Мобильная робототехника

Планирование движения

Планирование движения

- Необходимо спланировать траекторию от начальной точки до конечной с учетом обхода препятствий
- Задача получить оптимальную траекторию (короткую, безопасную и т.д.)

Планирование движения

Планирование движения

Два уровня планирования (управления)

Сеточная карта (Grid map)

Граф видимости

Быстро растущее случайное дерево RRT

Случайная дорожная карта

Диаграмма Вороного

Нахождение кратчайшего пути на графе

Поиск в ширину

Алгоритм «А*»

$$f(v_i) = C(S, v_i)$$

$$f(v_i) = H(v_i, t_i)$$

$$f(v_i) = C(S, v_i) + H(v_i, t_i)$$

Сравнительная таблица алгоритмов поиска оптимального пути

Алгоритм	Быстродействие	Объем требуемой памяти	Оптимальность полученного пути
Дейкстры	медленный	большой	всегда оптимальный
Поиск в ширину	быстрый	малый	может быть не оптимальным
«A*»	быстрый	малый	зависит от выбора эвристической функции

А* виды эвристик

$$H(v_{ij}^s, v_{kl}^t) = c \cdot (|x_k - x_i| + |y_l - y_j|),$$
 где c минимальный вес ребра графа.

$$\begin{split} &H_{\text{duae}}(v_{ij}^{s}, v_{kl}^{t}) = \min(|x_{k} - x_{i}|, |y_{l} - y_{j}|), \\ &H_{\text{npam}}(v_{ij}^{s}, v_{kl}^{t}) = |x_{k} - x_{i}| + |y_{l} - y_{j}|, \\ &H(v_{ij}^{s}, v_{kl}^{t}) = c_{\text{duae}} \cdot H_{\text{duae}} + c_{\text{npam}} \cdot (H_{\text{npam}} - 2 \cdot H_{\text{duae}}), \end{split}$$

где $c_{\it npsm}$ минимальный вес ребра, $c_{\it duae} = \sqrt{c_{\it npsm}}$.

$$H(v_{ij}^{s},v_{kl}^{t})=c\cdot\sqrt{\left(x_{k}-x_{i}\right)^{2}+\left(y_{l}-y_{j}\right)^{2}}$$
, где c минимальный вес ребра графа.

А* взвешенный граф

- Слишком близко к препятствиям
- Не учитывает погрешности движения

А* недостатки

- Близко к препятствиям
- Не учитывает кинематику робота
- Не оптимальная траектория с точки зрения динамики

- Глобальное + локальное планирование
- Планирование в пятимерном векторе состояния [x, y, θ, V, ω]
- Учет кинематических ограничений
- Непосредственное генерирование управляющих команд
- Выбор между временем перемещения и расстоянием до препятствий

- Вектор состояния [x, y, θ, V, ω] текущая позиция и скорость робота
- Переход между состояниями

• Текущая позиция результат модели движения

- Проблема: слишком большое пространство состояний для расчета в реальном времени
- Решение: локальное планирование в редуцированном пространстве состояний

- 1. Обновление карты после проведения очередного измерения
- 2. Нахождение глобального маршрута (например с A*)
- 3. Определение редуцированного графа пятимерного пространства состояний
- 4. Нахождение локального маршрута

5D – планирование Обновление карты

- Среда представляется как связный граф
- Вычисляются веса графа
- Обнаруженные препятствия добавляются
- Освобожденные места очищаются

5D – планирование Глобальный маршрут

 Использование А* для нахождения глобального маршрута

5D – планирование Редукция вектора состояний

- Выделение вектора состояний близкого к глобальному маршруту
- Выбор промежуточных целевых точек

5D – планирование Локальный маршрут

 Использование А* для нахождения локального маршрута

Метод динамического окна

- Обеспечивает движение без столкновений
- Робот движется по дугам окружностей
- Команды управления (V, ω)
- Какие управляющие команды удовлетворяют движению робота к целевой позиции без столкновения с препятствиями?

Метод динамического окна Допустимые скорости

 Скорость допустима, если робот способен остановиться перед препятствием

Метод динамического окна Достижимые скорости

• Скорость достижима, если робот может набрать ее за определенное время с известным ускорением

$$V_d = \{(v, \omega) \mid v \in [v - a_{trans}t, v + a_{trans}t]$$

$$\omega \in [\omega - a_{rot}t, \omega + a_{rot}t]\}$$

Метод динамического окна Достижимые скорости

$$V_r = V_s \cap V_a \cap V_d$$

Метод динамического окна

 Выбираются те скорости, которые обеспечивают максимальное значение выбранной эвристической функции.

$$G(v,\omega) = \sigma(\alpha \cdot \text{heading}(v,\omega) + \beta \cdot \text{dist}(v,\omega) + \gamma \cdot \text{velocity}(v,\omega))$$

heading – отражает отклонение от курса на целевую позицию.

dist – отражает дистанцию к ближайшему препятствию.

velocity – скорость движения, обеспечивает максимально быстрое перемещение

Метод динамического окна и 5d - планирование

Метод динамического окна

5d - планирование

Метод потенциалов

 Робот и препятствия положительно заряжены а целевая позиция отрицательно

Метод потенциалов

 Геометрическое представление потенциального поля

Метод потенциалов

 Проблема метода – достижение локальных минимумов целевой функции

Метод потенциалов Навигационная функция

Модель мобильного робота

$$\dot{q}_i = u_i(q_i)$$

$$u_i(q_i) = -k\nabla V_i(q_i)$$

Навигационная функция:

$$V_{i}(q_{i}) = \frac{d^{2}(q_{i}, q_{i}^{\kappa O H})}{\left(d^{k}(q_{i}, q_{i}^{\kappa O H}) + \prod_{i=0}^{M} d(q_{i}, O_{j})\right)^{\frac{1}{k}}}$$

где $d(q_i,q_i^{\kappa o \mu})$ - расстояние от q_i до $q_i^{\kappa o \mu}$, $d(q_i,O_j)$ - расстояние от q_i до препятствия O_j

Резюме

- Двухуровневая система планирования
- Необходим учет кинематических ограничений для планирования движений
- Метод динамического окна быстрый, но иногда дает не допустимые траектории
- 5d метод имеет большую вычислительную сложной
- Метод потенциалов требует тщательного выбора навигационной функции.

Следующая лекция

• Групповое взаимодействие