Supplement 1

SPARS A: Width of the pain threshold

Tory Madden and Peter Kamerman 06 Dec 2018

Contents

Question Import and inspect data	1
	2
Data at the level of the individual	3
Bootstrapping procedure	3
Plots	4
Scatter plots	4
Trimean confidence interval plots	6
Data at the level of the group	9
Bootstrapping procedure	9
Plots	
Scatter plots	
Trimean confidence interval plots	
Session information	13

Question

How wide is the pain threshold for participants taking part in the SPARS A trial?

To answer the question, we calculated the *Tukey Trimean* and bootstrapped 95% confidence interval (CI) for each individual, at each stimulus intensity. Next, we plotted these statistics to show the stimulus range over which each individual's CIs included zero on the SPARS (pain threshold).

To get an idea of the width of the stimulus range that included zero on the SPARS at the group level, we calculated the *Tukey trimean* for each individual, at each stimulus intensity, and then calculated the mean and bootstrapped 95% CI for the group at each stimulus intensity. These data were then plotted to show the stimulus range over which the group's CIs included zero (pain threshold).

The selection of the *tukey trimean* as the measure of central tendancy at the individual level was based on the analysis of central tendancy reported in the original description of the SPARS (Supplement_3.pdf). The *Tukey trimean* is defined as the weighted average of the distribution's median and its two quartiles, and is a robust measure of central tendancy that unlike a median, takes the spread of the data into account.

$$T_{mean} = \frac{1}{2}(Q_2 + \frac{Q_1 + Q_3}{2})$$

Where

• $Q_1 = 25^{\text{th}}$ percentile

```
• Q_2 = 50^{\rm th} percentile (median)

• Q_3 = 75^{\rm th} percentile

# Define the tri_mean function

tri_mean <- function(x) {

# Calculate quantiles

q1 <- quantile(x, probs = 0.25, na.rm = TRUE)[[1]]

q2 <- median(x, na.rm = TRUE)

q3 <- quantile(x, probs = 0.75, na.rm = TRUE)[[1]]

# Calculate trimean

tri_mean <- (q2 + ((q1 + q3) / 2)) / 2

# Round to a whole number

tri_mean <- round(tri_mean)

return(tri_mean)

}
```

Note: No inspection of block and stimulus order effects were undertaken because analysis of these factors in the original description of the SPARS revealed no order effects (Supplement_4.pdf).

The experimental protocol called for participants to be exposed to 13 stimuli, evenly spaced at 0.25J intervals over the range 1.00J to 4.00J. Each stimulus intensity was applied 8 times, giving a total of 104 exposures (trials). To prevent learning effects, the 104 trials were randomised across 4 experimental blocks (26 trials per block).

Import and inspect data

```
# Import
data <- read rds('data-cleaned/SPARS A.rds')</pre>
# Inspect
glimpse(data)
## Observations: 1,927
## Variables: 6
## $ PID
               <chr> "ID01", "ID01", "ID01", "ID01", "ID01", "ID01", "...
               ## $ block
## $ trial number <dbl> 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 9...
## $ intensity
               <dbl> 3.00, 2.25, 4.00, 3.25, 2.75, 2.25, 2.75, 4.00, 2...
               <dbl> -40, -25, 10, 2, -10, -25, -20, 10, -25, -50, -25...
## $ rating
data %>%
   select(intensity, rating) %>%
   skim()
## Skim summary statistics
   n obs: 1927
   n variables: 2
##
## -- Variable type:numeric -----
##
    variable missing complete
                                               p25 p50
                                                       p75 p100
                                      sd p0
                            n mean
##
   intensity
                 0
                      1927 1927
                               2.47 0.93
                                          1
                                              1.75 2.5
                                                      3.25
                      1927 1927 -4.45 22.31 -50 -20
##
     rating
                                                  2
```

```
## hist
##
##
```

Data at the level of the individual

Bootstrapping procedure

```
# Nest data in preparation for bootstrapping at each stimulus intensity
data_boot <- data %>%
    group_by(PID, intensity) %>%
    nest()
# Define bootstrap function
boot_tri_mean <- function(d,i){</pre>
    tri_mean(d[i])
# Perform bootstrap
set.seed(123456789)
data_boot %<>%
        mutate(boot = map(.x = data,
                          ~ boot(data = .x$rating,
                                 statistic = boot_tri_mean,
                                 R = 10000, # For small sample size
                                 stype = 'i')))
# Remove NULL bootstrap row 56 (IDO5, only one value = 20)
data_boot <- data_boot[-56, ]</pre>
# Extract CI from boot object
data_boot %<>%
    mutate(boot_ci = map(.x = boot,
                         ~ boot.ci(.x,
                                    type = 'basic')))
# Extract the data, giving original trimean and bootstrapped CI
data_boot %<>%
    mutate(tri_mean = map_dbl(.x = boot_ci,
                            ~ .x$t0),
           lower_ci = map_dbl(.x = boot_ci,
                              ~ .x$basic[[4]]),
           upper_ci = map_dbl(.x = boot_ci,
                              ~ .x$basic[[5]]))
# Delete unwanted columns
data boot %<>%
    select(-data, -boot, -boot_ci)
# Clip CI intervals (SPARS ranges from -50 to 50)
data_boot %<>%
```

Plots

Scatter plots

```
# Plot scatter plot of ratings for each individual at every intensity
ggplot(data = data) +
    aes(x = intensity,
       y = rating,
       fill = intensity,
        colour = intensity) +
    geom_hline(yintercept = 0,
               size = 1) +
    geom_hline(yintercept = 25,
               linetype = 2) +
   geom_hline(yintercept = -25,
               linetype = 2) +
   geom_hline(yintercept = 50,
               linetype = 2) +
   geom hline(yintercept = -50,
               linetype = 2) +
    geom_point(shape = 21,
               size = 4,
               stroke = 0.3) +
    scale_fill_gradient(low = '#CCCCCC', high = '#000000') +
    scale_colour_gradient(low = '#000000', high = '#CCCCCC') +
    scale_y_continuous(limits = c(-50, 50),
                       breaks = c(-50, 0, 50)) +
    scale_x_continuous(breaks = seq(from = 1,
                                    to = 4,
                                    by = 0.25),
                       labels = sprintf('%0.2f', round(seq(from = 1,
                                                      to = 4,
                                                      by = 0.25), 2))) +
   facet_wrap(~ PID, ncol = 4) +
   labs(title = "Individuals: Scatter plots of SPARS ratings at each stimulus intensity",
         subtitle = '- Dashed line: pain threshold\n- Colour gradient: stimulus intensity',
         x = 'Stimulus intensity (J)',
```

Individuals: Scatter plots of SPARS ratings at each stimulus intensity

- Dashed line: pain thresholdColour gradient: stimulus intensity

Trimean confidence interval plots

```
# Plot individual CIs at every intensity
ggplot(data = data_boot) +
    aes(x = intensity,
       fill = fill,
        colour = fill) +
```

```
geom_hline(yintercept = 0,
           size = 1) +
geom_hline(yintercept = -25,
           linetype = 2) +
geom_hline(yintercept = 25,
           linetype = 2) +
geom_hline(yintercept = 50,
           linetype = 2) +
geom_hline(yintercept = -50,
           linetype = 2) +
geom_crossbar(aes(y = tri_mean,
                  ymin = lower_ci,
                  ymax = upper_ci),
              fatten = 0,
              size = 0.3) +
scale_fill_manual(values = c('#0000000', '#CCCCCC')) +
scale_colour_manual(values = c('#CCCCCC', '#000000')) +
scale_y_continuous(limits = c(-50, 50),
                   breaks = c(-50, 0, 50)) +
scale_x_continuous(breaks = seq(from = 1,
                                to = 4,
                                by = 0.25),
                   labels = sprintf('%0.2f', round(seq(from = 1,
                                                  to = 4,
                                                  by = 0.25), 2))) +
facet_wrap(~ PID, ncol = 4) +
labs(title = "Individuals: Crossbar plots of 95% CI of Tukey trimeans for SPARS ratings\nat each st
     subtitle = '- Basic bootstrap 95% CI with 10,000 resamples\n- Dashed line: pain threshold | - 1
     x = 'Stimulus intensity (J)',
     y = 'SPARS rating (-50, 50)') +
theme(legend.position = 'none',
      panel.grid = element_blank(),
      panel.spacing = unit(0.1, 'lines'),
      strip.text = element_text(margin = margin(t = 0.1,
                                                b = 0.1
                                                r = 1,
                                                1 = 1,
                                                 'lines')),
      axis.text.x = element_text(angle = -90))
```

Individuals: Crossbar plots of 95% CI of Tukey trimeans for SPARS ratings at each stimulus intensity

- Basic bootstrap 95% CI with 10,000 resamples
 Dashed line: pain threshold | Black fill: 95% CI includes zero

Data at the level of the group

Bootstrapping procedure

```
# Calculate individual trimeans at each stimulus intensity
data group <- data %>%
   group_by(PID, intensity) %>%
    summarise(tri_mean = tri_mean(rating)) %>%
   ungroup()
# Nest data in preparation for bootstrapping at each stimulus intensity
data_boot_group <- data_group %>%
    group_by(intensity) %>%
   nest()
# Perform bootstrap
set.seed(987654321)
data_boot_group %<>% mutate(boot = map(.x = data,
                                        ~ boot(data = .x$tri mean,
                                               statistic = boot_tri_mean,
                                               R = 10000, # For small sample size
                                               stype = 'i')))
# Extract CI from boot object
data_boot_group %<>% mutate(boot_ci = map(.x = boot,
                                           ~ boot.ci(.x,
                                                     type = 'basic')))
# Extract the data, giving original median and bootstrapped CI
data_boot_group %<>% mutate(tri_mean = map(.x = boot_ci,
                                            ~ .x$t0),
                            lower_ci = map(.x = boot_ci,
                                           ~ .x$basic[[4]]),
                            upper_ci = map(.x = boot_ci,
                                            ~ .x$basic[[5]]))
# Delete unwanted columns
data_boot_group %<>% select(-data, -boot, -boot_ci) %>%
   unnest()
# Clip CI intervals (SPARS ranges from -50 to 50)
data_boot_group %<>%
   mutate(upper_ci = ifelse(upper_ci > 50,
                             yes = 50,
                             no = upper_ci),
           lower ci = ifelse(lower ci < -50,</pre>
                             yes = -50,
                             no = lower ci))
# Add fill column for plot
data boot group %<>%
   mutate(fill = ifelse(upper_ci >= 0 & lower_ci <= 0,</pre>
                         yes = 'inclusive',
```

Plots

Scatter plots

```
# Plot scatter plot of ratings for the group at every intensity
ggplot(data = data_group) +
   aes(x = intensity,
       y = tri_mean,
       fill = intensity,
        colour = intensity) +
   geom_hline(yintercept = 0,
               size = 1) +
   geom_hline(yintercept = -25,
              linetype = 2) +
   geom_hline(yintercept = 25,
              linetype = 2) +
   geom_hline(yintercept = 50,
               linetype = 2) +
   geom_hline(yintercept = -50,
              linetype = 2) +
   geom_point(shape = 21,
               size = 4,
              stroke = 0.3) +
    scale_fill_gradient(low = '#CCCCCC', high = '#000000') +
    scale_colour_gradient(low = '#000000', high = '#CCCCCC') +
    scale_y_continuous(limits = c(-50, 50),
                       breaks = c(-50, 0, 50)) +
    scale_x_continuous(breaks = seq(from = 1,
                                    to = 4,
                                    by = 0.25),
                       labels = sprintf('%0.2f', round(seq(from = 1,
                                                      to = 4,
                                                      by = 0.25), 2))) +
   labs(title = "Group: Scatter plots of SPARS Tukey trimean ratings\nat each stimulus intensity",
         subtitle = '- Dashed line: pain threshold\n- Colour gradient: stimulus intensity',
         x = 'Stimulus intensity (J)',
         y = 'SPARS rating (-50, 50)') +
   theme(legend.position = 'none',
         panel.grid = element_blank())
```

Group: Scatter plots of SPARS Tukey trimean ratings at each stimulus intensity

- Dashed line: pain threshold
- Colour gradient: stimulus intensity

Trimean confidence interval plots

```
geom_hline(yintercept = -50,
           linetype = 2) +
geom_crossbar(aes(y = tri_mean,
                 ymin = lower_ci,
                  ymax = upper_ci,
                  fill = fill,
                  colour = fill),
              fatten = 0,
              size = 0.3) +
scale_fill_manual(values = c('#000000', '#CCCCCC')) +
scale_colour_manual(values = c('#CCCCCC', '#000000')) +
scale_y_continuous(limits = c(-50, 50),
                  breaks = c(-50, 0, 50)) +
scale_x_continuous(breaks = seq(from = 1,
                                to = 4,
                                by = 0.25),
                   labels = sprintf('%0.2f', round(seq(from = 1,
                                                  to = 4,
                                                  by = 0.25), 2))) +
labs(title = "Group: Crossbar plots of 95% CI of Tukey trimeans for SPARS ratings\nat each stimulus
     subtitle = '- Basic bootstrap 95% CI with 10,000 resamples\n- Dashed line: pain threshold | -
     x = 'Stimulus intensity (J)',
     y = 'SPARS rating (-50, 50)') +
theme(legend.position = 'none',
     panel.grid = element_blank())
```

Group: Crossbar plots of 95% CI of Tukey trimeans for SPARS ratings at each stimulus intensity

- Basic bootstrap 95% CI with 10,000 resamples
- Dashed line: pain threshold | Grey fill: 95% CI includes zero

Session information

```
sessionInfo()
```

```
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS 10.14.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
```

```
##
## locale:
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/c/en_GB.UTF-8/en_GB.UTF-8
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                  base
## other attached packages:
## [1] bindrcpp_0.2.2 skimr_1.0.3
                                       boot_1.3-20
                                                       magrittr_1.5
## [5] forcats_0.3.0
                                                       purrr_0.2.5
                       stringr_1.3.1
                                       dplyr_0.7.8
## [9] readr_1.2.1
                       tidyr_0.8.2
                                       tibble_1.4.2
                                                       ggplot2_3.1.0
## [13] tidyverse_1.2.1
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.0
                        cellranger_1.1.0 pillar_1.3.0
                                                          compiler_3.5.1
## [5] plyr_1.8.4
                        bindr_0.1.1
                                          tools_3.5.1
                                                          digest_0.6.18
## [9] lubridate_1.7.4 jsonlite_1.5
                                          evaluate_0.12
                                                          nlme_3.1-137
## [13] gtable 0.2.0
                        lattice_0.20-38 pkgconfig_2.0.2 rlang_0.3.0.1
## [17] cli_1.0.1
                        rstudioapi_0.8
                                         yaml_2.2.0
                                                          haven_2.0.0
## [21] withr_2.1.2.9000 xml2_1.2.0
                                         httr_1.3.1
                                                          knitr 1.20
## [25] hms_0.4.2
                        rprojroot_1.3-2 grid_3.5.1
                                                          tidyselect_0.2.5
## [29] glue_1.3.0
                        R6_2.3.0
                                         readxl_1.1.0
                                                          rmarkdown_1.10
## [33] modelr_0.1.2
                        backports_1.1.2 scales_1.0.0
                                                          htmltools_0.3.6
## [37] rvest 0.3.2
                        assertthat 0.2.0 colorspace 1.3-2 stringi 1.2.4
                        munsell_0.5.0
## [41] lazyeval_0.2.1
                                         broom_0.5.0
                                                          crayon_1.3.4
```