mos entonces la n-ésima partición regular de D y sea R_{ij} el ij-ésimo rectángulo de la partición, con vértices $(u_i, v_j), (u_{i+1}, v_j), (u_i, v_{j+1})$ y $(u_{i+1}, v_{j+1}), 0 \le i \le n-1, 0 \le j \le n-1$. Denotamos los valores de \mathbf{T}_u y \mathbf{T}_v en (u_i, v_j) mediante \mathbf{T}_{u_i} y \mathbf{T}_{v_j} . Podemos interpretar los vectores $\Delta u \mathbf{T}_{u_i}$ y $\Delta v \mathbf{T}_{v_j}$ como tangentes a la superficie en $\Phi(u_i, v_j) = (x_{ij}, y_{ij}, z_{ij})$, donde $\Delta u = u_{i+1} - u_i, \Delta v = v_{j+1} - v_j$. Estos vectores forman entonces un paralelogramo P_{ij} que está en el plano tangente a la superficie en (x_{ij}, y_{ij}, z_{ij}) (véase la Figura 7.4.1). Tenemos así una aproximación (una "colcha de patchwork") de la superficie por los P_{ij} . Para n grande, el área de los P_{ij} es una buena aproximación al área de $\Phi(R_{ij})$. Dado que el área del paralelogramo generado por dos vectores \mathbf{v}_1 y \mathbf{v}_2 es $\|\mathbf{v}_1 \times \mathbf{v}_2\|$ (véase el Capítulo 1), vemos que

$$A(P_{ij}) = \|\Delta u \mathbf{T}_{u_i} \times \Delta v \mathbf{T}_{v_j}\| = \|\mathbf{T}_{u_i} \times \mathbf{T}_{v_j}\| \Delta u \, \Delta v.$$

Por tanto, el área de la aproximación es

$$A_n = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} A(P_{ij}) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \|\mathbf{T}_{u_i} \times \mathbf{T}_{v_j}\| \Delta u \, \Delta v.$$

Cuando $n \to \infty$, las sumas A_n convergen a la integral

$$\iint_D \|\mathbf{T}_u \times \mathbf{T}_v\| \, du \, dv.$$

Puesto que A_n debería aproximarse al área de la superficie cada vez más cuando $n \to \infty$, llegamos a la fórmula (1) como una definición razonable de A(S).

Figura 7.4.1 $\|\mathbf{T}_{u_i} \times \mathbf{T}_{v_j}\| \Delta u \Delta v$ es igual al paralelogramo que aproxima el área de un trozo de la superficie $S = \Phi(D)$.

Ejemplo 1

Sea D la región determinada por $0 \le \theta \le 2\pi, 0 \le r \le 1$ y sea la función $\Phi: D \to \mathbb{R}^3$, definida como

$$x = r\cos\theta, \qquad y = r\sin\theta, \qquad z = r,$$

una parametrización de un cono S (véase la Figura 7.3.8). Hallar el área de su superficie.