Brain Tumor Segmentation and Classification

"The Gradients"

Team Members: Abjasree S, Poojan Smart, Niranjan Solanki, Vaishnav Panuganti

Problem
O1 Statement

O3 Models and Performance

Losses and Evaluation metrics

Results and Conclusion

Problem Statement

- Segment the tumor part from the MRI scans of brain.
- Identify the kind of brain tumor from categories: Meningioma, Glioma, Pituitary tumor

Dataset

3064 T1-weighted contrast enhanced images 512 x 512 x 1 233 patients with three types of tumors

- 1. Meningioma (708 slices)
- 2. Glioma (1426 slices)
- 3. Pituitary tumor (930 slices)

MRI Scan

Tumor Mask

Loss and Evaluation Metric

Unbalanced Classification

Imbalance of class at pixel level

Metric: Mean IoU

Mean over the IoU of each class (in our case, Tumor region and Non-Tumor region). Therefore It is a balanced metric.

Models and Performance

Base Models Classification

- Saliency maps depicts it takes the whole information of brain
- We want the location of tumor and information on tumor for classification
- Led to using semantic segmentation using UNET

Semantic Segmentation

UNET Architecture

Precise locations: Use of skip connections i.e., concatenating output of transpose convolution with feature maps from the encoder of same level

Loss: 0.532 **Basic Autoencoder** Mean IOU: 0.8353 Loss: 0.3813 Simple UNET Mean IOU: 0.8499 **UNET with** Loss: 0.3113 Mean IOU: 0.8442 batchnorm Transfer Loss: 0.3149 Mean IOU: 0.6266 Learning

Classification from encoded layer of UNET

- We want classification based on tumor information
- Trying classification using encoded layer of UNET

HYPOTHESIS

 We are segmenting the image to the same space dimension, so the information about the location of tumor is preserved

Results

Segmentation

Models	Loss	Mean IOU
Basic Autoencoder	0.532	0.8353
Simple UNET	0.3813	0.8499
UNET with batchnorm	0.3113	0.8442
Transfer Learning - UNET	0.3149	0.6266

Classification

Models	Accuracy
Basic model with FCNN	0.4651
Basic model CNN	0.8965
Simple UNET	0.853
UNET with batchnorm	0.9159

Conclusion and Inference

AutoEncoder

Using Base autoencoder we couldn't achieve the good Saliency map but for UNET we could

Best Model

The model, UNET with batch norm and data augmentation gave the best result for the data

Mean IOU

We have used mean iou metric for segmentation because the tumor and non-tumor pixels are unbalanced

Loss

Addition of three losses give good result compared to using individual loss

IMPROVEMENTS

Improve the Classification

We can try improving the classification part by analysing the incorrect label.

Improve the shape

We can work on improving the shape of the tumor while segmentation

Transfer learning

Train for more epochs since the graph seems improving

Data augmentation

Try with new data and do data augmentation according to the data

THANKS!

Team Members

Abjasree S Poojan Smart Niranjan Solanki Vaishnav Panuganti