Development of a MultiModal Travel Demand Module for the Regional Strategic Planning Model tool

Experience of contributing to the VisionEval project

Liming Wang, Huajie Yang, Brian Gregor, and Tara Weidner

6/25/2018

Outline

- The VETravelDemandMM module
- Innovations
- The process of contributing to VisionEval
- Reflections

The VETravelDemandMM module

- Started in 2015 as an Oregon DOT SPR project to better capture mode shifting for the Regional Strategic Planning Model (RSPM) tool to
 - Incorporate non-auto modes into a mode choice module for the RSPM tool;
 - Explore and utilize the best data sources available for model estimation;
 - Leverage this effort for additional research and expand the scope to include emerging modes (bike sharing, car sharing, shared automated vehicles).

Progress

- Orginally planned to be implemented for the original RSPM/GreenSTEP (ver 3.5)
- Modes/models included:
 - Annual Average Daily Vehicle Models Travelled (VMT) model
 - Transit trips (frequency and length) and Person Miles Travelled (PMT)
 - Biking trips and PMT
 - Walking trips and PMT
- Products (so far):
 - Project working papers and report deliverables
 - A poster presentation at the 2018 TRB annual meeting
 - A manuscript under review for publication at the Journal of Transport and Land Use

SPR Funded Research Project Work Plan for

Incorporate Travel Mode Choices in the Regional Strategic Planning Model (RSPM) Tool

SPR 788

	FY16							FY17								FY18												
Project Tasks	Ji	tr 1 ily -		Qtr Oct	-]	etr :	-	À	Qtr 4	-	J	tr l	-	Č	et -	-	j	tr an	-	I	Qtr Apr	-	J.	e tr	-	Č	etr 2
Task 1: Literature review	T.	Sep	+	De	_	-	Mar			Jun			Sep	-		Dec		-	Mar	\vdash	\neg	Jun	Н	-	Sep	\vdash	ᆉ	Dec
and data			١.	Т									*															
exploration																												
Task 2: Model design and	П		Т					П									*	П									П	
estimation																	4											
Task 3: Model	П		Т					П						П													П	Т
Implementation																Τ			*									
Task 4: Mode testing																				* T								
Task 5: Brian Gregor	П	十																								\Box	\neg	十
training, consultation and support for Tasks 2-4																												
Task 6: Final Report			Ī																				* T					
Task 7: Code Implementation																												

^{*} Deliverables (*) Initial deliverables T-TAC Meeting

Innovations

- Utilizing a novel dataset of highly detailed information of households (2009 NHTS) and built environment (EPA Smart Location Database) with a US nationwide coverage;
- Modeling annual average daily Vehicle Miles Traveled (AADVMT), instead
 of the VMT during the day of the survey commonly used in similar
 models;
- Use of cross validation in model development to avoid overfitting;
- Conducting model selection, in addition to variable selection, in the model development process to select the best model structure among a handful of options;
- Implemented in the popular statistical programming language R as a selfcontained package, which contains documents and functions for model (re-)estimation and prediction;
- The model development process, from data processing, model estimation, validation and testing, to report and document compiling, follows the best practices of reproducible research; results and products derived from our work, including this ITM paper/presentation, is fully reproducible by others (sans confidential data).

Elasticities

8/16

Validation: VETravelDemandMM Predictions

				Trips		PMT				
Category	n	AADVMT	BikeTrips	WalkTrips	TransitTrips	BikePMT	WalkPMT	TransitPMT		
Overall										
RVMPO	74045	41.800	0.146	0.891	0.144	0.290	0.578	0.751		
Developme	entTyp	e								
Rural	6476	49.200	0.158	0.754	0.134	0.294	0.513	0.816		
Urban	67569	41.100	0.145	0.905	0.145	0.290	0.584	0.745		
Income										
<\$40k	31432	25.100	0.124	0.762	0.180	0.167	0.482	0.676		
\$40k-\$80k	18071	43.800	0.149	0.907	0.125	0.288	0.586	0.754		
>\$80k	24542	61.800	0.172	1.045	0.111	0.449	0.694	0.844		
Popuplatio	n per S	Square Mile								
<1k	19126	42.300	0.143	0.710	0.133	0.249	0.476	0.739		
1k-5k	35477	42.300	0.144	0.898	0.141	0.294	0.579	0.753		
5k-10k	18211	40.700	0.151	1.071	0.157	0.327	0.682	0.757		
>10k	1231	36.900	0.157	0.876	0.202	0.258	0.575	0.792		

Validation: RSPM Predictions

			Trips								
Category	n n	DVMT	BikeTrips	WalkTrips	TransitTrips						
Overall											
RVMPO	74045	52.400	0.092	0.690	0.037						
Developme	entType										
Rural	6676	65.400	0.088	0.741	0.023						
Urban	67369	51.200	0.092	0.685	0.038						
Income											
<\$40k	31791	34.700	0.090	0.604	0.053						
\$40k-\$80k	17852	56.200	0.090	0.645	0.023						
>\$80k	24402	72.800	0.095	0.834	0.026						
Popuplatio	n per S	quare Mil	e								
<1k	19208	57.400	0.087	0.598	0.022						
1k-5k	34215	54.300	0.093	0.704	0.035						
5k-10k	19384	45.900	0.094	0.752	0.050						
>10k	1238	29.200	0.103	0.751	0.108						

Validation: "Observed" OHAS

		Trips				PMT						
Category	n	DVMT	BikeTrips	WalkTrips	TransitTrips	BikePMT	WalkPMT	TransitPMT				
Overall												
RVMPO	931	36.700	0.232	0.870	0.094	0.395	0.276	0.538				
Developme	ntTy	pe										
Rural	81	50.200	0.159	0.435	0.008	0.210	0.137	0.042				
Urban	850	35.700	0.237	0.901	0.100	0.408	0.286	0.573				
Income												
<\$40k	367	27.200	0.138	0.798	0.144	0.164	0.222	0.762				
\$40k-\$80k	329	39.100	0.455	0.777	0.014	0.763	0.313	0.050				
>\$80k	235	53.900	0.072	1.186	0.114	0.300	0.336	0.845				
Popuplatio	n per	Square N	Mile									
<1k	226	40.800	0.079	0.510	0.037	0.270	0.135	0.013				
1k-5k	460	37.100	0.361	0.891	0.084	0.595	0.304	0.495				
5k-10k	232	32.800	0.167	1.036	0.145	0.222	0.310	0.979				
>10k	13	43.500	0.000	1.408	0.076	0.000	0.528	0.055				

VisionEval Framework

- When the project started, VisionEval (formerly RSPM Framework) was still on the drawing board;
- As VE development picked up steam and materialized, the project team and TAC decided that it made more sense to implement for VE instead;
- Started swtiching to implement as a VE module package in 12/2016;
- Amended the Scope of Work to include the contribution review in 02/2017

VETravelDemandMM Implementation

- GitHub Repository: https://github.com/cities-lab/VETravelDemandMM
- A standard R package with
 - inst/extdata external datasets (HPMS, NTD, Place Types etc; 2009
 NTHS and SLD are dependencies as separate packages)
 - data-raw/ scripts for model estimation; can be adapted for reestimating models with new data
 - o data/ estimated R model objects
 - R/ implementation of the module
 - man/ manuals for functions implemented in the package
 - vignettes/ vignettes (documents) for the package, including an introduction document, contribution review and feedback
 - test/ tests that are automatically with travis-ci build passing

Contribution Review Process

- Contribution Review Criteria Check List
- Responses to Contribution Review Criteria
- Pull Request
- Comments from the Review team

Reflections

- The modular VE framework, along with the design principle, sample modules, extensive documentation and coding style guide, is extremely helpful;
- Best practices we follow (mostly blessings to our team) and facilitate incorporating our code with the VE code base:
 - Code organization as R package
 - The git/GitHub workflow
 - Automated tests and continous integration
 - Reproducible research practice
- Working closely with VE core developers like Brian Gregor and myself being part of the team that helped devising the review criteria helped;
- Bridging the gap between transportation research and professional practice and leveraging SPR/UTC funding

Acknowledgements

- Oregon Department of Transportation (SPR 788)
- National Institute for Transportation and Communities (NITC-881)