Laboratorium 6 Równania różniczkowe zwyczajne - metody numeryczne

1. Rozważmy następujące równanie różniczkowe:

$$\frac{dx}{dt} = f(t) = -2t^3 + 12t^2 - 20t + 8.5.$$

- a) Znajdź analityczne rozwiązanie równania dla warunku początkowego x(0) = 1.
- b) Używając metody Eulera rozwiąż równanie różniczkowe na przedziale [0,4] dla kroku całkowania h = 0.5. Uzupełnij poniższą tabelę:

t	X _{true}	X _{Euler}	Procentowy wzgl. błąd	
			globalny	lokalny
0.0			-	-
0.5				
1.0				
• • •				

Lokalny błąd to różnica między wartością rozwiązania numerycznego w danej chwili czasu a rozwiązaniem dokładnym, pomniejszona o wartość błędu bezwzględnego w poprzednim kroku. Względny błąd lokalny uzyskamy dzieląc lokalny błąd przez wartość dokładną.

- c) Na wykresie porównaj rozwiązanie numeryczne z rozwiązaniem dokładnym.
- d) Porównaj na wykresie błąd lokalny na przedziale [0,4] z wykresem funkcji $0.5f'(t)h^2$
- e) Porównaj na wykresie rozwiązania numeryczne dla h = 0.5 i h = 0.25 z rozwiązaniem dokładnym.
- f) Wykonaj wykres procentowego błędu bezwzględnego dla rozwiązania dla t=5 dla kroków całkowania h z przedziału [0.5, 0.001].