Topologie & Calcul différentiel

${\rm Quizz}~4$

1)	Calculer le	es matrices	${\it hessiennes}$	(en	précisant	leurs	${\rm domaines}$	de	définition)	des	fonctions
suiv	vantes:										

$$f(x_1,\ldots,x_n) = \frac{1}{2} \sum_{i=1}^n a_i x_i^2$$
, $f(x_1,x_2) = x_1 x_2$, $f(x_1,x_2) = \frac{x_1}{x_2}$.

$2\sum_{i=1}^{n}$									
2) Soit f une fonction affine de \mathbb{R}^n dans \mathbb{R} . Alors f est deux fois continûment différentiable sur \mathbb{R}^n , et $H(x)$ est la matrice nulle pour tout $x \in U$.									
Vrai \square Faux \square									
3) Soit f une fonction de \mathbb{R}^n dans \mathbb{R} , deux fois continûment différentiable sur \mathbb{R}^n , et telle que $H(x)$ est identiquement nulle sur \mathbb{R}^n . Alors f est affine.									
Vrai \square Faux \square									
4) Soit f une fonction à valeurs dans \mathbb{R} , deux fois continûment différentiable au voisinage d'un point $x \in \mathbb{R}^n$. On suppose que l'on connait $\langle H(x) \cdot h \mid h \rangle$ pour tout h de \mathbb{R}^n . Peut on en déduire la matrice $H(x)$?									
Oui \square Non \square									
5) Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} , qui s'écrit $g_1(x_1) + g_2(x_2)$, où g_1 et g_2 sont deux fonctions C^2 de \mathbb{R} dans \mathbb{R} . Alors f est deux fois continûment différentiable sur \mathbb{R}^2 , et la matrice $H(x)$ est diagonale en tout point.									
Vrai □ Faux □									
5) Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} , qui s'écrit $g(x_2-x_1)$, où g est une fonction C^2 de \mathbb{R} dans \mathbb{R} . Alors									
Vrai \square Faux \square f est deux fois continûment différentiable sur \mathbb{R}^2									
Vrai \square Faux \square $H(x)$ est une matrice antisymétrique pour tout $x \in \mathbb{R}^2$									
Vrai \square Faux \square $H(x)$ est de rang ≤ 1 pour tout $x \in \mathbb{R}^2$									
Vrai \square Faux \square Le vecteur $(1,1)$ est dans $\ker H(x)$ pour tout $x \in \mathbb{R}^2$									