Optimization Methods

Fall 2020

Homework 1

Instructor: Lijun Zhang

Name: Fuyun Wong, StudentId: 193100051

Notice

• The submission email is: njuoptfall2019@163.com.

• Please use the provided LATEX file as a template. If you are not familiar with LATEX, you can also use Word to generate a **PDF** file.

Problem 1: Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ with $\text{dom} f = \mathbb{R}^n$ is called a *norm* if

• f is nonnegative: $f(x) \ge 0$ for all $x \in \mathbb{R}^n$

• f is definite: f(x) = 0 only if x = 0

• f is homogeneous: f(tx) = |t| f(x), for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

• f satisfies the triangle inequality: $f(x+y) \leq f(x) + f(y)$, for all $x, y \in \mathbb{R}^n$

We use the notation f(x) = ||x||. Let $||\cdot||$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $||\cdot||_*$, is defined as

$$||z||_* = \sup\{z^{\mathrm{T}}x | ||x|| \le 1\}$$

a) Prove that $\|\cdot\|_*$ is a valid norm.

b) Prove that the dual of Euclidean norm $(\ell_2\text{-}norm)$ is the Euclidean norm, *i.e.*, prove that

$$||z||_{2*} = \sup\{z^{\mathrm{T}}x | ||x||_2 \le 1\} = ||z||_2$$

(*Hint*: Use Cauchy-Schwarz inequality.)

Solution. a)

1) $\forall z \text{ if } z = 0 \text{ ,then } z^{\mathrm{T}}x = \sum_{i=0}^{n} z_i x_i = 0$ if $z \neq 0$ for all $z_i > 0$ or $z_j < 0$, we can find a x_0 with $x_i > 0$ and $x_j > 0$. so

$$\sup\{z^{\mathsf{T}}x|\|x\| \le 1\} \ge z^{\mathsf{T}}x_0 = \sum_{i=0}^n z_i x_i > 0.$$

thus, $||z||_* \ge 0$. it satisfies the first property.

z = 0 $\Longrightarrow z^{\mathrm{T}}x = 0 \Longrightarrow ||z||_* = 0$, which is obvious.

Let's prove the reverse is true. Suppose there is a z_0 and let $||z||_* = 0$ and $z_0 \neq 0$.

Therefore, for each $z_i > 0$ or $z_j < 0$, we can find a x_0 with $x_i > 0$ and $x_j < 0$ then $0 = ||z||_* \ge z_0^T x_0 > 0$, which is self-contradictory.

Thus $||z||_* = 0 \Longrightarrow z = 0$.

3) if t = 0, it's obvious that f(0) = 0 f(x) = 0, which means $||0||_* = \sup 0$ $||x|| \le 1 = 0 = 0$ $||x||_* = 0$. if $t \ne 0$, since $||z||_*$ is the supremum of the set, we have $z^T x \le ||z||_*$. And we know that $||z||_* \ge 0$, thus $tz^T x \le |t|||z||_*, \forall x, ||x|| \le 1$. Therefore, $|t|||z||_*$ is a upper bound of the set, which means $|t|||z||_* \ge ||tz||_*$.

for any |t|b, if |t|b is the upper bound of the $\{tz^Tx||x|| \le 1\}$ and $t \ne 0$, then b is the upper bound of $\{z^Tx||x|| \le 1\}$. then we have $||x||_* \le b$. And thus, $|t||x||_* \le |t|b$. Since $|t||x||_*$ is a upper bound and is no more than any upper bound of the set $\{tz^Tx||x|| \le 1\}$, it is a supermum of the set. Because uniqueness of the supremum $|t||x||_* = ||tx||_*$. It satisfies the third property.

4) It's obvious that for all x and z_1 , z_2 , we have $z_1^T x \leq ||z_1||_*$ and $z_2^T x \leq ||z_2||_*$.

Therefore, $(z_1^{\mathrm{T}} + z_2^{\mathrm{T}})x \le ||z_1||_* + ||z_2||_*$.

Therefore, $||z_1 + z_2||_* \le ||z_1||_* + ||z_2||_*$.

It satisfies the forth property.

Solution. b

For any x and z, we have:

$$z^{\mathsf{T}}x = \sum_{i=1}^{n} z_i x_i \le \sqrt{\sum_{i=1}^{n} z_i^2} \sqrt{\sum_{i=1}^{n} x_i^2} \le 1 \times \|z\|_2 = \|z\|_2$$

. And the eual sign if and only if $\sum_{i=1}^n x_i = 0$ and $x_i = kz_i$, i = 1, 2, 3, ..., n. let $x = \frac{z}{\|z\|_2}$, we can make the euquation hold. Therefore, $\|z\|_2$ is the supremum of the set $\{z^Tx|\|x\|_2 \le 1\}$. Because the uniqueness of supremum, $\|z\|_{2*} = \|z\|_2$.

Problem 2: Convex sets

Convex C_c sets are the sets satisfying the constraints below:

$$\theta x_1 + (1 - \theta)x_2 \in C_c$$

for all,
$$x_1, x_2 \in C_c, 0 \le \theta \le 1$$

- a). Show that a set is convex if and only if its intersection with any line is convex.
- b). Determine if each set below is convex.
 - 1) $\{(x,y) \in \mathbf{R}_{++}^2 | x/y \le 1\}$
 - 2) $\{(x,y) \in \mathbf{R}^2_{++} | x/y \ge 1\}$
 - 3) $\{(x,y) \in \mathbf{R}_{++}^2 | xy \le 1\}$
 - 4) $\{(x,y) \in \mathbf{R}^2_{++} | xy \ge 1\}$
 - 5) $\{(x,y) \in \mathbf{R}^2_{++} | y = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} \}$

Solution. a)

⇒:

Given an arbitrary convex set C, C is convex if and only if for any x_1 and $x_2 \in C$ and with any θ , $0 \le \theta 1$, we have $\theta x_1 + (1 - 0)x_2 \in C$.

Since C is convex and an arbitrary line is convex and intersection preserve convexity.

Therefore we have the intersection of C and any line is convex.

 \Leftarrow : suppose the intersection of C and any line is convex. Take any distinct points x_1 and $x_2 \in C$. The intersection of C and the line through x_1 , x_2 is convex. Therefore, for any convex combinations of x_1 and x_2 belong to the intersection, hence also belong to the set C. Therefore, for any two points in C, their convex combinations belong to C. Thus, C is convex.

Solution. b)

- 1) yes
- 2) yes
- 3) no
- 4) yes
- 5) no

Problem 3: Examples Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbb{R}^n | x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbb{S}^n, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- 1) Show that C is convex if $A \succeq 0$.
- 2) Is the following statement true? The intersection of C and the hyperplane defined by $g^T x + h = 0$ is convex if $A + \lambda gg^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Solution. A set is convex iff for any arbitray line, their intersection is convex. Suppose line:x + ty, x is a given point in C , so their intersection is $x+ty|(x+ty)^TA(x+ty)+b^T(x+ty)+c\leq 0$. $(x+ty)^TA(x+ty)+b^T(x+ty)+c=(y^TAy)t^2+(x^TAy+y^TAx+b^Ty)t+x^TAx+b^Tx+C=\alpha t^2+\beta t+\gamma.$

we can easily find that $\alpha \geq 0$ and $\gamma \leq 0$ since $A \succeq$ and x is in set C.

1.when $\alpha = 0$

if $\beta = 0$, then $y = \gamma \le 0$ is always true.

if $\beta \neq 0$, then $\beta t + \gamma$ is a linear function. for any t_1 , t_2 and θ with $0 \leq \theta \leq 1$, we have $\beta(\theta t_1 + (1-\theta)t_2) + \gamma \leq \theta$ $-\theta\gamma - (1-\theta)\gamma + \gamma = 0.$

2.when $\alpha > 0$

the function is a quadractic function open upward with images like Figure 1.for t_1 , t_2 and θ with $0 \le$ $\theta \le 1$, we have $\min(t1, t2) \le \theta t_1 + (1 - \theta)t_2 \le \max(t1, t2)$. therefore, the points with $\theta t_1 + (1 - \theta)t_2$, satisfies, $\alpha(\theta t_1 + (1 - \theta)t_2)^2 + \beta(\theta t_1 + (1 - \theta)t_2) + \gamma \le \max(\alpha t_1^2 + \beta t_1 + \gamma, \alpha t_2^2 + \beta t_2 + \gamma) \le 0.$

Solution. Suppose $x \in C \cap \{x | q^T x + h = 0\}$ and an arbitrary line x+ty. The intersection of the line with the set is $\{x + ty | g^{T}(x + ty) + h = 0, \alpha t^{2} + \beta t + \gamma \le 0\}.$

since $g^T(x+ty) + h = 0$ and $g^Tx + h = 0$, $g^T(x+ty) + h = g^Tx + h + g^Ty = tg^Ty = 0$.

if $g^T y \neq 0$, then t=0. Thus, the set is \emptyset or x. No matter which it is ,the set is convex.

if $g^T y = 0$, then the set becomes $\{x + ty | \alpha t^2 + \beta t + \gamma \le 0\}$.

 $\therefore \alpha = y^T A y \text{ and } g^T y = 0$ $\therefore \alpha = y^T A y + \lambda y^T g g^T y = y^T (A + \lambda g g^T) y.$

 $A + \lambda gg^T \succeq 0$

 $\therefore A + \lambda$ is a positive semi-definite matrix.

 \therefore , $\alpha = y^T (A + \lambda g g^T) y \ge 0$.

so we get the same condition as the question one. Therefore, the set is convex.

Therefore, the intersection of C and the hyperplane defined by $g^Tx + h = 0$ is convex if $A + \lambda gg^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Problem 4: Operations That Preserve Convexity

Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^m$ and $\psi: \mathbb{R}^m \to \mathbb{R}^p$ are the linear-fractional functions

$$\phi(x) = \frac{Ax+b}{c^\top x+d}, \psi(y) = \frac{Ey+f}{g^\top y+h}$$

П

Figure 1:

with domains $\operatorname{dom} \phi = \{x \mid c^{\top}x + d > 0\}$, $\operatorname{dom} \psi = \{y \mid g^{\top}y + h > 0\}$. We associate with ϕ and ψ the matrices respectively.

$$\left[\begin{array}{cc} A & b \\ c^\top & d \end{array}\right], \left[\begin{array}{cc} E & f \\ g^\top & h \end{array}\right]$$

Now, consider the composition Γ of ϕ and ψ , i.e., $\Gamma(x) = \psi(\phi(x))$, with domain

$$\mathbf{dom}\Gamma = \{x \in \mathbf{dom}\phi \mid \phi(x) \in \mathbf{dom}\psi\}$$

Show that Γ is linear-fractional, and that the matrix associate with it is the product

$$\left[\begin{array}{cc} E & f \\ g^\top & h \end{array}\right] \left[\begin{array}{cc} A & b \\ c^\top & d \end{array}\right]$$

Solution.

$$\Gamma(x) = \frac{E\phi(x) + F}{g\phi(x) + h} = \frac{EAx + Eb + f(c^Tx + d)}{(g^Ta + hc^T)x + g^Tb + hd} = \frac{(EA + fc^T)x + Eb + fd}{(g^TA + hc^T)x + g^Tb + hd}.$$

Therefore, Γ is a linear-fractional.

The martix:

$$\left[\begin{array}{cc} E & f \\ g^\top & h \end{array}\right] \left[\begin{array}{cc} A & b \\ c^\top & d \end{array}\right] = \left[\begin{array}{cc} EA + fc^T & Eb + fd \\ g^TA + hc^T & g^Tb + hd \end{array}\right]$$

Thus, the matrix of associate with Γ is the product $\left[\begin{array}{cc} E & f \\ g^\top & h \end{array}\right] \left[\begin{array}{cc} A & b \\ c^\top & d \end{array}\right]$

Problem 5: Generalized Inequalities

Let K^* be the dual cone of a convex cone K. Prove the following

- 1) K^* is indeed a convex cone.
- 2) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$

Solution. 1) $K^* = \{y | x^T y \ge 0 \forall x \in K\}. \text{ For any } y_1, \quad y_2 \in K^* \text{ and } \theta_1, \quad \theta_2 \ge 0 \text{ and for all } x \in K, \text{we have } x^T(\theta_1 y_1 + \theta_2 y_2) = \theta_1 x^T y_1 + \theta_2 x^T y_2 \ge 0 + 0 = 0. \text{ Therefore, } \theta_1 y_1 + \theta_2 y_2 \in K^*. \text{ Thus, } k^* \text{ is a convex cone.}$

Solution. 2)

 $\forall y \in K_2^*, \forall x \in K_2$, we have $x^T y \geq 0$. And $K_1 \subseteq K_2$. Therefore, for all x in K_1 , it's also in K_2 . Thus, for all x in K_1 and for all y in K_2^* , we have $x^T y \geq 0$. Since K_1^* includes all y that makes for all x in k_1 , $x^T y \geq 0$, for any y in K_2^* , it must be in K_1^* . Therefore, $K_2^* \subseteq K_1^*$.