ACAMICA

¡Bienvenidas/os a Data Science!

¡Gracias Juan Spinelli por la creación de los contenidos de este encuentro!

Agenda

¿Cómo anduvieron?

Repaso: Trade-off entre sesgo y varianza

Ensambles: Bagging

Break

Hands-on Training

Cierre

¿Dónde estamos?

¿Cómo anduvieron?

Hoja de ruta

fase **ADOUISICIÓN Y EXPLORACIÓN DEPLOY MODELADO** entrega **Exploración Feature** Publicación de **Machine** Optimización de Procesam, del de datos **Engineering** Learning: parámetros lenguaje natural recomendación Clasificación y Regresión **SEM 14** SEM 8 SEM 1 SEM 5 **SEM 12** tiempo SEM 9 SEM 2 SEM 6 **SEM 13** SEM 10 SEM 3 SEM 7 SEM 4 **SEM 11**

Cronograma

Usted Está Aquí

SEM 13

- SVM
- Modelos Avanzados

SEM 14

 Ensambles: Bagging, Random Forest y Boosting **SEM 15**

- Redes Neuronales
- Descenso por Gradiente
- Perceptrón Simple

SEM 16

- Perceptrón Multicapa
- Repaso

SEM 17

 Procesamiento del lenguaje natural

Entrega 4

Entrega 5

Repaso: Trade-off entre sesgo y varianza

Error de predicción

El error de predicción para cualquier algoritmo de Machine Learning se puede dividir en tres partes:

Error irreducible (ruido)	Error de bias (sesgo)	Error de varianza
---------------------------	-----------------------	-------------------

¿Alguien se anima a explicar lo que ven en este gráfico?

En el gráfico, si nos movemos de izquierda a derecha:

- Aumenta la complejidad de nuestro modelo
- Baja el sesgo y aumenta la varianza.
- Hasta que llega un momento en el que el error en los datos de test empieza a aumentar mientras que el de entrenamiento sigue disminuyendo. Ese punto mínimo de error en los datos de test nos indica el nivel de complejidad óptimo para nuestro modelo.

Resumen

Modelo sesgado: No logra capturar la forma de los datos. En general, tiene desempeño muy similar en el set de entrenamiento y de validación. Asociado al underfitting.

Modelo con mucha varianza: Demasiado ajustado a los datos . Tiene desempeño muy bueno en el set de entrenamiento y malo en el de validación. Asociado al overfitting.

¿Cómo diagnosticamos sesgo y varianza?

Curva de validación/complejidad: Score en función de la complejidad. Sirve para ver regiones de baja complejidad (sesgo, underfitting) y demasiada complejidad (alta varianza, overfitting)

Curva de aprendizaje: Score en función de la cantidad de datos. Sirve para ver, dado un modelo fijo, cómo reacciona a distintos tamaño del dataset. En particular, útil para diagnosticar alta varianza o modelo muy complejo (dado el tamaño de nuestro dataset).

ALTA VARIANZA - BAJO BIAS

Los algoritmos de bajo bias (alta varianza) tienden a ser más complejos, con una estructura subyacente flexible.

¿Podremos usar estos modelos para mejorar las predicciones?

Idea: entrenar muchos modelos y hacerlos votar. La clasificación resultante es la que reciba más votos.

Idea: entrenar muchos modelos y hacerlos votar. La clasificación resultante es la que reciba más votos.

Idea: entrenar muchos modelos y hacerlos votar. La clasificación resultante es la que reciba más votos.

Aún mejor, si los modelos devuelven scores, se puede hacer una votación ponderada.

¿Qué necesitamos para que esta idea funcione?

Si todos los modelos son muy parecidos, no van a agregar mucha información nueva en la votación.

Necesitamos modelos diferentes entre sí, poco correlacionados. Los modelos pueden ser diferentes entre sí por una variedad de razones:

- Puede haber diferencia en la población de datos
- Puede haber una técnica de modelado utilizada diferente
- Puede haber una hipótesis diferente

Técnicas de Ensamble

Existen varias técnicas para generar modelos de ensambles. Las más conocidas son:

BAGGING. BOOSTING. STACKING.

Técnicas de Ensamble

Bagging (Bootstrap Aggregation)

Muestreo con reemplazo de las instancias

El Bagging es una de las técnicas de construcción de conjuntos que también se conoce como Agregación Bootstrap.

Bagging

El Bagging es una de las técnicas de construcción de conjuntos que también se conoce como Agregación Bootstrap.

- Dada una muestra de datos, se extraen varias muestras, bootstrapped
- Esta selección se realiza de manera aleatoria.
- Una vez que forman las muestras bootstrapped, se entrenan los modelos de manera separada. En general, estos modelos serán modelos con mucha varianza.
- La predicción de salida final se combina en las proyecciones de todos los submodelos.

Ésta técnica se puede usar con cualquier tipo de modelo: Árboles, KNN, SVM, etc.

Pero lo más común es que se aplique en árboles, para crear bosques.

Random Forest

¿Cómo surge Random Forest?

Uno de los problemas que aparecía con la creación de un árbol de decisión es que si le damos la profundidad suficiente, el árbol tiende a "memorizar" las soluciones en vez de generalizar el aprendizaje (*overfitting*).

La solución para evitar esto es la de crear muchos árboles y que trabajen en conjunto.

Random Forest

Random Forest Simplified

Random Forest

Problema: si pocos atributos (features) son predictores fuertes, todos los árboles se van a parecer entre sí. Esos atributos terminarán cerca de la raíz para todos los conjuntos generados con bootstrap.

Random Forest

Problema: si pocos atributos (features) son predictores fuertes, todos los árboles se van a parecer entre sí. Esos atributos terminarán cerca de la raíz para todos los conjuntos generados con bootstrap.

Random Forest es

igual a bagging, pero en cada nodo, hay que considerar sólo un subconjunto de *m* atributos elegidos al azar (random feature selection)

¿Cómo funciona Random Forest?

- Se seleccionan k features de las m totales (siendo k menor a m) y se crea un árbol de decisión con esas k features.
- Se crean **n** árboles variando siempre la cantidad de **k** features
- Se guarda el resultado de cada árbol obteniendo n salidas.
- Se calculan los votos obtenidos para cada "clase" seleccionada y se considera a la más votada como la clasificación final de nuestro "bosque".

Random Forest · Ventajas

- 1. Bastante robusto frente a outliers y ruido
- 2. Provee buenos estimadores de error (oob_score) e importancia de variables
- 3. Si bien entrenar muchos árboles puede llevar mucho tiempo, es fácilmente paralelizable.

Hands-on training

Hands-on training

DS_Encuentro_27_Bagging.ipynb

Recursos: Ensambles

Recursos

Si te quedaste con ganas de más...

- Ensemble Learning The heart of Machine learning
- Ensemble Learning Bagging and Boosting
- Random forest: El poder del ensamble (¡recomendado!)

Para la próxima

- 1. Ver los videos de la plataforma "Clasificación Avanzada: Ensambles Boosting".
- 2. Completar los notebooks de hoy y atrasados.

ACAMICA