# Densly Connected Convolutional Neural Networks



#### **Hanock Kwak**

Aug. 2017 School of Computer Science and Engineering Seoul National University

#### THROUGHOUT THE SLIDES

- Lots of the slides are originated from CVPR 2017 slides presented by Gao Huang et al.
- Check <a href="https://www.youtube.com/watch?v=-W6y8xnd--U">https://www.youtube.com/watch?v=-W6y8xnd--U</a>

# **COMPOSITE LAYER**



# **DENSE CONNECTIVITY**



# **DENSE CONNECTIVITY**



# **DENSE CONNECTIVITY**



# **THIN FEATURE MAPS**

• Channels are linearly increased.



### **BOTTLENECK LAYER**

- Reduce the number of channels to 4k before composite layer by 1x1 convolution.
- It's optional.



# **DENSE BLOCK**

• Bottleneck layers are omitted for simple illustration. ©



# SIMPLE ILLUSTRATION OF DENSE BLOCK





# **DENSENET**



### **COMPRESSION**



- Reduce the number of channels by  $0 < \theta \le 1$ .
- $\theta = 0.5$

#### **ARCHITECTURES OF DENSENET**

| Layers                  | Output Size    | DenseNet-121( $k = 32$ )                                                                                 | DenseNet-169( $k = 32$ )                                                                                 | DenseNet-201( $k = 32$ )                                                                                 | DenseNet-161( $k = 48$ )                                                                                 |
|-------------------------|----------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Convolution             | 112 × 112      | $7 \times 7 \text{ conv, stride } 2$                                                                     |                                                                                                          |                                                                                                          |                                                                                                          |
| Pooling                 | $56 \times 56$ | $7 \times 7 \text{ conv}$ , stride 2<br>$3 \times 3 \text{ max pool}$ , stride 2                         |                                                                                                          |                                                                                                          |                                                                                                          |
| Dense Block             | 56 × 56        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$              | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$              | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$              | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$              |
| Transition Layer        | 56 × 56        | $\begin{array}{c} 1\times 1 \text{ conv} \\ 2\times 2 \text{ average pool, stride 2} \end{array}$        |                                                                                                          |                                                                                                          |                                                                                                          |
| (1)                     | 28 × 28        |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
| Dense Block<br>(2)      | 28 × 28        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$             | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$             | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ |
| Transition Layer        | $28 \times 28$ | $1 \times 1 \text{ conv}$<br>$2 \times 2 \text{ average pool, stride } 2$                                |                                                                                                          |                                                                                                          |                                                                                                          |
| (2)                     | 14 × 14        |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
| Dense Block (3)         | 14 × 14        | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$             | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 36$ |
| Transition Layer        | 14 × 14        | $1 \times 1 \text{ conv}$<br>$2 \times 2 \text{ average pool, stride } 2$                                |                                                                                                          |                                                                                                          |                                                                                                          |
| (3)                     | 7 × 7          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
| Dense Block<br>(4)      | 7 × 7          | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$ |
| Classification<br>Layer | 1 × 1          | 7 × 7 global average pool                                                                                |                                                                                                          |                                                                                                          |                                                                                                          |
|                         |                | 1000D fully-connected, softmax                                                                           |                                                                                                          |                                                                                                          |                                                                                                          |

Table 1. DenseNet architectures for ImageNet. The growth rate for the first 3 networks is k=32, and k=48 for DenseNet-161. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

# **ADVANTAGE 1: STRONG GRADIENT FLOW**





### **ADVANTAGE 2: PARAMETER & COMPUTATIONAL EFFICIENCY**



# **ADVANTAGE 3: MAINTAINS LOW COMPLEXITY FEATURES**



#### **RESULTS ON CIFAR-10**



#### **RESULTS ON CIFAR-100**



#### **RESULTS ON IMAGENET**





#### **COMPARISON OF DENSENET VARIATIONS**

- DenseNet-B: There are bottleneck layers.
- DenseNet-C: Compression ratio  $\theta$  is less than 1. (See the previous slide named "Compression")
- DenseNet-BC: Joint of 'B' and 'C'.





# Thank You!