Welcome to CS 4833 Embedded Systems

Fall 2018

Instructor: Dr. Dakai Zhu

CS 4833:Embedded Systems

About Me: Dakai Zhu (sounds like Zoo ☺)

- Research Interests
 - Real-time/Embedded systems
 - Scheduling algorithms and resource management
 - Low power computing: make your phone last longer!
 - Fault tolerance: make systems more reliable!
 - Object detection/recognition/tracking for robot auto-driving
- Embedded systems: performance vs. power
 - > Robot platform: LEGO EV3, Tetrix, and Pioneer 3AT robots
 - Embedded computers: RaspberryPi, BeagleBone Black, ODROID XU4, Nvidia TK1 and TX2 etc.
- Research opportunities
 - > Talk to me anytime!

Lecture Outline

- Introduction and attendance sheet
 - Self introduction: name, when to graduate, and future work interest etc.
- Operational information
 - ➤ Our class contract ③
- Introduction to Embedded Systems

CS 4833: Embedded Systems

UTSA

Operational Information

- Office: NPB 3.338
- Office hours:
 - > Tuesday: 10am 11:30 am
 - ➤ Thursday: 6pm 7:30 pm
 - > Or by appointment
- Contact information
 - * Email: dakai.zhu @ utsa.edu (preferred contact)
 - > Phone: 210-458-7453

CS 4833: Embedded Systems

Textbooks and Class Webpage

- Required textbook:
 - Embedded System: A Contemporary Design Tool by James K. Peckol (JKP), Wiley, 2008; ISBN: 978-0-471-72180-2
- Prerequisites:
 - CS 3843: Computer Organization
 - Good programming skills
- Class materials: **Blackboard**: http://learn.utsa.edu/
 - Course materials (slides, homework, labs/project)
 - Homework, and labs/project submission
 - Grade report (required by UTSA)

CS 4833: Embedded Systems

Course Objectives

- Learn basic concepts of embedded systems
- Understand design principles and technologies behind the embedded systems
 - Hardware/software technology capabilities and limitation
 - Design tradeoffs evaluation methods between different technologies/approaches
- Learn programming with embedded systems
- Obtain hands-on experiences
- Improve team-work skills

CS 4833: Embedded Systems

Topics (Tentative)

- Embedded System Structures and Design Principles
- Hardware: Gates, Processors and Memory technologies and composition
- Software: UML diagram
- Interact with physical world
 - I/O, sensors and actuators (motors)
 - > A/D and D/A conversion
 - > Interfacing and communications
- Real-time and Control Systems
- Robot programming: Python (RP3) and Arduino C

CS 4833: Embedded Systems

UTSA

Programming Platform: The Mobile Robot!

- Each set: >\$1,000: do NOT miss or break parts
 - > TETRIX MAX programmable robot w. PRIZM controller
 - RaspberryPi 3 + BrickPi

UTSA

Labs and Final Project

- Several (about 4) labs + one final project
- Labs/project: **teamwork**
 - Only have 10 sets: a group of 3 students per set
 - ➤ All teammates are responsible for the equipment
 ✓ If broken, will be asked to replace them at your cost ©
 - Labs/project will be conducted in the classroom during lecture time
 - Experiment sets need to be returned after each lab and can NOT be taken home
- Grading for labs and project: same for all members
 - > Report on each member's contribution!

CS 4833: Embedded Systems

Overview of Course Work

- Good part: NO final exam! ⁽³⁾
- Two midterm exams (40%)
 - > 20% each
 - closed books/notes
- Homework and labs/project (60%)
 - > A few (2 or 3) homework: 10%
 - Labs (4) and final projects: 50%
 - About 6-7 weeks (out of 16 weeks) for labs/projects
- Attendance to lectures/labs is mandatory!
 - Miss 3 lectures/labs → one grade mark down!

CS 4833: Embedded Systems

Grade Policy: Yah, This is Important ^_^

- No makeup exams!
 - > Two midterm exams: in class, 75 minutes
 - > Tentative dates: weeks 6 (Sept. 27) & 12 (Nov. 8)
- No late homework and labs/project
 - > Except for University sanctioned excuses
- Final grade:
 - >= $90\% \rightarrow A$;
 - >= $80\% \rightarrow B$;
 - >>= 70% → C;
 - >= $60\% \rightarrow D$;
 - ><60% → F

CS 4833: Embedded Systems

רש