心理與神經資訊學 (Psychoinformatics & Neuroinformatics)

課號: Psy5261 教室:彷彿在雲端

識別碼: 227U9340 時間: --789

視覺化幫助洞察資料(1/2)

不同類別影片的主色調相異

視覺化幫助洞察資料(2/2)

不同年代的男女外貌有何不同?

The Class of 1988 (left panel)

The Class of 1988 (right panel)

The Class of 1967 (left panel)

The Class of 1967 (right panel)

CNN的應用(1/2)

判斷誰可能犯罪(classification)

(a) Three samples in criminal ID photo set S_c .

(b) Three samples in non-criminal ID photo set S_n Figure 1. Sample ID photos in our data set.

Figure 2. Accuracy of all four classifiers in all thirteen cases.

CNN的應用(2/2)

判斷誰比較美(regression)

TABLE VI. CORRELATION COEFFICIENTS IN SINGLE NETWORK

Exp.	1	2	3	4	5	Average
PC	0.8509	0.8050	0.8112	0.7817	0.8446	0.8187

三種基本網路架構: 今天主角是CNN

CNN通常處理影像資料;RNN通常處理語言資料

基本影像處理 (Imaging Processing)

影像處理的套件

有不同的選擇

簡單處理用matplotlib;複雜情況用PIL/Pillow

Matplotlib簡介

Matplotlib其實是模仿Matlab的繪圖指令

home | examples | gallery | pyplot | docs »

modules | index

Introduction

matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell (ala MATLAB^{®*} or Mathematica $\mathbb{R}^{\frac{1}{2}}$), web application servers, and six graphical user interface toolkits.

Quick search

Go

Enter search terms or a module, class or function name.

Matplotlib的基本影像處理(1/3)

```
import matplotlib.pyplot as plt
Import numpy as np
plt.close('all'); img=plt.imread('DTI.jpg')
print(img.shape,type(img),img.dtype)
plt.imshow(img); plt.figure()
img2=np.mean(img,2); print(img2.shape)
plt.imshow(img2,cmap=plt.cm.gray)
```


Matplotlib的基本影像處理(2/3)

```
import numpy as np, matplotlib.pyplot as plt
img=[]
img.append(np.float64(plt.imread('MRI1.jpg')))
img.append(np.float64(plt.imread('MRI2.jpg')))
img.append(img[1]-img[0]) #contrast
for i in range(3):
plt.subplot(1,3,i+1); plt.axis('off')
plt.imshow(img[i],cmap=plt.cm.gray)
```


Matplotlib的基本影像處理(3/3)

Import numpy as np, matplotlib.pyplot as plt plt.close('all'); img=[] img.append(plt.imread('face.jpg')) # for FFA img.append(plt.imread('house.jpg')) # for PPA k = np.arange(1,10,2)/10.0for i in range(5): plt.subplot(1,5,i+1);plt.axis('off') hybrid=k[i]*img[0]+(1-k[i])*img[1]plt.imshow(hybrid/255.0)

卷積 = 在空間滑動偵測

因為相同的特徵有可能在不同的位置出現

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

Image

Convolution Output

Padding & Stride

Input與Output的維度關係一定要會算

$$1 + \frac{X - F + 2P}{S}$$

X = image size

F = filter size

P = padding

S = stride

3D Spatial Convolution

和2D一樣就是template matching

Depthwise Separable Conv.

各層的規律性分開找計算複雜度較低(如227→3*29)

Pointwise Convolution

就是去把不同層做加權平均

(Max) Pooling

就是downsampling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8	
3	4	

y

基本電腦視覺 (Computer Vision)

電腦視覺處理的問題(1/2)

從What到What-Where

電腦視覺處理的問題(2/2)

從images到videos

OpenCV (1/2)

有影像處理能力&不同語言的APIs

OpenCV (2/2)

有超過2,500種演算法

Matrix Math

物體辨識: Visual Bag of Words

不考慮順序,只考慮物體特徵有無出現

人臉辨識: Haar Cascades

AdaBoost on basic edge/line features

卷積神經網路 (Convolutional Neural Networks)

Shared Patterns of Patches

CNN Terms

Kernel是template, 也是shared network weights

CNN的金字塔結構

是在仿ventral visual pathway in the brain

CNN的基本結構

巻積的 O=1+(I-F) ⇒ F=I-O+1=32-28+1=5

CNN架構的演進(1/3)

更深/廣→跳接

CNN架構的演進(2/3)

更深/廣→跳接

CNN架構的演進(3/3)

最複雜的模型≠表現最好的模型

CNN只模仿了What Pathway

但還有Where Pathway

只模仿What Pathway的不足

無法分解問題來各個擊破

Region-based CNN (R-CNN)

Bounding Box Regression

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

CNN \

R-CNN的徒子徒孫

族繁不及備載

