Short title

Shiqi Duar

Review the PID regulato

Review the state-space, state-feedback and estimator SS and TF: conversion

Quickly review the Riccati equation used for design the

LQG regulato

Problem Description Linear Quadratic Regulator

Weekly Summary

Shiqi Duan

University of Science and Technology of China sqduan@mail.ustc.edu.cn

November 16, 2019

Overview

Short title

Shiqi Duai

Review the PID regulator

state-space, state-feedback and estimator SS and TF: conversion

Quickly review the Riccati equation used for design the LQG regulator

Problem
Description
Linear Quadrati

1 Review the PID regulator

- 2 Review the state-space, state-feedback and estimator
 - SS and TF: conversion
 - State feedback and estimation
- 3 Quickly review the Riccati equation used for design the LQG regulator
- 4 LQG regulator
 - Problem Description
 - Linear Quadratic Regulator

PID regulator Review

Short title

Shiqi Duai

Review the PID regulator

Review the state-space, state-feedbac and estimator SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulato

LQG regulato

Problem
Description
Linear Quadrati

Function of the parameters

PID gain	P.O.	Settling time	Steady-state error
Increasing K_p Increasing K_i	Increases Increases	- Increases	Decreases Zero steady- state error
Increasing K_d	Decreases	Decreases	_

Table: Table caption

PID regulator Review

Short title

Shiqi Duai

Review the PID regulator

state-space, state-feedbac and estimato SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulato

LQG regulato

Turning strategy

- Set K_I and K_D to 0
- Increasing K_P slowly until the output of the closed-loop system oscillates just on the edge of instability.
- Reduce K_p to achieve quarter amplitude decay.
- Increasing K_D to decrease setting time and overshoot.
- Increasing K_I to eliminate steady-state error.

SS and TF: Conversion

Short title

Shiqi Duar

Review the PID regulator

Review the state-space, state-feedback

SS and TF: conversion State feedbag

Quickly review the Riccati equation used for design the LQG regulator

LQG regulato

Problem Description Linear Quadrat Regulator SS to TF

$$sX(s) = AX(s) + BU(s)$$

$$Y(s) = CX(s) + DU(s)$$
(1)

$$H(s) = \frac{Y(s)}{U(s)} = C\Phi(s)B + D = C(sI - A)^{-1}B + D$$
 (2)

SS and TF: Conversion

Short title

Shiqi Duai

Review the PID regulator

Review the state-space, state-feedbac and estimato

SS and TF: conversion State feedback

Quickly review the Riccati equation used for design the LQG regulator

LQG regulator

Problem Description Linear Quadrat TF to SS

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_0}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} \dot{y} + a_n y = u$$
(3)

$$\begin{bmatrix} x_1 = y \\ x_2 = \dot{y} \\ \vdots \\ x_n = y^{(n-1)} \end{bmatrix} \rightarrow \begin{bmatrix} \dot{x}_1 = \dot{y} \\ \dot{x}_2 = \ddot{y} \\ \vdots \\ \dot{x}_n = y^{(n)} \end{bmatrix}$$

$$(4)$$

State Feedback

Short title

Shigi Duar

Review the PID regulator

Review the state-space, state-feedback and estimator SS and TF:

State feedback

Quickly review the Riccati equation used for design the LQG regulato

LQG regulato

Problem Description Linear Quadrati Goal: By design a proper feedback controller with gain K, we can place the eigenvalues in any positions we what.

$$\dot{x}(t) = (\mathbf{A} - \mathbf{b}\mathbf{k})x(t) + \mathbf{b}u(t)$$

$$y(t) = \mathbf{C}x(t)$$
(5)

State Feedback Controller Design

Short title

Shiqi Duai

Review the PID regulator

Review the state-space, state-feedbac and estimator SS and TF:

State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulator

Problem
Description

Method 1:Pole placement

Compute K according to the desired poles

Method 2:Solving Lyapunov equation

Compute K by solving a Lyapunov equation

Method 3:Linear quadratic method

Please refer to section 4

State Estimator

Short title

Shiqi Duar

Review the PID regulato

state-space, state-feedba and estimate SS and TF:

State feedback

Quickly review the Riccati equation used for design the LQG regulato

LQG regulato

Problem Description Linear Quadrati A state estimator or observer is a device generates an estimate of the state.

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) + \mathbf{b}u(t) + \mathbf{I}(y(t) - \mathbf{c}\hat{\mathbf{x}}(t))$$
 (6)

State Estimator Design

Short title

Shiqi Dua

Review the PID regulato

Review the state-space, state-feedbac and estimato SS and TF: conversion

State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulato

Problem
Description
Linear Quadratic

Method 1:Pole placement

Compute L according to the desired poles, normally we need to place the poles at least five times farther to the left than the dominant poles of the system to get a good observer dynamics.

Method 2:Solving Lyapunov equation

Compute L by solving a Lyapunov equation

Method 3:Linear quadratic estimator

Please refer to section 4

Riccati equation

Short title

Shiqi Duar

Review the PID regulator

state-space, state-feedbac and estimato SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulator

Problem Description **Problem**

Get the solution of

$$\frac{dy}{dx} = A(x)y^2 + B(x)y + C(x) \tag{7}$$

with a form of

$$y = y_1 + \frac{1}{v(x)} \tag{8}$$

Solution

- rewrite the quadratic first order problem to a linear first order problem
- Solve the rewritten problem

Linear Quadratic Optimization

Short title

Shiqi Dua

Review the PID regulator

state-space, state-feedbace and estimate SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulato

LQG regulato

Problem Description Linear Quadra Regulator In a control system, we want to balance the performance and actuator effort (energy) by setting up a cost function of the performance (x) and the effort (u):

$$J = \int_0^\infty \left(x^\top Q x + u^\top R u \right) dt \tag{9}$$

Solving the equation above, we can get a gain matrix K that produce the lowest cost given the dynamic system.

Linear Quadratic Regulator

Short title

Shiqi Duar

Review the PID regulator

state-space, state-feedbac and estimate SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulato

LQG regulator
Problem
Description
Linear Quadratic
Regulator

Consider a continuous-time linear system, defined on $t \in [t_0, t_1]$, described by:

$$\dot{x} = Ax + Bu \tag{10}$$

with a quadratic cost function defined as:

$$J = x^{T}(t_{1})F(t_{1})x(t_{1}) + \int_{t_{0}}^{t_{1}} (x^{T}Qx + u^{T}Ru + 2x^{T}Nu) dt$$
(11)

the feedback control law that minimizes the value of the cost is:

$$u = -Kx \tag{12}$$

Linear Quadratic Regulator

Short title

Shiqi Dua

Review the PID regulator

state-space, state-feedbac and estimate SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulato

LQG regulator
Problem
Description
Linear Quadratic
Regulator

where K is given by:

$$K = R^{-1} \left(B^T P(t) + N^T \right) \tag{13}$$

and P is found by solving the continuous time Riccati differential equation:

$$A^{T}P(t)+P(t)A-(P(t)B+N)R^{-1}\left(B^{T}P(t)+N^{T}\right)+Q=-\dot{P}(t)$$
(14)

Unfinished Work

Short title

Shiqi Duar

Review the PID regulator

state-space, state-feedbace and estimate SS and TF: conversion State feedback and estimation

Quickly review the Riccati equation used for design the LQG regulator

LQG regulator
Problem
Description
Linear Quadratic
Regulator

- Specific procedures of solving the continuous Riccati differential equation in LQR
- How to design a linear quadratic estimator
- How to pick up proper noise covariance matrix in LQG

References

Short title

Shiqi Duar

Review the PID regulator

Review the state-space, state-feedbac and estimator

SS and TF: conversion State feedback

Quickly review the Riccati equation used for design the LQG regulator

LQG regulato

Linear Quadratic Regulator

Chi-tsong Chen (2012) Linear system theory and design Oxford University Press

Dorf R C (2011)

Modern control systems

Pearson

Short title

Shiqi Duan

Review the PID regulato

state-space, state-feedback and estimator SS and TF: conversion

Quickly review the Riccati equation used for design the

_QG regulator

Problem
Description
Linear Quadratic
Regulator

The End