Concepts of Mathematics EXCEL. Session 4

Topics: Review Induction, Relations Session Date: Monday 4 March 2019

EXCEL Leader: Sam Yong

Email: [myong] @andrew.cmu.edu

Academic Development Cyert Hall B5

0 Mathematical Studies

0.1 Discuss the following questions with your peers.

- How do you prepare for a math lecture?
- What do you do when listening to a math lecture? What do you find easy to do? What do you find difficult?
- What do you do to help you understand a new math concept?
- What do you do to help you memorize a math definition/theorem/technique?
- How do you prepare for a math exam?
- What do you do before, during, and after working a math homework/problem set?
- Do you review graded homework and/or exams? If so, how?
- What do you find easy in studying the course? What do you find difficult? How do you tackle the difficulties?
- Do you have any good suggestion in studying the course/studying math?

1 Induction

- **1.1** Discuss the following questions.
 - What are the differences between regular and strong induction?
 - How might you identify when strong induction is required?
 - Why is it that we might as well always use strong induction?
- **1.2** Let P be a mathematical statement on natural numbers. P(n) states that the statement is true for natural number n. Suppose P(1), P(2), and $(P(n) \land P(n-1)) \Rightarrow P(n+1)$ for $n \geq 2$. Prove $\forall n \in \mathbb{N}$. P(n).
- 1.3 Recall the definition of the Fibonacci sequence. $F_1=F_2=1$ and $F_n=F_{n-1}+F_{n-2}$ for $n\geq 3$. Fill in the table below. Then find a formula for $F_{n-1}F_{n+1}-F_n^2$ and prove it.

	F_{n-1}	F_n	F_{n+1}	$F_{n-1}F_{n+1} - F_n^2$
n = 2				
n = 3				
n=4				
n = 5				

1.4 Let Q_n be a $2 \times n$ grid and let a_n be the number of domino (2×1) tilings for Q_n . Find a recurrence for a_n in terms of a_{n-1} and a_{n-2} for $n \geq 3$. Find a general formula for a_n and prove it using induction.

2 Relations

Definition

Let A, B be sets. A relation between A and B is a set of ordered pairs $R \subseteq A \times B$. Given elements $a \in A$ and $b \in B$ we say a and b are related if and only if $(a, b) \in R$.

The set A is called the *domain* and the set B is called the *codomain*. The set R is called the *relation set*.

If A = B we say R is a relation on A.

Intuitively speaking, a binary relation on set A is some relation R where, for every $x, y \in A$, the statement xRy is either true or false.

For example, < can be a binary relation on set \mathbb{N} . 1<2 is true, so (1,2) is in the relation; 2<1 is false, so (2,1) is not in the relation.

Check Your Understanding

- **2.1** For the following pairs of sets A, B write down all binary relations between A and B.
 - $A = [2], B = \{x \in \mathbb{Z} : 2x^2 + x 1\}$
 - $A = B = \{x \in \mathbb{Z} : |x| = 1\}$
 - $A = \{Alice, Bob\}, B = \{\{1, 2\}, \{2, 3\}\}$

Definitions

Let A be a set and let R be a relation on A.

- We say R is reflexive if $\forall x \in A. (x, x) \in R$.
- We say R is symmetric if $\forall x, y \in A$. $(x, y) \in R \Rightarrow (y, x) \in R$.
- We say R is transitive if $\forall x,y,z\in A.\ ((x,y)\in R\land (y,z)\in R)\Rightarrow (x,z)\in R.$
- We say R is anti-symmetric if $\forall x,y \in A. ((x,y) \in R \land (y,x) \in R) \Rightarrow x=y$.

Check Your Understanding

- **2.2** For the following relations R on set $A=\{a,b,c\}$, discuss if R is reflexive? Symmetric? Transitive? Anti-symmetric?
 - $R = \{(a,b), (b,a), (a,c), (c,a)\}$
 - $R = \{(a, a), (a, b), (b, a)\}$
 - $R = \{(a,b), (b,c), (a,c), (b,b)\}$
- **2.3** The following argument shows that symmetry and transitivity imply reflexivity. Find the flaw in the argument.

Suppose xRy. By symmetry, yRx. By transitivity, $xRy \wedge yRx \Rightarrow xRx$.

3 Additional Content

- **3.1** From the previous questions we have seen that all $2 \times n$ grids can be tiled by dominos. Investigate the following questions.
 - How many ways can we tile a $2 \times n$ grid with dominos and squares (1×1) ?
 - How many ways can we tile a $3 \times n$ grid with dominos?
- **3.2** You all know Pythagorean triples. $a,b,c\in\mathbb{N}$ such that $a^2+b^2=c^2$. List the primitive Pythagorean triples you can think of. A primitive Pythagorean triple consists of the three numbers a,b,c such that they do not share a common factor, i.e. 3,4,5 but not 6,8,10.

How many different primitive Pythagorean triples can you write down?

Now, let a,b,a+b,a+2b be four consecutive Fibonacci numbers. Construct a Pythagorean triple from the four numbers. Find out if the triple is necessarily primitive. Hint: For $x,y\in\mathbb{Z}$, what is $(a^2-b^2)^2+(2ab)^2$?