2 置換の解答例

演習 2.1 (i) (1,5,3,2,4), 偶置換

- (ii) (1,4,5,2,3), 偶置換
- (iii) (1,3,5,2)(4,6), 偶置換
- (iv) (1,4)(2,3), 偶置換

演習 2.2 i 番の縦線と i+1 番の縦線との間に引く横線がちょうど互換 (i,i+1) に対応する. (正解は下記以外にも無数にあり得ます.)

(i)
$$(3,4) \circ (1,2) \circ (4,5) \circ (2,3)$$

(ii)
$$(1,5) = (1,2) \circ (2,3) \circ (3,4) \circ (4,5)$$

 $\circ (3,4) \circ (2,3) \circ (1,2)$

(iii)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix} = (1,2) \circ (2,3) \circ (3,4) \circ (2,3) \circ (4,5)$$

演習 2.3 S_n の中の偶置換全体の集合を A_n , 奇置換全体の集合を B_n とする. $S_n=A_n\cup B_n,\ A_n\cap B_n=\emptyset$ (空集合 1) で, S_n の元の数は n! 個だから, A_n と B_n の元の個数が等しいことを示せば, その数がちょうど n!/2 個ずつであることがいえる.

 A_n と B_n の元の個数が等しいことを証明するには、ある全単射 $f:A_n\to B_n$ が存在することを示せばよい。そこで、写像 $f:A_n\to B_n$ を $\sigma\in A_n$ に対して $f(\sigma)=(1,2)\circ\sigma$ とすることにより定義する。 $(\sigma$ が偶置換ならば $(1,2)\circ\sigma$ は奇置換だから、f はちゃんと A_n から B_n への写像になっている。)また同様に、写像 $g:B_n\to A_n$ を $\rho\in B_n$ に対し $g(\rho)=(1,2)\circ\rho$ により定める。そうすると、 $(1,2)\circ(1,2)=(1)$ (恒等置換) だから、 $g\circ f=\mathrm{id}_{A_n}$ 、 $f\circ g=\mathrm{id}_{B_n}$ であることが分かる。よって、演習 2.3 により f は全単射である。

 $^{^1}$ つまり A_n と B_n の共通部分がない