1 Young-Tableaus

Die möglichen (Standard-) Young-Tableaus zur Gruppe
 2lauten:

- [2]: $\boxed{1}$ $\boxed{2}$
- $\left[1^{2}\right]: \quad \boxed{\frac{1}{2}}$

2 Ausmultiplizierte Young-Tableaus

 a,b,c,\dots = allgemeine Funktionen, die beispielsweise p
-Orbitale repräsentieren könnten

[2]:

$$\boxed{1 \quad 2} \quad \frac{1}{\sqrt{2}} \left(+a_1 \cdot b_2 + a_2 \cdot b_1 \right)$$

 $[1^2]:$

$$\boxed{\frac{1}{2}} \quad \frac{1}{\sqrt{2}} \left(+a_1 \cdot b_2 - a_2 \cdot b_1 \right)$$

3 Spin

Die möglichen Kombinationen $|S\>M_S\rangle$ für die Tableaus der Permutationsgruppe 2 lauten:

[2]:

$$\boxed{1 \ 2} \qquad |1.0 \ +0.0\rangle = \frac{1}{\sqrt{2}} \left(+\alpha_1 \cdot \beta_2 + \alpha_2 \cdot \beta_1 \right)$$

$$\boxed{1 \ 2} \qquad |1.0 \ +1.0\rangle = (+\alpha_1 \cdot \alpha_2)$$

$$\boxed{1 \ 2} \qquad |1.0 \ -1.0\rangle = (+\beta_1 \cdot \beta_2)$$

$$[1^2]:$$

$$\boxed{\frac{1}{2}} \qquad |0.0 + 0.0\rangle = \frac{1}{\sqrt{2}} \left(+\alpha_1 \cdot \beta_2 - \alpha_2 \cdot \beta_1 \right)$$

4 Überlappungsintegrale

Raumfunktionen: Überlapp zw. versch. Tableaus ist 0, Überlapp zwischen gleichen Tableaus mit gleichem m_S -Wert ist 1

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\Phi} = (+1)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \frac{1}{\sqrt{2}} \left(+\alpha_{1} \cdot \beta_{2} + \alpha_{2} \cdot \beta_{1} \right) \left| \frac{1}{\sqrt{2}} \left(+\alpha_{1} \cdot \beta_{2} + \alpha_{2} \cdot \beta_{1} \right) \right\rangle = (+1)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \frac{1}{\sqrt{2}} \left(+\alpha_{1} \cdot \beta_{2} + \alpha_{2} \cdot \beta_{1} \right) \left| \left(+\alpha_{1} \cdot \alpha_{2} \right) \right\rangle = (0)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \left(+\alpha_{1} \cdot \beta_{2} + \alpha_{2} \cdot \beta_{1} \right) \left| \left(+\beta_{1} \cdot \beta_{2} \right) \right\rangle = (0)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \left(+\alpha_{1} \cdot \alpha_{2} \right) \left| \left(+\alpha_{1} \cdot \alpha_{2} \right) \right\rangle = (+1)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \left(+\alpha_{1} \cdot \alpha_{2} \right) \left| \left(+\beta_{1} \cdot \beta_{2} \right) \right\rangle = (+1)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \left(+\beta_{1} \cdot \beta_{2} \right) \left| \left(+\beta_{1} \cdot \beta_{2} \right) \right\rangle = (+1)$$

$$\left\langle \begin{array}{c|c} \hline 1 & 2 & \hline 1 & 2 \end{array} \right\rangle_{\sigma} = \left\langle \left(+\alpha_{1} \cdot \beta_{2} - \alpha_{2} \cdot \beta_{1} \right) \left| \frac{1}{\sqrt{2}} \left(+\alpha_{1} \cdot \beta_{2} - \alpha_{2} \cdot \beta_{1} \right) \right\rangle = (+1)$$

Inhaltsverzeichnis

1	Young-Tableaus	1
2	Ausmultiplizierte Young-Tableaus	2
3	Spin	3
4	Überlappungsintegrale	4