Module 2 - Image Processing with OpenCV and Pillow

What is a Digital Image?

- A digital Image can be interpreted as a rectangular array of numbers
- Images are comprised of a rectangular grid of blocks called pixels
 - We can represent these pixels with numbers called intensity values
- An image can take on an almost unlimited number of values, but digital images have intensity values between zero and 255
- Pillow is a popular library for working with images in Python
- OpenCV is a library used for Computer Vision

Image Processing with OpenCV - Ex1

Completed Lab Exercise - attached

Manipulating Images

- Copying allows you to create a new image independent of the original
- Flipping images changes the image's orientation We can flip an image by changing the index value of a pixel or intensity

Manipulating Images One Pixel at a Time

- · Cropping is cutting out the part of the image and throwing out the rest
- OpenCV can perform pixel manipulations

Basic Image Manipulation with Pillow - Ex2

Completed Lab Exercise - attached

Basic Image Manipulation with OpenCV - Ex3

Completed Lab Exercise - attached

Pixel Transformations

- Histograms: A histogram counts the number of occurrences of a pixel, and it's a useful tool for understanding and manipulating images
- Intensity Transformations: An Intensity Transformation changes an image one pixel at a time. Some image transformations depend on neighbouring pixels

Histograms and Intensity Transformations

Completed Lab Exercise

Geometric Operations

- Geometric Transformation: We change the coordinates of the image x and y. In PIL we can scale the image by specifying the integer number of pixel's using the method .resize()
- Geometric Scaling: Scaling is where we reshape the image, we can shrink
 or expand the image in a horizontal and or vertical direction. .resize() can
 also be used to scale an image in OpenCV or PIL
- Geometric Translation: Translation is where we shift the image, we can shift an image horizontally or vertically. In OpenCV, .warpAffine() allows you to translate an image by x pixels in the horizontal direction and y pixels in the vertical direction
- Geometric Rotation: Rotates an image by an angle theta. In OpenCV,
 .getRotationMAtrix2D() allows you to rotate an image by the angle inputted

Geometric Transformations with Pillow

Completed Lab Exercise

Spatial Operations in Image Processing

- Linear Filtering: Linear filtering applies a linear convolution between an image and a kernel (also called a mask or filter). The output pixel is a weighted sum of its neighbours, determined by the kernel.
- Edge Detection: Edge detection identifies areas of rapid intensity change.
 These areas often correspond to object boundaries in an image
- Median Filters: A non-linear filtering technique where the output pixel is the median of the surrounding neighbourhood. It's effective for removing saltand-pepper noise while preserving edges

Practice Assessment Completion

Practice Assessment

1.	What type of image operation can convolution perform?	1 point
	C Edge Detection	
	○ Sharpening	
	Blurring	
	All of the above	
2.	What is linear filtering?	1 point
	O It is a standard way to add text data	
	It is a standard way to filter Images using convolution	
3.	A video sequence is a :	1 point
	sequence of images	
	o a large image	
4.	OpenCV:	1 point
	has more functionality than PIL library, but is more difficult to use	
	identical to PIL	
5.	In OpenCV an image is a:	1 point
	a numpy array, with intensity values as 8-bit unsigned	
	on image object	

ChatGPT Q&A

https://chatgpt.com/share/6818ae99-5ed4-8001-ba28-3af775924913