MATHEMATICAL REASONING CHAPTER 23

3rd SECONDARY += ×÷

CÁLCULO DE PERÍMETROS

HELICO MOTIVATION

□ !SABÍAS

IMPORTANCIA DE LA MEDICIÓN DEL PERÍMETRO CEFÁLICO

Este dato es importante porque ofrece información sobre el desarrollo del cerebro del bebé. En el recién nacido el perímetro cefálico puede estar disminuido por la presión producida al pasar por el canal del parto. Un cambio del crecimiento normal de la cabeza esperado puede alertar al médico sobre un posible problema principalmente:

Perimetro craneal		
meses	niño	niña
recién nacido	35,4	34,6
1	37,8	37,0
2	39,8	38,7
3	41,4	40,2
4	42,6	41,2
5	43,6	42,2
6	44,4	43,0
7	45,1	43,8
8	45,7	44,3
9	46,2	44,8
10	46,6	45,3
11	47,0	45,6
12	47,2	46,0
24	49,2	48,2

PERÍMETRO DE UNA REGIÓN PLANA

Es la medida numérica de la línea cerrada (frontera) que delimita a una región plana. Se simboliza: **2p**

PERÍMETROS DE FIGURAS

$$2p_{\Delta ABC} = a + b + c$$

Ejemplo:

Calcule el perímetro de una región triangular equilátera cuyo lado mide 8m.

$$2p_{\Delta ABC} = 24m$$

PERÍMETROS DE FIGURAS

Ejemplo:

Calcule el perímetro de una región cuadrada cuya diagonal mide $5\sqrt{2}$

$$2p_{\square ABCD} = 5 + 5 + 5 + 5$$
$$2p_{\square ABCD} = 20m$$

$$2p_{\Box ABCD} = 2a + 2b$$

Ejemplo:

Calcule el perímetro de una región rectangular cuyo largo es el doble del ancho, sí el ancho es la raíz cuadrada de 196.

$$2p_{\Box ABCD} = 2a + 2b$$

 $2p_{\Box ABCD} = 2(14) + 2(28)$
 $2p_{\Box ABCD} = 28 + 56$
 $2p_{\Box ABCD} = 84$

PERÍMETROS DE FIGURAS

Ejemplo:

Calcule la longitud de la circunferencia cuyo diámetro es 8m

$$d = 2r$$

$$8 = 2r$$

$$4 = r$$

$$2p = 2\pi r$$

$$2p = 2\pi 4$$

$$2p = 8\pi$$

RESOLUCIÓN DE LA PRÁCTICA

PROBLEMA 1

En un concurso de matemáticas se propuso el siguiente problema: Calcule el perímetro de la región sombreada.

Si Rosa que es una de las concursantes; se confundió al resolver el problema y se pasó por 5 unidades; ¿Qué respuesta hallo Rosa?.

Resolución:

$$\Rightarrow$$
 Perímetro (2p) = 2(8 + 6)m = 28 m

PROBLEMA 2

Calcule el perímetro de la región sombreada ABCD sabiendo que es un cuadrado

Resolución:

Calculando el perímetro. 4 cm

$$\Rightarrow$$
 2p = $2\pi(2)$ + 2(4)

$$\Rightarrow$$
 2p = 4π + 8

:.
$$2p = 4(\pi + 2)$$
 cm

$$4(\pi + 2)$$
 cm

PROBLEMA 3

Calcule el perímetro de la región sombreada si ABD es un cuadrante.

Resolución: Hallando el perímetro:

$$\Rightarrow 2p = 4\sqrt{5} + \left(\frac{2\pi(8)}{4}\right)$$

$$\Rightarrow 2p = 4\sqrt{5} + 4\pi + 4$$

$$\Rightarrow 2p = 4(\sqrt{5} + \pi + 1)u$$

$$\left(\frac{2\pi(8)}{4}\right)$$

$$\left(\frac{2\pi(8)}{4}\right)$$
 + $\frac{2\pi(8)}{4}$

$$\Rightarrow$$
 2p = $4\sqrt{5}$ + 4π + 4π

$$\Rightarrow$$
 2p = 4($\sqrt{5}$ + π + 1) ν

$$4(\sqrt{5} + \pi + 1) u$$

PROBLEMA 4

Calcule el perímetro de la región sombreada si ABCD es un cuadrado inscrito en el cuarto de circunferencia. Además la diagonal del cuadrado ABCD mide 10.

Resolución: Hallando el perímetro:

La diagonal es el radio de la circunferencia:

Del gráfico
$$a + b = 10$$

$$5(\pi + 4)u$$

PROBLEMA 5

Para una clase de RM se propone el siguiente problema: Calcule el perímetro de la región sombreada si...

$$R_1 + R_2 + R_3 + R_4 = 12u$$

Si de todos los alumnos Edgar es el más sobresaliente, y logra resolver correctamente el problema. ¿Qué respuesta dio Edgar?

Resolución:

Calculamos el perímetro de la región sombreada

$$\Rightarrow$$
 2p = $2\pi(R_1) + 2\pi(R_2) + 2\pi(R_3) + 2\pi(R_4)$

$$\Rightarrow$$
 2p = $2\pi(R_1 + R_2 + R_3 + R_4)$

$$\Rightarrow$$
 2p = $2\pi(12)$

$$\Rightarrow$$
 2p = 24 π u

PROBLEMA 6

La figura muestra una pileta rodeada de una área verde (parte sombreada), de una ciudad en el interior del país, calcule el valor del perímetro que corresponde al área verde.

Resolución:

Calculamos el perímetro de la región sombreada

Calculando el perímetro:

$$\Rightarrow$$
 2p = $2\pi(7)$

$$\Rightarrow$$
 2p =14 π + 30

$$\Rightarrow$$
 2p = 2(7 π + 15)u

PROBLEMA 7

En la figura, el área de la región sombreada representa la superficie de una fuente de agua en un parque de la ciudad de Cora Cora, determine el perímetro de dicha región, sabiendo que ABC es un triángulo equilátero cuyo lado mide 4m.

Calculamos el perímetro de la región sombreada

Longitud de las semicircunferencias

$$2p = \frac{m\pi}{2}$$

Perímetro de la región sombreada:

$$\Rightarrow$$
 2p = $2\pi + 2\pi + 2\pi$

$$\Rightarrow$$
 2p = 6π

