

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 5: C & PULSIERENDER SPEICHER

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 27.11.2020

DIE ACKERMANN-FUNKTION

"Die Ackermannfunktion ist eine 1926 von Wilhelm Ackermann gefundene, extrem schnell wachsende mathematische Funktion, mit deren Hilfe in der theoretischen Informatik Grenzen von Computer- und Berechnungsmodellen aufgezeigt werden können."

Quelle: https://de.wikipedia.org/wiki/Ackermannfunktion

Definition von ack : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$\mathbf{ack}(0,y) = y + 1 \tag{} y \ge 0)$$

$$ack(x,0) = ack(x-1,1) \qquad (x>0)$$

$$ack(x,y) = ack(x-1,ack(x,y-1)) \qquad (x,y>0)$$

DIE ACKERMANN-FUNKTION

Definition von ack : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$

$$\mathbf{ack}(0,y) = y + 1 \tag{} y \ge 0)$$

$$ack(x,0) = ack(x-1,1) \qquad (x>0)$$

$$ack(x,y) = ack(x-1,ack(x,y-1)) \qquad (x,y>0)$$

einige Werte

$x \setminus y$	0	1	2	3	4	 m
0	1	2	3	4	5	 m+1
1	2	3	4	5	6	 m + 2
2	3	5	7	9	11	 2m + 3
3	5	13	29	61	125	 $8 * 2^m - 3$
4	13	65533	$2^{65536} - 3$			 $\underbrace{2^{2^{\cdots^2}}}_{m+3} - 3$

AUFGABE 1

```
1 #include <stdio.h>
2 int ack(int x, int y){
   int a;
3
4 if ((x == 0) && (y >= 0)) return y + 1;
else if ((x > 0) && (y == 0)) return ack(x-1, 1);
else if ((x > 0) && (y > 0))
     a = ack(x, y-1);
7
8 return ack(x-1, a); }
9 }
10 int main() {
11
   int x = 0, y = 0, a;
printf("\nAckermannfunktion\n");
printf("x = "); scanf("%d", &x);
printf("y = "); scanf("%d", &y);
15 a = ack(x,y);
printf("ack(%i,%i)=%i.\n", x, y, a);
return 0;
18 }
```

AUFGABE 2

```
9 int main() {
  #include <stdio.h>
                                           int x = 3, y = 6;
2
                                      10
3 void swoop(int a, int b) {
                                     11 /* label 3 */
4 /* label 1 */
                                      12 swoop(x, y); /*$1*/
5 \quad a = b;
                                     13 /* label 4 */
                                           printf("x = %d, y = %d", x, y);
6 \quad b = a:
                                      14
7 /* label 2 */
                                     15 return θ;
                                      16 }
```

AUFGABE 2 — TEIL (A)

Label	RM	1	2	3	4
label3	_	х 3	у 6		
label1	1			a 3	b 6
label2	1			а 6	b 6
label4	_	х 3	у 6		

AUFGABE 2 — TEIL (B)

```
1 #include <stdio.h>
2 void swap(int *x, int *y){
3 int tmp;
tmp = *x;
5 \qquad *x = *y;
*y = tmp;
7 }
8 int main() {
    int x = 4, y = 6;
9
10 printf("x = \frac{1}{2}d, y = \frac{1}{2}d \n", x, y);
11 swap(&x, &y);
printf("x = %d, y = %d \n", x, y);
13 return 0;
14 }
```

AUFGABE 3

```
#include <stdio.h>
                                             /* label 4 */
                                        21
2
                                        22
                                              if (i > 0) {
3 int a;
                                        23 f(i - 1, &u);/* $3 */
                                             /* label 5 */
   void q (int i, int j, int *x);
                                        24
5
                                        25
                                             *x = u + j;
   void f (int i, int *z) {
                                        26
                                              }
7
     int u:
                                        27
                                              else
   /* label 1 */
                                        28 *x = 1:
8
    if (i > 0) {
9
                                        29
10
    f(i - 1. &u):/* $1 */
                                        30
      /* label 2 */
                                            int main () {
11
                                        31
       q(i - 1, u, z)/* $2 */;
                                              int b:
12
                                        32
    /* label 3 */
13
                                        33 scanf("%i", &a);
14 }
                                        34 /* label 6 */
15 else
                                        35 f(a, &b):/* $4 */
    *z = 1:
                                             /* label 7 */
16
                                        36
                                              printf("%d", b):
17 }
                                        37
18
                                        38
                                              return 0:
19
   void q (int i, int j, int *x) {
                                        39 }
20
     int u:
```

AUFGABE 3 — TEIL (A)

Gültigkeitsbereiche

Objektname	Gültigkeitsbereich
a	3 – 39
g	4 – 39
i,j,xing	19 – 29
u in g	20 – 29
f	6 – 39
i,zinf	6 – 17
u in f	7 – 17
main	31 – 39
b in main	32 – 39

AUFGABE 3 — TEIL (B)

Label	RM	1	2	3	4	5	6	7	8	9	10	11	12
label1	4	a 2		i 2	z 2	u ?							
label1	1:4	a 2				•	i	z 5	u 2				
label1	1:1:4	a					'		•	i 0	Z 8	u	
label2	1:4	a					į	Z	u	U	0	?	
label4	2:1:4	2 a					1	5	1	i	j	X	u
label3	1:4	2 a						7	u	0	1	5	?
labels	1.4	2				1	1	5	1				

Label	RM	1	2	3	4	5	6	7	8	9	10	11	12
label2	4	a 2		i 2	z 2	u 1							
label4	2:4	a 2					i 1	j 1	х 2	u ?			
label1	3:2:4	a 2									i 0	z 9	u ?
label5	2:4	a 2					i 1	ј 1	х 2	u 1			
label3	4	a 2	2	i 2	z 2	u 1							
label7	ε	a 2	b 2										