Lógica y Computabilidad

Práctica 1: Funciones primitivas recursivas y clases PRC

2do cuatrimestre 2022

Ejercicio 1

Para construir una constante k, aplicamos la función s (sucesor) unas k veces, partiendo inicialmente de la función n que nos devuelve el 0.

$$f(x) = k = (\underbrace{s \circ \cdots \circ s}_{k \text{ veces}} \circ n)(x) = s^k(n(x))$$

Ejercicio 2

- $f_1(x,y) = \operatorname{suma}(x,y) = x + y$ $\operatorname{suma}(x,0) = u_1^1(x) = x$ $\operatorname{suma}(x,y+1) = g(\operatorname{suma}(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = s(u_1^3(x_1,x_2,x_3))$ $\Rightarrow \operatorname{suma}(x,y+1) = s(\operatorname{suma}(x,y))$
- $f_2(x,y) = \operatorname{prod}(x,y) = x \cdot y$ $\operatorname{prod}(x,0) = n(x) = 0$ $\operatorname{prod}(x,y+1) = g(\operatorname{prod}(x,y),x,y)$ donde $g(x_1,x_2,x_3) = \operatorname{suma}(u_1^3(x_1,x_2,x_3),u_2^3(x_1,x_2,x_3))$ $\Rightarrow \operatorname{prod}(x,y+1) = \operatorname{suma}(\operatorname{prod}(x,y),x)$
- $f_3(x,y) = \text{pot}(x,y) = x^y$ pot(x,0) = s(n(x)) = 1 $\text{pot}(x,y+1) = g(\text{pot}(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = \text{prod}(u_1^3(x_1,x_2,x_3),u_2^3(x_1,x_2,x_3))$ $\Rightarrow \text{pot}(x,y+1) = \text{prod}(\text{pot}(x,y),x)$
- $f_4(x,y) = \underbrace{x^{x}}_{y \text{ veces}}$ $f_4(x,0) = 1$ $f_4(x,y+1) = g(f_4(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = \text{pot}(u_2^3(x_1,x_2,x_3),u_1^3(x_1,x_2,x_3))$ $\Rightarrow f_4(x,y+1) = \text{pot}(x,f_4(x,y))$ Esta función a veces se la llama "Power Tower" (Wikipedia)
- $g_1(x) = \operatorname{pred}(x) = x \div 1$ $\operatorname{pred}(0) = n() = 0$ Permitimos utilizar la función nula n sin parámetros. $\operatorname{pred}(x+1) = g(\operatorname{pred}(x), x)$ donde $g(x_1, x_2) = u_2^2(x_1, x_2) = x_2$ $\Rightarrow \operatorname{pred}(x+1) = x$
- $g_2(x,y) = \text{resta}(x,y) = x \div y$ $\text{resta}(x,0) = u_1^1(x) = x$ $\text{resta}(x,y+1) = g(\text{resta}(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = \text{pred}(u_1^3(x_1,x_2,x_3))$ $\Rightarrow \text{resta}(x,y+1) = \text{pred}(\text{resta}(x,y))$

 $g_3(x,y) = \max\{x,y\}$

$$g_3(x,y) = \operatorname{suma}(\operatorname{resta}(x,y),y) = (x \div y) + y$$

Si $x \ge y$, entonces g_3 simplemente resta y suma y a un x que es más grande, y en efecto terminamos con x que era el máximo. En el otro caso x < y, al hacer la resta en $\mathbb N$ obtenemos $x \dot{-} y = 0$, luego al sumar y obtenemos nuevamente y que era el máximo.

• $g_4(x,y) = \min\{x,y\}$

$$g_4(x, y) = \text{resta}(\text{suma}(x, y), \max\{x, y\}) = x + y - \max\{x, y\}$$

Ejercicio 3

a)

Para la ida (\Rightarrow) hacemos una demostración por inducción estructural. Primero probamos que todas las funciones iniciales cumplen la propiedad.

■ Función nula

$$f(x) = n(x) = 0$$
. La función nula cae en el caso $f(x) = k$ donde $k = 0$.

Función sucesor

$$f(x) = s(x) = x + 1$$
. La función sucesor cae en el caso $f(x) = x + k$ donde $k = 1$.

■ Función proyector

$$f(x_1,\ldots,x_n)=u_i^n(x_1,\ldots,x_n)=x_i$$
. La función proyector cae en el caso $f(x_1,\ldots,x_n)=x_i+k$ donde $k=0$.

Paso inductivo. Supongamos que existe $h_m \in \mathcal{C}_c$ generada a partir de m composiciones, tal que $h_m(x_1, \ldots, x_n) = k$ o bien $h_m(x_1, \ldots, x_n) = x_i + k$. Queremos ver si cualquier $h_{m+1} \in \mathcal{C}_c$ también cumple la propiedad. Para generar h_{m+1} componemos h_m con alguna función $f \in \mathcal{C}_c$.

• Caso f(x) = n(x)

$$h_{m+1} = f(h_m(x_1, \dots, x_n)) = n(h_m(x_1, \dots, x_n)) = 0.$$

No importa la forma de h_m pues n(x) = 0 para cualquier x.

- \blacksquare Caso f(x) = s(x)
 - Caso $h_m(x_1, \dots, x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, \dots, x_n)) = s(x_i + q) = x_i + q + 1 = x_i + k \text{ donde } k = q + 1.$
 - Caso $h_m(x_1, ..., x_n) = q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = s(q) = q + 1 = k \text{ donde } k = q + 1.$
- Caso $f(x) = u_i^n(x)$

Como $h_m: \mathbb{N}^n \to \mathbb{N}$, necesariamente $f(x) = u_1^1(x)$ para poder componer $f \circ h_m$.

- Caso $h_m(x_1, ..., x_n) = x_i + k$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = u_1^1(x_i + k) = x_i + k.$
- Caso $h_m(x_1, ..., x_n) = k$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = u_1^1(k) = k.$
- Caso f(x) = x + r
 - Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = x_i + q + r = x_i + k \text{ donde } k = q + r.$
 - Caso $h_m(x_1, ..., x_n) = q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = q + r = k \text{ donde } k = q + r.$
- Caso f(x) = k
 - Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = f(x_i + q) = k.$

• Caso
$$h_m(x_1, ..., x_n) = q$$

 $h_{m+1} = f(h_m(x_1, ..., x_n)) = f(q) = k.$

Por lo tanto, partiendo de una función $h_m \in \mathcal{C}_c$, vemos que al realizar una composición con alguna función $f \in \mathcal{C}_c$ obtenemos una función $h_{m+1} \in \mathcal{C}_c$ (pues \mathcal{C}_c es cerrado por composición) que mantiene la propiedad enunciada.

Para la vuelta (\Leftarrow) mostramos que podemos construir cualquier $f(x_1, \ldots, x_n) = k$ o $f(x_1, \ldots, x_n) = x_i + k$ a partir de composición de las funciones iniciales, y por lo tanto $f \in \mathcal{C}_c$.

•
$$f(x_1,...,x_n) = k = s^k(n(x_1,...,x_n))$$

$$f(x_1,\ldots,x_n) = x_i + k = s^k(u_i^n(x_1,\ldots,x_n))$$

b)

En el ejercicio 2 vimos que la función suma(x,y) = x + y es P.R. pero suma $\notin \mathcal{C}_c$ pues no cumple con la propiedad.

Ejercicio 4

Cualquier clase PRC contiene las funciones iniciales y está cerrada por recursión primitiva y composición. Para mostrar que los predicados están en cualquier clase PRC, es suficiente con mostrar que se pueden construir a partir de las funciones iniciales utilizando recursión primitiva y/o composición.

Para simplificar la escritura vamos a utilizar la función $\alpha(x)$ la cual es PR a partir de las iniciales y por lo tanto pertenece a cualquier clase PRC.

$$\alpha(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{si no} \end{cases}$$

Además, podemos definir el predicado $\neg(x) = \alpha(x)$ que niega otro predicado.

$$\leqslant$$
) $p(x,y) = \begin{cases} 1 & \text{si } x \leqslant y \\ 0 & \text{si no} \end{cases} = \alpha(x \div y)$

$$\geqslant$$
) $p(x,y) = \begin{cases} 1 & \text{si } x \geqslant y \\ 0 & \text{si no} \end{cases} = \alpha(y \dot{-} x)$

$$=) p(x,y) = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{si no} \end{cases} = (x \le y) \cdot (x \ge y)$$

$$\neq) p(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si no} \end{cases} = \neg(x=y)$$

$$<) p(x,y) = \begin{cases} 1 & \text{si } x < y \\ 0 & \text{si no} \end{cases} = \neg(x \ge y)$$

$$>) p(x,y) = \begin{cases} 1 & \text{si } x > y \\ 0 & \text{si no} \end{cases} = \neg(x \leqslant y)$$

Ejercicio 5

Podemos escribir h de la siguiente forma equivalente en donde se puede ver más claramente que es composición de funciones, en particular es composición de funciones en \mathcal{C} pues todas las f_i y g están en \mathcal{C} . Como \mathcal{C} es una clase PRC resulta que $h \in \mathcal{C}$.

$$h(x_1, \dots, x_n) = \sum_{i=1}^k f_i(x_1, \dots, x_n) \cdot p_i(x_1, \dots, x_n) + g(x_1, \dots, x_n) \cdot \neg (\sum_{i=1}^k p_i(x_1, \dots, x_n))$$

También podemos analizarlo por casos:

Caso 1: $\exists ! i : \mathbb{N}, 1 \leq i \leq k \text{ tal que } p_i(x_1, \dots, x_n) \text{ es verdadero.}$

Observemos que si existe i, tiene que ser único pues todos los predicados p_1, \ldots, p_k son disjuntos. Luego, vale que $h(x_1, \ldots, x_n) = f_i(x_1, \ldots, x_n)$ por definición (el predicado $p_i(x_1, \ldots, x_n)$ es verdadero y por lo tanto "selecciona" el caso de f_i dentro de la definición de h). Como todas las $f_i \in \mathcal{C}$ por hipótesis $\Rightarrow h \in \mathcal{C}$.

Caso 2: $\forall i : \mathbb{N}, 1 \leq i \leq k \Rightarrow p_i(x_1, \dots, x_n)$ es falso.

Como no existe predicado p_i que resulte verdadero, por definición h "selecciona" el último caso "si no" y luego resulta $h(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$. Como $g \in \mathcal{C}$ por hipótesis $\Rightarrow h \in \mathcal{C}$.

Ejercicio 6

Una clase de funciones \mathcal{C} es PRC si contiene las funciones iniciales y está cerrada por composición y recursión primitiva.

Podemos afirmar que una función cualquiera va a estar en **toda** clase PRC si podemos demostrar que pertenece a la clase PR. La clase PR es la clase PRC más "chica", son todas las funciones que se pueden construir a partir de las funciones iniciales mediante composición y/o recursión primitiva, y por lo tanto van a pertenecer a cualquier clase PRC.

No obstante, una clase \mathcal{C} puede ser PRC y a su vez contener funciones que no puedan ser construidas a partir de las iniciales. Esto sucede cuando la clase incluye explícitamente alguna función adicional que no pertenece a la clase PR. En esencia, para generar nuevas funciones dentro de esta clase \mathcal{C} , además de tener las 3 funciones iniciales, tendríamos esta función adicional.

a)

$$\operatorname{par}(x) = \begin{cases} 1 & \text{si } x \text{ es par} \\ 0 & \text{si no} \end{cases}$$

$$par(0) = 1$$

$$par(x+1) = g(par(x), x) \text{ donde } g(x_1, x_2) = \neg u_1^2(x_1, x_2) \Rightarrow par(x+1) = \neg par(x)$$

Definimos impar $(x) = \neg par(x)$ para usar en los siguientes items.

b)

$$f(x) = \operatorname{div2}(x) = |x/2|$$

$$div2(0) = 0$$

$$\operatorname{div2}(x+1) = \begin{cases} \operatorname{div2}(x) & \text{si } \operatorname{par}(x) \\ s(\operatorname{div2}(x)) & \text{si } \operatorname{no} \end{cases} = \operatorname{div2}(x) \cdot \operatorname{par}(x) + s(\operatorname{div2}(x)) \cdot \operatorname{impar}(x)$$

c)

$$h(x_1, \dots, x_n, t) = \begin{cases} f(x_1, \dots, x_n) & \text{si } t = 0\\ g_1(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t - 1)) & \text{si } t = 2 \cdot k + 1\\ g_2(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t - 1)) & \text{si } t = 2 \cdot k + 2 \end{cases}$$

Planteamos el caso base del esquema de recursión primitiva para h. Notar que si t=0 siempre entramos en el primer caso de h pues no existe $k \in \mathbb{N}$ para satisfacer los otros 2 casos cuando t=0.

$$h(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$$

Para el caso t > 0 primero reescribimos la función por casos colocando t + 1 en donde antes teníamos t para poder ajustarnos al esquema de recursión primitiva.

$$h(x_1, \dots, x_n, t+1) = \begin{cases} g_1(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t+1-1)) & \text{si } t+1 = 2 \cdot k+1 \\ g_2(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t+1-1)) & \text{si } t+1 = 2 \cdot k+2 \end{cases}$$

$$= \begin{cases} g_1(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t)) & \text{si } t = 2 \cdot k \\ g_2(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t)) & \text{si } t = 2 \cdot k+1 \end{cases}$$

Ahora necesitamos despejar k en función de t.

$$t = 2 \cdot k \Rightarrow k = |t/2| = \operatorname{div}2(t)$$

$$t=2\cdot k+1 \Rightarrow k=\lfloor (t-1)/2\rfloor=\mathrm{div}2(t-1)=\mathrm{div}2(t)$$
 pues t es impar y div2 redondea hacia abajo

Reescribimos h eliminando por completo la k.

$$h(x_1, \dots, x_n, t+1) = \begin{cases} g_1(x_1, \dots, x_n, \text{div2}(t), h(x_1, \dots, x_n, t)) & \text{si par}(t) \\ g_2(x_1, \dots, x_n, \text{div2}(t), h(x_1, \dots, x_n, t)) & \text{si impar}(t) \end{cases}$$

También podemos escribir h como suma de cada caso por su predicado.

$$h(x_1, \dots, x_n, t+1) = g_1(x_1, \dots, x_n, \text{div}2(t), h(x_1, \dots, x_n, t)) \cdot \text{par}(t) + g_2(x_1, \dots, x_n, \text{div}2(t), h(x_1, \dots, x_n, t)) \cdot \text{impar}(t)$$

Conclusión

- h sigue el esquema de recursión primitiva.
- h compone funciones que están en C (puntualmente f, g_1 y g_2).
- h compone funciones que están en toda clase PRC (puntualmente div2, par, impar).
- \blacksquare C es una clase PRC por el enunciado, entonces contiene a las funciones div2, par, impar.

Por lo tanto cualquier h que cumpla con este esquema pertenece a C.

Ejercicio 7

Usamos la notación $\overline{x} = x_1, \dots, x_n$ para simplificar la escritura.

- cantidad_p $(\overline{x}, y, z) = \sum_{t=0}^{z} p(\overline{x}, t) \cdot (t \ge y) = \sum_{t=y}^{z} p(\overline{x}, t)$
- $\operatorname{todos}_p(\overline{x}, y, z) = \operatorname{cantidad}_p(\overline{x}, y, z) = z y$
- \blacksquare alguno_n $(\overline{x}, y, z) = \operatorname{cantidad}_{n}(\overline{x}, y, z) > 0$
- Recordemos la definición de la minimización acotada.

$$\min_{t \leq y} p(\overline{x}, t) = \sum_{u=0}^{y} \prod_{t=0}^{u} \alpha(p(\overline{x}, t))$$

Usando la minimización acotada definir mínimo $_p$ es trivial.

$$\min_{p}(\overline{x}, y, z) = \min_{t \leq z} (p(\overline{x}, t) \cdot (t \geq y)) = \min_{y \leq t \leq z} p(\overline{x}, t)$$

• Una opción es reutilizar la misma idea que la minimización acotada, pero buscando el "mínimo" partiendo desde el t más grande yendo hacia la cota inferior. En este contexto, el mínimo es en realidad "el más cercano a la cota superior", o sea, el máximo, que es lo queremos.

$$\text{máximo}_p(\overline{x}, y, z) = z - \sum_{u=y}^{z} \prod_{t=0}^{u} \alpha(p(\overline{x}, z - t))$$

Otra opción es definir el máximo utilizando el mínimo, agregando una condición adicional al predicado: que no exista ningún otro t' > t para el cual también valga el predicado p. En esencia, buscamos primero el mínimo real, y si existe un t más grande para el cual también vale el predicado, tenemos que seguir buscando el próximo mínimo a partir del encontrado, y así hasta eventualmente llegar al máximo.

$$\text{máximo}_p(\overline{x}, y, z) = \text{mínimo}_q(\overline{x}, y, z) \text{ donde } q(\overline{x}, t) = p(\overline{x}, t) \cdot \neg (\exists t')_{t < t' \leq z} p(\overline{x}, t')$$

■ Sea $m = \min_{p}(\overline{x}, y, z), M = \max_{p}(\overline{x}, y, z)$ $\operatorname{unico}_{p}(\overline{x}, y, z) = (m = M) \cdot m + (m \neq M) \cdot (z + 1)$

Ejercicio 8

- cociente $(x, y) = \min_{t \leqslant x} ((t \cdot y + r = x) \land (0 \leqslant r < y))$
- $resto(x, y) = x cociente(x, y) \cdot y$
- $\operatorname{divide}(x, y) = \operatorname{resto}(x, y) = 0$
- $\operatorname{primo}(x) = \neg(\exists t)_{1 < t < x} \operatorname{divide}(x, t)$
- $\quad \text{raiz}(x,y) = \min_{t \leqslant y} (t+1)^x > y$
- nprimo(0) = 2 nprimo(n + 1) = $\min_{t \le c} (\text{primo}(t) \land t > \text{nprimo}(n))$

Donde $c = \operatorname{nprimo}(n)! + 1$ funciona como cota porque $\operatorname{nprimo}(n+1) \leq \operatorname{nprimo}(n)! + 1$ (justificado en la teórica).

Ejercicio 9

Pendiente

Ejercicio 10

Pendiente

Ejercicio 11

Pendiente

Ejercicio 12

Pendiente

Ejercicio 13

Pendiente

Ejercicio 14

Pendiente

Ejercicio 15

Pendiente