Modeling biological processes as stopped random walks

Jonathan Auerbach

jauerba@gmu.edu

EFI and Statistical Ecology Section Webinar

December 2, 2024

Contents

- 1. CLT for Stopped Random Walks
- 2. Application 1: Experimental Data from Charrier et al. (2011)
- 3. Application 2: Observational Data from Marsham (1746-1958)
- 4. Non-asymptotic Model for Stopped Random Walks

Stopped Random Walks

Many biological processes can be modeled as stopped random walks

- e.g., the law of the flowering plants: a flower first blooms in the spring after cumulative temperatures reach a threshold.
 - see Réaumur (1735) and Quetelet (1846) (Auerbach 2023)
 - widely known today as the "growing degree day" model in which temperature exerts a "force" on a plant.
 - explains many processes: leafout, insect emergence, etc.
- A cumulative sum is a random walk (with drift).
 - The walk stops when the threshold is passed.

Simulation

expand for R code

a simulation of the law of flowering plants: a flower first blooms in the spring after cumulative temperatures reach a threshold

Two assumptions

Let $X_i > 0$ denote the force exerted on the plant on day i.

- Assume
 - 1. X_i have common mean μ (the ambient temperature).
 - 2. X_i are independent with common variance σ^2 .
- Both assumptions can be relaxed.
 - e.g., 1. can be replaced with the assumption that X_i have mean μ_i , and $\sum \mu_i$ does not grow too quickly (regularly varying with index 1).

CLT for stopped random walks

Let $S_a^i = \sum_{j=a}^i X_j$ denote the cumulative force from day a to i

Let n_{γ} denote the bloom date.

• Assume the plant blooms when S_a^i first passes γ ,

$$n_{\gamma} = \min\{i: S_a^i \geq \gamma\}$$

When γ is large,

$$n_{\gamma} \stackrel{.}{\sim} ext{Normal}\left(\gamma/\mu + a,\, \gamma \sigma^2/\mu^3
ight)$$

Simulation ($a=32, \gamma=300$)

expand for R code

bloom_date	mean_temp	
2024-03-25	5	
2024-02-28	10	

expand for R code

term	estimate	std.error	statistic	p.value
a	31.62	0.37	86.36	0
γ	297.13	7.09	41.91	0

Three takeaways from CLT

Recall bloom date $n_{\gamma} \sim \text{Normal} \left(\gamma/\mu + a, \, \gamma \sigma^2/\mu^3 \right)$. This imples:

- 1. $\mathbb{E}[n_{\gamma}-a] \propto 1/\mu$ and variance $\mathrm{Var}\left(n_{\gamma}\right) \propto 1/\mu^3$
- 2. γ depends on the temperature scale (°C, °F, etc.) and is only identified if μ is known
- 3. When a unknown, we can count from any b > 0 since for $\delta = a b$,

$$n_{\gamma} + \delta \stackrel{.}{\sim} ext{Normal} \left(\gamma/\mu + \delta, \, \gamma \sigma^2/\mu^3
ight)$$

Experimental Data

- 30 walnut trees (Juglans sp.), 6 genotypes at 2 locations.
 - Stems sampled in November from each tree and cut in 7cm-long pieces with only one bud.
 - Stems chilled (4°C) and then forced (warmed) at different temperatures (5, 10, 15, 20 and 25°C).
- We examine the relationship between:
 - forcetemp: temperature during forcing
 - response.time: (day of budburst) when 50% of buds unfolded (stage 15 of BBCH scale)

expand for R code

forcetemp	response.time	
5	175.88	
10	97.06	
15	31.76	
20	24.71	
25	22.94	

expand for R code

Fit using lm

▶ expand R code

Fit using glm

▶ expand for R code

Fit using Stan

- expand for Stan code
- expand for R code

Observational Data

Observations (Marsham 1746-1958)

- Robert Marsham recorded the first occurrence of 27 signs of spring each year.
 - Marsham family continued to collect the data after Robert's death in 1797
- We model the day leaves first appeared on his oak trees.
 - spring.temp: cumulative daily temperature (2/1 to 4/30)
 - response.time: number of days from January 1 to budburst
- The first day of temperature accumulation, *a*, may vary by year.

Observations (Marsham 1746-1958)

expand for R code

year	response.time	spring.temp
1772	134	398.0
1773	113	541.5
1957	104	701.3
1958	122	472.4

Observations (Marsham 1746-1958)

expand for R code

Fit using lm/glm

▶ expand R code

Fit using Stan

- expand for Stan code
- expand for R code

Non-asymptotic model

One last takeaway from CLT

- In experimental setting, day forcing begins known by design.
 - For observational, day forcing begins not known.
 - Cumulative temperature from 2/1 to 4/30 is a proxy for total force. Proxy is accurate when γ large. Why?
- Recall $n_{\gamma} \sim \text{Normal}\left(\gamma/\mu + a, \, \gamma \sigma^2/\mu^3\right)$ when γ is large.
 - When γ is large, n_{γ} is large, and $n\mu \approx \sum_{i=a}^{n} \mu_{i} \approx \sum_{i=b}^{n} \mu_{i}$ for any a,b << n. i.e., First few μ_{i} don't matter.
 - Argument fails when γ is not large.

Non-asymptotic model

- Assume instead $X_i > 0$ is normal with mean μ_i and variance σ^2 .
- Note that $\mathbb{P}\left(n_{\gamma} \leq m\right) = \mathbb{P}\left(S_a^m > \gamma\right) = \Phi\left(\frac{\sum_{i=a}^m \mu_i \gamma}{\sqrt{m-a}\,\sigma}\right)$ so that the likelihood contribution of each observation is

$$\mathcal{L}\left(\gamma,\sigma,a;\,n_{\gamma},\{\mu_{i}\}
ight)=\Phi\left(rac{\sum_{i=a}^{n_{\gamma}}\mu_{i}-\gamma}{\sqrt{n_{\gamma}-a}\,\sigma}
ight)-\Phi\left(rac{\sum_{i=a}^{n_{\gamma}-1}\mu_{i}-\gamma}{\sqrt{n_{\gamma}-1-a}\,\sigma}
ight)$$

• n.b. $\sum_{i=a}^{n_\gamma} \mu_i = \sum_{i=1}^{n_\gamma} \mu_i \, \mathbb{1}_{i \geq a}$ and

$$1_{i\geq a}pprox (1+\exp(-b(i-a)))^{-1}$$
 when b is large.

- expand for Stan code
- expand for R code (Experimental)

Observational (Marsham 1746-1958)

- expand for Stan code
- expand for R code (Observational)

Conclusion

Model comparison

expand for R code

data	model	$\widehat{\gamma}$	$\widehat{\gamma}_{\mathrm{lower}}$	$\widehat{\gamma}_{\mathrm{upper}}$
Charrier	asymptotic	756	466	1049
Charrier	non- asymptotic	983	790	1175
Marsham	asymptotic	248	212	284
Marsham	non- asymptotic	380	344	415

Summary

- 1. We justified modeling biological process as stopped random walks.
- 2. We reviewed the CLT for stopped random walks.
- 3. We applied the CLT to experimental and observational data.

- Found CLT approximation compared well to non-asymptotic model.
 - The model can be complicated to allow for more covariates or additional variation.

References

- 1. Auerbach, Jonathan. (2023). A demonstration of the law of the flowering plants. Real World Data Science.
 - https://realworlddatascience.net/ideas/tutorials/posts/2023/04/13/flowers.html
- 2. Charrier, G., Bonhomme, M., Lacointe, A., & Améglio, T. (2011). Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? International journal of biometeorology, 55(6), 763-774. https://pubmed.ncbi.nlm.nih.gov/21805380/
- 3. Marsham, R. (1789). XIII. Indications of spring, observed by Robert Marsham, Esquire, FRS of Stratton in Norfolk. Latitude 52° 45'. Philosophical Transactions of the Royal Society of London, (79), 154-156.

