Reinforcement Learning for Autonomous Driving - Week 4

Brandon Dominique, Hoang Huynh, Eric Av, John Nguyen

- Meta-learning: John Nguyen
- Gazebo: Eric Av
- Reinforcement Learning: Hoang Huynh
- Meta-Cognitive Radio: Brandon Dominique

Meta-learning: Learning to Learn

Introduction

How/why it is useful

Basic Example

Algorithm 3 MAML for Reinforcement Learning

Require: p(T): distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ} in \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{T_i}(f_{\theta})$ using \mathcal{D} and \mathcal{L}_{T_i} in Equation 4
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 11: end while

Meta-learning Framework: 2 Al's, 1 System

- Type of machine learning
 - Goal is to make a "model" very good at a task.
 - o Ex. Fake vs. Real Image Recognition

- 2 Intelligences:
 - o A "model" that learns the task.
 - o An "agent" that changes the model to learn faster.
 - Changes parameters of model.

Learning a Class of Tasks

- Meta-learning methods teach a class of tasks to a model, instead of a single task.
 - Meta-learning lends itself well to few-shot learning:
 learning with a very small sample size.
- The goal of meta-learning is to teach general intelligence.
 - We want the model to be able to perform similar tasks well without training on each task individually.
 - Ex. recognizing fake dog pictures vs recognizing fake human pictures.

Toy Example: MAML + 2 Armed Bandit

- 2 armed bandit problem: 2 slot machines with unknown probabilities to win.
 - Maximize Payout, Minimize Payout
- MAML is the gold standard meta-learning algorithm.
- Do not assume a slot machine is better than the other with no data.
 - o I introduce a bias, and see if the agent can auto correct the bias.
- Framework:
 - The model attempts to figure out which of the 2 slot machines is better.
 - Problem: The model has a bias as to which slot machine is best without any data.
 - The agent attempts to correct this bias.

```
initial bias: [0.389 0.611] final bias: [-0.001 -0.001]
```


ROS and Gazebo Successes

- Studied ROS and Gazebo relationship and importance
- Followed Car movement and forward sensor tutorial on Gazebosim
- Created first workspace with ROS and Gazebo to create a basic vehicle
- Used Simulink to command movement of car, essential for further implementation ideas

ROS and Gazebo Struggles

- Tutorials help but outdated tutorials are often misleading
- Troubles creating first workspace with ROS and Gazebo (again with the folders and different extensions ie: .launch, .world., .urdf or .sdf)
- Miscellaneous struggles concerning
 Ubuntu and console command
 learning curve

Apply Reinforcement Learning

- A non-profit research company
- Aims to promote and develop friendly AI in such a way as to benefit humanity

Apply Reinforcement Learning

Open AI gym

 a library that aids to develop and comparing reinforcement learning algorithms.

Cart Pole Game

Cart Pole Game

Policy Gradient Theory

- R is Reward, D is discount Rate
- \circ R_{t=0}+ R_{t=1}D + R_{t=2}D²+ R_{t=3}D³ + + R_{t=n}Dⁿ

Closer D is to 1, the more weight future rewards have. Closer to 0, future rewards don't count as much as immediate rewards

Before Training

After Training

Reinforcement Learning

- A. Yang Reinforcement Learning & Control
 - Definition of Markov Decision Processes
 - State, Action, Discount Factor, Possible Next States, and Reward Function
 - Adjust Certain Parameters based on what you are trying to achieve (Ex: Make Discount Factor = 0 to only focus on the immediate result of an action)
 - $R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$
- D. Silver (DeepMind) Lecture: MDPs
 - Markov Processes, Markov Reward Processes, Markov Decision Processes
 - Class Example

Example: Student Markov Chain Episodes

Sample episodes for Student Markov Chain starting from $S_1 = C1$

$$S_1, S_2, ..., S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Yau et. al - Application of Reinforcement Learning in Cognitive Radio Networks:

- Q Learning and Greedy How can I, the RL Model, efficiently find the episode with the most rewards for me?
- $Q_{t+1}^{i}\left(s_{t}^{i}, a_{t}^{i}\right) \longleftarrow (1 \alpha) Q_{t}^{i}\left(s_{t}^{i}, a_{t}^{i}\right)$ $+ \alpha \left[r_{t+1}^{i}\left(s_{t+1}^{i}\right) + \gamma \underset{a \in A}{\max} Q_{t}^{i}\left(s_{t+1}^{i}, a\right)\right]$
- 8 Areas of Research for RL
 - Dynamic Channel Selection
 - Channel Sensing

PU signal
SU signal

Todo

- Make list of reinforcement learning methods used on autonomous vehicles.
 - o Compile list of compatible meta-learning methods.
- Be able to manipulate the different sensors on the CAT Vehicle in ROS and Gazebo
 - o Receive input and output data from Gazebo
- Connect reinforcement learning to meta-learning.
- Determine a class of tasks we want to model.
- Explore past research in Dynamic Channel Selection/Channel Sensing
- Learn how to use TensorFlow to create a RL

Questions?