Самостійна робота з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

25 листопада 2023 р.

Завдання

Умова. Нехай $(\mathbb{R}, \mathcal{S}_1, \lambda_1)$ є простором з мірою,

$$f_n = \begin{cases} \ln|n|, & x \in \left[-\frac{1}{n}, \frac{1}{n}\right] \setminus \{0\} \\ 0, & x \in \left(\mathbb{R} \setminus \left[-\frac{1}{n}, \frac{1}{n}\right]\right) \cup \{0\} \end{cases}, \ x \in \mathbb{R}$$

- 1. Чи є послідовність $\{f_n\}_{n\in\mathbb{N}}$ збіжною майже скрізь відносно міри λ_1 на \mathbb{R} ?
- 2. Чи є послідовність $\{f_n\}_{n\in\mathbb{N}}$ збіжною за мірою λ_1 на \mathbb{R} ?

Якщо так, то знайти відповідні границі. Відповіді обґрунтувати.

Розв'язок. Спочатку спробуємо інтуїтивно інтерпретувати характер поведінки послідовності $\{f_n\}_{n\in\mathbb{N}}$. Отже, якщо спрямувати $n\to\infty$, то відрізок $[-\frac{1}{n},\frac{1}{n}]$ стає все вужчим, а значення $\ln |n|$ все більшим і асимптотично прямує до $+\infty$. Отже по своїй суті, f_n мала б прямувати до функції Дірака $\delta(x)$, але на відміну від $\delta(x)$, $f_n(0)=0$. Тобто, дуже схоже, що для дуже великих $n\to\infty$ наша функція має стати "еквівалентною" $q\equiv 0$.

Для ілюстративності, ми зобразили перші 100 функцій на рис 1. Дійсно можна побачити, що чим далі ми збльшуємо n, тим меньший шматок функції залишається на рівні $\ln n$.

Рис. 1: Перші 100 функцій f_n

 $\Pi y n \kappa m$ 1. Нам потірбно знайти таку функцію f, що $f_n \to f \pmod{\lambda_1}$, тобто

$$\exists N \subset \mathbb{R} \left(\lambda_1(N) = 0 \land \forall x \in \mathbb{R} \setminus N : \lim_{n \to \infty} f_n(x) = f(x) \right)$$

В якості N візьмемо $N=\{0\}$, тоді дійсно $\lambda_1(N)=0$. Тепер зафіксуємо будь-який $\omega\neq 0$ і порахуємо $\lim_{n\to\infty}f_n(\omega)$. Доведемо, що

$$\forall \omega \neq 0 : \lim_{n \to \infty} f_n(\omega) = 0$$

Ідея: для достатньо великого n відрізок $[-\frac{1}{n}, \frac{1}{n}]$ перестане покривати ω і f_n стане дорівнювати 0.

Доведення. Перепишемо $f_n(\omega)$ в наступному вигляді:

$$f_n(\omega) = \begin{cases} \ln|n|, & |\omega| \le \frac{1}{n} \\ 0, & |\omega| > \frac{1}{n} \end{cases} = \ln n \cdot \mathbb{1}_{\left[-\frac{1}{n}, +\frac{1}{n}\right]}(\omega)$$

Отже звідси випливає, що при усіх $n \ge 1 + \frac{1}{|\omega|} : f_n(\omega) = 0$. Тому якщо з деякого номера отримуємо тотожньо нуль, то $\lim_{n\to\infty} f_n(\omega) = 0$.

Наслідок. В такому разі при $N = \{0\}$ та $f \equiv 0$, отримуємо:

$$f_n \to 0 \pmod{\lambda_1}$$

Пункт 2. За означенням, збіжність послідовності $\{f_n\}_{n\in\mathbb{N}}$ означає:

$$\exists f: f_n \xrightarrow{\lambda_1} f \iff \forall \varepsilon > 0: \lambda_1 \left(\left\{ x \in \mathbb{R} : |f_n(x) - f(x)| \ge \varepsilon \right\} \right) \xrightarrow[n \to \infty]{} 0$$

В якості кандидата беремо $f \equiv 0$. Тоді треба довести (або спростити) наступну тезу:

$$\forall \varepsilon > 0 : \lambda_1(\{x \in \mathbb{R} : |f_n(x)| \ge \varepsilon) \xrightarrow[n \to \infty]{} 0$$

Подивимось, який вигляд має $U_{\varepsilon}^{(n)}:=\{x\in\mathbb{R}:|f_n(x)|\geq\varepsilon\}$. Поперше, $U_{\varepsilon}^{(n)}\subset[-\frac{1}{n},\frac{1}{n}]\setminus\{0\}$, оскільки на інших значеннях маємо 0, що не перевищує $\varepsilon>0$. Більш того, на усіх точках з $[-\frac{1}{n},\frac{1}{n}]\setminus\{0\}$ значення однакове і дорівнює $\ln n$, причому має виконуватись $\ln n\geq\varepsilon$, або відповідно просто $n\geq e^{\varepsilon}$. Отже, по своїй суті, або ми беремо усю множину $[-\frac{1}{n},\frac{1}{n}]\setminus\{0\}$, якщо виконується $n\geq e^{\varepsilon}$, або перед нами пуста множина:

$$U_{\varepsilon}^{(n)} = \begin{cases} \left[-\frac{1}{n}, \frac{1}{n} \right] \setminus \{0\}, & n \ge e^{\varepsilon} \\ \emptyset, & n < e^{\varepsilon} \end{cases}$$

Тому:

$$\lambda_1(U_{\varepsilon}^{(n)}) = \begin{cases} \lambda_1([-\frac{1}{n}, \frac{1}{n}] \setminus \{0\}), & n \ge e^{\varepsilon} \\ 0, & n < e^{\varepsilon} \end{cases} \implies \lambda_1(U_{\varepsilon}^{(n)}) = \begin{cases} \frac{2}{n}, & n \ge e^{\varepsilon} \\ 0, & n < e^{\varepsilon} \end{cases}$$

Остаточно:

$$\lambda_1(U_{\varepsilon}^{(n)}) = \frac{2}{n} \cdot \mathbb{1}_{[e^{\varepsilon}, +\infty)}(n)$$

Таким чином, треба перевірити:

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \left(\frac{2}{n} \cdot \mathbb{1}_{[e^{\varepsilon}, +\infty)}(n) \right) = 0$$

Дійсно, якщо взяти доволі великі n (а саме $n > e^{\varepsilon}$), то ми зможемо зробити одиницею вираз $\mathbb{1}_{[e^{\varepsilon},+\infty)}$, а вираз $\frac{2}{n}$ буде прямувати до нуля при подальшому збільшені n.

Відповідь. В обох випадках збігається до 0.