StudeerSnel.nl

2019-04-11-extra questions

Real-time Systems (Technische Universiteit Delft)

IN4343 – Real Time Systems

April 11th 2019, from 09:00 to 12:00

Mitra Nasri

Question:	1	2	3	4	Total
Points:	6	15	5	2	28
Score:					

- This is a closed book exam
- You may use a **simple** calculator only (i.e. graphical calculators are not permitted)
- Write your answers with a black or blue pen, not with a pencil
- Always justify your answers, unless stated otherwise
- Question 8 is an optional question (bonus).
- The exam covers the following material:
 - (a) chapters 1-9 of the book "Hard Real-Time Computing Systems (3rd ed)" by G. Buttazzo
 - (b) the paper "The Worst-Case Execution-Time Problem" by Wilhelm et al. (except Section 6)
 - (c) the paper "Non-Work-Conserving Non-preemptive Scheduling: Motivations, Challenges, and Potential Solutions" by Mitra Nasri and Gerhard Fohler
 - (d) the paper "An Exact and Sustainable Analysis of Non-Preemptive Scheduling" by Mitra Nasri and Björn B. Brandenburg
 - (e) the paper "Best-case response times and jitter analysis of real-time tasks" by R.J. Bril, E.F.M. Steffens, and W.F.J. Verhaegh

Liu and Layland (LL) bound	$U_{lub}^{RM} = n(2^{1/n} - 1)$
Hyperbolic (HB) bound	$\prod_{i=1}^{n} (U_i + 1) \le 2$
Response Time Analysis	$WR_i = C_i + \sum_{k=1}^{i-1} \left\lceil \frac{WR_i + AJ_k}{T_k} \right\rceil C_k$
	$BR_i = C_i + \sum_{k=1}^{i-1} \left(\left\lceil \frac{BR_i - AJ_k}{T_k} \right\rceil - 1 \right)^+ C_k$
	$w^+ = \max(w, 0)$
Processor Demand	$g(t_1, t_2) = \sum_{r_i \ge t_1}^{d_i \le t_2} C_i \qquad g(0, L) = \sum_{i=1}^n \left\lfloor \frac{L + T_i - D_i}{T_i} \right\rfloor C_i$
schedulability	$\forall L \in D, g(0, L) \le L$
	$D = \{d_k d_k \le \min(H, \max(D_{max}, L^*))\}$
	$H = lcm(T_1, \dots, T_n)$
	$\sum_{i=1}^{n} (T_i - D_i) \cdot U_i$
	$L^* = \frac{\widetilde{i=1}}{1 - II}$
CBS Server arrival of a job J_k	if (\exists a pending aperiodic job) then enqueue J_k ;
	else if $(q_s \ge (d_s - a_k) \cdot U_s)$ then
	$\{ q_s \leftarrow Q_s; d_s \leftarrow d_s + T_s; \}$
budget exhaustion	$q_s \leftarrow Q_s$
	$d_s \leftarrow d_s + T_s$
NP scheduling response time NP-FP	pre-requisites: $D \leq T$ and preemptive-schedulable
	$WO_i^{(n)} = B_i + \sum_{k=1}^{i-1} \left(\left\lfloor \frac{WO_i^{(n-1)}}{T_k} \right\rfloor + 1 \right) \cdot C_k$
	$B_i = \max\{C_j \mid \forall \tau_j, P_i < P_j\}$
	$R_i = C_i + WO_i$
	$WO_i^{(0)} = B_i + \sum_{k=1}^{i-1} C_k$
response time NP-EDF	$\forall \tau_i, 1 < i \le n, \forall L, T_1 < L < T_i:$
	$L \ge C_i + \sum_{k=1}^{i-1} \left\lfloor \frac{L-1}{T_k} \right\rfloor \cdot C_k$

Question 1 [6 points]

Consider the following code in the context of dynamic techniques to estimate the worst-case execution time of a task on a given platform.

```
int foo (int x, int y) {
  int z = 0;
  if (x > 7 && y < 5) {
    z = x;
  }
  else {
    if (x > 4 && y > 0){
    z = 2 * x + y;
  }
  }
  return z;
}
```

- (a) 3 points Generate the minimum number of test cases (i.e., calls to the foo function with different inputs) such that the statement coverage is satisfied.
- (b) 3 points Generate the minimum number of test cases such that the branch coverage is satisfied.

Question 2 [15 points]

A rate-monotonic scheduler is used to run the following task set ¹.

	C_i	T_i	D_i
$ au_1$	3	6	6
τ_2	7	18	18
τ_3	8	24	24

- (a) 10 points Compute the WCRT (worst-case response time) of each task.
- (b) 5 points Determine the worst-case response times of the three tasks. *Hint: draw a time line*.

Question 3 [5 points]

Park's test may be used with fixed-priority schedules to verify that the workload to be completed before a task's deadline is smaller than the deadline of the task itself. The test condition is formalized as²

$$C_i + \sum_{k=1}^{i-1} \left\lceil \frac{D_i}{T_k} \right\rceil \cdot C_k \le D_i$$

¹Thanks to Charles Randolph for preparing this numerical example.

²Thanks to Charles Randolph for his suggestion.

(a) 5 points Is Park's test a *sufficient*, *necessary*, or *exact* test? Justify your answer.

Question 4 [2 points]

(a) 1 point Claim: In general, preemptive fixed-priority scheduling with rate-monotonic priorities has a larger number of preemptions than EDF.

Cause: because each time a high-priority task is released, it will certainly preempt a low-priority task.

- (a) claim is true, cause is true (b) claim is true, cause is false (c) claim is false
- (b) 1 point Which resource access policy may result in deadlock?
 - (a) Priority Ceiling Protocol (PCP) (b) Highest-Locker Priority (HLP)
 - (c) Priority Inheritance Protocol (PIP) (d) Non-Preemptive Protocol (NPP)