

Details, Part III: Kinematics

Electrons are **relativistic** \rightarrow kinetic energy $K \neq p^2/2m$...

Einstein mass-energy relations:

(total energy E , rest mass m)

$$1) \quad E^2 = (mc^2)^2 + (cp)^2$$

$$2) \quad E = mc^2 + K$$

Problem: units are awkward, too many factors of c ...

Notice that if $c=1$ then (E, m, p, K) all have the same units!

If we set $c = 1$ in Einstein's mass-energy relations, then in order to "get the answer right", the factor c has to be absorbed in the units of p and m :

$$1) \quad E^2 = m^2 + p^2$$

$$2) \quad E = m + K$$

Let the symbol "[]" mean "the units of", and then it follows that:

$$[E] = \text{GeV}, \quad [m] = \text{GeV}/c^2, \quad [p] = \text{GeV}/c$$

(Frequently, physicists set $c = 1$ and quote mass and/or momentum in "GeV" units, as in the graph of the proton electric form factor, lecture 4. This is just a form of shorthand - they really mean GeV/c for momentum and GeV/c^2 for mass.... numerically these have the same value because **the value of c is in the unit** - we don't divide by the numerical value $3.00 \times 10^8 \text{ m/s}$ or the answer would be ridiculously small (wrong!))

4 - momentum transfer: Q^2

Ref: Arnold et al., Phys. Rev. Lett. 57, 174 (1986)

(Inverse Fourier transform gives the electric charge density $\rho(r)$)

When we want to describe a scattering problem in quantum mechanics, we have to write down wave functions to describe the initial and final states....

For example, the incoming electron is a free particle of momentum: $\vec{p}_o = \hbar \vec{k}_o$

The electron wave function is:
where V is a normalization volume.

$$\psi(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\vec{k}_o \cdot \vec{r}}$$

If we set $\hbar = 1$, then momentum p and wave number k have the same units, e.g. fm⁻¹:

to convert, use the factor:

$$\hbar c = 197 \text{ MeV.fm} \rightarrow k = \frac{cp}{\hbar c}$$

Example:

An electron beam with total energy $E = 5 \text{ GeV}$ has momentum $p = 5 \text{ GeV}/c$ ($m \ll E$) ...
the same momentum is equivalent to $5 \text{ GeV}/(0.197 \text{ GeV.fm})$ or $p = k = 25 \text{ fm}^{-1}$.

So, $p = 5 \text{ GeV}$, $5 \text{ GeV}/c$, and 25 fm^{-1} all refer to the same momentum!

Note: Elastic scattering is the relevant case for our purposes here. This means that the beam interacts with the target proton with no internal energy transfer.

- Specify total energy and momentum for the incoming and outgoing particles as shown.
- Electron mass $m \ll E_o$. Proton mass is M .

Conserve total energy and momentum: $E_o + M = E' + W, \quad \vec{p}_o = \vec{p}' + \vec{q}$

Next steps: find the scattered electron momentum p' in terms of the incident momentum and the scattering angle. Also, find the momentum transfer q^2 as a function of scattering angle, because q^2 will turn out to be an important variable that our analysis of the scattering depends on ...

- conserve momentum:

$$\vec{q} = (\vec{p}_o - \vec{p}')$$

1) $q^2 = p_o^2 + (p')^2 - 2p_o \cdot p' \cos\theta$

- now use conservation of energy with $W = M + K$ for the proton; $E = p$ for electrons:

$$E_o + M = E' + M + K \quad \Rightarrow \quad K = (p_o - p')$$

- use kinematic relations to substitute for $K = (p_o - p')$ and q^2 :

$$W^2 \equiv M^2 + q^2 = M^2 + 2MK + K^2$$

Note: these solutions 1), 2) are perfectly general as long as the electron is relativistic. The target can be anything!

2) $p' = \frac{p_o}{1 + \frac{p_o}{M}(1 - \cos\theta)}$

Example: 5 GeV electron beam, proton target

7

$$p_o = 5 \text{ GeV/c}$$

$$p' = \frac{p_o}{1 + \frac{p_o}{M} (1 - \cos \theta)}$$

Limits:

$$0^\circ: p' = p_o$$

$$180^\circ: p' \approx p_o / (1 + 2p_o)$$

It is often convenient to use 4 - vector quantities to work out reaction kinematics.

There are several conventions in this business, all of them giving the same answer but via a slightly different calculation. We will follow the treatment outlined in Perkins, 'Introduction to High Energy Physics', Addison-Wesley (3rd Ed., 1987).

Define the relativistic 4-momentum: $P_\mu = (\vec{p}, iE)$, $\mu = 1\dots4$

The length of any 4 - vector is the same in all reference frames:

'length' squared →

$$\sum_{\mu} P_{\mu}^2 = p^2 - E^2 = -m^2$$

For completeness, a Lorentz boost corresponding to a relative velocity β along the x-axis is accomplished by the 4x4 "rotation" matrix Λ , with:

$$\beta = v/c, \quad \gamma = (1 - \beta^2)^{-1/2}$$

$$\Lambda = \begin{bmatrix} \gamma & 0 & 0 & i\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -i\beta\gamma & 0 & 0 & \gamma \end{bmatrix}$$

Define: 4 - momentum transfer Q between incoming and outgoing **electrons**:

$$Q = (P_o - P') = (\vec{p}_o - \vec{p}', i(E_o - E')) = (\vec{q}, i(E_o - E'))$$

Since Q is a 4 - vector, the square of its length is invariant:

$$Q^2 = (\vec{p}_o - \vec{p}')^2 - (E_o - E')^2$$

Expand, simplify, remembering to use $p^2 - E^2 = -m^2$ and $m \ll E, p \dots$

→

$$Q^2 = 2p_o p' (1 - \cos \theta)$$

4-momentum transfer squared is the variable used to plot high energy electron scattering data:

$$Q^2 = 2p_o p' (1 - \cos \theta)$$

For a nonrelativistic quantum treatment of the scattering process (next topic!) the form factor is expressed in terms of the 3-momentum transfer (squared):

$$q^2 = p_o^2 + (p')^2 - 2p_o p' \cos \theta$$

Fraunfelder & Henley use

$$P_\mu = (E, \vec{p}) \rightarrow P^2 = E^2 - p^2 = m^2$$

... so with this convention, one has to define a dot product differently, essentially putting in the minus sign by hand.

Our convention is less arbitrary:

$$P_\mu = (\vec{p}, iE) \rightarrow P^2 = p^2 - E^2 = -m^2$$

Note that the norms differ by a minus sign, which carries over to the sign of Q^2
(see the note on p. 139, F&H:

their $Q^2 = -p^2$ at low energy, whereas for us, $Q^2 = +p^2$ in the same regime.

It seems more natural for Q^2 to be a positive number, so our convention is preferred.)

The difference between numerical values of Q^2 and q^2 decreases as the mass of the target increases → we can “get away” with a 3-momentum description (easier) to derive the cross section for scattering from a nucleus. Note also the simplification that $p' \approx p_0$ and becomes essentially independent of θ as the mass of the target increases. (*Why? as $M \rightarrow \infty$, the electron beam just ‘reflects’ off the target - just like an elastic collision of a ping pong ball with the floor - 16.105!!*)

5 GeV electron beam in both cases, as before, but the target mass increased from a proton to a nucleus (e.g., ^{16}O , ^{100}Ru)

Recall from lecture 4:

Experimenters detect elastically scattered electrons and measure the cross section:

$$\frac{d\sigma}{d\Omega}(\theta) = \left. \frac{d\sigma}{d\Omega} \right)_o [F(q^2)]^2$$

point charge result (known)

"Form factor" gives the Fourier transform of the extended target charge distribution. Strictly correct for heavy nuclei: same idea but slightly more complicated expression for the proton...

Last job: we want to work out an expression for the scattering cross section to see how it relates to the structure of the target object.

Basic idea:

The scattering process involves a transition between an initial quantum state: $|i = \text{incoming } e^-, \text{target } p\rangle$ and a final state $|f = \text{scattered } e^-, \text{recoil } p\rangle$.

The transition rate λ_{if} can be calculated from "Fermi's Golden Rule", a basic prescription in quantum mechanics: (ch. 2)

Units: s^{-1}

$$\lambda_{if} = \frac{2\pi}{\hbar} |M_{if}|^2 \rho_f$$

where the 'matrix element M_{if} ' is given by:

$$M_{if} = \int \psi_f^* V(\vec{r}) \psi_i d^3 r$$

The potential $V(r)$ represents the interaction responsible for the transition, in this case electromagnetism (Coulomb's law!).

and the 'density of states' ρ_f is a measure of the number of equivalent final states per unit energy interval - the more states available at the same energy, the faster the transition occurs.

$$\rho_f = dn/dE_f$$

Job for next week: relate the transition rate to the scattering cross section!