E158: Introduction to CMOS VLSI Design

Instructor: Prof. David Harris

Parsons 2374 Phone: x7-3623

Email: David Harris@hmc.edu

Office Hours: TBD

Administrative

<u>Syllabus</u>

Spring '01 Web Page

Spring '02 Web Page

Spring '04 Web Page

Spring '05 Web Page

Spring '07 Web Page

Spring '08 Web Page

Spring '10 Web Page

Spring '11 Web Page

Spring '15 Web Page

Spring '16 Web Page

Textbook

Links

CMOS VLSI Design

Tools

MOSIS IC

Fabrication

MOSIS SCMOS

Design Rules

cif2ps Chip

Plotting

Labs (HMC access Problem only) Sets

PS 1

<u>PS 2</u>

PS 3

<u>PS 4</u>

PS 5

Projects

<u>Project</u>

Checkoff Times

Lectures

<u>Lecture 0: Introduction</u>

<u>(pdf)</u>

Lecture 1: Circuits &

<u>Layout (pdf)</u>

Lecture 2: Design Flow

(pdf)

Lecture 3: Transistor

Theory (pdf)

Lecture 4: Nonideal

Transistors (pdf)

Lecture 5: DC & Transient

Response (pdf)

<u>Lecture 6: Logical Effort</u>

(pdf)

Lecture 7: Power (pdf)

Lecture 8: Simulation

(pdf)

Lecture 9: Combinational

<u>Circuit Design (pdf)</u>

Lecture 10: Circuit

Families (pdf)

Lecture 11: Sequential

Circuit Design (pdf)

Lecture 12: Adders (pdf)

Lecture 13: Datapaths

(pdf)

Lecture 14: Wires (pdf)

Lecture 15: SRAM (pdf)

Lecture 16: ROMs, CAMs, &

PLAs (pdf)

Lecture 17: Scaling (pdf)

Lecture 18: Pitfalls &

Reliability (pdf)

Lecture 19: Packaging,

Power, & Clock (pdf)

Lecture 20: PLLs & DLLs

(pdf)

Lecture 21: Design for

Testability (pdf)

Lecture 22: I/O (pdf)

Lecture 23:

Microprocessor Hall of

Fame (pdf)