1 2 3 4 5 6 7 8 9 10 11 12 Σ

Doplňte místo otazníku ten ze symbolů, aby platil vztah (lq n) / n = $?(1/\sqrt{n})$:

- a) (
- b) O (a současně nelze použít ani o ani Θ)
- c) Θ
- d) Ω (a současně nelze použít ani Θ ani ω)
- e) ω

Algoritmy A i B provedou jeden průchod polem s n prvky. Při zpracování prvku na pozici k provede algoritmus A přesně k operací, algoritmus B přesně k+n operací. Nechť f(n), resp. g(n) je funkce vyjadřující operační složitost algoritmu A, resp. B. Určete, jaký asymptotický vztah platí mezi f(n) a g(n).

- a) f(n) ∉ O(g(n))
- b) $f(n) \in o(g(n))$
- c) $\frac{f(n) = \Theta(g(n))}{f(n)}$
- d) g(n) = o(f(n))

Nechť A, B, C jsou nějaké množiny. Pokud je to možné, dosaďte za otazník z nabídky operací takovou aby platila rovnost A - (B - C) = (A - B)? C.

- a) -
- b) ∪
- c) ∩
- d) rovnost neplatí pro žádnou volbu operace

⁴ Nechť A, B, C jsou nějaké množiny a platí A ⊆ B. Které z následujících tvrzení platí?

- a) $A \cap B \cap C = B \cap C$
- b) $A \cup B \cup C = A \cup C$
- c) $A \cap B \cap C = (A \cap B) \cup C$
- d) $A \cap B \cap C = A \cap C$
- e) neplatí žádná z uvedených rovností

Určete, které z následujících zobrazení je prosté (injektivní).

- a) $f(n) = (n^2, n^2 + 2n)$ ze Z do Z x Z
- b) $f(m, n) = (m^2, mn)$ ze $Z \times Z$ do $Z \times Z$
- c) f(m, n) = 2m n ze $Z \times Z$ do Z
- d) f(m, n) = m + n + 13 ze $Z \times Z$ do Z

Uvažujme zobrazení f(n)= n+1 (mod m) na množině X={0,1,2,...,m-1}. Určete hodnotu f⁻³(2) (f⁻³ je třikrát složené inverzní zobrazení f⁻¹, tedy f⁻¹ °f -1).

- a) 0,
- b) m,
- c) 1,
- d) m-1,
- e) žádná z uvedených

7	Určete, kterou maximální kombinaci vlastností má prázdná relace $O_X = \emptyset$ na neprázdné množině X. a) RE, SY, TR b) RE, ANS, TR c) AS, TR, IR d) RE, SY
8	Mějme neprázdnou množinu A, kde A = n. Kolik existuje binárních relací na množině A, které jsou symetrické a zároveň antisymetrické?
	a) 0 b) 1 c) n d) n.n e) <mark>2^n</mark>
9	Uvažujme binární relaci $R = \{(a,b), (b,a)\}$ na množině $X = \{a,b,c\}$. Určete, která z následujících relací je ekvivalencí na X .
	a) R \cup R ⁻¹ b) R ⁺ c) $R \cup \Delta_X$ d) žádná z uvedených
10	Uvažujme binární relaci $R = \{(a,b), (b,c)\}$ na množině $X = \{a,b,c\}$. Určete, která z následujících relací je částečným uspořádáním na X .
	a) R \cup R ⁻¹ b) R ⁺ c) $R^+ \cup \Delta_X$ d) žádná z uvedených
11	Máme čtyři muže a tři ženy. Kolika způsoby z nich lze vybrat smíšený tříčlenný tým (tj. v týmu musí být zastoupeni ženy i muži)?
	a) 30, b) 35, c) 36, d) 60 e) 343
12	Pan Novák nemá rád stereotyp. Cestu od recepce do své kanceláře v pátém patře si snaží každý den zpestřit jinou trasou. Kolik má možností tras v případě, že v budově jsou dvě schodiště a recepce se nachází v přízemí, tedy v nultém patře?
	a) 16 b) 32 c) 25 d) 10 e) 20

2

3

1

1

7

8

6

Doplňte místo otazníku ten ze symbolů, aby platil vztah $2^{2n} = ?(4^n)$:

5

- b) O(a současně nelze použít ani o ani Θ)

4

- c) Θ
- d) Ω (a současně nelze použít ani Θ ani ω)
- e) ω
- Algoritmus A provede jeden průchod polem s n prvky. Při zpracování prvku na pozici k provede k+n 2 operací. Operační (=asymptotická) složitost algoritmu A je tedy
 - a) $\Theta(k+n)$
- b) Θ((*k*+*n*)•*n*)
- c) $\Theta(k^2+n)$

9

10

d) $\Theta(n^2)$ e) $\Theta(n^3)$

11

12

Σ

- 3 Nechť A, B, C jsou nějaké množiny. Pokud je to možné, dosaďte za otazník z nabídky operací takovou aby platila rovnost (A - B)? (B - C) = A - C.
 - a) —
- b) ∪
- c) (
- d) rovnost neplatí pro žádnou volbu operace
- 4 Nechť A, B jsou nějaké množiny a platí A ⊆ B. Které z následujících tvrzení nemusí vždy platit?
 - a) $|A \cup B| \le |A| + |B|$ b) $|A \cup B| \ge |A|$ c) $|A \cup B| \le |B|$
- d) $A \cap B \neq \emptyset$ e) $A B = \emptyset$

- 5 Určete, které z následujících zobrazení je na (surjektivní).
 - a) $f(n) = n^2 + 1$ ze Z do Z
 - b) $f(n) = (-1)^n . n z N do Z$
 - c) f(m, n) = (m + n, m n) ze $Z \times Z$ do $Z \times Z$
 - d) $f(m, n) = m n z N \times N do Z$
- 6 Nechť f je zobrazení množiny celých čísel Z do množiny $X = \{0, 1, 2, 3\}$ definované výrazem f(n) = nmod 3 + 1. Které z následujících tvrzení platí?
 - a) zobrazení f je surjektivní, ale není injektivní
 - b) zobrazení f není surjektivní, ani není injektivní
 - c) zobrazení f je bijektivní
 - d) zobrazení f není surjektivní, ale je injektivní

7	Určete, kterou kombina	ici vlastností m	ná identická rela	ace Δ_{X} na neprázdr	né množině X.
	a) RE, AS, TR	b) RE, ANS,	TR c) AS	S, TR, IR	i) TR, AS, ANS
8			۱ = n. Kolik ex	istuje binárních rela	ací na množině A, které jsou
	symetrické a zároveň a	•			
	a) 0 b) 1	c) n	d) n.n	e) 2^n	
_					
9		$i R = \{(a,b), (b, a,b)\}$,c)} na množinė	$\dot{e} X = \{a,b,c\}.$ Určete	e, která z následujících relací je
	ekvivalencí na X.				
	a) $R \cup R^{-1}$	b) R ⁺	c) R $\cup \Delta_X$	d) <mark>žádná z u</mark>	<mark>ivedených</mark>
10					
10			,c)} na množinė	$e^{X} = \{a,b,c\}.$ Určete	e, která z následujících relací je
	částečným uspořádání	ш па ∧. Ы D ⁺	o) D+ A	d) D A	e) žádná z uvedených
	a) K O K	b) IX	$C) \times \Delta X$	a) $R \cup \Delta \chi$	e) zadna z dvedenych
11	Máma štuři muža a tři ž	iony Koliko zn	ůooby z piob lz	a vyhrat dva amíša	ná námi (nořadí námů nobroje
	roli)?	eriy. Kolika zp	usoby z nich iz	e vybrat dva smise	né páry (pořadí párů nehraje
	II	c) 36,	d) 60,	e) 66	
	2, 22,	-,,	-,,	-,	
12	Do tanečního kroužku s	se přihlásilo 5	chlapců a 5 dě	včat. Kolika znůsoh	v ie z nich možné vytvořit
12	Do tanečního kroužku s skupinu tří smíšených p				y je z nich možné vytvořit
12		párů, které spo		le tancovat.	y je z nich možné vytvořit
12	skupinu tří smíšených p	párů, které spo	lu budou nadá	le tancovat.	
12	skupinu tří smíšených p	párů, které spo	lu budou nadá	le tancovat.	
12	skupinu tří smíšených p	párů, které spo	lu budou nadá	le tancovat.	
12	skupinu tří smíšených p	párů, které spo	lu budou nadá	le tancovat.	

2

1

7

8

9

10

6

- Doplňte místo otazníku ten ze symbolů, aby platil vztah $n^2 = ?(log_2 n^8)$:

 - b) O (a současně nelze použít ani o ani Θ)

4

- c) Θ
- d) Ω (a současně nelze použít ani Θ ani ω)
- e) ω
- Právě jeden z následujících vztahů je nepravdivý. Označte jej.

5

a) $n \cdot \log_2(n) \in O(n^2 - n)$

3

- b) $n \cdot \log_2(n) \in O(n^2 \log_2(n))$
- c) $n \cdot \log_2(n) \in \Omega(n^2 \log_2(n))$
- d) $n \cdot \log_2(n) \in \Omega(n + \log_2(n))$
- e) $n \cdot \log_2(n) \in \Theta(n \cdot \log_2(n^2))$
- 3 Nechť A, B, C jsou nějaké množiny. Pokud je to možné, dosaďte za otazník z nabídky operací takovou aby platila rovnost (A - B)? $(A - C) = A - (B \cup C)$.
 - a) —
- b) ∪
- c) 🔿
- d) rovnost neplatí pro žádnou volbu operace
- Nechť A, B jsou nějaké množiny. Které následujících tvrzení platí?
- a) $|A \cup B| = |A| + |B|$ b) $|A \cup B| < |A| + |B|$ c) $|A \cup B| > |A| + |B|$ d) $|A \cup B| \ge |A| + |B|$

11

12

Σ

- e) $|A \cup B| \le |A| + |B|$
- Určete, které z následujících zobrazení je na (surjektivní).
- a) $f(n) = n^3$ ze Z do Z b) $f(n) = (-1)^n$. n z N do Z c) $f(m, n) = m^2 n^2$ ze Z x Z do Z
- d) $f(x) = x^3$ z R do R
- 6 Nechť A, B, C jsou neprázdné konečné množiny. Nechť f: A → B a g: B → C jsou nějaká zobrazení. Pokud složené zobrazení f°g je injektivní, pak
 - a) f i g musí být injektivní
 - b) f musí být injektivní
 - c) g musí být injektivní
 - d) stačí, když |A| ≥|C|
 - e) ani f ani g nemusí být injektivní

7	Určete, kterou kombinaci vlastností má úplná relace $R = X \times X$ na neprázdné množině X.											
	a) RE, AS, TR		Y, TR c) I									
	. , ,	,	,	,	,							
8	Mějme neprázdno	ou množinu A, ko	de A = n. Kolik exis	tuje symetrických	binárních relací na množ	žině A?						
	a) n b) n	.n c) 2	^(n.n) d) <mark>2</mark>	^((n+1).n / 2)	e) (n+1).n / 2							
9	llyo≚uina a binámaí	rolosi D. (/o.b)	(b a) (a a)) na ma	o≚ină V (o b o)	llužoto litorá – págladují	ماماد						
,	relací je ekvivalen		, (b,c), (c,a)} na mn	$02 \text{ ine } X = \{a, b, c\}.$	Určete, která z následujío	cicn						
	•		a) D 4	ما\ ≚ذما	ná = uvadaných							
	a) K∪K	D) K	c) R $\cup \Delta_X$	d) 2ad	na z uvedenych							
10	Uvažujme binární	relaci R = {(a,b)	, (a,c)} na množině	X = {a,b,c}. Určet	e, která z následujících re	elací je						
	částečným uspořá	ádáním na X.	, , , ,		•	•						
	a) $R \cup R^{-1}$	b) R⁺	c) $R \cup \Delta_X$	d)	žádná z uvedených							
11												
11					těchto zvířat je jiné. Kolik	a						
		•	/ířata různého druh		\ 10							
	a) 24,	b) 30,	c) 33,	d) 36,	e) 48							
12	Vchodem do lože	proide pouze je	den člověk současn	ě. V kolika různý	ch pořadích mohou vstou	oit do						
12					ch pořadích mohou vstou ve poté, co tam je už její							
12	lože tři manželské	páry, když žena	a z každého páru vs	toupí do lože tep	ve poté, co tam je už její							
12												
12	lože tři manželské	páry, když žena	a z každého páru vs	toupí do lože tep	ve poté, co tam je už její							
12	lože tři manželské	páry, když žena	a z každého páru vs	toupí do lože tep	ve poté, co tam je už její							
12	lože tři manželské	páry, když žena	a z každého páru vs	toupí do lože tep	ve poté, co tam je už její							
12	lože tři manželské	páry, když žena	a z každého páru vs	toupí do lože tep	ve poté, co tam je už její							

1 2 3 4 5 6 8 9 10 11 12 Σ

Doplňte místo otazníku ten ze symbolů, aby platil vztah $2^{2n} = ?(3^n)$: 1

- b) O(a současně nelze použít ani o ani Θ)
- d) Ω (a současně nelze použít ani Θ ani ω)
- e) ω

2 Algoritmus A probírá postupně všechny prvky v dvourozměrném poli o velikosti $n \times n$ a s každým prvkem provádí další (nám neznámou) akci, jejíž složitost je $\Theta(\log_2(n))$. Celková asymptotická složitost algoritmu A je tedy

- a) $\Theta(n \cdot \log_2(n))$
- b) $\Theta(n^2)$ c) $\Theta(n^3)$
- d) $\Theta(n^2 + \log_2(n))$
- e) $\Theta(n^2 \cdot \log_2(n))$

3 Nechť A, B, C jsou nějaké množiny. Pokud je to možné, dosaďte za otazník z nabídky operací takovou aby platila rovnost (A - B)? $(A - C) = A - (B \cap C)$.

- a) –
- b) 😈
- c) ∩
- d) rovnost neplatí pro žádnou volbu operace

4 Nechť A, B jsou nějaké množiny. Pokud platí $(A - B) \subseteq B$, pak platí:

- a) $A \cap B = \emptyset$
- b) <mark>A ⊂ B</mark>
- c) $B \subset A$
- d) $B = \emptyset$
- e) Žádná z možností

5 Nechť A, B, C jsou neprázdné konečné množiny. Nechť f: $A \rightarrow B$ a g: $B \rightarrow C$ jsou nějaká zobrazení. Pokud složené zobrazení f°g je surjektivní, pak

- a) fig musí být surjektivní
- b) f musí být surjektivní
- c) g musí být surjektivní
- d) stačí, když |A| ≥|C|
- e) ani f ani g nemusí být surjektivní

6 Nechť A, B, C jsou neprázdné konečné množiny. Nechť f: $A \rightarrow B$ a g: $B \rightarrow C$ jsou nějaká bijektivní zobrazení. Které z následujících tvrzení platí?

- a) |A| < |C|
- b) |A| = |C|
- c) |A| > |C|
- d) $A \subset C$
- e) A = C

,	Určete, kterou maximální kombinaci vlastností má relace $\{(a,b), (b,c)\} \cup \Delta_X$ na množině $X = \{a,b,c\}$. a) RE, SY, TR b) RE, ANS, TR c) AS, TR, IR d) RE, ANS
8	Mějme neprázdnou množinu A, kde A = n. Kolik existuje reflexivních binárních relací na množině A? a) N b) 2^n c) 2^(n.(n-1) / 2) d) 2^((n-1).n) e) (n-1).n / 2
9	Uvažujme binární relaci R = {(a,b)} na množině X = {a,b,c}. Určete, která z následujících relací je částečným uspořádáním na X. a) R \cup R ⁻¹ b) R ⁺ c) R \cup Δ_X d) žádná z uvedených
10	Kolik existuje ekvivalencí na tříprvkové množině?
	a) 2 b) 4 c) <mark>5</mark> d) 6 e) 8
11	Prodejna domácích zvířat má šest psů, pět koček a čtyři morčata, zvířata stejného druhu považujeme za stejná. Kolika různými způsoby lze vybrat čtyři zvířata z této nabídky? a) 10, b) 15, c) 24, d) 30, e) 36
12	Vchodem do lože projde pouze jeden člověk současně. V kolika různých pořadích mohou vstoupit do lože tři manželské páry, když muž a žena každého páru vstupují vždy těsně za sebou (v libovolném pořadí).
	a) 24 b) 36 c) <mark>48</mark> d) 64 e) 72

Ř E Š E N Í - midterm 19.11.2010

Α	1	а	2	С	3	d	4	d	5	а	6	d	7	С	8	е	9	С	10	С	11	а	12	b	
В	1	С	2	d	3	d	4	d	5	d	6	b	7	b	8	b	9	d	10	С	11	С	12	d	
С	1	е	2	С	3	С	4	е	5	d	6	а	7	b	8	d	9	b	10	С	11	С	12	b	
D	1	е	2	е	3	b	4	b	5	С	6	b	7	d	8	d	9	С	10	С	11	b	12	С	