This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Find the volume of the solid in the first octant bounded by the cylinders

$$x^2 + y^2 = 9$$
, $y^2 + z^2 = 9$.

- 1. volume = 20 cu. units
- 2. volume = 21 cu. units
- 3. volume = 18 cu. units correct
- 4. volume = 19 cu. units
- 5. volume = 17 cu. units

Explanation:

The solid in the first octant bounded by the cylinders

$$x^2 + y^2 = 9, y^2 + z^2 = 9$$

is the solid below the graph of

$$z = \sqrt{9 - y^2}$$

above that part of the circle

$$x^2 + y^2 = 9$$

lying in the first quadrant of the xy-plane. Thus the volume of the solid is given by the double integral

$$V = \int \int_A \sqrt{9 - y^2} \, dx dy$$

where A is the region in the first quadrant of the x-y plane bounded by the quarter-circle

$$\{(x, y): 0 \le x \le \sqrt{9 - y^2}, \ 0 \le y \le 3\},$$

and so V can be represented as the iterated integral

$$V = \int_0^3 \left\{ \int_0^{\sqrt{9-y^2}} \sqrt{9-y^2} \, dx \right\} dy.$$

In this case,

$$V = \int_0^3 \left[x \sqrt{9 - y^2} \right]_0^{\sqrt{9 - y^2}} dy$$
$$= \int_0^3 (9 - y^2) dy.$$

Consequently,

$$V = \left[9y - \frac{1}{3}y^3\right]_0^3 = 18 \text{ cu. units}$$
.

002 10.0 points

The graph of

$$f(x,y) = \frac{1}{x+y+2}$$

over the triangular region A enclosed by the graphs of

$$x = 1, \quad x + y = 4, \quad y + 2 = 0$$

is the surface

Find the volume V of the solid under this graph and over the region A.

- 1. $V = 7 \ln 6$
- **2.** $V = 5 + \ln 6$
- 3. $V = 6 \ln 6$

4.
$$V = 6 + \ln 6$$

5.
$$V = 5 - \ln 6$$
 correct

Explanation:

As the region of integration is given by

(not drawn to scale) the double integral can be written as the repeated integral

$$I = \int_{1}^{6} \left(\int_{-2}^{4-x} \frac{1}{x+y+2} \, dy \right) dx,$$

integrating first with respect to y from y = -2 to y = 4 - x. Now the inner integral is equal to

$$\left[\ln(x+y+2)\right]_{-2}^{4-x} = \ln 6 - \ln x.$$

Thus

$$I = \int_{1}^{6} \left\{ \ln 6 - \ln x \right\} dx$$
$$= 5 \ln 6 - \left[x \ln x - x \right]_{1}^{6}.$$

Consequently,

$$V = 5 - \ln 6 \quad .$$

003 10.0 points

Evaluate the double integral

$$I = \int \int_{\Lambda} 4y e^{x^2} dx dy$$

when A is the region in the first quadrant bounded by the graphs of

$$x = y^2, \qquad x = 2, \qquad y = 0.$$

1.
$$I = (e^4 + 1)$$

2.
$$I = e^4$$

3.
$$I = 4(e^4 + 1)$$

4.
$$I = 2(e^4 - 1)$$

5.
$$I = \left(e^4 - 1\right)$$
 correct

Explanation:

Since the function $f(x) = e^{x^2}$ cannot be integrated directly, we have to represent I as a repeated integral, integrating first with respect to y, where the region of integration is similar to the shaded region in

Thus as a repeated integral

$$I = \int_0^2 \left(\int_0^{x^{1/2}} 4y e^{x^2} \, dy \right) dx$$

where integrating first with respect to y means integrating along the segment of the line $x=d,\ 0\leq d\leq 2$, lying inside the shaded region. Now after integration the inner integral becomes

$$\left[2y^2e^{x^2}\right]_0^{x^{1/2}} = 2xe^{x^2}.$$

Thus

$$I = \int_0^2 2x e^{x^2} dx = \left[e^{x^2} \right]_0^2,$$

and so

$$I = \left(e^4 - 1\right)$$

keywords:

004 10.0 points

Reverse the order of integration in the integral

$$I = \int_0^{\ln 3} \left(\int_{e^y}^3 f(x, y) \, dx \right) dy,$$

but make no attempt to evaluate either integral.

1.
$$I = \int_1^3 \left(\int_0^{\ln x} f(x, y) dy \right) dx$$
 correct

2.
$$I = \int_{1}^{3} \left(\int_{\ln x}^{\ln 3} f(x, y) \, dy \right) dx$$

3.
$$I = \int_0^3 \left(\int_3^{e^x} f(x, y) \, dy \right) dx$$

4.
$$I = \int_0^3 \left(\int_{e^x}^3 f(x, y) \, dy \right) dx$$

5.
$$I = \int_{1}^{3} \left(\int_{0}^{\ln 3} f(x, y) \, dy \right) dx$$

6.
$$I = \int_{1}^{3} \left(\int_{\ln y}^{\ln 3} f(x, y) \, dy \right) dx$$

Explanation:

The region of integration is the set of all points

$$\{(x, y): e^y \le x \le 3, \ 0 \le y \le \ln 3 \}$$

in the plane bounded by the graphs of

$$y = \ln x$$
, $x = 1$, $y = \ln 3$

since $x = e^y$ when $y = \ln x$. This is the shaded region in

(not drawn to scale). Integration is taken first with respect to x for fixed y along the solid horizontal line.

To change the order of integration, now fix x and let y vary along the solid vertical line in

(not drawn to scale). Integration in y is along the line from (x, 0) to $(0, \ln x)$ for fixed x, and then from x = 1 to x = 3.

Consequently, after changing the order of integration,

$$I = \int_1^3 \left(\int_0^{\ln x} f(x, y) \, dy \right) dx$$

keywords: double integral, reverse order integration, exponential function, log function,

The solid E shown in

is bounded by the graphs of

$$y = x^2$$
, $y + z = 1$, $z = 0$.

Write the triple integral

$$I = \int \int \int_E f(x, y, z) \, dV$$

as a repeated integral, integrating first with respect to z, then y, and finally x.

1.
$$\int_{-1}^{1} \left(\int_{x^2}^{1} \left(\int_{0}^{1-y} f(x, y, z) dz \right) dy \right) dx$$

2.
$$\int_0^1 \left(\int_{x^2}^1 \left(\int_{1-y}^1 f(x, y, z) dz \right) dy \right) dx$$

3.
$$\int_{-1}^{1} \left(\int_{0}^{x^{2}} \left(\int_{1}^{1-y} f(x, y, z) dz \right) dy \right) dx$$

4.
$$\int_0^1 \left(\int_0^{x^2} \left(\int_0^{1-y} f(x, y, z) dz \right) dy \right) dx$$

5.
$$\int_0^1 \left(\int_0^{\sqrt{x}} \left(\int_0^{1-y} f(x, y, z) dz \right) dy \right) dx$$

6.
$$\int_{-1}^{1} \left(\int_{x}^{1} \left(\int_{0}^{1-y} f(x, y, z) dz \right) dy \right) dx$$

Explanation:

Note first that the planes y + z = 1 and z = 0 intersect in the line y = 1 in the xy-plane, while the parabola $y = x^2$ and the line y = 1 intersect at the points (-1, 1), (1, 1) in the xy-plane. Thus from overhead E looks like

Integrating first with respect to z means fixing (x, y) in the shaded region, while integrating second with respect to y for fixed x means integrating along the solid vertical line in this region.

Thus E consists of all points (x, y, z) in 3-space satisfying the inequalities

$$0 \le z \le 1 - y$$
, $x^2 \le y \le 1$, $-1 \le x \le 1$.

Consequently, as a repeated integral,

$$I = \int_{-1}^{1} \left(\int_{x^{2}}^{1} \left(\int_{0}^{1-y} f(x, y, z) dz \right) dy \right) dx$$

keywords: clicker

006 10.0 points

Evaluate the triple integral

$$I = \int \int \int_E 3e^{4(x+y)+z} dV$$

when E is the tetrahedron shown in

having one vertex at the origin and three adjacent faces in the coordinate planes.

1.
$$I = \frac{3}{16}(5e^4 + 1)$$

2.
$$I = \frac{3}{4}(5e^4 + 1)$$

3.
$$I = \frac{3}{4}(5e^4 - 1)$$

4.
$$I = \frac{15}{16}e^4$$

5.
$$I = \frac{15}{4}e^4$$

6.
$$I = \frac{3}{16}(5e^4 - 1)$$
 correct

Explanation:

Since the upper face of the tetrahedron lies in the plane intersecting the axes at x = 1, y = 1 and z = 4, this upper face lies in the plane

$$x + y + \frac{z}{4} = 1.$$

Thus E consists of all points (x, y, z) satisfying the inequalities

$$0 \le z \le 4(1-x-y),$$

in addition to

$$0 < y < 1 - x$$
, $0 < x < 1$.

So I can be written as a repeated integral

$$\int_0^1 \left(\int_0^{1-x} \left(\int_0^{4(1-x-y)} f(x, y, z) \, dz \right) dy \right) dx$$

with

$$f(x, y, z) = 3e^{4(x+y)+z}$$
.

Now

$$\int_0^{4(1-x-y)} 3e^{4(x+y)+z} dz$$

$$= \left[3e^{4(x+y)+z} \right]_0^{4(1-x-y)}$$

$$= 3(e^4 - e^{4(x+y)}),$$

while

$$3 \int_0^{1-x} (e^4 - e^{4(x+y)}) dy$$

$$= 3 \left[e^4 y - \frac{e^{4(x+y)}}{4} \right]_0^{1-x}$$

$$= 3 \left(\frac{3}{4} e^4 - x e^4 + \frac{1}{4} e^{4x} \right).$$

Thus

$$I = \frac{3}{4} \int_0^1 \left(3e^4 - 4xe^4 + e^{4x} \right) dx$$
$$= \frac{3}{4} \left[3e^4x - 2x^2e^4 + \frac{1}{4}e^{4x} \right]_0^1$$
$$= \frac{3}{4} \left(\frac{5}{4}e^4 - \frac{1}{4} \right).$$

Consequently,

$$I = \frac{3}{16}(5e^4 - 1) \quad .$$

keywords: triple integral, repeated integral, tetrahedron, plane, exponential function,

007 10.0 points

The solid E in the first octant of 3-space shown in

is bounded by the cylinder

$$z = 1 - x^2$$

and the planes

$$x = y, \quad y = 0, \quad z = 0.$$

Evaluate the triple integral

$$I = \int \int \int_E (x+y) \, dV.$$

1.
$$I = \frac{1}{5}$$
 correct

2.
$$I = \frac{4}{15}$$

3.
$$I = 0$$

4.
$$I = \frac{1}{15}$$

5.
$$I = \frac{2}{15}$$

Explanation:

Since E lies in the first octant, its projection onto the xy-plane lies in the first quadrant of the xy-plane. On the other hand, the trace of the parabolic cylinder $z = 1 - x^2$ on the xy-plane, i.e., the plane z = 0, consists of the lines $x = \pm 1$, while the projection of the plane

x = y is the line y = x. Thus the projection of E onto the xy-plane is the bounded region in the first quadrant enclosed by the graphs of

$$y = x$$
, $x = 1$.

This is the shaded region shown in

Thus E is the set of all points (x, y, z) such that

$$0 \le x \le 1, \ 0 \le y \le x, \ 0 \le z \le 1 - x^2.$$

So, as a repeated integral,

$$I = \int_0^1 \left(\int_0^x \left(\int_0^{1-x^2} (x+y) \, dz \right) dy \right) dx \, .$$

Now

$$\int_0^{1-x^2} (x+y) dz = \left[xz + yz \right]_0^{1-x^2}$$
$$= (x+y)(1-x^2),$$

while

$$\int_0^x (x+y)(1-x^2) \, dy$$

$$= \left[\left(xy + \frac{1}{2}y^2 \right) (1-x^2) \right]_0^x = \frac{3}{2}x^2 (1-x^2) \, .$$

Consequently,

$$I = \frac{3}{2} \int_0^1 (x^2 - x^4) dx = \frac{1}{5} .$$

keywords: projection, conic sections, parabolic cylinder, plane, integral, triple integral, repeated integral, linear function, limits of integration, setup of triple integral, exponential integrand, monomial integrand, evaluation of triple integral

008 10.0 points

The solid E in the first octant of 3-space shown in

is bounded by the parabolic cylinder $y = x^2$ and the planes

$$x = y$$
, $x = z$, $z = 0$.

Evaluate the triple integral

$$I = \int \int \int_E (2x + 6z) \, dV.$$

1.
$$I = \frac{1}{5}$$

2.
$$I = \frac{1}{3}$$

3.
$$I = \frac{1}{4}$$
 correct

4.
$$I = \frac{1}{2}$$

5.
$$I = \frac{1}{6}$$

Explanation:

Since E lies in the first octant, its projection onto the xy-plane lies in the first quadrant of

the xy-plane. On the other hand, the trace of the parabolic cylinder on the xy-plane, i.e., the plane z=0, is the parabola $y=x^2$, while the projection of the plane x=z is the xy-plane itself. Thus the projection of E onto the xy-plane is the bounded region in the first quadrant enclosed by the graphs of

$$y = x^2, \qquad y = x.$$

This is the shaded region shown in

Thus E is the set of all points (x, y, z) satisfying the inqualities

$$0 \le x \le 1, \quad x^2 \le y \le x, \quad 0 \le z \le x,$$

So as a repeated integral,

$$I = \int_0^1 \left(\int_{x^2}^x \left(\int_0^x (2x + 6z) \, dz \right) dy \right) dx \, .$$

Now

$$\int_0^x (2x + 6z) dz = \left[2xz + 3z^2 \right]_0^x = 5x^2,$$

while

$$\int_{x^2}^x 5x^2 \, dy = \left[5x^2 y \right]_{x^2}^x = 5(x^3 - x^4) \, .$$

Consequently,

$$I = 5 \int_0^1 (x^3 - x^4) \, dx = \frac{1}{4} \, .$$

keywords: projection, conic sections, parabolic cylinder, plane, integral, triple integral, repeated integral, linear function, limits

of integration, setup of triple integral, polynomial integrand, binomial integrand, evaluation of triple integral

009 10.0 points

Evaluate the integral

$$I = \int \int \int_W 4x^2 \, dV$$

when W is the region of 3-space shown in

lying below the graph of

$$x + y + z = 2$$

and above the square

$$D = \{(x, y) : 0 \le x, y \le 1\}$$

in the xy-plane.

1.
$$I = 2\pi$$

2.
$$I = 4\pi$$

3.
$$I = 12\pi$$

4.
$$I = \frac{8}{3}\pi$$

5. I = 1 correct

Explanation:

To write I as a repeated integral we first describe W as a set of points (x, y, z) in 3-space: since W is the region below the graph of

$$x + y + z = 2,$$

but above the xy-plane, then

$$0 \le z \le 2 - x - y.$$

On the other hand, (x, y) vary over the region

$$D = \{(x, y) : 0 \le x, y \le 1\}$$

in the xy-plane. Thus W consists of all points (x, y, z) such that

$$0 \le z \le 2 - x - y$$
, $0 \le x \le 1$, $0 \le y \le 1$.

So as a repeated integral,

$$I = \int_0^1 \left(\int_0^1 \left(\int_0^{2-x-y} 4x^2 \, dz \right) dy \right) dx \, .$$

Now

$$\int_0^{2-x-y} 4x^2 dz = \left[4x^2 z \right]_0^{2-x-y}$$
$$= 4x^2 (2-x-y) = 8x^2 - 4x^3 - 4x^2 y.$$

But

$$\int_0^1 (8x^2 - 4x^3 - 4x^2y) \, dy$$

$$= \left[8x^2y - 4x^3y - 2x^2y^2 \right]_0^1$$

$$= 8x^2 - 4x^3 - 2x^2 = 2(3x^2 - 2x^3).$$

Consequently,

$$I = 2 \int_0^1 (3x^2 - 2x^3) \, dx = 1 \quad .$$

010 10.0 points

Evaluate the integral

$$I = \int \int_{D} \left\{ (\pi + 4 \tan^{-1} \left(\frac{y}{x} \right) \right\} dx dy$$

when D is the region in the first quadrant inside the circle $x^2 + y^2 = 16$.

1.
$$I = \pi$$

2.
$$I = 16 \pi$$

3.
$$I = 16 \pi^2$$

4.
$$I = 8\pi$$

5.
$$I = \pi^2$$

6.
$$I = 8\pi^2$$
 correct

Explanation:

In Cartesian coordinates the region of integration is

$$\{(x, y) : 0 \le y \le \sqrt{16 - x^2}, 0 \le x \le 4\},$$

which is the shaded region in

On the other hand, in polar coordinates the region of integration is

$$\{ (r, \theta) : 0 \le r \le 4, 0 \le \theta \le \pi/2 \},$$

while

$$\tan^{-1}\left(\frac{y}{x}\right) = \theta.$$

Thus in polar coordinates,

$$I = \int_0^4 \int_0^{\pi/2} (\pi + 4\theta) r d\theta dr$$
$$= \int_0^4 \left[\pi \theta + 2\theta^2 \right]_0^{\pi/2} r dr = \pi^2 \int_0^4 r dr.$$

Consequently,

$$I = 8\pi^2$$

011 10.0 points

The solid shown in

is bounded by the paraboloid

$$z = 2 - \frac{1}{2}(x^2 + y^2)$$

and the xy-plane. Find the volume of this solid.

1. volume =
$$2\pi$$

2. volume =
$$1$$

3. volume =
$$\pi$$

4.
$$volume = 2$$

5. volume
$$= 4$$

6. volume =
$$4\pi$$
 correct

Explanation:

The paraboloid intersects the xy-plane when z = 0, i.e., when

$$x^2 + y^2 - 4 = 0.$$

Thus the solid lies below the graph of

$$z = 2 - \frac{1}{2}(x^2 + y^2)$$

and above the disk

$$D = \left\{ (x, y) : x^2 + y^2 \le 4 \right\},\,$$

so its volume is given by the integral

$$V \; = \; \int \int_{D} \, \left(2 - \frac{1}{2} (x^2 + y^2) \right) dx dy \, .$$

In polar coordinates this becomes

$$V = \frac{1}{2} \int_0^2 \int_0^{2\pi} r(4 - r^2) d\theta dr$$
$$= \pi \int_0^2 (4r - r^3) dr$$
$$= \pi \left[2r^2 - \frac{r^4}{4} \right]_0^2.$$

Consequently,

volume =
$$V = 4\pi$$
 .

012 10.0 points

The solid shown in

lies inside the sphere

$$x^2 + y^2 + z^2 = 16$$

and outside the cylinder

$$x^2 + y^2 = 9$$
.

Find the volume of the part of this solid lying above the xy-plane.

1. volume =
$$\frac{7\sqrt{7}}{3}$$

$$2. \text{ volume } = \frac{7\sqrt{7}}{3}\pi$$

3. volume =
$$7\sqrt{7}$$

4. volume =
$$\frac{14\sqrt{7}}{3}$$

5. volume =
$$\frac{14\sqrt{7}}{3}\pi$$
 correct

6. volume =
$$7\sqrt{7}\pi$$

Explanation:

From directly overhead the solid is similar to

In Cartesian coordinates this is the annulus

$$R = \left\{ (x, y) : 9 \le x^2 + y^2 \le 16 \right\}.$$

Thus the volume of the solid above the xyplane is given by the integral

$$V = \int \int_{R} (16 - x^2 - y^2)^{1/2} dx dy.$$

To evaluate V we change to polar coordinates. Now

$$R = \left\{ (r, \theta) : 3 \le r \le 4, \quad 0 \le \theta \le 2\pi \right\},\,$$

so that after changing coordinates the integral becomes

$$V = \int_{3}^{4} \int_{0}^{2\pi} \sqrt{16 - r^{2}} r dr d\theta$$
$$= 2\pi \int_{3}^{4} r \sqrt{16 - r^{2}} dr$$
$$= \pi \left[-\frac{2}{3} (16 - u)^{3/2} \right]_{9}^{16},$$

using the substitution $u = r^2$. Consequently,

volume =
$$V = \frac{14\sqrt{7}}{3}\pi$$
.

013 10.0 points

Evaluate the integral

$$I = \int \int_{D} \frac{x - 3y}{x - y} dA$$

when D is the parallelogram bounded by

$$x - 3y = 0, \quad x - 3y = 2,$$

and

$$x - y = 1, \quad x - y = 3,$$

by making an appropriate change of variables.

- 1. $I = 2 \ln 3$
- **2.** I = 1
- **3.** I = 0
- 4. $I = \ln 3$ correct
- **5.** I = 2

Explanation:

Setting

$$u = x - 3y$$
, $v = x - y$

simplifies both the integrand and the region of integration D. To determine the change of variable

$$T:(u,v)\to(x,y)$$

we first need to solve for x, y in terms of u, v:

$$x = \frac{1}{2}(3v - u), \qquad y = \frac{1}{2}(v - v).$$

In particular,

$$\frac{\partial(x,\,y)}{\partial(u,\,v)} \; = \; \frac{1}{4} \left| \begin{array}{cc} -1 & 3 \\ -1 & 1 \end{array} \right| \; = \; \frac{1}{2} \, ,$$

while

$$I = \frac{1}{2} \int \int_{\mathcal{D}} \frac{u}{v} du dv$$

where \mathcal{D} is the rectangle in the uv-plane mapped onto D by T. But D is enclosed by the lines

$$x - 3y = 0$$
, $x - 3y = 2$,

and

$$x - y = 1$$
, $x - y = 3$,

so the definition of u, v tells us that T maps the rectangle \mathcal{D} enclosed by the lines

$$u = 0, \quad u = 2, \quad v = 1, \quad v = 3,$$

onto D. Thus

$$I = \frac{1}{2} \int_{1}^{3} \left(\int_{0}^{2} \frac{u}{v} du \right) dv = \int_{1}^{3} \frac{1}{v} dv.$$

Consequently,

$$I = \ln 3$$
.

keywords:

014 10.0 points

Using the change of variables given by

$$u = xy, \qquad v = y/x,$$

evaluate the integral

$$I = \int \int_{D} xy \, dx dy$$

when D is the region in the first quadrant bounded by the lines

$$y = x, \qquad y = 2x,$$

and the hyperbolas

$$xy = 1, \qquad xy = 5.$$

1.
$$I = 6\sqrt{2}$$

2.
$$I = 6$$

3.
$$I = 6 \ln 2$$
 correct

4.
$$I = 12\sqrt{2}$$

5.
$$I = 12 \ln 2$$

6.
$$I = 12$$

Explanation:

Because the region of integration is

$$D = \{(x, y) : 1 \le xy \le 5, 1 \le y/x \le 2\},\$$

set

$$u = xy, \qquad v = \frac{y}{x}.$$

To determine the Jacobian we first need to solve for x, y in terms of u, v:

$$y^2 = uv \longrightarrow y = \sqrt{uv}$$

while

$$x^2 = \frac{u}{v} \longrightarrow x = \sqrt{\frac{u}{v}},$$

i.e.,

$$T:(u,v)\longrightarrow \left(\sqrt{\frac{u}{v}},\sqrt{uv}\right),$$

and

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{1}{2\sqrt{uv}} & -\frac{\sqrt{u}}{2v^{3/2}} \\ \frac{\sqrt{v}}{2\sqrt{u}} & \frac{\sqrt{u}}{2\sqrt{v}} \end{vmatrix} = \frac{1}{2v}.$$

So in terms of u, v the integral becomes

$$I = \frac{1}{2} \int_{1}^{5} \left(\int_{1}^{2} \frac{u}{v} dv \right) du = \frac{1}{2} \ln 2 \int_{1}^{5} u du.$$

Consequently,

$$I = \frac{1}{2} \ln 2 \left[\frac{1}{2} u^2 \right]_1^5 = 6 \ln 2$$

015 10.0 points

Use cylindrical coordinates to evaluate the integral

$$I = \int \int \int_W 4x^2 \, dV$$

when W is the solid shown in

that lies above the xy-plane, below the cone

$$z^2 = x^2 + y^2,$$

and within the cylinder

$$x^2 + y^2 = 1$$
.

1.
$$I = \frac{1}{2}\pi$$

2.
$$I = 4\pi$$

3.
$$I = \frac{4}{5}\pi$$
 correct

4.
$$I = \pi$$

5.
$$I = 0$$

Explanation:

Since

$$x = r\cos\theta, \quad y = r\sin\theta, \quad z = z,$$

in cylindrical coordinates, the cylinder becomes r=1 while the cone becomes z=r. Thus in cylindrical coordinates W consists of all points (r, θ, z) with

$$z < r < 1, 0 < \theta < 2\pi, 0 < z < 1.$$

So I can be written as the repeated integral

$$\int_0^1 \left(\int_0^{2\pi} \left(\int_z^1 4r^3 \cos^2 \theta \, dr \right) d\theta \right) dz$$

$$= \int_0^1 \left(\int_0^{2\pi} (1 - z^4) \cos^2 \theta \, d\theta \right) dz$$

$$= \frac{1}{2} \int_0^1 \left(\int_0^{2\pi} (1 - z^4) (1 + \cos 2\theta) \, d\theta \right) dr.$$

Consequently,

$$I = \pi \int_0^1 (1 - z^4) dr = \frac{4}{5}\pi$$

016 10.0 points

The solid W consists of all points enclosed by the cylinder

$$x^2 + y^2 = 4$$

and the sphere

$$x^2 + y^2 + z^2 = 9$$

shown in

Use cylindrical coordinates to find the volume of W.

1. volume =
$$4\pi \left(27 + 5^{3/2}\right)$$

2. volume =
$$\frac{2\pi}{3} \left(27 - 5^{3/2} \right)$$

3. volume =
$$4\pi \left(27 - 5^{3/2}\right)$$

4. volume =
$$2\pi \left(27 + 5^{3/2}\right)$$

5. volume =
$$\frac{4\pi}{3} \left(27 - 5^{3/2} \right)$$
 correct

6. volume =
$$\frac{2\pi}{3} \left(27 + 5^{3/2} \right)$$

Explanation:

As a triple integral

$$volume(W) = \int \int \int_{W} 1 \, dV.$$

But in rectangular coordinates, W consists of all points (x, y, z) such that $x^2 + y^2 \le 4$ and

$$-\sqrt{9-x^2-y^2} \, \le \, z \, \le \, \sqrt{9-x^2-y^2} \, .$$

while in cylindrical polar coordinates, W consists of all points (r, θ, z) such that

$$0 \le r \le 2, \quad 0 \le \theta \le 2\pi,$$

and $-\sqrt{9-r^2} < z < \sqrt{9-r^2}$.

Thus W has volume given by

$$I = \int_0^2 \left(\int_0^{2\pi} \left(\int_{-\sqrt{9-r^2}}^{\sqrt{9-r^2}} dz \right) d\theta \right) r \, dr$$
$$= 4\pi \int_0^2 r \sqrt{9-r^2} \, dr \, .$$

To evaluate this last integral we use the substitution $u^2 = 9 - r^2$. For then

$$2u\,du = -2r\,dr\,,$$

SO

$$I = -4\pi \int_{3}^{\sqrt{5}} u^{2} du = \left[-\frac{4\pi}{3} u^{3} \right]_{3}^{\sqrt{5}}.$$

Consequently, W has

volume =
$$\frac{4\pi}{3}(27 - 5^{3/2})$$
.

017 10.0 points

The solid W consists of all points enclosed by the sphere

$$x^2 + y^2 + z^2 = 4$$

and the cone

$$z = \sqrt{x^2 + y^2}$$

as shown in

Use spherical coordinates to express the volume of W as a triple integral.

1.
$$\int_0^2 \int_0^{2\pi} \int_{\pi/4}^{\pi/2} 1 \, d\phi d\theta d\rho$$

2.
$$\int_0^2 \int_0^{2\pi} \int_0^{\pi/2} \rho^2 \sin \phi \, d\phi d\theta d\rho$$

3.
$$\int_0^2 \int_0^{2\pi} \int_0^{\pi/4} 1 \, d\phi d\theta d\rho$$

4.
$$\int_0^2 \int_0^{2\pi} \int_0^{\pi/2} 1 \, d\phi d\theta d\rho$$

5.
$$\int_0^2 \int_0^{2\pi} \int_{\pi/4}^{\pi/2} \rho^2 \sin \phi \, d\phi d\theta d\rho$$

6.
$$\int_0^2 \int_0^{2\pi} \int_0^{\pi/4} \rho^2 \sin \phi \, d\phi d\theta d\rho \, \mathbf{correct}$$

Explanation:

In spherical coordinates (ρ, θ, ϕ) ,

$$x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi,$$

and

$$z = \rho \cos \phi$$
.

Thus the cone

$$z = \sqrt{x^2 + y^2}$$

can be written in spherical coordinates as

$$\rho\cos\phi = \rho\sin\phi(\cos^2\theta + \sin^2\theta)^{1/2}$$

i.e., $\tan \phi = 1$, or, in other words, as $\phi = \pi/4$. Since $\phi = 0$ at the North Pole, W consists of all points (ρ, θ, ϕ) such that

$$0 \le \rho \le 2$$
, $0 \le \theta \le 2\pi$, $0 \le \phi \le \frac{\pi}{4}$.

But, as a triple integral, W has

volume =
$$\int \int \int_W 1 \, dV$$
.

On the other hand, the Jacobian for spherical coordinates is $\rho^2 \sin \phi$. Consequently, the valume of W is given in spherical coordinates by the triple integral

$$\int_0^2 \left(\int_0^{2\pi} \left(\int_0^{\pi/4} \left(\rho^2 \sin \phi \, d\phi \right) d\theta \right) d\rho \right) d\theta$$

018 10.0 points

The solid W consists of all points enclosed by the sphere

$$x^2 + y^2 + z^2 = 1$$

and the cone

$$z = \sqrt{x^2 + y^2}$$

as shown in

Use spherical coordinates to evaluate the triple integral

$$I = \int \int \int_W 2z \, dV \,.$$

1.
$$I = \frac{1}{4}\pi^2$$

2.
$$I = \frac{1}{2}\pi$$

3.
$$I = \frac{1}{8}\pi^2$$

4.
$$I = \frac{1}{4}\pi$$
 correct

5.
$$I = \frac{1}{8}\pi$$

6.
$$I = \frac{1}{2}\pi^2$$

Explanation:

In spherical coordinates (ρ, θ, ϕ) ,

$$x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi,$$

and

$$z = \rho \cos \phi$$

and so the cone

$$z = \sqrt{x^2 + y^2}$$

can be written in spherical coordinates as

$$\rho\cos\phi = \rho\sin\phi(\cos^2\theta + \sin^2\theta)^{1/2},$$

i.e., $\tan \phi = 1$, or, in other words, as $\phi = \pi/4$. Since $\phi = 0$ at the North Pole, W consists of all points (ρ, θ, ϕ) such that

$$0 \le \rho \le 1$$
, $0 \le \theta \le 2\pi$, $0 \le \phi \le \frac{\pi}{4}$.

On the other hand, the Jacobian for spherical coordinates is $\rho^2 \sin \phi$. Thus, in spherical coordinates, I can be written as a repeated integral

$$2\int_0^1 \left(\int_0^{2\pi} \left(\int_0^{\pi/4} \left(\rho^3 \sin \phi \cos \phi \, d\phi \right) d\theta \right) d\rho \right)$$
$$= \int_0^1 \rho^3 \left(\int_0^{2\pi} \left[\sin^2 \phi \right]_0^{\pi/4} d\theta \right) d\rho.$$

Consequently,

$$I = \frac{1}{2} \int_0^1 \rho^3 \left(\int_0^{2\pi} d\theta \right) d\rho = \frac{1}{4} \pi .$$

019 10.0 points

The solid W consisting of all points lying inside the upper hemi-sphere of the sphere

$$x^2 + y^2 + z^2 = 1$$

and below the cone

$$z = \sqrt{x^2 + y^2}$$

as shown in

Use spherical coordinates to find the volume of W.

volume =
$$\frac{2}{3\sqrt{2}}\pi = \frac{\sqrt{2}}{3}\pi$$
.

Consequently, W has

1. volume =
$$\frac{\sqrt{2}}{2}\pi$$

2. volume =
$$\frac{2}{3}\pi$$

3. volume =
$$\pi$$

4. volume =
$$\sqrt{2}\pi$$

5. volume =
$$\frac{1}{3}\pi$$

6. volume =
$$\frac{\sqrt{2}}{3}\pi$$
 correct

Explanation:

In spherical coordinates (ρ, θ, ϕ) ,

$$x = \rho \cos \theta \sin \phi, \quad y = \rho \sin \theta \sin \phi,$$

and

$$z = \rho \cos \phi$$
.

Thus the cone

$$z = \sqrt{x^2 + y^2}$$

can be written in spherical coordinates as

$$\rho\cos\phi = \rho\sin\phi(\cos^2\theta + \sin^2\theta)^{1/2},$$

i.e., $\tan \phi = 1$, or, in other words, as $\phi = \pi/4$. Since $\phi = \pi/2$ on the xy-plane, W consists of all points (ρ, θ, ϕ) such that

$$0 \le \rho \le 1$$
, $0 \le \theta \le 2\pi$, $\frac{\pi}{4} \le \phi \le \frac{\pi}{2}$.

But, as a triple integral, W has

volume =
$$\int \int \int_W 1 dV$$

which in spherical coordinates becomes

$$\int_0^1 \left(\int_0^{2\pi} \left(\rho^2 \sin \phi \, d\phi \right) d\theta \right) d\rho$$

$$= \int_0^1 \left(\int_0^{2\pi} \left(\rho^2 \left[-\cos \phi \right]_{\pi/2}^{\pi/4} \right) d\theta \right) d\rho$$

$$= \frac{1}{\sqrt{2}} \int_0^1 \left(\int_0^{2\pi} \rho^2 \, d\theta \right) d\rho.$$