We now have a procedure that starts with Ho, H,, and leads to a p-value which measures The weight of evidence against Ho, in favor of H. Then comparison with a leads to a decision to reject or not.

Juprev, example, we had n=64, x=34.4, s=1.1, and asked Does data provide evidence to support 1 34? The to: MS34 I always write These so that the end the have opposite

Ho: MS34 Circutions, because it's logical. The book do as not.

HI: M>34 The "equality" in the just reminds us that it's sufficent to Test Ho: M=34. (The Blue note). d+=64-1 in p-value = pr(x>xobs) = prod(t>tobs) = pr(t>2.91) = 0.0025. $= \frac{x_{obs} - \mu_o}{5 / \sqrt{5}} = \frac{34.4 - 34}{11 / \sqrt{54}} = 2.91$ Since p-value Ld, Thus There is evidence to Support M>34. It is tempting to say The above conclusion (at a=-05), That M>34, is obvious and trivial. After all the sample gave Xobs = 34.4, which is greater than 34 already. It's NOT obvious! Suppose The sample/data gave Tobs = 34-1, ie. still larger Than 34 - They $t = \frac{34.1 - 34}{1.1/564} = .73 \implies pralue = prob(t > 0.73) = 0.24$ This p-value is larger than any reasonable &. So, we cannot reject to in favor of the eventhough The obs- sample mean is bigger than 34.

34.1 is larger than 34, but just not enough

rejecting to (M<34) in favor of th, (M>34).

(in units of standard error, &) to justify

There are many ways to rephrase the statement/question in a problem. Here are some of Them:

Does data support M > 34? = 34.44, S = 1.1 $1.1/\sqrt{6}4$ $1.1/\sqrt$

= prob(t>2.91) = .0025 < ~ = Reject to (MS34) in favor of th, (M>34).

". Data does support the claim 12734.

Does data support M < 34?

Ho: μ 7,34 P-value = $\text{prob}(\overline{x} < \overline{x}_{obs}) = \text{prob}(t < t_{obs})$ H₁: μ <34 = $\text{prob}(t < 2.91) = 0.998 > <math>\alpha$

i Cannot Reject to (M), 34) in favor of th, (M(34).

.. Data does not support The claim M K34.

Does data contradict M>34? = prior claim: Ho: M7,34

Ho: M7,34 p-value = $pvob(x < x_{obs}) = pvob(t < t_{obs})$ H₁: $\mu < 34$ = $pvob(t < 2.91) = 0.998 > <math>\alpha$

i Cannot Rigert to (M) 34) in favor of H, (MX34).

is Data does not contradict The claim M7,34.

Does data contradict M < 34 ?

Ho: $M \leq 34$ p-value = $\operatorname{prob}(\overline{x} + \overline{x}_{obs}) = \operatorname{prob}(t > t_{obs})$ $H_1: M > 34$ = $\operatorname{prob}(t > 2.91) = .0025 < \infty$

- Rejort to (M(34) in favor of th (M>34)

To Data does contradict The claim M < 34

Now, given the similarity between C.I. and the hypothesis testing approach (ic. The p-value way) guess what The hypotheses for a 2-sample test are: Ho: M2 DM, H1: M2 DM, (ie. M2-M DO) It turns out we can solve a more general problem: Ho: M2-M, [] & H1: M2-M, [] A I.e. Instead of zero, use A, the null parameter.
You can always set it to zero, if desired. Then If 2-samples are indep., Then assuming Ho=T, $\frac{2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(\delta, 1)$ $t = \frac{(\overline{x}_2 - \overline{x}_1) - \Delta}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t - dist. \text{ with } df = Welch.$ Then, produes are computed just as before: p-value = (prob(t>tobs) if H: M2-M,>> (Table VI) { prob(t < tols) if $H_1: M_2-M_1 < \Delta$ twice "tail" if $H_1: M_2-M_1 \neq \Delta$ If the two samples are paired: Make a new column: $X_1 \mid X_2 \mid C = X_1 - X_2$ $t = \frac{d-\Delta}{S_d/\sqrt{n}} \sim t - dist. df = n-1$ p-value computed as before.

Reconsider this example: Example: 82 students have picked-up their test, but 30 have not, even I week after the test was returned. Call these 2 groups "Attenders" and "Non-attenders". N X S Non-attend 30 11.8 3.32 Attend 82 13.25 3.04 Sample suggests that mean of Attend is higher than Non-attend. Is this true for the population (ie. all 390 courses)? 95% with M= mean of test 1 by Non-attend students level M2 = " Attend students. we built The LOWER conf. bound for M2-M1: 131 M2-M1 $(\overline{x}_2 - \overline{x}_1) - 1.645 \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = 1.45 - 1.645 (0.693) = 0.31$ Interpretation: We are 95% confident that M2 > M, + 0.31. Corollary: zero not in the interval => There is evidence that M2>M1. A) Ho: Mz-M, >0

A) Ho: Mz-M, >0

C) Ho: Mz-M=0

List Above question > "Poes data provide evidence for Mz>M, ?" Ho: M2-M 60 tobs = 1.45 - 0 = 2.1 H1: M2-M >0 p-value = prob(+ > 2.1) = 0.0205 => At 2=.05, p-value(x. $\left[\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right]^2 = 47.91$ = 47.91 $\frac{1}{n-1}\left[\frac{s_{1}^{2}}{n_{1}}\right]^{2} + \frac{1}{n_{2}-1}\left[\frac{s_{2}^{2}}{n_{2}}\right]^{2}$ so there is evidence for $\mu_{2} > \mu_{1}$.

hurlest 24-1
Above, we have discussed tests of means, later we will
Above, we have discussed tests of means. Later, we will talk about tests of proportions. But you should already be able to do this problem.
able to the problem
and to as may problem.
A har problem asked does it appear that 71x (The true
proportion of defective sevens) exceeds 2.5%. There, The
appropriate interval is The upper conf. Bound for 12. Which
of the following is appropriate paix of hypotheses?
A) (C)
Ho: Mx \le 2.5% Ho: 7x > 2.5% Hi: 7x > 2.5% Hi: 7x < 2.5% Hi: 7x < 2.5%
H; 7, > 2.5% H; 7, < 2.5%
2 + 1 Trie Ttrallwrong!
Do not do Tais. It's all wrong!
See houled 25-1 instead.
see nouseous-1 insidad.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.