#### Philosophy 148 — Announcements & Such

- Administrative Stuff
  - Branden's Thursday office hours will be 2:30-3:30 this week.
  - Raul's office hours will be 10–12 Wed., and by appointment.
  - Section times have been determined. Sections will meet Tuesday, 10–11 and Wednesday, 9–10. You should have received an email assigning you to a section. Otherwise, please see Raul about this.
  - Section locations will be announced soon. Meanwhile, 301 Moses.
- Last Time: Finite Boolean Algebras & Some Overview Stuff
- Today's Agenda
  - Review of Key Facts About Finite Propositional Boolean Algebras
  - Some Additional "Big Picture" Stuff (on Logic & Epistemology)
  - An Algebraic Approach to Probability Calculus
  - Next: An Axiomatic Approach to Probability Calculus

# Overview of Finite Propositional Boolean Algebras I

- Consider a logical language  $\mathcal{L}$  containing n atomic sentences. These may be sentence letters (X, Y, Z, etc.), or they may be atomic sentences of monadic or relational predicate calculus (Fa, Gb, Rab, Hcd, etc.).
- The Boolean Algebra  $\mathcal{B}_{\mathcal{L}}$  set-up by such a language will be such that:
  - $\mathcal{B}_{\mathcal{L}}$  will have  $2^n$  states (corresponding to the state descriptions of  $\mathcal{L}$ )
  - $\mathcal{B}_{\mathcal{L}}$  will contain  $2^{2^n}$  *propositions*, in total.
    - \* This is because each proposition p in  $\mathcal{B}_{\mathcal{L}}$  is equivalent to a disjunction of state descriptions. Thus, each subset of the set of state descriptions of  $\mathcal{L}$  corresponds to a proposition of  $\mathcal{B}_{\mathcal{L}}$ .
    - \* Note: there are  $2^{2^n}$  subsets of a set of size  $2^n$ .
      - · The empty set  $\emptyset$  of state descriptions corresponds to "the empty disjunction", which corresponds to *the logical falsehood*:  $\bot$ .
      - · Singelton sets of state descriptions correspond to "disjunctions with one member". [All other subsets are "normal" disjunctions.]

## Overview of Finite Propositional Boolean Algebras II

• Example. Let  $\mathcal{L}$  have three atomic sentences: X, Y, and Z. Then,  $\mathcal{B}_{\mathcal{L}}$  is:

| _X | Y | Z | States                |
|----|---|---|-----------------------|
| T  | Т | T | $\overline{S_1}$      |
| T  | Т | F | <i>S</i> <sub>2</sub> |
| T  | F | Т | <i>S</i> <sub>3</sub> |
| T  | F | F | <i>S</i> <sub>4</sub> |
| F  | Т | Т | <i>S</i> <sub>5</sub> |
| F  | Т | F | <i>s</i> <sub>6</sub> |
| F  | F | Т | <i>S</i> 7            |
| F  | F | F | <i>S</i> <sub>8</sub> |



- Examples of reduction to disjunctions of state descriptions of  $\mathcal{L}$ :
  - ' $X \& \sim X$ ' is equivalent to the *empty* disjunction:  $\perp$ .
  - ' $X \& (\sim Y \& Z)$ ' is equivalent to the *singleton* disjunction:  $s_3$ .
  - ' $X \leftrightarrow (Y \lor Z)$ ' is equivalent to:  $s_1 \lor s_2 \lor s_3 \lor s_8$ .
- In general:  $p = \bigvee \{s_i \mid s_i \models p\}$ . And, if  $\{s_i \mid s_i \models p\} = \emptyset$ , then  $p = \bot$ .

#### Inductive Logic — Basic Motivation and Ideas

- Intuitively, not all "logically good" arguments are deductively valid. Some invalid arguments seem (intuitively) logically *better than* others:
- (6) p. Someone is wise. r. Someone is either wise or unwise. (7)  $\therefore q$ . Socrates is wise.  $\therefore q$ . Socrates is wise.
- *Inductive* logic should *theoretically ground* our intuition that (6) is a *logically stronger* argument than (7) is. Neither argument is *valid*.
- More ambitiously, an inductive logician might aim for a theory of "the *degree* to which the premises of an argument *confirm* its conclusion".
- This ambitious project would aim to characterize a *function*  $\mathfrak{c}(\mathscr{C}, \mathscr{P})$ . And, an intuitive requirement would be that this function be such that:

• This course is (mainly) about *inductive logic*. We will examine how *probabilities* might be used to *quantitatively generalize* deductive logic.



## Logic and Epistemology — A Prelude I

- As I mentioned, some have worried about the adequacy of classical logic as a formal explication of our informal "following-from" relation.
- Here's a fact about classical deductive logic that may seem "odd":
  - (†) If p and q are (classically) logically inconsistent, then the argument from p and q to r is (classically) valid for any r.
- There's *something* "odd" about the fact that *everything follows-from inconsistent premises*, according to the classical formal explication of following-from. But, what, exactly, is supposed to be "odd" about it?
- Here's an *epistemological* principle that is downright *crazy*:
  - (‡) If one's beliefs are inconsistent (and one knows that they are), then one should believe everything (*i.e.*, every proposition).
- It is clear that (‡) is false. There are things I *know* to be false, and I shouldn't believe those things no matter what else is true of me.

## Logic and Epistemology — A Prelude II

- OK, (‡) is clearly false. So? What does that have to do with (†)?
- After all, (†) is a about *logic*, and (‡) is about *epistemology*.
- Perhaps those worried about (†) are assuming that logic and epistemology are connected, or bridged by something like:
  - (\*) If an agent *S*'s belief set *B* is such that  $B \models p$  (and *S* knows that  $B \models p$ ), then it would be reasonable for *S* to infer/believe p.
- If (\*) were true, then (†) would imply (‡), and as a result classical logicians who accepted (\*) would seem to be stuck with (‡) too.
- More precisely, classical logicians who believe (\*) should find it reasonable to believe (‡). But, they don't (at least, they shouldn't!).
- But, *this* doesn't *force* classical logicians to give up (†). They could give up (\*) instead. In such contexts, logic (alone) doesn't seem to tell us whether to infer something new, or reject something we already believe.

## The Probability Calculus: An Algebraic Approach I

- Once we grasp the concept of a finite Boolean algebra of propositions, understanding the probability calculus *algebraically* is very easy.
- The central concept is a *finite probability model*. A finite probability model  $\mathcal{M}$  is a finite Boolean algebra of propositions  $\mathcal{B}$ , together with a function  $Pr(\cdot)$  which maps elements of  $\mathcal{B}$  to the unit interval  $[0,1] \in \mathbb{R}$ .
- This function  $Pr(\cdot)$  must be a *probability function*. It turns out that a probability function  $Pr(\cdot)$  on  $\mathcal{B}$  is just a function that assigns a real number on [0,1] to each state  $s_i$  of  $\mathcal{B}$ , such that  $\sum_i Pr(s_i) = 1$ .
- Once we have  $Pr(\cdot)$ 's *basic assignments* to the states of  $\mathcal{B}$  (s.d.'s of  $\mathcal{L}$ ), we define Pr(p) for *any* statement  $\mathcal{L}$  of the language of  $\mathcal{B}$ , as follows:

$$\Pr(p) = \sum_{s_i = p} \Pr(s_i)$$
 [note: if  $p = \bot$ , then  $\Pr(p) = 0$ ]

• In other words, Pr(p) is the sum of the probabilities of the state descriptions in p's (equivalent) disjunction of state descriptions.

#### The Probability Calculus: An Algebraic Approach II

• Here's an example of a finite probability model  $\mathcal{M}$ , whose algebra  $\mathcal{B}$  is characterized by a language  $\mathcal{L}$  with two atomic letters "X" and "Y":

| X | Y | States | $Pr(s_i)$       |
|---|---|--------|-----------------|
| Т | Т | $s_1$  | $\frac{1}{6}$   |
| Т | F | $s_2$  | $\frac{1}{4}$   |
| F | Т | $s_3$  | $\frac{1}{8}$   |
| F | F | $S_4$  | $\frac{11}{24}$ |



- On the left, a *stochastic truth-table* (STT) representation of  $\mathcal{M}$ ; on the right, a *stochastic Venn Diagram* (SVD) representation, in which *area is proportional to probability*. This is a *regular* model:  $\Pr(s_i) > 0$ , for all i.
- $\mathcal{M}$  determines a *numerical* probability for *each* p in  $\mathcal{L}$ . Examples?
- We can also use STTs to furnish an algebraic method for *proving general facts* about *all* probability models *the algebraic method*.

## The Probability Calculus: An Algebraic Approach III

- Let  $a_i = \Pr(s_i)$  be the probability [under the probability assignment  $\Pr(\cdot)$ ] of state  $s_i$  in  $\mathcal{B}$  *i.e.*, the area of region  $s_i$  in our SVD.
- Once we have real variables  $(a_i)$  for each of the basic probabilities, we can not only calculate probabilities relative to *specific* numerical models we can say **general** things, using only simple high-school algebra.
- That is, we can *translate* any expression  $\lceil \Pr(p) \rceil$  into a *sum* of some of the  $a_i$ , and thus we can *reduce probabilistic* claims about the p's in  $\mathcal{B}/\mathcal{L}$  into simple, high-school-*algebraic* claims about the real variables  $a_i$ .
- This allows us to be able to prove general claims about *probability functions*, by proving their corresponding *algebraic theorems*.
- Method: translate the probability claim into a claim involving sums of the  $a_i$ , and determine whether the corresponding claim is a theorem of algebra (assuming only that the  $a_i$  are on [0,1] and that they sum to 1).

#### The Probability Calculus: An Algebraic Approach IV

• Here are two simple/obvious examples involving two atomic sentences:

**Theorem.** 
$$Pr(X \vee Y) = Pr(X) + Pr(Y) - Pr(X \& Y)$$
.  
**Proof.**  $Pr(X \vee Y) = a_1 + a_2 + a_3 = (a_1 + a_2) + (a_1 + a_3) - a_1$ .  
**Theorem.**  $Pr(X) = Pr(X \& Y) + Pr(X \& \sim Y)$ .  
**Proof.**  $a_1 + a_2 = a_1 + a_2$ .

• Here are two general facts that are also obvious from the set-up:

**Theorem.** If p = q, then Pr(p) = Pr(q).

**Proof**. Obvious, since the same regions always have the same areas, and the algebraic translation is *the same* for logically equivalent p/q.

**Theorem**. If  $p \models q$ , then  $Pr(p) \leq Pr(q)$ .

**Proof**. Since  $p \models q$ , the set of state descriptions entailing p is a subset of the set of state descriptions entailing q. Thus, the set of  $a_i$  in the summation for Pr(p) will be a subset of the  $a_i$  in the summation for Pr(q). Thus, since all the  $a_i \ge 0$ ,  $Pr(p) \le Pr(q)$ .

## The Probability Calculus: An Algebraic Approach V

- Conditional Probability.  $Pr(p | q) \stackrel{\text{def}}{=} \frac{Pr(p \& q)}{Pr(q)}$ , provided that Pr(q) > 0.
- Intuitively,  $Pr(p \mid q)$  is supposed to be the probability of p *given that* q *is true*. So, *conditionalizing* on q is like "supposing q to be true".
- Using Venn diagrams, we can explain: "Supposing *Y* to be true" is like "treating the *Y*-circle as if it is the bounding box of the Venn Diagram".
- This is like "moving to a new  $\Pr^*(\cdot)$  such that  $\Pr^*(Y) = 1$ ." Picture:



## The Probability Calculus: An Algebraic Approach VI

- There may be other ways of defining conditional probability, which may also seem to capture the "supposing *q* to be true" intuition.
- But, any such definition must make  $Pr(\cdot | q)$  itself a *probability function*, *for all q*. We will look at this important constraint again (and in more generality), when we discuss the axiomatic approach to probability.
- But, algebraically, we can see that this is a strong constraint. Recall:

$$Pr(X \vee Y) = Pr(X) + Pr(Y) - Pr(X \& Y).$$

• Therefore, if  $Pr(\cdot | q)$  is to be a *probability* function *for all q*, then we must also have the following equality (in general), *for all Z*:

$$Pr(X \vee Y \mid Z) = Pr(X \mid Z) + Pr(Y \mid Z) - Pr(X \& Y \mid Z).$$

• Using our algebraic method, we can *prove* this. We just need to remind ourselves of what the 3-atomic sentence algebra looks like, and how the algebraic translation of this equation would go. Let's do that ...

| _X | Y | $\mid Z \mid$ | States                | $\Pr(s_i)$            |
|----|---|---------------|-----------------------|-----------------------|
| T  | Т | T             | $s_1$                 | $a_1$                 |
| T  | Т | F             | <i>S</i> <sub>2</sub> | $a_2$                 |
| T  | F | Т             | <b>s</b> 3            | $a_3$                 |
| T  | F | F             | <i>S</i> <sub>4</sub> | $a_4$                 |
| F  | Т | Т             | <i>S</i> <sub>5</sub> | $a_5$                 |
| F  | Т | F             | $s_6$                 | $a_6$                 |
| F  | F | Т             | <i>S</i> 7            | <i>a</i> <sub>7</sub> |
| F  | F | F             | <i>S</i> 8            | $a_8$                 |



• By our definition of conditional probability, we have:

$$\Pr(X \vee Y \mid Z) = \frac{\Pr((X \vee Y) \& Z)}{\Pr(Z)} = \frac{\Pr((X \& Z) \vee (Y \& Z))}{\Pr(Z)} = \frac{a_1 + a_3 + a_5}{a_1 + a_3 + a_5 + a_7}$$
 and

$$Pr(X | Z) + Pr(Y | Z) - Pr(X \& Y | Z) = \frac{Pr(X \& Z)}{Pr(Z)} + \frac{Pr(Y \& Z)}{Pr(Z)} - \frac{Pr(X \& Y \& Z)}{Pr(Z)}$$

$$= \frac{Pr(X \& Z) + Pr(Y \& Z) - Pr(X \& Y \& Z)}{Pr(Z)}$$

$$= \frac{(a_1 + a_3) + (a_1 + a_5) - a_1}{a_1 + a_3 + a_5 + a_7} = \frac{a_1 + a_3 + a_5}{a_1 + a_3 + a_5 + a_7}$$

#### The Probability Calculus: An Algebraic Approach VII

- We can use our algebraic method to demonstrate that our definition of  $Pr(\cdot | q)$  yields a probability function, for all q, in the following way.
- Intuitively, think about what an "unconditional" and a "conditional" stochastic truth-table must look like, for any pair of sentences p and q.

| p | q | $\Pr(s_i)$ |             | p | q | $\Pr(s_i \mid q)$                                                                               |
|---|---|------------|-------------|---|---|-------------------------------------------------------------------------------------------------|
| Т | Т | $a_1$      | ·   q       | Т | Т | $\Pr(s_1 \mid q) \stackrel{\text{def}}{=} \frac{\Pr(s_1 \& q)}{\Pr(q)} = \frac{a_1}{a_1 + a_3}$ |
| Т | F | $a_2$      | <del></del> | Т | F | $\Pr(s_2 \mid q) \stackrel{\text{def}}{=} \frac{\Pr(s_2 \& q)}{\Pr(q)} = 0$                     |
| F | Т | $a_3$      |             | F | Т | $\Pr(s_3 \mid q) \stackrel{\text{def}}{=} \frac{\Pr(s_3 \& q)}{\Pr(q)} = \frac{a_3}{a_1 + a_3}$ |
| F | F | $a_4$      |             | F | F | $\Pr(s_4 \mid q) \triangleq \frac{\Pr(s_4 \& q)}{\Pr(q)} = 0$                                   |

• Note: the new basic probabilities assigned to the state descriptions, under our "conditionalized"  $\Pr(\cdot \mid q)$  satisfy the requirements for being a *probability* function, since  $\frac{a_1}{a_1+a_3} + \frac{a_3}{a_1+a_3} = 1$ , and  $\frac{a_1}{a_1+a_3}$ ,  $\frac{a_3}{a_1+a_3} \in [0,1]$ .

## The Probability Calculus: An Algebraic Approach VIII

• Here's a neat theorem of the probability calculus, proved algebraically.

**Theorem.**  $Pr(X \to Y) \ge Pr(Y \mid X)$ . [Provided that Pr(X) > 0, of course.]

**Proof.** 
$$\Pr(X \to Y) = \Pr(\sim X \lor Y) = \Pr(s_1 \lor s_3 \lor s_4) = a_1 + a_3 + a_4$$
.

$$\Pr(Y \mid X) = \frac{\Pr(Y \& X)}{\Pr(X)} = \frac{\Pr(s_1)}{\Pr(s_1 \lor s_2)} = \frac{a_1}{a_1 + a_2}.$$

So, we need to prove that  $a_1 + a_3 + a_4 \ge \frac{a_1}{a_1 + a_2}$ .

- First, note that  $a_4 = 1 (a_1 + a_2 + a_3)$ , since the  $a_i$ 's must sum to 1.
- Thus, we need to show that  $a_1 + a_3 + 1 a_1 a_2 a_3 \ge \frac{a_1}{a_1 + a_2}$ .
- By simple algebra, this reduces to showing that  $\left|1-a_2 \ge \frac{a_1}{a_1+a_2}\right|$ .
- If  $a_1 + a_2 > 0$  and  $a_i \in [0, 1]$ , this must hold, since then we must have:  $a_2 \ge a_2 \cdot (a_1 + a_2)$ , and then the boxed formulas are equivalent.  $\square$

## The Probability Calculus: An Algebraic Approach IX

- Here are some further fundamental theorems of probability calculus, involving 2 or 3 atomic sentences and CP. Easy, given defn. of CP.
  - The Law of Total Probability (LTP):

$$Pr(X \mid Y) = Pr(X \mid Y \& Z) \cdot Pr(Z \mid Y) + Pr(X \mid Y \& \sim Z) \cdot Pr(\sim Z \mid Y)$$

- Note:  $Pr(X \mid T) = Pr(X)$ . Why? So, the LTP has a *special case*:

$$Pr(X \mid \top) = Pr(X) = Pr(X \mid \top \& Z) \cdot Pr(Z \mid \top) + Pr(X \mid \top \& \sim Z) \cdot Pr(\sim Z \mid \top$$

$$= Pr(X \mid Z) \cdot Pr(Z) + Pr(X \mid \sim Z) \cdot Pr(\sim Z)$$

- Two forms of **Bayes's Theorem**. The second one *follows*, using (LTP):

$$Pr(X \mid Y) = \frac{Pr(Y \mid X) \cdot Pr(X)}{Pr(Y)}$$

$$= \frac{Pr(Y \mid X) \cdot Pr(X)}{Pr(Y \mid Z) \cdot Pr(Z) + Pr(Y \mid \sim Z) \cdot Pr(\sim Z)}$$

#### The Probability Calculus: An Algebraic Approach X

- One more interesting theorem (due to Popper & Miller), algebraically.
- Let  $d(X, Y) \stackrel{\text{def}}{=} \Pr(X \mid Y) \Pr(X)$ . Then, we have the following theorem:

**Theorem** (PM). 
$$d(X, Y) = d(X \vee Y, Y) + d(X \vee \sim Y, Y)$$
.

**Proof** (algebraic, using STT from X/Y language, above).

$$d(X,Y) \stackrel{\text{def}}{=} \Pr(X \mid Y) - \Pr(X) = \frac{a_1}{a_1 + a_3} - (a_1 + a_2)$$

$$d(X \lor Y,Y) \stackrel{\text{def}}{=} \Pr(X \lor Y \mid Y) - \Pr(X \lor Y) = 1 - a_1 - a_2 - a_3$$

$$d(X \lor \sim Y,Y) \stackrel{\text{def}}{=} \Pr(X \lor \sim Y \mid Y) - \Pr(X \lor \sim Y) = \frac{a_1}{a_1 + a_3} - (a_1 + a_2 + a_4)$$

$$\therefore d(X \lor Y,Y) + d(X \lor \sim Y,Y) = 1 - a_1 - a_2 - a_3 + \frac{a_1}{a_1 + a_3} - a_1 - a_2 - a_4$$

$$= \frac{a_1}{a_1 + a_3} + 1 - a_1 - a_2 - a_3 - a_1 - a_2 - (1 - (a_1 + a_2 + a_3))$$

$$= \frac{a_1}{a_1 + a_3} - (a_1 + a_2). \quad \Box$$

## The Probability Calculus: An Algebraic Approach XI

- The algebraic approach for *refuting* general claims involves two steps:
  - 1. Translate the claim from probability notation into algebraic terms.
  - 2. Find a (numerical) probability model on which the translation is *false*.
- Show that  $Pr(X \mid Y \& Z) = Pr(X \mid Y \lor Z)$  can be *false*. Here's a model  $\mathcal{M}$ :

| X | Y | $\mid Z \mid$ | States                | $\Pr(s_i)$   |
|---|---|---------------|-----------------------|--------------|
| T | Т | T             | $s_1$                 | $a_1 = 1/6$  |
| Т | Т | F             | <i>S</i> <sub>2</sub> | $a_2 = 1/6$  |
| T | F | Т             | <i>S</i> <sub>3</sub> | $a_3 = 1/4$  |
| Т | F | F             | <i>S</i> <sub>4</sub> | $a_4 = 1/16$ |
| F | Т | Т             | <i>S</i> <sub>5</sub> | $a_5 = 1/6$  |
| F | Т | F             | <i>S</i> <sub>6</sub> | $a_6 = 1/12$ |
| F | F | Т             | <i>S</i> 7            | $a_7 = 1/24$ |
| F | F | F             | <i>S</i> <sub>8</sub> | $a_8 = 1/16$ |



(1) Algebraic Translation: 
$$\frac{a_1}{a_1 + a_5} = \frac{a_1 + a_2 + a_3}{a_1 + a_2 + a_3 + a_5 + a_6 + a_7}.$$

(2) This claim is *false* on  $\mathcal{M}$ , since  $1/2 \neq 2/3$ . I used PrSAT to find  $\mathcal{M}$ .

## The Probability Calculus: An Algebraic Approach XII

- There are *decision procedures* for Boolean propositional logic, based on truth-tables. These methods are *exponential* in the number of atomic sentences (n), because truth-tables grow exponentially in n  $(2^n)$ .
- It would be nice if there were a decision procedure for probability calculus, too. In algebraic terms, this would require a decision procedure for the salient fragment of high-school (real) algebra.
- As it turns out, high-school (real) algebra (HSA) *is* a decidable theory. This was shown by Tarski in the 1920's. But, it's only been very recently that computationally feasible procedures have been developed.
- In my "A Decision Procedure for Probability Calculus with Applications", I describe a user-friendly decision procedure (called PrSAT) for probability calculus, based on recent HSA procedures.
- My implementation is written in *Mathematica* (a general-purpose mathematics computer programming framework). It is freely downloadable from my website, at: http://fitelson.org/PrSAT/.

## The Probability Calculus: An Algebraic Approach XIII

- I encourage the use of PrSAT as a tool for finding counter-models and for establishing theorems of probability calculus. It is not a requirement of the course, but it is a useful tool that is worth learning.
- PrSAT doesn't give readable proofs of theorems. But, it will find concrete numerical counter-models for claims that are not theorems.
- PrSAT will also allow you to calculate probabilities that are determined by a *given* probability assignment. And, it will allow you to do algebraic and numerical "scratch work" without making errors.
- I have posted a *Mathematica* notebook which contains the examples from algebraic probability calculus that we have seen in this lecture. I will be posting further notebooks as the course goes along.
- Let's have a look at this first notebook (examples\_1.nb). I will now go through the examples in this notebook, and demonstrate some of the features of PrSAT. I encourage you to play around with it.

## **Axiomatic Treatment of Probability Calculus I**

- A probability model  $\mathcal{M}$  is a Boolean algebra of propositions  $\mathcal{B}$ , together with a function  $Pr(\cdot): \mathcal{B} \mapsto \mathbb{R}$  satisfying the following three *axioms*.
  - 1. For all  $p \in \mathcal{B}$ ,  $Pr(p) \ge 0$ . [non-negativity]
  - 2.  $Pr(\top) = 1$ , where  $\top$  is the tautological proposition. [normality]
  - 3. For all  $p, q \in \mathcal{B}$ , if p and q are mutually exclusive (inconsistent), then  $\Pr(p \vee q) = \Pr(p) + \Pr(q)$ . [additivity]
- Conditional probability is *defined* in terms of unconditional probability in the usual way:  $\Pr(p \mid q) \triangleq \frac{\Pr(p \& q)}{\Pr(q)}$ , provided that  $\Pr(q) > 0$ .
- We could also state everything in terms of a (propositional) *language L* with a finite number of atomic *sentences*. Then, we would talk about *sentences* rather than *propositions*, and the axioms would read:
  - 1. For all  $p \in \mathcal{L}$ ,  $Pr(p) \ge 0$ .
  - 2. For all  $p \in \mathcal{L}$ , if  $p = \top$ , then Pr(p) = 1.
  - 3. For all  $p, q \in \mathcal{L}$ , if  $p \& q = \bot$ , then  $Pr(p \lor q) = Pr(p) + Pr(q)$ .

## **Axiomatic Treatment of Probability Calculus II**

- Instead of using the algebraic approach for proving theorems, we can also give *axiomatic* proofs. This is the standard way of proving claims in probability calculus (PrSAT doesn't give proofs, so we need axioms).
- Here are two examples of theorems and their *axiomatic* proofs (see the Eells *Appendix*). Note: these are *trivial* from an *algebraic* point of view! **Theorem**.  $Pr(\sim p) = 1 - Pr(p)$ .

*Proof.* Since  $p \lor \sim p$  is a tautology, (2) implies  $\Pr(p \lor \sim p) = 1$ ; and since p and  $\sim p$  are m.e., (3) implies  $\Pr(p \lor \sim p) = \Pr(p) + \Pr(\sim p)$ . Therefore,  $1 = \Pr(p) + \Pr(\sim p)$ , and thus  $\Pr(\sim p) = 1 - \Pr(p)$ , by simple algebra.  $\square$ 

**Theorem.** If p 
Arr p 
Arr q, then  $\Pr(p) = \Pr(q)$ . *Proof.* Assume p 
Arr p 
Arr q. Then, p and  $\sim q$  are mutually exclusive (inconsistent), and  $p \lor \sim q 
Arr p 
Arr T$ . So by axioms (2) and (3), and the previous theorem  $[\Pr(\sim p) = 1 - \Pr(p)]$ :

$$1 = \Pr(p \lor \sim q) = \Pr(p) + \Pr(\sim q) = \Pr(p) + 1 - \Pr(q)$$

So, 
$$1 = \Pr(p) + 1 - \Pr(q)$$
, and  $0 = \Pr(p) - \Pr(q)$ .  $\therefore \Pr(p) = \Pr(q)$ .

### Axiomatic Treatment of Probability Calculus III

• Here are two more axiomatic proofs:

**Theorem.** If  $p = \bot$ , then Pr(p) = 0.

*Proof.* Assume  $p \rightrightarrows \models \bot$ . Then,  $\sim p \rightrightarrows \models \top$ , and, by (2),  $\Pr(\sim p) = 1$ . Then, by the above theorem,  $\Pr(\sim p) = 1 - \Pr(p) = 1$ , and  $\Pr(p) = 0$ .  $\Box$ 

**Theorem.** If  $p \models q$ , then  $Pr(p) \leq Pr(q)$ .

*Proof.* First, note the following two Boolean equivalences:

$$p \Rightarrow \models (p \& q) \lor (p \& \sim q)$$

$$q = (p \& q) \lor (\sim p \& q)$$

Thus, by our theorem above, we must have the following two identities:

$$Pr(p) = Pr[(p \& q) \lor (p \& \sim q)]$$

$$Pr(q) = Pr[(p \& q) \lor (\sim p \& q)]$$

By axiom (3), this yields the following two identities:

$$Pr(p) = Pr(p \& q) + Pr(p \& \sim q)$$

$$Pr(q) = Pr(p \& q) + Pr(\sim p \& q)$$

Now, assume  $p \models q$ . Then,  $p \& \sim q \rightrightarrows \models \bot$ . Hence, by our theorem above,  $\Pr(p \& \sim q) = 0$ . And, under these circumstances, we must have:

$$Pr(p) = Pr(p \& q)$$

$$Pr(q) = Pr(p \& q) + Pr(\sim p \& q)$$

That is to say, we must have the following:

$$Pr(q) = Pr(p) + Pr(\sim p \& q)$$

But, by axiom (1),  $\Pr(\sim p \& q) \ge 0$ . So, by algebra,  $\Pr(q) \ge \Pr(p)$ .  $\square$ 

- This gives us an alternative way to prove  $p = p = q \Rightarrow \Pr(p) = \Pr(q)$ . We just apply the previous theorem, in both directions (plus algebra).
- You should now be able to prove that  $Pr(p) \in [0, 1]$ , for all p.