Linear Algebra & Convex Optimization – Lecture 2

From Last Lecture

- Vector Scaling, Addition & Subtraction
- Data Representation as Vectors
- Vector Inner Product

Outline

- Vector Norms
- Vector Distances Use-case Clustering

Textbook: Introduction to Applied Linear Algebra, S. Boyd: Chapters 4,5.

Vector Norms

Euclidean norm (L2) of n-dimensional vector x:

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
 $||x||_2 = ||x|| = \sqrt{x^T x}$

L1 - Norm:

$$||x||_1 = \sum_i |x_i| = |x_1| + |x_2| + \ldots + |x_i|$$

Norm of Sum:

$$||x + y||^2 = (x + y)^T (x + y) = x^T x + x^T y + y^T x + y^T y$$

= $||x||^2 + 2x^T y + ||y||^2$

L1-Norm vs L2- Norm

Poll: We have two vectors a_1, b_1 which has noisy components . In this case which norm is more reliable to compute the distance between the vectors, L1 or L2?

L1 for larger noise, L2 for smaller noise (< 1)

Distances: Examples

Nearest neighbor:

 z_1, \ldots, z_m is a collection of m n-vectors.

x is another n-vector

 z_j is the nearest neighbor of x if

$$||x - z_j|| \le ||x - z_i||, \quad i = 1, \dots, m$$

Document Distances:

Document represented as vectors: histogram of words

Difference of vector norms are distances between documents

Pairwise Distances between various Wikipedia articles

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	0.095	0.130	0.153	0.170
Memorial Day Academy A.	$0.095 \\ 0.130$	$0 \\ 0.122$	0.122	$0.147 \\ 0.108$	$0.164 \\ 0.164$
Golden Globe A.		0.147	0.108	0	0.181
Super Bowl	0.170	0.164	0.164	0.181	0

Standardization (Vector Dimension)

$$||x-y||^2 = (x_1-y_1)^2 + \cdots + (x_n-y_n)^2$$
 Comparison of two time –series data

$$\mathbf{avg}(x) = \mu = \mathbf{1}^T x / n$$

$$\operatorname{std}(x) = \sigma = \|x - \mu \mathbf{1}\| / \sqrt{n}$$

Standard Deviation: How entries of vector deviate from their mean value.

$$z=rac{1}{{f std}(x)}(x-{f avg}(x){f 1})$$
 Standardization : Mean = 0, Deviation = 1

Vector Standardization:

Vector Standardization: Useful for comparing 1D series data

Standardization (Feature Dimension)

$$Z(:,i) = \frac{1}{\operatorname{std}(X(:,i))} [X(:,i) - \operatorname{avg}(X(:,i))]$$

Standardization is done along feature dimension Useful in ML applications

Data Standardization:

Person Name	Salary	Year of Experience	Expected Position Level
Aman	100000	10	2
Abhinav	78000	7	4
Ashutosh	32000	5	8
Dishi	55000	6	7
Abhishek	1200000	8	3

Standardization

Standardization

Clustering

Before Clustering

Objective: Given a set of N n –vectors, $x_1, x_2, ..., x_N$ find k groups/clusters where k << N

After Clustering

Example Applications:

- 1. Document Topic Discovery $(x_i : word histograms)$
- 2. Patient Clustering $(x_i : patient details)$
- 3. Customer Segmentation $(x_i : purchase quantities for various items)$

Clustering Formulation

Assume K "Group Representative/Cluster Centroids" n –vectors : $z_1, z_2, z_3, ... z_k$

 $[z_1, z_2, z_3, ... z_k \text{ need not be from } x_1, x_2, ..., x_N]$

 $c_1, c_2, \dots c_N$, $c_i \in \{1, 2, \dots k\}$ are group assignment variables

 x_i is in group $j = c_i \implies z_{c_i}$ is the representative vector associated with x_i .

Clustering Objective

Objective:

To seek a choice of group assignments , c_1 , c_2 , ... c_N , $c_i \in \{\ 1,2,\cdots k\}$, that minimizes the objective

$$J^{\text{clust}} = (\|x_1 - z_{c_1}\|^2 + \dots + \|x_N - z_{c_N}\|^2) / N$$

Solution:

- 1. With representatives $(z_1, z_2, z_3, ... z_k)$ fixed, find the best cluster assignments $(c_1, c_2, ... c_N)$ that minimizes J^{clust}
- 2. With cluster assignments $(c_1, c_2, \dots c_N)$ fixed, find the best representatives $(z_1, z_2, z_3, \dots z_k)$ that minimizes J^{clust}

Best Clustering

Representatives $(z_1, z_2, z_3, ... z_k)$ fixed:

$$J^{\text{clust}} = (\|x_1 - z_{c_1}\|^2 + \dots + \|x_N - z_{c_N}\|^2) / N$$

Minimize each $||x_i - z_{c_i}||^2$ term independently to minimize J^{clust}

Nearest representative to x_i will be chosen : If z_j is the nearest representative, $c_i = j$

$$||x_i - z_{c_i}|| = \min_{j=1,\dots,k} ||x_i - z_j||,$$
 $J^{\text{clust}} = \left(\min_{j=1,\dots,k} ||x_1 - z_j||^2 + \dots + \min_{j=1,\dots,k} ||x_N - z_j||^2\right)/N.$

Cluster Assignments $(c_1, c_2, ... c_N)$ fixed: :

Rewrite
$$J^{
m clust} = J_1 + \dots + J_k$$
 where , $J_j = (1/N) \sum_{i \in G_j} \|x_i - z_j\|^2$

$$z_j = (1/|G_j|) \sum_{i \in G_j} x_i$$

Poll:

Will the cluster representatives(z) change a different distance metric is used

K- Means Algorithm

k-means algorithm

given a list of N vectors x_1, \ldots, x_N , and an initial list of k group representative vectors z_1, \ldots, z_k

repeat until convergence

- 1. Partition the vectors into k groups. For each vector i = 1, ..., N, assign x_i to the group associated with the nearest representative.
- 2. Update representatives. For each group j = 1, ..., k, set z_j to be the mean of the vectors in group j.

K- Means illustration

K – Means Illustration

K = 4

K-Means Challenges:

Challenges:

- 1. Clustering depends on the value of 'K'. Difficult to predict the ideal 'K' for many cases
- 2. Clustering varies with different initial points
- 3. With varying cluster sizes, optimal clustering is difficult to achieve

Initialization problem in K-Means with large number of clusters. (refer k-means++)