MATHEMATICAL REASONING

RETROALIMENTACIÓN TOMO V Y IV

Un reloj da 5 campanadas en 8 segundos. ¿En cuántos segundos dará 8 campanadas?

Resolución

#Campanadas	#intervalos	Tiempo(s)
5	4 x 2	8
8	7 × 2	14

Un reloj de campana indicó las 4 p.m. con 4 campanadas en tin tiempo total de 15 s. Si las campanadas de este reloj se oyeron durante 20 s . ¿ Qué hora de la noche marcaba ?

Resolución

#Campanadas	#intervalos	Tiempo(s)	
4	3 × 5	15	X
X	X-1 ×	5 20	Rnt

Se tiene una regla de 4 m y se desea obtener pedazos de 5 cm cada uno. ¿Cuántos cortes debemos realizar?

Resolución

N° CORTES =
$$\frac{L.T.}{L.U.}$$
 - 1

$$N^{\circ} CORTES = \frac{400 \text{ cm}}{5 \text{ cm}} - 1$$

$$N^{\circ}$$
 CORTES = $80 - 1$

$$N^{\circ}$$
 CORTES = 79

¿Cuántos postes como mínimo se podrán colocar alrededor de una terreno rectangular de 42 m de ancho y 66m de largo, si se sabe que dichos postes deberán estar separados una misma distancia de 6m?

Resolución

Se considera una figura cerrada

N° postes =
$$\frac{2(66) + 2(42)}{6 \text{ m}}$$

Rpta 36 postes

El médico le ha recomendado a Juan tomar 2 pastillas cada 12 horas, para contrarrestar una posible infección, durante una semana. ¿Cuántas pastillas tomará en total? ,sabiendo que cumplió todo el tratamiento.

Resolución

1 semana <> 168h

$$N^{\circ}$$
 pastillas = $(15)(2)$

Rpta 30

Un alumno sacooliverino debe tomar una cucharada de 3ml de un jarabe pediátrico para curar su malestar, cada 8 horas durante 5 días. Si sus padres compraran botellas de 40ml ¿Cuántas botellas necesita como mínimo para su tratamiento?

Resolución

5 días <> 120 horas

Rpta

2 botellas

¿Cuáles de las siguientes figuras se puede dibujar sin pasar el lápiz dos veces por la misma línea ni levantarlo de papel?

Resolución

Todos los puntos son pares

SI

Baltazar tenía hecho una pieza de alambre tal como muestra la figura; luego, observó que una hormiga caminó por toda la estructura, sin dejar ningún lado sin recorrer. Baltazar sacó su cuenta: En todo este tiempo, la hormiga ha recorrido X cm ¿ Cuál era el valor de X?

Resolución

SÍ se puede realizar de un solo trazo

Recorrido mínimo:

$$X = 6(8cm) + 3(10cm)$$

$$X = 48cm + 30cm$$

$$X = 78cm$$

Vértice par

Vértice impar

8 cm

¿Cuántos cuadriláteros compuestos se pueden contar en la siguiente figura?

Resolución

2letras: bc, de, af (Convexos)

4letras: abcd, cdef, efab (cóncavos)

Rpta 6

Rosa está postulando a la Universidad Nacional Federico Villarreal y tiene dificultad con este problema: Halle el número total de cuadriláteros en:

Resolución

Total

s de 1: e,f	2
s de 2: ab,ac,bc be,cf,de	e,fg 7
s de 3:bde,cfg	2
s de 4: efhi, abeh,acfi	
s de 5: abcef,abceh,abcfi	3
s de 6: abcdef, abcefg,bo	cefhi —— 3
s de 7: abcdefg,	1
	TOTAL 2

Roberto es el profesor de Razonamiento Matemático y propone el siguiente problema a sus alumnos: ¿Cuántos triángulos hay en total?

Total triángulos: 66+45+28+15+6+1= 161

¿Cuántos paralelogramos compuestos hay en la figura?

Resolución

Recordemos:

$$N^{\circ}$$
 de \square $S = \frac{n(n+1)}{2} \times \frac{m(m+1)}{2}$

$$= \frac{6(6+1)}{2} \times \frac{10(11+1)}{2}$$
$$= 21 \times 60 = 1260$$

Paralelogramos Simples:

$$6x10 = 60$$

Rpta 1200