Lecture10: MOSFET

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

MOS? MOSFET?

- MOS (Metal-Oxide-Semiconductor)
 - By changing the gate voltage, the charge density can be controlled.
- MOSFET (MOS Field-Effect Transistor)
 - Current conduction

Its operation

- The MOSFET has three terminals.
 - Source, drain, and gate
 - We always have

$$I_S(t) + I_D(t) + I_G(t) = 0.$$

- At low frequencies, the gate current is zero.
 - Source current + drain current = 0, $I_S + I_D = 0$
 - Source is regarded as the reference contact.
 - Gate voltage (V_{GS}) and drain voltage (V_{DS}) are variables.
- We are interested with $I_D(V_{GS}, V_{DS})$.

IV characteristics

- We will draw the two graphs.
 - $I_D(V_{GS})$ with fixed V_{DS} & $I_D(V_{DS})$ with fixed V_{GS}

Drain current

- It is easy to guess that
 - When $V_{GS} < V_{TH}$, no drain current is allowed.

$$I_D = 0$$

- When $V_{GS} > V_{TH}$,

$$I_D \propto C_{ox}(V_{GS} - V_{TH})$$

• In this lecture, we derive an appropriate expression for I_D .

Device structure

- Two-dimensional cross-section
 - "Potential" can be dependent on the position, V(x).

Derivation of IV (1)

Drain current

- Q_{elec} is the electron charge density *per unit length*.
- It follows

$$Q_{elec} = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (Razavi 6.3)

- At a certain position of x, the current is given by

$$I(x) = Q_{elec}(x) v(x)$$
 (Razavi 6.4)

Also v is the electron velocity.

$$v = -\mu_n E = +\mu_n \frac{dV}{dx}$$
 (Razavi 6.5 and 6.6)

Derivation of IV (2)

- Drain current (Continued)
 - It is easy to understand that $I_D = I(x)$. The drain current is

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$
 (Razavi 6.7)

Simply re-arranging,

$$I_D dx = \mu_n C_{ox} W[V_G - V(x) - V_{TH}] dV$$

- When integrated,

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Derivation of IV (3)

- Graph $(I_D V_{DS})$
 - Is it acceptable?

