本试卷适用范围 材控、交运 13 级 期末考试

南京农业大学试题纸

14-15 学年一学期 课程类型: 必修(√)、选修 试卷类型: A(√)、B

课程_理论力学	生 班级	学号	姓名	成绩
一、填空题	〔(12分)			
1、写出任意三	种常见的约束类	Ð:;	4	;o
1				
3、二力杆的受力	力特征是	383 =	0	*
4、如图所示的平面汇交力系的力多边形表示力系的合力为。				
-			,	$\backslash F_2$
				F
5、已知某刚体的质量 m 和该刚体对某轴的惯性半径ρ,则该刚体对该轴的转动惯量				
为。				
6、平面运动可取任意基点而分解为平移和转动,其中平移的速度和加速度与基点的选				
择,	平面图形绕基	点转动的角速度和角	角加速度与基点的	选择。(填写有
关或无关)				
7、一般情况,在每一瞬时,平面图形上都唯一地存在一个速度为零的点,该点称为。				
8、一刚度系数为	为 k 的弹簧, 从	原长释放,伸长 δ ,	弹性力的功为	о
二、作图题	(16分)			
1、画出图示结构中 BE 构件的受力图,明确受力方向。各构件自重不计,摩擦不计。(5分)				
-	$1ar{F}$			
E	\	र्च		
	,	♠ ,		
	D			
		<i>≫</i> -		
1	A	\sum_{m}^{B}		
	11 \dagger			
2、已知物块 B 的速度和加速度,画出图示瞬时动点的速度合成图和科氏加速度方向。(6 分)				
		1		/
		,	//	
		$\mathbf{B} \mid \overline{v}_{\scriptscriptstyle B}$		\mathbf{B} \overline{v}_{B}
	0 ($\bar{a}_{\scriptscriptstyle E}$	o K	$\bar{a}_{\scriptscriptstyle B}$

3、图示各平面机构的构件均在同一平面运动,指出图示位置平面运动刚体的速度瞬心,且 画出角速度转向,并画出 M 点的速度方向。(5 分)

三、简算题(24分)

1、双直角曲杆可绕 O 轴转动,图示瞬时 A 点的加速度 $a_A=30 cm/s^2$,方向如图,则 B 点加速度大小为多少?(6 分)

2、求图中力 F 对点 O 的矩。已知 a=60cm, b=20cm, F=400N。(4分)

3、平面机构如图所示。已知 $AB//O_1O_2$,且 $AB=O_1O_2=l$, $O_1A=O_2B=r$,ABCD 是矩形板, AD=BC=b, O_1A 杆以匀角速度 ω 绕转动,试写出矩形板 中心点 C' 的速度和加速度,并在图上标出方向。 $(4\, \%)$

4、图示摆由摆杆 OA 和摆锤 B 组成,其中摆杆视为重 P1、长为 I 的匀质细长杆,摆锤视为重 P2、半径为 R 的均质等厚圆盘。求摆对于轴 O 的转动惯量。(4 分)

5、机构某瞬时位置如图,每个物体均为匀质,质量均为 m,设 OA = 2r,半径为 r 的圆轮作纯滚动,OA 的角速度为 ω ,求该瞬时机构的动量,在图上表示方向,OA 杆对轴 O 的动量矩及圆轮的动能。 $(6\, \%)$

四、计算题(48分)

1、图示组合结构由 T 形杆 ABC 和直角杆 DEC 铰接而成,BC 和 DE 线均与地面平行,已知:P=20KN,q=6KN/m,不计杆重。求固定端 A 及支座 D 处的约束力。(12 分)

2、图示平面机构中,杆 O_1A 绕 O_1 轴转动,设 $O_2B=l$,在图示位置 $\phi=30^\circ$,杆 O_1A 的角速度为 ω ,角加速度为零。试求该瞬时杆 O_2B 转动的角速度和角加速度。(12 分)

3、如图所示,OA 杆长l,两端分别用铰链连接一圆轮 O 和一物块 A,轮 O 的半径为 r,沿水平面作纯滚动;已知在图示位置时的角度 θ ,物块 A 的速度为 v_A ,加速度为 a_A ,求 OA 杆的角速度和角加速度。 $(12\, 分)$

4、如图所示为一半径为 R,质量为 m1 的均质圆轮,其轮心 C 处系一细绳绕过滑轮 0,绳的另一端系一重为 P 的重物,轮子在水平面上只滚不滑,均质滑轮质量为 m2,半径为 r。求: (1) 轮心 C 的加速度; (2) 轮子与地面的摩擦力。(12 分)

教研室主任

出卷人_力学与材料教研室_

515