Problem Set 7 MATH 25800

7 Modules Over PIDs

7.1. Uniqueness of the rational canonical form. Let $I_1 \subset I_2 \subset \cdots$ be a sequence of ideals in a PID R. Assume that there is some natural number N such that $I_N = R$. Thus, if $I_i = (a_i)$, we have $a_{i+1} \mid a_i$ for all i and $1 = a_N = a_{N+1} = \cdots$. Let $M_i = R/I_i$, and let $M = M_1 \oplus M_2 \oplus \cdots$. For a prime p of R and for $k \geq 0$, we see that $p^k M/p^{k+1}M$ is a module over the field R/(p), and is therefore a vector space over R/(p). Denote by d(p,k) its dimension. Define $n_i(p)$ to be the greatest nonnegative integer such that $I_i \subset (p^{n_i})$ — equivalently, $n_i(p)$ is the power of p that occurs in the factorization of a_i . However, $a_i = 0$ (equivalently $I_i = 0$) is a possibility, in which case we put $n_i(p) = \infty$.

- (i) Prove that the sequence $d(p,0), d(p,1), \ldots$ determine the sequence $n_1(p), n_2(p), \ldots$
- (ii) Deduce that if $M \cong N$ where $N = N_1 \oplus N_2 \oplus \cdots$ and $N_i = R/J_i$ for an increasing sequence of ideals $J_1 \subset J_2 \subset \cdots$, then $I_n = J_n$ for all $n \in \mathbb{N}$.
- **7.2.** Let K be the fraction field of the PID R. We regard K as an R-module and regard $R \subset K$ as an R-submodule.
 - (i) Show that K/R is a torsion R-module.
 - (ii) We have shown that every torsion R-module is the direct sum of its p-primary components. The p-primary component of K/R is S/R, where S is an R-submodule of K. Do you recognize S? Hint: You encountered it in fourth week.
- **7.3.** Given subrings A, B of a ring C, it is not true that A + B is a subring in general. But here is an example where it is indeed a subring: Let C = F(X) where F is a field, let A = F[X], let $\alpha \in F$, and let B be the image of the unique ring homomorphism $\phi : F[T] \to F(X)$ such that $\phi(c) = c$ for all $c \in F$ and $\phi(T) = (X a)^{-1}$. Prove that...
 - (i) $A \cap B = F$;
 - (ii) A+B equals the subring S of the previous problem, where R=F[X] and $p=(X-\alpha)$.
- **7.4.** Let R be a commutative ring. The **derivative** (of $f = a_0 + a_1 X + \cdots + a_n X^n \in R[X]$), denoted by f', is defined by $f'(X) = a_1 + 2a_2 X + \cdots + na_n X^{n-1}$. Assume that R is a subring of a commutative ring A. Let M be an A-module. An R-derivation (of A with values in M) is a function $D: A \to M$ that satisfies...
 - (1) D(a+b) = D(a) + D(b) for all $a, b \in A$;
 - (2) D(ab) = aD(b) + bD(a) for all $a, b \in A$;
 - (3) D(c) = 0 for all $c \in R$.

Prove that D(f) = f' is an R-derivation D of R[X] with values in R[X] that satisfies D(X) = 1.

- **7.5.** (i) Let $a \in R$ and let $f \in R[X]$, where R is a commutative ring. a is said to be a **root** (resp. **repeated root**) of f if f is a multiple of (X a) (resp. $(X a)^n$ for some $n \in \mathbb{N}$). Prove that f(a) = f'(a) = 0 iff f is a multiple of (X a).
 - (ii) Let F be a subfield of a field E. Let $a \in E$ and let $f \in F[X]$. Show that if a is a repeated root of f, then there is some $g \in F[X]$ such that...
 - (1) $\deg(g) > 0$;
 - (2) Both f and f' are multiples of g in F[X].
- **7.6.** This is essentially a repetition of the last problem from HW6 but by a slightly different method. Let $F[X]_{\leq m}$ be the collection of $a \in F[X]$ such that $\deg(a) < m$. Let $f, g \in F[X]$ be polynomials of degrees d and e, respectively. Define $T: F[X]_{\leq e} \oplus F[X]_{\leq d} \to F[X]_{\leq d+e}$ by T(a,b) = af + bg. Note that T is a linear transformation of F-vector spaces, with domain and target of the same dimension.

Problem Set 7 MATH 25800

(i) Deduce that gcd(f,g) = 1 iff every $h \in F[X]$ with deg(h) < d + e can be expressed as af + bg for some $a, b \in F[X]$ satisfying deg(a) < e and deg(b) < d.

(ii) The **resultant** (of f, g), denoted by Res(f, g), is the determinant of T. To define the latter, one requires a basis for the source and target. In particular,

$$(1,0),(X,0),\ldots,(X^{e-1},0),(0,1),(0,X),\ldots,(0,X^{d-1})$$

is the basis for $F[X]_{\leq e} \oplus F[X]_{\leq d}$ and

$$1, X, \dots, X^{d+e-1}$$

is the basis for $F[X]_{\leq d+e}$.

Deduce that gcd(f, g) = 1 iff $Res(f, g) \neq 0$.

7.7. Given an R-module M and $a \in R$, denote by $a_M : M \to M$ the function $a_M(m) = am$ for all $m \in M$. Now consider $M = R/(p^2) \oplus R/(p)$ where R is a PID and $p \in R$ is a prime. Let N be a submodule of M which has the property that $T(N) \subset M$ for every R-module self-isomorphism $T : M \to M$. Prove that N is one of the following four submodules: $0, M, pM, \ker(p_M)$. Note: The above problem is also valid for $(R/(p^2))^m \oplus (R/(p))^n$.