F(x,y) = F(x,mx) and $F(x,mx) \rightarrow \frac{2m}{1+m^2} - a \text{ quantity}$ depends on the Value of m $(x,y) \rightarrow (0,0)$ (the slope of the line).

We want $l \in \mathbb{R}$ such that $F(x,y) \to l \quad \text{whenever} \quad (x,y) \to (0,0).$

No such l'exists.

Heren

$$\left| \frac{1}{\sqrt{x^2 + y^2}} \right| \leq \frac{|x^2 + y^2|}{\sqrt{x^2 + y^2}} \leq \frac{|x^2 + y^2|}{\sqrt{x^2 + y^2}} = \frac{\sqrt{x^2 + y^2}}{2}$$

For
$$\xi \neq 0$$
, if we take $\delta = 2\xi$, then whenever $\| (x,y) - (0,0) \| < \delta = 2\xi$
We get $\| F(x,y) - 0 \| \leq \frac{1}{2} \sqrt{n^2 + y^2}$
 $\Rightarrow \lim_{(x,y) \to (0,0)} F(x,y) = 0$.

Compute (im $\frac{x^2y}{x^4+y^2}$...

For y = mx, $F(x, mx) \rightarrow 2$

Now $F(x,mx) = \frac{mx^3}{x^4 + m^2x^2} = \frac{mx}{x^2 + m^2}$ - depends on Softh the values of x and x or x and x are x and x and x and x are x and x and x and x are x and x and x are x are x and x are x and x are x and x are x are x are x are x and x are x are

Example 1) Check that
$$\lim_{(n,y)\to(0,0)} \frac{n^2y}{2n^2+3y^2} = 0$$

Here,

$$\left| F(x,y) - 0 \right| = \left| \frac{x^2 y}{2(x^2 + y^2) + y^2} \right| \leq \frac{|x^2 y|}{2(x^2 + y^2)}$$

$$\leq |x| \times \frac{1}{2}(x^2 + y^2)$$

$$= \frac{2(x^2 + y^2)}{2(x^2 + y^2)}$$

and

$$\| (x,y) - (0,0)\| = \sqrt{x^2 + y^2}, \quad |x| < \sqrt{x^2 + y^2}$$

=)
$$|F(x,y)-0| < \varepsilon$$
 if $||(x,y)-(0,0)|| < \varepsilon$
4 ε

For any $\ell > 0$, if we take $\delta = 42$ then $|F(x,y) - 0| < \ell \quad \text{whenever} \quad ||(x,y) - (0,0)|| < \delta \quad \text{Consequently}, \quad ||(x,y) > (0,0)|$

$$(x,y) \Rightarrow (a,b)$$
If
$$\lim_{y \to b} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

$$\lim_{x \to a} \left(\lim_{x \to a} F(x,y) \right) = 0$$

Example: (5)
$$f(x,y) = \begin{cases} \frac{2^{2}y^{2}}{2^{2}y^{2} + (x-y)^{2}} & (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
For

$$y = \pi$$
 line: $f(\pi,\pi) \rightarrow 1$.

Example
$$\lim_{(x,y) \to (0,0)} x^{4} \sin \frac{1}{x^{2} + |y|} = 0$$
?

Example 6
$$\lim_{(x,y) \to (0,0)} x^4 \sin\left(\frac{1}{x^2 + |y|}\right) = 0$$
?

Let

$$F(x,y) = \begin{cases} x^4 & \sin\left(\frac{1}{x^2 + |y|}\right) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Now
$$\left| F(x,y) - 0 \right|$$

$$= \left| \chi^{4} \operatorname{Sin} \left(\frac{1}{\chi^{2} + |y|} \right) \right| \leq \left| |x|^{4} \right| \quad \text{and} \quad \left| |\chi|^{4} < \varepsilon$$

$$= \left| \chi^{4} \operatorname{Sin} \left(\frac{1}{\chi^{2} + |y|} \right) \right| \leq \left| |x|^{4} \quad \text{and} \quad \left| |\chi|^{4} < \varepsilon$$

$$= \left| f \right| \quad \text{if} \quad \left| |\chi| < \varepsilon = \varepsilon^{4}$$

$$\Rightarrow \quad \text{For any } \varepsilon > 0 \quad \text{taking } \delta = \varepsilon^{4} \quad \text{we have}$$

$$\left| F(x,y) - 0 \right| < \varepsilon \quad \text{whenever} \quad \left| |(x,y) - (0,0)|| < \delta.$$

Note:
$$||(x,y)-(0,0)|| < \delta$$

$$\Rightarrow |x| \leq \sqrt{x^2+y^2} < \delta$$

$$\Rightarrow |x| \leq \delta$$

A function $f: \mathbb{R}^2 \to \mathbb{R}$ is said to be continuous at $x_0 \in \mathbb{R}^2$ if $\lim_{x \to x_0} f(x) = f(x_0)$ in other words $f(x) \to f(x_0)$ as $f(x) \to f(x_0)$ as $f(x) \to f(x_0)$ as $f(x) \to f(x_0)$ is the value of $f(x) \to f(x_0)$

A function $f: \mathbb{R}^2 \to \mathbb{R}$ is said to continuous if it is continuous at every $X_0 \in \mathbb{R}^2$.

□ Continuous function f:R² → R

lim f(n,y) (n,y) -> (0,0)

fa and f both are functions of one variable;

$$f: \mathbb{R}^{2} \to \mathbb{R}$$

$$(x,y) \mapsto f(x,y)$$
Let $(a,b) \in \mathbb{R}^{2}$;
$$f_{a}: \mathbb{R} \to \mathbb{R}$$

$$y \mapsto f_{a}(y) = f(x,y)$$

$$f^{b}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = f(x,b)$$

$$f_a'(b) = \lim_{h \to 0} \frac{f_a(b+h) - f_a(b)}{h}$$

$$= \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

$$= \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

$$= \frac{of}{oy}(a,b)$$

Partial derivative of $f: \mathbb{R}^2 \to \mathbb{R}$ at $X_o = (a, b)$ with respect to the 1st variable,

$$\frac{\partial f}{\partial x}(x_{o}) = \lim_{h \to 0} \frac{f(x_{o} + h(1,0)) - f(x_{o})}{h}$$

$$= \lim_{t \to 0} \frac{f(x_{o} + t\vec{i}) - f(x_{o})}{t}, \quad \vec{i} = (1,0)$$

and $\frac{\partial f}{\partial y}(x_0)$ $= \lim_{t \to 0} \frac{f(x_0 + t_j) - f(x_0)}{t}$

Consider a unit vector $\vec{u} \in \mathbb{R}^2$ where $\vec{u} = (v_1, v_2)$ $= v_1 \vec{i} + v_2 \vec{j}$

We define the directional derivative of f at x_0 in the direction of \vec{u} is

$$D_{X_{0}} f(\vec{u}) = \lim_{t \to 0} \frac{f(x_{0} + t\vec{u}) - f(x_{0})}{t}$$

If
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, then

If
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, then
$$\mathcal{D}_{x_o} f(\vec{i}) = \lim_{t \to 0} \frac{f(x_o + t \vec{i}) - f(x_o)}{t} = \frac{\partial f}{\partial x}(x_o) = \frac{f(x_o)}{x_o}$$

$$\vec{i} = (1,0,0)$$

$$\mathcal{D}_{X_{o}}^{f}(\vec{j}) = \lim_{t \to 0} \frac{f(x_{o} + t\,\vec{j}) - f(x_{o})}{t} = \frac{\partial f(x_{o})}{\partial y} = f(x_{o})$$

$$\mathcal{D}_{X_{o}}^{f}(\vec{k}) = \lim_{t \to 0} \frac{f(x_{o} + t\vec{k}) - f(x_{o})}{t} = \frac{\partial f}{\partial z}(x_{o})$$

$$\vec{k} = (0,0,1)$$

Q. Suppose all the directional derivatives $D_{X_0}f(\vec{u})$ exists for $f: \mathbb{R}^2 \to \mathbb{R}$ and $X_0 \in \mathbb{R}^2$.

What can we say about continuity of f at X_0 ? $f: \mathbb{R}^2 \to \mathbb{R}$ is Continuous?

Example:
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 defined by
$$f(x,y) = \begin{cases} \frac{\chi^2 y}{\chi^4 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for } (x,y) = (0,0) \end{cases}$$

The function f is NOT continuous at (0,0).

Let
$$\vec{u} = (v_1, v_2)$$
 be a unit vector in \mathbb{R}^2 .

Then
$$\mathcal{D}_{(0,0)}^{f(\vec{u})} = \lim_{t \to 0} \frac{f((0,0) + t\vec{u}) - f((0,0))}{t}$$

$$= \lim_{t \to 0} \frac{f(tv_1, tv_2) - 0}{t}$$

$$= \lim_{t \to 0} \frac{t^{3} v_{1}^{2} v_{2}}{t^{4} v_{1}^{4} + t^{2} v_{2}^{2}} t$$

$$= \lim_{t \to 0} \frac{v_1^2 v_2}{t^2 v_1^4 + v_2^2}$$

$$= \int_{0}^{\sqrt{2}/\sqrt{2}} if \quad \sqrt{2} \neq 0$$

$$= \int_{0}^{\sqrt{2}/\sqrt{2}} if \quad \sqrt{2} \neq 0$$

$$= \int_{0}^{\sqrt{2}/\sqrt{2}} if \quad \sqrt{2} \neq 0$$

Under certain restriction on the partial derivatives-of a given function f, we get the continuity of f.

$$S = \left\{ (x,y) \in \mathbb{R}^2 \middle| a < x < b \text{ and } \right\}.$$

$$C < y < d$$

Suppose $f: S \rightarrow R$ such that both partial denivative

$$\frac{\partial f}{\partial x}: S \rightarrow \mathbb{R} \text{ and } \frac{\partial f}{\partial y}: S \rightarrow \mathbb{R}$$

$$x_0 \mapsto \frac{\partial f}{\partial x}(x_0)$$

$$x_0 \mapsto \frac{\partial f}{\partial x}(x_0)$$

are bounded functions. Then $f:S \rightarrow \mathbb{R}$ is a Continuous function.