The original constrained problem

The original constrained problem is stated as

$$\min_{\tau} \iint -\operatorname{sgn}(v) \, u \, f_Y(u, v; \tau) \, du \, dv$$

subject to $\kappa - \iint \operatorname{sgn}(v) \, w \, f_Z(w, v; \tau) \, dw \, dv \ge 0, \text{and } \tau^{\mathsf{T}} \tau = 1.$

Suppose that the strict feasible set $\operatorname{strict}(\mathcal{F})$ is non-empty, and let τ^0 denote a constrained minimizer of this original problem. For simplicity, we let $g(\tau) = -\iint \operatorname{sgn}(v) u \, f_Y(u, v; \tau) \, du \, dv$, $c_1(\tau) = \kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau) \, dw \, dv$, and $c_2(\tau) = \tau^{\mathsf{T}}\tau$. The value of $g(\tau)$ at $\tau = \tau^0$, $g(\tau^0)$, is denoted by g^0 . Similarly, c_i^0 denotes the value of $c_i(\tau)$ at $\tau = \tau^0$, $c_i(\tau^0)$, for i = 1, 2. Also, \mathcal{A}^0 denotes the set of active constraint at τ^0 , $\mathcal{A}(\tau^0)$. In our current case, it is either $\mathcal{A}^0 = \{c_1^0, c_2^0\}$, or $\mathcal{A}^0 = \{c_2^0\}$.

Perturbed KKT conditions

Fmincon interior point algorithm can be interpreted as log barrier penalty with slack variables, i.e.,

$$\min_{\tau, s} B(\tau, s) = \min_{\tau, s} \iint -\operatorname{sgn}(v) u f_Y(u, v; \tau) du dv - \mu \log s$$
subject to $\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau) dw dv - s = 0 \text{ and } \tau^{\mathsf{T}}\tau - 1 = 0,$

where μ is a sequence of positive decreasing small constants converging to zero. Its solution does not coincide with that of the original constrained problem for $\mu > 0$. The barrier approach consists of finding (approximate) solutions of the barrier problem for a sequence of positive barrier parameters μ_k that converges to zero.

KKT conditions for constrained problem

Problem:

$$\min_{x} f(x)$$
subject to $c_{E}(x) = 0$

$$c_{I}(x) - s = 0$$

$$s \ge 0$$

Log-barrier method problem with slack variables S:

$$\min_{x,s} f(x) - \lambda \sum_{i=1}^{m} \log s_i$$

$$c_E(x) = 0$$

$$c_I(x) - s = 0$$

Note: $s_i > 0$ is satisfied automatically due to logarithm.

Perturbed KKT conditions for log-barrier:

$$\nabla f(x) - A_E^T(x) y - A_I^T(x) z = 0$$
$$-\lambda S^{-1}e + z = 0 \text{ or } -\lambda e + Sz = 0$$
$$c_E(x) = 0$$
$$c_I(x) - s = 0$$

Note: $\lambda e = -Sz$

My problem:

$$\min_{\tau} \iint -sgn\left(v\right)u\,f_{Y}\left(u,v;\tau\right)\,du\,dv$$
 subject to $\kappa - \iint \mathrm{sgn}\left(v\right)w\,f_{Z}\left(w,v;\tau\right)\,dw\,dv \geq 0$

Log-barrier formation:

$$\min_{\tau,s} \iint -sgn(\nu) u f_Y(u,\nu;\tau) du dv - \lambda \log s_1$$
subject to $\kappa - \iint \operatorname{sgn}(\nu) w f_z(w,v;\tau) dw dv - s_1 = 0$

Note: $s_1 > 0$ is satisfied automatically due to logarithm again.

Perturbed KKT conditions:

 $\exists \lambda, z_1, s_1$, such that

$$\iint -sgn(\nu) u \nabla_{\tau} f_Y(u, \nu; \tau) du d\nu - z_1 \left\{ \kappa - \iint sgn(\nu) \omega \nabla_{\tau} f_Z(\omega, \nu; \tau) dw d\nu \right\} = 0$$

$$\kappa - \iint sgn(\nu) w \nabla_{\tau} f_Z(\omega, \nu; \tau) dw d\nu - s_1 = 0$$

$$-\lambda/s_1 + z_1 = 0$$

From the last equation, we have $s_1 = \lambda/z_1 > 0$

There is theorem which gives the conditions under which, for sufficiently small μ , the sequence $\{\tau_{\mu}^*\}$ defines a differentiable penalty-barrier trajectory converging to τ_{μ}^0 .

To find τ_{μ}^{*} , we exploit its stationarity. The gradient of $\Phi_{PB}(\tau,\mu)$ is

$$\nabla_{\tau} \Phi_{PB}(\tau, \mu) = \iint -\operatorname{sgn}(v) u \nabla_{\tau} f_Y(u, v; \tau) \, du \, dv$$
$$+ \mu \frac{\iint \operatorname{sgn}(v) w \nabla_{\tau} f_Z(w, v; \tau) \, dw \, dv}{\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau) \, dw \, dv} + \frac{2}{\mu} \left(\tau^{\mathsf{T}} \tau - 1\right) \tau,$$

noting that ∇_{τ} represents the first order derivative with respect to τ . If we are willing to assume that $\Phi_{PB}(\tau,\mu)$ is twice-continuously differentiable, it must hold that $\nabla\Phi_{PB}(\tau_{\mu}^*,\mu) = 0$ to satisfy the stationarity, i.e.,

$$\iint \operatorname{sgn}(v) \, u \, \nabla_{\tau} f_Y \left(u, v; \tau_{\mu}^* \right) \, du \, dv = \mu \, \frac{\iint \operatorname{sgn}(v) w \, \nabla_{\tau} f_Z(w, v; \tau_{\mu}^*) \, dw \, dv}{\kappa - \iint \operatorname{sgn}(v) \, w \, f_Z(w, v; \tau_{\mu}^*) \, dw \, dv} + \frac{2}{\mu} \left(\tau_{\mu}^{*\mathsf{T}} \tau_{\mu}^* - 1 \right) \tau_{\mu}^*,$$

with $\tau_{\mu}^{*\dagger}\tau_{\mu}^{*\dagger} - 1 = 0$. The barrier multiplier, the coefficient in this linear relationship above, denoted by λ_{μ} , is defined as

$$\lambda_{\mu} \triangleq \frac{\mu}{\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv}.$$

This relationship can be re-written as

$$\lambda_{\mu} \left[\kappa - \iint \operatorname{sgn}(v) w f_Z(w, v; \tau_{\mu}) dw dv \right] = \mu.$$

This relationship between the barrier multiplier, the constraint value, and the barrier parameter, called perturbed complementarity, is analogous as $\mu \to 0$ to the complementarity condition $c(\tau^*)\lambda^* = 0$ that holds at a KKT point.

Estimation of the log-barrier penalty function

To estimate the log-barrier penalty function, we use kernel density estimators, denoted by

 $\widehat{f}_Y(u,v;\tau)$ and $\widehat{f}_Z(w,v;\tau)$, to estimate the corresponding density functions. Hence, the estimated log-barrier function is

$$\widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\widehat{f}_Y(u,v;\tau)\,du\,dv - \mu\operatorname{ln}\left[\kappa - \iint \operatorname{sgn}(v)w\widehat{f}_Z(w,v;\tau)\,dw\,dv\right],$$

and the gradient of the estimator is

$$\nabla \widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\nabla \widehat{f}_Y(u,v;\tau) \,du \,dv + \mu \frac{\iint \operatorname{sgn}(v)w\nabla \widehat{f}_Z(w,v;\tau) \,dw \,dv}{\kappa - \iint \operatorname{sgn}(v)w\widehat{f}_Z(w,v;\tau) \,dw \,dv}$$
$$= \iint -\operatorname{sgn}(v)u\nabla \widehat{f}_Y(u,v;\tau) \,du \,dv + \widehat{\lambda}_{\mu} \iint \operatorname{sgn}(v)w\nabla \widehat{f}_Z(w,v;\tau) \,dw \,dv,$$

where $\widehat{\lambda}_{\mu}(\tau) = \frac{\mu}{\kappa} - \iint \operatorname{sgn}(v) w \widehat{f}_{Z}(w, v; \tau) dw dv$.

Consistency of $\hat{\tau}^k$ and $\hat{\lambda}_{\mu}$.

We need to prove that $\widehat{\tau}^k$ is a consistent estimator of τ^{*k} .

$$\widehat{\tau}^k - \tau^{*k} = O_p(n^{1/2}), \text{ and } \widehat{\lambda}^k - \lambda^{*k} = O_p(n^{1/2}).$$

Theorem proved that λ_{μ} is bounded.

Asymptotic distribution of $\hat{\tau}^k$

Estimating equations:

$$\nabla \widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\nabla \widehat{f}_Y(u,v;\tau)\,du\,dv + \widehat{\lambda}_{\mu}(\tau)\iint \operatorname{sgn}(v)w\nabla \widehat{f}_Z(w,v;\tau)\,dw\,dv = 0$$

where $\hat{\lambda}_{\mu}(\tau) = \frac{\mu}{[\kappa - \iint \operatorname{sgn}(v)w \hat{f}_{Z}(w, v; \tau) dw dv]}$.

$$\nabla \widehat{B}(\tau, \mu) = \iint -\operatorname{sgn}(v) u \nabla \widehat{f}_{Y}(u, v; \tau) du dv + \widehat{\lambda}_{\mu} \iint \operatorname{sgn}(v) w \nabla \widehat{f}_{Z}(w, v; \tau) dw dv$$

$$= -\frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Y1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i} + \widehat{\lambda}_{\mu}(\tau) \frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}$$

$$= N(\mu_{1}, \Sigma_{1}) + C_{p} N(\mu_{2}, \Sigma_{2})$$

$$\nabla^{2}\widehat{B}(\tau,\mu) = \iint -\operatorname{sgn}(v)u\nabla^{2}\widehat{f}_{Y}(u,v;\tau) du dv +$$

$$\nabla \widehat{\lambda}_{\mu}(\tau) \iint \operatorname{sgn}(v)w\nabla \widehat{f}_{Z}(w,v;\tau) dw dv + \widehat{\lambda}_{\mu}(\tau) \iint \operatorname{sgn}(v)w\nabla^{2}\widehat{f}_{Z}(w,v;\tau) dw dv$$

$$= -\frac{2}{nh} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \left(\widehat{\lambda}_{\mu}(\tau)\boldsymbol{\beta}_{Z1} - \boldsymbol{\beta}_{Y1} \right) k' \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}}\boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}\boldsymbol{X}_{i}^{\mathsf{T}} +$$

$$\frac{2}{n} \sum_{i=1}^{n} \nabla \widehat{\lambda}_{\mu}(\tau) \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}}\boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}$$

$$\nabla \widehat{\lambda}_{\mu}(\tau) = \frac{\mu}{\left(\kappa - \iint \operatorname{sgn}(v) w \widehat{f}_{Z}(w, v; \tau) dw dv\right)^{2}} \iint \operatorname{sgn}(v) w \nabla \widehat{f}_{Z}(w, v; \tau) dw dv$$

$$= \mu \left[\kappa - \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} \left\{1 - 2K \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h}\right)\right\}\right]^{-1} \left[\frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{Z1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h}\right) \boldsymbol{X}_{i}\right]$$

[Notation: k and κ looks to similar]

[Need to estimate $\hat{\beta}$ too]

Need to prove that the difference between $\widehat{B}_n(\tau, \hat{\beta}, \mu)$ and $\widehat{B}_n(\tau, \beta^*, \mu)$ is negligible? i.e., $\widehat{B}_n(\beta^*) - \widehat{B}_n(\hat{\beta}) = O_p(n^{-1/2})$

Taylor expansion of $\nabla \widehat{B}(\tau^{*k}, \mu)$ at $\tau = \widehat{\tau}^k$ shows that

$$\nabla \widehat{B}(\tau^{*k}, \mu) = \nabla \widehat{B}(\widehat{\tau}^k, \mu) - \nabla^2 \widehat{B}(\widehat{\tau}^k, \mu)(\widehat{\tau}^k - \tau^{*k}),$$

where $\tilde{\tau}^k$ is between τ^{*k} and $\hat{\tau}^k$. As $\hat{\tau}^k$ is the minimizer of $B(\tau,\mu)$, it satisfies the first order condition that $\nabla B(\hat{\tau}^k,\mu)=0$. Therefore, we have

$$\sqrt{n}\nabla \widehat{B}(\tau^{*k},\mu) = -\sqrt{n}\nabla^2 \widehat{B}(\widetilde{\tau}^k,\mu)(\widehat{\tau}^k - \tau^{*k}).$$

Derivation of the integrations

The integration we need

$$\iint \operatorname{sgn}(v) u f(u, v; \tau, \beta_{\cdot 1}) du dv$$

$$= 2 \iint u \mathbb{I}(v \ge 0) f(v, u; \tau, \beta_{\cdot 1}) dv du - \int u f(u; \beta_{\cdot 1}) du$$

The estimator is

$$\begin{split} &\iint \operatorname{sgn}\left(v\right)u\,\widehat{f_{n}}\left(u,v;\tau,\beta_{\cdot 1}\right)\,du\,dv\\ =&2\iint u\,\mathbb{I}\left(v\geq0\right)\widehat{f_{n}}\left(v,u;\tau,\beta_{\cdot 1}\right)\,dv\,du-\int u\,\widehat{f_{n}}\left(u;\tau,\beta_{\cdot 1}\right)\,du\\ =&\frac{2}{nh^{2}}\iint u\,\mathbb{I}\left(v\geq0\right)\sum_{i=1}^{n}k\left(\frac{v-V_{i}}{h}\right)k\left(\frac{u-U_{i}}{h}\right)\,du\,dv-\\ &\frac{1}{nh}\int u\sum_{i=1}^{n}k\left(\frac{u-U_{i}}{h}\right)\,du\\ =&\frac{2}{n}\sum_{i=1}^{n}\boldsymbol{X}_{i,1}^{\intercal}\boldsymbol{\beta}_{\cdot 1}\left\{1-K\left(-\frac{\boldsymbol{X}_{i}^{\intercal}\boldsymbol{\tau}}{h}\right)\right\}-\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{X}_{i,1}^{\intercal}\boldsymbol{\beta}_{\cdot 1}\\ =&\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{X}_{i,1}^{\intercal}\boldsymbol{\beta}_{\cdot 1}\left\{1-2K\left(-\frac{\boldsymbol{X}_{i}^{\intercal}\boldsymbol{\tau}}{h}\right)\right\} \end{split}$$

where $\widehat{f}_n(u_1, u_2; \tau, \widehat{\beta}_{\cdot 1})$ are the kernel density estimator for $(X^{\dagger}\tau, X^{\dagger}\beta_{\cdot 1})$ with the forms of

$$\widehat{f}_n(u, v; \boldsymbol{\tau}, \widehat{\boldsymbol{\beta}}_{\cdot 1}) = \frac{1}{nh^2} \sum_{i=1}^n k\left(\frac{u - U_i}{h}\right) k\left(\frac{v - V_i}{h}\right).$$

Moreover, K(s) is the corresponding CDF of the kernel function k(s), which is chosen to be a symmetric probability density. More precisely, k(s) satisfies the following assumptions:

- 1. $\int_{-\infty}^{\infty} k(s) ds = 1.$
- 2. k(s) > 0 for all s.
- 3. k(-s) = k(s) for all s.
- 4. The first order derivative of the kernel, k'(s), exists and is bounded.

The last equality above holds by following the derivation.

We first derive
$$\frac{2}{h^2} \iint u_2 \mathbb{I}(u_1 \ge 0) k\left(\frac{u_1 - U_{i,1}}{h}\right) k\left(\frac{u_2 - U_{i,2}}{h}\right) du_1 du_2$$
. Let $s = \frac{u_1 - U_{i,1}}{h}$ and $t = \frac{u_1 - U_{i,1}}{h}$

 $\frac{u_2-U_{i,2}}{h}$. Then, $u_1=U_{i,1}+sh$ and $u_2=U_{i,2}+th$. Also, $du_1=h\,ds$ and $du_2=h\,dt$.

$$\frac{2}{h^2} \iint u_2 \mathbb{I} (u_1 \ge 0) k \left(\frac{u_1 - U_{i,1}}{h} \right) k \left(\frac{u_2 - U_{i,2}}{h} \right) du_1 du_2$$

$$= 2 \iint (U_{i,2} + th) \mathbb{I} (U_{i,1} + sh \ge 0) k (s) k (t) ds dt$$

$$= 2 \int U_{i,2} \mathbb{I} \left(s \ge -\frac{U_{i,1}}{h} \right) k (s) ds$$

$$= 2U_{i,2} \left\{ 1 - K \left(-\frac{U_{i,1}}{h} \right) \right\}$$

$$= 2\boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{\cdot 1} \left\{ 1 - K \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \right\},$$

where $K(s) = \int k(s) ds + c$. The second equality holds, as $\int k(t) dt = 1$ and $\int t k(t) dt = 0$. The third equality holds as $\int \mathbb{I}\left(s \geq -\frac{U_{i,1}}{h}\right) k(s) ds = 1 - \int_{-\infty}^{-U_{i,1}/h} k(s) ds = 1 - K\left(-\frac{U_{i,1}}{h}\right)$, where $U_{i,1} = \boldsymbol{X}_i^{\mathsf{T}} \boldsymbol{\tau}$.

Then, we derive $\frac{1}{h} \int u_2 k(\frac{u_2 - U_{i,2}}{h}) du_2$ by changing variable similarly. Let $t = \frac{u_2 - U_{i,2}}{h}$, and we get $u_2 = U_{i,2} + th$, and $du_2 = h dt$.

$$\frac{1}{h} \int u_2 k \left(\frac{u_2 - U_{i,2}}{h} \right) du_2$$

$$= \int (U_{i,2} + th) k(t) dt$$

$$= U_{i,2} = \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{\cdot 1}.$$

Again, the second equality holds as $\int k(t) dt = 1$, and $\int t k(t) dt = 0$. The integration over the first-order derivative

$$\iint \operatorname{sgn}(v) u \nabla \widehat{f}_{n}(u, v; \tau, \beta_{\cdot 1}) du dv$$

$$= \frac{\partial}{\partial \tau} \iint \operatorname{sgn}(v) u \widehat{f}_{n}(u, v; \tau, \beta_{\cdot 1}) du dv$$

$$= \frac{2}{n} \sum_{i=1}^{n} \boldsymbol{X}_{i,1}^{\mathsf{T}} \boldsymbol{\beta}_{\cdot 1} k \left(-\frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{\tau}}{h} \right) \boldsymbol{X}_{i}$$