2023年度 後期シラバス

科目名	Python機械学習	必修 選択	選択	年次	2年	担当教員	木元 勝永		
		授業形態	講義・演習	単位	2単位	開講区分	後期		
学科・コース	スーパーAIクリエイター/データサイエンティスト/スーパーITエンジニア/ プログラマー/ホワイトハッカー専攻					曜日・時限	月曜①②		
	企業のWebシステムの保守や企業のネットワーク、インフラ基盤エンジニアとして活躍。基盤構築業務を実施する中で、C言語やPythonなどのプログラミン								
 教員の略歴	グ言語は基盤根底のプログラムに密接にかかわっているため、これらプログラミング言語を習得し、近年は、Ai・機械学習のエンジニア育成にもあたってい								
	ます。								
授業の学習内容	AI.機械学習プログラミングの本命といわれるPythonのフレームワークの一つであるPythorchによる機械学習の技術のアプリへの応用方法を習得します。								
到達目標	PyTorchのディープラーニングを使って、動画から物体を検出したり、動画や画像を変換するアプリ等を制作できる知識を習得します。								
評価方法と基準	出席評価20% + 授業態度評価(聴く、書く、話す、制作する等の取り組み態度)30% + 技術評価(試験やレポート評価)50% とします。 全体100点評価、60点以上で合格(単位取得)とします。								

授業計画・授業内容							
回数	授業形態	授業内容	学習到達度目標				
10月2日	講義・演習	GPUを利用した環境構築	ローカル環境でGPUを使った環境を構築できるようにし ます				
10月16日	講義・演習	Chapter1 応用Alの作成にあたって	AIをどのように利用していくのかを理解します				
10月23日	講義・演習	Chapter2 定点カメラからの映像を認識する	動画から人を認識する仕組みを理解します				
11月6日	講義・演習	Chapter3 教師データにない状況を異常検出	異常検出の仕組みを理解します				
11月13日	講義・演習	Chapter4 物体検出と学習済みモデル	学習済みモデルを利用した物体検出の仕組みを理解しま す				
11月20日	講義・演習	Chapter5 動画の背景を入れ替える	動画の背景を入れ替える仕組みを理解します				
11月27日	講義・演習	Chapter6 アジア人向けに強化させた顔認証	顔認証の仕組みを理解します				
12月4日	講義・演習	Chapter6 アジア人向けに強化させた顔認証	西洋人向けの顔認証をアジア人向けに強化する方法を学 びます				
12月11日	講義・演習	Chapter7 線画をイラストに変換する	マウスで描いた線画をリアルタイムでアニメ風のイラス トに変換する仕組みを理解します				
12月18日	講義・演習	Chapter7 線画をイラストに変換する	マウスで描いた線画をリアルタイムでアニメ風のイラス トに変換する仕組みを理解します				
1月15日	講義・演習	Chapter8 OCRにおける文字認識	OCRで文字認識する仕組みを理解します				
1月22日	講義・演習	Chapter8 OCRにおける文字認識	OCRで文字認識する仕組みを理解します				
1月29日	講義・演習	Chapter9 OCRを完成させる	用途に応じたOCRプログラムを作成方法を習得します				
2月5日	講義・演習	テスト	AIをどのように利用していくのかを確認します				
2月19日	講義・演習	後期のまとめ / テストの解説	自身の苦手な部分を確認し、理解を深めましょう				
準備学習/	/時間外学習	【準備学習】 前期のテキストを見直してディープラーニングの仕組みの理解を深めましょう 【時間外学習】授業で扱ったプログラムを修正したり自身で用意したデータを処理させてみましょう					
教科書・参考書等		・「PyTorchではじめるAI開発」 坂本 俊之 C&R研究所					