GMM 4ème année, Signal 2, CC, Jeudi 21 Avril 2022 durée 2h. Aucun document autorisé.

On rappelle ici la définition d'une famille multirésolution :

Définition 1. Une suite $(V_j)_{j\in\mathbb{Z}}$ de sous espaces fermés de $L^2(\mathbb{R})$ est une approximation multi-résolution si elle vérifie les 6 propriétés suivantes :

$$\forall (j,k) \in \mathbb{Z}^2, \quad f(t) \in V_i \Leftrightarrow f(t-2^j k) \in V_i \tag{1}$$

$$\forall j \in \mathbb{Z}, \quad V_{i+1} \subset V_j \tag{2}$$

$$\forall j \in \mathbb{Z}, \quad f(t) \in V_j \Leftrightarrow f\left(\frac{t}{2}\right) \in V_{j+1}$$
 (3)

$$\lim_{j \to +\infty} V_j = \bigcap_{j = -\infty}^{+\infty} V_j = \{0\}$$
 (4)

$$\lim_{j \to -\infty} V_j = Adh\acute{e}rence \left(\bigcup_{j = -\infty}^{+\infty} V_j \right) = L^2(\mathbb{R})$$
 (5)

Il existe ϕ tel que $\{\phi(t-n)\}_{n\in\mathbb{N}}$ est une base hilbertienne de V_0 (Pour le produit scalaire de $L^2(\mathbb{R})$).

On notera comme dans le cours pour tout couple $(j,k) \in \mathbb{Z}^2$

$$\phi_{j,k}(x) = 2^{-\frac{j}{2}}\phi(2^{-j}x - k).$$

On rappelle que la transformée de Fourier d'une fonction f st définie par $\hat{f}(\omega) := \int_{t \in \mathbb{R}} f(t)e^{-i\omega t}dt$, que la transformée de Fourier d'une suite $(h_n)_{n \in \mathbb{Z}}$ est définie par $\hat{h}(\omega) := \sum_{n \in \mathbb{Z}} h_n e^{-in\omega t}dt$.

On rappelle également que la suite $(h_n)_{n\in\mathbb{Z}}$ associée à une fonction d'échelle ϕ issue d'une famille multirésolution est définie par $h_n := \langle \phi, \phi_{-1,n} \rangle$ et appartient à l'ensemble des suites réelles de carrés sommable $(\sum_{n\in\mathbb{N}} |h_n|^2 < +\infty)$, que la suite $(g_n)_{n\in\mathbb{Z}}$ associée à $(h_n)_{n\in\mathbb{Z}}$ est définie par $g_n = (-1)^{1-n}h_{1-n}$ et que l'ondelette ψ associée à ϕ est définie par

$$\psi = \sum_{n \in \mathbb{Z}} g_n \phi_{-1,n}. \tag{6}$$

On notera Supp(f) le support d'une f, c'est-à-dire le plus grand intervalle I fermé tel que pour tout $x \notin I$, f(x) = 0. A titre d'exemple, le support de l'a fonction d'échelle ϕ de Haar est [0,1].

Exercice 1

Dans ce premier exercice on considère une fonction d'échelle Φ associée à une famille multi-résolution et à une suite $(h_n)_{n\in\mathbb{Z}}$ vérifiant les deux premières hypothèses du Théorème de Mallat Meyer.

Calculs préliminaires

- 1. Donner la valeur de $\hat{h}(0)$ et exprimer $|\hat{h}(\omega + \pi)|^2$ en fonction de $\hat{h}(\omega)$.
- 2. Justifier le fait que $\phi = \sum_{n \in \mathbb{Z}} h_n \phi_{-1,n}$ puis que pour tout $k \in \mathbb{Z}$, $\phi_{0,k} = \sum_{n \in \mathbb{Z}} h_{n-2k} \phi_{-1,n}$.
- 3. Justifier que pour tout $l \in \mathbb{Z}$

$$\sum_{n} |h_{n}h_{n-l}| \leqslant ||h||_{2}^{2} := \sum_{n \in \mathbb{Z}} |h_{n}|^{2}.$$

4. Justifier que pour tout $k \in \mathbb{Z}^*$

$$\sum_{n} h_n h_{n-2k} = 0$$

5. Montrer que pour tout $\omega \in \mathbb{R}$

$$\hat{\psi}(2\omega) = \frac{\sqrt{2}}{2}\hat{g}(\omega)\hat{\phi}(\omega). \tag{7}$$

6. Donner une expression de $\hat{g}(\omega)$ en fonction de celle de $\hat{h}(\omega)$ et précisez la valeur de $\hat{g}(0)$.

- 7. En déduire la valeur du moment d'ordre 0 de ψ c'est-à-dire la valeur de $\int_{t\in\mathbb{R}}\psi(t)dt$. Une ondelette avec 2 moments nuls
 - Dans les questions suivantes on fait l'hypothèse que l'ondelette w a un moment d'ordre 1 et que cette ondelette est associée à une suite $(h_n)_{n\in\mathbb{Z}}$ admettant un nombre fini K de termes non nuls ceux dont les indices k sont entre 0 et K-1. On va également supposer que la fonction d'échelle est à support compact et quitte à translater ϕ on peut supposer que son support est de la forme [0,A].
- 8. Déterminer le support de $\phi_{-1,0}$ puis de $\phi_{j,k}$ pour $(j,k) \in \mathbb{Z}^2$. Dans la suite on notera $I_{j,k}$ ce support.
- 9. En déduire le support de $\sum_{k=0}^{K-1} h_k \phi_{-1,k}$ et la valeur de A.
- 10. En utilisant (6), expliciter le support de ψ .
- 11. Justifier que si f coı̈ncide avec une fonction affine sur $I_{j,k}$ alors $\langle f, \psi_{j,k} \rangle = 0$.
- 12. Montrer que pour tout $t \in \mathbb{R}$ et pour toute échelle $j \in \mathbb{Z}$ il existe au plus K valeurs de k tels que
- 13. Soit $L \in \mathbb{N}$, $(a_j)_{j \in [0, L-1]} \in \mathbb{R}^L$ des réels ordonnés sur \mathbb{R} et $f \in L^2(\mathbb{R})$ telle que f est affine sur les intervalles $]a_j, a_{j+1}]$. La fonction f est ainsi affine par morceaux. Justifier qu'à une échelle $j \in \mathbb{Z}$ il existe au plus $L \times K$ coefficients d'ondelettes $\langle f, \psi_{j,k} \rangle$ qui sont non nuls.
 - On peut remarquer que pour j tendant vers $-\infty$ la proportion de coefficients d'ondelettes de f non nuls parmi les k tels que $I_{j,k}$ intersecte le support de f tend vers 0. Cette proportion est d'autant plus faible que K est petit.
 - On admet désormais que les fonctions $\hat{\phi}$ et $\hat{\psi}$ sont C^1 sur \mathbb{R} .
- 14. Justifier que $(\hat{\psi})'(0) = 0$ et en déduire la valeur de $(\hat{h})'(\pi)$.
- 15. Si on note $P(z) = \sum_{n=0}^{K-1} h_n z^n$, donnez la valeur de P(1) et de P(-1). On reliera ces valeurs à celles de \hat{h} en des points bien choisis.
- 16. Montrer que le fait que ψ ait deux moments nuls implique que P'(-1) = 0.
- 17. En déduire que si la suite $(h_n)_{n\in\mathbb{Z}}$ n'a pour éléments non nuls que h_0, h_1, h_2 et h_3 alors P est un polynôme de la forme $P(z)=a(z+1)^2(z-b)$ où $(a,b)\in\mathbb{R}^2$ sont reliés par la relation 4a(1-b)=
- 18. Après avoir exprimé les termes h_n en fonction de a et b et en utilisant la question 4, déterminer une équation polynomiale de degré 2 dont b est la solution.
- 19. Donner une valeur possible des coefficients h_n associé à un choix de racine de ce polynôme. Les deux racines de l'équation précédentes mènent à des choix de a et b qui induisent deux suites h_n symétriques l'une de l'autre (le terme h_0 de l'une est le terme h_3 de l'autre). L'une est l'ondelette de Daubechies 2 et l'autre est la symétrique de l'ondelette de Daubechies 2.

Soit (V_j) une famille multirésolution et W_j les espaces définis comme dans le cours comme des supplémentaires orthogonaux de V_j dans V_{j-1} . Parmi les assertions suivantes, précisez celles qui sont fausses, vraies pour toutes les familles multirésolution ou vraies uniquement pour la multirésolution associée à la mentaires orthogonaus. Vraies pour toutes les familles multirésolution G base de Haar. Il n'est pas utile de justifier les réponses.

1. $\sum_{n\in\mathbb{Z}}h_ng_n=0$.

2. Pour tout $j\in\mathbb{Z}$ $W_j\subset W_{j-1}$.

1.
$$\sum_{n\in\mathbb{Z}}h_ng_n=0.$$

1.
$$\sum_{n \in \mathbb{Z}} n_n g_n = 0$$
.
2. Pour tout $j \in \mathbb{Z}$

$$W_{j} \subset W_{j-1}$$
. FROX: $W_{j} \subset W_{j-1}$. (8)

3. Pour tout couple $(j,k) \in \mathbb{Z}^2$

$$\psi_{j,k} = -\frac{\sqrt{2}}{2}\phi_{j-1,2k} + \frac{\sqrt{2}}{2}\phi_{j-1,2k+1}. \tag{9}$$

- 4. L'espace V_0 est l'espace des fonctions de $L^2(\mathbb{R})$ constantes sur les intervalles de la forme [k, k+1[bone How.
- 5. En dimension 2 comme en dimension 1, l'espace W_j est engendré par des translatées et dilatées d'une ondelette 2D $\psi(x,y)$.
- 6. En dimension 2 la fonction d'échelle de Daubechies 2 s'écrit $\phi(x,y) = \phi(x)\phi(y)$ où ϕ est la fonction d'échelle de Daubechies 2 définie en 1D sur \mathbb{R} .