北京市育才学校 2014---2015 学年度第二学期期中试卷初二数学

- 一、选择题(每题3分,共30分)
- 1、下列各组数中,**不能**构成直角三角形的是()
- A. 3, 4, 5
- B. 1, 1, $\sqrt{2}$ C. 5, 12, 13 D. 4, 6, 8

- 2、下列方程中是关于 x 的一元二次方程的是(

- B. $ax^2 + bx + c = 0$ C. $3x^2 2x 5 = 3x^2$ D. $x^2 2x = 0$
- 3、 已知菱形的两条对角线长分别是 4 和 8,则菱形的面积是()
- A. 32
- В. 64
- C. 16
- D. 8
- 4、如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点则四边形ADEF的周+ B. 10 C. 12 D. 16

第4题

第5题

第6颢

- 5、如图,在□ABCD中, AE⊥CD于点 E, ∠B=65°,则∠DAE等于(
- A. 15° B. 25° C. 35° D. 65°
- 6、如图,矩形 ABCD 的对角线 AC, BD 交于点 O, AC=4cm, ∠AOD=120°,则 BC 的长为(
- B. 4
- $C \cdot 2\sqrt{3}$
- 7、将一元二次方程 $x^2 6x 5 = 0$ 化成 $(x 3)^2 = b$ 的形式,则 b 等于(
- B. -4
- D. -14

- 8、下列命题错误的是().
 - A、有一组邻边相等的平行四边形叫做正方形

- B、有一组邻边相等的矩形是正方形
- C、有一组邻边相等并且有一个角是直角的平行四边形叫做正方形 D、有一个角是直角的菱形是正方形
- 9、如图,E是菱形 ABCD 的边 BC上一点,且 $\angle DAE = \angle ABC = 80^{\circ}$,连接 BD,DE,那么 $\angle BDE$ 的度数为 (
 - A. 10°
- B. 15°
- C. 20°
- D. 25°

第 10 题

10、如图,矩形 ABCD中,AB=8,AD=3. 点 E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作

正方形 AEFG. 同时垂直于 CD 的直线 MN 也从 C 向 D 以每秒 2 个单位的速度运动, 当经过多少秒时. 直线 MN 和正方 形 AEFG 开始有公共点? (

- B. $\frac{1}{2}$ C. $\frac{4}{3}$ D. $\frac{2}{3}$
- 二、选择题(每题3分,共18分)
- 11、关于 x 的方程 $x^2 2mx + m = 0$ 的一个根为 1,则 m 的值为 .
- 12、若正方形的面积为16,则它的对角线长是
- 13、如图, A、B两点被池塘隔开, 在 AB外选一点 C, 连接 AC和 BC, 并分别找出它们的中点 M和 N. 如果测得 MV=15m, 则 A, B 两点间的距离为_____m.

第13 题

第 14 题

第 15 题

- 14、如图,在Rt $\triangle ABC$ 中, $\angle ACB$ =90°,AC=3,AB=6,点D是AB的中点,则CD=
- 15、如图,四边形 ABCD 中,AB//CD,∠C=30°,∠D=60°若 AB=3,CD=7,则 AD 的长为
- 16、 如图,在平面直角坐标系中,A 点与 B 点关于 x 轴对称并且点 A 的坐标为 ($\sqrt{3}$, 1),平面内是否存在点 N使以 O, A, B, N为顶点的四边形是菱形,请写出所有满足条件 N点的坐标为_

- 三、解一元二次方程(每题4分,共12分,注意第(1)用配方法解)
- 17. (1) $x^2 6x 1 = 0$ (用配方法解) (2) $x^2 + 4x 2 = 0$ (3) (x-3)(x+2) = 6

- 四、应用题5分
- 18. 某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元.

- (1) 求该县教育经费的年平均增长率
- (2) 若增长率保持不变,预计2015年该县教育经费是多少?
- 五、几何证明题 (每题 5 分, 共计 30 分)
- 19. 如图,在□ABCD中, AD=8cm, AB=6cm, DE平分∠ADC交 BC边于点 E, 求 BE的长度.

20. 己知:如图,A、C是 $\square DEBF$ 的对角线 EF 所在直线上的两点,且AE=CF.

求证: 四边形 ABCD 是平行四边形.

21. 如图,将矩形 ABCD沿 EF折叠,使点 D与点 B重合,已知 AB=3, AD=9,求 BE的长.

22. 如图,菱形 ABCD,对角线 AC、BD 交于点 0, DE//AC,CE//BD,求证:OE=BC

- 23. 如图, P是正方形 ABCD 对角线 AC上一点, 点 E在 BC上, 且 PE=PB.
 - (1) 求证: PE=PD;
 - (2) 连接 DE, 试判断 ZPED 的度数,并证明你的结论.

24. 如图,在四边形 ABCD 中, AD // BC , $AC \perp AB$, $\angle B = 30^\circ$, AD = DC , $E \not\in AB$ 中点, $F \not\in BC$ 中点,且 $EF = \sqrt{3}$,求梯形 ABCD 的面积.

六、综合题(7分)

25. 如图,四边形 ABCD 是正方形, $\triangle ABE$ 是等边三角形,M 为对角线 BD (不含 B 点)上**任意一点**,连接 AM、CM. 其中 BN=BM, $\angle MBN=60^\circ$,连接 EN .

(1) 证明: △ABM≌△EBN

(2) 当 M 点在何处时, AM+BM+CM 的值最小, 并说明理由;

(3) 当 AM + BM + CM 的最小值为 $\sqrt{3} + 1$ 时,求正方形的边长.

北京市育才学校 2014---2015 学年度第二学期期中试卷初二数学答案

一. 选择题

•	2. 2. 11 位									
	1	2	3	4	5	6	7	8	9	10
	D	D	С	D	В	С	С	A	A	A

二. 填空题

11	12	13	14	15	16
1	$4\sqrt{3}$	30	3	2	$(0, 2), (0, -2), (2\sqrt{3}, 0)$

三. 17. 计算题

(1)
$$x^2 - 6x - 1 = 0$$
 (用配方法解)

$$x^{2} - 6x = 1$$

$$x^{2} - 6x + 9 = 1 + 9$$

$$(x - 3)^{2} = 10$$

$$x - 3 = \pm \sqrt{10}$$

$$x = 3 \pm \sqrt{10}$$

$$x_1 = 3 + \sqrt{10}, x_2 = 3 - \sqrt{10}$$

(3)
$$(x-3)(x+2)=6$$

$$x^{2} - 6x - 6 = 6$$

 $x^{2} - x - 12 = 0$
 $(x - 4)(x + 3) = 10$
 $x - 4 = 0 \overrightarrow{i}(x + 3) = 0$

$$x_1 = 4, x_2 = -3$$

四. 18. 应用题

解:设平均增长率为 x,根据题意得

$$3000(1 + x)^2 = 3630$$
$$(1 + x)^2 = 1.21$$

$$1 + x = \pm \sqrt{1.21} = \pm 1.1$$

$$x = -1 \pm 1.1$$

$$x_1 = -2.1($$
 $ext{$\pm$}), x_2 = 0.1 = 10\%$

3630 (1+10%) =3993 (万元)

答: 年平均增长率为 10%, 预计 2015 年教育经费投入为 3993 万元

(2)
$$x^2 + 4x - 2 = 0$$

$$a = 1, b = 4, c = -2$$

 $\Delta = 4^2 - 4 \times 1 \times (-2)$
 $= 24 \times 0$
 $x = \frac{-4 \pm \sqrt{24}}{2} = \frac{-4 \pm 2\sqrt{6}}{2}$

$$x_1 = -2 + \sqrt{6}, x_2 = -2 - \sqrt{6}$$

19.

: 四边形ABCD是平行四边形

$$\therefore AD = BC = 8, AB = CD = 6$$

·· DE平分 ZADC

 \therefore $\angle 1 = \angle 2$

∴ AD // BC

 \therefore $\angle 1 = \angle 3$

 \therefore $\angle 2 = \angle 3$

 $\therefore CD = CE = 6$

 $\therefore BE = 8 - 6 = 2$

20.

:: 四边形 DEBF 是平行四边形

 $\therefore OE = OF, OB = OD$

:: AE = CF

 $\therefore AE + OE = CF + OF$

∴ AO = CO

:: OB = OD

:. 四边形 ABCD 是平行四边形

21.

解: 设DE = X, 则AE = 9 - X

:: 翻折

 $\therefore BE = DE = x$

·: 矩形 ABCD

∴ ∠A = 90°

 $\therefore AB^2 + AE^2 = BE^2$

 $\therefore 3^2 + (9 - x)^2 = x^2$

 $\therefore x = 5$

即: BE = 5

22.

: 四边形 ABCD 是菱形

 \therefore AC \perp BD, BC = CD

∴ ∠*COD* = 90°

∴ DE // AC, CE // BD

:. 四边形 OCED 是平行四边形

:. 四边形 OCED 是矩形

:: OE = CD

 $\therefore OE = BC$

23 (1) 证明: : 四边形 ABCD 是正方形,

 $\therefore BC = DC, \angle 1 = \angle 2.$

又::PC=PC,

 $\therefore \triangle PBC \cong \triangle PDC.$

∴ *PB=PD*.

又: PE=PB,

∴ PE=PD.

- - 证明: :'四边形 ABCD 是正方形,
 - ∴∠*BCD*=90°.
 - $\therefore \triangle PBC \cong \triangle PDC, \therefore \angle 3 = \angle PDC.$
 - \therefore PE=PB, \therefore \angle 3 = \angle 4.
 - $\therefore \angle 4 = \angle PDC$.
 - \mathbb{Z} : $\angle 4 + \angle PEC = 180^{\circ}$,
 - ∴ ∠*PDC*+∠*PEC*=180°.

 - 又: PE=PD.

24. 过A作AG_BC于G

- :: E, F是 AB, CB中点, EF = $\sqrt{3}$
- $\therefore AC = 2EF = 2\sqrt{3}$
- $\therefore AC \perp BC, \angle B = 30^{\circ}$
- $\therefore BC = 2AC = 4\sqrt{3}$
- $\therefore AB = 6$
- $\therefore AG \perp BC, \angle B = 30^{\circ}$

$$\therefore AG = \frac{1}{2}AB = 3$$

- $\therefore \angle B = 30^{\circ}$
- $\therefore \perp ACB = 60^{\circ}$
- ∴ AD // BC
- $\therefore \angle CAD = \angle ACB = 60^{\circ}$
- $\therefore AD = CD$
- :. ΔADC为等边三角形

$$\therefore AD = AC = 2\sqrt{3}$$

∴
$$S_{\text{#REABCD}} = \frac{1}{2} (2\sqrt{3} + 4\sqrt{3}) \times 3 = 9\sqrt{3}$$

- ∴∠MBN=60°,
- :.∠MBN-∠ABN=∠ABE-∠ABN, E□∠BMA=∠NBE.

又:MB=NB,

- ∴ △AMB≌△ENB (SAS).
- (2) 如图,连接 CE,当 M 点位于 BD 与 CE 的交点处时,

理由如下: 连接 MN,由(1)知,

△AMB≌△ENB, ∴AM=EN.

- ∵∠MBN=60°, MB=NB,
- ∴△BMN 是等边三角形, ∴BM=MN.
- \therefore AM+BM+CM=EN+MN+CM

根据"两点之间线段最短",得EN+MN+CM=EC 最短

∴当 M 点位于 BD 与 CE 的交点处时,AM+BM+CM 的值最小,即等于 EC 的长

(3) 正方形的边长为 $\sqrt{2}$

过 E 点作 EF ⊥ BC 交 CB 的延长线于 F, ∴ ∠EBF=90° -60° =30°.

设正方形的边长为 x,则 BF= $\frac{\sqrt{3}}{2}$ x,EF= $\frac{x}{2}$.

在 Rt △EFC 中,: EF²+FC²=EC², :
$$\left(\frac{x}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}x + x\right)^2 = \left(\sqrt{3} + 1\right)^2$$

解得, $x=\sqrt{2}$ (舍去负值). . . 正方形的边长为 $\sqrt{2}$