STREAMING AUTOMATIC SPEECH RECOGNITION WITH THE TRANSFORMER MODEL

Niko Moritz, Takaaki Hori, Jonathan Le Roux Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

ASR (Automatic Speech Recognition)

Traditional End-to-End CTC (Connectionist Temporal Classification) **HMM-DNN** Attention Seq-to-Seq RNN-T

Seq-to-Seq

Attention Seq-to-Seq (RNN)

Attention Seq-to-Seq (Transformer)

Attention Seq-to-Seq

Transformer in streaming fashion

Time-restricted self-attention

$$X_0 = ext{EncCNN}(X),$$
 Self-attention $X_E = ext{EncSA}(X_0),$ $X'_e = X_{e-1} + ext{MHA}_e(X_{e-1}, X_{e-1}, X_{e-1}),$ $X_e = X'_e + ext{FF}_e(X'_e),$ Residual connection with $ext{FF}_e(X'_e) = ext{ReLU}(X'_eW^{ ext{ff}}_{e,1} + b^{ ext{ff}}_{e,1})W^{ ext{ff}}_{e,2} + b^{ ext{ff}}_{e,2},$ $oldsymbol{x}^E_{1:n} = ext{EncSA}^{ ext{tr}}(oldsymbol{x}^0_{1:n+arepsilon^{ ext{enc}}}),$

Time-restricted self-attention

Triggered attention

$$egin{aligned} p_{ ext{ta}}(Y|X_E) &= \prod_{l=1}^L p(y_l|m{y_{1:l-1}},m{x_{1:
u_l}^E}) \ p(y_l|m{y_{1:l-1}},m{x_{1:
u_l}^E}) &= ext{DECTA}(m{x_{1:
u_l}^E},m{y_{1:l-1}}), \ Y'_{d,l} &= m{y_{1:l-1}^{d-1}} + ext{MHA}_d^{ ext{self}}m{ig(m{y_{1:l-1}^{d-1}},m{y_{1:l-1}^{d-1}},m{y_{1:l-1}^{d-1}}ig)}, \ Y''_{d,l} &= m{Y'_{d,l}} + ext{MHA}_d^{ ext{dec}}(Y'_{d,l},m{x_{1:
u_l}^E},m{x_{1:
u_l}^E}), \ m{y_{1:l-1}^d} &= m{Y''_{d,l}} + ext{FF}_d(Y''_{d,l}), \ m{\mathcal{L}} &= -\gamma \log p_{ ext{ctc}} - (1-\gamma) \log p_{ ext{ta}}, \end{aligned}$$

Triggered attention

with $\nu_l = n'_l + \varepsilon^{\text{dec}}$, where n'_l denotes the position of the first occurrence of label y_l in the CTC forced alignment sequence [12, 14],

Triggered attention

$$egin{aligned} p_{ ext{ta}}(Y|X_E) &= \prod_{l=1}^L p(y_l|m{y_{1:l-1}},m{x_{1:
u_l}^E}) \ p(y_l|m{y_{1:l-1}},m{x_{1:
u_l}^E}) &= ext{DECTA}(m{x_{1:
u_l}^E},m{y_{1:l-1}}), \ Y'_{d,l} &= m{y_{1:l-1}^{d-1}} + ext{MHA}_d^{ ext{self}}m{ig(m{y_{1:l-1}^{d-1}},m{y_{1:l-1}^{d-1}},m{y_{1:l-1}^{d-1}}ig)}, \ Y''_{d,l} &= m{Y'_{d,l}} + ext{MHA}_d^{ ext{dec}}(Y'_{d,l},m{x_{1:
u_l}^E},m{x_{1:
u_l}^E}), \ m{y_{1:l-1}^d} &= m{Y''_{d,l}} + ext{FF}_d(Y''_{d,l}), \ m{\mathcal{L}} &= -\gamma \log p_{ ext{ctc}} - (1-\gamma) \log p_{ ext{ta}}, \end{aligned}$$

Joint CTC-triggered attention decoding

```
    procedure Decode(X<sub>E</sub>, p<sub>cw</sub>, λ, α<sub>0</sub>, α, β, K, P, θ<sub>1</sub>, θ<sub>2</sub>)

             \ell \leftarrow ((sos),)
             \Omega \leftarrow \{\ell\}, \Omega_{ta} \leftarrow \{\ell\}
             p_{sb}(\ell) \leftarrow 0, p_b(\ell) \leftarrow 1
             p_{ta}(\ell) \leftarrow 1
             for n = 1, \dots, N do
                    \Omega_{ctc}, p_{tb}, p_b \leftarrow \text{CTCPREFIX}(p_{ctc}(n), \Omega, p_{tb}, p_b)
                    for \ell in \Omega_{ctc} do

    Compute CTC prefix scores

                           p_{\text{prfx}}(\ell) \leftarrow p_{\text{nb}}(\ell) + p_{\text{b}}(\ell)
                           \hat{p}_{prfx}(\ell) \leftarrow \log p_{prfx}(\ell) + \alpha_0 \log p_{LM}(\ell) + \beta |\ell|
10:
                    \widehat{\Omega} \leftarrow \text{PRUNE}(\Omega_{\text{ctc}}, \widehat{p}_{\text{prfx}}, K, \theta_1)
11:
                    for \ell in \widehat{\Omega} do
                                                                        Delete old prefixes in Ω<sub>ta</sub>
12:
                           if \ell in \Omega_{ta} and DCOND(\ell, \widehat{\Omega}, p_{ctc}) then
14:
                                  delete \ell in \Omega_{c_0}
                    for \ell in \widehat{\Omega} do
                                                                   15:
                           if \ell not in \Omega_{ta} and ACOND(\ell, \widehat{\Omega}, p_{ctc}) then
16:
                                  p_{ta}(\ell) \leftarrow \text{DECTA}(\boldsymbol{x}_{1:n+\epsilon^{\text{doc}}}^{E}, \ell)
17:
                                  add ℓ to Ωta
18:
                    for \ell in \widehat{\Omega} do

    Compute joint scores

                           \ell \leftarrow \ell if \ell in \Omega_{ta} else \ell_{:-1}
20:
                           p \leftarrow \lambda \log p_{prfx}(\ell) + (1 - \lambda) \log p_{ta}(\ell)
21:
                           p_{\text{joint}}(\ell) \leftarrow p + \alpha \log p_{\text{LM}}(\ell) + \beta |\ell|
22:
                    \Omega \leftarrow \text{MAX}(\widehat{\Omega}, p_{\text{joint}}, P)
23:
                    \widehat{\Omega} \leftarrow PRUNE(\widehat{\Omega}, \widehat{p}_{refx}, P, \theta_2)
24:
                    \Omega \leftarrow \Omega + \widehat{\Omega}
25:
                    remove from \Omega_{ta} prefixes rejected due to pruning
26:
              return MAX(\widehat{\Omega}, p_{ioint}, 1)
```

```
procedure Prune(\Omega_{in}, \widehat{p}_{prfx}, L, \theta)
       \Omega_{\text{in}} \leftarrow \text{MAX}(\Omega_{\text{in}}, \widehat{p}_{\text{orfx}}, L), \Omega_{\text{out}} \leftarrow \{\}
      for \ell in \Omega_{in} do
             if \max(\widehat{p}_{prfx}) - \theta < \widehat{p}_{prfx}(\ell) then
                    add \ell to \Omega_{out}
       return \Omega_{cut}
procedure DCOND(\ell, \Omega, p_{\text{ctc}})
                                                                         \triangleright last element of \ell
       c \leftarrow \ell_{-1}
       n_{\text{prev}} \leftarrow \text{time index of } \ell \text{ when added to } \Omega
       if |\ell| > 1 and n - n_{prev} > 2 and p_{ctc}(n, c) > 0.01 >
 \max(p_{\text{ctc}}(n_{\text{prev}}, c), p_{\text{ctc}}(n_{\text{prev}} + 1, c)) then
              return true
        else
              return false
procedure ACOND(\ell, \Omega, p_{ctc})
      c \leftarrow \ell_{-1}

⊳ last element of ℓ

      if p_{ctc}(n,c) > \max(p_{ctc}(n+1,c), p_{ctc}(n+2,c)) or
\operatorname{any}(|\tilde{\ell}| > |\ell| + 1 \text{ and } \tilde{\ell} \text{ starts with } \ell \text{ for } \tilde{\ell} \text{ in } \Omega) \text{ then }
            return true
      else
            return false
```

Experiment

Dataset : LibriSpeech

Setting: transformer

small: d_model = 256, d_ff = 2048, d_h = 4, E = 12, D = 6

large : $d_{model} = 512, d_{h} = 8$

: joint CTC-TA decoding

CTC weight $\lambda = 0.5$, CTC LM weight $\alpha 0 = 0.7$, LM weight $\alpha = 0.5$, pruning beam width $\theta 1 = 16.0$, pruning beam width $\theta 2 = 6.0$, insertion bonus $\beta = 2.0$, pruning size $\delta K = 300$, and pruning size $\delta K = 300$.

Result

Theoretical delay

Encoder CNN: 30ms

Time restricted self-attention : $E \times \varepsilon^{enc} \times 40ms$

Triggered attention : $\varepsilon^{dec} \times 40ms$

WER: 2.8% / 7.3% $\rightarrow \varepsilon^{enc}$ = 4, ε^{dec} = 6 \rightarrow 2190ms

Result

	CTO	C-atte	ention	dec.	CT	C be	am se	arch	Att. beam search				
	clean		other		clean		other		clean		other		
System	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test	
baseline	4.7	4.9	13.0	12.9	6.1	6.1	15.7	15.9	6.0	7.8	14.5	14.9	
+RNN-LM	2.9	3.1	8.0	8.4	3.1	3.4	9.3	9.6	4.7	7.2	10.7	11.5	
+SpecAug.	2.4	2.8	6.4	6.7	2.9	3.2	7.6	7.9	4.2	5.2	8.3	8.6	
+large													

	CTC beam search				TA: $\varepsilon^{ m dec}=6$				TA: $\varepsilon^{ m dec}=12$				TA: $\varepsilon^{ m dec}=18$			
	clean		ean other		clean		other		clean		other		clean		other	
$\varepsilon^{\rm enc}$	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
1	3.0	3.3	8.4	8.6	2.9	3.2	8.1	8.2	2.8	3.1	7.5	8.1	2.8	3.0	7.5	7.8
2	2.9	3.1	8.0	8.2	2.8	2.9	7.4	7.8	2.7	2.9	7.2	7.6	-	-	-	-
4	2.8	2.9	7.8	7.9	2.6	2.8	7.2	7.3	-	-	-	-	-	-	-	-
∞	2.5	2.8	6.9	7.0	2.5	2.7	6.3	6.5	2.5	2.7	6.3	6.4	2.4	2.6	6.1	6.3