06-ESTACIONARIEDAD

Emiliano Pérez Caullieres

2022-09-21

Contents

1	Mír	nimos Cuadrados Ordinarios	5
	1.1	El problema	5
	1.2	Estimación R	
	1.3	Ejercicio	9
2	Máxima Verosimilitud		
	2.1	El problema	11
	2.2		12
3	Método Generalizado de Momentos (MGM)		
	3.1	El problema	15
4	CAPITAL ASSET PRICING MODEL (CAPM)		
	4.1	El problema	17
	4.2	Estimación R	18
	4.3	ESTIMACIÓN	18
	4.4	Ejercicio Compara con TSLA con el APPLE	22
5	Estacionariedad		
	5.1	El problema	25
	5.2	Estimación	
	5.3		
	5.4	Un camino	
	5.5	Rendimientos de un activo	

4 CONTENTS

Chapter 1

Mínimos Cuadrados Ordinarios

1.1 El problema

Recordando que el método de MCO resulta en encontrar la combinación de valores de los estimadores de los parámetros $\hat{\beta}$ que permita minimizar la suma de los residuales (estimadores de los términos de erro ε) al cuadrado dada por:

$$\sum_{i=1}^{N} e_i^2 = \sum_{i=1}^{N} (y_i - \mathbf{X}_i' \hat{\beta})^2$$

Donde $\hat{\beta}$ denota el vector de estimadores $\hat{\beta}_1,\ldots,\hat{\beta}_K$ y dado que $(e_1,e_2,\ldots,e_n)'(e_1,e_2,\ldots,e_n)=$ e'e, el problema del método de MCO consiste en resolver el problema de óptimización:

$$\begin{split} &Minimizar_{\hat{\beta}}S(\hat{\beta}) = Minimizar_{\hat{\beta}}\mathbf{e}'\mathbf{e} \\ &= Minimizar_{\hat{\beta}}(\mathbf{Y} - \mathbf{X}\hat{\beta})'(\mathbf{Y} - \mathbf{X}\hat{\beta}) \end{split}$$

Expandiendo la expresión $\mathbf{e}'\mathbf{e}$ obtenemos:

$$\mathbf{e}'\mathbf{e} = \mathbf{Y}'\mathbf{Y} - 2\mathbf{Y}'\mathbf{X}\hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}$$

De esta forma obtenemos que las condiciones necesarias de un mínimo son:

$$\frac{\partial S(\hat{\beta})}{\partial \hat{\beta}} = -2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} = \mathbf{0}$$

Y se pueden despejar las ecuaciones normales dadas por:

Debido a que el objetivo es encontrar la matriz $\hat{\beta}$ despejamos:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$
$$\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{Y}$$

1.2 Estimación R

Para la estimación utilizaremos el paquete "BatchGetSymbols". Este paquete nos permitirá descargar información acerca de la bolsa de valores internacional.

1.2.1 Dependencias

```
#install.packages("pacman")
#pacman nos permite cargar varias librerias en una sola línea
library(pacman)
pacman::p_load(tidyverse,BatchGetSymbols,ggplot2, lubridate)
```

1.2.2 Descarga de los valores

```
#Primero determinamos el lapso de tiempo
pd<-Sys.Date()-365 #primer fecha
#> [1] "2021-09-21"
ld<-Sys.Date() #última fecha</pre>
#> [1] "2022-09-21"
#Intervalos de tiempo
int<-"monthly"
#Datos a elegir
dt<-c("AMZN")</pre>
#Descargando los valores
?BatchGetSymbols()
data<- BatchGetSymbols(tickers = dt,</pre>
                        first.date = pd,
                        last.date = ld,
                        freq.data = int,
                        do.cache = FALSE,
                        thresh.bad.data = 0)
#Generando data frame con los valores
```

```
data_precio<-data$df.tickers
colnames(data_precio)
#> [1] "ticker" "ref.date"
#> [3] "volume" "price.open"
#> [5] "price.high" "price.low"
#> [7] "price.close" "price.adjusted"
#> [9] "ret.adjusted.prices" "ret.closing.prices"
```

sp_precio<-ggplot(data_precio, aes(x=ref.date, y=price.open))+geom_point(size =2, colour = "black
sp_precio</pre>

Precio de apertura de AMZN en el ultimo año

sp_volumen<-ggplot(data_precio, aes(x=ref.date, y=volume))+geom_point(size =2, colour = "black")+
sp_volumen</pre>

#> Coefficients:

1.2.4 Regresión lineal que optiene los coeficientes $\hat{\beta}$

```
#datos estadísticos
summary(data_precio[c("price.open","volume")])
     price.open
                       volume
         :106.3 Min. :4.632e+08
\#> Min.
#> 1st Qu.:126.0 1st Qu.:1.273e+09
#> Median :152.7 Median :1.465e+09
#> Mean :148.1 Mean :1.394e+09
#> 3rd Qu.:167.6
                   3rd Qu.:1.628e+09
          :177.2
                  Max.
                          :2.258e+09
\#> Max.
#análisis de regresión lineal lm() y=precio,x=fecha
reg_tiempo_precio<-lm(price.open~ref.date, data=data_precio)</pre>
\#_i Siempre se pone dentro de lm() la variable dependiente primero y luego la independie
summary(reg_tiempo_precio)
#>
#> Call:
#> lm(formula = price.open ~ ref.date, data = data_precio)
#> Residuals:
#>
                 1Q
                     Median
       Min
                                   3Q
#> -22.0179 -9.1301 -0.3498 9.5578 20.7507
```

1.3. EJERCICIO 9

```
Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 3308.01329 629.19893
                                     5.257 0.000269 ***
#> ref.date
                 -0.16583
                             0.03302 -5.022 0.000389 ***
#> ---
#> Signif. codes:
#> 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 13.23 on 11 degrees of freedom
#> Multiple R-squared: 0.6963, Adjusted R-squared: 0.6687
#> F-statistic: 25.22 on 1 and 11 DF, p-value: 0.0003887
#análisis de regresión lineal lm() y=volumen,x=fecha
reg_tiempo_volumen<-lm(volume~ref.date, data=data_precio)</pre>
summary(reg_tiempo_volumen)
#>
#> lm(formula = volume ~ ref.date, data = data_precio)
#> Residuals:
                     1Q
        Min
                            Median
                                            30
                                                      Max
#> -853866163 -111433590
                           58251296 236217362 837231229
#>
#> Coefficients:
#>
                Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -7.512e+09 2.227e+10 -0.337
                                                0.742
#> ref.date
               4.674e+05 1.169e+06
                                     0.400
                                                0.697
#>
#> Residual standard error: 468200000 on 11 degrees of freedom
#> Multiple R-squared: 0.01433,
                                  Adjusted R-squared: -0.07527
\#> F-statistic: 0.16 on 1 and 11 DF, p-value: 0.6968
```

1.3 Ejercicio

El objetivo de este ejrcicio es simplemente que indiquen y modifiquen los errores en el código. Así pues, deberán descomentar -quitar las #antes del código- para empezar el ejercicio.

1.3.1 1

El objetivo de este código es explicar la variable **"volume"** con la variable **"price.high"**.

```
#reg_tiempo_ej1<-lm(price.high~volume, data=data_precio)
#sumary(reg_tiempo_ej1)</pre>
```

1.3.2 2

El objetivo de este código es explicar la variable **"volume"** con la variable **"price.low"**.

```
#reg_tiempo_ej2<-lm(price.low~volume, data=data_precio)
#summary(reg_tiempo_ej1)</pre>
```

1.3.3 3 (opcional)

El objetivo de este ejercicio es descargar los valores del stock de Tesla BMV: TSLA en los últimos $dos~a\tilde{n}os$.

Chapter 2

Máxima Verosimilitud

2.1 El problema

Recordemos que dado $f(y_i|\mathbf{x}_i)$ la función de densidad condicional de y_i dado \mathbf{x}_i . Sea θ un conjunto de parámetros de la función. Entonces la función de densidad conjunta de variables aleatorias independientes $\{y_i:y_i\in\mathbb{R}\}$ dados los valores $\{\mathbf{x}_i:\mathbf{x}_i\in\mathbb{R}^K\}$ estará dada por:

$$\prod_{i=1}^{n} f(y_i | \mathbf{x}_i; \theta) = f(y_1, y_2, \dots, y_n | \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n; \theta) = L(\theta)$$
(2.1)

A la ecuación (2.1) se le conoce como ecuación de verosimilitud. El problema de máxima verosimilitud entonces será:

$$\max_{\theta \in \Theta} \Pi_{i=1}^n f(y_i | \mathbf{x}_i; \theta) = \max_{\theta \in \Theta} L(\theta)$$
 (2.2)

Dado que el logaritmo natural es una transformación monotona, podemos decir que el problema de la ecuación (2.2) es equivalente a:

$$\max_{\theta \in \Theta} lnL(\theta) = \max_{\theta \in \Theta} ln\Pi_{i=1}^{n} f(y_i | \mathbf{x}_i; \theta) = \max_{\theta \in \Theta} \sum_{i=1}^{n} lnf(y_i | \mathbf{x}_i; \theta)$$
 (2.3)

Para solucionnar el problema se tiene que determinar las condicones de primer y segundo orden, las cuales serán:

$$\frac{\partial}{\partial \theta} ln L(\theta) = \nabla ln L(\theta) \tag{2.4}$$

$$\frac{\partial^2}{\partial^2 \theta} ln L(\theta) = \frac{\partial}{\partial \theta} ln L(\theta) \cdot \frac{\partial}{\partial \theta} ln L(\theta') = H(\theta) \tag{2.5}$$

La solución estará dada por aquel valor de $\hat{\theta}$ que hace:

$$\frac{\partial}{\partial \theta} ln L(\hat{\theta}) = 0$$

A su vez, la varianza será aquella que resulta de:

$$Var[\hat{\theta}|\mathbf{X}] = (-\mathbb{E}_{\hat{\theta}}[H(\theta)])^{-1}$$

2.2 Estimación y simunlación

2.2.1 Lanzar una moneda

```
set.seed(1234) #esto sirve para siempre generar los mismos numeros aleatorios
#rbinom(numero observaciones, numero de ensayos, probabilidad de exito en cada ensayo)
cara \leftarrow rbinom(1,100,0.5)
cara#esto nos dice de los 100 ensayos cuantos fueron cara
#> [1] 47
sol<-100-cara
sol
#> [1] 53
#Ahora definiremos la función que encontrará la función de verosimilutud para determin
verosimilitud <- function(p){</pre>
  dbinom(cara, 100, p)
#si suponemos que la probabilidad sesquada de que caiga cara es 40%
prob_sesgada<-0.4
#es posible calcular la función de que salga cara
verosimilitud(prob_sesgada)
#> [1] 0.02919091
#ahora es posible generar una función de verimilitud negativa
#para maximizar el valor de la verosimilitud
neg_verosimilitud <- function(p){</pre>
  dbinom(cara, 100, p)*-1
neg_verosimilitud(prob_sesgada)
#> [1] -0.02919091
# unamos la función nlm() para maximizar esta función no linear
nlm(neg_verosimilitud,0.5,stepmax=0.5)#se pone un parametro porque sabemos que hay un
#> $minimum
```

```
#> [1] -0.07973193
#>
#> $estimate
#> [1] 0.47
#>
#> $gradient
#> [1] 1.589701e-10
#>
#> $code
#> [1] 1
#>
#> $iterations
#> [1] 4
```

Si bien el ejercicio anterior es un tanto repetitivo debido a que sabemos que hay un 50% de que caiga una moneda de un lado o otro. Esto ejemplifica la manera en la que se utiliza el metodo de maximización de máxima verosimilitud.

Chapter 3

Método Generalizado de Momentos (MGM)

3.1 El problema

Retomemos el modelo de regresión lineal tal que:

$$y_i = X_i \beta + u_i \tag{3.1}$$

Tomando en cuenta los principios de ortogonalidad $(E(Z_iu_i)=0)$ y $(rankE(Z_i^{'}X_i)=0)$ sabemos que β es el único vector de $N\times 1$ que resuelve las condiciones de momento de determinada población. En otras palabras, $E[z_i^{'}(y_i-x_i\beta)]=0$ es una solución y $E[z_i^{'}(y_i-x_i\beta)]\neq 0$ NO es una solución. Debido a que la media muestral son estimadores consistentes de momentos de una población, se puede:

$$N^{-1} \sum_{i=1}^{N} z_i'(y_i - x_i \beta) = 0 \tag{3.2}$$

Asumiendo que la ecuación (3.2) tiene L ecuaciones lineales y K coeficientes β desconocidos y K=L, entonces la matriz $\sum_{i=1}^{N} z_i^{'} x_i$ debe ser no singular para encontrar los coeficientes de la siguiente manera.

$$\hat{\beta} = N^{-1} \left[\sum_{i=1}^{N} z_i^{'} x_i \right]^{-1} \left[\sum_{i=1}^{N} z_i^{'} y_i \right]$$
 (3.3)

Para simplificar (3.3) se puede nombrar Z juntando z_i N veces para crear una matriz de tamaño $NG \times L$. Lo mismo hacemos con X juntando x_i para obtener una de $NG \times K$ y Y obteniendo una $NG \times 1$. Obteniendo:

$$\hat{\beta} = [Z'X]^{-1}[Z'Y] \tag{3.4}$$

Es importante tomar en cuenta cuando el caso en el que hay más ecuaciones lineales que coeficientes β ; es decir, $L \geq K$. En estos casos es muy probrable que no haya solución, por lo que mejor que se puede estimar es pones la ecuación (3.2), tan pequeña como sea posible. Por lo mismo el paso que nos lleva a la ecuación (3.3), debe eliminarse N^{-1} . El objetivo:

$$\min_{\beta} \left[\sum_{i=1}^{N} z_i^{'} x_i \beta \right]^{-1} \left[\sum_{i=1}^{N} z_i^{'} y_i \beta \right]$$
 (3.5)

Así pues nombramos a W como una matriz simétrica de $W \times W$ donde se genera la variable b que debemos minimizar que sustituye a β creando una función cuadrática en la ecuación (3.3).

$$\min_{b} \left[\sum_{i=1}^{N} z_{i}^{'} x_{i} b \right]^{-1} \left[\sum_{i=1}^{N} z_{i}^{'} y_{i} b \right]$$
 (3.6)

$$\therefore \hat{\boldsymbol{\beta}} = [\boldsymbol{X}' \boldsymbol{Z} \hat{\boldsymbol{W}} \boldsymbol{Z}' \boldsymbol{X}]^{-1} [\boldsymbol{X}' \boldsymbol{Z} \hat{\boldsymbol{W}} \boldsymbol{Z}' \boldsymbol{Y}] \tag{3.7}$$

Sin embargo, $X^{'}Z\hat{W}Z^{'}X$ debe ser no singular para que haya una solución. Para esto se asume que \hat{W} tiene un limite de probabilidad no singular. Esto se describe como $\hat{W} \stackrel{p}{\to} W$ y $N \to W\infty$ donde W no es aleatorio, es una matriz positiva definida simétrica de $L \times L$.

Chapter 4

CAPITAL ASSET PRICING MODEL (CAPM)

4.1 El problema

Una vez que hemos establecido la manera en la que se pueden estimar algunos valores —como las regresiones lineales y el método de máxima verosimilitud—, además de la naturaleza de los retornos de algunos activos en el capítulo 4, es posible comenzar a hablar de maneras en la que se pueden estimar los valores futuros de los rendimientos de activos y —de esta manera— poder tomar mejores decisiones de inversiones. Por ello, hablaremos del modelo de **Capital Asset Pricing Model**. El modelo es muy sencillo y pretende estimar su rentabilidad esperada en función del **riesgo sistemático**. Por lo mismo, en este modelo se utilizan los valores de los precios de los activos a lo largo del tiempo y utiliza la intuición con la que derivamos la ecuación lineal con los Mínimos cuadrados ordinarios (MCO).

$$R_{jt}-Rft=\alpha_j+\beta_j(R_{mt}-R_{ft})+u_{jt} \eqno(4.1)$$

En la ecuación (4.1)

- R_{ft} es el retorno de un bono sin riesgo gubernamental en un año. Parecido a los CETES.
- R_{mt} es el retorno en un portafolio de mercado.
- u_{jt} es el retorno en un portafolio de mercado.

• α_j, β_j son los coeficientes que queremos obtener.

De esta manera, α_j es el coeficiente que más nos interesa debido a que queremos ver si el activo supera o no el index del mercado con base en el activo fijo.

Si α_j es positivo entonces sabemos que el retorno tiene buenos rendimiendos y uno negativo significa que no. Por tanto $H_0:\alpha_j=0$

4.2 Estimación R.

Para la estimación utilizaremos el paquete "BatchGetSymbols". Este paquete nos permitirá descargar información acerca de la bolsa de valores internacional.

4.3 ESTIMACIÓN

4.3.1 Dependencias

```
#install.packages("pacman")
#pacman nos permite cargar varias librerias en una sola línea
library(pacman)
pacman::p_load(tidyverse, BatchGetSymbols,ggplot2,lubridate,readxl,tidyquant)
```

4.3.2 Descarga de los valores

```
#Primero determinamos el lapso de tiempo
pd<-as.Date("2021/09/18") #primer fecha
pd
#> [1] "2021-09-18"
ld<-as.Date("2022/09/18") #última fecha
#> [1] "2022-09-18"
#Intervalos de tiempo
int<-"monthly"
#Datos a elegir
dt<-c("AMZN")</pre>
dt2<-c("TSLA")
#Descargando los valores
?BatchGetSymbols()
data1<- BatchGetSymbols(tickers = dt,</pre>
                        first.date = pd,
                        last.date = ld,
                        freq.data = int,
                        do.cache = FALSE,
                        thresh.bad.data = 0)
data2<- BatchGetSymbols(tickers = dt2,</pre>
```

4.3. ESTIMACIÓN

```
19
```

```
first.date = pd,
                      last.date = ld,
                      freq.data = int,
                      do.cache = FALSE,
                      thresh.bad.data = 0)
#Generando data frame con los valores
data_precio_amzn<-data1$df.tickers
colnames(data_precio_amzn)
#> [1] "ticker"
                             "ref.date"
#> [3] "volume"
                            "price.open"
#> [5] "price.high"
                            "price.low"
#> [7] "price.close"
                            "price.adjusted"
#> [9] "ret.adjusted.prices" "ret.closing.prices"
data_precio_tls<-data2$df.tickers
colnames(data_precio_tls)
#> [1] "ticker"
                             "ref.date"
#> [3] "volume"
                             "price.open"
#> [5] "price.high"
                             "price.low"
#> [7] "price.close"
                            "price.adjusted"
#> [9] "ret.adjusted.prices" "ret.closing.prices"
#necesitamos convertir la serie de tiempo de precios en retornos continuos compuestos de los prec
data_precio_amzn$ccrAMZN<-c(NA ,100*diff(log(data_precio_amzn$price.open)))#agregamos un valor NA
data_precio_amzn$ccrAMZN#estos son los retornos
               NA -3.2011678
#> [1]
                               2.1889913 5.3061639
#> [5] -5.6279333 -11.0646538
                               1.8052718 7.2089622
#> [9] -29.3475086 -0.1185366 -13.9945965 23.8807273
#> [13] -6.8696583
data_precio_tls$ccrTSLA<-c(NA ,100*diff(log(data_precio_tls$price.open))) #agregamos un valor NA (
data_precio_tls$ccrTSLA
              NA 5.796888 38.591933 1.361865 -1.121972
#> [6] -20.478772 -7.264574 21.765521 -22.795320 -13.089771
#formateando por año y mes
data_precio_tls$ref.date=format(as.Date(data_precio_tls$ref.date), "%m/%Y")
data_precio_amzn$ref.date=format(as.Date(data_precio_amzn$ref.date), "%m/%Y")
#Compararemos con los CETES
CETES_sep2021_2022<-read_excel("BD/CETES-sep2021-2022.xlsx", skip=17)
head(CETES_sep2021_2022)
#> # A tibble: 6 x 2
#> Fecha
                        SF43936
#> <dttm>
                          <db1>
#> 1 2021-09-15 00:00:00
                          4.6
#> 2 2021-09-23 00:00:00
                          4.58
```

```
#> 3 2021-09-30 00:00:00 4.69
                           4.81
#> 4 2021-10-07 00:00:00
#> 5 2021-10-14 00:00:00 4.79
#> 6 2021-10-21 00:00:00
                            4.83
#indice sp500
SP500 <- read_csv("BD/Download Data - INDEX_US_S&P US_SPX.csv")
SP500$ccrSP500<-c(NA ,100*diff(log(SP500$0pen)))</pre>
names(SP500)[1]<-paste('ref.date')</pre>
#formateando por año y mes
#cetes
cete_1_año<-10.10#esto es el rendimiento a un año de un cete gubernamental seguro
#Juntamos el df
CAPM_2<-merge(data_precio_amzn, data_precio_tls, by = c('ref.date'))</pre>
CAPM_4<-merge(SP500, CAPM_2, by = c('ref.date'))</pre>
CAPM<-data.frame(CAPM_4)
#exceso de retorno
CAPM$excess_ret_AMZN<-CAPM$ccrAMZN-cete_1_año
CAPM$excess_ret_SP500<-CAPM$ccrSP500-cete_1_año
CAPM$excess_ret_TSLA<-CAPM$ccrTSLA-cete_1_año
#relacion entre los excesos de demanda
ggplot(CAPM, aes(x=excess_ret_AMZN, y=excess_ret_SP500))+geom_point()+labs(title="Rela
#> Warning: Removed 2 rows containing missing values
#> (geom_point).
#relacion entre los excesos de demanda
ggplot(CAPM, aes(x=excess_ret_TSLA, y=excess_ret_SP500))+geom_point()+labs(title="Rela
#> Warning: Removed 2 rows containing missing values
#> (geom_point).
#veamos la regresion lineal
CAPM_lr<-lm(excess_ret_TSLA~excess_ret_SP500,data = CAPM)</pre>
summary(CAPM_lr)
#>
#> Call:
#> lm(formula = excess_ret_TSLA ~ excess_ret_SP500, data = CAPM)
#>
#> Residuals:
               1Q Median
#> Min
                               3Q
                                       Max
#> -23.980 -13.391 -5.548 11.572 37.067
#>
#> Coefficients:
               Estimate Std. Error t value Pr(>|t|)
```


Figure 4.1: Relación de excesos de retornos entre AMZN y SP500 $\,$

Figure 4.2: Relación de excesos de retornos entre TSLA y SP500

```
#> (Intercept)
                     -3.2334
                                11.8097 -0.274
                                                     0.79
#> excess_ret_SP500
                      0.5379
                                 1.0789
                                         0.499
                                                     0.63
#> Residual standard error: 20.88 on 9 degrees of freedom
   (2 observations deleted due to missingness)
#> Multiple R-squared: 0.02687,
                                  Adjusted R-squared: -0.08125
#> F-statistic: 0.2486 on 1 and 9 DF, p-value: 0.6301
alpha1<-coefficients(CAPM_lr)[1]</pre>
alpha1<0
#> (Intercept)
          TRUE
```

De esta manera sabemos que el rendimiento de TSLA NO es mayor debido a que el coeficiente $\alpha=-2.9534,$ lo cual indica peores rendimientos al resto del SP500.

4.4 Ejercicio Compara con TSLA con el APPLE

```
dt3<-"AAPL"
data3<-BatchGetSymbols(tickers = dt3,</pre>
                       first.date = pd,
                       last.date = ld,
                       freq.data = int,
                       do.cache = FALSE,
                       thresh.bad.data = 0)
\#> Warning: `BatchGetSymbols()` was deprecated in BatchGetSymbols 2.6.4.
#> Please use `yfR::yf_get()` instead.
#> 2022-05-01: Package BatchGetSymbols will soon be replaced by yfR.
#> More details about the change is available at github <<www.github.com/msperlin/yfR>
#> You can install yfR by executing:
#>
#> remotes::install_qithub('msperlin/yfR')
#>
#> Running BatchGetSymbols for:
#>
     tickers =AAPL
     Downloading data for benchmark ticker
#> ^GSPC | yahoo (1|1)
#> AAPL | yahoo (1/1) - Got 100% of valid prices | Youre doing good!
data_precio_AAPL<-data3$df.tickers
colnames(data_precio_AAPL)
#> [1] "ticker"
                               "ref.date"
#> [3] "volume"
                              "price.open"
#> [5] "price.high"
                              "price.low"
#> [7] "price.close"
                              "price.adjusted"
```

```
#> [9] "ret.adjusted.prices" "ret.closing.prices"
data_precio_AAPL$ccrAAPL<-c(NA ,100*diff(log(data_precio_AAPL$price.open)))#agregamos un valor NA
data_precio_AAPL$ccrAAPL
               NA -1.330092 4.875668 11.698469
                                                    5.996413
#> [1]
#> [6] -2.171531 -5.498712 5.510207 -10.483068 -4.442864
#> [11] -9.701946 16.851754 -2.751627
data_precio_AAPL$ref.date=format(as.Date(data_precio_AAPL$ref.date), "%m/%Y")
CAPM_3<-merge(data_precio_AAPL, CAPM, by = c('ref.date'))</pre>
CAPM_3$excess_ret_AAPL<-CAPM_3$ccrAAPL-cete_1_año
#veamos la regresion lineal
CAPM3_lr<-lm(excess_ret_AAPL~excess_ret_SP500, data = CAPM_3)</pre>
summary(CAPM3 lr)
#>
#> Call:
#> lm(formula = excess_ret_AAPL ~ excess_ret_SP500, data = CAPM_3)
#> Residuals:
#> Min
                 10 Median
                                  3Q
#> -10.9038 -5.4365 0.4641 3.4629 14.1798
#> Coefficients:
#>
                   Estimate Std. Error t value Pr(>|t|)
                   -4.7542 4.9105 -0.968
                                                  0.358
#> (Intercept)
#> excess_ret_SP500 0.4663
                                0.4486 1.039
                                                  0.326
#> Residual standard error: 8.682 on 9 degrees of freedom
#> (2 observations deleted due to missingness)
#> Multiple R-squared: 0.1072, Adjusted R-squared: 0.007964
#> F-statistic: 1.08 on 1 and 9 DF, p-value: 0.3258
alpha2<-coefficients(CAPM3_lr)[1]</pre>
alpha2<0
#> (Intercept)
#> TRUE
```

Chapter 5

Estacionariedad

5.1 El problema

Los fundamentos de las series de tiempo están basados en la estacionalidad. Una serie de tiempo r_t que estudia los retornos de un activo a lo largo de tiempo es estrictamente estacionaria si la distribución conjunta de los retornos (r_{t1}, \ldots, r_{t1}) es exactamente idéntica en $(r_{t1+T}, \ldots, r_{t1+T})$, es decir cuando pasa T años, por ejemplo. En otras palabras, definiremos a una serie de tiempo como un vector de variables X_t aleatorias de dimensión T, dado como:

$$X_1, X_2, X_3, \dots, X_T$$
 (5.1)

Es decir, definiremos a una serie de tiempo como una realización de un proceso estocástico —o un Proceso Generador de Datos (PGD). Consideremos una muestra de los múltiples posibles resultados de muestras de tamaño T, la colección dada por:

$$\{X_1^{(1)}, X_2^{(1)}, \dots, X_T^{(1)}\} \tag{5.2}$$

Eventualmente podríamos estar dispuestos a observar este proceso indefinidamente, de forma tal que estemos interesados en observar a la secuencia dada por $\{X_t^{(1)}\}_{t=1}^{\infty}$, lo cual no dejaría se ser sólo una de las tantas realizaciones o secuencias del proceso estocástico original de la ecuación (5.2).

$$\begin{aligned} \{X_1^{(2)}, X_2^{(2)}, \dots, X_T^{(2)}\} \\ \{X_1^{(3)}, X_2^{(3)}, \dots, X_T^{(3)}\} \\ \{X_1^{(4)}, X_2^{(4)}, \dots, X_T^{(4)}\} \\ & \vdots \\ \{X_1^{(j)}, X_2^{(j)}, \dots, X_T^{(j)}\} \end{aligned}$$

Por lo mismo, cada cambio que se hace al vector $\{X_t^{(1)}\}$ es parte del mismo proceso estocástico, por lo que la serie de tiempo es:

$$\{X_1, X_2, \dots, X_T\} \tag{5.3}$$

El proceso estocástico de dimensión T puede ser completamente descrito por su función de distribución multivariada de dimensión T. No obstante, sólo nos enfocaremos en sus primer y segundo momentos, es decir, en sus medias o valores esperados $\mathbb{E}(X_t)$

Para t = 1, 2, ..., T:

$$\left[\begin{array}{c} \mathbb{E}[X_1], \mathbb{E}[X_2], \dots, \mathbb{E}[X_T] \end{array}\right]$$

De sus variazas:

$$Var[X_t] = \mathbb{E}[(X_t - \mathbb{E}[X_t])^2]$$

Para $t=1,2,\ldots,T$, y de sus T(T-1)/2 covarianzas:

$$Cov[X_t, X_s] = \mathbb{E}[(X_t - \mathbb{E}[X_t])(X_s - \mathbb{E}[X_s])]$$

Para t < s. Por lo tanto, en la forma matricial podemos escribir lo siguiente:

$$\begin{bmatrix} Var[X_1] & Cov[X_1,X_2] & \cdots & Cov[X_1,X_T] \\ Cov[X_2,X_1] & Var[X_2] & \cdots & Cov[X_2,X_T] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[X_T,X_1] & Cov[X_T,X_2] & \cdots & Var[X_T] \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_1^2 & \rho_{12} & \cdots & \rho_{1T} \\ \rho_{21} & \sigma_2^2 & \cdots & \rho_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{T1} & \rho_{T2} & \cdots & \sigma_T^2 \end{bmatrix}$$
 (5.4)

Donde es claro que en la matriz de la ecuación (5.4) existen T(T-1)/2 covarianzas distintas, ya que se cumple que $Cov[X_t,X_s]=Cov[X_s,X_t]$, para $t\neq s$.

A menudo, esas covarianzas son denominadas como *autocovarianzas* puesto que ellas son covarianzas entre variables aleatorias pertenecientes al mismo proceso estocástico pero en un momento t diferente. Si el proceso estocástico tiene una distribución normal multivariada, su función de distribución estará totalmente descrita por sus momentos de primer y segundo orden.

5.1.1 Ergocidad

Esto implica que los momentos muestrales, los cuales son calculados en la base de una serie de tiempo con un número finito de observaciones, conforme el tiempo $T \to \infty$ sus correspondientes momentos muestrales, tienden a los verdaderos valores poblacionales, los cuales definiremos como μ , para la media, y σ_X^2 para la varianza. En pocas palabras, conforme los momentos muestrales aumenten tanto que tiendan al infinito, entonces nos acercamos a valores poblacionales de la media y la varianza. Este concepto sólo es cierto si asumimos que

$$\mathbb{E}[X_t] = \mu_t = \mu$$
$$Var[X_t] = \sigma_X^2$$

Más formalmente, se dice que el PGD o el proceso estocástico es ergódico en la media si:

$$\lim_{T \to \infty} \mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T}(X_t - \mu)\right)^2\right] = 0 \tag{5.5}$$

y ergódico en la varianza si:

$$\lim_{T \to \infty} \mathbb{E}\left[\left(\frac{1}{T}\sum_{t=1}^{T}(X_t - \mu)^2 - \sigma_X^2\right)^2\right] = 0 \tag{5.6}$$

+ Estas condiciones se les conoce como propiedades de consistencia para las variables aleatorias. Sin embargo, éstas no pueden ser probadas. Por ello se les denomina como un supuesto que pueden cumplir algunas de las series. Más importante aún: un proceso estocástico que tiende a estar en equilibrio estadístico en un orden ergódico, es estacionario.

5.1.2 Tipos de Estacionariedad

Definiremos a la estacionariedad por sus momentos del correspondiente proceso estocástico dado por $\{X_t\}$:

- Estacionariedad en media: Un proceso estocástico es estacionario en media si $E[X_t] = \mu_t = \mu$ es constante para todo t.
- Estacionariedad en varianza: Un proceso estocástico es estacionario en varianza si $Var[X_t] = \mathbb{E}[(X_t \mu_t)^2] = \sigma_X^2 = \gamma(0)$ es constante y finita para todo t.

- Estacionariedad en covarianza: Un proceso estocástico es estacionario en covarianza si $Cov[X_t,X_s]=\mathbb{E}[(X_t-\mu_t)(X_s-\mu_s)]=\gamma(|s-t|)$ es sólo una función del tiempo y de la distancia entre las dos variables aleatorias. Por lo que no depende del tiempo denotado por t (no depende de la información contemporánea).
- Estacionariedad débil: Como la estacionariedad en varianza resulta de forma inmediata de la estacionariedad en covarianza cuando se asume que s=t, un proceso estocástico es débilmente estacionario cuando es estacionario en media y covarianza. ESTE ES EL MÁS COMÚN Y POSIBLE, por lo que es el que estudiaremos.

5.1.3 Función de Autocorrelación (ACF)

Para ampliar la discusión, es posible calcular la fuerza o intensidad de la dependencia de las variables aleatorias dentro de un proceso estocástico, ello mediante el uso de las autocovarianzas. Cuando las covarianzas son normalizadas respecto de la varianza, el resultado es un término que es independiente de las unidad de medida aplicada, y se conoce como la función de autocorrelación.

Por su parte, un estimador consistente de la función de autocorrelación estará dado por:

$$\hat{\rho}(\tau) = \frac{\sum_{t=1}^{T-\tau} (X_t - \hat{\mu})(X_{t+\tau} - \hat{\mu})}{\sum_{t=1}^{T} (X_t - \hat{\mu})^2} = \frac{\hat{\gamma}(\tau)}{\hat{\gamma}(0)}, \text{ para } \tau = 1, 2, \dots, T-1$$
 (5.7)

El estimador de la ecuación (5.7) es asintóticamente insesgado y es relevante puesto que nos dice si una serie de tiempo con estacionariedad débil esta serialmente correlacionada si y solo si $\hat{\rho}(\tau) \neq 0$.

5.1.4 Ruido Blanco

Supongamos una serie de tiempo denotada por: $\{U_t\}_{t=0}^T$. Decimos que el proceso estocástico $\{U_t\}$ es un proceso estocástico puramente aleatorio o es un proceso estocástico de ruido blanco o caminata aleatoria, si éste tiene las siguientes propiedades:

- $\mathbb{E}[U_t] = 0, \forall t$
- $Var[U_t] = \mathbb{E}[(U_t \mu_t)^2] = \mathbb{E}[(U_t \mu)^2] = \mathbb{E}[(U_t)^2] = \sigma^2, \ \forall t$
- $\begin{array}{l} \bullet \ \ Cov[U_t,U_s] = \mathbb{E}[(U_t-\mu_t)(U_s-\mu_s)] = \mathbb{E}[(U_t-\mu)(U_s-\mu)] = \mathbb{E}[U_tU_s] = 0, \\ \forall t \neq s. \end{array}$
- $\bullet \quad \hat{\rho}(\tau) = 0$

En palabras. Un proceso U_t es un ruido blanco si su valor promedio es cero (0), tiene una varianza finita y constante, y además no le importa la historia

5.2. ESTIMACIÓN

29

pasada, así su valor presente no se ve influenciado por sus valores pasados no importando respecto de que periodo se tome referencia.

Para procesos estacionarios, dicha función de autocorrelación esta dada por:

$$\rho(\tau) = \frac{\mathbb{E}[(X_t - \mu)(X_{t+\tau} - \mu)]}{\mathbb{E}[(X_t - \mu)^2]} = \frac{\gamma(\tau)}{\gamma(0)} \tag{5.8}$$

5.2 Estimación

5.2.1 Dependencias

```
#install.packages("pacman")
#pacman nos permite cargar varias librerias en una sola línea
library(pacman)
pacman::p_load(tidyverse,BatchGetSymbols,ggplot2,lubridate,readxl,forecast,stats)
```

5.3 Caminata

```
set.seed(1234)
# Utilizaremos una función guardada en un archivo a parte
# Llamamos a la función:
source("funciones/Caminata.R")

# Definimos argumentos de la función
Opciones <- c(-1, 1)
#
Soporte <- 10000

# Vamos a réplicar el proceso con estos parámetros
Rango <- 200
#
Caminos <- 10

#

for(i in 1:Caminos){
    TT <- data.matrix(data.frame(Caminata(Opciones, Soporte)[1]))
    #
    G_t <- data.matrix(data.frame(Caminata(Opciones, Soporte)[2]))
    #
    plot(TT, G_t, col = "blue", type = "l", ylab = "Ganancias", xlab = "Tiempo", ylim = c(-Rango, Rampar(new = TRUE))</pre>
```


Figure 5.1: Ejemplo de 10 trayectorias de la caminata aleatoria, cuando sólo es posible cambios de +1 y -1

Así, el proceso estocástico dado por la caminata alaeatoria sin un término de ajuste es estacionario en media, pero no en varianza o en covarianza, y consecuentemente, en general no estacionario, condición que contraria al caso del proceso simple descrito en U_t .

Es facil ver que muchas de las posibilidades de realización de este proceso estocástico (series de tiempo) pueden tomar cualquiera de las rutas consideradas en el Figura 5.1. Ahora analicemos un solo camino.

5.4 Un camino

```
#Generamos datos
TT1 <- data.matrix(data.frame(Caminata(Opciones, Soporte)[1]))
G_t1 <- data.matrix(data.frame(Caminata(Opciones, Soporte)[2]))
#Creemos un data frame
dt_caminata<-data.frame(TT1,G_t1)
colnames(dt_caminata)<-c("t","ganancias")
head(dt_caminata)</pre>
```

5.4. UN CAMINO 31

Figure 5.2: Una Caminata aleatoria cuando sólo es posible cambios de +1 y -1

Hay que convertirlo a serie de tiempo

```
#serie de tiempo
caminata_ts<-ts(G_t1,start=1,end=Soporte)</pre>
```

5.4.1 Estacionariedad Caminata

```
ACF_caminata_ts<-acf(caminata_ts,na.action = na.pass, main = "Función de Autocorrelación de una (
```

Como se comentó con anterioridad en la Figura 5.3 es evidente que la Caminata si tiene autocorrelacion, por lo que nuestro plot de autocorrelacion tiene valores muy altos en todos los lags. Veamos los lags.

```
gglagplot(caminata_ts,lags=10,do.lines=FALSE,colour=FALSE)+theme_light()
```

De nuevo, esto al ser creado de manera estandarizada estamos seguros de que

Función de Autocorrelación de una Caminata

Figure 5.3: Función de Autocorrelación de una Caminata

Figure 5.4: Lags de una sola caminata

va a ser estacionario en la medio, por lo mismo los lags de la Figura 5.4 se ven tan correlacionados.

5.5 Rendimientos de un activo

#Primero determinamos el lapso de tiempo

```
pd<-Sys.Date()-(365*20) #primer fecha
pd
#> [1] "2002-09-26"
ld <- Sys. Date() #última fecha
#> [1] "2022-09-21"
#Intervalos de tiempo
int<-"monthly"</pre>
#Datos a elegir
dt<-c("AMZN")
dt2<-c("TSLA")
#Descargando los valores
data1<- BatchGetSymbols(tickers = dt,</pre>
                      first.date = pd,
                      last.date = ld,
                      freq.data = int,
                      do.cache = FALSE,
                      thresh.bad.data = 0)
#Generando data frame con los valores
data_precio_amzn<-data1$df.tickers
colnames(data_precio_amzn)
#> [1] "ticker"
                             "ref.date"
#> [3] "volume"
                             "price.open"
#> [5] "price.high"
                             "price.low"
#> [7] "price.close"
                            "price.adjusted"
#> [9] "ret.adjusted.prices" "ret.closing.prices"
#necesitamos convertir la serie de tiempo de precios en retornos continuos compuestos de los prec
data_precio_amzn$ccrAMZN<-c(NA ,100*diff(log(data_precio_amzn$price.open)))#agregamos un valor NA
data_precio_amzn$ccrAMZN#estos son los retornos
                 NA 1.86572576 16.90900220 22.83329766
     [1]
#>
    [5] -22.98950701 13.39221448 0.95260416 14.27998202
   [9] 11.55626991 24.11122449 -0.46684144 13.08785513
#> [13] 11.63599301 3.89974592 12.48104071 -0.73260401
                                              0.99457279
#> [17] -3.06108260 -4.08140972 -16.32741069
#> [21]
          #> [25] -0.57381482 7.69997922 -18.78100714 15.60691856
#> [29] 11.66713068 -4.43506452 -20.41392362 -1.23405211
```

```
[33]
          -6.96531282
                      9.64353557 -6.77486160 30.02382912
#>
    [37]
          -5.40177077
                        6.39945115 -12.58398922
                                                 20.12391421
          -2.92703823
                       -7.77281354 -15.93630872
#>
    [41]
                                                 -2.10477279
#>
    [45]
          -4.11970307 -1.60415929 10.64572285 -37.21478392
#>
    [49]
          15.01070027
                       3.59739571 17.58906665
                                                  5.43570463
    [53]
#>
          -4.00357496
                      -1.90531667
                                    3.54637914
                                                  1.33891100
#>
    [57]
          42.77167396 11.98170332 -0.13070948
                                                 12.66409736
#>
    [61]
           2.27857959
                      15.63296023 -6.26135927
                                                  2.56510858
                                                 13.78662202
#>
    [65]
           5.74113839 -18.78533471 -21.72447597
    [69]
#>
           7.15014819
                       3.44753666 -11.63053849
                                                  5.54650897
#>
    [73]
          8.53074641 -14.71605773 -24.20236452 -29.39126222
#>
   [77]
          20.09953181 13.15576837
                                     8.77225235 13.27882326
   [81]
#>
           9.60320128
                      -2.73678724
                                     7.64068237
                                                  2.50334747
#>
    [85]
          -6.96036997 13.59745291
                                    24.90536163 14.32806129
#>
   [89]
          -0.50514401 -10.08447333
                                    -3.70473986 13.45839135
#>
   [93]
           1.02565002
                      -9.33660068 -13.76436786
                                                  8.99531736
#>
   [97]
           5.87517724
                                     4.58513429
                                                  8.56726887
                      21.76202538
#> [101]
           1.22598823
                       -6.16865517
                                     1.74979032
                                                  4.53458328
#> [105]
           7.93222740
                                    4.72685785
                      -0.25978671
                                                  9.04110889
#> [109]
          -4.41608958
                       0.80039290 -4.18766494
                                                 -8.13529694
#> [113]
          -8.68550170
                       -1.18960511
                                     3.43828044
                                                  9.60224827
#> [117]
          14.70991690
                      -9.58159747
                                     9.53799598
                                                  2.08880372
#> [121]
                       2.83140800
           5.85976366
                                    -8.65274050
                                                  7.52661134
#> [125]
           1.39202437
                        4.89612270
                                    -2.12710012
                                                  1.39936277
#> [129]
          -5.02332605
                        5.76221809
                                     3.66491122
                                                  8.27850152
#> [133]
         -6.24554343
                       9.85520147 15.15285156
                                                  8.73395739
#> [137]
         -0.05013788 -10.51934673 -0.06687288
                                                 -5.92858190
#> [141] -10.58568315
                                    4.15753522
                                                 -3.80625428
                       2.74371861
#> [145]
           8.04816141 -5.42111518
                                    -5.03065911
                                                  9.90317538
#> [149]
                                     8.43295383
         -7.85404256 11.32156221
                                                 -2.32429615
#> [153]
         13.01462014
                       1.54061721
                                     2.05813986 20.15392877
#> [157]
          -7.39490376
                        2.34828935 20.47843365
                                                  7.17052347
#> [161]
         -2.62563883 -12.67694180
                                    -3.85435390
                                                  5.96629237
#> [165]
         11.72089295
                       8.23387458 -0.49783030
                                                  5.76252931
#> [169]
                       8.10699776
                                    -4.52676184
                                                 -6.00796092
          1.44112456
#> [173]
                        8.98955770
           0.72964776
                                    2.83447462
                                                  4.01536256
#> [177]
           4.38443827
                        7.35281333
                                    -2.61760725
                                                  2.36894617
#> [181]
          -1.20285851
                      -2.07377928
                                    13.68712240
                                                  5.85471090
#> [185]
          -0.00427124
                      20.93976645
                                     4.63815978
                                                 -6.55115525
#> [189]
                                                  5.84583306
           9.77684681
                        4.61358018
                                     2.75160333
#> [193]
         12.74521370
                      -0.22279328 -21.94794383
                                                  8.60716489
#> [197] -18.86826361
                      11.20213025
                                     0.98664739
                                                  8.39682297
#> [201]
           7.12720047
                      -9.38002536
                                     8.85565506
                                                 -2.70183034
#> [205]
                      -1.36520548
          -5.58782369
                                     2.37757442
                                                  0.91249016
#> [209]
           3.83805218
                        6.98245156 -5.31693095
                                                  1.37938043
```

```
#> [213] 18.97247680
                       4.64889431 11.92308161 14.25393454
                                              4.05671846
#> [217]
          9.27398656
                     -8.41337555
                                  -4.66642316
  [221]
          2.52393793
                     -0.84885499
                                  -3.59427728
                                              -0.31861156
#> [225] 11.12179968 -7.17375312
                                  5.72503641 -2.40180912
          4.18486227 -6.11473001
                                  2.18899134
                                              5.30616390
         -5.62793333 -11.06465380
                                  1.80527180
                                              7.20896224
#> [237] -29.34750864
                     -0.11853658 -13.99459654 23.88072732
#> [241] -6.86965832
#tenemos 20 retornos a lo largo de 20 años
```

Veamos la serie de tiempo

```
\label{lem:condition} $$\operatorname{ret}_{20_{amazn} \leftarrow ggplot(data=data\_precio_{amzn}, aes(x=ref.date)) + geom\_line(aes(y=ccrAMZN)) + labs(titleret_{20_{amazn}}) +
```

Retornos de AMZN en los últimos 20 años

Figure 5.5: Serie de tiempo de los retornos de año en los últimos 20 años

5.5.1 Serie de tiempo

Primero que nada es importante cargar los datos a un objeto series de tiempo. Esto nos lo permite la función ts(). Además debemos serciorarnos de que los datos esten en orden cronológico.

```
data_precio_amzn<-data_precio_amzn[order(data_precio_amzn$ref.date),]
head(data_precio_amzn)#dado que ya estaba en orden cronológico nuestro df no cambia
```

```
#> # A tibble: 6 x 11
#>
     ticker ref.date
                          volume price~1 price~2 price~3 price~4
#>
     <chr> <date>
                           <dbl>
                                   <db1>
                                            <db1>
                                                    <db1>
                                                             <db1>
#> 1 AMZN
            2002-09-26
                          5.58e8
                                   0.796
                                             0.87
                                                    0.786
                                                             0.796
#> 2 AMZN
            2002-10-01
                          4.07e9
                                   0.812
                                             1.01
                                                    0.800
                                                             0.968
#> 3 AMZN
                                   0.961
                                             1.23
                                                             1.17
            2002-11-01
                          4.13e9
                                                    0.91
#> 4 AMZN
            2002-12-02
                          3.11e9
                                   1.21
                                             1.25
                                                    0.922
                                                             0.944
#> 5 AMZN
            2003-01-02
                          3.38e9
                                   0.960
                                             1.16
                                                    0.928
                                                             1.09
#> 6 AMZN
            2003-02-03
                          2.32e9
                                   1.10
                                             1.12
                                                    0.980
                                                             1.10
#> # ... with 4 more variables: price.adjusted <dbl>,
       ret.adjusted.prices <dbl>, ret.closing.prices <dbl>,
       ccrAMZN <dbl>, and abbreviated variable names
       1: price.open, 2: price.high, 3: price.low,
#> #
#> #
       4: price.close
#hagamos el objeto ts
ret_amazn_ts<-ts(data_precio_amzn$ccrAMZN)</pre>
```

plot(ret_amazn_ts)#de esta manera podemos ver que se cargo bien debido a que es igual

5.5.2 Estacionariedad

```
#MA_m5<-forecast::ma(ret_amazn_ts,order=11,centre=TRUE)
#plot(ret_amazn_ts)+lines(MA_m5, col="red", lwd=2)
gglagplot(ret_amazn_ts,lags=20,do.lines=FALSE,colour=FALSE)+theme_light()
ACF_ret_amazn_ts<-acf(ret_amazn_ts,na.action = na.pass)</pre>
```

La Figura 5.6 nos idica la manera en la que se correlacionan los lags, evidentemente no se puede ver ningún tipo de correlacioo1ón visible. Similarmente la

Figure 5.6: Lag Plot que nos muestra la correlación entre 20 lags

Series ret_amazn_ts

Figure 5.7: Función de Autocorrelación de los retornos de AMZN en los ultimos $20~\rm{a\tilde{n}os}$

Figura 5.7 en donde se muestra la función de autocorrelación. Expecto al primer lag –que muestra correlacion debido a que se esta comparando consigo mismo– es evidente que no hay correlacioo1ón fuerte entre ninguno de los lags. Por lo mismo, sería difícil poder encontrar y estimar valores futuros debido a que la Figura 5.6 y la Figura 5.7 indican que la serie de tiempo de los retornos de AMZN de la Figura 5.5 es **completamente aleatorio y no hay estacionariedad**.