Corollary 47.10. The Primal Program (P) has an optimal solution iff the following set of constraints is satisfiable:

$$Ax \le b$$

$$yA \ge c$$

$$cx \ge yb$$

$$x \ge 0, \ y \ge 0_m^{\top}.$$

In fact, for any feasible solution (x^*, y^*) of the above system, x^* is an optimal solution of (P) and y^* is an optimal solution of (D)

47.3 Complementary Slackness Conditions

Another useful corollary of the strong duality theorem is the following result known as the equilibrium theorem.

Theorem 47.11. (Equilibrium Theorem) For any Linear Program (P) and its Dual Linear Program (D) (with set of inequalities $Ax \leq b$ where A is an $m \times n$ matrix, and objective function $x \mapsto cx$), for any feasible solution x of (P) and any feasible solution y of (D), x and y are optimal solutions iff

$$y_i = 0$$
 for all i for which $\sum_{j=1}^n a_{ij} x_j < b_i$ $(*_D)$

and

$$x_j = 0$$
 for all j for which $\sum_{i=1}^m y_i a_{ij} > c_j$. $(*_P)$

Proof. First assume that $(*_D)$ and $(*_P)$ hold. The equations in $(*_D)$ say that $y_i = 0$ unless $\sum_{j=1}^{n} a_{ij}x_j = b_i$, hence

$$yb = \sum_{i=1}^{m} y_i b_i = \sum_{i=1}^{m} y_i \sum_{j=1}^{n} a_{ij} x_j = \sum_{i=1}^{m} \sum_{j=1}^{n} y_i a_{ij} x_j.$$

Similarly, the equations in $(*_P)$ say that $x_j = 0$ unless $\sum_{i=1}^m y_i a_{ij} = c_j$, hence

$$cx = \sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \sum_{i=1}^{m} y_i a_{ij} x_j.$$

Consequently, we obtain

$$cx = yb$$
.

By weak duality (Proposition 47.6), we have

$$cx \le yb = cx$$