Predicting IMDb User Rating

Kevin Du

Objective

- Predict the IMDb user rating for movies
- User rating and reviews affect ticket sales, and thus revenue
- Netflix competition: \$1 mil prize
 - Predict user ratings for movies and TV shows

Data scraping

Works with any number.

Too high might crash your browser.

Dataset

- Scraped 2,332 movies from IMDb.com
- Only movies with over 50,000 ratings to preserve integrity
 - Avoids vote manipulation for less popular movies
- Features: actors, directors, genres, year, MPAA certification, runtime
- Will not use number of votes or gross revenue
 - Unknown before release
 - More suitable as label than feature

Results

XGBoost R^2 score = 0.275

Predictions tend to be safe, near the mean

MPAA Certification

Runtime

Release Year

Feature Engineering

- Title contains '2', '3', or '4'?
- Title contains a colon?
- Title starts with 'The'?
- Length of movie title
- Number of directors
- Number of genres
- Various actors: Leo, Christian Bale, Matt Damon, Brad Pitt, Adam Sandler
- Various directors: Christopher Nolan, Quentin Tarantino, Clint Eastwood

Positive effect Insignificant Negative effect

(Assuming $\alpha = 0.05$)

Results Redux

XGBoost R^2 score = 0.306

Conclusion

- Best features were runtime and release year
- Animations and G movies tend to be rated higher
- Engineered features improved the model
- Certain actors and directors have an impact on ratings
- Other possible features:
 - Facebook likes or tweets for movie, actors, directors
 - Interaction effects between certain actors and directors.