1

Control Systems

G V V Sharma*

		Contents		10 Oscillator 2
1	Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula		1 1 1	systems based on GATE problems.Links to sample Python codes are available in the text.
	1.2	Matrix Porniula	1	Download python codes using
2	Bode I 2.1 2.2	Plot Introduction	1 1 1	control/codes
3	Second order System		1	1 Signal Flow Graph
	3.1	Damping	1	
	3.2	Example	1	
4	Routh Hurwitz Criterion		1	2 D D
	4.1	Routh Array	1	
	4.2	Marginal Stability	1	
	4.3	Stability	1	
	4.4	Example	1	3.1 Damping
5	State-Space Model		1	
	5.1	Controllability and Observ-	•	4 Routh Hurwitz Criterion
		ability	1	
	5.2	Second Order System	1	• -
	5.3	Example	1	
	5.4	Example	1	·
6	Nyquis	st Plot	1	4.4 Example 5 State-Space Model
7	Compe	ensators	2	5.1 Controllability and Observability
•	7.1	Phase Lead	2	•
	7.2	Example	2	2
0	Coin N		2	5 4 Frample
8	8.1	Margin Introduction	2	
	8.2	Example	2	-
9	Phase Margin 2		2	· · · · · · · · · · · · · · · · · · ·
		with the Department of Electrical Enginee of Technology, Hyderabad 502285 India e-1		,

 $H(s) = \frac{s+3}{s+4}$

(6.1.2)

gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

6.2. Solution:

$$G(s)H(s) = \frac{20(s+3)}{s(s+1)(s+4)}$$

$$= \frac{20s+60}{s^3+5s^2+4s}$$
(6.2.1)

$$1 + G(s)H(s) = \frac{s^3 + 5s^2 + 24s + 60}{s^3 + 5s^2 + 4s}$$
 (6.2.2)

6.3. Nyquist Stability Criterion can be expressed as:

$$Z = N + P \tag{6.3.1}$$

Where:

Z = number of roots of 1+G(s)H(s) in right-hand side (RHS) of s-plane (It is also called zeros of characteristics equation)

N = number of encirclement of critical point 1+j0 in the clockwise direction

P = number of poles of open loop transfer function (OLTF) [i.e. G(s)H(s)] in RHS of s-plane.

Z=N+P is valid for all the systems whether stable or unstable. For the stable system, Z=0, So for the stable system N=-P.

if
$$p = 0$$

there will be no Encirclement of Nyquist plot and the system is stable

$$G(s)H(s) = \frac{20(s+3)}{s(s+1)(s+4)}$$
 (6.3.2)

$$Here P = 0 (6.3.3)$$

$$Then N = 0 (6.3.4)$$

by seeing the we conclude that N = 0 and P = 0

hence the systen is stable (6.3.5)

verify the answer with python code https://github.com/srikanth2001/EE2227control-systems/tree/master/codes

7 Compensators

- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example

9 Phase Margin 10 Oscillator