RESCIENCEC

Replication / Ecology

[Re] Modeling Insect Phenology Using Ordinal Regression and Continuation Ratio Models

Philipp H. Boersch-Supan^{1,2, ID}

¹British Trust for Ornithology, Thetford, United Kingdom – ²University of Florida, Gainesville, FL, USA

Edited by (Editor)

Received

Published

DOI

Introduction

Phenology, the timing of seasonal biological phenomena, is a key aspect of plant and animal life. It defines the timing and duration of growth and reproduction and thereby determines the ability to capture seasonally variable resources. The study of plant and animal phenology has allowed for a better understanding of fundamental ecosystem processes such as biogeochemical cycles, trophic interactions, animal migrations, and the response of populations and communities to global climate change, as well as informing applications in agriculture, forestry, and public health such as varietal selection in plant and animal breeding, or integrated pest and disease management [1]. Phenological analyses often focus on the timing of events, such as the dates of plant flowering [2]. However, for many biological phenomena exact dates of particular events are more difficult to observe than the state of the system itself. For example, repeated but sparse survey visits may enable the recording of whether a plant is in bud, flowering, or setting fruit, but not the exact dates when each of those stages was reached. Such observations can be used to categorize an organism's state into discrete classes. Further, as the progression of the annual cycle often results in a natural ordering of these classes, e.g. from least to most developed, the resulting data can be described using ordinal regression models [3, 4].

I here replicate a number of ordinal regression models that were developed by Dennis, Kemp, and Beckwith⁵ and Candy⁶ to describe insect phenology.

2 Data

The models replicated in this study are fitted to a data set on the phenology of the western spruce budworm *Choristoneura freemani* (Lepidoptera: Tortricidae), a defoliating moth that is widespread in western North America [7]. This data set was originally published in [5] and is a subset of a larger budworm survey data set analysed in [kemp1986]. The data consist of 12 sampling occassions at which counts of individual budworms in each of seven development stages (five larval instars, pupae, and adults) were recorded. The only available covariate is a measure of seasonal progression, the accumulated degree days calculated using a threshold of 5.5°C. Candy⁶ noted an inconsistency in these data, namely that the reported total number of individuals did not correspond to the sum across the seven development stages for two of the sampling occasions. I therefore use the data set as it was republished in candy1990biology^{candy1990biology}, where numbers

Copyright © 2020 P.H. Boersch-Supan, released under a Creative Commons Attribution 4.0 International license. Correspondence should be addressed to Philipp H. Boersch-Supan (pboesu@gmail.com) The authors have declared that no competing interests exist.

Code is available at https://github.com/pboesu/replication_candy_1991..

Data is available at https://github.com/pboesu/replication_candy_1991.

UNDER REVIEW

in each stage have been assumed correct and the totals for each sampling occasion were adjusted accordingly.

3 Methods

The statistical models replicated here are different types of ordinal regression models [agresti] all with the aim of predicting the proportion of an insect population in a particular development stage at any given given time. In particular, they represent three different parametrisations of the so-called cumulative model and one version of the so-called continuation ratio model []. A recent summary of the theory underlying these models is provided in [buerkner?].

models presented are Dennis, Kemp, and Beckwith⁵ and Candy⁶

The models generally assume that the development of an insect follows a stochastic process S(t) consisting of accumulated increments of development over time t. As the amount of S(t) increases, the insect passes through successive stages, delimited by moults, with the jth moult occurring when the development threshold a_i is reached:

$$\begin{array}{lll} \operatorname{stage} 1: & S(t) \leq a_1 \\ \operatorname{stage} 2: & a_1 < S(t) \leq a_2 \\ & \vdots & \vdots \\ \operatorname{stage} r - 1: & a_{r-2} < S(t) \leq a_{r-1} \\ \operatorname{stage} r: & a_{r-1} < S(t) \end{array}$$

The a_i values are typically unknown and must be estimated from the data.

3.1 Ordinal regression model with constant variance

3.2 Ordinal regression model with proportional variance

The model Dennis, Kemp, and Beckwith⁵ proposed is based on assuming a logistic distribution for S(t), such that the probability that an insect's development at time t has not exceeded s amounts to

$$Pr[S(t) \le s] = 1 / \left\{ 1 + \exp\left[-\left(\frac{s-t}{\sqrt{b^2 t}}\right)\right] \right\}$$
 (1)

where b^2 is a positive constant which also must be estimated from the data. This distribution has a mean of t and a variance of $(\pi^2/3)b^2t$. At any fixed time t the thresholds a_j segment the porbaility distribution function in to r parts and the area under the curve between a_{i-1} and a_i gives the probability that the insect will be in stage i at time t. This modelling approach is applied to a dataset consisting of samples that record the number of insects x_{ij} in stage j at times t_1, t_2, \ldots, t_q and the x_{ij} are assumed to be random samples from a multinomial distribution with corresponding multinomial probabilities p_{ij}

$$p_{ij} = Pr[a_{j-1} < S(t_i) \le a_j]$$

$$= 1 / \left\{ 1 + \exp\left[-\left(\frac{a_j - t_i}{\sqrt{b^2 t_i}}\right) \right] \right\} - 1 / \left\{ 1 + \exp\left[-\left(\frac{a_{j-1} - t_i}{\sqrt{b^2 t_i}}\right) \right] \right\}$$

$$(3)$$

To fulfill the constraint that $\sum_{j=1}^r p_{ij} = 1$ it is further assumed that $a_0 = -\infty$ and $a_r = +\infty$. The model has r unknown parameters a_1, \ldots, a_{r-1} and b^2 which can be

Figure 1. Logistic PDF of the Dennis, Kemp, and Beckwith⁵ model plotted for seven fixed values of t. Area under the PDF between a_{j-1} and a_j gives the expected proportion of insects in stage j at time t. Values of a_j and b^2 used in the graph are the estimates given in Table 1 of [8] (black lines) and the estimates from the replication (red lines). This figure replicates Figure 2 in [5].

found by maximising the corresponding log-likelihood function which takes the form

$$\ell = \log C + \sum_{j=1}^{r} \sum_{i=1}^{q} x_{ij} \log p_{ij}$$
 (4)

where C is a combinatorial constant that is independent of the parameter values. Dennis, Kemp, and Beckwith⁵ provided SAS code to estimate the parameters under this likelihood using an interatively reweighted non-linear least squares approach based on PROC NLIN. This code only required minimal updates to run in a contemporary version of SAS (SAS 9.4) and is provided in the article repository. However, since SAS is a proprietary software package, I created an R version of the estimation procedure which directly optimizes the log-likelihood (4) using the optim function and initial values provided in [5].

Dennis, Kemp, and Beckwith⁵

3.3 Continuation ratio model

4 Results

5 Results

References

1. Chuine and J. Régnière. "Process-Based Models of Phenology for Plants and Animals." In: **Annual Review of Ecology, Evolution, and Systematics** 48.1 (2017), pp. 159–182.

Figure 2. Expected proportion of insects in stages 1-7 plotted as functions of time t. Values of a_j and b^2 used in the graph are the estimates given in Table 1 of [8] (black lines) and the estimates from the replication (red lines). This figure replicates Figure 3 in [5].

- 2. Y. Aono and K. Kazui. "Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century." In: International Journal of Climatology: A Journal of the Royal Meteorological Society 28.7 (2008), pp. 905–914.
- 3. P. McCullagh. "Regression Models for Ordinal Data." In: Journal of the Royal Statistical Society: Series B (Methodological) 42.2 (Jan. 1980), pp. 109–127. DOI: 10.1111/j.2517-6161.1980.tb01109.x. URL: https://doi.org/10.1111%2Fj.2517-6161.1980.tb01109.x.
- A. Agresti. Analysis of Ordinal Categorical Data. John Wiley & Sons, Inc., Mar. 2010. DOI: 10.1002/9780470594001. URL: https://doi.org/10.1002%2F9780470594001.
- 5. B. Dennis, W. P. Kemp, and R. C. Beckwith. "Stochastic Model of Insect Phenology: Estimation and Testing." In: Environmental Entomology 15.3 (June 1986), pp. 540–546. DOI: 10.1093/ee/15.3.540. URL: https://doi.org/10.1093%2Fee%2F15.3.540.
- 6. S. G. Candy. "Modeling insect phenology using ordinal regression and continuation ratio models." In: **Environmental entomology** 20.1 (1991), pp. 190–195.
- M. H. Brookes, R. W. Campbell, J. J. Colbert, R. G. Mitchell, and R. W. Stark. Western spruce budworm. Cooperative State Research Service Technical Bulletin 1694. United States Department of Agriculture Forest Service, 1987.
- W. P. Kemp, B. Dennis, and R. C. Beckwith. "Stochastic Phenology Model for the Western Spruce Budworm (Lepidoptera: Tortricidae)." In: Environmental Entomology 15.3 (June 1986), pp. 547–554. DOI: 10.1093/ee/15.3.547. URL: https://doi.org/10.1093%2Fee%2F15.3.547.