

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: N/A

Model No.: CRUSH X565

Report Number: 180709006RFM-2

Test Standards: FCC 47 CFR Part 24 Subpart E

FCC 47 CFR Part 2

FCC ID: 2AIMEX565

Test Result: PASS

Date of Issue: July 26, 2018

Prepared for:

SMT TELECOMM HK LIMITED Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL, Kowloon, Hong Kong

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Approved by:

Billy Li

Technical Director

Reviewed by:

Kevin Liang

Assistant Manager

Assistant Manager

Sully 26, 2018

Certified

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Version

Version No.	Date	Description
V1.0	July 26, 2018	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	CLIENT INFORMATION	4 45 55 66
2.		SUMMARY	
2. 3.		PMENT LIST	
3. 4.		CONFIGURATION	
7.			
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	
	4.2	4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	4.2	TEST SETUP	
		4.2.2 FOR CONDUCTED RF TEST SETUP	
	4.3	TEST CHANNELS	
	4.4	SYSTEM TEST CONFIGURATION	
	4.5	PRE-SCAN	
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	
	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.2	EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)	
	5.3	CONDUCTED OUTPUT POWER	
	5.4	PEAK-TO-AVERAGE RATIO	18
	5.5	99%&26DB BANDWIDTH	
	5.6	BAND EDGE AT ANTENNA TERMINALS	
	5.7	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	5.8	FIELD STRENGTH OF SPURIOUS RADIATION	
	5.9	FREQUENCY STABILITY	_
ΑP	PENDI	X 1 PHOTOS OF TEST SETUP	48
۸ D	DENID	V 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	40

Page 4 of 48 Report No.: 180709006RFM-2

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	SMT TELECOMM HK LIMITED	
Address of Applicant:	Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL, Kowloon, Hong Kong	
Manufacturer:	SMT TELECOMM HK LIMITED	
Address of Manufacturer:	Unit C 8/F CHARMHILL CTR 50 HILLWOOD RD TST KL, Kowloon, Hong Kong	

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Eli General Besonption of Eo i				
Product Name:	Mobile Phone			
Model No.:	CRUSH X565			
Add. Model No.:	N/A			
Trade Mark:	N/A			
DUT Stage:	Identical Prototype			
	GSM Bands:	GSM850/1900		
EUT Supports Function:	UTRA Bands:	Band II/ Band IV/ Band V		
EOT Supports Function.	2.4 GHz ISM Band:	IEEE 802.11b/g/n		
		Bluetooth V4.0		
Software Version:	SMT_SN_X565_V298	4_FINAL		
Hardware Version:	W56A_V3			
IMEI Code:	387192451020364, 219254078364031; 321447530691208, 320359601481274			
Sample Received Date:	July 10, 2018			
Sample Tested Date:	July 10, 2018 to July 19, 2018			

1.2.2 Description of Accessories

Adapter			
Model No.:	PCX565		
Input: 100-240 V~50/60 Hz 0.15 A			
Output: 5.0 V == 1000 mA			
AC Cable:	N/A		
DC Cable:	N/A		

Battery				
Model No.: BPX565				
Battery Type:	Lithium-ion Rechargeable Battery			
Rated Voltage:	3.8 Vdc			
Rated Capacity:	2000 mAh			

Cable		
Description: USB Micro-B Plug Cable		
Cable Type:	Shielded without ferrite	
Length:	1.1 Meter	

Page 5 of 48 Report No.: 180709006RFM-2

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Support Networks:	GSM, GPRS, WCDMA, HSDPA, HSUPA		
	GSM/GPRS:	GMSK	
Type of Modulation	WCDMA	BPSK	
Type of Modulation:	HSDPA:	QPSK	
	HSUPA:	QPSK	
Frequency Range:	GSM/GPRS 1900:	1850.2-1909.8 MHz	
Frequency Range.	WCDMA Band II:	1852.4-1907.6 MHz	
May DE Quitaut Dower	GSM/GPRS 1900:	30.20dBm	
Max RF Output Power:	WCDMA Band II:	23.32dBm	
Type of Emission:	GSM/GPRS 1900:	247KGXW	
Type of Emission:	WCDMA Band II:	4M19F9W	
Antenna Type:	PIFA Antenna		
Antenna Gain:	3.14 dBi		
GPRS Class:	Class 12		
Normal Test Voltage:	3.8 Vdc		
Extreme Test Voltage: 3.5 to 4.3Vdc			
Extreme Test Temperature:	-30 °C to +50 °C		

1.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
N/A	N/A	N/A	N/A	N/A

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.5 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888

Fax: +86 (0) 755 2823 0886

Page 6 of 48 Report No.: 180709006RFM-2

1.6 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.7 DEVIATION FROM STANDARDS

None.

1.8 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.10MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1 Conducted emission 9KHz-150KHz		±3.8 dB
2 Conducted emission 150KHz-30MHz		±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 24 Subpart E Test Cases				
Test Item	Test Requirement	Test Method	Result	
Equivalent Isotropic	FCC 47 CFR Part 2.1046(a) &	ANSI/TIA-603-E-2016 &	PASS	
Radiated Power (EIRP)	FCC 47 CFR Part 24.232(c)	KDB 971168 D01v03	FAGG	
Conducted Output	FCC 47 CFR Part 2.1046(a) &	ANSI/TIA-603-E-2016 &	PASS	
Power	FCC 47 CFR Part 24.232(c)	KDB 971168 D01v03	FASS	
Peak-to-average ratio	FCC 47 CFR Part 24.232(d)	KDB 971168 D01v03	PASS	
99%&26dB Bandwidth	FCC 47 CFR Part 2.1049(h) &	ANSI/TIA-603-E-2016 &	PASS	
99%&260B Balldwidth	FCC 47 CFR Part 24.238(b)	KDB 971168 D01v03	PASS	
Band Edge at antenna	FCC 47 CFR Part 2.1051 &	ANSI/TIA-603-E-2016 &	PASS	
terminals	FCC 47 CFR Part 24.238(a)	KDB 971168 D01v03	FASS	
Spurious emissions at	FCC 47 CFR Part 2.1051 &	ANSI/TIA-603-E-2016 &	PASS	
antenna terminals	FCC 47 CFR Part 24.238(a)(b)	KDB 971168 D01v03	PASS	
Field strength of	FCC 47 CFR Part 2.1053 &	ANSI/TIA-603-E-2016 &	PASS	
spurious radiation	FCC 47 CFR Part 24.238(a)(b)	KDB 971168 D01v03	FASS	
Frequency stability	FCC 47 CFR Part 2.1055 &	ANSI/TIA-603-E-2016 &	PASS	
Frequency Stability	FCC 47 CFR Part 24.235	KDB 971168 D01v03	FASS	

3. EQUIPMENT LIST

		Radiated En	nission Test E	Equipment List		
Used	Equipment	Manufacturer Model No. Serial Number		Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018
~	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018
~	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 17, 2017	Dec. 17, 2018
~	Preamplifier	HP	8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018
>	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	May 19, 2018	May 19, 2019
<	Horn Antenna	ETS-LINDGREN	3117	00164202	Dec. 17, 2017	Dec. 17, 2018
>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019
~	Horn Antenna	ETS-LINDGREN	3116C	00200180	May 20, 2018	May 20, 2019
>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Dec. 17, 2017	Dec. 17, 2018
>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
>	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019
>	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

2/3/4G RF Test System Equipment List						
Used Equipment Manufacturer		Manufacturer	Model No. Serial Number		Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
>	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 10, 2017	Dec. 10, 2018
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018
>	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019
>	Universal Radio Communication Tester	R&S	CMU200	114713	Dec. 10, 2017	Dec. 10, 2018
~	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 14, 2017	Sep. 13, 2018
V	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	June 05, 2018	June 05, 2019

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Test Environment	Selected Values During Tests				
Test Condition	Ambient				
rest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)		
TN/VN	+15 to +35	3.8	20 to 75		
TL/VL	-30	3.5	20 to 75		
TH/VL	+50	3.5	20 to 75		
TL/VH	-30	4.3	20 to 75		
TH/VH	+50	4.3	20 to 75		

Remark:

- 1) The EUT just work in such extreme temperature of -30 °C to +50 °C and the extreme voltage of 3.5 V to 4.3 V, so here the EUT is tested in the temperature of -30 °C to +50 °C and the voltage of 3.5 V to 4.3 V.
- 2) VN: Normal Voltage; TN: Normal Temperature;
 - TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
 - VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

4.2TEST SETUP

4.2.1 For Radiated Emissions test setup

Page 13 of 48 Report No.: 180709006RFM-2

4.3 TEST CHANNELS

Band	Tx/Rx Frequency		RF Channel	
Dallu	1 X/KX Frequency	Low(L)	Middle(M)	High(H)
GSM/GPRS	Тх	Channel 512	Channel 661	Channel 810
GSIVI/GFR3	(1850 MHz-1910 MHz)	1850.2 MHz	1880.0 MHz	1909.8 MHz
	T	Channel 9262	Channel 9400	Channel 9538
WCDMA Band II	Tx (1850 MHz-1910 MHz)	1852.4 MHz	1880.0 MHz	1907.6 MHz
	(1000 Will 12 10 10 Will 12)	1851.25MHz	1880.0 MHz	1908.75 MHz

4.4 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, X/Y/Z axis, and antenna ports.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.5 PRE-SCAN

Pre-scan under all rate at lowest middle and highest channel, find the transmitter power as below: SIM 1 Card Conducted transmitter power measurement result.

GSM 1900 Maximum Average Power (dBm)					
Channel	512	661	810		
Frequency(MHz)	1850.2 MHz	1880.0 MHz	1909.8 MHz		
GSM (GMSK, 1Tx-slot)	30.07	30.15	30.20		
GPRS (GMSK, 1Tx-slot)	30.03	30.08	30.11		
GPRS (GMSK, 2Tx-slot)	29.25	29.29	29.57		
GPRS (GMSK, 3Tx-slot)	27.32	27.50	27.87		
GPRS (GMSK, 4Tx-slot)	26.04	26.33	26.87		

WCDMA Band II Maximum Average Power (dBm)					
Channel	9262	9400	9538		
Frequency(MHz)	1852.4 MHz	1880.0 MHz	1907.6 MHz		
RMC 12.2K	23.32	23.30	23.00		
HSDPA Subtest-1	22.16	22.18	21.97		
HSDPA Subtest-2	22.13	22.16	21.95		
HSDPA Subtest-3	21.66	21.64	21.43		
HSDPA Subtest-4	21.63	21.62	21.39		
HSUPA Subtest-1	22.10	22.01	21.70		
HSUPA Subtest-2	20.12	20.02	19.72		
HSUPA Subtest-3	21.13	21.08	20.81		
HSUPA Subtest-4	19.66	19.62	19.43		
HSUPA Subtest-5	21.71	21.56	21.42		

Pre-scan all bandwidth and RB, find worse case mode are chosen to the report, the worse mode applicability and tested channel detail as below:

Band	Radiated	Conducted	
GSM/GPRS	1) GSM (GMSK, 1Tx-slot) Link 2) GPRS (GMSK, 1Tx-slot) Link	1) GSM (GMSK,1Tx-slot) Link 2) GPRS (GMSK, 1Tx-slot) Link	
WCDMA Band II	RMC 12.2Kbps Link	RMC 12.2Kbps Link	

Page 15 of 48 Report No.: 180709006RFM-2

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2 Subpart J	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 24 Subpart E	PART 24 – PERSONAL COMMUNICATIONS SERVICES Subpart E – Broadband PCS
3	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
4	KDB 971168 D01	KDB 971168 D01 Power Meas License Digital Systems v03

5.2 EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

Test Requirement: FCC 47 CFR Part 2.1046(a) & FCC 47 CFR Part 24.232(c)

Test Method: KDB 971168 D01v03 & ANSI/TIA-603-E-2016

Limit:

Mobile and portable stations are limited to 2 watts EIRP.

Test Procedure:

Test procedure as below:

- The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

$$\begin{split} & \mathsf{ERP}(\mathsf{dBm}) = \mathsf{Pg}(\mathsf{dBm}) - \mathsf{cable\ loss\ (dB)\ +\ antenna\ gain\ (dBd)} \\ & \mathsf{EIRP}(\mathsf{dBm}) = \mathsf{Pg}(\mathsf{dBm}) - \mathsf{cable\ loss\ (dB)\ +\ antenna\ gain\ (dBi)} \end{split}$$

EIRP=ERP+2.15dB

where:

Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.

12) Repeat above procedures until all frequencies measured was complete.

	Frequency	Detector	RBW	VBW	Remark
Receiver Setup:	30MHz-1GHz	Peak	100kHz	300kHz	Peak
	Above 1GHz	Peak	1MHz	3MHz	Peak

Test Setup: Refer to section 4.2.1 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Test Data: See table below

Page 16 of 48

Maximum EIRP (dBm)						
Channel GSM 1Tx-slot		WCDMA RMC 12.2Kbps	Limit (dBm)	Result		
Lowest	28.39	23.43	33.01	Pass		
Middle	27.54	19.68	33.01	Pass		
Highest	26.22	18.72	33.01	Pass		

Page 17 of 48 Report No.: 180709006RFM-2

5.3 CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 2.1046(a) & FCC 47 CFR Part 24.232(c)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit:

Mobile and portable stations are limited to 2 watts EIRP.

Test Procedure:

The EUT was set up for the maximum power with GSM, GPRS, EDGE, WCDMA, CDMA2000, and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Test Data: The full result refer to section 4.5 for details.

Page 18 of 48 Report No.: 180709006RFM-2

5.4 PEAK-TO-AVERAGE RATIO

Test Requirement: FCC 47 CFR Part 24.232(d)

Test Method: KDB 971168 D01v03

Limit: In measuring transmissions in this band using an average power technique, the peak-

to-average ratio (PAR) of the transmission may not exceed 13 dB

Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

- a) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth
- b) Set the number of counts to a value that stabilizes the measured CCDF curve
- c) Record the maximum PAPR level associated with a probability of 0.1 %

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Test Data: See table below

	Peak-to-average ratio (dB)							
Channel	GSM 1Tx-slot	GPRS 1Tx-slot	EDGE 1Tx-slot	Limit (dBm)	Result			
Lowest	0.31	0.52	N/A	13	Pass			
Middle	0.34	0.37	N/A	13	Pass			
Highest	0.31	0.63	N/A	13	Pass			

	Channel	WCDMA RMC 12.2Kbps	HSDPA	HSUPA	Limit (dBm)	Result
Ī	Lowest	2.12	2.75	2.70	13	Pass
	Middle	2.41	2.90	2.72	13	Pass
I	Highest	1.97	2.52	2.90	13	Pass

The test plot as follows: **GSM GPRS 1Tx-slot Lowest Channel** M1[2] M1[2] Span 1.0 MHz CF 1.8502 GHz te: 16.JUL.2018 17:10:02 Middle Channel Offset 15.00 dB ⊕ RBW 1 MH2 SWT 570 µs ⊕ VBW 3 MH2 Mode Auto FFT Input 1 AC Ref Level 35.00 dBm M1[2] Data: [6.JUD.2018 17:09:05 Date: 19.JUL.2018 15:12:39 **Highest Channel**
 Ref Level
 35.00 dbm
 Offset
 15.00 db
 e RBW
 1 MHz
 4 Mode
 Auto FFT
 Input
 1 AC

 A Lt
 40 db
 e SWT
 570 µs
 e VBW
 3 MHz
 Mode
 Auto FFT
 Input
 1 AC

 EVE
 Mose
 2 Pm
 D2 M1[2] M1[2] 50 dBm CF 1.9098 GHz

Page 22 of 48 Report No.: 180709006RFM-2

5.599%&26DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 2.1049(h) & FCC 47 CFR Part 24.238(b)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit: No Limit

Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Test Data: See table below

99% & 26 dB Bandwidth						
Test Mode	Channel	Frequency (MHz)	26 dB BW (kHz)	99% BW (kHz)		
GSM 1Tx-slot	512	1850.2	317.9	246.61		
	661	1880.0	311.7	243.80		
	810	1909.8	320.9	244.85		
GPRS 1Tx-slot	512	1850.2	316.3	243.17		
	661	1880.0	313.3	242.64		
	810	1909.8	319.2	242.85		

99% & 26 dB Bandwidth						
Test Mode	Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)		
WCDMA RMC 12.2Kbps	9262	1852.4	4.736	4.1783		
	9400	1880.0	4.725	4.1657		
	9538	1907.6	4.781	4.1938		
HSDPA	9262	1852.4	4.691	4.1674		
	9400	1880.0	4.695	4.1683		
	9538	1907.6	4.697	4.1683		
HSUPA	9262	1852.4	4.714	4.1720		
	9400	1880.0	4.699	4.1584		
	9538	1907.6	4.708	4.1790		

The test plot as follows: **GSM GPRS Lowest Channel** Ref Offset 15 dB Ref 35.00 dBn Ref Offset 15 dB Ref 35.00 dBn Center Free enter 1.85 GHz Res BW 10 kHz Span 1 MHz eep 12.4 ms enter 1.85 GHz Res BW 10 kHz Span 1 MH: Sweep 12.4 ms CF Ste 100.000 k #VBW 30 kHz #VBW 30 kHz 36.7 dBm 37.7 dBm Occupied Bandwidt 246.61 kHz 243.17 kHz Transmit Freg Error 377 Hz 721 Hz **OBW Power** 99.00 % Transmit Freq Error **OBW Power** 99.00 % 317.9 kHz -26.00 dB x dB Bandwidth 316.3 kHz -26.00 dB x dB Bandwidth x dB x dB **Middle Channel** Ref Offset 15 dB Ref 35.00 dBm Ref Offset 15 dB Ref 35.00 dBm Center Free Center Free CF Step Total Powe 37.1 dBm Total Power 37.8 dBm 243.80 kHz 242.64 kHz Freq Offset 360 Hz OBW Power 99.00 % 56 Hz **OBW Power** 99.00 % Transmit Freq Error Transmit Freq Error 311.7 kHz -26.00 dB 313.3 kHz -26.00 dB **Highest Channel** enter Freq 1.909800000 GHz Center Freg 1.909800000 GH: Ref Offset 15 dB Ref 35.00 dBn Ref Offset 15 dB Ref 35.00 dBn Center Free Center Free enter 1.91 GHz enter 1.91 GHz Res BW 10 kHz CF Ste 100.000 ki CF Step 100.000 kH #VBW 30 kHz #VBW 30 kHz Occupied Bandwidth 244.85 kHz 242.85 kHz Freq Offs 1.050 kHz 99.00 % 1.423 kHz OBW Po 99.00 % 320.9 kHz x dB -26.00 dB y dB Bandwidth 319.2 kHz x dB -26.00 dB

