

VORLESUNG **NETZWERKSICHERHEIT**

SOMMERSEMESTER 2021 MO. 14-16 UHR

KAPITEL 0 ORGANISATION

MATTHIAS WÜBBELING

- Studium der Informatik an der TU-Dortmund (Dipl.-Inf.)
- Promotion an der Universität Bonn (Dr. rer. nat.)
- Akademischer Rat / Studienberater Cyber-Security an der Uni Bonn
- Wissenschaftler bei Fraunhofer FKIE (Abteilung Cyber Security)
- Administrator bei der Gesellschaft für Informatik
 - Kostenfreie Mitgliedschaft für Studierende & Auszubildende (https://gi.de/mitgliedschaft/mitglied-werden/studierende-auszubildende)
- Freiberuflicher Autor und Berater im Bereich IT-Sicherheit
- Geschäftsführer der Identeco GmbH & Co. KG (https://identeco.de)

MATTHIAS WÜBBELING (FORTS.)

- Forschungsschwerpunkte:
 - Anomalien im Internet-Routing (insb. BGP)
 - Praktische Angriffe auf Netzwerk-/Internet-Infrastrukturen
 - Intrusion Detection / Prevention (Perimetersicherheit)
 - Kommunikationssicherheit
 - IT-Sicherheitsbewusstsein
 - Hardwarenahe / Systemnahe Programmierung (Arduino)

STRUKTUR DER VERANSTALTUNG

- Vorlesung:
 - https://net.cs.uni-bonn.de/wg/itsec/teaching/st-2021/netzwerksicherheit/
 - Virtuelle Vorlesung (BigBlueButton) Änderungen über die ML
 - 12 Termine im Sommersemester 2021
- Klausur:
 - Zulassung: Erfolgreiche Teilnahme an den Übungen
 - Termine:
 - 1. Klausur: Do. 5. August 2020 (10 13 Uhr)
 - 2. Klausur: Do. 30. September 2020 (10 13 Uhr)

Antragsteller/in: Matthias Wübbeling Datum: 24.01.2020
Modul: BA-INF 147 - Netzwerksicherheit
Semester: Sommersemester X Wintersemester \square 2020
Erforderliche Studienleistungen gemäß § 11 (6) PO:
x Bearbeitung regelmäßig erscheinender Übungsblätter
x Die Bearbeitung kann in Gruppen von bis zu 2 Studierenden erfolgen.
x Insgesamt müssen ≥ p % der Punkte erreicht werden. p= 50
\Box Für \geq x % der Aufgabenblätter müssen jeweils \geq y % der Punkte erreicht werden.
$\mathbf{x} = \mathbf{y} = \mathbf{y}$
x Die Aufgaben sind aufgeteilt in theoretische und praktische Aufgaben, und zu
erzielende Punkte gelten separat für beide Teile.
☐ Jeder Student/jede Studentin muss -mal die Lösung einer Aufgabe vorstellen.
☐ Erfolgreiche Bearbeitung eines Programmierprojekts
☐ Die Bearbeitung kann in Gruppen von bis zu Studierenden erfolgen.
☐ Das Projektergebnis muss präsentiert werden.
□ Tailmahma an Laistungstasts
☐ Teilnahme an Leistungstests ☐ Es finden Leistungstests statt.
☐ Insgesamt müssen ≥ p % der Punkte erreicht werden.
p=
\Box Für \geq x % der Tests müssen jeweils \geq y % der Punkte erreicht werden.
x= ; y=
☐ Jeder Test ersetzt jeweils ein Übungsblatt und trägt entsprechend zu deren Wertung bei.
☐ Ausarbeitung und Halten eines Referats
- Manda versing and Manda control of the Control and

STRUKTUR DER VERANSTALTUNG (FORTS.)

- Lernziele (Vorlesung & Übung):
 - Grundlagenvermittlung (Bachelor-Veranstaltung 4. Semester)
 - Verständnis von Computer-Netzwerk- und Sicherheitsarchitekturen
 - Lese-/Verstehen-Kompetenz technischer Dokumentationen
- Koexistenz mit anderen Veranstaltungen (ergänzend / überlappend)
 - Kommunikation in Verteilten Systemen NETZWERK
 - Grundlagen der IT-Sicherheit SICHERHEIT
 - Network Security (Master)
 - IT Security (Master)

WERKZEUGE (BEISPIELE)

Linux (KALI)

- Bringt nützliche Analyse-Tools mit
- Keine Installation notwendig (Live-System)

Ettercap

Erstellt (beliebige) Netzwerkpakete, unterstützt beim ARP-Spoofing, etc.

Wireshark

- Liest / Schneidet Netzwerkverkehr zur Analyse mit
- Erlaubt das Erstellen/Hinzufügen von Plugins zur Protokollunterstützung

PROGRAMMIERUNG

Low-Level Netzwerkprogrammierung findet meist in C statt!

Jeder kann C lernen, nur Mut!

Häufig werden Analysetools auch in Python geschrieben

Ich kann damit leben!

Wichtig: Ordentliche Entwicklungsumgebung

- Editor
- Debugger
- Git

FRAGEN?

