Chapitre 7 : Orthogonalité dans l'espace

I. Produit scalaire de deux vecteurs

1) Définition

Soit \vec{u} et \vec{v} deux vecteurs de l'espace. A, B et C trois points tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$. Il existe un plan P contenant les points A, B et C.

Définition:

On appelle produit scalaire de l'espace de \vec{u} et \vec{v} le produit \vec{u} . \vec{v} égal au produit scalaire \overrightarrow{AB} . \overrightarrow{AC} dans le plan P.

On a ainsi:

 $-\vec{u} \cdot \vec{v} = 0$ si \vec{u} ou \vec{v} est un vecteur nul,

 $-\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u};\vec{v}) = \pm AB \times AH$

Exemple:

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AF} = \overrightarrow{AB} \cdot \overrightarrow{AF} = \overrightarrow{AB} \cdot \overrightarrow{AB} = \alpha^2$$

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace.

Propriétés : Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace.

$$-\,\vec{u}.\,\vec{u}=\|\vec{u}\|^2$$

- Symétrie :
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

- Bilinéarité :
$$\vec{u}$$
. $(\vec{v} + \vec{w}) = \vec{u}$. $\vec{v} + \vec{u}$. \vec{w} et $(\vec{v} + \vec{w})$. $\vec{u} = \vec{v}$. $\vec{u} + \vec{w}$. \vec{u}

$$(k\,\vec{u}).\,\vec{v}=\vec{u}.\,(k\,\vec{v})=k(\vec{u}.\,\vec{v}),k\in\mathbb{R}$$

- Colinéarité :
$$\vec{u}$$
 et \vec{v} colinéaires $\iff \vec{u}.\vec{v} = \begin{cases} ||\vec{u}|| \times ||\vec{v}|| & \textit{si } \vec{u} \text{ et } \vec{v} \textit{ sont dans le } \textit{même sens} \\ -||\vec{u}|| \times ||\vec{v}|| & \textit{si } \vec{u} \text{ et } \vec{v} \textit{ sont de sens contraires} \end{cases}$

- Orthogonalité :
$$\vec{u}$$
. $\vec{v} = 0 \Leftrightarrow \vec{u}$ et \vec{v} orthogonaux (ou $\vec{u} = 0$ et $\vec{v} = 0$)

Identités remarquables:

1)
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2$$

2)
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2$$

Formules de polarisation (démo p90):

1)
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

2)
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

3)
$$\vec{u} \cdot \vec{v} = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

Ex: capacités 1, 2 p89; 56, 57, 59, 73 p104-105

. (d) \bot (P) (2) (d) est ortho a 2 drottes recanter de ce plan. . (d) \bot (P) => (d) est ortho a toutes by drotter de a plan

ij.

II. Produit scalaire dans un repère orthonormé

1) Base et repère orthonormé

<u>Définition</u>: Une base $(\vec{i}, \vec{j}, \vec{k})$ de l'espace est orthonormée si :

- les vecteurs \vec{i} , \vec{j} et \vec{k} sont deux à deux orthogonaux,
- les vecteurs \vec{i} , \vec{j} et \vec{k} sont unitaires, soit : $||\vec{i}|| = 1$, $||\vec{j}|| = 1$ et $||\vec{k}|| = 1$.

<u>Définition</u>: Un repère $(0; \vec{i}, \vec{j}, \vec{k})$ de l'espace est **orthonormé**, si sa base $(\vec{i}, \vec{j}, \vec{k})$ est orthonormée.

2) Expression analytique du produit scalaire

Propriété: Soit $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux vecteurs de l'espace muni d'un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$. Alors: $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$.

Et en particulier :
$$\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{x^2 + y^2 + z^2}$$
.

Conséquence: Soit $A(x_A, y_A, z_A)$ et $B(x_B, y_B, z_B)$ deux points de l'espace.

On a:

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Démonstration: p90

Point méthode: Démonter que des vecteurs sont orthogonaux

Vidéo https://youtu.be/N1IA15sKH-E

Soit ABCDEFGH un cube. I est le milieu de [BF]

On considère le repère de l'espace $(C; \overrightarrow{CB}, \overrightarrow{CD}, \overrightarrow{CG})$.

- 1) Déterminer les coordonnées des vecteurs \overrightarrow{CE} et \overrightarrow{DI} dans cette base.
- 2) En déduire si les vecteurs \overrightarrow{CE} et \overrightarrow{DI} sont orthogonaux ou pas.

III. Orthogonalité

1) Orthogonalité de deux droites

Définition:

- Deux droites de l'espace sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux.
- Deux droites de l'espace sont dites **perpendiculaires** si et seulement si elles sont **coplanaires** et **orthogonales**.

Exemple:

ABCDEFGH est un cube.

- Les droites (EH) et (EF) sont perpendiculaires.
- Les droites (BC) et (EF) sont orthogonales.

Propriété:

Deux droites d_1 et d_2 sont orthogonales, si et seulement s'il existe une droite d'_1 parallèle à d_1 et une droite d'_2 parallèle à d_2 telles que d'_1 et d'_2 sont perpendiculaires dans le plan qu'elles déterminent.

2) Orthogonalité d'une droite et d'un plan

Propriété : Toutes ces propriétés sont équivalentes.

- Une droite d de vecteur directeur \vec{u} est orthogonale à un plan $\mathscr P$ si et seulement si \vec{u} est orthogonal à tous les vecteurs de la direction de $\mathscr P$
- Une droite d de vecteur directeur \vec{u} est orthogonale à un plan $\mathscr P$ si et seulement si \vec{u} est orthogonal à deux vecteurs non colinéaires de la direction de $\mathscr P$.
- Une droite d est orthogonale à un plan P si et seulement si d est orthogonale à toutes les droites du plan P ce qui équivaut aussi à ce que d soit orthogonale à deux droites sécantes du plan P.

Exemple:

ABCDEFGH est un cube.

- (AE) est perpendiculaire aux droites (AD) et (AB).
- (AB) et (AD) sont sécantes et définissent le plan (ABC).
 - ⇒ Donc (AE) est orthogonal au plan (ABC).

Méthode: Utiliser le produit scalaire pour démontrer une orthogonalité

Vidéo https://youtu.be/80bh6clZeEw

Soit un tétraèdre régulier ABCD d'arêtes de longueur l. Démontrer que les arêtes [AD] et [BC] sont orthogonales.

MG AD BC = 0 AB BE = (AB + BB). BE = AB BE + BB. BE = -ABA BE + BB. BE = -MBA.BE+BB.BC =-B+.BC+BD*BC*CASEBB =-BA × BC × Cos ABe + BD × BC × Cos CBO = -lx | x = 1 + | x | x = 1

=> AB et BC sont subaganous danc (AB) ABC sont orthogonaly

Ex: capacités 5, 6 p93; 76, 80, 81, 83 p105-106

IV. <u>Vecteur normal à un plan</u>

1) Définition et propriétés

Définition : Un vecteur non nul \vec{n} de l'espace est **normal** à un plan P s'il est vecteur directeur d'une droite orthogonale au plan P.

Propriété : - Soit un point A et un vecteur \vec{n} non nul de l'espace.

L'ensemble des points M tels que \overrightarrow{AM} . $\overrightarrow{n} = 0$ est un plan de l'espace.

- Réciproquement, soit P un plan de l'espace. Pour tout point A de P et tout vecteur normal \vec{n} de P, P est l'ensemble des points tels que \vec{AM} . $\vec{n} = 0$.

- Admis -

Théorème : Un vecteur non nul \vec{n} de l'espace est normal à un plan P, s'il est orthogonal à deux vecteurs non colinéaires de P.

Méthode: Déterminer si un vecteur est normal à un plan (+ capacité 7 p95)

Vidéo https://youtu.be/aAnz cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur \overrightarrow{CF} est normal au plan (ABG).

Ma CF LBG arec AB et BG CF LBG car la diagonalis deur Drant L CF, AB = CF, BC = - CF, CB = - (CB, CG). CB 0= 63.53-63.63-=

CFI AB CF est en vecteur normal ou flontABCI

Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBE16thBPU

Dans un repère orthonormé, soit $A\begin{pmatrix} 1\\2\\2 \end{pmatrix}$, $B\begin{pmatrix} -1\\3\\1 \end{pmatrix}$ et $C\begin{pmatrix} 2\\0\\-2 \end{pmatrix}$.

Déterminer un vecteur normal au plan (ABC).

$$= 3 \begin{cases} x - 2y = 0 \\ -3y + 3y = 0 \end{cases}$$

Ex: capacité 7 p95; 46, 47 p103; 85, 86 p106

V. Projection orthogonale

1) Projection orthogonale d'un point sur une droite

Définition : Soit un point A et une droite d de l'espace.

La projection orthogonale de A sur d est le point H appartenant à d tel que la droite (AH) soit perpendiculaire à la droite d.

нП

2) Projection orthogonale d'un point sur un plan

<u>Définition</u>: Soit un point A et un plan P de l'espace.

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite (AH) soit orthogonale au plan P.

Démonstration au programme : voir p94

Méthode : Utiliser la projection orthogonale pour déterminer la distance d'un point à un plan (capacité 8 p95)

L'espace étant muni d'un repère orthonormé, on considère les points A(2; 3; 3),

B(-1; 17; -17) et le vecteur n(2; 3; -4).

On note 9º le plan passant par A et de vecteur normal n.

- Démontrer que le point H(−9 ; 5 ; −1) appartient à 9^a.
- 2 a. Démontrer que H est le projeté orthogonal de B sur 9. b. En déduire la distance du point B au plan 9.
- **②** Soit C(5; 11; −5).
 - a. Justifier que C est le projeté orthogonal de H sur la droite (BC).
 - b. Calculer la distance du point H à la droite (BC).

1) AH (-11; 2; -4)

AH (-11; 2; -4)

AH = -11×2 13×2+-11×-11 = -22 +6+16 = 0

AH done H & P

2) a) BH (-8; -12, 18)

Bid but colinacion a mi

BI but colinacion a mi

BI BH = -4mi done B wh & popular butho de Hump

BM = 11 BH 11 = V(-8)²+(-12)²+16² = V164 = 4V29

3) a) BC (6; -6; 12)

BC + CH

BC + CH

D) CH= 11 cH11 = V142+62+42=V196+36+16=V248=2062

Plan médiateur d'un segment

Définition: Soit A et B deux points distincts de l'espace. Le plan médiateur du segment [AB] est le plan passant par le milieu I de [AB] et de vecteur

Ex: capacité 8 p95; 91, 95, 97 p107

VI. Application du produit scalaire

1) Équation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$.

Un plan P de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ non nul admet une équation cartésienne de la forme ax + by + cz + d = 0, avec $d \in \mathbb{R}$.

Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points $M\begin{pmatrix} x \\ y \end{pmatrix}$ tels que ax + by + cz + d = 0, avec $d \in \mathbb{R}$, est un plan.

Démonstration au programme : voir p96

normal \overrightarrow{AB}

Exemple:
Le plan d'équation cartésienne x - y + 5z + 1 = 0 a pour vecteur normal

Méthode : Déterminer une équation cartésienne de plan

☑ Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point $A \begin{pmatrix} 2 \end{pmatrix}$ et de

vecteur normal
$$\vec{n} \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$$
. $3 > 2 - 3 + 3 = -3$

Pa foliate equation
 $3 > 2 - 3 + 3 = -3$

Pa foliate equation
 $3 > 2 - 3 + 3 = -3$

Positions relatives d'une droite et d'un plan

	d et P sécants d et P parallèles		rallèles
Positions relatives	\vec{n}	d et P strictement parallèles	d incluse dans P
- Droite d de vecteur directeur \vec{u} - Plan P de vecteur normal \vec{n}	\overrightarrow{u}	d \overrightarrow{u} P	P d \overline{u}
Vecteurs	\vec{u} et \vec{n} non orthogonaux	\vec{u} et \vec{n} orthogonaux	
Produit scalaire	$\vec{u}.\vec{n} \neq 0$	$\vec{u} \cdot \vec{n} = 0$	

Méthode: Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan P a pour équation 2x - y + 3z - 2 = 0. Soit $A \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $B \begin{pmatrix} -1 \\ 2 \end{pmatrix}$.

1) Démontrer que la droite (AB) et le plan P sont sécants.

2) Déterminer leur point d'intersection. $AB (-2; 0, 3) \qquad A(2; -1; 3) \text{ as in vecture normal a P}$ $AB = -2 \times 2 + 0 \times -1 + 3 \times 3 = -4 + 9 = 5$ (AB) of le flow P sont seconda 2(-1-24) - 2 + 3(34) - 2 = 0 2 = -1-24 3 = 34 5 = -6 6 = -6 7 =

Méthode : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

☑ Vidéo https://youtu.be/RoacrySlUAU

Dans un repère orthonormé, on donne les points $A\begin{pmatrix} 1\\0\\\end{pmatrix}$, $B\begin{pmatrix} 2\\1\\\end{pmatrix}$ et $C\begin{pmatrix} 0\\1\\\end{pmatrix}$.

Déterminer les coordonnées du projeté orthogonal du point C sur la droite (AB).