Álgebra Linear Avançada Produto Tensorial

Adriano Moura

Unicamp

2020

A Propriedade Universal

Considere as propriedades funcionais: P_1 = "ser k-linear" ($k \in \mathbb{Z}_{>0}$) e P_2 = "ser linear". Dada família V_1, \ldots, V_k de \mathbb{F} - espaços vetoriais, um par (ϕ, V) com $\phi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \cdots, V_k, V)$ é dito um produto tensorial desta família se for universal sobre $X = V_1 \times \cdots \times V_k$ com respeito a P_1 e P_2 .

Ou seja, (ϕ, V) é produto tensorial para V_1, \ldots, V_k se, para toda $\psi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \ldots, V_k, W)$ sendo W um espaço vetorial, existir única $\tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ tal que $\tilde{\psi} \circ \phi = \psi$:

Teorema 10.2.1 (Existência)

Para toda família de espaços vetoriais V_1, \ldots, V_k , existe um produto tensorial. Além disso, se (ϕ, V) é um produto tensorial para V_1, \ldots, V_k e α_j é base para V_j , $1 \leq j \leq k$, então $\phi(\alpha_1 \times \cdots \times \alpha_k)$ é base para V.

Demonstração da Existência e da Dimensão

Observe que as hipóteses do Lema 10.1.3 são satisfeitas e, portanto, basta provar a segunda afirmação do teorema para um produto tensorial específico. Passemos então a construir um produto tensorial para o qual conseguimos verificar também a segunda afirmação do teorema.

Sejam $\alpha = \alpha_1 \times \cdots \times \alpha_k$, V t.q. dim $(V) = \#\alpha$, $\iota : \alpha \to V$ t.q. $\iota(\alpha)$ é base de V, e $\phi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \ldots, V_k, V)$ a única função satisfazendo $\phi|_{\alpha} = \iota$.

Para concluir a demonstração, basta mostrar que (ϕ, V) é um produto tensorial para V_1, \ldots, V_k , já que a afirmação sobre $\phi(\alpha)$ ser base de V é imediata das definições de V e ϕ .

Mostremos que (ϕ, V) satisfaz a propriedade universal requerida. Dada $\psi \in \operatorname{Hom}_{\mathbb{F}}^{k}(V_{1}, \ldots, V_{k}, W)$, como $\iota(\alpha)$ é base, $\exists ! \tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ t.q.

$$\tilde{\psi}(\iota(\mathbf{v})) = \psi(\mathbf{v}) \ \forall \ \mathbf{v} \in \alpha.$$

Em particular, como ϕ e ψ são k-lineares, segue que $\tilde{\psi} \circ \phi = \psi$. Além disso, se $\xi \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ satisfaz $\xi \circ \phi = \psi$, então, para todo $\mathbf{v} \in \alpha$, vale $\xi(\iota(\mathbf{v})) = \xi(\phi(\mathbf{v})) = \psi(\mathbf{v})$ e, portanto, $\xi = \tilde{\psi}$.

Produto Tensorial é o "Preço" da Linearização

Teorema 10.2.2

Se (ϕ, V) é produto tensorial para V_1, \dots, V_k , para todo espaço vetorial W, existe um isomorfismo de espaços vetoriais

$$\Gamma: \operatorname{Hom}_{\mathbb{F}}^{k}(V_{1}, \dots, V_{k}, W) \to \operatorname{Hom}_{\mathbb{F}}(V, W), \qquad \psi \mapsto \tilde{\psi}.$$

Dem.: Para mostrar que Γ é sobrejetora, dada $\tau \in \operatorname{Hom}_{\mathbb{F}}(V, W)$, tome $\psi = \tau \circ \phi$ que é k-linear e, portanto, $\tau = \tilde{\psi} = \Gamma(\psi)$. Para mostrar a injetividade, suponha que $\psi, \xi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \dots, V_k, W)$ satisfaçam $\tilde{\psi} = \tilde{\xi}$. Então, $\psi = \tilde{\psi} \circ \phi = \tilde{\xi} \circ \phi = \xi$.

Mostremos que Γ é linear. Dado $\lambda \in \mathbb{F}$, temos $\Gamma(\psi) + \lambda \Gamma(\xi) = \tilde{\psi} + \lambda \tilde{\xi}$.

Por outro lado, $\Gamma(\psi + \lambda \xi) = \psi + \lambda \xi$ é o único elemento de $\operatorname{Hom}_{\mathbb{F}}(V, W)$ que satisfaz $(\psi + \lambda \xi) \circ \phi = \psi + \lambda \xi$. Logo, precisamos verificar que $(\tilde{\psi} + \lambda \tilde{\xi}) \circ \phi = \psi + \lambda \xi$.

De fato, dados
$$v_j \in V_j$$
, $1 \le j \le k$, temos $(\tilde{\psi} + \lambda \tilde{\xi})(\phi(v_1, \dots, v_k)) = \tilde{\psi}(\phi(v_1, \dots, v_k)) + \lambda \tilde{\xi}(\phi(v_1, \dots, v_k)) = \psi(v_1, \dots, v_k) + \lambda \xi(v_1, \dots, v_k) = (\psi + \lambda \xi)(v_1, \dots, v_k).$

Notação Tensorial e Associatividade

Denotaremos por $V_1 \otimes \cdots \otimes V_k$ o espaço vetorial do par universal de um produto tensorial para $V_1 \ldots, V_k$ e a correspondente função k-linear do par por \otimes . Dados $v_j \in V_j, 1 \leq j \leq k$, usaremos a notação

$$v_1 \otimes \cdots \otimes v_k = \otimes (v_1, \ldots, v_k).$$

Quando existir necessidade de explicitar o corpo em questão, utilizaremos o símbolo $\otimes_{\mathbb{F}}$. Observe que a k-linearidade de \otimes se re-escreve como

$$v_1 \otimes \cdots \otimes v_{j-1} \otimes (v_j + \lambda v_j') \otimes v_{j+1} \otimes \cdots \otimes v_k = \\ (v_1 \otimes \cdots \otimes v_k) + \lambda(v_1 \otimes \cdots \otimes v_{j-1} \otimes v_j' \otimes v_{j+1} \otimes \cdots \otimes v_k)$$
 para quaisquer $v_j, v_j' \in V_j, 1 \leq j \leq k$, e $\lambda \in \mathbb{F}$.

Proposição 10.2.3

Dado $1 \le l < k$, existe único isomorfismo de espaços vetoriais

$$\Gamma: V_1 \otimes \cdots \otimes V_k \to (V_1 \otimes \cdots \otimes V_l) \otimes (V_{l+1} \otimes \cdots \otimes V_k)$$

satisfazendo $\Gamma(v_1 \otimes \cdots \otimes v_k) = (v_1 \otimes \cdots \otimes v_l) \otimes (v_{l+1} \otimes \cdots \otimes v_k)$ para quaisquer $v_j \in V_j, 1 \leq j \leq k$.

Demonstração da Associatividade

Sejam $V = V_1 \otimes \cdots \otimes V_k$ e $W = (V_1 \otimes \cdots \otimes V_l) \otimes (V_{l+1} \otimes \cdots \otimes V_k)$.

Considere a função $\psi: V_1 \times \cdots \times V_k \to W$ dada por

$$(v_1, \cdots, v_k) \mapsto (v_1 \otimes \cdots \otimes v_l) \otimes (v_{l+1} \otimes \cdots \otimes v_k)$$

para quaisquer $v_j \in V_j, 1 \leq j \leq k$, que é k-linear. Pela propriedade universal de V, existe única $\Gamma \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ satisfazendo

$$\Gamma(v_1 \otimes \cdots \otimes v_k) = (v_1 \otimes \cdots \otimes v_l) \otimes (v_{l+1} \otimes \cdots \otimes v_k)$$

para quaisquer $v_j \in V_j, 1 \le j \le k$:

Pela segunda parte do Teorema 10.2.1, Γ leva base em base e, portanto, é bijetora.

Proposição 10.2.4

Se V_j' é subespaço de $V_j, 1 \leq j \leq k$, existe única transformação linear $\Gamma: V_1' \otimes \cdots \otimes V_k' \to V_1 \otimes \cdots \otimes V_k$ t.q. $\Gamma(v_1 \otimes \cdots \otimes v_k) = v_1 \otimes \cdots \otimes v_k$ para quaisquer $v_j \in V_j', 1 \leq j \leq k$. Além disso, Γ é injetora.

Posto de um tensor

Segue da última proposição que

(1)
$$v_1 \otimes \cdots \otimes v_k = 0 \Leftrightarrow \text{ existe } 1 \leq j \leq k \text{ tal que } v_j = 0.$$

Vetores da forma $v_1 \otimes \cdots \otimes v_k$ são frequentemente chamados de vetores homogêneos ou de tensores puros. Pela segunda parte do Teorema 10.2.1, os vetores homogêneos geram $V_1 \otimes \cdots \otimes V_k$. Além disso, como $\lambda(v_1 \otimes \cdots \otimes v_k) = (\lambda v_1) \otimes v_2 \otimes \cdots \otimes v_k$, todo vetor $\mathbf{v} \in V_1 \otimes \cdots \otimes V_k$ pode ser representado por uma soma de vetores homogêneos:

(2)
$$\mathbf{v} = \sum_{i=1}^{m} v_{i,1} \otimes \cdots \otimes v_{i,k}$$

para alguma escolha de $m \in \mathbb{Z}_{\geq 0}$ e $v_{i,j} \in V_j \setminus \{0\}, 1 \leq i \leq m, 1 \leq j \leq k$. A quantidade mínima de parcelas em expressões da forma (2) é chamada de o posto de \mathbf{v} e será denotada por $\operatorname{pt}(\mathbf{v})$. Assim, o posto do vetor nulo de $V_1 \otimes \cdots \otimes V_k$ é 0 e o posto dos vetores homogêneos não nulos é 1. O próximo exemplo mostra a existência de vetores não homogêneos (ou tensores não puros).

Exemplo de Tensor Impuro

Seja $V = \mathbb{F}^2$ e mostremos que o posto do seguinte vetor de $V^{\otimes 3}$ é 2: $\mathbf{v} = e_1 \otimes e_1 \otimes e_1 + e_2 \otimes e_1 \otimes e_2$.

Veja que as parcelas na definição de \mathbf{v} formam família l.i. em $V^{\otimes 3}$ e, portanto, $0 < \operatorname{pt}(\mathbf{v}) \leq 2$. Para ser $\operatorname{pt}(\mathbf{v}) = 1$, precisaria existir família v_1, v_2, v_3 t.q. $\mathbf{v} = v_1 \otimes v_2 \otimes v_3$. Vejamos que tal família não existe. Cada v_i seria da forma

$$v_i = a_{i,1}e_1 + a_{i,2}e_2$$
 com $a_{i,j} \in \mathbb{F}, 1 \le i \le 3, 1 \le j \le 2$.

Usando a 3-linearidade de \otimes , temos

$$\begin{split} v_1 \otimes v_2 \otimes v_3 &= a_{1,1} a_{2,1} a_{3,1} \ e_1 \otimes e_1 \otimes e_1 + a_{1,2} a_{2,2} a_{3,2} \ e_2 \otimes e_2 \otimes e_2 \\ &+ a_{1,1} a_{2,1} a_{3,2} \ e_1 \otimes e_1 \otimes e_2 + a_{1,1} a_{2,2} a_{3,1} \ e_1 \otimes e_2 \otimes e_1 \\ &+ a_{1,2} a_{2,1} a_{3,1} \ e_2 \otimes e_1 \otimes e_1 + a_{1,1} a_{2,2} a_{3,2} \ e_1 \otimes e_2 \otimes e_2 \\ &+ a_{1,2} a_{2,2} a_{3,1} \ e_2 \otimes e_2 \otimes e_1 + a_{1,2} a_{2,1} a_{3,2} \ e_2 \otimes e_1 \otimes e_2. \end{split}$$

Assim, expressamos $v_1 \otimes v_2 \otimes v_3$ na base $(e_i \otimes e_j \otimes e_l), 1 \leq i, j, l \leq 2$. Em particular, $\mathbf{v} = v_1 \otimes v_2 \otimes v_3$ só se $a_{1,1}a_{2,1}a_{3,1} = 1 = a_{1,2}a_{2,1}a_{3,2}$ e, portanto, $a_{1,1}, a_{2,1}, a_{3,1}, a_{1,2}, a_{3,2} \neq 0$. Porém, também devemos ter $a_{1,1}a_{2,1}a_{3,2} = 0$, gerando a contradição desejada.

O Caso de Dois Fatores

Lema 10.2.6

Se $u = v_1 \otimes w_1 + \cdots + v_m \otimes w_m \in V \otimes W$ tem posto m, então α e β são l.i.. Em particular, $pt(u) \leq \min \{\dim(V), \dim(W)\} \ \forall \ u \in V \otimes W$.

Dem.: Suponha que que $w_m = a_1 w_1 + \cdots + a_{m-1} w_{m-1}$ com $a_i \in \mathbb{F}$ para $1 \le i \le m$. Segue que $v_m \otimes w_m = \sum_{j=1}^{m-1} (a_j v_m) \otimes w_j$ e, portanto, $u = \sum_{j=1}^{m-1} (v_j + a_j v_m) \otimes w_j$.

Lema 10.2.7

Se $\sum_{j=1}^{P} v_j \otimes w_j = \sum_{i=1}^{P} v_i' \otimes w_i'$ e α, α' e β' são l.i., então $[\beta] \subseteq [\beta']$.

Em particular, se p = 0, $w_i = 0$ para todo $1 \le j \le m$.

Dem.: Provaremos por indução em p. Para p=0, procederemos por indução em $m \ge 1$ que se inicia quando m = 1 por (1).

Se w_1, \ldots, w_m fosse l.i., cada parcela $v_j \otimes w_j, 1 \leq j \leq m$, seria parte de uma base de $V \otimes W$, contradizendo $v_1 \otimes w_1 + \cdots + v_m \otimes w_m = 0$.

Logo, podemos supor spg que $w_m = a_1 w_1 + \dots + a_{m-1} w_{m-1}$ com $a_j \in \mathbb{F}$ e segue que $\sum_{j=1}^{m-1} (v_j + a_j v_m) \otimes w_j = 0$.

Note que $(v_j + a_j v_m)_{1 \leq j < m}$ também é l.i. (Exercício 5.4.9(b)). Assim, por hipótese de indução, $w_j = 0$ para $1 \leq j < m$. Mas então $v_m \otimes w_m = 0$ e (1) diz que $w_m = 0$.

Para p > 0, veja que, se $\alpha \cup \alpha'$ for l.i., o caso p = 0 implicaria que $w_j = w_i' = 0 \ \forall \ 1 \leq j \leq m, 1 \leq i \leq p$, contradizendo β' ser l.i.. Logo, spg, podemos supor que $v_p' = a_1 v_1 + \dots + a_m v_m + a_1' v_1' + \dots + a_{p-1}' v_{p-1}'$ com $a_j, a_i' \in \mathbb{F}, 1 \leq j \leq k, 1 \leq i < p$. Conta similar à do Lema 10.2.6 implica p-1

$$\sum_{j=1}^{m} v_{j} \otimes (w_{j} - a_{j}w'_{p}) = \sum_{i=1}^{p-1} v'_{i} \otimes (w'_{i} + a'_{i}w'_{p}).$$

Como a família $\beta'' = (w'_i + a'_i w'_p)_{1 \le i < p}$ é l.i., a hipótese de indução em p implica $w_j - a_j w'_p \in [\beta''] \ \forall \ 1 \le j \le m$.

Como $[\beta''] \subseteq [\beta']$, segue que $w_j \in [\beta'] \ \forall \ 1 \le j \le m$, isto é, $[\beta] \subseteq [\beta']$.

Calculando o Posto

Proposição 10.2.8

Se $\alpha=v_1,\ldots,v_m$ e $\beta=w_1,\ldots,w_m$ são famílias l.i. em V e W o posto de $v_1\otimes w_1+\cdots+v_m\otimes w_m$ é m.

Dem.: Seja $p = \operatorname{pt}(u)$. Em particular, $m \geq p$. Sejam também $\alpha' = v_1', \ldots, v_p'$ e $\beta' = w_1', \ldots, w_p'$ tais que $u = v_1' \otimes w_1' + \cdots + v_p' \otimes w_p'$. Em particular, α' e β' são l.i. pelo Lema 10.2.6 e, assim, segue do Lema 10.2.7 que $[\beta] \subseteq [\beta']$. Sendo β l.i., isso implica $m \leq p$.

Exemplo 10.2.9

Se
$$V = W = \mathbb{Q}^2$$
, pt $(5e_1 \otimes e_1 - 3e_2 \otimes e_2) = 2$. Calculemos o posto de $u = (e_1 + e_2) \otimes (e_1 - e_2) + (e_1 + 2e_2) \otimes e_2 + (e_1 - e_2) \otimes (e_1 + e_2)$. Como $(e_1 + e_2) = (e_1 - e_2) + 2e_2$, segue que $u = (e_1 + e_2 + e_1 - e_2) \otimes (e_1 - e_2) + (e_1 + 2e_2 + 2(e_1 - e_2)) \otimes e_2 = (2e_1) \otimes (e_1 - e_2) + (3e_1) \otimes e_2 = e_1 \otimes (2(e_1 - e_2) + 3e_2) = e_1 \otimes (2e_1 + e_2)$.

Transformações Lineares como Tensores

Proposição 10.2.10

Existe única transformação linear $\Gamma: V^* \otimes W \to \operatorname{Hom}_{\mathbb{F}}(V,W)$ satisfazendo $\Gamma(f \otimes w)(v) = f(v)w \ \forall \ v \in V, w \in W, f \in V^*$. Além disso:

- Γ é injetora.
- Para todo $u \in V^* \otimes W$, $\operatorname{pt}(\Gamma(u)) = \operatorname{pt}(u)$.
- $T \in Im(\Gamma)$ se, e somente se, pt(T) é finito.
- **0** Γ é sobrejetora se, e somente se, $\dim(V)$ ou $\dim(W)$ for finita.

Dem.: Note que está bem definida a função $\psi: V^* \times W \to \operatorname{Hom}_{\mathbb{F}}(V, W)$ dada por $\psi(f, w)(v) = f(v)w \ \forall \ v \in V, w \in W, f \in V^*$. De fato,

$$\psi(f, w)(v_1 + \lambda v_2) = f(v_1 + \lambda v_2)w = (f(v_1)w) + \lambda(f(v_2)w)$$

= $\psi(f, w)(v_1) + \lambda \psi(f, w)(v_2)$.

Também verifica-se facilmente que ψ é bilinear. Assim, a existência de $\Gamma = \tilde{\psi}$ segue da propriedade universal de $V^* \otimes W$.

Como $\operatorname{pt}(T) \leq \min\{\dim(V), \dim(W)\} \ \forall \ T \in \operatorname{Hom}_{\mathbb{F}}(V, W), \ (c) \Rightarrow (d).$

Para mostrar (a), suponha que $u \in \mathcal{N}(\varGamma)$ e escolha uma expressão

(3)
$$u = \sum_{j=1}^{m} f_j \otimes w_j \quad \text{com} \quad (f_j)_{1 \le j \le m}, (w_j)_{1 \le j \le m} \quad \text{l.i..}$$

Se fosse m > 0, como $f_1 \neq 0$, existiria $v \in V$ tal que $f_1(v) \neq 0$ e, assim, $0 = \Gamma(u)(v) = \sum_{j=1}^m f_j(v)w_j$, contradizendo $(w_j)_{1 \leq j \leq m}$ ser l.i..

Para mostrar (b), dada expressão como em (3), seja $W' = [w_1, \ldots, w_m]$. Como dim $(W') = \operatorname{pt}(u)$ pela Proposição 10.2.8, basta mostrar que $Im(\Gamma(u)) = W'$. É imediato que $Im(\Gamma(u)) \subseteq W'$. Assim, resta mostrar que $w_j \in Im(\Gamma(u)) \ \forall \ 1 \leq j \leq m$. O Exercício 9.2.5 diz que, para cada $1 \leq j \leq m$, existe $v \in V$ t.q. $f_i(v) = \delta_{i,j} \ \forall \ 1 \leq i \leq m \Rightarrow \Gamma(u)(v) = w_j$.

Seja $F = \{T \in \operatorname{Hom}_{\mathbb{F}}(V, W) : \operatorname{pt}(T) < \infty\}$. Segue de (b) que $Im(\Gamma) \subseteq F$. Reciprocamente, se $T \in F$ com $\operatorname{pt}(T) = m$, escolha base w_1, \ldots, w_m de Im(T). Assim, dada base $\alpha = (v_i)_{i \in I}$ de V, temos $T(v_i) = \sum_{j=1}^m a_{i,j} w_j$ com $a_{i,j} \in \mathbb{F}, \ i \in I, 1 \leq j \leq m$. Para cada $1 \leq j \leq m$, seja f_j o único elemento de V^* satisfazendo $f_j(v_i) = a_{i,j} \ \forall \ i \in I$. Segue que

$$\Gamma\Big(\sum_{j=1}^m f_j \otimes w_j\Big)(v_i) = \sum_{j=1}^m f_j(v_i)w_j = \sum_{j=1}^m a_{i,j}w_j = T(v_i) \quad \forall \ i \in I. \quad \Box$$

Posto via Matrizes e Traço

Sejam $\alpha=v_1,\ldots,v_n$ uma base de V e $\beta=w_1,\ldots,w_m$ uma base de W. Sejam também $\alpha^*=f_1,\ldots,f_n$ e Γ a função da Proposição 10.2.10.

Então, $\Gamma(f_j \otimes w_i)(v_k) = \delta_{k,j} w_i$ e, portanto, $[\Gamma(f_j \otimes w_i)]^{\alpha}_{\beta} = E_{i,j}$. Assim, se $A = (a_{i,j}) \in M_{m,n}(\mathbb{F})$ e $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ é dada por $[T]^{\alpha}_{\beta} = A$, temos (4) $T = \Gamma\left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j} f_j \otimes w_i\right).$

Logo, o posto de cada elemento de $V^* \otimes W$ pode ser coincide com o posto da correspondente matriz com relação às bases α^* e β no sentido de (4).

Proposição 10.2.11

Existe único $\tau \in (V^* \otimes V)^*$ satisfazendo $\tau(f \otimes v) = f(v) \ \forall \ f \in V^*,$ $v \in V$. Além disso, se $\dim(V) < \infty$ e $\Gamma : V^* \otimes V \to \operatorname{End}_{\mathbb{F}}(V)$ é como na Proposição 10.2.10, então $\tau(\Gamma^{-1}(T)) = \operatorname{tr}(T) \ \forall \ T \in \operatorname{End}_{\mathbb{F}}(V)$.

Dem.: A existência e unicidade de τ seguem da prop. univ. de $V^* \otimes V$. Suponha que $\alpha = v_1, \ldots, v_n$ seja base para V e $\alpha^* = f_1, \ldots, f_n$. Usando (4), temos $[T]^{\alpha}_{\alpha} = A \Rightarrow \Gamma^{-1}(T) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} f_j \otimes v_i$, e, portanto, $\tau(\Gamma^{-1}(T)) = \sum_{i} \sum_{j} a_{i,j} \tau(f_j \otimes v_i) = \sum_{i} \sum_{j} a_{i,j} f_j(v_i) = \sum_{i} a_{i,i}$.