yl, 3,4–Dihydro–5H–pyrrol–2–yl, 3,4–Dihydro–5H–pyrrol–3–yl, 4,5–Dihydro–1H–pyrazol–3–yl, 4,5–Dihydro–1H–pyrazol–4–yl, 4,5–Dihydro–1H–pyrazol–5–yl, 2,5–Dihydro–1H–pyrazol–3–yl, 2,5–Dihydro–1H–pyrazol–4–yl, 2,5–Dihydro–1H–pyrazol–5–yl, 4,5–Dihydroisoxazol–3–yl, 4,5–Dihydroisoxazol–4–yl, 4,5–Dihydroisoxazol–5–yl, 2,5–Dihydroisoxazol–3–yl, 2,5–Dihydroisoxazol–4–yl, 2,5–Dihydroisoxazol–5–yl, 2,3–Dihydroisoxazol–3–yl, 2,3–Dihydroisoxazol–4–yl, 2,3–Dihydroisoxazol–5–yl, 4,5–Dihydroisothiazol–3–yl, 4,5–Dihydroisothiazol–4–yl, 4,5–Dihydroisothiazol–5–yl,

2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisothiazol-3-yl, 2,3-Dihydroisothiazol-4-yl, 2,3-Dihydroisothiazol-5-yl, Δ^3 -1,2-Dithiol-3-yl, Δ^3 -1,2-Dithiol-4-yl, Δ^3 -1,2-Dithiol-5-yl, 4,5-Dihydro-1H-imidazol-2-yl, 4,5-Dihydro-1H-imidazol-4-yl, 4,5-Dihydro-1H-imidazol-5-yl, 2,5-Dihydro-1H-imidazol-2-yl, 2,5-Dihydro-1H-imidazol-4-yl, 2,5-Dihydro-1H-imidazol-5-yl, 2,3-Dihydro-1H-imidazol-2-yl, 2,3-Dihydro-1H-imidazol-4-yl, 4,5-Dihydro-oxazol-2-yl, 4,5-Dihydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl, 2,5-Dihydro-oxazol-2-yl, 2,5-Dihydrooxazol-4-yl, 2,5-Dihydrooxazol-5-yl, 2,3-Dihydro-oxazol-2-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl, 4,5-Dihydro-thiazol-2-yl, 4,5-Dihydrothiazol-4-yl, 4,5-Dihydrothiazol-5-yl, 2,5-Dihydro-thiazol-2-yl, 2,5-Dihydrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl, 2,3-Dihydro-thiazol-2-yl, 2,3-Dihydrothiazol-4-yl, 2,3-Dihydrothiazol-5-yl, 1,3-Dioxol-2-yl, 1,3-Dioxol-4-yl, 1,3-Dithiol-2-yl, 1,3-Dithiol-4-yl, 1,3-Oxathiol-2-yl, 1,3-Oxa-thiol-4-yl, 1,3-Oxathiol-5-yl, 1,2,3- Δ^2 -Oxadiazolin-4-yl, 1,2,3- Δ^2 -Oxadiazolin-5-yl, 1,2,4- Δ^4 -Oxadiazolin-3-yl, 1,2,4- Δ^4 -Oxadiazolin-5-yl, 1,2,4- Δ^2 -Oxadiazolin-3-yl, 1,2,4- Δ^2 -Oxadiazolin-5-yl, 1,2,4- Δ^3 -Oxadiazolin-3-yl, 1,2,4- Δ^3 -Oxadiazolin-5-yl, 1,3,4- Δ^2 -Oxadiazolin-2-yl, 1,3,4- Δ^2 -Oxadiazolin-5-yl, 1,3,4- Δ^3 -Oxadiazolin-2-yl, 1,3,4- Δ^3 -Oxadiazolin-5-yl, 1,2,4- Δ^4 -Thiadiazolin-3-yl, 1,2,4- Δ^4 -Thiadiazolin-5-yl, 1,2,4- Δ^3 -Thiadiazolin-3-yl, 1,2,4- Δ^2 -Thiadiazolin-3-yl, 1,2,4- Δ^2 -Thiadiazolin-5-yl, 1,3,4- Δ^2 -Thiadiazolin-2-yl, 1,3,4- Δ^2 -Thiadiazolin-5-yl, 1,3,4- Δ^3 -Thiadiazolin-2-yl, 1,3,4- Δ^3 -Thiadiazolin-5-yl, 1,2,3- Δ^2 -Triazolin-4-yl, 1,2,3- Δ^2 -Triazolin-5-yl, 1,2,4- Δ^2 -Triazolin-3-yl, 1,2,4- Δ^2 -Triazolin-5-yl, 1,2,4- Δ^3 -Triazolin-3-yl, 1,2,4- Δ^3 -Triazolin-5-yl, 1,2,4- Δ^1 -Triazolin-2-yl, 1,2,4-Triazolin-3-yl, 3H-1,2,4-Dithiazol-5-yl, 2H-1,3,4-Dithiazol-5-yl, 2H-1,3,4-Oxathiazol-5-yl;

N-gebundene, 5-gliedrige, partiell ungesättigte Ringe wie:

2,3-Dihydro-1H-pyrrol-1-yl, 2,5-Dihydro-1H-pyrrol-1-yl, 4,5-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydro-1H-pyrazol-1-yl, 2,3-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydroisoxazol-2-yl, 2,3-Dihydroisoxazol-2-yl, 2,5-Dihydroisothiazol-2-yl, 2,3-Dihydroisoxazol-2-yl, 4,5-Dihydro-1H-imidazol-1-yl, 2,5-Dihydro-1H-imidazol-1-yl, 2,3-Dihydro-1H-imidazol-1-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrothiazol-3-yl, 1,2,4- Δ^4 -Oxadiazolin-2-yl, 1,2,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^3 -Oxadiazolin-2-yl, 1,3,4- Δ^2 -Oxadiazolin-4-yl, 1,2,4- Δ^2 -Oxadiazolin-5-yl, 1,2,4- Δ^3 -Oxadiazolin-2-yl, 1,2,4- Δ^3 -Oxadiazolin-5-yl, 1,2,4- Δ^2 -Triazolin-1-yl, 1,2,4- Δ^2 -Triazolin-5-yl, 1,2,4- Δ^3 -Triazolin-1-yl, 1,2,4- Δ^3 -Triazolin-5-yl, 1,2,4- Δ^1 -Triazolin-2-yl, 1,2,4-Triazolin-3-yl, 3H-1,2,4-Dithiazol-5-yl, 2H-1,3,4-Dithiazol-5-yl, 2H-1,3,4-Oxathiazol-5-yl;

18

C-gebundene, 5-gliedrige, aromatische Ringe wie:

2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, Pyrrol-2-yl, Pyrrol-3-yl, Pyrazol-3-yl, Pyrazol-4-yl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl, Imidazol-2-yl, Imidazol-4-yl, Oxazol-2-yl, Oxazol-4-yl, Oxazol-5-yl, Thiazol-2-yl, Thiazol-4-yl, Thiazol-5-yl, 1,2,3-Oxadiazol-4-yl, 1,2,3-Oxadiazol-5-yl, 1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1,3,4-Oxadiazol-2-yl, 1,2,3-Thiadiazol-4-yl, 1,2,3-Thiadiazol-5-yl, 1,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,3,4-Thiadiazolyl-2-yl, 1,2,3-Triazol-4-yl, 1,2,4-Triazol-3-yl, Tetrazol-5-yl;

10

N-gebundene, 5-gliedrige, aromatische Ringe wie:

Pyrrol-1-yl, Pyrazol-1-yl, Imidazol-1-yl, 1,2,3-Triazol-1-yl, 1,2,4-Triazol-1-yl, Tetrazol-1-yl;

15

C-gebundene, 6-gliedrige, gesättigte Ringe wie:

Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran-3-yl, Tetrahydrothiopyran-4-yl, 1,3-Dioxan-2-yl, 1,3-Dioxan-4-yl, 1,3-Dioxan-5-yl, 1,4-Dioxan-2-yl, 1,3-Dithian-2-yl, 1,3-Dithian-4-yl, 1,3-Dithian-5-yl, 1,4-Dithian-2-yl, 1,3-Oxathian-2-yl, 1,3-Oxathian-4-yl, 1,3-Oxathian-5-yl, 1,3-Oxathian-6-yl, 1,4-Oxathian-2-yl, 1,4-Oxathian-3-yl, 1,2-Dithian-3-yl, 1,2-Dithian-4-yl, Hexahydropyrimidin-2-yl, Hexahydropyrimidin-4-yl, Hexahydropyrimidin-5-yl, Hexahydropyrazin-2-yl, Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Tetrahydro-1,3-oxazin-2-yl, Tetrahydro-1,3-oxazin-4-yl, Tetrahydro-1,3-oxazin-5-yl, Tetrahydro-1,3-oxazin-6-yl, Tetrahydro-1,3-thiazin-2-yl, Tetrahydro-1,3-thiazin-4-yl, Tetrahydro-1,3-thiazin-5-yl, Tetrahydro-1,3-thiazin-6-yl, Tetrahydro-1,4-thiazin-2-yl, Tetrahydro-1,4-thiazin-3-yl, Tetrahydro-1,4-oxazin-2-yl, Tetrahydro-1,4-oxazin-3-yl, Tetrahydro-1,2-oxazin-3-yl, Tetrahydro-1,2-oxazin-4-yl, Tetrahydro-1,2-oxazin-5-yl, Tetrahydro-1,2-oxazin-6-yl;

25

30

N-gebundene, 6-gliedrige, gesättigte Ringe wie:

Piperidin-1-yl, Hexahydropyrimidin-1-yl, Hexahydropyrazin-1-yl, Hexahydropyridazin-1-yl, Tetrahydro-1,3-oxazin-3-yl, Tetrahydro-1,4-thiazin-4-yl, Tetrahydro-1,4-oxazin-4-yl, Tetrahydro-1,2-oxazin-2-yl;

35

C-gebundene, 6-gliedrige, partiell ungesättigte Ringe wie:

2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydropyran-5-yl, 2H-3,4-Dihydropyran-4-yl, 2H-3,4-Dihydropyran-3-yl, 2H-3,4-Dihydropyran-2-yl, 2H-3,4-Dihydro-

40

pyran-6-yl, 2H-3,4-Dihydrothiopyran-5-yl, 2H-3,4-Dihydrothiopyran-4-yl, 2H-
3,4-Dihdropyran-3-yl, 2H-3,4-Dihdropyran-2-yl, 1,2,3,4-Tetrahydropyridin-
6-yl, 1,2,3,4-Tetrahydropyridin-5-yl, 1,2,3,4-Tetrahydropyridin-4-yl, 1,2,3,4-
Tetrahydropyridin-3-yl, 1,2,3,4-Tetrahydropyridin-2-yl, 2H-5,6-Dihdropyran-
5-yl, 2H-5,6-Dihdropyran-3-yl, 2H-5,6-Dihdropyran-4-yl, 2H-5,6-
Dihdropyran-5-yl, 2H-5,6-Dihdropyran-6-yl, 2H-5,6-Dihydrothiopyran-2-yl,
2H-5,6-Dihydro-thiopyran-3-yl, 2H-5,6-Dihydrothiopyran-4-yl, 2H-5,6-
Dihydrothiopyran-5-yl, 2H-5,6-Dihydrothiopyran-6-yl, 1,2,5,6-
Tetrahydropyridin-2-yl, 1,2,5,6-Tetrahydropyridin-3-yl, 1,2,5,6-
Tetrahydropyridin-4-yl, 1,2,5,6-Tetrahydro-pyridin-5-yl, 1,2,5,6-
Tetrahydropyridin-6-yl, 2,3,4,5-Tetrahydropyridin-2-yl, 2,3,4,5-
Tetrahydropyridin-3-yl, 2,3,4,5-Tetrahydropyridin-4-yl, 2,3,4,5-
Tetrahydropyridin-5-yl, 2,3,4,5-Tetrahydropyridin-6-yl, 4H-Pyran-2-yl, 4H-
Pyran-3-yl-, 4H-Pyran-4-yl, 4H-Thiopyran-2-yl, 4H-Thiopyran-3-yl, 4H-
Thiopyran-4-yl, 1,4-Dihydrothiopyridin-2-yl, 1,4-Dihydrothiopyridin-3-yl, 1,4-
Dihdropyridin-4-yl, 2H-Pyran-2-yl, 2H-Pyran-3-yl, 2H-Pyran-4-yl, 2H-
Pyran-5-yl, 2H-Pyran-6-yl, 2H-Thiopyran-2-yl, 2H-Thiopyran-3-yl, 2H-
Thiopyran-4-yl, 2H-Thiopyran-5-yl, 2H-Thiopyran-6-yl, 1,2-Dihdropyridin-2-
yl, 1,2-Dihydro-pyridin-3-yl, 1,2-Dihydrothiopyridin-4-yl, 1,2-Dihydrothiopyridin-5-yl,
1,2-Dihydro-pyridin-6-yl, 3,4-Dihydrothiopyridin-2-yl, 3,4-Dihydrothiopyridin-3-yl,
3,4-Dihydro-pyridin-4-yl, 3,4-Dihydrothiopyridin-5-yl, 3,4-Dihydrothiopyridin-6-yl, 2,5-
Dihydro-pyridin-2-yl, 2,5-Dihydrothiopyridin-3-yl, 2,5-Dihydrothiopyridin-4-yl, 2,5-
Dihydro-pyridin-5-yl, 2,5-Dihydrothiopyridin-6-yl, 2,3-Dihydrothiopyridin-2-yl, 2,3-
Dihydro-pyridin-3-yl, 2,3-Dihydrothiopyridin-4-yl, 2,3-Dihydrothiopyridin-5-yl, 2,3-
Dihydro-pyridin-6-yl, 2H-5,6-Dihydro-1,2-oxazin-3-yl, 2H-5,6-Dihydro-1,2-
oxazin-4-yl, 2H-5,6-Dihydro-1,2-oxazin-5-yl, 2H-5,6-Dihydro-1,2-oxazin-6-
yl, 2H-5,6-Dihydro-1,2-thiazin-3-yl, 2H-5,6-Dihydro-1,2-thiazin-4-yl, 2H-
5,6-Dihydro-1,2-thiazin-5-yl, 2H-5,6-Dihydro-1,2-thiazin-6-yl, 4H-5,6-
Dihydro-1,2-oxazin-3-yl, 4H-5,6-Dihydro-1,2-oxazin-4-yl, 4H-5,6-Dihydro-
1,2-oxazin-5-yl, 4H-5,6-Dihydro-1,2-oxazin-6-yl, 4H-5,6-Dihydro-1,2-
thiazin-3-yl, 4H-5,6-Dihydro-1,2-thiazin-4-yl, 4H-5,6-Dihydro-1,2-thiazin-5-
yl, 4H-5,6-Dihydro-1,2-thiazin-6-yl, 2H-3,6-Dihydro-1,2-oxazin-3-yl, 2H-
3,6-Dihydro-1,2-oxazin-4-yl, 2H-3,6-Dihydro-1,2-oxazin-5-yl, 2H-3,6-
Dihydro-1,2-oxazin-6-yl, 2H-3,6-Dihydro-1,2-thiazin-3-yl, 2H-3,6-Dihydro-
1,2-thiazin-4-yl, 2H-3,6-Dihydro-1,2-thiazin-5-yl, 2H-3,6-Dihydro-1,2-
thiazin-6-yl, 2H-3,4-Dihydro-1,2-oxazin-3-yl, 2H-3,4-Dihydro-1,2-oxazin-4-
yl, 2H-3,4-Dihydro-1,2-oxazin-5-yl, 2H-3,4-Dihydro-1,2-oxazin-6-yl, 2H-
3,4-Dihydro-1,2-thiazin-3-yl, 2H-3,4-Dihydro-1,2-thiazin-4-yl, 2H-3,4-
Dihydro-1,2-thiazin-5-yl, 2H-3,4-Dihydro-1,2-thiazin-6-yl, 2,3,4,5-
Tetrahydropyridazin-3-yl, 2,3,4,5-Tetrahydropyridazin-4-yl, 2,3,4,5-

20

Tetrahydropyridazin-5-yl, 2,3,4,5-Tetrahydropyridazin-6-yl, 3,4,5,6-
 Tetrahydropyridazin-3-yl, 3,4,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-
 Tetrahydropyridazin-3-yl, 1,2,5,6-Tetrahydropyridazin-4-yl, 1,2,5,6-Tetra-
 hydropyridazin-5-yl, 1,2,5,6-Tetrahydropyridazin-6-yl, 1,2,3,6-Tetrahydro-
 5 pyridazin-3-yl, 1,2,3,6-Tetrahydropyridazin-4-yl, 4H-5,6-Dihydro-1,3-oxazin-
 2-yl, 4H-5,6-Dihydro-1,3-oxazin-4-yl, 4H-5,6-Dihydro-1,3-oxazin-5-yl, 4H-
 5,6-Dihydro-1,3-oxazin-6-yl, 4H-5,6-Dihydro-1,3-thiazin-2-yl, 4H-5,6-
 Dihydro-1,3-thiazin-4-yl, 4H-5,6-Dihydro-1,3-thiazin-5-yl, 4H-5,6-Dihydro-
 1,3-thiazin-6-yl, 3,4,5,6-Tetrahydropyrimidin-2-yl, 3,4,5,6-
 10 Tetrahydropyrimidin-4-yl, 3,4,5,6-Tetrahydropyrimidin-5-yl, 3,4,5,6-
 Tetrahydropyrimidin-6-yl, 1,2,3,4-Tetrahydropyrazin-2-yl, 1,2,3,4-
 Tetrahydropyrazin-5-yl, 1,2,3,4-Tetrahydro-pyrimidin-2-yl, 1,2,3,4-
 Tetrahydropyrimidin-4-yl, 1,2,3,4-Tetrahydropyrimidin-5-yl, 1,2,3,4-
 Tetrahydropyrimidin-6-yl, 2,3-Dihydro-1,4-thiazin-2-yl, 2,3-Dihydro-1,4-
 15 thiazin-3-yl, 2,3-Dihydro-1,4-thiazin-5-yl, 2,3-Dihydro-1,4-thiazin-6-yl, 2H-
 1,2-Oxazin-3-yl, 2H-1,2-Oxazin-4-yl, 2H-1,2-Oxazin-5-yl, 2H-1,2-Oxazin-
 6-yl, 2H-1,2-Thiazin-3-yl, 2H-1,2-Thiazin-4-yl, 2H-1,2-Thiazin-5-yl, 2H-1,2-
 Thiazin-6-yl, 4H-1,2-Oxazin-3-yl, 4H-1,2-Oxazin-4-yl, 4H-1,2-Oxazin-5-yl,
 4H-1,2-Oxazin-6-yl, 4H-1,2-Thiazin-3-yl, 4H-1,2-Thiazin-4-yl, 4H-1,2-
 20 Thiazin-5-yl, 4H-1,2-Thiazin-6-yl, 6H-1,2-Oxazin-3-yl, 6H-1,2-Oxazin-4-yl,
 6H-1,2-Oxazin-5-yl, 6H-1,2-Oxazin-6-yl, 6H-1,2-Thiazin-3-yl, 6H-1,2-
 Thiazin-4-yl, 6H-1,2-Thiazin-5-yl, 6H-1,2-Thiazin-6-yl, 2H-1,3-Oxazin-2-yl,
 2H-1,3-Oxazin-4-yl, 2H-1,3-Oxazin-5-yl, 2H-1,3-Oxazin-6-yl, 2H-1,3-
 Thiazin-2-yl, 2H-1,3-Thiazin-4-yl, 2H-1,3-Thiazin-5-yl, 2H-1,3-Thiazin-6-yl,
 25 4H-1,3-Oxazin-2-yl, 4H-1,3-Oxazin-4-yl, 4H-1,3-Oxazin-5-yl, 4H-1,3-
 Oxazin-6-yl, 4H-1,3-Thiazin-2-yl, 4H-1,3-Thiazin-4-yl, 4H-1,3-Thiazin-5-yl,
 4H-1,3-Thiazin-6-yl, 6H-1,3-Oxazin-2-yl, 6H-1,3-Oxazin-4-yl, 6H-1,3-
 Oxazin-5-yl, 6H-1,3-Oxazin-6-yl, 6H-1,3-Thiazin-2-yl, 6H-1,3-Oxazin-4-yl,
 6H-1,3-Oxazin-5-yl, 6H-1,3-Thiazin-6-yl, 2H-1,4-Oxazin-2-yl, 2H-1,4-
 30 Oxazin-3-yl, 2H-1,4-Oxazin-5-yl, 2H-1,4-Oxazin-6-yl, 2H-1,4-Thiazin-2-yl,
 2H-1,4-Thiazin-3-yl, 2H-1,4-Thiazin-5-yl, 2H-1,4-Thiazin-6-yl, 4H-1,4-
 Oxazin-2-yl, 4H-1,4-Oxazin-3-yl, 4H-1,4-Thiazin-2-yl, 4H-1,4-Thiazin-3-yl,
 1,4-Dihydropyridazin-3-yl, 1,4-Dihydropyridazin-4-yl, 1,4-Dihydropyridazin-5-
 35 yl, 1,4-Dihydropyridazin-6-yl, 1,4-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-2-
 yl, 1,2-Dihydropyrazin-3-yl, 1,2-Dihydropyrazin-5-yl, 1,2-Dihydropyrazin-6-yl,
 1,4-Dihydropyrimidin-2-yl, 1,4-Dihydropyrimidin-4-yl, 1,4-Dihydropyrimidin-5-
 yl, 1,4-Dihydropyrimidin-6-yl, 3,4-Dihydropyrimidin-2-yl, 3,4-Dihydropyrimidin-
 4-yl, 3,4-Dihydropyrimidin-5-yl oder 3,4-Dihydropyrimidin-6-yl;

21

N-gebundene, 6-gliedrige, partiell ungesättigte Ringe wie:

1,2,3,4-Tetrahydropyridin-1-yl, 1,2,5,6-Tetrahydropyridin-1-yl, 1,4-Dihydro-pyridin-1-yl, 1,2-Dihydropyridin-1-yl, 2H-5,6-Dihydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-thiazin-2-yl, 2H-3,6-Dihydro-1,2-oxazin-2-yl, 2H-3,6-Dihydro-1,2-thiazin-2-yl, 2H-3,4-Dihydro-1,2-oxazin-2-yl, 2H-3,4-Dihydro-1,2-thiazin-2-yl, 2,3,4,5-Tetrahydropyridazin-2-yl, 1,2,5,6-Tetrahydropyridazin-1-yl, 1,2,5,6-Tetrahydropyridazin-1-yl, 3,4,5,6-Tetrahydropyrimidin-3-yl, 1,2,3,4-Tetrahydropyrazin-1-yl, 1,2,3,4-Tetrahydropyrimidin-1-yl, 1,2,3,4-Tetrahydropyrimidin-3-yl, 2,3-Dihydro-1,4-thiazin-4-yl, 2H-1,2-Oxazin-2-yl, 2H-1,2-Thiazin-2-yl, 4H-1,4-Oxazin-4-yl, 4H-1,4-Thiazin-4-yl, 1,4-Dihydropyridazin-1-yl, 1,4-Dihydropyrazin-1-yl, 1,2-Dihydropyrazin-1-yl, 1,4-Dihydropyrimidin-1-yl oder 3,4-Dihydropyrimidin-3-yl;

C-gebundene, 6-gliedrige, aromatische Ringe wie:

Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Pyridazin-3-yl, Pyridazin-4-yl, Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl, Pyrazin-2-yl, 1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl, 1,2,4-Triazin-6-yl, 1,2,4,5-Tetrazin-3-yl;

wobei mit einem ankondensierten Phenylring oder mit einem C₃-C₆-Carboxyclus oder mit einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ring- system ausgebildet werden kann.

Alle Phenylringe bzw. Heterocyclreste sowie alle Phenylkomponenten in Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenoxy carbonyl, Phenylaminocarbonyl, Phenylsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-phenylaminocarbonyl und Phenyl-C₁-C₆-alkylcarbonyl, und alle Heterocyclkomponenten in Heterocycl-C₁-C₆-alkyl, Heterocyclcarbonyl, Heterocyclcarbonyl-C₁-C₆-alkyl, Heterocyclloxy carbonyl, Heterocyclaminocarbonyl, Heterocyclsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-heterocyclaminocarbonyl und Heterocycl-C₁-C₆-alkylcarbonyl sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder tragen ein bis drei Halogenatome und/oder eine Nitrogruppe, einen Cyanorest und/oder einen oder zwei Methyl-, Trifluormethyl-, Methoxy- oder Trifluormethoxysubstituenten.

In einer besonderen Ausführungsform haben die Variablen der Verbindungen der Formel I folgende Bedeutungen, wobei diese für sich allein betrachtet als auch in

Kombination miteinander besondere Ausgestaltungen der Verbindungen der Formel I darstellen:

Bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

- 5 R¹ Halogen, C₁-C₄-Alkyl oder C₁-C₆-Halogenalkyl;
besonders bevorzugt Halogen oder C₁-C₆-Halogenalkyl;
insbesondere bevorzugt Halogen oder C₁-C₄-Halogenalkyl;
außerordentlich bevorzugt Fluor, Chlor oder CF₃;
bedeutet.
- 10 Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der
R² Wasserstoff, Halogen, NO₂, C₁-C₄-Alkyl oder C₁-C₆-Halogenalkyl;
sehr bevorzugt Wasserstoff, Halogen, NO₂ oder C₁-C₆-Halogenalkyl;
15 besonders bevorzugt Wasserstoff, Halogen, NO₂ oder C₁-C₄-Halogenalkyl;
insbesondere bevorzugt Wasserstoff, Fluor, Chlor, NO₂ oder CF₃;
außerordentlich bevorzugt Wasserstoff, Fluor, Chlor oder NO₂;
sehr außerordentlich bevorzugt Wasserstoff, Fluor oder NO₂;
bedeutet.
- 20 Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der
R² und R³ unabhängig voneinander
Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₆-Halogenalkyl;
25 sehr bevorzugt Wasserstoff, Halogen oder C₁-C₆-Halogenalkyl;
besonders bevorzugt Wasserstoff, Halogen oder C₁-C₄-Halogenalkyl;
insbesondere bevorzugt Wasserstoff, Fluor, Chlor oder CF₃;
außerordentlich bevorzugt Wasserstoff, Fluor oder Chlor;
sehr außerordentlich bevorzugt Wasserstoff oder Fluor;
- 30 bedeuten.
- Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der
R⁴ Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;
35 besonders bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl;
insbesondere bevorzugt Wasserstoff oder Halogen;
außerordentlich bevorzugt Wasserstoff;
bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁵ Wasserstoff, Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;
besonders bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl;

5 insbesondere bevorzugt Wasserstoff oder Halogen;
außerordentlich bevorzugt Wasserstoff;
bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in

10 der

R⁶ Wasserstoff; und

R⁷ Wasserstoff oder Hydroxy;
besonders bevorzugt Wasserstoff;

bedeuten.

15

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁸ C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl;
besonders bevorzugt C₁-C₆-Alkyl;

20 insbesondere bevorzugt C₁-C₄-Alkyl;
außerordentlich bevorzugt CH₃;

bedeutet.

25

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁹ OR¹⁶ oder SR¹⁷;
besonders bevorzugt OR¹⁶;

bedeutet.

30

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁹ OR¹⁶ oder NR¹⁸R¹⁹;
besonders bevorzugt NR¹⁸R¹⁹;

35 bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R⁹ SR¹⁶ oder NR¹⁸R¹⁹;
40 besonders bevorzugt SR¹⁶;

bedeutet.

Ebenso bevorzugt sind die benzoylesubstituierten Phenylalanin-Amide der Formel I, in der

- 5 R¹⁰ Wasserstoff oder C₁-C₄-Alkyl;
 bevorzugt Wasserstoff oder CH₃;
 insbesondere bevorzugt Wasserstoff;
 bedeutet.
- 10 Ebenso bevorzugt sind die benzoylesubstituierten Phenylalanin-Amide der Formel I, in der
 R¹¹ Wasserstoff, Halogen, C₁-C₆-Alkyl, Hydroxy, C₁-C₆-Alkoxy, Hydroxy-C₁-C₄-alkyl,
 C₁-C₆-Alkoxy-C₁-C₄-alkyl, Tri(C₁-C₆-alkyl)silyloxy-C₁-C₄-alkyl, (Hydroxycarbonyl)-
 C₁-C₄-alkoxy, (C₁-C₄-Alkoxy carbonyl)-C₁-C₄-alkoxy, [Di(C₁-C₄-
15 alkyl)aminocarbonyl]oxy-C₁-C₄-alkyl, C₁-C₄-Alkylsulfonylamino, C₁-C₄-
 Halogenalkylsulfonylamino, (C₁-C₄-Alkylcarbonyl)amino oder Phenyl, wobei der
 Phenylrest ein bis drei Reste aus folgender Gruppe tragen kann: Halogen, Nitro,
 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxycarbonyl und C₁-C₆-Alkoxy carbonyl;
 besonders bevorzugt Wasserstoff, Halogen, C₁-C₆-Alkyl, Hydroxy-C₁-C₄-alkyl,
20 (Hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-Alkoxy carbonyl)-C₁-C₄-alkoxy oder (C₁-
 C₄-Alkylcarbonyl)amino;
 insbesondere bevorzugt Wasserstoff, Halogen, C₁-C₄-Alkyl, Hydroxy-C₁-C₄-alkyl,
 (Hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-Alkoxy carbonyl)-C₁-C₄-alkoxy oder (C₁-
 C₄-Alkylcarbonyl)amino;
25 sehr bevorzugt Wasserstoff, Fluor, Chlor, Brom, CH₃, Hydroxy-C₁-C₄-alkyl,
 (Hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-Alkoxy carbonyl)-C₁-C₄-alkoxy oder (C₁-
 C₆-Alkylcarbonyl)amino;
 außerordentlich bevorzugt Wasserstoff, Fluor, CH₃, Hydroxy-C₁-C₄-alkyl, (Hydro-
 xycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-Alkoxy carbonyl)-C₁-C₄-alkoxy oder (C₁-C₆-
30 Alkylcarbonyl)amino;
 bedeutet.
- Ebenso bevorzugt sind die benzoylesubstituierten Phenylalanin-Amide der Formel I, in der
- 35 R¹¹ Wasserstoff, Halogen, C₁-C₆-Alkyl, Hydroxy oder C₁-C₆-Alkoxy;
 besonders bevorzugt Wasserstoff, Halogen oder C₁-C₆-Alkyl;
 insbesondere bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl;
 sehr bevorzugt Wasserstoff, Fluor, Chlor, Brom oder CH₃;
 außerordentlich bevorzugt Wasserstoff, Fluor oder CH₃;
- 40 bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R¹² Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder (C₁-C₄-Alkylcarbonyl)amino;

5 besonders bevorzugt Wasserstoff, Halogen, C₁-C₆-Alkyl oder (C₁-C₄-Alkylcarbonyl)amino;

insbesondere bevorzugt Wasserstoff, Halogen, C₁-C₄-Alkyl oder (C₁-C₄-Alkylcarbonyl)amino;

10 bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R¹² Wasserstoff, Halogen, C₁-C₆-Alkyl oder C₁-C₆-Halogenalkyl;

15 besonders bevorzugt Wasserstoff, Halogen oder C₁-C₆-Alkyl;

insbesonders bevorzugt Wasserstoff, Halogen oder C₁-C₄-Alkyl;

außerordentlich bevorzugt Wasserstoff oder Halogen;

sehr außerordentlich bevorzugt Wasserstoff, Fluor oder Chlor;

bedeutet.

20

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R¹³, R¹⁴ und R¹⁵ jeweils unabhängig voneinander

Wasserstoff, Halogen, Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl;

25 besonders bevorzugt Wasserstoff, Halogen oder Cyano;

insbesondere bevorzugt Wasserstoff, Fluor oder Chlor;

außerordentlich bevorzugt Wasserstoff;

bedeuten.

30 Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R¹⁶, R¹⁷ und R¹⁸ jeweils unabhängig voneinander

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₃-C₆-Cycloalkylcarbonyl, C₁-C₆-Alkoxy carbonyl, C₁-C₆-

35 Alkylaminocarbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl, Di-(C₁-C₆-alkyl)-aminothiocarbonyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl,

wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden

40 Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy,

26

- C₁-C₄-Alkylothio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxy carbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, oder C₁-C₄-Alkylcarbonyloxy;
- 5 Phenyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenylsulfonylaminocarbonyl oder Phenyl-C₁-C₆-alkylcarbonyl,
wobei der Phenylrest der 6 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy; oder
- 10 SO₂R²⁰;
- besonders bevorzugt Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkylcarbonyl, C₂-C₆-Alkenylcarbonyl, C₁-C₆-Alkoxy carbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl oder Di-(C₁-C₆-alkyl)-aminothiocarbonyl,
15 wobei die genannten Alkyl- oder Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy carbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;
- 20 Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenylsulfonylaminocarbonyl oder Phenyl-C₁-C₆-alkylcarbonyl,
wobei der Phenylring der 5 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy; oder
- 25 SO₂R²⁰;
- insbesondere bevorzugt Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₆-Alkyl-carbonyl, C₂-C₆-Alkenylcarbonyl, C₁-C₆-Alkoxy carbonyl, Di-(C₁-C₆-alkyl)-amino-carbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl, Di-(C₁-C₆-alkyl)-aminothiocarbonyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl oder Phenyl-C₁-C₆-alkylcarbonyl
30 wobei der Phenylring der 4 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogen-alkoxy; oder
- 35 SO₂R²⁰;
- bedeuten.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R^{16} , R^{17} und R^{18} jeweils unabhängig voneinander

5 Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Alkylcarbonyl, C_2 - C_6 -Alkenylcarbonyl, C_3 - C_6 -Cycloalkylcarbonyl, C_1 - C_6 -Alkoxy carbonyl, C_1 - C_6 -Alkylaminocarbonyl, Di-(C_1 - C_6 -alkyl)-aminocarbonyl, N-(C_1 - C_6 -Alkoxy)-N-(C_1 - C_6 -alkyl)-aminocarbonyl, Di-(C_1 - C_6 -alkyl)-aminothiocarbonyl, C_1 - C_6 -Alkoxyimino- C_1 - C_6 -alkyl, wobei die genannten Alkyl-, Cycloalkyl- oder Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden

10 Gruppen tragen können:

Cyano, Hydroxy, C_3 - C_6 -Cycloalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Di-(C_1 - C_4 -alkyl)-amino, C_1 - C_4 -Alkylcarbonyl, Hydroxycarbonyl, C_1 - C_4 -Alkoxy carbonyl, Aminocarbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di-(C_1 - C_4 -alkyl)-aminocarbonyl oder C_1 - C_4 -Alkylcarbonyloxy; oder

15 SO_2R^{20} ;

bedeuten.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der R^{16} und R^{18} jeweils unabhängig voneinander

20 Wasserstoff, C_1 - C_6 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_1 - C_6 -Alkylcarbonyl, C_1 - C_6 -Alkoxy carbonyl, C_1 - C_6 -Alkylaminocarbonyl, Di-(C_1 - C_6 -alkyl)-aminocarbonyl, N-(C_1 - C_6 -Alkoxy)-N-(C_1 - C_6 -alkyl)-amino-carbonyl,

wobei die genannten Alkyl-, und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen

25 können: Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylaminocarbonyl oder Di-(C_1 - C_4 -alkyl)-aminocarbonyl;

Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl, Phenylcarbonyl- C_1 - C_6 -alkyl, Phenylamino- carbonyl, N-(C_1 - C_6 -Alkyl)-N-(phenyl)-aminocarbonyl oder Heterocyclcarbonyl,

wobei der Phenyl- und der Heterocyclrest der 6 letztgenannten Substi-

30 tuenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, C_1 - C_4 -Alkyl oder C_1 - C_4 - Halogenalkyl; oder

SO_2R^{20} ;

35 besonders bevorzugt Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_4 -Alkenyl, C_3 - C_4 -Alkinyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxy carbonyl, C_1 - C_4 -Alkylaminocarbonyl, Di-(C_1 - C_4 -alkyl)-aminocarbonyl, N-(C_1 - C_4 -Alkoxy)-N-(C_1 - C_4 -alkyl)-aminocarbonyl, wobei die genannten Alkyl-, und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen

28

- können: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylaminocarbonyl oder Di-(C₁-C₄-alkyl)-aminocarbonyl;
- Phenyl-C₁-C₄-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₄-alkyl, Phenylaminocarbonyl, N-(C₁-C₄-Alkyl)-N-(phenyl)-aminocarbonyl oder Heterocyclcarbonyl,
- wobei der Phenyl- und der Heterocyclrest der 6 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl; oder
- SO₂R²⁰;
- insbesondere bevorzugt Wasserstoff oder C₁-C₄-Alkyl,
wobei der genannte Alkylrest partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino-carbonyl oder Di-(C₁-C₄-alkyl)-aminocarbonyl;
- Phenyl-C₁-C₄-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₄-alkyl, Phenylaminocarbonyl, N-(C₁-C₄-Alkyl)-N-(phenyl)-aminocarbonyl oder Heterocyclcarbonyl,
oder
- SO₂R²⁰;
- außerordentlich bevorzugt Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₆-Alkylaminocarbonyl, Di(C₁-C₄-alkyl)aminocarbonyl, Phenylaminocarbonyl, N(C₁-C₄-alkyl)-N(phenyl)aminocarbonyl, SO₂CH₃, SO₂CF₃ oder SO₂(C₆H₅);
bedeuten.
- Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der
- R¹⁷ Wasserstoff, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl oder N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-amino-carbonyl,
- wobei die genannten Alkyl-,und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano oder C₁-C₄-Alkoxy;
- besonders bevorzugt Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder N-(C₁-C₄-Alkoxy)-N-(C₁-C₄-alkyl)-aminocarbonyl,
wobei die genannten Alkyl-,und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano oder C₁-C₄-Alkoxy;

29

- insbesondere bevorzugt Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, N-(C₁-C₄-Alkoxy)-N-(C₁-C₄-alkyl)-aminocarbonyl,
bedeutet.
- 5 Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in
der
- R¹⁹ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl,
wobei die 4 letztgenannten Reste partiell oder vollständig halogeniert sein
können und/oder eine bis drei der folgenden Gruppen tragen können:
Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-
alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxycarbonyl,
Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl
oder C₁-C₄-Alkylcarbonyloxy;
- 10 Phenyl oder Phenyl-C₁-C₆-alkyl, wobei der Phenylring der 2 letztgenannten Sub-
stituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei
der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-
Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;
- 15 besonders bevorzugt Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl,
wobei die 3 genannten Reste partiell oder vollständig halogeniert sein kön-
nen und/oder eine bis drei der folgenden Gruppen tragen können: Cyano,
C₁-C₄-Alkoxy, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-
alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;
- 20 Phenyl oder Phenyl-C₁-C₄-alkyl, wobei der Phenylring der 2 letztgenannten Sub-
stituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei
der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-
Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;
- 25 insbesondere bevorzugt Wasserstoff oder C₁-C₆-Alkyl, wobei der Alkylrest partiell
oder vollständig halogeniert sein kann;
Phenyl oder Phenyl-C₁-C₄-alkyl, wobei der Phenylring der 2 letztgenannten Sub-
stituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei
der folgenden Gruppen tragen kann: Cyano, C₁-C₄-Alkyl oder C₁-C₄-
Halogenalkyl;
- 30 außerordentlich bevorzugt Wasserstoff oder C₁-C₄-Alkyl;
bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in der

R^{20} C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder Phenyl, wobei der Phenylrest partiell oder teilweise halogeniert sein kann und/oder durch C₁-C₄-Alkyl substituiert sein kann;

5 besonders bevorzugt C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl; insbesondere bevorzugt Methyl, Trifluormethyl oder Phenyl.

bedeutet.

Ebenso bevorzugt sind die benzoylsubstituierten Phenylalanin-Amide der Formel I, in

10 der

R^1 Fluor, Chlor oder CF₃,

R^2 und R^3 unabhängig voneinander Wasserstoff, Fluor oder Chlor,

R^4 , R^5 , R^6 und R^7 Wasserstoff,

R^8 C₁-C₄-Alkyl,

15 besonders bevorzugt CH₃;

R^9 OR¹⁶, SR¹⁷ oder NR¹⁸R¹⁹,

R^{10} Wasserstoff;

R^{11} Wasserstoff, Halogen, Cyano oder C₁-C₄-Alkyl,

besonders bevorzugt Wasserstoff, Fluor oder CH₃;

20 R^{12} Wasserstoff, Halogen oder Cyano,

besonders bevorzugt Wasserstoff, Fluor oder Chlor;

R^{13} , R^{14} und R^{15} unabhängig voneinander Wasserstoff, Fluor oder Chlor,

besonders bevorzugt Wasserstoff;

R^{16} und R^{18} unabhängig voneinander Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-

25 Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, Phenylaminocarbonyl, N-(C₁-C₄-alkyl)-N-(phenyl)-aminocarbonyl, SO₂CH₃, SO₂CF₃ oder SO₂(C₆H₅);

R^{17} Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy carbonyl, C₁-C₄-

Alkylaminocarbonyl, Di-(C₁-C₄-Alkyl)-aminocarbonyl, N-(C₁-C₄-alkoxy)-N-

30 (C₁-C₄-alkyl)-aminocarbonyl; und

R^{18} Wasserstoff oder C₁-C₄-Alkyl;

bedeuten.

35 Außerordentlich bevorzugt sind die Verbindungen der Formel I.a.1 (entspricht Formel I mit R¹= F; R², R³, R⁴, R⁵, R⁶, R⁷, R¹⁰, R¹⁴, R¹⁵ = H; R⁸ = CH₃), insbesondere die Verbindungen der Formel I.a.1.1 bis I.a.1.558 der Tabelle 1, wobei die Definitionen der Variablen R¹ bis R²⁰ nicht nur in Kombination miteinander sondern auch jeweils für sich allein betrachtet für die erfindungsgemäßen Verbindungen eine besondere Rolle spielen.

31

Tabelle 1

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.1	OH	H	H	H
I.a.1.2	OH	H	H	F
I.a.1.3	OH	H	F	H
I.a.1.4	OH	H	F	F
I.a.1.5	OH	H	Cl	H
I.a.1.6	OH	H	Cl	F
I.a.1.7	OH	F	H	H
I.a.1.8	OH	F	H	F
I.a.1.9	OH	F	F	H
I.a.1.10	OH	F	F	F
I.a.1.11	OH	F	Cl	H
I.a.1.12	OH	F	Cl	F
I.a.1.13	OH	CH ₃	H	H
I.a.1.14	OH	CH ₃	H	F
I.a.1.15	OH	CH ₃	F	H
I.a.1.16	OH	CH ₃	F	F
I.a.1.17	OH	CH ₃	Cl	H
I.a.1.18	OH	CH ₃	Cl	F
I.a.1.19	OC(O)CH ₃	H	H	H
I.a.1.20	OC(O)CH ₃	H	H	F
I.a.1.21	OC(O)CH ₃	H	F	H
I.a.1.22	OC(O)CH ₃	H	F	F
I.a.1.23	OC(O)CH ₃	H	Cl	H
I.a.1.24	OC(O)CH ₃	H	Cl	F
I.a.1.25	OC(O)CH ₃	F	H	H
I.a.1.26	OC(O)CH ₃	F	H	F
I.a.1.27	OC(O)CH ₃	F	F	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.28	OC(O)CH ₃	F	F	F
I.a.1.29	OC(O)CH ₃	F	Cl	H
I.a.1.30	OC(O)CH ₃	F	Cl	F
I.a.1.31	OC(O)CH ₃	CH ₃	H	H
I.a.1.32	OC(O)CH ₃	CH ₃	H	F
I.a.1.33	OC(O)CH ₃	CH ₃	F	H
I.a.1.34	OC(O)CH ₃	CH ₃	F	F
I.a.1.35	OC(O)CH ₃	CH ₃	Cl	H
I.a.1.36	OC(O)CH ₃	CH ₃	Cl	F
I.a.1.37	OC(O) <i>tert</i> C ₄ H ₉	H	H	H
I.a.1.38	OC(O) <i>tert</i> C ₄ H ₉	H	H	F
I.a.1.39	OC(O) <i>tert</i> C ₄ H ₉	H	F	H
I.a.1.40	OC(O) <i>tert</i> C ₄ H ₉	H	F	F
I.a.1.41	OC(O) <i>tert</i> C ₄ H ₉	H	Cl	H
I.a.1.42	OC(O) <i>tert</i> C ₄ H ₉	H	Cl	F
I.a.1.43	OC(O) <i>tert</i> C ₄ H ₉	F	H	H
I.a.1.44	OC(O) <i>tert</i> C ₄ H ₉	F	H	F
I.a.1.45	OC(O) <i>tert</i> C ₄ H ₉	F	F	H
I.a.1.46	OC(O) <i>tert</i> C ₄ H ₉	F	F	F
I.a.1.47	OC(O) <i>tert</i> C ₄ H ₉	F	Cl	H
I.a.1.48	OC(O) <i>tert</i> C ₄ H ₉	F	Cl	F
I.a.1.49	OC(O) <i>tert</i> C ₄ H ₉	CH ₃	H	H
I.a.1.50	OC(O) <i>tert</i> C ₄ H ₉	CH ₃	H	F
I.a.1.51	OC(O) <i>tert</i> C ₄ H ₉	CH ₃	F	H
I.a.1.52	OC(O) <i>tert</i> C ₄ H ₉	CH ₃	F	F
I.a.1.53	OC(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	H
I.a.1.54	OC(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	F
I.a.1.55	OC(O)NH(CH ₃)	H	H	H
I.a.1.56	OC(O)NH(CH ₃)	H	H	F
I.a.1.57	OC(O)NH(CH ₃)	H	F	H
I.a.1.58	OC(O)NH(CH ₃)	H	F	F
I.a.1.59	OC(O)NH(CH ₃)	H	Cl	H
I.a.1.60	OC(O)NH(CH ₃)	H	Cl	F
I.a.1.61	OC(O)NH(CH ₃)	F	H	H
I.a.1.62	OC(O)NH(CH ₃)	F	H	F
I.a.1.63	OC(O)NH(CH ₃)	F	F	H
I.a.1.64	OC(O)NH(CH ₃)	F	F	F
I.a.1.65	OC(O)NH(CH ₃)	F	Cl	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.66	OC(O)NH(CH ₃)	F	Cl	F
I.a.1.67	OC(O)NH(CH ₃)	CH ₃	H	H
I.a.1.68	OC(O)NH(CH ₃)	CH ₃	H	F
I.a.1.69	OC(O)NH(CH ₃)	CH ₃	F	H
I.a.1.70	OC(O)NH(CH ₃)	CH ₃	F	F
I.a.1.71	OC(O)NH(CH ₃)	CH ₃	Cl	H
I.a.1.72	OC(O)NH(CH ₃)	CH ₃	Cl	F
I.a.1.73	OC(O)NH(C ₆ H ₅)	H	H	H
I.a.1.74	OC(O)NH(C ₆ H ₅)	H	H	F
I.a.1.75	OC(O)NH(C ₆ H ₅)	H	F	H
I.a.1.76	OC(O)NH(C ₆ H ₅)	H	F	F
I.a.1.77	OC(O)NH(C ₆ H ₅)	H	Cl	H
I.a.1.78	OC(O)NH(C ₆ H ₅)	H	Cl	F
I.a.1.79	OC(O)NH(C ₆ H ₅)	F	H	H
I.a.1.80	OC(O)NH(C ₆ H ₅)	F	H	F
I.a.1.81	OC(O)NH(C ₆ H ₅)	F	F	H
I.a.1.82	OC(O)NH(C ₆ H ₅)	F	F	F
I.a.1.83	OC(O)NH(C ₆ H ₅)	F	Cl	H
I.a.1.84	OC(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.85	OC(O)NH(C ₆ H ₅)	CH ₃	H	H
I.a.1.86	OC(O)NH(C ₆ H ₅)	CH ₃	H	F
I.a.1.87	OC(O)NH(C ₆ H ₅)	CH ₃	F	H
I.a.1.88	OC(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.89	OC(O)NH(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.90	OC(O)NH(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.91	OC(O)N(CH ₃) ₂	H	H	H
I.a.1.92	OC(O)N(CH ₃) ₂	H	H	F
I.a.1.93	OC(O)N(CH ₃) ₂	H	F	H
I.a.1.94	OC(O)N(CH ₃) ₂	H	F	F
I.a.1.95	OC(O)N(CH ₃) ₂	H	Cl	H
I.a.1.96	OC(O)N(CH ₃) ₂	H	Cl	F
I.a.1.97	OC(O)N(CH ₃) ₂	F	H	H
I.a.1.98	OC(O)N(CH ₃) ₂	F	H	F
I.a.1.99	OC(O)N(CH ₃) ₂	F	F	H
I.a.1.100	OC(O)N(CH ₃) ₂	F	F	F
I.a.1.101	OC(O)N(CH ₃) ₂	F	Cl	H
I.a.1.102	OC(O)N(CH ₃) ₂	F	Cl	F
I.a.1.103	OC(O)N(CH ₃) ₂	CH ₃	H	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.104	OC(O)N(CH ₃) ₂	CH ₃	H	F
I.a.1.105	OC(O)N(CH ₃) ₂	CH ₃	F	H
I.a.1.106	OC(O)N(CH ₃) ₂	CH ₃	F	F
I.a.1.107	OC(O)N(CH ₃) ₂	CH ₃	Cl	H
I.a.1.108	OC(O)N(CH ₃) ₂	CH ₃	Cl	F
I.a.1.109	OC(O)N(CH ₃)(C ₆ H ₅)	H	H	H
I.a.1.110	OC(O)N(CH ₃)(C ₆ H ₅)	H	H	F
I.a.1.111	OC(O)N(CH ₃)(C ₆ H ₅)	H	F	H
I.a.1.112	OC(O)N(CH ₃)(C ₆ H ₅)	H	F	F
I.a.1.113	OC(O)N(CH ₃)(C ₆ H ₅)	H	Cl	H
I.a.1.114	OC(O)N(CH ₃)(C ₆ H ₅)	H	Cl	F
I.a.1.115	OC(O)N(CH ₃)(C ₆ H ₅)	F	H	H
I.a.1.116	OC(O)N(CH ₃)(C ₆ H ₅)	F	H	F
I.a.1.117	OC(O)N(CH ₃)(C ₆ H ₅)	F	F	H
I.a.1.118	OC(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.119	OC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	H
I.a.1.120	OC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	F
I.a.1.121	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	H
I.a.1.122	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	F
I.a.1.123	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	H
I.a.1.124	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	F
I.a.1.125	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.126	OC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.127	OSO ₂ CH ₃	H	H	H
I.a.1.128	OSO ₂ CH ₃	H	H	F
I.a.1.129	OSO ₂ CH ₃	H	F	H
I.a.1.130	OSO ₂ CH ₃	H	F	F
I.a.1.131	OSO ₂ CH ₃	H	Cl	H
I.a.1.132	OSO ₂ CH ₃	H	Cl	F
I.a.1.133	OSO ₂ CH ₃	F	H	H
I.a.1.134	OSO ₂ CH ₃	F	H	F
I.a.1.135	OSO ₂ CH ₃	F	F	H
I.a.1.136	OSO ₂ CH ₃	F	F	F
I.a.1.137	OSO ₂ CH ₃	F	Cl	H
I.a.1.138	OSO ₂ CH ₃	F	Cl	F
I.a.1.139	OSO ₂ CH ₃	CH ₃	H	H
I.a.1.140	OSO ₂ CH ₃	CH ₃	H	F
I.a.1.141	OSO ₂ CH ₃	CH ₃	F	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.142	OSO ₂ CH ₃	CH ₃	F	F
I.a.1.143	OSO ₂ CH ₃	CH ₃	Cl	H
I.a.1.144	OSO ₂ CH ₃	CH ₃	Cl	F
I.a.1.145	SH	H	H	H
I.a.1.146	SH	H	H	F
I.a.1.147	SH	H	F	H
I.a.1.148	SH	H	F	F
I.a.1.149	SH	H	Cl	H
I.a.1.150	SH	H	Cl	F
I.a.1.151	SH	F	H	H
I.a.1.152	SH	F	H	F
I.a.1.153	SH	F	F	H
I.a.1.154	SH	F	F	F
I.a.1.155	SH	F	Cl	H
I.a.1.156	SH	F	Cl	F
I.a.1.157	SH	CH ₃	H	H
I.a.1.158	SH	CH ₃	H	F
I.a.1.159	SH	CH ₃	F	H
I.a.1.160	SH	CH ₃	F	F
I.a.1.161	SH	CH ₃	Cl	H
I.a.1.162	SH	CH ₃	Cl	F
I.a.1.163	SC(O)CH ₃	H	H	H
I.a.1.164	SC(O)CH ₃	H	H	F
I.a.1.165	SC(O)CH ₃	H	F	H
I.a.1.166	SC(O)CH ₃	H	F	F
I.a.1.167	SC(O)CH ₃	H	Cl	H
I.a.1.168	SC(O)CH ₃	H	Cl	F
I.a.1.169	SC(O)CH ₃	F	H	H
I.a.1.170	SC(O)CH ₃	F	H	F
I.a.1.171	SC(O)CH ₃	F	F	H
I.a.1.172	SC(O)CH ₃	F	F	F
I.a.1.173	SC(O)CH ₃	F	Cl	H
I.a.1.174	SC(O)CH ₃	F	Cl	F
I.a.1.175	SC(O)CH ₃	CH ₃	H	H
I.a.1.176	SC(O)CH ₃	CH ₃	H	F
I.a.1.177	SC(O)CH ₃	CH ₃	F	H
I.a.1.178	SC(O)CH ₃	CH ₃	F	F
I.a.1.179	SC(O)CH ₃	CH ₃	Cl	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.180	SC(O)CH ₃	CH ₃	Cl	F
I.a.1.181	SC(O) <i>tert</i> C ₄ H ₉	H	H	H
I.a.1.182	SC(O) <i>tert</i> C ₄ H ₉	H	H	F
I.a.1.183	SC(O) <i>tert</i> C ₄ H ₉	H	F	H
I.a.1.184	SC(O) <i>tert</i> C ₄ H ₉	H	F	F
I.a.1.185	SC(O) <i>tert</i> C ₄ H ₉	H	Cl	H
I.a.1.186	SC(O) <i>tert</i> C ₄ H ₉	H	Cl	F
I.a.1.187	SC(O) <i>tert</i> C ₄ H ₉	F	H	H
I.a.1.188	SC(O) <i>tert</i> C ₄ H ₉	F	H	F
I.a.1.189	SC(O) <i>tert</i> C ₄ H ₉	F	F	H
I.a.1.190	SC(O) <i>tert</i> C ₄ H ₉	F	F	F
I.a.1.191	SC(O) <i>tert</i> C ₄ H ₉	F	Cl	H
I.a.1.192	SC(O) <i>tert</i> C ₄ H ₉	F	Cl	F
I.a.1.193	SC(O) <i>tert</i> C ₄ H ₉	CH ₃	H	H
I.a.1.194	SC(O) <i>tert</i> C ₄ H ₉	CH ₃	H	F
I.a.1.195	SC(O) <i>tert</i> C ₄ H ₉	CH ₃	F	H
I.a.1.196	SC(O) <i>tert</i> C ₄ H ₉	CH ₃	F	F
I.a.1.197	SC(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	H
I.a.1.198	SC(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	F
I.a.1.199	SC(O)NH(CH ₃)	H	H	H
I.a.1.200	SC(O)NH(CH ₃)	H	H	F
I.a.1.201	SC(O)NH(CH ₃)	H	F	H
I.a.1.202	SC(O)NH(CH ₃)	H	F	F
I.a.1.203	SC(O)NH(CH ₃)	H	Cl	H
I.a.1.204	SC(O)NH(CH ₃)	H	Cl	F
I.a.1.205	SC(O)NH(CH ₃)	F	H	H
I.a.1.206	SC(O)NH(CH ₃)	F	H	F
I.a.1.207	SC(O)NH(CH ₃)	F	F	H
I.a.1.208	SC(O)NH(CH ₃)	F	F	F
I.a.1.209	SC(O)NH(CH ₃)	F	Cl	H
I.a.1.210	SC(O)NH(CH ₃)	F	Cl	F
I.a.1.211	SC(O)NH(CH ₃)	CH ₃	H	H
I.a.1.212	SC(O)NH(CH ₃)	CH ₃	H	F
I.a.1.213	SC(O)NH(CH ₃)	CH ₃	F	H
I.a.1.214	SC(O)NH(CH ₃)	CH ₃	F	F
I.a.1.215	SC(O)NH(CH ₃)	CH ₃	Cl	H
I.a.1.216	SC(O)NH(CH ₃)	CH ₃	Cl	F
I.a.1.217	SC(O)NH(C ₆ H ₅)	H	H	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.218	SC(O)NH(C ₆ H ₅)	H	H	F
I.a.1.219	SC(O)NH(C ₆ H ₅)	H	F	H
I.a.1.220	SC(O)NH(C ₆ H ₅)	H	F	F
I.a.1.221	SC(O)NH(C ₆ H ₅)	H	Cl	H
I.a.1.222	SC(O)NH(C ₆ H ₅)	H	Cl	F
I.a.1.223	SC(O)NH(C ₆ H ₅)	F	H	H
I.a.1.224	SC(O)NH(C ₆ H ₅)	F	H	F
I.a.1.225	SC(O)NH(C ₆ H ₅)	F	F	H
I.a.1.226	SC(O)NH(C ₆ H ₅)	F	F	F
I.a.1.227	SC(O)NH(C ₆ H ₅)	F	Cl	H
I.a.1.228	SC(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.229	SC(O)NH(C ₆ H ₅)	CH ₃	H	H
I.a.1.230	SC(O)NH(C ₆ H ₅)	CH ₃	H	F
I.a.1.231	SC(O)NH(C ₆ H ₅)	CH ₃	F	H
I.a.1.232	SC(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.233	SC(O)NH(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.234	SC(O)NH(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.235	SC(O)N(CH ₃) ₂	H	H	H
I.a.1.236	SC(O)N(CH ₃) ₂	H	H	F
I.a.1.237	SC(O)N(CH ₃) ₂	H	F	H
I.a.1.238	SC(O)N(CH ₃) ₂	H	F	F
I.a.1.239	SC(O)N(CH ₃) ₂	H	Cl	H
I.a.1.240	SC(O)N(CH ₃) ₂	H	Cl	F
I.a.1.241	SC(O)N(CH ₃) ₂	F	H	H
I.a.1.242	SC(O)N(CH ₃) ₂	F	H	F
I.a.1.243	SC(O)N(CH ₃) ₂	F	F	H
I.a.1.244	SC(O)N(CH ₃) ₂	F	F	F
I.a.1.245	SC(O)N(CH ₃) ₂	F	Cl	H
I.a.1.246	SC(O)N(CH ₃) ₂	F	Cl	F
I.a.1.247	SC(O)N(CH ₃) ₂	CH ₃	H	H
I.a.1.248	SC(O)N(CH ₃) ₂	CH ₃	H	F
I.a.1.249	SC(O)N(CH ₃) ₂	CH ₃	F	H
I.a.1.250	SC(O)N(CH ₃) ₂	CH ₃	F	F
I.a.1.251	SC(O)N(CH ₃) ₂	CH ₃	Cl	H
I.a.1.252	SC(O)N(CH ₃) ₂	CH ₃	Cl	F
I.a.1.253	SC(O)N(CH ₃)(C ₆ H ₅)	H	H	H
I.a.1.254	SC(O)N(CH ₃)(C ₆ H ₅)	H	H	F
I.a.1.255	SC(O)N(CH ₃)(C ₆ H ₅)	H	F	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.256	SC(O)N(CH ₃)(C ₆ H ₅)	H	F	F
I.a.1.257	SC(O)N(CH ₃)(C ₆ H ₅)	H	Cl	H
I.a.1.258	SC(O)N(CH ₃)(C ₆ H ₅)	H	Cl	F
I.a.1.259	SC(O)N(CH ₃)(C ₆ H ₅)	F	H	H
I.a.1.260	SC(O)N(CH ₃)(C ₆ H ₅)	F	H	F
I.a.1.261	SC(O)N(CH ₃)(C ₆ H ₅)	F	F	H
I.a.1.262	SC(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.263	SC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	H
I.a.1.264	SC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	F
I.a.1.265	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	H
I.a.1.266	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	F
I.a.1.267	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	H
I.a.1.268	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	F
I.a.1.269	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.270	SC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.271	NH ₂	H	H	H
I.a.1.272	NH ₂	H	H	F
I.a.1.273	NH ₂	H	F	H
I.a.1.274	NH ₂	H	F	F
I.a.1.275	NH ₂	H	Cl	H
I.a.1.276	NH ₂	H	Cl	F
I.a.1.277	NH ₂	F	H	H
I.a.1.278	NH ₂	F	H	F
I.a.1.279	NH ₂	F	F	H
I.a.1.280	NH ₂	F	F	F
I.a.1.281	NH ₂	F	Cl	H
I.a.1.282	NH ₂	F	Cl	F
I.a.1.283	NH ₂	CH ₃	H	H
I.a.1.284	NH ₂	CH ₃	H	F
I.a.1.285	NH ₂	CH ₃	F	H
I.a.1.286	NH ₂	CH ₃	F	F
I.a.1.287	NH ₂	CH ₃	Cl	H
I.a.1.288	NH ₂	CH ₃	Cl	F
I.a.1.289	NHC(O)CH ₃	H	H	H
I.a.1.290	NHC(O)CH ₃	H	H	F
I.a.1.291	NHC(O)CH ₃	H	F	H
I.a.1.292	NHC(O)CH ₃	H	F	F
I.a.1.293	NHC(O)CH ₃	H	Cl	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.294	NHC(O)CH ₃	H	Cl	F
I.a.1.295	NHC(O)CH ₃	F	H	H
I.a.1.296	NHC(O)CH ₃	F	H	F
I.a.1.297	NHC(O)CH ₃	F	F	H
I.a.1.298	NHC(O)CH ₃	F	F	F
I.a.1.299	NHC(O)CH ₃	F	Cl	H
I.a.1.300	NHC(O)CH ₃	F	Cl	F
I.a.1.301	NHC(O)CH ₃	CH ₃	H	H
I.a.1.302	NHC(O)CH ₃	CH ₃	H	F
I.a.1.303	NHC(O)CH ₃	CH ₃	F	H
I.a.1.304	NHC(O)CH ₃	CH ₃	F	F
I.a.1.305	NHC(O)CH ₃	CH ₃	Cl	H
I.a.1.306	NHC(O)CH ₃	CH ₃	Cl	F
I.a.1.307	NHC(O) <i>tert</i> C ₄ H ₉	H	H	H
I.a.1.308	NHC(O) <i>tert</i> C ₄ H ₉	H	H	F
I.a.1.309	NHC(O) <i>tert</i> C ₄ H ₉	H	F	H
I.a.1.310	NHC(O) <i>tert</i> C ₄ H ₉	H	F	F
I.a.1.311	NHC(O) <i>tert</i> C ₄ H ₉	H	Cl	H
I.a.1.312	NHC(O) <i>tert</i> C ₄ H ₉	H	Cl	F
I.a.1.313	NHC(O) <i>tert</i> C ₄ H ₉	F	H	H
I.a.1.314	NHC(O) <i>tert</i> C ₄ H ₉	F	H	F
I.a.1.315	NHC(O) <i>tert</i> C ₄ H ₉	F	F	H
I.a.1.316	NHC(O) <i>tert</i> C ₄ H ₉	F	F	F
I.a.1.317	NHC(O) <i>tert</i> C ₄ H ₉	F	Cl	H
I.a.1.318	NHC(O) <i>tert</i> C ₄ H ₉	F	Cl	F
I.a.1.319	NHC(O) <i>tert</i> C ₄ H ₉	CH ₃	H	H
I.a.1.320	NHC(O) <i>tert</i> C ₄ H ₉	CH ₃	H	F
I.a.1.321	NHC(O) <i>tert</i> C ₄ H ₉	CH ₃	F	H
I.a.1.322	NHC(O) <i>tert</i> C ₄ H ₉	CH ₃	F	F
I.a.1.323	NHC(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	H
I.a.1.324	NHC(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	F
I.a.1.325	NHC(O)NH(CH ₃)	H	H	H
I.a.1.326	NHC(O)NH(CH ₃)	H	H	F
I.a.1.327	NHC(O)NH(CH ₃)	H	F	H
I.a.1.328	NHC(O)NH(CH ₃)	H	F	F
I.a.1.329	NHC(O)NH(CH ₃)	H	Cl	H
I.a.1.330	NHC(O)NH(CH ₃)	H	Cl	F
I.a.1.331	NHC(O)NH(CH ₃)	F	H	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.332	NHC(O)NH(CH ₃)	F	H	F
I.a.1.333	NHC(O)NH(CH ₃)	F	F	H
I.a.1.334	NHC(O)NH(CH ₃)	F	F	F
I.a.1.335	NHC(O)NH(CH ₃)	F	Cl	H
I.a.1.336	NHC(O)NH(CH ₃)	F	Cl	F
I.a.1.337	NHC(O)NH(CH ₃)	CH ₃	H	H
I.a.1.338	NHC(O)NH(CH ₃)	CH ₃	H	F
I.a.1.339	NHC(O)NH(CH ₃)	CH ₃	F	H
I.a.1.340	NHC(O)NH(CH ₃)	CH ₃	F	F
I.a.1.341	NHC(O)NH(CH ₃)	CH ₃	Cl	H
I.a.1.342	NHC(O)NH(CH ₃)	CH ₃	Cl	F
I.a.1.343	NHC(O)NH(C ₆ H ₅)	H	H	H
I.a.1.344	NHC(O)NH(C ₆ H ₅)	H	H	F
I.a.1.345	NHC(O)NH(C ₆ H ₅)	H	F	H
I.a.1.346	NHC(O)NH(C ₆ H ₅)	H	F	F
I.a.1.347	NHC(O)NH(C ₆ H ₅)	H	Cl	H
I.a.1.348	NHC(O)NH(C ₆ H ₅)	H	Cl	F
I.a.1.349	NHC(O)NH(C ₆ H ₅)	F	H	H
I.a.1.350	NHC(O)NH(C ₆ H ₅)	F	H	F
I.a.1.351	NHC(O)NH(C ₆ H ₅)	F	F	H
I.a.1.352	NHC(O)NH(C ₆ H ₅)	F	F	F
I.a.1.353	NHC(O)NH(C ₆ H ₅)	F	Cl	H
I.a.1.354	NHC(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.355	NHC(O)NH(C ₆ H ₅)	CH ₃	H	H
I.a.1.356	NHC(O)NH(C ₆ H ₅)	CH ₃	H	F
I.a.1.357	NHC(O)NH(C ₆ H ₅)	CH ₃	F	H
I.a.1.358	NHC(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.359	NHC(O)NH(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.360	NHC(O)NH(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.361	NHC(O)N(CH ₃) ₂	H	H	H
I.a.1.362	NHC(O)N(CH ₃) ₂	H	H	F
I.a.1.363	NHC(O)N(CH ₃) ₂	H	F	H
I.a.1.364	NHC(O)N(CH ₃) ₂	H	F	F
I.a.1.365	NHC(O)N(CH ₃) ₂	H	Cl	H
I.a.1.366	NHC(O)N(CH ₃) ₂	H	Cl	F
I.a.1.367	NHC(O)N(CH ₃) ₂	F	H	H
I.a.1.368	NHC(O)N(CH ₃) ₂	F	H	F
I.a.1.369	NHC(O)N(CH ₃) ₂	F	F	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.370	NHC(O)N(CH ₃) ₂	F	F	F
I.a.1.371	NHC(O)N(CH ₃) ₂	F	Cl	H
I.a.1.372	NHC(O)N(CH ₃) ₂	F	Cl	F
I.a.1.373	NHC(O)N(CH ₃) ₂	CH ₃	H	H
I.a.1.374	NHC(O)N(CH ₃) ₂	CH ₃	H	F
I.a.1.375	NHC(O)N(CH ₃) ₂	CH ₃	F	H
I.a.1.376	NHC(O)N(CH ₃) ₂	CH ₃	F	F
I.a.1.377	NHC(O)N(CH ₃) ₂	CH ₃	Cl	H
I.a.1.378	NHC(O)N(CH ₃) ₂	CH ₃	Cl	F
I.a.1.379	NHC(O)N(CH ₃)(C ₆ H ₅)	H	H	H
I.a.1.380	NHC(O)N(CH ₃)(C ₆ H ₅)	H	H	F
I.a.1.381	NHC(O)N(CH ₃)(C ₆ H ₅)	H	F	H
I.a.1.382	NHC(O)N(CH ₃)(C ₆ H ₅)	H	F	F
I.a.1.383	NHC(O)N(CH ₃)(C ₆ H ₅)	H	Cl	H
I.a.1.384	NHC(O)N(CH ₃)(C ₆ H ₅)	H	Cl	F
I.a.1.385	NHC(O)N(CH ₃)(C ₆ H ₅)	F	H	H
I.a.1.386	NHC(O)N(CH ₃)(C ₆ H ₅)	F	H	F
I.a.1.387	NHC(O)N(CH ₃)(C ₆ H ₅)	F	F	H
I.a.1.388	NHC(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.389	NHC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	H
I.a.1.390	NHC(O)N(CH ₃)(C ₆ H ₅)	F	Cl	F
I.a.1.391	NHC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	H
I.a.1.392	NHC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	F
I.a.1.393	NHC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	H
I.a.1.394	NHC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	F
I.a.1.395	NHC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.396	NHC(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.397	NHSO ₂ CH ₃	H	H	H
I.a.1.398	NHSO ₂ CH ₃	H	H	F
I.a.1.399	NHSO ₂ CH ₃	H	F	H
I.a.1.400	NHSO ₂ CH ₃	H	F	F
I.a.1.401	NHSO ₂ CH ₃	H	Cl	H
I.a.1.402	NHSO ₂ CH ₃	H	Cl	F
I.a.1.403	NHSO ₂ CH ₃	F	H	H
I.a.1.404	NHSO ₂ CH ₃	F	H	F
I.a.1.405	NHSO ₂ CH ₃	F	F	H
I.a.1.406	NHSO ₂ CH ₃	F	F	F
I.a.1.407	NHSO ₂ CH ₃	F	Cl	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.408	NHSO ₂ CH ₃	F	Cl	F
I.a.1.409	NHSO ₂ CH ₃	CH ₃	H	H
I.a.1.410	NHSO ₂ CH ₃	CH ₃	H	F
I.a.1.411	NHSO ₂ CH ₃	CH ₃	F	H
I.a.1.412	NHSO ₂ CH ₃	CH ₃	F	F
I.a.1.413	NHSO ₂ CH ₃	CH ₃	Cl	H
I.a.1.414	NHSO ₂ CH ₃	CH ₃	Cl	F
I.a.1.415	NH(CH ₃)	H	H	H
I.a.1.416	NH(CH ₃)	H	H	F
I.a.1.417	NH(CH ₃)	H	F	H
I.a.1.418	NH(CH ₃)	H	F	F
I.a.1.419	NH(CH ₃)	H	Cl	H
I.a.1.420	NH(CH ₃)	H	Cl	F
I.a.1.421	NH(CH ₃)	F	H	H
I.a.1.422	NH(CH ₃)	F	H	F
I.a.1.423	NH(CH ₃)	F	F	H
I.a.1.424	NH(CH ₃)	F	F	F
I.a.1.425	NH(CH ₃)	F	Cl	H
I.a.1.426	NH(CH ₃)	F	Cl	F
I.a.1.427	NH(CH ₃)	CH ₃	H	H
I.a.1.428	NH(CH ₃)	CH ₃	H	F
I.a.1.429	NH(CH ₃)	CH ₃	F	H
I.a.1.430	NH(CH ₃)	CH ₃	F	F
I.a.1.431	NH(CH ₃)	CH ₃	Cl	H
I.a.1.432	NH(CH ₃)	CH ₃	Cl	F
I.a.1.433	N(CH ₃)C(O)CH ₃	H	H	H
I.a.1.434	N(CH ₃)C(O)CH ₃	H	H	F
I.a.1.435	N(CH ₃)C(O)CH ₃	H	F	H
I.a.1.436	N(CH ₃)C(O)CH ₃	H	F	F
I.a.1.437	N(CH ₃)C(O)CH ₃	H	Cl	H
I.a.1.438	N(CH ₃)C(O)CH ₃	H	Cl	F
I.a.1.439	N(CH ₃)C(O)CH ₃	F	H	H
I.a.1.440	N(CH ₃)C(O)CH ₃	F	H	F
I.a.1.441	N(CH ₃)C(O)CH ₃	F	F	H
I.a.1.442	N(CH ₃)C(O)CH ₃	F	F	F
I.a.1.443	N(CH ₃)C(O)CH ₃	F	Cl	H
I.a.1.444	N(CH ₃)C(O)CH ₃	F	Cl	F
I.a.1.445	N(CH ₃)C(O)CH ₃	CH ₃	H	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.446	N(CH ₃)C(O)CH ₃	CH ₃	H	F
I.a.1.447	N(CH ₃)C(O)CH ₃	CH ₃	F	H
I.a.1.448	N(CH ₃)C(O)CH ₃	CH ₃	F	F
I.a.1.449	N(CH ₃)C(O)CH ₃	CH ₃	Cl	H
I.a.1.450	N(CH ₃)C(O)CH ₃	CH ₃	Cl	F
I.a.1.451	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	H	H	H
I.a.1.452	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	H	H	F
I.a.1.453	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	H	F	H
I.a.1.454	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	H	F	F
I.a.1.455	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	H	Cl	H
I.a.1.456	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	H	Cl	F
I.a.1.457	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	F	H	H
I.a.1.458	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	F	H	F
I.a.1.459	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	F	F	H
I.a.1.460	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	F	F	F
I.a.1.461	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	F	Cl	H
I.a.1.462	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	F	Cl	F
I.a.1.463	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	CH ₃	H	H
I.a.1.464	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	CH ₃	H	F
I.a.1.465	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	CH ₃	F	H
I.a.1.466	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	CH ₃	F	F
I.a.1.467	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	H
I.a.1.468	N(CH ₃)C(O) <i>tert</i> C ₄ H ₉	CH ₃	Cl	F
I.a.1.469	N(CH ₃)C(O)NH(CH ₃)	H	H	H
I.a.1.470	N(CH ₃)C(O)NH(CH ₃)	H	H	F
I.a.1.471	N(CH ₃)C(O)NH(CH ₃)	H	F	H
I.a.1.472	N(CH ₃)C(O)NH(CH ₃)	H	F	F
I.a.1.473	N(CH ₃)C(O)NH(CH ₃)	H	Cl	H
I.a.1.474	N(CH ₃)C(O)NH(CH ₃)	H	Cl	F
I.a.1.475	N(CH ₃)C(O)NH(CH ₃)	F	H	H
I.a.1.476	N(CH ₃)C(O)NH(CH ₃)	F	H	F
I.a.1.477	N(CH ₃)C(O)NH(CH ₃)	F	F	H
I.a.1.478	N(CH ₃)C(O)NH(CH ₃)	F	F	F
I.a.1.479	N(CH ₃)C(O)NH(CH ₃)	F	Cl	H
I.a.1.480	N(CH ₃)C(O)NH(CH ₃)	F	Cl	F
I.a.1.481	N(CH ₃)C(O)NH(CH ₃)	CH ₃	H	H
I.a.1.482	N(CH ₃)C(O)NH(CH ₃)	CH ₃	H	F
I.a.1.483	N(CH ₃)C(O)NH(CH ₃)	CH ₃	F	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.484	N(CH ₃)C(O)NH(CH ₃)	CH ₃	F	F
I.a.1.485	N(CH ₃)C(O)NH(CH ₃)	CH ₃	Cl	H
I.a.1.486	N(CH ₃)C(O)NH(CH ₃)	CH ₃	Cl	F
I.a.1.487	N(CH ₃)C(O)NH(C ₆ H ₅)	H	H	H
I.a.1.488	N(CH ₃)C(O)NH(C ₆ H ₅)	H	H	F
I.a.1.489	N(CH ₃)C(O)NH(C ₆ H ₅)	H	F	H
I.a.1.490	N(CH ₃)C(O)NH(C ₆ H ₅)	H	F	F
I.a.1.491	N(CH ₃)C(O)NH(C ₆ H ₅)	H	Cl	H
I.a.1.492	N(CH ₃)C(O)NH(C ₆ H ₅)	H	Cl	F
I.a.1.493	N(CH ₃)C(O)NH(C ₆ H ₅)	F	H	H
I.a.1.494	N(CH ₃)C(O)NH(C ₆ H ₅)	F	H	F
I.a.1.495	N(CH ₃)C(O)NH(C ₆ H ₅)	F	F	H
I.a.1.496	N(CH ₃)C(O)NH(C ₆ H ₅)	F	F	F
I.a.1.497	N(CH ₃)C(O)NH(C ₆ H ₅)	F	Cl	H
I.a.1.498	N(CH ₃)C(O)NH(C ₆ H ₅)	F	Cl	F
I.a.1.499	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	H	H
I.a.1.500	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	H	F
I.a.1.501	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	F	H
I.a.1.502	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	F	F
I.a.1.503	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.504	N(CH ₃)C(O)NH(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.505	N(CH ₃)C(O)N(CH ₃) ₂	H	H	H
I.a.1.506	N(CH ₃)C(O)N(CH ₃) ₂	H	H	F
I.a.1.507	N(CH ₃)C(O)N(CH ₃) ₂	H	F	H
I.a.1.508	N(CH ₃)C(O)N(CH ₃) ₂	H	F	F
I.a.1.509	N(CH ₃)C(O)N(CH ₃) ₂	H	Cl	H
I.a.1.510	N(CH ₃)C(O)N(CH ₃) ₂	H	Cl	F
I.a.1.511	N(CH ₃)C(O)N(CH ₃) ₂	F	H	H
I.a.1.512	N(CH ₃)C(O)N(CH ₃) ₂	F	H	F
I.a.1.513	N(CH ₃)C(O)N(CH ₃) ₂	F	F	H
I.a.1.514	N(CH ₃)C(O)N(CH ₃) ₂	F	F	F
I.a.1.515	N(CH ₃)C(O)N(CH ₃) ₂	F	Cl	H
I.a.1.516	N(CH ₃)C(O)N(CH ₃) ₂	F	Cl	F
I.a.1.517	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	H	H
I.a.1.518	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	H	F
I.a.1.519	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	F	H
I.a.1.520	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	F	F
I.a.1.521	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	Cl	H

Nr.	R ⁹	R ¹¹	R ¹²	R ¹³
I.a.1.522	N(CH ₃)C(O)N(CH ₃) ₂	CH ₃	Cl	F
I.a.1.523	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	H	H	H
I.a.1.524	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	H	H	F
I.a.1.525	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	H	F	H
I.a.1.526	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	H	F	F
I.a.1.527	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	H	Cl	H
I.a.1.528	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	H	Cl	F
I.a.1.529	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	H	H
I.a.1.530	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	H	F
I.a.1.531	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	F	H
I.a.1.532	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	F	F
I.a.1.533	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	Cl	H
I.a.1.534	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	F	Cl	F
I.a.1.535	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	H
I.a.1.536	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH ₃	H	F
I.a.1.537	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	H
I.a.1.538	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH ₃	F	F
I.a.1.539	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	H
I.a.1.540	N(CH ₃)C(O)N(CH ₃)(C ₆ H ₅)	CH ₃	Cl	F
I.a.1.541	N(CH ₃)SO ₂ CH ₃	H	H	H
I.a.1.542	N(CH ₃)SO ₂ CH ₃	H	H	F
I.a.1.543	N(CH ₃)SO ₂ CH ₃	H	F	H
I.a.1.544	N(CH ₃)SO ₂ CH ₃	H	F	F
I.a.1.545	N(CH ₃)SO ₂ CH ₃	H	Cl	H
I.a.1.546	N(CH ₃)SO ₂ CH ₃	H	Cl	F
I.a.1.547	N(CH ₃)SO ₂ CH ₃	F	H	H
I.a.1.548	N(CH ₃)SO ₂ CH ₃	F	H	F
I.a.1.549	N(CH ₃)SO ₂ CH ₃	F	F	H
I.a.1.550	N(CH ₃)SO ₂ CH ₃	F	F	F
I.a.1.551	N(CH ₃)SO ₂ CH ₃	F	Cl	H
I.a.1.552	N(CH ₃)SO ₂ CH ₃	F	Cl	F
I.a.1.553	N(CH ₃)SO ₂ CH ₃	CH ₃	H	H
I.a.1.554	N(CH ₃)SO ₂ CH ₃	CH ₃	H	F
I.a.1.555	N(CH ₃)SO ₂ CH ₃	CH ₃	F	H
I.a.1.556	N(CH ₃)SO ₂ CH ₃	CH ₃	F	F
I.a.1.557	N(CH ₃)SO ₂ CH ₃	CH ₃	Cl	H
I.a.1.558	N(CH ₃)SO ₂ CH ₃	CH ₃	Cl	F

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.2, insbesondere die Verbindungen der Formel I.a.2.1 bis I.a.2.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R² für
5 CF₃ steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.3, insbesondere die Verbindungen der Formel I.a.3.1 bis I.a.3.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R² für
10 CF₃ und R³ für Fluor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.4, insbesondere die Verbindungen der Formel I.a.4.1 bis I.a.4.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R² für
15 CF₃ und R³ für Chlor steht.

47

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.5, insbesondere die Verbindungen der Formel I.a.5.1 bis I.a.5.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für Chlor und R³ für Fluor steht.

5

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.6, insbesondere die Verbindungen der Formel I.a.6.1 bis I.a.6.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R³ für Chlor stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.7, insbesondere die Verbindungen der Formel I.a.7.1 bis I.a.7.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für Chlor und R² für Fluor steht.

15

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.8, insbesondere die Verbindungen der Formel I.a.8.1 bis I.a.8.558, die sich von den entsprechen-

48

den Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für Chlor und R² sowie R³ für Fluor stehen.

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.9, insbesondere die Verbindungen der Formel I.a.9.1 bis I.a.9.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R³ für Chlor und R² für Fluor steht.
- 5

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.10, insbesondere die Verbindungen der Formel I.a.10.1 bis I.a.10.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R² für Chlor stehen.
- 10

- Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.11, insbesondere die Verbindungen der Formel I.a.11.1 bis I.a.11.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R² für Chlor und R³ für Fluor stehen.
- 15

49

I.a.11

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.12, insbesondere die Verbindungen der Formel I.a.12.1 bis I.a.12.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß

5 R¹, R² und R³ für Chlor stehen.

I.a.12

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.13, insbesondere die Verbindungen der Formel I.a.13.1 bis I.a.13.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹

10 für Chlor und R² für CF₃ steht.

I.a.13

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.14, insbesondere die Verbindungen der Formel I.a.14.1 bis I.a.14.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹

15 für Chlor, R² für CF₃ und R³ für Fluor steht.

50

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.15, insbesondere die Verbindungen der Formel I.a.15.1 bis I.a.15.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R³ für Chlor und R² für CF₃ stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.16, insbesondere die Verbindungen der Formel I.a.16.1 bis I.a.16.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.17, insbesondere die Verbindungen der Formel I.a.17.1 bis I.a.17.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R³ für Fluor steht.

51

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.18, insbesondere die Verbindungen der Formel I.a.18.1 bis I.a.18.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R³ für Chlor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.19, insbesondere die Verbindungen der Formel I.a.19.1 bis I.a.19.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R² für Fluor steht.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.20, insbesondere die Verbindungen der Formel I.a.20.1 bis I.a.20.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R² sowie R³ für Fluor stehen.

52

I.a.20

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.21, insbesondere die Verbindungen der Formel I.a.21.1 bis I.a.21.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃, R² für Fluor und R³ für Chlor steht.

I.a.21

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.22, insbesondere die Verbindungen der Formel I.a.22.1 bis I.a.22.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R² für Chlor steht.

I.a.22

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.23, insbesondere die Verbindungen der Formel I.a.23.1 bis I.a.23.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃, R² für Chlor und R³ für Fluor steht.

53

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.24, insbesondere die Verbindungen der Formel I.a.24.1 bis I.a.24.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹

5 für CF₃ und R² sowie R³ für Chlor stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.25, insbesondere die Verbindungen der Formel I.a.25.1 bis I.a.25.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹

10 und R² für CF₃ stehen.

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.26, insbesondere die Verbindungen der Formel I.a.26.1 bis I.a.26.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹

15 und R² für CF₃ und R³ für Fluor stehen.

54

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.27, insbesondere die Verbindungen der Formel I.a.27.1 bis I.a.27.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ und R² für CF₃ und R³ für Chlor stehen.

5

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.28, insbesondere die Verbindungen der Formel I.a.28.1 bis I.a.28.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R⁴ für Fluor stehen.

10

Ebenso außerordentlich bevorzugt sind die Verbindungen der Formel I.a.29, insbesondere die Verbindungen der Formel I.a.29.1 bis I.a.29.558, die sich von den entsprechenden Verbindungen der Formel I.a.1.1 bis I.a.1.558 dadurch unterscheiden, daß R¹ für CF₃ und R³ sowie R⁴ für Fluor stehen.

15

- 5 Die benzoylesubstituierten Phenylalanin-Amide der Formel I sind auf verschiedene Art und Weise erhältlich, beispielsweise nach folgenden Verfahren:

Verfahren A

- 10 Ein Phenylalanin der Formel V wird zunächst mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV zu dem entsprechenden Benzoylderivat der Formel III umgesetzt, welches anschließend mit einem Amin der Formel II zu dem gewünschten benzoylesubstituierten Phenylalanin-Amid der Formel I reagiert:

L¹ steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. Hydroxy oder C₁-C₆-Alkoxy.

- 5 L² steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy, Halogen, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₄-Alkylsulfonyl, Phosphoryl oder Isoureyl.

- Die Umsetzung der Phenylalanine der Formel V mit Benzoesäure(derivate)n der Formel IV, wobei L² für Hydroxy steht, zu Benzoylderivaten der Formel III erfolgt in Gegenwart eines Aktivierungsreagens und einer Base üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 110°C, besonders bevorzugt bei Raumtemperatur, in einem inerten organischen Lösungsmittel [vgl. Bergmann, E. D.; et al., J Chem Soc 1951, 2673; Zhdankin, V. V.; et al., Tetrahedron Lett. 2000, 41 (28), 5299-5302; Martin, S. F. et al., Tetrahedron Lett. 1998, 39 (12), 1517-1520; Jursic, B. S. et al., Synth Commun 2001, 31 (4), 555-564; Albrecht, M. et al., Synthesis 2001, (3), 468-472; Yadav, L. D. S. et al., Indian J. Chem B. 41(3), 593-595(2002); Clark, J. E. et al., Synthesis (10), 891-894 (1991)].

Geeignete Aktivierungsreagenzien sind Kondensationsmittel wie z.B. polystyrolgebundenes Dicyclohexylcarbodiimid, Diisopropylcarbodiimid, Carbonyldiimidazol, Chlorkohlenäureester wie Methylchloroformiat, Ethylchloroformiat, Isoropylchloroformiat, Isobutylchloroformiat, sec-Butylchloroformiat oder Allylchloroformiat, Pivaloylchlorid, Polyphosphorsäure, Propanphosphonsäureanhydrid, Bis(2-oxo-3-oxazolidinyl)-phosphorylchlorid (BOPCl) oder Sulfonylchloride wie Methansulfonylchlorid, Toluolsulfonylchlorid oder Benzolsulfonylchlorid.

- Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylimethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylimethylketon, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid (DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF und Wasser.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetall-carbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydroxid, Triethylamin und Pyridin.

Die Basen werden im allgemeinen in äquimolar Mengen eingesetzt. Sie können aber auch im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

- Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, IV in einem Überschuß bezogen auf V einzusetzen.

- Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung

der Rohprodukte. Die Zwischen- und Endprodukte fallen z. T. in Form zäher Öle an, die unter verminderter Druck und bei mäßig erhöhter Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Die Umsetzung der Phenylalanine der Formel V mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV, wobei L² für Halogen oder C₁-C₆-Alkoxy steht, zu Benzoylderivaten der Formel III erfolgt in Gegenwart einer Base üblicherweise bei Temperaturen 10 von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 100°C, besonders bevorzugt bei Raumtemperatur in einem inerten organischen Lösungsmittel [vgl. Bergmann, E. D.; et al., J Chem Soc 1951, 2673; Zhdankin, V. V.; et al., Tetrahedron Lett. 2000, 41 (28), 5299-5302; Martin, S. F. et al., Tetrahedron Lett. 1998, 39 (12), 1517-1520; Jursic, B. S. et al., Synth Commun 2001, 31 (4), 555-564; Albrecht, 15 M. et al., Synthesis 2001, (3), 468-472; Yadav, L. D. S. et al., Indian J. Chem B. 41(3), 593-595(2002); Clark, J. E. et al., Sythesis (10), 891-894 (1991)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie 20 Benzol, Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid 25 (DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF und Wasser.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

30 Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders 35

bevorzugt werden Natriumhydroxid, Triethylamin und Pyridin.

Die Basen werden im allgemeinen in äquimolar Mengen eingesetzt. Sie können aber auch im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

5

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, IV in einem Überschuß bezogen auf V einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfol-

10

gen.

Natürlich können auch in analoger Weise zunächst die Phenylalanine der Formel V mit Aminen der Formel II zu den entsprechenden Amiden umgesetzt werden, welche dann mit Benzoesäure(derivate)n der Formel IV zu den gewünschten benzoylesubstituierten

15

Phenylalanin-Amiden der Formel I reagieren.

Die für die Herstellung der Benzoylederivate der Formel III benötigten Phenylalanine der Formel V mit L¹ = Hydroxy sind, auch in enantiomeren- und diastereomerenreiner Form, in der Literatur bekannt oder können gemäß der zitierten Literatur hergestellt

20

werden:

R⁹ = OR¹⁶:

- durch Kondensation von Glycinolat-Equivalenten mit Benzaldehyden
(Hvidt, T. et al., Tetrahedron Lett. 27 (33), 3807-3810 (1986) ; Saeed, A. et al.,
25 Tetrahedron 48 (12), 2507-2514 (1992); Kikuchi, J. et al., Chem. Lett. (3), 553-
556 (1993) ; Soloshonok, V. A. et al., Tetrahedron Lett. 35 (17), 2713-2716
(1994) ; Soloshonok, V. A.; et al.; Tetrahedron 52 (1), 245-254 (1996); Rozen-
berg, V. et al., Angew. Chem. 106 (1), 106-108 (1994); US 4605759; Alker, D. et
al., Tetrahedron 54 (22), 6089-6098 (1998) ; Shengde, W. et al., Synth. Com-
30 mun. 16 (12), 1479 (1986); JP 2001046076; Herbert, R. B. et al., Can. J. Chem.
72 (1), 114-117 (1994)) ;
- durch Spaltung von 2-N-Phtaloyl-3-Hydroxy-Phenylalaninen
(Hutton, C. A., Org. Lett. 1 (2), 295-297(1999));
- durch oxidative Aminohydroxylierung und anschließende Entschützung von Zimtsäurederivaten
(Kim, I. H. et al., Tetrahedron Lett. 42 (48), 8401-8403 (2001));
- durch Spaltung von substituierten Oxazolidinen
40

60

(Wu, S. D. et al., *Sythetic Commun.* 16 (12), 1479-1484 (1986));

- durch Spaltung von substituierten Oxazolinen
(Soloshonok, V. A.; et al.; *Tetrahedron* 52 (1), 245-254 (1996); Lown, J. W. et al., *Can. J. Chem.* 51, 856 (1973));
- durch Spaltung von substituierten 2-Oxazolidinonen
(Jung, M. E. et al., *Tetrahedron Lett.* 30 (48), 6637-6640 (1989));
- 10 - durch Spaltung von substituierten 5-Oxazolidinonen
(Blaser, D. et al., *Liebigs Ann. Chem.* (10), 1067-1078 (1991));
- durch Hydrolyse von Phenylserin-Nitril-Derivaten
(Iriuchijima, S. et al., *J. Am. Chem. Soc.* 96, 4280 (1974))
- 15 - durch Spaltung von substituierten Imidazolin-4-onen
(Davis, C et al., *J. Chem. Soc.* 3479 (1951))

$R^9 = SR^{17}$:

- 20 - durch Spaltung von 2-Acylamino-3-Thioalkyl-Phenylalaninderivaten
(Villeneuve, G. et al., *J. Chem. Soc. Perkin Trans 1* (16), 1897-1904(1993))
- durch Ringöffnung von Thiazolidinthionen
(Cook, A. H. et al., *J. Chem. Soc.* 1337 (1948).)

25

$R^9=NR^{18}R^{19}$:

- durch Ringöffnung von substituierten Imidazolinonen
(Kavrakova, I. K. et al., *Org. Prep. Proced. Int.* 28 (3), 333-338 (1996))
- 30 - durch Ringöffnung von substituierten Imidazolinen
(Meyer R., *Liebigs Ann. Chem.*, 1183 (1977) ; Hayashi, T. et al., *Tetrahedron Lett.* 37 (28), 4969-4972 (1996) ; Lin, Y. R. et al., *J. Org. Chem.* 62 (6), 1799-1803 (1997) ; Zhou, X. T. et al., *Tetrahedron Assym.* 10 (5), 855-862 (1999))
- 35 - durch Reduktion von 2-Azido-3-Amino-Phenylalanin-Derivaten
(Moyna, G. et al., *Synthetic Commun.* 27 (9), 1561-1567 (1997))
- durch Hydrierung von substituierten Imidazolidinen
(Alker, D. et al., *Tetrahedron Lett.* 39 (5-6), 475-478 (1998))

40

- Die für die Herstellung der Benzoylderivate der Formel III benötigten Phenylalanine der Formel V mit $L^1 = C_1-C_6$ -Alkoxy sind, auch in enantiomeren- und diastereomerenreiner Form, in der Literatur bekannt oder können gemäß der zitierten Literatur hergestellt
5 werden:
- $R^9 = OR^{16}$:
- durch Kondensation von Glycinolat-Equivalenten mit Aldehyden:
Nicolaou, K. C. et al., J. Am. Chem. Soc. 124 (35), 10451-10455 (2002) ; Carra-
10 ra, G. et al., Gazz. Chim. Ital. 82, 325 (1952); Fuganti, C. et al., J. Org. Chem. 51 (7), 1126-1128 (1986) ; Boger, D. L. et al., J. Org. Chem. 62 (14), 4721-4736 (1997); Honig, H. et al., Tetrahedron (46), 3841 (1990); Kanemasa, S. et al., Tetrahedron Lett. 34 (4), 677-680 (1993) ; US 4873359)
 - 15 - durch Spaltung von Dihydropyrazinen
(Li, Y. Q. et al., Tetrahedron Lett. 40 (51), 9097-9100 (1999); Beulshausen, T. et al., Liebigs Ann. Chem. (11), 1207-1209 (1991))
 - durch Reduktion von N-Amino-Phenylserin-Derivaten
20 (Poupardin, O. et al., Tetrahedron Lett. 42 (8), 1523-1526 (2001))
 - durch Spaltung von N-Carbamoyl-Phenylserin-Derivaten
(Park, H. et al., J. Org. Chem. 66 (21), 7223-7226 (2001) ; US 6057473; Kim, I. H. et al., Tetrahedron Lett. 42 (48), 8401-8403 (2001); Nicolaou, K. C. et al., Angew.N Chem. Int. Edit. 37 (19), 2714-2716 (1998))
 - durch Spaltung von substituierten Oxazolidinen
(Zhou, C. Y. et al., Synthetic Commun. 17 (11), 1377-1382 (1987))
 - 30 - durch Reduktion von 2-Azido-3-Hydroxy-Phenylpropionsäure-Derivaten
(Corey, E. J. et al., Tetrahedron Lett. 32 (25), 2857-2860 (1991))
 - durch Ringöffnung von Aziridinen mit Sauerstoff-Nukleophilen
(Davis, F. A. et al., J. Org. Chem. 59 (12), 3243-3245 (1994))
 - 35 - durch Spaltung von substituierten 2-Oxazolidinonen
(Jung, M. E. et al., Synlett 563-564 (1995))
 - durch Reduktion von 2-Hydroxyimino-3-Keto-Phenylpropionsäure-Derivaten

62

(Inoue, H. et al., Chem. Phar. Bull. 41 (9), 1521-1523 (1993); Chang, Y.-T. et al., J. Am. Chem. Soc. 75, 89 (1953); US 4810817)

- durch Hydrolyse von Phenylserin-Imino-Derivaten
5 (Solladiecavallo, A. et al., Gazz. Chim. Ital. 126 (3), 173-178 (1996); Solladieca-
vallo, A. et al., Tetrahedron Lett. 39 (15), 2191-2194 (1998))
- durch Spaltung von N-Acyl-Phenylserin-Derivaten
10 (Girard, A. et al., Tetrahedron Lett. 37 (44), 7967-7970 (1996))
- durch Reduktion von 2-Hydroxyimino-3-Hydroxy-Phenylpropionsäure-Derivaten
15 (Boukhris, S. et al., Tetrahedron Lett. 40 (9), 1669-1672 (1999))
- durch Spaltung von N-Benzyl-Phenylserin-Derivaten
15 (Caddick, S.; Tetrahedron, 57 (30), 6615-6626 (2001))
- durch Reduktion von 2-Diazo-3-Keto-Phenylpropionsäure-Derivaten
20 (Looker, et al., J. Org. Chem. 22, 1233 (1957))
- durch Spaltung von substituierten Imidazolidinonen
20 (Davis, A. C.; et al., J. Chem. Soc. 3479 (1951))

$R^9 = SR^{17}$:

- durch Ringöffnung von substituierten Thiazolidinen
25 (Nagai, U. et al., Heterocycles 28 (2), 589-592 (1989))
- durch Ringöffnung von substituierten Aziridinen mit Thiolen
30 (Legters, J. et al., Recl. Trav. Chim. Pays-Bas 111 (1), 16-21 (1992))
- durch Reduktion von 3-Keton-Phenylalanin-Derivaten
30 (US 4810817.)

$R^9 = NR^{18}R^{19}$:

- durch Reduktion von substituierten 2-Azido-3-Amino-Phenylalaninen-Derivaten
35 (Lee S. H., Tetrahedron 57(11),2139-2145(2001))
- durch Ringöffnung von substituierten Imidazolinien
40 (Zhou, X. T. et al., Tetrahedron Asymmetr. 10 (5), 855-862 (1999) ; Hayashi, T. et al., Tetrahedron Lett. 37 (28), 4969-4972 (1996))

Die für die Herstellung der Benzoylderivate der Formel III benötigten Benzoesäure(derivate) der Formel IV können käuflich erworben werden oder können analog zu literaturbekannten Vorschriften über eine Grignard-Redition aus dem entsprechenden Halogenid hergestellt werden [z.B. A. Mannschuk et al., Angew. Chem. 100, 299
5 (1988)].

Die Umsetzung der Benzoylderivate der Formel III mit L^1 = Hydroxy bzw. deren Salze mit einem Amin der Formel II zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I erfolgt in Gegenwart eines Aktivierungsreagens und gegebenenfalls in Gegenwart einer Base üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 100°C, besonders bevorzugt bei Raumtemperatur in einem inerten organischen Lösungsmittel. [vgl. Perich, J. W., Johns, R. B., J. Org. Chem. 53 (17), 4103-4105 (1988); Somlai, C. et al., Synthesis (3), 285-287 (1992) ; Gupta, A. et al., J. Chem. Soc. Perkin Trans. 2, 1911 (1990);
10 Guan et al., J. Comb. Chem. 2, 297 (2000)].

Geeignete Aktivierungsreagenzien sind Kondensationsmittel wie z.B. polystyrolgebundenes Dicyclohexylcarbodiimid, Diisopropylcarbodiimid, Carbonyldiimidazol, Chlorkohlensäureester wie Methylchloroformiat, Ethylchloroformiat, Isopropylchloroformiat, Isobutylchloroformiat, sec-Butylchloroformiat oder Allylchloroformiat, Pivaloylchlorid, Polyphosphorsäure, Propanphosphonsäureanhydrid, Bis(2-oxo-3-oxazolidinyl)-phosphorylchlorid (BOPCl) oder Sulfonylchloride wie Methansulfonylchlorid, Toluolsulfonylchlorid oder Benzolsulfonylchlorid.

25 Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylo, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und
30 Propionitril, Ketone wie Aceton, Methylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid (DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenchlorid, THF, Methanol, Ethanol und Wasser.

35 Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calci-

umoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetall-carbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, außerdem organische Basen,

- 5 z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydroxid, Triethylamin, Ethyldiisopropylamin, N-methylmorpholin und Pyridin.

10

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

- 15 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein II in einem Überschuß bezogen auf III einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

20

Die Umsetzung der Benzoylderivate der Formel III mit $L^1 = C_1-C_6\text{-Alkoxy}$ mit einem Amin der Formel II zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden

- 25 der Formel I erfolgt üblicherweise bei Temperaturen von 0 °C bis zum Siedepunkt des Reaktionsgemisches, vorzugsweise 0°C bis 100°C, besonders bevorzugt bei Raumtemperatur in einem inerten organischen Lösungsmittel gegebenenfalls in Gegenwart einer Base [vgl. Kawahata, N. H. et al., Tetrahedron Lett. 43 (40), 7221-7223 (2002); Takahashi, K. et al., J. Org. Chem. 50 (18), 3414-3415 (1985); Lee, Y. et al., J. Am. 30 Chem. Soc. 121 (36), 8407-8408 (1999)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von $C_5-C_8\text{-Alkanen}$, aromatische Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran (THF), Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid (DMF), Dimethylacetamid

65

(DMA) und N-Methylpyrrolidon (NMP) oder auch in Wasser, besonders bevorzugt sind Methylenechlorid, THF, Methanol, Ethanol und Wasser.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

5

Die Umsetzung kann gegebenenfalls in Gegenwart einer Base erfolgen. Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetallocide wie Lithiumoxid, Natriumoxid, Calciumoxid und

- 10 Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogen-carbonate wie Natriumhydrogencarbonat, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin, N-Methylmorpholin, und
15 N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Natriumhydroxid, Triethylamin, Ethyldiisopropylamin, N-methylmorpholin und Pyridin.

- 20 Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

- 25 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, II in einem Überschuß bezogen auf III einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

- 30 Die für die Herstellung der benzoylsubstituierten Phenylalanin-Amide der Formel I benötigten Amine der Formel II können käuflich erworben werden.

Verfahren B

Benzoylderivate der Formel III mit $R^9 = \text{Hydroxy}$ können auch erhalten werden, indem

- 35 acyierte Glycin-Derivate der Formel VIII, wobei die Acylgruppe eine abspaltbare Schutzgruppe wie Benzyloxycarbonyl (vgl. VIIa mit $\Sigma = \text{Benzyl}$) oder tert.-Butyloxycarbonyl (vgl. VIIa mit $\Sigma = \text{tert-Butyl}$) sein kann, mit Heterocyclcarbonyl-Verbindungen VII zu entsprechenden Aldolprodukten VI kondensiert wird. Anschließend wird die Schutzgruppe abgespalten und die so entstandenen Phenylalanine der
40 Formel V mit $R^9 = \text{Hydroxy}$ mit Benzoesäure(derivate)n der Formel IV acyliert.

Analog kann auch ein acyliertes Glycin-Derivat der Formel VIII, wobei die Acylgruppe ein substituierter Benzoylrest (vgl. VIIIb) ist, unter Baseneinfluß mit einer Heterocyclen-carbonyl-Verbindung VII zum Benzoylderivat III mit R⁹ = Hydroxy umgesetzt werden:

5

L¹ steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy oder C₁-C₆-Alkoxy.

10 L² steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy, Halogen, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxy carbonyl, C₁-C₄-Alkylsulfonyl, Phosphoryl oder Iso-ureyl.

15 Die Umsetzung der Glycinderivate VIII mit Heterocyclen-Verbindungen VII zum entsprechenden Aldolprodukt VI bzw. Benzoylderivat III mit R⁹ = Hydroxy erfolgt üblicherweise bei Temperaturen von -100°C bis zum Siedepunkt der Reaktionsmischung, bevorzugt -80°C bis 20°C, insbesondere bevorzugt -80°C bis -20°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. J.-F. Rousseau et al., J. Org. Chem. 63, 2731-2737 (1998)].

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, Ether wie Diethylether, Diisopropylether, tert.-Butylimethylether, Dioxan, Anisol und Tetrahydrofuran, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Diethylether, Dioxan und Tetrahydrofuran.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- 10 Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetallazide wie Lithiumhexamethyldisilazid, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methylolithium, Butyllithium und Phenyllithium, sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, 15 Kaliummethanolat, Kalium-tert.-Butanolat, Kalium-tert.-Pentanolat und Dimethoxy-magnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Be-tracht. Besonders bevorzugt werden Natriumhydrid, Lithiumhexamethyldisilazid und 20 Lithiumdiisopropylamid.

Die Basen werden im allgemeinen in äquimolaren Mengen eingesetzt, sie können aber auch katalytisch, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

- 25 Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, die Base und/oder die Heterocyclcarbonyl-Verbindungen VII in einem Überschuß bezogen auf die Glycinderivate VIII einzusetzen.
- 30 Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

- Die für die Herstellung der Verbindungen I benötigten Glycinderivate der Formel VIII können käuflich erworben werden, sind in der Literatur bekannt [z.B. H. Pessoa- 35 Mahana et al., Synth. Comm. 32, 1437 (2002) oder können gemäß der zitierten Literatur hergestellt werden.

- Die Abspaltung der Schutzgruppe zu Phenylalaninen der Formel V mit R⁹ = Hydroxy erfolgt nach literaturbekannten Methoden[vgl. J.-F. Rousseau et al., J. Org. Chem. 63, 40 2731-2737 (1998) ; J. M. Andres, Tetrahedron 56, 1523 (2000)];

im Fall von Σ = Benzyl durch Hydrogenolyse, bevorzugt durch Wasserstoff und Pd/C in Methanol; im Fall von Σ = tert.-Butyl durch Säure, bevorzugt Salzsäure in Dioxan.

- 5 Die Umsetzung der Phenylalanine V mit R^9 = Hydroxy mit Benzoësäure(derivate)n IV zu Benzoylderivaten III mit R^9 = Hydroxy erfolgt üblicherweise analog der unter Verfahren A genannten Umsetzung der Phenylalanine der Formel V mit Benzoësäure(derivate)n der Formel IV zu Benzoylderivaten III.

10

Die Benzoylderivate der Formel III mit R^9 = Hydroxy lassen sich anschließend mit Aminen der Formel II analog zu Verfahren A zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I mit R^9 = Hydroxy umsetzen, welche dann mit Verbindungen der Formel IX zu benzoylsubstituierten Phenylalanin-Amiden der Formel I mit R^9 = OR^{16} derivatisiert werden können [vgl. z.B. Yokokawa, F. et al., Tetrahedron Lett. 42 (34), 5903-5908 (2001); Arrault, A. et al., Tetrahedron Lett. 43(22), 4041-4044 (2002)].

- 20 Ebenso können die Benzoylderivate der Formel III mit R^9 = Hydroxy zunächst mit Verbindungen der Formel IX zu weiteren Benzoylderivaten der Formel III derivatisiert werden [vgl. z.B. Troast, D. et al., Org. Lett. 4 (6), 991-994 (2002); Ewing W. et al., Tetrahedron Lett., 30 (29), 3757-3760 (1989); Paulsen, H. et al., Liebigs Ann. Chem. 565 (1987)] und anschließend analog zu Verfahren A mit Aminen der Formel II zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I mit R^9 = OR^{16} umgesetzt werden:

69

L¹ steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy oder C₁-C₆-Alkoxy.

5

L³ steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Halogen, Hydroxy, oder C₁-C₆-Alkoxy.

Die Umsetzung der Benzoylderivate der Formel III mit R⁹ = Hydroxy bzw. OR¹⁶ mit
10 Aminen der Formel II zu benzoylsubstituierten Phenylalanin-Amiden der Formel I mit
R⁹ = Hydroxy bzw. OR¹⁶ erfolgt üblicherweise analog der unter Verfahren A geschilderten
Umsetzung der Benzoylderivate der Formel III mit Aminen der Formel II.

Die Umsetzung der Benzoylderivate der Formel III mit R⁹ = Hydroxy bzw. der benzoyl-
15 substituierten Phenylalanin-Amide der Formel I mit R⁹ = Hydroxy mit Verbindungen der
Formel IX zu Benzoylderivaten der Formel III mit R⁹ = OR¹⁶ bzw. benzoylsubstituierten
Phenylalanin-Amiden der Formel I mit R⁹ = OR¹⁶ erfolgt üblicherweise bei Temperaturen von 0°C bis 100°C, vorzugsweise 10°C bis 50°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. z.B. Troast, D. et al., Org. Lett. 4 (6), 991-

994 (2002); Ewing W. et al., Tetrahedron Lett., 30 (29), 3757-3760 (1989); Paulsen, H. et al., Liebigs Ann. Chem. 565 (1987)].

- Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan,
- 5 Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylketon, Diethylketon und tert.-Butylmethylketon,
- 10 Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Dichlormethan, tert.-Butylmethylether, Dioxan und Tetrahydrofuran.

Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- 15 Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calciumoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetallhydrogencarbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methylolithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliummethanolat, Kalium-tert.-Butanolat, Kalium-tert.-Pentanolat und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin
- 20
- 25
- 30
- 35

Die Basen werden im allgemeinen in äquimolaren Mengen eingesetzt, sie können aber auchkatalytisch, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, die Base und/oder IX in einem Überschuß bezogen auf III bzw. I einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

Die benötigten Verbindungen der Formel VIII können käuflich erworben werden.

5

Verfahren C

Benzoylderivate der Formel III mit $R^9 = \text{Hydroxy}$ können auch erhalten werden, indem

- 10 Aminomalonyl-Verbindungen der Formel XI zunächst mit Benzoesäure(derivate)n der Formel IV zu entsprechenden N-Acyl-Aminomalonyl-Verbindungen der Formel X acyliert werden und anschließend mit einer Heterocyclcarbonyl-Verbindung der Formel VII unter Decarboxylierung kondensiert werden:

15

L^1 steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy oder C_1-C_6 -Alkoxy.

L² steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy, Halogen, C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylsulfonyl, Phosphoryl oder Isoureyl.

5

L⁴ steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy oder C₁-C₆-Alkoxy.

10 Die Acylierung der Aminomalonyl-Verbindungen der Formel XI mit Benzoësäure(derivate)n der Formel IV zu entsprechenden N-Acyl-Aminomalonyl-Verbindungen der Formel X erfolgt üblicherweise analog der unter Verfahren A genannten Umsetzung der Phenylalanine der Formel V mit Benzoësäure(derivate)n der Formel IV zu den entsprechenden Benzoylderivaten der Formel III.

15

Die Umsetzung der N-Acyl-Aminomalonyl-Verbindungen der Formel X mit Heterocycliccarbonylverbindungen der Formel VII zu Benzoylderivaten der Formel III mit R⁹ = Hydroxy erfolgt üblicherweise bei Temperaturen von 0°C bis 100°C, vorzugsweise 10°C bis 50°C, in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. z.B. US 4904674; Hellmann, H. et al., Liebigs Ann. Chem. 631, 175-179 (1960)]

20 Falls L⁴ bei den N-Acyl-Aminomalonyl-Verbindungen der Formel X für C₁-C₆-Akoxy steht, ist es von Vorteil, L⁴ zunächst durch Esterverseifung [z.B. Hellmann, H. et al., Liebigs Ann. Chem. 631, 175-179 (1960)] in eine Hydroxygruppe zu überführen.

25

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenechlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethyl-ether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Diethylether, Dioxan und Tetrahydrofuran.

30

35 Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide wie Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid, Alkalimetall- und Erdalkalimetalloxide wie Lithiumoxid, Natriumoxid, Calci-

- umoxid und Magnesiumoxid, Alkalimetall- und Erdalkalimetallhydride wie Lithiumhydrid, Natriumhydrid, Kaliumhydrid und Calciumhydrid, Alkalimetallamide wie Lithiumamid, Natriumamid und Kaliumamid, Alkalimetall- und Erdalkalimetallcarbonate wie Lithiumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalimetall-
- 5 hydrogencarbonate wie Natriumhydrogencarbonat, metallorganische Verbindungen, insbesondere Alkalimetallalkyle wie Methylolithium, Butyllithium und Phenyllithium, Alkylmagnesiumhalogenide wie Methylmagnesiumchlorid sowie Alkalimetall- und Erdalkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kaliummethanolat, Kalium-tert.-Butanolat, Kalium-tert.-Pentanolat und Dimethoxymagnesium, außerdem
- 10 organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Diisopropylethylamin und N-Methylpiperidin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden Triethylamin und Diisopropylethylamin.
- 15 Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuß oder gegebenenfalls als Lösungsmittel verwendet werden.
- Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es
20 kann vorteilhaft sein, die Base in einem Überschuß bezogen auf X einzusetzen.

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.
- 25 Die so erhaltenen Benzoylderivate der Formel III mit R⁹ = Hydroxy können anschließend gemäß den voranstehend genannten Verfahren A bzw. B zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I mit R⁹ = OR¹⁶ umgesetzt werden.
- 30 Die benötigten Aminomalonyl-Verbindungen der Formel XI können käuflich erworben werden bzw. sind in der Literatur bekannt [z.B. US 4904674; Hellmann, H. et al., Liebigs Ann. Chem. 631, 175-179 (1960)] oder können gemäß der zitierten Literatur hergestellt werden.
- 35 Die benötigten heterocyclischen Verbindungen der Formel VII können käuflich erworben werden.

Verfahren D

Benzoylderivate der Formel III mit $R^9 = \text{Hydroxy}$ und $R^{10} = \text{Wasserstoff}$ können auch erhalten werden, indem Ketoverbindungen der Formel XIII zunächst mit Benzoësäure(derivate)n der Formel IV zu entsprechenden N-Acyl-Ketoverbindungen der Formel

- 5 XII acyliert werden und anschließend die Ketogruppe reduziert wird [Girard A, Tetrahedron Lett. 37(44), 7967-7970 (1996); Nojori R., J. Am. Chem. Soc. 111(25), 9134-9135 (1989); Schmidt U., Synthesis (12), 1248-1254 (1992); Bolhofer, A.; J. Am. Chem. Soc. 75, 4469 (1953)]:

10

L^1 steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy oder $C_1\text{-}C_6$ -Alkoxy.

15

L^2 steht für eine nucleophil verdrängbare Abgangsgruppe, z.B. für Hydroxy, Halogen, $C_1\text{-}C_6$ -Alkylcarbonyl, $C_1\text{-}C_6$ -Alkoxy carbonyl, $C_1\text{-}C_6$ -Alkylsulfonyl, Phosphoryl oder Isoureyl.

20

Die Acylierung der Ketoverbindungen der Formel XIII mit Benzoësäure(derivate)n der Formel IV zu N-Acyl-Ketoverbindungen der Formel XII erfolgt üblicherweise analog der unter Verfahren A genannten Umsetzung der Phenylalanine der Formel V mit Benzoësäure(derivate)n der Formel IV zu den entsprechenden Benzoylderivaten der Formel III.

- Die für die Herstellung der Benzoylderivate der Formel III mit R⁹ = Hydroxy und R¹⁰ = Wasserstoff benötigten Ketoverbindungen der Formel XIII sind in der Literatur bekannt [WO 02/083111; Boto, A. et al., Tetrahedron Letters 39 (44), 8167-8170 (1988); von 5 Geldern, T. et al., J. of Med. Chem. 39(4), 957-967 (1996); Singh, J. et al., Tetrahedron Letters 34 (2), 211-214 (1993); ES 2021557; Maeda, S: et al., Chem. & Pharm. Bull. 32 (7), 2536-2543 (1984); Ito, S. et al., J. of Biol. Chem. 256 (15), 7834-4783 10 (1981); Vinograd, L. et al., Zhurnal Organicheskoi Khimii 16 (12), 2594-2599 (1980); Castro, A. et al., J. Org. Chem. 35 (8), 2815-2816 (1970); JP 02-172956; Suzuki, M. et al., J. Org. Chem. 38 (20), 3571-3575 (1973) ; Suzuki, M. et al, Synthetic Communications 2 (4), 237-242 (1972)] oder können gemäß der zitierten Literatur hergestellt werden.
- 15 Die Reduktion der N-Acyl-Ketoverbindungen der Formel XII zu Benzoylderivaten der Formel III mit R⁹ = Hydroxy und R¹⁰ = Wasserstoff erfolgt üblicherweise bei Temperaturen von 0°C bis 100°C, vorzugsweise 20°C bis 80°C, in einem inerten organischen Lösungsmittel in Gegenwart eines Reduktionsmittels.
- 20 Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Gemische von C₅-C₈-Alkanen, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylool, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropylether, tert.-Butylmethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, 25 Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt Toluol, Methylenchlorid oder tert.-Butylmethylether.
- 30 Es können auch Gemische der genannten Lösungsmittel verwendet werden.
- Als Reduktionsmittel eignen sich z.B. Natriumborhydrid, Zinkborhydrid, Natriumcyano-borhydrid, Lithium-triethylborhydrid (Superhydrid®), Lithium-tri-sec.butylborhydrid (L-Selectrid®), Lithiumaluminiumhydrid oder Boran [vgl. z.B. WO 00/20424; Marchi, C. et 35 al., Tetrahedron 58 (28), 5699 (2002); Blank, S. et al., Liebigs Ann. Chem. (8), 889-896 (1993); Kuwano, R. et al., J. Org .Chem. 63 (10), 3499-3503 (1998); Clariana, J. et al., Tetrahedron 55 (23), 7331-7344 (1999)].
- Weiterhin kann die Reduktion auch in Gegenwart von Wasserstoff und eines Katalysator erfolgen. Als Katalysatoren eignen sich z.B. [Ru(BINAP)Cl₂] oder Pd/C [vgl. Noyori, 40

76

R. et al., J. Am. Chem. Soc. 111 (25), 9134-9135 (1989); Bolhofer, A. et al., J. Am. Chem. Soc. 75, 4469 (1953)].

- Daneben kann die Reduktion auch Gegenwart eines Mikroorganismus erfolgen. Als
 5 Mikroorganismus eignet sich z.B. *Saccharomyces Rouxii* [vgl. Soukup, M. et al., Helv. Chim. Acta 70, 232 (1987)].

Die N-Acyl-Ketoverbindungen der Formel XII und das jeweilige Reduktionsmittel werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann vorteilhaft sein, das Reduktionsmittel in einem Überschuß bezogen auf XII einzusetzen.
 10

Die Aufarbeitung und Isolierung der Produkte kann in an sich bekannter Weise erfolgen.

15 Die so erhaltenen Benzoylderivate der Formel III mit R^9 = Hydroxy und R^{10} = Wasserstoff können anschließend gemäß den voranstehend genannten Verfahren A und B zu den gewünschten benzoylsubstituierten Phenylalanin-Amiden der Formel I mit R^9 = OR^{16} umgesetzt werden.

20 Benzoylderivate der Formel III

wobei R¹ bis R⁶ und R⁹ bis R¹⁵ die unter Anspruch 1 genannten Bedeutungen haben
 25 und L¹ für eine nucleophil verdrängbare Abgangsgruppe wie Hydroxy oder C₁-C₆-Alkoxy steht, sind ebenfalls ein Gegenstand der vorliegenden Erfindung.

Die besonders bevorzugten Ausführungsformen der Benzoylderivate der Formel III in Bezug auf die Variablen entsprechen denen der Reste R¹ bis R⁶ und R⁹ bis R¹⁵ der
 30 Formel I.

Besonders bevorzugt werden Benzoylderivate der Formel III, in denen

R¹ Fluor, Chlor oder CF₃,

R² und R³ unabhängig voneinander Wasserstoff, Fluor oder Chlor,

R⁴, R⁵ und R⁶ Wasserstoff,

5 R⁹ OR¹⁶, SR¹⁷ oder NR¹⁸R¹⁹;

R¹⁰ Wasserstoff;

R¹¹ Wasserstoff, Fluor oder CH₃;

R¹² Wasserstoff, Fluor oder Chlor;

R¹³, R¹⁴ und R¹⁵ Wasserstoff;

10 R¹⁶ und R¹⁸ unabhängig voneinander Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl, Phenylaminocarbonyl, N-(C₁-C₄-alkyl)-N-(phenyl)-aminocarbonyl, SO₂CH₃, SO₂CF₃ oder SO₂(C₆H₅);

R¹⁷ Wasserstoff, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy carbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-Alkyl)-aminocarbonyl, N-(C₁-C₄-alkoxy)-N-(C₁-C₄-alkyl)-aminocarbonyl; und

15 R¹⁹ Wasserstoff oder C₁-C₄-Alkyl;

bedeuten.

20

Beispiel 1

(2S,3R)-Methyl-phenyl-carbaminsäure-2-(4-fluoro-2-trifluoromethyl-benzoylamino)-2-methylcarbamoyl-1-o-tolyl-ethyl-ester (Tab. 3, Nr. 3.34)

25 1.1) 2-Amino-3-oxo-3-o-tolyl-propionsäureethylester-hydrochlorid

4.2 g (0.038 mol) Kalium-tert-butylat wurden unter Stickstoff in THF suspendiert. Es wurde auf -78°C gekühlt und 10.0 g (0.037 mol) N-(Diphenylmethylen)-glycinethylester gelöst in THF zugetropft. Nach 40 min bei -78 °C wurde die Lösung in einen gekühlten

30 Tropftrichter (-78°C) überführt und zu einer auf -78°C gekühlten Lösung von 2-Methylbenzoylchlorid in THF getropft. Nach 1 h Rühren bei -78°C ließ man die Reaktionsmischung innerhalb von 2 h auf 0°C erwärmen. Es wurde mit 10%-iger Salzsäure hydrolysiert und nachgerührt. Die Lösungsmittel wurden entfernt, der Rückstand in Wasser aufgenommen und mit MTBE gewaschen. Die Wasserphase wurde eingeengt,

78

der Rückstand mit Methanol versetzt und abfiltriert. Nach Einengen des Filtrats erhielt man 6.2g der Titelverbindung als farbloses Öl.

¹H-NMR (DMSO): δ = 9.3 (br,3H, NH); 7.3-7.6 (m, 4H), 4.1 (m, 2H); 3.7 (m, 1H); 2.40 (s, 3H); 0.95 (t, 3H).

5

1.2) 2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-oxo-3-o-tolyl-propionsäureethylester

6.2 g (0.024mol) 2-Amino-3-oxo-3-o-tolyl-propionsäureethylester hydrochlorid wurden in Methylenechlorid gelöst und 9.7 g (0.096 mol) Triethylamin zugegeben. Hierzu wurden bei 0°C 5.4 g (0.024 mol) 4-Fluor-2-trifluormethylbenzoylchlorid gelöst in Methylenechlorid zugetropft. Es wurde 1h bei Raumtemperatur (RT) gerührt und anschließend mit 5%iger Salzsäure versetzt. Die organische Phase wurde abgetrennt, gewaschen, getrocknet und das Lösungsmittel entfernt. Nach chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 4.7g der Titelverbindung als farblose Kristalle.

¹H-NMR (DMSO): δ = 9.61 (d, 1H); 7.3-7.9 (m, 7H); 6.18 (d, 1H); 4.1-4.3 (m, 2H); 2.40 (s, 3H); 1.15 (t, 3H).

1.3) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propionsäureethylester

4.7 g (0.0114 mol) 2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-oxo-3-o-tolyl-propionsäureethylester wurden in Methylenechlorid gelöst, die Lösung im Ultraschallbad entgast und 200 mg Katalysatormischung versetzt. Die Katalysatormischung wurde zuvor durch 1h erhitzen von 78 mg Dichloro(P-Cymene)ruthenium(II)-Dimer (RuCl₂Cy) und 138 mg BINAP in Methylenechlorid und Ethanol auf 50°C und anschließendem Entfernen der Lösungsmittel hergestellt.

79

Die Lösung wurde unter 80 bar Wasserstoffdruck bei 50°C 90 h erhitzt. Nach Entfernen der Lösungsmittel und chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 3.4 g der Titelverbindung als farblose Kristalle.
¹H-NMR (DMSO): δ = 8.95 (d, 1H); 7.0-8.7 (m, 7H); 5.80 (d, 1H); 5.40 (t, 1H); 4.75 (dd, 5 1H); 4.10 (m, 2H); 2.30 (s, 3H); 1.20 (t, 3H).

1.4) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propionsäure-N-methylamid

- 10 3.4 g (0.0082 mol) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propion-säureethylester wurden in Ethanol gelöst. Bei Raumtemperatur leitete man Methylamin-Gas ein. Nach 1.5h wurde für 1h auf 30-35°C erwärmt. Nach Entfernen der Lösungsmittel erhielt man 3.1g der Titelverbindung als farblose Kristalle.
¹H-NMR (DMSO): δ = 8.45 (d, 1H); 7.0-7.7 (m, 7H); 5.70 (d, 1H); 5.30 (t, 1H); 4.65 (dd, 15 1H); 2.65 (d, 3H); 2.40 (s, 3H); 1.10 (t, 3H).

1.5) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-(N-phenyl-N-methylaminocarbonyloxy)-3-o-tolyl-propionsäure-N-methylamid (Tab. 3, Nr. 3.34)

- 20 0.4 g (0.001 mol) (2S,3R)-2-(4-Fluoro-2-trifluoromethyl-benzoylamino)-3-hydroxy-3-o-tolyl-propion-säure-N-methylamid wurden in Methylenchlorid gelöst, 013 g (0.0013 mol) Triethylamin und eine Spatelspitze 4-Dimethylaminopyridin zugesetzt und 0.22g N-Phenyl-N-Methyl-Carbamoylchlorid in Methylenchlorid zugetropft. Die Suspension wurde 15 Stunden gerührt, mit 5% Salzsäure und NaHCO₃-Lösung extrahiert und ge-

80

trocknet. Nach chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhielt man 0.28g der Titelverbindung als farbloses Öl.
¹H-NMR (DMSO): δ = 8.8 (br, 1H); 7.0-7.6 (m, 12H); 5.70 (d, 1H); 5.30 (br, 1H); 4.85 (dd, 1H); 2.75 (d, 3H); 2.55 (d, 3H); 2.40 (s, 3H).

5

Beispiel 2N-[2-(Benzyl-formyl-amino)-1-methylcarbamoyl-2-phenyl-ethyl]-4-fluoro-2-10 trifluoromethyl-benzamid (Tab. 3, Nr. 3.43)2.1) 1-Benzyl-5-phenyl-4,5-dihydro-1H-imidazole-4-carbonsäureethylester

15 25.7 g (0.1305 mol) Benzylidenbenzylamin wurden in Ethanol gelöst und 15.2 g (0.1305 mol) Isocyanessigsäureethylester zugetropft. Die Lösung wurde 16h unter Rückfluß erhitzt. Nach Entfernen der Lösungsmittel und Trocknen erhielt man 40.2g der Titelverbindung als farbloses Öl.

20 ¹H-NMR (DMSO): δ = 7.1-7.4 (m, 10H); 4.6 (d, 1H); 4.5 (d, 1H); 4.3 (d, 1H); 4.1 (q, 2H); 3.8 (d, 1H); 1.1 (t, 3H).

2.2) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäure

25 14.8 g (0.048 mol) 1-Benzyl-5-phenyl-4,5-dihydro-1H-imidazole-4-carbonsäure-ethylester wurden in 100 ml 47%iger HBr-Lösung 3h unter Rückfluß erhitzt. Die Lösungsmittel wurden entfernt, der Rückstand mit Wasser verrührt und filtriert. Die Lösungsmittel wurden entfernt, der Rückstand in Ethanol aufgenommen und mit Diethylether verdünnt. Die entstandene Suspension wurde filtriert und die Lösungsmittel ent-

fernt. Man erhielt 14.0g der Titelverbindung als Rohprodukt, das in der nächsten Stufe ohne Reinigung weiter eingesetzt wurde.

2.3) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäuremethylester

5

13.5 g (0.04 mol) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäure wurden in Methanol gelöst und 7.1g (0.06mol) Thionylchlorid und 1 Tropfen DMF zugetropft. Nach 20 Stunden wurden die Lösungsmittel entfernt, der Rückstand in Diethylether 10 suspendiert und unter Rühren 5%-ige NaHCO₃-Lösung zugegeben. Die Etherphase wurde abgetrennt, gewaschen und getrocknet. Nach Entfernen der Lösungsmittel erhält man 4.0g der Titelverbindung als farbloses Öl, das ohne weitere Reinigung eingesetzt wurde.

15 2.4) 3-(N-Benzyl-N-formyl-amino)-2-(4-fluoro-2-trifluoromethyl-benzoylamino)-3-phenyl-propionsäuremethylester

1.4 g (0.0052 mol) 2-Amino-3-(N-benzyl-N-formyl-amino)-3-phenyl-propionsäuremethylester wurden in Methylenchlorid gelöst und 1.0 g (0.0052 mol) 4-Fluor-2-trifluormethyl-benzoësäure und 1.0 g (0.010mol) Triethylamin in THF zugegeben. Bei 0-5°C wurden 1.3 g (0.0052 mol) Bis(2-oxo-3-oxazolidinyl)phosphorylchlorid zugegeben. Nach 2h bei 0°C wurde 15h bei Raumtemperatur gerührt. Die Lösungsmittel wurden entfernt, der Rückstand in Essigsäureethylester aufgenommen, gewaschen und getrocknet. Nach chromatographischer Reinigung (Kieselgelsäule, Cyclohexan/Essigsäureethylester) erhält man 0.65 g der Titelverbindung als farbloses Öl.
¹H-NMR (DMSO): δ = 8.45 (s, 1H); 7.95 (d 1H); 7.00 – 7.40 (m, 13H); 5.40 – 5.55 (m, 2H); 4.38 (q, 2H); 3.60 (s, 3H).

2.5) N-[2-(N-Benzyl-N-formyl-amino)-1-methylcarbamoyl-2-phenyl-ethyl]-4-fluoro-2-trifluoromethyl-benzamid (Tab. 3, Nr. 3.43)

5

0.65g (0.00129mol) 3-(N-Benzyl-N-formyl-amino)-2-(4-fluoro-2-trifluoromethyl-benzoylamino)-3-phenyl-propionsäuremethylester wurden in 1Methanol gelöst. Bei 0°C wurde Methylamin-Gas eingeleitet und nach 1h für 18h auf RT erwärmt. Nach Entfernen der Lösungsmittel und üblichen Reinigungsmethoden erhielt man 550 mg der Titelverbindung als farblose Kristalle.

10 ^1H -NMR (DMSO): $\delta = 9.20$ (d, 1H); 8.51 (s, 1H); 8.30 (m, 1H); 6.75-7.75 (m, 12H); 5.52 (t, 1H); 5.07 (d, 1H); 4.52 (d, 1H); 4.20 (d, 1H); 2.40 (d, 3H).

Beispiel 3

15 3-Chloro-2-trifluormethyl-benzoësäure

20 1,03 g (42,4 mmol) Magnesiumspäne wurden in THF gelöst. Man gab 2 Tropfen 1,2-Dibrommethan zu und rührte die Reditionsmischung nach Beginn der exothermen Reaktion bei 32-35°C unter Eiskühlung. Anschließend wurden 10,0 g (38,5 mmol) 1-Brom-3-chlor-2-trifluormethylbenzol in THF so zugetropft, dass die Temperatur 32°C nicht überstieg. Man rührte 30 min. nach, kühlte auf 0°C ab und leitete über 2 h Kohlendioxid ein. Anschließend wurde auf Raumtemperatur erwärmt und eine weitere 25 Stunde CO₂ eingeleitet.

Man goß die Lösung auf eine Mischung von 1M Salzsäure und Eis und extrahierte mit Methyl-tert-butylether. Die organische Phase wurde dann mit 1M NaOH extrahiert, die wässrige Phase mit konz. Salzsäure angesäuert und mit Methylenchlorid extrahiert.

Nach Trocknen und destillativer Entfernung des Lösungsmittels erhielt man 7,7 g (84 % der Theorie) der Titelverbindung als farblose Kristalle (Schmp. 110°C).

- In den nachfolgenden Tabellen 2 und 3 sind neben den voranstehenden Verbindungen
5 noch weitere Benzoylderivate der Formel III sowie benzoylsubstituierte Phenylalanin-Amide der Formel I aufgeführt, die in analoger Weise nach den voranstehend beschriebenen Verfahren hergestellt wurden oder herstellbar sind.

Tabelle 2

Nr.	R^3	R^9	R^{11}	R^{12}	R^{13}	R^{14}	L^1	erythro/ threo	Konfigu- ration	Schmp. bzw. m/z
2.1	H	OH	H	H	H	H	OCH ₃	erythro	rac	115
2.2	H	OH	H	H	H	H	OH	threo	rac	110
2.3	F	OH	H	H	H	H	OC ₂ H ₅	erythro	rac	93
2.4	F	OH	H	F	H	H	OC ₂ H ₅	threo	2-S, 3-R	96
2.5	F	OH	CH ₃	F	H	H	OC ₂ H ₅	threo	2-S, 3-R	141
2.6	H	OH	H	H	H	H	OC ₂ H ₅	erythro	rac	93
2.7	H	OH	H	H	H	H	OCH ₃	threo	rac	114
2.8	H	OCOC(CH ₃) ₃	H	H	H	H	OCH ₃	threo	rac	157
2.9	F	OH	H	CF ₃	H	H	OH	threo	rac	33
2.10	F	OH	H	OCH ₃	H	H	OC ₂ H ₅	threo	2-S, 3-R	128
2.11	F	OH	H	NO ₂	H	H	OCH ₃	erythro	rac	119

Nr.	R ³	R ⁹	R ¹¹	R ¹²	R ¹³	R ¹⁴	L ¹	erythro/ threo	Konfigu- ration	Schmp. bzw. m/z
2.12	F	OH	H	NO ₂	H	H	OCH ₃	threo	rac	130
2.13	F	OH	H	H	CF ₃	H	OH	threo	rac	145
2.14	F	OH	Cl	H	H	H	OH	threo	rac	188
2.15	F	OH	Cl	CF ₃	H	H	OH	threo	rac	155
2.16	F	OH	Cl	Cl	H	H	OH	threo	rac	192
2.17	F	OH	Cl	H	Cl	H	OH	threo	rac	190
2.18	F	OH	Cl	H	H	Cl	OH	threo	rac	202
2.19	F	OH	OCH ₂ C ₆ H ₅	H	H	H	OC ₂ H ₅	threo	2-S, 3-R	164
2.20	F	OCOCH ₃	Cl	H	H	H	OH	threo	rac	188
2.21	F	OCON(CH ₃) ₂	H	NO ₂	H	H	OCH ₃	threo	rac	133
2.22	F	Osi(CH ₃) ₂ C(CH ₃) ₃	H	H	H	H	OH	threo	rac	m/z 485
2.23	F	Osi(CH ₃) ₂ C(CH ₃) ₃	H	H	H	H	OCH ₃	threo	rac	114
2.24	F	NHCH ₂ C ₆ H ₅	H	H	H	H	OCH ₃	4 : 1	rac	Öl

I mit R¹ = CF₃, R², R⁴, R⁵, R⁶, R⁷ = H,
R⁸ = CH₃, R¹³, R¹⁴, R¹⁵ = H

Tabelle 3

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.1	H	OH	H	H		erythro	rac	Öl
3.2	H	OH	H	H		threo	rac	154
3.3	H	OH	CH ₃	H		threo	rac	206
3.4	H	OH	H	CH ₃	H	threo	rac	209
3.5	F	OH	H	H	H	erythro	rac	225
3.6	F	OH	H	H	H	threo	rac	155
3.7	F	OH	H	H	F	threo	2-S, 3-R	90
3.8	F	OH	CH ₃	H	H	threo	rac	167
3.9	F	OH	H	CH ₃	H	threo	2-S, 3-R	62
3.10	F	OH	H	CH ₃	F	threo	2-S, 3-R	41
3.11	F	OH	H	CH ₃	Cl	threo	2-S, 3-R	Öl
3.12	H	OCH ₃	H	H	H	threo	rac	155

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.13	F	O-CH ₂ -C ₆ H ₅	H	H	H	threo	rac	168
3.14	H	O-CH ₂ -(o-CF ₃ -C ₆ H ₄)	H	H	H	threo	rac	137
3.15	H	O-CH ₂ -(o-CF ₃ -C ₆ H ₄)	CH ₃	H	H	threo	rac	Öl
3.16	F	O-CH ₂ -(2,4,6-Cl ₃ -C ₆ H ₂)	H	H	H	threo	rac	180
3.17	H	OCOCH ₃	H	H	H	threo	rac	196
3.18	F	OCOCH ₃	H	H	H	threo	rac	218
3.19	F	OCOCH ₃	H	CH ₃	H	threo	2-S, 3-R	165
3.20	F	OCOCH(CH ₃) ₂	H	H	H	threo	rac	181
3.21	H	OCOC(CH ₃) ₃	H	H	H	erythro	rac	190
3.22	H	OCOC(CH ₃) ₃	H	H	H	threo	rac	140
3.23	F	OCOC(CH ₃) ₃	H	H	H	threo	rac	Öl
3.24	F	OCOC(CH ₃) ₃	H	CH ₃	H	threo	2-S, 3-R	183
3.25	F	OCOC(CH ₃) ₃	H	CH ₃	F	threo	2-S, 3-R	189
3.26	H	OCON(CH ₃) ₂	H	H	H	erythro	rac	Öl
3.27	F	OCON(CH ₃) ₂	H	H	H	threo	rac	120
3.28	F	OCON(CH ₃) ₂	H	CH ₃	H	threo	2-S, 3-R	Öl
3.29	F	OCON(CH ₃) ₂	H	CH ₃	F	threo	2-S, 3-R	170
3.30	F	OCON(CH ₃) ₂	H	CH ₃	Cl	threo	2-S, 3-R	Öl
3.31	F	OCONH(C ₆ H ₅)	H	H	H	threo	rac	207
3.32	F	OCONH(m-Cl-C ₆ H ₄)	H	H	H	threo	rac	200
3.33	F	OCONH(m-CN-C ₆ H ₄)	H	H	H	threo	rac	140

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.34	F	OCON(CH ₃)(C ₆ H ₅)	H	CH ₃	H	threo	2-S, 3-R	Öl
3.35	F	OCO-N-morpholinyl	H	CH ₃	H	threo	2-S, 3-R	Öl
3.36	H	OCOOCH ₂ CH(CH ₃) ₂	H	H	H	threo	rac	142
3.37	F	OCOOCH ₂ CH(CH ₃) ₂	H	H	H	threo	rac	136
3.38	H	OSO ₂ CH ₃	H	H	H	threo	rac	141
3.39	F	OSO ₂ CH ₃	H	H	H	threo	rac	135
3.40	F	OSO ₂ CH ₃	H	CH ₃	H	threo	2-S, 3-R	90
3.41	F	S-CH ₂ -C ₆ H ₅	H	CH ₃	H	1:1	rac	162
3.42	H	NH-C ₆ H ₅	H	H	H	1:1	rac	Öl
3.43	F	N-(CH ₂ -C ₆ H ₅)(CHO)	H	H	H	erythro	rac	212
3.44	F	NHSO ₂ CH ₃	H	H	H	4:1	rac	217
3.45	F	OH	H	H	H	threo	rac	203
3.46	F	OH	H	H	F	threo	2-S, 3-R	90
3.47	F	OH	H	H	Br	threo	2-S, 3-R	165
3.48	F	OH	H	H	CF ₃	threo	rac	161
3.49	F	OH	H	H	OCH ₃	threo	2-S, 3-R	188
3.50	F	OH	H	H	NO ₂	erythro	rac	m/z 429
3.51	F	OH	H	H	NO ₂	threo	rac	207
3.52	F	OH	H	H	C ₆ H ₅	threo	rac	198
3.53	F	OH	H	H	4-Cl-C ₆ H ₄	threo	rac	183
3.54	F	OH	H	H	3,5-Cl ₂ -C ₆ H ₃	threo	rac	202

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.55	F	OH	H	H	4-CH ₃ -C ₆ H ₄	threo	rac	198
3.56	F	OH	H	H	3-CF ₃ -C ₆ H ₄	threo	rac	177
3.57	F	OH	H	H	3-NO ₂ -C ₆ H ₄	threo	rac	185
3.58	F	OH	H	H	4-Cl-2-Thienyl	threo	rac	133
3.59	F	OH	H	Cl	H	threo	rac	172
3.60	F	OH	H	CF ₃	H	threo	rac	142
3.61	F	OH	H	CH ₂ OH	H	threo	2-S, 3-R	152
3.62	F	OH	H	CH ₂ OOCCH ₃	H	threo	2-S, 3-R	m/z 456
3.63	F	OH	H	CH ₂ OCH ₂ COOH	H	threo	2-S, 3-R	m/z 472
3.64	F	OH	H	CH ₂ OCONHSO ₂ CF ₃	H	threo	2-S, 3-R	m/z 589
3.65	F	OH	H	CH ₂ OSO ₂ CH ₃	H	threo	2-S, 3-R	97
3.66	F	OH	H	OCH ₂ C ₆ H ₅	H	threo	2-S, 3-R	150
3.67	F	OH	H	NO ₂	H	threo	rac	m/z 429
3.68	F	OH	H	NH ₂	H	threo	2-S, 3-R	m/z 399
3.69	F	OH	H	NHCOCH ₃	H	threo	2-S, 3-R	m/z 441
3.70	F	OH	H	NHSO ₂ CH ₃	H	threo	2-S, 3-R	m/z 477
3.71	F	OH	H	NHSO ₂ CF ₃	H	threo	2-S, 3-R	m/z 531
3.72	F	OH	H	Cl	CF ₃	threo	rac	172
3.73	NHCH ₃	OH	H	CH ₃	F	threo	2-S, 3-R	131
3.74	F	OCOCH ₃	H	Cl	H	threo	rac	145
3.75	F	OCOCH ₃	H	H	F	threo	rac	161

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.76	F	OOCCH ₃	H	H	CF ₃	threo	rac	176
3.77	F	OOCCH ₃	H	Cl	Cl	threo	rac	200
3.78	F	OOCCH ₃	H	CH ₃	F	threo	2-S, 3-R	138
3.79	F	OOCCH ₃	H	Cl	CF ₃	threo	rac	215
3.80	F	OCOC(CH ₃) ₃	H	H	H	erythro	rac	m/z 468
3.81	F	OCOC(CH ₃) ₃	H	H	F	threo	2-S, 3-R	185
3.82	F	OCOC(CH ₃) ₃	H	H	Br	threo	2-S, 3-R	142
3.83	F	OCOC(CH ₃) ₃	H	Cl	Cl	threo	rac	185
3.84	F	OOCCH=CH ₂	H	CH ₃	F	threo	2-S, 3-R	187
3.85	F	OOC(C ₃ H ₅)	H	H	H	threo	rac	m/z 452
3.86	F	OOC(C ₄ H ₇)	H	H	H	threo	rac	m/z 466
3.87	F	OOCCH ₂ Cl	H	CH ₃	F	threo	2-S, 3-R	158
3.88	F	OOCCH ₂ OCH ₃	H	H	H	threo	rac	m/z 456
3.89	F	OOCCH ₂ OCH ₃	H	H	F	threo	2-S, 3-R	185
3.90	F	OOCCH ₂ SCH ₃	H	H	H	threo	rac	160
3.91	F	OOCCH ₂ SCH ₃	H	CH ₃	F	threo	2-S, 3-R	134
3.92	F	OOCCH ₂ CH(OH)COOH	H	CH ₃	F	threo	2-S, 3-R	m/z 532
3.93	F	OOCCH ₂ CH ₂ COOCH ₃	H	H	H	threo	rac	m/z 512
3.94	F	OOCCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	H	H	H	threo	rac	m/z 544
3.95	F	OOCCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	H	Cl	Cl	threo	rac	m/z 613
3.96	F	OOCCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	H	CH ₂ OOCCH ₂ OCH ₂ CH ₂ OCH ₃	H	threo	2-S, 3-R	m/z 734

91

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
			CH ₂ OCH ₂ CH ₂ OCH ₃					
3.97	F	OCO(4-CN-C ₆ H ₄)	H	H	H	threo	rac	212
3.98	F	OCO(2,5-Cl ₂ -6-OCH ₃ -C ₆ H ₂)	H	H	H	threo	rac	220
3.99	F	OCOCH ₂ C ₆ H ₅	H	H	H	threo	rac	m/z 502
3.100	F	OCOCH ₂ (2-F-C ₆ H ₄)	H	H	H	threo	rac	m/z 520
3.101	F	OCOCH ₂ (4-F-C ₆ H ₄)	H	H	H	threo	rac	m/z 520
3.102	F	OCOCH ₂ (2,4-Cl ₂ -C ₆ H ₃)	H	H	H	threo	rac	m/z 571
3.103	F	OCOCH ₂ (2,6-Cl ₂ -C ₆ H ₃)	H	H	H	threo	rac	m/z 571
3.104	F	OCOCH(OCH ₃)C ₆ H ₅	H	H	H	threo	rac	m/z 532
3.105	F	OCOCH ₂ CH ₂ C ₆ H ₅	H	H	H	threo	rac	m/z 516
3.106	F	OCOCH(CH ₃)O(2,4-Cl ₂ -C ₆ H ₃)	H	H	H	threo	rac	182
3.107	F	OCOCH ₂ CH ₂ CH ₂ O(2,4-Cl ₂ -C ₆ H ₃)	H	H	H	threo	rac	m/z 615
3.108	F	OCOCH ₂ CH ₂ CH ₂ O(2-CH ₃ -4-Cl-C ₆ H ₃)	H	H	H	threo	rac	m/z 595
3.109	F	OCOCH ₂ NH ₂ *HCl	H	H	H	threo	rac	210
3.110	F	OCOCH ₂ NHCHO	H	H	H	threo	rac	m/z 469
3.111	F	OCOCH ₂ NHCOCH ₂ Cl	H	H	H	threo	rac	m/z 517
3.112	F	OCONH(CH ₃) ₂	H	H	OCH ₃	threo	2-S, 3-R	160
3.113	F	OCONH(CH ₃) ₂	H	H	NHCON(CH ₃) ₂	erythro	rac	m/z 541
3.114	F	OCONH(CH ₃) ₂	H	OCH ₂ C ₆ H ₅	H	threo	2-S, 3-R	192
3.115	F	OCONH(CH ₃) ₂	H	Cl	Cl	threo	rac	206

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.116	F	OCON(CH ₃) ₂	H	Cl	CF ₃	threo	rac	230
3.117	F	OCON(CH ₃) ₂	H	H	H	erythro	rac	220
3.118	F	OCON(CH ₃) ₂	H	H	F	threo	2-S, 3-R	187
3.119	F	OCON(CH ₃) ₂	H	H	CF ₃	threo	rac	135
3.120	F	OCON(CH ₃) ₂	H	H	NO ₂	erythro	rac	m/z 430
3.121	F	OCON(CH ₃) ₂	H	H	NO ₂	threo	rac	216
3.122	F	OCON(CH ₃) ₂	H	H	NH ₂	erythro	rac	216
3.123	F	OCON(CH ₃) ₂	H	H	NH ₂	threo	rac	213
3.124	F	OCON(CH ₃) ₂	H	H	NHCOCH ₃	erythro	rac	m/z 512
3.125	F	OCON(CH ₃) ₂	H	H	NHCONHSO ₂	erythro	rac	166
3.126	F	OCON(CH ₃) ₂	H	H	NHCONHSO ₂ CF ₃	threo	rac	168
3.127	F	OCON(CH ₃) ₂	H	H	NHSO ₂ CH ₃	erythro	rac	212
3.128	F	OCON(CH ₃) ₂	H	H	NHSO ₂ CH ₃	threo	rac	m/z 548
3.129	F	OCON(CH ₃) ₂	H	H	NHSO ₂ CF ₃	erythro	rac	m/z 602
3.130	F	OCON(CH ₃) ₂	H	Cl	H	threo	rac	165
3.131	F	OCON(CH ₃) ₂	H	CH ₂ OCON(CH ₃) ₂	H	threo	2-S, 3-R	93
3.132	F	OCONCH ₃ C ₆ H ₅	H	H	H	threo	rac	178
3.133	F	OCONHSO ₂ CF ₃	H	H	H	erythro	rac	m/z 559
3.134	F	OCONHSO ₂ CF ₃	H	H	H	threo	rac	174

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.135	F	NHCONHSO ₂ CF ₃	H	H	H	threo	rac	m/z 574
3.136	F	OCONHSO ₂ CF ₃	H	H	F	threo	2-S, 3-R	165
3.137	F	OCONHSO ₂ CF ₃	H	CH ₃	F	threo	2-S, 3-R	170
3.138	F	OCONHSO ₂ (2-Cl-C ₆ H ₄)	H	H	H	threo	rac	206
3.139	F	OCONHSO ₂ (4-CH ₃ -C ₆ H ₄)	H	H	H	threo	rac	202
3.140	F	OCONHSO ₂ (2-CF ₃ -C ₆ H ₄)	H	H	H	threo	rac	200
3.141	F	O-[4,6-(OCH ₃) ₂ -2-pyrimidyl]	H	H	H	threo	rac	218
3.142	F	OCO[2,2-(CH ₃)-4-dioxolanyl]	H	H	H	threo	rac	m/z 512
3.143	F	OCO(4-pyranyl)	H	H	H	threo	rac	m/z 496
3.144	F	OCO-(3,6-Cl ₂ -2-pyridyl)	H	H	H	threo	rac	210
3.145	F	OCOCH ₂ (2-thienyl)	H	H	H	threo	rac	m/z 508
3.146	F	OCOCH ₂ (3-thienyl)	H	H	H	threo	rac	m/z 508
3.147	F	OCOCH ₂ (1-pyrazolyl)	H	H	H	threo	rac	m/z 492
3.148	F	OCOCH ₂ (1-triazolyl)	H	H	H	threo	rac	m/z 493
3.149	F	OCOCH ₂ (3-pyridyl)	H	H	H	threo	rac	m/z 503
3.150	F	OCOCH ₂ CH ₂ (4-morpholinyl)	H	H	H	threo	rac	m/z 525
3.151	F	OCOCHCICH ₂ (1-triazolyl)	H	H	H	threo	rac	146
3.152	F	OSi(CH ₂ CH ₃) ₃	H	CH ₂ OSi(CH ₂ CH ₃) ₃	H	threo	2-S, 3-R	m/z 642
3.153	F	OSi(CH ₂ CH ₃) ₃	H	H	Br	threo	2-S, 3-R	75
3.154	F	OSi(CH ₃) ₂ C(CH ₃) ₃	H	H	H	threo	rac	139
3.155	F	OSi(CH ₃) ₂ C(CH ₃) ₃	H	CH ₂ F	H	threo	2-S, 3-R	80

Nr.	R ³	R ⁹	R ¹⁰	R ¹¹	R ¹²	erythro/ threo	Konfig.	Schmp. bzw. m/z
3.156	F	Osi(CH ₃) ₂ C(CH ₃) ₃	H	CH ₂ OH	H	threo	2-S, 3-R	m/z 528
3.157	F	OSO ₂ CH ₃	H	Cl	H	threo	rac	127
3.158	F	OSO ₂ CH ₃	H	Cl	Cl	threo	rac	148
3.159	F	NH ₂	H	H	H	4 : 1	rac	168
3.160	F	NHCH ₃	H	CH ₂ OH	H	threo	2-S, 3-R	192
3.161	F	NHCH ₂ C ₆ H ₅	H	H	H	4 : 1	rac	186
3.162	F	NHOCH ₃	H	H	H	4 : 1	rac	Öl
3.163	F	NHCOC(CH ₃) ₃	H	H	H	4 : 1	rac	222
3.164	F	NHCOOC(CH ₃) ₃	H	H	H	4 : 1	rac	m/z 483
3.165	F	NHCON(CH ₃) ₂	H	H	H	4 : 1	rac	198
3.166	F	NCH ₃ CON(CH ₃) ₂	H	CH ₂ OCOON(CH ₃) ₂	H	threo	2-S, 3-R	190

95

Tabelle 4

Nr.	R^7	R^9	R^{11}	R^{12}	R^{13}	R^{14}	erythro/ threo	Konfig.	Schmp. bzw. m/z
4.1	H	OH	H	H	F	H	threo	2-S, 3-R	149
4.2	H	OH	H	H	CF ₃	H	threo	rac	180
4.3	H	OH	H	H	SCH ₃	H	threo	rac	185
4.4	H	OH	H	H	NO ₂	H	threo	rac	212
4.5	H	OH	H	H	OCH ₂ C ₆ H ₅	H	threo	2-S, 3-R	197
4.6	H	OH	H	Br	F	H	erythro	rac	175
4.7	H	OH	H	Br	F	H	threo	rac	192
4.8	H	OH	Cl	H	F	H	threo	rac	160
4.9	H	OH	Cl	Cl	H	H	threo	rac	187
4.10	H	OH	Cl	H	Cl	H	threo	rac	160
4.11	H	OH	CH ₃	H	F	H	threo	2-S, 3-R	m/z 416
4.12	H	OH	CF ₃	H	F	H	threo	rac	140

Nr.	R ⁷	R ⁹	R ¹¹	R ¹²	R ¹³	R ¹⁴	erythro/ threo	Konfig.	Schmp. bzw. m/z
4.13	H	OH	Cl	H	H	Cl	threo	rac	214
4.14	H	OH	H	F	H	F	threo	rac	176
4.15	H	OH	F	F	H	H	threo	2-S, 3-R	166
4.16	H	OCOCH ₃	H	H	F	H	threo	2-S, 3-R	152
4.17	H	OCOCH ₃	H	H	CF ₃	H	threo	rac	217
4.18	H	OCOCH ₃	Cl	H	F	H	threo	rac	180
4.19	H	OCOCH ₃	Cl	H	Cl	H	threo	rac	190
4.20	H	OCOCH ₃	H	Br	F	H	threo	rac	200
4.21	H	OCOCH ₃	H	F	H	F	threo	rac	155
4.22	H	OOC(CH ₃) ₃	H	H	F	H	threo	2-S, 3-R	159
4.23	H	OCOCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	H	Br	F	H	threo	rac	m/z 641
4.24	H	OCOCH ₂ OCH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	F	F	F	H	threo	2-S, 3-R	111
4.25	H	OCON(CH ₃) ₂	H	H	F	H	threo	2-S, 3-R	156
4.26	H	OCON(CH ₃) ₂	H	H	CF ₃	H	threo	rac	190
4.27	H	OCON(CH ₃) ₂	H	H	SCH ₃	H	threo	rac	m/z 501
4.28	H	OCON(CH ₃) ₂	Cl	H	F	H	threo	rac	203
4.29	H	OCON(CH ₃) ₂	Cl	H	Cl	H	threo	rac	192
4.30	H	OCON(CH ₃) ₂	H	Br	F	H	threo	rac	165
4.31	H	OCON(CH ₃) ₂	H	F	H	F	threo	rac	203
4.32	H	OCON(CH ₃) ₂	F	F	H	H	threo	2-S, 3-R	152
4.33	H	OSO ₂ CH ₃	Cl	H	F	H	threo	rac	112
4.34	H	OSO ₂ CH ₃	H	F	H	F	threo	rac	150

Nr.	R'	R ^a	R ¹¹	R ¹²	R ¹³	R ¹⁴	erythro/ threo	Konfig.	Schmp. bzw. m/z
4.35	H	OH	Cl	H	H	CF ₃	threo	rac	172
4.36	H	OCOCH ₃	Cl	H	H	Cl	threo	rac	195
4.37	H	OSO ₂ CH ₃	Cl	H	H	Cl	threo	rac	140
4.38	H	OCON(CH ₃) ₂	Cl	H	H	Cl	threo	rac	192
4.39	H	OCON(CH ₃) ₂	Cl	H	H	CF ₃	threo	rac	188
4.40	OH	OSi(CH ₃) ₂ C(CH ₃) ₃	H	H	H	H	threo	2-S, 3-R	m/z 514

Tabelle 5

Nr.	R^1	R^2	R^3	R^4	R^5	erythro / threo	Konfig.	Schmp. bzw. m/z
5.1	F	H	F	H	H	threo	rac	m/z 334
5.2	F	H	CF ₃	H	H	threo	rac	m/z 384
5.3	F	H	H	F	H	threo	rac	m/z 334
5.4	F	H	H	H	F	threo	rac	m/z 334
5.5	F	H	H	H	C	threo	rac	m/z 350
5.6	F	F	H	H	F	threo	rac	m/z 352
5.7	F	F	H	H	F	threo	rac	m/z 370
5.8	Cl	H	H	H	H	threo	rac	m/z 332
5.9	Cl	C	H	H	H	threo	rac	m/z 367

99

Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	erythro / threo	Konfig.	Schmp. bzw. m/z
5.10	Cl	CF ₃	H	H	H	threo	rac	167
5.11	Cl	NO ₂	H	H	H	threo	rac	m/z 377
5.12	Cl	H	Cl	H	H	threo	rac	m/z 367
5.13	Cl	H	NO ₂	H	H	threo	rac	m/z 377
5.14	Cl	H	H	Cl	H	threo	rac	m/z 367
5.15	Cl	H	Cl	Cl	H	threo	rac	m/z 401
5.16	Cl	H	COOCH ₃	Cl	H	threo	rac	m/z 425
5.17	Cl	NO ₂	Cl	NO ₂	H	threo	rac	m/z 457
5.18	CH ₃	H	H	H	H	threo	rac	m/z 312
5.19	CH ₃	C(CH ₂)(CH ₃)	H	H	H	threo	rac	m/z 352
5.20	CH ₃	NO ₂	H	H	H	threo	rac	m/z 357
5.21	CH ₃	H	H	CH ₃	CH ₃	threo	rac	m/z 326
5.22	CH ₃	H	H	H	NO ₂	threo	rac	m/z 357
5.23	CH ₃	NO ₂	H	NO ₂	H	threo	rac	m/z 402
5.24	CF ₃	F	H	H	H	threo	rac	158
5.25	CF ₃	Cl	H	H	H	threo	rac	m/z 400
5.26	NO ₂	H	H	H	H	threo	rac	m/z 343
5.27	NO ₂	Cl	H	H	H	threo	rac	m/z 377
5.28	NO ₂	H	Cl	H	H	threo	rac	m/z 377
5.29	OCH ₃	H	SCH ₃	H	H	threo	rac	m/z 374
5.30	OCH ₃	H	H	Cl	H	threo	rac	m/z 362

Nr.	R ¹	R ²	R ³	R ⁴	R ⁵	erythro / threo	Konfig.	Schmp. bzw. m/z
5.31	OCH ₃	H	H	OCH ₃	H	threo	rac	m/z 358
5.32	OCH ₃	OCH ₃	OCH ₃	H	H	threo	rac	m/z 388
5.33	OCH ₂ CH ₃	OCH ₂ CH ₃	OCH ₂ CH ₃	H	H	threo	rac	m/z 430
5.34	COOH	H	F	H	H	threo	rac	216
5.35	C ₆ H ₅	H	H	H	H	threo	rac	m/z 374
5.36	OCF ₃	H	H	H	H	threo	rac	m/z 382
5.37	SCHF ₂	H	H	H	H	threo	rac	m/z 380

Biologische Wirksamkeit

- Die benzoylesubstituierten Phenylalanin-Amide der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form 5 der reinen Isomeren - als Herbizide. Die Verbindungen der Formel I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
- 10 In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:
- 15 Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.
- 20 Darüber hinaus können die Verbindungen der Formel I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.
- 25 30 35 40 Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wässrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wässrigen, ölichen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewen-

102

det werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

- 5 Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

- 10 Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffine, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen

- 20 können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

- 25 Als oberflächenaktive Stoffe (Adjuvantien) kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutyl-naphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadekanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkohol-ethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenealkylether, Laurylkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

- Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch
5 Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste
10 Trägerstoffe.

- Die Konzentrationen der Verbindungen der Formel I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die
15 Formulierungen etwa von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

- Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:
20

- I. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.
30
- II. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.
35
- III. 20 Gewichtsteile eines Wirkstoffs der Formel I werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfrakti-

104

on vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs der Formel I enthält.

5

- IV. 20 Gewichtsteile eines Wirkstoffs der Formel I werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs der Formel I enthält.
- V. 3 Gewichtsteile eines Wirkstoffs der Formel I werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 15 3 Gew.-% des Wirkstoffs der Formel I enthält.
- VI. 20 Gewichtsteile eines Wirkstoffs der Formel I werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkoholpolyglykether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehydkondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
- VII. 1 Gewichtteil eines Wirkstoffs der Formel I wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein 25 stabiles Emulsionskonzentrat.
- VIII. 1 Gewichtteil eines Wirkstoffs der Formel I wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

10

15

20

25

30

40

Die Applikation der Verbindungen der Formel I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

105

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a.S.).

- 5 Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die benzoylesubstituierten Phenylalanin-Amide der Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate,
- 10 Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoësäure und deren Derivate, Benzothiadiazinone, 2-(Hetaryl/Aroyl)-1,3-cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF₃-Phenyldeivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracetanilide, Cyclohexeno-noximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofuran, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydronthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Be-
- 15 tracht.
- Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle
- 20 und Ölkonzentrate zugesetzt werden.
- 25
- 30

Anwendungsbeispiele

Die herbizide Wirkung der benzyloxy-substituierten Phenylalanin-Amide der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

5

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten

10 Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

15

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie

20 wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 1,0, 0,5, 0,25, 0,125 bzw. 0,0625 kg/ha a.S. (aktive Substanz).

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis

25 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der

30 Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name	Englischer Name
<i>Abutilon theophrasti</i>	Chinesischer Hanf	velvet leaf
<i>Amaranthus retroflexus</i>	Fuchsschwanz	pig weed
<i>Avena fatua</i>	Flughäfer	wild oat
<i>Chenopodium album</i>	Weißen Gänsefuß	lambsquarters
<i>Galium aparine</i>	Klettenlabkraut	cleavers harrif
<i>Polygonum convolvulus</i>	Windenknoterich	black bindweed
<i>Setaria viridis</i>	Grüne Borstenhirse	green foxtail

5 Bei Aufwandmengen von 1,00 kg/ha im Nachauflauf zeigten die Verbindungen 3.2, 3.10, 3.11 und 3.28 (Tabelle 3) eine sehr gute Wirkung gegen die unerwünschten Pflanzen Fuchsschwanz, Weißen Gänsefuß und Grüne Borstenhirse.

10 Ebenso bekämpften die Verbindungen 3.66, 3.67 und 3.128 (Tabelle 3) bei Aufwandmengen von 1,0 kg/ha im Nachauflauf die unerwünschten Pflanzen Fuchsschwanz, Weißen Gänsefuß und Grüne Borstenhirse sehr gut.

15 Weiterhin bekämpften Verbindung 3.96, 3.61 und 3.131 (Tabelle 3) im Nachauflauf bei Aufandmengen von 0,5 kg/ha die Schadpflanzen Fuchsschwanz, Weißen Gänsefuß, Klettenlabkraut und Windenknoterich sehr gut.

20 Die Wirkung von Verbindung 3.65 (Tabelle 3) im Nachauflauf bei Aufandmengen von 0,5 kg/ha auf die Unkräuter Fuchsschwanz, Weißen Gänsefuß und Windenknoterich war sehr gut.

Bei Aufandmengen von 0,5 kg/ha zeigten die Verbindungen 3.62 (Tabelle 3) und 4.24 (Tabelle 4) im Nachauflauf eine sehr gute Wirkung gegen die unerwünschten Pflanzen Fuchsschwanz, Weißen Gänsefuß, Klettenlabkraut und Grüne Borstenhirse.

25 Weiterhin bekämpfte Verbindung 3.152 (Tabelle 3) im Nachauflauf bei Aufandmengen von 1,0 kg/ha die Schadpflanzen Fuchsschwanz, Weißen Gänsefuß, Klettenlabkraut und Grüne Borstenhirse sehr gut.

Die Wirkung von Verbindungen 3.123 und 3.137 (Tabelle 3) im Nachauflauf bei Aufwandsmengen von 1,0 kg/ha auf die auf die Unkräuter Fuchsschwanz, Weißer Gänsefuß und Windenknoten war sehr gut.

5

Ebenso bekämpfte die Verbindung 3.154 (Tabelle 3) bei Aufwandsmengen von 1,0 kg/ha im Nachauflauf die unerwünschten Pflanzen Fuchsschwanz, Weißer Gänsefuß, Klettenlabkraut, Windenknoten und Grüne Borstenhirse sehr gut.

10 Die Wirkung von Verbindung 5.20 (Tabelle 5) im Nachauflauf bei Aufwandsmengen von 0,5 kg/ha auf das Unkraut Chinesischer Hanf war sehr gut.

Bei Aufwandsmengen von 0,5 kg/ha zeigte die Verbindung 5.36 (Tabelle 5) im Nachauflauf eine sehr gute Wirkung gegen die unerwünschte Pflanze Chinesischer Hanf.

15

Weiterhin bekämpfte Verbindung 5.37 (Tabelle 5) im Nachauflauf bei Aufwandsmengen von 0,5 kg/ha die Schadpflanzen Chinesischer Hanf und Flughäfer sehr gut.

20

Patentansprüche:

1. Benzoylsubstituierte Phenylalanin-Amide der Formel I

5

in der die Variablen die folgenden Bedeutungen haben:

- R¹ Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy,
10 Nitro, Hydroxycarbonyl, C₁-C₆-Alkoxy carbonyl, C₁-C₆-Halogenalkylthio
oder Phenyl;
- R², R³, R⁴, R⁵ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
15 C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Nitro, Amino, C₁-C₆-
Alkylamino, Di(C₁-C₆-alkyl)amino, C₁-C₆-Alkylthio oder C₁-C₆-
Alkoxy carbonyl;
- R⁶, R⁷ Wasserstoff, Hydroxy oder C₁-C₆-Alkoxy;
- R⁸ C₁-C₆-Alkyl, C₁-C₄-Cyanoalkyl oder C₁-C₆-Halogenalkyl;
- 20 R⁹ OR¹⁶, SR¹⁷ oder NR¹⁸R¹⁹;
- R¹⁰ Wasserstoff oder C₁-C₆-Alkyl;
- 25 R¹¹, R¹² Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Hydroxy, Nitro, Hydro-
xy-C₁-C₄-alkyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, Tri(C₁-C₆-alkyl)silyloxy-C₁-C₄-
alkyl, C₁-C₄-Alkylthio, (Hydroxycarbonyl)-C₁-C₆-alkyl, (C₁-C₆-
Alkoxy carbonyl)-C₁-C₆-alkyl, (Hydroxycarbonyl)-C₂-C₆-alkenyl, (C₁-C₆-
Alkoxy carbonyl)-C₂-C₆-alkenyl, (Hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-
C₄-Alkoxy carbonyl)-C₁-C₄-alkoxy, (C₁-C₄-Alkyl carbonyl)oxy-C₁-C₄-
alkyl, Hydroxycarbonyl-C₁-C₄-alkoxy-C₁-C₄-alkyl, (C₁-C₄-Alkyl-
- 30

110

sulfonyl)oxy-C₁-C₄-alkyl, C₁-C₄-Alkyl-O-C(O)-[C₁-C₄-alkyl-O]₃-C₁-C₄-alkyl, Carbamoyloxy-C₁-C₄-alkyl, (C₁-C₄-Alkylaminocarbonyl)oxy-C₁-C₄-alkyl, [Di(C₁-C₄-alkyl)aminocarbonyl]oxy-C₁-C₄-alkyl, [(C₁-C₄-Halogenalkylsulfonyl)aminocarbonyl]oxy-C₁-C₄-alkyl, Benzyloxy, wobei der Phenylring durch 1 bis 3 Reste aus der Gruppe Halogen und C₁-C₄-Alkyl substituiert sein kann,
 5 Amino, C₁-C₄-Alkylamino, Di(C₁-C₄-alkyl)amino, (C₁-C₄-Alkyl-sulfonyl)amino, C₁-C₄-(Halogenalkylsulfonyl)amino, (C₁-C₄-Alkyl-carbonyl)amino, Carbamoylamino, (C₁-C₄-Alkylamino)carbonylamino,
 10 [Di(C₁-C₄-alkyl)amino]-carbonylamino, [(C₁-C₄-Halogenalkylsulfonyl)-aminocarbonyl]amino, Phenyl oder Heterocyclyl, wobei der Phenyl- und der Heterocyclylrest der zwei letztgenannten Substituenten ein bis drei Reste aus folgender Gruppe tragen kann: Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxycarbonyl und C₁-C₆-Alkoxy carbonyl;
 15

R¹³, R¹⁴, R¹⁵ Wasserstoff, Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl,
 20 C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Nitro, Hydroxy, C₁-C₄-Alkyl-thio oder Benzyloxy;
 R¹⁶, R¹⁷, R¹⁸ Wasserstoff, C₁-C₆-Alkyl, Tri(C₁-C₆-alkyl)silyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Halogenalkinyl, Formyl, C₁-C₆-Alky carbonyl, C₃-C₆-Cycloalkyl carbonyl, C₂-C₆-Alkenyl carbonyl, C₂-C₆-Alkinyl carbonyl,
 25 C₁-C₆-Alkoxy carbonyl, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkinyloxycarbonyl, C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl, C₃-C₆-Alkinylaminocarbonyl, C₁-C₆-Alkylsulfonylaminocarbonyl, C₁-C₆-Halogenalkylsulfonylaminocarbonyl, Di-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl,
 30 N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl, N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl, Di-(C₁-C₆-alkyl)-aminothiocarbonyl, C₁-C₆-Alky carbonyl-C₁-C₆-alkyl, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkylamino)-imino-C₁-C₆-alkyl oder N-(Di-C₁-C₆-alkylamino)-imino-C₁-C₆-alkyl,
 35 wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alky carbonyl, Hydroxycarbonyl,
 40

111

C₁-C₄-Alkoxycarbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy;

- 5 Phenyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenoxy carbonyl, Phenylaminocarbonyl, Phenylsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(phenyl)-aminocarbonyl, Phenyl-C₁-C₆-alkylcarbonyl, Heterocycl, Heterocycl-C₁-C₆-alkyl, Heterocyclcarbonyl, Heterocyclcarbonyl-C₁-C₆-alkyl, Heterocyclloxycarbonyl, Heterocyclaminocarbonyl, Heterocyclsulfonylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(heterocycl)-aminocarbonyl oder Heterocycl-C₁-C₆-alkylcarbonyl,
wobei der Phenyl- und der Heterocycl-Rest der 17 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy
- 10 SO₂R²⁰; -C(O)-[C₁-C₄-alkyl-O]₃-C₁-C₄-Alkyl; oder
-C(O)-O-C₁-C₄-Alkyl-O-Phenyl, wobei der Phenylrest gegebenenfalls durch ein bis drei Reste aus der Gruppe Halogen und C₁-C₄-Alkyl substituiert sein kann;
- 15 R¹⁹ Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Halogenalkinyl,
wobei die genannten Alkyl- und Cycloalkylreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Di-(C₁-C₄-alkyl)-amino, C₁-C₄-Alkylcarbonyl, Hydroxycarbonyl, C₁-C₄-Alkoxycarbonyl, Aminocarbonyl, C₁-C₄-Alkylaminocarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₁-C₄-Alkylcarbonyloxy; oder
- 20 Phenyl, Phenyl-C₁-C₆-alkyl, Heterocycl oder Heterocycl-C₁-C₆-alkyl, wobei der Phenyl- und der Heterocycl-Rest der 4 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder eine bis drei der folgenden Gruppen tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;
- 25 40

112

 R^{20}

$C_1\text{-}C_6\text{-Alkyl}$, $C_1\text{-}C_6\text{-Halogenalkyl}$ oder Phenyl ,
wobei der Phenylrest partiell oder vollständig halogeniert
sein kann und/oder eine bis drei der folgenden Gruppen tra-
gen kann: $C_1\text{-}C_6\text{-Alkyl}$, $C_1\text{-}C_6\text{-Halogen-alkyl}$ oder $C_1\text{-}C_6\text{-}$
Alkoxy;

5

sowie deren landwirtschaftlich brauchbaren Salze.

2. Benzoylesubstituierte Phenylalanin-Amide der Formel I gemäß Anspruch 1, wobei
10 R^1 für Halogen oder $C_1\text{-}C_6\text{-Halogenalkyl}$ steht.

3. Benzoylesubstituierte Phenylalanin-Amide der Formel I gemäß Anspruch 1 oder 2,
wobei R^2 und R^3 unabhängig voneinander für Wasserstoff, Halogen oder $C_1\text{-}C_6\text{-}$
Halogenalkyl stehen.

15

4. Benzoylesubstituierte Phenylalanin-Amide der Formel I gemäß Ansprüchen 1 bis
3, wobei R^4 , R^5 , R^6 , R^7 , R^{10} , R^{13} , R^{14} und R^{15} für Wasserstoff stehen.

20

5. Benzoylesubstituierte Phenylalanin-Amide der Formel I gemäß Ansprüchen 1 bis
4, wobei R^9 für OR^{16} steht.

6. Verfahren zur Herstellung von benzoylesubstituierten Phenylalanin-Amiden der
Formel I gemäß Anspruch 1, dadurch gekennzeichnet dass

25

Phenylalanine der Formel V

30 wobei R^6 und R^9 bis R^{15} die unter Anspruch 1 genannten Bedeutungen haben
und L^1 für eine nucleophil verdrängbare Abgangsgruppe steht,

mit Benzoesäuren bzw. Benzoesäurederivaten der Formel IV

wobei R¹ bis R⁵ die unter Anspruch 1 genannten Bedeutungen haben und L² für eine nucleophil verdrängbare Abgangsgruppe steht,

5 zu entsprechenden Benzoylderivaten der Formel III

wobei R¹ bis R⁶ und R⁹ bis R¹⁵ die unter Anspruch 1 genannten Bedeutungen haben und L¹ für eine nucleophil verdrängbare Abgangsgruppe steht,

10 und anschließend die erhaltenen Benzoylderivate der Formel III mit einem Amin der Formel II

wobei R⁷ und R⁸ die unter Anspruch 1 genannten Bedeutungen haben,

15 umgesetzt werden.

7. Verfahren zur Herstellung von benzoylsubstituierten Phenylalanin-Amiden der Formel I gemäß Anspruch 6, wobei R⁹ für Hydroxy und R¹⁰ für Wasserstoff stehen, dadurch gekennzeichnet dass Benzoylderivate der Formel III wobei R⁹ für Hydroxy und R¹⁰ für Wasserstoff stehen, durch Acylierung von Ketoverbindungen der Formel XIII

114

wobei R⁶ sowie R¹¹ bis R¹⁵ die unter Anspruch 1 genannten Bedeutungen haben und L¹ für eine nucleophil verdrängbare Abgangsgruppe steht,

5 mit Benzoësäure(derivate)n der Formel IV zu N-Acyl-Ketoverbindungen der Formel XII

10 wobei R¹ bis R⁶ sowie R¹¹ bis R¹⁵ die unter Anspruch 1 genannten Bedeutungen haben und L¹ für eine nucleophil verdrängbare Abgangsgruppe steht, und anschließender Reduktion der Ketogruppe hergestellt werden.

8. Benzoylderivate der Formel III

115

wobei R¹ bis R⁶ und R⁹ bis R¹⁵ die unter Anspruch 1 genannten Bedeutungen haben und L¹ für eine nucleophil verdrängbare Abgangsgruppe steht.

9. Mittel, enthaltend eine herbizid wirksame Menge mindestens eines benzoyl-substituierten Phenylalanin-Amids der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel.
10. Verfahren zur Herstellung von Mitteln gemäß Anspruch 8, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines benzoyl-substituierten Phenylalanin-Amids der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsmittel mischt.
- 15 11. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines benzoylsubstituierten Phenylalanin-Amids der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß den Ansprüchen 1 bis 5 auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.
- 20 12. Verwendung der benzoylsubstituierten Phenylalanin-Amide der Formel I gemäß den Ansprüchen 1 bis 5 und deren landwirtschaftlich brauchbaren Salze als Herbizide.