Construction de BVH sur le GPU pour le calcul de visibilité

Nicolas Said – Automne 2009

Plan de la présentation

- Rappel de la problématique
- Rappel concernant le travail précédent
- Notions de programmation GPGPU avec CUDA
- Présentation de l'algorithme de construction
- Présentation de l'implémentation
- Algorithme de Frustum Culling
- Résultats
- Démonstration

Rappel de la problématique

 Calcul de visibilité pour la simulation de piétons (entre autres)

Travail précédent

Approche naïve (Bruteforce)

Technologie nVidia CUDA

Algorithme de construction : LBVH

- Comparaison avec un algorithme de construction classique
- Inconvénients

Prenons un exemple

Primitive	Code niveau 1	Code niveau 2
Α	1	1
В	1	2
С	1	4
D	2	4
E	4	3
F	4	1
G	3	2
Н	3	3

Tri sur les codes (tri par base)

Primitive	Code niveau 1	Code niveau 2
Α	1	1
В	1	2
С	1	4
D	2	4
Е	4	3
F	4	1
G	3	2
Н	3	3

Primitive	Code	
Α	11	
В	12	
С	14	
D	24	
G	32	
Н	33	
F	41	
E	43	

Construction de la liste de « split »

Primitive	Code
Α	11
В	12
С	14
D	24
G	32
Н	33
F	41
Г	42

Emplacement du split	Niveau du split
0	1
0	2
1	2
2	2
3	1
3	2
4	1
4	2
5	2
6	1
6	2
7	2
8	1
8	2
8	2

• Tri de la liste de « split » par niveau de split

Emplacement du split	Niveau du split
0	1
0	2
1	2
2	2
3	1
3	2
4	1
4	2
5	2
6	1
6	2
7	2
8	1
8	2

Construction de la liste d'intervalles sur la liste de primitives

Emplacement du split	Niveau du split			
0	1	No	œud Nivea	au Intervalle de primitives
3	1	0	1	[0 ;3[
4	1	1	1	[3 ;4[
6	1	2	1	[4 ;6[
8	1	3	1	[6 ;8[
0	2	4	2	[0;1[
1	2	5	2	[1;2[
2	2	6	2	[2 ;3[
3	2	7	2	[3 ;4[
4	2	8	2	[4 ;5[
5	2	9	2	[5 ;6[
6	2	10	0 2	[6 ;7[
7	2	11	1 2	[7 ;8[
8	2			•

 Tri de la liste des nœuds par borne inf. des intervalles de primitive

Nœud	Niveau	Intervalle de primitives
0	1	[0;3[
1	1	[3 ;4[
2	1	[4 ;6[
3	1	[6 ;8[
4	2	[0;1[
5	2	[1;2[
6	2	[2;3[
7	2	[3 ;4[
8	2	[4 ;5[
9	2	[5 ;6[
10	2	[6;7[
11	2	[7 ;8[

Nœud	Niveau	Intervalle de	Intervalle
		primitives	d'enfants
0	1	[0;3[[4;??]
4	2	[0;1[
5	2	[1;2[
6	2	[2 ;3[
1	1	[3 ;4[[7;??]
7	2	[3 ;4[
2	1	[4 ;6[[8;??]
8	2	[4 ;5[
9	2	[5 ;6[
3	1	[6 ;8[[10;??]
10	2	[6 ;7[
11	2	[7 ;8[

 Tri de la liste des nœuds par borne sup. des intervalles de primitive

Nœud	Niveau	Intervalle de primitives
0	1	[0;3[
1	1	[3 ;4[
2	1	[4 ;6[
3	1	[6 ;8[
4	2	[0;1[
5	2	[1;2[
6	2	[2 ;3[
7	2	[3 ;4[
8	2	[4 ;5[
9	2	[5 ;6[
10	2	[6 ;7[
11	2	[7 ;8[

Nœud	Niveau	Intervalle de	Intervalle
		primitives	d'enfants
4	2	[0;1[
5	2	[1;2[
0	1	[0;3[[4;6]
6	2	[2;3[
1	1	[3 ;4[[7;7]
7	2	[3 ;4[
8	2	[4 ;5[
2	1	[4 ;6[[8;9]
9	2	[5 ;6[
10	2	[6 ;7[
3	1	[6 ;8[[10;11]
11	2	[7 ;8[

Tri de la liste des nœuds par identifiant

Nœud	Niveau	Intervalle de	Intervalle
		primitives	d'enfants
0	1	[0;3[[4;6]
1	1	[3 ;4[[7;7]
2	1	[4 ;6[[8;9]
3	1	[6 ;8[[10;11]
4	2	[0;1[
5	2	[1;2[
6	2	[2 ;3[
7	2	[3 ;4[
8	2	[4 ;5[
9	2	[5 ;6[
10	2	[6 ;7[
11	2	[7 ;8[

Frustum Culling

Utilise la structure BVH (quadtree)

Temps de construction

• Temps de calcul de visibilité

Culling Time / Number of Frustums (500 Primitives)

• Temps de calcul de visibilité

Culling Time / Number of Frustums (1000 Primitives)

• Temps de calcul de visibilité

Culling Time / Number of Frustums (2500 Primitives)

Démonstration