Pácticas de Análisis Matemático con Julia

Tabla de contenidos

Pr	efacio		3
	Lice	ncia	3
1	Intro	oducción	5
	1.1	El REPL de Julia	6
	1.2	El gestor de paquetes de Julia	6
	1.3	Operadores aritméticos.	7
	1.4	Operadores de comparación	7
	1.5	Operadores booleanos	8
	1.6	Funciones de redondeo	8
	1.7	Funciones de división	9
	1.8	Funciones para el signo y el valor absoluto	10
	1.9	Raíces, exponenciales y logaritmos	11
	1.10	Funciones trigonométricas	12
	1.11	Funciones trigonométricas inversas	13
	1.12	Precedencia de operadores	14
	1.13	Definición de variables	15
2	Suce	esiones de números reales	16
_	2.1		16
	2.2	· ·	18
	2.3		19
	2.4		19
	2.5		20
	2.6		21
	2.7		22
	2.8		23
	2.9		2 4
			25
			26
			30
			30
	_		32
			$\frac{32}{32}$
	_		33
			34

3	Fun	ciones elementales	36
	3.1	Ejercicios Resueltos	36
	3.2	Ejercicios propuestos	54
4	Lím	ites de funciones reales	57
	4.1	Ejercicios Resueltos	57
	4.2	Ejercicios propuestos	75
5	Der	ivadas de funciones reales	79
	5.1	Ejercicios Resueltos	79
	5.2	Ejercicios propuestos	01
6	Seri	es de números reales 10	05
	6.1	Ejercicios Resueltos	05
	6.2	Ejercicios propuestos	24
7	Inte	grales de funciones reales	26
	7.1	Ejercicios Resueltos	26
	7.2	Ejercicios propuestos	47
8	Fun	ciones vectoriales 1	49
	8.1	Ejercicios Resueltos	49
	8.2	Ejercicios propuestos	75

Prefacio

¡Bienvenido a Prácticas de Análisis Matemático con Julia!

Este libro presenta una recopilación de prácticas de Análisis Matemático en una y varias variables reales con el lenguaje de programación Julia, con problemas aplicados a las Ciencias y las Ingenierías.

No es un libro para aprender a programar con Julia, ya que solo enseña el uso del lenguaje y de algunos de sus paquetes para resolver problemas de Cálculo tanto numérico como simbólico. Para quienes estén interesados en aprender a programar en este Julia, os recomiendo leer este manual de Julia.

Licencia

Esta obra está bajo una licencia Reconocimiento – No comercial – Compartir bajo la misma licencia 3.0 España de Creative Commons. Para ver una copia de esta licencia, visite https://creativecommons.org/licenses/by-nc-sa/3.0/es/.

Con esta licencia eres libre de:

- Copiar, distribuir y mostrar este trabajo.
- Realizar modificaciones de este trabajo.

Bajo las siguientes condiciones:

- Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra).
- No comercial. No puede utilizar esta obra para fines comerciales.
- Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.

Estas condiciones pueden no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Nada en esta licencia menoscaba o restringe los derechos morales del autor.

1 Introducción

La gran potencia de cálculo alcanzada por los ordenadores en las últimas décadas ha convertido a los mismos en poderosas herramientas al servicio de todas aquellas disciplinas que, como las matemáticas, requieren cálculos largos y complejos.

Julia es un lenguaje de programación especialmente orientado al cálculo numérico y el análisis de datos. Julia permite además realizar cálculos simbólicos y dispone de una gran biblioteca de paquetes con aplicaciones en muy diversas áreas de las Matemáticas como Cálculo, Álgebra, Geometría, Matemática Discreta o Estadística.

La ventaja de Julia frente a otros programas habituales de cálculo como Mathematica, MATLAB o Sage radica en su potencia de cálculo y su velocidad (equiparable al lenguaje C), lo que lo hace ideal para manejar grandes volúmenes de datos o realizar tareas que requieran largos y complejos cálculos. Además, es software libre por lo que resulta ideal para introducirlo en el aula como soporte computacional para los modelos matemáticos sin coste alguno.

En el siguiente enlace se explica el procedimiento de instalación de Julia.

Existen también varios entornos de desarrollo online que permiten ejecutar código en Julia sin necesidad de instalarlo en nuestro ordenador, como por ejemplo Replit, Cocalc o Codeanywhere.

El objetivo de esta práctica es introducir al alumno en la utilización de este lenguaje, enseñándole a realizar las operaciones básicas más habituales en Cálculo.

1.1 El REPL de Julia

Para arrancar el REPL^(REPL es el acrónimo de Read, Evaluate, Print and Loop, que describe el funcionamiento del compilador de Julia) de julia basta con abrir una terminal y teclear julia.

1.2 El gestor de paquetes de Julia

Julia viene con varios paquetes básicos preinstalados, como por ejemplo el paquete LinearAlgebra que define funciones básicas del Álgebra Lineal, pero en estas prácticas utilizaremos otros muchos paquetes que añaden más funcionalidades que no vienen instalados por defecto y tendremos que instalarlos aparte. Julia tiene un potente gestor de paquetes que facilita la búsqueda, instalación, actualización y eliminación de paquetes

Por defecto el gestor de paquetes utiliza el repositorio de paquetes oficial pero se pueden instalar paquetes de otros repositorios.

Los comandos más habituales son:

- add p: Instala el paquete p en el entorno activo de Julia.
- update: Actualiza los paquetes del entorno activo de Julia.
- status: Muestra los paquetes instalados y sus versiones en el entorno activo de Julia.

• remove p: Elimina el paquete p del entorno activo de Julia.

```
i Ejemplo

Para instalar el paquete SymPy para cálculo simbólico basta con teclear add Sympy.

(@v1.7) pkg> add SymPy
        Updating registry at `~/.julia/registries/General.toml`
        Resolving package versions...
        Updating `~/.julia/environments/v1.7/Project.toml`
        [24249f21] + SymPy v1.1.6
        Updating `~/.julia/environments/v1.7/Manifest.toml`
        [3709ef60] + CommonEq v0.2.0
        [38540f10] + CommonSolve v0.2.1
        [438e738f] + PyCall v1.93.1
        [24249f21] + SymPy v1.1.6
```

1.3 Operadores aritméticos.

El uso más simple de Julia es la realización de operaciones aritméticas como en una calculadora. En Julia se utilizan los siguientes operadores.

Operador	Descripción
x + y	Suma
х - у	Resta
x * y	Producto
х / у	División
x ÷ y	Cociente división entera
х % у	Resto división entera
x ^ y	Potencia

1.4 Operadores de comparación

Operador	Descripción
==	Igualdad
!=,	Desigualdad
<	Menor que
<=,	Menor o igual que

Operador	Descripción
>	Mayor que
>=,	Mayor o igual que

1.5 Operadores booleanos

Operador	Descripción
!x	Negación
x && y	Conjunción (y)
x y	Disyunción (o)

Existen también un montón de funciones predefinidas habituales en Cálculo.

1.6 Funciones de redondeo

Función	Descripción
round(x)	Devuelve el entero más próximo a x
<pre>round(x, digits = n)</pre>	Devuelve al valor más próximo a ${\tt x}$ con ${\tt n}$
	decimales
floor(x)	Redondea x al próximo entero menor
ceil(x)	Redondea \mathbf{x} al próximo entero mayor
trunc(x)	Devuelve la parte entera de ${\tt x}$

```
i Ejemplo
  julia> round(2.7)
  3.0
  julia> floor(2.7)
  2.0
  julia> floor(-2.7)
  -3.0
  julia> ceil(2.7)
  3.0
  julia> ceil(-2.7)
  -2.0
  julia> trunc(2.7)
  2.0
  julia> trunc(-2.7)
  -2.0
  julia> round(2.5)
  2.0
  julia> round(2.786, digits = 2)
  2.79
```

1.7 Funciones de división

Función	Descripción
div(x,y), x÷y	Cociente de la división entera
fld(x,y)	Cociente de la división entera redondeado hacia abajo
cld(x,y)	Cociente de la división entera redondeado hacia arriba
rem(x,y), x%y	Resto de la división entera. Se cumple $x == div(x,y)*y +$
	rem(x,y)
mod(x,y)	Módulo con respecto a y. Se cumple $x == fld(x,y)*y + mod(x,y)$
gcd(x,y)	Máximo común divisor positivo de x, y,
lcm(x,y)	Mínimo común múltiplo positivo de x, y,

```
i Ejemplo

julia> div(5,3)
1

julia> cld(5,3)
2

julia> 5%3
2

julia> -5%3
-2

julia> mod(5,3)
2

julia> mod(-5,3)
1

julia> gcd(12,18)
6

julia> lcm(12,18)
36
```

1.8 Funciones para el signo y el valor absoluto

Función	Descripción
abs(x)	Valor absoluto de x
sign(x)	Devuelve -1 si x es positivo, -1 si es negativo y 0 si es 0.

```
i Ejemplo

julia> abs(2.5)
2.5

julia> abs(-2.5)
2.5

julia> sign(-2.5)
-1.0

julia> sign(0)
0

julia> sign(2.5)
1.0
```

1.9 Raíces, exponenciales y logaritmos

Función	Descripción
$sqrt(x), \sqrt{x}$	Raíz cuadrada de x
cbrt(x), x	Raíz cúbica de x
exp(x)	Exponencial de x
log(x)	Logaritmo neperiano de \mathbf{x}
log(b,x)	Logaritmo en base \mathtt{b} de \mathtt{x}
log2(x)	Logaritmo en base 2 de \mathbf{x}
log10(x)	Logaritmo en base 10 de \mathbf{x}

```
i Ejemplo
  julia> sqrt(4)
  2.0
  julia> cbrt(27)
  3.0
  julia> exp(1)
  2.718281828459045
  julia> exp(-Inf)
  0.0
  julia> log(1)
  0.0
  julia> log(0)
  -Inf
  julia > log(-1)
  ERROR: DomainError with -1.0:
  log will only return a complex result if called with a complex argument.
  julia > log(-1+0im)
  0.0 + 3.141592653589793im
  julia > log2(2^3)
  3.0
```

1.10 Funciones trigonométricas

Función	Descripción
hypot(x,y)	Hipotenusa del triángulo rectángulo con catetos x e y
sin(x)	Seno del ángulo x en radianes
sind(x)	Seno del ángulo x en grados
cos(x)	Coseno del ángulo x en radianes
cosd(x)	Coseno del ángulo x en grados

Función	Descripción
tan(x)	Tangente del ángulo \mathbf{x} en radianes
tand(x)	Tangente del ángulo \mathbf{x} en grados
sec(x)	Secante del ángulo \mathbf{x} en radianes
csc(x)	Cosecante del ángulo x en radianes
cot(x)	Cotangente del ángulo \mathbf{x} en radianes

```
i Ejemplo
  julia> sin(/2)
  1.0
  julia> cos(/2)
  6.123233995736766e-17
  julia> cosd(90)
  0.0
  julia> tan(/4)
  0.99999999999999
  julia> tand(45)
  1.0
  julia> tan(/2)
  1.633123935319537e16
  julia> tand(90)
  Inf
  julia> sin(/4)^2 + cos(/4)^2
  1.0
```

1.11 Funciones trigonométricas inversas

Función	Descripción
asin(x)	Arcoseno (inversa del seno) de x en radianes
asind(x)	Arcoseno (inversa del seno) de x en grados

Función	Descripción
acos(x)	Arcocoseno (inversa del coseno) de x en radianes
acosd(x)	Arcocoseno (inversa del coseno) de x en grados
atan(x)	Arcotangente (inversa de la tangente) de x en radianes
atand(x)	Arcotangente (inversa de la tangente) de x en grados
asec(x)	Arcosecante (inversa de la secante) de x en radianes
acsc(x)	Arcocosecante (inversa de la cosecante) de \mathbf{x} en radianes
acot(x)	Arcocotangente (inversa de la cotangente) de ${\tt x}$ en radianes

```
i Ejemplo

julia> asin(1)
1.5707963267948966

julia> asind(1)
90.0

julia> acos(-1)
3.141592653589793

julia> atan(1)
0.7853981633974483

julia> atand(tan(/4))
45.0
```

1.12 Precedencia de operadores

A la hora de evaluar una expresión aritmética, Julia evalúa los operadores según el siguiente orden de prioridad (de mayor a menor prioridad).

Categoría Operadores	Asociatividad
Funciones exp, log, sin, etc.	
Exponenciación	Derecha
Unarios + - √	Derecha
Fracciones //	Izquierda
Multiplicación/ % & \ ÷	Izquierda
Adición + -	Izquierda
Comparaciones >= <= == != !==	

Categoría Operadores	Asociatividad
Asignaciones += -= *= /= //= ^= ÷= %= = &=	Derecha

Cuando se quiera evaluar un operador con menor prioridad antes que otro con mayor prioridad, hay que utilizar paréntesis.

```
i Ejemplo

julia> 1 + 4 ^ 2 / 2 - 3
6.0

julia> (1 + 4 ^ 2) / 2 - 3
5.5

julia> (1 + 4) ^ 2 / 2 - 3
9.5

julia> 1 + 4 ^ 2 / (2 - 3)
-15.0

julia> (1 + 4 ^ 2) / (2 - 3)
-17.0
```

1.13 Definición de variables

Para definir variables se pueden utilizar cualquier carácter Unicode. Los nombres de las variables pueden contener más de una letra y, en tal caso, pueden usarse también números, pero siempre debe comenzar por una letra. Así, para Julia, la expresión xy, no se interpreta como el producto de la variable x por la variable y, sino como la variable xy. Además, se distingue entre mayúsculas y minúsculas, así que no es lo mismo xy que xy.

2 Sucesiones de números reales

2.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using SymPy # Para el cálculo simbólico de límites.
using Plots # Para el dibujo de gráficas.
using Makie # Para obtener gráficos interactivos.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
```

Ejercicio 2.1. Dar los 10 primeros términos de las siguientes sucesiones:

```
a. (2n+1)_{n=1}^{\infty}
```

i Ayuda

Definir una función para el término general y aplicar la función a los naturales de 1 a 10 usando compresiones de arrays.

```
    Solución

x(n) = 2n + 1
    print([x(n) for n = 1:10])

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
```

b.
$$\left(\frac{1}{n}\right)_{n=1}^{\infty}$$

```
Solución
```

```
# Como reales
x(n) = 1 / n
print([x(n) for n = 1:10])
# Como racionales
x(n) = 1//n
print([x(n) for n = 1:10])
```

Rational{Int64}[1//1, 1//2, 1//3, 1//4, 1//5, 1//6, 1//7, 1//8, 1//9, 1//10]

c.
$$((-1)^n)_{n=1}^{\infty}$$

Solución

```
x(n) = (-1)^n
print([x(n) for n = 1:10])
```

[-1, 1, -1, 1, -1, 1, -1, 1, -1, 1]

d.
$$\left(\left(1+\frac{1}{n}\right)^n\right)_{n=1}^{\infty}$$

Solución

```
x(n) = (1 + 1 / n)^n
print([x(n) for n = 1:10])
```

[2.0, 2.25, 2.3703703703703702, 2.44140625, 2.488319999999994, 2.5216263717421135, 2.5

e.
$$x_1=1$$
y $x_{n+1}=\sqrt{1+x_n} \ \forall n \in \mathbb{N}$

Solución

```
x(n) = n == 1 ? 1 : sqrt(1+x(n-1))
print([x(n) for n = 1:10])
```

Real[1, 1.4142135623730951, 1.5537739740300374, 1.5980531824786175, 1.6118477541252516

Ejercicio 2.2. Dibujar en una gráfica los 50 primeros términos de las siguientes sucesiones y deducir si son convergentes o no. En el caso de que sean convergentes, dar un valor aproximado de su límite.

i Ayuda

Definir una función para el término general y aplicar la función a los naturales de 1 a 50 usando compresiones de arrays como en el ejercicio anterior. Después usar la función scatter del paquete Plots, o bien la función scatter del paquete Makie, para dibujar el array de términos.

a.
$$\left(\frac{n}{4n+2}\right)_{n=1}^{\infty}$$

Polución 2.2 Plots using Plots x(n) = n / (4n + 2) scatter([x(n) for n = 1:50], legend=false) 0.24 0.22 0.20 0.18 0 10 20 30 40 50

2.3 Makie

```
using GLMakie

x(n) = n / (4n + 2)

Makie.scatter([x(n) for n = 1:50])
```


La sucesión converge al número 0.25.

b.
$$\left(\frac{2^n}{n^2}\right)_{n=1}^{\infty}$$

Solución

2.4 Plots

```
using Plots

x(n) = 2^n / (4n + 2)

scatter([x(n) for n = 1:50], legend=false)
```


2.5 Makie

```
using GLMakie x(n) = 2^n / (4n + 2) Makie.scatter([x(n) for n = 1:50])
```


c. $\left(\frac{(-1)^n}{n}\right)_{n=1}^{\infty}$

Solución

2.6 Plots

```
using Plots x(n) = (-1)^n / n scatter([x(n) for n = 1:50], legend=false)
```


2.7 Makie

```
using GLMakie x(n) = (-1)^n / n Makie.scatter([x(n) for n = 1:50])
```


d.
$$\left(\left(1+\frac{1}{n}\right)^n\right)_{n=1}^{\infty}$$

Solución

2.8 Plots

```
using Plots x(n) = (1 + 1 / n)^n scatter([x(n) for n = 1:50], legend=false)
```


2.9 Makie

```
using GLMakie

x(n) = (1 + 1 / n)^n

Makie.scatter([x(n) for n = 1:50])
```


La sucesión converge aproximadamente a 2.7.

e.
$$x_1=0.5$$
y $x_{n+1}=\frac{3}{2+x_n} \ \forall n \in \mathbb{N}$

Solución

2.10 Plots

```
using Plots x(n) = n == 1 ? 0.5 : 3/(2+x(n-1)) scatter([x(n) for n = 1:50], legend=false)
```


2.11 Makie

```
using GLMakie
x(n) = n == 1 ? 0.5 : 3/(2+x(n-1))
Makie.scatter([x(n) for n = 1:50])
```


Ejercicio 2.3. Calcular el límite, si existe, de las siguiente sucesiones.

a.
$$\left(\frac{1}{n}\right)_{n=1}^{\infty}$$

i Ayuda

Definir una función para el término general y usar la función limit del paquete SymPy para calcular el límite de la sucesión.

```
Solución

using SymPy
    @syms n::(integer, positive) # Declaración de la variable simbólica
x(n) = 1/n
limit(x(n), n=>oo)
0
```

b.
$$((-1)^n)_{n=1}^{\infty}$$

```
    Solución

    Osyms n::(integer, positive)
    x(n) = (-1)^n
    limit(x(n), n=>oo)

NaN
```

```
c. \left(\left(1+\frac{1}{n}\right)^n\right)_{n=1}^{\infty}
```

```
    Solución

    Osyms n::(integer, positive)
    x(n) = (1 + 1 / n)^n
    limit(x(n), n=>oo)

e
```

Ejercicio 2.4. En el siglo III A.C Arquímedes usó el método por agotamiento para calcular el área encerrada por una circunferencia (y de paso el valor de π). La idea consiste en inscribir la circunferencia en polígonos regulares con un número de lados cada vez mayor.

Figura 2.1: Aproximación del área de una circunferencia mediante polígonos regulares

El área de estos polígonos puede calcularse fácilmente descomponiendo los polígonos regulares en triángulos como en el siguiente ejemplo.

En el caso de los polígonos inscritos dentro de la circunferencia, como dos de los lados siempre coinciden con el radio de la circunferencia r, el perímetro del polígon de n lados puede calcularse con la fórmula

Figura 2.2: Descomposición de un hexágono en triángulos

$$p_n = 2nrFrsen\left(\frac{\pi}{n}\right)$$

y el área puede calcularse con la fórmula

$$a_n = \frac{1}{2} n r^2 Frsen\left(\frac{2\pi}{n}\right).$$

a. Calcular el perímetro de los polígonos de e 10^i lados, para $i=1,\ldots,6$ tomando r=1.

Solución

```
p(n) = 2n*sin(pi/n)
print([p(10^i) for i = 1:6])
```

[6.180339887498948, 6.282151815625658, 6.283174971759127, 6.28318520382533, 6.283185306

a. Calcular el área de los polígonos de 10^i lados, para $i=1,\ldots,6$ tomando r=1.

Solución

```
a(n) = n*sin(2*pi/n)/2
print([a(10^i) for i = 1:6])
```

[2.938926261462366, 3.1395259764656687, 3.1415719827794755, 3.141592446881286, 3.141592

b. Dibujar con los primeros 50 términos de la sucesión de las areas de los polígonos tomando r=1.

Solución

2.12 Plots

```
using Plots
a(n) = n*sin(2*pi/n)/2
scatter([a(n) for n = 1:50], legend=false)
```


2.13 Makie

```
using GLMakie
a(n) = n*sin(2*pi/n)/2
Makie.scatter([x(n) for n = 1:50])
```


c. Calcular el límite de la sucesión de las areas de los polígonos tomando r=1.

```
Solución

using SymPy
    @syms n::(integer, positive)
    a(n) = n*sin(2*pi/n)/2
    float(limit(a(n), n=>oo))

3.141592653589795
```

d. Usando el resultado anterior, calcular el area del círculo de radio r.

```
Solución

using SymPy
    @syms n::(integer, positive), r
    a(n) = n*r^2*sin(2*pi/n)/2
    limit(a(n), n=>oo)

628318530717959r²
    2000000000000000
```

Ejercicio 2.5. Dada la sucesión $x_1=1$ y $x_{n+1}=1+\frac{1}{n}$ $\forall n\in\mathbb{N},$ se pide:

a. Dibujar la gráfica de los 10 primeros términos de la sucesión. ¿Es una sucesión monótona?

Solución **2.14 Plots** using Plots x(n) = n == 1 ? 1 : 1 + 1 / x(n-1)scatter([x(n) for n = 1:10], legend=false)2.00 1.75 1.50 1.25 1.00 2 8 10 **2.15** Makie using GLMakie x(n) = n == 1 ? 1 : 1 + 1 / x(n-1)Makie.scatter([x(n) for n = 1:10])

b. Dibujar la gráfica de los 5 primeros términos de las subsucesiones con los términos pares e impares. ¿Son monótonas?

```
② Solución

2.16 Plots

using Plots, LaTeXStrings
x(n) = n == 1 ? 1 : 1 + 1 / x(n-1)
n1 = 1:2:10
n2 = 2:2:10
Plots.scatter(n1, x.(n1), label=L"$x_{2n-1}$")
Plots.scatter!(n2, x.(n2), label=L"$x_{2n}$")
```


2.17 Ejercicios propuestos

Ejercicio 2.6. Calcular el décimo término de la sucesión $\left(\frac{3n^2+n}{6n^2-1}\right)_{n=1}^{\infty}$.

*Hint: *

Introducir hasta 5 decimales

Ejercicio 2.7. Calcular los 10 primeros términos de la sucesión $\left(\frac{3n^2+n}{6n^2-1}\right)_{n=1}^{\infty}$ y averiguar hacia dónde converge.

- \Box 0
- □ 1.5
- \square No converge
- \Box 1
- \square 0.5

3 Funciones elementales

3.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using Plots # Para el dibujo de gráficas.
#plotlyjs() # Para obtener gráficos interactivos.
using SymPy # Para el cálculo simbólico.
using MTH229 # Para restringir la gráfica de una función a su dominio.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
using Latexify # Para convertir expresiones a código LaTeX.
```

Ejercicio 3.1. La siguiente tabla contiene el número de bacterias en un cultivo cada hora que pasa.

Horas	Bacterias
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128

Dibujar una gráfica con la evolución del la población de bacterias.

i Ayuda

Definir los valores de las horas en un vector \mathbf{x} y el número de bacterias en otro \mathbf{y} y luego utilizar la función $\mathbf{scatter}(\mathbf{x},\mathbf{y})$ del paquete \mathbf{Plots} para dibujar una gráfica de puntos.

¿Los pares dados en la tabla forman una función?

Solución

Si, porque para cada hora hay a lo sumo un número de bacterias con el que se relaciona.

¿Qué fórmula crees que explica la evolución del número de bacterias en función de las horas que pasan? Dibuja en la gráfica anterior la función con esa fórmula.

i Ayuda

Para añadir una nueva gráfica a una anterior se añade un signo de exclamación! a la función de graficación. Para una gráfica de líneas, utilizar la función plot! del paquete Plots, pasándole el nombre de la función si se ha definido previamente o

Ejercicio 3.2. En el lanzamiento vertical de un objeto, la posición que ocupa el objeto en cada instante t, viene dado por la función

$$y(t) = y_0 + v_0 t + \frac{1}{2} g t^2$$

donde y_0 es la altura inicial del objeto, v_0 la velocidad inicial con que se lanza, y g es la aceleración de la gravedad. Una pelota se lanza verticalmente desde la ventada de un edificio a 5 m de altura, con una velocidad inicial de 10 m/s. Dibujar la gráfica de la posición de la pelota en función del tiempo, tomando una aceleración de la gravedad $g=-9.8~\mathrm{m/s^2}$.

Declarar t como una variable simbólica usando el paquete SymPy , definir después las constantes y_0, v_0 y g, y luego definir la función y(t) mediante la fórmula dada. Para dibujar la gráfica de la función, usar la función plot pasándole el nombre de la función. Como no tienen sentido los instantes negativos, ni las posiciones negativas, restringir la ventana de graficación a valores de t y de y positivos usando los parámetros xlim e ylim.

```
Solución
  using Plots, SymPy
  @syms t
           #Declaramos t como una variable simbólica
    = 5
  v = 10
  const gravedad = -9.8 #Declaramos la gravedad como una constante
  y0(t) = y + v * t + \frac{1}{2} * gravedad * t^2
  plot(y0, xlims=(0,3), ylims=(0,15), label="Pelota", xlab="Tiempo (s)", ylab="Altura
   15
                                                                 Pelota
   10
Altura (m)
    0
                            1
                                                   2
                                                                         3
                                  Tiempo (s)
```

Al mismo tiempo que se lanza la pelota, un ascensor exterior baja por la fachada del mismo edificio desde una altura de 8 m con una velocidad constante de 5 m/s. Dibujar la gráfica de la posición del ascensor junto a la gráfica de la pelota.

La función que define la posición del ascensor que baja desde una altura y_1 con una velocidad constante v_1 en cada instante t es $y(t)=y_1-v_1t$.

¿En qué instantes el ascensor estará a la misma altura de la pelota? Dibujar los puntos correspondientes a esos instantes en la gráfica anterior.

```
    Solución

sol = solve(y0(t)-y1(t))
    print("Instantes: ", sol)
    scatter!(sol, y1.(sol), label="Intersección")
```


Ejercicio 3.3. El volumen de un globo esférico depende del radio según la función $v(r) = \frac{4}{3}\pi r^3$. Calcular la función que expresa el radio en función del volumen y dibujar su gráfica.

Declarar las variables simbólicas \mathbf{r} y \mathbf{v} usando el paquete SymPy y definir la función $\texttt{vol}(\mathbf{r})$ que expresa el volumen del globo en función del radio.

Después utilizar la función solve del paquete SymPy para despejar r de la ecuación v-vol(r)=0.

Solución

```
using Plots, SymPy
@syms r v
vol(r) = 4/3*pi*r^3
rad = solve(v-vol(r),r)[1]
plot(rad, xlab="Volumen (m³)", ylab="Radio (m)", legend=false)
```


Si empezamos a introducir helio en el globo de manera que su volumen a los t minutos viene dado por la función $v(t)=t^2+2t$, dibujar la gráfica de la función que da el radio en cada instante.

i Ayuda

Declarar las variables simbólicas t usando el paquete SymPy y definir la función vol(t) que expresa el volumen del globo en función del tiempo.

Después utilizar a el operador de composición o para componer la función del volumen con la función del radio.

Solución

```
Osyms t  vol(t)=t^2+2t \\ plot(rad vol, xlim=(0,10), xlab="Tiempo (min)", ylab="Radio (m)")
```


Si el globo explota cuando el radio alcanza los 3 m, ¿cuándo explotará el globo?

Ejercicio 3.4. Dibujar la gráfica de la función

$$f(x) = 2x^3 - 3x^2 - 12x + 4$$

en el intervalo [-3,4] y determinar, observando la gráfica, lo siguiente:

i Ayuda

Definir la función y usar la función plot del paquete Plots.

a. Dominio

Solución

 $Dom(f)=\mathbb{R}$

b. Imagen

Solución

 $Im(f)=\mathbb{R}$

c. Raíces

Solución

```
using SymPy
@syms x
f(x) = 2x^3-3x^2-12x+4
raices = solve(f(x)) # Solución exacta
print(raices)
N(raices) # Solución aproximada con decimales

Sym[-2, 7/4 - sqrt(33)/4, sqrt(33)/4 + 7/4]

3-element Vector{Real}:
-2
```

- 3.186140661634507164962652867054732329555066114495698091924969367641475180364343

Hay tres raíces en x = -2, x = 0.31 y x = 3.19 aproximadamente.

d. Signo

Solución

Intervalos con f(x) negativa: $(-\infty, -2) \cup (0.31, 3.19)$. Intervalos con f(x) positiva: $(-2, 0.31) \cup (3.19, \infty)$.

e. Crecimiento

Solución

Intervalos con f(x) creciente: $(-\infty, -1) \cup (2, \infty)$. Intervalos con f(x) decreciente: (-1, 2).

f. Extremos

Solución

Máximo relativo en x = -1 y el valor máximo es f(-1) = 11. Mínimo relativo en x = 2 y el valor del mínimo es f(2) = -16.

g. Concavidad

Solución

Intervalos de concavidad hacia arriba: $(0.5, \infty)$. Intervalos de concavidad hacia abajo: $(-\infty, 0.5)$.

h. Puntos de inflexión

Solución

Punto de inflexión en x = 0.5.

Ejercicio 3.5. Dibujar la gráfica de la función

$$g(t) = \frac{t^4 + 19t^2 - 5}{t^4 + 9t^2 - 10}$$

en el intervalo [-8, 8] y determinar, observando la gráfica, lo siguiente:

i Ayuda

Usar la función plot como en el ejercicio anterior con el parámetro aspect_ratio=1.0 para que los ejes tengan la misma escala.

Para respetar las discontinuidades autilizar la función rangeclamp() del paquete MTH229.

Solución

a. Dominio. ¿Qué pasa si aplicamos la función a algún valor fuera de su dominio?

Solución

 $Dom(f) = \mathbb{R} \ \{-1,1\}$

(Inf, Inf)

Como se observa, al aplicar la función a -1 y 1 se obtiene ∞ .

b. Imagen

Solución

 $Im(f) = \mathbb{R} \ (0.5, 1]$

c. Asíntotas. Dibujarlas.

Buscar las asíntotas verticales en los puntos fuera del dominio de la función. Para dibujar asíntotas verticales usar la función vline del paquete Plots, y para dibujar las asíntotas horizontales usar la función hline.

Solución

vline!([-1,1], label="Asíntotas verticales")
hline!([1], label="Asíntotas horizontales", legend=:bottomright)

Asíntotas verticales en x = -1 y x = 1.

Asíntotas horizontales en y = 1.

No hay asíntotas oblicuas.

d. Raíces

Solución

Hay dos raíces en x = -0.5 y x = 0.5 aproximadamente.

e. Signo

Solución

Intervalos con f(x) positiva: $(-\infty, -1) \cup (-0.5, 0.5) \cup (1, \infty)$. Intervalos con f(x) negativa: $(-1, -0.5) \cup (0.5, 1)$.

e. Crecimiento

Solución

Intervalos con f(x) creciente: $(-\infty, -1) \cup (-1, 0)$. Intervalos con f(x) decreciente: $(0, 1) \cup (1, \infty)$.

f. Extremos

Solución

Máximo relativo en x=0 y el valor máximo es g(0)=0.5. No hay mínimos relativos.

g. Concavidad

Solución

Intervalos de concavidad hacia arriba: $(-\infty, -1) \cup (1, \infty)$. Intervalos de concavidad hacia abajo: (-1, 1).

h. Puntos de inflexión

Solución

No hay puntos de inflexión.

Ejercicio 3.6. Dibujar la gráficas de las siguientes funciones exponenciales 2^x , e^x , 0.5^x , 0.7^x y responder a las siguientes preguntas comparando las gráficas.

a. ¿Cuál es el dominio de una función exponencial?

♀ Soluciónℝ.

b. ¿Cuál es la imagen de una función exponencial?

 \P Solución $\mathbb{R}^+.$

c. ¿Cómo es el crecimiento de una función exponencial?

 \P Solución $a^x \text{ es creciente si } a > 1 \text{ y decreciente si } 0 < a < 1.$

d. ¿Tienen extremos una función exponencial?

SoluciónNo

e. ¿Cómo es la curvatura de una función exponencial?

Es cóncava hacia arriba.

Ejercicio 3.7. Dibujar la gráficas de las funciones trigonométricas Frsen(x), Frsen(x+2), Frsen(x)+2, Frsen(2x) y 2Frsen(x), y completar la siguiente tabla estudiando su periodo y amplitud.

Función	Periodo	Amplitud
$\overline{Frsen(x)}$		
Frsen(x+2)		
Frsen(x) + 2		
Frsen(2x)		
2Frsen(x)		

¿Qué conclusiones sacas?

Ayuda

El periodo es el mínimo intervalo en el que la gráfica de la función se repite, y la amplitud es la mitad de la diferencia entre el máximo y el mínimo de la función.

Solución

```
using Plots, LaTeXStrings
plot(sin(x), -2*pi, 2*pi, label=L"$\operatorname{sen}(x)$")
plot!(sin(x+2), label=L"$\operatorname{sen}(x+2)$")
plot!(sin(x)+2, label=L"$\operatorname{sen}(x)+2$")
plot!(sin(2x), label=L"$\operatorname{sen}(2x)$")
plot!(2sin(x), label=L"$2\operatorname{sen}(x)$")
```


Función	Periodo	Amplitud
$\overline{Frsen(x)}$	2π	1
Frsen(x+2)	2π	1
Frsen(x) + 2	2π	1
Frsen(2x)	π	1
2Frsen(x)	2π	2

Se observa que al sumar una constante a la función seno o a su argumento, el periodo y la amplitud no cambian. Sin embargo, si se multiplica por una constante el seno, cambia la amplitud, y si se multiplica su argumento, cambia el periodo.

Ejercicio 3.8. Dibujar la gráfica de la función a trozos

$$h(x) = \begin{cases} -2x & \text{si } x \le 0; \\ x^2 & \text{si } 0 < x \le 2; \\ 4 & \text{si } 2 < x \end{cases}$$

i Ayuda

Usar el operador condicional anidado.

Ejercicio 3.9. Una hormiga se mueve sobre el plano real de manera que en cada instante t su posición viene dada por las funciones

$$\begin{cases} x = Frsen(t) \\ y = Frsen(2t) \end{cases}$$

Dibujar la gráfica de la trayectoria de la hormiga.

```
wsing Plots
u1(t)=sin(t)
v1(t)=sin(2t)
plot(u1, v1, 0, 4pi, aspect_ratio=1.0, legend = false)

solución

using Plots
u1(t)=sin(t)
v1(t)=sin(2t)
plot(u1, v1, 0, 4pi, aspect_ratio=1.0, legend = false)
```


3.2 Ejercicios propuestos

Ejercicio 3.10. ¿Cuáles de las siguientes funciones tienen dominio $\mathbb R$ e imagen $\mathbb R^+ \cup \{0\}$?

(Select one or more)

Ejercicio 3.11. Dibujar las gráficas de las funciones logarítmicas $\ln(x)$, $\log_2(x)$ y $\log_{0.5}(x)$ y contestar a las siguientes preguntas.

a. ¿Cuál es el dominio de una función logarítmica?

\Box Las otras opciones son falsas.
$\mathbb R$
\square \mathbb{R} $\{0\}$
\mathbb{R}^+
$\mathbb{R}^+ \cup \{0\}$
b. ¿Cuál es la imagen de una función logarítmica?
\mathbb{R}^+
\mathbb{R}^-
${\Bbb R}$
\square \mathbb{R} $\{0\}$
\Box Las otras opciones son falsas.
\Box Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)?$
\Box Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)?$ \Box Creciente si $a>1$
\Box Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)?$ \Box Creciente si $a>1$ \Box Decreciente si $0< a<1$
\Box Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? \Box Creciente si $a>1$ \Box Decreciente si $0< a<1$ \Box Creciente si $a<1$
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a>1$ □ Decreciente si $0< a<1$ □ Creciente si $a<1$ □ Creciente si $a<1$
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a>1$ □ Decreciente si $0< a<1$ □ Creciente si $a<1$ □ Creciente si $0< a<1$ (Select one or more)
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a>1$ □ Decreciente si $0< a<1$ □ Creciente si $a<1$ □ Creciente si $a<1$
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a>1$ □ Decreciente si $0< a<1$ □ Creciente si $a<1$ □ Creciente si $0< a<1$ (Select one or more)
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a>1$ □ Decreciente si $0< a<1$ □ Creciente si $a<1$ □ Creciente si $0< a<1$ (Select one or more) d. ¿Cómo es la concavidad la función logarítmica $\log_a(x)$?
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a > 1$ □ Decreciente si $0 < a < 1$ □ Creciente si $a < 1$ □ Creciente si $0 < a < 1$ (Select one or more) d. ¿Cómo es la concavidad la función logarítmica $\log_a(x)$? □ Cóncava hacia arriba si $0 < a < 1$
□ Las otras opciones son falsas. c. ¿Cómo es el crecimiento la función logarítmica $\log_a(x)$? □ Creciente si $a > 1$ □ Decreciente si $0 < a < 1$ □ Creciente si $a < 1$ □ Creciente si $0 < a < 1$ (Select one or more) d. ¿Cómo es la concavidad la función logarítmica $\log_a(x)$? □ Cóncava hacia arriba si $0 < a < 1$ □ Cóncava hacia abajo si $a < 1$

Ejercicio 3.12. ¿Cuál es el periodo y la amplitud de la función $2\cos(x/2)$?

- \square 2 y 2
- \square 4 y 2
- \square 4 y 1
- □ y 2
- □ 2 y 1

Ejercicio 3.13. ¿Cuál de las gráficas corresponde a la siguiente función paramétrica?

$$f(t) = \begin{cases} Frsen(2t) - \cos(t) \\ Frsen(t) + \cos(t) \end{cases}$$

insert image here

4 Límites de funciones reales

4.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using SymPy # Para el cálculo simbólico de límites.
using Plots # Para el dibujo de gráficas.
#plotlyjs() # Para obtener gráficos interactivos.
using MTH229 # Para restringir la gráfica de una función a su dominio.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
```

Ejercicio 4.1. Sea la función $f(x) = x^2$.

a. Estudiar la tendencia de f cuando x se aproxima a 3 por la derecha, evaluando la función en $x=3+\frac{1}{10i}$ para $i=1,\ldots,10$.

i Ayuda

Definir la función y aplicar la función a los valores de x indicados usando compresiones de arrays.

```
Solución
```

```
f(x) = x^2
a = 3
print([f(a+1/10i) for i = 1:10])
```

[9.6100000000001, 9.3024999999998, 9.20111111111111, 9.150625, 9.1204, 9.100277777

La función tiende a 9.

b. Estudiar la tendencia de f cuando x se aproxima a 3 por la izquierda, evaluando la función en $x=3-\frac{1}{10i}$ para $i=1,\dots,10.$

Solución

```
print([f(a-1/10i) for i = 1:10])
```

[8.41, 8.7025, 8.801111111111112, 8.850625, 8.8804, 8.90027777777777, 8.91448979591836

La función también tiende a 9.

c. Dibujar la gráfica de los valores de f evaluados en los apartados anteriores diferenciando la tendencia por la izquierda de la tendencia por la derecha.

i Ayuda

Definir un vector con los valores de x y otro con los valores correspondientes de f(x) y usar la función scatter del paquete Plots, pasandole los dos vectores.

Solución

```
xd = [a+1/10i for i=1:10]
scatter(xd, f.(xd), label="Aproximación por la derecha")
xi = [a-1/10i for i=1:10]
scatter!(xi, f.(xi), label="Aproximación por la izquierda", legend=:topleft)
```


d. Calcular el límite por la izquierda y por la derecha de f en x=3.

i Ayuda

Declarar la variable simbólica x con @syms imponiento la restricción real=true, definir la función y usar la función limit del paquete SymPy para calcular los límites laterales de la función. Para el límite por la izquierda indicar el parámetro dir="-" y para el límite por la derecha dir="+".

Ejercicio 4.2. Sea la función $g(x) = (1+x)^{1/x}$.

a. Estudiar la tendencia de g cuando x se aproxima a 0 por la derecha, evaluando la función en $x = \frac{1}{10^i}$ para $i = 1, \dots, 10$.

Solución

```
g(x) = (1+x)^{(1/x)}

a = 0

print([g(a+1/10^i) for i = 1:10])
```

[2.5937424601000023, 2.7048138294215285, 2.7169239322355936, 2.7181459268249255, 2.7182

La función tiende a e.

b. Estudiar la tendencia de g cuando x se aproxima a 0 por la izquierda, evaluando la función en $x=-\frac{1}{10^i}$ para $i=1,\ldots,10$.

Solución

```
print([g(a-1/10^i) for i = 1:10])
```

[2.867971990792441, 2.7319990264290284, 2.7196422164428524, 2.71841775501015, 2.7182954

La función también tiende a e.

c. Calcular el límite por la izquierda y por la derecha de g en x=0.

Solución

```
Osyms x::real
li = limit(g(x), x=>0, dir="-")
println("Límite por la izquierda: ", li)
ld = limit(g(x), x=>0, dir="+")
println("Límite por la derecha: ", ld)
```

Límite por la izquierda: E Límite por la derecha: E

Ejercicio 4.3. Considérese la función

$$f(x) = \left(1 + \frac{2}{x}\right)^{x/2}.$$

- a. Dibujar su gráfica, y a la vista de misma conjeturar el resultado de los siguientes límites:
- b. $\lim_{x\to -2^-} f(x)$
- c. $\lim_{x \to -2^+} f(x)$
- d. $\lim_{x\to-\infty} f(x)$
- e. $\lim_{x\to+\infty} f(x)$
- f. $\lim_{x\to 2} f(x)$
- g. $\lim_{x\to 0} f(x)$

Utilizar la función plot! del paquete Plots. Usar los parámetros xlims=(a,b) para restringir la región de dibujo al intervalo (a,b) del eje x, y ylims=(c,d) para restringir la región de dibujo al intervalo (c,d) del eje y.

Solución

```
using Plots

f(x) = (1+2/x)^(x/2)

plot(f, xlims=(-10,10), ylims=(0,6))
```


b. Calcular los límites anteriores. ¿Coinciden los resultados con los conjeturados?

vi. $\lim_{x\to 0} f(x)$ no existe.

```
Límite por la izquieda en -2: oo
Límite por la izquieda en -2:
-00
Límite en -o: E
Límite en \omega: E
Límite en 2: 2
Límite en 0: 1
```

Precaución

Aunque Julia calcula el límite en -2 por la derecha y el límite en 0, a la vista de la gráfica, estos límites en realidad no existen, ya que la función no está definida en el intervalo de [-2,0].

Ejercicio 4.4. Calcular los siguientes límites

a. $\lim_{x\to 0} Frsen\left(\frac{1}{x}\right)$

Solución

```
using SymPy
@syms x::real
limit(sin(1/x), x=>0)
```

Como no se obtiene un valor concreto, sino un rango de valores, el límite no existe.

b. $\lim_{x\to 0} xFrsen\left(\frac{1}{x}\right)$

Solución

```
limit(x*sin(1/x), x=>0)
```

0

c. $\lim_{x\to\infty} e^{-x} Frsen(x)$

```
Solución
limit(^(-x)*sin(x), x=>oo)
0
```

```
c. \lim_{x \to a} \frac{Frsen(x) - Frsen(a)}{x - a}
```

```
Solución

@syms a::real
    limit((sin(x)-sin(a))/(x-a), x=>a)

cos(a)
```

Ejercicio 4.5. Calcular el valor de las siguientes funciones en los puntos dados y su límite. Corroborar los límites obtenidos gráficamente.

a.
$$f(x) = \frac{Frsen(x)}{x}$$
 en $x = 0$.

Solución

La función f no está definida en x=0 de manera que al evaluarla en 0 obtenemos un valor indeterminado.

```
f(x)=\sin(x)/x
f(0)
```

 ${\tt NaN}$

Ahora calculamos el límite de f en 0.

```
@syms x::real
f(x)=sin(x)/x
limit(f(x), x=>0)
```

T

Para corroborar el límite dibujamos la gráfica de f en un entorno de 0.

```
using Plots
plot(f)
```


b.
$$g(x) = \frac{\cos(x)}{x - \pi/2}$$
 en $x = \pi/2$.

Solución

La función f no está definida en x=0 de manera que al evaluarla en 0 obtenemos un valor indeterminado.

$$g(x)=\cos(x)/(x-pi/2)$$
$$g(pi/2)$$

Inf

Como se puede observar, se obtiene ∞ en lugar de indeterminado. La razón está en la representación de los números reales mediante números con coma flotante, de manera que $\pi/2$ se redondea al número de coma flotante más próximo, y al aplicar el coseno se obtiene un número muy próximo a 0 pero distinto de 0. Ahora calculamos el límite de g en $\pi/2$.

$$limit(g(x), x=>pi/2)$$

-0.017235371463439

Para corroborar el límite dibujamos la gráfica de g en un entorno de $\pi/2$.

using Plots
plot(g)

Como se puede apreciar gráficamente el la tendencia de g en $\pi/2$ es -1 y no el valor obtenido con el cálculo del límite. De nuevo el problema está en la aproximación de pi como un real en coma flotante. Afortunadamente el paquete SymPy permite definir una constante como simbólica para evitar su conversión a número en coma flotante, usando la función Sym(). Repetimos la definición de la función y el cálculo de nuevo convirtiendo π en una constante simbólica.

```
g(x)=\cos(x)/(x-Sym(pi)/2)
limit(g(x), x=>Sym(pi)/2)
```

Ejercicio 4.6. Considérese la función

$$g(x) = \begin{cases} \frac{x}{x-2} & \text{si } x \le 0; \\ \frac{x^2}{2x-6} & \text{si } x > 0; \end{cases}$$

a. Dibujar la gráfica de g y determinar gráficamente si existen asíntotas.

Para respetar las discontinuidades utilizar la función rangeclamp() del paquete MTH229.

```
Solución
                using Plots, MTH229, LaTeXStrings
                @syms x::real
                g1(x) = x/(x-2)
                g2(x) = x^2/(2x-6)
                g(x) = x <= 0 ? g1(x) : g2(x)
               plot(rangeclamp(g), xlims=(-5,10), ylims=(-5,10), xticks=-5:10, label = L"g(x)", legal = 
            10
                                                                               g(x)
                  5
                  0
                                                                                                                                                                                                                                                    3
                                                                                                                                                                                                                                                                                                           5
                                                                                                                                                                                                                                                                                                                                                                  7
                                                                                                                                                                                                                                                                                                                                                                                                                                               10
A la vista de la gráfica, se observa que g tiene una asíntota vertical en x=3, una
asíntota horizontal y=1 en -\infty y parece que también hay una asíntota oblicua
en \infty.
```

b. Calcular las asíntotas verticales de g y dibujarlas.

Solución

Estudiamos primero el dominio para ver dónde no está definida la función. Como tanto la rama negativa como la positiva son funciones racionales, hay que ver los puntos que anulan el denominador.

```
println("Puntos fuera del dominio de la rama negativa: ", solve(x-2)) println("Puntos fuera del dominio de la rama positiva: ", solve(2x-6))
```

Puntos fuera del dominio de la rama negativa: Sym[2]

Puntos fuera del dominio de la rama positiva: Sym[3]

Así pues la rama negativa está definida en todos \mathbb{R}^- y la rama positiva en \mathbb{R}^+ {3}. Es en este último punto donde g puede tener asíntota vertical, así que estudiamos los límites laterales.

```
println("Límte en 3 por la izquierda: ", limit(g(x), x=>3, dir="-")) println("Límte en 3 por la derecha: ", limit(g(x), x=>3, dir="+"))
```

Límte en 3 por la izquierda: -oo Límte en 3 por la derecha: oo

Por tanto, g tiene una asíntota vertical en x = 3.

```
vline!([3], label = L"Asintota vertical $x=3$")
```


c. Calcular las asíntotas horizontales de g.

```
Solución

Estudiamos los límites en el infinito.

println("Límite en -w: ", limit(g1(x), x=>-oo))
println("Límite en w: ", limit(g2(x), x=>oo))

Límite en -w: 1
Límite en w: oo

Por tanto, g tiene una asíntota horizontal g = 1 en -\infty.

hline!([1], label = L"Asíntota horizontal $y=1$")
```


d. Calcular las asíntotas oblicuas de g.

Solución

Estudiamos el límite en ∞ de $\frac{f(x)}{x}$ (en $-\infty$ no puede haber asíntota oblicua al haber asíntota horizontal).

$$limit(g2(x)/x, x=>00)$$

 $\frac{1}{2}$

Por tanto, g tiene una asíntota oblicua con pendiente b=1/2 en ∞ . Para obtener el término independiente de la asíntota calculamos el límite en ∞ de $f(x)-\frac{1}{2}x$.

```
limit(g2(x)-x/2, x=>oo)
```

3

Por tanto, g tiene una asíntota oblicua $y = \frac{3}{2} + \frac{1}{2}x$.

```
plot!(3/2+x/2, label = L"Asíntota oblicua $y=\frac{3}{2}+\frac{1}{2}x$")
```


Ejercicio 4.7. Dada la función

$$h(x) = \begin{cases} \frac{2x^2 - 2x}{3x^2 + x} & \text{si } x \le 0, \\ \frac{Frtg(x) + a}{x} & \text{si } x > 0 \end{cases}$$

uuQué valor debe tomar a para que la función sea continua en todo su dominio?

i Ayuda

Calcular el límite en 0 por la izquierda de la función de la rama negativa, y el límite en 0 por la derecha de la función de la rama positiva. Después resolver la ecuación simbólica que resulta de igualar los dos límites. Para crear la ecuación simbólica debe utilizarse la función Eq() del paquete SymPy y después resolverla con la función solve().

```
    Solución

    Osyms x::real a::real
    h1(x) = (2x^2-2x)/(3x^2+x)
    h2(x) = (tan(x)-a*x)/x
    11 = limit(h1(x), x=>0, dir="-")
    12 = limit(h2(x),x=>0, dir="+")
    solve(Eq(11,12))

[ 3 ]
```

Ejercicio 4.8. Representar gráficamente y clasificar las discontinuidades de la función

$$f(x) = \begin{cases} \frac{x+1}{x^2-1}, & \text{si } x < 0, \\ \frac{1}{e^{1/(x^2-1)}}, & \text{si } x \ge 0. \end{cases}$$

Solución

Para estudiar las discontinuidades de una función tenemos que estudiar los puntos que no están en el dominio y los puntos donde cambia la definición de la función en el caso de una función definida a trozos.

```
using Plots, MTH229, LaTeXStrings 

@syms x::real 

f1(x) = (x+1)/(x^2-1) 

f2(x) = 1/\exp(1/(x^2-1)) 

plot(f1, -4, 0, ylim=(-2,8), legend=false) 

plot!(rangeclamp(f2), 0, 4)
```


Para determinar el dominio de la rama negativa, al ser una función racional, tenemos que ver los puntos que anulan el denominador.

```
solve(x^2-1)
```

$$\left[\begin{array}{c} -1\\1\end{array}\right]$$

Así pues, la función no está definida en x=-1 (la otra raíz queda fuera de la rama negativa). Para ver el tipo de discontinuidad estudiamos los límites laterales en x=-1.

```
println("Límite en -1 por la izquierda: ", limit(f1(x), x=> -1, dir="-")) println("Límite en -1 por la derecha: ", limit(f1(x), x=> -1, dir="+"))
```

Límite en -1 por la izquierda: -1/2 Límite en -1 por la derecha: -1/2

Como el límite existe, f tiene una discontinuidad evitable en x = -1.

Del mismo modo la rama positiva no está definida en x=1 ya que se anula el denominador del exponente de la función exponencial. Para ver el tipo de discontinuidad estudiamos los límites laterales en x=1.

```
println("Límite en 1 por la izquierda: ", limit(f2(x), x=>1, dir="-")) println("Límite en 1 por la derecha: ", limit(f2(x), x=>1, dir="+"))  
Límite en 1 por la izquierda: oo Límite en 1 por la derecha:  
0  
Como los límites laterales son distintos, f tiene una discontinuidad de salto infinito en x=1.  
Finalmente, estudiamos los límites laterales en x=0, que es donde cambia la definición de la función.  
println("Límite en 1 por la izquierda: ", limit(f1(x), x=>0, dir="-"))  
println("Límite en 1 por la derecha: ", limit(f2(x), x=>0, dir="+"))  
Límite en 1 por la izquierda: -1  
Límite en 1 por la derecha: E
```

Ejercicio 4.9. El teorema de Bolzano permite construir un algoritmo para encontrar raíces de una función continua en un intervalo [a,b] cuando f(a)f(b) < 0. Este algoritmo se conoce como el algoritmo de bisección y básicamente consiste en repetir los siguientes pasos:

- 1. Calcular el centro del intervalo $c = \frac{a+b}{2}$.
- 2. Si f(c) = 0, c es una raíz y se termina la búsqueda.
- 3. En caso contrario, si f(a)f(c) < 0 hacer b = c, y si no, hacer a = c.
- 4. Repetir la búsqueda.

Construir una función que implemente este algoritmo y utilizarlo para calcular una raíz de la función $f(x) = x^5 + 3x^4 - 2x^3 + 6x - 2$ en el intervalo [0, 1].

```
Solución
  function raices_biseccion(f, a, b, error=1e-10)
    if f(a) == 0 return(a) end
    if f(b) == 0 return(b) end
    if f(a) * f(b) > 0 error("Las imágenes de los extremos del intervalo no tienen sig
    c = (a+b)/2
    while abs(b-a) > error
      if f(c) == 0 return(c) end
      if f(a) * f(c) < 0
         b = c
      else
         a = c
      c = (a+b)/2
    end
    С
  end
  f(x)=x^5+3x^4-2x^3+6x-4
  print(raices_biseccion(f, 0, 1))
0.6496996753558051
```

4.2 Ejercicios propuestos

Ejercicio 4.10. En 1683 Jacob Bernouilli estudió la evolución del interés compuesto cuando el periodo de actualización se hacía cada vez más pequeño.

Si disponemos de $1 \in$ en una cuenta corriente que ofrece un 100% de interés anual, al cabo de un año tendremos $2 \in$ en la cuenta. Si la cuenta ofrece un interés del 50% cada 6 meses, al final del año tendremos

$$1 \cdot \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) = \left(1 + \frac{1}{2}\right)^2 = 2.25$$
€.

Si la cuenta ofrece un interés del 25% cada trimestre, al final del año tendremos

$$1 \cdot \left(1 + \frac{1}{4}\right) \left(1 + \frac{1}{4}\right) \left(1 + \frac{1}{4}\right) \left(1 + \frac{1}{4}\right) = \left(1 + \frac{1}{4}\right)^4 = 2.44140625 \in.$$

¿Qué cantidad habrá en la cuenta al cabo de un año si la cuenta ofrece un interés del 1/12% mensual?

*Hint: *

Introducir hasta 10 decimales

¿Qué cantidad habrá en la cuenta al cabo de un año si la cuenta ofrece un interés del 1/365% diario?

*Hint: *

Introducir hasta 10 decimales

¿Qué cantidad habrá en la cuenta al cabo de un año si la cuenta se actualiza de manera continua con un interés 1/x% cuando $x \to \infty$?

 \square e

 e^2

 e^{-1}

 \square 3

 $\square 2.7182818284590$

Ejercicio 4.11. Calcular los siguientes límites.

a.
$$\lim_{x\to\pi/4}\frac{Frsen(x)-\cos(x)}{1-Frtg(x)}.$$

b.
$$\lim_{x \to \infty} \sqrt{x^2 + x + 1} - \sqrt{x^2 - 2x - 1}$$
.

c.
$$\lim_{x \to 0^+} \frac{x^x - 1}{x}$$

 $(Select\ one\ or\ more)$

x = -1

Ejercicio 4.13. ¿Cuándo debería valer la función $h(x) = \frac{e^x - e^{-x}}{x}$ para que fuese continua en x = 0.

Ejercicio 4.14. Dada la función

$$h(x) = \begin{cases} x^3 - x - 2 & \text{si } x \le 0, \\ \cos(x - \pi/2) + a & \text{si } x > 0 \end{cases}$$

 $\ddot{\epsilon}$ Qué valor debe tomar a para que la función sea continua en todo su dominio?

 \Box -2

 $-2 - \frac{\sqrt{2}}{2}$

 \square No hay ningún valor de de a que haga la función continua

 \square $2-\sqrt{2}$

 $-2 + \frac{\sqrt{2}}{2}$

Ejercicio 4.15. ¿Qué tipo de discontinuidad presenta la función $g(x) = \frac{1}{e^{1/(x^2-1)}}$ en x = -1?

 \Box Segunda especie

 \square Salto infinito

□ Salto finito

☐ Es continua

□ Evitable

Ejercicio 4.16. Calcular de forma aproximada con el algoritmo de bisección una solución de la ecuación $e^{-x} = \cos(x)$ en el intervalo [1, 2] con un error menor de 10^{-15} .

5 Derivadas de funciones reales

5.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using SymPy # Para el cálculo simbólico de límites.
using Plots # Para el dibujo de gráficas.
#plotlyjs() # Para obtener gráficos interactivos.
using ImplicitPlots # Para dibujar curvas implícitas.
using MTH229 # Para restringir la gráfica de una función a su dominio.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
using Latexify # Para convertir expresiones a código LaTeX.
```

Ejercicio 5.1. Galileo Galilei trató de estudiar el movimiento de un cuerpo en caída libre con un experimento en el que midió la distancia recorrida cada segundo por una bola que caía por un plano inclinado.

Figura 5.1: Plano inclinado de Galileo.

La siguiente tabla recoge sus mediciones.

Tiempo (s)	Distancia (cm)
0	0
1	1
2	4
3	9
4	16
5	25

a. Dibujar la gráfica que resulta de unir los puntos correspondientes a los pares de la tabla con segmentos. ¿Qué forma tiene la gráfica?

i Ayuda

Definir dos arrays con los valores del tiempo y la distancia y usar la función scatter del paquete Plots para dibujar los puntos y la función plots del paquete Plots para dibujar un diagrama de líneas uniendo los puntos.

```
Solución
  using Plots
  t = [0, 1, 2, 3, 4, 5, 6]
  d = [0, 1, 4, 9, 16, 25, 36]
  scatter(t, d, legend=false)
  plt = plot!(t, d, linecolor="blue", xlab="Tiempo (s)", ylab="Distancia recorrida (cm
Distancia recorrida (cm)
    30
    20
    10
     0
                   1
                              2
                                         3
                                                    4
                                                               5
                                                                          6
                                    Tiempo (s)
Se aprecia que una forma parabólica.
```

b. Calcular la velocidad media (tasa de variación media) desde los instantes t=0,1,2 hasta el instante t=3 y dibujar la rectas secantes a la gráfica anterior en esos instantes. ¿Cómo es la tendencia de las velocidades medias?

i Ayuda

La tasa de variación media de una función f en un intervalo [a,b] viene dada por la fórmula

$$TVM(f, [a, b]) = \frac{f(b) - f(a)}{b - a},$$

y la recta secante a la función f en el intervalo [a, b] tiene ecuación

$$y = f(a) + TVM(f, [a, b])(x - a).$$

Solución

```
# Función para el cálculo de la velocidad media en del instante i al instante j.
  tvm(i, j) = (d[j]-d[i])/(t[j]-t[i])
  # Cálculo de las velocidades medias.
  for i in 1:3
      println("Velocidad media desde el instante $(t[i]) al instante $(t[j]): $(tvm(i,
  end
  # Función para calcular la ecuación de la recta secante en los instantes i y j.
  secante(x, i, j) = d[i] + tvm(i, j) * (x - t[i])
  # Dibujo de las rectas secantes
  for i in 1:3
       plt = plot!(x -> secante(x,i,j))
  end
  plt
Velocidad media desde el instante 0 al instante 3: 3.0 cm/s
Velocidad media desde el instante 1 al instante 3: 4.0 cm/s
Velocidad media desde el instante 2 al instante 3: 5.0 cm/s
```


c. Calcular la velocidad media desde el instante t=3 hasta los instantes t=6,5,4 y dibujar la rectas secantes a la gráfica anterior en esos instantes. ¿Cómo es la tendencia de las velocidades medias? ¿Hacia dónde tiende la velocidad media cuando los aproximamos al instante t=3 con instantes menores y mayores?

```
Solución

i = 4
# Cálculo de las velocidades medias.
for j in 7:-1:5
    println("Velocidad media desde el instante $(t[i]) al instante $(t[j]): $(tvm(i, end
# Dibujo de las rectas secantes.
for j in 7:-1:5
    plt = plot!(x -> secante(x,i,j))
end
plt

Velocidad media desde el instante 3 al instante 6: 9.0 cm/s
Velocidad media desde el instante 3 al instante 5: 8.0 cm/s
```


Se puede deducir que las velocidades medias tienden a 6 cm/s cuando los instantes se aproximan a 3 s.

Las velocidades medias decrecen a medida que el tiempo decrece.

d. Calcular la variación en la distancia recorrida cada segundo que pasa. ¿Cómo evoluciona la velocidad de la bola?

```
v = []
for i in 2:length(d)
    push!(v, d[i]-d[i-1])
    println("Velocidad media desde el instante $(t[i-1]) al instante
end

Velocidad media desde el instante 0 al instante 1: 1 cm/s
Velocidad media desde el instante 1 al instante 2: 3 cm/s
Velocidad media desde el instante 2 al instante 3: 5 cm/s
Velocidad media desde el instante 3 al instante 4: 7 cm/s
Velocidad media desde el instante 4 al instante 5: 9 cm/s
```

e. Calcular la variación en la velocidad cada segundo que pasa. ¿Cómo evoluciona la aceleración de la bola? ¿Qué conclusiones sacó Galileo sobre la aceleración de la bola?

```
for i in 2:length(v)
    println("Aceleración media desde el instante $(t[i-1]) al instante $(t[i]): $(v[end))

Aceleración media desde el instante 0 al instante 1: 2 cm/s
Aceleración media desde el instante 1 al instante 2: 2 cm/s
Aceleración media desde el instante 2 al instante 3: 2 cm/s
Aceleración media desde el instante 3 al instante 4: 2 cm/s
Aceleración media desde el instante 4 al instante 5: 2 cm/s
Se observa que la aceleración es la misma. Galileo concluyó que la aceleración de un cuerpo en caída libre era uniforme.
```

Ejercicio 5.2. Representar gráficamente la función f(x) = |x - 1| y estudiar su derivabilidad en el punto x = 1 haciendo uso de la definición de derivada.

```
    Solución

using Plots, SymPy, LaTeXStrings
    @syms x::real
    f(x) = abs(x-1)
    display(plot(f(x), label=L"f(x)=|x-1|"))
    println("Derivada por la izquierda: ", limit((f(x)-f(1))/(x-1), x=>1, dir="-"))
    println("Derivada por la derecha: ", limit((f(x)-f(1))/(x-1), x=>1, dir="+"))
```


Derivada por la izquierda: -1 Derivada por la derecha: 1

Como la derivada por la izquierda y por la derecha no son iguales, la función no es derivable en x=1.

Ejercicio 5.3. Sea $f(x) = \sqrt{x}$.

a. Dibujar la gráfica de f y dibujar las rectas secantes a f en los intervalos $[\frac{i}{10},1]$ para $i=0,\ldots,9$. ¿Hacia dónde tienden las pendientes de las rectas secantes?

```
Solución
   using Plots, SymPy, LaTeXStrings, Latexify
   @syms x::real
   f(x) = sqrt(x)
   plt = plot(f, 0, 2, ylims=(0,2.5), linewidth = 3, label=L"f(x)=\sqrt{x}", legend=:to
   secante(x, i, j) = f(i) + (f(j)-f(i))/(j-i) * (x - i)
   for i in 0:9
        sec = secante(x, i/10, 1)
        plt = plot!(sec, label =L"y=" * latexify(sec))
   end
   plt
  2.5
                f(x) = \sqrt{x}
                y = 1.0 \cdot x
                y = 0.759746926647958 \cdot x + 0.240253073352042
  2.0
                y = 0.690983005625053 \cdot x + 0.309016994374947
                y = 0.646110632135477 \cdot x + 0.353889367864523
                  = 0.612574113277207 \cdot x + 0.387425886722793
                y = 0.585786437626905 \cdot x + 0.414213562373095
                y = 0.563508326896291 \cdot x + 0.436491673103709
  1.5
                y = 0.544466578219748 \cdot x + 0.455533421780252
                y = 0.527864045000421 \cdot x + 0.472135954999579
                y = 0.513167019494862 \cdot x + 0.486832980505138
  1.0
  0.5
  0.0
                          0.5
       0.0
                                             1.0
                                                                1.5
                                                                                   2.0
Se deduce que las pendientes de las rectas secantes tienen a 0.5.
```

b. Dibujar la recta tangente a la gráfica de f en x=1.

i Ayuda

La ecuación de la recta tangente a la función f(x) en el punto a es y=f(a)+f'(a)(x-a).

Usar la función diff(f) del paquete SymPy para calcular simbólicamente la deri-

vada de la función f.

Ejercicio 5.4. Calcular las derivadas de las siguientes funciones hasta el orden 4 y deducir la expresión de la derivada de orden n.

a.
$$f(x) = \ln(x+1)$$

i Ayuda

Usar la función diff(f,n) del paquete SymPy para calcular simbólicamente la derivada de grado n de la función f.

```
using SymPy
Osyms x::real
f(x) = \log(x+1)
println("Primera derivada: ", diff(f))
println("Segunda derivada: ", diff(f,2))
println("Tercera derivada: ", diff(f,3))
println("Cuarta derivada: ", diff(f,4))

Primera derivada: 1/(x + 1)
Segunda derivada: -1/(x + 1)^2
Tercera derivada: 2/(x + 1)^3
Cuarta derivada: -6/(x + 1)^4
La derivada de orden n es f^{(n)} = \frac{(-1)^{n-1}(n-1)!}{(x+1)^n}.
```

b. $f(x) = a^x$

```
Using SymPy

Osyms x::real a::real

g(x) = a^x

println("Primera derivada: ", diff(g(x),x))

println("Segunda derivada: ", diff(g(x),x,2))

println("Tercera derivada: ", diff(g(x),x,3))

println("Cuarta derivada: ", diff(g(x),x,4))

Primera derivada: a^x * \log(a)

Segunda derivada: a^x * \log(a)^2

Tercera derivada: a^x * \log(a)^3

Cuarta derivada: a^x * \log(a)^4

La derivada de orden n es g^n = a^x \ln(a)^n.
```

c. h(x) = Frsen(x) + cos(x)

Ejercicio 5.5. Calcular y dibujar las rectas tangente y normal a la gráfica de la función $f(x) = \ln(\sqrt{x+1})$ en x = 1.

i Ayuda

La ecuación de la recta tangente a una función f en el punto a es

$$y = f(a) + f'(a)(x - a),$$

y la de la recta normal

$$y = f(a) - \frac{1}{f'(a)}(x-a).$$

```
Solución
               using Plots, SymPy, LaTeXStrings, Latexify
               @syms x::real
               f(x) = \log(\operatorname{sqrt}(x+1))
             plot(f, -1, 3, xlims=(-1,3), ylims=(-1,2), aspect_ratio=1, label=L"f(x)=\ln(\sqrt{x+})= ln(\sqrt{x+})= ln(\sq
               tg = f(1)+diff(f)(1)*(x-1)
              plot!(tg, label="Tangente "*L"y="*latexify(tg))
               nm = f(1)-1/diff(f)(1)*(x-1)
               plot!(nm, label="Normal "*L"y="*latexify(nm))
                                                    2
                                                                                                                                                                                                         f(x) = \ln(\sqrt{x+1}) Tangente y = \frac{x}{4} + 0.0965735902799727
                                                                                                                                                                                                       - Normal y=4.3\overset{	extstyle -}{4657359027997}-4\cdot x
                                                    1
                                                    0
                                                                                                                                                                                                                                 1
```

Ejercicio 5.6. Sea la función $g(x) = \frac{2x^3 - 3x}{x^2 + 1}$.

a. Dibujar la gráfica de g.

Solución using Plots, SymPy, LaTeXStrings, Latexify @syms x::real $g(x) = (2x^3 - 3x)/(x^2 + 1)$ $plot(g, -2, 2, label=L"g(x) = \frac{2x^3 - 3x}{x^2 + 1}]$ 1 0 -1 -2 -2 -1 0 1 2

b. Calcular la derivada de g y dibujar su gráfica en la misma gráfica que la de g.

```
    Solución

plot!(diff(g), label=L"g'(x)="*latexify(simplify(diff(g))))
```


c. Calcular los puntos críticos de g.

i Ayuda

Los puntos críticos de una función son los puntos donde se anula la derivada.

Solución

N.(solve(diff(g)))

4-element Vector{Number}:

- - $0.5583347485961263326654828454569561179259924185641573901331644861 \\ 659481412422448 \\$

Existen dos puntos críticos en x = -0.55 y x = 0.55 aproximadamente.

d. A la vista de los puntos críticos y de la gráfica de la función derivada, determinar los intervalos de crecimiento y los extremos relativos de la función.

i Ayuda

Una función f derivable en el punto a es creciente si y solo si f'(a) > 0 y decrecientes si y solo si f'(a) < 0.

Solución

La derivada es positiva en los intervalos $(-\infty, -0.55)$ y $(0.55, \infty)$, por lo que la función g es creciente en estos intervalos, y la derivada es negativa en el intervalo (-0.55, 0.55), por lo que la función g es decreciente en este intervalo.

En el punto crítico x=-0.55 la derivada es positiva a la izquierda y negativa a la derecha, por lo que, según el criterio de la primera derivada, la función g tiene un máximo relativo.

En el punto crítico x=0.55 la derivada es negativa a la izquierda y positiva a la derecha, por lo que, según el criterio de la primera derivada, la función g tiene un mínimo relativo.

e. Calcular segunda la derivada de g y dibujar su gráfica en la misma gráfica que la de g.

Solución

 $\texttt{plot!}(\texttt{diff}(\texttt{g}, \textcolor{red}{2}), \ \texttt{label=L"g"'(x)="*latexify(simplify(diff(\texttt{g}(\texttt{x}), \texttt{x}, \textcolor{red}{2}))))}$

f. Calcular los puntos que anulan la segunda derivada de g.

Solución

N.(solve(diff(g,2)))

3-element Vector{Real}:

0

- - $1.7320508075688772935274463415058723669428052538103806280558069794519\\33016908798$

Existen tres puntos donde se anula g''(x), en x=-1.73, x=0 y x=1.73 aproximadamente.

g. A la vista de las raíces de la gráfica de la segunda derivada, determinar los intervalos de concavidad y los puntos de inflexión de la función g.

i Ayuda

Una función f dos veces derivable en el punto a es cóncava hacia arriba si y solo si f''(a) > 0 y cóncava hacia abajo si y solo si f''(a) < 0. Los puntos de inflexión de una función son los puntos donde cambia la concavidad.

Solución

La segunda derivada es positiva en los intervalos $(-\infty, -1, 73)$ y (0, 1.73), por lo que la función g es cóncava hacia arriba en esos intervalos, y la segunda derivada es negativa en los intervalos (-1.73, 0) y $(1.73, \infty)$, por lo que la función g es cóncava hacia abajo en esos intervalos.

gtiene tres puntos de inflexión en $x=1.73,\, x=0$ y x=1.73, donde cambia la concavidad de la función.

Ejercicio 5.7. Considérese la curva con ecuación $x^4 - x^2 + y^2 = 0$.

a. Dibujar la gráfica de la curva.

i Ayuda

Para dibujar curvas implícitas utilizar la función implicit_plot del paquete ImplicitPlots.

Solución

```
using ImplicitPlots, Plots, SymPy, LaTeXStrings, Latexify
@syms x::real y::real
f(x,y)=x^4-3x^2+2y^2
implicit_plot(f; xlims=(-3,3), ylims=(-1.5,1.5), label=L"x^4-3x^2+2y^2=0", legend=:t
```


b. Calcular la tasa de variación de y con respecto a x en el punto (1,1).

Ayuda

Para realizar derivadas implícitas simbólicamente hay que definir una función simbólica con el comando @syms u() del paquete SymPy y reemplazar y por u(x) en la ecuación de la curva implícita.

Después hay que hacer la derivada de ambos lados de la ecuación y finalmente hay que resolver la ecuación despejando la derivada de u(x).

```
Solución
```

```
# Declaramos una función simbólica
@syms u()
# Reemplazamos y por una función simbólica u(x).
ex1 = f(x,y)(y=>u(x))
# Calculamos la derivada de ambos lados de la ecuación y la resolvemos para la deriv
du_dx = solve(diff(ex1,x), diff(u(x),x))[1]
# Deshacemos el cambio y=u(x).
dy_dx = du_dx(u(x)=>y)
println("y'=", dy_dx)
```

```
y'=x*(3 - 2*x^2)/(2*y)
```

c. Dibujar la recta tangente a la curva anterior en el punto (1,1).

Ejercicio 5.8. Crear una función para calcular el polinomio de Taylor de grado n una función f en un punto a y utilizarla para dibujar los polinomios de Taylor de la función f(x) = Frsen(x) en a = 0 hasta el grado 5.

i Ayuda

La fórmula del polinomio de Taylor de grado n de la función f en el punto a es

$$P_{f,a}^n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n}(a)}{n!}(x-a)^n.$$

Solución using Plots, SymPy, LaTeXStrings, Latexify @syms x::real function taylor(f, a=0, n=2) $sum(diff(f, x, i)(a)/factorial(i)*(x-a)^i for i=0:n)$ end $f(x)=\sin(x)$ plt = plot(f, ylims=(-2,2), linewidth=3, label=L"f(x)=\operatorname{sen}(x)") for i in 1:5 pol = taylor(f(x), 0, i) $plt = plot!(pol, label=latexstring("P^{{(i)}(x)=$(pol)")})$ end plt 2 $f(x) = \operatorname{sen}(x)$ $f(x) = -x^3/6 + x$ 1 $a^{1}(x) = -x^{3}/6 + x$ $P^5(x) = x^5/120 - x^3/6 + x$ 0 -1-2 -4 -2 2 0 4

Ejercicio 5.9. Calcular los polinomios de Taylor hasta grado 10 de las siguientes funciones en los puntos indicados.

a.
$$f(x) = \cos(x)$$
 en $x = \pi/2$.

i Ayuda

Para calcular polinomios de Taylor utilizar la función series del paquete SymPy.

```
Solución

using SymPy

@syms x::real

f(x) = \cos(x)

series(f(x), x, \text{Sym}(pi)/2, 10)

\frac{\pi}{2} + \frac{(x - \frac{\pi}{2})^3}{6} - \frac{(x - \frac{\pi}{2})^5}{120} + \frac{(x - \frac{\pi}{2})^7}{5040} - \frac{(x - \frac{\pi}{2})^9}{362880} - x + O\left((x - \frac{\pi}{2})^{10}; x \to \frac{\pi}{2}\right)
```

b. $g(x) = \ln(x)$ en x = 1

```
Solución g(x) = \log(x)
series(g(x), x, 1, 10)
-1 - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \frac{(x-1)^6}{6} + \frac{(x-1)^7}{7} - \frac{(x-1)^8}{8} + \frac{(x-1)^9}{9} + x + O\left((x-1)^{10}; x \to 1\right)
```

c.
$$h(x) = e^{Frsen(x)}$$
 en $x = 0$

```
Solución
h(x) = \exp(\sin(x))
\text{series}(h(x), x, 0, 10)
1 + x + \frac{x^2}{2} - \frac{x^4}{8} - \frac{x^5}{15} - \frac{x^6}{240} + \frac{x^7}{90} + \frac{31x^8}{5760} + \frac{x^9}{5670} + O(x^{10})
```

Ejercicio 5.10. Aproximar el número $\ln(1.2)$ mediante un polinomio de Taylor de grado 8 y dar una cota del error cometido. ¿Hasta qué grado habría que llegar para obtener un error menor de 10^{-10} ?

i Ayuda

El error en la aproximación de una función f(b) mediante un polinomio de Taylor de grado n en el punto a viene dado por el resto de Taylor, que en la forma de Lagrange es

$$R^n_{f,a}(x) = \frac{f^{(n+1}(x)}{(n+1)!}(x-a)^{n+1} \text{ con } x \in [a,b].$$

Solución

Utilizaremos un polinomio de MacLaurin de grado 5 para la función $f(x) = \ln(1 + x)$.

```
using SymPy
@syms x::real
pol = series(log(1+x), x, 0, 6).removeO()
println("Aproximación de ln(1.2): ", N(pol(0.2)))
```

Aproximación de ln(1.2): 0.1823306666666667

Para dar una cota del error cometido calculamos el resto de Taylor en la forma de Lagrange.

```
resto = diff(log(1+x), x, 6)/factorial(6)*0.2^6
println("Resto de Taylor de orden 6: ", resto)
println("Derivada del resto : ", diff(resto))
```

Como la derivada no se anula en el intervalo [1,2], no hay extremos relativos, y al ser una función continua en un intervalo cerrado, alcanza el máximo y mínimos absolutos en los extremos.

```
println("Cota del error: " , maximum(N(abs.([resto(0), resto(0.2)]))))
println("Error: ", abs(log(1.2)-pol(0.2)))
```

Cota del error: 1.066666666666667e-5

Error: 9.10987271207642e-6

Así pues, el error en la aproximación de $\ln(1.2)$ es menor que $1.06 \cdot 10^{-5}$.

Para ver la fórmula general del resto de Taylor en la forma de Lagrange para un polinomio de Taylor de orden n, calculamos las primeras derivadas sucesivas.

```
println("Primera derivada: ", diff(log(1+x)))
println("Segunda derivada: ", diff(log(1+x), x, 2))
println("Tercera derivada: ", diff(log(1+x), x, 3))
println("Cuarta derivada: ", diff(log(1+x), x, 4))
```

Primera derivada: 1/(x + 1)Segunda derivada: $-1/(x + 1)^2$ Tercera derivada: $2/(x + 1)^3$ Cuarta derivada: $-6/(x + 1)^4$

Así pues, se deduce que la derivada de orden n es $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n}$, de manera que el resto de Taylor de orden n es

$$|R_{f,0}^n(x)| = \left| (-1)^{n-1} \frac{(n-1)!}{(n+1)!(x+1)^n} 0.2^{n+1} \right| = \left| \frac{0.2^{n+1}}{(n+1)n(x+1)^n} \right| \ x \in [0,0.2].$$

Como se trata de una función positiva y decreciente en el intervalo [0, 0.2], alcanza el máximo absoluto en el extremo inferior del intervalo, es decir, en x = 0, y por tanto se tiene,

$$|R_{f,1}^n(x)| \le \left| \frac{0.2^{n+1}}{(n+1)n} \right|.$$

Finalmente calculamos el primer número natural n tal que $|R_{f,1}^n(x)| < 10^{-10}$.

```
n=6
while 0.2^(n+1)/(n*(n+1)) > 10^-10
    n += 1
end
print(n)
```

11

Así pues, habría que llegar al grado 11.

5.2 Ejercicios propuestos

Ejercicio 5.11. Dada la función

$$f(x) = \begin{cases} Frsen(x)^2 & \text{si } x \le 0, \\ ax^2 + b & \text{si } 0 < x \le c, \\ \ln(x) & \text{si } c < x, \end{cases}$$

¿Para qué valores de a, b y c la función es derivable en todo \mathbb{R} ?

 $a = \frac{1}{2e}, b = 0, c = e^{1/2}.$ a = 1, b = 0, c = e. $a = \sqrt{e}, b = 0, c = \frac{1}{e}.$ a = 1, b = 1, c = 1.

□ Para ningún valor.

Ejercicio 5.12. ¿Cuál es la derivada de orden n de la función $f(x) = \frac{1}{\sqrt{x+1}}$?

$$\frac{(-1)^n \prod_{i=1}^n 2i}{2^n} (x+1)^{-(2n+1)/2}.$$

$$\frac{(-1)^n \prod_{i=1}^n 2i - 1}{2^n} (x+1)^{-(2n+1)/2}.$$

$$\frac{(-1)^n (2n-1)!}{2^n} (x+1)^{-(2n-1)/2}.$$

$$\frac{(-1)^n \prod_{i=1}^n 2i + 1}{2^n} (x+1)^{-(2n+1)/2}.$$

$$\frac{(-1)^n n!}{2^n} (x+1)^{-n/2}.$$

Ejercicio 5.13. Dadas las funciones $f(x) = \ln\left(\sqrt{\frac{x^2}{2}}\right)$ y $g(x) = x^3 + 1$, ¿en qué puntos la recta normal a f y la recta tangente a g con paralelas?

Ejercicio 5.14. Calcular el máximo y el mínimo absoluto de la función $g(x)=\sqrt{x^4-3x^3+\frac{5}{2}x^2}$ en el intervalo [-0.5,1.5].

- a. Mínimo absoluto
- b. Máximo absoluto

Ejercicio 5.15. ¿Cuáles de las siguientes afirmaciones son ciertas sobre la función $h(x) = \frac{x^2 + 1}{e^x}$?

- \square Es cóncava hacia abajo en (1,3).
- \square Tiene un punto de inflexión en x=3.
- \square Es decreciente en todo \mathbb{R} .
- \square Tiene un máximo en x=1.
- \square Tiene un mínimo en x=1.

(Select one or more)

Ejercicio 5.16. Una cuerda de longitud l está sujeta en sus extremos en los puntos (0,0) y (a,b). De la cuerda cuelga un anillo. ¿En qué posición estará el anillo debido a la fuerza de gravedad suponiendo que l=10, a=3 y b=2?

i Ayuda

Puesto que la longitud de la cuerda es fija, del siguiente diagrama se deduce que las las posiciones (x,y) que puede ocupar el anillo vienen dadas por la ecuación

$$l = \sqrt{x^2 + y^2} + \sqrt{(a - x)^2 + (b - y)^2}$$

Figura 5.2: Descomposición en triángulos rectángulos de la posición que ocupa un anillo suspendido de una cuerda de tamaño l sujeta en sus extremos en los puntos (0,0) y (a,b).

Coordenada x

Coordenada y

Ejercicio 5.17. Calcular de manera aproximada el valor de Frsen(1/2) usando los siguientes polinomios de Taylor de la función f(x) = Frsen(x).

- a. Polinomio de Taylor de grado 20 en el punto $\pi/6$.
- b. Polinomio de MacLaurin de grado 100.
- c. ¿Qué polinomio da una mejor aproximación?
- \square El polinomio de Taylor de grado 20 en $\pi/6$.
- \square El polinomio de MacLaurin de grado 100.

6 Series de números reales

6.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using SymPy # Para el cálculo simbólico de límites.
using Plots # Para el dibujo de gráficas.
#plotlyjs() # Para obtener gráficos interactivos.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
using Bessels # Para definir funciones de Bessel.
```

Ejercicio 6.1. La paradoja de la dicotomía de Zenon establece que para que un corredor pueda recorrer una distancia hasta la meta, primero tiene que recorrer la mitad de la distancia, después la mitad de la distancia restante, después la mitad de la distancia restante, y así hasta el infinito, por lo que, aparentemente, nunca llegaría a la meta.

La serie que calcula la distancia recorrida por el corredor es

$$\sum \frac{1}{2^n}$$

a. Calcular los 50 primeras sumas parciales de la serie.

i Ayuda

Definir una función para el término general y aplicar la función a los naturales de 1 a 50 usando compresiones de arrays. Usar la función cumsum para realizar sumas parciales.

```
Solución 1

N = 50

a(n) = 1/2^n

an = [a(n) \text{ for } n = 1:N]

An = cumsum(an)
```

```
50-element Vector{Float64}:
0.5
0.75
0.875
0.9375
0.96875
0.984375
0.9921875
0.99609375
 0.998046875
0.9990234375
0.99951171875
0.999755859375
0.9998779296875
0.9999999998181
 0.999999999990905
0.99999999995453
0.99999999997726
 0.99999999998863
0.99999999999432
0.99999999999716
0.99999999999858
0.999999999999999
0.99999999999964
0.99999999999982
 0.99999999999991
```

```
    Solución 2

    N = 50
    a(n) = 1/2^n
    A(n) = sum(a, 1:n)
    An = [A(n) for n = 1:N]

50-element Vector{Float64}:
    0.5
    0.75
    0.875
    0.9375
    0.96875
    0.984375
```

- 0.9921875
- 0.99609375
- 0.998046875
- 0.9990234375
- 0.99951171875
- 0.999755859375
- 0.9998779296875
- 0.9999999998181
- 0.999999999990905
- 0.99999999995453
- 0.99999999997726
- 0.99999999998863
- 0.999999999999432
- 0.99999999999716
- 0.99999999999858
- 0.999999999999999
- 0.999999999999964
- 0.99999999999982
- 0.99999999999991
- b. Dibujar en una gráfica las 50 primeras sumas parciales de la serie.

i Ayuda

Definir una función para el término general y aplicar la función a los naturales de 1 a 100 usando compresiones de arrays como en el ejercicio anterior y usar la función cumsum para calcular las sumas parciales. Después usar la función scatter del paquete Plots para dibujar el array de las sumas parciales.

Solución

using Plots, LaTeXStrings
scatter(An, legend=false)

c. ¿Es cierto que el corredor nunca llegará a la meta?

Ejercicio 6.2. Calcular las 50 primeras sumas parciales de la serie $\sum \frac{1}{n!}$ empezando en n=0. ¿Cuántas cifras decimales del número e son correctas en la última suma parcial?

i Ayuda

Para que no se desborde cálculo del factorial deben usarse enteros de la clase BigInt.

```
    Solución 1

N = 50
    a(n) = 1/factorial(big(n))
    an = [a(n) for n = 0:N]
    An = cumsum(an)
    decimales = round(abs(log10(abs(-An[N]))))
    println(An)
    println("Cifras del número e correctas: $decimales")
```

Ejercicio 6.3. Dibujar una gráfica con los 10 primeros términos de las series geométricas $\sum r^n$ para r=-2, r=-1/2, r=1/2 y r=2. ¿Para qué valores de r crees que converge la serie?

La serie converge.

```
cn = [(1/2)^n for n = 0:9]
scatter(0:9, cumsum(cn), label=L"\sum (1/2)^n")
```


La serie converge.

```
 \begin{array}{lll} dn = & [2^n \ for \ n = 0:9] \\  & \text{scatter(0:9, cumsum(dn), label=L"$\setminus sum 2^n$")} \\  \end{array}
```


Ejercicio 6.4. Dibujar en la misma gráfica los 100 primeros términos de las series $\sum \frac{1}{n^p}$ para p = 1/2, p = 1, p = 3/2 y p = 2.

i.Para qué valores de p crees que la serie converge?

```
wsing Plots, LaTeXStrings
a(n,p) = 1/n^p
an = [a(n,1/2) for n = 1:100]
scatter(cumsum(an), label=L"$\sum \frac{1}{p^{1/2}}\", legend=:topleft)
bn = [a(n,1) for n = 1:100]
scatter!(cumsum(bn), label=L"$\sum \frac{1}{p}\")
cn = [a(n,3/2) for n = 1:100]
scatter!(cumsum(cn), label=L"$\sum \frac{1}{p^{3/2}}\")
dn = [a(n,2) for n = 1:100]
scatter!(cumsum(dn), label=L"$\sum \frac{1}{p^2}\")
```


Ejercicio 6.5. Una suma parcial de cualquier serie convergente se puede utilizar como aproximación de la suma de la serie. La aproximación será mejor cuanto mayor sea el orden de la serie parcial, pero depende de la velocidad a la que la serie converja a su suma. En el caso de las series alternadas que converjan, el error en la estimación de la suma mediante la suma parcial de orden n siempre es menor o igual que el término de n de la sucesión correspondiente, es decir, para la serie alternada $\sum (-1)^n a_n$, se cumple que

$$\left| \sum_{n=1}^{\infty} (-1)^n a_n - \sum_{i=1}^n (-1)^i a_i \right| \leq a_n$$

Calcular la suma aproximada de las siguientes series alternadas con un error menor de 10^{-10} . ¿Cuál es la primera suma parcial que da esa aproximación?

a.
$$\sum \frac{(-1)^n}{n!}$$

```
Solución

error = 10^-10
  a(n) = (-1)^n/factorial(n)
  i = 0
  while abs(a(i)) >= error
        i += 1
  end
  println("Suma parcial de orden $i")
  println("Aproximación: $(sum(a, 0:i))")

Suma parcial de orden 14
Aproximación: 0.36787944117216204
```

b. $\sum \frac{(-1)^n \ln(n)}{n^2}$

Ejercicio 6.6. Calcular hasta la suma funcional parcial de orden 9 de la serie de Maclaurin para la función Frarctg(x). Deducir el término general de la serie y estudiar su radio de convergencia.

Se puede probar que esta serie también converge en x=1. Usar este hecho para calcular el valor de π con un error menor de 10^-8 .

i Ayuda

Para calcular polinomios de Taylor utilizar la función series del paquete SymPy. Para calcular el radio de convergencia utilizar el criterio de la razón para determinar el radio de convergencia de la serie de potencias.

```
Solución
  using SymPy
  @syms x::real
  p(n) = series(atan(x), x, 0, n+1).remove0()
  for i = 1:5
       println("Suma funcional parcial de grado $(2i-1): $(p(2i-1))")
  end
Suma funcional parcial de grado 1: x
Suma funcional parcial de grado 3: -x^3/3 + x
Suma funcional parcial de grado 5: x^5/5 - x^3/3 + x
Suma funcional parcial de grado 7: -x^7/7 + x^5/5 - x^3/3 + x
Suma funcional parcial de grado 9: x^9/9 - x^7/7 + x^5/5 - x^3/3 + x
El término general de la serie es \frac{(-1)^{n-1}}{2n-1}, y por tanto, se trata de una serie alternada.
  @syms n::integer
  c(n) = (-1)^{(n-1)}/(2n-1)
  limit(abs(c(n)/c(n+1)), n \Rightarrow Inf)
El radio de convergencia es R = 1, y por tanto la serie converge para -1 < x < 1.
En realidad, su dominio de convergencia es [-1, 1].
  error = 10^-8
  i = 0
  while abs(c(i)) >= error
       i += 1
  println("Suma parcial de orden $i")
  println("Aproximación de : $(4*sum(c, 1:i))")
Suma parcial de orden 50000001
Aproximación de : 3.141592673589794
```

Ejercicio 6.7. La función de Bessel de orden 0 se obtiene a partir de la suma de la serie de potencias

$$J_0(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2^{2n} (n!)^2}$$

Esta función sirve, entre otras cosas, para explicar la distribución de temperaturas en una lámina circular o las vibraciones de una membrana.

a. Calcular el radio de convergencia de la función de Bessel.

i Ayuda

Utilizar el criterio de la razón para determinar el radio de convergencia de la serie de potencias.

b. Dibujar en una misma gráfica la suma funcional parcial de orden 10 de la serie y la función de Bessel de orden 0.

i Ayuda

Usar el paquete Bessels para dibujar la función de Bessel de orden 0.

Ejercicio 6.8. Una serie de Fourier es una serie cuyo término general se construye combinando funciones sinusoidales simples (como senos y cosenos) que converge puntualmente a una función periódica continua. La forma general de una serie de Fourier es

$$a_0 + \sum a_n \cos \left(\frac{2n\pi}{T}t\right) + b_n Frsen\left(\frac{2n\pi}{T}t\right),$$

donde a_n y b_n son los coeficientes de Fourier y T es el periodo.

Las series de Fourier son muy útiles para aproximar funciones periódicas que describen las ondas, por lo que se utilizan a menudo para modelizar procesos que involucran sonido, imágenes o corriente eléctrica.

Dibujar las gráficas las 10 primeras sumas parciales de las siguientes series de Fourier y predecir hacia qué función convergen.

a.
$$\sum Frsen(nt)$$

Solución

```
using Plots, SymPy, Latexify
@syms t::real
a(t,n) = sin(n*t)
N = 10
an = [a(t,n) for n=1:N]
An = cumsum(an)
plots = [] # Array para guardar las gráficas
for i in An
    push!(plots, plot(i, label=latexify(i), legend=:outertop))
end
plot(plots..., layout=(5,2), size=(800,1600))
```


Converge aproximadamente a la función de tipo pulso, que se anula en todo su dominio excepto en los puntos $x=2n\pi$ donde se produce discontinuidad de salto.

b. $\sum \frac{Frsen(nt)}{n}$

```
wsing Plots, SymPy, Latexify
@syms t::real
a(t,n) = sin(n*t)/n
N = 10
an = [a(t,n) for n=1:N]
An = cumsum(an)
plots = [] # Array para guardar las gráficas
for i in An
    push!(plots, plot(i, label=latexify(i), legend=:outertop))
end
plot(plots..., layout=(5,2), size=(800,1600))
```


Converge aproximadamente a la función de tipo diente de sierra con periodo 2π .

c. $\sum \frac{Frsen((2n-1)t)}{2n-1}$

```
Solución

using Plots, SymPy, Latexify
@syms t::real
a(t,n) = sin((2n-1)t)/(2n-1)
N = 10
an = [a(t,n) for n=1:N]
An = cumsum(an)
plots = [] # Array para guardar las gráficas
for i in An
    push!(plots, plot(i, label=latexify(i), legend=:outertop))
end
```

plot(plots..., layout=(5,2), size=(800,1600))

Converge aproximadamente a la función

$$f(x) = \begin{cases} 0.75 & \text{si } 2k\pi < x < (2k+1)\pi \\ -0.75 & \text{si } (2k+1)\pi < x < (2k+2)\pi \end{cases}$$

6.2 Ejercicios propuestos

Ejercicio 6.9. Calcular la suma parcial de orden 100 de las siguientes series (empezando en n = 1):

a.
$$\sum \frac{1}{n2^n}$$

*Hint: *

Introducir hasta 20 decimales

b.
$$\sum \frac{n!}{n^n}$$

*Hint: *

Introducir hasta 40 decimales

Ejercicio 6.10. Dibujar las 100 primeras sumas parciales de las siguientes series y determinar cuáles convergen.

$$\sum \frac{\ln(n)}{n}$$

 $\sum \frac{n+1}{\sqrt{n^5}}$

 $\sum n!/n^n$

 $\sum \frac{e^{1/n}}{n}$

 $\sum \cos(1/n)$

(Select one or more)

Ejercicio 6.11. ¿Hasta qué suma parcial de la serie de Maclaurin de la función e^x hay que llegar para aproximar el número \sqrt{e} con un error menor de 10^{-50} ?

Ejercicio 6.12. Calcular el radio de convergencia de las siguientes series de potencias.

a.
$$\sum \frac{(x-2)^n}{n5^n}$$

b.
$$\sum \frac{2^n (x-2)^n}{\sqrt{(n+3)}}$$

Ejercicio 6.13. La fuerza que ejerce la gravedad que actúa sobre un cuerpo de masa m a una altura h sobre la superficie de la Tierra viene dada por la fórmula

$$F = \frac{mgR^2}{(R+h)^2}$$

donde R es el radio de la Tierra (tomar un radio medio 6371 km) y g es la aceleración de la gravedad (tomar 9.81 m/s^2). Expresar F como una serie de potencias de h/R y usarla para dar la aproximación de cuarto grado de F para h=100 m. ¿Cuál es error relativo cometido en la aproximación?

*Hint: *

Introducir hasta 10 decimales

Aplicar el teorema de la serie alternada para dar una cota superior del error relativo cometido en la aproximación anterior.

*Hint: *

Introducir hasta 10 decimales

:::

Ejercicio 6.14. ¿Cuál de las siguientes gráficas se corresponde con la serie de Fourier

$$\sum (-1)^n \frac{Frsen((2n-1)t)}{(2n-1)^2}$$
?

insert image here

7 Integrales de funciones reales

7.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using SymPy # Para el cálculo simbólico de integrales.
using QuadGK # Para el cálculo numérico de integrales.
using Plots # Para el dibujo de gráficas.
#plotlyjs() # Para obtener gráficos interactivos.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
using PrettyTables # Para formatear tablas.
```

Ejercicio 7.1. Sea $f(x) = x^2$.

a. Calcular la suma inferior de Riemann de f en el intervalo [0,1], tomando una partición de 10 subinvervalos de igual amplitud.

Solución

La suma inferior de Riemann de una función f en un intervalo [a,b] se obtiene sumando las áreas de los rectángulos que resultan de tomar una partición del intervalo, tomando como base la amplitud de los subintervalos y el como altura el mínimo valor de f en el subintervalo.

```
f(x) = x^2

\Delta x = 1/10

areas_inf = [f((i-1)*\Delta x)*\Delta x for i = 1:10]

sum_inf = sum(areas_inf)

0.2850000000000001
```

b. Calcular la suma superior de Riemann de f en el intervalo [0,1], tomando una partición de 10 subinvervalos de igual amplitud.

Solución

La suma superior de Riemann de una función f en un intervalo [a,b] se obtiene sumando las áreas de los rectángulos que resultan de tomar una partición del intervalo, tomando como base la amplitud de los subintervalos y el como altura el máximo valor de f en el subintervalo.

```
f(x) = x^2

\Delta x = 1/10

areas_sup = [f(i*\Delta x)*\Delta x \text{ for } i = 1:10]

sum_sup = sum(areas_sup)

0.385000000000000001
```

c. Dar una cota del error cometido en la aproximación del área encerrada entre la gráfica de f y el eje x en el intervalo [0,1] tomando sumas de Riemann para una partición en 10 subintervalos.

Solución

La suma inferior de Riemann nos da una cota inferior del área que queda encerrada entre la gráfica de la función y el eje x en el intervalo [a,b], mientras que la suma superior de Riemann nos da una cota superior. Por tanto, si tomamos cualquier valor entre la suma inferior y la suma superior de Riemann como aproximación del área encerrada entre la gráfica de f y el eje x, una cota del error cometido será la diferencia entre la suma superior y la suma inferior.

```
error = sum_sup - sum_inf
0.100000000000000003
```

d. Definir una función para calcular de manera aproximada el área encerrada entre la gráfica de f y el eje x en el intervalo [a,b] tomando sumas de Riemann para una partición en n subintervalos, y el error cometido en la aproximación. Utilizarla para calcular los errores aproximados al aproximar el area de f en el intervalo [0,1] tomando particiones desde 10 a 100 subintervalos.

```
Solución
  using PrettyTables
  f(x) = x^2
  function area_inf(a, b, n)
      \Delta x = (b-a)/n
      return sum([f(a+(i-1)*\Delta x)*\Delta x \text{ for } i = 1:n])
  end
  function area_sup(a, b, n)
      \Delta x = (b-a)/n
      return sum([f(a+i*\Delta x)*\Delta x \text{ for } i = 1:n])
  end
  function area(a, b, n)
      area = (area_inf(a, b, n) + area_sup(a, b, n)) / 2
      error = area_sup(a, b, n) - area_inf(a, b, n)
      return area, error
  end
  areas = [area(0, 1, n) for n=10:100]
  pretty_table(hcat(first.(areas), last.(areas)); header = ["Aproximación", "Erro
 Aproximación
                     Error
        0.335
                       0.1
     0.334711
                0.0909091
     0.334491
                0.0833333
      0.33432 0.0769231
     0.334184 0.0714286
     0.334074 0.0666667
     0.333984
                    0.0625
      0.33391
                0.0588235
     0.333848 0.0555556
     0.333795 0.0526316
      0.33375
                      0.05
     0.333711
                 0.047619
     0.333678 0.0454545
     0.333648 0.0434783
     0.333623 0.0416667
                      0.04
        0.3336
```

```
0.33358
           0.0384615
0.333562
            0.037037
0.333546
           0.0357143
0.333532
           0.0344828
0.333519
           0.0333333
0.333507
           0.0322581
0.333496
             0.03125
0.333486
            0.030303
0.333478
           0.0294118
0.333469
           0.0285714
0.333462
           0.0277778
0.333455
            0.027027
0.333449
           0.0263158
0.333443
            0.025641
0.333438
               0.025
0.333432
           0.0243902
           0.0238095
0.333428
           0.0232558
0.333423
0.333419
           0.0227273
0.333416
           0.022222
0.333412
           0.0217391
0.333409
           0.0212766
           0.0208333
0.333406
0.333403
           0.0204082
  0.3334
                0.02
0.333397
           0.0196078
0.333395
           0.0192308
0.333393
           0.0188679
 0.33339
           0.0185185
0.333388
           0.0181818
0.333386
           0.0178571
0.333385
           0.0175439
0.333383
           0.0172414
0.333381
           0.0169492
 0.33338
           0.0166667
0.333378
           0.0163934
0.333377
            0.016129
0.333375
            0.015873
0.333374
            0.015625
0.333373
           0.0153846
0.333372
           0.0151515
 0.33337
           0.0149254
```

```
0.333369
           0.0147059
0.333368
           0.0144928
0.333367
           0.0142857
0.333366
           0.0140845
0.333365
           0.0138889
0.333365
           0.0136986
0.333364
           0.0135135
0.333363
           0.0133333
0.333362
           0.0131579
0.333361
            0.012987
0.333361
           0.0128205
           0.0126582
 0.33336
0.333359
              0.0125
0.333359
           0.0123457
0.333358
           0.0121951
0.333358
           0.0120482
0.333357
           0.0119048
0.333356
           0.0117647
0.333356
           0.0116279
0.333355
           0.0114943
0.333355
           0.0113636
0.333354
            0.011236
0.333354
           0.0111111
0.333353
            0.010989
0.333353
           0.0108696
0.333353
           0.0107527
0.333352
           0.0106383
0.333352
           0.0105263
0.333351
           0.0104167
0.333351
           0.0103093
0.333351
           0.0102041
 0.33335
            0.010101
 0.33335
                0.01
```

Ejercicio 7.2. Calcular las primitivas de las siguientes funciones:

a. $f(x) = x^2 \ln(x)$

Solución

Para calcular la primitiva de una función se puede usar la función integrate(f) del paquete SymPy, donde f es la función a integrar.

```
using SymPy
@syms x::real
primitiva = integrate(x^2*ln(x))
```

$$\frac{x^3\log(x)}{3} - \frac{x^3}{9}$$

 $\frac{x^3\log(x)}{3}-\frac{x^3}{9}$ Obsérvese que la primitiva obtenida con la función integrate no incluye la típica constante que define la familia de primitivas.

Podemos comprobar que efectivamente es la primitiva derivándola.

```
diff(primitiva)
x^2 \log(x)
```

b.
$$g(x) = \frac{\ln(\ln(x))}{x}$$

Solución

```
integrate(ln(ln(x))/x)
```

 $\log\left(x\right)\log\left(\log\left(x\right)\right) - \log\left(x\right)$

c.
$$h(x) = \frac{6x+5}{(x^2+x+1)^2}$$

Solución

Se trata de una función racional, así que hacemos primero la descomposición en fracciones simples. Para ello se puede usar la función apart (f) del paquete SymPy.

```
h(x) = (2x^3+x^2+6)/(x^5-x)
# Descomposición en fracciones simples.
apart(h(x))
```

$$\begin{array}{l} \frac{5x+2}{2(x^2+1)} + \frac{5}{4(x+1)} + \frac{9}{4(x-1)} - \frac{6}{x} \\ Y \text{ ahora calculamos la primitiva.} \end{array}$$

$$-6 \log \left(x\right)+\tfrac{9 \log \left(x-1\right)}{4}+\tfrac{5 \log \left(x+1\right)}{4}+\tfrac{5 \log \left(x^2+1\right)}{4}+Fratan(x)$$

d. $i(x) = x^a$

Cuando en la función aparece algún parámetro, es necesario indicar la variable con respecto a la que calcular la integral. Para ello se utiliza la función integrate(f, x), siendo x la variable con respecto a la que integrar.

```
Osyms a::real integrate(x^a, x) \begin{cases} \frac{x^{a+1}}{a+1} & \text{for } a \neq -1 \\ \log(x) & \text{otherwise} \end{cases}
```

e. $j(x) = (1 + \log(x))\sqrt{1 + x^2 \log(x)^2}$

Ejercicio 7.3. Calcular las siguientes integrales definidas:

a.
$$\int_{-1/2}^{0} \frac{x^3}{x^2 + x + 1} \, dx$$

Para calcular una integral definida también se puede usar la función integrate(f, a, b), del paquete SymPy, donde, además de la función f,

```
hay que indicar los límites de integración a y b.

using SymPy
@syms x::real
integrate(x^3/x^2+x+1, -1/2, 0)

0.25
```

b. $\int_{2}^{4} \frac{\sqrt{16-x^2}}{x} dx$

c. $\int_0^{\pi/2} \frac{dx}{3 + \cos(2x)}$

Ejercicio 7.4. Calcular la integral definida $\int_0^1 x^x dx$ con un error menor de 10^{-10} .

```
Solución

using SymPy
Osyms x::real
f(x) = x^x
integrate(f(x), 0, 1)

\int_0^1 x^x dx
Esta función no tiene primitiva como se puede comprobar al realizar la integral con la función integrate. Para calcularla hay que recurrir a métodos numéricos de aproximación. Para ello se puede usar la función quadgk del paquete QuadGK
```

que realiza el cálculo de la integral mediante el método de la cuadratura de Gauss-Kronrod.

```
using QuadGK
quadgk(f(x), 0, 1, rtol = 10^-10)

(0.783430510710741, 7.598588099878845e-11)
```

Ejercicio 7.5. Dibujar y calcular el área encerrada por la parábola $y = x^2 - 7x + 6$ y el eje de abscisas en el intervalo [2, 7].

Para calcular el área encerrada entre la gráfica de una función y el eie x en un

Para calcular el área encerrada entre la gráfica de una función y el eje x en un intervalo [a,b], hay que descomponer el intervalo de integración en los subintervalos

donde la función es positiva y los subintervalos donde es negativa, e integrar la función en cada intervalo por separado.

```
# Calculamos primero las raíces de la función
solve(f(x))
# Descomponemos el intervalo de integración en los subintervalos [2,6] (función nega
-integrate(f, 2, 6) + integrate(f, 6, 7)
```

Solución 2

En general, para calcular áreas bajo una curva, es más rápido integrar el valor absoluto de la función.

```
integrate(abs(f(x)), 2, 7)
\frac{3}{2}
```

Ejercicio 7.6. Calcular y dibujar el área comprendida entre las parábolas $y = -x^2 + 6x$ e $y = x^2 - 2x$.

Solución

Calculamos primero el área comprendida entre las dos funciones.

```
using Plots, SymPy, LaTeXStrings

Osyms x::real

f(x) = -x^2 + 6x

g(x) = x^2 - 2x

# Calculamos primero los puntos de corte de la función.

raices = solve(f(x)-g(x))

# Descomponemos el intervalo de integración en los subintervalos [2,6] (función nega sol = integrate(f(x)-g(x), raices[1], raices[2])

\frac{64}{3}
Y ahora dibujamos el área calculada.
```


Ejercicio 7.7. Dibujar la gráfica de la función $f(x) = e^{-x}$ y calcular el área total encerrada entre la gráfica y el eje x para x > 0.

```
Solución
Dibujamos primero la gráfica.

using Plots, SymPy, LaTeXStrings
@syms x::real
f(x) = exp(-x)
plot(f(x), 0, 10, label = L"$f(x)=e^{-x}$")
```


Ejercicio 7.8. Un vehículo se mueve con una velocidad dada por la función $Frsen(t)^2$. ¿Cuál es la velocidad media en el intervalo $[0, 2\pi]$?

Solución

Para calcular el valor medio de una función f(x) en un intervalo [a,b] tenemos que calcular la integral definida

$$\frac{1}{b-a} \int_a^b f(x) \, dx.$$

```
using SymPy
@syms x::real
f(x) = sin(x)^2
1/(2*PI) * integrate(f(x), 0, 2PI)
```

Ejercicio 7.9. Representar gráficamente la región del primer cuadrante limitada por la función f(x) = 2 + Frsen(x) y el eje x en el intervalo $[0, 2\pi]$ y hallar el volumen del sólido de revolución generado al rotar esta región alrededor del eje x.


```
using Unzip
@syms x::real u::real v::real
f(x) = sin(x)+2
S(u, v) = (u, f(u)*cos(v), f(u)*sin(v))
us = range(0, 2pi, length=100)
vs = range(0, 2pi, length=100)
ws = unzip(S.(us, vs'))
surface(ws...)
```


-2 -1 -0 --1

También es posible dibujarlo de manera interactiva con la activando el backend de Plotly mediante la función plotlyjs().

```
# Activamos el backend de Plotly.
plotlyjs()
plot(surface(ws...))
```

WebIO._IJuliaInit()

Para calcular el volumen de un sólido de revolución generado al rotar la gráfica de una función f(x) alrededor del eje x en el intervalo [a, b], mediante discos cilíndricos perpendiculares al eje x, hay que calcular la integral definida

$$\int_{a}^{b} \pi f(x)^{2} dx$$

N(integrate(pi*f(x)^2, 0, 2pi))

88.82643960980422410690317029966353336734417982417697812151367494195434357891355

Ejercicio 7.10. Calcular el volumen del toro que se obtiene al rotar la circunferencia de ecuación $(x-2)^2 + y^2 = 1$ alrededor del eje y.

Solución

Dibujamos primero la región.

```
using SymPy, Plots
# Volvemos a activar el backend por defecto.
gr()
@syms x::real
f(x) = sqrt(1-(x-2)^2)
plot(f(x), 0, 4, fillrange = 0, fillalpha = 0.3, aspect_ratio = 1, label = "")
plot!(-f(x), 0, 4, fillrange = 0, fillalpha = 0.3, aspect_ratio = 1, label = "")
```


En este caso, usaremos envoltorios cilíndricos para calcular el volumen del sólido de revolución. Para calcular el volumen del sólido de revolución que se obtiene al rotar alrededor del eje y la gráfica de una función f(x) en el intervalo [a,b], mediante envoltorios cilíndricos, hay que calcular la integral definida

$$\int_{a}^{b} 2\pi x f(x) \, dx.$$

Para el caso particular del toro, calcularemos la mitad de su volumen aprovechando que es simétrico con respecto al plano xz y lo multiplicaremos por 2.

```
2 * integrate(2PI*x*f(x), 1, 3)
```

 $4\pi^2$

Ejercicio 7.11. Una empresa fabrica tejas de chapa con forma ondulada cuyo perfil viene dado por la curva $y = Frsin\left(\frac{x}{2}\right)$. Si se quieren obtener tejas de 100 cm de longitud, ¿qué longitud tienen que tener las planchas de chapa para fabricarlas?

Solución Dibujamos primero el perfil de las chapas. using SymPy, Plots @syms x::real $f(x) = \sin(x/2)$ plot(f(x), 0, 100, aspect_ratio = 1, label = "") 30 20 10 0 -10-20-30 0 25 50 75 100 Para calcular la longitud de una curva dada por la gráfica de una función f(x) en un intervalo [a, b], hay que calcular la integral $\int_a^b \sqrt{1 + f'(x)^2} \, dx.$

using QuadGK

 $quadgk(sqrt(1+diff(f(x))^2), 0, 100)$

(105.954416730336, 1.2200227161862642e-6)

Ejercicio 7.12. El cuerno de Gabriel es un sólido de revolución que se obtiene al rotar la función f(x) = 1/x alrededor del eje x para $x \ge 1$.

a. El volumen del cuerno de Gabriel.

b. Calcular la superficie del cuerno de Gabriel.

Solución

Para calcular la superficie del sólido de revolución que se obtiene al rotar la gráfica de la función f(x) alrededor del eje x en el intervalo [a,b] hay que calcular la integral definida

$$\int_a^b 2\pi f(x)\sqrt{1+f'(x)^2}\,dx.$$

```
using SymPy
    @syms x::real
    f(x) = 1/x
    integrate(2PI*f(x)*sqrt(1+diff(f(x))^2), 1, 00)
```

 ∞

Así pues, se da la paradoja de que el cuerno de Gabriel tiene un volumen finito, pero una superficie infinita.

Ejercicio 7.13. Un depósito con forma de sólido de revolución generado al rotar la gráfica de la función $f(x) = \frac{x^2}{2}$ alrededor del eje y en el intervalo de 0 a 4 m, contiene 100000 l de aceite con una densidad de $\delta = 900 \text{ kg/m}^3$. ¿Qué trabajo se realiza al vaciar el depósito por arriba?

Solución

Calculamos primero el nivel del aceite en el depósito. Para ello necesitamos el volumen contenido en el depósito hasta una altura h.

```
using SymPy
@syms x::real y::real
f(x) = x^2/2
f '(y) = solve(y-f(x), x)[2]
# Volumen hasta una altura h
V(x) = integrate(PI*f '(y)^2, 0, x)
# Nivel para un volumen de 100 m³
nivel = solve(V(x)-100)[2]
```

10

Para calcular el trabajo realizado por una fuerza aplicada sobre un objeto y que provoca un desplazamiento desde x=a hasta x=b, basta con calcular la integral definida

$$\int_{a}^{b} f(x) \, dx$$

En este caso, tomando discos cilíndricos perpendiculares al eje y, el volumen de cada disco viene dado por la función $V(y)=\pi f^{-1}(y)^2\Delta y$ y, por tanto, la masa de cada uno de estos discos es $M(y)=\delta\pi f^{-1}(y)^2\Delta y$. Como la única fuerza que actúa sobre la masa es la gravedad, la fuerza aplicada a la masa de cada disco es $F(y)=gM(y)=g\delta\pi f^{-1}(y)^2\Delta y$. Finalmente, como la masa de cada uno de los discos debe elevarse una distancia 4-y, el trabajo realizado para vaciar el depósito se calcula mediante la integral definida

$$\int_0^h g \delta \pi f^{-1}(y)^2 (4-y) \, dy$$

donde h es el nivel del aceite calculado antes.

```
= 900
gravedad = 9.81
N(integrate(gravedad* *PI*f '(y)^2*(8-y), 0, nivel))
```

Ejercicio 7.14. Dibujar la región que se obtiene con la intersección de la recta y = x-1 y la parábola $y = (x-1)^2$, y dibujar su centroide. ¿Cuál es le volumen del sólido de revolución generado al rotar esta región sobre el eje x? ¿Y al rotarla sobre el eje y?

Solución

Dibujamos primero la región. Para ello hay que calcular primero los puntos de corte de las dos curvas.

```
using SymPy, Plots
@syms x::real
f(x) = x-1
g(x) = (x-1)^2
# Calculo de los puntos de corte.
a, b = N(solve(f(x)-g(x)))
plot(f(x), a, b, aspect_ratio = 1, label = "")
plot!(g(x), a, b, fillrange = f, fillalpha = 0.3, aspect_ratio = 1, c = 1, label = "
```


Para calcular el centroide (\bar{x}, \bar{y}) de una región plana encerrada por dos curvas f(x) y g(x) en el intervalo [a,b] hay que calcular por separado el centro de masas \bar{x} con respecto al eje y, y el centro de masas \bar{y} con respecto al eje x, mediante cociente de las siguientes integrales definidas

$$\begin{split} \bar{x} &= \frac{\int_a^b x (f(x) - g(x)) \, dx}{\int_a^b f(x) - g(x) \, dx} \\ \bar{y} &= \frac{\frac{1}{2} \int_a^b f(x)^2 - g(x)^2 \, dx}{\int_a^b f(x) - g(x) \, dx} \end{split}$$

```
# Coordenada x del centroide. 

cx = integrate(x*(f(x)-g(x)), a, b) / integrate(f(x)-g(x), a, b) # Coordenada y del centroide 

cy = 1/2 * integrate(f(x)^2-g(x)^2, a, b) / integrate(f(x)-g(x), a, b) # Dibujamos el centroide 

scatter!((cx,cy), label = "centroide")
```


Para calcular el volumen del sólido de revolución generado al rotar esta región sobre el eje x podemos usar el teorema de Pappus que establece que el volumen es el area de la región multiplicada por la longitud del camino recorrido por el centroide. Al rotar la región sobre el eje x el camino recorrido por el centroide es $2\pi \bar{y}$.

2*PI*cy*integrate(f(x)-g(x), a, b)

0.13333333333333333

Y al rotarla sobre el eje y el camino recorrido por el centroide es $2\pi\bar{x}$.

2*PI*cx*integrate(f(x)-g(x), a, b)

7.2 Ejercicios propuestos

Ejercicio 7.15. Calcular la suma superior de Riemann de la función $f(x) = \sqrt{\ln(x)}$ en el intervalo [1,2], tomando una partición de 100 subinvervalos de igual amplitud.

Solución

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.16. Calcular el area encerrada entre las funciones f(x) = Frsin(x) y cos(x)en el intervalo $[0, 2\pi]$.

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.17. Dibujar la gráfica de la función $f(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$ y calcular el área total encerrada entre la gráfica y el eje x.

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.18. La función $T(t) = 100te^{-t}$ define la temperatura de un sistema en cada instante t. Calcular la temperatura media en el intervalo [0, 5].

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.19. Calcular el volumen del sólido de revolución generado por la rotación al rededor del eje x de la región comprendida entre las funciones $f(x) = \ln(x)$ y $g(x) = \frac{x-1}{2}$.

*Hint: *

Introducir hasta 5 decimales

Calcular también el volumen del sólido de revolución generado al rotar la misma región alrededor del eje y.

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.20. La curva $y = a \cosh(x/a)$ se conoce como *catenaria*. ¿Cuál es la longitud de la catenaria con a = 2 entre -1 y 1?

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.21. Un depósito metálico tiene la forma del elipsoide que se obtiene al rotar la elipse $\frac{x^2}{4} + y^2 = 1$ alrededor del eje x. Calcular la cantidad de chapa metálica necesaria para construir el depósito.

*Hint: *

Introducir hasta 5 decimales

Ejercicio 7.22. La función de densidad del modelo de distribución de probabilidad exponencial Exp(1) es

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ e^{-x} & \text{si } x \ge 0 \end{cases}$$

¿Cuál de las siguientes afirmaciones es cierta?

- \square La media es igual que la mediana
- ☐ La media es menor que la mediana
- \square La media es mayor que la mediana.

8 Funciones vectoriales

8.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using SymPy # Para el cálculo simbólico.
using Plots # Para el dibujo de gráficas.
using Makie, GLMakie # Para el dibújo de gráficas en 3d.
#plotlyjs() # Para obtener gráficos interactivos.
using LaTeXStrings # Para usar código LaTeX en los gráficos.
using LinearAlgebra # Para el módulo, producto escalar y vectorial de vectores.
using Roots # Para calcular soluciones de ecuaciones numéricamente.
using CalculusWithJulia # Utilidades para dibujar vectores.
```

Ejercicio 8.1. Representar gráficamente los vectores $\mathbf{u}=(3,1), \mathbf{v}=(1,2)$ y $\mathbf{u}-\mathbf{v}$ en el plano real \mathbb{R}^2 .

i Ayuda

Usar la función **arrow** del paquete CalculusWithJulia para dibujar flechas que representan vectores.

```
Solución
  using CalculusWithJulia
  using LaTeXStrings
  0 = [0, 0] # Origin
  u = [3, 1]
  v = [1, 2]
  Plots.plot()
  arrow!(0, u)
  arrow!(0, v)
  arrow!(v, u-v)
  annotate! (1.5, 0.4, L"$\mathbf{u}$")
  annotate!(0.4, 1, L"$\mathbf{v}$")
  annotate!(2.1, 1.6, L"\mbox{mathbf}\{u\}-\mbox{mathbf}\{v\}")
 2.0
                                                    \mathbf{u} - \mathbf{v}
 1.5
 1.0
 0.5
                                         \mathbf{u}
 0.0
                              1
                                                     2
                                                                            3
```

Ejercicio 8.2. Sean $\mathbf{u} = (1, 2, -1)$ y $\mathbf{v} = (3, 0, 2)$ dos vectores del espacio real \mathbb{R}^3 .

a. Calcular el módulo (norma) de ambos vectores y construir vectores unitarios con su misma dirección.

i Ayuda

Usar la función **norm** del paquete LinearAlgebra para calular el módulo de un vector.

b. Calcular su producto escalar.

i Ayuda

Usar la función dot del paquete LinearAlgebra para calcular el producto escalar de dos vectores.

Producto escalar de u y v \$(dot(u, v))") # También se puede usar el clásico punto println("Producto escalar de u y v \$(u v)") Producto escalar de u y v 1 Producto escalar de u y v 1

c. Calcular su producto vectorial.

i Ayuda

Usar la función cross del paquete LinearAlgebra para calcular el producto vectorial de dos vectores.

```
Println("Producto vectorial de u y v $(cross(u, v))")
# También se puede usar la clásica cruz ×
println("Producto vectorial de u y v $(u × v)")
Producto vectorial de u y v [2, 3, 4]
Producto vectorial de u y v [2, 3, 4]
```

d. Dibujar $\mathbf{u},\,\mathbf{v}$ y $\mathbf{u}\times\mathbf{v}$ en el espacio real.

```
Very Solución 1
Usando el paquete Plots.

using CalculusWithJulia
Plots.plot(xlabel = "X", ylabel = "Y", zlabel = "Z", legend = false)
0 = [0, 0, 0]
arrow!(0, u)
arrow!(0, v)
arrow!(0, u × v)
```

Solución 2 Usando el paquete Makie. using GLMakie fig = Figure() ax = Axis3(fig[1,1], azimuth = -pi/4, aspect = (1,1,1))0 = [0, 0, 0]arrows!(ax, [Point3(0)], [Vec3(u), Vec3(v), Vec3(u \times v)], linecolor = [:blue,:red, :green], arrowcolor = [:blue,:red, :green], linewidth = 0.02, arrowsize = Vec3(0.1, 0.1, 0.1)) fig 2 0 3 2 1 0 Ŋ

Ejercicio 8.3. Dibujar las trayectorias de las siguientes funciones vectoriales.

a. f(t) = (Frsen(t), cos(t)).

i Ayuda

Usar la función **plot** del paquete **Plots** o la función **lines** del paquete **Makie** para dibujar la trayectoria, pasándole cada una de las funciones componentes separadas por comas.

Solución 1 Usando el paquete Plots. using Plots using CalculusWithJulia f(t) = [sin(t), cos(t)] ts = range(0, 2pi, length = 200) xs, ys = unzip(f.(ts)) Plots.plot(xs, ys, aspect_ratio = :equal) 1.0 0.5 0.0

Solución 2

-1.0

Usando el paquete Makie.

-1.5

-1.0

```
using GLMakie
f(t) = [sin(t), cos(t)]
ts = range(0, 2pi, length = 200)
points = Point2.(f.(ts))
fig = Figure()
ax = Axis(fig[1,1], aspect = 1)
lines!(ax, points, linewidth = 2, color = :blue)
fig
```

-0.5

0.0

0.5

1.0

1.5

b. $\mathbf{g}(t) = (\cos(t), Frsen(t), t/4)$.

```
Solución 1
Usando el paquete Plots.

g(t) = [cos(t), sin(t), t/4]
  ts = range(0, 2pi, length = 200)
  xs, ys, zs = unzip(g.(ts))
  Plots.plot(xs, ys, zs, aspect_ratio = :equal, xlabel = "X", ylabel = "Y", zlabel
```


Solución 2

Usando el paquete Makie.

```
using GLMakie
g(t) = [cos(t), sin(t), t/4]
ts = range(0, 2pi, length = 200)
points = Point3.(g.(ts))
fig = Figure()
ax = Axis3(fig[1,1])
lines!(ax, points, linewidth = 2, color = :blue)
fig
```


Ejercicio 8.4. Un nudo tórico es un nudo que se forma mediante una trayectoria que gira sobre la superficie de un toro en \mathbb{R}^3 . La función vectorial que define este tipo de nudos sobre un toro de ecuación $(r-2)^2+z^2=1$ es $\mathbf{f}(t)=((2+\cos(qt))\cos(pt),(2+\cos(qt))Frsen(pt),-Frsen(qt))$, donde p y q son dos enteros primos entre si y $t\in[0,2\pi]$.

a. Dibujar el nudo tórico con p=2 y q=3.

Usando el paquete Makie.

```
using GLMakie
# Definimos las ecuaciones paramétricas del toro.
U = LinRange(-pi, pi, 100)
V = LinRange(-pi, pi, 20)
x1 = [2\cos(u) + \cos(u) * \cos(v) \text{ for } u \text{ in } V, v \text{ in } V]
y1 = [2\sin(u) + \sin(u) * \cos(v)  for u in U, v in V]
z1 = [\sin(v) \text{ for } u \text{ in } U, v \text{ in } V]
# Inicializamos la figura y los ejes.
fig = Figure()
ax = Axis3(fig[1,1], aspect = (3, 3, 1))
# Dibujamos el toro.
Makie.surface!(ax, x1, y1, z1; colormap = :viridis, shading = false, transparen
# Definimos la función vectorial de nudo tórico.
f(t) = [(2+\cos(3t))\cos(2t), (2+\cos(3t))\sin(2t), -\sin(3t)]
# Generamos los puntos de la trayectoria del nudo tórico.
ts = range(0, 2pi, length = 200)
points = Point3.(f.(ts))
# Dibujamos el nudo tórico.
lines!(ax, points, linewidth = 3, color = :red)
fig
1.0
0.5
0.0
-0.5
-1.0
        2
                                                       2
               0
                                               0
                                      -2
                                               X
```

b. Definir una función para crear nudos tóricos con parámetros p y q para los enteros que definen el toro y un parámetro opcional booleano toro, para dibujar el toro o

```
Solución
  using GLMakie
  11 11 11
      nudo_torico(ax, p, q, toro)
  Función dibuja un nudo tórico de parámetros p, q sobre los ejes ax. Si el parám
  function nudo_torico(ax::Axis3, p::Int64, q::Int64, toro::Bool = true)
           alpha = 0.5
      else
           alpha = 0
      end
      # Definimos las ecuaciones paramétricas del toro.
      U = LinRange(-pi, pi, 100)
      V = LinRange(-pi, pi, 20)
      x1 = [2\cos(u) + \cos(u) * \cos(v) \text{ for } u \text{ in } V]
      y1 = [2\sin(u) + \sin(u) * \cos(v) \text{ for } u \text{ in } V]
      z1 = [\sin(v) \text{ for } u \text{ in } V, v \text{ in } V]
      # Dibujamos el toro en los ejes.
      Makie.surface!(ax, x1, y1, z1; colormap = :viridis, shading = false, transp.
      # Definimos la función vectorial de nudo tórico.
      f(t) = [(2+\cos(q*t))\cos(p*t), (2+\cos(q*t))\sin(p*t), -\sin(q*t)]
      # Generamos los puntos de la trayectoria del nudo tórico.
      ts = range(0, 2pi, length = 200)
      points = Point3.(f.(ts))
      # Dibujamos el nudo tórico.
      lines!(ax, points, linewidth = 3, color = :red)
  end
  fig = Figure()
  ax = Axis3(fig[1,1], aspect = (3, 3, 1))
  nudo_torico(ax, 5, 9, true)
  fig
```


Ejercicio 8.5.

a. Calcular las ecuaciones de la recta tangente y el plano normal a la trayectoria $\mathbf{f}(t) = (Frsen(2t), \cos(t))$ en el punto correspondiente a $t = \pi/2$ y dibujarlas.

i Ayuda

La ecuación de la recta tangente a la trayectoria de la función vectorial $\mathbf{f}(t)$ en el instante t=a es $\mathbf{f}(a)+\mathbf{f}'(a)t$.

```
Solución
  using SymPy, Plots
  @syms t::real
  # Definimos la función vectorial.
  f(t) = [\sin(2t), \cos(t)]
  # Instante
  a = pi/2
  # Dibujamos la trayectoria.
  Plots.plot(f(t)..., 0, 2pi, aspect_ratio = :equal, label = "f(t) = (sen(t), cos(t))
  # Dibujamos el punto de tangencia.
  Plots.scatter!([f(a)[1]],[f(a)[2]], label = "")
  # Calculamos la derivada en el punto.
  df = subs.(diff.(f(t)), t=>a)
  # Calculamos la ecuación de la recta tangente.
  tl(t) = f(a) + df * t
  # Dibujamos la recta tangente.
  Plots.plot!(tl(t)..., -1, 1, label = "Tangente")
  # Calculamos la ecuación de la recta normal.
  nl(t) = f(a) - [df[2], -df[1]] * t
  Plots.plot!(nl(t)..., -0.6, 0.6, label = "Normal")
             f(t)=(sen(t), cos(t))
             Tangente
  1.0
             Normal
  0.5
  0.0
 -0.5
 -1.0
      -2
                                   0
```

b. Calcular las ecuaciones de las recta tangente y el plano normal a la trayectoria $\mathbf{g}(t) = (\cos(t), Frsen(t), \sqrt{t})$ en punto correspondiente a $t = \pi$ y dibujarlas.

```
Solución
  using SymPy, LinearAlgebra, GLMakie
  @syms x, y, z, t::real
  # Definimos la función vectorial.
  g(t) = [\cos(t), \sin(t), \operatorname{sqrt}(t)]
  # Instante
  a = pi/2
  # Dibujamos la trayectoria.
  ts = range(0, 2pi, 200)
  points = Point3.(g.(ts))
  fig = Figure()
  ax = Axis3(fig[1,1], title = "Recta tangente y plano normal a una trayectoria",
  lines!(ax, points)
  # Dibujamos el punto de tangencia.
  Makie.scatter!([Point3(g(a))])
  # Calculamos la derivada en el punto.
  dg = subs.(diff.(g(t)), t=>a)
  # Calculamos la ecuación de la recta tangente.
  tl(t) = g(a) + dg * t
  # Dibujamos la recta tangente.
  pointstl = Point3.(tl.(range(-pi, pi, 2)))
  lines!(ax, pointstl)
  # Calculamos la ecuación del plano normal
  np(x,y) = solve(dot(([x, y, z] - g(a)),dg), z)[1]
  xs = range(-1, 1, 2)
  ys = range(0, 2, 2)
  zs = [np(x,y) \text{ for } x \text{ in } xs, y \text{ in } ys]
  Makie.surface!(ax, xs, ys, zs, colormap = ["red"], alpha = 0.5, transparency =
  fig
```


Ejercicio 8.6. Dada una función vectorial $\mathbf{f}(t)$ en \mathbb{R}^3 , el *plano osculador* de la trayectoria de $\mathbf{f}(t)$ en t=a es el plano definido por los vectores tangente $\mathbf{T}(a)$ y normal $\mathbf{N}(a)$.

Calcular y dibujar el plano osculador de la función vectorial del nudo tórico del apartado a del ejercicio Ejercicio 8.4 en el punto correspondiente a $t=\pi/2$.

Usando el paquete Makie.

```
using SymPy, LinearAlgebra, GLMakie
@syms x, y, z, t::real
# Definimos las ecuaciones paramétricas del toro.
U = LinRange(-pi, pi, 100)
V = LinRange(-pi, pi, 20)
x1 = [2\cos(u) + \cos(u) * \cos(v) \text{ for } u \text{ in } V, v \text{ in } V]
y1 = [2\sin(u) + \sin(u) * \cos(v)  for u in U, v in V]
z1 = [\sin(v) \text{ for u in U, v in V}]
# Inicializamos la figura y los ejes.
fig = Figure()
ax = Axis3(fig[1,1], aspect = (3, 3, 1))
# Dibujamos el toro.
Makie.surface!(ax, x1, y1, z1; colormap = :viridis, shading = false, transparency =
# Definimos la función vectorial de nudo tórico.
f(t) = [(2+\cos(3t))\cos(2t), (2+\cos(3t))\sin(2t), -\sin(3t)]
# Generamos los puntos de la trayectoria del nudo tórico.
ts = range(0, 2pi, length = 200)
points = Point3.(f.(ts))
# Dibujamos el nudo tórico.
lines!(ax, points, linewidth = 3, color = :red)
# Punto
a = pi/2
# Dibujamos el punto.
Makie.scatter!(ax, [Point3(f(a))])
# Vector tangente unitario.
Tan(t) = diff.(f(t)) / norm(diff.(f(t)))
Ta = subs.(Tan(t), t=>a)
# Vector normal unitario.
Norm(t) = diff.(Tan(t)) / norm(diff.(Tan(t)))
Na = subs.(Norm(t), t=>a)
# Calculamos la ecuación del plano osculador.
po(x,y) = solve(dot(([x, y, z] - f(a)), cross(Ta, Na)), z)[1]
xs = range(-3, -1, 2)
ys = range(-1, 1, 2)
zs = [po(x,y) \text{ for } x \text{ in } xs, y \text{ in } ys]
Makie.surface!(ax, xs, ys, zs, colormap = ["magenta"], alpha = 0.8, transparency = t
```


Ejercicio 8.7. Para construir un cuaderno de 30 cm de altura se utiliza una espiral de alambre con radio 1 cm y una distancia entre cada dos vueltas consecutivas $\pi/4$ cm. Dibujar la espiral y calcular la cantidad de alambre necesaria para cada cuaderno.

i Ayuda

La longitud de la trayectoria de una función vectorial $\mathbf{f}(t)$ en el intervalo $t \in [a, b]$ se calcula mediante la integral

$$\int_a^b |\mathbf{f}'(t)| \, dt$$

Solución

Dibujamos primero la espiral.

```
using SymPy, GLMakie
@syms t::real
# Definimos la función vectorial.
f(t) = [cos(t), sin(t), t/8]
# Calculamos el número de revoluciones.
h = solve(f(t)[3]-30)[1]
# Dibujamos la trayectoria.
ts = range(0, 240, 2000)
points = Point3.(f.(ts))
fig = Figure()
ax = Axis3(fig[1,1], title = "Espiral de un cuaderno", aspect = (1, 1, 30))
lines!(ax, points)
fig
```

Espiral de un cuaderno

A continuación calculamos la longitud de la espiral.

```
using LinearAlgebra
# Calculamos la derivada en el punto.
N(integrate(norm(diff.(f(t))), 0, h))
```

Ejercicio 8.8. Dibujar función de curvatura de campana de Gauss correspondiente a la función de densidad de una distribución normal estándar

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

¿En qué puntos la curvatura es nula? ¿Dónde la curvatura es máxima localmente?

i Ayuda

La curvatura de la gráfica de una función real f(x) se calcula mediante la fórmula

$$\kappa(x) = \frac{|f''(x)|}{(1 + f''(x)^2)^{3/2}}.$$

Solución

Dibujamos primero la gráfica de la función y la de la función curvatura.

```
using SymPy, GLMakie
@syms x::real
# Definimos la función.
f(x) = 1/sqrt(2pi) * exp(-x^2/2)
# Dibujamos la gráfica de la función.
fig = Figure()
ax = Axis(fig[1,1], autolimitaspect = 1)
lines!(ax, -3...3, f, label = L"$f(t)= \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$")
fig
# Calculamos la segunda derivada de la función.
df2 = diff(f, 2)
# Calculamos la función de curvatura.
k(x) = abs(df2(x)) / (1 + df2(x)^2)^(3/2)
# Definimos una serie de puntos de la función curvatura.
xs = range(-3, 3, 200)
points = Point2.(xs, k.(xs))
# Dibujamos la función de curvatura
lines!(ax, points, label = "Curvatura")
# Añadimos la leyenda
axislegend()
fig
```


Ahora calculamos los puntos con curvatura máxima y mínima localmente.

```
# Calculamos los puntos que anulan la curvatura.
solve(k(x),x)
# Calculamos los puntos críticos de la curvatura.
# solve(diff(k(x)), x) No encuentra la solución, así que buscamos la solución numéri using Roots
println("Máximo local en x = $(find_zero(diff(k(x)), -2))")
println("Máximo local en x = $(find_zero(diff(k(x)), 0))")
println("Máximo local en x = $(find_zero(diff(k(x)), 2))")

Máximo local en x = -1.7320508075688774

Máximo local en x = 1.7320508075688774
```

Ejercicio 8.9. La torsión de una trayectoria de una función vectorial $\mathbf{f}(t)$ en el espacio real \mathbb{R}^3 mide la intensidad con la que una curva se sale del plano osculador y se calcula con la fórmula

$$\tau(t) = \frac{(\mathbf{f}'(t) \times \mathbf{f}''(t))\mathbf{f}'''(t)}{|\mathbf{f}'(t) \times \mathbf{f}''(t)|^2}$$

Definir una función para la curvatura y y otra para la torsión de la trayectoria de la función vectorial $\mathbf{h}(t) = \cos(2t)\mathbf{i} + Frsen(t)\mathbf{j} + \cos(t)\mathbf{k}$, y utilizarla para calcular la curvatura y la torsión en los instantes $t = 0, \pi/4, \pi/2, 3\pi/2$.

```
Solución
Calculamos primero la curvatura.
  using SymPy, LinearAlgebra
  11 11 11
      curvatura(h, a)
  Calcula la curvatura de la trayectoria de una función vectorial h en el punto a.
  function curvatura(f, a)
      @syms t::real
      # Calculamos la primera derivada.
      df(t) = diff.(f(t))
      # Calculamos la segunda derivada.
      df2(t) = diff.(df(t))
      # Calculamos la curvatura
      k(t) = norm(cross(df(t), df2(t))) / norm(df(t))^3
      return N(subs(k(t), t=>a))
  end
  f(t) = [\cos(2t), \sin(t), \cos(t)]
  println("Curvatura en t=0: $(curvatura(f, 0))")
  println("Curvatura en t= /4: $(curvatura(f, pi/4))")
  println("Curvatura en t= /2: $(curvatura(f, pi/2))")
  println("Curvatura en t=3 /4: $(curvatura(f, 3pi/4))")
Curvatura en t=0: 4.1231056256176605498214098559740770251471992253736204343986335730949
Curvatura en t=/4: 0.2
Curvatura en t=/2: 4.123105625617661
Curvatura en t=3/4: 0.2
Y ahora calculamos la torsión.
```

```
using SymPy, LinearAlgebra
  0.00
      torsion(h, a)
  Calcula la torsion de la trayectoria de una función vectorial h en el punto a.
  function torsion(f, a)
      @syms t::real
      # Calculamos la primera derivada.
      df(t) = diff.(f(t))
      # Calculamos la segunda derivada.
      df2(t) = diff.(df(t))
      # Calculamos la tercera derivada.
      df3(t) = diff.(df2(t))
      # Calculamos la torsión.
       (t) = dot(cross(df(t), df2(t)), df3(t)) / norm(cross(df(t), df2(t)))^2
      return N(subs((t), t=>a))
  end
  println("Torsión en t=0: $(torsion(f, 0))")
  println("Torsión en t= /4: $(torsion(f, pi/4))")
  println("Torsión en t= /2: (torsion(f, pi/2))")
  println("Torsión en t=3 /4: $(torsion(f, 3pi/4))")
Torsión en t=0: 0
Torsión en t=/4: -1.2000000000000002
Torsión en t=/2: -4.3222828205200695e-17
Torsión en t=3/4: 1.2000000000000002
```

Ejercicio 8.10. Se lanza una pelota desde la terraza de un edificio de altura h con una rapidez inicial r y un ángulo sobre el horizonte θ . Estudiar la trayectoria que describe la pelota suponiendo que la única fuerza que actúa sobre ella es la de la gravedad.

a. Definir una función para calcular la función vectorial de la posición de la pelota tomando como parámetros la altura del edificio, la rapidez inicial y el ángulo de lanzamiento.

```
Solución
  using SymPy
      pelota(h, r, )
  Devuelve un vector con las componentes de la función vectorial que define la po
  function pelota(h, r, )
      @syms t::positive
      # Constante con al aceleración de la gravedad
      g = 9.81
      # Velocidad inicial.
      v = [r*cos(), r*sin()]
      # Aceleración constante
      a(t) = [Sym(0), -Sym(g)]
      # Obtenemos el vector velocidad integrando la aceleración.
      v(t) = integrate.(a(t), t) + v
      # Obtenemos el vector posición integrando el vector velocidad.
      return integrate.(v(t), t) + [0, h]
  end
pelota
```

b. Construir una función para dibujar la gráfica de la trayectoria de la pelota tomando como parámetros la altura del edificio, la rapidez inicial y el ángulo de lanzamiento.

```
Solución
  using GLMakie
  11 11 11
      trayectoria_pelota(ax, h, r, )
  Dibuja sobre los ejes ax la gráfica de la trayectoria de una pelota lanzada des
  function trayectoria_pelota!(ax, h, r, )
      @syms t::positive
      # Lambdificamos la expresión de la función vectorial para poder llamarla co
      f = lambdify(pelota(h, r, ))
      # Calculamos el instante en el que la pelota toca el suelo.
      t = solve(f(t)[2], t)[1]
      # Definimos un rango de valores desde O hasta el instante en que la pelota
      ts = range(0, t, 200)
      # Obtenemos los puntos de la trayectoria.
      points = Point2.(f.(ts))
      # Dibujamos la trayectoria.
      lines!(ax, points, label = "h = (h), r = (r), = ()")
      return ax
  end
  fig = Figure()
  ax = Axis(fig[1,1], title = "Trayectoria de la pelota", aspect = DataAspect())
  trayectoria_pelota!(ax, 100, 20, PI/4)
  trayectoria_pelota!(ax, 100, 20, PI/6)
  trayectoria_pelota!(ax, 100, 20, PI/8)
  trayectoria_pelota!(ax, 100, 20, PI/10)
  # Añadimos la leyenda
  axislegend(position = :lb)
  fig
```


c. Si se lanza la pelota a nivel del suelo, con una rapidez de 20 m/s ¿para qué ángulo se alcanzará una mayor distancia? ¿Y si se lanza desde 100 m de altura?

```
Calculamos primero el ángulo para una altura 0.

Calculamos primero el ángulo para una altura 0.

Calculamos primero el ángulo para una altura 0.

Calculamos la función vectorial.

f(t) = pelota(0, 20, )

# Calculamos el instante en que la pelota toca el suelo.

t = solve(f(t)[2], t)[1]

# Calculamos los puntos críticos de la derivada de la posición horizontal de la solve(diff(subs(f(t)[1], t=>t), ))

[ -0.785398163397448 ]

Y ahora para una altura de 100 m.
```

```
using Roots
  @syms , t:: positive
  # Definimos la función vectorial.
  f(t) = pelota(100, 20, )
  # Definimos la función vectorial.
  t = solve(f(t)[2], t)[2]
  # Calculamos los puntos críticos de la derivada de la posición horizontal de la
  find_zero(diff(subs(f(t)[1], t=>t), ), 0.5)
0.3903970673218906
```

d. Determinar las componentes tangencial y normal del vector aceleración, para una altura de 100 m, una rapidez de 20 m/s y un ángulo $\pi/4$. Comprobar que la componente tangencial de la aceleración se anula en el mismo instante en el que la componente normal es máxima y cuando la pelota alcanza la máxima altura.

i Ayuda

La componente tangencial del vector aceleración se puede calcular con la fórmula

$$a_T(t) = |\mathbf{v}(t)|' = \frac{\mathbf{f}'(t)\mathbf{f}''(t)}{|\mathbf{f}'(t)|}.$$

Y la componente normal mediante la fórmula

$$a_N(t) = \kappa(t) |\mathbf{v}(t)|^2 = \frac{|\mathbf{f}'(t) \times \mathbf{f}''(t)|}{|\mathbf{f}'(t)|}.$$

Si la trayectoria no es en el plano real, se pueden aplicar estas fórmulas añadiendo una tercera componente nula.

Solución

Calculamos primero la componente tangencial del vector aceleración.

```
using LinearAlgebra
  @syms t::positive
  # Creamos la función vectorial
  f(t) = pelota(100, 20, PI/4)
  # Añadimos una tercera componente nula para estar en el espacio real.
  f3 = push!(f(t), 0)
  # Calculamos la primera derivada (vector velocidad).
  df = diff.(f3, t)
  # Calculamos la segunda derivada (vector aceleración).
  df2 = diff.(df, t)
  # Calculamos la componente tangencial del vector aceleración.
  at = dot(df, df2) / norm(df)
  96.2361t - 98.1\sqrt{2}
\sqrt{100(0.981t-\sqrt{2})^2+200}
Y a continuación la componente normal.
  an = norm(cross(df, df2)) / norm(df)
  138.734350468801
\sqrt{100(0.981t-\sqrt{2})^2+200}
Ahora calculamos el instante en el que se anula la componente tangencial.
  solve(at)
1.4416040391163
Finalmente comprobamos que es el mismo instante en el que la componente
normal de la aceleración es máxima.
  # Instante en el que la componente normal de la acelaración es máxima.
  solve(diff(an))
[ 1.4416040391163 ]
Y comprobamos también que coincide con el instante en que la pelota alcanza
la máxima altura.
  solve(diff(f(t)[2]))
 1.4416040391163
```

8.2 Ejercicios propuestos