Reflexive Reference Resolution in Mandarin: An Eye-tracking Study

Matthew Ganquan SHI1; Chin-Lung YANG1; Haihua PAN1

¹The Lab of Theoretical Psycholinguistics, Dept of Linguistics & Modern Languages, CUHK

Introduction

- Mandarin reflexive pronouns ta-ziji 'him-/her-self', ziji 'self' do not strictly obey Chomskyan Binding Condition A (BCA) (Chomsky, 1981) and they permit long-distance binding (LDB) (tang_chinese_1989; Pan, 1997, 1998; Pan & Hu, 2003), as in (1).
- Zhāngsān_i shuō zhè piān bàodǎo hài-le $t\bar{a}$ -ziji,/ ziji, say this CL report harm-ASP him-self self 'ZS_i said that this report harmed (him)self_i.'
- More specifically, literature reports that the simple reflexive ziji is more liberal w.r.t. LDB than the complex ta-ziji, the latter considered to prefer structurally closest animate/person antecedent (Pan, 1998; Pan & Hu, 2003).
- (2) Zhāngsān_i shuō Lǐsì_j hài-le $t\bar{a}$ -zìjǐ_{#i/j}/ zìjǐ_{i/j}. shuō LS harm-ASP him-self self 'ZS_i said that LS_j harmed himself_{#i/j}/ self_{i/j}.'
- However, this structural constraint of ta-ziji is not stringent and may be overridden, as in (3), where a teacher-student relationship reinforces LDB.
- Lǐ **Lǎoshī**_i shuō Yuēhàn_i hài-le $t\bar{a}$ -ziji $_{i/j}$ / ziji $_{i/j}$ de **xuéshēng**. Li teacher shuō John harm-ASP him-self self DE student 'Teacher Li_i said John_j harmed the student of himself_{i/j}' self_{i/j}'.'
- Additionally, discourse factors like "logophoricity" have been suggested to modulate reflexive resolution, with reflexives preferring the center of consciousness/perspective (Culy, 1994; Kuno, 1972, 1987; Sells, 1987).
- In this project, we used the eye-tracking reading paradigm to simulate natural reading and to examine the role of two semantic/discourse factors in interpreting the reflexive ta-ziji: (a) logophoric contexts (Logo) and (b) **semantically** forced (non)local bindings by **V3** (**Locality**). (See below)
- Why eye-tracking?
 - Eye-tracking paradigm is time-sensitive, revealing different stages of online processing.
 - Previous research has explored the syntax-discourse interface in the online processing of English reflexives (Kaiser et al., 2009; Sturt, 2003a, 2003b), but lacked the investigation of the effect of **Logo** in online processing of Mandarin Chinese (cf. Wang, 2017a, 2017b).

Research Questions

- Can the semantics/discourse effects, as manipulated by context, compete with the Binding Condition A in interpreting ta-ziji?
- If they can, at what stage do these effects manifest and how does their strength compare to BCA?

Materials and Experimental Design

Sample stimulus (adapted from Wang, 2017b):

'The $\{carer_i/doctor_i\}$ $\{said/saw\}$ that the $\{doctor_i/carer_i\}$ helped a patient whom he himself $_{i/j}$ diagnosed today.'

Condition (Logo-Locality)					Reflexive	Adv	V3 Disambiguating		
H-local	護工 hùgōng carer	說 shuō say	醫生 yīshēng doctor	幫助了 bāngzhùle help	他自己 tā-zìjǐ him-self	今天 jīntiān today	診治 zhěnzhì diagnose	的 de DE	患者。 huànzhě patient
H-dist	醫生 yīshēng		護工 hùgōng						
L-local	護工 hùgōng	看到 kàndào see	醫生 yīshēng						
L-dist	醫生 yīshēng		護工 hùgōng						

NB-a: H = high logophoricity; L = low logo; Local = (forced) local binding; Dist= (forced) distant binding.

NB-b: The most embedded verb *diagnose* s-selects for the *doctor* as its subject, making it the only **felicitous** binder of the reflexive.

- 2x2 design: 4 experimental trials per condition, & 112 stimuli per subject.
- 32 experimental items are created, among which we leave out the 16 control items where the relative clause part 'Reflexive-Adv-V3' is replaced by ta-ziji. Therefore, we have 16 experimental trials for analysis.
- Logo: Following Culy's (1994) logophoricity hierarchy of predicates, high logo verbs create a logophoric context s.t. matrix subj. is preferred; low logo verbs create an anti-logo context s.t. matrix subj is disfavored.
 - The verb *shuō* 'say' and its variants represent $H \Rightarrow LDB$ is preferred.
 - The verb *kàndào* 'see' and its variants represent $L \Rightarrow LDB$ is not preferred.
- Locality: The post-reflexive verb (V3) disambiguates the antecedent choice and thus forces local (Local) or distant binding (Dist).
- H-dist and L-local: Two factors converge in the antecedent preference.
- H-local and L-dist: Two factors contrast.

Predictions

- Effect of Logo: The high logo is expected to compete with the default local antecedent in and/or after the **Reflexive** region, which may result in *longer* reading times (RT) in the earlier stages.
- Effect of Locality: In the V3 disambiguating region, when the V3 forces a local antecedent, which aligns with BCA, the RT is anticipated to be shorter during integration.

Results

• Eye-tracking measures:

- First-pass measures: gaze duration (Gaze), regression path duration (RPD), re-reading time (RRT, calculated as RPD - Gaze).
- Second-pass measures: second-pass duration (SPD, as total reading time Gaze).
- Definitions:
 - Gaze duration: The sum of all fixations in a region before moving to another region.
 - Regression path duration: The summed duration of all fixations from first entering a region until moving rightward to another region.
 - Total reading time: The sum of all fixations within a region.
- Data of 100 valid subjects who are native Mandarin speakers were calculated.
- Graphs of Gaze, RPD, RRT, and SPD (error bars = standard errors).

Statistics

- The eye-tracking data were analyzed with linear mixed-effects regression models, with maximal random effects constructed unless their presence is vacuous in model comparisons.
- Statistic results were highlighted:

Spillover_de Spillover_l

Regions		Reflexive		Adv		V3		de		NP	
Measure	Effect	β	t	β	t	β	t	β	t	β	\overline{t}
Gaze	Logophoricity	-0.01	-0.56	-0.07	-2.88**	0.01	0.36	-0.03	-0.40	-0.02	-0.56
	Locality	-0.01	-0.52	0.00	0.18	0.04	1.55	0.02	0.73	0.00	0.03
	Logo x Locality	0.05	1.07	-0.05	-1.09	0.03	0.71	0.10	1.54	-0.04	-0.57
RPD	Logo	-0.06	-1.43	-0.08	-1.52	0.06	1.13	-0.03	-0.40	0.05	0.74
	Locality	0.01	0.20	0.02	0.48	0.07	1.33	-0.13	-1.60	0.06	0.95
	Logo x Locality	0.03	0.36	-0.19	-2.07*	0.09	0.93	0.03	0.16	-0.04	-0.33
RRT	Logo	-0.10	-0.74	-0.07	-0.40	0.16	0.93	-0.05	-0.20	0.20	1.27
	Locality	0.00	0.03	-0.02	-0.14	0.17	1.02	-0.48	-1.92	0.16	1.04
	Logo x Locality	-0.15	-0.54	-0.84	-2.48*	0.21	0.62	-0.10	-0.20	-0.06	-0.19
SPD	Logo	-0.16	-1.07	-0.06	0.70	0.11	0.79	0.03	0.13	0.08	0.44
	Locality	0.03	0.23	-0.10	-0.62	0.11	0.53	-0.16	-0.81	0.10	0.58
	Logo x Locality	-0.34	-1.16	0.70	2.16*	0.03	0.11	0.07	0.19	-0.38	-1.11

- Early stage: A sig. effect of Logo at Adv region
- (Gaze: t(961.6) = -2.88, p = .004).
- →This results in a longer **Gaze duration** in **High** logo contexts.
- First pass stage: A sig. interaction effect at Adv region (RPD: t(915.8) = -2.07, p = .039; RRT: t(967.8) = -2.48, p = .013).
- \rightarrow The effect of **Logo** is stronger when **Locality** = **Dist** (**H-dist** > **L-dist**). Second-pass stage: A sig.crossover interaction effect at Adv region (SPD: t(949.7) = 2.16, p = .029).
- \rightarrow Logo has a reverse effect on SPD between *Dist* and *Local*.
- No main effect of Locality is observed.

Discussions

- The main effect of Logo predicts longer Gaze duration in high logo contexts in the post-reflexive spillover **Adv** region. This suggests that the semantic/discourse factor may influence reading early on, competing with the default local antecedent.
- Also at the Adv region, the interaction effects during the first-pass stages could reflect the effect of parafoveally previewing the following verb **V3**. This interaction suggests that **Logo** has a stronger effect when the semantics of the verb forces a nonlocal antecedent, causing longer RT in *H-dist*. It indicates that the competition between local/nonlocal binding is escalated in *H-dist* compared with *L-dist*, as more semantic factors in the former compete with binding condition A.
- In later integration stages, the crossover interaction effect correlates with whether the two independent variables converge in antecedent preference. The **SPD** tends to be quicker when they converge, reflecting the ease of integration.
- The absence of a main but the presence of an interaction effect of Locality suggests that forced antecedent binding does not compete with BCA per se, but interacts with other semantic/discourse factors. This could partially indicate that syntactic locality is not absolutely predominant in Mandarin.