NLP Word embeddings

План

- Особенности домена
- Решаемые задачи
- Предобработка: токенизация и эмбединги

- One-hot
- Count based
- Word2Vec, FastText

Особенности текстового домена

- Слабая структурируемость
- На входе получаем не числа, а последовательность символов
- Длина текстов бывает разной
- Тексты сравнительно часто бывают с опечатками
- Сильная зависимость от контекста (например, кореференции)
- Грамматически и/или семантически связанные слова не всегда расположены рядом
- Неразмеченных данных очень много, даже с древних времён

Задачи решаемые в NLP

- Классификация текста
- Классификация слов
- Языковое моделирование (aka LM, language modeling)
- text-to-text
- Заполнение маскированных частей текста
- Схожесть текстов
- Выделение границ предложения, расстановка пунктуации

Токенизация

I saw a cat.

Токенизация

Sequence of tokens

Embeddings

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Обработка последовательности эмбедингов

Any algorithm for solving a task

Word representation - vector (input for your model/algorithm)

Sequence of tokens

Как работаем с эмбедингами?

Что делать с незнакомыми словами?

Embeddings

One-hot encoding

One-hot encoding

- размер эмбединга очень большой
- не отражают смысл слов

One-hot encoding

- размер эмбединга очень большой
- не отражают смысл слов

Do you know what the word **tezgüino** means?

(We hope you do not)

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Can you understand what tezgüino means?

Now look how this word is used in different contexts:

A bottle of tezgüino is on the table.

Everyone likes tezgüino.

Tezgüino makes you drunk.

We make tezgüino out of corn.

Tezgüino is a kind of alcoholic beverage made from corn.

With context, you can understand the meaning!

How did you do this?

- (1) A bottle of _____ is on the table.
- (2) Everyone likes _____.
- (3) _____ makes you drunk.
- (4) We make ____ out of corn.

What other words fit into these contexts?

(1)	A	bottle of	is	on	the	table.
-----	---	-----------	----	----	-----	--------

- (2) Everyone likes _____.
- (3) _____ makes you drunk.
- (4) We make _____ out of corn.

(1) (2) (3) (4) ... \leftarrow contexts tezgüino 1 1 1 1 1 | loud 0 0 0 0 \leftarrow rows sho motor oil 1 0 0 1 | properties

tortillas

wine

0 1

1 0

What other words fit into these contexts?

rows show contextual properties: 1 if a word can appear in the context, 0 if not

wine

- (1) A bottle of _____ is on the table.
- (2) Everyone likes _____.
- (3) _____ makes you drunk.
- (4) We make _____ out of corn.

	(1)	(2)	(3)	(4)	
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
•	4	4	4	^	

<u>rows</u> are similar

- (1) A bottle of _____ is on the table.
- (2) Everyone likes _____.
- (3) _____ makes you drunk.
- (4) We make ____ out of corn.

(1) (2) (3) (4) ...
tezgüino
loud
0 0 0 0
motor oil 1 0 0 1
tortillas
0 1 0 1
wine
1 1 1 0

rows are

similar

<u>meanings</u> of the words are similar

Is this true?

- (1) A bottle of _____ is on the table.
- (2) Everyone likes _____.
- (3) _____ makes you drunk.
- (4) We make _____ out of corn.

Дистрибутивная гипотеза

Words which frequently appear in similar contexts have similar meaning.

(Harris 1954, Firth 1957)

Main idea:

We have to put information about contexts into word vectors.

What comes next: different ways to do this

Count based

each element says about the association between a word and a context

Count based

the association between a

word and a context

Reduce dimensionality: Truncated Singular Value Decomposition (SVD)

TF-IDF

Context:

document d (from a collection D)

Matrix element:

• $tf-idf(w, d, D) = tf(w, d) \cdot idf(w, D)$

term frequency

inverse document frequency

Word2Vec

$$P(w_{t-2}|w_t) \ P(w_{t-1}|w_t) \ P(w_{t+1}|w_t) \ P(w_{t+2}|w_t)$$
... I saw a cute grey cat playing in the garden ...
$$w_{t-2} \ w_{t-1} \ w_t \ w_{t+1} \ w_{t+2}$$

context central context words words

Word2Vec

Word2Vec

Objective

Word2Vec tries to find the parameters that maximize the data likelihood:

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m,} P(w_{t+j}|w_t, \theta)$$
 We want our model to think that the training data is "likely"

To do this, it uses negative (log-)likelihood as its loss function:

How to compute $P(w_{t+j}|\mathbf{w_t}, \theta)$?

For each word w, we will have two vectors:

- v_w when it is a central word
- u_w when it is a context word

Once the vectors are trained, usually we throw away context vectors and use only word vectors.

How to compute $P(w_{t+j}|\mathbf{w_t}, \theta)$?

For the central word c and context word o (o - outside):

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Dot product: measures similarity of o and cLarger dot product = larger probability

Normalize over entire vocabulary to get probability distribution

Let us recall our plan:

- ...
- adjust the vectors to increase these probabilities.

Negative sampling

Dot product of v_{cat} :

- with u_{cute} increase,
- with $\underline{\text{all other}} u$ decrease

Parameters to be updated:

- v_{cat}
- u_w for all w in |V| + 1 vectors the vocabulary

Many parameters at each step – slow training

Negative sampling

Dot product of v_{cat} :

- with u_{cute} increase,
- with <u>all other</u> u decrease

Dot product of v_{cat} :

- with u_{cute} increase,
- with <u>a subset of other</u> *u* decrease

Parameters to be updated: bad

- · v_{cat}
- u_w for all w in |V| + 1 vectors the vocabulary

Parameters to be updated:

good

- · v_{cat}
- u_{cute} and u_w for $w \in X + 2$ vectors in K negative examples

Window size

 Larger windows – more topical similarities

 Smaller windows – more functional and syntactic similarities

Linear structure

semantic: $v(king) - v(man) + v(woman) \approx v(queen)$

Syntactic: $v(kings) - v(king) + v(queen) \approx v(queens)$

Linear structure

