CS 460/660/760: Artificial Intelligence

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

12 Jan 2016

Introductions

Index Cards

- Your name
- 2 Why you're interested in Artificial Intelligence
- 3 What you expect to learn in this course
- 4 How comfortable you are with data structures, e.g. hash tables, priority queues, graphs

In Class

- Your name
- Your major(s) or research area(s)
- Something that no one could guess by looking at you

Introductions

Index Cards

- Your name
- 2 Why you're interested in Artificial Intelligence
- 3 What you expect to learn in this course
- 4 How comfortable you are with data structures, e.g. hash tables, priority queues, graphs

In Class

- Your name
- 2 Your major(s) or research area(s)
- 3 Something that no one could guess by looking at you

Course Objectives

- Apply search algorithms to computational problems
- Analyze problems using logic and inference
- Reason about problems using probabilistic analysis
- Train statistical learning methods for classification

General Information

Times

Class Tue/Thu 12:30-13:45

Office Mon 09:45-11:15 or by appointment

Textbook

Artificial Intelligence: A Modern Approach, Third Edition Stuart J. Russell and Peter Norvig Prentice Hall, 2009.

Chessboard cover, not green cover

Grading

50	Programming 1: Agents	Java, ≈2 weeks
150	Programming 2: Search	Java, ≈4 weeks
150	Programming 3: Probability	Java, ≈4 weeks
150	Programming 4: Learning	Java, ≈4 weeks
100	Quiz 1: Search	In class, 30 minutes
100	Quiz 2: Logic	In class, 30 minutes
100	Quiz 3: Probability	In class, 30 minutes
100	Quiz 4: Learning (Final Exam)	In class, 30 minutes
100	Class Participation	
250	Class Project (660/760 only)	Java, ≈10 weeks
250	Class Presentation (760 only)	In class, 10 minutes

What You Need to Know

How to use:

- stacks
- queues
- sets
- hash tables
- priority queues

How to implement:

- trees
- graphs
- search algorithms

How to interpret:

■ Big-O Notation