

Introduction to machine learning

TANG Gen

Outline

- What is machine learning?
- Unsupervised learning
- Supervised learning
 - GLM
 - Naive Bayes
 - Decision trees and forests
- Dimension reduction
- Statistics vs. machine learning

/A simple description

/Formalized definition

- Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed
 - According to the types of data: unsupervised and supervised (semi-supervised)
 - According to the purpose: cluster, regression and classification

/Supervised vs. unsupervised

- Supervised learning: Given (x_i, y_i) , i = 1, ..., n, learn a function $f: X \to Y$.
 - Categorical Y: classification
 - Continuous Y: regression
- Unsupervised learning: Given only (x_i) , i = 1, ..., n, can we infer the underlying structure of X?

/Overfitting

linear model:

$$a=w_0^{}+w_1^{}{}^*F$$

/Cross-validation

- In order to overcome the problems of overfitting, we use cross validation technique to do model selection
 - The main idea is to divide data into two parts: training set and test set;
 - We use training set to estimate parameters of model and then use test set to estimate the quality of model

/Clustering

- Utility of unsupervised algorithms:
 - Raw data cheap. Labeled data expensive
 - Save memory/computation
 - Reduce noise in high-dimensional data
 - Useful in exploratory data analysis
 - Often a pre-processing step for supervised learning

Unsupervised learning

/Clustering

Unsupervised learning

/Clustering

K-means, K=2

Spectral clustering

/Generalized linear models

- GLMs are the most used algorithms in real world
- Usually they are used to binary classification or linear regression
 - Logistic regression (Kernel regression)
 - Support vector machine
 - Lasso and ridge regression (overcome overfitting of linear regression)
 - Streaming regression

/Generalized linear model

/Naive Bayes

- Naive Bayes is a probabilistic model
- It is typically used for document classification

/Decision trees and forests

- Decision trees and forests are popular methods for the machine learning tasks of classification and regression
- Decision trees are widely used since they are easy to interpret

/Decision trees and forests

- Forests is an ensemble of learning algorithm which creates a model composed of a set of decision trees
- Forests' algorithms are very powerful to predict, but not easy to interpret

Dimension reduction /PCA

- Principal component analysis
- Data visualization or dimension reduction

original data space

Dimension reduction /SVD

- Singular value decomposition
- Noise reduction or feature selection

Statistics vs. machine learning

/Larry wasserman's blog

Statistics	Machine learning
Estimation	Learning
Classifier	Hypothesis
Data point	Example/Instance
Regression	Supervised learning
Classification	Supervised learning
Covariate	Feature
Response	Label

And more important: Statisticians use R and machine learners use Python

Tips for MLIib

- All the algorithms that we discussed above are all included in MLlib
- Pay attention to the parallelism level of RDD passed to MLlib's algorithm. It can largely influence the computation speed
- Pay attention to shuffle volume which could to too large for a cluster
- If it is possible, put the data in memory which can accelerate the speed

Case studies

/MLlib in real world

- Collaborative filtering (ALS) for music recommendation
- Show a progression of code rewrites, converting a Hadoop-based app into efficient use of Spark

