СРЕДСТВА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Цилькер Б. Я., Орлов С. А. «Организация ЭВМ и систем» - СПб.: Питер, 2007 Брайдо В.Л. «Вычислительные системы, сети и телекомуникации» - СПб.: Питер 2004

Универсальные ЭВМ

1. Широкий круг решаемых задач (что можно формализовать и описать математически)

2.Решение с желаемой точностью за желаемое время

3. Устройства ввода-вывода ориентированы на пользователячеловека

4. Эксплуатоционные требования «мягкие» (на уровне пожеланий)

5.Стационарные, транспортируемые (мобильные)

Специализированные ЭВМ

1.Узкий круг решаемых задач (проблемная ориентация)

2.Требования по точности и быстродействию четко заданы

3. Устройства ввода-вывода ориентированы на подключение датчиков, испольнительных органов

4.Жесткие требования по надежности, пыле-, влаго-, вибро-, ударо-, радиоционно- и др. защищенности.

5.Стационарные, транспортируемые (мобильные)

Цифровые средства ВТ

Цифровой, или дискретный, способ представления информации

Квантование по амплитуде

$$0 \leq \Delta \leq 1, \quad \delta_{\kappa \theta} = \frac{\Delta_{\kappa \theta}}{2^n} \cdot 100\%$$

Квантование по времени

$$\Delta t_i = \begin{cases} Var \rightarrow f(t)_i - f(t_{i-1}) \leq 1 \\ Const \rightarrow f(t)_i - f(t_{i-1}) \leq 1. \end{cases}$$

Цифровые, или дискретные, алгоритмы решения задач

Дифферен-Алгебрациальные ические уравнения уравнения

$$f(\mathbf{t}) \approx f(t_i) \rightarrow \frac{df(t)}{dt} \approx \frac{\Delta f(t_i)}{\Delta t_i}$$

Метод Адамса

Метод Рунге-Кутта

$$\sin(x) \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

Цифровые, или дискретные, элементы и узлы

$$n = 7 \rightarrow \delta_{\kappa 6} = \frac{11}{128} \cdot 100\% \approx 1\%$$

$$n = 8 \rightarrow \delta_{\kappa 6} = \frac{11}{256} \cdot 100\% \approx 0,5\%$$

$$n = 10 \rightarrow \delta_{\kappa 6} = \frac{11}{1024} \cdot 100\% \approx 0,1\%$$

$$n = 16 \rightarrow \delta_{\kappa 6} = \frac{11}{65536} \cdot 100\% \approx 0,0015\%$$

$$n = 32 \rightarrow \delta_{\kappa 6} = \frac{11}{4294967296} \cdot 100\% \approx 2,33 \cdot 10^{(-8)}\%$$

$$n = 64 \rightarrow \delta_{\kappa 6} = \frac{11}{18446744073709551616} \cdot 100\% \approx 5,4 \cdot 10^{(-18)}\%$$

Особенности цифровой ВТ

- * Высокая точность, определяемая разрядностью и точностью(сложностью) алгоритмов
- * Широкий круг решаемых задач
- * Отсутсвие явной (линейной) корреляции между сложностью решаемой задачи и сложностью (объемом) оборудования
- * Развитое математическое и программное обеспечение, наличие широкого перечня ППП
- * Высокая надежность, технологичность и ремонтопригодность
- * Постоянно улучшающиеся ценовые, весо-габаритные и прочие потребительские характеристики
- * Время решения задач большое и определяется:
 - вычислительной сложностью (количеством операций), которая зависит от вида задачи и требуемой точности;
 - " быстродействием аппаратных средств.

Аналоговые вычислительные машины

Непрерывные (аналоговые) сигналы

Непрерывные методы решения задач Аналоговая элементная база

Аналоговая элементная база

сумматор

Параметр	Идеальное значение	Реальное значение
К	$-\infty$	500.000
$I_{_{BX}}$	0	10-50 нА
U_{ϵ}	0	10-50 мкВ
R _{BX}	∞	1 МОм
R _{вых}	0	10 Ом

$$\sum_{i=1}^{n} I_i + I_{oc} = II_{ex} ,$$

$$\sum_{i=1}^{n} \frac{U_{i} - U_{\varepsilon}}{R_{i}} + \frac{U_{\overline{y}}U_{\varepsilon}}{R_{oc}} = II_{ex},$$

$$npuU_{\varepsilon} \rightarrow 0, I_{ex} \rightarrow 0$$

$$U_{y} = -\sum_{i=1}^{n} U_{i} \frac{R_{i}}{R_{oc}}$$

интегратор

$$\frac{U_x}{R} + C \frac{dU_y}{dt} = 0,$$

$$U_y = \frac{-1}{R \cdot C} \int_0^t U_x dt$$

Особенности аналоговой ВТ

- * Низкая точность, определяемая погрешностями решающих элементов
 - * Ограниченный круг решаемых задач (по сложности алгоритма и виду функций)
 - * Линейная связь аппаратных затрат со сложностью алгоритма
 - * Отсутсвие четких алгоритмов проктирования
 - * Низкая надежность, технологичность и ремонтопригодность

*Время решения задач малое и определятеся суммарным временем переходных процессов в последовательно соединенной цепочке решающих блоков

Аналогово — цифровые вычислительные комплексы

Области применения:

- * Авиация
- * Геология
- * Ядерная физика
- * и др

Цифровая часть — одна или несколько ЭВМ для решения фрагментов задачи, требующих высокой точности, но при низком быстродействии

Аналоговая часть — одна или несколько ABM для решения фрагмента задачи, требующего высокого быстродействия, но при низкой точности

АЦП — аналогово-цифровой преобразователь

ЦАП — цифро-аналоговый преобразователь

Эволюция СВТ

Поколения компьютеров: нестрогая классификация ВС по степени развития АС и По

 3000 лет до н.э .Абак – Первые счеты — Вавилон
 – 500 лет до н.э. Счеты с косточками – Китай
 1492 – Леонардо да Винчи — Сумматор на зубчатых колесах
 1832 – Машина Бэббиджа — Разностная машина — Англия
 1937 – Машина Тьюринга — Кембриджский университет
– 1938 – Конрад Цузе — Машина Z1 — Механический
программируемый вычислитель — Германия
 1943 – Марк-1 — электромеханический программно-управляемый
вычислитель — Гарвардский университет

I поколение Электронные лампы 1937 – 1953	– 1946 — ENIAC (до 1955г) – Джон фон Нейман — проект EDVAC – хранимая в памяти программа – 1947-1957 – МЭСМ — С.А. Лебедев – 1952 – UNIVAC – первая коммерчески успешная ЭВМ
1737 1733	– 1953 – БЭСМ

II поколение Транзисторы 1954-1962	 ТRADIC — Bell Labs для ВВС США (ОЗУ на ферритовых сердечниках, индексные регистры, FPU, процессоры Вв/Выв.) «Супер-ЭВМ» - LARC, IBM 7090 «Урал-1, 4, 11, 14»; БЭСМ; «Минск-1, 2, 22, 32»; «Днепр» Фортран, Алгол, Кобол
--	--

VI поколение	– многомашинные ВК;
сети	– «взрыв» глобальных систем
1990 –	

Архитектура Джона фон Неймана

4 принципа фон Неймана

1.Принцип двоичного кодирования

Данные:	S	число			
	S	E		M	Форматы
Команды:		КОп		АЧ	

Іринцип программного управления

Алгоритм → программа → команды (память)

<u>3.Принцип однородности памяти</u>

Структуры ЭВМ и ВС

