[千葉大・文]

座標平面上に 3 点 O(0, 0), $A(3, \sqrt{3})$, B(9, 0) がある。線分 OB 上に 2 点 P, Q を $\angle PAQ = 90^\circ$ となるようにとる。ただし,点 Q の x 座標は点 P の x 座標より大きいものとする。 $\angle APQ = \theta$ とし, $\triangle APQ$ の面積を S とする。

- (1) $S \in \theta$ を用いて表せ。
- (2) Sの最小値、およびそのときの点Pと点Qのx座標を求めよ。
- (3) S が \triangle AOB の面積の $\frac{2}{3}$ 倍となるとき、点 P と点 Q の x 座標を求めよ。

[京都大・理]

 $\triangle ABC$ は鋭角三角形であり、 $\angle A = \frac{\pi}{3}$ であるとする。また $\triangle ABC$ の外接円の半径は 1 であるとする。

- (1) △ABC の内心を P とするとき、∠BPC を求めよ。
- (2) \triangle ABC の内接円の半径 r のとりうる値の範囲を求めよ。

[千葉大・文]

(1) O(0, 0), $A(3, \sqrt{3})$, B(9, 0) に対し,線分 OB 上に点 P(p, 0), Q(q, 0) があり, $\angle PAQ = 90^\circ$ を満たしている。ただし、 $0 \le p < 3 < q \le 9$ である。

 $\angle APQ = \theta$ とすると、 $AP\sin\theta = \sqrt{3}$ ……①

$$AQ\sin(90^{\circ} - \theta) = \sqrt{3}$$
, $AQ\cos\theta = \sqrt{3}$

ここで、 $\triangle APQ$ の面積をS とすると、 \mathbb{O} 2から、

$$S = \frac{1}{2} AP \cdot AQ = \frac{1}{2} \cdot \frac{\sqrt{3}}{\sin \theta} \cdot \frac{\sqrt{3}}{\cos \theta} = \frac{3}{\sin 2\theta}$$

(2) まず、(1)から $S = \frac{3}{\sin 2\theta} \ge 3$ である。ここで、等号が成立するのは $\sin 2\theta = 1$ 、すなわち θ は鋭角から $\theta = 45^\circ$ のときである。

このとき、 \triangle APQ は直角二等辺三角形となり、 $C(3,\ 0)$ とおくと $PC=QC=\sqrt{3}$ から、P,Q はともに線分 OB 上にある。

よって, S の最小値は 3 であり, このとき P の x 座標は $3-\sqrt{3}$, Q の x 座標は $3+\sqrt{3}$ となる。

(3) まず、 $\triangle AOB = \frac{1}{2} \cdot 9 \cdot \sqrt{3} = \frac{9}{2} \sqrt{3}$ となり、条件より $S = \frac{2}{3} \triangle AOB$ から、

$$\frac{3}{\sin 2\theta} = \frac{2}{3} \cdot \frac{9}{2} \sqrt{3} , \sin 2\theta = \frac{1}{\sqrt{3}} , \sin \theta \cos \theta = \frac{1}{2\sqrt{3}} \cdots \cdots 3$$

ここで, $\sin^2\theta + \cos^2\theta = 1$ なので, ③と合わせると,

$$\frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta} = 2\sqrt{3}, \ \tan\theta + \frac{1}{\tan\theta} = 2\sqrt{3}, \ \tan^2\theta - 2\sqrt{3}\tan\theta + 1 = 0$$

よって、 $\tan \theta = \sqrt{3} \pm \sqrt{2} \cdots$ ④となる。

さて、 $PC = \sqrt{3} \tan(90^{\circ} - \theta) = \frac{\sqrt{3}}{\tan \theta}$ 、 $QC = \sqrt{3} \tan \theta$ で、条件から、 $0 < PC \le 3$ 、 $0 < QC \le 6$ であるので、

$$0 < \frac{\sqrt{3}}{\tan \theta} \le 3 \cdots \odot$$
, $0 < \sqrt{3} \tan \theta \le 6 \cdots \odot$

⑤より $\tan\theta \ge \frac{\sqrt{3}}{3}$, ⑥より $0 < \tan\theta \le 2\sqrt{3}$ となり $\frac{\sqrt{3}}{3} \le \tan\theta \le 2\sqrt{3}$

すると、④から $\tan \theta = \sqrt{3} + \sqrt{2}$ となり、このとき、

$$PC = \frac{\sqrt{3}}{\sqrt{3} + \sqrt{2}} = 3 - \sqrt{6}$$
, $QC = \sqrt{3}(\sqrt{3} + \sqrt{2}) = 3 + \sqrt{6}$

よって、 $P \mathcal{O} x$ 座標 $3-(3-\sqrt{6})=\sqrt{6}$ 、 $Q \mathcal{O} x$ 座標 $3+(3+\sqrt{6})=6+\sqrt{6}$ である。

[解 説]

三角関数の図形への応用問題で、いろいろな解法が考えられます。

[京都大・理]

(1) △ABC の内心を P とするとき、

$$\angle BPC = \pi - (\angle PBC + \angle PCB)$$

$$= \pi - \frac{1}{2}(\angle ABC + \angle ACB) = \pi - \frac{1}{2}(\pi - \angle A)$$

$$= \pi - \frac{1}{2}(\pi - \frac{\pi}{3}) = \frac{2}{3}\pi$$

(2) △ABC の外接円の半径は1から,正弦定理より,

$$BC = 2\sin\frac{\pi}{3} = \sqrt{3}$$

さて、 $\triangle ABC$ は $\angle A=\frac{\pi}{3}$ である鋭角三角形である。ここで、 $\triangle A_1BC$ を正三角形、 $\triangle A_2BC$ を $\angle C=\frac{\pi}{2}$ の直角三角形としたとき、対称性から一般性を失うことなく、点 A は右図の弧 A_1A_2 上を動くとしてもよい。ただし、点 A_1 は含み、点 A_2 は含まない。

また,点 P は $\angle BPC = \frac{2}{3}\pi$ から BC を弦とする点線の円弧上を動く。そして, $A = A_1$ のとき $P = P_1$, $A = A_2$ のとき $P = P_2$ とする。さらに、 P_1 から BC に垂線 P_1H_1 、 P_2 から BC に垂線 P_2H_2 を引く。

すると、 $\triangle ABC$ の内接円の半径 r のとりうる値は、 $P_2H_2 < r \le P_1H_1$ である。

そこで、
$$\angle P_1BH_1 = \frac{1}{2} \cdot \frac{\pi}{3} = \frac{\pi}{6}$$
 から、 $P_1H_1 = \frac{1}{2}BC \cdot \tan \frac{\pi}{6} = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}} = \frac{1}{2}$

また、 $\triangle A_2BC$ は、AB=2、AC=1、 $BC=\sqrt{3}$ なので、右図から、

$$(\sqrt{3}-P_2H_2)+(1-P_2H_2)=2,\ P_2H_2=\frac{\sqrt{3}-1}{2}$$
以上より, $\frac{\sqrt{3}-1}{2}< r \leq \frac{1}{2}$ である。

[解 説]

平面図形の計量についての基本的な問題です。(1)の誘導により、内心の軌跡が導けます。