© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°07

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I - Etude d'une fonction

Dans cette partie, on étudie la fonction $g: x \in \mathbb{R}^* \mapsto \frac{\sin(x)}{x(2-\cos(x))}$.

1. Montrer que g admet une limite finie ℓ en 0.

On prolonge g par continuité en 0 en posant $g(0) = \ell$.

- 2. Déterminer le développement limité à l'ordre 1 en 0 de la fonction g ainsi prolongée.
- **3.** Montrer que g est dérivable en 0 et déterminer g'(0).
- **4.** g est clairement dérivable sur \mathbb{R}^* . Donner une expression de g'(x) pour $x \in \mathbb{R}^*$.

On pose $\varphi(x) = 2x \cos(x) - x - 2\sin x + \sin(x)\cos(x)$ pour $x \in \mathbb{R}$.

- 5. Déterminer le signe de φ sur $[0,\pi]$ et préciser en quels points φ s'annule sur cet intervalle.
- **6.** En déduire que g est strictement décroissante sur $[0, \pi]$.
- 7. Montrer que g induit une bijection de $[0, \pi]$ sur un ensemble I à déterminer.

On notera h la bijection réciproque de la bijection induite par g de $[0, \pi]$ sur I.

Partie II - Etude d'une suite

- **8.** Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $g(x) = \frac{1}{n}$ admet une unique solution sur $[0, \pi]$. On notera x_n cette solution.
- **9.** Déterminer le sens de variation de la suite $(x_n)_{n \in \mathbb{N}^*}$.
- **10.** Montrer que la suite $(x_n)_{n \in \mathbb{N}^*}$ converge vers π .
- 11. Déterminer un équivalent simple de $x_n \pi$ lorsque n tend vers l'infini.

Partie III - Développement asymptotique

- 12. Déterminer le développement limité à l'ordre 2 de la fonction g en π .
- 13. En admettant que h admette un développement limité à l'ordre 2 en 0, déterminer celui-ci.
- 14. En déduire un développement asymptotique à trois termes de x_n lorsque n tend vers l'infini.