Binary Classification Methods

05 October 2022 1:25 AM

Methods of modelling binary classification

Non-applicable points are crossed out

Method	Advantages	Limitations + Considerations	
Logistic Regression (LR) OPTION 1	 Simple Weights are Interpretable Less prone to over-fitting for low dimensional Efficient in handling linear features Low computational time 	 Prone to over-fitting on high dimensional data Cannot handle non-linear problems; most IRL data are Cannot capture complex Susceptible to multicollinearity Requires independent variables that are linearly Need to remove unimportant Sensitive to outliers 	
Lasso: Will set some coefficients to zero.	Reduces overfitting by eliminating features,	 Does not work well with multicollinearity - will randomly select one of them Decreased flexibility - May cause small bias when eliminate too much variables 	
Ridge: Will set coefficients close to zero	 Reduces impact of not important features in predicting target, compared to LR Decreases variance (at the cost of bias) 	Does not eliminate coefficient	
Elastic Net: Combination of ridge and lasso	 Has both feature elimination (lasso) and feature reduction (ridge), compared to LR - Ridge prevents lasso from eliminating too many Does not easily eliminate multicollinear variables 	 More computationally costly - need to cross-validate the weight of L1 & L2 penalty Greater flexibility than lasso - increased probability of 	
Decision Trees (DT)	 Can capture non-linear relationship Does not require feature transformation for non- Does not require normalization Does not require feature scaling (= scale- Interpretable + can be visualized Can handle numerical, categorical, and Boolean Not sensitive missing values Not sensitive to outsider data (= stable) Non-parametric - does not require assumption 	 Usually for multi-class Requires more training time with many features Requires pruning to mitigate overfitting Tends to overfit Bad for big data - overfitting and high complexity Does not guarantee 100% efficient decision tree 	
Random forest Not good	 Handles non-linear parameters efficiently Works well with categorical and continuous Can automatically handle missing values Scale-invariant Robust to outliers Stable Less impacted by noise compared to DT Higher accuracy than DT Less prone to overfitting than DT Can product feature importance - can be used 	 Requires a lot of Longer training period than DT Altho provide feature importance, it is not easy to Susceptible to multicollinearity 	

	for feature selection • Can perform feature selection • Good for imbalanced dataset	
KNN Not good	 Does not require training No training period - time efficient Can add new data Easy to implement Only has one hyperparameter Choice of distance metric Can learn non-linear decision boundaries No assumptions 	 Does not work well with large Does not work well with high dimensions Needs feature scaling Sensitive to noisy data, missing values, and outliers Requires hyperparameter Does not perform well on imbalanced data Assigns equal weight to every
Neural Networks Not good	 Can capture complex relationships Good for non-linear data Good for large number of inputs Good for large number of features Once trained, predicts fasts No assumptions 	 Black boxes - cannot interpret features Computationally expensive Time consuming Depends on a lot of training
SVM	 Good for non-noisy target variable i.e. binary Good for high dimensional data Less sensitive to outliers 	 Not suitable for large dataset due to time Difficult to select the right kernel Hyperparameter optimization is important for generalization Susceptible to multicollinearity
Gradient Boosting (https://nept une.ai/blog/g radient- boosted- decision- trees-guide)	 More accurate Faster on large dataset Supports categorical features Can handle missing values natively 	 Prone to overfitting - can be solved using L1 & L2 penalties or low learning rate Computationally and time Hard to interpret final models
e.g. XGBoost OPTION 3	 Less feature engineering - No need scaling or Can obtain feature importance - can be used for feature selection Not sensitive to outliers or missing values, Fast to interpret Good execution speed Good model performance Less prone to overfitting Note: Good for classification problems with many features and a large dataset 	 Difficult to interpret; tough to visualize Parameters must be tuned properly to prevent overfitting Harder to tune with more hyperparameters
Naive Bayes Classifier (?)	 Very fast Insensitive to irrelevant features Scalable to large dataset Good with high dimensions 	 Requires each features to be independent - difficult with irl Bad estimator - (not good for interpretability?) Training data should represent population
Perceptron (?)		

ayesia	an
etwoi	rks (?)

Note:

Lasso, ridge, and elastic net can be used for classification by using deviance instead of RSS

Sources

- https://iq.opengenus.org/advantages-and-disadvantages-of-logistic-regression/
- https://medium.datadriveninvestor.com/random-forest-pros-and-cons-c1c42fb64f04
- https://theprofessionalspoint.blogspot.com/2019/02/advantages-and-disadvantages-of-knn.html
- https://www.universelnews.com/2022/05/06/advantages-disadvantages-of-knn-in-machine-learning/
- https://towardsdatascience.com/pros-and-cons-of-various-classification-ml-algorithms-3b5bfb3c87d6

Methods for building decision trees

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466856/

3. Available algorithms and software packages for building decision tree models Go to: •

Several statistical algorithms for building decision trees are available, including CART (Classification and Regression Trees), [7] C4. 5, [8] CHAID (Chi-Squared Automatic Interaction Detection), [9] and QUEST (Quick, Unbiased, Efficient, Statistical Tree). [10] Table 1 provides a brief comparison of the four most widely used decision tree methods. [11,12]

Methods	CART	C4. 5	CHAID	QUEST
Measure used to select input variable	Gini index; Twoing criteria	Entropy info-gain	Chi-square	Chi-square for categorical variables; J-way ANOVA for continuous/ordinal variables
Pruning	Pre-pruning using a single-pass algorithm	Pre-pruning using a single-pass algorithm	Pre-pruning using Chi-square test for independence	Post-pruning
Dependent variable	Categorical/ Continuous	Categorical/ Continuous	Categorica	Categorical
Input variables	Categorical/ Continuous	Categorical/ Continuous	Categorical/ Continuous	Categorical/ Continuous
Split at each node	Binary; Split on linear	Multiple	Multiple	Binary; Split on linear combinations

Other

• https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

Algorithms used in Decision Trees

- ID3 → (extension of D3)
 - ID3 algorithm builds decision trees using a top-down greedy search approach through

the space of possible branches with no backtracking

Decision Tree

- A greedy algorithm, as the name suggests, always makes the choice that seems to be the best at that moment.
- C4.5 → (successor of ID3)
- CART → (Classification And Regression Tree)
- CHAID → (Chi-square automatic interaction detection Performs multi-level splits when computing classification trees)
- MARS → (multivariate adaptive regression splines)

https://www.analyticsvidhya.com/blog/2021/04/distinguish-between-tree-based-machine-learning-algorithms/

 Ensemble methods: Bagging (Random Forest), Boosting (Adaptive Boosting, GBM & XGBoost) and Stacking

Note:

- Gradient Boosting Machine (GBM) creates trees from residual datapoints
- Extreme Gradient Boosting (XGBoost) is a regularized form of GMB to control overfitting
- There is also LightGBM and CatBoost
 - https://neptune.ai/blog/xgboost-vs-lightgbm
 - https://neptune.ai/blog/gradient-boosted-decision-trees-guide
 - https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm

https://neptune.ai/blog/gradient-boosted-decision-trees-guide https://hackernoon.com/boosting-algorithms-adaboost-gradient-boosting-and-xgboost-f74991cad38c

Boosting algorithms in ML

- Gradient boosting an ensemble of weak learners is used to improve the performance of a machine learning model.
- Adaptive Boosting (AdaBoost) AdaBoost fits a sequence of weak learners to the data. It then
 assigns more weight to incorrect predictions, and less weight to correct ones.
- XGBoost uses regularization on gradietn boosting
- LightGBM uses a leaf-wise tree growth algorithm
 - Converge faster, but more prone to overfitting
- CatBoost grows a balanced tree using oblivious decision trees (uses the same features to make the right and left split at each level of the tree).

https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm CatBoost

- 1. Symmetric trees --> Time and computationally efficient, and regularizes
- 2. Ordered boosting a permutation-driven approach to train model on a subset of data while calculating residuals on another subset
- 3. Native feature support Can handle all data type --> saves time pre-processing

 $\frac{\text{https://towardsdatascience.com/the-evolution-of-trees-based-classification-models-cb40912c8b35}{\#:^:\text{text=Tree}\%2D based\%20 classification\%20 models\%20 are, be\%20 used\%20 to\%20 make\%20 predictions.}$

Evolution of tree-based models:

Comparing ML algorithms: https://neptune.ai/blog/how-to-compare-machine-learning-models-and-algorithms - This is pretty good