Context-Free Grammars

Sipser 2.1 (pages 99 – 109)

What are we missing?

- So far:
- We know how to recognize languages
 - With finite state automata
 - As people...
- We know how to generate languages
 - With regular expressions
 - As people...
- Finite state automata and regular expressions are limited, though!

Bring back memories?

- In English, a grammar tells us whether a particular sentence is well formed or not
- For instance, "a sentence can consist of a noun phrase followed by a verb phrase"
- More concisely, we could write
 <sentence> →_G <noun_phrase> <verb_phrase>

Great, but what's a noun phrase?

- A sentence is
 - <sentence> →_G <noun_phrase><verb_phrase>
- We need to provide definitions for the newly introduced constructs
 <noun_phrase> and <verb_phrase>
 - <noun_phrase> →_G <article><noun>
 - <verb_phrase> → G <verb>

Generating well-formed sentences

- · Grammar rules so far:
 - <sentence> → c <noun_phrase> <verb_phrase>
 - <noun_phrase> → article><noun>
 - <verb_phrase> → c <verb>
- To complete our simple grammar, we associate actual words with the terms <article>, <noun>, and <verb>
 - <article> → a
 - <article> →_G the
 - <noun> → _G student
 - <verb> → relaxes
 - <verb> →_G studies

Context-free grammars

- A context-free grammar G is a quadruple (V, Σ, R, S) , where
 - V is a finite set called the variables
 - Σ is a finite set, disjoint from V, called the terminals
 - R is a finite subset of $V \times (VU\Sigma)^*$ called the rules
 - $-S \subseteq V$ is called the start symbol
- For any $A \subseteq V$ and $u \subseteq (V \cup \Sigma)^*$, we write $A \rightarrow_C u$ whenever $(A, u) \subseteq R$

The language of a grammar

- If $-u, v, w \in (V \cup \Sigma)^*$ $-A \rightarrow_G w \text{ is a rule}$ then
 - We say uAv yields uwv
 - Write $uAv \Rightarrow_G uwv$
- If

$$-u\Rightarrow_G u1\Rightarrow_G u2\Rightarrow_G ...\Rightarrow_G uk\Rightarrow_G v$$

- We write $u \Rightarrow^*_G v$
- The language of the grammar G is

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^*_G w \}$$

For example...

- Consider $G = (V, \Sigma, R, S)$, where
 - $-V=\{S\}$
 - $-\Sigma = \{a,b\}$
 - $-R = \{ S \rightarrow_G aSa \mid bSb \mid aSb \mid bSa \mid \varepsilon \}$
- Is there a grammar whose language is $PAL = \{w \in \Sigma^* \mid w = reverse(w)\}$?

Arithmetic expressions and parse trees

- Consider $G=(V, \Sigma, R, S)$, where $-V = \{<EXPR>, <TERM>, <FACTOR>\}$ $-\Sigma = \{a, +, \times, (,)\}$ $-R = \{<EXPR> \rightarrow_G <EXPR> + <TERM> | <TERM>,$ $<TERM> \rightarrow_G <TERM> \times <FACTOR> |$ <FACTOR>, $<FACTOR> \rightarrow_G <EXPR> | a \}$ -S = <EXPR>
- What about $a \times a + a$?

Leftmost derivation

- A derivation of a string in a grammar is a leftmost derivation if:
 - at every step the *leftmost* remaining variable is the one replaced

Needlessly complicated?

How about just

 A grammar G is ambiguous if some string w has two or more different leftmost derivations

Chomsky normal form

A context-free grammar G is in

Chomsky normal form

- If every rule is of the form
 - $\cdot A \rightarrow BC$
 - $\cdot A \rightarrow a$
 - where $A,B,C \subseteq V, B \neq S \neq C$, and $a \subseteq \Sigma$
- We permit S → ε

Chomsky normal form

- Theorem 2.9: Any context-free language is generated by a context-free grammar in Chomsky normal form
- Proof:
 - 1. Make sure S appears only on the left
 - 2. Remove empty rules: $A \rightarrow \varepsilon$
 - 3. Handle unit rules: $A \rightarrow B$
 - 4. Fix all the rest...
- For example:
 - $S \rightarrow_G ASA \mid aA$
 - $-A \rightarrow_{G}^{\circ} b \mid \varepsilon$