Stock-Market-Prediction-and-Analysis (/github/ShubhaTiwarii/Stock-Market-Prediction-and-Analysis/tree/main)

Stock Market Analysis.ipynb (/github/ShubhaTiwarii/Stock-Market-Prediction-and-Analysis/tree/main/Stock Market Analysis.ipynb)

STOCK MARKET PREDICTION AND ANALYSIS

- 1. Stocks form Apple, Amazon, Google, and Microsoft are explored (closing prices, daily return, moving average).
- 2. Correlation between stocks is observed.
- 3. Risk of investing in a particular stock is measured.
- 4. Time Series forecasting is done using ARIMA for Google Stocks.
- 5. Future stock prices are predicted through Long Short Term Memory (LSTM) method.

In [1]: !pip install yfinance pandas datareader

Requirement already satisfied: yfinance in c:\users\shubh\anaconda3\lib\site-packages (0.2.50)
Requirement already satisfied: pandas_datareader in c:\users\shubh\anaconda3\lib\site-packages (0.1 0.0)

Requirement already satisfied: pandas>=1.3.0 in c:\users\shubh\anaconda3\lib\site-packages (from yf inance) (1.5.3)

Requirement already satisfied: numpy>=1.16.5 in c:\users\shubh\anaconda3\lib\site-packages (from yf inance) (1.24.3)

Requirement already satisfied: requests>=2.31 in c:\users\shubh\anaconda3\lib\site-packages (from y finance) (2.32.3)

Requirement already satisfied: multitasking>=0.0.7 in c:\users\shubh\anaconda3\lib\site-packages (f rom yfinance) (0.0.11)

Requirement already satisfied: lxml>=4.9.1 in c:\users\shubh\anaconda3\lib\site-packages (from yfin ance) (4.9.2)

Requirement already satisfied: platformdirs>=2.0.0 in c:\users\shubh\anaconda3\lib\site-packages (f rom yfinance) (2.5.2)

Requirement already satisfied: pytz>=2022.5 in c:\users\shubh\anaconda3\lib\site-packages (from yfi nance) (2022.7)

Requirement already satisfied: frozendict>=2.3.4 in c:\users\shubh\anaconda3\lib\site-packages (fro m yfinance) (2.4.6)

Requirement already satisfied: peewee>=3.16.2 in c:\users\shubh\anaconda3\lib\site-packages (from y finance) (3.17.7)

Requirement already satisfied: beautifulsoup4>=4.11.1 in c:\users\shubh\anaconda3\lib\site-packages (from yfinance) (4.12.2)

Requirement already satisfied: html5lib>=1.1 in c:\users\shubh\anaconda3\lib\site-packages (from yf inance) (1.1)

Requirement already satisfied: soupsieve>1.2 in c:\users\shubh\anaconda3\lib\site-packages (from be autifulsoup4>=4.11.1->yfinance) (2.4)

Requirement already satisfied: six>=1.9 in c:\users\shubh\anaconda3\lib\site-packages (from html5li b>=1.1->yfinance) (1.16.0)

Requirement already satisfied: webencodings in c:\users\shubh\anaconda3\lib\site-packages (from htm 15lib>=1.1-yfinance) (0.5.1)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\shubh\anaconda3\lib\site-packages (from pandas>=1.3.0->yfinance) (2.8.2)

Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\shubh\anaconda3\lib\site-packag es (from requests>=2.31->yfinance) (2.0.4)

Requirement already satisfied: idna<4,>=2.5 in c:\users\shubh\anaconda3\lib\site-packages (from req uests>=2.31-yyfinance) (3.4)

Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\shubh\anaconda3\lib\site-packages (fr om requests>=2.31->yfinance) (1.26.16)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\shubh\anaconda3\lib\site-packages (fr om requests>=2.31->yfinance) (2024.8.30)

In [2]:

!pip install --upgrade yfinance Requirement already satisfied: yfinance in c:\users\shubh\anaconda3\lib\site-packages (0.2.50) Requirement already satisfied: pandas>=1.3.0 in c:\users\shubh\anaconda3\lib\site-packages (from yf inance) (1.5.3) Requirement already satisfied: numpy>=1.16.5 in c:\users\shubh\anaconda3\lib\site-packages (from yf inance) (1.24.3) Requirement already satisfied: requests>=2.31 in c:\users\shubh\anaconda3\lib\site-packages (from y finance) (2.32.3) Requirement already satisfied: multitasking>=0.0.7 in c:\users\shubh\anaconda3\lib\site-packages (f rom yfinance) (0.0.11) Requirement already satisfied: lxml>=4.9.1 in c:\users\shubh\anaconda3\lib\site-packages (from yfin ance) (4.9.2) Requirement already satisfied: platformdirs>=2.0.0 in c:\users\shubh\anaconda3\lib\site-packages (f rom yfinance) (2.5.2) Requirement already satisfied: pytz>=2022.5 in c:\users\shubh\anaconda3\lib\site-packages (from yfi nance) (2022.7) Requirement already satisfied: frozendict>=2.3.4 in c:\users\shubh\anaconda3\lib\site-packages (fro m yfinance) (2.4.6) Requirement already satisfied: peewee>=3.16.2 in c:\users\shubh\anaconda3\lib\site-packages (from y finance) (3.17.7) Requirement already satisfied: beautifulsoup4>=4.11.1 in c:\users\shubh\anaconda3\lib\site-packages (from yfinance) (4.12.2) Requirement already satisfied: html5lib>=1.1 in c:\users\shubh\anaconda3\lib\site-packages (from yf inance) (1.1) Requirement already satisfied: soupsieve>1.2 in c:\users\shubh\anaconda3\lib\site-packages (from be autifulsoup4>=4.11.1->yfinance) (2.4) Requirement already satisfied: six>=1.9 in c:\users\shubh\anaconda3\lib\site-packages (from html5li b>=1.1->yfinance) (1.16.0) Requirement already satisfied: webencodings in c:\users\shubh\anaconda3\lib\site-packages (from htm 15lib>=1.1->yfinance) (0.5.1) Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\shubh\anaconda3\lib\site-packages (from pandas>=1.3.0->yfinance) (2.8.2) Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\shubh\anaconda3\lib\site-packag es (from requests>=2.31->yfinance) (2.0.4) Requirement already satisfied: idna<4,>=2.5 in c:\users\shubh\anaconda3\lib\site-packages (from req uests>=2.31->yfinance) (3.4) Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\shubh\anaconda3\lib\site-packages (fr

om requests>=2.31->yfinance) (1.26.16)

Requirement already satisfied: certifi>=2017.4.17 in c:\users\shubh\anaconda3\lib\site-packages (fr om requests>=2.31->yfinance) (2024.8.30)

```
In [3]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set_style('whitegrid')
        plt.style.use("fivethirtyeight")
        %matplotlib inline
        # Reading stock data from Yahoo Finance
        from pandas_datareader.data import DataReader
        import yfinance as yf
        from pandas_datareader import data as pdr
        from datetime import datetime
        stock_data = {}
        # Stocks used for this analysis
        tech list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']
        end = datetime.now()
        start = datetime(end.year - 1, end.month, end.day)
        for stock in tech list:
            stock_data[stock] = yf.download(stock, start=start, end=end)
        AAPL = stock_data['AAPL']
        GOOG = stock_data['GOOG']
        MSFT = stock data['MSFT']
        AMZN = stock data['AMZN']
        company list = [AAPL, GOOG, MSFT, AMZN]
        company_name = ["APPLE", "GOOGLE", "MICROSOFT", "AMAZON"]
        for company, com_name in zip(company_list, company_name):
            company["company_name"] = com_name
        df = pd.concat(company list, axis=0)
        print(df.tail(10))
        [********* 100%********** 1 of 1 completed
```

							Jupy	iter note	DOOK VIEV	vei			
Price	Adj	Close	Close	High	Low	0pen	Volume	compar	ny_name	Adj	Close	Close	\
Ticker		AAPL	AAPL	AAPL	AAPL	AAPL	AAPL				GOOG	GOOG	
Date													
2024-12-02		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-03		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-04		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-05		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-06		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-09		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-10		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-11		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-12		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
2024-12-13		NaN	NaN	NaN	NaN	NaN	NaN		${\sf AMAZON}$		NaN	NaN	
Price	High	٠		Low (Open '	Volume	e Adj	Close	(Close	e /		
Ticker	G000	i	MSFT I	MSFT I	MSFT	MSFT	-	AMZN		AMZN	J		
Date													
2024-12-02	NaN	١	NaN	NaN	NaN	NaN	210.	710007	210.7	10007	7		
2024-12-03	NaN	١	NaN	NaN	NaN	NaN	213.	440002	213.44	10002	2		
2024-12-04	NaN	١	NaN	NaN	NaN	NaN	218.	160004	218.16	50004	ļ		
2024-12-05	NaN	١	NaN	NaN	NaN	NaN	1 220.	550003	220.5	50003	3		
2024-12-06	NaN	١	NaN	NaN	NaN	NaN	227.	029999	227.02	29999)		
2024-12-09	NaN	١	NaN	NaN	NaN	NaN	226.	089996	226.08	39996	5		
2024-12-10	NaN	١	NaN	NaN	NaN	NaN	225.	039993	225.03	39993	3		
2024-12-11	NaN	١	NaN	NaN	NaN	NaN	1 230.	259995	230.25	59995	5		
2024-12-12	NaN	١	NaN	NaN	NaN	NaN	228.	970001	228.97	70001	L		
2024-12-13	NaN	١	NaN	NaN	NaN	NaN	227.	460007	227.46	50007	7		
Price		Hi	gh		Low		0pen	Vo]	Lume				
Ticker		AM.	ZN	Al	MZN		AMZN	ļ	AMZN				
Date													
2024-12-02	212	2.9900	05 209	9.509	995	209.96	0007	3952326	0.0				
2024-12-03	214	1.0200	04 209	9.649	994	210.30	9998	3221486	0.0				
2024-12-04	226	0.0000		5.750		215.96	0007	4874576	0.0				
2024-12-05	222	2.14999	94 21	7.300		218.02		4114026	0.0				
2024-12-06		14999		0.600		220.75		4417816					
2024-12-09		0.0800		5.669		227.21		4681946					
2024-12-10		0.05999		4.199		226.08		3119996					
2024-12-11	231	1.19999		6.259		226.41	.0004	3538586	0.00				
2024-12-12		.0899		7.630		229.83		2820410					
2024-12-13	236	19999	97 22	5.860	794	228.47	0001	2824915	54.0				
	25	_	_										
[10	7F -		_ 1										

[10 rows x 25 columns]

In [4]: df.head(10)

Out	[4]	۱:

Price	Adj Close	Close	High	Low	Open	Volume	company_name	Adj Close	Close	
Ticker	AAPL	AAPL	AAPL	AAPL	AAPL	AAPL		GOOG	GOOG	G00
Date										
2023- 12-14	197.144196	198.110001	199.619995	196.160004	198.020004	66831600.0	APPLE	NaN	NaN	Nal
2023- 12-15	196.606827	197.570007	198.399994	197.000000	197.529999	128256700.0	APPLE	NaN	NaN	Nal
2023- 12-18	194.934998	195.889999	196.630005	194.389999	196.089996	55751900.0	APPLE	NaN	NaN	Nal
2023- 12-19	195.979889	196.940002	196.949997	195.889999	196.160004	40714100.0	APPLE	NaN	NaN	Nal
2023- 12-20	193.880188	194.830002	197.679993	194.830002	196.899994	52242800.0	APPLE	NaN	NaN	Nal
2023- 12-21	193.730881	194.679993	197.080002	193.500000	196.100006	46482500.0	APPLE	NaN	NaN	Nal
2023- 12-22	192.656174	193.600006	195.410004	192.970001	195.179993	37122800.0	APPLE	NaN	NaN	Nal
2023- 12-26	192.108871	193.050003	193.889999	192.830002	193.610001	28919300.0	APPLE	NaN	NaN	Nal
2023- 12-27	192.208359	193.149994	193.500000	191.089996	192.490005	48087700.0	APPLE	NaN	NaN	Nal
2023- 12-28	192.636292	193.580002	194.660004	193.169998	194.139999	34049900.0	APPLE	NaN	NaN	Nal

10 rows × 25 columns

In [5]: # checking if data is downloaded correctly for ticker in tech_list: print(f"{ticker} data:\n", stock_data[ticker].head(), "\n")

AAPL data:						
Price	Adj Close	Close	High	Low	0pen	\
Ticker	AAPL	AAPL	AAPL	AAPL	AAPL	
Date						
2023-12-14	197.144196	198.110001	199.619995	196.160004	198.020004	
2023-12-15	196.606827	197.570007	198.399994	197.000000	197.529999	
2023-12-18	194.934998	195.889999	196.630005	194.389999	196.089996	
2023-12-19	195.979889	196.940002	196.949997	195.889999	196.160004	
2023-12-20	193.880188	194.830002	197.679993	194.830002	196.899994	
	_					
Price		ompany_name				
Ticker	AAPL					
Date						
2023-12-14	66831600	APPLE				
2023-12-15	128256700	APPLE				
2023-12-18	55751900	APPLE				
2023-12-19	40714100	APPLE				
2023-12-20	52242800	APPLE				
GOOG data:						
Price	Adi Clasa	Close	Uiah	Low	Onon	,
Ticker	Adj Close GOOG	GOOG	High GOOG	Low GOOG	Open GOOG	\
Date	dood	dood	dood	dood	dood	
2023-12-14	132.723114	133.199997	135.035004	131.059998	134.770004	
2023-12-14	133.360809	133.1333996	134.830002	132.630005	132.919998	
2023-12-13	136.698822	137.190002	138.380005	133.770004	133.860001	
2023-12-18	137.605576	138.100006	138.770004	137.449997	138.000000	
2023 12 19	139.159988	139.660004	143.078003	139.410004	140.330002	
2023 12 20	133.133300	133.000001	1131070003	1331 12000 1	110.330002	
Price	Volume co	mpany name				
Ticker	GOOG	puyue				
Date						
2023-12-14	29619100	GOOGLE				
2023-12-15	58569400	GOOGLE				
2023-12-18	25699800	GOOGLE				
2023-12-19	20661000	GOOGLE				
2023-12-20	33507300	GOOGLE				
MSFT data:						
Price	Adj Close	Close	High	Low	0pen	\
Ticker	MSFT	MSFT	MSFT	MSFT	MSFT	
Date						
2023-12-14	363.213928	365.929993	373.760010	364.130005	373.309998	
2023-12-15	367.978302	370.730011	372.399994	366.279999	366.850006	
2023-12-18	369.884003	372.649994	373.000000	368.679993	369.450012	
	370.489563	373.260010	373.260010	369.839996	371.489990	
2023-12-20	367.869110	370.619995	376.029999	370.529999	375.000000	
Price		mpany_name				
Ticker	MSFT					
Date	42277500	WT600605T				
	43277500	MICROSOFT				
2023-12-15	78478200	MICROSOFT				
2023-12-18	21802900	MICROSOFT				
2023-12-19	20603700	MICROSOFT				
2023-12-20	26316700	MICROSOFT				
AM7N da+a+						
AMZN data: Price	Adj Close	Close	High	Low	Onon	١
Ticker	AUJ CIOSE AMZN	AMZN	AMZN	AMZN	Open AMZN	\
Date	ALITIN	ALITIN	ALIZIN	ALITIN	MILLIN	
2023-12-14	147.419998	147.419998	150.539993	145.520004	149.929993	
2023 12 14	149.970001	149.970001	150.570007	147.880005	148.380005	
2023-12-18	154.070007	154.070007	154.850006	150.050003	150.559998	
						

```
2023-12-19 153.789993 153.789993 155.119995 152.690002 154.399994
        2023-12-20 152.119995 152.119995 155.630005 151.559998 152.899994
        Price
                       Volume company name
                          AMZN
        Ticker
        Date
                                     AMAZON
        2023-12-14 58400800
        2023-12-15 110039100
                                     AMAZON
        2023-12-18 62512800
                                     AMAZON
        2023-12-19 43171300
                                     AMAZON
        2023-12-20
                     50322100
                                     AMAZON
In [6]: # Checking if 'Adj Close' exists
        for ticker in tech_list:
            print(f"{ticker} columns:\n", stock_data[ticker].columns, "\n")
        AAPL columns:
         MultiIndex([(
                         'Adj Close', 'AAPL'),
                            'Close', 'AAPL'),
                    (
                             'High', 'AAPL'),
                     (
                              'Low', 'AAPL'),
                     (
                              'Open', 'AAPL'),
                            'Volume', 'AAPL'),
                     ('company_name', '')],
                    names=['Price', 'Ticker'])
        GOOG columns:
                          'Adj Close', 'GOOG'),
         MultiIndex([(
                             'Close', 'GOOG'),
                    (
                             'High', 'GOOG'),
'Low', 'GOOG'),
                     (
                              'Open', 'GOOG'),
                           'Volume', 'GOOG'),
                                        '')],
                     ('company name',
                   names=['Price', 'Ticker'])
        MSFT columns:
                          'Adj Close', 'MSFT'),
         MultiIndex([(
                            'Close', 'MSFT'),
                             'High', 'MSFT'),
                     (
                              'Low', 'MSFT'),
                     (
                             'Open', 'MSFT'),
                            'Volume', 'MSFT'),
                     ('company_name', '')],
                   names=['Price', 'Ticker'])
        AMZN columns:
         MultiIndex([(
                          'Adj Close', 'AMZN'),
                             'Close', 'AMZN'),
                     (
                              'High', 'AMZN'),
                     (
                             'Low', 'AMZN'),
'Open', 'AMZN'),
                     (
                            'Volume', 'AMZN'),
                     ('company name', '')],
                    names=['Price', 'Ticker'])
```

Closing Price:

The closing price is also referred to as "close". Essentially it is the final traded price of a financial asset at the end of a trading day or a trading session.

```
In [7]: #Closing Price
plt.figure(figsize=(10, 10))

stock_data['AAPL']['Adj Close'].plot()
plt.title("AAPL Adjusted Close")
plt.show()

stock_data['GOOG']['Adj Close'].plot()
plt.title("GOOG Adjusted Close")
plt.show()

stock_data['MSFT']['Adj Close'].plot()
plt.title("MSFT Adjusted Close")
plt.show()

stock_data['AMZN']['Adj Close'].plot()
plt.title("AMZN Adjusted Close")
plt.show()
```



```
In [8]: closing_df = pd.DataFrame()

for stock in tech_list:
    closing_df[stock] = stock_data[stock]['Adj Close']

tech_rets = closing_df.pct_change()

tech_rets.head()
```

AMZN	MSFT	GOOG	AAPL		Out[8]:
				Date	
NaN	NaN	NaN	NaN	2023-12-14	
0.017298	0.013117	0.004805	-0.002726	2023-12-15	
0.027339	0.005179	0.025030	-0.008503	2023-12-18	
-0.001817	0.001637	0.006633	0.005360	2023-12-19	
-0.010859	-0.007073	0.011296	-0.010714	2023-12-20	

Risk-Return Tradeoff: Higher is expected return, more is the risk for the stocks. MSFT shows low risks and potentially low returns ideal for risk averse investors.

```
In [10]: # compare the daily percentage return of two stocks to check correlation
sns.jointplot(x='AMZN', y='GOOG', data=tech_rets, kind='scatter', color='purple')
# Comparison Analysis for all combinations
sns.pairplot(tech_rets, kind='reg')
```

Out[10]: <seaborn.axisgrid.PairGrid at 0x1d9f84486d0>

- 1. Each histogram shows rougly a bell curved shape, while AMZN stocks are normally distributed.
- 2. A positive correlation is observed amongst most pairs. Slightly weaker correlations may exist for certain pairs, but none show negative or no correlation.
- 3. The regression lines in the scatter plots indicate linear relationships between the pairs of stocks. This suggests that when one stock's return increases, the others tend to increase as well.
- 4. Stocks like GOOG and AMZN may exhibit higher dispersion (greater volatility) compared to AAPL and MSFT.

```
In [11]: #Volume of Sales
    plt.figure(figsize=(10, 10))

    company['Volume'].plot()
    plt.ylabel('Volume')
    plt.xlabel(None)
    plt.title(f"Sales Volume for {AAPL} ")

plt.tight_layout()
```

C:\Users\shubh\AppData\Local\Temp\ipykernel_42160\3274364906.py:9: UserWarning: Tight layout not ap
plied. The bottom and top margins cannot be made large enough to accommodate all axes decorations.
 plt.tight_layout()

<Figure size 1000x1000 with 0 Axes>

Sales Volum	e for Price	Adi Class	Class	Lliada	1	0	
	er AAF	PL AAPL				Open \	١
2023-12-15 2023-12-18 2023-12-19	196.606827 194.934998 195.979889	198.110001 197.570007 195.889999 196.940002 194.830002	198.399994 196.630005 196.949997	197.0000 194.3899 195.8899	00 197.5 99 196.0 99 196.1	529999 089996 160004	
2024-12-10 2024-12-11 2024-12-12	247.770004 246.490005 247.960007	246.750000 247.770004 246.490005 247.960007 248.130005	248.210007 250.800003 248.740005	245.3399 246.2599 245.6799	96 246.8 95 247.9 93 246.8	889999 60007 889999	
	202 202 202 202 202 202 202 202	Date 3-12-14 668 3-12-15 1282 3-12-18 557 3-12-19 407 3-12-20 522 4-12-09 446 4-12-10 369 4-12-11 452 4-12-12 327	AAPL 31600 AI 256700 A 51900 AI 14100 AI 42800 AI 49200 AI 14800 AI 05800 AI 77500 AI	PPLE PPLE PPLE PPLE PPLE PPLE PPLE PPLE			
		[252 504/6	v 7 salumnal				
	1e8 1.4 1.2 1.0 0.8 0.6 0.4 0.2 2024 0.7	Maladul	x 7 columns]	Ticker AMZN			

Moving average is calculated to analyze data points by creating a series of averages from different subsets of the full data set. In finance, it is commonly used to smooth out short-term fluctuations in stock prices or other data to reveal long-term trends.

Simple moving averages (SMAs) use a simple arithmetic average of prices over some timespan, while exponential moving averages (EMAs) place greater weight on more recent prices than older ones over the time period.

```
In [12]:
         #Moving Average
         ma_day = [10, 20, 50]
         for ma in ma_day:
             for company in company_list:
                 column name = f"MA for {ma} days"
                 company[column_name] = company['Adj Close'].rolling(ma).mean()
         fig, axes = plt.subplots(nrows=2, ncols=2)
         fig.set_figheight(10)
         fig.set_figwidth(15)
         AAPL[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,0])
         axes[0,0].set_title('APPLE')
         GOOG[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,1])
         axes[0,1].set_title('GOOGLE')
         MSFT[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,0])
         axes[1,0].set_title('MICROSOFT')
         AMZN[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,1])
         axes[1,1].set_title('AMAZON')
```

Out[12]: Text(0.5, 1.0, 'AMAZON')

Out[13]: Text(0.5, 1.0, 'AMAZON')


```
In [14]: plt.figure(figsize=(12, 9))

for i, company in enumerate(company_list, 1):
    plt.subplot(2, 2, i)
    company['Daily Return'].hist(bins=50, color='green')
    plt.xlabel('Daily Return')
    plt.ylabel('Counts')
    plt.title(f'{company_name[i - 1]}')
```


In [15]: plt.figure(figsize=(12, 10))

#correlation of stock return
plt.subplot(2, 2, 1)
sns.heatmap(tech_rets.corr(), annot=True, cmap='ocean')
plt.title('Correlation of stock return')

#correlation of stock closing price
plt.subplot(2, 2, 2)
sns.heatmap(closing_df.corr(), annot=True, cmap='ocean')
plt.title('Correlation of stock closing price')

Out[15]: Text(0.5, 1.0, 'Correlation of stock closing price')

TIME SERIES FORECASTING USING ARIMA FOR GOOGLE STOCK PRICES

```
In [16]: import datetime
         from datetime import date, timedelta
         today = date.today()
         d1 = today.strftime("%Y-%m-%d")
         end date = d1
         d2 = date.today() - timedelta(days=365)
         d2 = d2.strftime("%Y-%m-%d")
         start_date = d2
         data = yf.download('GOOG',
                                start=start_date,
                                end=end_date,
                                progress=False)
         data["Date"] = data.index
         data = data[["Date", "Open", "High", "Low", "Close", "Adj Close", "Volume"]]
         data.reset index(drop=True, inplace=True)
         print(data.tail())
         Price
                                                                       Close
                                                                               Adj Close \
                       Date
                                   0pen
                                               High
                                                            Low
         Ticker
                                   GOOG
                                               GOOG
                                                           GOOG
                                                                        GOOG
                                                                                    GOOG
         246
                2024-12-09 175.714996
                                         178.039993
                                                     175.399994
                                                                 177.100006
                                                                              177.100006
         247
                2024-12-10
                             184.535004
                                         188.029999
                                                     182.669998
                                                                 186.529999
                                                                              186.529999
         248
                2024-12-11 186.699997
                                         196.889999
                                                     186.259995
                                                                 196.710007
                                                                              196.710007
         249
                2024-12-12 196.300003
                                         196.705002
                                                     193.279999
                                                                 193.630005
                                                                              193.630005
         250
                2024-12-13 192.750000
                                         194.339996 191.259995
                                                                 191.380005
                                                                              191.380005
         Price
                   Volume
         Ticker
                      GOOG
         246
                 19887800
         247
                 34317400
         248
                 41664500
         249
                 25197800
         250
                 18360673
In [17]: data = data[["Date", "Close"]]
         print(data.head())
         Price
                       Date
                                  Close
         Ticker
                                   GOOG
                2023-12-15 133.839996
         а
         1
                2023-12-18 137.190002
         2
                2023-12-19 138.100006
         3
                2023-12-20 139.660004
                2023-12-21 141.800003
In [18]: import matplotlib.pyplot as plt
         plt.style.use('ggplot')
         plt.figure(figsize=(15, 10))
         plt.plot(data["Date"], data["Close"])
```

Out[18]: [<matplotlib.lines.Line2D at 0x1d9f863c0d0>]

- 1. The overall price has been increasing over time.
- 2. There are recurring cyclical patterns in the price, likely due to daily, weekly, or monthly factors.
- 3. There might be additional factors influencing the price that are not captured by the trend or seasonality components.

In [20]: pd.plotting.autocorrelation_plot(data["Close"])

Out[20]: <Axes: xlabel='Lag', ylabel='Autocorrelation'>

In [21]: #Since the curve is moving down after the 10th line of the first boundary, therefore p = 10

In [22]: from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(data["Close"], lags = 100)

C:\Users\shubh\anaconda3\Lib\site-packages\statsmodels\graphics\tsaplots.py:348: FutureWarning: The default method 'yw' can produce PACF values outside of the [-1,1] interval. After 0.13, the default will change tounadjusted Yule-Walker ('ywm'). You can use this method now by setting method='ywm'. warnings.warn(

Out[22]:

In [23]: # 2 points are far away from others, therefore q=2 and since data is seasonal , d=1

```
In [24]:
       import statsmodels.api as sm
       import matplotlib.pyplot as plt
       p, d, q = 10, 1, 2
       from statsmodels.tsa.arima.model import ARIMA
       model = ARIMA(data["Close"], order=(p, d, q))
       fitted = model.fit()
       print(fitted.summary())
                              SARIMAX Results
       ______
       Dep. Variable:
                               GOOG
                                    No. Observations:
                                                               251
       Model:
                       ARIMA(10, 1, 2)
                                    Log Likelihood
                                                           -609.936
       Date:
                      Sat, 14 Dec 2024
                                    AIC
                                                           1245.872
       Time:
                            04:00:43 BIC
                                                           1291.651
       Sample:
                                  0
                                    HQIC
                                                           1264.296
                               - 251
       Covariance Type:
                                opg
       ______
                                           P>|z| [0.025
                  coef std err
                                      7
                                                             0.9751
       ______
       ar.L1
                 0.0595
                          0.339 0.176
                                           0.860 -0.604
                                                             0.723
       ar.L2
                 0.5552
                         0.393 1.413
                                          0.158 -0.215
                                                             1.325
                                -1.071
                                          0.284
                                                  -0.280
       ar.L3
                 -0.0990
                           0.092
                                                             0.082
       ar.L4
                 0.0605
                           0.104
                                   0.582
                                           0.561
                                                   -0.143
                                                             0.264
                         0.104
                 0.0825
                                           0.427
                                                   -0.121
                                                             0.286
       ar.L5
                                   0.795
                 0.0412
                         0.107
                                  0.384
                                           0.701
                                                   -0.169
                                                             0.252
       ar.L6
       ar.L7
                 0.0580
                         0.084
                                  0.694
                                           0.487
                                                  -0.106
                                                             0.222
       ar.L8
                -0.0271
                         0.097 -0.280
                                           0.780
                                                  -0.217
                                                             0.163
       ar.L9
                -0.0195
                          0.100 -0.194
                                           0.846
                                                  -0.216
                                                             0.177
                                  -1.226
                                                   -0.289
       ar.L10
                 -0.1114
                          0.091
                                           0.220
                                                             0.067
                           0.344 9.78e-06
       ma.L1
               3.362e-06
                                           1.000
                                                   -0.674
                                                              0.674
                           0.399
       ma.L2
                 -0.6393
                                  -1.600
                                           0.110
                                                   -1.422
                                                             0.144
                           0.443
       sigma2
                  7.6930
                                  17.362
                                           0.000
                                                    6.825
                                                             8.561
       ______
       Ljung-Box (L1) (Q):
                                   0.01
                                        Jarque-Bera (JB):
                                                                 305.02
       Prob(Q):
                                   0.91
                                        Prob(JB):
                                                                  0.00
       Heteroskedasticity (H):
                                   1.36
                                                                  0.21
                                        Skew:
       Prob(H) (two-sided):
                                   0.16
                                        Kurtosis:
                                                                  8.39
       ______
       [1] Covariance matrix calculated using the outer product of gradients (complex-step).
In [25]: predictions = fitted.predict()
       print(predictions)
       0
             0.000000
       1
            133.840061
       2
            137.390243
       3
            137.907475
       4
            139.421693
              . . .
       246
            177.005167
       247
            177.344160
       248
            187.317731
       249
            196.648784
       250
            192.468781
       Name: predicted mean, Length: 251, dtype: float64
```

 $\label{thm:cond} C:\Users\hubh\anaconda3\Lib\site-packages\statsmodels\base\model.py:604: Convergence\Warning: Maximum Likelihood optimization failed to converge. Check mle_retvals$

opg

warnings.warn("Maximum Likelihood optimization failed to "

SARIMAX Results

Dep. Variable:	G00G	No. Observations:	251
Model:	SARIMAX(10, 1, 2)x(10, 1, 2, 12)	Log Likelihood	-591.695
Date:	Sat, 14 Dec 2024	AIC	1233.390
Time:	04:06:16	BIC	1320.197
Sample:	0	HQIC	1268.375
	- 251		

Covariance Type:

=========	=======	=======		========		=======
	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.4291	2.424	 -0.177	0.860	-5.180	4.322
ar.L2	0.2240	2.049	0.109	0.913	-3.792	4.240
ar.L3	-0.1284	0.115	-1.112	0.266	-0.355	0.098
ar.L4	-0.0223	0.338	-0.066	0.948	-0.686	0.641
ar.L5	0.0764	0.181	0.423	0.673	-0.278	0.431
ar.L6	0.0745	0.176	0.423	0.673	-0.271	0.420
ar.L7	0.0158	0.258	0.061	0.951	-0.490	0.521
ar.L8	-0.0034	0.164	-0.021	0.983	-0.324	0.317
ar.L9	0.0091	0.093	0.097	0.922	-0.174	0.192
ar.L10	-0.0438	0.099	-0.440	0.660	-0.239	0.151
ma.L1	0.5165	2.432	0.212	0.832	-4.251	5.284
ma.L2	-0.2374	2.251	-0.105	0.916	-4.649	4.174
ar.S.L12	-1.6115	1.467	-1.099	0.272	-4.486	1.263
ar.S.L24	-1.0679	2.051	-0.521	0.603	-5.088	2.952
ar.S.L36	-0.8434	1.574	-0.536	0.592	-3.928	2.241
ar.S.L48	-0.9530	1.330	-0.716	0.474	-3.561	1.655
ar.S.L60	-1.0238	1.379	-0.742	0.458	-3.726	1.679
ar.S.L72	-0.8278	1.388	-0.596	0.551	-3.549	1.893
ar.S.L84	-0.5033	1.109	-0.454	0.650	-2.677	1.670
ar.S.L96	-0.4503	0.726	-0.620	0.535	-1.873	0.972
ar.S.L108	-0.3659	0.602	-0.607	0.544	-1.547	0.815
ar.S.L120	-0.0785	0.376	-0.208	0.835	-0.816	0.659
ma.S.L12	0.6350	1.526	0.416	0.677	-2.356	3.626
ma.S.L24	-0.2259	0.811	-0.279	0.781	-1.816	1.364
sigma2	7.5374	0.959	7.860	0.000	5.658	9.417
========	=======	========		========		
Ljung-Box (L1) (Q):			0.01	Jarque-Bera	(JB):	108.3
Prob(Q):			0.94	Prob(JB):		0.0
Heteroskedas	ticity (H):		0.84	Skew:		0.1
Prob(H) (two	-sided):		0.43	Kurtosis:		6.3

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
 - 1. Residuals show no significant autocorrelation or heteroskedasticity however they deviate significantly from normality.
 - 2. Despite similar fit metrics, neither model clearly outperforms the other based on information criteria alone, as both are complex and might overfit.

3. Both models include terms with high p-values (insignificant terms) that suggest potential model simplification.

```
In [27]: predictions = model.predict(len(data), len(data)+20)
          print(predictions)
          251
                 191.956664
          252
                 194.400235
          253
                 191.935900
          254
                 190.973382
          255
                 189.875420
          256
                 192.028742
          257
                 193.620999
          258
                 192.406503
          259
                 188.985731
          260
                 188.878185
          261
                 189.745588
          262
                 189.441284
          263
                 189.815998
          264
                 188.895635
          265
                 187.585820
          266
                 184.590406
          267
                 185.164717
          268
                 186.353954
          269
                 189.013126
          270
                 187.760363
          271
                 189.364336
          Name: predicted_mean, dtype: float64
```

In [28]: data["Close"].plot(legend=True, label="Training Data", figsize=(15, 10))
 predictions.plot(legend=True, label="Predictions")

Out[28]: <Axes: >

PREDICTING CLOSING STOCK PRICE FOR AMZN USING LSTM

```
Price
             Date
                         0pen
                                      High
                                                   Low
                                                             Close
                                                                     Adj Close \
Ticker
                         AMZN
                                      AMZN
                                                  AMZN
                                                              AMZN
                                                                           AMZN
       2024-12-09
                               230.080002 225.669998
                                                        226.089996 226.089996
246
                   227.210007
247
                                                                    225.039993
       2024-12-10
                   226.089996
                               229.059998
                                            224.199997
                                                        225.039993
248
       2024-12-11
                   226.410004
                                231.199997
                                            226.259995
                                                        230.259995
                                                                    230.259995
249
       2024-12-12
                   229.830002
                               231.089996
                                            227.630005
                                                        228.970001
                                                                    228.970001
250
       2024-12-13
                   228.470001
                               230.199997
                                            225.860794
                                                        227.460007
                                                                    227.460007
```

```
Price Volume
Ticker AMZN
246 46819400
247 31199900
248 35385800
249 28204100
250 28249154
```

```
In [30]: plt.figure(figsize=(16,6))
    plt.title('Close Price History')
    plt.plot(df['Close'])
    plt.xlabel('Date', fontsize=18)
    plt.ylabel('Close Price USD ($)', fontsize=18)
    plt.show()
```



```
In [31]: df = df["Close"]
    print(df.head())
```

Ticker	AMZN
0	149.970001
1	154.070007
2	153.789993
3	152.119995
4	153.839996

```
In [32]: dataset = df.values
    training_data_len = int(np.ceil( len(dataset) * .95 ))
```

```
In [33]: from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler(feature_range=(0,1))
    scaled_data = scaler.fit_transform(dataset)
    scaled_data
```

```
Out[33]: array([[0.06301779],
                 [0.11086476],
                 [0.107597],
                 [0.08810817],
                 [0.10818054],
                 [0.10327917],
                 [0.10316254],
                 [0.10234555],
                 [0.10281245],
                 [0.08600766],
                 [0.06255089],
                 [0.04551283],
                 [0.
                 [0.00781886],
                 [0.05286497],
                 [0.07935569],
                 [0.10689683],
                 [0.12381826],
                 [0.11728311],
                 [0.10024504],
                 [0.08332361],
                 [0.10421279],
                 [0.1256855],
                 [0.11915034],
                 [0.13362118],
                 [0.14354055],
                 [0.15381018],
                 [0.16979799],
                 [0.19477173],
                 [0.16839765],
                 [0.12405171],
                 [0.17166523],
                 [0.31789
                 [0.30038504],
                 [0.28684783],
                 [0.30295245],
                 [0.29490014],
                 [0.34869873],
                 [0.32407507],
                 [0.2808962],
                 [0.3082039],
                 [0.29443342],
                 [0.29104902],
                 [0.26269107],
                 [0.28031267],
                 [0.35021588],
                 [0.35500062],
                 [0.35196631],
                 [0.33807901],
                 [0.33364454],
                 [0.37565634],
                 [0.39269458],
                 [0.38522581],
                 [0.34484762],
                 [0.33772892],
                 [0.37635669],
                 [0.35920181],
                 [0.31964061],
                 [0.35966853],
                 [0.37332238],
                 [0.39887966],
                 [0.34834864],
                 [0.34904881],
                 [0.36562016],
```

[0.3918776], [0.3918776], [0.40028 [0.41008291], [0.3936282], [0.41148325],[0.41790177], [0.42478702], [0.42151944], [0.44159181], [0.41346713], [0.47263398], [0.47403432], [0.47963586], [0.48290344], [0.51908043], [0.48500413], [0.45571238], [0.45221153], [0.42840468], [0.40436456], [0.35079942], [0.38114125], [0.40809886], [0.37367247], [0.33959616], [0.40903248], [0.42467038], [0.35511725], [0.40179715], [0.46854942], [0.48593775], [0.51499587], [0.51569604], [0.50682692], [0.52433189], [0.50075849], [0.49013895], [0.49597393], [0.48337034], [0.45582919], [0.46831597], [0.45477876], [0.45022748], [0.4499942], [0.42572063], [0.42221961], [0.4385575], [0.43704052], [0.40553163], [0.37192204], [0.39409492], [0.4057649], [0.42840468], [0.471817], [0.46364805], [0.49585712], [0.49784099], [0.49387325], [0.45816315], [0.45617928], [0.4608472], [0.44625973],

[0.48465404],

https://nbviewer.org/github/ShubhaTiwarii/Stock-Market-Prediction-and-Analysis/blob/main/Stock Market Analysis.ipynb

[0.51943052], [0.47846897], [0.48745472], [0.57229549], [0.62177625], [0.56809429], [0.61419066], [0.64686662], [0.61874194], [0.64686662], [0.63858086], [0.6391644], [0.64441585], [0.58910028], [0.58256513], [0.56190922], [0.56541025], [0.50600994], [0.45722953], [0.4499942], [0.4432256], [0.48827171], [0.42315323], [0.4117167], [0.44264206], [0.45081101], [0.43342286], [0.4949235], [0.46096401], [0.27226036], [0.19197105], [0.20259059], [0.21239351], [0.24775352], [0.26105728], [0.25942349], [0.29945142], [0.29793445], [0.38534244], [0.37915737], [0.39269458], [0.40039681], [0.41475083], [0.36830438], [0.37892392], [0.36095224], [0.33317764], [0.30610339], [0.32150767], [0.39596216], [0.36970472], [0.33562841], [0.38884347], [0.31298863], [0.35978517],[0.40821567], [0.46621546], [0.49515695], [0.48920533], [0.4705333], [0.49375661], [0.48850498], [0.52864972],

[0.54883891],

https://nbviewer.org/github/ShubhaTiwarii/Stock-Market-Prediction-and-Analysis/blob/main/Stock Market Analysis.ipynb

[0.57544643], [0.57638005], [0.5596919], [0.54370409], [0.50647684], [0.48733809], [0.47333415], [0.46901614], [0.43634035], [0.4894386], [0.42280314], [0.44520947], [0.47380087], [0.49107239], [0.51639639], [0.50145866], [0.50320926], [0.49387325], [0.50134202], [0.51838026], [0.51931388], [0.52666585], [0.46843279], [0.48792162], [0.50484305], [0.51137821], [0.53985297], [0.56202586], [0.48815489], [0.62270969], [0.59761932], [0.64103164], [0.7296067], [0.76414991], [0.74232693], [0.72668921], [0.75084614], [0.81141334], [0.78083789], [0.67732527], [0.66670555], [0.70066521], [0.68047621], [0.62796132], [0.61325704], [0.66378805], [0.73859263], [0.71385234], [0.73894272], [0.77185213], [0.80371111], [0.85879341], [0.88668464], [0.96230603], [0.95133623], [0.93908272], [1. [0.98494581], [0.96732421]])

```
In [34]: train data = scaled data[0:int(training data len), :]
         x train = []
         y_{train} = []
         for i in range(60, len(train_data)):
             x_train.append(train_data[i-60:i, 0])
             y_train.append(train_data[i, 0])
             if i<= 61:
                 print(x_train)
                 print(y train)
                 print()
         x train, y train = np.array(x train), np.array(y train)
         x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
         [array([0.06301779, 0.11086476, 0.107597 , 0.08810817, 0.10818054,
                0.10327917, 0.10316254, 0.10234555, 0.10281245, 0.08600766,
                0.06255089, 0.04551283, 0.
                                                  , 0.00781886, 0.05286497,
                0.07935569, 0.10689683, 0.12381826, 0.11728311, 0.10024504,
                0.08332361, 0.10421279, 0.1256855, 0.11915034, 0.13362118,
                0.14354055, 0.15381018, 0.16979799, 0.19477173, 0.16839765,
                0.12405171, 0.17166523, 0.31789 , 0.30038504, 0.28684783,
                0.30295245, 0.29490014, 0.34869873, 0.32407507, 0.2808962,
                0.3082039 , 0.29443342, 0.29104902, 0.26269107, 0.28031267,
                0.35021588, 0.35500062, 0.35196631, 0.33807901, 0.33364454,
                0.37565634, 0.39269458, 0.38522581, 0.34484762, 0.33772892,
                0.37635669, 0.35920181, 0.31964061, 0.35966853, 0.37332238])]
         [0.39887965676712]
         [array([0.06301779, 0.11086476, 0.107597 , 0.08810817, 0.10818054,
                0.10327917, 0.10316254, 0.10234555, 0.10281245, 0.08600766,
                0.06255089, 0.04551283, 0.
                                                , 0.00781886, 0.05286497,
                0.07935569, 0.10689683, 0.12381826, 0.11728311, 0.10024504,
                0.08332361, 0.10421279, 0.1256855 , 0.11915034, 0.13362118,
                0.14354055, 0.15381018, 0.16979799, 0.19477173, 0.16839765,
                0.12405171, 0.17166523, 0.31789 , 0.30038504, 0.28684783,
                0.30295245, 0.29490014, 0.34869873, 0.32407507, 0.2808962,
                0.3082039, 0.29443342, 0.29104902, 0.26269107, 0.28031267,
                0.35021588, 0.35500062, 0.35196631, 0.33807901, 0.33364454,
                0.37565634, 0.39269458, 0.38522581, 0.34484762, 0.33772892,
                0.37635669, 0.35920181, 0.31964061, 0.35966853, 0.37332238]), array([0.11086476, 0.107597,
         0.08810817, 0.10818054, 0.10327917,
                0.10316254, 0.10234555, 0.10281245, 0.08600766, 0.06255089,
                0.04551283, 0.
                                      , 0.00781886, 0.05286497, 0.07935569,
                0.10689683, 0.12381826, 0.11728311, 0.10024504, 0.08332361,
                0.10421279, 0.1256855, 0.11915034, 0.13362118, 0.14354055,
                0.15381018, 0.16979799, 0.19477173, 0.16839765, 0.12405171,
                0.17166523, 0.31789 , 0.30038504, 0.28684783, 0.30295245,
                0.29490014, 0.34869873, 0.32407507, 0.2808962 , 0.3082039 ,
                0.29443342, 0.29104902, 0.26269107, 0.28031267, 0.35021588,
                0.35500062, 0.35196631, 0.33807901, 0.33364454, 0.37565634,
                0.39269458, 0.38522581, 0.34484762, 0.33772892, 0.37635669,
                0.35920181, 0.31964061, 0.35966853, 0.37332238, 0.39887966])]
         [0.39887965676712, 0.34834864406166965]
In [35]: !pip install tensorflow
```

es (from tensorflow) (2.17.0)

Requirement already satisfied: tensorflow in c:\users\shubh\anaconda3\lib\site-packages (2.17.0) Requirement already satisfied: tensorflow-intel==2.17.0 in c:\users\shubh\anaconda3\lib\site-packag

Requirement already satisfied: absl-py>=1.0.0 in c:\users\shubh\anaconda3\lib\site-packages (from t

```
ensorflow-intel==2.17.0->tensorflow) (2.1.0)
Requirement already satisfied: astunparse>=1.6.0 in c:\users\shubh\anaconda3\lib\site-packages (fro
m tensorflow-intel==2.17.0->tensorflow) (1.6.3)
Requirement already satisfied: flatbuffers>=24.3.25 in c:\users\shubh\anaconda3\lib\site-packages
(from tensorflow-intel==2.17.0->tensorflow) (24.3.25)
Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\users\shubh\anaconda3\lib
\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.6.0)
Requirement already satisfied: google-pasta>=0.1.1 in c:\users\shubh\anaconda3\lib\site-packages (f
rom tensorflow-intel==2.17.0->tensorflow) (0.2.0)
Requirement already satisfied: h5py>=3.10.0 in c:\users\shubh\anaconda3\lib\site-packages (from ten
sorflow-intel==2.17.0->tensorflow) (3.12.1)
Requirement already satisfied: libclang>=13.0.0 in c:\users\shubh\anaconda3\lib\site-packages (from
tensorflow-intel==2.17.0->tensorflow) (18.1.1)
Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in c:\users\shubh\anaconda3\lib\site-package
s (from tensorflow-intel==2.17.0->tensorflow) (0.4.1)
Requirement already satisfied: opt-einsum>=2.3.2 in c:\users\shubh\anaconda3\lib\site-packages (fro
m tensorflow-intel==2.17.0->tensorflow) (3.4.0)
Requirement already satisfied: packaging in c:\users\shubh\anaconda3\lib\site-packages (from tensor
flow-intel==2.17.0->tensorflow) (23.0)
Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0
dev,>=3.20.3 in c:\users\shubh\anaconda3\lib\site-packages (from tensorflow-intel==2.17.0->tensorfl
ow) (4.25.5)
Requirement already satisfied: requests<3,>=2.21.0 in c:\users\shubh\anaconda3\lib\site-packages (f
rom tensorflow-intel==2.17.0->tensorflow) (2.32.3)
Requirement already satisfied: setuptools in c:\users\shubh\anaconda3\lib\site-packages (from tenso
rflow-intel==2.17.0->tensorflow) (67.8.0)
Requirement already satisfied: six>=1.12.0 in c:\users\shubh\anaconda3\lib\site-packages (from tens
orflow-intel==2.17.0->tensorflow) (1.16.0)
Requirement already satisfied: termcolor>=1.1.0 in c:\users\shubh\anaconda3\lib\site-packages (from
tensorflow-intel==2.17.0->tensorflow) (2.5.0)
Requirement already satisfied: typing-extensions>=3.6.6 in c:\users\shubh\anaconda3\lib\site-packag
es (from tensorflow-intel==2.17.0->tensorflow) (4.6.3)
Requirement already satisfied: wrapt>=1.11.0 in c:\users\shubh\anaconda3\lib\site-packages (from te
nsorflow-intel==2.17.0->tensorflow) (1.14.1)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\users\shubh\anaconda3\lib\site-packages (f
rom tensorflow-intel==2.17.0->tensorflow) (1.67.0)
Requirement already satisfied: tensorboard<2.18,>=2.17 in c:\users\shubh\anaconda3\lib\site-package
s (from tensorflow-intel==2.17.0->tensorflow) (2.17.1)
Requirement already satisfied: keras>=3.2.0 in c:\users\shubh\anaconda3\lib\site-packages (from ten
sorflow-intel==2.17.0->tensorflow) (3.6.0)
Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\users\shubh\anaconda3\lib
\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.31.0)
Requirement already satisfied: numpy<2.0.0,>=1.23.5 in c:\users\shubh\anaconda3\lib\site-packages
(from tensorflow-intel==2.17.0->tensorflow) (1.24.3)
Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\users\shubh\anaconda3\lib\site-packages (fr
om astunparse>=1.6.0->tensorflow-intel==2.17.0->tensorflow) (0.38.4)
Requirement already satisfied: rich in c:\users\shubh\anaconda3\lib\site-packages (from keras>=3.2.
0->tensorflow-intel==2.17.0->tensorflow) (13.9.3)
Requirement already satisfied: namex in c:\users\shubh\anaconda3\lib\site-packages (from keras>=3.
2.0->tensorflow-intel==2.17.0->tensorflow) (0.0.8)
Requirement already satisfied: optree in c:\users\shubh\anaconda3\lib\site-packages (from keras>=3.
2.0->tensorflow-intel==2.17.0->tensorflow) (0.13.0)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\shubh\anaconda3\lib\site-packag
es (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2.0.4)
Requirement already satisfied: idna<4,>=2.5 in c:\users\shubh\anaconda3\lib\site-packages (from req
uests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (3.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\shubh\anaconda3\lib\site-packages (fr
om requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (1.26.16)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\shubh\anaconda3\lib\site-packages (fr
om requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2024.8.30)
```

```
Requirement already satisfied: markdown>=2.6.8 in c:\users\shubh\anaconda3\lib\site-packages (from
          tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (3.4.1)
          Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\users\shubh\anaconda3\li
          b\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (0.7.2)
          Requirement already satisfied: werkzeug>=1.0.1 in c:\users\shubh\anaconda3\lib\site-packages (from
          tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.2.3)
          Requirement already satisfied: MarkupSafe>=2.1.1 in c:\users\shubh\anaconda3\lib\site-packages (fro
          m werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.1.1)
          Requirement already satisfied: markdown-it-py>=2.2.0 in c:\users\shubh\anaconda3\lib\site-packages
          (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (2.2.0)
          Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\users\shubh\anaconda3\lib\site-package
          s (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (2.15.1)
          Requirement already satisfied: mdurl~=0.1 in c:\users\shubh\anaconda3\lib\site-packages (from markd
          own-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.1.0)
In [36]: from keras.models import Sequential
          from keras.layers import Dense, LSTM
         # LSTM model
          model = Sequential()
          model.add(LSTM(128, return sequences=True, input shape= (x train.shape[1], 1)))
         model.add(LSTM(64, return sequences=False))
          model.add(Dense(25))
         model.add(Dense(1))
          model.compile(optimizer='adam', loss='mean squared error')
         model.fit(x_train, y_train, batch_size=1, epochs=1)
         C:\Users\shubh\anaconda3\Lib\site-packages\keras\src\layers\rnn\rnn.py:204: UserWarning: Do not pas
          s an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `
          Input(shape)` object as the first layer in the model instead.
           super().__init__(**kwargs)
                                     - 14s 38ms/step - loss: 0.0160
         179/179 -
Out[36]: <keras.src.callbacks.history.History at 0x1d982c183d0>
In [37]: test_data = scaled_data[training_data_len - 60: , :]
         x_{test} = []
         y_test = dataset[training_data_len:, :]
          for i in range(60, len(test data)):
             x_test.append(test_data[i-60:i, 0])
          x_test = np.array(x_test)
         x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))
          predictions = model.predict(x_test)
         predictions = scaler.inverse_transform(predictions)
          # root mean squared error (RMSE)
          rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))
          rmse
         1/1 -
                                 - 1s 818ms/step
Out[37]: 15.112473693883775
In [38]: train = df.iloc[:training data len]
          valid = df.iloc[training_data_len:]
         valid['Predictions'] = predictions
          valid
```

C:\Users\shubh\AppData\Local\Temp\ipykernel_42160\84718757.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/index ing.html#returning-a-view-versus-a-copy valid['Predictions'] = predictions

		_	
Out[38]:	Ticker	AMZN	Predictions
	239	205.740005	199.938980
	240	207.889999	200.093216
	241	210.710007	200.515366
	242	213.440002	201.240036
	243	218.160004	202.250870
	244	220.550003	203.653549
	245	227.029999	205.298019
	246	226.089996	207.377975
	247	225.039993	209.413376
	248	230.259995	211.165131
	249	228.970001	212.969986
	250	227.460007	214.513351

```
In [39]: # Visualizing the data
    plt.figure(figsize=(16,6))
    plt.title('Model')
    plt.xlabel('Date', fontsize=18)
    plt.ylabel('Close Price USD ($)', fontsize=18)
    plt.plot(train['AMZN'])
    plt.plot(valid[['AMZN', 'Predictions']])
    plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
    plt.show()
```


Results: The model has learned the underlying patterns in the historical data and is able to capture the general direction of the time series. However, towards the end of the prediction period, the predictions deviate from the actual data. This suggests that the model's accuracy might decrease as the prediction horizon increases.

Possible Reasons for Prediction Deviation can be model complexity, data variability or bias.