Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Sequential CNN and Transformers

In progress lecture replacing detailed implementation of recurrent networks

Lecture Agenda

- Logistics
 - Grading Update
 - Sequential Networks due Last Day of Finals
- · Agenda
 - CNNs for Sequential Processing
 - Transformers

Class Overview, by topic

Last Time:

Many to One Model

 RNNs are not inherently parallelized or efficient at remembering based on state vector, but CNNs can be run in parallel groups

- Everything we learned in 2D CNNs can be applied to 1D CNNs...
- Residuals, separable convolution, squeezing, everything

The Sequential CNN IMdB sentiment analysis

13a. Sequence Basics [Experimental].ipynb

Transformers

Dr Simone Stumpf @DrSimoneS... · 13h ··· God grant me the confidence of an average machine learning expert.

Transformers Intuition (reminder)

- Recurrent networks track state using an "updatable" state vector, but this takes processing iterative
- Attention mechanism (in RNNs) already takes a weighted sum of state vectors to generate new token in a decoder
- ... so why not just use attention on a transformation of the embedding vectors? Do away with the recurrent state vector all together?

Attention is All You Need

Continued Motivation:

- RNNs are not inherently parallelized or efficient at remembering based on state vector
- CNNs are not resilient to long-term word relationships, limited by filter size

Transformer Solution:

- Build attention into model from the **beginning**
- · Compare all words to each other through **self-attention**
- Define a notion of "position" in the sequence
- Should be resilient to long term relationships and be highly parallelized for GPU computing!!

Transformer Overview

Scaled Dot-Product Attention

for each word

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

$$egin{aligned} ext{MultiHead}(Q, K, V) &= ext{Concat}(ext{head}_1, ..., ext{head}_{ ext{h}})W^O \ & ext{where head}_{ ext{i}} &= ext{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformer: in more detail

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Transformer: in more detail

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}$) in visual, $d_k = 3$ Softmax

Softmax X Value

Sum

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Size of Q,K,V: $|\text{Seq Len}| \times d_v$

 $W^{Q,K}$: |Embed Size| x d_k

Transformer: Multi-headed Attention

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Putting It Together

W۵

Transformer: Positional Encoding

- Objective: add notion of position to embedding
- Attempt in original paper: add sin/cos to embedding
- But could be anything that encodes position, like:

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

The Transformer and 20 news groups with GloVe

13a. Sequence Basics [Experimental].ipynb

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Sequential CNN and Transformers