Probabilités conditionnelles

Terminale STMG1

1 Rappels de vocabulaire

On considère comme exemple d'expérience aléatoire le lancer d'un dé équilibré à 6 faces dont on observe le résultat.

- L'univers d'une expérience aléatoire, noté Ω , est l'ensemble de toutes les issues possibles $\rightarrow \Omega = \{1; 2; 3; 4; 5; 6\}$ dans le cas du lancer de dé.
- Un événement est une partie de Ω , c'est ce dont on va évaluer la probabilité $\to A$ « Obtenir un pair »est un événement, de probabilité $P(A) = \frac{3}{6} = \frac{1}{2}$.
- Ω est aussi un événement appelé événement certain, avec $P(\Omega)=1$
- Si A et B sont deux événements, alors la réalisation de A ou bien de B est modélisée par l'union $A \cup B \to$ l'union de A« Obtenir 2 »et de B« Obtenir 4 »est $A \cup B$ « obtenir 2 ou A».
- Si A et B sont deux événements, alors la réalisation de A et de B est modélisée par l'**intersection** $A \cap B \to 1$ 'intersection de A« Obtenir un pair »et de B« Obtenir un 2 ou un 3 »est $A \cap B$ « Obtenir un 2 »

2 Représentation d'expérience aléatoire

Exemple. Soit une expérience aléatoire d'univers Ω , et deux événements A et B d' Ω . Alors, l'arbre pondéré suivant donne le moyen de calculer certaines probabilités.

Proposition 1.

- Une branche de la racine à une extrémité correspond à l'intersection des événements correspondants. Pour calculer la probabilité de cette intersection, il faut multiplier les probabilités sur la branche.
- La somme de toutes les probabilités issues d'un même noeud vaut 1.
- La probabilité d'un événement est égale à la somme des probabilités de toutes les branches contenant cet événement.

Exercice 1. Soit une urne contenant 4 boules rouges et 1 boule noire. On tire une boule au hasard dans l'urne. Sans la remettre à l'intérieur, on en tire ensuite une autre. On note R_1 l'événement « la première boule tirée est rouge », et R_2 l'événement « la deuxième boule tirée est rouge »

- a) Représenter l'expérience aléatoire décrite par un arbre.
- b) Calculer la probabilité $P(R_1 \cap R_2)$.
- c) Calculer la probabilité $P(R_2)$.

3 Probabilités conditionnelles

Définition 1. Soit une expérience aléatoire d'univers Ω , et A, B deux événements de Ω . On suppose de plus que $P(A) \neq 0$. Alors, la **probabilité de** B **sachant** A, noté $P_A(B)$, est la probabilité que B se réalise tout en sachant que A s'est déjà réalisé.

Proposition 2. Soit une expérience aléatoire d'univers Ω , et A, B deux événements de Ω . On suppose de plus que $P(A) \neq 0$. Alors, on a la formule

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

Proposition 3 (Formule des probabilités composées). Soit une expérience aléatoire d'univers Ω , et A, B deux événements de Ω . On suppose de plus que $P(A) \neq 0$. Alors,

$$P(A \cap B) = P(A)P_A(B)$$

Exemple. Il y a dans une urne trois boules rouges et deux boules noires. On tire deux boules successivement, sans remise. On pose A l'événement « la première boule est rouge » et B l'événement « la deuxième boule est rouge » .

- a) Donner $P_A(B)$ à l'aide du contexte.
- b) Calculer $P(A \cap B)$.

4 INDÉPENDANCE 4

4 Indépendance

Définition 2. Soit une expérience aléatoire d'univers Ω . On considère A, B deux événements de Ω . On dit que A et B sont indépendants si et seulement si

$$P(A \cap B) = P(A) \times P(B)$$

Proposition 4. Soit une expérience aléatoire d'univers Ω . On considère A, B deux événements de Ω . On suppose de plus que $P(A) \neq 0$ et $P(B) \neq 0$. Alors, A et B sont indépendants si et seulement si

$$P_A(B) = P(B)$$
 ou $P_B(A) = P(A)$

Remarque. Deux événements sont indépendants si le fait de savoir la réalisation de l'un n'a pas d'influence sur la réalisation de l'autre.

Exemple. On lance deux fois une pièce équilibrée, les événements $A \ll le$ premier lancer a donné face $\gg et$ $B \ll le$ deuxième lancer a donné pile $\gg sont$ -ils indépendants?

On lance un dé rouge et un dé bleu, et on regarde le résultat des deux dés. On pose les événements suivants :

- A « le dé rouge renvoie 2 »
- $B \ll la \ somme \ des \ deux \ dés \ vaut \ 5 <math>\gg$
- C « la somme des deux dés vaut 7 »
- a) Les événements A et B sont-ils indépendants?
- b) Les événements A et C sont-ils indépendants?

5 Résumé des formules en probabilités

Soient A et B deux événements d'une expérience aléatoire d'univer Ω .

- $-P(\overline{A}) = 1 P(A)$
- $--P(A \cap B) = P(A)P_A(B)$ (quand $P(A) \neq 0$)
- $---P(A \cap B) = P(A)P(B)$ (quand A et B sont indépendants)
- $--P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B)$ (quand A et B sont disjoints).