1 AP23

SSM

1.1 SSM model with two lags

Kurz's (2018) SSM has the following general from:

Measurement:
$$Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$$
 (1a) ssm1

State:
$$X_t = AX_{t-1} + C\varepsilon_t$$
, (1b) ssm2

where $\varepsilon_t \sim MN(0, I_m)$, D_1 , D_2 , A, R are C are conformable system matrices, Z_t the observed variable and X_t the latent state variable.

1.2 Modified (standard) SSM

clark0 The simple model takes the form:

$$y_t = g_{t-1} + \varepsilon_{1t} \tag{2a}$$

$$\Delta g_t = \varepsilon_{2t} \tag{2b}$$

where the shocks $\{\varepsilon_{it}\}_{i=1}^2$ are assumed to be *i.i.d.* standard normal and mutually uncorrelated, with unit standard deviation. The modified (standard) SSM with shocks down the bottom of state vector:

$$y_{t} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} g_{t} \\ g_{t-1} \\ \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} + \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}$$
(3)

Running the shock recovery code AP23.m we get the steady-state values of:

Shocks
$$P_{t|T}^*$$
 $P_{t|t}^*$

$$\varepsilon_{1t} = 0.4472 - 0.6180$$

$$\varepsilon_{2t} = 0.5528 - 1.0000$$
(5) Pstar0

and the first 8 filtered and smoothed shocks of state vector $X_t = \begin{bmatrix} g_t & g_{t-1} & \varepsilon_{1t} & \varepsilon_{2t} \end{bmatrix}'$ are as follows:

Filtered					Smoothed			
$\hat{\mathcal{S}}_{t t}$	$\hat{g}_{t-1 t}$	$\hat{\varepsilon}_{1t t}$	$\hat{\varepsilon}_{2t t}$		$\hat{g}_{t T}$	$\hat{g}_{t-1 T}$	$\hat{\varepsilon}_{1t T}$	$\hat{arepsilon}_{2t T}$
0	0	0	0	_	0.2221	-0.0740	0.0740	-0.1481
-0.6210	-0.6210	-0.4140	0		0.4427	-0.2221	-0.8129	0.6648
0.2962	0.2962	0.5732	0		0.6807	0.4427	0.4267	0.2381
0.8620	0.8620	0.3503	0		0.3873	0.6807	0.5315	-0.2935
0.6175	0.6175	-0.1511	0		0.0147	0.3873	0.0791	-0.3726
0.0192	0.0192	-0.3698	0		0.0074	0.0147	-0.3653	-0.0073
0.3997	0.3997	0.2352	0	_	0.6274	0.0074	0.6275	-0.6348
-0.6234	-0.6234	-0.6323	0	_	0.6340	-0.6274	-0.6283	-0.0065

From the table above it is clear that the filtered estimates imply: $\hat{g}_{t|t} \equiv \hat{g}_{t|t-1}$ and $\hat{\varepsilon}_{2t|t} = 0$ as you proposed. Below uses the shock recovery SSM form as a check.

1.3 Shock recovery SSM

Collect all observables in $Z_t = \Delta y_t$ and all shocks (and other state variables) in X_t to yield:

$$\Delta y_t = \varepsilon_{2t-1} + \Delta \varepsilon_{1t} \tag{6}$$

which can then be written in SSF as:

State:
$$X_t = AX_{t-1} + C\varepsilon_t$$
 (7)

$$\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{1t-1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{1t-2} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}. \tag{8}$$

Measurement : $Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$

$$Z_{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{1t-1} \end{bmatrix} + \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{1t-2} \end{bmatrix} + 0 \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}$$

From the shock recovery SSM, the steady-state diagonal entries are:

Shocks
$$P_{t|T}^*$$
 $P_{t|t}^*$

$$\varepsilon_{1t} = 0.4472 = 0.6180$$

$$\varepsilon_{2t} = 0.5528 = 1.0000$$
(9)

and thus identical to the ones in (5).

As above, the first 8 filtered and smoothed shocks of (shock-recovery) state vector $X_t = \begin{bmatrix} \varepsilon_{1t} & \varepsilon_{2t} & \varepsilon_{1t-1} \end{bmatrix}'$ are as follows:

]	Filtered	đ		Smoothed			
$\hat{\varepsilon}_{1t t}$	$\hat{\varepsilon}_{2t t}$	$\hat{\varepsilon}_{1t-1 t}$	$\hat{arepsilon}_{1t T}$	$\hat{\varepsilon}_{2t T}$	$\hat{\varepsilon}_{1t-1 T}$		
0	0	0	-0.0768	0.1151	-0.0384		
-0.1536	0	0.1024	-0.6014	0.7165	-0.0768		
0.6041	0	-0.5311	0.4214	0.2951	-0.6014		
-0.0176	0	0.6150	-0.5239	0.8191	0.4214		
0.7235	0	-0.4648	0.5689	0.2501	-0.5239		
-0.0546	0	0.7573	-0.5477	0.7978	0.5689		
0.8556	0	-0.5835	0.9492	-0.1514	-0.5477		
0.2709	0	0.6882	0.9542	-1.1056	0.9492		

Consistent with the $P_{t|t}^* = 1$ entry for ε_{2t} and as previously discussed, the filtered $\hat{\varepsilon}_{2t|t}$ are exactly zero for all t.