Comparator

Boris Murmann bmurmann@hawaii.edu

Next Steps

- Add second integrator (second-order modulator)
- Write some post-processing scripts
 - Detailed measurements
 - Emulate counters to create final digital output
- Increasingly "transistorize" the implementation
 - Shift voltages to practical levels (can't have negative voltages)
 - Comparator
 - Inverter-based amplifier with CDS
 - MOSFET switches & clock generator

Template Circuit

Y. Chae et al., "A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel ADC Architecture," in IEEE Journal of Solid-State Circuits, Jan. 2011. https://ieeexplore.ieee.org/document/5641589

Current Model Schematic (IDSM2)

Circuit Used in The Original Template Design

The marked devices should be NMOS

Y. Chae and G. Han, "Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator," in IEEE Journal of Solid-State Circuits, Feb. 2009. https://ieeexplore.ieee.org/abstract/document/4768910

Ideal Voltage Comparator

Function

 Compare the values of two analog voltages (e.g., an input signal and a reference voltage) and generate a digital 1 or 0 indicating the polarity of the difference

The Fasted Way to Find the Polarity Comparison: Latch Circuit

Detailed Analysis

Conceptual Circuit

 $\varphi 1\colon Set$ up initial condition (v_OD0)

φ2: Enable positive feedback

$$G_{m} = g_{mN} + g_{mP} \qquad \text{Transconductance}$$

$$\frac{dv_{OP}}{dt} = \frac{i_{1}(t)}{C_{L}} = -\frac{G_{m}v_{ON}(t)}{C_{L}}$$

$$\frac{dv_{ON}}{dt} = \frac{i_{2}(t)}{C_{L}} = -\frac{G_{m}v_{OP}(t)}{C_{L}}$$

$$v_{OD}(t) = v_{OP}(t) - v_{ON}(t)$$

$$v_{OD}(t) = v_{OD0} \cdot e^{t/\tau}$$

$$A(t) = \frac{v_{OD}(t)}{v_{OD0}} = e^{t/\tau}$$

Transient Response

Nodes v_{OP} and v_{ON} for differential inputs of 1mV, 1µV, 1nV and 1pV

Transient Response of Voltage Difference (Log Scale)

$$v_{OD1} = v_{OD0} \cdot e^{t_1/\tau}$$

 $v_{OD2} = v_{OD0} \cdot e^{t_2/\tau}$

$$\tau = \frac{t_2 - t_1}{\ln\left(\frac{v_{OD2}}{v_{OD1}}\right)} = \frac{600 \text{ps}}{\ln(10^6)} = \frac{600 \text{ps}}{6 \cdot 2.3} = 43 \text{ps}$$

Another Way to Dial in Imbalance

Circuit Used in The Original Template Design

Y. Chae and G. Han, "Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator," in IEEE Journal of Solid-State Circuits, Feb. 2009. https://ieeexplore.ieee.org/abstract/document/4768910

Prototype Circuit

2024-01-26 23:04:10

Boris Murmann x1. /foss/de /foss/designs/comp.sch

Testbench

```
NGSPICE
 .param temp=27 vdd=1.2 per=1u vdiff=1m
.option method=gear reltol=1e-5
 .control
 save all
 tran 10p 4n
 alterparam vdiff=1u
 reset
 tran 10p 4n
 plot clk tran1.outm tran1.outp tran2.outm tran2.outp
 .endc
MODEL
 .lib $::SG13G2 MODELS/cornerMOSlv.lib mos tt
```


Boris Murmann /foss/designs/tb_comp

2024-01-27 00:04:56

Simulation Result

Alternative (Classical) Implementation

"Strong ARM Latch"

Madden & Bowhill, US Patent 4910713, Mar. 20, 1990

First journal paper: [Kobayashi et al., JSSC, Apr. 1993]

"Strong ARM" paper: [Montanaro, Madden et al., JSSC, Nov. 1996]

B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, Spring 2015. https://ieeexplore.ieee.org/abstract/document/7130773

General Issue for all Implementations: Offset Voltage

Biases the decision in one direction

Offset in a StrongARM Latch

- Static offset due to V_t mismatch in input pair
- Other mismatch sources attenuated by gain from initial amplification phase

$$\sigma_{VOS,stat} pprox rac{A_{VT}}{\sqrt{W_1 L_1}}$$
 Pelgrom's formula

Amplification phase:

 Dynamic offset due to mismatch in C_P and C_O

$$V_{OS,dyn} \approx \frac{V_{tn}}{2} \left(\frac{C_P}{C_Q} - \frac{C_Q}{C_P} \right) = V_{tn} \frac{\Delta C}{C}$$

Example: $500mV \cdot 5\% = 25mV$

Kickback

Figure from [Figueiredo, TCAS2, July 2006]