Information Visualization 1

Universität Konstanz WS'16

Fachbereich Informatik & Informationswissenschaft Michael Behrisch, Manuel Stein, Bruno Schneider, Prof. Dr. Daniel A. Keim

Organize in teams of 2 people, return the exercise by Mon, Nov 14, 2016 (08:00 AM) using ILIAS (only one **pdf**-file – no screenshots from sourcecode)

Assignment 1

Exercise 1: Register in ILIAS & StudIS

(0 points)

Registration in **StudIS** is mandatory for taking part in the final written exam! Registration in **ILIAS** is mandatory for receiving information, e-mails etc. and submitting the exercises.

Exercise 2: Submission in groups of two persons

(0 points)

Exercises must be submitted in ILIAS in groups of two persons every Monday until 08:00 am. There will be **NO** extensions!

Only one of the partners should submit the solution **BUT** please name both partners with their respective student-ID.

Exercise 3: R-Project

(2 point)

For some submissions you will have to use the R-Software. Download and install the open-source software (http://www.r-project.org).

Create 10 random values in the range of 0 and 10.

HINT: *R-code:* runif(#, lower, upper)

Submission: Screenshot of your R-Console showing the 10 values.

Exercise 4: Visualization Techniques

(3 points)

Name and explain briefly in your own words the three goals of visualizations. Make sure the differences between the goals are clearly described.

Submission: Text

Exercise 5: Visualization: Human vs. Computer

(4 points)

Comment on the following questions:

- a) Some of the best visualizations have been created without the use of computers. Does it make sense to teach "Information Visualization" in a computer-science course?
- b) On the other hand there is the possibility to use the computer to automatically extract information out of the data. Does it make sense to visualize the data/results?

Submission: Text

Exercise 6: R-Getting Started

(5 point)

a) Create a vector containing values from 0 to 50 with a distance of 0.5.

HINT: *Have a look at the function seq()*

b) Calculate the square root for each of these values and add this vector to the other vector as a second column.

HINT: *Have a look at the functions sqrt() and cbind()*

- c) Visualize the result with the plot() function.
- d) Calculate the logarithm (base 2 and 10) for each of the values calculated in a).

HINT: *Have a look at the function log()*

e) Add the two logarithmic curves to your plot visualized in c). Use different colors for the curves.

HINT: *Have a look at the function lines()*

Submission: Code for tasks a), b), c), d) and e) Screenshots of the results c) and e)

Exercise 7: R-Vector Comparison

(3 points)

- a) Create the following vector vec: 2^n with $n \in N\{1,2,3,...,50\}$
- b) Create the following vector vec: n^2 with $n \in \mathbb{N}\{1,2,3,...,50\}$
- c) Which index positions contain identical values? $(2^n == n^2)$
 - a. Print the values
 - b. Print the index positions
 - c. Count the number of identical index positions

Submission: Code for the tasks a), b) and c). Results for each subtask of c)