Notation. If *S* is a finite set then

|S| :=(the number of elements of S)

Definition

Let G be a graph with the set of vertices V. Let $S\subseteq V$ and let $\overline{S}=V\setminus S$. Then

$$E(S, \overline{S}) = \begin{pmatrix} \text{the set of edges of } G \\ \text{with one end in } S \\ \text{and the other end is } \overline{S} \end{pmatrix}$$

Partitioning problem. For a given connected graph with the set of vertices $V=1,\ldots,N$ and a given number $1\leq k\leq N$ find $S\subseteq V$ such that |S|=k and that $E(S,\overline{S})$ is as small as possible.

Definition

Let G be a graph with vertices $V = \{1, ..., N\}$, and let $S \subseteq V$. The selector vector of S is the vector $\mathbf{v}_S \in \mathbb{R}^N$ given by

$$\mathbf{v}_S = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \quad \text{where} \quad x_i = \begin{cases} 1 & \text{if } i \in S \\ -1 & \text{if } i \in \overline{S} \end{cases}$$

Proposition

Let G be a graph with vertices $V = \{1, ..., N\}$, and let L be the Laplacian of G. For $S \subseteq V$ we have:

$$|E(S, \overline{S})| = \frac{1}{4} \cdot \mathbf{v}_S^T L \mathbf{v}_S$$

Notation. If i, j are vertices in a graph then we will write $i \sim j$ if there is an edge joining i and j.

Lemma

Let G be a graph with vertices $V = \{1, ..., N\}$, and let L be the Laplacian of G. For any vector $\mathbf{v} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$ we have

$$\mathbf{v}^T L \mathbf{v} = \sum_{\substack{i < j \\ i \sim j}} (x_i - x_j)^2$$

Example.

$$V^{T} L V = (x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_2 - x_3)^2 + (x_3 - x_4)^2$$

Proof of Lemma.
$$\bot = D - A$$

$$\Lambda = \begin{bmatrix} x^{N} \\ \vdots \\ x^{2} \end{bmatrix}$$

$$V^T L_V = V^T (D-A)_V = V^T D_V - V^T A_V$$

$$\sqrt{T} D v = \sum_{i} deg(i) \times_{i}^{2} = \sum_{i < j} \times_{i}^{2} + \times_{j}^{2}$$
check

$$\nabla^{T} A V = \sum_{i \neq j} x_{i} x_{j} = \sum_{i \neq j} x_{i} x_{j} + \sum_{j \neq i} x_{j} x_{j} = 2 \sum_{i \neq j} x_{i} x_{j}$$

$$\uparrow i \neq j \qquad i \neq j \qquad i \neq j$$

$$\uparrow i \neq j \qquad i \neq j \qquad i \neq j$$

This gives:

$$\nabla^{T} \sqsubseteq \nabla = \sum_{\substack{i < j \\ i \sim j}} \left(\times_{i}^{2} + \times_{j}^{2} - 2 \times_{i} \times_{j}^{2} \right) = \sum_{\substack{i < j \\ i \sim j}} \left(\times_{i} - \times_{j}^{2} \right)$$

 $(x_i - x_j)^2 = 0$ if i and j are both
in S or in \overline{S}

$$(x_i - x_j)^2 = 2^2 = 4$$

if ies and jes
or ies and jes

By Lemma:

$$V_{s}^{T} \cdot L \cdot V_{s} = \sum_{\substack{i < j \\ i \sim j}} (x_{i} - x_{j})^{2} = \sum_{\substack{i < j \\ i \sim j \\ i,j \text{ are in different groups}}} 4 \cdot |E(s_{i}\overline{s})|$$

Partitioning problem restated:

Given a connected graph with vertices $\{1,2,...,N\}$ and Laplacian L find a vector $v = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$ such that:

hard
$$\rightarrow [(1) \times_{i} = \pm 1 \text{ for } i = 1, 2, ..., N]$$

$$(2) \sum_{i} \times_{i} = k - (N - k) \quad (\text{equivalently: } V = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = k - (N - k)$$

$$(3) \quad V^{T} L V \quad \text{is the the smallest possible.}$$

Relaxation:

Find a vector $V = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$ such that:

$$(1)$$
 $\vee \cdot \vee = N$

(2)
$$V \cdot \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = k - (N-k)$$

(3) VTLV is the smallest possible.

Note:

Let $v_p = a$ solution of the partitioning problem $v_R = a$ solution of the relaxed problem

Then

2) we can use V_R to get an approximated solution of the partitioning problem

Preparation: Eigenvectors of the Laplacian of a graph

Let G be a connected graph with N vertices and L be the Laplacian of G.

1) Since L is a symmetric matrix, it has N orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_N$.

orthonormal:
$$u_i \cdot u_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Let

$$\lambda_1 = \text{eigenvalue corresponding to } \mathbf{u}_1$$

 $\lambda_2 = \text{eigenvalue corresponding to } \mathbf{u}_2$
...
 $\lambda_N = \text{eigenvalue corresponding to } \mathbf{u}_N$

We can assume that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$.

- 2) $\lambda_i \geq 0$ for i = 1, ..., N (since L can be written in the form BB^T for some matrix B).
- 3) Since G connected, we have $\lambda_1 = 0$ and $\lambda_i > 0$ for i = 2, ..., N.
- 4) We can take

$$\mathbf{u}_1 = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Solution of the relaxed problem

Let
$$O = \lambda_1 < \lambda_2 \le ... \le \lambda_N$$
 - eigenvalues of L

$$\frac{1}{|IN|} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = u_1 \quad u_2 \quad ... \quad u_N \quad - \quad \text{corresponding orthonormal eigenvectors}$$

Take
$$v \in \mathbb{R}^N$$
 that satisfies the conditions (1), (2), (3)
since $\{u_1,...,u_N\}$ is a basis of \mathbb{R}^N we have:
$$v = \sum_i c_i u_i \qquad \text{for some } c_i \in \mathbb{R}$$

Condition (11) gives:

$$N = v \cdot v = \left(\sum_{i} c_{i} u_{i}\right) \left(\sum_{i} c_{i} u_{i}\right) = \sum_{ij} c_{i} c_{j} \left(u_{i} \cdot u_{j}\right) = \sum_{i} c_{i}^{2}$$

$$\sum_{i} c_{i}^{2}$$

Condition (2) gives:

$$k - (N-k) = v \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \left(\sum_{i} c_{i} u_{i} \right) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sum_{i} c_{i} \left(u_{i} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = c_{1} \cdot \frac{N}{\sqrt{N}} = c_{1} \sqrt{N}$$
Thus: $c_{1} = \frac{k - (N-k)}{\sqrt{N}}$

Condition (3):

$$v^{T} \perp v = \left(\sum_{i} c_{i} u_{i}\right)^{T} \perp \left(\sum_{i} c_{i} u_{i}\right) = \left(\sum_{i} c_{i} u_{i}\right)^{T} \left(\sum_{i} c_{i}$$

solution of the relaxed problem continued...

<u>Upshot</u>: To get a vector $v \in \mathbb{R}^N$ that satisfies (11), (2), (3) we need to take:

$$v = cu_1 + du_2$$

where :

$$c = \frac{k - (N - k)}{\sqrt{N}}$$
, $c^2 + d^2 = N$
(or $d^2 = N - c^2$)

This gives:

$$d^{2} = N - c^{2} = N - \frac{(k - (N - k))^{2}}{N} = \frac{Ak(N - k)}{N}$$

$$d = \pm \sqrt{\frac{Ak(N - k)}{N}}$$

$$check$$

We obtain:

1) The solution of the relaxed partitioning problem is given by the vector

$$V_{R} = \frac{k - (N - k)}{\sqrt{N}} \cdot \underbrace{\frac{1}{\sqrt{N}} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{N} \underbrace{\pm \sqrt{\frac{4k(N - k)}{N}}}_{N} \cdot u_{z}$$

2) For this vector we have:

$$V_R^T L V_R = c \cdot O + d^2 \cdot \lambda_2 = \frac{4k(N-k)}{N} \cdot \lambda_2$$

Theorem

Let G be a graph with N vertices, and let λ_2 be the second smallest eigenvalue of the Laplacian of G. Then for any set S of vertices of G we have

$$|E(S, \overline{S})| \ge \frac{|S| \cdot |\overline{S}|}{N} \cdot \lambda_2$$

Proof: Assume that
$$|S| = k$$
.

Let $v_g =$ the selector vector for the set S
 $v_R =$ the solution of the relaxed partitioning problem

We have:

 $|E(S_1S)| = \frac{1}{4} v_S^T L v_S \geqslant \frac{1}{4} v_R^T L v_R = \frac{1}{4} \frac{4k(N-k)}{N} \cdot \lambda_2$
 $= \frac{|S| \cdot |S|}{N} \cdot \lambda_2$

Definition

Let G be a graph. The second smallest eigenvalue λ_2 of the Laplacian of G is called the *algebraic connectivity* of G.

Back to the partitioning problem

Recall: Given a connected graph with the set of vertices $V = \{1, 2, ..., N\}$ and 0 < k < N we want to find $S \subseteq V$ such that |S| = k and $|E(S, \overline{S})|$ is as small as possible (equivalently: $\mathbf{v}_S^T L \mathbf{v}_S$ is as small as possible).

Approximated solution:

- i) Compute V_R = the solution of the relaxed problem
- 2) Take the set SSV such that the selector vector vs is the closest to VR.

Recall: dist
$$(v_R, v_S)$$
 = $\|v_R - v_S\| = \sqrt{(v_R - v_S) \cdot (v_R - v_S)}$
distance between vectors = $\sqrt{v_R \cdot v_R} - 2v_R \cdot v_S + v_S \cdot v_S$
 $= \sqrt{2N - v_R^2 v_S}$

Thus dist (VRIVS) is the smallest when VRIVS is the largest.

Recall:
$$V_R = cu_1 + du_2$$
 $u_1 = \frac{1}{I_N} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $u_2 - eigenvector of L corresponding to λ_2
 $V_R \cdot V_3 = c \cdot \frac{1}{I_N} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot V_S + d \cdot u_2 \cdot V_S$ $d = \pm \sqrt{\frac{4k(N-k)}{N}}$
 $\frac{c}{I_N} \cdot (k - (N-k))$ (does not depend on S)$

Thus we want duz. vs to be as large as possible Note:

- i) if d>0 then d·uz·vs is the biggest if entires of vs equal to 1 correspond to the k largest entries of uz.
- 2) if d<0 then $d\cdot u_z \cdot v_s$ is the biggest if entries of v_s equal to 1^{82} correspond to the k smallest entries of u_z .

The spectral partitioning algorithm

Recall: Given a connected graph with the set of vertices $V = \{1, 2, ..., N\}$ and 0 < k < N we want to find $S \subseteq V$ such that $|E(S, \overline{S})|$ is as small as possible.

Approximated solution:

- 1. Compute the Laplacian *L* of the graph.
- 2. Compute the eigenvector of L corresponding to the second smallest eigenvalue λ_2 :

$$\mathbf{u}_2 = \left[\begin{array}{c} x_1 \\ \vdots \\ x_N \end{array} \right]$$

3. Let

$$S_{+} = \{i_{1}, \dots, i_{k}\} \subseteq V$$

$$S_{-} = \{j_{1}, \dots, j_{k}\} \subseteq V$$

such that

- x_{i_1}, \ldots, x_{i_k} are the largest entries of \mathbf{u}_2
- x_{j_1}, \ldots, x_{j_k} are the smallest entries of \mathbf{u}_2 .

If $x_{i_1} + \cdots + x_{i_k} \ge -(x_{j_1} + \cdots + x_{j_k})$ take $S = S_+$. Otherwise take $S = S_-$.

Example.

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

Eigenvalues of L:

$$\lambda_{1} = 0$$
, $\lambda_{1} = 1.586$, $\lambda_{3} = 4.14$, $\lambda_{2} = 5$

$$\lambda_{1} = 0$$

$$\lambda_{1} = 0.653$$

$$0.271$$

$$0$$

$$-0.653$$

$$-0.271$$

$$5$$

Definition

Let G be a graph with the set of vertices V. The *Cheeger constant* of G is the number

$$h(G) = \min \left\{ \frac{|E(S,\overline{S})|}{|S|} \mid S \subseteq V, \ 1 \le |S| \le \frac{|V|}{2} \right\}$$

Corollary

If λ_2 is the algebraic connectivity a graph G then

$$h(G) \geq \frac{1}{2}\lambda_2$$

Proof: We had: if
$$S \in V$$
 then
$$|E(S_1\overline{S})| \geqslant \frac{|S| \cdot |S|}{|V|} \cdot \lambda_2$$

$$\stackrel{SO:}{|E(S_1\overline{S})|} \geqslant \frac{|S|}{|V|} \cdot \lambda_2$$

$$|SI| \leq \frac{|V|}{2} \quad \text{then} \quad |S| \geqslant \frac{|V|}{2} \leq 0:$$

$$|E(S_1\overline{S})| \geqslant \frac{|S|}{|V|} \cdot \lambda_2 \geqslant \frac{|V|}{2|V|} \cdot \lambda_2 = \frac{1}{2} \lambda_2$$
for all S such that $|S| \leq \frac{|V|}{2}$

$$|S| \leq \frac{|V|}{2} \cdot \lambda_2 \Rightarrow \frac{|V|}{2|V|} \cdot \lambda_2 = \frac{1}{2} \lambda_2$$

$$|S| \leq \frac{|V|}{2} \cdot \lambda_2 \Rightarrow \frac{|V|}{2|V|} \cdot \lambda_2 \Rightarrow \frac{|V|} \cdot \lambda_2 \Rightarrow \frac{|V|}{2|V|} \cdot \lambda_2 \Rightarrow \frac{|V|}{2|V|} \cdot \lambda_2 \Rightarrow \frac{|V|}{2|V$$

Theorem (Cheeger inequality)

If λ_2 is the algebraic connectivity of a graph G then

$$\sqrt{2\lambda_2 d_{\max}} \ge h(G)$$

where d_{max} is the maximal degree of a vertex of G.