T3: Principios de Programación Paralela T3.1: Conceptos

Departamento de Ingeniería de Computadores

Primavera 2021

Índice

Introducción

Niveles de Paralelismo

3 Dependencias de Datos

Principios de Programación Paralela

Objetivos del tema

- Adquirir principios básicos de programación paralela
- Conocer modelos de programación paralela
- Ser capaces de evaluar algoritmos paralelos
- Analizar posibilidades de paralelización
- Saber diseñar algoritmos paralelos
- Implementar códigos paralelos
- Técnicas de optimización de aplicaciones paralelas

Introducción

Computación secuencial por simplicidad

- Modelo secuencial de computador (Arquitectura von Neumann).
 Visión de alto nivel que considera el computador como un todo, en lugar de múltiples elementos operando simultáneamente.
- Computación secuencial. Ejecución de instrucciones en serie.
- Potencia computacional limitada.

Limitaciones de la computación secuencial

- Limitaciones físicas (miniaturización y disipación de calor). Al límite de la ley de Moore: la densidad de transistores se duplicada cada 1,5 años desde 1965.
- Los 3 muros (consumo, memoria y paralelismo a nivel instrucción)
- Tamaño de problema (limitado por memoria direccionable)
- Requerimiento de tiempo real (limitado por potencia computacional)
- Grandes retos (e.g., análisis del genoma humano)

Introducción

Niveles en la estructura de un computador

Introducción

Potencia de la computación paralela

- Computador paralelo. Aquel que permite la ejecución simultánea de instrucciones.
- Computación paralela. Ejecución simultánea de tareas en un computador paralelo.
- Gran potencia computacional basada en la organización y no en la tecnología ya que es la misma.

Aspectos de la computación paralela

- La Computación de Altas Prestaciones o High Performance Computing (HPC) se basa en la computación paralela.
- Arquitecturas paralelas desde un procesador dual-core hasta supercomputador TOP500 (top500.org).
- Popularización del paralelismo debido a la ubicuidad de los procesadores multinúcleo.

Finis Terrae II

- 317 nodos de computación
- 328 TFLOPS
- 33,8 TB RAM
- 1,5 PB de disco

Niveles de Paralelismo

Niveles en un computador paralelo

Niveles de Paralelismo

Niveles en un computador paralelo

- Nivel hardware. Replicación de recursos hardware (e.g., CPU cores, unidades funcionales, camino de datos, memoria), interconectados mediante buses/redes. Uso de aceleradores hardware (e.g., GPUs y FPGAs). Conceptualmente dos modelos (abstracciones) de computador paralelo:
 - Computador paralelo de memoria compartida
 - Computador paralelo de memoria distribuida
- Nivel software básico. Gestión del nivel hardware (SO, gestor de recursos, middleware)
- Nivel software intermedio. Herramientas para implementar aplicaciones paralelas (e.g., compiladores, librerías paralelas, depuradores, monitores, analizadores de rendimiento).

Niveles de Paralelismo

Niveles en un computador paralelo

- Nivel software intermedio (cont.). Dos aproximaciones:
 - Compilador lenguaje paralelo o lenguaje secuencial con directivas paralelas como OpenMP. (generalmente en computador paralelo de memoria compartida).
 - Librerías de paso de mensajes (generalmente computador paralelo de memoria distribuida).
- Nivel de software. Códigos o núcleos computacionales desarrollados por el usuario y ejecutables sobre un computador paralelo.
- Nivel de aplicaciones. Descansa sobre todos los demás niveles subyacentes. Así, una aplicación de simulación financiera puede depender de kernels numéricos computacionales, que a su vez pueden estar paralelizados con un entorno paralelo que incluye una librería de paso de mensajes, que se ejecuta a través de un SO/gestor de recursos sobre un computador paralelo.

Computación concurrente vs paralela

Concurrencia

Paralelismo

Dependencias de Datos

- Dependencia de flujo (RAW o verdadera): La instrucción l2 posee una dependencia de flujo respecto de l1, si una variable generada por l1 es utilizada como operando de l2. Dependencia "inherente" al código.
- Antidependencia (WAR): 12 es antidependiente de 11, si 12 modifica una variable utilizada como operando por 11.
- **Dependencia de salida (WAW)**: I1 y I2 poseen una dependencia de salida entre ambas si las dos generan la misma variable.

Detección de paralelismo entre dos segmentos de código

No tener dependencias es una condición que deben cumplir dos tareas para poder ser ejecutadas en paralelo.