Упражнение. Scilab, подсистема xcos

Дисциплина: Имитационное моделирование

Ганина Т. С.

07 марта 2025

Группа НФИбд-01-22

Российский университет дружбы народов, Москва, Россия

Докладчик

- Ганина Таисия Сергеевна
- Студентка Зго курса, группа НФИбд-01-22
- Фундаментальная информатика и информационные технологии
- Российский университет дружбы народов
- · Ссылка на репозиторий гитхаба tsganina

Вводная часть

Цели и задачи

Целью данной работы является приобретение навыков использования Scilab, а именно - подсистемы xcos. Также необходимо создать простую модель в OpenModelica.

Задание

- 1. Построить с помощью хсоѕ фигуры Лиссажу.
- 2. Выполнить моделирование в OMEdit.

Построить с помощью xcos фигуры Лиссажу

Рис. 1: Окно моделирования и палитра блоков

Рис. 2: Меняю цвет графика

Рис. 3: Учебная работа, пример из задания

Рис. 4: Как задавать параметры блока GENSIN_f

Рис. 5: Как задавать параметры блока CLOCK_c

Рис. 6: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=0$

Рис. 7: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 8: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 9: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Рис. 10: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Рис. 11: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=0$

Рис. 12: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 13: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Рис. 14: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Рис. 15: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Рис. 16: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=0$

Рис. 17: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 18: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Рис. 19: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Рис. 20: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Рис. 21: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=0$

Рис. 22: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Рис. 23: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Рис. 24: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Рис. 25: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

Реализация модели в OpenModelica

Реализация модели в OpenModelica

Рис. 26: Создать новый Modelica Класс

Рис. 27: Код для дифференциального уравнения

Рис. 28: Установка симуляции

Рис. 29: Полученный график для х после смены параметров симуляции

Рис. 30: Полученные графики для х и х' после смены параметров симуляции

Результаты

Результаты

В результате выполнения лабораторной работы я научилась работать со средствами моделирования xcos и OpenModelica.