$3^{\underline{o}}$ Exame - Turma especial - MA-327 - 24/05/12

1.(2pts) Decida em quais casos, abaixo, W é subespaço de V. Nos casos afirmativos exiba uma base de W.Justifique suas respostas.

a)
$$W = \{(x, y, z, t) \in \mathbb{R}^4; \ 2x + y - z + t = 0 \ \text{e} \ x + z + t = 0\}$$

b)
$$W = \{(x, y) \in \mathbb{R}^2; \ y = sen(x)\}.$$

- d) $W = \{p(x) = bx^2 + cx + d \in \mathbb{P}_2(x); \ p(1) = p(-1) = 0\}$ (aqui $\mathbb{P}_2(x)$ é o espaço vetorial dos polinômios de grau ≤ 2 e com coeficientes reais).
- **2.(3pts)** Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear definido por: T(x,y,z) = (2x+z,2y-z,x-y+z). Seja $\mathcal{C} = \{e_1,e_2,e_3\}$ a base canônica de \mathbb{R}^3 .
- a) Encontre a matriz $A = [T]_{\mathcal{C}}^{\mathcal{C}}$ e conclua que T é um operador auto-adjunto (ou simétrico) considerando em \mathbb{R}^3 o produto interno canônico.
- b) Encontre uma base ortonormal de autovetores de T.
- c) Encontre uma matriz P, 3×3 , tal que $P^t . P = I_3$ e $P^t A P = D$ matriz diagonal
- **3.(2pts)** Considere em \mathbb{R}^3 o produto interno <,> dado por:

$$\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = \begin{pmatrix} x_1 & y_2 & z_2 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

- a) Ortogonalize (processo de Gram-Schmidt) a base canônica $\mathcal{C} = \{e_1, e_2, e_3\}$ segundo o produto interno definido acima.
- **b)** Dado o vetor u = (1, -1, 1) encontre uma base do subespaço $W = \{v \in \mathbb{R}^3; \langle u, v \rangle = 0\}$. (lembro que o único produto interno envolvido nesta questão é o definido acima)
- **4.(3pts)** Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique suas respostas (respostas sem justificativas não serão consideradas)
- a) A aplicação linear $S:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ definida por S(x,y,z)=(x-y+z,y-z,z+y) é bijetora.
- **b)** A função $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por T(x,y,z) = (x+y+1,x-y+z,y+3z) é linear.
- c) Sejam W e K subespaços de \mathbb{R}^n com produto interno canônico. Se $K \subseteq W^{\perp}$ e dim(K) = n dim(W) então $K = W^{\perp}$.
- **d)** O operador linear $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ definido por T(x,y,z,w) = (x+y+w,x+z+2w,y-3z+w,x-2y+z-w) tem 5 auto valores distintos dois a dois.