$\begin{array}{c} \textbf{Problem set 2} \\ 2024/\text{IV} \\ \text{K Kytölä & A Pajala} \end{array}$

Exercise session: Wed 6.3. at 14-16 Hand-in due: Mon 11.3. at 10am

In the weekly exercise sheets there are two types of problems: problems whose solutions are to be presented in the exercise session, and hand-in problems for which written solutions are to be returned.

Exercise 1.

In this exercise the ground field is complex numbers, $\mathbb{K} = \mathbb{C}$. We denote by \mathbb{C}^{\times} the multiplicative group of non-zero complex numbers.

- (a) Let G be group. Construct a "bijective correspondence between equivalence classes of one-dimensional representations of G and homomomorphisms $G \to \mathbb{C}^{\times}$ "; or more precisely an injective mapping from the set of all group homomorphisms $G \to \mathbb{C}^{\times}$ to the set of representations of G on \mathbb{C} , such that the equivalence class of any one-dimensional representation of G is in the range of the mapping.
- (b) Let G be a finite abelian (=commutative) group. Show that any irreducible representation of G is one dimensional. Conclude that the equivalence classes of irreducible representations of G can be identified with group homomorphisms $G \to \mathbb{C}^{\times}$.
- (c) Let $C_n \cong \mathbb{Z}/n\mathbb{Z}$ be the cyclic group of order n, i.e., the group with one generator c and relation $c^n = e$. Find all irreducible representations of C_n up to equivalence.

Exercise 2.

In this exercise the ground field is complex numbers, $\mathbb{K} = \mathbb{C}$.

(a) Let G be a group acting on a set X via a group homomorphism

$$\alpha \colon G \to \mathfrak{S}(X) = \{\sigma \colon X \to X \text{ bijection}\}\,$$

denoted briefly by $(\alpha(g))(x) = g.x$. Form the complex vector space V with basis $(u_x)_{x \in X}$ indexed by the set X. For each $g \in G$, define $\rho(g) \colon V \to V$ by linear extension of

$$\rho(g) u_x = u_{q.x}.$$

Show that ρ is a representation of G.

- (b) Let $G = \mathfrak{S}_n$ be the symmetric group on n letters, acting naturally on the set $X = \{1, 2, ..., n\}$. Let V be the n-dimensional vector space equipped with the representation ρ constructed as in part (a). Find a one-dimensional trivial representation as a subrepresentation of V.
- (c) Let V be the representation of \mathfrak{S}_n in part (b). For any $g \in \mathfrak{S}_n$, compute the trace of $\rho(g)$ on V. Explicitly for all $n \leq 5$, compute also

$$\frac{1}{n!} \sum_{g \in \mathfrak{S}_n} \left(\operatorname{tr} \left(\rho(g) \right) \right)^2.$$

△ Hand-in 3.

Fix a ground field \mathbb{K} for all representations considered in this exercise (if you wish, you are allowed to assume $\mathbb{K} = \mathbb{C}$).

State and prove the isomorphism theorem for representations of a group G (i.e., the analogue of the isomorphism theorem for groups, from lecture 1, where one replaces group by a representation, homomorphism by intertwining map, etc.).

∠ Hand-in 4.

Let D_4 be the dihedral group of order 8, generated by r, m subject to relations $r^4 = e, m^2 = e$ and $mrm = r^{-1}$.

(a) Show that the conjugacy classes of D_4 are

$$\left\{e\right\},\quad \left\{r,r^3\right\},\quad \left\{r^2\right\},\quad \left\{m,mr^2\right\},\quad \left\{mr,mr^3\right\}.$$

(b) Calculate the character of the 2-dimensional representation of D_4 defined by

$$r \mapsto \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \qquad \text{and} \qquad m \mapsto \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right],$$

and use the result to conclude that this representation is irreducible.

- (c) Find four non-isomorphic one-dimensional complex representations of D_4 .
- (d) Check that the characters of the five irreducible representations given in parts (b) and (c) form an orthonormal basis of the set of class functions on D_4 . Write down the character table of D_4 .
- (e) Let V be the 2-dimensional representation as in part (b). Calculate the character of the tensor product representation $V \otimes V$, and use the result to infer what irreducible subrepresentations $V \otimes V$ has.

△ Hand-in 5.

Let $\mathbb{H} = \{z \in \mathbb{C} \mid \Im \mathfrak{m}(z) > 0\}$ be the upper half-plane, interpreted as a subset of the complex plane \mathbb{C} . Let $\mathrm{SL}_2(\mathbb{R})$ be the group of 2×2 matrices with real entries and determinant one.

(a) For any

$$M = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathrm{SL}_2(\mathbb{R}),$$

define a function α_M on the complex plane by $\alpha_M(z) = \frac{az+b}{cz+d}$. Show that $M \mapsto \alpha_M$ defines an action of the group $\mathrm{SL}_2(\mathbb{R})$ on the set \mathbb{H} . What is the kernel of the homomorphism $\alpha \colon \mathrm{SL}_2(\mathbb{R}) \to \mathfrak{S}(\mathbb{H})$?

- (b) Show that the action α in part (a) is transitive, i.e., for all $z, w \in \mathbb{H}$ there exists an $M \in \mathrm{SL}_2(\mathbb{R})$ such that $\alpha_M(z) = w$.
- (c) The stabilizer of a given point $z_0 \in \mathbb{H}$ is the subgroup consisting of those M for which $\alpha_M(z_0) = z_0$. Show that the stabilizer of $z_0 = i$ is the special orthogonal group $SO_2 \subset SL_2(\mathbb{R})$ (i.e. the group of 2×2 orthogonal matrices with determinant one). Discuss identifying \mathbb{H} with the quotient $SL_2(\mathbb{R}) / SO_2$ (the set of left cosets) via a suitable bijection.