Case Study 2-Group 4

Frances Hung, Yunran Chen, Keru Wu

Department of Statistical Science, Duke University

01/30/2019

Introduction

- ▶ Data: 2019 Airbnb listings in NYC, 48895 observations.
- Goal: Identify discernible and interesting patterns among the listings in NYC.

Data Preprocessing

- ▶ Delete id, host_name and last_review.
- ▶ Delete 11 listings with price 0.
- ▶ Missing data: 10052 in reviews_per_month, impute with 0.
- Categorize minimum_nights to 5 groups: 1-2, 3-6, 7-13, 14-20, 21-27, 28+ days.
- ▶ Transformation: log(price), $log(1+reviews_per_month)$.

EDA-borough

neighbourhood_group

- Bronx
- Brooklyn
 - Manhattan
- Queens
- Staten Island

EDA-price

EDA-Traffic

Model

Multilevel Conditional Autoregressive (CAR) Model

$$Y_{kj}|\mu_{kj} \sim f(y_{kj}|\mu_{kj}, \nu^2), \quad k = \text{neighbourhood} = 1, ..., K$$
 $j = \text{listings} = 1, ..., m_k$

$$g(\mu_{kj}) = x_{kj}^T \beta + \psi_{kj}$$
$$\psi_{kj} = \phi_k + \zeta_{kj}$$

Priors

$$\beta \sim N(\mu_{\beta}, \Sigma_{\beta})$$

$$\phi_{k}|\phi_{-k} \sim N\left(\frac{\rho \sum_{l=1}^{K} w_{kl}\phi_{j}}{\rho \sum_{j=1}^{K} w_{kl} + 1 - \rho}, \frac{\tau^{2}}{\rho \sum_{j=1}^{K} w_{kl} + 1 - \rho}\right)$$

- \triangleright w_{kl} denotes whether neighborhood k and l are adjacent.
- $\triangleright \rho$ denotes spatial dependence.

Model

► Priors (Cont'd)

$$\zeta_{kj} \sim \mathcal{N}(0, \sigma^2)$$
 $\tau^2, \sigma^2 \sim \mathsf{Inv} ext{-}\mathsf{Gamma}(a, b)$
 $\rho \sim \mathsf{Uniform}(0, 1)$

- x_{kj} include room_type, neighbourhood_group, availability_365, $\log(1+\text{reviews_per_month})$, minimum_nights, etc.
- $\psi_{kj} = \phi_k + \zeta_{kj}$ includes both spatial information and individual random effect.

Further process the data

- No data for exactly 217 neighbourhoods.
- Relocate neighbourhoods according to formal NYC shapefile data (195 neighbourhoods).
- ▶ 191 neighbourhoods have airbnb listings.
- Obtain adjacency matrix $W = (w_{kl})$

Neighbourhood Effect on log(price)

Model Summary

	Median	2.5%	97.5%
(Intercept)	4.7689	4.7143	4.8368
<pre>room_typePrivate room</pre>	-0.7133	-0.7220	-0.7034
room_typeShared room	-1.0578	-1.0882	-1.0289
neighbourhood_groupBrooklyn	0.1521	0.0674	0.2138
neighbourhood_groupManhattan	0.5145	0.4261	0.5928
neighbourhood_groupQueens	0.0962	0.0072	0.1619
<pre>neighbourhood_groupStaten Island</pre>	0.0452	-0.0763	0.1555
<pre>log(1 + reviews_per_month)</pre>	-0.0382	-0.0462	-0.0299
minimum_nights2	-0.1510	-0.1707	-0.1334
minimum_nights3	-0.2481	-0.2784	-0.2179
minimum_nights4	-0.2884	-0.3405	-0.2270
minimum_nights5	-0.1791	-0.1957	-0.1634
nu2	0.2280	0.2255	0.2310
tau2	0.0387	0.0275	0.0541
rho	0.1104	0.0172	0.2226

Preliminary conclusion

- Manhattan has highest prices, Bronx the lowest.
- Midtown South in Manhattan has the highest price.
- ► Entire room > Private room > Shared room
- ► Higher minimum_nights leads to lower price.

Discussion

- ► Include last_review: spatial temporal model.
- Nonlinear model: spline regression for x_{kj} .
- ▶ More spatial information: longitude & latitude