LEHMAN H. GARRISON

Cosmology — Large-Scale Structure High-Performance Computing — N-body Simulations Center for Computational Astrophysics

Flatiron Institute

162 5th Ave, New York, NY 10010

WEBSITE: lgarrison.github.io

EMAIL: lgarrison@flatironinstitute.org

Professional

Flatiron Research Fellow

2019-present

Positions

Cosmology X Data Science Group Center for Computational Astrophysics Flatiron Institute, New York, NY

EDUCATION

Ph.D. in Astronomy and Astrophysics

2013-2019

Harvard University, Cambridge, MA

Thesis: Computational Modeling of Large-Scale Structure with Abacus

Advisor: Daniel J. Eisenstein

B.A. in Astrophysical Sciences (High Honors)

2009-2013

Princeton University, Princeton, NJ

Thesis: Galactic Warp Excitation by the Magellanic Clouds Advisors: David N. Spergel, Naoki Yoshida (U. Tokyo)

Awards and Honors

Eric Keto Prize

April 2019

for Best Ph.D. Thesis in Theoretical Astrophysics at Harvard University

Smith Family Graduate Science and Engineering Fellowship

Harvard University

2013

Sigma Xi Book Award for Outstanding Senior Thesis

Department of Astrophysical Sciences, Princeton University

SELECTED
PUBLICATIONS

First Author Publications

- 4. Generating Approximate Halo Catalogs for Blind Challenges in Precision Cosmology, Garrison, L. H., Eisenstein, D. J., submitted to MNRAS
- 3. A High-Fidelity Realization of the Euclid Code Comparison N-body Simulation with Abacus, Garrison, L. H., Eisenstein, D. J., submitted to MNRAS. arXiv:1810.02916
- 2. The Abacus Cosmos: A Suite of Cosmological N-body Simulations, Garrison, L. H., Eisenstein, D. J., Ferrer, D., Tinker, J. L., Pinto, P. A., & Weinberg, D. H. 2018, ApJS, 236, 43
- 1. Improving Initial Conditions for Cosmological N-body Simulations, Garrison, L. H., Eisenstein, D. J., Ferrer, D., Metchnik, M. V., &

Contributing Author Publications

- 5. Corrfunc: Blazing fast correlation functions with AVX512F SIMD Intrinsics, Sinha, M., Garrison, L. H., submitted to Proceedings of the Second Workshop on Software Challenges to Exascale Computing
- 4. Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models, Yuan, S., Eisenstein, D. J., & Garrison, L. H., 2018, MNRAS, 478, 2019
- 3. Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime: methodology, information, and forecasts, Wibking, B. D, Salcedo, A. N., Weinberg, D. H., Garrison, L. H., Ferrer, D., Tinker, J., Eisenstein, D., Metchnik, M., Pinto, P., 2018, MNRAS
- Testing the Detection Significance on the Large Scale Structure by a JWST Deep Field Survey, Zhang, H., Eisenstein, D. J., Garrison, L. H., Ferrer, D. W., submitted to ApJ. arXiv:1712.05787
- 1. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit, Yuan, S., Eisenstein, D. J., & Garrison, L. H., 2017, MNRAS, 472, 577

Professional Service

Referee, MNRAS & ApJ, 4 papers

since 2016

Graduate Student Representative, CfA Library Committee

2017-2019

OUTREACH

Harvard Observing Project, Observer

2014-2019

• Teaching undergrads how to make scientific measurements on a telescope

Cambridge Explores the Universe, Volunteer

Summers 2015–2018

BiteScis Lesson Plan: Shooting for the Stars

March 2018

• Created an open-access high school physics lesson plan based on Breakthrough Starshot

SAO Latino Initiative, Guest Instructor

Summers 2017 - 2019

Banneker & Aztlán Institute, Tutor

Summer 2017

Teaching

Teaching Fellow

• PHYS P-17010 Introduction to Cosmology

Summer 2017

• AST S-35 Fundamentals of Contemporary Astro.

Summer 2015

• CS 109 Data Science

Fall 2013

Lecturer, Wolbach Library at the Harvard-Smithsonian CfA

2017

