Подсистема оценки качества телекоммуникационных услуг на базе

алгоритма ANFIS

Цель: Разработать программу на языке С#, проставляющую оценку качества обслуживания телекоммуникационных сетей на основе алгоритма ANFIS с последующим занесением результата в соответствующую таблицу базы данных. Добавить в программу возможность создания отчета за выбранный период. Создать максимально простой и понятный пользователю интерфейс программы.

Общее представление системы оценки качества телекоммуникационных услуг

Представление подсистемы оценки качества на базе алгоритма ANFIS

Перечень задач, решенных в процессе проектирования:

- •исследование предметной области проектирования;
- определение функциональных задач;
- изучение алгоритма ANFIS;
- анализ аналогов и прототипов;
- •разработка алгоритмов программы;
- •разработка программы;
- отладка программы;
- разработка пользовательского интерфейса;
- •тестирование программы;
- разработка конструкторской и эксплуатационной документации;
- •оценка экономической эффективности;
- моделирование системы.

Взаимодействие пользователя с программой

Утвердил (В.А. Галкин) Выполнила (У.В. Журавлева)

Peaлизация алгоритма ANFIS (Adaptive Neuro-Fuzzy Inference System)

Архитектура ANFIS

:

W

al, bl

a2, b2

Prod

Параметры для оценки качества телекоммуникационных услуг

гелекоммуникационной услуги были выбраны следующие В качестве критериев для оценки качества оказания параметры:

- уровень использования;
- •скорость;
- •задержка;

wlfl

X5

:

X

a5, b5

al, bl

a2, b2

X2

a5, b5

- ошибки;
- •временное окно;

w1f1+w2f2+w3f3+w4f4+w5f5

w2f2

w2

Prod

Sum

w5f5

X5

 X_1

SW.

a2, b2

al, bl

Prod

a5, b5

:

•группа пользователя.

Все параметры уже нормированы и хранятся в базе данных. гелекоммуникационного соединения по пятибалльной шкале, Выходные данные представляют собой оценку качества которая автоматически заносится в бд.

Функция принадлежности

Алгоритм градиентного спуска:

 $\frac{\partial E_n^p}{\partial \boldsymbol{\omega}_n^{jj}} = x_{n-1}^j \cdot \frac{\partial E_n^p}{\partial y_n^j}$

ц характеризует скорость обучения:

Обратное распространение на предыдущий слой:

(В.А. Галкин) Выполнила

(У.В. Журавлева)

Обратное распространение ошибки: $E_n^p = \frac{1}{2} \cdot \sum_{k=1}^M (x_k - d_k)^2$

ANFIS (Adaptive Neuro-Fuzzy Inference System) - Адаптивные нечеткие нейронные

Sum

структуру, которая по своим функциям эквивалентна нечеткой системе логического сети. Данный алгоритм был предложен J.-S. Roger Yang в 1992 году. ANFIS имеет

вывода, построенной с помощью нечетких базовых правил типа Такаги - Сугено.

Модель нечёткого вывода Сугено 1 -го порядка использует правила вида:

If x is A_2 and y is B_2 then $z = f_2 = p_2x + q_2y + r_2$ If x is A_1 and y is B_1 then $z = f_1 = p_1x + q_1y + r_1$

Утвердил

Структурная схема

(У.В. Журавлева)

Диаграмма классов

Временные характеристики

График зависимости времени обучения от размера тестовой выборки

График зависимости среднеквадратичного отклонения от размера тестовой выборки

Утвердил (В.А. Галкин) Выполнила (У.В. Журавлева)

Результаты выполнения программы

Форма создания отчета

Формы обучения алгоритма ANFIS

Фрагмент отчета с результатами программы

Отмена

OK

Создать папку

			Уровень				Временное	
αID	Группа	Дата	использования Скорость Задержка Ошибки окно	Скорость	Задержка	Ошибки	ОКНО	Оценка
123456	1	15.08.2014 20:59:22		0,796472 0,527879	0,483626	H	. 1	4
123456	1	15.08.2014 21:32:28		0,796472 0,857433	0,485326		T	4
123456	1	15.08.2014 22:02:44		0,756879 0,819699	0,504162	H	. 1	4
123456	1	15.08.2014 22:44:19	OVER Y	0,928862 0,314227	0,493557	1	. 1	4
123456	1	15.08.2014 23:14:29		0,928862 0,962134	0,491537	Н	. 1	4
123456	1	15.08.2014 23:44:14		0,756879 0,400505	0,507962		. 1	4
123456	1	16.08.2014 00:12:44		0,756879 0,404928	0,528482		. 1	4
123456	1	16.08.2014 00:55:28		0,796472 0,503824	0,472526	Н	. 1	4
123456	1	16.08.2014 01:25:23	0,735862	0,592352	0,456257	1		4
123456	1	16.08.2014 01:36:54	0,690324	0,523592	0,449294	Т	. 1	4
123456	1	16.08.2014 02:07:38		0,556929 0,423505	0,501182	Н	. 1	3
123456	1	16.08.2014 02:40:21		0,596442 0,401431	0,495226	Н		3
123456	1	16.08.2014 03:09:23		0,529662 0,319831	0,469237	Т	1	3
123456	-	17.08.2014 09:09:54		0,493524 0,455832	0,402994			3

Моделирование системы

Формализованная модель

Цель имитационного моделирования системы:

вычислить адекватной пропускной способности алгоритма ANFIS и количество пользователей, работающих одновременно.

Результаты моделирования:

График зависимости времени нахождения заявки в системе от количества пользователей услугой

Характеристики системы:

- заявки (Z) представляют собой каждую запись базы данных с характеристиками интернет-соединения, по которой не было проставлено оценки качества телекоммуникационной услуги;
- действует накопитель $6y \phi e p$ на этапе передачи (Btx), и образуется очередь на передачу (Btx);
- поток записей без оценок образуют файлы, пришедшие ото всех пользователей или клиентов (Clt) вошедших в проект (имеют установленное ПО):
- эвявка, что в каждый момент времени может появиться только одна заявка, которая обслуживается апторитмом ANFIS, деля для этого пропускную способность. Поток является простейшим;
- на этапе обработки не действует никакого накопителя, так как алгоритм ANFIS обрабатывает записи по одной;
- обработать запись значит передать параметры, хранящиеся в ней в алгоритм ANFIS, проставить по ним оценку и передать поставленную оценку качества обратно в базу данных;
- при записи оценки качества в базу данных формируется очередь.

Утвердил (В.А. Галкин) Выполнила (У.В. Журавлева)