Inteligência Artificial

Preparação e Pré-processamento dos dados Parte III

Prof. Dr. Ivan Carlos Alcântara de Oliveira

https://orcid.org/0000-0002-6020-7535

Preparação dos dados e Pré-Processamento

Ciclo de Vida de Projeto de Data Science

CRISP-DM

 CRISP-DM (Cross Industry Standard Process for Data Mining - Processo Padrão Interindústrias para Mineração de Dados) é um processo de fases bastante aceito na indústria para representar um ciclo completo de Ciência e Análise de Dados, incluído a aplicação de modelos de Aprendizado de Máquina.

Ciência de Dados

Ciclo de Vida de Projeto de *Data Science*

3. Preparação dos Dados

Data Wrangling: pré-processamento, transformação, limpeza dos dados, etc.

Até aqui, aproximadamente 70% do tempo de um Cientista de Dados.

- O desempenho dos algoritmos de AM geralmente são afetados pelo estado dos dados.
- Conjunto de dados podem apresentar diferentes características, dimensões ou formatos.
- Por exemplo, podem ser numéricos ou categóricos/simbólicos.

- Conjunto de dados podem também:
 - Estar limpos ou conter ruídos e imperfeições
 - Com valores incorretos
 - Inconsistentes
 - Duplicados ou ausentes
 - Ter atributos independentes ou relacionados
 - Apresentar poucos ou muitos objetos
 - Ter um número pequeno ou elevado de atributos.

 Técnicas de Preparação dos dados são frequentemente utilizadas para melhorar a qualidade dos dados por meio da eliminação ou minimização desses problemas.

- Essa melhora pode:
 - facilitar o uso de técnicas de AM
 - permitir a construção de modelos mais fiéis à distribuição real dos dados
 - Reduzir a complexidade computacional
 - Tornar mais fáceis e rápidos o ajuste de parâmetros do modelo e seu posterior uso.
 - Facilitar a interpretação dos padrões extraídos pelo modelo

- Técnicas de Preparação dos dados também podem tornar os dados mais adequados para sua utilização por um determinado algoritmo de AM.
- Por exemplo, alguns algoritmos de AM trabalham apenas com valores numéricos.
- Não existe uma ordem fixa para aplicação das diferentes técnicas de préprocessamento.

Amostragem de Dados

 Algoritmos de AM podem ter dificuldades em lidar com grande quantidade de objetos.

 Por exemplo, Algoritmos baseados em instâncias, como o k-vizinhos mais próximos (K-NN, do inglês k-nearest neighbours), que podem apresentar problemas de saturação de memória.

- Associado ao número de objetos em um conjunto de dados, existe um balanço entre eficiência computacional e acurácia (taxa de predições corretas).
- Quanto mais dados são utilizados, maior tende a ser a acurácia do modelo e menor a eficiência computacional do processo indutivo.
- Para se obter um balanceamento entre eficiência e acurácia, trabalha-se com uma amostra ou subconjunto de dados.

- Uma pequena amostra pode não representar bem o problema que se deseja modelar.
- A amostra deve ser representativa do conjunto de dados original.
- O ideal é que a amostra não seja grande, mas que seus dados obedeçam à mesma distribuição estatística que gerou o conjunto de dados original.

- Com isso, seria capaz de fornecer uma estimativa da informação contida na população original, extraindo conclusões de um todo a partir de uma parte.
- No entanto, não é possível garantir que isso aconteça.
- O especialista no domínio pode decidir também que um subconjunto dos objetos deve ser utilizado para suas análises.
- Por exemplo, em uma análise de pacientes de um hospital podem ser utilizados apenas os objetos do sexo feminino.

- Existem técnicas de amostragem estatística que aumentam a chance de obter uma boa estimativa, são elas:
 - Amostragem aleatória simples
 - Amostragem estratificada
 - Amostragem progressiva

Amostragem de Dados – Aleatória simples

- Amostragem aleatória simples sem reposição:
 exemplos são extraídos do conjunto original para a
 amostra a ser utilizada e cada exemplo pode ser
 selecionado apenas uma vez.
- Amostragem aleatória simples com reposição: quando uma cópia dos exemplos selecionados é mantida no conjunto original.
- É mais fácil de analisar, pois a probabilidade de escolher qualquer objeto se mantém constante.

Amostragem de Dados – Estratificada

 Utilizada quando as classes apresentam propriedades diferentes, por exemplo, números de objetos bastante diferentes.

 Em problemas de classificação, um cuidado que deve ser tomado na amostragem diz respeito à distribuição dos dados nas diferentes classes.

Amostragem de Dados – Estratificada

- A existência de classes com uma quantidade significativamente maior de exemplos que as demais pode levar à indução de classificadores tendenciosos para as classes majoritárias.
- A opção mais simples é manter o mesmo número de objetos para cada classe.
- Uma opção é manter o número de objetos em cada classe proporcional ao número de objetos da classe no conjunto original.

Amostragem de Dados – progressiva

- Nesse caso, começa com uma amostra pequena e aumenta progressivamente o tamanho da amostra extraída, enquanto a acurácia preditiva continuar a melhorar.
- Como resultado, é possível definir a menor quantidade de dados necessária, reduzindo ou eliminando a perda de acurácia.
- Essa abordagem geralmente fornece uma boa estimativa para o tamanho da amostra.

Redução da Dimensionalidade

- Muitos problemas que podem ser tratados por técnicas de AM apresentam um número elevado de atributos.
- Porém, poucas técnicas podem lidar com essa situação.
- Esse problema é descrito como maldição da dimensionalidade.
- Uma forma de minimizar o impacto do problema da dimensionalidade é combinar ou eliminar parte dos atributos irrelevantes.

Redução da Dimensionalidade

- A redução da dimensionalidade pode ainda melhorar o desempenho do modelo induzido, reduzir seu custo computacional e tornar os resultados obtidos mais compreensíveis.
- Algumas técnicas para a redução da dimensionalidade podem ser divididas em:
 - Agregação (Ex.: Principal Component Analysis (PCA))
 - Seleção de atributos (Ex.: Random Forest)

Redução da Dimensionalidade - Agregação

- Combinam os atributos originais por meio de funções lineares ou não lineares.
- Porém, levam à perda dos valores originais.
- Algumas áreas como: biologia, finanças, medicina e monitoramento ambiental, geralmente é importante preservar os valores dos atributos para que os resultados obtidos possam ser interpretados.

Redução da Dimensionalidade – **Seleção de Atributos**

Permite:

- Identificar atributos importantes
- Melhorar o desempenho de várias técnicas de AM
- Reduzir a necessidade de memória e tempo de processamento
- Eliminar atributos irrelevantes e reduzir ruído
- Lidar com a maldição da dimensionalidade
- Simplificar o modelo gerado e tornar mais fácil sua compreensão.
- Facilitar a visualização do dados.

Redução da Dimensionalidade – **Seleção de Atributos**

- Na prática, vários atributos passíveis de eliminação não são facilmente identificados, o que torna pouco eficiente o uso de técnicas visuais.
- Para avaliar a qualidade ou desempenho de um subconjunto de atributos, três abordagens são utilizadas:
 - Embutida
 - Baseada em filtro
 - Baseada em wrapper

Redução da Dimensionalidade — **Seleção de Atributos — Abordagem Embutida**

 A seleção do subconjunto é embutida ou integrada no próprio algoritmo de aprendizado.

 As árvores de decisão realizam esse tipo de seleção interna de atributos.

Redução da Dimensionalidade — **Seleção de Atributos — Abordagem Baseada em Filtro**

- Em uma etapa de pré-processamento, é
 utilizado um filtro sobre o conjunto de
 atributos original que filtra um subconjunto de
 atributos do conjunto original, sem levar em
 consideração o algoritmo de aprendizado que
 utilizará esse subconjunto.
- As técnicas utilizam, por exemplo, correlação entre atributos.

Redução da Dimensionalidade – **Seleção de Atributos** – **Abordagem Baseada em** *wrapper*

- Utiliza o próprio algoritmo de aprendizado como uma caixa preta para a seleção.
- Geralmente utilizada como uma técnica de amostragem.
- Para cada possível subconjunto, o algoritmo é consultado e o subconjunto que apresentar a melhor combinação entre redução da taxa de erro e redução do número de atributos é em geral selecionado.

Redução da Dimensionalidade – **Técnicas de Seleção de Subconjunto**

- Pode ser vista como um problema de busca.
- Técnicas de partida para direção na busca podem ser:
 - Geração para trás (backward generation), que começa com todos os atributos e remove um por vez.
 - Geração para frente (forward generation), que começa sem nenhum atributo e inclui um atributo por vez.
 - Geração bidirectional (bidirectional generation), em que a busca pode começar de qualquer ponto e atributos podem ser adicionados e removidos.
 - Geração estocástica* (random generation), quando o ponto de partida da busca e atributos a serem removidos ou adicionados são decididos de forma estocástica.

Redução da Dimensionalidade – **Técnicas de Seleção de Subconjunto**

- Estratégias de busca a serem adotadas são:
 - Busca completa (exponencial ou exaustiva), que avalia todos os possíveis subconjuntos e é encerrada quando todos os subconjuntos forem testados, ou por um critério de parada, que define terminar a busca pelo melhor subconjunto de atributos.
 - Busca heurística (sequencial), que utiliza regras e métodos para conduzir a busca e que não garante que uma solução ótima seja encontrada.
 - Busca não determinística, que está relacionada a geração estocástica.

Redução da Dimensionalidade – **Técnicas de Ordenação**

- Os atributos são ordenados de acordo com sua relevância para um dado critério, por exemplo, classificação dos objetos nas diferentes classes.
- Em problemas de classificação, os atributos no topo da ordenação são selecionados para utilização pelo classificador.

Bibliografia

BÁSICA:

- AGGARWAL, Charu C. Artificial Intelligence: A Textbook. New York: Springer: 2021.
- CHOLLET, François. Deep Learning with Python, 2ed. Shelter Island: Manning, 2021.
- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
 Tools, and Techniques to Build Intelligent Systems, 2 ed. Sebastopol: O'Reilly, 2019.

COMPLEMENTAR:

- GOODFELLOW, Ian; BENGIO, Yoshua, COURVILLE, Aaron. Deep Learning. Cambridge: MIT Press, 2016.
- RASCHKA, Sebastian; MIRJALILI, Vahid. **Python Machine Learning**. 3 ed. Birmingham: Packt, 2017.
- RUSSEL, Stuart; NORVIG, Peter. Artificial Intelligence: A Modern Approach. 3 ed. Upper Saddle River: Pearson, 2010.
- TAN, Pang-Ning; STEINBACH, Michael; KUMAR, Vipin. **Introduction to Data Mining**. 2 ed. Upper Saddle River: Pearson, 2018.
- VANDERPLAS, Jake. Python Data Science Handbook. Sebastopol: O'Reilly, 2017.

ADICIONAIS:

- FACELI, Katti et al. Inteligência artificial: uma abordagem de aprendizado de máquina. 2ª Ed. Rio de Janeiro: LTC- Livros Técnicos e Científicos, 2021.
- LUGER, George F. Inteligência Artificial 6^a ed. São Paulo: Pearson Education do Brasil, 2015.
- RUSSELL, Stuart; NORVIG, Peter. **Inteligência artificial: Uma Abordagem Moderna** 4ª. Ed. GEN LTC, 2022.