高级算法设计

中国科学院计算技术研究所 孙晓明 2013-2014学年春季学期

目录

1	生日悖论(Birthday Paradox)	3						
2	调查问卷的有效性	3						
	2.1 两个重要不等式	3						
	2.2 调查问卷的有效性	4						
	2.3 调查问卷的有效性(Cont'd)	4						
3	随机算法验证矩阵乘法	5						
4	随机算法的复杂度	6						
5 Complexity Class								
6	博弈论: Game Tree/AND OR Tree	9						
7	Balls & Bins	10						
	7.1 基本知识	10						
	7.2 $m \sim \sqrt{n}$	15						
	7.3 $m=n$	16						
	7.4 总结	17						
8	概率方法(Probability Method)	18						
	8.1 素数	18						
	8.2 Ramsey数	18						
	8.3 MAX-CUT	20						
	8.3.1 概率方法	20						
	8.3.2 2近似算法	21						
	8.4 独立集(Independent Set, IS)	22						
	8.5 AND OR Tree	22						
	8.6 MAX-SAT	23						
	8.7	25						
9	代数化方法(Algebraic Method)	26						
	9.1 两数相等的判定	26						
	9.2 两个多项式相等的判定	27						
	9.3 Perfect Matching	27						
	9.4 交互式证明系统(Interactive Proof System)	28						

10	随机游走(Random Walk)	29
	10.1 一般情形	29
	10.2 将随机游走拓展到连通图上	30
11	电路问题	31
1	旅行商问题 (TSP)	34
	1.1 W满足三角不等式TSP存在2近似	34
	1.2 W满足三角不等式TSP存在 ³ 近似	35
	1.3 一般情形下不存在常数近似	37
2	MAX-SAT	38
3	Vertex Cover	40
	3.1 贪心算法	40
	3.2 ILP & LP	
	3.3 极大perfect matching	41

第I部分: 随机算法

1 生日悖论(Birthday Paradox)

问题描述: *n*个人, 求解存在两个人同一天生日的概率。 求解之前先给出一个不等式:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \cdots$$
 $e^{-x} = 1 - x + \frac{x^{2}}{2!} + \cdots$

当 $x \in [0,1]$ 时, $e^{-x} \ge 1 - x$.

$$\Pr(E) = 1 - \Pr(\overline{E})$$

$$= 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{365}\right)$$

$$\geq 1 - e^{\sum_{i=1}^{n-1} \left(-\frac{i}{365}\right)}$$

$$= 1 - e^{-\frac{n(n-1)}{365 \times 2}}.$$

当n = 23时存在两个人同一天生日的概率 $\geq \frac{1}{2}$.

2 调查问卷的有效性

2.1 两个重要不等式

首先给出两个重要的不等式:马尔可夫不等式(Markov Inequality)和切比雪夫不等式(Chebyshev Inequality).

Markov Inequality: 随机变量 $x \ge 0$, 常数c > 0, 则 $Pr(x \ge c) \le \frac{E(x)}{c}$. 证明:

$$E(x) = \sum_{a \ge c} aPr(x = a)$$

$$= \sum_{a \ge c} aPr(x = a) + \sum_{a < c} aPr(x = a)$$

$$\geq \sum_{a \ge c} aPr(x = a)$$

$$\geq \sum_{a \ge c} cPr(x = a)$$

$$= c\sum_{a \ge c} Pr(x = a)$$

$$= cPr(x \ge c).$$

可得 $Pr(x \ge c) \le \frac{E(x)}{c}$.

Chebyshev Inequality: $Pr(|x - E(x)| \ge c) \le \frac{Var(x)}{c^2}$. 证明:

$$Pr(|x - E(x)| \ge c) = Pr((x - E(x))^2 \ge c^2)$$

$$\le \frac{E((x - E(x))^2)}{c^2}$$

$$= \frac{Var(x)}{c^2}.$$

2.2 调查问卷的有效性

通过发放问卷调查民众支持率,调查n个人得到支持率p,为了保证调查问卷的有效性(p与其期望值E(p)之差的绝对值不超过5%这一事件的概率 $\geq 95\%$),n应满足什么条件。

$$\Pr(|p - E(p)| \le 0.05) = \Pr\left(\left|\frac{\sum x_i}{n} - E\left(\frac{\sum x_i}{n}\right)\right| \le 0.05\right)$$

$$= 1 - \Pr\left(\left|\frac{\sum x_i}{n} - E\left(\frac{\sum x_i}{n}\right)\right| > 0.05\right)$$

$$\ge 1 - \frac{Var\left(\frac{\sum x_i}{n}\right)}{0.05^2}$$

$$= 1 - \frac{Var\left(x_i\right)}{n0.05^2}$$

$$= 1 - \frac{p(1-p)}{n0.05^2}$$

$$\ge 1 - \frac{\frac{1}{4}}{n0.05^2}$$

$$= 1 - \frac{100}{n} = 0.95.$$

解得n = 2000, 注意到n的取值与总体人数无关。

2.3 调查问卷的有效性(Cont'd)

2.2节中的差值上限5%是绝对误差,当p的值很小时容易被5%(绝对误差)淹没。 引入如下的度量方式:

$$Pr\left(\widehat{p} \in [0.99p, 1.01p]\right) \ge 1 - \varepsilon$$

其中 $\widehat{p} = \frac{x_1 + x_2 + \dots + x_n}{n}$.

$$Pr\left(\left|\frac{x_1 + x_2 + \dots + x_n}{n} - p\right| \le 0.01p\right) = 1 - Pr\left(\left|\frac{x_1 + x_2 + \dots + x_n}{n} - p\right| > 0.01p\right)$$

$$= 1 - Pr\left(\left|x_1 + x_2 + \dots + x_n - np\right| > 0.01np\right).$$
(2.1)

 $\diamondsuit \delta = 0.01$,利用Chernoff's Bound可得

$$(2.1) 式 \ge 1 - 2e^{-\frac{\delta^2}{3}np}$$
$$\ge 1 - \varepsilon.$$

即

$$2e^{-\frac{\delta^2}{3}np} \le \varepsilon.$$

解得

$$n \ge \left\lceil \frac{3\ln\frac{2}{\varepsilon}}{\delta^2 p} \right\rceil.$$

3 随机算法验证矩阵乘法

关于算法复杂度的几个符号:

- $O(n^2) \le cn^2$
- $\Omega(n) \ge cn$
- $\Theta(n^2) = O(n^2) \& \Omega(n^2)$

问题提出: n阶矩阵A,B,C(均定义在有限域 F_2 上), 判断AB是否等于C.

如果直接求解AB, 复杂度为 $O(n^3)$. 通过矩阵分块可以降到 $O(n^{2.73})$, 近年来最优的复杂度为 $O(n^{2.373})$.

下面给出随机算法:

- (1) 随机取 $x \in \{0,1\}^n$;
- (2) 验证A(Bx)是否等于Cx. 若成立则说AB = C, 否则不等。

算法复杂度为O(n2), 出错的概率

$$Pr(error) = Pr_x(AB \neq C, ABx = Cx)$$

$$= Pr_x(AB \neq C, (AB - C)x = 0)$$

$$= Pr_x(D \neq 0, Dx = 0).$$
(3.1)

由 $D \neq 0$, 通过变换使得 $D_{11} = 1$. 将(3.1)按照全概率公式展开得

$$(3.1) \vec{\pi} = \sum_{b_2, \dots, b_n \in \{0,1\}^n} Pr(Dx = 0 | x_2 = b_2, \dots, x_n = b_n) Pr(x_2 = b_2, \dots, x_n = b_n).$$

$$(3.2)$$

其中

$$Pr(Dx = 0 | x_2 = b_2, \dots, x_n = b_n) = \prod_{i=1}^n Pr\left(\sum_{j=1}^n D_{ij}x_j = 0 | x_2 = b_2, \dots, x_n = b_n\right)$$

$$\leq Pr(D_{11}x_1 + \dots + D_{1n}x_n = 0 | x_2 = b_2, \dots, x_n = b_n)$$

$$= Pr(x_1 + c = 0)$$

$$= \frac{1}{2}.$$
(3.3)

代入(3.2)中并结合(3.1)可得 $Pr_x(D \neq 0, Dx = 0) \leq \frac{1}{2}$, 即出错的概率 $\leq \frac{1}{2}$.

显然这个算法属于**单边错误**,即如果A(Bx) = Cx,不一定有AB = C,但是如果 $A(Bx) \neq Cx$,那么一定有 $AB \neq C$. 为了提高算法的正确性,可以多次随机取 $x \in \{0,1\}^n$. 比如重复10次,若有一次 $A(Bx) \neq Cx$,则可以直接断定 $AB \neq C$;否则就可以以很高的概率说AB = C. 在这种情况下,若 $AB \neq C$,随机选择10个x都满足A(Bx) = Cx的概率A(Bx) = Cx的概率

4 随机算法的复杂度

随机算法就是在确定性算法上进行一个distribution.

$$\begin{split} & Time(A,I) \\ & \max_{I \in \widetilde{I}} \ E(Time(A,I)) \\ & \min_{\overrightarrow{u}} \ \left(\max_{I \in \widetilde{I}} E\left(Time(A,I)\right) \right) = \min_{\overrightarrow{u}} \max_{I \in \widetilde{I}} \ (\overrightarrow{u} \cdot Time(A,I)) \end{split}$$

5 Complexity Class

- P: Polynomial, 多项式时间可计算
- NP: Non-deterministic Polynomial, 多项式时间可判定
- BPP: Bounded error Probabilistic Polynomial
- RP: Randomize Polynomial
- co-RP: complementary-RP
- **ZPP**: Zero-error Probabilistic Polynomial

(1)
$$L \in NP, \ \exists A, \ O(n^c)$$

$$\forall x \in L, \ \exists y, \ A(x,y) = 1$$

$$\forall x \notin L, \ \forall y, \ A(x,y) = 0$$

$$L \in BPP, \exists A, O(n^c)$$

 $\forall x \in L, Pr(A(x) = 1) \ge p$
 $\forall x \notin L, Pr(A(x) = 0) \ge p$
 $\left(p \in (\frac{1}{2}, 1]\right)$

(3)

$$L \in RP, \exists A, O(n^c)$$

 $\forall x \in L, Pr(A(x) = 1) \ge p$
 $\forall x \notin L, Pr(A(x) = 0) = 1$
 $\left(p \in \left[\frac{1}{2}, 1\right]\right)$

(4)

$$L \in co - RP, \ \exists A, \ O(n^c)$$

 $\forall x \in L, \ Pr(A(x) = 1) = 1$
 $\forall x \notin L, \ Pr(A(x) = 0) \ge p$
 $\left(p \in \left[\frac{1}{2}, 1\right]\right)$

(5)

$$L \in ZPP, \exists A, O(n^c)$$

 $\forall x \in L, Pr(A(x) = 1) = 1$
 $\forall x \notin L, Pr(A(x) = 0) = 1$

定理1: $BPP_{2/3} = BPP_{0.99}$.

证明:根据集合论知识,需要证明 $BPP_{2/3}\supseteq BPP_{0.99}$ 和 $BPP_{2/3}\subseteq BPP_{0.99}$ 成立。显然 $BPP_{2/3}\supseteq BPP_{0.99}$,只需证明 $BPP_{2/3}\subseteq BPP_{0.99}$.

设 $L \in BPP_{2/3}$, 则∃算法A满足

$$x \in L \Rightarrow Pr(A(x) = 1) \ge \frac{2}{3}$$

 $x \notin L \Rightarrow PR(A(x) = 0) \ge \frac{2}{3}$

现在需要证明 $L \in BPP_{0.99}$, 即等价于∃算法A'满足

$$x \in L \Rightarrow Pr(A'(x) = 1) \ge 0.99$$

 $x \notin L \Rightarrow Pr(A'(x) = 0) \ge 0.99$

关键是通过算法A构造A',这里我们只证明 $x \in L$ 的情况。

对于任意的 $x \in L$, 执行n次A(x), 结果分别定义为 $A_1(x)$, \cdots , $A_n(x)$, 显然 $A_i(x)$ 是相互独立的随机变量且有

$$Pr(A_i(x) = 1) = p \ge \frac{2}{3}.$$

定义变量

$$X = \sum_{i=1}^{n} A_i(x)$$

则E(X) = np. 如果 $X > \frac{n}{2}$, 则A'(x) = 1; 否则A'(x) = 0.

$$Pr(A'(x) = 1) = Pr\left(X > \frac{n}{2}\right)$$

$$= 1 - Pr\left(X \le \frac{n}{2}\right).$$
(5.1)

根据Chernoff's Bound, $\forall 0 < \delta < 1$,

$$Pr(X \le (1 - \delta)E(X)) \le \left[\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right]^{E(X)} \le e^{-\frac{\delta^2}{2}E(X)}.$$

令 $(1-\delta)E(X) = \frac{n}{2}$, 可得 $\delta = 1 - \frac{1}{2p}$, 代入上式得

$$Pr\left(X \le \frac{n}{2}\right) \le e^{-\frac{\left(1 - \frac{1}{2p}\right)^2}{2}E(X)}$$

$$= e^{-\frac{n}{2}\left(p + \frac{1}{4p} - 1\right)}$$

$$\le e^{-\frac{n}{48}}.$$
(5.2)

注意到在(5.2)中,由 $p \in \left[\frac{2}{3},1\right)$ 不难得到 $p + \frac{1}{4p} - 1 \ge \frac{1}{24}$. 根据(5.1)(5.2)可得

$$Pr(A'(x) = 1) \ge 1 - e^{-\frac{n}{48}} \ge 0.99.$$

解得 $n \ge 96ln10$.

因此我们可以构造算法A', 当 $x \in L$ 时确保 $Pr(A'(x) = 1) \ge 0.99$ 成立。不失一般性,当 $x \notin L$ 时, $Pr(A'(x) = 0) \ge 0.99$ 成立。

更一般地,对于 $a,b \in (\frac{1}{2},1)$,有 $BPP_a = BPP_b$ 成立。不再赘述。

定理2: $ZPP = RP \cap co - RP$.

证明: 即证 $ZPP \subseteq RP \cap co - RP$ 和 $ZPP \supseteq RP \cap co - RP$ 成立。

1) $\forall L \in ZPP$, ∃A使得

$$x \in L, Pr(A(x) = 1) = 1$$
$$x \notin L, Pr(A(x) = 0) = 1$$

显然 $L \in RP$ 且 $L \in co - RP$, 即 $L \in RP \cap co - RP$, 从而有 $ZPP \subseteq RP \cap co - RP$.

2) $\forall L \in RP \cap co - RP$,

∃A₁使得

$$x \in L, Pr(A_1(x) = 1) \ge \frac{1}{2}$$

 $x \notin L, Pr(A_1(x) = 0) = 1$

∃A₂使得

$$x \in L, Pr(A_2(x) = 1) = 1$$

 $x \notin L, Pr(A_2(x) = 0) \ge \frac{1}{2}$

构造算法 \widetilde{A} : 同时运行 $A_1(x)$ 和 $A_2(x)$,若 $A_1(x) = 1$ 则必有 $x \in L$,输出1; 若 $A_2(x) = 0$ 则必有 $x \notin L$,输出0; 若 $A_1(x) = 0$ 且 $A_2(x) = 1$ 则不能确定。

设 $Pr(x \in L) = p$, 则 $Pr(x \notin L) = 1 - p$,

$$Pr(A_1(x) = 0, A_2(x) = 1) < \frac{1}{2}p + \frac{1}{2}(1-p) = \frac{1}{2}.$$

若不能确定,可以重新选取随机数继续运行 A_1 和 A_2 . 从上述概率可知运行n次之后不能确定结果的概率 $<\left(\frac{1}{2}\right)^n$. 因此

$$x \in L, Pr(\widetilde{A}(x) = 1) = 1$$

 $x \notin L, Pr(\widetilde{A}(x) = 0) = 1$

即 $L \in ZPP$, 从而有 $ZPP \supseteq RP \cap co - RP$ 成立。

证毕。

6 博弈论: Game Tree/AND OR Tree

建立一个深度为2n的AND OR Tree, 图中所示为n=2. 利用确定性算法计算 $f(x_1, x_2, \dots, x_{4n})$ 的复杂度为 4^n .

$$T(n) = \max\{T_0(n), T_1(n)\}.$$

$$T_1(n) \le \frac{1}{2} * 2 * T_1(n-1) + \frac{1}{2} \left[2T_1(n-1) + \frac{1}{2}T_0(n-1) + \frac{1}{2} \left(T_1(n-1) + T_0(n-1) \right) \right]$$

$$= \frac{9}{4}T_1(n-1) + \frac{1}{2}T_0(n-1).$$

$$T_0(n) \le 2 \left[\frac{1}{2}T_0(n-1) + \frac{1}{2} \left(T_1(n-1) + T_0(n-1) \right) \right]$$

$$= T_1(n-1) + 2T_0(n-1).$$

$$\begin{pmatrix} T_1(n) \\ T_0(n) \end{pmatrix} \leq \begin{pmatrix} \frac{9}{4} & \frac{1}{2} \\ 1 & 2 \end{pmatrix} \begin{pmatrix} T_1(n-1) \\ T_0(n-1) \end{pmatrix} \leq \begin{pmatrix} \frac{9}{4} & \frac{1}{2} \\ 1 & 2 \end{pmatrix}^{n-1} \begin{pmatrix} T_1(1) \\ T_0(1) \end{pmatrix} = U \begin{pmatrix} \lambda_1^{n-1} \\ \lambda_2^{n-1} \end{pmatrix} U^{-1} \begin{pmatrix} T_1(1) \\ T_0(1) \end{pmatrix}.$$

$$\text{解得特征值} \lambda_{1,2} = \frac{17 \pm \sqrt{33}}{8}. \ \ \diamondsuit 4^n = N, \ O\left(\left(\frac{17 + \sqrt{33}}{8}\right)^n\right) = O\left(N^{\log_4 \frac{17 + \sqrt{33}}{8}}\right).$$

7 Balls & Bins

问题描述:将m个球随机放入到n个盒子中,最后每个盒子中的球数分别为 x_1, \dots, x_n . 定义 $K = \max_{1 \le i \le n} x_i$. 该模型可以用于建模哈希(Hash)函数,生日悖论(Birthday Paradox)以及负载平衡(Workload Balance)问题。

7.1 基本知识

Union Bound:

$$Pr(\exists x_i) = Pr(x_1 \cup x_2 \cup \dots \cup x_n) \le Pr(x_1) + Pr(x_2) + \dots + Pr(x_n).$$

Chernoff's Bound:

 x_1, x_2, \dots, x_n 是独立(不必同分布)的0-1随机变量, $Pr(x_i = 1) = p_i$,定义随机变量 $X = x_1 + x_2 + \dots + x_n$, $E(X) = \sum p_i = \mu$.

(1)
$$\forall \delta > 0, \Pr(X \ge (1+\delta)\mu) \le \left\lceil \frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right\rceil^{\mu};$$

(2)
$$\forall 0 < \delta < 1, \Pr(X \le (1 - \delta)\mu) \le \left[\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right]^{\mu}.$$
证明:

(1)
$$Pr(X \ge (1+\delta)\mu) = Pr\left(e^X \ge e^{(1+\delta)\mu}\right)$$

$$= Pr\left(e^{\lambda X} \ge e^{\lambda(1+\delta)\mu}\right) \qquad (\lambda > 0)$$

$$\le \frac{E\left(e^{\lambda X}\right)}{e^{\lambda(1+\delta)\mu}}. \qquad (根据Markov Inequatity)$$

$$E\left(e^{\lambda X}\right) = E\left(\prod_{i=1}^{n} e^{\lambda x_{i}}\right)$$

$$= \prod_{i=1}^{n} E\left(e^{\lambda x_{i}}\right)$$

$$= \prod_{i=1}^{n} \left((1 - p_{i}) + p_{i}e^{\lambda}\right)$$

$$= \prod_{i=1}^{n} \left(1 + p_{i}\left(e^{\lambda} - 1\right)\right).$$
(7.2)

由 $e^x \ge 1 + x, \ x \ge 0$ 得

$$E\left(e^{\lambda X}\right) \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}$$

$$= e^{\sum_{i=1}^{n} p_{i}\left(e^{\lambda}-1\right)}$$

$$= e^{\left(e^{\lambda}-1\right) \sum_{i=1}^{n} p_{i}}$$

$$= e^{\left(e^{\lambda}-1\right) \mu}.$$

$$(7.3)$$

结合(7.1)(7.3)可得,

$$Pr(X \ge (1+\delta)\mu) \le \frac{e^{(e^{\lambda}-1)\mu}}{e^{\lambda(1+\delta)\mu}}$$

$$= \left[e^{e^{\lambda}-1-\lambda(1+\delta)}\right]^{\mu}.$$
(7.4)

令
$$g(\lambda) = e^{\lambda} - 1 - \lambda(1 + \delta)$$
,则 $g'(\lambda) = e^{\lambda} - (1 + \delta)$.由 $g'(\lambda) = 0$ 解得
$$\lambda_0 = \ln(1 + \delta)$$
.

将 λ_0 的值代入(7.4)中得

$$\left[e^{e^{\lambda}-1-\lambda(1+\delta)}\right]^{\mu} = \left[e^{\delta-(1+\delta)\ln(1+\delta)}\right]^{\mu}
= \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}.$$
(7.5)

由(7.4)(7.5)得

$$Pr(X \ge (1+\delta)\mu) \le \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}.$$

证毕。

(2) 同理可证明(2)成立。

Chernoff's Bound (Cont'd):

 $\forall 0 < \delta < 1,$

$$(1) \ \frac{e^{\delta}}{(1+\delta)^{1+\delta}} \le e^{-\frac{\delta^2}{3}};$$

(2)
$$\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \le e^{-\frac{\delta^2}{2}};$$

(3)
$$Pr(|X - \mu| \ge \delta \mu) \le 2e^{-\frac{\delta^2}{3}\mu}$$
.

证明:

(1)

$$ln\frac{e^{\delta}}{(1+\delta)^{1+\delta}} = \delta - (1+\delta)ln(1+\delta)$$
(7.6)

将ln(1+x)泰勒展开得

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

则

$$\delta - (1+\delta)\ln(1+\delta) = \delta - (1+\delta)\left(\delta - \frac{\delta^2}{2} + \frac{\delta^3}{3} - \frac{\delta^4}{4} + \cdots\right)$$

$$= -\frac{\delta^2}{2} + \frac{\delta^3}{6} - \frac{\delta^4}{12} + \frac{\delta^5}{20} - \cdots$$

$$\leq -\frac{\delta^2}{2} + \frac{\delta^3}{6}$$

$$\leq -\frac{\delta^2}{3}.$$

$$(7.7)$$

由(7.6)(7.7)得

$$\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \le e^{-\frac{\delta^2}{3}}.$$

证毕。

(2)

$$ln\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} = -\delta - (1-\delta)ln(1-\delta)$$

$$= -\delta - (1-\delta)\left(-\delta - \frac{\delta^2}{2} - \frac{\delta^3}{3} - \cdots\right)$$

$$= -\frac{\delta^2}{2} - \frac{\delta^3}{6} - \frac{\delta^4}{12} - \cdots$$

$$\leq -\frac{\delta^2}{2}.$$

$$(7.8)$$

即

$$\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \le e^{-\frac{\delta^2}{2}}.$$

证毕。

(3) 根据Chernoff's Bound, $\forall 0 < \delta < 1$,

$$Pr(X \ge (1+\delta)\mu) \le e^{-\frac{\delta^2}{3}\mu}$$

$$Pr(X \le (1-\delta)\mu) \le e^{-\frac{\delta^2}{2}\mu}$$

$$Pr(|X-\mu| \ge \delta\mu) = Pr(X \ge (1+\delta)\mu \cup X \le (1-\delta)\mu)$$

$$\le Pr(X \ge (1+\delta)\mu) + Pr(X \le (1-\delta)\mu)$$

$$\le e^{-\frac{\delta^2}{3}\mu} + e^{-\frac{\delta^2}{2}\mu}$$

$$< 2e^{-\frac{\delta^2}{3}\mu}.$$

证毕。

Stirling's Approximation:

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le e^{\frac{1}{12n}} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

定理1: 对于任意的 $0 \le m \le n$, $\left(\frac{n}{m}\right)^m \le \binom{n}{m} \le \left(\frac{en}{m}\right)^m$.

证明: 首先给出一个引理: 如果 $0 < m \le n$ 并且0 < k < m,则 $\frac{n-k}{m-k} \ge \frac{n}{m}$. 先证明这个引理:

$$\frac{n-k}{m-k} - \frac{n}{m} = \frac{m(n-k) - n(m-k)}{(m-k)m}$$
$$= \frac{(n-m)k}{(m-k)m} \ge 0.$$

证毕。

$$\binom{n}{m} = \frac{n(n-1)\cdots(n-m+1)}{m!}$$
$$= \frac{n(n-1)\cdots(n-m+1)}{m(m-1)\cdots(m-m+1)}$$
$$= \frac{n}{m}\frac{n-1}{m-1}\cdots\frac{n-(m-1)}{m-(m-1)}.$$

根据引理可得

$$\frac{n}{m}\frac{n-1}{m-1}\cdots\frac{n-(m-1)}{m-(m-1)} \ge \left(\frac{n}{m}\right)^m.$$

即证明了

$$\binom{n}{m} \ge \left(\frac{n}{m}\right)^m.$$

下面用两种方法证明 $\binom{n}{m} \le \left(\frac{en}{m}\right)^m$ 成立。

(1)

$$\binom{n}{m} = \frac{n!}{m!(n-m)!} \le \frac{n^m}{m!}.$$
(7.9)

根据Stirling's Approximation可得 $\frac{1}{m!} \leq \frac{1}{\sqrt{2\pi m} \left(\frac{m}{n}\right)^m}$,代入上式得

$$\frac{n^m}{m!} \le \frac{1}{\sqrt{2\pi m}} \left(\frac{en}{m}\right)^m \le \left(\frac{en}{m}\right)^m.$$

(2) 根据ex的泰勒展开式可得

$$e^m = \sum_{i=0}^{\infty} \frac{m^i}{i!} \ge \frac{m^m}{m!}.$$

变形得 $\frac{1}{m!} \le \left(\frac{e}{m}\right)^m$,结合(7.9)式即可得 $\binom{n}{m} \le \left(\frac{en}{m}\right)^m$.

综上即证明了定理成立。

定理2: 在Bins & Balls问题中,令m=n,定义随机变量

$$y_i = \begin{cases} 1, & x_i \ge \frac{\ln n}{10 \ln \ln n} \\ 0, & otherwise \end{cases}$$

则随机变量 y_i, y_j 负相关,即对于任意的 $1 \le i < j \le n, Cov(y_i, y_j) \le 0.$ 证明:不失一般性,令 $k = \frac{lnn}{10lnlnn}$.

$$Cov(y_{i}, y_{j}) = E(y_{i}y_{j}) - E(y_{i})E(y_{j})$$

$$= p(y_{i}y_{j} = 1) - p(y_{i} = 1)p(y_{j} = 1)$$

$$= p(x_{i} \ge k, x_{j} \ge k) - p(x_{i} \ge k)p(x_{j} \ge k)$$

$$= p(x_{j} \ge k)[p(x_{i} \ge k|x_{j} \ge k) - p(x_{i} \ge k)].$$
(7.10)

利用全概率公式,将 $p(x_i \ge k)$ 展开得

$$p(x_i \ge k) = p(x_i \ge k | x_j \ge k) p(x_j \ge k) + p(x_i \ge k | x_j < k) p(x_j < k).$$
 (7.11)

将(7.11)代入到(7.10)中得

$$Cov(y_i, y_j) = p(x_j \ge k)[p(x_i \ge k | x_j \ge k)(1 - p(x_j \ge k)) - p(x_i \ge k | x_j < k)p(x_j < k)]$$

$$= p(x_j \ge k)[p(x_i \ge k | x_j \ge k)p(x_j < k) - p(x_i \ge k | x_j < k)p(x_j < k)]$$

$$= p(x_j \ge k)p(x_j < k)[p(x_i \ge k | x_j \ge k) - p(x_i \ge k | x_j < k)].$$

因此只需证明

$$p(x_i \ge k | x_j \ge k) \le p(x_i \ge k | x_j < k). \tag{7.12}$$

定义函数 $f(l) = p(x_i \ge k | x_j = l)$, 显然f(l)是关于l的减函数。

$$p(x_i \ge k | x_j \ge k) = \sum_{l \ge k} \frac{p(x_j = l)}{p(x_j \ge k)} p(x_i \ge k | x_j = l)$$

$$p(x_i \ge k | x_j < k) = \sum_{l \le k} \frac{p(x_j = l)}{p(x_j < k)} p(x_i \ge k | x_j = l)$$
(7.13)

注意到当 $l_1 \ge k, l_2 < k$ 时

$$p(x_i \ge k | x_j = l_1) < p(x_i \ge k | x_j = l_2).$$

另

$$\sum_{l \ge k} \frac{p(x_j = l)}{p(x_j \ge k)} = 1$$

$$\sum_{l \le k} \frac{p(x_j = l)}{p(x_j < k)} = 1$$

所以我们可以得到

$$\sum_{l \ge k} \frac{p(x_j = l)}{p(x_j \ge k)} p(x_i \ge k | x_j = l) \le p(x_i \ge k | x_j = k)$$

$$\sum_{l \ge k} \frac{p(x_j = l)}{p(x_j < k)} p(x_i \ge k | x_j = l) > p(x_i \ge k | x_j = k)$$
(7.14)

这样就证明了(7.12)成立,即证明了结论。

7.2 $m \sim \sqrt{n}$

当 $m \sim \sqrt{n}$, 比如 $m = \frac{\sqrt{n}}{10}$ 时

$$Pr(K = 1) = 1 - Pr(K \ge 2)$$

$$= 1 - \sum_{j=2}^{m} Pr(K = j).$$
(7.15)

$$Pr(K = j) \leq \Pr\left(\exists x_i = j\right)$$

$$= Pr(x_1 = j \cup x_2 = j \cup \dots \cup x_n = j)$$

$$\leq nPr(x_1 = j)$$

$$= n\binom{m}{j} \left(\frac{1}{n}\right)^j \left(1 - \frac{1}{n}\right)^{m-j}$$

$$\leq n\binom{m}{j} \left(\frac{1}{n}\right)^j$$

$$\leq n\left(\frac{m}{n}\right)^j$$

$$= n\left(\frac{1}{10\sqrt{n}}\right)^j.$$
(7.16)

代入(7.15)中可得

$$\sum_{j=2}^{m} Pr(K=j) \le \sum_{j=2}^{m} n \left(\frac{1}{10\sqrt{n}}\right)^{j}$$

$$\le n \frac{\frac{1}{100n}}{1 - \frac{1}{10\sqrt{n}}}$$

$$\le \frac{1}{90}.$$

 $\mathbb{P}Pr(K=1) \ge 1 - \frac{1}{90}.$

可以看出当 $m \sim \sqrt{n}$ 时,K将以很高的概率等于1.

7.3 m = n

$$Pr(K < 10lnn) = 1 - Pr(K \ge 10lnn)$$
$$= 1 - Pr(\exists x_i \ge 10lnn).$$

$$Pr(\exists x_i \ge 10lnn) = Pr(x_1 \ge 10lnn \cup x_2 \ge 10lnn \cup \dots \cup x_n \ge 10lnn)$$

$$\leq \sum_{i=1}^n Pr(x_i \ge 10lnn)$$

$$= n \sum_{j=10lnn}^n Pr(x_i = j)$$

$$= n \sum_{j=10lnn}^n \binom{n}{j} \left(\frac{1}{n}\right)^j \left(1 - \frac{1}{n}\right)^{n-j}$$

$$\leq n \sum_{j=10lnn}^n \binom{n}{j} \left(\frac{1}{n}\right)^j$$

$$\leq n \sum_{j=10lnn}^n \left(\frac{en}{j}\right)^j \frac{1}{n^j}$$

$$= n \sum \left(\frac{e}{j}\right)^j$$

$$\leq n \sum \left(\frac{1}{3lnn}\right)^j$$

$$\leq \frac{n \left(\frac{1}{3lnn}\right)^{10lnn}}{1 - \frac{1}{3lnn}}$$

$$\leq 2n \left(\frac{1}{3lnn}\right)^{10lnn}$$

$$= 2n \frac{1}{3^{10lnn}n^{10lnlnn}}$$

$$= 0(1).$$

由此可得

$$Pr(K < 1olnn) \ge 1 - o(1).$$

即当m = n时,K以很高的概率< 10lnn.

7.4 总结

当m取不同的量级时,对应的K值会相应地产生变化。对应表格如下:

\overline{m}	\sqrt{n}	n	nlnn	
K	K > 1	$\Theta\left(\frac{lnn}{lnlnn}\right)$	$\Theta\left(\frac{m}{n}\right)$	

8 概率方法(Probability Method)

8.1 素数

- (a) 素数定理: $\pi(n) \sim \Theta\left(\frac{n}{\ln n}\right)$, 其中 $\pi(n)$ 表示< n 的素数个数。
- (b) 素数的个数是无穷的。

证明:用两种方法来证明。

(1) 最经典的证明是欧几里得方法。反证法,假设素数一共有n个,分别为 p_1, p_2, \cdots, p_n 。 定义数

$$p = p_1 p_2 \cdots p_n + 1.$$

易证p不能被任 $-p_i$ 整除,即p为素数。又 $p \neq p_i$,这与假设矛盾,即证明了素数的无穷性。

(2) 引入费马数 $F_n = 2^{2^n}$, 则

$$F_{n+1} = 2^{2^{n+1}} = (F_n - 1)^2 + 1.$$

 $gcd(F_n, F_{n+1}) = 1$,可得 F_n 与 F_{n+1} 没有相同的素因子,由此证明了素数是无穷的。

8.2 Ramsey数

经典问题是说6个人中至少有3个人互相认识或者互相不认识。这个问题可以转换成图论来求解,6个人对应6个结点,任意两个人之间有一条边相连,红边或蓝边,红边表示认识,蓝边表示不认识。最后形成了一个由6个结点组成的完全图,只需证明其中含有红色或蓝色三角形。

定义Ramsey数:对一个图的边进行**二染色**(红色或蓝色),R(m,n)表示出现红色 K_m 或蓝色 K_n 所需的最少结点数,其中 K_i 表示i个结点中任意两个结点之间的边同色。

据此有以下Ramsey数:

$$R(3,3) = 6$$

$$R(2,n) = n$$

$$R(3,4) = 9$$

定理1: $R(n,n) \leq 2^{2n}$.

证明: 首先给出一个引理。

引理: $R(s,t) \leq R(s-1,t) + R(s,t-1)$.

先证明这个引理成立,分两种情况:

- (1) 存在结点V至少和R(s-1,t)个结点连接红边,这R(s-1,t)个结点形成红色 K_{s-1} 或者蓝色 K_t . 红色的 K_{s-1} 和V形成了红色的 K_s .
- (2) 存在结点V至少和R(s,t-1)个结点连接蓝边,这R(s,t-1)个结点形成红色 K_s 或者蓝色 K_{t-1} . 蓝色的 K_{t-1} 和V形成了蓝色的 K_t .

至此就证明了引理,下面通过归纳法证明:

$$R(s,t) \le \binom{s+t-2}{s-1}$$
.

$$r=s=2$$
时,显然有 $R(2,2) \leq \binom{2+2-2}{2-1} = 2.$ 假设 $R(s-1,t)$ 和 $R(s,t-1)$ 满足不等式,则

$$R(s,t) \le R(s-1,t) + R(s,t-1)$$

$$\le \binom{s+t-3}{s-2} + \binom{s+t-3}{s-1}$$

$$= \binom{s+t-2}{s-1}.$$

证毕。

当s = t = n时, $R(n,n) \le \binom{2n-2}{n-1}$. 根据String's Approximation可得,

$$\binom{2n-2}{n-1} = \frac{(2n-2)!}{(n-1)!(n-1)!}$$

$$\leq \sqrt{2\pi(2n-2)} \left(\frac{2n-2}{e}\right)^{2n-2} \frac{1}{2\pi(n-1)} \left(\frac{e}{n-1}\right)^{2n-2}$$

$$= \frac{1}{\sqrt{\pi(n-1)}} 2^{2n-2}$$

$$\leq 2^{2n}.$$

证毕。

定理2: $R(n,n) > (n-1)^2$.

证明:构造图如下

如图所示有n-1个红色 K_{n-1} ,不同 K_{n-1} 之间的结点连接蓝边。显然这个由 $(n-1)^2$ 个结点组成的完全图不包含红色和蓝色的 K_n . 即证明了 $R(n,n) > (n-1)^2$.

定理3: $R(n,n) > 2^{\frac{n}{2}}$.

证明:取N个点,则一共有 $\binom{N}{2}$ 条边。对每条边随机染色,即以 $\frac{1}{2}$ 的概率染成红色,以 $\frac{1}{3}$ 的概率染成蓝色。记生成的图为G.

Pr(G中不出现红色 K_n 且不出现蓝色 K_n) = 1 – Pr(出现红色 $K_n \cup$ 出现蓝色 K_n). (8.1)

Pr(出现红色 $K_n \cup$ 出现蓝色 $K_n) \leq 2Pr($ 出现红色 $K_n)$

$$\leq 2Pr(某 \uparrow K_n) \binom{N}{n}$$

$$= 2\frac{1}{2C_n^2} C_N^n$$

$$\leq 2 \left(\frac{eN}{n}\right)^n \frac{1}{2^{\frac{n^2-n}{2}}}.$$
(8.2)

对(8.2)式右端以2为底取对数,得

$$\log_2 2\left(\frac{eN}{n}\right)^n \frac{1}{2^{\frac{n^2-n}{2}}} = 1 + n(\log_2 e + \log_2 N - \log_2 n) - \frac{n^2}{2} + \frac{n}{2}$$
(8.3)

代入 $N=2^{\frac{n}{2}}$, 得

$$(8.3) \vec{\pi} = 1 + n \left(log_2 e + \frac{1}{2} \right) - nlog_2 n < 0.$$
(8.4)

可知取对数之前(8.2)式右端<1, 事实上是<<1, 即

$$Pr($$
出现红色 $K_n \cup$ 出现蓝色 $K_n) << 1.$

综上,当 $N=2^{\frac{n}{2}}$ 时,图G中将以概率1-o(1)不出现红色 K_n 且不出现蓝色 K_n ,即以概率方法证明了 $R(n,n)>2^{\frac{n}{2}}$.

8.3 MAX-CUT

8.3.1 概率方法

最大割是NP完全问题,这里用概率方法阐述一下。

将图G的结点分成两个集合L和R. 边uv的两个结点u,v有四种分布情况,分别是: $u \in L, v \in L; u \in L, v \in R; u \in R, v \in L; u \in R, v \in R$. 因此uv被cut的概率= $\frac{1}{2}$.

定义割边数为C(L,R),则有

$$E(C(L,R)) = \sum_{e} \frac{1}{2} = \frac{m}{2}.$$

割边的期望值为 $\frac{m}{2}$,则一定存在某种割使得割边数目 $\geq \frac{m}{2}$.

8.3.2 2近似算法

(a) 算法描述

- (1) 任意初始化割 $S \bigcup \overline{S}$.
- (2) 对于任一结点v如果有少于 $\frac{1}{2}$ 的边通过割,就将其移到割的另一个集合中。
- (3) 如果没有这样的结点存在,则终止算法,否则回到(2).

(b) 复杂度分析

显然,通过每一步迭代,通过割的边数至少增加1.由于最大割最多是图的边数, 因此算法经过线性次数的迭代一定会终止。

(c) 正确性证明

算法终止后,我们得到集合S和 \overline{S} ,分别写作 $S=\{x_1,\cdots,x_s\}$ 和 $\overline{S}=\{y_1,\cdots,y_t\}$. deg(x)表示顶点x的度数。

根据握手定理(Handshaking lemma)可得

$$\sum_{i=1}^{s} deg(x_i) + \sum_{j=1}^{t} deg(y_j) = 2m.$$

其中m表示边数。通过上述算法可知

$$2|C| \ge \frac{1}{2} \sum_{i=1}^{s} deg(x_i) + \frac{1}{2} \sum_{j=1}^{t} deg(y_j) = m.$$

即

$$|C| \ge \frac{m}{2} \ge \frac{1}{2}opt.$$

证毕。

8.4 独立集(Independent Set, IS)

给定图G = (V, E), 独立集 $V' \subseteq V$ 并且V'中任两个结点之间没有边相连。求解最大独立集(MIS)是NP完全问题。

定理1: 图G满足|V|=n, 点的平均度数为d, 则# $MIS \geq \frac{n}{2d}$.

证明:利用概率方法。将任一结点v以概率 $\frac{1}{d}$ 放入集合S中,这样形成的S其中可能有边存在,令m(S)表示S中形成的边数。

$$E(|S|) = \frac{n}{d}$$

$$E(m(S)) = \sum_{e} \frac{1}{d^2} = \frac{1}{d^2} \frac{nd}{2} = \frac{n}{2d}$$

$$E(|S| - m(S)) = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d}$$

所以∃S₀满足

$$|S_0| - m(S_0) \ge \frac{n}{2d}.$$

显然有# $MIS \geq \frac{n}{2d}$. 证毕。

8.5 AND OR Tree

定义

$$maj(x_1 \sim x_n) = \begin{cases} 1, & \sum x_i > \frac{n}{2} \\ 0, & otherwise \end{cases}$$

$$Th_k(x_1 \sim x_n) = \begin{cases} 1, & \sum x_i \ge k \\ 0, & otherwise \end{cases}$$

定理1: ∃深度为3, 多项式时间的电路C实现 $Th_k(k = log_2n + 1)$.

证明:将 $\{x_1, x_2, \dots, x_n\}$ 随机分到 log_2n 个集合中,分别记为 $S_1, S_2, \dots, S_{log_2n}$.将每个集合中任意两个元素AND(\land)一次,之后将 log_2n 个集合OR(\lor)一次,得到 C_1 .如下图所示

执行这样的操作 n^5 次,对应为 $C_1 \sim C_{n^5}$. 将 C_1 到 C_{n^5} 进行AND(\wedge)操作,得到最终的C.

$$Pr(C = Th_k) = 1 - Pr(C \neq Th_k).$$

其中

$$\begin{split} & Pr(C \neq Th_k) = Pr(C = 1, Th_k = 0) \\ & = Pr(C(x_1, \cdots, x_n) = 1, x_1 + \cdots + x_n \leq log_2 n) \\ & \leq \sum_{x_1 + \cdots + x_n \leq log_2 n} Pr(C(x) = 1) \\ & = \left[\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{\log_2 n} \right] Pr(C_i(x_1, \cdots, x_n) = 1)^{n^5} \\ & \leq 2^n Pr(C_i(x_1, \cdots, x_n) = 1)^{n^5} \\ & = 2^n \left[1 - \left(1 - \frac{1}{\log_2 n} \right) \left(1 - \frac{2}{\log_2 n} \right) \cdots \left(1 - \frac{\log_2 n - 1}{\log_2 n} \right) \right]^{n^5} \\ & = 2^n \left[1 - \frac{(log_2 n)!}{(\log_2 n)^{\log_2 n}} \right]^{n^5} \\ & \leq 2^n \left[1 - \frac{\sqrt{2\pi \log_2 n}}{(\log_2 n)^{\log_2 n}} \right]^{n^5} \\ & \leq 2^n \left[1 - \frac{\sqrt{2\pi \log_2 n}}{e^{\log_2 n}} \right]^{n^5} \\ & \leq 2^n e^{-\frac{\sqrt{2\pi \log_2 n}}{e^{\log_2 n}}} \left(\mathbb{R} \frac{1}{R} \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e} \right) \\ & = \frac{2^n}{e^{\sqrt{2\pi \log_2 n}} n^5 - \frac{\log_2 n}{\ln n}} \\ & \leq \frac{2^n}{e^{n^3}} \\ & = o(1). \end{split}$$

即 $Pr(C = Th_k) = 1 - o(1)$. 证毕。

8.6 MAX-SAT

问题描述:给出一个SAT实例(比如3SAT),求能最多满足的子句数。 使用概率方法,令 $Pr(x_i = 1) = Pr(x_i = 0) = \frac{1}{2}$.随机变量 z_i 对应第i个子句,为

真则
$$z_i = 1$$
, 反之 $z_i = 0$. $Z = \sum_{i=1}^m z_i$.

$$E(Z) = \sum_{i=1}^{m} E(z_i)$$
$$= \sum_{i=1}^{m} \left(1 - \frac{1}{2^{k_i}}\right)$$
$$\geq \frac{m}{2}.$$

定理1:
$$E(X) = \underset{Y}{E} \left(\underset{X}{E} (X|Y) \right).$$

证明:

右端 =
$$\sum_{y} Pr(Y = y)E(X|Y = y)$$

= $\sum_{y} Pr(Y = y) \left[\sum_{x} xPr(X = x|Y = y) \right]$
= $\sum_{y} \sum_{x} Pr(Y = y)xPr(X = x|Y = y)$
= $\sum_{y} \sum_{x} xPr(X = x, Y = y)$
= $\sum_{x} x \sum_{y} Pr(X = x, Y = y)$
= $\sum_{x} xPr(X = x)$
= $E(X)$.

利用条件概率实现确定性算法。

$$E(Z) = \underset{x_1}{E} \left(\underset{Z}{E} (Z|x_1) \right)$$

$$= \Pr(x_1 = 1) E(Z|x_1 = 1) + \Pr(x_1 = 0) E(Z|x_1 = 0)$$

$$= \frac{1}{2} \left[E(Z|x_1 = 1) + E(Z|x_1 = 0) \right]$$

$$\geq \frac{m}{2}.$$
(8.5)

由(8.5)可得

$$max\{E(Z|x_1=1), E(Z|x_1=0)\} \ge \frac{m}{2}.$$

分别计算 $E(Z|x_1=1)$ 和 $E(Z|x_1=0)$ 的值,通过比较可固定 x_1 的值,依次下去可分别确定 x_2,\cdots,x_n 的值。

$$L \in RP, \exists A$$

$$x \in L, Pr(A(x) = 1) \ge \frac{1}{2}$$
$$x \notin L, Pr(A(x) = 0) = 1$$

N为素数,从集合 $\{1,\cdots,N\}$ 中随机选择两个数a,b. 利用算法A构造 \widetilde{A} :

$$A(x, (a+b) mod N)$$

$$A(x, (2a+b) \mod N)$$

. . .

$$A(x,(ta+b)mod\ N)$$

若 $\exists A_i(x_i, (ia+b) \mod N) = 1$ 则输出1, 否则输出0.

首先证明ia + b, ja + b两两独立。

$$Pr(ia + b = s, ja + b = t) = \frac{\#\{(a, b)|ia + b = s, ja + b = t\}}{N^2}.$$

当 $i \neq j$ 时,方程组 $\begin{cases} ia+b=s \\ ja+b=t \end{cases}$ 有唯一解。由此可得

$$Pr(ia + b = s, ja + b = t) = \frac{1}{N^2}.$$

又

$$Pr(ia + b = s) = \frac{1}{N}$$
$$Pr(ja + b = t) = \frac{1}{N}$$

得

$$Pr(ia + b = s, ja + b = t) = Pr(ia + b = s)Pr(ja + b = t).$$

即证明了ia + b, ja + b两两独立。

算法 \widetilde{A} 出错的概率,当 $x \in L$

$$Pr(\widetilde{A} = 0) = Pr(A_1(x) = 0, \dots, A_t(x) = 0).$$
 (8.6)

令随机变量 Z_1, \dots, Z_t 分别对应 $A_1(x), \dots, A_t(x), Z = Z_1 + \dots + Z_t$.

式(8.6) =
$$Pr(Z_1 + \dots + Z_t = 0)$$

= $Pr(Z = 0)$
= $Pr(Z - E(Z) = -E(Z))$
= $Pr(|Z - E(Z)| = E(Z))$
 $\leq \frac{Var(Z)}{E^2(Z)}$. (8.7)

$$Var(Z) = \sum_{i=1}^{t} Var(Z_i) + 2\sum_{i,j} Cov(Z_i, Z_j) = tVar(Z_i).$$
 (8.8)

$$\frac{Var(Z)}{E^{2}(Z)} = \frac{tVar(Z_{i})}{t^{2}E^{2}(Z_{i})}$$

$$= \frac{p(1-p)}{tp^{2}}$$

$$\leq \frac{\frac{1}{4}}{t(\frac{1}{2})^{2}}$$

$$= \frac{1}{t}.$$
(8.9)

由(8.6)(8.7)(8.9)可得, 当 $x \in L$ 时

$$Pr(\widetilde{A}=0) \le \frac{1}{t}.$$

假设运行一次算法A需要时间T,则运行t次A需要时间tT,正确率 $\geq 1 - \frac{1}{t}$.

9 代数化方法(Algebraic Method)

9.1 两数相等的判定

问题描述: 两个数x和y比特位均为n, 分别表示为 $x_n \cdots x_1$ 和 $y_n \cdots y_1$, 判断其是否相等。

如果直接判断,复杂度为O(n). 采用代数化方法,构造多项式

$$f(z) = x_n z^{n-1} + x_{n-1} z^{n-2} + \dots + x_2 z^1 + x_1.$$

$$g(z) = y_n z^{n-1} + y_{n-1} z^{n-2} + \dots + y_2 z^1 + y_1.$$

在4n-8n中取素数p, 从 $\{1,2,\cdots,p-1\}$ 中随机取一个数r(比特数量级为O(logn)), 判断f(r)是否等于g(r). 用下列情形描述:

注意到通信的比特量级为O(logn).

下面证明该算法的高效性。出错的情况, 当 $x \neq y$ 时

$$Pr(f(r) = g(r)) = Pr(f(r) - g(r) = 0)$$

= $Pr(h(r) = 0)$. $(h(z) \triangleq f(z) - g(z))$

h(r)是n-1次的多项式,根据代数基本定理可得h(r)=0最多有n-1个实数根。因此

$$Pr(h(r) = 0) \le \frac{n-1}{p-1} < \frac{1}{4}.$$

9.2 两个多项式相等的判定

Schwartz-Zippel lemma: 多项式 $Q(x_1, \cdots, x_n)$ 不恒等于零,次数deg(Q) = d. $r_1, \cdots, r_n \in S$, 则

$$Pr(Q(r_1, \cdots, r_n) = 0) \le \frac{d}{|S|}.$$

证明:用数学归纳法。显然n=1时成立。假设n-1时成立,则为n时

$$Q(x_1, \dots, x_n) = P_{d_1}(x_2, \dots, x_n)x_1^{d_1} + P_{d_1-1}(x_2, \dots, x_n)x_1^{d_1-1} + \dots + P_0(x_2, \dots, x_n)x_1^{0}.$$

$$Pr(Q = 0) = Pr(P_{d_1}(x_2, \dots, x_n) = 0) Pr(Q = 0 | P_{d_1}(x_2, \dots, x_n) = 0) + Pr(P_{d_1}(x_2, \dots, x_n) \neq 0) Pr(Q = 0 | P_{d_1}(x_2, \dots, x_n) \neq 0).$$

$$(9.1)$$

注意到

$$Pr(P_{d_1}(x_2, \dots, x_n) = 0) \le \frac{d - d_1}{|S|}$$

$$Pr(Q = 0 | P_{d_1}(x_2, \dots, x_n) = 0) \le 1$$

$$Pr(P_{d_1}(x_2, \dots, x_n) \ne 0) \le 1$$

$$Pr(Q = 0 | P_{d_1}(x_2, \dots, x_n) \ne 0) \le \frac{d_1}{|S|}$$

$$(9.2)$$

代入到(9.1)可得

$$Pr(Q = 0) \le \frac{d - d_1}{|S|} + \frac{d_1}{|S|} = \frac{d}{|S|}.$$

证毕。

9.3 Perfect Matching

如下图所示的二分图,存在Perfect Matching的充分必要条件是 $\Gamma(S) \geq |S|$.

下面利用代数化方法。首先写出上图对应的邻接矩阵A, 然后将其中值为1的元素 改成变量 x_{ij} , 得到矩阵A', 则图中存在Perfect Matching的充分必要条件是 $det(A') \neq 0$.

证明:若图中存在Perfect Matching,则对应矩阵A'中一定存在n个不同行且不同列的非零元素,导致 $det(A') \neq 0$.反之易证。

9.4 交互式证明系统(Interactive Proof System)

问题描述: 给定3SAT问题 φ , 则 φ 为真的赋值数为 $\#\{x|\varphi(x)=T\}$. 现在给定一个具体的

$$\varphi(x_1,\cdots,x_n)=(x_1\vee\overline{x_2}\vee x_3)\wedge(\overline{x_1}\vee x_3\vee\overline{x_5})\wedge\cdots$$

Alice要向Bob(BPP的图灵机)证明 φ 为真的取值数为M.

采用交互式证明。将φ写成多项式形式

$$f(x_1, \dots, x_n) = (1 - (1 - x_1)x_2(1 - x_3))(1 - x_1(1 - x_3)x_5)\cdots$$

Alice即向Bob证明

$$M = \sum_{x_1, \dots, x_n : 0}^{1} f(x_1, \dots, x_n).$$

如下图所示,随机取值来自集合 $S = \{1, 2, \dots, N\}$ 并且

$$f_1(x_1) = \sum_{x_2, \dots, x_n = 0}^{1} f(x_1, \dots, x_n)$$
$$f_2(x_1, x_2) = \sum_{x_3, \dots, x_n = 0}^{1} f(x_1, \dots, x_n)$$

Bob只需对结果进行验证并随机地从S中选择数。如果所有的验证都能通过,则我们可以以很高的概率证明#3SAT = M.

证明:

Pr(所有验证均通过, $M \neq \sum f)$

$$= Pr($$
所有验证均通过, $(h_n \neq f_n) \lor (h_n = f_n, h_{n-1} \neq f_{n-1}) \lor \cdots \lor (h_n, h_{n-1}, \cdots, h_1 \neq f_1)).$ (9.3)

根据Union Bound,

$$\vec{\mathbb{R}}(9.3) \leq \frac{\deg(x_n)}{|S|} + \frac{\deg(x_{n-1})}{|S|} + \dots + \frac{\deg(x_1)}{|S|}$$

$$\leq \frac{3mn}{|S|}$$

$$= \frac{O(mn)}{|S|}.$$

通过给定一个较大的|S|, 可以确保

$$Pr($$
所有验证均通过, $M \neq \sum f) = o(1).$

证毕。

10 随机游走(Random Walk)

10.1 一般情形

问题描述:一个赌徒初始时有本钱n,他每赌一次钱将以 $\frac{1}{2}$ 的概率增加1以 $\frac{1}{2}$ 的概率减少1.他不停地赌下去,直到钱输光或者赚了m就停止(这里0和m+n可看做数轴上的吸收壁)。示意图如下

定义p(i,j)表示初始位置为i并最终在m+n处停止(被吸收)的概率,则

$$p(0, m + n) = 0$$

$$p(m + n, 0) = 1$$

$$p(i, j) = \frac{1}{2}p(i + 1, j - 1) + \frac{1}{2}p(i - 1, j + 1)$$

解得

$$p(i,j) = \frac{i}{m+n}.$$

定义T(i,j)表示初始位置为i并到达吸收壁需要的时间。令m=n, 则

$$T(0,2n) = 0$$

$$T(2n,0) = 0$$

$$T(i,j) = 1 + \frac{1}{2}T(i-1,j+1) + \frac{1}{2}T(i+1,j-1)$$

具体解法:

$$T(2n-2) = 2T(2n-1) - 2$$

$$T(2n-3) = 3T(2n-1) - 6$$

$$T(2n-4) = 4T(2n-1) - 12$$
...
$$T(2n-(2n-2)) = (2n-2)T(2n-1) - (2n-3)(2n-2)$$

$$T(2n-(2n-1)) = (2n-1)T(2n-1) - (2n-2)(2n-1)$$

即

$$T(2) = (2n-2)T(2n-1) - (2n-3)(2n-2)$$

$$T(1) = (2n-1)T(2n-1) - (2n-2)(2n-1)$$
(10.1)

又

$$2T(1) = T(2) + 2 \tag{10.2}$$

由(10.1)(10.2)解得T(2n-1)=2n-1,则

$$T(n) = T(2n - n)$$

$$= nT(2n - 1) - (n - 1)n$$

$$= n^{2}.$$

 $\mathbb{P}T(n,n) = n^2.$

10.2 将随机游走拓展到连通图上

给定一个无向连通图G, 结点u为出发点,v为吸收壁。定义 d_u 表示u的度数,u以概率 $\frac{1}{d_u}$ 向邻接的结点随机移动,一旦到达v就停止。设 $h_{u,v}$ 表示u到v的期望时间,自然地我们会考虑 $h_{u,v}$ 是否等于 $h_{v,u}$ (此时v为出发点,u为吸收壁)。直观上感觉是相等的,但实际上是不等的。下面通过一个例子给出证明。

如上图所示,直线l左边是n个结点组成的完全图,右边同样有n个结点。根据已知有 $h_{v,u}=n^2$,对 $h_{u,v}$ 有

$$h_{u,v} = \frac{1}{n} h_{v_1,v} + \frac{n-1}{n} h_{w,v} + 1$$
 (10.3)

$$h_{w,v} = \frac{1}{n-1}h_{u,v} + \frac{n-2}{n-1}h_{w,v} + 1$$
 (10.4)

$$h_{v_1,v} = \frac{1}{2}h_{u,v} + \frac{1}{2}h_{v_2,v} + 1 \tag{10.5}$$

由(10.4)可得

$$h_{w,v} = h_{u,v} + (n-1) (10.6)$$

由(10.5)可得

$$h_{v_1,v} - h_{v_2,v} = h_{u,v} - h_{v_1,v} + 2 (10.7)$$

由(10.3)得

$$nh_{u,v} = h_{v_1,v} + (n-1)h_{w,v} + n$$

化简可得

$$h_{u,v} - h_{v_1,v} = (n-1)(h_{w,v} - h_{u,v}) + n$$

根据(10.6)得

$$h_{u,v} - h_{v_1,v} = (n-1)^2 + n = n^2 - n + 1$$
(10.8)

 $\pm (10.7)$ 和(10.8)可得 $h_{u,v} = \Theta(n^3)$.

显然 $h_{u,v}$ 和 $h_{v,u}$ 具有不同的量级,即 $h_{u,v} \neq h_{v,u}$.

11 电路问题

如下图所示,每个边表示阻值为1的电阻。利用电路的有关知识进行分析,可知 $R_{u,v} = \frac{3}{2}$. 根据上一部分的相关内容,我们可以得出下式:

$$\begin{cases} h_{u,v} = 1 + h_{w,v} \\ h_{w,v} = 1 + \frac{1}{3}h_{u,v} + \frac{1}{3}h_{w,v} + \frac{1}{3}h_{x,v} \\ h_{x,v} = 1 + \frac{1}{3}h_{w,v} + \frac{1}{3}h_{x,v} \end{cases}$$

解得 $h_{u,v} = 12$.

 $\frac{h_{u,v}}{R_{u,v}}=8$, 这个值刚好等于边数m, 猜想是否有 $h_{u,v}=mR_{u,v}$ 成立。答案是否,但是有 $h_{u,v}+h_{v,u}=2mR_{u,v}$.

证明:构造如图所示的电路(称为电路I),满足u处的电势为0,即 $U_u = 0$.u以外的所有其他结点均流入自身度数单位的电流,由电路的平衡可知u 流出电流 $2m - d_u$.

根据结点处的电流平衡可得

$$\begin{cases}
\sum_{x \in \Gamma(w)} (U_w - U_x) = d_w \ (\forall w \neq u) \\
U_u = 0
\end{cases}$$
(11.1)

再根据首达时间可得

$$\begin{cases} h_{w,u} = 1 + \frac{1}{d_w} \sum_{x \in \Gamma(w)} h_{x,u} \ (\forall w \neq u) \\ h_{u,u} = 0 \end{cases}$$

整理得

$$\begin{cases}
d_w = \sum_{x \in \Gamma(w)} (h_{w,u} - h_{x,u}) \ (\forall w \neq u) \\
h_{u,u} = 0
\end{cases}$$
(11.2)

将(11.1)(11.2)对应起来并根据解的唯一性可得 $U_v = h_{v,u}$.

同理再构造另外一个电路(称为电路II),满足 $U_v=0$. v以外的所有其他结点均流入自身度数单位的电流,u流出电流 $2m-d_v$. 类似地可得 $\forall w\neq v, U_u=h_{u,v}$. 将该电路的电流方向取反得到新的电路(称为电路III),则有 $U_u=-h_{u,v}$.

电路I和III的示意图如下:

对应相加起来可得 再根据欧姆定律可得

$$2mR_{u,v} = h_{v,u} - 0 + 0 - (-h_{u,v}).$$

即

$$h_{u,v} + h_{v,u} = 2mR_{u,v}.$$

证毕。

第II部分:近似算法

近似算法常用于求解NP问题。定义近似比为

$$\frac{A(I)}{opt(I)}$$

其中I为问题实例, A为近似算法, opt为最优算法。

1 旅行商问题(TSP)

首先阐述一些基本概念。

哈密尔顿路径: 在一个给定的图中,一条路径经过所有顶点有且仅有一次。

哈密尔顿圈:上述路径构成一个圈,即起点和终点重合,其余所有结点都只被访问一次。判断一个给定的图G = (V, E)中是否存在哈密尔顿圈是NP完全问题。

旅行商问题(TSP): 给定一个完全图G = (V, E), 求解图中边权之和最小的哈密尔顿圈。TSP是NP完全问题。

设给定的图为G, W为对应的边权,则W满足三种情形:

- (1) 欧几里得空间。
- (2) 三角不等式,这是最常讨论的情况。存在2近似和3近似。
- (3) 一般情形,不存在常数近似。

1.1 W满足三角不等式TSP存在2近似

我们在这一小节阐述2近似算法A. 先在G上取得一个最小生成树(Kruskal算法或Prim算法)T,如下图所示:

则T的边权之和为w(T). 从A出发按照下图所示的路线构成了一个回路,显然该回路的长度为2w(T).

为了得到哈密尔顿圈(cycle),我们从起点出发走到某个邻接结点,一直下去直到某个结点u的所有邻接结点都已走过,则u选择一个还未走过的结点v,从v继续下去直到回到起点。对应示意图如下,这样我们就得到了TSP的一个解,即A(I). 根据三角不等式可得

$$A(I) \le 2w(T). \tag{1.1}$$

令opt(I)表示最优解,显然opt(I)是一个圈,去掉其中的任意一条边就得到了一个树T', 显然 $w(T') \ge w(T)$. 又 $opt(I) \ge w(T')$, 可得

$$opt(I) \ge w(T).$$
 (1.2)

结合(1.1)(1.2)可得

 $A(I) \leq 2opt(I)$.

即证明了算法A是2近似的。

下面通过一个实例说明这个算法是紧的(tight). 如图所示为n(这里以n=6为例)个结点组成的完全图,满足AB=BC=CD=DE=EA=AF=BF=CF=DF=EF=1, 其余边为2.

不难得到opt(I) = n, 对应图中为ABCDEFA. 根据算法A取最小生成树(左图)并按右图所示执行A, 即为AFCEBDA. 不难得到A(I) = 2 * (n-2) + 2 = 2n - 2.

近似比 $\frac{A(I)}{opt(I)} = 2 - \frac{2}{n}$,任给一个 $2 - \varepsilon$,总可以找到一个n满足,即证明了该2近似算法是紧的。

1.2 W满足三角不等式TSP存在 $\frac{3}{2}$ 近似

同样先找出最小生成树T,标出T中度数为奇数的结点,设这些结点构成集合O. 根据握手定理可得|O|为偶数,因此O中结点形成的完全图一定存在perfect matching,

我们可以以多项式时间找出一个最小权值的perfect matching, 设为M. 定义N为O上的TSP最优解, N_1 是从N中取出的任一perfect matching, N_2 是 N_1 在N上的补集,显然 N_2 也是O上的一个perfect matching, 则有

$$w(M) \le \min\{w(N_1), w(N_2)\}\tag{1.3}$$

又

$$w(N_1) + w(N_2) = w(N) (1.4)$$

可得

$$min\{w(N_1), w(N_2)\} \le \frac{1}{2}w(N)$$
 (1.5)

由(1.3)(1.5)得

$$w(M) \le \frac{1}{2}w(N). \tag{1.6}$$

设opt(I)为最优解,我们在opt(I)中只考虑集合O中的结点。如下图所示,这样我们就得到了一个O上的哈密尔顿圈M'.

根据三角不等式可得

$$w(M') \le opt(I) \tag{1.7}$$

又由于N是O上的TSP最优解,所以

$$w(N) \le w(M'). \tag{1.8}$$

由(1.6)(1.7)(1.8)可得

$$w(M) \le \frac{1}{2} opt(I) \tag{1.9}$$

又

$$w(T) \le opt(I) \tag{1.10}$$

得

$$w(T) + w(M) \le \frac{3}{2} opt(I). \tag{1.11}$$

在T上添加M之后所得的图每个结点的度数均为偶数,因此存在欧拉回路E. 在E上执行1.1节中的做法,即从E的起点出发走到某个邻接结点,一直下去直到某个结点u的所有邻接结点都已走过,则u选择一个还未走过的结点v,从v继续下去直到回到起点。经过这样的处理得到最终的A(I),根据三角不等式可得

$$A(I) \le w(T) + w(M). \tag{1.12}$$

由(1.11)(1.12)得

$$A(I) \le \frac{3}{2} opt(I). \tag{1.13}$$

证毕。

下面证明该3近似算法是紧的。给出一个具体的例子如下。

定义没有边直接相连的两个结点(设为A,B)之间的边权w(A,B) =AB之间的最短路径(显然满足三角不等式)。显然opt(I) = 2n + 1. 对应最小生成树如下:

根据上述算法,最终得到的哈密尔顿圈为:

即A(I) = n + 2n = 3n, 近似比 $= \frac{3n}{2n+1}$. 证毕。

1.3 一般情形下不存在常数近似

给定图G = (V, E),假设存在多项式时间算法A为100近似,即有 $A(G) \leq 100opt(G)$. 构造 $\widetilde{G} = (V, E')$,满足对任一 $e \in E'$,若 $e \in E$ 则w(e) = 1,否则w(e) = 200n,即 \widetilde{G} 是一个完全图。 若G中存在哈密尔顿圈,则 $opt(\tilde{G}) = n, A(\tilde{G}) \le 100n;$

若G中不存在哈密尔顿圈,则 $A(\widetilde{G}) > 200n$.

可以看到通过在 \tilde{G} 上执行算法A, 可以判定图G中是否存在哈密尔顿圈。即多项式时间算法A解决了NP完全问题,即证明了P=NP, 产生矛盾。证毕。

2 MAX-SAT

问题描述: 给出 $\varphi = c_1 \wedge c_2 \wedge \cdots \wedge c_m$, 找出可满足的最多的 c_i 数目。

Alg 1.考虑用随机算法,对变量 x_i 以 $\frac{1}{2}$ 的概率取1以 $\frac{1}{2}$ 的概率取0. 子句

$$c_i = \overline{x_{i_1}} \vee x_{i_2} \vee \cdots \vee x_{i_k}$$

为真的概率等于 $1-\frac{1}{2^k}$. 定义随机变量 Y_i 表示第i个子句是否为真,X表示m个子句中为真的数目,则

$$E(X) = E(Y_1) + E(Y_2) + \dots + E(Y_m) = (1 - \frac{1}{2^k})m.$$

显然 $opt(I) \le m$, 即该近似算法的期望近似比 $\ge 1 - \frac{1}{2^k}$.

Alg 2.将该问题化为整数规划(ILP):

对于某个 $c_i = \overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4$, 对应的 $y_i = (1 - x_1) + x_2 + (1 - x_3) + x_4$.

$$\max y_{1} + \dots + y_{m}$$
s.t.
$$\begin{cases}
\dots \\
(1 - x_{1}) + x_{2} + (1 - x_{3}) + x_{4} \ge y_{i}(\forall i) \\
\dots \\
x_{1}, \dots, x_{n} \in \{0, 1\} \\
y_{1}, \dots, y_{m} \in \{0, 1\}
\end{cases}$$

化成线性规划(LP)形式:

$$\max y_{1} + \dots + y_{m}$$
s.t.
$$\begin{cases}
\dots \\
(1 - x_{1}) + x_{2} + (1 - x_{3}) + x_{4} \ge y_{i}(\forall i) \\
\dots \\
x_{1}, \dots, x_{n} \in [0, 1] \\
y_{1}, \dots, y_{m} \in [0, 1]
\end{cases}$$

可在多项式时间内解得 opt_{LP} ,则 $opt_{ILP} \leq opt_{LP}$. 经过LP求解得 $x_1^*, x_2^*, \cdots, x_n^* \mathcal{D} y_1^*, y_2^*, \cdots, y_m^*$, 其中 $x_i^*, y_i^* \in [0, 1]$. 以 x_i^* 的概率设置 x_i 为1,以 y_i^* 的概率设置 y_j 为1.

对于 $c_i = \overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4$ 有,

$$y_i^* \le (1 - x_1^*) + x_2^* + (1 - x_3^*) + x_4^*.$$

左端为1的概率即为 y_i^* , 右端为1的概率

$$\begin{split} p &= 1 - x_1^* (1 - x_2^*) x_3^* (1 - x_4^*) \\ &\geq 1 - \left[\frac{x_1^* + (1 - x_2^*) + x_3^* + (1 - x_4^*)}{4} \right]^4 \\ &\geq 1 - \left(\frac{4 - y_i^*}{4} \right)^4 \\ &= 1 - \left(1 - \frac{y_i^*}{4} \right)^4. \end{split}$$

$$f'(y) = \left(1 - \frac{y}{k}\right)^k \ge 0$$
$$f''(y) = (k - 1)\left(1 - \frac{y}{k}\right)^{k - 2} \left(-\frac{1}{k}\right) < 0$$

且

$$f(1) = 1 - \left(1 - \frac{1}{k}\right)^k \ge 1 - \frac{1}{e}.$$

因此

$$1 - \left(1 - \frac{y}{k}\right)^k \ge \left(1 - \frac{1}{e}\right)y.$$

$$\Pr(c_{i} = 1) \ge 1 - \left(1 - \frac{y_{i}^{*}}{k}\right)^{k} \ge \begin{cases} y_{i}^{*} & , k = 1\\ y_{i}^{*} - \frac{y_{i}^{*2}}{4} \ge \frac{3y_{i}^{*}}{4} & , k = 2\\ y_{i}^{*} - \frac{y_{i}^{*2}}{3} + \frac{y_{i}^{*3}}{27} \ge \frac{2y_{i}^{*}}{3} & , k = 3\\ \left(1 - \frac{1}{e}\right)y_{i}^{*} & , k \ge 4 \end{cases}$$

可满足的期望值

$$\sum_{i=1}^{m} \Pr(c_i = 1) \ge \sum \left(1 - \frac{1}{e}\right) y_i^* = \left(1 - \frac{1}{e}\right) \sum y_i^* = \left(1 - \frac{1}{e}\right) opt_{LP} \ge \left(1 - \frac{1}{e}\right) opt_{ILP}.$$

近似比 $\geq 1 - \frac{1}{e}$.

对比Alg 1和Alg 2:

k	1	2	3	
Alg 1的近似比	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{7}{8}$	 1
Alg 2的近似比	1	$\frac{3}{4}$	$\frac{2}{3}$	 $1 - \frac{1}{e}$

考虑同时运行两个算法,取最优解,则至少取得3的近似比。

3 Vertex Cover

问题形式化:给定图G = (V, E),

$$\min S \subseteq V$$

$$s.t. (u, v) \in E, u \in S \text{ or } v \in S$$

3.1 贪心算法

找出度数最大的结点 v_1 , 在G中去除 v_1 及其连接的所有边得到图G', 在G'中继续此操作直到图中没有边存在。该算法有时会很差,近似比量级为 $\Theta(log|V|)$. 下面给出一个具体例子。

如图所示,右边有 $N = 2^n$ (图中以n = 3为例)个结点,左边有n组(每组有 2^{n-1} 个结点)结点。每组结点内部没有边相连,图中左边与右边结点连接规则为:

左边第一组每个结点度数为 2^n (使右边每个结点度数增加 2^{n-1}), 左边第二组每个结点度数为 2^{n-1} (使右边每个结点度数增加 2^{n-2}), …, 直到第n组每个结点的度数为 2^n (使右边每个结点度数增加 2^n).

可知 $opt(I) = 2^n$, $A(I) = n2^{n-1}$, 近似比 $= \frac{n}{2} = \frac{1}{2}logN \sim \Theta(log|V|)$.

3.2 ILP & LP

写成ILP形式:

$$\min \sum x_i$$
s.t.
$$\begin{cases} \forall (u, v) \in E, \ x_u + x_v \ge 1 \\ x_1, \dots, x_n \in \{0, 1\} \end{cases}$$

对应LP形式则将约束条件改为 $x_i \in [0,1]$,得到LP的最优解为

$$x_1^*, \cdots, x_n^*$$

直接四舍五入得

$$y_1, \cdots, y_n$$
.

由 $x_u^* + x_v^* \ge 1$ 可得 x_u^* 与 x_v^* 至少有一个 ≥ 0.5 ,也即 y_u 与 y_v 中至少有一个等于1,这样就满足了约束条件(和 ≥ 1).

$$\sum y_i \le \sum 2x_i^* = 2opt_{LP} \le 2opt_{ILP}.$$

即得到了2近似算法。

下面通过一个例子说明该2近似是紧的。

如图所示,最优解为3, 根据IP计算出来每个结点的值为 $\frac{1}{2}$, 经过四舍五入每个结点值为1, 即A(I) = 6, 近似比=2.

3.3 极大perfect matching

如下图所示,在图G上找到一个极大的perfect matching, 割边的数目为m, 取这m条边对应的2m个结点为A(I). 显然 $opt(I) \ge m$,

$$A(I) = 2m < 2opt(I)$$
.

即该算法是2近似的。