Calculo

Alejandro Zubiri

 $March\ 15,\ 2025$

Índice

	0.1	Bibliografía	2
1	Elε	espacio \mathbb{R}^n	3
	1.1	$\hat{\mathbb{E}}$ l conjunto \mathbb{R}^n	3
		1.1.1 \mathbb{R}^n como espacio afín	
		1.1.2 \mathbb{R}^n como espacio métrico	
		1.1.3 Rectas e hiperplanos en \mathbb{R}^n	
	1.2	El símbolo de Levi-Civita o símbolo totalmente antisimétrico	
		1.2.1 La delta de Kronecker	
	1.3	Topología en \mathbb{R}^n	
	1.4	Funciones en \mathbb{R}^n	
		1.4.1 Campos vectoriales	
2	Continuidad		
	2.1	Continuidad	Ć
3	Diferenciabilidad 10		
	3.1	Derivadas de campos escalares	10
	3.2	Derivadas parciales	
	3.3	La diferencial	
	3.4	Cálculo de planos tangentes a funciones en puntos	13
	3.5	Diferencial para campos vectoriales	13
	3.6	Derivadas parciales de orden superior	
	3.7	Polinomio de Taylor	
	3.8	Regla de la cadena	14
	0.0	3.8.1 Derivada de un campo escalar a lo largo de una curva	14
1	Fun	aciones Implícitas	15
4		Funciones Inversas	

0.1 Bibliografía

- Stewart, J. Cálculo en varias variables.
- Apuntes de Pepe Aranda.
- Tom M. Apostol, "Calculus".
- Tom M. Apostol, Análisis Matemático.

El espacio \mathbb{R}^n

1.1 El conjunto \mathbb{R}^n

 \mathbb{R}^n es el conjunto

$$\mathbb{R}^n = \{(x_1, \dots, x_n)/x_i \in \mathbb{R}, 1 \le i \le n\}$$

De momento, este conjunto no tiene ninguna estructura. Para ello, se introduce la noción de espacio vectorial (EV a partir de ahora).

• La suma vectorial:

$$\vec{a} + \vec{b} = (a_i + b_i, \dots a_n + b_n)$$

• Producto por escalar:

$$k\vec{a} = (ka_1, \dots, ka_n)$$

Con estas dos operaciones, \mathbb{R}^n es EV, y a sus elementos, los vamos a llamar vectores, y los denotaremos por $\vec{x} = (x_1, \dots x_n)$.

Con esta estructura, los elementos de \mathbb{R}^n se pueden ordenar, por ejemplo, en una cuadrícula.

1.1.1 \mathbb{R}^n como espacio afín

Nos será útil para definir direcciones desde cualquier punto de \mathbb{R}^n . La estructura afín en \mathbb{R}^n se define por la aplicación

$$\varphi: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$$

$$(\vec{u}, \vec{v}) \mapsto \varphi(\vec{u}, \vec{v})$$

donde $\varphi(\vec{u}, \vec{v})$ se representará como un vector cuyo punto de aplicación está en el extremo de \vec{u} y el extremo, el de $\varphi(\vec{u}, \vec{v})$ en el extremo de \vec{v} . Es fácil comprobar que

$$\varphi(\vec{u}, \vec{v}) = \vec{v} - \vec{u}$$

En este contexto es conveniente llamar puntos a los vectores con punto de aplicación en el $\vec{0}$ y vectores a los vectores cuyo punto de aplicación es arbitratio. Los puntos también los denotaremos mediante letras mayúsculas, y los vectores con letras minúsculas.

A recordar que punto - punto define un vector, y que punto + vector = punto. Con esto ya podemos definir direcciones.

1.1.2 \mathbb{R}^n como espacio métrico

Para medir longitudes, ángulos y distancias introduciremos en \mathbb{R}^n el **producto escalar**.

Definición 1. El producto escalar entre dos vectores \vec{u} y \vec{v} se define como

$$\cdot: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$$

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i \tag{1.1}$$

El producto escalar tiene las propiedades siguientes:

- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\vec{u} \cdot (\vec{v} + \lambda \vec{w}) = \vec{u} \cdot \vec{v} + \lambda \vec{u} \cdot \vec{w}$
- $\vec{u} \cdot \vec{u} \ge 0 \implies \vec{u} \cdot \vec{u} = 0 \iff \vec{u} = \vec{0}$

Debido a la propiedad 3, podemos definir la longitud (o norma) de un vector como

Definición 2. La longitud o norma de un vector se define como:

$$|\vec{u}| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{\sum_{i=1}^{n} u_i^2}$$
(1.2)

Las propiedades son que:

- $|\vec{v}| = 0 \iff \vec{v} = 0$
- $|\lambda \vec{u}| = |\lambda| |\vec{u}|$
- Desigualdad de Cauchy-Schwarz:

$$|\vec{u} \cdot \vec{v}| \le |\vec{u}||\vec{v}|$$

Demostración. Observemos que si uno de los vectores es el vector nulo, entonces la desigualdad se satisface por igualdad, o también si ambos vectores son proporcionales entre sí. Supongamos entonces que u y v son LI. Eso significa que la ecuación $u = \lambda v$ no tiene solución.

$$u - \lambda v = \vec{0}$$

$$(u - \lambda v)(u - \lambda v) = 0$$
$$u \cdot u - 2xu \cdot v + x^{2}v \cdot v = 0$$

Recordando la definición de norma queda

$$x^2|v|^2 - 2xu \cdot v + |u|^2 = 0$$

Ahora tenemos una ecuación de segundo grado en x. Como no puede tener solución, $b^2 - 4ac < 0$.

$$(2u \cdot v)^{2} - 4|v|^{2}|u|^{2} < 0$$
$$2|u \cdot v| < 2|v||u|$$
$$|u \cdot v| < |v||u|$$

Como deben cumplirse ambas

$$|u \cdot v| \le |v||u| \tag{1.3}$$

• Designaldad triangular

$$|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$$

Demostración. Partimos de u+v

$$(u+v)\cdot(u+v) = |u|^2 + 2u\cdot v + |v|^2 = |u+v|^2 \ge 0$$

Por Cauchy-Schwarz, $u \cdot v \leq |u \cdot v| \leq |u| \cdot |v|$

$$|u+v|^2 \le |u|^2 + |v|^2 + 2|u||v|$$

 $|u+v|^2 \le (|u|+|v|)^2$
 $|u+v| \le |u|+|v|$

De especial importancia son los vectores con norma 1, denominados como vectores unitarios.

Definición 3. Definimos como vectores unitarios a esos vectores \vec{v} que cumplen que

$$|\vec{v}| = 1 \tag{1.4}$$

Mediante la desigualdad de Cauchy-Schwarz, podemos obtener un método para medir ángulos. Observemos que de C-S se deduce

$$||u||v|| \le u \cdot v \le |u||v| \tag{1.5}$$

Si ninguno de los vectores es el nulo, podemos dividir entre las normas

$$-1 \le \frac{u \cdot v}{|u||v|} \le 1\tag{1.6}$$

Entonces, como está acotada en [-1,1], podemos definir el ángulo α entre u y v como

Definición 4. El ángulo α entre u y v como el ángulo que satisface

$$\cos \alpha = \frac{u \cdot v}{|u||v|} \tag{1.7}$$

donde $\alpha \in [0, \pi]$. Es de relevancia que α siempre se mide como el ángulo "interior" o el más pequeño.

 $Si \ \alpha = \frac{\pi}{2} \implies u \cdot v = 0 \implies u \ y \ v \ son \ ortogonales.$

Aunque el ángulo entre $\vec{0}$ y otro vector cualquiera no está definido, sin embargo, se suele decir que $\vec{0}$ es ortogonal a todos los vectores de \mathbb{R}^n

Ahora en \mathbb{R}^2 ya podemos dibujarlos "correctamente". Ahora falta definir distancias entre puntos de \mathbb{R}^n .

Definición 5. Definimos la distancia entre dos puntos P y Q como

$$d(P,Q) = |\overrightarrow{PQ}| = |Q - P| \tag{1.8}$$

1.1.3 Rectas e hiperplanos en \mathbb{R}^n

Una recta en \mathbb{R}^n que pasa por un punto P y tiene la dirección $\overrightarrow{v} \in \mathbb{R}^n$ se define como los puntos X que satisfacen

La recta está descrita por un solo parámetro libre, por lo que es un objeto de dimensión 1. Si $v_j \neq 0$ con $j \in \{1, ..., n\}$ podemos eliminar t

$$t = \frac{x_j - p_j}{v_j} \tag{1.10}$$

Y entonces

$$x_{i} = p_{i} + \frac{x_{j} - p_{j}}{v_{j}} v_{i} / i \neq j$$
(1.11)

Por tanto, la recta está definida por n-1 ecuaciones. Por tanto, la recta es un objeto de codimensión n-1.

1.2 El símbolo de Levi-Civita o símbolo totalmente antisimétrico

En \mathbb{R}^n se define por:

$$\varepsilon_{i,\dots,i_n} = \begin{cases} 1 & \text{si } i_i,\dots,i_n \text{ es una permutación par} \\ -1 & \text{si es una permutación impar} \\ 0 & \text{en el resto de casos, cuando un índice se repite} \end{cases}$$

 i_1, \ldots, i_n es una permutación par $123, \ldots, n$ si para transformar una en otra necesitamos un número par de trasposiciones. Una trasposición es una permutación en la que solo se intercambian dos y solo dos elementos (no tienen por qué ser adyacentes).

Si queremos abusar todavía más de la notación, podemos usar el criterio de suma de Einstein. Este consiste en suponer que hay una suma siempre que un índice se repita, y la suma se hace en todo el rango de definición del índice:

$$\mathbf{v} \cdot \mathbf{w} = v_i w_i$$

1.2.1 La delta de Kronecker

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Los vectores de la base canónica cumplen que:

$$\mathbf{e}_i \cdot \mathbf{e}_i = \delta_{ij}$$

Las bases cuyos vectores cumplan esto se dice que son bases ortonormales.

1.3 Topología en \mathbb{R}^n

Definición 6. Definimos un conjunto abierto de \mathbb{R}^n a partir de la definición de bolas abiertas. Dado $\mathbf{x} \in \mathbb{R}^n$ y dado $r \in \mathbb{R}^+$ se define la bola abierta centrada en \mathbf{x} y de radio r como el conjunto

$$B_r(\mathbf{x}) = {\mathbf{y} \in \mathbb{R}^n : d(\mathbf{x}, \mathbf{y}) < r}$$

A veces convendrá usar bolas abiertas sin el punto central (perforadas), y se denotan por $B_r^*(\mathbf{x})$:

$$B_r^*(\mathbf{x}) = B_r(\mathbf{x}) - \{\mathbf{x}\}$$

Un conjunto abierto $A \subset \mathbb{R}^n$ es abierto si y solo si para todo $\mathbf{x} \in A \exists \delta > 0 : B_{\delta}(\mathbf{x}) \subset A$ Además, se verifica que $ext(S) = \mathbb{R}^n - (S \cup \partial S)$

Definición 7. Un conjunto $B \subset \mathbb{R}^n$ es cerrado si y solo si $\mathbb{R}^n - B$ es abierto. Además se verifica que $ext(B) = \mathbb{R}^n - B$

Dado cualquier conjunto $S \subset \mathbb{R}^n$, podemos clasificar los puntos de \mathbb{R}^n en:

- Puntos interiores de S: si existe una bola centrada en dicho punto contenida en S.
- Puntos exteriores de S: si existe una bola centrada en el punto tal que $B(\mathbf{x},r) \cap S = \phi$.
- Puntos frontera de S: si $\forall r \in \mathbb{R}^+ B(\mathbf{x}, r) \cap S \neq \phi$ y $B(\mathbf{x}, r) \cap (\mathbb{R}^n S) \neq \phi$.

Todos estos conjuntos son disjuntos entre sí. Al conjunto de todos los puntos interiores de S se les llama interior de S y lo denotaremos por intS. Al conjunto de todos los puntos exteriores a S se les llama exterior de S y se denota por extS. A los puntos frontera de S se les llama frontera de S y se denota por ∂S .

Definición 8. A $int(S) \cap \partial S$ se la denomina adherencia de S y se denota por \bar{S} .

Definición 9. A los puntos \mathbf{x} que cumplen $B^*(\mathbf{x},r) \cap S \neq \phi$ se les llama puntos límite de S.

1.4 Funciones en \mathbb{R}^n

Sea

$$f:D\subset\mathbb{R}^n\to\mathbb{R}^m$$

Si n = m = 1 entonces es una función de variable real. Si n > 1 y m = 1, entonces f es una función real de variable vectorial o campo escalar. Para hacernos una idea del comportamiento de estas funciones es conveniente dibujar estas funciones (cuando sea posible). Para ello nos serán útiles los **conjuntos de nivel**:

Definición 10. Sea $f: \mathbb{R}^n \to \mathbb{R}$

$$L_f(c) = {\mathbf{x} \in D : f(\mathbf{x}) = c} = f^{-1}(c)$$

Que es precisamente la preimagen de c.

1.4.1 Campos vectoriales

Estas funciones son de la forma

$$\mathbf{f}: D \subset \mathbb{R}^n \to \mathbb{R}^{m>1}$$

Estas funciones toman un vector \mathbf{x} como entrada y se mappean a un vector $\mathbf{f}(\mathbf{x})$. f_i son componentes (campos escalares). Si n=1, \mathbf{f} es una curva en \mathbb{R}^m . Si n=2, \mathbf{f} es una superficie en \mathbb{R}^m . En general, si n < m, \mathbf{f} es una variedad n-dimensional dentro de \mathbb{R}^m . Si n=m, entonces se puede representar a \mathbf{f} sobre su dominio. Si n > m > 1, ya no podemos dibujar a \mathbf{f} .

Continuidad

Definición 11. Dada $\mathbf{f}: D \subset \mathbb{R}^n \to \mathbb{R}^m$, si **a** es un punto límite de D, decimos que $\mathbf{f}(\mathbf{x})$ tiende a **b** cuando \mathbf{x} tiende a **a**, y se denota por

$$\lim_{\mathbf{x}\to\mathbf{a}}\mathbf{f}(\mathbf{x})=\mathbf{b}$$

Si se cumple que

$$\forall \varepsilon > 0 \exists \delta > 0 : |\mathbf{x} - \mathbf{a}| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{b}| < \varepsilon$$

Esta definición es equivalente al límite

$$\lim_{|\mathbf{x} - \mathbf{a}| \to 0} |\mathbf{f}(\mathbf{x}) - \mathbf{b}| = 0$$

En estas definiciones no decimos cómo el punto ${\bf x}$ se acerca a ${\bf a}$. Por tanto, si el límite depende de por donde nos acerquemos a ${\bf a}$, entonces este no existe.

Para evitar utilizar la definición a la hora de calcular límites, utilizaremos los siguientes teoremas.

Teorema 1. Sean $\mathbf{f}: D \to \mathbb{R}^m$ y $\mathbf{g}: C \to \mathbb{R}^m$ con $D \cap C \neq \phi$, y sea \mathbf{a} un punto límite de $D \cap C$, y además suponemos que

$$\lim_{\mathbf{x}\to\mathbf{a}}\mathbf{f}(\mathbf{x})=\mathbf{b}$$

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{g}(\mathbf{x}) = \mathbf{c}$$

Entonces se cumple que - $\lim_{\mathbf{x}\to\mathbf{a}} \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) = \mathbf{b} + \mathbf{c}$

- $\lim_{\mathbf{x} \to \mathbf{a}} \lambda \mathbf{f}(\mathbf{x}) = \lambda \mathbf{b}$
- $-\lim_{\mathbf{x}\to\mathbf{a}}\mathbf{f}(\mathbf{x})\cdot\mathbf{g}(\mathbf{x})=\mathbf{b}\cdot\mathbf{c}$
- $\lim_{\mathbf{x} \to \mathbf{a}} |\mathbf{f}(\mathbf{x})| = |\mathbf{b}|$

2.1 Continuidad

Definición 12. Una función f es continua en un punto a si

$$\lim_{\mathbf{x} \to \mathbf{a}} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{a})$$

Diferenciabilidad

3.1 Derivadas de campos escalares

La derivada de un campo escalar, f en un punto ${\bf x}$ sería entonces

$$Df(\mathbf{x}) = \lim_{\mathbf{h} \to 0} \frac{f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})}{\mathbf{h}}$$

Pero la división por vectores no está definida, por lo que vamos a necesitar otra forma. Por tanto, vamos a definir la **derivada respecto de un vector**.

Definición 13. La derivada de una función f respecto de un vector v se define como

$$f'(\mathbf{x})_{\mathbf{v}} = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}$$

Como estas derivadas son un verdadero dolor de calcular, vamos a definir otra forma de calcularlas

Teorema 2. Sea $g(t) = f(\mathbf{x} + t\mathbf{v})$. Si g'(t) o $f'(\mathbf{x} + t\mathbf{v}, \mathbf{v})$ existe, entonces también existe la otra y son iguales. En particular, cuando t = 0,

$$f'(\mathbf{x}, \mathbf{v}) = g'(0)$$

Teorema 3. Sean f y \mathbf{v} tales que $f(\mathbf{x} + t\mathbf{v})$ está definida para todo $t \in [0,1]$ y supongamos que $\exists f'(\mathbf{x} + t\mathbf{v}, \mathbf{v}) \forall t \in [0,1]$, entonces

$$\exists \tau \in (0,1) : f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) = f'(\mathbf{x} + \tau \mathbf{v}, \mathbf{v})$$

El problema de estas derivadas respecto de un vector es que no se tiene en cuenta la distancia que separa los puntos donde evaluamos f, pues esta es

$$|\mathbf{x} + h\mathbf{v} - \mathbf{x}| = |h\mathbf{v}|$$

Para solucionar este problema, utilizaremos vectores de norma 1. Entonces la derivada se llama **derivada** direccional.

3.2 Derivadas parciales

Las derivadas parciales son aquellas que se hacen respecto a un eje. Si como vector unitario usamos uno de la base canónica de \mathbb{R}^n

$$\{\mathbf{e}_i\}$$

donde

$$(\mathbf{e}_i)_j = \delta_{ij}$$

entonces la correspondiente derivada direccional en un punto \mathbf{x} es

$$f'(\mathbf{x}; \mathbf{e}_i)$$

es la **derivada parcial** respecto a e_i , y se denota por $D_i f = \partial_i f$. Observemos que

$$f'(\mathbf{x}, \mathbf{e}_i) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h} = \frac{\partial f}{\partial x_i}$$

Como todos los componentes que no estén alineados con \mathbf{e}_i no cambian, podemos tomarlos como si **fuesen** constantes, es decir, como una derivada ordinaria respecto a x_i .

3.3 La diferencial

Las derivadas direccionales nos dan una información muy pobre del comportamiento de una función. Queremos buscar algo análogo a

$$Df(\mathbf{x}) = \lim_{\mathbf{h} \to 0} \frac{f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})}{\mathbf{h}}$$

El problema es que tenemos un vector dividiendo. Vamos a tomar que ${\bf h}$ es un vector finito

$$Df(\mathbf{x}) + \varepsilon(\mathbf{x}, \mathbf{h}) = \frac{f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})}{\mathbf{h}}$$
$$\mathbf{h}(Df(\mathbf{x}) + \varepsilon(\mathbf{x}, \mathbf{h})) = f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})$$
(3.1)

Se tiene que cumplir que

$$\lim_{h \to 0} \varepsilon(\mathbf{x}, \mathbf{h}) = 0$$

ahora sigue que

$$\frac{d}{dt}(f \circ \mathbf{c}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}) \frac{dx_i}{dt}$$

Para que el lado izquierdo sea escalar, \mathbf{h} debe ser una matriz $n \times 1$, y Df otra de $1 \times n$. Podemos reescribir esto como

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = T_{\mathbf{x}}(\mathbf{h}) + |\mathbf{h}|E(\mathbf{x}, \mathbf{h})$$

Como $\varepsilon \to 0$ si $h \to 0$, entonces también lo hará $E(\mathbf{x}, \mathbf{h})$. Entonces obtenemos

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = T_{\mathbf{x}}(\mathbf{h}) + o(|\mathbf{h}|)$$

Definición 14. Sean $f: S \subset \mathbb{R}^n \to \mathbb{R}$ y $x \in int(S)$, $B_r(\mathbf{x}) \subset S$ y $\mathbf{v} \in \mathbb{R}^n$ tal que $\mathbf{x} + \mathbf{v} \in B_r(\mathbf{x})$. Escriber que f es diferenciable en \mathbf{x} si existe una transformación lineal $T_{\mathbf{x}}: \mathbb{R}^n \to \mathbb{R}$ tal que

$$f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) = T_{\mathbf{x}}(\mathbf{v}) + o(|\mathbf{v}|)$$

Vamos a ver si la diferencial es capaz de detectar discontinuidades. Supongamos que $f: D \subset \mathbb{R}^n \to \mathbb{R}$ es diferenciable en $\mathbf{x} \in int(D)$. Veamos si esto implica continuidad en \mathbf{x} : Si f es continua en \mathbf{x} se cumplirá

$$\lim_{\mathbf{h}\to\mathbf{0}} f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x})$$

Cálculemos entonces este límite:

$$\lim_{h \to 0} f(\mathbf{x} + \mathbf{h}) = \lim_{\mathbf{h} \to 0} f(\mathbf{x}) + T_{\mathbf{x}} + o(|\mathbf{h}|)$$

$$= f(\mathbf{x}) + T_{\mathbf{x}}(\mathbf{0}) + \lim_{\mathbf{h} \to 0} |\mathbf{h}| o(1)$$

$$= f(\mathbf{x})$$
(3.2)

Por tanto, si f es diferenciable en \mathbf{x} , también es continua en ese punto. Ahora, ¿cómo son las derivadas de una función diferenciable? Calculemos la derivada de f respecto de un \mathbf{v} en \mathbf{x} :

$$f'(\mathbf{x}, \mathbf{v}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}$$

$$= \lim_{h \to 0} \frac{T_{\mathbf{x}}(h\mathbf{v}) + o(h)}{h}$$

$$= \lim_{h \to 0} \frac{hT_{\mathbf{x}}(\mathbf{v}) + h \cdot o(1)}{h}$$

$$= \lim_{h \to 0} T_{\mathbf{x}}(\mathbf{v}) + o(1)$$

$$= T_{\mathbf{x}}(\mathbf{v})$$

$$f'(\mathbf{x}, \mathbf{v}) = T_{\mathbf{x}}(\mathbf{v})$$
(3.3)

Si $\mathbf{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$, entonces se puede escribir como combinación lineal de vectores de la base canónica de \mathbb{R}^n .

$$\mathbf{v} = \sum v_i \mathbf{e}_i$$

entonces

$$T_{\mathbf{x}}(\mathbf{v}) = T_{\mathbf{x}} \left(\sum v_i \mathbf{e}_i \right) = \sum v_i T_{\mathbf{x}}(\mathbf{e}_i)$$

Sabemos que una aplicación se define por cómo actua esta en los vectores de la base. Como sabemos que $f'(\mathbf{x}, \mathbf{v}) = T_{\mathbf{x}}(\mathbf{v})$, entonces

$$= \sum v_i f'(\mathbf{x}, \mathbf{e}_i) = \sum v_i \frac{\partial f}{\partial x_i}$$

La conclusión de esto es que

$$f'(\mathbf{x}, \mathbf{v}) = \sum v_i \frac{\partial f}{\partial x_i}$$

Definición 15. El operador Nabla es un operador lineal que se define como

$$\nabla = \left(\frac{\partial}{\partial x_i}, \dots, \frac{\partial}{\partial x_n}\right)$$

Luego ∇f es el gradiente de f.

Por tanto, si f es diferenciable entonces

$$f'(\mathbf{x}, \mathbf{v}) = \nabla f \cdot \mathbf{v}$$

Con el gradiente es fácil determinar en qué direcciones f crece más deprisa. Sea ${\bf u}$ un vector unitario, entonces:

$$f'(\mathbf{x}, \mathbf{u}) = \mathbf{u} \cdot \nabla f = |\nabla f| \cos \theta$$

Teorema 4. Si $\mathbf{v} = \lambda \mathbf{w} \neq \mathbf{0}$ y f es un campo escalar para el que existe $f'(\mathbf{x}, \mathbf{v})$ entonces

$$f'(\mathbf{x}, \mathbf{v}) = \lambda f'(\mathbf{x}, \mathbf{w})$$

Para reconocer si una función es diferenciable usaremos el siguiente teorema:

Teorema 5. Si existen las derivadas parciales $\frac{\partial f}{\partial x_i}$ en una cierta bola $B_r(\mathbf{x})$ y son continuas en \mathbf{x} entonces f es diferenciable en \mathbf{x} .

3.4 Cálculo de planos tangentes a funciones en puntos

Supongamos que tenemos una función f(x,y). Vamos a definir una función de la forma

$$g(x, y, z) = f(x, y) - z$$

Ahora, evaluaremos la función $f(x_1, x_2)$, y calcularemos

$$\nabla g(x_1, x_2, f(x_1, x_2)) = (\alpha, \beta, \gamma)$$

Ahora definiremos un plano como

$$\pi \equiv \alpha x + \beta y + \gamma z + c = 0$$

Para calcular c, sustituimos en el plano los valores de $x_1, x_2, f(x_1, x_2)$, y despejamos.

3.5 Diferencial para campos vectoriales

Cada una de las componentes de un campo vectorial $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f(\mathbf{x})_m)$ es un campo escalar, y si cada una de ellas es diferenciable en \mathbf{x} , podemos introducir la matriz **jacobiana** como

$$D\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \nabla f_1(\mathbf{x}) \\ \dots \\ \nabla f_m(\mathbf{x}) \end{pmatrix}$$

Geométricamente, si tenemos una curva $\mathbf{c}(t)$, que se mappea a \mathbb{R}^m como $\mathbf{f}(\mathbf{c}(t))$, se tiene que su vector tangente \mathbf{v} en \mathbf{x} es $D[\mathbf{f}(\mathbf{x})]\mathbf{v}$.

3.6 Derivadas parciales de orden superior

Definición 16. Una función $f: A \to \mathbb{R}$ es de clase C^r en A, con $r \in \mathbb{N}_0$ si todas sus derivadas parciales de orden r existen y son continuas.

Teorema 6. Si $f \in C^2$, entonces

$$\frac{\partial^2 f}{\partial x_i x_j} = \frac{\partial^2 f}{\partial x_j x_i}$$

3.7 Polinomio de Taylor

Sea $A \subset \mathbb{R}^n$ un conjunto abierto y convexo (si $\mathbf{a}, \mathbf{b} \in A$ está contenido en A, entonces \mathbf{ab} está contenido en A). Si $f \in \mathcal{C}^k$, entonces, definimos el polinomio de Taylor de grado k centrado en \mathbf{a} como

$$P_{\mathbf{a},k}f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x_i - a_i)$$

$$+ \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j^2} (x_i - a_i) (x_j - a_j) + \dots$$

$$+ \frac{1}{k!} \sum_{i,j=1}^{n} \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}^k} (x_{i_1} - a_{i_1}) \dots (x_{i_k} - a_{i_k})$$
(3.4)

3.8 Regla de la cadena

$$D(\mathbf{f} \circ \mathbf{g})(\mathbf{x}) = D(\mathbf{f}(\mathbf{g}(\mathbf{x})))D\mathbf{g}(\mathbf{x})$$

Cada uno de los componentes se define como

$$[D(\mathbf{f} \circ \mathbf{g})(\mathbf{x})]_{ij} = \frac{\partial f_i(\mathbf{g}(\mathbf{x}))}{\partial x_j} = \sum_{k=1}^p \frac{\partial f_i}{\partial g_k} \frac{\partial g_k}{\partial x_j}$$

3.8.1 Derivada de un campo escalar a lo largo de una curva

$$\frac{d}{dt}(f \circ \mathbf{c}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}) \frac{dx_i}{dt}$$

Funciones Implícitas

4.1 Funciones Inversas

Dada $f: A \to B$, se dice que f tiene inversa si existe una función $g: B \to A$ tal que

$$f \circ g = Id_b$$

y similarmente

$$g \circ f = Id_a$$

Si esta función existe, se denota por

$$f^{-1} \neq \frac{1}{f}$$

Se puede demostrar que f^{-1} existe si y solo si f es inyectiva y sobreyectiva (biyectiva). Sin embargo, dadas ciertas funciones que no sean ni inyectivas ni sobreyectivas, se pueden restringir de forma que sean biyectivas.

Ejemplos:

- $f(x) = x^2$. Esta función es sobreyectiva, pero no es inyectiva, y por tanto no tiene inversa. Sin embargo, podemos restringir el dominio tal que $x \ge 0$, y entonces sí que es inyectiva, por tanto biyectiva, y por tanto tiene inversa.
- $g(x) = \cos x$. Esta función es periódica, pero si restringimos la función a un período $[0, \pi]$, entonces es biyectiva.

Sea $\bar{f}(\mathbf{x}) = \mathbf{y}$. Queremos ver si podemos invertir esta relación (\bar{f}^{-1}) , y obtener

$$\mathbf{x} = \bar{f}^{-1}(\mathbf{y})$$

Para ello, introducimos el siguiente teorema.

Teorema 7 (Teorema de la función inversa). Dada una función $f : \mathbb{R}^n \to \mathbb{R}^n$, esta tiene inversa si y solo si el determinante jacobiano (determinante de su diferencial) es distinto a 0.

Dado un sistema de ecuaciones, no necesariamente lineales, siempre lo podemos escribir de la forma:

$$f_1(x_1, \dots, x_{n+k}) = 0$$

$$\dots$$

$$f_n(x_1, \dots, x_{n+k}) = 0$$
(4.1)

Vamos a analizar en qué condiciones podemos despejar n incógnitas en función de las k restantes, que serían parámetros libres. En este caso, estas ecuaciones describen un objeto de k dimensiones en \mathbb{R}^{n+k} . Para distinguir entre parámetros libres e incógnitas, introduciremos la siguiente notación:

- Las incógnitas son x_i, \ldots, x_n .
- Los parámetros libres serán $t_1 = x_{n+1}, \dots, t_k = x_{n+k}$.

Además, introduciremos la función vectorial $\bar{f} = (f_1, \dots, f_n)$, entonces el sistema a resolver acaba siendo

$$\bar{f}(\mathbf{x}, \mathbf{t}) = \mathbf{0}$$

Ahora, supongamos que $(\mathbf{x}_0, \mathbf{t}_0)$ es una solución del sistema que cumple la ecuación anteriormente establecida, y que además $\bar{f} \in \mathcal{C}^1$. Entonces, podemos hacer la aproximación

$$\bar{f}(\mathbf{x}, \mathbf{t}) \approx \bar{f}(\mathbf{x}_0, \mathbf{t}_0) + D\bar{f}(\mathbf{x}_0, \mathbf{t}_0)(\mathbf{x} - \mathbf{x}_0, \mathbf{t} - \mathbf{t}_0)$$

Como hemos asumido que la anterior tupla era solución del sistema, y queremos una solución a la ecuación, queda

$$D\bar{f}(\mathbf{x}_0, \mathbf{t}_0)(\mathbf{x} - \mathbf{x}_0, \mathbf{t} - \mathbf{t}_0) = \mathbf{0}$$

Si escribimos explícitamente el diferencial, obtenemos que

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_k} \\ \cdots & & & & \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} & \frac{\partial f_n}{\partial t_1} & \cdots & \frac{\partial f_n}{\partial t_k} \end{bmatrix}^{\text{Evaluado en } (\mathbf{x}_0, \mathbf{t}_0)} \cdot (\mathbf{x} - \mathbf{x}_0, \mathbf{t} - \mathbf{t}_0) = \mathbf{0}$$

Aquí sigue que

$$\left(D_x \bar{f}(\mathbf{x_0}, \mathbf{t_0}), D_t \bar{f}(\mathbf{x_0}, \mathbf{t_0})\right) (\mathbf{x} - \mathbf{x_0}, \mathbf{t} - \mathbf{t_0}) = \mathbf{0}$$

Reordenando y simplificando, obtenemos que debe existir la inversa de la matriz $D_x \bar{f}$, y por tanto su determinante debe ser distinto a 0.