Word Embedding

Changzhi Sun

East China Normal University changzhisun@stu.ecnu.edu.cn

October 26, 2016

Overview

Introduction

2 Traditional Embedding Models

Multiview Embedding

One-hot Representation

- motel: [0, 1, 0, 0]
- hotel: [0, 0, 0, 1]

One-hot Representation

- motel: [0, 1, 0, 0]
- hotel: [0, 0, 0, 1]
- curse of dimensionality
- similarity

One-hot Representation

- motel: [0, 1, 0, 0]
- hotel: [0, 0, 0, 1]
- curse of dimensionality
- similarity

Distributed Representation

- motel: [0.856, -0.732, 0.119, 0.503]
- hotel: [0.744, -0.621, 0.008, 0.392]

Core

- utilize contextual information for representation
 - similar context should have similar representation

Core

- utilize contextual information for representation
 - similar context should have similar representation
- 2 options: full document vs windows
 - word-document co-occurrence matrix
 - will give general topics
 - word-word co-occurrence matrix
 - capture both syntactic and semantic information
 - window length (more common: 5-10)
 - symmetric (irrelevant whether left or right context)

Core

- utilize contextual information for representation
 - similar context should have similar representation
- 2 options: full document vs windows
 - word-document co-occurrence matrix
 - will give general topics
 - word-word co-occurrence matrix
 - capture both syntactic and semantic information
 - window length (more common: 5-10)
 - symmetric (irrelevant whether left or right context)
- matrix factorization (SVD) for dimensionality reduction

Window based Co-occurence Matrix

- I like deep learning.
- I like NLP.
- I enjoy flying.

counts	1	like	enjoy	deep	learning	NLP	flying	
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

SVD of Co-occurence Matrix

• \hat{X} is the best rank k approximation to X, in terms of least squares

Hacks to X

Hacks

- \bullet problems: function words (the, he, has) are too frequent \to syntax has too much impact. Some fixes:
 - min(X, t) with $t \sim 100$
 - ignore them all
- ramped windows that count closer words more
- use Pearson correlations instead of counts, then set negative values to
 0
- +++

Directly Learn Word Vector

Models

- Skip-gram
- CBOW
- NNLM
- C&W
- GloVe
- ...

Main idea

- instead of capturing co-occurrence counts directly
- predict surrounding words of every word (window length)

Main idea

- instead of capturing co-occurrence counts directly
- predict surrounding words of every word (window length)
- fast and can easily incorporate a new sentence or add a word to the vocab

Main idea

- instead of capturing co-occurrence counts directly
- predict surrounding words of every word (window length)
- fast and can easily incorporate a new sentence or add a word to the vocab
- object function: maximize the log probability of any context word given the current center word

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} log \ p(w_{t+j}|w_t)$$
$$p(w_O|w_I) = \frac{exp(v_{w_O}'^T v_{w_I})}{\sum_{w=1}^{W} exp(v_w'^T v_{w_I})}$$

- v and v' are input and output vector representation of w
- every word has two vectors
- dynamic logistic regression

$$\frac{\exp(u_O^T v_C)}{\sum_{w=1}^W \exp(u_w^T v_C)}$$

$$\frac{\exp(u_O^T v_C)}{\sum_{w=1}^W \exp(u_w^T v_C)}$$

$$\frac{\partial J}{\partial v_C} = u_O - \frac{\partial \log \sum_{w=1}^W \exp(u_w^T v_C)}{\partial v_C}$$

$$\frac{\exp(u_O^T v_C)}{\sum_{w=1}^W \exp(u_w^T v_C)}$$

$$\frac{\partial J}{\partial v_C} = u_O - \frac{\partial \log \sum_{w=1}^W \exp(u_w^T v_C)}{\partial v_C}$$

$$= u_O - \frac{1}{\sum_{w=1}^W \exp(u_w^T v_C)} \sum_{x=1}^W (\exp(u_x^T v_C) u_x)$$

$$\frac{exp(u_O^T v_C)}{\sum_{w=1}^W exp(u_w^T v_C)}$$

$$\frac{\partial J}{\partial v_C} = u_O - \frac{\partial \log \sum_{w=1}^W exp(u_w^T v_C)}{\partial v_C}$$

$$= u_O - \frac{1}{\sum_{w=1}^W exp(u_w^T v_C)} \sum_{x=1}^W (exp(u_x^T v_C) u_x)$$

$$= u_O - \sum_{x=1}^W (\frac{exp(u_x^T v_C)}{\sum_{w=1}^W exp(u_w^T v_C)} u_x)$$

$$\frac{exp(u_O^T v_C)}{\sum_{w=1}^W exp(u_w^T v_C)}$$

$$\frac{\partial J}{\partial v_C} = u_O - \frac{\partial \log \sum_{w=1}^W exp(u_w^T v_C)}{\partial v_C}$$

$$= u_O - \frac{1}{\sum_{w=1}^W exp(u_w^T v_C)} \sum_{x=1}^W (exp(u_x^T v_C) u_x)$$

$$= u_O - \sum_{x=1}^W (\frac{exp(u_x^T v_C)}{\sum_{w=1}^W exp(u_w^T v_C)} u_x)$$

$$= u_O - \sum_{x=1}^W (P(w_x | w_C) u_x)$$

- large vocabularies
 - train too slowly and not scalable

- large vocabularies
 - train too slowly and not scalable
- hierarchical softmax (WordNet)

- large vocabularies
 - train too slowly and not scalable
- hierarchical softmax (WordNet)

negative sampling

$$\log \sigma(v_{w_O}^{\prime T} v_{w_I}) + \sum_{i=1}^k \mathbf{E}_{w_i \sim P_n(w)}[\log \sigma(-v_{w_i}^{\prime T} v_{w_I})]$$

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{-c \le j \le c, j \ne 0} P(w_{i+j} | w_i)$$

$$P(w_i | w_j) = \frac{\exp(v_i^{T} v_j)}{\sum_{w_i} \exp(v_i^{T} v_j)}$$

CBOW

Continued Bag of Words Model

$$\frac{1}{N} \sum_{i=1}^{N} P(w_i \mid w_{i-k}, w_{i-k+1}, \dots, w_{i-1}, w_{i+1}, \dots, w_{i+k-1}, w_{i+k})$$

$$P(w_i \mid C_i) = \frac{\exp(v_i^{T} v_{C_i})}{\sum_{w_i} \exp(v_i^{T} v_{C_i})}$$

$$v_{C_i} = \sum_{j \in C_i} v_j$$

NNLM

Neural Network Language Model

$$y = b + Wx + U \tanh(d + Hx)$$

$$x = (C(w_{t-1}), C(w_{t-2}), \dots, C(w_{t-n+1}))$$

$$\theta \leftarrow \theta + \varepsilon \frac{\partial \log \hat{P}(w_t | w_{t-1}, \dots w_{t-n+1})}{\partial \theta}$$

C&W

目标函数 $\max(0, 1 - s(w, c) + s(w', c))$

GloVe

Global Vector

	w1	w2	w3	w4
w1		2	4	1
w2	2		3	
w3	4	3		1
w4	1		1	

Evaluation Task

- analogy task
 - syn: predict predicting \approx dance dancing
 - sem: king queen \approx man woman
- similarity task

•
$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- tfl
- sentiment classification
- NER, POS tag

Model Conclusion

Model	Relation of w, c	Representation of c	
Skip-gram	c predicts w	one of c	
CBOW	c predicts w	average of c	
Order	c predicts w	concatenation	
LBL	c predicts w	compositionality	
NNLM	c predicts w	compositionality	
C&W	C&W scores w, c		

- no perfect match, only match perfect
 - using domain corpus training

- no perfect match, only match perfect
 - using domain corpus training
- more corpus better performance
 - ullet small corpus o simple model (Skip-gram)
 - $\bullet \ \, \text{huge corpus} \to \text{complex model (NNLM, C\&W)}$

- no perfect match, only match perfect
 - using domain corpus training
- more corpus better performance
 - small corpus \rightarrow simple model (Skip-gram)
 - huge corpus \rightarrow complex model (NNLM, C&W)
- domain more important than data size

- no perfect match, only match perfect
 - using domain corpus training
- more corpus better performance
 - small corpus → simple model (Skip-gram)
 - huge corpus → complex model (NNLM, C&W)
- domain more important than data size
- embedding size > 50

- no perfect match, only match perfect
 - using domain corpus training
- more corpus better performance
 - small corpus → simple model (Skip-gram)
 - huge corpus → complex model (NNLM, C&W)
- domain more important than data size
- embedding size > 50
- regularization
 - weight decay, early stop, drop out

- no perfect match, only match perfect
 - · using domain corpus training
- more corpus better performance
 - small corpus → simple model (Skip-gram)
 - huge corpus → complex model (NNLM, C&W)
- domain more important than data size
- embedding size > 50
- regularization
 - weight decay, early stop, drop out
- other tricks
 - batch normalization
 - momentum

Learning Multiview Embeddings of Twitter Users

Motivation & Contributions

- capture information from all aspects of user's online life
 - their tweets
 - tweets of mentioned users
 - friends
 - followers
- GCCA can learn a vector from each of views
- betten than concatenating views into a single vector
- evaluation

Generalized Canonical Correlation Analysis

GCCA

$$\underset{G,U_i}{\operatorname{argmin}} \sum_{i} ||G - X_i U_i||_F^2 \quad s.t.G'G = I$$

- $X_i \in \mathbb{R}^{n \times d_i}$, data matrix for the *i*th view
- $U_i \in \mathcal{R}^{d_i \times k}$, mapping matrix
- $G \in \mathcal{R}^{n \times k}$, user representation

weighted GCCA

$$\underset{G,U_i}{\operatorname{argmin}} \sum_i w_i ||G - X_i U_i||_F^2 \quad s.t.G'G = I, w_i \ge 0$$

Expriments

- show the performance of multiview embeddings compared to other representations, not on building the best system
- tasks
 - User Engagement Prediction
 - determine which topics a user will likely tweet about
 - Friend Recommendation
 - recommend other accounts for a user to follow
 - Demographic Characteristics Inference
 - binary superviesed prediction task
 - old/young, male/female republican/democrat

- proposed several representations of Twitter users
- multiview approach that combines these views into a single embedding
- achieve promising results on three different prediction tasks
- learning user representation(kernel PCA, Deep CCA, multitask DL)

References I

- Adrian Benton, Raman Arora, and Mark Dredze, *Learning multiview embeddings of twitter users*, Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Berlin, Germany), Association for Computational Linguistics, August 2016, pp. 14–19.
- Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin, *A neural probabilistic language model*, journal of machine learning research **3** (2003), no. Feb, 1137–1155.
 - Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa, *Natural language processing (almost) from scratch*, Journal of Machine Learning Research **12** (2011), no. Aug, 2493–2537.

References II

- Sergey loffe and Christian Szegedy, *Batch normalization: Accelerating deep network training by reducing internal covariate shift*, arXiv preprint arXiv:1502.03167 (2015).
- Omer Levy and Yoav Goldberg, *Neural word embedding as implicit matrix factorization*, Advances in neural information processing systems, 2014, pp. 2177–2185.
- Omer Levy, Yoav Goldberg, and Ido Dagan, *Improving distributional* similarity with lessons learned from word embeddings, Transactions of the Association for Computational Linguistics **3** (2015), 211–225.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, *Efficient estimation of word representations in vector space*, arXiv preprint arXiv:1301.3781 (2013).

References III

- Andriy Mnih and Koray Kavukcuoglu, Learning word embeddings efficiently with noise-contrastive estimation, Advances in Neural Information Processing Systems, 2013, pp. 2265–2273.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, *Distributed representations of words and phrases and their compositionality*, Advances in neural information processing systems, 2013, pp. 3111–3119.
- Jeffrey Pennington, Richard Socher, and Christopher D Manning, Glove: Global vectors for word representation., EMNLP, vol. 14, 2014, pp. 1532–43.

The End