Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3210	К работе допущен
Студент <u>Караганов Павел Рябов</u> Георгий	Работа выполнена
Преподаватель Агабабаев В.А	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

«Исследование распределение случайной величины»

1. Цель работы:

Исследовать распределения случайной величины на примере многократных измерений определённого интервала времени.

2. Задачи, решаемые при выполнении работы:

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования:

Случайная величина – результат измерения промежутка времени от нажатия кнопки питания компьютера до загрузки экрана рабочего стола.

4. Метод экспериментального исследования:

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

5. Рабочие формулы и исходные данные.

- $\langle t \rangle_N = \frac{1}{N} \left(t_1 + t_2 + \ldots + t_N \right) = \frac{1}{N} \sum_{i=1}^N t_i среднее$ арифметическое всех результатов измерений, где N кол-во измерений, ti значение случайной величины
- $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение, где N кол-во измерений, ti значение случайной величины, $\langle t \rangle$ N выборочное среднее значение случайной величины
- $ho_{max} = rac{1}{\sigma\sqrt{2\pi}}$ максимальное значение плотности распределения.

- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2} cpedнеквадратичное отклонение среднего значения, где N количество измерений, ti значение случайной величины, <math>\langle t \rangle$ N выборочное среднее значение случайной величины.
- $ho(t)=rac{1}{\sigma\sqrt{2\pi}}exp\left(-rac{(t-\langle t
 angle)^2}{2\sigma^2}
 ight)$ нормальное распределение, описываемое функцией Гаусса
- $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \partial o верительный интервал, где <math>t_{\alpha,N}$ коэффициент Стьюдента, $\sigma_{\langle t \rangle}$ среднеквадратичное отклонение среднего значения

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Секундомер	Цифровой	0–30 c	0,05 c	

7. Схема установки

Персональная ЭВМ:

- GPU RTX 3060 ti
- CPU AMD 7 500f
- Мат. Плата MSI B650

Цифровой секундомер на телефоне с ценой деления не более в 0,01 секунд. ЭВМ запускается кнопкой питания и загружается до полной прогрузки рабочего стола. Интервал многократно замеряется вторым прибором.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

См. Приложение, Таблица 1. Результаты прямых измерений

No	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2$, c^2
1	24,81	-0,39	0,1521
2	25,05	-0,15	0,0225
3	25,92	0,72	0,5184
4	25,33	0,13	0,0169
5	24,95	-0,25	0,0625
6	25,68	0,48	0,2304
7	24,72	-0,48	0,2304
8	25,41	0,21	0,0441
9	25,14	-0,06	0,0036
10	25,79	0,59	0,3481
11	24,88	-0,32	0,1024
12	25,21	0,01	0,0001
13	25,55	0,35	0,1225
14	24,63	-0,57	0,3249
15	25,47	0,27	0,0729
16	25,86	0,66	0,4356
17	24,99	-0,21	0,0441
18	25,27	0,07	0,0049
19	25,73	0,53	0,2809
20	24,77	-0,43	0,1849
21	25,38	0,18	0,0324

22	25,10	-0,10	0,0100
23	25,61	0,41	0,1681
24	24,85	-0,35	0,1225
25	25,44	0,24	0,0576
26	25,02	-0,18	0,0324
27	25,96	0,76	0,5776
28	24,69	-0,51	0,2601
29	25,30	0,10	0,0100
30	25,65	0,45	0,2025
31	24,92	-0,28	0,0784
32	25,50	0,30	0,0900
33	25,17	-0,03	0,0009
34	25,82	0,62	0,3844
35	24,80	-0,40	0,1600
36	25,25	0,05	0,0025
37	25,58	0,38	0,1444
38	24,75	-0,45	0,2025
39	25,35	0,15	0,0225
40	25,08	-0,12	0,0144
41	25,89	0,69	0,4761
42	24,97	-0,23	0,0529
43	25,23	0,03	0,0009
44	25,70	0,50	0,2500
45	24,71	-0,49	0,2401
46	25,40	0,20	0,0400
47	25,12	-0,08	0,0064
48	25,75	0,55	0,3025
49	24,83	-0,37	0,1369
50	25,46	0,26	0,0676
	$\langle t \rangle_N = 25.199 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 \ c$	$\sigma_N = 0.4198 \ c$ $\rho_{max} = 1.1405 \ c^{-1}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

•
$$\langle t \rangle_{N=\frac{1}{50}} \sum_{i=1}^{50} t_i N_i = 25.199 c$$

•
$$\sigma_N = \sqrt{\frac{1}{50-1} \sum_{i=1}^{50} (t_i - 25.199)^2} = 0.4198 c$$

•
$$\rho_{\text{max}} = \frac{1}{0.4198\sqrt{2\pi}} = 0.9503 \ c^{-1}$$

•
$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{50*49} \sum_{i=1}^{50} (t_i - 25.199)^2} = 0,0594 c$$

•
$$\Delta t = 2.01 \cdot 0.01 = 0.0201 c$$

• $t_{min}=25,63~c$, $t_{max}=25,96~c$, $\sqrt{N}\approx 7$ — тогда для построения гистограммы возьмем 7 интервалов $\Delta t=0,190~c$

Таблица 2. Данные для построения гистограммы.

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, C^{-1}	t, c	ρ , c^{-1}
24,630	3	0,315789	24,715	0,173050
24,820				
24,820	7	0,736842	24,905	0,577114
25,010				
25,010	11	1,157895	25,095	1,058861
25,200				
25,200	13	1,368421	25,285	1,368421
25,390				
25,390	9	0,947368	25,475	1,058861
25,580				
25,580	5	0,526316	25,665	0,577114
25,770				
25,770	2	0,210526	25,855	0,173050
25,960				

Опытное значение плотности вероятности (третий интервал): $\frac{\Delta N}{N\Delta t} = \frac{11}{50 \cdot 0,190} = 1,1579 \text{ c}^{-1}$

Нормальное распределение, описываемое функцией Гаусса: $\rho(25,095) = \frac{1}{0,4198\sqrt{6,2832}} exp(-\frac{(25,095-25,199)^2}{2*0,4198^2}) = 1,0589 c^{-1}$

Таблица 3. Стандартные доверительные интервалы

	Интервал, с		A 37	ΔN	n
	ОТ	до	ΔN	N	P
$\langle t \rangle_N \pm \sigma$	24,779	25,619	34	0,68	0,683
$\langle t \rangle_N \pm 2\sigma$	24,359	26,039	47	0,94	0,954
$\langle t \rangle_N \pm 3\sigma$	23,940	26,458	50	1,00	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta_{ux}=0{,}005$$
 с; $\overline{\Delta x}=t_{\alpha,N}\cdot\sigma_{\langle t\rangle}\approx 2{,}01\cdot0{,}0594=0{,}1194$ с; $t_{\alpha,N}\approx 2{,}01;$ Абсолютная погрешность с учетом погрешности прибора: $\Delta x=\sqrt{(\overline{\Delta x})^2+(\frac{2}{3}\Delta_{ux})^2}\approx 0{,}1194$ с Относительная погрешность измерения: $\varepsilon_x=\frac{\Delta x}{\bar x}\cdot 100\%=0{,}47\%$

11. Графики

График 1 – Гистограмма и функция Гаусса

12. Окончательные результаты.

- Среднеквадратичное отклонение среднего значения $\sigma_{(t)} = 0.0594 \ c$
- Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$: $t_{\alpha,N}=2.01$
- Доверительный интервал $\Delta t = 0.12 c$
- Среднее арифметическое всех результатов измерений $\langle t \rangle_N = 25{,}1990 \ c$
- Выборочное среднеквадратичное отклонение: $\sigma_N = 0.4198 \ c$
- Максимальное значение плотности распределения $\rho_{max} = 0.9503 \ c^{-1}$

13. Выводы и анализ результатов работы.

Было исследовано распределение случайной величины на примере многократных замеров временного отрезка, получена выборка из 50 измерений. Результаты прямых измерений, данные для построения гистограммы, стандартные доверительные интервалы были занесены в соответствующие таблицы. После заполнения таблиц была построена гистограмма и функция Гаусса.

При сравнении гистограммы с графиком функции Гаусса - распределения случайной величины (при таких же начальных параметрах) — было отмечено сходство поведения построенной опытным путём функции с теоретико-статистической сущностью.

Работа позволила ознакомиться с законом распределения случайной величины и подробно его изучить.