清华大学 大学物理实验 B 报告

IV-2 用波尔共振仪研究阻尼振动与受迫振动 特性

指导助教: 刘梓谊

学生姓名:石洋

学生学号: 2023011406

实验组号: 双一晚 N

实验台号: 13

实验时间: 2024年11月11日

二〇二四年十月

目 录

I	实验目的	3
П	实验仪器	3
Ш	实验原理	3
	阻尼振动运动方程	3
	电机运动时的受迫振动运动方程	3
IV	实验内容及步骤	4
V	数据处理	4
	自由振动的阻尼比 ζ 和固有角频率 ω_0 \ldots	4
	1.1 阻尼比计算	4
	1.2 固有角频率计算	6
	阻尼振动的阻尼比 ζ 和固有角频率 ω_0	7
	2.1 阻尼档 2	7
	2.2 阻尼档 4	8
	幅频特性曲线和相频特性曲线	9
VI	总结与分析	14
	反思	14
附		15
	A 所使用到的 python 代码	15
	3 原始数据记录表与预习报告	17

I 实验目的

- 1. 观测阻尼振动及共振现象,学习测量振动系统基本参数的方法;
- 2. 研究受迫振动的幅频特性和相频特性;
- 3. 研究不同阻尼作用对受迫振动的影响。

II 实验仪器

实验用到的主要仪器:波尔共振仪、手机。

III 实验原理

1 阻尼振动运动方程

对弹簧与撰轮的振动系统而言,设转动惯量为 J , 转角 θ , 阻力矩 $\gamma \frac{d\theta}{dt}$, 弹簧力矩 $-k\theta_0$ 令 $\omega_0=\sqrt{\frac{k}{J}}$, 阻尼系数 $\beta=\frac{\gamma}{2J}$, 可得摆轮运动方程为:

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \omega_0^2 \theta = 0$$

当 $\beta^2 - \omega_0^2 < 0$ 时, 解为

$$\theta(t) = \theta_i \exp(-\beta t) \cos\left(\sqrt{\omega_0^2 - \beta^2 t} + \phi\right)$$

周期

$$T_d = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$$

2 电机运动时的受迫振动运动方程

电机通过连杆 E 策动摆轮, 摇杆 M 转角 $\alpha(t)=\frac{r}{R}\cos\omega t$ 。 令 $\alpha_m=\frac{r}{R}$,得摆轮运动方程:

$$J\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \gamma\frac{\mathrm{d}\theta}{\mathrm{d}t} + k\theta = k\alpha_m\cos\omega t$$

同理,可求得解为

$$\theta_{\text{force}} = \theta_{\text{damp}} + \theta_m \cos(\omega t - \phi_0)$$

其中:

$$\theta_m = \frac{\alpha \omega_0^2}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\beta^2 \omega^2}}, \phi_0 = \arctan\left(\frac{2\beta\omega}{\omega_0^2 - \omega^2}\right)$$

令阻尼比 $\zeta = \frac{\beta}{\omega_0}$, 频率比 $r = \frac{\omega}{\omega_0}$ 故幅频特性和相频特性分别为

$$\theta_m = \frac{\alpha_m}{\sqrt{(1-r^2)^2 + 4\zeta^2 r^2}}, \phi = \arctan\left(\frac{2\zeta r}{1-r^2}\right)$$

IV 实验内容及步骤¹

- (1)调整仪器。打开电源开关,关断电机和闪光灯开关;阻尼开关置于"0"档;将有机玻璃转盘F归零;拨动摆轮偏离平衡位置150。-200。,检查摆轮的自由摆动情况。
- (2) 测量最小阻尼时(阻尼开关置于"0"档)的阻尼比 ζ 和固有角频率 ω_0 。阻尼开关置"摆轮",选择最小阻尼周期选择置于"10"位置。拨动摆轮偏离平衡位置 $150 \circ -200 \circ$,读取显示窗中的振幅值。计时停止后,读取数据 10Td 并立即按复位按钮启动周期测量。
- (3) 仿照上述方法,测量其他阻尼状态的振幅。要求振动次数大于 10 次,需要测量每次振动的周期,周期选择置于"1"位置。
- (4) 测定受迫振动的幅频特性和相频特性曲线。开启电机开关,开关置强迫力,周期选择置于"1",调节旋钮改变电机转动频率 ω ,在稳定后读取振幅 θ_m 、周期 T_d 、相位差 ϕ_0 。至少要有12个数据点,其中要包括共振点,即 $\phi = \pi/2$ 的点。
- (5) 对数据进行分析处理,描绘曲线。

\mathbf{V} 数据处理²

- 1 自由振动的阻尼比 ζ 和固有角频率 ω_0
- 1.1 阻尼比计算

由公式1可得:

$$\ln \theta_j - \ln \theta_{j-1} = -\beta T_d = -\beta \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\zeta^{-2} - 1}}$$

¹实验步骤的简要描述

²实验原始数据表格见附录

次数 i	振幅 θ _j (°)	$\ln heta_j$	次数 i	振幅 θ _i (°)	$\ln \theta_i$	序号	$D_j = \ln \theta_{j+I} - \ln \theta_j$
1	135	4.905	26	113	4.727	1	-0.178
2	134	4.898	27	111	4.710	2	-0.188
3	133	4.890	28	111	4.710	3	-0.180
4	132	4.883	29	110	4.700	4	-0.183
5	131	4.875	30	109	4.691	5	-0.184
6	130	4.868	31	108	4.682	6	-0.186
7	129	4.860	32	106	4.663	7	-0.197
8	128	4.852	33	106	4.663	8	-0.189
9	127	4.844	34	105	4.654	9	-0.190
10	127	4.844	35	104	4.644	10	-0.200
11	125	4.828	36	103	4.635	11	-0.193
12	125	4.828	37	102	4.625	12	-0.203
13	124	4.820	38	101	4.615	13	-0.205
14	123	4.812	39	100	4.605	14	-0.207
15	122	4.804	40	100	4.605	15	-0.199
16	121	4.796	41	99	4.595	16	-0.201
17	120	4.787	42	98	4.585	17	-0.202
18	119	4.779	43	97	4.575	18	-0.204
19	119	4.779	44	96	4.564	19	-0.215
20	117	4.762	45	96	4.564	20	-0.198
21	117	4.762	46	95	4.554	21	-0.208
22	116	4.754	47	94	4.543	22	-0.211
23	115	4.745	48	93	4.533	23	-0.212
24	114	4.736	49	92	4.522	24	-0.214
25	113	4.727	50	92	4.522	25	-0.205

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-4.952}{25} = -0.198 :$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-4.952}{25^2} = -0.00792$$
(1)

由相关系数公式:

$$r = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\left(\overline{x^2} - (\overline{x})^2\right)\left(\overline{y^2} - (\overline{y})^2\right)}}$$

可以导出:

$$S_b = \frac{1}{I} \sqrt{\sum (D_j - \bar{D})^2 / (I - 1)} = \frac{1}{25} \sqrt{2.83 \times 10^{-3} / 24} = 4.344 \times 10^{-4}$$

而:

$$b = -\frac{2\pi}{\sqrt{\zeta^2 - 1}}$$

可得:

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.00792)^2}{4\pi^2 + (-0.00792)^2}} = 1.261 \times 10^{-3}$$

结合 (与 b 的关系式推导阻尼比的不确定度:

$$\frac{\Delta_{\zeta}}{\zeta} = \sqrt{\left(\frac{\partial \ln \zeta}{\partial b} \Delta_b\right)^2} = \frac{4\pi^2}{|b| (4\pi^2 + b^2)} \Delta_b$$
$$\Delta_{\zeta} = \zeta \frac{-4\pi^2}{4\pi^2 b + b^3} t_{0.95}(v) S_b$$
$$= 6.9 \times 10^{-5}$$

将不确定度保留两位有效数字,得(的最终结果为:

$$\zeta = (1.261 \pm 0.069) \times 10^{-3}$$

测得的连续 10 个周期的数据见下表:

序号	1	2	3	4	5	6	7
$T_i = 10\overline{T_d}/s$	14.998	15.004	15.010	15.015	15.019	15.025	15.029

根据所测数据, 计算 $\overline{T_d}$ 及不确定度 $\Delta_{\overline{T_d}}$

$$\overline{T_d} = \frac{\sum_{i=1}^7 T_i}{70} = 1.5014s$$
$$\Delta_{\overline{T_d}} = T_d \times 10^{-5} + 0.003 = 3.015 \times 10^{-3}s$$

周期的最终计算结果为:

$$\overline{T_d} = (1.5014 \pm 0.0030)s$$

1.2 固有角频率计算

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.5014\sqrt{1-\left(1.261\times10^{-3}\right)^2}} = 4.1849 \text{rad/s}$$

计算 ω_0 的不确定度:

$$rac{\Delta_{\omega_0}}{\omega_0} = \sqrt{\left(rac{\partial \ln \omega_0}{\partial T_d} \Delta_{T_d}
ight)^2 + \left(rac{\partial \ln \omega_0}{\partial \zeta} \Delta_{\zeta}
ight)^2}$$

由上式变换,代入数据得:

$$\begin{split} \Delta_{\omega_0} &= \omega_0 \sqrt{\left(\frac{\Delta_{\overline{T_d}}}{\overline{T_d}}\right)^2 + \left(\frac{\zeta \cdot \Delta_{\zeta}}{1 - \zeta^2}\right)^2} \\ &= 4.1849 \times \sqrt{\left(\frac{3.015 \times 10^{-3}}{1.5014}\right)^2 + \left(\frac{1.261 \times 10^{-3} \times 6.9 \times 10^{-5}}{1 - \left(1.26 \times 10^{-3}\right)^2}\right)^2} \\ &= 8.403 \times 10^{-3} \text{rad/s} \end{split}$$

将不确定度保留两位有效数字,固有角频率的最终计算结果为:

$$\omega_0 = (4.1849 \pm 0.0084) \text{rad/s}$$

2 阻尼振动的阻尼比 ζ 和固有角频率 ω_0

2.1 阻尼档 2

测量数据如下:

次数 i	周期 T_d	振幅 $\theta_j/^\circ$	$\ln heta_j$	次数 i	周期 T _d	振幅 θ_i / $^{\circ}$	$\ln heta_i$	逐差值 D_j
1	1.502	96	4.564	7	1.503	57	4.043	-0.521
2	1.502	88	4.477	8	1.503	52	3.951	-0.526
3	1.503	81	4.394	9	1.504	48	3.871	-0.523
4	1.503	74	4.304	10	1.503	44	3.784	-0.520
5	1.503	68	4.220	11	1.503	40	3.689	-0.531
6	1.503	62	4.127	12	1.504	36	3.584	-0.543

同理无阻尼情况的计算:

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-3.164}{6} = -0.527 :$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-3.164}{6^2} = -0.0879$$

计算阻尼比为:

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.0879)^2}{4\pi^2 + (-0.0879)^2}} = 1.399 \times 10^{-2}$$

(2)

计算 $\overline{T_d}$

$$\overline{T_d} = \frac{\sum_{i=1}^{12} T_i}{12} = 1.503s \tag{3}$$

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.503\sqrt{1-(1.399\times 10^{-2})^2}} = 4.1808 \text{rad/s}$$

计算阻尼系数 β :

$$\beta = \frac{1}{\tau} = \frac{b}{-T_d} = 0.0584 \text{rad/s}$$

可以得到:

$$\tau = \frac{1}{\zeta \omega} = 17.09s$$

同时有:

$$Q = \frac{1}{2\zeta} = 35.74$$

2.2 阻尼档 4

测量数据如下:

次数 i	周期 T_d	振幅 $\theta_j/^\circ$	$\ln heta_j$	次数 i	周期 T _d	振幅 $\theta_i/^\circ$	$\ln heta_i$	逐差值 D_j
1	1.503	82	4.407	6	1.504	39	3.664	-0.743
2	1.504	71	4.263	7	1.504	34	3.526	-0.737
3	1.504	61	4.111	8	1.503	29	3.367	-0.744
4	1.504	53	3.970	9	1.504	25	3.219	-0.751
5	1.504	46	3.829	10	1.502	21	3.045	-0.784

同理无阻尼情况的计算:

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} D_j = \frac{-3.759}{5} = -0.752 :$$

$$b = \frac{1}{I^2} \sum_{j=1}^{I} (y_{j+I} - y_j) = \frac{-3.759}{5^2} = -0.1504$$

计算阻尼比为:

$$\zeta = \sqrt{\frac{b^2}{4\pi^2 + b^2}} = \sqrt{\frac{(-0.1504)^2}{4\pi^2 + (-0.1504)^2}} = 2.393 \times 10^{-2}$$
(4)

计算 $\overline{T_d}$

$$\overline{T_d} = \frac{\sum_{i=1}^{10} T_i}{10} = 1.504s \tag{5}$$

计算 ω_0 :

$$\omega_0 = \frac{2\pi}{\overline{T_d}\sqrt{1-\zeta^2}} = \frac{2\pi}{1.504\sqrt{1-(2.393\times 10^{-2})^2}} = 4.1788 \text{rad/s}$$

计算阻尼系数 β :

$$\beta = \frac{1}{\tau} = \frac{b}{-T_d} = 0.1 \mathrm{rad/s}$$

可以得到:

$$\tau = \frac{1}{\zeta \omega} = 10.00s$$

同时有:

$$Q = \frac{1}{2\zeta} = 20.89$$

3 幅频特性曲线和相频特性曲线

根据测得数据以及系统参数计算理论相位差 $\phi=\arctan\left(\frac{2\beta\omega}{\omega_0^2-\omega^2}\right)$ 、测得的 ω 与理论值 ω_0 的频率比 $\frac{\omega}{\omega_0}$ 。

阻尼 2 时, $\omega_0 = 4.1808$ 。测量数据和计算结果:

次数 i	$\theta_i/^\circ$	T_d/s	$\omega/\mathrm{rad}\cdot\mathrm{s}^{-1}$	ω/ω_0	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi_0/^\circ$	理论值 φ/°
1	20	1.375	4.570	1.093	166.0	169.5	167.8	170.9
2	68	1.464	4.292	1.026	151.5	152.5	152.0	151.3
3	123	1.486	4.228	1.011	125.5	127.5	126.5	128.0
4	106	1.481	4.243	1.015	134.5	135.0	134.8	135.5
5	81	1.472	4.268	1.021	145.5	146.5	146.0	145.3
6	138	1.490	4.217	1.008	115.0	115.0	115.0	120.7
7	143	1.492	4.211	1.007	108.5	109.5	109.0	116.5
8	152	1.498	4.194	1.003	92.5	92.5	92.5	102.3
9	154	1.499	4.192	1.002	89.5	90.5	90.0	99.7
10	153	1.502	4.183	1.000	80.5	81.5	81.0	91.7
11	148	1.505	4.175	0.998	72.5	73.5	73.0	83.7
12	142	1.508	4.167	0.996	65.5	66.0	65.8	76.0
13	133	1.512	4.156	0.994	58.5	58.5	58.5	66.5
14	124	1.516	4.145	0.991	52.5	53.5	53.0	58.2
15	109	1.522	4.128	0.987	43.5	44.5	44.0	48.1
16	96	1.528	4.112	0.983	37.5	38.5	38.0	40.4
17	89	1.531	4.104	0.981	34.5	35.0	34.8	37.3
18	84	1.534	4.096	1.013	32.5	33.5	33.0	34.6
19	72	1.543	4.072	0.974	25.5	26.5	26.0	28.3
20	59	1.555	4.041	0.966	20.5	21.5	21.0	22.6
21	43	1.579	3.979	0.952	13.5	15.0	14.2	16.0
22	29	1.620	3.879	0.928	8.0	8.0	8.0	10.7
23	137	1.511	4.158	0.994	61.5	62	61.8	68.8
24	50	1.565	4.015	0.960	16.5	17.5	17.0	19.3

阻尼 4 时, $\omega_0=4.1788$ 。测量数据和计算结果:

次数 i	$\theta_i/^\circ$	T_d/s	$\omega/\mathrm{rad}\cdot\mathrm{s}^{-1}$	ω/ω_0	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi_0/^\circ$	理论值 φ/°
1	24	1.400	4.488	1.074	157.0	160.0	158.5	161.5
2	30	1.416	4.437	1.062	155.0	157.0	156.0	158.3
3	37	1.437	4.372	1.046	150.5	151.5	151.0	152.2
4	50	1.457	4.312	1.032	142.5	143.5	143.0	142.8
5	60	1.470	4.274	1.023	132.5	133.5	133.0	133.4
6	72	1.480	4.245	1.016	122.5	123.5	123.0	123.5
7	86	1.497	4.197	1.004	98.5	99.5	99.0	100.4
8	82	1.491	4.214	1.008	110.0	110.0	110.0	109.4
9	86	1.500	4.189	1.002	95	95	95.0	95.7
10	88	1.501	4.186	1.002	92.5	92.5	92.5	94.1
11	87	1.502	4.183	1.001	90.5	90.5	90.5	92.5
12	88	1.505	4.175	0.999	85.5	86.0	85.8	87.8
13	85	1.512	4.156	0.994	74.5	75.0	74.8	76.9
14	82	1.518	4.139	0.991	67.5	67.5	67.5	68.3
15	75	1.527	4.115	0.985	55.5	56.0	55.8	57.1
16	68	1.534	4.096	0.980	47.5	48.5	48.0	50.1
17	60	1.543	4.072	0.974	41.5	42.5	42.0	42.8
18	51	1.555	4.041	0.967	32.5	33.5	33.0	35.4
19	48	1.562	4.023	0.963	29.5	30.5	30.0	32.1
20	43	1.571	3.999	0.957	26.0	26.0	26.0	28.6
21	38	1.580	3.977	0.952	23.0	25.0	24.0	25.8
22	33	1.603	3.920	0.938	17.5	19.5	18.5	20.5

绘制幅频、相频特性曲线如下:

图 1: 幅频特性曲线

在实验中去除了部分不合理数据,比如一个自变量对应了多个因变量的值。

表 1: 实际使用的数据

X1	阻尼2档理论值	X2	阻尼2档实际值	X3	阻尼 4 档理论值	X4	阻尼 4 档实际值
1. 093	170.9	1. 093	167.8	1. 074	161.5	1. 074	158.5
1. 026	151.3	1. 026	152	1. 062	158.3	1. 062	156
1.021	145.3	1. 021	146	1. 046	152.2	1. 046	151
1. 015	135.5	1. 015	134.8	1. 032	142.8	1. 032	143
1. 011	128	1. 011	126.5	1. 023	133.4	1. 023	133
1. 008	120.7	1. 008	115	1. 016	123.5	1. 016	123
1. 007	116.5	1. 007	109	1. 008	109.4	1. 008	110
1. 003	102.3	1. 003	92.5	1. 004	100. 4	1. 004	99
1. 002	99.7	1. 002	90	1. 003	95.7	1. 003	95
1.000	91.7	1.000	81	1. 002	94. 1	1.002	92.5
0. 998	83.7	0. 998	73	1. 001	92.5	1. 001	90.5
0. 996	76	0. 996	65.8	0. 999	87.8	0. 999	85.8
0.995	68.8	0. 995	61.8	0. 994	76.9	0. 994	74.8
0.994	66. 5	0.994	58.5	0. 991	68.3	0. 991	67.5
0. 991	58.2	0.991	53	0. 985	57.1	0. 985	55.8
0. 987	48. 1	0.987	44	0.98	50. 1	0.98	48
0. 983	40. 4	0. 983	38	0. 974	42.8	0.974	42
0. 981	37.3	0. 981	34.8	0. 967	35. 4	0.967	33
0.974	28.3	0.974	26	0. 963	32. 1	0. 963	30
0. 966	22.6	0. 966	21	0.957	28.6	0. 957	26
0. 96	19.3	0. 96	17	0. 952	25.8	0. 952	24
0.952	16	0.952	14. 2	0.938	20. 5	0. 938	18.5
0. 928	10. 7	0. 928	8				

图 2: 相频特性曲线

VI 总结与分析

1 反思

在阻尼振动实验中,我遇到的最大的困难就是**视觉暂留读相差的值**和**实验报** 告的撰写。

- 1、视觉暂留读取相差 在实验过程中我发现如果想要读的更准确一些,也就是说仔细看的闪亮的指针的时候,那么就很难再捕捉到指针的准确位置。如果长时间盯着其他的地方看,我发现我盯着的地方也会出现闪亮的指针,且较为稳定。在实验读数时我曾多次差点读错。
- 2、实验报告撰写 这次实验涉及到了大量的数据,并且计算处理都很复杂。其次 Latex 的使用上手难度大。在这次实验需要使用相关软件进行绘画(我使用了 Origin),学习成本较高。

在处理实验数据、撰写实验报告的过程中,我反思发现我在整个实验中可能 存在以下错误或不足之处:

- 1、视觉暂留读数有一定的不准确性 正如数据处理过程中所提到的,实验中读数有一些数据有误差,这些误差在本次实验中是不被允许的。比如一个自变量对应了相同的因变量的值。在实验数据的处理过程中已经将这些错误数据去除掉了。
- **2、实验数据记录不规范** 在受迫振动的数据的记录过程中,应该尽量按照周期大小变化的顺序记录,否则在绘制图像的时候需要再次排序,比较耗费精力。

我在实验中遇到了不少困难,比如寻找相差刚好为90°的位置,在助教老师的帮助下得到了解决。感谢助教老师在实验过程中的指导和帮助!

附录

A 所使用到的 python 代码

1.

代码可能多次用到,只展示其最后一次用到的效果。

```
import math
  # 在这里直接修改你的数组、OmegaO 和 beta 值
4 array = [1.400, 1.416, 1.437, 1.457, 1.470, 1.480, 1.497,
     1.491, 1.500, 1.501, 1.502, 1.505, 1.512, 1.518, 1.527,
     1.534, 1.543, 1.555, 1.562, 1.571, 1.580, 1.603]
     数组
5 Omega0 = 4.1788 # 给定的参考角速度
6 beta = 0.1 # 用户指定的常数
  # 计算并输出结果
  print("计算结果: ")
  for index, x in enumerate(array, start=1):
      if x == 0:
11
          print(f"{index}. 数值 {x} 对应的结果: 无法计算(分
12
            母不能为 0) ")
      else:
13
          omega = 2 * math.pi / x
14
          angular_velocity_ratio = omega / Omega0
15
          if Omega0**2 - omega**2 == 0:
16
             print(f"{index}. 数值 {x} 对应的结果: 无法计算
17
                 (分母为 0)")
          else:
18
             # 计算 arctan 值并转换为角度
19
             arctan value radians = math.atan(2 * beta *
20
                omega / (Omega0**2 - omega**2))
             arctan value degrees = math.degrees(
21
                arctan_value_radians)
             #确保角度在 0°至 180°之间
22
             if arctan_value_degrees < 0:</pre>
23
                 arctan_value_degrees += 180
24
             elif arctan_value_degrees > 180:
25
```

```
arctan value degrees -= 180
26
             print(
2.7
                 f"{index}. 数值 {x} 对应的角速度: {omega:.3
28
                   f} rad/s, 比值: {angular_velocity_ratio
                   :.3f}, "
                 f"arctan值: {arctan_value_degrees:.1f}"
29
30
  2、
  import numpy as np
3 # 输入数组
4 array = np.array([82,71,61,53,46,39,34,29,25,21]) # 你可以
    直接修改这个数组
  # 检查是否有非正数,避免计算自然对数时报错
  if np.any(array <= 0):</pre>
     print("错误:数组中存在非正数,无法计算自然对数。")
  else:
     # 计算自然对数
10
     log_array = np.log(array)
11
     print("数组元素的自然对数为:")
12
     for i, log_value in enumerate(log_array):
13
         print(f"元素 {array[i]:.3f} 的自然对数是 {log_value
14
            :.3f}")
1 # 在这里直接修改你的数组
2 array = [157.0, 160.0, 155.0, 157.0, 150.5, 151.5, 142.5,
    143.5, 132.5, 133.5, 122.5, 123.5, 98.5, 99.5, 110.0,
    110.0, 95, 95, 92.5, 92.5, 90.5, 90.5, 85.5, 86.0, 74.5,
     75.0, 67.5, 67.5, 55.5, 56.0, 47.5, 48.5, 41.5, 42.5,
    32.5, 33.5, 29.5, 30.5, 26.0, 26.0, 23.0, 25.0, 17.5,
    19.5] # 示例数组
3 # 计算并输出每对数的平均值
4 print("数对及对应的平均值:")
  for i in range(0, len(array), 2):
     if i+1 < len(array): # 确保有两个元素来配对
         pair = (array[i], array[i+1])
         avg = sum(pair) / 2
```

```
9 print(f"数对 {pair} 对应的平均值: {avg:.1f}")
10 else:
11 print(f"数对 {array[i]} 没有配对元素,无法计算平均值")
```

B 原始数据记录表与预习报告

图 3: 实验原始数据记录表 1

三、阻尼档 4 的阻尼振动与受迫振动 1、阻尼振动(幅度连续测量)

1 (11/15/7)	四/60000 (国文文》/70至)											
序号	1	2	3	4	5	6	7	8	9	10		
幅度	82	71	61	53	46	39	34	29	25	21		
T_{ij}	1.503	1,504	1,504	1,504	1,504	1,504	1,504	1,503	1,504	ルカン		

2、受迫振动

21 ~~ // //											•
序号	11,400	2	3	4	5	6	7	8	9	10	
周期	8 4	1416	1,437	1.457	1,470	1,480	1,497	1,491	. 1,500	1,501	1,502
幅度	24	30	37	50	60	72	86	82	26	88,	88
相差1	157.0	1550	150.5	14215	1325	1225	98.5	110.0		925	90.5
相差 2	1600	157.0.	151.5	143,5	133,5	123,5	9913	110,0	95 ·	9215	905
平均相差							·			·	
序号	11	12	13	14	15	16	17	18	19	20	
周期	1,505	1.512	1.518	1,527	1,534	11543	1,555	1,562	14]]	1.580	1,602,1,62
幅度	88	85	82	7 /	68	60	51	48	43	39	33 26
相差 1	2,18	74.5	675	15.5	47.5	415	3215	29,5	26	23	17.5 4
相差 2	865	75.0	67.5	56	485	4215	385	30.5	26 .	25.	19,5 16
平均相差						'					

0:
$$\S = 1.261 \times 10^{-3}$$
 $W_0 = 4.1849$
2: 1.399×10^{-2} 4.1808
4: 2.393×10^{-2} 4.1788

图 4: 实验原始数据记录表 2

2023 秋物理实验, B(1)预习思考题

姓名石洋

学号2003011406 日期 11·11

VI-2. 用玻尔共振仪研究阻尼振动和受迫振动特性

1、阻尼振动和受迫振动在工程、医学等领域有哪些应用场景?

阳尼振动、高层建筑中的调谐质量组层器、车床/双振器、

夏泊振动:老式收音机的调谱 核磁块振效像 乐器频导

2. 举例说明阻尼振动和受迫振动有哪些危害? 如何避免?

阳尼振动尾: 字:能耗、发热. 凝免:及变材料:瓜小阳系数。

受迫振动: 桥梁、高楼在风浪时振, 改进: 提高抗艾振强度.

3. 如何判断受迫振动已处于稳定状态?

当振动振幅和明期大敌稳定变时 认为受迫振动处子稳定状态 布本家務中、振幅连读 5-次处于某作的适即可认为复更振动稳定、 4.参考讲义式(7)和式(8),写出用阻尼比ζ表示的幅频特性(θm~ω/ωω)和相频特性(φ~ω/ωω)关系

表达式。B BLRtt: 5 = W。 频率 te r = W。

 $\Theta_{m} = \frac{\partial \omega_{o}^{2}}{\sqrt{(\omega_{o}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}} \quad \phi_{o} = \arctan(\frac{2\beta\omega}{\omega_{o}^{2} - \omega^{2}})$ \Rightarrow \otimes $m = \sqrt{\frac{2}{(l-r^2)^2+4\xi^2r^2}}$ $\phi = \arctan(\frac{2\xi^r}{l-r^2})$. 5. 生活小实验: 骑车横穿道路口斑马线 (注意交通安全!),体验以不同速度通过斑马线时的颠簸感。

在什么情况下人车系统颠簸得最为剧烈?建立模型,定量估测人车系统的弹性系形

当面立知3位颠簸的城车等子,体系的断城车时, 颠簸最别烈.

考制以前(7') Om= dmwo² w= Jwo²28²发生发振。

斯眼状}=== MF ⇒即防治测 k值。

图 5: 预习报告