Homework: Week 6

Joseph Ismailyan

Math 100

Due: November 13, 2017

Professor Boltje MWF 9:20a-10:25a

Chapter 7

10.

Proposition:

If $a \in \mathbb{Z}$, then $a^3 \equiv a \pmod{3}$. Suppose $a \in \mathbb{Z}$. Consider (a-1)a(a+1)to be the product of three consecutive integers, so then the remainder when being divided by 3 must be either 0, 1 or 2.Then consider the first term of the series, $a-1=3n \rightarrow$ 3|(a-1). Then the next in the series, a = 3n so 3|a. And lastly, $a-2 = 3n \rightarrow a = 3n-2 = 3(n+1)-1$ then for some integer $m = n + 1 \in$ $\mathbb{Z} \to a = 3m - 1 \to a + 1 = 3m \text{ so}$ 3|(a+1). Therefore we can say that 3|(a-1)a(a+1) or just $3|(a^3-a)$ which implies $a^3 \equiv a \pmod{3}$.

22.

Proposition:

If $n \in \mathbb{N}$, then $4|n^2$ or $4|(n^2-1)$.

Proof. This proof requires two cases, one in which n is even and one in which n is odd. Once both cases are proven, we can say that Case I is true or Case II is true, since every n in the set of natural numbers is either even or odd.

Case I

Suppose n is even, therefore $n=2k, n \in \mathbb{Z}$. Then $n^2=(2k)^2=4k^2$. We can then say $n^2=4m, m=k^2\in\mathbb{Z}$ so $4|n^2$.

Case II

Suppose n is odd, therefore $n = 2a+1, n \in \mathbb{Z}$. Then $n^2 = (2a+1)^2 = 4a^2 + 4a + 1$. We can then say $n^2 - 1 = 4(a^2 + a) = 4b, b = (a^2 + a) \in \mathbb{Z}$. Therefore $4|(n^2 - 1)$.

26.

Proposition:

The product of any n consecutive positive integers is divisible by n!.

Proof. Suppose we write consecutive positive integers m, (m-1), (m-2), (m-3), ..., (m-1)(n - 1). Then the product of these n consecutive positive integers would be m(m-1)(m-2)(m-1)3)...(m - (n - 1)). If we write $\frac{m(m-1)(m-2)(m-3)...(m-(n-1))}{m(m-1)(m-2)(m-3)...(m-n-1)}$ then it is apparent that we have the number of ways to pick n items from a list of length m. We can then multiply the expression by $\frac{(m-n)!}{(m-n)!}$ then we m(m-1)(m-2)(m-3)...(m-(n-1))(m-n)!n!(m-n)!which can be simplified to $\frac{m!}{(m-n)!n!}$. Recall that $\frac{m!}{(m-n)!n!}$ is defined as $\binom{m}{n}$ which yields an integer for all $m \geq n$.

32.

Proposition:

If $n \in \mathbb{Z}$, then $gcd(n, n+2) \in \{1, 2\}$. Proof. Suppose d = gcd(n, n+2), it follows that d|n and d|(n+2). So n = da, $a \in \mathbb{Z}$ and n+2 = dc, $c \in \mathbb{Z}$. Then substituting n = da into n+2 = dc, we get $da + 2 = dc \rightarrow 2 = dc - da \rightarrow 2 = d(c-a) = dm, m \in \mathbb{Z}$. Since 2 = dm, we know that d is a divisor of 2, and 2 has the divisors $\pm 1, \pm 2$. Since d is the **greatest** common divisor, then d = 1 or d = 2. Therefore $d \in \{1, 2\}$ and since d = gcd(n, n+2) then $gcd(n, n+2) \in \{1, 2\}$.

32.

Proposition:

If gcd(a, b) = gcd(b, c) = 1, then gcd(ab, c) = 1.

Proof. Suppose $\gcd(a,b) = \gcd(b,c) = 1$. Then by **Proposition 7.1** we can say $\gcd(a,b) = ak + cl, k, l \in \mathbb{Z}$ and $\gcd(b,c) = bn + cm, n, m \in \mathbb{Z}$. Then ak = 1 - cl and bn = 1 - cm. We can then multiply ak and bn which results in $ab(kn) = (1-cl)(1-cm) = 1-cm-cl-c^2lm$ Then $1 = ab(kn) + c^2lm + cm + cl = ab(kn) + c(clm + m + l) \to 1 = abx + cy, x = km \in \mathbb{Z}, y = clm + l + m \in \mathbb{Z}$. Since 1 = abx + cy, then $\gcd(ab,c) = 1$.

36.

Proposition:

Suppose $a, b \in \mathbb{N}$. Then a = lcm(a, b) if and only if b|a.

Proof. Suppose $a = \operatorname{lcm}(a, b)$. By definition, this means b|a and a|a. Next, suppose b|a. Then $a = bn, n \in \mathbb{Z}$ and $a = ad, d \in \mathbb{Z}$ then $a \geq \operatorname{lcm}(a, b)$. Then since $a|\operatorname{lcm}(a, b)$, we have $\operatorname{lcm}(a, b) = ac, c \in \mathbb{Z}$, which tells us $a \leq \operatorname{lcm}(a, b)$. Since $a \geq \operatorname{lcm}(a, b)$ and $a \leq \operatorname{lcm}(a, b)$, we know that $a = \operatorname{lcm}(a, b)$.

Chapter 8

6.

Proposition:

Suppose A, B, and C are sets. Prove that if $A \subseteq B$, then $A - C \subseteq A - B$. Proof. Suppose A, B, and C are sets and $A \subseteq B$. Then $A - C = \{x : (x \in A) \land (x \notin C)\}$. Since $A \subseteq B$, then $x \in B$. Then $B - C = \{x : (x \in B) \land (x \notin C)\}$. Since $x \in A - C$ and $x \in B - C$, then $A - C \subseteq A - B$.

12.

Proposition:

Suppose A, B, and C are sets. then $A - (B \cap C) = (A - B) \cup (A - C)$. Proof. Consider $A - (B \cap C)$ $= \{x : (x \in A) \land (x \notin (B \land C))\}$ $= \{x : (x \in A) \land (x \notin B \land x \notin C))\}$ By DeMorgan's Law $\{x : ((x \in A) \land (x \notin B)) \lor ((x \in A) \land (x \notin C))\}$ By Distributive Law
Since $A - B = \{x : (x \in A) \land (x \notin B)\}$ and $A - C = \{x : (x \in A) \land (x \notin C)\}$ then since $(x \in A - B) \lor (x \in A - C)$ $\to (A - B) \cup (A - C).$

22.

Proposition:

Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cap B = A$.

Proof. Suppose $A \cap B = A$. Let $x \in A$ be an arbitrary element. Then since $A \cap B = A$, we know $x \in A \cap B$. So $x \in B$, therefore $A \subseteq B$.

Next suppose $A \subseteq B$. If $x \in A \cap B$, then $x \in A$ so $A \cap B \subseteq A$.

Finally, suppose $A \subseteq B$. If $x \in A$ then $x \in B$, which implies $x \subseteq A \cap B$. Therefore $A \subseteq A \cap B$. Since $A \cap B \subseteq A$ and $A \subseteq A \cap B$ then $A \cap B = A$.

28.

Proposition:

Prove $\{12a + 25b : a, b \in \mathbb{Z}\} = \mathbb{Z}$. Proof. Suppose 12a + 25b. Since $a, b \in \mathbb{Z}, 12a + 25b \in \mathbb{Z}$.

Next, suppose the set $X = \{12a + 25b : a, b \in \mathbb{Z}\}$, the set $Y = \mathbb{Z}$, and $y \in Y$. Then consider 12(-2) + 25(1) = 1 where a = -2 and b = 1. Then we can multiply the equation by y and get 12(-2y) + 25(y) = y, where a = -2y and b = y. Then $y \in Y$ implies $y \in X$, therefore $Y \subseteq X$. So $\{12a + 25b : a, b \in \mathbb{Z}\} = \mathbb{Z}$.