

Task-based Classification of Reflective Thinking Using Mixture of Classifiers*

Major Area Presentation, Spring 2022

Saandeep Aathreya
PhD Student
University of South Florida, FL, USA

Structure of Presentation

- Defining Affect and its Application
- Task-based Classification of Reflective Thinking Using Mixture of Classifiers
- Key takeaways and filling the gap
- PhD Roadmap

Affective Computing

"Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects¹"

Emotion as Categorical² set

Emotion as **Dimensional**³ set

[1] Affective computing - Wikipedia.

[2] Ekman, Paul. "An argument for basic emotions." Cognition & emotion 6.3-4 (1992): 169-200.

Application Areas

Automobiles
(Air traffic control, driver attentiveness)

Healthcare (Patient monitoring, Depression analysis, ASD detection)

Entertainment (Virtual Environment, Data synthesis, content preference)

Education (Student engagement analysis, Reflective Thinking)

Security
(Face Recognition, Face
Authentication)

Leveraging ML/DL in Affective Computing

Application Areas

Automobiles (Air traffic control, driver attentiveness)

Healthcare (Patient monitoring, Depression analysis, ASD detection)

Entertainment (Virtual Environment, Data synthesis, content preference)

Education
(Student engagement analysis,
Reflective Thinking)

Security
(Face Recognition, Face
Authentication)

Dataset and Task Description

WeDraw-1 Dataset⁴

Task 0 Task 1 Task 2

Forming Angles, where the child explored static representation of given angles using their arms

Bodily Angles Sums and Differences, given two 3D object representing angles, the child had to represent the sum of angles using their arms.

Rotating in Angles, represent the above sum of angles using full body rotation.

Making shape reflections, where the child explored symmetry and reflections of shapes using different shaped cutouts.

Reflective Thinking Detection

Task 0: Forming Static Angles

Task 1: Bodily Angles Sums and Differences, Rotating in Angles

Task 2: Making shape reflections

Feature Space

(a) Raw Features: $\mathcal{R} \in \mathbb{R}^{n \times 17 \times 3}$

(c) Temporal Features: $D \in \mathbb{R}^{n \times 17}$

(b) Handcrafted Features: $\mathcal{H}_{seg} \in \mathbb{R}^{n \times 5}$

- (d) Extended Handcrafted Features: $\mathcal{H}_{ext} \in \mathbb{R}^{n \times 29}$
- Extended Handcrafted features inspired by the baseline ⁵.
- 29 features evaluated on different energy functions.

Augmentation Techniques

Synthetic Minority Oversampling Technique (SMOTE)⁶

10

Data Preprocessing

Task-based classification

Fig 7: Task-based framework

Features Raw Features Handcrafted Features Extended HF Temporal Features Augmentation SMOTE Reflection

Classifier

Random Forest

Gradient Boosting

LSTM

Table I: Bag of Features, Augmentations, and Classifiers

Data Visualization using UMAP⁷

Feature selection for task-predictor

Raw Features \mathcal{R} shows distinct segregation in low-dimensional space per task

Fig 8: UMAP embeddings of Raw features based on tasks

Data Visualization (Task 0)

Fig 9: UMAP embeddings for feature elimination for Task 0 on RTD labels.

Data Visualization (Task 1)

Fig 10: UMAP embeddings for feature elimination for Task 1 on RTD labels.

Data Visualization (Task 2)

Fig 11: UMAP embeddings for feature elimination for Task 2 on RTD labels.

Architecture

Classification Type		Method	Feature			
Task Prediction		Random Forest	Raw Feature			
RTD	Task 0	Gradient Boosting	Handcrafted Feature			
	Task 1	Random Forest	Raw Feature			
	Task 2	Gradient Boosting	Handcrafted Feature			

Results – Phase I | Task Prediction

Fig 12: Task prediction on validation set

Results – Phase II | RTD Classification

Fig 13: RTD results across validation and test sets

Results – Better than Random Prediction

Fig 14: Task-wise ROC curves

Results – Optimal Threshold for improved RTD classification

Fig 15: Comparison of F1 minority and MCC scores after finding best threshold score

Experiments

Fig 16: Effect of SMOTE as data augmentation

Fig 17: Using Temporal Networks with SMOTE

(b)

Space

UMAP

Class	RTD No	RTD Yes				
RTD No	648	81				
RTD Yes	40	23				

Dataset	Accuracy (in %)	F1	MCC		
Validation	85	[0.91, 0.28]	0.2		
Test	81	[0.89, 0.23]	0.13		

Confusion

Results

Limitations and Future Work

• Minority class performance is limited.

• Dimensionality reduction using UMAP did not provide concrete class separation

Addressing the Limitations

Flow-based Generative Models⁷

Fig 18: Normalizing Flow Architecture

Self-attention models (Transformers)⁸

Fig 19: Transformer visualization

PhD Roadmap (Publications)

- Task-based Classification of Reflective Thinking Using Mixture of Classifiers (ACII 2021)
- S. Aathreya, L. Jivnani, S. Srivastava, S. Hinduja and S. Canavan. Task-based Classification of Reflective Thinking Using Mixture of Classifiers. *Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)*, 2021.
- Recognizing Emotion in the Wild using Multimodal Data (ICMI 2020)
- S. Srivastava, S. Aathreya, S. Hinduja, Sk R. Jannat, H. Elhamdadi, and S. Canavan. Recognizing Emotion in the Wild using Multimodal Data. *International Conference on Multimodal Interaction, 2020.*
- Three-level Training of Multi-Head Architecture for Pain Detection (FG 2020)
- S. A. S. Lakshminara, S. Hinduja and S. Canavan. Three-level Training of Multi-Head Architecture for Pain Detection. *Face and Gesture Recognition*, 2020.

PhD Roadmap (Current Work)

Fig 20: Under preparation for ACII 2022

Fig 21: Under preparation for WACV 2023

PhD Roadmap (Future Work)

Flow-based Supervised Learning using Contrastive
Bhattacharyya Loss

Cross-Modal Data Synthesis Z_{happy} Z_{anger} Z_{sad} $Z_{surprise}$ $Z_{surprise}$ $Z_{disgust}$ $Z_{disgust}$ Z_{happy} $Z_{disgust}$ Z_{happy} $Z_{disgust}$ Z_{happy}

Fig 22: Progress till now includes low dimensional output. Need to scale it to higher dimensions.

Fig 23: Cross Modality Synthesis by combining Data Augmentation and Supervised Classification.

PhD Roadmap (Putting It Together)

PhD Roadmap (Timeline)

T l		Timeline						
Tasks	Spring 2022	Summer 2022	Fall 2022	Spring 2023	Summer 2023	Fall 2023	Spring 2024	
Conditional Synthesis of Affect Modality using Flow-based generative models								
Affective Computing & Intelligent Interaction (ACII) 2022 Submission								
PTSD understanding using self-attention models								
Winter Applications of Computer Vision (WACV) 2023 Submission								
Flow-based Classification using Contrastive Bhattacharyya Loss								
Computer Vision and Pattern Recognition (CVPR) 2023								
Cross-modal Synthesis of Affect Modalities (Face, physiological, audio)								
IEEE Transactions on Affective Computing (TAC) Submission								
Dissertation Defense								

PhD Timeline: Fall 2019 – Spring 2024

Thesis Defense: April 2024

PhD Highlights so far...

- Collaborating with <u>Dr. Shaun Canavan</u> and <u>Dr. Alison Salloum</u> for PTSD understanding
- Collaborating with <u>Dr. Tempest Neal</u> and <u>Dr. Shaun Canavan</u> (NSF award no. 2039373)
 - Multimodal Continuous Authentication
- ICPR 2022 Reviewer
- Joining as <u>AI research Intern</u> at Zippin for Summer 2022
- Best paper award (ACIIW 2021)
 - Task-based Classification of Reflective Thinking Using Mixture of Classifiers

Summary

- Application areas of Affective Computing
 - Better augmentation technique
 - Capture the underlying distribution of the dataset
 - Comprehensible latent space representation
- Addressing Limitations
 - Conditional generative models (Glow⁸)
 - Synthesize and manipulate likelihood-based data.
 - Supervised classification
 - Flow-based models
 - Contrastive Bhattacharyya loss