# **Zoo Maintenance System**

# **Table of contents:**

| Chapter<br>Number | Title                      | Page<br>Number |
|-------------------|----------------------------|----------------|
| 1.                | Introduction               | 3              |
| 2.                | Abstract                   | 3              |
|                   | i. Problem description     | 4              |
| 3.                | Requirements               | 4              |
|                   | i. High level requirements | 5              |
|                   | ii. Low-level requirements | 6              |
| 4.                | SWOT Analyse               | 7              |
| 5.                | 4 W's and 1H               | 8              |

| 6. | Test plan and output | 9   |
|----|----------------------|-----|
|    |                      | · . |

| 7.  | Design                            | 9  |
|-----|-----------------------------------|----|
| 8.  | Structural design                 | 9  |
| 9.  | i. Flowcharts i. Use case diagram | 10 |
| 10. | Results and conclusion            | 12 |

### 1.0 Introduction

A zoo maintenance system effectively manages and handles the functionalities of the zoo.

Like monitoring the animal details and locating a particular animal inside the zoo etc.

### 1.2 Abstract

Zoological parks provide an opportunity to open a whole new world of curiosity and interest, and sensitise visitors regarding the value and need for conservation of wildlife. A zoo maintenance system effectively manages and handles the functionalities of the zoo.

### 1.3 Description

The main problem and motivation is basically lack of information about the various animals present in the zoo. This project is based on the various information related to the animals which are present in the zoo. Such as when we visit any zoo then we are not aware of which animal is placed at which place or we don't know the loci of that particular animal. To know this information, the system looks for data present in the zoo, but with this information system we can easily search the zoo by filling the name of the animal, such as Lion, Tiger, etc. then by running this user command one can easily find the block in which the animal is present.

### 2. 5 W's and 1 H



### 3. SWOT Analysis

#### Strengths

- Efficient way of storing and
- retrieving animal data.
- Ease of usage.
- Better response time.
- Monitors the current status of
- animals.

#### Weaknesses

- Unable to provide exact loci
- of particular animal.
- Not fully automated system.

### **Opportunities**

- Able to create Zoo
- maintenance robot using
- this system.
- Able to monitor health of the
- animals in the zoo.
- After locating an animal able to
- show the path to reach that
- location.

#### **Threats**

- Requires proper
- custom input.
- Do not has any
- other functionality.

# 4.Requirements

# 4.1 High level requirements

| Test<br>ID | Description                 | Categor<br>y   |
|------------|-----------------------------|----------------|
| HLR_<br>1  | Update Animals details      | Function<br>al |
| HLR_<br>2  | View Animal/Animals details | Function<br>al |
| HLR_<br>3  | Check for Animals presence  | Function<br>al |
| HLR_<br>4  | Search for animal           | Function al    |

# 4.2 Low level requirements

| Test ID | Description                              | HLR ID | Categor<br>y |
|---------|------------------------------------------|--------|--------------|
| LLR_1   | Add Animal details                       | HLR_1  | Technical    |
| LLR_2   | Edit Animal details                      | HLR_1  | Technical    |
| LLR_3   | Delet Animal details                     | HLR_1  | Technical    |
| LLR_4   | View Animal details Block wise           | HLR_2  | Technical    |
| LLR_5   | Display Animal present in the zoo or not | HLR_3  | Technical    |

## 5. Test Plan and Output:

## 5.1 High level test plan:

| Test ID     | Description                      | Input                   | Expected output                                                  | Actual<br>Output                                                 |
|-------------|----------------------------------|-------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| HLTP_0<br>1 | Updating<br>animal's details     | Animal's details        | Animal's<br>details in a<br>list                                 | Updated<br>list with<br>animal's<br>details                      |
| HLTP_0<br>2 | View animal's<br>details         | Open animals<br>list    | Animal's<br>details in a<br>list display                         | Updated list with animal's details displays.                     |
| HLTP_0<br>3 | Check for<br>Animals<br>presence | Animal's name           | Animal's details in a list if animal exists in zoo Or not found. | Animal's details in a list if animal exists in zoo Or not found. |
| HLTP_0<br>4 | Search for animal                | User types animals name | Found or<br>Not found                                            | Found or<br>Not found                                            |

## **5.2 LOW LEVEL TEST PLAN**

| Test ID     | Descriptio<br>n             | HLTP<br>ID  | Input                                   | Expecte d output                                                         | Actual<br>Output                                | Statu<br>s |
|-------------|-----------------------------|-------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|------------|
| LLTP_0<br>1 | Add<br>animal's<br>details  | HLTP_0<br>1 | Animal'<br>s<br>details                 | Animal's<br>details in<br>a list                                         | Update d list with animal' s details            | <b>V</b>   |
| LLTP_0<br>2 | Edit<br>animal's<br>details | HLTP_0<br>1 | Animal's details to be edited           | Updated list with animal's details displays.                             | Update d list with animal' s details display s. | <b>V</b>   |
| LLTP_0<br>3 | Delete<br>Animal<br>details | HLTP_0<br>1 | Animal's<br>details<br>to be<br>deleted | Updated<br>list with<br>animal's<br>details<br>displays.                 | Update d list with animal' s details display s. | <b>V</b>   |
| LLTP_0<br>4 | Search for animal           | HLTP_0<br>4 | User<br>types<br>animal<br>s name       | Search<br>for an<br>animal<br>and<br>display<br>Found<br>or Not<br>found | Found<br>or Not<br>found                        | <b>V</b>   |
| LLTP_0<br>5 | Viewing<br>animal list      | HLTP_0<br>2 | Option<br>for<br>display<br>feature     | Animal<br>list<br>displays                                               | Animal<br>list<br>display<br>s                  | <b>V</b>   |



## Use case diagram



### **Black box**



Program

## Flow charts





### Class diagram



#### 6. Results:

This system was successfully able to maintain the data related to zoo animals such as storing animal details, updating details, deleting details and created an interface to zoo visitors to search animals, their locations and caretakers.

### 7. Conclusion:

This system is developed using the concepts of Object oriented programming in python languages. By creating different classes and objects to store and retrieve zoo related information, the data has been stored and used in an efficient manner.