		arcs.
So	$\overline{mAQ} = \overline{mAP}$	Sides opposite to equal angles in ΔAPQ.
or	$\overline{MAP} = \overline{MAQ}$	

Example 2:

 $\triangle BCD$ is a quadrilateral circumscribed about a circle Show that $\overline{MAB} + \overline{MCD} = \overline{MBC} + \overline{MDA}$

Given:

ΔBCD is a quadrilateral circumscribed about a circle with centre O. So that each side becomes tangent to the circle.

To prove:

 $m\overline{AB} + m\overline{CD} = m\overline{BC} + m\overline{DA}$

Construction:

Drawn $\overrightarrow{OE} \perp \overrightarrow{AB}$, $\overrightarrow{OF} \perp \overrightarrow{BC}$, $\overrightarrow{OG} \perp \overrightarrow{CD}$ and $\overrightarrow{OH} \perp \overrightarrow{DA}$

Proof:

Statements		Reasons	
$\therefore m\overline{AE} = m\overline{HA}; m\overline{EB} = m\overline{BF}$ (i)		Since tangents drawn from a point to the circle are	
$m\overline{CG} = m\overline{FC}$ and $m\overline{GD} = m\overline{DH}$	(ii)	equal in length	
$(m\overline{AE} + m\overline{EB}) + (m\overline{CG} + m\overline{GD})$		Adding (i) & (ii)	
$= \left(m\overline{BF} + m\overline{FC}\right) + \left(m\overline{DH} + m\overline{HA}\right)$,
or $\overline{MAB} + \overline{MCD} = \overline{MBC} + \overline{MDA}$			

SOLVED EXERCISE 12.1

1. Prove that in a given cyclic quadrilateral, sum of opposite angles is two right angles and conversely.

Solution:

Given:

A quadrilateral ABCD.

In scribed in a circle whose centre is O.

To Prove:

$$\angle A + \angle C = 2rt \angle S$$
.
And $\angle B + \angle D = 2rt \angle 2$.

Construction:

Join AO and OC

Proof:

Arc ABC subtends ∠AOC at the centre O and.

∠ ADC at a point D on the remaining part of the circumference.

$$m\angle ADC = \frac{1}{2} \angle AOC \qquad \dots \dots \dots (i)$$

Similarly, arc ADC subtends reflex ∠AOC at the centre and ∠ABC on the circumferences.

$$m\angle ABC = \frac{1}{2} \angle AOC$$
(ii)

By Adding (i) & (ii)

$$m\angle ADC + m\angle ABC = \frac{1}{2} \{m\angle AOC + m\angle AOC\}$$

$$m \angle D + m \angle B \frac{1}{2} [4rt \angle 5]$$

 $m\angle ADC + m 4B = 2rt \angle S$. Proved.

Similarly, by Join BO and OD it can be proved that.

Converse:

If the opposite angles of a quadrilateral are supplementary, it vertigos are cycle.

Given:

A quadrilateral ABCD such that

$$\angle A + \angle C = 2rt. \angle S$$

and
$$\angle B + \angle D = 2rt. \angle S$$

To Prove:

Points A. B. C. D are cyclic.

Construction:

Draw a circle to pass through the points A, B, C. If it does not pass through D, Suppose it cuts AD or AD produced at E (as in fig i & ii).

Proof:

Now ABCE is a cyclic quadrilateral.

$$\angle ABC + \angle CEA = 2\pi . \angle S.$$
 _____(i)

But
$$\angle ABC + \angle CDA = 2rt. \angle S.$$
 (ii) (given)

$$\therefore$$
 $\angle ABC + \angle CEA = \angle ABC + \angle CDA$. Add (i) & (ii).

i.e. an ext. angle of Δ CDE is equal to its int. Opp. angle, which is impossible in less. E coincides with D.

the cycle which passes through A,B,D must pass through D,

2. Show that parallelogram inscribed in a circle will be a rectangle.

Solution:

Given:

ABCD is a parallelogram.

Top Prove:

ABCD is a rectangle.

Proof

$$m \angle 1 + m \angle 3 = 180^{\circ}$$
 (i) [cyclic quadrilateral]

But
$$m \angle 1 + m \angle 3 = 180^{\circ}$$
 _____(ii)

[opp.∠sofallgrm)

$$\therefore$$
 m \angle = m \angle 3 = 90°.

By this

$$m \angle 1 = m \angle 2 = m \angle 3 = m \angle 4 = 90^{\circ}$$
.

Hence, the Hgrm ABCD is a rectangle.

3. AOB and COD are two intersecting chords of a circle.

Show that A AOD and BOC are equiangular.

Solution:

Given:

Two chords AOB & COD Intersecting each other at O.

To Prove:

 Δ AOD and Δ COD are equiangular.

Proof:

ΔAOB and ΔCOB

$$\angle 1 = \angle 2$$
.

$$\angle 3 = \angle 4$$

[angles in the same segment of a circle].

$$\therefore \angle AOB = \angle COB.$$

(Vertical angles).

 \therefore \triangle AOD and \triangle COD are equiangular triangles.

 \overline{AD} , and \overline{BC} are two parallel chords of a circle prove that are $\overline{AB} \cong arc$ 4. CD and are AC sare BD.

Solution:

Given:

Tow circles, C(Q, r) and C(P, r) chord AB = chord CD.

To Prove:

$$\widehat{AB} = \widehat{CD}$$

Construction:

Join OA, OB and PC, PD.

Proof:

In A AOB & A CPD

 $OB \approx PD$ and

[ralii of equal circles]

$$∴$$
 ΔAOB \cong ΔCPD S.S.S.

There are the angles subtended by the AB and CD at the centre of equal circle

$$\widehat{AB} = \widehat{CD}$$