Dummit & Foote Ch. 7.1: Introduction to Rings

Scott Donaldson

Jul. 2024

Let R be a ring with 1.

1. (7/1/24)

Show that $(-1)^2 = 1$ in \mathbb{R} .

Proof. We have:

$$(-1) + (-1)^2 = \underbrace{(-1)(1)}_{\text{identity}} + (-1)(-1) = \underbrace{(-1)(1 + (-1))}_{\text{distribution}} = (-1) \underbrace{(0)}_{\text{inverses}} = 0,$$

and therefore, since
$$(-1) + (-1)^2 = 0$$
, $(-1)^2 = 1$.

2. (7/1/24)

Prove that if u is a unit in R then so is -u.

Proof. Recall that u is a unit in R if there exists some $v \in R$ such that uv = vu = 1.

Now:

$$(-u)(v) = -(uv) = -1$$
, which implies that $(-u)(v)(-1) = (-1)^2 = 1$, so $(-u)(-v) = 1$,

which implies that -u is also a unit in R.