

پردیس علوم دانشکده ریاضی، آمار و علوم کامپیوتر

مدلسازی سازو کارهای مسئلهی انقیاد در شبکههای عصبی ضربهای

نگارنده امیر اصلان اصلانی

اساتید راهنما محمد گنج تابش عباس نوذری دالینی

پایاننامه برای دریافت درجهی کارشناسی ارشد در رشته علوم کامپیوتر بهمن ۱۴۰۱

چکیده

مسئلهی انقیاد یکی از مسائل مهم در علوم اعصاب، علوم شناختی و فلسفهی ذهن است که درباره ی چگونگی یکپارچه شدن درک موجود زنده از محیط با استفاده از مفاهیم جزئی تشکیلشده در مغز است. اهمیت این مسئله در درک عملکردهای شناختی انسان است که خود بخشی از مراحل مورد نیاز برای طراحی سیستمهایی است که قادر به پردازش عملکردهای شناختی مشابه انسان هستند. تحقیقات نشاندهنده ی نقش بسیار پررنگ ستونهای قشری مغز، که ساختارهایی در نوقشر هستند، در عملکردهای شناختی موجودات زنده است. در این پژوهش تلاش شده تا با مدلسازی ستونهای قشری و روابط بین آنها با استفاده از شبکههای عصبی ضربهای،فرآیند تشکیل انقیاد در مغز شبیه سازی شود. آزمایشها و بررسیهای صورت گرفته روی مدل طراحی شده، به درستی شکلگیری انقیاد را نشان میدهند. این موضوع نشاندهنده ی این است که احتمالاً ستونهای قشری، به عنوان ساختارهایی ثابت و قابل تکرار، بالقوه ساختارهای مناسبی برای استفاده در مدلسازیها هستند و امکان شکلگرفتن پردازشهای شناختی را در مدلهای مجاسباتی افزایش میدهند.

كلمات كليدى: ستون قشرى، مسئلهى انقياد، شبكهى عصبى ضربهاى، مدلسازى.

پیشگفتار

برای مدت زمان بسیاری چگونگی کارکرد مغز انسان یکی از سؤالات بشر بوده و در دهههای اخیر، دانش ما از ساختار مغز با پیشرفت فناوری بسیار افزایش یافتهاست؛ اما همچنان چگونگی رخدادن بسیاری از عملکردهای شناختی در موجودات زنده، از اصلی ترین پرسشهای پژوهشگران هستند. افزایش دانش ما از ساختار مغز با پیدایش سیستمهای محاسبه گر و پس از آن با افزایش قدرت محاسباتی آنها همراه بوده که موجب پیشرفتهای بسیار چشمگیری در حوزهی هوش مصنوعی شدهاست. کنجکاوی بشر در چگونگی عملکرد مغز انسان از یک سو و پیشرفتهای هوش مصنوعی از سوی دیگر باعث شده تا بسیاری از پژوهشگران با تلاش برای مدلسازی فعالیتهای مغزی به سمت تولید سیستمهای هوشمند با عملکردهای شناختی مشابه انسان گام بردارند. در این میان علوم اعصاب در ارتباط است اعصاب محاسباتی به عنوان یک حوزه ی بین رشته ای، که از طرفی با علوم اعصاب در ارتباط است و از طرف دیگر با علم کامپیوتر، در سالهای اخیر پیشرفتهای بسیاری داشته است که موجب شده تا بسیاری از محققان به پژوهش در این حوزه روی آورند.

یکی از موضوعات اساسی که چگونگی رخدادن آن در موجودات زنده همچنان به صورت واضح مشخص نشده است، مسئله ی انقیاد است. موجودات زنده محیط خود را از طریق ورودی های عصبی همچون بینایی، شنوایی و لامسه احساس می کنند و تک تک اجزای اطلاعات دریافت شده به صورت مجزا و تفکیک شده در مغز شکل می گیرند؛ ولی موجود زنده به یک درک یکپارچه از مفاهیم اطراف خود می رسد. برای مثال در مغز فردی که تصویر یک مربع مشکی که با رنگ قرمز پر شده است را می بیند، به صورت مجزا مفهوم چهار خط مشکی و رنگ قرمز شکل می گیرد ولی در پردازش های شناختی این مفاهیم جدا از هم به صورت یک مفهوم واحد تجمیع می شوند و یک مربع با رنگ قرمز را در ذهن فرد تداعی می کنند.

پدیده ی انقیاد به عنوان یکی از مهمترین ویژگیهای شناختی انسان مورد توجه بسیاری از پژوهشگران قرار گرفتهاست و در عصر امروز که هوش مصنوعی و به خصوص شبکههای عصبی مصنوعی با سرعت بسیاری در حال پیشرفت هستند، عدم امکان رخدادن انقیاد در آنها به عنوان یکی از محدودیتهای اصلی بیان میشود و به همین دلیل تلاشهای بسیاری برای پیادهسازی سازوکارهایی برای وارد کردن انقیاد به شبکههای عصبی مصنوعی در حال انجام است. شبکههای عصبی مصنوعی و یک مدل زیست توجیه پذیر، عصبی مصنوعی و یک مدل زیست توجیه پذیر، یک ابزار بسیار مناسب برای طراحی مدلی است که انقیاد در آن قابل مشاهده باشد. به همین منظور، در این مطالعه مدلی زیست توجیه پذیر با استفاده از شبکههای عصبی ضربهای و با الهام از ساختارهایی به نام ستونهای قشری در مغز پیاده سازی شده است که در تلاش است تا سازو کار انقیاد را به صورت محاسباتی مدلسازی کند.

این پایاننامه در پنج فصل به صورت زیر تنظیم شدهاست:

در فصل اول، برخی از مفاهیم اولیهی مرتبط با سیستم عصبی انسان، مسئلهی انقیاد و شبکههای عصبی ضربهای را به صورت مختصر مرور خواهیم کرد.

در فصل دوم با بیان مسئلهی کلی مورد نظر و مشکلات حال حاضر در آن موضوع، به طرح مسئلهای که قصد پاسخ به آن را داریم خواهیم پرداخت.

در فصل سوم به برخی از دیگر تلاشهای صورتگرفته در راستای مسئلهی مطرحشده، ویژگیها، نواقص و نقاط قوت آنها خواهیم پرداخت.

در فصل چهارم به تشریح مدل ارائهشده و چگونگی عملکرد آن خواهیم پرداخت. همچنین در ادامه، به بررسی نتایج حاصل شده و کسب نتیجهی مدنظر، که مشاهدهی انقیاد در مدل است، خواهیم پرداخت.

در فصل پنجم، که فصل نهایی این پایاننامه است، یک نگاه کلی به مدلهای پیشین و مقایسهی ویژگیهای آنها با مدل ارائه شده خواهیم داشت و پس از آن نیز با توجه به نتایج حاصل شده از مطالعه، نتیجهی گرفته شده را مطرح خواهیم کرد. همچنین در انتهای این فصل به فعالیتهای دیگری که در ادامهی این مطالعه می توان انجام داد، خواهیم پرداخت.

فهرست مطالب

١																												4	ولي	م ا	هي	مفا	١
١																						ان	لسا	ا:	ىبى	ىص	ء	تم	ىيس	w	١	٠١	
۲																			. 1	ه	ور	ور	ر ن	عتا	باخ	w		١.	١.	١			
۴																	کی	روز	ور	; _	رى	بذي	<u>۔</u> پ	لاو	عو	ان	•	۲.	١.	١			
٧																į	مغ	ر ،	د	ٺن	دان	پا	ئار	وك	باز	w	١	٣.	١.	١			
٨																	(زي	شر	ن ق	وز	ست	و	ئىر	وقثأ	نو	١	۴.	١.	١			
٩																			٠ ر	مح	هر	ی	ها;	رن	ررو	نو	(۵.	١.	١			
۱۱																			٠ (ای	به	ضر	،	سبح	عص	ی د	باي	۵d	بک	ث	۲	۱.۱	
١٢												تى	ئشا	ے :	شر	آڌ	و	ح	مي	ج	ے ت	زنى	رو	، نو	دل	م		١.	۲.	١			
۱۲						ی	إا	بىر	, ض	بی	صب	ع	ی	ها	٤4	<	ش	ر ،	د	تى	ويا	تق	ی	یر	ادگ	یا	•	۲.	۲.	١			
۱۳																		نی	رو	نور	ن	ماي	ته	ميد	عما	-	١	٣.	۲.	١			
۱۵																													ىئلە	مس	· ~	طر۔	۲
۱۵																									باد	انق	٠,				_	ر ۲. ۲	
																																۲.۲	
۱۸																																۲. ۲	
۱۹																																۶. ۲	
۲.																							-	_				_					
۲۱																											٠,	ش	ت ی	نمار	قىق	تحآ	٣
۲١																					J.	:1		٠.	٠	_						٣	

۲۲ .	ر انقیاد در گروههای چندزمانی	پيدايش	۲.۳	
۲۳ .	ای قشری، واحدهای مستقل محاسباتی	ستونها	٣.٣	
۲۵ .	، از مدل مبتنی بر ستون قشری در شبکههای عصبی	استفاده	4.4	
49 .	، از شبکهی عصبی مولد برای تشکیل انقیاد	استفاده	۵.۳	
79	، آزمایشها و نتایج	پیشنهادی	۱ مدل	۴
29.	شنهادی	مدل پين	1.4	
٣٠.	الگوی فعالیت جمعیتهای ورودی	1.1.4		
٣٢ .	مدلسازی ستونهای قشری	7.1.4		
ی ۳۴	اتصالات اتصالات پیشخور بین ستونهای قشری و جمعیتهای ورود	۳.۱.۴		
٣۴ .	اتصالات پسخور بین ستونهای قشری	4.1.4		
٣۴ .	وزنهای اولیه و انعطافپذیری نورونی	۵.۱.۴		
٣٨ .	ابزارهای پیادهسازی	9.1.4		
٣٨ .	پارامترهای مورد استفاده در آزمایش	٧.١.۴		
۴۲ .		آموزش	۲.۴	
۴٣ .		نتايج	٣.۴	
۴٣ .	نتایج آموزش ستونهای قشری اول و دوم	1.4.4		
44 .	نتایج آموزش ستون قشری سوم	7.4.4		
49 .	میزان پیشرفت یادگیری	۳.۳.۴		
49 .	بررسی وجود انقیاد در مدل	4.4.4		
۵٠.	ى مدل ارائهشده با مدلهاى پيشين	مقايسە;	4.4	
۵۱ .	ئىرى	نتيجهگ	۵.۴	
۵۲ .	های آینده	فعاليت	9.4	
۵۳	نگلیسی	ارسی به ا	ِاژەنامە ڧ	و
۵٧			براجع	a

فصل ۱

مفاهيم اوليه

در این فصل به تعریف برخی از مفاهیم اولیه خواهیم پرداخت. بدین منظور از سیستم عصبی انسان شروع خواهیم کرد و به مواردی چون ساختار اعصاب، تغییرات آنها در مرور زمان، سازوکار پاداش و برخی تقسیمبندیها دربارهی نواحی مغز خواهیم پرداخت. در ادامه اشارهای به روشهای رایج مدلسازی در موضوع شبیهسازی شبکههای عصبی خواهد شد و در نهایت با توضیحاتی در باب مسئلهی انقیاد فصل را خاتمه خواهیم داد.

۱.۱ سیستم عصبی انسان

به صورت کلی سیستم عصبی انسان به دو بخش کلی تقسیم می شود: سیستم عصبی مرکزی و سیستم عصبی مرکزی، و سیستم عصبی محیطی در اینجا موضوعی که بیشتر مورد بحث می باشد، سیستم عصبی مرکزی، به ویژه مغز است. قشر مغز انسان به طور تخمینی از ۲۱ الی ۲۶ میلیارد نورون تشکیل شده است [۳۳] که در بخش های بعدی با جزئیات بیشتری به ساختار و ارتباطات میان آن ها خواهیم پرداخت.

اطلاعات مختلف که از ارگانهای حسی انسان (سیستم عصبی محیطی) ارسال شدهاند در مغز تجمیع می شوند. سپس مغز این تصمیم را که ارگانهای بدن چه اعمالی را باید انجام دهند، اتخاذ می کند. مغز دادههای خام را برای استخراج اطلاعاتی درباره ی محیط، پردازش می کند و سپس این

¹Central Nervous System (CNS)

²Peripheral Nervous System (PNS)

اطلاعات را با نیازهای فعلی انسان و اطلاعاتی که در حافظه از شرایط گذشته دارد ترکیب میکند تا در نهایت بر اساس نتایج حاصلشده، یک الگوی حرکتی را تولید کند. این پردازش اطلاعات نیازمند تعاملاتی پیچیده میان بخشهای مختلف سیستم عصبی است [۴].

۱.۱.۱ ساختار نورونها

نورونها سلولهایی هستند که وظیفه ی اصلی پردازش را در سیستم عصبی موجودات زنده بر عهده دارند. به صورت خاص، نورونها سیگنالهایی را دریافت، پردازش و منتقل میکنند. نورونها از نظر شکل، اندازه و خواص الکتروشیمیایی بسیار متنوع هستند. آنها از چند بخش اصلی، به شرح زیر تشکیل شدهاند: (شکل ۱.۱)

- بدنهی نورون تیا جسم سلولی که شامل هستهی سلول ٔ است و فعالیتهای حیاتی سلول داخل آن اتفاق میافتد.
- دندریت^۵ که یک جسم شاخه مانند است و نقش دریافت سیگنالهای ارسال شده توسط نورونهای دیگر را که توسط آکسونهای آنها منتقل شده است، بر عهده دارد.
- آکسون ۶ که جسمی شاخه مانند است، سیگنالهای ارسالی از نورون را به دندریتهای نورونهای دیگر منتقل میکند. سرعت انتقال پیام در آکسون متغیر است و بستگی به میزان غلاف میلین ۷ در اطراف آن دارد.

بدنهی نورون از یک لایهی عایق تشکیل شده است که سبب ایجاد اختلاف پتانسیل بین داخل و خارج نورون می شود. همچنین مجموعه ای از کانالهای یونی و نیز وجود دارند که نورون از طریق آنها یونهایی را با محیط بیرون تبادل می کند و این تبادلات موجب تغییر در میزان اختلاف پتانسیل نورون می شود. زمانی که اختلاف پتانسیل یک نورون از یک آستانه فراتر رود، مجموعه ای از این کانالها باز شده و موجب افزایش بسیار سریع اختلاف پتانسیل و سپس کاهش مجدد آن به میزان طبیعی می شود. به این پدیده، شلیک یا ضربه ۱۰ می گوییم. در زمان رخدادن پدیده ی ضربه، همراه با

³Soma

⁴Nucleus

⁵Dendrite

⁶Axon

⁷Myelin

[^]خلق شده توسط Casey Henley تحت مجوز CG BY-NC-SA نسخه ۴.۰

⁹Ion Channels

¹⁰Spike

شکل ۱.۱: اجزای تشکیل دهندهی نورون^.

افزایش ناگهانی اختلاف پتانسیل در نورون، این اختلاف پتانسیل از طریق آکسونها منتقلشده و در سیناپسها پیامرسانهای عصبی از را آزاد میکند که در نتیجه باعث افزایش یا کاهش اختلاف پتانسیل در دندریتهای مجاور این سیناپسها می شود. در این فرآیند، نورونی که منشأ اختلاف پتانسیل منتقل شده بوده است را نورون پیشسیناپسی ۱۲ و نورونی را که این اختلاف پتانسیل به آن منتقل شده، نورون پسسیناپسی ۱۳ می نامیم.

نورونها را از جهتهای گوناگونی، همچون عملکرد و ساختار فیزیکی، میتوان دستهبندی کرد [۳۱]. آنها از نظر عملکرد به دو دستهی کلی تقسیم میشوند؛ دستهی اول نورونهای تحریکی ۱۴ هستند که در سیناپسهایشان انتقال دهندههای عصبی تحریکی مثل گلوتامیت ۱۹ آزاد میشود و اختلاف پتانسیل را در نورون پس سیناپسی افزایش میدهند. دستهی دوم نورونهای مهاری هستند که در سیناپسهایشان انتقال دهندههای عصبی مهاری مثل گابا ۱۹ آزاد میشود و اختلاف پتانسیل را در نورون پس سیناپسی کاهش می دهند [۳۶].

همچنین، میتوان از جهت ساختار فیزیکی نورونها را به سه دستهی کلی تقسیم کرد: نورونهای

¹¹Neurotransmitter

¹²Pre-synaptic Neuron

¹³Post-synaptic Neuron

¹⁴Excitatory

¹⁵Glutamate

¹⁶GABA

شكل ٢.١: تقسيم بندى نورون ها از جهت ساختار فيزيكي آنها.

تک قطبی 11 ، نورونهای دوقطبی 11 و نورونهای چندقطبی 11 [۲]. نورونهای تک قطبی از یک شاخه ی کوتاه تشکیل شده اند که خود به دو شاخه تقسیم می شود که در دو راستای مخالف هم حرکت می کنند. نورونهای دوقطبی دو شاخه دارند که در خلاف جهت یکدیگر هستند. نورونهای چندقطبی، نورونی است که یک آکسون و چندین دندریت دارد و امکان تجمیع اطلاعات چندین نورون دیگر را دارد. ساختار این سه دسته از نورونها در شکل ۲.۱ مشخص شده است.

۲.۱.۱ انعطافیذیری نورونی

انعطافپذیری نورونی ۲۰ را میتوان به عنوان توانایی سیستم عصبی برای تغییر فعالیت خود در پاسخ به محرکهای درونی یا بیرونی با اعمال تغییراتی در ساختار، عملکرد و اتصالات خود قلمداد کرد [۲۷]. همچنین میتوان پدیده ی یادگیری در موجودات زنده را محصول وجود انعطافپذیری نورونی در آنها دانست.

¹⁷Unipolar Neurons

¹⁸Bipolar Neurons

¹⁹Multipolar Neurons

²⁰Neuroplasticity

از میان تأثیراتی که در نتیجه ی انعطاف پذیری نورونی ایجاد می شود، می توان به تغییر میزان تأثیر تحریکی یا مهاری نورون پیش سیناپسی روی نورون پس سیناپسی اشاره کرد که در نتیجه ی تغییر در ساختار دندریتها و آکسونها رخ می دهد. از جمله مهم ترین قوانین یادگیری در این خصوص، قانون یادگیری هب^{۲۱} است که به واسطه ی فعالیتهای دونالد هب^{۲۱} معرفی شده است. قانون یادگیری هب به این صورت بیان شده است: «زمانی که آکسون نورون الف به اندازه ای به (دندریت) نورون بن بنزدیک باشد که مکرراً یا دائماً باعث تحریک آن شود، برخی فرآیندها و تغییرات متابولیکی در یک یا هردوی نورونها باعث تغییراتی می شوند تا تأثیر نورون الف در تحریک نورون ب افزایش یابد» [۱۹]. همچنین کارلا شاتز ۲۳ این گونه قانون هب را تفسیر میکند: «نورونهایی که هم زمان ضربه می زنند، به هم متصل می شوند» [۲۹]. این تفسیر ممکن است باعث برداشت غلط شود، چراکه اگر دو نورون به معنی واقعی کلمه در یک لحظه شلیک کنند، امکان این که شلیک یکی وضوع هم زمانی، از آن نورونها معلول شلیک نورون دیگر باشد وجود نخواهد داشت. بیشتر از موضوع هم زمانی، موضوع ارتباط علت و معلولی بین شلیک نورونها است که دارای اهمیت می باشد [۱۲].

در دهه ی ۱۹۹۰ میلادی، نتایج حاصل از آزمایشها باعث مشخص شدن پایههای نوروفیزیولوژیک قانون هب بر اساس انعطاف پذیری وابسته به زمان ضربه 14 شدند [14]. در این آزمایشها مشخص شد وقتی یک نورون تحریکی، به یک نورون تحریکی دیگر متصل شده باشد، اگر نورون پیش سیناپسی با فاصله ی زمانی 14 میلی ثانیه یا کمتر نسبت به نورون پس سیناپسی ضربه بزند، سیناپسهای مرتبط با اتصال آنها تقویت می شوند و اگر نورون پس سیناپسی زودتر از نورون پیش سیناپسی ضربه بزند، سیناپسهای مرتبط با اتصال آنها تضعیف خواهند شد (شکل 14). بر اساس روابط کشف شده در تضعیف و تقویت سیناپسها، می توان تغییرات میزان اثر گذاری نورونها روی یکدیگر را به صورت زیر مدل سازی کرد [14]:

$$\Delta w = \begin{cases} A_{+}(w) \cdot \exp(\frac{-|\Delta t|}{\tau_{+}}) & \text{if } t_{pre} \leq t_{post}, \\ A_{-}(w) \cdot \exp(\frac{-|\Delta t|}{\tau_{-}}) & \text{if } t_{pre} > t_{post}. \end{cases}$$

$$\tag{1.1}$$

در این جا w میزان اثرگذاری یک نورون روی نورون دیگر، au_{\pm} ثابتهای زمانی و A_{\pm} میزان تغییرات وزنهای سینایسی هستند.

²¹Hebbian Learning Rule

²²Donald Hebb

²³Carla Shatz

²⁴Spike-timing dependent plasticity (STDP)

زمان ضربهزدن نورون پیشسیناپسی نسبت به نورون پسسیناپسی (میلی ثانیه)

شکل ۳.۱: میزان تغییرات سیناپسها در انعطافپذیری وابسته به زمان ضربه در فواصل زمانی مختلف برای اتصالات بین نورونهای تحریکی.

همچنین از آن زمان تا کنون مشخص شده که این الگوی تغییرات برای سیناپسهای مهاری متفاوت است و تغییرات وزن در هنگامی که فاصلهی زمانی بین ضربهزدن نورون پیشسیناپسی و نورون پسسیناپسی از حدود ۵ میلی ثانیه کمتر باشد، بسیار ناچیز خواهد بود که در شکل ۴.۱ نمایش داده شده است [۱۴].

شکل ۴.۱: میزان تقویت سیناپسها در انعطافپذیری وابسته به زمان ضربه در فواصل زمانی مختلف برای سیناپسهای مهاری.

۳.۱.۱ سازوکار پاداش در مغز

بخش بزرگی از یادگیری انسان در تعامل با محیط اتفاق میافتد. هر خروجی انسان تأثیری روی محیط پیرامونش گذاشته و محیط تغییریافته، خود به عنوان یک درونداد از طریق سیستم عصبی محیطی درک می شود [۴۰]. با توجه به درک انسان از محیط، پاداش یا تنبیه نیز برای آن در نظر گرفته می شود که این سازوکار در مغز انسان بر عهده ی پیام رسانهای عصبی ۲۵ مانند دوپامین ۲۵ است،

²⁵Neurotransmitter

²⁶Dopamine

شکل ۵.۱: آثار عامل و محیط بر روی یکدیگر

تأثیر پاداش روی فعالیت نورونها به این صورت است که برخی از نورونها به این دسته از پیام رسانهای عصبی حساس هستند و میزان غلظت آنها روی فعالیت این دسته از نورونها تأثیرگذار است و این تأثیر به گونهای است که در صورت دریافت سیگنال پاداش، تغییرات وزنهای اتصالات نورونی مشابه انعطاف پذیری وابسته به زمان ضربه تغییر خواهند کرد؛ هرچند که میزان پاداش در شدت این تغییرات موثر است. همچنین در صورتی که سیگنال تنبیه دریافت شود تغییرات وزنهای اتصالات بین نورونی برعکس انعطاف پذیری وابسته به زمان ضربه تغییر خواهند کرد و میزان این تغییرات به طور مشابه، وابسته به میزان شدت تنبیه خواهد بود.

برای مدلسازی اثر سازوکار پاداش روی یادگیری میتوان از روابط زیر استفاده کرد [۸]:

$$\frac{dc}{dt} = -\frac{c}{\tau_c} + STDP(\tau)\delta(t - t_{pre/post}) \tag{1Y.1}$$

$$\frac{dd}{dt} = -\frac{d}{\tau_d} + DA(t) \tag{۲.1}$$

$$\frac{ds}{dt} = cd$$
 (۲.۱)

در روابط فوق، d میزان دوپامین (پاداش)، δ تابع دیراک، au_c و au_c به عنوان ثابتهای زمانی و DA به عنوان تابع دوپامین ترشحشده در نظر گرفته شدهاند.

۴.۱.۱ نوقشر و ستون قشری

نوقشر یک قشر مغزی شش لایه در پستانداران است که وظیفهی عملکردهای سطح بالایی همچون شناخت، حرکت، بینایی و گفتار را برعهده دارد [۲۴]. شماره گذاری لایههای نوقشر به ترتیب از

بیرونی ترین لایه شماره ۱ تا درونی ترین لایه، شمارهی ۶ میباشد. همچنین نوقشر شامل نورونهای تحریکی و مهاری با نسبت تقریبی ٪۸۰ به ٪۲۰ است [۳۲].

ساختار نوقشر علاوه براین که شامل شش لایه ی افقی میباشد، شامل مجموعه ای از سازه های عمودی به نام ستون قشری است که سطح مقطع بسیار کوچکی در ابعاد نیم میلی متر دارند و نوقشر از کنار هم قرارگرفتن این ستون ها شکل می گیرد [۲۰]. به صورت کلی، این ستون های قشری از نظر ارتباط بین لایه ها الگوی های تکرارشونده ای دارند که در تمام بخش های نوقشر مشابه یکدیگر هستند. مدار کورتکسی استاندارد٬۲۷ که توسط داگلاس و مارتین [۵] بیان شده است، ارتباط بین بخش های مختلف داخلی و بین ستون های قشری را نشان می دهد (شکل ۴.۱).

۵.۱.۱ نورونهای هرمی

بخش اعظم نورونهای تشکیل دهنده ی سیستم عصبی مرکزی مهرهداران را نورونهای چندقطبی تشکیل میدهند [۲۲] که یکی از انواع آنها نورونهای هرمی ۲۸ هستند. نورونهای هرمی در نواحی بسیاری از مغز حضور دارند و بخش اعظم نورونهای تحریکی را در نوقشر تشکیل میدهند [۱۷]. بسیاری از جمله مهمترین ویژگیهای نورونهای هرمی حضور دو گروه از دندریتها به نامهای دندریتهای رأسی ۲۹ و دندریتهای قاعدهای ۳۰ در آنها است. دندریتهای رأسی معمولاً اتصالاتی از راه دور هستند که تا بخشهای دیگر مغز نیز میتوانند پراکنده شدهباشند و معمولاً در سطح خارجی نوقشر مستقر هستند [۲۸]. دندریتهای قاعدهای معمولاً نزدیک به بدنهی نورون هستند و فواصل زیادی را طی نمیکنند. به دلیل همین ویژگیهای مطرح شده دندریتهای رأسی و برخی از دندریتهای قاعدهای قاعدهای، که فاصله ی سیناپسهایشان از بدنه ی نورون بیشتر است، معمولاً نقش اتصالات پسخور را دارند که نورونهای پسسیناپسی را برای ضربه آماده میکنند و آن دسته از دندریتهای قاعدهای که به بیشتر اطراف بدنه ی نورون هستند، موجب ضربه زدن نورونهای پسسینایسی را بر عهده دارند.

²⁷Canonical Cortical Circuit

²⁸Pyramidal Neurons

²⁹Apical

³⁰Basal

شکل ۴.۱: مدار قشری استاندارد که توسط داگلاس و مارتین بیان شدهاست [۵]. در این شکل پیکانهای قرمز نشاندهنده ی اتصالات تحریکی و پیکانهای آبی نشاندهنده ی اتصالات مهاری هستند. همانطور که در شکل نیز مشخص شدهاست، بیشتر اتصالات مهاری بین نورونهای یک لایه ی مشخص هستند. همچنین پیکانهای مشخص شده با رنگ مشکی نشانگر اتصالات بین دو ستون قشری مجزا هستند.

شکل ۷.۱: نمایی از ساختار یک نورون هرمی و دندریتهای رأسی و قاعدهای در آن.

۲.۱ شبکههای عصبی ضربهای

شبکههای عصبی مصنوعی^{۳۱} بر پاییه ی دینامیکهای بسیار ساده شده مغز ساخته شده اند و به عنوان یک ابزار محاسباتی قوی برای حل بسیاری از مسائل استفاده می شوند [۱۰]. شبکههای عصبی ضربه ای^{۳۲} نوعی از شبکههای عصبی مصنوعی هستند که در آن ارتباط بین نورونها توسط ضربهها و سیناپسها با وزنهای متغیر، مطابق با مشاهدات زیستی تعریف شده اند [۹]. از جمله مهمترین ویژگیهایی که در شبکههای عصبی ضربهای در نظر گرفته شده، بعد زمان است [۳۰] که شبکههای عصبی کلاسیک فاقد این ویژگی بوده اند. در شبکههای عصبی ضربه ای اطلاعات می توانند در زمانهای مختلفی منتقل شوند و خود زمان در مفهوم منتقل شده نقش مهمی را بازی می کند [۲۵].

برای شبیه سازی این گونه از شبکه های عصبی، سازو کار نورون های زیستی به روش های گوناگونی مدلسازی شده، که از جمله ساده ترین آن ها، که در عین حال کارایی بسیار مناسبی نیز دارد، مدل

³¹Artificial Neural Networks

³²Spiking Neural Networks

نورونی تجمیع و آتش نشتی ۳۳ است که در ادامه به آن خواهیم پرداخت.

۱.۲.۱ مدل نورونی تجمیع و آتش نشتی

در مدل نورونی تجمیع و آتش نشتی تلاش شده است تا ویژگیها و خواص مهم نورونهای زیستی لحاظ شوند. در این مدل نورونی، با واردشدن ضربههای تولید شده توسط نورونهای پیش سیناپسی به نورون مد نظر، اختلاف پتانسیل آن افزایش می یابد (تجمیع) و در صورت رسیدن اختلاف پتانسیل به یک آستانه ی مشخص، این نورون ضربه ای تولید می کند (آتش) که توسط اتصالات بین نورونی به نورونهای پس سیناپسی منتقل می شود. همچنین در گذر زمان اختلاف پتانسیل نورون به مرور در حال کاهش به سمت یک میزان مشخص اختلاف پتانسیل است (نشتی) که به آن اختلاف پتانسیل است استراحت می گوییم [۸].

سازو کار تغییرات اختلاف پتانسیل را در این مدل نورونی میتوان به صورت معادلهی دیفرانسیل بیانشده در رابطه ی ۳.۱ نوشت: [۸].

$$\tau \cdot \frac{du}{dt} = -(u - u_{rest}) + R.I(t) \tag{(7.1)}$$

I(t) در رابطه ی فوق، u اخلاف پتانسیل فعلی نورون، u_{rest} اختلاف پتانسیل استراحت، u جریان ورودی به نورون و u مقاومت الکتریکی قشای نورون را نشان می دهند

۲.۲.۱ یادگیری تقویتی در شبکههای عصبی ضربهای

یادگیری تقویتی یکی از روشهای آموزش دادن عاملهای هوشمند است، که در آن عامل هوشمند با آزمون و خطا و با دریافت بازخورد از محیط خود، آموزش داده می شود تا به گونهای رفتار کند تا به صورت مفیدتری با محیط تعامل داشته باشد. به عبارتی عامل می آموزد تا به گونهای رفتار کند تا بیشترین پاداش را از محیط دریافت کند. در یادگیری تقویتی هیچ نظارتی بر روی عامل وجود ندارد و عامل خود باید در تعامل با محیط و آزمون و خطا رفتار بهینه را بیاموزد.

پیشتر در بخش ۳.۱.۱ به سازوکار پاداش در مغز انسان پرداختیم و مدل آن را نیز بررسی کردیم (روابط ۲.۱، ۲.۱ب و ۲.۱ج). از سازوکار مطرحشده در شبکههای عصبی ضربهای برای

³³Leaky integrate-and-fire

یادگیری تقویتی استفاده می شود تا مدل با توجه به الگوی فعالیتش در طول زمان و در مجاورت محیط، که منجر به دریافت پاداش و تنبیه می شود، آموزش داده شود و رفتار آن به سمتی متمایل شود که بیشترین پاداش را در طول زمان دریافت کند. قانون یادگیری حاصل از استفاده از این مدل را انعطاف پذیری وابسته به زمان ضربهی پاداش محور ۳۴ می نامند.

برای به کارگرفتن یادگیری تقویتی در یک مدل، باید بر اساس شرایط محیط فرضی شبیهسازی شده و برای رفتار عامل در آن، یک مقدار پاداش یا تنبیه محاسبه شود تا بتوان به عنوان مقدار دو پامین در مدل از آن استفاده کرد.

۳.۲.۱ جمعیتهای نورونی

نورونها در مغز به صورت گروههایی قابل تقسیمبندی هستند؛ همچون انواع مختلف نورونها، لایههای قشر مغزی یا ستونهای قشری. در مدلسازیها نیز به جای استفاده از تعداد بسیار زیادی از تک نورونهای شبیهسازی شده، نورونها در مجموعههایی دستهبندی شده و مجموعهای از نورونها همراه با یکدیگر بررسی می شوند.

یکی از مواردی که برای یک جمعیت نورونی قابل محاسبه است، فعالیت جمعیت نورونی است که به صورت یک نسبت از تعداد ضربه ها در بازه های زمانی کوتاه مدت تعریف می شود. فعالیت یک جمعیت نورونی در زمان t به صورت زیر تعریف می گردد:

$$A(t) = \frac{1}{\Delta t} \frac{n_{act}(t; t + \Delta t)}{N} \tag{F.1}$$

در رابطهی فوق Δt بازهی زمان شمارش ضربهها، $n_{act}(t;t+\Delta t)$ تعداد ضربهها در بازهی زمانی $t+\Delta t$ و N تعداد نورونهای جمعیت نورونی مورد بررسی است.

جمعیتهای نورونی به دو صورت متفاوت قابل تعریف هستند: جمعیتهایی که متشکل از نورونهای یکسان، که به آنها جمعیتهای همگن 79 گفته می شود، و جمعیتهای که متشکل از نورونهای غیریکسان هستند که به آنها جمعیتهای ناهمگن 79 گفته می شود.

³⁴Reward-modulated spike-timing dependent plasticity

³⁵Homogeneous Populations

³⁶Heterogeneous Populations

همچنین باید اتصالات بین جمعیتهای نورونی نیز برقرار شود. برای این منظور می توان به دو حالت کلی اتصال دو جمعیت نورونی را تعریف کرد: اتصال کامل و اتصال تصادفی. در اتصال کامل هر نورون در جمعیت پسسیناپسی متصل است. ولی در اتصال تصادفی یا میزان اتصالات بین نورونهای جمعیتهای پیشسیناپسی و پسسیناپسی به صورت تصادفی مشخص می شود، یا این که تعداد اتصالات عددی ثابت در نظر گرفته شده و این مسئله که هر نورون پیشسیناپسی به کدام نورونهای پسسیناپسی متصل شوند به صورت تصادفی مشخص می گردد.

فصل ۲

طرح مسئله

در این فصل پس از یک مرور مختصر دربارهی مسئلهی انقیاد به اهمیت مدلسازی مسئلهی انقیاد و مسائلی که درک بیشتر ما از این موضوع آنها را نیز تحت تأثیر قرار خواهد داد، خواهیم پرداخت. از میان این مسائل، می توان به هوش مصنوعی و درک بهتر سازوکار مغز اشاره کرد.

۱.۲ مسئلهی انقیاد

در حوزههای علوم اعصاب، علوم شناختی و فلسفه ی ذهن مسئله ای تحت عنوان مسئله ی انقیاد $^{\prime}$ یا مسئله ی ترکیب $^{\prime}$ مطرح می شود. مسئله ی انقیاد به چگونگی پردازش و درهم آمیختن مفاهیم مختلف مجزا از هم، همچون اشیاء و ویژگی های انتزاعی و احساسی، به صورت یک مفهوم تجمیع شده ی گسترده تر و درک آن ها به صورت یک تجریه ی واحد می پردازد [۳۷ ، ۷] (تصویر ۱.۲ و ۲.۲). به دلیل این که هنوز به صورت کامل از سازو کار انقیاد اطلاعی در دست نیست، از آن به عنوان یک مسئله یاد می شود.

به صورت کلی مسئله ی انقیاد توضیحی برای ظرفیت ما در یکپارچه کردن اطلاعات در طول زمان، فضا، ویژگیهای مختلف و ایدهها است. مسئله ی انقیاد به صورت سه موضوع مجزا قابل بررسی است و در هر یک از تحقیقات مختلف، مسئله ی انقیاد به یکی از این سه موضوع تعلق

¹Binding Problem

²Combination Problem

شکل ۱.۲: یک مثال از چگونگی ادراک یک تصویر شامل رنگ، طرح و چارجوب توسط مغز. تصویر به صورت کلی توسط ورودیهای حسی وارد مغز میشود و ویژگیهای آن (رنگ، طرح و حالت) به صورت مجزا درک میشوند. نهایتاً یک مفهوم جامع شامل تمام ویژگیهای تصویر، از مفاهیمی که به صورت مجرا درک شدهبودند، شکل میگیرد [۲۶].

شکل ۲.۲: یک نمایش از تعریف کلاسیک انقیاد و چگونگی ادراک مفاهیم جامع توسط درک مفاهیم جزئی تر. [۴۳].

ميابد [۴۱]:

- ۱. چگونگی تشخیص مفاهیم مقیدشده به عنوان یک مفهوم واحد و تفکیک آنها از مفاهیمی
 که مقید به مفاهیمی دیگر هستند.
 - ۲. چگونگی کدگذاری انقیاد در مغز و اینکه چگونه در مغز به آن رجوع میشود.
 - ٣. چگونگي تشخيص ارتباط صحيح بين مفاهيم مقيدشده و يک شي بخصوص.

بسیاری از پژوهشهای مرتبط با مسئله ی انقیاد در موضوع دوم هستند. در پژوهش حاضر نیز مفهوم مورد بررسی، چگونگی رخدادن انقیاد در مغز و در مقیاس ارتباطات نورونی است که به دسته ی دوم، یعنی چگونگی کدگذاری در مغز مرتبط می شود [۲۱]. درواقع مسئله ی اصلی چگونگی یکپارچه شدن مفاهیم مجزا ولی مرتبط در قالب یک مفهوم واحد در ساختار نورونها و اتصالات بین آنها است. برای نمونه، انسان در صورت قرار گرفتن در مجاورت یک خودرو از طریق حس بینایی، تصویر خودرو و از طریق حس شنوایی صدای خودرو را درک می کند. تصویر خودرو و صدای خودرو در مغز در موقعیتهای مختلفی درک شده و نورونهای آن بخشها به این ورودیها حساس می شوند. ولی همزمانی تجریه ی این دو مفهوم باعث شکل گیری یک مفهوم سطح بالاتر و انتزاعی از خودرو می شود که موجب می شود فرد بتواند یک مفهوم شامل صدا و تصویر از خودرو را درک کند.

۲.۲ شواهد رخدادن انقیاد در انسان

آنه تریسمن و هیلاری اشمیت آزمایشی را انجام دادند که در آن به مطالعه ی اثری با نام ترکیبهای توهمی پرداختند که در آن ویژگیهای یک شئ به شئ دیگری منتسب می شود [۴۲]. بر اساس نظر تریسمن، علت این انتصاب اشتباه در ویژگیهای اشیاء، حضور جدا از هم صفات در مراحل اولیه ی ادراکی است [۱۱]. اهمیت این موضوع از این جهت است که دیگر حالت ممکن آن است که یک شئ، نه به صورت صفات جداگانه، بلکه به صورت یک ماهیت کامل حاضر شود. این در حالی است که رخدادن مسئله ی انقیاد در مغز مستلزم حضور ویژگیها و صفات به صورت جدا از هم می باشد که این آزمایش نشانگر اتفاق افتادن انقیاد در مغز است. همچنین گروهی دیگر برای

³Anne Treisman

⁴Hilary Schmidt

⁵Illusory Conjunctions

نشان دادن مصادیق انقیاد در انسان به نمونههای شناختی آن همچون مقیدکردن دانش معنایی^۶ به شهود، مقیدکردن متغیرها در زبان و استنتاج اشاره میکنند [۱۳].

٣.٢ تعریف مسئله

همواره شبیه سازی و درک ساختارهای موجود در مغز انسان جزو مسائل مورد اهمیت برای بشر بوده است و در دهه های اخیر نیز با رشد و گسترش قدرت محاسباتی و علومی چون هوش مصنوعی و علوم اعصاب این اهداف بسیار در دسترس تر از پیش به نظر می رسند. فعالیت های بسیاری نیز در دهه های اخیر در رابطه با این موضوع آغاز شده است که از جمله ی آنها می توان به پروژه مغز آبی و پروژه ی مغز انسان اشاره کرد.

چنانچه پیش تر مطرح شد، مسئله ی انقیاد به عنوان یکی از مهمترین مسائل در شناخت مغز و هوش مصنوعی، که تقریباً در تمام فعالیتهای شناختی پستانداران در حال رخدادن است، برای شبیه سازی در شبکه های عصبی مصنوعی کلاسیک که صرفاً نرخ ضربه را کد میکنند به با محدودیت هایی مواجه است [۴۴] که این موضوع را در دسته ی مسائل حل نشده قرار داده است. ولی در سالهای اخیر با افزایش قدرت پردازشی و پیشرفت شبکه های عصبی ضربه ای، امید است تا بتوان با استفاده از این نسل از شبکه های عصبی مصنوعی مسیر جدیدی را در درک و شبیه سازی مسئله ی انقیاد در پیش گرفت و به نتایج بهتری نسبت به انواع کلاسیک در آن رسید.

همچنین استفاده از شبکههای عصبی ضربهای این امکان را برای ما فراهم میکند که در ساختار و توپولوژی شبکه نیز از ساختارهای طبیعی مغز بیش از پیش الگوبرداری کنیم. این موضوع از این جهت حائز اهمیت است که انقیاد در مغز پستانداران در حال رخدادن است و هرچه بیشتر سازوکارها و شبکهی شبیهسازی شده مشابه نمونهی طبیعی خود باشند احتمال رخدادن انقیاد نیز در شبیهسازی بیشتر خواهد بود.

در مطالعه ی پیشرو در تلاش خواهیم بود تا با استفاده از شبکه های عصبی ضربه ای و الگوبرداری از ساختار و توپولوژی مغز پستانداران یک شبکه ی عصبی را شبیه سازی کرده و در آن وجود آثاری از رخدادن انقیاد را بررسی کنیم.

⁶Semantic Knowledge

⁷Blue Brain Project

⁸Human Brain Project (HBP)

⁹Rate-coding

۴.۲ چالشهای موجود

در زمینه ی شبکه های عصبی، مسئله ی انقیاد تنها یک مسئله ی حل نشده درباره ی ادراک نیست، بلکه تشخیص محدودیت های حال حاضر شبکه های عصبی مصنوعی موجود نیز بخشی از مسائلی است که محققان را مشغول خود کرده است. با توجه به چالش های کنونی، درک چگونگی رخداد انقیاد در مغز، از اهمیت بالایی برخوردار است؛ زیرا با توجه به اهمیت و میزان تأثیر انقیاد در آگاهی و درک موجود زنده از محیط خود، به این موضوع در مسائلی همچون درک و شبیه سازی هوش انسانی که یکی از چالش های هوش مصنوعی است، نیاز است.

فعالیتهای بسیاری در راستای دستیابی به سیستمهای هوشمند انجام شدهاست که از جمله موفق ترین و موثر ترین روشهای حاضر، استفاده از شبکههای عصبی مصنوعی است که یک روش الهام گرفته شده از سیستم عصبی انسان است و این شبکهها در حال حاضر به صورت گسترده مورد الهام گرفته شده از سیستم عصبی انسان است و این شبکهها در حال حاضر به صورت گسترده مورد استفاده قرار گرفته اند. این روش در عین این که در شرایط مناسب از بهره وری بسیار خوبی برخوردار است و امکان دستیابی به نتایج بسیار خوبی را در مدل سازی آماری داده های جهان دارد، به میزان داده ی بسیار زیادی برای آموزش نیاز دارد، در انتقال مفاهیم از پیش آموخته شده به مسائل جدید نیز با مشکل مواجه است و امکان عمومی سازی مسائل آموخته شده را ندارد. از جمله اصلی ترین مشکلات و محدودیتهای موجود در شبکههای عصبی مصنوعی، ناتوانی آنها در شکل دهی، بازنمایی و ارتباط بین مفاهیم و موجودیتها است. به خوبی نشان داده شده است که درک انسان حول اشیاء شکل گرفته است. این اشیاء می توانند به صورت مستقل پردازش شده و به حالتهای بسیار زیادی دوباره با یکدیگر ترکیب شوند. این مسئله به انسان امکان تعمیم درک خود به مسائل فراتر از تجربیاتش را می دهد و این سازوکار همان رویه ی مورد بررسی در مسئله ی انقیاد است [۱۳].

ارتباطات بین مفاهیم در رخدادن انقیاد به شکلهای مختلفی ممکن است؛ همچون رابطهی علّی، ارتباط سلسهمراتبی و ارتباط مقایسهای. تعریف مفاهیم در قالب انواع مختلف این روابط می تواند تأثیراتی روی مفاهیم شکل گرفته داشته باشد. همچنین نکته ی مهم این است که این روابط به صورت مجزا از هم و مستقل از مفاهیم شکل گرفته از اشیا باشند. انواع مختلف ارتباطات قابل پیاده سازی نیز، خود یکی از چالشهای موجود در حل این مسئله است.

۵.۲ عملکرد شبکههای عصبی ضربهای در مسائل مطرحشده

شبکههای عصبی ضربهای در مقایسه با شبکههای عصبی کلاسیک از توجیه زیستی بسیار بیشتری برخوردار هستند و در آنها جزئیات نورونهای زیستی بسیار بیشتر در نظر گرفتهشدهاست که این موضوع پتانسیلهای این دسته از شبکههارا نیز تحت تأثیر قرار می دهد. در این دسته از شبکهها به دلیل انتقال دادهها با در نظرگرفتن زمان و در قالب ضربه (به جای عدد در شبکههای عصبی کلاسیک) امکان درک مفاهیم به صورت اشیاء به جای مدلسازی آماری در آنها بسیار محتمل تر است و به همین دلیل این امکان وجود دارد که بتوان در این دسته از شبکههای عصبی، سازوکاری را تحت شرایط مشخصی به وجود آورد که در آن مسائل و مشکلات مطرح شده دیگر رخ ندهند و به عبارتی در این دسته از شبکههای عصبی، میتوان انتظار رخداد انقیاد را داشت.

فصل ۳

تحقيقات ييشين

در این فصل مجموعهای از تحقیقات انجامشده پیرامون مسئلهی انقیاد و نظریههایی پیرامون چگونگی رخدادن آن در مغز و تلاشهایی برای مدلسازی آن به صورت محاسباتی را بررسی خواهیم کرد.

۱.۳ رخدادن انقیاد در انسان

همانطور که در بخش ۲.۲ نیز اشاره شد، تحقیقی توسط آنه تریسمن و هیلاری اشمیت صورت گرفته که نشان می دهد ویژگیهای مختلف یک شی در مغز به صورت مجزا از هم پردازش می شوند [۴۲]. آنها صفحهای را به شرکت کننده ارائه می کردند که در آن چهار شکل با رنگهای مختلف به همراه دو عدد مشکی وجود داشت. آنها این صفحه را به مدت 0.2 ثانیه نشان می دادند و پس از آن یک صفحه با نقاط مشکی تصادفی نمایش داده می شد. هدف از نمایش صفحه با نقاط مشکی، از بین بردن هر نوع رد ادراکی از محرک پیشین بود. سپس از شرکت کنندگان خواسته می شد تا اعداد و اشکال نمایش داده شده را توصیف کنند.

در حدود یکپنجم کوششهای شرکت کنندگان، ترکیبشدن ویژگیهای اشکال نمایش داده شده دیده می شد. برای مثال رنگ یا اندازه ی دو شکل با یکدیگر جابه جا گزارش می شدند. بر اساس نظر تریسمن، علت شکل گیری این پدیده، جدابودن صفات از یکدیگر در مرحله ی پیش توجهی و مقیدنبودن آنها به شی به خصوصی است [۱۱].

۲.۳ پیدایش انقیاد در گروههای چندزمانی

اگوچی و همکارانش در پژوهشی [۶] با ساخت یک شبکهی عصبی سلسلهمراتبی که لحاظکردن تاخیر انتقال آکسونی در آن باعث شده تا در زیرجمعیتهای آن گروههای چندزمانی [71] شکل بگیرند که هر یک از آنها به یک الگوی تصادفی با توزیع پواسون حساس شده بودند، نشان دادند که انقیاد بین مفاهیم دیداری سطح پایین و سطح بالا به مرور زمان شکل میگیرد که در این شبکه هر یک از این مفاهیم در قالب فعالیت یک گروه چندزمانی در نظر گرفته شده بودند.

مثالی از نمود بسیار ساده ی انقیاد در این شبکه در شکل ۱.۳ نشان داده شدهاست که در آن به دلیل وجود تاخیر در انتقال، وقتی چند مفهوم که هر کدام به یک یا مجموعهای از نورونها مقید شدهاند، در فواصل زمانی مشخصی به شبکه داده شوند باعث فعال شدن یک مفهوم سطح بالاتر که شامل مفاهیم سطح پایین تر نیز می باشد، می گردند.

شکل 1.7: یک مثال فرضی از انقیاد در سطح نورونی که در آن نورون شماره 2 ، یک ویژگی سطح پالین مثل یک خط عمودی را نمایندگی میکند و نورون شماره 2 نیز یک ویژگی سطح بالاتر مثل تصویر حرف 2 را نمایندگی میکند و نورون شماره 2 انقیاد را مشخص میکند. به عبارتی نورون 2 فعال می شود اگر و تنها اگر نورون 2 در فعال شدن نورون 2 نقش مستقیم داشته باشد [2].

پدیده ی مطرحشده می تواند بین گروههای چندزمانی نیز رخ دهد. به عبارتی انقیاد می تواند بین گروههای چندزمانی که نماینده ی یک مفهوم مستقل هستند رخ دهد و با یک گروه چندزمانی دیگر

¹Axonal Transmission Delay

²Poly-chron Groups

شکل ۲.۳: نمود رخدادن مثال ذکرشده در شکل ۱.۳ از انقیاد در گروههای چندزمانی [۶].

۳.۳ ستونهای قشری، واحدهای مستقل محاسباتی

هاوکینز در کتابی [۱۶] که حاصل مجموعه تحقیقات وی و همکارانش [۱۷، ۱۸، ۲۳] بود، با فرض این که ستونهای قشری در سراسر نوقشر ساختارهای مشابهی دارند و عملکرد آنها صرفاً به دلیل تفاوت ورودیهای آنها است [۲۹]، یک مدل محاسباتی برای حل مسئلهی انقیاد پیشنهاد داد. با فرض این که هر ستون قشری مسئولیت درک مفهومی را بر عهده دارد و با علم بر این که میتواند بین لایههای متناظر برخی ستونهای قشری با فاصلهی مکانی بالا، اتصالات از راه دور شکل بگیرد، این فرضیه را مطرح کرد که این اتصالات از راه دور میتوانند به وجود آورنده ی نوعی سازوکار رای گیری باشند که موجب شکل گیری انقیاد در مغز می شود.

برای انجام رای گیری، هر ستون قشری با توجه به دادههای ورودی خود، در صورت حضور مجموعهای از مفاهیم فعال خواهد بود و برای دیگر مفاهیم فعالیت کمتری خواهد داشت. با استفاده

³Long-distance connections

از اتصالات از راه دور، هر ستون قشری فعالیت و عدم فعالیت خود را به دیگر ستونهای قشری مخابره میکند و در ستونهای قشری دیگر، مفاهیم محتمل تر، مفاهیم با احتمال پایین تر را خنثی کرده و از روی فعالیت چندین ستون قشری یک مفهوم جامعتر حاصل از فعالیت دیگر ستونها شکل میگیرد. پیش از این نیز تحقیقاتی این احتمال را مطرح کردهبودند که انشعابات مختلف دندریتی میتوانند به عنوان تشخیصدهندههای الگوهای مستقل از هم عمل کنند [۳۵، ۳۵] که در این پژوهش نیز این مورد فرض شده که این الگوهای مستقل درواقع بیانگر احتمالات مختلف هستند و با توجه به اینکه بیشتر جمعیت نورونهای تحریکی را در نوقشر، نورونهای هرمی تشکیل میدهند، مخابره کردن این پیامهای از راه دور درواقع بر عهدهی دندریتهای رأسی و آن دسته از دندریتهای قاعدهای است که فاصلهی بیشتری از بدنهی نورون دارند؛ به این صورت که افزایش اختلاف پتانسیل از طریق این دسته از دندریتها باعث نزدیک تر شدن نورون به آستانهی ضربه از طریق فعالیت میشوند ولی باعث ضربه نمی شوند و صرفاً شرایط را برای رسیدن به آستانهی ضربه از طریق فعالیت دندریتهای نزدیک تر به مبدأ، فراهم میکنند.

مدل پیشنهادی آنها (شکل ۳.۳) برای ستونهای قشری، یک مدل دولایه است که ورودی ستون قشری وارد یکی از لایهها شده و از آن لایه پس از پردازش به لایهی دیگر منتقل شده و سپس از لایهی دوم از طریق اتصالات از راه دور به لایههای دوم دیگر ستونهای قشری منتقل میشوند. همچنین آنها مجموعهای از اتصالات پسخور^۴ را نیز از لایهی دوم به لایهی اول تعریف کردند که وظیفهی آنها ارائهی یک پیشنمایش از مفهوم شکلگرفته در لایهی دوم است که باعث تعادل و هماهنگی بین دولایه میشود. در مطالعهی صورتگرفته توسط آنها[۱۸] مفهوم مورد بررسی، درک موقعیتهای مکانی از روی دادههای مربوط به حس لامسه بوده و انتظار آنها شکلگیری یک فعالیت پایدار متناظر با مکان مورد لمس در لایهی دوم، بدون لحاظشدن حالت خود شئ (زاویه و جهت) بودهاست.

در شبکهی ارائهشده توسط آنها، برای شبیهسازی نورونها از مدل نورونی HTM (که به عبارت «حافظهی زمانی سلسه مراتبی » دلالت دارد) استفاده شده است [۱۵]. همان طور که از عنوان این مدل نورونی مشخص است، HTMها نورونهایی حافظه محور هستند. آنها روی مجموعهی بسیار بزرگی از داده های زمانی آموزش داده شده اند و مجموعهی بزرگی از دنباله ها و الگوی های رفتاری را در خود ذخیره می کنند. حافظه ی این دسته از نورون ها دارای سازماندهی سلسله مراتبی بوده و ذاتا مبتنی بر زمان است.

⁴Feedback Connections

⁵Hierarchical Temporal Memory

شکل ۳.۳: مدل پیشنهادی در مطالعهی صورتگرفته [۱۸] برای درک موقعیتهای مکانی با استفاده از دادههای مربوط به لامسه و حرکت انگشتها.

یکی دیگر از ویژگیهای این مدل نورونی آن است که در ورودیهای آن تفاوت بین دندریتهای رأسی و قاعدهای در نظر گرفته شدهاست و تلاش شده تا رفتار نورونهای هرمی به صورت دقیق تر و نزدیک تر به حالت زیستی آن مدلسازی شود. هرچند با وجود این که این مدل نسبت به شبکههای عصبی مصنوعی کلاسیک، شباهت بیشتری به نورونهای زیستی دارد، ولی به اندازهی مدلهای نورونی ضربهای مشابه با نورونهای زیستی نمی باشد.

۴.۳ استفاده از مدل مبتنی بر ستون قشری در شبکههای عصبی

در پژوهشی دیگر، فردریک الکساندر و همکارانش یک واحد محاسباتی بسیار ساده ی الهام گرفته شده از ستونهای قشری را برای استفاده در شبکه های عصبی ارائه کردند [۱]. آنها از این واحد در یک شبکه ی عصبی چند لایه برای تشخیص الگو استفاده کردند. آنها برای این واحد محاسباتی، تابع فعال ساز و قانون یادگیری مختص به خود را ارائه دادند. برای مدل سازی یک ستون قشری از جدول درستی استفاده کرده و حالت های مختلف خروجی ستون های قشری را به

⁶Frédéric Alexandre

⁷Activation Function

⁸Truth Table

نسبت ورودی های مختلف در آن لیست نموده و یک تابع فعال ساز هماهنگ با آن داده ها را ارائه دادند. قانون یادگیری ارائه شده توسط آن ها، یک یادگیری بر اساس قانون یادگیری هب است. به این صورت که در ابتدا تمام مقادیر به صورت تصادفی توزیع شده اند و در روند یادگیری بر اساس همزمانی و یا عدم همزمانی فعالیت دو مفهوم متوالی، احتمال فعال شدن مفهوم ثانویه با فعالیت مفهوم اولیه افزایش یا کاهش می یابد. آن ها از این مدل برای تشخیص گفتار و تصویر استفاده کردند و در برخی از حالت ها این مدل عملکرد بسیار مناسبی را از خود نشان داد ولی مدل آن ها به دلیل ساده سازی بیش از حد با رفتار نورون های زیستی فاصله ی بسیار زیادی دارد.

۵.۳ استفاده از شبکهی عصبی مولد برای تشکیل انقیاد

در پژوهشی، صادقی و همکارانش با استفاده از یک معماری رمزگذار_رمزگشای مولد ۱۰ که نگاه خود را تطبیق می دهد و بین ویژگیها با استفاده از استنتاج پس نگر ۱۱ انقیاد ایجاد می کند، الگوهای حرکتی زیستی را مدلسازی کرده اند [۳۸]. آنها در ابتدا مدلی را آموزش دادند که حرکتهای زیستی پویا یا دیگر الگوی های حرکتی دارای هارمونی را یاد بگیرد. سپس داده های ورودی را کمی درهم ریخته کرده و خطای پیش بینی را بر روی یک ماتریس انقیاد، که یک لایهی عصبی و نمایانگر انقیاد ویژگی ها است، ذخیره کردند. علاوه بر این، آنها خطا را به سمت نورونهای نماینده ی دیدگاه مدل نشر دادند که وظیفه ی این نورون ها ترجمه ی مقادیر ورودی به چارچوبهای مرجع ۱۲ (یک دستگاه مختصاتی که در آن مکان، جهت و دیگر ویژگی های یک پدیده سنجیده می شود) است.

در مدل ارائهشده توسط آنها، شبکه ی عصبی روی ویژگی iام تصویر، تبدیلهای انتقال و چرخش اعمال می شود و در گام بعدی، آن ویژگی ها به جمعیتهای نورونی کد می شوند. ماتریس انقیاد، ویژگی iام را به ورودی jام رمزگذار متناظر می کند. رمزگذار و رمزگشا الگوی مشاهده شده را بازسازی می کند و از میزان خطای حاصل شده برای تنظیم کردن پارامترهای ماتریسهای انقیاد، چرخش و انتقال از طریق استنتاج پس نگر استفاده می شود (تصویر ۴.۳).

ارزیابیها نشان دادند که این فرآیند استنتاج، انقیاد را برای الگوهای شناختهشدهی حرکتی

⁹Encoder-decoder

¹⁰Generative

¹¹Hindsight Reasoning

¹²Reference Frames

شکل ۴.۳: مدل رمزگذار_رمزگشای مولد ارائهشده در [۳۸].

زیستی به وجود می آورد و یک درک گشتالتی ۱۳ تشکیل می دهد؛ یعنی به عبارتی در مدل ارائه شده یک مفهوم از روی ورودی شکل می گیرد که در خود اطلاعاتی بیشتر از آنچه صرفا در یک ورودی مشاهده کرده است، گنجانده. تشکیل این درک گشتالتی خود یک بیان ضعیف از شکل گرفتن انقیاد در این مدل است. همچنین آنها این احتمال را مطرح کردند که احتمالاً مدل ارائه شده توسط آنها باید بتواند برای انقیاد بین مفاهیم گشتالتی در دیگر حوزه ها نیز موثر باشد.

¹³ Gestalt

فصل ۴

مدل پیشنهادی، آزمایشها و نتایج

با توجه به مدل ارائهشده توسط هاوکینز و همکارانش و مشخصبودن اهمیت ستونهای قشری در شناخت و شکلگیری انقیاد، استفاده از این ساختار در طراحی آزمایشی به منظور مدلسازی و بررسی انقیاد در مغز می تواند تصمیم درستی باشد. همچنین با توجه به این که مدل مذکور یک مدل الهام گرفته از گرفتهشده از ساختار زیستی مغز و شبکههای عصبی ضربهای نیز، مشابه با آن، روشی الهام گرفته از ساختار طبیعی مغز است، می تواند گزینه ی مناسبی برای مدلسازی نورونها باشد. از این رو قصد داریم در ادامه ی این فصل مدلی مبتنی بر شبکههای عصبی ضربه ای با الهام از ساختار ستونهای قشری طراحی کرده و شکل گیری انقیاد در آن را بررسی کنیم و در نهایت نیز نتایج حاصل از این تحقیق را بیان خواهیم کرد.

۱.۴ مدل پیشنهادی

مدل ارائه شده در این بخش شامل یک شبکه ی متشکل از سه ستون قشری و ارتباطات بین آنهاست. همچنین دو جمعیت با فعالیت از پیش مشخص شده نیز برای وارد کردن اطلاعات ورودی به شبکه مورد استفاده قرار میگیرند. فعالیت روی جمعیتهای ورودی به دو وضعیت تقسیم شده است که در هر یک نیمی از نورونها نسبت به دیگر نورونها فعالیت بیشتری دارند. بین این دو مجموعه از نورونهای فعال به ازای هر وضعیت هیچ اشتراکی وجود ندارد؛ به عبارتی دیگر، هر جمعیت از ورودی ها در هر زمان یک الگوی فعالیت از دو الگوی فعالیت ممکن را دارند. دو جمعیت ورودی

همواره از نظر الگوی فعالیت مشابه یکدیگر هستند و زمان تغییر الگوی فعالیت نیز همزمان با یکدیگر الگوهای فعالیتشان تغییر میکند. این دو جمعیت ورودی نمایانگر دو ورودی حسی هستند که با تغییر محیط عامل، الگوی فعالیت آنها نیز تغییر میکند. برای مثال اگر فرض کنیم عامل در محیطی قرار دارد که دو ورودی حسی (مثل شنوایی و لامسه) به دلیل حضور عامل در محیط، توسط عامل دریافت میشود، هر جمعیت متناظر با یکی از ورودیها خواهد بود که هر دو همزمان یا الگوی متناظر با حس کردن موجودیت اول را نشان میدهند و یا هر دو همزمان الگوی متناظر با حسکردن موجودیت دوم را نشان میدهند.

هر یک از این جمعیتهای ورودی اطلاعات خود را به صورت مستقیم به یکی از ستونهای قشری منتقل میکنند و هریک از این ستونهای قشری نیز با یک ستون قشری سوم در ارتباط هستند. ارتباط بین دو ستون قشری متصل به ورودی با ستون قشری سوم هم به صورت پیشخور و هم به صورت پسخور میباشد. انتظار میرود مجموعهی سه ستون قشری، که جزئیات ساختار ارتباطی آنها متعاقبا بیان خواهد شد، به یک درک واحد از موجودیت حاضر در محیط برسند و عملا انقیاد در آن مشخص باشد.

۱.۱.۴ الگوی فعالیت جمعیتهای ورودی

همانطور که پیشتر مطرح شد، جمعیتهای ورودی در طول زمان دو الگوی فعالیت متفاوت را دارند که در هر یک فعالیت نیمی از نورونها نسبت به نیم دیگر نورونها بیشتر است. هر الگو به مدت زمانی از پیش تعیین شده و ثابت نمایش داده می شود. در طول این بازه ی زمانی هر یک از نورونها به صورت تصادفی با یک احتمال از پیش تعیین شده فعال می شود که احتمال فعالیت نورونهای متناظر با الگوی در حال نمایش بسیار بیشتر از فعالیت دیگر نورونها است. همچنین در انتهای هر الگو برای زمان از پیش تعیین شده ای فعالیت تمام نورونها با احتمالی مشابه رخ می دهد و عملا هیچ یک از دو الگوی از پیش تعیین شده در آن بازه قابل رویت نیست. میزان فعالیت نورونهای در حال استراحت و نورونهایی که متناظر با الگوی در حال نمایش نیستند در هر بازه متناظر با یک الگو دارای خطای متفاوتی با بازه ی قبلی است. در طول زمان، تعیین این موضوع متناظر با یک الگو نمایش داده شود به صورت تصادفی و با احتمال یکسان اتفاق می افتد. نمودار ضربه ـ زمان مربوط به یک جمعیت ورودی در یک بازه ی زمانی در شکل ۱.۴ قابل رویت است.

¹Raster Plot

شکل ۱.۴: یک نمونه نمودار ضربه_زمان مربوط به فعالیت یک جمعیت با ۲۰۰ نورون برای ۳۲۰ واحد زمان هیچ واحد زمان که هر الگو برای مدت ۲۰ واحد زمان فعال است و پس از آن برای ۲۰ واحد زمان هیچ الگویی نمایش داده نمی شود.

۲.۱.۴ مدلسازی ستونهای قشری

برای سادگی در مدلسازی، ستونهای قشری به صورت ساختارهایی دولایه که یک لایه به عنوان لایهی ۴ و لایهی دیگر نیز به عنوان لایههای ۲ و ۳ (که به صورت ۲/۳ نمایش میدهیم) در نوقشر در نظر گرفتهشدهاند. در هر یک از لایههای ستونهای قشری دو جمعیت برای بازنمایی دو دسته از نورونهای فعال برای دو الگوی فعالیت ممکن در نظر گرفتهشدهاست. بین هر دو جمعیت حاضر در هر لایه یک اتصال مهاری وجود دارد؛ به این صورت که ضربهزدن هر نورون باعث یک اثر مهاری روی مجموعهای از نورونها در جمعیت دیگر میشود که وجود این اتصال در عمل نقش حضور نورون مهاری را برای ما ایفا میکند.

در این مدل جریان اطلاعات از لایه 3 به سمت لایه 3 است که تلاش می شود تا در لایه 3 لایه 3 بازنمایی پایدارتر نسبت به لایه 3 شکل بگیرد. از این رو یک اتصال ادغام هر جمعیت لایه 3 را به جمعیت متناظر خود در لایه 3 متصل می کند؛ به این صورت که هر نورون در لایه 3 درودی دریافت می کند و هر نورون در لایه 3 تنها به یک نورون در لایه 3 متصل است. همچنین وزن این اتصالات به گونه ای است که فعالیت حتی یک نورون پیش سیناپسی نیز در صورت عدم وجود هیچ گونه اثر مهاری، باعث گذر از آستانه و شکل گرفتن ضربه در لایه 3 3 می شود.

همچنین در این مدل مجموعهای از اتصالات پسخور" نیز در نظر گرفته شدهاست که وظایف اتصالاتی را بازی میکنند که وظیفهی آماده کردن نورونهای پسسیناپسی برای ضربهزدن را دارند و وزن این دسته از اتصالات مشخص کننده ی میزان نزدیک شدن اختلاف پتانسیل نورون پسسیناپسی به آستانه است؛ به عبارت دیگر، نورونهای پسسیناپسی را به آستانه ی ضربه نزدیک میکنند ولی باعث فعال شدن آنها نمیشوند. همچنین دستهی دیگری از اتصالات پسخور نیز تعریف شدهاند که مشابه مورد قبل هستند ولی نقش مهاری دارند و با فعال شدن نورونهای پیشسیناپسی، آن دسته از اتصالات به همان نسبت اختلاف پتانسیل را به میزان اختلاف پتانسیل حالت استراحت نورون نزدیک تر میکنند. شمای کلی مدل پیشنهادی برای هر ستون قشری در شکل ۲.۴ قابل مشاهده است.

²Pooling

³Backward Connections

شکل ۲.۴: شمای کلی ستون قشری که در آن جمعیتها و اتصالات بین آنها مشخص شده اند. جهت پیکانها مشخص کننده ی جمعیت پس سیناپسی و رنگ پیکانها مشخص کننده ی نوع اتصالات است. پیکان آبی نمایانگر اتصال ادغام، قرمز روشن نمایانگر اتصال مهاری، سبز نمایانگر اتصالات پسخور مهاری اتصالات پسخور مهاری هستند.

۳.۱.۴ اتصالات اتصالات پیشخور بین ستونهای قشری و جمعیتهای ورودی

دو ستون قشری که جمعیتهای ورودی به لایه \mathfrak{F} آنها متصل شدهاند، باید داده را به ستون قشری دیگر (که پس از این با نام «ستون قشری سوم» به آن اشاره میکنیم) منتقل کنند تا اطلاعات در دیگر (که پس از این با نام «ستون قشری سوم» به آن اشاره میکنیم) منتقل کنند تا اطلاعات در آنجا تجمیع شوند و یک درک واحد از ورودی دو ستون قشری در آنجا شکل بگیرد. برای این منظور لایه \mathfrak{F} این دو ستون قشری با یک اتصال تحریکی به لایه \mathfrak{F} ستون قشری سوم متصل می شود (شکل \mathfrak{F}). به عبارتی هرکدام از جمعیتهای نورونی موجود در لایه \mathfrak{F} هر کدام از ستونهای قشری اول و دوم، یک اتصال تحریکی به هر یک از جمعیتهای نورونی لایه \mathfrak{F} ستون قشری سوم دارند.

همچنین از جمعیتهای ورودی نیز یک اتصال تحریکی به جمعیتهای حاضر در لایهی ۴ ستونهای قشری منتقل شود. ستونهای قشری اول و دوم در نظر گرفته شده تا فعالیت ورودی ها به ستونهای قشری منتقل شود.

۴.۱.۴ اتصالات پسخور بین ستونهای قشری

مشابه اتصالات پسخوری که در داخل هر ستون قشری تعریف شدهبودند، اتصالاتی بین جمعیتهای دو ستون قشری نیز تعریف می شوند که نقش اتصالات از راه دور موجود در مغز را برای ما ایفا می کنند. ساختار این اتصالات به این صورت است که اتصالات از لایهی ۲/۳ ستون قشری سوم به لایههای ۲/۳ ستونهای قشری اول و دوم هم اتصالات پسخور تحریکی و هم اتصالات پسخور مهاری وجود دارند و سازوکار نوع تحریکی این اتصالات پسخور مشابه با اتصالات پسخوری که در داخل ستونهای قشری تعریف شدهبودند، باعث کاهش فاصله ی اختلاف پتانسیل نورونهای پسسیناپسی با آستانه ی ضربه می شوند ولی مستقلا موجب ضربه نمی شوند. نوع مهاری این اتصالات پسخور نیز اختلاف پتانسیل نورونهای پسسیناپسی را به اختلاف پتانسیل استراحت نزدیکتر می کنند.

شمای کلی مدل پیشنهاد شده در شکل ۳.۴ قابل رؤیت است.

۵.۱.۴ وزنهای اولیه و انعطافپذیری نورونی

نرخ اتصالات بین هر دو جمعیت در مدل به صورت از پیش تعریفشده و ثابت میباشد. به این صورت که تعدادی از اتصالات بین دو جمعیت در ابتدای مدلسازی به صورت تصادفی با احتمال از پیش تعیینشده، انتخاب و کاملاً حذف میشوند که برای این منظور وزن سیناپسی آنها برای تمام طول شبیهسازی صفر در نظر گرفته میشود.

شکل ۳.۴: مدل پیشنهادی که در آن تمام جمعیتها و اتصالات بین آنها مشخص شدهاست. همچنین رنگ اتصالات نیز مشابه با رنگ اتصالات تعریفشده در شکل ۲.۴ می باشد.

.eta=20 و lpha=3 و المترهاي lpha=3 و شكل ۴.۴ شكل

برای مقداردهی اولیهی وزنهای تمام اتصالات، بجز اتصالات پسخور، از توزیع یکنواخت در بازهی مشخص شده برای هر جمعیت و برای مقداردهی اولیهی وزنهای اتصالات پسخور نیز از توزیع بتا ٔ استفاده شده است (شکل ۴.۴). همان طور که پیش تر نیز اشاره شده بود سازو کار اتصالات پسخور به گونهای است که وزن آنها بیانگر میزان تأثیرگذاری آنها در اختلاف پتانسیل نورونهای پس سینایسی است و به همین دلیل مقادیر همواره در بازهی صفر و یک هستند.

همچنین در مدل ارائهشده اتصالات متنوعی بین جمعیتهای مختلف حاضر در مدل به کار گرفته شدهاند و روی هر یک از آنها نیز میتوان یک سازو کار برای انعطافپذیری نورونی و تغییرات وزن اتصالات در طول زمان تعریف کرد. لازم به ذکر است که برای مجموعه ی اتصالات مهاری بین جمعیتهای یک لایه از ستون قشری، انعطافپذیری نورونی مشخص نشده و وزن اتصالاتشان در تمام طول شبیه سازی ثابت است. تمام قوانین یادگیری مورد استفاده، قوانین یادگیری تقویتی هستند که به دلیل ساختار ورودیها که الگوی رفتاری جمعیتهای ورودی برای بازههایی با طول زمان مشخص ثابت هستند، شخصی سازی شدهاند؛ به این صورت که میزان دویامین نه در هر لحظه، بلکه در انتهای بازهی نمایش هر الگو محاسبه می گردد و در طول بازهی نمایش یک الگو در ورودی، هیچ تغییری توسط قوانین یادگیری روی وزنهای اتصالات اعمال نمی شود و تمام این تغییرات تجمیع شده و با توجه به میزان دویامین محاسبهشده در انتهای هر بازه به صورت یکجا روی اتصالات اعمال می شوند. میزان تغییرات وزن در زمان t در فرمول ۱.۴ مشخص شده است که در آن |I| طول بازهی نمایش هر الگوی ورودی و STDP(t') نیز میزان تغییرات وزن در صورت اعمال انعطافیذیری وابسته به زمان ضربه در زمان t' است.

⁴Beta Distribution

$$\Delta w_t = \begin{cases} d \times \sum_{t'=t-|I|+1}^t STDP(t') & \text{if } t \bmod |I| = 0\\ 0 & \text{otherwise.} \end{cases}$$
 (1.*)

میزان دوپامین برای پاداش و تنبیه نیز در هر لحظه بر اساس مقایسهی میزان فعالیت (تعداد ضربهها در طول بازهی نمایش الگو) جمعیتهای لایهی ۲/۳ ستون قشری سوم محاسبه میگردد. به این صورت که هر یک از دو الگوی فعالیت که نورونهای ورودی به خود میگیرند، با یکی از دو جمعیت این لایه متناظر می شود و در صورتی که جمعیت متناظر با الگوی در حال نمایش فعالیت بیشتری نسبت به جمعیت دیگر داشته باشد، پاداش و در غیر این صورت تنبیه برای مدل لحاظ می شود. همچنین میزان شدت پاداش و تنبیه نیز بر اساس میزان اختلاف فعالیت این دو جمعیت بر اساس رابطهی زیر تعیین می گردد:

$$g = \frac{|A(pop_1) - A(pop_2)|}{|pop|} \tag{14.4}$$

$$d = \begin{cases} 1+g & win \text{ and } g > 0.3 \\ -0.1+g & win \text{ and } g \leq 0.3 \\ -1-g & \neg win \end{cases}$$
 (ب۲.۴)

win در این رابطه $A(pop_x)$ میزان فعالیت جمعیت x، pop تعداد نورونهای لایه x و x نیز برنده شدن جمعیت صحیح را مشخص می کند؛ به این صورت که مقدار xin تنها در صورتی صحیح خواهد بود که فعالیت جمعیت متناظر با الگوی اول بیشتر باشد و جمعیت نمایش داده شده در ورودی، الگوی اول باشد، و یا این که فعالیت جمعیت متناظر با الگوی دوم بیشتر باشد و جمعیت نمایش داده شده در ورودی نیز الگوی دوم باشد. رابطه x باز سه ضابطه تشکیل شده است که به ترتیب مربوط به این شرایط هستند:

- 1. جمعیت صحیح، با اختلاف مناسبی در میزان فعالیت جمعیتها، برنده شده است و پاداش داده می شود.
- ۲. جمعیت صحیح با اختلاف بسیار کمی برنده شده و با توجه به میزان این اختلاف ممکن

است مقدار کمی پاداش یا تنبیه برای مدل درنظر گرفته شود.

۳. جمعیت صحیح بازنده شده و مدل تنبیه می شود.

۶.۱.۴ ابزارهای پیادهسازی

پیاده سازی های مربوط به مدل ارائه شده با زبان برنامه نویسی پایتون و در بستر چارچوب 6 نرم افزاری بایندزنت 7 ، که خود برپایه ی چارچوب پای تورچ 7 توسعه داده شده انجام شده است. از جمله ویژگی های مورد نظر که چارچوب نرم افزاری بر اساس آن ها انتخاب شده است می توان به توان پردازش محاسبات تنسوری توسط پردازنده و کارت گرافیک، و از پیش تعریف شدن مدل های نورونی پایه، همچون مدل نورونی تجمیع و آتش، انعطاف پذیری نورونی و محاسبات مربوط به اتصالات بین نورونها، اشاره کرد.

همچنین به دلیل نیاز به مجموعهای از سازو کارها و ساختارهایی که در هیچ یک از چارچوبهای مورد استفاده از پیش تعریف نشدهبودند، یک چارچوب نرمافزاری بر بستر بایندزنت توسعه داده شده که در عمل مدلسازیهای نهایی بر بستر آن انجام شده اند.

۷.۱.۴ پارامترهای مورد استفاده در آزمایش

اجزای مختلف مدل ارائهشده پارامترهای مختلفی دارند که در نتیجه ی نهایی آزمایش تأثیر بسیار مهمی میگذارند. مواردی همچون تعداد نورونهای جمعیتهای مختلف، نرخهای یادگیری، نرخ اتصالات بین جمعیتها و بسیاری موارد دیگر. همچنین با توجه به پیچیدگی مدل و پیچیدگی سیستم حاصل از پیادهسازی آن با استفاده از شبکههای عصبی ضربهای، تنظیم کردن این پارامترها به گونهای که شبکه عملکرد مناسبی داشته باشد موضوعی بسیار چالش برانگیز است. پارامترهای مورد استفاده برای آزمایش در سه جدول ۲.۴، ۲.۴ و ۳.۴ مشخص شدهاند.

⁵Framework

⁶Bindsnet

⁷PvTorch

ستونهای قشری اول و دوم				
100	تعداد نورونهای هر جمعیت			
6	اثر ثابت زمانی^	جمعیتها	لايه ۴	
-52	آستانهی ضربه			
-65	ولتاژ استراحت			
3	بازهی عدم فعالیت پس از ضربه			
10	ثابت زمانی کاهش			
(-0.4, 0)	بازهی وزن	اتصال مهاری بین دو جمعیت		
0.3	نرخ اتصال			
32	تعداد نورونهای هر جمعیت	جمعیتها	۲/۳ مر۲	
10	اثر ثابت زمانی			
-52	آستانهی ضربه			
-65	ولتاژ استراحت			
3	بازهی عدم فعالیت پس از ضربه			
10	ثابت زمانی کاهش			
(-0.4,0)	بازهی وزن	اتصال مهاری بین دو جمعیت		
1.0	نرخ اتصال			
5	اندازهی کرنل			
14	وزن اتصال		اتصال ادغام بين دو لايه	
3	اندازهی گام			
$\alpha = 3, \beta = 40$	پارامترهای توزیع بتا			
0.2	نرخ اتصال			
(0, 0.95)	بازهی وزن		ا تا الاست	
0.003 - 0.008	نرخ یادگیری		اتصالات پسخور	
0.00005	وزن كاهش			
6	ثابت زمانی			

جدول ۱.۴: پارامترهای مربوط به ستونهای قشری اول و دوم

ستون قشری سوم				
100	تعداد نورونهای هر جمعیت			
6	اثر ثابت زمانی	جمعیتها	لايه ۴	
-52	آستانهی ضربه			
-65	ولتاژ استراحت			
3	بازهی عدم فعالیت پس از ضربه			
10	ثابت زمانی کاهش			
(-0.3, 0)	بازهی وزن	اتصال مهاری بین دو جمعیت		
0.3	نرخ اتصال			
32	تعداد نورونهای هر جمعیت	جمعیتها	لايه ۲/۳	
10	اثر ثابت زمانی			
-52	آستانهی ضربه			
-65	ولتاژ استراحت			
3	بازهی عدم فعالیت پس از ضربه			
10	ثابت زمانی کاهش			
(-0.3, 0)	بازه <i>ی</i> وزن	اتصال مهاری بین دو جمعیت		
1.0	نرخ اتصال			
5	اندازهی کرنل			
14	وزن اتصال		اتصال ادغام بين دو لايه	
3	اندازهی گام			
$\alpha = 3, \beta = 80$	پارامترهای توزیع بتا			
0.2	نرخ اتصال			
(0, 0.95)	بازهی وزن			
0.003 - 0.007	نرخ یادگیری		اتصالات پسخور	
0.00005	وزن کاهش			
6	ثابت زمانی			

جدول ۲.۴: پارامترهای مربوط به ستون قشری سوم

جمعیتهای ورودی			
200	تعداد نورونها		
6	اثر ثابت زماني		
اتصالات جمعیت ورودی به ستونهای قشری			
(0, 0.5)	بازهی وزن		
0.01	نرخ یادگیری مثبت		
0.02	نرخ یادگیری منفی		
0.3	نرخ اتصال		
6	ثابت زمانی		
الگوهای فعالیت ورودی			
20	زمان نمایش هر الگو		
20	زمان استراحت (بدون نمایش الگو پس از هر نمایش الگو)		
0.01 ± 0.005	احتمال فعالیت نورونها در زمان استراحت		
~ 0.2	احتمال فعالیت نورونها در زمان نمایش الگو		
اتصالات پسخور بین ستونهای قشری			
$\alpha = 3, \beta = 80$	پارامترهای توزیع بتا		
0.2	نرخ اتصال		
(0, 0.95)	بازهی وزن		
0.003 - 0.007	نرخ یادگیری		
0.00005	وزن کاهش		
6	ثابت زمانی		
زمانهای آموزش			
800	تعداد الگوهای نمایش داده شده برای آموزش ستونهای قشری اول و دوم		
200	تعداد الگوهای نمایش داده شده در گام اول همراه با اتصالات پسخور		
500	تعداد الگوهای نمایش داده شده برای آموزش ستون قشری سوم		

جدول ۳.۴: پارامترهای جزئی مربوط به مدل مورد استفاده ۴۱

۲.۴ آموزش

برای رسیدن به نتیجه ی نهایی که شکلگیری انقیاد در مدل طراحی شده است، لازم است تا مدل آموزش داده شود تا وزنهای سیناپسی متناسب با داده های ورودی یادگرفته شوند. فرآیند آموزش مدل شامل سه مرحله ی اصلی خواهد بود:

- ۱. آموزش ستون قشری متناظر با اولین جمعیت ورودی و اتصالات بین جمعیت ورودی و ستون قشری.
- ۲. آموزش ستون قشری متناظر با دومین جمعیت ورودی و اتصالات بین جمعیت ورودی و ستون قشری.
- ۳. آموزش اتصالاتی که در آنها ستون قشری سوم دخیل است با استفاده از دو ستون قشری آموزش داده شده ی قبلی.

در گام اول برای آموزش ستونهای قشری متناظر با جمعیتهای ورودی (دو مرحلهی اول آموزش) شبکهای به صورت محدود شامل جمعیت ورودی و ستون قشری متناظر، بدون اتصالات پسخور در نظر گرفته میشود و برای مدت زمان مشخصی شبکه اجرا میشود. با توجه به عدم حضور ستون قشری سوم در این شبکه، میزان دوپامین در این شبکه با سازوکاری مشابه با مدل اصلی توسط لایه ۲/۳ ستون قشری حاضر محاسبه میشود. سپس به این شبکه اتصالات پسخور همان ستون قشری نیز اضافه شده و مجدداً برای زمانی کوتاهتر از زمان اجرای پیشین، یادگیری شبکه در مجاورت ورودی ادامه پیدا میکند.

در گام قبلی که ستونهای قشری اول و دوم آموزش داده شدند، وزنهای سیناپسی اتصالات آنها پس از آموزش مشخص شده. در گام بعدی از این وزنهای حاصل شده از آموزش هریک از دو ستون قشری اول و دوم، در مدل اصلی، که شامل ستون قشری سوم نیز میباشد، جایگزین میشوند و یادگیری روی این دسته از سیناپسها، که خود از آموزش حاصل شدهاند، متوقف میشود. سپس مجدداً شبکه برای مدت زمان مشخصی اجرا میشود تا وزنهای سیناپسی مربوط به اتصالات بین مدلهای قبلی و ستون قشری سوم نیز آموزش داده شوند.

شکل ۵.۴: نمودار ضربه_زمان مربوط به فعالیت نورونهای جمعیتهای لایهی ۲/۳ ستون قشری در ۴۰۰ میلی ثانیه ی ابتدایی که در تصویر فوق، سطر اول فعالیت جمعیت نورونی متناظر با الگوی اول، سطر دوم جمعیت متناظر با الگوی دوم و نوار نمایش داده شده در سطر سوم نیز نمایش دهنده ی الگوی نشان داده شده در ورودی در آن زمان است که رنگ مشکی نشاندهنده ی نمایش الگوی اول در ورودی و رنگ سفید نشاندهنده ی نمایش الگوی دوم در ورودی است.

٣.۴ نتایج

پس از این که مدل آموزش داده شد، وزنهای اتصالات بین جمعیتها که در ابتدا به صورت تصادفی توزیع شده بودند، تغییر کردهاند. با توجه به این که آموزش در دو گام کلی رخداده بود، نتایج این آزمایش نیز در دو بخش مربوط به نتایج آموزش ستونهای قشری اول و دوم، که ستونهای متصل به ورودی بودند، و ستون قشری سوم، که حاصل تجمیع اطلاعات دو ستون قشری پیشین بود، گزارش می گردد. برای سادگی، در این گزارش تنها نتایج مربوط به یک آزمایش بخصوص گزارش شدهاست، ولی فرآیند آموزش و نتایج آن کاملاً تکرارپذیر هستند و منحصر به تلاشهای خاصی نمی شوند. همچنین در ادامه ی فصل به مشخص کردن میزان پیشرفت یادگیری و گزارش دقت نمی شوند. تلاشهای مختلف اشاره خواهیم کرد.

۱.۳.۲ نتایج آموزش ستونهای قشری اول و دوم

طبیعتا در ابتدای فرآیند آموزش، الگوی رفتاری مدل شکلی تصادفی دارد و بین الگوی نمایش داده شده در جمعیتهای ورودی و الگوی رفتاری جمعیتهای لایهی ۲/۳ ستون قشری، همبستگی بسیار کمی وجود دارد. یک نمونه فعالیت جمعیتهای لایه ۲/۳ ستون قشری در ۴۰۰ میلی ثانیهی اول شبیه سازی در تصویر ۵.۴ قابل مشاهده است.

با گذر زمان و پیشرفت فرآیند یادگیری هم بستگی بین ورودی و لایهی ۲/۳ افزایش پیدا می کند؛

شکل ۴.۴: نمودار ضربه_زمان مربوط به فعالیت نورونهای جمعیتهای لایهی ۲/۳ ستون قشری در بازهی ۴۰۶۰ و ۴۰۰۰۰ میلی ثانیه که در تصویر فوق، مشابه با تصویر ۵.۴ سطر اول فعالیت جمعیت نورونی متناظر با الگوی اول، سطر دوم جمعیت متناظر با الگوی دوم و نوار نمایش داده در سطر سوم نیز نمایش دهندهی الگوی نشان داده شده در ورودی در آن زمان است که رنگ مشکی نشان دهندهی نمایش الگوی اول در ورودی و رنگ سفید نشان دهندهی نمایش الگوی دوم در ورودی است.

به طوری که فعالیت هر جمعیت از لایه ی ۲/۳ وابسته به نمایش الگوی متناظر با آن در جمعیتهای ورودی می شود. یک نمونه فعالیت جمعیتهای ستون قشری لایه ۲/۳ در بازه ی زمانی ۳۹۶۰۰ تا ۲/۳ میلی ثانیه (نمایش ۱۰ الگوی انتهایی) در تصویر ۶.۴ نمایش داده شده است که افزایش هم بستگی در آن به وضوح قابل مشاهده است.

۲.۳.۲ نتایج آموزش ستون قشری سوم

همانطور که در بخش قبل نیز به آن اشاره شد، پس از آموزش ستونهای قشری متصل به ورودی، آنها را به یک ستون قشری سوم متصل میکنیم و اتصالات بین آنها را نیز برقرار میکنیم و مجدداً شبکه را آموزش میدهیم. در ابتدای این موضوع رفتار ستون قشری سوم بسیار نادقیق است ولی به مرور زمان رفتار نورونهای حاضر در مدل به سمتی متمایل می شود که هم بستگی بین ورودی و رفتار جمعیتهای لایه ی ۲/۳ ستون قشری سوم بسیار افزایش پیدا میکند. الگوی رفتاری جمعیتهای لایه ی ۲/۳ ستون قشری سوم در ابتدا و انتهای بازه ی آموزش، به ترتیب در تصاویر ۷.۴ و ۸.۴ قابل مشاهده است.

شکل ۷.۴: فعالیت لایهی ۲/۳ ستون قشری سوم در ۴۰۰ میلیثانیهی ابتدایی از آموزش ستون قشری سوم.

شکل ۸.۴: فعالیت لایهی ۲/۳ ستون قشری سوم در ۴۰۰ میلیثانیهی انتهایی از آموزش ستون قشری سوم.

۳.۳.۴ میزان پیشرفت یادگیری

در طول آموزش انتظار میرود وزن نورونهای هر یک از اتصالات نورونی به یکی از مقادیر کمینه و بیشینه وزنش همگرا شود. بر همین اساس یک معیار همگرایی تعریف میشود که میتوان با آن میزان پیشرفت یادگیری را اندازه گیری کرد. این معیار همگرایی برای سیناپس i با وزن w_i به صورت زیر تعریف می شود که همواره عددی بین صفر و یک می باشد:

$$convergence_i = \frac{2(w_i - w_{min})(w_{max} - w_i)}{w_{max} - w_{min}} \tag{\ref{r.f}}$$

به هر میزان که وزن به کمینه و بیشینه ی خود نزدیکتر باشد مقدار رابطه ی 7.4 نیز به صفر نزدیکتر می شود و بیشینه ی آن نیز در حالتی است که وزن نورون دقیقاً در نقطه ی میانگین کمینه و بیشینه قرار داشته باشد. همچنین از رابطه ی فوق می توان این معیار را برای یک مجموعه از سیناپسها مثل S به صورت زیر محاسبه کرد:

$$convergence_S = \sum_{i \in S} \frac{convergence_i}{|S|}$$
 (*.*)

تغییرات این معیار برای اتصالات مختلفی در طول یادگیری آنها اندازه گرفته شدهاست که نشان از همگرایی بسیار مناسب آنها در بازه ی زمان دارد. برای نمونه نمودار تغییرات اتصالات مابین یکی از ستونهای قشری متصل به ورودی و ستون قشری سوم در شکل ۹.۴ آورده شدهاست که همگرایی آنها کاملاً در نمودار مشهود است.

۴.٣.۴ بررسی وجود انقیاد در مدل

در مدل ارائهشده، فعالیت همزمان دو ورودی مجزا، که هر یک بیانگر یک ورودی حسی هستند، پس از آموزش موجب فعالیت در ستون قشری سوم می شود که بیانگر یک مفهوم انتزاعی از چیزی است که دو ورودی حسی متعلق به آن هستند. در صورت رخدادن انقیاد در مدل باید فعالیت حتی یکی از ورودی ها نیز باعث فعال شدن شبکه های عصبی متناظر با مفهوم کلی مورد نظر شود که به

شکل ۹.۴: نمودارهای مربوط به تغییرات معیار همگرایی وزنهای اتصالات مابین جمعیتهای لایه ۲/۳ یک ستون قشری متصل به ورودی و جمعیتهای حاضر در لایه ۴ ستون قشری سوم. (آ) اتصالات بین دو جمعیت متناظر با الگوی اول. (ب) اتصالات بین جمعیت پیشسیناپسی متناظر با الگوی اول و جمعیت پسسیناپسی متناظر با الگوی دوم. (ج) اتصالات بین جمعیت پیشسیناپسی متناظر با الگوی اول. (د) اتصالات بین دو جمعیت متناظر با الگوی دوم.

عبارت دیگر، تنها در صورت فعالیت یکی از ورودیها باید شاهد رفتار درست Y/Y ستون قشری سوم باشیم. برای بررسی این مورد یکی از جمعیتهای ورودی را مشابه با زمان آموزش فعال کرده و جمعیت دیگر را بدون هیچ الگویی و تنها با مجموعهای از فعالیتهای تصادفی تعریف میکنیم و انتظار داریم در ستون قشری سوم فعالیت مورد نظر را مشاهده کنیم. نمودار ضربه زمان مربوط به جمعیتهای ورودی و جمعیتهای Y/Y ستون قشری سوم در یک بازه ی زمانی Y/Y میلی ثانیهای در تصویر Y/Y آورده شده و کاملاً مشهود است که انقیاد در این شبکه شکل گرفته است. هم چنین این موضوع به صورت برعکس، یعنی به صورتی که جمعیت ورودی فعال در تصویر Y/Y غیرفعال باشد و جمعیت دیگر فعال باشد نیز مورد بررسی قرار گرفته (تصویر Y/Y) و صادق بودن این موضوع در آن حالت نیز مشخص شده است.

شکل ۱۰.۴: تصویر مربوط به بررسی وجود انقیاد در زمان نمایش الگو توسط جمعیت ورودی اول. در تصویر فوق سطر اول فعالیت جمعیت ورودی اول، سطر دوم جمعیت ورودی دوم و سطر سوم و چهارم نیز نشاندهنده ی فعالیت جمعیتهای لایه ی ۲/۳ ستون قشری سوم هستند.

شکل ۱۱.۴: تصویر مربوط به بررسی وجود انقیاد در زمان نمایش الگو توسط جمعیت ورودی دوم. دوم. مشابه با تصویر ۱۰.۴، در این تصویر نیز سطر اول فعالیت جمعیت ورودی اول، سطر دوم جمعیت ورودی دوم و سطر سوم و چهارم نیز نشاندهنده ی فعالیت جمعیتهای لایه ی ۲/۳ ستون قشری سوم هستند.

۴.۴ مقایسهی مدل ارائهشده با مدلهای پیشین

چنانچه پیش از این نیز اشاره شد، در مدلهای پیشین از روشهای گوناگونی برای مدلسازی انقیاد استفاده شدهاست. اما، حتی در نزدیکترین مدل ارائهشده به ساختارهای زیستی نیز فاصلهی قابل توجهی با واقعیت وجود داشت. در این پژوهش تلاش شده تا مدل ارائهشده از تمام جنبهها یک مدل بسیار نزدیک به ساختار مغز باشد. چنانچه برای مدلسازی نورونها از شبکههای عصبی ضربهای استفاده شده که نزدیک ترین مدلهای نورونی به نورونهای زیستی هستند و برای توپولوژی آنها نیز تلاش شده از یک الگوی ارتباطی بسیار مشابه با ستونهای قشری حاضر در نوقشر الگوبرداری شود تا از هر جهت یک مدل نزدیک به ساختار زیستی باشد.

این در حالی است که در تحقیقاتی که پیش از این صورت گرفته است، در بسیاری از موارد ساختار ارتباطی و نورونها هیچ شباهتی به مدلهای زیستی ندارند. مواردی همچون استفاده از شبکههای عصبی رمزگذار_رمزگشای مولد که یک نمونه از مواردی است که از ساختار زیستی فاصله دارند.

در این دسته از مدلسازی ها که هدف آن ها ارائه ی یک رویکرد و ساختار محاسباتی برای حل مسئله ی انقیاد است و در حال حاضر برای مسائلی همچون دسته بندی یا رگرسیون از آن ها استفاده نمی شود، برای مقایسه معیار عددی مشخصی نمی توان تعریف کرد ولی با توجه به هدف نهایی، شکل دادن انقیاد و علم به رخدادن آن در مغز و اهمیت آن در ادراک مدل های مبتنی بر زیست، این مدلسازی ها در صورت نشان دادن عملکرد مناسب بسیار ارزشمند هستند.

۵.۴ نتیجه گیری

در این پژوهش نشان داده شد که ستونهای قشری توانایی پردازش اطلاعات و شکلدادن انقیاد را دارند که یک عملکرد شناختی بسیار مهم و پیچیده در پستانداران است و این امکان وجود دارد که مشابه با انقیاد، ستونهای قشری توانایی تشکیل بسیاری دیگر از عملکردهای شناختی را داشته با شند. این یک گام به سوی ساختن عاملهایی با هوشمندی مشابه با موجودات زنده است.

همچنین این ویژگی ستونهای قشری که ساختار و الگوی ارتباطی یکسانی دارند، باعث می شود تا بتوان از آنها به سادگی به عنوان بلوکهایی تکرارشونده در شبکههای عصبی استفاده کرد و شبکههایی ساخت که با از کنار هم قرارگرفتن مجموعهای از ستونهای قشری، قادر به مدلسازی عملکردهای پیچیدهای هستند.

۶.۴ فعالتهای آبنده

در این پژوهش هر لایه از ستونهای قشری به دو دسته تقسیم شدهبود تا فرایند یادگیری و تفکیک فعالیت نورونهای مقیدشده به هر الگوی ورودی مشخص تر باشد. از جمله کارهایی که می توان در ادامه ی این پژوهش انجام داد، این است که تعداد جمعیتهای داخل هر لایه افزایش یابد تا بتوان تفکیک را بین بیش از دو الگو نیز با استفاده از ستونهای قشری انجام داد. همچنین می توان به جای در نظرگرفتن تعداد مشخصی جمعیت، هر لایه را یک جمعیت یکپارچه در نظر گرفت و انتظار داشت در طول آموزش، هر نورون به مرور زمان به یکی از الگوهای ورودی مقید شود که مدلی بسیار نزدیک تر به ساختار زیستی مغز و ستونهای قشری حاضر در مغز است. همچنین یکی دیگر از مطالعاتی که می توان در راستای این پژوهش انجام داد، استفاده از مجموعه داده های حقیقی همچون امنیست در عوض استفاده کردن از الگوی تصادفی در ورودی است. همچنین می توان در یکی از ورودی ها، داده ای از جنس دیگر استفاده کرد. برای نمونه، در یکی از جنون در در دیگری از صوت متناظر با آن تصویر استفاده کرد و انتظار داشت تا یک مفهوم حاصل از انقیاد صوت و تصویر شکل بگیرد.

⁹MNIST (Modified National Institute of Standards and Technology database)

واژهنامه فارسی به انگلیسی

Threshold

آکسون

Pooling Connection اتصال ادغام

اتصالات از راه دور Long-distance Connections

Feedback Connections اتصالات پسخور

Feedforward Connections اتصالات پیشخور

Hindsight Reasoning استنتاج پس نگر

Neuroplasticity انعطافپذیری نورونی

Spike-timing Dependent Plasticity مان ضربه انعطاف پذیری وابسته به زمان ضربه

Reward-modulated Spike-timing پاداش_محور Dependent Plasticity

انقیاد

Soma بدنه ی نورون

Activation Function تابع فعالساز

Leaky Integrate-and-Fire تجميع و آتش نشتى

ترکیبهای توهمی Illusory Conjunctions

تشخیص الگو Pattern Recognition

Heterogeneous Populations جمعیتهای ناهمگن

Homogeneous Populations جمعیتهای همگن

حافظهی زمانی سلسهمراتبی Hierarchical Temporal Memory

Dendrite دندریت

Apical Dendrites دندریتهای رأسی

Basal Dendrites دندریتهای قاعدهای

Dopamine دوپامین

رمزگذار_رمزگشا Encoder-Decoder

ستون قشری Cortical Column

Nervous System ميستم عصبي

Peripheral Nervous System محیطی

Central Nervous System مرکزی

سيناپس Synapse

Spiking Neural Networks شبکههای عصبی ضربهای

شبکههای عصبی مصنوعی Artificial Neural Networks

Generative Neural Network مولد

Spike

Agent

Myelin Sheath غلاف ميلين

Hebbian Learning Rule قانون یادگیری هب

قشر مغز (Cerebral) Cortex

Dataset

مدار کورتکسی استاندارد Canonical Cortical Circuit

مسئله ی ترکیب Combination Problem

Brain

مقيد

تمودار ضربه_زمان Raster Plot

Neuron

نورون تحریکی Excitatory Neuron

inhibitory Neuron نورون مهاری

ieceون پس سیناپسی Post-synaptic Neuron

Pre-synaptic Neuron

نورونهای تکقطبی Unipolar Neurons

نورونهای دوقطبی Bipolar Neurons

Pyramidal Neurons نورونهای هرمی

نورونهای چندقطبی Multipolar Neuron

Neocortex نوقشر

ورودی حسی Sensory Input

Resting Potential پتانسیل استراحت

Poisson نواسون

Neurotransmitters پیامرسانهای عصبی

Reference Frames چارچوبهاي مرجع

كانالهاي يوني Ion Channels

GABA

گروههای چندزمانی Poly-chron Groups

Gestalt

Glutamate

گشتالت گلوتامیت یادگیری تقویتی Reinforcement Learning

مراجع

- [1] F. Alexandre, F. Guyot, J.-P. Haton, and Y. Burnod. The cortical column: A new processing unit for multilayered networks. *Neural Networks*, 4(1):15–25, Jan. 1991.
- [2] C. Braini. *Biophysical approach of neuronal shapes*. Theses, Université Grenoble Alpes, Dec. 2016.
- [3] N. Caporale, Y. Dan, et al. Spike timing-dependent plasticity: a hebbian learning rule. *Annual review of neuroscience*, 31(1):25–46, 2008.
- [4] T. J. Carew. *Behavioral Neurobiology*, page 416. Sinauer, 2000.
- [5] R. J. Douglas and K. A. Martin. NEURONAL CIRCUITS OF THE NEO-CORTEX. *Annual Review of Neuroscience*, 27(1):419–451, July 2004.
- [6] J. B. N. S. Eguchi, Akihiro; Isbister. The emergence of polychronization and feature binding in a spiking neural network model of the primate ventral visual system. *Psychological Review*, 125:545–571, 2018.
- [7] J. Feldman. The neural binding problem(s). *Cognitive Neurodynamics*, 7(1):1–11, Sept. 2012.
- [8] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. *Neuronal dynamics: From single neurons to networks and models of cognition*. Cambridge University Press, 2014.

- [9] S. Ghosh-Dastidar and H. Adeli. Spiking neural networks. *International journal of neural systems*, 19(04):295–308, 2009.
- [10] S. Ghosh-Dastidar and H. Adeli. Third generation neural networks: Spiking neural networks. In W. Yu and E. N. Sanchez, editors, *Advances in Computational Intelligence*, pages 167–178, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
- [11] E. B. Goldstein. *Cognitive psychology: connecting mind, research, and everyday experience*. Cengage Learning, 2019.
- [12] C. Granger. Investigating casual relations by econometric models and cross spectral. 1969.
- [13] K. Greff, S. Van Steenkiste, and J. Schmidhuber. On the binding problem in artificial neural networks. *arXiv preprint arXiv:2012.05208*, 2020.
- [14] J. S. Haas, T. Nowotny, and H. Abarbanel. Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. *Journal of Neurophysiology*, 96(6):3305–3313, Dec. 2006.
- [15] J. Hawkins. hierarchical temporal memory (htm) whitepaper. Whitepaper, Numenta, Sept. 2011.
- [16] J. Hawkins. *A Thousand Brains: A new theory of intelligence*. Basic Books, London, England, Mar. 2021.
- [17] J. Hawkins and S. Ahmad. Why neurons have thousands of synapses, a theory of sequence memory in neocortex. *Frontiers in Neural Circuits*, 10, Mar. 2016.
- [18] J. Hawkins, S. Ahmad, and Y. Cui. A theory of how columns in the neocortex enable learning the structure of the world. *Frontiers in Neural Circuits*, 11, Oct. 2017.
- [19] D. Hebb. The organization of behavior, mcgill university, 1949.

- [20] J. C. Horton and D. L. Adams. The cortical column: a structure without a function. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360(1456):837–862, Apr. 2005.
- [21] E. M. Izhikevich. Polychronization: computation with spikes. *Neural Comput.*, 18(2):245–282, Feb. 2006.
- [22] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. *Principles of Neural Science*. Appleton & Lange, Stamford, CT, 4 edition, Jan. 2000.
- [23] M. Lewis, S. Purdy, S. Ahmad, and J. Hawkins. Locations in the neocortex: A theory of sensorimotor object recognition using cortical grid cells. *Frontiers in Neural Circuits*, 13, Apr. 2019.
- [24] J. H. Lui, D. V. Hansen, and A. R. Kriegstein. Development and evolution of the human neocortex. *Cell*, 146(1):18–36, July 2011.
- [25] W. Maass. Networks of spiking neurons: The third generation of neural network models. *Neural Networks*, 10(9):1659 1671, 1997.
- [26] M. Masi. Spirit calls nature: Bridging science and spirituality, consciousness and evolution in a synthesis of knowledge. MVB, Frankfurt am Main, Germany, Sept. 2021.
- [27] P. Mateos-Aparicio and A. Rodríguez-Moreno. The impact of studying brain plasticity. *Frontiers in Cellular Neuroscience*, 13, Feb. 2019.
- [28] M. Megías, Z. Emri, T. Freund, and A. Gulyás. Total number and distribution of inhibitory and excitatory synapses on hippocampal cal pyramidal cells. *Neuroscience*, 102(3):527–540, 2001.
- [29] V. B. Mountcastle. An organizing principle for cerebral function: The unit model and the distributed system. In G. M. Edelman and V. V. Mountcastle, editors, *The Mindful Brain*, pages 7–50. MIT Press, Cambridge, MA, 1978.

- [30] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier. Spyke-Torch: Efficient simulation of convolutional spiking neural networks with at most one spike per neuron. *Frontiers in Neuroscience*, 13, July 2019.
- [31] R. T. Narayanan, R. Egger, C. P. de Kock, and M. Oberlaender. Chapter 9 neuronal cell types in the neocortex. In K. S. Rockland, editor, *Axons and Brain Architecture*, pages 183–202. Academic Press, San Diego, 2016.
- [32] C. Noback, D. Ruggiero, N. Strominger, and R. Demarest. *The Human Nervous System: Structure and Function*. Number no. 744; no. 2005 in Springer-Link: Springer e-Books. Humana Press, 2005.
- [33] D. P. Pelvig, H. Pakkenberg, A. K. Stark, and B. Pakkenberg. Neocortical glial cell numbers in human brains. *Neurobiol. Aging*, 29(11):1754–1762, Nov. 2008.
- [34] P. Poirazi, T. Brannon, and B. W. Mel. Pyramidal neuron as two-layer neural network. *Neuron*, 37(6):989–999, 2003.
- [35] A. Polsky, B. W. Mel, and J. Schiller. Computational subunits in thin dendrites of pyramidal cells. *Nature Neuroscience*, 7(6):621–627, May 2004.
- [36] D. Purves. *Neuroscience*. Sinauer Associates, Sunderland, MA, 2 edition, Jan. 2001.
- [37] A. Revonsuo and J. Newman. Binding and consciousness. *Consciousness and Cognition*, 8(2):123–127, 1999.
- [38] M. Sadeghi, F. Schrodt, S. Otte, and M. V. Butz. Binding and perspective taking as inference in a generative neural network model. In *Lecture Notes in Computer Science*, pages 3–14. Springer International Publishing, 2021.
- [39] C. J. Shatz. The developing brain. Scientific American, 267(3):60–67, 1992.
- [40] R. Sutton, A. Barto, and C. Barto. *Reinforcement Learning: An Introduction*. A Bradford book. MIT Press, 1998.

- [41] A. Treisman. Solutions to the binding problem. *Neuron*, 24(1):105–125, Sept. 1999.
- [42] A. Treisman and H. Schmidt. Illusory conjunctions in the perception of objects. *Cognitive Psychology*, 14(1):107–141, 1982.
- [43] R. Velik. From simple receptors to complex multimodal percepts: A first global picture on the mechanisms involved in perceptual binding. *Frontiers in psychology*, 3:259, 07 2012.
- [44] C. von der Malsburg. The what and why of binding. *Neuron*, 24(1):95–104, Sept. 1999.

Abstract

Binding problem is one of the important problems in neuroscience, cognitive sciences and philosophy of mind. It's about how a living organism's understanding is integrated from partial concepts formed in the brain. The importance of this problem is in understanding of human cognitive functions, which itself is part of steps required to designing systems that are capable of processing cognitive functions that are similar to humans. Researches show the very strong role of cortical columns, which are structures in the neocortex, in the cognitive functions of living organisms. In this research, an attempt has been made to simulate the formation of binding in the brain by modeling the cortical columns and the relationships between them using spiking neural networks. Finally, the tests and investigations carried out on the designed model show the formation of binding in the presented model. This issue indicates that probably the cortical columns, as defined structures that can be easily replicated in modeling, are potentially suitable structures to be used in modeling and increase the possibility of forming cognitive processes in the model.

Keywords: Cortical Column, Binding Problem, Spiking Neural Network, Modeling.

College of Science School of Mathematics, Statistics, and Computer Science

Modeling the Mechanisms of Binding Problem in Spiking Neural Networks

Amir Aslan Aslani

Supervisors

Mohammad Ganjtabesh Abbas Nouzari Dalini

A thesis submitted to Graduate Studies Office in partial fulfillment of the requirements for the degree of Master of Science in Computer Science

February 2022