BİL 460-VERİ MADENCİLİĞİ PROJESİ

MUSIC GENRES CLASSIFICATION AND CLUSTERING

ŞEVVAL YOĞURTCUOĞLU 100043533 ÖZGE ÇOKÇA 200002350

İÇİNDEKİLER

- ► GİRİŞ(INTRODUCTION):
- 1. MÜZİK NEDİR? TÜRLERİ NELERDİR?
- 2. NEDEN MÜZİK SINIFLANDIRMASI YAPILMALIDIR?
- 3. GERÇEK HAYATTA PROBLEMİN GÖRÜLDÜĞÜ ALANLAR
- 4. PROBLEM ÇÖZÜMÜ ADIMLARI
- ► DENEYSEL KURULUM(EXPERIMENTAL SETUP):
- 1. VERİNİN ANLATIMI

VERİNİN İŞLEMSİZ HAM HALİ,KARŞILAŞILAN ZORLUKLAR,SINIF SAYISI,OBJE SAYISI,ÖZNİTELİK SAYISI

- 2. KULLANILAN YÖNTEMLER
- 3. BULUNAN SONUÇLAR
- ► SONUÇ(CONCLUSION)

GİRİŞ(INTRODUCTION)

MÜZİK NEDİR? TÜRLERİ NELERDİR?

Müzik, sesin biçim ve anlamlı titreşimler kazanmış halidir.

AUDIO CLASSIFICATION HIERARCHY

Audio classification hierarchy.

NEDEN MÜZİK SINIFLANDIRMASI YAPILMALIDIR?

Müzik hizmetleri(örneğin; Spotify, Fizy, vb.), İnsanların en sevdikleri müzikleri dinleyebilmeleri için birincil araç haline geldi. Ancak aynı zamanda, müzik hizmetleri kullanıcıların zevklerine uygun müzik türleri aramaya çalışırken en uygununu bulmakta zorluk çekmiş ve zaman kaybı yaşamıştır. Bu nedenle, müzik hizmetleri kişiselleştirilmiş tavsiyelere izin vermek için müziği kategorize etme yollarını araştırmıştır.

Kullandığımız bu yöntem, ham ses bilgisinin belirli bir şarkıdaki doğrudan analizini içerir ve ham verileri çeşitli metrikler üzerinde sayısallaştırır. Bugün, GTZAN Tür Koleksiyonu veri setini kullanarak G. Tzanetakis ve P. Cook tarafından derlenen verileri inceleyeceğiz. Amacımız bu veri setine bakarak müziklerden oluşan ses sinyallerinin müzik türü olarak ('Hip-Hop' 'Rock' vb.) olarak sınıflandırılmasıdır.

Bunu yaparken, verilerimizi nasıl temizlediğimizi, keşfedici veri görselleştirmeyi nasıl yaptığımızı, karar ağaçları ve çeşitli bazı basit makine öğrenme algoritmalarıyla verilerimize özellik çıkarımı nasıl yaptığımızı göstereceğiz.

GERÇEK HAYATTA PROBLEMİN GÖRÜLDÜĞÜ ALANLAR

Günümüzde müzik hizmetleri(Spotify, Shazam, Soundcloud), müşterilerine tavsiyelerde bulunabilmek için müzik sınıflandırması kullanmaktadırlar. Müzik türlerini belirlemek, bu yöndeki ilk adımdır.

Makine öğrenimi tekniklerinin, geniş veri havuzundan trendleri ve kalıpları çıkarmakta oldukça başarılı olduğu kanıtlanmıştır. Aynı ilkeler müzik analizinde de uygulanmaktadır.

PROBLEM ÇÖZÜMÜ ADIMLARI:

Bu projede Python'da bir ses/müzik sinyalinin nasıl analiz edileceğini inceleyeceğiz.

Daha sonra müzikleri farklı türlerde sınıflandırmak için öğrenilen becerileri kullandık.

Verilerimize;

- 1. Önişlem (Pre-processing)
- 2. Öznitelik temsili (Feature Representation)
- 3. Öznitelik seçimi (Feature Selection)
- 4. Öznitelik çıkarımı (Feature Extraction)

Uygulayarak data setimizi oluşturduk.

Daha sonra öğrenme algoritmaları(Learning Methods) kullanarak müziklerimizi sınıflandırdık ve kümeledik. Performans Değerlendirmesi(Performance Evaluation) yaparak hangi öğrenme algoritmasının böyle bir veri setinde daha iyi performans gösterdiğini inceledik.

DENEYSEL KURULUM (EXPERIMENTAL SETUP)

AUDIO PROCESSING

Audio,

frekans, bant genişliği, desibel vb. gibi parametrelere sahip bir ses sinyali şeklinde temsil edilir.

Tipik bir ses sinyali, genlik ve zamanın bir fonksiyonu olarak ifade edilebilir. Bu sesler, bilgisayarın bunları okumasını ve analiz etmesini mümkün kılan birçok formatta mevcuttur.

Bazı örnekler;

- -mp3 format
- -WMA(Windows media audio) format
- -Wav(Waveform Audio File) format

Python, librosa ve pyAudio gibi ses işlemesi için kütüphanelere sahiptir.

Librosa:

Müzik ve ses analizi için kullanılan bir python paketidir.

Librosa Kütüphanesinin Yüklenmesi

!pip install librosa

DATASET

- ▶ 30 saniye uzunluğunda 1000 adet audio track dan oluşmaktadır.
- ▶ 10 farklı tür içermektedir. (blues, classical, country, disco, hip-hop, jazz, reggae, rock, metal ve pop)
- ► Her tür 100 ses dosyasından oluşmaktadır.

	blues	2.12.2019 15:00	Dosya klasörü
	classical	2.12.2019 15:00	Dosya klasörü
1	country	2.12.2019 15:00	Dosya klasörü
1	disco	2.12.2019 14:59	Dosya klasörü
1	hiphop	2.12.2019 14:59	Dosya klasörü
1	img_data	2.12.2019 15:23	Dosya klasörü
1	jazz	2.12.2019 14:59	Dosya klasörü
	metal	2.12.2019 14:59	Dosya klasörü
	рор	2.12.2019 14:59	Dosya klasörü
	reggae	2.12.2019 14:59	Dosya klasörü
1	rock	2.12.2019 14:59	Dosya klasörü

ighthal blues.00000.wav			
ightharpoonup blues.00001.wav			
ightharpoonup blues.00002.wav			
ightharpoonup blues.00003.wav			
ightharpoonup blues.00004.wav			
ightharpoonup blues.00005.wav			
ightharpoonup blues.00006.wav			
ightharpoonup blues.00007.wav			
ighthal blues.00008.wav			
ightharpoonup blues.00009.wav			
ightharpoonup blues.00010.wav			
ightharpoonup blues.00011.wav			
ightharpoonup blues.00012.wav			
ightharpoonup blues.00013.wav			
ightharpoonup blues.00014.wav			
ightharpoonup blues.00015.wav			
liblues.00016.wav			

In [13]: data1 Out[13]: mfcc19 filename chroma stft mfcc20 label rmse ... blues.00000.wav 0.349943 0.130225 ... -2.300208 1.219928 blues 0.340983 0.095918 ... -0.287431 0.531573 blues blues.00001.wav 0.363603 0.175573 ... -3.433434 -2.226821 blues blues.00002.wav blues.00003.wav 0.404779 0.141191 ... -0.619690 -3.408233 blues blues.00004.wav 0.308590 0.091563 ... -4.409333 -11.703781 blues 0.351991 0.079469 ... -6.717573 -1.189238 rock.00095.wav rock rock.00096.wav rock 997 rock.00097.wav rock 0.362349 0.083888 ... -5.043121 -3.585596 998 rock.00098.wav rock rock.00099.wav 0.358195 0.054461 ... -2.022035 1.158525

[1000 rows x 28 columns]

■ data - DataFrame

Index	chroma_stft	rmse	spectral_centroid	spectral_bandwidth	rolloff	zero_crossing_rate	mfcc1	mfcc2	mfcc3	mfcc4	mfcc5	mfcc6	mfcc7	mfcc8	mfcc9	mfcc10	mfcc11	mfcc12	mfcc13
0	0.349943	0.130225	1784.42	2002.65	3806.49	0.0830664	-113.597	121.557	-19.1588	42.351	-6.37646	18.6189	-13.6979	15.3446	-12.2853	10.9805	-8.32432	8.81067	-3.66737
1	0.340983	0.0959184	1529.84	2038.62	3548.82	0.0560443	-207.557	124.007	8.93056	35.8747	2.91604	21.5237	-8.5547	23.3587	-10.1036	11.9037	-5.56039	5.3768	-2.23912
2	0.363603	0.175573	1552.48	1747.17	3040.51	0.0763007	-90.7544	140.46	-29.11	31.689	-13.987	25.7548	-13.6496	11.6293	-11.7806	9.70644	-13.1231	5.78926	-8.90522
3	0.404779	0.141191	1070.12	1596.33	2185.03	0.0333089	-199.431	150.099	5.64759	26.8719	1.75446	14.2383	-4.83088	9.29797	-0.757741	8.14901	-3.19631	6.08768	-2.47642
4	0.30859	0.0915632	1835.49	1748.36	3580.95	0.1015	-160.266	126.199	-35.6054	22.1533	-32.4893	10.8645	-23.3579	0.503117	-11.8058	1.2068	-13.0838	-2.80638	-6.93412
5	0.302346	0.103468	1831.94	1729.48	3480.94	0.0940399	-177.869	118.197	-17.5507	30.7586	-21.7427	11.9038	-20.7342	3.1806	-8.58348	-0.936488	-11.7763	-2.42061	-9.33936

IPython console							
Console 1/A 🗵						Ø 1	i,
							,
In [8]: runfile(C:/Users/ozgec/[Desktop/genres/untit	led0.nv'	. wdir='C:	/Users/		
ozgec/Desktop/ger		esicop, gem es, aneze	1000.	,	050.5,		
filename							
chroma stft							
rmse							
spectral centroid	i						
spectral bandwidt							
rolloff							
zero crossing rat	e						
mfcc1							
mfcc2							
mfcc3							
mfcc4							
mfcc5							
mfcc6							
mfcc7							
mfcc8							
mfcc9							
mfcc10							
mfcc11							
mfcc12							
mfcc13							
mfcc14							
mfcc15							
mfcc16							
mfcc17							
mfcc18							
mfcc19							
mfcc20							
label							
							,
Permissions: RW	End-of-lines: CRLF	Encoding: UTF-8	Line: 13	Column: 15	Memory:	38 %	

SES DOSYASININ YÜKLENMESİ

Name	Туре	Size	Value
ses	str	1	classical.00000.wav
sr	int	1	22050
У	float32	(661794,)	[-0.02008057 -0.01748657 0.00418091 0.01934814 0.027771 0.031

y: ses zaman serisi

sr: ses frekansı

SESİN GÖRÜNTÜLENMESİ

SPEKTROGRAM

Spektrogram, belirli bir dalga formunda bulunan çeşitli frekanslarda bir sinyalin sinyal gücünü veya yüksekliğini temsil eden görseldir. Aynı zamanda enerji seviyelerini zaman içinde nasıl değiştiğini de gösterir.

Dikey eksen frekansları (0-10 kHz) ve yatay eksen audio nun süresini gösterir.

ÖZNİTELİK ÇIKARIMI(FEATURE EXTRACTION)

▶ Zero Crossing Rate

Zero crossing rate, bir sinyal boyunca işaret değiştirme oranıdır, yani sinyalin pozitifden negatife geçişi veya geri dönme hızıdır. Bu özellik hem konuşma tanıma hem de müzik bilgisi alımında yoğun bir şekilde kullanılmıştır. Metal ve Rock gibi yüksek seslere sahip sesler için genellikle daha yüksek değerlere sahiptir.

▶ BLUES ▶ METAL

SPECTRAL CENTROID

▶ Spektrumun kütle merkezinin nerede olduğunu gösterir.

Bir ses için "kütle merkezinin" nerede bulunduğunu ve seste bulunan frekansların ağırlıklı ortalaması olarak hesaplandığını gösterir.

Biri blues tarzında diğeri metale ait olan iki şarkı düşünün. Şimdi, uzunluğu boyunca aynı olan blues tarz şarkısına kıyasla, metal şarkının sonuna doğru daha fazla frekansı var. Bu nedenle, blues şarkısı için spektral centroid, spektrumunun ortasına yakın bir yere uzanırken, metal bir şarkı için sonuna kadar olacaktır.

▶ BLUES

METAL

SPECTRAL ROLLOFF

▶ Sinyal şeklinin ölçüsüdür. Toplam spektral enerjinin belirli bir yüzdesidir.

MEL-FREKANS KEPSTRAL KATSAYILARI (MEL-FREQUENCY CEPSTRAL COEFFICIENTS)

▶ Mel frekans ölçeği, insan kulağının ses frekanslarındaki değişimi algılayışını gösteren bir ölçektir.

CHROMA FREKANSI

▶ Spektrum müzikal oktavının 12 farklı yarı tonunu(chroma) temsil eden 12 parçanın belirtildiği ses için güçlü bir sunumudur.

NORMALİZASYON

0	1	2	3	4	5	6	7	8	9	10	11	12
0.482814	0.518921	0.458298	0.471773	0.468583	0.467969	0.552693	0.594453	0.470073	0.558559	0.474731	0.555705	0.428
0.471198	0.463596	0.420631	0.479011	0.45125	0.399545	0.453395	0.602734	0.607224	0.517397	0.555266	0.581692	0.483
0.500524	0.592054	0.423982	0.420354	0.417058	0.450837	0.576833	0.65836	0.421485	0.490795	0.408772	0.619543	0.429
0.553908	0.536607	0.352614	0.389998	0.359513	0.341977	0.461983	0.69095	0.591194	0.460179	0.545199	0.516516	0.523
0.429201	0.456572	0.465855	0.420595	0.453411	0.514645	0.503373	0.610145	0.38977	0.430189	0.248418	0.486333	0.325
0.421106	0.47577	0.465329	0.416796	0.446684	0.495755	0.48477	0.583092	0.477925	0.484881	0.341555	0.495631	0.353
0.406795	0.537582	0.410162	0.348253	0.400585	0.44255	0.471792	0.624001	0.386163	0.49921	0.626255	0.383634	0.352

CLASSIFICATION

► Test ve Train seti oluşturuldu.

x_test - DataFr	rame		_	ц х
Index	chroma_stft	rmse	spectral_centroid	pectral_t ^
993	0.349251	0.255938	0.354512	0.37665
859	0.415242	0.308496	0.543904	0.69649
298	0.201061	0.43519	0.221307	0.30357
553	0.284591	0.317774	0.319489	0.36901
672	0.555726	0.481461	0.458006	0.4801
971	0.574451	0.396483	0.376533	0.50444
27	0.237782	0.230416	0.212559	0.22855
231	0.287662	0.243392	0.383757	0.49386
306	0.61442	0.475483	0.589533	0.60981
706	0.412465	0.225869	0.402467	0.67997
496	0.514381	0.268889	0.30592	0.34981
558	0.306207	0.191769	0.252594	0.26136
784	0.482608	0.443489	0.696755	0.8228
<				>

x_train - DataFra	me		- [_ ×
Index	chroma_stft	rmse	spectral_centroid	pectral ^
587	0.701346	0.667255	0.716469	0.688
500	0.351339	0.105649	0.241809	0.3279
332	0.399954	0.269563	0.485826	0.594
979	0.382789	0.283844	0.408472	0.463
317	0.516644	0.342366	0.319196	0.411
520	0.659004	0.285336	0.540367	0.554
314	0.453999	0.277212	0.296602	0.4459
516	0.15812	0.140873	0.231748	0.321
518	0.369459	0.119632	0.36821	0.470
940	0.49682	0.350363	0.631369	0.719
113	0.122678	0.0673886	0.211697	0.213
512	0.880944	0.277661	0.577907	0.492
37	0.156256	0.162627	0.159978	0.300
				>

► OPTIMAL K-VALUE

Index	Туре	Size	Value	
1	float64	1	0.521	
2	float64	1	0.534	
3	float64	1	0.537999999999999	
4	float64	1	0.536	
5	float64	1	0.532	
6	float64	1	0.523999999999999	
7	float64	1	0.51	
8	float64	1	0.516	
9	float64	1	0.505	
10	float64	1	0.515	
11	float64	1	0.5	

► K-NN PERFORMANS DEĞERLENDİRMESİ

cross-validation accuary değerleri

RANDOM FOREST

SVM

▶ PARAMETER TUNING

SVM PERFORMANS DEĞERLENDİRMESİ

NAIVE BAYES

```
In [768]:
print("\n", "GaussianNB:", nb.score(x_test,y_test), "\n", "MultinomialNB:", clf1.score(x_test,y_test), "\n", "ComplementNB:", clf2.score(x_test,y_test))

GaussianNB: 0.41
MultinomialNB: 0.355
ComplementNB: 0.285

In [769]:

IPython console History log

Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 178 Column: 1 Memory: 66 %
```

IPython console								5	×
Console 1/A	×						- 1		٥
GaussianNB									^
	precision	recall	f1-score	support					
0	0.27	0.40	0.32	15					
1	0.62	0.91	0.74	11					
2	0.56	0.33	0.42	27					
3	0.40	0.09	0.15	22					
4	0.42	0.22	0.29	23					
5	0.25	0.17	0.20	18					
6	0.33	0.80	0.47	20					
7	0.50	0.79	0.61	24					
8	0.39	0.47	0.42	15					
9	0.38	0.20	0.26	25					
accuracy			0.41	200					
macro avg	0.41	0.44	0.39	200					
weighted avg	0.42	0.41	0.37	200					
In [774]:									J
	LP-LI								_
IPython console	History log								
Permissions: RW	End-of-line	s: CRLF	Encoding: UTI	F-8	Line: 178	Column: 61	Memory:	67 %	

DECISION TREE

CLUSTERING

Choosing the Number of Components in a Principal Component Analysis

K-MEANS

mpreds - NumPy array

SILHOUETTE-SCORE

prin	cipalComponents -	- NumPy array	
	0	1	2
0	0.126546	-0.12477	-0.0887447
1	0.0112461	-0.148989	-0.156406
2	0.173827	-0.256221	0.0902809
3	-0.149286	-0.234138	-0.131486
4	-0.0235505	-0.367581	0.312839
5	-0.122518	-0.316093	0.244586
6	-0.256677	-0.39946	0.347246
7	-0.185886	-0.423366	0.385923
8	0.229448	-0.140867	-0.0725341
9	-0.128604	-0.216886	-0.0212242
10	-0.208152	-0.276293	-0.0161113
11	-0.257064	-0.262707	-0.0126226
12	-0.146561	-0.333586	0.0896949

K-MEANS

HIEARARCHIAL CLUSTERING

Agglomerative Clustering

distance_threshold=22

distance_threshold=2.4

SONUÇ (CONCLUSION)

MODELS

Algorithm Comparison

