Teoría y definiciones

*Introducción

A lo largo de este texto utilizaremos las nociones de espacios topológicos y de grupos. Nuestra primera parte constr Espacios topológicos Vamos a usar la notación estándar de conjuntos. La pertenencia de un elemento x a un conjuntos de conjuntos de un elemento x a un conjuntos de conjuntos La unión del conjunto A con B se representa por $A \cup B$, la intersección del conjunto A con el conjunto B se representa

f(A)={y ∈ Y : existex ∈ Ayf(x) = y} será llamado imagen directa de A bajo f. Por otro lado dado $B \subset Y$ el conjunto

 $f^{-1}(B) = \{x \in X : f(x) \in B\}$ será llamado la imagen inversa del conjunto B bajo f.

En general tomar la imagen inversa de una imagen directa o en orden alterno, no se obtiene como resultado el misr $f(f^{-1}(B)) \subset B$ $A \subset f^{-1}(f(A))$.

La primera contención es igualdad si f es sobreyectiva y la segunda contención es igualdad si f es inyectiva, es clar Sea $f: \{1, 2, 3, 4\} \to \{1, 2, 3, 4\}$ dada por, f(1) = f(3) = 1, f(2) = f(4) = 3. Esta función no es inyectiva ni sobreye En la práctica es usual no indicarse el dominio e imagen de una función pues implícitamente se da a entender que e Sea X un conjunto y $\tau \subset 2^X$ una familia de subconjuntos de X. Decimos que τ es una **topología** para X si cumpl

∅, X son elementos de τ.
Para cada subfamilia finita de τ, {A_i}_{i=1}ⁿ se tiene que ⋂_{i=1}ⁿ A_i es un elemento de τ.
Para cada subfamilia {A_i}_{i∈J} donde I es un familia de índices arbitrario, se tiene que ⋃_{i∈I} A_i es un elemento de τ.
Por espacio topológico nos referimos a un par (X, τ) donde X es un conjunto y τ es una topología para X. Deno La segunda condición se conoce como cerradura bajo intersecciones finitas o que familia es cerrada bajo ir Sean X un conjunto y la familia 2^X, el par formado por (X, 2^X) es un espacio topológico y es llamado espacio dis Además, si X contiene mas de un punto, las familias 2^X y τ del ejemplo anterior son distintas pero se da la conten La topología guarda información importante del conjunto X que nos puede ayudar a distinguir propiedades de este Cuando el contexto sea claro sobre el espacio topológico yamos prescindir de la notación de la topología y simplemento. Cuando el contexto sea claro sobre el espacio topológico vamos prescindir de la notación de la topología y simplemento Ahora, un resultado que nos permitirá hablar de espacios topológicos en en subconjuntos, esto nos permitirá de hal Sea X un espacio topológico $Y \subset X$ entonces $\tau_Y = \{A \cap U : U \in \tau\}$ es una topología para Y. Por **subespacio** Y dEl tema que no vamos a detallar es el de sistema de vecindades Y bases. Para estos temas tenemos en la bibliografía Sea $X = \{(x, y) \in R^2 : y \ge 0\}$. Definimos una familia de conjuntos mediante las siguientes condiciones; dado (x, y) $B_r((x, y), r) = \{(w, z) \in X : || (x, y) - (w, z) || < r\}$, donde indicamos que es la norma usual de R^2 y $z \ne 0$. Por otro lado si y = 0 tomamos el conjunto

 $\beta((x,0)) = B_r((x,r),r) \cup \{(x,0)\}.$

Hèmos definidò familias de conjuntos en torno a cada punto, esta familia de conjuntos es una base para una topolo Notemos que en este espacio $R \times \{0\} \subset X$, pero la restricción al subespacio $R \times \{0\}$ nos da un conjunto discreto m Para operadores topológicos utilizaremos la siguiente notación.

Sea X un espacio topológico y U subconjunto de X.

Diremos que U es **vecindad** de un punto x denotado por U(x) si, $x \in U$ y $U \in \tau$. A la familia de conjuntos U(x) de ve Al conjunto **interior** de A en X lo denotaremos por

Al conjunto **clausura** de A en X lo denotaremos por,

Denotaremos por $Fr_X(A)$ al conjunto $\overline{A^c} \cap \overline{A}$ a este conjunto le llamaremos la **frontera** de A en X.

Cuando el contexto lo permita simplemente denotaremos por Int(A) al interior, Cl(A) la clausura y Fr(A) a la fro En topología general nos interesa clasificar espacios mediante las propiedades de sus topologías la manera de hacerl Sea X espacio topológico y una función $h: X \to X$.

Dado B subconjunto de X, $h|_B$ denotará la restricción $h: B \to h(B)$ de h a B.

Decimos que h es **continua** si para cada conjunto abierto U se cumple que $h^{-1}(U)$ es un conjunto abierto.

Sea h una función continua y biyectiva. Decimos que h es un **homeomorfismo** si la función inversa de h, $h^{-1}: X \to X$ Sean X un conjunto con mas de un punto y las topologías 2^X y $\tau = \{\emptyset, X\}$. Consideremos la función

dada por

Notemos que para cada $x \in X$ el conjunto $\{x\}$ es un conjunto abierto en X_{2^X} , pero $Id_X^{-1}(\{x\}) = \{x\}$ no lo es en X_{τ} . Si

dada por

si es continua pues $Id_X^{-1}(X) = X$ el cual es un conjunto abierto, el caso \emptyset es trivial. En particular, una función continua El siguiente resultado es conocido como el **lema de pegadura**

Sean $\mathcal{U} = \{A_{\alpha} : \alpha \in A\}$ una familia de abiertos tales que $\bigcup \mathcal{U} = X$ y $f : X \to Y$ una función. Si $f_{\alpha} = f|_{A_{\alpha}}$ es conti *Invariantes topológicos

Los invariantes topológicos, son propiedades que una topología tiene y que estas se preservan mediante homeomorfi Además es importante mencionar el hecho de que un espacio pueda tener una propiedad \mathcal{P} para una topología en p*Compacidad Sea X un espacio topológico. Una familia de abiertos $\{U_i\}_{i\in I}$ se dice ser una **cubierta abierta** par $\mathbf{A}\subset \dot{\mathbb{Q}}_i\,U_i.$ Por subcubierta abierta nos referimos a una subfamilia