Taller Visión Computacional e IA Sesión 2 – Machine Learning

ARTIFICIAL INTELLIGENCE IN BIOMEDICINE GROUP

Aprendizaje

25 -

Extracción de Características

Aprendizaje

Características:

Clasificador multiclase (2 clases o más)

Ej. Colores y/o formas

Características:

- Clasificador multiclase (2 clases o más)
- Se basa en la cercanía entre vecinos (cercanía entre instancias)

Ej. Asiento de un nuevo aficionado?

Características:

- Clasificador multiclase (2 clases o más)
- Se basa en la cercanía entre vecinos (cercanía entre instancias)

Ej. Asiento de un nuevo aficionado?

Características:

 Se basa en la cercanía entre vecinos (cercanía entre instancias)

Características:

 Se basa en la cercanía entre vecinos (cercanía entre instancias)

Dado un conjunto de datos y sus etiquetas:

		X_1	 X_{j}	 X_n	C
(\mathbf{x}_1, c_1)	1	x_{11}	 x_{1j}	 x_{1n}	c_1
	:	:	÷	:	:
(\mathbf{x}_i, c_i)	i	$ x_{i1} $	 x_{ij}	 x_{in}	c_i
	:	:	÷	÷	:
(\mathbf{x}_N, c_N)	N	x_{N1}	 x_{Nj}	 x_{Nn}	c_N
x	N+1	$x_{N+1,1}$	 $x_{N+1,j}$	 $X_{N+1,n}$?

$$(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)$$
 donde
 $\mathbf{x}_i = (x_{i,1} \dots x_{i,n})$ para todo $i = 1, \dots, N$
 $c_i \in \{c^1, \dots, c^m\}$ para todo $i = 1, \dots, N$

Criterio de clasificación

Criterio de clasificación

Criterio de clasificación 2D

$$dist(a,b) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Criterio de clasificación 3D

Criterio de clasificación n-dimencional

Criterio de clasificación n-dimencional

$$\mathbf{A} = \{a_1, a_2, ..., a_n\}$$
 $\mathbf{B} = \{b_1, b_2, ..., b_n\}$

$$dist(\mathbf{A}, \mathbf{B}) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

$$dist(\mathbf{A}, \mathbf{B}) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

COMIENZO

```
Entrada: D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)\} \mathbf{x} = (x_1, \dots, x_n) nuevo caso a clasificar PARA todo objeto ya clasificado (x_i, c_i) calcular d_i = d(\mathbf{x}_i, \mathbf{x}) Ordenar d_i (i = 1, \dots, N) en orden ascendente
```

Quedarnos con los K casos $D_{\mathbf{x}}^K$ ya clasificados más cercanos a \mathbf{x} Asignar a \mathbf{x} la clase más frecuente en $D_{\mathbf{x}}^K$

Aprendizaje

Métricas de Validación

Matriz de Confusión

		Predicción		
		Positivos	Negativos	
Observación	Positivos	Verdaderos Positivos (VP)	Falsos Negativos (FN)	
	Negativos	Falsos Positivos (FP)	Verdaderos Negativos (VN)	

$$Sensibilidad = rac{VP}{VP + FN}$$

$$Especificidad = rac{VN}{VN + FP}$$

$$ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

Aprendizaje

