Master Sciences-Technologies-Santé / Mention Informatique Info0809 : Informatique théorique / Pascal Mignot Année universitaire 2014-2015 Première session d'avril 2015 / Examen terminal

Notes:

- Seul l'aide-mémoire est autorisé. Tout autre document est interdit.
- Toute propriété de l'aide mémoire utilisée devra être citée (même brièvement). Si une propriété utilisée n'est pas dans l'aide-mémoire, alors cette propriété devra être démontrée.

Questions indépendantes

- 1. Donner deux ADFs différents qui reconnaissent le même langage régulier L.
- 2. Soit DIFF_{ADF} = $\{\langle A_1, A_2 \rangle \mid A_1 \text{ et } A_2 \text{ sont des ADFs qui reconnaissent des langages différents } \}$. Donner un machine de Turing non décidable qui reconnaît DIFF_{ADF}.
- 3. Expliquer la raison pour laquelle DIFF_{ADF} est décidable (on montrera juste comment il possible de construire une telle machine de Turing).
- 4. Quel est le lien particulier entre les *L*-classes d'un langage régulier *L* et les ADFs qui reconnaissent ce langage ?
- 5. Donner une méthode permettant de convertir un ADF en automate à pile.
- 6. Si un langage libre de contexte est sous forme normale de Chomsky, est-il nécessairement non ambigu?

Exercice 1 : machine de Turing

- 1. Soit L_{w_i} le langage qui reconnait un seul mot w_i (i.e. $L_{w_i} = \{w_i\}$). Montrer que $L_{w_i} \in \mathcal{RE}$
- 2. Montrer que RE est fermé par union.
- 3. En remarquant qu'un langage L non fini peut s'écrire $L = \bigcup_i L_{w_i}$, est-il possible de créer un machine de Turing M qui reconnait L à partir des machines de Turing $\{L_{w_i}\}$ qui reconnaissent $\{L_{w_i}\}$? Si oui, on décrira comment cette machine est construite. Si non, on expliquera pourquoi cette construction n'est pas possible.
- 4. Donner une raison théorique qui prouve qu'une telle machine existe (ou n'existe pas).
- 5. Conclure : lorsque #L n'est pas fini, L est-il toujours récursivement énumérable ?

Exercice 2 : machine de Turing non déterministe

Soit $SAT_k = \{\langle \Phi \rangle \mid \Phi \text{ est une expression booléenne avec } k \text{ assignations de littéraux vraies } \}.$

- 1. Montrer que $SAT_k \in NP$ en utilisant un certificat.
- 2. Montrer que $SAT_k \in NP$ en utilisant une machine de Turing non déterministe.
- 3. En reprenant la MTND proposée à la question 2, reconnait-on un autre langage en permutant la décision de la machine (*i.e.* accepter \rightarrow rejeter et rejeter \rightarrow accepter)?
- 4. Montrer que $SAT_{k-1} \leq_{\mathbf{P}} SAT_k$.
- 5. Peut-on alors en déduire que SAT_k est **NP**-complet ?
- 6. Si on montre que $\overline{SAT_k} \in \mathbf{NP}$, démontrer qu'alors $\mathbf{NP} = co\mathbf{NP}$.

Exercice 3: LIPOGRAM

- 1. LIPOGRAM_a = $\{\langle M, w \rangle \mid M \in \mathcal{RE} \text{ et } a \notin w\}$ est-il récursivement énumérable?
- 2. LIPOGRAM_a est-il décidable ? S'il est indécidable, on effectuera la démonstration par réduction d'un problème connu comme étant indécidable à ce problème.
- 3. LIPOGRAM = $\{\langle M, w \rangle \mid \langle M, w \rangle \in \text{LIPOGRAM}_a \text{ et } M(w) \text{ accepte} \}$ est-il récursivement énumérable ?
- 4. LIPOGRAM est-il décidable ? S'il est indécidable, on effectuera la démonstration par réduction d'un problème connu comme étant indécidable à ce problème.

Exercice 4 : complexité temporelle

On définit 3COLOR = $\{\langle G \rangle \mid \text{ les sommets de } G \text{ peuvent être coloriés avec 3 couleurs de telle façon que toute arête relie des sommets de couleurs différentes }.$

On suppose que la propriété 3COLOR NP-complet est admise comme vraie dans le reste de l'exercice.

- 1. Soit BIPARTITE = $\{\langle G \rangle \mid G \text{ est un graphe biparti non orienté} \}$. On rappelle qu'un graphe G = (V, E) est biparti si l'ensemble des sommets V se partitionne en deux ensembles V_1 et V_2 (i.e. $V = V_1 \cup V_2$ et $V_1 \cap V_2 = \emptyset$) tels que pour toute arête $(u, v) \in E$, $(u, v) \in V_1 \times V_2$ ou $(u, v) \in V_2 \times V_1$.
 - Montrer que BIPARTITE \in **P**.
- 2. Soit 2COLOR = $\{\langle G \rangle \mid \text{ les sommets de } G \text{ peuvent être coloriés avec 2 couleurs de telle façon que toute arête relie des sommets de couleurs différentes }. Montrer que 2COLOR <math>\leq_{\mathbf{P}}$ BIPARTITE.
- 3. Montrer que BIPARTITE $\leq_{\mathbf{P}}$ 2COLOR.
- 4. Quel sont les propriétés que l'on peut déduire des trois questions précédentes ? On justifiera.
- 5. Montrer que 2COLOR $\leq_{\mathbb{P}}$ 3COLOR.
- 6. Peut-on alors en déduire que 2COLOR est NP-complet ? La réponse devra être démontrée.
- 7. Si la réponse à la question 6 est vraie, peut-on en déduire quelque chose ?
- 8. Montrer que 3COLOR $\leq_{\mathbf{P}}$ 6COLOR.
- 9. Peut-on alors en déduire que 6C0L0R est NP-complet ? La réponse devra être démontrée.
- 10. Donner une machine de Turing déterministe qui décide 6C0L0R.
- 11. Donner la complexité temporelle de cette machine de Turing.
- 12. Si la réponse à la question 9 est vraie, peut-on en déduire quelque chose ?

Exercice 5 : complexité spatiale

On définit PATH = $\{\langle G, s, t \rangle \mid G \text{ est un graphe orienté tel qu'il existe un chemin (orienté) entre } s$ et $t\}$. Les résultats sur PATH dans l'aide-mémoire ne devront pas être utilisés dans cet exercice.

- 1. Montrer que PATH \in SPACE($n \log n$).
- 2. Montrer que PATH \in NSPACE($\log n$).
- 3. Montrer que PATH est NL-difficile, à savoir que pour tout $A \in NL$, il existe une fonction f calculable en espace logarithmique qui réduit A à PATH. On se contentera de donner les grandes lignes de fonctionnement de f.
- 4. Montrer que PATH est NL-complet.
- 5. Montrer que $\forall A, B \in PATH, A \cup B \in NL$.
- 6. Peut-on déduire des questions précédente que NL est fermé par union ? On justifiera.