Université Pierre et Marie Curie 2006–2007

LM220 Maths-Info groupes 1, 2 et 5

Devoir maison nº 2

L'objectif du devoir est d'énoncer et de démontrer deux critères d'irréductibilité dans $\mathbf{Q}[X]$ pour les polynômes de $\mathbf{Z}[X]$.

1 Lemme de Gauss

Notation. Soit $P = a_0 + \cdots + a_n X^n$ un polynôme non nul de $\mathbf{Z}[X]$. On définit le contenu de P, noté c(P), par

$$c(P) = \operatorname{pgcd}(a_0, \dots, a_n).$$

Le polynôme P est dit *primitif* si c(P) = 1.

Si $P=a_0+\cdots+a_nX^n$ et $Q=b_0+\cdots+b_mX^m$ sont deux polynômes non nuls de $\mathbf{Z}[X]$, on se propose de montrer que

$$c(PQ) = c(P)c(Q). \tag{*}$$

- **1.1** Posons $PQ = \sum_{k \geq 0} c_k X^k$. Exprimer chaque c_k en fonction des coefficients (a_i) et (b_j) de P et Q.
- **1.2** On suppose, dans cette question, les polynômes P et Q primitifs : c(P) = c(Q) = 1. On souhaite montrer que c(PQ) = 1. On raisonne par l'absurde en supposant qu'il existe un nombre premier p divisant c(PQ).
- **1.2.1** Montrer qu'il existe i_0 et j_0 deux entiers ≥ 0 tels que

pour tout
$$i < i_0$$
, on a $p|a_i$, mais $p \not|a_{i_0}$, pour tout $j < j_0$, on a $p|b_j$, mais $p \not|b_{j_0}$.

- **1.2.2** En remarquant que p divise $c_{i_0+j_0}$, déduire une contradiction (*Indication*: on montre que p divise $a_{i_0}b_{j_0}$.).
- **1.2.3** En déduire que, si P et Q sont primitifs, alors c(PQ) = 1 = c(P)c(Q).
- 1.3 Montrer qu'il existe \widetilde{P} et \widetilde{Q} deux polynômes primitifs tels que

$$P = c(P)\widetilde{P}$$
 et $Q = c(Q)\widetilde{Q}$.

1.4 En déduire la relation (\star) (lemme de Gauss).

2 Irréductibilité dans $\mathbf{Z}[X]$ et $\mathbf{Q}[X]$

Soit P un polynôme de $\mathbf{Z}\left[X\right]$. On se propose de démontrer que P est le produit de deux polynômes non constants de $\mathbf{Z}\left[X\right]$ si et seulement si P est le produit de deux polynômes non constants de $\mathbf{Q}\left[X\right]$.

On suppose pour cela que

P=QR avec Q et R deux polynômes de $\mathbf{Q}\left[X\right]$ non constants.

- **2.1** Soit m le ppcm des dénominateurs des coefficients de Q écrits sous forme de fractions irréductibles.
- **2.1.1** Montrer que $mQ \in \mathbf{Z}[X]$.
- 2.1.2 Dites pourquoi le polynôme

$$\widetilde{Q} = \frac{m}{c(mQ)}Q$$

est un polynôme primitif de $\mathbf{Z}[X]$.

- **2.1.3** Montrer que m et c(mQ) sont premiers entre eux.
- 2.2 On écrit de même

$$R = \frac{c(m'R)}{m'}\widetilde{R}$$
, avec \widetilde{R} primitif.

Les entiers m' et c(m'R) sont premiers entre eux. Démontrer la relation suivante

$$mm'c(P) = c(mQ)c(m'R).$$

- **2.3** En déduire que $\frac{mQ}{m'}$ et $\frac{m'R}{m}$ sont dans $\mathbf{Z}[X]$.
- 2.4 Conclure à l'équivalence annoncée.

Dans les parties 3 et 4, $P=a_0+\cdots+a_nX^n$ désigne un polynôme non constant de $\mathbf{Z}[X]$ et p un nombre premier. Si $a\in\mathbf{Z}$, on note \overline{a} sa réduction modulo p. De même, si $A\in\mathbf{Z}[X]$, on note \overline{A} le polynôme de $\mathbf{F}_p[X]$ déduit de A par réduction modulo p de ses coefficients.

3 Critère d'Eisenstein

On suppose ici que les trois conditions suivantes sont satisfaites :

- 1. on a $p \not| a_n$,
- 2. pour tout $0 \le i \le n-1$, on a $p|a_i$,

3. on a $p^2 \not | a_0$.

On va montrer que, sous ces hypothèses, le polynôme P est irréductible dans $\mathbf{Q}[X]$. On raisonne par l'absurde en supposant que

$$P = QR$$
 avec Q et R deux polynômes de $\mathbf{Q}[X]$ non constants.

- **3.1** Dites pourquoi on peut supposer Q et R à coefficients entiers.
- 3.2 On suppose désormais que tel est le cas et on écrit

$$Q = b_0 + \dots + b_q X^q,$$
 avec $b_i \in \mathbf{Z}$,
 $R = c_0 + \dots + c_r X^r,$ avec $c_i \in \mathbf{Z}$.

Montrer que, dans $\mathbf{F}_{p}\left[X\right] ,$ on a l'égalité

$$\overline{a_n}X^n = (\overline{b_0} + \dots + \overline{b_q}X^q)(\overline{c_0} + \dots + \overline{c_r}X^r).$$

- **3.3** En déduire que $\overline{b_i} = \overline{0}$ pour i < q et $\overline{c_j} = \overline{0}$ pour j < r.
- **3.4** Conclure à une contradiction.
- **3.5** Montrer, avec le critère précédent, que le polynôme $P=3X^4+15X^2+10$ est irréductible dans $\mathbb{Q}[X]$.

4 Réduction modulo p

On suppose dans cette partie que p ne divise pas a_n et que le polynôme

$$\overline{P} = \overline{a_0} + \dots + \overline{a_n} X^n$$

est irréductible dans $\mathbf{F}_p[X]$.

On va montrer que sous ces hypothèses, le polynôme P est irréductible dans $\mathbf{Q}[X]$. On raisonne encore par l'absurde. On écrit alors, comme à la question 3.1:

$$P = QR$$
 avec Q et R deux polynômes non constants de $\mathbf{Z}[X]$.

- **4.1** Montrer que $deg(\overline{Q}) = deg(Q)$ et $deg(\overline{R}) = deg(R)$.
- **4.2** En déduire que $\deg(\overline{Q}) = 0$ ou $\deg(\overline{R}) = 0$ et conclure à l'irréductibilité de P dans $\mathbb{Q}[X]$.
- **4.3** Application. Montrer que le polynôme

$$P = X^3 + 462X^2 + 2433X - 67691$$

est irréductible dans $\mathbf{Q}[X]$.

Remarque. La condition ci-dessus est suffisante mais n'est pas nécessaire. On a vu en exercice que le polynôme $P = X^4 + 1$ est irréductible dans $\mathbf{Q}[X]$, mais on peut montrer qu'il est réductible dans $\mathbf{F}_p[X]$ pour tout nombre premier p.