Applications of Derivatives 1

1. Each side of a square is increasing at a rate of 6 cm/s. At what rate is the area of the square increasing when the area of the square is 16 cm².

$$A = S^{2}$$
, $S = 4cm$, $\frac{dS}{dt} = 6cm/s$
 $A = 16cm^{2}$ $\frac{dA}{dt} = 2s \cdot \frac{dS}{dt} \Rightarrow \frac{dA}{dt} = 2(4)(6)$
 $\frac{dA}{dt} = 48 cm^{2}/s$

2. If a snowball melts so that its surface area decreases at a rate of 1 cm²/min, find the rate at which the diameter decreases when the diameter is 10 cm.

A =
$$4\pi r^2$$
, $r = 5 \text{ cm}$, $\frac{dA}{dt} = -\frac{1}{\text{cm}/\text{min}}$

$$\frac{dA}{dt} = 8\pi r \cdot \frac{dr}{dt} \Rightarrow -1 = 8\pi (5) \cdot \frac{dr}{dt}$$

$$\frac{dV}{dt} = -\frac{1}{40\pi} \text{ cm/min}$$
3. Find the critical numbers of the function $g(y) = \frac{y-1}{y^2-y+1}$.

3. Find the critical numbers of the function
$$g(y) = \frac{y}{y^2 - y + 1}$$
.

 $g'(y) = -\frac{y(y-2)}{(y^2 - y + 1)^2} = 0 \Rightarrow y = 0, 2$

Relative Minimum at $y = 0$

Interval Test Sign Canclusian Relative Maximum (-\omega, 0) \times = 1 \times Decreasing at $y = 2$

(0,2) \times = 1 \times Decreasing \text{ Increasing } \text{ at } $y = 2$

4. An object with weight W is dragged along a horizontal plane by a force acting along a

4. An object with weight W is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of force is

$$F = \frac{\mu W}{\mu \sin \theta + \cos \theta}$$

where μ is a positive constant called the coefficient of friction and where $0 \le \theta \le \pi/2$. Show that F is minimized when $\tan \theta = \mu$.

F'(
$$\Theta$$
) = $O(\mu \sin \Theta + \cos \Theta) - \mu W(\mu \cos \Theta - \sin \Theta) - \mu W(\sin \Theta - \mu \cos \Theta)$
 $(\mu \sin \Theta + \cos \Theta)^2 - (\mu \sin \Theta + \cos \Theta)^2$
 $F'(\Theta) = O \rightarrow \mu W(\sin \Theta - \mu \cos \Theta) - \cos \Theta - \cos \Theta = O$
 $(\mu \sin \Theta + \cos \Theta)^2 = O \rightarrow \sin \Theta - \mu \cos \Theta = O$
 $1 \rightarrow \sin \Theta = \mu \cos \Theta$

This is a critical # where F has max/min tan 0 = M

A = $\pi r \int_{r}^{2} + h^{2} \rightarrow A = \pi r (r + h^{2}) = S$ $27 = \frac{1}{3}\pi r^{2}h | S = \pi^{2} \left(\frac{81}{\pi h}\right) \left(\frac{81}{\pi h} + h^{2}\right) = \frac{81^{2}}{h^{2}} + 81\pi h$ $81 = \pi r^{2}h | S' = -2.81^{\circ}h + 81\pi = 0$ $81\pi = \frac{2.81^{2}}{h^{3}} \rightarrow h = 3\sqrt{\frac{162}{\pi}} \approx 3.72 \text{ cm}$ $r = \sqrt{\frac{81}{\pi^{3}}} \approx 2.63 \text{ cm}$

2 Integration

1. Find the general antiderivative of $f(x) = x^{3.4} - 2x^{\sqrt{2}-1}$

$$F(x) = \frac{1}{3.4+1} \times \frac{3.4+1}{2} \times \frac{1}{\sqrt{2}-1+1} \times \frac{\sqrt{2}-1+1}{\sqrt{2}} \times \frac{1}{\sqrt{2}-1+1} \times$$

2. Find the function f if $f'''(x) = \cos x$ and f(0) = 1, f'(0) = 2, f''(0) = 3.

$$f'''(x) = \cos x$$

 $f''(x) = \sin x + \alpha \rightarrow f''(x) = \sin x + 3$

$$f'(x) = -\cos x + \alpha x + b \rightarrow f'(x) = -\cos x + 3x + 3$$

$$\begin{cases}
(x) = -5 \text{ M} \times + \frac{3}{2} \text{ M} \times + \frac{3}{2} \times +$$

to be midpoints. What does the Riemann sum represent? Illustrate with a diagram.

$$M_{6} = \frac{1}{2} \left[\left(\frac{1}{4} \right)^{2} - 4 + \left(\frac{3}{4} \right)^{2} - 4 + \left(\frac{7}{4} \right)^{2} - 4 + \left(\frac{7}{4} \right)^{2} - 4 \right] + \left(\frac{9}{4} \right)^{2} - 4 + \left(\frac{11}{4} \right)^{2} - 4 \right]$$

$$M_6 = \frac{1}{2}(-3.9375 - 3.4375 - 2.4375 - 0.9375 + 1.00625 + 3.5625)$$
4. Use part 1 of the Fundamental Theorem of Calculus to find the derivative of the function

$$g(x) = \int_1^x \ln(1+t^2)dt$$

5. Evaluate the integral
$$\int_{-1}^{2} (3u-2)(u+1)du$$

$$\int_{-1}^{2} (3u-2)(u+1) du = \int_{-1}^{2} (3u^{2}+u-2) du$$

$$= u^{3} + \frac{1}{2}u^{2} - 2u \Big|_{-1}^{2}$$

$$= [4.5]$$

6. Find the area of a shaded region that is bounded by the y-axis, the line
$$y = 1$$
, and the curve $y = \sqrt[4]{x}$. Find the area by writing x as a function of y and integrating with respect to y.

7. Evaluate the indefinite integral.

$$\int \frac{dt}{\cos^2 t \sqrt{1 - \tan t}}$$

$$\int \frac{dt}{\cos^2 t \sqrt{1 - \tan t}} = \int \frac{\sec^2 t \, dt}{\sqrt{1 - \tan t}} = -\int \frac{-\sec^2 t \, dt}{\sqrt{1 - \tan t}}$$
Let $u = 1 - \tan t$, $du = -\sec^2 t \, dt$

$$\Rightarrow = -\int \frac{du}{\sqrt{1 - \tan t}} = -\int \frac{-\sqrt{2}}{\sqrt{1 - \tan t}} = -\int \frac{du}{\sqrt{1 - \tan t$$