高数B期中试题

2023.04.16 以下每小题10分.

- 1. 求方程 $(xy x^3y^3)dx + (1+x^2)dy = 0$ 满足条件 y(0) = 1 的解.
- 2. 求方程 $x^2y''-3xy'+4y=0$ (x>0) 的满足条件 $y(1)=1,\ y'(1)=1$ 的解, 其中 $y'=\frac{\mathrm{d}y}{\mathrm{d}x},y''=\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$
- 3. 求方程 $y''+y'-2y=x+e^x+\sin x$ 的满足条件 $y(0)=-\frac{7}{20},\ y'(0)=\frac{38}{15}$ 的解,其中 $y'=\frac{\mathrm{d}y}{\mathrm{d}x},y''=\frac{\mathrm{d}^2y}{\mathrm{d}x^2}.$
- 4. 设 $I(R)=\oint_{x^2+y^2=R^2}rac{x\,\mathrm{d} y-y\,\mathrm{d} x}{\left(x^2+xy+y^2
 ight)^2}$,证明 $\lim_{R o+\infty}I(R)=0$. 其中积分方向为逆时针方向.
- 5. 设 L 为空间曲线 $\begin{cases} x^2+y^2=1 \\ x+z=1 \end{cases}$,其正向为自 z 轴正向看下来的逆时针方向. 计算积分 $I=\int_L \left(y-z+\sin^2x\right)\mathrm{d}x+\left(z-x+\sin^2y\right)\mathrm{d}y+\left(x-y+\sin^2z\right)\mathrm{d}z.$
- 6. 计算积分 $I=\iint_D (x+y+xy)^2 d\sigma$, 其中 $D=\left\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leqslant 1\right\}$.
- 7. 计算积分 $I=\iint_D \left(rac{3x^2\sin y}{y}+2e^{x^2}
 ight)\!\mathrm{d}\sigma$, 其中 D 由 $y=x,y=x^3$ 围成.
- 8. 计算积分 $I=\iiint_{\Omega} \frac{(x+y+z)^2\sqrt{1+x^2+y^2}}{(x^2+y^2+z^2)(1+x^2+y^2+z^2)} \mathrm{d} v$,其中 $\mathrm{d} v$ 即 $\mathrm{d} x$ $\mathrm{d} y$ $\mathrm{d} z$, Ω 是由曲面 $z=\sqrt{1+x^2+y^2}, z=\sqrt{3\left(1+x^2+y^2\right)}, x^2+y^2=1$ 所围成的区域.
- 9. 计算积分 $I=\oint_{\Gamma}\Big(\frac{y^2+y+4x^2}{4x^2+y^2}+\sin x^2\Big)\mathrm{d}x+\Big(\frac{4x^2-x+y^2}{4x^2+y^2}+\sin y^2\Big)\mathrm{d}y$, 其中 Γ 是 $x^2+y^2=9(y\geqslant 0), \frac{x^2}{9}+\frac{y^2}{16}=1(y\leqslant 0)$ 所组成的闭曲线的逆时针方向.
- 10. 设曲面 S 是柱体 $\Omega=\left\{(x,y,z)\mid x^2+y^2\leqslant 1, 0\leqslant z\leqslant 1\right\}$ 的表面的外侧(同时包含上表面、下表面、侧面). 计算下列积分:
 - (a) $I_1 = \iint_S (y-z) |x| \mathrm{d}y \, \mathrm{d}z + (z-x) |y| \mathrm{d}z \, \mathrm{d}x + (x-y)z \, \mathrm{d}x \, \mathrm{d}y$
 - (b) $I_2 = \iint_S (y-z)x^2 dy dz + (z-x)y^2 dz dx + (x-y)z^2 dx dy$
 - (c) $I_3 = \iint_S (y-z)x^3 dy dz + (z-x)y^3 dz dx + (x-y)z^3 dx dy$