Tutorial 1: the Real Number System

Sijin Chen

December 28, 2021

In this tutorial, I am going to make the following clear:

- Definition of field, ordered set, and ordered field.
- Definition of sup, inf, and the LUB/GLB property.
- Definition of the real field \mathbb{R} .

1 Ordered Sets

Definition 1 (order). Let S be a set. An **order** on S is a relation, denoted by <, with the following two properties:

(i) If $x \in S$ and $y \in S$ then one and only one of the statements

$$x < y, \ x = y, \ x > y$$

is true.

(ii) If $x, y, z \in S$, and if x < y and y < z, then x < z.

If an order is defined on S, we say S is an **ordered set**. Moreover, for convenience we can write y > x in place of x < y. The notation $x \le y$ indicates that x < y or x = y.

Definition 2 (upper bound). Suppose S is an ordered set, and $E \subset S$. If there exists a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say that E is **bounded above**, and call β an **upper bound** of E.

Of course, we can define the **lower bounds** in the same way.

Definition 3 (LUB). Suppose S is an ordered set, $E \subset S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties:

- (i) α is an upper bound of E.
- (ii) If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the **least upper bound** of E, or the **supremum** of E, and we write $\alpha = \sup E$.

Likewise, we can define the **greatest lower bound**, or **infimum** of E, which is denoted by $\inf E$.

Exercise 1. Let $A = \{q \in \mathbb{Q} \mid q^2 < 2\}$. Give an upper bound of A. Does A have a least upper bound?

Exercise 2. Let $B = \{x \in \mathbb{R} \mid x^2 < 2\}$. Give an upper bound of B. Does B have a least upper bound?

Exercise 3. Give a set $E \subset \mathbb{R}$, such that $\sup E$ exists in \mathbb{R} but it is not in E.

Definition 4 (LUB property). An ordered set S is said to have the **least-upper-bound property** if the following is true: for any nonempty subset $E \subset S$, E is bounded above implies that $\sup E$ exists in S.

Likewise, we can define the **greatest-lower-bound property**.

Exercise 4. *Does* \mathbb{Q} *have LUB property? Does it have GLB property?*

Now, we shall state a theorem about a close relation between LUB and GLB. Prove it as an exercise.

Theorem 1. Let S be an ordered set. Then S has LUB property if and only if it has GLB property.

Hint. You only have to prove that LUB property implies GLB property (Why?). To this end, for any subset $E \subset S$ with a lower bound, we need to find $\inf E$. Now, consider the set of all the lower bounds of E. Can you claim something important for this set?

2 Fields

Definition 5. A field is a set F with two closed operations + and * satisfying the "CANI-CANI-D" axioms:

- (C) + is commutative.
- (A) + is associative.
- (N) There is a neutral element for +, denoted by 0. This means 0 + x = x for every $x \in F$.
- (I) There is an additive inverse for every $x \in F$, denoted by -x, with x + (-x) = 0.
- (C) * is commutative.
- (A) * is associative.
- (N) There is a neutral element for *, denoted by 1. This means 1 * x = x for every $x \in F$.
- (I) There is an multiplicative inverse for every $x \in F, x \neq 0$, denoted by x^{-1} , with $x * x^{-1} = 1$.
- (D) The distributive law x * (y + z) = x * y + x * z holds for all $x, y, z \in F$.

So many rules! But this is a good thing because we have enough properties to use, and therefore fields are almost the "best" algebraic structure among others. On the contrary, if only a part of the rules are available, things will become exquisite. For example, F is a group if "ANI"; it is an abelian group if "CANI"; it is a ring if "CANI-AN-D", and so on.

Exercise 5. Show that in a field F, x + z = y + z implies x = y, and xz = yz, $z \neq 0$ implies x = y. This is called the cancellation law.

Definition 6. An ordered field is a field F which is also an ordered set, such that

```
(i) x + y < x + z if x, y, z \in F and y < z.
```

(ii)
$$xy > 0$$
 if $x \in F, y \in F, x > 0, y > 0$.

3 The Real Field

Definition 7. An ordered field with the least-upper-bound property containing \mathbb{Q} as a subfield, denoted by \mathbb{R} , is called the **real field**.