

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA Global - Cálculo Diferencial - 2020-2

d₹

GLOBAL - MÓDULO 1- CÁLCULO DIFERENCIAL (220144)

	Resultados de aprendizajes
1	Aplica la geometría analítica para la resolución de problemas de optimización en el ámbito de la ingeniería
2	Aplica los axiomas de cuerpo y orden de los números reales para resolver inecuaciones lineales, cuadráticas
	y con valor absoluto
3	Analiza la existencia de límites en funciones reales para resolver problemas relativos a la Continuidad y
	derivabilidad de funciones.

2 Noviembre del 2020

NOMBRE:	RUT:	SECCION:

Problema	1 (30 PTS)	2 (20 PTS)	3 (25 PTS)	4 (25 PTS)	Total puntos.	NOTA
					100 pts	(1 a 7)
Puntaje						
obtenido						

INSTRUCIONES:

- Hacer los ejercicios asignados, en caso contrario no serán considerados.
- Escribir respuestas con letra clara y legible con lápiz pasta.
- Las respuestas deben venir debidamente justificadas.
- Cada una de las hojas de respuestas debe venir con nombre, Rut y número de página.
- Debe enviar desarrollo de la evaluación a mi correo <u>damico@ubiobio.cl</u> y a Plataforma ésta debe venir en un archivo pdf, de la siguiente forma:

NombreApellidoAlumno-Código Asignatura- sección – Global.pdf.

■ Tiene 80 minutos para responder + 20 minutos para el envío.

RUT alumno	Preg 1	Preg 2	Preg 3	Preg4
21044283-9	a,c,e,g,i,k	2.1	3.1	a
20643761-8	b,d,f,h,j,l	2.2	3.2	b
20691801-2	a,c,e,g,i,k	2.3	3.1	a
20943210-2	b,d,f,h,j,l	2.4	3.2	b
20681033-5	a,c,e,g,i,k	2.1	3.1	a
20780898-9	b,d,f,h,j,l	2.2	3.2	b
20962030-8	a,c,e,g,i,k	2.3	3.1	a
29915062-k	b,d,f,h,j,l	2.4	3.2	b
20640954-1	b,d,f,h,j,l	2.1	3.1	a
20953595-5	a,c,e,g,i,k	2.2	3.2	b
20256093-8	b,d,f,h,j,l	2.3	3.1	a
	a,c,e,g,i,k	2.4	3.2	b
	b,d,f,h,j,l	2.1	3.1	a
	a,c,e,g,i,k	2.2	3.2	b
	b,d,f,h,j,l	2.3	3.1	a
	a,c,e,g,i,k	2.4	3.2	b
	b,d,f,h,j,l	2.1	3.1	a
	a,c,e,g,i,k	2.2	3.2	b
	b,d,f,h,j,l	2.3	3.1	a
	a,c,e,g,i,k	2.4	3.2	b
	b,d,f,h,j,l	2.1	3.1	a
	a,c,e,g,i,k	2.2	3.2	b
	b,d,f,h,j,l	2.3	3.1	a

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Q₹

(30 PTS) PROBLEMA 1:

Determine si las siguientes afirmaciones son verdaderas o falsas. Justificar apropiadamente.

a) _____ Sean
$$L_1: x + 2y = 6$$
 y $L_2: 3x + \frac{y}{7} = 4$ se tiene que $L_1//L_2$

b) _____ Sean
$$L_1: 5x + 3y = 8$$
 y $L_2: 15x + \frac{15y}{5} = 1$ se tiene que $L_1 \perp L_2$

c) _____ En la ecuación de la circunferencia
$$(x-2)^2 + (y+5)^2 = 9$$
 su centro es $(-2,5)$

d) _____ En la ecuación de la Hipérbola
$$\frac{x^2}{625} - \frac{y^2}{144} = 1$$
 su centro es el punto (25,12)

d)
$$(\forall a, b \in \mathbb{R})(a < b \Rightarrow a^2 < b^2)$$

e)
$$(\forall a, b \in \mathbb{R})(a^2 < b^2 \Rightarrow a < b)$$

f)
$$[x \in \mathbb{R}^+: |x| - 1| \le 1 = [-2,2]$$

g) La solución de
$$\sqrt{(x-1)^3} \le |x-1|$$
 es [1,2]

h)
$$\lim_{x \to 1} \frac{3}{(x-1)^2} = +\infty$$

i)
$$\lim_{x \to +\infty} \frac{-4x^4 - x^2}{2x^4 + 10x} = -2$$

j) _____ Si
$$\lim_{x \to a} f(x)$$
 no existe, entonces f no es continua en $x = a$.

k)
$$f(x) = \frac{1}{x}$$
 es continua en su dominio.

(20 PTS) PROBLEMA 2: Considere las siguientes ecuaciones:

$$2.1 \qquad -16x^2 + 25y^2 - 32x - 250y + 209 = 0$$

$$2.2 3y^2 - 8x + 12y + 20 = 0$$

$$2.3 9x^2 + 4y^2 + 36x - 24y + 36 = 0$$

$$2.4 25x^2 + 25y^2 - 20x + 25y + 4 = 0$$

- a) Identifique la cónica que la ecuación describe y escriba ecuación de la cónica en forma canónica.
- b) Determine los elementos principales de la cónica.
- (a, b, c, vértices, centro, focos, excentricidad, directriz, p, radio de existir)

(25 PTS) PROBLEMA 3: Desarrollar y calcular:

3.1 a) La inecuación
$$|x^2 - x| < |x + 1|$$

b)
$$\lim_{x \to 1^{-}} \frac{-x}{x^2 - 1} =$$

c)
$$\lim_{x \to -\infty} \frac{-2x}{1+x} =$$

3.2 a) La inecuación
$$\left| \frac{1}{x-2} - \frac{x}{x^{2-4}} \right| \ge 2$$

b)
$$\lim_{x \to 2^+} \frac{1}{x^2 - 4} =$$

c)
$$\lim_{x \to +\infty} \frac{2x}{1+x} =$$

(25 PTS) PROBLEMA 4:

Hallar los valores de las constantes C y K que hacen que la función sea continua en todo $x \in \mathbb{R}$

a)
$$f(x) = \begin{cases} x + 2C, & x > -2 \\ 3Cx + K, & -2 \le x \le 1 \\ 3x + 2k, & x > 1 \end{cases}$$

b)
$$f(x) = \begin{cases} x, & x \le 1 \\ Cx + K, & 1 < x < 4 \\ -2x, & x \ge 4 \end{cases}$$