ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 23, 2019

ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 23, 2019

Today

- ▶ A high elevation view of approaches for statistical inference
- Some motivation for learning
- ▶ The basic ideas of Bayesian inference

Exercise

What sets statements of scientists apart from statements made by journalists, lawyers, and logicians?

Exercise

Describe how Bayesian analysis differs from other types of statistical analysis.

Some notation

- y data
- lacktriangledown heta a parameter or other unknown quantity of interest
- lackbox[y| heta] The probability distribution of y conditional on heta
- $lackbox{ } [heta|y]$ The probability distribution of heta conditional on y
- ▶ $[y|\theta] = P(y|\theta) = p(y|\theta) = f(y|\theta) = f(y,\theta)$, different notation that means the same thing.

Board work on confidence envelopes

Define a confidence interval

Prior data on the exercise from faculty, researchers, and graduate students at:

Swedish Agricultural University

University of Alaska Anchorage

Woods Hole Research Institute

Conservation Science Partners

► ESS 575 2017

- ▶ We divide the world into things that are observed (y) and things that unobserved (θ) .
- ▶ The unobserved quantities (θ) are random variables. The data are random variables before they are observed and fixed after they have been observed.
- ▶ We seek to understand the probability distribution of θ using fixed observations, i.e., $[\theta|y]$.
- ▶ Those distributions quantify our uncertainty about θ .

Treating unobserved quantities as random variables is profound.

All unobserved quantities are treated in exactly the same way.

- Parameters
- Latent states
- Missing data
- Censored data
- Predictions
- Forecasts

An unobserved quanity (θ)

Prior data on "define a confidence interval" from faculty, researchers, and graduate students at:

- Swedish Agricultural University
- University of Alaska Anchorage
- Woods Hole Research Institute
- Conservation Science Partners
- National Socio-environmental Synthesis Center (3 courses)
- ESS 575 (2 courses)

Cut to R to illustrate updating with today's data.

You can understand it.

KEY TO STATISTICAL METHODS

	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 variable 1 sample	Examination of a single sample	Procedure for grouning a frequency distribution, Box 3.1: seem and leaf display, Section 2.5; letting for oraliers, Section 13.4 Computing medium of frequency distribution, Box 4.1 Computing arthuristic mean: roundered sample, Box 4.2; frequency distribution, Box 4.3 unordered sample, Box 4.2; frequency distribution, Box 4.3 Setting confidence limits: mean, Box 7.2; variance, Box 7.3 Computing, and agr, Box 6.2		Confidence limits for a percentage, Section 17.1 Runs test for randomness in dichetomized data, Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness of fit tests parameters from an extrinsic hypothesis, Box 17.1; from an internsic hypothesis, Box 17.2 Kolmogoruv-Smirrov test of goodness of fit, Box 17.3 Graphic Test's for normality: large sample sizes, Box 6.3, small sample sizes irankit testi, Box 6.4 Test of sample statics against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
1 variable ≥ 2 samples	Single classification	Single, Chauffeations notive uniqual sample sizes, Box 91, equal sample sizes, Box 9.4 Planned comparison of means in anova, Box 9.8; Planned comparison of means in anova, Box 9.8; I see that the size of the si	Kruskal-Wallis test, Box 13.5 Unplanned comparison of means by a mongarametric STP, Box 17.5	Great for homogenity of percentages, Boxes 17.5 and 17.8 Comparison of several samples with an expected frequency distribution, Box 17.1 unplanned analysis of replicated tests of goodness of fit, Box 17.5
	Nested classification	Two level nested anova: equal sample sizes, Box 10.1; unequal sample sizes, Box 10.4 Three level nested anova: 10.3; unequal sample sizes, Box 10.5		
	Two-way or multi-way classification	Two way znow with replication, Box 111, 1 without replication, Box 11.2; unequal but proportional subclass sizes. Box 11.4; with a single missing observation, Box 11.5. Three way anoway, Box 12.1 More than three way classification, Section 12.3 and Box 12.2. Test for nonadditivity in a two way anowa, Box 13.4.	Friedman's method for randomized blocks, Box 13.9	Three way log-linear model, Box 17.9 Randomized blocks for frequency data (repeated testing of the same individuals Box 17.11

You can understand it.

Proloe:

Hut show, the likely had

A norther flut show, the same as

that a value is the same as

another

Confidence Interval - Brows A range of values that we have a certain level of confidence our value of interest falls in.

- Definition of Prolue
 The probability of the tignificant
 difference between measured (cherryed)
 value & other measured values
- The range of measured (closerved)

 value can occur within it

You can understand it.

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

One approach applies to many problems

- An unobservable state of interest, z
- ▶ A deterministic model of a process, $g(\theta, x)$, controlling the state.
- ► A model of the data
- Models of parameters

