HLS LabB

Prefix Sum and Histogram

摘要

本次Lab共包含Prefix Sum與histogram兩種不同運算的優化

運算說明:

Prefix sum計算的是一個輸入序列的累加值, 具體公式如下:

$$out_0 = in_0$$

 $out_1 = in_0 + in_1$
 $out_2 = in_0 + in_1 + in_2$
 $out_3 = in_0 + in_1 + in_2 + in_3$
...
 $out_n = out_{n-1} + in_n$

原始設計:

```
Prefix sum為top function, in與out皆以maxi介面傳輸。(SIZE = 128)

void perfixsum(int in[SIZE], int out[SIZE]){
  out[0] = in[0];
  for(int i=1; i<SIZE; i++){
    #pragma HLS PIPELINE
    out[i] = out[i-1] + in[i];
}
```


原始設計:

î											T		
Modules & Loops	Issue Type	 Slack	Latency (cycles)	Committee Commit	Iteration Latency		Trip Count	Pipelined	BRAM	DSP	FF I	LUT	URAM
+ perfixsum Pipeline VITIS LOOP 5 1 o VITIS LOOP 5 1	Timing Timing -	-0.001	131	1.590e+03 1.310e+03 1.290e+03	-1	160 131 1		nol nol yesl		-1	1122 (1%) 113 (~0%) -	1704 (3%) 136 (~0%)	

耗時:159個cycles

問題點:out[i-1] 與out[i] 之間存在RAW的memory dependency關係,從memory讀回output array的值需要時間,而這個讀回的動作可以用一個local變數代替,直接減少一次memory存取。

使用local變數優化:

```
Prefix sum為top function, in與out皆以maxi介面傳輸。(SIZE = 128)

void perfixsum(int in[SIZE], int out[SIZE]){
   int A = 0;
   for(int i=0; i<SIZE; i++){
        #pragma HLS PIPELINE rewind
        A += in[i];
        out[i] = A;
   }
```


使用local變數優化:

Ī	+									+			·
Modules & Loops	Issue Type	Slack	Latency (cycles)	The state of the s	Iteration Latency		Trip Count	 Pipelined	BRAM	DSP	FF	LUT	URAM
+ perfixsum + perfixsum_Pipeline_VITIS_LOOP_8_1 o VITIS_LOOP_8_1	Timing Timing		132	1.460e+03 1.320e+03 1.300e+03	- i	147 132 1			4 (1%) - -	- [1384 (2%) 136 (~0%)	

耗時:146個cycles

總執行時間雖然縮短, 但奇怪的是兩者II皆為1, 而主要時間差似乎在loop外面?

使用loop unroll優化:

由於loop unroll需要搭配array partition, 而in與out屬於maxi介面, 因此需要先複製到ocal array, 進行prefix sum運算

後再一次傳輸回去。

```
void perfixsum(int in[SIZE], int out[SIZE]){
    int local in[SIZE], local out[SIZE];
    #pragma HLS ARRAY PARTITION variable=local out cyclic factor=4 dim=1
    #pragma HLS ARRAY PARTITION variable=local in cyclic factor=4 dim=1
    for(int i=1; i<SIZE; i++){</pre>
        local in[i] = in[i];
    int A = 0;
    for (int i=0; i < SIZE; i++) {</pre>
        #pragma HLS UNROLL factor=4
        #pragma HLS PIPELINE
        A += local in[i];
        local out[i] = A;
    for (int i=1; i < SIZE; i++) {
        out[i] = local out[i];
```

使用loop unroll優化:

·										+	+		+
Modules & Loops	Issue Type	Slack	Latency (cycles)	Latency (ns)	Iteration Latency		Trip Count	Pipelined	BRAM	DSP	FF I	LUT	URAM
+ perfixsum	Timing	-0.001	315	3.150e+03	-	316	-	nol	12 (4%)	- 1	1227 (1%)	2152 (4%)	-1
+ perfixsum Pipeline VITIS LOOP 11 1	Timing	-0.001	130	1.300e+03	-1	130	-	nol	- 1	-1	60 (~0%)	77 (~0%)	-
O VITIS LOOP 11 1	-1	7.301	128	1.280e+03	31	11	127	yesl	- 1	-1	-1	-	-
+ perfixsum Pipeline VITIS LOOP 16 2	-	0.61	371	370.0001	- 1	371	-	nol	- 1	- 1	278 (~0%)	259 (~0%)	-
O VITIS LOOP 16 2	- 1	7.301	351	350.0001	51	11	321	yesl	i – I	-1	-1	-	-1
+ perfixsum Pipeline VITIS LOOP 30 3	Timing	-0.001	130	1.300e+03	- J	130	-	nol	-	- 1	48 (~0%)	95 (~0%)	- [
O VITIS_LOOP_30_3	-	7.30	128	1.280e+03	31	1	127	yesl		-	-	-	-

耗時:315個cycles

其中260個cycle是host與local array的傳輸, 而真正prefix sum的運算則降低至34個cycles

(相較前者使用local變數優化需要132個cycles)。

如果prefix sum不是top function, 則可以採用此方案 (因為不需要maxi的傳輸時間)。

在FPGA板子上的執行結果:

運算說明:

Histogram計算的是一個輸入序列中每個值出現的次數分布, 具體範例如下:

原始設計:

Histogram為top function, in與hist皆以maxi介面傳輸。(INPUT_SIZE = 1024, VALUE_SIZE = 128)

```
void histogram(int *in, int *hist) {
   int val;
   for(int i = 0; i < INPUT_SIZE; i++) {
        #pragma HLS PIPELINE
        val = in[i];
        hist[val] += 1;
   }
}</pre>
```


原始設計:

PS: '+' for module; '	0'	for loop	p; '*' f	or dataflow	√									
Modules & Loops		Issue Type		Latency (cycles)		Iteration Latency		Trip Count	 Pipelined	BRAM	DSP	FF	LUT	URAM
+ histogram o VITIS_LOOP_41_1	1	Timing			1.537e+05 1.537e+05		15372 15			4 (1%)		1077 (1%)	1266 (2%)	- -

耗時:15371個cycles

問題:由於hist的讀寫順序不規則, maxi在此情況下讀寫效率極低, 因此loop interval高達15個cycles。

使用local array優化:

為了提高效率,先將 hist複製到local array再進行運算。

```
void histogram(int *in, int *hist){
    int val, local hist[VALUE SIZE];
    for(int i = 0; i < VALUE SIZE; i++){</pre>
        local hist[i] = hist[i];
    for(int i = 0; i < INPUT SIZE; i++) {</pre>
        #pragma HLS PIPELINE
        val = in[i];
        local hist[val] += 1;
    for(int i = 0; i < VALUE SIZE; i++){</pre>
        hist[i] = local hist[i];
```


使用local array優化:

PS: '+' for module; 'o' for loop; '*' for	or (dataflow		1	,				r en					
Modules	1	Issue	1	Latency	Latency	Iteration		Trip	1		 	1	,	1
Loops	1	Type	Slack	(cycles)	(ns)	Latency	Interval	Count	Pipelined	BRAM	DSP	FF I	LUT	URAM
+ histogram	1	Timing	-0.001	2340	2.340e+041		2341		nol	6 (2%)	+- -	1208 (1%)	1849 (3%)	++ -
+ histogram Pipeline VITIS LOOP 9 1		Timing			1.310e+03	-i	131	- i	nol	- i	- i	62 (~0%)		
O VITIS_LOOP_9_1	1	-1	7.301	129	1.290e+03	31	1	128	yes	-1	-1	-1	-1	1 -1
+ histogram Pipeline VITIS LOOP 30 2	1	Timing	-0.001	20521	2.052e+04	-1	2052	- 1	no	-1	-	187 (~0%)	234 (~0%)	-
O VITIS_LOOP_30_2	1	III	7.301	20501	2.050e+04	51	2	1024	yes	-1	-	-1	-1	-1
+ histogram_Pipeline_VITIS_LOOP_36_3	1	Timing	-0.001	131	1.310e+03	-1	131	-	nol	-1	-	46 (~0%)	75 (~0%)	-
O VITIS_LOOP_36_3	1	-1	7.30	129	1.290e+03	31	11	128	yes	-	-	-1	-1	-1

耗時:2340個cycles

II從先前的15降低至2, 而II無法降到1的原因出在hist存在RAW的memory dependency!

消除RAW Memory Dependency:

將次數寫回的時間點延後到下一個迴圈, 若連續次讀到相同 值則先累加, 直到讀到不同值再寫回。

避免了RAW也降低了array的存取次數。

```
void histogram (int *in, int *hist) {
    int val, local hist[VALUE SIZE];
    for (int i = 0; i < VALUE SIZE; i++) {
        local hist[i] = hist[i];
    int old, acc;
    val = in[0];
    acc = local hist[val] + 1;
    #pragma HLS DEPENDENCE variable=local hist intra RAW false
    for (int i = 1; i < INPUT SIZE; i++) {
        #pragma HLS PIPELINE II=1
        old = val;
        val = in[i];
        if (old == val) {
            acc += 1;
        }else{
            local hist[old] = acc;
            acc = local hist[val] + 1;
    local hist[val] = acc;
    for (int i = 0; i < VALUE SIZE; i++) {
        hist[i] = local hist[i];
```

消除RAW Memory Dependency:

PS: '+' for module; 'o' for loop; '*' for dataflow

1														
Modules & Loops		Issue Type	 Slack	Latency (cycles)	Latency (ns)	Iteration Latency	March 19 mg 15	Trip Count	 Pipelined	BRAM	DSP	FF	LUT	URAM
+ histogram	į	Timing	-0.001	1318	1.318e+04	- i	1319	- i	nol	6 (2%)	- 1	1308 (1%)	1928 (3%)	-1
+ histogram Pipeline VITIS LOOP 7 1	1	Timing	-0.001	131	1.310e+03	- 1	131	-	nol	-	- 1	62 (~0%)	77 (~0%)	-1
O VITIS LOOP 7 1	1	-1	7.301	1291	1.290e+03	31	11	128	yes	-	-1	-1	-1	- 1
+ histogram Pipeline VITIS LOOP 15 2	1	Timing	-0.001	1027	1.027e+04	-1	1027	- 1	nol	-	- 1	117 (~0%)	174 (~0%)	-1
O VITIS LOOP 15 2	1	-1	7.301	1025	1.025e+04	4	1	1023	yes	-	- 1	-1	-1	-1
+ histogram Pipeline VITIS LOOP 34 3	1	Timing	-0.001	131	1.310e+03	-1	131	- [nol	-	-	46 (~0%)	75 (~0%)	-1
O VITIS_LOOP_34_3	1	-1	7.30	129	1.290e+03	31	1	128	yesl	-!	-	-1	-	-1

耗時:1318個cycles

消除RAW的memory dependency後II從2進一步降低至1。