How can two nucleons combine?

The Pauli principle requires that two-nucleon states be antisymmetric wrt to exchange of the nucleons' space, spin, and isospin coordinates

L	S	J	$\pi = -1^L$	T(L+S+T odd)	25+1 _L
0	0	0	+	1	¹ S ₀
0	1	1	+	0	³ S ₁
1	0	1	-	0	$^{1}P_{1}$
1	1	0	1	1	³ P ₀
1	1	1	1	1	$^{3}P_{1}$
1	1	2	1	1	³ P ₂
2	0	2	+	1	$^{1}D_{2}$
2	1	1	+	0	$^{3}D_{1}$
2	1	2	+	0	$^{3}D_{2}$
2	1	3	+	0	$^{3}D_{3}$

Two-nucleon states

Without the tensor contribution the deuteron would not be bound

And it only contributes to T=0 2N states

5th Workshop of the APS Topical Group on Hadronic Pt

Possible Two Nucleon states

L	S	J	$\pi = -1^{L}$	T(L+S+T odd)	25+1 _{LJ}
0	0	0	+	1	¹ S ₀
0	1	1	+	0	³ S ₁
1	0	1	-	0	$^{1}P_{1}$
1	1	0	-	1	³ P ₀
1	1	1	1	1	$^{3}P_{1}$
1	1	2	-	1	³ P ₂
2	0	2	+	1	$^{1}D_{2}$
2	1	1	+	0	$^{3}D_{1}$
2	1	2	+	0	$^{3}D_{2}$
2	1	3	+	0	³ D ₃

Symmetric triplet T = 1

$$^{3}(T)_{1} = |p_{1}\rangle |p_{2}\rangle$$
 proton-proton state

$$^{3}(T)_{-1} = |n_1\rangle |n_2\rangle$$
 neutron-neutron state

$$^{3}(T)_{0} = \frac{1}{\sqrt{2}}(|p_{1}\rangle |n_{2}\rangle + |p_{2}\rangle |n_{1}\rangle)$$
 neutron-proton state

Antisymmetric singlet T = 0

$$^{1}(T)_{0} = \frac{1}{\sqrt{2}}(|p_{1}\rangle |n_{2}\rangle - |p_{2}\rangle |n_{1}\rangle)$$
 neutron-proton state

Two-nucleon states

The SR NN attraction dominated by tensor interaction, which yields high-momentum isosinglet (np) pairs.

Absent in the isotriplet channel (pp, nn, np).

2-body distribution in nucleus should be identical to the deuteron and ratio of scattering cross sections between a heavy nucleus A and the deuteron to yield a_2 (A, Z)

5th Workshop of the APS Topical Group on Hadronic Physics

April 11, 2013