Simulating leaf net CO₂ assimilation rate of C₃ & C₄ plants and its response to environmental factors

ZHANG Jia-hua

(Center of Global Change Research for Temperate East Asia, Institute of Atmospheric, Chinese Academy of Sciences, Beijing, 100029, P.R. China)

YAO Feng-mei

(College of Ecological Engineer, Beijing Forestry University, 100083, P. R. China)

Abstract: Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the single leaf net CO_2 assimilation, which acts as a function of different light, carbon dioxide and temperature conditions. The relationships between leaf net photosynthetic rate of C_3 and C_4 plant with CO_2 concentration intercellular, leaf temperature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic of plant photosynthesis in C_3 and C_4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and better understand the interaction between vegetation and atmosphere.

Key words: Photosynthesis model; Net CO₂ assimilation rate; C₃ and C₄ plants; Numerical simulation CLC number: Q945.11; Q948.112 Document code: A Article ID:1007-662X(2001)01-0009-04

Introduction 1

It is well recognized that the global climate is becoming warmer and warmer owing to increased emission of greenhouse gases affected by human activities. The better method of predicting future climate trend is to use regional and global climate model. Recent years, a series of such kinds models have been developed to describe the interaction between the biosphere to atmosphere, and several of land surface interaction complex process schemes have been incorporated into regional or global climate models (Dickinson et al., 1986; Sellers et al., 1986, 1992, 1996; Xue et al. 1991; Foley et al, 1996). As we know, the land surface process in regional climatic model (RCM) employed in eco-physiology are designed to describe the basic photosynthesis process at the leaf, canopy and regional levels together with the stomatal conductance, vegetation transpiration, CO₂ flux change within leaf. Repre-CO₂ exchanges sentation of at the face-atmosphere interface is an important challenge for assessing the impact of climatic change on the

surface energy and water budget, and it has been suggested that the exchange of water vapor and CO₂ between vegetation canopies and the atmosphere is strongly controlled by the physiological processes governing photosynthesis and stomata conductance. Thus, developing models to estimate photosynthesis is certainty.

The purpose of current study is to simulate the response of photosynthesis of C_3 & C_4 pathway plants to environmental affecting elements based on former researcher schemes; additionally, is to understand the realistic photosynthesis process of difference photosynthesis pathway in vegetation. Furthermore, to develop a more realistic mechanize photosynthesis scheme for integrating RCM.

Three pathways of plant photosynthesis

Generally, based on the photosynthesis pathway, the natural flora can be divided into three categories (Monson *et al.* 1989), namely C₃ plant (by all trees and many herbs, CO₂ assimilation through reductive pentose phosphate cycle), C₄ plant (tropical herbs and warm grasses; 20 family; >12 000 species, CO₂ assimilation through PEP carboxylase), and CAM (crassulacean acid metabolism) plant (carnification plant; 26 family; >500 species). Table1 lists the main photosynthesis characteristics of C₃, C₄ and CAM plants. In present study, numerical algorithm will be adopted to approach some important photosynthetic characteristics of C₃ and C₄ plants.

Foundation Item: This paper was supported by Natural Science Foundation of China (Grant No. 30000084)

Foundation of China (Grant No. 39900084)

Biography: ZHANG Jia-hua (1966-), male, Ph. Doctor, Associate professor in START, Institute of Atmospheric Physics, Chinese Academy of Sciences *Beijing*, 100029, P.R. China

Received date: 2000-08-30 Responsible editor: Chai Ruihai

Unfixed

C ₃ plant	C₄ plant	CAM
Rubisco E	Rubisco E	Rubisco E
CO₂ immobilization enzyme RuBP E	PEP carbonlase	PEP E
	RuBP E	RuBP E
Wheat (crop), Pine (tree)	Corn (crop), Millet (cereal)	Cactus (shrub)
Bundle-sheath (undeveloped	Bundle-sheath (developed)	
Low (15-40)	High (35-80)	Low (1-4)
High (40-70)	Low (0-10)	Dark period (0-5)
		24-h (0-200)
High	Low	Low
Low (=1/4-1/2 R_{max})	High (above R _{max})	Unfixed
Low (15-25)	High (30-47)	-35
Low	High	Widely
Weak	Strong	Changed
Low (19.5± 3.9)	High (30.3±13.8)	Changed
Low (22.0±3.3)	High (38.6±16.9)	Changed
Large (450-950)	Small (250-350)	Very small (50-55
	Rubisco E RuBP E Wheat (crop), Pine (tree) Bundle-sheath (undeveloped Low (15-40) High (40-70) High Low (=1/4-1/2 R _{max}) Low (15-25) Low Weak Low (19.5± 3.9) Low (22.0±3.3)	Rubisco E RuBP E Wheat (crop), Pine (tree) Bundle-sheath (undeveloped Bundle-sheath (developed) Low (15-40) High (40-70) High Low (0-10) High Low (15-25) Low (15-25) Low High (30-47) Low High (30-47) Low (19.5 \pm 3.9) Low (22.0 \pm 3.3) High (30.3 \pm 13.8) High (38.6 \pm 16.9)

Table 1. C₃, C₄ and CAM plants photosynthesis and other eco-physiological characteristics

high (>20%)

The leaf photosynthesis scheme

Increasing of dry-matter /Doubling CO₂

Modeling method

After 1980s, some mechanism photosynthesis simulating models have been set up and developed. The significant progress was Farquhar (1980) and Collatz (1990,1991) works. In their models, the photosynthetic rate (A) is a function of PAR, leaf temperature, CO2 flux within the leaf, and the Rubisco enzyme capacity for photosynthesis (Sellers *et al.* 1996a). In both cases the rate of gross leaf photosynthesis, A, is calculated in terms of three potentially limiting factors. In this paper, the term A of C₃ & C₄ plants are similarly modeled as the minimum of three potential capacities, be expresses as

$$A \le \min \left(w_c, w_\theta, w_s \right) \tag{1}$$

where, A is gross Leaf photosynthetic rate (mol·m⁻²·s⁻¹); w_c is represents the rate of gross photosynthesis when the leaf photosynthetic enzyme (Rubisco of leaf enzyme) was limited; w_e is light-limited rate of gross assimilated rate (mol·m⁻²·s⁻¹); w_s is the limitation associated with export of the photosynthetic products (for C_3 vegetation), or PEP-Carboxylase (for C_4 plant) limitation on photosynthesis (mol·m⁻²·s⁻¹).

For the physiological limit of photosynthetic enzyme on assimilation rate, ω_c can be written as: for C_3 plant

$$w_c = V_m \left[\frac{C_i - \Gamma^*}{C_i + K_c (1 + O_2 / K_0)} \right]$$
 (2)

and for C4 plant

Low (<10%)

$$w_c = V_m \tag{3}$$

where, w_c is Rubisco-limited rate of assimilation (mol·m⁻²·s⁻¹); V_m refers to maximum rate of catalytic capacity of Rubisco (mol·m⁻²·s⁻¹) at T_c ; C_i is partial pressure of CO_2 in leaf interior(Pa); O_2 is partial pressure of O_2 in leaf interior (Pa); Γ^* is CO_2 compensation point (Pa) = $0.5O_2/S$; S is Rubisco specificity for CO_2 relative to O_2 (=2600*0.57 Cl); K_c is Michaelis-Mnten constant for CO_2 (Pa), and its value is equal to 30×2.1^{Cl} ; K_c is inhibition constant for $O_2(Pa)$, and its value is $30\,000\times1.2^{Cl}$, where C_l is C_1 0 temperature coefficient, equal to C_1 1 (C_1 2), C_2 2 is the leaf temperature (°C).

For C_3 plant, the term V_m is given by

$$V_m = \frac{V_{\text{max}}Q_t}{\left\{1 + \exp[0.3(T_c - 38)]\right\}}$$
 (4)

and for C₄ plant, it is given by

$$V_m = \frac{V_{\text{max}}Q_t}{\{1 + \exp[0.3(T_c - 40)]\}\{1 + \exp[0.2(5 - T_c)]\}}$$
 (5)

where, $V_{\rm max}$ is maximum leaf catalytic capacity of Rubisco at 25°C, the values $V_{\rm max}$ were given by 1×10^{-4} (mol·m⁻² s⁻¹) for C₃ broadleaf deciduous tree and 3×10^{-5} (mol·m⁻² s⁻¹) for C₄ grass (Sellers *et al.* 1996b).

The light-limited rate of assimilation w_e is given by (Foley *et al.* 1996):

$$w_e = 0.068I_{PAR} \left[\frac{c_i - \Gamma^*}{c_i + 2\Gamma^*} \right] \qquad \text{for C}_3 \text{ plant} \qquad (6)$$

$$w_{\rho} = 0.0332I_{PAR} \qquad \text{for C}_{4} \text{ plant} \qquad (7)$$

where, I_{PAR} is the incident PAR on the leaf (mol·m⁻²·s⁻¹), and its value depends on the assumed quantum efficiency for CO₂ uptake and the leaf scattering coefficient for PAR. In this study, it can be written the PAR multiplies an absorbed factor by 0.86 (Collatz *et al.* 1991).

A third limiting rate has been defined for C_3 and C_4 photosynthesis by Collatz *et al.* (1991, 1992), respectively, w_s is viewed as the capacity for the export or utilization of the products of photo synthesis in the case of C_3 and as the CO_2 -limited capacity for C_4 photosynthesis.

$$w_{\rm s} = 0.5 \ V_{\rm m}$$
 for C_3 plant (8)

$$w_s = 2 \times 10^4 V_m c_i/p^* \quad \text{for } C_4 \text{ plant}$$
 (9)

where, p* is atmospheric pressure (Pa).

The actual rate of gross photosynthesis, *A*, is calculated as the smoothed minimum of above three limiting rates:

$$\beta_1 w_p^2 - w_p (w_c + w_e) + w_e w_c = 0$$

$$\beta_2 P^2 - P(w_p + w_s) + w_p w_s = 0$$
 (10)

where, β_1 , β_2 is coupling coefficients, w_p is smoothed minmum of w_c and w_e (mol·m⁻²·s⁻¹).

The net assimilation A_n , is then given by

$$A_n = A - R_d \tag{11}$$

where, $R_{\rm d}$ is leaf respiration rate(mol·m⁻²·s⁻¹), Collatz *et al.* (1991, 1992) scaled $R_{\rm d}$ to the leaf carboxylase Content by

$$R_{\rm d} = f_{\rm d} V_{\rm m} \tag{12}$$

where, $f_d = 0.015$ for C_3 plant, and $f_d = 0.025$ for C_4 plant.

The numerical experiments and some results

In this study, two plant types were selected as experimental plant species, the temperate deciduous broadleaf tree (C₃ plant), located in north part of Changjiang River, and maize (C₄ plant), which is grown in North China Plain. Some experiments testing were performed via considering the some factors influencing on leaf photosynthesis. Here, we consider three kind of effect situation on photosynthetic rate. One is the dependence of leaf photosynthesis on Photosynthesis Active Radiation (PAR), second is the relationship between leaf photosynthesis and CO₂ concentration intercellular, third is the relationship between leaf photosynthesis and leaf temperature.

We simulated the net CO_2 Assimilation (A_n) in leaf level, the model at the leaf level can also be used to modeling A_n in the larger scales by scaling up. A_n

response of C_3 & C_4 plants to PAR, leaf temperature, CO_2 flux within leaf for has been addressed. Fig. 1 shows the dependence of A_n in leaf level on PAR, reflects that the C_4 light saturation points is obviously higher than that of C_3 plant.

Fig.1 The relationship between leaf A_n and PAR for C_3 and C_4 plants

Fig. 2 presents the relationship between A_n and leaf temperature. In X-axis, before 20°C, with leaf temperature increases, the increasing trend of C_3 plant A_n is higher than that of C_4 plant, however, after 20°C, there is a significant increasing of A_n for C_4 plant.

Fig.2 The relationship between leaf A_n and leaf temperature for C_3 and C_4 plants

Anyway the maximum values of A_n (C₄ plant) nearly against 36°C. But in case of C₃ plant, the leaf temperature just less than 30°C when A_n increases its peak. The result implies a better elucidation for C₄ plant originated from tropic zone, to some extant, also reflects the light saturation point of C₃ plant is less than that of C₄ plant (Harold *et al.* 1978).

Fig. 3 & Fig 4 show the relationship between A_n and C_i about C_3 and C_4 plants. Owing to CO_2 compensation point of C_3 plant is higher than that of C_4 plant, so the Fig. 3 presents there is a linear positive correlation between A_n and C_i . Nerveless, in Fig.4, A_n of C_4 plant is close to saturation with the C_i increasing. This result also reveals the increasing of dry-matter of

 C_3 plant is higher than that of C_4 plant under CO_2 doubling.

Fig. 3 The relationship between net leaf A_n and C_i for C_3 plant

Fig. 4 The relationship between leaf A_n and C_1 for C_4 plant

4. Conclusion

Preceding the numerical results present the dependence of leaf photosynthesis rate (An) on Photosynthetic Active Radiation (PAR) curve, the leaf net photosynthesis (A_n) vs. leaf temperature (T_c) response curves in C_3 and C_4 plant, and the leaf net photosynthesis (A_n) vs. intercellar CO_2 concentration (C_i) response curves in C_3 and C_4 plants. The model presented here provides a plausible mechanism for feedbacks of photosynthesis to multiple environmental forcing such as PAR, T_c and C_i . Simulation indicates that the environmental factors have significant influences on the leaf net photosynthetic rate. Whereas, the additional observed experimental studies at the leaf level should be required to test the mechanism proposed here in future work.

To arise from this study, we have demonstrated that the numerical experiments may reveal the main characteristic of plant photosynthesis in C_3 and C_4 plant, and further seem to be used to integrate with the regional climate model and act as land surface process scheme, and better understand the interaction between vegetation and atmosphere.

References

- Collatz, G.J., Berry, J.A., Farquhar, G.D., and Pierce, J. 1990. The relationship between the rubisco reaction mechanism and models of leaf photosynthesis [J]. Plant Cell Environment, 13:219-225.
- Collatz, G.J. *et al.* 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer [J]. Agric. For. Meter., **54**: 107-136.
- Collatz, G.J., Ribas-Carbo, M. & Berry, J.A. 1992. Coupled photosynthesis-stomatal conductance models for leaves of C₄ plants [J]. Aust. J. Plant Physil., **19**: 519-538.
- Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. & Wilson, M.F. 1986. Biosphere atmosphere transfer scheme (BATS) for the NCAR community climate model [R]. NCAR Tech. Note, NCAR TN275+STR, 69pp
- Farquhar, G.D. 1979. Models describing the kinetics of Ribulose biphosphate carboxylase-oxygenase [J]. Archives of Biochemistry and Biophysics, 193(2): 456-468.
- Farquhar, G.D, von Gaemmerer, S. & Berry, L.A. 1980. A biochemical model of photosynthetic CO₂ fixation in leaves of C₃ species [J]. Planta, **149**: 78-90.
- Foley, J.A., Prentice, C.P., & Ramankutty, N., et al. 1996. An integrated biosphere model of land surface process, terrestrial carbon balance, and vegetation dynamics [J]. Global Bio. Cycles., 10(4): 603-628.
- Harold W. Siegelman & Geoffrey Hind, 1978, Photosynthetic Carbon Assimilation [M], New York and London: Plenum Press, 43-113.
- Marshall ,B & Biscoe P.V. 1980. A model for C₃ plant leaves describing the dependence of net photosynthesis on irradiance [J]. Ann Bot, 31:29-48.
- Monson, R.K. 1989. On the evolutionary pathways resulting in C₄ photosynthesis and CAM [C]. In: Advances in ecological research (eds. Begon, M. *et al.*). New York: Academic Press, 57-100.
- Sellers, P.J., and Mintz, Y., & Sun, Y.C., et al. 1986. A simple biosphere model (SiB) for Use within General Circulation Models [J]. Journal of the Atmospheric Sciences, 43(6): 505-531.
- Seller, P.J. et al. 1992. Canopy reflectance, photosynthesis and transpiration. III: a reanalysis using improved leaf models and a new canopy intergration scheme [J]. Remote Sens. Environ., 42: 187-216.
- Sellers, P.J, et al. 1996a. A revised land surface parameterization(SiB2) for atmospheric GCMs. Part I: Model Formulation [J]. Journal of Climate, 9:676-705.
- Sellers, P.J., et al. 1996b. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data [J]. Journal of Climate, 9: 706-737.
- Xue, Y., Sellers, P.J., & Kinter, J.L. et al. 1991. A simplified biosphere model for global climate studies [J]. Journal of Climate, 4:345-36