ECE 161A: Circular Convolution and Linear Convolution

Florian Meyer University of California, San Diego Email: flmeyer@ucsd.edu

Circular Convolution versus Linear Convolution

h[n], the filter is of duration P, i.e. h[n] non-zero over interval $0 \le n \le P-1$.

x[n], the input sequence is of duration L, i.e. x[n] non-zero over interval $0 \le n \le L - 1$. Assume $L \ge P$.

$$x[n] \stackrel{N}{\longleftrightarrow} X[k]$$
 and $h[n] \stackrel{N}{\longleftrightarrow} H[k]$.

with $N \ge \max(P, L) = L$. Then

$$y[n] = \sum_{m=0}^{N-1} x[m]h[((n-m))_N] = x[n] \otimes h[n] \stackrel{N}{\longleftrightarrow} Y[k] = X[k]H[k].$$

 $x[n] = x_1[n] \otimes x_2[n], n = 0, 1, ..., N-1$ is a sequence of length N. N is a parameter of choice.

Linear Convolution: $y_{lc}[n] = x[n] * h[n]$ and $Y_{lc}(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$.

Question: What is the relationship between $y_{lc}[n]$ and y[n] and when are they equal?

Relationship

$$y[n] = x[n] \otimes h[n] \stackrel{N}{\longleftrightarrow} Y[k] = X[k] H[k]$$

 $y_{lc}[n] = x[n] * h[n] \text{ and } Y_{lc}(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega}).$
Now

$$Y[k] = H[k]X[k] = H(e^{j\omega})|_{\omega = \frac{2\pi}{N}k}X(e^{j\omega})_{\omega = \frac{2\pi}{N}k}, k = 0, 1, ..., N - 1.$$

$$= Y_{lc}(e^{j\omega})|_{\omega = \frac{2\pi}{N}k}, k = 0, 1, ..., N - 1$$

Main Result:

- 1. $y_{lc}[n]$ is of duration L_c , where $L_c = L + P 1$. (Please prove)
- 2. By Frequency Sampling Theorem

$$y[n] = \sum_{r=-\infty}^{\infty} y_{lc}[n+rN]$$

$$= ... + y_{lc}[n-N] + y_{lc}[n] + y_{lc}[n+N] + ..., 0 \le n \le N-1$$

Choice of N and Implications

$$y[n] = \sum_{r=-\infty}^{\infty} y_{lc}[n+rN] = ... + y_{lc}[n-N] + y_{lc}[n] + y_{lc}[n+N] + ..., 0 \le n \le N-1$$

 $N \ge \max(P, L) = L$. Minimum choice is L.

For what choice of N is there no aliasing. This implies $y[n] = y_{lc}[n], 0 \le n \le N-1$. and the whole linear convolution is obtained. Also range $0 \le n \le N-1$ is of interest.

Answer: $N \ge L_c = L + P - 1$, where L_c is the duration of $y_{lc}[n]$.

Proof: Follows from Frequency Sampling Theorem. Summarized below.

 $y_{lc}[n]$ is non-zero between $0 \le n \le L_c - 1$.

 $y_{lc}[n-N]$ is non-zero between $N \le n \le N + L_c - 1$.

 $y_{lc}[n+N]$ is non-zero between $-N \le n \le -N + L_c - 1$.

Need $N \ge L_c$ and $-N + L_c - 1 < 0$. Satisfied by $N \ge L_c$. Since the shifted copies do not overlap, $y_{lc}[n]$ can be obtained from y[n] by retaining samples $0 \le n \le N - 1$.

Choice of $L \leq N \leq L_c - 1$ and Implications

$$y[n] = \sum_{r=-\infty}^{\infty} y_{lc}[n+rN] = ... + y_{lc}[n-N] + y_{lc}[n] + y_{lc}[n+N] + ..., 0 \le n \le N-1$$

Since the samples of y[n] of interest are in the range $0 \le n \le N-1$, we do not need to pay attention to values of n outside this range.

$$y_{lc}[n]$$
 is non-zero between $0 \le n \le L_c - 1$.

 $y_{lc}[n-N]$ is non-zero between $N \le n \le N+L_c-1$. Starts at N and so outside the range of interest of values for n. Can Ignore.

$$y_{lc}[n+N]$$
 is non-zero between $-N \le n \le -N+L_c-1$. Since $N \le L_c-1$, we have $-N+L_c-1 \ge 0$. Aliasing problem

Samples
$$0 \le n \le -N + L_c - 1$$
 are aliased and $y[n] = y_{lc}[n], n = -N + L_c, \dots, N - 1$.

Conclusion: Partial success. Early samples are aliased and corrupted but later samples correspond to linear convolution.

Special Case of
$$N=L$$
: We have $-N+L_c-1=-L+L+P-1-1=P-2$. Samples $0 \le n \le P-2$ are aliased and $y[n]=y_{lc}[n], n=P-1,\ldots,N-1=L-1$.

Circular Convolution $y_{lc}[n] = \sum_{m=0}^{N-1} h[m]x[((n-m))_N]$: Example

P=3 and L=4. Hence $L_c=L+P-1=6$. Linear Convolution: $y_{lc}[n]=\{4,7,9,6,3,1,0,0..\}$. Duration is 6 as expected.

Circular Convolution

$$P=3$$
 and $L=4$. Hence $L_c=L+P-1=6$. Linear Convolution: $y_{lc}[n]=\{4,7,9,6,3,1,0,0..\}$.

$$N=8$$
. Since $N>L_c$, no aliasing and $y[n]=h[n]$ $x[n]=y_{lc}[n]$.

Only concerned with $0 \le n \le 7$.

Check:
$$y[n] = ... + y_{lc}[n-8] + y_{lc}[n] + y_{lc}[n+8] + ... = y_{lc}[n], 0 \le n \le 7.$$

N=L=4. This implies y[n]=h[n] x[n]. $0 \le n \le P-2=1$ will be aliased and y[n], $P-1=2 \le n \le N-1=3$ correspond to linear convolution.

Check: Only concerned about
$$0 \le n \le N - 1 = 3$$
. $y[n] = y_{lc}[n-4] + y_{lc}[n] + y_{lc}[n+4] = \{\underbrace{0}_{n=0}, 0, 0, 0\} + \{\underbrace{4}_{n=0}, 7, 9, 6\} + \{\underbrace{3}_{n=0}, 1, 0, 0\} = \{7, 8, 9, 6\}$

Summary of Linear Convolution using DFT

Assumptions: h[n] of duration P and x[n] of duration L and $N \ge L_c = L + P - 1$

1. Compute H[k] and X[k] where

$$h[n] \overset{N}{\leftrightarrow} H[k] \text{ and } x[n] \overset{N}{\leftrightarrow} X[k]$$

Often the filter is known before hand and one can compute and store H[k].

- 2. Compute Y[k], where Y[k] = H[k]X[k], k = 0, 1, ..., N 1.
- 3. Compute y[n], the IDFT of Y[k], i.e. $y[n] = \mathcal{IDFT}(Y[k])$
- 4. The linear convolution $y_{lc}[n] = y[n], n = 0, 1, \dots, N-1$

If N is chosen differently, i.e. $L \le N \le L_c - 1$, then the correct values of y[n] are extracted to get samples of the linear convolution

$$y_{lc}[n] = y[n], -N + L_c \le n \le N - 1.$$