Lecture 7 Algebra of regular expressions: two constants ε, \emptyset , one constants every ac ε , Two binary op +, and one many op \star Laws 1 $R + \phi = \phi + R = R$ 2 R + S = S + R3 R + (S + T) = (R + S) + T R + R = RLaws of union.

 $5 \quad R \cdot \phi = \phi \cdot R = \phi$

 $6 R \cdot \varepsilon = \varepsilon \cdot R = R$

 $7 R \cdot (S \cdot T) = (R \cdot S) \cdot T$

8 R. (S+T) = R.S+R.T

9 $(S+T) \cdot R = S \cdot R + T \cdot R$

 $\varepsilon + RR^* = \varepsilon + R^*R = R^*$

Proof of (5) R-S mean stands for all words of the foun xy with xe R 2 yes. Now if xye R. & then it has to be possible to break x into yz withy & R & ZEG. But there is no word in \$ so no such decomposition is possible co R. \$ = \$ possible so $R - \phi = \phi$. (7) works because we are working with words Int trees. (10) suppose $x \in E + RR^*$ then either $x \in E$ i.e x = Eso XER* or XERR* so X= yz with ye R & ZER* leut then Z= DZ ... Zk with all Ziek go x=yz,... Zk with y 2 all Zi E R*i.e. XER*. Reverse direction is similar. Other equations R** = R* clearly R* = R* suppose XG (R*)* Hen X= X, ... Xk with each Zi GR* leut then each xi = xi ... xii with each xi E R so we get $\chi = \chi_1' \chi_1^2 \dots \chi_i' \chi_1' \chi_2' \dots \chi_i^{i_2} \dots \chi_k^{i_k}$ which is just a concatenation of words from R so $\chi \in R^*$ so $\chi \in R^*$ i.e. $R^* = R^*$

(R*S)* R* = (R+S)*

Clearly (R*S)* R* = (R+S)*

Now suppose $\omega \in (R+S)$ * so $\omega = \omega_1 ... \omega_n$ with each ω_i ; $\omega_$