Csaba Both and Cory Glover

- Nodes pass information to each other to reach a consensus on their state.
- We may not have direct information of the states of the node and need to infer them based on some probability distribution.

Observed:

- Nodes pass information to each other to reach a consensus on their state.
- Based on observing the deliberation in the network, we want to identify the true state of each node.

Observed:

- Nodes pass information to each other to reach a consensus on their state.
- Based on observing the deliberation in the network, we want to identify the true state of each node.

Observed:

- Nodes pass information to each other to reach a consensus on their state.
- Based on observing the deliberation in the network, we want to identify the true state of each node.

Observed:

- Nodes pass information to each other to reach a consensus on their state.
- Based on observing the deliberation in the network, we want to identify the true state of each node.

Hidden Markov Model

Weather Example

Markov Process

Observations

States:

- Hot
- Cold

H

 $\begin{array}{c|c} H & 0.7 & 0.3 \\ C & 0.4 & 0.6 \end{array}$

States:

- Small
- Medium
- Large

$$S \quad M \quad L$$

 $\begin{array}{c|cccc} H & \begin{bmatrix} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \end{array}$

Hidden Markov Model

Three Problems to Solve with HMMs

Problem 1

Given a model and a sequence of observations, what is the probability of getting those observations with the given model?

Problem 2

Given a model and a sequence of observations, what is the optimal state sequence to obtain the observations?

$$\mathcal{O}^+\lambda$$

$$\downarrow$$
 χ

Problem 3

Given a sequence of observations and the number of markov and observation states, what model maximizes the probability of obtaining the sequence of observations?

$$\mathcal{O} = (\mathcal{O}_1, \mathcal{O}_2, \cdots, \mathcal{O}_{T-1})$$
 - Observation sequence

 π - Initial distribution

$$X=(x_0,x_1,\cdots,x_{T-1})$$
 - Given state sequence

B- Observation state transition matrix

A - State space transition matrix

$$P(\mathcal{O}\mid X,\lambda) = B_{x_0}(\mathcal{O}_0)B_{x_1}(\mathcal{O}_1)\cdots B_{x_{T-1}}(\mathcal{O}_{T-1})$$

$$P(\mathcal{O}\mid X,\lambda)=B_{x_0}(\mathcal{O}_0)B_{x_1}(\mathcal{O}_1)\cdots B_{x_{T-1}}(\mathcal{O}_{T-1})$$

Example

$$X = (H, H, C)$$
 $\mathcal{O} = (M, L, S)$

$$\begin{array}{ccccc}
S & M & L \\
H & \begin{bmatrix}
0.1 & 0.4 & 0.5 \\
0.7 & 0.2 & 0.1
\end{bmatrix}$$

$$P(\mathcal{O} \mid X, \lambda) = (0.4)(0.5)(0.7) = 0.14$$

$$P(\mathcal{O}\mid X,\lambda) = B_{x_0}(\mathcal{O}_0)B_{x_1}(\mathcal{O}_1)\cdots B_{x_{T-1}}(\mathcal{O}_{T-1})$$

$$P(X \mid \lambda) = \pi_{x_0} A_{x_0,x_1} A_{x_1,x_2} \cdots A_{x_{T-2},x_{T-1}}$$

$$P(\mathcal{O}\mid X,\lambda) = B_{x_0}(\mathcal{O}_0)B_{x_1}(\mathcal{O}_1)\cdots B_{x_{T-1}}(\mathcal{O}_{T-1})$$

$$P(X \mid \lambda) = \pi_{x_0} A_{x_0, x_1} A_{x_1, x_2} \cdots A_{x_{T-2}, x_{T-1}}$$

$$P(\mathcal{O}, X \mid \lambda) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(\lambda)}$$

$$P(\mathcal{O} \mid X, \lambda) P(X \mid \lambda) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(X \cap \lambda)} \cdot rac{P(X \cap \lambda)}{P(\lambda)}) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(\lambda)}$$

$$P(\mathcal{O}\mid X,\lambda)=B_{x_0}(\mathcal{O}_0)B_{x_0}(\mathcal{O}_1)B_{x_1}\cdots B_{x_{T-1}}(\mathcal{O}_{T-1})$$

$$P(X \mid \lambda) = \pi_{x_0} A_{x_0, x_1} A_{x_1, x_2} \cdots A_{x_{T-2}, x_{T-1}}$$

$$P(\mathcal{O}, X \mid \lambda) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(\lambda)}$$

$$P(\mathcal{O} \mid X, \lambda) P(X \mid \lambda) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(X \cap \lambda)} \cdot rac{P(X \cap \lambda)}{P(\lambda)}) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(\lambda)}$$

$$P(\mathcal{O} \mid \lambda) = \sum_{X} P(\mathcal{O}, X \mid \lambda)$$

$$=\sum_{X}\pi_{x_0}B_{x_0}(\mathcal{O}_{\mathrm{o}})A_{x_0,x_1}B_{x_1}(\mathcal{O}_{1})A_{x_1,x_2}\cdots A_{x_{T-2},x_{T-1}}B_{x_{T-1}}(\mathcal{O}_{T-1})$$

$$P(\mathcal{O}\mid X,\lambda) = B_{x_0}(\mathcal{O}_0)B_{x_0}(\mathcal{O}_1)B_{x_1}\cdots B_{x_{T-1}}(\mathcal{O}_{T-1})$$

$$P(X \mid \lambda) = \pi_{x_0} A_{x_0,x_1} A_{x_1,x_2} \cdots A_{x_{T-2},x_{T-1}}$$

$$P(\mathcal{O}, X \mid \lambda) = rac{P(\mathcal{O} \cap X \cap \lambda)}{P(\lambda)}$$

$$P(\lambda) = \frac{P(\lambda)}{P(\lambda)}$$

$$P(\mathcal{O} \mid X, \lambda)P(X \mid \lambda) = \frac{P(\mathcal{O} \cap X \cap \lambda)}{P(X \cap \lambda)} \cdot \frac{P(X \cap \lambda)}{P(\lambda)} = \frac{P(\mathcal{O} \cap X \cap \lambda)}{P(\lambda)}$$

$$P(\mathcal{O} \mid \lambda) = \sum_{X} P(\mathcal{O}, X \mid \lambda)$$

$$=\sum_{X}\pi_{x_0}B_{x_0}(\mathcal{O}_{\mathrm{o}})A_{x_0,x_1}B_{x_1}(\mathcal{O}_{1})A_{x_1,x_2}\cdots A_{x_{T-2},x_{T-1}}B_{x_{T-1}}(\mathcal{O}_{T-1})$$

Forward Algorithm

- Recursive algorithm
- N^2T

$$lpha_t(i) = P(\mathcal{O}_0, \mathcal{O}_1, \cdots, \mathcal{O}_t \mid x_t = q_i, \lambda)$$

- 1) $lpha_0(i) = \pi_i B_i(\mathcal{O}_i), orall i \in [0,N-1]$
- 2) $lpha_t(i) = \left|\sum_{j=0}^{N-1} lpha_{t-1}(j) a_{ji} \right| b_i(\mathcal{O}_t), orall i \in [0,N-1]$
- 3) $P(\mathcal{O} \mid \lambda) = \sum_{i=0}^{N-1} \alpha_{T-1}(i)$

Problem 1 -
$$P(\mathcal{O} \mid \lambda)$$

$$lpha_0(i) = \pi_i B_i(\mathcal{O}_i), orall i \in [0,N-1]$$

$$, N - 1$$

$$b_{\alpha} = b_{\alpha}(\mathcal{O}_{\alpha})$$

$$lpha_t(i) = \left[\sum_{j=0}^{N-1} lpha_{t-1}(j) a_{ji}
ight] b_i(\mathcal{O}_t), orall i \in [0,N-1]$$

$$P(\mathcal{O} \mid \lambda) = \sum_{i=0}^{N-1} lpha_{T-1}(i)$$

$$H = C$$

$$X=(H,H,C) egin{array}{ccc} H & C \ \mathcal{O}=(M,L,S) & C & \begin{bmatrix} 0.7 & 0.3 \ 0.4 & 0.6 \end{bmatrix} \end{array}$$

S)
$$C \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$$

$$\begin{array}{ccc} 4 & 0.5 \\ 0.1 & 0.1 \end{array}$$

$$egin{array}{cccc} H & \left[egin{array}{cccc} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \end{array}
ight] & \pi = \left(egin{array}{c} .4 \\ .6 \end{array}
ight) \end{array}$$

 $\alpha_0(H) = (.4)(.4) = .16$ $\alpha_0(C) = (.6)(.2) = .12$

 $\alpha_1(H) = [(0.16)(0.7) + (0.12)(0.4)](0.4) = 0.064$

$$lpha_1(H) = [(0.16)(0.7) + (0.12)(0.4)](0.4) = 0.06$$
 $lpha_1(C) = [(0.16)(0.3) + (0.12)(0.6)](0.5) = 0.06$

$$lpha_2(H) = [(0.064)(0.7) + (0.06)(0.4)](0.1) = 0.00688$$
 $lpha_2(C) = [(0.064)(0.3) + (0.06)(0.6)](0.7) = 0.03864$

$$P(\mathcal{O} \mid \lambda) = lpha_2(H) + lpha_2(C) = 0.04552$$

Problem 2 - $\mathcal{O} + \lambda \longrightarrow X$

- Want to find "most likely" state sequence, i.e. maximize the expected number of correct states

Backwards Algorithm

$$eta_t(i) = P(\mathcal{O}_{t+1}, \mathcal{O}_{t+2}, \cdots, \mathcal{O}_{T-1} \mid x_t = q_i, \lambda)$$

1)
$$eta_{T-1}(i) = 1, orall i \in [0, N-1]$$

2)
$$eta_t(i) = \sum_{j=0}^{N-1} A_{ij} B_j(\mathcal{O}_{t+1}) eta_{t+1}(j), orall i \in [0,N-1]$$

Problem 2 -
$$\mathcal{O}$$
 + λ \longrightarrow X $eta_{T-1}(i) = 1, orall i \in [0, N-1]$ $eta_t(i) = \sum_{j=0}^{N-1} A_{ij} B_j(\mathcal{O}_{t+1}) eta_{t+1}(j), orall i \in [0, N-1]$

$$(\mathcal{O}_{t+1})eta_{t+1}(j)$$

$$(j), orall i \in [0,N-1]$$

$$X=(H,H,C) egin{array}{ccc} H & C \ \mathcal{O}=(M,L,S) & C & \left[egin{array}{ccc} 0.7 & 0.3 \ 0.4 & 0.6 \end{array}
ight] \end{array}$$

$$egin{array}{c|c} C & 0.4 & 0.6 \ L \end{array}$$

$$egin{array}{c|cccc} S & M & L \\ H & \left[egin{array}{cccc} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \end{array}
ight] & \pi = \left(egin{array}{c} .4 \\ .6 \end{array}
ight) \end{array}$$

$$eta_2(C)=1$$

 $\beta_0(C) = (0.4)(0.5)(0.28) + (0.6)(0.1)(0.46) = 0.0836$

 $eta_2(H)=1$

Problem 2 - \mathcal{O} + $\lambda \rightarrow X$

$$\gamma_t(i) = P(x_t = q_i \mid \mathcal{O}, \lambda) = rac{P(x_t = q_i \cap \mathcal{O} \mid \lambda)}{P(\mathcal{O} \mid \lambda)}$$

Problem 2 - $\mathcal{O} + \lambda \longrightarrow X$

GOAL - $\operatorname{argmax}_i P(x_t = q_i \mid \mathcal{O}, \lambda)$

$$egin{aligned} \gamma_t(i) &= P(x_t = q_i \mid \mathcal{O}, \lambda) = rac{P(x_t = q_i \cap \mathcal{O} \mid \lambda)}{P(\mathcal{O} \mid \lambda)} \ &= P(\mathcal{O} \mid x_t = q_i \mid \mathcal{O}, \lambda) = rac{P(x_t = q_i \cap \mathcal{O} \mid \lambda)}{P(\mathcal{O} \mid \lambda)} \end{aligned}$$

 $P(x_t = q_i \cap \mathcal{O} \mid \lambda) = P(\mathcal{O}_1, \cdots, \mathcal{O}_t \mid x_t = q_i, \lambda) P(\mathcal{O}_{t+1}, \cdots, \mathcal{O}_{T-1} \mid x_t = q_i, \lambda) P(x_t = q_i)$

Problem 2 - $\mathcal{O} + \lambda \longrightarrow X$

$$egin{aligned} \gamma_t(i) &= P(x_t = q_i \mid \mathcal{O}, \lambda) = rac{P(x_t = q_i \cap \mathcal{O} \mid \lambda)}{P(\mathcal{O} \mid \lambda)} \ P(x_t = q_i \cap \mathcal{O} \mid \lambda) &= P(\mathcal{O}_1, \cdots, \mathcal{O}_t \mid x_t = q_i, \lambda) P(\mathcal{O}_{t+1}, \cdots, \mathcal{O}_{T-1} \mid x_t = q_i, \lambda) P(x_t = q_i) \ egin{aligned} \alpha_t(i) &= P(x_t = q_i \cap \mathcal{O} \mid \lambda) &= P(x_t = q_i \cap \mathcal{O} \mid \lambda) \\ \hline P(x_t = q_i \cap \mathcal{O} \mid \lambda) &= P(\mathcal{O}_1, \cdots, \mathcal{O}_t \mid x_t = q_i, \lambda) P(\mathcal{O}_{t+1}, \cdots, \mathcal{O}_{T-1} \mid x_t = q_i, \lambda) P(x_t = q_i) \\ \hline P(x_t = q_i \cap \mathcal{O} \mid \lambda) &= P(x_t = q_i \cap \mathcal{O} \mid \lambda) \\ \hline P(x_t = q_i \cap \mathcal{O} \mid \lambda) &= P(x_t = q_i \cap \mathcal{O} \mid \lambda) P(x_t = q_i, \lambda) P(x_t = q_i,$$

Problem 2 - \mathcal{O} + $\lambda \rightarrow X$

Problem 2 - $\mathcal{O} + \lambda \longrightarrow X$

$$egin{aligned} \gamma_t(i) &= P(x_t = q_i \mid \mathcal{O}, \lambda) = rac{P(x_t = q_i \cap \mathcal{O} \mid \lambda)}{P(x_t = q_i \cap \mathcal{O} \mid \lambda)} \ P(x_t = q_i \cap \mathcal{O} \mid \lambda) &= P(\mathcal{O}_1, \cdots, \mathcal{O}_t \mid x_t = q_i, \lambda) P(\mathcal{O}_{t+1}, \cdots, \mathcal{O}_{T-1} \mid x_t = q_i, \lambda) P(x_t = q_i) \ Q_t(i) &= Q(i) &= Q(i) \ Q_t(i) &= Q(i) \ Q_t(i)$$

$$\operatorname{argmax}_i P(x_t = q_i \mid \mathcal{O}, \lambda) = \operatorname{argmax}_i lpha_t(i) eta_t(i)$$

$$X = (\operatorname{argmax}_i \gamma_1(i), \operatorname{argmax}_i \gamma_2(i), \dots, \operatorname{argmax}_i \gamma_{T-1}(i))$$

Problem 2 -
$$\mathcal{O}$$
 + $\lambda \rightarrow X$

$$X = (\operatorname{argmax}_i \gamma_1(i), \operatorname{argmax}_i \gamma_2(i), \ldots, \operatorname{argmax}_i \gamma_{T-1}(i))$$
 $\operatorname{argmax}_i P(x_t = q_i \mid \mathcal{O}, \lambda) = \operatorname{argmax}_i \alpha_t(i) \beta_t(i)$

$$lpha_0(H) = 0.16 \quad eta_0(H) = 0.1118 \\ lpha_0(C) = 0.12 \quad eta_0(C) = 0.0836 \qquad \gamma_0(H) = 0.017888 \\ \gamma_0(C) = 0.010032 \qquad \qquad \gamma_0(H) = 0.01792 \\ lpha_1(H) = 0.064 \quad eta_1(H) = 0.28 \\ lpha_1(C) = 0.06 \quad eta_1(C) = 0.46 \qquad \qquad \gamma_1(H) = 0.01792 \\ \gamma_1(C) = 0.0276 \qquad \qquad X = (H, C, C) \\ lpha_2(H) = 0.00688 \quad eta_2(H) = 1 \\ lpha_2(C) = 0.03864 \quad eta_2(C) = 1 \qquad \qquad \gamma_2(H) = 0.00688 \\ \gamma_2(C) = 0.03864 \qquad \qquad \gamma_2(C)$$

- Goal: Adjust the model parameters to best fit the observation
- Efficiently re-estimate the model

$$\gamma_t(i,j) = P(x_t = q_i, x_{t+1} = q_j \mid \mathcal{O}, \lambda)$$
 di-gammas
$$\gamma_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(\mathcal{O}_{t+1})\beta_{t+1}(j)}{P(\mathcal{O}\mid \lambda)}$$

- The probability of being in state q_i at time t and transiting to state q_j at time t+1

$$\gamma_t(i) = \sum_{i=0}^{N-1} \gamma_t(i,j)$$
 $\gamma_t(i) = \frac{lpha_t(i)eta_t(i)}{P(\mathcal{O}\,|\,\lambda)}$

The most likely state at time t

Given:

$$\gamma_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(\mathcal{O}_{t+1})\beta_{t+1}(j)}{P(\mathcal{O} \mid \lambda)}$$

$$\gamma_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(\mathcal{O}_{t+1})\beta_{t+1}(j)}{P(\mathcal{O}\,|\,\lambda)} \qquad \gamma_t(i) = \sum_{i=0}^{N-1} \gamma_t(i,j). \qquad \lambda(A,B,\Pi) = ?$$

$$\pi_i = \gamma_0(i)$$

$$a_{ij} = \sum_{t=0}^{T-2} \gamma_t(i,j) \left/ \begin{array}{c} \sum_{t=0}^{T-2} \gamma_t(i) \end{array}
ight.$$

expected number of transitions from q_i to q_j expected number of transitions from q_i to any states

$$b_j(k) = \sum_{\substack{t \in \{0,1,...,T-1\} \ \mathcal{O}_t = k}} \gamma_t(j) \left/ \begin{array}{c} \sum_{t=0}^{T-1} \gamma_t(j) \end{array}
ight.$$

expected number that the model is in q_i state with observation k / expected number that the model is in q_j state

$$egin{align} \gamma_t(i,j) &= rac{lpha_t(i) a_{ij} b_j(\mathcal{O}_{t+1}) eta_{t+1}(j)}{P(\mathcal{O}\,|\,\lambda)} \ \mathcal{O} &= ig(M,L,Sig) \ \end{aligned}$$

$$\gamma_0(i,j) = egin{pmatrix} (0.16)(.7)(0.5)(.28)/0.04552 & (0.16)(0.3)(0.1)(0.46)/0.04552 \ (0.12)(0.4)0.5)(0.46)/0.04552 & (0.12)(0.6)(0.1)(0.46)/0.04552 \end{pmatrix}$$

$$egin{aligned} lpha_0(H) &= 0.16 & eta_0(H) = 0.1118 & H & C \ lpha_0(C) &= 0.12 & eta_0(C) = 0.0836 & H & \left[egin{aligned} 0.7 & 0.3 \ 0.4 & 0.6 \ \end{array}
ight] \ lpha_1(H) &= 0.064 & eta_1(H) = 0.28 \ lpha_1(C) &= 0.06 & eta_1(C) = 0.46 \ lpha_2(H) &= 0.00688 & eta_2(H) = 1 & H & \left[egin{aligned} 0.1 & 0.4 & 0.5 \ 0.7 & 0.2 & 0.1 \ \end{array}
ight] \ P(\mathcal{O} \mid \lambda) &= lpha_2(H) + lpha_2(C) = 0.04552 \end{aligned}$$

$$\gamma_0(i,j) = \left(egin{matrix} 0.34 & 0.05 \ 0.24 & 0.07 \end{matrix}
ight)$$

Re-estimation of the model is an iterative process:

$$\lambda(A, B, \Pi) = ?$$

- 1. Initialize $\lambda(A, B, \Pi)$
- 2. Compute $\alpha_t(i)$ $\beta_t(i)$ $\gamma_t(i,j)$ $\gamma_t(i)$
- 3. Re-estimate $\lambda(A, B, \Pi)$
- 4. If $P(\mathcal{O}|\lambda)$ increases, goto 2

- Stop if $P(\mathcal{O}|\lambda)$ doesn't increases

HMM for speech processing

1913, Markov analyzed chains of vowels and consonants in Pushkin's poem Eugene Onegin - Markov chain

The language is the result of long complex process.

- Relation of Markov chains to the English language.
- Try to understand the manner in which letters are put together.
- View language as a sequence of symbols from a 27-letter of the alphabet (space + letters)

HMM: model for generation of English language, which preserves Markov's division

- Separate the alphabet into classes (e.g. vowels & consonants)
 - e.g. english language = vcccvcc cvccvvcv

```
N = 2 A 2x2 matrix - probabilities of four sequence (v-v, v-c, c-v, c-c) M = 27 B 2x27 matrix - probability that each letter is consonant or a vowel. Q = \{v,c\}
```

What A, B matrix maximize the probability of observing the text?

S State HMM for speech processing

Different set of parameters: s = 2 (vowel + consonants), s = 5, s = 11

TABLE I-1.	HIDDEN	MARKOV	
	S = 2		•
Transition	on Proba	bilitie	s ·
1	.275	.725	_
2	.780	.220	
Output	Probab1	lities	
	1	2	
Α		.133	
В	.022		
C	.063		
D	.056		
E	-	.218	
F	.037		
G	.015	.010	
Н	.074		
I J		.150	
ĸ	.009		
Ĺ	.060	-	
м	.041		
N	.140		
Ö		.136	
P	.030	.001	
Q	.001		
Ř	.087		
S	.105		
T	.157	.019	
U		.045	
V	.016	-	
W	.020		
X	.002		
Y Z #	.004	.018	
Z,	.001		
#	.060	. 269	

Stationary Probabilities

.52

. 48

TABLE 1-4									
8 - 5									
Transition Probabilities									
1	.118	.026	.854						
2	.014	161			824				
3	1 1/1	135	.121	.520	.075				
Ĩ,	197	396	.026	015	364				
٠,	.132	.004	. 263		-				
Output Probabilities									
	1	2	3	1,	5				
Α			. 236		-				
P	036			.006					
Ċ	114			.016	.005				
D	.053	182		050					
E		260	. 237	-	-				
F	040	003		.043					
Ġ	029	. 054		.007	.006				
11	040		OAA		****				
I		444	150	cicile	.072				
Ĵ	.004		- 11						
K	.012	007		001	of an Williams				
I.	.047	. 047		. 1 37					
M	.052			. 034					
N	.034	.004		.326	-				
0			.216						
P	.077	.004		.011					
Q	.002	-							
R	.093	-		.213					
S	.082	.192		.108					
T	.192	.167		.022					
U			.068	.003	.002				
V	.024	.001		.005					
W	.038			.007					
X				.016					
Y	.012	.073	.001	.010					
Z	.002								
#					.912				
Stationary Probabilities									
	. 238	.129	. 293	.155	.185				

TABLE I-10											
S = 11											
Transition Probabilities											
1	-	.049	100.000		.068			. 105	.535		. 240
2		.040	.008			.089	. 437	.001		.049	. 372
3		.036	. — .	. 698	. 221	.001			.042		
4	.013	. 285		.007	. 501	-			. 190	.001	
5		.033	.007		.011	. 166	. 159	.012		.608	
5	-	-		-	.019			.015		.965	
7	.010	.054	.029	-	.072	. 107	.001	.078		.276	.370
8		. 313						.008	.675		.002
9		.025	.004		.004		.665	. 116	.076	.005	. 101
10		. 178	. 253	.044					.114		_
11	. 192	. 105	.005		. 218	. 124	-	.013	.076	. 236	.029
Output Probabilities											
	1	5	3	1,	5	6	7	P	9	10	11
Α	-	.596		100	-				.035		
B			.077		-		.015	.063	-		.001
C		-	. 041	-			.043	. 110			.071
D			.002			. 333	.011	.085			. 08 1
E								********	. 340		
F			.014		-	-	.058	. 08 1		_	.012
G		-	. 054			.030		.031			.067
H	. 147			.700		.068	_	.021			******
I	. 679	. 359					.003		.033		
J								.025			
K		-		-1-	_	.001		.001		_	.030
L	-(0			. 047			. 098	.054		_	. 126
М	. 068					.002	.041	.081			.027
И		.002		.003		.013	. 3 19	.030	443		.036
O P		.002	. 115				.013	. 105	. 443		.001
Q	_		. 115				.013	.006		_	.001
R		-		. 212			. 248	.073		_	.008
S	_	. 041	.027	. 2 12		. 361	.080	.095			.065
T	.039		.635			. 301	.009	.097			.413
Û	.065		. 037	.003					. 147		
V			-			_		.037			.035
w			.059	.009			.012	.084			
X							.015			_	
Y				.023	.029	. 188					.015
Z											.004
#										1.00	
Stationary Probabilities											

.024 .106 .049 .042 .071 .051 .144 .101 .129 .166 .116

TABLE 1.10

S State HMM for speech processing

S State HMM for speech processing

11 States						
Vowel	·	12,5,91	The transition			
Space	()	[10]	3> 4 is			
Consonant	<	(3,4,6,7,8,11)	strong, t			
Final Letter	>	(2,5,6,7,11)	dominates 3,			
Initial Letter	***	(2,3,4,8,9)	h dominates 4,			
Vowel Follower		(7)	1 dominates 1,			
Vowel Preceder	<	(4,8)	and 1 is entered			
Final Letter	< 	[6]	90≸ of the time			
Post-Consonant	([1]	from 3 (t			
			dominated).			

- Disjoint states
- As the number of state increases the uncertainty of letter produced by a state decreases uniformly.

Applications of HMM

- speech recognition
- facial expression recognition
- gene prediction
- gesture recognition
- musical composition
- bio-informatics

Application areas of HMMs

Speech recognition with variants of HMM

HO-HMM: higher order HMM extends the dependency from the previous state to n state

- Message passing for performing inference on graphical-models.
- Each node has a marginal, $P(X_i)$ belief
- Exact on trees graphs, but not exact on general graphs (loops)
- Node's belief affected by neighbors (message)

- The higher the value of the message, the more likely the nodes change their belief respect to the message
- At convergence the belief of the node is its marginal probability

- Given finite set of random discrete variable (nodes), the goal is to calculate the marginal probability for each individual variable X_i

$$p_{X_i}(x_i) = \sum_{\mathbf{x}': x_i' = x_i} p(\mathbf{x}')$$
 ,where \mathbf{x}' possible values (features, states) for X_i

- Expensive calculation, most of the time it is intractable
- Efficient calculation: factor graphs (factorization of probability distribution function)
- The joint mass function

$$p(\mathbf{x}) = \prod_{a \in F} f_a(\mathbf{x}_a)$$

- sum-product algorithm sending messages along the edges between nodes
- the message is a set of values, that can be taken by a random variable

- Two different node types: variable (v) and factor (a)
- Two different messages

- Variable to factor:
$$\mu_{v o a}(x_v) = \prod_{a^*\in N(v)\setminus\{a\}} \mu_{a^* o v}(x_v)$$

- Factor to variable:
$$\mu_{a o v}(x_v) = \sum_{\mathbf{x}_a': x_v' = x_v} \left(f_a(\mathbf{x}_a') \prod_{v^* \in N(a) \setminus \{v\}} \mu_{v^* o a}(x_{v^*}')
ight)$$

Key ide, behind the sum-product algorithm:

 Sum-product algorithm involves using message passing scheme to change the order of sum and product:

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4)$$

$$x_1 \qquad x_2 \qquad x_3 \qquad x_4$$

$$m_2(x_1) \qquad m_3(x_2) \qquad m_4(x_3)$$

$$\rho(x_1) = \frac{1}{Z} \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi_{12}(x_1, x_2) \psi_{23}(x_2, x_3) \psi_{34}(x_3, x_4)
= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{23}(x_2, x_3) \sum_{x_4} \psi_{34}(x_3, x_4)
= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) \sum_{x_3} \psi_{23}(x_2, x_3) m_4(x_3)
= \frac{1}{Z} \sum_{x_2} \psi_{12}(x_1, x_2) m_3(x_2) = \frac{1}{Z} m_2(x_1)$$

- In each iteration, each message will be updated iteratively
- At convergence, the marginal distribution of each node is proportional to the product of all messages from adjoining factors

$$egin{align} p_{X_v}(x_v) & \propto \prod_{a \in N(v)} \mu_{a
ightarrow v}(x_v) \ p_{X_a}(\mathbf{x}_a) & \propto f_a(\mathbf{x}_a) \prod_{v \in N(a)} \mu_{v
ightarrow a}(x_v) \ \end{array}$$

Belief propagation on trees

- Tree (graph is oriented, one node is root)
- Convergence after two full passes
 - 1. Messages are send inwards: from leaves to root. (the tree structure guarantee that all messages are calculated) (forward algorithm)
 - 2. Messages are passing back from the root to the leaves. (backward algorithm)

Large graphs: build a clique graph (there exists link between all pair of nodes - mega nodes in the subset) - clique trees

Belief propagation on loopy networks

- It doesn't converge
- Not well understood

Summary

Belief propagation - message passing: predicting node's state using data and underlying graphical models.

HMM - well understood belief propagation on a simple chain graph

For complex graph topologies - graph factorization

Application areas of HMMs

References

Mark Stamp Lecture notes https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

Bhavya Mor, Sunita Garhwal, Ajay Kumar: A Systematic Review of Hidden Markov Models and Their Applications

Kevin P. Murphy: Probabilistic Machine Learning

R. L. Cave and L. P. Neuwirth, Hidden Markov models for English, in J. D. Ferguson, editor, Hidden Markov Models for Speech, IDA-CRD, Princeton, NJ, October 1980. https://www.cs.sjsu.edu/ ~ stamp/RUA/CaveNeuwirth/index.html

Wikipidia: Belief propagation

Martin Wainwright https://yosinski.com/mlss12/media/slides/MLSS-2012-Wainwright-Graphical-Models-and-Message-Passing.pdf

Yunshu Liu https://faculty.coe.drexel.edu/jwalsh/Yunshu_GPnBP.pdf

Antonio Torralba (UCLA)

http://helper.ipam.ucla.edu/publications/gss2013/gss2013_11344.pdf

James Coughlan

https://www.ski.org/sites/default/files/publications/bptutorial.pdf

Francis Ferraro

https://redirect.cs.umbc.edu/~ferraro/teaching/691-s20/slides/11-bp.pdf

Kayhan Batmanghelich

https://www.batman-lab.com/wp-content/uploads/2020/09/scribe_le14.pdf

Frank R. Kschischang (MIT)

http://www.mit.edu/~6.454/www_fall_2002/lizhong/bp.pdf

Jonathan Yedidia

http://people.csail.mit.edu/billf/publications/Understanding Belief Propogation.pdf

Yair Weiss

https://courses.cs.washington.edu/courses/cse577/04sp/notes/uaitut.pdf

Robert Collins (Stanford)

https://www.cse.psu.edu/~rtc12/CSE586/lectures/cse586GMplusMP_6pp.pdf

Dan Jurafsky (Stanford)

https://web.stanford.edu/~jurafsky/slp3/A.pdf

Ben Langmead

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/hidden_markov_models.pdf

Venu Govindaraju

https://cse.buffalo.edu/~jcorso/t/CSE555/files/lecture_hmm.pdf

Andrew M. Moore

https://www.cs.cmu.edu/~./awm/tutorials/hmm14.pdf

Sean Eddy

https://www.nature.com/articles/nbt1004-1315

Alperen Degirmenci

https://scholar.harvard.edu/files/adegirmenci/files/hmm_adegirmenci_2014.pdf