

### **Description**

#### **Image**



#### Caption

Glass ceramic can tolerate extreme thermal shock. © Kuppersbusch USA Inc.

#### The material

Glass ceramics are glasses that, to a greater or lesser extent, have crystallized. They are shaped while in the glassy state, using ordinary molding methods and then cooled in such a way that the additives they contain nucleate small crystals. It is sold for cooking as pyroceram and is used for high performance heat resisting applications.

#### **Composition (summary)**

SiO2/Al2O3/B2O3

## **General properties**

| Density         | 2.4e3  | - | 2.9e3 | kg/m^3 |
|-----------------|--------|---|-------|--------|
| Price           | * 2.07 | - | 12.4  | USD/kg |
| Date first used | 1957   |   |       |        |

### **Mechanical properties**

| Young's modulus                 | 75     | - | 95    | GPa       |
|---------------------------------|--------|---|-------|-----------|
| Shear modulus                   | * 30.2 | - | 48.9  | GPa       |
| Bulk modulus                    | * 50   | - | 60    | GPa       |
| Poisson's ratio                 | 0.24   | - | 0.29  |           |
| Yield strength (elastic limit)  | 62.5   | - | 177   | MPa       |
| Tensile strength                | 62.5   | - | 177   | MPa       |
| Compressive strength            | 340    | - | 1.2e3 | MPa       |
| Elongation                      | 0      |   |       | % strain  |
| Hardness - Vickers              | 230    | - | 720   | HV        |
| Fatigue strength at 10^7 cycles | 60     | - | 169   | MPa       |
| Fracture toughness              | 1.5    | - | 1.7   | MPa.m^0.5 |
|                                 |        |   |       |           |



| Mechanical loss coefficient (tan delta)      | 5e-5 - 2e-4         |
|----------------------------------------------|---------------------|
| Thermal properties                           |                     |
| Glass temperature                            | 563 - 1.65e3 ℃      |
| Maximum service temperature                  | 800 - 1.17e3 ℃      |
| Minimum service temperature                  | -273 °C             |
| Thermal conductor or insulator?              | Poor insulator      |
| Thermal conductivity                         | 1.33 - 2.51 W/m.℃   |
| Specific heat capacity                       | 600 - 900 J/kg.℃    |
| Thermal expansion coefficien                 | 3 - 7.4 µstrain/℃   |
| Electrical properties                        |                     |
| Electrical conductor or insulator?           | Good insulator      |
| Electrical resistivity                       | 2e19 - 1e21 μohm.cm |
| Dielectric constant (relative permittivity)  | 5.3 - 6.2           |
| Dissipation factor (dielectric loss tangent) | 0.0035 - 0.0047     |
| Dielectric strength (dielectric breakdown)   | 38 - 40 1000000 V/m |
| Outland managering                           |                     |
| Optical properties                           | Translucent         |
| Transparency Refractive index                | 1.5 - 1.55          |
| Treffactive fildes                           | 1.00                |
| Critical Materials Risk                      |                     |
| High critical material risk?                 | No                  |
|                                              |                     |
| Processability                               |                     |
| Castability                                  | 1                   |
| Moldability                                  | 3 - 4               |
| Machinability                                | 1 - 3               |
| Weldability                                  | 1                   |
| Durability: water and aqueous solutions      |                     |
| Water (fresh)                                | Excellent           |
| Water (salt)                                 | Excellent           |
| Soils, acidic (peat)                         | Excellent           |
| Soils, alkaline (clay)                       | Excellent           |
|                                              | Excellent           |
| Wine                                         |                     |
| Wine                                         |                     |
| Durability: acids                            |                     |
| Durability: acids Acetic acid (10%)          | Excellent           |
| Durability: acids                            | Excellent Excellent |



| Hydrochloric acid (10%) | Excellent    |
|-------------------------|--------------|
| Hydrochloric acid (36%) | Excellent    |
| Hydrofluoric acid (40%) | Unacceptable |
| Nitric acid (10%)       | Excellent    |
| Nitric acid (70%)       | Excellent    |
| Phosphoric acid (10%)   | Excellent    |
| Phosphoric acid (85%)   | Excellent    |
| Sulfuric acid (10%)     | Excellent    |
| Sulfuric acid (70%)     | Excellent    |
|                         |              |

# **Durability: alkalis**

| Sodium hydroxide (10%) | Excellent |
|------------------------|-----------|
| Sodium hydroxide (60%) | Excellent |

# **Durability: fuels, oils and solvents**

| Amyl acetate             | Excellent |
|--------------------------|-----------|
| Benzene                  | Excellent |
| Carbon tetrachloride     | Excellent |
| Chloroform               | Excellent |
| Crude oil                | Excellent |
| Diesel oil               | Excellent |
| Lubricating oil          | Excellent |
| Paraffin oil (kerosene)  | Excellent |
| Petrol (gasoline)        | Excellent |
| Silicone fluids          | Excellent |
| Toluene                  | Excellent |
| Turpentine               | Excellent |
| Vegetable oils (general) | Excellent |
| White spirit             | Excellent |

# Durability: alcohols, aldehydes, ketones

| Acetaldehyde              | Excellent |
|---------------------------|-----------|
| Acetone                   | Excellent |
| Ethyl alcohol (ethanol)   | Excellent |
| Ethylene glycol           | Excellent |
| Formaldehyde (40%)        | Excellent |
| Glycerol                  | Excellent |
| Methyl alcohol (methanol) | Excellent |

# **Durability: halogens and gases**

| Chlorine gas (dry) | Excellent |
|--------------------|-----------|
|                    |           |



| Fluorine (gas)       | Limited use |
|----------------------|-------------|
| O2 (oxygen gas)      | Excellent   |
| Sulfur dioxide (gas) | Excellent   |

## **Durability: built environments**

| Industrial atmosphere   | Excellent |
|-------------------------|-----------|
| Rural atmosphere        | Excellent |
| Marine atmosphere       | Excellent |
| UV radiation (sunlight) | Excellent |

# **Durability: flammability**

| Flammability | Non-flammable |
|--------------|---------------|
|--------------|---------------|

## **Durability: thermal environments**

| Tolerance to cryogenic temperatures | Excellent    |
|-------------------------------------|--------------|
| Tolerance up to 150 C (302 F)       | Excellent    |
| Tolerance up to 250 C (482 F)       | Excellent    |
| Tolerance up to 450 C (842 F)       | Excellent    |
| Tolerance up to 850 C (1562 F)      | Excellent    |
| Tolerance above 850 C (1562 F)      | Unacceptable |

## Primary material production: energy, CO2 and water

| Embodied energy, primary production | * 37.5 | - | 41.5 | MJ/kg |
|-------------------------------------|--------|---|------|-------|
| CO2 footprint, primary production   | * 2.2  | - | 2.43 | kg/kg |
| Water usage                         | * 23.1 | - | 25.5 | l/kg  |

## **Material processing: energy**

| Glass molding energy                  | * 12.1 | - | 14.7 | MJ/kg |
|---------------------------------------|--------|---|------|-------|
| Grinding energy (per unit wt removed) | * 84.6 | - | 93.5 | MJ/kg |

# **Material processing: CO2 footprint**

| Glass molding CO2                  | * 0.969 | - | 1.17 | kg/kg |
|------------------------------------|---------|---|------|-------|
| Grinding CO2 (per unit wt removed) | * 6.34  | - | 7.01 | kg/kg |

# Material recycling: energy, CO2 and recycle fraction

| Recycle                            | ×         |
|------------------------------------|-----------|
| Recycle fraction in current supply | 0.1 %     |
| Downcycle                          | ✓         |
| Combust for energy recovery        | ×         |
| Landfill                           | ✓         |
| Biodegrade                         | ×         |
| Toxicity rating                    | Non-toxic |



A renewable resource?



#### **Environmental notes**

Silica, the prime ingredient of glass, is the commonest compound in the earths crust, though it is harder to find it in a form sufficiently pure to make glass. Nonetheless, the ingredients of glass are ubiquitous, and the material is readily recycled at the end of its life.

### **Supporting information**

#### Design guidelines

Glass ceramic is shaped in a two-stage process. The molding is done while the material is still a true glass, using standard glass-forming methods. The shaped product is then heat treated, causing "phase-separation": the formation of crystalline phases. These have a very low thermal expansion coefficient, with the result that the material can withstand very sudden changes of temperature without cracking. Some grades of glass ceramic are machinable.

#### Typical uses

Photosensitive applications, Cookware, Lasers, Stove window glass, Telescope mirror banks, Exterior and interior cladding, Laboratory bench tops, Missile Radomes

#### **Tradenames**

Pyroceram, Macor, Shapal M-soft.

#### Links

Reference

ProcessUniverse

Producers