AI2613: Brownian Motion

May 25, 2024

1 Brownian Motion

Brownian motion describes the random movement of small particles suspended in a liquid or gas. This phenomenon was named after the botanist Robert Brown, who observed and studied the jittery movement of pollen grains suspended in water under a microscope. Later, Albert Einstein provided a physical explanation for this phenomenon. In mathematics, Brownian motion is characterized by the *Wiener process*, named after Norbert Wiener, a renowned mathematician and the originator of cybernetics.

To motivate the definition of Brownian motion, we look at the 1-D random walk starting from 0. Let Z_t be our position at time t and X_t be the move of the t-th step. The value of X_t is chosen from $\{-1,1\}$ uniformly at random. Note that $Z_0 = 0$ and $Z_t = Z_{t-1} + X_t$ for $t \ge 1$. So $Z_T = \sum_{t=1}^T X_t$. Then we have

$$\mathbf{E}[Z_T] = 0$$
 and $\mathbf{Var}[Z_T] = \sum_{t=1}^{T} \mathbf{Var}[X_t] = T$.

Suppose now we move with every Δt seconds and with step length δ . Then our position at time T is $Z(T) = \delta \sum_{t=1}^{\frac{T}{\Delta t}} X_t$. We are interested in the behavior of the process when $\Delta t \to 0$. We have

$$\mathbf{E}\left[Z(T)\right] = 0 \text{ and } \mathbf{Var}\left[Z(T)\right] = \delta^2 \sum_{t=1}^{\frac{T}{\Delta t}} \mathbf{Var}\left[X_t\right] = \delta^2 \cdot \frac{T}{\Delta t}.$$

We can identify the expectation and the variance of this process with the discrete random walk when $\Delta t \to 0$ by choosing $\delta = \sqrt{\Delta t}$. It follows from the central limit theorem that

$$Z(T) = \sqrt{\Delta t} \sum_{t=1}^{\frac{T}{\Delta t}} X_t \overset{\Delta t \to 0}{\sim} \sqrt{\Delta t} \cdot \mathcal{N}(0, \frac{T}{\Delta t}) = \mathcal{N}(0, T).$$

In other words, the "continuous" version of the 1-D random walk follows $\mathcal{N}(0,T)$ at time T. This is the basis of the Wiener process. Now we introduce its formal definition.

Definition 1 (Standard Brownian Motion / Wiener Process). We say a stochastic process $\{W(t)\}_{t\geq 0}$ is a standard Brownian motion or Wiener process if it satisfies

- W(0) = 0;
- Independent increments: $\forall 0 \le t_0 \le t_1 \le \cdots \le t_n$, $W(t_1) W(t_0)$, $W(t_2) W(t_1)$, ..., $W(t_n) W(t_{n-1})$ are mutually independent;

- Stationary increments: $\forall s, t > 0, W(s+t) W(s) \sim \mathcal{N}(0,t)$;
- W(t) is continuous almost surely.¹

Recall that the probability density of the Gaussian distribution $N(\mu, \sigma^2)$ is

$$f_{N(\mu,\sigma^2)}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

We use $\Phi(\cdot)$ to denote the CDF of N(0,1), namely $\Phi(t)=\int_{-\infty}^t f_{N(0,1)}(x)\,\mathrm{d}x.$

In the following, we use $f_t(x)$ to denote the probability density of N(0, t). For any $t_1 \le t_2 \le \dots t_n$, the joint density of $W(t_1), W(t_2), \dots, W(t_n)$ is

$$f(x_1,\ldots,x_n)=f_{t_1}(x_1)f_{t_2-t_1}(x_2-x_1)\ldots f_{t_n-t_{n-1}}(x_n-x_{n-1})$$

Example 1. Let $0 \le s \le t$. We can compute the conditional distribution of X(s) when X(t) = y. We use $f_{s|t}(x|y)$ to denote the probability density of X(s) = x conditioned X(t) = y. Clearly

$$f_{s|t}(x|y) = \frac{f_s(x)f_{t-s}(y-x)}{f_t(y)} = C \cdot \exp\left(-\frac{(x-ys/t)^2}{2s(t-s)/t}\right),$$

where C is some universal constant irrelevant to x, y, s, t. As a result, the conditional distribution is the Gaussian $N(\frac{s}{t}y,\frac{s}{t}(t-s))$.

Let $\{W(t)\}_{t\geq 0}$ be a standard Brownian motion. If $\{X(t)\}_{t\geq 0}$ satisfies $X(t)=\mu\cdot t+\sigma W(t)$, we call $\{X(t)\}_{t\geq 0}$ a (μ,σ^2) Brownian motion. Clearly, $X(t)\sim N(\mu t,\sigma^2 t)$.

2 The Hitting Time of a Brownian Motion

We consider the first arrivial time of position b in a Brownian motion. This is called the *hitting time* of b. Let us first consider the standard Brownian motion $\{W(t)\}$. Define $\tau_b \triangleq \inf\{t \geq 0 \mid W(t) > b\}$. For any t > 0,

$$\Pr\left[\tau_b < t\right] = \Pr\left[\tau_b < t \land W(t) > b\right] + \Pr\left[\tau_b < t \land W(t) < b\right]$$
$$= \Pr\left[W(t) > b\right] + \Pr\left[W(t) < b \mid \tau_b < t\right] \cdot \Pr\left[\tau_b < t\right].$$

Note that $W(t) \sim \mathcal{N}(0,t)$. Let Φ be the cumulative distribution function of standard Gaussian distribution, that is, $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$. Then

$$\Pr\left[W(t) > b\right] = \Pr\left[\frac{W(t)}{\sqrt{t}} > \frac{b}{\sqrt{t}}\right] = 1 - \Phi\left(\frac{b}{\sqrt{t}}\right).$$

Assuming we have known the value of τ_b and $\tau_b < t$, we can regard $\{W(t)\}_{t \ge \tau_b}$ as a Brownian motion starting from b. Thus, as Figure 1 shows, $\Pr[W(t) < b \mid \tau_b < t] = \frac{1}{2}$.

By direct calculation, we have
$$\Pr\left[\tau_b < t\right] = 2\left(1 - \Phi\left(\frac{b}{\sqrt{t}}\right)\right)$$
.

This is called the principle of reflection of a standard Brownian motion

¹Let Ω be the sample space. Then W can be viewed as a mapping from $\mathbb{R} \times \Omega$ to \mathbb{R} . The meaning of "W(t) is continuous almost surely" is: $\exists \Omega_0 \subseteq \Omega$ with $\Pr[\Omega_0] = 1$ such that $\forall \omega \in \Omega_0$, $W(t, \omega)$ is continuous with regard to t.

Figure 1: The hitting time and the reflection principle

3 Gaussian Processes and Brownian Motion

In this section, we will give another characterization of Brownian motions in terms of the *Gaussian process*. First recall the notion of high dimensional Gaussian distribution. A vector of random variables (X_1, X_2, \ldots, X_n) is said to be Gaussian iff $\forall a_1, a_2, \ldots, a_n, \sum_{i=1}^n a_i X_i$ is a one-dimensional Gaussian. Let $\mu = (\mu_1, \mu_2, \ldots, \mu_n)$ where $\mu_i = \mathbb{E}[X_i]$. Let $\Sigma = (\text{Cov}(X_i, X_j))_{i,j}$. Then the probability density function f of (X_1, X_2, \ldots, X_n) is

for
$$x = (x_1, x_2, ..., x_n)$$
, $f(x) = (2\pi)^{-\frac{n}{2}} \cdot |\det \Sigma|^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$.

Definition 2 (Gaussian Process). A stochastic process $\{X(t)\}_{t\geq 0}$ is called Gaussian process if $\forall 0 \leq t_1 \leq t_2 \leq \cdots \leq t_n$, $(X(t_1), X(t_2), \ldots, X(t_n))$ is Gaussian.

Note that a Gaussian vector can be characterized by its mean vector and the covariance matrix. Standard Brownian motion is a special family of Gaussian processes where the covariance of X(s) and X(t) is $s \wedge t$.

Definition 3 (Standard Brownian Motion/Standard Wiener Process). We say a stochastic process $\{W(t)\}_{t\geq 0}$ is a standard Brownian motion or Wiener process if it satisfies

- $\{W(t)\}_{t>0}$ is an almost surely continuous Gaussian Process;
- $\forall s \ge 0, E[W(s)] = 0;$
- $\forall 0 \le s \le t$, Cov(W(s), W(t)) = s.

We will show that it is easier to use Definition 3 to verify that a certain stochastic process is a Brownian motion. Let us first verify that the two definitions are equivalent.

Proposition 4. The two definitions of standard Brownian motions are equivalent.

Proof. Given Definition 1, it is easy to know that E[W(s)] = 0 for all $s \ge 0$ since $W(s) \sim \mathcal{N}(0, s)$. What we need is to verify that $\{W(t)\}_{t\ge 0}$ in Definition 1 is a Gaussian process and to compute the covariance of W(s) and W(t) in Definition 1.

Note that $\forall 0 \le s < t$ and $\forall a, b$, we have

$$aW(s) + bW(t) = (a+b)W(s) + b(W(t) - W(s)).$$

Since W(s) and W(t) - W(s) are two independent Gaussian's, aW(s) + bW(t) is still a Gaussian.

It is worth noting that the sum of two Gaussians is not necessarily a Gaussian, unless they are joint Gaussian. To see this, let X, Y be two independent N(0,1) random variables. Then we let $Z_1 = X$, $Z_2 = sgn(X) |Y|.$ Clearly $Z_1 + Z_2$ is not Gaussian since the density at 0 is zero. Independence is just a special case of joint Gaussian (the covariance is zero).

By the distributive law of covariance, for any $0 \le s \le t$, we have

$$Cov(W(s), W(t)) = Cov(W(s), W(t) - W(s) + W(s))$$

$$= Cov(W(s), W(t) - W(s)) + Cov(W(s), W(s))$$

$$= Var[W(s)] = s.$$

Then we consider the counterpart. Given Definition 3, we can deduce the first and fourth property in Definition 1 directly. For any $0 \le t_{i-1} \le t_i \le t_{j-1} \le t_j$, we have

$$\begin{aligned} &\operatorname{Cov}(W(t_i) - W(t_{i-1}), W(t_j) - W(t_{j-1})) \\ &= \operatorname{Cov}(W(t_i), W(t_j)) + \operatorname{Cov}(W(t_{i-1}), W(t_{j-1})) \\ &- \operatorname{Cov}(W(t_i), W(t_{j-1})) - \operatorname{Cov}(W(t_{i-1}), W(t_j)) \\ &= t_i + t_{i-1} - t_i - t_{i-1} = 0, \end{aligned}$$

which yields the independence of $W(t_i) - W(t_{i-1})$ and $W(t_j) - W(t_{j-1})$. Thus, the $\{W(t)\}_{t \ge 0}$ in Definition 3 satisfies independent increments.

It is easy to verify that $\forall s, t > 0$, W(s + t) - W(s) is a Gaussian with mean 0. Note that

$$Var [W(t+s) - W(s)] = E [(W(t+s) - W(s))^{2}]$$

$$= E [W(t+s)^{2}] + E [W(s)^{2}] - 2E [W(t+s)W(s)]$$

$$= Var [W(t+s)^{2}] + Var [W(s)^{2}] - 2Cov (W(t+s), W(s))$$

$$= t + s + s - 2s = t.$$

Thus, the $\{W(t)\}_{t\geq 0}$ in Definition 3 satisfies stationary increments.

Example 2. Suppose $\{W(t)\}_{t\geq 0}$ is a standard Brownian motion. We claim that $\{X(t)\}_{t\geq 0}$ is also a standard Brownian motion where X(0)=0 and $X(t)=t\cdot W(\frac{1}{t})$ for t>0.

We verify the three requirements in Definition 3.

Since $X(t) = t \cdot W(\frac{1}{t})$ which is the composition of two (almost surely) continuous function, $\{X(t)\}_{t \geq 0}$ is continuous almost surely as well. For any a_1, a_2, \ldots, a_n and $t_1, t_2, \ldots, t_n \geq 0$, $\sum_{i=1}^n a_i X(t_i) = \sum_{i=1}^n a_i t_i \cdot W(\frac{1}{t_i})$. Since $\{W(t)\}$ is standard Brownian motion, $\sum_{i=1}^n a_i t_i \cdot W(\frac{1}{t_i})$ is Gaussian. Thus, $\{X(t)\}_{t \geq 0}$ is a Gaussian process. For $0 \leq s < t$,

$$Cov(X(s), X(t)) = Cov(sW(\frac{1}{s}), tW(\frac{1}{t}))$$
$$= st \cdot Cov(W(\frac{1}{s}), W(\frac{1}{t}))$$
$$= st \cdot \frac{1}{t} = s.$$

Thus, $\{X(t)\}_{t\geq 0}$ is a standard Brownian motion.

4 Brownian Bridge

We already calculated the distribution of W(t) conditioned on W(u) = x for some $u \ge t$. We use X(t) to denote this process, and X(t) is usually called a *Brownian bridge*.

Figure 2: A Brownian bridge

We know from previous calculations that $X(t) \sim N(\frac{t}{u}x, \frac{t(u-t)}{u})$ is a Gaussian. Since the *conditional distribution of a multidimensional Gaussian distribution is Gaussian as well,* X(t) is a Gaussian process. As a result, it is useful to compute the covariance of this process.

 $\mathbf{E}\left[W(t)^2\mid W(u)=t\right]$

Var[X(t)] +

 $\mathbf{E}[X(t)]^2$

Recall W(t) is a standard Brownian motion. For any $s \le t$, we have

$$\begin{aligned} & \operatorname{Cov}(X(s), X(t)) \\ & = \operatorname{Cov}\left(W(s), W(t) \mid W(u) = x\right) \\ & = \operatorname{E}\left[W(s) \cdot W(t) \mid W(u) = x\right] - \operatorname{E}\left[W(s) \mid W(u) = x\right] \cdot \operatorname{E}\left[W(t) \mid W(u) = x\right] \\ & = \int_{-\infty}^{\infty} y \operatorname{E}\left[W(s) \mid W(t) = y, W(u) = x\right] \cdot f_{W(t) \mid W(u)}\left(y \mid x\right) \, \mathrm{d}y - \frac{st}{u^2} x^2. \\ & = \frac{s}{t} \operatorname{E}\left[W(t)^2 \mid W(u) = x\right] - \frac{st}{u^2} x^2 \\ & = \frac{s(u-t)}{u}. \end{aligned}$$

Definition 5 (Standard Brownian Bridge). A standard Brownian motion ending at W(1) = 0 is called a standard Brownian bridge.

We can verify that X(t) = W(t) - tW(1) is a standard Brownian bridge by calculating its mean and covariances.

Again like we did in the last lecture, we can compute the hitting time of a standard Brownian bridge using the principle of reflection.

Example 3 (Hitting Time in a Brownian Bridge). Let $\{W(t)\}_{t\geq 0}$ be a standard Brownian motion. Let $\tau_b \triangleq \inf\{t\geq 0\mid W(t)>b\}$. Then we compute $\Pr[\tau_b < u\mid W(u)=x]$. Note that if b< x, $\Pr[\tau_b < u\mid W(u)=x]=1$. Let ψ be the probability density function of standard Gaussian distribution, that is, $\psi(x)=\frac{1}{\sqrt{2\pi}}\cdot e^{-\frac{x^2}{2}}$. If b>x, letting dx be an infinitesimal change, we have

$$\Pr\left[\tau_b < u \mid W(u) = x\right] = \frac{\Pr\left[\tau_b < u \land W(u) \in [x, x + \mathrm{d}x]\right]}{\Pr\left[W(u) \in [x, x + \mathrm{d}x]\right]}$$
$$= \frac{\Pr\left[\tau_b < u\right] \cdot \Pr\left[W(u) \in [x, x + \mathrm{d}x] \mid \tau_b < u\right]}{f_u(x) \, \mathrm{d}x}.$$

If we have known the value of τ_b and $\tau_b < u$, we can regard $\{W(u)\}_{t \geq \tau_b}$ as a Brownian motion starting from b. Then we have

$$\begin{split} \Pr\left[\tau_b < u\right] \cdot \Pr\left[W(u) \in [x, x + \mathrm{d}x] \mid \tau_b < u\right] &= \Pr\left[\tau_b < u\right] \cdot \Pr\left[W(u) \in [2b - x - \mathrm{d}x, 2b - x] \mid \tau_b < u\right] \\ &= \Pr\left[\tau_b < u \land W(u) \in [2b - x - \mathrm{d}x, 2b - x]\right] \\ &= \Pr\left[W(u) \in [2b - x - \mathrm{d}x, 2b - x]\right] \\ &= f_u(2b - x) \, \mathrm{d}x \end{split}$$

Thus, when b > x, $\Pr\left[\tau_b < u \mid W(u) = x\right] = \frac{f_u(2b-x)}{f_u(x)} = e^{-\frac{2b(b-x)}{u}}$. When b = x, we have

$$\Pr\left[\tau_b < u \mid W(u) = b\right] = \frac{\Pr\left[\tau_b < u \land W(u) \in [b, b + \mathrm{d}b]\right]}{\Pr\left[W(u) \in [b, b + \mathrm{d}b]\right]}.$$

Note that

$$\Pr\left[\tau_b < u \land W(u) \in [b, b + \mathrm{d}b]\right] = \Pr\left[\tau_b < u\right] - \Pr\left[\tau_b < u \land W(u) > b + \mathrm{d}b\right] - \Pr\left[\tau_b < u \land W(u) < b\right]. \tag{1}$$

We know that $\Pr\left[\tau_b < u\right] = 2\left(1 - \Phi\left(\frac{b}{\sqrt{u}}\right)\right)$. Note that

$$\begin{split} \Pr\left[\tau_b < u \wedge W(u) > b + \mathrm{d}b\right] &= \Pr\left[W(u) > b + \mathrm{d}b\right] \\ &= 1 - \Phi\left(\frac{b}{\sqrt{u}}\right) - \Pr\left[W(u) \in [b, b + \mathrm{d}b]\right]. \end{split}$$

And

$$\begin{split} \Pr\left[\tau_b < u \land W(u) < b\right] &= \Pr\left[\tau_b < u\right] \cdot \Pr\left[W(u) < b \mid \tau_b < u\right] \\ &= \frac{1}{2} \cdot \Pr\left[\tau_b < u\right] = 1 - \Phi\left(\frac{b}{\sqrt{u}}\right). \end{split}$$

Thus, Equation (1) equals to $Pr[W(u) \in [b, b + db]]$ and

$$\Pr[\tau_b < u \mid W(u) = b] = 1.$$