CLIPPEDIMAGE= JP404149366A

PAT-NO: JP404149366A

DOCUMENT-IDENTIFIER: JP 04149366 A

TITLE: REINFORCED FIBER SHEET AND METHOD FOR REINFORCING CONSTRUCTION

PUBN-DATE: May 22, 1992

INVENTOR-INFORMATION:
NAME
SAITO, MAKOTO
TAKEZAWA, MAKOTO
INOUE, HIROSHI

ASSIGNEE-INFORMATION: NAME TONEN CORP

COUNTRY N/A

APPL-NO: JP02275049

APPL-DATE: October 12, 1990

INT-CL (IPC): E04G023/02; E01D019/02

ABSTRACT:

PURPOSE: To enhance workability by blending a curing accelerator for a room-temperature curing type matrix resin in a reinforced fiber sheet which is impregnate with the matrix resin when in use, prolonging the pot life of the resin, and making it easy to handle the sheet.

CONSTITUTION: A reinforced fiber sheet 1 comprises reinforced fiber 4 formed by pitch type carbon fiber and the like and provided on a supporter sheet 2 via an adhesive layer 5 made of epoxy resin, the sheet 2 being made by scrim cloth and the like. The reinforced fiber sheet 1 is impregnated with a room- temperature curing type matrix resin made of unsaturated polyester

resin having a peroxide curing agent blended therewith. A cobalt type curing accelerator is blended in the adhesive. The pot life of the curing type matrix resin is prolonged and the sheet is stuck to the portion 15 of a bridge beam and the like to be reinforced and the matrix resin is cured. Workability is thereby enhanced.

COPYRIGHT: (C)1992, JPO&Japio

⑩ 日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平4-149366

10 Int. Cl. 5

識別記号 庁内整理番号

43公開 平成4年(1992)5月22日

E 04 G 23/02 E 01 D 19/02 D 8504-2E 7014-2D

審査請求 未請求 請求項の数 4 (全9頁)

Q発明の名称 強化繊維シート及び構築物の補強方法

②特 顧 平2-275049

20出 願 平2(1990)10月12日

70発 明 者 斉 藤 誠 埼玉県入間郡大井町西鶴ケ岡1-3-1 東燃株式会社総 今所名所内

②発 明 者 竹 澤 誠 埼玉県入間郡大井町西鶴ケ岡1-3-1 東燃株式会社総合研究所内

@発 明 者 井 上 寛 埼玉県入間郡大井町西鶴ケ岡1-3-1 東燃株式会社総合研究所内

勿出 顧 人 東 燃 株 式 会 社 東京都千代田区一ツ橋1丁目1番1号

@復代理人 弁理士 倉橋 睽

明 超 書

1. 発明の名称

強化繊維シート及び構築物の補強方法

2.特許請求の範囲

1) 支持体シート上に接着削層を介して強化繊維を設けてなり、構築物の補強現場で前配強化繊維に室温硬化型マトリクス樹脂を含浸して、前記構築物の補強に使用される強化繊維シートにおいて、前記マトリクス樹脂に配合の硬化剤による前記マトリクス樹脂の硬化を促進する硬化促進剤を、前記接着剤層中に配合したことを特徴とする強化繊維シート。

2) 前記室温硬化型マトリクス樹脂が前記硬化剤 としてパーオキサイド系硬化剤を配合の不飽和ポ リエステル系樹脂からなり、前記接着剤層がエポ キシ樹脂からなり、前記硬化促進剤がコパルト系 硬化促進剤からなる請求項1記載の強化繊維シート。 3)を硬補の後継強性化ををされる所には、大力を対して、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含めて、大力を含め、大力を表面には、大力を表面には、大力を表面には、大力を表面には、大力を表面には、大力を表面には、大力を表面には、大力を表面には、大力を表面に、大力を表力を表面に、大力を表

4) 前記室温硬化型マトリクス樹脂が前記硬化剤 としてパーオキサイド系硬化剤を配合の不飽和ポ リエステル系樹脂からなり、前記接着剤層がエポ キシ樹脂からなり、前記硬化促進剤がコパルト系 硬化促進剤からなる欝求項3記載の機振物の補強 方法。

3 . 発明の詳細な説明

産業上の利用分野

本発明は、繊維強化プラスチックにより構架や高架道路などを初めとする構築物の補強をするに際し、補強現場で施行性良く補強を行なうことができ且つ補強強度も向上することを可能とした強化繊維シート及び構築物の補強方法に関する。

従来の技術

橋操や高架道路などの橋脚を繊維強化プラスチックにより補強することが行なわれている。

その補強の仕方として、従来、

- (1)硬化した繊維強化プラスチックを精脚の 補強箇所に貼り付ける方法、
- (2) 精脚の補強箇所にブリブレグを貼り付け、その上に加熱硬化時の変形を防止するための押さえテーブを巻回して、加熱硬化することにより繊維強化プラスチックと為す方法、 が知られている。

繊維をハイブリッド化した一方向配列ハイブリッド強化繊維シート等及びこれらを使用した構築物の補強方法等を、先頃、特顯平 2 - 1 9 9 2 7 号、2 - 1 9 9 2 8号、2 - 9 4 4 3 6 号、2 - 9 4 4 3 7 号及び2 - 9 4 4 3 8 号として提案した。

本発明は、このような強化繊維シートを用いて 構築物の補強をするに際し、その強化繊維に含浸 させる室温硬化型マトリクス樹脂のポットライフ

発明が解決しようとする課題

しかしながら、上記(1)の方法では、機関の 補強箇所に対する補強の効率は良好であるが、満 曲した補強箇所では実施できないという大きな欠 点がある。

(2)の方法では、橋脚の補強箇所に貼り付けたプリプレグを現場で加熱硬化しなけれらばならないので、加熱硬化の作業が容易でない欠点がある。

上記以外に、 橋脚の補強医所に現場でフィラメント フィンディング法により樹脂を含浸させた強化繊維の糸を巻き付け、 その後硬化して繊維強化プラスチックと為す方法も考えられているが、 補強対象が限られる上に設備コストが高い等の欠点があり、実用的でない。

そこで、本発明者等は、繊維強化プラスチックにより構架や高架道路などを初めとする構築物の補強をするに際し、補強現場で施行性良く補強を行なうことができ且つ補強強度も向上することを可能とした一方向配列強化繊維シート、その強化

を長くし、取扱い性を良好にして補強することを 可能とした強化繊維シート及び構築物の補強方法 を提供することを目的とするものである。

課題を解決するための手段

又本発明は、支持体シート上に接着利用を介して強化繊維を設けた強化繊維シートを、前記強化繊維に室温硬化型マトリクス樹脂を含浸させた後、構築物の補強箇所の表面に貼付けるか、構築物の補強箇所の表面に、室温硬化型マトリクス制脂を塗布した後に前記強化繊維シートを貼り付け

て、前記強化繊維にマトリクス樹脂を含浸させるか、又は前記強化繊維シートを構築物の補強医所の表面に貼付けた後、前記強化繊維に変温硬化型マトリクス樹脂を含浸させる構築物の補強方法によりに、前記マトリクス樹脂に配合の硬化剤による前記であり、前記接着剤層中に配合したことを特徴とする構築物の補強方法である。

本発明の一態様によれば、前記接着利用がエポキシ樹脂からなり、前記室温硬化型マトリクス樹脂が前記硬化剤としてパーオキサイド系硬化剤を配合の不飽和ポリエステル系樹脂からなり、前記硬化促進剤がコパルト系硬化促進剤からなる。

実施 例

以下、本発明の実施例について説明する。

第1 図は、本発明の強化繊維シートの一実施例 を示す断面図である。

本強化繊維シート1は、支持体シート2上に接着剤層3を介して強化繊維4を一方向に配列して

と、硬化反応が進行してマトリクス樹脂が急速に 硬化するので、マトリクス樹脂を硬化させること についての問題はない。

硬化促進剤は、マトリクス樹脂及びこれに配合する室温硬化剤の種類によって適宜決めればよく、マトリクス樹脂として例えば不飽和ポリエステル樹脂等の不飽和ポリエステル茶樹脂を使用した場合を示せば、室温硬化剤にはメチルエチルケトンパーオキサイド系硬化剤が使用され、硬化促進剤にはナフテン酸コバルト系硬化促進剤が使用される。

接着利用3を形成する接着利は、原則として支持体シート2上に強化繊維4を少なくとも一時的に接着できるものならば何でも使用できるが、マトリクス樹脂による強化繊維4の補強効果と同様な効果を接着利用3にも与える観点から、マトリクス樹脂を使用することが好ましく、マトリクス樹脂が不飽和ポリエステル系樹脂樹脂やエポキシ系樹脂の場合、接着利用3

設けてなっており、構築や高架道路などの補強現場で強化繊維 4 に室温硬化型マトリクス樹脂を含浸させて、補強に使用できるようにしてある。

本発明では、室温硬化型マトリクス樹脂のポットライフを長くして補強環場での取扱い性を良好とするために、室温硬化型マトリクス樹脂に配合の室温硬化剤による該マトリクス樹脂の硬化を促進する硬化促進剤を、強化繊維シート1の接着剤脂3中に配合している。

これによれば、補強現場で強化繊維シート1の強化繊維4に室温硬化型マトリクス樹脂を含浸させて、マトリクス樹脂中の室温硬化剤とを混ぜり合せるまでは、マトリクス樹脂は硬化ししないので、マトリクス樹脂のポットライフを長くできたい性が良好になる。従ってマトリクス樹脂の形成ででは、でいたので、でいたが良好になる。従ってマトリクス樹脂の必要化を考慮して早急に補強作業を行なうなどの必要もなくなり、施行性が一段と向上する。他治浸させて、室温硬化剤と硬化促進剤とを混じり合きを

にはエポキシ系の接着剤を用いることがよい。

上記の支持体シート2としては、スクリムクロス、ガラスクロス、雕型紙、ナイロンフィルム等が使用される。 通常は支持体シート 2 は樹脂浸透性を有することを要しないが、マトリクス樹脂をシート 2 側から強化繊維 4 に含浸できるようにしたい場合には、シート 2 に上記のスクリムクロス、ガラスクロス等が使用される。

上記の強化繊維4としては、ピッチ系炭素繊維、ポロン繊維、PAN系炭素繊維、アラミド繊維、ガラス繊維、スチール繊維、ポリエステル繊維、ポリエチレン繊維など各種の強化繊維を使用することができる。

強化繊維4は、これをフィラメントとして収束 剤で多数本収束した繊維束または軽度に燃りをかけて収束した繊維束を接着剤層3上に並べて上方から押し潰すことにより軽度にバラされ、これにより強化繊維4は収束剤または燃りによる結合により複数層に積層した状態で、支持体シート2上に接着剤層3を介して一方向に配列して接着さ れ、所望の強化繊維シート1が得られる。

機能束の押し潰しの程度は、これによって配列した複数層の繊維4の層に得たい層厚にもよるが、炭素繊維の場合を示すと、直径5~15μmの炭素繊維フィラメントを12000本程度収束した炭素繊維束のとき、これを横方向の幅が5m程度になるように押し潰すことが一例として挙げられる。

を配合してある。強化繊維シート 1 の強化繊維 4 に含浸させる室温硬化型マトリクス樹脂は、室温硬化剤のメチルエチルケトンパーオキサイドを配合した不飽和ポリエステル樹脂を使用した。

本発明の他の実施例では、第5図に示すよう

リッド化した強化繊維シート1としてもよく、或いは第3図に示すように、支持体2の一方の面上に剛性の高い強化繊維4点を接着利度3を介して一方向配列に設け、他方の面上に韧性の高い強化繊維4bを接着利度3を介して一方向配列に設けて、ハイブリッド化してもよい。

いずれの強化繊維シート1でも、同様に、窓温硬化型マトリクス樹脂に配合の窓温硬化剤能に配着する硬化促進剤を促進する硬化促進剤を促進するでは、ことにより、これでは、これができる。物の補強を行なうことができる。

次に、本発明による構築物の補強方法として、第1図に示した強化繊維4を一方向配列した強化繊維シート1を用いて補強する場合を例に採って説明する。

強化繊維シート1は、強化繊維4が炭素繊維、 支持体2上の接着剤層3がエポキシ樹脂で、接着 剤層3中に硬化促進剤としてナフテン酸コバルト

本発明の更に他の実施例では、強化繊維シート 1 として支持体シート 2 が樹脂浸透性のものを使用する。第6 図に示すように、先ず、補強體所15 の周囲表面上にブライマー16 としてマトリクス樹脂と相溶性の高い樹脂を塗布し、その上から シート1を貼り付けて不到の数だけ積層し、その一後最外層のシート1の支持体シート2上からを通び化型マトリクス樹脂17を強性化型で設させ、ようにするようにするとでは、上記と同様に、シート1上に押さえそそのでは、まり同様に繊維強化プラスチックによる構築が行われる。

以上いずれの場合も、強化繊維シート1の強化繊維4に室温硬化型マトリクス樹脂を含浸っている。では、マトリクス樹脂が硬化しないので、マトリクス樹脂が硬化しないので、マトリクス樹脂の硬化を考慮している。と、マトリクス樹脂の硬化を考慮した。と、マトリクス樹脂ので、補強作業を行なり、機能4にマトリクス樹脂を含浸すれば、室温硬化剤と硬化促進剤とが混り

設けたガラス繊維(GF)の強化繊維シート(促進剤入り強化繊維シート)を作製し、そのGF強化繊維シートに変温硬化型マトリクス樹脂とで、て飽和ポリエステル系樹脂を含浸して、その評価し、本発明の強化繊維シートの接着剤層中に変温硬化型マトリクス樹脂の硬化促進剤を配合することによる効果を調べた。

GF強化繊維シートのガラス繊維の糸目付けは350g/m*であった。エポキシ樹脂の樹脂フィルムには、油化シェル(株)製のエピコートー1001及びエピコートー828の2種を組み合わせて使用し、ナフテン酸コバルトを8%分散(ミルターベン液にナフテン酸コバルトを8%分散)を使用し、エピコートー1001/エピコート-828/173/7/20世別、エピコートー1001/エピコート-829/101/20世別に配合した樹脂液を調整し、これを用いた。

合って硬化反応が進行し、マトリクス樹脂が急速 に硬化するので、何らの問題なくマトリクス樹脂 を硬化して、強化繊維シート1を繊維強化プラス チックと為して構築物の補強をさせることができ ス

以上の各実施例では、いずれも、強化繊維シート1は強化繊維4の側を補強箇所15側として貼り付け、積層したが、支持体シート2側を補強額所15側として貼り付け、積層してもよい。

又以上の各実施例では、第1図に示した強化繊維1を用いて構築物の補強を行なう場合を示したが、第2図等にそれぞれ示した強化繊維1を用いても、同様にして構築物の補強を行なうことができる。

次に、本発明の具体的実施例について説明する。

支持体シートとして有沢製作所製薄肉ガラスクロスEPC031を用い、ナフテン酸コバルトを添加したエポキシ樹脂の樹脂フィルムを接着剤層として用い、その樹脂フィルム上にガラス繊維を

GF強化繊維シートのガラス繊維へのマトリクス樹脂の含浸は、PETフィルム上にマトリクス樹脂/GF強化繊維シート/マトリクス樹脂/GF強化繊維シート/マトリクス樹脂の順に積層することにより行なった。マトリクス樹脂の硬化条件は室温で8日間放置である。

比較のために、硬化促進剤非添加のエポキシ樹脂フィルムを接着剤層としてこの上にガラス繊維を設けたGF強化繊維シート(通常の強化繊維シ

ート)を作製し、そのガラス繊維に通常通り硬化 促進剤のナフテン酸コバルトを配合のマトリクス 樹脂を含浸して、そのマトリクス樹脂の硬化特性 を評価した。又通常の強化繊維シートのガラス繊 継にナフテン酸コバルトを配合しないマトリクス 樹脂を含浸した場合も調べた。

得られた結果を第1表に示す。

第1表

No.	強化福維タート	7トリクス 樹 脂	\$ 7 h 5 d 7	発存 ス チ レ ン 量 (室温8日間 放置後)
本 1	促進剤入り	UP/#†##\$	10 時間	2.3 # t%
発	強化繊維タート	2 phr	以上	
BP 2	促進制入り	V E / 3 2 8 E	10時間	3 . 2 w t %
	強化繊維リート	2 p h r	以上	
3	通常	UP/#+++> 2 phr	2 0 S 7	1.7 # t %
比	強化繊維ット	אנד G. Sphr		
102 4	通常	VE/328E 2phr	2 0 S	2 . 1 w t %
<i>9</i> 4	強化繊維シート	o∧&} 0.5phr	ł	
5	通常	UP/#ヤナック	10時間	硬化せ
	強化繊維 シート	2 p h r	以上	

これに対し比較例 M 3 ~ 4 では、マトリクス樹脂の硬化特性が優れているものの、ポットライフが20分と短時間しかなく、マトリクス樹脂の硬化を考慮して早急に含浸作業を行なう必要があった。比較例 M 5 では、マトリックス樹脂の取扱い性が良好であるものの、接着剤層にもマトリクス

ス制脂のポットライフを長くして取扱い性をよく して、マトリクス樹脂を補強作業に供することが できる。

従って強化繊維にマトリクス樹脂を含浸させたけてそのまま放置することにより、補強関係に関係を強度ないの面別なないのではないのではないのでは、マトリクス樹脂を硬化させて強いできる。とにかって、施行性よく、樹脂を取ったができる。とはないにより、補強作業の作業性をのよいにより、補強作業の作業をのと向上することができる。

4. 図面の簡単な説明

第1図は、本発明の強化繊維シートの一実施例 を示す断面図である。

第2図は、本発明の強化繊維シートの他の実施 例を示す料視図である。

第3回は、本発明の強化繊維シートの更に他の 実施例を示す断面図である。 樹脂にも硬化促進剤を配合していないので、 8 日間の室温放置でも硬化させることはできなかった。

以上から、支持体シート上に接着制層を介して強化繊維を設けた強化繊維シートを用い、調果物の補強現場で強化繊維に室温硬化型マトリクス制筋に使用する際化のが表別のでは、マトリクス制筋に配合の硬化化のでは、ないというと、上記接着制層中に配合することが収まった。以外にして補強することができることが判る。

発明の効果

以上説明したように、本発明では、支持体シート上に接着利用を介して強化繊維を設けた強化繊維シートを用いて構築物を補強するに際し、補強現場で強化繊維に含浸させる室温硬化型マトリクス樹脂に配合の硬化剤による該マトリクス樹脂の硬化を促進する硬化促進剤を、強化繊維シートの接着剤層中に配合したので、室温硬化型マトリク

第 4 図は、本発明の構築物の補強方法の一実施例 を示す断面図である。

第5 図は、本発明の構築物の補強方法の他の実 施例を示す断面図である。

第 6 図は、本発明の構築物の補強方法の更に他の実施例を示す断面図である。

1:強化繊維シート

2: 支持体シート

3 :接着剤層

4、4a、4b:強化繊維

15:補強箇所

16:プライマー

17:マトリクス樹脂

復代理人 弁理士 倉 橋 暎

第2図

第3図

第 4 図

第5図

第6図

特開平4-149366 (9)

手続補正書

平成 3年 3月13日

特許庁長宮 植 松 敏 殿

- 1.事件の表示 平成2年特許職第275049号
- 2. 発明の名称 強化繊維シート及び構築物の補強方法
- 3.補正をする者

事件との関係 特許出職人

住 所 東京都千代田区一ツ橋一丁目1番1号

名 称 東燃株式会社

4. 復代理人

住 所 東京都港区新橋6丁目13番11号 西川ビル(電話3459-8309)

氏 名 (7563) 弁理士 倉 橋

- 5、補正の対象
 - (1)明細書の発明の詳細な説明の編
- 6. 補正の内容 別紙の通り

(一) 「発明の詳細な説明」を次のように補正す

(1) 明細書第10頁第1行の「がよい。」の次に「接着剤層3の厚みとしては、強化繊維4を一時的に接着できればよいことから、5~100μm、好ましくは10~30μm程度であればよい。」を加入する。