Question Bank

Francis Xavier Engineering College (An Autonomous Institution) Department of Computer Science and Engineering

Year/Sem: IV/VII

Degree/Branch : B.E. - Computer Science and Engineering 19CS7701 DATA MINING

Question Bank - Unit 1

Part A

Q.No.	Question	CO-K	PO-
		Level	PI Code
1.	What is the primary purpose of building the	CO1-	4.6.3
	multidimensional model?	K2	
2.	What is the need of data warehouses?	CO1-K	4.6.3
		2	
3.	How can you tell the difference between fact and dimension	CO1-	4.4.2
	tables?	K4	
4.	How is multidimensional data model used in data	CO1-	4.6.4
	warehouse?	K1	
5.	Differentiate between a data warehouse and a data mart.	CO1-K	4.6.2
		4	
6.	Give the differences between a database and a data	CO1-	4.4.2
	warehouse.	K4	

Q.No.	Question	CO-K	PO-
		Level	PI Code
1.	Summarize the various OLAP operations in the	CO1-K	4.4.1
	Multidimensional Data Model.	1	
2.	Explain multidimensional data model with a neat diagram.	(13)	4.6.3
3. i)	Differentiate between star schema and snowflake schema in the context of data warehousing.	CO1-K 4	4.6.2

3. ii)	Define metadata and explain the types of metadata.	CO1-K 2	4.4.1
4.	Compare OLAP vs OLTP and explain what will happen if we use the same database for both OLAP and OLTP?	CO1-K 4	4.6.2
5.	Discuss about the purpose of various Data warehousing Components with the diagram.	CO1-K 2	4.6.3

Part A

Q.No.	Question	CO-K	PO-
		Level	PI Code
1.	What are major issues that will be faced in data warehouse implementation?	CO2-K 2	4.6.3
2.	What are the challenges in ETL process?	CO2- K4	4.6.2
3.	What is the difference between ROLAP and MOLAP?	CO2-K2	4.6.3
4.	Why is it that tuning is difficult in a data warehouse?	CO2- K2	4.5.1
5.	What are the major applications of data warehousing?	CO2-K 1	4.6.3
6.	What are the three tiers of data warehouse architecture?	CO2- K1	4.4.1

Q.No.	Question	CO-K	PO-
		Level	PI Code
1.	How does data warehouse contribute to business intelligence?	CO2- K2	4.6.1

2.	What do you understand by data staging and ETL explain with suitable structure?	CO2- K2	4.5.1
3.	Define data warehouse. Draw the architecture of data warehouse and explain the three tiers in detail.	CO2- K4	4.5.1
4.	What are the challenges in tuning the data warehouse? How do you optimize a data warehouse?	CO2-K 4	4.4.3
5.	Explain in detail about the implementation of a data warehousing.	CO2- K2	4.6.3

Part A

Q.No.	Question	СО-К	PO-
		Level	PI Code
1.	Why is feature selection important in data mining?	CO3-	4.6.2
		K4	
2.	What do you understand by Data Mining?	CO3-	4.4.1
		K2	
3.	What are the major issues in data mining?	CO3-	4.6.2
	,	K4	
4.	What is data mining query languages?	CO3-	4.6.2
		K1	
5.	Why pre-processing is needed in data mining?	CO3-	4.6.2
		K4	
6.	Define association and correlations.	СО3-К	4.1.1
		1	

Q.No.	Question	СО-К	PO-
		Level	PI Code
1.	How does data mining work? Discuss the different stages in data	CO3-	3.6.3
	mining process.	K4	
2.	Discuss in detail about Mining frequent patterns.	CO3-	4.6.2
		K2	
3.	What is data Pre-processing? Explain the various data	CO3-K	3.4.2
	pre-processing techniques.	2	
4.	Generalize and discuss about association rule mining with	COLV	2.4.4
	examples and state how association mining to correlation	CO3-K	
	analysis is dealt with.	2	
5.	Generalize and discuss about association rule mining with	COLV	2.4.4
	examples and state how association mining to correlation	CO3-K	
	analysis is dealt with.	2	

Part A

Q.No.	Question	СО-К	PO-
		Level	PI Code
1.	List the major clustering methods.	CO4-	4.1.2
		K1	
2.	List the major classification methods.	CO4-	4.1.2
		K1	
3.	Illustrate support vector machine with example.	CO4-	4.3.3
		K3	
4.	What are ways of reducing dimensionality?	CO4-	2.2.3
		K1	
5.	Define Lazy learners with an example.	CO4-K	4.1.1
		1	
6.	List the major clustering methods.	CO4-	4.1.2
		K1	

Q.No.	Question	CO-K	PO-

		Level	PI Code
1.	 Describe in detail about the following Classification methods. Bayesian classification Classification by Back propagation. 	CO4-K 2	2.4.4
2.	What is grid-based clustering? With an example explain an algorithm for grid-based clustering.	CO4- K2	3.2.2
3.	Define classification? With an example explain how support vector machines can be used for classification.	CO4-K 2	4.2.1
4.	Explain the following:Hierarchical based method.Density based methods.	CO4- K2	4.2.1
5.	What is outlier mining important? Briefly describe the different approaches behind statistical—based outlier detection, distance-based outlier detection and deviation-based outlier detection.	CO4- K4	2.4.4

Part A

Q.No.	Question	СО-К	PO-
		Level	PI Code
1.	What is temporal database? Explain temporal database with	CO5-	3.1.5
	example.	K4	
2.	What are the advantages of spatial database?	CO5-	3.1.1
		K2	
3.	Explain about text mining and discuss about the challenges in	CO5-	2.4.3
	text mining.	K1	
4.	What are the advantages and disadvantages of logistic	CO5-	3.1.1
	regression?	K4	
5.	How does temporal database differ from regular database?	CO5-	2.2.4
		K4	
6.	What is the difference between time series and sequential data?	CO5-	2.2.4
		K4	

Q.No.	Question	СО-К	PO-
-------	----------	------	-----

		Level	PI Code
1.	Discuss about spatial databases with example.	CO5-	4.2.1
		K2	
2.	What is temporal database? Explain temporal database with	CO5-	4.2.1
	example.	K2	
3.	What is Multimedia database? Explain about multimedia	CO5-	4.2.1
	database with example.	K2	
4.	What is web mining? Explain the various types of web mining	CO5-	4.2.1
	methods.	K2	
5.	Explain about text mining and discuss about the challenges in	CO5-	2.4.3
	text mining.	K4	

PART – C

Q.No.	Question	CO-K Level	PO- PI Code
1. i)	Analyze and elaborate the current trends in data mining in the following fields. i. Financial data analysis ii. Biological data analysis iii. Intrusion detection	K4	2.2.4
1. ii)	Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where charge is the fee that a doctor charges a patient for a visit. Draw a schema diagram for the above data warehouse using one of the schemas. [star, snowflake, fact constellation]	K4	1.3.1
2.	Cluster the following eight points (with (x, y) representing locations) into three clusters: A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9) Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). The distance function between two points $a = (x1, y1)$ and $b = (x2, y2)$ is defined as- P(a, b) = $ x2 - x1 + y2 - y1 $	CO4- K3	1.3.1

	Use K-Means Algorit the second iteration.	hm to find the three cluster centers after		
3.	Explain and Apply frequent item sets	the Apriori algorithm for discovering of the table.	CO3- K3	1.3.1
	Trans ID	Items Purchased		
	T1	I1, I2, I5		
	T2	12, 14		
	Т3	12, 13		
	T4	I1, I2, I4		
	Т5	I1, I3		
	Т6	12, 13		
	Т7	I1, I3		
	Т8	I1, I2, I3, I5		
	Т9	I1, I2, I3		
	minimum support	count is 2 and minimum confidence		