SN54LVTH162245, SN74LVTH162245 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS260N - JUNE 1993 - REVISED DECEMBER 2001

- **Members of the Texas Instruments** Widebus™ Family
- A-Port Outputs Have Equivalent 22- Ω Series Resistors, So No External Resistors Are Required
- **Support Mixed-Mode Signal Operation** (5-V Input and Output Voltages With 3.3-V V_{CC})
- **Support Unregulated Battery Operation** Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup/Pulldown** Resistors
- Distributed V_{CC} and GND Pins Minimize **High-Speed Switching Noise**
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per **JESD 17**
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

SN54LVTH162245 . . . WD PACKAGE SN74LVTH162245 . . . DGG OR DL PACKAGE (TOP VIEW)

description

The 'LVTH162245 devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as two 8-bit transceivers or one 16-bit transceiver. The devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

The A-port outputs, which are designed to source or sink up to 12 mA, include equivalent $22-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

SN54LVTH162245, SN74LVTH162245 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS260N - JUNE 1993 - REVISED DECEMBER 2001

description (continued)

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

GQL PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1OE
В	1B2	1B1	GND GND		1A1	1A2
С	1B4	1B3	Vcc	Vcc	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
E	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
н	2B5	2B6	Vcc	Vcc	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
K	2DIR	NC	NC	NC	NC	2OE

NC - No internal connection

ORDERING INFORMATION

TA	PACKA	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	SSOP – DL	Tube	SN74LVTH162245DL	LVTH162245		
_40°C to 85°C	330F = DL	Tape and reel	SN74LVTH162245DLR	LV111102243		
-40 C to 65 C	TSSOP – DGG	Tape and reel	SN74LVTH162245DGGR	LVTH162245		
	VFBGA – GQL	Tape and reel	SN74LVTH162245KR	LL2245		
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH162245WD	SNJ54LVTH162245WD		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each 8-bit section)

INP	UTS	OPERATION						
ŌĒ	DIR	OFERATION						
L	L	B data to A bus						
L	Н	A data to B bus						
Н	Χ	Isolation						

SCBS260N – JUNE 1993 – REVISED DECEMBER 2001

logic diagram (positive logic)

Pin numbers shown are for the DGG, DL, and WD packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –0.5 V	/ to 4.6 V
Input voltage range, V _I (see Note 1)	V to 7 V
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	
Current into any output in the low state, IO: SN54LVTH162245 (B port)	. 96 mA
SN74LVTH162245 (B port)	128 mA
A port	. 30 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH162245 (B port)	
SN74LVTH162245 (B port)	. 64 mA
A port	. 30 mA
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	70°C/W
DL package	63°C/W
GQL package	42°C/W
Storage temperature range, T _{stg} 65°C	to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN54LVTH162245, SN74LVTH162245 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS260N - JUNE 1993 - REVISED DECEMBER 2001

recommended operating conditions (see Note 4)

		SN54LVTH	1162245	SN74LVTH	LINIT		
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage	2		2		V	
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
Jan.	Link lovel entrut entruct	A port		-12		-12	A
ЮН	High-level output current	B port		-24		MAX 3.6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mA
la.	Low lovel output ourrent	A port		12		12	mΛ
lOL	Low-level output current	B port		48		64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS260N – JUNE 1993 – REVISED DECEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

VIK V _{CC} = 2.7 V, I _I = −18 mA −1.2		AMETED	TEST COL	UDITIONS	SN54L	VTH1622	245	SN74L	VTH1622	245	LINUT	
$V_{OH} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PAR	AMETER	IEST COI	NDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
$V_{OH} = \begin{cases} A \text{ port} & V_{CC} = 3 \text{ V}, & I_{OH} = -12 \text{ mA} & 2 & 2 \\ V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, & I_{OH} = -100 \mu\text{A} & V_{CC} = 0.2 \\ \hline V_{CC} = 2.7 \text{ V}, & I_{OH} = -8 \text{ mA} & 2.4 & 2.4 \\ \hline V_{CC} = 3 \text{ V} & I_{OH} = -24 \text{ mA} & 2 \\ \hline V_{CC} = 3 \text{ V} & I_{OH} = -24 \text{ mA} & 2 \\ \hline V_{CC} = 3.7 \text{ V} & I_{OH} = -24 \text{ mA} & 2 \\ \hline V_{CC} = 3 \text{ V}, & I_{OL} = 100 \mu\text{A} & 0.2 & 0.2 \\ \hline V_{CC} = 3 \text{ V}, & I_{OL} = 100 \mu\text{A} & 0.8 & 0.8 \\ \hline V_{CC} = 3 \text{ V}, & I_{OL} = 12 \text{ mA} & 0.8 & 0.8 \\ \hline V_{CC} = 3 \text{ V}, & I_{OL} = 100 \mu\text{A} & 0.5 & 0.5 \\ \hline I_{OL} = 16 \text{ mA} & 0.4 & 0.4 & 0.4 \\ \hline I_{OL} = 24 \text{ mA} & 0.5 & 0.5 & 0.5 \\ \hline I_{OL} = 32 \text{ mA} & 0.55 & 0.5 \\ \hline I_{OL} = 32 \text{ mA} & 0.55 & 0.5 \\ \hline I_{OL} = 48 \text{ mA} & 0.55 & 0.5 \\ \hline I_{OL} = 64 \text{ mA} & 0.55 & 0.5 \\ \hline V_{CC} = 0 \text{ or } 3.6 \text{ V}, & V_{I} = V_{CC} \text{ or } GND & \pm 1 & \pm 1 \\ \hline I_{I} & A \text{ or B} \\ \text{ports}^{\ddagger} & V_{CC} = 3.6 \text{ V}, & V_{I} = V_{CC} \text{ or } GND & \pm 1 & \pm 1 \\ \hline I_{I}(\text{hold}) & A \text{ or B ports} & V_{CC} = 3.6 \text{ V}, & V_{I} = 0.5 \text{ V} & 0.5 \text{ V} \\ \hline V_{I} = V_{CC} & 5 & 5 & 5 \\ \hline V_{I} = 2 \text{ V} & -75 & -75 \\ \hline V_{I} = 2 \text{ V} & -75 & -75 \\ \hline V_{CC} = 3.6 \text{ V}, & V_{I} = 0 \text{ to } 3.6 \text{ V} & 0.5 \\ \hline V_{I} = 2 \text{ V} & -75 & -75 \\ \hline V_{CC} = 3.6 \text{ V}, & V_{I} = 0 \text{ to } 3.6 \text{ V} & \pm 100^{\circ} \\ \hline V_{CC} = 3.6 \text{ V}, & V_{I} = 0 \text{ to } 3.6 \text{ V} & 0.5 \\ \hline V_{I} = 2 \text{ V} & -75 & -75 \\ \hline V_{CC} = 3.6 \text{ V}, & V_{I} = 0 \text{ to } 3.6 \text{ V} & \pm 100^{\circ} \\ \hline V_{CC} = 0 \text{ to } 1.5 \text{ V}, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, \\ \hline V_{I} = 2 \text{ V} & -75 & -75 \\ \hline V_{CC} = 3.6 \text{ V}, & V_{I} = 0 \text{ to } 3.6 \text{ V} \\ \hline V_{CC} = 0 \text{ to } 1.5 \text{ V}, V_{O} = 0.5 \text{ V} \text{ to } 3 \text{ V}, \\ \hline OE = \text{don't care} & 0.44 \text{ to } 0.44 \\ \hline V_{CC} = 0.5 \text{ Visibility} & \pm 100^{\circ} & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 \text{ Visibility} & \pm 100^{\circ} & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 \text{ Visibility} & \pm 100^{\circ} & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 \text{ Visibility} & \pm 100^{\circ} & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 \text{ Visibility} & \pm 100^{\circ} \\ \hline V_{CC} = 0.5 $	VIK		$V_{CC} = 2.7 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V	
VOH VCC = 3 V, IOH = −12 mA 2 2 VCD = 2.7 V to 3.6 V, IOH = −100 μA VCC−0.2 VCC−0.2 VCC = 3 V IOH = −24 mA 2.4 VCC = 3 V IOH = −24 mA 2 IOH = −32 mA 2 VCC = 3 V, IOH = 100 μA 0.2 0.2 VCC = 3 V, IOH = 100 μA 0.2 0.2 VCC = 3 V, IOH = 100 μA 0.2 0.2 IOH = 100 μA 0.2 0.2 VCC = 2.7 V IOH = 100 μA 0.2 0.2 VCC = 2.7 V IOH = 100 μA 0.2 0.2 IOH = 10 μA 0.2 0.2 0.2 IOH = 10 μA 0.5 0.5 0.5 IOH = 10 μA 0.5 0.5 0.5 IOH = 10 μA 0.5 0.5 0.5 0.5 <		A nort	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	$I_{OH} = -100 \mu A$	V _{CC} -0.2			V _{CC} -0.2				
VOL B port		A port	V _{CC} = 3 V,	$I_{OH} = -12 \text{ mA}$	2			2				
B port VCC = 3.V	\/a++		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	$I_{OH} = -100 \mu A$	V _{CC} -0.2			V _{CC} -0.2			V	
VCC = 3 V IOH = −24 mA 10H = −32 mA 2 IOH = −32 mA 10H = −32 mA 2 2 A port VCC = 3 V, IOL = 100 μA 0.2 0.2 0.2 0.2 10L = 12 mA 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	vОН	D nort	$V_{CC} = 2.7 \text{ V},$	$I_{OH} = -8 \text{ mA}$	2.4			2.4			V	
OH = -32 mA 2		D poin	Voc - 2 V	I _{OH} = -24 mA	2							
$VOL = A \ port = V_{CC} = 3 \ V, \qquad I_{OL} = 12 \ mA = 0.8 = 0.8 = 0.8$ $V_{CC} = 2.7 \ V = I_{OL} = 100 \ \mu A = 0.2 = 0.2$ $I_{OL} = 14 \ mA = 0.5 = 0.5$ $I_{OL} = 16 \ mA = 0.4 = 0.4$ $I_{OL} = 32 \ mA = 0.5 = 0.5$ $I_{OL} = 48 \ mA = 0.55$ $I_{OL} = 48 \ mA = 0.55$ $I_{OL} = 64 \ mA = 0.55$ $I_{OL} = 10 \ mA = 0.55$ $I_{OL} = 100 \ mA = 0.55$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_{OL} = 0.5$ $I_{OL} = 1.5 \ V \ I_$			ACC = 2 A	$I_{OH} = -32 \text{ mA}$				2				
$V_{OL} = \frac{1}{4} \frac{V_{CC} = 3 \text{ V}, \qquad I_{OL} = 12 \text{ mA}}{I_{OL} = 100 \text{ µA}} \qquad 0.8 \qquad 0.8} \qquad 0.8}{I_{OL} = 100 \text{ µA}} \qquad 0.2 \qquad 0.2} \qquad 0.2} \qquad 0.2} \qquad 0.2} \qquad 0.2} \qquad 0.2} \qquad 0.5 \qquad 0.5} $		A nort	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OL} = 100 μA			0.2			0.2		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		А роп	V _{CC} = 3 V,	I _{OL} = 12 mA			0.8			0.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VIK VOH VOL I I I I I I I I I I I I I I I I I I		Vaa – 2.7.V	I _{OL} = 100 μA			0.2			0.2		
B			vCC = 2.7 v	I _{OL} = 24 mA			0.5			0.5	V	
$ V_{CC} = 3 \text{ V} V_{CC} = 3 \text{ V} V_{CC} = 3 \text{ V} V_{CC} = 3 \text{ MA} 0.5 0.$		Dnort		I _{OL} = 16 mA			0.4			0.4	V	
		Б роп	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I _{OL} = 32 mA	0.5							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			ACC = 3 A	I _{OL} = 48 mA			0.55					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				I _{OL} = 64 mA						0.55		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Control	V _{CC} = 3.6 V,	V _I = V _{CC} or GND			±1			±1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lı İ		1 1/00 = 36 1/	V _I = 5.5 V			20			20	μΑ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$V_I = V_{CC}$			5			5		
$ I_{\text{I}(\text{hold})} \text{A or B ports} $		ports+		V _I = 0			-10			-10		
	l _{off}		$V_{CC} = 0$,	V_{I} or $V_{O} = 0$ to 4.5 V						±100	μΑ	
			V 2 V	V _I = 0.8 V	75			75				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	liza i-s	A or P porto	ACC = 2 A	V _I = 2 V	-75			-75			μΑ	
IOZPU \overline{OE} = don't care ± 100 IOZPD $\frac{V_{CC}}{OE}$ = 1.5 V to 0, V_{O} = 0.5 V to 3 V, $\frac{1}{OE}$ = don't care $\pm 100^*$	'I(noid)	A or B ports	V _{CC} = 3.6 √§,	V _I = 0 to 3.6 V							μΑ	
OE = don't care	lozpu						±100*			±100	μΑ	
Vac 3.6.V Outputs high 0.19 0.19	lozpd		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V_{O} = OE = don't care	0.5 V to 3 V,			±100*			±100	μΑ	
1,000 = 3,000			V _{CC} = 3.6 V,	Outputs high	0.19			0.19				
VCC = 5.0 V,	ICC			Outputs low 5			-	5	mA			
$V_I = V_{CC}$ or GND Outputs disabled 0.19 0.19				Outputs disabled			0.19		-	0.19		
Voc = 3 V to 3 6 V. One input at Voc = 0.6 V.	ΔICC¶		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$, One input at $V_{CC} - 0.6 \text{ V}$,				0.3			0.2	mA	
	Ci					4			4		pF	
			<u> </u>								pF	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
‡ Unused pins at V_{CC} or GND.
§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

[¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.

SN54LVTH162245, SN74LVTH162245 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS260N – JUNE 1993 – REVISED DECEMBER 2001

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

			SN54LVTH162245				SN74LVTH162245								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		VCC =	2.7 V		± 0.3 V	٧	VCC =	2.7 V	UNIT			
			MIN	MAX	MIN	MAX	MIN	TYP [†]	MAX	MIN	MAX				
t _{PLH}	Α	В	1	3.5		4	1	2.3	3.3		3.7	ns			
t _{PHL}	A	В	1	3.5		3.9	1	2.2	3.3		3.5	115			
t _{PLH}	В	А	1	4.3		5.3	1	2.8	4		4.6	ns			
t _{PHL}	В	R	В	A	1	4.2		4.5	1	2.5	3.4		3.6	110	
^t PZH	<u>OE</u>	В	1	4.8		5.9	1	2.8	4.6		5.4	ns			
tpZL	OE	OE	OE	OE	Ь	1	4.8		5.5	1	3	4.6		5.2	110
^t PZH	<u>OE</u>	А	1	5.5		7.2	1	3.3	5.3		6.3	ns			
tPZL	OE	OE .	A	1	5.4		6.4	1	3.3	5.1		5.8	115		
^t PHZ	ŌĒ	В	1.5	5.5		5.8	1.5	3.8	5.2		5.5	ns			
^t PLZ	OE	В	1.5	5.5		5.8	1.5	3.5	5.1		5.4	115			
^t PHZ	ŌE	А	1.5	5.8		6.5	1.5	4	5.6		5.9	ns			
t _{PLZ}		^	1.2	6.3		6.3	1.5	3.8	5.5		5.5	110			
tsk(o)									0.5			ns			

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

WD (R-GDFP-F**)

CERAMIC DUAL FLATPACK

48 LEADS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only
- E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. MicroStar Junior™ BGA configuration
- D. Falls within JEDEC MO-225 variation BA.
- E. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

MicroStar Junior is a trademark of Texas Instruments.

DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated