"וֹנְצוֹנִוֹלִוּ" אוֹתָה אִלישׁ כִּאָוֹוֹלוּ" (יוווֹהָאל בוֹ 14)

חלוקת חדרים ושכר-דירה Fair Rent Division

אראל סגל-הלוי

חלוקת שכר דירה

נתונים:

- R דירה עם n חדרים ודמי-שכירות נתונים \cdot
- קבוצה של n שותפים השוכרים את הדירה.
- האתגר: להחליט מי יגור איפה, וכמה ישלם, כך שלא תהיה קנאה. הפלט הדרוש הוא:
 - .X_i בלכל שחקן i מתאימים חדר אחד =: **השמה**
 - .p(j) לכל חדר j מתאימים מחיר =: **תמחור**
 - ללא קנאה: אף שותף לא מעדיף את החבילה (חדר+מחיר) של שותף אחר.

קיום חלוקת-חדרים ללא קנאה **הנחה**: קיים "מחיר גבוה מדי".

הגדרה: מחיר גבוה מדי הוא מחיר כלשהו T, כך שאם המחיר של חדר כלשהו גדול מ-T, והמחיר של חדר אחר כלשהו קטן מ-0, אז אף שחקן לא בוחר בחדר עם מחיר גדול מ-T.

הערה: אם השחקנים קוואזיליניאריים, אז קיים מחיר גבוה מדי – למשל הערך הגבוה ביותר ששחקן כלשהו מייחס לחדר כלשהו, ועוד 1.

משפט: אם קיים מחיר גבוה מדי, אז יש השמה+תימחור ללא קנאה. →

קיום חלוקת-חדרים ללא קנאה

משפט: אם קיים מחיר גבוה מדי, אז יש השמה+תימחור ללא קנאה.

הוכחה: נבנה את סימפלקס התימחורים. כל נקודה בסימפלקס, עם קואורדינטות (x₁,...,x_n), מתאימה לתימחור עם:

$$p_j = T - (Tn-R)*x_j$$

כאשר T הוא מחיר גבוה מדי.

הערה: בכל נקודה, סכום כל המחירים הוא בדיוק R.

סימפלקס התימחורים

:n=3, R=3000, T=4000 דוגמה עם

סימפלקס התימחורים

נחלק את סימפלקס התימחורים לסימפלקסונים; ניתן כל קודקוד לשחקן; נשאל אותו איזה חדר הוא מעדיף בתימחור המתאים לקודקוד.

(Sperner's Lemma) הלמה של ספרנר

- **הלמה של ספרנר**: בכל תיווי ספרנר יש מספר איזוגי של סימפלקסונים מגוונים.
- הוכחה: באינדוקציה על n. E_2 המספרים הסיס: E_1 נסתכל על הצלע בין E_1 E_2 המספרים מתחילים ב-1 ומסתיימים ב-2, ולכן מספר המעברים הוא איזוגי.

(Sperner's Lemma) הלמה של ספרנר

הדלת היא n - ואז זה סימפלקסון מגוון ;או - ב. שתי דלתות - אם התוית מול הדלת אינה n מספר הדלתות החיצוניות [איזוגי] + מספר הדלתות בחדרים מסוג ב [זוגי] + מספר הדלתות בחדרים מסוג א = מספר הדלתות בחדרים מסוג א = מספר הדלתות כפול 2 = מספר זוגי. לכן מספר החדרים מסוג א איזוגי. ***

סימפלקס התימחורים

המספור המתקבל מקיים את התנאי של ספרנר! לכן קיים סימפלקסון מגוון.

לכן קיים תימחור שבו (בקירוב) כל שותף רוצה חדר אחר = תימחור ללא קנאה.

חלוקת-חדרים ללא קנאה: חישוב

הנחה: כל הדיירים הם קוואזיליניאריים.

הקלט: מטריצה $n \ge n$ המתארת את ערכי החדרים לכל אחד מהדיירים:

1	2	3	חדר →
v11	v12	v13	דייר 1
v21	v22	v23	דייר 2
v31	v32	v33	דייר 3

.p תימחור X, תימחור p.

:i, j אין קנאה: לכל שני שחקנים

$$V_i(X_i) - p(X_i) \ge V_i(X_j) - p(X_j)$$

קנאה וסכום-ערכים

משפט 1: *בכל* השמה ללא קנאה, *סכום הערכים* של הדיירים בחדרים שהם גרים בהם הוא מקסימלי.

הוכחה (Sung and Vlach, 2004) תהי X,P השמת-חדרים ללא (Sung and Vlach, 2004) קנאה. תהי Y השמה אחרת כלשהי. לפי הגדרת קנאה לדיירים קוואזיליניאריים , לכל i:

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

i נסכום על כל הדיירים, i בין 1 ל-i

$$\sum (V_i(X_i) - P(X_i)) \ge \sum (V_i(Y_i) - P(Y_i))$$

$$\sum V_i(X_i) - \sum P(X_i) \ge \sum V_i(Y_i) - \sum P(Y_i)$$

בשני הצדדים, סכום המחירים שווה למחיר הדירה:

$$\sum V_i(X_i) \ge \sum V_i(Y_i)$$

קנאה וסכום-ערכים

משפט 2: כל תומחור ללא קנאה יישאר ללא-קנאה לכל השמה ממקסמת-סכום-ערכים.

הוכחה (Sung and Vlach, 2004): תהי X,P השמת-חדרים ללא קנאה. לפי המשפט הקודם, X ממקסמת סכום ערכים. תהי Y השמה אחרת הממקסמת סכום ערכים:

$$\sum V_i(X_i) = \sum V_i(Y_i)$$
$$\sum [V_i(X_i) - P(X_i)] = \sum [V_i(Y_i) - P(Y_i)]$$

:i נתון ש-X ללא קנאה. לכן לפי הגדרת קנאה, לכל

$$V_i(X_i) - P(X_i) \ge V_i(Y_i) - P(Y_i)$$

:i לכן חייב להתקיים שיוויון בכל איבר --- לכל

$$V_{i}(X_{i}) - P(X_{i}) = V_{i}(Y_{i}) - P(Y_{i})$$

חלוקת-חדרים ללא קנאה: חישוב

מסקנה: האלגוריתם הבא מוצא חלוקת חדרים ללא קנאה:

א. מצא חלוקה כלשהי X הממקסמת סכום -ערכים:

ללא X ב. מצא תמחור p שאיתו החלוקה - לא קנאה.

א. מיקסום סכום הערכים

מציאת השמה הממקסמת את סכום הערכים = מציאת שידוך עם משקל מקסימום בגרף דו-צדדי.

דוגמה:

סלון	חדר	מרתף	
35	40	25	דייר א
35	60	40	דייר ב
25	40	20	דייר ג

שידוך עם משקל מקסימום

:הקלט: גרף דו-צדדי עם משקלים על הקשתות

שידוך עם משקל מקסימום

הפלט: שידוך מושלם שמשקלו גדול ביותר:

אלגוריתם ההונגרי". אלגוריתם ההונגרי".

יש מימוש למשל בפייתון בספריה networkx.

ב. קביעת המחירים

מצאנו השמה ממקסמת-ערכים. צריך לקבוע מחירים כך שההשמה תהיה ללא קנאה, וסכום המחירים יהיה שווה לשכר-הדירה. **איך?**

> – בעיית תיכנות ליניארי linear programming.

For all i, j:

 $w[d[i], i] - p[i] \ge w[d[i], j] - p[j]$

.cvxpy אפשר לפתור למשל בפייתון בעזרת –

חלוקת חדרים – בעיית הטרמפיסט

מרתף	סלון	
0	150	דייר א
10	140	דייר ב

משפט: ייתכן שבכל חלוקה ללא קנאה, אחד הדיירים ישלם מחיר שלילי - צריך לשלם לו כדי שיסכים לגור בדירה.

הוכחה: נניח שיש שני דיירים ושני חדרים, הדירה עולה 100 והערכים הם כמו בטבלה למעלה.

כל חלוקה ללא-קנאה ממקסמת סכום ערכים, לכן יש לתת את הסלון לדייר א ואת המרתף לדייר ב.

כדי ש-ב לא יקנא, המחיר של הסלון חייב להיות גבוה יותר ב-130 לפחות. הסכום הוא 100, ולכן:

(price_martef + 130) + price_martef = 100 price_martef = -15

*** המחיר של המרתף חייב להיות שלילי!

חלוקת חדרים –בעיית הטרמפיסט

אותו משפט

נכון גם כשסכום הערכים של כל דייר שווה למחיר הכולל:

$$p_c \ge 35$$
 [d envies]

$$p_h \ge 33$$
 [d envies]

$$p_a \ge 33$$
 [c envies]

$$o_d \le -1$$
 [sum=100]

חדר א	חדר ב	חדר ג	חדר ד		
					L
36	34	30	0	דייר א	
31	36	33	0	דייר ב	n
					$\boldsymbol{\rho}$
34	30	36	0	דייר ג	p
					p
32	33	35	0	דייך ד	n
					ρ_{o}

חלוקת חדרים – משפט סוּ

הנחת הדיירים העניים: כל דייר מעדיף חדר בחינם על-פני חדר בתשלום.

משפט סו. אם מתקיימת הנחת הדיירים העניים , אז קיימת חלוקת חדרים ללא קנאה ,שבה כל דייר משלם מחיר חיובי (אין "טרמפיסטים").

הוכחה. הוכחנו שקיימת נקודה בסימפלקס, המתאימה לתימחור ללא קנאה. אילו היה שם מחיר שלילי, אז כל דייר המשלם מחיר חיובי היה

חלוקת שכר דירה – טרילמה

דיירים שמקבלים כסף	קנאה	עובד רק עם "דיירים עניים"	
לא	לא	J	אלגוריתם סוּ והמשולשים
J	לא	לא	אלגוריתם סונג-ולאך
לא	J	לא	אלגוריתם סונג-ולאך+ מחיר מינ. 0