Séance XI : Convergence de variables aléatoires

A) Objectifs de la séance

A la fin de cette séance,

- je connais les différentes définitions de convergence d'une suite de v.a. : en probabilité, presque sûre, dans L^p ;
- je suis capable de montrer qu'une suite de variables aléatoires converge;
- je suis capable d'appliquer la Loi des Grands Nombres, en vérifiant ses hypothèses précises;
- je connais la notion de convergence en loi;
- je suis capable d'appliquer le Théorème Central Limite, en vérifiant ses hypothèses précises;
- je sais exprimer la différence entre les conclusions de la Loi des Grands Nombres et celles du Théorème Central Limite.

B) Pour se familiariser avec les concepts (à traiter avant les séances de TD)

Les questions XI.1 et XI.2 sont à traiter avant la séance de TD. Les corrigés sont disponibles sur internet.

Question XI.1

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires dans $L^2(\Omega,\mathcal{F},\mathbb{P})$, qui converge vers une variable aléatoire X dans $L^2(\Omega,\mathcal{F},\mathbb{P})$, lorsque $n\to\infty$.

Q. XI.1.1 Montrer que $\mathbb{V}ar(X_n)$ tend vers $\mathbb{V}ar(X)$ lorsque $n \to \infty$.

Question XI.2

Soient $(X_n)_{n\in\mathbb{N}}$ une suite de variable aléatoires réelles de lois gaussiennes $\mathcal{N}(\mu_n, \sigma_n^2)$. On suppose que $\lim_n \mu_n = \mu$ et $\lim_n \sigma_n = \sigma$.

Q. XI.2.1 Montrer que la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une v.a. X de loi normale $\mathcal{N}(\mu,\sigma^2)$.

C) Exercices

Exercice XI.1

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires de densités $(f_n)_{n\in\mathbb{N}^*}$ définies par

$$\forall x \in \mathbb{R}, \quad f_n(x) = \frac{n}{\pi(1 + n^2 x^2)},$$

pour tout $n \ge 1$.

E. XI.1.1 Quels sont les modes de convergence de X_n , lorsque n tend vers l'infini?

Exercice XI.2 (Théorème de Weierstrass)

Soient $f:[0,1]\to\mathbb{R}$ une application continue et $x\in[0,1]$. Pour tout $n\in\mathbb{N}^*$, on considère une variable aléatoire réelle S_n de loi binomiale B(n,x).

Dans cet exercice, on utilise la convergence de la v.a. S_n/n pour démontrer le théorème de Weierstrass.

E. XI.2.1 Montrer que $p_n: x \mapsto \mathbb{E}[f(\frac{S_n}{n})]$ est un polynôme en x appelé polynôme de Bernstein de f.

E. XI.2.2 En utilisant la continuité uniforme de f, montrer que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$,

$$|p_n(x) - f(x)| \le \mathbb{E}\left[\left|f(\frac{S_n}{n}) - f(x)\right|\right]$$

$$\le \epsilon \,\mathbb{P}\left(\left|\frac{S_n}{n} - x\right| < \delta\right) + 2\,\mathbb{P}\left(\left|\frac{S_n}{n} - x\right| \ge \delta\right) \sup_{x \in [0,1]} |f(x)|.$$

En déduire que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$,

$$|p_n(x)-f(x)| \le \epsilon + 2\frac{x(1-x)}{n\delta^2} \sup_{x\in[0,1]} |f(x)|.$$

E. XI.2.3 Démontrer le théorème de Weierstrass : Toute application continue de [0,1] dans \mathbb{R} est limite uniforme d'une suite de polynômes.

Exercice XI.3 (Formule de Stirling)

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. distribuées suivant la loi de Poisson $\mathcal{P}(1)$. On note

$$S_n = \sum_{k=1}^n X_k$$
 et $T_n = \frac{S_n - n}{\sqrt{n}}$.

Soit a > 0 un réel quelconque. On note $f_a : x \mapsto \inf(|x|, a)$.

E. XI.3.1 Montrer que si X est une v.a. réelle de $L^2(\Omega, \mathcal{F}, \mathbb{P})$,

$$\mathbb{E}[|X - \inf(X, a)|] \le \mathbb{E}[X \mathbb{1}_{\{X > a\}}] \le \left(\mathbb{E}[X^2] \mathbb{P}(X \ge a)\right)^{1/2}.$$

- **E. XI.3.2** Pour tout $n \ge 1$, préciser la loi de S_n et calculer $\mathbb{E}[T_n^2]$.
- **E. XI.3.3** Montrer que la suite $(T_n)_{n\in\mathbb{N}^*}$ converge en loi vers une variable aléatoire Y dont on précisera la loi. En déduire que $\mathbb{E}[f_a(T_n)]$ admet une limite lorsque $n\to\infty$.

En utilisant la question 1., montrer que la suite $(\mathbb{E}[|T_n|])_{n \in \mathbb{N}^*}$ converge vers $\mathbb{E}[|Y|]$.

- **E. XI.3.4** Montrer que $(\mathbb{E}[T_n^+])_{n\in\mathbb{N}^*}$ converge vers $\mathbb{E}[Y^+]$, où $x^+ = \max(x,0)$.
- **E. XI.3.5** Calculer $\mathbb{E}[Y^+]$ et $\mathbb{E}[T_n^+]$ pour tout $n \in \mathbb{N}^*$. En déduire la formule de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

D) Approfondissement

Exercice XI.4 (Convergence en loi et densité)

Soient $(X_n)_{n\in\mathbb{N}}$ et X des v.a. à valeurs dans \mathbb{R}^N et admettant les densités respectives $(f_n)_{n\in\mathbb{N}}$ et f. On suppose que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f.

E. XI.4.1 Etant donnée une fonction quelconque $h: \mathbb{R}^N \to \mathbb{R}$ mesurable bornée, on considère les fonctions h_1 et h_2 définies par

$$\forall x \in \mathbb{R}^d$$
; $h_1(x) = h(x) + M_h$; $h_2(x) = M_h - h(x)$

où $M_h = \sup_{x} |h(x)|$.

Montrer que pour i = 1,2

$$\mathbb{E}[h_i(X)] \leq \liminf_{n \to \infty} \mathbb{E}[h_i(X_n)].$$

E. XI.4.2 En écrivant $\mathbb{E}[h(X)]$ et $\mathbb{E}[h(X_n)]$ en fonction de $\mathbb{E}[h_1(X)]$ et $\mathbb{E}[h_1(X_n)]$ d'une part et en fonction de $\mathbb{E}[h_2(X)]$ et $\mathbb{E}[h_2(X_n)]$ d'autre part, montrer que

$$\mathbb{E}[h(X)] \leq \liminf_{n \to \infty} \mathbb{E}[h(X_n)]$$

et

$$\limsup_{n\to\infty} \mathbb{E}[h(X_n)] \leq \mathbb{E}[h(X)].$$

- **E. XI.4.3** En déduire que $X_n \stackrel{\mathcal{L}}{\to} X$.
- **E.** XI.4.4 Que se passe-t-il si $(f_n)_{n\in\mathbb{N}}$ ne converge que presque partout?

Exercice XI.5

Soit X une variable aléatoire à valeurs dans (E, \mathcal{E}) . On considère $A \in \mathcal{E}$ et on cherche à "estimer" la probabilité $\mathbb{P}(X \in A)$.

Pour cela, on considère une suite de v.a. $(X_n)_{n\in\mathbb{N}^*}$ i.i.d. de même loi que X, et on étudie pour tout $n\geq 1$

$$R_n = \operatorname{Card} \left\{ 1 \leq i \leq n : X_i \in A \right\}.$$

- **E. XI.5.1** Montrer que pour tout $n \ge 1$, R_n définit une variable aléatoire réelle.
- **E. XI.5.2** Calculer $\mathbb{E}[R_n]$ et \mathbb{V} ar (R_n) .
- **E. XI.5.3** Etudier la convergence en loi de la suite $(R_n)_{n \in \mathbb{N}^*}$.
- **E. XI.5.4** Application : Une étude préalable a montré que dans une production en grande série, 3% des pièces usinées par une certaine machine sont mauvaises. Un client reçoit une caisse de 500 pièces en provenance de cette machine.
 - (a) Quelle est la probabilité pour qu'il trouve moins de 1% de pièces mauvaises à l'intérieur de sa caisse?
 - (b) Un contrat avec l'usine de production lui permet de renvoyer la caisse s'il trouve plus de 5% de pièces mauvaises. Quelle est la probabilité qu'il renvoie la caisse?

Séance 11 : Eléments de correction des exercices

Solution de Q. XI.1.1 La convergence de $(X_n)_{n\in\mathbb{N}^*}$ vers X dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$ s'exprime par

$$||X_n - X||_{L^2}^2 = \mathbb{E}[(X_n - X)^2] \to 0$$
 lorsque $n \to \infty$.

L'inégalité triangulaire pour la norme $\|.\|_{L^2}$ implique

$$|||X_n||_{L^2} - ||X||_{L^2}| \le ||X_n - X||_{L^2},$$

ce qui permet de conclure que

$$||X_n||_{L^2}^2 = \mathbb{E}[X_n^2] \to ||X||_{L^2}^2 = \mathbb{E}[X^2]$$
 lorsque $n \to \infty$.

D'autre part, l'inégalité de Cauchy-Schwarz implique

$$\int_{\Omega} \left(X_n(\omega) - X(\omega) \right) \, \mathbb{P}(d\omega) \leq \left(\int_{\Omega} |X_n(\omega) - X(\omega)|^2 \, \mathbb{P}(d\omega) \right)^{1/2} \left(\int_{\Omega} 1 \, \mathbb{P}(d\omega) \right)^{1/2}.$$

Comme le 2ème membre de l'inégalité tend vers 0 lorsque $n \to \infty$, on en déduit que

$$\mathbb{E}[X_n] \to \mathbb{E}[X]$$
 lorsque $n \to \infty$.

On conclut de ces 2 résultats que

$$\operatorname{Var}(X_n) = \mathbb{E}[X_n^2] - (\mathbb{E}[X_n])^2 \to \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \operatorname{Var}(X)$$
 lorsque $n \to \infty$.

Solution de Q. XI.2.1 La fonction caractéristique de X_n est

$$arphi_{X_n}: \mathbb{R} o \mathbb{C}$$

$$t \mapsto arphi_{X_n}(t) = \exp\left(it\mu_n - \frac{1}{2}\sigma_n^2 t^2\right).$$

Comme $\lim_n \mu_n = \mu$ et $\lim_n \sigma_n = \sigma$, la fonction φ_{X_n} converge simplement vers la fonction

$$\varphi: \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \varphi(t) = \exp\left(it\mu - \frac{1}{2}\sigma^2t^2\right),$$

qui est la fonction caractéristique de la loi normale $\mathcal{N}(\mu, \sigma^2)$.

Le théorème de caractérisation de la convergence en loi par les fonctions caractéristiques (Théorème XI.3.8) permet de conclure.

Solution de E. XI.1.1 Comme $\int_{\mathbb{R}} |x|^p f_n(x) \lambda(dx) = +\infty$ pour $p \ge 1$, les variables aléatoires X_n ne sont pas dans $L^p(\Omega, \mathcal{F}, \mathbb{P})$, et par conséquent, X_n ne converge pas dans $L^p(\Omega, \mathcal{F}, \mathbb{P})$.

Si on fixe $\epsilon > 0$, on a

$$\mathbb{P}(|X_n| \le \epsilon) = 2 \int_0^{\epsilon} \frac{n}{\pi (1 + n^2 x^2)} dx = \frac{2}{\pi} \int_0^{n\epsilon} \frac{du}{1 + u^2} = \frac{2}{\pi} \arctan(n\epsilon).$$

D'où

$$\mathbb{P}(|X_n| > \epsilon) = 1 - \frac{2}{\pi} \arctan(n\epsilon) \to 0 \quad \text{lorsque } n \to \infty.$$

Ceci montre que X_n converge vers 0 en probabilité.

Les informations dont on dispose ne permettent pas de conclure quant à la convergence presque sûre. En fait, on peut montrer que les 2 cas sont possibles : convergence et non-convergence.

Solution de E. XI.2.1 L'application f étant continue sur le compact [0,1], elle est bornée et $\sup_{x \in [0,1]} |f(x)|$ est fini. On en déduit que la variable aléatoire $f(S_n/n)$ est intégrable.

En utilisant le théorème de transfert, on trouve

$$p_n(x) = \mathbb{E}\left[f\left(\frac{S_n}{n}\right)\right] = \int_{\Omega} f\left(\frac{S_n}{n}\right) \, \mathbb{P}(d\omega) = \int_{\mathbb{R}} f\left(\frac{t}{n}\right) \, P_{S_n}(dt).$$

Comme la loi de S_n est définie par

$$\mathbb{P}(S_n = k) = C_n^k x^k (1 - x)^{n-k},$$

on a

$$p_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \mathbb{P}(S_n = k)$$
$$= \sum_{k=0}^n f\left(\frac{k}{n}\right) C_n^k x^k (1-x)^{n-k}.$$

Solution de E. XI.2.2 La fonction f est continue sur le compact [0,1], elle est uniformément continue sur [0,1]. Ainsi, pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

On majore ensuite

$$|p_n(x) - f(x)| = \left| \mathbb{E}\left[f(\frac{S_n}{n}) - f(x) \right] \right| \le \mathbb{E}\left[\left| f(\frac{S_n}{n}) - f(x) \right| \right].$$

On considère alors l'événement $A_n = \{ |\frac{1}{n}S_n - x| < \delta \}$, et on décompose

$$\mathbb{E}\left[\left|f(\frac{S_n}{n}) - f(x)\right|\right] = \mathbb{E}\left[\left|f(\frac{S_n}{n}) - f(x)\right| \, \mathbb{1}_{A_n}\right] + \mathbb{E}\left[\left|f(\frac{S_n}{n}) - f(x)\right| \, \mathbb{1}_{A_n^c}\right]$$

$$\leq \epsilon \, \mathbb{E}[\mathbb{1}_{A_n}] + 2 \sup_{x \in [0,1]} |f(x)| \, \mathbb{E}[\mathbb{1}_{A_n^c}]$$

$$\leq \epsilon \, \mathbb{P}(A_n) + 2 \, \mathbb{P}(A_n^c) \sup_{x \in [0,1]} |f(x)|.$$

Pour majorer le deuxième terme, on utilise l'inégalité de Tchebychev

$$\mathbb{P}\left(\left|\frac{1}{n}S_n - x\right| \ge \delta\right) = \mathbb{P}(|S_n - \mathbb{E}[S_n]| \ge n\delta) \le \frac{\mathbb{V}\mathrm{ar}(S_n)}{(n\delta)^2} = \frac{x(1-x)}{n\delta^2},$$

qui implique donc

$$|p_n(x) - f(x)| \le \epsilon + 2\frac{x(1-x)}{n\delta^2} \sup_{x \in [0,1]} |f(x)|.$$

Solution de E. XI.2.3 On majore

$$\forall x \in [0,1], \quad x(1-x) \le \frac{1}{4},$$

ce qui implique

$$\forall x \in [0,1], |p_n(x) - f(x)| \le \epsilon + \frac{1}{2n\delta^2} \sup_{x \in [0,1]} |f(x)|.$$

On a donc montré que toute fonction continue f de [0,1] dans \mathbb{R} est limite uniforme de d'une suite de polynômes p_n .

Solution de E. XI.3.1 On peut écrire

$$|X - \inf(X, a)| = (X - a) \mathbb{1}_{\{X \ge a\}} \le X \mathbb{1}_{\{X \ge a\}},$$

qui implique, en prenant l'espérance

$$\mathbb{E}[|X - \inf(X, a)|] \le \mathbb{E}[X \, \mathbb{1}_{\{X > a\}}].$$

L'inégalité de Cauchy-Schwarz entraîne

$$\mathbb{E}[|X - \inf(X, a)|] \le \mathbb{E}[X \, \mathbb{1}_{\{X \ge a\}}] \le \left(\mathbb{E}[X^2] \, \mathbb{P}(X \ge a)\right)^{1/2}.$$

Solution de E. XI.3.2 S_n est la somme de n v.a. de Poisson $\mathcal{P}(1)$ indépendantes, donc S_n est distribuée suivant une loi de Poisson $\mathcal{P}(n)$ (à démontrer). On en déduit que $\mathbb{E}[S_n] = \mathbb{V}\mathrm{ar}(S_n) = n$ et

$$\mathbb{E}\left[\left(\frac{S_n-n}{\sqrt{n}}\right)^2\right]_{T_n^2}=1.$$

Solution de E. XI.3.3 D'après le théorème central limite, T_n converge en loi vers une variable aléatoire Y de loi normale $\mathcal{N}(0,1)$. Comme la fonction f_a est continue et bornée sur \mathbb{R} , on en déduit

$$\mathbb{E}[f_a(T_n)] \to \mathbb{E}[f_a(Y)]$$
 lorsque $n \to \infty$.

En appliquant la question 1) à |X|, on obtient

$$|\mathbb{E}[|X|] - \mathbb{E}[f_a(X)]| \le (\mathbb{E}[X^2] \mathbb{P}(|X| \ge a))^{1/2} \le \frac{\mathbb{E}[X^2]}{a},$$

grâce à l'inégalité de Markov.

On applique cette inégalité à T_n et Y,

$$|\mathbb{E}[|T_n|] - \mathbb{E}[f_a(T_n)]| \le \frac{1}{a}$$
 et $|\mathbb{E}[|Y|] - \mathbb{E}[f_a(Y)]| \le \frac{1}{a}$.

On en déduit

$$-\frac{2}{a} \leq \mathbb{E}[|T_n|] - \mathbb{E}[|Y|] - \mathbb{E}[f_a(T_n)] + \mathbb{E}[f_a(Y)] \leq \frac{2}{a}.$$

Comme pour tout a fixé, $\mathbb{E}[f_a(T_n)] - \mathbb{E}[f_a(Y)] \to 0$ quand $n \to \infty$, on peut énoncer : pour tout a > 0 et tout $\epsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que

$$n \geq n_0 \Rightarrow -\frac{2}{a} - \epsilon \leq \mathbb{E}[|T_n|] - \mathbb{E}[|Y|] \leq \frac{2}{a} + \epsilon,$$

d'où

$$\lim_{n\to\infty}\mathbb{E}[|T_n|]=\mathbb{E}[|Y|].$$

Remarque: on ne pouvait pas déduire ce résultat directement à partir de la convergence en loi, puisque la fonction valeur absolue n'est pas bornée. C'est pourquoi on l'approche par les fonctions f_a qui sont continues et bornées.

Solution de E. XI.3.4 Pour tout réel *x*, on a

$$x^+ = \frac{x + |x|}{2}$$
 où $x^+ = \max(x, 0)$.

Comme $\mathbb{E}[T_n] = \mathbb{E}[Y] = 0$, la question 3) implique

$$\lim_{n\to\infty} \mathbb{E}[T_n^+] = \mathbb{E}[Y^+].$$

Solution de E. XI.3.5 On calcule

$$\mathbb{E}[Y^+] = \mathbb{E}[Y.\mathbb{1}_{\{Y \ge 0\}}] = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} x \, e^{-x^2/2} \, dx = \frac{1}{\sqrt{2\pi}}.$$

D'autre part,

$$\mathbb{E}[T_n^+] = \mathbb{E}[T_n.\mathbb{1}_{\{T_n \ge 0\}}] = \sum_{j=n+1}^{\infty} \left(\frac{j-n}{\sqrt{n}}\right) P(S_n = j) = e^{-n} \sum_{j=n+1}^{\infty} \left(\frac{j-n}{\sqrt{n}}\right) \frac{n^j}{j!}$$

$$= \frac{e^{-n}}{\sqrt{n}} \lim_{k \to \infty} \sum_{j=n+1}^{k} \left(\frac{n^j}{(j-1)!} - \frac{n^{j+1}}{j!}\right)$$

$$= \frac{e^{-n}}{\sqrt{n}} \lim_{k \to \infty} \left(\frac{n^{n+1}}{n!} - \frac{n^{k+1}}{k!}\right) = \frac{e^{-n}}{\sqrt{n}} \frac{n^{n+1}}{n!} = \frac{e^{-n}n^n\sqrt{n}}{n!}.$$

On en déduit la formule de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

Solution de E. XI.4.1 Pour $i \in \{1,2\}$, la suite de fonctions $h_i f_n$ convergent simplement vers $h_i f$. Or, les fonctions h_1 et h_2 étant positives, les fonctions $h_1 f$ et $h_2 f$ le sont également. On peut alors utiliser le lemme de Fatou

$$\mathbb{E}[h_i(X)] = \int_{\mathbb{R}^N} h_i(x) f(x) \ \lambda(dx) \leq \liminf_{n \to \infty} \int_{\mathbb{R}^N} h_i(x) f_n(x) \ \lambda(dx) = \liminf_{n \to \infty} \mathbb{E}[h_i(X_n)].$$

Solution de E. XI.4.2 On a

$$\mathbb{E}[h(X)] = \mathbb{E}[h_1(X)] - M_h = M_h - \mathbb{E}[h_2(X)],$$

 $\mathbb{E}[h(X_n)] = \mathbb{E}[h_1(X_n)] - M_h = M_h - \mathbb{E}[h_2(X_n)].$

En utilisant la question précédente,

$$\mathbb{E}[h_1(X)] - M_h \leq \liminf_{n \to \infty} \mathbb{E}[h_1(X_n)] - M_h,$$

c'est-à-dire

$$\mathbb{E}[h(X)] \leq \liminf_{n \to \infty} \mathbb{E}[h(X_n)].$$

De même, l'inégalité

$$\mathbb{E}[h_2(X)] \leq \liminf_{n \to \infty} \mathbb{E}[h_2(X_n)]$$

implique

$$M_h - \mathbb{E}[h_2(X)] \ge M_h - \liminf_{n \to \infty} \mathbb{E}[h_2(X_n)].$$

Or, on a $\limsup x_n = -\liminf (-x_n)$ ce qui entraîne

$$M_h - \mathbb{E}[h_2(X)] \ge \limsup_{n \to \infty} (M_h - \mathbb{E}[h_2(X_n)])$$

et donc

$$\mathbb{E}[h(X)] \ge \limsup_{n \to \infty} \mathbb{E}[h(X_n)].$$

Solution de E. XI.4.3 Les deux inégalités précédentes montrent que

$$\liminf_{n\to\infty} \mathbb{E}[h(X_n)] = \limsup_{n\to\infty} \mathbb{E}[h(X_n)] = \mathbb{E}[h(X)],$$

ce qui implique

$$\lim_{n\to\infty}\mathbb{E}[h(X_n)]=\mathbb{E}[h(X)].$$

Comme ce résultat est valable pour toute fonction borélienne bornée, et donc en particulier pour toute fonction continue bornée, ceci montre que X_n converge en loi vers X.

Solution de E. XI.4.4 On remarque que toutes les étapes restent valides si on suppose que $(f_n)_{n\in\mathbb{N}}$ ne converge que presque partout vers f.

Solution de E. XI.5.1 Pour tout $n \ge 1$, on peut écrire R_n sous la forme

$$R_n = \sum_{i=1}^n \mathbb{1}_{\{X_i \in A\}}.$$

Comme les X_i sont mesurables et $A \in \mathcal{E}$, on a

$$\{X_i \in A\} = X_i^{-1}(A) \in \mathcal{F}$$

et donc $\mathbbm{1}_{\{X_i\in A\}}$ est mesurable. Il s'ensuit que R_n est une variable aléatoire réelle.

Solution de E. XI.5.2 Les variables aléatoires X_i sont i.i.d. (indépendantes et de même loi) et vérifient

$$\mathbb{E}\left[\mathbb{1}_{\{X_i \in A\}}\right] = \mathbb{P}(X_i \in A)$$

$$\operatorname{Var}\left(\mathbb{1}_{\{X_i \in A\}}\right) = \mathbb{P}(X_i \in A) - \left(\mathbb{P}(X_i \in A)\right)^2 = \mathbb{P}(X_i \in A) \, \mathbb{P}(X_i \notin A).$$

On trouve donc

$$\mathbb{E}[R_n] = \sum_{i=1}^n E\left[\mathbb{1}_{\{X_i \in A\}}\right] = n \, \mathbb{P}(X_1 \in A)$$

$$\operatorname{Var}(R_n) = \sum_{i=1}^n \operatorname{Var}\left(\mathbb{1}_{\{X_i \in A\}}\right) = n \, \mathbb{P}(X_1 \in A) \, \mathbb{P}(X_1 \notin A).$$

Solution de E. XI.5.3 Les variables aléatoires $\mathbb{1}_{\{X_i \in A\}}$ sont i.i.d. et intégrables donc on peut appliquer le théorème central limite :

$$\frac{R_n - n \, \mathbb{P}(X_1 \in A)}{\sqrt{n} \, \sqrt{\mathbb{P}(X_1 \in A) \, \mathbb{P}(X_1 \notin A)}}$$

converge en loi vers une variable aléatoire de loi $\mathcal{N}(0,1)$.

Solution de E. XI.5.4 Ici, pour toute pièce fabriquée i, on définit la variable aléatoire X_i qui vaut 1 si la pièce est mauvaise et 0 sinon.

Remarquons que X_i est une variable de Bernoulli. En effet,

$$X_i = \left\{ \begin{array}{ll} 1 & \text{avec probabilité } p = 0.03 \\ 0 & \text{avec probabilité } 1 - p. \end{array} \right.$$

Le nombre de pièces mauvaises parmi les 500 reçues est

$$R_{500} = \text{Card}\{1 \le i \le 500 : X_i = 1\}.$$

(a) On cherche la probabilité $\mathbb{P}(R_{500} \le 5)$. Grâce à la question 3), on peut approximer

$$\mathbb{P}(R_{500} \le 5) = \mathbb{P}\left(\frac{R_{500} - 500 \times 0.03}{\sqrt{500 \times 0.03 \times 0.97}} \le \frac{5 - 500 \times 0.03}{\sqrt{500 \times 0.03 \times 0.97}}\right)$$
$$= \mathbb{P}\left(\frac{R_{500} - 15}{3.814} \le -2.622\right) \approx \mathbb{P}(U \le -2.622)$$

où U est une variable aléatoire de loi $\mathcal{N}(0,1)$.

On trouve alors

$$\mathbb{P}(R_{500} \le 5) \approx 4.37 \, 10^{-3}.$$

(b) La probabilité recherchée est $\mathbb{P}(R_{500} \ge 25)$.

$$\mathbb{P}(R_{500} \ge 25) = \mathbb{P}\left(\frac{R_{500} - 500 \times 0.03}{\sqrt{500 \times 0.03 \times 0.97}} \ge \frac{25 - 500 \times 0.03}{\sqrt{500 \times 0.03 \times 0.97}}\right)$$
$$= \mathbb{P}\left(\frac{R_{500} - 15}{3.814} \ge 2.622\right) \approx \mathbb{P}(U \ge 2.622)$$

où U est une variable aléatoire de loi $\mathcal{N}(0,1)$.

D'où

$$\mathbb{P}(R_{500} \ge 25) \approx 4.37 \ 10^{-3}.$$