Задача 1. Грешката в проценти на уред за измерване на скорост има разпределение $N(0,5^2)$.

- 1. (0.25 т.) Колко коли средно минават до първата, за която грешката е поне 10%? При изминали 1000 коли, средно за колко от тях грешката ще бъде над 10%? Каква е вероятността след 100 изминати коли, средната грешка да бъде повече от 1%?
- 2. (0.25 т.) Ако моделираме скоростта на преминаващи покрай уреда коли в км/ч чрез независими $N(40,5^2)$, каква е вероятността уредът на отчете скорост над позволената от 50 км/ч? Колко трябва да е стадартното отклонение на уреда, за да бъде средната грешка след 100 коли, по-голяма от 1 км/ч с вероятност 0.1%?
- 3. (0.5 т.) Отговорете на въпросите от 1., ако използвате абсолютна грешка, т.е. модул от грешката в 1.

Задача 2. Туристическа компания рекламира хотели на Черноморието по телефона, като се обажда многократно на всеки от $N \sim Poi(\lambda)$ човека, с чиито контакти разполагат. Човек i се съгласява на офертата им след като получи $K_i \perp \!\!\! \perp N$ обаждания, където K_i са iid, $\mathbb{P}(K_i = n) =: f(n)$ и стойността ∞ е евентуално позволена, т.е. $f(\infty) \geq 0$. Нека X_n е броят на продадените ваканции при n-ия кръг на обаждания, т.е. $X_n := \sum_{i=1}^N \mathbb{1}_{\{K_i = n\}}$.

- 1. (0.5 т.) Докажете, че X_n са независими случайни променливи, като $X_n \sim Poi(\lambda f(n))$.
- 2. (0.5 т.) Компанията се отказва от този метод след T-тия кръг от разговори, където $T:=\inf\{n:X_n=0\}$, т.е. след първия кръг, когато няма новопривлечен клиент. Нека $S=X_1+X_2+\cdots+X_T$ е броят на привлечените клиенти до момента T. Докажете, че $\mathbb{E}(S)=\lambda\mathbb{E}(F(T))$, където F(k):=f(1)+f(2)++f(k).

Задача 3. Нека $U \sim U(0,1)$ и $V \sim U(-\pi/2,\pi/2)$.

- 1. (0.5 т.) Метод за генериране на псевдослучайно число между 0 и 1 чрез U е да се избере (обикновено голямо) естествено число M и да се пресметне дробната част на $MU, X := \{MU\}$. Намерете $\mathbb{E}X, DX$ и Cor(U, X). Какво е мнението ви за този метод?
- 2. (0.5 т.) Нека $U_1, \dots, U_{100} \sim U$ са iid. Какво е очакването на всяко от тях? А на най-голямото и най-малкото измежду им?
- 3. (0.5 т.) Намерете плътността, очакването и дисперсията на сл. вел $Y := \operatorname{tg} V$.
- 4. (0.5 т.) Нека $Z \sim Cauchy(1)$, т.е. $f_Z(x) = 1/(\pi(1+x^2))$ за $x \in \mathbb{R}$. Докажете, че сл.вел. 1/Z, $2Z/(1-Z^2)$ и $(3Z-Z^3)/(1-3Z^2)$ имат еднакви разпределения.

(Вонус). 1. (0.25 т.) Дефинираме условна дисперсия чрез $D(Y|X) := \mathbb{E}((Y - \mathbb{E}(Y|X))^2|X)$. Припомняме, че за условното очакване знаем че $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y))$. Кой от изразите $\mathbb{E}(D(Y|X))$, D(D(Y|X)), $\mathbb{E}(D(Y|X)) + D(D(Y|X))$ и $\mathbb{E}(D(Y|X)) + D(\mathbb{E}(Y|X))$ представя DY чрез D(Y|X)?

Конструираме функцията на Кантор $c(x):[0,1]\to [0,1]$ по следния начин: за $x\in [1/3,2/3],\ f(x):=1/2.$ След това върху [0,1/3) и (2/3,1] констуираме по същия начин рекурсивно: за $x\in [0,1/3),\ f(x):=f(3x)/2$ и за $x\in (2/3,1],\ f(x):=(1+f(3x-2))/2.$

Фигура 1: Рекурсивно конструиране на функцията на Кантор. Източник: Wikipedia.

- 2. (0.25 m.) Нека X е сл. вел. с $F_X(x) = c(x)$ за $x \in (0,1)$. Намерете $\mathbb{E} X$ и DX.
- 3. (0.25 m.) Докажете, че F_X е диференцируема почти навсякъде. Каква е плътността на f_X ?