图说三极管

硬件十万个为什么 今天

"晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件"

在电子元件家族中,三极管属于半导体主动元件中的分立元件。

广义上,三极管有多种,常见如下图所示。

狭义上,三极管指双极型三极管,是最基础最通用的三极管。 本文所述的是狭义三极管,它有很多别称:

三极管的发明

晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。

真空电子管存在笨重、耗能、反应慢等缺点。

二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。

发明时间: 战后的1947年 发明机构:

美国贝尔实验室

发明人(3人共同):

第一只晶体三极管是锗材料做的

晶体三极管3名共同发明人同获1956年诺贝尔物理学奖

(人) 似たま云四間原

早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。硅晶体出现后,由于硅管 生产工艺很高效,锗管逐渐被淘汰。

经半个世纪的发展,三极管种类繁多,形貌各异。

小功率三极管一般为塑料包封;

大功率三极管一般为金属铁壳包封。

三极管核心结构

核心是"PN"结 是两个背对背的PN结 可以是NPN组合,也或以是PNP组合 由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例!

NPN型三极管结构示意图

硅NPN型三极管的制造流程

管芯结构切面图

工艺结构特点:

发射区高掺杂: 为了便于发射结发射电子,发射区半导体掺浓度高于基区的掺杂浓度, 且发射结的面积较小;

基区尺度很薄:3~30µm,掺杂浓度低;

集电结面积大:集电区与发射区为同一性质的掺杂半导体,但集电区的掺杂浓度要低,面积要大,便于收集电子。

三极管不是两个PN结的间单拼凑,两个二极管是组成不了一个三极管的!

工艺结构在半导体产业相当重要,PN结不同材料成份、尺寸、排布、掺杂浓度和几何结构,能制成各样各样的元件,包括IC。

三极管电路符号

三极管电流控制原理示意图

当集\射\基极间没有外加电压时

发射区浓厚的电子被基区势堆挡住不能流到集电区

当集电极C与发射极E之间加上电压时

刚开始,会有极少量发射区电子会流到集电区,但 基区势堆仍然挡住绝大多数的发射区电子流到集 电区

当集-射极加上电压同时, 在基极加一正电压

大量发射区电子被吸引上基区势堆顶部,电子自动会跌入到势堆集电区一侧,由此产生源源不断的电流.

可通过控制基极电压的"有无"来实现集-射电路上电流的通断(开关);

可通过控制基极电压的"大小"来实现集-射电路上电流的大小。

三极管基本电路

外加电压使发射结正向偏置,集电结反向偏置。

集/基/射电流关系:

$$I_E = I_B + I_C$$

 $I_C = \beta * I_B$

如果 $I_B = 0$, 那么 $I_E = I_C = 0$

三极管特性曲线

输入特性曲线

集-射极电压UCE为某特定值时,基极电流IB与基-射电压UBE的关系曲线。

U_{BER}是三极管启动的临界电压,它会受集射极电压大小的影响,正常工作时,NPN硅管启动电压约为0.6V;

UBE < UBER时, 三极管高绝缘, UBE > UBER时, 三极管才会启动;

U_{CE}增大,特性曲线右移,但当U_{CE}>1.0V后,特性曲线几乎不再移动。

输出特性曲线

基极电流I_B一定时,集极I_C与集-射电压U_{CE}之间的关系曲线,是一组曲线。

当**I**_B=**0**时, I_C→**0**, 称为三极管处于截止状态, 相当于开关断开;

当I_B>0时, I_B轻微的变化,会在I_C上以几十甚至百多倍放大表现出来;

当 I_B 很大时, I_C 变得很大,不能继续随IB的增大而增大,三极管失去放大功能,表现为开关导通。

三极管核心功能:

放大功能: 小电流微量变化, 在大电流上放大表现出来。

开关功能: 以小电流控制大电流的通断。

三极管的放大功能

 $I_C = β * I_B (其中β ≈ 10~400)$

例: 当基极通电流I_B=50µA时,集极电流:

 $I_C = \beta I_B = 120*50 \mu A = 6000 \mu A$

微弱变化的电信号通过三极管放大成波幅度很大的电信号,如下图所示:

所以,三极管放大的是信号波幅,三极管并不能放大系统的能量。

能放大多少?

哪要看三极管的放大倍数β值了!

首先β由三极管的材料和工艺结构决定:

如硅三极管β值常用范围为:30~200 锗三极管β值常用范围为:30~100

β值越大,漏电流越大,β值过大的三极管性能不稳定。

其次β会受信号频率和电流大小影响:

信号频率在某一范围内,β值接近一常数,当频率越过某一数值后,β值会明显减少。 β值随集电极电流 $\mathbf{l}_{\mathbf{C}}$ 的变化而变化, $\mathbf{l}_{\mathbf{C}}$ 为mA级别时β值较小。一般地,小功率管的放大倍数比大功率管的大。

三极管主要性能参数

三极管性能参数较多,有直流、交流和极限参数之分:

	类型	参数项	符号	意义
	直	共射直流放大系数	<u>β</u>	无交变信号输入,共射电路集基电流的比值。 $\underline{\beta}=I_{\mathbb{C}}/I_{\mathbb{B}}$
流 共基直流放大系数 <u>α</u> 无交变信号输入,		α	无交变信号输入,共基极电路集射的比值。	

参	集-射	I _{CEO}	基极开路,集-射极间反向电流,又称漏电流、穿透电流。
数	反向电流		
	集极	I_{CBO}	射极开路时,集电结反向电流(漏电流)
	反向电流		$I_{CE0} = \beta I_{CB0}$
	共射交流放大系数	β	共射电路,集基电流变化量比值: β=ΔI _C /ΔI _B
交	共基交流放大系数	α	共基电路,集射电流变化量比值: α=ΔI _C /ΔI _E
流参	共射截止频率	fβ	β因频率升高3dB对应的频率
数数	共基截止频率	f_{α}	α因频率升高而下降3dB对应的频率
90	特征频率	f_{T}	频率升高,β下降到1时对应的频率。
极	集极最大电流	I _{CM}	集极允许通过的最大电流。
限参	集极最大功率	РСМ	实际功率过大,三极管会烧坏。
数	集-射极击穿电压	UCEO	基极开路时,集-射极耐电压值。

温度对三极管性能的影响

温度几乎影响三极管所有的参数, 其中对以下三个参数影响最大。

(1) 对放大倍数 β 的影响:

在基极输入电流 I_B 不变的情况下,集极电流 I_C 会因温度上升而急剧增大。

(2) 对反向饱和电流(漏电流) ICEO的影响:

I_{CEO}是由少数载流子漂移运动形成的,它与环境温度关系很大,I_{CEO}随温度上升会急剧增加。温度上升10℃,I_{CEO}将增加一倍。

温度对三极管集射漏电流的影响

虽然常温下硅管的漏电流ICEO很小,但温度升高后,漏电流会高达几百微安以上。

(**3**) 对发射结电压 **U**BE的影响: 温度上升1℃, UBE将下降约2.2mV。

温度对发射结电压UBE的影响

(1) 似在导动阿哥原

温度上升,β、**I**_C将增大,**U**_{CE}将下降,在电路设计时应考虑采取相应的措施,如远离热源、散热等,克服温度对三极管性能的影响。

三极管的分类

分类角度		分类角度	种类	说明		
Ŋ	从技 按材料		硅三极管 0.6V	一般地:		

术工		锗三极管 0.3V	锗管为PNP型
艺	按结构	PNP型	硅管为NPN型
	按结构	NPN型	
		平面型	
	按制造工艺	合金型	
		扩散型	高频管多为扩散型
		低频管 <3MHz	低频管多为合金型
	按频率	中频管 3~30(MHZ)	
	按频率	高频管 30~500 (MHZ)	
		超高频管 >500MHZ	
从性		小功率 P _{CM} <0.5W	功率越大体积越大,散热要求越高。
能	按功率	中功率 0.5 <p<sub>CM<1w</p<sub>	
		大功率 P _{CM} >1w	
	功能	放大管 开关管	
	用途	高反压管 光电管	
	用速 帯阻尼管 数字管		
		金属封装 玻璃封装	塑料封装为主流
从封	封 按封裝材料 陶瓷封装 塑料封装		金属封装成本较高
装外		薄膜封装	
形	按封装形式	引线式 TO	贴片式正逐步取代引线式。
放到 袋形式		贴片式 SOT	

三极管命名标识

不同的国家/地区对三极管型号命名方式不同。还有很多厂家使用自己的命名方式。

中国大陆三极管命名方式

3	D	D	12	X
2: 二极管	A: PNP锗	X: 低频小功率	序号	规格号
3: 三极管	B: NPN锗	G: 高频小功率		
	C: PNP硅	D: 低频大功率		
	D: NPN硅	A: 高频大功率		

例:3DD12X NPN型低频大功率硅三极管

日本三极管型号命名方式

2	S	D	13	В

0: 光电管	注册标	A: PNP高频管	电子协会登	改进型
1: 二极管	识	B: PNP低頻管	记顺序	号
2: 三极管		C: NPN高频管		
		D: NPN低频管		

例: 2SC1895 高频NPN型三极管

美国电子工业协会(EIA)三极管命名方式

JANS	2	N	2904	Α
JANTX: 特军级	1: 二极管	EIA注册	EIA 登 记	不 同
JANTXV: 超特军	2: 三极管	标识	顺序号	档别
JANS: 宇航级	"n": n个PN 结元件			
(无): 非军用品				

例: JANS2N2904 宇航级三极管

欧洲三极管命名方式

В	С	208	Α
A: 锗管	C: 低频小功率	登记顺序号	β的档别
B: 硅管	D: 低频大功率		
	F: 高频小功率		
	L: 高频大功率		

例:BC208A 硅材料低频小功率三极管

三极管封装及管脚排列方式

关于封装:

三极管设计额定功率越大,其体积就越大,又由于封装技术的不断更新发展,所以三极管有多种多样的封装形式。

当前,塑料封装是三极管的主流封装形式,其中"TO"和"SOT"形式封装最为常见。

关于管脚排列:

不同品牌、不同封装的三极管管脚定义不完全一样的,一般地,有以上规律:

规律一:对中大功率三极管,集电极明显较粗大甚至以大面积金属电极相连,多处于基极和发射极之间;

规律二:对贴片三极管,面向标识时,左为基极,右为发射极,集电极在另一边;

三极管常见封装及管脚排列

TO封装 (Transistor Outline)

SOT封装 (Small Outline Transistor)

由于电流较大或散热需要,功率较大的三极管集 电极引脚一般较大或面积较大,较好辨认。

(2) 例で見る回動師

基极 — B 集电极 — C 发射极 — E

三极管的选用原则

考虑三极管的性能极限,按"2/3"安全原则选择合适的性能参数。:

集极电流I_C:

$I_{C} < 2/3 * I_{CM}$

ICM 集极最大允许电流

当 I_C>I_{CM}时,三极管β值减小,失去放大功能。

集极功率Pw:

 $P_W < 2/3 * P_{CM}$

PCM集极最大允许功率。

当Pw > Pcm 三极管将烧坏。

集-射反向电压UCE:

 U_{CE} < 2/3 * U_{BVCEO}

UBVCEO基极开路时,集-射反向击穿电压

集/射极间电压 $U_{CE} > U_{BVCEO}$ 时,三极管产生很大的集电极电流击穿,造成永久性损坏。

工作频率f:

f = 15% * f_T

 f_{T} — 特征频率

随着工作频率的升高,三极管的放大能力将会下降,对应于 $\beta=1$ 时的频率 f_T 叫作三极管的特征频率。

此外,还应考虑体积成本,优先选用贴片式三极管。

本文来自《云脑智库》