

Contents

1	Wri	tten Problems	2
	1.1	EM for Mixtures of Bernoullis	2
	1.2	K-means	4
	1.3	PCA	5
2	\mathbf{Pro}	gramming Problems	6
	2.1	Data Description	6
	2.2	PCA	6
	2.3	K-means	6
	2.4	Performance Evaluation	7
		2.4.1 Silhouette Coefficient	7
		2.4.2 Rand Index	8

2 Programming Problems

2.1 Data Description

This dataset shows the measurements of the geometrical properties of kernels belonging to three different varieties of wheat. Table 3 shows some statistics of the given dataset.

Table	≥ 3:	Data	description
T CODI	<i>-</i> • •	Data	debettp dieti

	0	1	2	3	4	5	6	7
count	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000
mean	14.847524	14.559286	0.870999	5.628533	3.258605	3.700201	5.408071	2.000000
std	2.909699	1.305959	0.023629	0.443063	0.377714	1.503557	0.491480	0.818448
min	10.590000	12.410000	0.808100	4.899000	2.630000	0.765100	4.519000	1.000000
25%	12.270000	13.450000	0.856900	5.262250	2.944000	2.561500	5.045000	1.000000
50%	14.355000	14.320000	0.873450	5.523500	3.237000	3.599000	5.223000	2.000000
75%	17.305000	15.715000	0.887775	5.979750	3.561750	4.768750	5.877000	3.000000
max	21.180000	17.250000	0.918300	6.675000	4.033000	8.456000	6.550000	3.000000

The first 7 columns are attributes data, and the last column gives the label information.

2.2 PCA

Following the steps given in Section 1.3, we project the original data into a twodimensional subspace. Figure 3 shows the PCA results.

Figure 3: PCA results

The data are colored by true labels. Then, we will implement the K-means to cluster these data.

2.3 K-means

For the K-means method, we follow the steps below:

- a) Randomly choose K distinct centroids, and here K=3
- b) Compute the distance between each data point and the centroid
- c) Assign each data point to the nearest centroid, to form a cluster
- d) Calculate the mean of each cluster as the new centroid
- e) Repeat Step b)-d) until converge. Here I set the convergence tolerance as 0.0001 Following the above steps, we can derive our K-means clustering results. See Figure 4

Figure 4: K-means results

2.4 Performance Evaluation

2.4.1 Silhouette Coefficient

We define

- a: The mean distance between a point and all other points in the same cluster
- b: The mean distance between a point and all other points in the **next nearest** cluster

And the Silhouette coefficient for a single sample is defined as

$$s = \frac{b - a}{\max(a, b)}$$

Larger s indicates better clustering performance. The Silhouette coefficient of our clustering result is 0.4732

2.4.2 Rand Index

Then, we apply an external evaluation matrix. Similarly, we define

- a: The number of pairs of elements in S that are in the **same** subset in X and in the **same** subset in Y
- b: The number of pairs of elements in S that are in the **different** subset in X and in the **different** subset in Y
- c: The number of pairs of elements in S that are in the **same** subset in X and in the **different** subset in Y
- d: The number of pairs of elements in S that are in the **different** subset in X and in the **same** subset in Y

And the Rand Index is defined as

$$RI = \frac{a+b}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$