

DPP – 4 (Circular Motion)

Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/39				
Video Solution on YouTube:-		https://youtu.be/hsCDAjR-KWY				
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/42				
Q 1.		conical pendulum makes an angle of 45^0 with the vertical, its tring makes an angle of 60^0 with the vertical, its time period is (b) $\sqrt{2}$ (d) none of these				
Q 2.	upper end is fixed to	0 g is attached to an inextensible string of length 130 cm whose the ceiling. The sphere is made to describe a horizontal circle of the tension in the periodic time of this conical pendulum and the tension in n/s^2) (b) 2 sec, 4 N (d) 2.5 sec, 3N				
Q 3.	chamber. If the radius	otor cycle rides round the inner wall of a hollow cylindrical s of the cylindrical chamber is 8 m. What would be minimum prevent him from sliding down? $(g = 10 \ m/s^2, \mu = 0.2)$ (b) $20 \ m/s$ (d) $40 \ m/s$				
Q 4.	commonly known as coefficient of friction	ive on the vertical surface of a large cylindrical wooden well death well in a circus. The radius of the well 2 meter, and the between the tyers of the motorcycle and the wall of the well is ed the motorcyclist must have in order to prevent slipping should (b) 15 m/s (d) 25 m/s				
Q 5.		Im speed of a car on a curved road of radius 30 m. If the coefficient ne tyres and the road is $0.4?$ ($g=10 \ m/s^2$) (b) $9.87 \ m/s$ (d) $4.27 \ m/s$				
Q 6.	between tyres and roo	speed of 108 km/h on level road where coefficient of friction d is 0.5. For the safe driving of van the minimum radius of will be: $(g = 10 \text{ m/s}^2)$ (b) 40 m (d) 20 m				

hysicsaholics

- Q 7. A car of mass 1000kg negotiates a banked curve of radius 90m on a frictionless road. If the banking angle is 45^0 the speed of the car is: $(g = 10 \text{ m/s}^2)$
 - (a) 10 m/s

(b) 20 m/s

(c) 30 m/s

(d) 40 m/s

Q 8. A cyclist riding at a speed of $14\sqrt{3}$ m/s takes a turn around a circular road of radius $20\sqrt{3}$ m. What is his inclination with horizontal? $(g = 10 \text{ m/s}^2)$

(a) 30^{0}

(b) 45°

(c) 60^{0}

(d) 37^0

Q 9. A turn of radius 20 m is banked for the vehicles going at a speed of 36km/h. If the coefficient of static friction between the road and the tyre is 0.4, what are the possible speeds of a vehicle so that it neither slips down nor skids up? $(g = 10 \text{ m/s}^2)$

(a) $4.08 \text{ m/s} \le V \le 15m/s$

(b) $3.01 \text{ m/s} \le V \le 15m/s$

(c) $4.08 \text{ m/s} \le V \le 12m/s$

(d) $3.01 \text{ m/s} \le V \le 12m/s$

Q 10. A curve in a road forms an arc of radius 800 m. If the road is 19.6 m wide and outer edge is 1m higher than the inner edge, calculate the speed for which it is banked: $(g = 9.8 \text{ m/s}^2)$

(a) 10 m/s

- (b) 12.7 m/s
- (c) 20 m/s
- (d) 23.1 m/s
- Q 11. A circular road of radius 1000 m has banking angle 45°. The maximum safe speed of a car having mass 2000 kg will be, if the coefficient of friction between tyre and road is 0.5: $(g = 9.8 \text{ m/s}^2)$

(a) 172 m/s

- (b) 124 m/s
- (c) 99 m/s
- (d) 86 m/s
- Q 12. Find the maximum velocity for skidding for a car moved on a circular track of radius 100 m. The coefficient of friction between the road and tyre is 0.2: $(g = 9.8 \text{ m/s}^2)$

(a) 0.14 m/s

- (b) 140 m/s
- (c) 1.4 m/s
- (d) 14 m/s
- Q 13. A point mass m is suspended from a light thread of length l, fixed at O, is whirled in a horizontal circle at constant speed as shown. From your point of view, stationary with respect to the mass, the forces on the mass are:

Answer Key

Q.1	b	Q.2	a	Q.3	b	Q.4	a	Q.5	a
Q.6	c	Q.7	c	Q.8	a	Q.9	a	Q.10	c
Q.11	a	Q.12	d	Q.13	c				

PRATIES AND DES