Marks: 0.0/5.5

Question 1.

Which of the following is/are true for a sequence a_n of real numbers?

- if $\lim_{n\to\infty}a_n=L$, then $\lim_{n\to\infty}a_{2n+1}=L$
- if $a_n>0$ and $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$, then $\lim_{n\to\infty}a_n=0$
- if a_n is decreasing, and $a_n > 0$ for all n, then a_n is convergent
- if a_n , b_n are both not convergent, then $a_n + b_n$ is not convergent

Question 2.

A function $f:[0,1]\to\mathbb{R}$ is continuous and assumes only rational values. Then which of the following is/are true?

- f is differentiable on (0, 1)
- \bigcirc f is strictly monotonic on [0,1]
- \bigcirc f is not differentiable at any point of (0,1) but 0 and 1 are local extrema of f
- \bigcirc f is differentiable on (0,1) but no point of [0,1] is a local extremum of f

Question 3.

Marks: 5.5/5.5

Consider the function

$$f(x) = \begin{cases} 0, & \text{if } x = 0 \text{ or } x \text{ is irrational} \\ \frac{1}{q^3}, & \text{if } x = \frac{p}{q}, \text{ where } p \in \mathbb{Z}, q \in \mathbb{N}, gcd(p, q) = 1 \end{cases}$$

[Here \mathbb{Z} = the set of all integers, and \mathbb{N} = the set of all natural numbers.]

Then choose the correct option(s).

- f is continuous at 0 but is not differentiable at 0
- \bigcirc f is differentiable at 0 and f'(0) = 0
- \bigcirc f is not differentiable at any point in $\mathbb R$
- $\bigcap_{x \to 0} f$ is not continuous at 0 but the limit $\lim_{x \to 0} f(x)$ exists

Question 4. Marks: 5.5/5.5

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Which of the following is/are true?

- if f'(x) = 0, then (x, f(x)) is an inflection point of the curve y = f(x)
- there exists a function f such that f(5) = 7, f(0) = 0 and f'(x) > 2 for all x
- there exists a function f such that f(x) > 0, f'(x) < 0 and f''(x) > 0 for all x
- if f,g are increasing on some interval I, then fg is increasing on the interval I

Question 5. Marks: 0.0/0.0

If
$$x\cos(\pi x)=\int_0^{x^4}f(t)dt$$
 , where f is a continuous function, then find $f(1)$.

-0.25

Marks: 0.0/5.5

Question 6.

Consider the function

$$f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Then, choose the correct option(s).

- f is not Riemann integrable on [0,1]
- f is Riemann integrable on [1,b] for any b>1
- If is Riemann integrable on a closed interval [a,b] if and only if $0 \notin [a,b]$

Question 7.

The area of the region common to the insides (i.e., interiors) of the circles $r=\sqrt{3}\cos\theta$ and $r=\sin\theta$ is

- $\frac{5\pi 6\sqrt{3}}{24}$
- $\frac{5\pi + 6\sqrt{3}}{24}$
- $\frac{5\pi 3\sqrt{3}}{24}$
- $\frac{5\pi + 3\sqrt{3}}{24}$

Question 8.

 $\lim_{\text{Consider }(x,y)\to(1,0)}\frac{2(x-1)y^2}{x^2-2x+1-y^4}. \text{ Which is true?}$

- \bigcirc the above limit equals 1
- the above limit equals 2
- the above limit does not exist
- the above limit equals $-\frac{8}{3}$

Question 9.

Consider the function

$$f(x, y) = \begin{cases} \frac{y^3}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, (x, y) = (0, 0) \end{cases}$$

Then choose the correct option(s).

- $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist and are continuous at (0,0)
- $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist but they are not continuous at (0,0)
- f is not differentiable at (0,0)
- \bigcirc (0,0) is a critical point of f but not a saddle point

Question 10.

Consider a sphere of radius r . The area of the part of the sphere seen by an observer at a height h above the north pole of the sphere is

- \bigcirc $2\pi rh$
- $\bigcirc \frac{\pi r^2 h}{r+h}$
- $\frac{2\pi r^2 h}{r+2h}$

Question 11.

Marks: 5.5/5.5

Consider the function

 $f(x,y)=3xy+\frac{1}{x}-\log y$ in the first quadrant $x>0,\,y>0$. Which of the following is/are true?

- f has one local minimum
- f has one local maximum and one local minimum
- \bigcirc f has one saddle point
- f has one local maximum and one saddle point