LSTM APPLICATIONS

(other than handwriting)

Thomas Breuel University of Kaiserslautern

OCR WITH LSTM

text line recognition

984-22/010007.bin.png

de' classici più illustri.

de' classici piu illustri.

984-22/010008.bin.png

Uniformi a questi principj, maturati già

Uniformi a questi principj, maturati gik

984-22/010009.bin.png

col consiglio dell'amico Muratori, e del Za-

col consiglio dell' amico Muratori, e del Za-

984-22/01000a.bin.png

notti, dell'Orsi, del Manfredi, furono i suoi

notti, dell'Orsi, del Manfredi, furono i suoi.

984-22/01000b.bin.png

scritti; e i giovanili si osservino già da lui

ecritti ; e i giovanili si osseryino giä da lui

class

OCR with LSTM

- recognition operates on text lines
- 1D LSTM, not 2D LSTM
- input text line needs to be carefully normalized (baseline, size)
- similar to HMM-based OCR
- output is a sequence of vectors
 - same length as width of input image
 - each vector represents posterior probability
 - requires "decoding" into symbol sequence

training LSTM

- parameters are adjusted using backpropagation, just as for simple MLPs
- problem: input is in pixels, output is in characters
- solution: use forward-backward alignment (from HMMs), called "CTC" by Schmidhuber

CTC, Viterbi, Forward-Backward (sorry about the informality)

- CTC is basically forward-backward
- training does not work with Viterbi
 - odd... it usually does for HMMs
- what's the difference?
 - initially, CTC spreads multiple classes
 - Viterbi just assigns one class, which is often wrong
- what makes CTC work is the combination of
 - learning posterior probabilities (instead of classifications)
 - spreading possible classifications, instead of guessing the best

OCR System	Train	Lang Mod?	English (UW3)	Fraktur Fontane	Fraktur E-G
OCRopus-LSTM	UW3 / artificial	_	0.60	0.15	1.37
Tesseract + dict	many	YES	1.3	0.90	1.47
OCRopus nnet + HMM	UW3	-	1.6		
OCRopus-lattice	many	YES	1.6		
OCRopus-lattice + ngraphs	UW3	-	2.14		
ABBYY 3.0 + dict	many	YES	0.85	(high)	(high)

(these results are a few months old; for more recent results and a detailed explanation, see our paper)

stand in the window of his chamber in the morning,

(a) stand in the window of his chamber in the morning,

Travers on Constitutional Irritation.

(b) Travers on Constitutional Irritation.

THE WORLD AND HIS WIFE;

(c) THE WORLD AND HIS WIFE;

Adjustments in OECD Countries." Economic Policy 21: 205-248.

(d) Adjustments in OECD Countries." Economic Policy 21: 205-248.

worte des Tertes unter eine Composition und überließ es

(e) worte des Textes unter eine Eomposition und überließ es

und Unanständigkeiten die bamalige fromme Musik gelit=

(f) und Unanständijgkeiten die damalige fromme Musik gelit-

OCR with LSTM

- Latin, Devanagari, etc. solved well with 1D LSTM, other scripts may require MDLSTM
- training only requires text line images and transcriptions (no characters, segmentation)
- almost no script-specific assumptions
- ligatures are learned automatically
- much less training data required (a few thousand lines)
- artificially generated training data suffices

OTHER LSTM APPLICATIONS

language modeling

recurrent neural network language models

- simple RNN
- LSTM-based

similar to Reber grammar examples

- usually predict probabilty distribution of next word
- other possibilities

examples

- Soutner and Müller, 2012
- Sundermeyer, Schlüter, Ney, 2012
- Azawi, Afzal, Breuel, 2013

speech recognition

- no full speech recognition system yet, more work on deep neural networks
- special purpose, preliminary uses
 - Graves and Schmidhuber: "Framewise phoneme classification with bidirectional LSTM and other neural network architectures" (2009)
 - Wöllner et al: "Robust discriminative keyword spotting for emotionally colored spontaneous speech using bidirectional LSTM networks (2012)

other applications

computer vision

 object recognition in very specific contexts, like meeting segmentation, multimodal interaction etc.

time series prediction

 chaotic time series prediction as test case, no significant applications to financial time series or forecast known

current work in IUPR

classic computer vision problems

- texture segmentation
- object recognition
- interest point detection
- face detection / recognition

document analysis problems

- binarization
- layout analysis
- language modeling

general sequence prediction problems

face detection in depth images

texture segmentation

layout analysis

event detection in time series

SUMMARY

summary

- many potential applications for LSTM
- most important so far: handwriting recognition and OCR
- very active:
 language modeling, speech recognition
- lots of room for work and new domains