Internet of Things (IoT): Systems & Security

Gabe Parmer

What is the loT?

- Break into groups of around 3-6 and discuss
- Answer:
 - What is IoT?
 - What is *not* IoT?
 - Why is the IoT interesting?

- Same group:
 - What are embedded systems?
 - How do they differ from "normal" computers?
 - How are they related to IoT?

Cloud Systems

- Same group
 - What is the cloud (the *idea*, not an implementation like EC2)?
 - Why is it useful in general?
 - How is it related to IoT?

Computers that interact with physical world

Sensors + actuators + computation

- Replace mechanical w/ digital
 - Microwaves, toys
 - Cars, airplanes

Computers that interact with physical world

Sensors + actuators + computation

Sensors

- Visual/audio: Camera/mic
- Environment: temp, barometer, ...
- Position: IMU/Gyro
- Range: LIDAR, infrared/ultrasonic

Computers that interact with physical world

Sensors + actuators + computation

- Acuators
 - DC motors (high RPM)
 - Servo/Stepper motors (positioning)
 - Human: Screens/speakers
 - Environment: lights, HVAC

Real-Time/Cyber-Physical Systems

- Embedded systems + **deadlines**
 - The computation must adhere to the timing constraints of the physical world
 - Send command to actuator within a **bounded time** from receiving sensor information

- We don't write code thinking about time; how do engineers program real-time systems???

IoT Systems

Embedded/RT systems + **network**

This class: How do we implement/program the IoT

- System design
 - Embedded device
 - Cloud system
- Controlled coordination

Collaborative: Device + cloud!

Why IoT: Market size (in Bn \$)

IoT: so many versions of hype

- Smart X for X in
 - House, building, city
- Cyber-Physical Systems
- Industry 4.0
- Edge Computing
- Cognitive computing

...too much hype

IoT adoption to approach 100% over the next 10 years

Industry 4.0

- Industry 1.0 [1760-1840]
 - hand production → machines
- Industry 2.0 "industrial revolution" [1870-1914]
 - Production lines, electrification, efficient supply chains (railroads)
 - Mass unemployment
- Industry 3.0 "digital revolution" late 1900s
 - Internet & computers for efficient production
 - More movement away from human labor "manufacturing is dead"

Industry 4.0

- Industry 4.0 Now-ish? Germany: 10 years ago
 - Pervasive industrial sensing/monitoring
 - Data processing and intelligence generation
 - Self adaptation

More: Jeremy Rifkin – The Third Industrial Revolution

Barriers to IoT adoption

Vendors need to address customer barriers—especially security, integration and unclear returns on investment

This class: How can we secure IoT?

- Embedded system/device/node security
 - Secure OSes
 - Secure execution evironments
- Secure Coordination
 - Authentication
 - Communication mechanisms

Cisco: by 2020, more than 4.7 zetabytes will pass through the Internet

A significant slice will be from M2M comm.

Source. Source Source Source Source Source

- Cheap computation
- Abstracts infrastructure
- Simple programming models
- High/unstable latency
- Expensive bandwidth

Enabling Technology: **5G**

- Mobile with
- CI Gb/s & 1ms round-trip

Example Uses:

- Drone/quad-copter control
- AV global situational awareness
- Data filtering/processing (Surveillance)

pasestations ack of servers es putation

ıt

IoT

This class

Where computation meets the physical world

- How do we
 - Design these systems?
 - Program these systems?
 - Secure these systems?
 - Conquor the software stacks of these systems?
- What is the cutting edge research?

Logistics

- Class online presence
 - Webpage:
 google "gabe parmer" → teaching tab → this class
 - Piazza
 - Github org gwu-iot linked from Piazza
 - gwu-iot/collaboration → most class material
 - Mutable class policies by github Pull Request (PR)

Class Structure

- 1/4 Instruction
 - Me and guest speakers
- 3/4 Discussion/analysis
 - Reading/presenting research papers
- Work
 - Weekly: reading papers, critiquing on github
 - 1-2 times semester: lead the discussion of a paper
 - Semester-long project...

Project

- Look through the inspirational projects
 - Interactive art installation
 - AV control via smart environment
 - PR: add one!
- Next class: brainstorm 3 project ideas
- Groups
 - IoT is collaborative
 - Exceptions are possible