Matematika Diskret dan Logika

Dasar-Dasar Logika 1

Dr. I Wayan Mustika, ST., M.Eng.

Logika

- Proposisi (proposition) atau kalimat deklaratif adalah kalimat yang bernilai benar atau salah tapi tidak keduanya
- Logika proposisi adalah logika yang berkenaan dengan proposisi
- Tabel kebenaran menunjukkan hubungan atara nilai kebenaran dari proposisi

Contoh:

- 3 adalah bilangan prima
- \bullet 2 + 2 = 5
- Dimana lokasi pulau Bali?
- Siapakah namamu?

Operator-operator Logika

```
Negasi (\neg p, \mathbf{bukan} p)

Konjungsi (p \land q, p \mathbf{dan} q)

Disjungsi (p \lor q, p \mathbf{atau} q)

Exclusive or (p \oplus q, p \mathbf{atau} q \mathbf{tapi} \mathbf{tidak} \mathbf{keduanya})

Implikasi (p \rightarrow q, \mathbf{pika} p \mathbf{maka} q)

Bi-Implikasi (p \leftrightarrow q, p \mathbf{jika} \mathbf{dan} \mathbf{hanya} \mathbf{jika} q)
```


Tabel Kebenaran

 Tabel kebenaran menunjukkan relasi antara nilai kebenaran dari proposisi

p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
Т	Т	F	Т	Т	F	Т	Т
Т	F	F	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	F
F	F	Т	F	F	F	Т	Т

- Proposisi yang berkaitan dengan implikasi $p \rightarrow q$
 - Konversi dari implikasi $p \rightarrow q \ (q \rightarrow p)$
 - Kontraposisi dari implikasi $p \rightarrow q \ (\neg q \rightarrow \neg p)$
 - Inversi dari implikasi $p \rightarrow q$ ($\neg p \rightarrow \neg q$)
- Proposisi gabungan (*compound propositions*) bisa dibentuk menggunakan berbagai logika operator
- Umumnya operator-operator logika bisa diurutkan dari prioritas tertinggi ke terendah adalah

$$: \neg_{\prime} \wedge_{\prime} \vee_{\prime} \rightarrow_{\prime} \leftrightarrow$$

Ekivalensi Proposisi

- Tautologi: proposisi gabungan yang selalu bernilai benar (T)
- Kontradiksi: proposisi gabungan yang selalu bernilai salah (F)
- Kontigensi: proposisi gabungan yang bukan tautologi maupun kontradiksi
- Logika Ekuivalensi: proposisi gabungan yang selalu memiliki nilai kebenaran yang sama (dinotasikan dengan ≡)

Contoh-contoh

- p ∨ ¬p adalah tautologi
- p ∧ ¬p adalah kontradiksi
- $\neg(p \lor q) \equiv \neg p \land \neg q$ adalah logika ekivalensi

Beberapa logika ekuivalensi

Equivalences	Name
$p \wedge T \equiv p$	Hukum identitas
$p \vee F \equiv p$	
$p \vee T \equiv T$	Hukum dominansi
$p \wedge F \equiv F$	
$p \lor p \equiv p$	Hukum idempoten
$p \wedge p \equiv p$	
$\neg (\neg p) \equiv p$	Hukum negasi ganda
$p \lor q \equiv q \lor p$	Hukum komutatif
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Hukum asosiatif
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Hukum distributif
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \equiv \neg p \lor \neg q$	Hukum de Morgan
$\neg (p \lor q) \equiv \neg p \land \neg q$	Electrical Engineering De

Proposisi Kondisional dan Bikondisional

- Misalkan p dan q adalah proposisi. Implikasi p → q adalah proposisi yang mana nilai kebenarannya salah jika p adalah benar sedangkan q salah, selain itu nilai kebenarannya adalah benar. Jadi,
 - p disebut hipotesis
 - q disebut kesimpulan
 - Koneksi → disebut koneksi kondisional

Contoh

•Tunjukkan $p \rightarrow q \equiv \neg p \lor q$

p	q	~ <i>p</i>	$p \rightarrow q$	$\neg p \lor q$
Т	Т	F		
Т	F	F		
F	Т	Т		
F	F	Т		

- Proposisi bikondisional p dan q, dinotasikan dengan p ↔ q, adalah fungsi proposisi yang nilainya:
 - Benar ketika p dan q keduanya memiliki nilai kebenaran yang sama
 - Salah jika p dan q memiliki nilai yang berlawanan
- Dibaca "p jika dan hanya jika q" atau "p adalah kondisi yang diperlukan untuk q"

Contoh

•Tunjukkan bahwa proposisi bikondisional p dan q adalah ekivalen secara logika dengan konjungsi dari proposisi kondisional $p \to q$ and $q \to p$

p	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	$(p \rightarrow q) \land (q \rightarrow p)$
Т	Т	Т	Т		
Т	F	F	Т		
F	Т	Т	F		
F	F	Т	Т		

Logika ekuivalensi berkaitan dengan implikasi

- $p \rightarrow q \equiv \neg p \lor q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \vee q \equiv \neg p \rightarrow q$
- $p \wedge q \equiv \neg(p \rightarrow \neg q)$
- $\neg (p \rightarrow q) \equiv p \land \neg q$
- $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$
- $(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$
- $(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$
- $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

Logika ekuivalensi berkaitan dengan bi-implikasi

•
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

•
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

•
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

•
$$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Tugas

 Buatlah tabel kebenaran dari proposisi di bawah ini:

$$(p \rightarrow r) \leftrightarrow (q \rightarrow r)$$

2. Tunjukkan bahwa proposisi di bawah ini adalah tautologi.

$$s = (p \land q) \lor (\sim p \lor (p \land \sim q))$$