## Derin Gezgin, Johnny Andreasen, Sababa Ahmed STA 207: Advanced Regression Techniques | Group Work #2

## Test LINE assumptions for galton data.



### I. Linearity Between "X" and "Y"

### a. Plot (A) shows ...

A relationship in the positive direction. But it's not strongly positive, considering how spread the points are.

### b. Plot (B) shows ...

We can see that the fitted values v. Reals Values plot shows a correlation between the predictions.

#### c. Plot (C) shows ...

There is a pattern in the residuals points to nonlinearity.

### d. Plot (D) shows...

A blue line close to the flat 0 line means that the residuals do not change much, and the linearity assumption holds false, but Tukey's test plot (D) shows that the blue line is close to the 0 line, which shows that the residuals do not change much. This would make the linearity assumption false.

## **Tukey's Test**

- $H_0$  = Linearity assumption holds
- $H_a$  = Linearity assumption does not hold
- Significance level = 0.05 or 5%
- **Test Statistic = 2.15**
- P value = 0.031
- Check: P-Value < 0.05

### Derin Gezgin, Johnny Andreasen, Sababa Ahmed STA 207: Advanced Regression Techniques | Group Work #2

- P-Value is less than the significance level.

At a 5% level of significance, we have evidence that there is no linear relationship between mid parents' height and the child's height

### **Independence of Errors**



Plot (C) shows errors have an upward, cyclic, repetitive, and linear pattern. This shows a pattern in the residuals, which **fails the independence assumption.** 

### **Normality of Errors**

Plot (A) shows there's a normal distribution, with a slight left skew, in the residuals.

Plot (B) shows there's a 45 degree linear relation in the Q-Q plot. This means that the sample quantiles and the theoretical quantiles agree.

Thus, from plots (A) and (B), we can say that the Normality Assumption holds.

### **Errors are Homoscedastic**

There's no significant spread out in the plot (D) so we can say that there is no heteroskedasticity.

#### **BP** test

- $H_0$  = Error variance is constant, homoscedasticity
- $\mathbf{H}_{A}$  = Error variance is not constant, heteroscedasticity
- Confidence level = 0.05 or 5%
- Test statistic = 0.34

# Derin Gezgin, Johnny Andreasen, Sababa Ahmed STA 207: Advanced Regression Techniques | Group Work #2

- P value = 0.558
- Check P- Value vs confidence level
  - P value > confidence level

At a 5% level of significance we have evidence that the residuals are homoscedastic