Netzwerke und Internettechnologien 2

RAID

Netzwerke und Internettechnologien 2

Lernziele

Aufbau und Arbeitsweise von RAID-Systemen

Grundlagen

- RAID = "Redundant Array of Independent Disks" (früher "Redundant Array of Inexpensive Disks") wurde 1988 offiziell vorgestellt und dient der Organisation mehrerer physischer Massenspeicher.
 - Datenverbund tritt als ein logisches Laufwerk auf.
 - Ursprünglich zur Kostensenkung entwickelt
 - Heutiger Nutzen ist die Steigerung von Sicherheit und Performance
 - RAID-Systeme sind keine Alternative zu Backups

Grundlagen

- Level ist lediglich eine Nummerierung, trifft keine Aussage über Leistungsfähigkeit und Redundanz
 - RAID Level 0
 - RAID Level 1
 - RAID Level 2
 - RAID Level 5
 - RAID Level 6
 - RAID Level 01 /10
 - •

RAID-Level 0 - Striping

- Gleichmäßige Verteilung der Daten
- Beschleunigung von Festplattenzugriffen beim Lesen und Schreiben
- Geringe Kosten (Nutzkapazität = Anzahl Festplatten * Festplattenkapazität)
- Keine Datensicherheit
- Keine Redundanz (kein RAID nach heutiger Definition)
- Einsatz überall da, wo es nicht auf Sicherheit, sondern auf Geschwindigkeit ankommt.

Abbildung 1: RAID 0 (Eigene Darstellung)

RAID-Level 1 – Mirroring (Spiegelung)

- Redundantes Speicherverfahren, alle Schreibzugriffe werden parallel auf zwei Festplatten ausgeführt
- Datensicherheit & Verfügbarkeit sehr hoch
- Datenintegrität wird durch paralleles Lesen von beiden Festplatten sichergestellt
- ebenfalls geringe Zugriffszeiten.
- wenn Hot-Plug unterstützt wird, kann Spiegelung im Betrieb wieder hergestellt werden
- hohe Kosten (Nutzkapazität = Anzahl Festplatten /2*Festplattenkapazität).

Abbildung 2: RAID 1 (Eigene Darstellung)

RAID-Level 5 – Stripset mit Parität

- verbindet geringe Kosten mit Datensicherheit
- Nutzkapazität = (Anzahl Festplatten -1)*Festplattenkapazität
- zusätzliche Paritätsblöcke auf allen Festplatten verteilt
- Toleriert den Ausfall einer Festplatte
- Einsatzgebiete: Transaktions-Datenbankserver, ...

Parität - Beispiel

- Geschrieben werden sollen die Werte:
 - 01
 - 11
 - 00
 - 10
- Parität rot markiert, hier als XOR-Funktion

Abbildung 4: Parität (Eigene Darstellung)

Parität - Beispiel

 Bei dem Ausfall einer Festplatte können die Daten durch die Parität wiederhergestellt werden

Parität rot markiert

Abbildung 5: Parität/Ausfall (Eigene Darstellung)

Parität - Beispiel

 Mittels der XOR-Funktion werden die fehlenden Daten rekonstruiert

Parität rot markiert

Abbildung 6: Parität/Wiederherstellung (Eigene Darstellung)

RAID-Level 6 - Stripset mit doppelter Parität

- RAID 5 + Parity Laufwerk
- Langsam beim Schreiben
- Sicher gegen Ausfall von 2 Platten

Abbildung 7: RAID 6 (Eigene Darstellung)

RAID-Level 10 - RAID-Kombination

- RAID 0 über mehrere RAID 1
- Alle Eigenschaften der beiden RAIDS sind kombiniert (Sicherheit und gesteigerte Lese-/Schreibgeschwindigkeit)
- Benötigt min. 4 Festplatten
- Nur die Hälfte der gesamten Festplattenkapazität verfügbar
- Toleriert den Ausfall einer, im günstigen Fall zweier Festplatten

RAID-Level 50 - RAID-Kombination

- RAID 0 über mehrere RAID 5
- Benötigt min. 6 Festplatten
- Wird bei Datenbanken verwendet wo Schreibdurchsatz und Redundanz im Vordergrund stehen
- Toleriert den Ausfall einer, im günstigen Fall zweier Festplatten

RAID-Level im Vergleich

 Je nach Anforderung wählt man ein bestimmtes RAID-System

Abbildung 10: RAID-Pyramide (Eigene Darstellung)

Soft- und Hardware-RAID

- Wer steuert den Datenzugriff?
- Hardware-RAID:
 - RAID-Controller
- Software-RAID:
 - (spezielles) Programm
 - oder
 - Betriebssystem

Soft- und Hardware-RAID

Hardware-RAID

- Spezieller Hardware-Baustein:
- RAID-Controller
 - befindet sich in der Nähe der Festplatten
 - übernimmt die RAID-Logik
 - Daten an den RAID-Controller gebunden
 - für Heimanwender: RAID-Controller auf Mainboard → RAID-Logik berechnet CPU

Abbildung 11:SATA- RAID-Controller (Dmitry Nosachev)

Soft- und Hardware-RAID

Software-RAID

- Organisation geschieht durch ein Programm
- Belastung der CPU
- Ansteuerung der Festplatten über bestehende Schnittstellen des PCs
- alle heutigen Betriebssysteme unterstützen Software-RAIDs
- Daten an Betriebssystem gebunden

Abbildung 12: Datenträger (Eigene Darstellung)

Soft- und Hardware-RAID

• Beide Varianten im Vergleich:

	Software-RAID	Hardware-RAID
Implementationskosten	Niedrig	Hoch
Performance	Niedrig	Hoch
CPU-Last am Host	Hoch	Niedrig
Plattformabhängigkeit	Ja	Nein
Betriebssystemabhängigkeit	Ja	Ja

JBOD

JBOD (Just a Bunch of Disks)

Grundlagen

- JBOD übersetzt "eine Ansammlung an Festplatten". Der Begriff bezieht sich auf ein Array von Festplatten, das nicht nach dem RAID-Standard konfiguriert wurde.
- Eigenschaften:
 - Die Datenträger stehen dem System ohne Zusammenlegung separat zur Verfügung.
 - Mittels Verkettung oder "Spanning" können die Festplatten zu einem logischen Laufwerk zusammengefasst werden.
 - Ziel ist die bestmögliche Ausnutzung der Gesamtkapazität mehrerer Festplatten.
 100 Prozent der Bruttospeicherkapazität stehen zur Verfügung.

JBOD (Just a Bunch of Disks)

Grundlagen

- Mittels JBOD können Festplattenkapazitäten schnell und unkompliziert erweitert werden.
- Festplatten werden nacheinander beschrieben und müssen nicht die gleiche Größe aufweisen.
- Fällt eine der Platten aus, die Daten verloren.

Abbildung 13: JBOD (Eigene Darstellung)

Quellen

Buchquelle

Kersken, Sascha (2017): IT-Handbuch für Fachinformatiker. Der Ausbildungsbegleiter. 8. Auflage, revidierte Ausgabe. Bonn: Rheinwerk Verlag; Rheinwerk Computing.

Schreiner, Rüdiger (2014): Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. 5., erw. Aufl. München: Hanser.

Abbildungen

11 "SATA-RAID-Controller" Lizenz Dmitry Nosachev (https://commons.wikimedia.org/wiki/File:Adaptec_202 OSA_SATA_RAID_controller.jpg), https://creativecommons.org/licenses/by-sa/4.0/legalcode

VIELEN DANK!

