Определение 1. Правило f, сопоставляющее каждому элементу x множества X некоторый элемент y множества Y, называется *отображением* из множества X в множество Y.

Обозначения: $f: X \to Y; f(x) = y; x \stackrel{f}{\mapsto} y.$

Задача 1. Какие из следующих соответствий задают отображения между множествами X и Y?

- а) X множество точек декартовой плоскости, Y множество точек оси абцисс, точке плоскости ставится в соответствие абцисса этой точки.
- **б)** $X = Y = \mathbb{N}$, числу $x \in X$ ставится в соответствие число x^2 .
- в) $X = Y = \mathbb{Z}$, число $y \in Y$ ставится в соответствие тем числам $x \in X$, для которых |x| = |y|.
- г) $X = Y = \mathbb{R}$, число $y \in Y$ ставится в соответствие тем числам $x \in X$, для которых $x^3 = y$.
- д) $X = Y = \mathbb{R}$, числу $x \in X$ ставится в соответствие одно такое число $y \in Y$, что $x = y^2$.

Определение 2. Пусть $f \colon X \to Y, \ y \in Y, \ A \subset X$ и $B \subset Y$. Всякий элемент $x \in X$, такой что f(x) = y, называется *прообразом* элемента y при отображении f. Полным прообразом элемента y при отображении f называется множество $f^{-1}(y) \stackrel{\text{def}}{=} \{x \in X \mid f(x) = y\}$. Образом множества $A \subset X$ при отображении f называется множество $f(A) \stackrel{\text{def}}{=} \{f(x) \mid x \in A\}$. Прообразом множества $B \subset Y$ называется множество $f^{-1}(B) \stackrel{\text{def}}{=} \{x \in X \mid f(x) \in B\}$.

Задача 2. Для каждого отображения из задачи 1 найдите полный прообраз каждого элемента $y \in Y$.

Задача 3. Найдите все отображения из множества $\{0,1,2\}$ в множество $\{0,1\}$ (их удобно рисовать, стрелочками обозначая, какой элемент в какой переходит, смотрите пример на рисунке справа).

Определение 3. Отображение $f: X \to Y$ называется *взаимно однозначным* или биекцией, если для каждого $y \in Y$ найдётся ровно один $x \in X$, такой что f(x) = y.

Задача 4. Какие из отображений задачи 1 взаимно однозначны?

Определение 4. Отображение f, не «склеивающее» элементы (то есть f(x) = f(y) только если x = y) называется вложением или интекцией $(A \stackrel{f}{\hookrightarrow} B)$. Отображение $f \colon A \to B$, «покрывающее» все элементы B (то есть f(A) = B) называется наложением или сюрьекцией $(A \stackrel{f}{\twoheadrightarrow} B)$.

Задача 5. Пусть A и B — конечные множества. Определите в терминах отображений: в множестве A **а)** меньше; **б)** больше элементов, чем в множестве B; **в)** столько же элементов, что и в B.

Задача 6. Каких треугольников с целыми сторонами больше:

- а) тех, периметр которых равен 2002, или тех, периметр которых равен 2005?
- **б)** тех, периметр которых равен 2003, или тех, периметр которых равен 2006?

Определение 5. Композицией отображений $f: X \to Y$ и $g: Y \to Z$ называется отображение, сопоставляющее элементу x множества X элемент g(f(x)) множества Z. Обозначение: $g \circ f$.

Задача 7. Докажите, что для произвольных отображений $f\colon X\to Y,\ g\colon Y\to Z$ и $h\colon Z\to W$ выполняется равенство $h\circ (g\circ f)=(h\circ g)\circ f.$

Задача 8. Пусть $f\colon X\to Y,\ g\colon Y\to Z.$ Верно ли, что если f и g взаимно однозначны, то и $g\circ f$ взаимно однозначно?

Задача 9. Пусть $f: X \to Y$ — взаимно однозначное отображение. Докажите, что существует и единственно такое отображение $g: Y \to X$, что g(f(x)) = x при любом $x \in X$ и f(g(y)) = y при любом $y \in Y$. Его называют *обратным* κ f. Обозначение: f^{-1} .

Задача 10. Найдите обратные к тем отображениям задачи 1, которые взаимно однозначны.

Задача 11. Докажите, что отображение, обратное к биекции, само есть биекция.

Задача 12. Докажите, что между следующими множествами точек на прямой есть взаимно однозначное отображение: **a)** любые два отрезка; **б)** любые два интервала.

Задача 13. Найдите $g \circ f$, если

- а) f и q повороты плоскости относительно одной и той же точки O на углы α и β соответственно.
- **б)** f и g симметрии плоскости относительно двух параллельных прямых l_1 и l_2 соответственно.
- в) f и g симметрии плоскости относительно двух непараллельных прямых l_1 и l_2 соответственно.

1 a	1 6	1 B	1 Г	1 д	2	3	4	5 a	5	5 B	6 a	6	7	8	9	10	11	12 a	12 6	13 a	13 6	13 B