Lecture 3

1

SPECIFIC ATTACKS

Classes of Attacks

Some Remarks

- Specific attacks and vulnerabilities in protocols will change with time
 - New protocols will be used, new attacks will be developed and new vulnerabilities detected
 - It is impossible to be aware of and know all possible specific attacks
 - Steps taken to mitigate or protect against an attack may affect services - risk Vs cost
 - Example TCP and DNS
- Need a common sense approach
 - **Prevention** is important but not sufficient
 - Detection and response are important

Some Remarks - II

- Objectives of looking at some specific attacks
 - To get an idea of how very obvious simple protocols can be abused by people with malicious intent
 - To understand that it may be necessary to know all the nitty-gritty details of protocols to figure out how attacks are being launched
 - To realize the importance of some of the mitigation/protection schemes to be discussed in later classes

Sources for finding out about new vulnerabilities and incidents

- A very useful source of information is CERT
 - o https://www.kb.cert.org/vuls/
 - Lists latest vulnerabilities, incidents, fixes and suggestions to minimize damage
- Thai-CERT The Thai Computer Emergency Readiness Team
 - https://www.thaicert.or.th/
 - SecurityFocus a vendor neutral site
 - o https://www.securityfocus.com
- Packet Storm
 - o http://www.packetstormsecurity.org/
- Common Vulnerabilities and Exposures
 - o https://cve.mitre.org/

เอกสารเผยแพร่ล่าสด

2020-05-13

รูปแบบการทำงานของแอปพลิเคขันดิดตามผู้สัมผัส (contact tracing) ในช่วงการระบาดของ COVID-19 และประเด็นที่ควรพิจารณา

2018-10-03

แนวทางการจัดตั้งศูนย์ปฏิบัติการใชเบอร์เพื่อเฝ้าระวังภัย ดุกดาม

2018-04-16

การดั้งค่ากำหนดสิทธิการเข้าถึงข้อมูล AWS Bucket

[อ่านเอกสารเผยแพร่ทั้งหมด]

แจ้งเตือนล่าสด

2020-11-23

แจ้งเตือน กลุ่ม Cicada (APT10) โจมตีบริษัทสัญชาติ ญี่ปุ่นผ่านช่องโหว่ Zerologon เพื่อขโมยข้อมูล พบ สาขาไทยตกเป็นเหยื่อด้วย

2020-05-21

ระวังภัย พบมัลแวร์ WolfRAT โจมดีผู้ใช้ Android ใน ประเทศไทย สอดแนมการใช้ LINE, Facebook Messenger, และ WhatsApp

2020-04-0

ระวังภัย พบการโจมตีอุปกรณ์ IoT เพื่อฝังบอทเน็ด dark_nexus ในไทยตกเป็นเหยื่อไม่ต่ำกว่า 172 เครื่อง

ดาวน์โหลดโปรแกรมป้องกัน มัลแวร์ WannaCry

Specific Attacks

- Protocol Failure Attacks
 - Abusing ICMP
 - TCP SYN flood attack and TCP Sequence Number Attack
 - SMTP Flooding Attack
- Denial of Service (DoS) and Distributed DoS (DDoS)
 Attacks
- DNS Attacks
- Email Attacks
- Malicious Programs

Protocol Failures

7

Definition

 A protocol does not take into account potential misuse correctly in its design and fails to meet objective

Causes

- Poor design (e.g. insufficient randomness in generating TCP sequence numbers)
- Pitfalls that are hard to detect except by experience

Protocol Failures in IP

- IPv4
 - o IP addresses used as authenticators
 - ▼ IP addresses were meant to be end-point identifiers for routing, not as authenticators for services
- IPv6
 - Renumbering from IPv4 to IPv6
 - No process to differentiate between valid and fraudulent renumbering
 - Access control
 - * There are many types of IPv6 addresses and using them as authenticators can be dangerous

Protocol Failures in TCP

- TCP 3-way handshaking needs to SYN to allocate resources
- TCP sequence number attacks for session hijacking
- TCP Reset (RST) is implemented but not widely used

Attacks on TCP

- Many types of attacks are possible using TCP
- Information leakage
 - Scan for open ports to detect available services with known vulnerabilities
- Denial of service
 - Exploit TCP behavior to deny services to legitimate connection requests
- Session hijacking
 - Allow a legitimate connection to be created and then insert yourself into the connection

TCP SYN Flood Attack

TCP is connection oriented

- There is a 3-way handshake and it keeps track of the state (sequence numbers, window sizes etc.)
- The state has to be created for each connection data structures such as socket, protocol information, time to live, checksum etc.
- Most systems introduce a limit on the amount of memory that can be allocated to connection states

SYN Flood Attack

- Oscar has no intention of completing the three-way handshake
- His goal is to exceed the limits set on the number of connections waiting to be given service
- This way, any new connection requests will be dropped

How it works

- Each port can support only so many half-open connections
 - Such connections are dropped after a timeout
- Oscar sends many TCP SYN segment to the victim host using spoofed IP addresses
 - The victim responds with SYN ACKs and waits for the final ACKs
 - o The final ACKs never arrive creating a backlog of open connections
 - New connections are dropped till the queue shortens but a flood of SYN packets ensures that the queue is never below the threshold for accepting connections
- Real-life example
 - Attack in February 2000 on Yahoo! and other web servers

Some remarks

- Brute force SYN flood attacks send as many SYN packets as possible per unit time
 - Many intrusion detection systems can detect such attacks rapidly
- Elegant SYN flood attacks
 - Disguise the packets as if they are legitimate
 - Make sure that the source address is actually routable so that it cannot be blocked
- It is hard to stop SYN flood attacks completely
 - One solution is to increase the number of open connections allowed by adding memory and resources at the web server
- SYN floods have been used for session hijacking -Mitnick Attack

Sequence number attacks on TCP

- Let us revisit the connect process
- Suppose Oscar wants to masquerade as a legitimate client from outside a LAN
 - He sends a SYN packet with a spoofed IP address to the server
 - The server responds to the legitimate client with the SYNACK
 - To complete the connection, Oscar has to know what server_isn is
- Oscar has to either sniff the LAN or guess the sequence number using information leaks

Guessing Sequence Numbers

- Many TCP implementations use predictable ways of generating sequence numbers
 - Old versions of Berkeley implementation used to increment the sequence number 128 times a second
 - The recommendation in the TCP specification is to increment it 250000 times a second
- The idea is that the round trip time measured or predicted by Oscar will be random enough to prevent him from guessing the sequence number
- Oscar can still guess a range of sequence numbers and send several packets back to the server - at least one will be correct
 - Similar to the birthday attack on DNS

Guessing Sequence Numbers -2

- The random number generator can be reverse engineered under certain circumstances
- Collect previous sequence numbers
- Subject them to analysis
 - Many types of analyses exist
 - Phase-space analyses
- In some cases, with knowledge of three prior sequence numbers, Oscar can guess the next one with 100% probability

See Michael Zalewski's work at http://alon.wox.org/tcpseq.html http://lcamtuf.coredump.cx/newtcp/

Attack Feasibility of Different OSs Preliminary results

os	Feasibility
Win2k/XP	12%
Solaris	0.02%
Mac OS X	0%
Cisco IOS	0%

Mitnick Attack

- This attack used SYN floods and session hijacking together
- Idea:
 - Allow a legitimate connection to be set up between a client and a server
 - Flood one of the parties with SYN packets thereby making them unavailable for response
 - Masquerade as the party that has been silenced by the SYN flood
- Mitnick first probed the target to determine who is logged on
 - Used finger, showmount and rpcinfo
 - Most sites block finger and rpcinfo from outside hosts
 - Mitnick used these to determine the way TCP sequence numbers were created by the target

Mitnick Attack 2

Steps:

- 1: Send a TCP SYN packet with a spoofed IP address to an Xterminal
- 2: X-Terminal replies with a SYNACK (it trusts the spoofed IP address)
- 3: The server at the spoofed IP address is under a SYN flood attack. So it cannot respond with a RST
- o 4: Generate a valid ACK (need to guess server_isn)
- o 5: Send commands to install backdoors in the system

What did this attack use?

- Address based authentication <bad>
- Known characteristics of TCP DoS, sequence numbers that can be guessed

Exploiting TCP Behavior

- TCP behavior can be exploited to throttle throughput of sessions
- TCP has two time-scales for congestion control
 - Additive Increase Multiplicative Decrease on the order of 10-100 ms
 - Severe congestion on the order of seconds
- In the second case, the congestion window is set to 1
 - TCP tries to transmit one lost packet roughly every second (retransmission time-out - RTO)
 - The RTO is doubled if subsequent losses occur

Low Average Rate Attacks on TCP¹

Idea

- Force TCP into the second timescale by inducing severe packet losses at a router
- Introduce a DoS flow with a periodic burst equal to the TCP RTO value

Impact

- If the DoS burst tracks the RTO value, the TCP flow's throughput is reduced to zero
- If it is approximately the same as the RTO, the throughput still degrades

Some example results¹

- The rate of DoS need not be large
 - Sledgehammer VsShrew
- As the period increases, the rate of DoS reduces
 - Impact can still be high
- Affects individual TCP flows as well as aggregates

Protocol Failure in ICMP

- ICMP is commonly used in network devices and hosts
- ICMP broadcast is allowed from outside network
- IP broadcast address is allowed for ICMP
- Echo request and reply can be used easily by any device or host
- ICMP Route Redirect message can be misused

ICMP Attack (Flooding)

Smurf Attack

- Given the following conditions
 - ▼ An intermediate network allows ICMP broadcast requests from outside
 - Intermediate network has many hosts and high bandwidth
 - Target site has low bandwidth
- Oscar can send an ICMP broadcast request to all nodes in the intermediate network
- They amplify the ICMP request with responses that flood the victim network resulting in denial of service

• Tribe Flood Network (TFN)

- This is a DDoS attack with zombies that perform TCP SYN Floods, Smurf or UDP flooding attacks
- Communication between Master and Zombies is through ICMP echo replies

ICMP Attacks (Malicious Code)

Winfreeze

- Causes a susceptible host to attack itself
- Makes use of the ICMP route redirect message
- The victim gets a message saying that the optimum route to some random IP addresses is the victim itself!
- Works on some vulnerable Windows NT hosts

• Loki (ICMP Tunneling)

- Loki is the Norse god of trickery and mischief
- Loki installs itself as a server on a compromised host and uses
 ICMP as the tunneling protocol to communicate with clients
- Loki server could send the client all kinds of files from the compromised host

ICMP Attack (Information Gathering)

Trace Route

• The traceroute command is used to discover the routes that packets actually take when traveling to their destination.

Port Scanning

o ICMP Error Messages (Protocol/Port Unreachable) can be used to find out the open ports to an IP address or a LAN segment.

OS Fingerprinting

• Fingerprinting is a technique to find out what kind of OS the server is running by looking at the response of the ICMP packet.

• ICMP Route Discovery

• The ICMP router discovery protocol will discover the IP address of the neighboring routers. The ICMP router discovery messages are called "Router Advertisements" or "Router Solicitations".

SMTP Protocol Failure

- No authentication for SMTP
- SMTP agent sends message to SMTP server without the human intervention
- Receiving Mail Servers are interested in the receiver's email address, not the sender's email address

SMTP Flooding Attack

- Attackers can misuse this by masquerading to be a legitimate sender
- Attackers can attack receivers with a Denial of Service attack by filling the receiver's mailbox with a large-size attachment or many of emails known as SPAM
- Source Email's address spoofing to lure victims to follow the instructions or links in the Email
 - Called Phishing Attack

Other Common Protocol Failures

• WEP = Wired Equivalent Privacy

- Uses a stream cipher where key stream can be repeated often
- Uses CRC for checking authenticity
- Easy to decrypt, modify and inject traffic

MIME

- Considers content of e-mails as trustworthy
- Can retrieve files from an FTP site and reassemble them overwriting existing files of the same name
- Viruses can avoid detection by using fragmentation

RPC and RPCbind

- Use any port number assigned to them
- Difficult to detect using packet filters

Denial of Service

ATTACKS ON AVAILABILITY

Denial of Service Attacks

- Attack against availability of resources
 - Bandwidth, information, computing resources, software at the client/server side etc.
 - An estimate is that there are anywhere between 20 and 40 attacks per hour
- Types
 - Network denial of service
 - Typically involves flooding a target with packets at the link or network layers
 - Service denial
 - ➤ Provide false information, interrupt information or crash server
 - o DoS on the client side
 - Crash the client software
- It is **impossible** to prevent denial of service
 - Lawsuits may be easy but tracing the perpetrator is hard

Network Link Flooding Attacks

• Idea:

- Create more traffic on a link than the capacity of the link
- Example: T1 line, 200 KBps is sufficient
- Requirement:
 - Connecting link must have more capacity than the target link

Examples

- Directed broadcast (ICMP) Smurf attack
- SMTP flooding and SPAM
 - × Send 10 MB attachments from several clients to the same mail server rapidly
- Small services attacks
 - Commands like echo on UNIX are used for maintenance but can be used for Smurf style attacks
 - Locate two echo servers and send a packet from one to the other creating an infinite loop

Some Attacks on Service

TCP SYN Flood attack

 Create several half open connections so that legitimate requests are dropped

BGP attacks

• False routing messages ensure that packets never reach the destination

NIS bogus backup server attack

- NIS services have a backup server
- If the address of the backup server is spoofed, NIS services may be affected

Deregister services with RPCbind

 A fabricated deregister message to rpcbind can prevent actual rpc services from being used

Client Attacks

- Specially crafted URLs can
 - o Crash a browser
 - Hang the mouse
 - Create false alarms
- Java applets
 - Open so many windows that the client has no resources to do anything else

Distributed DoS

- Received immense attention since the attack of February 2000 on popular web sites
- How it typically works
 - Oscar uses bugs and backdoors to install *zombie* or *agent* programs on many machines in many domains
 - Oscar installs a *master* program on some other machines with a list of the zombies
 - Oscar waits
 - At the time of strike, he sends a message to the master indicating the address of the target
 - Messages may be encrypted
 - The master sends messages to all zombies to attack the target
- Zombies launch attack flood target link or server
 - ▼ This could be a Smurf attack, TCP SYN flood, UDP flood etc.

Botnets

- The *zombies* in a Botnet are not all used for the DDoS attack
 - Oscar typically creates a huge network of such zombies or bots
- What are botnets used for?
 - Obviously DDoS
 - Spamming
 - Distributed vulnerability scanning
 - Cryptanalysis ⊗
- How are botnets created?
 - Typically using bugs and backdoors

Classification of DDoS Attacks

- (37)
- Degree of automation
- Exploited weakness to deny service
- Source address validity
- Attack rate dynamics
- Possibility of characterization
- Persistence of agent set
- Victim type
- Impact on victim

Source: J. Mirkovic and P. Reiher, "A Taxonomy of DDoS Attack and DDoS Defense Mechanisms," ACM Computer Communications Review, Vol. 34, No. 2, April 2004

Degree of Automation - I

(38)

Manual

 Oscar has to manually scan machines for vulnerabilities, break into them and then initiate the onset of attacks

Semiautomatic

- o There is a "Master" and "Agent" (zombie)
 - Recruiting, exploiting and infecting are automated
- Oscar still instructs the agents attack type, victim, duration, time through the master
 - Instruction can be direct or indirect
 - Direct => master must know who the agents are and vice versa => IP address of master is hard coded in the agents
 - Detection is easier
 - Indirect => some IRC channel or some other subliminal channel is used for communication
 - Detection is harder

Degree of Automation - II

- Automatic
 - The use phase is also automated
 - Avoids need for communication between Master and Agents
- Attack code is pre-programmed
 - o Start time of attack, victim, attack type, duration, etc.
 - Attacker is minimally exposed
- Disadvantage it is inflexible :-)

Scanning Strategies

- Automatic and semi-automatic DDoS schemes use worms or trojans
 - 3 million scans reported per day based on analyses of firewall logs from 1600 networks
- Scanning has two phases host and vulnerability scanning
 - Hosts selected can be random, may have a hit list, and so on
 - Can scan for one particular port on all machines or use a list
 - May be coordinated and/or stealthy

Propagation

Central source

- Once a vulnerability is detected, the code to infect a machine is downloaded from a central server
- Single point of failure
- Easy to detect and disable
- o Example: 1ion worm

Back-chaining

- The host that scans also provides the infecting code
- Once infected, the new victim starts the same process
- Ramen and Morris worms used this

Autonomous

 Scanning and downloading occur in one step - Code-Red, E-mail based worms

Exploited Weakness

Semantic

- Exploit the "semantics" or features of a protocol
- Example TCP SYN Flood Attack uses the fact that servers allocate substantial resources to TCP connections upon receiving a SYN segment

Brute Force

- Initiate a vast amount of transactions that appear to be legitimate example a large number of huge e-mails
- Usually needs much higher volume of traffic to be generated

Source Address Validity

Valid source address

- Some machines cannot be used to spoof IP addresses since such functions are NOT available on the OS
- Example Win95 and Win98
- Spoofed address
 - Most beneficial to Oscar
 - Many types and reasons for spoofing addresses
- Routable spoofed address
 - To reflect responses and deny service to the host whose address has been hijacked

Non-routable spoofed address

- Use reserved addresses like192.168.0.0/16
 - Can be discarded easily
- Use valid addresses but those that are unused in a network
 - Can provide useful information through traceback and backscatter

Spoofing Technique

Random

- Generate random 32 bit numbers and use them
- Subnet spoofed address
 - Use an address that belongs to the subnet space of the agent machine
 - Example: If the agent belongs to 136.142.117.0/24, it can spoof any address in the range 136.142.117.1 136.142.117.254

En Route Spoofed Address

- Uses the address of a machine that is on a subnet along the route to the destination
- No known instances
- Fixed spoof address
 - Tries to fix blame on a particular list of hosts

Attack Rate Dynamics

- Attack Rate = Flow rate of stream from agent to victim
- Constant rate
 - Typical and starts suddenly overwhelming the victim
- Variable rate
 - Gradually increasing rate to avoid quick detection
 - Fluctuating rate pulsing, periodic and so on

Possibility of Characterization

(46)

Characterizable

- Use TCP, IP and other protocol information to identify type of attack
- Example: TCP SYN Flood Attack
- o Types:
 - ➤ Filterable example if there are UDP or ICMP floods, a web server that minimally uses them can block them
 - Non-filterable HTTP floods to web server or DNS request flood to name server

Non-Characterizable

- Attacks that use a mix of TCP SYN, ICMP, TCP ACK, UDP Flood packets
- Needs careful examination and characterization is often subject to interpretation

Persistence of Agent Set

- Does the set of agents remain constant or change with time?
 - If the agent set changes with time, it will be more difficult to trace the perpetrators
- Constant agent set
 - o They all act in the same manner
 - They receive the same set of commands
- Variable agent set
 - Oscar divides the agent set into subsets
 - One or more subsets are used at a time
 - An agent could belong to more than one subset

Victim Type

Application

- Objective of attack is to disable a service
- Example: Bogus signature attack on an authentication server
- Hard to detect application oriented attacks

Host

- Objective is to disable a host crash, reboot or freeze it
 - Example: TCP SYN Flood attack
- All attack packets carry the destination address of that host
- Easy to detect

Resource

 Objective is to disable a critical resource such as a name server, router or link

Network

- Consume bandwidth of the network
- Destination addresses can be any host in the subnet

Infrastructure

- Objective is to disable the operation of the global Internet or parts of it
- Examples attacks against root nameservers, core routers, certificate servers, and so on

Impact on Victim

- Disruption
 - Deny availability completely
- Dynamic recovery
 - May be possible to recover during or after attack
 - ▼ Example: Network bandwidth
 - Self-recovery, human intervention for recovery and nonrecoverable cases
- Degradation
 - o Deny availability partially but at immense economic cost

Challenges in Defending Against DDoS Attacks

- Lack of detailed attack information
 - Analyses of specific attacks exist
 - Data related to frequency, distribution, number of agents, effectiveness of response is not available
- Lack of benchmarks
- Difficulty of large-scale testing
 - O How good is a particular defense on a large scale?
- Need for distributed response
 - Needs coordination across administrative domains
- Economic and social factors

Recovering from DDoS

- Mitigation is possible but not absolute solutions
- Techniques for mitigation
 - Ingress filtering at the edge
 - Prevention, detection and response
 - ▼ Filter bad packets (question is how?)
 - Need to get into nitty gritty details to filter packets
 - ▼ Improve data processing speeds
 - ▼ Add hardware and link capacity to handle normal load + attack
 - Hunt and shut down attacking sites
- More when we look at monitoring and intrusion detection

IP Traceback

- Where are the DoS related packets coming from?
- Types of traceback
 - Actively query routers
 - ➤ Victim develops a signature of the attack and proceeds hop by hop to see where the packets actually originated
 - Create a virtual overlay network for selective monitoring of flows and logging
 - Identify the path by reconstruction using probabilistic "packet marking"

Backscatter

- See: http://www.caida.org/outreach/papers/2001/BackScatt er/
- Useful for identifying how prevalent DoS attacks are
- Idea
 - Capture packets that are sent in response to spoofed DoS packets at unused IP addresses
 - If Oscar chooses IP addresses at random and packets are captured in a sufficiently large address space, they provide a good "sample" for analysis
- Example work
 - o AT & T researchers did this (see pages 116-117 of FIS)
 - Supercomputer center in San Diego also did this analysis

DNS Attacks

EXAMPLES OF SPECIFIC DOS ATTACK ON DNS PROTOCOL

Some Attacks on DNS

- Bugs and backdoors
 - Vulnerabilities in BIND
- Information Leakage
 - Zone transfer attacks
- Denial of Service
 - DNS Tainting or Cache Poisoning
- Birthday Attack

Vulnerabilities in BIND

- BIND is used by most DNS servers
 - One sample showed 45% of responses indicated some version of BIND¹
- Different versions of BIND have different vulnerabilities
 - Buffer overflow, susceptibility to DoS, information leaks
 - In May 2004, even many root servers used vulnerable versions of BIND
- See for example:
 - CERT Advisory: http://www.cert.org/advisories/CA-2002-19.html

¹ Source: M. Schiffman, "Bound By Tradition: A Sampling of the Security Posture of the Internets DNS Servers," Available at: http://www.packetfactory.net/

Impact

- DNS often operates with root privileges
 - Information about bugs revealed by dig can be used by Oscar to exploit the host or launch DoS attacks
- Many other protocols use BIND to resolve names and addresses
 - Example: Sendmail could be used to exploit the bug in BIND
- Major attack (2001)
 - erkms and 1ion worms deployed DDoS attacks using BIND vulnerabilities
- Some vulnerabilities may be minor, but still problematic
 - BIND v9 (prior to 9.2.1) could be shut down if a specially crafted packet was sent to it¹

¹ http://www.cert.org/advisories/CA-2002-15.html

Tainting DNS Responses

- If a malicious host can assume the identity of a legitimate host (what does identity mean?), it can get access to many resources
- Versions of BIND before 8.1.1 had vulnerabilities
- Idea: Cache malicious or misleading data from a remote name server in the target/victims name server
- Steps:
 - o Fool the victims name server to query Oscar's name server
 - Respond with a corrupted RR that victims name server caches
- DNS packets contain both a query and a response
 - Some versions of BIND cache responses in a query without checking if it is a valid response to a query
- Older versions used non-random sequence numbers making it easy for Oscar to spoof DNS responses and queries

DNS Sequence Number Prediction

Source: DNS Cache Poisoning, The Next Generation - By Joe Stewart, at http://www.securityfocus.com/guest/17905

Real Examples

- Oscar sends a DNS query for the IP address of www.hillary2000.org but attaches a response (a.b.c.d) as well
 - Query is sent to many DNS servers
 - Buggy BIND in some DNS servers caches the response (a.b.c.d) which is for the site www.hillaryno.com
- Users attempt to reach hillary2000.org but are sent to hillaryno.com
 - Source: Northcutt & Novak, Network Intrusion Detection, An Analyst's Handbook
- Another example:
 - Use SPAM or pop-ups that a user will click on by accident or intentionally
 - The DNS server presents a query to Oscar's DNS server
 - Oscar's server poisons the DNS cache of victim's DNS server
 - Actual attack on Microsoft's DNS Servers in 2001 (CERT IN-2001-11)

http://www.cert.org/incident_notes/IN-2001-11.html

Birthday Attack on DNS

- New versions of BIND use random sequence numbers (65535 possible values) in the queries
- How can Oscar spoof the random number in a response to taint or poison the DNS cache?
- Two methods
 - Flaw in versions of BIND: DNS Server sends multiple queries for the same name if it receives requests from multiple hosts for the same name - Birthday Attack
 - Guess the random sequence number
- First attack involves Oscar sending many spoofed queries to the victim DNS Server (how many for a 50% chance of getting one sequence number right?)
 - Send the spoofed responses to the victim DNS server

DoS Attacks on Root Servers

- October 21, 2002: DDoS attack on root servers
- Zombies in a Botnet launched a ping flood on the 13 root servers
 - o ping is legitimately used to check if a root server is alive
 - Seven were crippled completely
 - Four maintained functionality
- Most people did not observe any disruptions
 - DNS caching kept most DNS queries working properly
- The DDoS stopped after 1 hour abruptly unlike other DDoS attacks that fade away gradually or need to be stopped
- Mitigation
 - Use anycast addresses and distribute the root server
 - O Download root-server zone map every day to local name server

Email Attacks

Hoax

- Email asking to do things that is non-sense
- o Examples are Email chain, Lottery Winning, etc.

SPAM

- Email that annoys receivers
- Mostly sent in mass to recipients creating a traffic bottleneck

Phishing

 Email that lures recipients to do things mostly related to financial actions

Exponential Attacks

- Worms and viruses can spread rapidly
 - Exploit bugs in software and protocols
 - Around the world within minutes
 - o Can cause severe economic harm
- Most solutions are reactive
 - Virus-scanning software
 - Shut off unnecessary services by default
 - Avoid monoculture

Prevalence of computer viruses¹

¹ Source: IBM research: http://www.research.ibm.com/antivirus/index.htm

Example: Code-Red

History

- Morris Worm was the first known worm in 1988
- In June 2001, Microsoft IIS web servers were identified with having a buffer overflow bug
- A patch was issued quickly, but not applied universally
- o Code-Red (I) v1 exploited this in July 2001
- o Code-Red (I) v2 started a week later
- o Code-Red (II) was let loose in August 2001
- Which TCP port did these worms probe?

Version differences

- Code-Red (I) v1 was memory resident
 - Rebooting would get rid of it
 - Each infected machine scanned IP addresses in the same order
- Code-Red (I) v2 was also memory resident
 - It scanned IP addresses using a random seed
 - More machines got infected than ever before
- Code-Red (II) was unrelated but contained the string Code-RedII
 - It was not memory resident
 - Became dormant for a day
 - Then started spreading

Summary of Code-Red Attach

- Intelligent
 - Did not probe loopback or multicast addresses
- Exponential
 - Number of infected hosts grew exponentially
 - Lower bound 359000 unique IP addresses for Code-Red (I)
- Countries affected
 - o US (43%), Korea (11%)
- Domains affected
 - O A variety of domains .net, .edu, .com

Other undesirable programs

Spyware

- Software that advertises, collects personal information, or changes the configuration of a computer
- Typically does this without obtaining the user's consent
- Researchware?
- Ransomware!

Morals of the Story

71

WHAT DO THESE ATTACKS TELL US?

Assess your network

- Have proper policies in place
- Make sure systems are running only the allowed services
- Make sure that vulnerabilities are few in software tools that are being used
- Avoid monoculture?

Assessment

- If a malicious packet does not reach a host, it cannot cause harm
 - Host firewalls
 - **Reject** directed broadcast ICMP packets
 - ▼ If an IP packet arrives from outside with the source address that is from inside your network, reject it
 - ▼ Restrict access to machines on your network to the extent possible
 - x Reject unknown protocols
- Use the maxim:
 - Do not give a person or a program access or privileges that are not necessary

Encryption

- Using cryptographic protocols is better than not using them
 - Performance considerations
 - Encryption is only as secure as the host that it is originating from
 - Encryption is only as secure as the password that is used to generate, store, or access keys
 - Be careful of protocol failures

Monitor and Log Communications

- Track all packets entering and leaving the network
 - You may detect anomalies
 - You may be able to trace Oscar
 - You may be able to save yourself from a bigger attack
- Employ an intrusion detection system and auditing process
- (Some may consider it an invasion of privacy)

