

RAJARATA UNIVERSITY OF SRILANKA

FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree

Second Year Semester II Examination -

April / May 2016

MAA 2203 - Numerical Analysis I1

Answer four Questions only.

Time allowed: Two Hours

35

Calculators will be provided.

1.

- I. Calculate the $f[x_1, x_2, x_3, x_4]$ divided difference of $\frac{1}{x^2}$, based on the points x_1, x_2, x_3, x_4 .
- II. Construct the difference table for the sequence of values

 $f(x) = (0,0,0,\epsilon,0,0,0)$, where ϵ is an error. Also show that

- a. The error spreads and increase in magnitude as the order of differences is increased.
- b. The errors in each column have binomial coefficients.

2.

I. The following data for a function f(x, y) is given:

y\x	0	1
0	1	1.414214
1	1.732051	2

Find f(0.25,0.75), using linear interpolation.

II. Find the natural cubic spline interpolate to f at the points $x_0 = 0$, $x_1 = 1$, $x_2 = 2$ and $x_3 = 3$ where $f_0 = 0$, $f_1 = 2$, $f_2 = 1$ and $f_3 = 0$.

[P.T.O]

3.

I. We are given the following values of a function of the variable t:

t	0,1	0.2	0.3	0.4
f	0.76	0.58	0.44	0.35

Obtain a least squares fit of the form $f(t) = ae^{-3t} + be^{-2t}$.

II. Obtain the Chebyshev polynomial approximation of second degree to the function $f(x) = x^3 \text{ on}[0,1]$.

4.

I. Given the following values of f(x) and f'(x)

x	-1	0	1
f(x)	1	1	3
f'(x)	-5	1	7

Estimate the value of f(-0.5) and f(0.5) using the Hermite interpolation.

The exact values are $f(-0.5) = \frac{33}{64}$ and $f(0.5) = \frac{97}{64}$.

II. Obtain the piecewise quadratic interpolating polynomial for the function f(x) defind by the data.

x	-3	-2	-1	1	3	6	7
f(x)	369	222	171	165	207	990	1779

Hence find an approximate value of f(-2.5) and f(6.5).

5.

I. The following values of a function f(x), have been obtained experimentally

x	-1	2	4
f(x)	7.5	9.0	2.2

Use Lagrange method to find a quadratic approximation to f(x). Hence estimate f(0) and the positive value of x for which f(x) = 0. Comment on the likely reliability of these estimates.

II. Two estimate of the original $\int_{0.2}^{1} \left(\frac{1}{2}\right)^x dx$ are given in the table be [P.T.O]

h	Mid point	Trapezium
0.8	0,52780316	0.54822023
0.4		

- a. Obtain the two missing values in the table.
- b. Hence obtain two Simpson rules estimates of the method.
 Give the value of the integral to the accuracy that you consider to be justified from your answers.

