

за Δt точка проходит путь $\Delta S = R \varphi$, т.е. $\varphi = \frac{\Delta S}{R}$ при малых φ можно представить $|\Delta \vec{v}|$ как $v \cdot \varphi$ вектор $\Delta \vec{v}$ можно представить как произведение его модуля на орт нормали к траектории $\Delta \vec{v} = v \varphi \cdot \vec{n}$ раскрывая φ , получаем: $\Delta \vec{v} = v \frac{\Delta S}{R} \cdot \vec{n}$ чтобы найти ускорение, перейдем к пределу: $\vec{w}_n = \lim_{\Delta t \to 0} \frac{v \Delta S}{R \Delta t} \cdot \vec{n} = \lim_{\Delta t \to 0} \frac{v}{R} v \cdot \vec{n} = \lim_{\Delta t \to 0} \frac{v^2}{R} \cdot \vec{n} = \frac{v^2}{R} \cdot \vec{n}$