

GBI Tutorium Nr. 41

Foliensatz 10

Vincent Hahn - vincent.hahn@student.kit.edu | 10. Januar 2013

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Master-Theorem

Moore-Automat

Endliche Akzeptoren

2 Mealy-Automat

Moore-Automat

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Master-Theorem

Moore-Automat

2 Mealy-Automat

Endliche Akzeptoren

Moore-Automat

Master-Theorem

Vincent Hahn – vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- ① Wenn $f(n) \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn $f(n) \ominus (n^{\log_b a})$, dann ist $T(n) \in \ominus (n^{\log_b a \log n})$
- ③ Wenn $f(n) \Omega(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta(f(n))$
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Master-Theorem

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn $f(n) \mathcal{O}\left(n^{\log_b a \varepsilon}\right)$ für ein $\varepsilon > 0$, dann ist $\mathcal{T}(n) \in \Theta\left(n^{\log_b a}\right)$
- ② Wenn $f(n) \ominus (n^{\log_b a})$, dann ist $T(n) \in \ominus (n^{\log_b a \log n})$
- ③ Wenn $f(n) \Omega(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta(f(n))$
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Master-Theorem

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen **rekursiven** Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn $f(n) \mathcal{O}(n^{\log_b a \varepsilon})$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta(n^{\log_b a})$
- ② Wenn $f(n) \Theta(n^{\log_b a})$, dann ist $T(n) ∈ \Theta(n^{\log_b a \log n})$
- ③ Wenn f(n) Ω $(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta(f(n))$
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Master-Theorem

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition

Für einen rekursiven Algorithmus der Form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- **1** Wenn $f(n) \mathcal{O}(n^{\log_b a \varepsilon})$ für ein $\varepsilon > 0$, dann ist $T(n) \in \Theta(n^{\log_b a})$
- ② Wenn $f(n) \Theta(n^{\log_b a})$, dann ist $T(n) ∈ \Theta(n^{\log_b a \log n})$
- 3 Wenn f(n) Ω $(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$, und wenn es eine Konstante d gibt mit 0 < d < 1, sodass für alle hinreichend großen n gilt $af(n/b) \le df(n)$, dann ist $T(n) \in \Theta(f(n))$
 - Fall 2 wird etwa bei Quicksort benötigt
 - Fall 3 ist eher die Ausnahme

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat 1 Master-Theorem

Endliche Akzeptoren

3 Moore-Automat

Woore-Automat

Mealy-Automat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Definition: Mealy-Automat

Der Mealy-Automat $A = (Z, z_0, X, f, Y, g)$ besteht aus

- der endlichen Zustandsmenge Z,
- dem Startzustand **z**₀.
- dem Eingabealphabet X,
- der Zustandsübergangsfunktion $\mathbf{f}: \mathbf{Z} \times \mathbf{X} \rightarrow \mathbf{Z}$,
- einem Ausgabealphabet Y und
- der Ausgabefunktion $\mathbf{g}: \mathbf{Z} \times \mathbf{X} \to \mathbf{Y}^*$.

6/9

Getränkeautomat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Getränkeautomat

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

Moore-Automat

Endliche Akzeptoren

Was ist was?

■ Zustandsmenge Z: {(0, -), (0, R), (0, Z), (1, -), (1, R), (1, Z)}

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

1 Master-Theorem

Moore-Automat

2 Mealy-Automat

Endliche Akzeptoren

Moore-Automat

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Master-Theorem

Mealy-Automat

1 Master-Theorem

Moore-Automat

2 Mealy-Automat

Endliche Akzeptoren

Moore-Automat