{Problem 1}

humidity_relative=0.40 temp_dry=38[C] P=14.696*convert(psia, kPa)

enthalpy=enthalpy(AirH2O,P=P,T=temp_dry,R=humidity_relative) {Enthalpy: enthalpy = 81.17 kJ/kg} temp_wetBulb=wetbulb(AirH2O,P=P,T=temp_dry,R=humidity_relative) {Wetbulb Temperature: temp_wetBulb = 26.27 C} temp_dewPoint=dewpoint(AirH2O,P=P,T=temp_dry,R=humidity_relative) {Dewpoint Temperature: temp_dewPoint = 22.05 C}

volume_specific=volume(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Specific Volume: volume_specific = 0.9051 m^3/kg} humidity_specific=humrat(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Specific Humidity: humidity_specific = 0.01672}

SOLUTION

Unit Settings: SI C kPa kJ mass deg

enthalpy = 81.17 humidity_{specific} = 0.01672 temp_{dewPoint} = 22.05 temp_{wetBulb} = 26.27 humidity_{relative} = 0.4 P = 101.3 [kPa] temp_{dry} = 38 [C] volume_{specific} = 0.9051

4 potential unit problems were detected.

{Probelm 3E}

\$UNITS ENGLISH

P=1*convert(atm,psi) temp_dry=80[F] humidity_relative=0.60

humidity_absolute=humrat(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Absolute Humidity: humidity_absolute = 0.01316 } enthalpy=enthalpy(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Enthalpy: enthalpy = 33.61 BTU/lb_m} volume=volume(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Specific Volume: volume = 13.89 ft^3/lm_m} temp_wetBulb=wetbulb(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Wetbulb Temperature: temp_wetBulb = 69.65F} temp_dewPoint=dewpoint(*AirH2O*,*P*=P,*T*=temp_dry,*R*=humidity_relative) {Dewpoint Temperature: temp_dewPoint = 64.88 F}

SOLUTION

Unit Settings: Eng F psia mass deg

enthalpy = $33.61 [Btu/lb_m]$ humidityrelative = 0.6tempdewPoint = 64.88 [F]tempwetBulb = 69.65 [F] humidity_{absolute} = 0.01316 P = 14.7 [psi] temp_{dry} = 80 [F] volume = 13.89 [ft³/lb_m]

No unit problems were detected.

EES suggested units (shown in purple) for enthalpy temp_dewPoint temp_wetBulb volume .

{Problem 3E}

```
$UnitSystem ENGLISH
Vdot air=100[ft^3/min]
T 1=80[F]
P=1*convert(atm,psi)
humidity relative1=0.70
T 2=40[F]
T_3=60[F]
humidity_absolute1=humrat(AirH2O,P=P,T=T_1,R=humidity_relative1)
volume1=volume(AirH2O,P=P,T=T_1,R=humidity_relative1)
enthalpy1=enthalpy(AirH2O,P=P,T=T_1,R=humidity_relative1)
T_dewPoint1=dewpoint(AirH2O,P=P,T=T_1,R=humidity_relative1) {Dew Point in the Cold-Water Chiller: T_dewPoint1 =
69.34 F}
mdot air=vdot air/volume1 {Mass Flow Rate of the Air: mdot air = 7.172 lb m/min}
humidity_relative_condensate=1.0 {Humidity of WATER condensate is 1.0}
humidity_absolute_condensate=humrat(AirH2O,P=P,T=T_2,R=humidity_relative_condensate)
volume condensate=volume(Water,P=P,T=T 2)
enthalpy condensate=enthalpy(AirH2O,P=P,T=T 2,R=humidity relative condensate)
mdot condensate=mdot air*(humidity absolute1-humidity absolute condensate) {Mass Flow Rate of Condensate:
mdot condensate = 0.07326 lb m/min}
vdot condensate=mdot condensate*volume condensate {Volumetric Flow Rate of Condensate: vdot condensate =
0.001174 ft^3/min}
Qdot chilledWaterCoil=mdot air*(enthalpy1-enthalpy condensate) {Rate of Heat Transfer to the Chilled Water Cooler:
qdot chilled = 149.8 BTU/min}
```

SOLUTION

Unit Settings: Eng F psia mass deg

```
enthalpy1 = 36.07 [Btu/lb<sub>m</sub>]
humidity<sub>absolute1</sub> = 0.0154
humidity<sub>relative1</sub> = 0.7
mdotair = 7.172 [lb<sub>m</sub>/min]
P = 14.7 [psi]
T<sub>1</sub> = 80 [F]
Vdotair = 100 [ft<sup>3</sup>/min]
volume1 = 13.94 [ft<sup>3</sup>/lb<sub>m</sub>]
```

```
enthalpycondensate = 15.19 [Btu/lb_m] humidityabsolute,condensate = 0.00519 humidityrelative,condensate = 1 [Btu/m] mdotcondensate = 0.07326 [Btu/m] QdotchilledWaterCoil = 149.8 [Btu/m] T<sub>2</sub> = 40 [F] TdewPoint1 = 69.34 [F] vdotcondensate = 0.001174 [ft^3/m] volumecondensate = 0.01602 [ft^3/lb_m]
```

No unit problems were detected.

EES suggested units (shown in purple) for enthalpy1 enthalpy condensate mdot air mdot condensate Qdot chilledWaterCoil T dewPoint1

```
2/27/23 MAE 3524 William Van Dyke
(a) V=600 CFM V=600 cfm D Pry Temp = 80F = D V = 13.4

Wet Bulb = 10F W= reld
     \dot{n} = \frac{V}{V} = \frac{600}{12.9} = 43.165
                                        moda = 43,165 160
                                \vec{m} = \frac{\vec{V}}{\vec{V}} = \frac{1200}{133} = 90.226 \frac{16m}{min}
                                     mex= 90.226 16m
c) \dot{m}_{m} = 90.226 + 43165 = 133.391 \frac{16m}{m:n}
\dot{h}_{m} = \frac{34(43.165) + 26(96.226)}{133.391} = 24.53 \frac{870}{16m}
        WB = 56 ° F
        HR = 0.0074
m = 133.391 (box)
e) Üsens = mt = 133.391(18-24.53) Qsens = -52262. BTU
     QLatent = 183.391 (24.53-21)(69) $ [QLabort = 2825 2 1/2]
     Mond = 12m ( 133.3
    micord = 133.391 (0.0135-0.0039)
    moond = 76.834 16
```


CALLES CONTRACTOR OF THE SECONDARY

{Problem #5}

\$UNITSYSTEM ENGLISH P=14.696[psia] {For Outdoor Air - ODA} v dot oda=600[ft³/min] T oda=80[F] B oda=70[F] h oda=enthalpy(AirH2O,P=P,T=T oda,B=B oda) v_oda=**volume**(**AirH2O**,**P**=P,**T**=T_oda,**B**=B_oda) R oda=**relhum**(**AirH2O**,**P**=P,**T**=T oda,**B**=B oda) HR oda=humrat(AirH2O,P=P,T=T oda,B=B oda) m_dot_oda=v_dot_oda/v_oda {For Return Air - RA} v_dot_ra=1200[ft^3/min] T_ra=65[F] $B_ra=wetbulb(AirH2O,P=P,T=T_ra,R=R_ra)$ h_ra=enthalpy(AirH2O,P=P,T=T_ra,R=R_ra) v ra=volume(AirH2O,P=P,T=T ra,R=R ra) R ra=0.30 \overline{HR} ra=humrat(AirH2O,P=P,T=T ra,R=R ra) m dot ra=v dot ra/v ra {For Mixed Air - ma} m dot ma=m dot oda+m dot ra h_ma=(h_oda*m_dot_oda+h_ra*m_dot_ra)/m_dot_ma HR ma=((HR oda*m dot oda+HR ra*m dot ra)/m dot ma) B ma=wetbulb(AirH2O,P=P,h=h ma,w=HR ma) {For Discharge Air - da} T da=50[F] B da=45[F] h da=enthalpy(AirH2O,P=P,T=T da,B=B da) $R_da=relhum(AirH2O,P=P,T=T_da,B=B_da)$ HR da=humrat(AirH2O,P=P,T=T da,B=B da) m_dot_da=m_dot_ma Q_dot_sens=m_dot_ma*(h_da-h_ma)/convert(min,hr) Q dot latent=m dot ma*(h ma-h ra)/convert(min,hr)

m_dot_cond=m_dot_ma*(HR_oda-HR_ra)*convert(min,hr)

SOLUTION

Unit Settings: Eng F psia mass deg

B _{da} = 45 [F] B _{oda} = 70 [F] HR _{da} = 0.005175 HR _{oda} = 0.01343 h _{da} = 17.59 [Btu/lb _m]	$B_{ma} = 57.08 [F]$ $B_{ra} = 49.37 [F]$ $HR_{ma} = 0.00699$ $HR_{ra} = 0.003906$ $h_{ma} = 24.39 [Btu/lb_m]$
$h_{oda} = 33.91 [Btu/lb_m]$ $\dot{m}_{cond} = 0.02117 [lb_m-hr/min^2]$ $\dot{m}_{ma} = 133.3 [lb_m/min]$ $\dot{m}_{ra} = 90.16 [lb_m/min]$ $\dot{Q}_{latent} = 36442 [Btu/hr]$ $R_{da} = 0.6808$	$h_{ra} = 19.84 [Btu/lb_m]$ $\dot{m}_{da} = 133.3 [lb_m/min]$ $\dot{m}_{oda} = 43.17 [lb_m/min]$ $P = 14.7 [psia]$ $\dot{Q}_{sens} = -54437 [Btu/hr]$ $\dot{Q}_{sens} = 0.6123$
$R_{ra} = 0.3$ $T_{oda} = 80 [F]$ $\dot{v}_{oda} = 600 [ft^3/min]$	$T_{da} = 50 \text{ [F]}$ $T_{ra} = 65 \text{ [F]}$ $\dot{v}_{ra} = 1200 \text{ [ft}^3/\text{min]}$

$$v_{oda} = 13.9 \text{ [ft}^3/\text{lb}_m]$$
 $v_{ra} = 13.31 \text{ [ft}^3/\text{lb}_m]$

No unit problems were detected.

EES suggested units (shown in purple) for B_ma B_ra h_da h_ma h_oda h_ra .