Logarithmic Functions

A logarithmic function is

defined by
$$y = \log_a x$$
, $a \in \mathbb{R}^+$.

 $y = \log_a x$ is only valid for

$$x \in \mathbb{R}^+$$
.

Find the domain of the function

$$f: x \to \ln[x(x-1)]$$

Given that $f: x \to \ln x$ and $g: x \to x^3$, $x \in \mathbb{R}$.

Determine whether fg is defined.

By stating the largest possible domain, define fg.

Logarithm Vs Exponential

Theorem:

Let $a, x \in \mathbb{R}^+$ and $a \neq 1$. $f(x) = \log_a x$ and $g(x) = a^x$ are inverses of one another i.e.

$$f = g^{-1}$$
 and $g = f^{-1}$.

:. Hence, y = f(x) and y = g(x) are mirror image of one another in the line y = x.

Range of Natural Logarithm

$$\begin{cases} \ln x > 0 \text{ when } x > 1 \\ \ln x = 0 \text{ when } x = 1 \\ \ln x < 0 \text{ when } 0 < x < 1 \end{cases}$$

Derivative of Logarithmic Functions

Theorem:

Let $a, x \in \mathbb{R}^+$

$$(a)\frac{d}{dx}(\log_a x) = \frac{1}{x}\log_a e,$$

$$(b)\frac{d}{dx}(\ln x) = \frac{1}{x}$$

KFC

Theorem:

$$\frac{d}{dx}\left[\ln f(x)\right] = \frac{f'(x)}{f(x)}, f(x) \in \mathbb{R}^+$$

Example: Find

$$(i)\frac{d}{dx}\ln(x^2) = \qquad (ii)\frac{d}{dx}\ln(6x^4) =$$

$$(iii)\frac{d}{dx}\ln\left(\frac{5}{x^2}\right) = (iv)\frac{d}{dx}\ln(3+5x^2) =$$

$$(v)\frac{d}{dx}\ln(x^2+2x+5) = (vi)\frac{d}{dx}\ln\sqrt{1-x^2} =$$

Find the gradient of the tangent to the curve

$$y = \ln\left(\frac{x}{x^2 + 1}\right)$$
 when $x = 1$.

Find the equation of the tangent to the curve

$$y = \ln \sqrt{\frac{x+1}{x-1}} \text{ when } x = 2.$$

Find the x – coordinates of the stationary

points of the curve
$$y = \ln(x\sqrt{x^2 - 1})$$

Find the domain of the function $f(x) = \ln\left(\frac{x^2}{\sqrt{x-1}}\right)$.

State the domain in which f is increasing.

Example: Find

$$(a)\frac{d}{dx}\ln(\ln x^2) = (b)\frac{d}{dx}(\ln x)^4 =$$

Graph of Logarithmic Functions

The curve $y = \ln x$ is

(a) increasing because
$$\frac{d}{dx}(\ln x) > 0$$
.

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

Find
$$\frac{d}{dx} \ln(x^3 + 4x)$$
.

Prove that the tangent at x = e to the curve $y = \ln x$ passes through the origin.

Find the equation of the normal at x = 2 to the curve $y = \ln(2x - 3)$.

Using differentiation, find the equation of the tangent to the curve $y = 4 + \ln(x+1)$ at the point where x = 0.

Find the coordinates of the stationary point of the curve $y = \ln(x^2 - 6x + 10)$ and show that this stationary point is a minimum.

Example: (Napier's inequality)

- (a) Find the stationary value of $y = \ln x x$, and deduce that $\ln x \le x 1$ for x > 0 with equality only when x = 1.
- (b) Find the stationary value of $\ln x + \frac{1}{x}$, and deduce that

 $\frac{x-1}{x} \le \ln x$ for x > 0 with equality only when x = 1.

(c) By putting $x = \frac{z}{y}$ where 0 < y < z, deduce that

$$\frac{1}{z} < \frac{\ln z - \ln y}{z - y} < \frac{1}{y}.$$