FINAL REPORT

Control of Manganese Dioxide Particles Resulting From In Situ Chemical Oxidation Using Permanganate

SERDP Project ER-1484

September 2008

Dr. Michelle Crimi East Tennessee State University

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 AUG 2008		3. DATES COVERED				
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER			
	nese Dioxide Particle	es Resulting From I	n Situ Chemical	5b. GRANT NUM	1BER	
Oxidation Using Po	ermanganate	5c. PROGRAM E	LEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER	
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANI East Tennessee Sta	ZATION NAME(S) AND AD	DDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	18. NUMBER	19a. NAME OF				
a. REPORT b. ABSTRACT c. THIS PAGE UUU unclassified unclassified unclassified				OF PAGES 114	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188 This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense.

Table of Contents

Acronyms	ii
Figures and Tables	iii
Acknowledgements	v
Executive Summary	1
Objectives	3
Background	3
Introduction	3
Impacts of MnO ₂ Deposition	3
Characterization of MnO ₂ Particles	4
SERDP Relevance	9
Materials and Methods	10
Approach	
General Materials	
General Analytical Methods	
Experimental Procedures	
Data Analysis	
Results and Accomplishments	18
Spectrophotometric Analyses	
Particle Filtration	
Optical Measurements	
1-D Transport Experiments	
Discussion	30
Concluding Summary	34
References	35
Appendices	43

Acronyms

1-D 1-dimensional2-D 2-dimensional3-D 3-dimensional

AA atomic absorption spectroscopy

 $A_{max} \hspace{1.5cm} maximum \hspace{0.1cm} absorbance \hspace{0.1cm} (418nm \hspace{0.1cm} measurements)$

C celcius Ca calcium

DNAPL dense non-aqueous phase liquid

Eh redox potential
Eqn equation
Fe iron
FeO(OH) goethite
GA gum arabic

GC gas chromatography gpm gallons per minute GW groundwater

HMP sodium hexametaphosphate

hr hour

ISCO in situ chemical oxidation KMnO₄ potassium permanganate

 $\begin{array}{ccc} L & & liter \\ M & & molar \\ mg & & milligram \\ min & & minute \\ mL & & milliliter \end{array}$

 $\begin{array}{ll} Mn^{2^+} & dissolved \ manganese \ ion \\ MnO_2 & manganese \ dioxide \\ MnO_4^- & permanganate \end{array}$

NaMnO₄ sodium permanganate

nm nanometer
OC organic carbon
OM organic matter
P.I. principal investigator
PO₄³⁻ phosphate ion

SEM scanning electron microscopy

SERDP Strategic Environmental Research and Development Program

TCE trichloroethylene
TDS total dissolved solids

 T_{max} time of maximum absorbance (418nm measurements) T_{min} time of minimum absorbance (418nm measurements)

TOC total organic carbon

TS total solids

TSS total suspended solids

um micrometer
VR vial reactor
wt.% percent by weight
XG xanthan gum

Figures and Tables

- **Figure 1.** Conceptual Image of Potential Impacts of MnO₂ Deposition in the Subsurface Surrounding Areas of High Residual Contamination.
- **Figure 2.** Particle Size Distribution for Samples Included in Manganese Dioxide Characterization Studies.
- Figure 3. SEM Images of Particles for Representative Samples Included in Figure 2; (a) Samples without Calcium, and (b) Samples Containing Calcium.
- **Figure 4.** Manganese Oxides Generation and Particle Evolution Over Time for Representative Samples as Measured by Absorbance at 418 nm (and converted to Mn concentration in manganese oxides form) versus Time in Minutes.
- **Figure 5.** Particle Growth Rate From Primary, Soluble Particles to Suspended Particles Under Varied Matrix Conditions, as Determined via Spectrophotometric Methods Demonstrated in Figure 4.
- **Figure 6.** Deviations From Manganese Concentrations Expected Based on Permanganate Depletion Measurements at 525 nm Versus Time.
- **Figure 7.** Demonstration of 418 nm Response Metrics.
- **Figure 8.** Representative Data for 525 nm Measurements (to determine permanganate concentration) Versus Time.
- **Figure 9.** Particle Size Fractions for All Sample Conditions at the 24-hour Reaction Period.
- **Figure 10.** Mass of MnO₂ Suspended in Solution over 72-hour Reaction Period for Each Stabilization Aid Conditions.
- **Figure 11.** Average Particle Size for Each Stabilization Aid Condition.
- **Figure 12.** Zeta Potential for Each Stabilization Aid Condition.
- **Figure 13.** Mass of Mn (as MnO₂) per kg of Media With Distance From 1-D Column Influent.
- **Figure 14.** Total Solids Concentrations in Column Effluent With Volume of Solution Delivered.
- **Figure 15.** ORP and pH of Column Effluent for Each Pore Volume of Solution Delivered and each Media Type.
- **Figure 16.** Percent Decrease in MnO₂ Deposition in Source Zone With 1,000 mg/L HMP.

Figure 17. Total solids concentration in column effluent with volume of solution delivered in columns conducted with HMP. Figure 18. ORP and pH of column effluent for each pore volume of solution delivered and each media type for columns conducted with HMP. Figure 19. Left-hand side shows un-substituted MnO2 with no net charge. Right-hand side shows Fe³⁺ substituted MnO₂ aggregate with a net positive charge. Table 1. Impacts of MnO₂ on Subsurface Permeability: Laboratory and Field **Evaluations** Table 2. Framework for Assessing Manganese Fate During ISCO with Permanganate Table 3. Overview of the Proposed Research Table 4. Summary of Analytical Methods Table 5. **Experimental Conditions** Table 6. Characteristics of Media Used in 1-D Transport Experiments Table 7. Correction Factors for 525 nm Measurements Due to Particle Interference Table 8. Range of Response Values and Statistical Significance of Reaction Variables Table 9. Percent of Mn Introduced to Columns as Each Species Percent of Mn Introduced to Columns Using Stabilization Aid HMP as Each Table 10. **Species** Measurements Demonstrating Viability of HMP for MnO₂ Particle Table 11.

Stabilization

Acknowledgements

This work is supported wholly by the Department of Defense, through the Strategic Environmental Research and Development Program (SERDP).

Executive Summary

In situ chemical oxidation (ISCO) using permanganate is an approach to organic contaminant remediation increasingly being applied at hazardous waste sites throughout the United States. Manganese dioxide (MnO₂) particles are products of the reaction of permanganate with organic contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in and around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. The goal of this research is to understand the genesis and control of MnO₂ particles and to identify particle stabilization aids that will allow for their transport in groundwater through porous media under a variety of reaction conditions. Control of these particles can allow for improved oxidant injection, oxidant transport, and contact between the oxidant and contaminants of concern.

This project's specific objectives are to determine (1) if manganese dioxide particles can be stabilized/controlled in an aqueous phase to allow for transport through a solids phase, thereby inhibiting subsurface deposition, and (2) the dependence of stabilization and control of MnO₂ particles on porous media and groundwater characteristics. Bench-scale batch experiments to initially study important chemical interactions, followed by column studies to incorporate transport phenomena, were conducted to study particle stabilization aids under varied reaction matrix conditions. Variations include particle and stabilization aid concentrations, groundwater ionic content, pH, porous media type, and redox conditions.

Four stabilization aids were evaluated in the batch experiments for their ability to stabilize particles in solution over time and a range of groundwater conditions. The stabilization aid sodium hexametaphosphate (HMP) demonstrated the most promising results based on:

- Spectrophotometric studies of particle behavior
- Particle filtration results at varied pore sizes
- Optical measurements of particle size and zeta potential

HMP inhibited particle settling, provided for greater particle stability, and resulted in particles of a smaller average size over a range of pH, particle concentration, ionic content/strength, and oxidation/reduction potential (ORP) conditions compared to results for systems that did not include HMP. These results indicate that the inclusion of HMP in a permanganate oxidation system improves conditions that may facilitate particle transport.

Based on the favorable results in the batch scale experimentation, 1-D experimental transport studies were conducted to evaluate the impact of including HMP with delivery of permanganate to a nonaqueous phase liquid (NAPL) source zone within four different media types. Media types included sand-only, sand + 20% montmorillonite clay, sand + 1% goethite (FeO(OH)), and sand + 0.5% organic carbon. Particle transport through the media and retention of MnO_2 particles within the media were characterized following permanganate delivery with and without HMP. While particle retention and transport varied with specific media type, HMP consistently provided for significantly decreased particle retention and improved flow. With HMP, particle retention directly in the NAPL source zone decreased by 25% in sand media, 53% in sand + clay media, 85% in sand + goethite media, and 47% sand + organic carbon media.

Decreased particle retention with the use of HMP can allow for improved oxidant injection and transport, as well as contact between the oxidant and contaminants of concern. Improved oxidant delivery and flow translates to more efficient ISCO treatment, decreased potential for post-treatment contaminant rebound, and less reliance on invasive or expensive post-ISCO processes for treating contaminant residual.

Objectives

The primary technical objective of this research is to identify and evaluate a MnO₂ particle stabilization aid that will facilitate transport of manganese dioxide particles to avoid their deposition in well screens, filter packs, and in subsurface areas of high contaminant saturation. This will allow practitioners currently implementing permanganate injection and/or flushing technologies to maintain improved hydraulic control at a treatment site by amending oxidant solutions with the appropriate stabilization aid. Furthermore, the research will provide for greater understanding of the potential impacts of various porous media and groundwater characteristics on particle genesis, growth, and transport, in general, thereby improving the understanding of potential impacts in and around the zone of permanganate emplacement.

Background

Introduction

Manganese dioxide particles are a product of the reaction of permanganate with organic materials, including organic contaminants and natural organic matter. For example, Eqn. 1 demonstrates the reaction between permanganate and trichloroethylene (TCE), resulting in the generation of manganese dioxides solids.

$$2KMnO_4 + C_2HCl_3 \rightarrow 2CO_2 + 2MnO_2 + 2K^+ + H^+ + 3Cl^-$$
 [1]

MnO₂ particles may deposit in the subsurface and impact the flow-regime in and around the zone of oxidant emplacement, thereby preventing effective oxidant distribution and contact with contaminants (e.g., Lee et al., 2003), as demonstrated in Figure 1. The goal of this research is to understand the genesis and control of MnO₂ particles and to identify particle stabilization aids that will allow for their transport in groundwater through porous media. Particle stabilization will inhibit deposition and resulting impacts on the flow regime, and will allow for improved oxidant delivery and contact with the contaminant. Further understanding is necessary, however, to test hypotheses: (1) manganese dioxide particles can be stabilized/controlled in an aqueous phase to allow for transport through a solids phase, thereby inhibiting subsurface deposition, and (2) the ability to stabilize and control MnO₂ particles is dependent on porous media and groundwater characteristics, including the porous media type, pH, particle concentration, oxidizing/reducing conditions, and ionic content.

Impacts of MnO₂ Deposition

Permeability changes may result due to MnO_2 particle deposition, which has been observed in some laboratory and field evaluations (e.g., West et al., 1998, 2000; Li and Schwartz, 2000; Lowe et al., 2000; Reitsma and Marshall, 2000; Lee et al., 2003), but not in others (e.g., Struse, 1999; Chambers et al., 2000a,b; Mott-Smith et al, 2000). It is postulated that differences observed in MnO_2 deposition and permeability effects are attributable to differences in natural and design conditions associated with these studies. The degree to which the particles can impact permeability appears to be related to the amount of contaminant in the reaction zone, as well as the reaction rate, which are interrelated. Table 1 presents a summary of laboratory and field evaluations where impacts of MnO_2 deposition have been observed and documented.

Characterization of MnO₂ Particles

Extensive characterization studies have been conducted by this project's P.I. to examine MnO₂ particles when generated under a variety of reaction matrix conditions (Crimi 2002, 2004a,b). Particle size studies, using both filtration and optical methods, verify that the particles resulting from permanganate oxidation with TCE are no larger than 0.41 um (lower detection limit of optical methods) under all conditions examined in these studies (varied reactant/particle concentrations, pH, extended reaction time periods (up to 6 months)); even where conditions favored a larger particle size (i.e., particle growth) such as the presence of calcium. Figure 2 presents particle size distribution results for representative samples included in these studies, while Figure 3 presents scanning electron microscopy (SEM) images of particles resulting from these same reaction conditions. After 600 hours, nearly all the Mn has formed particles that cannot pass the 0.1 micron filter, but essentially none of the particles can be detected by the optical method with a 0.41 micron detection limit.

Figure 1. Conceptual Image of Potential Impacts of MnO₂ Deposition in the Subsurface Surrounding Areas of High Residual Contamination.

Table 1. Impacts of MnO₂ on Subsurface Permeability: Laboratory and Field Evaluations.

Study Description	Impacts of MnO ₂	Reference
Field evaluation: A 5-spot recirculation network was employed to deliver 3000 mg/L NaMnO ₄ to treat up to 600 mg/L TCE in groundwater. NaMnO ₄ was added to contaminated groundwater above ground, filtered at 5 and 1 um respectively,	After approximately 5 days of operation, increasing injection well pressures (up to 18 psig) caused reduced recirculation rates (down to 4 gpm). Redevelopment of the injection well recovered the well efficiency, however increasing injection pressures and reduced recirculation rates were again rapidly observed.	Lowe et al., 2000
then injected into a central injection well. Field evaluation: 2-4 wt% of KMnO4 was used to treat TCE at 100 to 800 mg/L in groundwater.	Hydraulic conductivities measured 10 months after completion of the ISCO test showed order of magnitude decreases in several wells, especially the oxidant injection well.	West et al., 1998, 2000
Laboratory study: 1-D column and 2-D test cell studies were conducted to examine flushing efficiencies resulting from reaction of permanganate with typical aquifer materials containing dense nonaqueous phase liquid (DNAPL) contamination. The distribution of MnO ₂ was evaluated.	The distribution of MnO ₂ in column studies indicates that the majority of Mn was located close to or at the DNAPL zone. Precipitates tended to plug the column – flushing become more difficult as the experiment progressed. The 2-dimensional studies demonstrated flow bypass zones with high DNAPL saturation once the permanganate initially came into contact with the DNAPL. Contaminant removal efficiencies were less in 2D systems where flow was able to bypass areas with MnO ₂ build-up.	Li and Schwartz, 2000
Laboratory study: 2-D experimental studies examined flow processes during DNAPL oxidation, with varying rates of reaction due to varied initial permanganate concentrations introduced to the system.	Substantial MnO ₂ build-up was observed around the DNAPL emplacement zone. With lower initial permanganate concentration and slower reaction rates, more MnO ₂ was deposited downgradient from the point of contact of oxidant with the DNAPL. Flow-regimes were impacted by the MnO ₂ deposition.	Reitsma and Marshall, 2000
Laboratory study: 3-D experimental studies examined DNAPL contaminant destruction and MnO ₂ deposition with treatment using 1250 mg/L KMnO ₄ .	The DNAPL oxidation process became less efficient with time, likely due to reduction in permeability caused by increasing MnO ₂ deposition that inhibited contact between the permanganate and DNAPL. Large amounts of unreacted permanganate left the treatment zone during oxidant flushing.	Lee et al., 2003

Figure 2. Particle Size Distribution for Samples Included in Manganese Dioxide Characterization studies. The Area Between White and Black Shapes = Particles < 0.10 um and Dissolved Mn, and the Area Between Black and Gray Shapes = Particles Between 0.10 and 0.41 um in Size. Six-month Reaction Period Sample Results Are Not Shown, But Are Similar to 600 min. Results (Crimi 2002).

h

Figure 3. SEM Images of Particles for Representative Samples Included in Figure 2; (a) Samples Without Calcium, and (b) Samples Containing Calcium (Crimi 2002).

The stability of these manganese dioxide particles in solution, which is an indicator of their potential to be controlled and transported with groundwater flow, can be impacted by several reaction matrix conditions. These include reactant/particle concentrations, pH, turbulence, and the presence of anions/cations in solution (Morgan and Stumm 1964; Perez Benito et al. 1989, 1990, 1991, 1992; Insausti et al. 1992, 1993; Doona and Schneider 1993; Chandrakanth and Amy 1996). Specifically, higher pH, high anion content, and the presence of stabilizing colloids can serve to maintain their stability in solution, providing a foundation for this proposed research. Exploratory studies conducted by this project's P.I have verified these influences, to some extent, and have provided for experimental and analytical designs tuned specifically for studying these effects (Figures 4-6) (Crimi 2002, 2004a,b). Additionally, a framework has been developed to assess the fate of manganese following permanganate ISCO based on extensive literature review (Table 2).

However, further research is necessary to explicitly determine if reaction conditions can be manipulated to stabilize and control manganese dioxide particles in groundwater to specifically allow for their facilitated transport through porous media. Since it is not particle size alone that will determine the ability of these particles to be transported, physico-chemical interactions must be considered and experimental studies need to be conducted to examine the interactions of potential stabilization aids (e.g., ionic/nonionic, organic/inorganic) with manganese dioxide particles, as well as the interactions of potential stabilization aids with porous media and groundwater. The ideal particle stabilizer will (1) interact minimally with porous media, (2) react minimally with the oxidant permanganate, (3) interact minimally with other groundwater components, (4) be acceptable to the regulatory community, and (5) be cost-effective.

Figure 4. Manganese Oxides Generation and Particle Evolution Over Time for Representative Samples as Measured by Absorbance at 418 nm (and converted to Mn oncentration in manganese oxides form) Versus Time in Minutes.

Figure 5. Particle Growth Rate From Primary, Soluble Particles to Suspended Particles Under Varied Matrix Conditions, as Determined via Spectrophotometric Methods Demonstrated in Figure 4.

Figure 6. Deviations From Manganese Concentrations Expected Based on Permanganate Depletion Measurements at 525 nm Versus Time. The y-axis (δMn) is Calculated as the Difference Between Measured (418 nm) and Expected (525 nm) Manganese Concentrations (mg/L). The 10, 20, and 40 Designations in Each Chart's Key Indicate the Initial TCE Concentration in Solution (mg/L). A Negative δMn Value Demonstrates Detection of Less Manganese in the Form of Particles than Expected Based on the Quantity of Permanganate Depleted. Deviations From Expected Manganese Concentrations Can Be Attributed to (1) manganese present in a soluble and nondetectable form (measurable particles have not formed), (2) particle growth (agglomeration) and settling from the field of measurement, or (3) particle dissolution to Mn²⁺. Overall, these Graphs Depict Three Trends With Respect to the Generated Particles. First, Each Sample Demonstrates an Initial Linear Decrease in δMn Over Time (particles are soluble and net yet detectable). Next, most Samples Show a Rise in This Value Approaching Zero (particle growth – suspended). Then, Some Samples Show a Subsequent Decline in Value (particle settling). A y-axis Value (\delta Mn) of Zero at a Given point Would Indicate That all Permanganate was Converted to Manganese Oxides, and That the Manganese Oxides Were Stable in a Suspended Form in the Field of Measurement at That Point in Time.

Table 2. Framework for Assessing Manganese Fate During ISCO with Permanganate

	ganese Form	Conditions Promoting Form			
Pe	ermanganate	 □ Permanganate introduced is in excess of available reductants □ Transport out of treatment region is slow 			
	Immobile	 □ Oxidizing conditions High Eh, High dissolved oxygen, Low reductant concentration, Abundance of Mn-oxidizing bacteria □ High pH □ High sorption of cations onto Mn-oxides □ Slow ground water flow 			
Mn-oxides	Mobile	 □ Oxidizing conditions High Eh, High dissolved oxygen, Low reductant concentration, Abundance of Mn-oxidizing bacteria □ Low pH □ High sorption of anions onto Mn-oxides □ High sorption of nonreactive colloids onto Mn-oxides □ Fast ground water flow 			
Mn ²⁺	Immobile	 □ Reducing conditions □ High pH □ High concentration of surface sorption sites □ Low competitive cation concentrations □ Slow ground water flow □ High carbonate concentration 			
	Mobile	 □ Reducing conditions □ Low pH □ Low concentrations of surface sorption sites □ High competitive cation concentrations □ Fast ground water flow 			

SERDP Relevance

A question associated with the delivery of treatment amendments to the subsurface, in general, is what impacts these amendments may have on natural subsurface flow conditions. This is especially the case with ISCO using permanganate where manganese dioxide solids, which may deposit in well screens and filter pack materials and within the subsurface formation, are a byproduct of the reaction with the contaminants of concern or naturally-reduced subsurface materials (natural organic matter, reduced minerals, etc.). Deposition of these particles in the well screen and/or filter pack can result in excessive back pressure and can inhibit delivery of oxidant to the subsurface. Deposition in the subsurface formation surrounding injection may cause preferential flow that bypasses these areas, which can prevent sufficient contact of oxidant with contaminant and limit treatment effectiveness. While the genesis and growth of these particles has been investigated at a fundamental level (e.g., Crimi and Siegrist, 2004b; Siegrist et al., 2002), no efforts to specifically evaluate the ability to control the growth and transport of manganese dioxide particles for favorable outcomes have been undertaken. These favorable outcomes include inhibiting particle deposition in well screens and filter packs in circulationtype permanganate injection systems (where permanganate is amended to contaminated groundwater above ground and is subsequently introduced to the subsurface via injection well), and inhibiting particle deposition in areas of high mass distributions of contaminants.

Materials and Methods

Approach

Table 3 presents an overview of the proposed research, incorporating motivation, objectives, hypotheses, experimental approach, and expected results and benefits.

Table 3. Overview of the Proposed Research.

	Table 5. Overview of the Proposed Research.
Motivation	MnO ₂ particles generated during in situ chemical oxidation using permanganate may impact the flow-regime in and around the zone of emplacement, thereby preventing
	effective oxidant distribution and contact with contaminants.
Hypotheses	 Manganese dioxide particles can be stabilized/controlled in an aqueous phase to allow for transport through a solids phase, thereby inhibiting subsurface deposition, The ability to stabilize and control MnO₂ particles is dependent on porous media
	and groundwater characteristics, including the porous media type, pH, particle concentration, oxidizing/reducing conditions, and ionic content.
Objectives	 Investigate particle stabilization aids for optimal properties. Examine particle transport through a variety of porous media types. Partner optimum conditions for particle stabilization and particle transport in 1-D transport systems.
Approach	 Task 1: Bench-scale batch experiments using 12-mL reaction vials to study MnO₂ stabilization aids. Task 2: 1-D transport experiments in columns (10-cm diam by 30-cm length) to study particle transport in varied porous media. Task 3: 1-D transport experiments in columns to study the partnering of stabilization, reaction, and transport.
Expected Results and Benefits	A manganese dioxide particle stabilization aid that will facilitate transport of MnO ₂ particles to avoid potential loss of subsurface hydraulic conductivity attributable to particle deposition following in situ permanganate oxidation. Understanding of the potential impacts of various porous media and groundwater characteristics on particle transport.

Bench-scale, batch experimental systems were initially employed to assess important chemical interactions; then, experiments in larger 1-D columns follow to incorporate transport and reaction. Bench-scale systems focus on effects and interactions of (1) particle concentration, (2) stabilization aid concentration and type, (3) cations and anions in groundwater, (4) pH, (5) porous media solids, and (6) redox conditions (oxidant/reductant ratio). These conditions are also examined in larger-scale systems, which also incorporate influences of porous media type (organic carbon, clay, iron mineral content).

Primary analyses for batch studies focus on particle size and stability under the various conditions examined using spectrophotometric methods, with supporting filtration and optical measurement techniques. The primary analyses with respect to 1-D column studies focus on particle transport and retention.

General Materials

Oxidant. Potassium permanganate is the oxidant used to generate the manganese dioxide particles. Permanganate is increasingly employed at hazardous waste sites (US EPA 1998, Siegrist 1998) and its reactions have been studied extensively (along with particle genesis) (e.g., Case et al. 1997; Siegrist et al. 1999, 2000, 2001; Struse et al. 1999, 2002; Urynowicz 2000, Crimi 2002, 2003, 2004a,b). **Reductant.** The primary reductant used to generate the manganese dioxide particles is the contaminant trichloroethylene. It is a highly prevalent contaminant at hazardous waste sites where permanganate oxidation is applied, and its reactions with permanganate have been studied extensively (e.g., Case et al. 1997; Siegrist et al. 1999, 2000, 2001; Struse et al. 1999, 2002; Urynowicz 2000, Crimi 2002). Aqueous Matrix. A simulated groundwater matrix is employed, with an ionic strength of 0.01 and adjusted to pH 3 or pH 7 as appropriate. Ionic content varies, as appropriate for experimental design, in calcium content or in phosphate content to examine anionic and cationic impacts on system properties. Solids Matrix. The primary component of the solids matrix is a characterized medium sand with negligible silt and clay. Experimental variations in this matrix are provided through addition of organic carbon (OC) as a peat potting soil, iron oxides as goethite (FeO(OH)), and clay as a montmorillonite. **Stabilization Aids.** A review of the available literature with respect to particle stabilization has been conducted to choose 4 (organic/inorganic, ionic/nonionic) promising stabilization aids to meet the objectives of this study. This review focused on the food and pharmaceuticals industry in terms of non-toxic stabilizing additives, as well as catalysis literature in terms of stabilizing reactive colloids and avoiding reaction inhibition. Promising stabilization aids include polyphosphate (Perez-Benito and Arias 1991, Perez-Benito and Brillas 1992, Stumm 1992), anionic surfactants, and gum arabic and xanthan gum, which are water soluble food additives (Perez-Benito et al. 1990).

General Analytical Methods

Physical and chemical properties of aqueous phase samples, generated particles, and porous media solids are characterized using standard methods for solution and soils analysis, as outlined in Table 4. Appropriate sample replication, sample controls, and corroboration of sample methods were applied.

Table 4. Summary of Analytical Methods.

Property	General Method(s)	References
pH	Wet chemistry with electrode	APHA 1998, Klute et. al. 1986
Eh	Wet chemistry with electrode	APHA 1998
MnO_4	Spectrophotometry at 525 nm with Hach DR/4000	APHA 1998
TCE	H.P. 6890 Capillary GC-ECD/FID	US EPA 1986, 1990; APHA 1988
TOC	Elementar liquiTOC TOC/TN _b Analyzer	Sparks et al. 1996, APHA 1998
TS/TSS/TDS	Filtration and oven drying	APHA 1998
MnO_2		
Quantification	Sequential extraction and dissolution	Struse 1999, 2002
Behavior	Spectrophotometry at 418 nm	Crimi 2002
Size	NICOMP 380 ZLS zeta potential/particle sizer	
Soil particle size distribution	Hydrometer method	Klute et. al. 1986
pH_{pzc}	Titration	Blok and de Bruyn, 1970
Zeta potential	NICOMP 380 ZLS zeta potential/particle sizer	

Experimental Procedures

The experimental activities for this research are divided into three primary tasks: (<u>Task 1</u>) Bench-scale batch experiments using 12-mL reaction vials to evaluate stabilization aids; (<u>Task 2</u>) 1-D transport experiments in columns (2.5-cm diam by 60-cm length) to study particle transport in varied porous media, and (<u>Task 3</u>) 1-D transport experiments in columns to study the partnering of stabilization, reaction, and transport.

The objective of Task 1 is to investigate particle stabilization aids for optimal properties under a variety of reaction matrix conditions. Experimental studies were conducted in 12-mL reaction vials following a full factorial experimental design to investigate conditions presented in Table 5. Variation in particle concentration was provided by changing the initial concentrations of reactants in solution (permanganate and/or reductant). The two pH conditions encompass the ability of pH itself to impact particle behavior. Ionic variations were provided due to the ability of calcium and phosphate to impact particle behavior. Solids, for the purposes of these initial studies, consist of medium sand with little to no silt/clay fraction and organic carbon to examine simply the impact of the presence of solids on particle behavior. Different types of porous media content were examined in column studies in Task 2. Finally, prior to the initiation of Task 1, potential stabilization aids were selected as described above. A review of available literature indicated the potential promise of Dowfax 8390, sodium hexametaphosphate (polyphosphate or HMP), gum arabic, and xanthan gum for particle stabilization. Two concentrations of each stabilization aid were evaluated based on their solubility and/or ionic properties. All experiments were conducted in duplicate with appropriate sample controls.

Table 5. Experimental Conditions.

Variable	Condition A			Condition B			(Condition C		
Particle concentration	1	0 mg/L			100 mg	g/L				
pН	7			3						
Ionic variation	Base groundwater			Base groundwater + Ca ²⁺		Base	Base groundwater + PO ₄ ³⁻			
Solids content		None		20 wt. %						
Redox conditions	1:1 initial ratio of MnO ₄ to reductant			Oxidizing (excess MnO ₄ -)		Reduc	Reducing (excess reductant)			
Stabilization Aids	Dov	vfax	Po	Polyphosphate		phosphate Gum ara		Xantha	n Gum	
Stabilization Aid Concentration (mg/L)	23,540	3,300	1,00	00	100	1,000	100	25	10	

Samples were prepared to encompass all conditions included in Table 5, except for the particles (or reactants) initially. They were then equilibrated, with agitation, in the dark at room temperature. At this point, particles (or reactants) were added to the systems to meet appropriate concentrations and analyses were initiated. Three stages of analysis were conducted as described below.

Spectrophotometric analyses. First, with one set of samples, spectrophotometric absorbance measurements at 418 nm were made at selected time points from the addition of particles to the system over a 72 hour reaction period. This provides a qualitative indication of particle size and stability in solution over time. Spectrophotometric measurements at 525 nm were also taken concurrently to examine changes in permanganate concentration over time.

Particle filtration. On a second set of samples, particles were sequentially filtered (polycarbonate membrane) at 5.0, 1.0, 0.40 and 0.10 µm, and the filtered particles were subjected to a three-phase sequential extraction (Struse 1999) at 2, 4, 8, and 24 hrs following the initiation of reaction. The filter membranes and retained solids were oven-dried at 103C for 2 hrs. and weighed to yield a dry mass of solids. Next, the solids were washed with deionized (DI) water, then with 0.10 M barium chloride to remove water-extractable and barium-exchangeable ions. Finally, the manganese dioxide particles were dissolved in 0.10 M hydroxylamine hydrochloride with 0.01 M nitric acid solution. Atomic absorption (AA) spectroscopy analyses for Mn content were made of the aqueous filtrate, the DI water extract, the barium chloride extract, and the acid dissolution solution to determine the degree of association of ions with the particles, and with the aqueous and solids phases. Absorbance measurements at 525 and 418 nm were taken both prefiltration and following each filtration step, to determine the influence of the presence of MnO₂ particles on 525 nm permanganate measurements. This allows for quantification of manganese present as MnO₂ particles that were measured spectrophotometrically (i.e., calibration of 418 nm data).

Optical measurements. With a third set of samples, particles were examined by optical (laser) particle counting/sizing methods at selected reaction time points (2, 4, 8, 24 hrs). Samples were instrumentally measured for average particle size and zeta potential by electrophoretic light scattering of samples placed in an electric field on a NICOMP 380 ZLS zeta potential/particle sizer.

1-D transport experiments. Initial mini-column experiments were conducted as the first part of Task 2 transport experiments to determine the appropriate range in porous media conditions to evaluate in full scale transport experiments. The goal of the mini-column experiments was to identify environmentally relevant ranges of physical and chemical soil characteristics, by adding portions of clay, reactive mineral oxides, and organic carbon to a base sand media, which provide for a statistically significant difference in MnO₂ retention. Initial variations evaluated included 20% and 50% montmorillonite clay, 1 and 10% goethite (FeO(OH)), and 1 and 5% organic carbon as a peat potting soil.

The mini-column evaluations were conducted in 11 cm long columns with a diameter of 1.5 cm. The columns were packed with a coarse sand source zone (~0.5 cm), over which was wet-packed the mixed media of interest. First, the media were completely mixed in a mechanical shaker to facilitate even distribution of the material added to the base sand. Neat TCE (equal to the stoichiometric demand of TCE for the designed permanganate total mass plus the maximum mass that may be transported out of the source zone during pre-oxidation delivery based on solubility) was added to the source zone via syringe, then flow of 3.0-3.3 cm³/hr was established in the column (upflow delivery) with a peristaltic pump using the base groundwater employed in Task 1. Five pore volumes of groundwater were delivered, followed by 2.5 pore volumes of 5,000 mg/L permanganate solution. Post-oxidation, an additional 5 pore volumes were delivered to re-establish baseline conditions. Column effluent was analyzed for total solids concentrations during each phase of flow. After the post-oxidation delivery phase, the columns were sectioned into 3 segments with distance from column influent. The 3-phase extraction described above for Task 1 particle filtration experiments was conducted with the media segments to quantify Mn

retained as MnO₂ in the columns. While there was no statistically significant difference in column total solids with media type, extraction results demonstrated statistically significant differences in MnO₂ retained in the columns with distance for all media variations evaluated. Based on these results, the conditions of 20% clay, 1% FeO(OH), and 0.5% organic carbon, along with the base sand condition, were selected for full-scale 1-D transport experiments. The clay and FeO(OH) conditions were the minimum values evaluated in the mini-column experiments, and the organic carbon condition was ½ the minimum value evaluated due to the considerable difference in MnO₂ retention between sand only and sand + 1% organic carbon measured in the mini-column experiments. The organic carbon exerted such an extensive demand for the permanganate that there was minimal transport of the permanganate through the media even with 2.5 pore volumes of oxidant delivery.

Following selection of the appropriate range of media conditions for the 1-D transport studies, the media were characterized as follows: (1) particle size, (2) soil pH, (3) Total organic carbon (TOC), (4) estimated point of zero charge pH (pH $_{pzc}$), and (5) zeta potential. Table 6 presents the media characteristics.

Full column experiments were next conducted with the characterized media in 60 cm long by 2.5 cm diameter glass columns. Like the mini-columns, the columns were packed first with a coarse sand (~2 cm) source zone, then wet-packed above with the media. Prior to injecting TCE via syringe to the source zone, tracer studies were conducted with bromide to characterize porosity differences (the primary expected response to differences in media physical characteristics). Once TCE was injected, column flow followed the same approach as for the mini-columns, with a delivery rate of 6.0 cm³/hr and pre-, during-, and post-oxidant delivery of 5, 2.5, and 5 pore volumes, respectively. Again, simulated groundwater was used as the background solution, and the oxidant concentration was 5,000 mg/L. For each phase of solution delivery, column effluent was measured for pH, oxidation-reduction potential (ORP), total solids, total dissolved solids, permanganate concentration, and estimated MnO₂ concentration (using spectrophotometric methods and calibration curves established during Task 1). After completion of the flow-through conditions, columns were sectioned into 12 segments with distance from influent, and the 3phase extraction was performed on each of the segments to quantify MnO₂ retained in the columns. Next, to meet Task 3 objectives, each column test was repeated with the addition of 1,000 mg/L of the stabilization aid hexametaphosphate (HMP) to the permanganate delivery solution, which was determined during Task 1 experiments to be the most promising MnO₂ stabilization aid of those evaluated in these studies.

Table 6. Characteristics of Media Used in 1-D Transport Experiments

Tuble 0. Characteristics of Media Coca in 1 D Transport Experiments								
Media	Avg. Particle Size (mm)	d ₁₀ (mm)	d ₆₀ /d ₁₀	Soil pH	TOC (wt. %)	pH_{pzc}	Zeta potential (mV)	
Sand only	0.45	0.185	2.43	4.93	0.017%	<2.5	- 17.35	
Sand + 1% FeO(OH)	0.56	0.195	3.69	5.56	< 0.01%	<2.25	- 19.52	
Sand + 0.5% organic carbon	0.42	0.18	3.11	5.31	0.498 %	<2.75	- 20.67	
Sand + 20% clay (montmorillonite)	0.30	0.05	9.0	2.21	< 0.01%	<2.25	- 1.66	

Data Analysis

Spectrophotometric analyses. First, using the filtration data generated with the second set of samples described above, correction factors were calculated to correct the spectrophotometric measurements at 525 nm. The manganese dioxide particles interfere with measurements of absorbance (used to calculate permanganate concentration) at this wavelength. Measurements at 418 nm and 525 nm before and after filtration allow for correction of the 525 nm data. Furthermore, by analyzing the data between each filtration step, it is possible to determine the influence of differently sized particles on the correction factor. Equation 2 is applied to correct the 525 nm data. The correction factor was calculated using equation 3.

$$A_{525,actual} = A_{525,measured} - (A_{418,measured} \text{ x correction factor})$$
 [2]
Correction factor = $(A_{525} \text{ pre-filtration} - A_{525} \text{ post-filtration})$

 $(A_{418} \text{ pre-filtration} - A_{418} \text{ post-filtration})$

[3]

Differences in the correction factors calculated for each experimental condition indicate differences in particle light scattering characteristics, which is further indicative of structural differences in individual particles or the particle agglomerates.

Once 525 nm spectrophotometric data were corrected, they were used to evaluate differences in particle generation rates under the varied reaction conditions and to determine if the stabilization aids exerted a demand for (i.e., reacted with) the permanganate. An ideal stabilization aid will not exert a demand for the oxidant. These analyses were made by first converting expended permanganate concentrations (initial permanganate concentration minus measured permanganate concentration) to equivalent concentrations of Mn as MnO₂. These results were graphed vs. time (see Results and Accomplishments), and examined for differences in particle generation rates (i.e., reaction kinetics) and extents (i.e., a greater extent of reaction with a stabilization aid present vs. extent with no stabilization aid present indicates the aid exerts a demand for the oxidant).

Next, the 418 nm data were assessed for multiple responses. Because the 418 nm data reflect the measurement of particles suspended in solution, they provide a qualitative indication of particle behavior. An increase in the 418 nm measurements indicates an increasing concentration of suspended particles, whereas a decrease indicates particles have settled from solution. An ideal stabilization aid will prevent particle settling. Responses measured using the 418 nm data include (1) maximum absorbance value (Amax), (2) time of maximum absorbance (Tmax), (3) time of maximum absorbance minus time of minimum absorbance (Tmax-Tmin), and (4) particle settling rate (k_{s-obs}) (Figure 7). A higher maximum absorbance value indicates a higher concentration of particles suspended in solution. Tmax and Tmax-Tmin characterize the particle growth and settling behavior. Favorable particle stabilization is indicated by a highly positive value for the Tmax-Tmin, corresponding with a relatively late Tmax value in general (i.e., particles are suspended for a longer duration). Particle settling rates were calculated by fitting the 418 nm data after the reaction between oxidant and reductant was complete (~4 hours) to a power curve; $y = Ax^B$, where y is absorbance at 418 nm, x is time, A and B are model fitting parameters, and B provides the rate of particle settling in terms of decreasing 418 nm absorbance vs. time.

Figure 7. Demonstration of 418 nm Response Metrics.

These values were statistically assessed using Minitab 14 for main effects and interactions of reaction variables. Minitab was employed to discern the range of values for each of the responses listed above for each of the stabilization aids and the "no stabilization" condition. Additionally, the statistical significance for the impact each reaction variable (Table 5) on the responses was determined. An ideal stabilization aid will decrease the influence of varying groundwater conditions (i.e., pH, ionic content, etc.) on particle behavior while offering improved particle stability in solution.

Particle filtration. Particle filtration data were analyzed for particle size distribution at each time point measured. For particles retained on each the 5.0, 1.0, 0.40 and 0.10 μ m filters, Mn as MnO₂ was quantified using AA as described above. To quantify the < 0.10 μ m-sized particles, first all reacted permanganate (determined via spectrophotometric measurements as described above) was converted to Mn as MnO₂ (total MnO₂). A limitation to this approach is the assumption that all reacted permanganate is converted to MnO₂, which is a reasonable assumption given Equation 1 holds true for the pH range of ~3-12. Next, the total mass of MnO₂ collected on each of the filters was summed and subtracted from the total MnO₂ value. The remainder is assumed to be the < 0.10 μ m fraction of particles.

Next, the change in 418 nm absorbance values from filtration measured spectrophotometrically before and after each filtration step were correlated to the Mn as MnO_2 mass quantified via dissolution and AA analysis to create a calibration of absorbance vs. Mn mass for each reaction system. The calibrated values were used to convert all 418 nm data measured during spectrophotometric tests to Mn as MnO_2 particles suspended in solution over time. These data provide information regarding whether a solution containing a stabilization aid (1) results in a greater concentration suspended of particles over time, (2) inhibits particle settling over time, and/or (3) results in a lower concentration of particles reaching a size range (\sim 0.1 μ m) that can even be detected via spectrophotometric methods.

Optical measurements. The average particle size and zeta potential measurement data were assessed graphically for trends with respect to time for each stabilization aid and were compared

to the "no stabilization aid" condition. Data were assessed for conditions that result in statistically significant differences in particle size and zeta potential.

1-D transport experiments. The primary analysis of the 1-D transport experiments was a mass balance performed on the manganese introduced to the columns (initially as permanganate), separated as Mn exiting the column (as MnO₄ or MnO₂) and Mn retained in the column (as water- or Ba-extractable Mn or as MnO₂). These data were assessed for trends with respect to soil and groundwater conditions (e.g., pH, ORP, pH_{pzc}, particle size, and zeta potential). Results were compared for columns with and without introduction of HMP with the permanganate solution.

Results and Accomplishments

Spectrophotometric Analyses

Table 7 presents the correction factors determined during particle filtration that were employed to correct the 525 nm absorbance values for permanganate concentration measurement. Figure 8 provides example data for corrected 525 nm data vs. time, representing permanganate depletion and MnO₂ generation rate and extent. Representative data are presented here due to the numerous samples (586 runs in duplicate) processed as a function of the full factorial experimental design. Appendix I includes a key of sample constituents for samples measured via spectrophotometric methods. Appendix II contains the full set of the uncorrected 525 nm data. Appendix III includes the average rate constant (observed pseudo 1st-order) values calculated for permanganate depletion for each sample run.

Table 7. Correction Factors for 525 nm Measurements due to Particle Interference.

abl	le 7.	C	orrection	Factors for	525 nm Me	easurements due	to Particle Interfere
						525 correction	
ID	GW	рΗ	Stabilization	KMnO₄	TCE	525A = 525M - 418M(x)	
						Х	
1	Base	3	none	500uL 1818mg/L	450uL 840mg/L	0.87	
2	Base	3	1a	500uL 1818mg/L	450uL 840mg/L	0.44	stabilization aids:
3	Base	3	1b	500uL 1818mg/L	450uL 840mg/L	0.44	1a=214uL dowfax
4	Base	3	2a	500uL 1818mg/L	450uL 840mg/L	7.70	1b=30uL dowfax
5	Base	3	2b	500uL 1818mg/L	450uL 840mg/L	1.00	2a=200uL 50g/L NaHMP (pH'd)
6	Base	3	3a	500uL 1818mg/L	450uL 840mg/L	0.20	2b=200uL 5g/L NaHMP (pH'd)
7	Base	3	3b	500uL 1818mg/L	450uL 840mg/L	0.06	3a=200uL 50g/L Gum Arabic
8	Base	3	4a	500uL 1818mg/L	450uL 840mg/L	0.38	3b=200uL 5g/L Gum Arabic
9	Base	3	4b	500uL 1818mg/L	450uL 840mg/L	0.30	4a=200uL 0.5g/L xanthan gum
10	Base	7	none	500uL 1818mg/L	450uL 840mg/L	0.93	4b=500uL 0.5g/L xanthan gum
11		7	1a	500uL 1818mg/L	450uL 840mg/L	0.56	
	Base	7	1b	500uL 1818mg/L	450uL 840mg/L	0.41	
	Base	7	2a	500uL 1818mg/L	450uL 840mg/L	0.00	
	Base	7	2b	500uL 1818mg/L	450uL 840mg/L	0.55	
	Base	7	3a	1mL 364mg/L	180uL 840mg/L	0.63	
	Base	7	3b	1mL 364mg/L	180uL 840mg/L	0.48	
17		7	4a	1mL 364mg/L	180uL 840mg/L	0.67	
18		7	4b	1mL 364mg/L	180uL 840mg/L	0.67	
19	Ca	3	none	500uL 1818mg/L	450uL 840mg/L	0.92	
20	Ca	3	1a	500uL 1818mg/L	450uL 840mg/L	0.57	
21		3	1b	•			
22	Ca			500uL 1818mg/L	450uL 840mg/L	0.88	
	Ca	3	2a	500uL 1818mg/L	450uL 840mg/L	0.66	
23	Ca	3	2b	500uL 1818mg/L	450uL 840mg/L	1.00	
24	Ca	3	3a	1mL 364mg/L	180uL 840mg/L	0.13	
25	Ca	3	3b	1mL 364mg/L	180uL 840mg/L	0.45	
26	Ca	3	4a	1mL 364mg/L	180uL 840mg/L	0.45	
27	Ca	3	4b	1mL 364mg/L	180uL 840mg/L	0.32	
28	Ca	7	none	500uL 1818mg/L	450uL 840mg/L	0.89	
29	Ca	7	1a	500uL 1818mg/L	450uL 840mg/L	0.48	
30	Ca	7	1b	500uL 1818mg/L	450uL 840mg/L	0.49	
31	Ca	7	2a	500uL 1818mg/L	450uL 840mg/L	0.26	
32	Ca	7	2b	500uL 1818mg/L	450uL 840mg/L	0.72	
33	Ca	7	3a	1mL 364mg/L	180uL 840mg/L	0.96	
34	Ca	7	3b	1mL 364mg/L	180uL 840mg/L	0.89	
35	Ca	7	4a	1mL 364mg/L	180uL 840mg/L	0.69	
36	Ca	7	4b	1mL 364mg/L	180uL 840mg/L	0.56	
37	PO4	3	none	500uL 1818mg/L	450uL 840mg/L	1.17	
38	PO4	3	1a	500uL 1818mg/L	450uL 840mg/L	0.31	
39	PO4	3	1b	500uL 1818mg/L	450uL 840mg/L	0.40	
40	PO4	3	2a	500uL 1818mg/L	450uL 840mg/L	16.70	
41	PO4	3	2b	500uL 1818mg/L	450uL 840mg/L	1.26	
42	PO4	3	3a	1mL 364mg/L	180uL 840mg/L	0.45	
43	PO4	3	3b	1mL 364mg/L	180uL 840mg/L	0.38	
44	PO4	3	4a	1mL 364mg/L	180uL 840mg/L	0.60	
45	PO4	3	4b	1mL 364mg/L	180uL 840mg/L	0.44	
46		7	none	500uL 1818mg/L	450uL 840mg/L	1.07	
47		7	1a	500uL 1818mg/L	450uL 840mg/L	0.55	
48		7	1b	500uL 1818mg/L	450uL 840mg/L	0.56	
49		7	2a	500uL 1818mg/L	450uL 840mg/L	7.45	
50		7	2b	500uL 1818mg/L	450uL 840mg/L	0.80	
51	PO4	7	3a	1mL 364mg/L	180uL 840mg/L	1.17	
52		7	3b	1mL 364mg/L	180uL 840mg/L	1.14	
53	PO4	7	4a	1mL 364mg/L	180uL 840mg/L	0.63	
54		7	4a 4b	1mL 364mg/L	180uL 840mg/L	0.92	
54	r U4		40	THIL 304HIIG/L	1000L 040HIG/L	0.92	ı

Figure 8. Representative data for 525 nm measurements (to determine permanganate concentration) vs. time. "No S.A." refers to no stabilization, "1b" refers to Dowfax, "2b" is polyphosphate, "3b" is gum arabic, and "4b" is xanthan gum. All samples are for the base groundwater condition at pH 3 with no solids present, and equimolar oxidant and reductant.

Appendix IV contains the raw data for the 418 nm measurements (which did not require interference correction for the presence of permanganate or for the stabilization aids), and Appendix V includes the key response values determined (Amax, Tmax, Tmax-Tmin, $k_{s\text{-obs}}$) from the 418 nm data. Table 8 summarizes the range of values determined via Minitab for the responses for each stabilization aid, along with the statistical significance (i.e., p-value) for each for the reaction system variables' influence on the responses. A p-value of < 0.1 for these studies is considered to be statistically significant.

Table 8. Range of Response Values and Statistical Significance of Reaction Variables.

P values							
				Variables			Range
	Response	conc	pН	GW	solids	redox	
	Tmax (hrs)	0.000	0.009	0.016	0.000	0.004	2 - 8
no	Amax (Abs)	0.000	0.108	0.001	0.456	0.113	0.2 - 1.2
stabilization	Tmax-Tmin (hrs)	0.001	0.306	0.624	0.002	0.002	-7150
	k _{s-obs} *	0.000	0.012	0.000	0.942	0.097	0.75 - 1.02
	Tmax (hrs)	0.000	0.000	0.674	0.642	0.540	1 - 21
Dawfay	Amax (Abs)	0.000	0.715	0.000	0.255	0.050	0.5 - 3.2
Dowfax	Tmax-Tmin (hrs)	0.000	0.000	0.893	0.821	0.912	-7130
	k _{s-obs} *	0.000	0.000	0.893	0.821	0.912	0.5 - 1.10
	Tmax (hrs)	0.000	0.000	0.022	0.093	0.313	10 - 40
Poly-	Amax (Abs)	0.000	0.587	0.000	0.758	0.000	0.3 - 2.0
phosphate	Tmax-Tmin (hrs)	0.000	0.000	0.002	0.012	0.438	-20 - +10
	k _{s-obs} *	0.000	0.005	0.001	0.548	0.678	0.1 - 0.7
	Tmax (hrs)	0.123	0.000	0.003	0.856	0.012	20 - 44
Come Amabia	Amax (Abs)	0.000	0.166	0.000	0.754	0.000	1.0 - 3.6
Gum Arabic	Tmax-Tmin (hrs)	0.000	0.000	0.006	0.908	0.063	5 - 38
	k _{s-obs} *	0.137	0.000	0.291	0.693	0.382	-0.1 - +0.4
	Tmax (hrs)	0.000	0.000	0.000	0.969	0.015	10 - 58
Xanthan	Amax (Abs)	0.000	0.002	0.000	0.707	0.333	0.7 - 3.4
Gum	Tmax-Tmin (hrs)	0.000	0.000	0.000	0.984	0.302	-50 - +55
	k _{s-obs} *	0.000	0.000	0.407	0.928	0.403	0.15 - 0.8

^{*}NOTE: A positive k_{s-obs} value, as applied here, indicates particle settling has occurred during the 72 hour reaction period, whereas a negative k_{s-obs} value indicates particle growth continues through reaction. A higher value for B (positive or negative) indicates a faster rate of settling/growth.

Particle Filtration

Figure 9 presents the full set of particle size fraction data from filtration experiments at the 24 hour reaction period for all sample conditions. The full data set is included in Appendix VI for all time periods examined, including additional data figures. A particle size of $< 0.10 \, \mu m$ is the most desirable result. This is shown as the white segment of each bar in the Figure 9 chart. For quick interpretation, the "least favorable" conditions have an overall darker shaded bar, and the "most favorable" conditions have an overall lighter, or white, shaded bar.

As mentioned, the filtration data along with changes in 418 nm absorbance with each step of filtration, were used to convert all collected spectrophotometric data to MnO₂ concentrations suspended in solution. These data were examined graphically to (1) confirm particle settling rates estimated from change in absorbance vs. time, (2) compare stabilization aids' ability to maintain particles suspended in solution over time (i.e., inhibition of particle settling), and (3) compare the maximum suspended particle concentration in solution to the maximum possible suspended particle concentration (based on permanganate concentrations). In interpreting results with respect to the latter objective, it is important to consider that differences between concentrations of particles suspended in solution and the maximum possible suspended concentration can result from two causes: (A) particles have settled from solution and are no longer in the spectrophotometer detection field (unfavorable particle condition indicative of large, settleable particles), or (B) particles are below the spectrophotometer detection limit, where the particles are too small to effectively scatter light (favorable particle condition indicative of very small, dissolved or suspended particles). For appropriate interpretation, the suspended particle concentration data must be considered side-by-side with particle filtration data to determine if results relate to cause (A) or cause (B). Figure 10 shows representative data for the suspended MnO₂ particle mass over time in solution. Appendix VII contains graphs derived from all data.

Optical Measurements

Figure 11 shows representative data for particle size measurements for pH 7, equimolar oxidant and reductant, with and without solids present conditions at the 24 hour reaction period. Low and high particle concentration samples are presented. Figure 12 shows representative data for zeta potential measurements, which are also for pH 7, equimolar oxidant and reductant, with and without solids present conditions at the 24 hour reaction period. Appendix VIII contains the complete data sets, with additional figures illustrating the data. The profile of conditions that result in statistically significant differences in particle size and zeta potential are quite similar to those presented in Table 8, confirming that these measurements are viable indicators of particle behavior.

1-D Transport Experiments

Mini-column experiments were first conducted to determine an appropriate range in media characteristics to employ in the full-scale 1-D transport experiments. Results of measurements for Mn retention in these range-finding experiments demonstrated that variations to the base sand media of 20% clay, 1% goethite (FeO(OH)), and 0.5% organic carbon would provide, at the full-scale, measurable and statistically-significant differences in permanganate depletion and MnO₂ deposition, while being representative of field-like conditions. Appendix IX contains representative results for these initial range-finding experiments.

Figure 9. Particle Size Fractions For All Sample Conditions at the 24-hour Reaction Period. The White Bar Segment Represents the "most favorable condition", or the Size Fraction <0.10 μm.

Figure 10. Mass of MnO₂ Suspended in Solution over 72-hour Reaction Period For Each Stabilization Aid Condition For Representative Conditions of Base GW, pH 7, Equimolar Oxidant and Reductant Present, Without Solids Present.

Figure 11. Average Particle Size For Each Stabilization Aid Condition at pH 7, Equimolar Oxidant and Reductant Present, With and Without Solids Present. Low and High Particle Concentration Samples Are Presented.

Figure 12. Zeta Potential For Each Stabilization Aid Condition at pH 7, equimolar oxidant and Reductant Present, With and Without Solids Present. Low and High Particle Concentration Samples Are Presented.

Transport studies without the use of stabilization aids. Full-scale 1-D experiments were conducted first without addition of stabilization aids to characterize the influence of the media type on MnO_2 deposition/retention. Analysis of the tracer data indicate that of the four media types evaluated, the media containing 20% clay had a faster flow rate (~12%) than the other three media types. This is likely due to the smaller particle size and larger uniformity coefficient (Table 6), thus smaller porosity of this media. Influent was delivered from a common pump with four pump heads, and it was confirmed that there were no differences in the influent delivery rate.

The primary data analysis was to perform a mass balance on the Mn introduced to the columns as permanganate. Table 9 summarizes results as the % Mn as each primary species either exiting or retained in the column. It is assumed that the Mn²⁺ (dissolved) species is not present in column effluent. If there is Mn²⁺ present, it is lumped into the MnO₂-effluent term in Table 9. Mn-effluent as MnO₂ was measured using the spectrophotometric method (418 nm) and calibration as MnO₂ developed during Task 1. Mn-effluent as MnO₄ was also measuring using the spectrophotometric method (525 nm). Total Mn-retained was calculated by subtracting total Mn-effluent from total Mn introduced to the column. Because column extractions were performed on a small portion of each column segment, extrapolating these values to the total mass of media in the respective segment over-estimated total Mn-retained; thus these values were calculated as described.

Table 9. Percent of Mn Introduced to Columns as Each Species

	Species	Sand	Sand + 1% FeO(OH)*	Sand + 0.5% organic carbon	Sand + 20% Clay*
Mn-effluent	as MnO ₄	42.2%	0%	0%	0%
	as MnO ₂	1.4%	0%	1.8%	0%
Mn-retained	as DI-extractable Mn	0.9%	1.4%	0.9%	0.6%
	as BaCl-extractable Mn	0.8%	1.4%	1.6%	5.0%
	as MnO ₂	54.8%	97.2%	95.7%	94.4%

^{*}These columns completely plugged after ~1 PV of oxidant delivery.

Figure 13 shows particle deposition (Mn-retained as MnO₂ fraction from Table 9) within the 1-D columns by media type and by distance from column influent. The values presented are normalized for the mass of permanganate actually delivered to the column. Two columns, sand + clay and sand + goethite, both experienced completely blocked flow within one pore volume of delivery, whereas the sand only and sand + organic matter columns accepted the full 2.5 pore volumes of the design delivery volume. Note that the majority of particle deposition, for all media types, occurs within the first several centimeters of the column, concentrated in the NAPL source zone (each section corresponds with 5 cm column length).

Figure 13. Mass of Mn (as MnO₂) per kg of Media With Distance From 1-D Column Influent. Trichloroethylene NAPL is Located Within Section 1. Each Section is Approximately 5 cm of Column Length. Results are Normalized For the Total Mass of Permanganate Delivered to the column. Delivery Mass Differed for Columns Due to Plugging and Restricted Flow in Sand + Goethite and Sand + Clay Columns.

Total solids concentrations, shown in Figure 13, as well as dissolved and suspended fractions thereof, were measured for each quarter pore volume of column effluent. Solids concentrations were > 99% dissolved solids, and, as demonstrated in Table 9 Mn-effluent data, were low in concentration.

Figure 14. Total Solids Concentration in Column Effluent With Volume of Solution Delivered.

Total solids concentrations above background levels may be attributable to solids as dissolved MnO_4 , or as dissolved MnO_2 . It is interesting to note that increases in total solids concentrations in each of the columns occurs after approximately one pore volume of oxidant delivered, however, as Table 9 shows, little to no permanganate or MnO_2 were detected in any of the columns except for permanganate in the sand column. It is likely that the increases are primarily attributable to increases in dissolved MnO_2 concentrations, but that these particles are below the detection limit (i.e., $\sim 0.1 \, \mu m$) of the spectrophotometric measurement method.

Figure 15 shows column effluent pH and oxidation-reduction potential (ORP) for each column conducted without stabilization aid. Again, note that less volume was passed through columns containing clay and iron due to plugging at ~ 1 PV of oxidant delivery. As anticipated, column pH decreases significantly during the oxidant delivery phase due to H⁺ generated during permanganate reaction with TCE and the very low buffering capacity of the background groundwater. Note that the clay-containing media has a lower initial pH due to the low pH of the media itself (Table 6). Corresponding with the drop in pH is an anticipated increase in ORP due to the oxidizing conditions introduced. While iron-containing and clay-containing columns have no interpretable post-oxidation data due to column plugging and restricted flow, it is interesting to note the differences between the sand-only and the sand + 0.5% organic carbon column. The sand-only column returns to pre-oxidation conditions very soon after oxidant delivery ceases. The organic carbon-containing column, however, has a significantly increased pH (above baseline) and decreased ORP (below baseline). It is likely that low molecular weight organic acids are generated due to oxidation of the organic carbon in the porous media, which are contributing to these effects.

← pH ← ORP

Figure 15. ORP and pH of Column Effluent For Each Pore Volume of Solution Delivered For Each Media Type.

Transport studies with the use of sodium hexametaphosphate. Table 10 presents the mass balance on Mn for the columns tests run with the stabilization aid HMP (1,000 mg/L). Compared to conditions without HMP (Table 9):

- There is a shift in the mass balance in iron- and clay-containing columns, attributable in large part to the increase in the mass of Mn introduced to the columns with HMP (i.e., columns did not plug with HMP therefore the full design 2.5 PVs of solution were passed through these columns).
- There is a significant increase in Mn-effluent as MnO₂ for the iron-containing column, which is evidence of improved particle stabilization when coupled with the fact that the column with HMP did not plug.
- There is little difference in the overall mass balance in sand-only and organic-carbon containing columns. It was expected for this mass balance to shift toward less Mnretained and greater Mnreffluent due to particle stabilization with HMP.

Table 10. Percent of Mn Introduced to Columns Using Stabilization Aid HMP as Each Species.

	Species	Sand	Sand + 1% FeO(OH)*	Sand + 0.5% organic carbon	Sand + 20% Clay*
Mn-effluent	as MnO ₄	34.0%	47.4%	0%	15.2%
Min-einuent	as MnO ₂	1.4%	4.0%	0.9%	0.8%
Mn-retained	as DI-extractable Mn	0.7%	0.4%	0.8%	0.6%
	as BaCl-extractable Mn	1.6%	1.0%	1.5%	13.6%
	as MnO ₂	62.3%	47.2%	96.8%	69.8%

Figure 16 shows the % decrease in MnO₂ deposition in the source zone (where the majority of deposition occurs as shown in Figure 13) for each media with the use of 1,000 mg/L HMP. Note that the calculated values for the iron-containing and clay-containing columns, which plugged and experienced restricted flow after 1 PV of oxidant delivery when HMP was not used, account for the difference in the total mass of oxidant delivered to the columns. The method for accounting for the oxidant mass difference is to apply a correction factor corresponding with the difference in the volume of oxidant delivered. This correction approach assumes that the deposition of manganese dioxides with oxidant delivery is a linear process (i.e., MnO₂ deposition increases linearly with the volume of oxidant introduced). There are limitations to this assumption, as follows:

- As permanganate passes through the column, less TCE is available over time for the permanganate to oxidize and generate particles, affecting the rate of particle generation and likely the rate of deposition. It is likely that particle accumulation decreases over time, which would translate to Figure 16 values being biased high.
- As particles deposit in the source area, it is likely that pore voids are being filled over time. This may translate to a straining effect, where smaller and smaller particles are able to pass through the media over time, resulting in increased particle deposition over time. This would translate to Figure 16 values being biased low.

Figure 16. Percent Decrease in MnO₂ Deposition in Source Zone With 1000 mg/L HMP.

In presenting Figure 16, it is assumed that these biases cancel each other to an extent, but the specific error associated with each type of bias is unknown and cannot be experimentally resolved based on current limited understanding of MnO₂ particle behavior in porous media. It is not expected that results are drastically biased high because of three reasons:

- The iron-containing columns experienced greater MnO₂ deposition in the source zone overall without HMP present even though the total mass of Mn delivered was approximately 40% of the mass of Mn delivered with HMP present.
- The clay-containing columns experienced similar masses of MnO₂ deposition despite the fact that Mn delivered without HMP was approximately 40% of the mass of Mn delivered with HMP present.
- Significant reduction in MnO₂ deposition occurred in the sand-only and sand + organic carbon columns with HMP present in solution when equal volumes of oxidant were delivered with and without HMP.

While Table 10 indicates that the extent of Mn retained in the sand-only and organic carbon-containing columns changes little with the use of HMP, Figure 16 indicates that there is a shift in the location of the Mn deposition. With HMP, significantly less deposition occurs at the point of contact with the oxidant and contaminant (source zone), and that the MnO₂ migrates further downgradient, depositing in latter sections of the column.

Figure 17 shows total solids concentrations for the column tests conducted with HMP. The total solids concentrations with HMP are similar in the sand-only and organic carbon-containing columns without HMP (Figure 14). This is consistent with the Mn mass balance information presented in Tables 9 and 10 where Mn-effluent as MnO₂ percentages are similar for conditions with and without HMP. Because the columns containing iron and clay plugged without HMP, results aren't directly comparable to those with HMP, however the fact that the columns with HMP did not plug and the solids were transported through to the effluent is a key finding of these studies.

Figure 17. Total Solids Concentration in Column Effluent With Volume of Solution Delivered in Columns Conducted with HMP.

Figure 18 shows column effluent pH and ORP for each column conducted with HMP. Just like columns conducted without HMP, the expected trend of increased ORP and decreased pH during the oxidant delivery period are evident in the sand-only columns. Of note, however, is that with HMP present, the sand-only columns don't quite return to pre-oxidation pH and ORP conditions, but instead rebound to a level approximately between the pre-oxidation and during-oxidation conditions.

Figure 18. ORP and pH of Column Effluent For Each Pore Volume of Solution Delivered and Each Media Type For Columns Conducted With HMP.

The iron-containing and organic carbon-containing columns have similar profiles. It appears that pH is buffered by the presence of HMP. It is postulated that the less acidic (i.e., higher soil pH, Table 6) nature of these media compared to the other two results in less electrostatic association of the HMP with the media and greater amounts retained in the aqueous phase. This would translate to the greater pH buffering observed. Furthermore, spikes in ORP are curtailed in these columns even though permanganate was observed and measured throughout the column and in column effluent. It is postulated that the HMP interferes with the time to ORP measurement equilibration (i.e., requires a longer duration to equilibrate than allowed for measurement) and that the measurements are thus biased low. It is not believed that the actual system ORP is as low as the measurements indicate during the oxidation phase because (1) permanganate is

evident within the column and in column effluent during the delivery and initial portion of the post-delivery phase, and (2) the overall mass of MnO₂ generated in the organic carbon-containing columns with and without HMP agrees within 2%, indicating that reactant concentrations are uniform between the two columns and that flow conditions are similar (tracer test results concur).

In comparing the total solids profiles to the pH profiles of columns both with and without HMP, an interesting effect is noted. Total solids concentrations increase approximately 1 PV after permanganate delivery, as anticipated, due to the generation of MnO₂. There is a subsequent decrease in particle concentrations during the latter part of oxidant delivery, followed by a small but notable increase (for most columns) after oxidant delivery is ceased and conditions are reverted back to baseline groundwater flow-through. A specific correlation has not yet been made, however the total solids profile appears to follow pH profiles in the columns; where increased solids in the column effluent appear as pH drops significantly, and the small increase post-oxidation corresponds with an increase in pH toward baseline conditions. This effect is consistent with anticipated electrostatic effects. At lower pH, the mostly negatively-charged soil surfaces (due to low pH_{pzc} values, Table 6) become protonated toward neutrality and even to a positively charged condition when pH < pH_{pzc}. This translates to less electrostatic repulsion of the MnO₂ particles and greater sorption at the lower pH range. When pH increases, OH ion competes with MnO₂ for electrostatic association with the media surfaces, which can result in their desorption from the media and release from the column. With HMP present, there are several advantages with respect to avoiding electrostatic attraction between the particles and the media. First, the strongly negatively charged HMP can associate with soil surfaces and inhibit attraction for the more weakly-charged MnO₂ particles. Also, with its pH buffering effects, lower pH conditions that result in greater association of particles with the media can be avoided.

Discussion

Results of batch-scale experimentation to compare the ability of four different particle stabilization aids to inhibit MnO_2 deposition indicate the favorability of sodium hexametaphosphate (HMP) over other stabilization aids. Table 11 presents the primary and secondary evidence of HMP's preferred ranking. Primary evidence is specific to HMP, while secondary evidence is also characteristic of Gum Arabic and Xanthan Gum. Dowfax presented conditions that were even less favorable than the use of no stabilization aid, likely due to its significant reaction with permanganate (Figure 8).

Based on the results described in Table 11, HMP (1,000 mg/L included in permanganate solution delivered) was employed as a particle stabilization aid in transport studies. Prior to applying the stabilization aid, columns were conducted without HMP to (1) provide a baseline response, and (2) compare the effects of media type on particle retention.

Table 11. Measurements Demonstrating Viability of HMP for MnO₂ Particle Stabilization.

Evidence	Measurement	Basis
	Permanganate concentration vs. time	HMP does not react nonproductively with permanganate resulting in the generation of additional MnO ₂
Primary	Particle mass as a function of filter size	Majority of particles under varied conditions are $< 0.10 \ \mu m$
	Spec. measurements at 418 nm coupled with filtration (to calibrate for [MnO ₂] vs. time	A large percentage of particles are below the ~0.10 mm detection limit of the spectrophotometric method under a range of experimental conditions
	Optical measurements of particle size (laser)	Results in the smallest-sized particles over the widest range of reaction conditions.
	Spec. measurements at 418 nm and 525 nm	Correction factors to account for particle light scattering at 525 nm permanganate measurement wavelength deviate significantly from the no stabilization aid conditions, indicating a significant difference in particle structure and/or size
Secondary	Spec measurements and analyses at 418 nm	Increased T_{max} , decreased $k_{s\text{-}obs}$, increased $T_{max}\text{-}T_{min}$
	Spec. measurements at 418 nm coupled with filtration (to calibrate for [MnO ₂] vs. time	Particles are stable in solution (i.e., do not coagulate) over extensive reaction time periods
	Optical measurements of zeta potential	Zeta potential is more negative than the no stabilization aid conditions

Regarding the latter objective, important differences in MnO₂ retention in the columns were observed. These differences can be attributed to differences in both physical and chemical characteristics of the porous media. Clay-containing media's significantly smaller average particle size and larger uniformity coefficient results in greater particle retention. The column ultimately clogged and completely restricted flow within 1 PV of oxidant delivery. Also, the near neutral zeta potential of the clay-containing media indicates that potential repulsive forces between the media and the particles are less than in the other three media with highly negative zeta potential values. MnO₂ particles carry a slightly negative charge under moderate pH conditions.

While the iron-containing columns have apparently very similar physical and chemical properties to the sand-only column, as anticipated based on only 1% addition of FeO(OH), MnO₂ retention in this column was very different than the sand-only column. Like the sand + clay column, this one also experienced completely restricted flow within 1 PV of oxidant delivery. It is speculated that this primary difference relates to changes in speciation of the iron due to changes in pH and ORP of the system during oxidation. When oxidant is introduced to the columns, a notable brownish-orange color is observed in the column effluent, indicative of the mobilization of Fe³⁺. Fe³⁺ can introduce important differences to the system that affect particle interactions. It may (1) act as a coagulant, facilitating MnO₂ aggregation and deposition, (2) convert to other iron hydroxide species that may precipitate, introducing additional particles to the system, and (3) substitute for Mn in the MnO₂ aggregate structure (isomorphic substitution), if it co-precipitates with MnO₂, resulting in an overall positive charge on the surface, which would then be attracted to the negative surfaces of the porous media (Figure 19).

Figure 19. Left-hand Side Shows un-substituted MnO₂ With no Net Charge. Surface Charge is Slightly Negative in Solution Due to O on Surface Edge. Right-hand Side Shows Fe³⁺-substituted MnO₂ Aggregate With a Net Positive Charge.

The most surprising results were offered by the organic-carbon containing column. Permanganate reacts readily with organic carbon in soil, creating excess MnO₂ beyond those particles created by contaminant reaction. The organic carbon column did have more extensive MnO₂ deposition than the sand-only column, and permanganate was never detected beyond approximately half-way through the column with 2.5 PVs of oxidant delivery. However, the column experienced no restricted flow. It is postulated that when organic carbon in the media is oxidized, void space in the media is increased. Deposition of MnO₂ may be off-set by the increased void space. There was no measurable difference in flow rate through during oxidant delivery or post-oxidation indicative of either increased or decreased porosity, however differences may be undetectable through the crude measurement of volume over time. Future evaluations will include a post-oxidation tracer test to more thoroughly evaluate potential differences in overall porosity.

Clearly the chemical and physical characteristics of both the media and the MnO_2 particles dictate particle deposition during ISCO. Media characteristics that are the best predictors of challenged flow due to deposition include: (1) particle size, (2) particle size distribution, (3) potential for mineral dissolution (resulting in co-precipitation or other aforementioned chemical effects), (4) zeta potential coupled with pH_{pzc} measurements. Predictors 1 and 2 are commonly measured characteristics, while predictor 3 can be indicated by a high cation content in groundwater (e.g., Fe^{3+} in an iron-enriched media). Predictor 4 involves more complex laboratory measurements that are not frequently conducted, therefore practicality dictates focus on predictors 1-3 at the field scale.

The use of HMP with permanganate is intended to alter the physical and chemical characteristics of MnO₂ particles to improve particle mobility and inhibit deposition, particularly at the point of contact of the oxidant and contaminant. HMP alters system chemistry, which translates to decreased particle retention by the following possible mechanisms: (1) increased net negative charge promoting particle stabilization in solution and inhibiting coagulation, precipitation, and co-precipitation; (2) smaller particle size resulting from mechanism 1; (3) association of HMP with soil surfaces, decreasing the association of MnO₂ with soil surfaces; and (4) buffered pH, resulting in less electrostatic attraction between soil surfaces and particles that can occur at the lower pH that results from contaminant oxidation. The positive effects of HMP addition were

observed primarily as percent reductions of MnO₂ deposition at the contaminant source zone in all columns, ranging from 25-85%, depending on media type.

Aside from identifying and evaluating HMP as a viable particle stabilization aid to employ with ISCO, particularly for NAPL sites, this project resulted in several additional significant findings:

- Even with the use of HMP, very little MnO₂ generated during permanganate ISCO (< 2%) remained in a mobile phase for the length of a 60-cm column. HMP's positive effects were observed primarily at the point of contact of the oxidant and contaminant. While evaluations of Mn speciation rarely occur during field application, the perception is often that MnO₂ does not create issues such as restricted flow. The fact is that without doing specific analyses of the co-location of contaminant residual and deposited MnO₂, this effect would be challenging to observe at the field scale. Measurements of backpressure with oxidant delivery may prove to be a valuable indicator of challenges to flow created by MnO₂, however localized deposition at the point of contact with the contaminant would not be detected with this approach where the flowing oxidant can readily bypass the flow-restricted area.
- Permanganate can readily bypass NAPL contaminant. This is apparent in the sand-only column without HMP and with all but the organic-carbon containing column with HMP. Permanganate was not provided in excess of the stoichiometric TCE requirement, however permanganate was observed in the column effluent 60 cm from the contaminated source zone through which the oxidant directly passes. The bypass is likely due to NAPL dissolution limitations.
- Oxidation of organic-carbon containing media resulted in a short-term post-ISCO decrease in ORP not typically associated with oxidizing conditions. This is likely a result of the generation of low-molecular weight organic acids that result in overall reducing conditions. This indicates that permanganate ISCO in carbon-rich media can result in a down-gradient plume of reducing conditions that may be a beneficial carbon source to anaerobic microorganisms that can readily degrade dilute contaminant plume concentrations. ISCO is often deemed not fit for high organic carbon sites, however it may hold two-fold benefits for hot spot treatment of source zones at such sites; oxidation of high mass density contaminant and enhanced biodegradation of lower concentrations down-gradient from the treated hot spot.
- Post-ISCO, very little Mn was present in the columns both with and without HMP in a readily extractable form, indicating that it is unlikely that permanganate ISCO will result in a long-term source of dissolved Mn at a site except under highly reducing conditions where MnO₂ may be reduced to Mn²⁺.

Concluding Summary

The objectives of SERDP Project ER-1484 were to (1) determine if manganese dioxide particles can be stabilized/controlled in an aqueous phase to allow for transport through a solids pahse, thereby inhibiting subsurface deposition, and (2) determine the dependence of stabilization and control of MnO₂ particles on porous media and groundwater characteristics. Bench-scale batch experiments were conducted initially to study chemical interactions, focusing on the identification of a viable particle stabilization aid. Results of the bench-scale studies indicate that sodium hexametaphosphate (HMP) is a promising stabilization aid due to its ability to maintain a smaller average particle size and particles stabilized over long reaction periods and a wide range of groundwater conditions. Groundwater conditions that affect particle size and behavior both with and without HMP include particle concentration, pH, and ionic content; however favorable conditions are maintained with HMP despite these influences. In other words, although particle size is affected by pH, etc., the particles remain small, mobile, and suspended under different pH, etc., conditions.

Transport studies were conducted to evaluate particle deposition in various porous media types with and without HMP. Physical and chemical characteristics of the porous media, including pH_{pzc}, zeta potential, particle size (average and distribution), and mineralogy, dictate the extent of MnO₂ deposition without the presence of HMP. This is evidenced most strongly by the completely restricted flow that resulted in columns containing modest additions of 20% clay and 1% FeO(OH) to a base sand in which flow was not restricted by MnO₂ deposition. An important condition that influences particle deposition is the presence of, or generation of, cationic species (e.g., Fe³⁺) that enhance particle coagulation and electrostatic attraction to the porous media. Including 1,000 mg/L of HMP with the permanganate solution, which do not react with each other, decreased MnO₂ deposition in the contaminant source zone by 25-85% depending on media type. A decrease of 85% deposition occurred in the iron-containing column and a decrease of 53% occurred in the clay-containing column, which were the two columns that experienced completely restricted flow within delivery of 1 PV of permanganate solution without HMP. Flow was not restricted in columns containing HMP. The ultimate implication of these is that the use of an MnO₂ stabilization aid during permanganate delivery can result in (1) improved contact of the oxidant and contaminant over the longer term, (2) decreased potential for restricted flow (or flow bypass around contaminants), and (3) greater potential for limiting or eliminating contaminant rebound that may occur as a result of flow bypass.

References

- APHA 1998. <u>Standard Methods for Examination of Water and Wastewater.</u> 20th ed. Clesceri L.S., A.E. Greenberg, and A.D. Eaton, eds. APHA-AWWA-WPCF, Washington, D.C.
- Blok, L., de Bruyn, P.L. (1970). The ionic double layer at the ZnO/solution interface: 1. The experimental point of zero charge. *J. Colloid Interf. Sci.* 32, 518-525.
- Case T.L. (1997). Reactive Permanganate Grouts for Horizontal Permeable Barriers and In Situ Treatment of Groundwater. M.S. Thesis, Colorado School of Mines, Golden, CO.
- Chambers J., A. Leavitt, C. Walti, C.G. Schreier, and J. Melby (2000a). In-Situ destruction of chlorinated solvents with KMnO₄ oxidizes chromium. In: G.B. Wickramanayake, A.R. Gavaskar, A.S.C. Chen (ed.). Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press. Columbus, OH. pp. 49-56.
- Chambers J., A. Leavitt, C. Walti, C.G. Schreier, J. Melby, and L. Goldstein (2000b). Treatability study-fate of chromium during oxidation of chlorinated solvents. In: G.B. Wickramanayake, A.R. Gavaskar, A.S.C. Chen (ed.). Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press. Columbus, OH. pp. 57-66.
- Chandrakanth M.S. and G.L. Amy (1996). Effects of ozone on the colloidal stability and aggregation of particles coated with natural organic matter. *Environmental Science and Technology*, 30(2):431-442.
- Crimi M.L. (2002). Particle Genesis and Effects on Metals in the Subsurface During In Situ Chemical Oxidation Using Permanganate. Ph.D. Dissertation, Colorado School of Mines. Golden, CO.
- Crimi M.L. and R.L. Siegrist (2003). Geochemical Effects on Metals Following Permanganate Oxidation of DNAPLs. *Ground Water*, 41(4):458-469.
- Crimi M.L. and R.L. Siegrist (2004a). Association of Cadmium with MnO₂ Particles Generated During Permanganate Oxidation. *Water Research*. 38(4):887-894.
- Crimi M.L. and R.L. Siegrist (2004b). Impact of Reaction Conditions on MnO₂ Genesis During Permanganate Oxidation. *Journal of Environmental Engineering*, 130(5):562:572.
- Doona C.J. and F.W. Schneider (1993). Identification of colloidal Mn(IV) in permanganate oscillating reactions. *J. Am. Chem. Soc.*, 115:9683-9686.
- Insausti M.J., F. Mata-Perez, and P. Alvarez-Macho (1992). Permanganate oxidation of glycine: influence of amino acid on colloidal manganese dioxide. *International Journal of Chemical Kinetics*, 24(5):411-419.
- Insausti M.J., F. Mata-Perez, and P. Alvarez-Macho (1993). UV-VIS spectrophotometric study and dynamic analysis on the colloidal product of permanganate oxidation of a-amino acids. *React. Kinet. Catal. Lett.*, 51(1):51-59.
- Klute A., et al. (ed.) (1986). <u>Methods of Soil Analysis, Part 1.</u> Physical and Mineralogical Methods. Soil Sci. Soc. Am. Madison, WI.
- Lee E.S., Y.Seol, Y.C. Fang, and F.W. Schwartz (2003). Destruction Efficiencies and Dynamics of Reaction Fronts Associated with Permanganate Oxidation of Trichloroethylene. *Environmental Science and Technology*, 37(11):2540-2546.
- Li X.D. and F.W. Schwartz (2000). Efficiency problems related to permanganate oxidation schemes. In: G.B. Wickramanayake, A.R. Gavaskar, A.S.C. Chen (ed.). Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press. Columbus, OH. pp. 41-48.

- Lowe, K.S., F.G. Gardner, R.L. Siegrist, and T.C. Houk (2000). EPA/625/R-99/012. US EPA Office of Research and Development, Washington, D.C.
- Minitab Statistical Software, v. 14.0. Minitab, Inc., State College, PA. 16801.
- Morgan J.J.and W. Stumm (1964). Colloid-chemical properties of manganese dioxide. *J. of Colloid Science*, 19:347-359.
- Mott-Smith, E., W.C. Leonard, R. Lewis, W.S. Clayton, J. Ramirez, and R. Brown (2000). In: Wickramanayake, G.B., A.R. Gavaskar, and A.S.C. Chen (ed). Chemical Oxidation and Reactive Barriers. Battelle Press, Columbus, OH. pp. 125-134.
- Perez-Benito J.F. and C. Arias (1992a). A kinetic study of the reaction between soluble (colloidal) manganese dioxide and formic acid. *Journal of Colloid and Interface Science*, 149(1)92-97.
- Perez-Benito J.F. and C. Arias (1992b). Occurrence of colloidal manganese dioxide in permanganate reactions. *Journal of Colloid and Interface Science*, 152(1):70-84.
- Perez-Benito J.F., and C. Arias (1991). A kinetic study of the permanganate oxidation of triethylamine. Catalysis by soluble colloids. *International Journal of Chemical Kinetics*, 23:717-732.
- Perez-Benito J.F., C. Arias, and E. Brillas (1990). A kinetic study of the autocatalytic permanganate oxidation of formic acid. *International Journal of Chemical Kinetics*, 22:261-287.
- Perez-Benito J.F., E. Brillas, and R. Pouplana (1989). Identification of a soluble form of colloidal manganese (IV). *Inorganic Chemistry*, 28:390-392.
- Reitsma S. and M. Marshall (2000). In: G.B. Wickramanayake, A.R. Gavaskar, A.S.C. Chen (ed.). Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated Compounds. Battelle Press. Columbus, OH. p. 25-32.
- Siegrist R.L. (1998). In situ chemical oxidation: technology features and applications. Invited presentation at the Conference on Advances in Innovative Groundwater Remediation Technologies. 15 Dec. 1998. U.S. EPA Technology Innovation Office, Washington, D.C.
- Siegrist R.L., K.S. Lowe, L.C. Murdoch, T.L. Case, and D.A. Pickering (1999). In Situ Oxidation by Fracture Emplaced Reactive Solids. *J. Environmental Engineering*. 125(5):429-440.
- Siegrist R.L., M.A. Urynowicz, M. Crimi, A. Struse (2000). Particle genesis and effects during in situ chemical oxidation of trichloroethylene in groundwater using permanganate. Final Report for Oak Ridge National Laboratory, Grand Junction, Colorado / Oak Ridge, Tennessee.
- Siegrist R.L., M.A. Urynowics, O.R. West, M.L. Crimi, and K.S. Lowe (2001). <u>Principles and Practices of In Situ Chemical Oxidation Using Permanganate</u>, Battelle Press, 505 King Avenue, Columbus, Ohio. July 2001.
- Siegrist, R.L., M.A. Urynowicz, M.L. Crimi, and K.S. Lowe (2002). Genesis and Effects of Particles Produced during In Situ Chemical Oxidation Using Permanganate. *J. Environmental Eng.*. In press.
- Sparks D.L., A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.S. Tabatabai, C.T. Johnson, and M.E. Summer (ed.) (1996). <u>Methods of Soil Analysis: Part 3 Chemical Methods.</u> Soil Sci. Soc. Am. Madison, WI.
- Stumm W. (1992). Chemistry of the Solid-Water Interface. John Wiley & Sons. New York, 1992.
- Struse A.M. (1999). Mass Transport of Potassium Permanganate in Low Permeability Media and Matrix Interactions. M.S. Thesis, Colorado School of Mines. Golden, CO
- Struse A.M. (2002), R.L. S. Siegrist, H.E. Dawson, M.A. Urynowicz. Diffusive transport of permanganate during in situ oxidation. *Journal of Environmental Engineering*, 128(4):327-334.

- Urynowicz M.A. (2000). Dense Non-Aqueous Phase Trichloroethene Degradation With Permanganate Ion. Ph.D. Dissertation, Colorado School of Mines. Golden, CO.
- U.S. Environmental Protection Agency (1986). Test Methods for the Evaluation of Solid Waste, Physical/Chemical Methods. SW-846, 3rd ed. Office of Solid Waste and Emergency Response, Washington, D.C.
- US EPA (1990). Second update to SW-846 Methods Section. Office of Solid Waste. U.S. Environmental Protection Agency, Washington, D.C.
- US EPA (1996). Soil Screening Guidance: Technical Background Document. EPA/540/R95/128. U.S. EPA Office of Solid Waste and Emergency Response. Washington, D.C.
- US EPA (1998). In Situ Remediation Technology: In Situ Chemical Oxidation. Office of Solid Waste and Emergency Response, Washington D.C., EPA 542-R-98-008.
- West, O.R., S.R. Cline, W.L. Holden, F.G. Gardner, B.M Schlosser, J.E. Thate, D.A. Pickering, T.C. Houk (1998). ORNL/TM-13556, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- West, O.R., R.L. Siegrist, S.R. Cline, and F.G. Gardner (2000). The effects of in situ chemical oxidation through recirculation (ISCOR) on aquifer contamination, hydrogeology, and geochemistry. Oak Ridge National Laboratory internal report submitted to the Department of Energy, Office of Environmental Management, Subsurface Contaminants Focus Area.

Appendix I. Key of Sample Constituents for Spectrophotometric Studies (full factorial design)

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
9	10	3	Base	none	equimolar	none
10	100	3	Base	none	equimolar	none
11	10	7	Base	none	equimolar	none
12	100	7	Base	none	equimolar	none
13	10	3	Ca	none	equimolar	none
14	100	3	Ca	none	equimolar	none
15	10	7	Ca	none	equimolar	none
16	100	7	Ca	none	equimolar	none
17	10	3	Base	sand	equimolar	none
18	100	3	Base	sand	equimolar	none
19	10	7	Base	sand	equimolar	none
20	100	7	Base	sand	equimolar	none
21	10	3	Ca	sand	equimolar	none
22	100	3	Ca	sand	equimolar	none
23	10	7	Ca	sand	equimolar	none
24	100	7	Ca	sand	equimolar	none
25	10	3	Base	none	OX	none
26	100	3	Base	none	ox	none
27	10	7	Base	none	ox	none
28	100	7	Base	none	ox	none
29	10	3	Ca	none	ox	none
30	100	3	Ca	none	ox	none
31	10	7	Ca	none	ox	none
32	100	7	Ca	none	ox	none
33	10	3	Base	none	ox	none
34	100	3	Base	none	ox	none
35	10	7	Base	none	ox	none
36	100	7	Base	none	ox	none
37	10	3	Ca	none	ox	none
38	100	3	Ca	none	ox	none
39	10	7	Ca	none	ox	none
40	100	7	Ca	none	ox	none
41	10	3	Base	none	equimolar	1a
42	100	3	Base	none	equimolar	1a
43	10	7	Base	none	equimolar	1a
44	100	7	Base	none	equimolar	1a
45	10	3	Ca	none	equimolar	1a

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
46	100	3	Ca	none	equimolar	1a
47	10	7	Ca	none	equimolar	1a
48	100	7	Ca	none	equimolar	1a
49	10	3	Base	sand	equimolar	1a
50	100	3	Base	sand	equimolar	1a
51	10	7	Base	sand	equimolar	1a
52	100	7	Base	sand	equimolar	1a
53	10	3	Ca	sand	equimolar	1a
54	100	3	Ca	sand	equimolar	1a
55	10	7	Ca	sand	equimolar	1a
56	100	7	Ca	sand	equimolar	1a
57	10	3	Base	none	ox	1a
58	100	3	Base	none	ox	1a
59	10	7	Base	none	ox	1a
60	100	7	Base	none	ox	1a
61	10	3	Ca	none	ox	1a
62	100	3	Ca	none	ox	1a
63	10	7	Ca	none	ox	1a
64	100	7	Ca	none	ox	1a
65	10	3	Base	sand	ox	1a
66	100	3	Base	sand	ox	1a
67	10	7	Base	sand	ox	1a
68	100	7	Base	sand	ox	1a
69	10	3	Ca	sand	ox	1a
70	100	3	Ca	sand	ox	1a
71	10	7	Ca	sand	ox	1a
72	100	7	Ca	sand	ox	1a
73	10	3	Base	none	red	none
74	100	3	Base	none	red	none
75	10	3	Base	sand	red	none
76	100	3	Base	sand	red	none
77	10	3	Base	none	red	1a
78	100	3	Base	none	red	1a
79	10	3	Base	sand	red	1a
80	100	3	Base	sand	red	1a
81	10	3	Base	none	equimolar	1b
82	100	3	Base	none	equimolar	1b

	Particle concentration		Groundwater			
	(mg/L)	pH	ionic content	Solids	Redox	Stabilization
83	10	3	Base	sand	equimolar	1b
84	100	3	Base	sand	equimolar	1b
85	10	3	Base	none	ox	1b
86	100	3	Base	none	ox	1b
87	10	3	Base	sand	ox	1b
88	100	3	Base	sand	ox	1b
89	10	3	Base	none	red	1b
90	100	3	Base	none	red	1b
91	10	3	Base	sand	red	1b
92	100	3	Base	sand	red	1b
93	10	3	Base	none	equimolar	2a
94	100	3	Base	none	equimolar	2a
95	10	3	Base	sand	equimolar	2a
96	100	3	Base	sand	equimolar	2a
97	10	3	Base	none	ox	2a
98	100	3	Base	none	ox	2a
99	10	3	Base	sand	ox	2a
100	100	3	Base	sand	ox	2a
101	10	3	Base	none	equimolar	2b
102	100	3	Base	none	equimolar	2b
103	10	3	Base	sand	equimolar	2b
104	100	3	Base	sand	equimolar	2b
105	10	3	Base	none	ox	2b
106	100	3	Base	none	ox	2b
107	10	3	Base	sand	ox	2b
108	100	3	Base	sand	ox	2b
109	10	3	Base	none	red	2a
110	100	3	Base	none	red	2a
111	10	3	Base	sand	red	2a
112	100	3	Base	sand	red	2a
113	10	3	Base	none	red	2b
114	100	3	Base	none	red	2b
115	10	3	Base	sand	red	2b
116	100	3	Base	sand	red	2b
117	10	3	Base	none	equimolar	3a
118	100	3	Base	none	equimolar	3a
119	10	3	Base	sand	equimolar	3a
120	100	3	Base	sand	equimolar	3a

	Particle concentration (mg/L)	pН	Groundwater ionic content	Solids	Redox	Stabilization
121	10	3	Base	none	ox	3a
122	100	3	Base	none	ox	3a
123	10	3	Base	sand	ox	3a
124	100	3	Base	sand	ox	3a
125	10	3	Base	none	equimolar	3b
126	100	3	Base	none	equimolar	3b
127	10	3	Base	sand	equimolar	3b
128	100	3	Base	sand	equimolar	3b
129	10	3	Base	none	ox	3b
130	100	3	Base	none	ox	3b
131	10	3	Base	sand	ox	3b
132	100	3	Base	sand	ox	3b
133	10	3	Base	none	red	3a
134	100	3	Base	none	red	3a
135	10	3	Base	sand	red	3a
136	100	3	Base	sand	red	3a
137	10	3	Base	none	red	3b
138	100	3	Base	none	red	3b
139	10	3	Base	sand	red	3b
140	100	3	Base	sand	red	3b
141	10	3	Base	none	equimolar	4a
142	100	3	Base	none	equimolar	4a
143	10	3	Base	sand	equimolar	4a
144	100	3	Base	sand	equimolar	4a
145	10	3	Base	none	ox	4a
146	100	3	Base	none	ox	4a
147	10	3	Base	sand	ox	4a
148	100	3	Base	sand	ox	4a
149	10	3	Base	none	equimolar	4b
150	100	3	Base	none	equimolar	4b
151	10	3	Base	sand	equimolar	4b
152	100	3	Base	sand	equimolar	4b
153	10	3	Base	none	ox	4b
154	100	3	Base	none	ox	4b
155	10	3	Base	sand	ox	4b
156	100	3	Base	sand	OX	4b

	Particle concentration		Groundwater			
	(mg/L)	pH	ionic content	Solids	Redox	Stabilization
157	10	3	Base	none	red	4a
158	100	3	Base	none	red	4a
159	10	3	Base	sand	red	4a
160	100	3	Base	sand	red	4a
161	10	3	Base	none	red	4b
162	100	3	Base	none	red	4b
163	10	3	Base	sand	red	4b
164	100	3	Base	sand	red	4b
165	10	7	Base	none	red	none
166	100	7	Base	none	red	none
167	10	7	Base	sand	red	none
168	100	7	Base	sand	red	none
169	10	7	Base	none	red	1a
170	100	7	Base	none	red	1a
171	10	7	Base	sand	red	1a
172	100	7	Base	sand	red	1a
173	10	7	Base	none	equimolar	1b
174	100	7	Base	none	equimolar	1b
175	10	7	Base	sand	equimolar	1b
176	100	7	Base	sand	equimolar	1b
177	10	7	Base	none	ox	1b
178	100	7	Base	none	ox	1b
179	10	7	Base	sand	ox	1b
180	100	7	Base	sand	ox	1b
181	10	7	Base	none	red	1b
182	100	7	Base	none	red	1b
183	10	7	Base	sand	red	1b
184	100	7	Base	sand	red	1b
185	10	7	Base	none	equimolar	2a
186	100	7	Base	none	equimolar	2a
187	10	7	Base	sand	equimolar	2a
188	100	7	Base	sand	equimolar	2a
189	10	7	Base	none	ox	2a
190	100	7	Base	none	ox	2a
191	10	7	Base	sand	ox	2a
192	100	7	Base	sand	ox	2a
193	10	7	Base	none	equimolar	2b
194	100	7	Base	none	equimolar	2b
195	10	7	Base	sand	equimolar	2b
196	100	7	Base	sand	equimolar	2b

	Particle concentration		Groundwater	Solids	Badan	Stabilization
107	(mg/L)	pH	ionic content		Redox	
197	10	7 7	Base	none	ox	2b
198	100		Base	none	ox	2b
199	10	7	Base	sand	ox	2b
200	100	7	Base	sand	ox	2b
201	10		Base	none	red	2a
202	100	7	Base	none	red	2a
203	10	7	Base	sand	red	2a
204	100	7	Base	sand	red	2a
205	10	7	Base	none	red	2b
206	100	7	Base	none	red	2b
207	10	7	Base	sand	red	2b
208	100	7	Base	sand	red	2b
209	10	7	Base	none	equimolar	3a
210	100	7	Base	none	equimolar	3a
211	10	7	Base	sand	equimolar	3a
212	100	7	Base	sand	equimolar	3a
213	10	7	Base	none	ox	3a
214	100	7	Base	none	ox	3a
215	10	7	Base	sand	ox	3a
216	100	7	Base	sand	ox	3a
217	10	7	Base	none	equimolar	3b
218	100	7	Base	none	equimolar	3b
219	10	7	Base	sand	equimolar	3b
220	100	7	Base	sand	equimolar	3b
221	10	7	Base	none	ox	3b
222	100	7	Base	none	ox	3b
223	10	7	Base	sand	ox	3b
224	100	7	Base	sand	ox	3b
225	10	7	Base	none	red	3a
226	100	7	Base	none	red	3a
227	10	7	Base	sand	red	3a
228	100	7	Base	sand	red	3a
229	10	7	Base	none	red	3b
230	100	7	Base	none	red	3b
231	10	7	Base	sand	red	3b
232	100	7	Base	sand	red	3b
233	10	7	Base	none	equimolar	4a
234	100	7	Base	none	equimolar	4a
235	10	7	Base	sand	equimolar	4a
236	100	7	Base	sand	equimolar	4a

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
237	10	7	Base	none	ox	4a
238	100	7	Base	none	ox	4a
239	10	7	Base	sand	ox	4a
240	100	7	Base	sand	ox	4a
241	10	7	Base	none	equimolar	4b
242	100	7	Base	none	equimolar	4b
243	10	7	Base	sand	equimolar	4b
244	100	7	Base	sand	equimolar	4b
245	10	7	Base	none	ox	4b
246	100	7	Base	none	ox	4b
247	10	7	Base	sand	OX	4b
248	100	7	Base	sand	ox	4b
249	10	7	Base	none	red	4a
250	100	7	Base	none	red	4a
251	10	7	Base	sand	red	4a
252	100	7	Base	sand	red	4a
253	10	7	Base	none	red	4b
254	100	7	Base	none	red	4b
255	10	7	Base	sand	red	4b
256	100	7	Base	sand	red	4b
257	10	3	Ca	none	red	none
258	100	3	Ca	none	red	none
259	10	3	Ca	sand	red	none
260	100	3	Ca	sand	red	none
261	10	3	Ca	none	red	1a
262	100	3	Ca	none	red	1a
263	10	3	Ca	sand	red	1a
264	100	3	Ca	sand	red	1a
265	10	3	Ca	none	equimolar	1b
266	100	3	Ca	none	equimolar	1b
267	10	3	Ca	sand	equimolar	1b
268	100	3	Ca	sand	equimolar	1b
269	10	3	Ca	none	ox	1b
270	100	3	Ca	none	ox	1b
271	10	3	Ca	sand	ox	1b
272	100	3	Ca	sand	ox	1b
273	10	3	Ca	none	red	1b
274	100	3	Ca	none	red	1b
275	10	3	Ca	sand	red	1b
276	100	3	Ca	sand	red	1b

	Particle					
	concentration		Groundwater			
	(mg/L)	pH	ionic content	Solids	Redox	Stabilization
277	10	3	Ca	none	equimolar	2a
278	100	3	Ca	none	equimolar	2a
279	10	3	Ca	sand	equimolar	2a
280	100	3	Ca	sand	equimolar	2a
281	10	3	Ca	none	ox	2a
282	100	3	Ca	none	ox	2a
283	10	3	Ca	sand	ox	2a
284	100	3	Ca	sand	ox	2a
285	10	3	Ca	none	equimolar	2b
286	100	3	Ca	none	equimolar	2b
287	10	3	Ca	sand	equimolar	2b
288	100	3	Ca	sand	equimolar	2b
289	10	3	Ca	none	ox	2b
290	100	3	Ca	none	ox	2b
291	10	3	Ca	sand	ox	2b
292	100	3	Ca	sand	ox	2b
293	10	3	Ca	none	red	2a
294	100	3	Ca	none	red	2a
295	10	3	Ca	sand	red	2a
296	100	3	Ca	sand	red	2a
297	10	3	Ca	none	red	2b
298	100	3	Ca	none	red	2b
299	10	3	Ca	sand	red	2b
300	100	3	Ca	sand	red	2b
301	10	3	Ca	none	equimolar	3a
302	100	3	Ca	none	equimolar	3a
303	10	3	Ca	sand	equimolar	3a
304	100	3	Ca	sand	equimolar	3a
305	10	3	Ca	none	ox	3a
306	100	3	Ca	none	ox	3a
307	10	3	Ca	sand	ox	3a
308	100	3	Ca	sand	ox	3a
309	10	3	Ca	none	equimolar	3b
310	100	3	Ca	none	equimolar	3b
311	10	3	Ca	sand	equimolar	3b
312	100	3	Ca	sand	equimolar	3b
313	10	3	Ca	none	ox	3b
314	100	3	Ca	none	ox	3b
315	10	3	Ca	sand	ox	3b
316	100	3	Ca	sand	ox	3b

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
317	10	3	Ca	none	red	3a
318	100	3	Ca	none	red	3a
319	10	3	Ca	sand	red	3a
320	100	3	Ca	sand	red	3a
321	10	3	Ca	none	red	3b
322	100	3	Ca	none	red	3b
323	10	3	Ca	sand	red	3b
324	100	3	Ca	sand	red	3b
325	10	3	Ca	none	equimolar	4a
326	100	3	Ca	none	equimolar	4a
327	10	3	Ca	sand	equimolar	4a
328	100	3	Ca	sand	equimolar	4a
329	10	3	Ca	none	ox	4a
330	100	3	Ca	none	ox	4a
331	10	3	Ca	sand	ox	4a
332	100	3	Ca	sand	ox	4a
333	10	3	Ca	none	equimolar	4b
334	100	3	Ca	none	equimolar	4b
335	10	3	Ca	sand	equimolar	4b
336	100	3	Ca	sand	equimolar	4b
337	10	3	Ca	none	ox	4b
338	100	3	Ca	none	ox	4b
339	10	3	Ca	sand	ox	4b
340	100	3	Ca	sand	ox	4b
341	10	3	Ca	none	red	4a
342	100	3	Ca	none	red	4a
343	10	3	Ca	sand	red	4a
344	100	3	Ca	sand	red	4a
345	10	3	Ca	none	red	4b
346	100	3	Ca	none	red	4b
347	10	3	Ca	sand	red	4b
348	100	3	Ca	sand	red	4b
349	10	7	Ca	none	red	none
350	100	7	Ca	none	red	none
351	10	7	Ca	sand	red	none
352	100	7	Ca	sand	red	none
353	10	7	Ca	none	red	1a
354	100	7	Ca	none	red	1a
355	10	7	Ca	sand	red	1a
356	100	7	Ca	sand	red	1a

	Particle concentration		Groundwater			
	(mg/L)	рН	ionic content	Solids	Redox	Stabilization
357	10	7	Ca	none	equimolar	1b
358	100	7	Ca	none	equimolar	1b
359	10	7	Ca	sand	equimolar	1b
360	100	7	Ca	sand	equimolar	1b
361	10	7	Ca	none	ox	1b
362	100	7	Ca	none	ox	1b
363	10	7	Ca	sand	ox	1b
364	100	7	Ca	sand	ox	1b
365	10	7	Ca	none	red	1b
366	100	7	Ca	none	red	1b
367	10	7	Ca	sand	red	1b
368	100	7	Ca	sand	red	1b
369	10	7	Ca	none	equimolar	2a
370	100	7	Ca	none	equimolar	2a
371	10	7	Ca	sand	equimolar	2a
372	100	7	Ca	sand	equimolar	2a
373	10	7	Ca	none	ox	2a
374	100	7	Ca	none	ox	2a
375	10	7	Ca	sand	ox	2a
376	100	7	Ca	sand	ox	2a
377	10	7	Ca	none	equimolar	2b
378	100	7	Ca	none	equimolar	2b
379	10	7	Ca	sand	equimolar	2b
380	100	7	Ca	sand	equimolar	2b
381	10	7	Ca	none	ox	2b
382	100	7	Ca	none	ox	2b
383	10	7	Ca	sand	ox	2b
384	100	7	Ca	sand	ox	2b
385	10	7	Ca	none	red	2a
386	100	7	Ca	none	red	2a
387	10	7	Ca	sand	red	2a
388	100	7	Ca	sand	red	2a
389	10	7	Ca	none	red	2b
390	100	7	Ca	none	red	2b
391	10	7	Ca	sand	red	2b
392	100	7	Ca	sand	red	2b
393	10	7	Ca	none	equimolar	3a
394	100	7	Ca	none	equimolar	3a
395	10	7	Ca	sand	equimolar	3a
396	100	7	Ca	sand	equimolar	3a

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
397	10	7	Ca	none	ox	3a
398	100	7	Ca	none	ox	3a
399	10	7	Ca	sand	ox	3a
400	100	7	Ca	sand	ox	3a
401	10	7	Ca	none	equimolar	3b
402	100	7	Ca	none	equimolar	3b
403	10	7	Ca	sand	equimolar	3b
404	100	7	Ca	sand	equimolar	3b
405	10	7	Ca	none	ox	3b
406	100	7	Ca	none	ox	3b
407	10	7	Ca	sand	ox	3b
408	100	7	Ca	sand	ox	3b
409	10	7	Ca	none	red	3a
410	100	7	Ca	none	red	3a
411	10	7	Ca	sand	red	3a
412	100	7	Ca	sand	red	3a
413	10	7	Ca	none	red	3b
414	100	7	Ca	none	red	3b
415	10	7	Ca	sand	red	3b
416	100	7	Ca	sand	red	3b
417	10	7	Ca	none	equimolar	4a
418	100	7	Ca	none	equimolar	4a
419	10	7	Ca	sand	equimolar	4a
420	100	7	Ca	sand	equimolar	4a
421	10	7	Ca	none	ox	4a
422	100	7	Ca	none	ox	4a
423	10	7	Ca	sand	ox	4a
424	100	7	Ca	sand	ox	4a
425	10	7	Ca	none	equimolar	4b
426	100	7	Ca	none	equimolar	4b
427	10	7	Ca	sand	equimolar	4b
428	100	7	Ca	sand	equimolar	4b
429	10	7	Ca	none	ox	4b
430	100	7	Ca	none	ox	4b
431	10	7	Ca	sand	ox	4b
432	100	7	Ca	sand	ox	4b
433	10	7	Ca	none	red	4a
434	100	7	Ca	none	red	4a
435	10	7	Ca	sand	red	4a
436	100	7	Ca	sand	red	4a

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
437	10	7	Ca	none	red	4b
438	100	7	Ca	none	red	4b
439	10	7	Ca	sand	red	4b
440	100	7	Ca	sand	red	4b
441	10	3	PO4	none	equimolar	none
442	100	3	PO4	none	equimolar	none
443	10	3	PO4	sand	equimolar	none
444	100	3	PO4	sand	equimolar	none
445	10	3	PO4	none	ox	none
446	100	3	PO4	none	ox	none
447	10	3	PO4	sand	ox	none
448	100	3	PO4	sand	ox	none
449	10	3	PO4	none	equimolar	1a
450	100	3	PO4	none	equimolar	1a
451	10	3	PO4	sand	equimolar	1a
452	100	3	PO4	sand	equimolar	1a
453	10	3	PO4	none	ox	1a
454	100	3	PO4	none	ox	1a
455	10	3	PO4	sand	ox	1a
456	100	3	PO4	sand	ox	1a
457	10	3	PO4	none	equimolar	1b
458	100	3	PO4	none	equimolar	1b
459	10	3	PO4	sand	equimolar	1b
460	100	3	PO4	sand	equimolar	1b
461	10	3	PO4	none	ox	1b
462	100	3	PO4	none	ox	1b
463	10	3	PO4	sand	ox	1b
464	100	3	PO4	sand	ox	1b
465	10	3	PO4	none	equimolar	2a
466	100	3	PO4	none	equimolar	2a
467	10	3	PO4	sand	equimolar	2a
468	100	3	PO4	sand	equimolar	2a
469	10	3	PO4	none	ox	2a
470	100	3	PO4	none	ox	2a
471	10	3	PO4	sand	ox	2a
472	100	3	PO4	sand	ox	2a
473	10	3	PO4	none	equimolar	2b
474	100	3	PO4	none	equimolar	2b
475	10	3	PO4	sand	equimolar	2b
476	100	3	PO4	sand	equimolar	2b

	Particle concentration		Groundwater			
	(mg/L)	pH	ionic content	Solids	Redox	Stabilization
477	10	3	PO4	none	ox	2b
478	100	3	PO4	none	ox	2b
479	10	3	PO4	sand	ox	2b
480	100	3	PO4	sand	ox	2b
481	10	3	PO4	none	equimolar	3a
482	100	3	PO4	none	equimolar	3a
483	10	3	PO4	sand	equimolar	3a
484	100	3	PO4	sand	equimolar	3a
485	10	3	PO4	none	ox	3a
486	100	3	PO4	none	ox	3a
487	10	3	PO4	sand	ox	3a
488	100	3	PO4	sand	ox	3a
489	10	3	PO4	none	equimolar	3b
490	100	3	PO4	none	equimolar	3b
491	10	3	PO4	sand	equimolar	3b
492	100	3	PO4	sand	equimolar	3b
493	10	3	PO4	none	ox	3b
494	100	3	PO4	none	ox	3b
495	10	3	PO4	sand	ox	3b
496	100	3	PO4	sand	ox	3b
497	10	3	PO4	none	equimolar	4a
498	100	3	PO4	none	equimolar	4a
499	10	3	PO4	sand	equimolar	4a
500	100	3	PO4	sand	equimolar	4a
501	10	3	PO4	none	ox	4a
502	100	3	PO4	none	ox	4a
503	10	3	PO4	sand	OX	4a
504	100	3	PO4	sand	ox	4a
505	10	3	PO4	none	equimolar	4b
506	100	3	PO4	none	equimolar	4b
507	10	3	PO4	sand	equimolar	4b
508	100	3	PO4	sand	equimolar	4b
509	10	3	PO4	none	OX	4b
510	100	3	PO4	none	ox	4b
511	10	3	PO4	sand	ox	4b
512	100	3	PO4	sand	ox	4b
513	10	7	PO4	none	equimolar	none
514	100	7	PO4	none	equimolar	none
515	10	7	PO4	sand	equimolar	none
516	100	7	PO4	sand	equimolar	none

	Particle concentration		Groundwater			
	(mg/L)	pН	ionic content	Solids	Redox	Stabilization
517	10	7	PO4	none	ox	none
518	100	7	PO4	none	ox	none
519	10	7	PO4	sand	ox	none
520	100	7	PO4	sand	ox	none
521	10	7	PO4	none	equimolar	1a
522	100	7	PO4	none	equimolar	1a
523	10	7	PO4	sand	equimolar	1a
524	100	7	PO4	sand	equimolar	1a
525	10	7	PO4	none	ox	1a
526	100	7	PO4	none	ox	1a
527	10	7	PO4	sand	ox	1a
528	100	7	PO4	sand	ox	1a
529	10	7	PO4	none	equimolar	1b
530	100	7	PO4	none	equimolar	1b
531	10	7	PO4	sand	equimolar	1b
532	100	7	PO4	sand	equimolar	1b
533	10	7	PO4	none	ox	1b
534	100	7	PO4	none	ox	1b
535	10	7	PO4	sand	ox	1b
536	100	7	PO4	sand	ox	1b
537	10	7	PO4	none	equimolar	2a
538	100	7	PO4	none	equimolar	2a
539	10	7	PO4	sand	equimolar	2a
540	100	7	PO4	sand	equimolar	2a
541	10	7	PO4	none	ox	2a
542	100	7	PO4	none	ox	2a
543	10	7	PO4	sand	ox	2a
544	100	7	PO4	sand	ox	2a
545	10	7	PO4	none	equimolar	2b
546	100	7	PO4	none	equimolar	2b
547	10	7	PO4	sand	equimolar	2b
548	100	7	PO4	sand	equimolar	2b
549	10	7	PO4	none	ox	2b
550	100	7	PO4	none	ox	2b
551	10	7	PO4	sand	ox	2b
552	100	7	PO4	sand	ox	2b
553	10	7	PO4	none	equimolar	3a
554	100	7	PO4	none	equimolar	3a
555	10	7	PO4	sand	equimolar	3a
556	100	7	PO4	sand	equimolar	3a

	Particle concentration (mg/L)	рН	Groundwater ionic content	Solids	Redox	Stabilization
557	10	7	PO4	none	ox	3a
558	100	7	PO4	none	ox	3a
559	10	7	PO4	sand	ox	3a
560	100	7	PO4	sand	ox	3a
561	10	7	PO4	none	equimolar	3b
562	100	7	PO4	none	equimolar	3b
563	10	7	PO4	sand	equimolar	3b
564	100	7	PO4	sand	equimolar	3b
565	10	7	PO4	none	ox	3b
566	100	7	PO4	none	ox	3b
567	10	7	PO4	sand	OX	3b
568	100	7	PO4	sand	ox	3b
569	10	7	PO4	none	equimolar	4a
570	100	7	PO4	none	equimolar	4a
571	10	7	PO4	sand	equimolar	4a
572	100	7	PO4	sand	equimolar	4a
573	10	7	PO4	none	OX	4a
574	100	7	PO4	none	ox	4a
575	10	7	PO4	sand	ox	4a
576	100	7	PO4	sand	ox	4a
577	10	7	PO4	none	equimolar	4b
578	100	7	PO4	none	equimolar	4b
579	10	7	PO4	sand	equimolar	4b
580	100	7	PO4	sand	equimolar	4b
581	10	7	PO4	none	ox	4b
582	100	7	PO4	none	ox	4b
583	10	7	PO4	sand	ox	4b
584	100	7	PO4	sand	ox	4b

[&]quot;C" samples: note C = control samples - NO TCE

Appendix II. 525 nm Spectrophotometric Study Data

RunID	0	0.25	525n 0.5	m Absorbar 1				12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
9A 9B C9	0.359 0.364 0.371	0.356 0.357 0.371	0.356 0.357 0.371		0.374 0.373 0.369	0.373	0.357		0.302 0.316 0.367	0.258 0.262 0.363	0.252	38A 38B C38	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER		OVER	OVER		OVER		OVER OVER OVER
10A 10B C10	3.491 3.485 3.33		3.415	3.32	3.169	3.043	2.546	2.372	2.128 2.078 3.324	2.186 2.107 3.366	2.069	39A 39B C39	0.758 0.764 0.76			0.754			0.728	0.672 0.709 0.718	0.55 0.608 0.698	0.491 0.549 0.671	0.524 0.561 0.688
11A 11B C11	0.368 0.392 0.373	0.369 0.399 0.373		0.401	0.374 0.407 0.373	0.415	0.41	0.353 0.412 0.371	0.294 0.336 0.37	0.248 0.263 0.37	0.284	40A 40B C 40	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER	OVER		OVER	OVER OVER OVER	OVER		OVER OVER OVER
12A 12B C12	OVER 3,483 3,38		3,481 3,43 3,296		3.192 3.035 3.303	2.926	2.303		2.027 1.935 3.295	1.904 1.992 3.341	1.919	41A 41B C41	0.247 0.235 0.255			0.09	0.03 0.017 0.035	0.001	0.007 0.001 0.007	0.007 0.002 0.005	0.007 0.002 0.006	0.007 0.003 0.008	0.008 0.003 0.009
13A 13B C13	0.365 0.363 0.376	0.365 0.357 0.374	0.363 0.357 0.374	0.367	0.377	0.378	0.364	0.36 0.344 0.372	0.307 0.281 0.371	0.249 0.239 0.37	0.216	42A 42B C 42	3.254 3.364 3.269	3.311 3.453 3.322	0.10	OVER	3.256 3.415 3.496	1.252	0.441 0.527 2.976	0.295 0.348 2.752	0.081 0.094 1.681	0.019 0.037 0.643	0.011 0.015 0.293
14A 14B C14	OVER OVER 3.313	3.395 3.384 3.32	3.304 3.271 3.316		2.93 2.875 3.326	2.64	2.14	2.05 1.923 3.45	1.974 1.795 3.346	1.834 1.74 3.412		43A 43B C43	0.342 0.341 0.345	0.339		0.334	0.333 0.332 0.334		0.324 0.322 0.327	0.313 0.314 0.323	0.107 0.106 0.135	0.049 0.049 0.059	0.027 0.025 0.022
15A 15B C15	0.372 0.365 0.369	0.364		0.362	0.363	0.368	0.355	0.355	0.354 0.321 0.364	0.3 0.27 0.364	0.261	44A 44B C44	3.247 3.183 3.229		3.184	3.201	3.369 3.278 3.267	3.356		OVER 1.847 3.088	0.417 0.55 2.774	0.185 0.185 2.44	0.089 0.084 2.202
16A 16B C16	OVER OVER 3.272	3.404 3.353 3.287	3.282 3.235 3.295	3.075	2.899 2.813 3.3	2.561	2.062	2.056 1.967 3.418	1.755 1.865 3.319	1.732 1.822 3.352	1.807	45A 45B C 45	0.244 0.237 0.236			0.092	0.026 0.019 0.022		0.007 0.001 0.002	0.006 0.001 0.002	0.006 0.001 0.002	0.007 0.003 0.003	0.008 0.003 0.004
17A 17B C17	0.367 0.382 0.383	0.36 0.374 0.378	0.356 0.369 0.372	0.369	0.359 0.358 0.34	0.326	0.274	0.265 0.237 0.234	0.173 0.15 0.192	0.087 0.077 0.131		46A 46B C 46	3.447 3.375 3.285		3.361 3.282 3.339		1.647 1.632 3.436	0.814 0.767 3.032	0.467 0.456 0.773	0.314 0.308 0.332	0.125 0.133 0.129	0.047 0.04 0.072	0.013 0.011 0.036
18A 18B C18	3.412 3.408 3.253	3.453 3.438 3.261	3.397 3.39 3.272	3.303	3.184 3.176 3.281	2.985	2.635 2.626	2.38 2.392	2.108 2.107 3.149	2.025 2.057 3.101	2.019	47A 47B C 47	0.333 0.332 0.334	0.329	0.325 0.323 0.326	0.32		0.315 0.312	0.329 0.308 0.31	0.312 0.304 0.302	0.096 0.077 0.095	0.035 0.041 0.036	0.016 0.017 0.021
19A 19B C19	0.402 0.399 0.395	0.398 0.397 0.393	0.394 0.394	0.388 0.389	0.376 0.383 0.382	0.372	0.349	0.34	0.201 0.234 0.326	0.142 0.17 0.309	0.131 0.158	48A 48B C48	3.289 3.231 3.212	3.318 3.265 3.206	3.317 3.263	3.239 3.183	2.333 2.304 3.212	1.18 1.2		0.342 0.459 3.241	0.111 0.128 3.165	0.036 0.058 2.851	0.014 0.044 2.791
20A 20B C20		OVER 3.488	3.436 3.41	3.306 3.266	3.116 3.096	2.838 2.883	2.37 2.398	2.108 2.133	1.848 1.887 3.216	1.786 1.826 3.213	1.761 1.801	49A 49B C 49	0.285 0.281 0.298	0.242 0.239	0.195 0.189	0.134 0.127	0.048 0.044	0.027 0.025	0.021 0.022 0.03	0.02 0.019 0.031	0.017 0.016 0.026	0.012 0.012 0.02	0.013 0.012 0.019
21A 21B C21	0.367 0.376 0.386	0.361 0.37 0.381	0.357 0.367 0.377	0.366 0.376		0.332 0.346	0.285	0.255	0.132 0.154 0.216	0.06 0.072 0.182	0.069 0.051	50A 50B C 50	3.256 3.242 3.275	3.341 3.304	3.452	OVER 3.389	3.415 3.319 3.474	3.082 2.84 3.452		1.369 1.021 2.286	0.407 0.524 1.397	0.103 0.177 0.626	0.046 0.108 0.291
22A 22B C22	3.462 3.45 3.272	3.396 3.412 3.284	3.249	3.081 3.085	2.851	2.557 2.608	1.996 2.027		1.461 1.479 3.105	1.385 1.406 3.063	1.358 1.379	51A 51B C51	0.377 0.37 0.372	0.373 0.367	0.37 0.363 0.365	0.364	0.353 0.348 0.352	0.32 0.317	0.233 0.23 0.234	0.17 0.163 0.177	0.09 0.093 0.093	0.043 0.043 0.046	0.025 0.026 0.026
23A 23B C23	0.395 0.392 0.4	0.392 0.388		0.381 0.377	0.37 0.364	0.354	0.327 0.319	0.315 0.31	0.205 0.196 0.313	0.151 0.135 0.307	0.145 0.147	52A 52B C 52	3.249 3.263 3.228	3.283 3.281		3.353 3.353		3.489 3.284	3.124 2.648	1.774 1.803 2.91	0.82 0.803 2.669	0.462 0.709 2.276	0.265 0.7 1.962
24A 24B C24	3.46 3.442 3.297	3.44 3.397 3.297	3.256 3.247 3.305	3.091 3.087	2.863 2.864 3.31	2.529	2.068	1.83 1.798 3.284	1.561 1.541 3.218	1.484 1.483 3.2	1.506 1.484	53A 53B C53	0.264 0.285 0.287	0.222	0.174 0.196	0.113 0.134	0.038 0.05 0.054	0.025	0.022 0.029 0.032	0.02 0.027 0.032	0.017 0.024 0.028	0.012 0.016 0.022	0.013 0.016 0.021
25A 25B C25	0.753 0.744 0.76			0.772 0.765		0.778	0.772 0.761		0.735 0.711 0.759	0.623 0.605 0.754	0.608 0.586	54A 54B C54		OVER 3.496	3.418 3.404	3.125 3.064	2.057 2.187	0.765 0.724 2.367	0.443 0.477 1.037	0.461 0.423 0.624	0.303 0.237 0.486	0.097 0.101 0.395	0.083 0.041 0.179
26A 26B C26	OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER		OVER OVER OVER	OVER	OVER OVER	OVER	OVER OVER OVER	OVER OVER OVER	55A 55B C55	0.378 0.375 0.37	0.375		0.363	0.347	0.306	0.199 0.176 0.195	0.141 0.129 0.144	0.101 0.089 0.093	0.036 0.05 0.051	0.024 0.035 0.036
27A 27B C27	0.749 0.763 0.755	0.75 0.762 0.757	0.75	0.753 0.768	101000	0.726	0.758	0.746	0.699 0.706 0.754	0.595 0.6 0.753	0.573 0.576	56A 56B C 56	3.423 3.325 3.23	3.435	3.492	3.416 3.379	2.933	1.513	0.691	0.44 0.404 3.173	0.184 0.318 3.104	0.079 0.172 3.023	0.062 0.12 2.852
28A 28B C28	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	OVER OVER OVER	57A 57B C57	0.565 0.562 0.555	0.516 0.512	0.482 0.477	0.503 0.506	0.662	0.52 0.5	0.203	0.145 0.146 0.187	0.051 0.054 0.06	0.007 0.006 0.008	0.002 0.002 0.002
29A 29B C29	0.725 0.724 0.734	0.728 0.73	0.74 0.742	0.751 0.753	0.755 0.758 0.732	0.747 0.751	0.736	0.727 0.727	0.659 0.657	0.553 0.552	0.533 0.532	58A 58B C58	OVER OVER	OVER OVER	OVER	OVER OVER	OVER OVER	OVER OVER	3,365	2.815 2.594		0.803 0.747 2.496	0.412 0.321
30A 30B C30		OVER OVER		OVER OVER		OVER OVER		OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	59A 59B C 59	0.688 0.686 0.694	0.684 0.683	0.68 0.682	0.676 0.677	0.668 0.669	0.652 0.657	0.63 0.627	0.547 0.52 0.55	0.235 0.229 0.395	0.103 0.088 0.21	0.044
31A 31B C31	0.741 0.739	0.74	0.739 0.738	0.74 0.74	0.745 0.744	0.75 0.753	0.748 0.746		0.698 0.692	0.585 0.584	0.569 0.568 0.743	60A 60B C60	OVER	OVER OVER	OVER	OVER OVER	OVER OVER	OVER	OVER OVER	OVER OVER	3.184 3.348 OVER	2.54 2.88	1.699 1.967
32A 32B C32		OVER OVER	OVER	OVER OVER		OVER OVER		OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	61A 61B C61	0.547 0.548 0.548	0.505 0.507	0.483 0.483	0.572 0.569	0.669 0.663	0.469 0.367	0.173 0.165		0.052 0.047 0.053		0.002
33A 33B C33	0.751 0.746	0.744 0.738 0.747	0.745 0.74	0.747 0.743	0.738 0.734 0.719	0.705	0.642 0.651	0.606 0.609	0.5 0.519	0.405 0.431	0.415 0.4 0.452	62A 62B C62	OVER OVER	OVER OVER	OVER OVER	OVER OVER	2.948	1.578 1.476	0.414	0.321 0.407 2.922	0.191 0.185 2.258	0.109 0.115 1.689	0.02 0.03
34A 34B C34	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	63A 63B	0.678 0.664 0.663	0.671 0.658	0.668 0.656	0.663 0.652	0.65 0.643	0.625 0.623	0.476 0.48	0.431 0.414	0.198 0.164 0.365	0.063 0.06	0.027 0.029
35A 35B	0.763	0.766 0.761	0.766 0.758	0.757 0.752		0.739		0.676 0.674	0.605 0.572	0.537 0.518	0.555 0.532	64A 64B	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	0.672 OVER OVER	OVER OVER	0.485 3.397 3.267	2.814 2.71	0.213 2.096 2.074	1.21 1.199
C35 36A 36B	OVER OVER	OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER	OVER OVER	OVER OVER	OVER OVER	0.695 OVER OVER	65A 65B	0.636 0.624	0.514 0.549	0.517 0.5	0.553 0.52	0.679 0.675	0.612 0.596	0.299 0.349	0.166 0.175	0.038 0.048	0.009 0.009	0.007 0.005
C36 37A 37B	0.744	0.737 0.738	0.747	0.741 0.744	0.734	0.689	0.611	0.556 0.553	0.408 0.405	0.305 0.317	0.301 0.29	C 65 66A 66B	OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	0.138 3.345 3.049	0.039 1.728 1.783	0.008 1.692 2.23	2.305
C37	0.762	0.757	0.752	0.741	0.728	0.699	0.652	0.62	0.56	0.504	0.475	C 66	OVER	OVER	OVER	OVER	OVER	OVER	OVER	OVER	2.528	1.967	1.304

RunID	0	0.25	525nr 0.5	n Absorban 1	ice zeroed 2	d to DIat X 4	hours 8	12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
67A 67B C67		0.718 0.708 0.716	0.711 0.703 0.708	0.701 0.696 0.699	0.678 0.685 0.677	0.614 0.661 0.62	0.471 0.523 0.477	0.361 0.438 0.378	0.196 0.234 0.231	0.117 0.143 0.145	0.08 0.028 0.118	96A 96B C96	2.939 2.94 3.158	2.78 2.789 3.214	2.638 2.635 3.232	2.419 2.427 3.3	2.193 2.204 3.326	2.148 2.151 3.318	2.137 2.149 3.286	2.149 2.135 3.267	2.137 2.106 3.131	2.139 2.086 3.096	2.122 2.07 2.919
68A 68B C68	OVER OV	VER (OVER	OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	3.003 2.957 OVER	1.983 2.252 OVER	97A 97B C97	0.711 0.717 0.729	0.701 0.708 0.73	0.693 0.7 0.729	0.684	0.655 0.66 0.726	0.629 0.635 0.722	0.602 0.609 0.719	0.592 0.596 0.721	0.576 0.579 0.72	0.571 0.575 0.715	0.571 0.572 0.711
69A 69B C69	0.616	0.554 0.544 0.566	0.508 0.518 0.523	0.598 0.654 0.588	0.648 0.673 0.688	0.474 0.491 0.613	0.192 0.225 0.284	0.112 0.121 0.134	0.03 0.034 0.034	0.012 0.009 0.009	0.01 0.006 0.008	98A 98B C 98	3.415 3.408 OVER	3.496	OVER		OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	3.219 3.275 3.261
70A 70B C70	OVER OV	VER (OVER	OVER	OVER OVER OVER	2.232 2.419 OVER	1.281 1.118 OVER	1.165 0.703 OVER	0.576 0.462 2.419	0.733 0.273 1.554	0.333 0.192 1.564	99A 99B C99	0.754 0.756 0.777	0.742 0.745 0.776		0.711	0.677 0.682 0.755	0.633 0.641 0.733	0.574 0.585 0.692	0.544 0.549 0.662	0.462 0.459 0.58	0.404 0.391 0.504	0.381 0.36 0.463
71A 71B C71	0.725	0.691 0.714 0.699	0.683 0.708 0.694	0.671 0.698 0.683	0.654 0.673 0.666	0.62 0.601 0.641	0.453 0.419 0.503	0.375 0.346 0.437	0.185 0.177 0.313	0.082 0.084 0.209	0.04 0.049 0.107	100A 100B C 100	3.458 3.444 3.48	OVER	OVER	OVER		OVER			OVER	OVER OVER OVER	3.195 3.257 3.233
72A 72B C72	OVER O	VER (OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	3.245 3.122 OVER	2.883 2.462 OVER	2.396 2.264 OVER	101A 101B C 101	0.367 0.357 0.37	0.362 0.363 0.368	0.357 0.347 0.368	0.345 0.336 0.366	0.331 0.327 0.366	0.329 0.321 0.364	0.344 0.335 0.364	0.342 0.333 0.363	0.29 0.288 0.362	0.234 0.227 0.365	0.216 0.219 0.363
73A 73B C73	0.356 0.355 0.361	0.353 0.35 0.36	0.356 0.358 0.361	0.362 0.361 0.36	0.369 0.37 0.363	0.37 0.373 0.362	0.368 0.366 0.358	0.353 0.356 0.359	0.24 0.243 0.352	0.178 0.179 0.339	0.158 0.162 0.328	102A 102B C 102	2.942 2.959 3.074	2.992 3.026 3.167	3.08 3.118 3.165	3.251 3.288 3.315	3.319 3.383 3.37	3.212 3.233 3.384	2.42 2.412 3.429	2.223 2.212 3.382	2.014 2.018 3.108	1.962 1.973 3.008	1.971 1.968 3.057
74A 74B C74	OVER OV	3.497 VER 3.326	3.421 3.401 3.334	3.229 3.214 3.341			2.18 2.188 3.338	1.947 1.886 3.329	1.743 1.733 3.336	1.703 1.694 3.311	1.687 1.676 3.302	103A 103B C 103	0.386 0.386 0.393	0.375 0.376 0.384	0.366 0.365 0.38	0.348	0.326 0.33 0.363	0.311 0.32 0.336	0.334 0.338 0.354	0.325 0.324 0.345	0.198 0.202 0.308	0.133 0.12 0.232	0.112 0.09 0.212
75A 75B C75	0.367	0.358 0.36 0.366	0.364 0.364 0.363	0.368 0.37 0.361	0.367 0.367 0.355	0.35 0.349 0.34	0.331 0.334 0.341	0.302 0.302 0.333	0.186 0.179 0.289	0.103 0.103 0.234	0.066 0.076 0.197	104A 104B C 104	2.955 2.935 3.083	3.021 3.012 3.129	3.108 3.087 3.202	3.235 3.223 3.3	3.247 3.245 3.363	2.797 2.767 3.365	2.253 2.278 3.391	2.052 2.035 3.364	1.83 1.809 3.112	1.727 1.73 2.926	1.706 1.692 2.987
76A 76B C76	OVER O	VER VER 3.342	3.403 3.37 3.336	3.211 3.17 3.32	2.994 2.925 3.317	2.65 2.643 3.305	2.007 1.971 3.317	1.761 1.73 3.303	1.598 1.563 3.269	1.504 1.462 3.203	1.452 1.416 3.191	105A 105B C 105	0.726 0.73 0.731	0.716 0.718 0.73	0.707 0.708 0.733	0.693 0.694 0.733	0.683 0.683 0.731	0.698 0.7 0.728	0.715 0.717 0.729	0.707 0.708 0.728	0.678 0.678 0.733	0.596 0.593 0.733	0.57 0.574 0.723
77A 77B C77		0.19 0.181 0.189	0.158 0.15 0.16	0.088 0.079 0.093	0.011 0.012 0.017	0.002 0.008 0.005	0 0.002 0.003	0 0.01 0.004	0.002 0.005 0.005	0.003 0.006 0.006	0.003 0.006 0.007	106A 106B C 106	3.263 3.337 3.289		OVER OVER 3.445	OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER	3.326 3.324 3.179	3.162 3.149 3.166	3.212 3.2 3.246
78A 78B C78		VER (3.412 3.322	OVER 3.44 3.351	OVER 3.499 3.432	3.353 3.307 OVER	2.834 2.876 OVER	0.692 0.67 3.372	0.39 0.379 3.148	0.095 0.101 2.907	0.021 0.026 1.711	0.006 0.006 0.966	107A 107B C 107	0.755 0.749 0.762	0.739 0.731 0.756	0.724 0.716 0.749	0.702 0.696 0.746	0.689 0.685 0.736	0.686 0.682 0.72	0.669 0.664 0.699	0.677 0.661 0.719	0.546 0.509 0.665	0.491 0.447 0.61	0.45 0.423 0.576
79A 79B C79	0.302	0.225 0.249 0.221	0.195 0.221 0.191	0.123 0.15 0.121		0.023 0.022 0.025	0.016 0.012 0.019	0.015 0.012 0.019	0.013 0.013 0.016	0.012 0.012 0.011	0.01 0.011 0.01	108A 108B C 108	3.33 3.339 3.293		OVER OVER 3.436	OVER		OVER	OVER	OVER OVER OVER	3,341 3,441 3,396	3.153 3.165 3.207	3.215 3.23 3.276
80A 80B C80	3.257	3.307 3.325 3.339	3.313 3.319 3.353	3.349 3.381 3.433	3.261 3.177 OVER	1.149 1.313 3.458	0.888 OVER 3	2.13 OVER 2.555	2.698 2.803 1.402	1.912 2.486 0.696	1.917 2.603 0.344	109A 109B C 109	0.351 0.354 0.361	0.341 0.344 0.362	0.33 0.334 0.36	0.314 0.318 0.36	0.284 0.289 0.36	0.248 0.254 0.357	0.206 0.212 0.357	0.187 0.192 0.356	0.149 0.155 0.354	0.124 0.13 0.353	0.114 0.121 0.351
81A 81B C81	0.34	0.334 0.325 0.329	0.324 0.314 0.32	0.324 0.312 0.306	0.358 0.343 0.35	0.352 0.333 0.348	0.317 0.287 0.318	0.264 0.22 0.259	0.131 0.057 0.117	0.028 0.009 0.026	0.008 0.003 0.007	110A 110B C 110	2.762 2.755 3.065	2.41 2.403 3.101	2.119 2.111 3.13	1.77 1.767 3.222	1.71 1.716 3.314	1.826 1.831 3.354	1.962 1.92 3.4	1.976 1.977 3.382	2.028 2.039 3.134	2.08 2.092 3.115	2.099 2.111 3.133
82A 82B C82	3.217	3.264 3.272 3.234	3.307 3.313 3.249	3.343 3.367 3.271	3.373 3.394 3.289	2.491 2.743 3.324	1.417 2.037 3.265	0VER 0.55 2.185	0.368 0.199 1.16	0.16 0.143 0.73	0.01 0.025 0.339	111A 111B C111	0.365 0.372 0.377	0.354 0.356 0.376	0.342 0.345 0.376	0.324 0.326 0.37	0.291 0.293 0.364	0.245 0.247 0.352	0.126 0.19 0.328	0.155 0.165 0.324	0.088 0.1 0.267	0.076 0.088 0.287	0.058 0.071 0.256
83A 83B C83		0.359 0.356 0.363	0.345 0.341 0.351	0.326 0.321 0.327	0.366 0.357 0.362	0.324 0.321 0.362	0.267 0.286 0.32	0.205 0.239 0.274	0.108 0.131 0.153	0.057 0.055 0.057	0.026 0.021 0.017	112A 112B C 112	2.747 2.737 3.061	2.387 2.375 3.086	2.081 2.029 3.116		1.762 1.741 3.289	1.874 1.867 3.313	1.954 1.964 3.312	2.001 1.982 3.292	1.954 1.984 3.054	2.082 2.061 3.045	2.067 1.932 3.043
84A 84B C84	3.279	3.403 3.393 3.283			OVER OVER 3.319	2.617 2.424 3.3	1.315 1.498 3.017	0.696 0.596 2.253	0.413 0.461 1.123	0.307 0.3231 0.811	0.224 0.259 0.651	113A 113B C 113	0.35 0.351 0.357	0.34 0.343 0.358	0.329 0.329 0.356	0.312	0.301 0.301 0.357	0.323 0.323 0.355	0.324 0.328 0.354	0.307 0.315 0.353	0.223 0.235 0.354	0.094 0.126 0.356	0.058 0.08 0.353
85A 85B C85		0.688 0.686 0.704	0.695 0.691 0.705	0.703 0.701 0.715	0.702 0.699 0.719	0.695 0.689 0.715	0.662 0.65 0.695	0.281 0.275 0.427	0.112 0.101 0.143	0.016 0.015 0.031	0.004 0.004 0.006	114A 114B C 114	2.843 2.782 3.058	2.944 2.873 3.087	3.013 2.929 3.118	3.063 2.977 3.208	2.97 2.886 3.313	1.339 1.366 3.348	0.755 0.759 3.375	0.581 0.569 3.364	0.318 0.331 3.12	0.224 0.239 3.091	0.212 0.206 3.119
86A 86B C86	OVER OV	VER (OVER	OVER	OVER	OVER OVER OVER	3.311 3.432 OVER	2.937 2.828 OVER	1.877 1.939 OVER	0.779 0.707 3.367	0.367 0.33 2.962	115A 115B C 115	0.367 0.37 0.386	0.354 0.355 0.382	0.34 0.34 0.38		0.31 0.316 0.37	0.313 0.319 0.358	0.282 0.287 0.342	0. 247 0. 247 0. 317	0.132 0.127 0.286	0.058 0.052 0.301	0.03 0.027 0.274
87A 87B C87	0.737	0.712 0.715 0.739	0.706 0.711 0.733	0.704 0.707 0.752	0.692	0.636 0.637 0.722	0.416 0.379 0.647	0.219 0.2 0.359	0.078 0.095 0.158	0.016 0.023 0.044	0.007 0.008 0.017	116A 116B C 116	2.821 2.792 3.063	2.913 2.897 3.083	2.969 2.947 3.152		2.61 2.615 3.307	1.269 1.224 3.314	0.634 0.642 3.312	0.431 0.417 3.287	0.154 0.146 3.074	0.075 0.061 3.025	0.07 0.051 3.08
88A 88B C88		VER (OVER	OVER		OVER	OVER OVER OVER	2.859 2.868 OVER	2.107 2.139 OVER	1.291 1.302 OVER	0.642 0.682 3.49	117A 117B C 117	0.317 0.316 0.317	0.295 0.294 0.3	0.281 0.282 0.293	0.266 0.268 0.287	0.241 0.241 0.275	0.208 0.208 0.259	0.164 0.164 0.234	0.146 0.146 0.199	0.127 0.127 0.161	0.097 0.095 0.12	0.077 0.074 0.096
89A 89B C89	0.336	0.327 0.321 0.332	0.317 0.309 0.321	0.334 0.324 0.308	0.353 0.342 0.351	0.348 0.334 0.358	0.305 0.285 0.333	0.248 0.222 0.275	0.094 0.057 0.129	0.024 0.011 0.033	0.008 0.005 0.011	118A 118B C 118	2.849 2.823 3.013	2.649 2.591 3.026	2.466 2.41 3.07	2.194	1.868 1.817 3.214	1.57 1.532 3.09	1.457 1.424 2.534	1,392 1,352 1,872	1.295 1.259 1.654	1.161 1.13 1.544	1.076 1.049 1.487
90A 90B C90	3.188	3.348 3.285 3.298	3.408 3.323 3.299	3.441 3.356 3.319		2.357	2.346 1.998 3.367	0.251 0.154 2.55	0.079 0.079 1.37	0.026 0.008 0.794	0.012 0.003 0.559	119A 119B C 119	0.343 0.352 0.349	0.32 0.327 0.329	0.303 0.31 0.32	0.291	0.257 0.261 0.289	0.226 0.223 0.264	0.194 0.195 0.227	0.179 0.183 0.219		0.108 0.131 0.163	0.056 0.107 0.136
91A 91B C91	0.385	0.343 0.362 0.362	0.323 0.343 0.347	0.307 0.329 0.329	0.321 0.342 0.354		0.228 0.233 0.301	0.15 0.161 0.247	0.06 0.074 0.153	0.018 0.029 0.068	0.013 0.018 0.038	120A 120B C 120	2.862 2.841 3.037	2.645 2.641 3.08	2.454 2.434 3.102	2.224	1.859 1.855 3.213	1.572 1.564 3.074	1.467 1.456 2.584	1.409 1.386 2.038	1.32 1.292 1.776	1.203 1.165 1.663	1.121 1.092 1.56
92A 92B C92	3.303		OVER OVER 3.279		3.36 3.323 3.293	1.772 1.798 3.282	0.877 0.881 3.01	0.809 0.527 2.222	0.591 0.378 1.294	0.426 0.28 0.907	0.345 0.239 0.652	121A 121B C 121	0.662 0.676 0.672	0.633 0.641 0.657		0.595	0.556 0.557 0.626	0.482 0.486 0.597	0.39 0.403 0.536	0.341 0.344 0.455	0.3 0.305 0.374	0.245 0.25 0.305	0.209 0.213 0.261
93A 93B C93	0.355	0.347 0.351 0.359	0.342 0.343 0.358	0.332 0.332 0.355	0.316	0.293 0.293 0.353	0.268 0.267 0.349	0.256 0.253 0.35	0.231 0.227 0.347	0.217 0.212 0.344	0.214 0.205 0.341	122A 122B C 122	3.282 3.332 3.227		OVER OVER 3.468	OVER	OVER	OVER OVER OVER	3.365 3.36 OVER	3.243 3.253 OVER	3.017 3.019 3.299	2.848 2.851 3.193	2.802 2.798 3.197
94A 94B C94		2.75 2.764 3.127	2.614 2.63 3.174	2.433 2.443 3.239	2.238	2.106	2.114 2.13 3.287	2.129 2.142 3.271	2.169 2.187 3.202	2.202 2.227 3.172	2.186 2.217 3.034	123A 123B C 123	0.683 0.698 0.706	0.651 0.667 0.689	0.632 0.646 0.677	0.624	0.57 0.589 0.653	0.499 0.514 0.611	0.425 0.446 0.542	0.386 0.409 0.51	0.345 0.374 0.444	0. 284 0.32 0. 376	0.235 0.258 0.324
95A 95B C95	0.4	0.381 0.392 0.452	0.377 0.384 0.448	0.361 0.37 0.444	0.342 0.35 0.436	0.318	0.265 0.27 0.379	0.24 0.239 0.354	0.178 0.171 0.281	0.134 0.131 0.212	0.114 0.115 0.174	124A 124B C 124	3.331 3.319 3.307	3.491 3.447 3.414		OVER		OVER OVER OVER	3.333 3.337 OVER	3.233 3.234 OVER	3.045 3.017 3.483	2.91 2.852 3.323	2.859 2.807 3.294

RunID	0	0.25	525nr 0.5	m Absorbar 1				12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
125A 125B C125	0.357 0.36 0.37	0.349 0.353 0.368	0.343 0.345 0.368	0.329 0.332 0.366	0.31	0.286 0.286 0.359	0.262 0.263 0.354	0.248 0.245 0.35	0.197 0.196 0.347	0.14 0.138 0.344	0.105 0.105 0.279	154A 154B C 154		OVER	OVER	OVER		OVER	OVER		OVER I	OVER	OVER OVER OVER
126A 126B C126	3.001 3.004 3.147	2.889 2.887 3.142	2.868 2.842 3.188			2.461	2.268 2.236 3.365	2.107 2.074 3.27	1.903 1.877 2.655	1.677 1.672 2.084	1.554 1.559 1.962	155A 155B C 155	0.701 0.711 0.719	0.697 0.708 0.709	0.693 0.704 0.708	0.69		0.626 0.645 0.688	0.609 0.616 0.649	0.586 0.601 0.603	0.584 0.604 0.591	0.631 0.641 0.624	0.67 0.731 0.687
127A 127B C127	0.379 0.392 0.387	0.368 0.379 0.38	0.358 0.368 0.376	0.342 0.35 0.372	0.323	0.293 0.3 0.334		0.258 0.268 0.271	0.226 0.245 0.237	0.175 0.2 0.267	0.136 0.148 0.226	156A 156B C 156	OVER OVER OVER	OVER		OVER		OVER	OVER	OVER	OVER (OVER	OVER OVER OVER
128A 128B C128	3.011 3.004 3.149	2.909 2.899 3.15	2.858 2.842 3.168	2.761 2.763 3.286		2.463 2.443 3.294		2.068 2.069 3.049	1.872 1.894 2.444	1.701 1.735 2.077	1.536 1.635 1.963	157A 157B C 157	0.361 0.357 0.365	0.35 0.348 0.363	0.348 0.347 0.362	0.338		0.329 0.325 0.362	0.322 0.328 0.36	0.324 0.328 0.36	0.312 0.319 0.356	0.144 0.258 0.35	0.067 0.182 0.347
129A 129B C129	0.724 0.722 0.724	0.707 0.71 0.724	0.692 0.695 0.724		0.651	0.625 0.628 0.712	0.617	0.578 0.597 0.703	0.489 0.509 0.694	0.375 0.378 0.719	0.311 0.32 0.655	158A 158B C 158	3.277 3.286 3.325	3.36	OVER OVER OVER	3.416 3.385 3.476		1.462 1.389 OVER	1.023 1.026 3.432	0.733 0.75 3.483	0.348 0.346 3.3	0.145 0.176 3.226	0.217 0.203 3.134
130A 130B C130	3.448 C 3.479 C 3.46	VER (OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	0.415 0.461 3.372	0.398 0.219 1.442	0.165 0.244 0.838	159A 159B C 159	0.379 0.376 0.38	0.368 0.37 0.378	0.365 0.365 0.377	0.36	0.346 0.348 0.368	0.335 0.339 0.36	0.324 0.328 0.335	0.319 0.322 0.318	0.313 0.311 0.285	0.269 0.245 0.276	0.246 0.205 0.229
131A 131B C131	0.739 0.739 0.767	0.721 0.718 0.756	0.706 0.703 0.746	0.679	0.655	0.619	0.581	0.595 0.577 0.599	0.549 0.522 0.555	0.446 0.418 0.645	0.377 0.332 0.551	160A 160B C 160	3.303 3.247 3.488	3.307	OVER	OVER OVER OVER	2.539 2.216 OVER	1.627	1.394 1.05 3.456	1,104 0,919 3,491	0.4 0.41 3.263	0.291 0.219 2.987	0.25 0.23 2.845
132A 132B C132			OVER	OVER		OVER OVER OVER	OVER	OVER OVER OVER	0.69 0.565 OVER	0.426 0.35 1.813	0.327 0.242 1.162	161A 161B C 161	0.346 0.347 0.358	0.337 0.335 0.356	0.337 0.336 0.355	0.329		0.308 0.308 0.352	0,303 0,303 0,353	0.301 0.3 0.351	0.269 0.273 0.348	0.229 0.225 0.349	0.211 0.211 0.35
133A 133B C133	0.316 0.316 0.332	0.294 0.294 0.318	0.277 0.277 0.31	0.252 0.252 0.3	0.217	0.178 0.181 0.273	0.145	0.131 0.131 0.217	0.114 0.115 0.176	0.093 0.094 0.143	0.08 0.078 0.123	162A 162B C 162	3.176 3.196 3.351		3.244 3.409 3.447	OVER	OVER	3.449 OVER 3.407	3.462 OVER 3.352	3.431 OVER 3.404	1.37 3.201 3.197	0.63 1.372 2.744	0.468 1.123 2.576
134A 134B C134	2.804 2.813 3.145	2.453 2.459 3.148	2.195 2.206 3.16	1.859	1.56			1.239 1.252 1.987	1.132 1.14 1.695	1.004 1.007 1.591	0.93 0.933 1.534	163A 163B C 163	0.355 0.357 0.381	0.345 0.347 0.372	0.347 0.349 0.369	0.338	0.325 0.326 0.361	0.311 0.31 0.344	0.286 0.291 0.323	0.302 0.282 0.302	0.284 0.271 0.271	0.251 0.209 0.255	0.234 0.163 0.301
135A 135B C135	0.333 0.338 0.345	0.31 0.315 0.329	0.293 0.297 0.32	0.265	0.228	0.196 0.195 0.287	0.166 0.169 0.265	0.153 0.167 0.217	0.136 0.131 0.198	0.111 0.105 0.175	0.094 0.099 0.156	164A 164B C 164	3.2 3.206 3.376	3.199 3.228 3.356	3.296 3.242 3.461	3.272		3.468 3.405 3.388	3.319 3.407 3.272	3.357 3.484 3.357	3.019 2.081 3.13	1.43 1.013 2.547	1.168 0.833 2.453
136A 136B C136	2.817 2.788 3.154	2.482 2.458 3.156	2.226 2.205 3.18			1.433		1.286 1.26 2.152	1.175 1.152 1.81	1.049 1.033 1.683	0.977 0.968 1.609	165A 165B C 165	0.369 0.368 0.376		0.368 0.364 0.376	0.363		0.364 0.362 0.376	0.362 0.36 0.37	0.356 0.359 0.368	0.308 0.31 0.365	0.243 0.237 0.361	0, 232 0, 225 0, 355
137A 137B C137	0.351 0.349 0.363	0.337 0.337 0.361	0.326 0.324 0.359	0.302 0.301 0.358	0.267	0.243		0.179 0.185 0.342	0.165 0.158 0.336	0.134 0.126 0.327	0.109 0.106 0.321	166A 166B C 166	3.421 3.439 3.298	3.452 3.472 3.294	3.346 3.374 3.309	3.223	3.026 3.046 3.312	2.84 2.865 3.327	2.213 2.23 3.374	2.03 2.068 3.363	1.853 1.859 3.279	1,787 1,807 3,303	1.78 1.799 3.261
138A 138B C138	2.886 2.9 3.178	2.722 2.74 3.221	2.639 2.655 3.215		2.52	2.326	2.122	1.981 2.007 3.321	1.816 1.84 2.77	1.641 1.657 2.123	1.528 1.547 1.984	167A 167B C 167	0.382 0.385 0.392	0.38	0.376 0.378 0.386	0.374	0.37	0.366 0.367 0.371	0.348 0.337 0.35	0.327 0.312 0.335	0.253 0.238 0.333	0.196 0.185 0.302	0.182 0.168 0.305
139A 139B C139	0.377 0.372 0.391	0.36 0.355 0.388	0.345 0.34 0.385	0.312	0.279	0.248	0.22	0.221 0.203 0.272	0.191 0.174 0.259	0.16 0.15 0.249	0.125 0.136 0.239	168A 168B C 168	3.458 3.477 3.294	3.47 3.453 3.315	3.342 3.346 3.298	3.167	2.945	2.638 2.581 3.315	2.026 1.997 3.341	1.832 1.771 3.315	1.675 1.627 3.249	1.583 1.531 3.257	1.559 1.52 3.233
140A 140B C140	2.902 2.895 3.182	2.745 2.742 3.179	2.654 2.652 3.193		2.516 2.485 3.345	2.3 2.283 3.32		2.012 2.019 3.135	1.838 1.851 2.561	1.67 1.675 2.056	1.561 1.565 1.939	169A 169B C 169	0.338 0.338 0.336	0.333 0.335 0.33	0.331 0.332 0.327	0.328 0.328 0.323	0.323 0.324 0.318	0.32 0.319 0.314	0.311 0.312 0.306	0.303 0.294 0.292	0.125 0.113 0.107	0.055 0.06 0.047	0.033 0.033 0.027
141A 141B C141	0.367 0.366 0.365	0.363 0.361 0.364	0.36 0.358 0.363			0.349	0.352	0.358 0.355 0.355	0.363 0.361 0.353	0.372 0.375 0.349	0.376 0.374 0.347	170A 170B C 170	3.168 3.181 3.263	3.157 3.155 3.262	3.157 3.161 3.271	3.194	3.257	3.297 3.338 3.259	3.384 3.393 3.144	3.313 3.307 3.082	0.996 0.859 2.818	0.4 0.412 2.531	0.251 0.279 2.322
142A 142B C142	3.244 3.251 3.344	3.297 3.288 3.303		OVER	OVER OVER 3.24	OVER		OVER OVER 3.472	2.201 2.268 3.235	1.822 1.823 2.939	1.728 1.704 2.769	171A 171B C 171	0.36 0.368 0.379	0.356 0.364 0.375	0.353 0.36 0.369	0.353	0.331 0.336 0.351	0.297 0.297 0.318	0.222 0.223 0.233	0.199 0.195 0.195	0.129 0.141 0.132	0.058 0.064 0.076	0.037 0.059 0.07
143A 143B C143	0.386 0.383 0.393	0.379 0.377 0.388	0.378 0.372 0.384	0.376 0.368 0.377	0.362	0.347 0.334 0.338	0.321 0.308 0.297	0.322 0.322 0.307	0.304 0.306 0.254	0.364 0.337 0.25	0.371 0.366 0.24	172A 172B C 172	3.256 3.232 3.248	3.276 3.256 3.257	3.275 3.272 3.258	3.293	3.365 3.341 3.202	3.199 3.113 3.124	2.306 2.237 2.894	1.806 1.786 2.681	1.45 1.835 1.904	2.021 0.965 1.417	1.385 0.937 1.296
144A 144B C144	3.27 3.315 3.307	3.323 3.319 3.239		OVER	OVER OVER 3.224	OVER	OVER OVER 3.393	3.372 3.233 3.362	1.916 1.822 3.19	1.575 1.666 2.894	1.485 1.544 2.66	173A 173B C 173	0.379 0.366 0.37	0.375 0.363 0.366	0.374 0.361 0.365	0.358		0.365 0.348 0.359	0.357 0.343 0.356	0.358 0.339 0.354	0.353 0.337 0.351	0.357 0.336 0.347	0.352 0.336 0.342
145A 145B C145		0.727 0.717 0.724		0.712	0.716 0.709 0.719	0.709	0.721 0.711 0.717	0.727 0.718 0.714	0.733 0.724 0.713	0.736 0.727 0.71	0.725 0.716 0.71	174A 174B C 174	3.218 3.242 3.253			3.372		3.379 3.426 3.32	OVER 2.391 3.311	3.48 1.529 3.331	1.464 0.954 3.269	0.604 0.579 3.262	0.399 0.204 3.223
146A 146B C146	OVER COVER COVER COVER	VER (OVER	OVER	OVER OVER OVER	OVER	OVER	OVER OVER	OVER	3.138 3.081 3.14		175A 175B C 175	0.398 0.404 0.422	0.402		0.393	0.384		0.34 0.362 0.375	0.337 0.35 0.363	0.335 0.335 0.347	0.308 0.325 0.329	0.19 0.344 0.339
147A 147B C147	0.743	0.734 0.737 0.754	0.728 0.737 0.752	0.727	0.7 0.714 0.736	0.692		0.68	0.631 0.672 0.637	0.666 0.698 0.639	0.634 0.645 0.63	176A 176B C 176	3.275 3.262 3.287	3.334	OVER		OVER OVER 3.343		3.473 1.746 3.323	2.178 1.224 3.333	1.204 0.585 3.262	0.76 0.524 3.243	0.337 0.382 3.216
148A 148B C148	OVER COVER C	VER (OVER		OVER OVER OVER	OVER	OVER	OVER OVER	OVER	3.155 3.123 3.172		177A 177B C 177	0.734 0.736 0.743	0.726	0.722	0.717	0.709		0.702 0.69 0.72	0.702 0.688 0.715	0.7 0.682 0.716	0.7 0.677 0.707	0.694 0.67 0.695
149A 149B C149	0.349	0.343 0.343 0.357	0.34 0.34 0.356	0.337		0.324	0.318	0.328 0.314 0.348	0.33 0.311 0.347	0.319 0.291 0.347	0.276 0.231 0.352	178A 178B C 178	OVER OVER OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER I	OVER OVER OVER	3.49 3.316 OVER
150A 150B C150	3.194	3.166 3.138 3.353	3.152 3.151 3.373	3.098	3.148		2.149	1.896	1.561 1.541 3.304	1,208 1,127 3,286	0.993 0.897 2.659	179A 179B C 179	0.767 0.771 0.777	0.763	0.76			0.715 0.723 0.743	0.696 0.708 0.724	0.697	0.672 0.679 0.678	0.675 0.664 0.648	0.657 0.648 0.658
151A 151B C151	0.374	0.366 0.366 0.374	0.362 0.362 0.37		0.347	0.326	0.3	0.289	0.277 0.288 0.249	0.296 0.331 0.261	0.275 0.298 0.251	180A 180B C 180	OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER (OVER OVER OVER
152A 152B C152	3.24	3.167 3.182 3.334	3.137 3.158 3.334	3.138	3.075	3.061	2.977	1.724 2.495 3.181	1.451 1.206 3.09	1.102 0.89 2.618	0.851 0.698 1.997	181A 181B C 181	0.356 0.356 0.36	0.353	0.35 0.35 0.359		0.344	0.336 0.336 0.353	0.337 0.338 0.35	0.33 0.337 0.348	0.325	0.153 0.198 0.34	0.12 0.155 0.339
153A 153B C153	0.684 0.693 0.698	0.678 0.687 0.693	0.678 0.691 0.696	0.682	0.676	0.669	0.668	0.654 0.668 0.691	0.659 0.677 0.69	0.677 0.716 0.69	0.126 0.644 0.7	182A 182B C 182	3.166 3.217 3.227	3.289	3.293 3.38 3.257	3.4	3.369	2.546 2.507 3.285	2.196 2.242 3.271			0.062 0.53 3.178	0.044 0.182 3.185

RunID	0	0.25	525nr 0.5	n Absorbar 1		d to DIatX 4		12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
183A 183B C 183	0.385 0.397 0.39	0.381 0.39 0.388	0.378 0.386 0.386	0.373 0.382 0.383	0.374	0.359 0.362 0.369	0.352 0.351 0.355	0.36 0.351 0.344	0.199 0.391 0.327	0.108 0.359 0.313	0.085 0.334 0.307	212A 212B C212	3.008 3.002 3.162	2.86 2.862 3.205	2.74 2.73 3.211	2.536	2.231 2.209 3.34	1.941 1.908 3.351	1.806 1.782 3.306	1.773 1.746 3.243	1.684 1.667 2.923	1.559 1.561 2.677	1.507 1.496 2.439
184A 184B C184	3.434 C 3.301 C 3.297				OVER OVER 3.313	2.975 2.38 3.321	1.21 0.919 3.303	0.925 0.987 3.267	0.612 0.682 3.189	0.383 0.555 3.166	0.285 0.311 3.154	213A 213B C213	0.704 0.698 0.712	0.689 0.684 0.704	0.684 0.679 0.702	0.666	0.652 0.645 0.688	0.622 0.617 0.677	0.586 0.578 0.662	0.554 0.544 0.645	0.501 0.491 0.615	0.454 0.448 0.552	0.43 0.426 0.496
185A 185B C185	0.364 0.36 0.364	0.361 0.365 0.363	0.358 0.352 0.363	0.353 0.346 0.362	0.342 0.337 0.361	0.326 0.321 0.36	0.309 0.304 0.359	0.306 0.302 0.359	0.317 0.314 0.36	0.317 0.316 0.361	0.316 0.315 0.362	214A 214B C214	3.387 3.436 3.438	OVER	OVER	OVER		OVER	OVER	OVER OVER OVER	3.133 3.189 3.389	3.176 3.141 3.373 (3.228 3.247 OVER
186A 186B C186	2.889 2.882 2.986	2.795 2.767 3.01	2.718 2.699 3.06	2.619 2.585 3.146	2.509 2.48 3.175	2.438 2.414 3.241		2.368 2.348 3.261	2.324 2.303 3.034	2.338 2.314 3.209	2.296 2.265 2.981	215A 215B C215	0.723 0.735 0.725	0.71 0.72 0.714	0.702 0.709 0.712	0.697	0.66 0.673 0.694	0.622 0.642 0.675	0.571 0.594 0.648	0.543 0.557 0.626	0.469 0.501 0.592	0.433 0.447 0.524	0.4 0.411 0.464
187A 187B C 187	0.412 0.407 0.408	0.404 0.402 0.405	0.4 0.398 0.404	0.392 0.391 0.4	0.379 0.378 0.396	0.355 0.353 0.388		0.315 0.315 0.37	0.302 0.303 0.361	0.308 0.307 0.365	0.301 0.299 0.363	216A 216B C216	3.462 3.419 3.424	OVER	OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	3.281 3.26 3.45	3.241 3.249 3.489 (3.252 3.278 OVER
188A 188B C188	2.912 2.9 3.026	2.801 2.804 3.06	2.728 2.734 3.102	2.622 2.61 3.176	2.499	2.41 2.412 3.278	2.314	2.263 2.268 3.279	2.198 2.199 3.039	2.214 2.205 3.212	2.175 2.169 3.001	217A 217B C217	0.365 0.361 0.363	0.362 0.3557 0.36	0.358 0.354 0.359	0.35	0.345 0.342 0.357	0.332 0.328 0.355	0.318 0.314 0.353	0.308 0.304 0.35	0.3 0.294 0.348	0.29 0.284 0.341	0.28 0.271 0.337
189A 189B C189	0.719 0.722 0.726	0.711 0.712 0.721	0.708 0.709 0.72	0.699 0.698 0.719	0.684 0.68 0.719	0.665 0.659 0.719			0.661 0.649 0.716	0.658 0.647 0.717	0.657 0.644 0.718	218A 218B C218	3.035 3.041 3.113	2.985 2.995 3.158	2.975 2.985 3.131		2.979 2.987 3.352	2.898 2.899 3.385	2.826 2.83 3.388	2.684 2.685 3.368	2.481 2.483 3.105	2.364 2.369 3.045	2.3 2.3 3.179
190A 190B C190	3.201 3.216 3.233	3.256 3.271 3.284	3.313 3.335 3.35	3.488		OVER OVER OVER	OVER	OVER OVER OVER	3.284 (3.216 (3.316 (OVER	3.204 3.234 3.203	219A 219B C219	0.386 0.386 0.38	0.383 0.383 0.378	0.38 0.379 0.377	0.373	0.363 0.363 0.372	0.348 0.349 0.366	0.329 0.33 0.357	0.322 0.315 0.347	0.291 0.292 0.341	0.28 0.278 0.329	0.259 0.258 0.321
191A 191B C191	0.766 0.772 0.782	0.754 0.76 0.778	0.747 0.755 0.776	0.735 0.742 0.774				0.66 0.648 0.727	0.64 0.624 0.709	0.643 0.633 0.722	0.634 0.622 0.713	220A 220B C220	3.072 3.112 3.133	3.034 3.109 3.141	3.034 3.032 3.185	3.085	2.989 3.011 3.366	2.849 2.863 3.404	2.696 2.708 3.411	2.556 2.557 3.388	2.394 2.393 3.142	2.239 2.243 3.026	2.065 2.137 3.175
192A 192B C 192	3.213 3.272 3.271	3.314 3.296 3.329	3.403	OVER		OVER	OVER	OVER OVER OVER	3.355 (3.374 (3.352 (OVER	3.243 3.257 3.275	221A 221B C221	0.719 0.719 0.725	0.711 0.714 0.722	0.706 0.71 0.72	0.703	0.689 0.684 0.72	0.673 0.667 0.718	0.658 0.655 0.715	0.647 0.644 0.709	0.641 0.638 0.706	0.633 0.634 0.697	0.643 0.634 0.692
193A 193B C193	0.376 0.374 0.374	0.369 0.372 0.373	0.367 0.37 0.373	0.36 0.362 0.372		0.33 0.331 0.371		0.309 0.308 0.37	0.298 0.3 0.368	0.291 0.288 0.365	0.286 0.281 0.364	222A 222B C222	3.412 3.438 3.432	3.47 OVER 3.409		OVER		OVER	OVER	OVER		OVER OVER 3.307 (0.781 0.669 OVER
194A 194B C194	3.028 3.028 3.143	2.922 2.963 3.169	3.068 3.065 3.221	3.195 3.175 3.314	3.206	3.173 3.142 3.404	2.437	2.283 2.244 3.375	2.097 2.071 3.009	2.011 2.007 2.943	2.036 2.02 3.216	223A 223B C223	0.751 0.748 0.746	0.742 0.744 0.743	0.735 0.74 0.741	0.728 0.73 0.74	0.714 0.713 0.736	0.698 0.694 0.731	0.676 0.675 0.719	0.666 0.665 0.707	0.646 0.639 0.703	0.622 0.625 0.687	0.617 0.612 0.674
195A 195B C195	0.394 0.389 0.393	0.388 0.383 0.388	0.381 0.376 0.388	0.369 0.367 0.385	0.352 0.352 0.38	0.332 0.332 0.374		0.297 0.298 0.361	0.266 0.272 0.347	0.266 0.268 0.351	0.258 0.262 0.346	224A 224B C224	3.457 3.414 3.392		OVER	OVER		OVER	OVER	OVER		OVER OVER 3.296 (0.828 0.88 OVER
196A 196B C196	3.02 3.05 3.144	2.968 2.994 3.132	3.062 3.098 3.222	3.126 3.162 3.305	3.213	2.873 2.992 3.373	2.371	2.046 2.147 3.361	1.877 1.892 2.976	1.79 1.801 2.935	1.783 1.777 3.174	225A 225B C225	0.345 0.35 0.354	0.335 0.338 0.348	0.329 0.332 0.347	0.322	0.31 0.31 0.338	0.293 0.296 0.331	0.28 0.279 0.321	0.273 0.269 0.313	0.251 0.248 0.299	0.226 0.225 0.28	0.212 0.212 0.265
197A 197B C 197	0.727 0.729 0.74	0.717 0.721 0.741	0.71 0.71 0.74	0.7 0.702 0.739	0.685 0.687	0.67 0.674 0.736	0.661	0.654 0.656	0.648 0.649 0.735	0.643 0.645 0.73	0.641 0.644 0.732	226A 226B C226	2.913 2.906 3.145	2.608 2.592 3.175	2.432 2.422 3.204	2.161 2.151	1.893 1.866 3.062	1.768 1.749 3.385	1.624 1.659 3.364	1.618 1.607 3.312	1.511 1.502 3.075	1.408 1.397 2.789	1.346 1.334 2.512
198A 198B C198	3.36 3.386 3.361		OVER OVER 3.4	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	3.159 3.16 3.175	3.109 3.104 3.144	OVER	227A 227B C227	0.378 0.388 0.373	0.368 0.374 0.368	0.362 0.368 0.366	0.356	0.34 0.339 0.362	0.319 0.317 0.344	0.308 0.296 0.325	0, 295 0, 284 0, 314	0.269 0.261 0.288	0.231 0.236 0.28	0.218 0.216 0.263
199A 199B C 199	0.76 0.754 0.764	0.751 0.742 0.759	0.74 0.733 0.755	0.725 0.718 0.754	0.707 0.697 0.75	0.685 0.673 0.745		0.649 0.632 0.734	0.617 0.6 0.716	0.62 0.608 0.708	0.609 0.596 0.7	228A 228B C228	2.921 2.919 3.168	2.604 2.604 3.201	2.434 2.427 3.214	2.16 2.154 3.319	1.917 1.891 3.071	1.789 1.78 3.404	1.69 1.685 3.378	1.632 1.63 3.3	1.533 1.53 3.032	1.439 1.437 2.781	1,365 1,381 2,526
200A 200B C200	3.396 C 3.339 C 3.381	VER		OVER		OVER	OVER	OVER OVER OVER	3.149 3.219 3.159	3.095 3.108 3.132		229A 229B C229	0.364 0.367 0.368	0.357 0.362 0.366	0.354 0.359 0.367		0.336 0.337 0.365	0.315 0.319 0.363	0.306 0.306 0.359	0.304 0.304 0.358	0.295 0.29 0.355	0.26 0.264 0.347	0.246 0.25 0.339
201A 201B C201	0.361 0.366 0.365	0.357 0.357 0.364	0.351 0.352 0.362	0.34 0.34 0.363	0.318	0.29 0.286 0.362	0.261	0.261 0.258 0.362	0.254 0.249 0.362	0.248 0.245 0.363	0.25 0.242 0.362	230A 230B C230	2.963 2.964 3.124	2.942 2.936 3.154	2.933 2.922 3.193	2.958		2.999 3.015 3.398	2.779 2.785 3.445	2.622 2.639 3.412	2.415 2.407 3.215	2.246 2.24 3.192	2.125 2.116 3.073
202A 202B C202	2.893 2.903 3.141	2.583 2.571 3.159	2.347 2.325 3.167	2.089 2.07 3.28	1.874 1.874 3.339	1.71 1.691 3.392	1.599 1.586 3.407	1.536 1.536 3.395	1.469 1.461 3.077	1.437 1.423 3.041	1.421 1.409 3.144	231A 231B C231	0.376 0.386 0.396	0.37 0.38 0.395	0.366 0.376 0.394		0.343 0.35 0.391	0.322 0.332 0.384	0.306 0.314 0.374	0.297 0.3 0.365	0.283 0.28 0.342	0.252 0.241 0.333	0.23 0.22 0.319
203A 203B C203	0.389 0.396 0.397	0.381 0.389 0.397	0.375 0.381 0.396	0.367	0.341	0.299 0.302 0.381	0.267	0.263	0.241 0.235 0.349	0.233 0.23 0.354	0.225 0.22 0.352	232A 232B C232	3 3.004 3.107	2.966 2.983 3.183	2.966 2.971 3.215	2.947	2.71 2.749 3.036	2.859 2.872 3.417	2.631 2.644 3.453	2.519 2.533 3.413	2.332 2.358 3.219	2.18 2.219 3.193	2.074 2.107 3.085
204A 204B C204	2.873 2.887 3.145	2.563 2.568 3.128	2.322 2.328	2.062 2.06	1.843	1.675 1.675 3.415	1.526 1.538	1.458	1.333 1.349 3.087	1.302 1.324 3.036	1.314 1.337 3.133	233A 233B C233	0.373 0.371 0.375	0.373 0.37 0.376	0.371 0.368 0.376	0.369 0.367	0.365 0.365	0.361 0.361	0.359 0.359 0.373	0.357 0.357 0.394	0.355 0.355 0.389	0.354 0.355 0.395	0.353 0.354 0.392
205A 205B C205	0.354 0.357 0.367	0.348 0.351 0.368	0.341 0.343 0.365		0.307 0.31	0.287 0.292 0.364	0.272 0.275	0.265	0.258 0.259 0.363	0.267 0.261 0.363	0.272 0.28 0.36	234A 234B C234	2.989 2.999 3.02	3.097 3.081 3.133	3.205 3.169 3.185	3.448 3.395	OVER OVER 3.437	OVER OVER	OVER	2.504 2.541 OVER	2.164 2.223 3.066	2.038 2.098 3.157	1.976 1.979 3.316
206A 206B C206	2.884 2.884 3.131	2.842 2.844 3.162	2.93 2.914	2.997	2.991 2.991	1.612 1.613 3.366	1.146	0.994 0.981	0.762 0.757 3.067	0.703 0.674 3.043	0.672 0.66 3.11	235A 235B C235	0.393 0.396 0.395	0.388 0.393 0.395	0.386 0.393 0.393	0.383 0.389	0.379	0.37	0.36	0.355 0.365 0.374	0.341 0.35 0.362	0.36 0.35 0.363	0.34 0.345 0.356
207A 207B C207	0.383 0.381 0.391	0.374 0.37 0.39	0.364 0.361	0.349 0.346 0.383	0.328 0.322	0.304 0.301 0.376	0.277 0.273	0.272 0.265	0.248 0.244 0.355	0.247 0.252 0.346	0.166 0.176 0.338	236A 236B C236	3.005 3.01 3.004	3.081 3.067 3.129	3.189 3.192 3.191	3.399 3.364	OVER OVER	OVER OVER	OVER	2.411 2.427 3.449	2.369 2.115 3.042	1.961 1.986 3.125	1.885 1.923 3.284
208A 208B C208	2.903 2.923 3.157	2.905 2.922 3.175	2.963 2.969	3.008	2.872 2.931	1.494 1.594 3.401	1 1.076	0.792	0.493 0.525 3.084	0.37 0.429 3.059	0.316 0.416 3.154	237A 237B C237	0.726 0.737 0.733	0.728 0.735 0.732	0.725 0.731 0.731	0.725 0.726	0.716	0.713 0.721	0.714 0.717 0.731	0.709	0.707 0.715 0.728	0.71 0.716	0.71 0.715 0.725
209A 209B C209	0.344 0.346 0.343		0.33		0.311 0.312	0.295 0.297 0.318	0.278 0.279		0.253 0.254 0.283	0.23 0.229 0.258	0.217 0.216 0.238	238A 238B C238	3.218 3.236 3.283		OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER		3.246 3.24 3.313	3.424 (3.434 (3.459 (OVER OVER
210A 210B C210	2.991 2.979 3.099	2.83 2.817 3.176	2.707 2.682	2.513 2.488	2.195 2.168	1.878 1.857 3.298	1.753 1.752	1.73 1.685	1.663 1.635 2.894	1.586 1.564 2.664	1.538 1.519 2.414	239A 239B C239	0.761 0.766 0.769	0.759 0.756 0.767	0.757 0.751	0.751 0.745	0.743 0.738		0.717 0.715	0.703 0.711	0.691 0.691 0.716	0.701 0.693	0.692 0.687 0.709
211A 211B C211	0.374	0.362 0.369	0.357 0.363	0.348 0.353	0.335 0.34	0.314 0.319	0.291 0.293	0.276	0.251 0.253 0.253	0.223 0.229 0.245	0.209 0.209 0.224	240A 240B C240	3.224 3.237 3.216	3.4 3.404	OVER OVER	OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER	OVER OVER	3.253 3.264 3.262	3.422 (3.466 (3.481 (OVER OVER
CZIT	0.302	0.374	u.30/	0:301	0:302	J:338	0.312	0.292	0.253	0.243	0.224	C 240	5:210	3.303	VER.	OVER	OVER :	VER	.v∈R	- May C	3.202	3.461 N	>VER()

RunID	0	0.25	525nn 0.5			d to DIat X 4		12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
241A 241B C241	0.358 0.358 0.355	0.355 0.354 0.355	0.353 0.354 0.354	0.35 0.353 0.353	0.348 0.349 0.352	0.346 0.343 0.351		0.338 0.336 0.351	0.337 0.334 0.351	0.335 0.334 0.348	0.335 0.333 0.345	270A 270B C270	OVER OVER OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	2.657 2.558 OVER	1.467 1.311 3.39	0.634 0.534 2.745
242A 242B C242	3.333 3.323 3.428	3.319 3.313 3.425	3.34 3.325 3.422	3.374 3.365 3.446	3.381 3.386 3.437	3.387 3.38 3.444	2.441 2.441 3.423	2.203 2.228 3.423	2.037 1.961 3.264	1.794 1.807 3.396	1.642 1.616 3.424	271A 271B C271	0.729 0.725 0.759	0.705	0.687			0.65	0.345 0.362 0.537	0.216 0.23 0.368	0.103	0.023 0.025 0.046	0.009 0.008 0.024
243A 243B C243	0.368 0.369 0.37	0.364 0.366 0.369	0.364 0.365 0.367	0.36 0.36 0.364	0.354 0.356 0.364	0.348 0.348 0.358	0.339	0,337 0,335 0,351	0.324 0.322 0.339	0.324 0.318 0.336	0.319 0.312 0.33	272A 272B C272	OVER OVER OVER		OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	2.74 2.597 OVER	1.667 1.748 3.403	0.99 1.239 3.053
244A 244B C244	3.355 3.367 3.395	3.338 3.335 3.385	3.352 3.356 3.407	3.381 3.395 3.398		3.395 3.334 3.384		2.17 2.174 3.364	1.894 1.904 3.241	1.733 1.727 3.302	1.582	273A 273B C273	0.339 0.338 0.339	0.317	0.302	0.296 0.287 0.286		0.366	0.319 0.307 0.235	0.284 0.273 0.159	0.164 0.155 0.063	0.046 0.05 0.03	0.011 0.017 0.022
245A 245B C245	0.698 0.698 0.702	0.696 0.698 0.702	0.694 0.696 0.701	0.688 0.689 0.703		0.681 0.684 0.701	0.681 0.679 0.699	0.681 0.678 0.696	0.678 0.68 0.698	0.677 0.679 0.696		274A 274B C274			OVER		3.33 3.434 3.347	1.787 1.74 3.382	0.631 0.632 3.479	0.235 0.245 3.346	0.082 0.094 2.259	0.043 0.048 0.714	0.026 0.025 0.207
246A 246B C246	OVER (OVER	OVER		OVER OVER OVER		OVER	OVER	OVER	OVER	OVER OVER OVER	275A 275B C 275	0.368 0.367 0.371	0.339	0.321	0.294	0.327 0.327 0.268		0.224 0.234 0.308	0.161 0.171 0.266	0.054 0.074 0.145	0.019 0.025 0.061	0.009 0.011 0.031
247A 247B C247	0.723 0.718 0.724	0.718 0.712 0.72	0.714 0.706 0.718	0.711 0.703 0.718		0.696 0.688 0.711	0.68		0.667 0.66 0.687	0.662 0.658 0.676		276A 276B C 276	OVER OVER 3.267	OVER OVER 3.307	3.47 3.38 3.305		2.761 2.707 3.325	1.829 1.884 3.329	0.555 0.669 3.247	0.253 0.331 3.014	0.101 0.109 1.67	0.05 0.054 0.389	0.038 0.038 0.154
248A 248B C248	OVER (OVER		OVER		OVER OVER OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	277A 277B C 277	0.354 0.349 0.354	0.343		0.335 0.33 0.351	0.328 0.322 0.35		0.293 0.289 0.347		0.263 0.259 0.341	0.249 0.246 0.336	0.244 0.242 0.334
249A 249B C249	0.363 0.367 0.367	0.36 0.362 0.368	0.358 0.359 0.368			0.345 0.347 0.366	0.353		0.362 0.366 0.363	0.369 0.375 0.365		278A 278B C 278	2.873 2.88 3.015	2.695		2.624 2.617 3.132		3.267	2.8 2.817 3.263		1.887 1.873 3.223	1.808 1.811 2.942	1.811 1.812 3.078
250A 250B C250	3.279 3.287 3.379		OVER OVER 3.45	OVER	OVER OVER 3.498	OVER	2.474 2.134 OVER	1.312	0.822 0.97 3.476	0.553 0.549 OVER	0.463 0.49 3.478	279A 279B C279	0.38 0.377 0.387	0.368	0.365	0.356 0.354 0.37	0.343 0.34 0.363	0.319	0.291 0.272 0.308		0.219 0.195 0.225	0.183 0.152 0.184	0.19 0.149 0.177
251A 251B C251	0.389 0.398 0.396	0.386 0.395 0.395	0.384 0.392 0.395	0.383 0.387 0.393		0.365 0.372 0.383	0.365	0.363 0.364 0.365	0.358 0.363 0.353	0.365 0.367 0.357	0.36 0.361 0.343	280A 280B C 280	2.886 2.891 3.069	2.712		2.643 2.652 3.157	2.8 2.806 3.217	2.988	2.742 2.726 3.194		1.8 1.807 3.11	1.638 1.652 2.884	1.636 1.632 2.997
252A 252B C252	3.351 3.314 3.444		OVER OVER 3.456	OVER	OVER OVER 3.497	OVER	1.945 2.027 OVER	1.474 1.388 OVER	0.914 1.02 3.411	1.065 0.764 3.442	0.894 0.678 3.443	281A 281B C281	0.717 0.716 0.719	0.707	0.702 0.699 0.717	0.687			0.645 0.639 0.71		0.623 0.615 0.705	0.615 0.609 0.7	0.615 0.609 0.698
253A 253B C253	0.355 0.354 0.366	0.352 0.352 0.361	0.349 0.35 0.362	0.347 0.346 0.362		0.334 0.334 0.359	0.332		0.338 0.34 0.356	0.342 0.345 0.353		282A 282B C 282	3.302 3.332 3.341	3.356		OVER	OVER		OVER OVER OVER		OVER OVER OVER	3.152 3.186 3.204	3.372 3.427 3.43
254A 254B C254	3.125 3.214 3.293	3.14 3.244 3.32	3.244 3.331 3.343		OVER	OVER	OVER OVER 3.428	1.694 1.483 3.41	1.056 0.733 3.355	0.255 0.248 3.391	0.203 0.219 3.377	283A 283B C 283	0.752 0.74 0.757	0.729			0.683	0.657	0.611 0.612 0.71		0.475 0.484 0.636	0.393 0.488 0.606	0.397 0.488 0.606
255A 255B C255	0.378 0.389 0.389	0.373 0.385 0.388	0.371 0.383 0.386	0.368 0.378 0.386	0.371	0.349	0.332 0.351		0.338 0.341 0.357	0.34 0.348 0.346	0.332	284A 284B C 284	3.338 3.321 3.335	3.362	3.483	OVER OVER	OVER	OVER OVER OVER			OVER OVER OVER	3.215 3.253 3.223	3.399 3.409 3.425
256A 256B C256	3.217 3.224 3.284	3.261 3.241 3.321	3.324 3.329 3.347		OVER OVER 3.36	OVER	3.475 3.465 3.356	1.724 1.674 3.345	0.983 0.789 3.321	1.386 1.057 3.338	1.376 0.663 3.308	285A 285B C 285	0.36 0.361 0.365	0.356		0.34 0.343 0.362			0.332 0.334 0.361	0.328 0.332 0.363		0.236 0.232 0.357	0.234 0.222 0.347
257A 257B C257	0.363 0.364 0.364	0.361 0.36 0.363	0.358 0.357 0.363	0.358 0.357 0.363	0.364 0.364 0.362	0.37 0.371 0.362		0.368 0.367 0.363	0.359 0.357 0.363	0.279 0.276 0.358	0.253 0.246 0.35	286A 286B C 286	2.923 2.942 2.998	2.987	3.018	3.09 3.114 3.202	3.084	2.895	2.212 2.233 3.4	2.067 2.079 3.417		1.895 1.91 3.124	1.887 1.9 3.277
258A 258B C258	3.443 (3.452 3.319	OVER 3.491 3.297	3.482 3.451 3.32	3.384 3.415 3.305	3.309	3.178 3.205 3.311		2.621 2.637 3.285	2.453 2.491 3.314	2.415 2.449 3.277	2.429	287A 287B C 287	0.397 0.398 0.4	0.388	0.381 0.378 0.392	0.366 0.363 0.384		0.329	0.293 0.292 0.309	0.248 0.245 0.277	0.148	0.1 0.081 0.246	0.126 0.113 0.194
259A 259B C259	0.366 0.37 0.37	0.359 0.362 0.367	0.355 0.358 0.363	0.359 0.364 0.361	0.362 0.367 0.356	0.363 0.363 0.349	0.343	0.311 0.309	0.202 0.164 0.271	0.166 0.143 0.274	0.145 0.122	288A 288B C 288	2.925 2.922 3.029	2.985	2.966	3.029 3.045 3.196	2.979		1.954 1.926 3.318	1.745 1.74 3.318	1.53	1.454 1.395 3.021	1.468 1.372 3.182
260A 260B C260	3.474 3.434 3.295	3.488 3.399 3.28	3.445 3.344 3.277	3.354 3.27 3.283	3.228 3.179 3.284	3.029 3.3039 3.282	2.652 2.67 3.23	2.446 2.399 3.241	2.219 2.158 3.229	2.174 2.211 3.177	2.124 2.185 3.211	289A 289B C 289	0.729 0.73 0.735	0.721	0.713	0.697 0.699 0.735	0.687 0.688 0.735	0.692 0.694 0.733	0.708 0.71 0.735	0.702 0.705 0.738	0.674 0.673	0.598 0.599 0.729	0.581 0.585 0.708
261A 261B C261	0.255 0.248 0.246	0.205 0.193 0.194	0.151 0.14 0.144	0.089 0.08 0.086	0.014	0.002 0.003 0.002	0.003	0.003	0.002 0.002 0.003	0.003 0.005 0.003	0.005	290A 290B C 290	3.158 3.223 3.167	3.19	3.256	OVER	OVER	OVER	OVER OVER OVER	OVER	3.011 3.06 3.021	3,323 C 3,33 C 3,393 C	VER
262A 262B C262	3.324 3.281 3.268	3.383 3.383 3.267	3.437 3.431 3.298	3.367 3.259	1.754 1.728	1.297 1.026 1.748	0.378 0.292	0.247	0.105 0.124 0.215	0.034 0.065	0.014 0.033	291A 291B C291	0.761 0.739 0.758	0.747 0.727	0.734	0.697		0.678	0.639	0.556 0.594 0.669	0.438 0.495	0.462 0.505	0.442 0.476 0.563
263A 263B C263	0.278 0.278 0.288	0.222 0.22 0.235	0.167 0.167 0.184	0.104 0.104 0.121	0.037	0.022 0.021 0.027	0.024	0.018 0.022 0.021	0.015 0.019 0.017	0.013 0.013 0.014	0.013	292A 292B C 292	3.191 3.135 3.152	3.263	3.346	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	3.041 3.035 3.059	3.337 C 3.408 C 3.414 C	VER
264A 264B C264	3.314 3.305 3.281	3.382 3.381 3.288	3.443 3.439	3.371 3.381	2.456 2.181	1.074 1.077 2.283	2.847 2.1	2.625	1.657 1.63 0.546	1.266 1.044 0.354	1.663 0.709	293A 293B C 293	0.344 0.347 0.36	0.333 0.335	0.322 0.324	0.303 0.305	0.274	0.237	0.198 0.198	0.166 0.164 0.352	0.128	0.103 0.098 0.347	0.095 0.089 0.346
265a 265b c265	0.345 0.341 0.348	0.332 0.328 0.338	0.321 0.313	0.299	0.344 0.292	0.373 0.365 0.376	0.339 0.306	0.298	0.154 0.137 0.18	0.033 0.055 0.054	0.017 0.02	294A 294B C 294	2.78 2.764 3.077	2.42	2.326 2.304	2.365 2.345	2.45 2.433	2.488 2.463	2.154 2.15 3.396	1.017 1.014 3.396	0.615 0.595	0.569 0.545 3.085	0.56 0.535 3.174
266a 266B C266	3.282 3.269 3.194	3.465	OVER OVER 3.263	OVER	OVER OVER 3.348	3.025 2.865 3.408	1.563		0.247 0.242 1.861	0.077 0.084 0.379		295A 295B C 295	0.379 0.371 0.383	0.357	0.343	0.32	0.284	0.237	0.167 0.178 0.323	0.144 0.151 0.333	0.091	0.042 0.054 0.183	0.035 0.049 0.196
267A 267B C267		0.367 0.352 0.372	0.352 0.336	0.323 0.307	0.318 0.317	0.322 0.333 0.396	0.228 0.209	0.144 0.147	0.06 0.077 0.137	0.06 0.037 0.077		296A 296B C 296	2.804 2.776 3.081	2.418 2.394	2.316 2.318	2.279 2.332	2.236	2.114 2.263		0.966 0.695 3.303	0.523 0.393	0.348 0.319 3.051	0.292 0.297 3.11
268A 268B C268	3.356 (3.361 (OVER OVER	OVER OVER 3.268	OVER OVER	3.27 3.346	2.462 2.565 3.264	1.254 1.477	0.611 0.904	0.244 0.254 1.358	0.196 0.104 0.38	0.072 0.083	297A 297B C 297	0.342 0.344 0.352	0.328	0.315	0.297 0.298	0.288 0.291	0.3 0.303		0.261 0.26 0.351	0.161	0.06 0.07 0.351	0.048 0.061 0.341
269A 269B C269	0.703 0.703	0.692 0.692 0.702	0.685 0.685		0.744 0.747	0.756 0.755	0.74 0.739	0.442 0.451	0.191 0.137 0.16	0.034 0.034 0.038	0.012 0.01	298A 298B C 298	2.94 2.913 3.092	2.924 2.909	2.828 2.797	2.653 2.621	2.321 2.298	1.419	0.909 0.917	0.709 0.696	0.565 0.558	0.501 0.502 3.088	0.494 0.493 3.177
0200	v.r12	0.702	5.031	3.070	0.7.00	3.104	0.000	0.011	-0.10	3.030	5.015	2250	5.082	. 3.113	.5.200	.5.20	5.500		S.Orn	5.553	3.040	3.300	ward

RunID	0	0.25	525nm 0.5	Absorbano 1	ce zeroed 2	d to DI at X 4	hours 8	12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
299A 299B C299	0.367 0.368 0.386	0.349 0.348 0.382	0.334 0.332 0.377	0.314 0.31 0.372	0.303 0.301 0.362	0.294 0.287 0.345	0.253 0.249 0.317	0.193 0.186 0.303	0.081 0.091 0.26	0.029 0.033 0.231	0.021 0.021 0.221	328A 328B C328	3.018 3.021 3.058	3.128 3.126 3.15		OVER	OVER OVER 3.457		OVER OVER (3.402	3.076 OVER 3.414	1.942 1.974 3.101	1.674 1.66 3.248	1.568 1.57 3.308
300A 300B C300	2.986 2.94 3.092	2.919 2.887 3.127	2.824 2.778 3.189	2.599 2.56 3.287	2.136 2.085 3.365	1.252 1.218 3.371	0.772 0.73 3.34	0.509 0.464 3.329	0.323 0.282 2.958	0.228 0.213 3.071	0.195 0.191 3.128	329A 329B C329	0.716 0.72 0.728		0.711 0.713 0.727	0.709 0.712 0.725	0.706 0.708 0.722	0.706 0.71 0.724	0.71 0.708 0.723	0.713 0.716 0.72	0.718 0.721 0.718	0.723 0.723 0.716	0.683 0.699 0.722
301A 301B C301	0.327 0.328 0.332	0.308 0.311 0.32	0.298 0.301 0.312	0.279 0.282 0.304	0.261 0.264 0.295	0.23 0.236 0.281	0.198 0.201 0.272	0.178 0.179 0.252	0.155 0.156 0.208	0.127 0.126 0.169	0.108 0.11 0.148	330A 330B C330	3.272 3.301 3.454	3.446 OVER 3.361		OVER	OVER OVER OVER	OVER	OVER (OVER OVER OVER	3.494	OVER OVER	OVER
302A 302B C302	2.972 2.954 3.227	2.762 2.756 3.47	2.588 2.589 3.235	2.299 2.28 3.333	1.975 1.969 3.355	1.51 1.516 3.163	1.408 1.407 2.641	1.341 1.342 2.007	1.226 1.22 1.628	1.098 1.097 1.513	1.021 1.021 1.452	331A 331B C331	0.736 0.729 0.739	0.734 0.727 0.734	0.732 0.722 0.731	0.722 0.717 0.728	0.713 0.708 0.725	0.698 0.702 0.718	0.671 0.681 0.688	0.716 0.712 0.693	0.682 0.704 0.662	0.682 0.717 0.678	0.49 0.579 0.673
303A 303B C303	0.359 0.361 0.376	0.341 0.341 0.36	0.328 0.329 0.348	0.307 0.305 0.333	0.284 0.284 0.325	0.262 0.264 0.292	0.253 0.25 0.273	0.244 0.24 0.274	0.222 0.218 0.278	0.193 0.179 0.274	0.146 0.103 0.221	332A 332B C332	3.364 3.318 3.283	3.448	OVER	OVER	OVER OVER OVER	OVER	OVER (OVER OVER	3.364 (OVER I	OVER
304A 304B C304	3.004 2.974 3.243	2.761 2.76 3.241	2.598 2.596 3.25	2.283 2.292 3.325	1.988 1.961 3.318	1.552 1.528 3.085	1.436 1.429 2.653	1.375 1.374 2.101	1.259 1.275 1.646	1.142 1.182 1.549	1.067 1.119 1.494	333A 333B C333	0.348 0.351 0.352	0.344	0.337 0.34 0.347	0.335 0.338 0.344	0.328 0.331 0.341	0.321 0.324 0.343	0.317 0.317 0.34	0.313 0.313 0.337	0.313 0.31 0.335	0. 294 0. 294 0. 335	0.257 0.256 0.338
305A 305B C305	0.672 0.673 0.682	0.644 0.648 0.67	0.631 0.632 0.662	0.608 0.606 0.649	0.589 0.592 0.64	0.523 0.521 0.628	0.466 0.466 0.595	0.41 0.414 0.559	0.356 0.36 0.469	0.297 0.299 0.39	0.267 0.269 0.35	334A 334B C334	3.29 3.229 3.342		3.201 3.165 3.357	3.175 3.163 3.378	3.153 3.135 3.395	2.472 2.575 3.392	2.218 2.204 3.363	2.05 2.006 3.346	1.793 1.679 3.336	1, 453 1, 345 3, 039	1.255 1.141 2.793
306A 306B C306		OVER (OVER 0	OVER (3.46 OVER OVER	3.131 3.153 OVER	3.049 3.035 OVER	2.844 2.843 3.229	2.71 2.715 3.143	2.648 2.646 3.075	335A 335B C335	0.368 0.374 0.377	0.361 0.366 0.374	0.357 0.362 0.371	0.354 0.359 0.364	0.343 0.347 0.356	0.327 0.329 0.337	0.302 0.302 0.309	0. 291 0. 295 0. 334	0.289 0.291 0.276	0.314 0.304 0.303	0.283 0.27 0.297
307A 307B C307	0.717 0.708 0.721	0.691 0.68 0.703	0.672 0.657 0.692	0.645 0.638 0.668	0.64 0.619 0.655	0.563 0.58 0.607	0.541 0.536 0.555	0.557 0.532 0.541	0.525 0.485 0.607	0.442 0.412 0.562	0.403 0.373 0.507	336A 336B C336	3.245 3.235 3.334		3.144 3.186 3.327	3.092 3.16 3.322	2.671 3.132 3.324	2.376 3.057 3.256	2.089 2.326 3.162	1.903 1.983 3.163	1.646 1.763 3.055	1.372 1.215 2.786	1.183 1.027 2.558
308A 308B C308	OVER C	OVER (OVER 0	OVER (OVER OVER OVER	3.454 OVER OVER	3.122 3.216 OVER	3.051 3.11 OVER	2.85 2.913 3.458	2.731 2.804 3.24	2.664 2.729 3.159	337A 337B C337	0.687 0.689 0.702	0.685 0.686 0.708	0.684 0.685 0.702	0.678 0.679 0.699	0.668 0.672 0.697	0.664 0.667 0.705	0.661 0.665 0.697	0.661 0.666 0.694	0.671 0.676 0.701	0.703 0.708 0.702	0.689 0.702 0.71
309A 309B C309	0.357 0.352 0.363	0.349 0.345 0.361	0.342 0.337 0.36	0.328 0.322 0.358	0.306 0.3 0.355	0.286 0.279 0.352	0.271 0.265 0.346	0.261 0.254 0.34	0.22 0.211 0.338	0.157 0.151 0.331	0.126 0.118 0.278	338A 338B C338	OVER OVER OVER	OVER	OVER	OVER	OVER OVER OVER	OVER	OVER (OVER OVER OVER	OVER (OVER	OVER OVER OVER
310A 310B C310	2.678 2.662 2.7	2.637 2.628 2.711	2.589 2.592 2.732	2.706 2.701 3.081	2.664 2.666 3.308	2.552 2.532 3.4	2.196 0.702 3.338	1.286 0.392 3.225	0.934 0.218 2.49	0.63 0.157 2.142	0.447 0.081 1.98	339A 339B C339	0.715 0.715 0.722	0.714 0.714 0.715	0.708 0.711 0.715	0.694 0.702 0.719	0.679 0.691 0.708	0.652 0.673 0.691	0.612 0.656 0.654	0.616 0.689 0.656	0.611 0.667 0.666	0,665 0,72 0,685	0.686 0.719 0.702
311A 311B C311	0.364 0.365 0.374	0.353 0.355 0.377	0.345 0.346 0.365	0.328 0.329 0.362	0.299 0.301 0.352	0.279 0.28 0.332	0.253 0.246 0.285	0.271 0.26 0.277	0.237 0.23 0.225	0.171 0.168 0.243	0.134 0.133 0.189	340A 340B C340	OVER OVER OVER	OVER	OVER	OVER	OVER	OVER		OVER	OVER (OVER OVER OVER
312A 312B C312	2.659 2.719 2.729	2.615 2.665 2.775	2.597 2.644 2.787	2.692 2.709 3.108	2.653 2.683 3.285	2.493 2.55 3.325	0.508 0.655 3.238	0.32 0.285 3.112	0.142 0.13 2.414	0.076 0.1 2.11	0.075 0.049 1.416	341A 341B C341	0.354 0.36 0.367	0.349 0.352 0.364	0.348 0.351 0.362	0.342 0.346 0.361	0.337 0.341 0.363	0.337 0.34 0.361	0.339 0.345 0.359	0.342 0.348 0.358	0.347 0.354 0.357	0.306 0.311 0.354	0.278 0.274 0.355
313A 313B C313	0.708 0.708 0.715	0.702 0.695 0.717	0.688 0.682 0.714	0.663 0.661 0.713	0.639 0.639 0.709	0.628 0.625 0.707	0.612 0.615 0.699	0.612 0.614 0.694	0.552 0.569 0.688	0.423 0.431 0.716	0.352 0.359 0.693	342A 342B C342	3.368 3.41 3.487	OVER		3.466 OVER 3.488		1.448 1.511 OVER	0.859 0.916 OVER	0.664 0.719 3.425	0.324 0.336 3.415	0.155 0.154 3.37	0.12 0.113 3.311
314A 314B C314	2.794 2.752 2.776	2.847 2.818 2.844	2.892 2.824 2.846	3.433	OVER OVER OVER	OVER	3.101 3.091 OVER	2.289 2.223 OVER	1.087 1.067 2.885	0.34 0.298 1.679	0.313 0.19 1.098	343A 343B C343	0.374 0.375 0.386	0.366 0.364 0.381	0.364 0.361 0.377	0.354 0.355 0.37	0.324 0.341 0.354	0.322 0.324 0.326	0.307 0.308 0.323	0.304 0.316 0.327	0.303 0.323 0.284	0.774 0.267 0.25	0.193 0.2 0.258
315A 315B C315	0.709 0.719 0.734	0.697 0.702 0.731	0.682 0.686 0.729	0.662	0.628 0.638 0.712	0.594 0.61 0.696	0.558 0.577 0.664	0.559 0.576 0.666	0.538 0.554 0.587	0.412 0.442 0.666	0.337 0.351 0.554	344A 344B C344	3.384	3.463		OVER 3.447 3.483	3.188 2.632 3.462	1.4 1.39 3.395	0.866 1.073 3.34	0.718 0.728 3.248	0.318 0.394 3.153	0,219 0,354 2,98	0.139 0.16 3.11
316A 316B C316	2.821 2.835 2.793	2.798 2.819 2.843	2.911 2.818 2.867	3.328	OVER OVER OVER	OVER	3.238 3.234 OVER	2.6 2.461 OVER	1.405 1.267 2.937	0.446 0.417 1.9	0.402 0.299 1.266	345A 345B C345	0.342 0.344 0.354	0.339 0.334 0.351	0.338 0.333 0.35	0.333 0.328 0.348	0.322 0.316 0.348	0.312 0.306 0.344	0.313 0.301 0.347	0.312 0.3 0.344	0.291 0.285 0.342	0.26 0.246 0.337	0, 239 0, 226 0, 335
317A 317B C317	0.318 0.321 0.334	0.294 0.293 0.32	0.274 0.278 0.311	0.25 0.253 0.302	0.217 0.219 0.291	0.182 0.191 0.275	0.145 0.169 0.25	0.134 0.146 0.222	0.116 0.127 0.185	0.092 0.088 0.146	0.077 0.071 0.123	346A 346B C346	3.17 3.171 3.379	3.069 3.094 3.394	3.047 3.058 3.392	3.006 2.978 3.403	2.116 2.079 3.399	1.233 1.384 3.369	0.734 0.778 3.393	0.539 0.528 3.353	0.202 0.215 3.32	0.088 0.099 2.951	0.103 0.084 2.655
318A 318B C318	2.589 2.597 2.846	2.259 2.251 2.858	1.978 1.971 3.01	1.68 1.672 3.133	1.437 1.432 3.237	1.307 1.306 3.161	1.181 1.182 2.262	1.113 1.112 1.752	0.997 0.994 1.605	0.858 0.857 1.484	0.778 0.772 1.405	347A 347B C347	0.371 0.383 0.406	0.362 0.373 0.396	0.359 0.37 0.392	0.35 0.352 0.389	0.33 0.339 0.363	0.301 0.319 0.349	0.29 0.313 0.308	0.319 0.324 0.291	0.295 0.318 0.284	0.234 0.293 0.256	0.186 0.261 0.259
319A 319B C319	0.335 0.334 0.342	0.308 0.31 0.327	0.287 0.287 0.323	0.264 0.26 0.304	0.228 0.225 0.288	0.206 0.201 0.286	0.169 0.164 0.243	0.173 0.146 0.215	0.136 0.119 0.221	0.117 0.057 0.168	0.094 0.04 0.138	348A 348B C348	3.206 3.165 3.382	3.11	3.186 3.115 3.395	3.184 3.065 3.379	3.133 2.964 3.322	2.973 1.581 3.258	1.699 1.087 3.263	1.031 0.797 3.221	0.462 2.863 3.211	0.179 1.385 2.762	0.163 0.367 2.488
320A 320B C320	2.563 2.587 2.873	2.259 2.246 2.898	1.975 1.986 3.041	1.677 1.692 3.14	1.447 1.459 3.197	1.319 1.328 3.081	1.197 1.201 2.342	1.128 1.135 1.831	1.015 1.027 1.677	0.888 0.907 1.574	0.794 0.834 1.519	349A 349B C349	0.371 0.359 0.367	0.357	0.366 0.355 0.367	0.365 0.353 0.366	0.363 0.351 0.364	0.362 0.35 0.363	0.362 0.349 0.362	0.362 0.349 0.362	0.358 0.345 0.362	0.31 0.289 0.36	0.295 0.276 0.356
321A 321B C321	0.35 0.351 0.363	0.337 0.335 0.362	0.321 0.321 0.36	0.299 0.3 0.358	0.27 0.271 0.356	0.253 0.249 0.352	0.226 0.227 0.346	0.193 0.194 0.339	0.167 0.168 0.338	0.13 0.132 0.329	0.104 0.105 0.286	350A 350B C350		OVER	OVER 3,454 3,361	3.401 3.325 3.35	3.279 3.186 3.365	3.14 3.057 3.326	2.831 2.736 3.31	2.608 2.464 3.318	2.446 2.362 3.251	2.396 2.295 3.276	2.384 2.287 3.276
322A 322B C322	2.696 2.708 2.864	2.564 2.58 2.881	2.553 2.568 3.05	2.535 2.504 3.208	2.366 2.356 3.301	0.319 0.195 3.389	0.193 0.12 3.395	0.137 0.109 3.181	0.089 0.044 2.548	0.056 0.033 2.167	0.036 0.027 1.672	351A 351B C351	0.389 0.386 0.391	0.383	0.383 0.38 0.388	0.378 0.376 0.383	0.374 0.373 0.379	0.368 0.361 0.372	0.346 0.338 0.357	0.332 0.314 0.349	0.287 0.278 0.332	0.255 0.246 0.323	0.24 0.231 0.312
323A 323B C323	0.368 0.364 0.384	0.35 0.346 0.381	0.332 0.331 0.376	0.308 0.308 0.371	0.273 0.277 0.364	0.253 0.262 0.348	0.228 0.239 0.299	0.207 0.218 0.284	0.192 0.193 0.255	0.124 0.153 0.282	0.118 0.113 0.243	352A 352B C 352		OVER OVER 3.367	3.432 3.441 3.371	3.314 3.315 3.38	3.129 3.173 3.368	2.994 2.955 3.322	2.603 2.553 3.297	2.442 2.374 3.301	2.199 2.152 3.23	2.19 2.162 3.256	2.152 2.126 3.239
324A 324B C324	2.746 2.739 2.865	2.574 2.637 2.904	2.542 2.584 3.049	2.446 2.519 3.192	2.209 2.234 3.278	2.579 0.581 3.347	0.113 0.188 3.235	0.078 0.092 3.061	0.049 0.065 2.519	0.03 0.103 2.13	0.017 0.02 0.955	353A 353B C 353	0,333 0,33 0,327	0.324	0.324 0.322 0.32	0.322 0.319 0.317	0.316 0.315 0.312	0.309 0.309 0.306	0.244 0.179 0.218	0.156 0.142 0.166	0.096 0.085 0.106	0.035 0.034 0.058	0.02 0.021 0.032
325A 325B C325	0.362 0.363 0.369	0.355 0.357 0.367	0.351 0.354 0.364	0.35 0.353 0.363	0.346 0.348 0.361	0.344 0.349 0.361	0.342 0.345 0.359	0.345 0.348 0.358	0.349 0.354 0.355	0.353 0.362 0.35	0.306 0.362 0.349	354A 354B C354	3.246 3.232 3.249	3.241	3.289 3.266 3.24	3.279	2.496 2.472 3.236	1.958 2.009 3.207	1.621 1.549 3.182	1.465 1.407 3.187	1.08 0.983 3.157	0.84 0.741 3.193	0.807 0.691 3.202
326A 326B C326	3.024 3.031 3.108	3.096 3.08 3.096		OVER (OVER OVER 3.454		OVER OVER 3.477	2.71 2.483 3.448	1.975 1.935 3.081	1.757 1.751 3.302	1.664 1.635 3.401	355A 355B C355	0.36 0.363 0.372	0.355	0.348 0.353 0.359	0.343 0.347 0.353	0.335 0.334 0.34	0.296 0.298 0.314	0.151 0.228 0.203	0.13 0.168 0.162	0.096 0.119 0.119	0.034 0.062 0.074	0.021 0.031 0.049
327A 327B C327	0.377 0.378 0.383	0.37 0.37 0.378	0.366 0.366 0.374	0.363 0.364 0.37	0.347 0.352 0.362	0.343 0.336 0.347	0.321 0.312 0.319	0.338 0.339 0.347	0.325 0.321 0.296	0.354 0.353 0.311	0.349 0.349 0.302	356A 356B C356	3.226 3.23 3.278	3.22	3.238 3.232 3.275	3.233 3.19 3.254	2,476 2,335 3,232	1.987 1.938 3.154	1.787 1.523 3.076	1,602 1,344 3,135	1.283 0.966 3.039	0.94 0.723 2.847	0.781 0.631 2.591
												Ĩ											

RunID	0	0.25	525nr 0.5	n Absorbar 1		d to Diat X		12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
357A 357B C357	0.363 0.36 0.364	0.362 0.358 0.363	0.359 0.355 0.362	0.356 0.353 0.36	0.352 0.348 0.356	0.342	0.335	0.339 0.331 0.347	0.334 0.326 0.344	0.331 0.322 0.337	0.33 0.32 0.336	386A 386B C386	2.769 2.785 2.927	2.785 2.758 3.018	2.757 2.749 3.113	2.742 2.745 3.218	2.814 2.817 3.361	2.913 2.925 3.399	2.702 2.748 3.412	2.351 2.527 3.413	1.929 2.148 3.042	1.522 1.602 3.263	1.048 1.128 3.167
358A 358B C358	3.266 3.264 3.281	3.403 3.379 3.291	3.495 OVER 3.312	OVER		OVER	2.236 2.249 3.334	1.696 1.734 3.33	1.23 1.189 3.303	0.794 0.776 3.271	0.434 0.405 3.264	387A 387B C387	0.387 0.387 0.384	0.377 0.375 0.383	0.368 0.366 0.38	0.356 0.352 0.377	0.328 0.326 0.374	0.289 0.284 0.368	0.234 0.23 0.359	0.201 0.197 0.348	0.158 0.154 0.336	0.141 0.136 0.342	0.131 0.128 0.345
359A 359B C359	0.406 0.411 0.399	0.401 0.406 0.395	0.397 0.402 0.393	0.392 0.397 0.388	0.385 0.385 0.382	0.371	0.35 0.349 0.349	0.337 0.333 0.336	0.314 0.307 0.309	0.292 0.282 0.287	0.297 0.293 0.305	388A 388B C388	2.794 2.774 2.995	2.799 2.778 3.068	2.777 2.764 3.126	2.758 2.74 3.24	2.808 2.793 3.371	2.863 2.877 3.426	2.401 1.946 3.423	1.443 0.892 3.405	0.938 0.541 3.062	0.624 0.335 3.23	0.403 0.24 3.161
360A 360B C360	3.322 3.346 3.298		OVER OVER 3.314		3.47 OVER 3.321	3.105 3.276 3.343	2.261	1.784 1.88 3.316	1.248 1.334 3.271	0.931 0.974 3.225	0.521 0.578 3.23	389A 389B C389	0.352 0.349 0.363	0.344 0.344 0.361	0.337 0.335 0.363	0.33 0.325 0.359	0.319 0.314 0.358	0.312 0.301 0.358	0.304 0.299 0.355	0.303 0.297 0.356	0.293 0.294 0.353	0.18 0.232 0.353	0.13 0.15 0.349
361A 361B C361	0.727 0.718 0.734	0.723 0.713 0.731	0.719 0.71 0.728	0.714 0.705 0.727	0.707 0.698 0.725	0.688	0.68	0.676	0.684 0.672 0.709		0.674 0.663 0.694	390A 390B C390	2.926 2.93 2.979	2.868 2.862 3.056	2.793 2.786 3.129	2.582 2.576 3.191	2.197 2.202 3.325	1.299 1.304 3.325	0.703 0.694 3.379	0.501 0.492 3.376	0.364 0.36 3.072	0.293 0.287 3.259	0.255 0.249 3.156
362A 362B C362	OVER 0	VER (OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER		OVER	OVER OVER OVER	391A 391B C391	0.4 0.389 0.388	0.39 0.378 0.385	0.378 0.372 0.383	0.368 0.362 0.38	0.35 0.349 0.377	0.331 0.334 0.373	0.303 0.311 0.36	0.292 0.3 0.357	0.169 0.174 0.34	0.097 0.103 0.325	0.071 0.078 0.316
363A 363B C363	0.755 0.769 0.764	0.747 0.763 0.762	0.744 0.759 0.758	0.738 0.752 0.752	0.728 0.74 0.747	0.722	0.699	0.685 0.686 0.722	0.661 0.655 0.7	0.643 0.638 0.691	0.649 0.649 0.678	392A 392B C392	2.942 2.916 2.975	2.842 2.819 3.08	2.729 2.714 3.163	2.512 2.48 3.192	2.018 1.975 3.319	1.11 1.076 3.366	0.554 0.507 3.353	0.333 0.286 3.336	0.191 0.164 3.044	0.116 0.112 3.231	0.111 0.099 3.112
364A 364B C364	OVER 0	VER (OVER	OVER OVER OVER		OVER OVER OVER	OVER OVER OVER	OVER	OVER		OVER OVER OVER	393A 393B C 393	0.346 0.347 0.35	0.342 0.344 0.351	0.341 0.341 0.349	0.333 0.334 0.345	0.326 0.326 0.341	0.317 0.318 0.334	0.313 0.312 0.33	0.314 0.311 0.326	0.294 0.29 0.317	0.263 0.261 0.311	0.245 0.242 0.282
365A 365B C365	0.358 0.356 0.361	0.353 0.353 0.361	0.349 0.35 0.357	0.347 0.346 0.356		0.334	0.325		0.319 0.319 0.338		0.319 0.32 0.331	394A 394B C 394	2.897 2.895 2.97	2.785 2.77 2.98	2.674 2.677 3.056	2.459 2.463 3.289	2.088 2.095 3.352	1.7 1.7 3.345	1.622 1.622 3.243	1.604 1.602 3.139	1.521 1.52 2.584	1.446 1.452 2.06	1.4 1.409 1.712
366A 366B C366	3.326 O 3.285 O 3.272				OVER OVER 3.32	1.898 1.868 3.318	0.731	0.495 0.406 3.301	0.128 0.114 3.239		0.051 0.037 3.228	395A 395B C 395	0.372 0.37 0.4	0.369 0.37 0.397	0.365 0.363 0.393	0.356 0.354 0.386	0.347 0.342 0.375	0.333 0.324 0.354	0.32 0.31 0.331	0.32 0.303 0.32	0.294 0.283 0.286	0.261 0.251 0.292	0.242 0.234 0.273
367A 367B C367	0.396 0.395 0.391	0.392 0.39 0.389	0.388 0.386 0.386	0.383 0.382 0.384	0.376 0.376 0.38	0.365	0.352	0.346 0.344 0.358	0.329 0.329 0.344	0.32 0.315 0.329	0.312 0.318 0.323	396A 396B C396	2.913 2.897 2.978	2.809 2.77 2.968	2.687 2.687 3.097	2.468 2.467 3.31	2.12 2.098 3.367	1.746 1.732 3.387	1.655 1.647 3.262	1.636 1.625 3.148	1.54 1.535 2.608	1.452 1.454 2.104	1.396 1.389 1.716
368A 368B C368	3.396 O 3.378 O 3.302		OVER OVER 3.315	3,406 3,43 3,321	2.995 3.064 3.317	1.842	0.731	0.374 0.361 3.301	0.116 0.116 3.232	0.077 0.067 3.22	0.045 0.048 3.205	397A 397B C397	0.71 0.718 0.716	0.704 0.711 0.717	0.696 0.705 0.71	0.688 0.696 0.708	0.675 0.683 0.702	0.664 0.671 0.694	0.657 0.656 0.682	0.651 0.653 0.683	0.627 0.626 0.663	0.564 0.563 0.637	0.519 0.522 0.617
369A 369B C369	0.358 0.355 0.359	0.352 0.349 0.355	0.348 0.344 0.354	0.344 0.341 0.353	0.331 0.327 0.35		0.293		0.282 0.276 0.346		0.275 0.268 0.348	398A 398B C 398	3.167 3.189 3.167	3.198 3.226 3.212	3.337 (3.449 (3.35 (OVER		OVER	OVER (OVER OVER OVER	2.949 2.951 3.232	3.025 3.06 3.398 (3.121 3.144 OVER
370A 370B C370	3.144 3.183 3.261	3.083 3.117 3.227	3.074 3.12 3.232	3.102 3.145 3.263	3.121 3.145 3.305		3.162		2.766 2.72 2.937	1.941 1.925 3.072	1.879 1.897 3.25	399A 399B C399	0.75 0.738 0.754	0.744 0.731 0.75	0.734 0.723 0.746	0.721 0.712 0.737	0.709 0.7 0.73	0.685 0.677 0.713	0.661 0.652 0.698	0.655 0.647 0.686	0.637 0.621 0.636	0.566 0.563 0.624	0.522 0.508 0.596
371A 371B C371	0,388 0,391 0,4	0.381 0.387 0.395	0.378 0.381 0.391	0.369 0.37 0.386	0.355 0.355 0.386	0.331	0.299	0.29	0.275 0.265 0.357		0.257 0.242 0.352	400A 400B C 400	3.192 3.182 3.17	3.237 3.244 3.215	3.4 (3.402 (3.356 (OVER	OVER	OVER		OVER OVER OVER	3.016 2.988 3.256	3.071 3.099 3.441 (3.173 3.159 OVER
372A 372B C372	3.183 3.193 3.319	3.11 3.125 3.275	3.085 3.108 3.28	3.114 3.113 3.304	3.108 3.104 3.328	3.09	3.058	3.017	2.637 2.396 2.933	1.791 1.781 3.062	1.736 1.729 3.219	401A 401B C 401	0.37 0.365 0.364	0.367 0.364 0.365	0.365 0.362 0.364	0.36 0.355 0.365	0.352 0.347 0.363	0.337 0.334 0.361	0.322 0.32 0.358	0.314 0.311 0.358	0.3 0.299 0.353	0.296 0.297 0.344	0.294 0.293 0.337
373A 373B C373	0.709 0.716 0.725	0.701 0.706 0.721	0.694 0.699 0.718	0.683 0.688 0.716	0.666 0.672 0.716	0.648	0.633		0.614 0.617 0.713	0.611 0.613 0.716	0.608 0.613 0.716	402A 402B C 402	2.959 2.965 3.023	2.888 2.874 3.04	2.874 2.852 3.1	2.875 2.84 3.287	2.795 2.764 3.393	2.714 2.68 3.443	2.66 2.615 3.432	2.573 2.527 3.419	2.337 2.289 2.998	2.16 2.158 3.191	2.018 2.025 2.907
374A 374B C374	OVER 0	VER (OVER OVER OVER	OVER	OVER OVER OVER	OVER OVER	OVER OVER OVER	3.175 3.204 3.138	3.378	OVER OVER OVER	403A 403B C 403	0.398 0.388 0.393	0.395 0.385 0.391	0.389 0.381 0.389	0.384 0.375 0.386	0.366 0.362 0.381	0.345 0.341 0.372	0.318 0.315 0.358	0.306 0.301 0.363	0.277 0.273 0.338	0.272 0.265 0.327	0.255 0.26 0.311
375A 375B C375	0.756 0.76 0.763	0.746 0.75 0.762	0.736 0.741 0.759	0.723 0.727 0.755	0.705	0.678	0.647 0.643	0.643 0.637	0.616 0.606 0.711	0.6	0.6 0.576	404A 404B C 404	2.932 2.958 3.07	2.863 2.864 3.007	2.856 2.857 3.101	2.853 2.849 3.289	2.766 2.772 3.374	2.657 2.647 3.421	2.599 2.608 3.398	2.559 2.573 3.378	2.323 2.315 3.018	2.135 2.135 3.095	1.966 1.94 2.852
376A 376B C376	OVER 0	VER (OVER OVER OVER		OVER OVER OVER	OVER		OVER OVER OVER	3.355	OVER OVER OVER	405A 405B C 405	0.723 0.732 0.737	0.719 0.727 0.734	0.712 0.723 0.733	0.706 0.713 0.736	0.692 0.701 0.732	0.676 0.684 0.73	0.669 0.671 0.73	0.658 0.666 0.726	0.65 0.657 0.721	0.65 0.664 0.709	0.655 0.677 0.702
377A 377B C377	0.356 0.357 0.362	0.351 0.352 0.36	0.349 0.349 0.36	0.343	0.332 0.332 0.357	0.322	0.314		0.305 0.306 0.353	0.298	0.303 0.308 0.351	406A 406B C 406	3.223 3.231 3.216	3.274 3.24 3.246	3.392 (OVER	OVER	OVER	OVER (OVER	2.213 2.153 3.329 (1.307 1.304 OVER	0.851 0.814 3.206
378A 378B C378	2.892 2.82 2.87	2.933 2.931 2.94	3.073 3.017 3.024		3.094 3.031	2.928 2.868	2.425 2.38	2.303 2.255	2.163 2.125 3.094	2.143 2.097	2.141 2.095	407A 407B C 407	0.755 0.755 0.755	0.749 0.751 0.754		0.733 0.726 0.744	0.708 0.713 0.743	0.683 0.691 0.733	0.655 0.66 0.716	0.659 0.651 0.709	0.627 0.619 0.7	0.608 0.611 0.676	0.621 0.636 0.659
379A 379B C379	0.376 0.384 0.404	0.37 0.378 0.398	0.367 0.374 0.395	0.357 0.365 0.391	0.349	0.333	0.315	0.302	0.271 0.275 0.316		0.216	408A 408B C 408	3.266 3.242 3.227	3.237 3.269 3.264	3.418	OVER	OVER	OVER	OVER (OVER		1.519 1.496 OVER	1.03 0.993 3.26
380A 380B C380	2.899 2.88 2.905	2.928 2.939 2.98	2.983 2.995 3.059	3.054	2.966	2.585	2.172	2.033	1.854 1.877 3.074		1.788 1.823 3.16	409A 409B C 409	0.344 0.341 0.352	0.339 0.335 0.347	0.334 0.333 0.348	0.325 0.324 0.345	0.316 0.316 0.34	0.312 0.314 0.336	0.311 0.313 0.33	0.304 0.302 0.326	0.274 0.272 0.323	0.244 0.242 0.317	0.228 0.227 0.292
381A 381B C381	0.707 0.706 0.715	0.699 0.701 0.713	0.693 0.693 0.713	0.686	0.675	0.666	0.66	0.658	0.649 0.654 0.707		0.656	410A 410B C410	2.833 2.818 2.996	2.551 2.532 3.065	2.266 2.243 3.095	1.931 1.916 3.198	1.681 1.671 3.312	1.567 1.556 3.316	1, 491 1, 483 3, 251	1.436 1.429 3.077	1.342 1.337 2.582	1.24 1.238 1.931	1.191 1.188 1.662
382A 382B C382	3.045 3.056 3.059	3.092 3.175 3.233	3.328	OVER OVER	OVER OVER OVER	OVER		OVER OVER OVER	3.301 3.317 3.346		3.473 3.473 OVER	411A 411B C411	0.362 0.37 0.391	0.357 0.365 0.386	0.351 0.358 0.384	0.34 0.349 0.379	0.326 0.337 0.369	0.314 0.324 0.354	0.301 0.314 0.332	0.297 0.307 0.319	0.269 0.286 0.303	0.244 0.257 0.293	0.224 0.23 0.279
383A 383B C383	0.746 0.748 0.759		0.73 0.734 0.753	0.718 0.721		0.683 0.686	0.667	0.653	0.624 0.623 0.691	0.621		412A 412B C412	2.819 2.823 3.049	2.545 2.543 3.11	2.252 2.27 3.146	1.92 1.936 3.25	1.681 1.692 3.369	1.57 1.575 3.36	1.5 1.504 3.262	1.457 1.455 3.07	1.375 1.365 2.533	1.289 1.279 1.865	1.241 1.232 1.606
384A 384B C384	3.176 3.09 3.053	3.221 3.166 3.125	3.357 3.31	OVER	OVER OVER OVER	OVER OVER	OVER OVER		3.292 3.287 3.335	3.396 3.424	3.454 3.447 3.5	413A 413B C413	0.374 0.361 0.376	0.365 0.358 0.376	0.364 0.353 0.374	0.357 0.344 0.373	0.338 0.332 0.372	0.318 0.311 0.37	0.307 0.298 0.368	0.301 0.291 0.366	0.292 0.287 0.363	0.259 0.251 0.353	0.245 0.24 0.348
385A 385B C385	0.354 0.351 0.364	0.345 0.343	0.336 0.336	0.325 0.324	0.302 0.3	0.261 0.265	0.224 0.223	0.199 0.198	0.171 0.171	0.159 0.157	0.154 0.152	414A 414B C414	2.854 2.886 3.031	2.773 2.806 3.106	2.701 2.727 3.154	2.677 2.699 3.238	2.658 2.68 3.368	2.554 2.585 3.421	2.35 2.368 3.461	2.228 2.26 3.416	2.055 2.081 3.199	1.871 1.906 2.931	1.782 1.808 2.943
- JUG	3.304	5.502	5.508	0.337	0.330	0.337	.0.333	0.333	0.333	0.333	0.004	0.414	3.031	5.100	.5.154	.5.236	3.306		5.401	5.410	3.188	2.001	2.040

RunID	0	0.25	525ni 0.5			d to Diat >		12	24	48	72	Run	D	0 0.25	5 0.5	1	2	· 4	8	12	24	48	72
415A 415B C415	0.397 0.396 0.396	0.391 0.39 0.392	0.384 0.383 0.39		0.356 0.354 0.382	0.322	0.29		0.286 0.255 0.335	0.247 0.238 0.318	0.221	444A 444B C444	3.06	9 3.017	7 2.994	3.001	2.999 2.976 3.258	2.811	2.514 2.511 3.194	2. 284 2. 322 3. 195	1.992 1.992 3.102	1.867 1.97 3.116	1.994 1.953 3.141
416A 416B C416	2.893 2.866 3.03	2.816 2.819 3.135	2.748 2.745 3.153	2.707		2.526	2.358	2.269	2.121	1,934 1,932 2,918	1.833	445A 445B C 445		4 0.72	0.721	0.718	0.725	0.726	0.713 0.72 0.725	0.714	0.688 0.69 0.726	0.595 0.599 0.724	0.578 0.582 0.719
417A 417B C417	0.371 0.372 0.374	0.37 0.371 0.373	0.368 0.369 0.374	0.365	0.362	0.356	0.353	0.352 0.352 0.37	0.35 0.352 0.37	0.348 0.352 0.368	0.349	446A 446B C 446	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER
418A 418B C418	3.125 3.088 3.128	3.111 3.112 3.209	3.209 3.217 3.22	3.498	OVER OVER 3,419	OVER	OVER OVER 3.485	2.426 2.422 3.479	2.08 2.083 3.262	1.876 1.888 3.364	1.784	447A 447B C 447	0.75	7 0.741	0.734		0.718	0.686			0.486 0.468 0.602	0.415 0.442 0.639	0.436 0.455 0.614
419A 419B C419	0.393 0.39 0.402	0.39 0.388 0.399	0.43 0.386 0.397	0.381	0.379 0.375 0.391	0,363	0.352		0.326	0.339 0.335 0.356	0.329	448A 448B C 448		OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER
420A 420B C420	3.127 3.1 3.164	3.156 3.155 3.173	3.233	OVER OVER	OVER OVER	OVER OVER	OVER OVER	2.248 2.298	1.938		1.636	449A 449B C 449	0.27 0.26	7 0.23° 9 0.23	0.192 0.18	0.138	0.049	0.001	0.002 0.002 0.003	0.001	0.001 0.002 0.003	0.002 0.002 0.004	0.003 0.002 0.004
421A 421B C421	0.729 0.725 0.73	0.726 0.723 0.732	0.726 0.721 0.731	0.722 0.716 0.731		0.708	0.703	0.704		0.707 0.704 0.722		450A 450B C 450	2.90	9 2.65	3 2.523		2.142	1.992	1.669 1.665 2.503	0.339 0.358 2.346	0.103 0.201 1.011	0.025 0.028 0.134	0.008 0.011 0.036
422A 422B C422	3.453 3.487 3.477		OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	451A 451B C 451	0.30 0.31	4 0.25: 1 0.25:	2 0.21 2 0.208	0.153 0.15	0.064 0.062	0.028	0.028 0.029	0.024 0.027	0.022 0.024 0.021	0.017 0.021 0.018	0.013 0.016 0.013
423A 423B C423	0.756 0.762 0.764	0.753 0.759 0.759	0.75 0.752 0.758	0.743 0.746	0.735	0.723	0.708 0.711	0.698 0.707		0.671	0.683 0.684	452A 452B C 452	2.90 2.97	5 2.66: 4 2.72	2 2.55 5 2.618	2.4 2.464	2.23 2.257	1.904 2.081			0.174 0.113 0.531	0.043 0.039 0.21	0.016 0.01 0.08
424A 424B C424		OVER	OVER OVER	y GAVEN	OVER	OVER OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	453A 453B C 453	0.58 0.59	6 0.511 3 0.53	B 0.454	0.358 0.369	0.194	0.143	0.11	0.085 0.123	0.057 0.087	0.032 0.049 0.012	0.015 0.023 0.008
425A 425B C425	0.359 0.354 0.357	0.357 0.352 0.356	0.355 0.351 0.355	0.35 0.345	0.347	0,338	0.331 0.33	0.327 0.328	0.323 0.324	0.316 0.32	0.307 0.314	454A 454B C 454	OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER	OVER OVER OVER	OVER OVER OVER	1.753 1.675 OVER	1.302	0.845 0.825 2.41	0.488 0.475 1.253	0.235 0.215 0.562
426A 426B C426	3.247 3.284 3.362	3.203 3.242 3.355	3.202 3.243 3.372	3.229 3.264	3.242 3.284	3.26 3.318	3.163 3.291	2.284 3.202	1.655 1.885	1.439 1.548	1.169 1.272	455A 455B C 455	0.62 0.64	6 0.553 3 0.574	3 0.485 4 0.509	0.382 0.411	0.194 0.233	0.132 0.232		0.05 0.106 0.073	0.024 0.046 0.031	0.009 0.014 0.009	0.008 0.008 0.004
427A 427B C427	0.391 0.391 0.393	0.387 0.384 0.391	0.383 0.384 0.387	0.377	0.37	0.354	0.336 0.335	0.324	0.302	0.314	0.296 0.297	456A 456B C 456	OVER OVER	OVER OVER OVER	OVER OVER OVER		OVER OVER OVER	2.556 2.657 OVER	1.982 1.755 OVER	1.549	0.916 0.859 2.556	0.476 0.474 1.437	0.19 0.227 0.738
428A 428B	3.311 3.261	3.264 3.236	3.264 3.228	3.259 3.254	3.263 3.242	3.22 3.254	3.203 3.13	2.464 2.816	1.669 1.669	1.44 1.409	1.192 1.195	457A 457B	0.34 0.34	4 0.321 3 0.32	3 0.315 7 0.312	0.298 0.294	0.334	0.394 0.385	0.318 0.301	0.258 0.239	0.153 0.127	0.076 0.058	0.018 0.021
C428 429A 429B	0.696 0.703	0.692 0.701	0.688 0.697	0.682 0.695	0.685	0.663 0.676	0.659 0.671	0.655 0.67	0.667	0.646 0.661	0.639 0.656	C 457 458A 458B	3.13 3.1	9 3.009 2 2.98	3 2.947 4 2.924	2.914 2.897	2.819 2.816	2.706 2.698		0.525 0.557	0.126 0.127 0.139	0.053 0.048 0.086	0.026 0.018 0.04
C429 430A 430B	OVER	OVER	0.702 OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER		OVER OVER	C 458 459A 459B	0.38 0.37	8 0.36 4 0.35	7 0.35 2 0.333	0.362 0.305	0.347 0.294	0.388	0.263	0.202	0.113 0.112	0.291 0.022 0.026	0.086 0.006 0.01
C430 431A 431B	0.723 0.723	0.719 0.718	0.715 0.712	0.702		0.672	0.654	0.661 0.66	0.641 0.644	0.634 0.633	0.62	C 459 460A 460B	3.18 3.15	6 3.051 8 3.03	5 2.984 7 2960	2.956 2.951	2.839 2.88	2.528 2.732	1.34 1.61	0.237 0.53 0.696	0.143 1.72 0.215	0.038 0.048 0.062	0.011 0.018 0.037
C431 432A 432B	OVER (OVER	0.725 OVER OVER	OVER OVER	0.718 OVER OVER	OVER OVER	OVER OVER	OVER	OVER		OVER OVER	C 461A 461B	0.69 0.69	3 0.67: 7 0.67:	2 0.658 5 0.661	0.676	0.743 0.743	0.799	0.716 0.705		0.906 0.323 0.312	0.18 0.094 0.093	0.067 0.027 0.025
C432 433A 433B	0.367 0.364	0.363 0.36	0.36 0.356	0.353	0.35 0.347	0.34	0.34 0.334	0.342 0.334	0.342 0.335	0.34 0.334	0.331	C 461 462A 462B	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	0.48 3.041 2.881	0.215 1.89 1.664	0.063 1.168 1.026
C433 434A 434B C434	3.326 3.371 3.392		0.364 OVER OVER 3.457	OVER OVER		OVER OVER	0.359 1.38 1.373 OVER	0.982	0.604	0.356	0.299 0.298	C 463 463B C 463	0.72 0.75	6 0.73	0.72	0.691 0.738		0.788	0.735 0.725	0.592 0.612	0.326 0.359 0.461	3.153 0.069 0.072 0.138	2.533 0.032 0.025 0.051
435A 435B	0.386 0.395	0.383 0.392	0.38 0.387	0.373 0.382	0.366 0.373	0.356	0.347 0.347	0.346 0.348	0.332 0.332	0.325 0.317	0.313 0.308	464A 464B C 464	OVER OVER	OVER OVER	OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	2.978 2.996 OVER	1.926 1.916	1.231 1.244
C435 436A 436B C436	3.338 3.405		OVER OVER	OVER OVER		OVER OVER	1.318 1.301 3.487	0.86 0.875	0.468 0.467	0.269 0.193	0.187 0.154	465A 465B C 465	0.35 0.3	6 0.35	0.353 7 0.353	0.348 0.348	0.341	0.329 0.33	0.315		0.299 0.299 0.357	3.159 0.292 0.291 0.355	0.291 0.29 0.356
437A 437B	0.359 0.355	0.358 0.352	0.355 0.349	0.348 0.344	0.341 0.337	0.333	0.321 0.322	0.318 0.319	0.31 0.317	0.306 0.312	0.302 0.308	466A 466B C 466	2.93 2.93	2 2.81: 5 2.82i	3 2.737 5 2.747	2.66 2.671	2.544 2.556	2.44	2.406 2.44		2.366 2.374	2.331 2.349	2.295 2.31
C437 438A 438B	3.155 3.153	3.242	3.363	OVER OVER	OVER OVER	OVER OVER	OVER OVER	3.375 OVER	0.59 0.557	0.194 0.235	0.126 0.117	467A 467B	0.38 0.38	9 0.384 9 0.384	4 0.378 4 0.38	0.369 0.371	0.354 0.357	0.328	0.287 0.293		3.248 0.203 0.21	3.195 0.148 0.171	3.039 0.121 0.152
C438 439A 439B C439	0.374 0.37 0.396	0.365	0.368 0.362 0.388	0.362 0.352	0.344	0.339	0.324	0.325 0.32	0.308 0.305	0.3	0.294 0.297	C 467 468A 468B C 468	2.97 2.9	8 2.85 4 2.84	5 2.768 1 2.755	2.658 2.657	2.504 2.533	2.337 3 2.414	2.188 2.293		0.291 2.056 2.252 3.092	0.257 2.01 2.176 3.04	0.242 1.923 2.129 2.902
440A 440B C440	3.216 3.256 3.362	3.239 3.326	3.331	3.492 OVER	OVER OVER	OVER OVER	OVER OVER 3.415	1.296 3.419	0.401	0.194	0.112 0.194	469A 469B C 469	0.72 0.72	4 0.71: 5 0.71:	5 0.708 9 0.711	0.702 0.703	0.693 0.691	0.68 0.68	0.666 0.668		0.653 0.651 0.724	0.652 0.647 0.719	0.651 0.647 0.716
441A 441B	0.369 0.36	0.364 0.357	0.356 0.35	0.354 0.347	0.36 0.349	0.35	0.357 0.35	0.356 0.349	0.348 0.338	0.259 0.237	0.233 0.217	470A 470B	3.3 3.37	2 3.31 3 3.31	3.427 3.437	OVER OVER	OVER OVER	OVER OVER	OVER OVER		OVER OVER	OVER OVER	3.315 3.332
C441 442A 442B	0.366 3.04 3.005	2.971 2.944	0.366 2.958 2.928	2.977 2.942	3.005 2.956	2.952 2.917	2.808 2.77	2.493 2.453	2.284 2.248	2.216 2.167	2.199 2.161	471A 471B	0.76 0.75	3 0.751 6 0.74	5 0.747 7 0.738	0.733 0.725	0.708	0.679	0.631		0.512 0.507	0.443	0.425
C442 443A 443B	0.377 0.383	0.377	0.364 0.366	0.353 0.358	0.343 0.349	0.323 0.325	0.271 0.268	0.235 0.216	0.148 0.142	0.06	0.077 0.069	C471 472A 472B	3.41 3.34	1 3.40 5 3.4	5 0.752 5 OVER 2 3.496	OVER OVER	OVER OVER	OVER OVER	OVER OVER		OVER	OVER OVER	0.551 3.332 3.33
C443	0.387	0.386	0.379	0.375	0.365	i 0.343	0.301	0.264	0.205	0.184	0.236	C 472	3.3	7 3.49	I OVER	OVER	OVER	OVER	OVER		OVER	OVER	3.335

RunID	0	525nm Absorbance zeroed to DI at X hours 0 0.25 0.5 1 2 4 8 12 24								48	72	Run IE	C	0.25	0.5	1	2	4	8	12	24	48	72
473A 473B C473	0.351 0.348 0.349	0.349 0.346 0.348	0.347 0.344 0.348	0.34 0.337 0.349	0.33 0.327 0.348	0.316	0.317	0.315 0.314 0.343	0.3 0.294 0.342	0.26 0.252 0.337	0.251 0.244 0.334	502A 502B C 502	OVER OVER OVER	OVER OVER OVER	OVER	OVER		OVER	OVER	OVER	OVER	OVER	OVER OVER OVER
474A 474B C474	2.781 2.781 2.945	2.718 2.738 2.979	2.76 2.782 3.027	2.859 2.85 3.132	2.86 2.86 3.208	2.723	2.08	1.868 1.87 3.214	1.709 1.717 2.939	1.653 1.653 2.988	1.651 1.647 3.083	503A 503B C 503	0.736 0.73 0.76	0.717	0.704	0.689	0.673	0.638		0.549 0.598 0.623	0.514 0.559 0.58	0.513 0.611 0.624	0.412 0.591 0.638
475A 475B C475	0.377 0.376 0.38	0.37 0.368 0.376	0.363 0.363 0.375	0.353 0.353 0.368	0.335 0.335 0.357	0.304	0.279 0.277 0.297	0.241 0.271 0.299	0.175 0.191 0.236	0.096 0.104 0.187	0.085 0.092 0.182	504A 504B C 504	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER		OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	3.492 OVER OVER
476A 476B C476	2.798 2.798 2.967	2.76 2.75 3.008	2.816 2.794 3.041	2.842 2.851 3.138	2.808 2.811 3.193	2.42	1.934	1.682 1.703 3.206	1.47 1.442 2.904	1.39 1.316 2.886	1.375 1.333 2.97	505A 505B C 505	0.357 0.356 0.359	0.347	0.342	0.334		0.328 0.325 0.345		0.324 0.32 0.342	0.323 0.318 0.337	0.325 0.322 0.331	0.33 0.322 0.328
477A 477B C477	0.702 0.71 0.707	0.694 0.703 0.707	0.689 0.699 0.709	0.683 0.691 0.709	0.671 0.679 0.706	0.673	0.682	0.659 0.673 0.704	0.642 0.653 0.702	0.607 0.615 0.695	0.599 0.607 0.692	506A 506B C 506	3.07 3.02 3.339	2.843	2.764	2.697			2.917 2.858 3.425	2.781 2.778 3.417	1.814 1.888 3.206	1.599 1.614 3.162	1.51 1.488 3.3
478A 478B C478	3.185 3.208 3.204	3.297 3.31 3.272	3.402 (3.436 (3.36 (OVER		OVER	OVER	OVER OVER OVER	3.269 3.222 3.224	3.212 3.204 3.275	3.481 3.457 OVER	507A 507B C 507	0.374 0.373 0.377	0.364	0.357	0.342	0.332		0.283		0.251 0.254 0.254	0,306 0,253 0,23	0.262
479A 479B C479	0.728 0.736 0.728	0.718 0.724 0.726	0.708 0.715 0.723	0.692 0.697 0.717	0.67 0.678 0.707			0.575 0.524 0.628	0.485 0.435 0.572	0.419 0.38 0.517	0.433 0.426 0.585	508A 508B C 508	3.048 3.058 3.337	2.875	2.81		2.702 2.699 3.395		2.814 2.783 3.359	2.76 2.75 3.329	1.825 1.994 3.118	1.421 1.439 3.084	1.316 1.296 3.085
480A 480B C480	3.208 3.186 3.201		OVER (OVER		OVER	OVER	OVER OVER OVER	3.208 3.218 3.281	3.309 3.265 3.318	3.429 3.329 OVER	509A 509B C 509	0.695 0.702 0.713	0.691	0.684	0.68	0.673	0.662	0.647 0.654 0.699	0.65 0.654 0.697	0.644 0.65 0.695	0.642 0.652 0.689	0.652
481A 481B C481	0,317 0,324 0,322	0.301 0.302 0.308	0.29 0.29 0.3	0.276 0.279 0.292		0.222	0.177	0.141 0.139 0.194	0.106 0.104 0.131	0.083 0.081 0.1	0.066 0.061 0.079	510A 510B C510	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER	OVER	OVER	OVER OVER OVER	OVER OVER OVER
482A 482B C482	2.985 3.013 3.222	2.759 2.788 3.246	2.564 2.601 3.204	2.381 2.416 3.32	2.014 2.033 3.336	1.576	1.347	1.246 1.262 2.134	1.09 1.098 1.612	0.957 0.969 1.465	0.864 0.882 1.344	511A 511B C511	0.729 0.726 0.725	0.714	0.703	0.681	0.67	0.627	0.596 0.58 0.636	0.61	0.54 0.538 0.6	0.511 0.51 0.593	0.528
483A 483B C483	0.33 0.333 0.338	0.312 0.317 0.327	0.298 0.303 0.336	0.282 0.287 0.304	0.255 0.259 0.3	0.221	0.172	0.142 0.147 0.26	0.11 0.115 0.128	0.091 0.094 0.107	0.067 0.076 0.084	512A 512B C512	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER	OVER	OVER	OVER OVER	OVER OVER	OVER OVER OVER	OVER OVER OVER
484A 484B C484	2.973 3.012 3.248	2.735 2.776 3.234	2.545 2.575 3.214	2.356 2.403 3.35		1.577	1.362	1.26 1.292 2.166	1.121 1.13 1.681	0.988 1.008 1.523	0.878 0.914 1.389	513A 513B C513	0.368 0.368 0.369	0.362	0.362	0.36		0.353		0.351 0.349 0.366	0.343 0.343 0.364	0.299 0.29 0.365	0.272
485A 485B C485	0.668 0.671 0.676	0.645 0.647 0.666	0.63 0.631 0.655	0.612 0.611 0.644		0.515	0.391	0.322 0.324 0.407	0.252 0.249 0.29	0.207 0.199 0.239	0.171 0.168 0.2	514A 514B C514	3.178 3.213 3.272	3.164	3.142	3.108		3.007 3.048 3.347	2.676 2.725 3.333	2.596 2.675 3.321	2.528 2.562 3.359	2.466 2.504 3.25	2.497
486A 486B C486	OVER C	OVER (OVER (OVER	OVER OVER OVER	OVER OVER OVER	3.339 3.31 OVER	3.175 3.152 OVER	2.728 2.731 2.912	2.616 2.592 0.834	2.459 2.456 0.143	515A 515B C515	0.4 0.406 0.414	0.397	0.396			0.353	0.313	0.297 0.277 0.35	0.245 0.216 0.315	0.219 0.21 0.326	0.182
487A 487B C487	0.69 0.681 0.714	0.669 0.654 0.7	0.647 0.637 0.688	0.626 0.616 0.675	0,58 0,566 0,65	0.495		0.325 0.323 0.406	0.265 0.257 0.301	0.218 0.215 0.247	0.178 0.178 0.208	516A 516B C516	3, 23 3, 219 3, 3	3.162	3.133	3.113	3.091	2.93	2.654		2.487 2.475 3.365	2.443 2.431 3.209	2.43 2.428 3.233
488A 488B C488	OVER C	OVER (OVER (OVER	OVER OVER	OVER OVER	OVER OVER OVER	3.373 3.345 OVER	2.771 2.828 3.171	2.661 2.668 3.289	2.517 2.524 0.895	517A 517B C517	0.737 0.739 0.748	0.733	0.731 0.736	0.728 0.731	0.724 0.728	0.723 0.725	0.72 0.724 0.743	0.718 0.72 0.742	0.708 0.708 0.74	0.657 0.656 0.743	0.637 0.639 0.74
489A 489B C489	0.361 0.362 0.36	0.351 0.357 0.357	0.347 0.348 0.356	0.34 0.341 0.354	0.327 0.328 0.352	0.305	0.276	0.255 0.25 0.341	0.197 0.195 0.327	0.131 0.145 0.263	0.093 0.098 0.177	518A 518B C518	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER				OVER	OVER	OVER OVER OVER	OVER OVER OVER
490A 490B C490	2.802 2.8 2.955	2.687 2.748 2.989	2.615 2.624 3.062	2.547 2.566 3.263	2.517 2.533 3.299	2.393	1.195	0.962 0.916 3.293	0.422 0.401 2.632	0.175 0.163 1.13	0.074 0.072 0.374	519A 519B C519	0.776 0.771 0.775	0.763	0.757	0.752	0.741	0.723	0.7 0.682 0.741	0.695 0.652 0.735	0.622 0.594 0.712	0.609 0.586 0.701	0.59 0.567 0.691
491A 491B C491	0.381 0.375 0.378	0.371 0.366 0.381	0.376 0.361 0.373	0.357 0.344 0.363	0.344 0.327 0.352	0.292		0.26 0.217 0.26	0.224 0.179 0.203	0.132 0.13 0.195	0.117 0.099 0.179	520A 520B C520	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER			OVER	OVER		OVER OVER OVER
492A 492B C492	2.832 2.897 3	2.69 2.707 3.033	2.633 2.624 3.115	2.556 2.556 3.287	2.497 2.517 3.335		1.182 1.135 3.323	0.768 0.82 3.28	0.357 0.361 2.545	0.146 0.184 1.183	0.081 0.088 0.375	521A 521B C521	0.322 0.336 0.323	0.327	0.318	0.318	0.315	0.309		0.277 0.292 0.281	0.247 0.273 0.251	0.096 0.102 0.088	0.039 0.064 0.048
493A 493B C493	0.711 0.711 0.719	0.701 0.703 0.717	0.694 0.697 0.713		0.662 0.662 0.711	0.635	0.58 0.577 0.699	0.546 0.546 0.692	0.456 0.457 0.655	0.322 0.324 0.567	0.255 0.256 0.418	522A 522B C 522	3.15 3.144 3.185	3.097	3.06	3.026	2.979		2.312	2.17	1.915 1.912 2.845	1.701 1.659 2.709	1.341 1.287 2.471
494A 494B C494	3.154 3.202 3.298	3.188 3.221 3.232	3.319 (3.365 (3.353 (OVER OVER	OVER OVER OVER	OVER OVER		OVER OVER OVER	2.191 2.154 2.82	0.508 0.535 3.431	0.283 0.3 2.159	523A 523B C523	0.377 0.377 0.386	0.364	0.358 0.357	0.35 0.352	0.338 0.344	0.329	0.301	0.228 0.28 0.232	0.136 0.141 0.128	0.061 0.056 0.058	
495A 495B C495		0.717 0.735 0.728	0.708 0.72 0.727	0.685 0.702 0.72	0.675	0.626	0.536		0.42 0.418 0.56	0.315 0.317 0.469	0.252 0.251 0.37	524A 524B C524	3.17 3.182 3.262	3.129	3.101	3.045	2.972	2.543	2.192	2.021	1.813 1.665 2.708	1.637 1.373 2.501	0.982
496A 496B C496		3.16 3.142 3.219	3.318 (3.293 (3.323 (OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER	2.06 2.157 3.038	0.416 0.512 3.47	0.288 0.322 2.532	525A 525B C525	0.671 0.673 0.672	0.664	0.657	0.647	0.643	0.627			0.458 0.457 0.455	0. 257 0. 238 0. 292	0.155 0.175
497A 497B C497	0.366 0.36 0.365	0.36 0.356	0.352 0.349 0.363	0.344 0.342 0.363	0.341 0.336	0.336 0.331	0.334 0.328	0.332 0.328 0.356	0.332 0.329 0.355	0.339 0.335 0.351	0.338 0.331 0.349	526A 526B C 526	OVER OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER	OVER OVER	OVER	OVER OVER
498A 498B C498	3.09 3.049 3.262	2.95 2.909	2.879 2.851 3.277	2.894 2.858 3.368	2.982 2.933	3.08 3.027	3.085	2.947 2.882 3.407	2.04 1.986 3.297	1.816 1.797 3.208	1.741 1.714 3.28	527A 527B C 527	0.72 0.73 0.73	0.706	0.699	0.688 0.697	0.672 0.68	0.627 0.644	0.532 0.544	0.465 0.473	0.3	0.174 0.196 0.335	0.157 0.171
499A 499B C499	0.376 0.376 0.387		0.361 0.359 0.382	0.348 0.346 0.375	0.336 0.332	0.315 0.311	0.281 0.276	0.262 0.256 0.312	0.242 0.23 0.291	0.302 0.302 0.326	0.285 0.275 0.313	528A 528B C 528	OVER OVER OVER		OVER OVER		OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	OVER OVER	3.494 3.454 OVER
500A 500B C500	3.054 3.028 3.311	2.935 2.925	2.868 2.856 3.368	2.861 2.864 3.424	2.907	2.967 2.936	2.914	2.722 2.615 3.291	1.868 1.828 3.18	1.613 1.605 3.158	1.531 1.496 3.068	529A 529B C 529	0.352 0.348 0.358	0.35	0.349 0.345	0.349 0.345	0.35 0.343	0.35 0.343	0.35 0.35	0.35 0.358	0.345		0.126 0.384
501A 501B C501	0.716 0.718	0.712 0.708 0.733	0.701 0.701	0.694 0.694 0.725	0.688 0.691	0.685 0.682	0.682 0.679	0.681 0.678 0.722	0.682 0.68	0.685 0.683 0.716	0.682 0.674 0.711	530A 530B C 530	3.151 3.181 0.3258	3.085 3.115	3.052 3.087	3.015 3.042	2.999 3.044	2.991 3.032	2.978 2.991	2.817 2.846	2.693 2.714 3.24	2.605 2.611 3.237	2.541 2.567
COUT	0.728	0.733	J. 1 ZO	0.725	0.720	. 0.719	0.7.24	J. 1 ZZ	0.721	0.710	0.711	C 530	0.3298	. 3.209	3.21	3.208	3.28	3.219	3.213	J. 208	3.24	3. Z3f	3.218

RunID	0	0.25	525nm 0.5	n Absorban 1	ce zeroei 2	d to DIat X 4	hours 8	12	24	48	72	Run I)	0 0.25	0.5	1	2	4	8	12	24	48	72
531A 531B C531	0.386 0.388 0.392	0.38 0.384 0.388	0.377 0.38 0.384	0.374 0.376 0.383	0.37 0.37 0.379	0.363 0.363 0.372	0.355 0.358 0.363	0.35 0.356 0.36	0.286 0.351 0.344	0.196 0.325 0.336	0.15 0.26 0.33	560A 560B C 560	2.98 3.00 2.98	5 3.03	3.221	OVER		OVER	OVER	OVER OVER OVER	3.496	OVER	OVER OVER OVER
532A 532B C532	3.252 3.239 3.286	3.189 3.173 3.294	3.152 3.147 3.303	3.121 3.104 3.295	3.111 3.064 3.278	3.092 3.071 3.301	3.037 3.07 3.282	2.891 3.029 3.276	2.747 2.788 3.256	2.623 2.678 3.232	2.546 2.6 3.151	561a 561B C561	0.35 0.36 0.36	6 0.365	0.356 0.358 0.364	0.35 0.355 0.364	0.343 0.347 0.359	0.33 0.336 0.356	0.318 0.327 0.361	0.313 0.315 0.354	0.308	0.294 0.292 0.34	0.29 0.294 0.334
533A 533B C533	0.711 0.714 0.706	0.707 0.711 0.705	0.705 0.707 0.704	0.702 0.703 0.702	0.699 0.702 0.701		0.699	0.7 0.701 0.695	0.706 0.704 0.695	0.71 0.707 0.667	0.714 0.71 0.611	562A 562B C562	3.05 3.08 3.15	4 3.024		2.978 3.008 3.36	2.913 2.93 3.403	2.819 2.835 3.433	2.739 2.752 3.417		0.2652		2.56 2.575 2.989
534A 534B C534	over (OVER (OVER	OVER		OVER	OVER		OVER	OVER	OVER OVER OVER	563A 563B C 563	0.38 0. 0.39	4 0.399	0.377 0.394 0.388	0.372 0.384 0.385	0.36 0.374 0.381	0.344 0.356 0.372	0.325 0.333 0.361	0.319 0.329 0.36	0.31	0. 285 0. 288 0. 332	0.279 0.282 0.319
535A 535B C535	0.742 0.737 0.741	0.736 0.735 0.738	0.732 0.73 0.736	0.725 0.724 0.733	0.716 0.715 0.729	0.707 0.705 0.722	0.7 0.699 0.712		0.691 0.696 0.699	0.682 0.679 0.689	0.671 0.658 0.682	564A 564B C564	3.11 3.08 3.18	4 3.068	3.032 2.995 3.216	3.046 3.001 3.426	2.985 2.954 3.47	2.882 2.859 3.491	2.783 2.75 3.469	2.715	2.661	2.635 2.598 3.154	2.574 2.527 3.015
536A 536B C536	OVER (OVER (OVER	OVER	OVER	OVER OVER OVER	OVER	OVER	OVER	OVER	OVER OVER OVER	565A 565B C565	0.72 0.71 0.71	6 0.711	0.717 0.707 0.715	0.705 0.698 0.714	0.694 0.686 0.71	0.683 0.672 0.709	0.667 0.66 0.704	0.659 0.652 0.701	0.644	0,638 0,629 0,686	0.63 0.618 0.68
537A 537B C537	0.36 0.358 0.362	0.358 0.354 0.361	0.356 0.353 0.36	0.351 0.347 0.361	0.341 0.34 0.361	0.329 0.326 0.36	0.313 0.309 0.358		0.306 0.305 0.357	0.307 0.305 0.356	0.304 0.302 0.354	566A 566B C566	OVER OVER OVER	OVER OVER OVER		OVER	OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	3.427 3.358 3.367
538A 538B C538	2.974 2.969 3.026	2.926 2.919 3.043	2.94 2.921 3.092	2.937 2.914 3.188	2.901 2.876 3.236			2.785 2.765 3.235	2.715 2.7 3.007	2.699 2.692 3.018		567A 567B C567	0.77 0.75 0.75	7 0.749	0.745	0.743 0.733 0.744	0.731 0.719 0.74		0.677 0.674 0.718	0.669	0.649	0.611 0.622 0.686	0.599 0.602 0.669
539A 539B C539	0.394 0.394 0.401	0.389 0.389 0.399	0.386 0.385 0.398	0.381 0.379 0.396	0.371 0.368 0.393	0.352 0.348 0.388	0.327 0.324 0.38		0.309 0.304 0.361	0.303 0.296 0.356	0.293 0.29 0.349	568A 568B C 568	OVER OVER OVER	OVER OVER OVER	OVER		OVER	OVER	OVER	OVER OVER OVER	OVER	OVER OVER OVER	3.482 OVER 3.447
540A 540B C540	3.002 2.987 3.069	2.946 2.958 3.081	2.964 2.972 3.15	2.95 2.961 3.208	2.913 2.93 3.262	2.846 2.863 3.275	2.815 2.818 3.276	2.8 2.801 3.232	2.701 2.708 3.025	2.692 2.721 3.007	2.541 2.536 3.027	569A 569B C 569	0.36 0.36 0.36	2 0.359	0.364 0.356 0.367	0.359 0.353 0.367	0.353 0.349 0.366	0.347 0.339 0.364	0.336 0.331 0.365	0.332 0.327 0.363	0.328 0.324 0.363	0.326 0.322 0.357	0.325 0.321 0.356
541A 541B C541	0.719 0.722 0.723	0.715 0.713 0.722	0.708 0.711 0.723	0.7 0.705 0.722	0.687 0.687 0.721	0.672 0.672 0.72	0.661 0.662 0.72	0.659 0.659 0.719	0.657 0.659 0.719	0.655 0.66 0.714	0.655 0.655 0.716	570A 570B C570	3.26 3.27 3.38	5 3.183		3.067 3.086 3.464	3.032 3.043 3.494	2.95 2.973 OVER				2.918 2.938 3.42	2.92 2.933 3.408
542A 542B C542	3.288 3.305 3.31	3.36 3.34 3.361	3.463 3.473 3.467	OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER	3.301 3.32 3.333	3.316 3.308 3.275	3.301 3.31 3.304	571A 571B C571	0.40 0.39 0.39	7 0.391	0.399 0.39 0.393	0.393 0.382 0.391	0.385 0.373 0.387	0.372 0.362 0.381	0.358 0.344 0.373	0.348 0.336 0.368	0.326		0.322 0.314 0.349
543A 543B C543	0.764 0.75 0.752	0.756 0.743 0.749	0.752 0.736 0.75	0.741 0.726 0.747	0.722 0.71 0.745	0.696 0.691 0.739	0.675 0.672 0.728		0.647 0.656 0.71	0.65 0.653 0.71	0.644 0.644 0.71	572A 572B C572	3.25 3.26 3.49	1 3.202				2.933 2.975 OVER		2.901 2.931 OVER			2.819 2.888 3.429
544A 544B C544	3.31 3.345 3.352	3,37 (3,368 (3,38 (OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER	3.343 3.367 3.317	3.286 3.312 3.321	3.316 3.333 3.312	573A 573B C573	0.7 0.71 0.7	6 0.712	0.708	0.703 0.702 0.72	0.696 0.695 0.72		0.681 0.679 0.715		0.675	0.689 0.672 0.712	0.671 0.671 0.711
545A 545B C545	0.363 0.367 0.369	0.36 0.364 0.368	0.357 0.361 0.368	0.353 0.356 0.367	0.345 0.347 0.365	0.331 0.333 0.364	0.314 0.315 0.359	0.306 0.309 0.358	0.292 0.296 0.356	0.282 0.284 0.35	0.273 0.276 0.348	574A 574B C574	OVER OVER OVER	OVER OVER OVER	OVER		OVER	OVER	OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER
546A 546B C546	2.984 2.961 3.032	2.937 2.918 3.161	2.946 2.922 3.117	2.933 2.899 3.188	2.892 2.861 3.232	2.844 2.805 3.253	2.705 2.662 3.294	2.624 2.597 3.25	2.515 2.481 2.963	2.515 2.477 3.016	2.525 2.487 3.063	575A 575B C575	0.76 0.75 0.76	8 0.753	0.753 0.744 0.761	0.744 0.735 0.757	0.728 0.724 0.754	0.711 0.708 0.749	0.687 0.694 0.736	0.681 0.693 0.735		0.66 0.668 0.713	0.65 0.658 0.705
547A 547B C547	0.378 0.384 0.388	0.374 0.379 0.387	0.372 0.376 0.386	0.365 0.368 0.382	0.353 0.357 0.376	0.334 0.333 0.365	0.309 0.307 0.349	0.3 0.294 0.34	0.278 0.276 0.329	0.27 0.268 0.332	0.254 0.249 0.324	576A 576B C 576	OVER OVER OVER	OVER OVER OVER	OVER	OVER	OVER	OVER	OVER		OVER	OVER	OVER OVER OVER
548A 548B C548	2.974 2.962 3.063	2.928 2.936 3.145	2.941 2.927 3.143	2.91 2.906 3.204	2.871 2.857 3.232	2.813 2.803 3.262		2.587 2.58 3.241	2.467 2.481 2.977	2.464 2.435 3.005	2.971 2.438 3.054	577A 577B C577	0.35 0.35 0.35	2 0.348	0.347 0.347 0.354	0.342 0.34 0.354	0.337 0.336 0.354	0.327 0.326 0.353	0.319 0.317 0.349		0.307	0.304 0.303 0.343	0.303 0.301 0.34
549A 549B C549	0.719 0.728 0.726	0.714 0.722 0.725	0.71 0.718 0.725	0.704 0.71 0.725	0.689 0.697 0.724	0.674 0.681 0.721	0.664 0.669 0.718	0.657 0.665 0.716	0.641 0.649 0.713	0.628 0.636 0.712	0.621 0.626 0.709	578A 578B C578	3.12 3.17 3.25	6 3.084	3.008 3.014 3.281	2.933 2.935 3.303	2.879 2.893 3.344	2.814 2.808 3.338	2.791 2.785 3.35	2.757 2.752 3.342	2.742		2.741 2.745 3.368
550A 550B C550	3.27 3.285 3.334	3.344 3.36 3.339	3.453 3.48 3.469	OVER		OVER OVER OVER		OVER OVER OVER	3.181 3.192 3.218	3.26 3.272 3.244	3.357 3.365 3.376	579A 579B C579	0.37 0.37 0.38	7 0.372	0.368	0.364 0.362 0.373	0.357 0.356 3.7	0.339 0.34 0.364	0.327 0.325 0.353	0.319 0.32 0.346	0.305	0.297	0.295 0.29 0.325
551A 551B C551	0.742 0.743 0.751	0.734 0.735 0.751	0.728 0.729 0.749	0.718 0.719 0.746	0.702 0.7 0.741	0.679	0.657	0.644	0.616 0.612 0.71	0.61 0.611 0.699	0.599 0.599 0.693	580A 580B C 580	3.15 3.18 3.33	4 3.099	3.037	2.94 2.957 3.361	2.878 2.914 3.399		2.757 2.78 3.407		2.728		2.683 2.721 3.373
552A 552B C552	3.326 3.276 3.296	3.355 3.341 3.373	3.463 3.481 OVER	OVER	OVER OVER OVER	OVER		OVER OVER OVER	3.326 3.228 3.247	3.185 3.214 3.27		581A 581B C581	0.69 0.70 0.69	2 0.695	0.691	0.675 0.683 0.69		0.656 0.664 0.686	0.652 0.656 0.686	0.654	0.649		0.633 0.642 0.675
553A 553B C553	0.343 0.342 0.344	0.334 0.33 0.337	0.327 0.324 0.332	0.32 0.316 0.326	0.302 0.301 0.317	0.279		0.226	0.195 0.193 0.247	0.177 0.176 0.194	0.171	582A 582B C 582	OVER OVER OVER	OVER OVER OVER	oVER		OVER		OVER	OVER OVER OVER	OVER		OVER OVER OVER
554A 554B C554	2.799 2.804 2.856	2.812 2.819 2.903	2.845 2.912 3.006	2.916 2.936 3.223	2.844 2.873 3.321				2.202 2.232 2.873	1.873 1.911 2.6	1.628	583A 583B C 583	0.72 0.73 0.75	4 0.721			0.697	0.678		0.651	0.648	0.633	0.624 0.618 0.673
555A 555B C555	0.383 0.379 0.384	0.373 0.367 0.374	0.366 0.359 0.369	0.355 0.352 0.363	0.334 0.332 0.349		0.268		0.201 0.206 0.243	0.187 0.188 0.198		584A 584B C 584	OVER OVER OVER	OVER OVER OVER	OVER	OVER		OVER	OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER
556A 556B C556	2.872 2.787 2.867	2.837 2.829 2.966	2.857 2.841 3.032	2.942 2.938 3.234	2.858 2.867 3.311	2.726 2.725 3.318	2.542	2.414		1.854 1.884 2.608													
557A 557B C557	0.701 0.697 0.697	0.686 0.681 0.688	0.679 0.674 0.687	0.666 0.66 0.68	0.64 0.637 0.663	0.605		0.52	0.465 0.458 0.552	0.365 0.357 0.447	0.343 0.35 0.366												
558A 558B C558	2.975 3.017 3.017	3.056 3.123 3.094	3.151	OVER	OVER OVER OVER	OVER	OVER	OVER OVER OVER		OVER	OVER OVER OVER												
559A 559B C559		0.706 0.717 0.731	0.696 0.708 0.723	0.678 0.698 0.715	0.655 0.66 0.698	0.626	0.563 0.567 0.635	0.527 0.533 0.614	0.455 0.461 0.559	0.353 0.369 0.454													

Appendix III. Calculated Permanganate Depletion Rate Constants

301	-0.167			373	-0.030	447	-0.127
302			-	374		448	
303 304	-0.162	377 378	-0.078	375 376	-0.035	449 450	
304	-0.128	379	-0.046 -0.096	451	-0.788	518	
306	-0.126	380	-0.068	452	-0.700	519	-0.062
307	-0.115	381	-0.057	453	-0.838	520	-0.002
308		382		454	0.000	521	
309	-0.147	383	-0.065	455	-0.655	522	-0.133
310		384		456		523	
311	-0.211	385	-0.083	457	-0.336	524	-0.118
312		386		458	-0.174	525	-0.397
313	-0.146	387	-0.087	459	-0.434	526	-
314		388	0.100	460	-0.062	527	-0.412
315 316	-0.178	389 390	-0.162	461	-0.197	528	0.117
317	-0.260	391	-0.347 -0.182	462 463	-0.203	529 530	-0.117 -0.046
318	-0.200	392	-0.182	464	-0.203	531	-0.146
319	-0.247	393	-0.500	465	0.082	532	-0.044
320	0.277	394		466	-0.220	533	-0.072
321	-0.556	395		467	-0.038	534	
322		396		468		535	-0.088
323		397		469	-0.092	536	
324		398		470		537	-0.068
325	-0.166	399		471	-0.046	538	
326		400		472		539	0.045
327	-0.209	401	-0.191	473	-0.042	540	
328		402		474	-0.390	541	-0.047
329	-0.104	403	-0.219	475	-0.098	542	
330	0.404	404	0.407	476	-0.375	543	-0.074
331	-0.121	405	-0.137	477	-0.032	544	0.007
332	0.122	406	0.150	478	0.000	545	-0.037
333 334	-0.133 -0.124	407 408	-0.156	479 480	-0.082	546 547	-0.034 -0.048
335	-0.124	409		481	-0.223	548	-0.048
336	-0.155	410		482	-0.223	549	-0.030
337	-0.086	411		483	-0.266	550	-0.000
338	-0.000	412		484	-0.200	551	-0.037
339	-0.107	413		485	-0.259	552	
340		414		486		553	-0.778
341	-0.461	415		487	-0.302	554	-0.058
342		416		488		555	
343	-0.474	417	-0.114	489	-0.080	556	-0.064
344		418		490	-0.283	557	-0.244
345	-0.329	419	-0.130	491	-0.121	558	
346		420		492	-0.278	559	-0.282
347	-0.303	421	-0.079	493	-0.082	560	
348	0.400	422	0.000	494	0.440	561	-0.117
349 350	-0.100	423 424	-0.090	495 496	-0.112	562 563	-0.080 -0.129
351	-0.114	424	-0.094	497	-0.134	564	-0.129
352	-0.114	426	-0.034	498	-0.191	565	-0.076
353	-0.588	427	-0.116	499	-0.213	566	-0.071
354	-0.226	428		500	-0.196	567	-0.087
355	-0.580	429	-0.064	501	-0.082	568	0.00
356	-0.227	430		502		569	-0.074
357	-0.097	431	-0.072	503	-0.125	570	-0.072
358		432		504		571	-0.084
359	-0.120	433	-0.219	505	-0.128	572	-0.071
360		434		506	-0.184	573	-0.048
361	-0.066	435	-0.273	507	-0.196	574	
362		436		508	-0.188	575	-0.060
363	-0.076	437	-0.197	509	-0.082	576	0
364	0.470	438	0.000	510	0.440	577	-0.125
365	-0.179	439	-0.223	511	-0.110	578	-0.094
366 367	-0.185	440 441	-0.179	512 513	-0.086	579 580	-0.143 -0.097
368	-0.100	442	-0.179	513	-0.086	581	-0.097
369	-0.037	443	-0.192	515	-0.067	582	-0.075
370	-0.051	444	-0.181	516	-0.078	583	-0.090
371	-0.046	445	-0.089	517	-0.051	584	
372	-0.056	446	_,	311		304	

ID.	k norm	nongonoto donlot	ion				
ID		nanganate deplet	ion	455	0.440	200	
	9 -0.108	82		155	-0.113	228	
1		83		156		229	-0.210
1		84	0.540	157	-0.293	230	0.047
1:		85	-0.512	158	0.040	231	-0.217
1:		86	0.570	159	-0.312	232	0.400
1.		87	-0.573	160	0.254	233	-0.102
1:		88 89		161 162	-0.254	234 235	-0.115
1		90		163	-0.283	236	-0.115
1		91		164	-0.263	237	-0.074
1		92		165	-0.158	238	-0.074
2		93	-0.057	166	-0.130	239	-0.086
2		94	-0.117	167	-0.181	240	-0.000
2		95	-0.072	168	-0.142	241	-0.134
2		96	-0.201	169		242	
2		97	-0.037	170		243	-0.146
2		98	0.001	171		244	0.1.40
2		99	-0.048	172		245	-0.091
2	7 -0.089	100		173	-0.131	246	
2		101	-0.079	174		247	-0.096
2:	9 -0.087	102	-0.231	175	-0.164	248	
3		103	-0.173	176		249	-0.281
3	1 -0.070	104	-0.232	177	-0.091	250	
3:		105	-0.062	178		251	-0.303
3		106		179	-0.108	252	
3		107	-0.106	180		253	-0.312
34		108		181	-0.237	254	
3		109	-0.100	182		255	-0.338
3		110		183	-0.244	256	
3		111	-0.118	184		257	-0.141
3		112		185	-0.029	258	
4		113	-0.228	186	-0.053	259	-0.186
4		114		187	-0.038	260	-0.057
4		115	-0.398	188	-0.056	261	0.500
4		116	0.050	189	-0.023	262	-0.560
4		117 118	-0.252	190 191	-0.031	263 264	
4		119	-0.280	192	-0.031	265	
4		120	-0.260	193	-0.059	266	
4		121	-0.214	194	-0.120	267	
4		122	-0.214	195	-0.072	268	
5		123	-0.207	196	-0.126	269	
5		124	-0.207	197	-0.043	270	
5:		125	-0.072	198	0.010	271	
5		126		199	-0.053	272	
5		127	-0.091	200		273	
5		128		201	-0.060	274	
5		129	-0.054	202	-0.163	275	
5		130		203	-0.069	276	
5		131	-0.063	204	-0.166	277	-0.035
5	9 -0.298	132		205	-0.129	278	-0.103
6	0	133	-0.372	206		279	-0.047
6		134		207	-0.147	280	-0.097
6		135	-0.371	208	-0.351	281	-0.024
6		136		209	-0.649	282	
6		137	-0.131	210		283	-0.034
6		138	2.7.2	211	-0.696	284	
6		139	-0.140	212		285	-0.056
6		140	0.407	213	-0.291	286	-0.142
6		141	-0.127	214		287	-0.132
6		142	0.400	215	-0.297	288	-0.160
70		143	-0.166	216 217	0.400	289	-0.042
		144	0.001		-0.109	290	0.074
7: 7: 7:		145 146	-0.081	218 219	-0.111	291 292	-0.074
7-		146	-0.106	220	-0.111	292	-0.105
7:		147	-0.100	221	-0.086	293	-0.105
7		149	-0.116	222	-0.000	295	-0.130
7		150	-0.110	223	-0.087	296	-0.130
7		151	-0.156	224	-0.007	297	-0.246
7		152	3.100	225		298	-0.420
8		153	-0.075	226		299	-0.393
8		154	310.0	227		300	-0.441

Appendix IV. 418 nm Spectrophotometric Study Data

RunID	0	0.25	0.5	1	nce zeroed 2	4	8	12	24	48	72	Run II		0.25	0.5	1	2	4	8	12	24	48	72
9A	0.021	0.031	0.049	0.082	0.132	0.159	0.174	0.178	0.13	0.083	0.076	38A	1.121	1.283	1.283	1.25	1,169	0.99	0.53	0.345	0.176	0.148	0.161
9B	0.019	0.029	0.046	0.079	0.13	0.155	0.163	0.172	0.145	0.082	0.081	38B	1.173	1.285	1.296	1.266	1,174		0.544	0.377	0.182	0.166	0.168
C9	0.016	0.017	0.019	0.019	0.026	0.038	0.055	0.059	0.061	0.053	0.049	C38	0.124	0.143	0.167	0.189	0,196		0.185	0.177	0.155	0.126	0.121
10A	0.847	1.139	1.22	1.257	1,267	1.252	0.825	0.505	0.302	0.26	0.141	39A	0.095	0.11	0.126	0.154	0.195	0.233	0.225	0.213	0.099	0.054	0.037
10B	0.859	1.141	1.212	1.239	1,238	1.125	0.653	0.481	0.28	0.218	0.22	39B	0.086	0.102	0.119	0.149	0.19		0.238	0.22	0.118	0.06	0.047
C10	0.046	0.05	0.051	0.053	0,062	0.07	0.072	0.072	0.072	0.067	0.064	C39	0.061	0.062	0.062	0.063	0.063		0.062	0.055	0.051	0.036	0.029
11A	0.031	0.052	0.073	0.094	0.135	0.182	0.212	0.208	0.15	0.083	0.082	40A	1.099	1.224	1.241	1.209	1.135	1.022	0.565	0.405	0.21	0.194	0.201
11B	0.066	0.106	0.116	0.136	0.18	0.214	0.248	0.286	0.243	0.106	0.155	40B	1.088	1.209	1.234	1.21	1.15		0.557	0.399	0.216	0.192	0.202
C11	0.022	0.026	0.027	0.028	0.03	0.035	0.038	0.039	0.045	0.045	0.043	C40	0.135	0.137	0.135	0.135	0.136		0.139	0.139	0.133	0.117	0.113
12A	0.927	1.268	1.322	1.35	1.337	1.168	0.574	0.565	0.415	0.182	0.212	41A	0.042	0.044	0.044	0.04	0.039	0.01	0.013	0.013	0.016	0.016	0.018
12B	1.417	1.152	1.258	1.299	1.266	1.257	0.765	0.467	0.366	0.394	0.377	41B	0.03	0.029	0.029	0.027	0.024		0.006	0.007	0.008	0.01	0.01
C12	0.107	0.055	0.055	0.056	0.059	0.062	0.065	0.065	0.066	0.072	0.066	C41	0.033	0.034	0.036	0.046	0.03		0.013	0.016	0.014	0.022	0.022
13A 13B C13	0.023 0.021 0.015	0.04 0.036 0.017	0.06 0.058 0.018	0.109 0.101 0.019	0.147 0.148 0.021	0.181 0.176 0.027	0.193 0.193 0.036	0.201 0.194 0.043	0.155 0.132 0.05	0.111 0.086 0.044	0.091 0.073 0.037	42A 42B C42	2.908 3.452 0.517	OVER OVER 1.324		OVER OVER 2.23	OVER	3.453 2.372 OVER	0.907 1.144 OVER (0.682 0.727 OVER	0.224 0.25 2.456	0.047 0.053 1.009	0.025 0.03 0.51
14A	0.851	1.084	1.15	1.172	1.157	1.114	0.645	0.451	0.375	0.365	0.196	43A	0.2	0.403	0.458	0.536	0.625	0.718	0.781	0.77	0.269	0.126	0.071
14B	0.905	1.137	1.198	1.248	1.197	1.173	0.61	0.479	0.354	0.31	0.284	43B	0.209	0.404	0.46	0.539	0.63		0.785	0.792	0.269	0.124	0.068
C14	0.049	0.055	0.06	0.067	0.076	0.081	0.081	0.082	0.079	0.076	0.067	C43	0.163	0.364	0.414	0.482	0.555		0.699	0.725	0.301	0.128	0.066
15A 15B C15	0.029 0.03 0.02	0.041 0.042 0.022	0.052 0.055 0.023	0.067 0.07 0.024	0.104 0.108 0.025	0.151 0.153 0.028	0.173 0.184 0.029	0.186 0.179 0.032	0.173 0.16 0.034	0.115 0.103 0.034	0.097 0.091 0.032	44A 44B C44				OVER OVER 0.773		OVER OVER 0.997		OVER OVER 0.634	1.214 1.436 0.424	0.488 0.52 0.388	0.236 0.248 0.382
16A	0.872	1.049	1.104	1.152	1.144	1.095	0.742	0.566	0.283	0.214	0.192	45A	0.046	0.051	0.048	0.046	0.045	0.017	0.016	0.015	0.015	0.015	0.016
16B	0.83	1.009	1.065	1.114	1.102	0.99	0.565	0.469	0.397	0.366	0.36	45B	0.038	0.038	0.039	0.037	0.036		0.008	0.007	0.008	0.01	0.011
C16	0.06	0.061	0.062	0.063	0.065	0.068	0.071	0.072	0.076	0.074	0.074	C45	0.029	0.03	0.03	0.027	0.026		0.007	0.008	0.009	0.011	0.013
17A	0.051	0.06	0.088	0.139	0.193	0.216	0.205	0.18	0.103	0.039	0.025	46A	2.05	2.556	2.754	2.966	1.83	1.023	0,601	0.39	0.2	0.094	0.034
17B	0.06	0.069	0.087	0.141	0.195	0.212	0.195	0.162	0.098	0.042	0.027	46B	1.976	2.496	2.694	2.899	1.871		0,599	0.411	0.202	0.086	0.026
C17	0.057	0.06	0.064	0.069	0.086	0.122	0.11	0.093	0.075	0.045	0.035	C46	0.715	1.285	1.504	1.903	2.316		0,98	0.656	0.232	0.151	0.086
18A	0.682	0.902	0.962	0.975	0.932	0.811	0.542	0.341	0.116	0.093	0.099	47A	0.212	0.366	0.417	0.496	0.588	0.671	0.821	0.815	0.224	0.082	0.046
18B	0.671	0.891	0.955	0.971	0.925	0.789	0.517	0.324	0.119	0.103	0.106	47B	0.213	0.362	0.412	0.488	0.579		0.744	0.75	0.214	0.078	0.042
C18	0.072	0.084	0.103	0.134	0.146	0.149	0.14	0.132	0.11	0.075	0.07	C47	0.198	0.343	0.388	0.456	0.534		0.693	0.711	0.255	0.081	0.051
19A	0.094	0.103	0.115	0.133	0.167	0.202	0.222	0.19	0.093	0.042	0.038	48A	1.841	2.489	2.729	2.999	2.448	1.28	0.756	0.418	0.172	0.063	0.032
19B	0.087	0.101	0.114	0.135	0.171	0.216	0.226	0.228	0.115	0.052	0.044	48B	1.804	2.444	2.704	3.006	2.342		0.9	0.395	0.165	0.07	0.055
C19	0.069	0.07	0.069	0.07	0.072	0.073	0.068	0.056	0.037	0.026	0.021	C48	0.338	0.571	0.652	0.791	0.959		1.421	1.596	1.91	1.16	1.304
20A	0.765	1.083	1.175	1.183	1.124	0.954	0.577	0.367	0.199	0.168	0.139	49A	0.077	0.076	0.076	0.075	0.071	0.051	0.036	0.032	0.029	0.025	0.028
20B	0.745	1.058	1.153	1.168	1.114	1.008	0.607	0.388	0.189	0.168	0.152	49B	0.078	0.079	0.081	0.079	0.076	0.053	0.036	0.032	0.028	0.024	0.024
C20	0.09	0.093	0.094	0.095	0.096	0.094	0.091	0.087	0.069	0.059	0.059	C49	0.088	0.087	0.085	0.084	0.081	0.063	0.046	0.044	0.041	0.038	0.034
21A 21B C21	0.057 0.055 0.057	0.068 0.069 0.058	0.094 0.098 0.061	0.168 0.176 0.064	0.213 0.22 0.07	0.234 0.242 0.092	0.222 0.232 0.097	0.209 0.193 0.082	0.11 0.117 0.06	0.066 0.05 0.04	0.206 0.036 0.027	50A 50B C50	1.186 1.373 0.328	2.662 2.926 1.39				OVER	OVER 2.792 OVER	2.072 1.73 3.29	0.672 0.88 2.033	0.236 0.346 0.945	0.111 0.219 0.45
22A	0.893	1.086	1.144	1.149	1.096	0.957	0.504	0.32	0.161	0.14	0.143	51A	0.265	0.427	0.507	0.572	0.651	0.68	0.535	0.412	0.219	0.105	0.069
22B	0.86	1.052	1.109	1.116	1.064	0.94	0.511	0.315	0.166	0.142	0.146	51B	0.27	0.431	0.522	0.577	0.655		0.535	0.386	0.209	0.105	0.071
C22	0.081	0.097	0.13	0.155	0.162	0.16	0.147	0.132	0.107	0.091	0.088	C51	0.276	0.419	0.492	0.55	0.618		0.479	0.367	0.221	0.094	0.06
23A 23B C23	0.084 0.089 0.078	0.093 0.099 0.078	0.107 0.11 0.079	0.125 0.128 0.079	0.162 0.161 0.078	0.202 0.197 0.073	0.213 0.213 0.064	0.211 0.195 0.057	0.094 0.091 0.033	0.052 0.041 0.025	0.039 0.036 0.023	52A 52B C52	1.947 2.007 0.445	3,37 OVER 0.637	OVER OVER 0.74	OVER		OVER	OVER OVER (0.54	2.619 OVER 0.489	1.51 1.448 1.453	0.751 1.081 0.393	0.612 1.228 0.384
24A	0.775	0.97	1.053	1.076	1.033	0.837	0.493	0.327	0.181	0.166	0.159	53A	0.071	0.07	0.069	0.068	0.064	0.063	0.034	0.031	0.028	0.024	0.026
24B	0.789	0.981	1.067	1.098	1.063	0.878	0.516	0.34	0.175	0.157	0.157	53B	0.092	0.094	0.097	0.096	0.089		0.05	0.046	0.041	0.034	0.035
C24	0.096	0.099	0.101	0.102	0.104	0.102	0.097	0.093	0.074	0.062	0.062	C53	0.092	0.092	0.092	0.09	0.085		0.054	0.048	0.049	0.044	0.043
25A	0.044	0.08	0.136	0.183	0.214	0.236	0.24	0.238	0.198	0.058	0.045	54A	1.891	2.331	2.599	2,709	2.21	0.977	0.471	0.562	0.465	0.172	0.125
25B	0.037	0.073	0.131	0.179	0.211	0.231	0.235	0.233	0.182	0.053	0.033	54B	1.843	2.215	2.465	2,573	2.308	0.992	0.502	0.492	0.275	0.132	0.118
C25	0.032	0.034	0.034	0.038	0.04	0.046	0.054	0.058	0.161	0.061	0.051	C54	0.852	1.186	1.531	1,86	2.081	1.171	1.246	0.767	0.567	0.481	0.301
26A	1.162	1.503	1.501	1.453	1.369	1.04	0.556	0.359	0.198	0.169	0.164	55A	0.281	0.373	0.45	0.504	0.58	0.595	0.466	0.357	0.224	0.101	0.091
26B	1.198	1.501	1.505	1.447	1.365	1.103	0.569	0.379	0.223	0.205	0.174	55B	0.32	0.417	0.488	0.539	0.612		0.395	0.312	0.2	0.108	0.073
C26	0.095	0.099	0.104	0.113	0.12	0.125	0.126	0.128	0.128	0.124	0.107	C55	0.288	0.385	0.441	0.494	0.559		0.413	0.318	0.227	0.111	0.076
27A	0.057	0.088	0.115	0.161	0.211	0.255	0.269	0.268	0.212	0.075	0.049	56A	1.823	2.313	2.629	2.787	2.512	1.173	0.782	0.55	0.276	0.16	0.144
27B	0.062	0.097	0.124	0.172	0.222	0.259	0.271	0.274	0.211	0.069	0.041	56B	1.849	2.273	2.566	2.717	2.384		0.86	0.526	0.24	0.268	0.151
C27	0.033	0.038	0.039	0.041	0.042	0.045	0.047	0.048	0.05	0.055	0.054	C56	0.398	0.495	0.583	0.665	0.787		1.136	1.309	1.87	2.461	2.517
28A	1.351	1.753	1.698	1.552	1.43	1.202	0.583	0.368	0.205	0.185	0.191	57A	0.057	0.101	0.184	0.637	1.671		0.514	0.386	0.147	0.024	0. 01
28B	1.134	1.626	1.601	1.483	1.385	1.181	0.578	0.381	0.243	0.21	0.213	57B	0.06	0.104	0.19	0.668	1.63		0.514	0.368	0.154	0.027	0. 01
C28	0.092	0.095	0.095	0.097	0.098	0.1	0.102	0.104	0.106	0.113	0.109	C57	0.047	0.073	0.12	0.381	1.579		0.63	0.448	0.166	0.033	0. 01
29A 29B C29	0.047 0.048 0.029	0.086 0.096 0.031	0.153 0.156 0.031	0.202 0.204 0.032	0.237 0.235 0.035	0.257 0.254 0.039	0.259 0.258 0.046	0.256 0.253 0.051	0.183 0.176 0.054	0.062 0.051 0.056	0.042 0.031 0.047	58A 58B C 58	OVER	OVER OVER 1.977	OVER	OVER		OVER	OVER (OVER OVER OVER	2.368 2.147 2.144	1.329 1.242 0.964	0.663 0.574 0.507
30A 30B C30	1.289 1.38 0.092	1.498 1.541 0.105	1.523 1.559 0.118	1.493 1.525 0.129	1.38 1.411 0.132	0.953 0.955 0.135	0.504 0.5 0.136	0.305 0.361 0.138	0.211 0.206 0.138	0.18 0.188 0.122	0.178 0.176 0.104	59A 59B C59	0.379 0.383 0.361	0.505 0.512 0.46	0.568 0.578 0.51	0.651 0.664 0.575	0.803		0,938 0,958 0,634	0.82 0.789 0.515	0.403 0.383 0.379	0.198 0.161 0.3	0.084 0.085 0.199
31A 31B C31	0.048 0.049 0.049	0.073 0.073 0.055	0.097 0.096 0.058	0.139 0.136 0.052	0.188 0.187 0.055	0.231 0.226 0.056	0.248 0.246 0.058	0.252 0.25 0.073	0.199 0.196 0.062	0.054 0.059 0.062	0.046 0.043 0.069	60A 60B C60	OVER OVER 0.57	OVER (OVER	2.832 3.248 0.563	2.393 2.526 0.581	1.621 1.883 0.544	1.451 1.669 0.611	1.143 1.258 0.557
32A	1.04	1.283	1.331	1.31	1.225	1.084	0.552	0.373	0.238	0.219	0.208	61A	0,077	0.14	0.273	0.988	1.667	0.896	0,439	0.355	0.155	0.036	0.009
32B	1.175	1.338	1.372	1.356	1.279	1.12	0.539	0.364	0.232	0.21	0.211	61B	0.078	0.141	0.275	0.996	1.695		0,438	0.35	0.144	0.034	0.01
C32	0.099	0.102	0.102	0.104	0.105	0.105	0.108	0.109	0.107	0.111	0.111	C61	0.053	0.086	0.158	0.616	1.652		0.51	0.38	0.16	0.04	0.009
33A 33B C33	0.066 0.064 0.048	0.08 0.079 0.051	0.111 0.11 0.053	0.19 0.186 0.06	0.221 0.217 0.074	0.235 0.234 0.114	0.208 0.211 0.111	0.186 0.175 0.105	0.11 0.115 0.106	0.049 0.049 0.064	0.041 0.032 0.047	62A 62B C62	2.847 2.984 1.238	3.376 OVER 1.666	OVER	OVER OVER 2.242	1.661 1.739 2.257	0.967	0.496 0.572 1.03	0.422 0.434 0.955	0.306 0.283 1.019	0.22 0.246 1.176	0.051 0.082 0.956
34A	0.897	1.07	1.081	1.048	0.989	0.885	0.564	0.386	0.169	0.127	0.14	63A	0.386	0.466	0.527	0.611	0.743	0.764	0.514	0.496	0.293	0.115	0.057
34B	0.921	1.088	1.097	1.067	0.995	0.862	0.597	0.424	0.192	0.154	0.155	63B	0.387	0.473	0.531	0.614	0.739		0.579	0.526	0.256	0.112	0.059
C34	0.119	0.138	0.163	0.183	0.192	0.193	0.183	0.172	0.158	0.128	0.13	C63	0.367	0.431	0.478	0.542	0.633		0.473	0.429	0.313	0.223	0.172
35A 35B C35	0.099 0.095 0.068	0.122 0.112 0.069	0.136 0.13 0.07	0.167 0.162 0.072	0.206 0.207 0.074	0.249 0.253 0.076	0.249 0.252 0.071	0.227 0.219 0.066	0.162 0.105 0.05	0.095 0.058 0.033	0.073 0.042 0.028	64A 64B C64	2.761 2.871 0.549	3.482	0VER 0VER 0.717	OVER	1.949 2.042 0.991	1.652	1.429 1.568 1.526	1.37 1.503 1.721	1.288 1.365 2.566 (1.259 1.321 OVER	0.848 0.875 2.945
36A 36B C36	1.089 1.106 0.131	1.345 1.356 0.135	1.354 1.363 0.136		1.182 1.203 0.14	1.025 1.052 0.143	0.617 0.618 0.139	0.413 0.408 0.137	0.198 0.222 0.115	0.177 0.176 0.107	0.173 0.183 0.109	65A 65B C65	0.102 0.088 0.085		0.231 0.178 0.155	0.853 0.707 0.561	1.69 1.633 1.772	1.534 1.43	0.736 0.825	0.412 0.429 0.393	0.116 0.147 0.113	0.029 0.035 0.028	0.019 0.016 0.016
37A 37B C37	0.072 0.074 0.073	0.11 0.108 0.076	0.189 0.176 0.079	0.239 0.234 0.083	0.273 0.272 0.104	0.286 0.287 0.137	0.255 0.252 0.13	0.22 0.207 0.114	0.12 0.103 0.091	0.06 0.05 0.064	0.056 0.046 0.056	66A 66B C66	2.409		OVER OVER	OVER OVER	OVER OVER	OVER OVER		OVER	1.902 1.703 1.181	1.258 2.525 O 1.111	2.095

RunID	0	0.25	0.5	1	2		8	12	24	48	72	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
67A 67B C67	0.321 0.307 0.284	0.524 0.518 0.479	0.6 0.595 0.543	0.692 0.688 0.621	0.805 0.707	0.89 0.724	0.647 0.671 0.548	0.517 0.586 0.439	0.356 0.393 0.332	0.208 0.23 0.241	0.151 0.172 0.217	96A 96B C96	0.12 0.108 0.11	0.123 0.116 0.106	0.106 0.099 0.106	0.092 0.081 0.105	0.117 0.108 0.103	0.944 0.955 0.099	2.116 2.146 0.094	2.616 2.677 0.091	3.418 3.426 0.032	0.072	3.159 3.128 0.067
68A 68B C68	2.736 O' 2.762 O' 0.501	VER C 0.752	0.832	OVER 0.924	OVER OVER 1.021		2.016 1.577 0.645	1.847 1.457 0.654	1.565 1.261 0.603	1.163 1.05 0.595	1.026 0.952 0.591	97A 97B C97	0.035 0.035 0.038	0.035 0.034 0.037	0.036 0.037 0.036	0.036 0.037 0.036	0.037 0.038 0.036	0.039 0.038 0.035	0.036 0.036 0.034	0.036 0.036 0.032	0.037 0.036 0.032	0.037 0.037 0.029	0.037 0.036 0.028
69A 69B C69	0.12 0.115 0.099	0.182 0.201 0.142	0.304 0.403 0.234	1.21 1.406 1.014	1.713 1.697 1.76	1.199 1.557	0.507 0.585 0.654	0.305 0.341 0.417	0.099 0.106 0.094	0.027 0.025 0.025	0.025 0.018 0.021	98A 98B C98	0.116 0.118 0.088	0.115 0.117 0.088	0.091 0.094 0.089	0.091 0.096 0.09	0.195 0.214 0.088	0.897 1.075 0.089	1.596 1.689 0.088	1.727 1.742 0.087	2.108 2.123 0.087	2.372 2.414 0.086	2.432 2.471 0.085
70A 70B C70	2.144 2.074 0.811	2.767 2.6 1.39	2.96 2.773 1.756	3.041 2.822 2.158	2.196 2.347 2.238	1.246	0.774 0.753 1.208	1.29 0.636 1.216	0.644 0.56 1.029	0.695 0.397 0.764	0.526 0.321 1.045	99A 99B C99	0.088 0.104 0.106	0.086 0.101 0.102	0.085 0.1 0.101	0.084 0.1 0.1	0.083 0.097 0.096	0.079 0.093 0.092	0.07 0.085 0.086	0.066 0.08 0.081	0.06 0.073 0.073	0.052 0.062 0.062	0.049 0.057 0.056
71A 71B C71	0.307 0.388 0.292	0.487 0.546 0.451	0.556 0.624 0.517	0.65 0.722 0.582	0.766 0.82 0.67		0.535 0.552 0.457	0.417 0.467 0.365	0.298 0.284 0.265	0.156 0.143 0.236	0.1 0.1 0.192	100A 100B C 100	0.168 0.294 0.17	0.158 0.299 0.169	0.132 0.287 0.167	0.141 0.453 0.165	0.624 1.457 0.161	1.683 2.704 0.158	2.386 OVER 0.152	2.672 OVER 0.147	3.074 OVER 0.135	3.438 OVER 0.133	3.04 3.156 0.138
72A 72B C72	2.15 1.998 0.479	2.938 2.718 0.658	3.145 2.953 0.745	3.159 2.958 0.856	2.532 2.666 1.021	1.876	1.551 1.663 1.581	1.507 1.634 1.874	1.367 1.734 2.775	1.642 1.575 3.383	1.528 1.295 3.346	101A 101B C 101	0.015 0.012 0.012	0.013 0.012 0.011	0.015 0.013 0.012	0.015 0.013 0.011	0.024 0.024 0.013	0.076 0.074 0.014	0.133 0.128 0.016	0.139 0.133 0.02	0.104 0.097 0.032	0.034 0.028 0.045	0.025 0.028 0.04
73A 73B C73	0.04 0.039 0.037	0.061 0.062 0.037	0.099 0.103 0.046	0.16 0.161 0.056	0.209 0.21 0.079	0.249	0.264 0.261 0.088	0.259 0.26 0.089	0.142 0.118 0.082	0.052 0.049 0.048	0.042 0.043 0.037	102A 102B C 102	0.153 0.147 0.051	1.131 1.174 0.051	1.588 1.641 0.055	1.844 1.894 0.055	1.893 1.947 0.052	1.713 1.716 0.054	0.637 0.063 0.055	0.366 0.359 0.057	0.118 0.112 0.056	0.091 0.067 0.06	0.084 0.059 0.06
74A 74B C74	0.896 0.908 0.057	1.198 1.215 0.076	1.241 1.252 0.095	1.266 1.283 0.106	1, 232 1, 253 0, 108	1.132 1.153 0.114	0.514 0.531 0.121	0.275 0.303 0.121	0.14 0.128 0.11	0.093 0.099 0.078	0.095 0.101 0.087	103A 103B C 103	0.043 0.045 0.043	0.049 0.04 0.04	0.042 0.041 0.04	0.043 0.042 0.038	0.074 0.072 0.044	0.151 0.153 0.048	0.193 0.201 0.064	0.198 0.2 0.021	0.098 0.089 0.024	0.033 0.031 0.042	0.025 0.028 0.028
75A 75B C75	0.049 0.052 0.05	0.075 0.077 0.053	0.118 0.123 0.062	0.188 0.189 0.074	0. 232 0. 236 0. 112	0.262	0.238 0.243 0.114	0.216 0.216 0.111	0.077 0.079 0.073	0.041 0.04 0.045	0.039 0.039 0.03	104A 104B C 104	0.225 0.228 0.081	1.28 1.25 0.081	1.712 1.673 0.08	1.904 1.881 0.079	1.9 1.873 0.083	1.328 1.264 0.084	0.615 0.616 0.092	0.321 0.242 0.103	0.133 0.127 0.108	0.082 0.067 0.079	0.09 0.06 0.057
76A 76B C76	0.971 0.964 0.069	1.212 1.212 0.114	1.255 1.251 0.132	1.261 1.259 0.137	1.215 1.196 0.143	1.056	0.502 0.515 0.142	0.288 0.288 0.143	0.129 0.135 0.096	0.115 0.113 0.076	0.118 0.114 0.077	105A 105B C 105	0.018 0.021 0.02	0.017 0.018 0.018	0.019 0.019 0.019	0.025 0.027 0.019	0.063 0.065 0.02	0.141 0.148 0.021	0.177 0.179 0.025	0.172 0.174 0.03	0.142 0.145 0.047	0.047 0.048 0.055	0.024 0.029 0.038
77A 77B C77	0.033 0.036 0.036	0.026 0.029 0.032	0.029 0.032 0.036	0.028 0.031 0.032	0.025 0.027 0.031		0.007 0.022 0.012	0.007 0.013 0.015	0.007 0.013 0.012	0.009 0.013 0.015	0.011 0.014 0.016	106A 106B C 106	0.451 0.457 0.092	1.81 1.837 0.091	2.093 2.124 0.094	2.229 2.246 0.093	2.205 2.236 0.094	1.096 1.172 0.094	0.553 0.58 0.097	0.297 0.359 0.099	0.173 0.204 0.106	0.108 0.154 0.113	0.094 0.134 0.098
78A 78B C78	2.081 O ⁴ 2.104 O ⁴ 0.554				OVER OVER 3.307	OVER OVER OVER	1.356 1.421 OVER (0.773 0.814 OVER (0.301 0.202 OVER	0.074 0.078 2.207	0.016 0.019 1.606	107A 107B C 107	0.051 0.048 0.053	0.047 0.046 0.049	0.049 0.047 0.047	0.064 0.064 0.046	0.129 0.133 0.048	0.219 0.224 0.058	0.221 0.242 0.082	0.208 0.21 0.09	0.122 0.077 0.096	0.05 0.038 0.047	0.058 0.028 0.026
79A 79B C79	0.078 0.078 0.068	0.074 0.082 0.06	0.08 0.092 0.063	0.081 0.097 0.062	0.079 0.098 0.058	0.066	0.035 0.039 0.035	0.028 0.03 0.032	0.027 0.031 0.029	0.028 0.037 0.022	0.027 0.033 0.022	108A 108B C 108	0.58 0.587 0.125	1.937 1.922 0.122	2.192 2.186 0.123	2.275 2.263 0.12	2.062 2.074 0.121	0.965 0.962 0.126	0.535 0.554 0.141	0.337 0.329 0.148	0.182 0.18 0.151	0.117 0.11 0.108	0.108 0.112 0.099
80A 80B C80	2.534 O' 2.702 O' 0.49	VER C			OVER OVER 3.246	2.783 3.031 OVER	1.637 2.589 (OVER (1.774 OVER OVER	2.815 3.227 1.92	2.621 2.857 1.004	2.366 2.921 0.554	109A 109B C 109	0.017 0.017 0.017	0.018 0.017 0.018	0.019 0.018 0.019	0.018 0.018 0.017	0.02 0.019 0.017	0.022 0.02 0.017	0.019 0.019 0.015	0.017 0.016 0.015	0.015 0.015 0.016	0.021 0.02 0.012	0.023 0.024 0.012
81A 81B C81	0.059 0.052 0.049	0.092 0.083 0.062	0.123 0.121 0.077	0.302 0.34 0.164	0.697 0.847 0.719	0.848 1.01 0.881	0.857 0.904 0.91	0.698 0.633 0.754	0.386 0.204 0.38	0.092 0.032 0.088	0.029 0.01 0.021	110A 110B C110	0.067 0.067 0.045	0.063 0.062 0.045	0.038 0.038 0.045	0.035 0.036 0.044	1.723 (1.778 (0.044		OVER I		OVER OVER 0.043	3,427 O 3,45 O 0,043	
82A 82B C82	1.053 1.061 0.138	2.887 C 2.811 C 0.317			OVER OVER 0.91	3.262 3.247 1.468	1.782 2.161 1.725	3.071 0.336 0.892	0.257 0.352 1.429	0.29 0.191 1.111	0.026 0.042 0.57	111A 111B C111	0.041 0.047 0.043	0.04 0.047 0.042	0.041 0.045 0.041	0.04 0.043 0.041	0.04 0.043 0.038	0.038 0.041 0.036	0.031 0.037 0.032	0.026 0.033 0.03	0.021 0.024 0.024	0.017 0.023 0.016	0.014 0.012 0.015
83A 83B C83	0.106 0.1 0.09	0.132 0.131 0.106	0.159 0.162 0.115	0.291 0.304 0.164	0.927 0.864 0.717	0.947	0.819 0.843 0.904	0.629 0.714 0.782	0.328 0.405 0.46	0.166 0.165 0.176	0.073 0.051 0.045	112A 112B C 112	0.099 0.096 0.072	0.084 0.081 0.071	0.064 0.063 0.071	0.064 0.061 0.069	2.392 (2.348 (0.067	OVER C OVER C 0.066			OVER OVER 0.057	3.403 3.443 0.049	3.496 3.491 0.049
84A 84B C84	0.974 0.95 0.132	2.481 2.233 0.361	3.059 2.642 0.465		OVER OVER 0.979	2.743 1.98 1.437	1.545 1.24 1.127	0.911 0.756 0.872	0.536 0.514 1.163	0.332 0.425 1.133	0.373 0.297 0.853	113A 113B C113	0.018 0.018 0.018	0.018 0.019 0.018	0.019 0.02 0.019	0.027 0.028 0.017	0.097 0.093 0.018	0.191 0.191 0.019	0.226 0.225 0.022	0.224 0.243 0.023	0.162 0.192 0.037	0.046 0.106 0.047	0.023 0.049 0.044
85A 85B C85	0.08 0.076 0.066	0.187 0.189 0.116	0.372 0.376 0.196	0.707 0.703 0.476	0.996 0.995 0.688		1.617 1.605 1.252	0.705 0.684 0.983	0.352 0.308 0.387	0.071 0.057 0.1	0.014 0.009 0.014	114A 114B C114	0.493 0.449 0.044	2.4 2.289 0.045	2.884 2.813 0.045	3,241 3,125 0,044	3.313 3.226 0.044	1.168 1.257 0.044	0.547 0.588 0.047	0.341 0.421 0.045	0.196 0.251 0.046	0.13 0.128 0.057	0.15 0.177 0.062
86A 86B C86	1.974 O ⁴ 2.026 O ⁴ 0.263	VER C			OVER OVER 1.117	1.81 1.677 1.748	1.273 1.279 1.517	1.383 1.493 1.28	1.234 1.278 1.267	0.802 0.678 0.944	0.425 0.441 1.182	115A 115B C 115	0.043 0.043 0.046	0.046 0.043 0.044	0.045 0.045 0.044	0.062 0.064 0.042	0.157 0.164 0.042	0.248 0.261 0.046	0.276 0.289 0.065	0.253 0.265 0.077	0.14 0.137 0.082	0.042 0.046 0.045	0.028 0.029 0.025
87A 87B C87	0.11 0.114 0.122	0.18 0.19 0.164	0.312 0.338 0.226	0.675 0.679 0.537	0.985 0.976 0.786	1.288	1.055 0.9 1.136	0.518 0.491 0.758	0.229 0.265 0.377	0.045 0.068 0.126	0.013 0.016 0.042	116A 116B C 116	0.59 0.588 0.07	2.41 2.438 0.069	2.847 2.846 0.069	3.124 3.106 0.067	2.883 2.85 0.067	1.255 1.164 0.067	0.543 0.517 0.089	0.353 0.322 0.106	0.147 0.103 0.114	0.08 0.056 0.068	0.098 0.056 0.071
88A 88B C88	1.744 1.773 0.287	3.294 C	OVER	OVER OVER 0.802	OVER	2.223 2.115 1.488	1.371 1.359 1.118	1.048 1.035 1.11	1.142 1.106 0.98	0.988 0.923 0.994	0.607 0.58 1.112	117A 117B C117	0.036 0.035 0.035	0.048 0.048 0.042	0.06 0.059 0.049	0.077 0.075 0.056	0.146 0.14 0.074	0.519 0.513 0.184	0.675 0.676 0.58	0.603 0.6 0.746	0.523 0.521 0.643	0.399 0.392 0.48	0.32 0.306 0.386
89A 89B C89	0.056 0.053 0.047		0.174 0.183 0.083	0.464 0.502 0.156	0.721 0.809 0.606	0.978	0.866 0.88 0.876	0.693 0.667 0.722	0.294 0.195 0.383	0.082 0.047 0.111	0.028 0.017 0.046	118A 118B C 118	0.351 0.349 0.064	2.226 2.197 0.09	3.089 (3.034 (0.125	OVER C OVER C 0.286	VER (OVER C OVER C 1.357 C	OVER .	OVER	OVER	OVER O OVER O OVER O	VER
90A 90B C90	1.47 O' 1.523 O' 0.11	VER C	OVER OVER 0.385		OVER OVER 0.745		2.998 OVER 1.717	0.379 0.312 0.944	0.177 0.159 1.511	0.061 0.029 1.104	0.022 0.01 0.713	119A 119B C 119	0.083 0.092 0.08	0.095 0.105 0.086	0.106 0.12 0.093	0.125 0.141 0.101	0.236 0.275 0.131	0.608 0.622 0.396	0.685 0.671 0.617	0.641 0.638 0.735	0.573 0.578 0.692	0.425 0.479 0.587	0.252 0.403 0.499
91A 91B C91	0.083 0.109 0.096	0.115 0.146 0.114	0.157 0.195 0.13	0.331 0.382 0.185	0.823 0.842 0.609	0.992	0.754 0.734 0.834	0.5 0.506 0.683	0.195 0.227 0.445	0.051 0.074 0.204	0.034 0.041 0.106	120A 120B C 120	0.459 0.478 0.102	2.309 2.291 0.13		OVER COVER COVER CO.384	VER (VER .	OVER		OVER O OVER O OVER O	
92A 92B C92	1.37 1.312 0.12	2.886 C	OVER OVER 0.425		OVER OVER 0.809	2.03 1.862 1.231	1.288 1.013 1.125	1.205 0.785 0.745	0.744 0.315 1.24	0.54 0.426 1.081	0.332 0.371 0.891	121A 121B C121	0.046 0.05 0.043	0.067 0.07 0.053	0.091 0.095 0.062	0.145 0.154 0.073	0.566 0.585 0.13	1.072	1.532 1.586 1.027	1.365 1.372 1.551	1.195 1.207 1.417	0.971 0.984 1.153	0.829 0.837 0.985
93A 93B C93	0.037 0.039 0.042	0.037 0.038 0.039	0.037 0.038 0.039	0.039 0.037 0.038	0.036 0.038 0.036	0.038	0.037 0.036 0.035	0.035 0.036 0.034	0.031 0.031 0.033	0.033 0.032 0.029	0.035 0.034 0.029	122A 122B C 122	1.424 1.437 0.113			OVER COVER COVER CO. 471	VER (OVER	OVER	OVER	OVER O OVER O OVER O	VER
94A 94B C94	0.062 0.063 0.052	0.072 0.071 0.05	0.065 0.062 0.05	0.044 0.042 0.051	0.055 0.057 0.049	0.249	1.09 1.154 0.048	1.435 1.551 0.046	2.086 2.213 0.045	2.552 2.684 0.044	2.619 2.675 0.045	123A 123B C 123	0.085 0.103 0.09	0.105 0.123 0.1	0.136 0.154 0.11	0.224 0.259 0.129	0.657 0.682 0.307	1.08 1.085 0.624	1.512 1.505 1.024	1.42 1.447 1.468	1.27 1.319 1.451	1.047 1.146 1.245	0.896 0.936 1.09
95A 95B C95	0.089 0.096 0.124	0.087 0.096 0.121	0.087 0.095 0.118	0.085 0.094 0.118	0.085 0.092 0.113	0.087	0.074 0.081 0.1	0.067 0.073 0.094	0.056 0.064 0.081	0.048 0.058 0.067	0.044 0.053 0.06	124A 124B C 124	1.616 1.633 0.178	3.161 C	VER (OVER C OVER C 0.605	VER (OVER (OVER !	OVER		OVER O OVER O OVER O	

		418nm Absorbance zeroed to DI at X hours	1
Run ID 125A 125B C125	0 0.032 0.028 0.028	0.25 0.5 1 2 4 8 12 24 48 72 0.034 0.039 0.051 0.081 0.275 0.656 0.8 0.691 0.381 0.386 0.033 0.039 0.05 0.073 0.248 0.645 0.789 0.69 0.496 0.384 0.029 0.031 0.032 0.033 0.037 0.043 0.047 0.197 0.807 0.789	RUN D 0.25 0.5 1 2 4 8 12 24 48 72
126A 126B C126	0.6 0.596 0.049	1.981 2.941 OVER OVER OVER OVER 3.367 OVER 3.409 1.997 2.987 OVER OVER OVER OVER 3.332 OVER 3.433 0.654 0.055 0.058 0.068 0.066 1.137 3.225 OVER 3.44	155A 0.099 0.183 0.258 0.347 0.486 0.613 0.758 0.894 1.16 1.551 1.858 155B 0.123 0.222 0.299 0.392 0.514 0.855 0.8 0.919 1.148 1.448 1.879 C195 0.099 0.114 0.133 0.208 0.243 0.277 0.239 0.395 0.531 0.772 1.027
127A 127B C127	0.063 0.08 0.065	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156A 1.738 OVER OVER OVER OVER OVER OVER 0.048 0.528 0.528 0.521 0.528 0.521 0.528 0.521 0.528 0.521 0.528 0.5291 0.529 0.5291 0.5292
128A 128B C128	0.75 0.776 0.082	2.091 2.939 OVER OVER OVER OVER OVER 3.417 OVER 3.445 2.139 3.011 OVER OVER OVER OVER OVER OVER OVER 3.431 0.085 0.092 0.112 0.14 0.304 0.952 1.918 3.413 OVER OVER	157A 0.043 0.073 0.141 0.243 0.382 0.57 0.759 0.891 0.967 0.407 0.178 157B 0.047 0.091 0.149 0.252 0.389 0.579 0.782 0.915 1.022 0.788 0.569 C157 0.038 0.039 0.038 0.04 0.041 0.043 0.048 0.057 0.955 0.195 0.193 0.242
129A 129B C129	0.039 0.036 0.032	0.046 0.058 0.084 0.26 0.624 1.23 1.55 1.535 1.201 1.017 0.046 0.058 0.083 0.261 0.62 1.243 1.578 1.582 1.214 1.032 0.033 0.035 0.036 0.038 0.042 0.055 0.116 0.414 1.381 1.592	158A 1.407 OVER OVER OVER 1.8 1.152 0.611 0.41 0.227 0.145 0.117 158B 1.415 OVER OVER OVER OVER 0.928 1.701 1.178 0.717 0.436 0.202 0.159 0.137 C158 0.047 0.051 0.058 0.058 0.078 0.09 0.112 0.149 0.367 0.303 0.122
130A 130B C130	1.427 1.436 0.091	3.083 OVER OVER OVER OVER OVER OVER OVER 0.78 0.371 0.392 3.081 OVER OVER OVER OVER OVER 0.885 0.436 0.331 0.082 0.096 0.105 0.1213 0.304 1.399 2.394 3.398 0.754 0.507	159B 0.075 0.123 0.196 0.3 0.439 0.62 0.786 0.895 0.969 0.793 0.713 159B 0.076 0.116 0.187 0.293 0.429 0.615 0.786 0.881 0.939 0.675 0.516 C159 0.063 0.064 0.067 0.0074 0.104 0.131 0.151 0.219 0.384 0.44
131A 131B C131	0.076 0.079 0.081	0.089 0.104 0.151 0.393 0.675 1.089 1.36 1.513 1.227 1.118 0.09 0.105 0.158 0.406 0.684 1.124 1.402 1.484 1.225 1.013 0.083 0.087 0.091 0.102 0.17 0.346 0.476 0.934 1.573 1.407	160A 1.6 OVER OVER OVER 3.413 1.98 1.354 1.083 0.428 0.327 0.32 160B 1.566 OVER OVER OVER 0.428 0.471 1.441 0.981 0.849 0.736 0.44 0.436 C160 0.077 0.087 0.1 0.125 0.139 0.16 0.203 0.256 0.253 0.266 0.125
132A 132B C132	1.618 1.622 0.142	3.141 OVER OVER OVER OVER OVER OVER OVER 0.545 3.229 OVER OVER OVER OVER OVER OVER 0.953 0.531 0.516 0.15 0.157 0.179 0.278 0.544 1.72 OVER 3.353 0.811 0.549	161A 0.053 0.092 0.168 0.282 0.42 0.62 0.836 0.991 0.984 0.821 0.756 161B 0.055 0.093 0.167 0.28 0.42 0.613 0.838 0.993 0.995 0.916 0.756 C161 0.05 0.054 0.058 0.053 0.08 0.157 0.189 0.225 0.308 0.489 0.544
133A 133B C133	0.04 0.039 0.039	0.055 0.067 0.097 0.225 0.58 0.58 0.522 0.452 0.373 0.316 0.053 0.066 0.096 0.224 0.589 0.59 0.523 0.455 0.372 0.314 0.048 0.054 0.063 0.083 0.183 0.57 0.765 0.675 0.548 0.472	162A 1.718 OVER OVER OVER OVER OVER OVER OVER 3.256 1.562 1.188 162B 1.778 OVER
134A 134B C134	0.582 0.618 0.068	2.75 OVER OVER OVER OVER OVER OVER OVER OVER	163A 0.076 0.132 0.225 0.333 0.474 0.665 0.828 0.942 0.982 0.855 0.795 163B 0.077 0.129 0.221 0.334 0.474 0.666 0.852 0.949 0.97 0.785 0.653 C163 0.078 0.091 0.09 0.124 0.184 0.228 0.254 0.29 0.394 0.602 0.528
135A 135B C135	0.071 0.076 0.081	0.086 0.099 0.136 0.318 0.64 0.603 0.562 0.494 0.421 0.359 0.096 0.111 0.145 0.316 0.628 0.611 0.606 0.5 0.421 0.41 0.1 0.107 0.133 0.154 0.483 0.762 0.773 0.69 0.641 0.57	164A 1.942 OVER
136A 136B C136	0.804 0.8 0.101	2 898 OVER OVER OVER OVER OVER OVER OVER OVER	165A 0.053 0.068 0.085 0.11 0.15 0.199 0.249 0.246 0.175 0.077 0.054 165B 0.052 0.089 0.085 0.109 0.151 0.201 0.249 0.26 0.165 0.058 0.043 C165 0.05 0.054 0.067 0.067 0.072 0.072 0.074 0.078 0.047 0.036
137A 137B C137	0.033 0.03 0.028	0.039 0.048 0.072 0.172 0.56 0.778 0.675 0.576 0.49 0.414 0.039 0.049 0.073 0.169 0.529 0.771 0.684 0.565 0.473 0.402 0.03 0.03 0.031 0.033 0.035 0.04 0.045 0.146 0.576 0.664	166A 0.762 1.198 1.274 1.287 1.239 1.104 0.537 0.343 0.156 0.143 0.133 166B 0.786 1.205 1.275 1.279 1.239 1.118 0.552 0.365 0.149 0.169 0.14 C166 0.062 0.069 0.078 0.076 0.079 0.08 0.083 0.084 0.083 0.084 0.071
138A 138B C138	1.219 1.234 0.063	3.178 OVER OVER OVER OVER OVER OVER OVER OVER	167A 0.074 0.092 0.107 0.132 0.175 0.222 0.246 0.21 0.102 0.06 0.0499 167B 0.078 0.096 0.0111 0.137 0.173 0.226 0.24 0.212 0.097 0.048 C 167 0.073 0.077 0.078 0.084 0.094 0.070 0.040 0.044 0.031 0.027
139A 139B C139	0.066 0.065 0.07	0.077 0.088 0.121 0.29 0.6 0.762 0.722 0.649 0.583 0.498 0.074 0.085 0.119 0.289 0.6 0.731 0.686 0.613 0.572 0.545 0.077 0.076 0.072 0.082 0.083 0.145 0.263 0.471 0.72 0.691	168A 0.866 1.23 1.298 1.298 1.216 0.997 0.496 0.33 0.157 0.158 0.156 168B 0.869 1.223 1.301 1.298 1.22 0.991 0.512 0.32 0.156 0.155 0.146 C16B 0.096 0.1 0.101 0.103 0.104 0.106 0.103 0.094 0.069 0.069 0.067
140A 140B C140	1.399 1.403 0.077	3.298 OVER OVER OVER OVER OVER OVER OVER OVER	169A 0.283 0.375 0.434 0.494 0.569 0.649 0.728 0.74 0.27 0.124 0.082 169B 0.281 0.392 0.451 0.51 0.986 0.664 0.672 0.74 0.27 0.124 0.082 C169 0.27 0.377 0.432 0.481 0.542 0.601 0.664 0.654
141A 141B C141	0.047 0.046 0.04	0.061 0.094 0.157 0.241 0.36 0.494 0.569 0.682 0.819 0.859 0.059 0.08 0.157 0.235 0.354 0.492 0.568 0.693 0.828 0.863 0.043 0.044 0.047 0.05 0.066 0.104 0.113 0.142 0.237 0.298	170A 1.315 3.22 OVER OVER OVER OVER OVER OVER 2.605 1.154 0.594 170B 1.345 3.28 OVER OVER OVER OVER OVER OVER 2.016 0.89 0.688 C170 0.461 0.61 0.697 0.778 0.847 0.879 0.592 0.53 0.362 0.356 0.33
142A 142B C142	0.787 0.801 0.05	2 006 2 726 3 472 3 213 OVER OVER 3 426 0.655 0.179 0.17 2 039 2 709 OVER 3 262 OVER OVER 3 475 0.756 0.21 0.199 0.057 0.062 0.079 0.091 0.106 0.137 0.169 0.279 0.568 0.655	171A 0.234 0.394 0.471 0.538 0.615 0.664 0.603 0.538 0.31 0.191 0.112 171B 0.227 0.37 0.489 0.518 0.602 0.662 0.622 0.569 0.364 0.18 0.119 C171 0.249 0.376 0.429 0.475 0.533 0.568 0.514 0.466 0.296 0.171 0.131
143A 143B C143	0.078 0.073 0.076	0.093 0.122 0.208 0.29 0.408 0.533 0.608 0.744 0.895 0.86 0.093 0.124 0.208 0.301 0.405 0.53 0.612 0.756 0.863 0.921 0.081 0.085 0.093 0.118 0.162 0.19 0.206 0.27 0.411 0.47	172A 1.837 OVER OVER OVER OVER OVER OVER OVER QUER
144A 144B C144	0.898 0.926 0.081	2.114 2.823 OVER OVER OVER OVER 2.767 0.522 0.139 0.117 2.133 2.84 OVER OVER OVER 2.787 0.536 0.157 0.128 0.102 0.127 0.139 OVER 0.182 0.231 0.272 0.42 0.668	173A 0.091 0.127 0.157 0.191 0.251 0.365 0.509 0.603 0.766 0.959 1.146 173B 0.086 0.126 0.153 0.191 0.263 0.378 0.536 0.642 0.823 1.044 1.271 C173 0.09 0.017 0.118 0.209 0.222 0.666 0.323 0.978
145A 145B C145	0.065 0.058 0.048	0.105 0.175 0.255 0.372 0.497 0.615 0.673 0.784 0.89 0.867 0.098 0.168 0.246 0.365 0.489 0.612 0.685 0.796 0.896 0.87 0.049 0.052 0.056 0.065 0.101 0.116 0.126 0.162 0.257 0.319	174A 0.847 2.932 OVER OVER OVER OVER OVER OVER 1.779 1.098 0.677 174B 0.897 3.034 OVER OVER OVER OVER OVER 3.001 1.493 0.957 0.468 C174 0.117 0.138 0.156 0.173 0.188 0.215 0.248 0.28 0.36 0.526 0.72
146A 146B C146	1.547 1.557 0.092	2 977 3.428 OVER OVER OVER 3.442 1.352 0.406 0.198 0.148 2.997 3.556 OVER OVER OVER 1.306 0.411 0.196 0.177 0.101 0.114 0.125 0.136 0.155 0.201 0.25 0.416 0.159 0.464	175A 0.123 0.174 0.201 0.25 0.325 0.443 0.603 0.7 0.897 0.967 0.643 175B 0.135 0.184 0.214 0.254 0.325 0.444 0.622 0.712 0.89 1.915 1.11 1.265 C175 0.117 0.125 0.167 0.224 0.256 0.273 0.31 0.385 0.418
147A 147B C147	0.089 0.095 0.09	0.147 0.225 0.302 0.416 0.546 0.673 0.744 0.884 0.914 0.788 0.148 0.225 0.306 0.419 0.544 0.664 0.733 0.865 0.887 0.741 0.966 0.106 0.13 0.177 0.198 0.232 0.27 0.325 0.494 0.663	176A 0.981 2.992 OVER OVER OVER OVER OVER 3.145 1.809 1.184 0.65 176B 0.945 2.767 OVER OVER OVER 1.325 0.964 0.865 0.567 0.52 C176 0.156 0.183 0.205 0.223 0.248 0.275 0.319 0.347 0.465 0.654 0.869
148A 148B C148	1.707 1.7 0.132	3.087 OVER OVER OVER OVER 1.913 0.85 0.28 0.168 0.159 3.084 OVER OVER OVER 2.2 0.849 0.316 0.155 0.137 0.169 0.18 0.194 0.312 0.247 0.309 0.368 0.5758 0.71 0.313	177A 0.11 0.16 0.199 0.263 0.378 0.542 0.705 0.783 0.982 1.046 1.237 177B 0.106 0.151 0.186 0.246 0.353 0.489 0.644 0.717 0.82 0.957 1.118 C177 0.1 0.127 0.138 0.156 0.184 0.222 0.246 0.266 0.3312 0.393 0.479
149A 149B C149	0.055 0.041 0.044	0.071 0.095 0.203 0.291 0.415 0.564 0.696 0.891 1.045 0.9 0.055 0.662 0.123 0.211 0.329 0.47 0.594 0.804 0.99 0.779 0.048 0.05 0.051 0.058 0.052 0.148 0.774 0.232 0.388 0.57	178A 1.797 OVER OVER OVER OVER 0.00 2.151 1.516 1.199 1.277 1.319 178B 1.808 OVER OVER OVER OVER 0.00 1.457 1.397 1.289 1.406 1.349 1.015 0.155 0.155 0.159 0.213 0.233 0.251 0.308 0.35 0.465 0.716 1.013
150A 150B C150	0.719 0.74 0.048	2.07 2.655 3.469 3.377 0.898 0.716 0.478 0.257 0.16 0.164 2.148 2.812 OVER OVER 2.376 1.259 0.897 0.359 0.169 0.142 0.049 0.049 0.058 0.076 0.095 0.126 0.18 0.426 1.251 0.18	179A 0.152 0.216 0.257 0.326 0.441 0.605 0.766 0.85 0.999 1.237 1.389 179B 0.162 0.219 0.26 0.325 0.445 0.616 0.789 0.877 1.03 1.246 1.473 C179 0.139 0.17 0.187 0.205 0.236 0.27 0.304 0.325 0.38 0.477 0.55
151A 151B C151	0.08 0.085 0.08	0.105 0.129 0.231 0.316 0.429 0.552 0.644 0.801 0.948 0.874 0.112 0.141 0.255 0.343 0.451 0.588 0.681 0.858 1.027 0.935 0.082 0.084 0.092 0.111 0.168 0.197 0.228 0.311 0.516 0.693	180A 1.813 OVER OVER OVER OVER OVER OVER 1.262 1.487 1.792 180B 1.937 OVER OVER OVER OVER OVER OVER 1.898 1.411 1.231 1.552 1.783 C180 0.21 0.252 0.27 0.288 0.315 0.356 0.424 0.489 0.658 0.992 1.325
152A 152B C152	0.885 0.908 0.114	2.22 2.811 OVER 2.644 1.286 0.727 0.52 0.282 0.176 0.162 2.332 3.086 OVER OVER OVER OVER OVER 0.744 0.282 0.289 0.179 0.191 0.206 0.242 0.289 0.367 0.467 0.812 0.602 0.185	181A 0.101 0.15 0.188 0.245 0.336 0.53 0.747 0.836 0.915 0.472 0.362 181B 0.101 0.152 0.189 0.247 0.334 0.527 0.751 0.854 0.979 0.618 0.475 C181 0.084 0.108 0.119 0.131 0.147 0.176 0.206 0.226 0.265 0.313 0.352
153A 153B C153	0.051 0.061 0.043	0.087 0.145 0.234 0.343 0.482 0.657 0.785 1.069 1.478 0.291 0.108 0.18 0.268 0.382 0.521 0.692 0.833 1.102 1.615 1.59 0.045 0.046 0.047 0.051 0.063 0.112 0.135 0.177 0.329 0.536	182A 1.743 OVER
		ı	I.

Run I D 183A	0 0.131	0.25 0.192	418nn 0.5 0.232	n Absorba 1 0.292	ince zeroec 2 0.384	I to DI at X 4 0.579	hours 8 0.788	12 0.927	24 0.582	48 0.311	72 0.232	Run ID 212A	0 0.25 0.5 1 2 4 8 12 24 48 72 0.743 2.287 2.988 OVER OVER OVER OVER 3344 OVER OVER
183B	0.141	0.2	0.234	0.292	0.379	0.567	0.795	0.951	1.311	1.262	1,153	212B	0.768 2.324 3.015 OVER OVER OVER OVER OVER 3.28 3.361 OVER 0.186 0.24 0.263 0.303 0.379 0.501 0.765 0.983 1.573 2.946 OVER
C183	0.12	0.151	0.163	0.178	0.195	0.226	0.258	0.279	0.326	0.389	0,434	C212	
184A 184B C184	1.558 1.816 O 0.166	3.096 0 VER 0 0.2			OVER (OVER 0.267	3.47 0.304	1.642 1.386 0.331	1.263 1.12 0.375	0.886 1.008 0.494	0.601 0.789 0.683	0.408 0.549 0.851	213A 213B C213	0.11 0.185 0.224 0.297 0.445 0.675 1 1.241 1.597 1.65 1.489 0.111 0.187 0.225 0.299 0.446 0.681 1.013 1.25 1.602 1.633 1.478 0.098 0.144 0.16 0.187 0.231 0.299 0.411 0.51 0.708 1.134 1.59
185A	0.035	0.034	0.036	0.038	0.04	0.046	0.063	0.139	0.315	0.352	0.361	214A	1.296 OVER
185B	0.032	0.032	0.032	0.034	0.037	0.045	0.063	0.135	0.327	0.372	0.382	214B	
C185	0.034	0.034	0.034	0.035	0.036	0.04	0.044	0.047	0.055	0.065	0.074	C214	
186A	0.057	0.126	0.222	0.52	0.905	1.162	1.319	1.37	1.388	1.415	1.423	215A	0.152 0.226 0.265 0.336 0.477 0.865 0.988 1.187 1.495 1.534 1.386 0.152 0.238 0.278 0.352 0.501 0.72 0.997 1.186 1.517 1.52 1.366 0.135 0.179 0.193 0.222 0.266 0.337 0.442 0.516 0.72 1.138 1.579
186B	0.06	0.128	0.225	0.52	0.884	1.149	1.306	1.371	1.391	1.411	1.426	215B	
C186	0.047	0.044	0.042	0.045	0.044	0.045	0.044	0.045	0.055	0.076	0.099	C215	
187A	0.101	0.101	0.101	0.102	0.104	0.108	0.143	0.266	0.397	0.438	0.451	216A	1.456 OVER OVER OVER OVER OVER OVER OVER OVER
187B	0.096	0.096	0.096	0.097	0.099	0.106	0.14	0.261	0.383	0.418	0.453	216B	
C 187	0.096	0.096	0.095	0.094	0.095	0.1	0.107	0.117	0.14	0.136	0.164	C216	
188A	0.146	0.219	0.327	0.635	0.99	1.241	1.408	1.478	1.521	1.578	1.589	217A	0.04 0.054 0.068 0.09 0.134 0.224 0.364 0.486 0.655 0.834 0.891 0.041 0.055 0.066 0.091 0.136 0.229 0.321 0.511 0.667 0.844 0.888 0.037 0.043 0.043 0.048 0.052 0.06 0.007 0.08 0.093 0.139 0.149
188B	0.159	0.226	0.335	0.641	0.997	1.25	1.413	1.478	1.524	1.539	1.537	217B	
C 188	0.123	0.121	0.121	0.121	0.12	0.128	0.147	0.179	0.223	0.255	0.272	C217	
189A	0.032	0.032	0.033	0.035	0.037	0.045	0.142	0.253	0.311	0.327	0.333	218A	0.517 1.868 2.857 OVER OVER OVER OVER OVER OVER OVER OVER
189B	0.033	0.034	0.036	0.036	0.039	0.048	0.179	0.275	0.32	0.335	0.339	218B	
C189	0.034	0.033	0.033	0.035	0.035	0.038	0.041	0.044	0.054	0.07	0.082	C218	
190A	0.128	0.329	0.544	0.811	1.051	1.213	1.282	1.273	1.29	1.334	1.349	219A	0.069 0.083 0.096 0.121 0.166 0.257 0.383 0.522 0.644 0.819 0.817 0.072 0.088 0.099 0.122 0.168 0.254 0.377 0.479 0.646 0.804 0.811 0.062 0.068 0.089 0.072 0.077 0.086 0.099 0.104 0.117 0.151 0.173
190B	0.128	0.323	0.533	0.806	1.05	1.203	1.262	1.261	1.277	1.321	1.339	219B	
C190	0.087	0.085	0.086	0.085	0.083	0.083	0.086	0.088	0.099	0.13	0.157	C219	
191A	0.099	0.1	0.097	0.102	0.1	0.124	0.297	0.377	0.429	0.451	0.466	220A	0.614 1.846 2.761 OVER OVER OVER OVER OVER OVER OVER OVER
191B	0.108	0.105	0.104	0.105	0.106	0.124	0.28	0.356	0.412	0.439	0.433	220B	
C191	0.104	0.103	0.103	0.1	0.099	0.101	0.105	0.114	0.148	0.148	0.182	C 220	
192A	0.204	0.425	0.641	0.902	1.115	1.275	1.343	1.358	1.368	1.412	1.435	221A	0.052 0.073 0.094 0.134 0.209 0.354 0.525 0.676 0.841 1.108 1.316 0.051 0.074 0.096 0.14 0.222 0.376 0.563 0.741 0.923 1.213 1.42 0.044 0.046 0.048 0.053 0.058 0.065 0.076 0.088 0.105 0.147 0.179
192B	0.212	0.427	0.64	0.903	1.118	1.278	1.343	1.363	1.375	1.413	1.434	221B	
C192	0.173	0.17	0.169	0.171	0.173	0.193	0.235	0.27	0.314	0.367	0.398	C221	
193A	0.019	0.019	0.022	0.028	0.039	0.069	0.11	0.139	0.164	0.174	0.171	222A	1.153 3.077 3.791 OVER OVER OVER OVER OVER OVER OVER 3.418 1.063 1.168 3.084 OVER OVER OVER OVER OVER OVER OVER OVER
193B	0.02	0.024	0.037	0.034	0.045	0.084	0.114	0.144	0.178	0.172	0.173	222B	
C193	0.016	0.017	0.018	0.021	0.023	0.024	0.025	0.025	0.023	0.023	0.022	C 222	
194A	0.191	0.911	1.688	2.075	2.096	1.887	0.722	0.401	0.172	0.103	0.107	223A	0.09 0.11 0.133 0.178 0.264 0.411 0.564 0.692 0.905 1.152 1.332 0.085 0.108 0.13 0.175 0.256 0.397 0.53 0.647 0.84 1.104 1.27 0.069 0.078 0.079 0.083 0.089 0.097 0.107 0.116 0.131 0.171 0.208
194B	0.179	0.893	1.667	2.063	2.103	1.904	0.705	0.411	0.21	0.133	0.127	223B	
C194	0.056	0.06	0.057	0.058	0.06	0.062	0.063	0.062	0.06	0.059	0.059	C 223	
195A 195B C195	0.041 0.035 0.04	0.043 0.038 0.039	0.045 0.04 0.04	0.052 0.046 0.041	0.065 0.058 0.041	0.097 0.091 0.042	0.137 0.134 0.044	0.163 0.159 0.042	0.195 0.191 0.042	0.206 0.197 0.037	0.212 0.21	224A 224B	1.306 3.087 OVER OVER OVER OVER OVER OVER OVER OVER
196A	0.24	0.951	1.689	2.029	2.09	1.608	0.668	0.406	0.168	0.106	0.042	C 224	0.062 0.149 0.188 0.262 0.406 0.582 0.842 0.929 0.832 0.754 0.708 0.057 0.146 0.194 0.258 0.401 0.579 0.844 0.94 0.94 0.764 0.761 0.060 0.115 0.132 0.157 0.2 0.242 0.336 0.414 0.571 0.846 0.938
196B	0.238	0.979	1.742	2.075	2.141	1.619	0.731	0.486	0.218	0.143	0.095	225A	
C196	0.085	0.085	0.086	0.088	0.088	0.088	0.086	0.086	0.081	0.08	0.163	225B	
197A 197B	0.024 0.026	0.026 0.03	0.032 0.032	0.042 0.043	0.067 0.068	0.114 0.119	0.154 0.157	0.167 0.172	0.184 0.183	0.185 0.189	0.077 0.191 0.194	C 225 226A 226B	0.864 3.223 OVER OVER OVER OVER OVER OVER OVER OVER
C197	0.022	0.023	0.024	0.026	0.027	0.028	0.029	0.029	0.028	0.027	0.026	C 226	0.115 0.167 0.191 0.232 0.315 0.41 0.65 0.923 1.666 3.329 3.299
198A	0.465	1.674	2.2	2.289	2.262	1.171	0.532	0.375	0.207	0.129	0.128	227A	0.112 0.205 0.242 0.317 0.462 0.628 0.877 0.931 0.85 0.754 0.701
198B	0.468	1.667	2.2	2.268	2.24	1.179	0.543	0.37	0.207	0.14	0.139	227B	0.129 0.217 0.255 0.327 0.46 0.611 0.852 0.904 0.825 0.754 0.698
C198 199A 199B	0.096 0.06 0.061	0.095 0.063 0.065	0.093 0.068 0.07	0.097 0.079 0.082	0.098 0.106 0.111	0.099 0.154 0.16	0.098 0.192 0.201	0.099 0.208 0.216	0.099 0.219 0.229	0.101 0.233 0.234	0.1 0.247 0.242	C 227 228A 228B	0.099 0.158 0.174 0.197 0.249 0.288 0.369 0.44 0.602 0.871 0.891 1.028 3.264 OVER OVER OVER OVER OVER OVER OVER OVER
C199	0.061	0.061	0.062	0.063	0.063	0.064	0.064	0.06	0.06	0.055	0.056	C 228	0.171 0.223 0.245 0.288 0.37 0.467 0.692 0.931 1.669 3.163 3.275
200A	0.568	1.795	2.217	2.296	2.204	1.031	0.571	0.358	0.19	0.14	0.127	229A	0.044 0.066 0.082 0.122 0.215 0.361 0.655 0.833 0.935 0.821 0.776
200B	0.561	1.782	2.218	2.279	2.199	1.002	0.584	0.407	0.227	0.144	0.131	229B	0.04 0.064 0.08 0.117 0.208 0.356 0.659 0.843 0.943 0.846 0.769
C200 201A 201B	0.125 0.021 0.021	0.127 0.02 0.02	0.128 0.021 0.021	0.129 0.023 0.022	0.13 0.024 0.024	0.132 0.031 0.036	0.136 0.176 0.192	0.139 0.318 0.332	0.456 0.468	0.132 0.496 0.511	0.125 0.51 0.523	C 229 230A 230B	0.032 0.038 0.041 0.044 0.055 0.056 0.067 0.076 0.094 0.136 0.184 0.932 3.463 0VER OVER OVER OVER OVER OVER OVER OVER O
C201	0.02	0.019	0.019	0.022	0.02	0.022	0.023	0.024	0.028	0.033	0.039	C 230	0.064 0.061 0.063 0.067 0.086 0.089 0.117 0.146 0.22 0.45 0.786
202A	0.081	0.233	0.587	1.438	2.179	2.685	3.105	3.152	2.918	2.899	2.986	231A	0.064 0.088 0.103 0.138 0.234 0.375 0.627 0.776 0.898 0.788 0.724
202B	0.086	0.235	0.595	1.468	2.196	2.763	3.203	3.294	2.981	2.933	3.048	231B	0.077 0.102 0.117 0.154 0.25 0.395 0.637 0.761 0.857 0.747 0.688
C202	0.045	0.046	0.046	0.044	0.045	0.046	0.046	0.046	0.046	0.048	0.056	C 231	0.077 0.084 0.085 0.088 0.086 0.101 0.112 0.118 0.135 0.171 0.224
203A	0.057	0.056	0.056	0.056	0.057	0.066	0.26	0.37	0.506	0.555	0.57	232A	1.093 3.389 OVER OVER 3.376 OVER OVER OVER OVER OVER 3.495
203B	0.067	0.065	0.067	0.066	0.067	0.074	0.268	0.377	0.505	0.549	0.566	232B	1.134 3.395 OVER OVER 3.46 OVER OVER OVER OVER OVER OVER
C203	0.066	0.065	0.064	0.064	0.063	0.063	0.066	0.072	0.082	0.089	0.101	C 232	0.094 0.103 0.107 0.112 0.128 0.136 0.162 0.186 0.269 0.48 0.771 0.044 0.055 0.066 0.089 0.128 0.197 0.278 0.335 0.395 0.443 0.473 0.044 0.053 0.064 0.087 0.128 0.199 0.282 0.338 0.399 0.449 0.479
204A	0.127	0.288	0.683	1.546	2.26	2.769	3.108	3.279	3.023	3.004	3.114	233A	
204B	0.124	0.285	0.675	1.561	2.292	2.82	3.238	3.367	3.048	3.003	3.102	233B	
C204	0.078	0.078	0.076	0.076	0.077	0.073	0.072	0.067	0.081	0.128	0.148	C 233	0.103 0.046 0.049 0.052 0.054 0.055 0.06 0.134 0.072 0.143 0.116
205A	0.021	0.024	0.028	0.039	0.074	0.158	0.263	0.321	0.421	0.469	0.428	234A	0.508 1.651 2.547 OVER OVER OVER OVER 0.985 0.343 0.21 0.156
205B	0.021	0.025	0.027	0.04	0.073	0.156	0.26	0.31	0.404	0.463	0.453	234B	0.5 1.627 2.5 OVER OVER OVER OVER 1.046 0.384 0.189 0.141
C205	0.022	0.022	0.022	0.026		0.029	0.033	0.036	0.033	0.031	0.03	C 234	0.051 0.052 0.054 0.057 0.059 0.064 0.068 0.073 0.085 0.112 0.138
206A	0.422	1.85	2.85	3.38 (1.349	0.621	0.387	0.198	0.183	0.178	235A	0.086 0.081 0.092 0.114 0.154 0.248 0.301 0.356 0.422 0.511 0.55
206B	0.429	1.858	2.896	3.449 (1.224	0.651	0.42	0.231	0.197	0.191	236B	0.076 0.084 0.097 0.12 0.163 0.233 0.314 0.374 0.446 0.494 0.529
C206	0.045	0.05	0.048	0.052	0.052	0.0552	0.049	0.054	0.053	0.057	0.059	C 235	0.071 0.071 0.074 0.075 0.078 0.092 0.095 0.091 0.096 0.111 0.122
207A	0.054	0.057	0.061	0.073	0.114	0.193	0.295	0.353	0.449	0.444	0.258	236A	0.612 1.746 2.617 OVER OVER OVER OVER 0.097 0.383 0.25 0.286
207B	0.056	0.057	0.059	0.072	0.114	0.199	0.3	0.352	0.455	0.448	0.288	236B	0.632 1.777 2.619 OVER OVER OVER OVER 0.097 0.393 0.25 0.266
C207	0.05	0.048	0.05	0.054	0.055	0.056	0.055	0.054	0.056	0.051	0.048	C 236	0.082 0.085 0.087 0.091 0.095 0.098 0.106 0.111 0.126 0.152 0.179
208A	0.547	2.064	2.889	3.316	3.274	1.186	0.586		0.148	0.171	0.132	237A	0.055 0.074 0.095 0.135 0.2 0.292 0.374 0.41 0.442 0.487 0.523
2088 C208 209A	0.525 0.069 0.076	2.041 0.067 0.139	2.861 0.068 0.166	3.363 0.069 0.212	3.434 0.07 0.301	1.306 0.071 0.439	0.629 0.071 0.645	0.445 0.068 0.768	0.159 0.07 0.893	0.188 0.073 0.776	0.199 0.07 0.727	237B C 237	0.055 0.073 0.092 0.13 0.196 0.283 0.359 0.391 0.43 0.488 0.501 0.046 0.048 0.051 0.054 0.059 0.063 0.065 0.071 0.086 0.101 1.11 2.638 3.244 0.VER 0.VER 0.VER 3.152 0.815 0.38 0.24 0.2 1.444 0.345 0.345 0.345 0.045 0
2098 C209 210A	0.075 0.082 0.623	0.141 0.125 2.23		0.212 0.164 OVER (0.637 0.336 OVER (0.762 0.405 OVER (0.898 0.533 OVER	0.774 0.766 3.423 C		238B C 238 239A	1.114 2.615 3.271 OVER OVER OVER 2.964 0.802 0.381 0.242 0.207 0.092 0.095 0.096 0.101 0.104 0.106 0.115 0.121 0.139 0.172 0.203 0.09 0.111 0.131 0.172 0.241 0.334 0.412 0.448 0.492 0.542 0.577
210B C210 211A	0.646 0.125 0.121	2.248 0.178 0.184	0.2	0.24 0.257	0.312	0.435 0.477	0.682 0.655	0.916 0.763	0.827	3.409 C 2.984 C 0.729	0.678	239B C 239 240A	0.09 0.112 0.127 0.166 0.232 0.332 0.394 0.421 0.46 0.504 0.546 0.089 0.089 0.091 0.097 0.096 0.103 0.107 0.111 0.122 0.131 0.146 0.304 0.276 0.374 OVER OVER OVER 1.473 0.829 0.428 0.256 0.222
211B	0.129	0.188	0.214	0.259	0.347	0.485	0.662	0.785	0.867	0.755	0.694	240B	1.313 2.764 3.365 OVER OVER OVER 1.385 0.782 0.357 0.255 0.205 0.136 0.159 0.15 0.142 0.145 0.173 0.175 0.182 0.207 0.239 0.282
C211	0.137	0.178	0.191	0.216	0.252	0.307	0.387	0.441	0.573	0.793	0.768	C 240	

Run I D 241A 241B	0 0.051 0.051	0.25 0.067 0.068	418nr 0.5 0.08 0.082	m Absorba 1 0.107 0.11	ance zeroed 2 0.151 0.154	d to DI at X 4 0.229 0.229	hours 8 0.333 0.325	12 0.374 0.364	24 0.429 0.417	48 0.478 0.467	72 0.513 0.502	Run ID 270A 270B	0 1.441 1.416	0.25 2.183 2.149	0.5 2.392 2.359	1 2.483 2.452	2 2.475 2.47	4 1.415 1.406	8 0.617 0.645	12 0.442 0.446	24 0.422 0.416	48 0.581 0.476	72 0.529 0.509
C241 242A 242B	0.044 0.693 0.705	0.05 2.18 2.199	0.053	0.056 OVER	0.064 OVER	0.073 0.073 OVER	0.084 1.226 1.273	0.09 0.676 0.677	0.102 0.3 0.328	0.12 0.193 0.255	0.302 0.139 0.252 0.177	C270 271A 271B	0.12 0.095 0.091	0.293 0.133 0.129	0.354 0.186 0.185	0.443 0.534 0.543	0.602 0.763 0.785	0.828 1.003 1.033	1.104 0.588 0.651	0.741 0.433 0.531	0.437 0.211 0.21	0.491 0.069 0.075	0.534 0.027 0.027
C242 243A 243B	0.062 0.068 0.068	0.069 0.086 0.085	0.073 0.101 0.099	0.077 0.126 0.126	0.085 0.173 0.17	0.095 0.251 0.247	0.108 0.358 0.353	0.117 0.399 0.395	0.136 0.463 0.459	0.17 0.514 0.512	0.205 0.557 0.556	C 271 272A 272B	0.105 1.286 1.292	0.123 1.577 1.576	0.148 1.615 1.628	0.189 1.627 1.622	0.605 1.533 1.525	0.751 1.075 1.102	0.667 0.542 0.562	0.519 0.406 0.426	0.233 0.43 0.445	0.09 0.508 0.46	0.047 0.608 0.534
C243 244A 244B	0.061 0.803 0.809	0.066 2.292 2.291	3.115		OVER	0.091 OVER OVER	0.102 1.371 1.465	0.108 0.77 0.776	0.121 0.339 0.363	0.144 0.189 0.172	0.168 0.203 0.172	C 272 273A 273B	0.191 0.057 0.057	0.419 0.107 0.106	0.505 0.15 0.149	0.622 0.253 0.253	0.784 0.714 0.817	0.822 0.813 0.875	0.666 0.784 0.789	0.534 0.705 0.715	0.454 0.441 0.44	0.495 0.14 0.153	0.663 0.043 0.069
C244 245A 245B	0.074 0.064 0.064	0.084 0.095 0.094	0.09 0.118 0.119	0.093 0.163 0.162	0.103 0.229 0.227	0.113 0.324 0.321	0.127 0.411 0.403	0.137 0.438 0.427	0.159 0.475 0.466	0.191 0.525 0.512	0.23 0.57 0.56	C273 274A 274B	0.046 1.124 1.162	0.059 2.256 2.381	0.067 2.475 2.639	0.091 2.593 2.771	0.17 2.591 2.777	1.084 1.265 1.255	0.717 0.51 0.534	0.502 0.296 0.282	0.219 0.101 0.131	0.12 0.075 0.072	0.089 0.039 0.043
C245 246A 246B C246	0.052 1.416 1.424 0.1	0.056 3.36 (3.367 (0.111		0.066 OVER OVER 0.12		0.084 OVER OVER 0.141	0.096 1.403 1.519 0.155	0.102 0.81 1.061 0.165	0.114 0.373 0.38 0.187	0.137 0.27 0.26 0.235	0.158 0.244 0.22 0.281	C 274 275A 275B C 275	0.062 0.082 0.08 0.07	0.165 0.127 0.126 0.089	0.284 0.16 0.16 0.098	0.352 0.236 0.238 0.116	0.463 0.77 0.789 0.178	0.638 0.893 0.912 0.994	0.865 0.627 0.678 0.866	0.715 0.441 0.513 0.746	0.378 0.184 0.234 0.421	0.453 0.054 0.077 0.181	0.383 0.027 0.038 0.094
247A 247B C247	0.091 0.098 0.075	0.112 0.124 0.077	0.141 0.147 0.082	0.184 0.193 0.087	0.25 0.261 0.096	0.341 0.355 0.105	0.42 0.442 0.114	0.445 0.467 0.122	0.481 0.308 0.136	0.53 0.57 0.157	0.582 0.629 0.179	276A 276B C 276	1.101 1.028 0.094	1.646 1.519 0.295	1.737 1.602 0.347	1.771 1.637 0.428	1.715 1.59 0.551	1.202 1.198 0.694	0.48 0.513 0.625	0.341 0.344 0.524	0.191 0.17 0.434	0.11 0.109 0.434	0.078 0.08 0.33
248A 248B C248	1.55 1.587 O 0.127	3.451	OVER	OVER	OVER	OVER OVER 0.164	1.514 1.54 0.181	0.788 0.796 0.194	0.334 0.346 0.223	0.255 0.265 0.266	0.222 0.238 0.322	277A 277B C277	0.035 0.035 0.034	0.032 0.032 0.036	0.032 0.034 0.032	0.033 0.033 0.033	0.034 0.033 0.035	0.034 0.032 0.033	0.031 0.031 0.031		0.025 0.026 0.028	0.024 0.026 0.025	0.025 0.025 0.022
249A 249B C249	0.05 0.05 0.04	0.07 0.07 0.042	0.094 0.093 0.045	0.135 0.137 0.048	0.21 0.212 0.051	0.363 0.37 0.056	0.593 0.607 0.06	0.69 0.707 0.065	0.859 0.881 0.069	0.98 1.007 0.083	1.031 1.056 0.095	278A 278B C 278	0.052 0.056 0.047	0.056 0.057 0.047	0.087 0.085 0.047	0.442 0.423 0.048	1.119 1.091 0.049	1.89 1.887 0.048	1.146 1.155 0.045		0.081 0.071 0.045	0.049 0.046 0.043	0.048 0.047 0.042
250A 250B C250	0.989 1.01 o 0.062	3.436 (ver (0.065					OVER OVER 0.081	1.194 1.248 0.083	0.512 0.508 0.094	0.282 0.182 0.118	0.198 0.181 0.144	279A 279B C279	0.066 0.068 0.078	0.062 0.066 0.073	0.063 0.065 0.072	0.062 0.065 0.07	0.063 0.065 0.069	0.059 0.062 0.065	0.058 0.055 0.06		0.041 0.042 0.046	0.036 0.041 0.041	0.032 0.047 0.035
251A 251B C251	0.088 0.093 0.082	0.109 0.114 0.086	0.131 0.136 0.088	0.178 0.181 0.095	0.252 0.26 0.097	0.407 0.42 0.1	0.62 0.637 0.107	0.716 0.729 0.114	0.879 0.911 0.117	1.009 1.035 0.134	1.041 1.072 0.145	280A 280B C 280	0.081 0.082 0.084	0.086 0.088 0.08	0.125 0.133 0.077	0.493 0.51 0.075	0.977 0.99 0.077	1.402 1.385 0.072	1.155 1.115 0.065		0.196 0.183 0.047	0.066 0.09 0.043	0.054 0.052 0.042
252A 252B C252	1.222 on 1.21 on 0.102		OVER			OVER OVER 0.116	2.593 2.646 0.125	1.453 1.364 0.129	1.249 1.226 0.141	0.769 0.769 0.163	1.201 0.421 0.18	281A 281B C 281	0.0343 0.034 0.032	0.035 0.033 0.031	0.034 0.034 0.031	0.035 0.033 0.031	0.035 0.035 0.031	0.035 0.034 0.03	0.033 0.032 0.03		0.031 0.031 0.028	0.031 0.031 0.027	0.031 0.032 0.027
253A 253B C253	0.052 0.052 0.049	0.073 0.074 0.052	0.097 0.098 0.056	0.14 0.141 0.061	0.215 0.216 0.066	0.37 0.377 0.074	0.614 0.621 0.084	0.724 0.729 0.088	0.918 0.923 0.099	1.069 1.07 0.122	1.129 1.133 0.14	282A 282B C 282	0.092 0.099 0.086	0.141 0.148 0.086	0.355 0.372 0.085	0.971 1.01 0.086	1.557 1.586 0.086	2.126 2.203 0.085	2.33 2.38 0.085		0.571 0.638 0.085	0.155 0.169 0.083	0.095 0.108 0.084
254A 254B C254	1.168 O 1.222 O 0.066						OVER OVER 0.105	3.281 3.25 0.109	0.932 1.156 0.129	0.231 0.327 0.163	0.198 0.22 0.199	283A 283B C 283	0.086 0.069 0.078	0.082 0.067 0.074	0.084 0.067 0.073	0.082 0.066 0.08	0.08 0.068 0.071	0.076 0.062 0.068	0.07 0.056 0.067		0.061 0.048 0.051	0.073 0.044 0.046	0.104 0.045 0.046
255A 255B C255	0.086 0.095 0.083	0.106 0.117 0.091	0.13 0.141 0.093	0.176 0.187 0.097	0.252 0.267 0.105	0.404 0.433 0.109	0.62 0.653 0.123	0.714 0.744 0.129	0.931 0.934 0.138	1.069 1.088 0.164	1.115 1.132 0.18	284A 284B C 284	0.127 0.135 0.116	0.203 0.215 0.114	0.473 0.48 0.113	1.015 0.98 0.112	1.436 1.357 0.111	1.761 1.625 0.108	1.928 1.743 0.103		1.07 1.042 0.087	0. 254 0. 228 0. 082	0.137 0.137 0.083
256A 256B C256	1.386 O 1.411 O 0.106	VER 0.112	0.117	0.123	0.128	OVER (0.136	OVER OVER 0.151	3.217 3.479 0.158	0.834 0.797 0.171	0.725 0.898 0.216	1.103 0.686 0.249	285A 285B C 285	0.012 0.014 0.015	0.012 0.014 0.015	0.012 0.013 0.015	0.014 0.017 0.017	0.017 0.019 0.018	0.044 0.048 0.019	0.087 0.089 0.029	0.095 0.094 0.036	0.096 0.087 0.049	0.051 0.027 0.041	0.057 0.022 0.03
257A 257B C257	0.031 0.032 0.029	0.038 0.039 0.029	0.053 0.054 0.03	0.085 0.091 0.032	0.142 0.145 0.035	0.182 0.187 0.039	0.2 0.207 0.048	0.202 0.207 0.052	0.193 0.192 0.058	0.065 0.067 0.045	0.028 0.027 0.028	286A 286B C 286	0.111 0.126 0.046	0.825 0.843 0.045	1.13 1.141 0.046	1.191 1.196 0.046	1.152 1.155 0.046	1.001 0.998 0.048	0.342 0.345 0.047	0.186 0.18 0.047	0.096 0.083 0.05	0.066 0.056 0.51	0.059 0.05 0.048
258A 258B C258	0.627 0.635 0.044	0.902 0.906 0.045	0.96 0.973 0.052	0.974 0.985 0.058	0.956 0.952 0.068	0.86 0.869 0.078	0.561 0.576 0.079	0.304 0.315 0.077	0.148 0.153 0.078	0.096 0.113 0.072	0.091 0.096 0.063	287A 287B C 287	0.059 0.059 0.056	0.055 0.057 0.054	0.06 0.056 0.053	0.061 0.058 0.055	0.069 0.075 0.057	0.124 0.143 0.079	0.169 0.187 0.093	0.148 0.162 0.09	0.094 0.089 0.065	0.037 0.03 0.029	0.041 0.035 0.019
259A 259B C259	0.043 0.044 0.04	0.05 0.052 0.042	0.065 0.07 0.042	0.118 0.124 0.044	0.178 0.18 0.049	0.21 0.211 0.061	0.209 0.202 0.088	0.176 0.175 0.084	0.103 0.106 0.065	0.056 0.057 0.051	0.028 0.034 0.026	288A 288B C 288	0.182 0.18 0.078	0.892 0.886 0.074	1.162 1.155 0.075	1.206 1.219 0.074	1.143 1.169 0.073	0.817 0.83 0.075	0.329 0.325 0.094	0.186 0.174 0.096	0.093 0.087 0.086	0.078 0.075 0.065	0.073 0.099 0.086
260A 260B C260	0.727 0.693 0.057	0.962 0.927 0.0688	1.015 0.979 0.084	1.008 0.973 0.118	0.96 0.934 0.132	0.823 0.836 0.13	0.481 0.534 0.124	0.284 0.306 0.117 0.006	0.152 0.151 0.104 0.008	0.115 0.114 0.086	0.118 0.11 0.07	289A 289B C 289	0.019 0.019 0.018	0.018 0.019 0.018	0.02 0.02 0.02	0.023 0.024 0.022	0.036 0.037 0.022	0.089 0.091 0.027	0.127 0.127 0.041	0.129 0.129 0.052	0.116 0.112 0.061 0.108	0.04 0.037 0.049 0.083	0.028 0.029 0.025 0.085
261B C261	0.03 0.031 0.03 1.493	0.029 0.03 0.028 2.698	0.028 0.029 0.028 3.412	0.028 0.028 0.027 3.432	0.025 0.027 0.026 2.314	0.012 0.011 1.02	0.006 0.007 0.007 0.562	0.008 0.007 0.351	0.009 0.009 0.163	0.01 0.01 0.01 0.072	0.012 0.012 0.012	290B C 290 291A	0.414 0.426 0.09	1.326 1.342 0.086	1.442 1.469 0.086	1.424 1.451 0.088	1.352 1.377 0.092 0.105	1.033 1.028 0.088	0.361 0.368 0.09 0.201	0.204 0.207 0.092 0.168	0.112 0.102 0.093	0.089 0.098 0.039	0.086 0.097 0.04
262B C262 263A	1.538 0.868 0.062	2.741 1.4 0.061	3.415 1.8 0.059	3.377 2.089 0.057	1.681 1.269 0.055	1.555 1.272 0.037	0.541 1.043 0.03	0.351 0.62 0.029	0.25 0.344 0.029	0.089 0.212 0.029	0.063 0.15 0.03	291B C 291	0.033 0.038 0.536	0.032 0.037 1.377	0.034 0.037 1.486	0.041 0.039 1.459	0.067 0.038 1.37	0.131 0.048 0.942	0.152 0.072 0.356	0.142 0.077 0.213	0.094 0.073 0.117	0.038 0.028 0.093	0.033 0.026 0.098
263B C263 264A	0.068 0.071 1.528	0.066 0.067 2.635	0.064 0.067 3.297	0.063 0.064	0.062 0.063 3.162	0.043 0.044 1.265	0.036 0.036 1.833	0.033 0.033 2.638	0.032 0.03 2.911	0.026 0.03 1.251	0.028 0.03 1.711	292B C 292 293A	0.546 0.106 0.021	1.37 0.104 0.022	1.471 0.103 0.022	1.444 0.105 0.023	1.348 0.108 0.023	0.92 0.12 0.019	0.377 0.148 0.016	0.227 0.141 0.015	0.123 0.123 0.017	0.099 0.095 0.023	0.106 0.1 0.029
264B C264 265a	1.586 0.45 0.048	2.706 0.929 0.069	3.418 1.308 0.092	0.137	2.275 2.138 0.558	1.54 1.135 0.981	2.76 1.246 0.821	2.934 0.923 0.729	2.271 0.659 0.417	1.222 0.465 0.113	1.482 0.332 0.063	293B C 293 294A	0.02 0.022 0.055	0.022 0.023 0.098	0.021 0.021 0.381	0.023 0.021 0.99	0.023 0.02 1.469	0.019 0.019 1.689	0.015 0.018 1.416	0.015 0.018 0.41	0.016 0.016 0.126	0.022 0.024 0.15	0.029 0.014 0.149
265b c265 266a	0.049 0.046 0.844	0.07 0.057 1.571	0.095 0.065 1.874		0.482 0.169 2.108	0.952 0.864 1.665	0.837 0.871 0.576	0.732 0.772 0.331	0.409 0.503 0.328	0.182 0.17 0.107	0.098 0.096 0.088	294B C 294 295A	0.056 0.046 0.064	0.096 0.048 0.065	0.38 0.046 0.064	0.973 0.045 0.062	1.453 0.044 0.059	1.667 0.044 0.054	1.454 0.043 0.048	0.413 0.045 0.038	0.131 0.044 0.039	0.136 0.041 0.045	0.129 0.041 0.045
266B C266 267A	0.865 0.067 0.094	1.643 0.126 0.119	1.976 0.293 0.142	2.179 0.374 0.181	2, 253 0, 519 0, 569	1.517 0.726 0.861	0.622 0.969 0.61	0.328 0.705 0.41	0.334 0.386 0.179	0.148 0.476 0.059	0.113 0.316 0.022	295B C 295 296A	0.054 0.058 0.086	0.053 0.056 0.138	0.051 0.055 0.439	0.05 0.054 0.922	0.048 0.051	0.042 0.048	0.038 0.04 1.086	0.031 0.035 0.524	0.032 0.031 0.259	0.053 0.026 0.161	0.062 0.023 0.127
2678 C267 268A	0.093 0.108 0.89	0.119 0.123 1.368	0.148 0.138 1.531	0.208 0.164 1.606	0.603 0.279 1.569	0.98 1.072 1.144	0.627 0.836 0.499	0.451 0.683 0.386	0.247 0.391 0.339	0.13 0.226 0.173	0.099 0.158 0.138	296B C 296 297A	0.086 0.075 0.022	0.135 0.074 0.023	0.454 0.073 0.023	1.015 0.071 0.035	1.423 0.07 0.101	1.563 0.067 0.178	1.015 0.063 0.198	0.289 0.057 0.196	0.14 0.049 0.131	0.146 0.041 0.048	0.131 0.042 0.05
2688 C268 269A	0.909 0.123 0.066	0.289 0.107	1.597 0.382 0.163	1.672 0.473 0.508	1.596 0.618 0.656	1.068 0.709 0.854	0.534 0.589 1.067	0.328 0.452 0.7	0.369 0.411 0.298	0.188 0.441 0.088	0.135 0.305 0.046	297B C 297 298A	0.02 0.021 0.56	0.022 0.022 1.424	0.022 0.022 1.549	0.034 0.023 1.609	0.1 0.024 1.505	0.183 0.028 0.82	0.212 0.036 0.35	0.214 0.049 0.213	0.157 0.065 0.154	0.077 0.06 0.134	0.084 0.044 0.133
2698 C269	0.068 0.056	0.11 0.076	0.173 0.101	0.519 0.18	0.663 0.642	0.86 0.788	1.068 1.028	0.723 0.928	0.26 0.317	0.083 0.091	0.031 0.04	298B C 298	0.555 0.044	1.421 0.046	1.537 0.045	1.604 0.044	1.508 0.045	0.826 0.045	0.374 0.046	0.223 0.047	0.154 0.049	0.158 0.054	0.123 0.05

RunID	0	0.25	418nn 0.5	n Absorb 1	ance zeros 2	ed to DI at)	(hours	12	24	48	72	ļ	Run ID	0	0.25	0.5	1	2	4	8	12	24	48	72
299A 299B C299	0.054 0.049 0.057	0.054 0.049 0.055	0.056 0.049 0.054	0.079 0.071 0.054	0.166 0.153 0.061	0.219	0.224	0.2	0.1 0.1	0.031 0.034 0.025	0.03	3	328A 328B C328	0.918 0.94 0.068	2.18 2.225 0.083			OVER OVER 0.145	OVER (OVER (0.168	OVER OVER 0.21	2.252 3.27 0.248	0.479 0.576 0.381	0.199 0.24 0.675	0.158 0.195 0.744
300A 300B C300	0.702 0.712 0.074	1.46 1.456 0.074	1.598 1.586 0.072	1.641 1.62 0.072	1, 419 1, 401 0, 078	0.697	0.336 0.336 0.105		0.154 0.122 0.108		0.128	3	329A 329B C329	0.056 0.063 0.053	0.104 0.111 0.051	0.178 0.185 0.062	0.258 0.264 0.06	0.379 0.387 0.071	0.513 0.524 0.102	0.629 . 0.634 0.127	.706 0.719 0.137	0.818 0.836 0.163	0.942 0.973 0.266	0.806 0.925 0.369
301A 301B C301	0.04 0.04 0.039	0.048 0.049 0.045	0.057 0.058 0.051	0.076 0.077 0.059	0.118 0.117 0.073	0.56	0.753 0.755 0.556	0.703 0.706 0.753	0.605	0.494	0.432	2	330A 330B C330	1.577 1.604 0.094	2.892 2.9 0.106	3.223 (3.32 (0.126			OVER OVER 0.165	3.28 3.498 0.203	1.601 1.585 0.25	0.441 0.507 0.393	0.195 0.238 0.744	0.186 0.2 0.416
302A 302B C302	0.265 0.277 0.069	1.716 1.735 0.088	2.546 2.584 0.106		OVER OVER 0.531		OVER OVER OVER	OVER	OVER		OVER OVER OVER		331A 331B C331	0.09 0.079 0.071	0.149 0.137 0.075	0.229 0.216 0.081	0.312 0.296 0.09	0.43 0.417 0.119	0.568 0.554 0.146	0.687 0.669 0.173	0.766 0.749 0.184	0.889 0.871 0.232	0.973 0.973 0.346	0,519 0.634 0.464
303A 303B C303	0.077 0.076 0.091	0.086 0.084 0.092	0.095 0.093 0.099	0.12 0.118 0.107	0. 211 0. 198 0. 134	0.596	0.767 0.757 0.582	0.772 0.766 0.741	0.729	0.659 0.631 0.745	0.382		332A 332B C332	1.746 1.774 0.115	2.927 2.961 0.151	3.361 (3.396 (0.165			OVER oVER 0.227	3.204 3.364 0.277	1.334 1.734 0.333	0.471 0.45 0.509	0.213 0.225 0.84	0.176 0.188 0.332
304A 304B C304	0.417 0.376 0.11	1.892 1.831 0.125	2.722 2.653 0.145		OVER OVER 0.506		OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER OVER OVER		333A 333B C333	0.051 0.052 0.051	0.068 0.065 0.056	0.086 0.081 0.057	0.189 0.163 0.062	0.269 0.253 0.072	0.386 0.37 0.144	0.55 0.524 0.172	0.656 0.631 0.196	0.871 0.845 0.263	1.01 1.009 0.441	0.877 0.871 0.61
305A 305B C305	0.049 0.05 0.045	0.066 0.067 0.054	0.079 0.083 0.062	0.133 0.139 0.076	0. 439 0. 466 0. 106	1.003	1.495 1.496 0.839	1.558	1.345	1.129	0.998	3	334A 334B C334	0.638 0.66 0.073	1.8 1.928 0.071	2.188 2.41 0.075	2.613 3.015 0.084	2.724 3.28 0.112	1.077 1.669 0.124	0.589 0.727 0.158	0.526 0.42 0.225	0.179 0.215 0.476	0.128 0.116 0.237	0.115 0.12 0.164
306A 306B C306	1.033 1.08 0.114	2.935 (2.957 (0.148			OVER OVER 0.814	OVER OVER 3.091	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER OVER OVER		335A 335B C335	0.083 0.083 0.08	0.109 0.103 0.084	0.138 0.124 0.087	0.243 0.214 0.092	0.331 0.3 0.106	0.445 0.412 0.174	0.586 0.544 0.203	0.692 0.638 0.216	0.871 0.831 0.279	1.008 0.978 0.442	0.911 0.871 0.584
307A 307B C307	0.099 0.088 0.08	0.114 0.101 0.101	0.136 0.121 0.102	0.281 0.236 0.124	0.569 0.538 0.226	0.974		1.528 1.528 0.981		1.264	1.151	i L	336A 336B C336	0.694 0.784 0.086	1.746 2.091 0.101	2.132 2.627 0.125	2.457 3.431 0.146	1.626 OVER 0.168	1.139 OVER 0.201	0.602 1.52 0.278	0.402 0.989 0.379	0.171 0.571 0.708	0.133 0.186 0.412	0.141 0.144 0.18
308A 308B C308	1.322 1.398 0.162	3.121 0 3.213 0 0.195			OVER OVER 0.828	OVER OVER 2.568	OVER OVER OVER	OVER OVER OVER	OVER	OVER OVER OVER	OVER OVER OVER		337A 337B C337	0.072 0.075 0.065	0.135 0.144 0.075	0.208 0.217 0.071	0, 293 0, 301 0, 071	0.411 0.418 0.081	0.556 0.559 0.127	0.728 0.733 0.158	0.861 0.861 0.174	1.145 1.137 0.229	1.631 1.606 0.367	1.782 1.8 0.514
309A 309B C309	0.032 0.031 0.032	0.034 0.034 0.032	0.039 0.04 0.033	0.05 0.052 0.034	0.074 0.077 0.036	0.232	0.574 0.593 0.043		0.744 0.715 0.214		0.426		338A 338B C338	1.306 1.234 0.106	2.825 2.444 0.122	3.286 (2.722 0.134	2.928 0.147	0VER 2.872 0.163	2.306 1.071 0.195	0.833 0.699 0.267	0.627 0.463 0.382	0.297 0.256 0.907	0.18 0.185 0.346	0.189 0.175 0.228
310A 310B C310	0.344 0.33 0.045	1.43 1.43 0.05	2.159 2.163 0.05		OVER OVER 0.063	OVER OVER 0.087	OVER 1.682 0.437	OVER 0.863 1.191		1.849 0.341 3.074	0.259		339A 339B C339	0.113 0.115 0.104	0.202 0.22 0.121	0.275 0.29 0.139	0.362 0.378 0.211	0.477 0.503 0.243	0.619 0.65 0.27	0.777 0.818 0.326	0.897 0.959 0.372	1.15 1.199 0.469	1,522 1,584 0,656	1.62 1.753 0.807
311A 311B C311	0.044 0.046 0.051	0.049 0.048 0.049	0.054 0.055 0.056	0.067 0.067 0.051	0.101 0.103 0.081	0.327	0.587 0.584 0.075	0.79 0.775 0.12	0.757 0.752 0.368	0.585 0.575 0.68	0.492	2	340A 340B C340	1.578 1.603 (0.173			OVER OVER 0.266				OVER OVER 0.7	0.742 0.952 1.4	0.378 0.353 0.669	0.282 0.262 0.306
312A 312B C312	0.427 0.449 0.054	1.486 1.49 0.056	2.21 2.338 0.061	3.287 3.276 0.065	OVER OVER 0.096	OVER OVER 0.196	1.039 1.408 0.658	0.637 0.762 1.608	0.352 0.33 2.897	0.21 0.19 3.095	0.128	3	341A 341B C341	0.059 0.056 0.051	0.121 0.105 0.057	0.209 0.191 0.06	0.3 0.282 0.065	0.455 0.434 0.097	0.65 0.627 0.135	0.883 0.859 0.154	0.966 0.942 0.166	1.113 1.091 0.211	0.986 0.963 0.309	0.883 0.823 0.424
313A 313B C313	0.05 0.037 0.034	0.056 0.044 0.035	0.073 0.056 0.04	0.101 0.081 0.038	0.264 0.238 0.04	0.542	1.045 0.981 0.052	1.435 1.374 0.084	1.624	1.281	1.096	3	342A 342B C342	1.311 (1.412 (0.05		OVER 0 OVER 0 0.072		OVER OVER 0.099	1.207 1.396 0.113	0.558 0.656 0.164	0.384 0.466 0.156	0.132 0.151 0.133	0.114 0.108 0.144	0.131 0.109 0.11
314A 314B C314	1.17 1.196 0.086	2.303 2.373 0.088	2.526 2.568 0.092		OVER OVER 0.121	OVER OVER 0.328	1.25 1.488 1.263	0.985	0.571	0.575 0.482 0.494	0.406	3	343A 343B C343	0.082 0.078 0.074	0.136 0.13 0.079	0.221 0.211 0.086	0.307 0.299 0.116	0.446 0.439 0.153	0.607 0.606 0.171	0.78 0.777 0.202	0.835 0.84 0.221	0.902 0.954 0.292	0.78 0.771 0.447	0.509 0.532 0.568
315A 315B C315	0.05 0.059 0.049	0.059 0.072 0.049	0.072 0.08 0.052	0.106 0.13 0.053	0.324 0.343 0.055		0.981 0.989 0.135	1.341 1.297 0.262	1.529 1.518 0.582	1.228 1.253 1.486	1.041		344A 344B C344	1.523 (1.504 (0.075				OVER OVER 0.164	1.354 1.379 0.192	0.775 0.948 0.235	0.642 0.718 0.257	0.316 0.352 0.26	0.315 0.249 0.213	0.235 0.166 0.152
316A 316B C316	1.308 1.319 0.117	2.353 2.322 0.114	2.647 2.566 0.122	3.325 OVER 0.135	OVER OVER 0. 208	OVER OVER 0.448	1.171 1.31 1.6	1.009 0.863 OVER		0.594	0.564	ı	345A 345B C345	0.088 0.063 0.043	0.171 0.104 0.048	0.288 0.192 0.049	0.388 0.286 0.053	0.539 0.435 0.063	0.737 0.642 0.084	0.968 0.871 0.125	1.053 0.964 0.134	1.04 1.049 0.175	0.918 0.902 0.284	0.842 0.79 0.421
317A 317B C317	0.036 0.047 0.038	0.05 0.076 0.044	0.062 0.086 0.05	0.087 0.116 0.057	0.175 0.214 0.069	0.603	0.587 0.668 0.607	0.539 0.575 0.789		0.356	0.339)	346A 346B C346	1.393 1.338 0.058	3.294 (2.979 (0.082	OVER O OVER 0 0.11	OVER OVER 0.121	3.014 2.209 0.141	1.178 1.153 0.175	0.616 0.568 0.26	0.392 0.405 0.321	0.167 0.159 0.615	0.116 0.117 0.437	0.18 0.156 0.265
318A 318B C318	0.339 0.353 0.057	2.532 2.543 0.078	3.264 3.272 0.099	OVER OVER 0.17	OVER OVER 0.527	OVER OVER 1.289	OVER OVER OVER	OVER OVER OVER	3.057 2.992 3.064	2.963 2.989 3.184	2.904	1	347A 347B C347	0.091 0.112 0.124	0.142 0.164 0.126	0.23 0.254 0.13	0.329 0.349 0.158	0.466 0.484 0.223	0.629 0.647 0.241	0.811 0.837 0.29	0.957 0.935 0.308	0.975 1.019 0.386	0.815 0.94 0.547	0.659 0.852 0.658
319A 319B C319	0.063 0.061 0.082	0.081 0.073 0.066	0.087 0.085 0.077	0.12 0.111 0.106	0. 245 0. 216 0. 097	0.613		0.609 0.566 0.754	0.472	0.448 0.265 0.583	0.111		348A 348B C348	1.784 (1.716 (0.101		OVER 0 OVER 0 0.187		OVER OVER 0.246		0.429	2.21 1.088 0 0.516	0.93 OVER 0.897	0.357 0.981 0.58	0.234 0.401 0.337
320A 320B C320	0.45 0.471 0.083	2.643 2.631 0.103	3.266		OVER OVER 0.578		OVER OVER OVER	OVER OVER OVER	3.044 3.017 3.137	3.055	3.047		349A 349B C349	0.038 0.037 0.033	0.05 0.048 0.036	0.061 0.06 0.039	0.077 0.074 0.04	0.105 0.101 0.043	0.146 0.142 0.046	0.179 0.175 0.05	0.188 0.183 0.05	0.18 0.178 0.049	0.094 0.08 0.047	0.064 0.046 0.042
321A 321B C321	0.033 0.032 0.03	0.046 0.042 0.032	0.052 0.052 0.032	0.074 0.074 0.033	0.153 0.148 0.034	0.499		0.692	0.607	0.477	0.394	1	350A 350B C350	0.5 0.508 0.055	0.821 0.83 0.061	0.873 0.882 0.064	0.894 0.899 0.064	0.81 0.874 0.064	0.805 0.806 0.066	0.539 0.542 0.068	0.317 0.281 0.067	0.165 0.184 0.066	0.119 0.138 0.068	0.116 0.131 0.069
322A 322B C322	1.08 1.075 0.066	2.871 2.848 0.064	3.29	OVER OVER 0.083	OVER OVER 0.068	0.895 1.77 0.12	0.26	0.222	0.121	0.083	0.08	3	351A 351B C351	0.067 0.073 0.074	0.08 0.085 0.074	0.09 0.098 0.079	0.105 0.113 0.077	0.134 0.141 0.081	0.168 0.174 0.078	0.177 0.177 0.07	0.152 0.133 0.055	0.095 0.089 0.041	0.036 0.044 0.032	0.036 0.034 0.03
323A 323B C323	0.056 0.056 0.055	0.063 0.066 0.058	0.077 0.078 0.057	0.107 0.106 0.058	0, 221 0, 231 0, 039	0.552				0.478 0.54 0.792	0.433	3	352A 352B C 352	0.576 0.584 0.087	0.86 0.869 0.091	0.908 0.919 0.095	0.916 0.924 0.093	0.879 0.891 0.093	0.778 0.772 0.092	0.461 0.451 0.09	0.316 0.304 0.076	0.177 0.163 0.069	0.132 0.128 0.064	0.131 0.129 0.062
324A 324B C324	1.273 1.276 0.064	2.836 2.839 0.071		OVER OVER 0.078	OVER	OVER 0.928 0.21	0.272 0.325 0.892		0.156	0.101	0.07	1	353A 353B C353	0.245 0.257 0.241	0.339 0.362 0.358	0.39 0.412 0.404	0.446 0.471 0.457	0.513 0.541 0.516	0.586 0.607 0.569	0.419 0.348 0.35	0.27 0.272 0.244	0.189 0.165 0.192	0.074 0.075 0.118	0.046 0.049 0.063
325A 325B C325	0.043 0.045 0.041	0.05 0.056 0.04	0.073 0.084 0.043	0.147 0.164 0.043	0. 231 0. 252 0. 046	0.381	0.508	0.565 0.59 0.098	0.726	0.873	0.92	2	354A 354B C354	0.831 0.851 0.412	2.079 2.066 0.596	2.755 2.726 0.69	3.441 3.414 0.799	1.652 1.727 0.943	1.339 1.332 1.146	1.192 1.12 1.396	1.139 1.015 1.551	1.1 0.963 1.889	1.108 0.908 2.423	1.085 0.86 2.785
326A 326B C326	0.798 0.804 0.049	2.07 2.071 0.053	2.769 2.749 0.063			OVER OVER 0.113	3.049 2.95 0.142	1.17	0.366	0.161	0.135	5	355A 355B C355	0.314 0.271 0.304	0.413 0.376 0.388	0.46 0.423 0.427	0.512 0.481 0.473	0.569 0.548 0.521	0.525 0.594 0.522	0.275 0.513 0.281	0.228 0.392 0.237	0.146 0.267 0.198	0.073 0.129 0.149	0.049 0.076 0.101
327A 327B C327	0.067 0.07 0.065	0.083 0.09 0.065	0.117 0.127 0.068	0.199 0.213 0.073	0. 286 0. 298 0. 085	0.414	0.538	0.617 0.636 0.157	0.765 0.777 0.204	0.901	0.903	3	356A 356B C356	0.963 0.967 0.414	2.103 2.108 0.572	2.749 2.77 0.65	3.348 3.142 0.737	1.713 1.551 0.861	1.542 1.22 1.018	1.174 0.957 1.238	1.249 0.925 1.392	1.148 0.908 1.786	1.139 0.886 1.857	0.932 0.793 1.675
												I	II.											

			418nm	n Absorbai	nce zeroed	to Diat X i	nours																	
Run ID 357A 357B C357	0.063 0.069 0.065	0.25 0.091 0.1 0.087	0.5 0.106 0.117 0.098	0.128 0.141 0.109	2 0.168 0.184 0.124	0.23 0.25 0.146	0.322 0.349 0.175	12 0.375 0.406 0.19	24 0.455 0.498 0.222	48 0.516 0.572 0.264	72 0.565 0.633 0.305	3	Run ID 386A 386B C386	0.254 0.23 0.062	0.25 1.031 1.018 0.064	0.5 1.649 1.637 0.065	2,185 2,182 0,072	3,108 3,113 0,063		3.438 OVER 0.061	2.796 3.179 0.062	24 2.225 2.564 0.061	48 1.727 1.871 0.061	72 1.102 1.191 0.06
358A	0.559	1.451	1.851	2.091	2.208	2.147	0.824	0.448	0.484	0.532	0.525	3	387A	0.063	0.063	0.064	0.069	0.072	0.083	0.156	0.202	0.23	0.234	0.235
358B	0.573	1.428	1.796	2.025	2.128	2.053	0.752	0.437	0.436	0.517	0.509		387B	0.067	0.067	0.068	0.071	0.075	0.094	0.159	0.206	0.232	0.238	0.238
C358	0.092	0.12	0.133	0.15	0.172	0.201	0.24	0.263	0.318	0.386	0.308		C387	0.057	0.056	0.056	0.058	0.055	0.056	0.058	0.065	0.086	0.099	0.14
359A 359B C359	0.116 0.127 0.104	0.152 0.161 0.132	0.169 0.178 0.145	0.194 0.202 0.155	0.238 0.247 0.173	0.304 0.312 0.196	0.403 0.412 0.227	0.464 0.47 0.245	0.565 0.57 0.283	0.654 0.665 0.336	0.681 0.703 0.353	3	388A 388B C388	0.28 0.277 0.11	1.108 1.11 0.111	1.706 1.705 0.11	2.24 2.24 0.112	3.146 3.183 0.111		2.786 1.994 0.103	1.522 0.752 0.092	0.943 0.438 0.078	0.624 0.291 0.077	0.41 0.232 0.079
360A	0.628	1.286	1.496	1.604	1.587	1.407	0.79	0.5	0.46	0.592	0.556	3	389A	0.023	0.033	0.043	0.058	0.102	0.189	0.31	0.394	0.398	0.179	0.148
360B	0.629	1.285	1.502	1.601	1.602	1.474	0.79	0.457	0.398	0.488	0.465		389B	0.022	0.032	0.042	0.055	0.097	0.18	0.302	0.38	0.444	0.279	0.144
C360	0.115	0.143	0.157	0.171	0.19	0.218	0.253	0.268	0.32	0.304	0.286		C389	0.026	0.027	0.032	0.038	0.04	0.044	0.048	0.05	0.05	0.047	0.041
361A	0.088	0.121	0.144	0.179	0.245	0.33	0.427	0.471	0.53	0.617	0.693	3	390A	0.717	1.443	1.672	1.666	1.54	0.826	0.341	0.229	0.18	0.191	0.185
361B	0.083	0.117	0.141	0.178	0.245	0.333	0.434	0.478	0.546	0.623	0.699		390B	0.727	1.487	1.688	1.675	1.543	0.855	0.337	0.199	0.186	0.196	0.167
C361	0.077	0.097	0.106	0.119	0.139	0.161	0.187	0.201	0.236	0.291	0.345		C390	0.05	0.056	0.057	0.06	0.061	0.062	0.062	0.063	0.06	0.062	0.058
362A	1.119	2.012	2.24	2.341	2.349	2.014	0.738	0.46	0.446	0.461	0.565	3	391A	0.085	0.094	0.104	0.118	0.161	0.233	0.332	0.394	0.201	0.097	0.07
362B	1.092	2.118	2.406	2.543	2.594	1.841	0.791	0.471	0.469	0.525	0.612		391B	0.071	0.083	0.093	0.108	0.155	0.236	0.35	0.405	0.198	0.087	0.075
C362	0.146	0.17	0.18	0.196	0.221	0.255	0.298	0.327	0.406	0.431	0.359		C391	0.063	0.066	0.069	0.072	0.075	0.078	0.077	0.077	0.053	0.033	0.03
363A	0.123	0.161	0.185	0.224	0.289	0.376	0.473	0.517	0.593	0.671	0.743	3	392A	0.794	1.45	1.664	1.649	1,431	0.706	0.297	0.207	0.152	0.151	0.185
363B	0.138	0.178	0.205	0.246	0.321	0.418	0.531	0.583	0.67	0.778	0.828		392B	0.78	1.43	1.656	1.638	1,404	0.704	0.332	0.19	0.174	0.2	0.195
C363	0.114	0.138	0.148	0.162	0.184	0.209	0.235	0.251	0.29	0.337	0.394		C392	0.102	0.102	0.105	0.103	0,104	0.102	0.091	0.074	0.063	0.058	0.062
364A	1.116	1.778	1.909	1.94	1.867	1.335	0.668	0.433	0.383	0.464	0.477	3	393A	0.04	0.137	0.198	0.267	0.359	0.542	0.787	0.887	0.936	0.835	0.781
364B	1.12	1.762	1.869	1.886	1.815	1.475	0.758	0.484	0.47	0.573	0.544		393B	0.04	0.135	0.199	0.269	0.366	0.548	0.796	0.9	0.938	0.836	0.779
C364	0.174	0.202	0.214	0.227	0.249	0.282	0.324	0.351	0.403	0.391	0.365		C393	0.039	0.121	0.17	0.208	0.253	0.337	0.469	0.549	0.786	1.018	0.905
365A 365B C365	0.09 0.09 0.082	0.133 0.128 0.104	0.156 0.153 0.111	0.194 0.191 0.122	0.261 0.255 0.136	0.375 0.366 0.152	0.553 0.542 0.178	0.638 0.623 0.189	0.837 0.806 0.218	1.013 0.984 0.262	1.171 1.138 0.302	3	394A 394B C394	0.491 0.508 0.089	1.658 1.675 0.177	2.492 2.525 0.214					OVER OVER 1.565	3.176 3.195 2.939	3,393 (3,372 (3,369 (VER
366A	1.052	2.441	2.762	2.948	2.949	1.252	0.578	0.353	0.23	0.155	0.121	3	395A	0.086	0.196	0.24	0.305	0.402	0.568	0.79	0.896	0.911	0.821	0.762
366B	1.03	2.399	2.72	2.914	2.939	1.262	0.549	0.326	0.187	0.112	0.089		395B	0.085	0.197	0.241	0.304	0.399	0.558	0.775	0.856	0.9	0.803	0.754
C366	0.093	0.118	0.13	0.145	0.165	0.19	0.227	0.241	0.29	0.37	0.33		C395	0.111	0.208	0.236	0.274	0.318	0.392	0.511	0.575	0.763	0.983	0.863
367A 367B C367	0.122 0.127 0.111	0.172 0.175 0.135	0.197 0.2 0.144	0.237 0.24 0.155	0.305 0.306 0.169	0.419 0.418 0.187	0.6 0.594 0.204	0.68 0.67 0.215	0.858 0.841 0.247	1.045 1.005 0.288	1.14 1.12 0.316	3	396A 396B C396	0.604 0.624 0.152	1.75 1.764 0.223	2.561 2.581 0.258					OVER OVER 1.502	3.217 3.227 2.734	3.372 C 3.332 C 3.45 C	VER
368A	1.109	1.972	2.125	2.169	2.051	1.317	0.537	0.334	0.198	0.138	0.111	3	397A	0.073	0.202	0.258	0.362	0.523	0.811	1.224	1.416	1.806	1.653	1.522
368B	1.118	2.007	2.166	2.257	2.156	1.226	0.549	0.347	0.198	0.143	0.118		397B	0.072	0.203	0.26	0.366	0.529	0.822	1.242	1.443	1.835	1.662	1.55
C368	0.13	0.16	0.173	0.187	0.203	0.229	0.265	0.276	0.318	0.32	0.321		C397	0.067	0.161	0.185	0.227	0.282	0.383	0.565	0.665	1.011	1.551	1.898
369A 369B C369	0.033 0.035 0.035	0.036 0.034 0.036	0.035 0.036 0.035	0.037 0.038 0.036	0.037 0.039 0.036	0.045 0.052 0.04	0.091 0.092 0.045	0.143 0.143 0.048	0.179 0.179 0.06	0.186 0.187 0.079	0.19 0.188 0.096	3	398A 398B C398	1.11 1.114 0.181	2.69 2.704 0.248						OVER OVER 2.326	3.254 3.287 3.198	3,452 C 3,455 C 3,436 C	VER
370A	0.19	0.557	0.898	1.29	1.631	1.872	2.035	2.114	1.882	0.164	0.105	3	399A	0.155	0.265	0.319	0.421	0.584	0.858	1.21	1.398	1.776	1.635	1.513
370B	0.203	0.574	0.913	1.302	1.637	1.821	2.06	2.138	1.671	0.139	0.086		399B	0.147	0.256	0.313	0.414	0.578	0.86	1.224	1.39	1.773	1.619	1.479
C370	0.06	0.067	0.07	0.075	0.077	0.082	0.083	0.08	0.078	0.075	0.069		C399	0.134	0.219	0.242	0.282	0.341	0.448	0.624	0.721	1.038	1.553	1.812
371A 371B C371	0.077 0.082 0.092	0.077 0.083 0.089	0.076 0.083 0.088	0.078 0.083 0.082	0.078 0.083 0.088	0.085 0.093 0.09	0.158 0.167 0.095	0.19 0.197 0.098	0.232 0.24 0.136	0.254 0.258 0.173	0.254 0.264 0.193	4	400A 400B C400	1.28 1.287 0.247	2.799 2.812 0.316	3.244 3.307 0.365					OVER OVER 2.196	3.269 3.11 3.155	3,412 C 3,469 C 3,428 C	VER
372A	0.242	0.603	0.926	1.305	1.63	1.864	2.025	2.089	1.684	0.155	0.101	4	401A	0.039	0.05	0.061	0.084	0.124	0.205	0.337	0.426	0.606	0.865	0.961
372B	0.258	0.619	0.941	1.302	1.618	1.843	2	2.044	1.13	0.145	0.102		401B	0.039	0.052	0.068	0.09	0.13	0.209	0.341	0.43	0.606	0.863	0.953
C372	0.1	0.102	0.105	0.11	0.109	0.108	0.104	0.098	0.074	0.069	0.062		C401	0.034	0.039	0.042	0.045	0.05	0.058	0.069	0.075	0.089	0.134	0.184
373A 373B C373	0.03 0.031 0.031	0.033 0.033 0.032	0.032 0.034 0.032	0.036 0.037 0.033	0.039 0.042 0.039	0.06 0.062 0.037	0.13 0.134 0.043	0.152 0.155 0.049	0.163 0.168 0.068	0.163 0.169 0.095	0.166 0.171 0.105	4	402A 402B C402	0.439 0.442 0.057	1.522 1.532 0.062		OVER OVER 0.075				OVER OVER 0.177	3.255 (3.286 (0.284		2.957 2.737 1.268
374A	0.391	1.015	1.368	1.651	1.863	2.02	2.114	2.129	0.844	0.197	0.181	4	403A	0.076	0.091	0.099	0.12	0.171	0.243	0.374	0.447	0.635	0.839	0.855
374B	0.403	1.017	1.365	1.647	1.859	2.021	2.105	2.119	1.299	0.205	0.179		403B	0.071	0.081	0.093	0.114	0.153	0.231	0.349	0.419	0.582	0.808	0.863
C374	0.105	0.113	0.116	0.121	0.12	0.127	0.128	0.126	0.125	0.123	0.121		C403	0.064	0.069	0.073	0.075	0.078	0.086	0.097	0.102	0.121	0.173	0.24
375A 375B C375	0.09 0.086 0.087	0.099 0.088 0.087	0.085 0.087 0.086	0.088 0.09 0.086	0.09 0.092 0.086	0.123 0.118 0.09	0.201 0.194 0.094	0.202 0.214 0.104	0.221 0.232 0.138	0.23 0.25 0.177	0.248 0.267 0.179	4	404A 404B C404	0.515 0.531 0.079	1.589 1.621 0.085		OVER OVER 0.097				OVER OVER 0.206	3.49 (3.387 (0.328		3.012 3.01 1.215
376A	0.464	1.063	1.396	1.671	1.875	2.024	2.092	2.102	0.785	0.143	0.139	4	405A	0.049	0.068	0.085	0.122	0.183	0.288	0.443	0.524	0.676	0.968	1.194
376B	0.499	1.088	1.409	1.664	1.856	1.994	2.062	2.067	0.746	0.253	0.258		405B	0.051	0.071	0.091	0.133	0.214	0.354	0.529	0.641	0.834	1.195	1.45
C376	0.164	0.167	0.172	0.177	0.178	0.18	0.173	0.161	0.133	0.129	0.128		C405	0.044	0.048	0.05	0.055	0.059	0.067	0.079	0.087	0.105	0.16	0.221
377A 377B C377	0.016 0.018 0.015	0.023 0.023 0.02	0.03 0.031 0.023	0.042 0.041 0.03	0.058 0.055 0.034	0.096 0.093 0.04	0.155 0.15 0.044	0.185 0.181 0.045	0.225 0.22 0.05	0.249 0.244 0.052	0.251 0.258 0.055	4	406A 406B C406	0.959 0.967 0.098	2.537 2.56 0.104		OVER OVER 0.122		OVER	OVER	OVER OVER 0.302	0.745 0.714 0.513	0.511 0.466 1.275	0.602 0.506 2.114
378A	0.297	0.754	1.024	1.076	0.967	0.819	0.33	0.21	0.114	0.097	0.113	4	407A	0.084	0.101	0.122	0.164	0.238	0.357	0.51	0.614	0.802	1.149	1.407
378B	0.295	0.753	1.023	1.069	0.972	0.834	0.337	0.227	0.14	0.118	0.119		407B	0.085	0.101	0.122	0.165	0.242	0.37	0.52	0.621	0.808	1.155	1.436
C378	0.052	0.057	0.059	0.063	0.065	0.067	0.067	0.066	0.064	0.061	0.055		C407	0.074	0.076	0.079	0.084	0.09	0.099	0.107	0.114	0.134	0.197	0.269
379A 379B C379	0.051 0.059 0.073	0.059 0.065 0.078	0.066 0.073 0.08	0.076 0.084 0.085	0.091 0.1 0.09	0.128 0.137 0.093	0.181 0.193 0.096	0.207 0.219 0.091	0.244 0.258 0.066	0.24 0.253 0.041	0.158 0.139 0.033	4	408A 408B C 408	1.125 1.108 0.127	2.612 2.642 0.133		OVER OVER 0.148		OVER	OVER	OVER OVER 0.32	0.933 0.788 0.537	0.493 0.465 1.248	0.554 0.511 2.044
380A	0.36	0.786	1.017	1.08	0.982	0.664	0.304	0.21	0.147	0.112	0.113	4	409A	0.043	0.135	0.22	0.302	0.437	0.677	0.906	0.963	0.859	0.77	0.728
380B	0.367	0.779	0.987	1.056	0.965	0.635	0.298	0.213	0.154	0.118	0.116		409B	0.04	0.125	0.229	0.315	0.453	0.702	0.92	0.957	0.853	0.767	0.726
C380	0.104	0.109	0.115	0.115	0.116	0.111	0.1	0.09	0.072	0.064	0.064		C409	0.04	0.095	0.162	0.201	0.247	0.334	0.452	0.571	0.81	1.003	0.912
381A 381B C381	0.025 0.025 0.026	0.035 0.037 0.031	0.042 0.044 0.035	0.057 0.059 0.041	0.091 0.094 0.047	0.149 0.152 0.051	0.205 0.2008 0.055	0.224 0.227 0.054	0.247 0.25 0.057	0.264 0.268 0.062	0. 259 0. 256 0. 066	4	410A 410B C410	0.85 0.863 0.09		VER		OVER	OVER OVER 0.622	OVER	OVER (OVER (1.709		2.982 3.004 3.008	3.166 3.134 3.103
382A	0.639	1.171	1.247	1.236	1.148	0.801	0.32	0.206	0.118	0.1	0.104	4	411A	0.07	0.176	0.254	0.334	0.47	0.688	0.884	0.938	0.845	0.773	0.72
382B	0.654	1.212	1.283	1.263	1.172	0.814	0.339	0.221	0.12	0.097	0.099		411B	0.086	0.194	0.263	0.345	0.471	0.691	0.879	0.933	0.861	0.785	0.716
C382	0.092	0.097	0.099	0.102	0.104	0.106	0.106	0.106	0.104	0.102	0.09		C411	0.095	0.177	0.225	0.259	0.304	0.387	0.495	0.592	0.823	0.92	0.873
383A 383B C383	0.076 0.076 0.073	0.086 0.088 0.076	0.092 0.096 0.081	0.106 0.112 0.085	0.139 0.149 0.088	0.193 0.208 0.093	0.244 0.255 0.093	0.26 0.27 0.094	0.28 0.291 0.086	0.272 0.254 0.064	0.133 0.13 0.058	4	412A 412B C412	1.003 1.011 0.113		VER	OVER OVER 0.3	OVER		OVER	OVER (OVER (1.796 (VER	3.004 3.044 3.116	3.155 3.134 3.176
384A	0.75	1.228	1.325	1.309	1.162	0.663	0.315	0.209	0.123	0.108	0.116	4	413A	0.05	0.065	0.089	0.129	0.212	0.411	0.654	0.821	0.942	0.821	0.783
384B	0.745	1.239	1.335	1.319	1.186	0.694	0.371	0.214	0.129	0.111	0.12		413B	0.044	0.062	0.079	0.112	0.185	0.367	0.596	0.763	0.934	0.807	0.77
C384	0.131	0.136	0.137	0.139	0.139	0.138	0.13	0.122	0.101	0.098	0.094		C413	0.036	0.041	0.043	0.048	0.053	0.062	0.073	0.084	0.101	0.137	0.172
385A 385B C385	0.021 0.019 0.019	0.024 0.021 0.02	0.024 0.024 0.02	0.033 0.035 0.027	0.034 0.031 0.021	0.049 0.047 0.023	0.112 0.107 0.025	0.166 0.162 0.029	0.198 0.196 0.038	0.208 0.206 0.055	0.212 0.208 0.074	4	414A 414B C414	0.906 0.895 0.056	2.785 2.793 C 0.06		OVER		OVER		OVER (OVER (0.184		3.02 3.057 0.645	3.203 3.233 1.02

Run ID 415A	0 0.084	0.25 0.099	418nm 0.5 0.119	n Absorb 1 0.158	ance zeroe 2 0.237	d to DI at X 4 0.405	hours 8 0.605	12 0.735	24 0.894	48 0.794	72 0.722	Run ID 444A	0 0.171	0.25 0.436	0.5 0.783	1 1,086	2 1,177	4 0.927	8 0.603	12 0.367	24 0.139	48 0.074	72 0.068
415B C415 416A			0.118 0.069 ER (0.158 0.074 OVER	0.243 0.077 OVER	0.415 0.086 OVER	0.6 0.096 OVER	0.738 0.098 OVER (0.858 0.112 OVER	0.788 0.146 3.085	0.728 0.181 3.414	444B C444 445A	0.175 0.088 0.034	0.449 0.089 0.041	0.792 0.09 0.058	1.1 0.093 0.089	1.179 0.099 0.15	0.936 0.115 0.186	0.625 0.125 0.196	0.365 0.121 0.188	0.148 0.098 0.168	0.074 0.074 0.045	0.023 0.073 0.021
416B C416 417A	951563 (2.987 OV 0.083	ER 0 0.087	0.094 0.096	OVER 0.106 0.135	OVER 0.126 0.205	0.168 0.305	0.21 0.371	0.342 0.427	3.093 0.687 0.474	3,385 1,085 0,516	445B C 445 446A	0.036 0.031 0.265	0.043 0.032 0.694	0.061 0.034 1.093	0.092 0.034 1.32	0.152 0.034 1.252	0.188 0.036 1.157	0.195 0.039 0.811	0.193 0.049 0.449	0.166 0.055 0.202	0.043 0.055 0.124	0.026 0.051 0.118
417B C417 418A	0.047	0.06 0.043	0.071 0.043 2.749 (0.095 0.046	0.134 0.049	0.205 0.052	0.308 0.059 OVER	0.37 0.062 1.003	0.428 0.067 0.402	0.475 0.079 0.239	0.518 0.093 0.182	446B C 446 447A	0.265 0.081 0.062	0.695 0.082 0.07	1.089 0.085 0.09	1.321 0.087 0.119	1.261 0.091 0.185	1.155 0.106 0.216	0.79 0.12 0.202	0.424 0.124 0.168	0.203 0.123 0.098	0.125 0.117 0.035	0.103 0.107 0.035
418B C418	0.695 0.054	1.978 0.058	2.796 C 0.06	0.062	OVER 0.065	OVER 0.068	OVER 0.076	0.999 0.083	0.411 0.094	0.224 0.127	0.176 0.168	447B C 447	0.071 0.069	0.079 0.068	0.099 0.072	0.13 0.071	0.2 0.075	0.228 0.102	0.198 0.105	0.157 0.081	0.087 0.062	0.032 0.044	0.032 0.028
419A 419B C419	0.077 0.087	0.09 0.087	0.104 0.101 0.087	0.127 0.126 0.091	0.166 0.165 0.093	0.242 0.239 0.098	0.35 0.34 0.109	0.407 0.395 0.109	0.478 0.462 0.114	0.53 0.517 0.122	0.579 0.561 0.146	448A 448B C 448	0.335 0.338 0.128	0.758 0.752 0.129	1.117 1.091 0.132	1.288 1.301 0.137	1.225 1.209 0.147	1.046 1.029 0.165	0.613 0.638 0.162	0.377 0.357 0.154	0.184 0.191 0.13	0.108 0.126 0.112	0.121 0.116 0.114
420A 420B C420	0.836 0.087	2.117 0.087	2.899 (2.908 (0.088	0.092	OVER 0.096	OVER	OVER OVER	0.902 0.935	0.405 0.409	0.21 0.193	0.183 0.187	449A 449B C449	0.028 0.028 0.03	0.029 0.029 0.031	0.028 0.028 0.031	0.027 0.027 0.029	0.024 0.023 0.026	0.008 0.008 0.011	0.007 0.008 0.009	0.006 0.007 0.009	0.008 0.007 0.008	0.007 0.008 0.01	0.008 0.009 0.012
421A 421B C421	0.058	0.078	0.097 0.096 0.055	0.141 0.137 0.057	0.199 0.196 0.06	0.294 0.287 0.062	0.39 0.377 0.067	0.427 0.413 0.072	0.462 0.445 0.077	0.507 0.489 0.088	0.555 0.531 0.108	450A 450B C450	0.069 0.069 0.051	0.293 0.293 0.074			OVER (OVER (2.79 (OVER (OVER OVER OVER (1.014 1.131 OVER	0.341 0.336 2.687	0.078 0.092 0.449	0.024 0.031 0.115
422A 422B C422	1.444	2.985	3.399 (3.485 (0.103				OVER OVER 0.122	0.919 0.999 0.131	0.442 0.495 0.149	0.261 0.27 0.188	0.234 0.235 0.245	451A 451B C451	0.067 0.078 0.072	0.067 0.074 0.069	0.065 0.072 0.066	0.064 0.071 0.064	0.061 0.069 0.062	0.047 0.054 0.052	0.041 0.044 0.04	0.037 0.045 0.036	0.034 0.039 0.033	0.03 0.033 0.03	0.026 0.031 0.021
423A 423B C423	0.104		0.14 0.143 0.097	0.184 0.185 0.099	0.246 0.247 0.103	0.343 0.343 0.109	0.435 0.431 0.116	0.474 0.468 0.119	0.518 0.512 0.128	0.563 0.556 0.141	0.614 0.609 0.162	452A 452B C 452	0.13 0.129 0.105	0.377 0.367 0.125	2.198 2.097 0.218			OVER OVER OVER (1.794 2.669 OVER	0.995 1.117 2.907	0.416 0.342 1.325	0.151 0.107 0.533	0.048 0.035 0.214
424A 424B C424	1.623	3.098 OV 3.111 OV 0.143				OVER OVER 0.157	2.085 2.219 0.168	0.849 0.895 0.178	0.44 0.522 0.198	0.258 0.252 0.241	0.225 0.243 0.306	453A 453B C 453	0.032 0.033 0.033	0.034 0.034 0.035	0.035 0.035 0.035	0.044 0.045 0.037	0.166 0.218 0.076	0.427 0.565 0.243	0.337 0.451 0.173	0.274 0.377 0.128	0.191 0.273 0.085	0.112 0.162 0.044	0.058 0.075 0.025
425A 425B C425		0.079	0.096 0.087 0.073	0.12 0.109 0.078	0.147 0.153 0.083	0.214 0.197 0.093	0.293 0.272 0.103	0.333 0.309 0.109	0.383 0.358 0.122	0.428 0.395 0.141	0.455 0.422 0.155	454A 454B C454	0.175 0.177 0.102	0.967 0.989 0.197	3.15 3.213 0.567	OVER (OVER (1.694	OVER (OVER (3.12 (3.32 3.051 OVER	2.705 2.345 2.249	1.816 1.566 1.336	1.017 0.971 0.678	0.5399 0.439 0.55
426A 426B C426	0.602	1.987	2.895 (3.008 (0.097		OVER OVER 0.111	OVER OVER 0.125	OVER OVER 0.142	1.746 OVER 0.148	0.513 0.627 0.172	0.243 0.33 0.214	0.192 0.181 0.269	455A 455B C 455	0.084 0.095 0.097	0.082 0.092 0.097	0.081 0.09 0.094	0.081 0.09 0.093	0.136 0.163 0.102	0.34 0.539 0.297	0.211 0.416 0.221	0.126 0.281 0.175	0.049 0.121 0.078	0.02 0.039 0.022	0.017 0.018 0.011
427A 427B C427	0.114	0.128	0.139 0.14 0.123	0.164 0.162 0.126		0.256 0.257 0.142	0.337 0.337 0.154	0.383 0.381 0.156	0.444 0.441 0.171	0.493 0.494 0.196	0.524 0.523 0.218	456A 456B C 456	0.259 0.255 0.142	1.143 1.131 0.226	3.322 3.302 0.522		OVER OVER 2.99 (2.966 2.879 OVER	3.135 2.657 2.736	2.568 2.047 2.005	1.53 1.315 1.112	0.791 0.724 0.6	0.386 0.414 0.605
428A 428B C428	0.698	2.036	3.097 (3.026 (0.126		OVER		OVER OVER 0.172	2.305 OVER 0.184	0.508 0.553 0.212	0.24 0.256 0.248	0.172 0.198 0.298	457A 457B C457	0.038 0.038 0.037	0.049 0.049 0.039	0.063 0.064 0.041	0.111 0.116 0.045	0.443 0.454 0.148	0.737 0.767 0.66	0.667 0.673 0.636	0.562 0.559 0.555	0.344 0.312 0.317	0.19 0.168 0.156	0.057 0.065 0.079
429A 429B C429	0.08	0.102	0.128 0.119 0.08	0.161 0.151 0.084	0.205 0.194 0.089	0.282 0.273 0.098	0.351 0.343 0.107	0.378 0.369 0.112	0.414 0.401 0.125	0.45 0.436 0.145	0.483 0.469 0.165	458A 458B C458	0.114 0.101 0.053	0.349 0.343 0.057	0.779 0.748 0.066	1.595 1.522 0.092	2.191 2.083 0.323	2.626 2.438 0.811	0.978 0.922 0.947	0.539 0.482 0.905	0.169 0.176 0.319	0.075 0.14 0.162	0.029 0.099 0.109
430A 430B C430	1.242	3.217 OV 3.106 OV 0.127		OVER OVER 0.137			OVER OVER	OVER 1.65 0.189	0.724 0.594 0.219	0.321 0.265 0.268	0.242 0.219 0.324	459A 459B C 459	0.091 0.075 0.078	0.104 0.084 0.081	0.118 0.098 0.084	0.159 0.135 0.095	0.477 0.398 0.184	0.74 0.754 0.699	0.597 0.622 0.632	0.488 0.478 0.516	0.241 0.283 0.325	0.061 0.073 0.101	0.019 0.026 0.032
431A 431B C431	0.107		0.16 0.147 0.137	0.199 0.182 0.138	0.232 0.225 0.146	0.313 0.313 0.158	0.385 0.384 0.17	0.41 0.4 0.18	0.447 0.437 0.194	0.482 0.467 0.221	0.525 0.527 0.24	460A 460B C 460	0.149 0.144 0.095	0.379 0.364 0.1	0.753 0.651 0.115	1.486 1.235 0.163	1.965 1.673 0.568	1.82 1.81 0.91	0.885 0.774 1.144	0.431 0.367 0.749	0.196 0.227 0.314	0.063 0.089 0.153	0.03 0.054 0.076
432A 432B C432	1.394	3.317 OV 3.379 OV	ER (OVER OVER 0.225	1.726 OVER 0.237	0.547 0.784 0.27	0.342 0.392 0.325	0.269 0.297 0.387	461A 461B C461	0.045 0.043 0.043	0.071 0.069 0.052	0.12 0.115 0.069	0.322 0.309 0.123	0.75 0.76 0.488	1.189 1.222 0.739	1.358 1.368 1.114	1.1 1.098 1.071	0.577 0.567 0.719	0.184 0.185 0.327	0.066 0.058 0.116
433A 433B C433	0.059 0.06	0.078 0.078	0.095 0.097 0.062	0.133 0.135 0.066	0.193 0.198 0.072	0.3 0.307 0.076	0.447 0.457 0.082	0.521 0.532 0.086	0.62 0.637 0.092	0.693 0.715 0.103	0.721 0.744 0.113	462A 462B C462	0.217 0.218 0.091	0.566 0.58 0.103	0.943 1.032 0.125	1.421 1.571 0.189	1.86 2.076 0.535	2.168 2.447 1.108	0.793 0.834 1.416	0.612 0.704 1.331	0.595 0.678 0.468	0.254 0.265 0.291	0.222 0.209 0.226
434A 434B C434	1.43 OVE 1.428 OVE	ER OV	ER (OVER	OVER OVER	OVER OVER 0.081	1.377 1.368 0.089	0.832 0.784 0.095	0.407 0.389 0.106	0.227 0.253 0.124	0.214 0.229 0.14	463A 463B C 463	0.089 0.104 0.078	0.117 0.137 0.088	0.164 0.192 0.098	0.35 0.418 0.144	0.848 0.79 0.534	1.275 1.066 0.713	1.432 1.191 0.894	1.147 1.066 0.975	0.596 0.608 0.62	0.138 0.166 0.212	0.063 0.049 0.098
435A 435B C435	0.091 0.099	0.113	0.132 0.14	0.173 0.181	0.242 0.248	0.367 0.371 0.126	0.514 0.519 0.135	0.603 0.601 0.139	0.704 0.721 0.147	0.787 0.803 0.162	0.814 0.828 0.18	464A 464B C464	0.278 0.267 0.144	0.626 0.612 0.158	0.99 0.983 0.19	1.427 1.431 0.289	1.799 1.823 0.701	1.452 1.52 1.138	0.737 0.776 1.348	0.577 0.606 0.945	0.515 0.582 0.522	0.189 0.218 0.273	0.158 0.195 0.209
436A 436B C436	1.586 OVE 1.656 OVE	ER OV	ER (OVER	OVER OVER	OVER OVER 0.111	1.372 1.304 0.12	0.812 0.864	0.382 0.421 0.142	0.216 0.226	0. 225 0. 21 5	465A 465B C 465	0.028 0.029	0.027 0.028 0.027	0.028 0.029	0.028 0.029	0.028 0.029	0.029 0.03	0.029 0.029 0.026	0.043	0.028 0.029 0.026	0.027 0.027 0.027 0.025	0.027 0.028
437A 437B	0.069 0.064	0.092 0.086	0.115 0.107	0.099 0.158 0.145	0.223 0.212	0.341 0.324	0.497 0.484	0.126 0.584 0.566	0.715 0.687	0.167 0.826 0.791	0.189 0.889 0.831	466A 466B	0.028 0.069 0.057	0.066	0.028 0.057 0.05	0.027 0.045 0.045	0.027 0.053 0.055	0.027 0.104 0.114	0.222 0.332		0.434 0.517	0.585 0.676	0.025 0.66 0.75
C437 438A 438B	1.542 OVE 1.564 OVE	ER OV	ER C	OVER	OVER	OVER	OVER	0.107 OVER OVER	0.121 0.919 0.828	0.142 0.323 0.378	0.155 0.217 0.189	C 466 467A 467B	0.049 0.074 0.069	0.048 0.071 0.065	0.048 0.071 0.067	0.048 0.069 0.065	0.048 0.068 0.063	0.048 0.064 0.06	0.046 0.058 0.055		0.046 0.043 0.04	0.043 0.038 0.036	0.042 0.036 0.034
C438 439A 439B	0.094 0.086		0.135 0.128	0.087 0.176 0.17	0.243	0.106 0.364 0.37	0.521 0.554	0.128 0.603 0.633	0.146 0.739 0.757	0.182 0.837 0.866	0.204 0.885 0.912	C 467 468A 468B	0.07 0.126 0.093	0.071 0.121 0.094	0.069 0.112 0.084	0.066 0.105 0.077	0.064 0.118 0.089	0.061 0.248 0.189	0.057 0.71 0.496		0.047 1.243 0.863	0.037 1.415 1.086	0.035 1.276 1.179
C439 440A 440B	1.76 OVE	ER OV	ER (0.138 OVER OVER			0.174 OVER OVER	0.181 2.323 OVER	0.201 0.649 0.834	0.228 0.78 0.377	0.24 0.228 0.35	C 468 469A 469B	0.107 0.029 0.028	0.103 0.028 0.029	0.104 0.028 0.029	0.1 0.028 0.029	0.097 0.03 0.03	0.092 0.03 0.03	0.084 0.03 0.03		0.063 0.03 0.03	0.055 0.029 0.03	0.051 0.031 0.03
C440 441A 441B	0.045		0.115 0.054 0.039	0.119 0.065 0.053	0.122	0.142 0.174 0.163	0.156 0.204 0.193	0.165 0.216 0.201	0.187 0.216 0.196	0.228 0.079 0.049	0.261 0.051 0.028	C 469 470A 470B	0.029 0.1 0.098	0.027 0.094 0.093	0.028 0.084 0.082	0.027 0.085 0.084	0.027 0.119 0.117	0.027 0.176 0.174	0.028 0.384 0.372		0.029 0.732 0.712	0.027 0.933 0.922	0.026 1.022 1.015
C441 442A 442B	0.028	0.028	0.03 0.731 0.74	0.032 1.08 1.1		0.032 1.073 1.083	0.034 0.87 0.872	0.035 0.432 0.431	0.048 0.147 0.155	0.05 0.066 0.068	0.037 0.052 0.052	C470 471A 471B	0.082 0.093 0.081	0.081 0.09 0.076	0.082 0.09 0.076	0.087 0.089 0.075	0.083 0.087 0.073	0.086 0.083 0.07	0.084 0.077 0.065		0.085 0.065 0.055	0.084 0.055 0.046	0.082 0.051 0.043
C442 443A 443B	0.043 0.061	0.044	0.046 0.078 0.08	0.046 0.09 0.096	0.049	0.057 0.193 0.202	0.073 0.188 0.194	0.081 0.175 0.158	0.083 0.099 0.096	0.072 0.031 0.022	0.063 0.027 0.029	C471 472A 472B	0.077 0.147 0.136	0.073 0.14 0.129	0.071 0.128 0.118	0.069 0.132 0.12	0.069 0.171 0.157	0.065 0.407 0.318	0.06 0.819 0.668		0.045 1.267 1.148	0.041 1.353 1.343	0.039 1.372 1.408
C443			0.065	0.066		0.086	0.096	0.081	0.061	0.026	0.024	C472	0.137	0.133	0.1132	0.131	0.129	0.126	0.121		0.105	0.096	0.092

Run ID	0	0.25	418nm 0.5	n Absorba	ince zeroed	to DI at X	hours 8	12	24	48	72		Run ID	0	0.25	0.5		2	4	8	12	24	48	20
473A	0.03	0.031	0.032	0.031	0.032	0.042	0.07	0.08	0.08	0.024	0.01		502A	0.349	0.915	1.334	1.711	2.049	2.204	2.015	1.445	0.422	0.237	0.205
473B	0.029	0.03	0.031	0.031	0.032	0.044	0.073	0.096	0.084	0.024	0.011		502B	0.348	0.918	1.34	1.715	2.071	2.186	1.985	1.085	0.388	0.212	0.182
C473	0.031	0.031	0.031	0.031	0.031	0.031	0.032	0.028	0.03	0.023	0.017		C 502	0.091	0.092	0.094	0.1	0.113	0.131	0.159	0.174	0.209	0.27	0.302
474A	0.086	0.693	1.257	1.532	1.617	1.437	0.615	0.301	0.124	0.054	0.063		503A	0.082	0.091	0.109	0.161	0.276	0.363	0.455	0.507	0.605	0.664	0.431
474B	0.086	0.706	1.269	1.536	1.619	1.446	0.597	0.293	0.138	0.053	0.064		503B	0.083	0.081	0.101	0.156	0.264	0.354	0.442	0.485	0.578	0.614	0.621
C474	0.056	0.056	0.057	0.057	0.056	0.055	0.053	0.054	0.072	0.066	0.053		C503	0.084	0.083	0.084	0.088	0.095	0.153	0.2	0.232	0.305	0.413	0.409
475A	0.067	0.065	0.064	0.063	0.065	0.097	0.139	0.143	0.105	0.036	0.018		504A	0.408	0.976	1.38	1.735	2.058	2.164	1.814	1.215	0.353	0.19	0.177
475B	0.062	0.06	0.059	0.059	0.06	0.083	0.123	0.114	0.1	0.038	0.021		504B	0.42	0.986	1.388	1.743	2.058	2.171	1.784	1.188	0.364	0.197	0.158
C475	0.064	0.065	0.064	0.063	0.062	0.06	0.064	0.058	0.045	0.024	0.02		C504	0.122	0.124	0.128	0.136	0.155	0.18	0.213	0.234	0.284	0.366	0.377
476A	0.153	0.822	1.329	1.56	1.582	1.125	0.536	0.294	0.146	0.113	0.114		505A	0.049	0.054	0.059	0.083	0.183	0.3	0.393	0.46	0.559	0.645	0.676
476B	0.133	0.797	1.321	1.569	1.588	1.178	0.538	0.279	0.118	0.05	0.057		505B	0.044	0.048	0.052	0.07	0.155	0.271	0.361	0.422	0.513	0.586	0.602
C476	0.088	0.085	0.086	0.083	0.081	0.076	0.09	0.116	0.108	0.063	0.054		C505	0.042	0.044	0.044	0.045	0.049	0.056	0.11	0.137	0.174	0.216	0.251
477A	0.035	0.036	0.036	0.038	0.043	0.068	0.124	0.11	0.095	0.038	0.024		506A	0.147	0.528	0.858	1.477	2.099	2.723	2.84	2.4	0.555	0.277	0.165
477B	0.034	0.036	0.036	0.037	0.042	0.067	0.122	0.119	0.093	0.038	0.022		506B	0.158	0.525	0.852	1.479	2.064	2.662	2.875	2.582	0.795	0.361	0.175
C477	0.034	0.036	0.035	0.035	0.036	0.036	0.036	0.034	0.038	0.03	0.019		C506	0.056	0.058	0.061	0.064	0.076	0.132	0.183	0.218	0.284	0.371	0.433
478A	0.296	1.391	1.786	1.908	1.91	1.218	0.557	0.289	0.171	0.092	0.073		507A	0.082	0.086	0.093	0.12	0.221	0.363	0.465	0.543	0.698	0.953	1.127
478B	0.312	1.393	1.785	1.889	1.881	1.248	0.592	0.284	0.175	0.111	0.092		507B	0.078	0.082	0.087	0.111	0.213	0.379	0.475	0.553	0.687	0.819	0.888
C478	0.085	0.086	0.085	0.09	0.087	0.089	0.094	0.117	0.127	0.107	0.093		C 507	0.078	0.084	0.084	0.091	0.104	0.223	0.282	0.279	0.372	0.51	0.598
479A	0.069	0.067	0.068	0.067	0.08	0.146	0.178	0.152	0.09	0.041	0.022		508A	0.181	0.564	0.882	1.455	2.021	2.612	2.888	2.231	0.989	0.34	0.174
479B	0.077	0.074	0.073	0.076	0.087	0.165	0.181	0.149	0.094	0.04	0.024		508B	0.201	0.58	0.892	1.489	2.038	2.64	2.952	2.933	1.413	0.44	0.27
C479	0.068	0.067	0.071	0.069	0.065	0.064	0.073	0.065	0.058	0.028	0.027		C508	0.097	0.094	0.101	0.107	0.126	0.176	0.241	0.311	0.411	0.525	0.621
480A	0.41	1.445	1.811	1.871	1.743	0.92	0.509	0.304	0.163	0.107	0.09		509A	0.056	0.065	0.076	0.161	0.266	0.367	0.445	0.502	0.591	0.679	0.723
480B	0.381	1.442	1.791	1.901	1.827	1.028	0.547	0.31	0.169	0.111	0.085		509B	0.056	0.065	0.076	0.161	0.26	0.367	0.441	0.502	0.591	0.679	0.721
C480	0.112	0.11	0.109	0.107	0.109	0.127	0.158	0.155	0.149	0.107	0.104		C 509	0.054	0.056	0.057	0.06	0.065	0.136	0.178	0.199	0.25	0.313	0.359
481A	0.036	0.044	0.051	0.062	0.095	0.218	0.567	0.6	0.45	0.35	0.282		510A	0.345	0.891	1.231	1.748	2.092	2.556	2.694	2.604	0.741	0.321	0.203
481B	0.037	0.048	0.051	0.069	0.138	0.228	0.562	0.726	0.436	0.333	0.296		510B	0.341	0.888	1.227	1.742	2.086	2.565	2.728	2.667	0.688	0.325	0.237
C481	0.036	0.042	0.046	0.052	0.065	0.1	0.364	0.59	0.548	0.416	0.333		C510	0.094	0.099	0.1	0.109	0.128	0.177	0.216	0.25	0.333	0.452	0.53
482A 482B C482	0.138 0.139 0.053	0.507 0.509 0.062	1.288 1.302 0.076	2.202 (2.224 (0.112				OVER (OVER OVER 3.266	3.006 3.038 3.102	2.98 2.894 3.076		511A 511B C511	0.091 0.082 0.076	0.101 0.093 0.079	0.114 0.103 0.078	0.18 0.168 0.083	0.306 0.296 0.094	0.427 0.407 0.199	0.517 0.5 0.257	0.576 0.553 0.286	0.713 0.686 0.392	0.892 0.856 0.515	1.023 0.974 0.604
483A	0.056	0.062	0.069	0.082	0.118	0.26	0.576	0.568	0.452	0.374	0.285		512A	0.394	0.945	1.287	1.778	2.205	2.645	2.728	2.594	0.686	0.316	0.194
483B	0.065	0.069	0.077	0.094	0.127	0.275	0.576	0.576	0.462	0.381	0.314		512B	0.395	0.946	1.272	1.75	2.1	2.545	2.701	2.482	0.694	0.325	0.179
C483	0.133	0.071	0.076	0.094	0.097	0.235	0.413	0.574	0.58	0.435	0.334		C512	0.107	0.111	0.144	0.13	0.159	0.215	0.306	0.335	0.485	0.68	0.713
484A 484B C484	0.177 0.182 0.081	0.539 0.573 0.09	1.315 1.331 0.105	2.215 (2.267 (0.147				OVER OVER OVER	3.126 3.106 3.211	3.061 3.063 3.23	2.92 2.978 3.114		513A 513B C513	0.033 0.031 0.032	0.039 0.037 0.032	0.044 0.042 0.035	0.053 0.053 0.034	0.074 0.075 0.035	0.108 0.11 0.037	0.141 0.146 0.041	0.151 0.156 0.044	0.148 0.166 0.047	0.055 0.06 0.046	0.037 0.028 0.038
485A	0.047	0.057	0.071	0.096	0.243	0.707	1.29	1.342	1.035	0.84	0.703		514A	0.131	0.294	0.399	0.496	0.594	0.676	0.315	0.183	0.126	0.083	0.069
485B	0.047	0.058	0.071	0.096	0.235	0.69	1.271	1.355	1.029	0.818	0.68		514B	0.136	0.303	0.411	0.508	0.608	0.688	0.321	0.187	0.117	0.077	0.066
C485	0.061	0.063	0.067	0.078	0.109	0.335	0.853	1.325	1.164	0.946	0.794		C514	0.045	0.048	0.053	0.058	0.066	0.074	0.078	0.077	0.068	0.059	0.048
486A 486B C486	0.309 0.313 0.099	0.921 0.922 0.116	1.752 1.74 0.147	2.636 (2.596 (0.227			OVER (OVER OVER OVER	3.058 3.079 3.044	3.156 3.227 0.88	3.077 3.108 0.391		515A 515B C515	0.082 0.085 0.084	0.084 0.082 0.079	0.089 0.088 0.081	0.098 0.098 0.08	0.117 0.118 0.081	0.143 0.14 0.077	0.153 0.146 0.063	0.107 0.114 0.046	0.055 0.068 0.034	0.032 0.035 0.027	0.022 0.022 0.019
487A	0.076	0.088	0.1	0.134	0.311	0.74	1.276	1.305	1.056	0.873	0.724		516A	0.198	0.348	0.448	0.536	0.611	0.515	0.278	0.181	0.143	0.089	0.091
487B	0.074	0.082	0.098	0.128	0.306	0.742	1.267	1.314	1.044	0.87	0.722		516B	0.187	0.34	0.439	0.532	0.614	0.545	0.319	0.197	0.095	0.083	0.078
C487	0.081	0.086	0.093	0.105	0.149	0.443	0.939	1.393	1.185	0.994	0.837		C516	0.087	0.089	0.09	0.094	0.1	0.101	0.097	0.078	0.057	0.052	0.05
488A 488B C488	0.393 0.377 0.139	0.977 0.979 0.155	1.781 1.788 0.208	2.694 (2.67 (0.284	OVER C		OVER (OVER OVER OVER	3.091 3.075 3.057	3.197 3.18 3.226	3.121 3.179 1.129		517A 517B C517	0.039 0.04 0.038	0.047 0.048 0.041	0.056 0.058 0.041	0.072 0.075 0.042	0.102 0.106 0.045	0.135 0.14 0.047	0.156 0.161 0.05	0.157 0.159 0.052	0.151 0.15 0.056	0.057 0.056 0.055	0.025 0.034 0.047
489A	0.034	0.035	0.036	0.045	0.059	0.121	0.377	0.548	0.763	0.506	0.363		518A	0.273	0.487	0.569	0.632	0.726	0.712	0.322	0.201	0.132	0.1	0.097
489B	0.038	0.046	0.051	0.046	0.076	0.138	0.377	0.546	0.8	0.542	0.383		518B	0.27	0.478	0.563	0.625	0.719	0.734	0.32	0.202	0.105	0.095	0.09
C489	0.03	0.032	0.031	0.032	0.034	0.035	0.042	0.046	0.163	0.834	0.627		C518	0.087	0.092	0.097	0.105	0.114	0.117	0.118	0.117	0.118	0.098	0.086
490A	0.148	0.434	0.736	1.64	2.424	3.231	1.134	0.973	0.603	0.265	0.169		519A	0.077	0.083	0.092	0.107	0.136	0.164	0.155	0.15	0.074	0.038	0.024
490B	0.148	0.44	0.756	1.691	2.526	3.402	1.181	0.949	0.606	0.264	0.129		519B	0.079	0.084	0.094	0.111	0.141	0.173	0.159	0.133	0.063	0.039	0.027
C490	0.043	0.044	0.045	0.05	0.057	0.104	0.379	0.618	1.731	0.484	0.559		C519	0.069	0.067	0.069	0.069	0.073	0.073	0.068	0.059	0.047	0.03	0.026
491A	0.095	0.067	0.114	0.119	0.138	0.236	0.507	0.659	0.692	0.6	0.401		520A	0.334	0.519	0.6	0.654	0.703	0.565	0.311	0.213	0.118	0.102	0.105
491B	0.06	0.064	0.068	0.077	0.095	0.172	0.452	0.596	0.675	0.496	0.389		520B	0.326	0.516	0.594	0.649	0.71	0.559	0.31	0.217	0.148	0.111	0.107
C491	0.061	0.071	0.065	0.071	0.07	0.076	0.153	0.14	0.409	0.677	0.592		C520	0.143	0.146	0.149	0.154	0.158	0.156	0.136	0.123	0.102	0.096	0.091
492A	0.195	0.47	0.744	1.613	2.41	3.03	1.061	0.903	0.533	0.226	0.138		521A	0.212	0.336	0.406	0.489	0.607	0.726	0.794	0.809	0.711	0. 228	0.112
492B	0.193	0.475	0.758	1.634	2.457	3.135	1.068	0.998	0.572	0.274	0.178		521B	0.214	0.34	0.406	0.492	0.61	0.74	0.818	0.835	0.789	0. 261	0.163
C492	0.079	0.08	0.08	0.088	0.096	0.159	0.374	0.631	0.969	0.522	0.52		C521	0.205	0.332	0.397	0.476	0.583	0.686	0.744	0.765	0.7	0. 212	0.107
493A	0.036	0.043	0.047	0.064	0.103	0.333	0.715	1.059	1.616	1.175	0.941		522A	0.219	0.566	0.817	1.132	1.527	1.769	0.604	0.444	0.261	0.29	0.349
493B	0.036	0.043	0.049	0.061	0.108	0.345	0.738	1.091	1.62	1.18	0.955		522B	0.233	0.589	0.841	1.156	1.549	1.769	0.637	0.455	0.285	0.285	0.346
C493	0.035	0.037	0.037	0.039	0.041	0.044	0.056	0.082	0.469	1.668	1.298		C 522	0.16	0.279	0.347	0.426	0.536	0.664	0.579	0.382	0.247	0.271	0.295
494A 494B C494	0.306 0.31 0.089	0.727 0.733 0.089	1.091 1.097 0.093	1.831 1.832 0.099	2.465 C 2.456 C 0.116	VER	1.757 1.76 0.463	1.188 1.249 0.838	0.57 0.59 0.855	0.545 0.55 0.702	0.446 0.514 0.737		523A 523B C523	0.264 0.278 0.307	0.409 0.396 0.411	0.481 0.464 0.471	0.565 0.547 0.541	0.669 0.651 0.629	0.738 0.751 0.686	0.688 0.781 0.684	0.628 0.759 0.577	0.368 0.404 0.334	0.158 0.15 0.143	0.104 0.105 0.105
495A	0.073	0.079	0.084	0.107	0.157	0.418	0.763	1.039	1.485	1.135	0.922		524A	0.252	0.593	0.846	1.155	1.485	0.978	0.64	0.469	0.26	0. 297	0.326
495B	0.078	0.085	0.093	0.115	0.17	0.429	0.783	1.045	1.471	1.14	0.915		524B	0.242	0.569	0.82	1.127	1.444	0.813	0.645	0.448	0.247	0. 278	0.322
C495	0.068	0.064	0.071	0.075	0.077	0.083	0.165	0.291	0.826	1.438	1.173		C524	0.174	0.279	0.347	0.423	0.515	0.532	0.349	0.299	0.244	0. 249	0.3
496A	0.366	0.771	1.103	1.87	2.435	3.463	1.298	1.083	0.562	0.526	0.471		525A	0.273	0.405	0.485	0.596	0.759	0.93	1.044	1.083	0.819	0.435	0.3
496B	0.368	0.771	1.114	1.821	2.437	3.424	1.274	1.134	0.601	0.621	0.509		525B	0.277	0.408	0.492	0.599	0.764	0.937	1.041	1.073	0.804	0.434	0.307
C496	0.14	0.143	0.148	0.16	0.186	0.273	0.49	0.741	0.645	0.541	0.485		C525	0.275	0.396	0.465	0.56	0.692	0.806	0.87	0.906	0.619	0.387	0.312
497A	0.039	0.043	0.046	0.062	0.143	0.231	0.328	0.375	0.441	0.479	0.489		526A	0.352	0.795	1.051	1.32	1.629	1.156	0.589	0.456	0.347	0.432	0.457
497B	0.039	0.04	0.045	0.059	0.132	0.222	0.324	0.376	0.449	0.473	0.467		526B	0.372	0.815	1.074	1.353	1.666	1.045	0.605	0.491	0.382	0.435	0.488
C497	0.037	0.037	0.038	0.038	0.04	0.041	0.042	0.063	0.102	0.134	0.157		C526	0.234	0.352	0.416	0.493	0.607	0.747	0.548	0.41	0.37	0.419	0.44
498A	0.155	0.538	0.963	1.442	2.048	2.397	2.324	1.971	0.451	0.151	0.114		527A	0.326	0.493	0.583	0.702	0.863	0.979	0.889	0.796	0.554	0.396	0.26
498B	0.159	0.544	0.969	1.446	2.038	2.393	2.21	1.908	0.401	0.167	0.12		527B	0.262	0.399	0.473	0.575	0.728	0.894	0.832	0.761	0.677	0.403	0.34
C498	0.047	0.048	0.048	0.051	0.057	0.073	0.119	0.137	0.17	0.22	0.252		C527	0.344	0.447	0.512	0.598	0.714	0.815	0.796	0.674	0.432	0.436	0.406
499д 499В	0.06 0.061	0.063 0.064	0.07 0.071	0.088	0.171 0.178	0.284 0.294	0.394 0.405	0.449 0.469	0.548 0.564	0.587 0.614	0.605 0.603		528A 528B	0.335 0.372	0.703 0.774	0.925 1.005	1.143 1.243	1.358 1.433	0.838 0.856	0.57 0.612	0.47 0.45	0.297 0.315	0,389 0,399	0.451 0.454
C499	0.077	0.079	0.078	0.078	0.078	0.102	0.208	0.227	0.268	0.296	0.345		C528	0.24	0.331	0.381	0.44	0.515	0.474	0.353	0.329	0.342	0.43	0.433
500A	0.202	0.598	1.007	1.446	1.985	2.338	2.217	1.825	0.512	0.16	0.123		529A	0.066	0.097	0.117	0.147	0.197	0.258	0.311	0.329	0.35	0.156	0.115
500B	0.203	0.603	1.009	1.46	2.009	2.344	2.199	1.726	0.535	0.19	0.167		529B	0.057	0.082	0.1	0.13	0.179	0.258	0.371	0.428	0.515	0.565	0.59
C500	0.078	0.076	0.078	0.083	0.094	0.121	0.175	0.207	0.265	0.32	0.33		C529	0.053	0.073	0.08	0.093	0.111	0.136	0.168	0.186	0.227	0.278	0.321
501A	0.047	0.053	0.066	0.114	0.215	0.296	0.375	0.408	0.455	0.479	0.484		530A	0.085	0.15	0.197	0.263	0.421	0.633	0.794	0.438	0.218	0.135	0.198
501B	0.048	0.055	0.07	0.111	0.21	0.29	0.366	0.397	0.448	0.457	0.453		530B	0.091	0.159	0.209	0.279	0.448	0.66	0.742	0.425	0.211	0.138	0.212
C501	0.055	0.052	0.057	0.054	0.061	0.061	0.096	0.119	0.136	0.175	0.201		C530	0.051	0.057	0.061	0.066	0.072	0.082	0.094	0.102	0.146	0.253	0.347

RunID	0	0.25	418nm 0.5	Absorbar	nce zeroed 1 2	oDlatXh	nours 8	12	24	48	72	Run ID	0
531A	0.085	0.128	0.148	0.178	0. 227	0.299	0.374	0.403	0.316	0.175	0.144	560A	0.256
531B	0.088	0.127	0.146	0.176	0. 225	0.304	0.411	0.46	0.522	0.508	0.39	560B	0.255
C531	0.087	0.121	0.132	0.149	0. 168	0.195	0.232	0.254	0.293	0.337	0.358	C 560	0.146
532A	0.127	0.199	0.249	0.315	0.464	0.677	0.723	0.496	0.284	0.143	0.23	561a	0.035
532B	0.128	0.195	0.241	0.299	0.387	0.613	0.851	0.854	0.365	0.204	0.182	561B	0.041
C532	0.104	0.11	0.113	0.12	0.127	0.138	0.164	0.187	0.26	0.338	0.259	C561	0.046
533A	0.067	0.097	0.123	0.166	0.235	0.333	0.442	0.481	0.552	0.615	0.658	562A	0.127
533B	0.06	0.093	0.117	0.156	0.223	0.312	0.41	0.454	0.519	0.58	0.626	562B	0.096
C533	0.071	0.097	0.107	0.126	0.152	0.179	0.199	0.21	0.233	0.213	0.152	C 562	0.045
534A	0.159	0.243	0.287	0.332	0.436	0.635	0.785	0.812	0.458	0.285	0.269	563A	0.064
534B	0.164	0.254	0.303	0.37	0.529	0.719	0.819	0.428	0.261	0.224	0.332	563B	0.082
C534	0.098	0.107	0.114	0.12	0.13	0.143	0.173	0.206	0.321	0.49	0.352	C563	0.069
535A	0.096	0.134	0.161	0.205	0.277	0.381	0.489	0.536	0.616	0.682	0.724	564A	0.13
535B	0.099	0.139	0.167	0.211	0.285	0.389	0.495	0.539	0.602	0.655	0.663	564B	0.148
C535	0.081	0.098	0.107	0.121	0.139	0.159	0.184	0.199	0.237	0.284	0.327	C 564	0.101
536A	0.211	0.305	0.353	0.417	0.578	0.764	0.76	0.507	0.32	0.254	0.347	565A	0.043
536B	0.209	0.305	0.355	0.432	0.597	0.786	0.598	0.43	0.294	0.276	0.374	565B	0.039
C536	0.145	0.153	0.161	0.169	0.181	0.195	0.226	0.26	0.364	0.466	0.323	C 565	0.038
537A	0.031	0.026	0.028	0.028	0.028	0.031	0.032	0.037	0.151	0.208	0.219	566A	0.182
537B	0.026	0.026	0.026	0.027	0.027	0.029	0.031	0.036	0.147	0.206	0.215	566B	0.183
C537	0.027	0.026	0.026	0.027	0.027	0.028	0.028	0.028	0.031	0.032	0.034	C566	0.087
538A	0.064	0.142	0.217	0.364	0.601	0.959	1.234	1.297	1.354	1.338	1.002	567A	0.107
538B	0.065	0.144	0.221	0.371	0.613	0.966	1.26	1.321	1.375	1.353	0.943	567B	0.091
C538	0.046	0.046	0.048	0.049	0.049	0.051	0.061	0.068	0.074	0.079	0.085	C 567	0.077
539A	0.072	0.07	0.069	0.069	0.069	0.07	0.07	0.096	0.233	0.249	0.263	568A	0.24
539B	0.071	0.071	0.07	0.07	0.07	0.07	0.072	0.103	0.233	0.257	0.273	568B	0.235
C539	0.075	0.074	0.073	0.073	0.072	0.071	0.07	0.07	0.071	0.061	0.063	C 568	0.137
540A	0.112	0.194	0.272	0.424	0.672	1.021	1.308	1.374	1.412	1.367	0.734	569A	0.038
540B	0.128	0.21	0.286	0.438	0.687	1.039	1.324	1.389	1.446	1.379	0.669	569B	0.038
C540	0.094	0.093	0.093	0.092	0.092	0.094	0.111	0.116	0.124	0.13	0.136	C 569	0.038
541A	0.028	0.029	0.029	0.029	0.031	0.033	0.047	0.102	0.184	0.205	0.207	570A	0.13
541B	0.029	0.028	0.028	0.03	0.032	0.033	0.046	0.096	0.183	0.204	0.209	570B	0.13
C541	0.029	0.029	0.029	0.03	0.031	0.03	0.031	0.032	0.035	0.036	0.037	C570	0.059
542A	0.136	0.292	0.381	0.518	0.74	1.04	1.219	1.248	1.286	1.303	1.286	571A	0.083
542B	0.136	0.295	0.386	0.519	0.742	1.033	1.206	1.238	1.285	1.308	1.296	571B	0.082
C542	0.083	0.083	0.085	0.087	0.094	0.104	0.117	0.12	0.126	0.131	0.136	C571	0.079
543A	0.072	0.07	0.069	0.069	0.071	0.073	0.142	0.201	0.252	0.269	0.274	572A	0.177
543B	0.068	0.066	0.065	0.066	0.067	0.067	0.104	0.172	0.2536	0.247	0.247	572B	0.181
C543	0.069	0.072	0.069	0.067	0.067	0.072	0.065	0.066	0.071	0.07	0.075	C572	0.102
544A	0.188	0.346	0.428	0.561	0.777	1.057	1.242	1.275	1.333	1.336	1.239	573A	0.063
544B	0.188	0.343	0.426	0.559	0.773	1.053	1.241	1.28	1.326	1.314	1.066	573B	0.049
C544	0.129	0.128	0.128	0.131	0.133	0.142	0.16	0.166	0.178	0.19	0.194	C573	0.042
545A	0.043	0.043	0.043	0.045	0.051	0.053	0.066	0.067	0.064	0.058	0.044	574A	0.248
545B	0.043	0.043	0.045	0.047	0.052	0.06	0.068	0.071	0.066	0.057	0.047	574B	0.24
C545	0.042	0.042	0.043	0.043	0.043	0.042	0.032	0.03	0.028	0.023	0.019	C574	0.087
546A	0.081	0.132	0.166	0.204	0. 247	0.31	0.184	0.11	0.071	0.051	0.044	575A	0.104
546B	0.079	0.131	0.166	0.204	0. 246	0.311	0.17	0.109	0.069	0.052	0.042	575B	0.092
C546	0.062	0.065	0.065	0.072	0. 065	0.07	0.066	0.064	0.067	0.061	0.064	C575	0.094
547A	0.061	0.062	0.063	0.064	0.068	0.075	0.084	0.081	0.088	0.084	0.06	576A	0.297
547B	0.066	0.065	0.066	0.068	0.071	0.076	0.086	0.082	0.09	0.081	0.062	576B	0.304
C547	0.067	0.065	0.066	0.064	0.063	0.057	0.05	0.045	0.036	0.034	0.027	C 576	0.136
548A	0.116	0.164	0.198	0.235	0.277	0.331	0.161	0.122	0.076	0.058	0.048	577A	0.041
548B	0.11	0.158	0.191	0.23	0.27	0.328	0.161	0.07	0.078	0.055	0.048	577B	0.04
C548	0.074	0.074	0.075	0.076	0.075	0.074	0.066	0.064	0.063	0.061	0.059	C577	0.041
549A	0.043	0.045	0.049	0.054	0.064	0.077	0.088	0.085	0.073	0.063	0.054	578A	0.11
549B	0.044	0.046	0.049	0.054	0.065	0.079	0.086	0.087	0.074	0.072	0.053	578B	0.106
C549	0.043	0.044	0.045	0.045	0.046	0.044	0.039	0.037	0.032	0.029	0.024	C578	0.048
550A	0.149	0.222	0.253	0.281	0.33	0.389	0.171	0.133	0.108	0.09	0.086	579A	0.069
550B	0.147	0.219	0.252	0.282	0.336	0.393	0.163	0.129	0.102	0.089	0.083	579B	0.073
C550	0.087	0.088	0.09	0.092	0.094	0.095	0.095	0.095	0.095	0.095	0.096	C579	0.077
551A	0.066	0.067	0.069	0.073	0.084	0.096	0.104	0.1	0.087	0.089	0.064	580A	0.159
551B	0.065	0.067	0.069	0.075	0.087	0.102	0.109	0.107	0.088	0.078	0.07	580B	0.156
C551	0.064	0.064	0.063	0.064	0.063	0.057	0.052	0.043	0.042	0.036	0.033	C 580	0.102
552A	0.171	0.239	0.269	0.298	0.343	0.401	0.166	0.136	0.113	0.089	0.087	581A	0.046
552B	0.199	0.256	0.287	0.315	0.36	0.418	0.178	0.146	0.117	0.105	0.099	581B	0.046
C552	0.107	0.11	0.11	0.112	0.114	0.114	0.111	0.11	0.106	0.105	0.105	C581	0.043
553A	0.06	0.07	0.088	0.11	0.159	0.24	0.379	0.475	0.637	0.713	0.655	582A	0.209
553B	0.052	0.07	0.082	0.108	0.155	0.234	0.365	0.467	0.635	0.693	0.651	582B	0.21
C553	0.048	0.065	0.074	0.091	0.117	0.157	0.227	0.288	0.413	0.692	0.75	C 582	0.093
554A	0.111	0.187	0.238	0.306	0.398	0.54	0.864	1.118	1.702	2.999		583A	0.09
554B	0.114	0.189	0.24	0.31	0.399	0.539	0.85	1.106	1.696	2.982		583B	0.099
C554	0.063	0.074	0.08	0.092	0.112	0.143	0.201	0.269	0.493	1.336		C 583	0.111
555A	0.105	0.125	0.138	0.163	0.211	0.287	0.406	0.5	0.652	0.676	0.633	584A	0.276
555B	0.092	0.116	0.126	0.168	0.203	0.276	0.401	0.496	0.668	0.682	0.642	584B	0.274
C555	0.098	0.115	0.125	0.141	0.165	0.205	0.271	0.331	0.451	0.703	0.709	C 584	0.138
556A 556B C556	0.164 0.159 0.098	0.239 0.233 0.109	0.292 0.285 0.114	0.361 0.351 0.125	0.456 0.445 0.146	0.598 0.584 0.171	0.897 0.901 0.231	1.198 1.173 0.292	1.789 1.77 0.505	3.056 2.995 1.273	OVER OVER 2.279		
557A 557B C557	0.064 0.066 0.061	0.089 0.098 0.078	0.106 0.108 0.09	0.141 0.143 0.11	0.213 0.228 0.139	0.321 0.321 0.187	0.499 0.501 0.278	0.636 0.652 0.373	0.899 0.908 0.561	1.376 1.363 1.007	1.418 1.397 1.415		
558A 558B C558	0.207 0.208 0.11	0.302 0.308 0.125	0.355 0.36 0.135	0.416 0.426 0.153	0.52 0.533 0.18	0.698 0.72 0.727	1.031 1.078 0.328	1.355 1.417 0.454	2.207 C 2.257 C 0.934		OVER OVER OVER		
559A 559B C559	0.101 0.115 0.114	0.125 0.154 0.13	0.144 0.159 0.141	0.18 0.212 0.16	0.251 0.284 0.19	0.358 0.381 0.239	0.52 0.571 0.325	0.657 0.692 0.406	0.922 0.981 0.589	1.375 1.399 1.054	1.308 1.323 1.428		

0 0.256 0.255 0.146 0.25 0.355 0.352 0.16 0.5 0.407 0.403 0.169 24 48 72 2.265 OVER OVER 2.242 OVER OVER 0.926 2.465 OVER
 4
 8
 12

 0.752
 1.075
 1.423

 0.744
 1.066
 1.4

 0.255
 0.35
 0.471
 0.526 0.571 0.211 0.471 0.035 0.041 0.046 0.048 0.075 0.046 0.061 0.078 0.044 0.105 0.132 0.049 0.197 0.211 0.097 0.245 0.266 0.087 0.409 0.419 0.15 0.037 0.039 0.158 0.058 0.051 0.065 0.188 0.349 0.118 0.197 0.177 0.047 0.341 0.325 0.053 0.427 0.407 0.058 0.543 0.535 0.067 .127 0.253 0.238 0.698 0.784 0.792 0.965 0.951 1.298 1.309 1.579 1.607 0.691 0.072 0.096 0.048 0.078 0.089 0.122 0.159 0.475 0.064 0.068 0.075 0.082 0.097 0.135 0.191 0.231 0.082 0.089 0.068 0.092 0.07 0.095 0.112 0.16 0.082 0.21 0.244 0.093 0.304 0.408 0.151 0.488 0.197 0.208 0.224 0.1 0.267 0.28 0.113 0.353 0.366 0.108 0.43 0.442 0.112 0.54 0.555 0.131 0.691 0.705 0.135 1.341 1.278 0.152 0.13 1.661 .148 0.819 0.128 0.988 0.135 1.563 0.186 0.043 0.039 0.038 0.045 0.043 0.04 0.052 0.048 0.04 0.068 0.063 0.044 0.095 0.091 0.048 0.15 0.144 0.053 0.212 0.205 0.067 0.252 0.244 0.076 0.301 0.294 0.093 0.417 0.412 0.138 0.521 0.518 0.183 1.72 1.72 0.295 0.182 0.183 0.087 0.288 0.284 0.091 0.34 0.335 0.093 0.481 0.479 0.106 0.597 0.405 0.718 0.793 0.934 1.332 0.399 0.599 0.112 0.725 0.119 0.801 0.128 0.925 0.148 1.332 0.212 0.108 0.099 0.078 0.124 0.115 0.083 0.157 0.146 0.086 0.219 0.2 0.093 0.574 107 0.263 0.349 0.447 .091 0.094 0.258 0.103 0.289 0.342 0.127 0.456 0.591 0.236 0.24 0.235 0.137 0.339 0.334 0.137 0.389 0.385 0.14 0.453 0.448 0.146 0.528 0.522 0.152 0.644 0.637 0.151 0.754 0.75 0.164 0.831 0.829 0.164 0.977 0.97 0.182 1,378 1,373 0,243 1.735 1.735 0.324 0.038 0.038 0.038 0.094 0.092 0.047 0.141 0.138 0.049 0.25 0.243 0.063 0.043 0.051 0.067 0.214 0.297 0.32 0.336 0.042 0.049 0.064 0.206 0.29 0.313 0.087 0.13 0.13 0.059 0.249 0.255 0.048 0.354 0.36 0.052 0.462 0.473 0.063 0.571 0.58 0.064 0.742 0.741 0.071 1.057 1.045 0.079 1.138 1.147 0.081 1.228 1.233 0.087 1.293 1.3 0.091 1.346 1.353 0.095 0.083 0.082 0.079 0.087 0.087 0.079 0.099 0.095 0.082 0.114 0.11 0.083 0.139 0.135 0.086 0.185 0.181 0.088 0.257 0.249 0.096 0.293 0.288 0.098 0.346 0.336 0.103 0.365 0.359 0.112 0.378 0.373 0.124 0.177 0.181 0.102 0.294 0.299 0.104 0.394 0.401 0.108 0.501 0.512 0.112 0.605 0.62 0.119 0.765 0.786 0.125 1.068 1.101 0.13 1.178 1.194 0.13 1.266 1.304 0.134 1.344 1.417 0.135 0.063 0.049 0.042 0.148 0.129 0.054 0.188 0.185 0.057 0.333 0.327 0.098 0.054 0.052 0.046 0.1 0.065 0.046 0.092 0.089 0.05 0.246 0.242 0.065 0.269 0.265 0.07 0.327 0.296 0.078 0.248 0.24 0.087 0.598 0.58 0.104 0.697 0.689 0.11 0.854 0.858 0.115 1.019 1.03 0.121 1.216 1.223 0.143 0.412 0.402 0.093 0.507 0.498 0.099 1.065 1.068 0.122 1.106 1.101 0.127 0.104 0.092 0.094 0.11 0.099 0.094 0.122 0.112 0.097 0.147 0.137 0.098 0.188 0.18 0.102 0.245 0.239 0.106 0.306 0.299 0.113 0.33 0.321 0.117 0.351 0.349 0.118 0.392 0.388 0.141 0.297 0.304 0.136 0.892 0.888 0.161 1.269 1.262 0.175 0.454 0.454 0.14 0.55 0.547 0.146 0.737 0.733 0.158 1.103 1.096 0.165 1.212 1.206 0.169 0.629 0.151 0.041 0.04 0.041 0.149 0.15 0.065 0.368 0.378 0.127 0.045 0.045 0.044 0.07 0.07 0.049 0.094 0.093 0.054 0.305 0.31 0.09 0.11 0.106 0.048 0.423 0.385 0.061 0.479 0.472 0.067 0.67 0.672 0.075 0.919 0.923 0.08 1.292 1.302 0.111 0.075 0.078 0.081 0.123 0.126 0.09 0.178 0.184 0.099 0.34 0.344 0.126 .069 0.414 .073 .077 0.085 0.082 0.102 0.087 0.243 0.108 0.288 0.115 0.395 0.152 0.425 0.172 0.159 0.156 0.102 0.719 0.727 0.13 1.331 1.34 0.162 0.429 0.431 0.115 0.51 0.516 0.12 0.955 0.971 0.134 1.077 1.095 0.138 1.263 1.286 0.151 0.257 0.253 0.106 0.34 0.34 0.11 0.046 0.046 0.043 0.056 0.056 0.048 0.068 0.067 0.051 0.09 0.093 0.054 0.126 0.127 0.058 0.192 0.196 0.067 0.246 0.248 0.076 0.31 0.312 0.097 0.363 0.368 0.131 0.577 0.579 0.114 209 0.344 0.497 0.754 1.17 0.343 0.098 0.21 0.426 0.499 0.109 0.762 0.122 0.903 0.127 0.967 0.128 1.017 1.172 0.162 0.09 0.099 0.111 0.099 0.105 0.115 0.173 0.242 0.294 0.181 0.25 0.303 0.125 0.134 0.151 0.426 0.431 0.204 0.113 0.118 0.12 0.138 0.144 0.121 0.327 0.333 0.153 0.361 0.364 0.169 0.187

0.629 0.807 0.627 0.81 0.16 0.167

0.938 0.946 0.169

1.231

1.064 1.009 0.17 1.073 0.174 1.159 0.192 1.245

0.4 0.401 0.143 0.479 0.479 0.148 0.55 0.547 0.154

Appendix V. 418 nm Spectrophotometric Study Response Values

		418	nm da	ta aver	age "response	" m e asurem	ents
	Tmax	Amax	Tmin	Amin	Amax-Amin	Tmax-Tmin	Settling Rate
9	12	0.178	0.25	0.031	0.147	11.75	0.485
10	2	1.267	72	0.141	1.126	-70	0.655
11	12	0.212	0.25	0.052	0.16	11.75	0.515
12	1	1.35	48	0.182	1.168	-47	0.505
13	12	0.201	0.25	0.04	0.161	11.75	0.5
14	1	1.172	72	0.196	0.976	-71	0.485
15	12	0.186	0.25	0.041	0.145	11.75	0.395
16	1	1.152	72	0.192	0.96	-71	0.48
17	4	0.216	72	0.025	0.191	-68	1.075
18	1	0.975	72	0.093	0.882	-71	0.805
19	12	0.222	72	0.038	0.184	-60	0.95
20	1	1.183	72	0.139	1.044	-71	0.68
21	4	0.234	72	0.026	0.208	-68	0.97
22	1	1.149	72	0.020	1.009	-71	0.68
23	8	0.213	72			-64	
				0.039	0.174		0.95
24	1	1.076	72	0.159	0.917	-71	0.61
25	8	0.24	72	0.045	0.195	-64	1.095
26	0.5	1.503	72	0.164	1.339	-71.5	0.635
27	8	0.269	72	0.049	0.22	-64	1.055
28	0.25	1.753	72	0.185	1.568	-71.75	0.62
29	8	0.259	72	0.042	0.217	-64	1.15
30	0.5	1.523	72	0.178	1.345	-71.5	0.58
31	12	0.252	72	0.046	0.206	-60	1.05
32	0.5	1.331	72	0.208	1.123	-71.5	0.565
33	4	0.235	72	0.041	0.194	-68	0.93
34	0.5	1.081	72	0.127	0.954	-71.5	0.685
35	4	0.249	72	0.073	0.176	-68	0.785
36	0.5	1.354	72	0.173	1.181	-71.5	0.645
	4					-68	
37		0.286	72	0.056	0.23		0.845
38	0.5	1.283	72	0.148	1.135	-71.5	0.65
39	8	0.235	72	0.037	0.198	-64	0.925
40	0.5	1.241	72	0.194	1.047	-71.5	0.585
41	0.25	0.044	72	0.013	0.031	-71.75	0.19
42	1	4	72	0.025	3.975	-71	1.635
43	12	0.781	72	0.071	0.71	-60	1.32
44	2	4	72	0.236	3.764	-70	1.525
45	0.25	0.051	72	0.015	0.036	-71.75	*
46	1	2.966	72	0.034	2.932	-71	1.195
47	12	0.821	72	0.046	0.775	-60	1.595
48	1	2.999	72	0.032	2.967	-71	1.25
49	0.5	0.077	72	0.025	0.052	-71.5	0.135
50	2	4	72	0.111	3.889	-70	1.39
51	4	0.679	72	0.069	0.61	-68	0.91
52	2	4	72	0.612	3.388	-70	0.51
53	0.5	0.071	72	0.024	0.047	-71.5	9.51
54	1	2.709	72	0.125	2.584	-71	0.705
55	4	0.612	72	0.073	0.539	-68	0.815
56	1	2.787	72	0.144	2.643	-71	0.75
57	2	1.671	72	0.01	1.661	-70	1.15
58	2	4	72	0.663	3.337	-70	1.14
59	8	0.938	72	0.084	0.854	-64	1.165
60	1	4	72	1.143	2.857	-71	0.325
61	2	1.667	72	0.009	1.658	-70	1.985
62	0.5	4	72	0.051	3.949	-71.5	0.785
63	4	1.734	72	0.057	1.677	-68	1.21
64	0.5	4	72	0.848	3.152	-71.5	0.165
65	2	1.69	72	0.019	1.671	-70	1.61
66	2	4	72	1.258	2.742	-70	*
67	4	0.82	72	0.151	0.669	-68	0.665
68	1	4	72	1.026	2.974	-71	0.325
	2	1.713	72	0.025	1.688	-71 -70	
69				0.025			1.595 0.43
70	1	3.041	72		2.515	-71	
71	4	0.82	72	0.1	0.72	-68	0.835
72	1	3.159	72	1.367	1.792	-71	*
73	8	0.264	72	0.042	0.222	-64	1.06
74	1	1.266	72	0.093	1.173	-71	0.91
75	4	0.261	72	0.039	0.222	-68	0.985
76	1	1.261	72	0.115	1.146	-71	0.79
77	0.25	0.033	72	0.007	0.026	-71.75	*
78	1	4	72	0.016	3.984	-71	2.04
79	2	0.081	72	0.027	0.054	-70	0.19
80	1	4	72	1.637	2.363	-71	0.125
81	8	1.01	72	0.01	1	-64	2.05
	1	4	72	0.026	3.974	-64 -71	1.425
	- 11	4	12	0.020	0.374	77 (E)	1.420
82 83	4	0.992	72	0.073	0.919	-68	1.28

	Tmax	Am ax	Tmin	Amin	Amax-Amin	Tmax-Tmin	Settling Rate
84	1	4	72	0.332	3.668	-71	0.685
85	8	1.617	72	0.014	1.603	-64	2.11
86	1	4	72	0.425	3.575	-71	0.66
87	4	1.32	72	0.013	1.307	-68	1.825
88	1	4	72	0.607	3.393	-71	0.355
89	4	0.894	72	0.028	0.866	-68	1.9
90	1	4	72	0.022	3.978	-71	1.965
91	4	0.986	72	0.034	0.952	-68	1.49
92	1	4	72	0.332	3.668	-71	0.58
93	1	0.039	72	0.031	0.008	-71	*
94	72	2.684	0.25	0.042	2.642	71.75	-0.325
95	0.25	0.089	72	0.044	0.045	-71.75	0.215
96	48	4	0.25	0.092	3.908	47.75	-0.38
97	4	0.039	0.25	0.035	0.004	3.75	*
98	72	2.432	0.25	0.091	2.341	71.75	-0.29
99	0.25	0.088	72	0.049	0.039	-71.75	0.18
00	48	3.438	0.25	0.132	3.306	47.75	-0.21
01	12	0.139	0.25	0.013	0.126	11.75	0.82
02	2	1.893	72	0.084	1.809	-70	1.145
03	12	0.198	72	0.025	0.173	-60	1.025
04	1	1.904	72	0.082	1.822	-71	1.05
05	8	0.177	0.25	0.017	0.16	7.75	0.89
06	1	2.229	72	0.094	2.135	-71	0.805
07	8	0.221	0.25	0.047	0.174	7.75	0.89
08	1	2.275	72	0.108	2.167	-71	0.79
09	72	0.023	0.25	0.015	0.008	71.75	*
10	72	4	0.25	0.035	3.965	71.75	-0.885
11	1	0.041	72	0.014	0.027	-71	0.36
12	12	4	0.25	0.064	3.936	11.75	-0.11
13	8	0.226	0.25	0.018	0.208	7.75	1.09
14	2	3.313	72	0.13	3.183	-70	0.735
15	8	0.276	72	0.028	0.248	-64	1:11
16	1	3.124	72	0.08	3.044	-71	1.015
17	8	0.675	0.25	0.048	0.627	7.75	0.335
18	72	4	0.25	2.226	1.774	71.75	*
19	8	0.685	0.25	0.095	0.59	7.75	0.315
20	72	4	0.25	2.309	1.691	71.75	*
21	8	1.532	0.25	0.067	1.465	7.75	0.275
22	72	4	0.25	3.176	0.824	71.75	*
23	8	1.512	0.25	0.105	1.407	7.75	0.215
24	72	4	0.25	3.259	0.741	71.75	*
25	12	0.8	0.25	0.034	0.766	11.75	0.295
26	12	4	0.25	1.981	2.019	11.75	0.233 *
27	12	0.782	0.25		0.712	11.75	0.15
				0.07	1.909		*
28	12	4	0.25	2.091		11.75	
29	12	1.55	0.25	0.046	1.504	11.75 -68	0.11
30	4	4	72	0.371	3.629		0.79 *
31	24	1.513	0.25	0.089	1.424	23.75	
32	4	4	72	0.509	3.491	-68	0.735
33	4	0.58	0.25	0.055	0.525	3.75	0.28
34	72	4	72	2.75	1.25	0	
35	4	0.64	0.25	0.086	0.554	3.75	0.215
36	72	4	72	2.898	1.102	0	
37	8	0.778	0.25	0.039	0.739	7.75	0.275
38	72	4	0.25	3.178	0.822	71.75	0.455
39	8	0.762	0.25	0.077	0.685	7.75	0.155
40	72	4	0.25	3.298	0.702	71.75	*
41	72	0.859	0.25	0.061	0.798	71.75	0.82
42	4	4	72	0.17	3.83	-68	1.145
43	72	0.885	0.25	0.093	0.792	71.75	1.025
44	4	4	72	0.117	3.883	-68	1.05
45	48	0.89	0.25	0.105	0.785	47.75	0.89
46	2	4	72	0.148	3.852	-70	0.805
47	48	0.914	0.25	0.147	0.767	47.75	0.89
48	2	4	72	0.159	3.841	-70	0.79
49	48	1.045	0.25	0.071	0.974	47.75	-0.255
50	1	3.469	72	0.16	3.309	-71	0.85
51	48	0.948	0.25	0.105	0.843	47.75	-0.235
52	1	4	72	0.162	3.838	-71	0.83
53	48	1.478	0.25	0.087	1.391	47.75	-0.43
54	1	4	72	0.197	3.803	-71	0.89
55	72	1.658	0.25	0.183	1.475	71.75	-0.345
56	2	4	72	0.253	3.747	-70	0.93
57	24	0.967	0.25	0.073	0.894	23.75	1.09
58	0.5	4	72	0.117	3.883	-71.5	0.735

		418	nm da	ta avera	ge "response	e" measurem	ents
	Tmax	Amax	Tmin	Amin	Amax-Amin	Tmax-Tmin	Settling Rate
159	24	0.969	0.25	0.123	0.846	23.75	1.11
160	0.5	4	72	0.32	3.68	-71.5	1.015
161	24 4	0.991 4	0.25 72	0.092	0.899	23.75	0.16
162 163	24	0.982	0.25	1.188 0.132	2.812 0.85	-68 23.75	0.93 0.06
164	4	4	72	2.864	1.136	-68	*
165	12	0.249	72	0.054	0.195	-60	0.97
166	1	1.287	72	0.133	1.154	-71	0.735
167	8	0.246	72	0.0499	0.1961	-64	0.845
168	1	1.301	72	0.146	1.155	-71	0.67
169	12	0.74	72	0.082	0.658	-60	*
170	4	4	72	0.594	3.406	-68	2.04
171	4	0.664	72	0.112	0.552	-68	
172	2	4	72	1.228	2.772	-70	0.125
173	72	1.146	0.25	0.127	1.019	71.75	-0.36
174	4	4	72	0.677	3.323	-68	0.915
175	72	0.967	0.25	0.174	0.793	71.75	1.5
176	2	4	72	0.65	3.35	-70	0.625
177	72	1.237	72	0.16	1.077	0	-0.26
178	2	4	72	1.199	2.801	-70	0.105
179	72	1.389	0.25	0.216	1.173	71.75	-0.28
180	2	4	72	1.262	2.738	-70	*
181	24	0.915	0.25	0.15	0.765	23.75	0.43
182	4	4	72	0.085	3.915	-68	
183	24	0.927	0.25	0.192	0.735	23.75	0.8
184	2	4	72	0.408	3.592	-70 71.76	0.495
185	72	0.361	0.25	0.034	0.327	71.75	-0.535
186 187	72 72	1.423 0.451	0.25 0.25	0.126 0.101	1.297 0.35	71.75 71.75	-0.03 -0.285
188	72	1.589	0.25	0.219	1.37	71.75	-0.203
189	72	0.333	0.25	0.032	0.301	71.75	-0.13
190	72	1.349	0.25	0.329	1.02	71.75	-0.13
191	72	0.466	0.25	0.023	0.369	71.75	-0.385
192	72	1.435	0.25	0.425	1.01	71.75	-0.035
193	24	0.174	0.25	0.019	0.155	23.75	-0.105
194	2	2.096	72	0.103	1.993	-70	0.985
195	72	0.212	0.25	0.043	0.169	71.75	-0.19
196	2	2.09	72	0.095	1.995	-70	0.87
197	72	0.191	0.25	0.026	0.165	71.75	-0.07
198	1	2.289	72	0.128	2.161	-71	0.765
199	72	0.247	0.25	0.063	0.184	71.75	-0.095
200	1	2.296	72	0.127	2.169	-71	0.72
201	72	0.51	0.25	0.02	0.49	71.75	-0.255
202	12	3.152	0.25	0.233	2.919	11.75	0.035
203	72	0.57	0.25	0.056	0.514	71.75	-0.23
204	12	3.279	0.25	0.288	2.991	11.75	0.04
205	48	0.469	0.25	0.024	0.445	47.75	-0.195
206	2	4	72	0.178	3.822	-70	0.685
207	24	0.449	0.25	0.057	0.392	23.75	*
208	1	3.316	72	0.132	3.184	-71	0.655
209	24	0.893	0.25	0.139	0.754	23.75	0.04
210	8	4	0.25	2.23	1.77	7.75	*
211	24	0.827	0.25	0.184	0.643	23.75	*
212	72	4	0.25	2.287	1.713	71.75	18 1200127
213	48	1.65	0.25	0.185	1.465	47.75	-0.005
214	72	4	0.25	4	0	71.75	*
215	48	1.534	0.25	0.226	1.308	47.75	-0.155
216	72	4	0.25	4	0	71.75	* 0.005
217	72	0.891	0.25	0.054	0.837	71.75	-0.325
218	72	4 0.819	0.25	1.868	2.132	71.75	-0.66 0.35
219 220	72 72	0.819	0.25 0.25	0.083	0.736 2.154	71.75	-0.35 -0.51
	72	1.316	0.25	1.846 0.073	1.243	71.75 71.75	-0.365
221 222	12	4	72	1.063	2.937	-60	-0.365
223	72	1.332	0.25	0.11	1.222	71.75	-0.385
223 224	12	4	72	1.048	2.952	-60	-0.365
225	12	0.929	0.25	0.149	0.78	11.75	-0.27033
226	72	4	0.25	3.223	0.777	71.75	*
227	12	0.931	0.25	0.205	0.726	11.75	0.11
228	72	4	0.25	3.264	0.736	71.75	*
229	24	0.935	0.25	0.066	0.869	23.75	0.045
230	72	4	0.25	3.463	0.537	71.75	*
231	24	0.898	0.25	0.088	0.81	23.75	*
232	72	4	0.25	3.376	0.624	71.75	*
233	72	0.473	0.25	0.055	0.418	71.75	-0.105
234	4	4	72	0.156	3.844	-68	0.985
235	72	0.55	0.25	0.081	0.469	71.75	-0.19

	Tmax	Amax	Tmin	Amin	Amax-Amin	Tmax-Tmin	Settling Rate
237	72	0.523	0.25	0.074	0.449	71.75	-0.07
238	2	4	72	0.2	3.8	-70	0.765
239	72	0.577	0.25	0.11	0.467	71.75	-0.095
240	2	4	72	0.222	3.778	-70	0.72
241	72	0.513 4	0.25	0.067 0.193	0.446	71.75	-0.175
242	2 72	0.557	72		3.807	-70 71.76	0.805
243	2	4	0.25 72	0.086 0.189	0.471	71.75 -70	-0.195
244	72	0.57	0.25	0.095	3.811 0.475	71.75	0.955
245	2	4	72			-70	-0.145
246	72	0.582	0.25	0.244	3.756 0.462	71.75	0.855 -0.15
247	2	4	72	0.12	3.778	-70	0.845
249	72	1.031	0.25	0.222	0.961	71.75	-0.195
250	2	4	72	0.198	3.802	-70	0.685
251	72	1.041	0.25	0.109	0.932	71.75	0.005
252	2	4	72	0.769	3.231	-70	0.655
253	72	1.129	0.25	0.073	1.056	71.75	-0.24
254	2	4	72	0.198	3.802	-70	1.605
255	72	1.115	0.25	0.106	1.009	71.75	-0.265
256	2	4	72	0.725	3.275	-70	0.705
257	12	0.202	72	0.028	0.174	-60	1.13
258	1	0.974	72	0.091	0.883	-71	0.825
259	4	0.21	72	0.028	0.182	-68	0.945
260	0.5	1.015	72	0.115	0.102	-71.5	0.73
261	1	0.03	72	0.006	0.024	-71	*
262	1	3.415	72	0.063	3.352	-71	1.1
263	0.25	0.062	72	0.029	0.033	-71.75	0.11
264	1	4	72	1.251	2.749	-71	0.51
265	4	0.981	72	0.063	0.918	-68	1.265
266	2	2.108	72	0.088	2.02	-70	0.9
267	4	0.861	72	0.022	0.839	-68	1.23
268	1	1.606	72	0.138	1.468	-71	0.665
269	8	1.067	72	0.046	1.021	-64	1.635
270	2	2.483	72	0.422	2.061	-70	0.27
271	4	1.003	72	0.027	0.976	-68	1.575
272	1	1.628	72	0.426	1.202	-71	0.175
273	4	0.813	72	0.043	0.77	-68	1.08
274	1	2.593	72	0.039	2.554	-71	1.165
275	4	0.893	72	0.027	0.866	-68	1.19
276	1	1.771	72	0.078	1.693	-71	0.915
277	0.25	0.035	72	0.024	0.011	-71.75	0.105
278	4	1.89	72	0.048	1.842	-68	1.45
279	0.25	0.066	72	0.032	0.034	-71.75	0.175
280	4	1.402	72	0.054	1.348	-68	1.23
281	2	0.035	72	0.031	0.004	-70	*
282	8	2.33	72	0.095	2.235	-64	1.155
283	0.25	0.104	72	0.061	0.043	-71.75	*
284	8	1.928	72	0.137	1.791	-64	1.215
285	24	0.094	0.25	0.013	0.081	23.75	0.64
286 287	1	1.191	72	0.059	1.132	-71	0.995
287 288	8 1	0.169	72 72	0.037	0.132	-64 71	0.82 0.695
288	12	1.206 0.129	0.25	0.073 0.018	1.133 0.111	-71 11.75	0.695
290	0.5	1.442	72	0.018	1.359	-71.5	0.92
290	8	0.201	72	0.039	0.162	-71.5	0.83
292	0.5	1.486	72	0.093	1.393	-71.5	0.68
293	72	0.029	72	0.015	0.014	0	-0.22
294	4	1.689	0.25	0.098	1.591	3.75	0.98
295	0.25	0.065	72	0.038	0.027	-71.75	*
296	4	1.343	72	0.127	1.216	-68	0.895
297	8	0.198	0.25	0.023	0.175	7.75	0.73
298	1	1.609	72	0.133	1.476	-71	0.6
299	8	0.241	72	0.03	0.211	-64	1.03
300	1	1.641	72	0.136	1.505	-71	0.46
301	8	0.753	0.25	0.048	0.705	7.75	0.27
302	72	4	0.25	1.716	2.284	71.75	*
303	12	0.772	0.25	0.086	0.686	11.75	0.2
304	72	4	0.25	1.892	2.108	71.75	*
305	12	1.556	0.25	0.066	1.49	11.75	0.25
306	72	4	0.25	2.935	1.065	71.75	*
307	12	1.528	0.25	0.114	1.414	11.75	0.11
308	72	4	0.25	3.121	0.879	71.75	*
309	12	0.764	0.25	0.034	0.73	11.75	0.315
1000000	4	4	0.25	1.426	2.574	3.75	0.5
310		0.79	0.25	0.049	0.741	11.75	0.12
310 311	12						
	12	4	72	0.14	3.86	-70	0.97
311			72 0.25	0.14 0.056	3.86 1.524	-70 23.75	0.97 0.155
311 312	2	4					

		418	nm d	ata avera	ige "response	" measurem	ents	1	I						
	Tmax	Amax	Tmin	Amin	Amax-Amin	Tmax-Tmin	Settling Rate			Tmax	Amax	Tmin	Amin	Amax-Amin	Tmax-Tmin
315	24	1.529	0.25	0.059	1.47	23.75	*		394	4	4	0.25	1.658	2.342	3.75
316	2	4	72	0.557	3.443	-70	0.325		395	24	0.911	0.25	0.196	0.715	23.75
									300000						3.75
317	8	0.587	0.25	0.05	0.537	7.75	0.31		396	4	4	0.25	1.75	2.25	
318	8	4	72	2.532	1.468	-64	0.035		397	24	1.806	0.25	0.202	1.604	23.75
319	8	0.66	0.25	0.081	0.579	7.75	0.48		398	4	4	0.25	2.69	1.31	3.75
320	8	4	0.25	2.643	1.357	7.75	1.5		399	24	1.776	0.25	0.265	1.511	23.75
321	8	0.801	0.25	0.046	0.755	7.75	0.31		400	4	4	0.25	2.799	1.201	3.75
322	1	4	72	0.098	3.902	-71	0.74		401	72	0.961	0.25	0.05	0.911	71.75
323	8	0.762	0.25	0.063	0.699	7.75	0.245		402	12	4	0.25	1.522	2.478	11.75
324	1	4	72	0.05	3.95	-71	0.71		403	72	0.855	0.25	0.091	0.764	71.75
325	48	0.814	0.25	0.05	0.764	47.75	0.64		404	12	4	0.25	1.589	2.411	11.75
326	2	4	72	0.133	3.867	-70	0.995		405	72	1.194	0.25	0.068	1.126	71.75
327	72	0.899	0.25	0.083	0.816	71.75	0.82		406	8	4	72	0.511	3.489	-64
328	4	4	72	0.158	3.842	-68	0.695		407	72	1.407	0.25	0.101	1.306	71.75
329	48	0.942	0.25	0.104	0.838	47.75	0.92		408	8	4	72	0.493	3.507	-64
330	2	4	72	0.186	3.814	-70	0.85		409	12	0.963	0.25	0.135	0.828	11.75
331	48	0.973	0.25	0.149	0.824	47.75	0.8		410	8	4	0.25	2.774	1.226	7.75
332	2	4	72	0.176	3.824	-70	0.68		411	12	0.938	0.25	0.176	0.762	11.75
333	48	1.01	0.25	0.068	0.942	47.75	-0.19		412	8	4	0.25	2.857	1.143	7.75
334	2		72						413	24	0.942				
		2.724		0.115	2.609	-70	0.89		100000000000000000000000000000000000000			0.25	0.065	0.877	23.75
335	48	1.008	0.25	0.109	0.899	47.75	-0.23		414	8	4	0.25	2.785	1.215	7.75
336	2	2.457	72	0.133	2.324	-70	0.94		415	24	0.894	0.25	0.099	0.795	23.75
337	72	1.782	0.25	0.135	1.647	71.75	-0.42		416	8	4	0.25	2.9	1.1	7.75
338	1	4	72	0.18	3.82	-71	0.775		417	72	0.516	0.25	0.061	0.455	71.75
339	72	1.62	0.25	0.202	1.418	71.75	-0.35		418	4	4	72	0.182	3.818	-68
340	4	4	72	0.282	3.718	-68	1.045		419	72	0.579	0.25	0.099	0.48	71.75
341	24	1.113	0.25	0.121	0.992	23.75	0.73		420	4	4	72	0.183	3.817	-68
342	1	4	72	0.114	3.886	-71	0.6		421	72	0.555	0.25	0.078	0.477	71.75
343	24	0.902	0.25	0.136	0.766	23.75	1.03		422	4	4	72	0.234	3.766	-68
344	1	4	72	0.235	3.765	-71	0.46		423	72	0.614	0.25	0.119	0.495	71.75
345	24	1.053	0.25	0.171	0.882	23.75	0.12		424	2	4	72	0.225	3.775	-70
346	1	4	72	0.116	3.884	-71	0.76		425	72	0.455	0.25	0.085	0.37	71.75
347	24	0.975	0.25	0.142	0.833	23.75	0.05		426	4	4	72	0.192	3.808	-68
348	1	4	72	0.234	3.766	-71	1.27		427	72	0.524	0.25	0.127	0.397	71.75
349	12	0.188	0.25	0.234	0.138	11.75	0.705		428	4	4	72	0.172	3.828	-68
	1		72			-71			429	72	0.483	0.25	0.108		
350		0.894		0.116	0.778		0.695		25.00.00					0.375	71.75
351	8	0.177	72	0.036	0.141	-64	0.84		430	4	4	72	0.242	3.758	-68
352	1	0.916	72	0.131	0.785	-71	0.65		431	72	0.525	0.25	0.139	0.386	71.75
353	4	0.586	72	0.046	0.54	-68	0.875		432	4	4	72	0.269	3.731	-68
354	1	3.441	72	1.085	2.356	-71	*		433	72	0.721	0.25	0.078	0.643	71.75
355	4	0.569	72	0.049	0.52	-68	0.755		434	1	4	72	0.214	3.786	-71
356	1	3.348	72	0.932	2.416	-71	0.12		435	72	0.814	0.25	0.113	0.701	71.75
357	72	0.565	0.25	0.091	0.474	71.75	-0.23		436	1	4	72	0.216	3.784	-71
358	2	2.208	72	0.448	1.76	-70	0.395		437	72	0.889	0.25	0.092	0.797	71.75
359	72	0.681	0.25	0.152	0.529	71.75	-0.225		438	4	4	72	0.217	3.783	-68
360	1	1.604	72	0.46	1.144	-71	0.31		439	72	0.885	0.25	0.116	0.769	71.75
361	72	0.693	0.25	0.121	0.572	71.75	-0.24		440	2	4	72	0.228	3.772	-70
362	2	2.349	72	0.446	1.903	-70	-0.12		441	12	0.216	72	0.05	0.166	-60
363	72	0.743	0.25	0.161	0.582	71.75	-0.225		442	2	1.17	72	0.052	1.118	-70
364	1	1.94	72	0.383	1.557	-71	-0.15		443	4	0.193	72	0.027	0.166	-68
365	72	1.171	0.25	0.133	1.038	71.75	-0.33		444	2	1.177	72	0.068	1.109	-70
366	2	2.949	72	0.121	2.828	-70	0.845		445	8	0.196	72	0.021	0.175	-64
367	72	1.14	0.25	0.172	0.968	71.75	-0.285		446	1	1.32	72	0.118	1.202	-71
368	1	2.169	72	0.111	2.058	-71	0.81		447	4	0.216	72	0.035	0.181	0.000
369	72	0.19	0.25	0.035	0.155	71.75	-0.15		448	1	1.288	72	0.108	1.18	-68 -71
										0.25					
370	12	2.114	72 0.25	0.105	2.009	-60 71.75	1.935		449		0.029	72	0.006	0.023	-71.75
371	72	0.254		0.076	0.178	71.75	-0.16		450	4	4	72	0.024	3.976	-68 -71 -75
372	12	2.089	72	0.101	1.988	-60	1.86		451	0.25	0.067	72	0.026	0.041	-71.75 70
373	72	0.166	0.25	0.032	0.134	71.75	-0.29		452	2	4	72	0.048	3.952	-70
374	12	2.129	72	0.181	1.948	-60	1.515		453	4	0.427	0.25	0.034	0.393	3.75
375	72	0.248	0.25	0.085	0.163	71.75	-0.22		454	2	4	72	0.5399	3.4601	-70
376	12	2.102	72	0.139	1.963	-60	1.45		455	4	0.34	0.25	0.017	0.323	3.75
377	72	0.251	0.25	0.023	0.228	71.75	-0.18		456	1	4	72	0.386	3.614	-71
378	1	1.076	72	0.097	0.979	-71	0.67		457	4	0.737	0.25	0.049	0.688	3.75
379	24	0.244	0.25	0.059	0.185	23.75	*		458	4	2.626	72	0.029	2.597	-68
380	1	1.08	72	0.112	0.968	-71	0.515		459	4	0.74	72	0.019	0.721	-68
381	48	0.264	0.25	0.035	0.229	47.75	-0.085		460	2	1.965	72	0.03	1.935	-70
382	0.5	1.247	72	0.1	1.147	-71.5	0.715		461	8	1.358	72	0.066	1.292	-64
383	24	0.28	0.25	0.086	0.194	23.75	0.205		462	4	2.168	72	0.222	1.946	-68
384	0.5	1.325	72	0.108	1.217	-71.5	0.555		463	8	1.432	72	0.063	1.369	-64
385	72	0.212	0.25	0.024	0.188	71.75	-0.46		464	2	1.799	72	0.158	1.641	-70
386	4	4	72	1.031	2.969	-68	0.505		465	4	0.029	72	0.027	0.002	-68
387	72	0.235	0.25	0.063	0.172	71.75	-0.305		466	72	0.66	0.25	0.045	0.615	71.75
			72						233252	0.25					
388	4	4		0.41	3.59	-68	0.68		467		0.074	72	0.036	0.038	-71.75 -71.76
389	24	0.398	0.25	0.033	0.365	23.75	0.96		468	72	1.415	0.25	0.105	1.31	71.75
390	0.5	1.672	72	0.18	1.492	-71.5	0.47		469	72	0.031	72	0.028	0.003	0
391	12	0.394	72	0.07	0.324	-60	0.98		470	72	1.022	0.25	0.084	0.938	71.75
392	0.5	1.664	72	0.151	1.513	-71.5	0.3		471	0.25	0.093	72	0.051	0.042	-71.75
393	24	0.936	0.25	0.137	0.799	23.75	0.085		472	72	1.372	0.25	0.128	1.244	71.75
								i	I						

Settling Rate

-0.285 *

-0.1 *

-0.465 *

-0.41 *

-0.46 0.29

-0.46

0.48

0.15

0.14

0.175

-0.18 0.67 *

0.515

-0.085

0.715

0.205

0.555

-0.17

1.175

-0.2

1.19

-0.13

1.085

-0.13

0.95

0.96 0.47 0.98

0.3

-0.19

1.325

-0.21 0.955

1.56

1.3

1.125

1.12 *

0.88

0.81

2.02

1.73

0.8 1.165 *

0.825 1.315

1.715

1.305 1.985

0.75 1.675

0.72

0.03

-0.61

0.155

-0.57 *

-0.59

0.23

-0.445

		410	nm de	to ouer	as "roananas	" m	onto
	Tmax	Amax	Tmin	Amin	age "response Amax-Amin	Tmax-Tmin	Settling Rate
473	12	0.08	72	0.01	0.07	-60	1.22
474	2	1.617	72	0.054	1.563	-70	1.165
475	12	0.143	72	0.018	0.125	-60	0.875
476	2	1.582	72	0.113	1.469	-70	0.95
477 478	8	0.124 1.91	72 72	0.024	0.1 1.837	-64 -70	0.93 0.935
479	8	0.178	72	0.073	0.156	-70 -64	0.935
480	1	1.871	72	0.022	1.781	-71	0.82
481	12	0.6	0.25	0.044	0.556	11.75	0.455
482	8	4	0.25	0.507	3.493	7.75	*
483	8	0.576	0.25	0.062	0.514	7.75	0.295
484	8	4	0.25	0.539	3.461	7.75	0.05
485	12	1.342	0.25	0.057	1.285	11.75	0.365
486	8	4	72	0.921	3.079	-64	*
487	12	1.305	0.25	0.088	1.217	11.75	0.27
488	8	4	0.25	0.977	3.023	7.75	-0.015
489	24 4	0.763	0.25	0.035	0.728	23.75	0.23
490 491	24	3.231 0.692	72 0.25	0.169	3.062 0.625	-68 23.75	1
492	4	3.03	72	0.138	2.892	-68	0.925
493	24	1.616	0.25	0.043	1.573	23.75	0.485
494	4	4	72	0.446	3.554	-68	0.605
495	24	1.485	0.25	0.079	1.406	23.75	0.43
496	4	3.463	72	0.471	2.992	-68	0.535
497	72	0.489	0.25	0.043	0.446	71.75	1.22
498	4	2.397	72	0.114	2.283	-68	1.165
499	72	0.605	0.25	0.063	0.542	71.75	0.875
500	4	2.338	72	0.123	2.215	-68	0.95
501	72 4	0.484	0.25 72	0.053	0.431	71.75	0.93
502 503	48	2.204 0.664	0.25	0.205 0.091	1.999 0.573	-68 47.75	0.935 0.94
504	40	2.164	72	0.177	1.987	-68	0.82
505	72	0.676	0.25	0.054	0.622	71.75	-0.21
506	8	2.84	72	0.165	2.675	-64	0.315
507	72	1.127	0.25	0.086	1.041	71.75	-0.34
508	8	2.888	72	0.174	2.714	-64	1.09
509	72	0.723	0.25	0.065	0.658	71.75	-0.2
510	8	2.694	72	0.203	2.491	-64	0.975
511	72	1.023	0.25	0.101	0.922	71.75	-0.31
512	8	2.728	72	0.194	2.534	-64	1.16
513	24	0.151	72	0.037	0.114	-48	1.44
514 515	4 8	0.676 0.153	72 72	0.069	0.607 0.131	-68 -64	0.68 0.895
516	2	0.611	72	0.089	0.522	-70	0.655
517	12	0.157	72	0.025	0.132	-60	1.485
518	2	0.726	72	0.097	0.629	-70	0.7
519	4	0.164	72	0.024	0.14	-68	*
520	2	0.703	72	0.102	0.601	-70	0.585
521	12	0.809	72	0.112	0.697	-60	1.295
522	4	1.769	72	0.261	1.508	-68	0.14
523	4	0.738	72	0.104	0.634	-68	1.08
524	2	1.485	72	0.26	1.225	-70	0.395
525	12	1.083	72	0.3	0.783	-60 -70	0.57
526 527	2 4	1.629 n.aza	72 72	0.347 0.26	1.282	-70 -68	0.27
528	2	0.979 1.358	72	0.297	0.719 1.061	-68 -70	0.405 0.075
529	24	0.35	0.25	0.097	0.253	23.75	0.26
530	8	0.794	72	0.135	0.659	-64	0.665
531	12	0.403	0.25	0.128	0.275	11.75	0.61
532	8	0.723	72	0.143	0.58	-64	0.53
533	72	0.658	0.25	0.097	0.561	71.75	-0.16
534	8	0.812	0.25	0.243	0.569	7.75	0.63
535	72	0.724	0.25	0.134	0.59	71.75	-0.17
536	4	0.764	72	0.254	0.51	-68	0.4
537	72	0.219	0.25	0.026	0.193	71.75	-0.835
538 539	24 72	1.354 0.263	0.25 0.25	0.142	1.212 0.194	23.75 71.75	0.33 -0.53
540	24	1.412	0.25	0.194	1.218	23.75	-0.53 0.585
541	72	0.207	0.25	0.029	0.178	71.75	-0.115
542	48	1.303	0.25	0.292	1.011	47.75	-0.025
543	72	0.274	0.25	0.069	0.205	71.75	-0.175
544	48	1.336	0.25	0.346	0.99	47.75	*
545	12	0.067	0.25	0.043	0.024	11.75	0.215
546	4	0.31	72	0.044	0.266	-68	0.68
547	24	0.088	72	0.06	0.028	-48	0.105
548	4	0.331	72	0.048	0.283	-68	0.54
549	8	0.088	0.25	0.045	0.043	7.75	0.24
550 551	4 8	0.389 0.104	72 0.25	0.086 0.064	0.303 0.04	-68 7.75	0.475 0.195
552	4	0.401	72	0.087	0.314	-68	0.195
555	47	020000	550		ATOMINE.	1200	=141

	Tmax	Amax	Tmin	Amin	Amax-Amin	Tmax-Tmin	Settling Rate
553	48	0.713	0.25	0.07	0.643	47.75	-0.19
554	72	4	0.25	0.187	3.813	71.75	-0.68
555	48	0.676	0.25	0.125	0.551	47.75	-0.215
556	72	4	0.25	0.239	3.761	71.75	-0.655
557	72	1.418	0.25	0.089	1.329	71.75	-0.465
558	72	4	0.25	0.302	3.698	71.75	-0.64
559	48	1.375	0.25	0.125	1.25	47.75	-0.435
560	72	4	0.25	0.355	3.645	71.75	-0.65
561	72	0.409	0.25	0.037	0.372	71.75	-0.395
562	72	1.579	0.25	0.197	1.382	71.75	-0.365
563	72	0.475	0.25	0.068	0.407	71.75	-0.39
564	72	1.661	0.25	0.208	1.453	71.75	-0.365
565	72	0.521	0.25	0.045	0.476	71.75	-0.415
566	72	1.72	0.25	0.288	1.432	71.75	-0.355
567	72	0.574	0.25	0.108	0.466	71.75	-0.35
568	72	1.735	0.25	0.339	1.396	71.75	-0.36
569	72	0.336	0.25	0.043	0.293	71.75	0.215
570	72	1.346	0.25	0.249	1.097	71.75	0.68
571	72	0.378	0.25	0.087	0.291	71.75	0.105
572	72	1.344	0.25	0.294	1.05	71.75	0.54
573	72	0.333	0.25	0.054	0.279	71.75	0.24
574	72	1.216	0.25	0.412	0.804	71.75	0.475
575	72	0.392	0.25	0.11	0.282	71.75	0.195
576	72	1.269	0.25	0.454	0.815	71.75	0.37
577	72	0.368	0.25	0.045	0.323	71.75	-0.215
578	72	1.292	0.25	0.207	1.085	71.75	-0.2
579	72	0.414	0.25	0.075	0.339	71.75	-0.25
580	72	1.331	0.25	0.257	1.074	71.75	-0.17
581	72	0.363	0.25	0.056	0.307	71.75	-0.15
582	72	1.17	0.25	0.344 0.826 71.75		-0.14	
583	72	0.426	0.25	0.099	0.327	71.75	-0.155
584	72	1.231	0.25	0.4	0.831	71.75	-0.125

Appendix VI. MnO_2 Filtration Data (5.0, 1.0, 0.4, and 0.1 μm)

ALIOUR	CH TO A	TICALL	ATA

2 HOUR FILTRATION DATA																	
nanaraanian n	2222020	22.55	1919 1910 1910 1910	tration	SESSES	5 mm	15 10	717170	1 mm	15 02	2020	0.4 mm	28 02	2000	0.1 mm	8 6	4677
Stabilization	GW	pН	418 nm	525 nm	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	unfilt
none	Base	3	0.702	1.730	0.249	1.331	0.645	0.016	1.141	0.332	0.075	1.121	0.000	0.050	1.104	0.036	0.000
1a	Base	3	3.500	1.830	0.703	0.580	0.799	0.025	0.247	0.194	0.056	0.246	0.000	0.010	0.175	0.013	0.000
1b	Base	3	2.951	1.769	0.091	0.755	0.969	0.041	0.676	0.017	0.229	0.610	0.000	0.028	0.573	0.068	0.000
2a	Base	3	0.028	1.352	0.030	1.348	0.000	0.025	1.330	0.179	0.028	1.318	0.000	0.020	1.301	0.286	0.536
2b	Base	3	0.905	1.662	0.855	1.629	0.055	0.021	1.127	0.922	0.060	1.145	0.000	0.016	1.085	0.049	0.00
3a	Base	3	3.198	0.984	3.500	0.974	0.000	3.500	0.915	0.000	3.500	0.891	0.000	3.198	0.796	0.094	0.90
3b	Base	3	2.773	1.192	3.500	0.974	0.000	3.500	0.915	0.000	3.500	0.871	0.000	3.500	0.796	0.000	1.00
4a	Base	3	2.351	1.555	2.160	1.702	0.081	0.083	1.018	0.883	0.077	0.937	0.003	0.076	0.792	0.000	0.03
4b	Base	3	2.184	1.655	2.242	1.565	0.000	1.194	1.275	0.480	0.673	0.962	0.239	0.453	0.863	0.101	0.18
none	Base	7	0.608	1.699	0.224	1.350	0.632	0.035	1.151	0.311	0.072	1.142	0.000	0.049	1.116	0.038	0.02
1a	Base	7	2.650	1.757	0.023	0.011	0.991	0.026	0.011	0.000	0.012	0.003	0.005	0.010	0.004	0.001	0.00
1b	Base	7	2.518	1.773	0.241	1.147	0.904	0.279	0.994	0.000	0.449	0.960	-0.068	0.390	0.853	0.023	0.14
2a	Base	7	0.591	1.404	0.435	1.366	0.264	0.465	1.356	0.000	0.533	1.009	0.000	0.533	1.052	0.000	0.73
2b	Base	7	1.077	1.569	1.106	1.540	0.000	1.080	1.528	0.024	0.069	1.114	0.939	0.043	1.065	0.024	0.01
3a	Base	7	0.689	0.754	0.740	0.742	0.000	0.618	0.576	0.177	0.430	0.428	0.273	0.506	0.444	0.000	0.55
3b	Base	7	0.447	0.742	0.457	0.735	0.000	0.661	0.645	0.000	0.337	0.489	0.725	0.327	0.426	0.022	0.25
4a	Base	7	0.496	0.702	0.526	0.690	0.000	0.804	0.635	0.000	0.405	0.479	0.804	0.376	0.466	0.058	0.13
4b	Base	7	0.520	0.676	0.516	0.656	0.008	0.472	0.628	0.085	0.375	0.560	0.187	0.413	0.531	0.000	0.72
none	Ca	3	0.654	1.727	0.173	1.262	0.735	0.014	1.121	0.243	0.049	1.119	0.000	0.048	1.081	0.002	0.02
1a	Ca	3	2.805	1.745	0.023	0.344	0.992	0.007	0.313	0.006	0.007	0.291	0.000	0.010	0.248	0.000	0.00
1b	Ca	3	20000000		ESPECIA			1000000000			(CONTACTO			0000000			5,412,600
2a	Ca	3	0.023	1.343	0.025	1.312	0.000	0.025	1.312	0.000	0.025	1.259	0.000	0.020	1.233	0.217	0.78
2b	Ca	3	0.728	1.669	0.675	1.646	0.073	0.039	1.205	0.874	0.022	1.123	0.023	0.016	1.033	0.008	0.02
3a	Ca	3	0.959	0.502	1.046	0.485	0.000	0.563	0.168	0.504	0.681	0.159	0.000	0.646	0.147	0.036	0.46
3b	Ca	3	0.564	0.647	0.597	0.629	0.000	0.483	0.484	0.202	0.466	0.363	0.030	0.510	0.325	0.000	0.76
4a	Ca	3	0.680	0.717	0.679	0.708	0.001	0.401	0.600	0.409	0.110	0.193	0.428	0.176	0.059	0.000	0.16
4b	Ca	3	0.702	0.666	0.742	0.649	0.000	0.742	0.574	0.000	0.322	0.437	0.598	0.311	0.242	0.016	0.38
none	Ca	7	0.702	1.697	0.251	1.360	0.563	0.019	1.135	0.404	0.056	1.136	0.000	0.038	1.102	0.010	0.00
1a	Ca	7	2.035	1.632	0.391	0.956	0.808	0.061	0.789	0.162	0.120	0.777	0.000	0.175	0.751	0.000	0.03
1b	Ca	7	1.904	1.860	1.260	1.628	0.338	0.020	1.006	0.651	0.078	0.973	0.000	0.173	0.731	0.000	0.01
2a	Ca	7	0.373	1.359	0.415	1.318	0.000	0.423	1.316	0.000	0.426	1.263	0.000	0.109	1.318	0.000	0.97
2b	Ca	7	1.053	1.779	0.975	1.727	0.074	0.423	1.295	0.614	0.025	1.046	0.288	0.030	1.074	0.000	0.02
3a	Ca	7	0.604	0.628	0.973	0.619	0.000	0.519	0.479	0.014	0.023	0.419	0.200	0.539	0.395	0.000	0.75
3b	Ca	7	0.400	0.702	0.385	0.670	0.000	0.319	0.479	0.360	0.222	0.532	0.048	0.339	0.506	0.000	0.75
		7															
4a	Ca		0.411	0.701	0.467	0.693	0.000	0.409	0.646	0.141	0.272	0.583	0.333	0.253	0.551	0.046	0.47
4b	Ca	7	0.381	0.669	0.419	0.653	0.000	0.414	0.625	0.013	0.326	0.571	0.231	0.270	0.524	0.147	0.60
none	P04	3	0.662	1.618	0.633	1.561	0.044	0.085	1.178	0.828	0.045	1.110	0.060	0.032	1.053	0.020	0.04
1a	P04	3	3.500	1.020	3.500	0.996	0.000	3.500	0.913	0.000	3.500	0.880	0.000	1.298	0.327	0.629	0.37
1b	P04	3	2.276	1.506	2.330	1.387	0.000	0.238	0.493	0.919	0.053	0.354	0.081	0.088	0.288	0.000	0.00
2a	P04	3	0.027	1.361	0.024	1.347	0.111	0.023	1.324	0.037	0.019	1.268	0.148	0.018	1.181	0.037	0.66
2b	P04	3	0.653	1.586	0.560	1.324	0.142	0.022	1.000	0.824	0.008	0.444	0.021	0.008	0.370	0.000	0.01
3a	P04	3	0.741	0.464	0.774	0.366	0.000	0.813	0.366	0.000	0.843	0.348	0.000	0.903	0.311	0.000	1.00
3b	P04	3	0.493	0.575	0.468	0.336	0.051	0.490	0.335	0.000	0.552	0.318	0.000	0.625	0.262	0.000	0.94
4a	P04	3	0.314	0.656	0.313	0.643	0.003	0.148	0.315	0.525	0.088	0.313	0.191	0.086	0.073	0.006	0.27
4b	P04	3	0.362	0.626	0.341	0.383	0.058	0.262	0.361	0.218	0.134	0.164	0.354	0.168	0.170	0.000	0.37
none	P04	7	0.268	1.629	0.269	1.546	0.000	0.034	1.378	0.877	0.027	1.344	0.026	0.023	1.293	0.015	0.08
1a	P04	7	1.044	1.530	0.979	1.503	0.062	0.070	1.149	0.871	0.130	1.088	0.000	0.809	0.896	0.000	0.06
1b	P04	7	0.314	1.497	0.373	1.458	0.000	0.377	1.442	0.000	0.419	1.421	0.000	0.373	1.320	0.146	0.85
2a	P04	7	0.297	1.453	0.335	1.441	0.000	0.345	1.428	0.000	0.419	1.352	0.000	0.488	1.300	0.000	1.00
2b	P04	7	0.140	1.472	0.145	1.448	0.000	0.149	1.420	0.000	0.170	1.319	0.000	0.067	1.144	0.736	0.26
3a	P04	7	0.236	0.542	0.256	0.502	0.000	0.240	0.459	0.068	0.244	0.443	0.000	0.237	0.399	0.030	0.90
3b	P04	7	0.110	0.630	0.127	0.599	0.000	0.092	0.580	0.318	0.103	0.538	0.000	0.100	0.488	0.027	0.65
4a	P04	7	0.119	0.657	0.124	0.646	0.000	0.084	0.607	0.336	0.046	0.582	0.319	0.050	0.520	0.000	0.34
4b	P04	7	0.126	0.633	0.133	0.607	0.000	0.095	0.596	0.302	0.064	0.559	0.246	0.021	0.504	0.341	0.11

4 HOLL	DEILT	DATIO	NIDATA

			nro 61	tration		5 um	4 11001	R FILTRA	1 um	д		0.4 um			0.1 um		
Stabilization	GW	На	418 nm	tration 525 nm	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	uni
none	Base	3	0.676	1.640	0.133	1.141	0.803	0.024	1.038	0.161	0.042	1.004	0.000	0.024	0.965	0.027	0.0
1a	Base	3	3.500	1.721	0.080	0.049	0.977	0.004	0.008	0.022	0.004	0.005	0.000	0.009	0.008	0.000	0.0
1b	Base	3	3.450	1.709	0.061	0.274	0.982	0.006	0.228	0.016	0.009	0.048	0.000	0.048	0.156	0.000	0.0
2a	Base	3	0.023	1.249	0.022	1.221	0.043	0.021	1.141	0.043	0.020	1.101	0.043	0.019	1.071	0.043	0.83
2b	Base	3	0.950	1.656	0.768	1.485	0.192	0.013	0.935	0.795	0.019	0.891	0.000	0.011	0.846	0.008	0.0
3a	Base	3	3.500	0.805	3.500	0.784	0.000	3.500	0.760	0.000	3.428	0.746	0.021	3.185	0.718	0.069	0.9
3b	Base	3	3.500	1.027	3.500	0.784	0.000	3.500	0.760	0.000	3.428	0.746	0.021	3.185	0.718	0.069	0.9
4a	Base	3	2.440	1.755	2.358	1.723	0.034	0.147	0.956	0.906	0.027	0.867	0.049	0.108	0.829	0.000	0.0
4b	Base	3	2.716	1.591	2.627	1.538	0.033	1.150	1.211	0.544	0.258	0.751	0.328	0.192	0.755	0.024	0.0
none	Base	7	0.579	1.602	0.200	1.218	0.655	0.048	1.040	0.263	0.029	1.021	0.033	0.045	0.987	0.000	0.0
1a	Base	7	3.376	1.787	3.500	1.747	0.000	0.126	0.505	0.999	0.129	0.480	0.000	0.425	0.423	0.000	0.00
1b	Base	7	2.756	1.723	1.422	1.189	0.484	0.283	0.689	0.413	0.523	0.613	0.000	0.702	0.527	0.000	0.10
2a	Base	7	0.555	1.361	0.583	1.273	0.000	0.588	1.227	0.000	0.628	1.159	0.000	0.588	1.159	0.072	0.93
2b	Base	7	1.138	1.595	1.020	1.526	0.104	0.070	1.118	0.835	0.020	1.045	0.044	0.030	0.959	0.000	0.0
3a	Base	7	1.001	0.743	0.987	0.714	0.014	0.815	0.538	0.172	0.626	0.375	0.189	0.626	0.375	0.000	0.63
3b	Base	7	0.674	0.760	0.679	0.746	0.000	0.546	0.628	0.197	0.294	0.432	0.374	0.311	0.389	0.000	0.42
4a	Base	7	0.730	0.703	0.747	0.677	0.000	0.739	0.632	0.011	0.539	0.525	0.274	0.443	0.431	0.132	0.58
4b	Base	7	0.779	0.671	0.764	0.647	0.019	0.752	0.586	0.015	0.478	0.445	0.352	0.511	0.426	0.000	0.6
none	Ca	3	0.622	1.646	0.126	1.158	0.797	0.014	0.061	0.180	0.025	1.043	0.000	0.026	0.992	0.000	0.02
1a	Ca	3	2.512	1.521	0.018	0.025	0.993	0.005	0.014	0.005	0.006	0.010	0.000	0.005	0.006	0.000	0.0
1b	Ca	3	1.716	1.865	0.128	0.612	0.925	0.053	0.498	0.044	0.118	0.455	0.000	0.247	0.440	0.000	0.03
2a	Ca	3	0.061	1.240	0.060	1.204	0.016	0.060	1.174	0.000	0.057	1.148	0.049	0.054	1.103	0.049	0.88
2b	Ca	3	0.675	1.602	0.568	1.470	0.159	0.012	0.998	0.824	0.012	0.952	0.000	0.012	0.012	0.000	0.0
3a	Ca	3	1.402	0.434	1.343	0.415	0.042	1.153	0.303	0.136	1.073	0.263	0.057	0.990	0.237	0.059	0.70
3b	Ca	3	0.849	0.620	0.831	0.581	0.021	0.606	0.373	0.265	0.536	0.297	0.082	0.501	0.210	0.041	0.59
4a	Ca	3	0.889	0.723	0.878	0.673	0.012	0.049	0.247	0.933	0.052	0.216	0.000	0.052	0.216	0.000	0.0
4b	Ca	3	0.978	0.662	0.919	0.623	0.060	0.813	0.498	0.108	0.278	0.376	0.547	0.272	0.196	0.006	0.2
none	Ca	7	0.551	1.594	0.199	1.276	0.639	0.018	1.055	0.328	0.021	1.051	0.000	0.036	0.996	0.000	0.03
1a	Ca	7	0.663	0.931	0.071	0.570	0.893	0.051	0.527	0.030	0.097	0.506	0.000	0.132	0.486	0.000	0.0
1b	Ca	7	1.719	1.725	1.000	1.333	0.418	0.019	0.781	0.571	0.032	0.738	0.000	0.131	0.708	0.000	0.0
2a	Ca	7	0.541	1.319	0.519	1.268	0.041	0.513	1.236	0.011	0.495	1.185	0.033	0.452	1.140	0.079	0.83
2b	Ca	7	1.057	1.756	0.975	1.727	0.078	0.246	1.186	0.690	0.025	1.002	0.209	0.032	0.967	0.000	0.02
3a	Ca	7	0.994	0.565	0.987	0.541	0.007	0.819	0.359	0.169	0.778	0.311	0.041	0.788	0.293	0.000	0.78
3b	Ca	7	0.618	0.679	0.599	0.655	0.031	0.433	0.515	0.269	0.388	0.472	0.073	0.386	0.435	0.003	0.63
4a	Ca	7	0.600	0.697	0.654	0.670	0.000	0.527	0.609	0.212	0.245	0.520	0.470	0.208	0.485	0.062	0.25
4b	Ca	7	0.649	0.654	0.770	0.617	0.000	0.660	0.560	0.169	0.325	0.449	0.516			0.501	0.00
none	P04	3	0.618	0.028	0.570	1.517	0.078	0.028	1.086	0.877	0.027	1.019	0.002	0.063	0.868	0.000	0.04
1a	P04	3	3.500	0.897	3.500	0.829	0.000	1.378	0.360	0.606	0.017	0.003	0.389	0.008	0.001	0.003	0.00
1b	P04	3	3.500	1.485	3.500	1.442	0.000	0.341	0.216	0.903	0.039	0.079	0.086	0.042	0.040	0.000	0.0
2a	P04	3	0.025	1.297	0.022	1.220	0.120	0.031	1.170	0.000	0.025	1.139	0.240	0.025	1.115	0.000	0.64
2b	P04	3	0.660	1.569	0.539	1.424	0.183	0.021	1.022	0.785	0.020	0.940	0.002	0.019	0.888	0.002	0.02
3a	P04	3	1.268	0.353	1.246	0.335	0.017	1.165	0.300	0.064	1.121	0.279	0.035	1.093	0.265	0.022	0.86
3b	P04	3	0.951	0.503	0.944	0.465	0.007	0.807	0.359	0.144	0.832	0.349	0.000	0.826	0.328	0.006	0.84
4a	P04	3	0.442	0.645	0.411	0.537	0.070	0.217	0.431	0.439	0.118	0.355	0.224	0.115	0.311	0.007	0.26
4b	P04	3	0.535	0.606	0.512	0.528	0.043	0.275	0.411	0.443	0.162	0.282	0.211	0.150	0.252	0.022	0.28
none	P04	7	0.338	1.598	0.306	1.537	0.095	0.030	1.340	0.817	0.038	1.247	0.000	0.020	1.228	0.053	0.03
1a	P04	7	1.302	1.475	0.976	1.362	0.250	0.175	0.897	0.615	0.216	0.868	0.000	0.264	0.827	0.000	0.1
1b	P04	7	0.913	1.590	0.919	1.521	0.000	0.439	1.346	0.526	0.079	1.106	0.394	0.110	1.019	0.000	0.08
2a	P04	7	0.535	1.444	0.595	1.322	0.000	0.653	1.281	0.000	0.679	1.260	0.000	1.123	1.096	0.000	1.0
2b	P04	7	0.195	1.442	0.214	1.293	0.000	0.213	1.244	0.005	0.128	1.160	0.436	0.058	1.093	0.359	0.2
3a	P04	7	0.409	0.467	0.411	0.439	0.000	0.379	0.409	0.078	0.389	0.368	0.000	0.402	0.353	0.000	0.93
3b	P04	7	0.197	0.595	0.209	0.517	0.000	0.163	0.517	0.234	0.156	0.493	0.036	0.169	0.466	0.000	0.73
4a	P04	7	0.220	0.647	0.225	0.607	0.000	0.165	0.576	0.273	0.102	0.532	0.286	0.110	0.524	0.000	0.44
4b	P04	7	0.230	0.611	0.234	0.582	0.000	0.170	0.552	0.278	0.136	0.523	0.148	0.132	0.505	0.017	0.55

O LIGHT	 TOA	TION	DATA

Stabilization									TION DAT	, .							
Stabilization		20000	200000000000000000000000000000000000000	tration	teters	5 mm		91.9020	1 mm		96290290	0.4 mm		90,9029	0.1 mm		200
	GW	pН	418 nm	525 nm	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	unfilt
none	Base	3	0.502	1.454	0.119	1.091	0.763	0.032	1.012	0.173	0.045	0.939	0.000	0.051	0.912	0.000	0.06
1a	Base	3	2.980	1.828	0.032	0.004	0.989	0.015	0.006	0.006	0.010	0.003	0.002	0.013	0.006	0.000	0.00
1b	Base	3	1.190	0.571	0.048	0.020	0.960	0.006	0.003	0.035	0.005	0.001	0.000	0.003	0.000	0.002	0.00
2a	Base	3	0.042	1.147	0.042	1.099	0.000	0.040	1.089	0.048	0.040	1.049	0.000	0.034	1.018	0.143	0.81
2b	Base	3	0.875	1.577	0.613	1.318	0.299	0.008	0.640	0.691	0.011	0.608	0.000	0.011	0.600	0.000	0.00
3a	Base	3	3.218	0.734	3.072	0.715	0.045	2.987	0.691	0.026	2.933	0.683	0.017	2.762	0.653	0.053	0.85
3b	Base	3	3.500	0.891	3.072	0.715	0.122	2.987	0.691	0.024	2.933	0.683	0.015	2.762	0.653	0.049	0.78
4a	Base	3	2.672	1.779	2.689	1.726	0.000	0.109	0.806	0.966	0.022	0.739	0.033	0.045	0.715	0.000	0.00
4b	Base	3	3.259	1.609	3.035	1.534	0.069	2.046	1.079	0.303	1.084	0.851	0.295	0.919	0.751	0.051	0.28
none	Base	7	0.475	1.458	0.072	1.071	0.848	0.024	1.002	0.101	0.043	0.964	0.000	0.043	0.933	0.000	0.05
1a	Base	7	3.500	1.805	3.474	1.650	0.007	0.042	0.274	0.981	0.113	0.264	0.000	0.120	0.258	0.000	0.01
1b	Base	7	1.095	1.094	0.778	0.322	0.289	1.120	0.306	0.000	1.291	0.316	0.000	1.204	0.288	0.079	0.63
2a	Base	7	0.658	1.324	0.656	1.272	0.003	0.662	1.257	0.000	0.651	1.204	0.017	0.673	1.185	0.000	0.98
2b	Base	7	0.951	1.549	0.621	1.347	0.347	0.025	1.024	0.627	0.025	0.997	0.000	0.022	0.954	0.003	0.02
3a	Base	7	1.342	0.715	1.305	0.675	0.028	0.442	0.159	0.643	0.185	0.057	0.192	0.065	0.021	0.089	0.04
3b	Base	7	0.942	0.765	0.937	0.732	0.005	0.624	0.498	0.332	0.471	0.364	0.162	0.571	0.304	0.000	0.50
4a	Base	7	0.930	0.709	1.149	0.638	0.000	0.988	0.582	0.173	0.488	0.381	0.538	0.442	0.347	0.049	0.24
4b	Base	7	0.987	0.671	0.973	0.637	0.014	0.927	0.600	0.047	0.707	0.506	0.223	0.648	0.475	0.060	0.65
none	Ca	3	0.473	1.500	0.100	1.133	0.789	0.021	1.024	0.167	0.059	1.013	0.000	0.038	0.961	0.044	0.00
1a	Ca	3	0.771	0.874	0.021	0.009	0.973	0.005	0.001	0.021	0.006	0.005	0.000	0.004	0.001	0.003	0.00
1b	Ca	3	0.722	0.871	0.021	0.009	0.971	0.005	0.001	0.021	0.006	0.005	0.000	0.004	0.001	0.003	0.00
2a	Ca	3	0.722	1.181	0.156	1.149	0.006	0.003	1.131	0.022	0.149	1.101	0.032	0.136	1.061	0.083	0.86
2b	Ca	3	0.157	1.463	0.130	1.197	0.452	0.134	0.924	0.414	0.149	0.900	0.032	0.130	0.857	0.005	0.00
3a	Ca	3	1.256	0.366	1.113	0.323	0.432	0.074	0.924	0.414	0.856	0.207	0.110	0.824	0.037	0.005	0.65
3b	Ca	3	1.143	0.559	0.929	0.323	0.114	0.970	0.230	0.114	0.296	0.267	0.000	0.024	0.040	0.023	0.00
		3	1.089	0.738	1.007	0.429	0.107	0.292	0.073	0.638	0.290	0.000	0.000	0.197	0.040	0.004	0.10
4a	Ca							1						1			
4b	Ca C-	3	1.275	0.669	1.258	0.602	0.013	0.848	0.465	0.322	0.270	0.274	0.453	0.266	0.251	0.003	0.20
none	Ca	7	0.426	1.439	0.088	1.110	0.793	0.023	1.016	0.153	0.032	0.993	0.000	0.031	0.942	0.002	0.05
1a	Ca		0.613	0.665	0.045	0.281	0.927	0.014	0.246	0.051	0.023	0.235	0.000	0.080	0.226	0.000	0.02
1b	Ca	7	1.451	1.431	1.366	1.329	0.059	0.034	0.587	0.918	0.065	0.567	0.000	0.076	0.556	-0.008	0.03
2a	Ca	7	0.609	1.293	0.608	1.276	0.002	0.591	1.238	0.028	0.587	1.212	0.007	0.497	1.144	0.148	0.81
2b	Ca	7	1.122	1.769	0.902	1.642	0.196	0.472	1.252	0.383	0.030	1.008	0.394	0.024	0.960	0.005	0.02
3a	Ca	7	1.346	0.487	1.235	0.449	0.082	1.003	0.261	0.172	0.894	0.223	0.081	0.848	0.210	0.034	0.63
3b	Ca	7	0.986	0.628	0.964	0.602	0.022	0.749	0.418	0.218	0.696	0.371	0.054	0.652	0.341	0.045	0.66
4a	Ca	7	0.850	0.689	0.879	0.657	0.000	0.757	0.567	0.144	0.358	0.462	0.469	0.335	0.429	0.027	0.36
4b	Ca	7	0.882	0.647	1.225	0.581	0.000	0.871	0.537	0.401	0.407	0.383	0.526	0.377	0.365	0.034	0.03
none	P04	3	0.548	1.510	0.442	1.379	0.193	0.018	1.023	0.774	0.022	0.990	0.000	0.068	0.765	0.000	0.03
1a	P04	3	2.406	0.715	1.296	0.487	0.461	0.010	0.001	0.534	0.009	0.003	0.000	0.012	0.004	0.000	0.00
1b	P04	3	2.748	1.156	2.509	1.079	0.087	0.030	0.009	0.902	0.007	0.002	0.008	0.005	0.003	0.001	0.00
2a	P04	3	0.046	1.224	0.043	1.195	0.065	0.040	1.177	0.065	0.023	1.123	0.370	0.018	1.181	0.109	0.39
2b	P04	3	0.611	1.550	0.407	1.349	0.334	0.015	1.019	0.642	0.017	0.947	0.000	0.012	0.894	0.008	0.01
3a	P04	3	1.118	0.273	1.070	0.262	0.043	1.008	0.240	0.055	0.963	0.232	0.040	0.804	0.185	0.142	0.74
3b	P04	3	1.374	0.404	1.285	0.372	0.065	1.112	0.283	0.126	1.059	0.255	0.039	0.905	0.216	0.112	0.65
4a	P04	3	0.537	0.638	0.507	0.604	0.056	0.265	0.421	0.451	0.146	0.373	0.222	0.121	0.187	0.047	0.22
4b	P04	3	0.677	0.608	0.636	0.536	0.061	0.412	0.392	0.331	0.268	0.346	0.213	0.261	0.325	0.010	0.38
none	P04	7	0.379	1.553	0.324	1.474	0.145	0.030	1.255	0.776	0.028	1.230	0.005	0.038	1.126	0.000	0.07
1a	P04	7	1.375	1.445	0.869	1.153	0.368	0.117	0.733	0.547	0.212	0.691	0.000	0.330	0.640	0.000	0.08
1b	P04	7	1.068	1.572	0.859	1.445	0.196	0.056	1.147	0.752	0.071	1.006	0.000	0.062	1.012	0.008	0.04
2a	P04	7	0.778	1.386	0.758	1.342	0.026	0.758	1.324	0.000	0.751	1.281	0.009	0.753	1.263	0.000	0.9
2b	P04	7	0.253	1.371	0.247	1.320	0.024	0.252	1.229	0.000	0.029	1.124	0.881	0.029	1.090	0.000	0.0
3a	P04	7	0.613	0.403	0.595	0.380	0.029	0.576	0.356	0.031	0.554	0.337	0.036	0.586	0.311	0.000	0.9
3b	P04	7	0.290	0.572	0.289	0.552	0.003	0.238	0.528	0.176	0.247	0.481	0.000	0.251	0.444	0.000	0.82
4a	P04	7	0.290	0.635	0.311	0.611	0.003	0.235	0.553	0.176	0.108	0.495	0.374	0.100	0.458	0.026	0.31
4b	P04	7	0.313	0.602	0.306	0.581	0.000	0.259	0.488	0.273	0.202	0.469	0.374	0.100	0.434	0.045	0.60

24	HOL	ID EII	TDA	TION	DATA	

									TION DA								
			pre-filt		2700	5 mm		222	1 mm		2000	0.4 mm		1000	0.1 mm		3587
Stabilization	GW	pН	418 nm	525 nm	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	418 nm	525 nm	fraction	unfilt
none	Base	3	0.123	1.144	0.059	1.001	0.520	0.047	0.974	0.098	0.061	0.982	0.000	0.081	0.938	0.000	0.382
1a	Base	3	0.759	0.343	0.071	0.018	0.906	0.010	0.001	0.080	0.005	0.000	0.007	0.007	0.002	0.000	0.007
1b	Base	3	0.706	0.329	0.086	0.031	0.878	0.002	0.000	0.119	0.002	0.001	0.000	0.003	0.000	0.000	0.003
2a 2b	Base	3	0.070	1.112	0.061	1.068	0.129	0.061	1.044	0.000	0.057	1.002	0.057	0.022	0.897	0.500	0.314
	Base	3	0.819	1.513	0.532	1.325	0.350	0.013	0.836	0.634	0.013	0.782	0.000	0.009	0.773	0.005	5.423(2)(2)(2)
3a 3b	Base Base	3	2.604 3.192	0.626	2.539 2.539	0.609 0.609	0.025 0.205	2.376 2.376	0.573 0.573	0.063	2.344 2.344	0.566 0.566	0.012 0.010	2.273 2.273	0.552 0.552	0.027 0.022	0.873
4a	Base	3	2.619	1.762	1.577	1.423	0.398	0.032	0.717	0.590	0.031	0.689	0.000	0.039	0.665	0.000	0.012
4a 4b	Base	3	3.500	1.618	3.458	1.502	0.012	1.376	0.937	0.595	0.051	0.381	0.375	0.039	0.366	0.000	0.012
none	Base	7	0.148	1.144	0.041	1.015	0.723	0.028	0.966	0.088	0.004	0.977	0.000	0.059	0.930	0.000	0.189
1a	Base	7	1.538	0.905	0.267	0.180	0.826	0.020	0.019	0.166	0.006	0.011	0.003	0.007	0.004	0.000	0.004
1b	Base	7	0.795	0.615	0.126	0.228	0.842	0.117	0.147	0.011	0.197	0.113	0.000	0.210	0.107	0.000	0.147
2a	Base	7	0.729	1.310	0.717	1.277	0.016	0.737	1.260	0.000	0.723	1.222	0.019	0.738	1.202	0.000	0.964
2b	Base	7	0.367	1.164	0.365	1.199	0.000	0.020	1.020	0.940	0.017	0.989	0.008	0.021	0.929	0.000	0.053
3a	Base	7	1.270	0.627	1.258	0.613	0.009	0.943	0.399	0.248	0.578	0.166	0.287	0.495	0.148	0.065	0.39
3b	Base	7	1.350	0.734	1.050	0.461	0.222	0.796	0.301	0.188	0.540	0.199	0.190	0.371	0.139	0.125	0.27
4a	Base	7	1.095	0.716	1.104	0.709	0.000	0.991	0.643	0.103	0.630	0.531	0.330	0.533	0.480	0.089	0.479
4b	Base	7	1.221	0.666	1.209	0.653	0.010	1.158	0.595	0.042	0.805	0.462	0.289	0.787	0.460	0.015	0.64
none	Ca	3	0.137	1.144	0.071	1.032	0.482	0.036	0.915	0.255	0.069	0.981	0.000	0.049	0.934	0.146	0.11
1a	Ca	3	0.163	0.078	0.039	0.018	0.761	0.008	0.002	0.190	0.008	0.003	0.000	0.007	0.002	0.006	0.04
1b	Ca	3	0.146	0.181	0.039	0.018	0.733	0.008	0.002	0.212	0.008	0.003	0.000	0.007	0.002	0.007	0.048
2a	Ca	3	0.670	1.416	0.635	1.370	0.052	0.531	1.302	0.155	0.052	1.033	0.715	0.013	0.987	0.058	0.01
2b	Ca	3	0.151	1.008	0.151	1.037	0.000	0.151	0.909	0.000	0.013	0.012	0.914	0.012	0.838	0.007	0.079
3a	Ca	3	1.033	0.302	1.006	0.295	0.026	0.821	0.208	0.179	0.783	0.190	0.037	0.718	0.175	0.063	0.69
3b	Ca	3	0.899	0.428	0.814	0.380	0.095	0.591	0.195	0.248	0.469	0.122	0.136	0.405	0.101	0.071	0.45
4a	Ca	3	1.319	0.746	1.221	0.700	0.074	0.252	0.302	0.735	0.071	0.183	0.137	0.117	0.194	0.000	0.054
4b	Ca	3	1.693	0.672	1.571	0.629	0.072	0.750	0.316	0.485	0.024	0.092	0.429	0.019	0.074	0.003	0.01
none	Ca	7	0.128	1.117	0.052	1.023	0.594	0.027	0.963	0.195	0.033	0.978	0.000	0.033	0.935	0.000	0.21
1a	Ca	7	0.288	0.200	0.029	0.020	0.899	0.004	0.001	0.087	0.004	0.001	0.000	0.005	0.002	0.000	0.014
1b	Ca	7	0.682	0.875	0.275	0.466	0.597	0.100	0.343	0.257	0.124	0.328	0.000	0.135	0.319	0.000	0.14
2a	Ca	7	0.683	1.288	0.672	1.242	0.016	0.662	1.188	0.015	0.657	1.153	0.007	0.482	1.097	0.256	0.70
2b	Ca	7	1.023	1.715	0.754	1.494	0.263	0.381	1.225	0.365	0.029	0.958	0.344	0.031	0.938	0.000	0.028
3a	Ca	7	1.130	0.407	1.070	0.392	0.053	0.867	0.243	0.180	0.773	0.203	0.083	0.706	0.186	0.059	0.62
3b	Ca	7	1.430	0.407	1.415	0.489	0.010	1.135	0.304	0.196	0.987	0.237	0.103	0.870	0.209	0.082	0.60
4a	Ca	7	1.040	0.713	1.019	0.690	0.020	0.813	0.604	0.198	0.262	0.441	0.530	0.172	0.405	0.087	0.16
4b	Ca	7	1.100	0.634	1.084	0.617	0.015	0.878	0.548	0.187	0.634	0.440	0.222			0.576	0.000
none	P04	3	0.328	1.149	0.328	1.283	0.000	0.020	1.003	0.939	0.017	0.984	0.009	0.050	0.841	0.000	0.05
1a	P04	3	0.170	0.048	0.035	0.016	0.794	0.014	0.003	0.124	0.016	0.005	0.000	0.014	0.004	0.012	0.07
1b	P04	3	0.910	0.152	0.856	0.428	0.059	0.026	0.008	0.912	0.005	0.002	0.023	0.005	0.003	0.000	0.00
2a	P04	3	0.068	1.177	0.068	1.162	0.000	0.067	1.144	0.015	0.061	1.112	0.088	0.060	1.103	0.015	0.88
2b	P04	3	0.120	1.109	0.109	1.242	0.092	0.027	0.995	0.683	0.012	0.962	0.125	0.018	0.941	0.000	0.10
3a	P04	3	0.800	0.197	0.761	0.191	0.049	0.712	0.173	0.061	0.663	0.161	0.061	0.630	0.151	0.041	0.78
3b	P04 P04	3	0.980	0.280	0.914	0.259	0.067	0.785	0.193	0.132	0.732	0.179	0.054 0.259	0.489	0.116	0.248	0.49
4a	P04	3	0.560	0.631	0.506	0.594	0.096	0.169 0.259	0.352	0.602	0.024	0.296		0.026	0.262		200
4b	P04	7	0.780 0.262	0.598 1.350	0.695 0.262	0.556 1.404	0.109	0.259	0.346 1.234	0.559	0.028	0.262 1.210	0.296	0.052	0.134 1.151	0.000	0.03
none 1a	P04	7	0.202	0.757	0.596	0.842	0.000	0.023	0.497	0.781	0.027	0.454	0.000	0.032	0.423	0.000	0.21
1b	P04	7	0.012	1.232	0.390	1,190	0.000	0.116	1.012	0.761	0.104	0.454	0.000	0.236	0.423	0.000	0.21
2a	P04	7	0.230	1.373	0.895	1.323	0.000	0.893	1.012	0.002	0.071	1.238	0.000	1.015	1.195	0.000	0.99
2b	P04	7	0.000	1.325	0.093	1.277	0.000	0.093	1.164	0.652	0.026	1.094	0.254	0.028	1.193	0.000	0.09
3a	P04	7	1.100	0.274	1.051	0.258	0.000	1.002	0.237	0.032	0.020	0.219	0.023	0.690	0.174	0.261	0.62
3b	P04	7	1.100	0.274	0.492	0.453	0.553	0.445	0.448	0.043	0.977	0.429	0.025	0.410	0.174	0.016	0.02
30 4a	P04	7	0.410	0.632	0.492	0.433	0.039	0.305	0.565	0.043	0.426	0.521	0.220	0.204	0.406	0.016	0.37
4b	P04	7	0.410	0.586	0.418	0.571	0.039	0.336	0.529	0.191	0.213	0.492	0.121	0.259	0.466	0.058	0.60

Particle size distribution of a high concentration stabilization aids under various reaction conditions at 2, 4, 8, 24 hour reaction time (particle size unit = μ m) (page 1 of 4).

Particle size distribution of a high concentration stabilization aids under various reaction conditions at 2, 4, 8, 24 hour reaction time (particle size unit = μ m) (page 2 of 4).

Particle size distribution of a high concentration stabilization aids under various reaction conditions at 2, 4, 8, 24 hour reaction time (particle size unit = μ m) (page 3 of 4).

Particle size distribution of a high concentration stabilization aids under various reaction conditions at 2, 4, 8, 24 hour reaction time (particle size unit = μ m) (page 4 of 4).

Percent of MnO_2 particles less than $0.1\ \mu m$ over time for each stabilization aid.

Appendix VII. Suspended MnO₂ Concentration vs. Time

Mass of MnO₂ suspended in solution over 72 hour reaction period for each stabilization aid under various reaction conditions at equimolar concentrations of TCE and KMnO₄ (page 1 of 2).

Mass of MnO₂ suspended in solution over 72 hour reaction period for each stabilization aid under various reaction conditions at equimolar concentrations of TCE and KMnO₄ (page 2 of 2).

Appendix VIII. Average Particle Size and Zeta Potential vs. Reaction Conditions

No Stabilizaiton Aids

Maximum stolchiometric		Groundwater								Tir	me (hours)	TOTO THE PARTY OF			
particle concentration	pH	(Base, Ca-rich,	Solids	Redox	Stabilization		0		0.5		4		24	ke wo I - Wildawe	72
(high = 100mg/L, low = 10mg/L	-	or PO4-rich	one propagation		aid	zeta potential					avg. particle size (µm)		avg. particle size (µm)	zeta potential	avg. particle size (µm
low	7	Base	none	equimotar	none	-1.46	4.00	-8.90	2.47	-3.94	1.39	-5.13	8.96	-10.13	16.63
high	7	Base	none	equimolar	none	-12.48	0.70	-11.30	1.44	-10.07	3.03	-8.36	7.03	-9.66	23.91
low	3	Base	1.1g sand	equimolar	none	-11.27	0.72	-10.54	3.05	-9.39	3.49	-6.04	6.63	-4.69	6.28
high	3	Base	1.1g sand	equimolar	none	-9.27		-9.33	1.70	-7.69	3.58	-6.17	4.56	-9.67	3.15
low	7	Base	1.1g sand	equimolar	none		2.41	-9.66	2.47	-7.91	3.87	-5.25	6.02	-6.77	4.10
high	7	Base	1.1g sand	equimolar	none	-10.86	1.10	-11,53	1.80	-9.06	4.05	-8.75	10.06	-5.28	7.99
low	3	Base	none	oxidizing	none	-1.83	0.58	-5.47	0.79	-8.23	2.24	-6.95	6.55	-9.39	9.26
high	3	Base	none	oxidizing	none	-11.27	0.91	-9.25	1.37	-9.36	5.58	-8.50	9.16	-9.94	9.35
low	7	Base	none	oxidizing	none	-0.38	0.57	-0.83	0.72	-5,00	1.93	-5.68	1.56	-15.06	3.15
high	7	Base	none	oxidizing	none	-12,52	0,64	-10.60	1.10	-9,91	2.76	-9.94	3.54	-13.10	6.12
low	3	Base	1.1g sand	oxidizing	none	-8.14	1.79	-10.16	1.77	-8.09	3.22	-8.74	10.57	-7.52	10.00
high	3	Base	1.1g sand	oxidizing	none	-10.07	0.77	-9.11	2.36	-8.09	3.02	-9.20	5.11	-7.24	4.07
low	7	Base	1.1g sand	oxidizing	none	-5.67	1.82	-7.84	2.28	-6.07	3.51	-1.80	4.75	-4.63	3.15
high	7	Base	1.1g sand	oxidizing	none	-11.54	0.94	-9.00	1.57	-9.65	3.06	-10.08	4.21	-7.77	5.95
low	3	Ca	none	equimolar	none		0.62	-7.11	1.79	-9.26	4.09	-9.11	6.06	-4.81	6.79
high	3	Ca	none	equimolar	none	-8.29	1.00	-8.15	2.06	-8.20	7.50	-8.30	9.07	-7.07	24.33
low	7	Ca	none	equimolar	none	-0.02	1.49	*	1.72	-1.52	3.61	-1.62	9.56	-2.92	33.40
high	7	Ca	none	equimolar	none	-8.25	1.51	-8.80	1.85	-6.92	2.56	-5.54	6.66	-6.26	5.29
low	3	Ca	1.1g sand	equimolar	none	-6.58	15.85	-6.43	3.39	-6.93	6.02	-8.18	4.09	-6.10	9.23
high	3	Ca	1.1g sand	equimolar	none	-7.22	1.40	-6.06	2.41	-8.76	3.39	-6.83	4.49	-4.13	3.97
low	7	Ca	1.1g sand	equimolar	none	-3.97	10.26	-3,61	1.72	-2.72	6.13	-3.74	4.39	-1.82	6.27
high	7	Ca	1.1g sand	equimolar	none	-7.53	1.85	-7.39	2,22	-5.87	3.49	-5.75	12.48	-1.66	5.92
low	3	Ca	none	oxidizing	none	-3.11	0.74	-9.14	1.15	-7.76	2.27	-7.10	8.22	-7.64	34.09
	3	Ca	none	oxidizing	none	-6.76	1.11	-7.37	1.65	-7.70	2.71	-7.75	6.05	-8.72	8.16
high	7	Ca	none	oxidizing	none	-0.55	0.43	-1.15	0.62	-3.01	2.58	-1.03	4.02	-6.96	12.15
low	7	Ca	none	oxidizing	none	-5.14	0.72	-5.35	1.15	-2.91	2.51	-2.73	3.80	-2.50	6.98
high	3	Ca	1.1g sand	oxidizing	none	-9.14	1.64	-9.26	2.85	-7.95	3.02	-8.30	3.66	-6.66	5.32
low	3	Ca	1.1g sand	oxidizing	none	-7.73	1.59	-0.03	1.82	-7.78	2.48	-5.39	7.03	-4.88	2.54
high			THE RESERVE AND ADDRESS OF THE PARTY OF THE	oxidizing		-5.55	1.72	-3.19	2.71	-2.19	4.20	-1.83	3.94	-0.63	3.03
low	7	Ca	1.1g sand	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	none	-6.46	0.89	-3.75	2.17	-2.82	3.88	-2.09	7.26	-0.26	8.63
high	7	Ca	1.1g sand	oxidizing equimolar	none	-3.91	1.87	-8.31	5.69	-9.11	2.17	-14.51	3.24	-16.80	7.04
low	3	PO4 PO4	none	- Company of the second	none	-14.74	1.02	-12.52	0.65	-14.44	1.62	-13.54	2.56	-19.61	5.53
high	3		none	equimolar	none		3.66	-12.12	1.43	-8.24	2,89	-8.60	3.88	-11.29	9.46
low	3	PO4	1.1g sand	equimolar	none	-9.72 -17.46	0.28	-12.12	0.32	-15.47	1.81	-12.94	2.60	-17.69	10.19
high	3	PO4	1.1g sand	equimolar	none		0.20	-4.35	1.08	-8.90	1.93	-14.84	2.56	*	11.48
low	3	P04	none	oxidizing	none	-0.65	0.16	-4.35	0.28	-17.39	1.21	-17.84	2.05		3.60
high	3	PO4	none	oxidizing	none	-17.22			2.16	-6.92	2.51	-3.77	5.80	Managari Indi	8.76
low	3	PO4	1.1g sand	oxidizing	none	-15.53	1.64	-12.78		-0.92	1.58	-18.04	3.50		6.83
high	3	PO4	1.1g sand	oxidizing	none	-13.98	0.25	-18.42	0.37					-14.88	1.89
low	1	PO4	none	equimolar	none	-0.30	1.69	-7.50	1.26	-7.44	2.15	-12.65 -14.77	2.01 4.00	-14.88	4.67
high	7	P04	none	equimolar	none	-12.27	1.90	-14.50	1.62	-17.83	3.25			-17.03	3.64
low	7	PO4	1.1g sand	equimolar	none	-12,20	2.07	-12.49	2.36	-11.36	3.38	-9.07	3,50		
high	7	PO4	1.1g sand	equimolar	none	-12.74	1.32	-14.12	2.17	-18.15	2.91	-15.08	1.94	-17.41	1.89
low	7	PO4	none	oxidizing	none	-0.19	**	-1.31	0.98	-7.22	3.07	-8.27	2.25		4.52
high	7	PO4	none	oxidizing	none	-13,04	0,50	-13,26	1.30	-14.90	2,93	-14.17	3.44	o e e e e e e	4.60
low	7	PO4	1.1g sand	oxidizing	none	-7.39	3,25	-12,36	3.38	-11.13	5.36	-2.39	4.08		1.48
high	7	PO4	1.1g sand	oxidizing	none	-14.05	1.71	-12.00	1.91	-14.22	2.74	-20.24	3.62		2.08

Dowfax

Maximum stoichiometric	400	Groundwater			0.0000000000000000000000000000000000000					Time	e (hours)				
particle concentration	pH	(Base, Ca-rich,	Solids	Redox	Stabilization		0		0.5		4		24		72
(high = 100mg/L, low = 10mg/L		or PO4-rich			ald	zeta potentiai	avg. particle size (µm)	zeta potential	avg. particle size (µm)		avg. particle size (µm)	zeta potential	avg. particle size (µm)	zeta potential	avg, particle size (µm
low	3	Base	none	equimolar	214uL Dowfax	-14.91	2.22	-19.89	2.63	-31.26	1.98	-28.15	1.31	-15.67	1.12
high	3	Base	none	equimolar	214uL Dowfax	-28.67	0.96	-26.55	0.66	-24.82	2.24	-31.16	13.14	-19.55	72.36
low	7	Base	none	equimolar	214uL Dowfax	-28.48	0.19	-33.06	0.95	-33.27	8.19	-28.75	10.35	-24.40	5.80
high	7	Base	none	equimolar	214uL Dowfax	-27.51	0.16	-0.38	0.64	-32.92	0.99	-28.10	11.40	-22.25	23.80
low	3	Base	1.1g sand	equimolar	214uL Dowfax	-43.74	1.01	-38.64	1.21	-49.75	1.39	-42.78	0.59	-31.03	0.64
high	3	Base	1.1g sand	equimolar	214uL Dowfax	-29.73	0,67	-27.63	0.83	-24,35	1.59	-29.74	4.36	-20.73	1.62
low	7	Base	1.1g sand	equimolar	214uL Dowfax	-38.84	1.56	-35.06	3.45	-32.39	45.93	-25.03	4.08	-13.13	6.97
high	7	Base	1.1g sand	equimolar	214uL Dowfax	-34.50	0.25	-31,36	0.27	-29.52	2.11	-26.86	11.89	-23.13	7.61
low	3	Base	none	oxidizing	214uL Dowfax	-2.42	0.65	-22.16	0.32	-28.91	25.08	-17.64	7.26	-7,43	2000
high	3	Base	none	oxidizing	214uL Dowfax	-30.17	0.25	-29.20	0.54	-24.40	1.66	-24.67	4.23	-33.58	1.67
low	7	Base	none	oxidizing	214uL Dowfax	-24.24	0.41	-18.22	1.24	-30.63	18.42	-33.00	8.34	-31.00	6.79
high	7	Base	none	oxidizing	214uL Dowfax	-25,55	0.09	-31.97	0.16	-29.74	8.69	-27.67	22.90	-27.67	21.58
low	3	Base	1.1g sand	oxidizing	214uL Dowfax	-32.69	0.90	-27.04	0.47	-28.84	6.19	-27.38	5.64	-27.38	3.54
high	3	Base	1.1g sand	oxidizing	214uL Dowfax	-35.77	0.31	-29.11	0.90	-27.19	3.34	-23.34	15.67	-31.77	35.04
low	7	Base	1.1g sand	oxidizing	214uL Dowfax	-28.10	1.76	-29.25	3.92	-30.00	8.86	-32.72	8.65	-27.71	8.47
high	7	Base	1.1g sand	oxidizing	214uL Dowfax	-39.16	0.18	-33.98	0.25	-30,22	10.85	-30.23	3.52	-26.45	19.12
low	3	Ca	none	equimolar	214uL Dowfax	-20.03	0.77	-37.26	1.69	-40.17	4.79	-41.88	0.82	-35.44	0.83
high	3	Ca	none	equimolar	214uL Dowfax	-20.87	8.56	-17.69	13.97	-21.21	42.13	-23.76	34.15	-15.30	1.47
low	7	Ca	none	equimolar	214uL Dowfax	-10.16	0.18	-30.30	2.37	-33.69	13.30	-20.46	17.34	-20.20	13.60
high	7	Ca	none	equimolar	214uL Dowfax	-20.35	1.72	-24.35	18.78	-28.11	2.04	-21.00	0.94	-21.11	0.69
low	3	Ca	1.1g sand	equimolar	214uL Dowfax	-44.42	1.45	-33.37	1.50	-37.38	2.96	-43.25	0.65	-22.19	0.57
high	3	Ca	1.1g sand	equimolar	214uL Dowfax	-17.86	8.55	-19.31	8.87	-21.91	17.60	-22.07	4.77	-17.98	14.00
low	7	Ca	1.1g sand	equimolar	214uL Dowfax	-25.31	2.90	-32.03	3.62	-32.42	6.59	-23.83	5.85	-14.11	3.63
high	7	Ca	1.1g sand	equimolar	214uL Dowfax	-20.52	4.39	-23.87	17.87	-28.15	1.18	-19.98	17.87	-20.88	0.64
low	3	Ca	none	oxidizing	214uL Dowfax	-28.35	7.75	-28.20	8.81	-31.29	4.23	-31.18	4.23	-35.52	4.82
high	3	Ca	none	oxidizing	214uL Dowfax	-14.48	1.33	-16.27	2.49	-25.43	10.50	-28.45	1.15	-26.24	*.02
	7	Ca	none	oxidizing	214uL Dowfax	-27.24	1.67	-31.47	8.67	-27.36	13.54	-29.49	6.52	-31.54	4.27
low	4	Ca		0.0000000000000000000000000000000000000		-19.95	3.78	-27.39	8.91	-27.24	9.10	-25.62	0.72	-22.97	0.67
high	3		none	oxidizing	214uL Dowfax 214uL Dowfax	-48.05	1.06	-42.12	0.91	-31.87	5.63	-33.97	11.70	-34.85	2.73
low	3	Ca Ca	1.1g sand	oxidizing		-18.84	2.93	-18.92	1.98	-25.76	3.46	-27.37	0.62	-23.40	0.75
high			1.1g sand	oxidizing	214uL Dowfax										117.15
low	7	Ca	1.1g sand	oxidizing	214uL Dowfax	-21.74	0.78	-31.51	3.36	-28.81	5.73	-31.11	4.51	-29.53	
high	7	Ca	1.1g sand	oxidizing	214uL Dowfax	-22.23	5.73	-23.25	4.87	-27,62	1.20	-27.04	0.71	-22.58	1.04
low	3	P04	none	equimolar	214uL Dowfax	-33.86	0.75	-36.68	1.04	-50.21	1.24		47.07	1	
high	3	PO4	none	equimolar	214uL Dowfax	-13.34	14.30	-16,95	0.11	-28.14	0.53	1	9.10	1	į.
low	3	PO4	1.1g sand	equimolar	214uL Dowfax	-35.07	0.84	-38,51	0.82	-45.84	0.88	Ī	0.59	[1
high	3	PO4	1.1g sand	equimolar	214uL Dowfax	-31.97	0.66	-21.95	0.26	-27.96	2.03		25,02		
low	3	P04	none	oxidizing	214uL Dowfax	-7.17		-6.96	28.60	-25.24	2.73	-21.42	3.09	-29.10	0,58
high	3	P04	none	oxidizing	214uL Dowfax	-24.82	9.78	-22.03		-27.05	1.17	-19.72	1.58	-27.09	1.72
low	3	P04	1.1g sand	oxidizing	214uL Dowfax	-29.86	0.79	-30.81	1.65	-33.05	12.15	-12.93	2.28	-1.88	1.40
high	3	P04	1,1g sand	oxidizing	214uL Dowfax	-12.67	3,38	-26.82	5.62	-28.28	3.28	-17.23	2.45	-24.33	1.51
low	7	PO4	none	equimolar	214uL Dowfax	220	0,11	-16,31	0.21	-31.80	2.53	-32.98	9.10	-21.01	9.10
high	7	PO4	none	equimolar	214uL Dowfax	-24.19	1,03	-21.01	2.86	-25.50	2.99	-28.13	1.56	-26.98	1.18
low	7	PO4	1.1g sand	equimolar	214uL Dowfax	-48.16	1.18	-36.78	0.81	-34.91	5.42	-30.22	5.15	-24.00	2.88
high	7	P04	1.1g sand	equimolar	214uL Dowfax	-31.70	2.10	-29.24	5.47	-27.97	4.91	-28.57	2.75	-25.30	1.13
low	7	P04	none	oxidizing	214uL Dowfax	-0.21	0.18	-3.49	0.31	-21.33	1.69	-26.05	1.85	-29.78	0.70
high	7	PO4	none	oxidizing	214uL Dowfax	-26.59	2,10	-26,40	3,26	-25.94	3.22	-29.77	2.49	-27.34	1.93
low	7	PO4	1.1g sand	oxidizing	214uL Dowfax	-40.85	1.31	-39.03	2.37	-32.56	9.07	-29.79	5.15	-28.77	3.52
high	7	P04	1.1g sand	oxidizing	214uL Dowfax	-29.14	2.05	-29.27	2.96	-28.98	3.46	-28.26	1.32	-29.50	1.42

Maximum stoichiometric		Groundwater	7 164	N. 10 10 10 10 10 10 10 10 10 10 10 10 10	STATE OF THE STATE			CONTRACTOR AND A		T	ime (hours)			Qeverage and the con-	
particle concentration	pH	(Base, Ca-rich,	Solids	Redox	Stabilization		0		0.5		4		24		72
(high = 100mg/L, low = 10mg/L		or PO4-rich			aid	zeta potential	avg. particle size (µm)	zeta potential	avg. particle size (µm)		avg. particle size (µm)		avg. particle size (µm)	zeta potential	avg, particle size (μη
low	3	Base	none	equimolar	1000mg/L HMP	-2.26	200	-0.72	1.87	-1.35	3.22	-4.36	3.67	-4.36	0.40
high	3	Base	none	equimolar	1000mg/L HMP	-8.83	0,29	-17.14	2.10	-25.87	2.04	-29.51	1.21	-31.21	3.16
low	3	Base	1.1g sand	equimolar	1000mg/L HMP	-42.85	0.81	-34.39	1.28	-39.93	0.53	-32.25	0.94	-31.64	0.44
hígh	3	Base	1.1g sand	equimolar	1000mg/L HMP	-29.70	0.74	-31.25	1.68	-33.02	3.69	-33.29	0.41	-19.23	0,59
low	3	Base	none	oxidizing	1000mg/L HMP	-2.37	0.00	-9.85	0.00	-18.51	0.00	-12.10	0.00	-16.46	
high	3	Base	none	oxidizing	1000mg/L HMP	-14.79	0.00	-20.06	0.00	-30.52	0.00	-35.73	0.00	-15.51	
low	3	Base	1.1g sand	oxidizing	1000mg/L HMP	-41.85	0.77	-46.99	0.61	-46.99	0.72	-42.37	0.41	-42.54	0.23
high	3	Base	1.1g sand	oxidizing	1000mg/L HMP	-42.41	2,22	-44.26	2.79	-42.24	0.76	-44.24	0.45	-16.09	0.25
low	7	Base	none	equimolar	1000mg/L HMP	-14.06	*	-14.40	7.99	-20.46	5.84	-10.42	1,61	-0.25	0.11
high	7	Base	none	equimolar	1000mg/L HMP	-6.36	*	-6.82	1.36	-29,03	7.99	-16.46	0.24	-24.65	2.27
low	7		1.1g sand	equimolar	1000mg/L HMP	-43.78	0.45	-54.30	0.46	-52.30	0.61	-50.38	0.46	-45.02	0.34
high	7	Base	1.1g sand	equimolar	1000mg/L HMP	-48.90	0.62	-50.19	1.26	-52.11	0.67	-48.49	0.46	-23.81	0.40
low	7	Base	none	oxidizing	1000mg/L HMP	-27.13	0.00	-13.55	0,00	-20.88	0.00	-19.05	0.00	-21.85	
high	7	Base	none	oxidizing	1000mg/L HMP	-10.15	0.00	-18.12	0.00	-22.12	0.00	-18.75	0.00	-1.76	0.35
low	7	Base	1.1g sand	oxidizing	1000mg/L HMP	-55.69	0.69	-54.83	0.55	-53.19	0.78	-50.51	0.74	-48.47	
high	7	Base	1.1g sand	oxidizing	1000mg/L HMP	-53.40	0.86	-52.96	0.67	-22.64	0.92	-51.69	1.34	-31.54	0.79
low	3	Ca	none	equimolar	1000mg/L HMP	-13,73	0,00	-6.26	0.00	-15.76	0.00	-0.17	0.00	-0.03	
high	3	Ca	none	equimolar	1000mg/L HMP	-0.59	0.00	-0.33	0.00	-7.27	0,00	-0.41	0.00	-1.76	
low	3	Ca	1.1g sand	equimolar	1000mg/L HMP	-34.68	0.76	-34.75	1.00	-31.63	0.72	-29.75	0.60	-27.08	0.43
high	3	Ca	1.1g sand	equimolar	1000mg/L HMP	-46.38	0.83	-43.78	0.80	-38.52	0.73	-33,36	0.54	-29.63	0.35
low	3	Ca	none	oxidizing	1000mg/L HMP	-10.14	0.00	-2.21	0.00	-1.83	0.00	-4.34	0,00	-19.03	
high	3	Ca	none	oxidizing	1000mg/L HMP	-0.13	0.00	-11.31	0.00	-21.33	0.00	-19.48	0.00	-18,66	
low	3	Ca	1.1g sand	oxidizing	1000mg/L HMP	-44.65	1.18	-45.46	0.96	-50.70		-42.28	0,59	-37,99	0.76
high	3	Ca	1.1g sand	oxidizing	1000mg/L HMP	-19.57	3.92	-20.20	2.74	-21.17		-22.76	0.94	-5.53	
low	7	Ca	none	equimolar	1000mg/L HMP	-0.21	0.00	-3.47	0.00	-1.44	0.00	-4,45	0.00	-2.59	
high	7	Ca	none	equimolar	1000mg/L HMP	-17.77	0.27	-21.04	0.29	-22.23	0.32	-23.53	0.32	-15,58	
low	7	Ca	1.1g sand	equimolar	1000mg/L HMP	-51.48	0.88	-50.70	0.91	-53.20	0.73	-51.53	0.51	-41.77	
high	7	Ca	1.1g sand	equimolar	1000mg/L HMP	-18.56	0.60	-20.24	0.52	-21.98	0.52	-24.38	0.89	-14.69	e de la completation de
low	7	Ca	none	oxidizing	1000mg/L HMP	-20.88	0.00	-1.83	0.00	-6.15	0.00	-11.47	0.00	-21.16	
high	7	Ca	none	oxidizing	1000mg/L HMP	-22.12	0,61	-21.33	0.77	-20.11	0,66	-23.06	0.71	-21.71	
low	7	Ca	1.1g sand	oxidizing	1000mg/L HMP	-53.19	0.82	-50.70	0.78	-49,33	0.78	-19.38	1.01	-47.88	0.88
high	7	Ca	1.1g sand	oxidizing	1000mg/L HMP	-22.64	0.96	-21.17	0.75	-21.93	0.64	-22.82	1.33	-23.70	0,62
low	3	PO4	none	equimolar	1000mg/L HMP	-4.47	0.00	-25.70	0,00	-20.35	0.00	-10.28	0.00	-1.21	
high	3	PO4	none	equimolar	1000mg/L HMP	-11.46	0.00	-24.74	0.00	-24.51	0.00	-16.64	0.12	-23.72	0.33
low	3	PO4	1.1g sand	equimolar	1000mg/L HMP	-38.18	0.54	-36.37	0.65	-40.32	0.56	-38.83	0,28	-39.07	0.44
high	3	PO4	1.1g sand	equimolar	1000mg/L HMP	-36.70	0.47	-37.43	0.59	-38.83	0.60	-33.88	0,34	-24.49	0.29
low	3	P04	none	oxidizing	1000mg/L HMP	-9.63	0.00	-23.31	0,00	-1.98	0.00	-5.88	0.00	-16.31	
high	3	P04	none	oxidizing	1000mg/L HMP	-14.39	0.00	-0.06	0.00	-1.07	0.00	-2,83	0.00	-28.26	0.50
low	3	P04	1.1g sand	oxidizing	1000mg/L HMP	-43.81	0.44	-44.05	0,49	-41.13	0.58	-40,43	0.67	-35.93	0.87
high	3	PO4	1.1g sand	oxidizing	1000mg/L HMP	-37.48	0.70	-38.58	0.57	-37.09	0.54	-35.15	0.70	-27.70	1.39
low	7	PO4	none	equimolar	1000mg/L HMP	-0.03	0.00	-1.59	0.00	-11.71	0.00	-12.46	0.00	-0.57	0.00
high	7	PO4	none	equimolar	1000mg/L HMP	-10.96	0.00	-25.82	0.26	-1.02	0.24	-17.58	0.23	-25.40	0.23
low	7	PO4	1.1g sand	equimolar	1000mg/L HMP	-48.08	0.80	-50.99	0.80	-51.33	1.38	-49.41	0.56	-31.91	0.42
high	7	PO4	1.1g sand	equimolar	1000mg/L HMP	-36.77	0.75	-42.87	0.65	-43.63	0.65	-33.54	0.69	-25.08	7,02
low	7	PO4	none	oxidizing	1000mg/L HMP	-0.55	0.00	-7.89	0.00	-8.31	0.00	-12.48	0.00	-6.51	The trade like
high	7	PO4	none	oxidizing	1000mg/L HMP	-22.48	0.00	-26.69	0.00	-19.46	0.00	-27.82	0.00	-25.03	
low	7	PO4	1.1g sand	oxidizing	1000mg/L HMP	-54.24	1.74	-51.43	0.98	-52.58	1.57	-49.75	1.08	-52.87	1.70
high	7	PO4	1.1g sand	oxidizing	1000mg/L HMP	-45.47	1.28	-45.70	1,44	-46.57	1.32	-42.69	1.16	-34.49	1.26

Gum Arabic

Maximum stoichiometric		Groundwater								Tir	me (hours)				
particle concentration	pН	(Base, Ca-rich,	Solids	Redox	Stabilization		0		0.5		4		24	CHILD SUBSTITUTE	72
(high = 100mg/L, low = 10mg/L		or PO4-rich			aid	zeta potential	avg. particle size (µm)	zeta potential	avg. particle size (µm)		avg. particle size (µm)	zeta potential	avg. particle size (µm)	zeta potential	avg. particle size (µm
low	3	Base	none	equimolar	1000mg/L Gum Arabic	-1.85	0.00	-4.36	0.00	-8.92	0.32	-8.81	0.23	-7.98	0.20
high	3	Base	none	equimolar	1000mg/L Gum Arabic	-7.23	0.00	-7.97	0.00	-8.14	0.48	-8.62	0.25	-8.76	0.39
low	3	Base	1.1g sand	equimolar	1000mg/L Gum Arabic	-11.97	0.18	-6.37	0.24	-12.26	0.44	-12.60	0.26	-13.39	0.26
high	3	Base	1.1g sand	equimolar	1000mg/L Gum Arabic	-10.32	0.15	-12.20	0.28	-11.60	0.33	-13.20	0.30	-14.40	0.26
low	3	Base	none	oxidizing	1000mg/L Gum Arabic	-8.39	0.00	-7.47	0.00	-14.46	17.15	-8.42	0.75	-8,65	15.55
high	3	Base	none	oxidizing	1000mg/L Gum Arabic	-13.82	32.22	-14.80	12.13	-17.62	12.28	-17.04	1.93	-10.59	
low	3	Base	1.1g sand	oxidizing	1000mg/L Gum Arabic	-14.85	3.57	-15.70	2.37	-17.00	2.82	-16.55	0.42	-13.37	0.49
high	3	Base	1.1g sand	oxidizing	1000mg/L Gum Arabic	-29.70	7.81	-15.72	2.63	-17.00	7,42	-16.74	0.81	-13.37	1.61
low	7	Base	none	equimolar	1000mg/L Gum Arabic	-6.64	0.00	-8.09	0.00	-11.14	0.18	-12.19	0.25	-12.18	0.17
high	7	Base	none	equimolar	1000mg/L Gum Arabic	-11.22	0.00	-11.75	0.22	-11.91	0.41	-13.40	0.29	-6.68	0.18
low	7	Base	1.1g sand	equimolar	1000mg/L Gum Arabic	-12.66	26.46	-13.91	2.86	-14.15	1.73	-13.93	0.25	-16.26	0.23
high	7	Base	1.1g sand	equimolar	1000mg/L Gum Arabic	-13.15	9.76	-12.50	0.60	-12.81	0.49	-14.20	0.30	-16.40	0.19
low	7	Base	none	oxidizing	1000mg/L Gum Arabic	-13.94	0.00	-9.93	0.00	-14.07	0.42	-16.89	0.49	-17.27	0.72
high	7	Base	none	oxidizing	1000mg/L Gum Arabic	-15.84	0.82	-16.95	0,40	-17.59	0,48	-20.50	0.22	-21.58	0.10
low	7	Base	1.1g sand	oxidizing	1000mg/L Gum Arabic	-16.83	1.87	-16.57	0.19	-16.63	2.10	-16.15	0.45	-18.81	0.14
high	7	Base	1.1g sand	oxidizing	1000mg/L Gum Arabic	-17.04	0.76	-17.76	0.52	-18.46	0.57	-20.15	0.35	-19.67	0.12
low	3	Ca	none	equimolar	1000mg/L Gum Arabic	-5,00	0.00	-0.57	0.00	-6.44	0.00	-1.82	0.19	-8.81	0.17
high	3	Ca	none	equimolar	1000mg/L Gum Arabic	-3.90	0.00	-2.41	0.00	-6.20	0.16	-6.47	0.22	-4.59	0,20
low	3	Ca	1.1g sand	eguimolar	1000mg/L Gum Arabic	-10.63	7.62	-10.47	3.52	-11.27	0.98	-7.55	0.24	-16.88	0.22
high	3	Ca	1.1g sand	eguimolar	1000mg/L Gum Arabic	-6.59	19.49	-7.81	2.18	-7.96	0.64	-8.00	0.27	-6.82	0.26
low	3	Ca	none	oxidizing	1000mg/L Gum Arabic	-10.22	0.00	-13.86	0.00	-14.81	0.51	-17.83	0.60	-17.66	0.11
high	3	Ca	none	oxidizina	1000mg/L Gum Arabic	-6.93	0.00	-10.41	1.21	-11.58	1.10	-12.35	0.76	-12.53	0,11
low	3	Ca	1.1g sand	oxidizina	1000mg/L Gum Arabic	-13.80	2.44	-14.39	1.02	-15.36	0.66	-18.21	0.52	-16.44	0.09
high	3	Ca	1.1g sand	oxidizing	1000mg/L Gum Arabic	-9.83	3.28	-10.82	1.06	-11.97	0,96	-10.80	0.74	-12.96	0.07
low	7	Ca	none	equimolar	1000mg/L Gum Arabic	-7.40	0.00	-9.28	0.34	-11.68	0.26	-9.75	0.19	-11.42	0.23
high	7	Ca	none	equimolar	1000mg/L Gum Arabic	-4.16	0.00	-8.06	0.28	-9.15	0.30	-8.64	0.20	-10.06	0.25
low	7	Ca	1.1g sand	equimolar	1000mg/L Gum Arabic	-12.09	1.30	-11.52	0.52	-14.30	0.36	-15.22	0.43	-20.86	0.33
high	7	Ca	1.1g sand	equimolar	1000mg/L Gum Arabic	-7.15	0.45	-7.40	0.30	-6.62	0.74	-9.33	0.20	-14.14	0.26
low	7	Ca	none	oxidizing	1000mg/L Gum Arabic	-12.30	0.00	-7.34	0.00	-9.47	0.10	•	0.37	-14.40	0.29
high	7	Ca	none	oxidizing	1000mg/L Gum Arabic	-10.16	0.00	-9.33	0.87	-8.21	0.28		0.28	-12.22	0.27
low	7	Ca	1.1g sand	oxidizing	1000mg/L Gum Arabic	-15.31	4.29	-16.08	1.43	-12.16	0.90		0.54	-16.03	0.24
high	7	Ca	1.1g sand	oxidizing	1000mg/L Gum Arabic	-9.49	1.94	-10.41	0.93	-8.85	0.52		0.28	-11.67	0.23
low	3	PO4	none	equimolar	1000mg/L Gum Arabic	-7.41	0.00	-4.64	0.00	-5.75	0.23	-10.40	0.37	-10.17	0.19
high	š	PO4	none	equimolar	1000mg/L Gum Arabic	-4.44	0.00	-4.38	0.00	-5.94	0.20	-11.45	0.33	-9.89	0.15
low	3	PO4	1.1g sand	equimolar	1000mg/L Gum Arabic	-12.87	2.70	-13.13	1.84	-14.68	0.35	-14.93	0.34	-15.53	0.24
high	3	PO4	1.1g sand	equimolar	1000mg/L Gum Arabic	-9.06	1.69	-9.95	0.72	-12.64	0.56	-15.15	0.66	-15.89	0.30
low	3	PO4	none	oxidizing	1000mg/L Gum Arabic	-9.38	0.00	-9.03	0.00	-9.44	V.00	-10.10	0.78	-15.06	0.68
high	3	PO4	none	oxidizing	1000mg/L Gum Arabic	-9.63	0.00	-10.15	0.00	-12.32	0.30	-17.20	0.76	-17.88	0.44
	3	P04		oxidizing		-13.78	2.66	-14.51	2.27	-15.04	0.96	-17.20			
low	3	P04	1.1g sand	The contract of the same	1000mg/L Gum Arabic	-13.76		-14.51				-13.60	0.69	-12.32	0.89
high	3		1.1g sand	oxidizing	1000mg/L Gum Arabic		4.50		2.73	-16.81	0.47		0.91	-17.13	0.86
low	1	PO4	none	equimolar	1000mg/L Gum Arabic	-5.99	0.00	-11.44	0.00	-14.02	0.18	-2.75	0.18	-14.78	0.16
high	1	PO4	none	equimolar	1000mg/L Gum Arabic	-12.71	0.00	-14.74	0.62	-14.81	0.47	-18.74	0.52	-17.00	0.30
low	7	PO4	1.1g sand	equimolar	1000mg/L Gum Arabic	-18.05	1.48	-18.61	1.13	-17.68	0.60	-16.77	0,37	-18.15	0.20
high	7	P04	1.1g sand	equimolar	1000mg/L Gum Arabic	-18.92	1.50	-18.89	0.78	-18.79	0.68	-15.13	0.54	-18.13	0.35
low	7	P04	none	oxidizing	1000mg/L Gum Arabic		0.00	-13.63	0.00	-13.74	0.00	-14.98	0.41	-12.00	0,25
high	7	P04	none	oxidizing	1000mg/L Gum Arabic	-15.96	0.00	-16.75	0.00	-16.20	1.20	-18.47	0.81	-22.06	0.35
low	7	PO4	1.1g sand	oxidizing	1000mg/L Gum Arabic	-17.61	3.33	-16.20	1.48		1.04	-17.02	0.83	-18.56	0.26
high	7	PO4	1.1g sand	oxidizing	1000mg/L Gum Arabic	-18.03	2.85	-16.82	1.22		0.83	•	0.66	-20.34	0.30

Xanthan Gum

Maximum stoichiometric		Groundwater	the town		Net work or	Time (hours)												
particle concentration	pН	(Base, Ca-rich,	Solids	Redox	Stabilization		0		0.5		4		24		72			
(high = 100mg/L, low = 10mg/L		or PO4-rich			aid	zeta potential		zeta potential	avg. particle size (µm)		avg. particle size (µm)	zeta potential	avg. particle size (µm)	zeta potential	avg. particle size (µm			
low	3	Base	none	equimolar	10mg/L Xanthan Gum	•	0.00	-13.33	0.00	-19.89	0.77	-10.75	0.55	-19.85	1.25			
high	3	Base	none	equimolar	10mg/L Xanthan Gum		0.00	-17.78	0.78	-20.91	0.56	-20.14	0.54	-20.78	0.69			
low	3	Base	1.1g sand	equimolar	10mg/L Xanthan Gum		0.00	-16.13	2.44	-21.63	3.08	-21.43	0.09	-21.34	0.93			
high	3	Base	1.1g sand	equimolar	10mg/L Xanthan Gum		4.03	-18.70	0.78	-20.12	0.58	-20.48	0.50	-20.84	1.01			
low	3	Base	none	oxidizing	10mg/L Xanthan Gum	-17.58	0.00	-14.95	0.00	-16.21	0.25	-19.93	0.57	-10.94	2.73			
high	3	Base	none	oxidizing	10mg/L Xanthan Gum	-19.77	0.50	-20.87	0.46	-19.54	0.37	-11.91	3.84	-11.32	9.09			
low	3	Base	1.1g sand	oxidizing	10mg/L Xanthan Gum	-18.87	45.99	-21.10	8.57	-20,33	3.78	-20.13	4.31	-11.79	7.65			
high	3	Base	1.1g sand	oxidizing	10mg/L Xanthan Gum	-20.41	0.46	-19.18	0.32	-13.38	0.35	-9.92	1.23	-8.26	12.15			
low	7	Base	none	equimolar	10mg/L Xanthan Gum	-6.99	0.00	-11.03	0.00	-20.17	0.66	-20.15	0.55	-21.62	0.60			
high	7	Base	none	equimolar	10mg/L Xanthan Gum	-18.05	0.00	-25.24	0.82	-22.76	0.62	-20.05	1.02	-20,21	4.51			
low	7	Base	1.1g sand	equimolar	10mg/L Xanthan Gum	-27.09	6.48	-25.60	2.87	-28.38	1.58	-26.57	2.07	-25,33	0.69			
high	7	Base	1.1g sand	equimolar	10mg/L Xanthan Gum	-24.93	4.05	-17.97	1.58	-21.82	0.62	-19.59	0.59	-23.46	1.62			
low	7	Base	none	oxidizing	10mg/L Xanthan Gum	-17.76	0.00	-14.06	0.00	-15.43	0.00	-20.47	0.00	-24.95	0.00			
high	7	Base	none	oxidizing	10mg/L Xanthan Gum	-21.68	0.72	-25.33	0.35	-21.29	0.38	-15.09		-10.02	2.70			
low	7	Base	1.1g sand	oxidizing	10mg/L Xanthan Gum	-28.11	8.50	-27.56	2.57	-26.54	2.44	-21.98	1.82	-22.35	1.67			
high	7	Base	1.1g sand	oxidizing	10mg/L Xanthan Gum	-26.20	0.64	-26,19	0.69	-23.73	0.36	-19.34	3.91	-16.49	7.48			
low	3	Ca	none	equimolar	10mg/L Xanthan Gum	-13.06	0.00	-14.06	0.00	-19.94	0.77	-15.53	0.38	-17.62	1.39			
high	3	Ca	none	equimolar	10mg/L Xanthan Gum	-16.18	0.00	-12.17	0.99	-16.81	0.61	-14.73	0.96	-11.77	6.86			
low	3	Ca	1.1g sand	equimolar	10mg/L Xanthan Gum	-21.21	7.30	-16.44	3.98	-21.36	1.41	-19.76	0.54	-19.76	1.03			
high	3	Ca	1.1g sand	equimolar	10mg/L Xanthan Gum	-18.22	3.24	-12.72	1.12	-17.68	0.85	-13.72	0.98	-14.22	9.80			
low	3	Ca	none	oxidizing	10mg/L, Xanthan Gum	-13.85	0.00	-4.54	0.00	-19.32	0.00	-19.74	0.47	-11.11	10.34			
high	3	Ca	none	oxidizing	10mg/L Xanthan Gum	-18.18	0.00	-16.96	0.79	-13.57	0.51	-13,37	0,59	-6.75	7.67			
low	3	Ca	1.1g sand	oxidizing	10mg/L Xanthan Gum	-19.57	18.11	-21.12	4.84	-11.36	1.61	-18.41	0.47	-8.84	10.34			
high	3	Ca	1.1g sand	oxidizing	10mg/L Xanthan Gum	-17.45	16.13	-16.26	0.40	-16,39	0.42	-13.94	0.99	-5.67	10.57			
low	7	Ca	none	egulmolar	10mg/L Xanthan Gum	-4.57	0.00	-5.67	3.24	-16,25	3.90	-14.76	0.82	-14.11	0.38			
high	7	Ca	none	equimolar	10mg/L Xanthan Gum	-13.70	0.00	-12.75	1.88	-16.05	0.63	-16.06	0.46	-17.38	0.81			
low	7	Ca	1.1g sand	equimolar	10mg/L Xanthan Gum	-24.22	9.93	-25.49	2.48	-25,00	2.57	-26.31	1.63	-23.80	0.94			
high	7	Ca	1.1g sand	equimolar	10mg/L Xanthan Gum	-18.14	5.06	-19.36	1.85	-18.84	1.08	-18.04	0.72	-17.96	0.78			
low	7	Ca	none	oxidizing	10mg/L Xanthan Gum	-15.53	0.00	-15.51	0.00	-13,98	0,00	-17.69	0.00	-6.91	0.00			
high	7	Ca	none	oxidizing	10mg/L Xanthan Gum	-13.76	0.00	-6.85	0.00	-13.69	0.71	-17.43	0.58	-13.47	2.86			
low	7	Ca	1.1g sand	oxidizing	10mg/L Xanthan Gum	-25.37	5.48	-23.79	7.13	-23.85	2.68	-25.22	2.11	-20.50	1.10			
high	7	Ca	1.1g sand	oxidizing	10mg/L Xanthan Gum	-16.06	1.73	-16.16	1.44	-13.76	0.67	-13.98	0.57	-14.88	1.35			
low	3	P04	none	equimolar	10mg/L Xanthan Gum	-13.55	0.00	-17.48	0.00	-12.66	0,00	-19.50	0.61	-19.41	0,58			
hlgh	3	PO4	none	equimolar	10mg/L Xanthan Gum	-14.39	0.00	-16.84	0.99	-15.76	0.87	-16,28	0.95	-14.84	1.29			
low	3	PO4	1.1g sand	equimolar	10mg/L Xanthan Gum	-19.30	3.72	-20.23	1.97	-18.89	1,53	-21.08	4.58	-19.46	0.59			
high	3	P04	1.1g sand	equimolar	10mg/L Xanthan Gum	-18.36	2.51	-16.68	1.38	-17.86	1.16	-16,42	1.09	-13.81	1.24			
low	3	P04	none	oxidizing	10mg/L Xanthan Gum	-15.63	0.00	-20.10	0.99	-20.04	0.92	-18,93	0.92	-15.23	1.97			
high	3	PO4	none	oxidizing	10mg/L Xanthan Gum	-15.09	0.00	-16.17	0.42	-16.81	0.49	-16.23	0.74	-15.32	1.59			
low	3	P04	1.1g sand	oxidizing	10mg/L Xanthan Gum	-18.39	15.06	-17.35	5.18	-19.84	1.16	-19.28	1.01	-15.72	2.11			
high	3	PO4	1.1g sand	oxidizing	10mg/L Xanthan Gum	-15.05	5.19	-17.62	0.70	-17.72	0,64	-17.28	0.81	-11.70	0.47			
low	7	PO4	none	equimolar	10mg/L Xanthan Gum	-17.77	0.00	-18.20	0.00	-13.19	0.00	-14.78	0.98	-25.65	0.57			
high	7	PO4	none	equimolar	10mg/L Xanthan Gum	-10.38	0,00	-17.97	0.00	-21.82	0.55	-19.59	0.95	-23.49	0.63			
low	7	PO4	1.1g sand	equimolar	10mg/L Xanthan Gum	-24.14	3.23	-25.54	2.30	-23.40	1.47	-21.24	0,53	-23.27	1.01			
high	7	PO4	1.1g sand	equimolar	10mg/L Xanthan Gum	-26.20	3.51	-27.35	7.72	-20.67	1.35	-25.19	1.61	-28.73	0.78			
low	7	PO4	none	oxidizing	10mg/L Xanthan Gum	-15.38	0.00	-24.38	0.00	-18.91	0.00	-18.78	0.00	-31.59	0.99			
high	7	PO4	none	oxidizing	10mg/L Xanthan Gum	-2.92	0.00	-18.33	0.00	-21.12	0.45	-18.13	0.58	-8.31	0.36			
low	7	PO4	1.1g sand	oxidizing	10mg/L Xanthan Gum	-24.37	7.86	-25.39	2.37	-23.16	2.31	-22.19	1.61		0.92			
high	7	PO4	1.1g sand	oxidizing	10mg/L Xanthan Gum	-25.39	2.54	-26.16	1.58	-25.97	0.78	-24.99	0.66	-52.58	0.87			

Average particle size of samples of high concentration stabilization aids under various reaction conditions.

Zeta potential of samples of high concentration stabilization aids under various reaction conditions.

Appendix IX. Representative Results for Initial Mini-Column Range-Finding 1-D Transport Experiments

Total solids concentrations over pore volume of delivery for varied porous media

Mass of Mn (as $\overline{\text{MnO}}_2$) per kg of media in sectioned columns for varied porous media.