Rappel de cours

Travail

- "pour tout", \forall
- "il existe", ∃
- "non", ¬
- "ou", \
- "et", ∧

TD1

Exo 1

```
\begin{array}{ll} x \in \mathbb{R}, x^2 = 4 \text{ car } x = 2 & x \in \mathbb{R}, x^2 = 4 \Leftarrow x = 2 \\ z \in \mathbb{Z}, z = \bar{z} \text{ donc } z \in \mathbb{R} & z \in \mathbb{Z}, z = \bar{z} \Leftrightarrow z \in \mathbb{R} \\ x \in \mathbb{R}, x = \pi \text{ donc } e^{2ix} = 1 & x \in \mathbb{R}, x = \pi \Rightarrow e^{2ix} = 1 \end{array}
```

Exo 2

- 1. $\forall x \in \mathbb{R}, x^2 > 0$
- $2. \exists x \in \mathbb{R}, x > x^2$
- 3. $\neg \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x > y \text{ ou } \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x > y$
- 4. $\exists x \in \mathbb{R}, \forall n \in \mathbb{N}, \forall m \in \mathbb{N}^* x, \neq \frac{n}{m}$
- 5. $\exists x \in \mathbb{N}, \forall n \in \mathbb{N}, \exists m \in \mathbb{N}, n = x.m$
- 6. $\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2, \exists x, x_1 < x < x_2$
- 7. $\forall x_1, x_2, x_3 \in \mathbb{R}, x_1.x_2 \ge 0 \lor x_2.x_3 \ge 0 \lor x_1.x_3 \ge 0$

Exo 4

- 1. non(P et Q) = (non P) ou (non Q) \neq (non P) et (non Q). Non elles ne sont pas la négation l'une de l'autre
- 2. non(P ou Q) = (non P) et (non Q). Oui elles sont la négation l'une de l'autre.
- 3. non (P \Rightarrow Q) = non Q \Rightarrow non P (contraposé) \neq non P \Rightarrow non Q. Non elles ne sont pas la négation l'une de l'autre.

Exo 6

- 1. La contraposée de $A \Rightarrow B$ est $nonB \Rightarrow nonA$
- 2. P:"L'entier (n^2-1) n'est pas divisible par 8" donc "l'entier n est pair" ou $\forall m \in \mathbb{N}, (n^2-1) \neq 8m \Rightarrow \exists x \in \mathbb{N}, n=2x$. La contraposée de P est "l'entier n n'est pas pair (n est impair)" donc "l'entier (n^2-1) est divisible par 8" ou $\forall x \in N, n \neq 2x \Rightarrow \exists m \in \mathbb{N}, (n^2-1) = 8m$.
- 3. un entier n impair est de la forme n=2x+1. Deux cas possibles, soit x est pair, soit x est impair. Donc n=2(2k)+1=4k+1 ou n=2(2k+1)+1=4k+3. Par conséquent $n=4k+\{1,3\}$
- 4. $\forall x \in N, n \neq 2x \Rightarrow \exists m \in \mathbb{N}, (n^2 1) = 8m$. Donc $\exists k \in \mathbb{N}, n = 4k + \{1, 3\} \Rightarrow \exists m \in \mathbb{N}, (n^2 1) = 8m$. Deux cas: $(4k + 1)^2 1 = 16k^2 + 8k = 8(2k^2 + k)$ ou $(4k + 3)^2 1 = 16k^2 + 24k + 8 = 8(2k^2 + 3k + 1)$. Dans les 2 cas, n est divisible par 8.
- 5. Oui, car la démonstration de P est faite car nous avons montré la contraposée de P.

Exo 7

- 1. P: $\exists i \in \{1..n\}, x_i x_{i-1} < \frac{1}{n}$
- 2. $\neg P = \neg (\exists i \in \{1..n\}, x_i x_{i-1} < \frac{1}{n}) = \forall i \in \{1..n\}, x_i x_{i-1} > \frac{1}{n} = (x_1 x_0) + (x_2 x_1)...(x_n x_{n-1}) > \frac{1}{n} + \frac{1}{n}... + \frac{1}{n} = x_n x_0 > 1 \Rightarrow faux$
- 3. $(\neg P \Rightarrow faux) \Leftrightarrow P$. Donc la propriété P est vérifiée.

Exo 9

- 1. (a) $\forall a, mange(moi, a) \Rightarrow aime(moi, a)$
 - (b) $\exists a, \neg aime(moi, a) \land mange(moi, a)$
 - (c) $\forall p, \neg aime(p, legume) \Rightarrow \forall a, \neg mange(p, a)$
 - (d) $(\forall p, \exists a \neg aime(p, a) \Rightarrow mange(p, a)) \Rightarrow mange(moi, legume)$
- 2. (a) Toute personne qui aime quelque chose, le mange
 - (b) Il existe quelque chose que tout le monde aime et mange

Exo 10

Exo 11

- 1. Il existe une voiture qui n'est pas rouge.
 - P: $\forall v \in voitures, rouge(v)$
 - (non P): $\neg(\forall v \in voitures, rouge(v)) = \exists v \in voitures, \neg rouge(v)$
- 2. $P:\exists m \in moutons, ecossais(m) \land cote(m, noir)$
 - $(\text{non P}): \neg(\exists m \in moutons, ecossais(m) \land cote(m, noir)) = \forall m \in moutons, \neg ecossais(m) \lor \neg cote(m.noir).$
- 3. Il existe une écurie avec un cheval non blanc.
 - P: $\forall e \in ecuries, \forall c \in chevaux, dans(c, e) \Rightarrow couleur(c, blanc),$
 - (non P): $\neg(\forall e \in ecuries, \forall c \in chevaux, dans(c, e) \Rightarrow couleur(c, blanc)) = \exists e \in ecurie, \exists c \in cheval, dans(c, e) \land \neg couleur(blanc, c)$
- 4. Il existe un étudiant qui se reveille tous les jours de la semaines après 8 heures.
 - P: $\forall e \in etudiants, \exists j \in jours, \forall h \in heures, reveil(e, j, h) => h < 8$
 - (non P): $\neg(\forall e \in etudiants, \exists j \in jours, \exists h \in heures, reveil(e, j, h) => h < 8) = \exists e \in etudiants, \forall j \in jours, \exists h \in heures, reveil(e, j, h) \land h > 8.$
- 5. Il existe une prison avec un prisonnier qui aime un des gardiens.
 - P: $\forall p \in prisons, \forall d \in detenus, \forall g \in gardiens, \neg aime(d, g)$
 - (non P): $\neg(\forall p \in prisons, \forall d \in detenus, \forall g \in gardiens, \neg aime(d, g)) = \exists p \in prisons, \exists d \in detenus, \exists g \in gardiens, aime(d, g)$
- 6. Il existe une personne habitant Rue du havre ayant les yeux bleus qui ne gagnera pas au loto ou qui ne prendra pas sa retraite avant 50 ans.
 - $P: \forall p \in personnes, habite(p, "RueduHavre") \land yeux(p, bleus) \Rightarrow (gagnant(p, loto) \land retraite_avant(p, 50))$
 - (non P):¬ $(\forall p \in personnes, habite(p, "RueduHavre") \land yeux(p, bleus) \Rightarrow (gagnant(p, loto) \land retraite_avant(p, 50)) = \exists p \in personnehabite(p, "RueduHavre") \land yeux(p, bleus) \land \neg (gagnant(p, loto) \lor \neg retraite_avant(p, 50))$

Exo 12

- 1. Pet Q
- 2. non P et non Q
- 3. P et non Q
- 4. non(Q et non P)
- 5. Q et non(Q et P)
- 6. non P ou non Q
- 7. non(Q et P)
- 8. non(Q ou P)

Exo 13

- 1. $\forall p \in poules, OntDesDents(p) \Rightarrow Mamifere(p) = \forall p \in poules, \neg Mamifere(p) \Rightarrow \neg OntDesDents(p)$ par contraposée et $\forall p \in poules, \neg Mamifere(p)$ donc par modus ponens $\neg OntDesDents(p)$. Raisonnement valide.
- 2. P1:"assiste et non bavarde et ecoute ⇒ reussi_cours", P2:"ecoute ⇒ assiste et non bavarde", P3:"ecoute". Donc par Modus Ponens sur P2 et P3 on a P4:"assiste et non bavarde" et Modus Ponens sur P3/P4 et P1, on a "reussi_cours". Donc "ecoute ⇒ reussi_cours". Raisonnement valide.
- 3. P1:"viens_fete(Pierre) ⇒ triste(Marie)", P2:"triste(Marie) ⇒ non viens_fete(Jean)", P3: "non viens_fete(Jean) ⇒ non viens_fete(Pierre)", P1 et P2 par transitivité donne P4:"viens_fete(Pierre) ⇒ non viens_fete(Jean))", P3 et P4 par transitivité donne P5:"viens_fete(Pierre) ⇒ non viens_fete(Pierre))". Faux par contradiction. Raisonnement invalide.

Exo 14

- bois(j)
- dors(j)
- mange(j)
- content(j)
- P1: "non bois(j) et dors(j) \Rightarrow non content(j)"
- P2: "bois(j) \Rightarrow non content(j) et dors(j)"
- P3: "non mange(j) \Rightarrow non content(j) ou dors(j) ou (non content(j) et dors(j))"
- P4: "mange(j) \Rightarrow content(j) ou bois(j) ou (content(j) et bois(j))"
- P5: "content(aujourdhui)"
 - Contradiction P1 et P5 donne par Modus Ponens P6:"bois(aujourdhui) ou non dors(aujourdhui)".
 - Soit bois(aujourdhui) est vrai. Bois(aujourdhui) et P2 donne par Modus Ponens "non content(aujourdhui) et dors(aujourdhui)". Contradiction donc bois(aujourdhui) est faux par l'absurde.
 - Soit non dors(aujourdhui) est vrai. C'Ontraposée de P3 et P5 et P6 donne mange"aujourdhui)

Donc, aujourd'hui, il a mangé et il n'a pas dormi.

Exo 15

P1: Si sur le lieu(N) alors Coupable. "lieu(N) \Rightarrow C"

P2: sur le lieu W. "lieu(W)"

Cela fait "faux \Rightarrow C" donc on ne peux pas dire si il est coupable ou non. Il faudrait écrire "lieu(N) \Leftrightarrow C". Il est coupable si et seulement si il était sur le lieu N.

Exo 16

- Les deux proposition ne sont pas complémentaires donc d'autre possibilités existent
- P1: "non mange(soupe) \Rightarrow prison" et P2:"mange(soupe)". Cela fait "faux \Rightarrow prison". Donc on ne peux pas conclure car faux implique vrai ou faux.
- ??
- P2" gagnant \Rightarrow jouer" et P2: "jouer". En prenant la contraposée de P1 et P2 on a "Faux \Rightarrow non gagnant". Donc on ne peux pas conclure car faux implique vrai ou faux.
- Le titre est une généralisation de la réponse sans mentionner la référence à la situation actuelle. Dans une autre situation, la réponse pourrait être différente. ???

Exo 17

• oasis(P) est vraie si la piste P mène à un oasis

P1: oasis(droite) ou oasis(gauche)

P2: non oasis(droite)

P3: (P1 et P2) ou (non P1 et non P2)

- Premier cas: "P1 et P2" "non oasis(droite) et (oasis(droite) ou oasis(gauche))" par distribution "(non oasis(droite) et oasis(droite)) ou (non oasis(droite) et oasis(gauche))",
- Second cas: "non P1 et non P2" "non(non oasis(droite)) et non (oasis(droite) ou oasis(gauche)))", "oasis(droite) et non oasis(droite) et non oasis(gauche)", "Faux"

donc il faut prendre la piste de gauche.

Exo 18

• coffre(P) est vraie si le portrait est dans le coffre P.

P1: coffre(1)

P2: non coffre(2)

P3: non coffre(1)

P4: (P1 et non P2 et non P3) ou (non P1 et P2 et non P3) ou (P1 et non P2 et non P3)

3 cas:

- (P1 et non P2 et non P3). "coffre(1) et non non coffre(2) et non non coffre(1)", "coffre(2) et coffre(1)", pas possible car un seul portrait.
- (non P1 et P2 et non P3). "non coffre(1) et non coffre(2) et non non coffre(1)", "Faux"
- (non P1 et non P2 et P3). "non coffre(1) et non non coffre(2) et non coffre(1)", "non coffre(1) et coffre(2)".

Le portrait est dans le coffre 2.