AE 760AA: Micromechanics and multiscale modeling

Lecture 3 - Coordinate Transformation

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

January 30, 2019

schedule

- Jan 30 Coordinate Transformation
- Feb 4 1D Micromechanics (HW1 Due)
- Feb 6 Mean-field
- Feb 11 Orientation Averaging

outline

- transformation
- engineering notation

transformation

general coordinate transformation

- Coordinate transformation can become much more complicated in three dimensions, and with higher-order tensors
- It is convenient to define a general form of the coordinate transformation in index notation
- We define Q_{ij} as the cosine of the angle between the x_i' axis and the x_j axis.
- This is also referred to as the "direction cosine" $Q_{ij} = \cos(x_i',x_j)$

mental and emotional health warning

- Different textbooks flip the definition of Q_{ij} (Elasticity and Continuum texts have opposite definitions, for example)
- The result gives the transpose
- Always use equations (next slide) from the same source as your Q_{ij} definition

general coordinate transformation

- We can transform any-order tensor using Q_{ij}
- Vectors (first-order tensors): $v_i' = Q_{ij}v_j$
- Matrices (second-order tensors): $\sigma'_{ij} = Q_{im}Q_{jn}\sigma_{mn}$
- ullet Fourth-order tensors: $C'_{ijkl}=Q_{im}Q_{jn}Q_{ko}Q_{lp}C_{mnop}$

transformation

• We can use this form on our 2D transformation example

$$egin{aligned} Q_{ij} &= \cos(x_i',x_j) \ &= egin{bmatrix} \cos(x_1',x_1) & \cos(x_1',x_2) \ \cos(x_2',x_1) & \cos(x_2',x_2) \end{bmatrix} \ &= egin{bmatrix} \cos heta & \cos(90- heta) \ \cos(90+ heta) & \cos heta \end{bmatrix} \ &= egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix} \end{aligned}$$

general coordinate transformation

- We can similarly use Q_{ij} to find tensors in the original coordinate system
- Vectors (first-order tensors): $v_j = Q_{ij}v_i'$
- Matrices (second-order tensors): $\sigma_{mn} = Q_{im}Q_{jn}\sigma'_{ij}$
- Fourth-order tensors: $C_{mnop} = Q_{im}Q_{jn}Q_{ko}Q_{lp}C'_{ijkl}$

general coordinate transformation

- We can derive some interesting properties of the transformation tensor, Q_{ij}
- We know that $v_i' = Q_{ij}v_j$ and that $v_j = Q_{ij}v_i'$
- If we substitute (changing the appropriate indexes) we find:
- $v_j = Q_{ij}Q_{ik}v_k$
- ullet We can now use the Kronecker Delta to substitute $v_j=\delta_{jk}v_k$
- $\bullet \ \ \delta_{jk}v_k=Q_{ij}Q_{ik}v_k$

engineering notation

engineering notation

$\lceil \sigma_{11} \rceil$		lacksquare	C_{1122}	C_{1133}	C_{1123}	C_{1113}	C_{1112}	$\left\lceil E_{11} ight ceil$
$\mid \sigma_{22} \mid$		C_{1122}	C_{2222}	C_{2233}	C_{2223}	C_{1322}	C_{1222}	E_{22}
σ_{33}		(/1199	(i_0, i_0, i_0)	(/ 🤈 🤈 🤈	(i_0, i_0, i_0)	(/1999	(/1999	$ig E_{33}$
σ_{23}		C_{1123}	C_{2223}	C_{2333}	C_{2323}	C_{1323}	C_{1223}	$ 2E_{23} $
$\mid \sigma_{13} \mid$		C_{1113}	C_{1322}	C_{1333}	C_{1323}	C_{1313}	C_{1213}	$ 2E_{13} $
$\lfloor \sigma_{12} \rfloor$		$igl\lfloor C_{1112}$	C_{1222}	C_{1233}	C_{1223}	C_{1213}	$C_{1212} floor$	$\lfloor 2E_{12} floor$

orthotropic symmetry

$\lceil \sigma_{11} \rceil$	lacksquare	C_{1122}	C_{1133}	0	0	0]	$egin{bmatrix} E_{11} \end{bmatrix}$
σ_{22}	C_{1122}	C_{2222}	C_{2233}	0	0	0	E_{22}
σ_{33}	 C_{1133}	C_{2233}	C_{3333}	0	0	0	E_{33}
σ_{23}	 0	0	0	C_{2323}	0	0	$2E_{23}$
σ_{13}	0	0	0	0	C_{1313}	0	$2E_{13}$
$\lfloor \sigma_{12} floor$	0	0	0	0	0	C_{1212} $oxedsymbol{\rfloor}$	$\lfloor 2E_{12} floor$

transversely isotropic symmetry

$\int \sigma_{11}$		$\int C_{1111}$	C_{1122}	C_{1133}	0	0	0	$igcap E_{11}$	7
σ_{22}		C_{1122}	C_{1111}	C_{1133}	0	0	0	$ig E_{22}$	
σ_{33}	<u> </u>	C_{1133}	C_{1133}	C_{3333}	0	0	0	E_{33}	
σ_{23}		0	0	0	C_{1313}	0	0	$igg 2E_{23}$	
σ_{13}		0	0	0	0	C_{1313}	0	$igg 2E_{13}$	
$\lfloor \sigma_{12} \rfloor$		0	0	0	0	0	$1/2(C_{1111}-C_{2222}) igg floor$	$ig\lfloor 2E_{12}$	

isotropic symmetry

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\nu) \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{22} \\ E_{33} \\ 2E_{23} \\ 2E_{13} \\ 2E_{12} \end{bmatrix}$$

transformation

- We know that $\sigma_{mn} = Q_{im}Q_{jn}\sigma'_{ij}$
- We can expand this to write in terms of engineering stress
- We will expand only two terms, as they show the general pattern for all 6

stress transformation

$$egin{aligned} \sigma_1' &= \sigma_{11}' = Q_{11}Q_{11}\sigma_{11} + Q_{11}Q_{12}\sigma_{12} + Q_{11}Q_{13}\sigma_{13} \ &+ Q_{12}Q_{11}\sigma_{21} + Q_{12}Q_{12}\sigma_{22} + Q_{12}Q_{13}\sigma_{23} \ &+ Q_{13}Q_{11}\sigma_{31} + Q_{13}Q_{12}\sigma_{32} + Q_{13}Q_{13}\sigma_{33} \end{aligned} \ \ \sigma_1' &= Q_{11}^2\sigma_1 + Q_{12}^2\sigma_2 + Q_{13}^2\sigma_3 \ &+ 2Q_{11}Q_{12}\sigma_6 + 2Q_{11}Q_{13}\sigma_5 + 2Q_{12}Q_{13}\sigma_4 \end{aligned}$$

stress transformation

$$egin{aligned} \sigma_4' &= \sigma_{23}' = Q_{21}Q_{31}\sigma_{11} + Q_{21}Q_{32}\sigma_{12} + Q_{21}Q_{33}\sigma_{13} \ &+ Q_{22}Q_{31}\sigma_{21} + Q_{22}Q_{32}\sigma_{22} + Q_{22}Q_{33}\sigma_{23} \ &+ Q_{23}Q_{31}\sigma_{31} + Q_{23}Q_{32}\sigma_{32} + Q_{23}Q_{33}\sigma_{33} \ & \sigma_4' &= Q_{21}Q_{31}\sigma_1 + Q_{22}Q_{32}\sigma_{22} + Q_{23}Q_{33}\sigma_3 \ &+ (Q_{21}Q_{32} + Q_{22}Q_{31})\sigma_6 + (Q_{21}Q_{33} + Q_{23}Q_{31})\sigma_5 \ &+ (Q_{22}Q_{33} + Q_{23}Q_{32})\sigma_4 \end{aligned}$$

stress transformation

• We often write $\sigma' = R_{\sigma}\sigma$ for engineering notation

$$R_{\sigma} = egin{bmatrix} Q_{11}^2 & Q_{12}^2 & Q_{13}^2 & 2Q_{12}Q_{13} & 2Q_{11}Q_{13} & 2Q_{11}Q_{12} \ Q_{21}^2 & Q_{22}^2 & Q_{23}^2 & 2Q_{22}Q_{23} & 2Q_{21}Q_{23} & 2Q_{21}Q_{22} \ Q_{31}^2 & Q_{32}^2 & Q_{33}^2 & 2Q_{32}Q_{33} & 2Q_{31}Q_{33} & 2Q_{31}Q_{32} \ Q_{21}Q_{31} & Q_{22}Q_{32} & Q_{23}Q_{33} & Q_{23}Q_{32} + Q_{22}Q_{33} & Q_{23}Q_{31} + Q_{21}Q_{33} & Q_{22}Q_{31} + Q_{21}Q_{32} \ Q_{11}Q_{31} & Q_{12}Q_{32} & Q_{13}Q_{33} & Q_{13}Q_{32} + Q_{12}Q_{33} & Q_{13}Q_{31} + Q_{11}Q_{33} & Q_{12}Q_{31} + Q_{11}Q_{32} \ Q_{11}Q_{21} & Q_{12}Q_{22} & Q_{13}Q_{23} & Q_{13}Q_{22} + Q_{12}Q_{23} & Q_{13}Q_{21} + Q_{11}Q_{23} & Q_{12}Q_{21} + Q_{11}Q_{22} \ \end{bmatrix}$$

strain transformation

- We can follow the exact same procedure to transform strain
- The values are almost the same, notice the highlighted terms

stiffness transformation

• We can now formulate the transformation of the stiffness matrix. We know that

$$\sigma' = R\sigma_{\sigma} = C'E'$$

- And since $\sigma = CE$, we can say $R_{\sigma}CE = C'E'$
- Now we know that $E'=R_E E$, so we substitute that to find $R_{\sigma}CE=C'R_E E$

stiffness transformation

- We can right multiply both sides by $E^{\hat{a}^{,1}}$ to cancel E
- Then we can right multiply both sides by $R_E^{\hat{a}^{\hat{i}}}$ to get C' by itself $C' = R_{\sigma}C(R_E)^{-1}$
- Note that $R_E^{\hat{\mathbf{a}}^{\hat{\mathbf{a}}}}$, $=\hat{\mathbf{a}}$, R_{If}^T

conventions

- There are two things that can be very confusing when transforming engineering stiffness
- First, while I have used the most standard ordering of stress/strain terms, not everyone uses the same order
- Second, the equations used here are for engineering strain (which is the most common)
- However, tensorial strain may also be used, in which case $R_{I/}\hat{a}$, $=\hat{a}$, R_E , but that adds other complications

one dimensional micromechanics

one dimensional micromechanics

- Some simple one-dimensional micromechanics models are useful as bounding cases
- The first micromechancis models were developed by Voigt and Reuss
- These provide a type of bound to possible solutions
- Some improvements were made using the method of cells

equivalent solid

- The goal of all micromechanics models is to use the known properties of constituents to find the large-scale behavior
- We can find this by averaging the stress and strain tensors over the volume of some RVE

$$ar{\sigma}_{ij} = rac{1}{V} \int_{V} \sigma_{ij}(x,y,z) dV$$

$$ar{\epsilon}_{ij} = rac{1}{V} \int_V \epsilon_{ij}(x,y,z) dV$$

equivalent solid

• If we have only two phases (fiber and matrix), and we use engineering notation, this average can be expressed as

$$egin{aligned} ar{\sigma}_i &= rac{1}{V}igg(\int_{V^f} \sigma_i^f(x,y,z) dV + \int_{V^m} \sigma_i^m(x,y,z) dVigg) \ ar{\epsilon}_i &= rac{1}{V}igg(\int_{V^f} \epsilon_i^f(x,y,z) dV + \int_{V^m} \epsilon_i^m(x,y,z) dVigg) \end{aligned}$$

equivalent solid

• We also know that in the fiber and matrix, respectively, Hooke's Law still holds

$$\sigma_i = C_{ij}\epsilon_j$$

• And this must be true for the average as well

$$ar{\sigma}_i = C_{ij}ar{\epsilon}_j$$

voigt

- Voigt considered a two-phase composite with a uniform strain imposed on both phases
- The uniform strain assumption means that $\epsilon_i^f = \epsilon_i^m = \epsilon_i$
- While a macroscopically homogeneous strain does not necessarily impose a locally homogeneous strain field, Voigt assumed that $\epsilon_i = \bar{\epsilon}_i$

voigt

• This assumption results in

$$egin{aligned} ar{\sigma}_i &= rac{1}{V}igg(\int_{V^f} C^f_{ij}ar{\epsilon}_j dV + \int_{V^m} C^m_{ij}ar{\epsilon}_j dVigg) \ ar{\sigma}_i &= \left(rac{V_f}{V}C^f_{ij} + rac{V_m}{V}C^m_{ij}
ight)ar{\epsilon}_j \end{aligned}$$

• This gives the well-known rule of mixtures for C_{ij}

$$C^c_{ij} = rac{V_f}{V}C^f_{ij} + rac{V_m}{V}C^m_{ij}$$

reuss

• If we instead assume a uniform stress imposed on both phases such that

$$\sigma_i^f = \sigma_i^m = \sigma_i = ar{\sigma}_i$$

• We would find the identical relationship, but with compliance instead of stiffness

$$egin{aligned} ar{\epsilon}_i &= rac{1}{V}igg(\int_{V^f} S^f_{ij}ar{\sigma}_j dV + \int_{V^m} S^m_{ij}ar{\sigma}_j dVigg) \ ar{\epsilon}_i &= \left(rac{V_f}{V}S^f_{ij} + rac{V_m}{V}S^m_{ij}
ight)ar{\sigma}_j \end{aligned}$$

bounds

- In general, the Voigt assumption (homogeneous strain, rule of mixtures for stiffness) gives an upper bound for stiffness
- On the other hand, the Reuss assmption (homogeneous stress, rule of mixtures for compliance) gives a lower bound for stiffness
- In uni-directional composites, the Voigt model is good enough for E_1 and v_{12} predictions, but not for E_2 or G_{12}

subregions

- Hopkins and Chamis considered a refined model to subdivide the RVE into sub-regions
- This gives reasonable predictions for E_2 and G_{12}

discontinuous composites

discontinuous fibers

- The previous models all assumed that the constituent (fiber) was infinitely long
- There are many cases where we want to consider discontinuous fibers
- Weaker than continuous composites, but easier to mass-produce, more shapes can be made
- We will consider a simple model for aligned composites (shear lag)

• Balancing forces on a differential element we find

$$egin{aligned} \sum F_x &= (\sigma_f + d\sigma_f) rac{\pi d^2}{4} - \sigma_f rac{\pi d^2}{4} - au_i (\pi d) dx = 0 \ rac{d\sigma_f}{dx} &= rac{4 au_i}{d} \end{aligned}$$

- To integrate, we need to make some assumptions
- It is commonly assumed that the normal stress on the end of the fibers is o
- Various assumptions are made about the shear stress, τ , Kelly-Tyson assumed it is constant (rigid plastic)
- Cox assumed τ is a linear function of x

shear stress

- We can also find the shear stress by comparing adjacent annuli of matrix material around the fiber
- This assumes that fiber and matrix are perfectly bonded (continuous displacement at boundary)
- The force balance due to shear in adjacent annula means that $\pi dt = \pi d_0 au_i$
- The shear stress far away from the fiber, $\tau = G_m \gamma$, and if $\gamma = \frac{du}{dr}$, then we can say

$$rac{r_0}{r} au_i=G_mrac{du}{dr}$$

shear stress

• We integrate to find that

$$au_i = rac{G_m(u_R - u_f)}{r_0 ln(r)}$$

• Which we can substitute into our original force-balance equation to find

$$rac{d\sigma_f}{dx} = rac{4G_m(u_R-u_f)}{dr_0 ln(r)}$$

• But $d=2r_0$, so we can simplify to

$$rac{d\sigma_f}{dx} = rac{2G_m(u_R-u_f)}{r_0^2 ln(r)}$$

- Finally, we differentiate with respect to *x* to replace the displacements with strains
- We assume that du_R/dx is far enough away from the fiber such that the strain is equal to far-field strain
- The solution to the differential equation is $\sigma_f = E_f \epsilon_1 + B \sinh(nx/r) + D \cos(nx/r)$

stress in fibers

normalizing

- An interesting finding was that when we normalized distance (x) by fiber diameter
- The shear stress was the same for any fiber length
- This means that most/all shear stress transfer occurs near the ends
- If fibers are not long enough, full stress profile does not develop, fibers contribute very little to stiffness

next class

- Eshelby's equivalent inclusion
- Textbook pages 94-99 and 364 370 (I feel these are pretty confusing though)