Лабораторная работа №1. Исследование особенностей реализации классического алгоритма умножения матриц

1.1 Цель лабораторной работы

Рассмотреть различные способы хранения матриц, исследовать их умножение.

1.2. Теоретический материал

1.2.1 Оптимизации в задаче умножения матриц

<u>Произведением</u> матрицы A размера $N \times K$ и матрицы B размера $K \times M$ называется матрица C размера $N \times M$, элементы которой равны скалярному произведению соответствующих строки матрицы A и столбца матрицы B

$$c_{ij} = \sum_{k=1}^{K} a_{ik} \cdot b_{kj}.$$

$$A \qquad B \qquad C$$

Умножение матриц реализуется при помощи трех вложенных циклов. Оптимизировать данный алгоритм можно, изменяя порядок циклов. Одна из главных причин низкой производительности при «неправильном порядке» циклов – плохо организованная работа с памятью.

Современные процессоры чувствительны к тому, в каком порядке происходит чтение и запись в память. Чувствительность связана со сложной архитектурой организации памяти, как процессоров, так и сопроцессоров. Если чтение и запись происходит последовательно, то процессор может это предсказать и заранее загрузить данные в КЭШ-память. Доступ к кэш-памяти гораздо быстрее доступа к оперативной памяти. Кроме того, данные в кэш-память загружаются не поэлементно, а сразу группами (читаются данные в размере КЭШ-линии). Если из КЭШ-линии использовать только один элемент, то много данных будет загружено

в процессор и не использовано в вычислениях. Таким образом, увеличивается процент КЭШ-промахов, а значит и время работы программы.

Второй способ оптимизации вычислений — использование одномерных массивов для хранения матриц. Это позволяет делать в два раза меньше обращений к памяти (у двумерных массивов сначала происходит обращение к массиву указателей, а потом к самому элементу).

1.2.2 Замер времени выполнения программы в языке С++

Для измерения интервалов времени в языке C++ начиная с C++11 можно использовать функции и классы, содержащиеся в заголовочном файле **chrono**.

Например, приведенный ниже код замеряет время суммирования элементов массива arr размера n.

Для замера процессорного времени необходимо использовать функции, которые могут различаться для разных операционных систем.

1.3. Задание на лабораторную работу

1. Создать две целочисленные матрицы размера $N \times N$ с использованием двумерных динамических массивов. Реализовать классический алгоритм умножения матриц.

Провести тестирование программы на матрицах размерности N = 512, 1024 и 2048 без оптимизации (с ключом -00 или -00, в конфигурации Debug в MS Visual Studio) и с ключом оптимизации -02 (кофигурация Release в MS Visual Studio). На каждом примере запустить не менее 3 раз. В таблицу занести среднее время выполнения на одном примере в секундах. Сделать выводы.

Таблица 1 – Время выполнения алгоритма умножения матриц с двойными указателями, с

Размер матрицы	Ключ оптимизации			
	-O0	-O2		
512				
1024				
2048				

2. Создать две целочисленные матрицы размера $N \times N$ с использованием одномерных динамических массивов. Реализовать классический алгоритм умножения матриц.

Провести тестирование программы на матрицах размерности N = 512, 1024 и 2048 с ключом оптимизации -02 (конфигурация Release в MS Visual Studio). На каждом примере запустить не менее 3 раз. В таблицу занести среднее время выполнения на одном примере в секундах. Сравнить полученные результаты. Сделать выводы.

Таблица 2 — Время выполнения алгоритма умножения матриц с одинарными и двойными указателями, с

Размер матрицы	Способ хранения матрицы в памяти			
	двойные указатели	одинарные указатели		
512				
1024				
2048				

3. Для матриц, хранящихся в двумерных динамических массивах, реализовать классический алгоритм умножения со всеми возможными перестановками порядка циклов.

Провести тестирование программ на матрицах размерности N = 512, 1024 и 2048. На каждом примере запустить не менее 3 раз. В таблицу занести среднее время выполнения на одном примере в секундах. Сравнить результаты. Сделать выводы.

Таблица 3 – Время выполнения классического алгоритма умножения матриц

Размерность	Порядок циклов					
	ijk	ikj	jik	jki	kij	kji
512						
1024						
2048						

4. Выполнить задание 3 с использованием представления матриц в виде одномерных динамических массивов.

1.4. Результаты лабораторной работы

Результаты лабораторной работы представляются в виде отчета по лабораторной работе. В отчет включается титульный лист, цель работы, задание на лабораторную работу, листинг <u>с комментариями</u>, полученные результаты и выводы по лабораторной работе.

Отчет оформляется в электронном виде и высылается на e-mail vbyzov.vyatsu@gmail.com (в теме или тексте письма, а также в названии документа с отчетом должны фигурировать ФИ студента, его группа, номер лабораторной работы).

Лабораторная работа считается зачтенной после её устной защиты у преподавателя.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ И ФИЗИКО-МАТЕМАТИЧЕСКИХ НАУК КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Отчёт по лабораторной работе №1 по дисциплине «Параллельное программирование»

Исследование особенностей реализации классического алгоритма умножения матриц

Выполнил: студент группы ФИб-330 <mark>1</mark> -51-00	 / <mark>И.И. Иванов</mark> /
Проверил: к.фм.н. доцент каф. ПМиИ	 / В.А. Бызов /