CS 3313 Foundations of Computing:

Turing Machine – Part 1

http://gw-cs3313.github.io

1

Next..

- Turing Machine model
 - TM as an automaton today
 - TM as transducer to compute functions ... Thursday
- Changing the basic TM model....next week
 - Multiple tracks, multiple tapes, two-way tape/storage
 - Non-deterministic TM
 - Equivalence of Deterministic and Non-deterministic TMs
 - Simulation procedure
 - Simulation of RAM (Random Access Machine) on a TM
- Solvable and Unsolvable problems... week 13
- Time and space complexity
- Other models of computation: λ-calculus (functional programming)

Moving on from PDAs....Turing Machines

- Finite State Automata (DFA/FSM): finite number of states
 - States store summary of past input/events
 - No external storage ...so cannot have a counter to store variable
- Pushdown Automata (PDA): Add a "external" stack storage to a NFA
 - Single stack first in-last out
 - What is stored in stack comes out in reverse when it is popped
- Extend PDA.....Two stacks, two-way input tape, etc.....OR
- Generalize the storage form to random access
 - Can store into any location and read from any location
 - Instead of a "box" as storage, we move to a line of bookshelves
- Turing Machine: NFA + external storage on a tape

3

Turing Machine

Action: based on the (i) state and (ii) the tape symbol under the read/write head:

• (1) change state, (2) write a symbol back to the tape and (3) move the head (left or right) one location/cell on the tape.

Infinite tape with cells containing tape symbols chosen from a finite alphabet

4

Turing-Machine Formalism

- A TM is described by:
 - 1. A finite set of *states* Q.
 - 2. An input alphabet Σ .
 - 3. A *tape alphabet* Γ (contains Σ).
 - 4. A transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
 - 5. A start state q_0 (in Q).
 - 6. A *blank symbol* B (or \square) in Γ- Σ
 - All tape except for the input is blank initially.
 - 7. A set of *final states* $F \subseteq Q$

Tape is an infinite (both left and right) number of tape cells

5

5

The Transition Function

- Takes two arguments:
 - 1. A state, in Q.
 - 2. A tape symbol in Γ .
- $\delta(q, Z)$ is either undefined or a triple of the form (p, Y, D).
 - p is a state.
 - *Y* is the new tape symbol.
 - D is a *direction*, L or R move the tape head to the Left or Right
 - Convention: If $\delta(q, Z)$ undefined then TM halts
 - If it halts in a final state then it accepts
 - If it halts in a non-final state then it rejects

6

Functioning of TM

- "instruction set" = In one step/time:
 - TM reads one tape symbol on tape (cell)
 - Writes symbol back to cell on tape
 - Changes state
 - Moves tape head Left or Right
- goes through sequence of steps controlled by transition function
- Whole process may terminate TM gets to a halting state
 - Halts when it reaches a configuration where no transition is defined
 - The state it halts in can be a final state or a non-final state
 - Assume no transitions are defined in the final state

7

Example 1: Turing Machine

- This TM scans its input right, looking for a 1
- If it finds one, it changes to 0, goes to final state and halts
- States = $\{q \text{ (start)}, f \text{ (final)}\}.$
- Input symbols = $\{0, 1\}$.
- Tape symbols = $\{0, 1, B\}$.
- $\delta(q, 0) = (q, 0, R)$.
- $\delta(q, 1) = (f, 0, R)$.

Simulation of TM $\delta(q,0) = (q,0,R) \\ \delta(q,1) = (f,0,R)$

Simulation of TM

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

No move is possible. The TM halts and accepts.

11

11

Simulation of TM

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

12

Simulation of TM

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

13

13

Simulation of TM

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

No move is possible. The TM halts and rejects.

14

Example 2: Turing Machine

- States = $\{q \text{ (start)}, f \text{ (final)}\}$. Input symbols = $\{0, 1\}$.
- Tape symbols = $\{0, 1, B\}$.
- $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R)$ $\delta(q, B) = (q, B, L)$.
- What happens in this TM for input w = 01?
- What happens in this TM for input w = 00?

15

15

Snapshot of the system – Instantaneous Description (ID) of a Turing Machine

- Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
- The TM is in the start state, and the head is at the leftmost input symbol.
- At any instant in time, how do we specify the "system snapshot"?
 - Analogous to ID in PDA we want to capture the entire state of the system (tape contents, state)

Snapshot of the system – Instantaneous Description (ID) of a Turing Machine

• At any instant in time, how do we specify the "system snapshot"?

17

17

Snapshot of the system – Instantaneous Description (ID) of a Turing Machine

- An ID is a string $\alpha q \beta$, where $\alpha \beta$ includes the tape between the leftmost and rightmost nonblanks.
 - The state q is immediately to the left of the tape symbol scanned
 - If q is at the right end, it is scanning B.
 - If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of α .

TM ID's - (2)

- As for PDA's we may use symbols ⊢ and ⊢* to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.
- Example: The moves of the Example 2 TM are
- $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R) \delta(q, B) = (q, B, L).$

$$q01 + 0q1 + 00f$$

19

19

Formal Definition of Moves: Instantaneous Description (ID)

• At any instant in time, the TM is in a state q, its tape head is reading some symbol Z, the string α is to the left of the tape head, and the string β is to the right of the tape head:

this ID is denoted as $\alpha q Z\beta$

- If $\delta(q, Z) = (p, Y, R)$, then $\alpha q Z\beta \vdash \alpha Y p\beta$
 - If Z is the blank B, then also $\alpha q \vdash \alpha Y p$
- If $\delta(q, Z) = (p, Y, L)$, then for any X, $\alpha Xq Z\beta + \alpha p XY\beta$
 - In addition, $qZ\beta \vdash pBY\beta$

Languages of a TM

- A TM defines a language by final state, as usual.
- $L(M) = \{w \mid q_0 w \vdash *I, \text{ where I is an ID with a final state}\}.$
 - TM halts in this configuration
 - Alternate definition: accepts as long as state is a final state

21

21

Transition Graphs for Turing Machines

- In JFLAP, you will see a transition graph for a TM
- In a Turing machine transition graph, each edge is labeled with three items:
 - 1. current tape symbol,
 - 2. new tape symbol, and
 - 3. direction of the head move

Recursively Enumerable Languages

- Consider the class of languages L, where if w is in L then there is a
 TM that halts on input w
 - Does not say what happens when w is not in the language
 - The TM may never halt
- This class of languages is called the recursively enumerable languages.
 - Why? The term actually predates the Turing machine and refers to another notion of computation of functions.

23

23

Recursive Languages

- An algorithm is a TM, accepting by final state, that is guaranteed to halt whether or not it accepts.
- If L = L(M) for some TM M that is an algorithm, we say L is a recursive language.
 - Why? Again, don't ask; it is a term with a history.

Turing Machine Design: Examples

- A TM function can be captured by describing its behavior by an "algorithm"
 - First describe how TM works
 - Then capture how states can be encoded to capture specific actions/steps
 - Finally, formally specify the transition function

25

Example 1: $L = \{ a^n b^n | n > 0 \}$

- Algorithm:
 - Each step: read symbol from tape, write symbol to tape, go to state, move left/right
- 1. Read *a*, write *X* (mark the *a*), move right to find a "matching" *b*: for each *a* there must be a matching *b*
 - Read a, write X, move right goto 2
- 2. Skip over a's (move right) until you read a *b*: mark *b* with a *Y* and then sweep left until you find the leftmost unmarked *a*
 - Read a, write a, move right -- skip right over a's
 - read b, write Y (mark the b), move left go to 3
 - Read Y, write Y, move right skip right over Y's
- 3. Skip left until you find the leftmost a until you read X (rightmost marked a)

Example 1: $L = \{ a^n b^n | n > 0 \}$

- 1. Read a, write X (mark the a), move right to find a "matching" b:
 - Read a, write X, move right goto 2
 - Read Y, write Y, move right, goto 4 /*now check no b's unmarked */
- 2. Skip over a's (move right) until you read a *b*:
 - Read a, write a, move right -- skip right over a's
 - read b, write Y (mark the b), move left go to 3
 - Read Y, write Y, move right skip right over Y's
- 3. Skip left until you find the leftmost a (until you read X)
 - Read Y/a, write Y/a, move left
 - Read X, write X, move right goto 1
- 4. Check no more *b*'s remaining
 - Read Y, Write Y, move right
 - Read Blank, Write Blank, move left goto Final state/accept.

27

Exercise: $L = \{ a^n b^n c^n \mid n > 1 \}$

■ Describe algorithm for a TM that accepts L

29

Example 2: $L = \{ wcw \mid w \text{ in } \{a.b\}^* \}$

- Recall this was not a CFL...
- Design a TM to accept this language.
- Algorithm Outline:
 - For each symbol in first w, check if corresponding 'location' in second w has the same symbol
 - The second w starts to the right of midpoint symbol c
 - If we read a, then check if symbol in corresponding location of second w is also an a
 - How do we know where second w = after we read input c
 - If we read b, then check if symbol in corresponding location of second w is also an b
 - If all symbols match then accept else reject

TM Design Strategy: Storage in state

- In example {wcw} we read the symbol in first substring w and need to "remember" it (i.e, "store" it) so we can check if matching location in second w has the same symbol....Where/how do we store this information?
- Recall a state can store/summarize finite amount of information.....
 - We have read an "a"
 - We have read a "b"
 -etc.
- Think of the state as having two components [q, X]
 - State q, and symbol X

31

Example 1: $L_2 = \{ wcw \mid w \text{ in } \{a,b\}^* \}$

- Algorithm:
 - 1. Read symbol (a or b), mark it as checked (with an X) and "store" it in the state
 - If the symbol read is a c then check if no more unmarked symbols, goto 5
 - 2. Move right until you hit a c, then move to second substring w.
 - 3. Check if first unmarked symbol on tape = symbol stored in state, mark with Y, move left, go to 4
 - 4. Go to the leftmost unmarked symbol on tape/input skip over all symbols until you hit an X, move one tape cell to the right, and goto 1.
 - 5. Skip right over all marked symbols Y, until you read Blank accept

Example 2: $L_2 = \{ wcw \mid w \text{ in } \{a,b\}^* \}$

Algorithm:

- 1. Read tape symbol (a or b), mark it as checked (with an X) and "store" it in the state goto 2
 - If the symbol read is a c then goto 5 (& check no more unchecked)
- 2. Find leftmost unchecked symbol in second w: Move right until you read c, then move right goto 3.
- 3. Skip right over checked symbols until you read unchecked symbol: Check if symbol on tape = symbol stored in state, mark with X, move left, go to 4
 - Else halt and reject
- 4. Go to the leftmost unmarked input skip over all symbols until you hit an X, move one tape cell to the right, and goto 1
- 5. Check if no more symbols left in second substring w: Skip right over X until you read B then goto final state
 - Else reject

33

Next....

- Computing functions using Turing machines
 - Input= x (integer), Output = f(x)
- Labs- more examples and using JFLAP
- Next week adding "features" to standard turing machine
 - Multiple tracks on tape
 - Multiple tapes
 - Non-determinism

35

Example 3: $L = \{ w | w^R | w \text{ in } \{a,b\}^* \}$

- We know this can be accepted by a PDA...so use this example to set things up.
- Input on the tape: string x followed by Blanks (B)
 - Tape head is at the leftmost symbol of x

Example 3: $L = \{ w | w^R | w \text{ in } \{a,b\}^* \}$

- Algorithm:
 - Read symbol (a or b), mark it as checked (with an X) and "store" it in the state
 - If the symbol read is a Blank then accept.
 - 2. Move right until you hit a B, then move one position left.
 - 3. Check if symbol on tape = symbol stored in state, mark with B, move left, go to 4
 - 1. Else halt and reject
 - Go to the left end of the input skip over all symbols until you hit an X, move one tape cell to the right, and goto 1.

37

Example 1: $L = \{ w | w^R | w \text{ in } \{a,b\}^* \}$

- Algorithm:
 - 1. State q_0 :
 - Read symbol a, write X to tape, move right, goto state [q₁,a]
 - Read symbol b, write X to tape, move right, goto state $[q_1,b]$
 - Read B, write B, move right goto final state q_f
 - 2. State q₁: Move right until you hit a B, then move one position left and goto state q₂...but keep the symbol stored in the state
 - From $[q_1,a]$ goto $[q_2,a]$
 - From $[q_1,b]$ goto $[q_2,b]$
 - 3. State q_2 : Check if symbol on tape = symbol stored in state, mark with B, move left, go to 4 else halt and reject
 - If state = $[q_2,a]$ then check if input is a then goto q_3 write B to tape
 - If state = $[q_2,b]$ then check if input is b then goto q_3 write B to tape
 - 4. State q_3 : Go to the left end of the input skip over all symbols until you hit an X, move one tape cell to the right, and goto 1 (state q_0)

Example 1: $L = \{ w | w^R | w \text{ in } \{a,b\}^* \}$

- Transition Function: start state is q₀
 - 1. state q_0
 - $\delta(q_0,a) = ([q_1,a], X, R)$ /* read symbol, store in state */
 - $\delta(q_0,b) = ([q_1,b], X, R)$ /* write X , move right */
 - $\delta (q_0,B) = (q_f,B,R)$ /* change state to q1 */
 - 2. State q₁:
 - $\bullet \quad \delta([q_1,b],a/b) = ([q_1,b],a/b,R) \quad /* \text{ skip over all symbols until } */$
 - $\delta([q_1,b], B) = ([q_2,b], B, L)$ /* you read B
 - $\delta([q_1,a],B) = ([q_2,a],B,L)$
 - 3. State q_2 :
 - $\delta([q_2,a],a) = (q_3,B,L)$ /* check if symbol on tape equal to */
 - δ ([q₂,b], b) = (q₃, B, L) /* symbol stored in state, mark with B */ /* else reject and halt
 - 4. State q₃:
 - $\delta(q_3, a) = (q_3, a, L)$ /* go to left, skip over all symbols until X */
 - $\delta(q_3,b) = (q_3,b,L)$ /* you are going to the leftmost input that */
 - $\delta(q_3, X) = (q_0, X, R)$ /* not been checked yet */

39

