

Optimization and deep learning

Loss Function

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim \hat{p}_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y),$$

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim p_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y).$$

Gradient Descent

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim p_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y).$$

$$g = \nabla_{\boldsymbol{\theta}} J^*(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \sum_{y} p_{\text{data}}(\boldsymbol{x}, y) \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y).$$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

Gradient Descent

Gradient Descent

Advantages and Disadvantages

Advantages:

- 1. Easy computation.
- 2. Easy to implement.
- 3. Easy to understand.

Disadvantages:

- 1. May trap at local minima.
- 2. Weights are changed after calculating gradient on the whole dataset. So, if the dataset is too large than this may take years to converge to the minima.
- 3. Requires large memory to calculate gradient on the whole dataset.

Stochastic Gradient Descent

$$\mathbb{E}_{\boldsymbol{x}, \mathbf{y} \sim \hat{p}_{\text{data}}(\boldsymbol{x}, y)}[L(f(\boldsymbol{x}; \boldsymbol{\theta}), y)] = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

- \square m = N (all training set): Batch Gradient Descent or Deterministic Gradient Descent
- \square m = 1: Stochastic Gradient Descent
- □ 1<m<N: Mini-Batch Stochastic Gradient Descent

Stochastic Gradient Descent

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$

Stochastic Gradient Descent

Advantages and Disadvantages

Advantages:

- 1. Frequent updates of model parameters hence, converges in less time.
- 2.Requires less memory as no need to store values of loss functions.
- 3. May get new minima's.

Disadvantages:

- 1. High variance in model parameters.
- 2. May shoot even after achieving global minima.
- 3.To get the same convergence as gradient descent needs to slowly reduce the value of learning rate.

Stochastic Gradient Descent with Momentum

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{f}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \right),$$

$$\theta \leftarrow \theta + v$$
.

Stochastic Gradient Descent with Momentum

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$

Apply update: $\theta \leftarrow \theta + v$

Effect of Stochastic Gradient Descent with Momentum

Effect of Stochastic Gradient Descent with Momentum

Effect of Stochastic Gradient Descent with Momentum

Advantages and Disadvantages

Advantages:

- 1.Reduces the oscillations and high variance of the parameters.
- 2. Converges faster than gradient descent.

Disadvantages:

1.One more hyper-parameter is added which needs to be selected manually and accurately.

Nesterov Momentum

$$v \leftarrow \alpha v - \epsilon \nabla_{\theta} \left[\frac{1}{m} \sum_{i=1}^{m} L\left(f(x^{(i)}; \theta + \alpha v), y^{(i)}\right) \right],$$

 $\theta \leftarrow \theta + v,$

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate ϵ , momentum parameter α .

Require: Initial parameter θ , initial velocity v.

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding labels $y^{(i)}$.

Apply interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

Compute gradient (at interim point): $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\mathbf{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \mathbf{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$

Apply update: $\theta \leftarrow \theta + v$

Nesterov Momentum

Advantages and Disadvantages

Advantages:

- 1.Does not miss the local minima.
- 2.Slows if minima's are occurring.

Disadvantages:

1.Still, the hyperparameter needs to be selected manually.

❖ AdaGrad

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ

Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow r + g \odot g$

Compute update: $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$. (Division and square root applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

Advantages and Disadvantages

- 1.Learning rate changes for each training parameter.
- 2.Don't need to tune the learning rate manually.
- 3. Able to train on sparse data.

Disadvantages:

- 1. Computationally expensive as a need to calculate the second order derivative.
- 2. The learning rate is always decreasing results in slow training.

RMSProp

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Accumulate squared gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho)\mathbf{g} \odot \mathbf{g}$

Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g$. $(\frac{1}{\sqrt{\delta + r}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$

RMSProp (green) vs AdaGrad (white)

RMSProp with Nestrov momentum

Algorithm 8.6 RMSProp algorithm with Nesterov momentum

Require: Global learning rate ϵ , decay rate ρ , momentum coefficient α .

Require: Initial parameter θ , initial velocity v.

Initialize accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute interim update: $\tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}$

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})$

Accumulate gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$

Compute velocity update: $\mathbf{v} \leftarrow \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{r}} \odot \mathbf{g}$. $(\frac{1}{\sqrt{r}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + v$

❖ Adam

Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0, 1). (Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization. (Suggested default: 10^{-8})

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

$$t \leftarrow t + 1$$

Update biased first moment estimate: $s \leftarrow \rho_1 s + (1 - \rho_1) g$

Update biased second moment estimate: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$

Correct bias in second moment: $\hat{r} \leftarrow \frac{r}{1-\rho_2^t}$

Compute update: $\Delta \theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ (operations applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$

Advantages and Disadvantages

Advantages:

- 1. The method is too fast and converges rapidly.
- 2. Rectifies vanishing learning rate, high variance.

Disadvantages:

Computationally costly.

Comparison

Comparison

gradient descent (cyan)
momentum (magenta)
AdaGrad (white)
RMSProp (green)
Adam (blue)

Newton method

```
Algorithm 8.8 Newton's
                                                                                                                       J(\boldsymbol{\theta})
                                                                                                objective
                                                             \operatorname{method}
                                                                                  with
\frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)}).
Require: Initial parameter \theta_0
Require: Training set of m examples
    while stopping criterion not met do
        Compute gradient: \mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})
        Compute Hessian: \boldsymbol{H} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}}^2 \sum_i L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})
        Compute Hessian inverse: H^{-1}
        Compute update: \Delta \theta = -H^{-1}g
        Apply update: \theta = \theta + \Delta \theta
    end while
```