

Universidade do Minho Escola de Engenharia

30/04/2024

Universidade do Minho - Escola de Engenharia

Investigação Operacional - Trabalho Prático 2

Afonso Dionísio A104276 **Diogo Matos** A100741 Gonçalo Costa A100824 Miguel Guimarães A100837

Sumário

1 Dados do Problema	
2 Formulação do Problema	4
2.1 Descrição do Problema	4
2.2 Objetivo	4
2.3 Desenvolvimento do Modelo	4
3 Modelação do Problema	
4 Resolução do Problema com <i>Relax4</i>	8
4.1 Input	9
4.2 Output	
5 Interpretação da Solução Ótima	
6 Validação do Modelo	
7 Conclusão	

1 Dados do Problema

Dado o seguinte grafo que nos é fornecido:

Figura 1: Grafo incluído no enunciado do problema

Foram calculados, de acordo com o enunciado, os dados do problema relativos ao nosso grupo. Sendo o maior número mecanogáfico de aluno entre os membros do grupo o número **104276**, obtivemos os seguintes valores:

Vértices de Origem e Destino			
K (O,D)	K (O,D)		
0: (1,4)	7: (4,1)		
1: (1,5)	8: (5,1)		
2: (1,6)	9: (6,1)		
3: (2,5)	10: (5,2)		
4: (2,6)	11: (6,2)		
5: (3,4)	12: (4,3)		
6: (3,6)	13: (6,3)		

Capacidades dos vértices			
vértice	capacidade		
1	30		
2	120		
3	$+\infty$		
4	80		
5	70		
6	$+\infty$		

Seguindo as regras definidas no enunciado do trabalho prático:

- DE mod $14 = 76 \mod 14 = 6$, pelo que, de acordo com a tabela 'Vértices de Origem e Destino', o vértice de origem O é 3 e o vértice de destino D é 6 (O = 3 e D = 6);
- $k_1 = 10 * (A + C + 1) = 10 * (0 + 2 + 1) = 30;$
- $k_2 = 10 * (B + D + 1) = 10 * (4 + 7 + 1) = 120;$
- $k_3 = O \Rightarrow k_3 = +\infty$;
- $k_4 = 10 * (D+1) = 10 * (7+1) = 80;$
- $k_5 = 10 * (E + 1) = 10 * (6 + 1) = 70;$
- $k_6 = D \Rightarrow k_6 = +\infty$.

Onde $[k_1..k_6]$ são as capacidades dos vértices 1 a 6, respetivamente.

2 Formulação do Problema

2.1 Descrição do Problema

O problema apresentado trata-se de um problema de maximização de fluxo, onde se pretende determinar o fluxo máximo entre dois vértices não-adjacentes, designados O e D, que foram já definidos em (<u>Dados do Problema 1</u>), respeitando as seguintes restrições:

- O fluxo numa aresta pode ter qualquer um dos dois sentidos;
- A capacidade das arestas (linhas) é virtualmente infinita;
- Os vértices têm capacidade, com excepção de O e D.

Este problema é comum e utilizado em diversas áreas, como logística, redes de computadores, transporte e engenharia de produção, para otimizar o uso de recursos e maximizar a capacidade de transporte em sistemas complexos.

2.2 Objetivo

O principal objetivo é determinar a quantidade máxima de fluxo que pode ser enviada do nó de origem O para o nó de destino D numa rede, respeitando as capacidades dos vértices e obedecendo às restrições do problema. Por outras palavras, procura-se encontrar a distribuição mais eficiente do fluxo pelas arestas de modo a maximizar a quantidade total de fluxo que é transportada desde a origem até ao destino.

Alcançar este objetivo requer traduzir o problema para uma rede coerente que respeite as condições estabelecidas e esteja estruturada corretamente, de modo a alcançar uma solução para o problema proposto, ajustando nesse sentido parâmetros como o custo de um arco, a oferta de um vértice ou o consumo de um vértice ou até adicionando novos arcos e vértices que auxiliem a resolução.

2.3 Desenvolvimento do Modelo

A nossa abordagem para a resolução do problema consistiu em definir uma rede onde o vértice de origem apresenta oferta infinita, o vértice de destino apresenta consumo infinito e os restantes vértices apresentam oferta e consumo nulos, tendo todos os vértices custo nulo de modo a não limitar os arcos escolhidos na solução. Desta forma, motiva-se um movimento máximo de fluxo desde a origem até ao destino, no entanto, sem mais alterações, quebra-se uma das restrições fundamentais a um problema de fluxos em rede, a conservação de fluxo, tornando impossível a sua resolução.

Assim, de modo a tornar esta abordagem admissível, torna-se necessário utilizar um vértice auxiliar, que será responsável por compensar fluxo em falta no vértice de destino e receber fluxo adicional do vértice de origem, garantindo assim a conservação de fluxo. Este vértice adicional conecta-se ao vértice de origem e ao vértice de destino através de dois arcos adicionais com sentidos opostos, seja O o vértice de origem, D o vértice de destino e A o vértice auxiliar:

- 1. Arco de origem em O e destino A
- 2. Arco de origem em A e destino D

Onde ambos os arcos são definidos com um custo elevado arbitrário, de modo a garantir que é desmotivada a utilização destes arcos na solução exceto quando estritamente necessário, *i.e.* exceto para garantir a conservação de fluxo, assim como uma capacidade infinita, assegurando que conseguem transportar qualquer quantidade de fluxo e assim responder às necessidades dos vértices.

Chega-se assim a uma modelagem da rede que respeita todas as condições do problema, assim como as restrições de um problema de fluxos em rede, e apresenta um mecanismo que permite alcançar o objetivo do problema e obter uma solução ótima para o mesmo.

3 Modelação do Problema

Estabelecida a abordagem a executar para a resolução do problema, foi possível avançar para a sua modelação e eventual processamento pelo *software Relax4*.

Primeiramente, foram calculadas as capacidades de cada arco da rede a apartir das capacidades de cada vértice, já calculadas em <u>Dados do Problema 1</u>, o que se obtém da seguinte forma:

$$u_{ij} = \min(v_i, v_j)$$

Onde v_i representa a capacidade do vértice i e u_{ij} a capacidade do arco com origem em i e destino em j com $i,j\in\mathbb{N}$. Chegando assim aos seguintes valores de capacidade:

Capacidades dos arcos		
$u_{12}=u_{21}=\min(30,120)=30$		
$u_{13}=u_{31}=\min(30,+\infty)={\bf 30}$		
$u_{23}=u_{32}=\min(120,+\infty)={\bf 120}$		
$u_{24}=u_{42}=\min(120,80)=80$		
$u_{45}=u_{54}=\min(80,70)=\textbf{70}$		
$u_{46}=u_{64}=\min(80,+\infty)=80$		
$u_{56}=u_{65}=\min(70,+\infty)={\bf 70}$		

Estes valores permitiram a representação do problema sob o formato de uma rede, que se apresenta de seguida, onde os valores associados aos arcos, (c_{ij},u_{ij}) , representam o custo unitário de transporte e a capacidade do arco, respetivamente, e os valores associados aos vértices representam ofertas e consumos. Em arestas onde o fluxo tem qualquer um dos dois sentidos, assume-se que o valor associado aplica-se a ambos os arcos contidos na aresta, ou seja, aplica-se em ambos os sentidos.

Figura 2: Rede resultante da representação do modelo desenvolvido

Na figura, o nó x representa o vértice auxiliar, mencionado em <u>Desenvolvimento do Modelo 2.3</u>, e assume-se o valor arbitrário 1000 como o valor do custo dos arcos que este envolve.

Com a modelação do problema bem definida, foi possível prosseguir com a tradução da mesma para um formato aceitado pelo programa *Relax4*, usado no cálculo da solução ótima.

4 Resolução do Problema com Relax4

Devido a uma limitação do *software* de otimização a ser utilizado, *Relax4*, é necessário utilizar um método auxiliar para a representação dos vértices definidos, onde cada vértice é subdivido em dois, um responsável por receber fluxo proveniente de outros vértices e outro responsável por enviar fluxo para outros vértices. Estes ligam-se através de um arco de custo nulo e capacidade infinita, com origem no vértice "recetor" e destino no vértice "emissor". A figura seguinte representa esta estrutura:

Deste modo, considerando um vértice exemplar b de um modelo arbitrário, um arco com destino no vértice b teria agora destino no vértice b' e um arco com origem no vértice b teria agora origem no vértice b''.

Cada um destes vértices tem de ser representado no ficheiro de *input* por um número, sendo que o *Relax4* não permite representações de vértices sob a forma de caracteres não numéricos. Assim, foi considerada a seguinte representação:

vértice	número	vértice'	número
1	1	1′	7
2	2	2′	8
3	3	3′	9
4	4	4′	10
5	5	5′	11
6	6	6′	12
x	13	x'	14

Tabela 4: Correspondência entre os vértices definidos e a sua representação numérica

Para além disso, o conceito de infinidade não existe no *Relax4*, pelo que os valores infinitos considerados até agora serão substituídos por um valor arbitrário alto, que foi definido como 1000, mas poderia ser qualquer outro valor suficientemente alto.

4.1 Input

Com todos os ajustes necessários para a introdução do modelo no *Relax4*, foi possível a escrita do ficheiro de *input*, de acordo com o formato definido:

```
<nº de vértices>
<nº de arcos>
<nº vértice origem> <nº vértice destino> <custo> <capacidade>
... (restantes arcos)
<oferta/consumo no vértice 1>
... (restantes vértices)
<oferta/consumo no vértice 14>
```

Onde uma oferta é representada por um valor positivo e um consumo por um valor negativo, obtendo assim o seguinte ficheiro introduzido:

```
14
25
9 1 0 30
7 3 0 30
9 2 0 120
8 3 0 120
9 5 0 70
11 3 0 70
7 2 0 30
8 1 0 30
8 4 0 80
10 2 0 80
11 4 0 70
10 5 0 70
11 6 0 70
12 5 0 70
10 6 0 80
12 4 0 80
14 6 1000 1000
9 13 1000 1000
1 7 0 1000
2 8 0 1000
3 9 0 1000
4 10 0 1000
5 11 0 1000
6 12 0 1000
13 14 0 1000
0
0
0
0
-1000
0
0
1000
0
0
0
```

0

4.2 Output

Fornecendo este ficheiro ao Relax4 através do portal online, obtém-se o seguinte output:

```
NUMBER OF NODES = 14, NUMBER OF ARCS = 25
DEFAULT INITIALIZATION USED
***********
Total algorithm solution time = 0.0030708313 sec.
OPTIMAL COST = 1700000.
NUMBER OF ITERATIONS = 27
NUMBER OF MULTINODE ITERATIONS = 2
NUMBER OF MULTINODE ASCENT STEPS = 1
NUMBER OF REGULAR AUGMENTATIONS = 4
***********
----- begin dimacs-format results -----
s 1700000.
f 9 1 0
f 7 3 0
f 9 2 80
f 8 3 0
f 9 5 70
f 11 3 0
f 7 2 0
f 8 1 0
f 8 4 80
f 10 2 0
f 11 4 0
f 10 5 0
f 11 6 70
f 12 5 0
f 10 6 80
f 12 4 0
f 14 6 850
f 9 13 850
f 1 7 0
f 2 8 80
f 3 9 0
f 4 10 80
f 5 11 70
f 6 12 0
f 13 14 850
----- end dimacs-format results -----
```

5 Interpretação da Solução Ótima

Sabendo que o *output* devolvido segue o seguinte formato:

```
s <custo ótimo> f < n^{\circ} vértice origem> < n^{\circ} vértice destino> < fluxo> ... (restantes arcos)
```

A solução pode ser interpretada sob a forma de uma rede, onde os valores associados aos arcos representam o fluxo transportado pelo mesmo e onde os arcos sem valor definido têm fluxo nulo, obtendo-se a seguinte figura:

Figura 4: Rede resultante da interpretação da solução devolvida

Onde a azul foram representados os arcos envolvidos na solução ótima do nosso problema e a vermelho os arcos envolvidos no mecanismo auxiliar utilizado.

Pela análise da figura, facilmente se conclui que o fluxo máximo sugerido pela solução é 150, tanto pela soma do fluxo total que chega ao vértice de destino (80 + 70 = 150), tanto como pela subtração da quantidade de fluxo proveniente de x ao valor de consumo de 6 (1000 - 850 = 150). O custo ótimo apresentado no output é irrelevante para o nosso problema, sendo proveniente do custo colocado nos arcos auxiliares (850 * 1000 * 2 = 1,700,000).

6 Validação do Modelo

Interpretada a solução, é crucial assegurar que a mesma é, de facto, uma solução ótima, que cumpre todas as restrições definidas e que faz sentido na prática.

Numa abordagem inicial, é importante verificar que a solução dada respeita todas as condições definidas, assim como as restrições inerentes a um problema de transporte. Nomeadamente, que as capacidades dos vértices são respeitadas. Assim, seja v_i a capacidade do vértice i e r_i o fluxo total recebido no vértice i, $i \in [1, 2, 3, 4, 5, 6, x]$, confirma-se que:

$$\begin{split} r_1 &= 0 \leq v_1 = 30 \\ r_2 &= 80 \leq v_2 = 120 \\ r_3 &= 1000 \leq v_3 = 1000 \\ r_4 &= 80 \leq v_4 = 80 \\ r_5 &= 70 \leq v_5 = 70 \\ r_6 &= 1000 \leq v_6 = 1000 \\ r_x &= 850 \leq v_x = 1000 \end{split}$$

Pelo que as capacidades de todos os vértices são respeitadas.

Outra restrição a ser respeitada é a conservação de fluxo, onde se prova necessário examinar cada nó individualmente para garantir que a quantidade total de fluxo que o mesmo recebe é equivalente à quantidade total de fluxo que é enviado. Analisando os vértices onde o fluxo recebido/enviado não é nulo, seja r_i o fluxo total recebido pelo vértice i e e_i o fluxo total enviado pelo vértice i, $i \in [2,3,4,5,6,x]$, observa-se que:

$$r_2 = 80 = e_2 = 80$$

$$r_3 = 1000 = e_3 = 1000$$

$$r_4 = 80 = e_4 = 80$$

$$r_5 = 70 = e_5 = 70$$

$$r_6 = 1000 = e_6 = 1000$$

$$r_x = 850 = e_x = 850$$

Pelo que existe conservação de fluxo em todos os vértices com fluxo.

Adicionalmente, podemos verificar que o fluxo total enviado do vértice de origem (3) é equivalente ao fluxo total recebido pelo vértice de destino (6). Tendo em conta as variáveis já definidas anteriormente, verifica-se que:

$$e_3 = 1000 = r_6 = 1000$$

Pelo que há conservação de fluxo desde a origem até ao destino.

Finalmente, é crucial verificar que a solução dada é de facto ótima, o que se pode verificar facilmente neste problema em concreto através de uma prova por contradição. Assumindo que o fluxo máximo do vértice 3 até ao vértice 6 era de facto superior a 150, a soma das capacidades dos arcos com destino no vértice 6 (ignorando os arcos auxiliares utilizados) teria de ser não só superior a 150 mas também maior

ou igual ao valor de fluxo máximo. Ora, assumindo a notação utilizada em Modelação do Problema 3, facilmente se verifica que $c_{46}+c_{56}=80+70=150 \not> 150$, pelo que se prova impossível que o fluxo máximo recebido pelo vértice de destino (6) seja superior a 150, consequentemente provando que a solução dada é uma solução ótima para o problema.

7 Conclusão

Com base na solução obtida e na validação das restrições, condições e coerência do problema, podemos concluir que o modelo desenvolvido é robusto e eficaz na resolução do problema de fluxo máximo, fornecendo uma solução ótima que maximiza o fluxo entre a origem e o destino.