Week #1

Study and understand the basic networking tools - Wireshark, Tcpdump, Ping, Traceroute.

Learn and Understand Network Tools
1. Wireshark
 □ Perform and analyze Ping PDU capture □ Examine HTTP packet capture □ Analyze HTTP packet capture using filter
2. Tcpdump
Capture packets
3. Ping
• Test the connectivity between 2 systems
4. Traceroute
Perform traceroute checks
5. Nmap
Explore an entire network

IMPORTANT INSTRUCTIONS:

- This manual is written for Ubuntu Linux OS only. You can also execute these experiments on VirtualBox or VMWare platform.
- For few tasks, you may need to create 2 VMs for experimental setup.
- Perform **sudo apt-get update** before installing any tool or utility.
- Install any tool or utility using the command **sudo apt-get install name_of_the_tool**
- Take screenshots wherever necessary and upload it to Edmodo as a single PDF file. (Refer general guidelines for submission requirements).
- To define an IP address for your machine (e.g., Section 'a' & Serial number is 1, then your IP address should be 10.0.1.1. Section 'h' & & Serial number is 23, then your IP address should be 10.0.8.23) applicable only for relevant tasks (which doesn't requires internet connectivity to execute the tasks).

Task 1: Linux Interface Configuration (ifconfig / IP command)

Step 1: To display status of all active network interfaces.

ifconfig (or) ip addr show

Analyze and fill the following table:

ip address table:

Interface name	IP address	MAC address
10.0.2.15	(IPv4/IPv6) fe80::522:b087:28e4:51ac	08:00:27:a4:27:4c
127.0.0.1	::1	

Step 2: To assign an IP address to an interface, use the following command.

sudo ifconfig interface_name 10.0.your_section.your_sno netmask 255.255.255.0 (or)

sudo ip addr add 10.0.your_section.your_sno /24 dev interface_name

Step 3: To activate / deactivate a network interface, type.

sudo ifconfig interface_name down
sudo ifconfig interface_name up

Step 4: To show the current neighbor table in kernel, type **ip neigh**

Task 2: Ping PDU (Packet Data Units or Packets) Capture

Step 1: Assign an IP address to the system (Host).

Note: IP address of your system should be 10.0.your_section.your_sno.

Step 2: Launch Wireshark and select 'any' interface

Step 3: In terminal, type **ping 10.0.your_section.your_sno**

Observations to be made

Step 4: Analyze the following in Terminal

- TTL
- Protocol used by ping
- Time

Step 5: Analyze the following in Wireshark

On Packet List Pane, select the first echo packet on the list. On Packet Details Pane, click on each of the four "+" to expand the information. Analyze the frames with the first echo request and echo reply and complete the table below.

Details	First Echo Request	First Echo Reply
Frame Number	1	2
Source IP address	10.0.2.15	10.0.2.102
Destination IP address	10.0.2.102	10.0.2.15
ICMP Type Value	8	0
ICMP Code Value	0	0
Source Ethernet Address	10.0.2.15	10.0.2.102
Destination Ethernet Address	10.0.2.102	10.0.2.15
Internet Protocol Version	4	4
Time To Live (TTL) Value	64	64

Task 3: HTTP PDU Capture

Using Wireshark's Filter feature

Step 1: Launch Wireshark and select 'any' interface. On the Filter toolbar, type-in 'http' and press enter

Step 2: Open Firefox browser, and browse www.flipkart.com

Observations to be made

Step 3: Analyze the first (interaction of host to the web server) and second frame (response of server to the client). By analyzing the filtered frames, complete the table below:

Details	First Echo Request	First Echo Reply
Frame Number	74	76
Source Port	54580	80
Destination Port	80	54580
Source IP address	10.0.2.15	185.125.190.48
Destination IP address	185.125.190.48	10.0.2.15
Source Ethernet Address	10.0.2.15	185.125.190.48
Destination Ethernet Address	185.125.190.48	10.0.2.15

Step 4: Analyze the HTTP request and response and complete the table below.

HTTP Request		HTTP Response	
Get	GET/HTTP/1.1	Server	nginx

Host	Detectportal.firef	Content-Type	Text/plain
	$ox.com\r\n$		
User-Agent	Mozilla/5.0	Date	Thu 26 Jan2023
Accept-Language	En-US	Location	1.1 google
Accept-Encoding	gzip	Content-Length	8
Connection	Keep-alive	Connection	close

Using Wireshark's Follow TCP Stream

Step 1: Make sure the filter is blank. Right-click any packet inside the Packet List Pane, then select 'Follow TCP Stream'. For demo purpose, a packet containing the HTTP GET request "GET / HTTP / 1.1" can be selected.

Step 2: Upon following a TCP stream, screenshot the whole window.

GET / HTTP/1.1
Host: connectivity-check.ubuntu.com
Accept: "/"
Connection: close
HTTP/1.1 204 No Content
server: nginx/1.14.0 (Ubuntu)
date: Thu, 26 Jan 2023 17:02:14 GMT
x-networkmanager-status: online
connection: close

Task 4: Capturing packets with tcpdump

Step 1: Use the command **tcpdump -D** to see which interfaces are available for capture.

sudo tcpdump -D

Step 2: Capture all packets in any interface by running this command:

sudo tcpdump -i any

Note: Perform some pinging operation while giving above command. Also type www.google.com in browser.

Observation

Step 3: Understand the output format.

Step 4: To filter packets based on protocol, specifying the protocol in the command line. For example, capture ICMP packets only by using this command:

sudo tcpdump -i any -c5 icmp

Step 5: Check the packet content. For example, inspect the HTTP content of a web request like this:

sudo tcpdump -i any -c10 -nn -A port 80

Step 6: To save packets to a file instead of displaying them on screen, use the option -w:

sudo tcpdump -i any -c10 -nn -w webserver.pcap port 80

Task 5: Perform Traceroute checks

Step 1: Run the traceroute using the following command.

sudo traceroute www.google.com

Step 2: Analyze destination address of google.com and no. of hops

Step 3: To speed up the process, you can disable the mapping of IP addresses with hostnames by using the -*n* option

sudo traceroute -n www.google.com

Step 4: The -I option is necessary so that the traceroute uses ICMP.

sudo traceroute -I www.google.com

Step 5: By default, traceroute uses icmp (ping) packets. If you'd rather test a TCP connection to gather data more relevant to web server, you can use the -T flag.

sudo traceroute -T www.google.com

Task 6: Explore an entire network for information (Nmap)

Step 1: You can scan a host using its host name or IP address, for instance.

nmap www.pes.edu

Step 2: Alternatively, use an IP address to scan.

nmap 163.53.78.128

Step 3: Scan multiple IP address or subnet (IPv4)

nmap 192.168.1.1 192.168.1.2 192.168.1.3

Ouestions on above observations:

- 1) Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the server? **Ans. 1.1**
- 2) When was the HTML file that you are retrieving last modified at the server? **Ans**.
- 3) How to tell ping to exit after a specified number of ECHO_REQUEST packets? **Ans.use -c option**
- 4) How will you identify remote host apps and OS? **Ans.By using Npam**