Оглавление

1	Инт	гергир	ование	2
	1.1			2
		1.1.1	Формула Тейлора с остаточным членом в интегральной форме	2
		1.1.2	Теорема о среднем	3
	1.2	2		3

Глава 1

Интергирование

1.1

Лекция 1

14 feb

1.1.1 Формула Тейлора с остаточным членом в интегральной форме

$$f(x) = T_{n,x_0}f(x) + R_{n,x_0}f(x),$$

где

$$T_{n,x_0}f(x) = \sum_{i=0}^{n} \frac{1}{i!} f^{(i)}(x) (x - x_0)^i,$$

а R_{n,x_0} — остаток.

Theorem 1 (Формула Тейлора с остатком в интегральной форме). $f \in C^{n+1}(\langle a, b \rangle), \ x, x_0 \in (a, b).$ Тогда остаток в формуле Тейлора представим в виде

$$R_{n,x_0} = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt.$$

Доказательство. Индукция по n.

База: n = 1. По формуле Ньютона-Лейбница:

$$R_{0,x_0}f(x) = f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

Переход: $n-1 \rightarrow n$.

$$R_{n-1,x_0}f(x) = \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(x-t)^{n-1} dt =$$

$$= \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) d\left(\frac{(x-t)^n}{n}\right) =$$

$$= \underbrace{-\frac{1}{n!} f^{(n)}(t)(x-t)^n \Big|_{x_0}^x}_{\frac{(x-x_0)^n}{n!} f^{(n)}(x_0)} + \underbrace{\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt}_{R_{n,x_0}f(x)}$$

1.2. 2

1.1.2 Теорема о среднем

Theorem 2 (Хитрая теорема о среднем). $f,g \in C[a,b], g \geqslant 0$. Тогда

$$\exists c \in (a,b) : \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

Доказательство. Найдем максимум и минимум f на [a,b].

$$m \leqslant f(x) \leqslant M$$
.

Тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x).$$

Так как интеграл монотонен

$$m \int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x)d(x)dx \leqslant M \int_{a}^{b} g(x)dx$$
$$m \leqslant \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} \leqslant M.$$

По теореме Больцано-Коши о промежуточном значении

$$\exists c \in (a,b) : f(c) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}.$$

Corollary. Если $|f^{(n+1)}| \leq M$, то существует понятно какая оценка сверху для $|R_{n,x_0}f(x)|$.

Theorem 3. Формула Тейлора с остатком в форме Лагранжа следует из формулы Тейлора с остатком в интегральной форме.

Доказательство. Запишем остаток в форме Лагранжа:

$$R_{n,x_0}f(x)=rac{f^{(n+1)}(\Theta)}{(n+1)!}(x-x_0)^{n+1},\quad \Theta$$
 лежит между $x,x_0.$

По прошлой теореме 2, где $g(t) = (x-t)^n,$ получаем, что

$$\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \cdot \left(-\frac{((x-t)^n)^{n+1}}{n+1}\right) \Big|_{x_0}^x.$$

 $1.2 \quad 2$