Plus court chemin

Problème très classique de théorie des graphes avec de multiples applications (chemin le plus rapide ou de distance minimum entre deux points : cf mappy, viamichelin, tables de routage en informatique, ...). Dans sa forme la plus simple, le problème est bien résolu avec plusieurs algorithmes polynomiaux de résolution proposés il y a une cinquantaine d'années.

Mais, de nombreuses variations peuvent être introduites, certaines parvenant même à rendre le problème bien plus difficile (NP dur).

- Contraintes additionnelles : passage obligatoire en certains points, précédence entre sommets, législation du travail (par ex points de pause), plusieurs chemins arcs-disjoints pour sécurisation, contrainte sur la capacité du véhicule, fenêtres de temps de passage en un point, ...
- Autre élément de variation : One to one (une origine, une destination), One to all (broadcast), All to all.
- Existence ou non d'arcs de coûts négatifs et/ou de circuits.

Définitions de base

Données

- Un graphe G = (V, E) orienté
- Une fonction de pondération (ou de distance) $w: E \to \mathbb{R}$

Poids d'un chemin

Le poids du chemin $p=< v_0, v_1, v_2, \ldots, v_k>$ est la somme des poids des arcs qui le constituent.

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

(Laboratoire PRiSM) Dijkstra 7 mars 2017

Algorithme de Dijkstra

Cadre:

- \bullet Une seule origine (source) : sommet s
- Un graphe avec des arcs valués positivement, symétrique ou non

Idée:

- On calcule progressivement les plus courtes distances de s vers chaque sommet x_i (d_i) .
- A chaque itération, on traite le sommet non encore traité de plus petite valeur d_i (car on est sûr avec les valuations positives qu'il ne pourra plus être amélioré).
- on crée progressivement une arborescence des plus courts chemins de racine s par la structure pere.

Détail de l'algorithme de Dijkstra

- Initialisations :
 - $V = \{s\}; d_s = 0;$
 - $ightharpoonup \forall i \neq s, \text{ si l'arc (s,i) existe alors } d_i = w(s,i) \ (\infty \text{ sinon}), \ pere(i) = s$
- Boucle principale : Tant que $V \neq S$ faire
 - ▶ Trouver un noeud t de S V tq $d_t = Min(d_i, i \in S V)$,
 - $V = V \cup \{t\}$
 - $\blacktriangleright \ \forall k \in \Gamma_t^+$
 - * Si $(d_k \ge d_t + w(t, k))$ alors $d_k = d_t + w(t, k)$, pere(k) = t

$$V = \{s_1\}$$

Sommet	$\mathbf{s_1}$	s_2	s_3	s_4	s_5	s_6
d	0	10	3	∞	6	∞
pere	-	s_1	s_1	-	s_1	-

《□ 》 《□ 》 《注》 《注》 注 ②

$$V = \{s_1, s_3\}$$

Sommet	$\mathbf{s_1}$	s_2	$\mathbf{s_3}$	s_4	s_5	s_6
d	0	7	3	∞	5	∞
pere		s_3	s_1	-	s_3	-

$$V = \{s_1, s_3, s_5\}$$

So	$\overline{\mathrm{mmet}}$	$\mathbf{s_1}$	s_2	$\mathbf{s_3}$	s_4	s_5	s_6
	d	0	7	3	∞	5	6
	pere	-	s_3	s_1	-	s_3	s_5

《□ 》 《□ 》 《注》 《注》 注 ②

$$V = \{s_1, s_3, s_5, s_6\}$$

Sommet	$\mathbf{s_1}$	s_2	$\mathbf{s_3}$	s_4	s_5	s_6
d	0	7	3	∞	5	6
pere		s_3	s_1	-	s_3	s_5

◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
♥

7 mars 2017

$$V = \{s_1, s_2, s_3, s_5, s_6\}$$

Sommet	$\mathbf{s_1}$	s_2	$\mathbf{s_3}$	s_4	s_5	s_6
d	0	7	3	∞	5	6
pere		s_3	s_1	-	s_3	s_5

→□▶ →□▶ → □▶ → □ → ○

Ca ne marche plus avec des coûts négatifs

Structure de données - Complexité

L'implémentation la plus simple consiste à faire un tableau pour d. On obtient alors une complexité en $O(n^2)$:

- A chaque itération, on traite un sommet (n-1) itérations
- Lors du traitement d'un sommet, on parcourt le tableau d pour rechercher le sommet non traité de plus petite valeur (O(n))
- Chaque successeur (en fait chaque arète) est traité une et une seule fois. Or $m \leq \frac{n.(n-1)}{2}$. D'où $O(n^2)$

On peut se battre pour obtenir une meilleure complexité. La meilleure complexité pouvant être obtenue pour cet algorithme est en $O(m + n.log_2n)$.

On peut noter que si $m = O(n^2)$, c'est à dire si le graphe est complet ou tout du moins très dense, cela a donc peu d'intérêt.

Une complexité en O(n.log n)

Pour l'obtenir, il faut utiliser une structure de données un peu complexe : soit un tas binomial, soit un tas de Fibonacci. L'objectif est que toutes les opérations suivantes soient en log_2n :

- Trouver l'élément de plus petite valeur
- Effacer du tas l'élément de plus petite valeur (en remontant les autres donc)
- Accéder à la valeur d'un élément donné
- Diminuer la valeur d'un élément donné (= Effacer un élément donné du tas + insérer un nouvel élément)