SANMOTION

2-PHASE STEPPING SYSTEMS

F2

Ver.8

DC Input Set Models

DC Input Drivers

Stepping Motors

Stepping Motors, IP65 Splash and Dust Proof Stepping Motors, Stepping Motors for Vacuum Environments, Synchronous Motors

Contents
Application Examples · · · · · · p. 4 Lineup · · · · · · p. 5 Lineup Details · · · · · · · p. 6
Set Models
Features
Stepping Motors
Lineup

SANMOTION 2-PHASE STEPPING SYSTEMS

The SANMOTION F2 is a 2-phase stepping system that provides precise positioning with easy control. The typical basic step angle is 1.8°, and accurate control is provided by pulse signals.

· What is a stepping motor?

A stepping motor is a motor that rotates at a fixed angle for each pulse. The rotation speed is proportional to the speed of the command pulse (frequency). Also, the rotation angle can be controlled according to the number of command pulses. Stepping motors are able to make stable stops without vibrating, as they have holding power when the motor is stopped.

· Bipolar and unipolar drive

The bipolar drive allows current to flow across both directions of the winding. The drive circuit is more complex, but it offers high torque.

The unipolar drive allows current to flow across a single direction of the winding. The drive circuit is simpler than that of the bipolar drive.

Application Examples

The SANMOTION F2 can be used in a wide variety of applications, including fixed-speed drive synchronized to a command pulse, accurate positioning, and stable stopping.

• Semiconductor devices, analytical and testing devices used in medical and environmental fields, ATMs, monitoring cameras and spotlights, packaging machines, embroidering machines, automatic ticket gates and more

All model numbers in this catalog are compliant with the tolerances for specified toxic substances (cadmium, lead, mercury, hexavalent chromium, PBB, and PBDE) found in supplement II of the EU RoHS directive (2011/65/EU), as of the October 2012 production lot. SANMOTION F2 drivers also feature standard specifications that are compliant with CE (European Norm) and UL standards.

Lineup

Set Models ▶p. 9–

DC input

Unipolar

These set models consist of a DC-powered driver and motor.

The input voltage range is from 24 to 36 VDC, and the motor winding is unipolar.

28 mm sq./42 mm sq./56 mm sq.

Bipolar

These set models consist of a DC-powered driver and motor.

The input voltage range is from 24 to 36 VDC, and the motor winding is bipolar.

Motor size:

28 mm sq./42 mm sq./50 mm sq./56 mm sq./60 mm sq.

Stepping Motors **▶**p. 33-

Stepping Motors >p. 38-

High-torque stepping motors. Select from among a broad lineup of products from an ultra-compact 14 mm sq. motor size, to a thin 11.4 mm motor the shortest motor length.

Consult with us regarding customization. p. 36 A separate driver is required.

Motor size:

14 mm sq./28 mm sq./35 mm sq./42 mm sq./ 50 mm sq./56 mm sq./60 mm sq./ 86 mm sq. (CE and UL models are available.)/

IP65 Splash and Dust Proof Stepping Motors Waterproof, dustproof ▶p. 74-

These IP65 rated motors* have superior water and dust resistance, and can be safely utilized in harsh or wet environments such as in food processing machines.

The input voltage range of the motors is up to 250 VAC.

*Except for the shaft and the cable end. A separate driver is required.

Motor size: 56 mm sq./86 mm sq.

Stepping Motors for Vacuum Environments Customized Products p. 79

We can customize motors for use in low to ultra-high vacuum environments to suit your system requirements.

A separate driver is required.

constant speed in proportion to the AC power frequency. They operate on the commercial (AC) power supply.

Lineup Details

Set Models ▶p. 9-

Series		DC input set models Unipolar	DC input set models Bipolar
Input source		24 to 36 VDC	24 to 36 VDC
Number	of divisions	1, 2, 4, 8, 16	1, 2, 4, 8, 16
Step-	Motors with 1.8° basic step angle	1.8° to 0.1125°/pulse	1.8° to 0.1125°/pulse
angle	Motors with 0.9° basic step angle	0.9° to 0.05625°/pulse	0.9° to 0.05625°/pulse
Correspo	onding motor sizes	28 mm sq./42 mm sq./56 mm sq.	28 mm sq./42 mm sq./50 mm sq./ 56 mm sq./60 mm sq.
Set conf	iguration items	Driver, Motor, Cable with connector (Supplied only with connector-type motors)	Driver, Motor, Cable with connector (Supplied only with connector-type motors)
	System Configuration Diagram	p. 12	p. 12
	Set Model Configuration	p. 14	p. 14
Page	Specifications/ Characteristics Diagram	pp. 15 to 17	pp. 18 to 22
	Dimensions	pp. 23 to 24, 27	pp. 23 to 24, 27
	Motor Specifications	p. 25	p. 25
	Driver Specifications/ Safety Standards	p. 28	p. 28

Stepping Motors > p. 33-

Stepping Motors ▶p. 38-

Dania atam		Halding taxaya		Pa	ge
Basic step angle	Motor size	Holding torque (N·m)	Model no.	Specifications/ Characteristics diagram	Dimensions
0.9°	42 mm sq.	0.2 to 0.48	SH142 □ - □□□ 1	pp. 42 to 43	pp. 42 to 43
0.9°	60 mm sq.	0.57 to 2.15	SH160 □ - □□□ 0	pp. 56 to 57	pp. 56 to 57
1.8°	14 mm sq. Ultra-compact	0.0065 to 0.01	SH214 □ -5 □□ 1	p. 38	p. 38
1.8°	28 mm sq.	0.055 to 0.145	SH228 □ -5 □□ 1	pp. 39 to 40	pp. 39 to 40
1.8°	35 mm sq.	0.12 to 0.23	SH35 □□ -12U □ 0	p. 41	p. 41
1.8°	42 mm sq. Slim form	0.083 to 0.186	SS242 □ -50 □ 1	p. 44	p. 44
1.8°	42 mm sq.	0.22 to 0.8	SF242 🗆 - 🔲 🖂 🗎 1	pp. 45 to 46	pp. 45, 47
1.8°	50 mm sq.	0.28 to 0.53	103H670 □ - □□□ 0	pp. 48 to 50	pp. 49 to 50
1.8°	50 mm sq. Slim form	0.1 to 0.215	SS250 □ -80 □ 0	p. 51	p. 51
1.8°	56 mm sq.	0.39 to 2.0	103H712 □ - □□□ 0	pp. 52 to 55	pp. 53, 55
1.8°	60 mm sq.	0.78 to 2.7	103H782 □ - □□□ 0	pp. 58 to 61	pp. 59, 61
1.8°	86 mm sq. (CE and UL models are available.)	2.5 to 9	SH286	pp. 62, 64 to 65	pp. 63, 66
1.8°	₫106 mm	10.8 to 19	103H8922 □ - □□□ 1	p. 67	p. 67
1.8°	56 mm sq. (CE Model)	0.39 to 1.27	103H712 □ -6 □□ 0	p. 68	p. 68
1.8°	ø86 mm (CE Model)	2.74 to 7.44	103H822 □ -6 □□ 0	p. 69	p. 69
1.8°	ø106 mm (CE Model)	13.2 to 19	103H8922 □ -63 □ 1	p. 70	p. 70

[·] Contact us for available encoders, gears and motors with brakes.

IP65 Splash and Dust Proof Stepping Motors Waterproof, dustproof ▶p.

	Motor size	Holding torque (N·m)	Safety standards		Page		
Basic step angle				Model no.	Specifications/ Characteristics diagram	Dimensions	
1.8°	56 mm sq.	1 to 1.7	CE/UL Model	SP256 □ -5 □□ 0	p. 75	p. 76	
1.8°	86 mm sq.	3.3 to 9	CE/UL Model	SP286 □ -5 □□ 0	pp. 77 to 78	p. 78	

Stepping Motors for Vacuum Environments Customized Products > p. 79

We can customize motors for use in low to ultra-high vacuum environments to suit your system requirements.

The motors can handle a wide range of vacuum conditions, including low vacuum, high vacuum, and ultra-high vacuum.

Synchronous Motors Customized Products ▶p. 79

Synchronous motors rotate at a constant speed in proportion to the AC power frequency. The motor can be directly driven using the AC power supply, so a driver is unnecessary.

Set Models

DC Input Set Models

▶p. 12

Features

Low vibration

SANMOTION F2 stepping drivers can smoothly operate stepping motors even at low resolution settings such as 1-division (full step) and 2-division (half step) thanks to its low-vibration mode. Vibrations can be suppressed regardless of the host controller.

Micro-step drive

A resolution setting up to 16 divisions of the basic step angle 1.8° can be used, enabling smooth equipment operation with low vibration.

How to Read the Specifications

I Dinology DC input driver (Model no. HS1D200B10) - Meter

	Unipolar DC input driver (Model no.: US1D200P10) + Motor										
9	Size	Motor size		28 mm sq./Bas	ic step angle 1.8°	42 mm sq./Basic step angle 1.8°					
•	3126	Motor length		32 mm	51.5 mm	33 mm	39 mm				
3	Single	Single Set model no.		DU14S281S	DU14S285S	DU15S421S	DU15S422S				
9	shaft	Configuration item: motor model no.		SH2281-5271	SH2285-5271	SF2421-12U41	SF2422-12U41				
	Dual Set model no.			DU14S281D	DU14S285D	DU15S421D	DU15S422D				
	shaft	Configuration item: r	motor model no.	SH2281-5231	SH2285-5231	SF2421-12U11	SF2422-12U11				
4	Holding	torque	N⋅m	0.055	0.115	0.22	0.33				
6	Rotor in	ertia	×10 ⁻⁴ kg⋅m²	0.01	0.022	0.031	0.046				
6	6 Rated current		A/phase	1	1	1.2	1.2				
7	7 Motor mass *1		kg	0.11	0.2	0.23	0.3				
8	Allowable thrust load N		N	3	3	10	10				
9	Allowable radial load *2 N		N	42	49	39	37				

🕕 📕 Characteristics diagram With rubber coupling Half step fs: Maximum self-start frequency when not loaded Full step • Source current (no load) Full step Half step Source current (load applied) 24 VDC 36 VDC DU14S281S DU14S281D € € 0.08 0.08 Pull-out torque 们 Ē 20.08 Pull-out torque Source current ≥.0.06 Torque enb_0.04 0.02 current 😰 0.02 100 Pulse rate (kpulse/s) Pulse rate (kpulse/s) Full step Full step 1000 2000 3000 5000 1000 2000 3000 5000 Half step Half step 100 1000 2000 3000 5000 Number of rotations (min⁻¹)

- 1 Model number of the driver included in the set.
- 2 Size and length of the stepping motor included in the set. When driving in full step mode, the basic step angle is the rotation angle with each pulse. When driving in half step mode, the motor rotates at half of the basic step angle.
- 3 The set model number and the model number of the stepping motor included in the set. The model number for the stepping motor shaft varies for single shaft and dual shaft.
- 4 This is the maximum torque that occurs when using 2-phase excitation at rated current, causing the shaft to rotate from the outside.
- 5 This is the moment of inertia of the rotor.
- 6 This is the rated current that flows to the motor winding.
- 7 This is the mass of the stepping motor.
- This is the allowable load when applying a load to the shaft in the axial direction. Do not exceed this value when using this product.
- This is the allowable load when applying a load to the shaft perpendicular to the axial direction. Do not exceed this value when using this product.
- (1) This graph shows the relationship between the pulse rate (frequency), speed, and torque. The driver source current is shown in addition to the torque. Full step is shown in red, and half step is shown in blue.
- 1 The pull-out torque is the maximum torque in which synchronized operation is possible for a certain command pulse. If a torque that exceeds this value is applied to the stepping motor, it will be unable to synchronize with the command pulse. Thus, when

selecting a motor, you should allow for a torque margin of 1.4 to 2 times, in order to avoid step-out.

This graph shows the current value for the power supply that supplies the driver.

The red and blue dashed lines show the source current value when there is no load (motor by itself).

The red and blue dotted lines show the source current value when the maximum torque is applied to the stepping motor (during load).

The required power supply capacity (W) is calculated from this graph.

(Recomplete the start frequency of the stepping motor by itself (no load). Full stepping motor by itself (no load). Full stepping motor by itself (no load). Full stepping motor will not operate normally if it is started using frequencies that exceed these values. For this reason, it is necessary to start the stepping motor using frequencies that are lower than these values. The maximum self-start frequency (fL) which includes the load can be determined using the relational expression below.

$$f_L = \frac{fs}{\sqrt{1 + \frac{J_L}{J_M}}}$$

Jм: Rotor inertia

J∟: Load inertia

fs: Maximum self-start frequency when not loaded

DC Input Set Models

Unipolar, Bipolar

Set Model Configuration ▶ p. 14

Specifications/Characteristics Diagram ▶ pp. 15 to 22

Motor Dimensions ▶ pp. 23 to 24 Motor Specifications ▶ p. 25

Driver Dimensions ▶ p. 27 Driver Specifications ▶ p. 28

Set configuration items RoHS -

Driver Terminal block type

C € c**511**°us @

Unipolar Model no.: US1D200P10 Input source: 24/36 VDC Bipolar Model no.: BS1D200P10 Input source: 24/36 VDC

- ·The operation manual can be downloaded from our website.
- · Drivers are available for separate purchase.

Connector-type drivers are also available. Contact us for details.

Motor

Unipolar Motor size: 28 mm sq., 42 mm sq., 56 mm sq.

Bipolar Motor size: 28 mm sq., 42 mm sq., 50 mm sq.,

56 mm sq., 60 mm sq.

Cable with connector

Supplied only with connector-type motors

System Configuration Diagram

Set Model Numbering Convention

Not every combination of the following codes or characters is available. Check the set model component details on the p. 14 for the model number combinations, or contact us.

Example: This is a set model number for the DC input driver (Model no. US1D200P10) and motor (Model no. 103H7121-0440). The motor specifications are motor size: 56 mm sq., motor length: 41.8 mm, single shaft.

Set Model Configuration This set includes the driver, motor and cable with motor connector.

Unipolar Bundled driver model no.: US1D200P10

	Single shaft			Dual shaft				. n	D-4I	Domo		
Motor	Set model no.	Set configuration	Set configuration items			Set configuration	Set configuration items		Basic step	current	Page	
size		Motor model no.		Cable with motor connector model no.	Set model no.	Motor model no.	Cable with motor connector model no.			(A/phase)	Specifica- tions	Dimen- sions
28 mm	DU14S281S	SH2281-5271	L	-	DU14S281D	SH2281-5231	L	-	1.8°	1	p. 15	p. 23
sq.	DU14S285S	SH2285-5271	L	-	DU14S285D	SH2285-5231	L	-	1.8°	1	p. 15	p. 23
	DU15S421S	SF2421-12U41	С	4835774-1	DU15S421D	SF2421-12U11	С	4835774-1	1.8°	1.2	p. 15	p. 23
	DU15S422S	SF2422-12U41	C	4835774-1	DU15S422D	SF2422-12U11	С	4835774-1	1.8°	1.2	p. 15	p. 23
40	DU15S423S	SF2423-12U41	C	4835774-1	DU15S423D	SF2423-12U11	С	4835774-1	1.8°	1.2	p. 16	p. 23
42 mm sq.	DU15S424S	SF2424-12U41	C	4835774-1	DU15S424D	SF2424-12U11	C	4835774-1	1.8°	1.2	p. 16	p. 23
3q .	DU15S141S	SH1421-0441	L	-	DU15S141D	SH1421-0411	L	-	0.9°	1.2	p. 16	p. 23
	DU15S142S	SH1422-0441	L	-	DU15S142D	SH1422-0411	L	-	0.9°	1.2	p. 16	p. 23
	DU15S144S	SH1424-0441	L	_	DU15S144D	SH1424-0411	L	-	0.9°	1.2	p. 17	p. 23
FC	DU16H711S	103H7121-0440	L	_	DU16H711D	103H7121-0410	L	-	1.8°	2	p. 17	p. 24
56 mm	DU16H713S	103H7123-0440	L	-	DU16H713D	103H7123-0410	L	-	1.8°	2	p. 17	p. 24
sq.	DU16H716S	103H7126-0440	L	-	DU16H716D	103H7126-0410	L	_	1.8°	2	p. 17	p. 24

Motors marked with an ① are lead wire types. Either a 300 mm or a 305 mm or greater lead wire is attached to the motor. Motors marked with a ② are connector types. Cables with connectors for motors as shown below are included.

● Cable with motor connector (Supplied only with connector-type motors) Bundled cable (Unipolar 42 mm sq. motors only, model no.: 4835774-1)

Bipolar Bundled driver model no.: BS1D200P10

	Single shaft				Dual shaft				- Dania	Datad	Page	
Motor	Set model	Set configuration	ite	ems	Set model Set configuration		ite	ems	Basic step	current	гауе	
size	no.	Motor model no.		Cable with motor connector model no.	no.	Motor model no.		Cable with motor connector model no.		(A/phase)	Specifica- tions	Dimen- sions
28 mm	DB14S281S	SH2281-5771	L	_	DB14S281D	SH2281-5731	L	-	1.8°	1	p. 18	p. 23
sq.	DB14S285S	SH2285-5771	L	-	DB14S285D	SH2285-5731	L	_	1.8°	1	p. 18	p. 23
	DB14S421S	SF2421-10B41	C	4835775-1	DB14S421D	SF2421-10B11	С	4835775-1	1.8°	1	p. 18	p. 23
	DB14S422S	SF2422-10B41	C	4835775-1	DB14S422D	SF2422-10B11	С	4835775-1	1.8°	1	p. 18	p. 23
42 mm sq.	DB14S423S	SF2423-10B41	C	4835775-1	DB14S423D	SF2423-10B11	С	4835775-1	1.8°	1	p. 19	p. 23
	DB14S424S	SF2424-10B41	С	4835775-1	DB14S424D	SF2424-10B11	С	4835775-1	1.8°	1	p. 19	p. 23
	DB16S141S	SH1421-5241	L	_	DB16S141D	SH1421-5211	L	-	0.9°	2	p. 19	p. 23
	DB16S142S	SH1422-5241	L	_	DB16S142D	SH1422-5211	L	-	0.9°	2	p. 19	p. 23
	DB16S144S	SH1424-5241	L	_	DB16S144D	SH1424-5211	L	_	0.9°	2	p. 20	p. 23
50 mm	DB16H671S	103H6701-5040	L	-	DB16H671D	103H6701-5010	L	_	1.8°	2	p. 20	p. 24
sq.	DB16H673S	103H6703-5040	L	_	DB16H673D	103H6703-5010	L	_	1.8°	2	p. 20	p. 24
- 0	DB16H711S	103H7121-5740	L	_	DB16H711D	103H7121-5710	L	-	1.8°	2	p. 20	p. 24
56 mm sq.	DB16H713S	103H7123-5740	L	_	DB16H713D	103H7123-5710	L	_	1.8°	2	p. 21	p. 24
sq.	DB16H716S	103H7126-5740	L	_	DB16H716D	103H7126-5710	L	-	1.8°	2	p. 21	p. 24
	DB16H781S	103H7821-5740	С	4837961-1	DB16H781D	103H7821-5710	С	4837961-1	1.8°	2	p. 21	p. 24
	DB16H782S	103H7822-5740	С	4837961-1	DB16H782D	103H7822-5710	С	4837961-1	1.8°	2	p. 21	p. 24
60 mm	DB16H783S	103H7823-5740	С	4837961-1	DB16H783D	103H7823-5710	С	4837961-1	1.8°	2	p. 22	p. 24
sq.	DB16S161S	SH1601-5240	L	_	DB16S161D	SH1601-5210	L	_	0.9°	2	p. 22	p. 24
	DB16S162S	SH1602-5240	L	_	DB16S162D	SH1602-5210	L	_	0.9°	2	p. 22	p. 24
	_											

Motors marked with an ① are lead wire types. Either a 300 mm or a 305 mm or greater lead wire is attached to the motor. Motors marked with a ② are connector types. Cables with connectors for motors as shown below are included.

● Cable with motor connector (Supplied only with connector-type motors)

Bundled cable (Bipolar 42 mm sq. motors only, model no.: 4835775-1)

Bundled cable (Bipolar 60 mm sq. motors only, model no.: 4837961-1)

RoHS

Unipolar DC input driver (Model no.: US1D200P10) + Motor

Size	Motor size		28 mm sq./Bas	ic step angle 1.8°	42 mm sq./Basic step angle 1.8°		
3126	Motor length		32 mm	51.5 mm	33 mm	39 mm	
Single	Single Set model no.		DU14S281S	DU14S285S	DU15S421S	DU15S422S	
shaft	Configuration item: motor model no.		SH2281-5271	SH2285-5271	SF2421-12U41	SF2422-12U41	
Dual	Set model no.		DU14S281D	DU14S285D	DU15S421D	DU15S422D	
shaft	Configuration item: motor model no.		SH2281-5231	SH2285-5231	SF2421-12U11	SF2422-12U11	
Holding	torque	N⋅m	0.055	0.115	0.22	0.33	
Rotor in	ertia	×10 ⁻⁴ kg⋅m²	0.01	0.022	0.031	0.046	
Rated c	urrent	A/phase	1	1	1.2	1.2	
Motor mass *1 kg		kg	0.11	0.2	0.23	0.3	
Allowable thrust load		N	3	3	10	10	
Allowab	le radial load *2	N	42	49	39	37	
*4 D :	20 *2 The lead -	and the second second second second	to a contract of the				

^{*1} Driver mass > p. 28 *2 The load point is at the tip of the output shaft.

Characteristics diagram •

With rubber coupling

Pull-out torque Full step — Half step — fs : Maximum self-start frequency when not loaded Full step • Half step • Source current (no load) Full step --- Half step --- Source current (load applied) Full step ·-- Half step ·-- H

DU14S281S DU14S281D

DU14S285S DU14S285D

DU15S421S DU15S421D

DU15S422S DU15S422D

RoHS

Size	Motor size		42 mm sq./Bas	ic step angle 1.8°	42 mm sq./Basic step angle 0.9°		
3126	Motor length		48 mm	59.5 mm	33 mm	39 mm	
Single	Single Set model no.		DU15S423S	DU15S424S	DU15S141S	DU15S142S	
shaft	Configuration item: motor model no.		SF2423-12U41	SF2424-12U41	SH1421-0441	SH1422-0441	
Dual	Set model no.		DU15S423D	DU15S424D	DU15S141D	DU15S142D	
shaft	Configuration item: motor model no.		SF2423-12U11	SF2424-12U11	SH1421-0411	SH1422-0411	
Holding	torque	N⋅m	0.4	0.58	0.2	0.29	
Rotor in	ertia	×10 ⁻⁴ kg⋅m ²	0.063	0.094	0.044	0.066	
Rated co	urrent	A/phase	1.2	1.2	1.2	1.2	
Motor mass *1 kg		kg	0.38	0.51	0.24	0.29	
Allowable thrust load		N	10	10	10	10	
Allowab	le radial load *2	N	35	29	25	24	

^{*1} Driver mass ▶p. 28 *2 The load point is at the tip of the output shaft.

Characteristics diagram •

With rubber coupling

Pull-out torque Full step — Half step — fs : Maximum self-start frequency when not loaded Full step • Half step • Source current (no load) Full step --- Half step --- Source current (load applied) Full step ·-- Half step ·---

DU15S423S DU15S423D

DU15S424S DU15S424D

DU15S141S DU15S141D

DU15S142S DU15S142D

RoHS

Unipolar DC input driver (Model no.: US1D200P10) + Motor

Motor size 42 mm sq./Basic step angle 0.9° 56 mm sq./Basic step angle 1.8° Size 48 mm 53.8 mm Motor length 41.8 mm 75.8 mm DU15S144S **DU16H711S DU16H713S DU16H716S** Set model no. Single shaft SH1424-0441 103H7121-0440 103H7123-0440 103H7126-0440 Configuration item: motor model no. DU15S144D DU16H713D DU16H716D DU16H711D Set model no. Dual shaft Configuration item: motor model no. SH1424-0411 103H7121-0410 103H7123-0410 103H7126-0410 Holding torque $N{\cdot}m$ 0.39 0.39 0.83 1.27 ×10⁻⁴kg·m² 0.089 0.21 0.36 Rotor inertia 0.1 Rated current A/phase 1.2 2 2 Motor mass *1 0.47 0.38 0.65 0.98 Allowable thrust load 15 15 15 Ν 10 Allowable radial load *2 Ν 20 78 71 62

Half step

Full step ---

Half step

10

9

8

6 5 4 Source current (A)

Characteristics diagram •

With rubber coupling

Source current

Pull-out torque Full step

Source current (no load)

fs: Maximum self-start frequency when not loaded Full step • Half step •

DU16H711S DU16H711D

DU16H713S DU16H713D

DU16H716S DU16H716D

^{*1} Driver mass > p. 28 *2 The load point is at the tip of the output shaft

RoHS

Size	Motor size		28 mm sq./Bas	ic step angle1.8°	42 mm sq./Basic step angle 1.8°		
3126	Motor length		32 mm	51.5 mm	33 mm	39 mm	
Single	Single Set model no.		DB14S281S	DB14S285S	DB14S421S	DB14S422S	
shaft	Configuration item: motor model no.		SH2281-5771	SH2285-5771	SF2421-10B41	SF2422-10B41	
Dual	Set model no.		DB14S281D	DB14S285D	DB14S421D	DB14S422D	
shaft	Configuration item: motor model no.		SH2281-5731	SH2285-5731	SF2421-10B11	SF2422-10B11	
Holding	torque	N⋅m	0.07	0.145	0.29	0.43	
Rotor in	ertia	×10⁻⁴kg⋅m²	0.01	0.022	0.031	0.046	
Rated c	urrent	A/phase	1	1	1	1	
Motor mass *1 k		kg	0.11	0.2	0.23	0.3	
Allowable thrust load		N	3	3	10	10	
Allowab	le radial load *2	N	42	49	38	34	

^{*1} Driver mass ▶ p. 28 *2 The load point is at the tip of the output shaft.

Characteristics diagram

With rubber coupling

Pull-out torque Full step — Half step — fs : Maximum self-start frequency when not loaded Full step • Half step • Source current (no load) Full step --- Half step --- Source current (load applied) Full step ·-- Half step ·---

DB14S281S DB14S281D

DB14S285S DB14S285D

DB14S421S DB14S421D

DB14S422S DB14S422D

RoHS

Bipolar DC input driver (Model no.: BS1D200P10) + Motor

Size	Motor size		42 mm sq./Bas	ic step angle 1.8°	42 mm sq./Basic step angle 0.9°		
Size	Motor length		48 mm	59.5 mm	33 mm	39 mm	
Single	Set model no.		DB14S423S	DB14S424S	DB16S141S	DB16S142S	
shaft	Configuration item: motor model no.		SF2423-10B41	SF2424-10B41	SH1421-5241	SH1422-5241	
Dual	Set model no.		DB14S423D	DB14S424D	DB16S141D	DB16S142D	
shaft	Configuration item: motor model no.		SF2423-10B11	SF2424-10B11	SH1421-5211	SH1422-5211	
Holding	torque	N⋅m	0.56	0.8	0.23	0.34	
Rotor in	ertia	×10 ⁻⁴ kg⋅m²	0.063	0.094	0.044	0.066	
Rated co	urrent	A/phase	1	1	2	2	
Motor mass *1 kg		kg	0.38	0.51	0.24	0.29	
Allowable thrust load		N	10	10	10	10	
Allowab	le radial load *2	N	30	20	25	24	

^{*1} Driver mass ▶p. 28 *2 The load point is at the tip of the output shaft.

Characteristics diagram •

With rubber coupling

Pull-out torque Full step — Half step — fs : Maximum self-start frequency when not loaded Full step • Half step • Source current (no load) Full step --- Half step --- Source current (load applied) Full step ·--- Half step ·--- Half step ·---

DB14S423S DB14S423D

DB14S424S DB14S424D

DB16S141S DB16S141D

DB16S142S DB16S142D

RoHS

Size	Motor size		42 mm sq./Basic step angle 0.9°	50 mm sq./Basi	50 mm sq./Basic step angle 1.8°	
0120	Motor length		48 mm	39.8 mm	51.3 mm	41.8 mm
Single	Single Set model no.		DB16S144S	DB16H671S	DB16H673S	DB16H711S
shaft	Configuration item: r	notor model no.	SH1424-5241	103H6701-5040	103H6703-5040	103H7121-5740
Dual	Set model no.		DB16S144D	DB16H671D	DB16H673D	DB16H711D
shaft	Configuration item: motor model no.		SH1424-5211	103H6701-5010	103H6703-5010	103H7121-5710
Holding	torque	N⋅m	0.48	0.28	0.49	0.55
Rotor in	ertia	×10⁻⁴kg⋅m²	0.089	0.057	0.118	0.1
Rated c	urrent	A/phase	2	2	2	2
Motor n	Motor mass *1 kg		0.38	0.35	0.5	0.47
Allowable thrust load N		N	10	15	15	15
Allowab	le radial load *2	N	20	79	75	70

^{*1} Driver mass ▶ p. 28 *2 The load point is at the tip of the output shaft.

Characteristics diagram

With rubber coupling

Pull-out torque Full step — Half step — fs : Maximum self-start frequency when not loaded Full step • Half step • Source current (no load) Full step --- Half step --- Hal

DB16S144S DB16S144D

DB16H671S DB16H671D

DB16H673S DB16H673D

DB16H711S DB16H711D

Size	Motor size		56 mm sq./Basic step angle 1.8°		60 mm sq./Basic step angle 1.8°		
	Motor length		53.8 mm	75.8 mm	44.8 mm	53.8 mm	
Single	Set model no.		DB16H713S	DB16H716S	DB16H781S	DB16H782S	
shaft	Configuration item: motor model no.		103H7123-5740	103H7126-5740	103H7821-5740	103H7822-5740	
Dual	Set model no.		DB16H713D	DB16H716D	DB16H781D	DB16H782D	
shaft	Configuration item: motor model no.		103H7123-5710	103H7126-5710	103H7821-5710	103H7822-5710	
Holding torque N·m		N⋅m	1.0	1.6	0.88	1.37	
Rotor in	ertia	×10 ⁻⁴ kg⋅m²	0.21	0.36	0.275	0.4	
Rated c	urrent	A/phase	2	2	2	2	
Motor mass *1 kg		kg	0.65	0.98	0.6	0.77	
Allowable thrust load N		N	15	15	20	20	
Allowable radial load *2 N		N	56	33	109	101	
*1 Driver mass > p. 28 *2 The load point is at the tip of the output shaft.							

Characteristics diagram

With rubber coupling

Pull-out torque Full step Half step fs: Maximum self-start frequency when not loaded Full step • Half step • Full step ---Half step Source current (no load) Source current (load applied) Full step Half step

DB16H713S DB16H713D

DB16H716S DB16H716D

DB16H781S DB16H781D

DB16H782S DB16H782D

RoHS

Size	Motor size		60 mm sq./Basic step angle 1.8°	60 mm sq./Bas	ic step angle 0.9°
0120	Motor length		85.8 mm	42 mm	54 mm
Single	Set model no.		DB16H783S	DB16S161S	DB16S162S
shaft	Configuration item: motor model no.		103H7823-5740	SH1601-5240	SH1602-5240
Dual	Set model no.		DB16H783D	DB16S161D	DB16S162D
shaft	Configuration item: motor model no.		103H7823-5710	SH1601-5210	SH1602-5210
Holding ¹	Holding torque N⋅m		2.7	0.69	1.28
Rotor ine	ertia	×10⁻⁴kg⋅m²	0.84	0.24	0.4
Rated cu	ırrent	A/phase	2	2	2
Motor mass *1 kg		1.34	0.55	0.8	
Allowable thrust load N		20	15	15	
Allowabl	le radial load *2	N	71	78	65

^{*1} Driver mass p. 28 *2 The load point is at the tip of the output shaft.

Characteristics diagram •

With rubber coupling

Pull-out torque Full step — Half step — fs : Maximum self-start frequency when not loaded Full step • Half step • Source current (no load) Full step --- Half step --- Source current (load applied) Full step ·-- Half step ·-- H

DB16H783S DB16H783D

DB16S161S DB16S161D

DB16S162S DB16S162D

Stepping Motor: Dimensions (Unit: mm)

28 mm sq.

Note: A unipolar motor is illustrated; bipolar motors have four lead wires.

Unipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DU14S281S	DU14S281D	SH2281-5271	SH2281-5231	32
DU14S285S	DU14S285D	SH2285-5271	SH2285-5231	51.5

Bipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DB14S281S	DB14S281D	SH2281-5771	SH2281-5731	32
DB14S285S	DB14S285D	SH2285-5771	SH2285-5731	51.5

42 mm sq.

Note: A bipolar motor is illustrated; unipolar motors have six lead wires.

Unipolar

Set model no.		Motor model no.		Motor length	
	Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
	DU15S141S	DU15S141D	SH1421-0441	SH1421-0411	33
	DU15S142S	DU15S142D	SH1422-0441	SH1422-0411	39
	DU15S144S	DU15S144D	SH1424-0441	SH1424-0411	48

Bipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DB16S141S	DB16S141D	SH1421-5241	SH1421-5211	33
DB16S142S	DB16S142D	SH1422-5241	SH1422-5211	39
DB16S144S	DB16S144D	SH1424-5241	SH1424-5211	48

42 mm sq.

Unipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DU15S421S	DU15S421D	SF2421-12U41	SF2421-12U11	33±0.5
DU15S422S	DU15S422D	SF2422-12U41	SF2422-12U11	39±0.5
DU15S423S	DU15S423D	SF2423-12U41	SF2423-12U11	48±0.5
DI 115S/12/IS	DL115S/12/ID	SE2/12/1-12/1/1	SE2/12/1-12 111	50 5±1

Bipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DB14S421S	DB14S421D	SF2421-10B41	SF2421-10B11	33±0.5
DB14S422S	DB14S422D	SF2422-10B41	SF2422-10B11	39±0.5
DB14S423S	DB14S423D	SF2423-10B41	SF2423-10B11	48±0.5
DB14S424S	DB14S424D	SF2424-10B41	SF2424-10B11	59.5+1

Motor cable Unipolar model no.: 4835774-1

This driver-motor cable is for motor model no. SF242□-12U□1.

Motor cable Bipolar model no.: 4835775-1

This driver-motor cable is for motor model no. SF242□-10B□1.

Stepping Motor: Dimensions (Unit: mm)

50 mm sq.

Bipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DB16H671S	DB16H671D	103H6701-5040	103H6701-5010	39.8
DB16H673S	DB16H673D	103H6703-5040	103H6703-5010	51.3

60 mm sq.

Bipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DB16S161S	DB16S161D	SH1601-5240	SH1601-5210	42
DB16S162S	DB16S162D	SH1602-5240	SH1602-5210	54

56 mm sq.

Unipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DU16H711S	DU16H711D	103H7121-0440	103H7121-0410	41.8
DU16H713S	DU16H713D	103H7123-0440	103H7123-0410	53.8
DU16H716S	DU16H716D	103H7126-0440	103H7126-0410	75.8

56 mm sq.

Bipolar

Set model no.		Motor model no.		Motor length
Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
DB16H711S	DB16H711D	103H7121-5740	103H7121-5710	41.8
DB16H713S	DB16H713D	103H7123-5740	103H7123-5710	53.8
DB16H716S	DB16H716D	103H7126-5740	103H7126-5710	75.8

60 mm sq.

Bipolar

	-				
Set model no.			Motor model no.	Motor length	
	Single shaft	Dual shaft	Single shaft	Dual shaft	(L)
	DB16H781S	DB16H781D	103H7821-5740	103H7821-5710	44.8
	DB16H782S	DB16H782D	103H7822-5740	103H7822-5710	53.8
	DB16H783S	DB16H783D	103H7823-5740	103H7823-5710	85.8

Motor cable Bipolar model no.: 4837961-1

Stepping Motor: General Specifications

Motor model no.	SH228 □	SH142 🗌	SF242 🗌	103H670 🗌	103H712 🗌	SH160 🗌	103H782 🗌		
Туре	_	-							
Operating ambient temperature	-10 to +50°C	0 to +50°C							
Storage temperature	-20 to +65°C								
Operating ambient humidity	20 to 90% RH (r	no condensation)							
Storage humidity	5 to 95% RH (no	condensation)							
Operation altitude	1000 m max. at	ove sea level							
Vibration resistance		ibration frequency 10 to 500 Hz, total amplitude 1.52 mm (10 to 70 Hz), vibration acceleration 150 m/s² (70 to 500 z), sweep time 15 min/cycle, 12 sweeps in each X, Y and Z direction.							
Impact resistance	500 m/s ² of acce	leration for 11 ms	with half-sine wa	ive applying three	times for X, Y, a	nd Z axes each, 1	8 times in total.		
Thermal class	Class B (+130°C	class B (+130°C)							
Withstandable voltage	At normal temperature and humidity, no failure with 1000 VAC with 500 VAC @50/60 Hz applied for one minute between motor winding and frame. At normal temperature and humidity, no failure with 1000 VAC @50/60 Hz applied for one minute between motor winding and frame.								
Insulation resistance	At normal temp	erature and hum	nidity, not less th	en 100 MΩ betw	een winding an	d frame by 500 \	/DC megger.		
Protection grade	_								
Winding temperature rise	80 K max. (Base	ed on SANYO DE	NKI standard)						
Static angle error	±0.09°	±0.054°	±0.09°		±0.054°	±0.054°	±0.09°		
Thrust play *1	0.075 mm max. (load: 1.5 N)	0.075 mm max. (load: 5 N)	0.075 mm (load: 5 N)	0.075 mm (load: 10 N)	0.075 mm (load: 10 N)	0.075 mm (load: 10 N)	0.075 mm (load: 10 N)		
Radial play *2	0.025 mm max.	(load: 5 N)					·		
Shaft runout	0.025 mm								
Concentricity of mounting pilot relative to shaft	ø0.05 mm	ø0.05 mm	ø0.05 mm ø0.075 mm ø0.075 mm ø0.075 mm			ø0.075 mm			
Squareness of mounting surface relative to shaft	0.1 mm	0.1 mm							
Direction of motor mounting	Can be freely m	Can be freely mounted vertically or horizontally							

^{*1} Thrust play: Shaft displacement under axial load.
*2 Radial play: Shaft displacement under radial load applied one-third of the length from the end of the shaft.

Internal Wiring and Rotation Direction

Unipolar winding

Connector type

Internal wire connection

(Supplied cable lead wire color)
(Orange) 11 (White) 9 (Blue) 7 (Red) 1 3 5 (Yellow)
(Black)

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Connector pin no.							
		3, 9	1	7	5	11			
	1	+	-	-					
Exciting order	2	+		-	-				
order	3	+			-	-			
	4	+	-			_			

Lead wire type

Internal wire connection

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Lead wire color							
		White, black	Red	Blue	Yellow	Orange			
	1	+	-	-					
Exciting	2	+		-	-				
order	3	+			-	-			
	4	+	-			-			

Bipolar winding

Connector type model no.: SF242

Internal wire connection (Supplied cable lead wire color)

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Connecto	r pin no.		
		3	7	5	9
	1	-	-	+	+
Exciting	2	+	-	-	+
Exciting order	3	+	+	-	-
	4	-	+	+	-

Connector type model no.: 103H782

Internal wire connection

(Supplied cable lead wire color)
(Orange) 1 —

■ Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Connecto	r pin no.		
		3	2	4	1
	1	-	-	+	+
Exciting	2	+	-	-	+
Exciting order	3	+	+	-	-
	4	-	+	+	-

Lead wire type

Internal wire connection

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Lead wire	color		
		Red	Blue	Yellow	Orange
	1	-	-	+	+
Exciting	2	+	-	-	+
Exciting order	3	+	+	-	-
	4	-	+	+	-

Driver Dimensions

(Unit: mm)

Driver Specifications

■ General specifications

			Unipolar	Bipolar				
	Mod	del no.	US1D200P10	BS1D200P10				
	Input source		ource 24/36 VDC ±10%					
	Sou	rce current						
		Protection class	Class II					
		Operation environment	Installation category (over-voltage category):	I, pollution degree: 2				
		Ambient operation temperature	0 to +50°C					
Basi		Storage temperature	-20 to +70°C					
Basic specifications	Env	Operating ambient humidity	35 to 85% RH (no condensation)					
ificatio	Environment	Storage humidity	10 to 90% RH (no condensation)					
ons	ent	Operation altitude						
		Vibration resistance	Tested under the following conditions: 5 $\mbox{m/s}^2$ for 2 hours each	frequency range 10 to 55 Hz, direction along X, Y and Z axes,				
		Impact resistance	Not influenced at NDS-C-0110 standard section	n 3.2.2 division "C".				
		Withstandable voltage	Not influenced when 0.5 kVAC is applied betw	veen power input terminal and cabinet for one minute.				
		Insulation resistance	10 M Ω min. when measured with 500 VDC me	gohmmeter between input terminal and cabinet.				
	Mas	ss	0.09 kg					
Functions	Sele	ection functions	Step angle, pulse input mode, low vibration mphase	node, step current, operating current, original excitation				
tion	Prot	ection functions	Open phase protection, Main circuit power so	urce voltage decrease				
S	LED	indication	Power monitor, alarm display					
	Command pulse input signal		Photocoupler input system, input resistance: 2 input-signal "H" level: 4.0 to 5.5 V, input-sign Maximum input frequency: 150 kpulse/s					
I/O signals	Pow	ver down input	Photocoupler input system, input resistance: 2 input-signal "H" level: 4.0 to 5.5V, input-signal	220 Ω al "L" level: 0 to 0.5 V				
nals		se origin monitor out signal	From the photocoupler by the open collector of Output specification: Vceo = 40 V max. , Ic = 10					
	Alarm output signal From the photocoupler by the open collector output Output specification: Vceo = 40 V max., Ic = 10 mA max.							

■ Safety standards

	Directives	Category	Standard	Name
	Low-voltage directives	_	EN 61010-1	-
		Emission	EN 55011-A	Terminal disturbance voltage
CE		EIIIISSIOII	EN 55011-A	Electromagnetic radiation disturbance
(TÜV)	EMC directives		EN 61000-4-2	ESD (Electrostatic discharge)
	EIVIC directives	Immunity	EN 61000-4-3	RS (Radio-frequency amplitude modulated electromagnetic field)
			EN 61000-4-4	Fast transients/burst
			EN 61000-4-6	Conducted disturbances
	Acquired standards		Applicable standard	File no.
UL	UL		- UL 508C	E179775
	UL for Canada		OL 506C	E1/3//3

[•] EMC characteristics may vary depending on the configuration of the users' control panel, which contains the driver or stepping motor, or the arrangement and wiring of other electrical devices.

Parts for EMC noise suppression like noise filters and toroidal type ferrite cores may be required depending on circumstances.

[·] Validation test of driver has been performed for low-voltage EMC directives at TÜV (TÜV product service) for self-declaration of CE marking.

[·] Drivers are available for separate purchase. Connector-type drivers are also available. Contact us for details.

Driver Controls and Connectors

Unipolar

Bipolar

1 Operating current selection switch (RUN) The value of the motor current can be set when operating.

Dial	0	1	2	3	4	5	6	7
Stepping motor current (A)	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3
Dial	8	9	Α	В	С	D	Е	F
Stepping motor current (A)	1.2	1.1	1.0	0.9	0.8	0.7	0.6	0.5

- The factory setting is F (0.5 A). Select the current after checking the rated current of the combination
- 2 Function selection DIP switchpack Select the function depending on your specification.

Factory settings

	OFF	ON		
EX1			OFF 7	
EX2			OFF	Partition number: 8
EX3			OFF_	
F/R			OFF	Input method 2 (CW/CCW pulse input)
ACD1			OFF 7	Stopping current: 40% of driving current
ACD2			OFF_	Stopping current. 40 % of univing current
LV			OFF	Micro step operation
EORG			OFF	Phase origin

1. Step angle select (EX1, EX2, EX3)

Select the partition number of the basic step angle.

EX1	EX2	EX3	Partition no.
ON	ON	ON	1-division
OFF	ON	OFF	2-division
ON	OFF	OFF	4-division
OFF	OFF	OFF	8-division
OFF	OFF	ON	16-division

2. Input method select (F/R)

Select input pulse type.

F/R	Input pulse type	
ON	1 input (CK, U/D)	
OFF	2 input (CW, CCW)	

3. Current selection when stopping (ACD1, ACD2) Select the current value of the motor when stopping.

ACD2	ACD1	Current value of the motor
ON	ON	100% of driving current
ON	OFF	60% of driving current
OFF	ON	50% of driving current
OFF	OFF	40% of driving current

· Initial configuration of factory shipment is set to 40% of rated value. Driver and motor should be operated at around 50% of rated value to reduce heat.

4. Low-vibration mode select (LV)

Provides low-vibration, smooth operation even if resolution is coarse (1-division, 2-division, etc).

LV	Operation
ON	Auto-micro function
OFF	Micro-step

5. Excitation select (EORG)

The excitation phase when the power supply is engaged is selected.

EORG	Original excitation phase
ON	Excitation phase at power shut off
OFF	Phase origin

- · By turning on the EORG, the excitation phase during power OFF will be saved. Therefore, there will be no shaft displacement when turning the power ON.
- 3 LED for power supply monitor (POW) Lit up when the main circuit power supply is connected.
- 4 LED for alarm display (ALM) Lights in the following conditions:

- · Motor cable is broken.
- · Switching element in driver is faulty.
- The main circuit voltage is out of specifications range (19 VDC max.).

When "ALM" is displayed, the winding current of the stepping motor is cut off and it is in a "non-excitation" state. At the same time, an output signal (photocoupler ON) is transmitted from the alarm output terminal (AL) to an external source. When the alarm circuit is operating, this state is maintained until it is reset by switching on the power supply again. When an alarm condition has occurred, please take corrective actions to rectify the cause of the alarm before switching on the power supply again.

- 5 I/O signal terminal block (CN1) Connect the I/O signal.
- 6 Motor terminal block (CN2) Connect the motor's power line.
- 7 Power supply terminal block (CN3) Connect the main circuit power supply.

Connections and Signals

External wiring diagram

Unipolar Bipolar

Applicable wire sizes

Part	Wire sizes	Allowable wire length
For power supply	AWG22 (0.3 mm²)	2 m max.
For input/output signal	AWG24 (0.2 mm²) to AWG22 (0.3 mm²)	2 m max.
For motor	AWG22 (0.3 mm ²)	Under 3 m

■ Specification summary of input/output signals

Signal	CN1 Pin no.	Function summary	
CW pulse input (CW) (Standard)	1	When in "2 input type",	
CVV pulse iliput (CVV) (Standard)	2	input the drive pulse that rotates in a CW direction.	
Bules train input (CV)	1	When in "1 input type",	
Pulse train input (CK)	2	input the drive pulse train for motor rotation.	
CCM pulse input (CCM) (Standard)	3	When in "2 input type",	
CCW pulse input (CCW) (Standard)	4	input the drive pulse train that rotates in a CCW direction.	
		When in "1 input type",	
Detetional discretion innut (LL/D)	3	input the motor rotational direction signal.	
Rotational direction input (U/D)	4	Internal photocoupler ON ··· CW direction	
		Internal photocoupler OFF ··· CCW direction	
		Inputting PD signal will cut off (power off) the current flowing to the motor (With DIP	
Dancer dance input (DD)	5	switch select, change to the Power low function is possible).	
Power down input (PD)	6	PD input signal on (internal photocoupler on) ··· PD function is valid.	
		PD input signal off (internal photocoupler off) ··· PD function is invalid.	
	7	When the excitation phase is at the origin (during power on) this function turns on.	
Phase origin monitor output (MON)	8	When FULL step, ON once for 4 pulses;	
	0	when HALF step, ON once for 8 pulses.	
Alarm output (AL)	9	When alarm circuits are actuated inside the driver, outputs signals to outside, after	
Alarm output (AL)	10	which the stepping motor changes to unexcited status.	

[·] As for the motor rotational direction, CW direction is regarded as the clockwise rotation, and CCW direction is regarded as the counterclockwise rotation by viewing the motor from output shaft side.

Circuit Configuration of Pulse Input CW (CK), CCW (U/D)

- Pulse duty 50% max.
- Maximum input frequency: 150 kpulse/s
- If the peak voltage of the input signal exceeds 5.5 V, please add an external current-limiting resistor R to limit the input current to around 15 mA. (Take the photocoupler forward voltage of 1.5 V into consideration.)

Input signal specifications

■ Timing of the command pulse

2 input mode (CW, CCW)

- Shaded area indicates internal photocoupler ON. Internal circuit (motor) starts operating at leading edge of the photocoupler ON.
- To apply pulse to CW, set CCW side internal photocoupler to OFF.
- To apply pulse to CCW, set CW side internal photocoupler to OFF.

1 input mode (CK, U/D)

- Shaded area indicates internal photocoupler ON. Internal circuit (motor) starts operating at leading edge of CK side photocoupler ON.
- Switching of U/D input signal must be done while CK side internal photocoupler is OFF.

Input Circuit Configuration of Power Down Input (PD)

• If the peak voltage of the input signal exceeds 5.5 V, please add an external current-limiting resistor R to limit the input current to around 15 mA. (Take the photocoupler forward voltage of 1.5 V into consideration.)

Output Signal Configuration of Phase Origin Monitor Output (MON) and Alarm Output (AL)

MON output

- Photocoupler is set to ON at phase origin of motor excitation (setting when number of divisions is 2).
- MON output is taken at every 7.2 degrees of motor output shaft from phase origin.

Stepping Motors

Stepping Motors	▶p. 38–
IP65 Splash and Dust Proof Stepping Motors Waterproof, dustproof	▶ p. 74–
Stepping Motors for Vacuum Environments Customized Products	▶ p. 79
	. 70
Synchronous Motors Customized Products	▶p. 79

Lineup

Stepping Motors RoHS

These motors can be purchased as separate units. Holding torque (N·m) Model no. Motor size Customizing* Page 1.8° 14 mm sq. 0.0065 to 0.01 Hollow Shaft modification p. 38 SH214 -5 1 Hollow Shaft modification 28 mm sq. 0.055 to 0.145 SH228□-5□□1 Decelerator Encoder pp. 39 to 40 35 mm sq. 0.12 to 0.23 Hollow Shaft modification p. 41 SH35 ...-12U ...0 0.9° 42 mm sq. Hollow Shaft modification 0.2 to 0.48 Decelerator Encoder SH142 - 1 pp. 42 to 43 1.8° 42 mm sq. 0.083 to 0.186 Hollow Shaft modification p. 44 SS242□-50□1 42 mm sq. 0.22 to 0.8 Shaft length Shaft shape pp. 45 to 47 SF242 - 0 0 1 50 mm sq. 0.28 to 0.53 Hollow Shaft modification pp. 48 to 50 103H670□-□□□0 50 mm sq. 0.1 to 0.215 Hollow Shaft modification p. 51 SS250□-80□0 Hollow Shaft modification 56 mm sq. 0.39 to 2.0 Decelerator Encoder 103H712□-□□□0 pp. 52 to 55 0.9° Hollow Shaft modification 60 mm sq. 0.57 to 2.15 Decelerator Encoder SH160 -- 0 pp. 56 to 57 1.8° Hollow Shaft modification Decelerator Encoder 60 mm sq. 0.78 to 2.7 103H782□-□□□0 pp. 58 to 61 86 mm sq. (CE and UL models are available.) Hollow Shaft modification 2.5 to 9 Encoder S 286 --

Synchronous Motors Customized Products

Customization

Different types of customization are possible, depending on the request and quantity. Contact us for details.

■ Manufacturing example ■

Shaft modification

D-cuts, key grooves, and through holes can be added; and gears and pulleys can be mounted. The shaft can also be hollowed to allow airflow or to pass lead wires through.

Rotating damper, mounting-side damper

A damper can be added to reduce vibrations when rotating.

Mounting-side damper

Decelerator, encoder, brake

Rotating damper

- · A decelerator can be added when a large high-load torque is required at low speeds.
- $\boldsymbol{\cdot}$ An encoder can be added in order to detect position and speed.
- · A brake can be added to hold the position when the motor is stopped.

With decelerator+encoder

How to Read the Specifications

	Bipolar winding,	Lead wire type	2	3	4	6	6	7	8
0	Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
	Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁻⁴kg·m²	kg	mm
	SH2141-5541	SH2141-5511	0.0065	0.3	21	4.2	0.00058	0.03	30
	SH2145-5641	SH2145-5611	0.01	0.4	19	4	0.0011	0.042	43.8

Characteristics diagram

SH2141-5541 SH2141-5511

Constant current circuit
Source voltage: 24 VDC
Operating current:
0.3 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01×10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not
loaded

SH2145-5641 SH2145-5611

Constant current circuit Source voltage: 24 VDC Operating current: 0.4 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.01x10-4kg-m² (pulley balancer method) fs: Maximum self-start frequency when not loaded

- 1 This is the stepping motor model number.
- 2 This is the maximum torque that occurs with 2-phase excitation of the stepping motor at rated current, causing the shaft to rotate from the outside.
- 3 This is the rated current that flows to the motor winding. Allowing this amount of current to flow to the motor will create torque equal to the holding torque value.
- 4 This is the resistance for one phase of the stepping motor winding.
- **5** This is the inductance for one phase of the stepping motor winding.

- **6** This is the moment of inertia of the rotor, which shows how much torque is required to cause the rotor to accelerate or decelerate.
- 7 This is the mass of the stepping motor.
- 8 This is the length of the stepping motor.
- This graph shows the relationship between the full step pulse rate (frequency), speed, and pull-out torque.

Allowable Load ▶ p. 71 Internal Wiring, Rotation Direction ▶ p. 72 General Specifications ▶ p. 73

1.8°/step

Ultra-compact RoHS

Bipolar winding, Lead wire type

Customizing

Hollow Shaft modification

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m²	kg	mm
SH2141-5541	SH2141-5511	0.0065	0.3	21	4.2	0.00058	0.03	30
SH2145-5641	SH2145-5611	0.01	0.4	19	4	0.0011	0.042	43.8

Characteristics diagram

SH2141-5541 SH2141-5511

Constant current circuit Source voltage: 24 VDC Operating current: 0.3 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.01×10-4kg·m² (pulley balancer method) fs: Maximum self-start frequency when not loaded

SH2145-5641 SH2145-5611

Constant current circuit
Source voltage: 24 VDC
Operating current:
0.4 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01x10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not frequency when not loaded

■ Dimensions (Unit: mm) ¹

Internal wiring

Compatible drivers

Driver is not included.

If you require assistance finding a driver, contact us for details.

28 mm sq.

1.8°/step RoHS

Unipolar winding, Lead wire type Bipolar winding, Lead wire type ▶ p. 40

Customizing

Hollow Shaft modification Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg·m²	kg	mm
SH2281-5171	SH2281-5131	0.055	0.5	10.5	3.7	0.01	0.11	32
SH2281-5271	SH2281-5231	0.055	1	2.85	1	0.01	0.11	32
SH2285-5171	SH2285-5131	0.115	0.5	17	7	0.022	0.2	51.5
SH2285-5271	SH2285-5231	0.115	1	4.1	1.9	0.022	0.2	51.5

Characteristics diagram

SH2281-5171 SH2281-5131

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 0.5 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=0.01x10-⁴kg·m² (pulley balancer method) fer Maximum self-start fs: Maximum self-start frequency when not loaded

1000 2000 3000 5000 Number of rotations (min-1)

SH2285-5271 SH2285-5231

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01×10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not
loaded

SH2285-5171 SH2285-5131

Constant current circuit
Source voltage: 24 VDC
Operating current:
0.5 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01x10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not frequency when not loaded

■ Dimensions (Unit: mm) ■

Internal wiring

Compatible drivers =

For motor model no. SH228 \square -51 \square 1 (0.5 A/phase) Driver is not included.

If you require assistance finding a driver, contact us for details.

 For model no. SH228 □ -52 □ 1 (1 A/phase) Model no.: BS1D200P10 (DC input) Operating current select switch setting: A

The characteristics diagram shown above is from our experimental circuit.

28 mm sq.

1.8°/step RoHS

Bipolar winding, Lead wire type

Unipolar winding, Lead wire type p. 39

Customizing

Hollow Shaft modification Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁻⁴kg⋅m²	kg	mm
SH2281-5671	SH2281-5631	0.07	0.5	10.5	7.2	0.01	0.11	32
SH2281-5771	SH2281-5731	0.07	1	2.6	1.85	0.01	0.11	32
SH2285-5671	SH2285-5631	0.145	0.5	15	13.5	0.022	0.2	51.5
SH2285-5771	SH2285-5731	0.145	1	3.75	3.4	0.022	0.2	51.5

Characteristics diagram

SH2281-5671 SH2281-5631

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 0.5 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=0.01x10-⁴kg·m² (pulley balancer method) fer Maximum self-start fs: Maximum self-start frequency when not loaded

1000 2000 3000 5000 Number of rotations (min-1)

SH2281-5771 SH2281-5731

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J₁=0.01×10⁻⁴kg·m² (pulley balancer method) fee Maximum self-ctart fs: Maximum self-start frequency when not loaded

1000 2000 3000 5000 Number of rotations (min-1)

SH2285-5671 SH2285-5631

Constant current circuit
Source voltage: 24 VDC
Operating current:
0.5 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01x10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not frequency when not loaded

SH2285-5771 SH2285-5731

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01×10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not
loaded

Dimensions (Unit: mm)

Internal wiring

Compatible drivers —

· For motor model no. SH228 □ -56 □ 1 (0.5 A/phase) Driver is not included.

If you require assistance finding a driver, contact us for details.

· For model no. SH228 \square -57 \square 1 (1 A/phase) Model no.: BS1D200P10 (DC input)

Operating current select switch setting: A The characteristics diagram shown above is from our experimental circuit.

35 mm sq.

1.8°/step RoHS

Unipolar winding, Lead wire type

Customizing

Hollow Shaft modification

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m²	kg	mm
SH3533-12U40	SH3533-12U10	0.12	1.2	2.4	1.3	0.02	0.17	33
SH3537-12U40	SH3537-12U10	0.15	1.2	2.7	2	0.025	0.2	37
SH3552-12U40	SH3552-12U10	0.23	1.2	3.4	2.8	0.043	0.3	52

■ Characteristics diagram

SH3533-12U40 SH3533-12U10

Constant current circuit
Source voltage: 24 VDC
Operating current:
1.2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.33×10*4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

100 1000 2000 3000 5000 Number of rotations (min⁻¹)

SH3537-12U40 SH3537-12U10

Constant current circuit Source voltage: 24 VDC Operating current: 1.2 A/phase, 2-phase energization (full-step) Pull-out torque: JL=0.33×10-4gcm² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH3552-12U40 SH3552-12U10

Constant current circuit Source voltage: 24 VDC Operating current: 1.2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Dimensions (Unit: mm) ■

Internal wiring

Compatible drivers

Model no.: US1D200P10 (DC input)

Operating current select switch setting: 8

The characteristics diagram shown above is from our experimental circuit.

42 mm sq.

0.9°/step RoHS

Unipolar winding, Lead wire type Bipolar winding, Lead wire type

Customizing

Hollow Shaft modification Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg·m²	kg	mm
SH1421-0441	SH1421-0411	0.2	1.2	2.7	3.2	0.044	0.24	33
SH1422-0441	SH1422-0411	0.29	1.2	3.1	5.3	0.066	0.29	39
SH1424-0441	SH1424-0411	0.39	1.2	3.5	5.3	0.089	0.38	48

SH1422-0441

SH1422-0411

loaded

■ Characteristics diagram

SH1421-0441 SH1421-0411

Constant current circuit Source voltage: 24 VDC Operating current: 1.2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94x10*kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

1000 2000 3000 5000 Number of rotations (min-1)

0.5 SH1424-0441

Constant current circuit Source voltage: 24 VDC Operating current: 1.2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10*kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not frequency when not loaded

SH1424-0411

■ Dimensions (Unit: mm)

Internal wiring

Compatible drivers

Model no.: US1D200P10 (DC input)

Operating current select switch setting: 8

The characteristics diagram shown above is from our experimental circuit.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m ²	kg	mm
SH1421-5041	SH1421-5011	0.23	1	3.3	8.0	0.044	0.24	33
SH1421-5241	SH1421-5211	0.23	2	0.85	2.1	0.044	0.24	33
SH1422-5041	SH1422-5011	0.34	1	4.0	14.0	0.066	0.29	39
SH1422-5241	SH1422-5211	0.34	2	1.05	3.6	0.066	0.29	39
SH1424-5041	SH1424-5011	0.48	1	4.7	15.0	0.089	0.38	48
SH1424-5241	SH1424-5211	0.48	2	1.25	3.75	0.089	0.38	48

Characteristics diagram

SH1421-5041 SH1421-5011

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=0.94×10⁻⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

SH1422-5041 SH1422-5011

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH1424-5041 SH1424-5011

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94×10 *kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH1421-5241 SH1421-5211

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH1422-5241 SH1422-5211

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94x10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH1424-5241 SH1424-5211

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: Ju=0.94×10 kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Dimensions (Unit: mm) •

Internal wiring =

Orange Blue Red Yellow

Compatible drivers

For motor model no. SH142 □ -50
 □ 1 (1 A/phase)

Driver is not included.

If you require assistance finding a driver, contact us for details.

• For model no. SH142 \square -52 \square 1 (2 A/phase)

Model no.: BS1D200P10 (DC input)
Operating current select switch setting: 0

The characteristics diagram shown above is from our experimental circuit.

42 mm sq.

1.8°/step Slim form RoHS

Bipolar winding, Lead wire type

Customizing

Hollow Shaft modification

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m ²	kg	mm
SS2421-504	1 SS2421-5011	0.083	1	3.5	1.2	0.015	0.07	11.6
SS2422-504	1 SS2422-5011	0.186	1	5.4	2.9	0.028	0.14	18.6

Characteristics diagram

SS2421-5041 SS2421-5011

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.33x³10⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not loaded

SS2422-5041 SS2422-5011

Constant current circuit Source voltage: 24 VDC Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.33×10*kg·m² (use the rubber coupling) fs: Maximum self-start fraguency when not frequency when not

■ Dimensions (Unit: mm) ■

Internal wiring

Compatible drivers

Driver is not included.

If you require assistance finding a driver, contact us for details.

2 mm sq.

1.8°/step RoHS

Unipolar winding, Connector type

Bipolar winding, Connector type ▶ p. 46

Customizing

Shaft length Shaft shape

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Connector type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m²	kg	mm
SF2421-12U41	SF2421-12U11	0.22	1.2	2.4	2.4	0.031	0.23	33±0.5
SF2422-12U41	SF2422-12U11	0.33	1.2	3	3.3	0.046	0.3	39±0.5
SF2423-12U41	SF2423-12U11	0.4	1.2	3.4	3.9	0.063	0.38	48±0.5
SF2424-12U41	SF2424-12U11	0.58	1.2	4.4	5.4	0.094	0.51	59.5±1

Motor cable: model no. 4835710-1

Characteristics diagram

SF2421-12U41 SF2421-12U11

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 1.2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94×10.4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SF2422-12U41 SF2422-12U11

Constant current circuit Source voltage: 24 VDC Operating current: 1.2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10 *kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SF2423-12U41 SF2423-12U11

Constant current circuit
Source voltage: 24 VDC
Operating current:
1.2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.94×10 *kg.m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not loaded

SF2424-12U41 SF2424-12U11

Constant current circuit
Source voltage: 24 VDC
Operating current:
1.2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.94×10*kg-m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not

■ Dimensions (Unit: mm) ■

Option (sold separately): Motor cable model no. 4835774-1

This motor cable is for model no. SF242 \square -12U \square 1.

Internal wiring () connector pin number

Compatible drivers

Model no.: US1D200P10

Operating current select switch setting: 8

The characteristics diagram shown above is from our experimental circuit.

₽Z mm sq.

1.8°/step RoHS

Bipolar winding, Connector type

Unipolar winding, Connector type ▶p. 45

Customizing

Shaft length Shaft shape

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Connector type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m²	kg	mm
SF2421-10B41	SF2421-10B11	0.29	1	3.6	7	0.031	0.23	33±0.5
SF2422-10B41	SF2422-10B11	0.43	1	4.6	9.6	0.046	0.3	39±0.5
SF2423-10B41	SF2423-10B11	0.56	1	5.3	12.5	0.063	0.38	48±0.5
SF2424-10B41	SF2424-10B11	0.8	1	6.5	16	0.094	0.51	59.5±1

Characteristics diagram

SF2421-10B41 SF2421-10B11

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94×10-⁴kg·m² (use the rubber coupling) fs: Maximum self-start fragespace whose part frequency when not loaded

SF2423-10B41

SF2423-10B11

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=0.94×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

loaded

1000 2000 3000 5000 100 Number of rotations (min-1)

0.7 0.6 0.5 € 0.5 ≥ 0.4 Pull-out torque Torque (1 0.2 0.1 0.1 Pulse rate (kpulse/s) 1000 2000 3000 5000

Number of rotations (min-1)

SF2422-10B41 SF2422-10B11

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=0.94×10⁻⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency whom part frequency when not loaded

SF2424-10B41 SF2424-10B11

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: Ju-2.6x10-4g-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

Dimensions (Unit: mm)

Internal wiring () connector pin number

Option (sold separately): Motor cable model no. 4835775-1

This motor cable is for model no. SF242 \square -10B \square 1.

Compatible drivers

Model no.: BS1D200P10

Operating current select switch setting: A

The characteristics diagram shown above is from our experimental circuit.

1.8°/step RoHS

Unipolar winding, Lead wire type

Bipolar winding, Lead wire type▶p. 50

Customizing

Hollow Shaft r

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
103H6701-0140	103H6701-0110	0.28	1	4.3	6.8	0.057	0.35	39.8
103H6701-0440	103H6701-0410	0.28	2	1.1	1.6	0.057	0.35	39.8
103H6701-0740	103H6701-0710	0.28	3	0.6	0.7	0.057	0.35	39.8
103H6703-0140	103H6703-0110	0.49	1	6	13	0.118	0.5	51.3
103H6703-0440	103H6703-0410	0.49	2	1.6	3.2	0.118	0.5	51.3
103H6703-0740	103H6703-0710	0.49	3	0.83	1.4	0.118	0.5	51.3
103H6704-0140	103H6704-0110	0.52	1	6.5	16.5	0.14	0.55	55.8
103H6704-0440	103H6704-0410	0.52	2	1.7	3.8	0.14	0.55	55.8
103H6704-0740	103H6704-0710	0.53	3	0.9	1.7	0.14	0.55	55.8

Characteristics diagram

0.5

103H6701-0140 103H6701-0110

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=0.94x10*4g.m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H6701-0440 103H6701-0410

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10 *kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H6701-0740 103H6701-0710

Constant current circuit Constant current circuit
Source voltage: 24 VDC
Operating current:
3 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=0.94×10⁻⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not loaded

0.4 0.3 0.2 0.1 100 Pulse rate (kpulse/s)

103H6703-0140 103H6703-0110

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J:=-0.94x10* kg.m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not loaded

103H6703-0440 103H6703-0410

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=0.94×10⁻⁴kg·m² (use the rubber coupling) fer Mayimum self-start fs: Maximum self-start frequency when not loaded

103H6703-0740 103H6703-0710

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: J=0.94×10 ⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Characteristics diagram

103H6704-0140 103H6704-0110

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=0.94×10⁻⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

103H6704-0740 103H6704-0710

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10 4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H6704-0440 103H6704-0410

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

Dimensions (Unit: mm)

Internal wiring

Compatible drivers

For motor model no. 103H670 □ -01 □ 0 (1 A/phase),
 103H670 □ -07 □ 0 (3 A/phase)

Driver is not included.

If you require assistance finding a driver, contact us for details.

For model no. 103H670 □ -04 □ 0 (2 A/phase)
 Model no.: US1D200P10 (DC input)
 Operating current select switch setting: 0

The characteristics diagram shown above is from our experimental circuit.

mm sq.

1.8°/step RoHS

Bipolar winding, Lead wire type

Unipolar winding, Lead wire type ▶p. 48

Customizing

Hollow Shaft modifica

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m ²	kg	mm
103H6701-5040	103H6701-5010	0.28	2	0.6	1.6	0.057	0.35	39.8
103H6703-5040	103H6703-5010	0.49	2	0.8	3.2	0.118	0.5	51.3
103H6704-5040	103H6704-5010	0.52	2	0.9	3.8	0.14	0.55	55.8

■ Characteristics diagram

103H6701-5040 103H6701-5010

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=0.94×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H6703-5040 103H6703-5010

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=0.94×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H6704-5040 103H6704-5010

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=0.94x10⁻⁴kg·m² (use the rubber coupling) fs: Maximum self-start fraguspart whos part frequency when not loaded

■ Dimensions (Unit: mm) ■

Internal wiring

Compatible drivers —

Model no.: BS1D200P10 (DC

Operating current select switch setting: 0

The characteristics diagram shown above is from our experimental circuit.

1.8°/step Slim form RoHS

Bipolar winding, Lead wire type

Customizing

Hollow Shaft modifica

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg⋅m²	kg	mm
SS2501-8040	SS2501-8010	0.1	1	4.5	2	0.026	0.09	11.4
SS2502-8040	SS2502-8010	0.215	1	5.9	3.2	0.049	0.15	16.4

Characteristics diagram

SS2501-8040 SS2501-8010

Constant current circuit
Source voltage: 24 VDC
Operating current:
1 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.01x10-4kg·m² (pulley
balancer method)
fs: Maximum self-start
frequency when not frequency when not loaded

SS2502-8040 SS2502-8010

Constant current circuit Source voltage: 24 VDC Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.01×10-4kg·m² (pulley balancer method) fs: Maximum self-start frequency when put frequency when not loaded

■ Dimensions (Unit: mm) ■

Internal wiring

Compatible drivers •

Driver is not included.

If you require assistance finding a driver, contact us for details.

56 mm sq.

1.8°/step RoHS

Unipolar winding, Lead wire type

Bipolar winding, Lead wire type ▶ p. 54

Customizing

Hollow Shaft modification Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
103H7121-0140	103H7121-0110	0.39	1	4.8	8	0.1	0.47	41.8
103H7121-0440	103H7121-0410	0.39	2	1.25	1.9	0.1	0.47	41.8
103H7121-0740	103H7121-0710	0.39	3	0.6	0.8	0.1	0.47	41.8
103H7123-0140	103H7123-0110	0.83	1	6.7	15	0.21	0.65	53.8
103H7123-0440	103H7123-0410	0.83	2	1.6	3.8	0.21	0.65	53.8
103H7123-0740	103H7123-0710	0.78	3	0.77	1.58	0.21	0.65	53.8
103H7124-0140	103H7124-0110	0.98	1	7	14.5	0.245	0.8	63.8
103H7124-0440	103H7124-0410	0.98	2	1.7	3.1	0.245	0.8	63.8
103H7124-0740	103H7124-0710	0.98	3	0.74	1.4	0.245	0.8	63.8
103H7126-0140	103H7126-0110	1.27	1	8.6	19	0.36	0.98	75.8
103H7126-0440	103H7126-0410	1.27	2	2	4.5	0.36	0.98	75.8
103H7126-0740	103H7126-0710	1.27	3	0.9	2.2	0.36	0.98	75.8

Characteristics diagram

103H7121-0140 103H7121-0110

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94x10-kg.m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded loaded

103H7121-0740

103H7121-0710

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step)

Pull-out torque:
J_L=0.94×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start

frequency when not

loaded

103H7123-0440 103H7123-0410

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94×10 ⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7121-0440 103H7121-0410

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=0.94×10*kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H7123-0140 103H7123-0110

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque:
J_L=0.94×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not

103H7123-0740 103H7123-0710

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Characteristics diagram

103H7124-0140 103H7124-0110

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7124-0740 103H7124-0710

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6x10 4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7126-0440 103H7126-0410

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=2.6x10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7124-0440 103H7124-0410

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6×10 4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7126-0140 103H7126-0110

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6x10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7126-0740 103H7126-0710

Constant current circuit
Source voltage: 24 VDC
Operating current:
3 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J=2.6×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

■ Dimensions (Unit: mm) ¹

Lead wire: UL 1430 (103H7121, 103H7124, 103H7126) UL 3266 (103H7123), AWG22

Internal wiring

Compatible drivers

For motor model no. 103H712 □ -01 □ 0 (1 A/phase),
 103H712 □ -07 □ 0 (3 A/phase)

Driver is not included.

If you require assistance finding a driver, contact us for details.

For model no. 103H712 □ -04 □ 0 (2 A/phase) Model no.: US1D200P10 (DC input) Operating current select switch setting: 0

The characteristics diagram shown above is from our experimental circuit.

mm sq.

1.8°/step RoHS

Bipolar winding, Lead wire type

Unipolar winding, Lead wire type ▶ p. 52

Customizing

Hollow Shaft modification Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)	Shaft diameter (D)	Dcut thickness (T)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg⋅m²	kg	mm	mm	mm
103H7121-5640	103H7121-5610	0.55	1	4.3	14.5	0.1	0.47	41.8	0 ø6.35-0.013	5.8
103H7121-5740	103H7121-5710	0.55	2	1.1	3.7	0.1	0.47	41.8	0 ø6.35-0.013	5.8
103H7121-5840	103H7121-5810	0.55	3	0.54	1.74	0.1	0.47	41.8	0 ø6.35-0.013	5.8
103H7123-5640	103H7123-5610	1.0	1	5.7	29.4	0.21	0.65	53.8	0 ø6.35-0.013	5.8
103H7123-5740	103H7123-5710	1.0	2	1.5	7.5	0.21	0.65	53.8	0 ø6.35-0.013	5.8
103H7123-5840	103H7123-5810	1.0	3	0.7	3.5	0.21	0.65	53.8	0 ø6.35-0.013	5.8
103H7126-5640	103H7126-5610	1.6	1	7.7	34.6	0.36	0.98	75.8	0 ø6.35-0.013	5.8
103H7126-5740	103H7126-5710	1.6	2	2	9.1	0.36	0.98	75.8	0 ø6.35-0.013	5.8
103H7126-5840	103H7126-5810	1.6	3	0.94	4	0.36	0.98	75.8	0 ø6.35-0.013	5.8
103H7128-5640	103H7128-5610	2.0	1	8.9	40.1	0.49	1.3	94.8	0 ø8-0.015	7.5
103H7128-5740	103H7128-5710	2.0	2	2.3	10.4	0.49	1.3	94.8	0 ø8-0.015	7.5
103H7128-5840	103H7128-5810	2.0	3	1.03	4.3	0.49	1.3	94.8	0 ø8-0.015	7.5

Characteristics diagram

103H7121-5640 103H7121-5610

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque:
JL=0.94×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

0.8 ê.0 ê e 0.4 Pull-out torque 0.2 0.1 Pulse rate (kpulse/s)

103H7121-5840 103H7121-5810

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94×10.4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7123-5740 103H7123-5710

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J_L=2.6x10-4kg-m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H7121-5740 103H7121-5710

Constant current circuit Source voltage: 24 VDC Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=0.94x10-kg-m² (use the rubber coupling) fs: Maximum self-start frequency when pet frequency when not loaded

103H7123-5640 103H7123-5610

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7123-5840 103H7123-5810

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6×10 *kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

100

■ Characteristics diagram

103H7126-5640 103H7126-5610

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7126-5840 103H7126-5810

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: JL=2.6x10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7128-5740 103H7128-5710

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J₁=7.4×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7126-5740 103H7126-5710

2.0

1.6

1.2

Porque (

0.4

(N E H

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=2.6×10 4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7128-5640 103H7128-5610

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=7.4x10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

0 0.1 1 1 fs 10 1000 Pulse rate (kpulse/s) 100 1000 2000 3000 5000 Number of rotations (min⁻¹) 5.0 4.0 Pull-out torque 1.0

Pull-out torque

Pulse rate (kpulse/s)

100 1000 2000 3000 5000

Number of rotations (min⁻¹)

103H7128-5840 103H7128-5810

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: J=7.4×10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Dimensions (Unit: mm)

Internal wiring

Compatible drivers

- For Motor model no. 103H7121-57 □ 0 (2 A/phase),
 103H7123-57 □ 0 (2 A/phase), 103H7126-57 □ 0 (2 A/phase)
 Model no.: BS1D200P10 (DC input)
 - Operating current select switch setting: 0
- Driver is not included for other motor model nos.
 If you require assistance finding a driver, contact us for details.

60 mm sq.

0.9°/step RoHS

Unipolar winding, Lead wire type Bipolar winding, Lead wire type

Customizing

Hollow Shaft modification

Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)	Shaft diameter (D)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁻⁴kg⋅m²	kg	mm	mm
SH1601-0440	SH1601-0410	0.57	2	1.35	2	0.24	0.55	42	0 ø6.35 -0.013
SH1602-0440	SH1602-0410	1.1	2	1.8	3.5	0.4	0.8	54	0 ø6.35 -0.013
SH1603-0440	SH1603-0410	1.7	2	2.3	4.5	0.75	1.2	76	0 ø8 -0.015

Characteristics diagram

SH1601-0440 SH1601-0410

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=0.94×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

SH1602-0440 SH1602-0410

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=2.6×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

SH1603-0440 SH1603-0410

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=7.4×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Dimensions (Unit: mm) ■

Compatible drivers

Driver is not included.

If you require assistance finding a driver, contact us for details.

Internal wiring

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)	Shaft diameter (D)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg⋅m²	kg	mm	mm
SH1601-5240	SH1601-5210	0.69	2	1.2	3.5	0.24	0.55	42	0 ø6.35 -0.013
SH1602-5240	SH1602-5210	1.28	2	1.65	6.1	0.4	0.8	54	0 ø6.35 -0.013
SH1603-5240	SH1603-5210	2.15	2	2.3	8.8	0.75	1.2	76	0 ø8 -0.015

Characteristics diagram

SH1601-5240 SH1601-5210

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=0.94×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

SH1603-5240 SH1603-5210

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step)

Pull-out torque:
J_L=7.4×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start

frequency when not loaded

SH1602-5240 SH1602-5210

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=2.6x10*4g.m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

■ Dimensions (Unit: mm) ■

Internal wiring

Compatible drivers

Model no.: BS1D200P10 (DC input)

Operating current select switch setting: 0

The characteristics diagram shown above is from our experimental circuit.

mm sq.

1.8°/step RoHS

Unipolar winding, Connector type Unipolar winding, Lead wire type

Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Bipolar winding, Connector type ▶ p. 60 Bipolar winding, Lead wire type

Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch) p. 60

Customizing

Hollow Shaft modification

Decelerator Encoder

Brake

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Connector type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
103H7821-0140	103H7821-0110	0.78	1	5.7	8.3	0.275	0.6	44.8
103H7821-0440	103H7821-0410	0.78	2	1.5	2	0.275	0.6	44.8
103H7821-0740	103H7821-0710	0.78	3	0.68	0.8	0.275	0.6	44.8
103H7822-0140	103H7822-0110	1.17	1	6.9	14	0.4	0.77	53.8
103H7822-0440	103H7822-0410	1.17	2	1.8	3.6	0.4	0.77	53.8
103H7822-0740	103H7822-0710	1.17	3	0.8	1.38	0.4	0.77	53.8
103H7823-0140	103H7823-0110	2.1	1	10	21.7	0.84	1.34	85.8
103H7823-0440	103H7823-0410	2.1	2	2.7	5.6	0.84	1.34	85.8
103H7823-0740	103H7823-0710	2.1	3	1.25	2.4	0.84	1.34	85.8

Motor cable: model no. 4837798-1

Unipolar winding, Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
103H7821-0160	103H7821-0130	0.78	1	5.7	8.3	0.275	0.6	43.5
103H7821-0460	103H7821-0430	0.78	2	1.5	2	0.275	0.6	43.5
103H7821-0760	103H7821-0730	0.78	3	0.68	0.8	0.275	0.6	43.5
103H7822-0160	103H7822-0130	1.17	1	6.9	14	0.4	0.77	52.5
103H7822-0460	103H7822-0430	1.17	2	1.8	3.6	0.4	0.77	52.5
103H7822-0760	103H7822-0730	1.17	3	0.8	1.38	0.4	0.77	52.5
103H7823-0160	103H7823-0130	2.1	1	10	21.7	0.84	1.34	84.5
103H7823-0460	103H7823-0430	2.1	2	2.7	5.6	0.84	1.34	84.5
103H7823-0760	103H7823-0730	2.1	3	1.25	2.4	0.84	1.34	84.5

Characteristics diagram

103H7821-0140 103H7821-0110

103H7821-0160 103H7821-0130

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J.=0.94x10-kg.m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded loaded

103H7821-0740 103H7821-0710

103H7821-0760 103H7821-0730

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque:
JL=0.94×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

103H7821-0440 103H7821-0410

103H7821-0460 103H7821-0430

Constant current circuit Source voltage: 24 VDC Operating current: Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J_L=0.94×10-⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

103H7822-0160 103H7822-0130

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=2.6×10⁻⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not

■ Characteristics diagram

103H7822-0440 103H7822-0410

103H7822-0460 103H7822-0430

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J.=2.6x10*kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

103H7823-0140 103H7823-0110

103H7823-0160 103H7823-0130

Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J=7.4×10-4kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7823-0740 103H7823-0710

103H7823-0760 103H7823-0730

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: J=7.4×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7822-0740 103H7822-0710

103H7822-0760 103H7822-0730

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: JL=2.6x10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7823-0440 103H7823-0410

103H7823-0460 103H7823-0430

Constant current circuit Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=7.4×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

Internal wiring

Connector type

() connector pin number

Lead wire type

■ Dimensions (Unit: mm) ■

Connector type

Motor cable Unipolar Model no.: 4837798-1

Lead wire type

Compatible drivers •

Driver is not included.

If you require assistance finding a driver, contact us for details.

Operating current select switch setting: 0

The characteristics diagram shown above is from our experimental circuit.

mm sq.

1.8°/step RoHS

Bipolar winding, Connector type Bipolar winding, Lead wire type

Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Unipolar winding, Connector type ▶ p. 58 Unipolar winding, Lead wire type

Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch) p. 58

Customizing

Hollow Shaft modification

Decelerator Encoder

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Connector type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
103H7821-5740	103H7821-5710	0.88	2	1.27	3.3	0.275	0.6	44.8
103H7821-1740	103H7821-1710	0.88	4	0.35	8.0	0.275	0.6	44.8
103H7822-5740	103H7822-5710	1.37	2	1.55	5.5	0.4	0.77	53.8
103H7822-1740	103H7822-1710	1.37	4	0.43	1.38	0.4	0.77	53.8
103H7823-5740	103H7823-5710	2.7	2	2.4	9.5	0.84	1.34	85.8
103H7823-1740	103H7823-1710	2.7	4	0.65	2.4	0.84	1.34	85.8

Motor cable: model no. 4837961-1

Bipolar winding, Lead wire type Dimensions for attaching NEMA23 are interchangeable (47.14 mm-pitch)

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
103H7821-5760	103H7821-5730	0.88	2	1.27	3.3	0.275	0.6	43.5
103H7821-1760	103H7821-1730	0.88	4	0.35	8.0	0.275	0.6	43.5
103H7822-5760	103H7822-5730	1.37	2	1.55	5.5	0.4	0.77	52.5
103H7822-1760	103H7822-1730	1.37	4	0.43	1.38	0.4	0.77	52.5
103H7823-5760	103H7823-5730	2.7	2	2.4	9.5	0.84	1.34	84.5
103H7823-1760	103H7823-1730	2.7	4	0.65	2.4	0.84	1.34	84.5

Characteristics diagram

103H7821-5740 103H7821-5710

103H7821-5760 103H7821-5730

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J_L=2.6×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H7822-5760 103H7822-5730

Source voltage: 24 VDC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque:
JL=2.6×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

103H7821-1740 103H7821-1710

103H7821-1760 103H7821-1730

Constant current circuit
Source voltage: 24 VDC
Operating current:
4 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J=2.6×10-4kg-m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H7822-1740 103H7822-1710

103H7822-1760 103H7822-1730

Constant current circuit Source voltage: 24 VDC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=2.6×10⁻⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not

■ Characteristics diagram

103H7823-5740 103H7823-5710

103H7823-5760 103H7823-5730

Constant current circuit
Source voltage: 24 VDC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
JL=7.4×10-4g-m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

103H7823-1740 103H7823-1710

103H7823-1760 103H7823-1730

Constant current circuit Source voltage: 24 VDC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J.=7.4×10*4g·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Dimensions (Unit: mm) •

Connector type

Lead wire type

Motor cable Bipolar model no.: 4837961-1

Internal wiring

Connector type

() connector pin number, terminal block number

Lead wire type

■ Compatible drivers ■

For motor model no. 103H782

 — -17

 — 0 (4 A/phase)
 Driver is not included.

If you require assistance finding a driver, contact us for details.

For motors not listed above (2 A/phase)
 Model no.: BS1D200P10 (DC input)
 Operating current select switch setting: 0

86 mm sq.

1.8°/step RoHS

Unipolar winding, Lead wire type
Unipolar winding, Lead wire type CE/UL model

Bipolar winding, Lead wire type ▶p. 64
Bipolar winding, Lead wire type CE/UL model ▶p. 64
Bipolar winding, Terminal block type CE/UL model ▶p. 64

Customizing

Hollow Shaft modification

Encode

Varies depending on the model number and quantity. Contact us for details.

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m ²	kg	mm
SH2861-0441	SH2861-0411	2.5	2	2.3	8.0	1.48	1.75	66
SH2861-0941	SH2861-0911	2.5	4	0.6	2.0	1.48	1.75	66
SH2862-0441	SH2862-0411	4.7	2	3.2	13.0	3.0	2.9	96.5
SH2862-0941	SH2862-0911	4.7	4	0.85	3.4	3.0	2.9	96.5
SH2863-0441	SH2863-0411	6.7	2	4.0	17.0	4.5	4.0	127
SH2863-0941	SH2863-0911	6.7	4	0.9	4.2	4.5	4.0	127

Unipolar winding, Lead wire type CE/UL model

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10-4kg·m²	kg	mm
SM2861-0451	SM2861-0421	2.5	2	2.3	8.0	1.48	1.75	66
SM2861-0951	SM2861-0921	2.5	4	0.6	2.0	1.48	1.75	66
SM2862-0451	SM2862-0421	4.7	2	3.2	13.0	3.0	2.9	96.5
SM2862-0951	SM2862-0921	4.7	4	0.85	3.4	3.0	2.9	96.5
SM2863-0451	SM2863-0421	6.7	2	4.0	17.0	4.5	4.0	127
SM2863-0951	SM2863-0921	6.7	4	0.9	4.2	4.5	4.0	127

Characteristics diagram

SH2861-0441 SH2861-0411

SM2861-0451 SM2861-0421

Constant current circuit
Source voltage: 100 VAC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J=7.4×10-4kg-m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

SH2862-0441 SH2862-0411

SM2862-0451 SM2862-0421

Constant current circuit Source voltage: 100 VAC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J = 15.3×10 *kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2863-0441 SH2863-0411

SM2863-0451 SM2863-0421

Constant current circuit Source voltage: 100 VAC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=15.3x10-*kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2861-0941 SH2861-0911

SM2861-0951 SM2861-0921

Constant current circuit Source voltage: 100 VAC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=7.4×10-4g-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2862-0941 SH2862-0911

SM2862-0951 SM2862-0921

Constant current circuit Source voltage: 100 VAC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J⊫15.3×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not

SH2863-0941 SH2863-0911

SM2863-0951 SM2863-0921

Constant current circuit Source voltage: 100 VAC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J.=15.3×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

Dimensions (Unit: mm)

Lead wire type

Internal wiring

Lead wire type CE/UL model

■ Compatible drivers ■

Driver is not included.

If you require assistance finding a driver, contact us for details.

86 mm sq.

1.8°/step RoHS

Bipolar winding, Lead wire type Bipolar winding, Lead wire type CE/UL model Bipolar winding, Terminal block type CE/UL model Unipolar winding, Lead wire type ▶ p. 62

Unipolar winding, Lead wire type CE/UL model ▶ p. 62

Customizing

Hollow Shaft modification

Encoder

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10-4kg·m²	kg	mm
SH2861-5041	SH2861-5011	3.3	2	2.2	15	1.48	1.75	66
SH2861-5141	SH2861-5111	3.3	4	0.56	3.7	1.48	1.75	66
SH2861-5241	SH2861-5211	3.3	6	0.29	1.7	1.48	1.75	66
SH2862-5041	SH2862-5011	6.4	2	3.2	25	3.0	2.9	96.5
SH2862-5141	SH2862-5111	6.4	4	0.83	6.4	3.0	2.9	96.5
SH2862-5241	SH2862-5211	6.4	6	0.36	2.8	3.0	2.9	96.5
SH2863-5041	SH2863-5011	9	2	4.0	32	4.5	4.0	127
SH2863-5141	SH2863-5111	9	4	1.0	7.9	4.5	4.0	127
SH2863-5241	SH2863-5211	9	6	0.46	3.8	4.5	4.0	127

Bipolar winding, Lead wire type CE/UL model

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m²	kg	mm
SM2861-5051	SM2861-5021	3.3	2	2.2	15	1.48	1.75	66
SM2861-5151	SM2861-5121	3.3	4	0.56	3.7	1.48	1.75	66
SM2861-5251	SM2861-5221	3.3	6	0.29	1.7	1.48	1.75	66
SM2862-5051	SM2862-5021	6.4	2	3.2	25	3.0	2.9	96.5
SM2862-5151	SM2862-5121	6.4	4	0.83	6.4	3.0	2.9	96.5
SM2862-5251	SM2862-5221	6.4	6	0.36	2.8	3.0	2.9	96.5
SM2863-5051	SM2863-5021	9	2	4.0	32	4.5	4.0	127
SM2863-5151	SM2863-5121	9	4	1.0	7.9	4.5	4.0	127
SM2863-5251	SM2863-5221	9	6	0.46	3.8	4.5	4.0	127

Bipolar winding, Terminal block type CE/UL model

Model no.	Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg·m ²	kg	mm
SM2861-5066	3.3	2	2.03	15	1.48	1.9	97.9
SM2861-5166	3.3	4	0.52	3.7	1.48	1.9	97.9
SM2861-5266	3.3	6	0.27	1.7	1.48	1.9	97.9
SM2862-5066	6.4	2	3.08	25	3.0	3.05	128.4
SM2862-5166	6.4	4	0.79	6.4	3.0	3.05	128.4
SM2862-5266	6.4	6	0.33	2.8	3.0	3.05	128.4
SM2863-5066	9	2	3.83	32	4.5	4.15	158.8
SM2863-5166	9	4	0.96	7.9	4.5	4.15	158.8
SM2863-5266	9	6	0.48	3.8	4.5	4.15	158.8

Characteristics diagram

SH2861-5041 SH2861-5011

SM2861-5051 SM2861-5021

SM2861-5066

Constant current circuit
Source voltage: 100 VAC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J_L=15.3×10*kg.m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not loaded

SH2861-5141 SH2861-5111

SM2861-5151 SM2861-5121

SM2861-5166

Constant current circuit
Source voltage: 100 VAC
Operating current:
4 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=15.3×10*4g.m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not frequency when not loaded

Characteristics diagram

SH2861-5241 SH2861-5211

SM2861-5251 SM2861-5221

SM2861-5266

Constant current circuit Source voltage: 100 VAC Operating current: 6 A/phase, 2-phase energization (full-step) Pull-out torque: J=15.3x10-kg-m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SM2862-5151 SM2862-5121

SM2862-5166

Constant current circuit Source voltage: 100 VAC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=15.3×10⁻⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2863-5041 SH2863-5011

SM2863-5051 SM2863-5021

SM2863-5066

Constant current circuit
Source voltage: 100 VAC
Operating current:
2 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J_L=44×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

SH2863-5241 SH2863-5211

SM2863-5251 SM2863-5221

SM2863-5266

Constant current circuit Source voltage: 100 VAC Operating current: 6 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=44×10-⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2862-5041 SH2862-5011

SM2862-5051 SM2862-5021

SM2862-5066

Constant current circuit Source voltage: 100 VAC Operating current: 2 A/phase, 2-phase energization (full-step) Pull-out torque: J.=15.3×10*kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2862-5241 SH2862-5211

SM2862-5251 SM2862-5221

SM2862-5266

Constant current circuit Source voltage: 100 VAC Operating current: 6 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=15.3×10 °kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

SH2863-5141 SH2863-5111

SM2863-5151 SM2863-5121

SM2863-5166

Constant current circuit
Source voltage: 100 VAC
Operating current:
4 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J_L=44×10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

■ Dimensions (Unit: mm)

Lead wire type

Lead wire type CE/UL model

Internal wiring

Lead wire type

Terminal block type CE/UL model

Compatible drivers

Driver is not included.

If you require assistance finding a driver, contact us for details.

1.8°/step RoHS

Unipolar winding, Lead wire type Bipolar winding, Lead wire type

Customizing

Hollow Shaft modification Brake

Varies depending on the model number and quantity. Contact us for details

Unipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m²	kg	mm
103H89222-0941	103H89222-0911	10.8	4	0.98	6.3	14.6	7.5	163.3
103H89223-0941	103H89223-0911	15.5	4	1.4	9.7	22	10.5	221.3

Bipolar winding, Lead wire type

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m ²	kg	mm
103H89222-5241	103H89222-5211	13.2	6	0.45	5.4	14.6	7.5	163.3
103H89223-5241	103H89223-5211	19	6	0.63	8	22	10.5	221.3

Characteristics diagram

103H89222-0941 103H89222-0911

Constant current circuit Constant current circuit Source voltage: 100 VAC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J.=44×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded loaded

103H89222-5241

103H89222-5211

Constant current circuit
Source voltage: 100 VAC
Operating current:
6 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁=44×10⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not

frequency when not

loaded

Number of rotations (min-1)

103H89223-0941 103H89223-0911

Constant current circuit Source voltage: 100 VAC Operating current: 4 A/phase, 2-phase energization (full-step) Pull-out torque: J=44x10-4kg·m² (use the fs: Maximum self-start frequency when not loaded

103H89223-5241 103H89223-5211

Constant current circuit Source voltage: 100 VAC Operating current: 6 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=44×10⁻⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not

■ Dimensions (Unit: mm) ■

Internal wiring •

Unipolar

Bipolar

Compatible drivers =

Driver is not included.

If you require assistance finding a driver, contact us for details.

56 mm sq.

1.8°/step RoHS

Unipolar winding, Lead wire type CE model

Customizing

Hollow Shaft r

Varies depending on the model number and quantity. Contact us for details

Pull-out torque

100

Unipolar winding, Lead wire type CE model

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg·m²	kg	mm
103H7121-6140	103H7121-6110	0.39	1	4.8	8	0.1	0.47	41.8
103H7121-6740	103H7121-6710	0.39	3	0.6	0.8	0.1	0.47	41.8
103H7123-6140	103H7123-6110	0.83	1	6.7	15	0.21	0.65	53.8
103H7123-6740	103H7123-6710	0.78	3	0.77	1.58	0.21	0.65	53.8
103H7126-6140	103H7126-6110	1.27	1	8.6	19	0.36	0.98	75.8
103H7126-6740	103H7126-6710	1.27	3	0.9	2.2	0.36	0.98	75.8

Characteristics diagram

103H7121-6140 103H7121-6110

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step) Pull-out torque: J=0.94×10-4kg.m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7123-6140

103H7123-6110

Source voltage: 24 VDC Operating current: 1 A/phase, 2-phase energization (full-step)

Pull-out torque:
JL=0.94×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start

frequency when not

loaded

1000 2000 3000 5000

Number of rotations (min-1)

103H7123-6740 103H7123-6710

103H7121-6740

103H7121-6710

Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase

energization (full-step)
Pull-out torque:
J_L=0.94×10⁻⁴kg·m² (use the

rubber coupling) fs: Maximum self-start frequency when not

0.4

0.3

0.2 0 1

0.1

(N·m)

Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque:
J_L=0.94×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not

103H7126-6740 103H7126-6710

Constant current circuit Constant current circuit Source voltage: 24 VDC Operating current: 3 A/phase, 2-phase energization (full-step) Pull-out torque: Ji=2.6×10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

103H7126-6140 103H7126-6110

Constant current circuit Source voltage: 24 VDC Operating current: I A/phase, 2-phase energization (full-step)
Pull-out torque:
JL=2.6x10-4kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

Dimensions (Unit: mm)

Internal wiring —

Compatible drivers

· For motor model no. 103H712 □

-67 □ 0 (3 A/phase) Driver is not included.

If you require assistance finding a

driver, contact us for details.

For motors not listed above (1 A/

Model no.: US1D200P10 (DC input) Operating current select switch setting: A

1.8°/step RoHS

Bipolar winding, Lead wire type CE model

Customizing

Hollow Shaft modific

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type CE model

Model no.	Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10 ⁻⁴ kg⋅m²	kg	mm
103H8221-6240 103H8221-621	2.74	6	0.3	1.65	1.45	1.5	62
103H8222-6340 103H8222-631	5.09	6	0.35	2.7	2.9	2.5	92.2
103H8223-6340 103H8223-631	7.44	6	0.45	3.4	4.4	3.5	125.9

■ Characteristics diagram

103H8221-6240 103H8221-6210

Constant current circuit
Source voltage: 100 VAC
Operating current:
6 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J=7.4×10-4kg-m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded loaded

103H8223-6340 103H8223-6310

Constant current circuit
Source voltage: 100 VAC
Operating current:
6 A/phase, 2-phase
energization (full-step)
Pull-out torque:
J₁₋₂44×10-⁴kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

Number of rotations (min-1)

103H8222-6340 103H8222-6310

Constant current circuit
Source voltage: 100 VAC
Operating current:
6 A/phase, 2-phase
energization (full-step)
Pull-out torque:
Ji=15.3x10-kg.m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

1000 2000 3000 5000 Number of rotations (min⁻¹)

■ Dimensions (Unit: mm) ¹

Internal wiring

Compatible drivers =

Driver is not included.

If you require assistance finding a driver, contact us for details.

Ø106 mm

1.8°/step RoHS

Bipolar winding, Lead wire type CE model

Customizing

Hollow Shaft modification

Varies depending on the model number and quantity. Contact us for details.

Bipolar winding, Lead wire type CE model

Model no.		Holding torque at 2-phase energization	Rated current	Wiring resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
Single shaft	Dual shaft	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg⋅m²	kg	mm
103H89222-6341	103H89222-6311	13.2	6	0.45	5.4	14.6	7.5	163.3
103H89223-6341	103H89223-6311	19	6	0.63	8	22	10.5	221.3

Characteristics diagram

103H89222-6341 103H89222-6311

Constant current circuit
Source voltage: 100 VAC
Operating current:
6 A/phase, 2-phase
energization (full-step)
Pull-out torque:
JL=44x10-4kg·m² (use the
rubber coupling)
fs: Maximum self-start
frequency when not
loaded

103H89223-6341 103H89223-6311

Constant current circuit Source voltage: 100 VAC Operating current: 6 A/phase, 2-phase energization (full-step) Pull-out torque: J_L=44×10-⁴kg·m² (use the rubber coupling) fs: Maximum self-start frequency when not loaded

■ Dimensions (Unit: mm) ■

Internal wiring —

Compatible drivers —

Driver is not included.

If you require assistance finding a driver, contact us for details.

Allowable Radial/Thrust Load

		Distance f	rom end of	shaft: mm		Thrustland
Motor size	Model no.	0	5	10	15	- Thrust load - N
		Radial load		I V		
14 mm sq.	SH214 🗌	10	11	13	_	0.7
28 mm sq.	SH228 □	42	48	56	66	3
35 mm sq.	SH353 🗌	40	50	67	98	10
	SF242 🗌	20	29	49	68	- 10
42 mm sq.	SH142 🗌	22	26	33	46	- 10
	SS242 🗌	10	_	_	_	4.9
E0 mm oa	103H670 🗌	71	87	115	167	15
50 mm sq.	SS250 🗆	8.5	-	-	_	4.9
EG mm og	103H712 🗌	52	65	85	123	15
56 mm sq.	103H7128	85	105	138	200	15
60 mm sq.	103H782 🗌	- 70	87	114	165	20
oo iiiii sq.	SH160 □	70	67	114	105	15
86 mm sq.	SM286 □	167	193	229	280	60
oo miii sq.	SH286 □	107	190	223	200	00
^ø 86 mm	103H822 🗌	191	234	301	421	60
°106 mm	103H8922 🗌	321	356	401	457	100

Internal Wiring and Rotation Direction

Unipolar winding

Connector type model no.: SF242

■ Internal wire connection

() connector pin number

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Connector pin no.							
		(3, 9)	(1)	(7)	(5)	(11)			
	1	+	-	-					
Exciting order	2	+		-	-				
	3	+			-	-			
	4	+	-			-			

Connector type model no.: 103H782 □□

Internal wire connection

() connector pin number

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Connector pin no.						
		(1, 6)	(4)	(3)	(5)	(2)		
	1	+	-	-				
Exciting order	2	+		-	-			
	3	+			-	-		
	4	+	-			-		

Lead wire type

Internal wire connection

■ Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Lead wire col	Lead wire color							
		White, black	Red	Blue	Yellow	Orange				
	1	+	-	-						
Exciting order	2	+		-	-					
	3	+			-	-				
	4	+	_			-				

Bipolar winding

Connector type model no.: SF242

Internal wire connection

() connector pin number

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Connector pin no.					
		(3)	(7)	(5)	(9)		
	1	-	-	+	+		
Exciting order	2	+	-	-	+		
	3	+	+	-	-		
	4	_	+	+	_		

Connector type model no.: 103H782

Internal wire connection

() connector pin number

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

	Connector pin no.				
		(3)	(2)	(4)	(1)
Exciting order	1	-	-	+	+
	2	+	-	-	+
	3	+	+	-	-
	4	-	+	+	-

Lead wire type

Internal wire connection

Direction of motor rotation

When excited by a direct current in the order shown below, the direction of rotation is clockwise as viewed from the output shaft side.

		Lead wire color				
		Red	Blue	Yellow	Orange	
Exciting order	1	-	-	+	+	
	2	+	-	-	+	
	3	+	+	-	-	
	4	_	+	+	-	

General Specifications

Motor model no.	SH214 🗌	SH228 🗌	SH353 🗌	SS242 🗌	SH142 🗌	SF242 🗌	SS250 🗌	103H670 🗌	103H712 🗌		
Туре	_										
Operating ambient temperature	-10 to +50°C	;									
Storage temperature	-20 to +65°C	;									
Operating ambient humidity	20 to 90% R	H (no conder	nsation)								
Storage humidity	5 to 95% RH	l (no condens	sation)								
Operation altitude	1000 m max	k. above sea l	level								
Vibration resistance	Vibration from Hz), sweep	equency 10 to time 15 min/o	o 500 Hz, tota cycle, 12 swe	al amplitude eps in each 2	1.52 mm (10 X, Y and Z di	to 70 Hz), vib rection.	ration accele	ration 150 m/s	s² (70 to 500		
Impact resistance							(, Y, and Z axe	s each, 18 time	es in total.		
Thermal class	Class B (+13	B (+130°C)									
Withstandable voltage		ormal temperature and humidity, no failure with 500 VAC @50/60 Hz applied for one ute between motor winding and frame. At nor humid @50/6 between motor winding and frame.									
Insulation resistance	At normal to	emperature a	nd humidity	, not less tha	n 100 MΩ be	tween windir	ng and frame	by 500 VDC n	negger.		
Protection grade	_										
Winding temperature rise	80 K max. (I	Based on SAI	NYO DENKI s	standard)							
Static angle error	±0.09°				±0.054°	±0.09°			±0.054°		
Thrust play *1	0.075 mm max. (load: 0.35 N)	0.075 mm max. (load: 1.5 N)	0.075 mm max. (load: 5 N)	0.075 mm max. (load: 4 N)	0.075 mm max. (load: 5 N)	0.075 mm (load: 5 N)	0.075 mm max. (load: 4 N)	0.075 mm (load: 10 N)	0.075 mm (load: 10 N)		
Radial play *2	0.025 mm n	nax. (Ioad: 5 l	N)								
Shaft runout	0.025 mm										
Concentricity of mounting pilot relative to shaft	ø0.05 mm	ø0.05 mm	ø0.075 mm	ø0.075 mm	ø0.05 mm	ø0.05 mm	ø0.075 mm	ø0.075 mm	ø0.075 mm		
0 (.:	0.1 mm	0.1 mm	0.1 mm	0.1 mm	0.1 mm	0.1 mm	0.1 mm	0.075 mm	0.075 mm		
Squareness of mounting	0.1 111111	0.1 mm ly mounted v			0.1 mm	0.1 mm	0.1 mm	0.075 mm	0.075 mm		
Squareness of mounting surface relative to shaft	0.1 111111					103H712 🗆 -	6 🗆 0 103H82	2 -6 -0 103	H8922 □ -63 □ 1		
Squareness of mounting surface relative to shaft Direction of motor mounting	Can be free	ly mounted v	ertically or h	orizontally	SM286		6 0 103H822 CE Mod	2 -6 -0 103			
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type	Can be free	ly mounted v	ertically or h	orizontally	SM286	103H712 - CE Model	6 0 103H822 CE Mod	2 -6 -0 103	H8922 □ -63 □		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature	Can be free SH160 10 to +50°C	ly mounted v	ertically or h	orizontally	SM286 S1 (contin	103H712 - 4 CE Model auous operati	6 0 103H822 CE Mod	2 -6 -0 103	H8922 🗆 -63 🗆 '		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no.	Can be free SH160 10 to +50°C -20 to +65°C	y mounted v	SH286	orizontally	SM286 S1 (contire -10 to +40 -20 to +60	103H712 - 4 CE Model auous operati	6 0 103H822 CE Mod	2 -6 -0 0 103 el CE	H8922 🗆 -63 🗆 '		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R	y mounted v	SH286 ssation)	orizontally	SM286 S1 (conting -10 to +40 -20 to +60 95% RH m 95% RH m	103H712 CE Model HUOUS OPERATI °C °C nax. at 40°C onax. at 40°C onax. at 40°C onax.	6 0 103H82: CE Mod on) r less (no con r less, 57% RI	2 -6 0 103 el CE	H8922		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RF	ly mounted v	SH286 ssation)	orizontally	SM286 S1 (conting -10 to +40 -20 to +60 95% RH m 95% RH m	103H712 CE Model Hugues operati °C °C nax. at 40°C o	6 0 103H82: CE Mod on) r less (no con r less, 57% RI	2 -6 0 103 el CE	H8922		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration free	In mounted v	SH286 ssation) seation) level 500 Hz, tota	103H8922	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S6 (continue) S7 (contin	103H712 - 4 CE Model nuous operati °C °C nax. at 40°C o nax. at 40°C o nax. at 60°C o	G O 103H82: CE Mod on) r less (no con r less, 57% Ri r less (no con	2 -6 0 103 el CE	H8922 -63 -63 Model		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe	In mounted variation of the property of the pr	SH286 ssation) level 500 Hz, tota nin/cycle, 12	103H8922	SM286 S1 (continue) S1 (continue) -10 to +40 -20 to +60 95% RH m 95% RH m 35% RH m 1.52 mm (10 ach X, Y and	103H712 CE Model nuous operati °C °C nax. at 40°C o nax. at 40°C o nax. at 60°C o	G 0 103H822 CE Mod on) r less (no con r less, 57% Ri r less (no con	2 -6 0 103 cE CE	H8922 -63 -63 Model C or less,		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe	H (no condense, above seal equency 10 to each effect that is acceleration for the second seco	SH286 ssation) level 500 Hz, tota nin/cycle, 12	103H8922	SM286 S1 (continue) S1 (continue) -10 to +40 -20 to +60 95% RH m 95% RH m 35% RH m 1.52 mm (10 ach X, Y and	103H712 CE Model nuous operati °C °C nax. at 40°C o nax. at 40°C o nax. at 60°C o	on) r less (no con r less, 57% Ri r less (no con accele	el 103 cE	H8922 -63 -1 Model C or less,		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration free 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwe	H (no condense above sea lequency 10 to eep time 15 nacceleration f 80°C) In perature and h VAC @50/60 Hz en motor windi	sation) sation) level 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for on- ng and frame.	al amplitude sweeps in each half-sine wa	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S6 (continue) S7 (continue) S7 (continue) S8 (continue) S8 (continue) S9 (contin	103H712 CE Model uous operati °C °C nax. at 40°C o nax. at 60°C o to 70 Hz), vib Z direction. three times fo Class B (+ and humidit between mo	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure votor winding a	densation) H max. at 50°(densation) ration 150 m/s axes each, 18	C or less, 2² (70 to times in total		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration free 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwe	H (no condense above sea lequency 10 to eep time 15 nacceleration f 80°C) In perature and h VAC @50/60 Hz en motor windi	sation) sation) level 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for on- ng and frame.	al amplitude sweeps in each half-sine wa	SM286 S1 (continue) S1 (continue) -10 to +40 -20 to +60 95% RH m 95% RH m 35% RH m 1.52 mm (10 ach X, Y and ave applying Class F (+155°C) temperature one minute m 100 MΩ be	103H712 CE Model uous operati °C °C nax. at 40°C o nax. at 60°C o to 70 Hz), vib Z direction. three times fo Class B (+ and humidit between mo	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure votor winding a	densation) H max. at 50°(densation) ration 150 m/s exes each, 18	C or less, 2² (70 to times in total		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration free 500 Hz), swe 500 m/s² of a Class B (+13 At normal tenure with 1000 minute betwe At normal tenure with 1000	H (no condense above sea lequency 10 to eep time 15 nacceleration f 80°C) In perature and h VAC @50/60 Hz en motor winding emperature and manufacture and man	sation) sation) level 5500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for on- ng and frame.	al amplitude sweeps in ean half-sine water applied for mot less the	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S6 (continue) S7 (continue) S7 (continue) S8 (continue) S8 (continue) S9 (contin	103H712 CE Model uous operati °C °C nax. at 40°C o nax. at 60°C o to 70 Hz), vib Z direction. three times fo Class B (+ and humidit between mo	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure votor winding a	densation) H max. at 50°(densation) ration 150 m/s axes each, 18	H8922 G-63 GModel C or less, S ² (70 to times in total		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration free 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwe At normal te - 80 K max. (I	H (no condense above sea lequency 10 to eep time 15 n acceleration f 80°C) In perature and h VAC @50/60 Hz en motor winding emperature and assed on SAI	sation) sation) level 5500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for on- ng and frame.	al amplitude sweeps in ean half-sine water applied for mot less the	SM286 S1 (continue) S1 (continue) -10 to +40 -20 to +60 95% RH m 95% RH m 35% RH m 1.52 mm (10 ach X, Y and ave applying Class F (+155°C) temperature one minute m 100 MΩ be	103H712 CE Model uous operati °C °C nax. at 40°C o nax. at 60°C o to 70 Hz), vib Z direction. three times fo Class B (+ and humidit between mo	on) r less (no con r less, 57% Ri r less (no con r less (no con ration accele or X, Y and Z a 130°C) y, no failure v tor winding and frame	densation) H max. at 50°(densation) ration 150 m/s axes each, 18 with 1500 VAC nd frame. by 500 VDC n	H8922 G-63 GModel C or less, S ² (70 to times in total		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error	Can be free SH160 □ 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% R 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal ten ure with 1000 minute betwe At normal te 80 K max. (I ±0.054°	H (no condense to above sea lequency 10 to acceleration from S0°C) In perature and h VAC @50/60 Hz en motor winding to accelerature as a sased on SAI ±0.09°	sation) sation) sevel 5500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. and humidity NYO DENKI s	al amplitude sweeps in ean half-sine water applied for mot less the	SM286 S1 (continue) S1 (continue) -10 to +40 -20 to +60 95% RH m 95% RH m 35% RH m 1.52 mm (10 ach X, Y and ave applying Class F (+155°C) temperature one minute m 100 MΩ be	103H712 CE Model uous operati °C °C nax. at 40°C o nax. at 60°C o to 70 Hz), vib Z direction. three times fo Class B (+ and humidit between mo	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure votor winding a	densation) H max. at 50°(densation) ration 150 m/s axes each, 18 with 1500 VAC nd frame. by 500 VDC n	H8922 G-63 GModel C or less, S ² (70 to times in total		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade	Can be free SH160 □ 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% R 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal ten ure with 1000 minute betwe At normal te - 80 K max. (I ±0.054° 0.075 mm m	H (no condense to above sea lequency 10 to eep time 15 nacceleration f 80°C) Inperature and h VAC @50/60 Hz en motor winding emperature and above sea lequency 10 to eep time 15 nacceleration f 80°C) Inperature and h VAC @50/60 Hz en motor winding emperature and eased on SAI ±0.09° enax. (load: 10	sation) sation) setion) level 5 500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for on- ng and frame. and humidity NYO DENKI settles	al amplitude sweeps in ear half-sine war applied for not less the standard)	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S6 (continue) S7 (continue) S8 (continue) S8 (continue) S8 (continue) S9 (conti	103H712 CE Model uous operati °C °C nax. at 40°C o nax. at 40°C o nax. at 60°C o to 70 Hz), vib Z direction. three times fo Class B (+ and humidit between mo tween windir	on) r less (no con r less, 57% Ri r less (no con r less (no con ration accele or X, Y and Z at 130°C) y, no failure v tor winding and frame	densation) H max. at 50°d densation) ration 150 m/s axes each, 18 with 1500 VAC and frame. by 500 VDC n	C or less, 2 (70 to times in total compager.		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe 500 m/s² of st Class B (+13 At normal term re with 1000 minute betwe At normal term - 80 K max. (I ±0.054° 0.075 mm n 0.025 mm (load: 5 N)	H (no condense to above sea lequency 10 to acceleration from S0°C) In perature and h VAC @50/60 Hz en motor winding to accelerature as a sased on SAI ±0.09°	sation) sation) sevel 5500 Hz, tota nin/cycle, 12 or 11 ms with umidity, no fail applied for oning and frame. and humidity NYO DENKI s	al amplitude sweeps in ean half-sine water applied for mot less the	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S6 (continue) S7 (continue) S8 (continue) S9 (conti	103H712	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure v tor winding and frame ±0.09°	densation) H max. at 50°(densation) ration 150 m/s axes each, 18 with 1500 VAC nd frame. by 500 VDC n	H8922 -63 - Model C or less, s² (70 to times in total		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2 Shaft runout	Can be free SH160 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RH 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal tem ure with 1000 minute betwe At normal te - 80 K max. (I ±0.054° 0.075 mm n 0.025 mm	H (no condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep t	sation) sation) setion) setion	al amplitude sweeps in each half-sine water applied for mot less the standard) 0.025 mm	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S5 (continue) S6 (continue) S7 (continue) S7 (continue) S8 (continue) S8 (continue) S8 (continue) S8 (continue) S9 (conti	103H712	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure v tor winding and frame ±0.09°	densation) H max. at 50°(densation) ration 150 m/s axes each, 18 with 1500 VAC nd frame. by 500 VDC n	H8922 -63 Model C or less, 2 (70 to times in total C @50/60 Hz		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2 Shaft runout Concentricity of mounting pilot relative to shaft	Can be free SH160 □ 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RI- 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal terrure with 1000 minute betwe At normal terrure with 1000 minute betwe 0.075 mm n 0.025 mm (load: 5 N) 0.025 mm	H (no condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep t	sation) sation) setion) setion	al amplitude sweeps in each half-sine water applied for mot less the standard) 0.025 mm	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S5 (continue) S6 (continue) S7 (continue) S7 (continue) S8 (continue) S8 (continue) S8 (continue) S8 (continue) S9 (conti	103H712	on) r less (no con r less, 57% Ri r less (no con ration accele or X, Y and Z at 130°C) y, no failure v tor winding and frame ±0.09°	densation) H max. at 50°(densation) ration 150 m/s axes each, 18 with 1500 VAC nd frame. by 500 VDC n	H8922		
Squareness of mounting surface relative to shaft Direction of motor mounting Motor model no. Type Operating ambient temperature Storage temperature Operating ambient humidity Storage humidity Operation altitude Vibration resistance Impact resistance Thermal class Withstandable voltage Insulation resistance Protection grade Winding temperature rise Static angle error Thrust play *1 Radial play *2 Shaft runout Concentricity of mounting	Can be free SH160 □ 10 to +50°C -20 to +65°C 20 to 90% R 5 to 95% RI- 1000 m max Vibration fre 500 Hz), swe 500 m/s² of a Class B (+13 At normal terrure with 1000 minute betwe At normal terrure with 1000 minute betwe 0.075 mm n 0.025 mm (load: 5 N) 0.025 mm	H (no condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep time 15 nacceleration from the condense above sea lequency 10 to eep t	sation) sation) setion) setion	al amplitude sweeps in each half-sine water applied for mot less the standard) 0.025 mm	SM286 S1 (continue) S1 (continue) S1 (continue) S1 (continue) S2 (continue) S3 (continue) S4 (continue) S5 (continue) S5 (continue) S6 (continue) S7 (continue) S7 (continue) S8 (continue) S8 (continue) S8 (continue) S8 (continue) S9 (conti	103H712	on) r less (no con r less, 57% Ri r less (no con r less (no con ration accele or X, Y and Z at 130°C) y, no failure valor winding and frame ±0.09° 0.025 (load:	densation) H max. at 50°(densation) ration 150 m/s axes each, 18 with 1500 VAC nd frame. by 500 VDC n mm 0.0 5 N) (lo	H8922 -63 Model C or less, 2 (70 to times in total C @50/60 Hz		

■ Safety standards

Model no.: SM286 $\ \square$ CE/UL marked models

CE	Standard category		Applicable standard			
(TÜV)	Low-voltage directive	es	EN 60034-1, EN 60034-5			
` ' -		Applicable standard	File no.			
UL	UL	UL 1004-1, UL 1004-6	E170922			
	UL for Canada	CSA C22.2 No.100	E179632			

Model no	.: 103H712 🗆 -6 🗆 0, 103H822 🗆 -6 🗆 0, 103H	18922	-63 [ີ 1	CE i	marked model

	Standard category	Applicable standard
(TÜV)	Low-voltage directives	EN 60034-1, EN 60034-5

^{*1} Thrust play: Shaft displacement under axial load.
*2 Radial play: Shaft displacement under radial load applied 1/3rd of the length from the end of the shaft.

IP65 Splash and Dust Proof Stepping Motors Waterproof, dustproof

■ Features •

- ·These IP65 rated motors* have superior water and dust resistance, and can be safely utilized in harsh or wet environments such as in food processing machines.
 - *Except for the shaft and the cable end.
- The input voltage range of the motors is up to 250 VAC.
- · Brake, encoder, and oil seal can be combined.

Safety standards =

CE/UL-certified.

Specifications

	56 mm sq.	86 mm sq.					
Motor model no.	SP256 □ -5 □□ 0	SP286 □ -5 □□ 0					
Туре	S1 (continuous operation)						
Operating ambient temperature	-10 to +40°C						
Storage temperature	-20 to +60°C						
Operating ambient humidity	95% RH max. at 40°C or less (no co	ondensation)					
Storage humidity	95% RH max. at 40°C or less, 57% max. at 60°C or less (no condensate	•					
Operation altitude	1000 m max. above sea level						
Vibration resistance		Vibration frequency 10 to 500 Hz, total amplitude 1.52 mm (10 to 70 Hz), vibration acceleration 150 m/s² (70 to 500 Hz), sweep time 15 min/cycle, 12 sweeps in each X. Y and Z direction.					
Impact resistance		500 m/s ² of acceleration for 11 ms with half-sine wave applying three times for X, Y and Z axes each, 18 times in total.					
Thermal class	Class F (+155°C)						
Withstandable voltage	At normal temperature and humid @ 50/60 Hz applied for one minute	ity, no failure with 1500 VAC between motor winding and frame.					
Insulation resistance	At normal temperature and humid winding and frame by 500 VDC me						
Protection grade	IP65 (Except for the shaft and the c	eable end)					
Winding temperature rise	100 K max. (Based on SANYO DEN	IKI standard)					
Static angle error	±0.054°	±0.09°					
Thrust play	0.075 mm max. (load: 10 N)						
Radial play	0.025 mm max. (load: 5 N)						
Shaft runout	0.025 mm						
Concentricity of mounting pilot relative to shaft	ø0.075 mm						
Squareness of mounting surface relative to shaft	0.1 mm 0.15 mm						
Direction of motor mounting	Can be freely mounted vertically o	r horizontally					

Safaty standards

Sait	Salety Standards										
CE	Standard category	Applicable standard									
CE	Low-voltage directives	EN 60034-1, EN 60034-5									
	Acquired standards	Applicable standard	File no.								
UL	UL	UL 1004-1, UL 1004-6	E179832								
	UL for Canada (c-UL)	CSA C22.2 No.100	E179032								

Internal wiring and rotation direction

Bipolar winding

Internal wire connection

() connector pin number

Compatible drivers

Driver is not included.

If you require assistance finding a driver, contact us for details.

Direction of motor rotation

The output shaft rotates clockwise as seen from the shaft side, when excited by DC in the following order.

Lead wire c	olor	Red	Blue	Yellow	Orange
Connector pin no.		3	2	4	1
	1	-	-	+	+
Exciting	2	+	-	-	+
order	3	+	+	-	-
	4	-	+	+	_

56 mm sq.

1.8°/step RoHS

Bipolar winding

Model no.		Holding torque at 2-phase energization	Rated current	Winding resistance	Winding inductance	Rotor inertia	Mass	Allowable thrust load	Allowable radial load
Cable type	Connector type	N·m min.	A/phase	Ω/phase	mH/phase	×10⁴kg⋅m²	kg	N	N
SP2563-5060	SP2563-5000	1	1	5.8	29	0.21	0.9	15	52
SP2563-5160	SP2563-5100	1	2	1.5	7.3	0.21	0.9	15	52
SP2563-5260	SP2563-5200	1	3	0.75	3.4	0.21	0.9	15	52
SP2566-5060	SP2566-5000	1.7	1	7.8	35.4	0.36	1.2	15	23
SP2566-5160	SP2566-5100	1.7	2	2	9.2	0.36	1.2	15	23
SP2566-5260	SP2566-5200	1.7	3	1	4.4	0.36	1.2	15	23

[·] The model no., rotor inertia and mass differ when the motor is equipped with brake, encoder or oil seal.

Characteristics diagram

SP2563-5000 SP2563-5060

Constant current circuit
Source voltage: 100 VAC
Operating current: 1 A/phase, 2-phase energization (full-step)
Pull-out torque: J.=2.6x10*kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2563-5200 SP2563-5260

Number of rotations (min')
Constant current circuit
Source voltage: 100 VAC
Operating current: 3 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=2,6x10*kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2566-5100 SP2566-5160

Constant current circuit
Source voltage: 100 VAC
Operating current: 2 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=7.4×10 *kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2563-5100 SP2563-5160

Constant current circuit
Source voltage: 100 VAC
Operating current: 2 A/phase, 2-phase energization (full-step)
Pull-out torque: J.=2.6x10 *kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2566-5000 SP2566-5060

Number of rotations (min*)
Constant current circuit
Source voltage: 100 VAC
Operating current: 1 A/phase, 2-phase energization (full-step)
Pull-out torque: Ju-37.4×10*4g·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2566-5200 SP2566-5260

Constant current circuit
Source voltage: 100 VAC
Operating current: 3 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=7.4x10°kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

Dimensions (Unit: mm)

56 mm sq.

Connector type

Model no.		Motor length
Cable type	Connector type	(L)
SP2563-5 🗌 60	SP2563-5 🗌 00	80
SP2566-5 60	SP2566-5 00	102

86 mm sq.

1.8°/step RoHS

Bipolar winding

Model no.		Holding torque at 2-phase	Rated	Winding r	esistance Connector	Winding	Rotor	Mass	Allowable	Allowable	
		energization	current	Cable type	type	inductance	inertia		thrust load	radial load	
Cable type	Connector type	N·m min.	A/phase	Ω/phase	Ω/phase	mH/phase	×10⁻⁴kg⋅m²	kg	N	N	
SP2861-5060	SP2861-5000	3.3	2	2.1	2.05	15	1.48	1.95	60	200	
SP2861-5160	SP2861-5100	3.3	4	0.61	0.56	3.7	1.48	1.95	60	200	
SP2861-5260	_	3.3	6	0.36	-	1.7	1.48	1.95	60	200	
SP2862-5060	SP2862-5000	6.4	2	3.2	3.2	25	3	3.1	60	200	
SP2862-5160	SP2862-5100	6.4	4	0.85	0.83	6.4	3	3.1	60	200	
SP2862-5260	_	6.4	6	0.41	-	2.8	3	3.1	60	200	
SP2863-5060	SP2863-5000	9	2	4	4	32	4.5	4.2	60	200	
SP2863-5160 SP2863-5100 SP2863-5260 —		9	4	1.05	1	7.9	4.5	4.2	60	200	
		9	6	0.53	-	3.8	4.5	4.2	60	200	

- · The model no., rotor inertia and mass differ when the motor is equipped with brake, encoder or oil seal.
- The rated current of the motor with the connector is 4 A or less.

Characteristics diagram

SP2861-5000 SP2861-5060

Constant current circuit
Source voltage: 100 VAC
Operating current: 2 A/phase, 2-phase energization (full-step)
Pull-out torque: J₁=15.3×10 4kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2861-5260

Nulliber of rotations (nime)
Constant current circuit
Source voltage: 100 VAC
Operating current: 6 A/phase, 2-phase energization (full-step)
Pull-out torque: J_i=15.3×10⁻⁴kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2862-5100 SP2862-5160

Constant current circuit
Source voltage: 100 VAC
Operating current: 4 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=15.3×10-4kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2861-5100 SP2861-5160

Constant current circuit
Source voltage: 100 VAC
Operating current: 4 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=15.3×10-4kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2862-5000 SP2862-5060

Constant current circuit
Source voltage: 100 VAC
Operating current: 2 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=15.3×10-4kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2862-5260

Constant current circuit
Source voltage: 100 VAC
Operating current: 6 A/phase, 2-phase energization (full-step)
Pull-out torque: Ju-15.3×10-4kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

IP65 Splash and Dust Proof Stepping Motors

Characteristics diagram

SP2863-5000 SP2863-5060

Number of rotations (min')
Constant current circuit
Source voltage: 100 VAC
Operating current: 2 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=44x10*kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2863-5260

Constant current circuit
Source voltage: 100 VAC
Operating current: 6 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=44x10 4kg·m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

SP2863-5100 SP2863-5160

Constant current circuit
Source voltage: 100 VAC
Operating current: 4 A/phase, 2-phase energization (full-step)
Pull-out torque: Ji=44x10-4kg-m² (use the rubber coupling)
fs: Maximum self-start frequency when not loaded

Dimensions (Unit: mm)

86 mm sq.

Model no.	Motor length	
Cable type	Connector type	(L)
SP2861-5 🗌 60	SP2861-5 🗌 00	89.5
SP2862-5 60	SP2862-5 🗌 00	120
SP2863-5 60	SP2863-5 🗆 00	150

Stepping Motors for Vacuum Environments Customized Products

■ Features •

- · These stepping motors can be driven in a vacuum environment without requiring a vacuum feedthrough. Use as vacuumcompatible actuators while retaining the stepping motor benefits of easy high-precision open-loop control.
- · We can customize for a wide range of environment pressures, from low to ultra-high vacuums.
- · Available baked at 200°C.
- · Size is similar to that of typical stepping motors.

Intended operating pressure

	Lo vacu			Med vacu				High acuur		Ultra-High vacuum				
10	5 104	10 ³	10 ²	10 ¹	1	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	[Da]

Applications =

Ideal for the following applications. Contact us to discuss your particular application environment needs.

- · Semiconductor manufacturing equipment
- · Satellite robotics
- · Electron microscopes
- · Large-scale research facilities such as accelerators, synchrotron radiation analysis equipment, etc.

Motor size -

42 mm sq. to ø106 mm

Synchronous Motors Customized Products

Features •

- ·These motors always maintain a constant speed under variable load and voltage conditions, rotating in step with the frequency of the power supply. This eliminates motor slip.
- ·Provides high torque at ultraslow speeds with gearless construction.
- · Allows for simplification by connecting directly to the commercial (AC) power supply, eliminating the need for a driver circuit.

Applications =

Ideal for the following applications. Contact us to discuss your particular application environment needs.

- · Conveyor drives
- · Printers
- · Cryopumps
- · Cryocoolers
- ·Switchgears

■ Motor size ■

56 mm sq. to ø106 mm

Safety Precautions

The products in this catalog are designed to be used with general industrial devices. When using them, pay sufficient attention to the following points.

- · Read the Operation Manual thoroughly prior to placement, assembly and/or operation in order to use the product properly.
- · Refrain from modifying or processing the product in any way.
- · Contact us or your point of sale for placement or maintenance services of the product.
- Regarding the following uses of the product, contact us or your point of sale for the special care required for operation, maintenance and management such as multiplexing the system, installing an emergency electric generator set, and so forth.
 - Use in medical equipment that may have an effect on human life or the human body
 - ② Use in transportation systems or transport-related equipment such as trains or elevators, that may have an effect on human life or the human body
 - 1 Use in computer systems that may have an impact on society or on the public
 - Use in other devices that have a major impact on human safety or on maintaining public operations
- In addition to the above, contact us or your point of sale for use in an environment where vibrations occur, such as in automobiles or transport.
- · For use in space, aviation, or nuclear power-related applications, contact us or your point of sale.
- The products shown in this catalog are subject to Japanese Export Control Law. Diversion contrary to the law of exporting country is prohibited.

Indication by (Warning Label) on the Product

Either or all of the following indications are expressed by the Warning Labels depending on the type of driver or stepping motor.

This label is affixed near high voltage parts such as the electrically charged or cover-protected section, warning of the places where it is likely to cause an electric shock.

This label is affixed near the GND terminals of the driver for which grounding is required, recommending that the terminals should be well grounded.

This label is affixed for the driver to which the power source is applied in the voltage exceeding the safety standard, drawing attention to the risk of the electric shock.

Indicates that the stepping motor may get hot, resulting in burns.

Indicates that the stepping motor should be grounded.

Safety Ranks of the Cautions

Following four ranks are provided.

DANGER Improper operations or use is most likely to result in serious injury or death.

CAUTION Improper operations or use is likely to result in average or minor injury, or in property damage.

In spite of the cautions with the ACAUTION label, it may cause serious results. Either the contents or the labels is describing important cautions to be followed inevitably.

Indicates what must not be done.

COMPULSORY Indicates what must be done.

General matters

- Do not use the product in an explosive, flammable or corrosive atmosphere, watery place or near a combustible material. Doing so may cause injury or fire.
- 2. Have a person with expert knowledge on hand for performing the transportation, placement, wiring, operation, maintenance or inspection of the product. Without such knowledge, it may cause an electric shock, injury or fire.
- Do not work on wiring, maintenance servicing or inspection with the electric power on. Perform either of those five minutes after turning the power off. Failure to do so may cause an electric shock.
- 4. When the protective functions of the product is activated, turn the power off immediately and eliminate the cause. If continuing the operation without eliminating the cause, the product may operate improperly and cause injury or a breakdown of the system devices.
- 5. Stepping motor may run out of order when operating and stopping depending on the magnitude of the load. Put the product into use after confirming with the adequate trial test operation in the maximum load conditions that the product operates reliably. Doing otherwise may cause a breakdown of the system. (Should the product run out of order in the use to drive upward/downward, it may cause a fall of the load.)
- Do not touch the internal parts of the driver. Doing so may cause an electric shock.

Wiring

- Do not connect the stepping motor directly to a commercial power outlet. Doing so may cause an electric shock, injury or fire. Power should be supplied to the stepping motor through the driving circuit (except for synchronous motors).
- 8. Use an electric power source within the rated input voltage. Using otherwise may cause fire or an electric shock.
- Connect the driver and stepping motor to the ground. Using without grounding may cause an electric shock.
- 10. Do not harm, forcibly put a stress, or load a heavy article on the cable or get it caught between the articles. Doing so may cause an electric shock.
- 11. Perform wiring with the power cable as instructed by the wiring diagram or the Operation Manual. Doing otherwise may cause an electric shock or fire.
- 12. Do not move the stepping motor cable, as it is not a movable cable. Doing so may result in electric shock, injury, or fire.

Operation

- 13. Be sure not to touch the rotating part of the stepping motor during its operation. Touching it may cause injury.
- 14. Do not reach or touch the electric terminals while electric power is on. Doing so may cause an electric shock.
- 15. Never disconnect any of the connectors while electric power is on. Doing so may cause an electric shock and corruption.
- Do not operate this product with live parts exposed. Doing so may result in electric shock.
- 17. If smoke, fire, unusual smells, or unusual sounds are produced from the driver or stepping motor, turn off the power and stop using this product immediately. Not doing so may result in electric shock, injury, or fire.

CAUTION

General matters

- Prior to placement, operation, maintenance servicing or inspection, be sure to read the Operation Manual and follow the instructions to perform. Failure to follow the instructions may cause an electric shock, injury or fire.
- Do not use the driver or the stepping motor in conditions that exceed the specification values. Doing so may cause an electric shock, injury or fire.
- Do not insert a finger or an object into the opening of the product. Doing so may cause an electric shock, injury or fire.

- Do not use a damaged driver or stepping motor. Doing so may cause injury, fire or the like.
- Use the driver and stepping motor in the designated combination. Using otherwise may cause fire or a trouble.
- Be careful when the temperature rises in the operating driver, stepping motor or peripheral devices. Failure to be careful may cause a burn.
- Never disassemble, repair, modify, or remanufacture this product. Doing so may result in electric shock, injury, or fire.
- 8. Do not remove the rating plate. Using this product with an incorrect rating may result in fire.
- 9. Be careful that this product does not fall or tip over when handling, as this can be dangerous.

Unpacking

- 10. Confirm that the bottom and top of the box are facing correctly while unpacking. Failure to do so may cause injury.
- 11. Confirm that the product is the one that you have ordered. Installing an incorrect product may cause a breakdown.

Wiring

- 12. Do not measure the insulation resistance or dielectric voltage of the product. Doing so may cause a breakdown. Contact us or your point of sale instead, if such a measurement is required.
- 13. Perform wiring conforming to the technical standards of electric facility or the internal rule. Doing otherwise may cause burning or fire.
- 14. Ensure that wiring has been correctly done. Incorrect wiring may cause the stepping motor to run out of control, resulting in injury.
- 15. Insulate the attached condenser and external resistance connection terminals. Failure to do so may cause an electric shock.

Placement

- 16. Do not climb or attach a heavy article on the product. Doing so may cause injury.
- 17. Make sure that the intake and exhaust ports are not blocked or stuffed by foreign particles. Doing so may cause fire.
- 18. Make sure to use the specified driver mounting direction. Failure to do so will result in product failure.
- 19. Keep a distance as instructed by the Operation Manual for the driver from the inner surface of the control console or other devices. Failure to do so may cause trouble.
- 20. Place the product with great care so as to prevent from danger such as a tumble or a turnover.
- 21. Mount the product on an incombustible material such as metal. Failure to do so may cause fire, injury, or device breakdown.
- 22. Do not place combustible material around this product. Failure to do so may result in fire or burns.
- 23. Be sure to provide an adequate ventilation path when installing this product, and do not block the intake and exhaust ports. Failure to do so may result in electric shock, fire, or device breakdown.
- 24. Confirm the rotating direction before connecting with the mechanical device. Failure to do so may cause injury or a breakdown.
- 25. Do not touch the motor output spindle (including the key slot and gears) with your bare hand. Doing so may cause injury.
- 26. Make sure not to apply force to the lead wire or cables.

Operation

- 27. The stepping motor is not equipped with any protective device. Take protective measures using an over-current protective relay, a ground fault interrupter, a protective device from excess temperature, and an emergency stopping device. Failure to do so may cause injury or fire.
- 28. Do not touch the product for a period after the power is on or has been turned off, since the driver and stepping motor remain at a high temperature. Doing so may cause burns. In particular, the temperature rises considerably of the stepping motor depending on the operating conditions.

Do not allow the motor surface to exceed the following temperatures:

- Thermal class F (+155°C) stepping motors: 125°C
- Thermal class B (+130°C) stepping motors: 100°C
- Regardless of thermal class, encoder equipped stepping motors: 85°C, stepping motors with built in drivers: 70°C, stepping

- motors for vacuum environments: 150°C
- 29. Stop operations immediately when an emergency occurs. Failure to do so may cause an electric shock, injury or fire.
- 30. Do not change adjustment to an extreme, for such a change results in unstable operation. Doing so may cause injury.
- 31. During trial operations, firmly stabilize the stepping motor, and confirm operations by disconnecting from the mechanical system before connecting with it. Failure to do so may cause injury.
- 32. When the alarm has been activated, eliminate the cause and ensure safety before resuming operations. Failure to do so may cause injury.
- 33. When the electric power recovers after a momentary interruption, do not approach the devices because the system may restart operation by itself. (Set the system so as to secure the safety even when it restarts on such occasions.) Failure to do so may cause injury.
- 34. Confirm that the electric power supply properly conforms to the product specifications. Failure to do so may cause a breakdown.
- 35. The brake mechanism of the motor with the electro-magnetic brake is used to hold the movable section and the motor position. Do not use it as a safety measure. Doing so may cause the breakdown of the system.
- 36. Firmly stabilize the key when operating the motor with the key individually. Failure to do so may cause injury.

Maintenance

- 37. Be careful when performing maintenance services or inspection regarding the temperature which rises highly in the driver and stepping motor frame. Failure to do so may cause burns.
- 38. It is recommended to replace the electrolytic condenser of the driver with a new one for securing the preventive measure after using for 5 years (the expected life in an average operating environment of 40°C). The expected life of the fuse is 10 years in an average operating environment of 40°C. Thus, periodical replacement is recommended.
- 39. Contact us or your point of sale for repair. If the product is disassembled by the user, it may become inoperable.

Transportation

- 40. Handle the product with care during transportation so as to prevent from dangers such as tumbling or overturning.
- 41. Do not hold with the cable or the motor spindle. Doing so may cause trouble or injury.

Retirement

42. When scrapping the driver or stepping motor, handle it as general industrial waste.

Storage

 Avoid storing this product in places exposed to rain or water drops, or in an environment with hazardous gas or liquid. Failure to do so may cause trouble.

Maintenance

2. Do not disassemble or repair the product. Doing so may cause fire or an electric shock.

General matters

3. Do not remove the rating plate. Using this product with the incorrect rating may result in fire.

Storage

- 1. Store the product in a location that is not exposed to sunlight, at a temperature and humidity within the product specifications.
- If the driver has been stored for a long period (3 years or longer as a general guide), contact us. The capacitance may have decreased with the electrolytic condenser due to the long period storage, which may cause trouble.

Operation

- 3. Install an external emergency stop circuit to turn the power off in the event that operation must be instantly halted.
- Operate this product within the specified ambient temperature and humidity.

Transportation

Excess loading of the product on the carrier may cause the load to fall in pieces. Follow the instructions given outside the package.

■ Selection materials for each mechanism

The diagrams below depict representative mechanisms and the points used in their selection. Notify us of the information shown here when requesting us to make a selection.

Notes before Purchase

The products in this catalog are designed to be used with general industrial devices.

Always follow the following precautions.

- · Read the accompanying Instruction Manual carefully prior to using the product.
- · If applying to medical devices and other equipment affecting people's lives, please contact us beforehand and take appropriate safety measures.
- If applying to equipment that can have significant effects on society and the general public, please contact us beforehand.
- Do not use this product in an environment where vibration is present, such as in a moving vehicle or shipping vessel.
- $\cdot\,\mbox{Do}$ not perform any retrofitting, re-engineering, or modification to this equipment.
- The products presented in this catalog are meant to be used for general industrial applications. If using for special applications related to aviation and space, nuclear power, electric power, submarine repeaters, and the like, please contact us beforehand.

	https://www.sanyodenki.com
SANYO DENKI CO., LTD. 3-33-1 Minami-Otsuka, Toshima-ku, Tokyo 170-8451, Japan	TEL: +81 3 5927 1020
SANYO DENKI <i>EUROPE SA</i> . P.A. Paris Nord II, 48 Allée des Erables-VILLEPINTE, BP.57286, F-95958 ROISSY CDG Cedex, France	TEL: +33 1 48 63 26 61
SANYO DENKI <i>AMERICA,INC.</i> 468 Amapola Avenue Torrance, CA 90501, U.S.A.	TEL: +1 310 783 5400
SANYO DENKI <i>SHANGHAI CO., LTD.</i> Room 2106-2110, Bldg A, Far East International Plaza, No.319, Xianxia Road, Shanghai, 200051, China	TEL: +86 21 6235 1107
Beijing Branch Room1222, Tower B, Beijing COFCO Plaza, No.8 Jianguomennei Dajie, Dong Cheng District, Beijing 100005 China	TEL: +86 10 6522 2160
SANYO DENKI (H.K.)CO., LIMITED Room 2305, 23/F, South Tower, Concordia Plaza, 1 Science Museum Road, TST East, Kowloon, Hong Kong	TEL: +852 2312 6250
SANYO DENKI <i>TAIWAN CO., LTD.</i> N-711, 7F, Chia Hsin 2nd Bldg., No.96, Sec.2, Zhongshan N. Rd., Taipei 10449, Taiwan	TEL: +886 2 2511 3938
SANYO DENKI SINGAPORE PTE. LTD. 988 Toa Payoh North, #04-08, Singapore 319002	TEL: +65 6223 1071
Indonesia Representative Office Summitmas II 4th Floor, Jl. Jend. Sudirman Kav.61-62, Jakarta 12190, Indonesia	TEL: + 62 21 252 3202
SANYO DENKI GERMANY GmbH Frankfurter Strasse 80-82, 65760 Eschborn, Germany	TEL: +49 6196 76113 0
SANYO DENKI KOREA CO., LTD. 15F, KDB Building, 372, Hangang-daero, Yongsan-gu, Seoul, 04323, Korea	TEL: +82 2 773 5623
Busan Branch 8F, CJ Korea Express Bldg., 119, Daegyo-ro, Jung-gu, Busan, 48943, Korea	TEL: +82 51 796 5151
SANYO DENKI (Shenzhen) CO., LTD. 2F 02-11, Shenzhen International Chamber of Commerce Tower, No.168 Fuhua 3 Road, Futian District, Shenzhen, 5180	048 China TEL: +86 755 3337 3868
Tianjin Branch Room AB 16th Floor TEDA Building, No. 256 Jie Fang Nan Road, Hexi District, Tianjin 300042 China	TEL: +86 22 2320 1186
Chengdu Branch Room2105B, Block A, Times Plaza, 2 Zongfu Road, Jinjiang District, Chengdu, 610016 China	TEL: +86 28 8661 6901
SANYO DENKI (THAILAND)CO., LTD. 388 Exchange Tower, 25th Floor, Unit 2501-1, Sukhumvit Road, Klongtoey, Klongtoey, Bangkok 10110 Thailand	TEL: +66 2261 8670
SANYO DENKI <i>INDIA PRIVATE LIMITED</i> #14 (Old No.6/3), Avenue Road, Nungambakkam, Chennai - 600034, Tamil Nadu, India	TEL: +91 44 420 384 72