

ENHANCING NUMERICAL WEATHER PREDICTIONS WITH SPATIOTEMPORAL GRAPH NEURAL NETWORKS

Graph Deep Learning – MeteoSwiss project

Lovnesh Bhardwaj – Leon Ackermann – Marco Gabriel May 30, 2025

Introduction

Motivation & problem statement Introduction

The challenge of post-processing NWP ensembles

- Accurate wind-speed forecasts drive energy, transport and safety decisions.
- Numerical Weather Prediction (NWP) produces ensemble guidance but suffers from:
 - Limited grid resolution.
 - Simplified physical parameterisations.
- Raw output therefore needs statistical post-processing.

Why spatiotemporal GNNs?

Introduction

Weather = space + time dependency

- Classic post-processing calibrates each station in isolation \Rightarrow ignores spatial flow.
- Spatiotemporal GNNs (STGNNs) model:
 - **Graph edges**: geographical relations between 152 Swiss stations.
 - **Temporal dynamics**: multi-scale convolutions / RNN / attention.
- Project goal: quantify the added skill of STGNNs vs. strong temporal baseline for wind-speed post-processing.

Related work

Key literature

Related work

- Neural post-processing of ensembles [1]
- STGNNs for wind farms [2]
- Learnable adjacency ST-GCNs [3]
- Attention-GNN temperature post-processing [4]
- Competitive Backbone: MultiScale Graph WaveNet (MS-GWN) [5]

Modelling Pipeline

Methodology

All architectures share this pipeline: raw ensemble (with or without station graph) \rightarrow chosen neural model \rightarrow LogNormal wind-speed distribution \rightarrow optimisation via CRPS.

Baseline Model

- Bidirectional GRU extracts local temporal context.
- Temporal self-attention re-weights lead-times adaptively.
- Station embeddings \rightarrow station-wise attention.
- LogNormal head outputs μ, σ for wind speed.

Baseline Architecture Design

Enhanced Bi-Directional STGNN

- Two LayeredGraphRNNs apply Message Passing on the fixed station graph forwards and backwards in time.
- Added Gating
- Added Temporal & spatial self-attention layers with LayerNorm.

Enhanced TCN-GNN

- Stacks of dilated causal TCN blocks capture long-range time-dependencies.
- Graph message passing after each TCN layer (fixed topology).
- Horizon & station embeddings + self-attention.
- Sigmoid gate fuses raw inputs with learned features.

MultiScale Graph WaveNet (MS-GWN) Methodology

- Multi-scale dilated temporal convolutions (non-causal for post-processing).
- Adaptive graph convolutions with learnable edge weights.
- Edge / history dropout + BatchNorm for regularisation.
- Learnable node embeddings; dynamic weighting of dilation scales.

Dataset overview Methodology

- 40 features: 18 ICON-CH2-EPS
 [6] forecasts + terrain & time data for 152 stations
- Training & Validation: Feb 2020Sep 2023
- Test: May 2024 Jan 2025
- Distance-based k-Nearest Neighbors graph (default k=5, threshold=0.6).

Evaluation metrics

• **CRPS**: CRPS
$$(F,x) = \int_{-\infty}^{\infty} (F(y) - H(y-x))^2 dy$$

• **MAE**:
$$\frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

- Calibration check: Talagrand rank histograms and predictive distribution.
- Significance: Diebold–Mariano test [diebold comparing 2002] & Benjamini–Hochberg FDR [7]

Results

Convergence

Results

Our enhanced TCN-GNN has better convergence than theirs.

Figure: Validation Loss Comparison

Test results

Results

Table: Experimental results MAE

Methods	Overall	1h	24h	48h	96h
Baseline ST-GNN TCN-GNN MSGWN	$0.90\pm0.009 \\ 1.00\pm0.01 \\ 0.90\pm0.010 \\ 0.87\pm0.01$	0.85 ± 0.012 0.98 ± 0.02 0.86 ± 0.010 0.82 ± 0.01	$0.86\pm0.009 \\ 0.97\pm0.01 \\ 0.85\pm0.010 \\ 0.84\pm0.01$	0.89 ± 0.009 1.01 ± 0.01 0.89 ± 0.010 0.87 ± 0.01	1.01 ± 0.010 1.07 ± 0.01 0.98 ± 0.012 0.97 ± 0.01

Table: Experimental results CRPS

Methods	Overall	1h	24h	48h	96h
Baseline ST-GNN TCN-GNN MSGWN	0.63 ± 0.003 0.70 ± 0.006 0.62 ± 0.004 0.61 ± 0.004	0.59 ± 0.003 0.67 ± 0.008 0.59 ± 0.004 0.56 ± 0.005	0.60 ± 0.004 0.68 ± 0.007 0.59 ± 0.004 0.58 ± 0.004	$0.62\pm0.003 \\ 0.70\pm0.006 \\ 0.62\pm0.005 \\ 0.60\pm0.004$	$\begin{array}{c} 0.70 {\pm} 0.004 \\ 0.75 \ {\pm} \ 0.005 \\ 0.68 {\pm} 0.005 \\ 0.67 {\pm} 0.04 \end{array}$

Masking Protocols

Masks for Wind Speed

Masking Protocols

Two Masking Protocols considered:

- Naive: Takes the whole wind speed distribution and censors the 0.02, and 0.98 percentiles.
- Station Wise: Develops a mask looking at the wind speed distribution for each station.

Masks for Wind Speed

Masking Protocols

Figure: Wind Speed Distribution with Masks

Loss Evolution

Masking Protocols

Loss evolution for Unmasked and Masked TCN-GNN on validation set for 50 epochs.

Figure: Loss Evolution: Unmasked v. Masked

Test results with naive anomaly masking Masking Protocols

Table: Experimental results MAE - anomaly masked

Methods	Overall	1h	24h	48h	96h
Baseline ST-GNN TCN-GNN MSGWN	0.88 ± 0.034 0.95 ± 0.007 0.83 ± 0.005 0.82 ± 0.006	0.84 ± 0.039 0.90 ± 0.011 0.80 ± 0.006 0.76 ± 0.006	0.84 ± 0.029 0.92 ± 0.008 0.79 ± 0.009 0.78 ± 0.006	0.87 ± 0.037 0.94 ± 0.007 0.82 ± 0.006 0.81 ± 0.006	0.97 ± 0.032 1.00 ± 0.009 0.90 ± 0.003 0.89 ± 0.006

Table: Experimental results CRPS - anomaly masked

Methods	Overall	1h	24h	48h	96h
Baseline	0.60 ± 0.015	0.57 ± 0.018	0.57 ± 0.013	0.59 ± 0.016	0.65 ± 0.012
ST-GNN	0.65 ± 0.004	0.62 ± 0.005	0.63 ± 0.004	0.65 ± 0.004	0.69 ± 0.004
TCN-GNN	0.57 ± 0.002	0.55 ± 0.002	0.55 ± 0.003	0.57 ± 0.002	0.62 ± 0.001
MSGWN	0.57 ± 0.003	0.52 ± 0.003	0.54 ± 0.003	0.56 ± 0.003	0.61 ± 0.002

Test results with 2nd anomaly masking Masking Protocols

Table: Experimental results MAE - anomaly masked

Methods	Overall	1h	24h	48h	96h
Baseline	0.78 ± 0.015	0.74 ± 0.012	0.75 ± 0.011	0.77 ± 0.018	0.86 ± 0.0221 0.88 ± 0.009 0.82 ± 0.015 0.82 ± 0.007
ST-GNN	0.82 ± 0.006	0.80 ± 0.009	0.80 ± 0.006	0.82 ± 0.008	
TCN-GNN	0.76 ± 0.014	0.73 ± 0.014	0.72 ± 0.014	0.75 ± 0.015	
MSGWN	0.75 ± 0.004	0.70 ± 0.007	0.72 ± 0.003	0.75 ± 0.004	

Table: Experimental results CRPS - anomaly masked

Methods	Overall	1h	24h	48h	96h
Baseline	0.53 ± 0.008	0.51 ± 0.007	0.52 ± 0.006	$0.53\pm0.009 \\ 0.57\pm0.003 \\ 0.52\pm0.008 \\ 0.51\pm0.0018$	0.58 ± 0.009
ST-GNN	0.57 ± 0.003	0.56 ± 0.004	0.55 ± 0.004		0.60 ± 0.004
TCN-GNN	0.52 ± 0.007	0.50 ± 0.007	0.50 ± 0.008		0.56 ± 0.007
MSGWN	0.51 ± 0.002	0.48 ± 0.002	0.49 ± 0.002		0.56 ± 0.003

Effect of anomaly masking

Masking Protocols

- Mask 2–98% wind-speed quantiles during train/val.
- MS-GWN CRPS improves to 0.57 ± 0.003 (overall) for Naive Masks.
- Largest gains for TCN-GNN (up to $\sim 47\%$ stations better by DM test) for Naive Masks.

Calibration and Plots

Università

della Svizzera italiana

Rank histogram (MS-GWN)

Calibration and Plots

Svizzera

Predictive distribution (MS-GWN)

Calibration and Plots

Insights Discussion

- Rich temporal modelling + embeddings capture majority of skill.
- Graph adds modest gain; terrain-aware topology likely needed for Alps.
- Data quality fixes (outlier masking) on par with architectural upgrades.
- Calibration still an open issue consider heavier-tailed heads or flows.

Future directions

- 1. Learnable/topography-aware adjacency.
- 2. Hybrid physics-ML constraints.
- 3. Heavy-tailed or mixture predictive distributions.
- 4. Targeted augmentation for extreme winds.

Encountered Difficulties

- 1. Environment Installation/Setup (Poetry, Dependencies)
- 2. Getting used to the provided Pipeline (MLflow, OmegaConf)

italiana

Thank you!

Questions?

Discussion

[1] Stephan Rasp and Sebastian Lerch. "Neural Networks for Postprocessing Ensemble Weather Forecasts". EN. In: Monthly Weather Review 146.11 (Nov. 2018). Publisher: American Meteorological Society Section: Monthly Weather Review, pp. 3885–3900. ISSN: 1520-0493, 0027-0644. DOI: 10.1175/MWR-D-18-0187.1. URL: https://journals.ametsoc.org/view/journals/mwre/146/11/mwr-d-18-0187.1.xml (visited on 04/23/2025).

- [2] Mahdi Khodayar and Jianhui Wang. "Spatio-Temporal Graph Deep Neural Network for Short-Term Wind Speed Forecasting". In: *IEEE Transactions on Sustainable Energy* 10.2 (Apr. 2019), pp. 670–681. ISSN: 1949-3037. DOI: 10.1109/TSTE.2018.2844102. URL: https://ieeexplore.ieee.org/document/8371625 (visited on 04/23/2025).
- [3] Tomasz Stańczyk and Siamak Mehrkanoon. Deep Graph Convolutional Networks for Wind Speed Prediction. arXiv:2101.10041 [cs]. Jan. 2021. DOI: 10.48550/arXiv.2101.10041. URL: http://arxiv.org/abs/2101.10041 (visited on 04/30/2025).

- [4] Moritz Feik, Sebastian Lerch, and Jan Stühmer. Graph Neural Networks and Spatial Information Learning for Post-Processing Ensemble Weather Forecasts. arXiv:2407.11050 [cs]. July 2024. DOI: 10.48550/arXiv.2407.11050. URL: http://arxiv.org/abs/2407.11050 (visited on 04/23/2025).
- [5] Neetesh Rathore et al. "Multi Scale Graph Wavenet for Wind Speed Forecasting". In: 2021 IEEE International Conference on Big Data (Big Data). Dec. 2021, pp. 4047–4053. DOI: 10.1109/BigData52589.2021.9671624. URL: https://ieeexplore.ieee.org/abstract/document/9671624 (visited on 04/30/2025).

- [6] ICON Forecasting Systems MeteoSwiss meteoswiss.admin.ch. https://www.meteoswiss.admin.ch/weather/warning-and-forecasting-systems/icon-forecasting-systems.html. [Accessed 29-05-2025].
- [7] Yoav Benjamini and Yosef Hochberg. "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing". en. In: Journal of the Royal Statistical Society: Series B (Methodological) 57.1 (1995). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1995.tb02031.x, pp. 289-300. ISSN: 2517-6161. DOI: 10.1111/j.2517-6161.1995.tb02031.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x (visited on 05/19/2025).