1) KB = $\{p \rightarrow q, \neg q, \neg r\}$. Chứng minh: $\neg (p \lor r)$

- Chứng minh bằng suy diễn + tương đương logic:

- Áp dụng luật Modus Tollen cho (1), (2) ta có:
 - $\neg p$ (4)
- Sau đó áp dụng And-Introduction cho (3), (4) ta được:
 - $\neg p \land \neg r \quad (5)$
- Áp dụng tương đương De Morgan cho (5) ta được:

$$\neg (p \lor r)$$

- CM bằng Vương Hạo:

B1: $p \rightarrow q$, $\neg q$, $\neg r \rightarrow \neg (p \lor r)$ tương đương với

$$\neg p \lor q, \neg q, \neg r \mathbin{\rightarrow} \neg (p \lor r)$$

B2: Chuyển vế các GT (giả thuyết), KL (kết luận) có dạng phủ định:

$$\neg p \lor q, (p \lor r) \rightarrow q, r$$

B3: Thay ∧ trong GT, ∨ trong KL bởi dấu phẩy (,) -- không có

B4: Tách ∨ trong GT thành các dòng con:

- - $\neg p, p \rightarrow q, r$ tương đương với $p \rightarrow p, q, r$ (được chứng minh)
 - $\neg p, r \rightarrow q, r$ tương đương với $r \rightarrow p, q, r$ (được chứng minh)
- \circ q, p \vee r \rightarrow q, r; mệnh đề này được tách thành 2 dòng con tiếp theo:
 - $q, p \rightarrow q, r$ (được chứng minh)
 - $q, r \rightarrow q, r$ (được chứng minh)

Vì cả 4 dòng con đều có chung một biến mệnh đề ở cả 2 phía nên vấn đề được chứng minh.

- CM bằng Hợp giải (resolution):

KB: $\{\neg p \lor q, \neg q, \neg r \}$.

Thêm phủ định biểu thức cần chứng minh vào KB:

KB: $\{\neg p \lor q, \neg q, \neg r, p \lor r\}$

B1: Biến hợp giải \mathbf{p} , hợp giải 2 mệnh đề $\neg \mathbf{p} \lor \mathbf{q}$ và $\mathbf{p} \lor \mathbf{r}$ được $\mathbf{q} \lor \mathbf{r}$.

KB: $\{q \lor r, \neg q, \neg r\}$

B2: Chưa có 2 mệnh đề đối ngẫu, nên chọn biến hợp giải tiếp theo là \mathbf{q} , hợp giải 2 mệnh đề $\mathbf{q} \vee \mathbf{r}$ và $\neg \mathbf{q}$ ta được \mathbf{r}

KB: { r, $\neg r$ } $coldsymbol{o}$ 2 mệnh đề r và $\neg r$ đối ngẫu nhau nên biểu thức ban đầu được chứng minh.

(1)

2) KB = $\{p \land (\neg p \lor q)\}$. Chứng minh: q

- Chứng minh bằng suy diễn + tương đương logic:
 - o Áp dung And-Elimation cho (1) ta được:

$$\neg p \lor q$$
 (2)

o Áp dụng Disjunctive Syllogism cho (2), (3) ta được:

q, (because
$$\frac{\neg p \lor q, \neg(\neg p)}{\therefore q}$$
)

- CM bằng Vương Hạo:

B1: Giả thuyết và kết luận:

$$p \land (\neg p \lor q) \rightarrow q$$

B2: Chuyển vế các GT (giả thuyết), KL (kết luận) có dạng phủ định:

(không có)

B3: Thay ∧ trong GT, ∨ trong KL bởi dấu phẩy (,)

$$p, \neg p \lor q \rightarrow q$$

B4: Tách v trong GT thành các dòng con:

$$p\;,\;\neg p\to q \quad \text{ tương đương với } \quad \pmb{p}\to \pmb{p},\, q \qquad (\text{được chứng minh})$$

$$p, q \rightarrow q$$
 (được chứng minh)

Vì cả 2 dòng con đều có chung một biến mệnh đề ở cả 2 phía nên vấn đề được chứng minh.

- CM bằng Hợp giải (resolution):

KB: { $p \land (\neg p \lor q)$ }. Thay thế \land bởi dấu phẩy,

KB:
$$\{p, \neg p \lor q\}$$

Thêm phủ định biểu thức cần chứng minh vào KB:

KB:
$$\{p, \neg p \lor q, \neg q\}$$

B1: Biến hợp giải \mathbf{p} , hợp giải 2 mệnh đề \mathbf{p} và $\neg \mathbf{p} \vee \mathbf{q}$ ta được \mathbf{q} .

KB: $\{q, \neg q\}$ có 2 mệnh đề \mathbf{q} và $\neg \mathbf{q}$ đối ngẫu nhau nên biểu thức ban đầu được chứng minh.

(1)

3) KB = $\{(p \lor q) \land (\neg p \lor r)\}$. Chứng minh: $(q \lor r)$

- Chứng minh bằng suy diễn + tương đương logic:
 - o Áp dung And-Elimation cho (1) ta được:

$$(p \vee q) \qquad (2)$$

$$(\neg p \lor r)$$
 (3)

o Áp dụng Luật hợp giải cho (2), (3) ta được:

(q
$$\vee$$
 r), because $\frac{p \vee q, \neg p \vee r}{\therefore q \vee r}$

- CM bằng Vương Hạo:

B1:
$$(p \lor q) \land (\neg p \lor r) \rightarrow q \lor r$$

B2: Chuyển vế các GT (giả thuyết), KL (kết luận) có dạng phủ định:

(không có)

B3: Thay ∧ trong GT, ∨ trong KL bởi dấu phẩy (,)

$$p \lor q, \neg p \lor r \to q, r$$

B4: Tách v trong GT thành các dòng con:

o p, $\neg p \lor r \to q$, r; mệnh đề này được tách thành 2 dòng con tiếp theo:

$$p, \neg p \rightarrow q, r$$
 tương đương với $p \rightarrow p$, q, r (được chứng minh) $p, r \rightarrow q, r$ (được chứng minh)

 \circ q, $\neg p \lor r \rightarrow q$, r; mệnh đề này được tách thành 2 dòng con tiếp theo:

$$\mathbf{q}, \neg p \rightarrow \mathbf{q}, r$$
 tương đương với $\mathbf{q} \rightarrow p$, \mathbf{q}, r (được chứng minh)

 $q, r \rightarrow q, r$ (được chứng minh)

Vì cả 4 dòng con đều có chung một biến mệnh đề ở cả 2 phía nên vấn đề được chứng minh.

- CM bằng Hợp giải (resolution):

KB:
$$\{(p \lor q) \land (\neg p \lor r)\}$$
. Thay thế \land bởi dấu phẩy,

KB:
$$\{p \lor q, \neg p \lor r\}$$

Phủ định biểu thức cần chứng minh: $\neg (q \lor r)$ tương đương với:

$$\neg q \wedge \neg r$$

Thêm phủ định biểu thức cần chứng minh vào KB và thay thế ∧ bởi dấu phẩy

KB: {
$$p \lor q$$
, $\neg p \lor r$, $\neg q$, $\neg r$ }

B1: Biến hợp giải \mathbf{q} , hợp giải 2 mệnh đề $\neg \mathbf{q}$ và $\mathbf{p} \lor \mathbf{q}$ ta được \mathbf{p} .

KB:
$$\{p, \neg p \lor r, \neg r\}$$

B2: Biến hợp giải \mathbf{p} , hợp giải 2 mệnh đề \mathbf{p} và $\neg \mathbf{p} \vee \mathbf{r}$ ta được \mathbf{r}

KB: $\{r, \neg r\}$ có 2 mệnh đề \mathbf{r} và $\neg \mathbf{r}$ đối ngẫu nhau nên biểu thức ban đầu được chứng minh.