# پیشبینی و ارزیابی مدلها

## امیر مهدی اعرابی | ۹۹۵۲۲۲۷۵

در این مرحله، داده های پاکسازی شده و آماده به کارگیری هستند. هدف این است که عملکرد مدل های مختلف یادگیری ماشین و یادگیری عمیق برای پیش بینی نتیجه دیابت ارزیابی شود و بهترین مدل انتخاب گردد.

2. آمادهسازی دادهها

بارگذاری دادهها

دادهها از فایل cleaned\_diabetes\_data.csv بارگذاری شدند. ستونهای ورودی به عنوان ویژگیها (X) و ستون Outcome به عنوان متغیر هدف (y) تعریف شدند. داده ها به نسبت 70-30 برای مجموعه های آموزش و آزمایش تقسیم شدند.

## پیشپردازش

- دادههای غیر عددی (مثلاً دسته بندی های BMI یا سن) به مقادیر عددی با استفاده از Label Encoding تبدیل شدند.
  - دادههای فاقد مقدار (NaN) حذف شدند.
  - مقیاسگذاری ویژگیها (Scaling) برای مدل هایی مانند Logistic Regression و SVM انجام شد.

3. آموزش و ارزیابی مدلها

مدلهای ارزیابی شده

- Logistic Regression .1
  - Random Forest .2
- (Support Vector Machine (SVM .3
  - (K-Nearest Neighbors (KNN .4
    - 5. شبکه عصبی (مدل یادگیری عمیق)

## نتايج مدلها

## الف) مدلهای کلاسیک

برای هر مدل، معیارهای زیر ارزیابی شدند:

• Accuracy: دقت پیشبینی

• AUC: مساحت زیر منحنی AUC

• Classification Report: متریکهای دقت، یادآوری و F1-Score

• Confusion Matrix: ماتریس اغتشاش برای ارزیابی جزئی عملکرد مدل.

## نتايج اوليه:

| AUC  | Accuracy | مدل                 |
|------|----------|---------------------|
| 0.80 | 0.79     | Logistic Regression |
| 0.79 | 0.75     | Random Forest       |
| 0.81 | 0.77     | SVM                 |
| 0.72 | 0.70     | KNN                 |

## ب) مدل یادگیری عمیق

## • ساختار مدل:

الایه ورودی: 64 نرون با تابع فعالسازی ReLU.

و الله ميائي: 32 نرون با تابع ReLU.

۷ الیه خروجی: 1 نرون با تابع سیگموئید.

#### • دقت مدل:

Accuracy: 0.78 o

AUC: 0.81 o



## 4. بهینهسازی مدلها (Hyperparameter Tuning)

با استفاده از GridSearchCV، مدلها با مقادیر مختلف پارامترها بهینهسازی شدند. برخی از تغییرات قابل توجه:

- Logistic Regression: بهبود با تنظیم پارامتر های C و solver.
- Random Forest: افزایش تعداد درختها (n\_estimators) و تنظیم عمق حداکثری (max\_depth).
  - SVM: آزمایش هستههای مختلف (linear, rbf) و مقدار sgamma.

## نتایج بهترین پارامترها برای هر مدل:

| مدل                 | بهترین پارامترها                   |  |
|---------------------|------------------------------------|--|
| Logistic Regression | 'C=10, solver='liblinear           |  |
| Random Forest       | n_estimators=100, max_depth=None   |  |
| SVM                 | 'C=1,kernel='linear', gamma='scale |  |

## 5. ارزیابی مدلهای ترکیبی (Ensemble Methods)

## روشهای ترکیبی بررسی شده:

- (Random Forest (Ensemble .1
  - **Gradient Boosting** .2
    - AdaBoost .3

## نتايج:

| مدل                      | Accuracy | AUC  |
|--------------------------|----------|------|
| (Random Forest (Ensemble | 0.75     | 0.79 |
| Gradient Boosting        | 0.76     | 0.79 |
| AdaBoos                  | 0.73     | 0.76 |

## 6. انتخاب مدل نهایی

مدل SVM به عنوان بهترین مدل انتخاب شد:

Accuracy: 0.77 •

AUC: 0.80 •

## 7. تجزیه و تحلیل عملکرد مدل

## SVM با بهترین پارامترها:

• ماتریس اغتشاش: نشاندهنده تعادل نسبتاً خوب میان پیشبینیهای مثبت و منفی.



# منحنی ROC: نشان دهنده تعادل میان نرخ مثبتهای واقعی (TPR) و نرخ مثبتهای کاذب (FPR)

