Név:	
$\mathrm{EH}\Delta\cdot$	ELTE

Logika és számításelmélet zárthelyi

2010. május 10.

- 1. Tekintsük az alábbi függvényeket! $f(n)=3\cdot 2^n+5\cdot n^5,\ g(n)=3^n+4\cdot n^4,\ h(n)=2\cdot n^2\cdot 3^n.$ Az $f(n)=\Omega(g(n)),\ g(n)=\Omega(f(n)),\ g(n)=O(h(n)),\ h(n)=O(g(n))$ állítások közül melyek igazak? Röviden indokoljuk is a választ. (10 pont)
- 2. Az $A=\{(x,y)\,|\,x\in\mathbb{R},\ y\in\{0,1\}\}$ vagy a $B=\{(x,y)\,|\,x,y\in\mathbb{R}$ és (x=0 vagy $y=0)\}$ halmaz számossága nagyobb? Indokoljuk is meg a választ! (10 pont)
- 3. Az $\mathcal{M} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_i, q_n\}, \{0, 1\}, \{0, 1, \#, \sqcup\}, \delta, q_0, q_i, q_n \rangle$ determinisztikus Turinggép állapotátmenetei az alábbi átmenetdiagrammal vannak megadva. \mathcal{M} egy $f: \{0, 1\}^* \to \{0, 1, \#\}^*$ szófüggvényt számít ki (tehát az $u \in \{0, 1\}^*$ input esetén a Turing-gép megállásakor $f(u) \in \{0, 1, \#\}^*$ olvasható a szalagon).

- (a) Adjuk meg a 01110 szóra a kezdőkonfigurációból a megállási konfigurációba a konfigurációátmenetek sorozatát! (4 pont)
- (b) Adjuk meg azt az f szófüggvényt, melyet \mathcal{M} kiszámol! A választ röviden indokoljuk is! (4 pont)
- (c) Adjunk meg egy olyan k természetes számot, melyre \mathcal{M} $O(n^k)$ időkorlátos! (n az input szó hossza.) A választ röviden indokoljuk is! (2 pont)
- 4. Készítsünk egy- vagy többszalagos, determinisztikus Turing-gépet, mely eldönti az $L = \{u \in \{a,b\}^* \mid u\text{-ban kétszer annyi } a \text{ van, mint } b\}$ nyelvet! (8 pont) Adjunk meg egy olyan $f: \mathbb{N} \to \mathbb{R}_+$ függvényt, melyre igaz lesz, hogy a kapott Turing-gép időigénye $\Theta(f(n))$.
- 5. Bizonyítsuk be, hogy eldönthetetlen, hogy egy Turing-gép felismer-e legalább 2 szót! (Feltehető, hogy az input szavak a $\Sigma = \{0,1\}$ ábécé felettiek. A feladatot másképpen úgy is fogalmazhatjuk, hogy bizonyítsuk be, hogy az $L = \{w_i \mid |L(\mathcal{M}_i)| \geq 2\}$ nyelv nem rekurzív, ahol w_i az i. (\mathcal{M}_i) Turing-gép szokásos, gyakorlaton és előadáson ismertetett kódolása.) (10 pont)