AWS Hands-On Lab – VPC, NAT Gateway, Bastion Host, and Network Concepts

Primary Task: VPC with Public and Private Subnets

Objective:

Recreate a basic AWS VPC environment to understand routing, connectivity, and NAT Gateway usage.

Step-by-Step Implementation

1. Create a VPC

- CIDR block: 10.0.0.0/16
- Name the VPC for identification

2. Create Subnets

- Public Subnet: 10.0.1.0/24 (enable auto-assign public IP)
- Private Subnet: 10.0.2.0/24 (disable auto-assign public IP)

3. Create and Attach Internet Gateway

- Create an Internet Gateway
- Attach it to the VPC
- Update the public subnet's route table with 0.0.0.0/0 via the IGW

4. Set Up NAT Gateway

- Allocate an Elastic IP
- Launch NAT Gateway in the public subnet using the Elastic IP
- Modify the private subnet's route table:
 - Route all traffic (0.0.0.0/0) to the NAT Gateway

5. Launch EC2 Instances

- Public EC2 instance:
 - Select public subnet
 - Enable auto-assign public IP
 - Use Amazon Linux 2 or Ubuntu
- Private EC2 instance:
 - Select private subnet
 - Do not assign public IP

6. Verification

- From the public instance, run: ping 8.8.8.8 → should succeed
- From the private instance:
 - Before NAT Gateway: ping should fail
 - After NAT Gateway: ping should succeed

7. Cleanup

- Terminate EC2 instances
- Release Elastic IP
- Delete NAT Gateway, subnets, route tables, IGW, and the VPC


```
Microsoft Windows [Version 10.0.26120.4741]
(c) Microsoft Corporation. All rights reserved.

C:\Users\cheta>cd downloads

C:\Users\cheta\Downloads>ssh -i "mykey.pem" ubuntu@13.233.155.114
ssh: connect to host 13.233.155.114 port 22: Connection timed out

C:\Users\cheta\Downloads>
```

```
ubuntu@ip-10-0-0-210:~$ ping 10.0.0.233
PING 10.0.0.233 (10.0.0.233) 56(84) bytes of data.
```

```
5 sudo apt update
6 sudo apt install ipcalc
7 ipcalc 13.233.155.114
8 ipcalc 10.0.0.233
9 history
```

```
ubuntu@ip-10-0-0-210:~$ ipcalc 13.233.155.114
Address:
                                00001101.11101001.10011011. 01110010
Netmask:
                                00000000.00000000.000000000. 11111111
Wildcard:
=>
Network:
                                00001101.11101001.10011011. 00000000
                                00001101.11101001.10011011. 00000001
HostMin:
HostMax:
                                00001101.11101001.10011011. 11111110
Broadcast: 13.233.155.255
                                00001101.11101001.10011011. 11111111
Hosts/Net: 254
ubuntu@ip-10-0-0-210:~$ ipcalc 10.0.0.233
                                00001010.00000000.000000000. 11101001
Address:
Netmask:
Wildcard: 0.0.0.255
                                00000000.00000000.00000000. 11111111
Network:
                                00001010.00000000.00000000.00000000
HostMin:
                                00001010.00000000.000000000.00000001
HostMax: 10.0.0.254
                                00001010.00000000.000000000. 11111110
Broadcast: 10.0.0.255
                                00001010.00000000.000000000. 11111111
Hosts/Net: 254
                                Class A, Private Internet
```

```
C:\Users\cheta>cd downloads

C:\Users\cheta\Downloads>sftp -i ~/Downloads/mykey.pem ubuntu@13.233.155.114

Connected to 13.233.155.114.

sftp> put mykey.pem

Uploading mykey.pem to /home/ubuntu/mykey.pem

mykey.pem

sftp> |
```

```
ubuntu@ip-10-0-0-210:~$ ls
mykey.pem
ubuntu@ip-10-0-0-210:~$ ping 10.0.0.233
PING 10.0.0.233 (10.0.0.233) 56(84) bytes of data.
 -- 10.0.0.233 ping statistics ---
9 packets transmitted, 0 received, 100% packet loss, time 8187ms
ubuntu@ip-10-0-0-210:~$ chmod 400 mykey.pem
ubuntu@ip-10-0-0-210:~$ ssh -i "mykey.pem" ubuntu@10.0.0.233
The authenticity of host '10.0.0.233 (10.0.0.233)' can't be established.
ED25519 key fingerprint is SHA256:R1Y02Y89pl4GunpQx5Ah8hn0wyZnQjlpf1ZofjCuJhA.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '10.0.0.233' (ED25519) to the list of known hosts.
Welcome to Ubuntu 24.04.2 LTS (GNU/Linux 6.8.0-1029-aws x86_64)
* Documentation: https://help.ubuntu.com
                  https://landscape.canonical.com
* Management:
* Support:
                  https://ubuntu.com/pro
System information as of Sat Jul 26 16:17:17 UTC 2025
                                                         103
  System load:
               0.0
                                  Processes:
 Usage of /:
                25.3% of 6.71GB
                                 Users logged in:
                                  IPv4 address for enX0: 10.0.0.233
  Memory usage: 20%
  Swap usage:
Expanded Security Maintenance for Applications is not enabled.
0 updates can be applied immediately.
```

```
See "man sudo_root" +or details.

ubuntu@ip-10-0-0-233:~$ |
```

Conceptual Understanding

NAT Gateway vs. Internet Gateway

Feature	Internet Gateway (IGW)	NAT Gateway
Function	Allows public subnet internet access	Enables private subnet internet access
Placement	Attached to VPC	Deployed in a public subnet

Feature	Internet Gateway (IGW)	NAT Gateway
Inbound Access	Allowed (with correct security groups)	Not allowed (outbound only)
Use Case	Web servers needing public access	Private servers requiring software updates or outbound access

Why NAT Gateway Must Be in a Public Subnet

- A NAT Gateway needs internet access to forward outbound requests.
- Only a public subnet (with a route to an Internet Gateway) provides this capability.
- If placed in a private subnet, it cannot access the internet, defeating its purpose.

Bastion Host

Definition:

A bastion host is a secure EC2 instance in the public subnet that acts as a jump server to access private EC2 instances.

Use Case:

- Used to SSH into private EC2 instances securely
- Limits exposure of private instances to the internet
- Allows centralized monitoring and control of access

Steps:

- 1. Launch a Linux EC2 instance in the public subnet
- 2. SSH into bastion from local machine using public IP
- 3. From bastion, SSH into the private EC2 instance using its private IP

Optional Exploration Tasks

Task 1: Bastion Host Setup

- Launch a bastion host in the public subnet
- SSH into the private EC2 instance via the bastion using a shared key pair

Task 2: VPC Peering

- Create two separate VPCs
- Establish a VPC Peering connection between them
- Update route tables to allow traffic between them
- Launch instances in each VPC and test connectivity

Task 3: Network ACLs vs. Security Groups

Feature	Network ACLs	Security Groups
Scope	Subnet-level	Instance-level
State	Stateless (rules must be bidirectional)	Stateful (return traffic automatically allowed)
Rules	Evaluated in order by rule number	All rules evaluated together
Use Case	Broad restrictions or IP blocking	Fine-grained access control

Suggested EOD Status Report Format

Date: 08 August 2025

Name: [Your Name]

Tasks Completed:

- Created VPC with public and private subnets
- Configured Internet and NAT Gateways
- Deployed public and private EC2 instances
- Verified internet access and NAT functionality
- Set up bastion host for private instance access

Concepts Explored:

- VPC architecture and route table management
- Differences between NAT Gateway and Internet Gateway
- Bastion host security advantages
- Network ACLs vs. Security Groups

Learning Outcomes:

- Understood routing dependencies for internet access
- Gained hands-on practice with secure access patterns
- Learned to troubleshoot and test network connectivity

Screenshots Included:

- VPC setup
- Subnet configuration
- Route tables
- EC2 instance ping tests
- SSH sessions through bastion host