Curve fitting by linear smoothing

A) Suppose that we have $y_i = f(x_i) + \varepsilon_i$, and that we have a least-squares estimator $\hat{y}^* := \hat{\beta} x^*$ for a new point x^* . We know, then, that $\hat{\beta} = r \cdot S_y/S_x$, where r is the correlation between the predictors and the responses, S_y is the standard deviation of the responses, and S_x is that of the predictors. Let us rewrite this as follows, keeping in mind that we have assumed that we have subtracted the means already:

$$\hat{\beta} = r \frac{S_y}{S_x}$$

$$= \left(\frac{1}{n-1} \sum_{i=1}^n \frac{x_i y_i}{S_x S_y}\right) \frac{S_y}{S_x}$$

$$= \left(\sum_{i=1}^n \frac{1}{n-1} \frac{x_i}{S_x^2}\right) y_i$$

$$= \left(\sum_{i=1}^n \frac{x_i}{\sum_{i=1}^n x_i^2}\right) y_i$$

Therefore, if we set

$$w(x_i, x^*) := \frac{x_i x^*}{\sum_{i=1}^n x_i^2},$$

we get

$$\hat{y}^* = \hat{\beta} x^* = \sum_{i=1}^n w(x_i, x^*) y_i.$$

This smoother determines the value of \hat{y}^* with a weighted sum of the observed values y_i , where the weight of y_i is the associated predictor value scaled by the sum of squares of the predictors and multiplied by the new value x^* . As a result, this smoother is influenced by all observed points (x_i, y_i) for which $x_i \neq 0$, but is most influenced by those points for which the product $x_i y_i$ is large. In particular, this influence is the same regardless of where x^* is relative to the observed predictor values.

On the other hand, the smoother determined by the weight function

$$w_K(x_i, x^*) := \begin{cases} 1/K & \text{if } x_i \text{ is one of the } K \text{ closest sample points to } x^*, \text{ and } \\ 0 & \text{otherwise} \end{cases}$$

gives equal weight to the points whose predictor values are closest to x^* , and no weight to the others.