Fondamenti d'informatica

Realizzato da: Giuntoni Matteo

A.A 2022-2023

1 Insiemi

Gli insiemi sono definibili come delle correlazioni di elementi e saranno alla base del corso di FDI. ¹ Gli insiemi possono essere:

- Finiti: quando hanno un numero finito di elementi
- Infiniti: quando invece il numero di elementi è infinito

Esempio 1.0.1. Esempi insiemi finiti ed infiniti:

- Insieme finito: $A = \{a_1, a_2, a_3, \dots, a_n\}^2$
- Insieme finito: $GS = \{lun, mar, mer, \dots, dom\}$
- Insieme infinito: $A = \{..., a_i 1, a_i, a_i + 1, ...\}$

Esempio 1.0.2. Alcuni insiemi infiniti ricorrenti:

 $\mathbb{N}=$ num. naturali $\mathbb{Z}=$ num. interi $\mathbb{Q}=$ num. razionali $\mathbb{R}=$ num. reali

1.1 Notazione

Elementi: Lettere piccole dell'alfabeto. E.g. a, b, c - a_1, a_2, a_3

Insiemi: Lettere maiuscole dell'alfabeto. E.g. A, B, C

Appartiene: $a \in A$ Non Appartiene: $a \notin A$ Tale che:

1.2 Definire un insieme

Un insieme può essere scritto in due forme, quella estensionale e quella intensionale.

1.2.1 Estensionale

Detto anche per enumerazione, consiste nell'elencare esplicitamente tutti gli elementi.

Esempio 1.2.1. Esempi estensionale:

$$ore = \{1, 2, 3, \dots, 24\}$$
 - $vocali = \{a, e, i, o, u\}$
 $n = \{0, 1, 2, \dots, n-1\}$ - $\emptyset = \{\}$ (insieme vuoto)

1.2.2 Intensionale

Detto anche per proprietà, consiste nel descrivere implicitamente tutti gli elementi di un insieme A attraverso una proprietà P che li caratterizza.

$$X = \{ x \in A \mid P(x) \} \tag{1}$$

Esempio 1.2.2. Esempi intensionale:

$$ore_1 = \{n \in \mathbb{N} \mid n \geq 1 \text{ and } n \leq 24\}$$

$$N^p = \{n \in \mathbb{N} \mid n \text{ è divisibile per 2} \}$$

$$\mathbb{Q} = \{\frac{n}{m} \mid n \in \mathbb{Z}, m \in \mathbb{N} \text{ con } m \neq 0\}$$

 $^{^{1}}$ Ricorda che all'interno di un insieme gli elementi possono essere ripetuti, in tal caso per le varie operazioni da fare questi elementi ripetuti andranno considerati come unici

 $^{^2\}mathrm{I}$ tre puntini $\overset{\mathtt{I}}{\ldots}$ si utilizzano quando non si è in grado di scrivere tutti gli elementi

1.3 Proprietà degli insiemi

1.3.1 Uguaglianza

Due insiemi $A \in B$ sono **uguali** (A = B) se hanno gli stessi elementi, altrimenti sono **diversi** $(A \neq B)$.

Esempio 1.3.1. Dati tre insiemi

 $V = \{a, e, i, o, u\}$

 $V1 = \{a, i, e, o, u, e, i, a\}$

 $B = \{x \mid x \text{ è una vocale della lingua italiana}\}$

possiamo dire che V = V1 = B

Domanda Con $A = \{a, e, b, c, o, u\}$ e $B = \{a, b, e, b, c, o, o, u\}$, A = B?

Se partiamo dalla definizione di insiemi uguali, cioè che A=B quando A contiene gli stessi elementi di B e viceversa, possiamo concludere che \mathbf{si} in questa casistica A e B sono uguali. Possiamo quindi definire:

Definizione 1.1 (Proprietà del confronto). A = B equivale a dire che ogni elemento $a \in A$ vale che $a \in B$ e ogni elemento $b \in B$ vale $b \in A$.

1.3.2 Inclusione

Prendiamo come esempio due insiemi A e B:

Definizione 1.2 (Sottoinsieme). A è un sottoinsieme di B ($A \subseteq B$) se ogni elemento di A appartiene anche a B. A e B possono essere uguali ma non è necessario. Ad esempio in figura [1] $A \subseteq B$, $A \subseteq U$ e $B \subseteq U$ ³

Definizione 1.3 (Sottoinsieme stretto). $A \ \grave{e} \ un \ sottoinsieme \ di \ B$ $(A \subset B)$ se ogni elemento di A appartiene anche a B. $A \ e \ B$ non sono uguali. Ad esempio in figura $[1]\ A \subset B$.

Figure 1: Contenuto uguale

Definizione 1.4 (Insiemi disgiunti). Due insiemi A e B si dicono disgiunti se non hanno elementi in comune.

1.3.3 Proprietà di uguaglianza ed inclusione

Per tutti gli insiemi A, B, C valgono le proprietà scritte in tabella 1.

Riflessiva	A = A	$A\subseteq A$		
Transitiva	Se $A = B$ e $B = C \implies A = C$	Se $A \subseteq B$ e $B \subseteq C \implies A \subseteq C$		
Simmetrica	Se $A = B \implies B = A$	Niente		
Antisimmetrica	Niente	Se $A \subseteq B$ e $B \subseteq A \implies A = B$		

Table 1: Proprietà Uguaglianza ed Inclusione

³con il simbolo "U", chiamato universo, si indicano tutti i possibili elementi che possiamo trovare in un insieme.

1.3.4 Paradosso di Russell

Sia $NV = \{X \mid X \neq \emptyset\}.$

Sia $CS = \{X \mid X \in X\}$ l'insieme degli insiemi che appartengono a se stessi.

Sia $NCS = \{X \mid X \notin X\}$ l'insieme degli insiemi che non appartengono a se stessi.

Abbiamo un paradosso in quanto se assumiamo che $NCS \in NCS$ allora $NCS \notin NCS$, mentre se assumiamo che $NCS \notin NCS$ allora $NCS \in NCS$.

1.4 Operazioni su insiemi

1.4.1 Cardinalità

Si rappresenta con n o |A| ed è il numero di elementi dell'insieme. Valgono le seguenti proprietà:

- Se $A \subseteq B \implies |A| \le |B|$
- Se $A = B \implies |A| = |B|$
- Se $A = \emptyset \implies |A| = 0$

Note 1.4.1. Dati due insiemi $V = \{a, e, i, o, u\}$ e $V1 = \{a, a, e, i, i, u, o, e\}$ allora |V| = |V1| = |B|

Esempio 1.4.1. Esempi cardinalità:

1.4.2 Unione

Figure 2: $A \cup B = \{x \in U \mid x \in A \lor x \in B\}$

1.4.3 Intersezione

Figure 3: $A \cap B = \{x \in U \mid x \in A \land x \in B\}$

1.4.4 Differenza

Figure 4: $A \setminus B = \{x \in U \mid x \in A \land x \notin B\}$

1.4.5 Complemento

Figure 5: $\overline{A} = \{c \in U \mid x \notin A\}$

1.5 Tavola delle leggi

Per tutti gli insieme A, B, C (dell'universo \mathcal{U}) valgono le uguaglianze nella tabella 2

Associazione	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$		
Unita	$A \cup \emptyset = A$	$A\cap U=A$		
Commutativa	$A \cup B = B \cup A$	$A\cap B=B\cap A$		
Indipendenza	$A \cup A = A$	$A\cap A=A$		
Assorbimento	$A \cup U = U$	$A\cap\varnothing=\varnothing$		
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
Complemento	$A \cup \overline{A} = U$	$A\cap \overline{A}=\emptyset$		
De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A\cap B}=\overline{A}\cup\overline{B}$		
Convoluzione	$\overline{(\overline{A})} = A$			
Assrbimento con \cap e \cup	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$		

Table 2: Tavola delle leggi

1.6 Algebra di Bool

Su questi elementi possono essere applicate una serie di operazioni che sono:

And, &&, \wedge Or, \parallel , \vee Not, \sim , \neg Implicatione: 4 $A \Longrightarrow B$, se A allora B

Conseguenza: $A \Longleftarrow B$, A se B

Doppia implicazione: $A \iff B$, A se e solo se B

A	В	$A \wedge B$	$A \lor B$	$\neg A$	$A \Longrightarrow B$	$A \Longleftarrow B$	$A \iff B$
Ø	Ø	Ø	Ø	U	U	U	U
Ø	U	Ø	U	U	U	Ø	Ø
U	Ø	Ø	U	Ø	Ø	U	Ø
U	U	U	U	Ø	U	U	U

Table 3: Operazioni con algebra booleana

Note 1.6.1. Se nella tabella andiamo a sostituire lo \emptyset con 0 e U con 1 o con qualsiasi altro valore corrispondente nell'algebra di boole il risultato resta invariato.

1.7 Dimostrazioni

Una legge è valida se vale per tutte le scelte dell'insieme che prendiamo in considerazione. Una dimostrazione indica la validità di una legge. Un controesempio mostra che la legge non è valida per almeno un caso (appunto il controesempio). Ci sono 3 tecniche di dimostrazione: grafica (diagramma di Eulero-Venn), discorsiva e tramite sostituzione.

1.7.1 Grafica

Esempio 1.7.1. Dimostriamo la legge distributiva mediamente i diagrammi di Eulero-Venn.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{2}$$

⁴La parte a sinistra della freccia si chiama **premessa**, la parte a destra invece **conseguenza**

1.6 Algebra di Bool 8

Possiamo vedere come lo step 2 (6b), che rappresenta ciò che dovrebbe essere $A \cup (B \cap C)$ con i diagrammi di eulero-venn, e lo step 5 (7b), cioè $(A \cup B) \cap (A \cup C)$, siano uguali e quindi possiamo dire che la proprietà e dimostrata.

1.7.2 Sostituzione

Questo tipo di dimostrazione si basa sull'utilizzare leggi preesistenti per dimostrare un'affermazione, scomponendo tale affermazione in modo che si possa ricorrere ad un legge fondamentale.

Esempio 1.7.2.
$$(A \cup B) \cup C = A \cup (C \cup B)$$

1. Commutativa: $(A \cup B) \cup C = A \cup (\mathbf{B} \cup \mathbf{C})$

L'ipotesi è vera per la proprietà associativa.

Esempio 1.7.3. $A \cup (\overline{A} \cap B)$

- 1. Usando la **Distributiva** possiamo dividere la prima parte: $(A \cup \overline{A}) \cap (A \cup B) = (A \cup B)$
- 2. Usando la proprietà del **Complemento** $A \cup \overline{A}$ diventa U quindi perché un insieme unito con la sua negazione torna sempre l'universo: $U \cap (A \cup B) = (A \cup B)$
- 3. Per la proprietà dell'**Unità** un insieme A unito con l'universo U è uguale a l'insieme stesso quindi: $A \cup B = A \cup B$

L'ipotesi è così verificata.

1.7.3 Discorsiva

Esempio di dimostrazione della proprietà distributiva:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \tag{3}$$

Teniamo conto che: $X = Y \iff (X \subseteq Y) \land (Y \subseteq X)$.

Andiamo a questo punto a sostituire X con la prima parte della proprietà distributiva, $A \cup (B \cap C)$ e Y con la seconda $(A \cup B) \cap (A \cup C)$. Applicando la considerazione scritta sopra otteniamo due condizione che devono entrambi essere vere per far si che la condizione di uguaglianza iniziale $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ sia vera e quindi la proprietà sia verificata. Queste due condizioni sono:

- $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$ Dimostrazione 1°
- $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ Dimostrazione 2°

Dimostrazione 1°: $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

Ricordiamo che un insieme $W \subseteq Z$ per ogni $x \in W$ e $z \in Z$.

Sostituendo la W con la prima parte, $A \cup (B \cap C)$, e la Z con la seconda, $(A \cup B) \cap (A \cup C)$ possiamo scrivere che $y \in A \cup (B \cap C)$. Per la definizione di unione possiamo distinguere in 2 casi.

(1a)
$$y \in A$$
 (1b) $y \in (B \cap C)$

Da qui il nostro obbiettivo è far valere per entrambi i casi che $y \in (A \cup B) \cap (A \cup C)$.

- Caso 1a: $y \in A$
 - 1. Per questo caso possiamo vedere come, per la definizione di unione, aggiungendo qualsiasi cosa all'insieme A l'appartenenza di y rimarrà invariata. Quindi $y \in A \cup B$, $y \in A \cup C$.
 - 2. Da qui per la definizione di intersezione $y \in (A \cup B) \cap (A \cup C)$. Caso dimostrato.

1.7 Dimostrazioni 9

 $^{^{5}(}y \in W \cap Z, \iff y \in W \ e \ y \in Z)$

- Caso 1b: $y \in (B \cap C)$
 - 1. Siccome $x \in B \cap C$, per definizione di intersezione si ha che $x \in B$ e che $x \in C$.
 - 2. Dato che $x \in B$, a sua volta ha che $x \in A \cup B$.
 - 3. Analogamente, dato che $x \in C$, per definizione di unione si ha che $x \in A \cup C$.
 - 4. Ma allora, visto che x appartiene a entrambi questi insiemi deve appartenere anche alla loro intersezione, ovvero $y \in (A \cup B) \cap (A \cup C)$. Caso dimostrato.

Dimostrazione 2°: $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

Come per la dimostrazione 1° andiamo a prendere qualsiasi elemento $y \in (A \cup B) \cap (A \cup C)$.

Da qui per la definizione di intersezione $y \in (A \cup B)$ e $y \in (A \cup B)$ che ci permette di conseguenza di distinguere 4 casi:

(1)
$$y \in A \in y \in A$$

$$(2) y \in A e y \in B \qquad (3) y \in C e y \in A$$

$$(3) y \in C e y \in A$$

(4)
$$y \in B \in y \in C$$

Però possiamo racchiudere le prime 3 con $y \in A$ e l'ultima come $y \notin A$. Quindi abbiamo due possibilità disgiunti fra loro.

(2a)
$$y \in A$$
 (2b) $y \notin A$

In entrambi i casi bisogna arrivare a dimostrare che $y \in A \cup (B \cap C)$.

- Caso 2a: $y \in A$
 - 1. Essendo che $y \in A$ allora per definizione di unione $y \in A \cup (B \cap C)$. Caso dimostrato.
- Caso 2b: $y \notin A$
 - 1. Dato che $y \in A \cup B$ ma $y \notin A$, allora necessariamente $y \in B$.
 - 2. Analogamente, data che $y \in A \cup C$ ma $y \notin A$, allora $y \in C$.
 - 3. Visto che y apparitene sia a B che a C deve per forza appartenere alla loro intersezione, quindi $y \in (B \cap C)$.
 - 4. A questo punto per definizione di unione $y \in A \cup (B \cap C)$. Caso dimostrato. I

Non avendo nessun' altro caso da dimostrare abbiamo concluso la dimostrazione.

1.8 Prodotto Cartesiano

Prendendo 2 insiemi A, B il loro prodotto cartesiano si definisce come:

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

Note 1.8.1. In un prodotto cartesiano $|A \times B| = |A| * |B|$ e $A \times \emptyset = \emptyset$

Esempio 1.8.1. Esempio prodotto cartesiano:

$$A = \{501234, 501227, 678980\}$$
 N. matricola $B = \{18, 19, 20, ..., 30L\}$ Voti $A X B = \{(501234, 18), (501234, 19), ..., (678980, 30L)\}$

I sottoinsiemi che si vanno a creare con il prodotto cartesiano si indicano con le parentesi tonde "(...)" e possono essere di due tipi:

- Coppia Ordinata: si tiene conto dell'ordinamento degli elementi. E.g. $(a,b) \neq (b,a)$.
- Coppia Non Ordinata: non si tiene conto dell'ordinamento degli elementi. E.g. (a, b) = (b, a).

1.9 Insiemi di insiemi

Definizione 1.5. Un insieme di insiemi è quando uno o più elementi di un insieme è a sua volta un insieme.

Note 1.9.1. Preso $A = \{\{a\}, \{a, b\}, \{a, b, c\}\}, \text{ si nota che } a \notin A \text{ mentre } \{a\} \in A.$

Note 1.9.2. Sapendo che $\emptyset = \{\}$ possiamo dedurre che $|\{\{\}\}| = 1$.

Esempio 1.9.1. Esempi insiemi di insiemi:

- $X = \{a, \{a, b, c\}, \{a, \{b\}\}, \{\{c\}, d\}\}$
- $N = \{\{\}, \{\{\}\}\}, \{\{\{\}\}\}\}, ...\} = \mathbb{N}$

1.9.1 Insieme delle parti

Definizione 1.6. Dato un insieme A, l'insieme delle parti di A si indica come P(A) e si definisce come tutti i possibili sottoinsiemi di A.

$$P(A) = \{x \subseteq A\} \tag{4}$$

Note 1.9.3. La cardinalità nell'insieme delle parti si calcola come: $P(A) = 2^{|A|}$

Esempio 1.9.2. Con $A = \{a, b, c\}, P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{c, b\}, \{a, b, c\}\}$

1.9 Insiemi di insiemi 11