CLAIMS

What is claimed is:

1	1.	A magnetic head, comprising:
2		a free layer;
3		an antiferromagnetic layer spaced apart from the free layer; and
4		an antiparallel (AP) pinned layer structure positioned between the free layer and
5		the antiferromagnetic layer and having a net magnetic moment equal to
6		about zero;
7		wherein the AP pinned layer structure includes antiparallel pinned layers that are
8		pinned through large magnetic anisotropy due to positive magnetostriction
9		and small net moment for the antiparallel pinned layers;
10		wherein the antiferromagnetic layer provides a coercivity that enhances pinning of
11		the AP pinned layer structure.
1	2.	A head as recited in claim 1, wherein the antiferromagnetic layer provides a
2		coercivity of at least about 300 Oe.
1	3.	A head as recited in claim 1, wherein the antiferromagnetic layer provides a
2		coercivity of at least about 400 Oe.

- 1 4. A head as recited in claim 1, wherein the antiferromagnetic layer is constructed of
 2 PtMn having a thickness of between about 50 Å and 100 Å.
- 1 5. A head as recited in claim 1, wherein the antiferromagnetic layer is constructed of
- 2 PtMn having a thickness of between about 60 Å and 90 Å.
- 1 6. A head as recited in claim 5, wherein the antiferromagnetic layer provides a coercivity of at least about 400 Oe.
- 1 7. A head as recited in claim 1, wherein the antiferromagnetic layer has a high positive magnetostriction.
- A head as recited in claim 1, wherein the AP pinned layer structure includes at
 least two pinned layers having magnetic moments that are self-pinned antiparallel
 to each other, the pinned layers being separated by an AP coupling layer.
- A head as recited in claim 8, wherein a thickness of the AP coupling layer and
 thicknesses of the pinned layers are selected to provide a pinned layer saturation
 field of at least 5 KOe.
- 1 10. A head as recited in claim 8, wherein the magnetic anisotropy of the AP pinned
 2 layer structure is oriented perpendicular to an ABS of the reading head.

1	11.	A head as recited in claim 1, wherein the head is adapted to read from media
2		having a bit density of at least about 200 Gbit/in ² .
1	12.	A head as recited in claim 1, further comprising an in-stack bias layer, the bias
2		layer stabilizing the free layer, the AP pinned layer structure stabilizing the in-
3		stack bias layer.
1	13.	A head as recited in claim 1, further comprising a bias layer formed along a track
2		edge of the head, the bias layer stabilizing the free layer.
1	14.	A head as recited in claim 1, wherein the head forms part of a GMR head.
1	15.	A head as recited in claim 1, wherein the head forms part of a CPP GMR sensor.
1	16.	A head as recited in claim 1, wherein the head forms part of a CIP GMR sensor.
1	17.	A head as recited in claim 1, wherein the head forms part of a tunnel valve sensor.
1	18.	A magnetic head, comprising:
2		a free layer;
3		an antiferromagnetic layer spaced apart from the free layer, the antiferromagnetic
4		layer being constructed of PtMn having a thickness of between about 50 Å
5		and 100 Å; and

6	an antiparallel (AP) pinned layer structure positioned between the free layer and
7	the antiferromagnetic layer, wherein the AP pinned layer structure
8	includes at least two pinned layers having magnetic moments that are self-
9	pinned antiparallel to each other through large magnetic anisotropy due to
10	positive magnetostriction and a small net moment for the antiparallel
11	pinned layers, the pinned layers being separated by an AP coupling layer;
12	wherein the antiferromagnetic layer provides a coercivity that enhances pinning of
13	the AP pinned layer structure.

- 1 19. A head as recited in claim 18, wherein the antiferromagnetic layer provides a coercivity of at least about 300 Oe.
- 1 20. A head as recited in claim 18, wherein the antiferromagnetic layer provides a coercivity of at least about 400 Oe.
- 1 21. A head as recited in claim 18, wherein the antiferromagnetic layer is constructed of PtMn having a thickness of between about 60 Å and 90 Å.
- 1 22. A head as recited in claim 18, wherein the antiferromagnetic layer has a high positive magnetostriction.
- 1 23. A head as recited in claim 18, wherein the pinned layers are constructed of at least
 2 CoFe and the AP coupling layer is constructed of at least Ru.

- 1 24. A head as recited in claim 18, wherein a thickness of the AP coupling layer and
- 2 thicknesses of the pinned layers are selected to provide a pinned layer saturation
- 3 field of at least 5 KOe.
- 1 25. A head as recited in claim 18, wherein the magnetic anisotropy of the AP pinned
- 2 layer structure is oriented perpendicular to an ABS of the reading head.
- 1 26. A head as recited in claim 18, wherein the head is adapted to read from media
- 2 having a bit density of at least about 200 Gbit/in².
- 1 27. A head as recited in claim 18, further comprising an in-stack bias layer, the bias
- 2 layer stabilizing the free layer, the AP pinned layer structure stabilizing the in-
- 3 stack bias layer.
- 1 28. A head as recited in claim 18, further comprising a bias layer formed along a track
- 2 edge of the head, the bias layer stabilizing the free layer.
- 1 29. A head as recited in claim 18, wherein the head forms part of a GMR head.
- 1 30. A head as recited in claim 18, wherein the head forms part of a CPP GMR sensor.
- 1 31. A head as recited in claim 18, wherein the head forms part of a CIP GMR sensor.

1	32.	A head as recited in claim 18, wherein the head forms part of a tunnel valve
2		sensor.
1	33.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head for reading from and writing to the magnetic media, each head
4		having:
5		a sensor having the structure recited in claim 1;
6		a write element coupled to the sensor;
7		a slider for supporting the head; and
8		a control unit coupled to the head for controlling operation of the head.
1	34.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head for reading from and writing to the magnetic media, each head
4		having:
5		a sensor having the structure recited in claim 18;
6		a write element coupled to the sensor;
7		a slider for supporting the head; and
Q		a control unit counled to the head for controlling operation of the head