Examen de Informática 1º Ingenierías 12-01-2018

Nombre:	Grupo:
1 (0111010:	Grupo.

- 1. Queremos realizar un programa que conste de:
- Un procedimiento llamado LeeMatriz que almacene enteros introducidos por teclado en una matriz M (NxN), N constante conocida. (0.1 puntos)
- Un procedimiento **ExtraeFila** que reciba como parámetros una matriz **M** y un número entero **num** y devuelva un vector **V** que contenga los valores de la fila de la matriz indicada por dicho número. (0.4 puntos)
- Una función **Mayor** que reciba como parámetro un vector **V** de dimensión **N** y devuelva el mayor de sus valores. (0.4 puntos)
- Un procedimiento **CreaVector** que reciba como parámetro una matriz **M** y mediante el procedimiento y la función anteriores devuelva un vector **V** de dimensión **N** compuesto por los mayores elementos de cada fila de la matriz. (0.7 puntos)
- Un procedimiento **HazMatriz** que reciba como parámetro un vector **V** y devuelva una matriz cuya primera columna sea dicho vector y las posteriores se formen restando **1** a la anterior. Ningún elemento de las columnas a partir de la primera podrá tomar un valor menor que **0**. En ese caso, se rellenará el resto de la fila con 0. (1.5 puntos)
- Un procedimiento **EscribeMatriz** que muestre una matriz por pantalla. (0.15 puntos)
- Un programa principal que solicite una matriz por teclado y mediante los procedimientos y funciones anteriores cree una nueva matriz como la del ejemplo. Este programa también imprimirá por pantalla la matriz original y la resultante. (0.25 puntos)

Ejemplo: Si la matriz M es:

La matriz resultante será:

3	-4	2	-5			3	2	1	0
11	4	6	12	_	3 12 2 10	12	11	10	9
-2	-3	2	-4	<u></u>	3 12 2 10	2	1	0	0
5	3	10	7			10	9	8	7

- 2. Escribe un programa que, a partir de una matriz, calcule en otra matriz las sumas acumuladas de la primera desde la posición [1,1] hasta cada posición de la matriz. Para ello, implementa los siguientes procedimientos y funciones:
 - Un procedimiento **LeeMatriz** que lea del usuario NxM (constantes conocidas) números enteros y los almacene en una matriz.(0,1 puntos)
 - Un procedimiento **SubMatriz** que reciba una matriz, un número de fila **F** y un número de columna **C**. Este procedimiento debe devolver una matriz del mismo tamaño que la original en la que los elementos del cuadrado formado desde la posición [1,1] hasta la posición [F,C] sean iguales que en la matriz original y el resto de elementos valgan 0. (0,9 puntos)

Matriz original

-	11144112 011811141					
	1	4	7	3	8	
	10	9	5	3	6	
	3	12	1	0	9	
	2	5	4	8	2	

Submatriz hasta la posición [2, 3]

1	4	7	0	0
10	9	5	0	0
0	0	0	0	0
0	0	0	0	0

- Una función **SumaMatriz** que reciba una matriz y devuelva la suma de todos los elementos almacenados en ella. (0,5 puntos)
- Un procedimiento **Sumas** que, utilizando el procedimiento y la función anterior, reciba una matriz y cree otra nueva matriz en la que en cada posición se almacene la suma de todos los elementos desde la posición [1,1] hasta dicha posición de la matriz original. (1,3 puntos)
- Un programa principal que, después de leer los números de una matriz y construir la matriz de sumas acumuladas, muestre la suma de los elementos de la matriz de sumas acumuladas. (0,7 puntos)

Ejemplo:

Matriz original

1	4	7	3	8
10	9	5	3	6
3	12	1	0	9
2	5	4	8	2

Matriz de sumas acumuladas

1	5	12	15	23
11	24	36	42	56
14	39	52	58	81
16	46	63	77	102

La suma de los valores de la matriz acumulada es 773.

Nota: No es necesario mostrar la matriz de sumas acumuladas.