

Patient Stratification

Team: Personalized Medicine

Kenny Chou, Shashi Sharma, Cesar Ramirez Ibanez, Xiaoping Zhu

Classifying cancer mutations for personalized treatments

https://github.com/kfchou/PersonalizedMedicine/

The Erdős Institute

The Problem

Personalized Medicine holds true potential to bring precise and effective treatments for the patients.

This is one of the key questions in cancer genetics and precision medicine that can improve lives of uncountable patients every year.

Goal: Our goal is to create an algorithm that classifies mutated genes from cancerous tumors by analyzing text based clinical literature in order to match patients with the best treatment.

[1] Cancer.gov

[2] American Cancer Society

Data Source

Data Sources: Memorial Sloan Kettering Cancer Center (Available on Kaggle)

	ID	Gene	Variation	Class	Variation_Alt	Text	num_words	num_chars
344	344	CDH1	A617T	4	AminoAcidSwap	E-cadherin is involved in the formation of cel	187	1315
346	346	CDH1	A634V	4	AminoAcidSwap	E-cadherin is involved in the formation of cel	187	1315
348	348	CDH1	T340A	4	AminoAcidSwap	E-cadherin is involved in the formation of cel	187	1315
648	648	CDKN2A	Q50*	4	AminoAcidSwap	The p16 gene is located in chromosome 9p21, a	103	706
868	868	HLA-A	596_619splice	1	AminoAcidSwap	A new variant of the HLA-A*010101 allele desig	184	1219
941	941	PDGFRB	ATF7IP-PDGFRB Fusion	2	AminoAcidSwap	Chronic myelomonocytic leukemia (CMML) is a my	116	776
1583	1583	PMS1	Q233*	4	AminoAcidSwap	$\label{thm:hereoff} \textbf{HEREDITARY nonpolyposis colorectal cancer (HNP}$	114	742
1613	1613	VHL	L158Q	4	AminoAcidSwap	The case of a 40-year-old woman with severe ed	53	337
2900	2900	NF2	E106G	1	AminoAcidSwap	Neurofibromatosis 2 (NF2) is a tumor predispos	183	1219
2906	2906	NF2	Q538P	1	AminoAcidSwap	Neurofibromatosis 2 (NF2) is a tumor predispos	183	1219
2908	2908	NF2	Q324L	5	AminoAcidSwap	Neurofibromatosis 2 (NF2) is a tumor predispos	183	1219

ID 344, 346, and 348 associated with CDH1 gene comes from the same text and has same class but has three different AminoAcidSwap. ID 2900, 2906, and 2908 associated with NF2 gene also comes from same text, has three different AminoAcidSwap but one of them belongs to a different class.

Useful packages: pandas

The Erdős Institute

Highly non-uniform distribution of mutations per class

Challenge: Skewed data may make ML models biased toward certain classes

Gene & mutation type have some predictive power

Distribution of frequency occuring genes into various classes

Data Cleaning

Useful packages: nltk, re, sklearn, pandas

Feature Encoding

Bag of Words - counts the occurrence of each word in a document (SS)

Doc2Vec - calculates an embedding for entire documents, based on the word embeddings of each word in the document (KC)

TF-IDF - calculates how relevant a word is to a document, in a collection of documents (CRI, XZ)

Useful packages: sklearn, gensim

Classification & Assessment

Classification

- Logistic Regression (SS)
- Random Forest (SS)
- SVC (CRI)
- Feed Forward Network (KC)
- LSTM (KC)

Useful packages: sklearn, keras

Assessment

ROC curves & Area under ROC

False Positive

Classical ML Results

Deep Learning Results

Text encoder plays a larger role than the classifier

Remove Rare Classes

NEXT STEPS

- 1. Augment data by scraping from pubmed
- 2. Try to decorrelated easily confused classes 1 & 4, 2 & 7
- 3. Try modern deep learning models attention & transformers

Team: Personalized Medicine

https://github.com/kfchou/PersonalizedMedicine

Kenny Chou	kfchou@bu.edu	Boston University
Shashi Sharma	Shashi.Sharma@rutgers.edu	Rutgers University
Cesar Ramirez Ibanez	cr718@scarletmail.rutgers.edu	Rutgers University
Xiaoping Zhu	xz349@math.rutgers.edu	Rutgers University

We thank Erdős Institute for this career forwarding opportunity!

Gratitudes to:

Matt Osborne

Roman Holowinsky

Lindsay Warrenburg

Nirav Patel

All fellow teams today

ő The Erdős Institute

May 2021 Data Science Bootcamp