Introduction

Outline

- Personal introduction
- Introduction to the practical
- Hands-on practical

About me

Computer Science

Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

Research Fellow at Cranfield University - UK

Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker...) Module manager and lecturer in several courses of the MSc in Bioinformatics

Bioinformatician at IASMA - FEM

Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all'Adige – Fondazione Edmund Mach, Trento, Italy

Fondazione Edmund Mach

FEM – San Michele, Trento - Italy

Agricultural Institute

Research and Innovation Centre

Genomics, metabolomics wet labs on fruits (apple, grape, small fruits,...)

Bioinformatics and computational biology

Bioinformatics @FEM (UBC)

- Genomics
 - Assembly and annotation of complex genomes (plants, insects, etc.)
 - Development of SNP Chips for genetic screening
 - > Resequencing of genomes
- Metagenomics
 - > Targeted metagenomic data
 - > Feature selection algorithms
 - Algorithms for strain-level identification from un-targeted metagenomics
- Transcriptomics
 - > RNA-seq data analysis, gene and pathway enrichment
 - > Data integration and compilation of expression atlases
- Metabolomics
 - > Data analysis pipelines for targeted and untargeted data
 - Methods for MS imaging
- Statistical data analysis
 - Integration of –omic data and analysis of correlation networks

Improving the Apple Assembly with SOLiD&Illumina data

Spatial relationships with long jump libraries (5K, 7.5K and 10K mate pairs)

Improving the Apple Assembly with SOLiD&Illumina data

Spatial relationships with long jump libraries (5K, 7.5K and 10K mate pairs)

SNP-Chips development for GWAS

20K SNP Illumina Infinium II Array (reseq of 16 Apple cultivars, Illumina 30x) 487K SNP Affymetrix Axiom Array (reseq of 63 Apple cultivars, Illumina 20-30x)

- 1. Reads alignment and filtering
- 2. SNP calling
- 3. Identification of most reliable SNPs
- 4. Selection of (20K) 487K target SNPs

Several Terabytes of data produced!!!!

Peach, pear and walnut done too!

genotypes

SNP-Chips development for GWAS

20K SNP Illumina Infinium II Array (reseq of 16 Apple cultivars, Illumina 30x) 487K SNP Affymetrix Axiom Array (reseq of 63 Apple cultivars, Illumina 20-30x)

Genome assembly of DH of Pear and Apple

Input data:

Illumina $^{\circ}60x - 100x$ PE information + (mate pairs for Apple)

Pacific Biosciences ~ 30x + 30x (35x only for Apple)

Bionano optical maps: ~ 600x (for both)

Genetic maps: integrated genetic map from 21 mapping populations (Apple only)

Output result (for Apple, Pear is in progress):

Chromosome scale assembly

Contigs: 2150 for a total of 625Mb

N50 Contigs (hybrid dbg2olc): ~ 620Kbps

280 Scaffolds, for an N50 5,6Mb

17 chromosomes + IgO unanchored sequences

[Daccord et al, Nature Genetics, 49, 2017]

RNAseq data analysis with Pathway Inspector

https://pathwayinspector.fmach.it

RNAseq data analysis with Pathway Inspector

Opportunities @FEM

MSc External thesis

Are you interested in a bioinformatics project in NGS data analysis, RNA Seq, data integration?

Come and talk to me or email me at:

luca.bianco@fmach.it

Back to business now!

In this practical you will

- 1. Install Python 3.x (and pip)
- 2. Install Visual Studio Code
- 3. Get familiar with the Python console
- 4. Start using Visual Studio Code and advanced features (like debugging)
- 5. End the session with some exercises

Console VS. Integrated Development Environment (IDE)

```
biancol@bluhp:~$ python3
Python 3.5.2 (default, Aug 18 2017, 17:48:00)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
```


Resources

All material regarding practicals can be found here:

http://sciprolab1.readthedocs.io

Any questions?

If not, go to:

http://sciprolab1.readthedocs.io/en/latest/introduction.html

