Álgebra Linear

Aula 6: Matriz

Mauro Rincon

Márcia Fampa

Como vimos, o método de eliminação para resolução de sistemas lineares, consiste na aplicação repetida de operações elementares, transformando o sistema original num outro sistema, cuja solução é mais facilmente obtida. Mostraremos a seguir que a aplicação das operações elementares, transforma o sistema original num outro sistema equivalente, isto é, num outro sistema linear que possui exatamente as mesmas soluções que o sistema original.

- Teorema 1: Seja S um sistema linear. Então a solução do sistema não se altera quando:
 - 1) Troca-se duas das equações do sistema S.
 - $\mathbf{2}$) Multiplica-se uma das equações de S por um número real
 - 3) Soma-se uma equação a um múltiplo de outra equação.

Demonstração:

1) Seja \hat{S} o sistema linear obtido trocando-se duas linhas do sistema S.

Se $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ é uma solução do sistema linear S então também será uma solução de \hat{S} e vice-versa.

2) Devido a 1) podemos supor que a equação multiplicada seja a primeira. Como as demais equações de S e Ŝ coincidem basta verificar que a afirmação é satisfeita para a primeira equação. Seja x₁ = α₁, x₂ = α₂, ···, x_n = α_n uma solução de S. Então

$$a_{11}\alpha_1 + a_{12}\alpha_2 + \ldots + a_{1n}\alpha_n = b_1$$
 1

Multiplicando por $\lambda \neq 0$ esta igualdade obteremos:

$$(\lambda a_{11})\alpha_1 + (\lambda a_{12})\alpha_2 + \ldots + (\lambda a_{1n})\alpha_n = \lambda b_1, \ \ 2$$

o que mostra que $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ é também uma solução de \hat{S} , uma vez que, para todas as equações restantes, os sistemas S e \hat{S} são coincidentes. Por outro lado como

 $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ é solução do sistema \hat{S} , então a igualdade 2 é verdadeira. Dividindo 2 por λ obtemos 1. Portanto

 $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ é uma solução do sistema S.

<u>cederj</u>

3) Por simplicidade, consideraremos as operações entre as duas primeiras equações do sistema S. Adicionaremos a segunda equação do sistema à primeira equação multiplicada por λ , obtendo o seguinte sistema linear \hat{S} :

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ (\lambda a_{11} + a_{21})x_1 + \dots + (\lambda a_{1n} + a_{2n})x_n = (\lambda b_1 + b_2) \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Seja $x_1 = \alpha_1, \dots, x_n = \alpha_n$ uma solução do sistema S. Substituindo esta solução nas duas primeiras equações de S e aplicando a propriedade 2) na primeira equação, temos:

$$(\lambda a_{11})\alpha_1 + \dots + (\lambda a_{1n})\alpha_n = \lambda b_1$$

$$a_{21}\alpha_1 + \dots + a_{2n}\alpha_n = b_2$$

Somando as duas equações acima e colocando o termo α_i em evidência, obtemos

$$(\lambda a_{11} + a_{21})\alpha_1 + \ldots + (\lambda a_{1n} + a_{2n})\alpha_n = (\lambda b_1 + b_2)$$

Logo $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ satisfaz a segunda equação de \hat{S} . Como o restante das equações de \hat{S} e \hat{S} são idênticas, $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ satisfaz a todas as equações de \hat{S} , e é portanto uma solução do sistema \hat{S} .

Mostre que toda solução de \hat{S} é também solução de S.

<u>Definição</u>: Uma matriz $m \times n$ real é uma sucessão de números reais, distribuídos em m linhas e n colunas, denotado por

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

<u>cederj</u>

Abreviadamente esta matriz pode ser expressa por (a_{ij}) , onde $i=1,2\cdots m$ e $j=1,2,\cdots n$, representam, respectivamente, as linhas e colunas da matriz. O símbolo a_{ij} que representa indistintamente todos os termos da matriz é denominado termo geral da matriz. A **i-ésima linha** é dada por

$$[a_{i1} \quad a_{i2} \cdots a_{in}] \qquad (1 \le i \le m);$$

e a **j-ésima coluna** de **A** é dada por

$$\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} \qquad (1 \le j \le n)$$

Dizemos que \mathbf{A} é \mathbf{m} por \mathbf{n} , denotando por $m \times n$, quando a matriz tem m linhas e n colunas. Se m = n, dizemos que \mathbf{A} é uma matriz quadrada de ordem n, e nesse caso, os números $a_{11}, a_{22}, \dots a_{nn}$ formam a **diagonal principal** de \mathbf{A} .

Exemplo 1: Sejam as matrizes:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & -3 \\ 0 & 5 \end{bmatrix} \Rightarrow 3 \times 2 \\ a_{32} = 5$$

$$\mathbf{B} = \begin{bmatrix} 3 & 5 & 4 \\ 1 & -2 & 6 \end{bmatrix} \Rightarrow 2 \times 3 \\ b_{13} = 4$$

$$\mathbf{B} = \begin{bmatrix} 3 & 5 & 4 \\ 1 & -2 & 6 \end{bmatrix} \Rightarrow 2 \times 3$$

$$b_{13} = 4$$

$$\mathbf{D} = \begin{bmatrix} -7 \\ 8 \end{bmatrix} \Rightarrow 2 \times 1$$
$$\mathbf{d}_{21} = 8$$

Os elementos
$$c_{11}$$
, c_{22} , c_{33} em C formam a diagonal principal.

$$\mathbf{F} = [2] \Rightarrow 1 \times 1 \\ f_{11} = 2$$

$$\mathbf{E} = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \times 3 \\ e_{12} = 0 \end{bmatrix}$$

Animar)

Voltar

Uma matriz $1 \times n$ ou $n \times 1$ é também chamada de um **vetor de dimensão** n ou simplesmente de **vetor** e será denotada por letras minúsculas, enquanto as matrizes são denotadas por letras maiúsculas do alfabeto.

Exemplo 2:

 $\mathbf{u} = [1\ 2\ 4\ 7\ 8]$ é um vetor de dimensão 5 e

$$\mathbf{v} = \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}$$
 é um vetor de dimensão 3 .

<u>Definição</u>: Uma matriz quadrada $\mathbf{A} = (a_{ij})$ com todos os elementos fora da diagonal são nulos, ou seja, $a_{ij} = 0$ se $i \neq j$, é denominada **matriz** diagonal.

 $\frac{\text{Exemplo } 3:}{\text{As matrizes}}$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

são exemplos de matrizes diagonais.

Definição:

Duas matrizes $m \times n$, $\mathbf{A} = (a_{ij})$ e $B = (b_{ij})$, são ditas iguais se $a_{ij} = b_{ij}$ para $1 \le i \le m$, $1 \le j \le n$, ou seja, se os elementos correspondentes forem iguais.

Exemplo 4:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & x & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} y & 2 & z \\ t & -1 & 0 \end{bmatrix}$$

Então $\mathbf{A} = \mathbf{B}$ se e somente se x = -1, y = 1, t = 0, z = 1.

ceaerj

4.3 - Adição de Matrizes

Definição: Sejam $\mathbf{A} = (a_{ij})$ e $\mathbf{B} = (b_{ij})$ matrizes $m \times n$, a soma de \mathbf{A} e \mathbf{B} é uma matriz $m \times n$, $\mathbf{C} = \mathbf{A} + \mathbf{B}$ definida por

$$c_{ij} = a_{ij} + b_{ij} \qquad 1 \le i \le m \quad 1 \le j \le n$$

4.3 - Adição de Matrizes

Exemplo 5: Sejam

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 & 2 & 5 \\ -3 & -1 & 0 \end{bmatrix}$$

Então

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \begin{bmatrix} 1+3 & 2+2 & 1+5 \\ -2+(-3) & 3+(-1) & 0+0 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 6 \\ -5 & 2 & 0 \end{bmatrix}$$

 Observe que a operação de adição entre matrizes, está definida somente quando ambas as matrizes tem o mesmo tamanho, ou a mesma ordem.

4.4 - Multiplicação por um escalar

Definição:

Se $\mathbf{A} = (a_{ij})$ é uma matriz $m \times n$ e α é um número real, o produto de \mathbf{A} por α é a matriz $m \times n$, $\mathbf{B} = \alpha \mathbf{A}$, onde

$$b_{ij} = \alpha a_{ij} \qquad 1 \le i \le m \quad 1 \le j \le n.$$

Ou seja, os elementos b_{ij} são obtidos multiplicando-se o correspondente elemento a_{ij} da matriz \mathbf{A} por α .

4.4 - Multiplicação por um escalar

Exemplo 6:

Sejam
$$\alpha = 2$$
 e $\mathbf{A} = \begin{bmatrix} 2 & -3 & 0 \\ -2 & 1 & 4 \\ 0 & 3 & 1 \end{bmatrix}$.

Então

$$\mathbf{B} = \alpha \mathbf{A} = \begin{bmatrix} (2)(2) & (2)(-3) & (2)(0) \\ (2)(-2) & (2)(1) & (2)(4) \\ (2)(0) & (2)(3) & (2)(1) \end{bmatrix} = \begin{bmatrix} 4 & -6 & 0 \\ -4 & 2 & 8 \\ 0 & 6 & 2 \end{bmatrix}$$

Se \mathbf{A} e \mathbf{B} são matrizes $m \times n$, então a diferença entre \mathbf{A} e \mathbf{B} , denotada por $\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B}$.

4.4 - Multiplicação por um escalar

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 & 2 & 5 \\ -3 & -1 & 0 \end{bmatrix}$$

Então

$$\mathbf{C} = \mathbf{A} - \mathbf{B} = \begin{bmatrix} 1 - 3 & 2 - 2 & 1 - 5 \\ -2 - (-3) & 3 - (-1) & 0 - 0 \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 0 & -4 \\ 1 & 4 & 0 \end{bmatrix}$$

4.5 - Matriz Transposta

Definição:

Se $\mathbf{A} = (a_{ij})$ é uma matriz $m \times n$, então a matriz $n \times m$, $\mathbf{A}^t = (a_{ij}^t)$, satisfazendo a condição

$$a_{ij}^t = a_{ji} \qquad 1 \le i \le m \quad 1 \le j \le n,$$

é chamada de transposta de **A**. Assim para obter a transposta de **A**, basta permutar as linhas pelas colunas.

4.5 - Matriz Transposta

Exemplo 8: Sejam

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & -3 \\ 0 & 5 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -7 \\ 8 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 3 & 4 & -2 \\ -1 & 0 & 1 \\ 4 & 0 & 5 \end{bmatrix}$$

$$\mathbf{A}^t = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 5 \end{bmatrix} \quad \mathbf{B}^t = \begin{bmatrix} -7 & 8 \end{bmatrix}$$

$$\mathbf{C}^t = \left| \begin{array}{rrr} 3 & -1 & 4 \\ 4 & 0 & 0 \\ -2 & 1 & 5 \end{array} \right|$$

Animar

Voltar

Exercícios

Fazer os exercícios da páginas 13 a 15 do livro texto.

4.6 - Produto Escalar

Definição:

O produto escalar ou produto interno de dois vetores de dimensão n

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

é definido por

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n = \sum_{i=1}^n a_i b_i.$$

4.6 - Produto Escalar

Exemplo 1:

O produto escalar dos vetores

$$\mathbf{a} = \begin{bmatrix} 1 & 5 & -3 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}$$

é dado por

$$\mathbf{a} \cdot \mathbf{b} = (1)(3) + (5)(0) + (-3)(-2) = 9$$

Definição:

Seja $\mathbf{A} = (a_{ij})$, uma matriz $m \times p$ e $\mathbf{B} = (b_{ij})$, uma matriz $p \times n$. O **produto** de \mathbf{A} por \mathbf{B} , denotado por \mathbf{AB} é a matriz $\mathbf{C} = (c_{ij}), m \times n$ definida por

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

para $1 \le i \le m$, $1 \le j \le n$.

$$\mathbf{C} = \begin{bmatrix} a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mp} \\ c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

$$\begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{p1} & b_{p2} & \dots & b_{pj} & \dots & b_{pn} \end{bmatrix}$$

Observação:

O produto **AB** está definido apenas quando o número de colunas de **A** é igual ao número de linhas de **B**. Neste caso, o número de linhas do produto **AB** é igual ao número de linhas de **A** e o número de colunas de **AB** é igual ao número de colunas de **B**.

Exemplo 2:

Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 5 & -1 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 5 & -1 \\ -2 & 4 \\ 1 & 3 \end{bmatrix}.$$

O produto de A por B é dado por

$$\mathbf{AB} = \begin{bmatrix}
(4)(5) + (3)(-2) + (1)(1) & (4)(-1) + (3)(4) + (1)(3) \\
(2)(5) + (5)(-2) + (-1)(1) & (2)(-1) + (5)(4) + (-1)(3)
\end{bmatrix} \\
= \begin{bmatrix}
15 & 11 \\
-1 & 15
\end{bmatrix}.$$

Exemplo 3: Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 7 & 0 & 9 \\ 1 & 5 & 3 \\ -1 & 2 & 8 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 3 & -2 \\ -2 & 1 \\ 1 & 5 \end{bmatrix}.$$

i) Encontre o elemento (3, 2) do produto **AB**. O elemento (**AB**)_{3,2} é dado pelo produto escalar da terceira linha de **A** e da segunda coluna de **B**.

$$(\mathbf{AB})_{3,2} = \begin{bmatrix} -1 & 2 & 8 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix} =$$

$$= (-1)(-2) + (2)(1) + (8)(5) = 44.$$

ii) Encontre a primeira coluna do produto AB.
A primeira coluna de AB é dada pelo produto de A pela primeira coluna de B.

$$\mathbf{A} \cdot \text{col}_{1}(\mathbf{B}) = \begin{bmatrix} 7 & 0 & 9 \\ 1 & 5 & 3 \\ -1 & 2 & 8 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} (7)(3) + (0)(-2) + (9)(1) \\ (1)(3) + (5)(-2) + (3)(1) \\ (-1)(3) + (2)(-2) + (8)(1) \end{bmatrix} = \begin{bmatrix} 30 \\ -4 \\ 1 \end{bmatrix}.$$

Exemplo 4: Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 3 & -1 \\ -2 & 0 \\ 1 & 4 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} -2 & 1 & 6 \\ 1 & 4 & 2 \end{bmatrix}.$$

i) Encontre o produto AB.

$$\mathbf{AB} = \begin{bmatrix} 3 & -1 \\ -2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 & 6 \\ 1 & 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} (3)(-2) + (-1)(1) & (3)(1) + (-1)(4) & (3)(6) + (-1)(2) \\ (-2)(-2) + (0)(1) & (-2)(1) + (0)(4) & (-2)(6) + (0)(2) \\ (1)(-2) + (4)(1) & (1)(1) + (4)(4) & (1)(6) + (4)(2) \end{bmatrix}$$

$$= \begin{bmatrix} -7 & -1 & 16 \\ 4 & -2 & -12 \\ 2 & 17 & 14 \end{bmatrix}.$$
cederj

ii) Encontre o produto BA.

$$\mathbf{BA} = \begin{bmatrix} -2 & 1 & 6 \\ 1 & 4 & 2 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ -2 & 0 \\ 1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} (-2)(3) + (1)(-2) + (6)(1) & (-2)(-1) + (1)(0) + (6)(4) \\ (1)(3) + (4)(-2) + (2)(1) & (1)(-1) + (4)(0) + (2)(4) \end{bmatrix}$$

$$= \left[\begin{array}{cc} -2 & 26 \\ -3 & 7 \end{array} \right].$$

<u>cederj</u>

Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 5 & 3 \\ 1 & 7 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 5 & -1 \\ -3 & 4 \end{bmatrix}.$$

i) Encontre o produto AB.

$$\mathbf{AB} = \begin{bmatrix} 5 & 3 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ -3 & 4 \end{bmatrix} \\
= \begin{bmatrix} (5)(5) + (3)(-3) & (5)(-1) + (3)(4) \\ (1)(5) + (7)(-3) & (1)(-1) + (7)(4) \end{bmatrix} = \begin{bmatrix} 16 & 7 \\ -16 & 27 \end{bmatrix}.$$

ii) Encontre o produto BA.

$$\mathbf{BA} = \begin{bmatrix} 5 & -1 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 1 & 7 \end{bmatrix} \\ = \begin{bmatrix} (5)(5) + (-1)(1) & (5)(3) + (-1)(7) \\ (-3)(5) + (4)(1) & (-3)(3) + (4)(7) \end{bmatrix} = \begin{bmatrix} 24 & 8 \\ -11 & 19 \end{bmatrix}.$$

Colocando o que foi visto nos exemplos anteriores de uma forma mais geral, temos que dada a matriz \mathbf{A} , $m \times p$, e a matriz \mathbf{B} , $p \times n$, o produto \mathbf{AB} é uma matriz $m \times n$ e o produto \mathbf{BA} existe apenas se m = n. Neste caso \mathbf{BA} tem dimensão $p \times p$ e tem a mesma dimensão de \mathbf{AB} somente se m = n = p. No caso particular em que os produtos \mathbf{AB} e \mathbf{BA} são iguais, dizemos que as matrizes \mathbf{A} e \mathbf{B} comutam. Ilustramos este caso com o exemplo a seguir.

Exemplo 6:

Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}.$$

Encontre os produtos **AB** e **BA** e verifique que as matrizes **A** e **B** comutam.

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} (1)(2) + (2)(6) & (1)(4) + (2)(8) \\ (3)(2) + (4)(6) & (3)(4) + (4)(8) \end{bmatrix} = \begin{bmatrix} 14 & 20 \\ 30 & 44 \end{bmatrix},$$

$$\mathbf{BA} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} (2)(1) + (4)(3) & (2)(2) + (4)(4) \\ (6)(1) + (8)(3) & (6)(2) + (8)(4) \end{bmatrix} = \begin{bmatrix} 14 & 20 \\ 30 & 44 \end{bmatrix}.$$

Exemplo 7:

Numa faculdade a seleção de alunos para os cursos de administração, economia e direito é realizada através da aplicação de provas de matemática, português e história. Dependendo do curso escolhido pelo aluno, diferentes pesos são dados a cada uma destas provas no cálculo da média final do aluno. A tabela a seguir relaciona estes pesos.

	PESO			
	Administração	Direito	Economia	
Matemática	2	1	2	
Português	2	2	1	
História	1	2	2	

Suponha que três dos candidatos a ingressar para esta faculdade obtiveram os seguintes resultados nas provas de seleção:

-	Matemática	Português	História
Candidato 1	5	6	7
Candidato 2	7	5	4
Candidato 3	4	5	5

Para determinar o total de pontos obtidos pelos três candidatos para cada um dos cursos, vamos considerar um tratamento matricial.

Denote por a_{ij} a nota do aluno i na prova j. Esta informação pode ser representada pela matriz

$$\mathbf{A} = \begin{bmatrix} 5 & 6 & 7 \\ 7 & 5 & 4 \\ 4 & 5 & 5 \end{bmatrix}$$

Seja agora b_{jk} o peso da prova j para o curso k, como representa a matriz

$$\mathbf{B} = \left| \begin{array}{ccc} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{array} \right|$$

O elemento (i, k) da matriz \mathbf{AB} fornece o total de pontos obtidos pelo candidato i para o curso k. Por exemplo se i=2 (Candidato 2) e k=1 (Administração), o elemento (2,1) da matriz \mathbf{AB} é

$$7(2) + 5(2) + 4(1) = 28$$
 pontos.

Observação:

Um vetor de dimensão n pode ser considerado uma matriz $n \times 1$. Sendo assim verifica-se facilmente pelas definições de produto escalar e de matriz transposta que o produto escalar de dois vetores \mathbf{x} e \mathbf{y} de dimensão n pode ser visto com o produto das matrizes \mathbf{x}^T e \mathbf{y} , ou seja,

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}.$$

Seja \mathbf{A} , uma matriz $m \times n$ e \mathbf{c} um vetor de dimensão n, ou seja, uma matriz de dimensão $n \times 1$. O produto de \mathbf{A} por \mathbf{c} , é a matriz $m \times 1$ dada por

$$\mathbf{Ac} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n \\ a_{21}c_1 + a_{22}c_2 + \dots + a_{2n}c_n \\ \vdots \\ a_{m1}c_1 + a_{m2}c_2 + \dots + a_{mn}c_n \end{bmatrix}.$$

O lado direito desta expressão pode ser escrita como

$$c_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{bmatrix} + c_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{bmatrix} + \dots + c_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{bmatrix}$$

$$= c_1 col_1(\mathbf{A}) + c_2 col_2(\mathbf{A}) + \ldots + c_n col_n(\mathbf{A}).$$

Desta última expressão verificamos que o produto de uma matriz \mathbf{A} $m \times n$ por um vetor \mathbf{c} de dimensão n pode ser visto como uma combinação linear das colunas de \mathbf{A} , onde os coeficientes são os elementos do vetor \mathbf{c} .

Exemplo 8: Sejam

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 & -1 \end{bmatrix} e \mathbf{c} = \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}.$$

O produto **Ac**, escrito como combinação linear das colunas de **A** é dado por

$$\mathbf{Ac} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}$$

$$= 2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} - 3 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + 7 \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 31 \\ -13 \end{bmatrix}.$$
cederi

Sabemos que a primeira coluna do produto **AB** é dada pelo produto de **A** pela primeira coluna de **B**. Sendo assim, a primeira coluna de **AB** é dada pela combinação linear das colunas de **A** onde os coeficientes são os elementos da primeira coluna de **B**.

De uma forma mais geral temos que dadas as matrizes \mathbf{A} , $m \times p$ e \mathbf{B} , $p \times n$, a j-ésima coluna do produto $\mathbf{A}\mathbf{B}$ é dada pela combinação linear das colunas de \mathbf{A} onde os coeficientes são os p elementos da j-ésima coluna de \mathbf{B} , ou seja

$$col_j(\mathbf{AB}) = \mathbf{A}col_j(\mathbf{B}) = b_{1j}col_1(\mathbf{A}) + b_{2j}col_2(\mathbf{A}) + \dots + b_{pj}col_p(\mathbf{A}).$$

O exemplo a seguir ilustra esta observação.

Exemplo 9: Considere as matrizes **A** e **B** do exemplo 2. Cada coluna do produto **AB** pode ser colocada como uma combinação linear das colunas de **A**, como segue abaixo

$$col_{1}(\mathbf{AB}) = \begin{bmatrix} -7\\4\\2 \end{bmatrix} = \mathbf{A}col_{1}(\mathbf{B}) = -2\begin{bmatrix} 3\\-2\\1 \end{bmatrix} + 1\begin{bmatrix} -1\\0\\4 \end{bmatrix},$$

$$col_{2}(\mathbf{AB}) = \begin{bmatrix} -1\\-2\\17 \end{bmatrix} = \mathbf{A}col_{2}(\mathbf{B}) = 1\begin{bmatrix} 3\\-2\\1 \end{bmatrix} + 4\begin{bmatrix} -1\\0\\4\\-1 \end{bmatrix},$$

$$col_{3}(\mathbf{AB}) = \begin{bmatrix} 16\\-12\\14 \end{bmatrix} = \mathbf{A}col_{3}(\mathbf{B}) = \begin{bmatrix} 6\begin{bmatrix}1\\1\\1\\3\\-2\\1 \end{bmatrix} + 2\begin{bmatrix}1\\0\\4\\-1 \end{bmatrix}.$$

$$col_{3}(\mathbf{AB}) = \begin{bmatrix} -7\\4\\1\\1\\1 \end{bmatrix} = \mathbf{A}col_{3}(\mathbf{B}) = \begin{bmatrix} -2\\1\\1\\1 \end{bmatrix} + 2\begin{bmatrix} -1\\0\\4\\1 \end{bmatrix}.$$

$$cederj$$

Considere o sistema linear

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \dots & \vdots = \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Definindo agora as matrizes

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

e considerando que o produto $\mathbf{A}\mathbf{x}$ é dado por

$$\mathbf{Ax} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}.$$

Podemos escrever o sistema linear na forma matricial

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

Definição: A matriz **A** é chamada de **matriz** dos coeficientes do sistema linear.

Definição: Chamamos de **matriz aumentada** do sistema linear, a matriz denotada por [**A**|**b**] e definida por

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}.$$
cederi

Exemplo 10: Seja o sistema linear

$$\begin{cases} 3x_1 + 2x_2 - 4x_3 = 5 \\ x_1 - 5x_2 + x_3 = 2 \\ -x_1 + 3x_2 + x_3 = 6 \end{cases}$$

A matriz dos coeficientes, ${\bf A}$ e a matriz aumentada deste sistema linear, $[{\bf A}|{\bf b}]$ são dadas por

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & -4 \\ 1 & -5 & 1 \\ -1 & 3 & 1 \end{bmatrix} \quad \mathbf{e} \quad [\mathbf{A}|\mathbf{b}] = \begin{bmatrix} 3 & 2 & -4 & 5 \\ 1 & -5 & 1 & 2 \\ -1 & 3 & 1 & 6 \end{bmatrix}.$$

Considerando

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{b} = \begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix},$$

podemos escrever o sistema linear na forma matricial $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Exemplo 11: A matriz

$$\left[\begin{array}{cc|c} -1 & 2 & -1 \\ 2 & 1 & 5 \end{array}\right]$$

é a matriz aumentada do sistema linear

$$\begin{cases} -x_1 + 2x_2 = -1 \\ 2x_1 + x_2 = 5 \end{cases}$$

Observação:

Sendo o lado direito do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$, dado pelo produto de uma matriz por um vetor, podemos escrevê-lo como a combinação das colunas da matriz \mathbf{A} , com coeficientes dados pelos elementos do vetor \mathbf{x} . Neste caso o sistema linear é escrito com

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

$$cederi$$

Exercícios

Fazer os exercícios das páginas 25 a 28 do livro texto.