Airlines Customer Satisfaction

Nhập môn Trí tuệ nhân tạo

Group 16

Thành viên:

- Đinh Ngọc Huân
- Đỗ Minh Hiệp
- Chu Đình Đức

Nội dung

- 1. Giới thiệu đề tài
- 2. Phương pháp áp dụng
- 3. Xây dựng chương trình
- 4. Kết luận
- 5. Thông tin khác

1. Giới thiệu đề tài

- Đặt vấn đề: Sự hài lòng của khách hàng đóng vai trò chủ chốt đối với thành công của các hãng hàng không
- Đề tài: Đánh giá mức độ hài lòng của hành khách đi máy bay
- Mô tả đề tài: Bài toán dự đoán khách hàng tương lai sẽ hài lòng với dịch vụ của hãng hàng không này hay không dựa vào dữ liệu của chuyến bay và phản hồi của khách hàng

Phương pháp 1: LinearSVC - mô hình SVM gốc

- LinearSVC học ra một siêu phẳng từ tập dữ liệu mà có thể phân chia tốt tập dữ liệu thành 2 phần
- Cụ thể là sử dụng lý thuyết đối ngẫu trong tối ưu để học ra siêu phẳng H màu đỏ với mức lề lớn nhất

$$\max \frac{2}{\|w\|} \Leftrightarrow \min \frac{\|w\|}{2}$$
 conditioned on: $y_i(< w.x_i > +b) \ge 1$

Phương pháp 1: LinearSVC - mô hình SVM gốc

- Ưu điểm:
 - Hiệu quả trong không gian chiều cao
 - Hiệu quả với cả bài toán có số chiều lớn hơn số mẫu quan sát
 - Hiệu quả về bộ nhớ do chỉ sử dụng một tập nhỏ các mẫu quan sát (support vectors) làm bộ phân loại
 - Sử dụng lý thuyết đối ngẫu mạnh mẽ trong tối ưu
- Nhược điểm:
 - Khó khăn trong việc lựa chọn regulation để tránh overfit

Phương pháp 2: CatBoost - biến thể mới của Gradient Boosting

- Boosting là một dạng ensemble learning, lớp phương pháp này tổng hợp nhiều model (cây quyết định) yếu thành một model mạnh hơn
- Cây phía sau sẽ được học tiếp từ cây phía trước với mong muốn sẽ khắc phục được yếu điểm của cây trước đó
- Cuối cùng chúng ta tổng hợp kết quả của tất cả các cây để thu được kết quả cuối cùng

Sequential

Phương pháp 2: CatBoost - biến thể mới của Gradient Boosting

Phương pháp 2: CatBoost - biến thể mới của Gradient Boosting

Cải tiến của CatBoost so với Gradient Boosting:

- Cây cân bằng
- Boosting có thứ tự
- Hỗ trợ thuộc tính gốc

Lý do lựa chọn phương pháp: Do hiện tại chưa biết có thế tìm được một siêu phẳng phân chia tốt tập dữ liệu thành 2 phần (hài lòng và không hài lòng) hay không, chúng em lựa chọn mô hình LinearSVC trong trường hợp tìm được siêu phẳng như vậy và trong trường hợp ngược lại chúng em lựa chọn CatBoost.

3. Xây dựng chương trình

Chương trình được xây dựng bằng framework Streamlit - framework chuyên dùng cho các model học máy

- Input: Giá trị của các thuộc tính đầu vào
- Output: Kết quả dự đoán của 2 model

Airlines Customer Satisfaction

INPUT

OUTPUT

LinearSVC CatBoost
Satisfied Satisfied

4. Kết quả và hướng phát triển

Kết quả:

- Huấn luyện 2 model LinearSVC, CatBoost để so sánh kết quả
- Độ chính xác trên tập test của LinearSVC là 0.83 và CatBoost là 0.93
- Xây dựng thành công chương trình với giao diện đẹp mắt, dễ hiểu

Hướng phát triển:

- Thử nghiệm thêm các phương pháp khác
- Chuyển từ localhost thành host
- Thu thập, tăng cường dữ liệu

4. Kết quả và hướng phát triển

Mô hình LinearSVC

	precision	recall	f1-score	support
0	0.82	0.82	0.82	11749
1	0.85	0.85	0.85	14149
accuracy			0.83	25898
macro avg	0.83	0.83	0.83	25898
weighted avg	0.83	0.83	0.83	25898
accuracy_sco	re 0.83481349	91119005		

4. Kết quả đạt được

Mô hình CatBoost

	22.	precision	recall	fl-score	support
	Θ	0.92	0.93	0.92	11548
	1	0.94	0.93	0.94	14350
accur	асу			0.93	25898
macro		0.93	0.93	0.93	25898
weighted	avg	0.93	0.93	0.93	25898
accuracy_	score	0.93153911	49895745		

5. Thông tin khác

• Phân công công việc

Thành viên	Công việc	Mức độ hoàn thành	
Đinh Ngọc Huân	Tiền xử lý dữ liệu		
	Viết báo cáo	100 /0	
Đỗ Minh Hiệp	Triển khai mô hình LinearSVC	100%	
	Viết báo cáo	100%	
Chu Đình Đức	Triển khai mô hình CatBoost	100%	
	Viết báo cáo, xây dựng chương trình	10070	

THANK YOU