Algorithms for Augmented Reality

3D Pose Estimation

by

Sebastian Grembowietz 2004-11-19

index

- introduction
- 3d pose estimation
 - techniques in general
 - how many points?
 - different models of projection
 - orthographic projection
 - [weak] perspective projection
 - two algorithms in detail:
 - POSIT (DeMenthon & Davis 1994)
 - Linear Algorithms (Quan & Lan 1999)

my task

- what is 3d pose estimation?
 - pose = position and orientation of an object (6DOF)
 - pose estimation = getting the pose of an object from a 2d image (e.g. from a CCD)
- and what is it good for?
 - mixing reality and virtual reality
- some examples?
 - → videos

my task

- given
 - calibrated camera
 - model with feature-points
 - corresponding points on the screen (image-plane)
- wanted
 - rotation and translation of the model

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} =$$

techniques

- algebraic algorithms
 - positive aspects:
 - speed
 - negative aspects:
 - poor noise filtering
 - numeric instabilities

Linear 4-Point Algorithm (Quan & Lan)

techniques

- optimizing (iterizing) algorithms
 - positive aspects:
 - numericly stable
 - negative aspects:
 - result depends on initial guess
 - divergence

Levenberg-Marquardt (next Hauptseminar)

techniques

- hybrid algorithms
 - try to combine positive aspects of both algebraic algorithms and optimizing algorithms:
 - numeric stability
 - robust algorithm, i.e. noise does not harm much
 - speed

POSIT (DeMenthon & Davis)

features used

points

- Quan & Lan (Linear N-Point Camera Pose Determination,
 [QuanLan1999])
- DeMenthon & Davis (Model-Based Object Pose in 25 Lines of Code [DeMenthonDavis1994])
- Lowe (Fitting Parameterized Three-Dimensional Models to Images [Lowe1991])
- Yuan (A General Phogrammetric Solution for the Determining Object Position and Orientation [Yuan1989])

features used

lines

- Dhome et al (Determination of the Attitude of 3D Objects from Single Perspective View [Dhome1989])
- Lowe (Perceptual Organization and Visual Recognition [Lowe1985])

surface

- Rosenhahn et al. (Pose Estimation of 3D Free-form Contours [Rosenhahn2002])
- Nevatia & Ulupinar (Perception of 3-D Surfaces from 2-D Contours [NevatiaUlupinar1993])

perspective

perspective projection

$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & f & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} fX \\ fY \\ fZ \\ Z \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \\ f \\ 1 \end{bmatrix}$$

f - focal length

- vanishing points
- vanishing lines (horizon)

orthographic

orthographic projection

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & f \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ f \\ 1 \end{bmatrix}$$

- "just drop Z"
- size preserves
- angles preserve

weak perspective

weak perspective projection

$$\begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 0 & f & k \\ 0 & 0 & 0 & k \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} fX \\ fY \\ f & k \\ k \end{bmatrix}$$

k - constant

- fast
- approximation of perspective projection

discovered 1795 by Lacroix (inspired by Monge [Smith2003])

 solved first algebraicly by Grunert in 1841 [Haralick1991]

 Fischer and Bolles coined the term "perspective three-point problem" in 1981 [FB1981] • are three points enough? 6DOF from 3 Points?

NO!

critical configurations:

rotated leg solutions

⇒ 2 solutions!

rotation circle in general

rotation circle projected to line (2 solutions)

swept rotation circles

another swept rotation circle

• summary p3p:

Three points generate up to four possible solutions which can <u>not</u> be ignored in general.
[Wolfe1991]

Note: This is also called fourfold ambiguity.

p4+p

- use four or more points to determine pose
- straight-forward approach (4p):
 - extract four triangles out of the four points, this gives you 16 solutions at maximum, then merge these and you have a pose.
 - new problem: Merging results (finding the common root) can be very difficult and expensive
- other algorithms for four points:
 - POSIT (optimizing algorithm)
 - Linear Algorithms (algebraic algorithm)

- Authors: Daniel F. DeMenthon and Larry S. Davis in 1992
- characteristics:
 - optimizing algorithm
 - uses weak perspective projection
 - does **not** require initial pose estimate
 - inexpensive in its iteration loop
 - can be written in 25 lines of code in Mathematica (as the title says)

- all M_x belong to the model
- all m_x belong to the image plane G
- plane K parallel to G at distance Z₀
- M_i projects perspectively on
 N_i (on K) and m_i (on G)
- M_i projects orthographically on P_i
- P_i projects perspectively on p_i

- Outline of the algorithm
 - POS (<u>p</u>ose from <u>o</u>rthography and <u>s</u>caling)
 - compute an object-matrix depending on model-coordinates M_i only
 - Note: Object-Matrix will be calculated only once
 - compute a rotation-matrix from the image-points m_i
 - get translation from rotationmatrix by normalizing first or second row

- POSIT (<u>POS</u> with <u>it</u>erations)
 - shift the feature-points M_i* from the object pose just found to the lines of sight
 (where they would belong if the pose was correct)
 - do a POS (starting with a new rotation matrix) on the image-points m_i* of the shifted feature points M_i*
- POSIT usually takes four to five iterations until it's done

POSIT

a little math...

- i_u, i_v, i_w are in object
 coordinate system (M₀u, M₀v, M₀w)
- once i and j are computed, k is obtained by taking the cross product of i and j
- if Z_0 (depth of M_0) is found, we can determine M_0 because of translation vector T is aligned with Om_0 (namely $T = Z_0/f * Om_0$) (f = focal length)

POSIT

- more math...
 - image points of weak perspective projection:

•
$$x_i' = f X_i / Z_0$$
 $y_i' = f Y_i / Z_0$

- image points of [strong] perspective projection:

•
$$x_i = f X_i / Z_i$$
 $y_i = f Y_i / Z_i$

- these can be combined to:

•
$$x_i' = f X_0 / Z_0 + f (X_i - X_0) / Z_0 = x_0 + s (X_i - X_0)$$

•
$$y_i' = y_0 + s (Y_i - Y_0)$$
 [$s = f/Z_0$]

- ...more math...
 - now i and j from the rotation matrix and Z₀ from M₀
 are combined with M₀M_i and coordinates x_i and y_i
 from image points m₀ to m_i
 - $M_0 M_i^* (f/Z_0) i = x_i (1 + \varepsilon_i) x_0$ Equation 1
 - $M_0 M_i^* (f/Z_0) j = y_i (1 + \varepsilon_i) y_0$ Equation 2
 - where $\varepsilon_i = (1 / Z_0) M_0 M_i^* k$

- the end is near:
 - We create linear systems out of equations 1 and 2, substitute (f / Z_0) i by I and (f / Z_0) j by J, using the feature points we have (at least four points).
 - These linear equations can be solved via singular value decomposition (SVD); we get j and i from normalizing I and J.
 - This way we also get Z₀ as f, the focal length, is known.

- last words to POSIT
 - we start setting ε_i = 0 , assuming scaled
 orthographic image points and perspective image points coincide

Note: when we do tracking, we best use the ε_i from the last image

Once we know i, j and Z_0 , we can compute a better ϵ_i , and this leads to better values for i, j and Z_0 in the next iteration.

POSIT

• Picture of situation with $\varepsilon_i = 0$ and real situation

linear algorithms

- Authors:
 Long Quan and Zhongdan Lan in 1999
- characteristics:
 - family of linear algebraic algorithms
 - uses 4, 5 and up to n-points
 - uses redundancy of the fourth point to directly create a unique solution

linear algorithms

- p3p revisited:
 - we have correspondences
 between u_x and p_x
 - we know the angle u_ju_ic
 - we know $|| p_i p_j || = d_{ij}$
 - the following quadratic equation is valid:

$$d_{ij}^2 = x_i^2 + x_j^2 - 2 x_i x_j \cos(u_j u_i c)$$
 Equation 1

linear algorithms

- from equation 1 we can go to

$$f_{ij}(x_i, x_j) = x_i^2 + x_j^2 - 2 x_i x_j \cos(u_j u_i c) - d_{ij}^2$$
 Equation 2

- for n=3 points used, we get the following system:

$$f_{12}(x_1, x_2) = 0$$

$$f_{13}(x_1, x_3) = 0$$

$$f_{23}(x_2, x_3) = 0$$

– by elimination of first x_3 and then x_2 , we get:

$$g(x) = a_5 x^4 + a_4 x^3 + a_3 x^2 + a_2 x^1 + a_1 = 0$$
 $(x := x_1^2)$ Equation 3

linear algorithms

 Equation 3 gives as previously shown at most four different solutions...

 We "solve" the ambiguity by adding another point (so now we are in p4p)

linear algorithms

The fourth point gives us

$$g(x) = a_5 x^4 + a_4 x^3 + a_3 x^2 + a_2 x^1 + a_1 = 0$$

 $g(x) = a_{5'} x^4 + a_{4'} x^3 + a_{3'} x^2 + a_{2'} x^1 + a_{1'} = 0$
 $g(x) = a_{5''} x^4 + a_{4''} x^3 + a_{3''} x^2 + a_{2''} x^1 + a_{1''} = 0$

which can be written in matrix form

$$\begin{bmatrix} a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\ a_{1'} & a_{2'} & a_{3'} & a_{4'} & a_{5'} \\ a_{1''} & a_{2''} & a_{3''} & a_{4''} & a_{5''} \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^{2} \\ x^{3} \\ x^{4} \end{bmatrix} = A_{3x5}t_{5} = 0$$

Equation 4

linear algorithms

- Quan and Lan solved equation 4 by applying SVD on it, then using a nonlinear constraint and again applying SVD
- After that, we have t_5 and can easily get the x: $x = t_1/t_0$ or t_2/t_1 or t_3/t_2 or t_4/t_3 or an average of these values.
- For obtaining x_i we now just have to square-root x:
 x_i = x^{1/2} (as x_i is positive this is nonambiguous)

linear algorithms

- p5+p:
 - given five or more point-correspondences, the linear algorithms introduced by Long Quan and Zhongdan Lan need only one SVD to determine x_i

- Tsai's approach
 - uses seven points
 - very useful if camera is not calibrated
 - see Hauptseminar on camera calibration

thank you

Thank you for your attention

Any questions?

resources

- **[FB1981]**: Fischer and Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Graphics and Image Processing, vol. 24, no. 6, pp.381-395, June 1981
- [Lowe1991]: Fitting Parameterized Three-Dimensional Models to Images, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no.5, pp129-142, May 1991
- [QuanLan1999]: Linear N-Point Camera Pose Determination, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 21, no. 7, July 1999
- [DeMenthonDavis1994]: Model-Based Object Pose in 25 Lines of Code, International Journal of Computer Vision, vol. 15, no. 1 pp. 123-141, May 1995

resources

- [Rosenhahn2002]: Rosenhahn, Perwass and Sommer: Pose Estimation of 3D Free-form Contours. Technical Report 0207, University Kiel. 2002
 - more Rosenhahn papers: http://www.ks.informatik.unikiel.de/~bro/MyHomepage/publications.html
- [NevatiaUlupinar1993]: Perception of 3-D Surfaces from 2-D Contours, PAMI(15), No. 1, January 1993, pp. 3-18.
 - other publication from Nevatia et al: http://iris.usc.edu/Outlines/Papers.html
- [Dhome1989]: Determination of the Attitude of 3D Objects from Single Perspective View, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 12, pp. 1265-1278, Decembre 1989

resources

- [Yuan1989]: A General Phogrammetric Solution for the Determining Object Position and Orientation, IEEE Trans. Robotics and Automation, vol. 5, no.2, pp.129-142, April 1989
- [Lowe1985]: Perceptual Organization and Visual Recognition, Norwell, Mass.: Kluwer Academic Publishers, 1985
- [Haralick1991]: Analysis and Solutions of the Three Point Perspective Pose Estimation Problem, Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.592-598, Maui, Hawaii, 1991
- [Smith2003]: David Eugene Smith, History of Modern Mathematics, Mathematical Monographs No. 1 (taken from Project Gutenberg's History of MM, www2.cddc.vt.edu/gutenberg/etext05/hsmmt10p.pdf)
- [Wolf1991]: The Perspective View of Three Points, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13, no. 1, January 1991