Assignment: ASSIGNMENT 1

Name: Raghuwanshi, Prashant

Date: 2021-06-19

Create a numeric vector with the values of 3, 2, 1 using the c() function

Assign the value to a variable named num_vector

Print the vector

num vector <- c(3,2,1) num vector

Create a character vector with the values of "three", "two", "one" "using the c() function

Assign the value to a variable named char_vector

Print the vector

char_vector <- c("three", "two", "one") char_vector ## Create a vector called week1_sleep representing how many hours slept each night of the week ## Use the values 6.1, 8.8, 7.7, 6.4, 6.2, 6.9, 6.6 week1_sleep <- c(6.1, 8.8, 7.7, 6.4, 6.2, 6.9, 6.6)

Display the amount of sleep on Tuesday of week 1 by selecting the variable index $week1_sleep[3]$

Create a vector called week1_sleep_weekdays

Assign the weekday values using indice slicing

week1_sleep_weekdays <- week1_sleep[2:6]

Add the total hours slept in week one using the sum function

Assign the value to variable total_sleep_week1

total_sleep_week1 <- sum(week1_sleep)

Create a vector called week2_sleep representing how many hours slept each night of the week

Use the values 7.1, 7.4, 7.9, 6.5, 8.1, 8.2, 8.9

 $\text{week2_sleep} \leftarrow c(7.1, 7.4, 7.9, 6.5, 8.1, 8.2, 8.9)$

Add the total hours slept in week two using the sum function

Assign the value to variable total sleep week2

total_sleep_week2 <- sum(week2_sleep)

Determine if the total sleep in week 1 is less than week 2 by using the < operator

total_sleep_week1 < total_sleep_week2

Calculate the mean hours slept in week 1 using the mean() function mean(week1 sleep)

Create a vector called days containing the days of the week.

Start with Sunday and end with Saturday

```
days <- c("Sunday", "Monday", "Tuseday", "Wendnesday", "Thursday", "friday", "Saturday")
```

Assign the names of each day to week1_sleep and week2_sleep using the names function and days vector

```
names(week1_sleep) <- days names(week2_sleep) <- days
```

Display the amount of sleep on Tuesday of week 1 by selecting the variable name week1_sleep["Tuseday"]

Create vector called weekdays from the days vector

```
weekdays <- days[2:6]
```

Create vector called weekends containing Sunday and Saturday

```
weekends <- days[c(1,7)]
```

Calculate the mean about sleep on weekdays for each week

Assign the values to weekdays1_mean and weekdays2_mean

```
weekdays1_mean <- mean(week1_sleep[weekdays]) weekdays2_mean <- mean(week2_sleep[weekdays])
```

Using the weekdays1_mean and weekdays2_mean variables,

see if weekdays1_mean is greater than weekdays2_mean using the > operator weekdays1_mean > weekdays2_mean

Determine how many days in week 1 had over 8 hours of sleep using the > operator

```
week1\_sleep\_over8hrs <- sum(week1\_sleep > 8)
```

Create a matrix from the following three vectors

```
{\rm student}01 < -\ c(100.0,\,87.1)\ {\rm student}02 < -\ c(77.2,\,88.9)\ {\rm student}03 < -\ c(66.3,\,87.9)
```

```
students_combined <- matrix(c(student01, student02, student03), ncol=3)
```

grades <- matrix(students_combined, byrow = TRUE, nrow = 3) grades ## Add a new student row with rbind() student04 <- c(95.2, 94.1) grades <- rbind(grades, student04) grades ## Add a new assignment column with cbind() assignment04 <- c(92.1, 84.3, 75.1, 97.8) grades <- cbind(grades, assignment04) ## Add the following names to columns and rows using rownames() and colnames() assignments <- c("Assignment 1", "Assignment 2", "Assignment 3") students <- c("Florinda Baird", "Jinny Foss", "Lou Purvis", "Nola Maloney")

 $rownames(grades) <- students \ colnames(grades) <- \ assignments \ grades \ \#\# \ Total \ points \ for \ each \ assignment \ using \ colSums(grades)$

Total points for each student using rowSums()

rowSums(grades) ## Matrix with 10% and add it to grades weighted_grades <- grades * 0.1 + grades

Create a factor of book genres using the genres_vector

Assign the factor vector to factor_genre_vector

genres_vector <- c("Fantasy", "Sci-Fi", "Sci-Fi", "Mystery", "Sci-Fi", "Fantasy") factor_genre_vector <- as.factor(genres_vector)

Use the summary() function to print a summary of factor_genre_vector

summary(factor_genre_vector)

Create ordered factor of book recommendations using the recommendations vector

no is the lowest and yes is the highest

recommendations_vector <- c("neutral", "no", "no", "neutral", "yes") factor_recommendations_vector <- factor(recommendations vector, ordered = TRUE, levels = c("yes", "neutral", "no"))

Use the summary() function to print a summary of factor_recommendations_vector summary(factor recommendations vector)

Using the built-in mtcars dataset, view the first few rows using the head() function head(mtcars, 6)

Using the built-in mtcars dataset, view the last few rows using the tail() function tail(mtcars, 6)

Create a dataframe called characters_df using the following information from LOTR

name <- c("Aragon", "Bilbo", "Frodo", "Galadriel", "Sam", "Gandalf", "Legolas", "Sauron", "Gollum") race <- c("Men", "Hobbit", "Hobbit", "Elf", "Hobbit", "Maia", "Elf", "Maia", "Hobbit") in_fellowship <- c(TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE) ring_bearer <- c(FALSE, TRUE, TRUE, FALSE, TRUE, TRUE) age <- c(88, 129, 51, 7000, 36, 2019, 2931, 7052, 589) characters_df <- data.frame(name, race, in_fellowship, ring_bearer, age)

Sorting the characters_df by age using the order function and assign the result to the sorted characters df

sorted_characters_df <- characters_df[order(characters_df\$age),] ## Use head() to output the first few rows of sorted_characters_df head(sorted_characters_df, 6)

Select all of the ring bearers from the dataframe and assign it to ringbearers_df

 $ring bearers_df <- characters_df [characters_df\$ring_bearer == TRUE,] ~\#\# ~Use~ \texttt{head()} ~to~ output~ the~ first~ few~rows~ of~ \texttt{ringbearers_df} ~head(ring bearers_df,~3)$