Potenzen, Pegel, Kennfarben

÷	Pegel	Leistungs- verhältnis	Spannungs- verhältnis	Kenn- farbe	Wert	Multi- plikator	Toleranz
$ \begin{array}{c} .\\ 10^{-3} = 0,001\\ 10^{-2} = 0,01\\ 10^{-1} = 0,1\\ 10^{0} = 1\\ 10^{1} = 10\\ 10^{2} = 100\\ 10^{3} = 1000\\ \vdots $	-20 dB -10 dB -6 dB -3 dB -1 dB 0 dB 1 dB 3 dB 6 dB 10 dB 20 dB	0,01 0,1 0,25 0,5 0,8 1 1,26 2 4 10 100	0,1 0,32 0,5 0,71 0,89 1 1,12 1,41 2 3,16 10	Silber Gold schwarz braun rot orange gelb grün blau violett grau weiß keine	- 0 1 2 3 4 5 6 7 8	10 ⁻² 10 ⁻¹ 10 ⁻⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ 10 ⁹	±10% ±5% - ±1% ±2% - ±0,5 ±0,25% ±0,1% - ±20%

Wertkennzeichnung durch Buchstaben

p	Pico	10 ⁻¹²
n	Nano	10 ⁻⁹

μ	Mikro	10 ⁻⁶
m	Milli	10 ⁻³

		10°
k	Kilo	10^{3}

M	Mega	10 ⁶
G	Giga	109

Ohmsches Gesetz

$$U = I \cdot R$$

Leistung

$$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$$

Arbeit

$$W = P \cdot t$$

Widerstand von Drähten

$$R = \frac{\rho \cdot l}{A_{Dr}}$$

$$R = \frac{\rho \cdot l}{A_{Dr}}$$
 $A_{Dr} = \frac{d^2 \cdot \pi}{4} = r^2 \cdot \pi$

Widerstände in Reihenschaltung

$$R_G = R_1 + R_2 + R_3 + \dots R_n$$

Bei 2 Widerständen gilt

$$\frac{U_1}{U_2} = \frac{R_1}{R_2} \qquad \qquad U_G = U_1 + U_2$$

$$U_G = U_1 + U_2$$

Widerstände in Parallelschaltung

$$\frac{1}{R_G} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Bei 2 Widerständen gilt

$$R_G = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad \qquad \frac{I_2}{I_1} = \frac{R_1}{R_2} \qquad \qquad I_G = I_1 + I_2$$

$$\frac{I_2}{I_1} = \frac{R_1}{R_2}$$

$$I_G = I_1 + I_2$$

Innenwiderstand

$$R_i = \frac{\Delta U}{\Delta I}$$

Effektiv- und Spitzenwerte bei sinusförmiger Wechselspannung

$$\hat{U} = U_{\it eff} \cdot \sqrt{2}$$

$$U_{SS} = 2 \cdot \hat{U}$$

Periodendauer

$$T = \frac{1}{f}$$

Kreisfrequenz

$$\omega = 2 \cdot \pi \cdot f$$