Discrete-time state transition models in R

Kyu Lee, Ph.D.HEOR 533
Jan 24, 2024

Class objectives

1. Review Markov cohort models

- 2. Learn how to implement a Markov cohort model in R
 - Basics in R
 - Briggs A et al model in R
- 3. Preview the assignment

Markov cohort model (review)

- Markov models in medical decision science simulate health transition over time (discrete- vs. continuous- time)
- Markov models are used to estimate long-term cost and health outcomes beyond the empirical study period, often attached to the end of a branch in decision trees
 - e.g. For a cohort of patients who received treatment A and experienced post-treatment complication (with a probability of 0.2), what are their 5-year health and cost outcomes?
- Building blocks of Markov models include health states, transition probabilities, cycle, rewards or pay-offs

What is R?

- R is a free programming language and environment for statistical computing and graphics
- Users can add additional functionality such as mechanistic simulation modeling by using built-in functions, newly-defined functions, and packages
- Any users can contribute to creating open-sourced R packages

R studio

 R studio is an IDE (Integrated Development Environment) for R where users can edit the code, import data, visualize graphics more easily compared to when writing the codes directly to R console.

 Creating variables of scalar, vector, and matrix: an operator '<-' assigns a value to a variable

```
Scalar
> age <- 65
> name <- 'Mary'
> print(age); print(name)
[1] 65
[1] "Mary"

Vector
> v_age <- c(25,34,65)
> v_name <- c('Tom','Kyu','Mary')
> print(v_age)
[1] 25 34 65
> print(v_name)
[1] "Tom" "Kyu" "Mary"
```

Matrix

• '*' operator implements element-wise multiplication between two matrices

• '%*%' operator implements matrix multiplication between two matrices (dot product of each row vector (m1) and column vector (m2)

 Array: a general data structure defined by a fixed number of dimensions; vectors (1D) and metrices (2D) are an example of array

```
pop < - array(data = rep(1,12),
             dim = c(2,3,2),
             dimnames = list(c("row1", "row2"),
                              c("col1", "col2", "col3"),
                              c("Tx", "No Tx")))
> pop
, , Tx
     col1 col2 col3
row1
row2
, , No Tx
     col1 col2 col3
row1
row2
```

 List: a generic object consisting of an ordered collection of objects; can accommodate multiple data types

```
pop < - list(age = c(62,34,59),
             name = c("Mary", "Kyu", "Tom"),
             hometown = c("Seattle", "Seoul", "Rome"))
> print(pop)
$age
[1] 62 34 59
$name
[1] "Mary" "Kyu" "Tom"
$hometown
[1] "Seattle" "Seoul"
                        "Rome"
> pop$name
[1] "Mary" "Kyu" "Tom"
> pop$hometown[pop$name=='Kyu']
[1] "Seoul"
```

A user-defined function

```
Name of the function
                                       Arguments needed for the function
         f_simple <- function(n1, n2){</pre>
           sum <- n1 + n2
                                      ←Operations
           prod <- n1 * n2
           return(c(sum,prod)) ← Return outputs
         > result <- f_simple(2,3)</pre>
         > result
         [1] 5 6
```

Translating an excel model in R

Category	Excel	R	
Model organization	Define input parameters, run models, and compute outcomes in separate tabs	One code can streamline the works from defining input parameters, running models, to computing outcomes	
Input parameters	Enter a value in a cell	Assign a value to a variable	
Running Markov model	Repetitive calculation over rows	For-loop	
Sensitivity analysis	Macro	For-loop	

Translating an excel model in R

MONOTHE	RAPY			
Α	В	С	D	
0.721453	0. 201845	0.066897	0.009804	
	0.581081	0.406995	0.011924	
		0.750143	0.249857	
COMBINATION THERAPY (year 1,2)				
Α	В	С	D	
0.85822	0102739	0.034051	0.00499	
	0.78677	0.207161	0.006069	
		0.872823	0.127177	
COMBINATION THERAPY (year 3+)				
Α	В	С	D	
0.721453	0.201845	0.066897	0.009804	
	0.581081	0.406995	0.011924	
		0.750143	0.249857	

Each cell in the transition probability matrix refers to a parameter value or a value calculated based on multiple parameter values

```
tpA2B <- 0.202
tpA2C <- 0.067
tpA2D <- 0.010
tpA2A <- 1-tpA2B-tpA2C-tpA2D
tpB2C <- 0.407
tpB2D <- 0.012
tpB2B <- 1-tpB2C-tpB2D
tpC2D <- 0.250
tpC2C <- 1-tpC2D
mP_mono <- matrix(c(tpA2A,tpA2B,tpA2C,tpA2D,</pre>
             0,tpB2B,tpB2C,tpB2D,
             0,0,tpC2C,tpC2D,
             (0,0,0,1), byrow = TRUE, nrow=4,
             dimnames = list(c('A','B','C','D'),c('A','B','C','D')))
mP_all <- array(c(mP_mono,mP_comb1,mP_comb2),</pre>
                dim=c(4,4,3))
```

In R, parameters and transition probability matrix can be defined as a variable of scalar or matrix

The code makes the calculation more explicit, reducing the risk of transcription errors

Translating an excel model in R

Repeat until t = 20

```
for (j in range(1,20)){
    pop[, cycle = j] <-
    pop[, cycle = j - 1] %*% p_matrix multiplication
}</pre>

Repeat until
t = 20
```

Review of Briggs A. et al. Model

- 3-state Markov cohort model
- The risk of progressing from Asymptomatic to Progressive Disease decreases by 50% with treatment
- Disease progression accelerates with age
- Progressive disease has excess mortality (tpDcm)
- There is cost for excess mortality due to progressive diseases (i.e. transitional cost from progressive to dead)

5-min break

R session – Review and run the code

Open the R code (Markov_model_realworld_explain2_2024.Rmd)

R session – class exercise (optional)

- Make the following changes and discuss how ICER of treatment changes
 - Reduce the treatment efficacy from 0.5 to 0.2
 - Increase the starting age from 55 to 65

Assignments

- A new end-of-life care was approved based on the clinical trial result that it can reduce the excess mortality due to progressive disease by 50%. It costs \$500 as one-time cost.
- Decision makers (e.g. clinicians) requested information on whether they should provide this end-of-life care in addition to the original treatment to reduce the disease progression.
- Using the same health state transition model, conduct a cost-effectiveness analysis considering three strategies: 1) without treatment 2) with treatment but no end-of-life care, 3) with both treatment and end-of-life care
- Provide a table of cost and QALY of three strategies and report ICER. It is optional to generate ICER graph.

Wrapping up

1. Review Markov cohort models

 Discrete-time health transition models simulate health transitions over time and estimate long-term health and cost outcomes

2. Learn how to implement a Markov cohort model in R

- R is a free programming language and has flexible functionality to build simulation models such as health transition models
- Compared to excel models, state transition models can streamline the process of building the model in an explicit way in a single code file with lower risk of transcription error.

3. Preview the assignment