ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Advanced Quantum Mechanics

Answer $\underline{\mathbf{TWO}}$ questions

The use of calculators is permitted, as long as they cannot store text and have no graphing capability.

The numbers are given as a guide to the relative weights of the different parts of each question.

You may assume the following formulae in any question if proof is not explicitly requested:

Special integrals

$$\int_{-\infty}^{\infty} x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(2a)^n} \sqrt{\frac{\pi}{a}}, \qquad \int_{0}^{\infty} x^n e^{-ax} dx = \frac{n!}{a^{n+1}}, \quad a > 0.$$

4-vectors

Use notation $x^{\mu}=(x^0,\mathbf{r})$ for 4-position and $p^{\mu}=(E/c,\mathbf{p})$ for 4-momentum. In electromagnetism $A^{\mu}=(\Phi/c,\mathbf{A})$ for 4-potential.

Klein-Gordon equation in scalar S and vector $(V_0/c, \mathbf{V})$ potential field

$$[(\hat{\mathbf{p}} - \mathbf{V})^2 c^2 + (mc^2 + S)^2] \Psi = (i\hbar \partial_t - V_0)^2 \Psi.$$

Dirac equation in scalar S and vector $(V_0/c, \mathbf{V})$ potential field

$$\left[\boldsymbol{\alpha} \cdot (\hat{\mathbf{p}} - \mathbf{V})c + \beta(mc^2 + S)\right] \Psi = (i\hbar\partial_t - V_0)\Psi.$$

Standard spinor solutions to the free massive Dirac equation

$$u_s(E, \mathbf{p}) = \sqrt{E + mc^2} \begin{pmatrix} \phi_s \\ \frac{c\boldsymbol{\sigma} \cdot \mathbf{p}}{E + mc^2} \phi_s \end{pmatrix}, \quad \phi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } \phi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix};$$

Standard matrices

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};
\alpha_{i} = \begin{pmatrix} 0 & \sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix}, \quad \Sigma_{i} = \begin{pmatrix} \sigma_{i} & 0 \\ 0 & \sigma_{i} \end{pmatrix};
\gamma_{0} = \begin{pmatrix} I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix}, \quad \gamma_{1} = \begin{pmatrix} 0 & \sigma_{x} \\ -\sigma_{x} & 0 \end{pmatrix}, \quad \gamma_{2} = \begin{pmatrix} 0 & \sigma_{y} \\ -\sigma_{y} & 0 \end{pmatrix}, \quad \gamma_{3} = \begin{pmatrix} 0 & \sigma_{z} \\ -\sigma_{z} & 0 \end{pmatrix}.$$

Space-time metric We use the metric $\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$.

Laplacian operator in terms of angular momentum operator $\hat{\mathbf{L}}$

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r - \frac{\dot{\mathbf{L}}^2}{\hbar^2 r^2}.$$

Solution to Dirac equation in spherical vector potential $(V_0(r)/c, \vec{0})$

$$\psi_{jm}^{\kappa}(\mathbf{r}) = \begin{pmatrix} f_{j}^{\kappa}(r)\mathcal{Y}_{jm}^{\kappa}(\theta,\phi) \\ ig_{j}^{\kappa}(r)\mathcal{Y}_{jm}^{-\kappa}(\theta,\phi) \end{pmatrix} \text{ with } F = rf \text{ and } G = rg,$$

$$\hbar c \left[\frac{d}{dr} - \frac{\kappa}{r} \right] G_{j}^{\kappa}(r) = -\left(E - V_{0}(r) - mc^{2} \right) F_{j}^{\kappa}(r),$$

$$\hbar c \left[\frac{d}{dr} + \frac{\kappa}{r} \right] F_{j}^{\kappa}(r) = \left(E - V_{0}(r) + mc^{2} \right) G_{j}^{\kappa}(r).$$

2 of 5 P.T.O

- 1. a) Show that the angular momentum operator \hat{L}_x is the generator of infinitesimal rotations about the x-axis for a spinless particle. Derive an expression in terms of \hat{L}_x for the operator \hat{U}_β that represents a finite rotation of angle β about the x-axis. [8 marks]
 - b) For a spinless particle with non-zero orbital angular momentum, write down the operator $\hat{U}_{\alpha,\beta,\gamma}$ representing a rotation with Euler angles (α,β,γ) . Within the space of states with angular momentum quantum number l=1, the operators \hat{L}_x , \hat{L}_y , and \hat{L}_z may be written in matrix representation as

$$\hat{L}_x = \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{L}_y = \frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{L}_z = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Show that for the choice of Euler angles $(0,0,\gamma)$ the \hat{L}_x eigenstate

$$\frac{1}{\sqrt{2}} \left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right),$$

can be transformed into an eigenstate of \hat{L}_y for an appropriate value of γ . Give the corresponding Wigner D-matrix.

[7 marks]

c) A charged quantum rotor of angular momentum quantum number l=1 is placed in a uniform magnetic field oriented along the z-axis. The Hamiltonian is given by

$$\hat{H}_0 = \alpha \hat{L}_z,$$

where α is a positive constant. Initially the rotor is in the ground state of \hat{H}_0 . At time t=0 a weak magnetic field is switched on in the x-direction, which subsequently decays in time. The Hamiltonian of the rotor is now

$$\hat{H}(t) = \hat{H}_0 + \beta \hat{L}_x \exp(-t/\tau),$$

where β and τ are positive constants, with $\beta \ll \alpha$.

i) Using first-order perturbation theory, calculate the transition probability P(t) to the first excited state of the rotor as a function of time.

[7 marks]

ii) Determine the long-time limit $P(\infty)$ and find a condition on τ to ensure its validity. [3 marks]

3 of 5 P.T.O

2. a) Consider a free relativistic spin-1/2 particle of mass m. Define the Dirac four-current $j^{\mu} = (c\rho, \mathbf{j})$ and show that the Dirac equation implies the continuity equation,

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \mathbf{j} = 0.$$

[4 marks]

- b) Now consider a relativistic electron moving in the x-y plane with a uniform applied magnetic field in the z-direction, given by $\mathbf{B} = (0, 0, B)$.
- i) Show that this magnetic field can be described by the vector potential $\mathbf{A} = (0, xB, 0)$ and prove that the following identity holds for this potential:

$$[\boldsymbol{\sigma} \cdot (\hat{\mathbf{p}} + e\mathbf{A})]^2 = (\hat{\mathbf{p}} + e\mathbf{A})^2 + e\hbar\sigma_z B.$$

[4 marks]

ii) The Hamiltonian for a non-relativistic electron in the same potential is

$$\hat{H}_{NR} = \frac{1}{2m}(\hat{\mathbf{p}} + e\mathbf{A})^2,$$

which has eigenvalues

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c.$$

Here, $n = 0, 1, 2, \ldots$ and $\omega_c = eB/m$ is the cyclotron frequency.

Express the Dirac equation for this electron in terms of the upper components only. Find the energy eigenvalues by treating the upper components as simultaneous eigenstates of \hat{H}_{NR} and of the spin operator \hat{S}_z .

[8 marks]

iii) For the weak-field case, $\hbar\omega_c \ll mc^2$, show that the energy levels of the relativistic electron are given by

$$E_n^{\uparrow} = mc^2 + (n+1)\hbar\omega_c, \quad E_n^{\downarrow} = mc^2 + n\hbar\omega_c, \quad n = 0, 1, 2\dots$$

for spin-up and spin-down electrons, respectively.

[2 marks]

c) A beam of massless relativistic particles with charge q=e, energy E_p , and in the spin-up eigenstate of \hat{S}_z (spinor ϕ_1) is moving in the positive z-direction and encounters an electrostatic step potential defined by

$$e\Phi(z) = \begin{cases} 0 & \text{for } z < 0, \\ V_0 & \text{for } z > 0. \end{cases}$$

Show that for $E_p > V_0$ all particles are transmitted.

[7 marks]

4 of 5 P.T.O

- 3. a) Consider a non-relativistic spinless particle of charge q and mass m in the 4-potential $A^{\mu} = (\Phi/c, \mathbf{A})$.
 - i) Write down the electromagnetic gauge transformation for the potentials Φ and \mathbf{A} in terms of a differentiable function $\lambda(\mathbf{r},t)$.

[2 marks]

ii) The particle is placed in a homogenous oscillatory electric field of frequency ω directed along the z-axis, with $E_z = E_0 \cos(\omega t)$. In two different gauges the electric field may be considered as arising purely from the potential Φ , or purely from the potential \mathbf{A} . Write down the corresponding potentials and find a function $\lambda(\mathbf{r},t)$ that transforms from the first to the second. Given that $|\psi_1\rangle$ is a solution to the time-dependent Schrödinger equation in the first case, show that

$$|\psi_2\rangle = \exp\left(iq\lambda(\mathbf{r},t)/\hbar\right)|\psi_1\rangle,$$

is a solution in the second case.

[8 marks]

- b) Now consider a relativistic spinless particle of charge e that is bound to a nucleus by a Coulomb-like scalar potential $S(r) = -Z\hbar c\alpha/r$, where α is the fine-structure constant.
- i) Write down the time-independent Klein-Gordon equation for the eigenstates of the particle with energy E.

[2 marks]

ii) By considering an eigenstate of total angular momentum with quantum number l, show that the eigenvalue equation for the radial part $\psi(r)$ of the wave function of the particle can be written as

$$\left[2mE' + \hbar^2 \left(\frac{1}{r}\frac{\partial^2}{\partial r^2}r - \frac{l'(l'+1)}{r^2}\right) + \frac{2m\hbar cZ\alpha}{r}\right]\psi(r) = 0.$$
 (1)

Express E' and l'(l'+1) in terms of E and l.

[6 marks]

iii) The eigenvalues of equation (1) can be written in the form

$$E' = -\frac{1}{2}mc^2 \left(\frac{Z\alpha}{n'}\right)^2,$$

where n' is related to l and the principal quantum number $n = 1, 2, 3 \dots$ by

$$n' = n - (l + 1/2) + \sqrt{(l + 1/2)^2 + (Z\alpha)^2}.$$

Find the energy levels $E_{n,l}$ of the particle and discuss whether or not there are any restrictions on the allowed values of $Z\alpha$. Considering the limit $Z\alpha \ll 1$ find the first relativistic energy correction for the case l=0.

[7 marks]