Quá trình	Đẳng tích	Đẳng áp	Đẳng nhiệt	Đoạn nhiệt	Đa phương
	(V = const)	(P = const)	(T = const)	(Q=0)	(C=0)
Biểu thức cân bằng	$\frac{P}{T} = const$ $P = P$	$\frac{V}{T} = const$ $V = V_{2}$	PV = const	$T_{1}V_{1}^{\gamma-1} = T_{2}V_{2}^{\gamma-1}$ $P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}$	$PV^{n} = const$ $C - C_{p}$
	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$\frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$	$P_1V_1 = P_2V_2$	$\mathbf{r}_1 \mathbf{v}_1 - \mathbf{r}_2 \mathbf{v}_2$	$n = \frac{C - C_{p}}{C - C_{V}}$
$ \begin{array}{c} \mathbf{C\^{o}ng} \\ dA = -PdV \\ v_2 \end{array} $	A = 0	$A = -P(V_2 - V_1)$	$A = -\frac{m}{\mu} RT \ln \frac{V_2}{V_1}$	$A = \frac{i}{2} (P_2 V_2 - P_1 V_1)$	* n = 0
$A = -\int_{V_1}^{V_2} P dV$	12 0	(2 1)	$= -\frac{m}{\mu} RT \ln \frac{P_1}{P_2}$	$=\frac{\mathbf{P}_2\mathbf{V}_2-\mathbf{P}_1\mathbf{V}_1}{\gamma-1}$	$\Rightarrow \begin{cases} C = C_{P} \\ V^{0} = 1 \end{cases} \Rightarrow P = const$
Nhiệt lượng			V		Quá trình đẳng áp
$dQ = \frac{m}{\mu} CdT$	$Q = \frac{m}{\mu} C_{V} \Delta T$	$Q = \frac{m}{\mu} C_p \Delta T$	$Q = -A = \frac{m}{\mu} RT \ln \frac{V_2}{V_1}$	0	
$Q = \frac{m}{\mu} C \Delta T$	$C_{V} = \frac{1R}{2}$	$C_{P} = \left(\frac{1}{2} + 1\right)R$	$= \frac{m}{\mu} RT \ln \frac{P_1}{P_2}$		$*n = \infty \Rightarrow C = C_v$ Quá trình đẳng tích
Nội năng	$\Delta U = \frac{m}{\mu} \frac{iR}{2} \Delta T$	$\Delta U = \frac{m}{\mu} \frac{iR}{2} \Delta T$	0	$\Delta U = \frac{m}{\mu} \frac{iR}{2} \Delta T$	
Phương trình trạng	Bậc tự do i:		Hiệu suất của động cơ nhiệt:		n = 1
thái khí lí tưởng:	Khí đơn nguyên tử (He, Ar, Xe):		$\eta = \frac{A'}{Q_1} = \frac{Q_1 - Q_2}{Q_2} = 1 - \frac{Q_2}{Q_1}$		$\Rightarrow V^1 = V \Rightarrow PV = const$
$PV = \frac{m}{r}RT$	i = 3		A': công mà động cơ sinh ra,		Quá trình đẳng nhiệt
μ					
$m(\mathbf{g}), \mu(\mathbf{g/mol}), T(\mathbf{K})$	Khí hai nguyên tử (lưỡng nguyên tử)		Q ₁ : nhiệt lượng động cơ nhận được từ nguồn nóng,		$n = \gamma$
	(H_2,O_2, N_2) : i = 5		Q ₂ : nhiệt lượng động cơ tỏa ra cho nguồn lạnh		$\Rightarrow V^{n} = V^{\gamma} \Rightarrow PV^{\gamma} = const$
$P(N/m^2), V(m^3),$	Khí ba nguyên tử trở lên (CO_2 , H_2O , NH_3): i = 6		Chu trình Carnot: Cho hiệu suất cao nhất, gồm Đẳng nhiệt-Đoạn nhiệt-Đẳng nhiệt-Đoạn nhiệt:		Quá trình đoạn nhiệt
R=8,31 (J/mol.K)					
\Rightarrow U, Q (\mathbf{J} =N.m)					
P(atm), V(lit), R=0,082lit.atm/mol.K	Hệ số Poisson: $\gamma = \frac{C_P}{C_V} = 1 + \frac{2}{i}$		$\eta_{\rm max} = 1 - \frac{T_2}{T_1}$		
=> U, Q (lit.atm)	$C_{P} = C_{V} + R$				

- (1): $\overrightarrow{\text{Dang}}$ tích: V = const
- (2): $\overrightarrow{\text{Dang}}$ áp: P = const
- (3): Đẳng nhiệt: PV = const
- (4): Đoạn nhiệt: $PV^{\gamma} = \text{const}$

- (1): Đẳng tích: P = const.T
- (2): Đẳng áp: P = const (3): Đẳng nhiệt: T = const
- (4): Đoạn nhiệt: $P = T^{\frac{\gamma}{\gamma-1}}$

- (1): $\overrightarrow{\text{Dang}}$ tích: V = const
- (2): Đẳng áp: V = const.T (3): Đẳng nhiệt: T = const
- (4): Đoạn nhiệt: $V = T^{\frac{1}{1-\gamma}}$