Trabajo Marco: soluciones

Contents

Problema 1

Enunciado

	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11
d1	1.9228	1.0930	0.5440	0.3565	1.8626	0.8911	0.0630	0.9718	1.4738	0.7045	3.1733
d2	1.5812	5.7572	0.0921	0.3544	1.8318	0.1311	0.7041	0.4886	0.6263	3.0404	1.4588
d3	0.3835	0.3745	0.0571	0.6968	0.6242	1.3168	0.6257	1.1553	0.6514	1.4040	1.1438
d4	0.5095	2.2849	0.1072	0.9499	1.6185	4.6942	0.6971	0.0823	0.1552	1.8982	0.3073
d5	0.4219	0.6187	0.7808	0.2393	0.0566	1.9735	3.8550	1.6077	0.2207	0.0222	0.0836

Solucion

```
computing_crit_results <- function(tablaX, favorable, alfa){
    crit_results <- list()
    crit_results[["Wald"]] <- criterio.Wald(tablaX = tablaX, favorable = favorable)
    crit_results[["Optimista"]] <- criterio.Optimista(tablaX = tablaX, favorable = favorable)
    crit_results[["Hurwicz"]] <- criterio.Hurwicz(tablaX = tablaX, favorable = favorable, alfa = alfa)
    crit_results[["Laplace"]] <- criterio.Laplace(tablaX = tablaX, favorable = favorable)
    crit_results[["Savage"]] <- criterio.Savage(tablaX = tablaX, favorable = favorable)
    crit_results[["PuntoIdeal"]] <- criterio.PuntoIdeal(tablaX = tablaX, favorable = favorable)
    return(crit_results)
}</pre>
```

```
#results
table_sol <- list()
for(name in names(results)){
   table_sol[["Criterio"]] <- c(table_sol[["Criterio"]], results[[name]]$criterio)
    table_sol[["Alternativa Optima"]] <- c(table_sol[["Alternativa Optima"]], results[[name]]$Alternativa
}
names(table_sol) <- c("Criterio", "Alternativa Optima")
table_sol <- as.data.frame(table_sol)
knitr::kable(table_sol)</pre>
```

Beneficios

Criterio	Alternativa.Optima
Wald	2
Optimista	2
Hurwicz	2
Laplace	2
Savage	4
Punto Ideal	2

Costes

Criterio	Alternativa.Optima		
Wald	3		
Optimista	5		
Hurwicz	3		
Laplace	3		
Savage	3		
Punto Ideal	3		

Problema 2

Enunciado

Un agricultor de un remoto pueblo al pie del volcan Vesubio tiene que decidir qué hortalizas plantar en su campo. Cada hortaliza lleva asociado un precio de venta (€/kg), un número de unidades que pueden

plantarse en el campo y un coeficiente que representa la probabilidad de supervivencia a un clima específico.

```
vegetables <- data.frame(
  name = c("Patata", "Tomate", "Berenjena", "Pimientos", "Calabacines", "Cebolla"),
  price_per_kg = c(1.39, 2.40, 1.84, 3.12, 1.88, 1.46),
  quantity = c(300, 240, 300, 200, 300, 300),
  survival_coeff_clima1 = c(0.7, 0.3, 0.4, 0.2, 0.3, 0.8),
  survival_coeff_clima2 = c(0.8, 0.5, 0.6, 0.7, 0.5, 0.8),
  survival_coeff_clima3 = c(0.7, 0.8, 0.5, 0.6, 0.7, 0.8)
)</pre>
knitr::kable(vegetables)
```

name	price_per_kg	quantity	survival_coeff_clima1 s	survival_coeff_clima2	survival_coeff_clima3
Patata	1.39	300	0.7	0.8	0.7
Tomate	2.40	240	0.3	0.5	0.8
Berenjena	1.84	300	0.4	0.6	0.5
Pimientos	3.12	200	0.2	0.7	0.6
Calabacines	1.88	300	0.3	0.5	0.7
Cebolla	1.46	300	0.8	0.8	0.8

En esa región hay cuatro condiciones climáticas posibles y por el cambio climatico no existe ningún modelo matemático en el que el agricultor pueda basarse para predecir el clima de la próxima temporada. Supongamos que el agricultor consigue vender todas las hortalizas que han sobrevivido en el momento de la cosecha. Cual hortalizas tiene que plantar el agricultor para maximizar su ganancia?

Solucion

Construcion de la tabla decision

```
temp <- NULL
table_per_lines <- c()

for(i in 1:6){
  temp <- unlist(vegetables[i,4:6]*vegetables[i,2]*vegetables[i,3])
  names(temp) <- NULL
  table_per_lines <- c(table_per_lines, temp)
}</pre>
```

Resolucion

Criterio de Hurwicz (favorable – línea discontinua)


```
## $PuntosDeCorte
##
   [1] 0.617
##
## $IntervalosAlfa
##
        Intervalo
                         Alternativa
## [1,] "( 0 , 0.617 )" "6"
## [2,] "( 0.617 , 1 )" "2"
criterio.Todos(table, alfa = 0.5)
##
                                   e3 Wald Optimista Hurwicz Savage Laplace
                       е1
                             e2
## d1
                    291.9 333.6 291.9 291.9
                                                 333.6
                                                         312.8 168.9
                                                                         305.8
## d2
                    172.8 288.0 460.8 172.8
                                                 460.8
                                                         316.8 177.6
                                                                         307.2
                                                 331.2
                    220.8 331.2 276.0 220.8
                                                         276.0
                                                                184.8
## d3
                                                                         276.0
## d4
                    124.8 436.8 374.4 124.8
                                                 436.8
                                                         280.8
                                                                 225.6
                                                                         312.0
## d5
                    169.2 282.0 394.8 169.2
                                                 394.8
                                                         282.0
                                                                181.2
                                                                         282.0
                    350.4 350.4 350.4 350.4
                                                 350.4
                                                          350.4
                                                                 110.4
                                                                         350.4
## d6
##
  iAlt.Opt (fav.)
                                                    d2
                                                             d6
                                                                    d6
                                                                            d6
##
                    Punto Ideal
## d1
                          206.4
## d2
                          231.7
                          249.2
## d3
## d4
                          241.6
## d5
                          247.3
                          140.2
## d6
## iAlt.Opt (fav.)
                             d6
```

[1] 6 2

##

Decision

La mejor opción para el agricultor es cultivar cebollas de acuerdo con todos los criterios de decision considerados, excepto por el criterio optimista y el criterio de Hurwicz con grado de optimismo mayor que 0.617. Si el agricultor es bastante optimista que las condiciones climaticas van a ser buenas entonces eligirà de cultivar tomate.