Fuzzy 8

Murat Osmanoglu

Fuzzy Input

• the fact is x is A'

the rule is : If x is A, then z is C

the result is z is C'

Fuzzy Input

• the fact is $x ext{ is } A'$

the rule is : If x is A, then z is C

the result is : z is C'

• $C' = A' \circ (A \rightarrow C) = A' \circ R$

Fuzzy Input

• the fact is $x ext{ is } A'$

the rule is : If x is A, then z is C

the result is : z is C'

• C' = A' o (A→C) = A' o R

 $\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$

Fuzzy Input

```
• the fact is x 	ext{ is } A'
```

the rule is : If
$$x$$
 is A , then z is C

•
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{C'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{R}(x,y) \}$$

Fuzzy Input

```
• the fact is x 	ext{ is } A'
```

the rule is : If
$$x$$
 is A , then z is C

the result is : z is C'

•
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{\mathcal{R}}(x,y) \} = \max_{x} \{ \mu_{A'}(x) \wedge (\mu_{A}(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

Fuzzy Input

```
the fact is : x is A'
   the rule is : If x is A, then z is C
    the result is z is C'
• C' = A' o (A→C) = A' o R
\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_A(x) \rightarrow \mu_C(z))
\mu_{C'}(z) = \max_{x} \{ \mu_{A'}(x) \land \mu_{R}(x,y) \} = \max_{x} \{ \mu_{A'}(x) \land (\mu_{A}(x) \land \mu_{C}(z)) \}
        = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)
```

Fuzzy Input

the fact is : x is A'

the rule is : If x is A, then z is C

the result is : z is C'

•
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{\mathcal{R}}(x,y) \} = \max_{x} \{ \mu_{A'}(x) \wedge (\mu_{A}(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$

Fuzzy Input

the fact is : x is A'

the rule is : If x is A, then z is C

the result is : z is C'

•
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{A'}(x) \land \mu_{\mathcal{R}}(x,y) \} = \max_{x} \{ \mu_{A'}(x) \land (\mu_{A}(x) \land \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$

Fuzzy Input

• the fact is : x is A'

the rule is : If x is A, then z is C

the result is z = z + c'

•
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{A'}(x) \land \mu_{\mathcal{R}}(x,y) \} = \max_{x} \{ \mu_{A'}(x) \land (\mu_{A}(x) \land \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$

Fuzzy Input

• the fact is : x is A'

the rule is : If x is A, then z is C

the result is : z is C'

•
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{\mathcal{R}}(x,y) \} = \max_{x} \{ \mu_{A'}(x) \wedge (\mu_{A}(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$

Singleton Input

• the fact is : $x ext{ is } x_0$

the rule is : If x is A, then z is C

the result is : z is C'

• $C' = x_0 \circ (A \rightarrow C) = A' \circ R$

Singleton Input

• the fact is : x is x_0

the rule is : If x is A, then z is C

the result is : z is C'

• $C' = x_0 \circ (A \rightarrow C) = A' \circ R$

 $\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$

Singleton Input

```
• the fact is : x is x_0
```

the rule is : If
$$x$$
 is A , then z is C

•
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{C'}(z) = \max_x \{\mu_0 \land \mu_R(x,y)\} = \max_x \{\mu_0 \land (\mu_A(x) \land \mu_C(z))\}$$

Singleton Input

```
• the fact is : x \text{ is } x_0

the rule is : If x \text{ is } A, then z \text{ is } C

the result is : z \text{ is } C'

• C' = x_0 \text{ o } (A \Rightarrow C) = A' \text{ o } R

\mu_{C'}(z) = \mu_0 \text{ o } (\mu_A(x) \Rightarrow \mu_C(z))

\mu_{C'}(z) = \max_x \{\mu_0 \land \mu_R(x,y)\} = \max_x \{\mu_0 \land (\mu_A(x) \land \mu_C(z))\}
```

 $= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$

Singleton Input

```
• the fact is : x is x_0
```

the rule is : If
$$x$$
 is A , then z is C

the result is : z is C'

•
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, y) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$

Singleton Input

• the fact is : x is x_0

the rule is : If x is A, then z is C

the result is : z is C'

•
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, y) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$

Singleton Input

```
• the fact is : x is x_0
```

the rule is : If
$$x$$
 is A , then z is C

•
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, y) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$

Singleton Input

• the fact is : x is x_0

the rule is : If x is A, then z is C

the result is : z is C'

•
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{\mu_0 \wedge \mu_R(x,y)\} = \max_{x} \{\mu_0 \wedge (\mu_A(x) \wedge \mu_C(z))\}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$

Single Input Single Output

• input : x is A'

 R_1 : if x is A_1 , then z is C_1 : $A_1 \rightarrow C_1$

 R_2 : if x is A_2 , then z is C_2 : $A_2 \rightarrow C_2$

output : z is C'

Single Input Single Output

```
• input: x is A'

R_1: if x is A_1, then z is C_1: A_1 \rightarrow C_1

R_2: if x is A_2, then z is C_2: A_2 \rightarrow C_2

output: z is C'
```

• $C' = A'o (R_1 \cup R_2) = A'o [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$

Single Input Single Output

```
• input: x is A'
R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1
R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2
output: z is C'
```

• $C' = A' \circ (R_1 \cup R_2) = A' \circ [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$ $C' = [A' \circ (A_1 \rightarrow C_1)] \cup [A' \circ (A_2 \rightarrow C_2)] = C_1' \cup C_2'$

Single Input Single Output

```
    input: x is A'
        R<sub>1</sub>: if x is A<sub>1</sub>, then z is C<sub>1</sub> : A<sub>1</sub> → C<sub>1</sub>
        R<sub>2</sub>: if x is A<sub>2</sub>, then z is C<sub>2</sub> : A<sub>2</sub> → C<sub>2</sub>
        output: z is C'
        C' = A'o (R<sub>1</sub> ∪ R<sub>2</sub>) = A' o [(A<sub>1</sub> → C<sub>1</sub>) ∪ (A<sub>2</sub> → C<sub>2</sub>)]
        C' = [A' o (A<sub>1</sub> → C<sub>1</sub>)] ∪ [A' o (A<sub>2</sub> → C<sub>2</sub>)] = C<sub>1</sub>' ∪ C<sub>2</sub>'
        µ<sub>C'</sub>(z) = max { µ<sub>C-1'</sub>(z), µ<sub>C-2'</sub>(z) }
```

Single Input Single Output

```
• input: x is A'
R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1
R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2
output: z is C'
```


Single Input Single Output

```
• input: x is A'
R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1
R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2
output: z is C'
```

• $C' = A'o (R_1 \cup R_2) = A'o [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$ $C' = [A'o (A_1 \rightarrow C_1)] \cup [A'o (A_2 \rightarrow C_2)] = C_1' \cup C_2'$ $\mu_{C'}(z) = \max \{ \mu_{C_1}(z), \mu_{C_2}(z) \}$

Single Input Single Output

• input: x is A' $R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1$ $R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2$ output: z is C'

• $C' = A'o (R_1 \cup R_2) = A'o [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$ $C' = [A'o (A_1 \rightarrow C_1)] \cup [A'o (A_2 \rightarrow C_2)] = C_1' \cup C_2'$ $\mu_{C'}(z) = \max \{ \mu_{C_1}(z), \mu_{C_2}(z) \}$

Two Input Single Output

input: x is A' and y is B'

R: if x is A and y is B, then z is C: (A and B) \rightarrow C

output : z is C'

Two Input Single Output

```
    input: x is A' and y is B'
    R: if x is A and y is B, then z is C: (A and B) → C
    output: z is C'
```

• $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$

- input: x is A' and y is B'
 R: if x is A and y is B, then z is C : (A and B) → C
 output: z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$ $C' = [A' \circ (A \rightarrow C)] \cap [A' \circ (B \rightarrow C)] = C_1' \cap C_2'$

- input: x is A' and y is B'
 R: if x is A and y is B, then z is C: (A and B) → C
 output: z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \to C] = A' \circ [(A \to C) \cap (B \to C)]$ $C' = [A' \circ (A \to C)] \cap [A' \circ (B \to C)] = C_1' \cap C_2'$ $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$

- input: x is A' and y is B'
 R: if x is A and y is B, then z is C : (A and B) → C
 output: z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \to C] = A' \circ [(A \to C) \cap (B \to C)]$ $C' = [A' \circ (A \to C)] \cap [A' \circ (B \to C)] = C_1' \cap C_2'$ $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$

- input: x is A' and y is B'
 R: if x is A and y is B, then z is C : (A and B) → C
 - output : z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \to C] = A' \circ [(A \to C) \cap (B \to C)]$ $C' = [A' \circ (A \to C)] \cap [A' \circ (B \to C)] = C_1' \cap C_2'$ $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$

- input: x is A' and y is B'

 R: if x is A and y is B, then z is $C: (A \text{ and } B) \rightarrow C$
 - output : z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$ $C' = [A' \circ (A \rightarrow C)] \cap [A' \circ (B \rightarrow C)] = C_1' \cap C_2'$ $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

• $\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$ where $\alpha_1 = \mu_A(x_0)$

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

• $\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$ where $\alpha_1 = \mu_A(x_0)$

 $\mu_{C/2}(z) = \alpha_2 \wedge \mu_C(z)$ where $\alpha_2 = \mu_B(y_0)$

Singleton Input

```
• the fact is x = x = 3 and y = 4
```

the rule is : If
$$x$$
 is A and y is B , then z is C

the result is
$$z \in C'$$

where
$$A = (0, 2, 5)$$
, $B = (3, 5, 6)$, and $C = (1, 3, 5)$

•
$$\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$$
 where $\alpha_1 = \mu_A(x_0)$
 $\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$ where $\alpha_2 = \mu_B(y_0)$
 $\mu_{C'}(z) = \min \{ \mu_{C_1}(z), \mu_{C_2}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_C(z)$

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where $\alpha_2 = \mu_B(y_0)$

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where $\alpha_2 = \mu_B(y_0)$

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where $\alpha_2 = \mu_B(y_0)$

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$

Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where $\alpha_2 = \mu_B(y_0)$

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is $z \in C'$

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

• $\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$ where $\alpha_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$ $\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$ where $\alpha_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$

Fuzzy Input

```
• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--
the rule is : If x is A and y is B, then z is C
the result is : z is C'
where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)
```

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

