Alankar Kotwal

SENIOR UNDERGRADUATE

CONTACT Information Department of Electrical Engineering Indian Institute of Technology Bombay

281, Hostel 09, IIT Bombay Powai, Mumbai, India 400 076 Phone: (+91) 996 967 8123 E-Mail: alankar.kotwal@iitb.ac.in

alankarkotwal13@gmail.com alankarkotwal.github.io

RESEARCH Interests I am passionate about Computer and Medical Vision, Machine Learning, Optimization, Estimation Theory, Astrophysics and Cosmology. I enjoy learning about and experimenting with Robotics, Computer Networks and Security, Computer Graphics and applications of these fields in one another.

Webpage:

EDUCATION

Indian Institute of Technology Bombay, Mumbai, India

July 2012 - Present

Dual Degree, Bachelor & Master of Technology, Department of Electrical Engineering Specialization: Communication and Signal Processing

• Major CGPA: 8.78/10 (Detailed List of Courses)

• Minor Degree: Department of Computer Science & Engineering

RESEARCH Internships

The AIR Lab, Carnegie Mellon University Robotics Institute

Guide: Prof. Sebastian Scherer & Stephen Nuske

Summer 2015

Stereo Odometry From A Downward-Facing Stereo Camera On A Vehicle

Fast and accurate stereo odometry is a pre-requisite for many robotics applications like localization, path planning and navigation. For aerial vehicles like quadcopters, a good way to do odometry is to use a ground-facing camera and track the motion of the (featureless) ground. This has traditionally been done with sensors like the Pixhawk PX4FLOW, which uses a single camera doing correlation-based tracking along with a sonar for odometry. This has several disadvantages, like small camera field of view (meaning small maximum allowed speeds for accurate tracking), bad sonar readings at low range (especially during take-off), requirement of an inertial unit for angle measurement and height-dependent camera focus. We aimed to replace the PX4FLOW with a small-baseline stereo camera for the same purpose. Assuming that most of the field of view lies on a plane parallel to the sensors, the height of the vehicle is obtained from a robust estimate of the horizontal disparity between rectified stereo pairs. Alternatively, height, pitch and roll are jointly estimated using a robust gradient-descent homography fit between rectified stereo pairs. Similar, rigid tracking across frames is then used to measure position. We obtained better depth estimates, better maximum speeds and comparable accuracy without an inertial unit as compared to the PX4FLOW. Code here.

Laboratory for Cosmological Data Mining, University of Illinois, Urbana – Champaign Guide: Prof. Robert Brunner, under Google Summer of Code Summer 2014

A Pixel-Level Machine Learning Method for Calculating Source Redshifts

Distances in Astrophysics have traditionally been measured using a variety of techniques, spectrometry prominent among them. The basic idea in spectrometry is, given a source with a measurable spectrum, features in the spectrum (like emission or absorption lines) can be fit with known lines to obtain the source's redshift, which is a measure of distance at cosmologically significant distances. However, there exist sources which are either very far or very dim, so we do not get enough flux from them to measure their spectrum. Broad-band energies from these sources, as an approximation to the entire spectrum, are used as features for a machine learning algorithm to calculate redshifts for these sources, or alternatively classify them. Unlike previous attempts, we calculate features pixel-wise instead of integrating over entire source area, giving potential benefits like source de-blending and better background separation. The redshift calculation and source classification from the method are reasonably accurate. Code here.

Research Projects

A New Bayesian Framework For Laparoscopic Image Dehazing and Denoising

Guide: Prof. Suyash Awate, CSE, IITB

January 2015 - Present

Laparoscopic images in minimally invasive surgery get corrupted by surgical smoke and noise. This degrades the quality of the surgery and the results of subsequent processing for, say, segmentation and tracking. Algorithms for desmoking and denoising laparoscopic images seem to be missing in the medical vision literature. We formulated the problem of joint desmoking and denoising of laparoscopic images as a Bayesian inference problem. This formulation relies on a novel probabilistic graphical model of images, which includes a Markov Random Field (MRF) formulation for color-contrast and another MRF for smoothness on the uncorrupted color image as well as the transmission-map image that indicates color attenuation due to The results on simulated and real-world laparoscopic images, with clinical expert evaluation, shows the advantages of our method over the state of the art. The results have been submitted to the International Symposium on Biomedical Imaging for publication. Code here.

The IITB Mars Rover Project

May 2013 - May 2015

The IITB Mars Rover project is a student initiative at IIT Bombay to build a prototype Mars rover capable of a number of tasks required for extra-terrestrial robotics. The aim of the project is to participate in the University Rover Challenge. We designed and developed a rover with a rocker-bogie suspension and novel air-filled beach tires. As a part of the electrical and on-board computing team, we designed power, logic and communication circuits for on-board control. We developed localization and autonomous navigation. The role of stereo vision and image processing in making rover operations autonomous was explored. We got the opportunity to participate in a simulated Martian expedition and test the Rover's capabilities in the Australian outback, at the Arkaroola Mars Robot Challenge (expedition details published in here) and at the Mars Society's Mars Desert Research Station, Utah.

Course **PROJECTS**

Improved Methods for Compressed Sensing Recovery

CS709: Convex Optimization Autumn 2015-16

Using a series of convex approximations to the compressed sensing recovery problem, we reconstructed good and near-exact versions of images at compressions as low as 0.1 and 0.2 respectively. We also proved convergence of the algorithm to the exact solution. Code here.

Hidden Markov Model Part-of-Speech Tagging Guide: Prof. Navin Khaneja, EE, IITB

Guide: Prof. Ganesh Ramakrishnan, CSE, IITB

EE638: Estimation and Identification Autumn 2015-16

We implemented part-of-speech tagging with support for unknown words. An error rate of around 5% and capabilities of the system to discern context were observed. Code here.

Laparoscopic Image Dehazing With Dark Channel Prior CS736: Medical Image Processing Guide: Prof. Suyash Awate, CSE, IITB Spring 2014-15

We applied the Dark Channel Prior method for landscape image dehazing to laparoscopic images. In order to make the process real-time, we replaced refining the transmission map with a differential equation with guided filtering and got good results. Code here.

Stereo Odometry Via Point Cloud Registration

Guide: Prof. Ajit Rajwade, CSE, IITB

CS763: Computer Vision Spring 2014-15

We explored kernel density correlation as a method for registering pointclouds. We performed this maximization with gradient-ascent and coherent point drift with PCL in C++ and observed good convergence behavior for small displacements and rotations. Code here.

Gravitational Lens Separation With PCA

CS663: Digital Image Processing Autumn 2014-15

Guide: Prof. Suyash Awate and Prof. Ajit Rajwade, CSE, IITB

Gravitationally lensed images of galaxies have rare arc-like artifacts that can be used to calculate the mass of the lens. Detection and source subtraction are essential preprocessing steps for this. We used Anscombe denoising followed by PCA to build a basis for galaxy images and used the top few eigengalaxies to reconstruct and subtract sources to detect arc-like artifacts. Code here. **Processor Design**

Guide: Prof. Virendra Singh, EE, IITB

EE309: Microprocessors Autumn 2014-15

We designed, simulated and implemented a multi-cycle RISC processor following the LC-3b ISA. The implementation was done on a DE0-Nano board from Terasic. Following this, we designed and simulated a pipelined RISC processor using the Little Computer Architecture.

A PD Temperature Controller on an Logic Device

Guide: Prof. Jayanta Mukherjee, EE, IITB

EE224: Digital Systems Lab Spring 2013-14

We designed, simulated and implemented a proportional-derivative temperature controller with a Peltier plate used as a heating/cooling element and an LM35 temperature sensor. We observed quick temperature rise and stable steady-state with best-tuned parameters for the controller.

ASTROPHYSICS PROJECTS

An X-Ray Study of Black Hole Candidate X Norma X-1

NIUS, Astronomy

Guide: Prof. Manojendu Choudhury, Center for Basic Sciences

December 2013

We analyzed spectral data from the low-mass X-Ray Binary 4U 1630-47 (X Nor X-1) for the period between MJD 53829.3638299 and MJD 53950.93011. This period corresponds to an outburst in the source. The data is taken from the RXTE GOF archives. We extracted 3-30 keV spectra and fit them with a theoretical model which, in addition to the main radiation mechanism, takes into account interstellar extinction along the line of sight. The model for the main radiation mechanism consists of thermal emission from a geometrically thin and optically thick disk, and non-thermal radiation modeled by a power-law, presumably from a high energy Comptonizing cloud located inside the truncated disk, as well as emission of Compton radiation from the disk. We obtained best fit values of various parameters like the internal radius of the accretion disk, the internal temperature, flux in various bandpasses, relative magnitudes of the non-thermal Compton component and the thermal blackbody component. Report here.

Estimation of Photometric Redshifts Using Machine Learning

NIUS, Astronomy

Guide: Prof. Ninan Sajeeth Philip, IUCAA, Pune

December 2012

Broad-band energies in color filters are used as inputs to a machine learning algorithm for determination of redshifts for objects whose spectra cannot be measured accurately. Here, we trained a two-layer neural network to calculate photometric redshifts for such objects and obtained good results. Often, data that we get from sources whose redshift is known from other methods is not enough to train learning algorithms for prediction with reasonable accuracy. Hence, we worked on data generation from available data. We redshifted available spectra to determine how the object with a given spectrum would look like at a range of higher redshifts. From these redshifted spectra we extracted energies in color filters and used this (nearly 10-fold) expanded dataset to train the learning algorithm. We achieved good predictions for test data and observed clustering of galaxy colors as a function of increasing redshift.

ACHIEVEMENTS AND AWARDS

Olympiads and Competitive Exams

- Represented India at the 6th International Olympiad on Astronomy and Astrophysics, Brazil, 2012. Won a Gold Medal with International Rank 4 and a special prize for Best Data Analysis
- Represented India at the 5th International Earth Sciences Olympiad, Italy, 2011. Won a Bronze Medal and prizes for best performance in the Hydrosphere section and the team presentation
- Secured All India Rank (AIR) 105 in IIT-JEE amongst 1.1 million candidates

Scholarships

- Awarded KVPY Scholarship 2011 by Dept. of Science and Technology, Govt. of India
- Awarded NTSE Scholarship 2008 by NCERT, Govt. of India

Competitions

- Secured IIT Bombay the second position by putting on board 72 Messier objects including the entire Virgo cluster of galaxies in the Inter-IIT Messier Marathon, 2014
- Won the Astronomy Quiz conducted by the Astronomy Club, IIT Bombay, 2012

Talks and Seminars

Template-Based Stereo Odometry

The AIR Lab, Carnegie Mellon University

Invited Talk July 2015

Here, I presented results from my 2015 summer internship to my group at Carnegie Mellon University. The talk included a detailed description of the method used, comparisons of the results with ground-truth and stress-tests on the method. The presentation may be found here.

The Cosmic Distance Ladder

 $Invited\ Talk$

Krittika - The Astronomy Club, IIT Bombay

September 2014

This open-to-all talk is a journey climbing the Cosmic Distance Ladder, which is a sequence of steps, each building on the previous step's results, for calculating distances in the universe. We begin with solar system distances, and end at huge distances where the only real option is to use photometric redshifts. This talk also presents results from my Google Summer of Code project. The presentation may be found here.

MENTORING EXPERIENCE

Teaching Assistant

CS663: Digital Image Processing Prof. S. Awate and Prof. A. Rajwade Autumn 2015-16

Resource Person, Indian Astronomy Olympiad Programme

May 2013, May 2014

Selected twice as a resource person for the Indian Astronomy Olympiad Camp, for their selection to the international Astronomy Olympiads. Involved in mentoring students ranging from the 9^{th} to the 12^{th} grades in Astronomy, and in setting up challenging questions and evaluating students.

Technical Mentor

April 2013 - March 2014

Mentored 1^{st} year students for Robotics Competitions and Institute Technical Summer Projects.

Relevant Coursework

Computer Sciences and Engineering

Computer Networks, Machine Learning, Convex Optimization, Computer Vision, Algorithms for Medical Image Processing, Digital Image Processing, Computer Graphics, Design and Analysis of Algorithms, Data Structures and Algorithms, Discrete Mathematics

Electrical Engineering

Estimation and Identification, Speech Processing, Digital Signal Processing, Controls, Probability and Random Processes, Digital Communication, Communication Systems, Microprocessors, Signals and Systems, Digital and Analog Systems, Electronic Devices and Circuits, Network Theory

Physics and Mathematics

The General Theory of Relativity, Electromagnetic Waves, Electricity and Magnetism, Classical Mechanics, Differential Equations, Linear Algebra, Complex Analysis, Calculus

TECHNICAL SKILLS Programming C/C++, Python, Bash, Matlab, Verilog, SQL, HTML, PHP, LATEX

Software Packages ROS/Gazebo, OpenCV, The Point Cloud Library, SPICE Circuit

Simulation, EAGLE PCB Design, SolidWorks, AutoCAD, LabView

Science Software Python packages: NumPy, SciPy and Matplotlib, GNUPlot, Scikit-

learn, Astropy, SExtractor, SDSS tools

Hardware Microprocessor Architectures: 8051, 8085, AVR and PIC, CPLDs and

FPGAs, Embedded Platforms: Arduino, RaspberryPi, standard digital

 $logic\ families$

OTHER Interests Other than my academic interests, I like biking, long walks, swimming, socializing, cooking good food and eating it. I especially enjoy classic rock music and people who enjoy my interests.

REFERENCES

Prof. Suyash Awate, CSE Indian Institute of Technology, Bombay E-Mail | Webpage

Dr. Aniket Sule, ReaderHomi Bhabha Center for Science EducationE-Mail | Webpage