6.S091: Problem Set 3

Hyewon Jeong hyewonj@mit.edu

1 Constructing Minimal I-MAPs [5 points]

You should use the partial-correlation based conditional independence test which you coded in Problem Set 2.

(a) Write a function minimal_map(samples, permutation, alpha) which constructs the graph \mathcal{G}_{π} for the permutation π , using the partial-correlation based conditional independence test with significance level alpha.

Samples of $(X_1, X_2, X_3, X_4, X_5)$ are in the file textttimap_samples.csv. Run minimal_map(samples, permutation, alpha) for the following permutations:

$$\pi_a = [1, 2, 3, 4, 5]$$

 $\pi_c = [5, 4, 1, 2, 3]$

 $\pi_b = [5,4,3,2,1]$ The graph \mathcal{G}_{π_a} should have 4 edges. Draw the graphs for each permutation π_a, π_b , and π_c .

Answer

Graphs for each permutation is drawn as below in Figure 1: π_a has 4 edges, π_b has 10 edges, and π_c has 5 edges. The code used for generating graph (minimal_map) is in Figure 1d.

(b) Recall that a Chickering sequence from \mathcal{G} to \mathcal{H} is a sequence of DAGs, where each consecutive pair in the sequence is related by a covered edge reversal or an edge addition. Construct a Chickering sequence from \mathcal{G}_{π_a} to \mathcal{G}_{π_c} . You can do this problem by hand, you do not need to write a function.

A Chickering sequence from \mathcal{G}_{π_a} to \mathcal{G}_{π_c} is shown in Figure 2. We can first start by adding an edge $(5 \to 4)$ to \mathcal{G}_{π_a} 12345 to make \mathcal{G} 12354, then we reverse the covered edge $1 \to 5$ to make \mathcal{G} 51423. Finally we reverse another covered edge $1 \to 4$ to make \mathcal{G} 54123 = \mathcal{G}_{π_c} .

2 d-separation defines a graphoid [5 points]

In this problem, you will show that two of the graphoid properties hold for d-separation. Throughout the problem, let $A, B_1, B_2, S \subseteq \mathcal{X}$ be disjoint subsets of nodes in a DAG \mathcal{G} , and let $B = B_1 \cup B_2$.

(a) Weak Union. Suppose there is a d-connecting path γ from $A \in \mathbf{A}$ to $B \in \mathbf{B}_1$ given $\mathbf{S} \cup \mathbf{B}_2$. Show that there is a d-connecting path γ' from some $A' \in \mathbf{A}$ to some $B' \in \mathbf{B}$ given \mathbf{S} .

Answer

Let γ_k be an arbitrary node in a d-connecting path γ between $A \in \mathbf{A}$ and $B \in \mathbf{B}_1$ given $\mathbf{S} \cup \mathbf{B}_2$ ($\mathbf{A} \not\perp \mathbf{B}_1 | \mathbf{S} \cup \mathbf{B}_2$). If γ_k is a collider in a path, then in order for it to be unblocked, $\gamma_k \in S \cup B_2$. If $\gamma_k \in S$, then it follows that the path is a d-connecting path from $A \in \mathbf{A}$ to $B \in \mathbf{B}_1 \subset \mathbf{B}$ that $\mathbf{A} \not\perp \mathbf{B} | \mathbf{S}$. Next, if $\gamma_k \in B_2$ then the path from A to γ_k becomes the d-connecting path γ' from $A \in \mathbf{A}$ to $\gamma_k \in \mathbf{B}_2 \subset \mathbf{B}$. Thus, in the case where γ_k is a collider, it follows that there is a d-connecting path γ' such that $\mathbf{A} \not\perp \mathbf{B} | \mathbf{S}$.

Next, if γ_k is a non-collider, then $\gamma_k \notin S \cup B_2$ and this means that γ_k is unblocked and thus path from $A \in \mathbf{A}$ and $B \in \mathbf{B}_1 \subset \mathbf{B}$ is unblocked given S ($A \not\perp \!\!\! \perp B | S$). This is because $\gamma_k \notin S \cup B_2$ means $\gamma_k \notin S$ and that $B \in \mathbf{B}_1 \subset \mathbf{B}$. \square

Figure 1: Graph structure for each permutation with minimal map (I-MAP) method (d).

Figure 2: Chickering sequence from \mathcal{G}_{π_a} to \mathcal{G}_{π_c}

(b) Contraction. Suppose there is a d-connecting path γ from $A \in \mathbf{A}$ to $B \in \mathbf{B}$ given \mathbf{S} . Show that either: - There is a d-connecting path γ' from some $A' \in \mathbf{A}$ to some $B' \in \mathbf{B}_2$ given \mathbf{S} , or

- There is a d-connecting path γ' from some $A' \in \mathbf{A}$ to some $B' \in \mathbf{B}_1$ given $\mathbf{S} \cup \mathbf{B}_2$.

Answer

We can consider two cases where $B \in \mathbf{B}_2$ and $B \in \mathbf{B}_1$:

First, if $B \in \mathbf{B}_2$, then there is a d-connecting path γ' from $A \in \mathbf{A}$ to $B \in \mathbf{B}_2$ given \mathbf{S} , meeting the condition of the first conclusion above.

If $B \in \mathbf{B}_1$ then let γ_k be an arbitrary node in a d-connecting path γ that spans from $A \in \mathbf{A}$ to $B \in \mathbf{B}$. We can consider two situations where γ_k is either collider or non-collider. If γ_k is a collider, then $\gamma_k \in \mathbf{S}$, which means $\gamma_k \in \mathbf{S} \cup \mathbf{B}_2$ and thus we can say the second case is true where there exists a d-connecting path γ' such that $\mathbf{A} \not\perp \mathbf{B}_1 | \mathbf{S} \cup \mathbf{B}_2$. Next if γ_k is a non-collider, $\gamma_k \notin \mathbf{S}$ and we can think about two cases where $\gamma_k \in \mathbf{B}_2$ and $\gamma_k \notin \mathbf{B}_2$. In the first case, the path from A to $\gamma_k \in \mathbf{B}_2$ satisfies the first case of d-connecting path γ' that $A \in \mathbf{A}$ to $\gamma_k' \in \mathbf{B}_2$ given \mathbf{S} . In the second case, γ_k is not blocked thus we can say there exists a d-connecting path γ' with $\mathbf{A} \not\perp \mathbf{B}_1 | \mathbf{S} \cup \mathbf{B}_2$. \square

3 Searching an Equivalence Class [5 points]

- (a) starting_dag2 and starting_dag3 both have 4 neighbors. The code segment used for (a) and (b) is in Figure 3.
- (b) The shortest path from starting_dag2 to ending_dag2: 1 The shortest path from starting_dag3 to ending_dag3: 3

```
import numpy as np
import networkx as nx
def covered_edge_neighbors(G):
   covered edges = []
   for i, j in G.edges:
        pa i = [e for e in G.predecessors(i)]
       pa_j = [e for e in G.predecessors(j)]
       pa_i.append(i)
        if set(pa_i) == set(pa_j):
            covered_edges.append((i, j))
def search_mec(G, H):
   visited_dags = []
   queue = [(G, [])]
   while queue:
        curr_dag, curr_sequence = queue.pop(0)
        if curr_dag in visited_dags:
            continue
       visited dags.append(curr dag)
        if nx.is isomorphic(curr dag, H):
            return curr_sequence
        for i, i in covered edge neighbors(curr dag):
            new_dag = curr_dag.copy()
            new_dag.remove_edge(i, j)
            new dag.add edge(j, i)
            queue.append((new dag, curr sequence + [(i, j)]))
```

Figure 3: Code segment for finding equivalence class