Actividad 1 Módulo 7

1. ¿Cómo puede ayudar Big Data a enfrentar este problema de correos fraudulentos?

Big Data nos ayuda con la problemática de los correos fraudulentos dado que permite un análisis a gran escala, procesando millones de correos identificando patrones, anomalías y tendencias que con métodos tradicionales no se podría, la detención ocurre en tiempo real a penas se reciben, eliminando amenazas antes que lleguen a los usuarios o afecten el sistema, al utilizar modelos predictivos con machine learning, se pueden entrenar el algoritmo con información histórica, tanto legítimos como fraudulentos, se entrena con estos, los modelos aprenden y mejoran constantemente, considerando además el contenido complejo que podrían tener los correos como texto, metadatos, los enlaces, datos adjuntos, identificando phishing o malware.

2. ¿Qué características del Big Data se aplican aquí?

En este caso, se identifican las 5 V's del Big Data para la detección de correos fraudulentos,

La empresa recibe "millones de correos electrónicos" diariamente, representando una cantidad masiva de datos listos para ser almacenados y procesados (Volumen), los correos llegan de forma continua y en tiempo real, por lo que la solución debe tener la capacidad de analizar este flujo (Velocidad), no son estructurados y provienen de diversas fuentes con diversos formatos (Variedad), al recorrer los mails separa los correos legítimos de los fraudulentos y el *spam* asegurando la calidad (Veracidad) y por último generar valor al proteger a la empresa y a sus usuarios. Al filtrar correos maliciosos, se mejora la seguridad, se previene el fraude, se protege la reputación de la empresa y se optimiza la experiencia del usuario (Valor).

3. ¿Qué tipo de arquitectura o herramientas se podrían utilizar para implementar una solución eficaz?

Para implementar una solución efectiva, se podría proponer una arquitectura distribuida que combine el procesamiento en tiempo real (*streaming*) y por lotes (*batch*), junto con un conjunto de herramientas especializadas.

Arquitectura Propuesta: Arquitectura Lambda o Kappa

Una **Arquitectura Lambda** sería muy adecuada, ya que permite manejar tanto el análisis en tiempo real como el procesamiento de grandes volúmenes de datos históricos para reentrenar los modelos predictivos a través de:

- Capa de Ingesta de Datos:
 - Herramientas: Apache Kafka o RabbitMQ. Se usarían para recibir el flujo masivo y constante de correos electrónicos de las diferentes plataformas.
- Capa de Procesamiento (dividida en dos):
 - Capa de Velocidad (Speed Layer) Tiempo Real:

Herramientas: Apache Spark Streaming o Apache Flink. Analizarían cada correo en el momento en que llega para una detección inmediata de amenazas conocidas (spam, phishing, malware) aplicando modelos de machine learning ya entrenados.

Capa de Lotes (Batch Layer) - Procesamiento por Lotes:

Herramientas: Apache Spark o Hadoop MapReduce. Procesarán periódicamente grandes volúmenes de correos almacenados para realizar análisis más profundos, descubrir nuevos patrones de ataque y reentrenar los modelos de Machine Learning con mayor precisión.

• Capa de Almacenamiento (Storage):

 Herramientas: Un Data Lake como Hadoop Distributed File System (HDFS)
o almacenamiento en la nube (Amazon S3, Google Cloud Storage) para guardar todos los correos.

• Capa de Servicio y Visualización:

- Herramientas de Machine Learning: Bibliotecas como Scikit-learn, TensorFlow o Keras (ejecutadas sobre Spark) para crear y entrenar los modelos de clasificación de correos.
- Herramientas de Visualización: Elasticsearch con Kibana o Grafana para que el equipo de seguridad informática pueda monitorear en tiempo real las amenazas detectadas, ver estadísticas y analizar tendencias.

En conclusión, las características clave de la solución son :

- Escalabilidad horizontal para manejar picos de tráfico
- Pipelines de procesamiento paralelo
- Modelos de ML re-entrenables automáticamente
- Integración con sistemas existentes de correo electrónico