ΘΕΜΑ 4

Ηλεκτρικά φορτισμένο σωματίδιο (Σ_1) , μάζας $m_1=16\cdot 10^{-8}~{\rm kg}$ με ηλεκτρικό φορτίο $Q_1=7\cdot 10^{-8}~{\rm C}$, βάλλεται εναντίον άλλου φορτισμένου σωματιδίου (Σ_2) , ίσης μάζας $(m_1=m_2=m)$ και διπλάσιου φορτίου $(Q_2=2Q_1)$, με αρχική ταχύτητα μέτρου $v_0=100~{\rm m/s}$, όπως στο διπλανό σχήμα.

Το σωματίδιο (Σ_2) είναι στερεωμένο πάνω σε μονωτική βάση β και η αρχική απόσταση των δύο σωματιδίων είναι αρκετά μεγάλη, ώστε να θεωρούμε ότι δεν αλληλεπιδρούν ηλεκτρικά μεταξύ τους όταν εκτοξεύεται το σωματίδιο (Σ_1) προς το σωματίδιο (Σ_2) . Τη στιγμή που η ταχύτητα του σωματιδίου (Σ_1) έχει γίνει η μισή της αρχικής, λόγω της ηλεκτρικής άπωσης η βάση β παύει να συγκρατεί το σωματίδιο (Σ_2) και αυτό μπορεί να κινείται ελεύθερο, χωρίς τριβές, ξεκινώντας από την ηρεμία.

Να υπολογίσετε:

4.1. Την απόσταση r_1 μεταξύ των δύο σωματιδίων τη στιγμή που το σωματίδιο (Σ_2) ξεκόλλησε από τη βάση β και άρχισε να κινείται.

Μονάδες 6

4.2. Το μέτρο της ταχύτητας των δύο σωματιδίων τη στιγμή που βρίσκονται στην ελάχιστη μεταξύ τους απόσταση.

Μονάδες 6

4.3. Την ελάχιστη απόσταση r_2 , στην οποία θα πλησιάσουν τα δύο σωματίδια.

Μονάδες 7

4.4. Το μέτρο της μεταβολής της ορμής του συστήματος των δύο σωματιδίων από τη στιγμή που το σωματίδιο (Σ_1) βάλλεται εναντίον του σωματιδίου (Σ_2) , μέχρι τη στιγμή που πλησίασαν στην ελάχιστη μεταξύ τους απόσταση.

Μονάδες 6

Δίνεται η σταθερά $k_c = 9 \cdot 10^9 \, \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$. Οι βαρυτικές αλληλεπιδράσεις, η αντίσταση του αέρα και οι τριβές είναι αμελητέες.