

Formatting instructions for CS230-Fall 2019

John K. Doe*
Department of Computer Science
Stanford University
***@stanford.edu

October 2, 2020

Abstract

The abstract should consist of 1 paragraph describing the motivation for your paper and a high-level explanation of the methodology you used/results obtained.

1 Introduction

Explain the problem and why it is important. Discuss your motivation for pursuing this problem. Give some background if necessary. Clearly state what the input and output is. Be very explicit: "The input to our algorithm is an image, amplitude, patient age, rainfall measurements, grayscale video, etc.. We then use a SVM, neural network, linear regression, etc. to output a predicted age, stock price, cancer type, music genre, etc.." This is very important since different teams have different inputs/outputs spanning different application domains. Being explicit about this makes it easier for readers. If you are using your project for multiple classes, add a paragraph explaining which components of the project were used for each class.

^{*}Use footnote for providing further information about author (webpage, alternative address)—not for acknowledging funding agencies.

2 Related work

You should find existing papers, group them into categories based on their approaches, and discuss their strengths and weaknesses, as well as how they are similar to and differ from your work. In your opinion, which approaches were clever/good? What is the stateof-the-art? Do most people perform the task by hand? You should aim to have at least 5 references in the related work. Include previous attempts by others at your problem, previous technical methods, or previous learning algorithms. Google Scholar is very useful for this: https://scholar.google.com/ (you can click "cite" and it generates MLA, APA, BibTeX, etc.)

3 Dataset and Features

Describe your dataset: how many training/validation/test examples do you have? Is there any preprocessing you did? What about normalization or data augmentation? What is the resolution of your images? How is your time-series data discretized? Include a citation on where you obtained your dataset from. Depending on available space, show some examples from your dataset. You should also talk about the features you used. If you extracted features using Fourier transforms, word2vec, PCA, ICA, etc. make sure to talk about it. Try to include examples of your data in the report (e.g. include an image, show a waveform, etc.).

4 Methods

Describe your learning algorithms, proposed algorithm(s), or theoretical proof(s). Make sure to include relevant mathematical notation. For example, you can include the loss function you are using. It is okay to use formulas from the lectures (online or in-class). For each algorithm, give a short description of how it works. Again, we are looking for your understanding of how these deep learning algorithms work. Although the teaching staff probably know the algorithms, future readers may not (reports will be posted on the class website). Additionally, if you are using a niche or cutting-edge algorithm (anything else not covered in the class), you may want to explain your algorithm using 1/2 paragraphs. Note: Theory/algorithms projects may have an appendix showing extended proofs (see Appendix section below).

5 Experiments/Results/Discussion

You should also give details about what (hyper)parameters you chose (e.g. why did you use X learning rate for gradient descent, what was your minibatch size and why) and how you chose them. What your primary metrics are: accuracy, precision, AUC, etc. Provide equations for the metrics if necessary. For results, you want to have a mixture of tables and plots. If you are solving a classification problem, you should include a confusion matrix or AUC/AUPRC curves. Include performance metrics such as precision, recall, and accuracy. For regression problems, state the average error. You should have both quantitative and qualitative results. To reiterate, you must have both quantitative and qualitative results! If it applies: include visualizations of results, heatmaps, examples of where your algorithm failed and a discussion of why certain algorithms failed or succeeded. In addition, explain whether you think you have overfit to your training set and what, if anything, you did to mitigate that. Make sure to discuss the figures/tables in your main text throughout this section. Your plots should include legends, axis labels, and have font sizes that are legible when printed.

6 Conclusion/Future Work

Summarize your report and reiterate key points. Which algorithms were the highestperforming? Why do you think that some algorithms worked better than others? For future work, if you had more time, more team members, or more computational resources, what would you explore?

7 Contributions

The contributions section is not included in the 5 page limit. This section should describe what each team member worked on and contributed to the project.

References

This section should include citations for: (1) Any papers mentioned in the related work section. (2) Papers describing algorithms that you used which

were not covered in class. (3) Code or libraries you downloaded and used. This includes libraries such as scikit-learn, Tensorflow, Pytorch, Keras etc. Acceptable formats include: MLA, APA, IEEE. If you do not use one of these formats, each reference entry must include the following (preferably in this order): author(s), title, conference/journal, publisher, year. If you are using TeX, you can use any bibliography format which includes the items mentioned above. We are excluding the references section from the page limit to encourage students to perform a thorough literature review/related work section without being space-penalized if they include more references. Any choice of citation style is acceptable as long as you are consistent.

- [1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), *Advances in Neural Information Processing Systems* 7, pp. 609–616. Cambridge, MA: MIT Press.
- [2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. New York: TELOS/Springer-Verlag.
- [3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. *Journal of Neuroscience* **15**(7):5249-5262.