

Ejercicio 3. Las maquinas tragamonedas usualmente generan un premio cuando hay un acierto. Supongamos que se genera el acierto con el siguiente esquema: se genera un número aleatorio, y
i) si es menor a un tercio, se suman dos nuevos números aleatorios
ii) si es mayor o igual a un tercio, se suman tres números aleatorios .
Si el resultado de la suma es menor o igual a 2, se genera un acierto.
a) ¿Cuál es la probabilidad de acertar?.
b) Implementar un algoritmo en computadora que estime la probabilidad de acertar, esto es, la fracción de veces que se acierta en <i>n</i> realizaciones del juego. Completar la siguiente tabla:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$P(\chi \leq 2) = P(\chi_1 + \chi_2 \leq 2) \cdot P(\chi_3 = \frac{1}{3}) + P(\chi_1 + \chi_2 + \chi_3 \leq 2) \cdot P(\chi_3 = \frac{1}{3})$
$P(W_1+V_2+W_3\leq 2)=P(W_1-W_2-V_3\geq -2)=P(3-W_1-W_2-V_3\geq 9)$
POL sinctio 20 Uniforne s; X00(0,1) => 1-X00(0,1)
P((1-w1)+(1-42)+(1-43)=1)=P(U+U+U=1)=2P(U+U+U+1)
C72-J
$=\frac{4}{3}+(1-\frac{1}{3})\cdot\frac{2}{3}=\frac{1}{3}+\frac{2}{3}-\frac{1}{9}=1-\frac{1}{9}+\frac{1}{9}$
Ejercicio 4. Un supermercado posee 3 cajas, de los cuales, por una cuestión de ubicación, el 40% de los clientes eligen la caja 1 para pagar, el 32% la caja 2, y el 28% la caja 3. El tiempo que espera una persona para ser atendido en cada caja distribuye exponencial con medias 3, 4 y 5 minutos respectivamente.
a) ¿Cuál es la probabilidad de que un cliente espere menos de 4 minutos para ser atendido?
b) Si el cliente tuvo que esperar más de 4 minutos. ¿Cuál es la probabilidad de que el cliente haya elegido cada una de las cajas?
c) Simule el problema y estime las probabilidades anteriores con 1000 iteraciones. $ \begin{array}{cccccccccccccccccccccccccccccccccc$
P(E 5:4) = P(C1 54), O,4 + P(C2 54), 0,32 + P(C3 54), 0,28 (C3
$= 1 - D(C_{7} > 4) \cdot O_{1} + 1 - D(C_{2} > 4) \cdot O_{3} + 1 - D(C_{3} > 4) \cdot O_{2} $ $= 1 - e^{-4 \cdot \frac{1}{3}} \cdot O_{1} + 1 - e^{-4 \cdot \frac{1}{3}} \cdot O_{1} > 8 = 0,657.$

b)
$$P(V \le 0.4 | E > V) = P(E > V | V \le 0.4) = P(E > V) = P(E > V)$$

Ejercicio 7. Para U_1, U_2, \ldots variables aleatorias uniformemente distribuídas en el intervalo (0,1), se define:

$$N = M$$
ínimo $\left\{ n : \sum_{i=1}^{n} U_i > 1 \right\}$

Es decir, N es igual a la cantidad de números aleatorios que deben sumarse para exceder a 1.

a) Estimar E[N] generando n valores de N y completar la siguiente tabla:

n	100	1000	10000	100000	1000000
E[N]					

b) Calcular el valor exacto de E[N].

Ejercicio 9. Un juego consiste en dos pasos. En el primer paso se tira un dado convencional. Si sale 1 o 6 tira un nuevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva tirada; pero si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como puntaje la suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana.

- a) Realizar un cálculo teórico de la probabilidad de que un jugador gane.
- b) Estime la probabilidad de que un jugador gane mediante una simulación.

3) Sean
$$d_1, d_2, d_3 \approx M(31, 2..., 3)$$
 7 $X = 52.d7$ 5. $d_7 = 1$ 0 $d_1 = 6$) $p = \frac{2}{6}$
 $P(X > 6) = 2$. $P(d_1 \ge H) + 9$. $P(d_1 + d_2 > 6)$ $P(d_2 + d_3) = 0$. $P(d_2 = 1)$. $P(d_3 > 6 - 1)$. $P(d_3 > 1)$. $P(d_3 >$