DM 3 : Lois du frottement solide Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	
Bonus	exercice supplémentaire	0.5	

N°	Elts de rép.		
01-01	Comment positionner une échelle contre un mur?		
1	Faire un schéma, nommer G position de l'utilisateur, S point de contact au sol, M point de contact au mur. Pour éviter les frottements il faut que $ \vec{T}_S \le f \vec{N}_S $. On note par S les réactions du sol sur l'échelle. Définissons le système utilisateur + échelle, appliquons le PFD sur la verticale on obtient $ \vec{N}_S =$		
	mg , appliquons le PFD sur l'horizontale on obtient $ \vec{T}_S = \vec{N}_M $ avec M la réaction normale du mur sur l'échelle. Avec ces deux équations on peut les remplacer dans l'inégalité et obtenir $ \vec{N}_M \leq fmg$. Il nous manque une équation pour éliminer $ \vec{N}_M $ on peut utiliser que l'échelle ne bascule pas donc moment des forces en S est nul, soit L la longueur de l'échelle et l la longueur parcourue par l'utilisateur et α l'angle que fait l'échelle par rapport au sol, $\sin(\alpha)L \vec{N}_M -\cos(\alpha)lmg=0$ donc $ \vec{N}_M =mg\frac{l}{L\tan(\alpha)}$ donc l'utilisateur		
	doit respecter que $\frac{l}{L} \leq f \tan(\alpha)$.		
N°	Elts de rép.		
01-02	Cabestan		
1	La somme des forces exercées sur le tronçon est nulle, soit en projection dans la base cylindrique $dN + 0 + F\left(\theta + \frac{d\theta}{2}\right) \sin\left(\frac{d\theta}{2}\right) - F\left(\theta - \frac{d\theta}{2}\right) \sin\left(\frac{d\theta}{2}\right) = 0$ et $0 - dT + F\left(\theta + \frac{d\theta}{2}\right) \cos\left(\frac{d\theta}{2}\right) - F\left(\theta - \frac{d\theta}{2}\right) \sin\left(\frac{d\theta}{2}\right) = 0$ Dans l'approximation des petits angles, $\sin\left(\frac{d\theta}{2}\right) \sim \frac{d\theta}{2}$ et $\cos\left(\frac{d\theta}{2}\right) \sim 1$, on fait le développement limité au		
	premier ordre $F(\theta - \frac{d\theta}{2}) \simeq F(\theta) - \frac{dF}{d\theta} \cdot \frac{d\theta}{2}$ et $F(\theta + \frac{d\theta}{2}) \simeq F(\theta) + \frac{dF}{d\theta} \cdot \frac{d\theta}{2}$. On en déduit en négligeant les termes du second ordre $dN = F(\theta)d\theta$ et $dT = \frac{dF}{d\theta}d\theta$ à la limite du glissement $dT = \mu dN$ donc $\frac{dF}{d\theta} = \mu F(\theta)$		

2	La condition au limite initiale s'écrit $F(\theta=0)=mg$, la solution de l'équation différentielle est $F(\theta)=F(0)e^{\mu\theta}$, donc $F(\theta_f)=mge^{\mu\theta_f}=Mg$ donc $M=me^{\mu\theta_f}=32.10^6$ kg. Cette valeur extrêmement grande indique qu'une corde enroulée de plusieurs tours sur un cabestan ne peut pratiquement pas glisser, cette propriété est utilisée pour arrimer les navires.
N°	Elts de rép.
01-05	Une règle posée sur deux doigts
1	faire un schéma avec \vec{N}_1 , \vec{T}_1 et \vec{N}_2 , \vec{T}_2 réactions des doigts 1 et 2 sur la règle, avec $m\vec{g}$ poids de la règle et x_1 et x_2 distance doigts 1 et 2 au centre de la règle. Le PFD selon z donne $0 = N_1 + N_2 - mg$ et le théorème du moment cinétique en G le centre de la règle donne $0 = x_1N_1 - x_2N_2$. On en déduit $N_1 = mg\frac{x_2}{x_1 + x_2}$ et $N_2 = mg\frac{x_1}{x_1 + x_2}$
2	la règle est immobile donc PFD sur x donne $0 = T_1 + T_2$ donc $T_1 = -T_2$. La règle glisse sur le doigt 2 donc $T_2 = -f_d N_2 = -f_d mg \frac{x_1}{x_1 + x_2}$. Hypothèse de
	non-glissement sur 1 est valable tant que $ T_1 \le f_s N_1$ soit $\frac{f_d}{f_s} a \le x_2$, lorqu'il y a égalité la phase s'achève.
3	Si les deux doigts glissent $T_1 = f_d m g \frac{x_2}{x_1 + x_2}$ et $T_2 = -f_d m g \frac{x_1}{x_1 + x_2}$, le PFD donne
	$\ddot{x}_{regle} = f_d g \frac{x_2 - x_1}{x_2 + x_1}$. Initialement $x_1 = a$ et $x_2 = \frac{f_d}{f_s} a$ donc $\ddot{x}_{regle} = -f_d g \frac{f_s - f_d}{f_s + f_d}$ donc $t = \frac{v(f_s + f_d)}{g f_d(f_s - f_d)} \sim 10^{-2}$ s
4	le temps calculé à la question précédente est très court. Même étude que à la
	question 2 avec $a o \frac{f_d}{f_s} a$ donc $x_1 = \left(\frac{f_d}{f_s}\right)^2 a$ comme $f_d < f_s$ et que $x_2 = \left(\frac{f_d}{f_s}\right)^{2n+1} a$ $x_1 = \left(\frac{f_d}{f_s}\right)^{2n} a$ à chaque phase alors ils
5	comme $f_d < f_s$ et que $x_2 = \left(\frac{f_d}{f_s}\right)^{2n+1} a \ x_1 = \left(\frac{f_d}{f_s}\right)^{2n} a$ à chaque phase alors ils
	tendent vers 0 donc les deux doigts se rapprochent du centre.
N°	Elts de rép.
01-02	Mouvement d'un tonneau sur la plate-forme d'un camion
1	Dans le référentiel non galiléen, en translation accélérée, du camion, le tonneau est soumis à son poids, aux forces \vec{N} et \vec{T} et à la force d'inertie d'entraînement $\vec{f}_{ie} = -m\vec{A}$. Supposons qu'il y a roulement sans glissement. La vitesse de G dans le référentiel du camion et la vitesse angulaire sont alors liées $\dot{x} = b\omega$ donc $E_c = \frac{3}{4}m\dot{x}^2$, le théorème de l'énergie cinétique en puissance donne $-mA\dot{x} = \frac{3}{4}m2\ddot{x}\dot{x}$ donc $\ddot{x} = -\frac{2A}{3}$ Si le tonneau glissait sur le plateau du camion, la vitesse de glissement serait dirigée vers l'arrière, donc \vec{T} est dans le sens des x croissants. Le PFD implique que $T = \frac{mA}{3}$ et $N = mg$ D'après la loi de Coulomb, il y a roulement sans glissement si $T \leq \mu N$ soit $A \leq 3\mu g$. Il y aura glissement si $A > 3\mu g$.

sans glissement n prenant l'origine du repère à l'arrière du plateau $\ddot{x}=-\frac{2A}{3}$ donc $x(t)=-\frac{A}{3}t^2+d-b$. Le tonneau tombera quand x(t)=0 soit $t=\sqrt{\frac{3(d-b)}{A}}$. L'équation horaire du mouvement du camion dans le référentiel du sol est $X(t)=-\frac{1}{2}At^2$ donc $L=\frac{3}{2}(d-b)$. Si il y a glissement $T=\mu N$ donc $T-mA=m\ddot{x}$ et N=mg donc $\ddot{x}=\mu g-A$ donc $x(t)=\frac{1}{2}(\mu g-A)t^2+d-b$. Le tonneau tombera quand x(t)=0 soit $t=\sqrt{\frac{2(d-b)}{A-\mu g}}$ et à cette date $L=\frac{A(d-b)}{A-\mu g}$.