Analysis of Algorithm Efficiency

The Analysis Framework

Efficiency of algorithms:

- Time efficiency (time complexity): indicates how fast an algorithm runs.
- Space efficiency (space complexity): refers to the amount of memory units required by the algorithm in addition to the space needed for the input and output.

The Analysis Framework

- Input size
- Units for measuring the running time
- Order of growth
- Worst-case, best-case and average-case efficiencies

Input Size

- Almost all algorithms run longer on larger inputs.
- Algorithm efficiency is a function of parameter(s) indicating the algorithm input size.
- Input size:
 - the size of a list (sorting, searching, etc.)
 - the degree of a polynomial
 - the order of a matrix
 - the number of characters

Units for Measuring Running Time

- Standard unit of time measurement: seconds, milliseconds, ...
- The running time of a program implementing the algorithm

Drawbacks: dependence on

- the speed of a computer
- the quality of a program
- the quality of compiler
- the difficulty of clocking

Units for Measuring Running Time

- A metric should not depend on the external factor!
- We can count the number of times each of the algorithm's operation executed: very difficult and usually unnecessary.
- We identify the most important operation of the algorithm, called the basic operation, the operation contributing the most to the total running time.
- We compute the number of times the basic operation executed.

Algorithm Efficiency

Algorithm SequentialSearch(A[0..n-1], K) // Input: An array A[0..n-1] & key K // Output: The first i that A[i] = K or -1 if no match $i \leftarrow 0$ while i < n and $A[i] \neq K$ do $i \leftarrow i + 1$ **if** i < n **return** ielse return -1

Algorithm Efficiency

```
Algorithm SequentialSearch(A[0..n-1], K)
  // Input: An array A[0..n-1] & key K
  // Output: The first i that A[i] = K or -1 if no match
  i \leftarrow 0
  while i < n and A[i] \neq K do
     i \leftarrow i + 1
   if i < n return i
   else return -1
```

Units for Measuring Running Time

Basic operation:

the most time-consuming operation in the algorithm's innermost loop.

Example:

Most sorting algorithms work by <u>comparing elements</u> (keys) of a list with each other.

The **basic operation** is a **key comparison**.

Orders of Growth

- Why to emphasize on the count's order of growth for large input sizes?
- A difference in running times on small inputs is not what really distinguishes efficient algorithms from inefficient ones.
- Compare the algorithms for computing the gcd of two positive integers

Orders of Growth

n	log ₂ n	n	n log ₂ n	n ²	n^3	2 ⁿ	n!
10	3.3	10	3.3 · 10	10^2	10^3	10^{3}	$3.6 \cdot 10^6$
10 ²	6.6	10 ²	$6.6\cdot10^2$	10^4	10^6	$1.0\cdot10^{30}$	$9.3 \cdot 10^{157}$
10^3	10	10 ³	$1.0\cdot 10^4$	10^6	10 ⁹		
10 ⁴	13	10 ⁴	$1.3 \cdot 10^5$	10 ⁸	10 ¹²		
10 ⁵	17	10 ⁵	$1.7\cdot 10^6$	10 ¹⁰	10 ¹⁵		
10 ⁶	20	10 ⁶	$2.0\cdot 10^7$	10 ¹²	10 ¹⁸		

Algorithm Efficiency

```
Algorithm SequentialSearch(A[0..n-1], K)
  // Input: An array A[0..n-1] & key K
  // Output: The first i that A[i] = K or -1 if no match
  i \leftarrow 0
  while i < n and A[i] \neq K do
     i \leftarrow i + 1
   if i < n return i
   else return -1
```

Worst-Case Efficiency

Worse-case efficiency of an algorithm is the longest running time for any input size n.

$$C_{worst}(n) = n$$

- There are no matching elements.
- The first matching element is the last one in the list.

Note:

 The worst-case analysis provides an upper bound on the running time for any input – a guarantee that the algorithm will never take any longer.

Best-Case Efficiency

Best-case efficiency of an algorithm is the smallest running time for all possible inputs size n.

$$C_{\text{best}}(n) = 1$$

The first element in the list is equal to the search key.

Note:

- The analysis of the best-case efficiency is not as important as that of the worst-case efficiency.
- Some algorithms run faster in specific inputs, for example, the insertion sort works very fast on almost sorted inputs.

Average-Case Efficiency

- Worst-case and best-case analysis do not result in necessary information about an algorithm's behavior on a "typical" or "random" input.
- Average-case efficiency of an algorithm is the average running time for all possible inputs size n.
- To analyze the algorithm's average case efficiency, we must make assumption about possible inputs of size n.

Average-Case Efficiency

Standard assumptions:

the probability of successful search is equal to p:

$$0 \le p \le 1$$

• the probability of the first match occurring in the ith position in the list is same for each $i, 1 \le i \le n$:

 $\frac{p}{n}$

16

Average-Case Efficiency

$$C_{avg}(n) = 1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n} + n(1 - p)$$

$$= \frac{p}{n} \cdot [1 + 2 + \dots + n] + n(1 - p)$$

$$= \frac{p}{n} \cdot \frac{n(n+1)}{2} + n(1 - p) = \frac{p(n+1)}{2} + n(1 - p)$$

• If p = 0,

$$C_{avg}(n) = n$$

• If p = 1,

$$C_{\text{avg}}(n) = (n+1)/2$$

Unsuccessful search:

of comparisons n with probability of the search (1-p)

To compare and rank orders of growth, we use **three asymptotic notations**:

- O (Big oh) notation
- Ω (Big omega) notation
- (Big theta) notation
- o (small oh), ω (small omega)

Definition: A function f(n) is said to be in O(g(n)), denoted by $f(n) \in O(g(n))$, if there exist some positive constant c and some nonnegative integer n_0 such that $f(n) \le c \cdot g(n)$, for all $n \ge n_0$.

Definition: A function f(n) is said to be in O(g(n)), denoted by $f(n) \in O(g(n))$, if there exist some positive constant c and some nonnegative integer n_0 such that $f(n) \le c \cdot g(n)$, for all $n \ge n_0$.

Example:

- $100n + 5 \in O(n^2)$
- $1000n^2 6n + 5 \in O(n^2)$
- $n^3 \notin O(n^2)$

Definition: A function f(n) is said to be in $\Omega(g(n))$, denoted by $f(n) \in \Omega(g(n))$, if there exist some positive constant c and some nonnegative integer n_0 such that $f(n) \ge c \cdot g(n)$, for all $n \ge n_0$.

Definition: A function f(n) is said to be in $\Omega(g(n))$, denoted by $f(n) \in \Omega(g(n))$, if there exist some positive constant c and some nonnegative integer n_0 such that $f(n) \ge c \cdot g(n)$, for all $n \ge n_0$.

Example:

- $100n \notin \Omega(n^2)$
- $1000n^2 + 5n + 5 \in \Omega(n^2)$
- $n^3 \in \Omega(n^2)$

Definition: A function f(n) is said to be in $\Theta(g(n))$, denoted by $f(n) \in \Theta(g(n))$, if there exist some positive constants c_1 and c_2 , and some nonnegative integer n_0 such that $c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n)$, for all $n \ge n_0$.

Definition: A function f(n) is said to be in $\Theta(g(n))$, denoted by $f(n) \in \Theta(g(n))$, if there exist some positive constants c_1 and c_2 , and some nonnegative integer n_0 such that $c_2 \cdot g(n) \le f(n) \le c_1 \cdot g(n)$, for all $n \ge n_0$.

Example:

- $-\frac{1}{2}n(n-1) \in \Theta(n^2)$
- $1000n^2 + 5n + 5 \in \Theta(n^2)$
- $n^3 + \log n \in \Theta(n^3)$

Theorem: $f(n) \in O(f(n))$.

Theorem: $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$.

Theorem: If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$.

Theorem: If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$.

- If f(n) same growth with g(n)
 - $-f(n) \in \Theta(n)$ and also O(n), $\Omega(n)$

- If f(n) smaller growth than g(n)
 - $-f(n) \in O(n)$

- If f(n) bigger growth than g(n)
 - $-f(n) \in \Omega(n)$

Limits for comparing orders of growth: In order to compare the orders of growth of two specific functions, one can use the limit of the ratio of these functions

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \begin{cases} 0, & f(n) \in O(g(n)) \\ c, & f(n) \in O(g(n)) \\ \infty, & f(n) \in O(g(n)) \end{cases}$$

Example:

- 10n vs. n²
- n(n+1)/2 vs. n^2

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}.$$

Stirling's formula: For large values of n,

$$n! \approx \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n$$

Example: (a) $\log_2 n$ vs. \sqrt{n} ; (b) 2^n vs. n!

Order of Growth

- All logarithmic functions $\log_a n$ belong to the same class $\Theta(\log_2 n)$ no matter what the logarithm's base a > 1 is.
- All polynomials of the same degree k belong to the same class:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 \in \Theta(n^k).$$

- Exponential functions aⁿ have different orders of growth for different a's.
- order $\log n < \text{order } n^{\alpha} (\alpha > 0) < \text{order } a^n < \text{order } n! < \text{order } n^n$

Basic Asymptotic Efficiency Classes

1	constant			
logn	logarithmic			
n	linear			
n log n	n — log — n or linearithmic			
n ²	quadratic			
n^3	cubic			
2 ⁿ	exponential			
n!	factorial			

Exercise

- Using informal definitions of O, Θ , Ω ,
 - Determine: True or False??

a.
$$\frac{n(n+1)}{2} \in O(n^3)$$
 b. $\frac{n(n+1)}{2} \in O(n^2)$

$$b. \frac{n(n+1)}{2} \in O(n^2)$$

c.
$$\frac{n(n+1)}{2} \in \Theta(n^3)$$
 d. $\frac{n(n+1)}{2} \in \Omega(n)$

$$d.\frac{n(n+1)}{2} \in \Omega(n)$$

Exercise

• For each of the following functions, indicate the class O(g(n)) the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions.

a.
$$(n^2 + 1)^{10}$$

b.
$$\sqrt{10n^2 + 7n + 3}$$

c.
$$2^{n+1} + 3^{n-1}$$

d. [log n]