Solving The Frozen Lake Problem

The Problem Details

- Imagine there is a frozen lake stretching from your home to your office; you have to walk on the frozen lake to reach your office.
- But oops! There are holes in the frozen lake so you have to be careful while walking on the frozen lake to avoid getting trapped in the holes.

The symbols in the above picture:

- S: represents the strating position (home)
- F: represents the frozen lake where you can walk
- . H: represents the holes, which you have to be so careful
- G: reprensents the goal (office)

The agent's goal: is to find the optimal path to go from S to G without getting trapped at H.

The MDP we have consists of the following:

- States: Set of states. Here we have 16 states (each little square box in the grid).
- **Actions**: Set of all possible actions (left, right, up, down; these are all the four possible actions our agent can take in our frozen lake environment).
- **Transition Function** $P_{s,s'}^a$: The probability of moving from one state **(F)** to another state **(H)** by performing an action a.

• **Reward Function** $R^a_{s,s'}$: This is the expected reward we can recieve while moving from one state **(F)** to another state **(H)** by performing an action a.

The two possible ways to solve MDP in order to get the optimal policy:

- Value Iteration
- Policy Iteration

```
In [31]: #import necessary libraries
    import gym
    import numpy as np

In [32]: import math

In [33]: #Make our frozen Lake enviroment using OpenAI's Gym
    env = gym.make('FrozenLake-v0')

    [2020-08-19 17:33:57,743] Making new env: FrozenLake-v0
    C:\Users\FADY-PC\anaconda3\lib\site-packages\gym\envs\registration.py:18: PkgRe
    sourcesDeprecationWarning: Parameters to load are deprecated. Call .resolve an
    d .require separately.
    result = entry_point.load(False)
```

Exploring the Environment

```
In [34]: #Explore the number of states in the enivronment
    print(f'The number of states: {env.observation_space.n}')

The number of states: 16

In [35]: #Explore the number of actions in the environment
    print(f'The number of actions: {env.action_space.n}')

The number of actions: 4
```

Value Iteration

Recall the state-action value function:

$$Q(s,a) = \sum_{s'} [R^a_{s,s'} + V(s')] P^a_{s,s'} = \sum_{s'} next state reward for every$$

The Pseudo-code

```
Initialize V arbitrarily, e.g., V(s) = 0, for all s \in \mathcal{S}^+

Repeat
\Delta \leftarrow 0
For each s \in \mathcal{S}:
v \leftarrow V(s)
V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[ \mathcal{R}^a_{ss'} + \gamma V(s') \right]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)

Output a deterministic policy, \pi, such that
\pi(s) = \arg \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[ \mathcal{R}^a_{ss'} + \gamma V(s') \right]
```

The steps involved in the value iteration are as follows:

- 1. First, we initialize the random value function, that is, the random value for each state.
- 2. Then we compute the Q function for all state action pairs of Q(s, a).
- 3. Then we update our value function with the max value from Q(s,a).
- 4. We repeat these steps until the change in the value function is very small.

localhost:8888/notebooks/Solving Bellman Equation.ipynb#

```
In [36]: def value iteration(env, gamma = 1.0):
             1.1.1
             Usage:
               #value iteration--> used for solving MDP by finding the optimal value funct
             Arguments:
               #env --> The environment that the agent interacts with
               #gamma --> represents the discount factor. The defalut value is 1.0
             Returns:
               #value_table -->is a the table of the optimal value functions for all the
               #Q_value --> list of the updated values of the state-action value function
                             states
             1.1.1
             #First, we initialize the random value table which is 0 for all the states
             value table = np.zeros(env.observation space.n)
             #Define the number of iterations
             no of iterations = 10000
             #Keep until convergence
             for i in range(no of iterations):
                 #Upon starting each iteration, we copy the value table to update value to
                 updated_value_table = np.copy(value_table)
                 #For every space in the environment
                 for state in range(env.observation space.n):
                      #instead of creating a Q-table for each state, we create a list list\
                      #all the values of state-action pair
                     Q_{value} = []
                     #Scan every action
                      for action in range(env.action space.n):
                          #Define empty list for storing next state reward for every transi
                          next_states_rewards = []
                          #Get some useful values of every state-action pair
                          for next_sr in env.P[state][action]:
                             trans_prob, next_state, reward_func, _ = next_sr
                             #append the next-state reward value for that state-action pai
                             next states rewards.append((trans prob * (reward func + gamma
                          #append the some of next states rewards for all the successor std
                          #every state-action pair
                          Q_value.append(np.sum(next_states_rewards))
                      #Pick up the maximum Q value and update it as value of a state
                      value table[state] = max(Q value)
```

```
#check if we have reached the convergence, that is, the difference of
                 #the value-function between each iteration is small
                 #at a result of that, we define a threshold ,a cutoff value, which we std
                 #the difference at least equals it
                 threshold = 1e-10
                 if(np.sum(np.fabs(updated_value_table - value_table)) <= threshold):</pre>
                      print(f"Value-iteration converged at iteration: {i+1}")
                     break
             return value_table, Q_value
In [37]: #We can get the optimal value-function for all states(value table) and the corres
         value table, Q value = value iteration(env = env, gamma= 1.0)
         Value-iteration converged at iteration: 877
In [38]: #Print the values of the optimal value function
         print(value_table)
         [0.82352941 0.82352941 0.82352941 0.82352941 0.82352941 0.
          0.52941176 0.
                                 0.82352941 0.82352941 0.76470588 0.
          0.
                     0.88235294 0.94117647 0.
                                                      1
         #Print the Q values
In [39]:
         print(Q value)
         [0.0, 0.0, 0.0, 0.0]
```

After finding the optimal value function, how can we extract the optimal policy from the optimal_value_function?

- We calculate the Q value using our optimal value action and pick up the actions which have the highest Q value for each state as the optimal policy.
- We do this via a function called extract_policy()

Note:

The functions, value_iteration() and extrac_policy(), **together** represent **the value iteration algorithm**, but in the lab we divide the algorithm into two functions just for explanation but we can encapsulate the two functions into one and call it value iteraion().

```
In [46]: | def extract policy(value table,gamma = 1.0):
             Usage:
               #extract policy--> used for getting the optimal policy
             Arguments:
               #value_table -->is a the table of the optimal value functions for all the
               #gamma --> represents the discount factor. The defalut value is 1.0
             Returns:
               #policy--> list represents the best actions to perform for each state we \mathsf{t}^{\mathsf{l}}
             #Define a random policy for all the states
             policy = np.zeros(env.observation_space.n)
             #for each state , we build Q table holds the possible action we can perform |
             for state in range(env.observation_space.n):
                 #pre-allocating the Q table
                 Q_table = np.zeros(env.action_space.n)
                 #for each action in the state, we compute the its state-action value fund
                 #And, append it to Q table
                 for action in range(env.action space.n):
                      #Get some useful values of every state-action pair
                          for next_sr in env.P[state][action]:
                              trans prob, next state, reward func, = next sr
                              #Compute state-action value function for a certain (state,act
                              #And add it to Q table
                              Q_table[action] += trans_prob * (reward_func + gamma * value)
                 #Then Pick the action that has the highest Q value for a specific state
                 policy[state] = np.argmax(Q_table)
             return policy
         optimal policy = extract policy(value table)
```

```
In [47]: #Get the optimal policy for each state
In [48]: #Print the optimal_policy
         optimal policy
Out[48]: array([0., 3., 3., 3., 0., 0., 0., 0., 3., 1., 0., 0., 0., 2., 1., 0.])
```

Policy Iteration

The Pseudo-code

```
Initialize a policy \pi' arbitrarily Repeat \pi \leftarrow \pi' Compute the values using \pi by solving the linear equations V^{\pi}(s) = E[r|s,\pi(s)] + \gamma \sum_{s' \in S} P(s'|s,\pi(s))V^{\pi}(s') Improve the policy at each state \pi'(s) \leftarrow \arg\max_a(E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a)V^{\pi}(s')) Until \pi = \pi'
```

The steps involved in the policy iteration are as follows:

- 1. First, we initialize some random policy
- 2. Then we find the value function for that random policy and evaluate to check if it is optimal which is called policy evaluation
- 3. If it is not optimal, we find a new improved policy, which is called policy improvement
- 4. We repeat these steps until we find an optimal policy

```
In [86]: def compute value function(policy,gamma = 1.0):
              . . .
             Usage:
               #compute value function--> Compute value function given a policy
             Arguments:
               #policy --> the policy that we compute the value fuction based on it
               #gamma --> represents the discount factor. The defalut value is 1.0
             Returns:
               #value_table--> is a the table of the updated value functions for all the
                                to a better policy using them
              . . .
             #first, we initialize the value_table as zeros for all the states
             value_table = np.zeros(env.observation_space.n)
             #check if we have reached the convergence, that is, the difference of
             #the value-function between each iteration is small
             #at a result of that, we define a threshold ,a cutoff value, which we stop up
             #the difference at least equals it
             threshold = 1e-20
             #Keep going until convergence
             while(True):
                 #for each state, we get an action to perfom under the random policy we in
                 #we compute the value function according to that action and the state
                 #we make a new variable called updated value table to update the value t_0
                 updated_value_table = np.copy(value_table)
                 #for every state in the environment
                 for state in range(env.observation_space.n):
                      #get the action the agent must perform under that policy
                      action = policy[state]
                     #compute the value function under the given policy
                     value_table[state] = sum([trans_prob * (reward_func + gamma * updated
                 #Check for cenvergence
                 if(np.sum(np.fabs(updated value table - value table)) <= threshold):</pre>
                     break
             return value table
```

```
In [73]: def policy iteration(env,gamma = 1.0):
             Usage:
               #policy iteration--> used for solving MDP by finding the optimal policy the
             Arguments:
               #env --> The environment that the agent interacts with
               #gamma --> represents the discount factor. The defalut value is 1.0
             Returns:
               #new policy --> new policy --> represents array of the optimal policy for \epsilon
             #first, we initialize a random policy
             random policy = np.zeros(env.observation space.n)
             #define the number of iterations
             no of iterations = 20000
             #then, for each iteration we calculate the new value function corresponding t
             #Extract the optimal policy for each state using the new value function we co
             for i in range(no of iterations):
                 new value function = compute value function(random policy,gamma = 1.0)
                 new policy = extract policy(new value function)
                 #then, we check whether we have reached convergence
                 #we do that by comparing the random policy with the new policy
                 #if the random policy equals the policy we break
                 #else, we update the random_policy with the new policy we get from new vo
                 if (np.all(random policy == new policy)):
                      print(f"Policy Iteration converged at iteration: {i+1}")
                     break
                 random policy = new policy
             return new policy
In [87]: #Get the optimal Policy for each state
         optimal policy = policy iteration(env)
         Policy Iteration converged at iteration: 7
In [88]: #Explore the optimal policy
         optimal policy
```

Out[88]: array([0., 3., 3., 3., 0., 0., 0., 0., 3., 1., 0., 0., 0., 2., 1., 0.])

Congratulations!