Math 154: Probability Theory, HW 5

DUE MARCH 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice with martingales

- 1.1. **Polya's urn.** This is perhaps the most important urn model in probability. An urn contains r red and g green balls, where r, g > 0. A ball is drawn from the urn, its color is noted, it is returned to the urn, and another ball of the same color is also added to the urn. Let R_n denote the number of red balls drawn after n draws.
- (1) Suppose r=1. Show that $Y_n=\frac{1+R_n}{n+r+g}$ for $n\geqslant 0$ is a martingale with respect to the filtration generated by $(R_n)_{n\geqslant 1}$, and show that $\sup_{n\geqslant 1}|Y_n|\leqslant C$ for some constant C>0.
- (2) Suppose r, g = 1. Let T be the number of turns that is needed to draw a green ball. Show that $\mathbb{E}\frac{1}{T+2} = \frac{1}{4}$. (Justify the application of any theorem you may be using!)
- 1.2. **Bernstein's inequality.** Suppose $X_1, \ldots \sim \text{Bern}(p)$ are i.i.d., and define $Y_i = X_i p$ for $i = 1, \ldots, N$. Prove that there exists a constant C > 0 such that for any $\varepsilon > 0$, we have

$$\mathbb{P}\left[\left|\frac{1}{\sqrt{N}}\sum_{i=1}^{N}Y_{i}\right|\geqslant\varepsilon\right]\leqslant\exp\left[-C\varepsilon^{2}\right].$$

In particular, even though the maximum value of $Y_1 + \ldots + Y_N$ can grow linearly in N, it likes to stay around \sqrt{N} . (*Hint*: the process $S_N = Y_1 + \ldots + Y_N$ is a martingale with respect to the filtration generated by $(X_n)_{n \ge 1}$; check this!)

1.3. **Maximal version of Bernstein's inequality.** We have shown that the running sum of independent Bernoulli's has "sub-Gaussian behavior" in Problem 1.2. We will show something similar but for the "maximal process".

Recall notation from Problem 1.2. Define $X_N := N^{-\frac{1}{2}} \sup_{1 \le n \le N} |Y_1 + \ldots + Y_n|$.

- (1) Show that for any $p \geqslant 2$, we have $\mathbb{E}|X_N|^p \leqslant \left(\frac{p}{p-1}\right)^p \mathbb{E}|N^{-\frac{1}{2}} \sum_{i=1}^N Y_i|^p$.
- (2) Use Problem 1.2 and the previous part to show that for some constant C > 0, we have

$$\mathbb{E}|X_N|^{2p} \leqslant \left(\frac{2p}{2p-1}\right)^{2p} (2p-1)!!C^p$$

for any integer $p \geqslant 1$.

(3) Use the previous part to show that there exists a constant K>0 such that for any $\varepsilon>0$, we have

$$\mathbb{P}\left[|X_N| \geqslant \varepsilon\right] \leqslant \exp[-K\varepsilon^2].$$

(Hint: see the end of the notes for week 5 for a helpful lemma.)

- 1.4. **Gambler's ruin for an unfair game.** Let $\{X_n\}_{n\geqslant 1}$ be independent $\operatorname{Bern}(p)$ random variables with $p\neq 0,\frac{1}{2},1$. Define $S_N=S_{N-1}+(-1)^{1+X_N}$ for $N\geqslant 1$ and set $S_0=0$.
- (1) Show that $M_N = \left(\frac{1-p}{p}\right)^{S_N}$ is a martingale with respect to the filtration generated by $(X_n)_{n\geqslant 1}$.
- (2) Let τ be the first positive integer such that $S_{\tau}=-a$ or $S_{\tau}=b$ for a,b>0 fixed. Compute $\mathbb{P}[S_{\tau}=-a]$ in terms of a,b,p.
- 1.5. The "quadratic" process of a martingale, and the Ito martingale.
- (1) Suppose that $\{X_n\}_{n\geqslant 1}$ are independent mean zero random variables with variances $\sigma_i^2 = \mathbb{E} X_i^2$. Show that $Y_N := \sum_{i=1}^N X_i^2 \sum_{i=1}^N \sigma_i^2$ with $Y_0 = 0$ is a martingale with respect to the filtration generated by $\{X_n\}_{n\geqslant 1}$.
- (2) Suppose in addition that X_i are i.i.d. $\operatorname{Bern}(\frac{1}{2})$, and define $W_i = (-1)^{1+X_i}$. For any function $f: \mathbb{Z} \to \mathbb{R}$, define its *Laplacian* to be $\Delta f(x) = f(x+1) + f(x-1) 2f(x)$. Moreover, define $Z_N = W_1 + \ldots + W_N$. Show that $f(Z_N) \sum_{i=1}^{N-1} \frac{1}{2} \Delta f(Z_i)$ is a martingale with respect to the filtration generated by $\{X_n\}_{n\geqslant 1}$.
- 1.6. Gaussian tail probabilities implies Gaussian moments. Suppose X is a continuous random variable such that $\mathbb{P}[|X|\geqslant C]\leqslant \exp\{-KC^2\}$ for all C>0 (K is just a fixed constant). We showed in class that $\mathbb{E}|X|^{2q}\leqslant C_1(2q-1)!!C_2^q$ for all $q\geqslant 1$ and for some $C_1,C_2>0$ implies $\mathbb{P}[|X|\geqslant C]\leqslant \exp\{-KC^2\}$ for some K>0. We now show the converse is true.
- (1) Let p be the pdf of X. Show

$$\begin{split} \int_{\mathbb{R}} x^{2q} p(x) dx &= 2q \int_0^\infty x^{2q} p(x) dx + 2q \int_0^\infty x^{2q} p(-x) dx \\ &= 2q \int_0^\infty x^{2q-1} \left(\int_x^\infty p(u) du \right) dx + 2q \int_0^\infty x^{2q-1} \left(\int_x^\infty p(-u) du \right) dx \\ &\leqslant 4q \int_0^\infty x^{2q-1} \mathbb{P}[|X| \geqslant x] dx \\ &\leqslant 4q \int_0^\infty x^{2q-1} \exp\{-Kx^2\} dx. \end{split}$$

(Hint: integration-by-parts is your friend.)

- (2) Using u-substitution, show that $\mathbb{E}|X|^{2q} \leqslant 4qK^{-q} \int_0^\infty y^{2q-1} \exp\{-y^2\} dy$.
- (3) (Bonus, +2pt): Show that $\int_0^\infty y^{2q-1} \exp\{-y^2\} dy \leqslant C_1(2q-1)!!C_2^q$ for some constants $C_1, C_2 > 0$.