Chapter 1 Functions and Limits

1.5 The Limit of a Function

Intuitive Definition of a Limit Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = \int_{L}$$

and say

"the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

Notations: 1) lim f(71) = L

Three cases:

EXAMPLE 1 Guess the value of $\lim_{x \to 1} \frac{x-1}{x^2-1}$. $\frac{2x-1}{x^2-1}$

$$f(x) = \frac{x-1}{x^2-1}$$

$$x<1$$
 $f(x)$
0.5
0.666667
6.9
0.526316
0.99
0.502513
6.999
0.50025
0.9999
0.500025

$$f(0.5) = \frac{0.5 - 1}{0.5^{2} - 1} = 0.666667$$

$$f(0.9) = \frac{0.9-1}{0.9^{2}-1} = 0.526316$$

$$f(1.5) = \frac{1.5 - 1}{1.5^2 - 1} = 0.400000$$

$$f(1.1) = \frac{1.1-1}{1.1^{2}-1} = 0.476190$$

EXAMPLE 2 Estimate the value of
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$
. $+$ $(+) = \frac{\sqrt{t^2+q^2}-3}{1^2}$

$$f(t) = \frac{\int t^2 + q^2 - 3}{t^2}$$

EXAMPLE 3 Guess the value of $\lim_{x\to 0} \frac{\sin x}{x}$.

$$f(x) = \frac{\sin x}{\pi}$$

(not defined at z=0).

$$\lim_{n\to\infty}\frac{p_{in2}}{n}=1$$

EXAMPLE 4 Investigate
$$\lim_{x\to 0} \sin(\frac{\pi}{x})$$
 $f(\pi) = 0$ in $(\frac{\pi}{2})$ $om(\frac{\pi}{2}) = 1$.

Property. If $\lim_{x\to 0} f(\pi) = L$, then L is unique (one possible value for the limit).

$$\frac{x}{2} |f(x)| = \frac{x}{2} |f(x)| = \frac{x}{2}$$

One-sided Limits.

EXAMPLE 6 The Heaviside function *H* is defined by

$$H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$$

What is the limit when t approached 0 from the right and when t approaches 0 from the left.

2 Definition of One-Sided Limits We write

$$\lim_{x \to a^{-}} f(x) = L$$

and say the **left-hand limit of** f(x) as x approaches a [or the **limit of** f(x) as x approaches a from the left is equal to L if we can make the values of f(x)arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

(a)
$$\lim_{x \to a^{-}} f(x) = L$$

Right-hand limits.

2 Definition of One-Sided Limits We write

$$\lim_{x \to \infty} f(x) = L$$

and say the Right-hand limit of f(x) as x approaches a for the limit of f(x) as x is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x greater than a.

approaches a from the right]

(b)
$$\lim_{x \to a^+} f(x) = L$$

Fundamental Property:

3 $\lim f(x) = L$ if and only if $\lim_{x \to \infty} f(x) = L$ and $\lim_{x \to \infty} f(x) = L$

EXAMPLE 7 The graph of a function g is shown in Figure 10. Use it to state the values (if they exist) of the following:

- (a) $\lim_{x \to 2^-} g(x)$
- (b) $\lim_{x \to 2^+} g(x)$
- (c) $\lim_{x \to 2} g(x)$

- (d) $\lim_{x \to 5^-} g(x)$
- (e) $\lim_{x \to 5^+} g(x)$
- (f) $\lim_{x \to a} g(x)$

- (a) 3 (b) 1 (c) $\not\equiv$ (d) 2 (e) 2 (f) $\lim_{x \to 5} g(x) = 2$.

nfinite limits.

EXAMPLE 8 Find $\lim_{x\to 0} \frac{1}{x^2}$ if it exists. $\frac{1}{0.01} = \frac{1}{1/00}$

$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$

Example 8 1/2. Find, if it exists,
$$\lim_{x \to \infty} \left(-\frac{1}{x^2} \right)$$
.

Later (chapter 3)

Positive infinity.

O

Intuitive Definition of an Infinite Limit Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Negative Infinity

Definition Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Other types of infinite limits.

lim flot = [a]

b)

EXAMPLE 9 Find
$$\lim_{x \to 3^+} \frac{2x}{x-3}$$
 and $\lim_{x \to 3^-} \frac{2x}{x-3}$.

(a)
$$\lim_{x\to 3^{+}} \frac{2x}{x-3}$$

$$\lim_{x\to 3^+} \frac{2x}{x-3} = \infty$$

(a)
$$\lim_{\chi \to 3^+} \frac{2\chi}{\chi - 3}$$
 From the graph, $\lim_{\chi \to 3^+} \frac{2\chi}{\chi - 3} = \infty$
(b) $\lim_{\chi \to 3^-} \frac{2\chi}{\chi - 3}$, From the graph, $\lim_{\chi \to 3^-} \frac{2\chi}{\chi - 3} = -\infty$.

lim
$$\frac{2x}{2c-3}$$
 ?? _s we can't say the value ...

Definition The vertical line
$$x = a$$
 is called a **vertical asymptote** of the curve $y = f(x)$ if at least one of the following statements is true:

$$\lim f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

EXAMPLE 10 Find the vertical asymptotes of $f(x) = \tan x$.

$$2c = \frac{\pi}{2} + k\pi$$

)
$$NOS \times = 0 \ \angle = 1 \ \times = \frac{\pi}{2} + k\pi \ (k = ..., -2, -1, 0, 1, 2)$$

V-thical asymptotes are at $x = \frac{\pi}{2} + k\pi$.

Lit's take alook at the grouph.