Interrupt

Dongyoon Lee

Summary of last lectures

- Tools: building, exploring, and debugging Linux kernel
- Core kernel infrastructure
 - syscall, module, kernel data structures
- Process management & scheduling

Today: "interrupt"

- A mechanism to implement abstraction and multiplexing
- Interrupt: asking for a service to the kernel
 - by software (e.g., int) or by hardware (e.g., keyboard)
- Interrupt handling in Linux
 - top half + bottom half

Exceptions and Interrupts

- Synchronous interrupts (called exceptions)
 - produced by the CPU while executing instructions
 - non-maskable interrupt (NMI)
- asynchronous interrupts (called interrupts)
 - issued by other hardware devices (e.g., HDD, NIC, etc.)
 - normal and maskable interrupts

Three kinds of Exceptions

- Faults: Can be corrected. The program may continue as if nothing happened (e.g., page faults).
- Traps: Reported after the execution of a trapping instruction.
 - invalid memory access, devision by zero
 - switch to the kernel mode in response to a system call
 - programmed execeptions: e.g., int 0x03 (breakpoint)
 - If the kernel code does cause a trap, it immediately panics.
- Aborts: Some severe unrecoverable error.

Exceptions

#	Description	Туре
0	Divide-by-zero Error	Fault
1	Debug	Fault/Trap
2	Non-maskable Interrupt	Interrupt
3	Breakpoint	Trap
8	Double Fault	Abort
13	General Protection Fault	Fault
14	Page Fault	Fault
•••	•••	

Yeah! New hard disk drive!

HDD architecture

How fast is my new HDD?

- HDD access time = seek time + rotational latency
- Seek time
 - The time to move the disk head to the track that contains data
 - Average seek time: 4 ~ 10 msec
- Rotational latency
 - The delay for the rotation of the disk to bring the required disk sector under the read-write mechanism
 - 7200 RPM: 4.16 msec
- Access time of your new HDD: about 10 msec

Interrupt

- Compared the the CPU, devices are slow to respond (e.g., 10 msec)
 - The kernel must be free to go and handle other work, dealing with the hardware only after that hardware has completed its work
- How to know the completion of a hardware operation
 - Polling: the kernel periodically checks the status of hardware
 - Interrupt: the hardware signals its completion to the processor
- Interrupt examples
 - Completion of disk read
 - Key press on a keyboard, network packet arrival

Interrupt controller

- Interrupts are electrical signals multiplexed by the interrupt controller
 - Sent on a specific pin of the CPU
- Once an interrupt is received, a dedicated function is executed
 - Interrupt handler
- The kernel/user space can be interrupted at (nearly) any time to process an interrupt

Advanced PIC (APIC, I/O APIC)

Figure 10-2. Local APICs and I/O APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

Advanced PIC (APIC, I/O APIC)

- I/O APIC
 - system chipset (or south bridge)
 - redistribute interrupts to local APICs
- Local APIC
 - inside a processor chip
 - has a timer, which raises timer interrupt
 - issues a IPI (inter-process interrupt)

A bigger picture

A real motherboard (T42)

Intel Z170 chipset

Ref: The Intel 6th Gen Skylake Review

Interrupt request (IRQ)

- Interrupt line or interrupt request (IRQ)
 - device identifier
- E.g., 8259A interrupt lines
 - IRQ 0: system timer, IRQ 1: keyboard controller
 - IRQ 3, 4: serial port, IRQ 5: terminal
- Some interrupt lines can be shared among several devices
 - True for most modern devices (PCIe)

Next lecture

- Interrupt handler: top half
- Interrupt handler: bottom half