Nome:	Turma:

Valor: 7 • Nota: _____

Indução Eletromagnética

- 1. (1 Ponto) Um avião inteiramente metálico, com L=25m de largura, voa horizontalmente com velocidade v=540 km/h em uma região onde a componente vertical do vetor indução magnética terrestre vale $B_v=4\cdot 10^{-5}$ T. Calcule a ddp existente entre as extremidades das asas.
- 2. (3 Pontos) Um condutor de cobre AB, cuja resistividade vale $\rho_{Cu} = 1.6 \,\mu\Omega \cdot \text{cm}$, reto, horizontal, com seção transversal de área $A = 0.5 \text{ cm}^2$, pode mover-se, sem atrito, apoiado sobre dois condutores C_1 e C_2 , também horizontais e paralelos. Esses condutores têm resistência elétrica desprezível e estão ligados por um amperímetro ideal. O condutor AB está imerso entre as faces de um ímã em forma de ferradura, de largura L = 20 cm e cujo campo de indução magnética tem intensidade $B = 10^{-5}$ T. Enquanto está entre as faces do ímã, o condutor AB tem velocidade v = 32 m/s. Considere o trecho do condutor AB, entre C_1 e C_2 , de comprimento igual a L. Determine:
 - (a) a intensidade da corrente elétrica indicada pelo amperímetro e seu sentido convencional;
 - (b) o peso P do corpo ligado por um fio e roldanas ideais ao condutor AB que mantém a velocidade v constante.
- 3. (3 Pontos) Duas barras metálicas fixas, separadas pela distância L, determinam um plano, o qual forma ângulo θ com a horizontal. Na região existe um campo de indução magnética uniforme, normal ao plano e sentido conforme indica a figura. Outra barra metálica, de massa m, pode deslocar-se sobre as fixas, sem atrito. A resistência elétrica das barras é desprezível, sendo as fixas ligadas entre si por um condutor de resistência R. A aceleração da gravidade local vale g. Abandonandose a barra móvel, determine a velocidade limite que ela atinge.

4. Aproxima-se um ímã de uma espira circular PQR, perpendicularmente ao plano da espira. Determine o sentido da corrente induzida na espira, enquanto o ímã se aproxima. (Desenhe o sistema para ilustrar sua resposta)