Open Opened 7 months ago by 📓 Alan Stagg 0 of 2 tasks completed

implement multimaterial framework in restructured FLEXO

(Task)

What Needs to be Done?

- implement data structures and code logic to support multimaterial problems.
- add multimaterial test problems.

Done Criteria

Weight

Question	Points
Q_1 : Is this story time consuming to program or develop? Yes = 5, No = 1	3
Q_2 : Is this story difficult to test? Yes = 3, No = 0	1
Q_3 : Will the completion of this story rely on other people? Yes = 3, No = 0	0
Q_4 : Is this body of work brand new to you? Yes = 5, No = 1	1
Total: $(Q_1+Q_2)\cdot (Q_3+Q_4)$	4

Alan Stagg @akstagg added Task label 7 months ago

tevoth @tevoth · 7 months ago

Owner

Implemented (<u>@akstagq</u>, <u>@bngranz</u>, <u>@micpowe</u>, <u>@tevoth</u>) 5-equation, uniform strain, multi-material capability in FLEXO (currently p=0 elements).

$$\begin{cases} \frac{\partial \alpha_{1}}{\partial t} + u \frac{\partial \alpha_{1}}{\partial x} = 0 & \rho = (\alpha \rho)_{1} + (\alpha \rho)_{2} \\ \frac{\partial (\alpha \rho)_{1}}{\partial t} + \frac{\partial (\alpha \rho)_{1} u}{\partial x} = 0 & e = m_{1} e_{1} + m_{2} e_{2} \\ \frac{\partial (\alpha \rho)_{2}}{\partial t} + \frac{\partial (\alpha \rho)_{2} u}{\partial x} = 0 & p = \frac{\rho e}{\frac{\alpha_{1}}{\gamma_{1} - 1} + \frac{\alpha_{2}}{\gamma_{2} - 1}} \\ \frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^{2} + p)}{\partial x} = 0 & E = e + \frac{1}{2} u^{2} \end{cases}$$

see LA-UR-11-04985.

Movie below shows Sod problem:

in.gamma(0) = 2.0 in.gamma(1) = 1.4 in.rho[0] = 1.0 in.rho[1] = 0.125

```
in.vf[0] = (x[0] < 0.5) ? 1.0 : 1.0e-8

in.vf[1] = (x[0] < 0.5) ? 1.0e-08 : 1.0

in.v = {0, 0, 0}

in.p = (x[0] < 0.5) ? 1.0 : 0.1

0:00/0:10

$\text{sod diffgamma}$
```


tevoth @tevoth · 6 months ago

Had been having issues with p > 0 where oscillations quickly killed those simulations. Tried SUPG-like stabilization

2 of 4 3/10/20, 12:57 PM

	(primitive variable based) limiting (no additional stabilization) and now can run initially unmixed, two DD shock-tube problem and see no oscillations. This is the same problem as described in the above mmas are 1.4.
Below is a movie of the total shock).	al density (sum of partial densities). Note that p=1 element is sharper in the contact (as well as at the
0	0:00 / 0:05
<u>8 P0vsP1_density_total</u>	
Next is the partial density of the contact.	of material 0 for $p = 0$ and $p = 1$ (black and red lines resp.). Again $p = 1$ produces sharper resolution of
0	0:00 / 0:05
<u>P0vsP1_density0</u>	
And finally the partial densi the lower (thermodynamic)	ity of material 1 p = 0 and p = 1 (black and red lines resp.). Note the different scale here (material 1 is density material.
0	0:00 / 0:05
	0.00 / 0.00
<u>® P0vsP1_density1</u>	
Edited by <u>tevoth</u> 6 months ago	
Alan Stagg @ak	kstagq · 6 months ago Owner
Adding exact Ri	emann solution data for single material Sod problem (1000 data points) at t=0.2:
density.csvpressure.csvvelocity.csv	

3 of 4 3/10/20, 12:57 PM

initial cor	nditions: = 1, rho_right = 0.125		
	= 0, vel_right = 0		
	1.0, p_right = 0.1		
-	left = 1.4, gamma_right = 1.4 extent = [0,1]		
	extern = [0,1]		
Data can	be imported into Paraview for comparison within PlotOverLine:		
first load	l data: % paraview density.csv		
	e TableToStructuredGrid filter. Whole Extent is 0 to 999 for X and 0 for other entries. Set X column to xcoc	ord, and Y and	
Z columr	ns to zero. Then create PlotOverLine, etc.		
Sample o	comparison to Flexo p0 solution with 1000 elements:		
	Alan Stagg @akstagg · 6 months ago	ner	
00	Two-material Sod problem calculation compared to exact Riemann solution. Same initial conditions as a		
with left and right initial states corresponding to different materials (and with gamma_left = 2.0).			

4 of 4