# Chain drives

## Introduction

- Chain: series of links connected by pin joints
- Sprocket: toothed wheel with a special profile
- Advantages over belt/gear drives
  - Multiple shafts can be driven
  - Smaller in construction
  - Does not slip
- Disadvantages
  - Wear
  - Unsuitable when precise motion is needed (polygonal effect)
  - Slack adjustment
  - Proper maintenance



## Roller chain

Roller link plate

Inner link plate

- Designation
  - 08B or 16A

- Fig. 14.5 Construction of Roller Chain
- The number denotes the pitch in sixteenth of an inch
- A: American National Standards Institute (ANSI)
- B: British Standards Series
- 08B represents a pitch of (08/16)X25.4 mm=12.7 mm
- 08B-2 is a double strand or 'duplex' chain
- Breaking load: maximum tensile load, if applied can cause chain failure

Table 14.1 Dimensions and breaking loads of roller chains

| ISO chain<br>number | Pitch p<br>(mm) | Roller<br>diameter d <sub>1</sub> | Width b <sub>1</sub><br>(mm) | Transverse pitch p <sub>t</sub> | Bred    | aking load (mi | n) N     |
|---------------------|-----------------|-----------------------------------|------------------------------|---------------------------------|---------|----------------|----------|
|                     |                 | (mm)<br>(max.)                    | (min.)                       | (mm)                            | Simple  | Duplex         | Triplex  |
| 05B                 | 8.00            | 5.00                              | 3.00                         | 5.64                            | 4 400   | 7 800          | 11 100   |
| 06B                 | 9.525           | 6.35                              | 5.72                         | 10.24                           | 8 900   | 16 900         | 24 900   |
| 08A (ANSI-40)       | 12.70           | 7.95                              | 7.85                         | 14.38                           | 13 800  | 27 600         | 41 400   |
| 08B                 | 12.70           | 8.51                              | 7.75                         | 13.92                           | 17 800  | 31 100         | 44 500   |
| 10A (ANSI-50)       | 15.875          | 10.16                             | 9.4                          | 18.11                           | 21 800  | 43 600         | 65 400   |
| 10B                 | 15.875          | 10.16                             | 9.65                         | 16.59                           | 22 200  | 44 500         | 66 700   |
| 12A (ANSI-60)       | 19.05           | 11.91                             | 12.57                        | 22.78                           | 31 100  | 62 300         | 93 400   |
| 12B                 | 19.05           | 12.07                             | 11.68                        | 19.46                           | 28 900  | 57 800         | 86 700   |
| 16A (ANSI-80)       | 25.40           | 15.88                             | 15.75                        | 29.29                           | 55 600  | 111 200        | 166 800  |
| 16B                 | 25.40           | 15.88                             | 17.02                        | 31.88                           | 42 300  | 84 500         | 126 800  |
| 20A(ANSI-100)       | 31.75           | 19.05                             | 18.90                        | 35.76                           | 86 700  | 173 500        | 260 200  |
| 20B                 | 31.75           | 19.05                             | 19.56                        | 36.45                           | 64 500  | 129 000        | 193 500  |
| 24A (ANSI-<br>120)  | 38.10           | 22.23                             | 25.22                        | 45.44                           | 124 600 | 249 100        | 373 700  |
| 24B                 | 38.10           | 25.40                             | 25.40                        | 48.36                           | 97 900  | 195 700        | 293 600  |
| 28A(ANSI-140)       | 44.45           | 25.40                             | 25.22                        | 48.87                           | 169 000 | 338 100        | 507 100  |
| 28B                 | 44.45           | 27.94                             | 30.99                        | 59.56                           | 129 000 | 258 000        | 387 000  |
| 32A(ANSI-160)       | 50.80           | 28.58                             | 31.55                        | 58.55                           | 222 400 | 444 800        | 667 200  |
| 32B                 | 50.80           | 29.21                             | 30.99                        | 58.55                           | 169 000 | 338 100        | 507 100  |
| 40A(ANSI-200)       | 63.50           | 39.68                             | 37.85                        | 71.55                           | 347 000 | 693 900        | 1040 900 |
| 40B                 | 63.50           | 39.37                             | 38.10                        | 72.29                           | 262 400 | 524 900        | 787 300  |
| 48A                 | 76.20           | 47.63                             | 47.35                        | 87.83                           | 500 400 | 1000 800       | 1501 300 |
| 48B                 | 76.20           | 48.26                             | 45.72                        | 91.21                           | 400 300 | 800 700        | 1201 000 |
| 64B                 | 101.60          | 63.50                             | 60.96                        | 119.89                          | 711 700 | 1423 400       | _        |

# Geometric relationships

- z: Number of teeth on sprocket
- Angle,  $\alpha = 2\pi/z$

• 
$$D = \frac{p}{\sin(\frac{\pi}{z})} = pz/\pi$$

• Velocity ratio,  $i = \frac{n_1}{n_2} = \frac{z_2}{z_1}$ 

• 
$$v = \frac{\pi Dn}{60 \times 10^3} = \frac{zpn}{60 \times 10^3}$$



$$L = L_n \times p$$

where

L = length of the chain (mm)

 $L_n$  = number of links in the chain

# Geometric relationships

$$L_n = 2\left(\frac{a}{p}\right) + \left(\frac{z_1 + z_2}{2}\right) + \left(\frac{z_2 - z_1}{2\pi}\right)^2 \times \left(\frac{p}{a}\right)$$

where,

a = centre distance between axes of driving and driven sprockets (mm)

 $z_1$  = number of teeth on the smaller sprocket

 $z_2$  = number of teeth on the larger sprocket

$$a = \frac{p}{4} \left\{ \left[ L_n - \left( \frac{z_1 + z_2}{2} \right) \right] + \sqrt{\left[ L_n - \left( \frac{z_1 + z_2}{2} \right) \right]^2 - 8 \left[ \frac{z_2 - z_1}{2\pi} \right]^2} \right\}$$

# Polygonal effect



$$v_{\text{max.}} = \frac{\pi Dn}{60 \times 10^3} \,\text{m/s}$$

$$v_{\min} = \frac{\pi D n \cos\left(\frac{\alpha}{2}\right)}{60 \times 10^3} \text{ m/s}$$



Speed variation is 4% for a sprocket with 11 teeth, 1.6% for a sprocket with 17 teeth, and less than 1% for a sprocket with 24 teeth

## Power rating

$$kW = \frac{P_1 v}{1000}$$

#### where

 $P_1$  = allowable tension in the chain (N)

v = average velocity of chain (m/s)

**Table 14.2** *Power rating of simple roller chain* 

| Pinion      | Power (kW) |      |      |       |       |       |       |       |       |
|-------------|------------|------|------|-------|-------|-------|-------|-------|-------|
| speed (rpm) | 06 B       | 08A  | 08 B | 10A   | 10 B  | 12A   | 12 B  | 16A   | 16 B  |
| 50          | 0.14       | 0.28 | 0.34 | 0.53  | 0.64  | 0.94  | 1.07  | 2.06  | 2.59  |
| 100         | 0.25       | 0.53 | 0.64 | 0.98  | 1.18  | 1.74  | 2.01  | 4.03  | 4.83  |
| 200         | 0.47       | 0.98 | 1.18 | 1.83  | 2.19  | 3.40  | 3.75  | 7.34  | 8.94  |
| 300         | 0.61       | 1.34 | 1.70 | 2.68  | 3.15  | 4.56  | 5.43  | 11.63 | 13.06 |
| 500         | 1.09       | 2.24 | 2.72 | 4.34  | 5.01  | 7.69  | 8.53  | 16.99 | 20.57 |
| 700         | 1.48       | 2.95 | 3.66 | 5.91  | 6.71  | 10.73 | 11.63 | 23.26 | 27.73 |
| 1000        | 2.03       | 3.94 | 5.09 | 8.05  | 8.97  | 14.32 | 15.65 | 28.63 | 34.89 |
| 1400        | 2.73       | 5.28 | 6.81 | 11.18 | 11.67 | 14.32 | 18.15 | 18.49 | 38.47 |
| 1800        | 3.44       | 6.98 | 8.10 | 8.05  | 13.03 | 10.44 | 19.85 | _     | _     |
| 2000        | 3.80       | 6.26 | 8.67 | 7.16  | 13.49 | 8.50  | 20.57 | _     | _     |

kW rating of chain

$$= \frac{\text{(kW to be transmitted)} \times K_s}{K_1 \times K_2}$$

where

 $K_s$  = service factor

 $K_1$  = multiple strand factor

 $K_2$  = tooth correction factor

# Properties of sprocket wheel

**Table 14.6** *Proportions of the sprocket wheel (Figs 14.10 and 14.11)* 

| Dimension                     | Notation | Equation                                                          |
|-------------------------------|----------|-------------------------------------------------------------------|
| 1. Chain pitch                | p        | (Table 14.1)                                                      |
| 2. Pitch circle diameter      | D        | $D = \frac{p}{\sin\left(\frac{180}{z}\right)}$                    |
| 3. Roller diameter            | $d_1$    | (Table 14.1)                                                      |
| 4. Width between inner plates | $b_1$    | (Table 14.1)                                                      |
| 5. Transverse pitch           | $p_{t}$  | (Table 14.1)                                                      |
| 6. Top diameter               | $D_a$    | $(D_a)_{\text{max.}} = D + 1.25p - d_1$                           |
|                               |          | $(D_a)_{\text{min.}} = D + p\left(1 - \frac{1.6}{z}\right) - d_1$ |
| 7. Root diameter              | $D_f$    | $D_f = D - 2r_i$                                                  |

| 8. Roller seating radius                 | $r_i$    | $(r_i)_{\text{max.}} = (0.505d_1 + 0.069\sqrt[3]{d_1})$     |
|------------------------------------------|----------|-------------------------------------------------------------|
|                                          |          | $(r_i)_{\min} = 0.505 d_1$                                  |
| 9. Tooth flank radius                    | $r_e$    | $(r_e)_{\text{max.}} = 0.008d_1(z^2 + 180)$                 |
|                                          |          | $(r_e)_{\min} = 0.12d_1 (z+2)$                              |
| 10. Roller seating angle                 | α        | $\alpha_{\text{max.}} = \left[120 - \frac{90}{z}\right]$    |
|                                          |          | $\alpha_{\min} = \left[140 - \frac{90}{z}\right]$           |
| 11. Tooth height above the pitch polygon | $h_a$    | $(h_a)_{\text{max.}} = 0.625 p - 0.5 d_1 + \frac{0.8 p}{z}$ |
|                                          |          | $(h_a)_{\min} = 0.5(p - d_1)$                               |
| 12. Tooth side radius                    | $r_{x}$  | $(r_x)_{\min} = p$                                          |
| 13. Tooth width                          | $b_{fl}$ | $b_{f1} = 0.93 b_1 \text{ if } p \le 12.7 \text{ mm}$       |
|                                          |          | $b_{f1} = 0.95 b_1 \text{ if } p > 12.7 \text{ mm}$         |
| 14. Tooth side relief                    | $b_a$    | $b_a = 0.1p \text{ to } 0.15p$                              |



Fig. 14.10 Tooth Profile of Sprocket



Fig. 14.11 Rim Profile of Sprocket

# Rules and considerations for design

- Rule 1: The number of pitches or links of the chain should be always 'even'.
- Rule 2: The number of teeth on the driving sprocket should be always 'odd', such as 17, 19 or 21.
- Avoid vertical chain drives
- Tight side up or down?



g

## Selection of chain drives

Example 14.4 It is required to design a chain drive to connect a 12 kW, 1400 rpm electric motor to a centrifugal pump running at 700 rpm. The service conditions involve moderate shocks.

- (i) Select a proper roller chain and give a list of its dimensions.
- (ii) Determine the pitch circle diameters of driving and driven sprockets.
- (iii) Determine the number of chain links.
- (iv) Specify the correct centre distance between the axes of sprockets.

#### Solution

**Given** 
$$kW = 12$$
  $n_1 = 1400 \text{ rpm}$   $n_2 = 700 \text{ rpm}$ 

#### Step I kW rating of chain

In order to reduce the polygonal effect, the number of teeth on the driving sprocket is selected as 17  $(K_2 = 1)$ . It is further assumed that the chain is simple roller chain with only one strand  $(K_1 = 1)$ . The service factor from Table 14.3 is 1.3. From Eq. (14.8),

kW rating of chain = 
$$\frac{\text{(kW to be transmitted)} \times K_s}{K_1 \times K_2}$$
$$= \frac{12 \times 1.3}{1 \times 1} = 15.6 \text{ kW}$$

**Table 14.3** *Service factor (K<sub>s</sub>)* 

| Ty    | pe of driven load                                                                                | Туре     | of input pe | ower     |
|-------|--------------------------------------------------------------------------------------------------|----------|-------------|----------|
|       |                                                                                                  | IC       | Electric    | IC       |
|       |                                                                                                  | engine   | motor       | engine   |
|       |                                                                                                  | with hy- |             | with me- |
|       |                                                                                                  | draulic  |             | chanical |
|       |                                                                                                  | drive    |             | drive    |
| (i)   | Smooth: agitator, fan, light conveyor                                                            | 1.0      | 1.0         | 1.2      |
| (ii)  | Moderate shock:<br>machine tools,<br>crane, heavy<br>conveyor, food<br>mixer, grinder            | 1.2      | 1.3         | 1.4      |
| (iii) | Heavy shock:<br>punch press,<br>hammer mill,<br>reciprocating<br>conveyor, rolling<br>mill drive | 1.4      | 1.4         | 1.7      |

**Table 14.5** *Tooth correction factor*  $(K_2)$ 

| Number of teeth on the driving sprocket | $K_2$ |
|-----------------------------------------|-------|
| 15                                      | 0.85  |
| 16                                      | 0.92  |
| 17                                      | 1.00  |
| 18                                      | 1.05  |
| 19                                      | 1.11  |
| 20                                      | 1.18  |
| 21                                      | 1.26  |
| 22                                      | 1.29  |
| 23                                      | 1.35  |
| 24                                      | 1.41  |
| 25                                      | 1.46  |
| 30                                      | 1.73  |

## Selection of chain drives

Step II Selection of chain

Referring to Table 14.2, the power rating of the chain 12B at 1400 rpm is 18.15 kW. Therefore the chain number 12B is selected.

The dimensions of this chain (Table 14.1) are as follows:

$$p = 19.05 \text{ mm } d_1 = 12.07 \text{ mm } b_1 = 11.68 \text{ mm}$$
 (i)

**Step III** Pitch circle diameter of driving and driven pulleys

From Eq. 14.2,

$$D = \frac{p}{\sin\left(\frac{180}{z}\right)} = \frac{19.05}{\sin\left(\frac{180}{17}\right)} = 103.67 \text{ mm} \quad \text{(iia)}$$

For the driven sprocket,

$$z_2 = z_1 \left(\frac{n_1}{n_2}\right) = 17 \left(\frac{1400}{700}\right) = 34$$

$$D_2 = \frac{p}{\sin\left(\frac{180}{z}\right)} = \frac{19.05}{\sin\left(\frac{180}{34}\right)} = 206.46 \text{ mm (iib)}$$

**Table 14.2** Power rating of simple roller chain

| Pinion      |      |      |      |       | Power (kW) |       |       |       |       |
|-------------|------|------|------|-------|------------|-------|-------|-------|-------|
| speed (rpm) | 06 B | 08A  | 08 B | 10A   | 10 B       | 12A   | 12 B  | 16A   | 16 B  |
| 50          | 0.14 | 0.28 | 0.34 | 0.53  | 0.64       | 0.94  | 1.07  | 2.06  | 2.59  |
| 100         | 0.25 | 0.53 | 0.64 | 0.98  | 1.18       | 1.74  | 2.01  | 4.03  | 4.83  |
| 200         | 0.47 | 0.98 | 1.18 | 1.83  | 2.19       | 3.40  | 3.75  | 7.34  | 8.94  |
| 300         | 0.61 | 1.34 | 1.70 | 2.68  | 3.15       | 4.56  | 5.43  | 11.63 | 13.06 |
| 500         | 1.09 | 2.24 | 2.72 | 4.34  | 5.01       | 7.69  | 8.53  | 16.99 | 20.57 |
| 700         | 1.48 | 2.95 | 3.66 | 5.91  | 6.71       | 10.73 | 11.63 | 23.26 | 27.73 |
| 1000        | 2.03 | 3.94 | 5.09 | 8.05  | 8.97       | 14.32 | 15.65 | 28.63 | 34.89 |
| 1400        | 2.73 | 5.28 | 6.81 | 11.18 | 11.67      | 14.32 | 18.15 | 18.49 | 38.47 |
| 1800        | 3.44 | 6.98 | 8.10 | 8.05  | 13.03      | 10.44 | 19.85 | _     | _     |
| 2000        | 3.80 | 6.26 | 8.67 | 7.16  | 13.49      | 8.50  | 20.57 | _     |       |

Table 14.1 Dimensions and breaking loads of roller chains

| 100 1 :             | D: . 1          | p. 11                             | nr. 1.1 1        | T.                     | n       | 1: 1 1/:       | 1.37     |
|---------------------|-----------------|-----------------------------------|------------------|------------------------|---------|----------------|----------|
| ISO chain<br>number | Pitch p<br>(mm) | Roller<br>diameter d <sub>1</sub> | Width $b_1$ (mm) | Transverse<br>pitch p, | Бтес    | aking load (mi | n) N     |
|                     | ()              | (mm)                              | (min.)           | (mm)                   | Simple  | Duplex         | Triplex  |
|                     |                 | (max.)                            |                  |                        | ,       | •              | •        |
| 05B                 | 8.00            | 5.00                              | 3.00             | 5.64                   | 4 400   | 7 800          | 11 100   |
| 06B                 | 9.525           | 6.35                              | 5.72             | 10.24                  | 8 900   | 16 900         | 24 900   |
| 08A (ANSI-40)       | 12.70           | 7.95                              | 7.85             | 14.38                  | 13 800  | 27 600         | 41 400   |
| 08B                 | 12.70           | 8.51                              | 7.75             | 13.92                  | 17 800  | 31 100         | 44 500   |
| 10A (ANSI-50)       | 15.875          | 10.16                             | 9.4              | 18.11                  | 21 800  | 43 600         | 65 400   |
| 10B                 | 15.875          | 10.16                             | 9.65             | 16.59                  | 22 200  | 44 500         | 66 700   |
| 12A (ANSI-60)       | 19.05           | 11.91                             | 12.57            | 22.78                  | 31 100  | 62 300         | 93 400   |
| 12B                 | 19.05           | 12.07                             | 11.68            | 19.46                  | 28 900  | 57 800         | 86 700   |
| 16A (ANSI-80)       | 25.40           | 15.88                             | 15.75            | 29.29                  | 55 600  | 111 200        | 166 800  |
| 16B                 | 25.40           | 15.88                             | 17.02            | 31.88                  | 42 300  | 84 500         | 126 800  |
| 20A(ANSI-100)       | 31.75           | 19.05                             | 18.90            | 35.76                  | 86 700  | 173 500        | 260 200  |
| 20B                 | 31.75           | 19.05                             | 19.56            | 36.45                  | 64 500  | 129 000        | 193 500  |
| 24A (ANSI-<br>120)  | 38.10           | 22.23                             | 25.22            | 45.44                  | 124 600 | 249 100        | 373 700  |
| 24B                 | 38.10           | 25.40                             | 25.40            | 48.36                  | 97 900  | 195 700        | 293 600  |
| 28A(ANSI-140)       | 44.45           | 25.40                             | 25.22            | 48.87                  | 169 000 | 338 100        | 507 100  |
| 28B                 | 44.45           | 27.94                             | 30.99            | 59.56                  | 129 000 | 258 000        | 387 000  |
| 32A(ANSI-160)       | 50.80           | 28.58                             | 31.55            | 58.55                  | 222 400 | 444 800        | 667 200  |
| 32B                 | 50.80           | 29.21                             | 30.99            | 58.55                  | 169 000 | 338 100        | 507 100  |
| 40A(ANSI-200)       | 63.50           | 39.68                             | 37.85            | 71.55                  | 347 000 | 693 900        | 1040 900 |
| 40B                 | 63.50           | 39.37                             | 38.10            | 72.29                  | 262 400 | 524 900        | 787 300  |
| 48A                 | 76.20           | 47.63                             | 47.35            | 87.83                  | 500 400 | 1000 800       | 1501 300 |
| 48B                 | 76.20           | 48.26                             | 45.72            | 91.21                  | 400 300 | 800 700        | 1201 000 |
| 64B                 | 101.60          | 63.50                             | 60.96            | 119.89                 | 711 700 | 1423 400       | _        |

## Selection of chain drives

#### Step IV Number of chain links

The centre distance between the sprocket wheels should be between (30p) to (50p). Taking a mean value of (40p), the approximate centre distance is calculated.

$$a = 40 p = 40(19.05) = 762 \text{ mm}$$
 (assume)  
From Eq. (14.6),

$$L_n = 2\left(\frac{a}{p}\right) + \left(\frac{z_1 + z_2}{2}\right) + \left(\frac{z_2 - z_1}{2\pi}\right)^2 \times \left(\frac{p}{a}\right)$$

$$= 2\left(\frac{762}{19.05}\right) + \left(\frac{17 + 34}{2}\right)$$

$$+ \left(\frac{34 - 17}{2\pi}\right)^2 \times \left(\frac{19.05}{762}\right)$$

$$= 105.68 \text{ or } 106 \text{ links}$$
 (iii)

Step V Correct centre distance

$$\left[L_n - \left(\frac{z_1 + z_2}{2}\right)\right] = \left[106 - \left(\frac{17 + 34}{2}\right)\right] = 80.5$$

From Eq. (14.7),

$$a = \frac{p}{4} \left\{ \left[ L_n - \left( \frac{z_1 + z_2}{2} \right) \right] + \sqrt{\left[ L_n - \left( \frac{z_1 + z_2}{2} \right) \right]^2 - 8 \left[ \frac{z_2 - z_1}{2\pi} \right]^2} \right\}$$

$$= \frac{19.05}{4} \left\{ 80.5 + \sqrt{\left( 80.5 \right)^2 - 8 \left[ \frac{34 - 17}{2\pi} \right]^2} \right\}$$

$$= 765.03 \text{ mm}$$

For satisfactory performance, the centre to centre distance should provide a wrap angle of 120 degs. It is recommended that 30p < a < 50p

To provide small sag, for allowing the chain links to take the best position on the sprocket teeth, the centre distance is reduced by (0.002a). Therefore, the correct centre distance is given by,

$$a = 0.998 \times 765.03 = 763.5 \text{ mm}$$
 (iv)

## Reference

 "Design of Machine Elements" by V. B. Bhandari

### Numerical problems on chain drives

(1) A single-strand chain No. 12A is used in a mechanical drive. The driving sprocket has 17 teeth and rotates at 1000 rpm. What is the factor of safety used for standard power rating? Neglect centrifugal force acting on the chain.

Given: 
$$P = 19.05 \text{mm}$$
 $12 \text{ A}$  breaking load =  $31,100 \text{ N}$ 
 $Z_1 = 17$ 
 $N = 1000 \text{ Ypm}$ 
 $V = \frac{Z \text{ PN}}{60 \times 10^3} = \frac{17 \times 1000 \times 19.05}{60 \times 10^3} = 5.39 \text{ m/g}$ 
 $fos = ?$ 
 $P_1 = 2656.77 \text{ N}$ 
 $fos = \frac{31,100}{2656} = 11.7$ 

14 / 21

### Numerical problems on chain drives

(3) It is required to design a chain drive to connect a 10 kW, 900 rpm petrol engine to a conveyor. The driving sprocket is mounted on engine shaft. The driven sprocket is mounted on conveyor shaft. The conveyor shaft should run between 225 to 245 rpm. The service conditions involve moderate shocks. (i) Select a proper roller chain and give a list of its dimensions. (ii) Determine the pitch circle diameters of the driving and driven sprockets. (iii) Determine the number of chain links. (iv) Specify the correct centre distance between the axes of sprockets. Create an alternative design for the above application, which will result in compact construction using multi-strand chain. For this design, (v) Select the roller chain with multi-strand construction, (vi) Determine the number of chain links, (vii) Specify the correct centre distance between the axes of sprockets.

Good Pm 225 to 245 gm

Power = Power transmitted x Ks =  $\frac{10 \times 1.4}{1 \times 1.26}$ Kix K2

Z = 21 teeth =  $\frac{10 \times 1.4}{0.900 \text{ rpm}}$ 

$$\frac{9 - 10.73}{14.32 - 10.73} = \frac{300 - 700}{1000 - 300}$$

$$D = \frac{P}{Sin(\frac{180}{21})} = \frac{19.05}{Sin(\frac{180}{21})} = 127.81 mn$$

$$D_2 = \frac{P}{Sin\left(\frac{180}{21}\right)} = \frac{503.41mm}{21}$$

$$\frac{Z_2}{Z_1} = \frac{\Omega_1}{\Omega_2} \implies Z_2 = \frac{9 \cdot 0 \times 21}{230} = 83$$

[4] It is required to design a chain drive with a duplex chain to connect a 15 kW, 1400 rpm electric motor to a transmission shaft running at 350 rpm. The operation involves moderate shocks. (i) Specify the number of teeth on the driving and driven sprockets. (ii) Select a proper roller chain. (iii) Calculate the pitch circle diameters of the driving and driven sprockets. (iv) Determine the number of chain links. (v) Specify the correct centre distance. During preliminary stages, the centre distance can be assumed to be 40 times the pitch of the chain.