ЛАБОРАТОРНАЯ РАБОТА №1 "ШИФРОВАНИЕ ДАННЫХ МЕТОДОМ ПОДСТАНОВКИ"

Цель работы

Целью работы является знакомство с классическим криптографическим алгоритмом - алгоритмом шифрования данных при помощи подстановки.

Основные сведения

В современной криптографии рассматриваются два типа криптографических алгоритмов. Это классические криптографические алгоритмы, основанные на использовании секретных ключей, и новые криптографические алгоритмы с открытым ключом, основанные на использовании ключей двух типов: секретного (закрытого) и открытого.

В классической криптографии ("криптографии с секретным ключом" или "одноключевой криптографии") используется только одна единица секретной информации - ключ, знание которого позволяет отправителю зашифровать информацию в шифртекст, а получателю - расшифровать его. шифрования/дешифрования Операция c большой вероятностью невыполнима без знания секретного ключа. Поскольку при использовании классических криптографических алгоритмов ключ шифрования и ключ дешифрования совпадают И такие криптосистемы называются симметричными.

Подстановочное шифрование основывается на использовании некоторой взаимно однозначной функции $C_V:V^m \to V^m$, где V - алфавит шифруемых сообщений, m - длина блока открытого текста и блока

шифрограммы. В процессе шифрования открытый текст X разбивается на m-символьные блоки $x_1, x_2, ..., x_l$, каждый из которых заменяется m-символьным блоком $y_i = C_V(x_i), i = \overline{1,l}$. Дешифрование сводится к обратной замене m-символьных блоков y на m-символьные блоки $C_V^{-1}(y_i), i = \overline{1,m}$.

Например, пусть алфавит $V = \{0,1,...,9, < \text{пробел}>, A, B,..., Z, a, b,..., z, A, Б,..., Я, a, б,..., я<math>\}$, длина блока шифрограммы и блока открытого текста m=3. Допустим, что необходимо зашифровать открытый текст X= "Произвольный блок открытого текста". Разобьем открытый текст X на m-символьные (трехсимвольные в нашем примере) блоки: "Про", "изв", "оль", "ный", " $_{6}$ л", "ок $_{1}$ ", "отк", "рыт", "ого", " $_{1}$ те", "кст", " $_{2}$ ". Пробелы обозначены символом $_{1}$, при необходимости последний блок может быть дополнен с правой стороны необходимым количеством пробелов. Если пробел не входит в алфавит языка, то его функцию (функцию разделительного элемента) может выполнять любой другой символ алфавита, если стороны, обменивающиеся сообщениями, достигли соответствующей договоренности.

Для шифрования необходимо иметь функцию C_V , ставящую каждому трехсимвольному блоку открытого текста трехсимвольный блок шифртекста. Такая функция может быть задана, например, при помощи таблицы:

x_i	Про	ИЗВ	оль	ный	_бл	ок_	отк	рыт	ого	_те	кст	a	
$C_V(x_i)$	Атр	ф7ы	нрв	св_	ркк	ыт0	мкф	ц_й	1ся	щн_	ы34	вхш	•••

Каждый блок открытого текста заменяется при помощи функции C_V соответствующим блоком шифртекста. Таким образом, для

рассматриваемого примера шифртекст будет выглядеть следующим образом: "Атрф7ынрвсв_рккыт0мкфц_й1сящн_ы34вхш".

Поскольку функция C_V является взаимно однозначной, эта же таблица используется и для дешифрации шифртекста.

Очевидно, что приведенные в этом примере алфавит и принятый размер блока открытого текста требуют очень большой таблицы, задающей функцию шифрования: эта таблица должна задавать все возможные трехсимвольные сочетания из русских и латинских букв, а также цифр. Если в качестве алфавита рассматривать двоичный алфавит $\{0,1\}$, а размер блока открытого текста принять равным 7 (как это имеет место в случае обычного ASCII-кода), то для задания функции шифрования требуется таблица со 128 столбцами. В общем случае, требуется определить $|V|^m$ значений функции, где |V| - мощность множества V, то есть количество элементов алфавита. Разумеется, если заранее известно, что некоторые комбинации символов открытого текста являются недопустимыми, то указанное значение может быть уменьшено.

Индивидуальные задания

Задания выбираются студентами из нижеприведенной таблицы в соответствии со своими номерами по списку (по модулю 10).

	Задание	Для информации		
№ п.п.	V	m	V	$ V ^m$
1	{0,1}	5	2	32
2	{0,1,2}	3	3	27
3	{0,1,2,3,4}	2	5	25
4	{0,1,2,3,4,5}	2	6	36
5	{A,B,,Z}	1	26	26

	Задание	Для информации		
№ п.п.	V	m	V	$ V ^m$
6	{R,,A,A}	1	33	33
7	{x,y}	5	2	32
8	$\{x,y,z\}$	3	3	27
9	$\{a,b,c,d,e\}$	2	5	25
10	{а,б,в,г,д,е}	2	6	36

Порядок выполнения

- 1. Изучить основы шифрования данных методом подстановки.
- 2. В соответствии с индивидуальным заданием разработать алгоритм и написать программу, обеспечивающую ввод произвольного открытого текста и выдачу шифрограммы, полученную изучаемым методом, а также дешифрацию получение открытого текста из шифрограммы.

<u>Примечание</u>. Функцию шифрования, основываясь на данных индивидуального задания, определить самостоятельно.

Содержание отчета

- 1. Цель работы.
- 2. Индивидуальное задание.
- 3. Функция шифрования.
- 4. Текст программы, реализующей индивидуальное задание.
- 5. Пример открытого текста и соответствующей ему шифрограммы.
- 6. Выводы по работе.