Zelluläre Automaten und Differentialgleichungen Yeah.

Detlev Ziereisen¹ Florian Lüthi¹

¹Department of Computer Science ZHAW

16.06.2012

Ziel

Zellulärer Automat, der...

- allgemein ist,
- Differentialgleichungen lösen kann,
- o cool aussieht,
- portabel ist.

Definition

Ein Zellulärer Automat hat:

- einen Zellularraum R,
- eine endliche Nachbarschaft N, wobei $\forall r \in R (N_r \subset R)$,
- eine Zustandsmenge Q,
- eine Überführungsfunktion $\delta: Q^{|N|+1} \mapsto Q$.

Wolfram's eindimensionales Universum

Ein Zellulärer Automat hat:

- eindimensional
- |N| = 2, |Q| = 2
- $\bullet \Rightarrow |\operatorname{img}(\delta)| = 256$
- ⇒ 256 verschiedene Automaten
- Automat Nr. 110 ist turing-complete!

Differentiation

$$\left(\frac{\Delta}{\Delta \vec{x}} u\right)_{\vec{x}} = u_{\vec{x}} - \sum_{i=1}^{\dim(x)} u_{\vec{x} - \vec{e}_i}
\left(\frac{\Delta^2}{\Delta \vec{x}^2} u\right)_{\vec{x}} = u_{\vec{x}} - 2 \cdot \sum_{i=1}^{\dim(\vec{x})} u_{\vec{x} - \vec{e}_i} + \sum_{i=1}^{\dim(\vec{x})} u_{\vec{x} - 2\vec{e}_i}$$

Integration

$$\begin{bmatrix} \begin{array}{c|cccc} a & B \\ \hline & c \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{c|cccc} \alpha_1 & 0 & & & \\ \alpha_2 & \beta_{2,1} & 0 & & \\ \vdots & \vdots & \vdots & \ddots & \\ \hline \alpha_m & \beta_{m,1} & \beta_{m,2} & \cdots & 0 \\ \hline & \gamma_1 & \gamma_2 & \cdots & \gamma_m \end{bmatrix}$$

Beides zusammen

- $R \approx \vec{x}$ in einer, zwei oder drei Dimensionen =< Florian
- (Q, D) ∈ R mit Q als einer Menge von berechnungsfernen Zustandsinformationen und den Differentialen nach der Zeit

$$D = \left(u, \frac{\partial u}{t}, \frac{\partial^2 u}{\partial t^2}, \cdots, \frac{\partial^n u}{t^n}\right) \in \mathbb{R}^n$$

- Eine neue Generation entspricht jeweils der fortgelaufenen Zeit ∂t , welche sehr fein diskretisiert werden muss
- In der Übergangsfunktion δ steckt die eigentliche Differentialgleichung. In der Regel verändert sie nur die Elemente von D. Sollte die Differentialgleichung Terme mit verschiedenen Ordnungen enthalten, wird die Gleichung unter Zuhilfenahme entsprechender Hilfsgleichungen $\lambda_1, \lambda_2, \ldots, \lambda_n$ in ein äquivalentes System gewöhnlicher Differentialgleichungen umgeformt.

Die Welle

$$\frac{\partial^2 u}{\partial \vec{x}^2} = k \cdot \frac{\partial^2 u}{\partial t^2}$$

Die Welle

$$u_{i} \qquad u_{i}(t) + \frac{\partial u_{i}(t + \Delta t)}{\partial t} \Delta t$$

$$\downarrow \qquad \uparrow$$

$$\frac{\partial u_{i}}{\partial \vec{x}} = u_{i} - \sum u_{i-1} \qquad \frac{\partial u_{i}(t + \Delta t)}{\partial t} = \frac{\partial u_{i}(t)}{\partial t} + \frac{\partial^{2} u}{\partial t^{2}} \Delta t$$

$$\downarrow \qquad \uparrow$$

$$-2u_{i} + \sum u_{i-1} + \sum u_{i+1} \underset{\frac{\partial^{2} u}{\partial t^{2}} = k \cdot \frac{\partial^{2} u}{\partial \vec{x}^{2}}}{\frac{\partial^{2} u}{\partial t^{2}}}$$

- Portabel
- sdfsdfs
- Closures

Make Titles Informative. Use Uppercase Letters. Subtitles are optional.

- Use itemize a lot.
- Use very short sentences or short phrases.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.