

Aufgaben zu Riemannschen Flächen

3. Blatt - Übung am Montag, 31.10.2016

Aufgabe 13: Betrachte $Y:=\mathbb{C}\setminus\{\pm 1\}$ und $X:=\mathbb{C}\setminus(\frac{\pi}{2}+\mathbb{Z}\pi)$, sowie

$$\pi: X \to Y$$
, $z \mapsto \sin(z)$.

Zeige, dass π eine Überlagerung ist. Betrachte dann die Kurven $\alpha, \beta: I \to Y$, mit $\alpha(t) = 1 - e^{2\pi i t}$ und $\beta(t) = -1 + e^{2\pi i t}$.

Bestimme die Endpunkte der Liftungen von $\alpha \cdot \beta$ und $\beta \cdot \alpha$ jeweils zum Startpunkt 0 und folgere, dass $\pi_1(Y,0)$ nicht abelsch ist.

Aufgabe 14: Zeige: Ist $\pi: X \to Y$ eine Überlagerung zusammenhängender, lokal wegzusammenhängender Hausdorffräume, $x_0 \in X$ und $y_0 := \pi(x_0)$, so ist

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

injektiv.

Aufgabe 15: Bestimme die Verzweigungspunkte von

$$f:\mathbb{CP}^1\to\mathbb{CP}^1\;,\;z\mapsto\frac{1}{2}\big(z+\frac{1}{z}\big)\;.$$

Wer will, kann das Bild des Einheitskreises $S^1 \subset \mathbb{C}$ zeichnen und erklären, warum diese Transformation f im Flugzeugbau eine Rolle gespielt haben könnte.

Aufgabe 16: Sei $\pi:X\to Y$ eine holomorphe Überlagerung Riemannscher Flächen. Sei $\varphi:X\to X$ ein Homöomorphismus, so dass $\pi\circ\varphi=\pi$ (also eine sogenannte Decktransformation). Zeige, das φ dann automatisch schon biholomorph ist.