CSC236 Worksheet 3

Hyungmo Gu

May 4, 2020

Question 1

• Given the statement to prove

P(x,y,z): There are no positive integers x,y,z such that $x^3+3y^3=9z^3$

Proof. We will prove P(x, y, z) using proof by contradiction.

Assume $\exists x, y, z \in \mathbb{N}^+, x^3 + 3y^3 = 9z^3$.

First, we need to show there is smallest element $x_0 \in X$ with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$, using well-ordering principle.

The header tells us there are elements $x, y, z \in \mathbb{N}^+$, satisfying $x^3 + 3y^3 = 9z^3$.

Then, we can write the set $X = \{x \mid x \in \mathbb{N}^+, \exists y, z \in \mathbb{N}^+, x^3 + 3y^3 = 9z^3\}$ is not empty.

Then, using principle of well-ordering, we can write that there is smallest positive natural number $x_0 \in X$ along with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$.

Rough Work:

Predicate Logic: $\forall A \subseteq \mathbb{N}, \ A \neq \emptyset \Rightarrow (\exists a \in A, \ \forall x \in A, \ a \leq x)$

Given the statement to prove

P(x,y,z): There are no positive integers x,y,z such that $x^3+3y^3=9z^3$

We will prove P(x, y, z) using proof by contradiction.

1

Assume $\exists x, y, z \in \mathbb{N}^+, x^3 + 3y^3 = 9z^3$.

1. State that there is smallest element $x_0 \in X$ with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$, using well-ordering principle

First, we need to show there is smallest element $x_0 \in X$ with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$, using well-ordering principle.

First, we need to show there is smallest element $x_0 \in X$ with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$, using well-ordering principle.

The header tells us there are elements $x, y, z \in \mathbb{N}^+$, satisfying $x^3 + 3y^3 = 9z^3$.

Then, we can write the set $X = \{x \mid x \in \mathbb{N}^+, \exists y, z \in \mathbb{N}^+, x^3 + 3y^3 = 9z^3\}$ is not empty.

Then, using principle of well-ordering, we can write that there is smallest positive natural number $x_0 \in X$ along with $y_0, z_0 \in \mathbb{N}^+$ satisfying $x^3 + 3y^3 = 9z^3$.

2. Show that $x_1^3 = 9z_1^3 - 3y_1^3$ is satisfied, given $x_0 > x_1$

Second, we need to show $x_1^3 = 9z_1^3 - 3y_1^3$ is satisfied, given $x_0 > x_1$.

We will do so in parts.

• First, show that $x_0 = 3 \cdot x_1$, using $x_0^3 + 3y_0^3 = 9z_0^3$ and the fact if a prime number p divides a perfect cube n^3 , then p also divides n.

Part 1 (Showing $x_0 = 3 \cdot x_1$):

We know that

$$x_0^3 + 3y_0^3 = 9z_0^3$$

$$x_0^3 = 9z_0^3 - 3y_0^3$$
(1)

$$x_0^3 = 9z_0^3 - 3y_0^3 \tag{2}$$

Since $3 \mid 9z_0^3 - 3y_0^3$, we can write $3 \mid x_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $x_1 \in \mathbb{Z}$, $x_0 = 3 \cdot x_1$.

Then, because we know $x_0, 3 \in \mathbb{N}^+$, we can conclude $x_1 \in \mathbb{N}^+$.

• Second, show that $y_0 = 3 \cdot y_1$, using $x_0^3 = 3^3 x_1^3 = 9z_0^3 - 3y_0^3$

Part 2 (Showing $y_0 = 3 \cdot y_1$):

We know that

$$x_0^3 + 3y_0^3 = 9z_0^3$$

$$3y_0^3 = 9z_0^3 - x_0^3$$
(3)

$$3y_0^3 = 9z_0^3 - x_0^3 \tag{4}$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, we can calculate

$$3y_0^3 = 9z_0^3 - 3^3x_1^3$$

$$y_0^3 = 3z_0^3 - 3^2x_1^3$$
(5)
(6)

$$y_0^3 = 3z_0^3 - 3^2x_1^3 \tag{6}$$

Since $3 \mid 3z_0^3 - 3^2x_1^3$, we can write that $3 \mid y_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $y_1 \in \mathbb{Z}$, $y_0 = 3 \cdot y_1$.

Then, because we know $y_0, 3 \in \mathbb{N}^+$, we can conclude $y_1 \in \mathbb{N}^+$.

• Third, show that $z_0 = 3 \cdot z_1$, using $x_0^3 = 3^3 x_1^3 = 9z_0^3 - 3y_0^3 = 9z_0^3 - 3^4 y_1^3$

Part 3 (Showing $z_0 = 3 \cdot z_1$):

We know that

$$9z_0^3 = x_0^3 + 3y_0^3 \tag{7}$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, and $y_0 = 3 \cdot y_1$ from part 2, we can calculate

$$9z_0^3 = 3^3x_1^3 + 3^4y_1^3 \tag{8}$$

$$z_0^3 = 3x_1^3 + 3^2y_1^3 \tag{9}$$

Since $3 \mid 3x_1^3 + 3^2y_1^3$, we can write that $3 \mid z_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $z_1 \in \mathbb{Z}$, $z_0 = 3 \cdot z_1$.

Then, because we know $z_0, 3 \in \mathbb{N}^+$, we can conclude $z_1 \in \mathbb{N}^+$.

• Finally, show $x_1^3 = 9z_1^3 - 3y_1^3$

Part 4 (Showing $x_1^3 = 9z_1^3 - 3y_1^3$):

We know that

$$9z_0^3 = x_0^3 + 3y_0^3 (10)$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, $y_0 = 3 \cdot y_1$ from part 2, and $z_0 = 3 \cdot z_1$ we can calculate

$$3^5 z_1^3 = 3^3 x_1^3 + 3^4 y_1^3 (11)$$

$$3^{5}z_{1}^{3} = 3^{3}x_{1}^{3} + 3^{4}y_{1}^{3}$$

$$3^{2}z_{1}^{3} = x_{1}^{3} + 3y_{1}^{3}$$
(11)
(12)

Second, we need to show that $x_1^3 = 9z_1^3 - 3y_1^3$ is satisfied, given $x_0 > x_1$.

We will do so in parts.

Part 1 (Showing $x_0 = 3 \cdot x_1$):

We know that

$$x_0^3 + 3y_0^3 = 9z_0^3$$

$$x_0^3 = 9z_0^3 - 3y_0^3$$
(13)

$$x_0^3 = 9z_0^3 - 3y_0^3 \tag{14}$$

Since $3 | 9z_0^3 - 3y_0^3$, we can write $3 | x_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $x_1 \in \mathbb{Z}$, $x_0 = 3 \cdot x_1$.

Then, because we know $x_0, 3 \in \mathbb{N}^+$, we can conclude $x_1 \in \mathbb{N}^+$.

Part 3 (Showing $z_0 = 3 \cdot z_1$):

We know that

$$9z_0^3 = x_0^3 + 3y_0^3 \tag{15}$$

Then, using the fact $x_0 = 3 \cdot x_1$ from part 1, and $y_0 = 3 \cdot y_1$ from part 2, we can calculate

$$9z_0^3 = 3^3x_1^3 + 3^4y_1^3$$

$$z_0^3 = 3x_1^3 + 3^2y_1^3$$
(16)

$$z_0^3 = 3x_1^3 + 3^2y_1^3 (17)$$

Since $3 \mid 3x_1^3 + 3^2y_1^3$, we can write that $3 \mid z_0^3$.

Then, since 3 is a prime number, by using the hint provided in question 3 of assignment 1, we can write there is $z_1 \in \mathbb{Z}$, $z_0 = 3 \cdot z_1$.

Then, because we know $z_0, 3 \in \mathbb{N}^+$, we can conclude $z_1 \in \mathbb{N}^+$.

Part 3 (Showing $z_0 = 3 \cdot z_1$): 6

We know that

3. Conclude that this contracts the original claim that x_0 is the smallest non-negative value satisfying $x^3 + 3y^3 = 9z^3$.

Finally, the part 4 tells us

$$9z_1^3 = x_1^3 + 3y_1^3 (25)$$

where $x_1 < x_0$.

Then, because we know x_0 is the smallest number satisfying $x^3 + 3y^3 = 9z^3$, we can conclude above leads to contradiction.

Then, we can conclude the the assumption is false.

Notes:

- Proof By Contradiction: $\neg P \Rightarrow \neg Q \land Q$ (Assuming we are proving $P \Rightarrow Q$)
- Principle of Well-Ordering: Any nonempty subset A of \mathbb{N} contains a minimum element; i.e. for any $A \subseteq \mathbb{N}$ such that $A \neq \emptyset$, there is some $a \in A$ such that for all $a' \in A$, $a \leq a'$.
- examples of well-ordered sets
 - 1. $\mathbb{N} \cup \{0\}$
 - $2. \ \mathbb{N} \cup \{1, 2\}$
 - $3. \{n \in \mathbb{N} : n > 5\}$
- $\bullet\,$ examples of non-well-ordered sets
 - 1. \mathbb{R} and the open interval (0,2)
 - $2. \mathbb{Z}$

Question 2

Question 3