

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Primer Examen Parcial		
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información		
Apellido y Nombre:	LU:	Hojas entregadas:
(en ese orden)		(sin enunciado)
Profesor:		
NOTA: Resolver los ejercicios en hojas separadas. Poner nombre, LU y número en cada hoja.		

Apague cualquier dispositivo electrónico en su poder y manténgalo guardado. No puede utilizar auriculares, ni calculadora. Lea todo el ejercicio antes de comenzar a desarrollarlo.

Ejercicio 1. Dado el número **decimal** -298,5625 llevar adelante los siguientes cambios de base:

- a) Convertirlo a **octal**, empleando el método de la **división** tanto para la parte entera como para la parte fraccionaria, expresando el resultado en **complemento a la base**, con 4 dígitos octales para la parte entera y 6 para la parte fraccionaria.
- b) Convertirlo a **binario** utilizando el método de la **multiplicación** tanto para la parte entera como para la parte fraccionaria, expresando el resultado en **complemento a la base disminuida**, con 12 bits para la parte entera y 6 bits para la parte fraccionaria.

Ejercicio 2. Considerando los números **decimales** X=1537 e Y=2559, llevar adelante las siguientes operaciones con una precisión de cuatro dígitos (incluido el signo), indicando claramente el resultado obtenido y la existencia o no de *overflow*:

- a) Calcular -X-Y, trabajando en **hexadecimal** en **complemento a la base**.
- b) Calcular X + Y, trabajando en hexadecimal en complemento a la base disminuida.
- c) Calcular X Y, haciendo uso de un hardware que opera en una codificación **BCD Exceso- 3** y **complemento a la base**, indicando claramente qué operación se está realizando en cada uno de los pasos intermedios.

Ejercicio 3. Considerando el Código Cíclico Redundante (CRC):

- a) Construir el mensaje T(x) a transmitir asociado al mensaje de datos $M(x) = 110\,1011\,1011$ empleando el polinomio generador $G(x) = x^4 + x + 1$.
- b) Suponiendo que durante la transmisión el mensaje T(x) es modificado con un error E(x) de tal forma que el receptor recibe el mensaje $T'(x) = 110\,0011\,0011\,1011$, determinar cómo opera el mecanismo de detección de errores y cuál es la conclusión que se alcanza.

c) Comparando el mensaje transmitido T(x) y el mensaje recibido T'(x), ¿cuál es el desarrollo del polinomio de error E(x)? Sabiendo cuál fue el error exacto que existió, ¿cuál es la longitud de la ráfaga en error? y ¿a qué conclusión se puede arribar?

Ejercicio 4. Considerando el código Hamming mínima distancia 4 (Hamming extendido), empleando paridad par y estando la secuencia ordenada de izquierda a derecha:

- a) Calcular los bits de código asociados al dato 0110 1011 y armar el codeword correspondiente que integra el dato y los bits calculados. ¿Cuántos bits de código se tienen que completar?. Justifique su respuesta.
- b) Considerando que el receptor recibe el codeword 1011110110110 que contiene los bits de dato y de código C_i . Recalcular los bits de código y determinar cuál es el síndrome.
- c) Determinar cómo trabaja el mecanismo de detección/corrección ante una política d=2, c=1, con los resultados obtenidos en el inciso b).
- d) Determinar cómo trabaja el mecanismo de detección/corrección ante una política d=3, c=0, si el síndrome fuera 1110.
- e) Determinar cómo trabaja el mecanismo de detección/corrección ante una política d=2, c=1, si el síndrome fuera 0000.

Ejercicio 5. Dadas las siguientes declaraciones de tipos:

```
typedef void * tElemento;
typedef struct nodo{
   tElemento elemento;
   struct nodo * padre;
   struct nodo * hijo_izq;
   struct nodo * hijo_der;
} * tNodo;
typedef struct abb{
   unsigned int cant_elementos;
   struct nodo * raiz;
} * tABB;
```

Implementar en lenguaje C una función void insertar (tABB a, tElemento e, int (*f) (void *,void *)), que dado un Árbol Binario de Búsqueda y una función de comparación f, inserte el elemento e en su correspondiente ubicación, haciendo un correcto uso de la memoria dinámica. Se considera que la función f, devuelve -1 si el orden del primer argumento es menor que el orden del segundo, 0 si el orden es el mismo, y 1 si el orden del primer argumento es mayor que el orden del segundo. Deben hacer uso de malloc al crear un nuevo nodo, y moverse sobre la estructura de datos haciendo uso del comparador.