《有机化学》(下册) 习题答案

第11章 羧酸和取代羧酸

1. 用系统命名法命名下列化合物:

(1)
$$(CH_3)_2CHCOOH$$
 (2) $F \longrightarrow CHCH_2COOH$ (3) $H_3C \longrightarrow H$ CH_2COOH (4) $COOH$ (5) $COOH$ (6) $COOH$ (9) $COOH$ (7) $COOH$ (9) $COOH$

解答:

- (1) 2-甲基丙酸
- (2) 3-(4-氟苯基)丁酸
- (3) (E)-3-戊烯酸

- (4) 2-环戊基乙酸
- (5) 3-氧亚基环戊烷甲酸
- (6) 2-羟基-5-硝基苯甲酸

- (7) 间苯二甲酸
- (8) (1S,2S)-2-羟基环己烷甲酸
- (9) 4-苯氧基苯甲酸

- (10)(R)-3-氯丁酸
- 2. 写出下列化合物的构造式:
 - (1) acetic acid

(2) 2-hydroxy-2-phenylethanoic acid

(3) 4-hexenoic acid

- (4) 3-bromocyclohexanecarboxylic acid
- (5) 3-ethyl-6-methyloctanedioic acid

解答:

OH

$$(1) CH_3COOH$$
 (2) CH-COOH (3) $CH_3-CH=CH-CH_2CH_2COOH$
COOH
(4) (5) HOOC- $CH_2-CH-CH_2CH_2-CH-CH_2COOH$

3. 写异丁酸与下列试剂反应的主要产物:

(1) C₂H₅OH (2) PCl₃ (3) Br₂/P (4) NH₃ (5) LiAlH₄,然后 H₃⁺O 解答:

(1)
$$\begin{array}{c} \text{CH}_3\text{CHCOOC}_2\text{H}_5 \\ \text{CH}_3 \end{array}$$
 (2) $\begin{array}{c} \text{CH}_3\text{CHCOCI} \\ \text{CH}_3 \end{array}$ (3) $\begin{array}{c} \text{CH}_3\text{-C-COOH} \\ \text{CH}_3 \end{array}$ (4) $\begin{array}{c} \text{CH}_3\text{-CH-COONH}_4 \\ \text{CH}_3 \end{array}$ (5) $\begin{array}{c} \text{CH}_3\text{-CH-CH}_2\text{OH} \\ \text{CH}_3 \end{array}$

- 4. 用化学方法区别下列化合物:

 - (1) 甲酸、乙酸和乙醛 (2) 乙炔、乙醇和乙酸

 - (3) 乙酸、草酸和丙二酸 (4) 丙二酸、丁二酸和己二酸

解答:

5. 指出下列反应的主要产物:

(1)
$$\sim$$
 OH NaOH ? $\stackrel{1) \text{CO}_2}{0.4\text{-}0.7 \text{ MPa}, 125 °C}$? $\stackrel{(2) \text{CH}_3\text{COOH}}{}$ + H¹⁸OCH₂CH₃ $\stackrel{\text{H}^+}{}$ $\stackrel{\text{C}}{}$ $\stackrel{\text{C}}{}$ (3) $\text{C}_6\text{H}_5\text{CH}_2\text{CI}$ $\stackrel{\text{Mg}}{}$ $\stackrel{\text{Et}_2\text{O}, -10 °C}{}$? $\stackrel{\text{1) CO}_2}{}$? $\stackrel{\text{SOCI}_2}{}$? $\stackrel{\text{SOCI}_2}{}$

(4)
$$CIH_2C$$
 CH_2CI HCN ? XR ? $2 NaCN$? XR

(8)
$$-$$
 BrCH₂COOC₂H₅ $\frac{1) Zn}{2) H_3O^+}$

ONa
$$COOH$$
OH $CH_3-C-^{18}O-CH_2CH_3$

 $C_6H_5CH_2MgCI \qquad C_6H_5CH_2COOH \qquad C_6H_5CH_2COCI$

9)
$$H_3CH_2C$$
 O O CH_2CH_3 (10) $CH_2-O-C-CH_2$

- 6. 分别把下列化合物转变成戊酸:
 - (2) 1-溴丁烷 (3) 正丁醇 (4) 1-戊醇 (5) 2-己酮 (1) 1-丁烯

(2)
$$CH_3CH_2CH_2Br \xrightarrow{Mg} CH_3CH_2CH_2CH_2MgBr \xrightarrow{(1) CO_2} CH_3CH_2CH_2CH_2COOH$$

(3)
$$CH_3CH_2CH_2CH_2OH \xrightarrow{PBr_3} CH_3CH_2CH_2CH_2Br \xrightarrow{(1) NaCN} CH_3CH_2CH_2CH_2COOH$$

(5)
$$CH_3CH_2CH_2CH_2 - CC - CCH_3$$
 (1) Cl_2 , NaOH $CH_3CH_2CH_2CH_2CH_2COOH$

7. 完成下列转变:

(1)
$$\bigcirc$$
 $=$ CH₂ \longrightarrow \bigcirc \bigcirc CH₂COOH (2) \bigcirc OH \longrightarrow

(3)
$$\bigcirc$$
 COOH \bigcirc COOH \bigcirc CH₃CH₂COOH \longrightarrow 乳酸

(6)
$$CH_3CH_2CH_2COOH$$
 \longrightarrow H_3CH_2C O O O CH_2CH_3

$$(7) \qquad OH \qquad OH \qquad OH \qquad (8) \qquad CH_3CH_2CH_2COOH \longrightarrow HOOCCHCOOH \\ CH_2CH_3$$

(9)
$$(CH_3)_2CHCH_2CHO \xrightarrow{} (CH_3)_2CHCH_2CH \xrightarrow{} (C$$

(2) OH
$$\xrightarrow{PBr_3}$$
 Br $\xrightarrow{(1) \text{ Mg, Et}_2\text{O}}$ OH $\xrightarrow{H_2\text{SO}_4}$ \triangle

(4)
$$CH_3CH_2COOH$$
 Cl_2 $CH_3CHCOOH$ $CH_3CHCOOH$ $CH_3CHCOOH$ $CH_3CHCOOH$ $CH_3CHCOOH$

(5)
$$CH_3CH_2COOH \xrightarrow{P_2O_5} (CH_3CH_2CO)_2O$$

(6)
$$CH_3CH_2CH_2COOH$$
 CI_2 P $CH_3CH_2CHCOOH$ (1) $NaOH$, H_2O $CH_3CH_2CHCOOH$ (2) H_3O^+ OH

$$\begin{array}{c|c}
H^{+} & H_{3}CH_{2}C & O & O \\
\hline
\Delta & O & CH_{2}CH_{3} \\
\end{array}$$
(7)
$$\begin{array}{c|c}
OH & NaCN & OH \\
\hline
CN & (2) H_{3}O^{+} \\
\end{array}$$
COOH

$$\begin{array}{c|c} \hline (1) \text{ NaOH, H}_2\text{O} & \text{CH}_3\text{CH}_2\text{CHCOOH} \\ \hline (2) \text{H}_3\text{O}^+ & \text{COOH} \\ \end{array}$$

(9)
$$(CH_3)_2CHCH_2CHO$$

$$\begin{array}{c}
Br & CH_3 \\
\hline
(1) (CH_3)_2CCOOC_2H_5, Zn \\
\hline
(2) H_3O^+ & OH CH_3
\end{array}$$
(CH₃)₂CHCH₂CH - C - COOC₂H₅

$$\begin{array}{c}
\text{CH}_{3} \\
\text{(2) H}_{3}\text{O}^{+}
\end{array}$$

$$\begin{array}{c}
\text{CH}_{3} \\
\text{CH}_{3} \\
\text{CH}_{3}
\end{array}$$

或者

$$CH_{3}COCH_{3} \xrightarrow{(1) CH_{3}MgI} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{PBr_{3}} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{R} \xrightarrow{Mg} CH_{3} \xrightarrow{C} CH_{3} \xrightarrow$$

8. 化合物甲、乙、丙的分子式都是 $C_3H_6O_2$,甲与 Na_2CO_3 作用放出 CO_2 ,乙和丙不能,但在 NaOH 溶液中加热后可水解,在乙的水解液蒸馏出的液体有碘仿反应,试推测甲、乙、丙的结构。

解答:根据题意推测得化合物甲、乙、丙的结构如下:

$$CH_3CH_2COOH$$
 O CH_3CH_2COOH O $CH_3-C-OCH_3$ $CH_3-C-OCH_3$ 两

- 9. 比较下列各组化合物在水溶液中的酸性,按由大到小排列成序:
 - (1) CH3CH=CHCOOH CH3C=CCOOH N=CCOOH

(2)
$$CH_3COOH$$
 $COOH$ CH_2COOH CH_2COOH $COOH$ $COOH$

解答:

(1) NECCOOH > CH3CECCOOH > CH3CHECHCOOH

(2)
$$\stackrel{COOH}{\mid}$$
 > $\stackrel{CH_2COOH}{\mid}$ > $\stackrel{CH_3COOH}{\mid}$ > $\stackrel{CH_3COOH}{\mid}$

(3)
$$\begin{array}{c|c} COOH & COOH & COOH \\ \hline NO_2 & NO_2 & \\ \hline NO_2 & NO_2 & \\ \end{array}$$

10. 指出下列反应中的酸和碱:

- (1) 二甲醚和无水三氯化铝 (2) 氨和三氟化硼 (3) 乙炔钠和水**解答**:
 - (1) 二甲醚为碱, 无水三氯化铝为酸
 - (2) 氨为碱,三氟化硼为酸
 - (3) 乙炔钠为碱,水为酸
- 11. 按照要求以降序排列下列各组化合物:
 - (1) 酸性:
 - ① 乙炔、氨、水 ② 乙醇、乙酸、环戊二烯、乙炔
 - (2) 碱性:
 - ① CH_3^- 、 CH_3O^- 、 $CH\equiv C^-$ ② CH_3O^- 、 $(CH_3)_3CO^-$ 、 $(CH_3)_2CHO^-$

- (1) ① 水 > 乙炔 > 氨
 - ② 乙酸 > 环戊二烯 > 乙醇 > 乙炔
- (2) ① $CH_3^- > CH \equiv C^- > CH_3O^-$
 - ② $(CH_3)_3CO^- > (CH_3)_2CHO^- > CH_3O^-$
- 12. 如何分离苯甲酸、对甲苯酚和苯甲醚的混合物?

13. 马来酸(顺-丁烯二酸)和富马酸(反-丁烯二酸)的 pKa 值如下:

马来酸: $pK_{a1} = 1.92$, $pK_{a2} = 6.22$; 富马酸: $pK_{a1} = 3.02$, $pK_{a2} = 4.38$ 试说明为什么 pK_{a1} 值是马来酸 < 富马酸,而 pK_{a2} 值是马来酸 > 富马酸?

解答:

一般说来 RCOO 的稳定性愈大,则 RCOOH 的酸性愈强,其 pK_a 值则愈小。因此比较两种羧酸 RCOO 的稳定性,对其 pK_a 值的大小可以定性得到说明。

马来酸和富马酸的解离可以写成:

由上式可以看出: 马来酸解离出第一个 H^+ 所生成的羧酸负离子(i), 由于在空间位置上, 羧酸负离子和羧基处于双键的同侧,羧酸负离子和另一个羧基中的羟基之间形成了氢键,降 低了内能,其稳定性大于不能形成分子内氢键的(iii)。因此马来酸的 pK_{al} < 富马酸的 pK_{al} <

但马来酸解离出第二个 H^+ 之后所形成(ii)的两个羧酸负离子处于双键的同侧,这样两个带负电荷的羧酸根离子之间的静电排斥及空间排斥相当大,其稳定性显然小于富马酸解离出第二个 H^+ 之后,两个羧酸负离子分布在双键两侧的(iv),因此马来酸 pK_{a2} >富马酸 pK_{a2} 。

14. 在稀的碱性水溶液中,4-戊烯酸用 Br_2 处理,生成一个非酸性的化合物,其分子式为 $C_5H_7BrO_2$ 。(1)推测该化合物的结构式,并提出其形成的机理;(2)你能够发现一个在形成机理上也是合理的新的异构化产物吗?(3)试讨论决定上述两个产物中哪一个是主要产物?并分析其成因。

解答:

(1) 根据分子式及反应的规律,可以推测出该化合物的结构如下:

这是一个卤内酯化反应,形成机理如下:

(2) 新的异构化产物为:

- (3) 上述两个产物中,以五元环的产物为主。因为在三元环的溴正离子开环时,羧酸根 离子主要进攻能够容纳更多正电荷的碳原子,即取代多的碳原子。
- 15. 在试图用 CrO_3 氧化 1,4-丁二醇生成丁二酸时,却以较高产率得到了 γ -丁内酯,解释其机理。

解答:

1.4-丁二醇分子中的一个羟甲基被氧化成羧基后,由于另一个羟基处的位置很特殊(属于

γ-羟基酸),很容易与羧基发生分子内的酯化反应形成稳定的五元环内酯(γ-丁内酯)。

16. 分子式为 $C_6H_{12}O$ 的化合物 A,氧化后得 B ($C_6H_{10}O_4$),B 能溶于碱,若与乙酐 (脱水剂) 一起蒸馏则得化合物 C,C 能与苯肼作用,用锌汞齐-浓盐酸处理得化合物 D,后者的分子式为 C_5H_{10} 。请写出化合物 A、B、C、D 的结构式。

解答:根据题意推测出化合物 A、B、C、D 的结构如下:

17. 某化合物分子式为 $C_7H_6O_3$,能溶于 NaOH 及 Na_2CO_3 溶液,它与 $FeCl_3$ 溶液有显色反应;与 $(CH_3CO)_2O$ 作用生成 $C_9H_8O_4$;与甲醇作用生成香料物质 $C_8H_8O_3$,这种香料物质硝化后可得两种一元硝基化合物。试推测原化合物的结构式,并写出各步反应式。

解答:根据题意推测出原化合物的结构为:

各步反应式为:

COOH OH NaOH,
$$H_2O$$
 ONa COOH Na_2CO_3 , H_2O OH NA

- 18. 给出与下列各组 ¹H NMR 数据相符的一个或几个结构:
 - (1) C₃H₅ClO₂: δ1.7, 双重峰, 3H; δ4.5, 四重峰, 1H; δ11.2, 单峰, 1H。
 - (2) C₄H₇BrO₂: δ1.3, 三重峰, 3H; δ3.8, 单峰, 2H; δ4.2, 四重峰, 2H。
 - (3) C₄H₇BrO₂: δ1.1、三重峰、3H; δ2.1、五重峰、2H; δ4.2、三重峰、1H; δ11.0、单峰、1H。

解答:根据化合物的分子式及核磁共振氢谱数据,可以推测出它们的结构如下:

(1)
$$CH_3$$
 CH $COOH$

(2)
$$BrCH_2 - C - O - CH_2CH_3$$

第12章 羧酸衍生物

1. 命名下列化合物:

$$(1) \qquad \begin{array}{c} O \\ CH_2O-C-CI \end{array}$$

(3) $HC(OC_2H_5)_3$

(7)
$$CH_3CH=CH-CO_2C_2H_5$$

(9)
$$\bigcirc$$
 CON(CH₃)₂

- (1) 氯甲酸苄酯
- (2) 己二酸单苯酯
- (3) 原甲酸三乙酯

- (4) 光气(碳酰氯)
- (5) 邻苯二甲酸酐
- (6) 邻苯二甲酸二丁酯

- (7) 2-丁烯酸乙酯
- (8) N-甲基异丁酰胺
- (9) N,N-二甲基环戊甲酰胺
- (10) N-溴代丁二酰亚胺 (或 N-溴代琥珀酰亚胺)
- 2. 把下列化合物的反应性由强到弱排列顺序:
 - (1) 在亲核加成-消去反应中的活性大小:

- (2) 与苯甲酸发生酯化反应: 正丙醇, 乙醇, 甲醇, 2-丁醇
- (3) 与乙醇发生酯化反应: 乙酸, 丙酸, α,α-二甲基丙酸, α-甲基丙酸

$$(1) \begin{array}{c} O & O & O & O \\ CI-C-CI & > CI-C-OCH_2C_6H_5 & > H_3CO-C-O-C-OCH_3 \\ O & O & O \\ (H_3C)_3CO-C-O-C-OC(CH_3)_3 & > H_2N-C-NH_2 \\ \end{array}$$

- (2) 甲醇 > 乙醇 > 正丙醇 > 2-丁醇
- (3) 乙酸 > 丙酸 > α -甲基丙酸 > α , α -二甲基丙酸
- 3. 写出丁二酸酐与下列化合物反应的产物(如需要,可经过稀酸处理):
- (1) H₂O (2) CH₃CH₂CH₂OH (3) NH₃ (4) C₆H₆ + AlCl₃ (5) CH₃MgI 解答:

(1)
$$\begin{array}{c} \text{CH}_2\text{COOH} \\ | \text{CH}_3 \\ | \text{CH}_2\text{COOH} \\ | \text{CH}_3 \\ | \text{COOH} \\ | \text{OH} \\ | \text{COOH} \\ | \text{OH} \\ | \text{CH}_2\text{COOH} \\ | \text{CH}_3 \\ | \text{COOH} \\ | \text{CH}_3 \\ | \text{COOH} \\ | \text{CH}_3 \\ | \text{COOH} \\ | \text{CH}_2\text{COOH} \\ | \text{CH}_3 \\ | \text{COOH} \\ | \text{COOH} \\ | \text{CH}_3 \\ | \text$$

4. 由丁酰氯制备下列化合物:

(1)
$$CH_3CH_2CH_2COOH$$
 (2) $CH_3CH_2CH_2CO$ (3) $CH_3CH_2CH_2CON(CH_3)_2$ (4) $CH_3CH_2CO_2CH_2CH_3$ (5) $CH_3CH_2CH_2CHO$

解答:

(1)
$$CH_3CH_2CH_2COCI \xrightarrow{H_2O} CH_3CH_2COOH$$

(2) $CH_3CH_2CH_2COCI + \bigcirc OH \xrightarrow{CH_3CH_2CH_2-C-O-\bigcirc} CH_3CH_2CH_2-COOH$

(3) $CH_3CH_2CH_2COCI + (CH_3)_2NH \xrightarrow{OCH_3CH_2CH_2-C-N(CH_3)_2} CH_3CH_2CH_2-C-N(CH_3)_2$

(5)
$$CH_3CH_2CH_2COCI$$
 $\xrightarrow{H_2}$ $CH_3CH_2CH_2CHO$ Lindlar Pd

5. 完成下列反应:

$$(2) \qquad (COOH + (CH_3CO)_2O \xrightarrow{\triangle}$$

(5)
$$C_5H_{11}-n$$
 $\frac{1) CH_3MgI}{2) H_3O^+}$

(5)
$$O = C_5H_{11}-n = \frac{1) CH_3MgI}{2) H_3O^+}$$
 (6) $COOC_2H_5 = \frac{Na}{xylene} = \frac{HOAc}{xylene}$

(8)
$$\sim$$
 CONH₂ \sim \sim

(11)
$$\sim C^{-18}O - C(CH_3)_3 \xrightarrow{H_3O^+}$$

(11)
$$C = C - 18O - C(CH_3)_3 \xrightarrow{H_3O^+} CH_3O - C(CH_3)_3 \xrightarrow{CH_3OH_3} CH_3OH_3$$

(13) O
$$\frac{1) \text{LiAlH}_4}{2) \text{H}_3 \text{O}^+}$$
 (14) $+ \text{CH}_3 \text{COCI} \xrightarrow{\text{NaOH}}$

解答:

(4)
$$CH_3CH_2-C-CH_3$$

(4)
$$CH_3CH_2-C-CH_3$$
 (5) H_3C OH HO (6) OH

 (7)
 (8)
 COOCH3 (在高温下酯发生顺式 热消除反应,消去酸性较强的氢原子)

(10)
$$\stackrel{D}{\mapsto} C_2H_5$$
 (11) $\stackrel{O}{\longleftarrow} C^{-18}OH + (CH_3)_3COH$ (12) $HO \stackrel{C}{\longleftarrow} COOCH_3$ (13) $HO \stackrel{O}{\longleftarrow} OH$ (14) $OCOCH_3$ (12) $OCOCH_3$ (13) $OCOCH_3$

6. 用化学方法区别化合物:

- (1) 乙酸、乙酰氯、乙酰胺、乙酸乙酯
- (2) 苯甲醇、苯酚、苯甲醚和苯甲酸
- (3) 丁酸、苯酚、环己酮和丁醚
- (4) 丁酸, 丁酰胺, 丙酸乙酯, 乙酸铵
- (5) 2-氯丙酸和丙酰氯

7. 有旋光性的酯 A 经不同浓度的碱处理得到不同产物,分别写出它们的转变过程。

解答:

有旋光性的酯 A 在 5 mol/L NaOH 中的水解反应是通过酰氧断裂的机理进行的,由于反应过程中不涉及手性碳的 C-O 键的断裂,故醇的构型保持:

而在稀 NaOH 溶液中,酯 A 的水解反应是通过烷氧断裂的机理进行的,先生成碳正离子,该碳正离子经过重排后再与 HO 结合成醇,由于碳正离子是平面构型,反应得到一对对映体,即为外消旋体(无旋光性):

8. 写出下列反应的机理:

(1)
$$OCOCH_3$$
 1) $OCOCH_3$ 2) $OCOCH_3$ 2) $OCOCH_3$ $OCOCH_3$ $OCOCH_2$ $OCOCH_3$ $OCOCH_3$ $OCOCH_3$ $OCOCH_4$ $OCOCH_5$ O

(3)
$$O$$

$$\frac{\text{NaOC}_2H_5}{\text{C}_2H_5\text{OH}} C_2H_5\text{O-C-CH}_2\text{CH}_2$$

$$C_2H_5\text{OH}$$

- 9. 完成下列转变(必要的无机试剂和有机试剂任用):
 - (1) 由 2-溴-1,3,5-三甲苯合成 2,4,6-三甲苯甲酸
 - (2) 由 1-氯丙烷合成丁酰胺
 - (3) 由丁酰胺合成丙胺
 - (4) 由乙酸合成乙酸叔丁酯
 - (5) 由乙酸合成 H₂NCH₂CH₂CONH₂
 - (6) 由邻氯苯酚、光气、甲胺合成农药"害扑威(o-Cl(C_6H_4)OCONHCH $_3$)"
 - (7) 由十一碳烯酸 H₂C=CH(CH₂)₈COOH 合成 H₅C₂OOC(CH₂)₁₃COOC₂H₅
 - (8) 由戊腈合成戊胺

(1)
$$H_3C$$
 CH_3 Mg H_3C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

(2)
$$CH_3CH_2CH_2CI$$
 \xrightarrow{NaCN} $CH_3CH_2CH_2CN$ $\xrightarrow{H_3O^+}$ $CH_3CH_2CH_2COOH$

$$\frac{\text{NH}_3}{\triangle} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CONH}_2$$

(3)
$$CH_3CH_2CONH_2 \xrightarrow{Br_2} CH_3CH_2CH_2NH_2$$

NaOH

(4) CH₃COOH
$$\xrightarrow{\text{PCI}_3}$$
 CH₃COCI $\xrightarrow{\text{(CH}_3)_3\text{COH}}$ $\xrightarrow{\text{O}}$ CH₃- $\overset{\text{II}}{\text{C}}$ -O-C(CH₃)₃

(5)
$$CH_3COOH \xrightarrow{Cl_2} CICH_2COOH \xrightarrow{PCl_3} CICH_2COCI \xrightarrow{NH_3} CICH_2CONH_2$$

$$\begin{array}{c|c} \hline \text{(1) LiAlH}_4 & \text{CICH}_2\text{CH}_2\text{NH}_3 & \xrightarrow{\text{NaCN}} & \text{NH}_3\text{CH}_2\text{CH}_2\text{CN} \\ \hline \hline \text{(2) H}^+ & \text{NH}_3\text{CH}_2\text{CH}_2\text{CN} \\ \end{array}$$

(6)
$$CH_3NH_2 + COCl_2 \longrightarrow CH_3-N=C=O$$

$$CI \xrightarrow{CH_3-N=C=O} CI \xrightarrow{O \\ CI} CH_3-N=C=O$$

(7)
$$H_2C = CH(CH_2)_8COOH \xrightarrow{Br_2} CH_2 - CH - (CH_2)_8COOH \xrightarrow{KOH, EtOH} HC = C(CH_2)_8COOH$$

$$\frac{\text{KNH}_2}{\text{₹NH}_3}$$
 KC≡C(CH₂)₈COOK $\frac{\text{BrCH}_2\text{CH}_2\text{Br}}{\text{BrCH}_2\text{CH}_$

$$\frac{\text{(1)NaCN}}{\text{(2) H}_3\text{O}^+, \triangle} + \text{HOOCCH}_2\text{CH}_2\text{CH}_2 - \text{C} \equiv \text{C}(\text{CH}_2)_8\text{COOH} \xrightarrow{\text{H}_2, \text{ Pd}} + \text{HOOC}(\text{CH}_2)_{13}\text{COOH}$$

(8)
$$CH_3CH_2CH_2CH_2CN \xrightarrow{\text{LiAIH}_4} CH_3CH_2CH_2CH_2CH_2NH_2$$

10. 化合物 A 和 B 的分子式均为 $C_9H_{10}O_2$ 。化合物 A 的 IR 谱在 1742 cm⁻¹, 1232 cm⁻¹, 1028 cm⁻¹, 764 cm⁻¹ 和 690 cm⁻¹ 处有特征吸收峰; A 的 ¹H NMR 谱图数据为: δ = 2.02,单峰,3H; δ = 5.03,单峰,2H; δ = 7.26,多重峰,5H。B 的 ¹H NMR 谱图数据为: δ = 2.70~3.20,多重峰,4H; δ = 7.38,多重峰,5H; δ = 10.9,单峰,1H。写出化合物 A 和 B 的结构式,并对 ¹H NMR 谱图中的各吸收峰进行归属。

解答:根据题意推测得化合物 A 和 B 的结构如下:

$$\begin{array}{c} O \\ CH_2-O-C-CH_3 \\ A \end{array}$$

其核磁共振氢谱的归属如下:

11. 某化合物 A 的熔点为 85°C, MS 分子离子峰在 m/z 480, A 不含卤素、氮和硫。A 的 IR 在 1600 cm⁻¹以上只有 3000 ~ 2900 cm⁻¹和 1735 cm⁻¹有吸收峰。A 用 NaOH 水溶液进行皂化,得到一个不溶于水的化合物 B,B 可用有机溶剂从水相中萃取出来。萃取后水相用酸酸化得到一个白色固体 C,它不溶于水,熔点 $62 \sim 63$ °C,B 和 C 的 NMR 证明它们都是直链化合物。B 用铬酸氧化得到一个分子量为 256 的羧酸,试推测 A 和 B 的结构。

解答:根据题意推测得化合物 A 和 B 的结构如下:

12. 化合物 A($C_4H_4O_3$)红外光谱主要吸收峰分别位于 1050 cm⁻¹、1786 cm⁻¹和 1850 cm⁻¹; 核磁共振谱在 $\delta=3.0$ 处有一个单峰。缓慢加热 A 的甲醇溶液得到化合物 B($C_5H_8O_4$); 化合物 B 的红外光谱主要吸收峰位于 2500 ~ 3000 cm⁻¹(宽峰),1730 cm⁻¹ 和 1701 cm⁻¹; 用 D_2O 为溶剂测定 B 的核磁共振谱在 $\delta=2.7$ 和 $\delta=3.7$ 处有两个单峰,峰面积比为 4:3。试写出 A、B 的结构式,并说明理由。

解答:根据题意推测得化合物 A 和 B 的结构如下:

13. 某中性化合物 $C_{11}H_{14}O_2$, 碘仿反应及 2,4-二硝基苯肼反应呈阴性, 红外光谱在 1720 cm⁻¹

处有一强吸收峰, 1 H NMR 谱为 δ 1.0 (6H, d), 2.1 (1H, m), 4.1 (2H, d), 7.8 (5H, m)。试给出此化合物的结构。

解答:根据题意推测得该化合物的结构如下:

14. 化合物 $A(C_5H_6O_3)$ 经 CH_3ONa/CH_3OH 处理后酸化生成 $B(C_6H_{10}O_4)$ 。B 经下列两步反应生成 $C(C_6H_{10}O_3)$ 。C 能与 Tollens 试剂反应。A 的 IR 在 1725 cm^{-1} 和 1820 cm^{-1} 有强特征吸收; A 的 1H NMR 为 δ 2.3 (三重峰, 4H), δ 1.1 (五重峰, 2H)。B 的 IR 特征吸收 1740 cm^{-1} , 1710 cm^{-1} , $2500 \sim 3000$ cm^{-1} (宽峰)。写出 A、B、C 的结构。

解答: 根据题意推测得化合物 A、B、C 的结构如下:

第13章 β-二羰基化合物

1. 按生成烯醇式的难易排列下列化合物:

(A)
$$CH_2CH_3$$
 (B) $CH=CH_2$ (C)

解答:

2. 写出下列反应的主要产物:

(1)
$$CH_3CH_2CH_2COOC_2H_5$$
 $\frac{(1) NaOC_2H_5 / C_2H_5OH}{(2) H_3O^+}$
(2) $\frac{O}{COCH_3} + \frac{O}{COCH_3} + \frac{(1) NaOC_2H_5 / C_2H_5OH}{(2) H_3O^+}$

(3)
$$HCOC_2H_5$$
 + $CH_3CH_2COOC_2H_5$ $\frac{(1) NaOC_2H_5 / C_2H_5OH}{(2) H_3O^+}$

(4)
$$O$$
 CCH_3
 CCH_3
 CCH_5
 $CCH_$

(5)
$$\begin{bmatrix} COOC_2H_5 \\ COOC_2H_5 \end{bmatrix} + \begin{bmatrix} O \\ C-OC_2H_5 \\ - COC_2H_5 \end{bmatrix} \xrightarrow{(1) \text{NaOC}_2H_5 / C_2H_5OH} (2) H_3O^+ \end{bmatrix}$$

(6)
$$CH_3C(CH_2)_3COC_2H_5 = \frac{(1) NaOC_2H_5 / C_2H_5OH}{(2) H_3O^+}$$

$$(7)$$
 $CH_3CCH_2COC_2H_5$ (1) $NaOC_2H_5$ (2) C_2H_5COCI

O
$$CH_3CH_2\overset{\square}{C}CH_3$$
 + CH_2 =CHCN NaOC₂H₅

$$(2) \qquad \begin{array}{c} \mathsf{COOCH}_3 \\ \mathsf{CH} - \mathsf{C} \\ \mathsf{O} \end{array}$$

$$\begin{array}{ccc} \text{(3)} & \text{CH}_3\text{--CH--COOC}_2\text{H}_5\\ & \text{CHO} \end{array}$$

(4)
$$C - CH_2 - C - OC_2H_6$$

$$COOC_2H_5$$

 (5) $CH-COCOOC_2H_5$
 $CH_2COOC_2H_5$

(7)
$$CH_3 - C - CH - COOC_2H_5$$

 $C - C_6H_5$
 O

(8)
$$CH_2$$
 CH_2 CH_2 CH_2 CH_3

3. 由乙酰乙酸乙酯或者丙二酸二乙酯为起始原料,合成下列化合物:

O (1)
$$CH_3C(CH_2)_2COOH$$

(1)
$$CH_3C(CH_2)_2COOH$$
 (2) $CH_2=CHCH_2CHCOOH$ (3) CH_3

(4)
$$C_2H_5$$
 (5) $COOH$ (6) $COOH$

(1)
$$CH_3 - CC - CH_2 - COOC_2H_5$$
 (1) EtONa, EtOH $CH_3 - CC - CH_2 - COOC_2H_5$ (2) BrCH₂COOC₂H₅ $CH_3 - CC - CH_2 - COOC_2H_5$

$$\begin{array}{c|c} \hline (1) \text{ NaOH, H}_2\text{O} & \text{O} \\ \hline (2) \text{ H}_3\text{O}^+ & \text{CH}_3-\text{C}-\text{CH}_2-\text{COOH} \\ \hline (3) \triangle, -\text{CO}_2 & \end{array}$$

$$(2) \quad \mathsf{CH_2}(\mathsf{COOC_2H_5})_2 \quad \underbrace{\frac{(1)\,\mathsf{EtONa}}{(2)\,\mathsf{H_2}\mathsf{C} = \mathsf{CH} - \mathsf{CH_2CI}}}_{\qquad \qquad \mathsf{H_2}\mathsf{C} = \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH}(\mathsf{COOC_2H_5})_2 \quad \underbrace{\frac{(1)\,\mathsf{EtONa}}{(2)\,\mathsf{CH_3I}}}_{\qquad \qquad \mathsf{CD}} \\ \quad \mathsf{H_2}\mathsf{C} = \mathsf{CH} - \mathsf{CH_2} - \mathsf{C}(\mathsf{COOC_2H_5})_2 \quad \underbrace{\frac{(1)\,\mathsf{NaOH},\,\mathsf{H_2O}}{(2)\,\mathsf{H_3O^+}}}_{\qquad \qquad \mathsf{CH_3}} \quad \mathsf{H_2C} = \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{COOH} \\ \quad \mathsf{CH_3} \quad \underbrace{\mathsf{CH_3O^+}}_{\qquad \qquad \mathsf{CH_3O^+}} \quad \mathsf{CH_3} \quad \mathsf{CH_3O^+}_{\qquad \qquad \mathsf{CH_3O^+}}$$

$$\begin{array}{c|c} O & \text{(1) NaOH, H}_2O \\ \hline COOC_2H_5 & \text{(2) H}_3O^+ \\ \hline C_2H_5 & \text{(3)} \triangle \text{, -CO}_2 \\ \end{array}$$

(5)
$$CH_2(COOC_2H_5)_2 \xrightarrow{(1) \ 2 \ EtONa} COOC_2H_5 \xrightarrow{(1) \ NaOH, \ H_2O} COOC_2H_5 \xrightarrow{(2) \ H_3O^+} COOH_2 \xrightarrow{(3) \triangle , \ -CO_2} COOH_2$$

(6)
$$2 \text{ CH}_2(\text{COOC}_2\text{H}_5)_2 \xrightarrow{\text{(1) 2 EtONa}} \xrightarrow{\text{CH}_2-\text{CH}(\text{COOC}_2\text{H}_5)_2} \xrightarrow{\text{(1) 2 EtONa}} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{Br}} \xrightarrow{\text{CH}_2-\text{CH}(\text{COOC}_2\text{H}_5)_2} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{Br}} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{Br}} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{Br}} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{Br}} \xrightarrow{\text{(2) H}_5\text{OOC}_2\text{H}_5} \xrightarrow{\text{(2) H}_5\text{OOC}_2\text{H}_5} \xrightarrow{\text{(2) H}_3\text{O}^+} \xrightarrow{\text{(2) H}_3\text{O}^+} \xrightarrow{\text{(2) BrCH}_2\text{COOC}_2\text{H}_5} \xrightarrow{\text{(1) NaOH, H}_2\text{O}} \xrightarrow{\text{(2) H}_3\text{O}^+} \xrightarrow{\text{(2) H}_3\text{OOC}_2\text{H}_5} \xrightarrow{\text{(2) H}_3\text{OOC}_2\text{H}_5} \xrightarrow{\text{(1) NaOH, H}_2\text{O}} \xrightarrow{\text{(2) H}_3\text{O}^+} \xrightarrow{\text{(2) H}_3\text{CH}_2\text{COOC}_2\text{H}_5} \xrightarrow{\text{(3) \triangle}, -\text{CO}_2} \xrightarrow{\text{(4) NaOH, H}_2\text{O}} \xrightarrow{\text{(2) H}_3\text{OOC}_2\text{H}_5} \xrightarrow{\text{(3) \triangle}, -\text{CO}_2} \xrightarrow{\text{(4) NaOH, H}_2\text{O}} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{CH}_2\text{COOH}} \xrightarrow{\text{(2) H}_3\text{OOC}_2\text{H}_5} \xrightarrow{\text{(1) NaOH, H}_2\text{O}} \xrightarrow{\text{(2) BrCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{COOC}_2\text{H}_5} \xrightarrow{\text{(1) NaOH, H}_2\text{O}} \xrightarrow{\text{(2) H}_3\text{OOC}_2\text{H}_5} \xrightarrow{\text{(2) H}$$

4. 写出下列反应可能的反应机理:

$$(1) \quad C_{2}H_{5}OC_{2}CH_{5}CH_{2}$$

5. 由指定原料合成:

$$(1) \quad (CH_{2})_{5} \qquad (1) \text{ EtONa} \qquad (2) \text{ HOAc, } H_{2}O \qquad (2) H_{3}O^{+} \qquad (3)\triangle \text{ , -CO}_{2}$$

(2)
$$Ph-CH=CH_2 \xrightarrow{PhCO_3H} O_{Ph}$$

$$CH_{3}CH_{2}COOH \xrightarrow{C_{2}H_{5}OH} CH_{3}CH_{2}COOC_{2}H_{5} \xrightarrow{(1) EtONa} \xrightarrow{O} \xrightarrow{O}$$

解答:根据题意推得化合物 A 的结构为:

$$H_3C$$
 O O O O O

其反应式为:

$$H_3C$$
 OC_2H_5
 OC_2H_5

化合物 A 的 1H NMR 谱的归属如下:

第14章 含氮有机化合物

- 1. 给出下列化合物名称或写出构造式。
 - (1) 对硝基氯化苄
- (2) 1,4,6-三硝基萘

(3) 苦味酸

- (4)(顺)-1,2-环己基二胺
- (5) N,N'-二甲基乙二胺
- (6) CH₃CH₂CH(NH₂)CH₂CH₃
- (7) (CH₃)₂CHNH₂
- (8) (CH₃)₂NCH₂CH₃

(12)
$$O_2N$$
 $N=N$

$$(13) \qquad \qquad \bigcirc \mathsf{N} \equiv \mathsf{NBr}^{\ominus}$$

$$\mathsf{CN} \qquad \mathsf{CN}$$

(1)
$$O_2N$$
— CH_2CI (2) O_2N (3) O_2N O_2N

(5) CH₃-NH-CH₂CH₂-NH-CH₃

- (6) 3-氨基戊烷
- (7) 异丙胺
- (8) N,N-二甲基乙胺

- (9) N-甲基苯胺
- (10)(反)-4-甲基环己胺
- (11) N,3-二甲基苯胺

- (12) 2-羟基-4′-硝基偶氮苯
- (13) 3-氰基-5-硝基溴化重氮苯
- (14) N-甲基-8-硝基-2-萘胺
- 2. 按其碱性的强弱排列下列各组化合物,并说明理由。

(1)
$$\sim$$
 NH₂, O₂N \sim NH₂, H₃C \sim NH₂, \sim NHCH₃
(2) CH₃CONH₂, CH₃NH₂, NH₃, \sim NH₂

解答:

(1)
$$\sqrt{NHCH_3} > H_3C \sqrt{NH_2} > \sqrt{NH_2} > O_2N \sqrt{NH_2}$$

(2) $CH_3NH_2 > NH_3 > \sqrt{NH_2} > CH_3CONH_2$

氮原子上连有供电子基使胺的碱性增强, 而连有吸引电子基则使碱性减弱。

3. 比较正丙醇、正丙胺、甲乙胺、三甲胺和正丁烷的沸点高低并简明说明理由。

解答:

沸点从高到低的顺序为: 正丙醇 > 正丙胺 > 甲乙胺 > 三甲胺 > 正丁烷

沸点的高低与分子间作用力和氢键有关,分子量相同的伯、仲、叔胺由于形成氢键的能力不同,沸点顺序为:伯胺 > 仲胺 > 叔胺。但由于氧原子电负性对于氮,形成氢键的能力强,使得同数碳原子的醇的沸点要高于胺。胺的极性大于烷烃,故其沸点要比分子量相近的烷烃要高得多。

4. 如何完成下列的转变:

(1)
$$CH_2 = CHCH_2Br$$
 $CH_2CHCH_2CH_2NH_2$

$$(2) \qquad \longrightarrow \qquad \longrightarrow \text{NHCH}_3$$

(3)
$$H_3CO \longrightarrow H_3CO \longrightarrow CH_2NH_2$$

(4)
$$CH_3CH_2CH_2Br \xrightarrow{\longrightarrow} CH_3CH_2CHCH_3$$

 $|$
 NH_2

(1)
$$H_2C=CH-CH_2Br \xrightarrow{NaCN} H_2C=CH-CH_2CN \xrightarrow{LiAlH_4} H_2C=CH-CH_2CH_2NH_2$$

(2)
$$\sim$$
 O + CH₃NH₂ \sim NaBH₃CN \sim NH-CH₃

(4)
$$CH_3CH_2CH_2CH_2Br$$
 $\xrightarrow{KOH, EtOH}$ $CH_3CH_2CH=CH_2$ \xrightarrow{HBr} $CH_3CH_2-CH-CH_3$ \xrightarrow{Br} $CH_3CH_2-CH-CH_3$

5. 完成下列各步反应,并指出最后产物的构型是(R)或(S)。

应,并有出版后广物的构型是
$$(R)$$
或 (S) 。
$$CH_3 \qquad (1) SOCl_2 \qquad CH_3$$

$$C_6H_5CH_2CHCOOH \qquad (2) NH_3 \qquad C_6H_5CH_2CHNH_2$$

$$S-(+) \qquad (3) Br_2, OH \qquad (-)$$

解答:

$$CH_3$$
 $C_6H_5CH_2-CH-COOH$ CH_3 CH_3 CH_3 $C_6H_5CH_2-CH-COCI$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-COOH_2$ $C_6H_5CH_2-CH-OOH_2$ C_6H_5

6. 完成下列反应:

(1)
$$(1)$$
 (1) (1) (1) (1) (2) (2) (2) (2) (2) (3) (3) (2) (3) (4) (4) (5) (5) (7) (7) (7) (7) (7) (8) (7) (8) (9) (9) (9) (1) (1) (1) (1) (2) (2) (3) (3) (3) (4) (4) (4) (4) (5) (5) (5) (7) (7) (7) (8) (1)

(2)
$$CH_3$$
 ? CH_3 Fe + HCl ? $(CH_3CO)_2O$? RBO ? RBO

(3)
$$\begin{array}{c|c} OCH_3 & & \\ \hline & HNO_3 \\ \hline & H_2SO_4 \end{array} ? \xrightarrow{?} \begin{array}{c} OCH_3 \\ \hline & NaNO_2/HCI \\ \hline & 0\sim5^{\circ}C \end{array} ? \xrightarrow{PH \sim 6} ?$$

(4)
$$CH_3$$
 CI_2 ? CH_2 N(CH₃)₃CI

(5)
$$K_2Cr_2O_7 \rightarrow (1)SOCl_2 \rightarrow R_2SO_4$$
 ? $(1)SOCl_2 \rightarrow (2)NH_3 \rightarrow (1)SOCl_2 \rightarrow ($

(6)
$$\frac{\text{CH}_3}{\text{(PhCOO)}_2}$$
 ? $\frac{\text{NaCN}}{\text{NaCN}}$? $\frac{\text{LiAlH}_4}{\text{PhCOO}_2}$?

(9)
$$\begin{pmatrix} N \\ H \end{pmatrix}$$
 + $\begin{pmatrix} O \\ H^{+} \end{pmatrix}$? $\begin{pmatrix} H_{2}C = CHCOOEt \\ H_{3}O^{+} \end{pmatrix}$?

(10)
$$\begin{array}{c} H_3C + CH_3 \\ \hline \\ CH_3 \end{array} \xrightarrow{} ?$$

(11)
$$\begin{array}{c}
C_6H_5\\
H \longrightarrow N(CH_3)_2\\
C_2H_5
\end{array}
\xrightarrow{H_2O_2}
?$$

- 7. 解释下述实验现象:
 - (1) 对溴甲苯与氢氧化钠在高温下反应,生成几乎等物质量的对甲基苯酚和间甲基苯酚。
- (2) 2,4-二硝基氯苯可由氯苯硝化而得,但是如果反应产物用碳酸氢钠水溶液洗涤除酸,则得不到产品。

(1) 这是一个通过苯炔机理进行的反应,首先,在碱作用下进行消除反应生成苯炔,然后氢氧根离子与苯炔发生亲核加成反应,它有两种加成方式,由于加成后生成的两种碳负离子的稳定性差不多,故最后得到几乎等物质量的对甲基苯酚和间甲基苯酚:

(2) 2,4-二硝基氯苯分子中由于氯原子的邻和对位有强电子的硝基,使得氯原子具有很高的反应活性,即使在弱碱溶液中也极易发生水解反应,故不能用碱进行洗涤。

8. 写出下列反应的机理:

(1) Me O Et NH₂OH N_OO

(2)
$$O$$
 (1) N , H⁺ O (2) CH₃Br (3) H₃O⁺

(2)
$$\xrightarrow{\text{H}^+}$$
 $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{H}^+}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{H}^+}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{H}^+}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{H}^+}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{H}^+}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{OH}}$

- 9. 从指定的原料合成:
 - (1) 从环戊酮和 HCN 合成环己酮
 - (2) 从 1,3-丁二烯合成制备尼龙-66 的两个单体: 己二酸和己二胺
 - (3) 从乙醇、甲苯及其他无机原料合成普鲁卡因:

(4) 从简单的开链化合物合成:

(5) 以甲胺, 丙烯酸酯和苯为原料合成:

$$C_6H_5$$
 $N-CH_3$

解答:

(1)
$$OHCN$$
 $OHCN$ OHC

也可以用 CH₂N₂的方法扩环

(3)
$$CH_3CH_2OH \xrightarrow{SOCl_2} CH_3CH_2CI \xrightarrow{NH_3} CH_3CH_2NH_2 \xrightarrow{CH_3CH_2CI} Et_2NH$$
 $CH_3CH_2OH \xrightarrow{H_2SO_4} H_2C=CH_2 \xrightarrow{Ag, O_2} O \xrightarrow{Et_2NH} HOCH_2CH_2NEt_2$
 $CH_3 \xrightarrow{NHO_3, H_2SO_4} \xrightarrow{K_2Cr_2O_7} \xrightarrow{H_2SO_4} \xrightarrow{HOCH_2CH_2NEt_2} \xrightarrow{H^+}$
 $O_2N \xrightarrow{COOCH_2CH_2NEt_2} \xrightarrow{Fe, HCI} H_2N \xrightarrow{COOCH_2CH_2NEt_2}$

$$(4) \quad \mathsf{CH_2}(\mathsf{COOEt})_2 \quad \underbrace{\begin{array}{c} (1) \ 2 \ \mathsf{EtONa} \\ (2) \ \mathsf{Br}(\mathsf{CH}_2)_5 \mathsf{Br} \end{array}}_{} \quad \underbrace{\begin{array}{c} \mathsf{COOEt} \\ \mathsf{COOEt} \end{array}}_{} \quad \underbrace{\begin{array}{c} (1) \ \mathsf{NaOH}, \ \mathsf{H}_2\mathsf{O} \\ (2) \ \mathsf{H}_3\mathsf{O}^+ \\ (3) \triangle, \ \mathsf{-CO}_2 \end{array}}_{} \quad \mathsf{COOH}$$

(5)
$$C_6H_6 \xrightarrow{Br_2} C_6H_5Br \xrightarrow{Mg} C_6H_5MgBr$$
 $COOEt$
 $CH_3NH_2 \xrightarrow{Q} H_2C=CH-COOEt$
 CH_3-N
 $COOEt$
 CO

- 10. 选择适当的原料经偶联反应合成:
 - (1) 2,2'-二甲基-4'-氨基偶氮苯

(2)
$$(H_3C)_2N$$
 $N=N$ $N=N$ $N=N$ $N=N$ $N(CH_3)_2$

11. 从甲苯或苯为原料合成下列化合物:

(1) 间氨基苯乙酮

(2) 邻硝基苯胺

(3) 间氰基苯甲酸

(4) 1,2,3-三溴苯

(1)
$$CH_3COCI$$
 $COCH_3$ $COCH$

(2)
$$HNO_3$$
 H_2SO_4 (1) Fe, HCl HNO_3 HNO_3 $(CH_3CO)_2O$ (2) $(CH_3CO)_2O$ $(CH_3CO)_2O$

COOH COOH COOH COOH NO₂
$$H_3O^+$$
 Δ NO_2 (1) NaNO₂, H_2SO_4 , $0\sim5^{\circ}C$ NO_2 NO_2 NO_2 NO_2 NO_2

(6)
$$\frac{HNO_3}{H_2SO_4} \xrightarrow{NO_2} \frac{HNO_3, H_2SO_4}{\triangle} \xrightarrow{NO_2} \frac{NH_4HS}{NO_2}$$

$$\frac{NaNO_2, H_2SO_4}{0 \sim 5^{\circ}C} \xrightarrow{\Delta} \frac{OH}{\triangle}$$

$$NO_2$$

12. 试分离提纯下列化合物:

苯甲酸, 对甲苯酚, 对甲苯胺

解答:

13. 利用简便的化学试剂鉴别: 苯胺, N-甲基苯胺, N,N-二甲基苯胺

解答:

14. 某化合物 $A(C_8H_9NO_2)$ 在 NaOH 中被 Zn 还原生成 B,强酸性下 B 重排生成芳香胺 C,C 用亚硝酸处理,再用 H_3PO_2 处理生成 3,3'-二乙基联苯(D)。写出 A、B、C、D 的结构式。

解答:根据题意推测得化合物 A、B、C、D 的结构如下:

$$C_2H_5$$
 C_2H_5 C

15. 某化合物 A,分子式为 $C_8H_{17}N$,其核磁共振氢谱无双重峰,它与 2 mol 碘甲烷反应,然后与湿的 Ag_2O 作用,接着加热,则生成一个中间体 B,其分子式为 $C_{10}H_{21}N$ 。B 进一步甲基化后与湿的 Ag_2O 作用,转变为氢氧化物,加热则生成三甲胺, 1,5-辛二烯和 1,4-辛二烯混合物。写出 A 和 B 的结构式。

解答:根据题意推测得化合物 A、B 的结构如下:

$$\begin{array}{c|c} & & & \\ & N \\ H & & & \\ & N \\ & A & & B \\ \end{array}$$

16. 化合物 A 分子式为 $C_{15}H_{17}N$,用苯磺酰氯和 KOH 溶液处理它没有作用,酸化该化合物 得到一清晰的溶液,化合物 A 的核磁共振谱如下图所示,试推导出化合物 A 的结构式。

解答:根据题意推测得化合物 A 的结构如下:

17. 化合物 $A(C_7H_{15}N)$ 和碘甲烷反应得一水溶性化合物 $B(C_8H_{18}IN)$,B 和氢氧化银的水 悬浮液加热得 $C(C_8H_{17}N)$,当 C 再和碘甲烷反应,并和氧化银悬浮水溶液加热得 $D(C_6H_{10})$ 和三甲胺,D 能吸收 2mol H_2 而得 $E(C_6H_{14})$ 。E 的 NMR 氢谱显示有一个七重峰和一个双重

峰,它们的相对强度比例为1:6。 试推测A、B、C、D、E的结构。

解答:根据题意推测得化合物 A、B、C、D、E 的结构如下:

18. 局部麻醉剂 Novocaine,分子式为 $C_{13}H_{20}O_2N_2$,不溶于水和稀碱,但可溶于稀酸。它与 $NaNO_2/HCl$ 反应后加 β -萘酚产生红色固体。Novocaine 与稀碱加热后用乙醚萃取,水层小心酸化得到白色固体 A ($C_7H_7O_2N$),若再加酸 A 又可溶解。A 的红外光谱在 840 cm⁻¹ 有特征吸收。醚层蒸出乙醚后得到 B ($C_6H_{15}ON$)。B 可溶于水,其水溶液可使石蕊试纸变蓝。 B 可由二乙胺和环氧乙烷制得。写出 Novocaine 和 A、B 的结构式。

解答:根据题意推测得化合物 Novocaine 和 A、B 的结构如下:

$$\begin{array}{cccc} \text{COOCH}_2\text{CH}_2\text{N}(\text{C}_2\text{H}_5)_2 & \text{COOH} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$$

第15章 有机合成设计

1. 由苯以及 C₃ (包括 C₃) 以下有机原料和必要的无机试剂合成:

2. 用 C₃ (包括 C₃) 以下的有机原料及必要的试剂合成:

解答:

HC
$$\equiv$$
CH $\xrightarrow{\text{NaNH}_2}$ HC \equiv CNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CH $_3\text{CH}_2\text{-C}$ CCH $\xrightarrow{\text{NaNH}_2}$ CH $_3\text{CH}_2\text{-C}$ CCNa $\xrightarrow{\text{NaNH}_2}$ CH $_3\text{CH}_2\text{-C}$ CCNa $\xrightarrow{\text{(1)}}$ CH $_3\text{CH}_2\text{-C}$ CCCNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CCNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CCNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CCNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CCNa $\xrightarrow{\text{CH}_3\text{CH}_2\text{-C}}$ CNa $\xrightarrow{\text{CH}_3\text{CH}_3\text{-C}}$ CNA $\xrightarrow{\text{CH}_3\text{-C}}$ CNA $\xrightarrow{\text{CH}_3\text{CH}_3\text{-C}}$ CNA $\xrightarrow{$

3. 完成下列转化:

解答:

$$\begin{array}{c} CH_3 \\ CH_4 \\ CH_4 \\ CH_5 \\ CH$$

4. 由乙酰乙酸乙酯及丙烯为原料合成下列化合物:

$$\begin{array}{c} O \\ CH_3-\overset{\parallel}{C}-CH-CH_2-CH=CH_2 \\ CH_2CH_2CH_3 \end{array}$$

5. 以苯及 C_4 (包括 C_4) 以下的有机原料合成下列化合物:

解答:

6. 以合适的芳二醇及 3-戊醇为原料合成下列化合物:

解答:

7. 由乙酰乙酸乙酯和 C_3 (包括 C_3) 以下的有机原料合成下列化合物:

8. 由苯以及 C₄以下(包括 C₄)有机原料合成下列化合物:

O COOH
$$\frac{Zn(Hg)}{HCI}$$
 COOH $\frac{H_2SO_4}{\triangle}$ COOH $\frac{H_2SO_4}{\triangle}$ COOH $\frac{H_2SO_4}{\triangle}$ CHO $\frac{(1) \text{ NaBH}_4}{(2) \text{ H}_2SO_4, \triangle}$ CHO $\frac{NaOH, H_2O}{\triangle}$ CHO

$$CH_{3}COOC_{2}H_{5} \xrightarrow{(1) EtONa} O CO_{2}Et$$

$$CH_{3}COOC_{2}H_{5} \xrightarrow{(2) HOAc, H_{2}O} CO_{2}Et$$

$$CH(CH_{3})_{2} \xrightarrow{(1) O_{2}} CH(CH_{3})_{2} \xrightarrow{(2) H^{+}} CH_{3}COCH_{3}$$

$$CH_{3}COCH_{3} \xrightarrow{DMF} CH_{3}O \xrightarrow{CH_{3}COCH_{3}} CH_{3}$$

9. 由萘及 C_3 (包括 C_3) 以下的有机原料合成下列化合物:

解答:

2
$$CH_3COCH_3$$
 $(1) Mg(Hg)$ CH_3 CH_3

10. 用 C₄ (包括 C₄) 以下的有机物和必要的无机试剂合成下列化合物:

$$\begin{array}{c} \text{CH}_3\text{COOC}_2\text{H}_5 & \overbrace{\hspace{0.1cm} \text{(1) EtONa} \hspace{0.1cm} \\ \hline \hspace{0.1cm} \text{(2) HOAc, H}_2\text{O}} & \text{CH}_3\text{COCH}_2\text{COOC}_2\text{H}_5 & \overbrace{\hspace{0.1cm} \text{(2) (CH}_3)_2\text{CHBr}} & \text{CH}_3\text{COCHCOOC}_2\text{H}_5 \\ \hline \hspace{0.1cm} \text{(2) (CH}_3)_2\text{CHBr} & CH_3\text{COCHCOOC}_2\text{H}_5 \\ \hline \hspace{0.1cm} \text{(2) HOAc, H}_2\text{O} & CH_3\text{COCH}_2\text{COOC}_2\text{H}_5 \\ \hline \hspace{0.1cm} \text{(2) H}_3\text{O}^+ & CH_3\text{COCH}_2\text{COOC}_2\text{H}_5 \\ \hline \hspace{0.1cm} \text{(2) H}_3\text{O}^- & CH_3\text{COCH}_2\text{COOC}_2\text{H}_5 \\ \hline \hspace{0.1cm$$

11. 用丙二酸二乙酯为主要原料合成下列化合物:

解答:

12. 由环己烯及其他合适原料合成下列化合物:

解答:

13. 完成下列转化:

14. 完成下列转化:

解答:

OH Br
$$\frac{K_2Cr_2O_7}{H_2SO_4}$$
 O Br $\frac{HO}{OH}$ O Br $\frac{(1)CH_3-C\equiv CNa}{(2)H_2O}$

15. 完成下列转化:

解答:

第16章 分子重排反应

1. 完成下列反应方程式:

(1)
$$NaNO_2$$
 ?

 NH_2 PCI_5 ?

(2) H_3C OH $CONH_2$ Br_2 ?

(4) PhCHO
$$\xrightarrow{\text{KCN}}$$
 ? $\xrightarrow{\text{CrO}_3}$? $\xrightarrow{\text{(1) KOH}}$?

(5)
$$N^{-OH} \xrightarrow{H_2SO_4} ? \xrightarrow{OH, H_2O} ?$$

(6)
$$CH_3 + C_6H_5CO_3H \xrightarrow{CHCI_3}$$
 ?

(8)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_2SO_4 ? CH_3 ? CH_3 ? CH_3 ?

(9)
$$CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{AgNO_3}$$
 ? OH CI

(10)
$$CH_2NH_2 \xrightarrow{HNO_2} ? \xrightarrow{CO(OEt)_2} ?$$

(11)
$$\frac{\text{KMnO}_4}{\diamondsuit, \ \text{Mit}}$$
 ? $\frac{\text{H}^+}{}$? $\frac{\text{Zn(Hg)}}{\text{HCI}}$?

$$(13) \quad \nearrow \quad \bigcirc \qquad \qquad \bigcirc \qquad \qquad ?$$

(14) CH₃
$$\triangle$$
 ?

(15)
$$C(CN)_2 \longrightarrow ?$$

(17)
$$H_3C$$
—OH PhCO₃H ? $\frac{(1) \text{ NaOH, H}_2O}{(2) \text{ H}^+}$?

2. 写出下列反应可能的机理:

(2)
$$Ph$$
 Ph
 Ho
 Ph
 H_2SO_4
 Ph
 Ph
 Ph
 Ph
 Ph

$$(4) \qquad \begin{array}{c} \text{OCH}_2\text{CH}=\text{CH}_2 \\ \hline \triangle \end{array} \qquad \begin{array}{c} \text{HBr} \\ \hline \end{array} \qquad \begin{array}{c} \text{CH}_3 \end{array}$$

(5)
$$\begin{array}{c|c} O & COONa \\ \hline & H_2O \end{array}$$

(6)
$$H_3$$
 + CH_3COOH H_2SO_4 OCOCH₃

$$(1) \qquad \qquad H^{+} \qquad \qquad C\bar{I} \qquad CI \qquad CI \qquad CI$$

$$(3) \qquad \begin{array}{c} H & CI \\ \hline \\ O & CI \\ \hline \end{array} \qquad \begin{array}{c} CI \\ \hline \\ O & CI \\ \hline \end{array} \qquad \begin{array}{c} CI \\ \hline \\ O & \overline{OEt} \\ \hline \end{array}$$

(4)
$$OCH_2CH=CH_2$$
 GA_3 GA_2 GA_3 GA_3 GA_4 GA_4 GA_4 GA_5 GA

3. 樟脑在酸性催化剂作用下可以发生外消旋化(反应式如下), 试写其反应机理:

4. 由指定原料合成下列化合物:

$$(1) \operatorname{Nag}(H_{9}) \longrightarrow OH \longrightarrow OH \longrightarrow OH \longrightarrow OH$$

$$(1) \operatorname{Nag}(H_{9}) \longrightarrow OH \longrightarrow OH$$

$$(1) \operatorname{Nag}(H_{9}) \longrightarrow OH \longrightarrow OH$$

$$(1) \operatorname{Nag}(H_{9}) \longrightarrow OH$$

$$(1) \operatorname{Nag}(H_{9}) \longrightarrow OH$$

$$(1) \operatorname{Nag}(H_{9}) \longrightarrow OH$$

$$(2) \operatorname{H}_{3}O^{+} \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow OH$$

$$(2) \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(6) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow OH$$

$$(2) \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(6) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow OH$$

$$(2) \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow OH$$

$$(2) \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow OH$$

$$(2) \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow OH$$

$$(2) \longrightarrow OH$$

$$(3) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(4) \longrightarrow OH$$

$$(5) \longrightarrow OH$$

$$(7) \longrightarrow OH$$

$$(8) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(9) \longrightarrow OH$$

$$(1) \longrightarrow O$$

5. 某化合物 $A(C_{11}H_{14}O)$,不易被 $KMnO_4$ 氧化,但具有碘仿反应。A 的 IR 在 1700 cm⁻¹ 附近有强吸收峰。A 用 $NaBH_4$ 处理生成 B,B 在 180 $^{\circ}$ 与 H_2SO_4 反应生成 C,C 的 1 H NMR 谱图有四组峰: (a) δ 7.5 (多重峰); (b) δ 1.53 (单峰); (c) δ 1.58 (单峰); (d) δ 1.65 (单峰), 其峰面积比为 a:b:c:d=5:3:3:3:3:3:1 (1)写出 A、B、C、的结构; (2) 写出由 B 生成 C 的

历程。

解答:

(1)
$$CH_3 O CH_3 O CH_$$

6. 中性化合物 A,分子式为 $C_{10}H_{12}O$ 。加热 A 至 200 $^{\circ}$ 时,异构化为 B,B 与 $FeCl_3$ 溶液发生颜色反应,而 A 则不能。A 经臭氧化还原水解可以得到甲醛。B 经同一反应却可得到乙醛,试推出 A 和 B 的结构式。

解答: 题意推测得化合物 A 和 B 的结构如下:

第17章 含硫、含磷和含硅有机化合物

- 1. 写出下列各化合物的结构式:
 - (1) 苯甲硫醚

(2) 对甲苯磺酰氯

(3) 巯基乙酸

(4) 亚磷酸三乙酯

(5) 对氨基苯磺酰胺

(6) 环丁砜

(7) 二苯砜

(8) 苯基亚膦酰氯

(9) 苯基亚膦酸乙酯

(10) 三甲硅基乙烯基醚

(1)
$$S-CH_3$$
 (2) H_3C-SO_2CI (3) $HSCH_2COOH$

(5)
$$H_2N - \sqrt{} SO_2NH_2$$

(9)
$$OC_2H_5$$
 OC_2H_5

(10) (CH₃)₃Si-O-CH=CH₂

2. 命名下列各化合物:

- (1) HSCH₂CH₂CH₂SH
- $(2)\ HSCH_2CH_2COOH$

(4)
$$H_3C$$
 \longrightarrow SO_3CH_3

(5) HOCH₂SCH₂CH₃

(6)
$$\left\langle \begin{array}{c} + \\ - \\ \end{array} \right\rangle \left(\begin{array}{c} + \\ - \\ \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \\ - \end{array} \right) \left(\begin{array}{c} + \\ - \end{array} \right) \left($$

(7)
$$(C_2H_5O)_2P$$
 C_6H_6

(8) (CH₃)₃SiCI

解答:

- (1) 1,3-丙二硫醇
- (2) 3-巯基丙酸
- (3) 对磺酸基苯甲酸

- (4) 对甲苯磺酸甲酯
- (5) 羟甲基乙基硫醚
- (6) 碘化环己基二甲基锍

- (7) 苯基膦酸二乙酯
- (8) 三甲基氯硅烷

3. 用化学方法区别下列各组化合物:

- (1) C₄H₉SH 与 CH₃CH₂SCH₂CH₃
- (2) HSCH₂CH₂SCH₃与HOCH₂CH₂SCH₃

(3)
$$CI$$
—COCI $=$ CH_3 — SO_2C

4. 试写出下列各反应的主产物:

(3)
$$CH_3CHO + HS(CH_2)_3SH \xrightarrow{HCI}$$

(4)
$$(CH_3)_3S$$
 Br
$$\frac{(1) n-C_4H_9Li}{(2) CH_3CH_2CH_2COCH_3}$$

解答:

(2)
$$n-C_4H_9-P-OC_4H_9-n$$

 OC_4H_9-n

$$(5) \qquad \begin{matrix} D & CH_3 \\ + & C_2H_5 \end{matrix}$$

5. 完成下列转化:

$$(1) \qquad \begin{array}{c} \text{OCH}_3 \\ \\ \text{OCH}_3 \end{array}$$

(2)
$$H_3$$
 H_3 C $-$ S $-$ CH $_2$

$$O_2N \longrightarrow O_2N \longrightarrow O_2N \longrightarrow O_1$$

(6)
$$\sim$$
 CH₂OH \sim CH=CH \sim

$$(1) \qquad \begin{array}{c} CH_{3} \\ CD_{4} \\ CD_{4} \\ CD_{5} \\ CD_{1} \\ CD_{2} \\ CD_{1} \\ CD_{2} \\ CD_{1} \\ CD_{2} \\ CD_{2} \\ CD_{3} \\ CD_{2} \\$$

6. 使用有机硫试剂或有机磷试剂,以及其他有关试剂,完成下列合成:

(1)
$$C - O - C_2H_5$$
 $C - CH_2CH_2CH_3$
(2) $C - CH_2CH_3$

(3)
$$BrCH_2COOC_2H_5$$
 CH_3 $C=CHCOOC_2H_5$ (4) CHO

第18章 杂环化合物

1. 命名下列化合物:

- (1) 1,3-二甲基吡咯
- (2) 5-溴呋喃-2-甲酸甲酯
- (3) 5-甲基噻唑

- (4) 4-甲基咪唑
- (5) 异烟酰肼

(6) N-甲基吡啶-2-酮

- (7) 6-氯吲哚-3-乙酸
- (8) 5-溴-8-氯喹啉
- (9) 5-溴-7-甲基异喹啉

- (10) 吡啶-3-甲酸 (烟酸)
- 2. 写出下列化合物的结构式:
 - (1) 2-氯-4-甲基噻吩
- (2) 糠醛
- (3) 5-甲基噻唑
- (4) 4-氨基嘧啶

- (5) N-乙基咔唑
- (6) N-甲基吡咯烷酮
- (7) 6-氯-1-甲基异喹啉

- (8) 2-(2-羟乙基)噻吩
- (9) 烟碱
- (10) 8-羟基喹啉

解答:

3. 完成下列反应:

(1)
$$\sqrt[]{O}$$
 + Br₂ $\xrightarrow{-}$ $\sqrt[]{O}$ + (CH₃CO)₂O $\xrightarrow{BF_3}$ \rightarrow

(3)
$$CHO \xrightarrow{CI_2}$$
 ? (1) 浓NaOH (4) N 吡啶-三氧化硫

(6)
$$N \xrightarrow{KMnO_4} H_3O^+$$

(7)
$$CH_3$$
 + PhCHO $ZnCl_2$ + PhCHO H_2O_2 + PhCHO H_2O_3 + PhCHO H_2O_4 + PhCHO H

(9)
$$+ HNO_3 \xrightarrow{H_2SO_4}$$

(9)
$$\downarrow$$
 + HNO₃ $\xrightarrow{\text{H}_2\text{SO}_4}$ (10) \downarrow + PhCHO $\xrightarrow{\text{CH}_3}$ + PhCHO $\xrightarrow{\text{CH}_2}$

(11)
$$PhNMe_2$$
 + NaNH₂ $PhNMe_2$ + NaNH₂ $PhNMe_2$ (12) $PhNMe_3$ $PhNMe_4$ $PhNMe_5$ $PhNM$

(13)
$$Ph \xrightarrow{P_2O_5} Ph \xrightarrow{150 \text{ °C}} (14) \xrightarrow{N} \xrightarrow{HNO_3} H_2SO_4$$

$$(14) \quad \begin{array}{c} N \\ N \\ H \end{array} \qquad \begin{array}{c} HNO_3 \\ H_2SO_4 \end{array}$$

$$(15) \quad \begin{array}{c} N \\ N \\ H \end{array} \quad \begin{array}{c} CH_3COCI \\ \hline Py \end{array}$$

(17)
$$\begin{array}{c} Br_2 \\ \hline S \end{array}$$
? $\begin{array}{c} Hg \\ \hline Et_2O \end{array}$? $\begin{array}{c} (1) CO_2 \\ \hline (2) H_3O^+ \end{array}$

$$(17) \quad \stackrel{\text{Br}_2}{\searrow} ? \quad \stackrel{\text{Mg}}{= \text{Et}_2 \text{O}} ? \quad \stackrel{(1) \text{CO}_2}{= \text{(2) H}_3 \text{O}^+} \qquad (18) \quad \stackrel{\text{N}}{\searrow} + \text{HO}_3 \text{S} \longrightarrow \stackrel{\overset{\bullet}{\longrightarrow}}{\longrightarrow} N_2 \overset{\bullet}{\text{CI}} \longrightarrow$$

(19)
$$\downarrow N$$
 + CH₃I \longrightarrow (20) $\downarrow N$ $\swarrow N$? $\searrow \longrightarrow$

(8)
$$\begin{array}{c} NO_2 \\ NO_2$$

4. 计算下列化合物中 π 电子的数目,并指出哪些化合物具有芳香性。

解答:

- (1)6个 π 电子,有芳香性;
- (2)6个π电子,有芳香性;
- (3)6个π电子,不能形成闭环的共轭体系,无芳香性;
- (4) 10 个 π 电子, 有芳香性;
- (5) 10 个 π 电子, 有芳香性
- 5. 比较下列各对化合物的碱性强弱,并简述理由。

(1)
$$\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle = \left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$$
 (2) $\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle = \left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$ $\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle = \left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$ $\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$ $\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle = \left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$ $\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle = \left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$

$$(4) \quad \begin{array}{c|c} \nearrow N & = & \nearrow N \\ N & H & H \\ \end{array} \qquad (5) \quad \begin{array}{c|c} \nearrow CH_3 & NH_2 \\ N & = & \nearrow N \\ N & H \\ \end{array} \qquad (6) \quad \begin{array}{c|c} \nearrow & = & \nearrow N \\ N & H \\ \end{array}$$

解答:

(1) 碱性: 咪唑 > 吡咯。咪唑分子中 3-位氮原子上的孤电子对未参与形成共轭体系,而吡咯氮原子上的孤电子对参与形成了共轭体系,故咪唑的碱性强。

- (2) 碱性: 吡唑 > 吡咯。吡唑分子中 2-位氮原子上的孤电子对未参与形成共轭体系,而吡咯氮原子上的孤电子对参与形成了共轭体系,故吡唑的碱性强。
- (3) 碱性: 嘧啶 > 咪唑。咪唑分子中 1-位氮原子上的孤电子对参与形成了共轭体系,只有 3-位氮原子上的孤电子对未参与形成共轭体系。而嘧啶分子中有两个氮原子(1-位和 3-位)上的孤电子对均未参与形成共轭体系,故嘧啶的碱性强。
- (4) 碱性: 咪唑 > 吡唑。咪唑质子化形成的两个共振杂化体完全相同,从而使其稳定性增加,故不易释出质子,酸性减弱,而其共轭碱的碱性增强。

- (5) 碱性: 4-氨基吡啶 > 4-甲基吡啶。4-氨基吡啶中 4-位氨基氮原子上的孤电子对通过 p-π 共轭使吡啶环上氮原子的电子密度增加,碱性增强。
- (6) 碱性: 吡啶 > 吲哚。吡啶分子中氮原子上的孤电子对未参与共轭,而吲哚分子中氮原子上的孤电子对参与了共轭,故吡啶的碱性强。
- 6. 下列化合物中哪一个氮原子的碱性较强?

写出其与下列试剂作用的产物: (1) HNO₃/H₂SO₄; (2) H₂O₂/H₂O; (3) PhCHO/NaOH **解答**:

分子中吡啶环上氮原子的碱性强于吡咯环中氮原子的碱性。三个反应的产物为:

7. 完成下列转变:

(1)
$$\bigcap_{N}^{CH_3} \longrightarrow \bigcap_{N}^{NH_2}$$
(2) $\bigcap_{N}^{COOH} \longrightarrow \bigcap_{N}^{O}$

$$(4) \qquad \qquad \bigvee_{N} \qquad \bigvee_{N$$

$$(1) \quad \boxed{ \begin{matrix} \begin{matrix} \\ N \end{matrix} \end{matrix} \begin{matrix} \begin{matrix} CH_3 \end{matrix} \begin{matrix} \begin{matrix} KMnO_4 \end{matrix} \end{matrix} \begin{matrix} \begin{matrix} COOH \end{matrix} \begin{matrix} (1) SOCl_2 \end{matrix} \end{matrix} \begin{matrix} \begin{matrix} CONH_2 \end{matrix} \begin{matrix} Br_2 \end{matrix} \end{matrix} \begin{matrix} NH_2 \end{matrix} \end{matrix} \begin{matrix} NH_2 \end{matrix} \end{matrix} }$$

$$(4) \qquad \begin{array}{c|c} & H_2O_2 \\ \hline \\ N \\ \hline \\ O^- \end{array} \qquad \begin{array}{c|c} & HNO_3 \\ \hline \\ H_2SO_4 \end{array} \qquad \begin{array}{c|c} & PCI_3 \\ \hline \\ O^- \end{array}$$

8. 由指定原料及其它合适的试剂合成:

8(1) O O (1) EtONa O O (1) NaOH,
$$H_2O$$
 O O (2) H_3O^+ OEt H_3C OPh

(2)
$$PhCOCH_3$$
 \xrightarrow{HCHO} O $Ph-C-CH=CH_2$ H_2SO_4 , As_2O_5 N

(3)
$$NaNO_2$$
, HCI Na_2SO_3 $PhCOCH_2CH_3$ CI $PhCOCH_2CH_3$ $PhCOCH_3$ PhC

$$(4) \qquad \begin{array}{c} NO_2 & Zn \\ \hline NaOH \end{array} \qquad \begin{array}{c} NH-NH - \begin{array}{c} \\ \\ \end{array} \qquad \begin{array}{c} H^+ \\ \end{array} \qquad \begin{array}{c} H_2N - \begin{array}{c} \\ \end{array} \qquad \begin{array}{c} NH_2 \\ \end{array}$$

$$(5) \hspace{0.2cm} \begin{array}{c} \begin{array}{c} \begin{array}{c} (1) \hspace{0.1cm} \text{Mg(Hg)} \\ \hline (2) \hspace{0.1cm} \text{H}_{2}\text{O} \end{array} \\ \begin{array}{c} \text{OH OH} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ \hline (2) \hspace{0.1cm} \text{H}_{3}\text{O}^{+} \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ \hline \text{OH} \end{array} \begin{array}{c} \begin{array}{c} \text{EtOH} \\ \end{array} \end{array} \begin{array}{c} O \\ \hline \text{OEt} \end{array}$$

COOEt (1) 2 EtONa (2) 2 (CH₃)₃CCOOEt (2) (COOEt (3)
$$\triangle$$
, -CO₂ (1) NaOH, H₂O (2) H₃O⁺ (3) \triangle , -CO₂

$$HNO_3$$
 H_2SO_4 $HOOC$ HNO_2 H_3O^+ $HOOC$ HNO_2 $HOOC$ $HOOC$

9. 写出下列反应可能的反应机理:

(1)
$$\begin{array}{c} Br \\ Br \\ OCH_2CH_2NHCH_3 \\ C_6H_5Li \\ \hline \end{array}$$
 $\begin{array}{c} C_6H_5Li \\ CH_2CH_2 \\ \hline \end{array}$ $\begin{array}{c} CH_2CN \\ CH_2CH_2 \\ \hline \end{array}$ $\begin{array}{c} CHCI_3 \\ NAOH \\ \end{array}$

10. 回答下列问题:

- (1) 除去混在苯中的少量噻吩;
- (2) 除去混在甲苯中的少量吡啶;
- (3) 除去混在吡啶中的少量六氢吡啶;
- (4) 将下列化合物按碱性从强到弱排列:

- (1) 用浓硫酸洗涤即可除去混在苯中的少量噻吩。因为噻吩在室温下能与浓硫酸发生磺化反应生成噻吩-2-磺酸,且产物能溶于浓硫酸中,而苯在室温下不能与浓硫酸反应,且苯与浓硫酸不溶而分层,用分液漏斗分离即可。
- (2) 用盐酸洗涤即可除去混在甲苯中的少量吡啶。因为吡啶能与盐酸反应生成吡啶盐酸 盐而溶于水中。甲苯不能与盐酸反应,且不溶于水。两者用分液漏斗分离即可。
- (3) 在吡啶与六氢吡啶的混合物中加入少量苯磺酰氯的 NaOH 溶液, 六氢吡啶能与苯磺酰氯反应生成不溶于碱的磺酰胺固体, 通过过滤即可除去。
 - (4) 碱性由强到弱的顺序为:

第19章 糖类

- 1. 请举例说明下列概念:
- (1) 还原性糖 (2) 非还原性糖 (3) 醛糖的递升和递降 (4) 糖的变旋现象**解答**:
- (1) 凡是能被 Tollens 试剂或 Fehling 试剂等弱氧化剂氧化的糖类,都称还原性糖。例如,葡萄糖和果糖都是还原性糖。
- (2) 凡是不能被 Tollens 试剂或 Fehling 试剂等弱氧化剂氧化的糖类,都称非还原性糖。例如,蔗糖是非还原性糖。
- (3) 醛糖与 HCN 发生亲核加成反应,增加一个碳原子,再经过水解、还原可生成多一个碳原子的醛糖,这个方法称为醛糖的递升。例如,D-甘油醛通过递升可以生成 D-苏阿糖和 D-赤藓糖。

从醛糖生成减少一个碳原子的醛糖的方法称为醛糖的递降,醛糖递降的方法主要有: Wohl 法和 Ruff-Fenton 法。例如,D-葡萄糖可递降为 D-树胶糖。

(4) 从自然界中得到的 D-(+)-葡萄糖有两种形式: α -型和 β -型。 α -型的熔点为 146°C, 比 旋光度 [α] $_{D}^{20}$ =+112°·dm²·kg⁻¹; β -型的熔点为 150°C,比旋光度 [α] $_{D}^{20}$ =+19°·dm²·kg⁻¹。这两种

形式的糖的新配的水溶液放置后都会经过互变而达到平衡,最终比旋光度都变成 =+52.7 $^{\circ}\cdot dm^2\cdot kg^{-1}$ 。这种现象称为变旋光现象。

- 2. 写出 D-(+)-半乳糖与下列物质的反应、产物及其名称。

 - (1) 羟胺 (2) 苯肼
- (3) 溴水
- $(4) \text{ HNO}_3$ $(5) \text{ HIO}_4$
- (6) 乙酐

- (7) 苯甲酰氯、吡啶
- (8) CH₃OH₂ HCl
- (9) (CH₃)₂SO₄ NaOH

- 3. D-(+)-半乳糖是怎样转化成下列化合物的?写出其反应条件。
- (1) 甲基-α-D-半乳糖苷 (2) β-2,3,4,6-四-*O*-甲基-D-半乳糖 (3) D-酒石酸**解答**:

4. 有一 D 型己醛糖 A ($C_6H_{12}O_6$),用稀硝酸氧化得到 B,仍有旋光性,A 用溴水氧化后,再用鲁夫降解,得到戊醛糖 C,C 用 NaBH₄ 处理后得到 D,D 有光活性。A 与 HCN 加成后用稀酸水解得到 E 和 F,然后分别用稀硝酸氧化得到糖二酸 G、H,G 无光活性,而 H 有光活性。如将 D-苏阿糖用 Kiliani 氰化增碳法合成两个戊醛糖均不是 C,请推出 A~H 的结构式及写出各步反应。

解答:根据题意推测出化合物 A~H 的结构如下:

相关的反应式如下:

5. 有一戊糖 $C_5H_{10}O_4$ 与羟氨 (NH_2OH) 反应生成肟,与硼氢化钠的反应生成 $C_5H_{12}O_4$ 。后者有旋光性,与乙酐反应得四乙酸酯,戊糖 $(C_5H_{10}O_4)$ 与 CH_3OH 、HCl 反应得 $C_6H_{12}O_4$,再与 HIO_4 反应得 $C_6H_{10}O_4$ 。它 $(C_6H_{10}O_4)$ 在酸催化下水解,得等物质的量的乙二醛 (CHO-CHO)

和 D-乳醛 ($CH_3CHOHCHO$)。请推出戊糖($C_5H_{10}O_4$) 的结构式并写出各步反应。

解答: 根据题意推测得戊糖的结构如下:

相应的反应式为:

6. 有两种化合物 A 和 B,分子式均为 $C_5H_{10}O_4$,与 Br_2 作用得到了分子式相同的酸 $C_5H_{10}O_5$,与乙酐反应均生成三乙酸酯,用 HI 还原 A 和 B 都得到戊烷,用 HIO_4 作用都得到一分子 HCO_2H ,与苯肼作用 A 能生成脎,而 B 则不生成脎。推导 A 和 B 的结构,写出上述反应过程,并找出 A 和 B 的手性碳原子,写出其对映异构体。

解答: 根据题意推测得化合物 A 和 B 的结构如下:

$$\begin{array}{cccc} \mathsf{CHO} & & \mathsf{CHO} \\ \mathsf{CHOH} & & \mathsf{CH}_2 \\ \mathsf{CH}_2 & & \mathsf{CHOH} \\ \mathsf{CHOH} & & \mathsf{CHOH} \\ \mathsf{CH}_2\mathsf{OH} & & \mathsf{CH}_2\mathsf{OH} \\ \mathsf{A} & & \mathsf{B} \end{array}$$

上述反应过程如下:

A 的手性碳原子及其对映异构体为:

B 的手性碳原子及其对映异构体为:

7. 柳树皮中存在一种糖苷叫做水杨苷,当用苦杏仁酶水解时得 D-葡萄糖和水杨醇 (邻羟基苯甲醇)。水杨苷用硫酸二甲酯和氢氧化钠处理得五-O-甲基水杨苷,酸催化水解得 2,3,4,6-四-O-甲基-D-葡萄糖和邻甲氧甲基酚。写出水杨苷的结构式。

解答:根据题意推测出水杨苷的结构如下:

8. 有一双糖 A ($C_{11}H_{20}O_{10}$),可被 α -葡萄糖苷酶或 β -核糖苷酶水解,生成 D-葡萄糖及 D-核糖, A 不能还原 Fehling 试剂, A 与硫酸二甲酯在碱性条件下反应生成七甲基醚 B, B 酸性水解 生成 2,3,4,6-四-O-甲基-D-葡萄糖及 2,3,4-三-O-甲基-D-核糖,请推测出 A B 的 Harworth 透视结构式。

解答:根据题意推测得化合物 A 和 B 的结构式(Harworth 透视式)如下:

9. 甜菜糖蜜中有一种三糖称为棉子糖。棉子糖部分水解后得到双糖叫做蜜二糖。蜜二糖是个还原性双糖,是(+)-乳糖的异构物,能被麦芽糖酶水解但不能被苦杏仁酶水解。蜜二糖经溴水氧化后彻底甲基化再酸催化水解,得2,3,4,5-四-*O*-甲基-D-葡萄酸和2,3,4,6-四-*O*-甲基-D-

半乳糖。写出蜜二糖的构造式及其反应。

解答:根据题意推测得蜜二糖的结构式如下:

其相关的反应式如下:

第20章 氨基酸、蛋白质和核酸

1. 命名下列化合物:

解答:

(1) 2,6-二氨基己酸 (或赖氨酸)

(2) 2-氨基-4-甲基戊酸 (或亮氨酸)

10) 2-氨基戊二酸	
14		
v	1 4 T X (4 Y) X X	

(4) 酪氨酰甘氨酸

(5) 2-氨基-3-(4-羟基苯基)丙酸 (或酪氨酸) (6) 2-氨基-3-(吲哚-3-基)丙酸 (或色氨酸)

(7) 甘氨酰丝氨酸

(8) 2-氨基-3-巯基丙酸 (或半胱氨酸)

(9) 丙氨酰甘氨酰丙氨酸

(10) 谷氨酰半胱氨酰甘氨酸

2. 选择题:

(1) 下列氨基酸中,等电点值最大的是()

- (A) 组氨酸
- (B) 谷氨酸
- (C) 苯丙氨酸 (D) 甘氨酸

(2) 水合茚三酮与下列哪个化合物反应显蓝紫色()

- (A) 吡咯
- (B) β-氨基丙酸 (C) 氨基乙酸 (D) 葡萄糖

(3) 某氨基酸溶液在电场作用下,不发生迁移,这时溶液的 pH 值叫做 ()

- (A) 低共熔点
- (B) 中和点
- (C) 流动点
- (D) 等电点

(4) 谷氨酸在 pH < pI 时, 其结构式为 ()

- HOOCCH₂CH₂CHCOOH (A) [†]NH₃
- HOOCCH2CH2CHCOO (B) + NH3
- HOOCCH₂CH₂CHCOOH (C)
- (D) OOCCH2CH2CHCOO

(5) 在多肽合成中, 氨基酸中的氨基和羧基需要保护, 一般保护氨基常用的试剂是()

(A)
$$\bigvee_{NO_2}^{F} NO_2$$
 (B) $\bigvee_{CH_2OCOCI}^{CH_2OCOCI}$ (C) $\bigvee_{N=C=S}^{N=C=S}$ (D) $\bigvee_{N=C=N}^{N=C=N}$

解答:

- (1)(A);
- (2) (C); (3) (D); (4) (A); (5) (B)

3. 完成下列反应:

(1)
$$O_2N$$
 F $+$ $H_2NCHCOOH$ CH_3 O $CH_2OCCI $+$ R $H_2NCHCOOH$$

(3)
$$CH_2OCNHCH_2COOH + CH_3CHCOOCH_3 DCC NH_2 NH_2$$

(1)
$$O_2N$$
— O_2N — O_2

4. 说明什么是氨基酸的等电点。

解答: 氨基酸是一种两性物质,当溶液在某一特定 pH 值的条件下,氨基酸所带正电荷与负电荷恰好相等时,在电场中既不向阳极移动,也不向阴极移动,此时的 pH 值称为该氨基酸的等电点,用 pI 表示。

5. 核酸是高分子化合物,构成核酸的单体是什么?该单体分解后可得哪三种不同的化合物?

解答:核酸是高分子化合物,构成核酸的单体是核苷酸。核苷酸分解后可得到核糖、磷酸及杂环的碱基三种化合物。

- 6. 合成下列氨基酸:
 - (1) 从苯甲醇通过丙二酸酯法结合 Gabriel 法合成苯丙氨酸
 - (2) 从萘及 α-氯代乙酸乙酯合成甘氨酸

(1)
$$CH_2OH$$
 PBr_3 CH_2Br CH_2Br $N-CH(CO_2Et)_2$ $N-CH(CO_2Et)_2$ $N-CH(CO_2Et)_2$ $N-CH(CO_2Et)_2$ $N-CH(CO_2Et)_2$ $N-CH-COOH$ NH_2NH_2 $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2Ph$ $N-CH_2CO_2Et$ $N-CH_2CO_2ET$

7. 一个二肽 $A(C_5H_{10}N_2O_3)$ 与 2,4-二硝基氟苯(DNFB)反应得到一个化合物 $B(C_{11}H_{18}N_4O_7)$,酸性分解,给出两个氨基酸 $C(C_3H_7NO_3)$ 和 $D(C_8H_7N_3O_6)$ 。C 和 HNO_2 反应得到 α -羟基丙酸,放出氮。推测二肽的结构。

解答: 根据题意推测得二肽 A 的结构如下:

$$\begin{array}{c} {\rm O} \\ {\rm H_2N-CH_2-C-NH-CH-COOH} \\ {\rm CH_3} \end{array}$$

反应过程如下:

$$O_2$$
 O_2 O_2 O_2 O_2 O_2 O_3 O_4 O_4 O_4 O_4 O_5 O_5 O_5 O_5 O_5 O_6 O_7 O_8 O_8

第21章 类脂化合物

1. 有一单萜 A,分子式为 $C_{10}H_{18}$,经催化氢化后得到分子式为 $C_{10}H_{22}$ 的化合物。用高锰酸钾氧化 A,则得 $CH_3COCH_2CH_2COOH$ 、 CH_3COOH 及 CH_3COCH_3 。试推测 A 的结构。

解答:根据题意推测得化合物 A 的结构为:

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH} \\ \mathsf{CH} \\ \mathsf{CH_3-C-CH_2-CH_2-CH=C-CH_3} \\ \mathsf{CH_3} \end{array}$$

2. 划分出下列化合物中的异戊二烯单位,并指出它们各属于哪一类萜(如:单萜、双萜.....)

3. 写出甾体化合物的基本骨架,并标出碳原子的编号顺序。举出几个重要的甾体化合物。 解答:

甾族化合物的基本骨架及其编号如下:

胆固醇和可的松是两种重要的甾族化合物, 其结构如下:

4. 甾体化合物就 A、B、C、D 四个环来说,共有六个手性碳原子,因此可能有 64 个立体异构体。但天然产甾族化合物现知只有两种构型,这是哪两种构型?并画出其构象式。

解答:

甾族化合物就 A、B、C、D 四个环来说,共有 6 个手性碳原子,因此可能有 64 种立体 异构体。但天然甾族化合物现知只有两种构型: B、C 环和 C、D 环是反式稠合的,而 A、 B 环可以反式也可以顺式稠合的。其构象式为:

5. 从 1,5,5-三甲基-1,3-环戊二烯和醋酸乙烯酯合成冰片:

$$\begin{array}{c|c} & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} & & \\ \hline & \\ \hline & \\ \hline \end{array} \begin{array}{c} & \\ \hline & \\ \hline \end{array} \begin{array}{c} & \\ \hline & \\ \hline \end{array} \begin{array}{c} & \\ \hline \\ \hline \end{array} \begin{array}{c} & \\ \hline \\ \hline \end{array} \begin{array}{c} \\ \hline \\ \end{array} \begin{array}{c} \\ \hline \end{array} \begin{array}{c} \\ \hline \\ \end{array} \begin{array}{c} \\ \hline \end{array} \begin{array}{c} \\ \hline \end{array} \begin{array}{c} \\ \hline \\ \end{array} \begin{array}{c} \\ \hline \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}$$