Laurea in Informatica A.A. 2024-2025

Corso "Base di Dati"

L'Algebra Relazionale

Linguaggi per basi di dati

- Definizione dello schema (relazioni, attributi, chiavi, ecc...)
 - → DDL: data definition language

- Operazioni sui dati: interrogazione.
 ("query") aggiornamento
 - → DML: data manipulation language

Linguaggi di interrogazione per basi di dati relazionali

Dichiarativi

- Specificano le proprietà del risultato ("che cosa")
- Parzialmente dichiarativo: SQL
- Procedurali
 - Specificano le modalità di generazione del risultato ("come")
 - Vediamo oggi e domani: Algebra Relazionale

Algebra relazionale

- Insieme di operatori
 - su relazioni
 - che producono relazioni
 - e possono essere composti

Operatori insiemistici

- le relazioni sono insiemi
- i risultati debbono essere relazioni
- è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi

Unione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∪ Specialisti

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

Intersezione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∩ Specialisti

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45

Differenza

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati – Specialisti

Matricola	Nome	Età
7274	Rossi	42

Un'Unione Sensata ma Impossibile

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità U Maternità

??

Ridenominazione

(Operatore **p**)

"Modifica lo schema" lasciando inalterata l'istanza dell'operando

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Come fare con la «Unione Sensata ma (inizialmente) impossibile»

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

ρ_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

ρ_{Genitore ← Madre} (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

ρ_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

P_{Genitore} ← Padre (Paternità)

∪

ρ_{Genitore ← Madre} (Maternità)

ρ_{Genitore ← Madre} (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

Un esempio con molteplici ridenominazioni

Impiegati

Cognome	Ufficio	Stipendio
Rossi	Roma	55
Neri	Milano	64

Operai

Cognome	Fabbrica	Salario
Bruni	Monza	45
Verdi	Latina	55

 ρ Sede, Retribuzione \leftarrow Ufficio, Stipendio (Impiegati) \cup

 $\rho_{Sede,\ Retribuzione} \leftarrow \mathsf{Fabbrica},\ \mathsf{Salario}\ \left(Operai\right)$

Cognome	Sede	Retribuzione
Rossi	Roma	55
Neri	Milano	64
Bruni	Monza	45
Verdi	Latina	55

Selezione

(Operatore σ)

- Risultato:
 - stesso schema
 - sottoinsieme delle tuple
 - tuple che soddisfano una condizione

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

Selezione

(Operatore σ)

- Risultato:
 - stesso schema
 - sottoinsieme delle tuple
 - tuple che soddisfano una condizione

Impiegati

σ_{Stipendio > 60} (Impiegati)

Matricola	Cognome	Filiale	Stipendio
7000	- Roool		<u> </u>
5998	Neri	Milano	64
	IVIIIGITO	.va	
5698	Neri	Napoli	64

Esempio: Impiegati che guadagnano più di 60 e lavorano a Milano

σ_{Stipendio > 60 AND Filiale = 'Milano'} (Impiegati)

Impiegati

Matricola	Cognome	Filiale	Stipendio
7200	Doosi	Dama	5.5
5998	Neri	Milano	64
0550	N 4 1	N 4'1	1.1
-5000	Hon	Napoli	0

Esempio: Impiegati che hanno lo stesso nome della filiale presso cui lavorano

 $\sigma_{Cognome = Filiale}$ (Impiegati)

Impiegati

Matricola	Cognome	Filiale	Stipendio
7000	T.COO!	Roma	
-5000	11011	IVIII GI I	0 1
9553	Milano	Milano	44
-5000	I VOII	Hapon	

Selezione e proiezione

- Operatori "ortogonali"
- Selezione: Decomposizione Orizzontale
 - → Eliminazione di Tuple
- Proiezione: Decomposizione Verticale
 - → Eliminazione di Attributi/Colonne

Proiezione

(Operatore π)

- Risultato:
 - ha parte degli attributi della relazione
 - sottoinsieme delle tuple (duplicati eliminati)

Duplicato da eliminare						π _C	ognome (Impiegati)	
Mat	cola	Cogno		Fil	ale	Stip	ndio	
73)9	Ross		Ro	na	5	5	
59	98	Ner		Mil	no	6	1	
95	53	Mila	0	Mil	no	۷	1	
56	98			Na	oli	ϵ	1	

Esempio: Matricola e Cognome di Tutti gli impiegati

π_(Matricola, Cognome)(Impiegati)

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

Esempio: Matricola e Cognome di Tutti gli impiegati

π_(Matricola, Cognome)(Impiegati)

Impiegati

Matricola	Cognome	Fili	le	Stip	ndio
7309	Neri	Na	oli	5	5
5998	Neri	Mila	no	6	1
9553	Rossi	Ro	na	4	1
5698	Rossi	Ro	na	ϵ	1

Cardinalità delle proiezioni

- Una proiezione contiene
 - contiene al più tante tuple quante l'operando,
 - ma può contenerne di meno
- Se X è una superchiave di R, allora $\pi_X(R)$ contiene esattamente tante tuple quante R

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione

Esempio: matricola e cognome di quelli che guadagnano > 50

Join (Operatore ⋈)

- Operatore Binario su due relazioni A e B
- Risultato:
 - l'unione degli attributi degli operandi
 - tuple costruite come A x B mantenendo quelle con valori uguali su attributi uguali

Join: Example

Voto Candidati

Numero	Voto	Numero	Candidato
1	25	1	Mario Rossi
2	13	2	Nicola Russo
3	27	3	Mario Bianchi
4	28	4	Remo Neri

Numero	Candidato	Voto	Voto ⋈ Candidati
1	Mario Rossi	25	
2	Nicola Russo	13	
3	Mario Bianchi	27	
4	Remo Neri	28	

Join, sintassi e semantica

- Date due relazioni R₁(X₁), R₂(X₂)
- $R_1 \bowtie R_2$ è una relaz. su X_1X_2 (eq. $X_1 \cup X_2$)

$$\{ t su X_1X_2 | t[X_1] \in R_1 e t[X_2] \in R_2 \}$$

dove $t[X_1]$ indica la proiezione su X_1 , cioè $\pi_{X_1}(R)$

Join Completo

- Date due relazioni R₁(X₁), R₂(X₂)
- $R_1 \bowtie R_2$ è una relaz. su X_1X_2 (eq. $X_1 \cup X_2$)

$$\{ t su X_1X_2 | t[X_1] \in R_1 e t[X_2] \in R_2 \}$$

dove $t[X_1]$ indica la proiezione su X_1 , cioè $\pi_{X_1}(R)$

Join Completo

Impiegato	Reparto	Reparto	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В		

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

Ogni tupla contribuisce al risultato:
la proiezione sugli attributi di ogni
relazione R coinvolta restituisce R

Join Non Completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Qualche tupla <u>non</u> contribuisce al risultato: la proiezione sugli attributi di ogni relazione R coinvolta <u>non</u> restituisce R

Un join vuoto

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
D	Mori
С	Bruni

Impiegato Reparto Capo

Un join con n x m tuple

Impiegato	Reparto
Rossi	В
Neri	В

Reparto	Capo
В	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

Cardinalità del join

- R₁(A,B) , R₂ (B,C)
- In generale

$$0 \leq |R_1 \bowtie R_2| \leq |R_1| \times |R_2|$$

se B è chiave in R₂

$$0 \leq |R_1 \bowtie R_2| \leq |R_1|$$

 se B è chiave in R₂ ed esiste vincolo di integrità referenziale fra B in R₁ e R₂:

$$|\mathsf{R}_1 \bowtie \mathsf{R}_2| = |\mathsf{R}_1|$$

se l'attributo B in R1 non può assumere valore nullo

Il «problema» del join non completo

Impiegato	Reparto
Rossi	A
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

 Le tuple non contribuiscono al risultato: vengono "tagliate fuori"

Join esterno

- Il join esterno estende, con valori nulli, le tuple che verrebbero tagliate fuori da un join (interno)
- esiste in tre versioni:
 - sinistro, destro, completo

Join esterno

- sinistro: mantiene tutte le tuple del primo operando, estendendole con valori nulli, se necessario
- destro: ... del secondo operando ...
- completo: ... di entrambi gli operandi ...

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati ⋈ LEFT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	А	NULL

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati ⋈_{RIGHT} Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati ⋈_{FULL} Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

Semijoin

- Operatore su due relazioni R₁(X₁), R₂(X₂)
- Restituisce una relazione su X₁, con le tuple di R₁ che contribuiscono al join con R₂

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati seмі⋈ Reparti

Impiegato	Reparto
Neri	В
Bianchi	В

Semijoin come Proiezione e Join

Date due relazioni R₁(A,B), R₂(B,C)

 $R_1 \text{ SEMIM } R_2 = \pi_{A,B} (R_1 \bowtie R_2)$

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati seмі⋈ Reparti

Impiegato	Reparto
Neri	В
Bianchi	В

Prodotto cartesiano

Un join naturale su relazioni R₁(X₁), R₂(X₂) senza attributi in comune (X₁ ∩ X₂=Ø) coincide col prodotto cartesiano

Reparti

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Codice	Capo
Α	Mori
В	Bruni

Impiegati ⋈ Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

Theta-join

 Il prodotto cartesiano, in pratica, ha senso (quasi) solo se seguito da selezione:

$$\sigma_{\text{Condizione}} (R_1 \bowtie R_2)$$

L'operazione viene chiamata theta-join e indicata con

$$R_1 \bowtie_{Condizione} R_2$$

AND e OR di atomi di confronto $A_1 \vartheta A_2$ dove ϑ è uno degli operatori di confronto (=, >, <, ...)

Reparti

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Codice	Capo
Α	Mori
В	Bruni

Impiegati ⋈_{Reparto=Codice} Reparti

Ir	mpiegato	Reparto	Codice	Capo
	Rossi	A	A	Mori
	Mari	D	^	Mori
	Neri	В	В	Bruni
	Dianchi			
	Bianchi	В	В	Bruni

Impiegati		Reparti	
Impiegato	Reparto	Codice	Capo
Rossi	Α	А	Mori
Neri	В	В	Bruni
Bianchi	В		

Impiegati ⋈_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Se l'operatore di confronto nel theta-join è sempre l'uguaglianza (=) allora si parla di equi-join, il più interessante.

Esempi: Basi di Dati di partenza

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Esempio 1: matricola, nome ed età degli impiegati che guadagnano più di 40

Impiegati	Matricola	Nome	Età	Stipen	dio
	7309	Rossi	34	45	
	5998	Bianchi	37	38	
	9553	Neri	42	35	
	5698	Bruni	43	42	
	4076	Mori	45	50	
	8123	Lupi	46	60	
Super	visione	Impiegat	to	Capo	
·		7309		5698	
		5998		5698	
		9553		4076	
		5698		4076	
		4076		8123	

Esempio 2: Capi degli impiegati che guadagnano più di 40

Impiegati	Matricola	Nome	Età	Stipeno	oib
	7309	Rossi	34	45	
	5998	Bianchi	37	38	
	9553	Neri	42	35	
	5698	Bruni	43	42	
	4076	Mori	45	50	
	8123	Lupi	46	60	
Super	visione	Impiega	to	Capo	
·		7309		5698	
		5998		5698	
		9553		4076	

 π_{Capo} (Supervisione \bowtie Impiegato=Matricola ($\sigma_{Stipendio>40}$ (Impiegati)))

Esempio 3: Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 1

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Supervisione

Matricola	Nome	Età	Stipendio	Impiegato	Capo
7309	Rossi	34	45	7309	5698
5998	Bianchi	37	38	5998	5698
9553	Neri	42	35	9553	4076
5698	Bruni	43	42	5698	4076
4076	Mori	45	50	4076	8123

Supervisione ⋈ Impiegato=Matricola

Esempio 3: Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 2

mp	ieg	ati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione	Capo	Impiegato
	5698	7309
	5698	5998
	4076	9553
	4076	5698
	8123	4076

P_{MatrC,NomeC,StipC,EtàC} ← Matr,Nome,Stip,Età(Impiegati)

MatrC	NomeC	EtàC	StipC
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Esempio 3: Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 3

Matricola	Nome	Età	Stipendio	Impiegato	Capo
7309	Rossi	34	45	7309	5698
5998	Bianchi	37	38	5998	5698
9553	Neri	42	35	9553	4076
5698	Bruni	43	42	5698	4076
4076	Mori	45	50	4076	8123

Supervisione ⋈ Impiegato=Matricola Impiegati

 $\rho_{\text{MatrC}, \text{NomeC}, \text{StipC}, \text{EtàC}} \leftarrow \text{Matr}, \text{Nome}, \text{Stip}, \text{Età}}(\text{Impiegati})$

MatrC	NomeC	EtàC	StipC
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Matricola	Nome	Età	Stipendio	Impiegato	Capo	MatrC	NomeC	EtàC	StipC
7309	Rossi	34	45	7309	5698	5698	Bruni	43	42
5998	Bianchi	37	38	5998	5698	5698	Bruni	43	42
9553	Neri	42	35	9553	4076	4076	Mori	45	50
5698	Bruni	43	42	5698	4076	4076	Mori	45	50
4076	Mori	45	50	4076	8123	8123	Lupi	46	60

 $\rho_{\text{MatrC}, \text{NomeC}, \text{StipC}, \text{EtàC}} \leftarrow \text{ Matr}, \text{Nome}, \text{Stip}, \text{Età}}(Implegati)$

MatrC=Capo

(Supervisione ⋈ Impiegato=Matricola Impiegati)))

Esempio 3: Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 4


```
\begin{split} & \pi_{\text{Matricola,Nome,Stipedio}} \\ & (\sigma_{\text{Stipendio}>StipC}(\\ & \rho_{\text{MatrC,NomeC,StipC,EtàC} \leftarrow \text{Matr,Nome,Stip,Età}}(\text{Impiegati}) \\ & \bowtie_{\text{MatrC=Capo}} \\ & (\text{Supervisione} \bowtie_{\text{Impiegato=Matricola}} \text{Impiegati}))) \end{split}
```

Esempio 4: Matricola dei capi i cui impiegati guardagnano <u>tutti</u> più di 40

Impiegati	Matricola	Nome	Età	Stipend	ib
	7309	Rossi	34	45	
	5998	Bianchi	37	38	
	9553	Neri	42	35	
	5698	Bruni	43	42	
	4076	Mori	45	50	
	8123	Lupi	46	60	
Supervisione		Impiegat	to	Саро	
·		7309		5698	
		5998		5698	
		9553		4076	
		5698		4076	
		4076		8123	

Implementato come «Restituisci tutti i capi, tranne quelli per cui c'è almeno un impiegato che guardagna < 40

```
\pi_{Capo} (Supervisione) - \pi_{Capo} (Supervisione \bowtie _{Impiegato=Matricola} (\sigma_{Stipendio \leq 40} (Impiegati)))
```

Equivalenza di Espressioni

 In Algebra, due espressioni sono equivalenti se producono lo stesso risultato per ogni valore. Per es:

$$X (Y + Z) = XY + XZ$$

 In Algebra Relazionale, due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della relazioni della base di dati

Equivalenza in Algebra Relazione: Perché importante?

- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"
- Per esempio:
 - Date due relazioni R₁(X₁) e R₂(X₂) con l'attributo A ∈ X₂
 - Sono equivalenti:

$$\sigma_{A=10}(R_1 \bowtie R_2) \equiv R_1 \bowtie \sigma_{A=10}(R_2)$$

Equivalenza in Algebra Relazione: Riduzione della Computazione

- Consideriamo
 - 1. $\sigma_{A=10} (R_1 \bowtie R_2)$
 - 2. $R_1 \bowtie \sigma_{A=10}(R_2)$
- Assumiamo che le tuple di R₂ con A=10 è 10%
- Numero massimo di righe create (temporaneamente) nei due casi
 - 1. $|R_1| \times |R_2|$
 - 2. $|R_1| \times 0.1 \times |R_2|$

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Alcune equivalenze / 1

- Data una relazione R(Z) dove X,Y ⊆ Z e
 X ∩ Y=Ø :
 - 1. $\sigma_{C1 \text{ AND } C2}$ (R) $\equiv \sigma_{C1} \sigma_{C2}$ (R)
 - 2. $\pi_X(\pi_{XY}(R)) \equiv \pi_X(R)$

Alcune equivalenze / 2

- Date due relazioni R₁(X₁) e R₂(X₂) con
 Y₁ ⊂ X₁, Y₂ ⊂ X₂:
 - 3. $\sigma_{C1}(R_1 \bowtie R_2) \equiv R_1 \bowtie \sigma_{C1}(R_2)$ se C1 condizione su X_2
 - 4. $\pi_{X_1Y_2}(R_1 \bowtie R_2) \equiv \pi_{X_1Y_2}(R_1 \bowtie \pi_{Y_2}(R_2))$ se X_2 - Y_2 non incoinvolti del join
- In linguaggio naturale:
 - 3. Selezione prima del join
 - 4. Anticipazione della proiezione su Y_2 se $(X_2 Y_2)$ non nel join e non nell'output

Alcune equivalenze / 3

- Date due relazioni R₁(X₁) e R₂(X₂):
 - 5. $\sigma_{C}(R_1 \bowtie R_2) \equiv R_1 \bowtie_{C} R_2$
 - 6. $\sigma_{C}(R_1 \cup R_2) \equiv \sigma_{C}(R_1) \cup \sigma_{C}(R_2)$
 - 7. $\sigma_{C}(R_1 R_2) \equiv \sigma_{C}(R_1) \sigma_{C}(R_2)$
- In linguaggio naturale:
 - 5. Selezione su C allo stesso tempo del join
 - 6. Selezione prima dell'unione
 - 7. Selezione prima della differenza

Esempio: Capi con impiegati con meno di 40 anni

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Impiegato	Capo	Supervisione
7309	5698	
5998	5698	
9553	4076	
5698	4076	
4076	8123	

π_{Capo} (σ _(Impiegato=Matricola AND Età<40) (Supervisione ⋈ Impiegati))

Super-inefficiente!!

Esempio: Capi con impiegati con meno di 40 anni / 2

```
π<sub>Capo</sub> (σ<sub>(Impiegato=Matricola AND Età<40)</sub> (Supervisione ⋈ Impiegati))
```

```
Regola 1: \pi_{Capo} (\sigma_{Et\grave{a}<40}\,\sigma_{Impiegato=Matricola} (Supervisione \bowtie Impiegati)) Regola 5: \pi_{Capo} (\sigma_{Et\grave{a}<40} (Supervisione \bowtie_{Impiegato=Matricola} Impiegati)) Regola 4: \pi_{Capo} (\pi_{Matricola} (\sigma_{Et\grave{a}<40} (Impiegati)) \bowtie_{Impiegato=Matricola} Supervisione)
```

Nota

- I DBMS usano regole di equivalenza per ottimizzare le interrogazioni
 - Obiettivo: Relazioni «Intermedie» con il minimo numero di tuple ed attributi
 - Osservazione: I DBMS non eseguono veramente le interrogazioni come vengono formulate
- Questo corso non si preoccupa dell'ottimizzazione: i DBMS lo faranno!

Selezione con valori nulli / 1

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{Eta > 40}$$
 (Impiegati)

la condizione atomica è vera solo per valori non nulli

Selezione con valori nulli / 2

Impiegati

Matricola	Cognome	Filiale	Età
7000	Noool	T.VIIIA	02
5998	Neri	Milano	45
0550			

$$\sigma_{Età > 40}$$
 (Impiegati)

la condizione atomica è vera solo per valori non nulli

Selezione con valori nulli / 3

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{\text{Età}>30}$$
 (Persone) \cup $\sigma_{\text{Età}\leq30}$ (Persone) \neq Persone $\sigma_{\text{Età}>30 \ \vee \text{Età}\leq30}$ (Persone) \neq Persone

Selezione con valori nulli: Soluzione

 La condizione σ_{Età > 40} (Impiegati) è vera solo per valori non nulli

 Per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL
IS NOT NULL

Selezione con valori nulli: Soluzione

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{\text{Età}>30} \, (\text{Persone}) \cup \sigma_{\text{Età}\leq 30} \, (\text{Persone}) \cup \sigma_{\text{Età} \, \text{IS NULL}} \, (\text{Persone}) \\ = \\ \sigma_{\text{Età}>30 \, \vee \, \text{Età}\leq 30 \, \vee \, \text{Età} \, \text{IS NULL}} \, (\text{Persone}) \\ = \\ \text{Persone}$$

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{(Et\grave{a}>40)\ OR\ (Et\grave{a}\ IS\ NULL)}$$
 (Impiegati)

Matricola	Cognome	Filiale	Età
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

$$\sigma_{(Et\grave{a}>40)\ OR\ (Et\grave{a}\ IS\ NULL)}$$
 (Impiegati)

Viste (relazioni derivate)

- Rappresentazioni diverse per gli stessi dati
- Relazioni il cui contenuto è funzione del contenuto di altre relazioni (definito per mezzo di interrogazioni)

Nota. Relazioni di base: contenuto autonomo

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

Viste: Esempio

Afferenza

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Direzione

Reparto	Capo
Α	Mori
В	Bruni

una vista:

Supervisione =

π_{Impiegato, Capo} (Afferenza ⋈ Direzione)

Viste virtuali e materializzate

- Due tipi di relazioni derivate:
 - viste materializzate

relazioni virtuali (o viste)

Viste materializzate

- relazioni derivate memorizzate nella base di dati
 - vantaggi:

immediatamente disponibili per le interrogazioni

- svantaggi:
 - ridondanti
 - appesantiscono gli aggiornamenti
 - raramente supportate dai DBMS

Viste virtuali

- relazioni virtuali (o viste):
 - sono supportate dai DBMS (tutti)
 - una interrogazione su una vista viene eseguita "ricalcolando" la vista (o quasi)

Interrogazioni sulle viste: Esempio

Tutti gli impiegati con capo «Bruni»

Afferenza

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Direzione

Reparto	Capo
A	Mori
В	Bruni

Supervisione = $\pi_{Impiegato, Capo}$ (Afferenza \bowtie Direzione) $\sigma_{Capo='Bruni'}$ (Supervisione)

viene eseguita come

σ_{Capo='Bruni'}(π_{Impiegato, Capo} (Afferenza ⋈ Direzione))

Viste, motivazioni

- Schema esterno: ogni utente vede solo
 - ciò che gli interessa e nel modo in cui gli interessa, senza essere distratto dal resto
 - ciò che e' autorizzato a vedere (autorizzazioni)
- Strumento di programmazione:
 - si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- Utilizzo di programmi esistenti su schemi ristrutturati Invece:
- L'utilizzo di viste non influisce sull'efficienza delle interrogazioni

Aggiornamenti tramite le Viste: Caso OK

Afferenza

Impiegato	Reparto
Rossi	Α
Neri	В
Verdi	Α
Lupi	С

Direzione

Reparto	Capo
Α	Mori
В	Bruni
С	Bruni
С	Bruni

Supervisione = Afferenza ⋈ Dir

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Verdi	Α	Mori
Lupi	С	Bruni 🚄

Cambi riversabili sulle relazioni di partenza

Supponiamo di voler aggiungere la riga verde

Aggiornamenti tramite le Viste: Caso NOK

Afferenza

Impiegato	Reparto
Rossi	А
Neri	В
Verdi	Α
Lupi	??

Direzione

Reparto	Capo
А	Mori
В	Bruni
С	Bruni
??	Bruni

Supervisione = π _{Impiegato, Capo} (Afferenza ⋈ Direzione)

Impiegato	Capo
Rossi	Mori
Neri	Bruni
Verdi	Mori
Lupi	Bruni 🚤

Cambi <u>non</u> riversabili sulle relazioni di partenza

Supponiamo di voler aggiungere la riga verde

Viste e aggiornamenti

- Obiettivo: modificare le relazioni di base modificando la vista.
- Le relazioni di basi vengono aggiornate, in modo tale che la vista sia coerente.
- Possibile in pochi casi (es. quando il join è completo)

Una convenzione e notazione alternativa per i join

L'approccio usato in SQL

- Ignoriamo il join naturale su attributi con nomi uguali
- Per "riconoscere" attributi con lo stesso nome possiamo mettere il nome della relazione davanti
- · Usiamo viste per ridenominare relazioni

Esempio 3 Rivisitato : Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 1

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Impiegato	Capo	Sı
7309	5698	
5998	5698	
9553	4076	
5698	4076	
4076	8123	

Supervisione

Matricola	Nome	Età	Stipendio	Impiegato	Capo
7309	Rossi	34	45	7309	5698
5998	Bianchi	37	38	5998	5698
9553	Neri	42	35	9553	4076
5698	Bruni	43	42	5698	4076
4076	Mori	45	50	4076	8123

SupImp = (Supervisione ⋈_{Impiegato=Matricola} Impiegati)

Esempio 3 Rivisitato : Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 2

Nome	Età	Stinendio	Impiedato	Capo
		<u> </u>		5698
				5698
	0,			4076
		42		4076
Mori	45	50	4076	8123
	Nome Rossi Bianchi Neri Bruni Mori	Rossi 34 Bianchi 37 Neri 42 Bruni 43	Rossi 34 45 Bianchi 37 38 Neri 42 35 Bruni 43 42	Rossi 34 45 7309 Bianchi 37 38 5998 Neri 42 35 9553 Bruni 43 42 5698

Impiegati

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

SupImp = (Supervisione ⋈_{Impiegato=Matricola} Impiegati)

Supl	lmp
------	-----

Impiegati

						-			
Matricola	Nome	Età	Stipendio	Impiegato	Capo	Matricola	Nome	Età	Stipendio
7309	Rossi	34	45	7309	5698	5698	Bruni	43	42
5998	Bianchi	37	38	5998	5698	5698	Bruni	43	42
9553	Neri	42	35	9553	4076	4076	Mori	45	50
5698	Bruni	43	42	5698	4076	4076	Mori	45	50
4076	Mori	45	50	4076	8123	8123	Lupi	46	60

SupImp ⋈_{Capo=Impiegati.Matricola} Impiegati

Esempio 3 Rivisitato : Matricola, nome e stipendio degli impiegati che guardagnano più dei capi / 3

Riferimenti

• Sezione 3.1 del libro

Esercizio 1

- Si consideri la seguente base di dati dei diversi servizi sociali in città diverse di Italia:
 - SERVIZI_SOCIALI (Citta, Servizio, Anno, Spesa) POSIZIONE (Citta, Regione, Abitanti)
 - Non è possibile avere due città con lo stesso nome.
 - Una tupla (Padova, Babysitting, 2019, 30000) in SERVIZI SOCIALI indica che Padova ha speso nel 2019 la cifra di 30000€ per il servizio sociale Babysitting.

Restituire le regioni che forniscono i servizi di babysitting

```
\pi_{REGIONE} ((\sigma_{SERVIZIO="Babysitting"} (SERVIZI_SOCIALI))
\bowtie_{SERVIZI\_SOCIALI.CITTA=POSIZIONE.CITTA} POSIZIONE)
```

Esercizio 2

- Si consideri la seguente base di dati dei diversi servizi sociali in città diverse di Italia:
 - SERVIZI_SOCIALI (Citta, Servizio, Anno, Spesa) POSIZIONE (Citta, Regione, Abitanti)
 - Non è possibile avere due città con lo stesso nome.
 - Una tupla (Padova, Babysitting, 2019, 30000) in SERVIZI SOCIALI indica che Padova ha speso nel 2019 la cifra di 30000€ per il servizio sociale Babysitting.

Restituire le città che forniscono almeno due servizi sociali

```
S1=SERVIZI_SOCIALI
S2=SERVIZI_SOCIALI
```

 $\pi_{S1.CITTA}$ (S1 $\bowtie_{S1.CITTA=S2.CITTA}$ and $\bowtie_{S1.SERVIZIO<>S2.SERVIZIO}$ S2)

Esercizio 3 (Esame 30 Giugno 2021)

 Si consideri la seguente base di dati dei diversi servizi sociali in città diverse di Italia:

SERVIZI_SOCIALI (Citta, Servizio, Anno, Spesa) POSIZIONE (Citta, Regione, Abitanti)

- Non è possibile avere due città con lo stesso nome.
- Una tupla (Padova, Babysitting, 2019, 30000) in SERVIZI SOCIALI indica che Padova ha speso nel 2019 la cifra di 30000€ per il servizio sociale Babysitting.

Restituire le città che forniscono al più un servizio sociale

```
S1=SERVIZI_SOCIALI
S2=SERVIZI_SOCIALI

\pi_{CITTA} (S1) \
\pi_{S1.CITTA} (S1 \bowtie_{S1.CITTA=S2.CITTA} AND S1.SERVIZIO<>>S2.SERVIZIO
```

Esercizio 4

 Si consideri la seguente base di dati dei diversi servizi sociali in città diverse di Italia:

SERVIZI_SOCIALI (Citta, Servizio, Anno, Spesa) POSIZIONE (Citta, Regione, Abitanti)

- Non è possibile avere due città con lo stesso nome.
- Una tupla (Padova, Babysitting, 2019, 30000) in SERVIZI SOCIALI indica che Padova ha speso nel 2019 la cifra di 30000€ per il servizio sociale Babysitting.

Restituire la città con almeno 200000 abitanti che ha speso di meno nel servizio di babysitting nel 2024, tra tutte le città di almeno 200000 abitanti.

```
S1 = \pi_{POSIZIONE.CITTA, SPESA} \ (\sigma_{ABITANTI>=200000} (POSIZIONE) \\ \bowtie_{SERVIZI\_SOCIALI.CITTA=POSIZIONE.CITTA} \\ (\sigma_{SERVIZIO='Babysitting' AND ANNO=2024} \ (SERVIZI\_SOCIALI) \\ S2 = S1
```

 π_{CITTA} (S1) \ $\pi_{S1.CITTA}$ (S1 $\bowtie_{S1.SPESA>S2.SPESA}$ S2)