Name: Richard

R. Hammack

Score:____

1. Prove that x is odd if and only if x^2 is odd.

Proof First we use direct proof to prove that if x is odd, then χ^2 is odd. Assume x is odd. Then $\chi = 2a+1$ for some then χ^2 is odd. Assume χ is odd. Then $\chi = 2a+1$ for some $\chi \in \mathbb{Z}$. Consequently $\chi^2 = (2a+1)^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$. Therefore $\chi^2 = 2b+1$, where $h = 2a^2 + 2a \in \mathbb{Z}$, Consequently χ^2 is odd.

Conversely we will show that if χ^2 is odd, then χ is odd. For this we use contrapositive proof, suppose χ is not odd. Then χ is even, so $\chi = 2a$ for some $a \in \mathbb{Z}$. Then $\chi^2 = (2a)^2 = 4a^2 = 2(2a^2)$, so χ^2 is not odd.

2. Prove: There is a set X for which $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$.

Proof Let $X = \{N\} \cup N = \{N, 1, 2, 3, 4, \dots\}$ = $\{\{1, 2, 3, 4, \dots\}, 1, 2, 3, 4, \dots\}$

Then NEX and INEX.

3. Suppose $A = \{6a + 15b : a, b \in \mathbb{Z}\}$ and $B = \{x \in \mathbb{Z} : 3 \mid x\}$. Prove that A = B.

Proof First we will show that A EB. Suppose $x \in A$. Then x = 6a + 15b for some $a, b \in \mathbb{Z}$, which means x = 3(2a+5b), and hence 3|a|from which it follows that & EB. Therefore A EB. Next we show that BEA. Let x = B. Then 3/x so x = 3b for some $c \in \mathbb{Z}$. Then x = 3b ==3.b.1=3b(-4+5)=-i2b+15b=6(-2c)+15b.That is, x = 6(-2c) + 15b = 6a + 15b (where a = -2c). Because x = 6a + 15b for a, b ∈ Z, it follows that $x \in A$. This establishes that $B \subseteq A$.

Since ASB and BSA, it follows that A=B. 1

4. Suppose R is a symmetric and transitive relation on a set A, and there is an element $a \in A$ for which aRxfor every $x \in A$. Prove that R is reflexive.

Proof (Direct) Suppose R is transitive and symmetric and there is an element a EA for which aRx for every $x \in A$.

We now show that R is reflexive, that is, ZRX for all XEA.

Because aRx for all XEA and Ris symmetric, it follows that xRa for all xEA. In other words, (XRa) \((aRx)\) for all x in A, But R is transitive, so for all XEA we have $(xRa)N(aRx) \Rightarrow xRx$.

Therefore XRX for all XEA, which means R is reflexive.

5. Suppose $n \in \mathbb{N}$. Use induction to prove that $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

Proof (Induction)

If n=1, this statement is 13= 12(1+1)2; which Simplifies to the (true) statement $t = \frac{2^2}{4}$.

Now suppose the statement is true for some h=k≥1,

that is, suppose $1^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{k^2(k+1)^2}{4}$.

Then: 13+23+33+...+ K3+ (R+1)3

$$= \frac{4}{K^2(1+K)^2 + 4(K+1)^3}$$

$$= \frac{(1+K)^{2}(k^{2}+4(K+1))}{4}$$

$$= \frac{(1+1)^{2}(R^{2}+4K+4)}{4}$$

$$=\frac{(1+K)^{2}(k+2)^{2}}{4}=\frac{(k+1)^{2}(k+1+1)^{2}}{4}$$

We have shown that

Ve have shown that
$$|^{3} + 2^{3} + 3^{3} + \cdots + |^{3} + |^{3$$

that is, the statement is true for n = k+1.

This completes the proof by induction

6. Use induction or smallest counterexample to prove that $24 \mid (5^{2n} - 1)$ for every integer $n \geq 0$.

Proof (Induction)

- D If n=0 the statement is 24/(5°-1) which reduces to 24/0, which is true.
- 2 Now assume the statement is true for some n=k>1, that is, assume $24/(5^{2k})$. This means $5^{2k}-1=24c$ for some $c\in\mathbb{Z}$.

Then
$$5^2(5^{2k}-1)=5^2.240^{-k}$$

$$5^{2k+2} - 25 = 25 \cdot 24 C$$

$$5^{2k+2} - 25 + 24 = 25 \cdot 240 + 24$$

$$5^{2(k+1)}-1 = 24(25c+1)$$

Thus $24/(5^{2(k+1)}-1)$, so the statement is true for n=k+1.

This completes the proof by induction E

7. Prove that if X and Y are sets and $\mathscr{P}(X) \subseteq \mathscr{P}(Y)$, then $X \subseteq Y$.

Proof (Direct) Suppose X and Y are sets and $P(x) \subseteq P(Y)$. We will show that $X \subseteq Y$. Suppose $X \in X$. Then $\{x\} \subseteq X$, so $\{x\} \in P(X)$ and because $P(X) \subseteq P(Y)$ it follows that $\{x\} \in P(Y)$. This means $\{x\} \subseteq Y$, that is $X \in Y$.

8. Consider the relation on the set $A = \{1, 2, 3, 4, 5\}$ defined as $R = \{(x, y) : x \text{ is even and } y \text{ is odd}\}$.

(b) Is R transitive? Explain.

No However we pick x, y, Z ∈ A, the statement $(xRy)\Lambda(yRZ)$ is false so $(xRy)\Lambda(yRZ) \Rightarrow xRZ$ is 9. Prove or disprove: Every transitive and symmetric relation is reflexive.

This is false. For a counterexample consider the following relation on $\{a, b, c\}$: $R = \{(a, a), (a, b), (b, a), (b, b)\}$

(a) (c)

This is transitive and symmetric but not reflexive