Examination Timetabling Problem

Course of Discrete Optimization

Mahsa Sedaghatinia VR481427

Content

1. Definition of the Problem

2. Definition of the basic model

3. Results

Definition of the Problem

Problem

- Exams, E = {e1, e2, ..., en}
- Students, S = {s1, s2, ..., en}
- Time slots, Tj = {t1 <= t2 <= ... <= tT} (ordered)
- Ne1,e2 = number of common student between two exams

Problem

- each exam is scheduled exactly once during the examination period;

two conflicting exams are not scheduled in the same time-slot;

- the total penalty resulting from the created timetable is minimized

Problem

A penalty is assigned for each pair of conflicting exams scheduled up to a distance of 5 time-slots.

Given two exams e1,e2 scheduled at distance i of time-slots, with $1 \le i \le 5$, the relative penalty is $2(5-i) \cdot \frac{n_{e_1,e_2}}{|S|}$.

Definition of the Basic Model

Data

exams=[], list of exams

Time_slots, list of time slots from 1 to T (ordered)

- enrollment=dict(), dict where students are keys and the list of the exams they belong is the value

- Conflicting exams={} dict where for each pair of conflicting exams we store the number of conflicts (n(e1,e2))

 $x_{t,e} \in \{0,1\}$, binary variable declaring if exam e is scheduled in time slot t

$$x = \begin{cases} 1, & \text{if exam e is scheduled in t} \\ 0, & \text{otherwise} \end{cases}$$

1. Each exam is scheduled exactly once during the examination period.

$$\sum_{j=1}^{T} x_{t_j,e} = 1, \forall e \in E$$

2. Two conflicting exams are not scheduled in the same time-slot

$$x_{t,e_1} + x_{t,e_2} \leq 1, \forall t \in T_j, \forall (e_1, e_2) \in \text{conflicting_exams}$$

- 1. $a[distance, time_slot, exam_1, exam_2] \in \{0, 1\}$, binary variable for scheduling $exam_1$ before $exam_2$
- 2. $b[distance, time_slot, exam_1, exam_2] \in \{0, 1\}$, binary variable for scheduling $exam_2$ before $exam_1$

- 1. $a[i, t, exam_1, exam_2] >= x[t, exam_1] + x[t+i, exam_2] 1$ exam 2 is scheduled after exam 1
- 2. $b[i, t, exam_1, exam_2] >= x[t+i, exam_1] + x[t, exam_2] 1$ exam 1 is scheduled after exam 2

$$p[i,t,exam_1,exam_2]=sum(a[i,t,e1,e2]+b[i,t,e1,e2])$$
 for t in range(1, $len(time_slots)$ - i + 1 exam 2 is scheduled after exam 1

Finally, the objective function:

$$\min \sum_{e_1, e_2 \in \text{conflicting_exams}} p_{e_1, e_2}$$

Results

Results

instance	penalty value
Test	3.375
instance 01	162.585
instance 02	53.359