Foundations of Artificial Intelligence

4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel and Michael Tangermann

Albert-Ludwigs-Universität Freiburg

May 8, 2019

Contents

- Best-First Search
- A* and IDA*
- 3 Local Search Methods
- Genetic Algorithms

Lecture Overview

- Best-First Search
- A* and IDA*
- Search Methods
- Genetic Algorithms

Best-First Search

Search procedures differ in the way they determine the next node to expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal

Informed Search: Knowledge of the worth of expanding a node n is given in the form of an <u>evaluation function</u> f(n), which assigns a real number to each node. Mostly, f(n) includes as a component a <u>heuristic function</u> h(n) which estimates the costs of the cheapest path from n to the goal.

Best-First Search: Informed search procedure that expands the node with the "best" f-value first.

General Algorithm

function TREE-SEARCH(problem) **returns** a solution, or failure initialize the frontier using the initial state of problem **loop do**

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Best-first search is an instance of the general TREE-SEARCH algorithm in which frontier is a priority queue ordered by an evaluation function f.

When f is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its <u>path-costs</u> to the goal.

h(n) =estimated path-costs <u>from</u> n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search using h(n) as the evaluation function, i.e., f(n) = h(n) is called a *greedy search*.

Example: route-finding problem:

$$h(n) =$$

Greedy Search

A possible way to judge the "worth" of a node is to estimate its path-costs to the goal.

h(n) =estimated path-costs from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search using h(n) as the evaluation function, i.e., f(n)=h(n) is called a $\emph{greedy search}.$

Example: route-finding problem:

h(n) = straight-line distance from n to the goal

Heuristics

The evaluation function h in greedy searches is also called a <u>heuristic</u> function or simply a *heuristic*.

- The word *heuristic* is derived from the Greek word $\varepsilon v \rho \iota \sigma \kappa \varepsilon \iota \nu$ (note also: $\varepsilon v \rho \eta \kappa \alpha !$)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.
- ightarrow In all cases, the heuristic is problem-specific and focuses the search!

Greedy Search Example

(a) The initial state

Greedy Search - Properties

- a good heuristic might reduce search time drastically
- non-optimal
- incomplete
- graph-search version is complete only in finite spaces

Can we do better?

Lecture Overview

- Best-First Search
- A* and IDA*
- Search Methods
- 4 Genetic Algorithms

A*: Minimization of the Estimated Path Costs

 A^* combined greedy search with the uniform-cost search: Always expand node with lowest f(n) first, where

$$g(n) =$$
actual cost from the initial state to n .

h(n) =estimated cost from n to the nearest goal.

$$f(n) = g(n) + h(n),$$

the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the nearest goal. h is admissible if the following holds for all n:

$$h(n) \le h^*(n)$$

We require that for A^* , h is admissible (example: straight-line distance is admissible).

In other words, h is an optimistic estimate of the costs that actually occur.

A* Search Example

(a) The initial state

Example: Path Planning for Robots in a Grid-World

15 / 36

Live-Demo: http://qiao.github.io/PathFinding.js/visual/

Optimality of A*

$$f(n) = g(n) + h(n)$$

Claim: The <u>first solution found</u> (= node is expanded and found to be a goal node) has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^* but A^* has first found another node G_2 with $g(G_2) > f^*$.

Optimality of A*

Let n be a node on the path from the start to G that has not yet been expanded. Since h is admissible, we have

$$f(n) \leq \widehat{f^*}$$

Since n was not expanded before G_2 , the following must hold:

$$f(G_2) \leq f(n)$$

$$f(G_2) \leq f^*$$

and

It follows from $h(G_2) = 0$ that

 \rightarrow Contradicts the assumption!

Completeness and Complexity

Completeness:

If a solution exists, A* will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant $\delta > 0$ such that every step has at least cost δ .

 \rightarrow there exists only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:

In general, still exponential in the path length of the solution (space, time)

More refined complexity results depend on the assumptions made, e.g. on the quality of the heuristic function Example:

In the case in which $|h^*(n) - h(n)| \le O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a sub-exponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008]. Unfortunately, this almost never holds.

A note on Graph- vs. Tree-Search

- A* as described is a tree-search (and may consider duplicates)
- For the graph-based variant, one
 - either needs to consider re-opening nodes from the <u>explored</u> set, when a better estimate becomes known, or
 - one needs needs to require stronger restrictions on the heuristic estimate: it needs to be consistent.
- ightarrow A heuristic h is called **consistent** iff for all actions a leading from s to s': h(s) h(s') < c(a) where c(a) denotes the cost of action a. (Consistent heuristics prevent the need to re-open nodes from the explored set.)
 - Note: Consistency implies admissibility.
 - Note: A* can still be applied if heuristic is not consistent, but optimality is lost in this case.

Heuristic Function Example

Heuristic Function Example

Start State

Goal State

 $\widehat{(h_1)}=$ the number of tiles in the wrong position

Heuristic Function Example

Start State

Goal State

 h_1 the number of tiles in the wrong position h_2 the sum of the distances of the tiles from their goal positions (Manhattan distance)

Empirical Evaluation

d = distance from goal

Average over 100 instances

	V (a ca va					
	Search Cost (nodes generated)			Effective Branching Factor		
d	(IDS)	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	-	539	113	-	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.47
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	P -	1.48	1.26

Variants of A*

A* in general still suffers from exponential memory growth. Therefore, several refinements have been suggested:

- iterative-deepening A*, where the f-costs are used to define the cutoff (rather than the depth of the search tree): IDA*
- Recursive Best First Search (RBFS): introduces a variable f_limit to keep track of the best alternative path available from any ancestor of the current node. If current node exceeds this limit, recursion unwinds back to the alternative path.
- other alternatives memory-bounded A^* (MA*) and simplified MA* (SMA*).

Lecture Overview

- Best-First Search
- A* and IDA*
- 3 Local Search Methods
- Genetic Algorithms

Local Search Methods

- In many problems, it is unimportant how the goal is reached—only the goal itself matters (8-queens problem, VLSI Layout, TSP).
- If in addition a quality measure for states is given, local search can be used to find solutions.
- It operates using a single current node (rather than multiple paths).
- It requires little memory (cp. to most systematic search strategies!)
- Idea: Begin with a randomly-chosen configuration and improve on it step by step → Hill Climbing / Gradient Decent.
- Note: It can be used for maximization or minimization respectively (see 8-queens example)

Example: 8-queens Problem (1)

Example state with heuristic cost estimate h=17 (counts the number of pairs threatening each other directly or indirectly).

Hill Climbing

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
```

```
\begin{array}{l} \textit{current} \leftarrow \texttt{MAKE-NODE}(\textit{problem}.\texttt{INITIAL-STATE}) \\ \textbf{loop do} \\ \textit{neighbor} \leftarrow \textbf{a highest-valued successor of } \textit{current} \\ \textbf{if neighbor}. \texttt{VALUE} \leq \texttt{current}. \texttt{VALUE} \textbf{then return } \textit{current}. \texttt{STATE} \\ \textit{current} \leftarrow \textit{neighbor} \\ \end{array}
```

26 / 36

Example: 8-queens Problem (2)

Possible realization of a hill-climbing algorithm:

Select a column and move the queen to the square with the fewest conflicts.

Problems with Local Search Methods

- Local maxima: The algorithm finds a sub-optimal solution.
- Plateaus: Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus but might even require suboptimal moves.

Solutions:

- Start over when no progress is being made.
- \[\frac{1}{1} \] inject noise\[\text{`'} \rightarrow \text{random walk} \]

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

Example: 8-queens Problem (Local Minimum)

Local minimum (h=1) of the 8-queens Problem. Every successor has a higher cost.

Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima, that are not directly connected to each other. From each local maximum, all the available actions point downhill.

Performance figures for the 8-queens Problem

The 8-queens problem has about $8^8 \approx 17 \ million$ states. Starting from a random initialization, hill-climbing directly finds a solution in about 4% of the cases. On average it requires only 4 steps!

Better algorithm: Allow sideways moves (no improvement), but restrict the number of moves (avoid infinite loops!).

E.g.: max. 100 moves: Solves 94%, number of steps raises to 21 steps for successful instances and 64 for failure cases.

Simulated Annealing

In the simulated annealing algorithm, "noise" is injected systematically: first a lot, then gradually less.

Has been used since the early 80's for VSLI layout and other optimization problems.

Lecture Overview

- Best-First Search
- A* and IDA*
- Search Methods
- 4 Genetic Algorithms

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by three operators: "mutation", "crossover", and "selection".

Ingredients:

- Coding of a solution into a <u>string of symbols</u> or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

Example: Represent an individual (one 8-queens configuration) as a concatenation of eight x-y coordinates. Its fitness is judged by the number of non-attacks. The population consists of a set of configurations.

Selection, Mutation, and Crossing

Many variations:

how selection will be applied, what type of cross-over operators will be used, etc.

Selection of individuals according to a fitness function and pairing

Calculation of the breaking points and recombination

According to a given probability elements in the string are modified.

Summary

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal h we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h^* is never overestimated, we obtain the A^* search, which is complete and optimal.
- $ightharpoonup \mathsf{IDA}^*$ is a combination of the iterative-deepening and A^* searches.
- Local search methods work on a single state only, attempting to improve it step-wise.
- Genetic algorithms imitate evolution by combining good solutions.