Ch 4 - Elasticity

I READ IN THE PAPER THAT A
GAS STATION IN BUTTONWILLOW
WAS SELLING REGULAR UNLEADED
FOR ONLY \$1.50 A GALLON!

@ UFS, Inc.

Elasticity of Demand

- *Elasticity of Demand* (def.) refers to the flexibility of consumer's desires for a product.
- What is your response (decrease in quantity demanded) if the price of Pepsi doubles?
- What is your response if the price of Student parking doubles?
- What is your response if the price of your life-saving medication triples?
- What is your response if the price of french fries is cut in half?

Determinants of Price Elasticity of Demand

Existence of substitutes

 The closer the substitutes and the more substitutes there are, the more elastic is demand.

Share of the budget

 The greater the share of the consumer's total budget spent on a good, the more elastic is demand.

The length of time allowed for adjustment

 The longer any price change persists, the more elastic is demand. Price elasticity is greater in the long-run than in the short-run, and in the short-run than right now.

Time and the Adjustment Process

 The response of consumers and producers to a change in market conditions will become more pronounced as time passes. This occurs because, with time, consumers and producers are able to find substitutes.

- Consider your demand for gasoline.
 - Immediate-run (def.) there is no time to adjust.
 - Short-run (def.) time to adjust, but only partially.
 - Long-run (def.) time to adjust fully.

Calculating Elasticity

$$E_p = \frac{\text{% change in Q}}{\text{% change in P}}$$

or using the midpoint formula

$$E_p = \frac{\text{change in } Q}{(Q_1 + Q_2)/2} / \frac{\text{change in } P}{(P_1 + P_2)/2}$$

Elasticity Example

Price	Quantity Demanded		
\$12	20		
\$6	30		

We can calculate price elasticity of demand.

Example: The Price Elasticity of Demand

$$E_p = \frac{\Delta Q}{(Q_1 + Q_2)/2} / \frac{\Delta P}{(P_1 + P_2)/2}$$

$$E_{p} = \frac{20-30}{(30+20)/2}$$

$$\frac{\$12-\$6}{(\$6+\$12)/2}$$

Example: The Price Elasticity of Demand

$$E_p = \frac{-10}{25} / \frac{\$6}{\$9} = -0.6$$

Interpretation:

 Since -0.6 is between 0 and -1, this tells us that buyers are relatively inelastic meaning buyers are not very responsive to the change in price

Suppose a manager raises the price of bottled water from \$3.00 to \$5.00 and they find that consumption drops from 1000 to 400 bottles per week. Is the price elasticity of demand for Hotel H₂O elastic or inelastic?

Example:

The Price Elasticity of Demand for Hotel Bottled Water

$$E_{p} = \frac{\Delta Q}{(Q_{1} + Q_{2})/2} / \frac{\Delta P}{(P_{1} + P_{2})/2}$$

$$E_{p} = \frac{400-1000}{(1000 + 400)/2}$$

$$\frac{\$5-\$3}{(\$3 + \$5)/2}$$

Example:

The Price Elasticity of Demand for Hotel Bottled Water

$$E_p = \frac{-600}{700} / \frac{\$2}{\$4} = -1.71$$

Interpretation:

 Since -1.71 is less than -1, this tells us that buyers are relatively elastic meaning buyers are relatively responsive to the change in price

- If demand is relatively elastic
 - We are relatively sensitive to price changes
 - The demand curve is relatively flatter
- If demand is relatively inelastic
 - We are relatively insensitive to price changes
 - The demand curve is relatively steeper

<u>Fast Fact</u>: 70% of pet owners would pay any amount of \$\$ to save their pal's life!

Elasticity of Demand

Perfectly inelastic

Relatively elastic

Relatively inelastic

Perfectly elastic

Remembering Elasticity

- Relatively shallow (flat) demand curves are relatively more elastic.
- Relatively steep demand curves are relatively more inelastic.
- Ways to remember:
 - Steep demand curve looks like the letter "I," so it is "I"nelastic.
 - Steep demand curve has an almost "I"nfinite slope, and is "I"nelastic

Slope is not = Elasticity

With this straight-line (constant-slope) demand curve, demand varies across a range of prices.

Using the equation for elasticity from before, the midpoint formula for elasticity shows that, when price rises from \$1 to \$2... and quantity demanded falls from 110 to 100... the elasticity for that region of the demand curve is (-.14) (inelastic)

Slope is not = Elasticity

A price increase of the same magnitude (but a smaller %) from \$10 to \$11... leads to a decline in quantity demanded from 20 to 10. Even though the change in price here was smaller than before (as a %) the same change in quantity demanded occurred.

Using the same equation to calculate elasticity as before, the elasticity amounts to - 7.0 (greater than - .14 from before).

Thus the price-elasticity of a straight-line demand curve increases as price rises.

The elasticity coefficient becomes increasingly elastic as you move up along the demand curve!

The Relationship Between Elasticity and Revenue

Price (\$)	Q Lattes	% Change in Price	% Change in Q	Elasticity (Midpoint)	Interpretation
\$5	0				
\$4	1	-22	200	-9.1	Relatively Elastic
\$3	2	-29	67	-2.3	Relatively Elastic
\$2	3	-40	40	-1.0	Unitary
\$1	4	-67	29	-0.4	Relatively Inelastic
\$0	5	-200	22	-0.1	Relatively Inelastic

Elasticity and Revenue

- The previous table illustrated that:
 - Revenue is related to elasticity.
 - Revenue is maximized at the unit elastic point on the linear demand function.
- Graphically, we can also show trade-offs when a firm changes the price of its good.
 - Increase price
 - Higher price per unit, but sell less units
 - Lower price
 - Lower price per unit, but sell more units

Total Revenue Trade-offs

Total Revenue Trade-offs

Total Revenue Trade-offs

