Linear Regression

Least squares method

Equation

Step-by-step

Step 1: For each (x,y) point calculate x^2 and xy

Step 2: Sum all x, y, x², xy

Step 3: Calculate slope **b**:

$$\frac{N \Sigma(xy) - \Sigma x \Sigma y}{N \Sigma(x^2) - (\Sigma x)^2}$$

Step 4: Calculate intercept **a**:

Step 5: Assemble the equation of a line: y = bx + a

Data

"y" Ice Creams Sold	"x" Hours of Sunshine
4	2
5	3
7	5
10	7
15	9

Step 1: For each (x,y) calculate x^2 and xy:

х	у	x ²	ху
2	4	4	8
3	5	9	15
5	7	25	35
7	10	49	70
9	15	81	135

Step 2: Sum x, y, x^2 and xy (gives us Σx , Σy , Σx^2 and Σxy):

x	у	x ²	ху
2	4	4	8
3	5	9	15
5	7	25	35
7	10	49	70
9	15	81	135
Σx: 26	Σy: 41	Σx ² : 168	Σxy: 263

Also N (number of data values) = 5

Step 3: Calculate Slope b

Step 4: Calculate Intercept a

$$\mathbf{a} = \frac{\Sigma y - \mathbf{b} \Sigma x}{N}$$

$$= \frac{41 - 1.5183 \times 26}{5}$$

$$= 0.3049...$$

Step 5: Assemble the equation of a line:

$$y = bx + a$$

$$y = 1.518x + 0.305$$

Evaluation - Square of the errors

error = y' - y

error	y = 1.518x + 0.305	у	х
-0.66	3.34	4	2
-0.14	4.86	5	3
0.89	7.89	7	5
0.93	10.93	10	7
-1.03	13.97	15	9

Mean square error - MSE

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

MSE

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

error	y = 1.518x + 0.305	у	x
-0.66	3.34	4	2
-0.14	4.86	5	3
0.89	7.89	7	5
0.93	10.93	10	7
-1.03	13.97	15	9

0.4356

0.0196

0.7921

0.8649

1.0609

Sum = 3.1731

Reference

- https://www.statisticshowto.com/probability-and-statistics/regression-analy-ais/find-a-linear-regression-equation/
- https://www.slideserve.com/bern/chapter-12-simple-linear-regression
- https://www.mathsisfun.com/data/least-squares-regression.html