

Apresentação

- Apresentação do Professor
- Objetivo Geral:

Entender o funcionamento de Redes de Computadores bem como a aplicação da estrutura de Sistemas Distribuídos, considerando os aspectos e tecnologias inerentes ao desenvolvimento de projetos de Redes de Computadores e Sistemas Distribuídos, buscando a melhor forma de avaliação de cenários que envolvam a implementação de arquiteturas de redes em ambientes locais e distribuídos.

Critérios de Avaliação

Parciais P1 e P2

- Avaliação institucional (40% da nota final).
- Trabalhos e exercícios (a média destas tarefas correspondem a 60% da nota final).
 - Média = (P1 + P2) / 2.
 - Aprovado: média >= 6,0.
 - Recuperação: média maior ou igual a 4,0 e menor que 6,0.
- AV3: Deve ser realizada caso a média seja menor que 6,0.
 - A nota da AV3 substitui a média.

- A nota da AV3 deve ser igual ou superior a 6,0.

Conteúdo Programático

A disciplina será dividida em 17 aulas e carga horária total de 60 horas.

Ementa:

- 1. Conceitos de Redes de Computadores
- 2. Meios de Comunicação e Topologias
- 3. Arquiteturas de Redes Modelo OSI e Arquitetura Internet
- 4. Camadas do Modelo OSI e seus Protocolos
- 5. Arquitetura Internet e seus Protocolos
- 6. Segurança em Redes de Computadores
- 7. Conceitos de Sistemas Distribuídos. Modelos Arquiteturais e Fundamentos
- 8. Ambientes para Programação Distribuída
- 9. Mecanismos para programação Web

Trabalhos e exercícios

Trabalhos
 02 trabalhos e exercícios

Sumário

- Evolução de Sistemas de Computação
- Introdução à redes
- Classificação por Abrangência
- Topologias Lógicas e Físicas
- Meios de transmissão

- Histórico
- 1^a. Geração- Era das válvulas (1945-1955)
 Eniac 18.000 válvulas 30 toneladas

- Período: Segunda Guerra Mundial
- Motivo: o exército americano necessitava urgentemente de tabelas de artilharia para configurar as suas arma, ou seja, cálculos balísticos de artilharia;
- O cáculo era feito manualmente e levava em torno de 12 horas. Já com o uso do ENIAC, o cáculo era realizado em 30 segundos.
- O ENIAC torna-se obsoleto e economicamente inviável de manter após 10 anos de operação, tendo sido desativado no dia 2 de outubro de 1955 e posteriormente desmontado;

- 2ª. Geração: Transistores (1956-1965)
- Aumento de desempenho e confiabilidade
- Primeiras linguagens de programação
- Processamento em lote (batch)
- Computadores de grande porte (mainframes)

Um sistema em lote (batch) antigo:

- (a) Os programadores levavam os cartões para o IBM 1401;
- (b) O IBM 1401 gravava o lote de tarefas em fita;
- (c) O operador levava a fita de entrada para o IBM 7094;
- (d) O IBM 7094 executava o processamento;
- (e) O operador levava a fita de saída para o IBM 1401;
- (f) O IBM 1401 imprimia as saídas

3ª. Geração - Circuitos Integrados (1966-1980)

- Primeiro microprocessador com 2300 transistores (Intel)
- Substituição do cartão perfurado por disco rígido
- Mainframes e terminais burros
- Implementação da técnica de multiprogramação
- Uso da técnica de Spooling
- Processamento timesharing (tempo compartilhado)
- Lançamento do sistema operacional Unix em 1969
- Criação da Arpanet (Rede da Agência para Projetos de Pesquisa Avançada) em 1969 com circuitos de 50k bits/s
- Desenvolvimento do protocolo TCP/IP em 1974

4ª. Geração - Microcomputadores (1981-1990)

- Lançamento do IBM PC (Personal Computer)
- Fundação da Microsoft
- Sistema operacional DOS (Disk Operating System)
- Fundação da Apple
- As redes de computadores ganham importância
- Redes locais Ethernet

5^a. Geração - Internet (1991-presente)

- Propagação das redes de computadores e Internet
- Redes Wireless
- Clusters (significa "aglomerar" ou "aglomeração")

5^a. Geração - Internet (1991-presente)

Grids

Laboratório Cern na Suiça – Projeto em grid colisor de partículas

5^a. Geração - Internet (1991- presente)

- Sistemas Especialistas
 - Inteligência Artificial
 - Redes Neurais
 - Visão Computacional
- Virtualização
 - Realidade Virtual
 - Realidade Aumentada

5^a. Geração - Internet (1991- presente)

- Cloud Computing
 - Amazon amazon.com (AWS)
 - Google drive.google.com
 - Microsoft http://www.windowsazure.com/
- Fog Computing (computação em névoa) Ex.: Internet das Coisas (IoT)
- Dew Computing (edge computing) computação de borda

Introdução

Conceitos Básicos de Redes

Caracterizada pela interconexão de estações de trabalho, periféricos, terminais ou outros dispositivos;

Segundo STALLINGS: "...Quando dois ou mais Computadores estão Interconectados via uma rede de comunicação."

COMPONENTES DE UMA REDE DE COMPUTADORES:

- 1. ESTAÇÕES DE TRABALHO: DESKTOPS, LAPTOPS, DISPOSITIVOS MÓVEIS, ETC;
- 2. MEIOS DE COMUNICAÇÃO: CABOS, AR, ELETRICIDADE, ETC
- 3. EQUIPAMENTOS DE INFRAESTRUTURA OU INTERCONEXÃO: HUBS, SWITCHES, ROTEADORES;

SERVIÇOS E APLICAÇÕES OFERECIDOS VIA REDE:

- 1. Email, internet banking, comércio eletrônico;
- 2. Chat, voip, videconferência, troca de arquivos;
- 3. Impressão em rede, processamento em rede (grid, cluster);

TIPOS DE REDES QUANTO A FORMA DE INTERAÇÃO:

PAR-A-PAR — Também chamadas de Ponto-a-Ponto ou peer-to-peer (P2P):

- 1. Não há hierarquia entre os nós;
- 2. Cada nó utiliza e fornece serviços de forma independente e dinâmica;

TIPOS DE REDES QUANTO A FORMA DE INTERAÇÃO:

CLIENTE-SERVIDOR

- 1. Existência de servidor dedicado ou compartilhado para fornecimentos de recursos de forma centralizada ou distribuída;
- 2. Exclusividade na utilização ou fornecimento de recursos pelos nós.

***Ao contrário das redes par-a-par, os computadores que funcionam como clientes não fornecem recursos e serviços aos outros usuários da rede.

INTRODUÇÃO

Conexão Física e Lógica

Denifição:

- Topologia lógica: forma como os dados são trafegados;
- Topologia física: forma como os nós são interconectados;
- Topologia lógica opera sobre a topologia física;
- Topologia lógica pode variar com o tipo de equipamento utilizado e da configuração de rede realizada;

Física:

Computador Placa de Rede Modem Meio Físico de Transmissão

Lógica:

Sistema Operacional Browser Outros Softwares

Terminologia de redes

Classificação de Redes por Área de Abrangência

PAN (Personal Area Network - Rede Pessoal) Redes pessoais que servem para conectar dispositivos próximos (normalmente não ultapassa 10 metros). ***dispositivos ligados para um único usuário;

LAN (Local Area Network - Rede Local) - Redes locais surgiram para viabilizar a troca e o compartilhamento de informações entre dispositivos permitindo a integração em ambientes de trabalho cooperativo. ***pequena extensão (uma sala, um prédio);

Terminologia de redes

Classificação de Redes por Área de Abrangência

MAN (Metropolitan Area Network - Rede Metropolitana) - A MAN é uma rede que abrange toda a áreametropolitana como uma cidade ou área suburbana. Uma MAN geralmente consiste em duas ou mais redes locais em uma mesma área geográfica. ***com a extensão de uma cidade;

WAN (Wide Area Network - Rede Extensa) - WAN é uma rede de computadores que abrange uma grande área geográfica, com frequência um país ou continente. ***sem limite de tamanho (um país, o mundo).

Terminologia de redes

Classificação de Redes por Área de Abrangência

Outras redes:

SAN (Storage Area Network - Rede de área de armazenamento) — Rede exclusiva para armazenamento de dados

WAN

Mapa da Rede Rio de Computadores 2015 - FAPERJ

https://rederio.br/mapa/

TOPOLOGIAS LÓGICAS

A topologia lógica é a forma como os dados são transmitidos na rede.

Broadcast

A topologia de broadcast simplesmente significa que cada host envia seus dados a todos os outros hosts conectados ao meio físico da rede. Não existe uma ordem que deve ser seguida pelas estações para usar a rede. A ordem é: primeiro a chegar, primeiro a usar.

Token Ring

A passagem de token controla o acesso à rede, passando um token eletrônico sequencialmente para cada host. Quando um host recebe o token, significa que esse host pode enviar dados na rede.

Se o host não tiver dados a serem enviados, ele vai passar o token para o próximo host e o processo será repetido.

TOPOLOGIAS FÍSICAS

PRINCIPAIS TOPOLOGIAS:

- Barramento;
- Anel;
- Estrela;
- Mesh e full mesh;
- Árvore ou hierarquizada;

BARRAMENTO (BUS):

Vantagens:

Instalação simples Baixo custo **Desvantagens:**

Rompimento do cabo Difícil detecção do problema

Anel

Vantagens:

Facilidade de expansão Não tem colisão

Desvantagens:

Atrasos em transmissões **Custo elevado**

Estrela

Vantagens:

Fácil de configurar Fácil detecção de problemas **Desvantagens:**

Problemas no nó central Custo maior que a barra

TOPOLOGIAS FÍSICAS

Totalmente Distribuída (Mesh / Adhoc)

Segurança Desempenho

Desvantagens:

Custo elevado Inviabilidade de instalação

Em árvore

Vantagens:

Figura 6: Topologia em Árvore

Fácil de configurar Fácil detecção de problemas **Desvantagens:**

Problemas no nó central Custo maior que a barra

Formas de Utilização do Meio Físico

Simplex

Ocorre em apenas uma direção

Ex. TV Aberta

Half-Duplex

Ocorre em ambas as direções, mas um evento de cada vez

Ex. Rádio amador

Full Duplex

Recepção e envio ocorrem simultaneamente

Ex. tv a cabo

Transmissão de Dados

- As transmissões são feitas entre um transmissor e um receptor e através de um meio físico de transmissão.
- Os dados são transportados por ondas.

Ondas

- Uma pertubação oscilante de alguma grandeza física no espaço e periódica no tempo.
- Propaga-se através de um meio físico de transmissão.

Transmissão de Dados

Elementos da Onda

Características das Ondas

Picos

Pontos mais altos

Vales

Pontos mais baixos.

Ciclo de onda

Distância entre dois vales ou picos.

Amplitude

Nível máximo positivo ou negativo alcançado pelo ciclo

Frequência

Quantos ciclos ocorrem por unidade tempo.

Medida padrão em ciclos/segundos ou Hertz (HZ)

Transmissão de Dados

Sinais

São ondas que se propagam através de algum meio físico.

Sinal Analógico

A amplitude do sinal varia com o tempo.

Sinal Digital

A amplitude do sinal é fixa.

Fontes de distorção de um sinal

Atenuação

A potência do sinal cai com a distância.

Ruídos

Os ruídos causam distorções nos sinais e são um dos maiores limitantes do desempenho de sistemas de comunicação, geralmente são impostas pelas características do meio físico.

Fontes de distorção de um sinal

Fontes de distorção de um sinal Ruídos por Interferência

 FGV - 2022 - TRT - 16^a REGIÃO (MA) - Técnico Judiciário - Tecnologia da Informação

A atenuação é a perda ou enfraquecimento do sinal que percorre um meio físico. Ela é medida em

- A) dB.
- B) bps.
- C) m/s.
- D) Ohms.
- E) Hz.
- Comentários: Os níveis de atenuação são medidos em dB ou decibéis. A respeito dos demais itens, temos as referências das medidas:
 - b) banda de transmissão ou velocidade (bits por segundo)
 - c) Velocidade comum (metros por segundo)
 - d) resistência de elementos em redes de transmissão
 - e) Frequência de transmissão dos sinais.

Gabarito: A

Fontes de distorção de um sinal

Ruídos por Interferência

Crosstalk ou diafonia

Quando um sinal elétrico trafega num condutor gera ao redor deste um campo elétrico. Crosstalk é a medida da interferência em um par pelo sinal que está trafegando num par adjacente dentro do mesmo cabo.

Ruído Impulsivo

É causado por fontes externas de interferências eletromagnéticastais como motores, sistemas de distribuição de energia, lâmpadas fluorescentes e etc.

Ecos

Ecos provocam efeitos similares ao ruído, toda vez que há uma mudança de impedância numa linha de transmissão sinais são refletidos e voltam por esta linha corrompendo os sinais que estão sendo enviados.

Modulação

Processo de modificação de características de uma onda portadora de modo a adaptar um sinal ao meio de transmissão por onde vai circular.

Demodulação

É o processo de reversão da modulação. É o processo de reversão da modulação.

MODEM

É o equipamento capaz de realizar a modulação e demodulação do sinal.

Multiplexação

A multiplexação é a transmissão de vários sinais usando uma única linha de comunicação ou canal.

Objetivo básico do uso desta técnica é a economia pois utiliza-se o mesmo meio de transmissão para vários canais.

Multiplexação

Frequência (FDM) - Cada canal tráfega em uma frequência própria afim de utilizar a faixa de frequência disponível no meio.

Tempo (TDM) - Cada canal tráfega um pacote em um determinado momento, sendo então o tempo de uso do meio dividido para os canais.

Comprimento de Onda (WDM) - Utiliza o comprimento de onda para tráfegar vários feixes de comprimento diferente em uma única fibra, baseado na FDM (utilizadas em fibras ópticas)

Multiplexação na Frequência

Características de modulação na Frequência

- Analógico
- Cada sinal é modulado numa frequência de portadora diferente
- Hardware específico por filtro de frequência

Multiplexação por divisão no tempo

TDM Síncrona

Na TDM síncrona, o domínio do tempo é dividido em intervalos de tamanho fixo T, chamados frames.

Cada frame é dividido em T sub-intervalos (t1, ..., tn) denominados segmentos, os quais formam uma partição dos frames.

Multiplexação por divisão no tempo

TDM Assíncrona

- Parcelas de tempo são alocadas dinamicamente de acordo com a demanda das estações.

No TDM assíncrono nada é desperdiçado, pois o tempo utilizado está sempre disponível caso alguma estação gere tráfego e deseje utilizar o canal de transmissão.

No entanto, no TDM assíncrono, cada informação transmitida deve sempre conter um cabeçalho com os endereços de origem e de destino.

Largura de banda analógica e digital

Largura de banda analógica

Faixa de frequências utilizado por um sistema. Descreve, por exemplo, a faixa de frequências utilizada por uma estação rádio. Utiliza como unidade de medida o Hertz (Hz) ou ciclos por segundo.

Largura de banda digital

É a quantidade ou volume de informação que pode ser enviada por um canal, medida em bits por segundo (bps).

Unidades de largura de banda	Equivale
Bits por segundo	1 bps
Kilobits por segundo	1 kbps = 1000 bps = 10 ³ bps
Megabits por segundo	1 Mbps = 1000.000 bps = 10 ⁶ bps
Gigabits por segundo	1 Gbps = 1.000.000.000 bps = 10 ⁹ bps
Terabits por segundo	1 Tbps = 1.000.000.000.000 bps = 10 ¹² bps

Throughput

É largura de banda real, medida a uma determinada hora do dia. Infelizmente, por muitas razões, o throughput é muito menor que a largura de banda digital máxima possível do meio que está sendo utilizado.

Alguns dos fatores que determinam o throughput e a largura de banda são:

- Dispositivos da rede
- Número de usuários
- Computador do usuário
- Computador Servidor

Cálculo:

$$T = S / P$$

Tempo estimado (T) = tamanho do arquivo(S) / largura de banda(P) "representa a velocidade com que dados poderiam ser transferidos".

Meios Físicos de Transmissão

Guiados:

Cabo Coaxial (meltálicos) Par Trançado (metálicos) Fibra Ótica

Não guiados:

Wireless (Radiofrequência)

Meios Físicos de Transmissão - Cabo Coaxial

O cabo coaxial (10BASE2) consiste em um condutor de cobre envolto por uma camada isolante flexível.

10BASE2 - Características:

Distância máxima de até 185 metros Velocidade até 10MB Baixo custo

Meios Físicos de Transmissão - Cabo Coaxial

Resumo:

- **10BASE2** Suporta 10Mbps a uma distância de 185m. São chamados também de cabos coaxiais finos (Thinnet).
- **10BASE5** Suporta 10Mbps a uma distância de 500m. São chamados também de cabos coaxiais grossos (Thicknet). São mais caros e mais rígidos, mais difíceis de manusear.

Meios Físicos de Transmissão - Cabo Coaxial

Conector T BNC

Conector BNC desmontado

Conector no cabo

Conector na extremidade do cabo

Conector fora da extremidade do cabo

Estes cabos são constituídos por 4 pares de cabos entrelaçados enrolados em espiral de forma a reduzir o ruído e manter constantes as propriedades elétricas do meio através de todo seu comprimento. Para todos os cabos, se aplica a distância máxima de 100m.

Classificação:

UTP — Unshielded Twisted Pair (par trançado não-blindado)

STP – Shielded Twisted Pair (par trançado blindado)

Os cabos blindados, são divididos em três tipos:

FTP (Foiled Twisted Pair): possuem uma blindagem mais simples feita de folha de aço ou liga de alumínio com o objetivo de reduzir a interferência externa. Entretanto não trata o "Crosstalk" (interferência entre os pares de cabos).

STP (Shielded Twisted Pair): Essa categoria já se utiliza de uma blindagem para cada par de cabos. Com isso, é possível reduzir o "Crosstalk", aumentando a tolerância a distâncias maiores que os 100m estabelecidos pelo padrão.

SSTP (Screened Shielded Pair) ou SFTP (Screened Foiled Twisted Pair): É uma categoria que une as características dos cabos FTP e STP, isto é, há a blindagem para cada par bem como a blindagem externa de todos os cabos. Foi criado para ser usado em ambientes suscetíveis a grandes interferências externas com distâncias maiores.

Resumo visual dos tipos de cabos:

Categorias:

Categoria de Desepenho de Cabos Pares Trançados			
Categoria	Tipo de cabo (*)	Largura de Banda	Taxa de Transmissão
Cat. 3	U/UTP e F/UTP	16 MH z	16 Mbps
Cat. 5e	U/UTP e F/UTP	100 MHz	1 Gbps
Cat. 6	U/UTP e F/UTP	250 MHz	1 Gbps
Cat. 6A	U/UTP e F/UTP	500 MHz	10 Gbps
Cat. 7	F/UTP e S/FTP	600 MHz	10 Gbps
Cat. 7A	F/UTP e S/FTP	1 GHz	10 Gbps
Cat. 8 (**)	F/UTP e S/FTP	2 GHz	40 Gbps

^(*) Cabos Reconhecidos

Categoria de Desepenho de Cabos Pares Trançados

Três tipos de cabos: sem blindagem, com uma blindagem e com duas blindagens, U/UTP, F/UTP e S/FTP, respectivamente.

F/UTP

A primeira letra APÓS a barra diz respeito à proteção interna dos pares

A letra ANTES da barra diz respeito à proteção externa dos pares

^(**) Em estudo pelo IEEE

Tipos de Conexão e Padrões

Cabo Normal

É utilizado para ligações micro/hub sendo as duas extremidades do cabo com a mesma combinação de cores no padrão 568A ou 568B.

568A

Pino	Cor	Função
1	verde branco	Tx+
2	verde	Tx-
3	laranja branco	Rx+
4	azul	não utilizado
5	azul branco	não utilizado
6	laranja	Rx-
7	marrom branco	não utilizado
8	Marrom	não utilizado

568B

Pino	Cor	Função
1	laranja branco	Tx+
2	laranja	Tx-
3	verde branco	Rx+
4	azul	não utilizado
5	azul branco	não utilizado
6	verde	Rx-
7	marrom branco	não utilizado
8	marrom	não utilizado

Cabo Crossover

Utilizado normalmente para fazer a conexão entre dois computadores por uma placa de rede ou para fazer o cascateamento de hubs.

Crossover

Normal

Cabo Crossover

568A

Função Pino Cor verde branco Tx+ Tx-2 verde 3 laranja branco Rx+ 4 não utilizado azul não utilizado 5 azul branco 6 Rxlaranja marrom branco não utilizado Marrom não utilizado 8

568B

Pino	Cor	Função
1	laranja branco	Tx+
2	laranja	Tx-
3	verde branco	Rx+
4	azul	não utilizado
5	azul branco	não utilizado
6	verde	Rx-
7	marrom branco	não utilizado
8	marrom	não utilizado

Ferramentas e Conectores

Alicate de Crimpar RJ 11/RJ45

Alicate de Crimpar RJ45

Conector RJ45

Tomada de Superfície

Tomada fêmea

Montagem tomada fêmea

Alicate Punch Down

Espelho de parede

Testador de cabo

Anilha protetora

Referências Bibliográficas

TANENBAUM, ANDREW S. Sistemas Operacionais Modernos - 2.a Edição. Prentice-Hall, 2003.

DEITEL, P. J.; NIETO, T. R.; DEITEL, H.M. Internet & World Wide Web - Como Programar. Bookman, 2003.

