Distribuição Gamma

Bruno Normande

17 de Dezembro de 2013

1 Algumas características

A distribuíção Gamma é uma distribuíção que é caracterizda por dois parâmentros, shape (k) e scale (θ) . Ela possui a seguinte função densidade probabilidade:

$$f(w; k, \theta) = \frac{w^{k-1} e^{\frac{w}{\theta}}}{\theta^k \Gamma(w)}$$
(1)

para

$$k, \theta > 0 \tag{2}$$

Essa distribuição é usada muitas vezes para modelar o tempo de espera, como por exemplo em teste de vida a distribuição Gamma é usada para modelar o tempo até a morte. A figura 1 mostra o comportamento de Gamma para diferentes valores de k e θ .

Obtemos a esperança e a variância da distribuição com as seguintes fórmulas:

$$E[W] = k\theta \tag{3}$$

$$Var[W] = k\theta^2 \tag{4}$$

2 Estimadores

Nesse trabalho foram analisados 6 estimadores para a distribuição Gamma. Em todos foi usado $\theta=1$ para manter a simplicidade dos teste. Os estimadores usados foram:

Figura 1: Função probabilidade Densidade de Gamma para diferentes parâmetros

2.1 Estimador por Máxima Verossimilhança

Para estimar pela Máxima Verossimilhança é preciso maximizar a sua função log-verossimilhança de $\Gamma(w;k,1)$

$$log(p(W|k,1)) = n(k-1)\overline{log(x)} - nlog(\Gamma(k)) - nklog(\overline{x}) + nklog(a) - nk$$
 (5)

Que podemos resolver numericamente iterando sobre k em:

$$\frac{1}{k} = \frac{1}{k_0} + \frac{\overline{log(x)} - log(\overline{x}) + log(k_0) - \psi(k_0)}{k_0^2 (\frac{1}{k_0} - \psi'(k_0))}$$
(6)

até o momento em que

$$k \approx k_0 \tag{7}$$

Como k inicial podemos usar a seguinte aproximação

$$\hat{k} = \frac{0.5}{\log(\overline{x}) - \overline{\log(x)}} \tag{8}$$

2.2 Estimador pelo Primeiro Momento

Usando o método dos momentos podemos estimar k a partir do primeiro momento da seguinte maneira:

$$E[W] = k\theta \tag{9}$$

$$\hat{k}_1 = \frac{1}{n} \sum_{i=1}^n w_i \tag{10}$$

2.3 Estimador pelo Segundo Momento Central

De maneira similar podemos estimar k a partir do segundo momento central da seguinte maneira:

$$Var[W] = k\theta^2 \tag{11}$$

$$\hat{k}_2^0 = Var(w) \tag{12}$$

2.4 Estimadores com bootstrap

Todos os estimadores mencionados àcima foram testados também contra suas versões com *bootstrap*. Dessa maneira foi possível observar se usando o método *bootstrap* poderiamos diminuir o viés desses estimadores.

Como notação para identificar estes estimadores foi usado um til no lugar do chápeu:

$$\tilde{k}, \tilde{k}_1 \ e \ \tilde{k}_1^2$$

3 Resultados

As tabelas a seguir comparam os estimadores usados com suas versões bootstraped.

Comparação dos Estimadores \hat{k} e \tilde{k}				
n	k		$EQM(\hat{k}) > EQM(\tilde{k})$	
100	1	TRUE	TRUE	
1000	1	FALSE	FALSE	
10000	1	FALSE	TRUE	
100000	1	FALSE	FALSE	
100	2	TRUE	TRUE	
1000	2	TRUE	FALSE	
10000	2	FALSE	FALSE	
100000	2	FALSE	FALSE	
100	3	TRUE	TRUE	
1000	3	FALSE	FALSE	
10000	3	FALSE	FALSE	
100000	3	TRUE	FALSE	
100	5	TRUE	TRUE	
1000	5	FALSE	FALSE	
10000	5	FALSE	TRUE	
100000	5	FALSE	TRUE	
100	9	FALSE	TRUE	
1000	9	TRUE	TRUE	
10000	9	FALSE	FALSE	
100000	9	TRUE	TRUE	

Tabela 1: Estimadores de máxima verossimilhança \hat{k} e $\tilde{k}.$

	Co	Comparação dos Estimadores \hat{k}_1 e \tilde{k}_1			
$\underline{}$	k		$EQM(\hat{k}_1) > EQM(\tilde{k}_1)$		
100	1	FALSE	FALSE		
1000	1	FALSE	FALSE		
10000	1	TRUE	FALSE		
100000	1	FALSE	FALSE		
100	2	FALSE	FALSE		
1000	2	TRUE	FALSE		
10000	2	FALSE	FALSE		
100000	2	FALSE	FALSE		
100	3	FALSE	FALSE		
1000	3	FALSE	FALSE		
10000	3	FALSE	FALSE		
100000	3	FALSE	FALSE		
100	5	FALSE	FALSE		
1000	5	FALSE	FALSE		
10000	5	FALSE	FALSE		
100000	5	FALSE	FALSE		
100	9	FALSE	FALSE		
1000	9	FALSE	FALSE		
10000	9	TRUE	FALSE		
100000	9	FALSE	FALSE		

Tabela 2: Estimadores de primeiro momento \hat{k}_1 e \tilde{k}_1 .

	Cc	Comparação dos Estimadores \hat{k}_2^0 e \tilde{k}_2^0		
n	k	$ B(\hat{k}_2^0) > B(\tilde{k}_2^0) $	$EQM(\hat{k}_2^0) > EQM(\tilde{k}_2^0)$	
100	1	FALSE	FALSE	
1000	1	TRUE	FALSE	
10000	1	FALSE	FALSE	
100000	1	FALSE	FALSE	
100	2	FALSE	FALSE	
1000	2	TRUE	FALSE	
10000	2	FALSE	FALSE	
100000	2	FALSE	FALSE	
100	3	FALSE	FALSE	
1000	3	TRUE	FALSE	
10000	3	FALSE	FALSE	
100000	3	FALSE	FALSE	
100	5	FALSE	FALSE	
1000	5	FALSE	FALSE	
10000	5	FALSE	FALSE	
100000	5	FALSE	FALSE	
100	9	TRUE	FALSE	
1000	9	FALSE	FALSE	
10000	9	TRUE	FALSE	
100000	9	FALSE	FALSE	

Tabela 3: Estimadores de segundo momento central \hat{k}_2^0 e $\tilde{k}_2^0.$