Update on the Taiwan household model

20/07/2021

Household/non-household transmission model

number of

infectious cases (within

a household)

- Agent-based model
 - Number of households: 100,000
 - Household size: 3
- Household transmission (within household i)

$$\lambda_{i,hh} = c_{hh} * t_{hh} * I_i$$

Non-household transmission

$$\lambda_{nhh} = c_{nhh} * t_{nhh} * \sum I / \sum N$$

number of transmission probability total population

Household/non-household transmission model

Model setting

- Initial case in the population: 1
- Duration of infectiousness: 5 days
- Total population: 300,000 (number of households*household size)

Model output

- 3 stochastic runs (each costs about 4-5 minutes)
- Reproduction numbers (Rt) for household and non-household cases
- Number of new infections by household and non-household transmission

Changes in COVID-19 transmissibility

- Before alert level 3 (week 1-3)
- Wave 1 survey
 - Total contacts: 9.14
 - Household contacts: 2.26
- Transmission probability
 - Household: 0.21 (Thompson et al.)
 - Non-household: 0.26

- After alert level 3 (week 4-12)
- Wave 3 survey
 - Total contacts: 3.97
 - Household contacts: 2.20
- Transmission probability
 - Household: 0.21
 - Non-household: 0.21*0.26*X
 - Multiplicative effect of measures
 - X = 1: no effect
 - X = 0.3: moderate effect
 - X = 0.7: strong effect

Fully susceptible scenario – Input data

*non-contact rate declines a week before (15-21th day) the implementation of alert level 3 measures, to reflect the effect of alert level 2

Fully susceptible scenario – Rt estimates

Fully susceptible scenario – Rt estimates

Fully susceptible scenario – New infections

Fully susceptible scenario – New infections

Note:

Additional measures (X < 1) to reduce transmission probability is required to 'eliminate' transmission (清零?)

Different numbers of infections in the first three weeks reflects the stochastic characteristic of the model.

Fully susceptible scenario – State overview

Note:

The majority of population remains susceptible after 12 weeks since the introduction of the initial case.

Partially vaccinated scenario – Input data

*same as the previous scenario

**assume 10% of population are vaccinated (one in each household)

Partially vaccinated scenario – Rt estimates

Note:

Force of transmission is less likely to build up in the scenario with 10% vaccine coverage.

Partially vaccinated scenario – Rt estimates

Partially vaccinated scenario – New infections

Note:

Stochastic effects are strong after including vaccination.

In general, fewer infections would occur and accumulate in the partially vaccinated population.

Partially vaccinated scenario – State overview

Comparison between fully susceptible and partially vaccinated scenarios

Note:

After including vaccination, the initial case is less likely to lead to an outbreak.

More runs are needed to better understand the stochastic pattern.

