Group trisections and smoothly knotted surfaces

with Sarah Blackwell, Rob Kirby, Michael Klug and Vincent Longo

#### Handlebodies:



surface Zg



cut system of a handlebody:

curves on  $\Sigma_g$ 



attach 2-handles along the curves

fill 2-sphere boundaries with 3-balls

### Can you see the handlebodies ?







Side remark: This is one of the handlebodies in a genus 2 Heegaard diagram for the 3-mfld. P = Poincaré homology sphere P = Poincaré homology sphere P = Poincaré homology P = Poincaré homolo













 $\Sigma_z \cup 2$ -handle  $\cup 2$ -handle

# Topology





Signs:

$$x_i \text{ or } y_i \iff \delta_i$$
 $x_i \text{ or } y_i \iff \delta_i$ 

$$\langle x_{1}, y_{1}, x_{2}, y_{2} | x_{1}, y_{1}, x_{1}^{-1}, y_{1}^{-1} \times_{2} y_{2} \times_{2}^{-1}, y_{2}^{-1} \rangle \longrightarrow \langle d_{1}, d_{2} \rangle$$

$$\begin{array}{ccc}
\times_1 & \longmapsto & d_1^{-1} \\
y_1 & \longmapsto & (d_1 d_2)^5 \cdot d_1^{-2} \\
\times_2 & \longmapsto & (d_1 d_2)^5 \cdot d_2^3 \\
y_2 & \longmapsto & d_2
\end{array}$$

# Topology



Algebra



$$x_1 y_1 x_1 y_1 x_2 y_2 x_2^{-1} y_2^{-1} = 1$$

 $\left[ d_{1}^{-1} \right] \left[ \left( d_{1} d_{2} \right)^{5} d_{1}^{-2} \right] \left[ d_{1} \right] \left[ d_{1}^{2} \left( d_{1} d_{2} \right)^{-5} \right] \left[ \left( d_{1} d_{2} \right)^{5} d_{2}^{3} \right] \left[ d_{2} \right] \left[ d_{2}^{-3} \left( d_{1} d_{2} \right)^{-5} \right] \left[ d_{2}^{-1} \right]$ 





Colour coding:  $\psi$  d1

$$x_1 y_1 x_1 y_1 x_2 y_2 x_2^{-1} y_2^{-1} = 1$$

 $\left[ d_{1}^{-1} \right] \left[ \left( d_{1} d_{2} \right)^{5} d_{1}^{-2} \right] \left[ d_{1} \right] \left[ d_{1}^{2} \left( d_{1} d_{2} \right)^{-5} \right] \left[ \left( d_{1} d_{2} \right)^{5} d_{2}^{3} \right] \left[ d_{2} \right] \left[ d_{2}^{-3} \left( d_{1} d_{2} \right)^{-5} \right] \left[ d_{2}^{-1} \right]$ 





Tolour coding:  $\psi$  d1

$$x_1 y_1 x_1 y_1 x_2 y_2 x_2^{-1} y_2^{-1} = 1$$





Colour coding:  $\psi$  d<sub>1</sub>

$$x_1 y_1 x_1 y_1 - x_2 y_2 x_2 y_2 = 1$$





Tolour coding:  $\psi$   $d_1$   $\psi$   $d_2$ 

Surface relation: 
$$x_1 y_1 x_1 y_1 = 1$$

$$\int$$







Colour coding:

# Topology



Algebra



$$\langle x_{1}, y_{1}, x_{2}, y_{2} | x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} x_{2} y_{2} x_{2}^{-1} y_{2}^{-1} \rangle \longrightarrow \langle d_{1}, d_{2} \rangle$$

$$\begin{array}{ccc}
\times_{1} & \longmapsto & d_{1}^{-1} \\
y_{1} & \longmapsto & (d_{1}d_{2})^{5} \cdot d_{1}^{-2} \\
\times_{2} & \longmapsto & (d_{1}d_{2})^{5} \cdot d_{2}^{3} \\
y_{2} & \longmapsto & d_{2}
\end{array}$$

### From algebra to topology

| Folklore result: | Any epimorph  | $\operatorname{Fm} \left( \Sigma_{g} \right) \xrightarrow{\varphi} \operatorname{Fr}_{g}$ |
|------------------|---------------|-------------------------------------------------------------------------------------------|
|                  |               | surface group ->>> free group                                                             |
|                  | is realized a | eometrically by a handlebody.                                                             |
|                  |               |                                                                                           |

#### Folklore proof sketch:



make map transverse to north poles





make map transverse to north poles

Look at preimage f-1 (North poles)

Collection of simple closed curves in  $\Sigma_g$  contains a cut system

[ (Folklore)

#### From algebra to topology

Folklore result: Any epimorphism 
$$\mathcal{I}_{\mathcal{I}}(\Sigma_g)$$
  $\xrightarrow{\psi}$   $\mathcal{I}_{\mathcal{I}}(\Sigma_g)$   $\xrightarrow{\psi}$   $\xrightarrow{\psi}$ 

... which can be computed algorithmically.

### Group trisections of a finitely presented group G:

Commutative cube



s.th. all maps are surjective and all faces are push-outs

Group trisections of closed 4-manifolds:

The handlebody-story three times

















from our algebra assumption:

this is a closed 3-manifold M with  $\pi_1(M) \cong Fr_k$  free

Kneser's thm. + 3D Poincaré conj.

$$) \qquad M^2 \#^k S^1 \times S^2$$

[Laudenbach-Poenaru] allows us to fill the sectors uniquely with  $5^{1} \times 10^{3}$ 

We can do this for all pairs of handlebodies







4-manifold  $M^4$  with  $\pi_1(M^4) \cong G$ and group trisection corresponding to the cube below





Spun trefoil - a knotted surface in 5th





[ Meier, Zupan ]

#### Trivial tangles in 3-balls (and in handlebodies)







We like to draw the "shadows" of the tangles on a punctured plane:





### Topology



### Algebra





$$TL_1\left(\mathbb{S}^2 - \left\{\begin{array}{cc} 4 & \text{bridge} \\ \text{points} \end{array}\right\}\right) \longrightarrow TL_1\left(\mathbb{D}^3 - \text{tangle}\right)$$

$$Q_1 \longrightarrow X^{-1}$$

$$a_2 \mapsto y \times^{-1} y^{-1} \times y^{-1}$$

$$a_3 \longmapsto y \times^{-1} y \times y^{-1} \times y^{-1}$$

$$a_{+} \longmapsto y$$

# Topology



Algebra



$$\pi_{1}\left(\mathbb{S}^{2} - \left\{\begin{array}{c} 4 \text{ bridge} \right\}\right) \longrightarrow \pi_{1}\left(\mathbb{D}^{3} - \text{tangle}\right) \\
\left\langle a_{1}, a_{2}, a_{3}, a_{4} \mid a_{1}, a_{2}, a_{3}, a_{4} \rangle \longrightarrow \left\langle \times, \gamma \right\rangle \\
q_{1} \longmapsto \chi^{-1} \\
q_{2} \longmapsto \chi^{-1} \chi^{-1} \times \chi^{-1} \\
q_{3} \longmapsto \chi^{-1} \chi \times \chi^{-1} \times \chi^{-1} \\
q_{4} \longmapsto \chi$$

$$a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1$$

$$\left[ \begin{array}{c} y \times y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times^{-1} y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times \times y \times^{-1} \times^{-1} y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times \times y^{-1} \end{array} \times^{-1} x^{-1} y^{-1} \right]$$



$$T_{1}\left(S^{2} - \left\{\begin{array}{c} 4 \text{ bridge} \right\}\right) \longrightarrow T_{1}\left(D^{3} - \text{tangle}\right)$$

$$a_{1} \longmapsto y \times y^{-1}$$

$$a_{2} \longmapsto y \times^{-1} y^{-1}$$

$$a_{3} \longmapsto y \times \times y \times^{-1} \times^{-1} y^{-1}$$

$$a_{4} \longmapsto y \times \times y^{-1} \times^{-1} x^{-1}$$



$$a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1$$

$$\left[ \begin{array}{c} y \times y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times^{-1} y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times \times y \times^{-1} \times^{-1} y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times \times y^{-1} \times^{-1} x^{-1} \end{array} \right]$$



$$T_{1}\left(S^{2} - \left\{\begin{array}{c} 4 \text{ bridge } \end{array}\right\}\right) \longrightarrow T_{1}\left(D^{3} - \text{tangle}\right)$$

$$q_{1} \longmapsto y \times y^{-1}$$

$$q_{2} \longmapsto y \times^{-1} y^{-1}$$

$$q_{3} \longmapsto y \times \times y \times^{-1} \times^{-1} y^{-1}$$

$$q_{4} \longmapsto y \times \times y^{-1} \times^{-1} y^{-1}$$

$$a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1$$



$$T_{1}\left(S^{2} - \left\{\begin{array}{c} 4 \text{ bridge } \end{array}\right\}\right) \longrightarrow T_{1}\left(D^{3} - \text{tangle}\right)$$

$$q_{1} \longmapsto y \times y^{-1}$$

$$q_{2} \longmapsto y \times^{-1} y^{-1}$$

$$q_{3} \longmapsto y \times x y \times^{-1} \times^{-1} y^{-1}$$

$$q_{4} \longmapsto y \times x y^{-1} \times^{-1} y^{-1}$$



$$a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1$$



$$T_{1}\left(\mathbb{S}^{2}-\left\{\begin{array}{c}4\text{ bridge}\end{array}\right\}\right)\longrightarrow T_{1}\left(\mathbb{D}^{3}-\text{ tangle}\right)$$

$$q_{1}\longmapsto y\times y^{-1}$$

$$q_{2}\longmapsto y\times^{-1}y^{-1}$$

$$q_{3}\longmapsto y\times xy\times^{-1}x^{-1}y^{-1}$$

$$q_{4}\longmapsto y\times xy^{-1}x^{-1}y^{-1}$$



$$a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1$$



$$\mathcal{I}_{1}\left(S^{2} - \left\{\begin{array}{c} 4 \text{ bridge } \right\}\right) \longrightarrow \mathcal{I}_{1}\left(D^{3} - \text{tangle}\right) \\
q_{1} \longmapsto y \times y^{-1} \\
q_{2} \longmapsto y \times^{-1} y^{-1} \\
q_{3} \longmapsto y \times \times y \times^{-1} \times^{-1} y^{-1} \\
q_{4} \longmapsto y \times \times y^{-1} \times^{-1} y^{-1}$$



$$a_1 \cdot a_2 \cdot a_3 \cdot a_4 = 1$$

$$\left[ \begin{array}{c} y \times y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times^{-1} y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times \times y \times^{-1} \times^{-1} y^{-1} \end{array} \right] \left[ \begin{array}{c} y \times \times y^{-1} \end{array} \times^{-1} x^{-1} y^{-1} \right]$$



$$\pi_{1}\left(\mathbb{S}^{2}-\left\{\begin{array}{c} 4 \text{ bridge } \end{array}\right\}\right) \longrightarrow \pi_{1}\left(\mathbb{D}^{3}-\text{ tangle}\right)$$

$$\alpha_{1} \longmapsto y \times y^{-1}$$

$$\alpha_{2} \longmapsto y \times^{-1}y^{-1}$$

$$\alpha_{3} \longmapsto y \times \times y \times^{-1} \times^{-1}y^{-1}$$

$$\alpha_{4} \longmapsto y \times \times y^{-1} \times^{-1} \times^{-1}y^{-1}$$





If there are closed circle components, we use band sums guided by Stallings folding Sequence of folds which show that <  $y \times y^{-1}$ ,  $y \times^{-1}y^{-1}$ ,  $y \times \times y \times^{-1}x^{-1}y^{-1}$ ,  $y \times \times y^{-1} \times^{-1}x^{-1}y^{-1} >$ generates the free group (x, y)





#### We take inspiration from:

- ·) [Stallings: How not to prove the Poincaré conjecture (1965)]
- •) [Jaco: Heegaard splittings and splitting homomorphisms (1968)]
  [Jaco: Stable equivalence of splitting homomorphisms (1970)]
- ·) [Abrams, Gay, Kirby: Group trisections and smooth 4-manifolds (2018)]

### Thanks!

