Aufgabe 1 Es sei V ein **K**-Vektorraum, < . , . > ein Skalarprodukt auf V und $\|\cdot\|$ die durch $\|v\| = \sqrt{< v, v >} (v \in V)$ gegebene Norm auf V. Zeigen Sie:

- a) Die m Vektoren $v_1, \ldots, v_m \in V$ $(m \in \mathbf{N})$ sind genau dann linear unabhängig, wenn keiner dieser Vektoren eine Linearkombination der übrigen ist.
- b) Die m Vektoren $v_1, \ldots, v_m \in V$ $(m \in \mathbb{N})$ sind genau dann linear abhängig, wenn es Skalare $\lambda_1, \ldots, \lambda_m \in \mathbb{K}$ gibt mit $\lambda_1 v_1 + \ldots + \lambda_m v_m = 0$ und $\lambda_1^2 + \ldots + \lambda_m^2 = 0$.
- c) Die zwei Vektoren $u, v \in V$ sind genau dann linear unabhängig, wenn die beiden Vektoren u + v und u v linear unabhängig sind.
- d) Bilden die n Vektoren $v_1, \ldots, v_n \in V \ (n \in \mathbb{N})$ eine Basis von V, so gibt es zu jedem $a \in V$ genau ein n-Tupel $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ mit $a = \lambda_1 v_1 + \ldots + \lambda_n v_n$.
- e) Bilden die n Vektoren $v_1, \ldots, v_n \in V$ $(n \in \mathbf{N})$ eine Orthogonalbasis von V, so gilt für jedes $a \in V$: $a = \sum_{i=1}^{n} \frac{\langle a, v_i \rangle}{\|v_i\|^2} v_i.$
- f) Bilden die n Vektoren $v_1, \ldots, v_n \in V$ $(n \in \mathbb{N})$ eine Orthonormalbasis von V, so gilt für jedes $a \in V$: $a = \sum_{i=1}^{n} \langle a, v_i \rangle v_i$.
- g) Aus der Cauchy-Schwarzschen Ungleichung für <.,.> und $\|.\|$ folgt die Dreiecksungleichung für $\|.\|$.

Aufgabe 2

- a) Es sei $[a,b] \subset \mathbf{R}$ ein Intervall und $C[a,b] = \{f \mid f : [a,b] \to \mathbf{R} \text{ stetig}\}$ die Menge aller stetigen reellwertigen Funktionen auf [a,b]. Auf C[a,b] sei in der üblichen Weise eine Addition und eine Skalarmultiplikation erklärt. Zeigen Sie:
 - i) C[a, b] ist ein Vektorraum.
 - ii) Die Funktionen $f, g \in C[0, 2\pi]$ mit $f(x) = \sin x, g(x) = \cos x$ sind linear unabhängig.
- b) Es sei $V = \{p \mid p : \mathbf{R} \to \mathbf{R} \text{ ist Polynom, } \operatorname{grad} p \leq 1\}$ der Vektorraum aller reellwertigen Polynome auf \mathbf{R} mit einem Grad kleiner zwei.
 - i) Zeigen Sie: durch $< p,q> = \frac{2}{3}a_1b_1+2a_0b_0$ für $p,q\in V,$ $p(x)=a_1x+a_0,$ $q(x)=b_1x+b_0,$ ist ein Skalarprodukt <., .> auf V erklärt.
 - ii) Geben Sie eine Orthonormalbasis von V and

Aufgabe 3 Gegeben seien die Vektoren $\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} -5 \\ 1 \\ 4 \end{pmatrix}$ im \mathbf{R}^3 . Berechnen Sie:

a) $|\mathbf{a}|$ b) $|\mathbf{b}|$ c) $\mathbf{a} \cdot \mathbf{b}$ d) $\mathbf{a} \cdot \mathbf{c}$ e) $3\mathbf{a} - 5\mathbf{b} + 3\mathbf{c}$ f) $4(\mathbf{a} - 2\mathbf{b}) + 10\mathbf{c}$ g) $(\mathbf{a} - 3\mathbf{b}) \cdot 4\mathbf{c}$

h) den zu ${\bf a}$ gehörigen Einheitsvektor i) den Winkel zwischen ${\bf a}$ und ${\bf b}$

 $j) \, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix} \qquad k) \, \left[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix} \right] \cdot \left[\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 4 \\ 10 \\ -2 \end{pmatrix} \right] \qquad l) \, \left| \begin{pmatrix} \cos \alpha \\ \sqrt{3} \\ \sin \alpha \end{pmatrix} \right| \quad (\alpha \in \mathbf{R})$

m) den zu $\begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$ gehörigen Einheitsvektor n) den Winkel zwischen $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

o) den Winkel zwischen der Hauptdiagonalen und den Kanten eines Würfels

Aufgabe 4

- a) Liegen die Vektoren $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\1\\3 \end{pmatrix}$, und $\begin{pmatrix} 0\\-1\\-1 \end{pmatrix}$ auf einer Geraden im \mathbf{R}^3 ? Falls ja: Geben Sie diese Gerade in der Parameterdarstellung an.
- b) Geben Sie eine Basis des \mathbb{R}^3 an, die den Vektor $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ enthält.
- c) Zeigen Sie, dass die Vektoren $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$ eine Orthonormalbasis des \mathbf{R}^3 bilden.
- d) Zeigen Sie, dass die Vektoren $\binom{1}{4}$, $\binom{-2}{2}$ und $\binom{-1}{6}$ ein rechtwinkliges Dreieck bilden.

Lösungen zu Aufgabe 3

a)
$$\sqrt{29}$$

b)
$$\sqrt{20}$$

c)
$$-22$$

a)
$$\sqrt{29}$$
 b) $\sqrt{20}$ c) -22 d) -29 e) $\binom{4}{9}_{-20}$ f) $\binom{-22}{18}_{-8}$

f)
$$\begin{pmatrix} -22 \\ 18 \\ -8 \end{pmatrix}$$

h)
$$\frac{1}{\sqrt{29}} \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}$$

g)
$$-436$$
 h) $\frac{1}{\sqrt{29}} \binom{3}{2}$ i) $\arccos \frac{-22}{\sqrt{29}\sqrt{20}}$ j) 1 k) 0 l) 2

m)
$$\frac{1}{5} \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$$

m)
$$\frac{1}{5} \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$$
 n) $\frac{\pi}{3}$ o) $\arccos \frac{1}{\sqrt{3}}$

Lösungen zu Aufgabe 4

a)
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \middle| \lambda \in \mathbf{R} \right\}$$
 b) z.B. $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

b) z.B.
$$\binom{1}{1}$$
, $\binom{1}{0}$, $\binom{0}{1}$