Elec 374 MiniSRC Instruction Set Spec.

Processor State

PC<31..0>: 32-bit Program Counter (PC) IR<31..0>: 32-bit Instruction Register (IR)

R[0..15]<31..0>: Sixteen 32-bit registers named R[0] through R[15]

R[15]<31..0>: Stack Pointer (SP)

R[14]<31..0]: Return Address Register (RA)

R[10..13]<31..0>: Four Argument Registers, named A[0] through A[3] R[8..9]<31..0>: Two Return Value Registers, named V[0] and V[1]

HI<31..0>: 32-bit HI Register dedicated to keep the high-order word of a Multiplication

product, or the Remainder of a Division operation

LO<31..0>: 32-bit LO Register dedicated to keep the low-order word of a Multiplication

product, or the Quotient of a Division operation

Memory State

Mem[0..511]<31..0>: 512 words (32 bits per word) of memory

MDR<31..0>: 32-bit memory data register MAR<31..0>: 32-bit memory address register

I/O State

In.Port<31..0>: 32-bit input port
Out.Port<31..0>: 32-bit output port
Run.Out: Run/halt indicator

Stop.ln: Stop signal Reset.ln: Reset signal

Instructions:

 $The \ instructions \ (with \ their \ op\ -code \ patterns \ shown \ in \ parentheses) \ perform \ the \ following \ operations:$

Notation: x: 0 or 1 -: unused

Load and Store Instructions

1(a): ld, ldi, st

		Assembly language		
Load direct (00000xxxx00000xxxxxxxxxxxxxxxxxxxxxxx	R[Ra] M[C (sign-extended)] Direct addressing, Rb = R0	ld	Ra, C	
Load indexed (00000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] ← M[R[Rb] + C (sign-extended)] Indexed addressing, Rb ≠ R0	ld	Ra, C(Rb)	
	If C = 0 → Register Indirect addr	essing		
Load immediate (00001xxxx00000xxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] C (sign-extended) Immediate addressing, Rb = R0		Ra, C	
(00001xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] ← R[Rb] + C (sign-extended) Immediate addressing, Rb ≠ R0	ldi	Ra, C(Rb)	
	If C = 0 → instruction acts like a simple register transfer If C ≠ 0 and Ra = Rb → Increment/decrement instruction			
Store direct (00010xxxx00000xxxxxxxxxxxxxxxxxxxxxxxx	M[C (sign-extended)] ← R[Ra] Direct addressing, Rb = R0	st	C, Ra	
Store indexed (00010xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	M[R[Rb] + C (sign-extended)] ← R[Ra] Indexed addressing, Rb ≠ R0 If C = 0 → Register Indirect addressi		C(Rb), Ra	
1(b): ldr, str				
Load relative (00011xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] ← M[PC + C (sign-extended)] Relative addressing	ldr	Ra, C	
Store relative (00100xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	M[PC + C (sign-extended)] ← R[Ra] Relative addressing	str	C, Ra	
Arithmetic and Logical Instructions 2(a): add, sub, and, or, shr, shl, ror, rol				
Add (00101xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)	$R[Ra] \leftarrow R[Rb] + R[Rc]$	add	Ra, Rb, Rc	

Sub (00110xxxxxxxxxxxxx))	$R[Ra] \leftarrow R[Rb] - R[Rc]$	sub	Ra, Rb, Rc
AND (00111xxxxxxxxxxxxxxxxxxxxxxxxxxxx)	$R[Ra] \leftarrow R[Rb] \land R[Rc]$	and	Ra, Rb, Rc
OR (01000xxxxxxxxxxxxxx)	$R[Ra] \leftarrow R[Rb]_{V} R[Rc]$	or	Ra, Rb, Rc
Shift right (01001xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)	Shift R[Rb] right into R[Ra] by count in R[Rc]	shr	Ra, Rb, Rc
Shift left (01010xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)	Shift R[Rb] left into R[Ra] by count in R[Rc]	shl	Ra, Rb, Rc
Rotate right (01011xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)	Rotate R[Rb] right into R[Ra] by count in R[Rc]	ror	Ra, Rb, Rc
Rotate left (01100xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)	Rotate R[Rb] left into R[Ra] by count in R[Rc]	rol	Ra, Rb, Rc
2(b): addi, andi, ori			
Add immediate (01101xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] ← R[Rb] + C (sign-extended) Immediate addressing If C = 0 → instruction acts like a simple reg If C ≠ 0 and Ra = Rb → Increment/decrement Similar to Idi, however Rb can be a	gister tra ent instr	uction
AND immediate (01110xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] ← R[Rb] ∧ C (sign-extended) Immediate addressing	andi	Ra, Rb, C
OR immediate (01111xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	R[Ra] ← R[Rb] _v C (sign-extended) Immediate addressing	ori	Ra, Rb, C
2(c): mul, div, neg, not			
Multiply (10000xxxxxxxxx)	HI, LO \leftarrow R[Ra] × R[Rb]	mul	Ra, Rb
Divide (10001xxxxxxxx)	HI, LO ← R[Ra] ÷ R[Rb]	div	Ra, Rb

Negate (10010xxxxxxxxx		← - R[Rb]		neg	Ra, Rb		
NOT (10011xxxxxxxxx		← R[Rb]		not	Ra, Rb		
Conditional Branch Instr brzr, brnz, brmi, brpl	<u>uctions</u>						
Branch (10100xxxxxxxx		R[Rb]	if R[Ra] meets the co	ndition			
	"branch if zero" "branch if nonzero" "branch if positive" "branch if negative"	C2 = 01 C2 = 10		brzr brnz brpl brmi	Ra, Rb Ra, Rb Ra, Rb Ra, Rb		
Jump Instructions jr, jal							
jr (10101xxxx		• R[Ra] • Ra = R14, it is fo	or procedure return	jr	Ra		
jal (10110xxxx		← PC + 4 R[Ra]		jal	Ra		
Input/Output and MFHI/MFLO Instructions in, out, mfhi, mflo							
Input (10111xxxx		← In.Port		in	Ra		
Output (11000xxxx		ort ← R[Ra]		out	Ra		
Move from HI (11001xxxx	R[Ra]	← ні		mfhi	Ra		
Move from LO	R[Ra]	← LO		mflo	Ra		

(11010xxxx-----)

Miscellaneous Instructions nop, halt No-operation Do nothing nop (11011-----) Halt Halt the control stepping process halt (11100------)