第六章 组合数学初步

多项式展开定理

定理5 设n为正整数, x_i 为实数, $i=1,2,\ldots,t$.

$$(x_1 + x_2 + \dots + x_t)^n = \sum_{n_1! n_2! \dots n_t!} n_1! x_1^{n_1} x_2^{n_2} \dots x_t^{n_t}$$

其中, n_1 , n_2 , ..., n_t 是满足方程 $n_1+n_2+...+n_t=n$ 的一切非负整数解.

证明: 展开式中的项 $\chi_1^{n_1}\chi_2^{n_2}\dots\chi_t^{n_t}$ 是如下构成的:

在n个因式中选 n_1 个因式贡献 x_1 ,

从剩下 $n-n_1$ 个因式选 n_2 个因式贡献 x_2 ,

...,

从剩下的 $n-n_1-n_2-\ldots-n_{t-1}$ 个因式中选 n_t 个因式贡献 x_t .

多项式展开定理

定理5 设n为正整数, x_i 为实数, $i=1,2,\ldots,t$.

$$(x_1 + x_2 + \dots + x_t)^n = \sum_{n_1 ! n_2 ! \dots n_t !} n_1 x_1^{n_1} x_2^{n_2} \dots x_t^{n_t}$$

其中, n_1 , n_2 , ..., n_t 是满足方程 $n_1+n_2+...+n_t=n$ 的一切非负整数解.

证明:根据乘法原理,这样获得的 $x_1^{n_1}x_2^{n_2}...x_t^{n_t}$ 的个数是

$$C(n, n_1) \times C(n - n_1, n_2) \times \cdots \times C(n - n_1 - n_2 - \cdots - n_{t-1}, n_t)$$

$$= \frac{n!}{(n - n_1)! n_1!} \times \frac{(n - n_1)!}{(n - n_1 - n_2)! n_2!} \times \cdots \times \frac{(n - n_1 - n_2 - \cdots - n_{t-1})!}{(n - n_1 - n_2 - \cdots - n_{t-1} - n_t)! n_t!}$$

$$= \frac{n!}{n_1! n_2! \dots n_t! 0!} = \frac{n!}{n_1! n_2! \dots n_t!}$$

多项式展开定理

推论: 多项式展开式中不同的项数为方程

$$n_1 + n_2 + \dots + n_t = n$$

的非负整数解的个数 C(n+t-1,n)。

解释: 这是因为 $x_1^{n_1}x_2^{n_2}...x_t^{n_t}$ 的指数和 $n_1+n_2+...+n_t=n$ 的非负整数解之间

存在着一一对应关系。

例6 求 $(2x_1-3x_2+5x_3)^6$ 中 $x_1^3x_2x_3^2$ 的系数.

$$(x_1 + x_2 + \dots + x_t)^n = \sum_{n_1 \mid n_2 \mid \dots \mid n_t \mid} n_1 x_1^{n_1} x_2^{n_2} \dots x_t^{n_t}$$

解 由多项式定理得 $\frac{6!}{3!1!2!} \times 2^3 \times (-3) \times 5^2 = -36000$