REDES DE COMPUTADORES A Atividade 6

Desenvolvimento da Atividade

A atividade deverá ser desenvolvida em grupos de no máximo 4 integrantes.

Para a realização desta atividade será necessário o uso de <u>dois</u> dispositivos Arduino Uno equipados com placas de rede Ethernet (Ethernet Shield) e um computador com Sistema Operacional Linux. Por isso recomenda-se que esta atividade seja realizada no Laboratório de Eletrônica (LABEL).

Normas de conduta

A interação entre os grupos é estimulada, no entanto qualquer tentativa de plágio de trabalhos será punida com a **nota -Nmax nos trabalhos para todos os envolvidos**.

Descrição da Atividade

Objetivo: Obter conhecimentos básicos para o desenvolvimento de software cliente e servidor em ambientes TCP/IP em sistemas embarcados.

Leia atentamente as informações a seguir e realize as atividades solicitadas:

- Estude os textos <u>Projeto de Software de Clientes</u> e <u>Projeto e Implementação de Servidores</u>;
- Estude os Capítulos 1, 2, 13 e 17 do Livro Arduino Básico;
- Implemente uma aplicação para monitoramento de temperatura de um ambiente remoto, como descrito a seguir;
- Elabore um relatório detalhado mostrando todo o trabalho realizado, como descrito a seguir.

Nesta atividade serão implementados um cliente TCP e um servidor TCP concorrente que permitirão o monitoramento de temperatura de um ambiente remoto utilizando sockets TCP.

O programa cliente TCP será executado em um dispositivo Arduino Uno equipado com uma placa de rede Ethernet (Ethernet Shield). Devem estar conectados a este dispositivo um led e um sensor de temperatura.

Ao ser iniciado, o Arduino deve obter um endereço IP dinamicamente (utilizando o protocolo DHCP) e inicializar o led e o sensor de temperatura adequadamente. Realizado o procedimento inicial, o dispositivo deve a cada 10 segundos medir a temperatura do ambiente e enviar esta informação ao programa servidor TCP em um endereço IP e uma porta pré-determinados, aguardando em seguida por uma resposta do servidor informando se o seu led deve ser ligado ou desligado.

Para a realização desta atividade devem ser iniciados pelo menos dois dispositivos Arduino com a configuração descrita anteriormente.

O programa servidor TCP deve ser executado pelo usuário em um computador com Sistema Operacional Linux, devendo informar o número da porta na qual o programa servidor aguardará por requisições, como no exemplo a seguir:

./servidor 5000

O servidor deve aguardar por requisições de conexão enviadas pelos clientes e quando um novo cliente se conectar deve exibir uma mensagem informando o endereço IP e a porta do cliente que solicitou a conexão.

Em seguida deve receber a temperatura enviada pelo cliente. Caso a temperatura informada por este cliente seja a maior temperatura registrada entre os clientes conectados, deve enviar a este cliente um comando para que ele acenda o seu led. Caso contrário, deve enviar a este cliente um comando para que ele apague o seu led. Em ambos os casos deve ser exibida uma mensagem na tela do servidor informando a identificação do respectivo cliente, a temperatura recebida e o comando enviado.

O servidor deve ser capaz de atender a vários clientes simultaneamente, através da criação de threads ou processos filhos. O servidor também deve evitar a existência de threads ou processos zumbi.

Além disso, cada cliente deve enviar todas as requisições através de uma única conexão TCP (conexão persistente).

Detalhes da entrega

Cada integrante do grupo deverá postar em seu escaninho no AVA, na pasta **Atividade6**, o **código fonte de todos os programas implementados** e um **relatório em formato digital (.pdf)** contendo:

- detalhes do ambiente utilizado no desenvolvimento da atividade (contendo fotos do ambiente);
- detalhes de projeto e de implementação da aplicação, apresentando uma descrição de alto nível dos programas implementados (contendo textos explicativos e diagramas) e o formato das requisições e respostas enviadas;
- descrição do processo de compilação (contendo um screenshot que mostre os comandos utilizados na compilação e os resultados obtidos);
- descrição dos testes realizados (contendo screenshots da execução dos programas e os resultados obtidos, demonstrando que o programa realiza as tarefas solicitadas);
- os códigos fonte dos programas implementados.