MATH 4065 HW 4

David Chen, dc3451

October 16, 2020

9

We can reduce this to $\varphi(0) = 0$ and $\varphi'(0) = 1$. In particular, if some function $\phi: \Omega \to \Omega$ is a holomorphic function satisfying $\phi(z_0) = z_0$ and $\phi'(z_0) = 1$, we can define $\Omega' = \{z \mid z+z_0 \in \Omega\}$ and $\varphi: \Omega' \to \Omega'$ by taking $\varphi(z) = \phi(z+z_0) - z_0$. Then, we have that $\varphi(0) = \phi(z_0) - z_0 = 0$ and $\varphi'(0) = \varphi'(z_0) = 1$. However, if we have that $\varphi(z)$ is linear, such that $\varphi(z) = z$, then we have that $\varphi(z+z_0) = z+z_0$ is also linear, so it is sufficient to show that $\varphi(z) = z$.

From here, since φ is holomorphic in Ω containing 0, we have that $\varphi(h) = \sum_{k=0}^{\infty} a_k h^k$ in some neighborhood of 0, say $D_r(0)$. In particular, we have that $a_0 = \varphi(0) = 0$ and $a_1 = \varphi'(0) = 1$. Then, let n be the first index greater than 0 such that $a_n \neq 0$, such that $\varphi(h) = h + a_n h^n + O(h^{n+1})$.

Now define $\varphi_k = \varphi \circ \varphi \circ \cdots \circ \varphi$ as the composition of φ with itself k-times. We will show with induction that $\varphi_k(h) = h + ka_nh^n + O(h^{n+1})$ in some neighborhood of 0. This clearly holds for k = 1 by the earlier power series expansion. If it holds for k, then $\varphi_{k+1} = \varphi \circ \varphi_k$, and

$$(\varphi_k(h))^m = (h + ka_n h^n + O(h^{n+1}))^m$$

$$= \sum_{i=0}^m {m \choose i} h^{m-i} (ka_n h^n + O(h^{n+1}))^i$$

$$= h^m + \sum_{i=1}^m {m \choose i} h^{m-i} (ka_n h^n + O(h^{n+1}))^i$$

$$= h^m + \sum_{i=1}^m {m \choose i} h^{m-i} h^{ni} (ka_n + O(h))^i$$

$$= h^m + \sum_{i=1}^m {m \choose i} h^{m+(n-1)i} (ka_n + O(h))^i$$

Since n > 1, if m > 1 then

$$= h^{m} + \sum_{i=1}^{m} {m \choose i} O(h^{m+1}) O(h)^{i}$$
$$= h^{m} + O(h^{m+1})$$

So

$$\varphi_{k+1}(h) = \varphi_k(h) + a_n(\varphi_k(h))^n + O((\varphi_k(h))^{n+1})$$

$$= h + ka_nh^n + O(h^{n+1}) + a_n(h^n + O(h^{n+1})) + O(h^{n+1} + O(h^{n+2}))$$

$$= h + (k+1)a_nh^n + O(h^{n+1})$$

for some neighborhood of 0, as we have that since φ_k as the composition of analytic functions is analytic, then $|\varphi_k(h) - 0| = |\varphi_k(h)| < r \implies \varphi_l \in D_r(0)$ by continuity on some neighborhood of 0, so on that neighborhood the above relation holds for k + 1, and thus, all $k \geq 1$ by induction.

Let r be the radius of some disc whose closure is contained in Ω' (which we know exists since Ω' is open). Cauchy inequality gives that $|\varphi_k^{(n)}(0)| = ka_n \leq \frac{n! \sup_{C_r(0)} |\varphi_k|}{r^n}$ for any $k \geq 1$. However, the right hand side is bounded, since we know that Ω' is the codomain of φ (and thus φ_k), and Ω' is a bounded set. Therefore, $k \leq \frac{n! \sup_{C_r(0)} |\varphi_k|}{r^n a_n}$ means that the integers are bounded, as all $k \geq 1$ satisfy being less than some finite number. $\Rightarrow \Leftarrow$, so no $a_n \neq 0$ for $n \geq 1$, so $\varphi(h) = h$, which converges everywhere in \mathbb{C} , and so φ is linear.

10

Weierstrass's theorem gives that for any function $f:[0,1]\to\mathbb{R}$ and $\epsilon>0$, we have that there is some sequence of polynomials p_n such that $\{p_n\}_{n=1}^{\infty}$ converge uniformly to f.

This cannot (always) happen in the complex case. In particular, we already have from the book and class that if $\{f_n\}_{n=1}^{\infty}$ a sequence of holomorphic functions converges uniformly to f, we have that f is also holomorphic. In particular, this gives that if f_n are all polynomials, they are all entire, and thus f must be holomorphic on the open unit disc. As a result, if we can find some continuous function on the open unit disc that is not holomorphic, we are done.

In particular, consider $f(z)=\overline{z}$. This clearly isn't holomorphic as $\frac{\partial f}{\partial \overline{z}}=1\neq 0$, so it doesn't obey the Cauchy-Riemann equations. However, it is continuous, as we have that for any w in the unit disc, we know that for any $\epsilon>0$ and z in the unit disc, picking $\delta=\epsilon$ gives $|z-w|=|x_z+iy_z-(x_w+iy_w)|<\delta \implies |\overline{z}-\overline{w}|=|x_z-iy_z-(x_w-iy_w)|=\sqrt{(x_z-x_w)^2+(y_z-y_w)^2}=|x_z+iy_z-(x_w+iy_w)|<\delta=\epsilon$.

Thus, we have that $f(z) = \overline{z}$ is not uniformly approximated by polynomials in the unit disc.

In particular, we can show that for some index n, we have that $c_n = 0$ for an uncountable amount of $w \in \mathbb{C}$, where $f(z) = \sum_{i=n}^{\infty} c_n(z-w)^n$. Suppose that $c_n = 0$ for at most a countable amount of w for every n. Then, consider the set of ordered pairs $S = \{(n, w) \mid c_n = 0, f(z) = \sum_{i=0}^{\infty} c_i(z-w)^i\}$ Then, since we have that $c_n = 0$ for a countable amount of w for any given n, we have that $S = \bigcap_{i=0}^{\infty} \{(i, w) \mid c_i = 0, f(z) = \sum_{j=0}^{\infty} c_j(z-w)^j\}$ is the countable union of countable sets, and is therefore countable itself.

However, we can explicitly see that S must be uncountable, as for every $w \in \mathbb{C}$, there is at least one n such that $c_n = 0$, so we have that there is a bijection given by $(n, w) \mapsto w$ from a subset of S to \mathbb{C} , so S contains an uncountable subset, and thus cannot be countable. $\Rightarrow \Leftarrow$, so $c_n = 0$ for an uncountable amount of $w \in \mathbb{C}$ for some index n.

Further, any uncountable subset E of \mathbb{R}^n has a limit point in \mathbb{R}^n . To see this, if we partition R^n into unit n-cells of the form $\prod_{i=1}^n [k_i, k_i + 1]$ for $k_i \in \mathbb{Z}$, we have a countable amount of n-cells (as we can form a bijection by taking $\prod_{i=1}^n [k_i, k_i + 1] \mapsto (k_1, k_2, \dots, k_n) \in \mathbb{Z}^n$, which is countable). Then, if there were a finite amount of points of E in every cell, we have that E must be countable as it would be the countable union of finite sets. In particular, if K_i is an enumeration of the n-cells, $K = \bigcup_{i=1}^{\infty} K_i \cap E$, in which each intersection is finite by assumption. $\Rightarrow \Leftarrow$, so there is some cell with an infinite amount of points in E. Take i such that $K_i \cap E$ is infinite.

Now, we have that n-cells in \mathbb{R}^n are compact. If no point of K_i is a limit point of $K_i \cap E$, then $\forall p \in K_i, D_{r_p}(p)$ contains at most one element of $K_i \cap E$ for some $r_p > 0$. Then, $\{D_{r_p}(p)\}_{p \in K_i}$ is an open cover of K_i , but no finite collection of $D_{r_p}(p)$ can cover of all of $K_i \cap E$, as this collection would have a finite amount of points of $K_i \cap E$, which is infinite, so there is no finite subcover of K_i . Then, K_i , a n-cell, cannot be compact and \Longrightarrow so some point of K_i is a limit point of $K_i \cap E$ and thus a limit point of E.

Finally, we can finish: since $c_n = 0$ for an uncountable amount of $w \in \mathbb{C}$ for some index n, we have that $f(z) = \sum_{i=0}^{\infty} c_i (z-w)^i \implies c_n = \frac{f^{(n)}(w)}{n!}$, so $f^{(n)}(w) = c_n$ vanishes on an uncountable subset of \mathbb{C} and thus vanishes on some sequence with a limit point in \mathbb{C} , and thus $f^{(n)}$ must vanish entirely on \mathbb{C} . Then, if $f^{(n)}$ vanishes at every point in \mathbb{C} , we have that $f^{(m)}$ vanishes on the entire plane for any $m \geq n$, so $c_m = 0$ as well. Then, the power series expansion of f around $f^{(n)}$ gives $f(z) = \sum_{i=0}^{n-1} c_i z^i$, which converges everywhere, so f is a polynomial.

15

We extend $f(z) = 1/\overline{f(1/\overline{z})}$ for $z \in \mathbb{C}$, |z| > 1. Then, we have that on the open set $\overline{\mathbb{D}}^c$ where this extension is defined, $f(z) = 1/\overline{f(1/\overline{z})}$ is continuous at $z \in \overline{\mathbb{D}}^c$ as $z \in \overline{\mathbb{D}}^c \implies |z| > 1 \implies |1/z| < 1 \implies 1/z \in \mathbb{D} \implies 1/z = 1/\overline{z} \in \mathbb{D}$, so $f(1/\overline{z})$ is continuous at $1/\overline{z} \implies 1/\overline{f(1/\overline{z})}$ is continuous.

Thus, we have that f with this extension is continuous on the open sets $\overline{\mathbb{D}}^c$ and on \mathbb{D} , so if we can show that for |z|=1, $\lim_{w\to z,|w|>1}1/\overline{f(1/\overline{z})}=\lim_{w\to z,|w|<1}f(z)=f(z)$, we have that f is continuous on all of \mathbb{C} . Fortunately, we have on the unit circle that $\overline{z}=1/z$, so if we extend $1/\overline{f(1/\overline{z})}$ continually to |z|=1, we have that $1/\overline{f(1/\overline{z})}=1/\overline{f(z)}=f(z)$, so we have that $\lim_{w\to z}f(w)=f(z)$, so f is continuous on all of \mathbb{C} with the above extension.

Now, we wish to show that f is entire. We have that f is holomorphic in \mathbb{D} by assumption, and we have that if $f(z) = 1/\overline{f(1/\overline{z})}$ for |z| > 1, we have that $|z|, |z_0| > 1 \implies |1/\overline{z}|, |1/\overline{z_0}| < 1$, so expanding around $1/\overline{z_0}$,

$$f\left(\frac{1}{\overline{z}}\right) = \sum_{n=0}^{\infty} a_n \left(\frac{1}{\overline{z}} - \frac{1}{\overline{z_0}}\right)^n$$

$$f(z) = \frac{1}{\overline{f\left(\frac{1}{\overline{z}}\right)}}$$

$$= \frac{1}{\sum_{n=0}^{\infty} a_n \left(\frac{1}{\overline{z}} - \frac{1}{\overline{z_0}}\right)^n}$$

$$= \frac{1}{\sum_{n=0}^{\infty} \overline{a_n} \left(\frac{1}{z} - \frac{1}{\overline{z_0}}\right)^n}$$

but the bottom is then an analytic function expanded around $\frac{1}{z_0}$ and composed with $\frac{1}{z}$, so we have that f(z) is analytic for |z| > 1.

Now, to show that f is analytic on the unit circle, consider any triangle T in \mathbb{C} . If the triangle does not intersect the unit circle, either $T \subset \mathbb{D}$ or $T \subset \overline{\mathbb{D}}^c$. In either case, f is holomorphic in those open sets, so $\int_T f = 0$. In the case that T intersects the unit circle, we can split T into two contours, as shown on the right:

We have that $\int_T f = \int_{T_1} f + \int_{T_2} f = \lim_{\epsilon \to 0} \int_{T_{1,\epsilon}} f + \lim_{\epsilon \to 0} \int_{T_{2,\epsilon}} f$ by continuity. However, $T_{1,\epsilon}, T_{2,\epsilon}$ lie in $\mathbb D$ and $\overline{\mathbb D}^c$ respectively. Cauchy's theorem on discs gives that $\int_{T_{1,\epsilon}} f = 0$ since f is holomorphic on $\mathbb D$, and taking Cauchy's theorem on star-shaped domains with a point inside the region such as p witnessing star-shaped condition gives that $\int_{T_{2,\epsilon}} f = 0$ as well, so we can conclude $\int_T f = 0$.

In particular, the way to split the triangle may vary, but we can always find star-shaped regions and paths to do the same argument:

In all of these cases, we have that $\int_T f = \sum_{i=1}^n \lim_{\epsilon \to 0} \int_{T_{i,\epsilon}} f$ where $T_{i,\epsilon}$ is a path in a star-shaped region either completely inside or outside the disc, since we can split the triangle into subsets that are either inside or outside of \mathbb{D} , and take T_i along those subsets and the portion of the unit circle connecting them, so $\int_T f = 0$. Finally, by Morera's theorem, f must be holomorphic on the unit disc as well.

At last, we have that f under the given extension is entire. Further, since f is continuous in \overline{D} , we have that |f| must be bounded in \mathbb{D} since |f| is continuous on a compact set. This also means that |f| must also attain its minimal value in $\overline{\mathbb{D}}$. Furthermore, since $|f(z)| = 1/|f(1/\overline{z})|$ for z with |z| > 1, we have that since $1/\overline{z} \in \mathbb{D}$, and f does not vanish in \mathbb{D} and |f| attains its minimal value, say m, $1/|f(1/\overline{z})|$ must be bounded by 1/|m|. Therefore, f is entire and bounded, and by Liouville's is a constant function.

Note that since $1 \le d(n) \le n$, $\limsup_{n \to \infty} |d(n)|^{1/n} = 1$.

We have that on the unit disc via power series expansion, $\frac{1}{1-z} = \sum_{m=0}^{\infty} z^m$, so

$$\frac{z^n}{1-z^n} = z^n \sum_{m=0}^{\infty} (z^n)^m = \sum_{m=1}^{\infty} z^{nm} = \sum_{i=1}^{\infty} a_{n,i} z^i$$

where $a_{n,i} = 1$ if i = nm for some m and $a_{n,i} = 0$ otherwise. In particular, this means that $a_{n,i} = 1$ if and only if n|i.

Then, we have that $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} z^{nm} = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} a_{n,i} z^i = \sum_{i=1}^{\infty} (\sum_{n=1}^{\infty} a_{n,i}) z^i = \sum_{i=1}^{\infty} (\sum_{n=1}^{i} a_{n,i}) z^i$, where the last equality holds since $n > i \implies n \nmid i \implies a_{n,i} = 0$. However, since d(i) counts the amount of divisors of i, we have that $\sum_{n=1}^{i} a_{n,i} z^i = d(i)$, as $a_{n,i} = 1$ for each divisor of i and 0 otherwise, so we have that $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n} = \sum_{i=1}^{\infty} (\sum_{n=1}^{i} a_{n,i}) z^i = \sum_{i=1}^{\infty} d(i) z^i$. Then, since this converges absolutely for |z| < 1, we have that all the interchanges of the sums were justified.

Note that if we define the step function k(x) such that for $n \ge 0, n \in \mathbb{Z}$, on the interval $(n, n+1), k(x) = r^n/(1-r^n)$, we have that since $r^x/(1-r^x)$ is decreasing for r < 1, as

$$\frac{d}{dx}\frac{r^x}{1-r^x} = \frac{r^{2x}\log(r)}{(1-r^x)^2} + \frac{r^x\log(r)}{(1-r^x)} = \log(r)\left(\frac{r^{2x}}{(1-r^x)^2} + \frac{r^x}{1-r^x}\right) < 0 \text{ as } \log(r) < 0$$

Then, we have that $r^n/(1-r^n) \le r^x/(1-r^x)$ for $x \in (n, n+1)$, so $r^x/(1-r^x) \le k(x)$. Then we have that

$$\sum_{n=1}^{\infty} \frac{r^n}{1 - r^n} = \int_1^{\infty} k(x) dx$$
$$\leq \int_1^{\infty} \frac{r^x}{1 - r^x} dx$$

u-sub with $u = 1 - r^x$ gives

$$= -\int_{1-r}^{1} \frac{1}{u \log(r)} du$$

$$= -\frac{1}{\log(r)} \log(u) \Big|_{1-r}^{1}$$

$$= \frac{1}{\log(r)} \log(1-r)$$

$$= -\frac{1}{\log(r)} \log\left(\frac{1}{1-r}\right)$$

Then, since we have that Taylor expanding $\log(r)$ around r=1 gives that $\log(r)=(r-1)+O((r-1)^2) \implies \log(r) \le (r-1)+c'(r-1)=\frac{1}{c}(r-1)$ as $r\to 1$ for constants c,c', so

$$\leq c \frac{1}{r-1} \log \left(\frac{1}{1-r} \right)$$

so we have that $|F(r)| \ge c \frac{1}{r-1} \log \left(\frac{1}{1-r}\right)$ as desired.

To start the next part, we have that

$$|F(re^{i\theta})| = \left| \sum_{n=1}^{\infty} \frac{r^n e^{2\pi pn/q}}{1 - r^n e^{2\pi pn/q}} \right|$$

$$= \left| \sum_{n=1,q|n}^{\infty} \frac{r^n e^{2\pi pn/q}}{1 - r^n e^{2\pi pn/q}} + \sum_{n=1,q|n}^{\infty} \frac{r^n e^{2\pi pn/q}}{1 - r^n e^{2\pi pn/q}} \right|$$

$$= \left| \sum_{n=1}^{\infty} \frac{r^{nq}}{1 - r^{nq}} + \sum_{n=1,q|n}^{\infty} \frac{r^n e^{2\pi pn/q}}{1 - r^n e^{2\pi pn/q}} \right|$$

If we put $w_p = e^{2\pi p/q}$, since $w_p^n = w_p^{n+q}$ this reduces to

$$= \left| \sum_{n=1}^{\infty} \frac{r^{nq}}{1 - r^{nq}} + \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \frac{r^{qn+p} w_p}{1 - r^{qn+p} w_p} \right|$$

$$\geq \left| \sum_{n=1}^{\infty} \frac{r^{nq}}{1 - r^{nq}} \right| - \left| \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \frac{r^{qn+p} w_p}{1 - r^{qn+p} w_p} \right|$$

$$\geq c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \left| \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \frac{r^{qn+p} w_p}{1 - r^{qn+p} w_p} \right|$$

Let $c' = \min(1 - r^n w_p)$ for $r \in \mathbb{R}$, $1 \le p \le q - 1$. Then, we have that this is nonzero, as the set of all points $1 - r^n w_p$ is a collection of lines in the complex plane, none passing through zero, as w_p has nonzero imaginary part. Then,

$$\geq c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \left| \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \frac{r^{qn+p} w_p}{1 - r^{qn+p} w_p} \right|$$

$$\geq c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \left| \frac{r^{qn+p} w_p}{1 - r^{qn+p} w_p} \right|$$

$$\geq c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \frac{1}{c'} \left| r^{qn+p} w_p \right|$$

$$\geq c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \sum_{p=1}^{q-1} \sum_{n=1}^{\infty} \frac{1}{c} r^{qn+p}$$

$$= c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \frac{1}{c'} \sum_{n=1}^{\infty} r^n$$

$$= c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \frac{1}{c'} \frac{1}{1 - r}$$

$$= c \frac{1}{1 - r^q} \log \left(\frac{1}{1 - r^q} \right) - \frac{1}{c'} \frac{1}{1 - r}$$

From L'Hopital twice applied to $\frac{1-r^q}{1-r}$ and $\frac{\log(r)}{\log(r^q)}$, $\lim_{r\to 1} \frac{1}{1-r} \log\left(\frac{1}{r}\right) / \frac{1}{1-r^q} \log\left(\frac{1}{r^q}\right) = q$. Then, since this ratio is bounded near r=1, we can get new constants c'', c''' such that

$$\geq c'' \frac{1}{1-r} \log \left(\frac{1}{1-r}\right) - \frac{1}{c'} \frac{1}{1-r}$$
$$= c'' \frac{1}{1-r} \left(\log \left(\frac{1}{1-r}\right) - \frac{1}{c'''}\right)$$

Then, as $r \to 1$, we have that $\log\left(\frac{1}{1-r}\right) > \frac{1}{c'''}$, so we can conclude

$$\geq c'' \frac{1}{1-r} \log \left(\frac{1}{1-r} \right)$$