G H PATEL COLLEGE OF ENGINEERING & TECHNOLOGY, V V NAGAR A.Y.2019-20: EVEN SEMESTER

3140708: DISCRETE MATHEMATICS

Assignment 2: Functions

Determine whether f is a function from Z to R if 1.

(a)
$$f(n) = \pm n$$

(b)
$$f(n) = \sqrt{n^2 + 1}$$

(c)
$$f(n) = \sqrt{n^2 + 1}$$
 (c) $f(n) = 1/(n^2 - 4)$

- 2. Determine whether f is a function from the set of all bit strings to the set of integers if
 - (a) f(S) is the position of a 0 bit in S.
 - (b) f(S) is the number of a 1 bits in S.
 - (c) f(S) is the smallest integer i such that the ith bit of S is 1 and f(S) = 0 when S is the empty string, the string with no bits.

- 3. Find the domain and range of each of the following functions that assigns:
 - (a) to each nonnegative integer its last digit
 - (b) the next largest integer to a positive integer
 - (c) to a bit string the number of one bits in the string
 - (d) to each bit string the number of ones minus the number of zeros
 - (e) to each bit string twice the number of zeros in that string
 - (f) to each positive integer the largest perfect square not exceeding this integer
 - (g) the number of bits left over when a bit string is split into bytes

- 4. Find the domain and range of each of the following functions that assigns to:
 - (a) each pair of positive integers the first integer of the pair
 - (b) each positive integer its largest decimal digit
 - (c) a bit string the longest string of ones in the string
 - (d) each positive integer the largest integer not exceeding the square root of the integer
 - (e) each pair of positive integers the maximum of these two integers
 - (f) each positive integer the number of the digits that do not appear as decimal digits of the integer
 - (g) a bit string the number of times the block 11 appears
 - (h) a bit string the numerical position of the first 1 in the string and the value 0 to a bit string consisting of all 0s.

5. Find the values:

(a)
$$\left[\left| \frac{1}{2} \right| + \left| \frac{1}{2} \right| + \frac{1}{2} \right]$$
 (b) $\left[\frac{1}{2} + \left| \frac{3}{2} \right| \right]$

(b)
$$\left[\frac{1}{2} + \left[\frac{3}{2}\right]\right]$$

$$(c) \left[\frac{1}{2} \cdot \left[\frac{5}{2} \right] \right]$$

6. Determine whether each of these functions from *Z* to *Z* is one-to-one and onto.

$$(a) f(n) = n - 1$$

$$(b) f(n) = n^2 + 1$$

$$(c) f(n) = n^3$$

(a)
$$f(n) = n - 1$$
 (b) $f(n) = n^2 + 1$ (c) $f(n) = n^3$ (d) $f(n) = \lceil n/2 \rceil$

- Determine whether $f: Z \times Z \rightarrow Z$ is one-to-one and onto if 7.
- (a) f(m,n) = 2m n (b) $f(m,n) = m^2 n^2$ (c) f(m,n) = |m| |n|
- (d) f(m,n) = m + n (e) f(m,n) = m
- $(f) \quad f(m,n) = |n|$

8. Determine whether each of these functions is a bijection from \mathbf{R} to \mathbf{R} .

$$(a) f(x) = -3x + 4$$

$$(b) f(x) = 3x^2 + 7$$

$$(c) f(x) = \frac{x+1}{x+2}$$

(a)
$$f(x) = -3x + 4$$
 (b) $f(x) = 3x^2 + 7$ (c) $f(x) = \frac{x+1}{x+2}$ (d) $f(x) = \frac{x^2+1}{x^2+2}$

- Show that the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = e^x$ is not invertible. Modify the 9. domain or codomain of f so that it becomes invertible.
- Show that the function $f: \mathbb{R} \to \mathbb{R}^+ \cup \{0\}$ defined by f(x) = |x| is not invertible. Modify the domain or codomain of f so that it becomes invertible.
- 11. Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from **R** to **R**.

12. If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.

13. If f and $f \circ g$ are onto, does it follow that g is onto? Justify your answer.

- **14.** Suppose that g is a function from A to B and f is a function from B to C.
 - (a) Show that if both f and g are one-to-one functions, then $f \circ g$ is also one-to-one.
 - (b) Show that if both f and g are onto functions, then $f \circ g$ is also onto.

15. Show that the function f(x) = ax + b from **R** to **R** is invertible, where a and b are constants, with $a \ne 0$, and find the inverse of f.

16. Let $f: \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = x^2$. Find (a) $f^{-1}(\{1\})$ (b) $f^{-1}(\{x \mid 0 < x < 1\})$ (c) $f^{-1}(\{x \mid x > 4\})$.

17. Let $g(x) = \lfloor x \rfloor$. Find (a) $g^{-1}(\{0\})$ (b) $g^{-1}(\{-1, 0, 1\})$ (c) $g^{-1}(\{x \mid 0 < x < 1\})$. **18.** Let $f: A \to B$ and $S, T \subseteq A$. Show that

$$(a) f(S \cup T) = f(S) \cup f(T)$$

(b)
$$f(S \cap T) \subseteq f(S) \cap f(T)$$
.

Give an example to show that the inclusion in part (b) may be proper.

19. Let $f: A \to B$ and $S, T \subseteq B$. Show that

(a)
$$f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$$
 (b) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$ (c) $f^{-1}(\bar{S}) = \overline{f^{-1}(S)}$.

$$(b) f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$$

20. In asynchronous transfer mode (ATM) (a communications protocol used on backbone networks), data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 10 seconds over a link operating at the following rates?

(a) 128 kilobits per second (b) 300 kilobits per second

(c) 1 megabit per second

Draw graphs of each of these functions.

(a) $f(x) = \lceil x \rceil + \lfloor \frac{x}{2} \rfloor$ (b) $f(x) = \lceil \frac{1}{x} \rceil$ (c) $f(x) = \lfloor 2x + 1 \rfloor$ (d) $f(x) = \lceil \frac{x}{2} \rfloor \lfloor \frac{x}{2} \rfloor$ (e) $f(x) = \lfloor 2 \lceil \frac{x}{2} \rceil + \frac{1}{2} \rfloor$ (f) $f(x) = \lfloor x^2 \rfloor$

Use separate sheet of paper to draw the graphs.

For any real number x, it is possible to find an integer n such that

$$n \le x < n + 1$$
.

In this case, |x| = n, and [x] = n + 1. It is clear that $|x| \le x \le [x]$. It is also clear that we can express x as $x = n + \varepsilon$, where $0 \le \varepsilon < 1$. Use this fact to prove the elementary results in the examples below.

Let x be a real number and m, n are integers. Prove that

(a) $[x] - [x] = \begin{cases} 1, \\ 0. \end{cases}$

if x is not an ineger if x is an ineger

(b) [x + m] = [x] + m.

(c) x < n if and only if $\lfloor x \rfloor < n$. (d) n < x if and only if $n < \lfloor x \rfloor$. (e) $x \le n$ if and only if $\lfloor x \rfloor \le n$. (f) $n \le x$ if and only if $n \le \lfloor x \rfloor$. (e) $x \le n$ if and only if $[x] \le n$.

(f) $n \le x$ if and only if $n \le \lfloor x \rfloor$.

23. Prove or disprove each of these statements about the floor and ceiling functions. Let x and y be real numbers.

$$(a) \quad [[x]] = [x]$$

(b)
$$[x] + [y] - [x + y] = 0 \text{ or } 1$$

$$(c) \quad [2x] = 2[x]$$

$$(d) \quad [xy] = [x][y]$$

(e)
$$\left[\frac{x}{2}\right] = \left[\frac{x+1}{2}\right]$$

$$(f) \quad \left[\frac{\lceil x/2 \rceil}{2}\right] = \left[\frac{x}{4}\right]$$

(g) $[x] + [y] + [x + y] \le [2x] + [2y]$

24. Prove that if x is a positive real number, then

$$(a) \left| \sqrt{\lfloor x \rfloor} \right| = \left\lfloor \sqrt{x} \right\rfloor$$

$$(b) \left[\sqrt{\lceil x \rceil} \right] = \left[\sqrt{x} \right].$$

In these examples, square roots of floor and ceiling functions are involved. So, instead of assuming $x = n + \varepsilon$, we will represent x as $x = n^2 + m + \varepsilon$, where n^2 is the nearest perfect square less than or equal to x. For example, 12.2 can be written as $12 = 9 + 3 + \varepsilon$. Proof of (a):

Let $x = n^2 + m + \varepsilon$. Then $\lfloor x \rfloor = n^2 + m$.

So,
$$n \le \sqrt{|x|} < n + 1$$
. (*Why*?)

$$\therefore L.H.S. = \left|\sqrt{|x|}\right| = n.$$

Also,
$$n \le \sqrt{x} < n + 1$$
. (Why?)

$$\therefore R.H.S. = \left\lfloor \sqrt{x} \right\rfloor = n.$$

Thus,
$$(a)$$
 is proved.

In a similar way, try to prove the second.

- 25. Let a and b be real numbers with a < b. Use the floor and/or ceiling functions to express the number of integers n that satisfy the inequality $a \le n \le b$.
- **26.** Suppose that f is an invertible function from Y to Z and g is an invertible function from X to Y. Show that the inverse of the composition $f \circ g$ is given by $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

27. Let *S* be subset of a universal set *U*. The characteristic function f_S of *S* is the function from *U* to the set $\{0, 1\}$ such that $f_S(x) = 1$ if *x* belongs to *S* and $f_S(x) = 0$ if *x* does not belong to *S*. Let *A* and *B* be sets. Show that for all *x*,

$$(a) f_{A \cap B}(x) = f_A(x) \cdot f_B(x)$$

(b)
$$f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$$

$$(c) f_{\bar{A}}(x) = 1 - f_A(x)$$

(d)
$$f_{A \oplus B}(x) = f_A(x) + f_B(x) - 2f_A(x) \cdot f_B(x)$$