Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that
$$T(n)=2T(\frac{n}{2})+n$$
 is $O(n\log(n))$

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n)=2T(\frac{n}{2})+n$ is $O(n\log(n))$ (1). $T(n) \le c n\log(n) \ \exists c > 0$ // definition of Big-0 (2). $T(m) \le c m\log(m) \ \forall m \le n$ // inductive step (assumption)

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n)=2T(\frac{n}{2})+n$ is $O(n\log(n))$

- (1). $T(n) \le c n \log(n) \exists c > 0$
- (2). $T(m) \le c m \log(n) \ \forall m < n$

Let
$$m = \frac{n}{2}$$

(3).
$$T(\frac{n}{2}) \le c \frac{n}{2} \log(\frac{n}{2})$$
 // placing m = n/2 in (2)

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that
$$T(n)=2T(\frac{n}{2})+n$$
 is $O(n\log(n))$

- (1). $T(n) \le c n \log(n) \exists c > 0$
- (2). $T(m) \le c m \log(n) \ \forall m < n$

Let
$$m = \frac{n}{2}$$

$$(3). T(\frac{n}{2}) \le c \frac{n}{2} \log(\frac{n}{2})$$

(4).
$$T(n) \le 2c \frac{n}{2} \log(\frac{n}{2}) + n$$
 // substitution of T(n/2) in definition of T(n)

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n)=2T(\frac{n}{2})+n$ is $O(n\log(n))$

- (1). $T(n) \le c n \log(n) \exists c > 0$
- (2). $T(m) \le c m \log(n) \ \forall m < n$

Let
$$m = \frac{n}{2}$$

$$(3). T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log\left(\frac{n}{2}\right)$$

$$// \log(a/b) = \log(a) - \log(b)$$

(4).
$$T(n) \le 2c \frac{n}{2} \log(\frac{n}{2}) + n = c n \log(\frac{n}{2}) + n = c n (\log(n) - \log(2)) + n$$

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n)=2T(\frac{n}{2})+n$ is $O(n\log(n))$

- (1). $T(n) \le c n \log(n) \exists c > 0$
- (2). $T(m) \le c m \log(n) \ \forall m < n$

Let $m = \frac{n}{2}$

- $(3). T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log\left(\frac{n}{2}\right)$
- (4). $T(n) \le 2c \frac{n}{2} \log(\frac{n}{2}) + n = c n \log(\frac{n}{2}) + n = c n (\log(n) \log(2)) + n$

$$T(n) \le c n \log(n) - cn + n$$

$$T(n) \le c n \log(n) - (c-1)n$$

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n)=2T(\frac{n}{2})+n$ is $O(n\log(n))$

$$(1). T(n) \le c n \log(n) \exists c > 0$$

(2).
$$T(m) \le c m \log(n) \ \forall m < n$$

Let
$$m = \frac{n}{2}$$

$$(3). T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log\left(\frac{n}{2}\right)$$

(4).
$$T(n) \le 2c \frac{n}{2} \log(\frac{n}{2}) + n = c n \log(\frac{n}{2}) + n = c n (\log(n) - \log(2)) + n$$

$$T(n) \le c n \log(n) - cn + n$$

$$T(n) \le c n \log(n) - (c-1)n$$

(5).
$$c n \log(n) - (c-1)n \le c n \log(n)$$
 // for which values of c?

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n) = 2T(\frac{n}{2}) + n$ is $O(n \log(n))$

- (1). $T(n) \le c n \log(n) \exists c > 0$
- (2). $T(m) \leq c m \log(n) \ \forall m < n$

Let $m = \frac{n}{2}$

- (3). $T(\frac{n}{2}) \le c \frac{n}{2} \log(\frac{n}{2})$
- (4). $T(n) \le 2c \frac{n}{2} \log(\frac{n}{2}) + n = c n \log(\frac{n}{2}) + n = c n (\log(n) \log(2)) + n$

 $T(n) \le c n \log(n) - cn + n$

 $T(n) \leq c n \log(n) - (c-1)n$

(5). $c n \log(n) - (c-1)n \le c n \log(n)$ // for which values of c?

$$n\log(n) \le n\log(n)$$
 if $c=1$

$$\frac{1}{2}n\log(n) + \frac{1}{2}n \le \frac{1}{2}n\log(n) \text{ if } c = \frac{1}{2}$$

Idea:

- 1. Propose (guess) an order of time complexity for T(n).
- 2. Find constants (by induction) that support your proposed solution.

Example. Prove that $T(n)=2T(\frac{n}{2})+n$ is $O(n\log(n))$

- (1). $T(n) \le c n \log(n) \exists c > 0$
- (2). $T(m) \le c m \log(n) \ \forall m < n$

Let $m = \frac{n}{2}$

- $(3). T\left(\frac{n}{2}\right) \le c \frac{n}{2} \log\left(\frac{n}{2}\right)$
- (4). $T(n) \le 2c \frac{n}{2} \log(\frac{n}{2}) + n = c n \log(\frac{n}{2}) + n = c n (\log(n) \log(2)) + n$

 $T(n) \le c n \log(n) - cn + n$

 $T(n) \le c n \log(n) - (c-1)n$

 $(5). c n \log(n) - (c-1)n \le c n \log(n)$

Solution: $T(n) \le c n \log(n) \ \forall c \ge 1$