Bases de Données (USSIOG) Modèle Relationnel

Thibault Bernard

Thibault.bernard@univ-reims.fr

Algèbre Relationnelle

- Modèle logique associé aux SGBD relationnels (Oracle, DB2, Mysql, Postgres ...)
- Objectifs:
 - Indépendance physique
 - Traitement de redondance des données
 - LMD non procéduraux
 - Standard

Le modèle relationnel

- **Domaine**: ensemble fini ou infini de valeurs
 - Les valeurs d'un domaine sont atomiques
- Relation: sous-ensemble du produit cartésien d'un liste de domaines
 - Une relation est caractérisée par un nom
- R sur D1, ..., Dn est constitué
 - En-tête = ensemble fixé d'attributs tous distincts deux à deux
 - Corps = ensemble de t-uples
- Intention = Schéma = en-tête
- Extension = corps

Exemple de relations

Vins (idVin: Entier, NomVin: chaine de caractères, région: Dom_Vin, Millésime: Année).

Où:

- Dom_Vin ={Alsace, Anjou, Beaujolais, Bordeaux, Bourgogne, Champagne, Côte du Rhône, Savoie,...}.
- Année =[1900 ... 2018].

Ex: {(1, Haut Médoc, Bordeaux, 2005), (5, Château neuf du pape, Côte du rhône, 2009), (18, Aloxe Corton, Bourgogne, 2010), (27, Dom Ruinart, Champagne, 1999)}.

Très souvent les domaines sont implicites.

On note Vins = Vins(idVin,NomVin,Région,Millésime) (ie : nom (liste d'attributs))

Modèle Relationnel / SQL

- Schéma d'une base = ensemble de toutes les relations de la base
- Différences Relations—tables:
 - Pas de lignes dupliquées, pas d'ordre entre lignes et colonnes, valeurs des attributs sont atomiques.

Modèle Relationnel

- Relation
- Tuple
- Attribut
- Cardinalité
- Degré
- Clé primaire

SQL

- Table
- Ligne
- Colonne
- Nbre de lignes
- Nbre de colonne
- Identifiant unique

Contraintes d'intégrité

- Clé primaire: Ensemble d'attributs dont les valeurs permettent de distinguer les tuples les uns aux autres
 - Clé simple (1 seul attribut) ou composée (plusieurs attributs)
 Clé primaire => Irréductibilité + unicité
- Clé étrangère: attribut qui est clé primaire d'une autre relation
 => contraintes

Contraintes d'intégrité

Contrainte d'entité

• Impose que toute relation possède une clé candidate et que tout attribut participant à cette clé candidate soit non nul.

Contrainte référentielle

• Contrainte portant sur une relation S, consistant à imposer que la valeur d'un groupe d'attributs apparaisse comme valeur de clé candidate dans une autre relation R.

Contrainte de domaine

 Contrainte imposant qu'un attribut d'une relation doit comporter des valeurs vérifiant une assertion logique.

Transformation M E/A -> Modèle relationnel

- Transformation d'entité :
 - Une entité -> une relation!
 - Les propriétés de l'entité deviennent les attributs de la relation
 - L'identifiant devient clé primaire

Exemple:

L'entité: Devient :

Vehicule (N° immat, Modèle, Type, Couleur)

- N° immat
- Modèle
- Type
- Couleur

Transformation M E/A -> Modèle relationnel

Transformation d'association (0 ou 1 - n)/(0 ou 1 - n):

- Association entre Type d'entités E1, E2 devient une relation R
- Attributs de R = clés primaires de chacune des Type d'entités + propriétés de l'association
- Clé de R = Union des clés primaires des Types d'Entités

Transformation M E/A -> Modèle relationnel

Transformation des associations (1-1) / (0,1-n)

- Association entre E1 (1-1) et E2 (0,1-n)
- E1 -> R1
- E2 -> R2
- Clé de R2 devient clé étrangère de R1
- Les propriétés de l'association migrent avec la clé
- Dans le cas d'une cardinalité (0-1) la clé étrangère pourra avoir une valeur nulle.

Exemple

Algèbre Relationnelle

- Codd 1970
- Opérations formelles qui agissent sur des relations et produisent des relations (propriétés de fermeture)
 - Restriction
 - Projection
 - Produit
 - Union
 - Intersection
 - Différence
 - Jointure
 - Division

Opérations ensemblistes

- Relations ayant le même schéma
 - Union de 2 relations R et S de même schéma est une relation T contenant l'ensemble des t-uples appartenant à R et S. On note R \cup S.
 - Intersection de 2 relations R et S de même schéma est une relation T de mme schéma contenant l'ensemble des t-uples appartenant à la fois à R et S. On note R∩S.
 - Différence entre 2 relations R et S de même schéma est une relation T de même schéma contenant l'ensemble des t-uples appartenant à R et n'appartenant pas à S. On note R\S.

Opérations ensemblistes

Opérations n'ayant pas (forcément) le même schéma

 Produit cartésien de 2 relations R et S de schémas quelconques est une relation T ayant pour attributs la concaténation des attributs de R et de S et dont les t-uples sont constitués de toutes les concaténations d'un t-uple de R à 1 t-uple de S. On note R X S.

Opérations spécifiques

- **Affectation** sauvegarde du résultat d'une expression de recherche ou renommage d'une relation et ses attributs. On note R←S.
- **Restriction** de la relation R par une qualification Q est une relation T de même schéma dont les t-uples sont ceux de R qui satisfont Q. On note σ_0 R.
- **Projection** d'une relation R de schéma $R(A_1,...,A_n)$ sur les attributs sur les attributs $A_{i1},...,A_{ip}$ avec ij != ik et p < n est une relation T de schéma $T(A_{i1},...,A_{ip})$ dont les t-uples sont obtenus par élimination des attributs de R n'appartenant pas à T et par suppression des doublons. On note $\pi_{A1,...,An}R$.

Jointure

La jointure permet de composer 2 relations à l'aide d'un critère de jointure

- La θ -jointure de R et S selon une qualification Q est l'ensemble des tuples du produit cartésien RxS qui satisfont à la qualification Q. On note $R\bowtie_{\Omega} S$.
- **L'équi-jointure** entre R et S est une θ -jointure avec pour qualification l'égalité entre 2 attributs.
- La Jointure naturelle de R et S est une équi-jointure sur tous les attributs de même nom dans R et dans S, suivie d'une projection qui permet de ne conserver qu'un seul de ces attributs égaux de même nom. On note R⋈S.

La Division

La division de la relation R de schéma $R(A_1,...,A_n)$ par la relation S de schéma $S(A_{p+1},...,A_n)$ est la relation T de schéma $T(A_1,...,A_p)$ formés de tous les tuples qui concaténées à chaque tuples de S donnent toujours un tuple de R. On note R/S.

Opérations de calcul

- Compte dénombre le nombre de lignes d'une relation R qui ont une même valeur d'attributs en commun.
- **Somme** fait la somme cumulée des valeurs d'un attribut A pour chacune des valeurs différentes des attributs de regroupement A1,...,An. A doit être numérique.

Notations et Remarques

- Algèbre relationnelle : représentation symbolique et de haut niveau des intentions de l'utilisateur
- A partir de l'AR il est possible de composer un Langage d'Interrogation des BD
- Question = arbre d'opérateurs relationnels
- Paraphrasage de ces expressions en anglais est à la base de SQL.
- Arbre relationnel : arbre dont les noeuds correspondent à des opérations de l'AR et les arcs à des relations de bases ou temporaires représentant des flots de données entre opérations.

Exemples

Soit le schéma relationnel suivant :

- Patient(n°SS, NomP, PrenomP, TelP, AdresseP, VilleP, #CodeMut)
- **Docteur**(CodeDoc, NomDoc, PrenomDoc, TelDoc AdresseDoc, VilleDoc)
- Mutuelle(CodeMut, NomMut, TelMut, AdresseMut, VilleMut)
- Hospitalise(n°SS,CodeDoc,IdS,CodeAff,Date)
- Service(IdS, Dénomination, Nom_Hopital, TelS, VilleS)
- Affection(CodeAff, NomAff, Dangerosité)