Определение 1. Пусть (a_n) — любая последовательность чисел. Формальное выражение $a_1+a_2+a_3+\ldots=\sum\limits_{n=1}^{+\infty}a_n$ называют pядом. Число $s_n=a_1+a_2+\cdots+a_n$ называют n-й частичной суммой ряда. Говорят, что ряд $\sum\limits_{n=1}^{+\infty}a_n$ сходится, если существует конечный предел $\lim\limits_{n\to+\infty}s_n$, и тогда этот предел называют суммой pядa; иначе говорят, что ряд pacxodumcs.

Задача 1 $^{\varnothing}$ **.** Какие из следующих рядов сходятся? Найдите их суммы.

а)
$$\sum_{n=1}^{+\infty} (-1)^n$$
; б) $\sum_{n=1}^{+\infty} \frac{1}{q^n}$, $q \in \mathbb{R}$, $q \neq 0$; в) (гармонический ряд) $\sum_{n=1}^{+\infty} \frac{1}{n}$; г) $\sum_{n=1}^{+\infty} \frac{n}{2^n}$; д)* $\sum_{n=1}^{+\infty} \frac{n^2}{2^n}$;

e)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
; **ж**) $\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}$; **3)*** $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)...(n+k)}$.

Задача 2°. **а)** Докажите, что если ряд $\sum_{n=1}^{+\infty} a_n$ сходится, то $\lim_{n\to+\infty} a_n = 0$. **б)** Верно ли обратное?

в) (Критерий Коши сходимости ряда.) Докажите, что ряд $\sum_{n=1}^{+\infty} a_n$ сходится тогда и только тогда, когда для любого $\varepsilon > 0$ существует такое N, что из $n \geqslant m > N$ (где $n, m \in \mathbb{N}$) следует $|a_m + a_{m+1} + \dots + a_n| < \varepsilon$.

Задача 3. Пусть ряд $\sum_{n=1}^{+\infty} a_n$ расходится, но $\lim_{n\to+\infty} a_n=0$. Верно ли, что $\lim_{n\to+\infty} s_n=\infty$?

Задача 4. Верно ли, что если ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся, то сходится и ряд $\sum_{n=1}^{+\infty} a_n b_n$?

Задача 5. Сходится ли ряд $\sum_{n=1}^{+\infty} \frac{a_n}{n}$, где $a_n=1$, если в десятичной записи числа n нет цифры 9, и $a_n=0$ в противном случае?

Задача 6°. Пусть $a_n \geqslant 0$ при $n \in \mathbb{N}$. **a)** Докажите, что если $\sum_{n=1}^{+\infty} a_n$ сходится, то $\sum_{n=1}^{+\infty} a_n^2$ сходится.

б) Верно ли обратное?

Задача 7 лусть $a_n \geqslant 0$ при всех $n \in \mathbb{N}$ и $\sigma \colon \mathbb{N} \to \mathbb{N}$ — биекция (перестановка натурального ряда). Тогда $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} a_{\sigma(n)}$ (то есть, ряд слева от знака равенства сходится тогда и только тогда, когда и ряд справа, причём их суммы равны).

Задача 8*. Пусть p_n-n -е простое число, $n\in\mathbb{N}$.

а) Докажите, что $\lim_{n \to +\infty} \left(\frac{1}{1 - 1/p_1^2} \cdot \ldots \cdot \frac{1}{1 - 1/p_n^2} \right) = \sum_{n=1}^{+\infty} \frac{1}{n^2}.$

б) Существует ли предел $\lim_{n \to +\infty} \left(\frac{1}{1-1/p_1} \cdot \ldots \cdot \frac{1}{1-1/p_n} \right)$? **в)** Сходится ли ряд $\sum_{n=1}^{+\infty} \frac{1}{p_n}$?

Задача 9*. а) Пусть γ_k — сумма ряда $\sum\limits_{n=2}^{+\infty} \frac{1}{n^k}$. Найдите сумму $\sum\limits_{k=2}^{+\infty} \gamma_k$.

б) (Эйлер.) Пусть A — множество всех целых чисел, представимых в виде n^k , где n,k — целые числа, большие 1. Найдите сумму $\sum_{a\in A}\frac{1}{a-1}$.

1 a	1 6	1 B	1 г	1 Д	1 e	1 ж	1 3	2 a	2 6	2 B	3	4	5	6 a	6 6	7	8 a	8	8 B	9 a	9 6