Math 132: Discrete Mathematics Problem session 2

- 1. Let $f: X \to Y$ be a function. f is *injective* (or "into" or "one-to-one") if $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all $x_1, x_2 \in X$. f is *surjective* (or "onto") if for all $y \in Y$, there is some $x \in X$ with f(x) = y. f is *bijective* if its is both injective and surjective.
 - (a) Show that f is injective if and only if there is some function $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$, i.e., g(f(x)) = x for all $x \in X$.
 - (b) (Subtle) Show that the previous is actually false in one special case, and correct the statement so that it becomes true.
 - (c) Show that if there is a function $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$, then f is surjective.
 - (d) (Subtle) Show that the converse of the previous statement is true. What operation are you assuming you can do?
 - (e) Show that f is a bijection if and only if there is a function $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.
- 2. How many ordered quadruples (x_1, x_2, x_3, x_4) of integers such that $-5 \le x_i \le 5$ sum to 0?
- 3. How many ways can k indistinguishable balls be placed in n > 1 distinguishable buckets such that at least one bucket is empty?
- 4. Recall that the nth Catalan number b_n was defined as the number of paths from (0,0) to (n,n) in the plane that consist only of steps $(i,j) \mapsto (i+1,j)$ or $(i,j) \mapsto (i,j+1)$ and which never go above the line y=x.
 - (a) Give a combinatorial argument that Catalan numbers satisfy the recurrence relation

$$b_0 = 1,$$
 $b_{n+1} = \sum_{i=0}^{n} b_i \cdot b_{n-i}.$

(b) Show that we can identify b_n as the number of ways to arrange n pairs of parentheses () coherently. In the case n = 3, the coherent arrangements are:

$$((())), (()()), (())(), ()(()), ()()(),$$

while an incoherent arrangement would be for example ())((), as the second close-parenthesis occurs before the second open-parenthesis.

(c) Show that we can identify b_n with the number of ways of parenthesizing n+1 variables into pairs. The first few cases are:

```
\begin{array}{lll} n=1 & : & \{ \; (x_1x_2) \; \} \\ n=2 & : & \{ \; ((x_1x_2)x_3), \; (x_1(x_2x_3)) \; \} \\ n=3 & : & \{ \; (((x_1x_2)x_3)x_4), \; ((x_1(x_2x_3))x_4), \; (x_1((x_2x_3)x_4)), \; (x_1(x_2(x_3x_4))), ((x_1x_2)(x_3x_4)) \; \} \end{array}
```

(d) Show that b_n can be identified with the number triangulations of a convex (n+2)-gon. (Note that we take the convention that a 2-gon has a single triangulation, so that $b_0 = 1$.) In other words, in a shape with n+2 sides, draw n-1 line segments connecting the vertices of the shape in such a way that you end up with n triangles. For n=3, the (3+2)-gon triangulations are:

