Modern Analysis

Homework 2 Ari Feiglin

2.1 Exercise

Determine if the following collections are alegbras or σ -algebras:

- (1) $X = \{1, 2, 3, 4\}, S = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3, 4\}\}$
- (2) $X = [0,1], S = \{\emptyset\} \cup \{A \mid [0,1/2] \subseteq A\}$
- (3) $X = [0,1], S = \{A \mid \{0,1\} \subseteq A \text{ or } \{0,1\} \cap A = \emptyset\}$
- (4) $X = \{0,1\}^{\mathbb{N}}$ and $A \in S$ if and only if every $(x_n) \in A$ satisfies that $\{(y_n) \mid y_1 = x_1\} \subseteq A$.
- (1) This is not an algebra since $\{1\}^c = \{2, 3, 4\}$ is not in S.
- (2) This is not an algebra since $[0, 1/2] \in S$ but $[0, 1/2]^c \notin S$.
- (3) This is a σ -algebra: $\varnothing \in S$ since it has an empty intersection with $\{0,1\}$, $A \cap \{0,1\} = \varnothing$ if and only if $\{0,1\} \subseteq A^c$ so S is closed under complements. Finally if $\{A_n\}_{n=1}^{\infty} \subseteq S$, if there exists any n such that $\{0,1\} \subseteq A_n$ then $\{0,1\} \subseteq \bigcup_n A_n$ so $\bigcup_n A_n \in S$. Otherwise $A_n \cap \{0,1\} = \varnothing$ for every n, so $(\bigcup_n A_n) \cap \{0,1\} = \bigcup_n (A_n \cap \{0,1\}) = \varnothing$, so $\bigcup_n A_n \in S$ as well.
- (4) This is a σ -algebra since $\varnothing \in S$ vaccuously. If $A \in S$, then let $(x_n) \in A^c$, if $y_1 = x_1$ then if $(y_n) \in A$, since $y_1 = x_1$ we'd have $(x_n) \in A$ in contradiction, so $(y_n) \in A^c$, meaning $A^c \in S$. Now suppose $\{A_n\}_{n=1}^{\infty} \subseteq S$, let $(x_k)_k \in \bigcup A_n$, then $(x_k)_k \in A_n$ for some n, and if $y_1 = x_1$ then $(y_k)_k \in A_n \subseteq \bigcup_n A_n$, meaning $\{(y_k)_k \mid y_1 = x_1\} \subseteq \bigcup_n A_n$, so $\bigcup_n A_n \in S$ as required.

2.2 Exercise

Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions on [0,1]. Prove that

$$A = \{x \in [0,1] \mid f_n(x) \to 0\}$$

is a Borel set.

By definition $f_n(x) \to 0$ if and only if for every $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$, $|f_n(x)| < \varepsilon$, meaning $x \in f_n^{-1}(-\varepsilon, \varepsilon)$. Since the rationals are dense, we can take only rational ε s. Therefore

$$A = \bigcap_{\varepsilon \in \mathbb{Q}_+} \bigcup_{n_0 \in \mathbb{N}} \bigcap_{n=n_0}^{\infty} f_n^{-1}(-\varepsilon, \varepsilon)$$

Since f_n is continuous, $f_n^{-1}(-\varepsilon, \varepsilon)$ is an open set for every $\varepsilon > 0$ and n. So this is a composition of intersections and unions of open sets and is therefore a Borel set.

2.3 Exercise

Let m be the Lebesgue measure and $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of measurable sets in [0,1]. Define $F=\{x\mid \forall n\in\mathbb{N}\exists k>n:x\in A_k\}$. Prove

- (1) $F = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$,
- (2) if $m(A_n) > \delta > 0$ for all n then $m(F) > \delta$,

- (3) if $\sum_{n=1}^{\infty} m(A_n) < \infty$ then m(F) = 0,
- (4) there exists a sequence $\{A_n\}$ such that $\sum_{n=1}^{\infty} m(A_n) = \infty$ and m(F) = 0.
- (1) $x \in F$ if and only if for every n there exists a k > n such that $x \in A_k$. This is obviously contained in $\bigcap_n \bigcup_{k \ge n} A_k$, and if $x \in \bigcap_n \bigcup_{k \ge n} A_k$ then for every n there exists a $k \ge n$ such that $x \in A_k$. So for any n, there exists a $k \ge n + 1 > n$ such that $x \in A_k$, so $x \in F$.
- (2) By continuity from above, since $\{\bigcup_{k\geq n} A_k\}_n$ is a decreasing sequence,

$$m(F) = \lim_{n \to \infty} m\left(\bigcup_{k > n} A_k\right) \ge \lim_{n \to \infty} m(A_n) \ge \lim_{n \to \infty} \delta = \delta$$

(3) Again by continuity from above,

$$m(F) = \lim_{n \to \infty} m\left(\bigcup_{k \ge n} A_k\right) \le \lim_{n \to \infty} \sum_{k \ge n} m(A_k)$$

since $\sum_{k=1}^{\infty} m(A_k)$ converges, its tail must converge to zero, meaning $\lim_{n\to\infty} \sum_{k\geq n} m(A_k) = 0$, so m(F) = 0.

(4) Define $A_n = (0, 1/n)$, then $m(A_n) = \frac{1}{n}$ so its sum diverges. But $F = \emptyset$ since if $x \in F$, then eventually $\frac{1}{n} < x$ so for every $k \ge n$, $x \notin A_k$. So m(F) = 0 as required.

2.4 Exercise

Let $\mathcal C$ be the Cantor set, prove it

- (1) is compact,
- (2) does not contain any interval of positive measure,
- (3) is not the countable union of closed intervals.
- (1) Recall the definition of the Cantor set, defining $C_0 := [0,1]$ and $C_{n+1} := \frac{1}{3}C_n \bigcup (\frac{2}{3} + \frac{1}{3}C_n)$,

$$\mathcal{C} := \bigcap_{n=1}^{\infty} C_n$$

Since all C_n are closed (by induction: C_0 is closed, then C_{n+1} is the union of two closed sets which is also closed), \mathcal{C} is the countable intersection of closed sets, and is therefore also closed. Therefore \mathcal{C} is closed and bound, meaning it is compact.

(2) By induction, $m(C_n) = \left(\frac{2}{3}\right)^n$, since

$$m(C_{n+1}) = \frac{1}{3}m(C_n) + \frac{1}{3}m(2 + C_n) = \frac{2}{3}m(C_n) = \left(\frac{2}{3}\right)^{n+1}$$

And so by continuity from above,

$$m(\mathcal{C}) = \lim_{n \to \infty} m\left(\bigcap_{k=1}^{n} C_k\right) \le \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

so \mathcal{C} has zero measure, and therefore cannot contain any set of positive measure.

(3) Since C contains no set of positive measure, it cannot contain any interval and in particular cannot be the union of intervals.

2.5 Exercise

Let X be a set and $\mathcal{E} \subseteq \mathcal{P}(X)$. Show that for every $F \in \sigma(\mathcal{E})$, there exists a countable subset $\mathcal{E}' \subseteq \mathcal{E}$ such that $F \in \sigma(\mathcal{E}')$.

This is equivalent to showing that

$$\sigma(\mathcal{E}) = \bigcup_{\mathcal{E}' \subseteq \mathcal{E} \text{ countable}} \sigma(\mathcal{E}')$$

Since $\sigma(\mathcal{E}') \subseteq \sigma(\mathcal{E})$ for every $\mathcal{E}' \subseteq \mathcal{E}$, \supseteq is trivial. Now we claim that the right hand side (denote it \mathcal{U}) is a σ -algebra: it obviously contains \varnothing and if $A \in \mathcal{U}$ then $A \in \sigma(\mathcal{E}')$ for some countable $\mathcal{E}' \subseteq \mathcal{E}$ and so $A^c \in \sigma(\mathcal{E}') \subseteq \mathcal{U}$. And if $\{A_n\}_n \in \mathcal{U}$, then for every n there exists a countable $\mathcal{E}_n \subseteq \mathcal{E}$ such that $A_n \in \sigma(\mathcal{E}_n)$. Then define $\mathcal{E}' := \bigcup_n \mathcal{E}_n$ which is the countable union of countable sets, so \mathcal{E}' is countable. And for every n, $A_n \in \sigma(\mathcal{E}_n) \subseteq \sigma(\mathcal{E}')$, so $\bigcup_n A_n \in \sigma(\mathcal{E}') \subseteq \mathcal{U}$. Thus \mathcal{U} is a σ -algebra containing \mathcal{E} , since for every $A \in \mathcal{E}$, $A \in \sigma(\{A\})$, thus $\sigma(\mathcal{E}) \subseteq \mathcal{U}$ and so $\sigma(\mathcal{E}) = \mathcal{U}$ as required.