UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE CIENCIAS QUÍMICAS E INGENIERÍA

ELECTRÓNICA APLICADA Circuito Integrador

Docente: Corral Domínguez Ángel Humberto **Alumno:** Gómez Cárdenas Emmanuel Alberto

Matrícula: 1261509

ÍNDICE

INTRODUCCION	2
MARCO TEÓRICO	2
Diagrama del Amplificador Operacional	2
DESARROLLO DE PRÁCTICA	3
Herramientas:	3
Materiales (Utilizados dentro del simulador)	3
Procedimiento:	3
Diagrama del circuito Amplificador Integrador:	3
CONCLUSIONES Y OBSERVACIONES	5

INTRODUCCIÓN

En esta práctica se utilizará el amplificador operacional para construir un circuito integrador, se le aplicara unas ciertas señales de entrada y se analizará su salida.

MARCO TEÓRICO

El Amplificador Operacional también llamado OpAmp, o Op-Amp es un circuito integrado. Su principal función es amplificar el voltaje con una entrada de tipo diferencial para tener una salida amplificada y con referencia a tierra.

Diagrama del Amplificador Operacional

DESARROLLO DE PRÁCTICA

Herramientas:

Simulador CircuitJs1

Materiales (Utilizados dentro del simulador)

Resistencia de 1KΩ

Capacitor de 1uF

> Fuentes generadoras de funciones de 1.5vp o 3vpp

Amplificador Operacional (Opamp) Multímetro

Procedimiento:

Simule el circuito integrador. Aplicar una onda sinusoidal, después una cuadrada y por último una triangular a la entrada, con amplitud de 3 Vpp, frecuencia de 1KHz. Analizar que la salida es la integración de la señal de entrada.

Diagrama del circuito Amplificador Integrador:

En este caso la red de retroalimentación está dada por un capacitor y la expresión de la tensión de salida es proporcional a la integral de la señal de entrada e inversamente proporcional a la constante de tiempo (t = RC), que generalmente se hace igual a la unidad.

La función para calcular Vo en el dominio de la frecuencia es:

$$V_0(s) = -\frac{\frac{1}{sC}}{R} * V_i(s)$$
 que es equivalente a $V_0(s) = -\frac{1}{RsC} * V_i(s)$

Y en el dominio del tiempo es:

$$V_0(t) = -\frac{1}{RC} \left[\int_{-\infty}^t V_i(t) dt \right]$$

Para poder facilitar el trabajo, la integral se divide en dos partes

$$V_0(t) = -\frac{1}{RC} \left[\int_{-\infty}^{0} V_i(t)dt + \int_{0}^{t} V_i(t)dt \right]$$

La primera parte de la integral se hace cero, ya que se suponen condiciones nulas, lo que nos deja con la ecuación:

$$V_0(t) = -\frac{1}{RC} \left[\int_0^t V_i(t) dt \right]$$

CONCLUSIONES Y OBSERVACIONES

Entre las múltiples aplicaciones que tiene el amplificador operacional, es de gran importancia la del computador analógico, la cual consiste en la implementación y solución de sistemas de ecuaciones lineales además de la solución de ecuaciones diferenciales de cualquier orden.