Supervised Learning Assignment 3

FACULTY OF COMPUTERS AND AI, CAIRO UNIVERSITY

Supervised Learning Year 2024-2025 Second Semester

Assignment #3

Abdelrahman Sayed Hamza Emad

Supervised Learning Assignment 3

Assignment #3

Objective

The goal of this assignment is to implement a speech classification system using a Naïve Bayes classifier from scratch, compare its performance with built-in Logistic Regression, and enhance the results using bagging ensemble learning.

Instructions

1. Dataset Preparation

- Obtain a speech dataset consisting of two classes (e.g., male vs. female, spoken digits, or any other binary classification task).
- Provide a brief description of the dataset, including the number of samples, features, and class distribution.

2. Preprocessing and Feature Extraction

- Perform data preprocessing steps such as:
 - Noise reduction
 - Silence removal (if applicable)
 - Normalization
- Extract relevant features from the speech signals, such as:
 - Mel-Frequency Cepstral Coefficients (MFCCs)
 - Spectral features (e.g., Spectral Centroid, Spectral Rolloff)
 - Zero-Crossing Rate
 - Other relevant features

3. Implement Naïve Bayes Classifier from Scratch

- Implement a Naïve Bayes classifier without using prebuilt machine learning libraries.
- Use the Gaussian Naïve Bayes approach to handle continuous features.
- Train the classifier on the extracted features.
- Evaluate the model using appropriate metrics (e.g., accuracy, precision, recall, F1-score).

Abdelrahman Sayed Hamza Emad

Supervised Learning Assignment 3

4. Apply Bagging with Naïve Bayes and Logistic Regression

- Implement a bagging ensemble method using multiple instances of your Naïve Bayes classifier.
- Implement bagging ensemble using Logistic Regression.
- Train multiple models on different subsets of the dataset.
- Aggregate predictions using majority voting.
- Compare the performance of the ensemble methods with individual models.

Abdelrahman Sayed Hamza Emad