Università di Trieste

Laurea in ingegneria elettronica e informatica

Enrico Piccin - Corso di Analisi matematica II - Prof. Franco Obersnel ${\bf Anno~Accademico~2022/2023-3~Ottobre~2022}$

Indice

1	Intr	oduzione	2
2	Seri	e numerica	2
	2.1	Convergenza, divergenza e indeterminatezza di una serie	2
		2.1.1 Convergenza di una serie	3
		2.1.2 Divergenza di una serie	3
		2.1.3 Indeterminatezza di una serie	4
	2.2	Serie geometrica	Ę
	2.3	Teorema del confronto per le serie	7
	2.4	Serie armonica	Ç
		2.4.1 Serie armonica generalizzata	11
	2.5	Serie a termini (reali) positivi	13
	2.6	Teorema dell'Aut-Aut per le serie a termini (reali) positivi	14
	2.7	Criterio dell'ordine di infinitesimo per le serie a termini positivi	14
	2.8	Criterio del rapporto	16
	2.9	Criterio della radice n-esima	18
	2.10	Serie a termini qualsiasi	19
		Limiti di successioni in $\mathbb C$	19
		Serie semplicemente convergenti	2
		2.12.1 Criterio di Leibniz per le serie a termini alterni	2
	2.13	Successione di Couchy	$\frac{1}{2}$
		Criterio di Cauchy per la convergenza di una serie	25
	2.11	criterio di Gudeny per la convergenza di dila sorie	_
3	Suc	cessioni e serie di funzioni	26
	3.1	Successioni di funzioni	26
		3.1.1 Limite di una successione di funzioni	26
	3.2	Teorema di inversione di due limiti	30
	3.3	Teorema di integrabilità	

3 Ottobre 2022

1 Introduzione

Considerando un foglio di carta, dividendolo in due metà esatte, si ottiene $\frac{1}{2}$ del profilo quadrato di partenza. Considerando una delle due metà, e suddividendola ancora in due, si ottiene $\frac{1}{4}$ del profilo quadrato di partenza. Ripetendo questo procedimento, si otterranno le seguenti frazioni del profilo quadrato originario: $\frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \dots$ Sommando tutte le frazioni di profilo quadrato, alla fine si otterrà il profilo quadrato di partenza, ossia la frazione 1. Ecco quindi che, contrariamente a quanto voleva sostenere **Parmenide**, **Zenone** scoprì che

$$\boxed{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = 1 \to \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1}$$

Ciò non risulta essere banale: una somma di **infinite quantità positive** produce una quantità finita. Quello che si è ottenuto è una **serie** (numerica) geometrica di ragione $\frac{1}{2}$.

2 Serie numerica

Di seguito si espone la definizione di **serie numerica**:

SERIE NUMERICA

Data una successione $(a_n)_n$ con valori nel campo complesso $a_n \in \mathbb{C}$. Si consideri una nuova successione $(s_n)_n$ definita **per ricorrenza** come segue

$$s_{n+1} = s_n + a_{n+1}$$
 posto $s_0 = a_0$

Ciò significa che

- $s_0 = a_0$
- $s_1 = a_0 + a_1$
- $\bullet \ \ s_2 = a_0 + a_1 + a_2$
- e via di seguito...

La serie $a_0 + a_1 + a_2 + ...$ è la **coppia ordinata** delle due successioni, come mostrato di seguito

$$((a_n)_n,(s_n)_n)$$

ove la successione $(a_n)_n$ prende il nome successioni dei termini generali, mentre la successione $(s_n)_n$ si chiama successione delle ridotte o delle somme parziali della serie.

Esempio: Posto $a_1 = \frac{1}{2}$ e il termine generale $a_n = \left(\frac{1}{2}\right)^n$, la ridotta sarà

$$s_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n}$$

osservando bene di partire da n=1 e non da 0.

2.1 Convergenza, divergenza e indeterminatezza di una serie

Data una serie, ossia data una coppia di successioni, è possibile ora andare a studiare il comportamento della successione delle ridotte.

2.1.1 Convergenza di una serie

Di seguito si espone la definizione di convergenza di una serie:

CONVERGENZA DI UNA SERIE

Se la successione delle ridotte di una serie è convergente, si dice che la serie è convergente e il limite della successione delle ridotte prende il nome di **somma della serie**. In altre parole, se **esiste finito** il

$$\lim_{n \to +\infty} s_n = s \in \mathbb{C}$$

allora la serie si dice convergente e il limite s si dice somma della serie e si scrive

$$\sum_{n=0}^{+\infty} a_n = s$$

Attenzione: Molto spesso si utilizza la notazione sopra esposta per indicare sia la serie stessa, sia la sua somma, per cui può essere fuorviante. Lo si può capire dal contesto: una serie potrebbe non essere convergente, e quindi non avere una somma.

Esempio: Se si considera $a_n = 1, \forall n$, per cui

$$1 + 1 + 1 + \dots = \sum_{n=0}^{n} 1$$

allora la somma parziale è $s_n = n + 1$, ovvero una successione divergente a $+\infty$:

$$\lim_{n \to +\infty} s_n = +\infty$$

Ciò significa che la serie non converge, ma è divergente, per cui non ha nemmeno una somma.

Osservazione: Si osservi che la divergenza a $+\infty$ di una serie ha significato solamente quando i termini generali sono sul campo reale: se una serie ha termine generico nel campo complesso, non può essere divergente a $+\infty$, in quanto non esiste un limite infinito nel campo complesso (a meno che non si consideri il modulo).

2.1.2 Divergenza di una serie

Di seguito si espone la definizione di divergenza di una serie:

DIVERGENZA DI UNA SERIE

Se la successione delle ridotte di una serie (a termine generale reale) è divergente, si dice che la serie è divergente; in questo caso, la serie non presenta una somma. In altre parole, se data $a_n \in \mathbb{R}, \forall n$, e posto

$$\lim_{n \to +\infty} s_n = +\infty \text{ o } -\infty$$

la serie si dice divergente.

Esempio: Se $a_n = a \in \mathbb{R}$ costante, allora la serie con termine generale a_n

$$a_0 + a_1 + a_2 + \dots$$

è necessariamente

- divergente a $+\infty$ se a > 0
- divergente a $-\infty$ se a < 0
- convergente, con somma 0, se a=0

Attenzione: se $a \neq 0$, ma $a \in \mathbb{C} - \mathbb{R}$, si dice semplicemente che la serie **non converge** (non ha senso parlare di divergenza).

2.1.3 Indeterminatezza di una serie

Di seguito si espone la definizione di **serie indeterminata**:

SERIE INDETERMINATA

Una serie si dice **indeterminata** se non converge e non diverge.

Esempio 1: Per quello che si è visto, una serie a termine generale costante, complesso e non reale, è indeterminata.

Esempio 2: Un esempio di serie a termini reali, ma indeterminata, è la serie di Grandi, definita così:

$$\sum_{n=0}^{+\infty} (-1)^n$$

per cui $s_0 = (-1)^0 = 1$ e $s_1 = a_0 + a_1 = 1 + (-1)^1 = 0$. Pertanto si ha che

- $s_n = 1$ se n è pari
- $s_n = 0$ se n è dispari

Per cui si ha che

$$\lim_{n \to +\infty} s_0 = ? \text{ non esiste}$$

E per dimostrare che non esiste, si può semplicemente dimostrare che due sotto-successioni della successione delle somme parziali convergono a limiti diversi (ossia la sotto-successioni degli indici pari e quella dei dispari); infatti:

- $\bullet \lim_{k \to +\infty} s_{2k} = 1$
- $\bullet \lim_{k \to +\infty} s_{2k+1} = 0$

per cui sono state ottenute due sotto-successioni che presentano limite differente: per il teorema dell'unicità del limite e il teorema del limite delle sotto-successioni di una successione, si conclude che la successione delle somme parziali è indeterminata.

Osservazione: La serie di Grandi è una serie che può essere usata per dimostrare l'esistenza di Dio, in quanto commutando fra di loro i differenti termini può essere fatta convergere a qualsiasi (o quasi) numero finito.

Se, infatti, si considerano le somme

- $(1-1) + (1-1) + (1-1) + \dots = 0$
- $1 + (-1 + 1) + (-1 + 1) + \dots = 1$
- (1+1) + (-1+1) + (-1+1) = 2

si ottengono serie che convergono a qualunque valore (tranne uno). In generale, infatti, se una serie è indeterminata, si possono commutare gli addendi della stessa e ottenere la convergenza a qualunque numero.

2.2 Serie geometrica

Si è osservato che

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1$$

per cui è ovvio che partendo con n = 0, si ottiene

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 2$$

Più in generale, si fornisce di seguito la definizione di serie geometrica:

SERIE GEOMETRICA

Si dice serie geometrica di ragione $z \in \mathbb{C}$ la serie del tipo

$$1 + z + z^2 + z^3 + \dots \to \sum_{n=0}^{+\infty} z^n$$

che, tuttavia, palesa un problema di fondo: se si sceglie z=0, naturalmente si incorre nell'ambiguità

$$0^0 + 0^1 + \dots$$

ma 0^0 è una scrittura che non ha significato. Tuttavia, in questo particolare caso, si considera $0^0=1$, in modo tale da essere coerenti con la scrittura $1+z+z^2+z^3+\dots$ impiegata in precedenza.

Osservazione: Data la serie seguente

$$\sum_{n=0}^{+\infty} z^n$$

per cui la ridotta è

$$s_n = 1 + z + z^2 + \dots + z^n$$

che può anche essere riscritto come

$$s_n = 1 + z + z^2 + \dots + z^n = 1 + z \cdot (1 + z + \dots + z^{n-1})$$

dove $1 + z + ... + z^{n-1} = s_{n-1}$. Da cui si evince che, sommando e sottraendo per la medesima quantità z^n , si ottiene

$$s_n = 1 + z \cdot \left(\underbrace{1 + z + \dots + z^{n-1} + z^n}_{s_n} - z^n\right)$$

che diviene, quindi:

$$s_n = 1 + z \cdot s_n - z^{n+1}$$
 \rightarrow $s_n - z \cdot s_n = 1 - z^{n+1}$ \rightarrow $s_n \cdot (1-z) = 1 - z^{n+1}$ \rightarrow $s_n = \frac{1 - z^{n+1}}{1 - z}$

posto $z \neq 1$ (ma il caso z = 1 è facilmente risolubile, per quanto osservato nel caso di una serie a termine generale costante).

Di seguito si espone, quindi, il comportamento della serie geometrica a seconda della sua ragione z:

5

Per quanto osservato in precedenza, si ha che:

$$\sum_{n=0}^{+\infty} z^n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - z^{n+1}}{1 - z}$$

posto $z \neq 1$, che diviene

- $\frac{1}{1-z}$ se |z| < 1.
- non converge se |z| > 1, tuttavia, si può dire che
 - $\text{ se } z \in \mathbb{R} \text{ e } z > 1$, diverge a $+\infty$
 - se $z \in \mathbb{C}$ e $|z| \ge 1$ (ovvero può essere anche un numero negativo), posto $z \notin]1,+\infty[$ (ossia diverso dal caso precedente), nel caso di n pari si sommano quantità positive, nel caso di n dispari si sommano quantità negative, per cui la serie oscilla e quindi è indeterminata.

Osservazione: Si osservi che la serie geometrica è l'unica per cui si riesce a calcolare la somma, in quanto è l'unica di cui è possibile esprimere la ridotta in modo generale. Altrimenti, gestire le ridotte diviene molto complesso.

Esempio: Si consideri la seguente serie

$$\sum_{n=2}^{+\infty} \cos^n(1)$$

che è una serie geometrica di ragione $\cos(1)$, ove $|\cos(1)| < 1$, per cui converge. La somma di tale serie, quindi, è facilmente determinabile secondo quanto visto in precedenza, tenendo conto che n parte da 2, per cui bisogna sottrarre $\cos^0(1) = 1$ e $\cos^1(1) = \cos(1)$. Da ciò si evince che la serie converge a

$$\frac{1}{1 - \cos(1)} - 1 - \cos(1) = \frac{1 - 1 + \cos(1) - \cos(1) + \cos^2(1)}{1 - \cos(1)} = \frac{\cos^2(1)}{1 - \cos(1)}$$

Osservazione: La somma della serie geometrica di ragione $z \in \mathbb{C}$ è indeterminata se |z| > 1, per quanto già visto.

Inoltre si ha che la serie

$$\sum_{n=1}^{+\infty} \left(\frac{2i+x}{4} \right)^n$$

è convergente se

$$\left| \frac{2i+x}{4} \right| < 1$$

ma ricordando come si calcola il modulo di un numero complesso si ottiene

$$|2i+x| = \sqrt{4+x^2}$$

e quindi

$$\sqrt{4+x^2} < 4 \rightarrow 4+x^2 < 16 \rightarrow x^2 < 12 \rightarrow |x| < \sqrt{12} \rightarrow |x| < 2\sqrt{3}$$

E poi, ovviamente, la serie di Grandi è il tipico esempio di serie indeterminata, per cui la sua somma non può essere definita.

6

5 Ottobre 2022

Una serie è costituita da 2 successioni: la successione dei termini generali e la successione delle ridotte o somme parziali: quando si opera con le serie, risulta fondamentale distinguere le due successioni.

Una tra le serie più note è la serie geometrica, di ragione $z \in \mathbb{C}$, la quale converge se il modulo della ragione è minore di 1. Non converge in caso contrario, ma in particolare

- se la ragione z è un numero reale, $z \in \mathbb{R}$, e $z \ge 1$, allora la serie diverge a $+\infty$;
- se la ragione z è un numero complesso, con $|z| \ge 1$ e $z \notin]1, +\infty[$, allora la serie è indeterminata.

In generale, non si può parlare di divergenza a $+\infty$ o $-\infty$ in campo complesso, in quanto in esso è **assente la relazione d'ordine** e quindi non esiste un limite infinito.

Esempio: Si consideri l'esempio seguente:

$$\sum_{n=0}^{+\infty} \frac{\cos(n)}{2^n}$$

Tale serie presenta come termine generale

$$a_n = \frac{\cos(n)}{2^n}$$

ma è vero che $-1 \le \cos(n) \le 1$, per cui

$$-\frac{1}{2^n} \le a_n \le \frac{1}{2^n}$$

Per dimostrare che anche la serie in esame converge, è sufficiente considerare s_n^- e s_n^+ , rispettivamente la ridotta n-esima della serie geometrica di ragione $-\frac{1}{2}$ e $\frac{1}{2}$, come segue

$$s_n^- = -1 - \frac{1}{2} - \dots - \frac{1}{2^n}$$
 e $s_n^+ = 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$

per cui

$$s_n^- \le s_n \le s_n^+$$

e per il teorema del confronto esiste finito il seguente limite

$$\lim_{n \to +\infty} s_n \in \mathbb{R}$$

e quindi la serie

$$\sum_{n=0}^{+\infty} \frac{\cos(n)}{2^n}$$

converge.

2.3 Teorema del confronto per le serie

Di seguito si espone il fondamentale teorema del confronto per le serie:

Teorema 2.1 Teorema del confronto per le serie

Siano $a_n, b_n, c_n \in \mathbb{R}$ tali che $a_n \leq b_n \leq c_n, \forall n$ (anche se sarebbe sufficiente richiedere che ciò sia vero **definitivamente**, ossia $\exists n_0 \in \mathbb{N}$ tale che la disuguaglianza di cui sopra è valida $\forall n \geq n_0$). Siano convergenti le serie

$$\sum a_n \quad e \quad \sum c_n$$

allora è convergente anche la serie

$$\sum b_n$$

ed è tale la stima della somma della serie:

$$\sum a_n \le \sum b_n \le c_n$$

che è una stima valida $\forall n$, oppure $\forall n \geq n_0$ (a seconda che sia stato richiesto $\forall n$, oppure definitivamente).

Osservazione: Si osservi il caso particolare per cui $a_n = 0, \forall n$ (ossia il caso in cui la serie con termine generale b_n è a termini positivi, cioè una serie per cui tutti i termini della successione dei termini generali sono positivi), allora è sufficiente che la serie con termine generale c_n converga per concludere la convergenza.

Similmente, se $c_n = 0, \forall n$ (ossia la serie con termine generale b_n è a termini negativi, vale a dire una serie per cui tutti i termini della successione dei termini generali sono negativi), è sufficiente che la serie con termine generale a_n converga per concludere la convergenza.

In questi casi, infatti, è sufficiente considerare un limitazione superiore (o inferiore, rispettivamente) per concludere la convergenza.

Osservazione: È facile capire che il carattere di una serie non dipende da quello che accade su un numero finito di termini, in quanto

$$\sum_{n=k}^{+\infty} a_n \quad e \quad \sum_{n=0}^{+\infty} a_n$$

differiscono solamente per k termini, ove k è una **costante**.

Esempio: Si consideri la serie

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{100-n^2}$$

Si può facilmente capire che

$$e^{100-n^2} \le 1$$
 se $n \ge 10$

per cui

$$\frac{1}{2^n}e^{100-n^2} \le \frac{1}{2^n}$$
 se $n \ge 10$

Pertanto, essendo essa a termini positivi e maggiorata definitivamente, la serie di partenza converge per il teorema del confronto. Tuttavia, la stima seguente

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{100-n^2} \le 2$$

ove 2 è la somma della serie geometrica, è vera solamente definitivamente, per $n \ge 10$. Per avere una stima della somma più accurata, naturalmente, è possibile considerare quello che accade per i primi 9 termini, per cui:

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{100-n^2} < a_0 + a_1 + \dots + a_9 + 2$$

dove $a_0 + a_1 + \cdots + a_9$ sono i primi 9 termini della serie stessa. Ma per migliorare la stima è possibile anche considerare i primi 9 termini della serie geometrica, da cui

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{100-n^2} < a_0 + a_1 + \dots + a_9 + \left(2 - 1 - \frac{1}{2} - \dots - \frac{1}{2^9}\right)$$

Esempio: Si consideri la serie seguente:

$$\sum_{n=1}^{+\infty} \cos\left(\frac{1}{n}\right)$$

Essa naturalmente diverge, in quanto il limite per $n \to +\infty$ del suo termine generale è

$$\lim_{n \to +\infty} \cos\left(\frac{1}{n}\right) = 1$$

ossia, per n molto grande, nella serie si somma sempre 1, per cui diverge. Infatti, affinché una serie converga, il suo termine generale deve essere infinitesimo.

Teorema 2.2 Condizione necessaria per la convergenza Sia

$$\sum_{n=0}^{+\infty} a_n$$

una serie convergente (in generale a termini complessi), allora

$$\lim_{n \to \infty} a_n = 0$$

ossia la successione dei termini generali è infinitesima.

DIMOSTRAZIONE: Si consideri la ridotta di indice n+1, ossia

$$s_{n+1} = s_n + a_{n+1}$$
 tale per cui $a_{n+1} = s_{n+1} - s_n$

Siccome la serie è convergente per ipotesi (s_{n+1} e s_n convergono allo stesso limite), per la linearità del limite, il limite della differenza è uguale alla differenza dei limiti, per cui:

$$\lim_{n \to +\infty} a_{n+1} = s_{n+1} - s_n = 0$$

Osservazione: Si osservi che la condizione per la convergenza esposta in precedenza è necessaria, ma non sufficiente. Infatti, esistono delle serie

$$\sum a_n$$

non convergenti, dove il

$$\lim_{n \to +\infty} a_n = 0$$

per questo si parla di condizione necessaria, e non sufficiente. Infatti è importante definire con quale velocità la successione dei termini generali vada a 0: se è troppo lenta, nonostante sia infinitesima, la serie associata divergerà.

2.4 Serie armonica

Si consideri la serie seguente

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

che prende il nome di **serie armonica**. Per studiarne il comportamento, è sufficiente capire che **ogni serie può essere considerata come un integrale generalizzato**. Infatti, per definizione di integrale generalizzato di una funzione definita su una semiretta reale localmente integrabile:

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

allora se si considera la serie $a_1 + a_2 + a_3 + \cdots + a_n$, si definisce una funzione f dipendente dalla serie stessa:

$$f: [1, +\infty[\longrightarrow \mathbb{R}$$

nel modo seguente: essendo una successione una funzione (definita sui numeri naturali), la funzione f deve interpolare i valori della successione dei termini generali, assumendo il valore costante a_n quando $x \in [n, n+1[$, come nel seguito:

$$f(x) = a_n$$
 se $x \in [n, n+1[, \forall n \ge 1])$

ottenendo una funzione che rappresenta la successione degli a_n sotto forma di funzione. Se f è la successione degli a_n , la serie con termine generale a_n non è altro che l'integrale generalizzato di tale funzione. Infatti, si ha che

$$\int_{n}^{n+1} f(x) \, \mathrm{d}x = a_n \cdot (n+1-n) = a_n$$

per cui è ovvio che

$$s_n = a_1 + a_2 + \dots + a_n = \int_1^{n+1} f(x) dx$$

Se la funzione f è integrabile (ossia esiste il limite dell'integrale di cui sopra), allora

$$\int_{1}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{1}^{b} f(x) dx$$

e per quanto appena osservato,

$$s_n = a_1 + a_2 + \dots + a_n = \int_1^{n+1} f(x) dx \quad \text{allora} \quad \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \int_1^{n+1} f(x) dx$$

per cui, per il teorema del limite delle successioni, ogni successione in cui n tende a $+\infty$, avrà lo stesso limite della funzione f, ossia

$$\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \int_1^{n+1} f(x) \, \mathrm{d}x = \int_1^{+\infty} f(x) \, \mathrm{d}x$$

Pertanto, se la funzione f così definita è integrabile e l'integrale ha un valore finito, allora la serie è convergente e la somma della serie è il valore di tale integrale.

Osservazione: Si osservi che se la serie converge, per cui

$$\lim_{n \to +\infty} \int_{1}^{n+1} f(x) \, \mathrm{d}x = s$$

è anche vero che f è integrabile, ovvero

$$\int_{1}^{+\infty} f(x) \, \mathrm{d}x = s$$

Ciò è vero in quanto la serie converge, e per la condizione necessaria vista in precedenza,

$$\lim_{n \to +\infty} a_n = 0$$

Pertanto, studiando l'integrale

$$\int_{1}^{b} f(x) \, \mathrm{d}x$$

presa la parte intera di b, ossia [b] = n, essendo b < n + 1 (in quanto la sua parte intera è n), si evince che

$$\int_1^b f(x) dx = \int_1^n f(x) dx + \int_n^b f(x) dx$$

Dovendo studiare il limite per $b \to +\infty$ di tale integrale, è molto utile scomporlo in questo modo. Così facendo, siccome la serie converge, si ha che

$$\lim_{n \to +\infty} \int_{1}^{n} f(x) \, \mathrm{d}x = s$$

mentre

$$\left| \int_{n}^{b} f(x) \, \mathrm{d}x \right| = |a_n \cdot (b - n)| \le |a_n|$$

in quanto b < n + 1, per cui b - n < 1, essendo [b] = n. Ma siccome la serie converge, allora il limite del termine generale è 0, quindi

$$\lim_{n \to +\infty} \int_{n}^{b} f(x) \, \mathrm{d}x \le \lim_{n \to +\infty} a_n = 0$$

per cui, per la linearità del limite, si ha

$$\lim_{n \to +\infty} \int_1^b f(x) \, \mathrm{d}x = \lim_{n \to +\infty} \int_1^n f(x) \, \mathrm{d}x + \lim_{n \to +\infty} \int_n^b f(x) \, \mathrm{d}x = s + 0 = s$$

come esposto da teorema seguente:

Teorema 2.3 Sia $a_1 + a_2 + \cdots + a_n$ una serie e sia f la funzione associata definita come

$$f(x) = a_n$$
 se $x \in [n, n+1[, \forall n > 1]$

allora f è integrabile in senso generalizzato sull'intervallo $[1, +\infty[$ **se e solo** se la serie converge. In questo caso si ha che la somma della serie è uguale al valore dell'integrale generalizzato, per cui

$$\sum_{n=1}^{+\infty} a_n = \int_1^{+\infty} f(x) \, \mathrm{d}x$$

Osservazione: Tale risultato è fondamentale per studiare il carattere della serie armonica. Infatti, se si considera la funzione

$$g(x) = \frac{1}{x}$$

essa non è integrabile in senso generalizzato sull'intervallo $[1, +\infty[$. Allora, presa f(x) la funzione definita a tratti rispetto alla serie armonica, è facle capire che

$$g(x) \le f(x), \quad \forall x \in [1, +\infty[$$

Dal momento che g(x) non è integrabile, non lo è nemmeno la f (per il teorema del confronto degli integrali generalizzati).

Ma siccome, per il teorema precedentemente esposto, è noto che una serie converge se e solo se la funzione f ad essa associata converge, si capisce immediatamente che la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

non converge. Essendo una serie a termini positivi, per l'aut-aut si vedrà immediatamente che, non convergendo, dovrà necessariamente essere divergente a $+\infty$.

2.4.1 Serie armonica generalizzata

È noto che la serie armonica non converge. Non sorprende, però, sapere che tale serie è divergente a $+\infty$, ovvero

$$\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$$

come conseguenza diretta dell'aut-aut. Pertanto, se si considera

$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$$

è evidente capire che

$$\frac{1}{\sqrt{n}} \ge \frac{1}{n}, \quad \forall n \ge 1$$

per cui, per il teorema del confronto, diverge a $+\infty$. Ciò risulta vero per ogni

$$\frac{1}{n^{\alpha}} \ge \frac{1}{n}, \quad \forall n \ge 1 \quad \text{se } 0 < \alpha \le 1$$

Nel caso $\alpha > 1$, invece, è possibile studiare l'integrale generalizzato associato, da cui:

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \left[\frac{1}{-\alpha + 1} \cdot x^{-\alpha + 1} \right]_{1}^{+\infty} = \frac{1}{\alpha - 1}$$

Tuttavia, ciò non risulta essere sufficiente per dimostrare che la serie converge. Infatti, in questo caso, si è studiato l'integrale generalizzato di una funzione g(x), ben diversa dalla funzione f definita a tratti in precedenza.

Se ora si impiegasse la funzione f definita in precedenza (da n a n+1), siccome essa sarà inevitabilmente maggiore della funzione g (di cui è nota l'integrabilità), ovvero $f(x) \ge g(x)$, non è possibile stabilire se essa sia integrabile o meno tramite il criterio del confronto per l'integrale generalizzato. Per tale ragione si definisce

$$h(x) = a_n$$
 se $x \in]n-1, n]$

tale per cui $h(x) \leq g(x), \ \forall n \geq 1$. Allora è noto che

$$\int_{n-1}^{n} h(x) \, \mathrm{d}x = a_n$$

Da ciò segue che

$$\int_{1}^{+\infty} h(x) dx = a_2 + a_3 + \dots = \sum_{n=2}^{+\infty} a_n$$

che parte da n=2, per come è stata definita h(x). Pertanto, si ha che

$$\int_{1}^{+\infty} h(x) \, \mathrm{d}x \le \int_{1}^{+\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x = \frac{1}{\alpha - 1}$$

e quindi, per il teorema del confronto dell'integrale generalizzato, la funzione h è integrabile. Inoltre, per il teorema precedentemente esposto, siccome la funzione h associata alla serie è integrabile, la serie armonica generalizza converge; non solo, la somma della serie è

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \le \frac{1}{\alpha - 1} + 1$$

COMPORTAMENTO DELLA SERIE ARMONICA GENERALIZZATA

La serie armonica generalizzata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

 $con \alpha > e$

- divergente a $+\infty$ se $\alpha \in]0,1]$
- convergente se $\alpha > 1$ con somma

$$s \le 1 + \frac{1}{\alpha - 1} = \frac{\alpha}{\alpha - 1}$$

dal momento che l'integrale

$$\int_{1}^{+\infty} h(x) \, \mathrm{d}x = \sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}} \quad \text{ in particolare } \quad \int_{1}^{+\infty} \frac{1}{x^{\alpha}} = \frac{1}{\alpha - 1} \ge \sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}}$$

e siccome parte da n=2, è necessario aggiungere 1, da cui la disuguaglianza esposta.

Esercizio 1: Si consideri la serie

$$\sum_{n=2}^{+\infty} \frac{1}{\log(n)}$$

che, ovviamente, diverge in quanto

$$\frac{1}{\log(n)} \ge \frac{1}{n}, \quad \forall n \ge e$$

e siccome $\frac{1}{n}$ diverge, per il teorema del confronto, diverge anche $\frac{1}{\log(n)}$.

Esercizio 2: Si consideri la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n \cdot (\log(n))^{\alpha}}$$

Per capire se essa diverga o meno, si considera l'integrale

$$\int_{1}^{+\infty} \frac{1}{n \cdot (\log(n))^{\alpha}} \, \mathrm{d}x = \lim_{b \to +\infty} \int_{1}^{b} \frac{1}{n \cdot (\log(n))^{\alpha}} \, \mathrm{d}x = \lim_{b \to +\infty} \left[\frac{1}{-\alpha + 1} \log^{-\alpha + 1}(x) \right]_{1}^{b}$$

in cui

- se $\alpha > 1$, allora la funzione non è integrabile in senso generalizzato;
- se $\alpha=1$, l'integrale è nullo e la funzione è integrabile in senso generalizzato.

Esercizio 3: Si consideri la serie

$$\sum_{n=2}^{+\infty} \frac{\arctan(n^2)}{n \cdot \sqrt{n}}$$

È ovvio che il numeratore è limitato, in quanto

$$\arctan(n^2) \le \frac{\pi}{2}, \quad \forall n$$

e quindi si evince che

$$\left| \frac{\arctan(n^2)}{n \cdot \sqrt{n}} \right| \le \frac{\pi}{2} \frac{1}{n \cdot \sqrt{n}}$$

ove

$$\sum_{n=2}^{+\infty} \frac{1}{n \cdot \sqrt{n}}$$

è una serie armonica generalizzata di ragione $\frac{3}{2} > 1$ che converge. Per il criterio del confronto per le serie, anche la serie di partenza converge.

2.5 Serie a termini (reali) positivi

Si consideri una serie a termini (reali) positivi, tale che $a_n \geq 0, \forall n$ (anche se sarebbe sufficiente **definitivamente**, ossia da un certo n in poi).

Allora, per il **teorema dell'Aut-Aut**, tale serie o converge, o diverge, ma non può essere indeterminata.

Ciò spiega perché la serie armonica diverga a $+\infty$, in quanto si è dimostrato che non converge ed è una serie a termini (reali) positivi; naturalmente, il teorema dell'Aut-Aut si aggiunge al teorema del confronto.

Un altro importante criterio è l'ordine di infinitesimo che, tuttavia, non risulta efficace quando si considerano serie il cui termine generale presenta un ordine infrareale, ossia maggiore di α , ma più piccolo di $\alpha + \epsilon$, $\forall \epsilon > 0$.

7 Ottobre 2022

Dopo aver analizzato la condizione necessaria per la convergenza, è stato anche considerato il fatto che una serie può essere sempre considerata come un integrale generalizzato. Un esempio fondamentale di serie di confronto è anche la serie armonica.

Di seguito si espongono alcuni teoremi fondamentali per la convergenza/divergenza di una serie.

2.6 Teorema dell'Aut-Aut per le serie a termini (reali) positivi

Si supponga che la serie

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{+\infty} a_n$$

abbia termini positivi $(a_n > 0)$ o al più non negativi $(a_n \ge 0)$. Allora essa converge o diverge. In altre parole, una serie a termini non negativi non può essere indeterminata.

DIMOSTRAZIONE: Supposto $a_n \ge 0, \forall n$ (anche se sarebbe sufficiente richiedere definitivamente), la successione delle ridotte è **crescente** (anche in senso debole), tale per cui

$$s_{n+1} = s_n + a_{n+1} \ge s_n$$

Per il **teorema di esistenza del limite delle successioni monotone**, la successione delle ridotte ammette limite, ed esso è

$$\lim_{n \to +\infty} s_n = \sup \{ s_n : n \in \mathbb{N}^+ \}$$

Pertanto

- se la successione delle ridotte è superiormente limitata, ovvero sup $\{s_n\} \in \mathbb{R}$, la serie è ovviamente convergente.
- se la successione delle ridotte è superiormente illimitata, per cui sup $\{s_n\} = +\infty$, la serie diverge a $+\infty$.

In ogni caso, però, la serie non può essere indeterminata.

Osservazione: Naturalmente la stessa cosa vale anche per successioni a termini negativi. L'importante è che sia verificata la condizione $a_n \ge 0$ oppure $a_n \le 0$ infinitesimo.

2.7 Criterio dell'ordine di infinitesimo per le serie a termini positivi

Il teorema dell'Aut-Aut permette di dimostrare anche un altro importante criterio:

Teorema 2.4 Criterio dell'ordine di infinitesimo per le serie a termini positivi Sia

$$\sum_{n=0}^{+\infty} a_n$$

una serie a termini positivi con termine generale infinitesimo

$$\lim_{n \to +\infty} a_n = 0$$

allora

- se esiste $\alpha > 1$ ord $a_n \geq \alpha$, la serie converge
- se esiste $\alpha > 1$ ord $a_n \leq 1$, la serie diverge

DIMOSTRAZIONE: Supposto che la successione a_n abbia come ordine di infinitesimo α , con $\alpha > 1$, ossia

$$\lim \left| \frac{a_n}{\frac{1}{n^{\alpha}}} \right| = l \quad \text{posto} \quad l \neq 0$$

allora, per definizione stessa di limite,

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon} \text{ si ha} n^{\alpha} < l + \epsilon$$

Per comodità, si sceglie $\epsilon=1$, da cui

$$n^{\alpha}a_n < l+1$$

Ciò consente di affermare che $\forall n > n_{\epsilon}$ si ha che

$$0 \le a_n \le (l+1) \cdot \frac{1}{n^{\alpha}}$$

In questo modo si sta confrontando il termine generale a_n con il termine generale della serie armonica generalizzata. Per il teorema del confronto, siccome definitivamente

$$a_n \leq (l+1) \cdot \frac{1}{n^{\alpha}}$$

e la serie armonica converge, in quanto $\alpha > 1$... continua ...

Supposto, ora, ord $a_n \leq 1$, si dimostri che la serie

$$\sum_{n=1}^{+\infty} a_n$$

diverge.

Il fatto che ord $a_n \leq 1$, significa che

$$\lim_{n \to +\infty} \frac{a_n}{\frac{1}{n}} = l$$

per cui se $l \in \mathbb{R} - \{0\}$ significa che ord $a_n = 1$, se $l = +\infty$, ord $a_n < 1$. Nell'ipotesi che $l \in \mathbb{R} - \{0\}$, ovvero

$$\lim_{n \to +\infty} n \cdot a_n = l \in \mathbb{R} - \{0\}$$

allora, per la definizione stessa di limite

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon} : |a_n - l| < \epsilon$$

Scelto, per comodità, $\epsilon = \frac{l}{2}$, e quindi ... continua ...

Osservazione: In particolare, se $\exists \alpha \in \mathbb{R}, \alpha > 1$, e si ha

- ord $a_n > \alpha$, la serie converge
- ord $a_n \leq 1$, la serie diverge

Tuttavia, sapere che ord $a_n > 1$ non fornisce informazioni

Esercizio 1: La serie

$$\sum \frac{5n + \cos(n)}{3 + 2n^3}$$

è ovviamente convergente, in quanto ord $a_n = 2 > 1$.

Esercizio 2: La serie

$$\sum \frac{2\sqrt{n}}{n^2+n+1}$$

è ovviamente convergente, in quanto ord $a_n = \frac{3}{2} > 1$.

Esercizio 3: La serie

$$\sum \log \left(1 - \frac{1}{n}\right)$$

non converge. La serie è a termini negativi, tuttavia si può fare

$$-\lim_{n\to+\infty} -\frac{\log\left(1-\frac{1}{n}\right)}{\frac{1}{n}} = 1$$

per cui ord $a_n = 1$.

Esercizio 4: La serie

$$\sum 1 - \cos\left(\frac{1}{n}\right)$$

è ovviamente convergente, in quanto ord $a_n = 2 > 1$.

Esercizio 5: La serie

$$\sum \frac{2^n}{(\log(n))^n} = \sum \left(\frac{2}{\log(n)}\right)^n$$

è ovviamente convergente, in quanto

$$\frac{2}{\log(n)} < \frac{2}{3} \to \log(n) > 3$$

per $n > e^3$, ma l'importante è che accada definitivamente, per cui la serie converge per confronto con la serie geometrica.

Esercizio 6: La serie

$$\sum$$

2.8 Criterio del rapporto

Presa una serie a termini positivi, ma non nulli (in quanto bisogna dividere per il termine a_n), per cui $a_n > 0$, come la seguente

$$\sum_{n=0}^{+\infty} a_n$$

tale per cui

$$\exists \lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = k$$

Allora

- se k < 1 la serie converge
- se k = 1 la serie diverge
- \bullet se k > 1 non è possibile dire nulla in merito al carattere della serie

DIMOSTRAZIONE 1: Si consideri

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = k$$

con k < 1. Allora, per la definizione di limite

$$\exists \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon}, k - \epsilon < \frac{a_{n+1}}{a_n} < k + \epsilon$$

preso un ϵ sufficientemente piccolo

$$\frac{a_{n+1}}{a_n} < k + \epsilon < 1 \quad \to \quad a_{n+1} < (k + \epsilon) \cdot a_n$$

E avendo supposto $a_n > 0$, è ovvio che

$$0 < a_n < \dots$$

senza perdita di generalità (in quanto si richiederebbe $\forall n>n_{\epsilon}$), è possibile supporre che

$$a_{n+1} < (k + \epsilon) \cdot a_n, \forall n$$

per cui, si ha che

$$a_n < (k + \epsilon)^n \cdot a_0$$

e, quindi, essendo a_0 costante, per il teorema del confronto, la serie

$$\sum_{n=1}^{+\infty}$$

converge.

DIMOSTRAZIONE 2: Si consideri

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = k$$

con k > 1. ... continua ... Allora, per la definizione di limite

$$\exists \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon}, k - \epsilon < \frac{a_{n+1}}{a_n} < k + \epsilon$$

preso un ϵ sufficientemente piccolo

$$\frac{a_{n+1}}{a_n} < k + \epsilon < 1 \quad \to \quad a_{n+1} < (k + \epsilon) \cdot a_n$$

E avendo supposto $a_n > 0$, è ovvio che

$$0 < a_n < \dots$$

senza perdita di generalità (in quanto si richiederebbe $\forall n > n_{\epsilon}$), è possibile supporre che

$$a_{n+1} < (k + \epsilon) \cdot a_n, \forall n$$

per cui, si ha che

$$a_n < (k + \epsilon)^n \cdot a_0$$

e, quindi, essendo a_0 costante, per il teorema del confronto, la serie

$$\sum_{n=1}^{+\infty}$$

converge.

Esempio: Si consideri la serie

$$\sum_{n=1}^{+\infty} \frac{n^n}{(n!)^2}$$

Allora, applicando il teorema del rapporto

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^{n+1}}{[(n+1)!]^2}}{\frac{n^n}{(n!)^2}}$$

Che può essere riscritto come

$$\lim_{n \to +\infty} (n+1) \cdot \left(\frac{n+1}{n}\right)^n \cdot \frac{(n!)^2}{(n+1)^2 \cdot (n!)^2} = 0$$

e siccome 0 < 1, la serie converge. Non solo, siccome la serie converge, la successione delle somme parziali è infinitesima.

2.9 Criterio della radice n-esima

Sia una serie a termini positivi, con $a_n \ge 0, \forall n$ (anche se sarebbe sufficiente richiederlo definitivamente). Supposto che esiste

$$\lim_{n \to +\infty} \left(\sqrt[n]{a_n} \right) = l$$

Allora si considerano le seguenti casistiche

- se l > 1 la serie diverge
- se l < 1 la serie converge
- ullet se l=1 non si può dire nulla sul carattere della serie

DIMOSTRAZIONE 1: Si consideri il caso in cui

$$\lim_{n \to +\infty} \left(\sqrt[n]{a_n} \right) = l$$

com l > 1, per la definizione di limite

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon}, | \sqrt[n]{a_n} - l | < \epsilon$$

da cui $\sqrt[n]{a_n} > l - \epsilon$, per cui posto $\epsilon = 1$ si ha che, definitivamente $a_n > 1$ e quindi la serie non può convergere.

Dimostrazione 2: Si consideri il caso in cui

$$\lim_{n \to +\infty} \left(\sqrt[n]{a_n} \right) = l$$

com l < 1, per la definizione di limite

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon}, | \sqrt[n]{a_n} - l | < \epsilon$$

e, prendendo $0 < \epsilon < 1 - l$, si evince che

$$\sqrt[n]{a_n} < l + \epsilon < 1 \quad \rightarrow \quad a_n < (l + \epsilon)^n$$

e siccome si è preso |q| < 1, per confronto con la serie converge.

Esempio: Si consideri la serie seguente

$$\sum_{n=1}^{+\infty} \frac{1}{n^2}$$

applicando il criterio del rapporto si ha

$$\lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = 1$$

per cui per tale criterio non è possibile dire nulla, ma è noto che la serie converge. Analogamente si ha che il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

non può essere determinato con il criterio del rapporto, in quanto

$$\lim_{n \to +\infty} \frac{n}{n+1} = 1$$

ma è noto che tale serie diverge.

2.10 Serie a termini qualsiasi

Se si considera una serie a termine generale qualsiasi

$$\sum a_n, \quad \text{con} \quad a_n \in \mathbb{C}$$

non è possibile dire molto sul suo carattere. Tuttavia, ad essa è possibile associare la serie

$$\sum |a_n|$$

che è una serie a termine generale positivo. Da ciò segue anche la definizione di **serie assoluta**mente convergente:

SERIE ASSOLUTAMENTE CONVERGENTE

Una serie

$$\sum a_n$$

si dice assolutamente convergente, se è convergente la serie

$$\sum |a_n|$$

Teorema 2.5 Una serie assolutamente convergente è convergente.

DIMOSTRAZIONE: Si consideri il caso in cui $a_n \in \mathbb{R}$, allora, per definizione di parte positiva e parte negativa si ha

$$a_n^+ = \begin{cases} a_n & \text{se} \quad a_n \ge 0 \\ 0 & \text{se} \quad a_n < 0 \end{cases}$$

$$a_n^- = \begin{cases} -a_n & \text{se } a_n < 0 \\ 0 & \text{se } a_n \ge 0 \end{cases}$$

ma ciò significa che $a_n = a_n^+ - a_n^-$, mentre $|a_n|a_n^+ + a_n^-$, ma è ance vero che

$$0 \le a_n^+ \le |a_n|$$

$$0 \le a_n^- \le |a_n|$$

Se si considera un numero complesso Ma ciò significa

Osservazione: Tuttavia, non è vero il viceversa, come nel caso della serie di Leibniz... continua ...

2.11 Limiti di successioni in \mathbb{C}

Sia $(z_n)_n$ una successione in \mathbb{C} , con $\gamma \in \mathbb{C}$, si dirà che

$$\lim_{n \to +\infty} z_n = \gamma$$

se

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n \geq n_{\epsilon}, |z_n - \gamma| < \epsilon$$

in cui è da intendersi $|\dots|$ come modulo di un numero complesso. Un numero complesso può essere descritto come z=x+iy, con $z,y\in\mathbb{R}$: esiste una relazione tra la successione di un numero complesso e la successione della sua parte reale e immaginaria, esposta dal seguente teorema:

Teorema 2.6 La successione $(z_n)_n$, posto $z_n = x_n + i \cdot y_n$ converge a $\gamma = \alpha + i\beta$ se e solo se

$$\lim_{n \to +\infty} x_n = \alpha \quad e \quad \lim_{n \to +\infty} y_n = \beta$$

DIMOSTRAZIONE 1: Dalla definizione di modulo, si ha che

$$|x_n - \gamma| = \sqrt{(x_n - \alpha)^2 + (y_n - \beta)^2}$$

Da ciò appare evidente che

$$|x_n - \alpha| \le |z_n - \gamma|$$

$$|y_n - \beta| \le |z_n - \gamma|$$

DIMOSTRAZIONE 2: ... continua ... Dalla definizione di modulo, si ha che

$$|x_n - \gamma| = \sqrt{(x_n - \alpha)^2 + (y_n - \beta)^2}$$

Da ciò appare evidente che

$$|x_n - \alpha| \le |z_n - \gamma|$$

$$|y_n - \beta| \le |z_n - \gamma|$$

Osservazione: Dal momento che le serie sono particolari successioni, tali risultati si applicano in modo identico. Per cui una serie a termini complessi

$$\sum_{n=0}^{+\infty} z_n$$

converge se e solo se convergono le serie

$$\sum_{n=0}^{+\infty} \operatorname{Re}(z_n) \quad \text{e} \quad \sum_{n=0}^{+\infty} \operatorname{Im}(z_n)$$

e si ha

$$\sum_{n=0}^{+\infty} z_n = \sum_{n=0}^{+\infty} \operatorname{Re}(z_n) + i \sum_{n=0}^{+\infty} \operatorname{Im}(z_n)$$

10 Ottobre 2022

Le serie numeriche sono delle coppie di successioni: una è la successione dei termini generali, l'altra è la successione delle somme parziali.

Se una successione è convergente, allora il suo termine generale è infinitesimo. Una serie può essere sempre pensata come un integrale generalizzato.

Le serie a termini (reali) positivi sono le serie più facili da studiare, in forza del teorema dell'autaut.

Il criterio di convergenza più importante è il criterio dell'ordine di infinitesimo, a cui si aggiunge il criterio del rapporto e il criterio della radice n-esima.

Tuttavia, se una serie non è a termini (reali) positivi, si può associare ad essa la serie dei suoi moduli, che è a termini positivi, quindi più facile da studiare. Una serie si dice assolutamente convergente se la serie dei suoi moduli è convergente.

Serie non assolutamente convergenti vengono chiamate serie semplicemente convergenti.

2.12 Serie semplicemente convergenti

2.12.1 Criterio di Leibniz per le serie a termini alterni

Si consideri $(a_n)_n$ una successione a termini reali, con $a_n \in \mathbb{R}$, tale che

- $a_n > 0, \forall n \in \mathbb{N}$
- $a_{n+1} \le a_n, \ \forall n \in \mathbb{N}$
- il termine a_n deve essere infinitesimo:

$$\lim_{n \to +\infty} a_n = 0$$

Allora la serie costruita come

$$\sum_{n=0}^{+\infty} (-1)^n \cdot a_n$$

converge.

DIMOSTRAZIONE: Si consideri la ridotta n-esima s_n . Posto $k \in \mathbb{N}$ tale per cui $k \geq 0$, allora studiando la sottosuccessione dei termini pari e quella dei termini dispari, si ha

1. $s_{2k+2} = s_{2k} - a_{2k+1} + a_{2k+2} = s_{2k} - (a_{2k+1} - a_{2k+2}) \le s_{2k}$ essendo, per ipotesi, $a_{n+1} \le a_n$, e quindi si ha che $a_{2k+1} - a_{2k+2} \ge 0$.

Per tale ragione, tale sotto successione è ${\bf monotona}$ decrescente.

2. $s_{2k+3} = s_{2k+1} + a_{2k+2} - a_{2k+3} = s_{2k+1} + (a_{2k+2} - a_{2k+3}) \ge s_{2k+1}$ essendo, per ipotesi, $a_{n+1} \le a_n$, e quindi si ha che $a_{2k+2} - a_{2k+3} \ge 0$.

Per tale ragione, tale sottosuccessione è monotona crescente.

È noto, per ipotesi, che

$$s_{2k+1} - s_{2k} = (-1)^{2k+1} \cdot a_{2k+1} = -a_{2k+1} \le 0$$
 e quindi $s_{2k+1} \le s_{2k}$, $\forall k \ge 0$

ciò significa che, per ogni n, la ridotta pari è maggiore della ridotta dispari, rimbalzando progressivamente attorno al limite delle due sottosuccessioni.

Dalle disuguaglianze di cui sopra si ha che

$$s_{2k} \ge s_{2k+1} \ge s_1 = a_0 - a_1 \forall k > 0 \tag{1}$$

$$s_{2k+1} \le s_{2k} \le s_2 = a_0 - a_1 + a_2 \forall k > 0 \tag{2}$$

Essendo le due sottosuccessioni, decrescente e crescente, rispettivamente limitata dal basso e dall'alto, esiste per entrambe un limite finito:

$$\lim_{k \to +\infty} s_{2k} = \beta \quad \text{e} \quad \lim_{k \to +\infty} s_{sk+1} = \alpha$$

e, per il teorema del confronto dei limiti, si ha che $\alpha \leq \beta$.

Essendo il termine a_n infinitesimo, si ha che

$$0 = \lim_{n \to +\infty} a_n = \lim_{k \to +\infty} a_{2k+1} = \lim_{k \to +\infty} s_{2k} - s_{sk+1} = \alpha - \beta = 0$$

Dal momento che le sottosuccessioni sono complementari, la serie di partenza converge.

Osservazione: Inoltre, detta s la somma della serie, si ha che

$$\forall n \quad |s_n - s| \le a_{n+1}$$

secondo la cosiddetta formula di approssimazione. Tale formula funziona in quanto

 \bullet se n è dispari

$$s - s_{2k+1} \le s_{2k+2} - s_{sk+1} = a_{2k+1} + a_{2k+1} - s_{2k+1} = a_{2k+2} = a_{(2k+1)+1} = a_{n+1}$$

• se n è pari

$$s_{2k} - s \le s_{2k} - s_{2k+1} = a_{2k+1} = a_{n+1}$$

Esempio: Si consideri la serie di Leibniz:

$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n} = s$$

Allora, per conoscere la somma della serie con un errore di $\frac{1}{10}$, è sufficiente considerare

$$s_9 = -1 + \frac{1}{2} - \frac{1}{3} + \dots - \frac{1}{9}$$

Esercizio 1: Si consideri la serie seguente

$$\sum_{n=1}^{+\infty} (-1)^n \cdot \frac{\log_{10}(n)}{n}$$

Si controlli se sono verificate le condizioni seguenti

• Si ha che

$$\frac{\log_{10}(n)}{n} > 0 \quad \forall n \ge 2$$

• Si ha che

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{\log_{10}(n)}{n} = 0$$

• La successione

$$\frac{\log_{10}(n)}{n}$$

è decrescente?

Per verificare l'ultimo punto, si considera la funzione

$$f(x) = \frac{\log_{10}(x)}{x}$$

e se ne calcola la derivata, da cui

$$f'(x) = \frac{\frac{1}{x \cdot \log(10)} \cdot x - \log_{10}(x) \cdot 1}{x^2}$$

Se ne studia il segno, che dipende solamente dal numeratore, da cui

$$\frac{1}{x \cdot \log(10)} \cdot x - \log_{10}(x) \cdot 1 > 0 \quad \to \quad \log_{10}(x) < \frac{1}{\log(10)} \quad \to \quad x < 10^{\log(10)}$$

Per cui per $x > 10^{\log(10)}$, la funzione è decrescente. Per tale ragione, la serie

$$\sum_{n=3}^{+\infty} \frac{\log_{10}(n)}{n}$$

converge ad s. Tuttavia, non è possibile applicare la formula di approssimazione, in quanto le condizioni di Leibniz non sono soddisfatte per tutti gli n.

Esercizio 2: Si consideri la serie seguente

$$\sum_{n=0}^{+\infty} \frac{\sin\left(\frac{\pi}{3}\cdot(1+3n)\right)}{1+3n}$$

che, in prima approssimazione, sembra non essere assolutamente convergente, in quanto il suo comportamento asintotico risulta essere simile a quello della serie armonica.

Per verificare se essa sia convergente semplicemente, si verifica se essa soddisfa le tre condizioni di Leibniz; riscrivendo il termine generale si ha

$$\sin\left(\frac{\pi}{3} + 3n\right) = -\sin\left(\frac{\pi}{3}\right) = (-1)^n \cdot \frac{\sqrt{3}}{2}$$

Ecco, quindi, che la serie può essere riscritta come

$$\sum_{n=0}^{+\infty} (-1)^n \cdot \underbrace{\frac{\sqrt{3}}{2}}_{a_n}$$

Osservazione: Si presti particolare attenzione che, in questo ultimo caso, è stato fondamentale riscrivere il termine generale, mettendo in evidenza il fattore $(-1)^n$, in quanto per verificare le 3 ipotesi del criterio di Leibniz, bisogna studiare il termine

$$\frac{\frac{\sqrt{3}}{2}}{1+3n}$$

che risulta essere

- 1. a termini positivi
- 2. infinitesimo
- 3. decrescente

Se ne evince che la serie di partenza è convergente per Leibniz.

Esercizio: Si consideri la seguente serie, posto $\alpha \in \mathbb{R}$

$$\sum_{n=1}^{+\infty} \frac{\alpha^n + (-5)^n}{2^n} \cdot \sin\left(\pi + \frac{1}{n}\right)$$

Il seno può essere riscritto come

$$\sin\left(\pi + \frac{1}{n}\right) = -\sin\left(\frac{1}{n}\right)$$

Pertanto si ottiene

$$\sum_{n=1}^{+\infty} -\frac{\alpha^n + (-5)^n}{5^n} \cdot \sin\left(\frac{1}{n}\right)$$

Tuttavia, si può osservare immediatamente che se $|\alpha| > 5$, la serie non converge in quanto il termine generale non è infinitesimo. Se $\alpha = -5$, si ottiene il termine generale

$$-\frac{2\cdot(-1)^n\cdot 5^n}{5^n}\cdot \sin\left(\frac{1}{n}\right) = -2\cdot(-1)^n\cdot \sin\left(\frac{1}{n}\right)$$

in cui il termine

$$\sin\left(\frac{1}{n}\right)$$

soddisfa le 3 condizioni di Leibniz, quindi la serie di partenza converge.

Nel caso in cui $\alpha = 5$, si ottiene

$$-\frac{5^n + (-1)^n \cdot 5^n}{5^n} \cdot \sin$$

... continua ...

Nel caso in cui $|\alpha| < 5$, spezzando la frazione si ottiene

$$\left(\frac{\alpha}{5}\right)^n \cdot \left(-\sin\left(\frac{1}{n}\right)\right) + (-1)^n \cdot \sin\left(\frac{1}{n}\right)$$

in cui la prima converge, se confrontata con la geometrica, e anche la seconda converge per Leibniz.

2.13 Successione di Couchy

Di seguito si espone la definizione di successione di Couchy:

SUCCESSIONE DI COUCHY

Sia $(z_n)_n$ una successione in $\mathbb{C},$ si dirà che $(z_n)_n$ è una successione di Couchy se

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} \mid \forall n \geq n_{\epsilon}, \forall p \in \mathbb{N} \rightarrow |z_{n+p} - z_n| < \epsilon$$

Osservazione: Si osservi che se esiste finito

$$\lim_{n \to +\infty} z_n = l$$

allora la successione è di Couchy.

DIMOSTRAZIONE: Fissato $\epsilon > 0, \exists n \epsilon \in \mathbb{N}$ tale che $\forall n \geq n_{\epsilon}$, si ha che

$$|z_n - l| < \frac{\epsilon}{2}$$

Allora, $\forall n \geq n_{\epsilon}, \forall p \in \mathbb{N}$, si ottiene

$$|z_{n+p} - z_n| \le |z_{n+p} - l| + |l - z_n| < \epsilon$$

Teorema 2.7 Ogni successione di Couchy in \mathbb{C} (o in \mathbb{R}) è convergente.

Osservazione: Per le serie $(s_n)_n$, si ha che

$$\left| \sum_{k=0}^{n+p} a_k - \sum_{k=0}^n a_k \right| < \epsilon \quad \to \quad \left| \sum_{k=n+1}^{n+p} a_k \right|$$

2.14 Criterio di Cauchy per la convergenza di una serie

 ${\bf Una\ serie}$

$$\sum a_n$$

converge se e solo se $\forall \epsilon>0, \exists n_{\epsilon}\in\mathbb{N}$ tale che $\forall n\geq n_{\epsilon}$ e $\forall p\in\mathbb{N}$ vale

$$\left| \sum_{k=n+1}^{n+p} a_k \right| < \epsilon$$

3 Successioni e serie di funzioni

Di seguito si introduce l'importante tema delle successioni e delle serie di funzioni, in cui.

3.1 Successioni di funzioni

Se, per esempio, si introduce una successione di funzioni come la seguente

$$f_n(x) = x^n$$

si ottiene

- 1. $f_0(x) = 1$
- 2. $f_1(x) = x$
- 3. $f_2(x) = x^2$
- 4. $f_3(x) = x^3$

o ancora, nel caso di

$$f_n(x) = \cos(xn)$$

si ottiene

- 1. $f_0(x) = \cos(0) = 1$
- 2. $f_1(x) = \cos(x)$
- 3. $f_2(x) = \cos(2x)$
- 4. $f_3(x) = \cos(3x)$

3.1.1 Limite di una successione di funzioni

Sia $f_n: E \longrightarrow \mathbb{R}(\mathbb{C})$ e $f: E \longrightarrow \mathbb{R}$. Si dice che la successione $(f_n)_n$ converge puntualmente a f se, $\forall x \in E$

$$\lim_{n \to +\infty} f_n(x) = f(x)$$

Esempio 1: Si consideri la successione di funzioni

$$f_n(x) = \cos(nx)$$

allora tale successione ammette limite 0 se x = 0, non esiste altrimenti.

Esempio 2: Si consideri la successione di funzioni

$$f_n(x) = \frac{1}{x^2 + n}$$

tale per cui, $\forall x \in \mathbb{R}$

$$\lim_{n \to +\infty} \frac{1}{x^2 + n} = 0$$

Esempio 3: Si consideri la successione di funzioni

$$f_n(x) = \frac{nx}{nx^2 + 1}$$

allora si ha che

$$\lim_{n \to +\infty} f_n(x) = \begin{cases} 0 & \text{se } x = 0\\ \frac{1}{x} & \text{se } x \neq 0 \end{cases}$$

11 Ottobre 2022

Il criterio di Leibniz è un criterio fondamentale per capire la convergenza semplice di una serie a termini alternativamente positivi e negativi. Dopodiché sono state introdotte le successioni Cauchy e il criterio di Cauchy consente di capire se esiste un limite, senza conoscere il valore del limite, che risulta fondamentale, anche per le dimostrazioni del seguito:

DIMOSTRAZIONE 1: Si consideri la serie

$$\sum_{n=1}^{+\infty} a_n$$

allora si dirà che la serie converge assolutamente se vale la serie dei moduli è convergente, ossia la serie

$$\sum_{n=1}^{+\infty} |a_n|$$

è convergente.

Se una serie

$$\sum_{n=1}^{+\infty} a_n$$

converge assolutamente, allora la serie dei moduli

$$\sum_{n=1}^{+\infty} |a_n|$$

è di Cauchy, ossia, secondo la definizione del criterio Cauchy, si ha che

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n \geq n_{\epsilon}, \forall p \in \mathbb{N} \quad \text{ si ha } \left| \sum_{k=n+1}^{n+p} |a_k| \right| = \sum_{k=n+1}^{n+p} |a_k| < \epsilon$$

Per dimostrare che la serie dei moduli è di Cauchy, si sfrutta la disuguaglianza triangolare (ossia il modulo della somma è minore della somma dei moduli), per cui

$$\left| \sum_{k=n+1}^{n+p} a_k \right| \le \sum_{k=n+1}^{n+p} |a_k| \le \dots continua...$$

Si dimostri, tramite il criterio di Cauchy, che la serie armonica è divergente a $+\infty$.

DIMOSTRAZIONE 2: Considerando la ridotta n-esima della serie armonica, si ha

$$s_n = \sum_{k=1}^n \frac{1}{k}$$

che, per come è stata costruita, è positiva e crescente, per cui, per il teorema di esistenza del limite delle successioni monotone, si può affermare che

$$\exists \lim_{n \to +\infty} s_n$$

finito o infinito. Si procede, ora, per assurdo, dimostrando che

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} : \forall n \geq n_{\epsilon} \in \forall p \in \mathbb{N}, \sum_{k=n+1}^{n+p} a_k < \epsilon$$

Allora, posto $n \geq n_{\epsilon}$, si ha

$$\sum_{k=n+1}^{n+p} a_k = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+p} < \epsilon$$

siccome il numero di addendi sommati è pari a p, in quanto (n + p) - (n + 1) + 1 = p. Fissato p = n, si ha che

$$\underbrace{\frac{1}{n+1}}_{>\frac{1}{2n}} + \underbrace{\frac{1}{n+2}}_{>\frac{1}{2n}} + \dots + \frac{1}{2n} < \epsilon$$

ma essendo n addendi, si ottiene che

$$\frac{1}{2n} \cdot n = \frac{1}{2} < \epsilon$$

Ma se si sceglie arbitrariamente $\epsilon > 0$, come $\epsilon = \frac{1}{10}$, si incorre in un assurdo.

Si consideri la successione di funzioni

$$f_n: [0,1[$$
 definita come $f_n(x) = x^n$

Allora $\forall x \in [0, 1[$, si ha che

$$\lim_{n \to +\infty} x^n = 0$$

e, per la definizione di limite, si ha

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} : \forall n \geq n_{\epsilon}, |x^n| < \epsilon$$

Per determinare n_{ϵ} tale per cui $\forall n \geq n_{\epsilon}, |x^n| < \epsilon$, posto $\epsilon = e^{-10}$, si ha

$$x^n < \epsilon \to e^{n \cdot \log(x)} < \epsilon \to e^{n \cdot \log(x)} < e^{\log(\epsilon)}$$

Siccome log(x) < 0, si ottiene

$$n > \frac{\log(\epsilon)}{\log(x)}$$

È facile capire che

$$\lim_{x \to 1^{-}} \frac{\log(\epsilon)}{\log(x)} = +\infty$$

ovvero, n dipende fortemente da x: più x tende a 1 da sinistra, più n deve essere grande al fine di soddisfare il limite di partenza:

$$\lim_{n \to +\infty} x^n = 0$$

Questo perché 0 è limite puntuale e non uniforme per la successione f_n .

LIMITE UNIFORME

Sia $(f_n)_n$ una successione di funzioni f, con

$$f_n: E \longmapsto \mathbb{R}$$

Si dirà che f è limite uniforme della successione

$$\lim_{n \to +\infty} f_n = f$$

uniforme se

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} \text{ tale che } \forall n \geq n_{\epsilon}, \forall x \in E, |f_n(x) - f(x)| < \epsilon$$

Osservazione: Nel caso di limite puntuale, invece, si ha che

$$\forall \mathbf{x} \in \mathbf{E}, \forall \epsilon > \mathbf{0}, \exists \mathbf{n}_{\epsilon, \mathbf{x}} \in \mathbb{N} \text{ tale che } \forall \mathbf{n} \geq \mathbf{n}_{\epsilon}, |\mathbf{f}_{\mathbf{n}}(\mathbf{x}) - \mathbf{f}(\mathbf{x})| < \epsilon$$

in cui è fondamentale capire la forte dipendenza da x in questo caso, cosa che invece non accade nel caso di un limite uniforme, in cui n_{ϵ} si mantiene costante indipendentemente dalla scelta di x.

Osservazione: Data la successione di funzioni

$$f_n(x) = \frac{1}{n+x^2}$$

posto x=0, il valore massimo è $\frac{1}{n}$, per cui la successione converge uniformemente. Ciò significa che, fissato ϵ , il grafico di tutte le funzioni in dipendenza da n sono tutte contenute al di sotto del grafico.

Esercizio 1: Si consideri la successione di funzioni:

$$f_n(x) = \frac{n}{x^2 + n}$$

allora

$$\lim_{n \to +\infty} f_n(x) = 1$$

Naturalmente si ha convergenza puntuale, ma non uniforme. Infatti, se fosse uniforme, fissato $\epsilon = \frac{1}{100}$ dovrebbe esistere $n_e psilon \in \mathbb{N}$ tale che $\forall n \geq n_\epsilon, \forall x \in \mathbb{R}$

$$\left| \frac{n}{x^2 + n} - 1 \right| < \frac{1}{100}$$

Per dimostrare che ciò non è possibile $\forall x \in \mathbb{R}$, si sviluppa, ottenendo

$$\left|\frac{n-x^2-n}{x^2+n}\right| = \frac{x^2}{x^2+n}$$

basta scegliere $x = \sqrt{n}$, per cui

$$\frac{n}{n+n}=\frac{1}{2}<\frac{1}{100}$$

che, ovviamente è falso.

Esercizio 2: Si consideri la successione di funzioni

$$f_n(x) = \frac{nx}{nx^2 + 1}$$

allora

$$\lim_{n \to +\infty} f_n(x) = \frac{1}{x}$$

che è una convergenza puntuale, ma non uniforme, in quanto, fissato $\epsilon = \frac{1}{100}$ dovrebbe esistere $n_e p s i l on \in \mathbb{N}$ tale che $\forall n \geq n_\epsilon, \forall x \in \mathbb{R}$

$$\left|\frac{nx}{nx^2+1} - \frac{1}{x}\right| < \frac{1}{100}$$

e sviluppando si ottiene

$$\frac{1}{x \cdot (nx^2 + 1)} < \frac{1}{100}$$

in cui basta scegliere $x = \frac{1}{\sqrt{n}}$, ottenendo

$$\frac{\sqrt{n}}{2} < \frac{1}{100}$$

che, ovviamente, non è vero $\forall n \in \mathbb{N}$.

Osservazione: Si osservi che se il limite di una successione di funzioni è discontinuo, allora la successione non converge uniformemente.

3.2 Teorema di inversione di due limiti

Si consideri il seguente teorema di inversione di due limiti:

Teorema 3.1 $Sia\ f(n)_n$ una successione di funzioni

$$f_n: E \longmapsto \mathbb{R}$$

tale che $(f_n)_n$ converge uniformemente a

$$f: E \longmapsto \mathbb{R}$$

con x_0 punto di accumulazione per $E, \forall n$, tale per cui

$$\exists \lim_{x \to x_0} f_n(x) = l_n$$

Allora

$$\exists \lim_{n \to +\infty} l_n = 0, \quad \exists \lim_{x \to x_0} f(x) \quad \exists \lim_{x \to x_0} f(x) = l$$

si può affermare che

$$\lim_{n \to +\infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to +\infty} f_n(x) \right)$$

Osservazione: Si osservi che quanto esposto in precedenza vale solamente per successioni di funzioni con convergenza uniforme, non puntuale. Infatti

$$\lim_{n \to +\infty} \left(\lim_{x \to 1} x^n \right) = 1 \neq 0 = \lim_{x \to 1} \left(\lim_{n \to +\infty} f_n(x) \right)$$

DIMOSTRAZIONE 1: Per la dimostrazione si considera il criterio di Cauchy, fondamentale per dimostrare l'esistenza del limite

$$\lim_{n \to +\infty} l_n$$

senza conoscerlo. Bisogna dimostrare che la successione $(l_n)_n$ è di Cuachy, ossia che $\forall \epsilon > 0$, $\exists n_{\epsilon} \in \mathbb{N}$ tale che $\forall n \geq n_{\epsilon}$ e $\forall p \in \mathbb{N}$

$$|l_{n+p} - l_n| < \epsilon$$

In particolare, $\forall x \in E$ si può affermare che

$$|l_{n+p} - l_n| = |l_{n+p} - l_n - f_{n+1}(x) + f_{n+p}(x) - f_{\ell}(n+1)(x) - f_{n+p}(x)|$$

Sfruttando la disuguaglianza triangolare, si ha che

$$\left| l_{n+p} - l_n - f_{n+1}(x) + f_{n+p}(x) - f_{n+p}(x) - f_{n+p}(x) \right| \le |l_{n+p} - f_{n+p}(x)| + |f_{n+1}(x) - f_n(x)| + |f_n(x) - f_n(x)| + |$$

Siccome $(f_n)_n$ è uniformemente convergente, quindi è una successione di Cauchy. Ciò significa che

$$\exists n_{\epsilon} \in \mathbb{N} | \forall n \geq n_{\epsilon}, \forall p \in \mathbb{N} \text{ e } \forall \mathbf{x} \in \mathbf{E} \rightarrow |\mathbf{f_{n+1}}(\mathbf{x}) - \mathbf{f_n}(\mathbf{x})| < \frac{\epsilon}{3}$$

Fissato $\hat{n} \geq n_{\epsilon}$ e un qualsiasi $q \in \mathbb{N}$, è noto che

$$\lim_{x \to x_0} f_{\hat{n}}(x) = l_{\hat{n}} e \lim_{x \to x_0} f_{\hat{n}+p}(x) = l_{\hat{n}+p}$$

Allora, dalla definizione di limite si ha che

$$\exists \delta_{\hat{n}+p}>0, \delta_{\hat{n}}>0 | \forall x \in E, x \neq x_0, |x-x_0|<\delta_{\hat{n}+p} \text{ e } \forall x \in E, x \neq x_0, |x-x_0|<\delta_{\hat{n}} \quad \text{ si ha } |f_{\hat{n}}(x)-l_{\hat{n}}|<\frac{\epsilon}{3} \quad \text{e} \quad |f_{\hat{n}+p}(x)-l_{\hat{n}}|<\frac{\epsilon}{3} \quad \text{e} \quad |f_{\hat{n}+p}(x)-l_{\hat{n}+p}|<\frac{\epsilon}{3} \quad |$$

Ma ciò consente di affermare che, preso il δ più piccolo di entrambi $\delta_{\hat{n}+p}$ e $\delta_{\hat{n}}$:

$$|l_{\hat{n}+\hat{p}} - l_{\hat{n}}| \le |l_{\hat{n}+\hat{p}} - f_{\hat{n}+\hat{p}}| + |f_{\hat{n}+\hat{p}}(x) - f_{\hat{n}}(x)| + |f_{\hat{n}}(x) - l_{\hat{n}}| < \epsilon$$

Ciò, quindi, consente di affermare che

$$\exists \lim_{n \to +\infty} l_n = l \to |l_{n+p} - l_n| < \epsilon$$

DIMOSTRAZIONE 2: Ripetendo la dimostrazione per

$$\lim_{x \to x_0} f(x) = l$$

si ha che

$$|f(x) - l| \le |f(x) - l + l_n + f_n(x) - f_n(x)| \le |-(f_n(n) - f(x))| + |f_n(x) - l_n| + |l_n - l| < \epsilon$$

Infatti, è noto che

$$\lim_{n \to +\infty} l_n = l$$

Pertanto esiste n^1_{ϵ} tale che $\forall n \geq n^1_{\epsilon}$ si ha

$$|l_n - l| < \frac{1}{3}\epsilon$$

Inoltre, poiché

$$\lim_{n \to +\infty} f_n = f$$

uniforme, esiste $n_{\epsilon}^2 \in \mathbb{N}$ tale che $\forall n \geq n_{\epsilon}^2,$ si ha

$$|f_n(x) - f(x)| < \frac{\epsilon}{3}, \quad \forall x \in E$$

Fissato, quindi, $\hat{n} \ge \max\{n_{\epsilon}^1, n_{\epsilon}^2\}$. Per questo \hat{n} , siccome

$$\lim_{x \to x_0} f_{\hat{n}}(x) = l_{\hat{n}}$$

si ha che $\exists \delta_{\epsilon} > 0$ tale che $\forall x \in E, x \neq x_0, |x - x_0| < \delta_{\epsilon}$

$$|f_{\hat{n}}(x) - l_{\hat{n}}| < \frac{\epsilon}{3}$$

Ricapitolando: Bisogna dimostrare che

$$|f(x) - l| \le |f(x) - f_n(x)|$$

... continua ...

Corollario 3.1.1 Si osservi che se

$$f_n: E \longmapsto \mathbb{R}$$

 \grave{e} continua $\forall n$ e

$$\lim_{n \to +\infty} f_n = f$$

 $uniforme. \ Allora \ f \ \grave{e} \ continua.$

DIMOSTRAZIONE: Ciò è immediatamente evidente in quanto

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{n \to +\infty} f_n(x_0) = f(x_0)$$

Osservazione: Si osservi che

$$\lim_{n \to +\infty} f_n(x) = f(x)$$

uniforme, lo è anche puntuale.

3.3 Teorema di integrabilità

Sia $I \subseteq \mathbb{R}$ un **intervallo compatto** (ovvero con misura finita) e sia

$$f_n: I \longrightarrow \mathbb{R}$$

integrabile $\forall n$; sia, inoltre

$$\lim_{n \to +\infty} f_n = f$$

uniforme, con

$$f:I\longmapsto\mathbb{R}$$

allora f è integrabile e si ha che

$$\int_{I} \lim_{n \to +\infty} f_n(x) \, \mathrm{d}x = \lim_{n \to +\infty} \int_{I} f_n(x) \, \mathrm{d}x$$

DIMOSTRAZIONE: Parlando di integrale di Riemann, si dimostra che

$$\left| \int_{I} f_n(x) \, \mathrm{d}x - \int_{I} f(x) \, \mathrm{d}x \right| \le \int_{I} |f_n(x) - f(x)| \, \mathrm{d}x < \epsilon \cdot m(I)$$

in quanto $|f_n(x) - f(x)| < \epsilon, \forall x$ se $n \ge n_e p silon$ per la convergenza uniforme.

Dimostrazione: Si consideri la seguente successione di funzioni

$$f_n:[0,1]\longmapsto \mathbb{R}$$

in cui

$$f_n(x) = \begin{cases} 0 & \text{se} \quad x \in \{0\} \cup \left[\frac{1}{n+1}, 1\right] \\ n & \text{se} \quad x \in \left[0, \frac{1}{n}\right] \end{cases}$$

in cui appare evidente come

$$\int_{[}0,1]f(x)\,\mathrm{d}x=1,\forall n$$

e, ovviamente,

$$\lim_{n \to +\infty} \int_{[0,1]} f_n(x) = 1$$

mentre

$$\int_{[0,1]} \left(\lim_{n \to +\infty} f_n(x) \right) dx = \int_{[0,1]} 0 dx = 0$$