

SSD(Solid State Drive)

Grupo

Enricco D L Amaral	17.00165-0
--------------------	------------

Fernanda Veneroso de Almeida 17.00122-9

Paulo Belo Kaari Fernandes 16.00962-2

► Xiaoying He 17.00670-8

► Karina L. D. Kuroda 17.00709-7

O que é um SSD?

- Memória Flash
- ► Formatos e Interfaces
 - Barramentos
 - ► M.2
 - NVMe
 - Outras características
- Controlador
- ► SSD X HD
 - ► Evolução do HD(Hard Drive)

Memória Flash

Memória Flash

- ▶ É uma versão moderna da memória EEPROM :
 - EEPROM é um tipo de memória ROM que permite regravar os dados por meio de processos elétricos;
 - ▶ Enquanto a EEPROM apaga bit por bit a Flash apaga por blocos, assim tornandoa mais rápida.
- É uma memória não- volátil;
- Os SSD utilizam o Tipo Flash NAND:
 - Trabalha em alta velocidade;
 - Acesso sequencial às células de memória e em blocos;
 - podem armazenar mais dados que memórias NOR.

Memória Flash

- Densidade da Memória Flash :
 - ► SLC (Single-Level Cell);
 - ► MLC (Multiple-Level Cell);
 - ► TLC (Triple-Level Chip).
- ▶ 3D NAND (V-NAND)

Formatos
e
Interfaces

Barramentos

SATA EXPRESS

PCI Express

Barramentos

PCI Express

- Formatos: 1x, 4x, 8x, 16x
- Velocidade de transferência (PCIe 1x): 500Mb/s
- Muito caras.

SATA EXPRESS

- Também conhecido como SATAe
- Junção do SATA com PCI Express;
- Interface mais popular;

 Velocidade de transferência depende de SSD

M.2

- ▶ É um conjunto de formatos de placas;
- ▶ Interface: B key (6 pinos); M key (5 pinos)
- O slot de M.2 pode interagir com:
 - ► SATA 3.0;
 - PCI Express;
 - ▶ USB 3.0.
- Flexibilidade de formatos:
 - **M.2 22110**: 110 x 22 mm
 - ▶ **M.2 2280**: 80 x 22 mm (mais comum)
 - ► M.2 2260: 60 x 22 mm
 - **M.2 2242**: 42 x 22 mm

NVMe

- NVMe (Non-Volatile Memory Express)
- Protocolo que otimiza o tempo de acesso aos dados;
- Criado para resolver a falta de paralelismo do ACHI (Advanced Host Controller Interface);
- Não compatível com SATA;

Outras características

- **▶** U.2;
- ► TRIM;
- ▶ Buffer de Memória.

Otimização de SSD

Controlador

Controlador

- Gerenciam as operações de leitura e escrita;
- Troca de dados entre o computador e a memória Flash;
- Detectam e corrigem erros;
- As empresas não costumam divulgar a composição de seus controladores.

SSD X HD

Evolução do HD

SSD x HD

SSD

- ► Tempo de acesso (0,1/0,2 ms)
- Resistentes
- Silencioso
- Tamanho

HD

- Tempo de acesso (10/15 ms)
- Preço
- Maior capacidade de armazenamento

Maior consumo de energia

SSD x HD

O SSD, solid state drive, recebe esse nome por que diferente do seu antecessor, o HD(hard disk), o SSD não tem parte móvel. Impedindo falhas mecânicas e o tornando mais silencioso.

HD SSD

SSD x HD

A maior vantagem do SSD é sua velocidade, chegando a ser 10x maior que a do HD. Isso ocorre por dois fatores principais:

- I)Tempo de acesso
- II) Acesso aleatório

Assim, o SSD acessa as informações e as carrega mais rápido,

sejam elas a inicialização do sistema ou abertura de programas.

Referências

- https://www.tecmundo.com.br/memoria/202-o-que-e-ssd-.htm
- https://tecnoblog.net/108784/ssd-tudo-sobre/
- https://ynternix.com/ssd-x-hd-saiba-diferenca-vantagens-edesvantagens/
- https://www.clubedohardware.com.br/artigos/armazenamento/anatomi a-das-unidades-ssd-r35263/?nbcpage=2
- https://www.infowester.com/ssd.php#slc
- https://computer.howstuffworks.com/rom5.htm