

Albert, Brzezinski, Ullmann, Zimmermann

Erreicht:

Klausur

Diskrete Mathematik 1 I145

1. Quartal 2018

Name des Prüflings:						Matrikelnummer:			Zenturie:		
					_						
Dauer: 90 min Seiten ohne De					Deckblat	ekblatt 13 Datum: 13. N			. März 2018		
Hilfsmittel: N	Nordaka	demie T	aschenre	echner, S	Stifte, ab	er kein	roter Stab	ilo 88/4	10.		
Bemerkunge Bestehen der Liegen Ihnen	Klausu	r benötiş	gen Sie	50 Punk							
Trennen Sie blätter. Falls a Zusatzseiten a	Sie mit	dem Pla	atz nicht	auskon			_	U	_	_	
Aufgabe:	1	2	3	4	5	6	7	8	9	Prozent:	
Punktzahl:	6	18	10	10	14	11	10	11	10	100	

Datum: 10.3.15	Note: Ergänzungsprüfung:	no
Unterschrift:	Unterschrift:	

Aufgabe 1 (6 Punkte) 5

(1.1) (6 Punkte) Welche der folgenden Aussagen sind wahr? Geben Sie w für wahr oder f für falsch an.

Bewertungshinweis: $\frac{1}{2}$ Punkt für jede richtige Antwort. Kein Abzug für falsche.

$$\{1\} \in \{1, \{1, 2\}, \{\{1\}\}\}$$

$$\{1,2\} \nsubseteq \{1,2,\{1,2\}\}$$

2 ∉ {1, {1, 2}}

15: fn+1 = fn +f1

Seien x, y Objekte. Dann gilt: $\{x, y\} \subseteq \{x\} \Rightarrow x = y$

Für jede Menge M gilt: $M \subseteq P(M)$

$$P(\emptyset) = \emptyset$$

$${x \in \mathbb{N} \mid x^2 - 2 = 0} = {\sqrt{2}}$$

$${x \in \mathbb{Z} \mid x^2 < 0} = {\emptyset}$$

$$1 \in P(\{1, 2\})$$

$$\{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\}$$

Aufgabe 2 (18 Punkte) Seien M und N Mengen.

 \P (2.1) (4 Punkte) Zeichnen Sie die Menge $M \setminus (M \Delta N)$ und die Menge $N \setminus (M \setminus N)$ in zwei Venn-Diagramme ein, indem Sie die Mengen schraffieren.

(2.2) (2 Punkte) Kreuzen Sie die richtige(n) Aussage(n) an.

 $\square \qquad N \setminus (M \setminus N) \subseteq M \setminus (M \, \Delta \, N)$

(2.3) (12 Punkte) Beweisen Sie ggf. die wahre(n) Aussage(n) bzw. widerlegen die falsche(n) Aussage(n) aus (2.2). Nutzen Sie ggf. für das Widerlegen die Mengen $M := \{1, 2, 3\}$ und $N := \{3, 4, 5\}$.

Ullmann, Zimmermann 13. März 2018 $M(M\Delta N) \subseteq M(M)N$ b. KEM XENA X& MIN a: xell/ XCN1XE(MIN) XCN N (XEMAXXIV) M (MaN) EN a (6+a) XENN (XEMV*N XENNXXM VXENNXXNQD+99 XENNXON Wii müssenzeigen, dass wenn Sei x 6 M (MAN) beliesia whr=>XEMN (XEMVXEN) N(XEMVXE) 1 Fall x 6N XEM/(MDN) 2 Fall XEM (XAM VXEN) XEM V XFWON XEMA (XEM A XEN U XAMAKA XENV (XFW/XEN)V(XEW/XF)

Aufgabe 3 (10 Punkte)

(3.1) (1 Punkt) Geben Sie eine formal korrekte Definition der Menge M aller Menschen an.

M= >m mist Monschf

(3.2) (5 Punkte) Formalisieren Sie unter Verwendung der Menge M aus (3.1) und der Aussageform L(x, y) := ,,x liebt y" die folgende Aussage.

Jeder Mensch liebt einen anderen Menschen, aber es gibt trotzdem Menschen, die von keinem anderen Menschen geliebt werden.

mEM: matom 1 Um, m math: Youth: ma+my=> 4 (3.3) (4 Punkte) Negieren Sie die Aussage aus (3.2) und geben Sie diese umgangssprachlich wieder.

JMSM. Ymzem. Mx+mz=> [m,m) Ymzem: Jmsem. mx+my 1 [my,ms

Aufgabe 4 (10 Punkte)

Welche der folgenden Aussagen sind wahr, welche sind falsch? Beweisen Sie die wahre(n) Aussage(n) und widerlegen Sie die falsche(n) Aussage(n).

(4.1) (5 Punkte) $\exists x \in \mathbb{N} \ \forall y \in \mathbb{N} : y \le 3 \Rightarrow 2 + x \le y$.

2-75 = asb

Nos. Yran Byen: y=3 12+x>y
86Nbd:0119 y=1

X>Y=X \

1 = 3 × 2+× > 1 Unit 1 wahr wal + 21 with 1 wahr wal + 21 ×+2=3>1

(4.2) (5 Punkte) $\exists y \in \mathbb{N} \ \forall x \in \mathbb{N} : \underline{x \leq 3} \Rightarrow 2 + x \leq y$.

istwahr

Y=10 ×6N bolishis
1. Fall (x ≤3) Z+x ≤ 10

*42 \(\tau \) \(\tau

f=>woderf

Aufgabe 5 (14 Punkte)

(5.1) (14 Punkte) Beweisen Sie durch vollständige Induktion die folgende Behauptung:

$$\bigvee \sum_{k=1}^{n} \frac{k}{(k+1)!} = \frac{(n+1)! - 1}{(n+1)!}.$$

Korrigieren Sie dafür zunächst die "Ungenauigkeit" bei der Formulierung der Behaup-

$$\frac{|A|(n=1)}{|A|} \cdot \frac{2}{2} = \frac{2}{2}$$

$$\frac{|A|(n=1)}{|A|} \cdot \frac{2}{|A|} = \frac{|A|}{|A|} \cdot \frac{|A|}{|A|}$$

$$\frac{|A|}{|A|} \cdot \frac{|A|}{|A|} \cdot \frac{|A|}{|A|} \cdot \frac{|A|}{|A|}$$

$$\frac{|A|}{|A|} \cdot \frac{|A|}{|A|} \cdot \frac{|A|}{|A|} \cdot \frac{|A|}{|A|}$$

$$\frac{|A|}{|A|} \cdot \frac{|A|}{|A|}$$

$$\frac$$

Aufgabe 6 (11 Punkte)

Gegeben sei die Formel $\alpha := (x \to (y \to z))(y \leftrightarrow z)$.

(6.1) (6 Punkte) Berechnen Sie die KDNF von α mit dem Entwicklungssatz von Shannon.

X(1->(y->z))(y->z) X,y (1->(y->z))(x->z) X,y (1->(y->z)(y->z) X,y (1->(y->z) X,y (1->(

X, y, Z = 1 X, y, Z = 0 X, y, Z = 0 X, y, Z = 0 X, y, Z = 1

XYZ + XYZ + XYZ+XYZ

(6.2) (4 Punkte) Ist die DNF aus (6.1) eine minimale DNF von α ? Begründen Sie Ihre Antwort.

Nein, da YZ+YZ kurzer ist

(6.3) (1 Punkt) Geben Sie eine semantisch äquivalente Formel zu α an, in der genau ein Junktor vorkommt.

Aufgabe 7 (10 Punkte)

Betrachten Sie die Schaltfunktion y, die über das folgende Schaltnetz definiert wird.

4

(7.1) (4 Punkte) Stellen Sie die zu y gehörige Wertetabelle auf.

	x_2	x_1	<i>x</i> ₀	у	
	0	0	0	0	XZXUX
	0	0	1	1	001
	0	1	0	0	010
(0	1	1	0	100
	1	10	8	0	111
(1	0	1	0	× Cont
	1	1	0	0	X- ANY
	1	1	1	1	*

6

(7.2) (6 Punkte) Entwerfen Sie ein Schaltnetz, welches *y* mit möglichst wenigen 2:1 Multiplexern implementiert. Verwenden Sie dabei nur 2:1-Multiplexer.

<u>Hinweis</u>: Die Eingänge und Steuerleitungen dürfen mit 0,1 und Literalen belegt werden.

Aufgabe 8 (11 Punkte)

(8.1) (5 Punkte) Gegeben sei das nachfolgende KV-Diagramm einer Schaltfunktion y. Geben Sie eine minimale KNF von y an.

3

(8.2) (5 Punkte) Gegeben sei das KV-Diagramm aus (8.1). Geben Sie eine minimale DNF von y an.

1

(8.3) (1 Punkt) Würden Sie die Formel aus (8.1) oder aus (8.2) bevorzugen? Begründen Sie Ihre Antwort.

8.2 weil gunstiger

Aufgabe 9 (10 Punkte)

(9.1) (10 Punkte) Zeigen Sie mit Hilfe des Resolutionskalküls die folgende semantische Folgerung.

$$(x \rightarrow y)(y \rightarrow z) \models (x \leftrightarrow y) + z.$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) = y \times y + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

$$(\overline{x} + y)(\overline{y} + \overline{z}) + xy + \overline{x}\overline{y} + \overline{z}$$

Leere Seite für Ihre Notizen

Leere Seite für Ihre Notizen

Viel Erfolg