## Low resource scenarios

|                  | AM<br>         | LM                |                                    |          |
|------------------|----------------|-------------------|------------------------------------|----------|
| Unlabelled audio | Labelled audio | Unaligned<br>text | Technique/ Problem                 | Course   |
| No               | Small (<10h)   | Yes               | Retraining, cotraining, adaptation | Course 1 |
| Yes              | Small (<10h)   | Yes               | Semi-supervised learning           | Course 1 |
| Yes              | No             | Yes               | Distant supervision                | Course 1 |
| No               | Bad labels     | ?                 | Weak supervision                   | Course 2 |
| Large (>100h)    | No             | No                | Zero resource/ unsupervised        | Course 2 |
| No               | No             | No                | Zero Data / language emergence     | Course 2 |
| Large (>100h)    | Small (<10h)   | Yes               | self-supervised pretraining        | Course 3 |

# Standarc

## This course

| Unlabelled audio | Labelled audio | Unaligned<br>text | Technique/ Problem                 | Course   |
|------------------|----------------|-------------------|------------------------------------|----------|
| No               | Small (<10h)   | Yes               | Retraining, cotraining, adaptation | Course 1 |
| Yes              | Small (<10h)   | Yes               | Semi-supervised learning           | Course 1 |
| Yes              | No             | Yes               | Distant supervision                | Course 1 |

**Main issue:** train a good AM with few (or in the extreme, no) labels **Main ideas:** 

- Transfer a pretrained AM from other languages
- Create pseudolabels from unlabelled audio
- Use the LM to constrain the discovery of an AM

| Unlabelled<br>audio | Labelled audio | Unaligned<br>text | Technique/ Problem                 |
|---------------------|----------------|-------------------|------------------------------------|
| No                  | Small (<10h)   | Yes               | Retraining, cotraining, adaptation |

# Transfer learning

## Distance to a high resource language

- Regional/foreign accent variant
  - Humans: Fast adaptation
  - Machines: adaptation/transfer
- Completely new language
  - Humans: Learning an L2 (painful)
  - Machines:
    - Construct an universal AM
    - retrain/adapt/fine tune the AM
- new language of a given family
  - Humans (somewhat easier)
  - Machines:
    - Mix of the above techniques
    - Joint training

## perceptual adaptation to dialect/accents in humans

- Ultra compressed speech (Dupoux & Green 1997)
  - 4 sets of 5 sentences
- Artificial dialect (Maye, Aslin, Tanenhaus, 2008)
  - the wicked witch of the west -> the weckup wetch of the wast
  - 20 minutes exposition unsupervised
  - lexical decision: 'wetch' -> 69% word



- Adaptation to a shift in a single phoneme (Norris, McQueen Cutler, 2003)
  - O 20 words with ambiguous final s/f
  - O eg: chrisma[s/f], or belie[s/f]



- accented speech (Bradlow & Bent 2008)
  - O training: 5 repetitions of 16 sentences (in noise, no feedback)
  - O test: 2 new sets of 16 sentences





→ note that humans do unsupervised transfer, with few datapoints!

## domain adaptation in machines

- fMLLR
  - o x□Ax+b to maximize p(x|speaker)

• i-vectors



Chen, Liang et al (2015)

adversarial domain adaptation





## Example of fast domain adaptation

Winata, G. I., Cahyawijaya, S., Liu, Z., Lin, Z., Madotto, A., Xu, P., & Fung, P. (2020). Learning fast adaptation on cross-accented speech recognition. *arXiv preprint arXiv:2003.01901*.

- Common voice data (english annotated by accent)
- Use of meta learning to quickly adapt to a new accent



| accents             | # sample | duration (hr) |
|---------------------|----------|---------------|
| Africa (af)         | 4,065    | 5.04          |
| Australia (au)      | 19,625   | 22.86         |
| Bermuda (be)        | 363      | 0.46          |
| Canada (ca)         | 17,422   | 20.20         |
| England (en)        | 58,274   | 64.19         |
| Hong Kong (hk)      | 1,181    | 1.21          |
| India (in)          | 23,878   | 29.09         |
| Ireland (ir)        | 3,420    | 3.71          |
| Malaysia (my)       | 843      | 1.07          |
| New Zealand (nz)    | 6,070    | 7.06          |
| Philippines (ph)    | 1,318    | 1.68          |
| Scotland (sc)       | 4,376    | 5.08          |
| Singapore (sg)      | 693      | 1.00          |
| South Atlantic (sa) | 212      | 0.23          |
| United States (us)  | 145,692  | 163.89        |
| Wales (wa)          | 1,128    | 1.16          |
| Total               | 288,560  | 327.93        |

## Distance to a high resource language

- Regional/foreign accent variant
  - Humans: Fast adaptation
  - Machines: adaptation/transfer
- Completely new language
  - Humans: Learning an L2 (painful)
  - Machines:
    - Construct an universal AM
    - retrain/adapt/fine tune the AM
- new language of a given family
  - Humans (somewhat easier)
  - Machines:
    - Mix of the above techniques
    - Joint training

## Second language learning in humans

#### In infants:

- Fast, easy
- No supervision
- No mixup/interference between languages
  - → we will come back to this

#### In adults

- Slow, difficult
- Requires supervision
- Close languages help (but also confuses)

Eg; bin vs bean (for French learners); right vs light (for Japanese learners), bébe vs bebé (for French listeners)

## Learning in machines

- The task: construct a good AM, with few labels
- The main idea:
  - Construct a universal AM
    - a. Universal phoneme sets
    - b. Universal articulatory features
    - c. Universal embeddings
    - d. Universal character sets
  - 2. Two ideas:
    - a. Adapt this AM to the language with few labels
    - b. Learn everything jointly

## Construct a universal phone set

- International Phonetic Alphabet (IPA)
- resources : phonemizer
- Easy to adapt to a new languages: just learn a new G2P
- Example: Manjunath, K. E., Raghavan, K. S., Rao, K. S.,
   Jayagopi, D. B., & Ramasubramanian, V. (2019). Multilingual Phone
   Recognition: Comparison of Traditional versus Common Multilingual
   Phone-Set Approaches and Applications in Code-Switching.

#### THE INTERNATIONAL PHONETIC ALPHABET (revised to 2018)

|                        | Bilabial | Labiodenta | l Denta | Alve | olar         | Postalveolar | Ret | roflex | Pal | latal | Ve | lar | Uv | ular | Phary | mgeal | Gl | ottal |
|------------------------|----------|------------|---------|------|--------------|--------------|-----|--------|-----|-------|----|-----|----|------|-------|-------|----|-------|
| Plosive                | рb       |            |         | t    | d            |              | t   | d.     | С   | J     | k  | g   | q  | G    |       |       | 3  |       |
| Nasal                  | m        | nj         |         | 1    | n            |              |     | η      |     | n     |    | ŋ   |    | N    |       |       |    |       |
| Trill                  | В        |            |         |      | r            |              |     |        |     |       |    |     |    | R    |       |       |    |       |
| Tap or Flap            |          | V          |         |      | r            |              |     | T.     |     |       |    |     |    |      |       |       |    |       |
| Fricative              | φβ       | f v        | θδ      | s    | $\mathbf{z}$ | J 3          | ş   | Z,     | ç   | j     | x  | γ   | χ  | R    | ħ     | ?     | h  | ĥ     |
| Lateral<br>fricative   |          |            |         | 4    | ોુ           |              |     |        |     |       |    |     |    |      |       |       |    |       |
| Approximant            |          | υ          |         |      | 1            |              |     | ſ      |     | j     |    | щ   |    |      |       |       |    |       |
| Lateral<br>approximant |          |            |         |      | l            |              |     | 1      |     | λ     |    | L   |    |      |       |       |    |       |

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible

| Clicks           | Voiced implosives | Ejectives             |
|------------------|-------------------|-----------------------|
| O Bilabial       | 6 Bilabial        | examples:             |
| Dental           | d Dental/alveolar | p' Bilabial           |
| ! (Post)alveolar | f Palatal         | t' Dental/alveolar    |
| ‡ Palatoalveolar | g velar           | k' velar              |
| Alveolar lateral | G Uvular          | S' Alveolar fricative |

|           | Front | Contral             | Bac                         |
|-----------|-------|---------------------|-----------------------------|
| Close     | i•y   | —-i•u-              | —-w•                        |
|           | 117   | · \                 | ប                           |
| Close-mid | eøø   | - e e -             | — γ • ·                     |
|           | /     | é                   |                             |
| Open-mid  |       | ε <b>\</b> ∞-3\     | <b>3</b> —Λ∳                |
|           |       | æ                   | 8                           |
| Open      |       | a Œ-                | $\Delta = \alpha \bullet 1$ |
|           | When  | e symbols appear in | pairs, the one              |

#### OTHER SYMBOLS

Yoiced epiglottal fricative
Epiglottal plosive

Affricates and double articulations can be represented by two symbols joined by a tie bar if necessary.



Primary stress found tifor Secondary stress

to the right represents a rounded vowel

I Long eI

Half-long E'

Minor (foot) group

Major (intonation) group

. Syllable break ii.zckt
Linking (absence of a break)

TONES AND WORD ACCENTS

| I   | EVEL      | CON    | TOUR    |
|-----|-----------|--------|---------|
| ő « | r   Extra | ě or / | Rising  |
| é   | High      | ê١     | Falling |
| ē   | - Mid     | ě ′    | High    |
| è   | Low       | ě      | Low     |
| ë   | Lextra    | è ^    | Rising  |
| ↓ I | Downstep  | → Glob | al rise |
| 1 1 | Jpstep    | √ Glob | al fall |

| Voiceless            | ņ d       | may be placed above a symbol with a descend  Breathy voiced b & Dental | ţ d          |
|----------------------|-----------|------------------------------------------------------------------------|--------------|
| Voiced               | şţ        | _ Creaky voiced b a Apical                                             | t d          |
| h<br>Aspirated       | $t^h d^h$ | _ Linguolabial t d Laminal                                             | ţ d          |
| More rounded         | Ş         | W Labialized tw dw Nasalized                                           | ~            |
| Less rounded         | Ş         | j Palatalized tj dj <sup>11</sup> Nasal rele                           | ase du       |
| Advanced             | ų         | Y Velarized ty dy 1 Lateral re                                         | lease $d^1$  |
| Retracted            | e         | Tharyngealized t d No audible                                          | e release d  |
| Centralized          | ë         | ~ Velarized or pharyngealized }                                        |              |
| ×<br>Mid-centralized | ě         | Raised e ( I = voiced alvedar                                          | fricative)   |
| Syllabic             | ņ         | Lowered e (B = voiced bilabial                                         | approximant) |
| Non-syllabic         | ě         | Advanced Tongue Root e                                                 |              |
| * Rhoticity          | or or     | Retracted Tongue Root   P                                              |              |

## Construct a universal phone set

#### **Problems**

- consonants and vowels are distributions over continuous phonetic space
- no two language use the same distributions
- Therefore learning a single symbol for these distributions may just blur them and introduce confusions

English



F2 [Hz]

→ may not work very well, because the universal phone set is not really universal

## Construct a universal set of articulatory features



Passive and active places of articulation: (1) Exo-labial; (2) Endo-labial; (3) Dental; (4) Alveolar, (5) Post-alveolar, (6) Pre-palatal; (7) Palatal; (8) Velar, (9) Uvular, (10) Pharyngeal; (11) Glottal; (12) Epiglottal; (13) Radical; (14) Postero-dorsal; (15) Antero-dorsal; (16) Laminal; (17) Apical; (18) Sub-apical or sub-laminal.



|                        |   |   |   |   |   |   |   |       |         |       | Liqu   | ide  |   |   |   |   |   |   |   |   |   |
|------------------------|---|---|---|---|---|---|---|-------|---------|-------|--------|------|---|---|---|---|---|---|---|---|---|
|                        |   |   |   | _ |   |   |   | consc | A MARIN |       | - Code | IN.3 | _ | _ | _ |   |   |   | _ | _ |   |
| Distinctive<br>Feature | p | ь | t | d | č | J | k | 5     | 1       | ٧     | •      | ٥    |   | 1 | 4 | 2 | r | 1 | m | n | ŋ |
| Conson-<br>antal       | + | + | + | + | ٠ | + | + | +     | +       | +     | +      | +    | + | + | + | + | + | + | + | + | + |
| Vocalic                | - | - | - | - | - | - | - | -     | -       | -     | -      | -    | - | - | - | - | + | + | - | - | - |
| Antenor                | + | + | + | + | - | - | - | -     | +       | +     | +      | +    | + | + | - | - | - | + | + | + | - |
| Coronal                | - | - | + | + | + | + | - | -     | -       | -     | +      | +    | + | + | + | + | + | + | - | + | - |
| Voice                  | - | + | - | + | - | + | - | +     |         | +     | 7      | +    | - | + | - | + | + | + | + | + | + |
| Nasal                  | _ | _ | - | - | - | - | - | -     | -       | -     | -      | -    | - | - | - | - | - | - | + | + | + |
| Strident               | - | - | - | - | + | + | - | -     | +       | +     | -      | -    | + | + | + | + | - | - | - | - | - |
| Continuent             | - | - | 5 | - | - | = | - | -     | +       | +     | +      | +    | + | + | + | + | + | + | - | = | - |
|                        |   |   |   |   |   |   |   | Yo    | wels    | and ( | Glide  |      |   |   |   |   |   |   |   |   |   |
| Distinctive<br>Feature | ı | , |   |   | * | 1 | , | Λ     |         | u     | υ      | ٥    | , |   | y | w | h |   |   |   |   |
| Vocalic                | + | + | + | + | + | + | + | +     | +       | +     | +      | +    | + |   | - | - | - |   |   |   |   |
| Conson-                | - | - | - | - | - | - | - | -     | -       | -     | -      | -    | - |   | - | - | - |   |   |   |   |
| antal                  |   |   |   |   |   |   |   |       |         |       |        |      |   |   |   |   |   |   |   |   |   |
| High                   | + | + | - | - | - | + | - | -     | -       | +     | +      | -    | - |   | + | + | - |   |   |   |   |
| Back                   | - | - | _ | - | - | + | + | +     | +       | +     | +      | +    | + |   | - | + | - |   |   |   |   |
| Low                    | - | - | - | - | + | - | - | +     | +       | -     | -      | -    | + |   | = | - | + |   |   |   |   |
| Round                  | - | - | - | - | - | - | - | -     | -       | +     | +      | +    | + |   | - | + | - |   |   |   |   |
| Tense                  | + | - | + | _ | + | _ | - | -     | +       | +     | -      | +    | - |   | - | - | - |   |   |   |   |

## example

Li S, Ding C, Lu, X. Shen, P., Kawahara, T, Kawai H (2019). End-to-End Articulatory Attribute Modeling for Low-resource Multilingual Speech Recognition. Interspeech

Catergories Attributes Consonants Velar (K) Palatal (C) (placement) Coronal (T) Labial (P) Glottal (Q) Aspired (h) Consonants Voiced (v) (manner) Nasal (n) Trill (R) Lateral approximant (L) Labial/Labio-velar approximant (W) Palatal approximant (Y) Sibilant fricative (S) Non-sibilant fricative (H) Vowel (A) Round (r) Front (f) Close (c) Tonal (t) Visarga (h) Anunasika (n) Special Marks Repeat Removal (+)

Table 1: Universal Articulatory Representations



(see also Li, X, Dalmia, S, Mortensen, DR, Li, J, Black, AW, Metze F (2020). Towards Zero-shot Learning for Automatic Phonemic Transcription)

→ may not work very well, because the universal feature set is not really universal



## Common character sets

- Liu, C. Zhang, Q. Zhang, X., Singh, K. Saraf, Y., Zweig, G. (2020). Multilingual Graphemic Hybrid ASR with Massive Data Augmentation
  - hybrid system (DNN, HMM WFST)
  - clustered trigrapheme units (some overlap in char sets but also char specific)
  - H 

    C 

    L 

    G. (red: language independant; blue, language specific or not)
- → multilingual better than monolingual
- → language independant decoding works better than language specific

|           |       | monolang |
|-----------|-------|----------|
| Kannada   | 125.5 | 7.1      |
| Malayalam | 127.7 | 5.0      |
| Sinhala   | 160.0 | 4.6      |
| Tamil     | 176.9 | 5.0      |
| Bengali   | 160.0 | 7.8      |
| Hindi     | 160.0 | 10.3     |
| Marathi   | 148.6 | 7.6      |
|           |       | -        |

%gain of 7 langue

final wer: ~ 50%

- A bit brutal: in the spirit of end-to-end models
- May preserve language specificity (though context dependant units)
- Does not require phonetic annotations

## Construct universal embeddings

- Preserves all continuous information
- Adaptation:
  - Learn a classifier/decoder for a new language
  - Apply domain adversarial training to move the target language closer



Fer, R., Matějka, P., Grézl, F., Plchot, O., Veselý, K., & Černocký, J. H. (2017). Multilingually trained bottleneck features in spoken language recognition. *Computer Speech & Language*, *46*, 252-267.

## Distance to a high resource language

- Regional/foreign accent variant
  - Humans: Fast adaptation
  - Machines: adaptation/transfer
- Completely new language
  - Humans: Learning an L2 (painful)
  - o Machines:
    - Construct an universal AM
    - retrain/adapt/fine tune the AM
- new language of a given family
  - Humans (somewhat easier)
  - Machines:
    - Mix of the above techniques (restricting to the family)
    - Joint training

## Language families





## Joint learning of everything

| Liu, C. Zhang, Q. Zhang, X., Singh, K. Saraf, Y., Zweig,                                                   |
|------------------------------------------------------------------------------------------------------------|
| Liu, C. Zhang, Q. Zhang, X., Singh, K. Saraf, Y., Zweig, G. (2020). Multilingual Graphemic Hybrid ASR with |
| Massive Data Augmentation                                                                                  |
|                                                                                                            |

- hybrid system (DNN, HMM WFST)
- clustered trigrapheme units (some overlap in char sets but also char specific)
- H 

  C 

  L 

  G. (red: language independant; blue, language specific or not)
- → multilingual better than monolingual
- → language independant decoding works better than language specific
- → family specific works better (less data, more relevant)

|           |       | %gain of 7 lang vs monolang | lang vs<br>monolang |
|-----------|-------|-----------------------------|---------------------|
| Kannada   | 125.5 | 7.1                         | <b>7.5</b>          |
| Malayalam | 127.7 | 5.0                         | 5.3                 |
| Sinhala   | 160.0 | 4.6                         | 4.6                 |
| Tamil     | 176.9 | 5.0                         | 5.0                 |
| Bengali   | 160.0 | 7.8                         | 9.5                 |
| Hindi     | 160.0 | 10.3                        | 10.3                |
| Marathi   | 148.6 | 7.6                         | 7.6                 |

final wer: ~ 50%

%gain of 3-4

## Summary

- Using labels from other languages!
  - Language transfer: using a very close language
  - Universal models: using as many languages as possible (more data)
  - A compromise: language family
- What to learn from these external labels
  - universal embeddings
  - universal phone set (IPA)
  - universal articulatory feature set
  - o 'universal ' grapheme set
- How to use the few labels in the target language
  - Transfer
    - Learn a classifier (from fixed embeddings)
    - Fine tune the embeddings
    - Map the units in the target to the units from the source(s)
  - Joint learning
  - Domain adversarial training

| Unlabelled<br>audio | Labelled audio | Unaligned<br>text | Technique/ Problem                 |
|---------------------|----------------|-------------------|------------------------------------|
| No                  | Small (<10h)   | Yes               | Retraining, cotraining, adaptation |
| Yes                 | Small (<10h)   | Yes               | Semi-supervised learning           |

# Semi-supervised training (or, how to create pseudo labels)

## Main idea

- Train a (small) system on your few labels
- Use it to generate labels on new unlabeled data
- (optional) remove the suspicious pseudo-labels
- Train a larger/retrain your system on the total data
- Iterate!

Singh, K. Manohar, V., Xiao A. Edunov, S. Girshick, R., Liptchinsky, V., Fuegen, C. Saraf, Y., Zweig, G Mohamed, A. (2020) Large scale weakly and semi-supervised learning for low-resource video ASR

- frame -level distillation -- for hybrid models (replace the ground truth labels by probability distributions from the teacher)
- Sequence level distillation -- fot CTC or seq to seq (train with the 1-best decoding from the teacher)
- Training: 290 h (dutch); 193h (romanian) + 6000-8000 hours of (noisy), unlabelled speech



3 iterations of relabelling

## Other ideas

- Baskar, MK, Watanabe†, S., Astudillo, R., Hori, T., Burget, L.,
   C\*ernocky, J. (2020). Semi-supervised Sequence-to-sequence
   ASR using Unpaired Speech and Text
  - → Use a TTS to generate speech for unpaired text; use ASR to generate text for unlabelled speech. (Similar to back translation in neural translation)



See also Ren, Y, Tan, X. Qin, T. Zhao, S. Zhao, Z.; Liu TY (2019). Almost Unsupervised Text to Speech and Automatic Speech Recognition

| Unlabelled<br>audio | Labelled audio | Unaligned text | Technique/ Problem                 |
|---------------------|----------------|----------------|------------------------------------|
| No                  | Small (<10h)   | Yes            | Retraining, cotraining, adaptation |
| Yes                 | Small (<10h)   | Yes            | Semi-supervised learning           |
| Yes                 | No             | Yes            | Distant supervision                |

# Distant supervision

## Main idea

- The problem is similar to that of decyphering a coded message
  - o you don't know the message, you don't know the code
  - But if you know the language, you may break the code
- Similar ideas are used in unaligned (unsupervised) translation:
  - Learning within modality embedding space (one for text, one for speech), and realign them
- Two JSALT workshops



## summary

- The few labels case is difficult
- Requires to understand the underlying problem (no longer brute force machine learning)
- Linguistics is useful
- Having a look at how humans do it could be inspiring
- Some interesting techniques from domain adaptation (vision), and translation (NLP) are being tried.