$12a_{0183} \ (K12a_{0183})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle -u^{67} - 2u^{66} + \dots + 2b - 6u, -u^{67} - 3u^{66} + \dots + 2a - 4, u^{68} + 3u^{67} + \dots + 2u + 1 \rangle$$

$$I_2^u = \langle -u^3a - u^3 - 3au + 2b - a - 3u - 1, u^3a + u^2a + u^3 + a^2 + 3au + 3a + 2u, u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 76 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{67} - 2u^{66} + \dots + 2b - 6u, -u^{67} - 3u^{66} + \dots + 2a - 4, u^{68} + 3u^{67} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{67} + \frac{3}{2}u^{66} + \dots - 3u + 2 \\ \frac{1}{2}u^{67} + u^{66} + \dots - 5u^{2} + 3u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{67} + \frac{5}{2}u^{66} + \dots + 6u + 4 \\ -\frac{1}{2}u^{67} - 2u^{66} + \dots + u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{7}{2}u^{67} + \frac{17}{2}u^{66} + \dots + 11u + 5 \\ -\frac{3}{2}u^{67} - 5u^{66} + \dots - 37u^{2} - 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} - 4u^{5} - 4u^{3} \\ u^{9} + 5u^{7} + 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{67} + \frac{1}{2}u^{66} + \dots + 7u + 2 \\ -\frac{1}{2}u^{67} - 2u^{66} + \dots + u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{11} + 6u^{9} + 12u^{7} + 8u^{5} + u^{3} + 2u \\ -u^{13} - 7u^{11} - 17u^{9} - 16u^{7} - 6u^{5} - 5u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{5} + 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{11}{2}u^{67} 14u^{66} + \dots 29u \frac{11}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{68} + 21u^{67} + \dots + 34u + 1$
c_2,c_5	$u^{68} + 5u^{67} + \dots + 17u^2 + 1$
c_3, c_8	$u^{68} + u^{67} + \dots + 640u + 256$
c_6, c_7, c_{10} c_{11}	$u^{68} + 3u^{67} + \dots + 2u + 1$
c_9, c_{12}	$u^{68} - 11u^{67} + \dots + 328u + 209$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{68} + 57y^{67} + \dots + 2y + 1$
c_2, c_5	$y^{68} + 21y^{67} + \dots + 34y + 1$
c_{3}, c_{8}	$y^{68} + 45y^{67} + \dots + 606208y + 65536$
c_6, c_7, c_{10} c_{11}	$y^{68} + 75y^{67} + \dots + 26y + 1$
c_9, c_{12}	$y^{68} + 51y^{67} + \dots + 1645090y + 43681$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.302515 + 0.808830I		
a = 1.38035 - 1.18783I	2.32422 + 5.97645I	0 7.23199I
b = -0.748496 - 0.927452I		
u = 0.302515 - 0.808830I		
a = 1.38035 + 1.18783I	2.32422 - 5.97645I	0. + 7.23199I
b = -0.748496 + 0.927452I		
u = -0.624582 + 0.592516I		
a = 2.73939 + 0.45090I	8.5059 - 11.6125I	0. + 8.82159I
b = -0.782644 + 1.029050I		
u = -0.624582 - 0.592516I		
a = 2.73939 - 0.45090I	8.5059 + 11.6125I	0 8.82159I
b = -0.782644 - 1.029050I		
u = -0.631706 + 0.575663I		
a = 0.66472 + 1.66346I	9.41750 - 5.39141I	4.69572 + 4.02325I
b = -0.898485 - 0.736878I		
u = -0.631706 - 0.575663I		
a = 0.66472 - 1.66346I	9.41750 + 5.39141I	4.69572 - 4.02325I
b = -0.898485 + 0.736878I		
u = 0.346423 + 0.771113I		
a = -0.173545 - 0.361476I	2.62914 + 0.24601I	0 1.73579I
b = -0.764235 + 0.828111I		
u = 0.346423 - 0.771113I		
a = -0.173545 + 0.361476I	2.62914 - 0.24601I	0. + 1.73579I
b = -0.764235 - 0.828111I		
u = -0.573633 + 0.539020I		
a = -1.74644 - 0.39374I	1.46789 - 5.68286I	0.68260 + 7.74797I
b = 0.275978 - 1.117340I		
u = -0.573633 - 0.539020I		
a = -1.74644 + 0.39374I	1.46789 + 5.68286I	0.68260 - 7.74797I
b = 0.275978 + 1.117340I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.598138 + 0.510537I		
a = -2.96024 - 0.40706I	4.42265 + 4.95521I	3.07955 - 6.13595I
b = 0.768075 + 0.897553I		
u = 0.598138 - 0.510537I		
a = -2.96024 + 0.40706I	4.42265 - 4.95521I	3.07955 + 6.13595I
b = 0.768075 - 0.897553I		
u = -0.663956 + 0.416976I		
a = 1.98971 - 0.58484I	9.88771 + 1.02189I	5.85214 + 1.96232I
b = -0.894047 + 0.760345I		
u = -0.663956 - 0.416976I		
a = 1.98971 + 0.58484I	9.88771 - 1.02189I	5.85214 - 1.96232I
b = -0.894047 - 0.760345I		
u = -0.607629 + 0.495214I		
a = -1.199490 - 0.617485I	5.30813 - 2.06794I	6.26189 + 3.47855I
b = 0.803603 - 0.027754I		
u = -0.607629 - 0.495214I		
a = -1.199490 + 0.617485I	5.30813 + 2.06794I	6.26189 - 3.47855I
b = 0.803603 + 0.027754I		
u = -0.664613 + 0.394825I		
a = 1.54657 + 1.01878I	9.09143 + 7.26370I	4.68955 - 2.96843I
b = -0.792225 - 1.015100I		
u = -0.664613 - 0.394825I		
a = 1.54657 - 1.01878I	9.09143 - 7.26370I	4.68955 + 2.96843I
b = -0.792225 + 1.015100I		
u = 0.601390 + 0.478255I		
a = -1.47390 + 1.84744I	4.51797 - 0.86560I	3.52173 - 0.59232I
b = 0.774996 - 0.866635I		
u = 0.601390 - 0.478255I		
a = -1.47390 - 1.84744I	4.51797 + 0.86560I	3.52173 + 0.59232I
b = 0.774996 + 0.866635I		_

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.468377 + 0.572220I		
a = 1.90643 - 0.33431I	-0.59228 + 2.22769I	-3.37234 - 3.06639I
b = -0.122342 - 0.726340I		
u = 0.468377 - 0.572220I		
a = 1.90643 + 0.33431I	-0.59228 - 2.22769I	-3.37234 + 3.06639I
b = -0.122342 + 0.726340I		
u = -0.576072 + 0.442170I		
a = 0.006747 - 0.329071I	1.75394 + 1.73798I	2.20480 - 0.79061I
b = 0.319410 + 1.099330I		
u = -0.576072 - 0.442170I		
a = 0.006747 + 0.329071I	1.75394 - 1.73798I	2.20480 + 0.79061I
b = 0.319410 - 1.099330I		
u = 0.092300 + 0.677316I		
a = 0.27605 + 1.89597I	-2.81890 + 1.99447I	-8.57513 - 4.98912I
b = 0.128373 + 0.916246I		
u = 0.092300 - 0.677316I		
a = 0.27605 - 1.89597I	-2.81890 - 1.99447I	-8.57513 + 4.98912I
b = 0.128373 - 0.916246I		
u = 0.587653 + 0.024788I		
a = 1.71449 + 0.76043I	4.96906 + 2.93148I	6.24702 - 2.99694I
b = -0.778469 - 0.883411I		
u = 0.587653 - 0.024788I		
a = 1.71449 - 0.76043I	4.96906 - 2.93148I	6.24702 + 2.99694I
b = -0.778469 + 0.883411I		
u = -0.18308 + 1.42922I		
a = 0.843168 + 0.142200I	3.26662 + 4.24372I	0
b = -0.806444 - 0.993390I		
u = -0.18308 - 1.42922I		
a = 0.843168 - 0.142200I	3.26662 - 4.24372I	0
b = -0.806444 + 0.993390I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.19116 + 1.44793I		
a = 1.213650 + 0.087479I	3.89634 - 2.02780I	0
b = -0.888277 + 0.792353I		
u = -0.19116 - 1.44793I		
a = 1.213650 - 0.087479I	3.89634 + 2.02780I	0
b = -0.888277 - 0.792353I		
u = 0.394466 + 0.343618I		
a = 0.574285 - 0.334716I	0.058562 + 0.963973I	0.65757 - 5.10087I
b = 0.015724 + 0.516322I		
u = 0.394466 - 0.343618I		
a = 0.574285 + 0.334716I	0.058562 - 0.963973I	0.65757 + 5.10087I
b = 0.015724 - 0.516322I		
u = -0.143999 + 0.479957I		
a = -2.56050 - 1.66131I	-0.46907 - 2.83971I	-5.96216 + 1.53375I
b = 0.567438 - 0.923967I		
u = -0.143999 - 0.479957I		
a = -2.56050 + 1.66131I	-0.46907 + 2.83971I	-5.96216 - 1.53375I
b = 0.567438 + 0.923967I		
u = 0.00733 + 1.50712I		
a = 0.012768 - 0.380965I	-5.97370 + 1.45056I	0
b = 0.636378 + 0.533093I		
u = 0.00733 - 1.50712I		
a = 0.012768 + 0.380965I	-5.97370 - 1.45056I	0
b = 0.636378 - 0.533093I		
u = -0.14976 + 1.50240I		
a = 0.124282 + 0.756614I	-4.62766 - 0.77309I	0
b = 0.375721 + 1.104200I		
u = -0.14976 - 1.50240I		
a = 0.124282 - 0.756614I	-4.62766 + 0.77309I	0
b = 0.375721 - 1.104200I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.17091 + 1.50831I		
a = -0.738203 + 1.030050I	-2.00478 + 1.87390I	0
b = 0.789562 - 0.833836I		
u = 0.17091 - 1.50831I		
a = -0.738203 - 1.030050I	-2.00478 - 1.87390I	0
b = 0.789562 + 0.833836I		
u = 0.299638 + 0.369423I		
a = 0.473108 - 0.124443I	0.065320 + 0.982452I	1.03774 - 6.49318I
b = 0.122349 + 0.323173I		
u = 0.299638 - 0.369423I		
a = 0.473108 + 0.124443I	0.065320 - 0.982452I	1.03774 + 6.49318I
b = 0.122349 - 0.323173I		
u = -0.17745 + 1.51476I		
a = -0.500515 - 0.516152I	-1.30179 - 4.87223I	0
b = 0.814781 - 0.083742I		
u = -0.17745 - 1.51476I		
a = -0.500515 + 0.516152I	-1.30179 + 4.87223I	0
b = 0.814781 + 0.083742I		
u = 0.08984 + 1.52674I		
a = 0.591800 + 0.051249I	-6.47425 + 2.47932I	0
b = -0.313816 + 0.326902I		
u = 0.08984 - 1.52674I		
a = 0.591800 - 0.051249I	-6.47425 - 2.47932I	0
b = -0.313816 - 0.326902I		
u = -0.02436 + 1.53342I		
a = -1.32376 - 1.50760I	-7.31420 - 3.34180I	0
b = 0.589779 - 0.999381I		
u = -0.02436 - 1.53342I		
a = -1.32376 + 1.50760I	-7.31420 + 3.34180I	0
b = 0.589779 + 0.999381I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.17598 + 1.52392I		
a = -2.15557 + 0.42536I	-2.29162 + 7.72916I	0
b = 0.765471 + 0.926847I		
u = 0.17598 - 1.52392I		
a = -2.15557 - 0.42536I	-2.29162 - 7.72916I	0
b = 0.765471 - 0.926847I		
u = -0.17029 + 1.53953I		
a = -1.21280 - 1.29053I	-5.43631 - 8.36637I	0
b = 0.245144 - 1.137840I		
u = -0.17029 - 1.53953I		
a = -1.21280 + 1.29053I	-5.43631 + 8.36637I	0
b = 0.245144 + 1.137840I		
u = -0.19769 + 1.55029I		
a = 0.060610 + 0.906239I	2.37596 - 8.42534I	0
b = -0.901287 - 0.714793I		
u = -0.19769 - 1.55029I		
a = 0.060610 - 0.906239I	2.37596 + 8.42534I	0
b = -0.901287 + 0.714793I		
u = 0.13226 + 1.55786I		
a = 1.43128 - 1.00095I	-7.75675 + 4.39339I	0
b = -0.168861 - 0.801656I		
u = 0.13226 - 1.55786I		
a = 1.43128 + 1.00095I	-7.75675 - 4.39339I	0
b = -0.168861 + 0.801656I		
u = -0.19499 + 1.55859I		
a = 1.91320 + 1.14117I	1.3625 - 14.6199I	0
b = -0.773177 + 1.040270I		
u = -0.19499 - 1.55859I		
a = 1.91320 - 1.14117I	1.3625 + 14.6199I	0
b = -0.773177 - 1.040270I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.02362 + 1.57367I		
a = 0.27679 + 1.90830I	-10.44290 + 2.40599I	0
b = 0.061066 + 0.995702I		
u = 0.02362 - 1.57367I		
a = 0.27679 - 1.90830I	-10.44290 - 2.40599I	0
b = 0.061066 - 0.995702I		
u = 0.08488 + 1.60162I		
a = -0.205262 + 0.369099I	-5.42283 + 1.77686I	0
b = -0.719407 + 0.791988I		
u = 0.08488 - 1.60162I		
a = -0.205262 - 0.369099I	-5.42283 - 1.77686I	0
b = -0.719407 - 0.791988I		
u = 0.06715 + 1.60931I		
a = 0.72881 - 1.41338I	-5.89990 + 7.25511I	0
b = -0.709021 - 0.945322I		
u = 0.06715 - 1.60931I		
a = 0.72881 + 1.41338I	-5.89990 - 7.25511I	0
b = -0.709021 + 0.945322I		
u = -0.167888 + 0.269376I		
a = 0.78201 - 2.05483I	0.08583 + 1.52615I	-2.20733 - 5.34922I
b = 0.507386 + 0.771126I		
u = -0.167888 - 0.269376I		
a = 0.78201 + 2.05483I	0.08583 - 1.52615I	-2.20733 + 5.34922I
b = 0.507386 - 0.771126I		

II.
$$I_2^u = \langle -u^3a - u^3 - 3au + 2b - a - 3u - 1, \ u^3a + u^2a + u^3 + a^2 + 3au + 3a + 2u, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a + \frac{5}{2} \\ \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + a + 3u + 2\\ \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u^{2} + a + 3u + 2\\ \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} + a + 3u + 2\\ \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} + a + 3u + 2\\ \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + u^{2} + a + 3u + 2\\ \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{2} + 1\\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{20} = \begin{pmatrix} u^{2} + 1\\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u\\ u^{3} + u^{2} + 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^3a + 2u^3 5au + 4u^2 3a + 6u + 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5	$(u^2 - u + 1)^4$
c_2	$(u^2+u+1)^4$
c_3, c_8	u^8
c_{6}, c_{7}	$(u^4 + u^3 + 3u^2 + 2u + 1)^2$
<i>c</i> ₉	$(u^4 + u^3 + u^2 + 1)^2$
c_{10}, c_{11}	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_{12}	$(u^4 - u^3 + u^2 + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^4$
c_3, c_8	y^8
c_6, c_7, c_{10} c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_9,c_{12}	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = 0.084432 - 0.576081I	0.211005 + 0.614778I	-0.99907 + 2.29114I
b = 0.500000 + 0.866025I		
u = -0.395123 + 0.506844I		
a = -2.04112 - 0.65111I	0.21101 - 3.44499I	2.00436 + 8.24669I
b = 0.500000 - 0.866025I		
u = -0.395123 - 0.506844I		
a = 0.084432 + 0.576081I	0.211005 - 0.614778I	-0.99907 - 2.29114I
b = 0.500000 - 0.866025I		
u = -0.395123 - 0.506844I		
a = -2.04112 + 0.65111I	0.21101 + 3.44499I	2.00436 - 8.24669I
b = 0.500000 + 0.866025I		
u = -0.10488 + 1.55249I		
a = 0.033637 + 0.507913I	-6.79074 - 1.13408I	-5.65243 - 1.40826I
b = 0.500000 + 0.866025I		
u = -0.10488 + 1.55249I		
a = -1.07695 - 1.14911I	-6.79074 - 5.19385I	-1.85285 + 5.62657I
b = 0.500000 - 0.866025I		
u = -0.10488 - 1.55249I		
a = 0.033637 - 0.507913I	-6.79074 + 1.13408I	-5.65243 + 1.40826I
b = 0.500000 - 0.866025I		
u = -0.10488 - 1.55249I		
a = -1.07695 + 1.14911I	-6.79074 + 5.19385I	-1.85285 - 5.62657I
b = 0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$((u^2 - u + 1)^4)(u^{68} + 21u^{67} + \dots + 34u + 1)$
c_2	$((u^2 + u + 1)^4)(u^{68} + 5u^{67} + \dots + 17u^2 + 1)$
c_3, c_8	$u^8(u^{68} + u^{67} + \dots + 640u + 256)$
c_5	$((u^2 - u + 1)^4)(u^{68} + 5u^{67} + \dots + 17u^2 + 1)$
c_6, c_7	$((u^4 + u^3 + 3u^2 + 2u + 1)^2)(u^{68} + 3u^{67} + \dots + 2u + 1)$
<i>c</i> 9	$((u^4 + u^3 + u^2 + 1)^2)(u^{68} - 11u^{67} + \dots + 328u + 209)$
c_{10}, c_{11}	$((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{68} + 3u^{67} + \dots + 2u + 1)$
c_{12}	$((u^4 - u^3 + u^2 + 1)^2)(u^{68} - 11u^{67} + \dots + 328u + 209)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2+y+1)^4)(y^{68}+57y^{67}+\cdots+2y+1)$
c_2,c_5	$((y^2+y+1)^4)(y^{68}+21y^{67}+\cdots+34y+1)$
c_3,c_8	$y^8(y^{68} + 45y^{67} + \dots + 606208y + 65536)$
c_6, c_7, c_{10} c_{11}	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{68} + 75y^{67} + \dots + 26y + 1)$
c_9, c_{12}	$((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{68} + 51y^{67} + \dots + 1645090y + 43681)$