Si Quenching Factor (QF) analysis in Antonella

Marco A. Reyes¹, Junhui Liao², Gaston Gutiérrez³

¹University of Guanajuato, Mexico, ²University of Zurich, Switzerland, ³Fermilab, USA, ⁴

DAMIC Oct10-2014 meeting

Objectives

 Show that the analysis of Antonella data for the Silicon QF measurement may be easily done

How?

 Use Junhui's 21 bar array G4 MC (thanks!)

21 Bar MC

Data: time distributions

Time cut:

All one hit events are selected

If more than one hit, the selected bar is the one with first hit

E_R-Time fits

A/T² fits

The E_R vs. Time distributions can be fitted with A/T^2 .

All bars have the same distribution, each one has a different A value, and a $\sigma_{\rm E}$ for the nth-bar.

Here we show $E_R - A/T^2$

Shift per Shift analysis

9M events generated

12K events selected

~7K good events

We used 200 sets of 60 events (one shift of the Dec Run!!)

For each set, we selected events with E_R within 3σ of A/T²

Background events

x-Axis: ADC (E_R*QF)

y-Axis: A/T² (E_R)

MC Analysis

For this analysis we used as QF a power law: QF= κ E_R^{α}, with κ =0.2, α =0.18.

The reconstructed parameters where found with 1% errors.

The pull was 1.01 for κ and 0.89 for α

Error will reduce more in 25 shifts ...

Conclusions

Need to refine analysis, but

We look forward to getting data!!!

BACKUP SLIDE

Statistics projection for December run

We have 1400 good events in one of the Two-bar 2013 runs, which lasted 1.5hrs. B2 is 21.4cm away from B1 (tgt). Antonella bars are 90cm away from the tgt, and the collimator hole is 0.7cm. We will have in 1shift (7hrs), for scintillator QF measurement,

$$(0.7)^2 (21.4/90)^2 (7/1.5) 1400 = 181 events/bar$$

To reduce error bars to 1/2, we need 2-3 shits (change collimator??)

 We have 60 good events in the SD+2Bar 2013 run, in a 1shift run, on a bar that was at 16.3cm from the SiDet. If we dedicate 12 days to this run we will have

$$(16.3/90)^2 (36/1) 60 = 71$$
 events/bar

- Si and C run to measure resonances: 1-2 shifts (??)
- Background estimation: 1 shift