TABLE DES MATIÈRES

1	Modele de Lieb-Liniger et approche Dethe Ansatz	J
1	Introduction au gaz de bosons unidimensionnels 1.1 Description du modèle de Lieb-Liniger	
2	Bethe Ansatz et solution exacte du modèle de Lieb-Liniger 2.1 Problème à deux corps	
II	Relaxation des systèmes quantiques isolés et phénomènes d'équilibre	11
3	Équilibre thermique et ensemble de Gibbs : chaos quantique 3.1 Thermodynamique du gaz de Lieb-Liniger à température nulle 3.2 Excitations élémentaires à température nulle 3.3 Physique statistique de l'ensemble de Gibbs 3.4 Chaos quantique et brisure de l'intégrabilité 3.5 Entropie de Yang-Yang et principe de maximisation	13 13 14
4	Équilibre non thermique et ensemble de Gibbs généralisé : ergodicité 4.1 Intégrabilité et charges conservées 4.2 Dynamique hors équilibre et relaxation des systèmes isolés 4.3 Physique statistique appliquée aux systèmes intégrables 4.4 Entropie de Yang-Yang généralisée	15
II	I Dynamique hors-équilibre et hydrodynamique généralisée	19
5	Hydrodynamique et régimes asymptotiques 5.1 Hydrodynamique classique des systèmes chaotiques	21

6	Fluctuations et corrections à l'hydrodynamique généralisée			
	6.1	Fluctuations de la distribution de rapidité	23	
	6.2	Ordre 2 des corrections et rôle de l'entropie de Yang-Yang	25	
	6.3	Confrontation entre hydrodynamique classique et hydrodynamique généralisée	25	

Première partie

Modèle de Lieb-Liniger et approche Bethe Ansatz

Pourquoi en 1D?

Explication classique à l'aide d'un modèle chaotique : la thermalisation en 2D, illustrée par l'exemple de l'eau en ébullition, avec comme paramètres T, E, N. Modélisation par des sphères dures et introduction du modèle ergodique : en 1D, l'intégrabilité du modèle de sphères dures dans un espace réduit entraîne un simple échange de vitesses, sans modifier la distribution des vitesses.

Pourquoi en 1D quantique?

Le gaz de Bose unidimensionnel avec interactions ponctuelles (la version quantique de l'équation de Schrödinger non linéaire) est l'un des modèles intégrables les plus fondamentaux, pouvant être résolu par la méthode de l'Ansatz de Bethe (ref). Ce modèle a fait l'objet d'études approfondies (ref).

Après avoir décrit le modèle de Lieb-Liniger et analysé ses asymptotiques ainsi que les théories linéarisées (Gross-Pitaevskii et Bogoliubov) dans le chapitre 1, nous poursuivons par la construction des fonctions propres de l'Hamiltonien dans un volume fini.

Cette construction, détaillée dans le chapitre 2, met en évidence la forme explicite des fonctions propres et leur réductibilité au cas à deux particules, une caractéristique commune des modèles résolubles par l'Ansatz de Bethe. Enfin, dans la dernière section, nous imposons des conditions aux limites périodiques à

1

INTRODUCTION AU GAZ DE BOSONS UNIDIMENSIONNELS

Contents

1.1	Description du modèle de Lieb-Liniger	7
1.2	Propriétés fondamentales et régimes asymptotiques	8
1.3	Théorie linéarisée pour le régime de quasi-condensat	8

Introduction

1.1 Description du modèle de Lieb-Liniger

Le gaz de Bose unidimensionnel est décrit par les operateurs champs quantiques de Bose canoniques d'annihilation $\Psi(x,t)$ et de création $\Psi^\dagger(x,t)$, satisfaisant les relations de commutation canoniques à temps égal $\left[\hat{\Psi}(x,t),\hat{\Psi}^\dagger(y,t)\right]=\delta(x-y)$ et $\left[\hat{\Psi}(x,t),\hat{\Psi}(y,t)\right]=\left[\hat{\Psi}^\dagger(x,t),\hat{\Psi}^\dagger(y,t)\right]=0$.

L'Hamiltonien du modèle s'écrit

$$\hat{\boldsymbol{H}} = \int dx \left(\frac{\hbar^2}{2m} \partial_x \hat{\boldsymbol{\Psi}}^{\dagger} \partial_x \hat{\boldsymbol{\Psi}} + \frac{g}{2} \hat{\boldsymbol{\Psi}}^{\dagger} \hat{\boldsymbol{\Psi}}^{\dagger} \hat{\boldsymbol{\Psi}} \hat{\boldsymbol{\Psi}} \right)$$

où m est la masse de la particule g est la constante de couplage 1D. L'équation du mouvement correspondante

$$i\hbar\partial_t\hat{\Psi} = -\frac{\hbar^2}{2m}\partial_x^2\hat{\Psi} + g\hat{\Psi}^{\dagger}\hat{\Psi}\hat{\Psi}$$

est l'équation de Schrödinger non linéaire (NS).

Les interraction entre particules sont répulsif donc g > 0. l'état fondamental à température nulle est une sphère de Fermi, et seul ce cas sera considéré par la suite.

Le vide de Fock $|0\rangle$ est défini par $\Psi|0\rangle = 0$

Enfin, les opérateurs nombre de particules \hat{Q} et impulsion \hat{P} s'écrivent :

$$\hat{\mathbf{Q}} = \int dx \,\hat{\mathbf{\Psi}}^{\dagger} \hat{\mathbf{\Psi}}$$

$$\hat{\mathbf{P}} = \frac{1}{2} \int dx \,\hat{\mathbf{\Psi}}^{\dagger} (-i\hbar \partial_x) \hat{\mathbf{\Psi}} + cc$$

Ces opérateurs sont hermitiens et constituent des intégrales du mouvement $[\hat{H}, \hat{Q}] = [\hat{H}, \hat{P}] = 0$. Nous pouvons maintenant chercher les fonctions propres communes $|\Psi_N\rangle$ des opérateurs \hat{H}, \hat{P} et \hat{Q} :

$$|\Psi_N(\theta_1,\cdots,\theta_N)\rangle = \frac{1}{\sqrt{N!}} \int d^N x \, \varphi_N(x_1,\cdots,x_N|\theta_1,\cdots,\theta_N) \, \hat{\mathbf{\Psi}}^{\dagger}(x_1)\cdots\hat{\mathbf{\Psi}}^{\dagger}(x_N)|0\rangle$$

Ici, φ_N est une fonction symétrique de toutes les variables x_j . Les équations aux valeurs propres sont $\hat{\boldsymbol{H}}|\Psi_N\rangle = E_N|\Psi_N\rangle$, $\hat{\boldsymbol{P}}|\Psi_N\rangle = p_N|\Psi_N\rangle$ et $\hat{\boldsymbol{Q}}|\Psi_N\rangle = N|\Psi_N\rangle$.

Il en résulte que φ_N est une fonction propre à la fois de l'Hamiltonien quantique de Lieb et Liniger (LL)

$$\begin{array}{rcl} H_{LL} & = & \displaystyle\sum_{i=1}^{N} \left\{ -\frac{\hbar^2}{2m} \partial_{x_i}^2 + g \sum_{j>i} \delta(x_i - x_j) \right\} \\ H_{LL} \varphi_N & = & E_N \varphi_N \end{array}$$

et de l'opérateur de moment quantique $P_N = -i\hbar \sum_{i=1}^N \partial_{x_i} \; :$

- 1.2 Propriétés fondamentales et régimes asymptotiques
- 1.3 Théorie linéarisée pour le régime de quasi-condensat

2

BETHE ANSATZ ET SOLUTION EXACTE DU MODÈLE DE LIEB-LINIGER

Contents

2.1	Problème à deux corps	9
2.2	Problème à N corps	9
2.3	Condition aux bords périodiques et équation de Bethe Ansatz	9

- 2.1 Problème à deux corps
- 2.2 Problème à N corps
- 2.3 Condition aux bords périodiques et équation de Bethe Ansatz

$$L\theta_a + \sum_{b=1}^{N} \Phi(\theta_a - \theta_b) = 2\pi I_a$$

$$2\pi \rho_s(\theta_a) = \frac{2\pi}{L} \lim_{\text{therm}} \frac{|I_{a+1} - I_a|}{|\theta_{a+1} - \theta_a|} = \frac{2\pi}{L} \frac{\partial I}{\partial \theta}(\theta_a) = 1 + \frac{1}{L} \sum_{b=1}^{N} \Delta(\theta_a - \theta_b)$$

Deuxième partie

Relaxation des systèmes quantiques isolés et phénomènes d'équilibre

3

ÉQUILIBRE THERMIQUE ET ENSEMBLE DE GIBBS : CHAOS QUANTIQUE

Contents

3.1	Thermodynamique du gaz de Lieb-Liniger à température nulle	13
3.2	Excitations élémentaires à température nulle	13
3.3	Physique statistique de l'ensemble de Gibbs	13
3.4	Chaos quantique et brisure de l'intégrabilité	14
3.5	Entropie de Yang-Yang et principe de maximisation	14

3.1 Thermodynamique du gaz de Lieb-Liniger à température nulle

Dans la limite thermodynamique, le nombre de particules N et le volume (la longueur de la boîte) L tendent vers l'infini de sorte que leur rapport $D = \frac{N}{L}$ reste fini :

- 3.2 Excitations élémentaires à température nulle
- 3.3 Physique statistique de l'ensemble de Gibbs

On écrit l'observable énergie et nombre :

$$\hat{\mathcal{N}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N 1 \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \tag{3.1}$$

$$\hat{\mathcal{E}} = \sum_{\{\theta_a\}} \left(\sum_{a=1}^{N} \varepsilon(\theta_a) \right) |\{\theta_a\}\rangle \langle \{\theta_a\}|, \tag{3.2}$$

avec $\sum_{a=1}^{N} 1 \equiv \langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}} \doteq \langle \{\theta_a\} | \hat{\mathcal{N}} | \{\theta_a\} \rangle$ et $\sum_{a=1}^{N} \varepsilon(\theta_a) \equiv \langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} \doteq \langle \{\theta_a\} | \hat{\mathcal{E}} | \{\theta_a\} \rangle$. La probabilité que le système soit dans configuration $\{\theta_a\}$ est

$$P_{\{\theta_a\}} = \frac{e^{-\beta(\langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} - \mu \langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}})}}{Z_{thermal}} = \frac{e^{-\beta \sum_{a=1}^{N} (\varepsilon(\theta_a) - \mu)}}{Z_{thermal}}$$
(3.3)

avec la fonction de partition $Z_{thermal} = \sum_{\{\theta_a\}} e^{-\beta \left(\langle \hat{\pmb{\varepsilon}} \rangle_{\{\theta_a\}} - \mu \langle \hat{\pmb{\mathcal{N}}} \rangle_{\{\theta_a\}} \right)} = \sum_{\{\theta_a\}} e^{-\beta \sum_{a=1}^{N} (\varepsilon(\theta_a) - \mu)}$

$$\langle \hat{\mathcal{N}} \rangle = \frac{1}{\beta} \frac{\partial \ln Z}{\partial \mu} \Big|_{T}, \qquad \Delta_{\hat{\mathcal{N}}}^{2} = \frac{1}{\beta^{2}} \frac{\partial^{2} \ln Z}{\partial \mu^{2}} \Big|_{T} = \frac{1}{\beta} \frac{\partial \langle \hat{\mathcal{N}} \rangle}{\partial \mu} \Big|_{T}$$
(3.4)

$$\langle \hat{\mathcal{E}} - \mu \hat{\mathcal{N}} \rangle = -\frac{\partial \ln Z}{\partial \beta} \Big|_{\mu}, \qquad \Delta_{\hat{\mathcal{E}} - \mu \hat{\mathcal{N}}}^2 = \frac{\partial^2 \ln Z}{\partial \beta^2} \Big|_{\mu} = -\frac{\partial \langle \hat{\mathcal{E}} - \mu \hat{\mathcal{N}} \rangle}{\partial \beta} \Big|_{\mu}$$
(3.5)

$$\langle \hat{\boldsymbol{\mathcal{E}}} \rangle = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T} - \frac{\partial}{\partial \beta} \Big|_{\mu} \ln Z, \qquad \Delta_{\hat{\boldsymbol{\mathcal{E}}}}^{2} = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T} - \frac{\partial}{\partial \beta} \Big|_{\mu} \right]^{2} \ln Z = \left[\frac{\mu}{\beta} \frac{\partial}{\partial \mu} \right]_{T} - \frac{\partial}{\partial \beta} \Big|_{\mu} \langle \hat{\boldsymbol{\mathcal{E}}} \rangle$$
(3.6)

La matrice densité thermique est :

$$\hat{\rho}_{thermal} = \frac{e^{-\beta \hat{H}}}{Z_{thermal}},\tag{3.7}$$

$$\hat{\boldsymbol{\rho}}_{thermal} = \frac{e^{-\beta \hat{\boldsymbol{H}}}}{Z_{thermal}}, \qquad (3.7)$$

$$e^{-\beta \hat{\boldsymbol{H}}} = \sum_{\{\theta_a\}} e^{-\beta \sum_{a=1}^{N} (\varepsilon(\theta_a) - \mu)} |\{\theta_a\}\rangle \langle \{\theta_a\}| \qquad (3.8)$$

Chaos quantique et brisure de l'intégrabilité 3.4

3.5 Entropie de Yang-Yang et principe de maximisation

4

ÉQUILIBRE NON THERMIQUE ET ENSEMBLE DE GIBBS GÉNÉRALISÉ : ERGODICITÉ

Contents

4.1	Intégrabilité et charges conservées	15
4.2	Dynamique hors équilibre et relaxation des systèmes isolés	15
4.3	Physique statistique appliquée aux systèmes intégrables	15
4.4	Entropie de Yang-Yang généralisée	17

- 4.1 Intégrabilité et charges conservées
- 4.2 Dynamique hors équilibre et relaxation des systèmes isolés
- 4.3 Physique statistique appliquée aux systèmes intégrables

On peut commence à généraliser avec l'opérateur :

$$\hat{\mathcal{O}}_i = \sum_{\{\theta_a\}} \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} |\{\theta_a\}\rangle \langle \{\theta_a\}| \tag{4.1}$$

 $\hat{\mathcal{O}}_i \in \{\hat{\mathcal{N}}, \hat{\mathcal{E}} - \mu \hat{\mathcal{N}}\}\$ tel que $\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} = \beta \left(\langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} - \mu \langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}} \right)$ et pour simplifier ici $Z \equiv Z_{thermal}$:

Point clé n° 1. Sa moyenne, variance et équartype de l'observable :

$$\langle \hat{\mathcal{O}}_i \rangle = \sum_{\{\theta_a\}} \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} \underbrace{\frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z}}_{= -\frac{1}{Z} \frac{\partial Z}{\partial \beta_i} \Big)_{\beta_{j \neq i}} = -\frac{\partial \ln Z}{\partial \beta_i} \Big)_{\beta_{j \neq i}}$$
(4.2)

$$\langle \hat{\mathcal{O}}_i^2 \rangle \quad = \quad \sum_{\{\theta_a\}} \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}^2 \frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z} = \frac{1}{Z} \frac{\partial^2 Z}{\partial {\beta_i}^2} \bigg)_{\beta_{j \neq i}}$$

$$\Delta_{\hat{\mathcal{O}}_{i}}^{2} = \left\langle \left(\hat{\mathcal{O}}_{i} - \langle \hat{\mathcal{O}}_{i} \rangle \right)^{2} \right\rangle = \left\langle \hat{\mathcal{O}}_{i}^{2} \right\rangle - \left\langle \hat{\mathcal{O}}_{i} \right\rangle^{2} = \frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta_{i}^{2}} \Big)_{\beta_{j \neq i}} - \left(\frac{1}{Z} \frac{\partial Z}{\partial \beta_{i}} \right)_{\beta_{j \neq i}} \right)^{2}$$

$$(4.3)$$

$$= \frac{\partial}{\partial \beta_i} \left(\frac{1}{Z} \frac{\partial Z}{\partial \beta_i} \right)_{\beta_{j \neq i}} = \frac{\partial^2 \ln Z}{\partial {\beta_i}^2} \Big)_{\beta_{j \neq i}} = -\frac{\partial \langle \hat{\mathcal{O}}_i \rangle}{\partial \beta_i} \Big)_{\beta_{j \neq i}}$$
(4.4)

si $\hat{\mathcal{O}}_i = \hat{\mathcal{N}}$ alors $\beta_i = -\beta \mu$ et si $\hat{\mathcal{O}}_i = \hat{\mathcal{E}} - \mu \hat{\mathcal{N}}$ alors $\beta_i = \beta$.

$$\langle \hat{\mathcal{O}}_i \rangle = \sum_{\{\theta_a\}} \langle \{\theta_a\} | \hat{\mathcal{O}}_i | \{\theta_a\} \rangle \frac{e^{-\sum_i \beta_i \langle \mathcal{O}_i \rangle_{\{\theta_a\}}}}{Z}, \tag{4.5}$$

$$= \sum_{\{\theta_b\}} \langle \{\theta_b\} | \hat{\mathcal{O}}_i \sum_{\{\theta_a\}} \frac{e^{-\sum_i \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}}}{Z} | \{\theta_a\} \rangle \langle \{\theta_a\} | \{\theta_b\} \rangle, \tag{4.6}$$

$$= Tr(\hat{\mathcal{O}}_i\hat{\boldsymbol{\rho}}) \tag{4.7}$$

avec $\hat{\boldsymbol{\rho}} = \sum_{\{\theta_a\}} \frac{e^{-\sum_i \beta_i \langle \hat{\boldsymbol{O}}_i \rangle_{\{\theta_a\}}}}{Z} |\{\theta_a\}\rangle \langle \{\theta_a\}| \text{ et } Z = \sum_{\{\theta_a\}} e^{-\sum_i \beta_i \langle \hat{\boldsymbol{O}}_i \rangle_{\{\theta_a\}}} \text{ tel que } Tr(\hat{\boldsymbol{\rho}}) = 1$

La matrice densité GGE avec $Z \equiv Z_{GGE}$ est :

$$\hat{\boldsymbol{\rho}}_{GGE}[f] = \sum_{\{\theta_a\}} \frac{e^{-\sum_{i=1}^{\infty} \beta_i \langle \hat{\boldsymbol{O}}_i \rangle_{\{\theta_a\}}}}{Z} |\{\theta_a\}\rangle \langle \{\theta_a\}|. \tag{4.8}$$

Dans le cas thermique, on peut remarquer que $\langle \hat{\mathcal{N}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^0$ et $\langle \hat{\mathcal{E}} \rangle_{\{\theta_a\}} \propto \sum_{a=1}^N \theta_a^2$. On peut donc réécrire $\sum_{i=1}^\infty \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}}$

$$\sum_{i=1}^{\infty} \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} = \sum_{i=0}^{\infty} \alpha_i \sum_{a=1}^{N} \theta_a^i$$
(4.9)

et pour chaque $a \in [1, N]$: $\sum_i \alpha_i \theta_a^i$ converge donc on peut échanger les deux sommes soit

$$\sum_{i=1}^{\infty} \beta_i \langle \hat{\mathcal{O}}_i \rangle_{\{\theta_a\}} = \sum_{a=1}^{N} f(\theta_a) \tag{4.10}$$

avec $f(\theta) = \sum_{i=0}^{\infty} \alpha_i \theta^i$. Et on peut réecrire la matrice densité :

$$\hat{\boldsymbol{\rho}}_{GGE}[f] = \frac{e^{-\hat{\boldsymbol{Q}}[f]}}{Z_{GGE}},\tag{4.11}$$

$$e^{-\hat{\mathbf{Q}}[f]} = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N f(\theta_a)} |\{\theta_a\}\rangle \langle \{\theta_a\}|$$

$$(4.12)$$

pour une certaine fonction f relié à la charge $\hat{\boldsymbol{Q}}[f] = \sum_{\{\theta_a\}} \left(\sum_{a=1}^N f(\theta_a)\right) |\{\theta_a\}\rangle \langle \{\theta_a\}|$. Et on peut réecrire la probabilité de la configuration $\{\theta_a\}: P_{\{\theta_a\}} = \langle \{\theta_a\}|\hat{\boldsymbol{\rho}}_{GGE}[f]|\{\theta_a\}\rangle = e^{-\sum_{a=1}^N f(\theta_a)} \ /Z$ avec $Z = \sum_{\{\theta_a\}} e^{-\sum_{a=1}^N f(\theta_a)}$.

Nous aimerions calculer les valeurs d'attente par rapport à cette matrice de densité, par exemple La moyenne GGE d'un observable s'écrit ,

Point clé n° 2.

$$\langle \hat{\mathcal{O}} \rangle_{GGE} \doteq \frac{\operatorname{Tr}(\hat{\mathcal{O}}\hat{\boldsymbol{\rho}}_{GGE}[f])}{\operatorname{Tr}(\hat{\boldsymbol{\rho}}_{GGE}[f])} = \frac{\operatorname{Tr}(\hat{\mathcal{O}}e^{-\hat{\boldsymbol{Q}}[f]})}{\operatorname{Tr}(e^{-\hat{\boldsymbol{Q}}[f]})} = \frac{\sum_{\{\theta_a\}} \langle \{\theta_a\} | \hat{\mathcal{O}} | \{\theta_a\} \rangle e^{-\sum_{a=1}^{N} f(\theta_a)}}{\sum_{\{\theta_a\}} e^{-\sum_{a=1}^{N} f(\theta_a)}}$$
(4.13)

pour une certaine observable $\hat{\mathcal{O}}$.

4.4 Entropie de Yang-Yang généralisée

Troisième partie

Dynamique hors-équilibre et hydrodynamique généralisée

 \ddot{c}

HYDRODYNAMIQUE ET RÉGIMES ASYMPTOTIQUES

Cont	ents		
	5.1	Hydrodynamique classique des systèmes chaotiques	21
	5.2	Hydrodynamique des systèmes intégrables et distribution de rapidité	21
	5.3	Équation d'hydrodynamique généralisée (GHD)	21
5.1	$\mathbf{H}\mathbf{y}$	drodynamique classique des systèmes chaotiques	
5.2	$\mathbf{H}\mathbf{y}$	drodynamique des systèmes intégrables et distribution de rapid	ité
5.3	Équ	uation d'hydrodynamique généralisée (GHD)	

6

FLUCTUATIONS ET CORRECTIONS À L'HYDRODYNAMIQUE GÉNÉRALISÉE

Contents

6.1	Fluctuations de la distribution de rapidité	23
6.2	Ordre 2 des corrections et rôle de l'entropie de Yang-Yang	25
6.3	Confrontation entre hydrodynamique classique et hydrodynamique généralisée	25

6.1 Fluctuations de la distribution de rapidité

Dans ce chapitre, nous nous intéressons aux fluctuations de la distribution de rapidité $\delta\Pi$ autour d'une distribution de référence Π^c , qui maximise la contribution à la fonction de partition des états, exprimée comme une fonctionnelle de la distribution Π :

$$\mathcal{Z} = \sum_{\Pi} \exp(-\mathcal{A}(\Pi)).$$

Dans la section Entropie de Yang-Yang (??), l'action $\mathcal{A}(\Pi)$ s'écrit sous la forme :

$$\mathcal{A}(\Pi) \doteq -\mathcal{S}_{YY}(\Pi) + \int f(\theta)\Pi(\theta) d\theta,$$

où S_{YY} est la fonctionnelle d'entropie de Yang-Yang, définie dans (??), et f est la fonction paramétrant les charges, introduite dans (??).

Dans cette même section Entropie de Yang-Yang (??), nous avons établi un lien entre f et Π^c .

Nous poursuivons à présent avec cette définition de l'action de classe C^2 et admetant une distribution critique Π^c tel que sa différentielle en ce point critique soit nulle $d\mathcal{A}_{\Pi^c} = 0$ (??) de sorte que d'aprés la formule de Taylor-Youg

$$\mathcal{A}(\Pi^c + \delta \Pi) \quad \mathop{=}_{\delta \Pi \to 0} \quad \mathcal{A}(\Pi^c) + \frac{1}{2} \left. \frac{\delta^2 \mathcal{A}}{\delta \Pi^2} \right|_{\Pi^c} (\delta \Pi)^2 + \mathcal{O}((\delta \Pi)^3),$$

une expression quadratique pour l'action à l'ordre dominant en $\delta\Pi$ avec $\left.\frac{\delta^2 \mathcal{A}}{\delta\Pi^2}\right|_{\Pi^c}$ la forme quadratique définie positive (Fig (??)).

On discrétise l'axe des rapidités en petite cellule de rapidité $[\theta, \theta + \delta\theta]$, qui contient $\Pi(\theta)\delta\theta$ rapidités. Avec ces petites tranches, la forme quadratique s'écrit :

$$\left. \frac{\delta^2 \mathcal{A}}{\delta \Pi^2} \right|_{\Pi^c} (\delta \Pi) \quad = \quad \sum_{a,b \mid \text{tranche}} \delta \Pi(\theta_a) \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta_a) \partial \delta \Pi(\theta_b)} (\Pi^c) \delta \Pi(\theta_b).$$

Les fluctuations s'écrivent donc :

$$\begin{split} \langle \delta \Pi(\theta) \delta \Pi(\theta') \rangle &= \frac{\int d\delta \Pi \, \delta \Pi(\theta) \delta \Pi(\theta') \exp\left(-\frac{1}{2} \sum_{a,b \mid \text{tranche}} \delta \Pi(\theta_a) \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta_a) \partial \delta \Pi(\theta_b)} (\Pi^c) \delta \Pi(\theta_b)\right)}{\int d\delta \Pi \exp\left(-\frac{1}{2} \sum_{a,b \mid \text{tranche}} \delta \Pi(\theta_a) \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta_a) \partial \delta \Pi(\theta_b)} (\Pi^c) \delta \Pi(\theta_b)\right)} \\ &= \left(\mathbf{A}^{-1}\right)_{\theta,\theta'} \end{split}$$

La matrice hessienne $\mathbf{A}_{\theta,\theta'} \equiv \frac{\partial^2 \mathcal{A}}{\partial \delta \Pi(\theta) \partial \delta \Pi(\theta')} (\Pi^c)$, au point critique Π^c , s'écrit

$$\hat{A} = \hat{A}^{(0)} + \delta\theta\hat{V}$$

avec

$$\begin{array}{lcl} A_{\theta,\theta'}^{(0)} & = & \left(\frac{\left(\Pi^{c}/\Pi_{s}^{c}\right)^{-1}}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta)\delta\theta\delta_{\theta,\theta'}, \\ V_{\theta,\theta'} & = & \left\{-\left[\left(\frac{1}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta)+\left(\frac{1}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta')\right]\frac{\Delta(\theta'-\theta)}{2\pi}+\int d\theta''\left(\frac{\Pi^{c}/\Pi_{s}^{c}}{\Pi_{s}^{c}-\Pi^{c}}\right)(\theta'')\frac{\Delta(\theta''-\theta)}{2\pi}\frac{\Delta(\theta''-\theta')}{2\pi}\right\} \ \delta\theta \end{array}$$

Point clé n° 3. Donc une a l'ordre un en $\delta\theta(\hat{A}^{(0)})^{-1}\hat{V}$

$$\langle \delta \Pi(\theta) \delta \Pi(\theta') \rangle = ((\Pi_s^c - \Pi^c) \Pi^c / \Pi_s^c)(\theta) \delta_{\theta,\theta'} / \delta \theta + \mathscr{F}(\theta,\theta'),$$

avec

$$\begin{split} \mathscr{F}(\theta,\theta') &= \left[(\Pi_s^c - \Pi^c)(\theta) + (\Pi_s^c - \Pi^c)(\theta') \right] \frac{\Pi^c}{\Pi_s^c}(\theta) \frac{\Pi^c}{\Pi_s^c}(\theta') \frac{\Delta(\theta' - \theta)}{2\pi} \\ &- \left[(\Pi_s^c - \Pi^c)(\theta)(\Pi_s^c - \Pi^c)(\theta') \right] \frac{\Pi^c}{\Pi_s^c}(\theta) \frac{\Pi^c}{\Pi_s^c}(\theta') \int d\theta'' \left(\frac{\Pi^c/\Pi_s^c}{\Pi_s^c - \Pi^c} \right) (\theta'') \frac{\Delta(\theta'' - \theta)}{2\pi} \frac{\Delta(\theta'' - \theta')}{2\pi} \end{split}$$

- 6.2 Ordre 2 des corrections et rôle de l'entropie de Yang-Yang
- 6.3 Confrontation entre hydrodynamique classique et hydrodynamique généralisée