How to CMOS

NMOS is a switch. Current **must** flow from drain to source. When the gate voltage is **high**, it turns on, otherwise it turns off.

PMOS is also a switch. Current **must** flow from source to drain. When the gate voltage is **low**, it turns on, otherwise it turns off.

If MOSFET is connected reversely, it's just a diode. Don't do that.

There are different ways to draw a MOS in different situations, but for now you can regard them as the same. Pay attention to the direction of the arrows.

The C in CMOS stands for complementary. Use NMOS to pull down (connect to ground) the output and use PMOS to pull up (connect to VCC) the output.

NOT gate in CMOS looks something like this (Green stand of high voltage/1 and grey stand for low voltage/0):

Recommended NMOS for hw2: ZVN4424G Recommended PMOS for hw2: ZVP4424G

How to use HEX display in Multisim

Step 1: Choose your hex display, read its function to find out what its part number.

Step2: Go to alldatasheet.com and search for that part number and read its datasheet

Step 3: HEX display is composed of many LEDs with common anode or cathode, you just need to light them up according to datasheet.

	Shape	C/A-398X ALPHA-NUMEI Part No.		RIC DISPLAY Chip		Wave	Electro-Optical Characteristics			
C.398H A.398H GaP Red 700 21 28 550 C.398G A.398G GaA1P GaP H.eff Red 635 2.0 2.8 1800 C.398G A.398G GaP Green 565 2.1 2.8 1600 C.398Y A.398Y GaA1P GAP YHIOW 585 2.1 2.8 1500 C.398SR A.398SR GAA1Ax Super Red 660 1.8 2.4 10000 Fig.D5 Fig.D5				Raw	Emitted		Vf(V)20mA	Iv(ucd)10mA	Fig. N
C.398E A.398E GAALPGAP H.effi Red 655 2.0 2.8 1800 C.398G A.398G GAP Green 565 2.1 2.8 1800 C.398Y A.398Y GAALPGAP YIROW 585 2.1 2.8 1500 C.398SR A.398SR GAALAS Super Red 660 1.8 2.4 10000 Fig.D5 6.30(.248) PIN 1 6.30(.248) 91.20(.047)										L
C.398G A.398G GaP Green 565 2.1 2.8 1600 D5: C.398Y A.398Y GaAsP/GaP Fillow 585 2.1 2.8 1500 C.398SR A.398SR GaAIAs Super Red 660 1.8 2.4 10000 Fig.D5 Fig.D5		1000						_		4
C.398Y A.398Y GaASP(GaP Villow 585 2.1 2.8 1500 C.3985R A.3985R GaAIAs Super Red 660 1.8 2.4 10000 Fig.D5	(10)									١
C-398SR A-398SR QaAlAs Super Red 660 1.8 2.4 10000 Fig DS 0.30(.248) PIN 1 0.30(.248) 0.1.20(.047)		(10.00)						_		D 5 5
Fig.D5 6.30(.24g) 7.00(.276) 7.00(.276) 6.30(.24g) 7.00(.276) 6.30(.24g) 7.00(.276) 6.30(.24g) 7.00(.276)		2000						_		4
6.30(.248) PIN 1 10' (626) 09 52 (927) 09 52 (928) 09	1000	C-398SR	A-398SR	GaAlAs	Super Red	660	1.8	2.4	10000	
		10.00(.394)	100	1.20(.047)		23.60(.929)			2.54%=20.38(800)	
	Ī	C-398X 4	,13,17	***	A-39	,	4,13 ¥ ¥ ¥	,17	* * * *	

Looks like for this hex display, if we want it to display T, then we need A,J,M to be high. We can test it in Multisim

If next time you need to use other component, you can follow the same procedure.

Reminder: 第二次作业第一题只能用 NAND 和 NOT, 别的逻辑门不能用。第一题第三小问 是要 CMOS 级别的仿真,即让你用 NMOS 和 PMOS 在 Multisim 里搭建出你在第二问里得出的 CMOS 设计,并仿真。