Factor de Potencia

Factor de potencia (1/2)

• El factor de potencia se define como el cociente de la relación de la potencia activa entre la potencia aparente; esto es:

$$FP = \frac{P}{S}$$

• Comúnmente, el factor de potencia es un término utilizado para describir la cantidad de energía eléctrica que se ha convertido en trabajo.

Factor de potencia (2/2)

- El valor ideal del factor de potencia es 1, esto indica que toda la energía consumida por los aparatos ha sido transformada en trabajo.
- Por el contrario, un factor de potencia menor a la unidad significa un mayor consumo de energía necesaria para producir un trabajo útil.

Tipos de potencia (1/3) Potencia efectiva

 La potencia <u>efectiva</u> o <u>real</u> es la que en el proceso de transformación de la energía eléctrica se aprovecha como trabajo.

Unidades: Watts (W)

Símbolo: P

Tipos de potencia (2/3) Potencia reactiva

 La potencia <u>reactiva</u> es la encargada de generar el campo magnético que requieren para su funcionamiento los equipos inductivos como los motores y transformadores.

Unidades: VAR

Símbolo: Q

Tipos de potencia (3/3) Potencia aparente

 La potencia <u>aparente</u> es la suma geométrica de las potencias efectiva y reactiva; es decir:

$$S = \sqrt{P^2 + Q^2}$$

Unidades: VA

Símbolo: S

El triángulo de potencias (1/2)

Potencia activa P

Potencia reactiva

Q

El triángulo de potencias (2/2)

De la figura se observa:

$$\frac{P}{S} = Cos \phi$$

Por lo tanto,

$$FP = Cos\phi$$

El ángulo ϕ

- En electrotecnia, el ángulo ϕ nos indica si las señales de voltaje y corriente se encuentran en fase.
- Dependiendo del tipo de carga, el factor de potencia $(FP = Cos \phi)$ puede ser:
- adelantado
- retrasado
- igual a 1.

Tipos de cargas (1/3) Cargas resistivas

- En las cargas <u>resistivas</u> como las lámparas incandescentes, el voltaje y la corriente están en fase.
- Por lo tanto, $\phi = 0$
- En este caso, se tiene un factor de potencia unitario.

Tipos de cargas (2/3) Cargas inductivas

- En las cargas <u>inductivas</u> como los motores y transformadores, la corriente se encuentra <u>retrasada</u> respecto al voltaje.
- Por lo tanto, $\phi < 0$
- En este caso se tiene un factor de potencia <u>retrasado</u>.

Tipos de cargas (3/3) Cargas capacitivas

- En las cargas <u>capacitivas</u> como los condensadores, la corriente se encuentra <u>adelantada</u> respecto al voltaje.
- Por lo tanto, $\phi > 0$
- En este caso se tiene un factor de potencia adelantado.

Diagramas fasoriales del voltaje y la corriente

• Según el tipo de carga, se tienen los siguientes diagramas:

El bajo factor de potencia (1/2)

Causas:

- Para producir un trabajo, las cargas eléctricas requieren de un cierto consumo de energía.
- Cuando este consumo es en su mayoría energía reactiva, el valor del ángulo ϕ se incrementa y disminuye el factor de potencia.

El bajo factor de potencia (2/2)

Factor de potencia VS ángulo ϕ

ϕ	FP=Cos ϕ
0	1
30	0.866
60	0.5
90	0

Problemas por bajo factor de potencia (1/3)

Problemas técnicos:

- Mayor consumo de corriente.
- Aumento de las pérdidas en conductores.
- Sobrecarga de transformadores, generadores y líneas de distribución.
- Incremento de las caídas de voltaje.

Problemas por bajo factor de potencia (2/3)

Pérdidas en un conductor VS factor de potencia

Problemas por bajo factor de potencia (3/3)

Problemas económicos:

- Incremento de la facturación eléctrica por mayor consumo de corriente.
- Penalización de hasta un 120 % del costo de la facturación.

Beneficios por corregir el factor de potencia (1/2)

Beneficios en los equipos:

- Disminución de las pérdidas en conductores.
- Reducción de las caídas de tensión.
- Aumento de la disponibilidad de potencia de transformadores, líneas y generadores.
- Incremento de la vida útil de las instalaciones.

Beneficios por corregir el factor de potencia (2/2)

Beneficios económicos:

- Reducción de los costos por facturación eléctrica.
- Eliminación del cargo por bajo factor de potencia.
- Bonificación de hasta un 2.5 % de la facturación cuando se tenga factor de potencia mayor a 0.9

Compensación del factor de potencia (1/5)

- Las cargas inductivas requieren potencia reactiva para su funcionamiento.
- Esta demanda de reactivos se puede reducir e incluso anular si se colocan capacitores <u>en</u> <u>paralelo</u> con la carga.
- Cuando se reduce la potencia reactiva, se mejora el factor de potencia.

Compensación del factor de potencia (2/5)

Compensación del factor de potencia (3/5)

En la figura anterior se tiene:

- Q_L es la <u>demanda de reactivos</u> de un motor y S_1 la potencia aparente correspondiente.
- Q_C es el <u>suministro de reactivos</u> del capacitor de compensación
- La compensación de reactivos no afecta el consumo de potencia activa, por lo que $\,P\,$ es constante.

Compensación del factor de potencia (4/5)

- Como efecto del empleo de los capacitores, el valor del ángulo ϕ_1 se reduce a ϕ_2
- La potencia aparente \boldsymbol{S}_1 también disminuye, tomando el valor de \boldsymbol{S}_2
- Al disminuir el valor del ángulo ϕ se incrementa el factor de potencia.

Compensación del factor de potencia (5/5)

Motor de inducción sin compensación

Motor de inducción con capacitores de compensación

Métodos de compensación

Son tres los tipos de compensación en paralelo más empleados:

- a) Compensación individual
- b) Compensación en grupo
- c) Compensación central

Compensación individual (1/3)

Aplicaciones y ventajas

- Los capacitores son instalados por cada carga inductiva.
- El arrancador para el motor sirve como un interruptor para el capacitor.
- El uso de un arrancador proporciona control semiautomático para los capacitores.
- Los capacitores son puestos en servicio sólo cuando el motor está trabajando.

Compensación individual (2/3)

Desventajas

- El costo de varios capacitores por separado es mayor que el de un capacitor individual de valor equivalente.
- Existe subutilización para aquellos capacitores que no son usados con frecuencia.

Compensación individual (3/3)

Diagrama de conexión

Compensación en grupo (1/3)

Aplicaciones y ventajas

- Se utiliza cuando se tiene un grupo de cargas inductivas de igual potencia y que operan simultáneamente.
- La compensación se hace por medio de un banco de capacitores en común.
- Los bancos de capacitores pueden ser instalados en el centro de control de motores.

Compensación en grupo (2/3)

Desventajas

• La sobrecarga no se reduce en las líneas de alimentación principales

Compensación en grupo (3/3)

Diagrama de conexión

Compensación central (1/3)

Características y ventajas

- Es la solución más general para corregir el factor de potencia.
- El banco de capacitores se conecta en la acometida de la instalación.
- Es de fácil supervisión.

Compensación central (2/3)

Desventajas

 Se requiere de un regulador automático del banco para compensar según las necesidades de cada momento.

• La sobrecarga no se reduce en la fuente principal ni en las líneas de distribución.

Compensación central (3/3)

Diagrama de conexión

Cálculo de los kVARs del capacitor (1/2)

De la figura siguiente se tiene:

$$Q_c = Q_L - Q$$

• Como:

$$Q = P * Tan \phi$$

$$\Rightarrow Q_c = P(Tan\phi_1 - Tan\phi_2)$$

$$Q_c = P * K$$

Cálculo de los kVARs del capacitor (2/2): Coeficiente K

	FP deseado						
FP actual	0.8	0.85	0.9	0.95	1		
0.3	2.43	2.56	2.695	2.851	3.18		
0.4	1.541	1.672	1.807	1.963	2.291		
0.5	0.982	1.112	1.248	1.403	1.732		
0.6	0.583	0.714	0.849	1.005	1.333		
→0.7	0.27	0.4	0.536	0.692	1.02		
8.0		0.13	0.266	0.421	0.75		
0.9				0.156	0.484		

Ejemplo

- Se tiene un motor trifásico de 20 kW operando a 440 V, con un factor de potencia de 0.7, si la energía se entrega a través de un alimentador con una resistencia total de 0.166 Ohms calcular:
- a) La potencia aparente y el consumo de corriente
- b) Las pérdidas en el cable alimentador
- c) La potencia en kVAR del capacitor que es necesario para corregir el F.P. a 0.9
- d) Repetir los incisos a) y b) para el nuevo factor de potencia
- e) La energía anual ahorrada en el alimentador si el motor opera 600 h/mes

Solución (1/3)

a) La corriente y la potencia aparente

$$I = \frac{P}{\sqrt{3} * V * Cos\phi} = \frac{P}{\sqrt{3} * V * FP} \Rightarrow I_1 = \frac{20,000W}{\sqrt{3} * 440V * 0.7} = 37.49 \text{ A}$$

$$S = \sqrt{3} * V * I \Rightarrow$$

 $S_1 = \sqrt{3} * 440V * 37.49A = 28.571 _ kVA$

b) Las pérdidas en el alimentador

$$Perd = 3*R*I^2 \Rightarrow$$

 $Perd_1 = 3*0.166*37.49^2 = 700_W$

Solución (2/3)

c) Los kVAR del capacitor

Nos referimos a la tabla del coeficiente "K"

y se escoge el valor que está dado por

el valor actual del FP y el valor deseado:

$$Q_C = P * K \Rightarrow$$

$$Q_C = 20kW * 0.536 = 10.72 \text{ _} kVAR$$

d.1) La corriente y la potencia aparente

$$I_2 = \frac{20,000W}{\sqrt{3}*440V*0.9} = 29.16 \text{ A}$$

$$S_2 = \sqrt{3} * 440V * 29.16A = 22.22 \ kVA$$

Solución (3/3)

d.2) Las pérdidas en el alimentador

$$Perd_2 = 3*0.166*29.16^2 = 423.45 W$$

- e) Energía anual ahorrada
- La reducción de las pérdidas:

$$\Delta P = Perd_1 - Perd_2 \implies \Delta P = 700 - 423.45 = 276.55 \text{ } W$$

La energía ahorrada al año:

$$\Delta E = \frac{\Delta P * hrs / mes * 12 _ meses}{1000} \Rightarrow \Delta E = \frac{276.55W * 600h / mes * 12meses}{1000} = 1990.8 _ kWh$$

 Considerando a \$ 0.122 por kWh, se tienen <u>\$ 242.88 de ahorro</u> tan sólo en el alimentador

Ejemplo corrección factor de potencia

Mes	Demanda (kW)	Factor de potencia FP	Potencia Reactiva (kVAR) requeridos para elevar el FP a:					
			0.90	0.92	0.94	0.96	0.98	1.00
Enero	315	0.8888	12	34	57	84	117	193
Febrero	294	0.7894	103	123	145	170	201	272
Marzo	293	0.8583	40	60	82	107	138	208
Abril	298	0.9249	-26	-5	17	42	74	146
Mayo	326	0.9321	-37	-15	10	38	72	151
Junio	328	0.9218	-25	-2	22	50	85	164
Julio	322	0.8898	11	33	57	85	119	197
Agosto	329	0.9021	-2	21	45	73	108	187
septiembre	326	0.8237	79	102	126	154	188	267
Octubre	333	0.8893	12	35	60	88	123	204
Noviembre	321	0.8930	8	30	54	81	115	193
Diciembre	321	0.9044	-5	17	42	69	103	180

FP promedio = 0.8848

Calcular porcentaje de bonificación con un FP deseado de 0.98

Potencia reactiva (kVAR)

Potencia reactiva:

$$kVAR = kW * tg \phi \longrightarrow kVAR = kW * tg (Cos^{-1} FP)$$

Compensación del FP Potencia reactiva requerida

Potencia reactiva requerida para elevar el FP₁ a un FP₂

$$kVAR = kW \left[tg \left(cos^{-1} FP_1 \right) - tg \left(cos^{-1} FP_2 \right) \right]$$

Corrección de potencia reactiva debida al voltaje

$$kVAR_{totales} = kVAR \left(\frac{V_2}{V_1}\right)^2$$

V1 = Voltaje de línea

V2 = Voltaje de diseño banco de capacitores

Ejemplo: Compensación del FP

Datos:

Demanda	Factor de potencia				
(kW)	Actual (FP₁)	Deseado (FP2)			
315	0.8888	0.9600			

 $V_1 = 440$ Volts (voltaje de línea)

 $V_2 = 480$ Volts (voltaje de diseño banco de capacitores)

Potencia reactiva requerida

$$kVAR = 315 \left[tg \left(cos^{-1} 0.8888 \right) - tg \left(cos^{-1} 0.9600 \right) \right] = 71$$

Corrección de potencia reactiva debida al voltaje

$$kVAR_{totales} = \frac{71}{\left(\frac{440}{480}\right)^2} = 84$$

Ejemplo: Compensación del FP

Calculo del porcentaje de penalización con un factor de potencia promedio anual de 0.8848

Penalización (%) =
$$\frac{3}{5} \times \left[\frac{0.9}{0.8848} - 1 \right] \times 100 = 1.1$$

Calculo del porcentaje de bonificación por mejorar el FP a 0.98

Bonificación (%) =
$$\frac{1}{4} \times \left[1 - \frac{0.9}{0.9800} \right] \times 100 = 2.1\%$$

Nota: Los cargos o bonificaciones económicas se determinan al multiplicar la suma de los cargos por demanda y consumo de energía, multiplicados por los porcentajes de penalización o bonificación, según sea el caso

Consideraciones del FP (1)

Cargos y bonificaciones máximas

FP = 0.30 Penalización máxima 120%

FP = 1.00 Bonificación máxima 2.5%

- Compensación individual de transformadores
 - De acuerdo con las normas técnicas para instalaciones eléctricas, la potencia reactiva (kVAR) de los capacitores, no debe exceder al 10% de la potencia nominal del transformador

Consideraciones del FP (2)

- Compensación individual de motores
 - Generalmente no se aplica para motores menores a 10 KW
 - Rango del capacitor
 - En base a tablas con valores normalizados, o bien,
 - multiplicar los hp del motor por 1/3
 - el 40% de la potencia en kW

Bancos automáticos de capacitores (1)

- Cuenta con un regulador de VARS que mantiene el FP prefijado, ya sea mediante la conexión o desconexión de capacitores conforme sea necesario
- Pueden suministrar potencia reactiva de acuerdo a los siguientes requerimientos:
 - constantes
 - variables
 - instantáneos
- Se evitan sobrevoltajes en el sistema

Bancos automáticos de capacitores (2)

- Elementos de los bancos automáticos:
 - Capacitores fijos en diferentes cantidades y potencias reactivas (kVAR)
 - Relevador de factor de potencia
 - Contactores
 - Fusibles limitadores de corriente
 - Interruptor ternomagnético general
- Los bancos de capacitores pueden ser fabricados en cualquier
 No. De pasos hasta 27 (pasos estandar 5,7,11 y 15)

Bancos automáticos de capacitores (3)

- El valor de los capacitores fijos depende del No. De pasos previamente seleccionado, así como, de la cantidad necesaria en kVAR's para compensar el FP a 1.0
- A mayor No. de pasos, el ajuste es más fino, dado que cada paso del capacitor es más pequeño, permitiendo lograr un valor más cercano a 1.0, no obstante ocasiona un mayor costo
- La conmutación de los contactores y sus capacitores individuales es controlada por un regulador (vármetro)

Esquema de un banco automático de capacitores

a,b,c,d,e,f: contactores F1,F2,F3,F4,F5,F6: pasos L = Carga

R = Regulador varmétrico.