Passerelle★

On s'intéresse au dimensionnement des haubans (2) permettant de maintenir en équilibre une passerelle. On modélise la charge sur le pont comme une charge linéique c. On note L = AB = BC. On note $\ell = BD$.

Détermination du torseur de cohésion

Question 1 Réaliser le paramétrage du problème.

Question 2 Déterminer les actions mécaniques dans les liaisons.

Correction

Question 3 Déterminer le torseur de cohésion dans les poutres (1) et (2).

Question 4 Tracer les diagrammes des sollicitations.

Correction

Déformation du hauban et déplacement de la structure

On considère ici que le pont (1) est indéformable, mais que le hauban (2) est déformable.

Question 5 Déterminer l'allongement du câble.

Correction

Question 6 En faisant l'hypothèse que la rotation de la passerelle en A est « petite », déterminer le déplacement du point B puis du point C.

Correction

Pas de corrigé pour cet exercice.

Figure 1 – Passerelle réelle

FIGURE 2 – Modèle choisi

Moment quadratique

La section de la passerelle est donnée figure suivante.

Question 7 Déterminer le moment quadratique en O par rapport à \overrightarrow{y} puis par rapport à \overrightarrow{z} .

 \vec{z}

Section

Pèse camion ★★

Question 1 Tracer le graphe de structure. Définir le nombre d'inconnues statiques. En faisant l'hypothèse de problème plan, on a 8 inconnues statiques.

Question 2 Donner la stratégie permettant de déterminer la valeur de F en fonction de M.

- ▶ On commence par isoler 1 soumis à 2 glisseurs. D'après le PFS, les actions mécaniques en A et en C sont dirigées suivant la direction $\overrightarrow{x_0}$.
- ▶ On isole ensuite 2. Le solide 2 étant en translation circulaire, on réalise un TRS suivant $\overrightarrow{y_0}$.
- ► On isole enfint **3**. Le solide **3** étant en rotation autour de $(B, \overrightarrow{z_0})$ par rapport à **0**, on réalise un TMS en B suivant $\overrightarrow{z_0}$.

8 STAT

Poutre sur appuis ★

On donne la poutre encastrée suivante.

Question 1 Déterminer le torseur de cohésion.

Question 2 Identifier les sollicitations auxquelles est soumise la poutre.

Question 3 Tracer les diagrammes des efforts intérieurs.

Il y a 2 tronçons à étudier ([OA] et [AB]), mais il est nécessaire au préalable de faire une étude statique pour déterminer les efforts de liaison.

En utilisant l'équation de moment en \overrightarrow{z} du PFS appliqué à la poutre, en O puis en A, on trouve immédiatement (par la méthode des bras de levier) :

$$Y_A = p_0 \frac{L^2}{2a}$$
 et $Y_O = p_0 L \left(1 - \frac{L}{2a}\right)$

On peut maintenant passer à l'étude des différents tronçons...

5 RDM

D'après documents Emmanuel PINAULT-BIGEARD.

Pas de corrigé pour cet exercice.

Chasse-neige ★★

STAT

Question 1 Tracer le graphe de structure.

Question 2 Proposer une démarche permettant de déterminer la section du vérin permettant de « chasser la neige ».

Correction

Graphe de liaisons On commence par faire les figures planes puis le graphe de liaisons.

- 1. On cherche les solides ou les ensembles de solides soumis à 2 glisseurs . Le problème étant plan, les pivots dont l'axe est perpendiculaire au plan sont des glisseurs. {10+11} est un ensemble soumis à 2 glisseurs.
- 2. On isole ensuite 7 et on rélise un théorème du moment statique en H suivant $\overrightarrow{y_3}$.

On isole le vérin {10+11} D'après le PFS, l'ensmble étant soumis à 2 glisseurs, on a donc $\{\mathcal{T}(11 \to 7)\} = \left\{\begin{array}{c} F\overline{z_{11}} \\ \overrightarrow{0} \end{array}\right\}_{I}$.

On isole {7} BAME:

- ▶ action de la neige;
- ► action de la pesanteur;
- ▶ action de la pièce 11;
- ▶ action de la pièce 3;

On réalise le TMS en H en projection sur \overrightarrow{y}_3 .

$$\overline{\mathcal{M}(H, \text{neige} \to 7)} \cdot \overrightarrow{y_3} + \overline{\mathcal{M}(H, \text{Pesanteur} \to 7)} \cdot \overrightarrow{y_3} + \overline{\mathcal{M}(H, 11 \to 7)} \cdot \overrightarrow{y_3} + \underline{\mathcal{M}(H, 3 \to 7)} \cdot \overrightarrow{y_3} = 0$$

$$\begin{split} &\Rightarrow \left(\overrightarrow{HQ} \wedge Q\overrightarrow{x_7}\right) \cdot \overrightarrow{y_3} + \left(\overrightarrow{HG} \wedge -gP\overrightarrow{y_3}\right) \cdot \overrightarrow{y_3} + \left(\overrightarrow{HJ} \wedge F\overrightarrow{z_{11}}\right) \cdot \overrightarrow{y_3} = 0 \\ &\Rightarrow \left(\left(a\overrightarrow{x_3} + b\overrightarrow{y_3} + c\overrightarrow{z_3}\right) \wedge Q\overrightarrow{x_7}\right) \cdot \overrightarrow{y_3} + \left(\underline{i}\overrightarrow{z_7} \wedge -gP\overrightarrow{y_3}\right) \cdot \overrightarrow{y_3} + \left(h\overrightarrow{z_7} \wedge F\overrightarrow{z_{11}}\right) \cdot \overrightarrow{y_3} = 0 \end{split}$$

$$\Rightarrow \left(\overrightarrow{y_3} \wedge \left(a\overrightarrow{x_3} + c\overrightarrow{z_3}\right)\right) \cdot Q\overrightarrow{x_7} + \left(h\overrightarrow{z_7} \wedge F\overrightarrow{z_{11}}\right) \cdot \overrightarrow{y_3} = 0 \Rightarrow \left(-a\overrightarrow{z_3} + c\overrightarrow{x_3}\right) \cdot Q\overrightarrow{x_7} + hF\sin\left(\beta - \gamma\right)\overrightarrow{y_3} \cdot \overrightarrow{y_3} = 0 \Rightarrow Q\left(a\sin\gamma + c\cos\gamma\right) + hF\sin\left(\beta - \gamma\right) = 0$$

$$y_3 = 0 \Rightarrow Q(a \sin \gamma + c \cos \gamma) + hFs$$

Au final, $F = -\frac{Q(a \sin \gamma + c \cos \gamma)}{h \sin(\beta - \gamma)}$.

F étant l'effort déployé par le vérin, et S sa section, on a alors, F = pS et $S = Q(a \sin \gamma + c \cos \gamma)$

$$ph \sin (\beta - \gamma)$$

 \overrightarrow{y}

Poutre encastrée ★

On donne la poutre encastrée suivante.

Question 1 Déterminer le torseur de cohésion.

Question 2 Identifier les sollicitations auxquelles est soumise la poutre.

Question 3 Tracer les diagrammes des efforts intérieurs.

On doit tout d'abord trouver le modèle global de la charge répartie :

$$F = \int_0^L p(x) dx \quad \text{avec } p(x) = p_0$$
 Soit : $F = p_0 L$ (aire du rectangle)

Pas de

5 RD

D'aprè

PINAU

On peut ensuite déterminer le torseur de cohésion :

$$\overline{\text{Tronçon }[OA]:}\ x\in[0,L]$$

$$\{\mathcal{T}_{\mathrm{coh}}\} = \{\mathcal{T}_{\mathrm{ext} \to \mathrm{Droite}}\}_G$$

$$\{\mathcal{T}_{coh}\} = \begin{cases} 0 & 0 \\ -p_0(L-x) & 0 \\ 0 & -\frac{p_0}{2}(L-x)^2 \end{cases}$$

La poutre est soumise à de la flexion simple

5 RDM

D'après documents Emmanuel BI-GEARD.

Pas de corrigé pour cet exercice.

Poutre encastrée ★

On donne la poutre encastrée suivante.

Question 1 Déterminer le torseur de cohésion.

Question 2 Identifier les sollicitations auxquelles est soumise la poutre.

Question 3 Tracer les diagrammes des efforts intérieurs.

La Martinière On publicari