CS-E5740 Complex Networks, Answers to exercise set 1

Sara Cabodi, Student number: 784287 September 23, 2019

Compile with pdflatex ex_template.tex

Problem 1

a) The adjacency matrix A is

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

b) The edge density of the graph is

$$\rho = \frac{2m}{N(N-1)} = \frac{2*9}{8(8-1)} = \frac{18}{56} = 0.32$$

where m is the number of edges and N is the number of nodes.

c) The degree k_i of a node i is is the number of edges it is incident to.

k_1	k_2	k_3	k_4	k_5	k_6	k_7	k_8
1	1	2	5	3	3	2	1

The degree distribution $P(k) = \frac{N_k}{N}$ are:

	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
Ì	0.125	0.125	0.25	0.625	0.375	0.375	0.25	0.125

d) The mean degree $\langle k \rangle$ of the graph is

$$\langle k \rangle = \sum_{i} \frac{k_i}{N} = \frac{2m}{N} = \frac{2*9}{8} = \frac{9}{4} = 2.25$$

e) The diameter d of the graph is the largest distance in the graph:

$$d = max_{i,j \in V} d_{i,j} = 4$$

The result is obtained calculating every distance between each couple of nodes and taking the maximum one.

f) The clustering coefficient defined for node i as the fraction of edges between its neighbours out of possible edges between its neighbours

$$c_i = \frac{2E_i}{k_i(k_i - 1)}$$

For the nodes with $k_i > 1$

$$-c_{3} = \frac{2*1}{2*1} = 1$$

$$-c_{4} = \frac{2*2}{5*4} = \frac{1}{5} = 0.2$$

$$-c_{5} = \frac{2*2}{3*2} = \frac{2}{3} = 0.67$$

$$-c_{6} = \frac{2*1}{3*2} = \frac{1}{3} = 0.33$$

$$-c_{7} = \frac{2*0}{2*1} = 0$$

The average clustering coefficient is $C = \frac{0+0+1+0.2+0.67+0.33+0+0}{8} = 0.275$

Figure 1: Graph for exercise 1.

Problem 2

a) The Karate club network is shown below

Figure 2: Karate club Network

- b) The edge density of the network is $D = \frac{2*m}{N*(N-1)} = 0.13903743315508021$ and it's the same as the one computed with the NetworkX density function.
- c) The average clustering coefficient computed with my own algorithm is C=0.5706384782076824 and it's the same as the one obtained from the NetworkX function.
- d) The two graphics are shown below

Figure 3: Degree distribution P(k)

Figure 4: Complementary cumulative degree distribution 1-CDF

- e) The average shortest path length $\langle l \rangle$ is 2.408199643493761
- f) The scatter plot of C_i as a function of k_i is

Figure 5: Scatter plot

Problem 3

a) The induced subgraph G^* that is induced by vertices $V^* = \{1,...,4\}$ of network visualized in Figure 1.

Figure 6: Induced subgraph G*.

The table below shows the number of walk of length two between all nodes pairs (i,j).

	1	2	3	4
1	1	1	1	0
2	1	1	1	0
3	1	1	1	0
4	0	0	0	3

The matrix A of the induced graph G* is

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

The matrix A^2 is

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

The two results, one from the first table and the other from matrix A^2 , are equal.

b) There are 3 walks of length three from node 3 to node 4 (3-4-3-4, 3-4-2-4, 3-4-1-4). $(A^3)_{3,4}$ is given by the dot product between the third row of A^2 and the fourth column of A^1 .

$$(\mathbf{A}^3)_{3,4} = a_{3,1}^2 \cdot a_{1,4}^1 + a_{3,2}^2 \cdot a_{2,4}^1 + a_{3,3}^2 \cdot a_{3,4}^1 + a_{3,4}^2 \cdot a_{4,4}^1 = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 0 = 3$$

c) Given the matrix A^m and the adjacency matrix A^1 , I show that the matrix $A^{(m+1)}$ is composed by elements $a_{i,j}^{(m+1)}$ that are the scalar product of the i-th row of A^m and the j-th column of A^1 .

A is a square matrix of size |V| x |V|, with |V| number of vertices.

$$a_{i,j}^{(m+1)} = \sum_{k=1}^{|V|} (a_{i,k}^m \cdot a_{k,j}^1)$$

Where:

- $-\ a^m_{i,k}$ is the number of walks of length m from vertex i to vertex k in matrix \mathbf{A}^m
- $a_{k,j}^1 \in \{0,1\}$ depending if an edge exists between vertex k and vertex j
- $-\sum_{k=1}^{|V|} (a_{i,k}^m \cdot a_{k,j}^1)$ is the number of walks of length m+1 from vertex i to vertex j with last edge (k,j)

The inductive step is thus proved.