

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001

Fax. +972-4-6288277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC CFR 47 PART 15 Subpart C, §15.247 and RSS-210, Issue 7, Annex 8

FOR:

Bioness Neuromodulation Ltd. - A Bioness Inc Company

Trade mark: NESS L300 Plus

Model: L300 Plus Control Unit

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: BIORAD_FCC.21179_CU_rev1.doc

Date of Issue: 12/5/2010

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Changes made in the EUT	5
6.5	Test configuration	6
6.6	Transmitter characteristics	7
7	Transmitter tests according to 47CFR part 15 subpart C and RSS-210 requirements	8
7.1	Minimum 6 dB bandwidth	8
7.2	Peak output power	13
7.3	Field strength of spurious emissions	18
7.4	Peak spectral power density	46
7.5	Conducted emissions	52
7.6	Radiated emission measurements	55
8	APPENDIX A Test equipment and ancillaries used for tests	61
9	APPENDIX B Measurement uncertainties	62
10	APPENDIX C Test laboratory description	63
11	APPENDIX D Specification references	63
12	APPENDIX E Test equipment correction factors	64
13	APPENDIX F Abbreviations and acronyms	74

1 Applicant information

Client name: Bioness Neuromodulation Ltd. - A Bioness Inc Company

Address: P.O.Box 2500, 19 Ha'haroshet street, Ra'anana 43654, Israel

Telephone: +972 9790 7100 **Fax:** +972 9748 5740

E-mail: eyal.lasko@bioness.co.il

Contact name: Mr. Eyal Lasko

2 Equipment under test attributes

Product:Control unitTrade mark:NESS L300 PlusModel(s):L300 Plus Control Unit

Part number: 502-00045-01

Serial number: 00032 Hardware version: 2.0

Receipt date 10/18/2010

3 Manufacturer information

Manufacturer name: Bioness Neuromodulation Ltd. - A Bioness Inc Company

Address: P.O.Box 2500, 19 Ha'haroshet street, Ra'anana 43654, Israel

Telephone: +972 9790 7100 **Fax:** +972 9748 5740

E-Mail: eyal.lasko@bioness.co.il

Contact name: Mr. Eyal Lasko

4 Test details

Project ID: 21179

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Test started: 10/18/2010 **Test completed:** 12/02/2010

Test specification(s): FCC 47CFR Part 15, subpart C, §15.247;

RSS-210 Issue 7:2007, Annex 8; RSS-Gen Issue 2:2007

5 Tests summary

Test	Status
Transmitter characteristics	
FCC section 15.247(a)(2), RSS-210 section A8.2(a), 6 dB bandwidth	Pass
FCC section 15.247(b)3, RSS-210 section A8.4(4), Peak output power	Pass
FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions	Pass
FCC section 15.247(e), RSS-210 A8.2(b), Peak power density	Pass
FCC section 15.247(i)/ RSS-Gen, section 5.5, RF exposure	Pass, Exhibit provided in documentation for Application
FCC section 15.207(a), RSS-Gen section 7.2.2, Conducted emission	Pass
Unintentional emissions	
RSS-Gen section 7.2.3.2, Radiated emission	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by: Mr. S. Samokha, test engineer		December 2, 2010	Can
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	December 8, 2010	Chu
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	March 11, 2011	ff

6 EUT description

6.1 General information

The EUT, "L300 Plus Control Unit", is a transceiver, part of the NESS L300 Plus system that is used to correct foot drop and/or knee weakness syndromes.

The EUT enables the user to activate/deactivate the system, select a mode of operation, fine-tune the stimulation intensity, and receive information regarding the system by visual and audio indicators. The "L300 Plus Control Unit" utilizes an RF link to communicate with the "Thigh RF Stimulation Unit" and GS (Gait Sensor). The "L300 Plus Control Unit" serves as a wireless bridge between the clinician programming system (CPS) and "Thigh RFS". The EUT consists of a small PCB with an integrated RF transceiver, inside a plastic enclosure and is powered by a single rechargeable 1.2V AAA battery. The "L300 Plus Control Unit" is considered as internally powered unit (connected to AC/DC adapter only in charging mode).

6.2 Ports and lines

Port type	Port description	Conn. from	Conn. to	Qty.	Cable type	Cable length	Indoor / outdoor
Power	DC Power	AC/DC adaptor*	EUT	1	Unshielded	2.5 m	Indoor
Signal	USB**	PC	EUT	1	Unshielded	various	Indoor

^{* -} for charging only

6.3 Support and test equipment

Description	Manufacturer	Model number	Serial number
AC/DC adaptor (charger)	Friwo	FW7555M/05	809T

6.4 Changes made in the EUT

No changes were implemented.

^{** -} for maintance only.

6.5 Test configuration

6.6 Transmitter characteristics

Type of equipment									
V Stand-alone (Equipmen	nt with or with	out its own	control p	rovisio	ns)				
Combined equipment (anoth	er type of equip	ment)	
Plug-in card (Equipmer							21	ĺ	
Intended use	Condition of	use							
fixed	Always at a di	istance mor	e than 2	m fror	n all people				
					rom all people				
V portable	May operate a	at a distance	e closer	than 2	0 cm to human b	body			
Assigned frequency range 2400.0 – 2			2483.5 N	ИHz					
Operating frequency range		2401.0 – 2	2482.0 N	ИHz					
RF channel spacing		1000 kHz							
Peak po		At transmi	itter 50 C	2 RF o	utput connector			NA	
		Peak pow	er					-8.1 dB	m
		V No)						
					continuous v	ariable	е		
Is transmitter output power variable?		Ve	. C		stepped varia	able w	ith stepsize	(dB
		Yes	r	minimu	m RF power			(dBm
			r	maximı	um RF power			(dBm
Antenna connection									
Antenna connection									
	star	ndard conne	ector	v	integral		with tem	porary RF	connector
unique coupling	star	ndard conne	ector	V	integral	,			connector RF connector
		ndard conne	ector	V	integral	,			
unique coupling			ector		integral el number	,		emporary l	
unique coupling Antenna/s technical character	ristics		ector	Mode			V without t	emporary l	
unique coupling Antenna/s technical character Type	ristics Manufactus		ector	Mode FR05	el number	,	W without t	emporary l	
unique coupling Antenna/s technical character Type Chip	ristics Manufactus			Mode FR05	el number	,	W without t	emporary l	
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra	ristics Manufactus		0.25	Mode FR05	el number	1	W without t	emporary l	
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation	ristics Manufac Fractus		0.25 I FSK NA	Mode FR05 Mbps	el number		W without t	emporary l	
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation Type of multiplexing	Manufac Fractus ate/s	cturer	0.25 I FSK NA Binar	Model FR05	el number 5-S1-N-0-102		V without t	emporary l	
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation Type of multiplexing Modulating test signal (baseb	ristics Manuface Fractus Manuface Fractus Manuface Fractus Manuface Fractus Manuface Manuface Fractus Manuface Manufa	cturer	0.25 I FSK NA Binar	Model FR05	el number 5-S1-N-0-102 message		V without t	emporary l	
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation Type of multiplexing Modulating test signal (baseb Maximum transmitter duty cy	ristics Manuface Fractus Manuface Fractus Manuface Fractus Manuface Fractus Manuface Fractus Manuface Manufa	cturer	0.25 I FSK NA Binar	Model FR05	el number 5-S1-N-0-102 message manufacturer d	leclara	V without t	emporary l	RF connector
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation Type of multiplexing Modulating test signal (baseb Maximum transmitter duty cycle supplited transmitter duty cycle supplited transmitter power source V Battery Nomi	mistics Manufaction Fractus	use	0.25 I FSK NA Binar	Model FR05 Mbps y data	el number 5-S1-N-0-102 message manufacturer d	leclara	V without t Gain 1.5 d	Bi	RF connector
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation Type of multiplexing Modulating test signal (baseb Maximum transmitter duty cycle supplited transmitter duty cycle supplited transmitter power source V Battery Nomit DC Nomit	Manuface Fractus And Fractus and Fractus cle in normal ed for test inal rated volinal rated voli	use	0.25 I FSK NA Binar Refer	Model FR05 Mbps y data	message manufacturer d Tx ON time	leclara NA pe	Gain 1.5 d	Bi	RF connector
unique coupling Antenna/s technical character Type Chip Transmitter aggregate data ra Type of modulation Type of multiplexing Modulating test signal (baseb Maximum transmitter duty cycle supplication of the coupling of	mistics Manufaction Fractus	use	0.25 I FSK NA Binar Refer	Model FR05 Mbps y data	el number 5-S1-N-0-102 message manufacturer d Tx ON time	leclara NA pe	V without t Gain 1.5 d	Bi	RF connector

Test specification:	FCC section 15.247(a)(2),	FCC section 15.247(a)(2), RSS-210 section A8.2(a), 6 dB bandwidth				
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(a)2				
Test mode:	Compliance	Verdict: PASS				
Date:	10/18/2010	Verdict. PASS				
Temperature: 23.4 °C	Air Pressure: 1012 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

7 Transmitter tests according to 47CFR part 15 subpart C and RSS-210 requirements

7.1 Minimum 6 dB bandwidth

7.1.1 General

This test was performed to measure 6 dB bandwidth of the EUT carrier frequency. Specification test limits according to FCC part 15 section 15.247(a)(2) and RSS-210 section A8.2(a) are given in Table 7.1.1.

Table 7.1.1 The 6 dB bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum bandwidth, kHz
902.0 - 928.0		
2400.0 - 2483.5	6.0	500.0
5725.0 – 5850.0		,

^{* -} Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was set to transmit modulated carrier.
- **7.1.2.3** The transmitter minimum 6 dB bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and the associated plots.

Figure 7.1.1 The 6 dB bandwidth test setup

Test specification:	FCC section 15.247(a)(2),	FCC section 15.247(a)(2), RSS-210 section A8.2(a), 6 dB bandwidth				
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(a)2				
Test mode:	Compliance	Verdict: PASS				
Date:	10/18/2010	Verdict. PASS				
Temperature: 23.4 °C	Air Pressure: 1012 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

Table 7.1.2 The 6 dB bandwidth test results

ASSIGNED FREQUENCY BAND: 2400.0 – 2483.5 MHz

DETECTOR USED:

SWEEP MODE:
Single
SWEEP TIME:
Auto
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
MODULATION ENVELOPE REFERENCE POINTS:
MODULATION:
FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 0.25 Mbps

Carrier frequency, MHz	6 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
Low frequency				
2401.0	665	500	165	Pass
Mid frequency				
2441.0	640	500	140	Pass
High frequency				
2483.0	630	500	130	Pass

Table 7.1.3 The 99% power bandwidth test results

ASSIGNED FREQUENCY BAND: 2400.0 – 2483.5 MHz

DETECTOR USED:
Sample
SWEEP MODE:
SWEEP TIME:
Auto
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
MODULATION ENVELOPE REFERENCE POINTS:
MODULATION:
Sample
Single
Auto
100 kHz
300 kHz
99%
FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 0.25 Mbps

Carrier frequency, MHz	99% bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
2401.0	875.59	NA	NA	Pass
2441.0	852.17	NA	NA	Pass
2483.0	918.56	NA	NA	Pass

Reference numbers of test equipment used

HL 0337 HL 2909	
-----------------	--

Full description is given in Appendix A.

Test specification:	FCC section 15.247(a)(2), RSS-210 section A8.2(a), 6 dB bandwidth				
Test procedure:	FR Vol.62, page 26243, Section 15.247(a)2				
Test mode:	Compliance	Verdict:	PASS		
Date:	10/18/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1012 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Plot 7.1.1 The 6 dB bandwidth test result at low frequency

Plot 7.1.2 The 99% power bandwidth test result at low frequency

Test specification:	FCC section 15.247(a)(2),	FCC section 15.247(a)(2), RSS-210 section A8.2(a), 6 dB bandwidth				
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(a)2				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/18/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1012 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

Plot 7.1.3 The 6 dB bandwidth test result at mid frequency

Plot 7.1.4 The 99% power bandwidth test result at mid frequency

Test specification:	FCC section 15.247(a)(2),	FCC section 15.247(a)(2), RSS-210 section A8.2(a), 6 dB bandwidth				
Test procedure:	FR Vol.62, page 26243, Section 15.247(a)2					
Test mode:	Compliance	Verdict: PASS				
Date:	10/18/2010	verdict.	FAGG			
Temperature: 23.4 °C	Air Pressure: 1012 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

Plot 7.1.5 The 6 dB bandwidth test result at high frequency

Plot 7.1.6 The 99% power bandwidth test result at high frequency

Test specification:	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Sect	FR Vol.62, page 26243, Section 15.247(b)			
Test mode:	Compliance	Verdict: PASS			
Date:	10/24/2010	verdict.	PASS		
Temperature: 24.1 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: Battery		
Remarks:		-	-		

7.2 Peak output power

7.2.1 General

This test was performed to measure the maximum peak output power radiated by transmitter. Specification test limits according to FCC part 15 section 15.247(b)(3) and RSS-210 section A8.4(4) are given in Table 7.2.1.

Table 7.2.1 Peak output power limits

Assigned frequency	Maximum antenna	Peak output power*		Equivalent field strength
range, MHz	gain, dBi	W	dBm	limit @ 3m, dB(µV/m)**
2400.0 – 2483.5	6.0	1.0	30.0	131.2

^{*-} The limit is provided in terms of conducted RF power at the antenna connector. If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by 1 dB for every 3 dB that the directional gain of antenna exceeds 6 dBi for fixed point-to-point transmitters operate in 2400-2483.5 MHz band;

without any corresponding reduction for fixed point-to-point transmitters operate in 5725-5850 MHz band; by the amount in dB that the directional gain of antenna exceeds 6 dBi for the rest of transmitters.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- **7.2.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- 7.2.2.3 The field strength of the EUT fundamental emission was measured in 3 orthogonal positions of the device.
- **7.2.2.4** The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna height was swept in both vertical and horizontal polarizations.
- **7.2.2.5** The maximum field strength of the EUT carrier frequency was measured as provided in Table 7.2.2 and associated plots.
- 7.2.2.6 The maximum peak output power was calculated from the field strength of carrier as follows:

$$P = (E \times d)^2 / (30 \times G),$$

where P is the peak output power in W, E is the field strength in V/m, d is the test distance and G is the transmitter numeric antenna gain over an isotropic radiator.

The above equation was converted in logarithmic units for 3 m test distance:

Peak output power in dBm = Field strength in dB(μV/m) - Transmitter antenna gain in dBi – 95.2 dB

7.2.2.7 The worst test results (the lowest margins) were recorded in Table 7.2.2.

^{**-} Equivalent field strength limit was calculated from the peak output power as follows: E=sqrt(30×P×G)/r, where P is peak output power in Watts, r is antenna to EUT distance in meters and G is transmitter antenna gain in dBi.

Test specification:	FCC section 15.247(b)3, F	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/24/2010	verdict.	FAGG			
Temperature: 24.1 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: Battery			
Remarks:						

Figure 7.2.1 Setup for carrier field strength measurements

Test specification:	FCC section 15.247(b)3, F	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/24/2010	verdict.	FAGG			
Temperature: 24.1 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: Battery			
Remarks:						

Table 7.2.2 Peak output power test results

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber

EUT HEIGHT: 0.8 m DETECTOR USED: Peak

TEST ANTENNA TYPE: Double ridged guide (above 1000 MHz)

MODULATION: FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 250 kbps
TRANSMITTER OUTPUT POWER SETTINGS: Maximum
DETECTOR USED: Peak
EUT 6 dB BANDWIDTH: 630.0 kHz
RESOLUTION BANDWIDTH: 1 MHz
VIDEO BANDWIDTH: 3 MHz

Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	EUT antenna gain, dBi	Peak output power, dBm**	Limit, dBm	Margin, dB***	Verdict
2401.193	85.67	V	1.05	183	1.5	-11.06	30.0	-41.06	Pass
2400.655	88.38	Н	2.2	210	1.5	-8.35	30.0	-38.35	Pass
2441.088	86.17	V	1.15	10	1.5	-10.56	30.0	-40.56	Pass
2411.163	88.63	Н	1.85	210	1.5	-8.10	30.0	-38.10	Pass
2482.763	86.07	V	1.15	170	1.5	-10.66	30.0	-40.66	Pass
2482.700	85.59	Н	1.85	210	1.5	-11.14	30.0	-41.14	Pass

The recorded test results were obtained in the EUT X-axis position.

Reference numbers of test equipment used

		1			
HL 1984	HL 2870	HL 2871	HL 2909		

Full description is given in Appendix A.

^{*-} EUT front panel refer to 0 degrees position of turntable.

^{**-} Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2/(30 \times G)$, where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB

^{***-} Margin = Peak output power – specification limit.

Test specification:	FCC section 15.247(b)3, F	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Section 15.247(b)					
Test mode:	Compliance	Verdict: PASS				
Date:	10/24/2010	verdict.	FAGG			
Temperature: 24.1 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: Battery			
Remarks:						

Plot 7.2.1 Field strength of carrier at low frequency and Unom

Plot 7.2.2 Field strength of carrier at mid frequency and Unom

Test specification:	FCC section 15.247(b)3, F	FCC section 15.247(b)3, RSS-210 section A8.4(4) ,Peak output power				
Test procedure:	FR Vol.62, page 26243, Section	FR Vol.62, page 26243, Section 15.247(b)				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/24/2010	verdict.	FAGG			
Temperature: 24.1 °C	Air Pressure: 1014 hPa	Relative Humidity: 46 %	Power Supply: Battery			
Remarks:						

Plot 7.2.3 Field strength of carrier at high frequency and Unom

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4					
Test mode:	Compliance	Verdict: PASS				
Date:	10/27/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:		-				

7.3 Field strength of spurious emissions

7.3.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits according to FCC part 15 section 15.247(c) and RSS-210 section 6.2.2(o)(e1) are given in Table 7.3.1.

Table 7.3.1 Radiated spurious emissions limits

Frequency, MHz	Field streng	tricted bands,	Attenuation of field strength of spurious versus	
r requestey, mile	Peak	Quasi Peak	Average	carrier outside restricted bands, dBc***
0.009 - 0.090	148.5 – 128.5	NA	128.5 - 108.5**	
0.090 - 0.110	NA	108.5 – 106.8**	NA	
0.110 - 0.490	126.8 - 113.8	NA	106.8 - 93.8**	
0.490 - 1.705		73.8 – 63.0**		
1.705 – 30.0*		69.5		20.0
30 – 88	NA	40.0	NA	20.0
88 – 216	INA	43.5	INA	
216 – 960		46.0		
960 - 1000		54.0		
1000 – 10 th harmonic	74.0	NA	54.0	

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S^2} = \lim_{S^1} + 40 \log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis
- 7.3.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.3.3.1 The EUT was set up as shown in Figure 7.3.2, energized and the performance check was conducted.
- 7.3.3.2 The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.3.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

^{**-} The limit decreases linearly with the logarithm of frequency.

^{*** -} The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date:	10/27/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:		-				

Figure 7.3.1 Setup for spurious emission field strength measurements below 30 MHz

Figure 7.3.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions				
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date:	10/27/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

Table 7.3.2 Field strength of emissions outside restricted bands

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 - 25000 MHz

TEST DISTANCE: 3 m MODULATION: FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 250 kbps
DUTY CYCLE: 100 %
TRANSMITTER OUTPUT POWER SETTINGS: Maximum
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 100 kHz
VIDEO BANDWIDTH: 300 kHz

TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

Double ridged guide (above 1000 MHz)

Frequency MHz	Field strength of spurious, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier, dB(μV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB**	Verdict
Low carrier	frequency								
			No em	issions were	found				Pass
Mid carrier 1	frequency								
	•		No em	issions were	found				Pass
High carrier	High carrier frequency								
			No em	issions were	found				Pass

^{*-} EUT front panel refers to 0 degrees position of turntable.

^{**-} Margin = Attenuation below carrier – specification limit.

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions				
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date:	10/27/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

Table 7.3.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz INVESTIGATED FREQUENCY RANGE: 1000 - 25000 MHz

TEST DISTANCE: 3 m MODULATION: FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 250 kbps
DUTY CYCLE: 100 %
TRANSMITTER OUTPUT POWER SETTINGS: Maximum
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 1000 kHz

TEST ANTENNA TYPE: Double ridged guide

		-		Double Hugeu galue							
roguenes	Antenna		Azimuth	'eak field s	'eak field strength(VBW=3 MHz			Average field strength(VBW=10 Hz)			
requency MHz) olovizatio	leight	degrees'	/leasured	Limit,	Margin,	/leasured	alculatec	Limit,	Viargin	Verdict
IVII IZ	i 'olarizatioi i	m	regrees	dB(μV/m)	IB(μV/m	dB**	dB(μV/m)	dB(μV/m)	IB(μV/m	dB***	
Low carrie	r frequency										
2400.000	Hor	1.6	345	56.61	74.0	-17.39	48.52	37.52	54.0	-16.48	Pass
4801.950	Vert	1.05	54.23	57.81	74.0	-16.19	46.99	35.99	54.0	-18.01	Pass
Mid carrier	frequency										
4881.925	Vert	1.05	350	57.81	74.0	-16.19	52.79	41.79	54.0	-12.21	Pass
High carrier frequency											
2483.500	Vert	1.5	330	65.77	74.0	-8.23	61.10	50.10	54.0	-3.90	Pass
4965.100	Vert	1.05	0	56.58	74.0	-17.42	51.68	40.68	54.0	-13.32	Pass

^{*-} EUT front panel refers to 0 degrees position of turntable.

where Calculated field strength = Measured field strength + average factor.

Table 7.3.4 Average factor calculation

Transmis	sion pulse	Transmis	sion burst	Transmission train	Average factor,		
Duration, ms	Period, ms	Duration, ms Period, ms		duration, ms	dB		
	Refer to manufacturer declaration						

^{**-} Margin = Measured field strength - specification limit.

^{***-} Margin = Calculated field strength - specification limit,

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions					
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date:	10/27/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:		-				

Table 7.3.5 Field strength of spurious emissions below 1 GHz within restricted bands

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz

TEST DISTANCE: 3 m MODULATION: FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 250 kbps
DUTY CYCLE: 100 %
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

RESOLUTION BANDWIDTH: 0.2 kHz (9 kHz – 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH:

TEST ANTENNA TYPE:

Active loop (9 kHz – 30 MHz)

Biconical (30 MHz – 200 MHz)

Log periodic (200 MHz – 1000 MHz)

Biconilog (30 MHz – 1000 MHz)

=requency	Peak	Qua	si-peak		Antenna	Antenna	Turn-table	
MHz	1 Amission Moscurod omission Limit		polarization	height, m	position**, degrees	Verdict		
Low carrier	Low carrier frequency							
		No	o emissions we	ere found				Pass
Mid carrier	frequency							
		No	o emissions we	ere found				Pass
High carrier	High carrier frequency							
No emissions were found						Pass		

^{*-} Margin = Measured emission - specification limit.

Table 7.3.6 Restricted bands

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	Above 36.0

Reference numbers of test equipment used

HL 0446	HL 0521	HL 0604	HL 1984	HL 2870	HL 2871	HL 2909	HL 3533
HI 3818	HI 3883						

Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions				
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4				
Test mode:	Compliance	Verdict: PASS				
Date:	10/27/2010	verdict.	FASS			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

Plot 7.3.1 Radiated emission measurements at the low carrier frequency

Plot 7.3.2 Radiated emission measurements at the mid carrier frequency

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.3 Radiated emission measurements at the high carrier frequency

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.4 Radiated emission measurements from 9 to 150 kHz at the low carrier frequency

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.5 Radiated emission measurements from 9 to 150 kHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS
Date:	10/27/2010	verdict.	FASS
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery
Remarks:		-	

Plot 7.3.6 Radiated emission measurements from 9 to 150 kHz at the high carrier frequency

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Plot 7.3.7 Radiated emission measurements from 0.15 to 30 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.8 Radiated emission measurements from 0.15 to 30 MHz at the mid carrier frequency

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

@

ACTV DET: PEAK MEAS DET: PEAK OP AVC MKR 150 kHz 58.23 dBµV/m

Plot 7.3.9 Radiated emission measurements from 0.15 to 30 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical

(B)

ACTU DET: PEAK MEAS DET: PEAK OP AUG MKR 150 kHz 57.16 dBμV/m

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	DASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.10 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.11 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical and Horizontal

(B)

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.12 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.13 Radiated emission measurements from 1000 to 2390 MHz at the low carrier frequency

TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical and Horizontal

(B)

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS
Date:	10/27/2010	verdict.	FASS
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery
Remarks:		-	

Plot 7.3.14 Radiated emission measurements from 1000 to 2400 MHz at the mid carrier frequency

TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.15 Radiated emission measurements from 1000 to 2400 MHz at the high carrier frequency

TEST SITE: Semi anechoic chamber
TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.16 Radiated emission measurements from 2388 to 2402 MHz at the low carrier frequency

Test result = SA reading 1 – [(SA reading 2)- (SA reading 3)] = = 86.13 – (82.61 – 53.09) = 56.61 dBuV

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS
Date:	10/27/2010	verdict.	FASS
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery
Remarks:			

Plot 7.3.17 Radiated emission measurements from 2388 to 2402 MHz at the low carrier frequency

Test result = SA reading 1 – [(SA reading 2)- (SA reading 3)] = = 84.59 – (80.16 – 44.52) = 48.52 dBuV

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS		
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.18 Radiated emission measurements from 2482 to 2500 MHz at the high carrier frequency

Test result = SA reading 1 – [(SA reading 2)- (SA reading 3)] = = 85.77 – (81.96 – 61.96) = 65.77 dBuV

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.19 Radiated emission measurements from 2482 to 2500 MHz at the high carrier frequency

Test result = SA reading 1 – [(SA reading 2)- (SA reading 3)] = 83.17 - (79.61 - 57.54) = 61.10 dBuV

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	PASS	
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.20 Radiated emission measurements from 2483.5 to 6000 MHz at the low carrier frequency

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions		
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4		
Test mode:	Compliance	Verdict: PASS	
Date:	10/27/2010		FASS
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery
Remarks:			

Plot 7.3.21 Radiated emission measurements from 2483.5 to 6000 MHz at the mid carrier frequency

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date:	10/27/2010				
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Plot 7.3.22 Radiated emission measurements from 2500 to 6000 MHz at the high carrier frequency

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:		-		

Plot 7.3.23 Radiated emission measurements from 6000 to 14000 MHz at the low carrier frequency

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:		-			

Plot 7.3.24 Radiated emission measurements from 6000 to 14000 MHz at the mid carrier frequency

Plot 7.3.25 Radiated emission measurements from 6000 to 14000 MHz at the high carrier frequency

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Plot 7.3.26 Radiated emission measurements from 14000 to 18000 MHz at the low carrier frequency

Plot 7.3.27 Radiated emission measurements from 14000 to 18000 MHz at the mid carrier frequency

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:				

Plot 7.3.28 Radiated emission measurements from 14000 to 18000 MHz at the high carrier frequency

Plot 7.3.29 Radiated emission measurements from 18000 to 25000 MHz at the low carrier frequency

TEST SITE: OATS TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:		-		

Plot 7.3.30 Radiated emission measurements from 18000 to 25000 MHz at the mid carrier frequency

TEST SITE: OATS TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Plot 7.3.31 Radiated emission measurements from 18000 to 25000 MHz at the high carrier frequency

TEST SITE: OATS TEST DISTANCE: 3 m

ANTENNA POLARIZATION: Vertical and Horizontal

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Plot 7.3.32 Radiated emission measurements at the second harmonic of low carrier frequency

Plot 7.3.33 Radiated emission measurements at the second harmonic of mid carrier frequency

Test specification:	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS		
Date:	10/27/2010	verdict.	FASS	
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery	
Remarks:		-		

Plot 7.3.34 Radiated emission measurements at the second harmonic of high carrier frequency

Plot 7.3.35 Radiated emission measurements at the third harmonic of low carrier frequency

Test specification:	FCC section 15.247(d), R	FCC section 15.247(d), RSS-210 section A8.5, Radiated spurious emissions			
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(c) / ANSI C63.4, Section 13.1.4			
Test mode:	Compliance	Verdict: PASS			
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:		-			

Plot 7.3.36 Radiated emission measurements at the third harmonic of mid carrier frequency

TEST SITE: OATS TEST DISTANCE: 3 m

Plot 7.3.37 Radiated emission measurements at the third harmonic of high carrier frequency

TEST SITE: OATS TEST DISTANCE: 3 m

Test specification:	FCC section 15.247(e), RSS-210 A8.2(b), Peak power density				
Test procedure:	FR Vol. 62, page 26243, Secti	FR Vol. 62, page 26243, Section 15.247(d)			
Test mode:	Compliance	Verdict: PASS			
Date:	11/2/2010	verdict.	FASS		
Temperature: 23.2 °C	Air Pressure: 1015 hPa	Relative Humidity: 45.0 %	Power Supply: Battery		
Remarks:					

7.4 Peak spectral power density

7.4.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits according to FCC part 15 section 15.247(d) and RSS-210 section A8.2(b) are given in Table 7.4.1

Table 7.4.1 Peak spectral power density limits

Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm	Equivalent field strength limit @ 3m, dB(μV/m)*
2400.0 – 2483.5	3.0	8.0	103.2

^{* -} Equivalent field strength limit was calculated from the peak spectral power density as follows: E=sqrt(30×P)/r, where P is peak spectral power density and r is antenna to EUT distance in meters.

7.4.2 Test procedure for field strength measurements

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and its proper operation was checked.
- **7.4.2.2** The EUT was adjusted to produce maximum available to end user RF output power.
- **7.4.2.3** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept in both vertical and horizontal polarizations.
- 7.4.2.4 The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in peak hold mode with resolution bandwidth set to 3.0 kHz, video bandwidth wider than resolution bandwidth, auto sweep time and sufficient number of sweeps was allowed for trace stabilization. The spectrum lines spacing was verified to be wider than 3 kHz. Otherwise the resolution bandwidth was reduced until individual spectrum lines were resolved and the power of individual spectrum lines was integrated over 3 kHz band.
- 7.4.2.5 The peak of emission was zoomed with span set just wide enough to capture the emission peak area and sweep time was set equal to span width divided by resolution bandwidth. Spectrum analyzer was set in peak hold mode, sufficient number of sweeps was allowed for trace stabilization and peak spectral power density was measured as provided in Table 7.4.2, Table 7.4.3 and the associated plots.

Test specification:	FCC section 15.247(e), RSS-210 A8.2(b), Peak power density				
Test procedure:	FR Vol. 62, page 26243, Sect	FR Vol. 62, page 26243, Section 15.247(d)			
Test mode:	Compliance	Verdict: PASS			
Date:	11/2/2010	verdict.	FAGG		
Temperature: 23.2 °C	Air Pressure: 1015 hPa	Relative Humidity: 45.0 %	Power Supply: Battery		
Remarks:		-			

Figure 7.4.1 Setup for carrier field strength measurements

Test specification:	FCC section 15.247(e), RS	FCC section 15.247(e), RSS-210 A8.2(b), Peak power density						
Test procedure:	FR Vol. 62, page 26243, Secti	FR Vol. 62, page 26243, Section 15.247(d)						
Test mode:	Compliance	Verdict: PASS						
Date:	11/2/2010	verdict: PASS						
Temperature: 23.2 °C	Air Pressure: 1015 hPa	Relative Humidity: 45.0 %	Power Supply: Battery					
Remarks:								

Table 7.4.2 Field strength measurement of peak spectral power density

ASSIGNED FREQUENCY RANGE: 2400.0 – 2483.5 MHz

TEST DISTANCE: 3 m
TEST SITE: OATS
EUT HEIGHT: 0.8 m
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz

TEST ANTENNA TYPE: Double ridged guide (above 1000 MHz)

MODULATION: FSK

MODULATING SIGNAL: Binary data message

BIT RATE: 250 kbps
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

TRANSMITTER OUTPUT POWER:

-8.35 dBm at low carrier frequency
-8.10 dBm at mid carrier frequency
-10.66 dBm at high carrier frequency

Frequency, MHz	Field strength, dB(μV/m)	EUT antenna gain, dBi	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees
2401.074	87.80	1.5	103.2	-16.90	Н	2.2	210
2440.832	89.18	1.5	103.2	-15.52	Н	1.85	210
2483.064	85.01	1.5	103.2	-19.69	Н	1.85	210

^{*-} Margin = Field strength - EUT antenna gain - calculated field strength limit.

Table 7.4.3 Substitution measurement of peak spectral power density

ASSIGNED FREQUENCY RANGE: 2400 – 2483.5 MHz

TEST DISTANCE: 3 m
SUBSTITUTION ANTENNA HEIGHT: 0.8 m
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 3 kHz
VIDEO BANDWIDTH: 10 kHz

SUBSTITUTION ANTENNA TYPE: Double ridged guide (above 1000 MHz)

Frequency, MHz	Field strength, dB(μV/m)	Antenna polarization	RF generator output, dBm	Antenna gain, dBi	Cable loss, dB	EUT ant. gain, dBi	Peak power density*, dB(mW/3 kHz)	Limit, dBm	Margin, dB**	Verdict
2401.074	87.80	Hor	-15.54	9.17	1.46	1.5	-9.33	8.00	-17.33	Pass
2440.832	89.18	Hor	-14.07	9.21	1.47	1.5	-7.83	8.00	-15.83	Pass
2483.064	85.01	Hor	-18.62	9.24	1.48	1.5	-12.36	8.00	-20.36	Pass

^{*-} Peak power density provided in terms of conducted power density at antenna connector and was calculated as follows: Peak power density = RF generator output in dBm – Cable loss in dB + Substitution antenna gain in dBi - Transmitter antenna gain in dBi **- Margin = Peak power density - EUT antenna gain - specification limit.

Reference numbers of test equipment used

		• •				
HL 0661	HL 1984	HL 2432	HL 2870	HL 3818	HL 3901	

Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	FCC section 15.247(e), RSS-210 A8.2(b), Peak power density							
Test procedure:	FR Vol. 62, page 26243, Secti	FR Vol. 62, page 26243, Section 15.247(d)						
Test mode:	Compliance	Verdict: PASS						
Date:	11/2/2010	verdict.	FAGG					
Temperature: 23.2 °C	Air Pressure: 1015 hPa	Relative Humidity: 45.0 %	Power Supply: Battery					
Remarks:								

Plot 7.4.1 Peak spectral power density at low frequency 2401 MHz within 6 dB band

Plot 7.4.2 Peak spectral power density at low frequency 2401 MHz zoomed at the peak

Test specification:	FCC section 15.247(e), RSS-210 A8.2(b), Peak power density							
Test procedure:	FR Vol. 62, page 26243, Secti	FR Vol. 62, page 26243, Section 15.247(d)						
Test mode:	Compliance	Verdict: PASS						
Date:	11/2/2010	verdict.	FAGG					
Temperature: 23.2 °C	Air Pressure: 1015 hPa	Relative Humidity: 45.0 %	Power Supply: Battery					
Remarks:								

Plot 7.4.3 Peak spectral power density at mid frequency 2441 MHz within 6 dB band

Plot 7.4.4 Peak spectral power density at mid frequency 2441 MHz zoomed at the peak

Test specification:	FCC section 15.247(e), RSS-210 A8.2(b), Peak power density							
Test procedure:	FR Vol. 62, page 26243, Secti	FR Vol. 62, page 26243, Section 15.247(d)						
Test mode:	Compliance	Verdict: PASS						
Date:	11/2/2010	verdict.	FAGG					
Temperature: 23.2 °C	Air Pressure: 1015 hPa	Relative Humidity: 45.0 %	Power Supply: Battery					
Remarks:								

Plot 7.4.5 Peak spectral power density at high frequency 2482 MHz within 6 dB band

Plot 7.4.6 Peak spectral power density at high frequency 2482 MHz zoomed at the peak

Test specification:	FCC section 15.207(a), R	FCC section 15.207(a), RSS-Gen section 7.2.2, Conducted emission					
Test procedure:	ANSI C63.4, Section 13.1.3	ANSI C63.4, Section 13.1.3					
Test mode:	Compliance	Verdict:					
Date:	10/31/2010	verdict.					
Temperature: 24.4°C	Air Pressure: 1016 hPa	Relative Humidity: 47%	Power Supply: 120 VAC				
Remarks:							

7.5 Conducted emissions

7.5.1 Genera

This test was performed to measure common mode conducted emissions at the power port. Specification test limits are given in Table 7.5.1.

Table 7.5.1 Limits for conducted emissions

Frequency,	Class B lir	Class B limit, dB(μV)					
MHz	QP	AVRG					
0.15 - 0.5	66 - 56*	56 - 46*					
0.5 - 5.0	56	46					
5.0 - 30	60	50					

^{* -} The limit decreases linearly with the logarithm of frequency.

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and the performance check was conducted.
- **7.5.2.2** The measurements were performed at power terminals with the LISN, connected to a spectrum analyzer while unused coaxial connector of the LISN was terminated with 50 Ohm.
- **7.5.2.3** The position of the device cables was varied to determine maximum emission level.
- **7.5.2.4** The worst test results (the lowest margins) were recorded in Table 7.5.2 and shown in the associated plots.

Figure 7.5.1 Setup for conducted emission measurements, table-top equipment

Test specification:	FCC section 15.207(a), R	FCC section 15.207(a), RSS-Gen section 7.2.2, Conducted emission					
Test procedure:	ANSI C63.4, Section 13.1.3	ANSI C63.4, Section 13.1.3					
Test mode:	Compliance	Verdict:					
Date:	10/31/2010	verdict.					
Temperature: 24.4°C	Air Pressure: 1016 hPa	Relative Humidity: 47%	Power Supply: 120 VAC				
Remarks:							

Table 7.5.2 Conducted RF emission test results

LINE: AC power
EUT OPERATING MODE: Transmit
EUT SET UP: TABLE-TOP
TEST SITE: SHIELDED ROOM

DETECTORS USED: PEAK / QUASI-PEAK / AVERAGE

FREQUENCY RANGE: 150 kHz - 30 MHz

RESOLUTION BANDWIDTH: 9 kHz

REGGEOTION BANDWIDTH. SAME											
	Peak	Qi	Quasi-peak Average			Quasi-peak					
Frequency, MHz	emission, dB(μV)	Measured emission, dB(μV)	Limit, dB(μV)	Margin, dB*	Measured emission, dB(μV)	Limit, dB(μV)	Margin, dB*	Line ID	Verdict		
0.176613	43.50	39.32	64.70	-25.38	22.60	54.70	-32.10				
0.247950	37.97	32.43	61.85	-29.42	15.64	51.85	-36.21	L1	Pass		
0.425713	32.79	27.38	57.39	-30.01	10.85	47.39	-36.54	L'	1 833		
2.768700	29.98	23.51	56.00	-32.49	14.22	46.00	-31.78				
0.177138	40.82	37.23	64.68	-27.45	22.33	54.68	-32.35				
0.247750	35.41	29.97	61.86	-31.89	14.73	51.86	-37.13	L2	Pass		
0.775025	29.14	23.68	56.00	-32.32	13.49	46.00	-32.51				

^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

_							
	HL 0887	HL1425	HL 1513	HL 2888	HL 3612		

Full description is given in Appendix A.

Test specification:	FCC section 15.207(a), R	FCC section 15.207(a), RSS-Gen section 7.2.2, Conducted emission			
Test procedure:	ANSI C63.4, Section 13.1.3				
Test mode:	Compliance	Verdict:			
Date:	10/31/2010				
Temperature: 24.4°C	Air Pressure: 1016 hPa	Relative Humidity: 47%	Power Supply: 120 VAC		
Remarks:					

Plot 7.5.1 Conducted RF emission measurements

LINE: **EUT OPERATING MODE:** Transmit

LIMIT: QUASI-PEAK, AVERAGE

DETECTOR: PEAK

<u>@</u>

Plot 7.5.2 Conducted RF emission measurements

LINE: L2

EUT OPERATING MODE: Transmit

LIMIT: QUASI-PEAK, AVERAGE

DETECTOR: PEAK

(A)

Test specification:	RSS-Gen section 7.2.3.2,	RSS-Gen section 7.2.3.2, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/27/2010	verdict.	FAGG			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 % Power Supply: Batte				
Remarks:						

7.6 Radiated emission measurements

7.6.1 General

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits according to RSS-Gen, Section 6 are given in Table 7.6.1.

Table 7.6.1 Radiated emission limits according to RSS-Gen, Section 6

Frequency, MHz	Field strength limit at 3 m test distance, dB(μV/m)
30 - 88	40.0
88 - 216	43.5
216 - 960	46.0
960 - 3 rd harmonic**	54.0

^{** -} harmonic of the highest frequency the EUT generates, uses, operates or tunes to.

7.6.2 Test procedure for measurements in semi-anechoic chamber

- 7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and the performance check was conducted.
- **7.6.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- **7.6.2.3** The worst test results (the lowest margins) were provided in the associated tables and plots.

Test specification:	RSS-Gen section 7.2.3.2, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Figure 7.6.1 Setup for radiated emission measurements at anechoic chamber, table-top equipment

Test specification:	RSS-Gen section 7.2.3.2,	RSS-Gen section 7.2.3.2, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/27/2010	verdict.	FAGG			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 % Power Supply: Batte				
Remarks:						

Table 7.6.2 Radiated emission test results according to RSS-Gen, Section 6

EUT SET UP: TABLE-TOP EUT OPERATING MODE: TABLE-TOP Receive

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

FREQUENCY RANGE: 30 MHz – 1000 MHz

RESOLUTION BANDWIDTH: 120 kHz

	Peak	Quasi-peak				Antenna	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	height, m	position**, degrees	Verdict
No emissions were found							Pass	

TEST SITE: SEMI ANECHOIC CHAMBER

TEST DISTANCE: 3 m

FREQUENCY RANGE: 1000 MHz – 12500 MHz

RESOLUTION BANDWIDTH: 1000 kHz

Fraguency	Peak		Average			Antonno	Turn table			
Frequency,	Measured	Limit,	Margin,	Measured	Limit,	Margin,	Antenna	Antenna Antenna height.		Verdict
MHz	emission,			emission,			polariz.	m	degrees	Vertice
IVIIIZ	dB(μV/m)	dB(μV/m)	dB*	dB(μV/m)	dB(μV/m)	dB*		•••	degrees	
	No emissions were found								Pass	

Note: EUT was in X-axis orthogonal position.

Reference numbers of test equipment used

HI 0521	HL 0604	HL 1984	HL 2871	HI 3532	HL 3616	HL 3818	
U251	11L 000 -1	TL 1984	ΠL 20/ I	TL 3332	UL 2010	UL 2010	

Full description is given in Appendix A.

^{*-} Margin = Measured emission - specification limit.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	RSS-Gen section 7.2.3.2,	RSS-Gen section 7.2.3.2, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date:	10/27/2010	verdict.	FAGG			
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:		-				

Plot 7.6.1 Radiated emission measurements in 30 - 1000 MHz range, vertical and horizontal antenna polarization

TEST SITE: Semi anechoic chamber

LIMIT: Class B TEST DISTANCE: 3 m

EUT OPERATING MODE: Receive / Stand-by

Plot 7.6.2 Radiated emission measurements in 1000 - 2900 MHz range, vertical and horizontal antenna polarization

TEST SITE: Semi anechoic chamber

LIMIT: Class B
TEST DISTANCE: 3 m

EUT OPERATING MODE: Receive / Stand-by

Test specification:	RSS-Gen section 7.2.3.2, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Plot 7.6.3 Radiated emission measurements in 2900 - 6000 MHz range, vertical and horizontal antenna polarization

Test specification:	RSS-Gen section 7.2.3.2,	RSS-Gen section 7.2.3.2, Radiated emission			
Test procedure:	ANSI C63.4, Sections 11.6 an	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date:	10/27/2010	verdict.	FASS		
Temperature: 23.4 °C	Air Pressure: 1015 hPa	Relative Humidity: 44 %	Power Supply: Battery		
Remarks:					

Plot 7.6.4 Radiated emission measurements in 6000 – 12500 MHz range, vertical and horizontal antenna polarization

8 APPENDIX A Test equipment and ancillaries used for tests

HL	Description	Manufacturer	Model	Ser. No.	Last	Due
No	Description	Manadactarci	Wodel	001.110.	Cal./Check	Cal./Check
0337	Probe Set, Hand held, 5 probes	Electro-Metrics	EHFP-30	238	08-Jun-10	08-Jun-11
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	29-Jun-10	29-Jun-11
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	25-Aug-10	25-Aug-11
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	11-Jan-10	11-Jan-11
0661	Generator Swept Signal, 10 MHz to 40 GHz, + 10 dBm	HP	83640B	3614A002 66	17-Dec-09	17-Dec-10
0887	Attenuator Coaxial, 30 dB, 100 W, 50 Ohm	Bird Electronic Corp.	8323	1639	03-Feb-10	03-Feb-11
1425	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1426, HL1427	Agilent Technologies	8542E	3710A002 22, 3705A002 04	24-Aug-10	24-Aug-11
1513	Cable RF, 8 m, BNC/BNC	Belden	M17/167 MIL-C-17	1513	01-Sep-10	01-Sep-11
1984	Antenna, Double-Ridged Waveguide Horn, 1-18 GHz, 300 W	EMC Test Systems	3115	9911-5964	11-Jun-10	11-Jun-11
2432	Antenna, Double-Ridged Waveguide Horn 1-18 GHz	EMC Test Systems	3115	00027177	11-Jun-10	11-Jun-11
2870	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-9155- 00	2870	04-Aug-10	04-Aug-11
2871	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-8155- 00	2871	14-Sep-10	14-Sep-11
2888	LISN Two-line V-Network 50 Ohm / 50 uH + 5 Ohm, 16A, MIL STD 461E, CISPR 16-1	Rolf Heine	NNB- 2/16Z	02/10018	07-Jul-10	07-Jul-11
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	07-May-10	07-May-11
3532	Amplifier, low noise, 2 to 8 GHz	Quinstar Technology	QLJ- 02084040 -J0	111590020 01	01-Jan-10	01-Jan-11
3533	Amplifier, low noise, 6 to 18 GHz	Quinstar Technology	QLJ- 06184040 -J0	111590010 01	01-Jan-10	01-Jan-11
3612	Cable RF, 17.5 m, N type-N type	Teldor	RG-214/U	NA	01-Dec-10	01-Dec-11
3616	Cable RF, 6.5 m, N type-N type, DC-6.5 GHz	Suhner Switzerland	Rg 214/U	NA	27-May-10	27-May-11
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	26-Sep-10	26-Sep-11
3883	Preamplifier, 0.1 to 18 GHz, Gain 25 dB, N-type (f) in, N-type (m) out.	Agilent Technologies	87405C	MY470104 06	13-Jan-10	13-Jan-11
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	07-Feb-10	07-Feb-11

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Made al calada de de a	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01) and approved by Israel Ministry of environmental protection, radiation hazards department (Permit number 1158). The FCC Designation Number is US1003.

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

FCC 47CFR part 15: 2009 Radio Frequency Devices.

FR Vol.62 Federal Register, Volume 62, May 13, 1997
FCC New Guidance:2004 FCC New Guidance on Measurements for DTS

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions

from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

RSS-210 Issue 7: 2007 Low Power Licence- Exempt Radiocommunication Devices

RSS-Gen Issue 2: 2007 General Requirements and Information for the Certification of Radiocommunication

Equipment

12 APPENDIX E Test equipment correction factors

Correction factor Line impedance stabilization network Model NNB-2/16Z, Rolf Heine, HL 2888

			•	
Frequency, kHz	Insertior	Measurement		
r requericy, ki iz	L1 N		Uncertainty, dB	
10	0.48	0.79		
20	0.52	0.63		
30	0.31	0.35		
40	0.20	0.22		
50	0.16	0.17		
100	0.10	0.08		
300	0.08	0.06		
500	0.10	0.06		
600	0.09	0.07		
800	0.10	0.07		
1000	0.10	0.08		
2000	0.12	0.11	±0.6	
3000	0.16	0.14		
4000	0.17	0.18		
6000	0.26	0.23		
10000	0.49	0.41		
14000	0.66	0.54		
16000	0.79	0.69		
18000	0.86	0.76		
20000	0.96	0.85		
25000	1.22	1.08		
28000	1.35	1.21		
30000	1.43	1.29		

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Frequency, MHz	Antenna Factor, dB(1/m)	Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8	940	24.0
28	7.8	960	24.1
30	7.8	980	24.5
40	7.2	1000	24.9
60	7.1	1020	25.0
70	8.5	1040	25.2
80	9.4	1060	25.4
90	9.8	1080	25.6
100	9.7	1100	25.7
110	9.3	1120	26.0
120	8.8	1140	26.4
130	8.7	1160	27.0
140	9.2	1180	27.0
150	9.8	1200	26.7
160	10.2	1220	26.5
170	10.4	1240	26.5
180	10.4	1260	26.5
190	10.3	1280	26.6
200	10.6	1300	27.0
220	11.6	1320	27.8
240	12.4	1340	28.3
260	12.8	1360	28.2
280	13.7	1380	27.9
300	14.7	1400	27.9
320	15.2	1420	27.9
340	15.4	1440	27.8
360	16.1	1460	27.8
380	16.4	1480	28.0
400	16.6	1500	28.5
420	16.7	1520	28.9
440	17.0	1540	29.6
460	17.7	1560	29.8
480	18.1	1580	29.6
500	18.5	1600	29.5
520	19.1	1620	29.3
540	19.5	1640	29.2
560	19.8	1660	29.4
580	20.6	1680	29.6
600	21.3	1700	29.8
620	21.5	1720	30.3
640	21.2	1740	30.8
660	21.4	1760	31.1
680	21.9	1780	31.0
700	22.2	1800	30.9
720	22.2	1820	30.7
740	22.1	1840	30.6
760	22.3	1860	30.6
780	22.6	1880	30.6
800	22.7	1900	30.6
820	22.9	1920	30.7
840	23.1	1940	30.9
860	23.4	1960	31.2
880	23.8	1980	31.6
900	24.1	2000	32.0
920	24.1	_000	

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL1984

Frequency,	Antenna factor,
MHz	dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.6
2500.0	28.9
3000.0	31.2
3500.0	32.0
4000.0	32.5
4500.0	32.7
5000.0	33.6
5500.0	35.1
6000.0	35.4
6500.0	34.9
7000.0	36.1
7500.0	37.8
8000.0	38.0
8500.0	38.1
9000.0	39.1
9500.0	38.3
10000.0	38.6
10500.0	38.2
11000.0	38.7
11500.0	39.5
12000.0	40.0
12500.0	40.4
13000.0	40.5
13500.0	41.1
14000.0	41.6
14500.0	41.7
15000.0	38.7
15500.0	38.2
16000.0	38.8
16500.0	40.5
17000.0	42.5
17500.0	45.9
18000.0	49.4

Antenna factor Double-ridged guide horn antenna Model 3115, serial number: 00027177, HL 2432

Frequency, MHz	Antenna factor. dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.8
2500.0	28.9
3000.0	30.7
3500.0	31.8
4000.0	33.0
4500.0	32.8
5000.0	34.2
5500.0	34.9
6000.0	35.2
6500.0	35.4
7000.0	36.3
7500.0	37.3
8000.0	37.5
8500.0	38.0
9000.0	38.3
9500.0	38.3
10000.0	38.7
10500.0	38.7
11000.0	38.9
11500.0	39.5
12000.0	39.5
12500.0	39.4
13000.0	40.5
13500.0	40.8
14000.0	41.5
14500.0	41.3
15000.0	40.2
15500.0	38.7
16000.0	38.5
16500.0	39.8
17000.0	41.9
17500.0	45.8
18000.0	49.1

Cable loss Cable coaxial, Huber-Suhner, 18 GHz, 6.4 m, SMA - SMA, model 198-9155-00, HL 2870

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	5750	2.49	12000	3.71
30	0.17	6000	2.53	12250	3.81
100	0.32	6250	2.58	12500	3.84
250	0.49	6500	2.64	12750	3.88
500	0.70	6750	2.69	13000	3.92
750	0.86	7000	2.75	13250	3.96
1000	1.00	7250	2.80	13500	3.98
1250	1.11	7500	2.87	13750	4.01
1500	1.23	7750	2.93	14000	4.03
1750	1.34	8000	2.94	14250	4.09
2000	1.41	8250	3.00	14500	4.08
2250	1.51	8500	3.04	14750	4.10
2500	1.59	8750	3.08	15000	4.15
2750	1.68	9000	3.14	15250	4.22
3000	1.76	9250	3.16	15500	4.31
3250	1.83	9500	3.22	15750	4.42
3500	1.91	9750	3.26	16000	4.48
3750	1.97	10000	3.36	16250	4.54
4000	2.05	10250	3.41	16500	4.56
4250	2.11	10500	3.46	16750	4.57
4500	2.18	10750	3.50	17000	4.59
4750	2.24	11000	3.54	17250	4.66
5000	2.30	11250	3.58	17500	4.70
5250	2.36	11500	3.63	17750	4.76
5500	2.43	11750	3.66	18000	4.72

Cable loss Cable coaxial, Huber-Suhner, 18 GHz, 6.4 m, SMA - SMA, model 198-8155-00, HL 2871

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.12	5750	2.34	12000	3.55
30	0.14	6000	2.39	12250	3.61
100	0.27	6250	2.46	12500	3.67
250	0.45	6500	2.52	12750	3.74
500	0.63	6750	2.58	13000	3.79
750	0.76	7000	2.64	13250	3.82
1000	0.89	7250	2.68	13500	3.83
1250	1.01	7500	2.73	13750	3.83
1500	1.12	7750	2.78	14000	3.88
1750	1.23	8000	2.83	14250	3.93
2000	1.32	8250	2.88	14500	3.96
2250	1.41	8500	2.94	14750	4.01
2500	1.49	8750	2.97	15000	4.00
2750	1.58	9000	3.02	15250	4.01
3000	1.66	9250	3.07	15500	4.00
3250	1.73	9500	3.13	15750	4.13
3500	1.80	9750	3.18	16000	4.22
3750	1.87	10000	3.21	16250	4.29
4000	1.93	10250	3.26	16500	4.29
4250	2.01	10500	3.30	16750	4.32
4500	2.06	10750	3.36	17000	4.37
4750	2.12	11000	3.39	17250	4.45
5000	2.17	11250	3.44	17500	4.49
5250	2.24	11500	3.48	17750	4.53
5500	2.29	11750	3.52	18000	4.55

Cable loss Cable coaxial, RG-214/U, N type-N type, 17 m Teldor, HL 3612

Frequency, GHz	Cable loss, dB
0.1	0.05
0.5	0.07
1	0.10
3	0.22
5	0.29
10	0.39
30	0.68
50	0.90
100	1.27
150	1.58
200	1.80
250	2.12
300	2.36
350	2.60
400	2.82
450	2.99
500	3.23
550	3.40
600	3.56
650	3.71
700	3.90
750	4.04
800	4.23
850	4.39
900	4.55
950	4.65
1000	4.79

Cable loss Cable coaxial, RG-214/U, N type-N type, 6.5 m Suhner Switzerland, HL 3616

Frequency, MHz	Cable loss, dB						
10	0.13	1750	2.66	3550	4.44	5350	6.08
30	0.25	1800	2.72	3600	4.46	5400	6.12
50	0.32	1850	2.78	3650	4.59	5450	6.17
100	0.48	1900	2.81	3700	4.60	5500	6.25
150	0.60	1950	2.86	3750	4.72	5550	6.31
200	0.71	2000	2.94	3800	4.72	5600	6.35
250	0.81	2050	2.97	3850	4.86	5650	6.41
300	0.91	2100	3.01	3900	4.85	5700	6.50
350	1.00	2150	3.06	3950	4.99	5750	6.52
400	1.07	2200	3.11	4000	4.90	5800	6.57
450	1.14	2250	3.16	4050	5.04	5850	6.61
500	1.23	2300	3.21	4100	5.01	5900	6.71
550	1.30	2350	3.26	4150	5.10	5950	6.70
600	1.37	2400	3.31	4200	5.08	6000	6.75
650	1.44	2450	3.35	4250	5.18	6050	6.74
700	1.50	2500	3.39	4300	5.14	6100	6.84
750	1.58	2550	3.46	4350	5.22	6150	6.87
800	1.64	2600	3.48	4400	5.21	6200	6.93
850	1.69	2650	3.55	4450	5.29	6250	6.96
900	1.77	2700	3.59	4500	5.31	6300	7.02
950	1.79	2750	3.66	4550	5.39	6350	7.04
1000	1.87	2800	3.68	4600	5.41	6400	7.10
1050	1.92	2850	3.75	4650	5.49	6450	7.11
1100	1.98	2900	3.79	4700	5.52	6500	7.19
1150	2.05	2950	3.86	4750	5.60		
1200	2.09	3000	3.89	4800	5.64		
1250	2.15	3050	3.94	4850	5.73		
1300	2.21	3100	3.98	4900	5.70		
1350	2.27	3150	4.03	4950	5.73		
1400	2.33	3200	4.06	5000	5.75		
1450	2.38	3250	4.12	5050	5.83		
1500	2.44	3300	4.14	5100	5.82		
1550	2.48	3350	4.22	5150	5.91		
1600	2.52	3400	4.24	5200	5.92		
1650	2.56	3450	4.31	5250	5.98		
1700	2.62	3500	4.35	5300	6.01		

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 3.5 m, SMA-SMA, S/N 1225/2A HL 3901

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	9500	4.29	21000	6.67
100	0.41	10000	4.40	22000	6.92
500	0.93	10500	4.52	23000	7.00
1000	1.33	11000	4.64	24000	7.18
1500	1.63	11500	4.76	25000	7.29
2000	1.90	12000	4.87	26000	7.55
2500	2.12	12500	4.99	27000	7.70
3000	2.33	13000	5.11	28000	7.88
3500	2.50	13500	5.20	29000	8.02
4000	2.67	14000	5.31	30000	8.15
4500	2.82	14500	5.42	31000	8.35
5000	2.99	15000	5.51	32000	8.40
5500	3.16	15500	5.58	33000	8.62
6000	3.32	16000	5.68	34000	8.73
6500	3.51	16500	5.78	35000	8.78
7000	3.65	17000	5.91	36000	8.94
7500	3.79	17500	5.99	37000	9.21
8000	3.92	18000	6.07	38000	9.37
8500	4.04	19000	6.36	39000	9.45
9000	4.18	20000	6.49	40000	9.52

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AM amplitude modulation
AVRG average (detector)

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

 $dB(\mu A)$ decibel referred to one microampere

DC direct current

EMC electromagnetic compatibility

EUT equipment under test

GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz
k kilo
kHz kilohertz
kV kilovolt
L length

LISN line impedance stabilization network

m meter MHz megahertz min minute mm millimeter millisecond ms microsecond μS ΝA not applicable OATS open area test site

 $\begin{array}{lll} \Omega & \text{Ohm} \\ \text{QP} & \text{quasi-peak} \\ \text{PS} & \text{power supply} \\ \text{RE} & \text{radiated emission} \\ \text{RF} & \text{radio frequency} \\ \text{rms} & \text{root mean square} \end{array}$

s second V volt VA volt-ampere W width

END OF DOCUMENT