

Applied Cryptography and Network Security CS 1653

Summer 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Prof. Adam Lee's CS1653 slides.)

Announcements

- Homework 3 due this Friday @ 11:59 pm
 - will be posted tonight
- Phase 1 of Project due tomorrow @ 11:59 pm

Block Cipher Modes of Operation

Question: What happens if we need to encrypt more than one block of plaintext?

ECB mode can lead to block replay or substitution attacks

Example: Salary data transmitted using ECB

Why is the ability to build a codebook dangerous?

Observation: In ECB, the same block will always be encrypted the same way

To protect against this type of **guessing attack**, we need our cryptosystem to provide us with **semantic security**.

Semantic Security

The semantic (in)security of a cipher can be established as follows:

The adversary wins if he has a non-negligible advantage in guessing b. More concretely, he wins if $P[b'=b] > \frac{1}{2} + \varepsilon$.

If the adversary does not have an advantage, the cipher is said to be semantically secure.

Block ciphers in ECB mode are not semantically secure!

Question: Can you demonstrate this?

This can also be thought of as a "covert channel" attack

Cipher Block Chaining (CBC) addresses problems in ECB

In CBC mode, each plaintext block is XORed with the previous ciphertext block prior to encryption

$$C_i = E_k(P_i \oplus C_{i-1})$$

$$P_i = C_{i-1} \oplus D_k(C_i)$$

Need to encrypt a random block to get things started

This initialization vector needs to be random, but not secret (Why?)

CBC eliminates block replay attacks

Each ciphertext block depends on previous block

Semantic security, redux

Note that the adversary's "trick" does not work anymore (Why?)

$$c_{01} = E(IV \oplus m_{01})$$

$$c_{02} = \mathcal{E}(c_{01} \oplus m_{02})$$

Essentially, the IV randomizes the output of the game, even if it is played over

multiple rounds

Cipher Feedback Mode (CFB)

CFB mode:

$$C_i = P_i \oplus E_k(C_{i-1})$$

$$P_i = C_i \oplus E_k(C_{i-1})$$

- CFB can be used to develop an m-bit cipher based upon an n-bit block cipher
 - *m* ≤ *n*
 - using a shift-register approach
- This is great, since we don't need to wait for n bits of plaintext to encrypt!
 - Example: Typing at a terminal

Using an n-bit cipher to get an m-bit cipher (m < n)

Cipher Feedback Mode (CFB) can be used to construct a selfsynchronizing stream cipher from a block cipher

Output Feedback Mode (OFB)

How does OFB work?

$$C_i = P_i \oplus S_i$$
, $S_i = E_k(S_{i-1})$

$$P_i = C_i \oplus S_i$$
, $S_i = E_k(S_{i-1})$

Key Stream generated independently of plaintext

Benefit: Key stream generation can occur offline

Can be used to construct a synchronous stream cipher from a block cipher

Pitfall: Loss of synchronization is a killer...

Counter mode (CTR)

CTR mode generates a key stream independently of the data

Pros:

We can do the expensive cryptographic operations offline

Encryption/decryption is just an XOR

It is possible to encrypt/decrypt starting anywhere in the message

Cons:

Don't use the same (key, IV) for different files (Why?)

CTR mode has some interesting applications

Example: Accessing a large file or database

Operation: Read block number *n* of the file

CTR: One encryption operation is needed

$$p_n = c_n \oplus E(IV + n)$$

CBC: One decryption operation is needed

$$p_n = c_{n-1} \oplus D(c_n)$$

In most symmetric key ciphers encryption and decryption have the same complexity

Operation: Update block k of n

CTR: One encryption operation is needed

$$c_k = p_k \oplus E(IV + k)$$

What about CBC?

First, we need to decrypt all blocks after k(n-k) decryptions)

Then, we need to encrypt blocks k through n (n - k + 1 encryptions)

If n is large, this is problematic...

Operation: Encrypt all n blocks of a file on a machine with c cores

CTR: O(n/c) time required, as cores can operate in parallel

CBC: O(n) time required on one core...

So... Which mode of operation should I use?

Do not use ECB!

Unless you are encrypting short, random data (e.g., a cryptographic key)

Encrypting streams of characters entered at, e.g., a text terminal?

CFB (usually 8-bit CFB) is the best choice

Error prone environments? (high chance if bit errors)

OFB or CTR is probably your best choice

Use CBC if either:

You are encrypting files, since there are rarely errors on storage devices

You are dealing with a software implementation

Want more information? See chapter 9 of Applied Cryptography.

Encryption does not guarantee integrity/authenticity

(Cyclic Redundancy Check) CRC can be used to detect random errors in a message

Unfortunately, bad guys can recompute CRCs...

Solution: Cryptographic message authentication codes (MACs)

The CBC residue of an encrypted message can be used as a cryptographic MAC

How does this work?

Use a block cipher in CBC mode to encrypt m using the shared key k

Save the CBC residue r

Transmit *m* and *r* to the remote party

The remote party recomputes and verifies the CBC residue of m

Why does this work?

Malicious parties can still manipulate *m* in transit

However, without *k*, they cannot compute the corresponding CBC

residue!

The bad news: Encrypting the whole message is expensive!

How can we guarantee confidentiality and integrity?

Does this mean using CBC encryption gives us confidentiality and integrity at the same time?

Unfortunately, it does not (2)

Truncation attack is possible if same key used for encryption and integrity!

To use CBC for confidentiality and integrity, we need two keys

Encrypt the message M using k_1 to get ciphertext $C_1 = \{c_{11}, ..., c_{1n}\}$

Encrypt M using k_2 to get $C_2 = \{c_{21}, ..., c_{2n}\}$

Transmit $\langle C_1, c_{2n} \rangle$

But wait, isn't that expensive?

Fix #1: Exploit parallelism if there is access to multiple cores

Fix #2: Faster hash-based MACs (next!)

Putting it all together...

All is well?

Ok, so symmetric-key cryptography can protect the confidentiality and integrity of our communications

So, the security problem is solved, right?

Unfortunately, symmetric key cryptography doesn't solve everything...

- 1. How do we get secret keys for everyone that we want to talk to?
- 2. How can we update these keys over time?

Later: Public key cryptography will help us solve problem 1

Even later in the semester, we'll look at key exchange protocols that help with problem 2

What is a hash function?

Definition: A hash function is a function that maps a variable-length input to a fixed-length code

Hash functions are sometimes called message digest functions

SHA (e.g., SHA-1, SHA-256, SHA-3) stands for the secure hash algorithm MD5 stands for message digest algorithm (version 5)

To be useful cryptographically, a hash function needs to have a "randomized" output

For example:

Given a large number of inputs, any given bit in the corresponding outputs should be set about half of the time

Any given output should have half of its bits set on average

Given two messages m and m' that are very closely related, H(m) and H(m') should appear completely uncorrelated

Informally: The output of an m-bit hash function should appear as if it was created by flipping m unbiased coins

Theoretical cryptographers sometimes use a more formalized notion of random oracles to replace hash functions when analyzing security protocols

More formally, cryptographic hash functions should have the following three properties

Assume that we have a hash function $H: \{0,1\}^* \rightarrow \{0,1\}^m$

What does infeasible mean?

- 1. Preimage resistance: Given a hash output value z, it should be infeasible to calculate a message x such that H(x) = z
 - i.e., H is a one-way function

Ideally, computing x from z should take $O(2^m)$ time

2. Second preimage resistance: Given a message x, it is infeasible to calculate a second message y such that H(x) = H(y)

Note that this attack is always possible given infinite time (Why?) Ideally, this attack should take $O(2^m)$ time

Ideally, this attack should take $O(2^{m/2})$ time

The Birthday Paradox!

The gist: If there are more than 23 people in a room, there is a better than 50% chance that two people have the same birthday

Wait, what?

366 possible birthdays

To solve: Find probability p_n that n people all have *different* birthdays, then compute $1-p_n$

$$p_n = \frac{365}{366} \frac{364}{366} \frac{363}{366} \cdots \frac{367 - n}{366}$$

If
$$n = 22$$
, $1 - p_n \approx 0.475$

If
$$n = 23$$
, $1 - p_n \approx 0.506$

Note: The value of n can be approximated

as
$$1.1774 \times \sqrt{N} = 1.1774 \times \sqrt{366} \approx 22.525$$

What does this have to do with hash functions?!

Note that "birthday" is just a function b : person → date

Goal: How many inputs x to the function b do we need to consider to find x_i , x_j such that $b(x_i) = b(x_j)$?

We're looking for collisions in the birthday function!

Now, a hash is a function $H: \{0, 1\}^* \rightarrow \{0, 1\}^m$

Note: H has 2^m possible outputs

So, using our approximation from the last slide, we'd need to examine about $1.1774 \times \sqrt{2^m} = 1.1774 \times 2^{\frac{m}{2}} = O(2^{\frac{m}{2}})$ inputs to find a collision!

What can we do with a cryptographic hash function?

Document Fingerprinting

Use H(D) to see if D has been modified

Example: GitHub commit hashes

Message Authentication Code (MAC)

- Assume a shared key K
- Sender:
 - ightharpoonup Compute $c = E_K(H(m))$
 - > Transmit m and c
- Receiver:
 - ightharpoonup Compute $d = E_K(H(m))$
 - \triangleright Compare c and d

Hash functions can even be used to generate cipher keystreams

Question: What block cipher mode does this remind you of?

Output feedback mode (OFB)

Why is this safe to do?

Remember that hash functions need to behave "randomly" in order to be used in cryptographic applications

Even if the adversary knows the IV, they cannot figure out the keystream without also knowing the key, k

Hash functions also provide a means of safely storing user passwords

Consider the problem of safely logging into a computer system

Option 1: Store (username, password) pairs on disk

Correctness: This approach will certainly work

Safety: What if an adversary compromises the machine?

All passwords are leaked!

This probably means the adversary can log into your email, bank, etc...

Option 2: Store (username, H(password)) pairs on disk

Correctness:

Host computes H(password)

Checks to see if it is a match for the copy stored on disk

Safety: Stealing the password file is less* of an issue

The importance of hash function's cryptographic properties

1. Preimage resistance: Given a hash output value z, it should be infeasible to calculate a message x such that H(x) = z

Without this, we could recover hashed passwords!

2. Second preimage resistance: Given a message x, it is infeasible to calculate a second message y such that H(x) = H(y)

Example: File integrity checking

Say the ls program has a fingerprint f

We could create a malicious version of ls that actually executes rm -rf *, but has the same document fingerprint

3. Collision resistance: It is infeasible to find two messages x and y such that H(x) = H(y)

Later on, we'll see that this can lead to attacks that let us inject arbitrary content into protected documents!

How do hash functions actually work?

It is perhaps unsurprising that hash functions are effectively compression functions that are iterated many times

- Compression: Implied by the ability to map a large input to a small output
- Iteration: Helps "spread around" input perturbations

The KPS book spends a lot of time talking about the "MD" family of message digest functions developed by Professor Ron Rivest (MIT)

Bad news: the most recent MD function, MD5, was broken in 2008

- Specifically, it has been shown possible to generate MD5 collisions in O(2³²) time, which is much faster than the theoretical "best case" of O(2⁶⁴)
- We'll talk more about this later in the course (~Week 9)

We'll focus on SHA-1 (officially deprecated by NIST in 2011)

SHA-1 is built using the Merkle-Damgård construction

The Merkle-Damgård construction is a "template" for constructing cryptographic hash functions

- Proposed in the late '70s
- Named after Ralph Merkle and Ivan Damgård

Essentially, a Merkle-Damgård hash function does the following:

- 1. Pad the input message if necessary
- Initialize the function with a (static) IV
- 3. Iterate over the message blocks, applying a compression function f
- 4. Finalize the hash block and output

Merkle and Damgård independently showed that the resulting hash function is secure if the compression function is collision resistant

Why is a static IV ok?

A thousand-mile view...

Input: A message of bit length $\leq 2^{64} - 1$

Output: A 160-bit digest

Steps:

Pad message to a multiple of 512 bits

Process one 512 bit chunk at a time

Expand the sixteen 32-bit words into eighty 32-bit words

Initialize five 32-bit words of state

For each block of five 32-bit words

Apply function at right

Add result to output

Concatenate five 32-bit words of output state

Image from Wikipedia

Initialization and Padding

```
Initialize variables:
                                         Note: These variables comprise the
h0 = 0 \times 67452301
                                         internal state of SHA-1. They are
                                         continuously updated by the compression
h1 = 0xEFCDAB89
                                         function, and are used to construct the
                                         final 160-bit hash value.
h2 = 0 \times 98BADCFE
h3 = 0x10325476
h4 = 0xC3D2E1F0
Pre-processing:
append the bit '1' to the message
append 0 \le k < 512 '0' bits, so that the resulting message length (in
  bits)
  is congruent to 448 \equiv -64 \pmod{512}
append lengt of message (before pre-processing), in bits, as 64-bit big-
  endian int
               ger
                            Example:
                                                         0xDEADBEEF8000 ... 0020
                                                                       32_{10} = 0x20
            32 bits
```

Initializing the compression function

```
Process the message in successive 512-bit chunks:
break message into 512-bit chunks
for each chunk
  break chunk into sixteen 32-bit big-endian words w[i], 0 \le i \le 15
  Extend the sixteen 32-bit words into eighty 32-bit words:
  for i from 16 to 79
  w[i] = (w[i-3] \text{ xor } w[i-8] \text{ xor } w[i-14] \text{ xor } w[i-16]) <<< 1
  Initialize hash value for this chunk:
  a = h0
                                          Note: <<< denotes a left rotate.
  b = h1
                                          Example: 00011000 <<< 4
  c = h2
                                                                  10000001
  d = h3
```

Main body of the compression function

```
Main loop:
                                                Note: Sometimes, we treat state as a bit
for i from 0 to 79
                                                             vector...
   if 0 \le i \le 19 then
    f = (b \text{ and } c) \text{ or } ((\text{not } b) \text{ and } d); k = 0x5A827999
   else if 20 \le i \le 39
    f = b xor c xor d; k = 0x6ED9EBA1
   else if 40 \le i \le 59
    f = (b \text{ and } c) \text{ or } (b \text{ and } d) \text{ or } (c \text{ and } d); k = 0x8F1BBCDC
                                                            ... but other times, it is treated as an unsigned
   else if 60 \le i \le 79
                                                                            integer
     f = b xor c xor d; k = 0xCA62C1D6
   temp = (a <<< 5) + f + e + k + w[i]
   e = d; d = c; c = b <<< 30; b = a; a = temp
```

h0 = h0 + a; h1 = h1 + b; h2 = h2 + c; h3 = h3 + d; h4 = h4 + eCS 1653 - Applied Crypto & Network Security - Sherif Khattab

Add this chunk's hash to result so far:

Finalizing the result

```
Produce the final hash value (big-endian): output = h0 || h1 || h2 | \frac{\text{+ h3}}{\text{+ h4}} | h4
```

Interesting note:

$$k_1 = 0 \times 5 \text{A827999} = 2^{30} \times \sqrt{2}$$
 $k_2 = 0 \times 6 \text{ED9EBA1} = 2^{30} \times \sqrt{3}$
 $k_3 = 0 \times 8 \text{F1BBCDC} = 2^{30} \times \sqrt{5}$
 $k_4 = 0 \times \text{CA62C1D6} = 2^{30} \times \sqrt{10}$

Question: Why might it make sense to choose the k values for SHA-1 in this manner?

SHA-1 in Practice

SHA-1 has fairly good randomness properties

- SHA1("The quick brown fox jumps over the lazy dog")
 - ☐ 2fd4e1c6 7a2d28fc ed849ee1 bb76e739 1b93eb12
- SHA1("The quick brown fox jumps over the lazy cog")
 - ☐ de9f2c7f d25e1b3a fad3e85a 0bd17d9b 100db4b3

In the above example, changing 1 character of input alters 81 of the 160 bits in the output!

To date, the best attack on SHA-1 can find a collision with about $O(2^{61})$ steps; in theory, this attack *should* take $O(2^{80})$ steps.

As a result, NIST ran a hash function competition to design a replacement for SHA-1 (Keccak chosen as SHA-3 in Oct 2012)

Like the AES competition

Although hashes are unkeyed functions, they can be used to generate MACs

A keyed hash can be used to detect errors in a message

Unfortunately, this isn't totally secure...

It's usually easy to add more data while still generating a correct MAC!

There are also attacks against H(m || k) and H(k || m || k)!

HMAC is a construction that uses a hash function to generate a cryptographically strong MAC

HMAC(
$$k$$
, m) = H (($k \oplus \text{ opad}$) || H (($k \oplus \text{ ipad}$) || m))

opad = 01011100 (0x5c)

ipad = 00110110 (0x36)

The opad and ipad constants were carefully chosen to ensure that the internal keys have a large Hamming distance between them

Note that *H* can be any hash function. For example, HMAC-SHA-1 is the name of the HMAC function built using the SHA-1 hash function.

Benefits of HMAC:

Hash functions are faster than block ciphers

Good security properties

Since HMAC is based on an unkeyed primitive, it is not controlled by export restrictions!

Hash functions can also help us check the integrity of large files efficiently

Many peer-to-peer file sharing systems use Merkle trees for this purpose

Why is this good?

- One branch of the hash tree can be downloaded and verified at a time
- Interleave integrity check with acquisition of file data
- Errors can be corrected on the fly

BitTorrent uses hash lists for file integrity verification

Must download full hash list prior to verification

Putting it all together...

Why compute the HMAC over $E_{ke}(m)$?

Alice doesn't need to waste time decrypting *m* if it was mangled in transit, since its authenticity can be checked first!

Why use two separate keys?

In general, it's a bad idea to use cryptographic material for multiple purposes

Motivation

Recall: In a symmetric key cryptosystem, the same key is used for both encryption and decryption

Note: the sender and recipient need a shared secret key

The good news is that symmetric key algorithms

- Have been well-studied by the cryptography community
- Are extremely fast, and thus good for encrypting bulk data
- Provide good security guarantees based on very small secrets

Unfortunately...

Symmetric key cryptography is not a panacea

Question: What are some ways in which the need for a shared secret key might cause a problem?

Problem 1: Key management

- In a network with n participants, $\binom{n}{2}$ = n(n-1)/2 keys are needed!
- This number grows very rapidly!

Problem 2: Key distribution

How do Alice and Bob share keys in the first place?

- What if Alice and Bob have never met in person?
- What happens if they suspect that their shared key K_{AB} has been compromised?

Wouldn't it be great if we could securely communicate without needing pre-shared secrets?

Thought Experiment

Forget about bits, bytes, ciphers, keys, and math...

The Scenario: Assume that Alice and Bob have never met in person. Alice has a top secret widget that she needs to send to Bob using an untrusted courier service. Alice and Bob can talk over the phone if needed, but are unable to meet in person. Due to the high-security nature of their work, the phones used by Alice and Bob may by wiretapped by other secret agents.

Problem: How can Alice send her widget to Bob while having very high assurance that Bob is the only person who will be able to access the widget if it is properly delivered?

Public key cryptosystems are a digital counterpart to the strongbox example

Formally, a cryptosystem can be represented as the 5-tuple (E, D, M, C, K)

- $E: M \times K \rightarrow C$ is an encryption function
- C is a ciphertext space
- D: C \times K \rightarrow M is a decryption function

What can we do with public key cryptography?

Important: It is critical to verify the authenticity of any public key! (How?)

Public key cryptography can also help us exchange symmetric keys

Question: Why on earth do we want to exchange symmetric keys?!

- Public key cryptography is usually pretty slow...
 - Based on "fancy" math, not bit shifting
 - ☐ Symmetric key algorithms are orders of magnitude faster
- It's always a good idea to change keys periodically

Public key cryptography can also be used to authenticate users

- Unpredictable:
 - \square The security of this protocol is a proof of possession of k_B^{-1}
 - ☐ If predictable, an adversary can guess the "challenge" without decrypting!
 - ☐ (This is bad news)
- Reusing challenges may* lead to replay attacks (When?)

In addition to encryption, public key systems also let us create digital signatures

Goal: If Bob is given a message *m* and a signature S(*m*) supposedly computed by Adam, he can determine whether or not Adam actually message m

That's Adam's signature! I'll place his order.

Buy 10 shares in IBM Shares in IBM

In order for this to occur, we require that

- The signature S(m) must be unforgeable
- The signature S(m) must be verifiable

Question: How can we do this?

In many public key cryptosystems, the encryption and decryption operations are commutative

That is, $D(E(m, k), k^{-1}) = E(D(m, k^{-1}), k) = m$

In such a system, we can use digital signatures as follows: This is unforgeable

- To sign a message, compute $D(m, k^{-1}) \leftarrow$
- Transmit m and $D(m, k^{-1})$ to the recipient

Question: Does encryption with a shared key have the same properties?

Features and Requirements

These features all require that for a given key pair (k, k^{-1}) , k can be made public and k^{-1} must remain secret

So, in a public key cryptosystem it must be

- 1. Computationally easy to encipher or decipher a message
- 2. Computationally infeasible to derive the private key from the public key
- 3. Computationally infeasible to determine the private key using a chosen plaintext attack

Informally, easy means "polynomial complexity", while infeasible means "no easier than a brute force search"

How do public key cryptosystems work?

Diffie and Hellman proposed* the notion of public key cryptography

Diffie and Hellman did not succeed in developing a full-fledged public key cryptosystem

- i.e., their system cannot be used to encrypt/decrypt document directly
- Rather, it allows two parties to agree on a shared secret using an entirely public channel

Question: Why is this an interesting problem to solve?

Diffie and Hellman proposed their system in 1976

Seminal paper: Whitfield Diffie and Martin E. Hellman, "New Directions in Cryptography," IEEE Transactions on Information Theory (22)6: 644 - 654, Nov. 1976

Problem: The widening use of telecommunications coupled with the key distribution problems inherent with secret key cryptography point to the fact that current solutions are not scalable!

This paper accomplishes many things:

- Clearly articulates why the key distribution problem must be solved
- Motivates the need for digital signatures
- Presents the first public key cryptographic algorithm
- Opened the "challenge" of designing a general purpose public key cryptosystem

Variants of the Diffie-Hellman key exchange algorithm are widely used today!

How does the Diffie-Hellman protocol work?

Step 0: Alice and Bob agree on a finite cyclic group G of (large) prime order q, and a generator g for this group. This information is all public.

Why is the Diffie-Hellman key exchange protocol safe?

Recall: We need to show that it is hard for a "bad guy" to learn any of the secret information generated by this protocol, assuming that they know all public information

Public information: G, g, q, $g^a \pmod{q}$, $g^b \pmod{q}$

Private information: $a, b, K_{ab} = g^{ab} \pmod{q}$

Tactic 1: Can we get g^{ab} (mod q) from g^a (mod q) and g^b (mod q)?

• We can get g^{am+bn} (mod q) for arbitrary m and n, but this is no help...

Tactic 2: Can we get a from g^a (mod q)?

- This called taking the discrete logarithm of g^a (mod q)
- The discrete logarithm problem is widely believed to be very hard to solve in certain types of cyclic groups

Conclusion: If solving the discrete logarithm problem is hard, then the Diffie-Hellman key exchange is secure!

Hm, interesting...

Recall from last week that:

- Block ciphers secure data through confusion and diffusion
- Designing block cipher mechanisms is equal parts art and science
- The security of a block cipher is typically accepted over time (Assurance!)
 - Recall the initial skepticism over DES
 - ☐ The NIST competitions promote this as well

In public key cryptography, the relationship between k and k^{-1} is intrinsically mathematical

Result: The security of these systems is also rooted in mathematical relationships, and proofs of security involve reductions to mathematically "hard" problems

E.g., Diffie-Hellman safe if the discrete logarithm is hard

The RSA cryptosystem picks up where Diffie and Hellman left off

RSA was proposed* by Ron Rivest, Adi Shamir, and Leonard Adelman in 1978. It can be used to encrypt/decrypt and digitally sign arbitrary data!

Key generation:

- Choose two large prime numbers p and q, compute n = pq
- Compute $\varphi(n) = (p-1)(q-1)$
- Choose an integer e such that $gcd(e, \varphi(n)) = 1$
- Calculate d such that $ed \equiv 1 \pmod{\varphi(n)}$
- Public key: n, e
- Private key: p, q, d

We'll discuss how to do these steps and why they work later today

Usage:

- Encryption: $M^e \pmod{n}$
- Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\phi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

An RSA Example

What is involved in breaking RSA?

To break RSA, an attacker would need to derive the decryption exponent d from the public key (n, e)Mathematicians think that this is a hard problem

This is conjectured to be as hard as factoring n into p and q. Why?

- Given p, q, and e, we can compute $\phi(n)$
- This allows us to compute d easily!

But what if there is some entirely unrelated way to derive d from the public key (n, e)?

Question: Should this make you uneasy? Why or why not?

My Answer: Probably not, since this bizarre new attack would also have applications to factoring large numbers.

As always, nothing is really that easy...

The bad news: Naive implementations of RSA are vulnerable to chosen ciphertext attacks

The good news: These attacks can be prevented by using a padding scheme like OAEP prior to encryption

Don't implement cryptography yourself! Use a standardized implementation, and verify that it is standards compliant.

Lastly, don't forget that implementations can be subjected to attacks

- Timing attacks
- Power consumption attacks
- Etc...

More on this later

Unfortunately, RSA is slow when compared to symmetric key algorithms like AES or HMAC-X

Using RSA as part of a hybrid cryptosystem can speed up encryption

- Generate a symmetric key k_s
- Encrypt m with k_s
- Use RSA to encrypt k_s using public key k
- Transmit $E_{ks}(m)$, $E_k(k_s)$

Using hash functions can help speed up signing operations

- Intuition: $H(m) \ll m$, so signing H(m) takes far less time than signing m
- Why is this safe? H's preimage resistance property!

Some public-key systems have an interesting property known as malleability

Informally, a malleable cryptosystem allows meaningful modifications to be made to ciphertexts without revealing the underlying plaintext

• E.g., $E(x) \otimes E(y) = E(x + y)$

See: Pascal Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity Classes, EUROCRYPT 1999, pages 223-238.

MacKenzie et al. define a tag-based cryptosystem

- Messages encrypted relative to a key and a tag
- Only messages with the same tag can be combined

For example:

- $E(m, t) \otimes E(m', t) = E(mm', t)$
- $E(m, t) \otimes E(m', t') = \langle garbage \rangle$

See: Philip MacKenzie, Michael K. Reiter, and Ke Yang, "Alternatives to Non-malleability: Definitions, Constructions, and Applications (Extended Abstract)", TCC 2004, pages 171-190.

Discussion

Question 1: Why might malleability be an interesting property for a cryptosystem to have?

- Tallying electronic votes
- Aggregating private values
- A primitive for privacy-preserving computation
- ...

Question 2: Why might this be bad?

- Modifications by an active attacker!
- Example: Modifying an encrypted payment

In short, these types of cryptosystems have interesting properties, but require care to use properly.

Note that public key cryptography allows us to prove knowledge of a secret without revealing that secret

Example: Decrypting a challenge

- 1. Pick challenge c at random
- 2. Encrypt c using Bob's public key k_B
- 3. Transmit

Note: Revealing the challenge, c, does not leak information about the private key k_B^{-1} , yet Alice is (correctly) convinced that Bob knows k_B^{-1}

This type of protocol is called a zero knowledge protocol

Zero-knowledge proofs are easy to understand: A children's puzzle

Example: The secret cave

Note: To ensure correctness, this "protocol" needs to be run multiple times (Why?)

We can construct a more realistic ZK system based on the (hard) problem of determining graph isomorphism

Informally, two graphs are isomorphic if the only difference between them is the names of their nodes

Via the permutation $\pi = \{4, 3, 2, 1\}$

Determining whether two graphs are isomorphic is in NP, but the best known algorithm is $2^{O(f(n \log n))}$. This means that if the graphs are large, solving this problem will take a long time, but checking a solution is very easy.

Authenticating via Graph Isomorphism

Our protocol has fairly simple parameters

- Public key: Two (big) isomorphic graphs G_0 and G_1
- Private key: The permutation mapping $G_0 \rightarrow G_1$

How do we find these efficiently?

Why does this work?

- Answering this once means that Bob knows (at least) the permutation mapping from G_b to H.
- Doing this m times means that Bob knows the mapping between G_0 and G_1 with probability $1 0.5^m$
- Note that this leaks no information regarding the permutation π (Why?)

Zero knowledge proofs of knowledge can be used to solve a variety of interesting authorization problems

Private/Anonymous credential systems allow users to prove that they have certain attributes without actually revealing these attributes

Example: Purchasing wine over the Internet

The private credential scheme proposed by Stefan Brands enables many types of attribute properties to be checked in a zero-knowledge fashion

Stefan Brands, Rethinking Public Key Infrastructures and Digital Certificates, MIT Press (2000)

Summary so far ...

Secret key cryptography has a key distribution problem

Public key cryptography overcomes this problem!

- Public encryption key
- Private decryption key

Digital signatures provide both integrity protection and non-repudiation

Malleable cryptosystems are useful, but their usage entails certain risks

Zero knowledge proof systems have many interesting applications

Next: Really understanding RSA

Didn't we learn about RSA?

We saw what RSA does and learned a little bit about how we can use those features

Our goal will be to explore

- Why RSA actually works
- Why RSA is efficient* to use
- Why it is reasonably safe to use RSA

In short, it's time for more details ...

Note: Efficiency is a relative term ©