

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS

2020/2021

Tema: 4

Problemas propuestos para trabajar de cara a la semana 8

PARA ALUMNOS CON LIBRO DE TEXTO O ACCESO A ÉL

Los problemas para trabajar de cara a la semana 8 con los contenidos de teoría vistos hasta ahora son:

- Volumen: Parte I.
- Problemas: 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88, 93, 104, 105, 106, 107, 108, 109, 110.

Estos problemas son de nivel básico e intermedio.

PARA ALUMNOS SIN ACCESO AL LIBRO DE TEXTO

Los problemas cuyos enunciados se recogen a continuación se corresponden con los del nivel básico e intermedio del libro de texto (segunda edición). Para facilitar su identificación, se ha respetado para cada uno la numeración que le corresponde en el libro.

73. Haciendo uso del método de los nudos, determine la intensidad I_L en el circuito siguiente

Datos: $I_1=6$ mA, $R_1=2$ k Ω , $R_2=4$ k Ω .

NIVEL: BÁSICO

74. Obtenga la intensidad I_L en el circuito de la figura mediante el método de los nudos

Datos: $I_1=6$ mA, $I_2=3$ mA, $R_1=6$ k Ω , $R_2=2$ k Ω , $R_3=3$ k Ω .

NIVEL: BÁSICO

75. Determine el valor de I_0 en el circuito mostrado, y hágalo usando el método de los nudos

Datos: $I_1=5$ A, $R_1=6$ Ω , $R_2=8$ Ω , $R_3=4$ Ω .

(Nota: para la fuente dependiente, tómese que las unidades de $3V_x$ son amperios.)

NIVEL: BÁSICO

76. Para el circuito de la figura, indique cómo han de ser las resistencias R_a y R_b para que la tensión de salida $V_{\rm out}$ se vea maximizada

NIVEL: INTERMEDIO

77. Calcule la potencia consumida por la resistencia R_5 en el circuito siguiente. En la resolución, utilice el método de los nudos

Datos: $I_1=11$ mA, $R_1=2$ k Ω , $R_2=4$ k Ω , $R_3=4$ k Ω , $R_4=3$ k Ω , $R_5=10$ k Ω . (Nota: para la fuente dependiente, tome que $\frac{V_x}{2}$ está en mA.)

NIVEL: INTERMEDIO

78. Calcule la potencia consumida por la resistencia R_5 en el circuito de la figura. En la resolución, emplee el método de los nudos

Datos: $I_1=6$ mA, $R_1=6$ k Ω , $R_2=4$ k Ω , $R_3=6$ k Ω , $R_4=3$ k Ω , $R_5=12$ k Ω .

NIVEL: INTERMEDIO

81. Usando el método de mallas, encuentre el valor de la tensión V_{out} en el circuito mostrado

Datos: V_1 = 6 V, V_2 = 12 V, I_1 = 2 mA, R_1 = R_2 = R_4 = R_5 = 1 k Ω , R_3 = 2 k Ω .

NIVEL: BÁSICO

82. Emplee el método de mallas para determinar la intensidad \mathcal{I}_0 en el circuito de la figura

Datos: $V_1=12$ V, $I_1=2$ mA, $I_2=4$ mA, $R_1=R_2=R_3=R_4=R_5=R_6=1$ k Ω .

NIVEL: INTERMEDIO

83. Obtenga mediante análisis por mallas la tensión $V_{
m out}$ en el circuito que ilustra el problema

Datos: $V_1=6$ V, $I_1=3$ mA, $I_2=1$ mA, $R_1=R_5=2$ k Ω , $R_2=R_3=4$ k Ω , $R_4=12$ k Ω .

NIVEL: INTERMEDIO

84. Determine la tensión $V_{
m out}$ en el circuito mostrado a continuación usando el método de los nudos

Datos: $I_1=2$ mA, $R_1=4$ k Ω , $R_2=R_4=6$ k Ω , $R_3=2$ k Ω . (Nota: para la fuente dependiente, tome que $\frac{V_x}{2}$ está en mA.)

NIVEL: INTERMEDIO

85. Calcule el potencial $V_{
m out}$ en el circuito de la figura y hágalo empleando el método de los nudos

Datos: $I_1=1$ mA, $I_2=0.5$ mA, $R_1=R_6=2$ k Ω , $R_2=R_3=R_4=R_5=1$ k Ω . (Nota: para la fuente dependiente, tome que $2V_x$ está en mA.)

NIVEL: INTERMEDIO

86. Determine la corriente I_0 en el circuito mostrado, empleando el principio de superposición

Datos: $V_1=12$ V, $V_2=6$ V, $I_1=2$ mA, $R_1=R_2=R_3=R_4=2$ k Ω .

NIVEL: BÁSICO

87. Usando el método de transformación entre fuentes de tensión y fuentes de corriente, encuentre la tensión $V_{\rm out}$ en el siguiente circuito

Datos: $I_1=2$ mA, $V_1=6$ V, $V_2=5$ V, $R_1=3$ k Ω , $R_2=R_3=2$ k Ω , $R_4=R_5=1$ k Ω .

NIVEL: BÁSICO

88. Emplee el método de transformación entre fuentes para obtener la intensidad I_0 en el circuito mostrado en la imagen

Datos: $V_1 = 12$ V, $I_1 = 2$ mA, $R_1 = R_3 = 12$ k Ω , $R_2 = 6$ k Ω , $R_4 = R_5 = 3$ k Ω .

NIVEL: INTERMEDIO

93. Calcule la intensidad de corriente de cada rama esencial usando el método de las mallas, así como la potencia consumida por cada resistencia en el circuito siguiente

Datos: $V_1=7$ V, $V_2=5$ V, $R_1=3$ k Ω , $R_2=1$ k Ω , $R_3=2$ k Ω .

NIVEL: BÁSICO

104. Determine el valor de $V_{
m out}$ en el circuito de la figura

Datos: $V_1=12$ V, $R_1=3$ k Ω , $R_2=5$ k Ω .

NIVEL: BÁSICO

105. Obtenga el valor de $V_{
m out}$ en el siguiente circuito

Datos: $V_1=12$ V, $R_1=R_2=2$ k Ω .

NIVEL: BÁSICO

106. Calcule cuánto vale $V_{
m out}$ en el circuito mostrado. Hágalo empleando el método de los nudos

Datos: $I_1=5$ mA, $R_1=2$ k Ω , $R_2=1$ k Ω .

NIVEL: BÁSICO

107. En el circuito siguiente, determine el valor de $V_{
m out}$ usando el método de los nudos

Datos: $I_1=4$ mA, $R_1=6$ k Ω , $R_2=2$ k Ω , $R_3=1$ k Ω . (Nota: para la fuente dependiente, tome que $\frac{V_{\rm out}}{2}$ está en mA.)

NIVEL: BÁSICO

108. Obtenga el valor de I_0 en el circuito mostrado usando el principio de superposición

Datos: $V_1=12$ V, $I_1=4$ mA, $R_1=2$ k Ω , $R_2=6$ k Ω , $R_3=3$ k Ω , $R_4=4$ k Ω .

NIVEL: INTERMEDIO

109. Calcule I_0 mediante el principio de superposición en el circuito siguiente

Datos: $V_1=6$ V, $I_1=9$ mA, $R_1=1$ k Ω , $R_2=3$ k Ω , $R_3=R_4=2$ k Ω .

NIVEL: INTERMEDIO

110. Determine cuánto vale I_0 en el circuito que se muestra usando el principio de superposición

Datos: $V_1=6$ V, $I_1=2$ mA, $R_1=6$ k Ω , $R_2=3$ k Ω , $R_3=2$ k Ω , $R_4=3$ k Ω .

NIVEL: INTERMEDIO