MATH3541 INTRODUCTION TO TOPOLOGY EXTRA PRACTICE PROBLEMS

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HONG KONG

Due: 12:00 noon, 26th November 2024.

Instructions: Submit solutions to the problems in **Section B** for credit. Problems in Section A should be attempted and may be optionally submitted for feedback.

SECTION A

Problem 1. Let X be a path-connected topological space. Let $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ denote the fundamental groups based at x_0 and x_1 respectively.

- (a) Use the existence of a path γ from x_0 to x_1 to construct an isomorphism of groups $\phi_{\gamma}: \pi_1(X, x_0) \to \pi_1(X, x_1)$.
- (b) Show that ϕ_{γ} depends only on $[\gamma]$, the path-homotopy class (i.e. endpoint preserving) of γ . That is, if γ' is another path from x_0 to x_1 , prove that $\phi_{\gamma} = \phi_{\gamma'}$.

Problem 2. Determine whether the following statements are true or false by a short proof or a counterexample.

- (a) Any two continuous maps of the circle into the plane are homotopic.
- (b) If X is contractible, then every map from X to itself has a fixed point.
- (c) If $f:(X,x_0)\to (Y,y_0)$ is an injective continuous map, then the induced homomorphism $f_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ is injective.
- (d) If $f:(X,x_0)\to (Y,y_0)$ is a surjective continuous map, then the induced homomorphism $f_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ is surjective.
- (e) The fundamental group of a topological space is abelian.
- (f) For a pointed topological space (X, x_0) , if two path connected subsets A, B each contain x_0 , then $\pi_1(A \cup B, x_0) = \pi_1(A, x_0) \times \pi_1(B, x_0)$.
- (g) There is a deformation retract from the disk to the circle.
- (h) The Möbius strip and the cylinder are homotopy equivalent.
- (i) Homotopic maps between spaces induce the same homomorphism on fundamental groups.

Problem 3. Show that the unit sphere, the Klein bottle, and the real projective spaces are pairwise non-homotopic.

Problem 4. Is there a retraction from the unit sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ to its equator $E = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$? Explain your answer.

Problem 5. Let X be a topological space and let $\gamma: [0,1] \to X$ be a path. Let $t_1 \in [0,1]$ and define two paths $\gamma_1, \gamma_2: [0,1] \to X$ by

$$\gamma_1(s) = \gamma(t_1 s), \ \gamma_2(s) = \gamma((1 - t_1)s + t_1), \ s \in [0, 1],$$

so γ_1 is a path from $\gamma(0)$ to $\gamma(t_1)$ and γ_2 is a path from $\gamma(t_1)$ to $\gamma(1)$. Prove that $[\gamma] = [\gamma_1 * \gamma_2]$.

Problem 6. Show that a covering map is an open map.

Problem 7. Show that the map $f: \mathbb{C} \to \mathbb{C} - \{0\}$ defined as $f(z) = e^z$, is a covering map.

Problem 8. Recall that quotient map $p: S^2 \to \cong S^2/\{\pm 1\} \cong \mathbb{RP}^2$ is a covering map.

- (a) Determine the deck transformation group of p.
- (b) Draw picture(s) to illustrate the generator(s) and relation(s) of the fundamental group $\pi(\mathbb{RP}^2, x_0)$

Problem 9. Let a and b be the generators of $\pi_1(S^1 \vee S^1)$ corresponding to the two copies of S^1 . Draw/construct the covering space of $S^1 \vee S^1$ corresponding to the normal subgroup generated by a^2 , b^2 , and $(ab)^4$. Compute its deck tranformation group to check that it is the correct one.

Problem 10. This question is about some basic properties of covering maps.

- (a) For a covering map $p:X\to Y$ and a subset $A\subset Y$, show that $p|_{p^{-1}(A)}:p^{-1}(A)\to A$ is a covering map.
- (b) For covering maps $p_1: X_1 \to Y_1$ and $p_2: X_2 \to Y_2$, show that the product $p_1 \times p_2: X_1 \times X_2 \to Y_1 \times Y_2$ is also a covering map.

Section B

Problem 11 (6 marks). In this problem, we will show that the twice punctured plane is homotopy equivalent to the connected sum of two circles. Let $P = \mathbb{R}^2 \setminus \{p, q\}$ where p = (-1, 0) and q = (1, 0).

- (a) Construct a closed embedding $\phi: S^1 \vee S^1 \to \mathbb{R}^2$ whose image is the vanishing set $V\left(((x-1)^2+y^2-1)((x+1)^2+y^2-1)\right)$.
- (b) Determine an explicit deformation retraction from P to

$$P' := \mathbb{R}^2 \setminus (B(p,1) \cup B(q,1)),$$

where $B(c,1) = \{x \in \mathbb{R}^2 \mid ||x-c|| < 1\}$ is an open ball centred on c.

- (c) For any point $(x,y) \in P' \setminus \{(0,0)\}$, show that the line segment through x and the origin intersects $S^1 \vee S^1$ at exactly two points, and determine a formula for the point which is not the origin.
- (d) Use part (c) to construct a deformation retration from P' to $S^1 \vee S^1$, making sure to explicitly check continuity.
- (e) Combine the previous parts to write $S^1 \vee S^1$ as a deformation retract of the twice punctured plane P.

Problem 12 (7 marks). Let X, Y, and Z be path-connected and locally path-connected. For continuous maps $q:X\to Y$ and $r:Y\to Z$, let $p=r\circ q$ be their composition.

- (a) Show that if p and q are covering maps, then r is a covering map.
- (b) Show that if p and r are covering maps, then q is a covering map. [Hint: Use the map-lifting lemma]
- (c) Suppose that $r^{-1}(z)$ is finite for each $z \in Z$. Show that if q and r are covering maps, then p is a covering map.
- (d) Recall the definition of a universal cover (Definition 3.3.7.). Prove that if Z has a universal cover $u: \tilde{Z} \to Z$ and q and r are covering maps, then p is a covering map.

Problem 13 (7 marks). Let G be a group acting on a Hausdorff topological space X such that if $g \cdot x = x$ for some $x \in X$, then g = e is the identity.

- (a) Show that if G is finite, then the action of G on X is discontinuous. Now, additionally suppose that X is locally compact and that for each compact subspace C of X, there are finitely many $g \in G$ such that the intersection $C \cap g(C) \neq \emptyset$.
 - (b) For each compact $C \subset X$, prove the orbit $\bigcup_{g \in G} g(C)$ is closed in X.
 - (c) Show that X/G is Hausdorff
 - (d) Show that the action of G is discontinuous.
 - (e) Show that X/G is locally compact