# 【故障处理】队列等待之 enq IV - contention 案例

### 1.1 BLOG 文档结构图

|   | 1.1 BLO | G 文档结构图                                            |
|---|---------|----------------------------------------------------|
|   | 1.2 前言  |                                                    |
|   | 1.2.1   | 导读和注意事项                                            |
| 4 | 1.3 故障  | 分析及解决过程                                            |
|   | 1.3.1   | 数据库环境介绍                                            |
|   | 1.3.2   | AWR分析                                              |
|   | 1.3.3   | enq: IV - contention 解决                            |
| 4 | 1.4 MO  | S                                                  |
|   | 1.4.1   | 12c RAC DDL Performance Issue: High "enq: IV - con |

### 1.2 前言部分

### 1.2.1 导读和注意事项

各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识, $\sim O(\cap_{-} \cap) O \sim :$ 

① 队列等待之 eng IV - contention 案例 (重点)

### Tips:

- ① 本文在itpub(<a href="http://blog.itpub.net/26736162">http://blog.itpub.net/26736162</a>)、博客园(<a href="http://www.cnblogs.com/lhrbest">http://www.cnblogs.com/lhrbest</a>)和微信公众号(xiaomaimiaolhr)上有同步更新。
- ② 文章中用到的所有代码、相关软件、相关资料及本文的 pdf 版本都请前往小麦苗的云盘下载,小麦苗的云盘地址见: http://blog.itpub.net/26736162/viewspace-1624453/。
  - ③ 若网页文章代码格式有错乱,请下载 pdf 格式的文档来阅读。
  - ④ 在本篇 BLOG 中,代码输出部分一般放在一行一列的表格中。

本文如有错误或不完善的地方请大家多多指正,ITPUB 留言或 QQ 皆可,您的批评指正是我写作的最大动力。

### 1.3 故障分析及解决过程

## 1.3.1 数据库环境介绍

| 项目               | source db                                 |
|------------------|-------------------------------------------|
| db <b>类型</b>     | RAC                                       |
| db version       | 12.1.0.2.0                                |
| db <b>存储</b>     | ASM                                       |
| OS 版本及 kernel 版本 | SuSE Linux Enterprise Server(SLES 11) 64位 |

## 1.3.2 **AWR** 分析

#### **Database Summary**

|           | Database |     |                   | Snapsh | ot lds | Number of Instances |       | Number of Hosts |       | Report Total (minutes |              |
|-----------|----------|-----|-------------------|--------|--------|---------------------|-------|-----------------|-------|-----------------------|--------------|
| ld        | Name     | RAC | <b>Block Size</b> | Begin  | End    | In Report           | Total | In Report       | Total | DB time               | Elapsed time |
| 521111702 | PLHRDB   | YES | 8192              | 3440   | 3441   | 2                   | 2     | 2               | 2     | 76.79                 | 59.81        |

#### Database Instances Included In Report

· Listed in order of instance number, I#

| # Instance | Host            | Startup         | Begin Snap Time | End Snap Time   | Release    | Elapsed Time(min) | DB time(m |
|------------|-----------------|-----------------|-----------------|-----------------|------------|-------------------|-----------|
| 1 plhrdb1  | HQaPQQ-PLHR-R01 | 11-8月 -16 20:51 | 14-12月-16 20:00 | 14-12月-16 21:00 | 12.1.0.2.0 | 59.80             | 63        |
| 2 plhrdb2  | HQaPQQ-PLHR-R02 | 12-12月-16 02:57 | 14-12月-16 20:00 | 14-12月-16 21:00 | 12.1.0.2.0 | 59.80             | 13        |

## **Report Summary**

### Top ADDM Findings by Average Active Sessions

| Finding Name      | Avg active sessions of the task | Percent active sessions of finding | Task Name           | Begin<br>Snap<br>Time  | End<br>Snap<br>Time    |
|-------------------|---------------------------------|------------------------------------|---------------------|------------------------|------------------------|
| 特殊的 "其他" 等待<br>事件 | 1.28                            | 34.87                              | ADDM:521111702_3441 | 14-12<br>月-16<br>20:00 | 14-12<br>月-16<br>21:00 |
| 特殊的 "其他" 等待<br>事件 | 1.28                            | 19.66                              | ADDM:521111702_3441 | 14-12<br>月-16<br>20:00 | 14-12<br>月-16<br>21:00 |
| "并行" 等待类          | 1.28                            | 16.62                              | ADDM:521111702_3441 | 14-12<br>月-16<br>20:00 | 14-12<br>月-16<br>21:00 |
| 共享池闩锁数            | 1.28                            | 13.58                              | ADDM:521111702_3441 | 14-12                  | 14-12                  |

这里简单分析一下 Up Time (hrs), 其它几个指标都很熟悉了。表中的"Up Time (hrs)"代表自数据库实例 启动到本次快照结束这段时间的小时数。例如,该 AWR 中数据库实例 1 的启动时间为"2016-08-11 20:51",快照结束时间为"2016-12-14 21:00",故"Up Time (hrs)"约为 125.006 天,转换为小时约为 3000.14 小时,如下所示:

SYS@lhrdb> SELECT trunc(UP\_TIME\_D,3), trunc(trunc(UP\_TIME\_D,3)\*24,2) UP\_TIME\_HRS FROM (SELECT (TO\_DATE('2016-12-14 21:00', 'YYYY-MM-DD HH24:MI') - TO\_DATE('2016-08-11 20:51', 'YYYY-MM-DD HH24:MI')) UP\_TIME\_D FROM DUAL);

可以看到节点 1 的负载较大, 而 ADDM 中, 特殊类的等待事件较多。接下来查看等待事件的部分:

### **Top Timed Events**

- Instance \*\* cluster wide summary
- '\*' Waits, %Timeouts, Wait Time Total(s): Cluster-wide total for the wait event
- '\*' 'Wait Time Avg (ms)': Cluster-wide average computed as (Wait Time Total / Event Waits) in ms
- "\* Summary 'Avg Wait Time (ms)": Per-instance 'Wait Time Avg (ms)' used to compute the following statistics
- \*\*\* [Avg/Min/Max/Std Dev]: average/minimum/maximum/standard deviation of per-instance "Wait Time Avg(ms)"
- "\*" Cnt: count of instances with wait times for the event

|             | Wait                        |         | Event     |          | <b>Wait Tim</b> | e        | Sur   | nmary | Avg Wa | ait Time (r | m |
|-------------|-----------------------------|---------|-----------|----------|-----------------|----------|-------|-------|--------|-------------|---|
| Class       | Event                       | Waits   | %Timeouts | Total(s) | Avg(ms)         | %DB time | Avg   | Min   | Max    | Std Dev     | Ī |
| Other       | enq: IV - contention        | 63,234  | 1.55      | 1,726.35 | 27.30           | 37.47    | 29.17 | 22.26 | 36.08  | 9.77        | , |
| Other       | DFS lock handle             | 40,650  | 2.02      | 1,632.32 | 40.16           | 35.43    | 92.56 | 34.55 | 150.57 | 82.04       | ļ |
|             | DB CPU                      |         |           | 398.33   |                 | 8.65     |       |       |        |             |   |
| Concurrency | library cache lock          | 9,904   | 4.96      | 378.60   | 38.23           | 8.22     | 29.25 | 7.55  | 50.95  | 30.69       | , |
| Application | enq: RO - fast object reuse | 7,326   | 0.00      | 321.87   | 43.93           | 6.99     | 44.87 | 39.98 | 49.76  | 6.92        | - |
| Other       | reliable message            | 3,021   | 0.00      | 279.89   | 92.65           | 6.07     | 58.67 | 14.79 | 102.56 | 62.06       | , |
| Concurrency | library cache pin           | 5,920   | 0.00      | 245.83   | 41.53           | 5.34     | 31.42 | 6.66  | 56.17  | 35.01       | 1 |
| Commit      | log file sync               | 120,858 | 0.00      | 192.74   | 1.59            | 4.18     | 1.59  | 1.59  | 1.60   | 0.01        | i |
| Other       | enq: FB - contention        | 15,996  | 0.00      | 174.09   | 10.88           | 3.78     | 10.90 | 10.03 | 11.76  | 1.22        | - |
| Concurrency | row cache lock              | 34,753  | 0.00      | 141.06   | 4.06            | 3.06     | 3.99  | 3.81  | 4.18   | 0.26        | j |
| Other       | DFS lock handle             | 38,685  | 1.49      | 1,336.45 | 34.55           | 35.32    |       |       |        | 8           |   |
| Other       | enq: IV - contention        | 40,170  | 1.25      | 894.29   | 22.26           | 23.63    |       |       |        |             |   |
| Concurrency | library cache lock          | 7,000   | 5.51      | 356.66   | 50.95           | 9.43     |       |       |        |             |   |
| Other       | reliable message            | 2,680   | 0.00      | 274.85   | 102.56          | 7.26     | 8     |       |        |             |   |
| Concurrency | library cache pin           | 4,169   | 0.00      | 234.17   | 56.17           | 6.19     |       |       |        |             |   |
|             | DB CPU                      |         |           | 210.85   |                 | 5.57     |       |       |        |             |   |
| Application | enq: RO - fast object reuse | 4,360   | 0.00      | 174.29   | 39.98           | 4.61     |       |       |        |             |   |
| Concurrency | row cache lock              | 23,584  | 0.00      | 98.54    | 4.18            | 2.60     |       |       |        |             |   |
| Other       | enq: FB - contention        | 7,890   | 0.00      | 92.80    | 11.76           | 2.45     | ×     |       |        |             |   |
| Commit      | log file sync               | 57,616  | 0.00      | 92.10    | 1.60            | 2.43     |       |       |        |             |   |
| Other       | enq: IV - contention        | 23,064  | 2.06      | 832.06   | 36.08           | 101.00   |       |       |        |             |   |
| Other       | DFS lock handle             | 1,965   | 12.57     | 295.87   | 150.57          | 35.92    |       |       |        |             |   |
|             | DB CPU                      |         |           | 187.48   |                 | 22.76    |       |       |        |             |   |
| Application | enq: RO - fast object reuse | 2,966   | 0.00      | 147.58   | 49.76           | 17.91    | Š.    |       |        |             |   |
| Other       | ges inquiry response        | 1,442   | 0.00      | 135.74   | 94.13           | 16.48    |       |       |        |             |   |
| Commit      | log file sync               | 63,242  | 0.00      | 100.64   | 1.59            | 12.22    |       |       |        |             |   |
| Other       | enq: FB - contention        | 8,106   | 0.00      | 81.30    | 10.03           | 9.87     | 2     |       |        |             |   |
| System I/O  | log file parallel write     | 47,652  | 0.00      | 57.56    | 1.21            | 6.99     | 8     |       |        |             |   |
| Concurrency | row cache lock              | 11,169  | 0.00      | 42.52    | 3.81            | 5.16     |       |       |        |             |   |
| Other       | enq: PS - contention        | 1,148   | 12.46     | 34.80    | 30.32           | 4.22     |       |       |        |             |   |

可以看到 enq: IV - contention 和 DFS lock handle 等待较为严重。这里需要说一下 enq: IV - contention 这个名称。在 AWR 中,IV 和-的前后都是 1 个空格,而在数据库中记录的是-之后有 2 个空格,如下:

# enq: IV - contention

所以,采用搜索的时候需要注意。

# **Top Events**

- · Top Events by DB Time
- % Activity is the percentage of DB Time due to the event

| Event                | <b>Event Class</b> | Session Type | % Activity | <b>Avg Active Sessions</b> |
|----------------------|--------------------|--------------|------------|----------------------------|
| DES lock handle      | Other              | FOREGROUND   | 24 05      | 0.44                       |
| enq: IV - contention | Other              | BACKGROUND   | 13.39      | 0.25                       |
| enq: IV - contention | Other              | FOREGROUND   | 11.72      | 0.21                       |
| CPU + Wait for CPU   | CPU                | BACKGROUND   | 10.65      | 0.20                       |
| library cache lock   | Concurrency        | FOREGROUND   | 6.09       | 0.11                       |

Back to Active Session History(ASH) Report Back to Top

## Top Event P1/P2/P3 Values

- Top Events by DB Time and the top P1/P2/P3 values for those events.
- . % Event is the percentage of DB Time due to the event
- % Activity is the percentage of DB Time due to the event with the given P1,P2,P3 Values.

| Event                       | % Fvant | D1 D2 D3 Values                                 | % Activity | Parameter 1     | Parameter 2  |
|-----------------------------|---------|-------------------------------------------------|------------|-----------------|--------------|
| eng: IV - contention        | 25.11   | "1230372867","1398361667","24"                  | 1.07       | type mode       | id1          |
| DFS lock handle             | 24.51   | "1128857605","123","1"                          | 17.35      | type mode       | id1          |
|                             |         | "1128857605","123","5"                          | 6.39       |                 |              |
| library cache lock          | 6.09    | "272666734984","280821609928","511659454038019" | 0.15       | handle address  | lock address |
| reliable message            | 4.87    | "301251386960","302315898592","301251528640"    | 0.76       | channel context | channel hand |
| enq: RO - fast object reuse | 4.57    | "1380909062","65848","1"                        | 1.52       | name mode       | 2            |
|                             |         | "1380909058","65848","1"                        | 1.37       |                 |              |

根据 ASH 中的 p1 参数的值获得:

## 1.3.3 enq: IV - contention解决

SELECT \*

FROM V\$EVENT NAME A

WHERE A.NAME LIKE '%enq: IV - contention%';

EVENT# EVENT\_ID NAME PARAMETER1 PARAMETER2 PARAMETER3 WAIT\_CLASS\_ID WAIT\_CLASS WAIT\_CLASS DISPLAY\_NAME CON\_ID 1195 3753139397 enq: IV - contention --- type|mode --- id1 --- id2 --- 1893977003 0 Other --- enq: IV - contention --- 0

该等待事件为 12c 特有,12c 相比 11g 多了大约 500 多个等待事件。该问题参考 MOS: 12c RAC DDL Performance

Issue: High "enq: IV - contention" etc if CPU Count is Different (文档 ID 2028503.1)



The fix will be included in future PSU, patch exists for certain platform/version. The workaround is to set the following parameter to the highest value in the cluster and restart:

\_ges\_server\_processes

To find out the highest value, run the following grep on each node:

ps -ef| grep lmd

该等待事件主要是由于 12c RAC 的 2 个节点上的 cpu\_count 这个变量不一致导致的。从 AWR 中可以看出节点 1 的 CPU 为 48, 而节点 2 的 CPU 为 96。

## **OS Statistics By Instance**

- . Listed in order of instance number, I#
- End values are diplayed only if different from begin values

| <b>l</b> # | Num CPUs | <b>CPU Cores</b> | <b>CPU Sckts</b> | Load Begin | Load End | % Busy | % Usr | % Sys | % WIO | % idi | Busy Time (s) | Idle Time |
|------------|----------|------------------|------------------|------------|----------|--------|-------|-------|-------|-------|---------------|-----------|
| 1          | 48       | 48               | 4                | 0.92       | 0.66     | 1.55   | 1.14  | 0.39  | 0.01  | 98.45 | 2,659.65      | 168,935   |
| 2          | 96       | 48               | 4                | 0.39       | 0.56     | 0.49   | 0.30  | 0.17  | 0.01  | 99.51 | 1,671.10      | 342,104   |
| 2<br>Sum   |          |                  |                  |            |          |        |       |       |       |       | 4,330.75      | 511,040.  |

从 dba\_hist\_parameter 中可以看到 CPU\_COUNT 这个参数的变化历史:

#### SQL> SHOW PARAMETER CPU

| NAME                            | TYPE    | VALUE |
|---------------------------------|---------|-------|
|                                 |         |       |
| cpu_count                       | integer | 96    |
| parallel_threads_per_cpu        | integer | 2     |
| resource_manager_cpu_allocation | integer | 96    |

SQL> select snap\_id, INSTANCE\_NUMBER, PARAMETER\_NAME, VALUE from dba\_hist\_parameter where
PARAMETER\_NAME='cpu\_count' order by snap\_id;

| SNAP | ΙD | INSTANCE | NUMBER | PARAMETER | NAME |
|------|----|----------|--------|-----------|------|
|      |    |          |        |           |      |

| VA    | L | UE     |
|-------|---|--------|
| V 1 1 |   | $\sim$ |

|  | 3368 | 1 cpu_count | 48 |
|--|------|-------------|----|
|  | 3369 | 1 cpu_count | 48 |
|  | 3369 | 2 cpu_count | 48 |
|  | 3370 | 1 cpu_count | 48 |
|  | 3371 | 1 cpu_count | 48 |
|  | 3372 | 1 cpu_count | 48 |
|  | 3373 | 1 cpu count | 48 |
|  | 3374 | 1 cpu count | 48 |
|  | 3375 | 2 cpu_count | 96 |
|  | 3375 | 1 cpu count | 48 |
|  | 3376 | 1 cpu count | 48 |
|  | 3376 | 2 cpu_count | 96 |
|  | 3377 | 1 cpu count | 48 |
|  | 3377 | 2 cpu count | 96 |
|  | 3378 | 2 cpu count | 96 |
|  | 3378 | 1 cpu count | 48 |
|  | 3379 | 1 cpu count | 48 |
|  | 3379 | 2 cpu_count | 96 |
|  |      |             |    |

查询告警日志: more alert\*|grep -i Cpu 也可以获取 CPU 的变化。

询问客户可知,是他们调整过系统的 CPU 资源,所以导致节点 2 上的 CPU\_COUNT 自动变化,引起了 enq: IV - contention 等待。

若主机的 CPU 个数变化,那么当主机重启后数据库的 cpu\_count 参数的值会随之变化,该参数属于操作系统依赖参数。

调整主机的 CPU 个数之后,该等待事件消失。

### 1.4 MOS

1.4.1 12c RAC DDL Performance Issue: High "enq: IV - contention" etc if CPU Count is Different (文档 ID 2028503.1)



12c RAC DDL Performance Issue High enq IV - contention etc if CPU Count is Different (文档 ID 2028503.1).mhtml

#### About Me

- 本文作者:小麦苗,只专注于数据库的技术,更注重技术的运用
- 本文在 itpub ( http://blog.itpub.net/26736162 )、博客园 (http://www.cnblogs.com/lhrbest)和个人微信公众号 ( xiaoma
- 本文 itpub 地址: http://blog.itpub.net/26736162/viewspace-2131320/
- 本文博客园地址:http://www.cnblogs.com/lhrbest/p/6218042.html
- 本文 pdf 版及小麦苗云盘地址:http://blog.itpub.net/26736162/viewspace-1624453/
- QQ 群: 230161599 微信群: 私聊
- 联系我请加 QQ 好友 (642808185), 注明添加缘由
- 于 2016-09-01 15:00 ~ 2016-10-20 19:00 在农行完成
- 文章内容来源于小麦苗的学习笔记,部分整理自网络,若有侵权或不当之处还请谅解
- 版权所有,欢迎分享本文,转载请保留出处

手机长按下图识别二维码或微信客户端扫描下边的二维码来关注小麦苗的微信公众号:xiaomaimiaolhr,免费学习最实用的数据库技术。

