

SUMMARY

Hi, I'm a robotics engineer leveraging classical computer vision and AI to bridge the sim-2-real gap in robotics.

EXPERIENCE

Robotics Software Engineering Intern

Sept 2024 - Present

Trossen Robotics

Downers Grove, IL

- Developed a ROS 2 package using C++, PCL, and CUDA to efficiently process, denoise, and merge LiDAR and stereo camera point clouds, with configurable parameters for flexible deployment and adaptability to varying environments.
- Implemented RTAB-Map Visual-SLAM algorithm with for robust navigation in complex environments.
- Generated and optimized point clouds using the Oak-D Pro stereo camera to achieve precise detection of objects as small as 8 cm on the ground. Successfully integrated this functionality into the collision monitor stack for cost map creation.

Computer Vision Graduate Researcher

Aug 2023 - Dec 2023

Perception and Autonomous Robotics (PeAR) Group, WPI

Worcester, MA

Quadrotor Navigation in Uncharted Terrains | Python, C++, ROS, Blender, PyTorch, OpenCV

- Developed a Generative, Procedural environment for quadrotor simulation and learning using Blender software.
- Employed RRT* algorithm and Minimum Snap Trajectory generation to navigate a dense, simulated forest.
- Designed a Model Predictive Controller for precise trajectory tracking and traversal of optimal trajectories.

Sim-2-Real Mini Drone Racing | Python, PyTorch, OpenCV, Blender, Data Generation, Jetson Orin Nano | Github

- Automated synthetic data generation in Blender with domain randomization and trained a custom neural network to segment windows in the real world with an accuracy of 92 %.
- Computed corners using segmentation masks and determined 3D window pose with Perspective-n-Point (PnP) algorithm.
- Deployed the algorithm on DJI TelloEDU with Jetson Orin Nano and achieved a latency of 10ms using TensorRT.

Autonomous Vehicles Graduate Researcher

May 2023 - Aug 2023

Embedded Computing Lab, WPI

Worcester, MA

LiDAR and Stereo point cloud segmentation | PyTorch, OpenCV, PCL

- Developed voxel-based obstacle segmentation algorithm for autonomous vehicles on the KITTI Stereo 2015 dataset.
- Employed RANSAC plane fitting to segment roads in KITTI point clouds and refined drivable regions with ICP.
- Estimated absolute depth from disparity maps and reconstructed 3D traffic scene using stereophotogrammetry.

Perception Stack for Autonomous Vehicles | Python, PyTorch, OpenCV, Blender | Github

- Used YOLOv8 and U-Net for Object Detection and Instance Segmentation of vehicles, traffic signs, and pedestrians.
- Trained Cross Layer Refinement Network (CLRNet) on TUSimple dataset with a 97.8 % accuracy to detect lanes.
- Processed per-pixel relative depth using Intel's MiDaS depth model, visualizing the results in a Blender simulation.

FEATURED PROJECTS — (Please check my Portfolio for more projects.)

Visual Inertial Localization | Python, OpenCV, Matplotlib | Github

- Performed robust quadrotor pose estimation in 3D space by using Quadrotor Dynamics and Extended Kalman Filter.
- Improved prediction accuracy by using a vision-based observation model to get pose estimates from AprilTags.

Structure from Motion (SfM) | Python, OpenCV, PyTorch | Github

- Extracted and matched monocular camera image features using SIFT descriptors and RANSAC algorithm.
- Reconstructed 3D scene from images using SIFT features, epipolar geometry, triangulation, and Bundle Adjustment.

End-to-End Object Detection with DETR | Python, PyTorch, OpenCV, Roboflow, Tensorboard

- Created an end-to-end transformer-based object detection on a custom dataset using DETR-Resnet-50 and Roboflow.
- Integrated and fine-tuned DETR models for panoptic segmentation, achieving strong results on COCO datasets.

EDUCATION

Worcester Polytechnic Institute

2024

Master of Science in Robotics Engineering

Worcester, MA

Mukesh Patel School of Technology Management & Engineering

Bachelor of Technology in Mechatronics Engineering (Minor: Robotics & IoT)

Mumbai, India

SKILLS

Software: Python, C++, ROS, ROS 2, Gazebo, CoppeliaSim, OpenCV, PyTorch, CUDA, TensorRT, NumPy, SciPy,

Pandas, PCL, Open3D, scikit-learn, Matplotlib, MATLAB, Docker, Linux, Git, LaTeX, SolidWorks, Blender

Hardware : DJI Tello EDU, Jetson Orin Nano, Arduino, Raspberry Pi, Yaskawa Motoman MH5, Rapid Prototyping

Architectures: YOLO, CNN, R-CNN, VGG16, ResNet18, DenseNet, LSTM, TCN, HomographNet, Transformers, NeRF