לוגיקה - תרגול 10

תזכורת

משתנים קשורים וחופשיים

arphi בנוסחה באינדוקציה על מבנה הנוסחאות מהו משתנה חופשי בנוסחה הגדרה 1: נגדיר באינדוקציה על

arphiבסיס: עבור arphi נוסחה אטומית, אם arphi מופיע ב־arphi אז א חופשי ב

. נוסחאות lpha,eta ניהיו

x עבור x אם x חופשי ביx אם $x: \varphi = (\neg \alpha)$

x אם x חופשי ב־ α אם x חופשי ב־ α אם $x: \varphi = (\alpha \to \beta)\,, (\alpha \leftrightarrow \beta)\,, (\alpha \land \beta)\,, (\alpha \lor \beta)$ עבור

 $x \neq y$ ו ר α ב ב־ α אם x חופשי ב־ α חופשי בי α חופשי בי α חופשי בי

משתנה שאינו חופשי נקרא משתנה קשור.

דוגמה:

 $\exists x_1 (\forall x_2 (R_1(x_2)) \to R_2(x_1, x_2))$

. המופע הראשון של x_2 קשור אך השני חופשי ולכן x_2 חופשי בנוסחה

המופע היחיד של x_1 קשור ולכן x_1

הגדרה 2: נוסחה ללא משתנים חופשיים נקראת פסוק.

 $.arphi=orall x_1orall x_2\,(R(x_1,x_2) o R(x_2,x_1))$ ונתון הפסוק ונתון הפסוק $au=\langle R\left(\circ,\circ
ight),F_1\left(\circ
ight),F_2\left(\circ,\circ
ight),c
angle$ ונתון המילון המילון את הפסוק?

 x_i משפט α נוסחה מעל מילון τ , α מבנה עבור τ ו־ s_1,s_2 זוג השמות עבור α , כך שלכל משתנה חופשי בי α נוסחה מעל מילון α אם ורק אם α אם ורק אם α אם ורק אם α בי α מתקיים α מינו או α או ורק אם α אם ורק אם α

 $M\models arphi$ אז א $M\models_s arphi$ אם אם $M\models_s arphi$ והשמה או מסקנה: לכל מבנה

מושגי יסוד סמנטיים

:הגדרות

- $M\models_s arphi$ שר כך שיs כך והשמה מבנה M היא ספיקה אם היא ספיקה מבנה 1.
- $M\models_s \Sigma$ סימון . $M\models_s \varphi$ מתקיים $\varphi\in \Sigma$ אם לכל Σ אם בוצת נוסחאות מספקים קבוצת השמה מבנה M
 - . המספקים המחאות s המספקים מבנה M המימים היימים היא ספיקה היא בוסחאות Σ
- 4. נוסחה ψ מספקים את מספקים את וכל השמה המספקים אם כל מבנה שם ל מספקים את ψ מספקים את ψ נוסחה או נוסחה $\psi \models \varphi$
- גם מספקים את המספקים את השמה s והשמה המספקים נוסחה φ אם כל גוררת נוסחאות המספקים את גוררת אם גוררת אם באר גוררת אם באר גוררת אם באר גוררת או גוררת את באר את $\Sigma \models \varphi$ את את φ .
 - $M\models_s arphi$ מתקיים s מתקיים σ מעל מילון σ מעל מילון אמת לוגית אם לכל מבנה σ עבור אם עבור σ מעל מילון σ

 $. au = \langle R(\circ, \circ), F(\circ, \circ), c_0, c_1 \rangle$ נתון המילון: מרגיל 2: נתון המילון

 $\Sigma = \left\{ R\left(t,x_{0}
ight) \mid$ נגדיר $t \}$ ש"ע

- .1 הוכיחו כי Σ ספיקה.
- . $\Sigma \nvDash \forall x_1 R(x_0, x_1)$ 2.

 $. au = \langle R\left(\circ,\circ\right), F\left(\circ\right) \rangle$ נתון מילון ניתרגיל 3:

עבור כל אחת מהנוסחאות הבאות, הוכיחו או הפריכו כי היא אמת לוגית:

- $\varphi_1 = \forall x_1 \forall x_2 R(x_1, x_2) \rightarrow \forall x_1 \forall x_2 R(F(x_1), F(x_2))$.1
- $\varphi_2 = \forall x_1 \forall x_2 R\left(F(x_1), F\left(x_2\right)\right) \rightarrow \forall x_1 \forall x_2 R\left(x_1, x_2\right)$.2

לוגיקה תרגול 10

2019 ביוני 2019

```
תרגיל 1:
```

```
arphi=orall x_1orall x_2(R(x_1,x_2)	o 	auונתון הפסוק 	au=\langle R(\circ,\circ),F_1(\circ),F_2(\circ,\circ),c
angleנתון מילון
                                                                      אילו מבנים יספקו את הפסוק?
```

 $M=\langle \mathbb{N},=,-,+,7
angle$ למשל (למשל R^M הוא חס שעבורם Mנוכיח את הטכנה. יהי T מבנה כלשהו עבור au אז: $\Leftrightarrow M \vDash \varphi$ $\Leftrightarrow M \vDash \varphi$,s לכל $\Leftrightarrow (s'(x_2), s'(x_1)) \in R^M \text{ אז } (s'(x_1), s'(x_2)) \in R^M \text{ אם } d_1, d_2 \in D^M \text{ לכל } s, \\ \Leftrightarrow (d_2, d_1) \in R^M \text{ או } (d_1, d_2) \in R^M \text{ אם } d_1, d_2 \in D^M \text{ לכל } s, \\ \Leftrightarrow (d_2, d_1) \in R^M \text{ או } (d_1, d_2) \in R^M \text{ אם } d_1, d_2 \in D^M \text{ } \\ \Leftrightarrow (d_2, d_1) \in R^M \text{ או } (d_1, d_2) \in R^M \text{ } \\ \end{cases}$ (כל המעברים דו־כיווניים ולא דורשים הסבר כי הם מבוססים על ההגדרה).

:2 תרגיל

$$\Sigma=\{R(t,x_0)|$$
 ע"ע ע"ע גדיר אייע אייע איי א יויר א יוי אייע אייע אייע אייע א יויר אמילון אייע אייע אייע אייע אייע אייע אייע

- Σ ספיקה. חוכיחו כי
- $\Sigma
 ot \vdash \forall x_1 R(x_0, x_1)$ 2. הוכיחו כי

:1 פתרון סעיף

הוכחה:

```
\Sigma נוכיח כי קיים א השמה s המספקים את נוכיח כי קיים במנה M=\langle\{a\},\{(a,a)\},f,a,a\rangle בבחר במבנה s(x_1)=a ההשמה s ההי f(a,a)=a כאשר לכל \in M\models R(t,x_0) מתקיים R(t,x)\in \Sigma לכל \Leftrightarrow (\overline{s}(t),\overline{s}(x_0))\in R^M . M\models_s \Sigma \text{ ($\overline{s}(t),\overline{s}(x_0)$)} \in \{(a,a)\}
```

:2 פתרון סעיף

הוכחה:

$$s(x_i)=0$$
 נסמן: $M=\langle \mathbb{N},\geq,+,0,1
angle$ נסמן: $M=\langle \mathbb{N},\geq,+,0,1
angle$

- $\Leftrightarrow M \vDash R(t,x_0)$ מתקיים $R(t,x_0) \in \Sigma$ לכל : $M \vDash \sum_s s$.1 .1 .1 נראה כי $\overline{s}(t) \geq 0 \Leftrightarrow (\overline{s}(t),\overline{s}(x_0)) \in R^M$
- . $M
 ot problem R(x_0,x_1)$ ער אה $d \in \mathbb{N}$ מספיק להראות $M
 ot problem R(x_0,x_1)$ מספיק להראות $d \in \mathbb{N}$ כך ש $d \in \mathbb{N}$ מספיק להראות $d \in \mathbb{N}$ איז d = 3 נבחר $d \in \mathbb{N}$ איז d = 3 איז $d \in \mathbb{N}$ מספיק להראות $d \in \mathbb{N}$ מספיק להראות $d \in \mathbb{N}$ איז $d \in \mathbb{N}$ מספיק להראות $d \in \mathbb{N}$ מספיק לא מתקיים $d \in \mathbb{N}$ מתקיים $d \in \mathbb{N}$ מולכן $d \in \mathbb{N}$ מולכן $d \in \mathbb{N}$ מולכן $d \in \mathbb{N}$ מתקיים $d \in \mathbb{N}$ מתקיים $d \in \mathbb{N}$ מולכן $d \in \mathbb{N$

תרגיל 3:

 $. au = \langle R(\circ,\circ), F(\circ) \rangle$ נתון מילון

עבור כל אחת מהנוסחאות הבאות, הוכיחו או הפריכו כי היא אמת לוגית:

- $\varphi_1 = \forall x_1 \forall x_2 R(x_1, x_2) \rightarrow \forall x_1 \forall x_2 R(F(x_1), F(x_2))$.1
- $\varphi_2 = \forall x_1 \forall x_2 R(F(x_1), F(x_2)) \rightarrow \forall x_1 \forall x_2 R(x_1, x_2)$.2

פתרון:

- 1. יועלה לאתר הקורס.
- 2. הטענה אינה נכונה: נבחר מבנה והשמה: $M=\langle\{0,1\},\{(0,0)\},F^M\rangle$ $s(x_i)=0$ השמה s השמה s השמה s