In [705]:	Feature Selection Techniques with Python import pandas as pd import numpy as np from sklearn.datasets import load_boston from matplotlib import pyplot as plt
	from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, log_loss import seaborn as sb from pca import pca from sklearn.base import clone import shap from sklearn.metrics import mean_squared_error
In [706]:	Note: To avoid redundancy, I move some of codes to featimp.py Understanding feature importance As we always want our model be simple and explainable, we need to select the appropriate features for our model. Sometimes, we have many non-informative features. For Example, Name or ID variables. If we implement these variables into model, the quality of the model will
	be poor. Also, a large number of features make a model bulky, time-taking, and harder to implement in production. Feature importance helps us to measure the importance of each feature in the model and assigns a score to each feature (the higher, the better). Therefore, we can "rank" those features from most important to least important in the prediction process. After we implement different feature importance strategies, we can select top K important features to do the prediction which can better explain the repsonse feature. In this notebook, I will explore 5 feature selection methods that commonly used in machine learning with Python examples. • Spearman's Rank Correlation
	 Principle component analysis (PCA) SHAP Importance Drop Column Importance Permutation Importance Importing the data Boston Housing Dataset
	Variable Info CRIM - per capita crime rate by town ZN - proportion of residential land zoned for lots over 25,000 sq.ft. INDUS - proportion of non-retail business acres per town. CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)
	NOX - nitric oxides concentration (parts per 10 million) RM - average number of rooms per dwelling AGE - proportion of owner-occupied units built prior to 1940 DIS - weighted distances to five Boston employment centres RAD - index of accessibility to radial highways TAX - full-value property-tax rate per \$10,000
	PTRATIO - pupil-teacher ratio by town B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town LSTAT - percentage lower status of the population MEDV - Median value of owner-occupied homes in \$1000's The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts.
In [707]: Out[707]:	<pre>df = pd.DataFrame(data.data, columns=data.feature_names) df["PRICE"] = data.target X = df.drop(columns=["PRICE"]) # Remove Target Variable to Get Feature Matrix y = df["PRICE"] # Target Variable df.head()</pre> CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE
In [708]:	<pre>0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2</pre> <pre>train_df, test_df = train_test_split(df, test_size=0.2, random_state=22) train_df.shape, val_df.shape</pre> <pre>v train_df.shape, val_df.shape</pre>
	x_train = train_df.drop('PRICE', axis=1) y_train = train_df['PRICE'] x_test = test_df.drop('PRICE', axis=1) y_test = test_df['PRICE'] Spearman's Rank Correlation The Spearman correlation coefficient is a measure of rank correlation which measures the strength and direction of the association between 2 ranked variables. The Spearman Coefficient, ρ, can take a value between +1 to -1 where ρ value closer to 0 means a weaker association
	$r_s= ho_{\mathrm{R}(X),\mathrm{R}(Y)}=rac{\mathrm{cov}(\mathrm{R}(X),\mathrm{R}(Y))}{\sigma_{\mathrm{R}(X)}\sigma_{\mathrm{R}(Y)}},$
	Pros and Cons • Pros: • ignore non-monotonic relationship forms, don't assume normal distribution • Cons: • low time complexity, model simplicity, and the ability to be calculated on ordinal/nominal variables
In [685]:	As Spearman's Rank Correlation only work well on independent variable, we first check the correlation matrix to see if it's reasonable to use it. f, ax = plt.subplots(figsize=(10, 7)) dataplot = sb.heatmap(train_df.corr(), cmap="PiYG", annot=True) plt.show()
	CRIM - 1 -0.23 0.45 -0.037 0.46 -0.3 0.39 -0.42 0.68 0.64 0.32 -0.44 0.5 -0.4 ZN0.23 1 -0.56 -0.027 -0.54 0.34 -0.59 0.69 -0.33 -0.33 -0.4 0.19 -0.43 0.37 INDUS - 0.45 -0.56 1 0.081 0.78 -0.44 0.66 -0.72 0.59 0.72 0.37 -0.38 0.6 -0.49 CHAS0.037 -0.027 0.081 1 0.11 0.067 0.071 -0.11 0.016 0.0055 -0.09 0.04 -0.051 0.18 NOX - 0.46 -0.54 0.78 0.11 1 -0.36 0.73 -0.77 0.61 0.67 0.2 -0.39 0.59 -0.44 - 0.4
	RM0.3
	PTRATIO - 0.32 -0.4
In [693]:	<pre>sort_importances = spearman_rank(train_df,y,X) plt.rcdefaults() fig, ax = plt.subplots() y_pos = list(sort_importances.keys()) performance = list(sort_importances.values()) ax.barh(y_pos, performance,align='center',alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['logt'].set_visible(False) ax.spines['logt'].set_visible(False)</pre>
	<pre>ax.spines['bottom'].set_visible(True) ax.grid(axis='x',linewidth=0.35) ax.invert_yaxis() # labels read top-to-bottom ax.set_title("Feature importance: Spearman's Rank Correlation") plt.show()</pre> Feature importance: Spearman's Rank Correlation RM - DIS -
	ZN - B - CHAS - RAD - PTRATIO - TAX - CRIM -
	AGE - NOX - INDUS - LSTAT - -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 • A ρ value of close to -1 means a negative association between ranks.
	 A ρ value of close to +1 means a positive association between ranks. A general notion is, the average number of rooms per dwelling (RM) increase with the house price, which means there should be a positive association between the two variables which is proved by the rs value which is over 0.6 Principle Component Analysis (PCA)
	Principle Component Analysis (PCA) is an ordination technique used primarily to display patterns in multivariate data. It aims to display the relative positions of data points in fewer dimensions while retaining as much information as possible, and explore relationships between dependent variables. This transformation is defined in such a way that the first principal component has the largest possible variance, and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. Organizing information in principal components the following way, will allow us to reduce dimensionality without losing much information, and this by discarding the components with low information and considering the remaining components as your new variables.
	 Pros and Cons Pros: What measures the amount of information is variance only, removes correlated features Orthogonality among the principal components eliminates interactions between variables of the original data. Easy to implement Cons: Independent variables become less interpretable The principal components obtained are not optimal when the samples are not normally distributed, so components with small variance
In [404]:	
	<pre># calculate the explained variance by descending order var_exp = [(i / tot) for i in sorted(eigen_val, reverse=True)] # cumulative explained variance cum_var_exp = np.cumsum(var_exp) plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='Individual_explained_variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='Cumulative_explained_variance') plt.ylabel("Percentage") plt.xticks(np.arange(1,14,1), np.arange(1,14,1), fontsize=8) plt.xlabel("Principle components") plt.legend(loc='right') plt.show()</pre>
	1.0 - 0.8 -
	Cumulative_explained_variance Individual_explained_variance
In [451];	As there are as many principal components as there are variables in the data, principal components are constructed in such a manner that the first principal component accounts for the largest possible variance in the data set. Sort_importances = pca_importance(x_train)
	<pre>plt.rcdefaults() fig, ax = plt.subplots() y_pos = list(sort_importances.keys()) performance = list(sort_importances.values()) ax.barh(y_pos, performance,align='center',alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(True) ax.grid(axis='x',linewidth=0.35) ax.invert yaxis() # labels read top-to-bottom</pre>
	ax.set_title("Feature importance: PCA Importance") plt.show() Feature importance: PCA Importance INDUS - NOX - TAX -
	DIS - RAD - AGE - LSTAT - CRIM - ZN - RM - B -
	CHAS - 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Permutation Importance
	This approach directly measures feature importance by observing how random re-shuffling (thus preserving the distribution of the variable) of each predictor influences model performance. It calculate relative importance score independent of model used. Permutation importance first train the baseline model and record the score (accuracy/R²/any metric of importance). The second step is to re-shuffle values from one feature in the selected dataset, pass the dataset to the model again to obtain predictions and calculate the metric for this modified dataset. The feature importance is the difference between the benchmark score and the one from the modified (permuted) dataset. The final step is repeat the second step till all features in the dataset. Pros and Cons
In [701]:	model,
	<pre>X: pd.DataFrame, y: pd.Series, n_iter): # train model model.fit(X, y) # make predictions for train data and score y_hat_initial = model.predict(X) score_r2 = r2_score(y, y_hat_initial) # calculate permutation importance importances = dict(zip(X.columns, value))</pre>
	<pre>for n in range(n_iter): for col in list(X.columns): # copy data to avoid using previously shuffled versions X_temp = X.copy() # shuffle feature_i values</pre>
	<pre># calculate score score_permuted_r2 = r2_score(y, y_hat) # calculate delta score # better model <-> higher score # lower the delta -> more important the feature delta_score = score_permuted_r2 - score_r2 # get absolute value delta_score = abs(delta_score) # save result</pre>
	<pre>importances[col] += delta_score / n_iter importances_values = np.array(list(importances.values())) return dict(sorted(importances.items(), key = lambda kv:(kv[1], kv[0]),reverse=True)) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error model = RandomForestRegressor(n_estimators=100, n_jobs = -1) sort_importances = calculate_permutation_importance(model,x_train,y_train,3)</pre>
111 [700].	<pre>plt.rcdefaults() fig, ax = plt.subplots() y_pos = list(sort_importances.keys()) performance = list(sort_importances.values()) ax.barh(y_pos, performance,align='center',alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(True) ax.grid(axis='x',linewidth=0.35) ax.invert_yaxis() # labels read top-to-bottom ax.set title("Feature importance: Permutation Importance")</pre>
	Feature importance: Permutation Importance LSTAT - RM - DIS - CRIM -
	NOX - PTRATIO - AGE - TAX - B - INDUS - RAD - ZN -
	CHAS - 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Drop Column Importance Drop Column Importance approach is quite an intuitive technique, as we investigate the importance (R-square) of a feature by comparing a
	model with all features versus a model with this feature dropped for training. In the plot shown below, negative importance, in this case, means that removing a given feature from the model actually improves the performance. Pros and Cons Pros: most accurate feature importance Cons:
	• potentially high computation cost due to retraining the model for each variant of the dataset (after dropping a single feature column) : model = RandomForestRegressor(n_jobs = -1) sort_importances = dropcol_importances(model, x_train, y_train, None, None, None) : plt.rcdefaults() fig, ax = plt.subplots() y_pos = list(sort_importances.keys()) performance = list(sort_importances.values())
	<pre>ax.barh(y_pos, performance,align='center',alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(True) ax.spines['bottom'].set_visible(True) ax.grid(axis='x',linewidth=0.35) ax.invert_yaxis() # labels read top-to-bottom ax.set_title("Feature importance: Drop Column Importance") plt.show()</pre> Feature importance: Drop Column Importance
	LSTAT - RM - DIS - NOX - TAX - AGE - B -
	CHAS - INDUS - ZN - RAD - PTRATIO - CRIM -
	SHAP Importance SHAP Importance represents how a feature influences the prediction of a single row relative to the other features in that row and to the average outcome in the dataset. The goal of SHAP is to explain the prediction of an instance x by computing the contribution of each feature to the prediction.
	The SHAP explanation method computes Shapley values from coalitional game theory. The Shapley Values for one feature is the average marginal contribution of a feature value across all the possible combinations of features. SHAP Importance is an alternative to Permutation Importance. Permutation Importance is based on the decrease in model performance, while SHAP Importance is based on magnitude of feature attributions. Pros and Cons Pros: applicable to any model
In [464]:	<pre>• Cons: • Hard to understand the theory model= RandomForestRegressor(n_estimators=100, n_jobs = -1) sort_importances = shap_importance(model, x_train, y_train) plt.rcdefaults() fig, ax = plt.subplots() y_pos = list(sort_importances.keys()) performance = list(sort_importances.values())</pre>
	<pre>performance = list(sort_importances.values()) ax.barh(y_pos, performance,align='center',alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(True) ax.grid(axis='x',linewidth=0.35) ax.invert_yaxis() # labels read top-to-bottom ax.set_title("Feature importance: Shap Importance") plt.show()</pre> Feature importance: Shap Importance
	Feature importance: Shap Importance LSTAT - RM - DIS - CRIM - NOX - AGE - PTRATIO -
	TAX - B - INDUS - RAD - CHAS - ZN -
In [477]:	Comparison of different techniques Because we as humans cannot simply look at the data and decide which features are most important, we often just rely on testing how well the recommended features work for a variety of models. For example, given a feature ranking, we can train random forest model on the top k=1p features to see how good those features are. Here, I use Mean Square Error(MSE) as the measurement. def compare_feature(model, train_df, test_df, feat_imp:dict, metric=mean_squared_error):
/ /]:	<pre>MSE = [] train = train_df.copy() val = test_df.copy() for i in range(1, 14): model_ = clone(model) modelrandom_state = 3 features = [col for col in feat_imp.keys()][:i] modelfit(train.loc[:, features], train['PRICE']) predictions = modelpredict(val.loc[:, features]) mse_valid = metric(val['PRICE'], predictions)</pre>
	<pre>MSE.append(mse_valid) return MSE rf = RandomForestRegressor(n_estimators=100,n_jobs = -1) spearman_featimp = spearman_rank(train_df,y,X) pca_featimp = pca_importance(x_train) dropcol_featimp = dropcol_importances(model, x_train, y_train, None, None, None) permu_featimp = calculate_permutation_importance(model,x_train,y_train,3) shap_featimp = shap_importance(model,x_train,y_train) mse_spearman = compare_feature(rf, train_df, test_df, feat_imp=spearman_featimp)</pre>
In [674]:	<pre>mse_pca = compare_feature(rf, train_df, test_df, feat_imp=pca_featimp) mse_dropcol = compare_feature(rf, train_df, test_df, feat_imp=dropcol_featimp) mse_permcol = compare_feature(rf, train_df, test_df, feat_imp=permu_featimp) mse_shap = compare_feature(rf, train_df, test_df, feat_imp=shap_featimp) fig = plt.figure(figsize=(7,5)) ax = plt.axes() plt.plot(range(1, len(mse_spearman)+1), mse_spearman, 'g', marker='o', label='Spearman') plt.plot(range(1, len(mse_pca)+1), mse_pca, 'y', marker='o', label='PCA') plt.plot(range(1, len(mse_dropcol)+1), mse_dropcol, 'k', marker='o', label='Drop Column') plt.plot(range(1, len(mse_permcol)+1), mse_permcol, 'r', marker='o', label='Permutation')</pre>
	<pre>plt.plot(range(1, len(mse_permcol)+1), mse_permcol, 'r', marker='o', label='Permutation') plt.plot(range(1, len(mse_shap)+1), mse_shap, 'b', marker='o', label='SHAP') ax.grid(False) handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(True) ax.spines['bottom'].set_visible(True) ax.set_ylabel('MSE', fontsize=10) ax.set_title("RF Comparison")</pre>
	ax.set_xlabel('Top K Selected features', fontsize=10) plt.show() RF Comparison Spearman PCA PCA Drop Column Permutation SHAP
	40 - SHAP SHAP 25 -
	Automatic feature selection algorithm
	Once you have an ordering of features from most to least important, we need a mechanism to drop off unimportant features and keep the top k, for some k we don't know beforehand. Implement an automated mechanism that selects the top k features automatically that gives the best validation error. Here, I develop the algorithm to drop the unimportant features based on permutation importances approach. I first get a baseline validation metric and initial feature importances. Then, for each iteration, i only drop the lowest importance feature based on the MSE and then recompute feature importances after dropping each feature. If MSE in the next iteration gets worse, then i drop the least important feature in this iteration. I break the loop till the MSE do not decrease.
In [580]:	<pre>def permutation_importances_mse(model, x_train, y_train, x_test, y_test): model.fit(x_train, y_train) prediction = model.predict(x_test) baseline = mean_squared_error(y_test, prediction) imp = [] for col in x_test.columns: save = x_test[col].copy() x_test[col] = np.random.permutation(x_test[col]) m = mean_squared_error(y_test, model.predict(x_test)) x_test[col] = save imp.append(baseline - m)</pre>
In [613]:	<pre>I = pd.DataFrame(data={'Feature':x_test.columns, 'Importance':imp}) I = I.set_index('Feature') I = I.sort_values(by = ['Importance']) I = I.reset_index() perm_list = list(I['Feature'].values) return perm_list</pre> def auto_selection(feature_list, x_train, y_train, x_test, y_test): model = RandomForestRegressor(n_estimators=100,n_jobs = -1) model.fit(x_train, y_train)
	<pre>model.fit(x_train, y_train) prediction = model.predict(x_test) mse = mean_squared_error(y_test, prediction) k = len(feature_list) new = {} feature = [] least_important_sort = feature_list[::-1] # reverse final = feature_list[::-1] for i, feat in enumerate(least_important_sort): print('drop feature:', feat) feature.append(feat)</pre>
	<pre>feature.append(feat) x_train= x_train.drop(feat, axis=1) x_test = x_test.drop(feat, axis=1) model = RandomForestRegressor(n_estimators=100,n_jobs = -1) model.fit(x_train, y_train) perm_list = permutation_importances_mse(model, x_train, y_train, x_test, y_test) feat = perm_list[-1] # last important feature prediction = model.predict(x_test) mse = mean_squared_error(y_test, prediction) new[i] = mse</pre>
	<pre>new[i] = mse print('MSE:',new[i]) mse_list = list(new.values()) min_loc = mse_list.index(min(mse_list)) if i > 0: if new[i] > new[i-1]: print('Stopping iterations as MSE did not decrease') print('Drop Feature', feature[:-1]) break return new</pre>
	<pre>permu_list = list(permu_featimp.keys()) tracker = auto_selection(permu_list, x_train, y_train, x_test, y_test) drop feature: CHAS MSE: 14.619324637254874 drop feature: ZN MSE: 16.523215225490194 Stopping iterations as MSE did not decrease Drop Feature ['CHAS']</pre>
In [680]:	<pre>Variance for feature importances In this section, I sample the original dataset and calculate the feature importance based on the Spearman's Rank Correlation for 100 times and get the variance of the feature importance def calculate_variance_Spearman(data): info=[] for i in range(100): sample = data.sample(len(data), replace=True).reset_index(drop=True) sample x= sample drop(columns = 'PRICE')</pre>
In [681]:	<pre>sample = data.sample(len(data),replace=True).reset_index(drop=True) sample_x= sample.drop(columns = 'PRICE') sample_y = sample['PRICE'] info.append(spearman_rank2(sample_y,sample_x)) return pd.DataFrame(info) data = calculate_variance_Spearman(df) fig,ax=plt.subplots(figsize=(7,5)) ax.barh(data.columns,data.mean(),xerr=data.std(),alpha=0.5) ax.yaxis.set_ticks_position('none') ax.set_yticks(range(len(data.columns)))</pre>
	<pre>ax.set_yticks(range(len(data.columns))) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(True) ax.spines['bottom'].set_visible(True) ax.spines['bottom'].set_visible(True) ax.set_yticklabels(data.columns,fontsize=10) ax.set_title("Spearman Importance Variances") plt.show()</pre> <pre> Spearman Importance Variances</pre>
	B CHAS RAD DIS ZN AGE NOX
	CRIM INDUS TAX PTRATIO RM LSTAT
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8