

9.2 More complex models

- Qualitative independent variables
- > Interaction Model
- Polynomial Regression Models
- > Summary of First-order and Second-order Models
- Coefficients of Partial Determination

定性的

- To quantify qualitative predictors, we use <u>indicator</u> variables (dummy variables).
- An indicator variable is a <u>categorical explanatory</u> variable with two levels:
 - > yes or no, on or off, male or female
 - coded as 0 or 1
- ➤ If more than two levels, the number of indicator variables needed is (number of levels 1)

4

Indicator-Variable Example (with 2 Levels)

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

Let:

Y = pie sales

 $X_1 = price$

 X_2 = holiday (X_2 = 1 if a holiday occurred during the week) (X_2 = 0 if there was no holiday that week)

Indicator-Variable Example (with 2 Levels)

X₁ (Price)

Interpreting the Indicator Variable Coefficient (with 2 Levels)

Example:

Sales = 300 - 30(Price) + 15(Holiday)

Sales: number of pies sold per week

Price: pie price in \$

Holiday: {1 If a holiday occurred during the week 0 If no holiday occurred

b₂ = 15: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Indicator-Variable Models (more than 2 Levels)

- The number of dummy variables is one less than the number of levels
- Example:

Y = house price; $X_1 = \text{square feet}$

> If style of the house is also thought to matter:

Style = ranch, split level, condo

Three levels, so two dummy variables are needed

Indicator-Variable Models (more than 2 Levels)

Example: Let "condo" be the default category, and let X₂ and X₃ be used for the other two categories:

Y = house price

 X_1 = square feet

 $X_2 = 1$ if ranch, 0 otherwise

 $X_3 = 1$ if split level, 0 otherwise

The multiple regression equation is:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

Interpreting the indicator Variable Coefficients (with 3 Levels) Remark 9.2

Consider the regression equation:

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53X_2 + 18.84X_3$$

For a condo: $X_2 = X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1$$

For a ranch: $X_2 = 1$; $X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53$$

For a split level: $X_2 = 0$; $X_3 = 1$

$$\hat{Y} = 20.43 + 0.045X_1 + 18.84$$

With the same square feet, a ranch will have an estimated average price of 23.53 thousand dollars more than a condo

With the same square feet, a split-level will have an estimated average price of 18.84 thousand dollars more than a condo.

nark 9.2 yanch split-level
7 7 dummy variable
Yi = bo + bı Xiı + b. Xi2 + b. Xis + Si

 $\hat{y} = 20.43 \pm 0.045 \text{ K}_{1} \pm 23.53 \text{ K}_{2} \pm 18.84 \text{ K}_{3}$

Difference between ranch and cando = $\frac{6}{2}$ = 23.53

split level and cando = \hat{b}_3 = 18.84

Ranch and split level: $= \hat{b}_2 - \hat{b}_3 = 4.69$

An alternative model:

$$\chi_2 = \begin{cases} 0 & \text{cando} \\ 1 & \text{split level} \\ 2 & \text{Ranch} \end{cases}$$

yi = 局+月Xt1+ 是Xi2+をi

diff between spilt level and Cando = B.

Ranch and Cando = B

Ranch and split level = B.

Meaningless

- Hypothesizes interaction between pairs of X variables
 - Response to one X variable may vary at different levels of another X variable

Contains two-way cross product terms

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

$$= b_0 + b_1 X_1 + b_2 X_2 + b_3 (X_1 X_2)$$

$$= b_0 + b_1 X_1 + b_2 X_2 + b_3 (X_1 X_2)$$

$$= b_0 + b_2 + 4 b_1 + b_3 X_1$$
for example:
$$(X_1 X_2)$$

Interaction Regression Models

Example: 3 predictor variables

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i3} + \beta_{4}x_{i1}x_{i2} + \beta_{5}x_{i1}x_{i3} + \beta_{6}x_{i2}x_{i3} + \varepsilon_{i}$$

$$= \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \cdots + \beta_{5}X_{i5} + \varepsilon_{i}$$

hypothesis:
$$\beta_4 = \beta_5 = \beta_6 = 0$$
.

Effect of Interaction

Given:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

- > Without interaction term, effect of X_1 on Y is measured by β_1
- With interaction term, effect of X_1 on Y is measured by $\beta_1 + \beta_3 X_2$
- Effect changes as X₂ changes

Effect of Interaction

Suppose X_2 is a dummy variable and the estimated regression equation is $\hat{Y} = 1 + 2X_1 + 3X_2 + 4X_1X_2$

Slopes are different if the effect of X₁ on Y depends on X₂ value

Significance of Interaction Term

Can perform a partial F-test for the contribution of a variable to see if the addition of an interaction term improves the model

- Multiple interaction terms can be included
 - Use a partial F-test for the simultaneous contribution of multiple variables to the model

Polynomial Regression Models

When are polynomial regression models being used?

- When the true curvilinear response function is indeed a polynomial function
- When the true curvilinear response function is unknown (or complex) but a polynomial function is a good approximation to the true function.

Polynomial Regression Models

Example: 1 predictor variable, second order

$$Y_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 x_i + \boldsymbol{\beta}_2 x_i^2 + \boldsymbol{\varepsilon}_i$$

where $= \beta_0 + \beta_1 \chi_{i_1} + \beta_2 \chi_{i_2}$ where $\chi_{i_2} = \chi_{i_1}^2$

$$x_i = X_i - \overline{X}$$

The reason for using a centered predictor variable in the polynomial regression model is that X and X2 often will be highly correlated. Centering the predictor variable often reduces the multicollinearity substantially, and tends to avoid computational difficulties.

Graphs for two quadratic models

Polynomial Regression Models

Example: 2 predictor variables, second order

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{11}x_{i1}^{2} + \beta_{22}x_{i2}^{2} + \beta_{12}x_{i1}x_{i2} + \varepsilon_{i}$$

where

$$X_{i1} = X_{i1} - \overline{X}_1$$

$$x_{i2} = X_{i2} - \overline{X}_2$$

Coefficients of partial determination

```
R_{Yj.(all\ variables\ except\ j)}^{2} = \frac{SSR\left(X_{j}\ |\ all\ variables\ except\ j\right)}{SSE(all\ variables\ except\ j)}
```

- Measures the proportion of variation in the dependent variable that is explained by X_j while controlling for (holding constant) the other explanatory variables
- Coefficients of partial correlation

Remark 9.3 Coefficients of partial determination

Full model: $\chi = (\chi \chi) \begin{pmatrix} \beta \\ \beta \end{pmatrix} + \xi$

Reduced model: $y = x_1 + x_2 + x_3 + x_4 + x_5 + x_5$

Coefficient of partial determination = SSE reduced - SSE full (for Xi) SSE reduced > SSE full

Special case: Reduced model = (Full model + Ho: B2=0)

 $y_{1} \times X_{1} + X_{2} + \cdots + X_{5}$ $|m(X_{1} \sim X_{2} + X_{3} + X_{4} + X_{5}) \rightarrow \mathbb{R}_{1}^{2}$ $|m(X_{2} \sim X_{1} + X_{2} + X_{4} + X_{5}) \rightarrow \mathbb{R}_{2}^{2}$