Relationship between US Regions and Homocide Rates of Young Women between 1980-2014

DATA 606 Data Project Submission

Gabriel Campos

14 November 2020

[1] " Attaching packages: tidyverse, openintro, infer, dplyr, VennDiagram, scales, data.table, readr "

Part 1 - Introduction

A primary concern regarding public safety that impacts all of society is murder. The threat of murder negatively impacts the widely accepted fundamental human need for safety. Murder by region can impact the population psychologically, economically and can stifle a community's continued progress for a better standard of living. Gaining insight on those who are the most vulnerable and impacted by murder is necessary to forge initiatives in assisting those victimized by its threat. Like many approaches in troubleshooting or diagnosing an issue, understanding where to begin is a key first step. In order to focus this analysis, we will focus specifically on murder rates for women under 30 against the entire data set.

Overview

The goals for this project are to:

- Think about the independent and dependent variables in correlation to murder rates including region, gender and age
- Compare murder rates by region, race, gender and age based on the data set
- Draw conclusions of the most at risk population by region for murder in the United States based on findings

Part 2 - Data

Collection

The Murder Accountability Project is the most complete database of homicides in the United States currently available. This dataset includes murders from the FBI's Supplementary Homicide Report from 1976 to the present and Freedom of Information Act data on more than 22,000 homicides that were not reported to the Justice Department. This dataset includes the age, race, sex, ethnicity of victims and perpetrators, in addition to the relationship between the victim and perpetrator and weapon used. A victims age is rounded down qualifying toddlers 11 months old or younger as 0 years old. If a victim's age cannot be determined, they will be categorized as 998 years old respectively.

Data source: kaggle.com

Load Data

```
## Parsed with column specification:
## cols(
     .default = col character(),
##
    Year = col_double(),
##
    Incident = col_double(),
##
     'Victim Age' = col_double(),
     'Perpetrator Age' = col_double(),
     'Victim Count' = col_double(),
     'Perpetrator Count' = col_double()
##
## )
## See spec(...) for full column specifications.
## [1] "Loading Data: database.csv "
## [1] "Subset Data: Region <- project_data %>% filter() "
## [1] "Vector Region: project_data$Region<-ifelse(State,Region1,ifelse(State,Region2,"
## [1] "ifelse(State,Region...Default)) "
## [1] "Regions based on census.gov site : West, Midwest, Northeast, South, Pacific "
```

2

Census Map

Figure 1: US regions based on census.gov

Cases

Categorical Data: Record ID, Agency Code, Agency Name, Agency Type, City, State, Incident, Crime Type, Crime Solved, Victim Sex, Victim Race, Victim Ethnicity, Perpetrator Sex, Perpetrator Race, Perpetrator, Ethnicity, Relationship, Weapon, Record Source, Region

Numerical: Year, Month, Victim Age, Perpetrator Age, Victim Count, Perpetrator Count

Outliers: 974

There are **638,454** total cases in our data set, with **66,301** representing **murders** committed against **Female's under** the age of **30** throughout the United States from 1980-2014

A break down of murders by age are as follows

Note: Age 998 was assigned to victims who's age could not be determined. To avoid the impact it will have on our results I will remove it from our existing dataframes

##	count												
##	0	1	2	3	4	5	6	7	8	9	10	11	12
##	8444	5525	3805	2378	1659	1194	999	915	852	834	854	911	1239
##	13	14	15	16	17	18	19	20	21	22	23	24	25
##	1897	3342	5905	9402	14030	18469	21939	23031	22796	23049	22438	21830	22939
##	26	27	28	29	30	31	32	33	34	35	36	37	38
##	20469	19465	18199	18037	18966	15762	15812	14463	14296	14314	12502	11829	11411
##	39	40	41	42	43	44	45	46	47	48	49	50	51
##	10921	11163	9594	9613	8629	7921	8157	7336	6902	6365	6149	6325	5270
##	52	53	54	55	56	57	58	59	60	61	62	63	64
##	5203	4788	4466	4246	3939	3721	3272	3184	3171	2797	2862	2519	2271
##	65	66	67	68	69	70	71	72	73	74	75	76	77
##	2418	1861	2013	1840	1663	1783	1566	1596	1390	1367	1411	1213	1135
##	78	79	80	81	82	83	84	85	86	87	88	89	90
##	1102	1098	1067	930	835	765	686	627	574	460	408	313	281
##	91	92	93	94	95	96	97	98	99	998			
##	215	156	134	116	82	37	39	33	9281	974			

[1] "Non determined variables removed with the following command:"

```
## [1] "data.frame<-data.frame[!(dataframe$'Victim Age'==998),]"</pre>
```

[1] "Summary of age"

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 22.00 30.00 33.56 42.00 99.00
```


Part 3 - Exploratory data analysis

Part 4 - Inference

Part 5 - Conclusion

References:

Homicide Reports, 1980-2014

 $Project\ https://www.kaggle.com/murderaccountability/homicide-reports?select=database.csv$

Appendix (optional):

Remove this section if you don't have an appendix