Homework 1

A.P. Braga

March 17, 2017

PERCEPTRON SIMPLES

O aluno deverá amostrar duas distribuições normais no espaço R^2 , ou seja, duas distribuições com duas variáveis cada (Ex: x_1 e x_2). As distribuição são caracterizadas como $\mathcal{N}(2,2,\sigma^2)$ e $\mathcal{N}(4,4,\sigma^2)$, como pode ser visualizado na Fig. 1.

Figure 1: Dados amostrados de duas distribuições Normais com médias $m1=(2;2)^T$ e $m2=(4;4)^T$ e coeficiente de correlação nulo

Para as distribuições amostrais acima, considere um separador com equação $x_2 = -x_1 + 6$, ou seja, $w_1 = 1$, $w_2 = 1$ e $\theta = -6$ ($w_1 \cdot x_1 + w_2 \cdot x_2 + \theta = 0$); conforme Fig. 2. Utilizando-se o vetor de pesos igual aos parâmetros da reta ($w_1 = 1$, $w_2 = 1$ e $\theta = -6$), mostre que a resposta da saída do perceptron para o espaço R^2 coincide com a equação da reta descrita, como mostra as Fig. 3.

Figure 2: Dados amostrados com reta de separação $x_2 = -x_1 + 6\,$

Figure 3: Contorno de separação e superfície 3D de separação

Dicas:

- 1. Para gerar a superfície em 3D será preciso utilizar a biblioteca library('plot3D') para a função persp3D. Para imprimir a superfície de contorno use a função contour.
- 2. Você deve criar uma "malha" estilho meshgrid no espaço R^2 (espaço R^2 significa um espaço de duas variáveis que podem assumir valores reais) para então utilizar a função perceptron percorrendo todo o espaço da malha.