Package 'SpeciesPool'

August 12, 2019
Title Plot-specific species pools based on Beal's smoothing
Version 0.0.0.9000
Description Set of functions to calculate the plot-specific species pool based on a vegetation database and Beals' smoothing.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends dplyr, Matrix, dismo, tidyr, reshape2, SpadeR, sp, vegan, parallel, doParallel, foreach
R topics documented:
beals.all bray.curtis Mij.calc SAR.IIIb SpeciesPool
Index

2 bray.curtis

bea]	0	ъ1	1
Deal	LS.	αт	. Т

Beals' smoothing

Description

Calculates Beals' smoothing for all species in a target plot, based on Mij matrix

Usage

```
beals.all(x.names, x.cover, Mij)
```

Arguments

x.names vector of species names or labelsx.cover vector of species presence-absences

Mij Matrix of pairwise likelihood of species co-occurrence (Sparse matrices ac-

cepted)

Value

A vector of bray-curtis dissimilarity between the target and all the other relevés in input.data

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

References

Ewald, J. (2002) Multiple controls of understorey plant richness in mountain forests of the Bavarian Alps. Phytocoenologia, 32, 85-100.

bray.curtis

Bray-Curtis dissimilarity

Description

Calculates Bray-Curtis dissimilarity between a target plot, and all the other plots in the dataset

Usage

```
bray.curtis(input.data, target.plot.ID)
```

Mij.calc 3

Arguments

```
input.data A species x relevés matrix with abundance values target.plot.ID ID or label of target plot
```

Value

A vector of bray-curtis dissimilarity between the target and all the other relevés in input.data

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

Mij.calc

Pairwise likelihood of species co-occurrence

Description

Intermediate step to calculate Beals' smoothing

Usage

```
Mij.calc(dt, verbose = F)
```

Arguments

dt

A data.frame with three columns: releve ID, species ID, and abundance

Value

Returns a square matrix of the likelihood of pairwise species co-occurrence

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

SpeciesPool SpeciesPool

_		_	-	-	_	
(Λ	u				h
	н	ı١	_	_	1	IJ

Rarefaction curves

Description

Builds an empirical rarefaction curve

Usage

```
SAR.IIIb(x, areas, n = 10)
```

Arguments

A vector of species richness

areas A vector of plot sizes

n numeric - number of intervals of rarefaction curve

Value

Returns a dataframe of cumulative richness and pooled plot areas

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

SpeciesPool

Species pool based on Beal's smoothing

Description

For each relevé, this function selectes all neighbouring relevé having a similar potential species composition, and fits empirical non-linear functions to rarefaction curves.

Usage

```
SpeciesPool(input.data, coords, Mij = NULL, ncores = 1, rows = NULL,
    t.radius = 20000, t.bray = 0.2, t.plot.number = 10L,
    cutoff = c("Chao", "Gompertz", "Michaelis"), verbose = T,
    species.list = F)
```

SpeciesPool 5

Arguments

input.data	data.frame of species abundances across relevés. It should have three columns: Relevé ID, Species ID, and species abundance
coords	A SpatialPointsDataFrame with the geographic coordinates of all plots. It should have Relevè ID and areas defined in the @data
Mij	Matrix of pairwise likelihood of species co-occurrence (Sparse matrices accepted). If not provided, it will be calculated from the data
ncores	integer indicating the number of cores to use. If ncores>1 the calculation will be don in parallel
rows	a vector of integers indicating on which rows of input.data the function should run
t.radius	Threshold of geographic buffer around target relevé
t.bray	Threshold of bray-curtis dissimilarity for selection relevé compositionally similar to target relevé
t.plot.number	Minimum number of neighbouring relevés for calculating rarefaction curves
cutoff	Which method to use to set the size of the species pool. Default is 'iChao2', other possible are 'Gompertz' or 'Michaelis'
verbose	logical
species.list	logical - Should the list of species composing the species pool be returned?

Value

Returns a dataframe containing for each relevé: - Species - the number of species observed across all relevé neighouting the target relevé

- Chao, iChao2, jack1, jack2 various species richness estimates, standard errors, as derived from the function SpadeR::ChaoSpecies
- nplots number of relevés within a t.radius distance from the target relevé having a bray-curtis dissimilarity lower than t.bray
- beals.at.chao cut-off of Beals' occurrence likelihood, selected as the ith species corresponding to chao
- n.plots.area number of relevés within a t.radius distance, and t.bray dissimilarity from target relevés for which area data is available
- arr, gomp, mm, Asymp parameter estimates for different empirical non-linear functions fitted to rarefaction curves, with relative AIC
- sp.pool.list list of species compatible with target relevé, i.e. having a Beals' likelihood lower than beals.at.chao

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

SpeciesPool SpeciesPool

Examples

load(GVRD_test_data.RData) ## data provided separately, make sure it's in working directory
aa <- SpeciesPool(DT.fb, mycoords, ncores=3, rows=1:100, t.radius=20000, t.bray=0.2, t.plot.number=10L, verbose=</pre>

Index

```
beals.all, 2
bray.curtis, 2
Mij.calc, 3
SAR.IIIb, 4
SpeciesPool, 4
```