Math 220 Homework 4 Solutions

Chapter 4

Problem 4: Suppose that $x, y \in \mathbb{Z}$. If x and y are odd, then xy is odd.

Proof. Let x and y be odd integers. By the definition of odd integers this means that x = 2m + 1 and y = 2n + 1 for some integers $m, n \in \mathbb{Z}$. It follows that

$$xy = (2m + 1)(2n + 1)$$
$$= 4mn + 2m + 2n + 1$$
$$= 2(2mn + m + n) + 1.$$

Since $2mn + m + n \in \mathbb{Z}$ by the definition of an odd integer this implies that xy is an odd integer. Thus, whenever x and y are odd we have that xy is odd.

Problem 6: Suppose $a, b, c \in \mathbb{Z}$. If a|b and a|c, then a|(b+c).

Proof. Let a, b, and c be integers and suppose that a|b and a|c. Since a|b there is some integer m such that b = am. Because a|c there exists some integer n such that c = an. We then have

$$b + c = am + an = a(m+n).$$

By definition of divisibility this implies that a|(b+c).

Problem 14: If $n \in \mathbb{Z}$, then $5n^2 + 3n + 7$ is odd.

Proof. Let $n \in \mathbb{Z}$. There are two cases for n which are n is even or n is odd.

First let us consider the case where n is even. By the definition of an even integer we then have n = 2k for some $k \in \mathbb{Z}$. So

$$5n^2 + 3n + 7 = 5(2k)^2 + 3(2k) + 7 = 2(10k^2 + 3k + 3) + 1.$$

Because $10k^2 + 3k + 3 \in \mathbb{Z}$ by the definition of an odd integer this implies that $5n^2 + 3n + 7$ is odd. Our second case considers when n is odd. By the definition of an odd integer we then have n = 2k + 1 for some $k \in \mathbb{Z}$. So

$$5n^2 + 3n + 7 = 5(2k+1)^2 + 3(2k+1) + 7 = 2(10k^2 + 13k + 7) + 1.$$

Because $10k^2 + 13k + 7 \in \mathbb{Z}$ by the definition of an odd integer this implies that $5n^2 + 3n + 7$ is odd. Thus, in any case $5n^2 + 3n + 7$ is odd.

Problem 20: If a is an integer and $a^2|a$, then $a \in \{-1, 0, 1\}$.

Proof. Suppose that a is an integer and $a^2|a$. By the definition of divides there must be some $k \in \mathbb{Z}$ where $a = ka^2$. So

$$a = ka^{2}$$

$$a - ka^{2} = 0$$

$$a(1 - ka) = 0.$$

This gives us two cases, either a = 0 or ka = 1. If a = 0 then $a \in \{-1, 0, 1\}$ and we are done.

We now consider the case where ka=1. This equation implies by definition that a divides 1. The only divisors of 1 are 1 and -1, so a is either 1 or -1. In this case $a \in \{-1,0,1\}$. Hence, if $a^2|a$, then $a \in \{-1,0,1\}$.

Chapter 5

Problem 6: Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then x > -1.

Proof. We will prove this statement by proving the contrapositive that if $x \le -1$ then $x^3 - x \le 0$. Assume that x is a real number such that $x \le -1$. Because $x \le -1$ we know $x \le 0$, $x + 1 \le 0$, and $x - 1 \le 0$. The multiplication of three nonpositive numbers is nonpositive so

$$x(x+1)(x-1) = x^3 - x$$

is nonpositive. Thus, $x^3 - x \le 0$.

Problem 10: Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \mid y$ and $x \mid z$.

Proof. Let $x, y, z \in \mathbb{Z}$. To prove this statement we will prove the contrapositive that if x|y or x|z, then x|yz. We have two cases x|y or x|z.

First let us assume that x|y which by definition of divides implies that there exists a $k \in \mathbb{Z}$ such that y = kx. It follows that

$$yz = kxz = x(kz)$$

so since $kz \in \mathbb{Z}$ by the definition of divides x|yz.

Instead let us assume our other case that x|z which by definition of divides implies that there exists a $m \in \mathbb{Z}$ such that z = mx. It follows that

$$yz = ymx = x(ym)$$

so since $ym \in \mathbb{Z}$ by the definition of divides x|yz.

Hence, in all cases x|yz.

Problem 14: If $a, b \in \mathbb{Z}$ and a and b have the same parity, then 3a + 7 and 7b - 4 do not.

Proof. Assume that $a, b \in \mathbb{Z}$ and a and b have the same parity. This means a and b are both even or both odd.

First let us consider the case where a and b are both even that by definition that a=2m and b=2n for some $m,n\in\mathbb{Z}$. We have

$$3a + 7 = 3(2m) + 7 = 2(3m + 3) + 1$$

which is odd and

$$7b - 4 = 7(2n) - 4 = 2(7n - 2)$$

which is even. Thus, 3a + 7 and 7b - 4 have opposite parity.

Next let us consider the case where a and b are both odd that by definition that a = 2m + 1 and b = 2n + 1 for some $m, n \in \mathbb{Z}$. We have

$$3a + 7 = 3(2m + 1) + 7 = 2(3m + 5)$$

which is even and

$$7b - 4 = 7(2n + 1) - 4 = 2(7n + 1) + 1$$

which is odd. Thus, 3a + 7 and 7b - 4 have opposite parity.

Therefore in all cases 3a + 7 and 7b - 4 have opposite parity.

Problem 16: Suppose that $x \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Proof. Assume that $x \in \mathbb{Z}$ and x + y is even. By definition of an even integer x + y = 2k for some $k \in \mathbb{Z}$. We will consider two cases for x the first being x is even and the second being x is odd.

Assume that x is even which by definition means that x=2n for some $n\in\mathbb{Z}$. It follows that

$$x + y = 2k$$

$$y = 2k - x$$

$$= 2k - 2n$$

$$= 2(k - n)$$

which by definition implies that y is also even. Hence, since x and y are both even they have the same parity.

Assume instead that x is odd which by definition means that x=2n+1 for some $n\in\mathbb{Z}$. It follows that

$$x + y = 2k$$

$$y = 2k - x$$

$$= 2k - (2n + 1)$$

$$= 2(k - n - 1) + 1$$

which by definition implies that y is also odd. Hence, since x and y are both odd they have the same parity.

Thus in all cases x and y have the same parity.

Problem 18 For any $a, b \in \mathbb{Z}$, it follows that $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.

Proof. Let $a, b \in \mathbb{Z}$. It follows that

$$(a+b)^3 - (a^3 + b^3) = a^3 + 3a^2b + 3ab^2 + b^3 - a^3 - b^3 = 3a^2b + 3ab^2 = 3(a^2b + ab^2).$$

Since $a^2b + ab^2 \in \mathbb{Z}$ by definition of divisibility 3 divides $(a+b)^3 - (a^3+b^3)$. By definition of congruence modulo 3 this implies that $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.

Problem 20: If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

Proof. Assume that $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$. By definition of congruence modulo 5 this implies that 5 divides a-1 which further implies that there exists some $k \in \mathbb{Z}$ such that a-1=5k so a=5k+1. It follows that

$$a = 5k + 1$$

$$a^{3} = (5k + 1)^{3}$$

$$a^{3} = 125k^{3} + 75k^{2} + 15k + 1$$

$$a^{3} - 1 = 125k^{3} + 75k^{2} + 15k$$

$$a^{3} - 1 = 5(25k^{3} + 15k^{2} + 3k).$$

Hence 5 divides $a^3 - 1$ and by the definition of congruence $a^3 \equiv 1 \pmod{5}$.