Matière :

Physique Chimie

PRINCIPE D'INERTIE

Niveau:

Tronc Commun

- Première loi de newton -

Système isolé et Système pseudo-isolé: I)

Définition:

Système isolé:

Un système est mécaniquement isolé s'il n'est soumis à aucune force. Ce genre de système n'existe pas en pratique (il y a toujours le poids du système et des frottements).

Système pseudo-isolé:

Un système est pseudo-isolé si les effets des forces extérieures auxquelles il est soumis se compensent. $\sum_{i} \hat{F}_{ext} = 0$

Exemples:

- un livre sur une table : la force de réaction de la table sur le livre compense le poids du livre
- un mobile autoporteur sur une table à coussin d'air, qui permet de supprimer les frottements

Principe d'inertie : Première loi de newton II)

1) Activité expérimentale N°1:

Expérience N°1:

On lance un autoporteur (S) sans rotation sur une table à cousin d'air horizontal et on obtient l'enregistrement N°1.

On lance un autoporteur (S) avec rotation sur une table à cousin d'air horizontal et on obtient l'enregistrement N°2.

Les observations :

- le point A à une trajectoire rectiligne dans les 2 expériences.
- le point B à une trajectoire rectiligne dans l'expérience N°1 et une trajectoire curviligne dans l'expérience N° 2.

Conclusion:

- le point A appartient à l'axe de symétrie de l'autoporteur (S) qui contient aussi la point G le centre de gravité de (S).
- le point A représente la projection orthogonal du point G ainsi le mouvement du point G est celui du point A.

2) Définition du centre d'inertie :

Le centre d'inertie d'un solide indéformable c'est le point qui appartient au solide et c'est le point qui garde toujours un *mouvement rectiligne uniforme* lorsque le solide est pseudoisolé.

3) Enoncé du principe d'inertie :

Newton énonce en 1686 le **principe d'inertie** qui permet de prévoir ces situations :

Enoncé historique : Dans un référentiel terrestre :

"Tout corps **persévère** dans son **état de repos** ou **de mouvement rectiligne**

uniforme si les forces qui s'exercent sur lui se compensent $\sum \vec{F}_{ext} = \vec{0}$ ".

On peut aussi écrire : Dans un référentiel terrestre :

Soit un solide sur lequel s'exercent des forces qui se compensent :

- Si $V_{init} = 0$ "immobile", alors le solide reste immobile.
- Si $V_{init} \neq 0$, alors le solide a un mouvement rectiligne uniforme à la vitesse V_{init} .

CONSEQUENCES DU PRINCIPE D'INERTIE.

M.R.U \(\Leftrigorapprox Solide pseudo - isol\(\equiv \)

Ecriture mathématique :

$$\vec{V}_G = \vec{C}^{te} \iff \sum \vec{F}_{ext} = \vec{0}$$

4) Application :

Un solide (S) est animé d'un mouvement rectiligne sans frottement, sur les plans $\pi 1$, $\pi 2$ et $\pi 3$ (voir schéma ci-dessous)

On utilisant le principe d'inertie, donner la nature du mouvement du solide (S) sur chaque plan.

Réponse:

Le système étudié: {le solide (S)} le bilan des forces :

 \vec{P} : poids du système

 \vec{R} : l'action du plan horizontal

1^{er} Cas: sur le plan π 1 et π 3:

Dans ce cas le solide (S) est **pseudo-isolé** car $\sum \vec{F}_{ext} = \vec{0}$ donc d'après le principe d'inertie $\vec{V}_G = \vec{C}^{te}$ donc le solide (S) est en translation rectiligne uniforme.

$2^{\rm eme}$ Cas: sur le plan π 2:

Dans ce cas le solide (S) est **non pseudo-isolé** car $\sum \vec{F}_{ext} \neq \vec{0}$ donc d'après le principe d'inertie $\vec{V}_G \neq \vec{C}^{te}$ donc le solide (S) est en translation rectiligne uniformément varié.

Henri Moissan 3 DELAHI Mohamed

III) Centre d'inertie de quelques solides.

Le premier à avoir étudié le barycentre en tant que centre des poids (ce qu'on appelle de nos jours le centre de gravité) est le mathématicien et physicien <u>Archimède</u>. Il est un des premiers à comprendre et expliciter le principe des leviers et le principe du barycentre.

Il écrit dans son traité Sur le centre de gravité de surface plane :

« Tout corps pesant a un centre de gravité bien défini en lequel tout le poids du corps peut être considéré comme concentré. »

1) Centre d'inertie d'un système :

On peut retrouver l'emplacement du centre d'inertie G d'un système former de plusieurs solides homogènes par la relation mathématiques :

$$\overrightarrow{MG} = \frac{\sum_{i=1}^{n} \left(\overrightarrow{MG}_{i} \times m_{i} \right)}{\sum_{i=1}^{n} m_{i}} = \frac{\left(\overrightarrow{MG}_{1} \times m_{1} + \overrightarrow{MG}_{2} \times m_{2} + \dots + \overrightarrow{MG}_{n} \times m_{n} \right)}{m_{1} + m_{2} + \dots + m_{n}}$$

Avec M: un point du plan

2) Applications:

Exercice N°1:

Le système, ci-dessous Fig 1, est formé d'une barre homogène dont l'épaisseur est constante de masse m_1 et d'une boule de masse m_2 . les points G_1 et G_2 sont respectivement les centres de gravités de la barre et de la boule. Où se trouve le centre G par rapport G_1 ou G_2 ?

Exercice N°2:

Soit le système suivant, de centre d'inertie G, est

formé de : (voir figure ci-dessous Fig 2)

- Le solide (S_1) homogène de masse m_1 son centre d'inertie G_1
- Le Solide (S₂) homogène de masse m₂ son centre d'inertie G₂
- Une barre homogène de masse m₃ ,de longueur L, son centre d'inertie G₃

- 1) Donner l'expression de la distance OG en fonction de m_1 ; m_2 ; m_3 et L
- 2) Calculer GG_1 lorsque : $m_2 = m_1$ et $m_3 = 2m_1$ et L = 8 cm

Exercice N°3:

Une équerre est constituée d'une plaque métallique homogène avec épaisseur constante. Donner les coordonnées du point G centre d'inertie de l'équerre dans le repère orthonormé $\left(0;\vec{i};\vec{j}\right)$

Henri Moissan 5 DELAHI Mohamed