诚信应考,考试作弊将带来严重后果!

华南理工大学本科生期末考试

《工科数学分析 (二)》 A卷

2017-2018 学年第二学期 参考答案

注意事项:

- 一、 开考前请将密封线内各项信息填写清楚;
- 二、 所有答案请直接答在试卷上;
- 三、 考试形式: 闭卷;
- 四、 本试卷共6大题,满分100分,考试时间120分钟。

	题	号	_	=	=	四	五	六	总	分
: [得	分								

一、 填空题: 共5题, 每题2分, 共10分.

- 1. 微分方程 y'' + y' 2y = 1 2x 的通解为 $y = C_1 e^{-2x} + C_2 e^x + x$;
- 2. 设函数 $u = \ln(x^2 + y^2 + z^2)$, 求 $\operatorname{div}(\operatorname{grad} u) = \frac{2}{x^2 + y^2 + z^2}$;
- 3. 设 Γ 是球面 $x^2 + y^2 + z^2 = R^2$ 与平面 x + y + z = 0 的交线, 则第一类曲线积分 $\oint_{\Gamma} y^2 ds = \frac{2}{3} \pi R^3$;
- 4. 参数曲线 $\begin{cases} x = t \cos t, \\ y = 1 \sin t, & \text{在 } t = 0 \text{ 对应的点处的切线方程为} \underline{\qquad \frac{x+1}{1} = \frac{y-1}{-1} = \frac{z}{1}} \\ z = t, \end{cases};$
- 5. 设周期为 2π 的函数 $f(x) = \begin{cases} -1, & -\pi < x \le 0, \\ 1, & 0 < x \le \pi, \end{cases}$ 则 f(x) 的傅里叶 (Fourier) 级数在 $x = \pi$ 处收敛于______;

单选题: 共5题, 每题2分, 共10分.

- 1. 关于未知函数 y 的微分方程 $(y \sin x)dx + \ln xdy = 0$ 是 (B)
 - A. 可分离变量方程;
- B. 一阶线性非齐次方程;
- C. 一阶线性齐次方程; D. 非线性方程.
- 2. 二元函数 $f(x,y) = \begin{cases} x \sin \frac{1}{y}, & xy \neq 0, \\ 0, & xy = 0 \end{cases}$,则 $\lim_{(x,y) \to (0,0)} f(x,y)$ (C)

 - A. 不存在; B. 等于 1;

 - C. 等于 0; D. 等于 2.
- 3. 设函数 z = f(x,y) 在 (a,b) 的某个邻域内有直到二阶的连续偏导数,且 $\frac{\partial z}{\partial x}(a,b) = 0$, $\frac{\partial z}{\partial u}(a,b)=0,$

$$A = \frac{\partial^2 z}{\partial x^2}(a, b), \qquad B = \frac{\partial^2 z}{\partial x \partial y}(a, b), \qquad C = \frac{\partial^2 z}{\partial y^2}(a, b).$$

- 则函数 z = f(x, y) 在点 (a, b) 取极大值的充分条件是(B)
- A. A > 0, $AC > B^2$; B. A < 0, $AC > B^2$;
- C. A > 0, $AC < B^2$; D. A < 0, $AC < B^2$.
- 4. 函数 ln(1-x) 在 x=0 处的泰勒 (Taylor) 展开式正确的是 (A)
 - A. $\ln(1-x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n, x \in (-1,1];$
 - B. $\ln(1-x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, x \in (-1,1];$
 - C. $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n, x \in [-1, 1);$
 - D. $\ln(1-x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n, x \in [-1, 1).$
- 5. 使得级数 $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n^p}$ 条件收敛的常数 p 的取值范围是(C)

 - A. $p \le 0$; B. 0 ;
 - C. 0 ; D. <math>p > 1.

三、 计算题: 共 3 题, 每题 10 分, 共 30 分.

1. 设 u = f(x, y, z), 其中函数 f 有二阶连续的偏导数, 且 z = z(x, y) 由方程 $z^5 - 5xy + 5z = 1$ 所确定, 求 $\frac{\partial u}{\partial x}$ 和 $\frac{\partial^2 u}{\partial x^2}$.

解: 先用隐函数求导法求出 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$. 在方程 $z^5-5xy+5z=1$ 的两边求全微分, 得

$$5z^4 dz - 5x dy - 5y dx + 5dz = 0.$$

因此,

$$dz = \frac{ydx + xdy}{z^4 + 1}.$$

即,

$$\frac{\partial z}{\partial x} = \frac{y}{z^4 + 1}, \qquad \frac{\partial z}{\partial y} = \frac{x}{z^4 + 1}.$$

由复合函数的求导法则,可得

$$\frac{\partial u}{\partial x} = f_1'(x,y,z) + f_3'(x,y,z) \frac{\partial z}{\partial x} = f_1'(x,y,z) + f_3'(x,y,z) \frac{y}{z^4 + 1}.$$

进一步,可如下求得二阶偏导数

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= f_{11}''(x,y,z) + f_{31}''(x,y,z) \frac{\partial z}{\partial x} \\ &+ f_{13}''(x,y,z) \frac{y}{z^4 + 1} + f_{33}''(x,y,z) \frac{\partial z}{\partial x} - f_{3}'(x,y,z) \frac{y}{(z^4 + 1)^2} 4z^3 \frac{\partial z}{\partial x} \\ &= f_{11}''(x,y,z) + f_{13}''(x,y,z) \frac{2y}{z^4 + 1} + f_{33}''(x,y,z) \frac{y}{z^4 + 1} - f_{3}'(x,y,z) \frac{4y^2z^3}{(z^4 + 1)^3}. \end{split}$$

2. 计算累次积分 $\int_{\frac{1}{4}}^{\frac{1}{2}} dx \int_{\frac{1}{2}}^{\sqrt{x}} e^{\frac{x}{y}} dy + \int_{\frac{1}{2}}^{1} dx \int_{x}^{\sqrt{x}} e^{\frac{x}{y}} dy$.

解: 记 D 为由 $y=\frac{1}{2},y=\sqrt{x}$ 和 y=x 围成的区域, 如图示

则所求累次积分为

$$\begin{split} & \int_{\frac{1}{4}}^{\frac{1}{2}} \mathrm{d}x \int_{\frac{1}{2}}^{\sqrt{x}} e^{\frac{x}{y}} \mathrm{d}y + \int_{\frac{1}{2}}^{1} \mathrm{d}x \int_{x}^{\sqrt{x}} e^{\frac{x}{y}} \mathrm{d}y \\ &= \iint_{D} e^{\frac{x}{y}} \mathrm{d}x \mathrm{d}y \\ &= \int_{\frac{1}{2}}^{1} \mathrm{d}y \int_{y^{2}}^{y} e^{\frac{x}{y}} \mathrm{d}x \\ &= \int_{\frac{1}{2}}^{1} ey - y e^{y} \mathrm{d}y \\ &= \frac{3}{8} e^{-\frac{1}{2}} e^{\frac{1}{2}}. \end{split}$$

3. 计算球面 $x^2 + y^2 + z^2 = 4z$ 含在抛物面 $z = x^2 + y^2$ 内的部分的面积.

解: 曲面 Σ 显示方程 $z=2+\sqrt{4-x^2-y^2}$, 其含在抛物面 $z=x^2+y^2$ 内的部分在 xOy 平面的投影区域为

$$D := \{(x, y)|x^2 + y^2 \le 3\}.$$

曲面面积微元为

$$\begin{split} \mathrm{d}S = & \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \mathrm{d}x \mathrm{d}y \\ = & \sqrt{1 + \left(\frac{-x}{\sqrt{4 - x^2 - y^2}}\right)^2 + \left(\frac{-y}{\sqrt{4 - x^2 - y^2}}\right)^2} \mathrm{d}x \mathrm{d}y \\ = & \frac{2}{\sqrt{4 - x^2 - y^2}} \mathrm{d}x \mathrm{d}y. \end{split}$$

因此,所求曲面面积为

$$A = \iint\limits_{\Sigma} 1 dS$$

$$= \iint\limits_{x^2 + y^2 \le 3} \frac{2}{\sqrt{4 - x^2 - y^2}} dx dy$$

$$= \int_0^{2\pi} d\theta \int_0^{\sqrt{3}} \frac{2}{\sqrt{4 - r^2}} r dr$$

$$= 4\pi.$$

四、解答题: 共3题, 每题10分, 共30分.

1. 设 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被平面 z = 0 及 z = 1 截下的部分的下侧, 计算第二类曲面积分 $\iint_{\Sigma} xye^z dydz + yz^2 dzdx - ye^z dxdy$.

解: 考虑平面 $\Sigma_1: z=1$ 在 $x^2+y^2 \le 1$ 的部分, 取上侧. 则 $\Sigma \cup \Sigma_1$ 形成一个闭曲面, 取外侧. 记其围成的闭曲面为 Ω , 由 Gauss 公式,

$$\iint_{\Sigma \cup \Sigma_1} xy e^z dy dz + yz^2 dz dx - ye^z dx dy = \iiint_{\Omega} z^2 dx dy dz.$$

而

$$\mathop{\iiint}\limits_{\Omega}z^2\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_0^1\mathrm{d}z\mathop{\iint}\limits_{x^2+y^2\leq z^2}z^2\mathrm{d}x\mathrm{d}y=\int_0^1\pi z^4\mathrm{d}z=\frac{\pi}{5}.$$

另一方面, Σ_1 的单位正法向为 $\mathbf{n} = (0,0,1)$, 因此,

$$\iint\limits_{\Sigma \cup \Sigma_1} xy e^z \mathrm{d}y \mathrm{d}z + yz^2 \mathrm{d}z \mathrm{d}x - ye^z \mathrm{d}x \mathrm{d}y = \iint\limits_{x^2 + y^2 \le 1} -ye \mathrm{d}x \mathrm{d}y = 0.$$

因此,

$$\iint\limits_{\Sigma} xye^z\mathrm{d}y\mathrm{d}z + yz^2\mathrm{d}z\mathrm{d}x - ye^z\mathrm{d}x\mathrm{d}y = \iint\limits_{x^2 + y^2 \le 1} -ye\mathrm{d}x\mathrm{d}y = \frac{\pi}{5}.$$

2. 设曲线积分 $\int_{\Gamma} (\sin x - f(x)) \frac{y}{x} dx + f(x) dy$ 与路径无关, 其中 f(x) 有一阶连续导数且 $f(\pi) = 1$, 求 f(x) 并计算曲线积分 $\int_{(1,0)}^{(\pi,\pi)} (\sin x - f(x)) \frac{y}{x} dx + f(x) dy$.

解: 记 $P = (\sin x - f(x)) \frac{y}{x}$, Q = f(x). 由积分 $\int_{\Gamma} P dx + Q dy$ 与路径无关, 有 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. 即,

$$\frac{\sin x}{x} - \frac{f(x)}{x} = f'(x).$$

这是一个一阶线性非齐次微分方程, 积分因子 x, 因此

$$(xf(x))' = xf'(x) + f(x) = \sin x.$$

其通解为

$$f(x) = -\frac{\cos x}{x} + \frac{C}{x},$$

其中 C 为任意常数. 由 $f(\pi) = 1$ 得 C = -1. 因此, $f(x) = \frac{-\cos x - 1}{x}$.

此时,

$$Pdx + Qdy = \frac{(x\sin x + \cos x + 1)y}{x^2}dx - \frac{\cos x + 1}{x}dy = d\left(-\frac{(\cos x + 1)y}{x}\right).$$

因此,

$$\int_{(1,0)}^{(\pi,\pi)} P \mathrm{d}x + Q \mathrm{d}y = 0.$$

3. 求幂级数 $\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}$ 的收敛域及和函数.

解: 考虑幂级数 $\sum_{n=0}^{\infty} \frac{1}{2n+1} t^n$, 由于

$$\lim_{n \to \infty} \frac{\frac{1}{2(n+1)+1}}{\frac{1}{2n+1}} = \lim_{n \to \infty} \frac{2n+1}{2n+3} = 1.$$

幂级数 $\sum_{n=0}^{\infty} \frac{1}{2n+1} t^n$ 的收敛半径为 1. 因此幂级数 $\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1} = x \sum_{n=0}^{\infty} \frac{1}{2n+1} (x^2)^n$ 的收敛半径也是 1. 当 $x=\pm 1$ 时,级数 $\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1} = \pm \sum_{n=0}^{\infty} \frac{1}{2n+1}$ 发散. 因此,幂级数 $\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}$ 的收敛域为 (-1,1).

记其和函数

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}, \quad x \in (-1,1).$$

对 $\forall x \in (-1,1)$, 有

$$f'(x) = \sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2}.$$

因此,对 $\forall x \in (-1,1)$ 有

$$f(x) - f(0) = \int_0^x f'(t) dt = \int_0^t \frac{1}{1 - t^2} dt = \frac{1}{2} \ln \frac{1 + x}{1 - x}.$$

易知, f(0) = 0. 因此,

$$\sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1} = \frac{1}{2} \ln \frac{1+x}{1-x}, \quad x \in (-1,1).$$

五、证明题: 共1题, 每题10分, 共10分.

证明函数项级数 $\sum_{n=0}^{\infty} x^2 e^{-nx}$ 在 $[0, +\infty)$ 一致收敛.

证明一: 对 $\forall x \in [0, +\infty)$, 我们有

$$e^{nx} > 1 + nx + \frac{1}{2}(nx)^2 > \frac{1}{2}(nx)^2.$$

因此,

$$\left| x^2 e^{-nx} \right| = \left| \frac{x^2}{e^{nx}} \right| \le \frac{2}{n^2}.$$

而数项级数 $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ 收敛. 由优级数判别法, 函数项级数 $\sum\limits_{n=0}^{\infty}x^2e^{-nx}$ 在 $[0,+\infty)$ 一致收敛.

证明二: 此函数项级数的部分和序列为

$$S_n(x) = \begin{cases} \frac{x^2(1 - e^{-(n+1)x})}{1 - e^{-x}}, & x > 0, \\ 0, & x = 0. \end{cases}$$

因此,

$$S(x):=\lim_{n\to +\infty}S_n(x)=\begin{cases} \frac{x^2}{1-e^{-x}}, & x>0,\\ 0, & x=0. \end{cases}$$

下证函数列 $S_n(x)$ 一致收敛于 S(x).

 $\forall \varepsilon>0,\, \exists N>\tfrac{1}{\epsilon},\, \stackrel{\text{\tiny def}}{=}\, n>N \,\, |\!\!\!\!\text{fl},\, \forall x\in [0,+\infty),$

$$|S_n(x) - S(x)| \le \left| \frac{x^2 e^{-(n+1)x}}{1 - e^{-x}} \right| = \left| \frac{x}{e^x - 1} \right| \left| \frac{x}{e^{nx}} \right| < \frac{1}{n} < \varepsilon.$$

这里用到了不等式 $e^x \ge x + 1 \ge x, \forall x \in [0, +\infty)$.

因此, 函数项级数 $\sum_{n=0}^{\infty} x^2 e^{-nx}$ 在 $[0,+\infty)$ 一致收敛.

六、 应用题: 共1题, 每题 10分, 共10分.

将长度为 2a 的铁丝分成三段,分别围成一个正方形、一个圆形和一个正三角形,求三个图形面积之和的最大值.

解:设正方形的边长为x,圆形的半径为y,正三角形的边长为z.则三个图形的周长之和

$$4x + 2\pi y + 3z = 2a.$$

它们的面积之和

$$f(x, y, z) = x^2 + \pi y^2 + \frac{\sqrt{3}}{4}z^2.$$

构造 Lagrange 函数

$$L(x, y, z, \lambda) = x^{2} + \pi y^{2} + \frac{\sqrt{3}}{4}z^{2} - \lambda(4x + 2\pi y + 3z - 2a).$$

极值点满足

$$\begin{cases} \frac{\partial L}{\partial x} = 2x - 4\lambda = 0, \\ \frac{\partial L}{\partial y} = 2\pi y - 2\pi \lambda = 0, \\ \frac{\partial L}{\partial z} = \frac{\sqrt{3}}{2}z - 3\lambda = 0, \\ \frac{\partial L}{\partial \lambda} = -(4x + 2\pi y + 3z - 2a) = 0. \end{cases}$$

解得

$$\lambda = \frac{a}{4 + \pi + 3\sqrt{3}}, \quad x_0 = \frac{2a}{4 + \pi + 3\sqrt{3}}, \quad y_0 = \frac{a}{4 + \pi + 3\sqrt{3}}, \quad z_0 = \frac{2\sqrt{3}a}{4 + \pi + 3\sqrt{3}}.$$

所求最小面积为

$$f(x_0, y_0, z_0) = \frac{a^2}{4 + \pi + 3\sqrt{3}}.$$