PETE FAN

Electrical and Computer Engineering

@ petefan.7@utexas.edu

L +1 (469) 434-5308

ngithub.com/PaperFanz

% paperfanz.github.io

EDUCATION

B.S. Electrical and Computer Engineering

University of Texas at Austin

Aug 2018 - May 2021

☞ GPA: 3.91

Relevant Coursework: Computer Architecture, Embedded Systems, Operating Systems, Digital Logic Design, Algorithms

PROFESSIONAL EXPERIENCE

Undergraduate Research Assistant Nuclear and Applied Robotics Group

April 2019 - Present

Austin, Texas U.S.A.

- Architected an IoT Robotics integration project to extend onboard sensors with networked embedded systems for greater operational autonomy and hardware redundancy
- Ongoing work on a situational awareness package using ROS Nodelets and OpenCV to provide remote operators with context-aware visual feedback
- Co-authored a paper on intuitive remote teleoperation leveraging VR motion sensors and affordance templates
- Participated in an intercontinental teleoperation demonstration between UT Austin and Woodside Energy (Perth, Australia)
- Created and tested a virtual reality dual manipulator jogging scheme using the HTC Vive motion controller system
- Conducted feasibility analysis on next-gen ROS networking solutions including 10G fiber tether, WiFi 802.11ax, and 5G modems

Teaching Assistant

Introduction to Computing (UT ECE Dept.)

Aug 2019 – Dec 2019

♀ Austin, Texas U.S.A.

- Created an IDE-like extension for Visual Studio Code for LC3
 assembly language, including syntax highlighting, autocomplete, and
 snippet support: PaperFanz/Ic3-assembly-vscode-ext
- Developed an accompanying assembler with extended pseudo-op features and cross-file assembly in C: PaperFanz/laser
- Wrote homework and test questions on logical circuits and LC3 datapath/assembly

NanoExplorer Scholar

Human Enabled Robotics Lab

June 2016 - July 2018

Richardson, Texas U.S.A.

- Developed a motion smoothness measurement algorithm for use in a robotic surgery training system using C++, OpenGL, and ROS
- Designed and conducted human subject study assessing effectiveness and robustness compared to existing measures
- Maintained Linux machines used by the HERo Lab, primarily Ubuntu 16.04 and 18.04

TECHNICAL SKILLS

System Design Computer Architecture
Operating Systems Motion Controls
Virtual Reality Computer Vision
Embedded Software Circuit Design
CAD

PROGRAMMING

C/C++ Python ROS/ROS2
OpenCV Java Rust QT5
Javascript/Typescript HTML/CSS
Verilog R MATLAB LaTeX

SOFTWARE

Linux Visual Studio Code Git

Keil uVision 5 Xilinx Vivado R Studio

MATLAB Fusion 360 EasyEDA

REFEREES

Dr. Mitchell W. Prvor. Ph.D

Research Scientist

- University of Texas at Austin
- @ mpryor@utexas.edu

Dr. Ramesh Yerraballi, Ph.D

Professor of Instruction

- **♀** University of Texas at Austin
- @ ramesh@mail.utexas.edu

PUBLICATIONS

Conferences

 Pettinger, Adam et al. (2020). "Reducing the Teleoperator's Cognitive Burden for Complex Contact Tasks Using Affordance Primitives". In: International Conference on Intelligent Robots and Systems. IROS 2020. (Las Vegas, NV, USA, Oct. 25–29, 2020).