Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization

24年 ACM MM (开源)

- 1. 目标: 音频, 伪造检测及时间定位
- 2. 数据集: LAV-DF (v+a) , HAD (a) , ASVS2019PS (a)
- 3. 方法:从粗到细的提案细化框架(CFPRF):帧级检测网络(FDN,粗粒度,单独训练)+提案细化网络(PRN,细粒度,即插即用)
- 4. FDN网络:
 - ①使用 SSL 模型 (即 Wav2Vec2 XLSR300M) 提取前端特征;
 - ②使用六个基于 CNN 的残差块来学习更高级的特征图;
 - ③经过两个模块,经过 Classifier 得到帧特征和帧分数。
- 5. FDN包括两个模块:
 - ①差异感知特征学习(DAFL)模块,扩大微小篡改引起的差异
 - ②边界感知特征增强 (BAFE) 模块,捕获过渡边界的上下文信息,引
- 导边界信息与时间特征之间的交互
- 6. PRN网络:输入是FDN中得到的帧特征和帧分数
 - ①粗粒度提案
 - ②经过池化编码器 (两个基于 CNN 的残差块+一个最大池化层)
 - ③采用两个基于 MLP的头部,预测的起始偏移量和持续时间偏移量
 - ④得到细粒度提案

(a) Coarse-to-Fine Proposal Refinement Network

Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization

24年 ACM MM (开源)

7. FDN的两个模块:差异感知特征学习(DAFL)模块和边界感知特征增强(BAFE)模块

①DAFL:分离频谱S和通道特征C,经过AttentionLayer,双特征整合后对比学习,真真/假假(正对),真假(负对)

②BAFE: BoundaryEncoder+交叉注意力+FNN+Norm

BoundaryEncoder: aMLP编码器+全连接层进行下采样,得到边界概率。考虑标签不平衡,使用无超参损失函数: P2sGrad 的均方误差 (MSE)。Classifier: 使用 aMLP 解码器,得到帧级伪造概率分数,使用基于 P2sGrad 的 MSE 作为损失函数。

Dataset	Method	EER ↓	AUC ↑	Pre↑	Rec↑	F1↑	
	IFBDN	0.35	99.98	99.92	99.65	99.78	
HAD	PSDL	0.18	99.97	99.96	99.82	99.89	
	CFPRF	0.08	99.96	99.98	99.92	99.95	
	IFBDN	9.68	95.70	93.72	90.32	91.99	
PS	PSDL	12.47	93.30	91.82	87.53	89.62	
	CFPRF	7.41	96.97	95.23	92.59	93.89	
LAV-DF	IFBDN	1.07	99.88	99.94	98.93	98.93	
	PSDL	0.82	99.92	99.95	99.18	99.57	
	CFPRF	0.82	99.89	99.95	99.18	99.56	

部分伪造检测结果。即对比的FDN网络

Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization

24年 ACM MM (开源)

Dataset	Method	AP@0.5	AP@0.75	AP@0.9	AP@0.95	mAP	AR@1	AR@2	AR@5	AR@10	AR@20
HAD	BA-TFD	79.86	37.98	5.55	0.57	40.93	45.12	47.53	49.99	52.09	55.15
	BA-TFD+	88.26	70.69	37.83	7.39	64.83	67.49	68.44	69.06	69.39	70.15
	UMMAF	99.98	99.86	98.01	88.17	98.49	98.68	98.73	98.84	98.85	98.86
	IFBDN+PRN [†]	93.85	91.55	87.75	79.08	90.40	96.07	97.39	97.54	97.54	97.54
	IFBDN+PRN	99.30	98.02	95.30	89.47	97.12	97.08	97.53	97.53	97.53	97.53
	PSDL+PRN [†]	88.53	85.27	80.80	73.25	84.25	93.40	96.30	96.89	96.94	96.94
	PSDL+PRN	98.94	97.10	93.06	86.13	95.88	96.48	96.61	96.61	96.61	96.61
	CFPRF	99.77	99.60	99.21	96.03	99.23	99.31	99.38	99.38	99.38	99.38
PS	BA-TFD	13.65	4.91	1.06	0.63	6.15	8.04	11.03	15.41	19.14	23.64
	BA-TFD+	15.72	6.37	2.05	1.95	7.69	7.93	12.62	18.28	22.17	26.71
	UMMAF	52.99	31.89	17.69	9.04	33.09	17.37	28.49	39.57	47.55	55.53
	IFBDN+PRN [†]	43.84	34.79	27.10	22.53	34.92	18.72	33.30	53.87	60.99	62.22
	IFBDN+PRN	58.65	49.30	41.39	35.33	48.79	18.52	34.77	55.41	64.47	62.23
	PSDL+PRN [†]	46.63	38.19	31.13	26.94	38.42	20.22	35.16	56.86	64.97	66.52
	PSDL+PRN	54.25	46.47	40.57	36.70	46.68	19.70	36.10	58.09	65.40	66.51
	CFPRF	66.34	55.47	48.05	40.96	55.22	18.48	35.57	58.06	65.47	66.53
LAV-DF	BA-TFD	53.53	10.98	0.36	0.02	20.77	29.56	32.22	34.73	38.03	44.66
	BA-TFD+	83.78	51.99	6.13	0.46	49.32	52.78	54.97	57.21	58.41	60.04
	UMMAF	97.29	95.67	89.92	61.97	92.04	85.67	91.77	94.89	95.64	96.14
	IFBDN+PRN [†]	86.83	84.02	77.85	70.09	82.55	86.28	91.78	92.13	92.13	92.13
	IFBDN+PRN	94.02	92.49	89.42	84.60	91.69	86.62	92.12	92.16	92.16	92.16
	PSDL+PRN [†]	76.10	71.71	65.16	57.13	70.43	84.71	89.14	89.98	90.03	90.03
	PSDL+PRN	92.76	90.01	85.95	78.85	89.02	85.66	90.03	90.06	90.06	90.06
	CFPRF	94.52	93.47	91.65	88.64	93.01	87.59	93.49	93.51	93.51	93.51

8. PRN是即插即用的,配合现有的FDN网络进行对比;

9. 其中带 † 的是粗 粒度提案