In the Claims:

Listing of all claims:

1	 (Currently Amended) A stand alone welding
2	power supply comprising;
3	a primary mover mechanically coupled to a rotating
4	shaft;
5	a generator having a rotor mechanically coupled to
6	the shaft, and further having a stator magnetically
7	coupled to the rotor, whereby the generator provides a
8	generator output;
9	an inverter having an inverter input in electrical
10	communication with the generator output, wherein the
11	inverter inverts power from the inverter input to
12	provide an inverter output;
13	a controller coupled to the primary mover and
14	having a feedback input; and
15	a feedback circuit coupled to the welding inverter
16	output and the feedback input wherein a feedback signal
17	responsive to at least one welding inverter output
18	operating parameter is provided to the feedback input.
1	2. (Original) The power supply of claim 1
2	wherein the primary mover includes a speed control and the
3	controller includes an output coupled to the speed control,
4	wherein the speed of the primary mover is controlled in
5	response to the feedback signal.
1	3. (Original) The power supply of claim 2
2	wherein the speed control includes an idle/run selector for
3	selecting between an idle speed and a run speed in response

to the feedback signal.

- 1 4. (Original) The power supply of claim 1
- 2 wherein the controller includes means for controlling at
- least one of a throttle position, a fuel pump, an injection
- 4 timer, a fuel to air ratio, fuel consumption and ignition
- 5 timing.
- 1 5. (Currently Amended) The power supply of
- 2 claim 1 wherein the at least one operating parameter is
- 3 welding an inverter current.
- 1 6. (Currently Amended) The power supply of
- 2 claim 1 wherein the at least one operating parameter is
- 3 welding an inverter voltage.
- 7. (Currently Amended) The power supply of
- 2 claim 5 wherein the at least one operating parameter further
- includes welding an inverter voltage.
- 1 8. (Original) The power supply of claim 7
- wherein the feedback circuit includes a multiplier, wherein
- the multiplier multiplies signals representative of voltage
- and current to obtain a signal representative of power, and
- further wherein the feedback circuit includes an integrator
- to integrate the signal representative of power.
- 9. (Original) The power supply of claim 2
- further including a rectifier that couples the inverter to
- the ac output, and wherein the inverter includes at least
- 4 one input energy storage device that stores rectified energy
- and wherein the controller causes the primary mover to
- 6 increase speed when the energy stored decreases past a
- 7 threshold.

the output.

3

4

5

6

7

8

9

10

11

12

13

14

15

No. 10/629367

Appl.	L. No. 10/629367	
1	10. (Original) The powe	r supply of claim 1
2	wherein the operating parameter is	a function of a ripple in

- 11. (Currently Amended) The power supply of 1 claim 1 further including a rectifier coupled to the 2 inverter output to provide a dc welding inverter output. 3
- 12. (Original) The power supply of claim 1 1 wherein the generator is a dc generator. 2
- 13. (Currently Amended) The power supply of 1 claim 1 wherein the generator is an ac dc generator, and the 2 inverter incudes includes an input rectifier. 3
- 14. (Currently Amended) A stand alone welding 1 power supply comprising; 2 3

a primary mover mechanically coupled to a rotating shaft;

> a generator having a rotor mechanically coupled to the shaft, and further having a stator magnetically coupled to the rotor, whereby the generator provides a generator output;

> an inverter having an inverter input in electrical communication with the generator output, wherein the inverter inverts power from the inverter input to provide an inverter output;

control means, coupled to the primary mover and having a feedback input, for controlling the primary mover; and

feedback means, coupled to the welding inverter 16 output and the feedback input, for providing a feedback 17

Appl.	No.	10/629367
-------	-----	-----------

6

signal responsive to at least one welding inverter
output operating parameter to the feedback input.

response to the feedback signal.

- 1 15. (Original) The power supply of claim 14
 2 wherein the primary mover speed control means for
 3 controlling the primary mover's speed, and the control means
 4 includes an output coupled to the speed control means,
 5 wherein the speed of the primary mover is controlled in
- 16. (Original) The power supply of claim 15
 wherein the speed control means includes an idle/run
 selector means for selecting between an idle speed and a run
 speed in response to the feedback signal.
- 17. (Original) The power supply of claim 14
 2 wherein the control means includes means for controlling at
 3 least one of a throttle position, a fuel pump, an injection
 4 timer, a fuel to air ratio, fuel consumption and ignition
 5 timing.
- 18. (Currently Amended) The power supply of claim 14 wherein the at least one operating parameter is welding inverter current.
- 19. (Currently Amended) The power supply of claim 14 wherein the at least one operating parameter is welding inverter voltage.

20-39. (Cancelled.)

- 40. (New) The power supply of claim 18 wherein the at least one operating parameter further includes inverter voltage.
 - feedback means includes a multiplier means for multiplying signals representative of voltage and current to obtain a signal representative of power, and further wherein the feedback means includes an integrator means for integrating the signal representative of power.
 - 1 42. (New) The power supply of claim 15 wherein the
 2 inverter includes at least one input energy storage means
 3 for storing energy to be inverted by the inverter, and
 4 wherein the control means further includes means for
 5 increasing primary mover's speed when the energy stored
 6 decreases past a threshold.
 - 1 43. (New) The power supply of claim 14 wherein the operating parameter is a function of a ripple in the output.
 - 1 44. (New) The power supply of claim 14 further 2 including a rectifier means coupled to the inverter output 3 for providing a dc inverter output.
 - 1 45. (New) The power supply of claim 14 wherein the generator is a dc generator.
 - 46. (New) The power supply of claim 14 wherein the generator is an ac dc generator and the inverter includes a rectifier.

Appl.	No. 10/629367		
1	47. (New) A method of providing power		
2	comprising;		
3	generating an electrical output with an engine and		
4	generator;		
5	inverting the electrical input to provide an ac		
6	inverter output;		
7	controlling the engine using feedback indicative		
8	of an inverter output operating parameter.		
1.	48. (New) The method of claim 47 wherein the		
2	engine speed is controlled in response to the feedback.		
4	49. (New) The method of claim 48 wherein the step		
1	of controlling includes the step of selecting between an		
2	idle speed and a run speed in response to the feedback.		
3	Idle speed and a tun speed in respect		
1	50. (New) The method of claim 47 wherein the step		
2	of controlling includes controlling at least one of a		
3	throttle position, a fuel pump, an injection timer, a fuel		
4	to air ratio, fuel consumption and ignition timing.		
· 1	51. (New) The method of claim 48 including the		
2	step of providing feedback responsive to an inverter		
3 .	current.		
1	52. (New) The method of claim 48 including the		
2	step of providing feedback responsive to an inverter		
3	voltage.		
-4	53. (New) The method of claim 48 including the		
1	step of providing feedback responsive to an inverter power.		
2	steb or browning reconsider responsive to an things bount.		

- 54. (New) The method of claim 43 wherein step of providing feedback further includes the steps of multiplying signals representative of voltage and current to obtain a signal representative of power, and integrating the signal representative of power.
- the step of storing energy after rectification and wherein the step of controlling includes the step of increasing engine speed when the energy stored decreases past a threshold.
- 56. (New) The method of claim 51 wherein the feedback is responsive to a ripple in the output.
- 57. (New) The method of claim 51 further including the step of rectifying the inverter output to provide a dc inverter output.
- 58. (New) The method of claim 47 wherein the step of generating includes the step of generating a dc output.
- 59. (New) The method of claim 47 wherein the step of generating includes the step of generating an ac dc output and the step of inverting includes the step of rectifying.