Sistemas Digitais 2023.1

Revisão sobre sistemas de numeração e aritmética binária; sinais analógicos; sinais discretos; sinais digitais.

*Obrigatório

1.	NOME/MATRÍCULA *
2.	A máquina computacional cujo modelo foi proposto por von Neumman adota o conceito de programa armazenado. A máquina realiza instruções e opera com dados que são codificados no sistema:
	Marcar apenas uma oval.
	Hexadecimal
	Octal
	Decimal
	Binário
	Binário ou hexadecimal
3.	2. Seja uma grandeza expressa no sistema decimal de numeração por 367. Qual seria a sua representação para ser processado por um sistema digital?

Marcar apenas uma oval. 64 bits possui 128 bytes 8 bytes possui 64 bits 1 byte é igual a 1 bit byte é o acrônimo de dígito binário bit é um grupo de 8 bytes 5. 4. Sejam dois números binários de quatro bits, A e B. Se A for igual a 0111 e B for igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1 1111 1 1000 1 10000 1 10000 5. Vimos a compreensão dos fenômenos naturais requer o uso de variáveis, que
8 bytes possui 64 bits 1 byte é igual a 1 bit byte é o acrônimo de dígito binário bit é um grupo de 8 bytes 5. 4. Sejam dois números binários de quatro bits, A e B. Se A for igual a 0111 e B for igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1111 1000 1000 11000
1 byte é igual a 1 bit byte é o acrônimo de dígito binário bit é um grupo de 8 bytes 5. 4. Sejam dois números binários de quatro bits, A e B. Se A for igual a 0111 e B for igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1111 1000 1000 11000
byte é o acrônimo de dígito binário bit é um grupo de 8 bytes 5. 4. Sejam dois números binários de quatro bits, A e B. Se A for igual a 0111 e B for igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1111 1000 1000 11000
bit é um grupo de 8 bytes 5. 4. Sejam dois números binários de quatro bits, A e B. Se A for igual a 0111 e B for igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1111 1000 1000 11000
 5. 4. Sejam dois números binários de quatro bits, A e B. Se A for igual a 0111 e B for igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1 1111 1000 1 0000 1 1000
igual a 1001, o resultado da soma dos números será. Marcar apenas uma oval. 1111 1111 1000 1 1000 1 1000
1111 1 1111 1000 1 0000 1 1000
1 1111 1000 1 0000 1 1000
1000 1 0000 1 1000
1 0000 1 1000
1 1000
6 5 Vimos a compreenção dos fenêmenos naturais reguer o uso do variáveis, que
6 5 Vimos a comprenção dos fenômenos naturais requer o uso do variávois que
definem o valor de uma dimensão ou grandeza conjugado com uma unidade de medida. Em várias circunstâncias, o fenômeno é avaliado segundo o comportamento dinâmico dinâmico dessa variável, ou seja, de sua variação em função do tempo. Normalmente, esse comportamento é
Marcar apenas uma oval.
Contínuo no domínio do tempo e no valor da sua dimensão
Contínuo no domínio do tempo e discreto no valor de sua dimensão
Discreto no domínio do tempo e contínuo no valor de sua dimensão
Discreto no domínio do tempo e no valor de sua dimensão
Digital

	6. Defina o que você entende por um sinal analógico . Apresente o exemplo de um fenômeno cujo comportamento pode ser descrito por um sinal analógico.						
	7. Os sinais analógicos podem ser amostrados . Em relação ao sinal amostrado $xA(t)$ e ao processo de amostragem pode-se afirmar que						
	Marque todas que se aplicam.						
	☐ Ele apresenta perda de informação em relação ao sinal original ☐ Quanto maior o período de amostragem mais fidedigno é o sinal amostrado em relação ao original						
	Quanto maior a frequência de amostragem mais fidedigno é o sinal amostrado em relação ao original						
	A dimensão do sinal amostrado é igual à dimensão do sinal original nos instantes de amostragem						
	A amostragem adequada independe dos componentes espectrais, ou seja, das frequências componentes do sinal original						
	8. Além da amostragem, quais são as demais etapas do processo de conversão de um sinal analógico para um sinal digital?						
•	9. Seja um sinal de voz, cuja frequência componente máxima é de 4 kHz. A frequência mínima para amostrar o sinal de modo que propicie sua recuperação e tratamento adequados é						
	Marcar apenas uma oval.						
	4 kHz						
	8 kHz						
	16 kHz						
	32 kHz						
	Não há frequência mínima adequada para amostrar o sinal						

11.	 10. Seja um sinal analógico que é quantizado. Admitindo que o valor máximo do sinal analógico seja de 5 V e o valor mínimo seja de 0 V, se forem utilizados 16 níveis de quantização, qual será o degrau de quantização?
12.	11. No caso do exemplo anterior, o sinal quantizado poderá ser codificado utilizando-se uma palavra cujo tamanho é de Marque todas que se aplicam. 2 bits 3 bits 4 bits 5 bits 6 bits
13.	12. Considerando a conversa da primeira aula, explique com suas palavras porque o processamento de sinais digitais é conveniente e muito utilizado na atualidade.

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários