San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Mathematical Preliminaries

(Part 1)

Lecture 02 Day 02/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 02

- Enrollment ...
- Announcement
- Summary of Lecture 01
- Lecture 02: Teaching ...
 - Mathematical Preliminaries (Part 1)

Announcement

- Anybody who was absent last session, please talk to me right after the class, otherwise, I might cancel his/her enrollment.
- The greensheet is updated and uploaded into the Canvas.

Summary of Lecture 01: We learned ...

- My office hours are "By Appointment" (TR 3:00-4:15pm)
 - Appointments should be set by email at least 24 hours before your requested time.

Examinations

- By default, every Thursday we'll have a short quiz!
 - So, it is not the case that I'd announce it again.
- All examinations are closed book (concepts).
- All examinations will cover everything we've covered from the beginning of the semester.

- In this course we'd deal with the mathematical theory of computation.
- The theory of computation is divided into:
 - Formal languages
 - Automata theory
 - Computability
 - Complexity
- We'd discover the "atoms" and "molecules" of computing.
- The role of this course for computer scientists is:
 - The same role that Newton's laws have for mechanical engineers.

Summary of Lecture 01: We learned ...

Grading Information

Item	Percent
Project	15%
Assignments	10%
Quizzes	30%
Midterm #1	10%
Midterm #2	15%
Final	20%
Total	100%

 I'll curve your final grade if it is not normal.

Classroom Protocol

- This is me if you use cell phone or laptop!
- For more info, please refer to the greensheet!

Any question?

Objective of This and Next Lecture

- Recap for Math 42 (discrete mathematics)
- We'll review:
 - Sets
 - Cartesian Products
 - Functions
 - Graphs
- Based on the prerequisite (Math42), we can assume that:
 You are already familiar with them.
- So, we just review the most important concepts that we'd need in this course.
- There will be some questions from these topics in all tests.

Mathematical Preliminaries

Recap from Math 42

The Basic Concepts of Set Theory

Set Theory

- "Set theory" has a great role in mathematics and consequently in other sciences.
 - In this course, we use sets tremendously.
- Created by great German mathematician, George Cantor (1845-1918).

- He is famous because of set theory and his work on the infinities.
- Specially, his method to prove that the set of real numbers is bigger than the set of natural numbers.

Definition of Set

Definition

- A set is a collection of "distinct" elements (aka members).
 - The only property that the elements of a set has is "distinction".
 - The definition implicitly stating that the elements' "order" does not matter.

We can also define a "list" as:

A list is a collection of "ordered" elements.

Here "distinction" does not matter but "order" matters.

Set Representation 1: Roster Method

- One way to represent a set is enumerating its members.
- We put the elements in a pair of curly-braces, like this:

Example 1

The set of lower-case English alphabet.

$$\{a, b, c, ..., z\}$$

- Sometimes we use ellipses (...) to bypass mentioning some elements if the general pattern of elements is obvious.
- There are other set representations that will be covered later!

Sets Naming Convention

• To "name a set", we usually use English or Greek capital letters such as A , B , Σ (sigma) , Γ (gamma), etc..

Example 2

The set of lower-case English alphabet.

$$\Sigma = \{a, b, c, ..., z\}$$

The set of natural numbers less than 100.

$$D = \{0, 1, 2, 3, \dots, 99\}$$

Set Examples

Example 3

- $N = \{1, 0, -5, 12, 5\}$
- V = {train, bike, airplane, bus}
- $\Gamma = \{x, y, z\}$
- $A = \{00, 01, 10, 11\}$
- Is Σ a set?
- $\Sigma = \{ab, aabb, aaabbb\}$
- The elements are meaningless!

- Is B a set?B = {5, train, apple, California}
- The elements are irrelevant!
- Is C a set?C = {1, 2, 3, 4}
- The elements are ordered!
- Is D a set?D = {1, 2, 2, 3}
- The elements are repeated!

Set Representation 2: Venn Diagrams

- Another way to represent a set is putting all its elements in a geometrical figures such as circle, ellipse, etc.
- These diagrams are called "Venn diagram".

Example 4

• $A = \{1, 2, 3, 4\}$

■ This method is named after British mathematician, John Venn (1834 – 1923).

Size of a Set

- Size of a set (aka cardinality) is the number of its elements.
- The size of the set A is denoted by |A|.

Example 5

- Let $A = \{1, 0, -5, 12, 5\}$; |A| = ?
- |A| = 5

Example 6

- Let $B = \{1, 11, 7, -15, 2, 1, 7, 11\}$; |B| = ?
- |B| = 5 (careful!)

Membership

Example 7

- Let C = {5, train, apple}
- Then we can say:
 - train ∈ C (read: train belongs to C, or train is a member of C)
 - bus ∉ C (read: bus does not belong to C, or bus is not a member of C)
- A set is known when its boundary is clearly defined.
 - We should be able to recognize what belongs to a set and what does not.

Thus, "not membership" is as important as "membership".

Empty Set

Definition

- A set that has no member.
- Empty set is denoted by { } or φ.
 - "φ" is pronounced "phi".
- What is the size of φ?
- $|\phi| = 0$

Example 8: An Empty Set

- The set of "A-Students of this class"!!!
- Sorry, that was a typo, I meant "F-Students"!

Universal Set

- We usually need to specify the "universe of our discourse".
- This universe is all possible members that affect to the problem under consideration.
- We call it "Universal set".

Definition

- "Universal set" of a set is the set containing all possible elements under consideration.
- Universal set is denoted by "U".

Universal Set Examples

Example 9

- Let $A = \{2, 3, 4\}$.
- The universal set of A could be:
 - U = {0, 1, 2, 3, 4, 5, 6, 8}, or
 - $U = \{1, 2, 3, 4\}, \text{ or } U = \{2, 3, 4\}, \text{ or } ...$

But the universal set of A cannot be U = {2, 3}!

Universal Set Examples

Example 10

- Let Z = {A-Students of this class}.
- Depends on the problem we want to solve, the universal set of Z could be:
 - U = {All students of this class}, or
 - U = {All students of CS department}, or
 - U = {All students of California}, or so forth.

Venn Diagram of Universal Set

We represent a universal set by a rectangle.

Example 11

- $A = \{1, 2, 3, 4\}$
- $U = \{0, 1, 2, 3, 4, 5, 6, 8, 9\}$

Subset

Definition

Set A is subset of B iff every elements of A is also an element of B.

U

Subset relationship is denoted by A ⊆ B.

Example 12

•
$$B = \{1, 2, 3, 4\}$$

•
$$A = \{2, 3\}$$

- A ⊆ B
 - Note that A is inside B.

 Sometimes, we don't mention the elements of U because we don't care!

Proper Subset

Definition

- Set A is proper subset of B iff all elements of A belong to B and they are not equal.
- "A is proper subset of B" is denoted by A ⊂ B.
- B is called "superset" of A.

Example 12 (repeated)

- $B = \{1, 2, 3, 4\}$
- $A = \{2, 3\}$
- A ⊂ B

Equality of Two Sets

Definition

- Two sets A and B are equal iff they have the same elements.
- Equality of two sets A and B is denoted by A = B.
- There is another way to define equality of two sets:
- ① Equality of Two Sets by Using Subset Notation
 - $A = B \text{ iff } A \subseteq B \text{ AND } B \subseteq A$.

Finite Sets

Definition

- A set is called "finite" if its size is a natural number.
 - The set of "natural numbers" is denoted by \mathbb{N} and starts from 0. $\mathbb{N} = \{0, 1, 2, ...\}$
 - In some books, you might see it starts from 1 but we prefer in this course to start it from 0.

Example 13

- Let B = {a, b, c, ..., z}. Is this a finite set?
- Yes, because |B| = 26, that is a natural number.

Is \$\phi\$ finite? Why?

Infinite Sets

Definition

A set is infinite, if we cannot express its size by a natural number.

Example 14: Infinite Sets

- $C = \{1, 2, 3, 4, ...\}$
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Integers
- $\mathbb{N} = \{0, 1, 2, ...\}$ Natural numbers

1

Set Representation 3: Set Builder

- So far, we've reviewed two methods for set representation:
 - Roster method
 - 2. Venn diagram method
- There are another method that is more important than those two.
- It's called "set builder" method.

We use set builder method tremendously in this course.

Set Representation 3: Set Builder

Set Builder Format

- { member variable : description of the elements' properties }
- Note that some books might use vertical bar "|" instead of colon ":".

Example 15

- Represent the following set by a set builder.
- The set of all Natural numbers between 1 and 5 (both including)

$$A = \{x : x \in \mathbb{N} , 1 \le x \le 5\}$$

This can be simulated by the following Java code:

for (int
$$x = 1$$
; $x <= 5$; $x++$) { //some code here }

Set Representation 3: Set Builder

 For simplifying the representation, we might put the universal set description before the colon.

Example 15 (repeated)

The set of all integers between 1 and 5 (both including)

$$A = \{x : x \in \mathbb{N}, 1 \le x \le 5\}$$

This is a common representation of A:

$$A = \{x \in \mathbb{N} : 1 \le x \le 5\}$$

(1)

Set Representation 3: Set Builder

• If the members follow a pattern, we might use the following format:

```
{ member pattern : description of the elements' properties }
```

Example 16

Represent the following set by a set builder.

$$B = \{0, 3, 6, 9, 12, 15, 18\}$$

Regular representation:

$$B = \{ x : x = 3k, k \in \mathbb{N}, 0 \le k \le 6 \}$$

Using pattern representation (preferred method):

$$B = \{3k : k \in \mathbb{N} , 0 \le k \le 6\}$$

Note About Set Builder

- Comma in the set builder description means "AND".
 - So, if you mean "OR", you should explicitly put "OR" or "v".

Example 17

Represent the following real numbers intervals by set builder.

$$B = \{ x \in \mathbb{R} : x \le -1 \text{ OR } x \ge 2 \}$$

What would happen if we put comma or AND in the above set?

Exercise

Example 18

Write all subsets of A = {a , b}.

Example 19

• Write all subsets of $B = \{1, 2, 3\}$

Power Set

Definition

- The set of all subsets of set A is called the power set of A.
 - The power set of A is denoted by 2^A.
 - We can show the powerset of A using set builder as:

$$2^{A} = \{x : x \subseteq A\}$$

Example 20

- Let $A = \{1, 2\}$; $2^A = ?$
- $2^A = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$

Power Set

Example 21

- Let S = {a, b, c}; 2^S = ?
- $2^{S} = \{ \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$

Example 22

- What is the cardinality (size) of S and 2^S of the previous example?
- |S| = 3
- $|2^{S}| = 8$

Do you see any relation between these two cardinalities?

Size of Power Set

If set S has n elements (i.e. |S| = n), then its power set has 2ⁿ elements.

 In other words, we have the following relationship between the size of a set and the size of its power set.

$$|2^{S}| = 2^{|S|} = 2^{n}$$

Example 23

- Let S = {a, b, c}; |2^S| = ?
- $|2^{S}| = 2^{|S|} = 2^{3} = 8$

Exercise

Concept	Notation
Empty set	
Universal set	
8 is member of A.	
6 is not member of B.	
A is subset of Σ .	
B is proper subset of Σ .	
Power set of A	
Size of A (aka Cardinality of A)	
Size of the power set of A	

Relationship Between Two Sets

Set Operations

Operator	Notation
Union	$A \cup B = \{x : x \in A \lor x \in B\}$
Intersection	$A \cap B = \{x : x \in A \land x \in B\}$
Minus	$A - B = \{x : x \in A \land x \notin B\}$
Complement	$\overline{A} = U - A = \{x : x \in U \land x \notin A\} = \{x : x \notin A\}$

Set Properties

Property	Name
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive

Set Identities

Identity	Result	Name	
Αυφ=		Identify	
A ∩ U =		Identity	
A ∪ U =		Domination	
A ∩ φ =		Domination	
A U A =		Idempotent	
A ∩ A =		Idempotent	
$A \cup \overline{A} =$		Complement	
$A \cap \overline{A} =$		Complement	
$\overline{(\overline{A})} =$		Complementation	
$\overline{A \cap B} =$		De Morgan	
$\overline{A \cup B} =$			

Representing Empty Set

- How can we represent empty set by using set builder?
- $A A = \{ \}$
- $A A = \{x : x \in A \text{ AND } x \notin A\}$
- $\bullet \phi = \{x : F(alse)\}$
- So, to represent empty set, we can put anything false in the set builder description.
- For example, the followings sets are empty:
- {x : x is the 8th day of week}
- {x : x ∉ U}

Homework

- Note that the homework in the lecture notes are not mandatory but STRONGLY recommended.
- Represent the set operations by Venn diagrams.
- 2. Prove that A \cup B = $\overline{\overline{A} \cap \overline{B}}$
- Represent empty set by set builder.
- 4. What is the relationship between sets A and B in the following situations:
 - a) $A \cup B = A$
 - b) A B = A
 - c) $A \cap B = A$
 - d) A B = B A
 - e) $A \cap B = B \cap A$

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Sipser, Michael, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790