

Chapter 4

Structure Concepts

Content

- Definition of structure concept
- Load carrying behaviour: what supports which component
- Load paths the Stick Model
- Torsion box
- Stiffened panel
- Sandwich
- Major interfaces

Aerospace Structure Elements - Recap

Aircraft Structures

Aerospace Structure Concept

What is a structure concept?

The structure concept is an umbrella term covering

- The load paths along the structure
- The position of load carrying elements:
 - Skin, Stringers, Spars, Frames, Ribs, Longerons, etc.
- Interfaces between the different components
- If relevant material selection
- If relevant constructive details related to the manufacturing technology

Load Paths

- The load paths along an aerospace structure (aircraft, launcher, ...) are determined by the external loads
 - The external loads are represented by the Net Forces
- Net Forces = sum of all external loads, mainly aerodynamic and inertia
 - The net forces for a full system are always in equilibrium
 - In the figure only symmetrical loads are displayed,
- Unsymmetrical loads can be design-driving, e.g. for
 - VTP
 - Fuselage (torsion)
 - Outer Wing (aileron, torsion)

- Airframe can be simplified to a beam model, the so-called stick model
- Stick models are beneficial for the global load distribution (external and internal)

- Internal load distribution (section forces and moments):
 - Bending moments

- Internal load distribution (section forces and moments):
 - Torsion moments

- Internal load distribution (section forces and moments):
 - Shear forces

Which component is supporting the other?

- All trimmed conditions i.e., all external loads are in static or dynamic equilibrium!!!
- From wing's perspective: wing is supported by fuselage

• From fuselage's perspective: the fuselage is supported by the wing

Which component is supporting the other?

• From VTP's perspective: VTP is supported by fuselage

• From HTP's perspective: HTP is either supported by VTP (T-Tail) or by fuselage (conventional)

Torsion Box, Stiffened Panel, Sandwich

- The principle of the torsion box is one of the most relevant concepts in (aerospace) structures
- The principle of the torsion box is based on separating the internal forces in order to:
 - Transform bending moments into membrane forces

This is the reason why bending stresses are so "painful":

- Material load bearing capacity is not exploited!
- Thus, we need too much material!

- The principle of separating forces
 - Transform bending into membrane forces

I-section

Separate bending stresses into membrane forces:

- tension, compression in the flanges and
- Shear in the web

Box

The principle of separating forces

• Transform bending into membrane forces

The principle of closed boxes – the torsion box

High torsional stiffness

Aerospace Structure Concept – Stiffened Panels

- Through transforming the bending stresses (wing, fuselage) into a pair of membrane forces (tension and compression), it is possible to reduce skin thickness significantly (Wing: 2 to 20mm, Fuselage: 2 to 10mm)
- However, the thin skin is prone to buckling. Thus, the need for stiffeners in order to reduce the size of the buckling fields

The Stiffened Panels – Influence of buckling field width

Aerospace Structure Concept – Sandwich

- An alternative to stringer-stiffened panels is using sandwich
- Sandwich is made of two thin load carrying skins bonded to a light-weight core
- Load-carrying skins are usually made of carbon composites, but also aluminium
- The core is made of aramid, but also fibreglas or aluminium are possible
- Benefits of sandwich are:
 - High bending stiffness (with low weight), accordingly high critical buckling stress
 - Good damping properties (space applications)
- Drawbacks of sandwich are:
 - Consume too much volume
 - Difficulties to join
 - Cumbersome load introduction
 - Captures moisture

engineerlive.com

pinterest.com

electronics360.globalspec.com

Aerospace Structure Concept – Summary

- Wing (and empennage):
 - the wingbox is the load carrying part
 - Wingbox consists of
 - o skin stiffened by stringers
 - Spars connecting the skin covers (top and bottom)
 - Ribs connecting the skin covers (reduce buckling field length for the stringers)
 - Design parameters (for structure concept):
 - Number of spars
 - Stringer pitch
 - Rib pitch
 - Material
 - Manufacturing technology

Aerospace Structure Concept – Summary

- Fuselage:
 - The fuselage consists of
 - o skin stiffened by stringers
 - Frames supporting the skin panels (skin and stringers)
 - Longerons for high local loads (longitudinal and transverse)
 - Floors might be also load carrying (especially in military aircraft)
 - Design parameters (for structure concept):
 - Number of frames
 - Stringer pitch
 - Number and location of longerons
 - Material
 - Manufacturing technology

Major Structure Interfaces

Aerospace Structure Concept – Major Interfaces

Overview of major interfaces

- Wing-to-fuselage
- Empennage-to-fuselage
- Engine
 - to-wing
 - to-fuselage
- Landing gear
 - to-wing
 - to-fuselage

Aerospace Structure Concept – Major Interfaces

Wing-to-fuselage

• Soft-splice (centre wing box)

Hard joints

https://aviation.stackexchange.com/questions/33087/how-is-a-wing-joined-to-the-fuselage

https://www.compositesworld.com/

Patent US8371532 - Aircraft joint - Google Patents

Wing-to-Fuselage interface – Carry-through concept

Wing-to-fuselage: Flugzeugbau (Teil 1) - Die Seite mit der Maus - WDR (wdrmaus.de) (53:00)

HTP-to-fuselage: Flugzeugbau (Teil 2) - Die Seite mit der Maus - WDR (wdrmaus.de) (5:26 + 15:19)

VTP-to-fuselage: Flugzeugbau (Teil 2) - Die Seite mit der Maus - WDR (wdrmaus.de) (6:16)

Aerospace Structure Concept – Major Interfaces

Major Interfaces – Hard Joints

Aerospace Structure Concept – Major Interfaces

HTP-to-fuselage

Torsion box (housing in fuselage)

• Pivot for all-moveable HTP

https://aviation.stackexchange.com/questions/33087/how-is-a-wing-joined-to-the-fuselage

Aerospace Structure Concept – Major Interfaces

VTP-to-fuselage

• Lugs for all 6 degrees of freedom

https://aviation.stackexchange.com/questions/33087/how-is-a-wing-joined-to-the-fuselage