Abschlussprüfung 2014 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Name:	Vorname:													
Klasse	:		Platzziffer:					Punkte:						
Αι	ıfgabe A 1											Haup	ottermir	1
	Gegeben i Hypotenuse legen zusan Die Winkel Es gilt: AB Die nebenst Dreieck P ₁ E	e [AC]. If nmen min P_nCB has = 2,5 cm when de S	Punkte I t den Punkte I den Punkte I den Punkte I den	P _n liego unkten s Maß (3 cm ;	en auf B und φ mit ∉ ∢CBA	der : C D φ ∈] A = 90	Kathereieck	ete [A ke P _n] 9,81°	AB] ui BC fes].		A^{\angle}	/	φ	S C
A 1.1	Begründen Sie durch Rechnung das Maß der oberen Intervallgrenze für ϕ .													
														1 P
A 1.2	Die Dreieck Zeigen Sie, Abhängigk	dass für	das Vo	lumen	V der	dabe	i ents					örper	in	2 P
A 1.3	Das Volum Berechnen			_		s A 1	.2 be	trägt	6 cm ³	•				
														2 P

Aufgabe A 2 Haupttermin

A 2.0 Ein Leichtathletikverband hat für die Wettbewerbe beim Zehnkampf Funktionsgleichungen festgelegt, mit denen sich die jeweilige Anzahl der Punkte, die die Sportler in den einzelnen Disziplinen erreichen können, berechnen lässt. Beim Weitsprung der Frauen wird die Anzahl der Punkte in Abhängigkeit von der Sprungweite x cm durch die Funktion f_1 mit der Gleichung $y = 0,188807 \cdot (x-210)^{1,41}$ ($\mathbb{G} = \mathbb{R}_0^+ \times \mathbb{R}_0^+$) ermittelt. Der auf Ganze gerundete Wert für y ergibt die Anzahl der erreichten Punkte.

A 2.1 Geben Sie die Definitionsmenge der Funktion f₁ an.

Zeichnen Sie sodann den Graphen zu f_1 in das Koordinatensystem ein. Der bereits eingezeichnete Graph gehört zu der Funktion f_2 , mit deren Hilfe die Punkte beim Weitsprung der Männer ermittelt werden.

Aufgabe A 2

Haupttermin

A 2.2 Ein Mann und eine Frau erreichen beim Weitsprung jeweils 700 Punkte. Ermitteln Sie mit Hilfe der Graphen, um wie viel weiter der Mann dabei gesprungen ist.

1 P

A 2.3 Eine Frau erreicht beim Weitsprung 900 Punkte.

Berechnen Sie die zugehörige Sprungweite auf Zentimeter gerundet.

2 P

A 2.4 Beim Stabhochsprung der Frauen wird die Anzahl der Punkte in Abhängigkeit von der übersprungenen Höhe x cm durch die Funktion h_1 mit der Gleichung $y=0,44125\cdot \left(x-100\right)^{1,35}$ ermittelt, bei den Männern durch die Funktion h_2 mit der Gleichung $y=0,2797\cdot \left(x-100\right)^{1,35} \left(\mathbb{G}=\mathbb{R}_0^+\times\mathbb{R}_0^+\right)$.

Ein Mann und eine Frau überspringen die gleiche Höhe, dabei erzielt die Frau 500 Punkte mehr als der Mann.

Berechnen Sie diese übersprungene Höhe auf Zentimeter gerundet.

3 P

A 3.0 Punkte $B_n\left(x\left|-\frac{1}{4}x\right.\right)$ auf der Geraden g mit der Gleichung $y=-\frac{1}{4}x$ $(\mathbb{G}=\mathbb{R}\times\mathbb{R}) \text{ bilden für } x\in]0\,;\,7,8[\text{ zusammen mit den Punkten } A\left(0\,|\,0\right),$ $C\left(4,5\,|\,3\right)$ und D_n Drachenvierecke AB_nCD_n mit der Symmetrieachse AC.

A 3.1 Zeichnen Sie die Gerade g, die Symmetrieachse AC sowie das Drachenviereck AB_1CD_1 für x=2 und das Drachenviereck AB_2CD_2 für x=4 in das Koordinatensystem ein.

2 P

A 3.2 Berechnen Sie die Koordinaten der Punkte D_n in Abhängigkeit von der Abszisse x der Punkte B_n .

3 P

Abschlussprüfung 2014

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 1 Haupttermin

 $\begin{array}{ll} B \ 1.0 & \text{Der Punkt } A \Big(-1 \big| -2 \Big) \ \text{legt zusammen mit den Pfeilen } \overrightarrow{AB}_n \Big(\phi \Big) = \begin{pmatrix} 2 \cdot \cos \phi + 3 \\ 5 \cdot \sin^2 \phi + 1 \end{pmatrix} \ \text{und} \\ & \overrightarrow{AD}_n \Big(\phi \Big) = \begin{pmatrix} 3 \cdot \cos \phi - 3 \\ 4 \end{pmatrix} \ \text{für } \phi \in [0^\circ; 180^\circ] \ \text{Parallelogramme } AB_n C_n D_n \ \text{fest.} \end{array}$

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 1.1 Berechnen Sie die Koordinaten der Pfeile \overrightarrow{AB}_1 und \overrightarrow{AD}_1 für $\phi = 60^\circ$ sowie \overrightarrow{AB}_2 und \overrightarrow{AD}_2 für $\phi = 130^\circ$. Zeichnen Sie sodann die Parallelogramme $AB_1C_1D_1$ und $AB_2C_2D_2$ in ein Koordinatensystem ein.

Für die Zeichnung: Längeneinheit 1 cm; $-8 \le x \le 6$; $-3 \le y \le 9$.

4 P

B 1.2 Berechnen Sie das Maß des Winkels B₁AD₁.

2 P

B 1.3 Unter den Parallelogrammen $AB_nC_nD_n$ gibt es das Rechteck $AB_3C_3D_3$. Ermitteln Sie rechnerisch das zugehörige Winkelmaß φ .

4 P

B 1.4 Zeigen Sie rechnerisch, dass der Trägergraph p der Punkte C_n die Gleichung $y = -0.2 \cdot \left(x+1\right)^2 + 8 \ \left(G = IR \times IR \right) hat.$

Zeichnen Sie sodann den Trägergraphen p in das Koordinatensystem zu B 1.1 ein.

Teilergebnis:
$$C_n \left(5 \cdot \cos \varphi - 1 \middle| 5 \cdot \sin^2 \varphi + 3 \right)$$

4 P

B 1.5 Beim Parallelogramm $AB_4C_4D_4$ liegt der Punkt D_4 auf dem Trägergraphen p der Punkte C_n .

Bestimmen Sie durch Rechnung das zugehörige Winkelmaß ϕ .

3 P

Abschlussprüfung 2014

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Aufgabe B 2

Haupttermin

B 2.0 Das Drachenviereck ABCD mit der Symmetrieachse AC ist die Grundfläche der Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M der Grundfläche ABCD liegt.

Es gilt: $\overline{AC} = 9.5 \text{ cm}$; $\overline{AM} = 3.5 \text{ cm}$; $\overline{BD} = 8 \text{ cm}$ und $\angle SCA = 60^{\circ}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Diagonale [AC] auf der Schrägbildachse und A links von C liegen soll.

Für die Zeichnung gilt: q = 0.5; $\omega = 45^{\circ}$.

Berechnen Sie sodann die Längen der Strecken [SM] und [SC] sowie das Maß des Winkels ASC.

[Ergebnisse: $\overline{SM} = 10,39 \text{ cm}$; $\overline{SC} = 12 \text{ cm}$; $\angle ASC = 48,62^{\circ}$]

4 P

B 2.2 Auf der Kante [CS] liegt der Punkt G mit CG = 4 cm, auf der Kante [AS] liegen Punkte E_n . Die Winkel E_nGC haben das Maß ϕ mit $\phi \in [95,21^\circ;180^\circ]$.

Die Punkte E_n und der Punkt G sind zusammen mit Punkten $F_n \in [BS]$ und $H_n \in [DS]$ die Eckpunkte von Drachenvierecken $E_n F_n G H_n$ mit den Diagonalenschnittpunkten M_n . Die Diagonalen $[F_n H_n]$ liegen parallel zu [BD].

Zeichnen Sie den Punkt M_1 sowie das Drachenviereck $E_1F_1GH_1$ für $\phi=130^\circ$ in die Zeichnung zu B 2.1 ein.

1 P

B 2.3 Zeigen Sie durch Rechnung, dass sich die Länge der Strecken $[E_nG]$ in Abhängigkeit von ϕ wie folgt darstellen lässt:

$$\overline{E_nG}(\phi) = \frac{6,00}{\sin(\phi - 48,62^\circ)} \text{ cm}.$$

Geben Sie die minimale Länge $\overline{E_0G}$ und das zugehörige Winkelmaß φ an.

4 P

4 P

B 2.4 Bestimmen Sie die Länge der Strecken $[F_nH_n]$ in Abhängigkeit von ϕ .

Ergebnis:
$$\overline{F_n H_n}(\phi) = \frac{6.16 \cdot \sin \phi}{\sin (\phi - 30^\circ)} \text{ cm}$$

B 2.5 Die Drachenvierecke $E_nF_nGH_n$ bilden die Grundflächen von Pyramiden $E_nF_nGH_nS$ mit der Spitze S. Punkte $T_n \in E_nG$ sind die Fußpunkte der Höhen $[T_nS]$ der Pyramiden $E_nF_nGH_nS$.

Zeichnen Sie die Höhe [T₁S] in die Zeichnung zu B 2.1 ein und berechnen Sie das Volumen der Pyramide E₁F₁GH₁S. 4 P