Total No	o. of Questions : 8]	SEAT No. :
P148	1 [5460] ₌ 157	[Total No. of Pages : 2
	T.E. (E & TC)	
	ANTENNA & WAVE PROPA	GATION
	(2012 Pattern) (Semester - II) (E	
	(2012 i attern) (Semester - II) (E	nu Schiester)
Time: 2	½ Hours]	[Max. Marks : 70
Instruct	ions to the candidates:	
1)	Answer any one questions out of Q. NO. 1 or 2	2, Q. No. 3 or 4, Q. No. 5 or 6,
۵)	Q. No. 7 or Q. No. 8.	
2)	Neat diagrams must be drawn wherever necessary	<i>V.</i>
3) 4)	Figures to the right indicate full marks. Assume suitable data, if necessary.	
7)	Assume sutuote uutu, ty necessury.	,
Q1) a)	Explain in detail the sky wave propagation.	What are the frequency range
	is used for sky wave propagation? For	which application sky wave
	propagation is used.	[6]
b)	Define antenna polarization and explain diff	ferent type of polarization with
	relevant diagram.	[6]
c)		_
	and receiving antenna each having gain of	
	the two antennas is 30km and the power ra	•
	10W. Calculate the received power and pa	th loss. [8]
0.0	OR	
Q2) a)	Define and explain the following antenna te	erminologies: [6]
	i) Radiation pattern	Ž.
	ii) Directivity of antenna	
1. \	iii) Halh power beam width	0 - 1 - 10 - 110 0
b)		
	and power gain of 12 dB. Determine antenn	a efficiency and its directivity.
		141

Q3) a) Derive power density and radiation resistance with respect to infinitesimal dipole. [8]

antenna using poynting theorem.

c)

b) Draw current distribution and radiation pattern of 0.5λ and 1.5λ dipole. [4]

State the poynting theorem? Derive expression for power radiated by

c) Find the directivity of half dipole. [4]

[10]

Q4) a) Explain important features of loop antenna. Describe radio direction finding. Draw and explain radiation pattern of 0.5 λ , λ , 1.5 λ length dipole antenna. b) What is the total power radiated by a small circular loop of radius 0.5m c) carrying a current 10A at 15Mhz? [4] Explain design equations for Yagi Uda antenna. Sketch modern version **Q5)** a) of 4-element Yagi Uda antenna with dimensions, inter-element spacing. [8] Explain steps to design Binomial array. b) [8] OR **Q6)** a) Draw radiation pattern of Broadside antenna array for 4 element and spacing between elements is $\lambda/4$. Find HPBW for same antenna. [10]b) Derive the expression for directivity of end fire array. [6] What are electromagnetic horn antennas? What are the various types of **Q7)** a) horns? What are their practical applications? Compare these antennas with paraboloidal reflector antennas. [9] Calculate input impedance and half power beam width for a helical b) antenna if directivity 14dB at 2.4Ghz. Assume circumference $C = \lambda$ and spacing $S = \lambda/4$. [9] OR *Q8*) a) Write short note on following with respect to structural detail, radiation pattern, detailed diagrams & features; i) Horn Antenna ii) Turnstile Antenna Patch Microstrip Antenna Explain V antenna with its structure, working, application, advantages & b) disadvantages. Compare V antenna with Rhombic antenna. [6] £ 22, 10, 130 mg