more audio with

Amplitude

- how much does the speaker move up/down?
 - a.k.a how much air does it move?

human perception: How loud is it?

Frequency

 How many times a second does a speaker go up/down?

• human perception: how pitched is the sound?

how Maximilian works

- you ask for data
- it serves it to you, one chunk at a time
- when using openFrameworks you have to fill the buffer
- the sound card calls the audioOut() function when ready
- demo: importing Maximilian examples into oFx
- bug demo!

type of oscillators

- Sinewave(100) → between -1&1, 100x/sec
- phasor: myosc.phasor(0.2, 0, 300) → between 0&300, 0.2x/sec (ev 5sec)
- SQUare: myOsc.square(200) → 1 or -1, 200x/sec
- sawtooth: myOsc.sawtooth(550) → ???
- see also: pulse, rect, triangle

Amplitude Modulation

- carrier signal
 - "base line"
- modulation frequency
 - "how fast should it change"
 - measured in Hertz
- modulation index
 - "how much should the amplitude go up/down"

Frequency Modulation

- carrier signal
 - "base line"
- modulation frequency
 - "how fast should it change"
 - measured in Hertz
- modulation index

"how much should the frequency go up/down"

more combinations


```
osc1.sinewave(440) * osc2.sinewave(1)
osc1.sinewave(440) * osc2.sinewave(osc3.phasor(0.2, 1, 200))
osc1.sinewave(440 * osc2.sinewave(1))
osc1.sinewave(440 + osc2.sinewave(1) * 100)
osc1.sinewave(440 + osc2.square(1) * 100)
osc1.sinewave(440 + osc2.triangle(0.2) * 100)
osc1.sinewave(440 + osc2.sinewave(osc3.phasor(0.2,0,100)) * 100)
osc1.sinewave(440 + osc2.sinewave(osc3.sinewave(0.2) * 100)
osc1.sinewave(440 + osc2.sinewave(osc3.square(0.2)) * 100)
```

playing back sounds

• audio has to be 16 bit way file

Sound and Visuals

how to combine them

- Feed audio data to visuals
 - create a global variable
 - audioOut() writes to it
 - draw() function reads it
- Feed visual data to audio
 - create a global variable
 - draw()/update() write to it
 - audioOut() reads it
- Use a low pass filter to get smoother results
 - what does it do?
 - shapes from agents example
 - how do we use it?

a couple more tricks

- using average / RMS
- triggering with average

