✓ 什么是语音分离呢?

∅ 输入为混合的声音,输出各个讲话者单独的声音:

- - ♂ 在混合的声音信号中,拿出来每一个人的声音不就好了!
 - 必 并不需要对信号做特殊的变换处理,想办法分离出来每一个

✅ 求解流程

夕 先得到输入特征,例如16个采样点,每个为D维特征: (可以先假设输入的就是两个人的语音信号,其中 0表示第一个人,1表示第二个人)

D-dimensional vector

1
2

✓ 求解流程

- ♂ 对得到的所有"样本"进行Kmeans聚类操作,可以得到其每一个的类别
- ❷ 把得到的label结果当做mask矩阵就可以啦,分离出来,两个mask就搞定了!

✓ Conv-TasNet

Ø 可别整那么复杂了,又得提特征,又得embedding,还得聚类的。。。

❷ 现在啥不流行个一条龙服务啊!可以当做是编码,解码的过程!

✅ 网络结构细节:

- ❷ 全卷积
- ❷ 更大的感受野
- ∅ 纯语音输入输出
- end to end

✓ Repeat中加入了Depthwise卷积

✓ Pointwise卷积

- ❤ 更大的感受野
 - ♂ 通过多次重复1-D卷积
 - ∅ 并且还是空洞的,这样感受也堆的更快
 - ♂ 在堆叠过程中使用DW卷积, 省!

(当d=2时的空洞卷积)

❤ 当卷积核大小均为3*3时

(正常的感受野)

(2-dilated conv)

(4-dilated conv)

✓ 逐渐增大的dilation,我们最终拿到的输出,相当于很大的感受野了!

✅ 相当于多次重复之后,我们看到的句子长度在逐渐增大!

一般用SISNR:
$$\begin{cases} \mathbf{s}_{target} := \frac{\langle \hat{\mathbf{s}}, \mathbf{s} \rangle \mathbf{s}}{\|\mathbf{s}\|^2} \\ \mathbf{e}_{noise} := \hat{\mathbf{s}} - \mathbf{s}_{target} \\ \mathbf{SI-SNR} := 10 \log_{10} \frac{\|\mathbf{s}_{target}\|^2}{\|\mathbf{e}_{noise}\|^2} \end{cases}$$

 $\hat{s} \in \mathbb{R}^{1 \times T}$ and $s \in \mathbb{R}^{1 \times T}$ are the estimated and original clean sources, respectively (其实就是先把预测结果头像到真实值上得到target,再做个减法就得到noise)

Method	Model size	Causal	SI-SNRi (dB)
Conv-TasNet-gLN	5.1M	×	15.3
uPIT-LSTM [7]	46.3M	V	_
LSTM-TasNet [26]	32.0M		10.8
Conv-TasNet-cLN	5.1M	1	10.6