Instructivos para Trabajos Prácticos

TP1: Construcción de Programador de PIC

Descripción

Este es un programador con comunicación a PC y alimentación por USB compatible con la herramienta de desarrollo PICkit2 de Microchip. Está compuesto de dos placas montadas una sobre la otra interconectadas por 6 pines largos. La placa inferior contiene el programador propiamente dicho y la placa superior contiene los zócalos para los distintos microcontoladores PIC de 8, 18, 28 y 40 pines, y memorias EEPROM (24LCxx) de 8 pines.

El conector ICSP (In Circuit Serial Programming) permite conectar el programador directamente a la placa que contiene el microcontrolador sin necesidad de extraerlo para programar. La tensión de alimentación del microcontrolador a programar se puede elegir por medio de un jumper (no por software).

Pautas de Armado

- El docente proporciona el diseño de la placa. Se debe agregar el apellido, curso y año del
- Se requiere la compra de un plaqueta de 10 cm x 20 cm, la cual debe cortarse a la mitad para construir las dos partes del dispositivo (pueden comprarse dos recortes de 10 cm x 10 cm)
- Se deben construir ambas placas con el método clásico y debe realizarse el montaje de todos los componentes.
- El integrado U3 (LD1117S33) va soldado del lado del cobre ya que se trata de un componente SMD. Si se suelda ese regulador no se debe soldar el U2 y viceversa.
- Para minimizar la fuerza de extracción de los integrados de la placa de zócalos es necesario retirar los contactos del zócalo que no tienen conexión eléctrica.

Puesta en Marcha

- 1. Sin colocar el PIC18F2550, verificar con el tester la continuidad de GND en los pines 8 y 19 del zócalo DIL28.
- 2. Conectar una fuente de 5V a la placa utilizando un cable USB tipo B sin conector en su otro extremo. Verificar que encienda el led verde y medir la tensión de 5V en los pines 20 y 26 del zócalo DIL28.
- 3. Probar el funcionamiento de la placa con el programa PICkit2 siguiendo las instrucciones del mismo y con la ayuda del profesor.
- 4. Como prueba final programar el microcontrolador de otro alumno para corroborar que el programador funciona correctamente.

Forma de Entrega

Teniendo la placa funcionando la entrega de este trabajo práctico será de forma digital en una carpeta comprimida (TP1 Apellido) y debe incluir:

- Circuitos Esquemáticos
- Diseño de Circuito Impreso (BOTTOM COPPER, TOP SILK)
- Listado de Componentes (BOM)
- Fotografías de las Placas Terminadas

Circuito Esquemático

Diseño de PCB

Listado de componentes

Q	Descripción	Placa	Referencia
3	Resistencia de carbón 10 Ω 1/4 W	Base	R12-R14
3	Resistencia de carbón 33 Ω ¼ W	Base	R16,R18-R19
1	Resistencia de carbón 100 Ω ¼ W	Base	R8
2	Resistencia de carbón 330 Ω ¼ W	Base	R2-R3
1	Resistencia de carbón 820 Ω ¼ W	Base	R20
1	Resistencia de carbón 1 kΩ ¼ W	Base	R1
1	Resistencia de carbón 2.2 kΩ ¼ W	Zoc.	R4
1	Resistencia de carbón 2.7 kΩ ¼ W	Base	R5
4	Resistencia de carbón 4.7 kΩ ¼ W	Base	R6,R11,R15,R17
3	Resistencia de carbón 10 kΩ ¼ W	Base	R7,R9-R10
3	Resistencia de carbón 10 kΩ ¼ W	Zoc.	R1-R3
1	Resistencia de carbón 100 kΩ ¼ W	Base	R4
2	Capacitor cerámico multicapa 22 pF	Base	C6-C7
2	Capacitor cerámico multicapa 100 nF	Base	C4-C5
2	Capacitor cerámico multicapa 100 nF	Zoc.	C1-C2
1	Capacitor electrolítico 1 µF 25V mini	Base	C2
2	Capacitor electrolítico 100 μF 25V mini	Base	C1,C3
1	Bobina de 68ο μHy ó 47ο μHy	Base	L1
1	Cristal 20 Mhz	Base	XTAL1
1	LED verde 5 mm	Base	LED1
1	LED rojo 5 mm	Base	LED2
2	Diodo 1N4148	Base	D1,D3
2	Diodo 1N5817	Base	D2
3	Transistor NPN BC337	Base	Q1,Q3-Q4
4	Transistor PNP BC327	Base	Q2,Q5-Q7
1	Regulador de Tensión de 3.3V LD1117S33TR	Base	U3
1	Microcontrolador PIC18F2550-I/SP – DIP28	- Base	U1
1	Zócalo DIP28 o.3" (narrow)		
1	Zócalo DIP4o	Zoc.	J1
1	Zócalo DIP28 o.3" (narrow)	Zoc.	Ј2
1	Zócalo DIP18	Zoc.	J3
2	Zócalo DIP8	Zoc.	J4-J5
1	Conector USB hembra tipo B para PCB	Base	J1
6/40	Conector hembra vertical 40 contactos, fila simple paso 0.1" p/PCB	Base	J3
2/40	Tira de pines 40 contactos paso 0.1"	Zoc.	J7
9/40	Tira de pines 40 contactos largo 19 mm paso 0.1"	Ambas	J4(Base), J6

Q	Descripción	Placa	Referencia
1	Conector polarizado 6 contactos, macho 90 ° paso 0.1" p/PCB WF6R	Base	Ј2
1	Housing polarizado 6 contactos, paso 0.1" HU6	Base	02
	Contactos para los housing anteriores		
2	Jumper de 2 contactos con extractor		
1	Cable USB para impresora (A macho/B macho)		
2	Recorte de plaqueta epoxi 10 cm x 10 cm		
1	Cable plano multicolor de 10 conductores		
4	Separador plástico 15 mm		
4	Pata para gabinete de 5 mm con agujero central		
4	Tornillo 1/8 x 1" cabeza frezada con tuerca		