Формули по Висша Математика 1

I. Детерминанти:

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11}.a_{22} - a_{12}.a_{21};$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}.a_{22}.a_{33} + a_{12}.a_{23}.a_{31} + a_{13}.a_{21}.a_{32} - a_{13}.a_{22}.a_{31} - a_{11}.a_{23}.a_{32} - a_{12}.a_{21}.a_{33}$$

II. Матрични уравнения:

Нека A, B и X са матрици.

- 1) Ako AX = B, to $X = A^{-1}B$.
- 2) Ако XA = B, то $X = BA^{-1}$.

 ${M}$ в двата случая с A^{-1} е означена обратната на A матрица.

- 1) Ако т. $\overrightarrow{A}(x_A, y_A, z_A)$ и т. $\overrightarrow{B}(x_B, y_B, z_B)$, то $\overrightarrow{AB} = (x_B x_A, y_B y_A, z_B z_A)$. 2) Ако $\overrightarrow{AB} = (a, b, c)$, то дължината му е $\left| \overrightarrow{AB} \right| = \sqrt{a^2 + b^2 + c^2}$.
- 3) Ако $\overrightarrow{a}(x_a,y_a,z_a)$ и $\overrightarrow{b}(x_b,y_b,z_b)$, то скаларното им произведение

$$\overrightarrow{a} \cdot \overrightarrow{b} = x_a \cdot x_b + y_a \cdot y_b + z_a \cdot z_b$$
.

- 4) Нека \overrightarrow{a} , $\overrightarrow{b}\neq 0$. Тогава \overrightarrow{a} . $\overrightarrow{b}=0\Leftrightarrow \overrightarrow{a}$ и \overrightarrow{b} са перпендикулярни. 5) Ако $\overrightarrow{a}(x_a,y_a,z_a)$, $\overrightarrow{b}(x_b,y_b,z_b)$ и ъгълът между тях е φ , то

$$\cos \varphi = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}.$$

- 6) Ако $\overrightarrow{a}(x_a,y_a,z_a)$ и $\overrightarrow{b}(x_b,y_b,z_b)$, то векторното им произведение е вектор $\overrightarrow{a} \times \overrightarrow{b} \left(\left| \begin{array}{ccc} y_a & z_a \\ y_b & z_b \end{array} \right|, \left| \begin{array}{ccc} z_a & x_a \\ z_b & x_b \end{array} \right|, \left| \begin{array}{ccc} x_a & y_a \\ x_b & y_b \end{array} \right| \right).$ 7) Ако $\overrightarrow{AB} = \overrightarrow{a}$ и $\overrightarrow{AC} = \overrightarrow{b}$, то лицето на ΔABC е $S_{ABC} = \frac{1}{2} \left| \overrightarrow{a} \times \overrightarrow{b} \right|$.
- 8) Ако $\overrightarrow{a}(x_a,y_a,z_a)$, $\overrightarrow{b}(x_b,y_b,z_b)$ и $\overrightarrow{c}(x_c,y_c,z_c)$, то смесеното им произведение $\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}=\begin{vmatrix}x_a&x_b&x_c\\y_a&y_b&y_c\\z_a&z_b&z_c\end{vmatrix}$.

 9) Нека $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\neq 0$. Тогава $\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}=0\Leftrightarrow \overrightarrow{a},\overrightarrow{b}$ и \overrightarrow{c} лежат в една
- 10) Ако $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AC}=\overrightarrow{b}$ и $\overrightarrow{AD}=\overrightarrow{c}$, то обемът на пирамидата ABCDe $V_{ABCD} = \frac{1}{6} \left| \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right|$.

- IV. Уравнение на права в равнината:
- 1) Общо уравнение на права g : ax + by + c = 0.
- 2) Декартово уравнение на права g: y = kx + n.
- 3) Ако т. $A(x_A,y_A)$ и т. $B(x_B,y_B)$, то средата на отсечката AB е точката $M\left(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2}\right)$, а правата g, минаваща през точките A и B има

уравнение
$$g: \left| \begin{array}{ccc} x & y & 1 \\ x_A & y_A & 1 \\ x_B & y_B & 1 \end{array} \right| = 0.$$

- 4) Ъгловият коефициент на правата g е $k=-\frac{a}{b}$ в зависимост от това дали правата g е зададена с Декартово или общо уравнение.
 - 5) Две прави $g_1 \parallel g_2 \Leftrightarrow k_{g_1} = k_{g_2}$ и $g_1 \perp g_2 \Leftrightarrow k_{g_1}.k_{g_2} = -1.$
 - V. Производни и интеграли:

f(x)	f'(x)
x^n	nx^{n-1}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
e^x	e^x
$\ln x$	$\frac{1}{x}$
tgx	$\frac{1}{\cos^2 x}$
$\arcsin x$	$ \frac{1}{\sqrt{1-x^2}} \mid$
arctgx	$\frac{1}{1+x^2}$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln x + C$$

$$\int \frac{1}{\cos^2 x} dx = tgx + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

$$\int \frac{1}{1+x^2} dx = \arctan x + C$$