Prove the following in Leibnizian modal logic. In addition to all the standard inference rules of propositional logic, you have the following for Leibnizian modal logic.

Duality (Dual) $\Box A + \vdash \sim \Diamond \sim A$ and $\Diamond A + \vdash \sim \Box \sim A$

K rule (K) $\Box(A \rightarrow B) \vdash (\Box A \rightarrow \Box B)$

N Rule (N) You may introduce any previously derived theorem of propositional

logic as a necessary truth. In other words, if | A has been

previously demonstrated, then you may state $\square A$.

Keep in mind that the key to doing some proofs is to use K in combination with N. To do these proofs, you may introduce anything that is transparently a theorem in propositional logic by the theorem introduction rule (TI). Additionally, you may introduce any such theorem as a necessity in accord with N. For example, since $P \to (P \lor Q)$ is a theorem you may introduce $\Box(P \to (P \lor Q))$ by N.

Philosophy 160

Derivations in modal logic

$$2. \ \Box P \ | - \ \Box (Q \rightarrow P)$$

2.
$$\Box(P \rightarrow (Q \rightarrow P))$$

N, theorem easily derived by
$$\rightarrow I$$

3.
$$\Box P \rightarrow \Box (Q \rightarrow P)$$

To make this sort of proof shorter, you can combine DN and Dual in one step. Just be sure to cite both rules on the same

4. \Diamond □R & \Diamond □(R \rightarrow M) \vdash □ \Diamond M (Hint: use result from 3)

2.
$$\lozenge \square (R \to M)$$

3. $\lozenge \square R \to R$

$$4. \ \Diamond \Box (\mathsf{R} \to \mathsf{M}) \to (\mathsf{R} \to \mathsf{M})$$

6.
$$R \rightarrow M$$

Notice that steps 3 and 4 are not using the N rule, but just the theorem introduction rule from propositional logic.

5.
$$\Box(P \rightarrow Q) \mid \neg \lozenge \neg P \rightarrow \neg \lozenge \neg Q$$

1.
$$\Box(\neg Q \to \neg P)$$
A

2. $\Box P$
A

3. $\Box \neg Q \to \Box \neg P$
1, K

4. $\Box \neg Q$
H $\neg I$

5. $\Box \neg P$
3,4 $\to E$

6. $\neg P$
T

7. P
2, T

8. $P \& \neg P$
6,7 &I

9. $\neg \Box \neg Q$
4-8, $\neg I$

10. $\Diamond Q$
9. Dual

7.
$$\Box(\sim P \rightarrow \sim Q) \vdash \Box Q \rightarrow \Box P$$

8.
$$\Box(\sim P \rightarrow \sim Q)$$
, $\Diamond \sim P \vdash \Diamond \sim Q$ (Hint: use result from 7)

1.
$$\Box(\sim P \to \sim Q)$$
A

2. $\Diamond \sim P$
A

3. $\Box Q$
H $\sim I$

4. . $\Box(\sim P \to \sim Q) \to \Box Q \to \Box P$
TI, proven in 7 above

5. $\Box Q \to \Box P$
1,4 $\to E$

6. $\Box P$
3,5 $\to E$

7. $\Box \sim P$
6, Dual

8. K & $\rightarrow K$
2,6 Con

9. $\neg \Box Q$
3-7, $\sim I$

10. $\Diamond \sim Q$
8, Dual, DN

1.
$$\Diamond(P \& Q)$$
A

2. $\Box \sim P$
H

3. $\Box(\sim P \rightarrow \sim (P \& Q))$
N (easily derived theorem)

4. $\Box \sim P \rightarrow \Box \sim (P \& Q)$
3, K

5. $\Box \sim (P \& Q)$
2,4 $\rightarrow E$

6. $\sim \Diamond(P \& Q)$
5, DN, Dual

7. $K \& \sim K$
1,6 Con

8. $\sim \Box \sim P$
2-7, $\sim I$

9. $\Diamond P$
8, Dual

$$\begin{array}{lll} \text{1.} & \Box(P \lor Q) & \text{A} \\ \text{2.} & \Box((P \lor Q) \to (\sim\!\!P \to Q)) & \text{N} & \text{(material implication equivalence)} \\ \text{3.} & \Box(P \lor Q) \to \Box(\sim\!\!P \to Q) & \text{2, K} \\ \text{4.} & \Box(\sim\!\!P \to Q) & \text{1,3} \to \!\!E \\ \text{5.} & \Box\sim\!\!P \to \Box Q & \text{4, K} \end{array}$$

Philosophy 160

Derivations in modal logic

11.
$$\Diamond P \models \Diamond (K \rightarrow P)$$

2.
$$| \Box \sim (K \rightarrow P)$$

3.
$$\square(\sim(K \to P) \to \sim P)$$

$$4. \quad \Box \sim (\mathsf{K} \to \mathsf{P}) \to \Box \sim \mathsf{P}$$

9.
$$\Diamond(K \rightarrow P)$$

N (easily derived theorem)

3.
$$\Box(P \rightarrow (Q \rightarrow (P \& Q)))$$

4.
$$\Box P \rightarrow \Box (Q \rightarrow (P \& Q))$$

5.
$$\Box(Q \rightarrow (P \& Q))$$

6.
$$\Box Q \rightarrow \Box (P \& Q)$$

3.
$$\Box((\Box P \lor \Box Q) \rightarrow (\neg\Box P \rightarrow \Box Q))$$

4.
$$\Box(\Box P \lor \Box Q) \rightarrow \Box(\neg\Box P \rightarrow \Box Q)$$

5.
$$\Box$$
($\sim\Box P \rightarrow \Box Q$)

6.
$$\Box \sim \Box P \rightarrow \Box \Box Q$$

N (disjunctive syllogism)

$$\begin{array}{lll} 1. & \Box(P \rightarrow {}^{\sim}P) & A \\ 2. & \Box((P \rightarrow {}^{\sim}P) \rightarrow {}^{\sim}P) & N \\ 3. & \Box(P \rightarrow {}^{\sim}P) \rightarrow \Box {}^{\sim}P & 2, K \\ 4. & \Box {}^{\sim}P & 1,3 \rightarrow E \end{array}$$

15.
$$\Box P \lor \Box Q, \Box (P \rightarrow R), \Box (Q \rightarrow S) \vdash \Box (R \lor S)$$