# Intrusion Detection, Access Control and Other Security Tools

## Learning Objectives Upon completion of this material, you should be able to:

- Identify and describe the categories and operating models of intrusion detection systems
- Identify and describe honeypots, honeynets, and padded cell systems
- List and define the major categories of scanning and analysis tools, and describe the specific tools used within each of these categories
- Discuss various approaches to access control

#### Introduction

- Intrusion: type of attack on information assets in which instigator attempts to gain entry into or disrupt system with harmful intent
- Intrusion detection: consists of procedures and systems created and operated to detect system intrusions
- Intrusion reaction: encompasses actions an organization undertakes when intrusion event is detected
- Intrusion correction activities: finalize restoration of operations to a normal state
- Intrusion prevention: consists of activities that seek to deter an intrusion from occurring

### Intrusion Detection Systems (IDSs)

- Detects a violation of its configuration and activates alarm
- Many IDSs enable administrators to configure systems to notify them directly of trouble via e-mail or pagers
- Systems can also be configured to notify an external security service organization of a "break-in"

#### **IDS Terminology**

- Alert or alarm
- False negative
  - The failure of an IDS system to react to an actual attack event.
- False positive
  - An alarm or alert that indicates that an attack is in progress or that an attack has successfully occurred when in fact there was no such attack.
- Confidence value
- Alarm filtering

#### **IDS Classification**

- All IDSs use one of two detection methods:
  - Signature-based
  - Statistical anomaly-based
- IDSs operate as:
  - network-based
  - host-based
  - application-based systems

#### **Signature-Based IDS**

- Examine data traffic in search of patterns that match known signatures
- Widely used because many attacks have clear and distinct signatures
- Problem with this approach is that as new attack strategies are identified, the IDS's database of signatures must be continually updated

#### **Statistical Anomaly-Based IDS**

- The statistical anomaly-based IDS (stat IDS) or behavior-based IDS sample network activity to compare to traffic that is known to be normal
- When measured activity is outside baseline parameters or clipping level, IDS will trigger an alert
- IDS can detect new types of attacks
- Requires much more overhead and processing capacity than signature-based
- May generate many false positives



FIGURE 7-1 Intrusion Detection Systems

#### **Network-Based IDS (NIDS)**

- Resides on computer or appliance connected to segment of an organization's network; looks for signs of attacks
- When examining packets, a NIDS looks for attack patterns
- Installed at specific place in the network where it can watch traffic going into and out of particular network segment

### NIDS Signature Matching

- To detect an attack, NIDSs look for attack patterns
- Done by using special implementation of TCP/IP stack:
  - In process of protocol stack verification, NIDSs look for invalid data packets
  - In application protocol verification, higher-order protocols are examined for unexpected packet behavior or improper use

#### Advantages and Disadvantages of NIDSs

- Good network design and placement of NIDS can enable organization to use a few devices to monitor large network
- NIDSs are usually passive and can be deployed into existing networks with little disruption to normal network operations
- NIDSs not usually susceptible to direct attack and may not be detectable by attackers

## Advantages and Disadvantages of NIDSs (continued)

- Can become overwhelmed by network volume and fail to recognize attacks
- Require access to all traffic to be monitored
- Cannot analyze encrypted packets
- Cannot reliably ascertain if attack was successful or not
- Some forms of attack are not easily discerned by NIDSs, specifically those involving fragmented packets

#### **Host-Based IDS**

- Host-based IDS (HIDS) resides on a particular computer or server and monitors activity only on that system
- Benchmark and monitor the status of key system files and detect when intruder creates, modifies, or deletes files
- Most HIDSs work on the principle of configuration or change management
- Advantage over NIDS: can usually be installed so that it can access information encrypted when traveling over network

### Advantages and Disadvantages of HIDSs

- Can detect local events on host systems and detect attacks that may elude a network-based IDS
- Functions on host system, where encrypted traffic will have been decrypted and is available for processing
- Not affected by use of switched network protocols
- Can detect inconsistencies in how applications and systems programs were used by examining records stored in audit logs

## Advantages and Disadvantages of HIDSs (continued)

- Pose more management issues
- Vulnerable both to direct attacks and attacks against host operating system
- Does not detect multi-host scanning, nor scanning of non-host network devices
- Susceptible to some denial-of-service attacks
- Can use large amounts of disk space
- Can inflict a performance overhead on its host systems

#### Application-Based IDS

- Application-based IDS (AppIDS) examines application for abnormal events
- AppIDS may be configured to intercept requests:
  - File System
  - Network
  - Configuration
  - Execution Space

### Advantages and Disadvantages of AppIDSs

- Advantages
  - Aware of specific users; can observe interaction between application and user
  - Able to operate even when incoming data is encrypted
- Disadvantages
  - More susceptible to attack
  - Less capable of detecting software tampering
  - May be taken in by forms of spoofing

#### Selecting IDS Approaches and Products

- Technical and policy considerations
  - What is your systems environment?
  - What are your security goals and objectives?
  - What is your existing security policy?
- Organizational requirements and constraints
  - What are requirements that are levied from outside the organization?
  - What are your organization's resource constraints?

#### **IDS Control Strategies**

- An IDS can be implemented via one of three basic control strategies
  - Centralized: all IDS control functions are implemented and managed in a central location
  - Fully distributed: all control functions are applied at the physical location of each IDS component
  - Partially distributed: combines the two; while individual agents can still analyze and respond to local threats, they report to a hierarchical central facility to enable organization to detect widespread attacks







#### IDS Deployment Overview

- Like decision regarding control strategies, decisions about where to locate elements of intrusion detection systems can be art in itself
- Planners must select deployment strategy based on careful analysis of organization's information security requirements but, at the same time, causes minimal impact
- NIDS and HIDS can be used in tandem to cover both individual systems that connect to an organization's networks and networks themselves

#### Deploying Network-Based IDSs

- NIST recommends four locations for NIDS sensors
  - Location 1: behind each external firewall, in the network DMZ
  - Location 2: outside an external firewall
  - Location 3: On major network backbones
  - Location 4: On critical subnets



FIGURE 7-7 Network IDS Sensor Locations<sup>17</sup>

### Deploying Host-Based IDSs

- Proper implementation of HIDSs can be painstaking and time-consuming task
- Deployment begins with implementing most critical systems first
- Installation continues until either all systems are installed, or the organization reaches planned degree of coverage it is willing to live with

#### Measuring the Effectiveness of IDSs

- IDSs are evaluated using two dominant metrics:
  - Administrators evaluate the number of attacks detected in a known collection of probes
  - Administrators examine the level of use at which IDSs fail
- Evaluation of IDS might read: at 100 Mb/s, IDS was able to detect 97% of directed attacks
- Since developing this collection can be tedious, most IDS vendors provide testing mechanisms that verify systems are performing as expected

## Measuring the Effectiveness of IDSs (continued)

- Some of these testing processes will enable the administrator to:
  - Record and retransmit packets from real virus or worm scan
  - Record and retransmit packets from a real virus or worm scan with incomplete TCP/IP session connections (missing SYN packets)
  - Conduct a real virus or worm scan against an invulnerable system

### Honeypots, Honeynets, and Padded Cell Systems

- Honeypots: decoy systems designed to lure potential attackers away from critical systems and encourage attacks against the themselves
- Honeynets: collection of honey pots connecting several honey pot systems on a subnet
- Honeypots designed to:
  - Divert attacker from accessing critical systems
  - Collect information about attacker's activity
  - Encourage attacker to stay on system long enough for administrators to document event and, perhaps, respond



FIGURE 7-8 Deception Toolkit

## Honeypots, Honeynets, and Padded Cell Systems (continued)

- Padded cell: honey pot that has been protected so it cannot be easily compromised
- In addition to attracting attackers with tempting data, a padded cell operates in tandem with a traditional IDS
- When the IDS detects attackers, it seamlessly transfers them to a special simulated environment where they can cause no harm—the nature of this host environment is what gives approach the name padded cell

## Honeypots, Honeynets, and Padded Cell Systems (continued)

- Advantages
  - Attackers can be diverted to targets they cannot damage
  - Administrators have time to decide how to respond to attacker
  - Attackers' actions can be easily and more extensively monitored, and records can be used to refine threat models and improve system protections
  - Honey pots may be effective at catching insiders who are snooping around a network

## Honeypots, Honeynets, and Padded Cell Systems (continued)

- Disadvantages
  - Legal implications of using such devices are not well defined
  - Honey pots and padded cells have not yet been shown to be generally useful security technologies
  - Expert attacker, once diverted into a decoy system, may become angry and launch a more hostile attack against an organization's systems
  - Administrators and security managers will need a high level of expertise to use these systems

#### **Trap and Trace Systems**

- Use combination of techniques to detect an intrusion and trace it back to its source
- Trap usually consists of honeypot or padded cell and alarm
- Legal drawbacks to trap and trace
  - Enticement: process of attracting attention to system by placing tantalizing bits of information in key locations
  - Entrapment: action of luring an individual into committing a crime to get a conviction.
  - Enticement is legal & ethical, whereas entrapment is not

#### Scanning and Analysis Tools

- Typically used to collect information that attacker would need to launch successful attack
- Attack protocol is series of steps or processes used by an attacker, in a logical sequence, to launch attack against a target system or network
- Footprinting: the organized research of Internet addresses owned or controlled by a target organization



FIGURE 7-9 Sam Spade

#### Scanning and Analysis Tools (continued)

- Fingerprinting: systematic survey of all of target organization's Internet addresses collected during the footprinting phase
- Fingerprinting reveals useful information about internal structure and operational nature of target system or network for anticipated attack
- These tools are valuable to network defender since they can quickly pinpoint the parts of the systems or network that need a prompt repair to close the vulnerability

#### Port Scanners

- Tools used by both attackers and defenders to identify computers active on a network, and other useful information
- Can scan for specific types of computers, protocols, or resources, or their scans can be generic
- The more specific the scanner is, the better it can give attackers and defenders useful information

### Firewall Analysis Tools

- Several tools automate remote discovery of firewall rules and assist the administrator in analyzing the rules
- Administrators who feel wary of using same tools that attackers use should remember:
  - It is intent of user that will dictate how information gathered will be used
  - In order to defend a computer or network well, necessary to understand ways it can be attacked
- A tool that can help close up an open or poorly configured firewall will help network defender minimize risk from attack

#### **Packet Sniffers**

- Network tool that collects copies of packets from network and analyzes them
- Can provide network administrator with valuable information for diagnosing and resolving networking issues
- In the wrong hands, a sniffer can be used to eavesdrop on network traffic
- To use packet sniffer legally, administrator must be on network that organization owns, be under direct authorization of owners of network, and have knowledge and consent of the content creators

#### Wireless Security Tools

- Organization that spends its time securing wired network and leaves wireless networks to operate in any manner is opening itself up for security breach
- Security professional must assess risk of wireless networks
- A wireless security toolkit should include the ability to sniff wireless traffic, scan wireless hosts, and assess level of privacy or confidentiality afforded on the wireless network

#### **Access Control Devices**

- Successful access control system includes number of components, depending on system's needs for authentication and authorization
- Strong authentication requires at least two forms of authentication to authenticate the supplicant's identity
- The technology to manage authentication based on what a supplicant knows is widely integrated into the networking and security software systems in use across the IT industry

#### Authentication

- Authentication is validation of a supplicant's identity
- Four general ways in which authentication is carried out:
  - What a supplicant knows
  - What a supplicant has
  - Who a supplicant is
  - What a supplicant produces

#### Summary

- Intrusion detection system (IDS) detects violation of its configuration and activates alarm
- Network-based IDS (NIDS) vs. host-based IDS (HIDS)
- Selecting IDS products that best fit organization's needs is challenging and complex
- Honeypots are decoy systems; two variations are known as honeynets and padded cell systems

#### Summary

- Scanning and analysis tools are used to pinpoint vulnerabilities in systems, holes in security components, and unsecured aspects of network
- Authentication is validation of prospective user's (supplicant's) identity