AUTOTUNING UNDER TIGHT BUDGET CONSTRAINTS: A TRANSPARENT DESIGN OF EXPERIMENTS APPROACH

Autotuning: Optimizing Program Configurations

AND DY ZEN

- How to write efficient code for each of these?
- We can use autotuning:
- The process of automatically finding a configuration of a program that optimizes an objective

Strategies for Exploring Search Spaces

System	Domain	Approach
ATLAS	Dense Linear Algebra	Exhaustive
INSIEME	Compiler	Genetic Algorithm
Active Harmony	Runtime	Nelder-Mead
ParamILS	Domain-Agnostic	Stochastic Local Search
OPAL	Domain-Agnostic	Direct Search
OpenTuner	Domain-Agnostic	Ensemble
MILEPOST GCC Apollo	Compiler GPU kernels	Machine Learning Decision Trees

Exhaustive, Meta-Heuristics, Machine Learning

- ► These approaches need a large number of function evaluations, assuming seach space "smoothness", and that good solutions are reachable
- ► After optimizing, we learn "nothing" about the search space, and can't explain why optimizations work

Design of Experiments: Exploration under a Budget

A Plackett-Burman design for 7 2-level factors

Experiment results can be used to identify relevant parameters and build a performance model

Exploration of a search space using a fixed budget of 50 points, the red "+" represents the best point found by each strategy

A Motivating Result on a GPU Kernel

Autotuning: Search Spaces are Hard to Explore

Unrolling, blocking and Mflops/s for matrix multiplication Seymour K, You H, Dongarra J. A comparison of search heuristics for empirical code optimization. InCLUSTER 2008 Oct 1 (pp. 421-429)

- Represent the effect of all possible configurations on the objectives, can be difficult to explore, with multiple local optima and undefined regions
- Main issues are exponential growth, geometry, & measurement time

Our Design of Experiments Approach

Extensive Evaluation on the SPAPT Benchmark

RSIDLMT

[0] hessian

Cost in Seconds

i-O3

Count

