

COURSE DESCRIPTION FORM

INSTITUTION National University of Computers and Emerging Sciences

BS Computer Science

PROGRAM (S) TO BE

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled-out form should not be more than 2-3 pages.)

Course Code	CS1002
Course Title	Programming Fundamentals
Credit Hours	3+1
Prerequisites by Course(s) and Topics	None
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Theory: Mid-1:15 Mid-2:15 Assignment: 10 (Three Assignments) Quizzes: 10 (Three Quizzes) Final:50 Lab: Lab activities: 20(2 each) Midterm: 20 Project: 10 Final: 50
Course Coordinator	Basit Ali
URL (if any)	
Current Catalog Description	

Textbook (or Laboratory Manual for Laboratory Courses)	Authors: F Publisher: Name: Pro Authors: N	Paul Deitel, Harve Pearson	d Program Design in C - 7th Edition	- 7th Edition		
Reference Material	Name: Working with C / Let us C Author(s): YashwantKanetkar Publisher: BPB Publications Name: Waite Group's Turbo C - Programming for the PC Authors: Robert Lafore Publisher: SAMS					
Course Goals	A 6		(610.)	11		
	A. Course	Learning Outcome	es (CLOs)	Level		
	CLO 1: Describe fundamental concepts of structured and procedural programming, use pseudo-codes and simple programs to understand control structures, iterative structures and functions using C language.					
	CLO 2: Examine code writing, compiling, debugging and program execution. C3, PLO5					
	CLO 3: Justify problem solving techniques and analytical thinking by identifying the concepts and properties of algorithms. C5, PLO2					
	CLO 4: Design basic problems of the real world through small/medium size programs given as course projects.					
	B. Program learning outcomes (PLO)					
	PLO 1	Computing Knowledge	Apply knowledge of mathematics, nature computing fundamentals, and a compute specialization to the solution of complete problems.	ing	?	
	PLO 2	Problem Analysis	Identify, formulate, research literature, complex computing problems, reaching substantiated conclusions using first pri mathematics, natural sciences, and comsciences.	nciples of	?	

PLO 3	Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.	
PLO 4	Investigation& Experimentatio n	Conduct investigation of complex computing problems using research-based knowledge and research-based methods	
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modelling for complex computing problems.	?
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems	
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.	
PLO 10	Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
PLO 11	Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
PLO 12	Life Long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

(CLO. C	Cour	rse Learning Outcome, PLOs: Program Learning Outcomes) PLOs											
		1	2	3	4	5	6	7	8	9	10	11	12
	1	?											
CL	2					?							
Os	3		?										
	4					?							

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15week instruction and one-hour lectures)

Week	Topics	CLO	Assessment
Week 1	Discussion of the course outline, Introduction to problem solving, what is algorithm, how to write pseudo code, programming structures, problem solving with the sequential structures and, Basic Flowchart, IPO and PAC	1	
Week 2	Problem solving with decisions, Basic Computer Organization, Intro to IDE (compiled program, text editors, debuggers, etc.), Library, Linking, Compiling & Loading. Program structure and Execution, First Program with Input and Output, Constant, Variables, Keywords, Escape sequence, Format Specifiers, Data types, Data manipulation.	1,2	Project Announcement
Week 3	Decision Control Structures: If statements and if-else statement Nested if statements	2,3	Release of Assignment 1 By the end of Week 3
Week 4	 Switch statements Logical, Conditional Operators, bit wise operator, modulus and other helpful operators 	2,3	Quiz #1
Week 5	Basic loops: for, while and do-while	2,3,5	Assignment 1 submission

			By the end Week 5		
Week 6	MID I Examination				
Week 7	Loops with 1D arrays	2,3,5			
Week 8	Nested Loops with N-D arrays	2,3,4,5	Release of Assignment 2 By the end of Week 8		
Week 9	 Functions: Declaration, Definition and Calling, passing values to functions, Passing arrays to functions Standard library string functions 2D array of characters 	2,3,4,5	Quiz 2		
Week 10	 Recursion (types, stack calling) Comparison of recursion with loops Constant & Static 	2,3,4,5	Assignment 2 submission By the end Week 10		
Week 11	MID II Examination	<u> </u>	1		
Week 12	Introduction to Structures, Nested Structure, Composition and Structure array	3,4,5	Release of Assignment 3 By the end of Week 12		
Week 13	Filing in C	3,4,5,6	Quiz 3		
Week 14	Single Pointer(including structure) with DMA	2,3,4,5,	Assignment 3 submission By the end Week 14		
Week 15	2D pointers with DMA Pointers with functions (Pass by value & reference, returning from function.	3,5			
Week 16	Revision				

Laboratory Projects/Experime nts Done in the Course	There will be weekly labs starting from the first week. The following is a summary of the Lab exercises given to Students. Introduction to Problem solving statements. Introduction To Conditional Statement In C Control Structure (Repetition) GitHub Functions and Recursion. Arrays (1D, 2D, 3D) String sorting and searching algorithms. Pointers Dynamic memory allocation Structures Filing in C				
Programming Assignments Done in the Course	Assignment related to Functions, Arrays, Pointers, Structures, Dynamic Memory and File Processing will be done				
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social	
	15%	50%	30%	5%	
Oral and Written Communications	Every student is required to submit at least _1_ written reports of typically _2_ pages and to make _1_ oral presentations of typically _10_ minute's duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.				

Instructor Name	Basit Ali
Instructor Signature	
Date	8/Aug/2024