Тема 12. Основные понятия и формулы для вычисления площадей и объемов многогранников и тел вращения.

При решении задач по данной теме рекомендуется использовать таблицы 12.1 - 12.2 [20].

Таблица 12.1 - Многогранники. Вычисление площадей и объемов многогранников.

Содержание формулы	Формула	Символы (обозначения)
Площадь поверхности куба (<i>S</i>)	S = 6 a ²	<i>а</i> – длина ребра куба
Площадь боковой поверхности прямой призмы ($S_{60\kappa}$)	S _{бок} = P · h	P - периметр основанияh - высота (длина бокового ребра)
Площадь боковой поверхности наклонной призмы $(S_{\textit{бок}})$	$S_{60K} = P \cdot I$	Р - периметрперпендикулярногосечения/- длина бокового ребра
Площадь боковой поверхности прямого параллелепипеда ($S_{\delta o \kappa}$)	$S_{60K} = P \cdot I$	P- периметр основания /- длина бокового ребра
Площадь боковой поверхности правильной пирамиды $(S_{\delta o \kappa})$	$S_{\delta o \kappa} = \frac{1}{2} P \cdot a$ $S_{\delta o \kappa} = \frac{Q}{\cos \varphi}$	 P - периметр основания a - апофема Q - площадь основания φ - величина двугранного угла при стороне основания
Площадь боковой поверхности	$S_{\delta \delta \kappa} = \frac{P + P_1}{2} \cdot h$	<i>P, P</i> ₁ - периметры оснований

правильной усеченной		<i>h</i> – апофема
пирамиды ($\mathcal{S}_{\mathit{бок}}$)		
Объем куба (<i>V</i>)	V= a ³	<i>a</i> – длина ребра куба
Объем прямоугольного	V= a b c	<i>а, b, с</i> - измерения
параллелепипеда (<i>V</i>)	v – a v c	параллелепипеда
		$\mathcal{S}_{\mathit{och}}$ - площадь основания
		<i>h</i> – высота
Объем призмы	$V = S_{och} \cdot h$	<i>Q</i> – площадь
(параллелепипеда) (1⁄)	V= Q ⋅ /	перпендикулярного
		сечения
		/- длина бокового ребра

Продолжение Таблицы 12.1

Содержание формулы	Формула	Символы (обозначения)
Объем пирамиды (<i>V</i>)	$V = \frac{1}{3} S_{OCH} \cdot h$	S_{och} - площадь основания h - высота
Объем усеченной пирамиды (<i>V</i>)	$V = \frac{1}{3} h (Q_1 + \sqrt{Q_1 Q_2} + Q_2)$	Q1, Q2 – площади оснований h – высота
Отношение объемов тетраэдров <i>АВСО</i> и <i>А₁В₁С₁О₁</i> , имеющих равные трехгранные углы с вершинами <i>А</i> и <i>А₁</i>	$\frac{V_{ABCD}}{V_{A_1B_1C_1D_1}} = \frac{AB \cdot AC \cdot AD}{A_1B_1 \cdot A_1C_1 \cdot A_1D_1} =$	V_{ABCD} и $V_{A_1B_1C_1D_1}$ - объемы тетраэдров $ABCD$ и $A_1B_1C_1D_1$

Таблицы 12.2 - Фигуры вращения

Содержание формулы	Формула	Символы (обозначения)
Площадь боковой поверхности цилиндра ($S_{\delta o \kappa}$)	$S_{60\kappa}$ = $2\pi R \cdot h$	R – радиус основания h – высота
Площадь полной поверхности цилиндра (<i>S</i> _{полн})	S_{nonh} = $2\pi R(h+R)$	R - радиус основания h - высота
Площадь боковой поверхности конуса $(S_{\delta o \kappa})$	$S_{\mathit{бок}} = \pi R I$	R – радиус основания /–длина образующей
Площадь полной поверхности конуса $(S_{ПОЛН})$	$S_{\textit{полн}}$ = $\pi R (/+R)$	R – радиус основания /- длина образующей
Площадь боковой поверхности усеченного конуса ($S_{\delta o \kappa}$)	$S_{\delta \delta \kappa} = \pi I(R + I)$	<i>R</i> , <i>r</i> – радиусы оснований /– длина образующей
Площадь сферы (<i>S</i>)	$S = 4\pi R^2$	<i>R</i> - радиус сферы
Площадь сегментной поверхности (<i>S</i>)	$S = 2\pi R \cdot H$	R - радиус сферыH - высота сегментной поверхности
Площадь шарового пояса (<i>S</i>)	$S = 2\pi R \cdot H$	R - радиус шараH - высота шарового пояса

Продолжение Таблицы 12.2

Содержание формулы	Формула	Символы (обозначения)
--------------------	---------	-----------------------

Площадь поверхности шарового сектора (<i>S</i>)	$S = \pi R \cdot (2h + \sqrt{2Rh - h^2})$	R - радиус шараh - высота шарового сегмента
Объем цилиндра (<i>V</i>)	$V = \pi R^2 \cdot H$	R – радиус основания H – высота
Объем конуса (1⁄)	$V = \frac{1}{3}\pi R^2 \cdot H$	R - радиус основания H - высота
Объем усеченного конуса (<i>V</i>)	$V = \frac{1}{3} \pi H(r^2 + Rr + R^2)$	<i>R, r</i> – радиусы оснований <i>H</i> – высота
Объем шара (І⁄)	$V = \frac{4}{3} \pi R^3$; $V = \frac{1}{6} \pi d^3$	R - радиус шараd - диаметр шара
Объем шарового слоя (<i>V</i>)	$V = \frac{\pi H}{6} \left(3 r_1^2 + \right)$	/₁, /₂ - радиусы оснований шарового слоя
	$+3r_2^2+H^2$	Н- высота
Объем шарового	$V = \pi H^2 \left(R - \frac{H}{3} \right)$	R – радиус шара Н- высота
сегмента (1/)	$V = \frac{\pi H}{6} (3r^2 + H^2)$	r – радиус основания шарового сегмента
Объем шарового сектора (<i>V</i>)	$V = \frac{2}{3} \pi R^2 \cdot H$	R - радиус шара H - высота

Далее подробнее рассмотрим основные понятия и формулы по теме «Фигуры вращения. Вычисление площадей и объемов тел вращения», которая вызывает наибольшие затруднения у школьников.

Цилиндр и его свойства.

Определение. «Тело, которое образуется при вращении прямоугольника вокруг прямой, содержащей его сторону, называется цилиндром.

Напомним, что *любое сечение цилиндра*, перпендикулярное его оси, есть *круг*, а такое же *сечение боковой поверхности цилиндра* — *окружность*; центры этих окружностей и кругов — точки пересечения секущих плоскостей и оси цилиндра. *Осевым сечением цилиндра* вращения является прямоугольник, стороны которого равны диаметру основания и образующей цилиндра. Цилиндр, осевое сечение которого — квадрат, называют *равносторонним цилиндром*.

Для построения изображения *правильной призмы, вписанной в цилиндр* следует: 1) построить изображение цилиндра; 2) построить изображение правильного многоугольника, вписанного в верхнее основание цилиндра; 3) через вершины построенного многоугольника провести образующие цилиндра; 4) в нижнем основании цилиндра последовательно соединить штриховыми линиями концы этих образующих; 5) выделить видимые и невидимые линии (отрезки) изображаемых фигур» [23].

Площади боковой и полной поверхностей цилиндра вычисляются по формулам: $S_{\text{бок}} = 2\pi R h$, $S_{\text{полн}} = 2\pi R (R+h)$; объем цилиндра - $V_{\text{цил.}} = \pi \cdot R^2 \cdot h$.

Приведем *понятие призмы, вписанной в цилиндр,* и рассмотрим решение соответствующей задачи.

Определение. «Призма называется вписанной в цилиндр, если основания призмы вписаны в основания цилиндра. Отметим, что цилиндр в этом случае называют *описанным около призмы*.

Боковые ребра призмы соединяют соответственные вершины ее оснований, вписанных в основания цилиндра. Эти вершины лежат на окружностях оснований цилиндра. Образующие цилиндра соединяют соответственные точки окружностей его оснований и параллельны боковым ребрам призмы. Следовательно, боковые ребра вписанной в цилиндр призмы – образующие цилиндра» [26].

Задача 1. «Около правильной четырехугольной пирамиды, каждое ребро которой равно 10, описан цилиндр так, что все вершины пирамиды находятся

на окружностях оснований цилиндра. Найдите *объем и площадь боковой поверхности цилиндра*.

Решение. Пусть вершина Р данной пирамиды PABCD лежит на окружности нижнего основания описанного около этой пирамиды цилиндра, центрами оснований которого служат точки О и О₁ (рисунок 12.1).

Так как каждое ребро пирамиды равно 10, то в правильном \triangle ABP находим PH = $\frac{10\sqrt{3}}{2}$ = $5\sqrt{3}$, тогда: OH= $\frac{1}{3}$ PH = $\frac{5\sqrt{3}}{3}$; OP = $\frac{2}{3}$ PH = $\frac{10\sqrt{3}}{3}$. Радиус R основания цилиндра равен OP, т.е. R = $\frac{10\sqrt{3}}{3}$.

Если точки H и M – середины противоположных сторон соответственно AB и CD квадрата ABCD (основания данной пирамиды), то MH = 10, причем середина K отрезка HM является серединой высоты OO_1 цилиндра. Так как плоскость MPH перпендикулярна плоскости основания цилиндра и проходит

через центр О его основания, то высота OO_1 цилиндра лежит в этой плоскости, и OO_1 = 20 К. Находим OK.

В прямоугольном $\triangle HOK$ имеем: $OK = \sqrt{HK^2 - OH^2} = \sqrt{25 - \frac{25}{3}} = \sqrt{\frac{50}{3}} = \frac{5\sqrt{6}}{3}$. Поэтому $OO_1 = 2 \cdot \frac{5\sqrt{6}}{3} = \frac{10\sqrt{6}}{3}$.

Тогда площадь боковой поверхности цилиндра равна

Рисунок 12.1
$$2\pi \cdot R \cdot 00_1 = = 2\pi \cdot \frac{10\sqrt{3}}{3} \cdot \frac{10\sqrt{6}}{3} = \frac{200\pi\sqrt{2}}{3}$$
 (кв.ед.), его объем

равен
$$\pi \cdot R^2 \cdot OO_1 = \pi \cdot (\frac{10\sqrt{3}}{3})^2 \cdot \frac{10\sqrt{6}}{3} = \frac{1000\pi\sqrt{6}}{9}$$
 (куб.ед.)» [23].

$$\it Oтвет. \, {200\pi \, \sqrt{2} \over 3} \, ({\rm кв.ед.}). \,\, {1000\pi \, \sqrt{6} \over 9} \, ({\rm куб.ед.}).$$

Конус и его свойства.

Определение. «*Конус* – это тело, которое образуется при вращении прямоугольного треугольника вокруг прямой, содержащей его катет. Отрезок оси вращения, заключенный внутри конуса, называется *осью конуса*.

Поверхность, полученная при вращении гипотенузы, называется боковой поверхностью конуса, а ее площадь — площадью боковой поверхности конуса. Объединение боковой поверхности конуса и его основания называется полной поверхностью конуса, а ее площадь называется площадью полной поверхности конуса или, короче, площадью поверхности конуса.

Напомним, что: а) все осевые сечения конуса – равные равнобедренные треугольники; б) угол при вершине любого из этих треугольников называют углом при вершине осевого сечения конуса; в) конус, в осевом сечении которого правильный треугольник, называется равносторонним; г) если секущая плоскость проходит через вершину конуса (но не содержит его ось) и пересекает основание конуса, то в сечении конуса этой плоскостью также получается равнобедренный треугольник.

Рисунок 12.2

Для изображения конуса достаточно построить:
1) эллипс, изображающий окружность основания конуса;
2) центр О этого эллипса (рисунок 12.2); 3) отрезок ОР, перпендикулярный плоскости основания и изображающий высоту конуса; 4) касательные прямые РА и РВ из точки Р к эллипсу (А и В – точки касания; касательные РА и РВ проводят с помощью линейки на

глаз). При этом, необходимо обратить особое внимание на следующий важный факт: отрезок AB, соединяющий точки касания образующих PA и PB к эллипсу, ни в коем случае не является диаметром эллипса, т. е. отрезок AB не содержит центра О эллипса. Следовательно, \triangle ABP — не осевое сечение конуса. Осевым же сечением конуса является \triangle ACP, где отрезок AC проходит через центр О эллипса (при этом, образующая PC не является касательной к эллипсу). Для достижения наглядности изображения невидимую часть эллипса изображают штрихами.

Площадь боковой поверхности конуса находится как площадь ее развертки и вычисляется по формуле: $S_{\delta o \kappa} = \pi \cdot R \cdot h$ [20].

Рассмотрим понятие правильной пирамиды, вписанной в конус. Отметим, что «для построения изображения правильной пирамиды, вписанной в конус, следует: 1) построить изображение конуса; 2) построить изображение правильного многоугольника, вписанного в основание конуса; 3) через вершины построенного многоугольника провести образующие конуса - боковые ребра пирамиды; 4) выделить видимые и невидимые линии изображенных фигур. При этом высота этой правильной пирамиды проходит через центр окружности, описанной около ее основания, и расположена на прямой пересечения биссекторных плоскостей двугранных углов при ее боковых ребрах» [23].

Объем конуса вычисляется по формуле: $V_{\text{конуса}} = \frac{1}{3} \pi \cdot R^2 \cdot h$.

Шар. Сфера.

Определения. «Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не большем данного R (R > 0). Эта точка называется *центром шара*, а данное расстояние R – *радиусом шара*.

Сферой называется множество всех точек пространства, находящихся от данной точки на расстоянии, равном данному R. Данные точка и расстояние R называются соответственно *центром* и *радиусом сферы*.

Радиусом шара называют также всякий отрезок, соединяющий центр шара с точкой шаровой поверхности. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара. Концы любого диаметра шара называются диаметрально противоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара (сферы). Шар – тело вращения, сфера- поверхность вращения.

Сечением шара плоскостью, перпендикулярной его оси вращения / и пересекающей шар, является *круг*, а сечением сферы такой плоскостью - *окружность этого круга*, *центр круга* (*окружности*) есть точка пересечения

секущей плоскости с осью /.

Плоскость, проходящая через центр шара (сферы), называется диаметральной плоскостью шара (сферы). Сечением шара диаметральной плоскостью является круг, радиус которого равен радиусу шара. Такой круг называется большим кругом, а его окружность – большой окружностью, большая окружность является пересечением сферы и ее диаметральной плоскости. Отметим, что если сечение сферы диаметральной плоскостью изображено в виде эллипса, то концы диаметра сферы, перпендикулярного этой плоскости, находятся не на окружности (абрисе), «изображающей» сферу, а внутри круга этой окружности, причем положение концов этого диаметра зависит от формы эллипса» [20].

Необходимо знать, что:

- 1) «если расстояние d от центра шара (сферы) до данной плоскости:
- *меньше* радиуса R шара (сферы), то пересечением шара (сферы) с плоскостью является круг (окружность). *Центром этого круга* (этой окружности) является основание перпендикуляра, проведенного из центра шара (сферы) на данную плоскость, или сам центр шара (сферы), если плоскость проходит через этот центр. Для радиуса r сечения выполняется: $r = \sqrt{R^2 d^2}$;
- *равно* радиусу *R* шара (сферы), то плоскость имеет с шаром (сферой) только одну общую точку и является касательной к сфере в этой точке.
- 2) *если расстояние от центра шара (сферы) до данной плоскости больше* радиуса *R* шара (сферы), то плоскость не имеет с шаром (сферой) общих точек;
- 3) для шара (сферы) выполняются следующие метрические соотношения.
- диаметр шара (сферы), делящий его хорду пополам, перпендикулярен
 этой хорде;
- отрезки всех касательных прямых, проведенных к шару из одной расположенной вне шара точки, равны между собой (они образуют

поверхность конуса с вершиной в данной точке, а точки касания этих прямых - окружность основания этого конуса);

- произведение длин отрезков хорд шара, проходящих через одну и ту
 же внутреннюю точку шара, есть величина постоянная (равная R² а², где
 R радиус шара, а расстояние от центра шара до данной точки);
- если из одной и той же точки вне шара проведены к нему секущая и касательная, то произведение длины отрезка всей секущей на длину отрезка её внешней части равно квадрату длины отрезка касательной (и равно а² R², где R радиус шара, а расстояние от центра шара до данной точки)» [23].

Задача 2. «Сфера радиуса *r* касается двух взаимно перпендикулярных плоскостей. Найдите радиус наименьшей сферы, касающейся этих двух плоскостей и данной сферы» [26].

Решение. Пусть точка А – центр данной сферы радиуса *г*, касающейся двух взаимно перпендикулярных плоскостей, точка В – центр наименьшей сферы, касающейся этих двух плоскостей и данной сферы, С – точка касания этих сфер. Центры А и В принадлежат биссектору данного двугранного угла.

На рисунке 12.3 изображено сечение рассматриваемых сфер и двугранного угла плоскостью, проходящей через центры A и B этих сфер перпендикулярно ребру двугранного угла (М – точка пересечения этого ребра и плоскости сечения).

Если BC = x – длина искомого радиуса, то имеем: AM = $r\sqrt{2}$, BM = $x\sqrt{2}$. Тогда AM – BM = AC + CB или $r\sqrt{2} - x\sqrt{2} = r + x$, откуда: $x(\sqrt{2} + 1) = r(\sqrt{2} - 1)$ $\Rightarrow x = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} r = r(3 - 2\sqrt{2})$. Ответ: $r(3 - 2\sqrt{2})$.

Сфера и три взаимно перпендикулярные плоскости.

Известно, что при решении *задач на комбинации сферы с кубом и прямоугольным параллелепипедом* часто используют определенные соотношения: если сфера радиуса r вписана в трехгранный угол, все плоские углы которого прямые, то для расстояния m от центра сферы до ребра трехгранного угла справедливо: $m = r\sqrt{2}$, а для расстояния d от центра этой сферы до вершины трехгранного угла выполняется: $d = r\sqrt{3}$ » [23].

Рассмотрим решение некоторых задач.

Задача 3. «Сфера радиуса *r* касается каждой из трех попарно перпендикулярных плоскостей. Найдите радиус сферы, касающейся этих трех плоскостей и данной сферы» [26].

Решение. Пусть A – общая точка трех данных плоскостей, точка B - центр сферы ω радиуса r, O и R – соответственно центр и радиус сферы ω_1 , касающейся этих трех плоскостей и сферы ω .

Возможны два случая: 1) сфера ω_1 расположена между сферой ω и точкой A; 2) сфера ω расположена между сферой ω_1 и точкой A.

Случай 1. Пусть С — точка касания сфер. Тогда: $AO = R\sqrt{3}$, $AB = r\sqrt{3}$, OC = R, BC = r. Так как OB = OC + BC = AB - OA, то $r\sqrt{3} - R\sqrt{3} = r + R$ или $R(\sqrt{3} + 1) = r(\sqrt{3} - 1)$, откуда $R = \frac{r(\sqrt{3} - 1)}{\sqrt{3} + 1} = r(2 - \sqrt{3})$.

Случай 2. Пусть K — точка касания сфер. Тогда: AO = $R\sqrt{3}$, AB = $r\sqrt{3}$, OK = R, BK = r. Так как OB = OK + BK = OA — AB, то $R\sqrt{3} - r\sqrt{3} = r + R$ или $R(\sqrt{3}-1) = r(\sqrt{3}+1)$, откуда $R = \frac{r(\sqrt{3}+1)}{\sqrt{3}-1} = r(2+\sqrt{3})$. Ответ: $r(2-\sqrt{3})$; $r(2+\sqrt{3})$.

Задача 4. «Сфера с центром Н радиуса 6 касается всех сторон квадрата ABCD. Чему равно расстояние от центра сферы до плоскости квадрата, если его сторона равна 6» [26].

Рисунок 12.4

Решение. Так как сфера касается всех сторон квадрата ABCD, то ее пересечением с плоскостью квадрата является окружность с центром $O = AC \cap BD$ (рисунок 12.4), вписанная в этот квадрат, при этом $OH \perp (ABC)$. Тогда точками касания сферы со сторонами квадрата являются середины его сторон — точки касания вписанной

в квадрат окружности.

Пусть точка К – середина стороны ВС данного квадрата, значит, К – точка касания сферы с этой стороной.

Так как касательная к окружности перпендикулярна ее радиусу, проведенному в точку касания, то ОК \perp ВС, откуда НК \perp ВС (по теореме о трех перпендикулярах), при этом НК = 6 — радиус сферы, ОК = 3 - радиус окружности сечения сферы. В прямоугольном Δ НОК находим искомое расстояние: ОН = $\sqrt{HK^2 - OK^2} = \sqrt{6^2 - 3^2} = 3\sqrt{3}$. Ответ: $3\sqrt{3}$.

Задача 5. «Сфера с центром Н касается всех сторон правильного треугольника АВС. Чему равен радиус сферы, если расстояние от ее центра до плоскости треугольника равно $2\sqrt{6}$, а сторона треугольника равна 12» [26].

Решение. Пусть АК, ВТ — медианы правильного треугольника АВС (рисунок 12.5); О = АК ∩ ВТ. Так как сфера касается всех сторон правильного треугольника АВС, то ее пересечением с плоскостью этого треугольника является окружность с центром в точке О, вписанная в него, при этом ОН ⊥ (АВС). Значит, точки касания сферы со сторонами треугольника - середины его сторон — точки касания вписанной в треугольник окружности.

Рисунок 12.5

Точка К – середина стороны ВС треугольника АВС и является точкой касания вписанной в него окружности, значит, точкой касания сферы с этой стороной. Поэтому отрезок НК – радиус нашей сферы. Найдем радиус НК.

В прямоугольном Δ КОН с катетами OH = $2\sqrt{6}$ и OK = $2\sqrt{3}$ находим: HK = $\sqrt{OH^2 + OK^2}$ = =

$$\sqrt{(2\sqrt{6})^2 + (2\sqrt{3})^2} = 6.$$
 OTBET: 6.

Задача 6. «Сфера с центром Н касается всех сторон правильного шестиугольника ABCDEF. Чему равен радиус сферы, если расстояние от ее центра до плоскости шестиугольника равно $4\sqrt{6}$, а сторона шестиугольника равна 8» [26].

Решение. Так как сфера касается всех сторон правильного шестиугольника ABCDEF, то ее пересечением с плоскостью этого шестиугольника является окружность с центром О = FC ∩ BE (рисунок 12.6), вписанная в этот шестиугольник, при этом ОН ⊥ (ABC). Тогда точками касания сферы со сторонами шестиугольника являются середины его сторон — точки касания вписанной в шестиугольник окружности.

Рисунок 12.6

Пусть точка К – середина стороны ВС шестиугольника ABCDEF, значит, К – точка касания сферы с этой стороной, а отрезок НК – радиус сферы. Так как ОН = $4\sqrt{6}$ – расстояние от центра сферы до плоскости шестиугольника, ОК = $4\sqrt{3}$ - радиус окружности сечения сферы,

то в прямоугольном Δ НОК находим радиус НК сферы: НК = $\sqrt{OH^2 + OK^2}$ = = $\sqrt{(4\sqrt{6})^2 + (4\sqrt{3})^2}$ = 12. Ответ: 12.

Задача 7. «АВСDA₁B₁C₁D₁ – куб с ребром 12. Сфера с центром 0 касается всех ребер этого куба. Найдите: а) положение центра 0 сферы; б) радиус сферы; в) расстояния от центра сферы до вершины, грани и ребра куба» р₁ [26].

Рисунок 12.7

Решение. Сфера с центром О касается всех ребер куба $ABCDA_1B_1C_1D_1$, поэтому ее пересечением с гранями куба являются равные окружности, вписанные в его грани – равные квадраты (рисунок 12.7). Значит центр О сферы равноудален от всех граней куба, следовательно,

совпадает с его центром -точкой пересечения диагоналей куба.

Пусть точка H — центр окружности пересечения сферы с гранью BCC_1B_1 , M — точка касания этой окружности с ребром BB_1 . Тогда: MH = 6 — радиус этой окружности; OH \perp (B_1BC), OH = $\frac{1}{2}$ AB = 6 — *расстояние от центра О сферы до грани куба*.

Радиус ОМ сферы (М — точка касания сферы с ребром куба, значит, точка сферы) находим в прямоугольном Δ OMH: ОМ = $\sqrt{OH^2 + MH^2} = 1$ = $\sqrt{G^2 + G^2} = 6\sqrt{2}$. Так как ОМ \perp ВВ₁ (по теореме о трех перпендикуляров), то ОМ = $6\sqrt{2}$ — расстояние от центра сферы до ребра куба.

Расстояние *OB* от центра сферы до вершины данного куба равно половине его диагонали BD_1 , то есть равно $\frac{12\sqrt{3}}{2} = 6\sqrt{3}$.

Ответ: центр сферы - центр куба; $6\sqrt{2}$ - радиус сферы; 6 - расстояние от центра сферы до грани куба; $6\sqrt{3}$ - расстояние от центра сферы до вершины куба; $6\sqrt{2}$ – расстояние от центра сферы до ребра куба.

Задача 8. «В куб АВСDА₁В₁С₁D₁ помещены два касающиеся друг друга равных шара. При этом первый шар касается всех граней куба, содержащих

вершину A, второй - всех граней куба, содержащих вершину C. Найдите радиусы этих шаров, если ребро куба равно 17» [26].

Решение. Обозначим: R – радиус данных шаров ω_1 и ω_2 . Пусть точки $T \in AC_1$ и $K \in CA_1$ – их центры; H и M – точки касания данных шаров с гранью ABCD куба (рисунок 12.8), тогда $KM \perp (ABC)$, $TH \perp (ABC)$ (как радиусы, проведенные в точки касания).

Рисунок 12.8

Так как $(AA_1C) \perp (ABC)$ (по признаку перпендикулярности двух плоскостей) и $K \in (AA_1C)$, $T \in (AA_1C)$, то $H \in AC$ и $M \in AC$, где $AC = (AA_1C) \cap (ABC)$. Тогда $AH + HM + MC = AC = 17\sqrt{2}$, при этом MH = KT = 2R (расстояние между центрами данных касающихся шаров).

Ввиду того, что AT = CK = $R\sqrt{3}$, TH = KM = R

, то АН = MC =
$$_{R}\sqrt{2}$$
 . Значит: $2_{R}\sqrt{2}$ + 2_{R} = $_{17}\sqrt{2}$, откуда $_{R}=\frac{17\sqrt{2}}{2(\sqrt{2}+1)}=\frac{17(2-\sqrt{2})}{2}$ = $_{8,5}\cdot(2-\sqrt{2})$. Ответ: $_{8,5}\cdot(2-\sqrt{2})$.

Используемая и рекомендуемая литература

- 1. Атанасян Л.С. Геометрия, 7-9: учеб. для общеобразоват. учрежд. / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. 15-е изд. М.: Просвещение, 2005. 384 с.
- 2. Балаян Э.Н. Репетитор по математике для старшеклассников и поступающих в вузы: задачи трех уровней сложности (типа A, B, C), 1000 задач с решениями, 3000 задач для самостоятельного решения, олимпиадные задачи, тесты для подготовки к ЕГЭ / Э. Н. Балаян. 8-е изд., перераб. и доп. Ростов-на-Дону: Феникс, 2010. 763, [1] с.: ил.; 21 см. (Абитуриент).

- 3. Бахтина Т.П. Математика. Подготовка к централизованному тестированию «с нуля» / Т.П. Бахтина, С.А. Барвенов. 2-е изд. Минск: Издательство «ТетраСистемс», 2011. 288 с.
- 4. Берникова И.К. Математика для гуманитариев [Электронный ресурс]: учеб.-метод. пособие / И.К. Берникова, И.А. Круглова. Омск: Изд-во Ом. гос. ун-та, 2016. 200 с.
- 5. Веременюк В.В. Тренажер по математике для подготовки к централизованному тестированию и экзамену / В.В. Веременюк. 3-е изд. Минск: Тетралит, 2019. 176 с/
- 6. Грес П.В. Математика для бакалавров [Электронный ресурс]: универсальный курс для студентов гуманит. направлений: [учеб. пособие] / П.В. Грес. [Изд. 2-е, перераб. и доп.]. Москва: Логос, 2015. 288 с.: ил.
- 7. Жафяров А.Ж. Профильное обучение математике старшеклассников: учебно-дидактический комплекс / А.Ж. Жафяров. Новосибирск: Сибирское университетское издательство, 2017. 468 с.
- 8. Казиев В.М. Введение в математику [Электронный ресурс]: учеб. пособие / В. М. Казиев. 2-е изд., испр. Москва: ИНТУИТ, 2016. 197 с. (Основы информационных технологий).
- 9. Кытманов А.М. Математика [Электронный ресурс]: адаптационный курс: учеб. пособие / А.М. Кытманов, Е.К. Лейнартас, С.Г. Мысливец. Санкт-Петербург: Лань, 2013. 287 с.: ил. (Учебники для вузов. Специальная литература).
- 10. Лисичкин В. Т. Математика в задачах с решениями: учебное пособие / В.Т. Лисичкин, И.Л. Соловейчик. 7-е изд., стер. Санкт-Петербург: Лань, 2020. 464 с.
- 11. Математика. Адаптационный курс: учеб. пособие / ЗЕНШ при СФУ; сост.: А.М. Кытманов, Е.К. Лейнартас, С.Г. Мысливец. Красноярск ИПК СФУ, 2009. 196 с.

- 12. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10-11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни / Ш.А. Алимов, Ю.М. Колягин и др.- М.: Просвещение, 2015. 463 с.
- 13. Математика [Электронный ресурс]: учебник / М. С. Ананьева [и др.]. Пермь : Пермский гос. гуманит.-пед. ун-т, 2014. 172 с.
- 14. Меняйлов А. И. Математический практикум [Электронный ресурс]: учеб. пособие для вузов / А. И. Меняйлов, М. А. Меняйлова. Москва: Акад. проект, 2016. 191 с. (Gaudeamus).
- 15. Миронова С.В. Практикум по решению задач школьной математики: применение Web-квест технологии [Электронный ресурс]: учеб.-метод. пособие / С.В. Миронова, С.В. Напалков. Изд. 2-е, перераб. Санкт-Петербург: Лань, 2018. 120 с.: ил. (Учебники для вузов. Специальная литература).
- 16. Мордкович А.Г. Алгебра и начала анализа. 10-11 кл.: учеб. для общеобразоват. учреждений / А.Г. Мордкович. 2-е изд. М.:: Мнемозима, 2001. 335 с.
- 17. Потоскуев Е.В. В единстве логической и графической культуры залог решения геометрических задач / Е.В. Потоскуев // Математическое образование. 2012. №1(61). С. 30-40.
- 18. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики. М.: Дрофа, 2003-2012.
- 19. Потоскуев Е.В., Звавич Л.И. Геометрия. 10 кл.: задачник для общеобразовательных учреждений с углубленным и профильным изучением математики. М.: Дрофа, 2003-2012.
- 20. Потоскуев Е. В., Звавич Л. И. Геометрия. 11 кл.: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики. М.: Дрофа, 2003-2012.

- 21. Потоскуев Е.В., Звавич Л.И. Геометрия. 11 кл.: задачник для общеобразовательных учреждений с углубленным и профильным изучением математики. М.: Дрофа, 2003-2012.
- 22. Потоскуев Е.В. Методическое пособие к учебнику Е.В. Потоскуева, Л.И. Звавича «Геометрия. 10 класс» / Е.В. Потоскуев, Л.И. Звавич, Л.Я. Шляпочник. М.: Дрофа, 2004. 224 с.
- 23. Потоскуев Е.В. Методическое пособие к учебнику Е.В. Потоскуева, Л.И. Звавича «Геометрия. 11 класс» / Е.В. Потоскуев, Л.И. Звавич, Л.Я. Шляпочник. М.: Дрофа, 2005. 220 с.
- 24. Потоскуев Е.В., Звавич Л.И. Математика. Алгебра и начала математического анализа, геометрия. Геометрия. 10 кл. Углублённый уровень. Учебник. М.: Дрофа, 2014.
- 25. Потоскуев Е.В., Звавич Л.И. Математика. Алгебра и начала математического анализа, геометрия. Геометрия. 10 кл. Углублённый уровень. Задачник. М.: Дрофа, 2014.
- 26. Потоскуев Е.В., Звавич Л.И. Геометрия. 11 кл.: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики. М.: Дрофа, 2014.
- 27. Потоскуев Е.В., Звавич Л.И. Геометрия. 11 кл.: задачник для общеобразовательных учреждений с углубленным и профильным изучением математики. М.: Дрофа, 2014.
- 28. Решение задач по математике. Адаптивный курс для студентов технических вузов: учебное пособие / В.В. Гарбарук, В.И. Родин, И.М. Соловьева, М.А. Шварц. 2-е изд., стер. Санкт-Петербург: Лань, 2018. 688 с.
- 29. Симонов А.Я. Система тренировочных задач и упражнений по математике / А.Я. Симонов, Д.С. Бакаев, А.Г. Эпельман и др. М.: Просвещение, 1991. 208 с.

- 30. Стойлова Л.П. Теоретические основы начального курса математики: учебн. пос. М.: Издат. центр «АКадемия», 2014. 272 с.
- 31. Турецкий В. Я. Математика и информатика: учеб. пособие для студ. вузов, обуч. по гуманит. направлениям и спец./ В.Я. Турецкий. 3-е изд., перераб. и доп. Москва: ИНФРА-М, 2010. 558 с. (Высшее образование). Библиогр.: с. 557-558.
- 32. Федеральный институт педагогических измерений. [Электронный ресурс]. Режим доступа: http://fipi.ru/.
- 33. Шипачев В. С. Начала высшей математики [Электронный ресурс]: учеб. пособие / В.С. Шипачев. Изд. 5-е, стер. Санкт-Петербург: Лань, 2013. 382 с. (Учебники для вузов. Специальная литература).
- 34. Элементарная математика в помощь высшей [Электронный ресурс]: учеб. пособие / сост. И. К. Берникова, И. А. Круглова. Омск: Изд-во Ом. гос. унта, 2016. 118 с.
- 35. Элементарная математика: Арифметика. Алгебра. Тригонометрия [Электронный ресурс]: учеб. пособие / авт.-сост. В. П. Краснощекова [и др.]; Пермский гос. гуманит.-пед. ун-т. Пермь: ПГГПУ, 2014. 131 с.
- 36. Ященко И.В. ОГЭ 2017. Математика 9 класс. 3 модуля. Основной государственный экзамен. 30 вариантов типовых тестовых заданий / И.Р. Высоцкий, Л.О. Рослова, Л.В. Кузнецова и др.; под ред. И.В. Ященко. М.: Издательство «Экзамен», МЦНМО, 2017. 167 с.