恭喜!	您通过了!	下一项
~	1/1分	
	the "cache" used for in our implementation of forward prord propagation?	opagation and
1	We use it to pass variables computed during forward properties the corresponding backward propagation step. It contains values for backward propagation to compute derivatives.	_
and se	ct, the "cache" records values from the forward propagati ends it to the backward propagation units because it is ne ute the chain rule derivatives.	
_	It is used to keep track of the hyperparameters that we ar over, to speed up computation.	e searching
	It is used to cache the intermediate values of the cost fund training.	ction during
1	We use it to pass variables computed during backward pr the corresponding forward propagation step. It contains u for forward propagation to compute activations.	
~	1/1分	
2。 Among t	the following, which ones are "hyperparameters"? (Check	all that apply.)

activation values $a^{[l]}$

	bias vectors $b^{[l]}$					
未选择	未选择的是正确的					
正确	size of the hidden layers $n^{[l]}$					
正确	learning rate $lpha$					
	weight matrices $W^{\left[l ight]}$					
未选择的是正确的						
	number of layers L in the neural network					
正确	number of iterations					
~ 3.	1/1分					
Which	of the following statements is true?					
	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.					
正确						
\bigcirc	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.					

测验, 10 个问题

1/1分

4.

Vectorization allows you to compute forward propagation in an L -layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

() True

False

正确

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1分

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2    parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```


2 3

正确

1/1分

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- igcup The number of layers L is 4. The number of hidden layers is 4.
- igcap The number of layers L is 5. The number of hidden layers is 4.

1/1分

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

10/10 分 (100%)

Key concept**季** Deep Neural Networks
_{测验, 10} 个问题

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

\bigcirc	False
~	1/1分
8. There a	are certain functions with the following properties:
networ	ompute the function using a shallow network circuit, you will need a large k (where we measure size by the number of logic gates in the network), To compute it using a deep network circuit, you need only an entially smaller network. True/False?
正确	True
<u> </u>	False
9 .	1/1分

Consider the following 2 hidden layer neural network: $Key\ concepts\ on\ Deep\ Neural\ Networks$

测验, 10 个问题

10/10 分 (100%)

Which of the following statements are True? (Check all that apply).

$igwedge W^{[1]}$ will have shape (4,	4)
---------------------------------------	----

正确

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$b^{[1]}$$
 will have shape (4, 1)

正确

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

$$oxed{W}^{[1]}$$
 will have shape (3, 4)

未选择的是正确的

$$b^{[1]}$$
 will have shape (3, 1)

未选择的是正确的

$$W^{[2]}$$
 will have shape (3, 4)

正确

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Key concepts on Deep Neural Networks

测验, 10 个问题 **1**[2] **未选择的是正确的**

 $W^{[2]}$ will have shape (3, 1)

未选择的是正确的

 $b^{[2]}$ will have shape (3, 1)

正确

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[3]}$ will have shape (3, 1)

未选择的是正确的

 $\checkmark \quad b^{[3]}$ will have shape (1, 1)

正确

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $\sim W^{[3]}$ will have shape (1, 3)

正确

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

未选择的是正确的

1/1分

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Key concept**要** Deep Neural Networks 测验, 10 个问题 True

10/10 分 (100%)

\bigcirc W	$\mathcal{F}^{[l]}$ has	shape	$(n^{[l]}$	$n^{[l+1]}$)
--------------	-------------------------	-------	------------	-------------	---

$$igcup W^{[l]}$$
 has shape $(n^{[l-1]},n^{[l]})$

$$igcup W^{[l]}$$
 has shape $(n^{[l+1]}, n^{[l]})$

