Homework 5 solutions

(a)
$$K \sim F_{m,h}$$
 $\Rightarrow \chi \sim F_{n,h}$
 $P(F_{n,m} < F_{n,m}) = I - \alpha$

$$P(F_{m,n}) = I - \alpha$$

$$P(F_{m,n}) = I - \alpha$$

$$F_{n,m} =$$

Let $X \sim F_1,n$, then $P(X < F_1-alpha;1,n)=1-a$

But $X=t_n^2$, so $P(t_n^2 < F_1-alpha;1,n)=1-alpha$

Or $P[-sqrt(F_1-alpha;1,n) < t_n < +sqrt(F_1-alpha;1,n)]=1-alpha$

Therefore, sqrt(F_1-alpha;1,n)=t_1-alpha/2;n

Finally, t^2_1 -alpha/2; $n = F_1$ -alpha;1,n

(b).
$$\sqrt{y} \sim N \left(\frac{1}{N_1 - N_2}, \frac{\sigma_1^2}{13} + \frac{\sigma_2^2}{16} \right)$$

OR $\sqrt{y} \sim N \left(\frac{1}{N_1 - N_2}, \frac{\sigma_1 \sqrt{\frac{1}{3}} + \frac{\sigma_2^2}{16}}{16} \right)$

And (13-1) $\sqrt{x} \sim \sqrt{x} \sim$

$$(C) = \sum_{x} x_{i} \sim \Gamma\left(n \alpha_{1} \beta\right) \rightarrow M_{\xi x_{i}}(t) = (1-\beta t)^{n}$$

$$\bigcap_{x} (t) = M_{\xi x_{i}}(t) = M_{\xi x_{i}}(\frac{t}{n})$$

$$= \left(1 - \frac{\beta t}{n}\right)$$

Assignment Project Exam Help

Mo (https://powcoder.com

or Add We Chat powcoder

OR
$$\frac{\chi_{n/n}}{\chi_{n/n}}$$
 $EX = \left(\frac{\chi_{n/n}}{\chi_{n/n}}\right) = \left(\frac{\chi_{n/n}$

(e)
$$X \sim th$$

$$X = \frac{2}{\sqrt{y_h}} \quad y \sim x_h \quad \text{instrement}$$

$$E X = m E 2 E y^h = 0 \quad \text{second} \quad E 2^{-0}$$

$$E X = m E 2 E y^h = 0 \quad \text{second} \quad E 2^{-0}$$

$$Assignment Project Exam Help$$

$$https://prowooder.com$$

$$= n (1+0) \quad \frac{(2-1)}{(2-1)} \cdot \frac{1}{2}$$

$$= \frac{h}{2} \cdot \frac{1}{2}$$

$$y' \leq y = (y_1 y_1) \begin{pmatrix} \sigma_1 & \sigma_{11} \\ \sigma_{21} & \sigma_{2} \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}$$

$$= (y_{1} \ y_{1}) \begin{pmatrix} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}\sigma_{2}^{2}-\sigma_{12}^{2}} & -\frac{\sigma_{12}}{\sigma_{1}^{2}\sigma_{2}^{2}-\sigma_{12}^{2}} \\ -\frac{\sigma_{12}}{\sigma_{1}^{2}\sigma_{2}^{2}-\sigma_{12}^{2}} & \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}\sigma_{2}^{2}-\sigma_{12}^{2}} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix}$$

- (Y,
$$\sigma_2$$
 - Y₂ σ_{12} - Y₁ σ_{12} + Y₂ σ_{1}^2)

Assignment Project Exam Help

= 4, 02-4, 4, bttps://poweoder.com

$$= \frac{1}{1-p^{2}} \left(\frac{1-p^{2}}{\sigma_{1}^{2}} - \frac{1}{2\frac{y_{1}y_{2}p}{\sigma_{1}^{2}}} - \frac{y_{2}^{2}}{\sigma_{1}^{2}} \right) = \frac{1}{1-p^{2}} \left(\frac{py_{1}}{\sigma_{1}} - \frac{y_{2}^{2}}{\sigma_{2}^{2}} \right) = \frac{1}{1-p^{2}} \left(\frac{py_{1}}{\sigma_{1}} - \frac{y_{2}^{2}}{\sigma_{1}^{2}} \right) = \frac{1}{1-p^{2}} \left(\frac{py_{1}}{\sigma_{1}} - \frac{y_{2}^{2}}{\sigma_{$$

(9). from (LAS) NOTES

(Y-h)
$$\leq$$
 (Y-h) ~ χ_h

(X1, Y1), ..., (Xn, Yn) \downarrow A RANDOM
SAMPLE FRONT $\downarrow_{\chi_{1}}$

THEREORES

 $t_{\chi_{1}}$ t_{1} , t_{2} t_{3}

Assignment Project Exam Help

 t_{1} t_{2} t_{3} t_{4} t_{3} t_{4} t_{5} t_{7} t_{1}
 t_{1} t_{2} t_{3} t_{4} t_{5} t_{7} t_{7}
 t_{1} t_{1} t_{2} t_{3} t_{4} t_{7} t_{7}
 t_{1} t_{1} t_{2} t_{3} t_{7} t_{7}
 t_{1} t_{1} t_{1} t_{2} t_{3} t_{7}
 t_{1} t_{1} t_{2} t_{3} t_{7}
 t_{1} t_{1} t_{2} t_{3} t_{4}
 t_{1} t_{1} t_{2} t_{3}
 t_{1} t_{1} t_{2} t_{3}
 t_{1} t_{2} t_{3}
 t_{1} t_{1} t_{2} t_{3}
 t_{2} t_{3} t_{4}
 t_{1} t_{2} t_{3}
 t_{2} t_{3} t_{4}
 t_{2} t_{3}
 t_{3} t_{4}
 t_{4} t_{4}
 t_{4} t_{4}
 t_{4} t_{4}
 t_{4}
 t_{4} t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}
 t_{4}

Non INTERNATE THE BOINT

POF OF X, w w.e.T. w

To FM
$$f(X)$$
:

Assignment Project Exam Welp

https://powcoder.com

Add Welchat powcoder

EXAMPLE

TO MELL

T

$$VAR(A) = EA - (EA)$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Note: Mu(t) = (1-2t)