VERSUCH NUMMER 703

Das Geiger-Müller-Zählrohr

 $\begin{array}{ccc} {\rm Tim~Alexewicz} & {\rm Sadiah~Azeem} \\ {\rm tim.alexewicz@udo.edu} & {\rm sadiah.azeem@udo.edu} \end{array}$

Durchführung: 24.05.2022 Abgabe: 31.05.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie Durchführung			
2				
3	3.1	Wertung Charakteristik des Geiger-Müller-Zählrohrs Bestimmung der Totzeit 3.2.1 Mit Oszilloskop 3.2.2 Zwei-Quellen-Methode Freigesetzte Ladungsmenge	5 5 6	
4	Disk	kussion	7	
Lit	eratı	ur	8	
5	Anh	nang	8	

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Charakteristik des Geiger-Müller-Zählrohrs

Es wird eine Thallium-Quelle verwendet.

Bei Aufnahme der Messwerte für die Charakteristik des Zählrohres wird die anliegende Spannung in 10V-Schritten erhöht und bei einer Integrationszeit von 120s gemessen. Ungewöhnlich weit abweichende Werte wurden in der Auswertung nicht berücksichtigt. In Tabelle 1 sind die einbezogenen Messwerte zu finden. Der gesamte Satz an Messwerten ist in Abschnitt 5 aufgelistet.

Tabelle 1: Die ausgewerteten Messwerte.

U/V	N / Imp	Ι / μΑ
330	12435	0.1
340	13454	0.1
350	13651	0.1
360	13660	0.1
370	13778	0.1
380	13770	0.1
390	13738	0.15
400	14003	0.15
410	14192	0.18
420	13730	0.2
430	14211	0.21
440	13861	0.21
480	14391	0.3
490	14047	0.3
500	14092	0.3
510	14164	0.3
520	14296	0.3
590	14337	0.4
600	14202	0.4
610	14087	0.45
620	14180	0.45
630	14290	0.47
640	14130	0.48
650	14466	0.5
660	14052	0.5
670	14170	0.5
680	14589	0.52
690	14653	0.6
700	14715	0.6

Die Zählraten entsprechen einer Poisson-Verteilung, sodass sich ihr Fehler zu

$$\Delta N = \sqrt{N}$$

ergibt.

Die Charakteristik ist in Abbildung 1 graphisch dargestellt. Der Plateaubereich umfasst das Intervall von 410V bis 670V.

Die lineare Regression wird mithilfe von python ([3], [2]) durchgeführt und ergibt für die Ausgleichsgerade die Parameter $a=0,73\frac{\%}{100V}$ für die Steigung und $b=1376\,Imp$ für den y-Achsenabschnitt.

Abbildung 1: Die Charakteristik des Geiger-Müller-Zählrohrs.

3.2 Bestimmung der Totzeit

3.2.1 Mit Oszilloskop

Aus dem aufgenommenen Oszillogramm Abbildung 2 kann zufolge xxx eine Totzeit von $T_1=150~\mu\mathrm{s}$ abgelesen werden..

Abbildung 2: Oszillogramm zur Bestimmung der Totzeit des Geiger-Müller-Zählrohres.

3.2.2 Zwei-Quellen-Methode

Für die Zwei-Quellen-Methode ergeben sich die Messwerte unter Einbezug des Poisson-Fehlers und der Integrationszeit von 120s zu $N1=\frac{21844\pm148}{120s},~N2=\frac{39105\pm198}{120s}$ und $N12=\frac{17594\pm133}{120s}.$ Mit autorefxxx berechnet sich die Totzeit zu $T_2=253,8\pm0,001\mu\mathrm{s}.$

3.3 Freigesetzte Ladungsmenge

Die freigesetze Ladungsmenge wird nach autorefxxx aus dem mittleren Zählrohrstrom bestimmt.

Sie ist in Abhängigkeit von der Zählrohrspannung in Abbildung 3 graphisch dargestellt.

Abbildung 3: Die freigesetze Ladungsmenge je einfallendem Teilchen in Abhängigkeit von der Zählrohrspannung.

4 Diskussion

Die Charakteristik Abbildung 1 zeigt nur in geringer Ausprägung den erwarteten Kurvenverlauf.

Das Plateau ist aufgrund einer Häufung von ausreißenden Werten in jenem Bereich nicht direkt zu erkennen. Die Steigung der Ausgleichsgerade ergibt sich allerdings wie gewünscht zu einem sehr niedrigen Wert von $a = 0,73 \frac{\%}{100V}$.

Die via Zwei-Quellen-Methode bestimmte Totzeit $T=(253,8\pm0,001)\mu s$ weicht um $\eta_T=(69,2\pm0,0007)\%$ vom auf dem Oszilloskop abgelesenen Wert von $T=150\mu s$ ab. Beide liegen jedoch im typischen Bereich weniger Hundert Mikrosekunden für die Totzeit eines Geiger-Müller-Zählrohrs.

Die Abweichung kann darauf zurückgeführt werden, dass die Oszilloskopmethode beispielsweise durch Ablesefehler sehr ungenau ist.

Die Anzahl der je einfallendem Teilchen freigesetzter Ladungsträger ist proportional zur Zählrohrspannung. Dies ist in Abbildung 3 zu sehen und entspricht den theoretischen Erwartungen.

Literatur

- [1] Das Geiger-Müller-Zählrohr. TU Dortmund, Fakultät Physik.
- [2] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [3] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.

5 Anhang

Abbildung 4: Die Originalmesswerte.

Abbildung 5: Die Originalmesswerte.