Machine Learning Homework 3

PB22061259 Liu Pei

Exercise 1: Affine Sets

1

(a)

It is a subspace to it is a affine set:

Because U is a subspace,so any vectors $\mathbf{x_1}, \mathbf{x_2}$ in U,where $\mathbf{x_1} \neq \mathbf{x_2}$, we have $\forall \theta \in \mathbb{R}, \theta \mathbf{x_1} + (1 - \theta) \mathbf{x_2} \in U$, whice means U is a affine set.

It is a affine set to it is a subspace:

Because U is a affine set,so any vectors $\mathbf{x_1},\mathbf{x_2}$ in U ,we have $\forall \theta \in \mathbb{R}, \theta \mathbf{x_1} + (1-\theta)\mathbf{x_2} \in U$. Because $\mathbf{0} \in U$,o we can let $\mathbf{x_2} = \mathbf{0}$

Then we can get $\forall \mathbf{x_1} \in U, \forall \theta \in \mathbb{R}, \theta \mathbf{x_1} \in U$.

Then ,let $\theta=0.5$,we can get $\forall \mathbf{x_1},\mathbf{x_2}\in U, 0.5(\mathbf{x_1}+\mathbf{x_2})\in U, \mathbf{x_1}+\mathbf{x_2}\in U.$

 $\mathrm{So}_{\cdot}U$ is a affine set if it is a subspace.

In summary, $\!U\!$ is a affine set if and only if it is a subspace.

(b)

The question is also equivalent to the following:

If $U \subset \mathbb{R}^n$ is an affine set, there is a unique subspace $V \subset \mathbb{R}^n$ such that $V = U - \mathbf{u}$ for any $\mathbf{u} \in U$.

Firstly ,we can show that \boldsymbol{V} is a subspace:

Because U is a affine set,so any vectors ${f u}$ in U ,we have the vector ${f u}$ is in U so that ${f 0}\in V$

Then,we consider $\forall \mathbf{v_1} = (\mathbf{u_1} - \mathbf{u}) \in V$,we have $\forall \alpha \in \mathbb{R}, \alpha \mathbf{v_1} = [\alpha(\mathbf{u_1} - \mathbf{u}) = \alpha \mathbf{u_1} + (1 - \alpha)\mathbf{u_1}] - \mathbf{u} \in V$,whice means $\forall \alpha \in \mathbb{R}, \alpha \mathbf{v_1} \in V$.

Then ,we consider $\forall \mathbf{v_1}, \mathbf{v_2} \in V$:

$$\mathbf{v_1} + \mathbf{v_2} = \mathbf{u_1} - \mathbf{u} + \mathbf{u_2} - \mathbf{u}$$

= $2[0.5(\mathbf{u_1} + 0.5\mathbf{u_2}) - \mathbf{u}]$

So $\mathbf{v_1} + \mathbf{v_2}$ is in V ,which means V is a subspace.

Secondly, we can show that V is unique:

If we have two different subspaces V_1 and V_2 such that $V_1 = U - \mathbf{u}$ and $V_2 = U - \mathbf{u'}$, where $\mathbf{u}, \mathbf{u'} \in U$, then we can get:

There is a vector $\mathbf{v_1}$ such that $\mathbf{v_1} \in V_1$ and $\mathbf{v_1} \not\in V_2$.

$$2\mathbf{v_1} = 2\mathbf{u_1} - 2\mathbf{u} = [2\mathbf{u_1} - 2\mathbf{u} + \mathbf{u'}] - \mathbf{u'} = [2\mathbf{u_1} - (2\mathbf{u} - \mathbf{u'})] - \mathbf{u'}$$

We have $2\mathbf{u}-\mathbf{u'}\in U$,so $[2\mathbf{u_1}-(2\mathbf{u}-\mathbf{u'})]\in U$.

So, $[2\mathbf{u_1} - (2\mathbf{u} - \mathbf{u'})] - \mathbf{u'}$ in V_2 .

It contradicts with the fact that $\mathbf{v_1} \in V_1$ and $\mathbf{v_1} \not\in V_2$. So, the suspution is wrong, which means V is unique.

2

(a)

We consider $\forall \mathbf{x_1}, \mathbf{x_2} \in C$,we have

$$\forall \theta \in \mathbb{R}, \mathbf{A}(\theta \mathbf{x_1} + (1 - \theta)\mathbf{x_2}) = \theta \mathbf{A}\mathbf{x_1} + (1 - \theta)\mathbf{A}\mathbf{x_2} = \theta \mathbf{b} + (1 - \theta)\mathbf{b} = \mathbf{b}$$

Which means

$$\forall \mathbf{x_1}, \mathbf{x_2} \in C, \forall \theta \in \mathbb{R}, \theta \mathbf{x_1} + (1 - \theta) \mathbf{x_2} \in C$$

So C is a affine set.

(b)

We consider

If $U \subset \mathbb{R}^n$ is an affine set, there is a unique subspace $V \subset \mathbb{R}^n$ such that $U = V + \mathbf{u}$ for any $\mathbf{u} \in U$.

And, for the subspace V, also can be a matrix A's null space.i.e.

There exists $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$

$$A\mathbf{x} = \mathbf{0}, \forall \mathbf{x} \in V, \text{where } m \leq n.$$

If we let $\mathbf{b} = A\mathbf{u}$, Then ,we have

set
$$C = {\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}} = U$$

Exercise 2: Convex Sets

1

(a)

Suppose $\mathbf{cl}C$ is not a convex set, then there exists $\mathbf{x}, \mathbf{y} \in \mathbf{cl}C$ such that $\exists \theta \in [0, 1]$ such that $\theta \mathbf{x} + (1 - \theta)\mathbf{y} \notin \mathbf{cl}C$.

So,we can get :The sequences $\{x_n\}$ and $\{y_n\}$ in C converge to $\mathbf x$ and $\mathbf y$ respectively.

Because C is convex set, so

$$\theta \mathbf{x_n} + (1 - \theta) \mathbf{y_n} \in C, \forall \theta \in [0, 1]$$

Then we can get the sequence $\{\theta \mathbf{x_n} + (1-\theta)\mathbf{y_n}\}$ converges to $\theta \mathbf{x} + (1-\theta)\mathbf{y} \in \mathbf{cl}C$. It is ridiculous, so $\mathbf{cl}C$ is not a convex set.

Here,we are going to prove that $\mathbf{int}C$ is a convex set:

 $\forall \mathbf{x}, \mathbf{y} \in \mathbf{int}C$,their open balls $\mathbf{B}(\mathbf{x}, \mathbf{r_x})$ and $\mathbf{B}(\mathbf{y}, \mathbf{y_x}) \in C$ Because C is a convex, we choose a point $\mathbf{z} \in \mathbf{B}(\mathbf{x}, \mathbf{r_x})$ and $\mathbf{w} \in \mathbf{B}(\mathbf{y}, \mathbf{r_y})$,we have the line between \mathbf{z} and \mathbf{w} is also in C.

Look at this picture:

Then we can get any point in the line between x, y should have a open ball is also in C.

Which means int C is also a convex set.

According to the definition ,we can say

$$\forall \mathbf{x}, \mathbf{y} \in \mathbf{relint}C, \forall \theta \in [0, 1], \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C$$

If $heta \mathbf{x} + (1 - heta) \mathbf{y} \in \mathbf{relint}C$,we have $\mathbf{relint}C$ is a convex set.

So,we are goint to prove that $\theta \mathbf{x} + (1 - \theta) \mathbf{y}$ is a relative interior point of C.

$$\forall \mathbf{z} \in C, \exists \epsilon > 0, \text{ such that } \mathbf{x} - \epsilon(\mathbf{z} - \mathbf{x}), \mathbf{y} - \epsilon(\mathbf{z} - \mathbf{y}) \in C$$

So,we have
$$heta(\mathbf{x}-\epsilon(\mathbf{z}-\mathbf{x}))+(1- heta)(\mathbf{y}-\epsilon(\mathbf{z}-\mathbf{y}))\in C$$

$$[heta\mathbf{x}+(1- heta)\mathbf{y}]-\epsilon(\mathbf{z}-[heta\mathbf{x}+(1- heta)\mathbf{y}])\in C$$

Which means $\theta \mathbf{x} + (1 - \theta)\mathbf{y}$ is a relative interior point of C. Therefore, $\mathbf{relint}C$ is a convex set.

(c)

Let the intersection of C_i be C,we have:

$$\forall \mathbf{x}, \mathbf{y} \in C, \forall \theta \in [0, 1], \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C_i$$

So,we can say $\theta \mathbf{x} + (1 - \theta)\mathbf{y}$ in the intersection of C_i ,whice means $\theta \mathbf{x} + (1 - \theta)\mathbf{y} \in C$. So,the intersection of C_i is also a convex set.

(d)

Let the set be C'.

 $\forall \mathbf{y_1} = A\mathbf{x_1} + b \text{ and } \forall \mathbf{y_2} = A\mathbf{x_2} + b \in C', \text{then } \mathbf{x_1}, \mathbf{x_2} \in C.$

 $\forall \theta \in [0,1]$, we have:

$$\theta y_1 + (1 - \theta)y_2 = \theta(Ax_1 + b) + (1 - \theta)(Ax_2 + b) = A[\theta x_1 + (1 - \theta)x_2] + b$$

Because C is a convex set,so $\theta \mathbf{x_1} + (1 - \theta)\mathbf{x_2}$ is in C,so $\theta \mathbf{y_1} + (1 - \theta)\mathbf{y_2}$ in C'.

Therefore, C^{\prime} is a convex set.

(e)

Let the set be C'.

 $\forall \mathbf{x_1} = A\mathbf{y_1} + b \text{ and } \forall \mathbf{x_2} = A\mathbf{y_2} + b \in C, \text{then } \mathbf{y_1}, \mathbf{y_2} \in C'.$

 $\forall \theta \in [0,1]$, we have:

$$B(\theta \mathbf{y_1} + (1 - \theta)\mathbf{y_2}) + \mathbf{b} = \theta(B\mathbf{y_1} + \mathbf{b}) + (1 - \theta)(B\mathbf{y_2} + \mathbf{b}) = \theta \mathbf{x_1} + (1 - \theta)\mathbf{x_2} \in C$$

So $\theta \mathbf{v_1} + (1 - \theta)\mathbf{v_2}$ is in C'

Therefore, C' is a convex set.

2

(a)

The interior set is ϕ ,the relative interior set is $\{\mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 < 1, x_3 = 0\}$.

(b)

The interior set is ϕ ,the relative interior set is $\{{f A}\in S^n_{++}: {
m Tr}({f A})=1\}.$

(c)

The interior set is ϕ , the relative interior set is $\{\mathbf{A} \in S^n_{++} : \mathrm{Tr}(\mathbf{A}) = 1\}$.

Exercise 3: Relative Interior and Interior

1

Firstly,we should find out what $\mathbf{x}_0 + r\mathbf{v}$, for any and $\|\mathbf{v}\|_2 \leq 1$ represents.

$$\|\mathbf{x}_0 + r\mathbf{v} - \mathbf{x}_0\|_2 = \|r\mathbf{v}\|_2 \le r$$
,so we can say $\mathbf{x}_0 + r\mathbf{v} \in \mathbf{B}(\mathbf{x_0}, \mathbf{r})$.

Then we try to prove $\mathbf{x}_0 + r\mathbf{v} \in \mathbf{aff} C$:

 ${f v}={f v_1}-{f x_0}, {f v_1}\in {f aff}\, C,$ we have ${f x_0}+r{f v}=(1-r){f x_0}+r{f v_1}$ We have, ${f v_1}\in {f aff}\, C, {f x_0}\in C,$ that is

$$\mathbf{v_1} = \sum_{i=0}^n heta_i \mathbf{x_i}, \sum_{i=0}^n heta_i = 1$$

Then we have $(1-r)\mathbf{x}_0+r\mathbf{v}_1=(1-r)\mathbf{x}_0+r\sum_{i=0}^n\theta_i\mathbf{x_i}$ Because $1-r+r\sum_{i=0}^n\theta_i=1$, so $\mathbf{x}_0+r\mathbf{v}\in\mathbf{aff}\,C$.

Therefore, $\mathbf{x}_0 + r\mathbf{v} = \mathbf{aff} C \cap \mathbf{B}(\mathbf{x}_0, \mathbf{r})$.

And,we know $\mathbf{x}_0 + r\mathbf{v} = \mathbf{aff} C \cap \mathbf{B}(\mathbf{x}_0, \mathbf{r}) \in C$,so $\mathbf{x}_0 \in \mathbf{relint} C$.

Then,we are going to prove that if $\mathbf{x}_0 \in \mathbf{relint} C$,then :

There exists r > 0 such that $\mathbf{x}_0 + r\mathbf{v} \in C$ for any $\mathbf{v} \in \mathbf{aff} C - \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$.

It is easy to see that $\mathbf{aff} C \cap \mathbf{B}(\mathbf{x}_0, \mathbf{r}) \in C$,so there exists r > 0, $\mathbf{x}_0 + r\mathbf{v} \in C$ for any $\mathbf{v} \in \mathbf{aff} C - \mathbf{x}_0$ and $\|\mathbf{v}\|_2 \leq 1$.

(a)

For any $\mathbf{y} \in C$,the $(\mathbf{x} - \mathbf{y})$ can represents any direction from \mathbf{x} to the points in $\mathbf{aff} C$. And, $\mathbf{v} \in \mathrm{aff} \ C - \mathbf{x}_0$ in question 1 represents a direction :from \mathbf{x}_0 to the points in $\mathbf{aff} C$. So,we can say $\mathbf{x} + \gamma(\mathbf{x} - \mathbf{y})$ represents a point move away from \mathbf{x} by direction from \mathbf{x} to the points in C

So. $\mathbf{x} + \gamma(\mathbf{x} - \mathbf{y})$ represents the same as question 1 $\mathbf{x}_0 + r\mathbf{v}$ if we let $\max ||\gamma(\mathbf{x} - \mathbf{y})||_2 = r$ So,we have the conclusion that the condition of question 2 is equivalent to the condition of question 1.

(b)

If $\mathbf{y} \in \mathbf{relint} C$,then $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in \mathbf{relint} C$.

But if $\mathbf{y} \notin \mathbf{relint}C$,which means \mathbf{y} is a boundary point of C,whice means, $\mathbf{B}(\mathbf{y},\mathbf{r}) \cap \mathbf{C} \neq \phi$ then, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} = \mathbf{y} + \lambda(\mathbf{x} - \mathbf{y})$.

Let's talk about the case what $\mathbf{y} + \lambda(\mathbf{x} - \mathbf{y})$ represents:

 $\mathbf{y} + \lambda(\mathbf{x} - \mathbf{y})$ is a point move away from \mathbf{y} by direction from \mathbf{y} to the interior points in C.

Exercise 4: Supporting Hyperplane

1

(a)

$$\{\mathbf{x} \in \mathbb{R}^2_+ \mid x_1x_2 \geq 1\}$$

We can easily to draw the set beacuse it is in \mathbb{R}^2_+ , and the set is the part above the curve $y=rac{1}{x}$

When we draw the tangent line,we can find that every tangent line can be a supporting hyperplane which sepeartes the whole space into two parts,and if we choose the above parts and find the intersection,we can easily get the set.

(b)

$$C = \{ \mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x}\|_{\infty} \le 1 \}$$

First, we should find the boundary of C.

We can easily to find that the boundary of C is $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}_i = 1\}$.

 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is a boundary point of C if and only if x_i = 1 for some i.

Then, we are going to prove that C is a convex set.

C is a convex set because if $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in [0,1]$,then $\lambda \mathbf{x} + (1-\lambda)\mathbf{y} = (\lambda x_i + (1-\lambda y_i), \ldots, \lambda x_n + (1-\lambda y_n))$. $\|\lambda \mathbf{x} + (1-\lambda)\mathbf{y}\|_{\infty} \le \lambda + (1-\lambda) = 1$,so $\lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in C$

WLOG,we can suppose $(1, x_1, \dots, x_n)$ is a boundary point of the set.

When we consider this theorem

Theorem 4 (Supporting Hyperplane Theorem). Let $C \subseteq \mathbb{R}^n$ be a nonempty convex set, and

We can easily to find the hyperplanes supporting C at \mathbf{x}_0 :

Let's consider a sequence $\mathbf{x}_k = (1+1/n, x_1, \dots, x_n), \mathbf{x}_k \notin \mathbf{cl}\ C,\ k=1,2,\dots,\ \mathrm{and}\ \mathbf{x}_k \to \mathbf{x}_0$ We then construct a sequence of unit norm vectors by

$$\mathbf{a}_k = rac{\mathbf{x}_k - \Pi_{ar{C}}(\mathbf{x}_k)}{\|\mathbf{x}_k - \Pi_{ar{C}}(\mathbf{x}_k)\|}.$$

Notice that $\mathbf{c}l\ C$ is a closed convex set and $\mathbf{x}_k \notin \mathbf{c}l\ C,\ k=1,2,\ldots$ By Theorem 3, we have

$$\langle \mathbf{a}_k, \mathbf{y} \rangle \leq \langle \mathbf{a}_k, \mathbf{x}_k \rangle, \ \forall \ \mathbf{y} \in C.$$

As $\|\mathbf{a}_k\|=1$ for all $k=1,2,\ldots,$, there exists a converging subsequence. Without loss of generality, we assume that $\mathbf{a}_k\to\mathbf{a}$. Passing to the limit on both sides of the above inequality, we have

$$\langle \mathbf{a}, \mathbf{y} \rangle \leq \langle \mathbf{a}, \mathbf{x}_0 \rangle, \ \forall \ \mathbf{y} \in C,$$

So,we get a hyperplane $H_{(\mathbf{a},\mathbf{x}_0)}$ supporting C at \mathbf{x}_0 .

Similarly, find a sequence (\mathbf{x}_k) with $\mathbf{x}_k \notin \mathbf{cl}\ C, k = 1, 2, \dots$, and $\mathbf{x}_k \to \mathbf{x}_0$, then we can get another hyperplane. By this way, we can easily to find the hyperplanes supporting C at all the boundary points of C.

 $\leq \theta_1 b_1 + \theta_2 b_2$ (since $\theta_1 \mathbf{a_1}^T x \leq b_1$ and $\theta_2 \mathbf{a_2}^T x \leq b_2$)

2

(a)

First,let's show that the set $(\mathbf{a},b)\in\mathbb{R}^{n+1}$ denoted as S is convex cone. For any $(\mathbf{a_1},b_1),(\mathbf{a_2},b_2)\in S, \theta_1,\theta_2\in[0,+\infty)$,we have:

1. For $\mathbf{x} \in C$: $(\theta_1 \mathbf{a_1} + \theta_2 \mathbf{a_2})^T x = \theta_1 \mathbf{a_1}^T x + \theta_2 \mathbf{a_2}^T x$

2. For $\mathbf{x} \in D$: $(\theta_1 \mathbf{a_1} + \theta_2 \mathbf{a_2})^T x = \theta_1 \mathbf{a_1}^T x + \theta_2 \mathbf{a_2}^T x$ $\geq \theta_1 b_1 + \theta_2 b_2 \quad (\text{since } \theta_1 \mathbf{a_1}^T x \geq b_1 \text{ and } \theta_2 \mathbf{a_2}^T x \geq b_2)$

So, S is a cone.

Exercise 5: Farkas' Lemma

(a)

Firstly, let's show that $\mathbf{cone}A$ is a closed set.

Suppose $\mathbf{cone}A$ is not a closed set,then there exists a sequence $\{\mathbf{x}_k\}_{k=1}^{\infty}$ such that $\mathbf{x}_k \in \mathbf{cone}A$ and $\mathbf{x}_k \to \mathbf{x}, \mathbf{x} \not\in \mathbf{cone}A$.

We can write $\mathbf{x}_k = \sum_{i=1}^n lpha_i^k \mathbf{a}_i, lpha_i^k \geq 0$.

But,we know $\forall \alpha_i \geq 0, \sum_{i=1}^n \alpha_i \mathbf{a}_i \in \mathbf{cone} A$.

So,we can assert that $\lim_{k\to\infty} \mathbf{x}_k \in \mathbf{cone} A$.

Then, we can show that $\mathbf{cone}A$ is a closed set.

Then, we can show that $\mathbf{cone}A$ is a convex set.

For any $\mathbf{x},\mathbf{y} \in \mathbf{cone} A, \lambda \in [0,1]$,we have:

$$\lambda \mathbf{x} + (1-\lambda)\mathbf{y} = \sum_{i=1}^n (\lambda lpha_i^{(x)} + (1-\lambda)lpha_i^{(y)}) \mathbf{a}_i \in \mathbf{cone} A$$

So, $\mathbf{cone}A$ is a convex set.

2

Let $\mathbf{b} = \sum_{i=1}^n lpha_i \mathbf{a}_i, lpha_i \geq 0, x = (lpha_1, lpha_2, \dots, lpha_n)^T$.

Then,we have: $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\mathbf{x} > \mathbf{0}$

3

We have $\mathbf{cone}A$ is a closed convex set,and $\mathbf{b} \not\in \mathbf{cone}A$.

Then, sccording to the sepration theorem, there exists a superplane $\mathbf{H}_{(\mathbf{y},\alpha)}$ such that separates $\mathbf{cone}A$ and \mathbf{b} .

WLOG, we can suppose $\mathbf{b^Ty} \leq 0$, then we have:

 $\forall \mathbf{x} \in \mathbf{cone} A, \mathbf{x^Ty} \geq 0$,which contains $\mathbf{A^Ty} \geq \mathbf{0}$.

But, we know $\mathbf{cone}A$ is a closed convex set, so \mathbf{b} can't be the boundary point of $\mathbf{cone}A$.

So,we can assert that there exists $\mathbf{y} \in \mathbb{R}^m$,such that $\mathbf{A}^{ op}\mathbf{y} \geq \mathbf{0} \text{ and } \mathbf{b}^{ op}\mathbf{y} < 0.$

4

This is the same as the previous part. When $\mathbf{b} \not\in \mathbf{cone} A$, we have the first situation.

When $\mathbf{b} \in \mathbf{cone} A$,we have the second situation.