Particle spectrograph

Wave operator and propagator

α				2 r3+r5)	$\frac{(2r_3+r_1)}{(2r_3+r_5)t_1}$		$\frac{-r_5)+t_1}{r_3+r_5)t_1}$
$\mathfrak{r}_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2}(k^2+2k^4)(2r_3+r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_1^{\#1} \dagger^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + \alpha$	$\tau_{1}^{\#2} +^{\alpha}$

luge generators	Multiplicities	1	1	3	3	3	5	16
Source constraints/gauge generators	SO(3) irreps	$t_0^{\#_+^2} == 0$	$t_0^{\#_1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 \mid 5$	Total constraints:

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
	$-\frac{2\bar{i}\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + ^{lphaeta}$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

ı				
$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{6 k^2 r_3}$	0	0	0
	$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

$\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$	0	0	$\frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0
·	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} +^{\alpha\beta}$	$\omega_2^{\#1} +^{lphaeta\chi}$

$f_{1^-}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	1 <u>7</u>	0	$-\frac{1}{3}i\sqrt{2}kt_1$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}$ i k t_1
$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha \beta _{k}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\omega_1^{\#1} \dagger^\alpha$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1}\dagger^{lpha}$	$f_1^{\#2} +^{\alpha}$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{\scriptscriptstyle 0}^{\scriptscriptstyle \#1}\dagger$	$6 k^2 r_3$	0	0	0
$f_{0}^{#1} \dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{ extit{#}1}$ †	0	0	0	$k^2 r_2 - t_1$
			·	

Massive and massless spectra

Massive particle				
Pole residue:	$-\frac{1}{r_2} > 0$			
Polarisations:	1			
Square mass:	$\frac{t_1}{r_2} > 0$			
Spin:	0			
Parity:	Odd			

?	?
	?
?	?

 $-rac{1}{3}t_1\;\omega_{,}^{\alpha\prime}\;\omega_{\kappa\alpha}^{\;\;\;\kappa}-t_1\;\omega_{,\kappa\lambda}^{\;\;\;\kappa}\;\omega_{\kappa\lambda}^{\;\;\;\;\prime}+f^{lphaeta}\;\tau_{lphaeta}+\omega^{lphaeta\chi}\;\sigma_{lphaeta\chi}^{\;\;\;2\,r_3\,\partial_{,}\omega^{\kappa\lambda}_{\;\;\;\kappa}\,\partial^{\prime}\omega_{,\lambda}^{\;\;lpha}$

 $\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} + 2r_3\partial_\alpha\omega_\lambda^{\alpha}$

 $2 r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}$

Quadratic pole	
Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$
Polarisations:	2

Unitarity conditions

 $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$