Résolution numérique d'équations

I Capacité numérique :

déterminer, à l'aide d'un langage de programmation, l'état final d'un système, siège d'une transformation, modélisée par une réaction à partir des conditions initiales et valeur de la constante d'équilibre.

II Fonction fsolve

La fonction fsolve du module scipy permet d'obtenir des solutions numériques approchées d'équations ou de systèmes d'équations.

Elle prend pour cela pour argument :

- une expression func d'une variable x
- $\bullet\,$ une estimation initiale de \times (à choisir dans l'intervalle où on pense qu'une solution existe)

Dans l'exemple suivant, on recherche la solution de l'équation :

$$x^5 = 10^{-2}\sqrt{2-x}$$

avec comme estimation initiale x = 0.2.

%matplotlib notebook

La ligne précédente ne doit apparaı̂tre que dans les notebooks Jupyter, pas dans un fichier python.

```
import numpy as np
from scipy.optimize import fsolve

def equation(x):
    return x**5 - le-2*np.sqrt(2-x)

root = fsolve(equation, .2)
print(f'La solution est : {root}')
```

On peut également lui faire résoudre un système d'équations en utilisant comme argument de equation un tableau (voir la documentation officielle).

III Questions du DM04

III.1 Exo 1, question 3a

```
L'équation à résoudre est ici : \frac{\tau^{5/2}}{(1-\tau)^3/2} = \frac{\sqrt{K_3}}{K_1 \alpha}
```

On calcule alors, en utilisant comme valeur initiale celle obtenue par l'approximation de la question 2.b.

```
c = 1e-2 # en mol.L
k1 = 10**(8.3)
K3 = 10**(15.2)

def equation3(x):
    return x**5 - np.sqrt(K3)/(c*K1)*(1-x)**(3/2)

root = fsolve(equation3,.87)
print(f'Pour c = {c}, la solution est du 3a est: tau={root}')
```

III.2 Exo 1, question 3b

Il suffit de changer la valeur de la concentration c

```
c = 1e-1 # en mol.L
root = fsolve(equation3,.87)
print(f'Pour c = {c}, la solution est du 3a est: tau={root}')
```