Review Session

COMPSCI 3331

Fall 2022

1. Let G be the CFG defined by the following set of productions.

```
S -> bbAaA | SSaa | aa | ABC | AB | bbAa | bb. aA | BC | B
A \rightarrow Ab \mid Ac \mid CC \mid C \mid b \mid b
B \rightarrow BA \mid bb \mid Dd \mid B
C \rightarrow DA \bigcirc D
D \rightarrow a
```

Give an equivalent grammar to G that has no ε -productions.

2. Let *G* be the CFG defined by the following set of productions.

$$S o ShaB \mid DD \mid ABC \mid$$

S-> YSE YOR DD YARCIAB
A->BDIYOU TOO
2 - 120 100 100
B->BA FD Yob
C>DA
1) -) a
E-> b
_ f -> c
G→d.
YAB > AB
1.Ag - (1)
You-> DD
Yog->DB
Y _{se} > SE
You -> DG

- 3. Let $G = (V, \Sigma, P, S)$ be a CFG in CNF. Give an $O(n^3)$ algorithm for the following problem:
 - ▶ Input: A word w and a nonterminal $A \in V$.
 - Output: the value $n_A = \max\{|u| : u \text{ is a suffix of } w \text{ and } A \Rightarrow^* u\}.$

That is, n_A is the length of the longest suffix of w that is generated by A in the grammar.

- 4. Construct PDAs for the following languages:
- $m \pmod{3}$.
- (b) $L = \{ w \# x : w, x \in \{a, b\}^*, |w|_a = |x|_a, |w|_b \equiv |x|_b \pmod{3} \}.$

Be sure to indicate what the starting stack symbol is for your PDA and how your PDA accepts words.

5. Let C be a fixed integer. Extend the language from Assignment 3 as follows:

$$L_C = \{x \# 1^n : n \ge 0, x \in \{a, b\}^* \text{ and } n - C \le |x|_a \le n + C\}$$

Give a context-free grammar for L_C . The productions in your grammar will depend on the value of C. Describe them using a uniform notation (e.g., by using consistently named variables or consistently defined productions, for instance).

$$S \rightarrow bS \qquad \{\alpha, b\}^* \leq \frac{1 \times 10}{1 \times 10} \qquad M \rightarrow 1^{c}$$

$$S \rightarrow aS; \qquad \{\alpha, b\}^* \neq T$$

$$S \rightarrow$$

6. Consider the following modified language from Assignment 3:

$$L = \{u \# v : u, v \in \{0, 1\}^* \text{ and } bin(v^R) = bin(u) + 2\}$$

Give a PDA that accepts *L*.

7. A CFG G is in Griebach Normal Form (GNF) if every production has the form

$$A \rightarrow aB_1B_2\cdots B_n$$

for some letter a and nonterminals B_1, B_2, \dots, B_n (where $n \geq 0$). Any grammar (that does not derive ε) can be converted to GNF. Given this fact, show that for any CFG L that does not include ε , you can construct a PDA M that accepts L in the following additional conditions:

- The PDA accepts by empty stack.
- \triangleright The PDA M does not have any ε -transitions. That is, there are no rules of the form $\delta(q, \varepsilon, \gamma) = \{(q', \beta), \dots\}$ for any stack symbol γ .

- 8. Prove that the following languages are not context-free:
 - (a) $L = \{a^p : p \text{ is a prime number}\}.$
- (b) $L = \{a^n b^{n^3} : n \ge 0\}.$
- (c) $L = \{ w \in \{a, b\}^* : |w|_b = 2^{|w|_a} \}.$ $\aleph = \mathcal{A}^* \downarrow^*$ 2 convert it to a regular language. LAR= {anb2n}.
 - 1) V, x cross boundary:
 - 2) vx all als
 - 31 Ux all big
 - 4) v en a's ~ en b's
 - 芝=ルソルベン、

4) wai v=a3 w=an1-jbk x=bb y=b2-k-L	
= 27 $= 0 = 7$ Lto $= 20$ $= 20$ $= 20$ $= 20$ $= 20$ $= 20$ $= 20$	
if jto => w2wx2y= and b2n+1	
to show $\# 2^{as} \neq bs = $ $2^{n+j} \neq 2^n + l$	
$2^{n}(2^{3}-1)\neq L$	√+l≶n
	=> 12n-1 since 340.
	L≤ 2 ⁿ -1

- 9. For each of the languages in the previous question, give an informal description of a multi-tape TM that recognizes the language.
- (a) $L = \{a^p : p \text{ is a prime number}\}.$
- (b) $L = \{a^n b^{n^3} : n \ge 0\}.$
- (c) $L = \{ w \in \{a, b\}^* : |w|_b = 2^{|w|_a} \}.$

10. Show that the following language is r.e.:

=> accepted by turning machine.

$$L = \{e(M_1) \# e(M_2) : L(M_1) \cap L(M_2) \neq \emptyset\}$$

Mn - universial TM

11. Show that the following problem is undecidable by reduction: Given a TM M, is L(M) a finite language?

12. Show that the following language is decidable:

 $L_{ND} = \{e(M) : M \text{ is a nondeterministic TM } \}.$

13. Show that the following problem is either decidable or undecidable: Given a CFG G is L(G) infinite? (Hint: review the proof of the pumping lemma for CFLs.)