Bitwise Operations

- Bitwise operations in high-level languages are applied to integers
- Java has three primary sizes for signed integers
- Two types of Bitwise Operations
 - Boolean based operations
 - Shift-based operations
- Boolean-based Operations:
 - Complement: s1 = ~ t1
 And: s1 = t1 & t2
 - Or: s1 = t1 | t2
 - Xor: $s1 = t1 ^ t2$
- Shift-based Operations:
 - Signed Left Shift s1 = t1 << 2
 Signed Right Shift s1 = t1 >> 2
 - Unsigned Left Shift s1 = t1 <<< t2
 - Unsigned Right Shift
 \$\sigma 1 = \tau 1 \times 2

- short (16 bit chunks)
- int (32 bit chunks)
- long (64 bit chunks)

```
nor $s1, $t1, $zero # s1 = ~ ( t1 | 0 )
and $s1, $t1, $t2
or $s1, $t1, $t2
xor $s1, $t1, $t2
```

sll \$s1, \$t1, 2 # Shift Left Logical
sra \$s1, \$t1, 2 # Shift Right Arithmetic

srl \$s1, \$t1, 2 # Shift Right Logical

Boolean-based Bitwise Operations

Let's assume 4-bit chunks:

s1 = t1 & t2 and \$s1, \$t1, \$t2 And:

o Xor:

Complement: s1 = ~t1 nor \$s1, \$t1, \$zero

Or: $s1 = t1 \mid t2$ or \$s1, \$t1, \$t2

s1 = t1 ^ t2 xor \$s1, \$t1, \$t2

А	В	nor	&	I	٨
0	0	1	0	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	0	1	1	0

Shift-based Operations

Foreshadow:

- Integers are encoded in 2's complement
- In such numbers, the MSB is represents the sign
- 1 -> a negative number

- Java and MIPS supported:
 - Shift Left Logical
 - Shift Right Logical
 - Shift Right Arithmetic
 - Shift Left Logical Variable
 - Shift Right Logical Variable s1 = t1 >>> t2
 - Shift Right Arithmetic Variable s1 = t1 >> t2

- s1 = t1 << 2
- s1 = t1 >>> 2
- s1 = t1 >> 2
- s1 = t1 << t2

- sll \$s1, \$t1, 2
- srl \$s1, \$t1, 2
- sra \$s1, \$t1, 2
- sllv \$s1, \$t1, \$t2
- srlv \$s1, \$t1, \$t2
- srav \$s1, \$t1, \$t2

Let's Assume 4-bits and a shift of "1"

shift left logical

shift right logical

shift right arithmetic

Additional Shift-based Operations

- Rotates or Circular Shifts
 - Rotate Left Logical

 - Rotate Right Logical ror \$s1, \$t1, 2
- rol \$s1, \$t1, 2
- Typically, not supported in high-level languages
- Let's Assume 4-bits and a shift of "1"

sll \$at, \$t1, 30 or \$s1, \$s1, \$at

Repositioning Fields within a Register

- Consider a register (16 bits) containing information
- Consider extracting a subrange of bits

