Αλλαγές στις αρτηριακές συγκεντρώσεις των Η+, ΗCO₃-, και διοξειδίου του άνθρακα στις οξεοβασικές

πρωτογενής Διαταραχή	H ⁺	HCO ₃	CO ₂	Αιτία μεταβολής ΗCO,-	Αιτία μεταβολής CO,
Αναπνευστική οξείδωση	1	1	↑	Νεφρική αντιστάθμιση	Πρωτογενής ανωμαλία
Αναπνευστική αλκάλωση	1	1	1		
Μεταβολική οξέωση	1	1	1	Πρωτογενής ανωμαλία	Αντανακλαστική αναπνευστική αντιστάθμιση
Μεταβολική αλκάλωση		1	1		

EMBAGYNEH

Ένας ασθενής έχει μια αρτηριακή P_{02} 50 mmHg, μια αρτηριακή P_{002} 60 mmHg και ένα αρτηριακό pH 7,36. Να ταξινομήσετε την 0ξ εοβασική διαταραχή και να διατυπώσετε μια υπόθεση για την αιτία.

Η απάντηση βρίσκεται στο Παράρτημα Α.

λεια HCO₃-, όπως στην περίπτωση της διάρροιας. Μια αιτία μεταβολικής αλκάλωσης είναι ο επίμονος έμετος και η σχετιζόμενη με αυτόν απώλεια H+ με τη μορφή HCl από τον στόμαχο.

Ποια είναι η αρτηριακή P_{CO_2} στη μεταβολική οξέωση ή αλκάλωση; Εξ ορισμού, η μεταβολική οξέωση και η αλκάλωση πρέπει να οφείλονται σε κάτι άλλο εκτός από την υπερβολική κατακράτηση ή απώλεια διοξειδίου του άνθρακα, οπότε ενδεχομένως να αναμένατε ότι η αρτηριακή P_{CO_2} θα ήταν αμετάβλητη, ωστόσο αυτό δεν συμβαίνει. Όπως τονίστηκε προηγουμένως σε αυτό το κεφάλαιο, η αυξημένη συγκέντρωση Η+ που σχετίζεται με τη μεταβολική οξέωση διεγείρει αντανακλαστικά τον αερισμό και μειώνει την αρτηριακή P_{CO_2} . Σύμφωνα με τον νόμο δράσης των μαζών, αυτό βοηθά στην αποκατάσταση της συγκέντρωσης του Η+ στα φυσιολογικά επίπεδα. Αντίστροφα, ο αερισμός ενός ατόμου με μεταβολική αλκάλωση αναστέλλεται αντανακλαστικά. Το αποτέλεσμα είναι μια αύξηση της αρτηριακής P_{CO_2} και, σύμφωνα με τον νόμο δράσης των μαζών, μια σχετίζόμενη τάση αποκατάστασης της συγκέντρωσης του Η+ προς τα φυσιολογικά επίπεδα.

Για να επαναλάβουμε, οι μεταβολές της P_{CO_2} του πλάσματος στη μεταβολική οξέωση και αλκάλωση δεν αποτελούν την αιτία της οξέωσης ή της αλκάλωσης, αλλά το αποτέλεσμα αντισταθμιστικών αντανακλαστικών αποκρίσεων σε μη αναπνευστικές ανωμαλίες. Έτσι, σε μεταβολικές καταστάσεις σε αντίθεση με τις αναπνευστικές καταστάσεις, η αρτηριακή P_{CO_2} και συγκέντρωση H^+ του πλάσματος κινούνται προς αντίθετες κατευθύνσεις, όπως συνοψίζεται στον Πίνακα 14.8.

Μελέτη και Ανασκόπηση 14.20

- Οξεοβασικές διαταραχές: κατηγοριοποιούνται ως αναπνευστικές ή μεταβολικές
- Αναπνευστικές: μειωμένος ή αυξημένος κυψελιδικός αερισμός δυσανάλογος με τον μεταβολικό ρυθμό
 - Η αναπνευστική οξέωση οφείλεται στην κατακράτηση του διοξειδίου του άνθρακα (υποαερισμός).
 - Η αναπνευστική αλκάλωση οφείλεται στην υπερβολική αποβολή διοξειδίου του άνθρακα (υπεραερισμός).
- Μεταβολικές: όλες οι μη αναπνευστικές αιτίες
 - Μεταβολική οξέωση: κέρδος Η+ που δεν οφείλεται στο διοξείδιο του άνθρακα
 - Μεταβολική αλκάλωση: απώλεια Η+ που δεν οφείλεται στο διοξείδιο του άνθρακα
- Νεφρική αντιστάθμιση σε πρωτογενείς διαταραχές που αναφέρθηκαν παραπάνω
 - Οξέωση: ο νεφρός προσθέτει HCO₃ στο αίμα ενώ H+ ή αμμώνιο εκκρίνονται στα σωληνάρια. Τα ούρα είναι όξινα
 - Αλκάλωση: Το HCO₃⁻ απεκκρίνεται στα ούρα και η νεφρική έκκριση H+ και αμμωνίου είναι πολύ χαμηλή. Τα ούρα είναι αλκαλικά

Ερώτηση Ανασκόπησης: Πώς μπορεί η άσκηση σε μεγάλο υψόμετρο να οδηγήσει σε μεταβολική οξέωση; (Η απάντηση βρίσκεται στο Παράρτημα Α.)