Ευφυή Συστήματα

Γενετικοί Αλγόριθμοι

Φώτης Κόκκορας

ΑΤΕΙ ΘΕσσαλονίκης Τμήμα Πληροφορικής

Αναπαράσταση Χρωμοσωμάτων

Δυαδική Αναπαράσταση

Αναπαράσταση Ακεραίων

```
1 1 4 5 3 3 7 7 9 16 12 10 14 10 12 9
```

Αναπαράσταση Κινητής Υποδιαστολής

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1-12 5.4 8.1 3.3 1.2 2.1 1.4 -1.9 10 8.3 8.3 2.7 0.2 0.1 0.1 -0.2
```

* Αναπαράσταση Permutation (Μετάθεσης ή Συνδυασμού)

```
1 2 4 5 3 8 6 7 9 16 12 15 14 10 11 13
```

κάθε γονίδιο εμφανίζεται μία φορά (π.χ. πρόβλημα πλανόδιου πωλητή)

Αρχικοποίηση

- Εισάγονται αρχικές τιμές πληθυσμού, συμβατές με την αναπαράσταση που έχει επιλεγεί.
- Συνήθως είναι τυχαίες τιμές που παράγονται από μια γεννήτρια τυχαίων αριθμών.

Πληθυσμός

- ❖ Περιέχει υποψήφιες <u>λύσεις</u>.
- **Φ** Συνήθως είναι μια δομή δεδομένων πίνακα (ή συνδεδεμένη λίστα).
 - Το μέγεθός της καθορίζεται από το μέγεθος του πληθυσμού με τον οποίο θέλουμε να δουλέψουμε.

Φώτης Κόκκορας

Ευφυή Συστήματα

.

Επιλογή Ατόμων για Αναπαραγωγή

- **Σητούμενο**: Η επιλογή σχετικά καλών ατόμων με βάση την ποιότητα της λύσης που ορίζουν (δεν δημιουργούνται νέες λύσεις).
- **Ανάλογα με την ποιότητα των ατόμων.**

Αρχικά υπολογίζονται ποσοστά επιλογής για όλα τα άτομα και στη συνέχεια εφαρμόζεται κάποιος από τους ακόλουθους αλγόριθμους επιλογής:

- ☐ Cost Roulette Wheel
- ☐ Stochastic Universal Sampling
- * Rank Roulette Wheel
- **❖** Tournament Selection

Φώτης Κόκκορας

Ευφυή Συστήματα

4

- Δημιουργείται ένα τροχός (δίσκος) που χωρίζεται σε τομείς που αντιστοιχίζονται στα άτομα του πληθυσμού.
- Κάθε τομέας έχει μέγεθος ανάλογο με την ποιότητα του ατόμου.
- * Έστω ότι θέλουμε να επιλέξουμε λ άτομα από πληθυσμό $P=(C_1, C_2, ..., C_N)$ ατόμων, όπου τα άτομα είναι ταξινομημένα σε φθίνουσα σειρά ως προς την ποιότητα.
- Το μέγεθος των τομέων υπολογίζεται ως εξής:
 - Υπολογίζεται η συνολική τιμή ποιότητας του πληθυσμού: $F = \sum_{i=1}^{\lambda} f(C_i)$
 - όπου $i \in [1, \lambda]$ και f είναι η συνάρτηση ποιότητας

 - \square Υπολογίζεται η αθροιστική πιθανότητα q_i για κάθε άτομο C_i . : $q_i = \sum_{j=1}^{\lambda} P_j$
- Παρατήρηση: Η μέθοδος μεροληπτεί υπέρ των ατόμων με καλύτερη τιμή ποιότητας και μπορεί να οδηγήσει σε πρόωρη σύγκλιση του πληθυσμού σε τοπικό βέλτιστο του προβλήματος.

Φώτης Κόκκορας

Ευφυή Συστήματα

-

Cost Roulette Wheel

- Τυρίζουμε τον τροχό λ φορές (όσα και τα άτομα που θέλουμε να επιλέξουμε).
- Επιλέγουμε ένα άτομο τη φορά με την εξής διαδικασία:
 - Έστω r ένας τυχαίος αριθμός στο διάστημα [0, 1].
 - αν $r \le q_i$ τότε επιλέγεται το πρώτο άτομο
 - διαφορετικά επιλέγεται το i-στό άτομο για το οποίο ισχύει: q_i $1 < r \le q_i$ με $i \in [2, \lambda]$

Stochastic Universal Sampling

- Αποτελεί προσομοίωση του Cost Roulette Wheel με τη διαφορά ότι υπάρχουν λ ομοιόμορφα κατανεμημένοι δείκτες γύρω από τον τροχό.
- Επιλέγουμε άτομα με την εξής διαδικασία:
 - \Box Έστω r ένας τυχαίος αριθμός στο διάστημα [0, 1/N].
 - Θυμίζουμε ότι Ν είναι το μέγεθος του αρχικού πληθυσμού από τον οποίο επιλέγουμε.
 - \square Για όσο ισχύει $r \le q_i$ επιλέγεται το i-στό άτομο και ο αριθμός r αυξάνεται κατά 1/N
 - Η διαδικασία επαναλαμβάνεται μέχρις ότου επιλεγούν τα λ ζητούμενα άτομα.

Προβλήματα:

- Αν οι τιμές ποιότητας των ατόμων είναι παραπλήσιες, οι πιθανότητες που υπολογίζονται είναι σχεδόν ίδιες και η επιλογή γίνεται σχεδόν τυχαία!
- Οι μηχανισμοί με βάση την ποιότητα συμπεριφέρονται διαφορετικά στην ίδια συνάρτηση ποιότητας *f*, όταν αλλάζει η κλίμακα τιμών ποιότητας.
- **Αντιμετώπιση**: αναπροσαρμόζουμε με κάποιο τρόπο τις τιμές ποιότητας:
 - □ Windowing: από κάθε τιμή ποιότητας αφαιρείται η τιμή ποιότητας του χειρότερου ατόμου
 - $f'(C_i) = f(C_i) f_{min}$
 - □ Linear Scaling: μεταβάλουμε γραμμικά τις τιμές ποιότητας
 - $f'(C_i) = \alpha f(C_i) + \beta$ με τους συντελεστές α και β να ορίζονται από το χρήστη
 - **Sigma Scaling**: Η τιμή ποιότητας μεταβάλλεται σύμφωνα με τη **μέση τιμή** \bar{f} και την τυπική απόκλιση σ του πληθυσμού:
 - $f'(C_i) = \max(f(C_i) + (\bar{f} c \cdot \sigma), 0)$ c είναι μικρός ακέραιος (συνήθως στο διάστημα [1, 5])
 - **Power Law**: οι τιμές ποιότητας υψώνονται σε δύναμη *k* κοντά στο 1 (π.χ. 1.005)
 - $f'(C_i) = (f(C_i))^k$

Φώτης Κόκκορας

Ευφυή Συστήματα

Rank Roulette Wheel

- * Παρόμοιος τελετής με τον Cost Roulette Wheel.
 - Διαφέρει στον τρόπο υπολογισμού των πιθανοτήτων επιλογής (δηλαδή στο πρώτο στάδιο).
- Η πιθανότητα υπολογίζεται με βάση τη θέση (rank) που κατέχει το χρωμόσωμα στον ταξινομημένο ως προς την ποιότητα πληθυσμό.
 - Ισχύει δηλαδή η σχέση δεξιά:

Παράδειγμα:

- □ Έστω πληθυσμός 6 ατόμων (λ=6) σε ταξινομημένη σειρά ως προς την τιμή ποιότητας.
 - Η τιμή ποιότητας δεν μας ενδιαφέρει.
- Ο παρονομαστής της παραπάνω σχέσης είναι:
 - $\sum i = 1+2+3+4+5+6 = 21$
- Με εφαρμογή της παραπάνω σχέσης προκύπτουν οι πιθανότητες που φαίνονται στον πίνακα δεξιά.

D _	$\lambda - i + 1$
I_i –	$\sum_{i=1}^{\lambda} i$
	<i>1</i> =1

i	Pi
1	28.6%
2	23.8%
3	19.0%
4	14.3%
5	9.5%
6	4.8%

Τοurnament Selection Φεν εκτήματα: Δεν απαιτεί πληροφορίες από όλο τον πληθυσμό. Δεν απαιτεί ταξινόμηση, ως προς την ποιότητα, όλου του πληθυσμού. Σε μεγάλους ή/και σε κατανεμημένους πληθυσμούς είναι υπολογιστικά ακριβή διαδικασία. * Βήματα: Επιλέγονται τυχαία n άτομα (n≥2) από τον πληθυσμό.

Από τα n άτομα, επιλέγεται αυτό με την καλύτερη τιμή ποιότητας.
 Η διαδικασία επαναλαμβάνεται μέχρι να συγκεντρωθούν τα λ άτομα που απαιτούνται.

Έχοντας δημιουργήσει τον πληθυσμό που θα συμμετάσχει στην αναπαραγωγική διαδικασία, επιλέγουμε από αυτόν τυχαία ζευγάρια και εφαρμόζουμε τεχνικές ανασυνδυασμού (αναπαραγωγής).

🗖περιγράφονται στη συνέχεια

Φώτης Κόκκορας

Ευφυή Συστήματα

Ανασυνδυασμός

- Δημιουργεί έναν ή περισσότερους απογόνους (συνήθως 2) συνδυάζοντας τα γαρακτηριστικά των γονέων.
- ***** Στα επόμενα, θεωρούμε ότι οι γονείς έχουν τη μορφή:

$$C_1 = (c_1^1, c_2^1, ..., c_n^1)$$
 хаг $C_2 = (c_1^2, c_2^2, ..., c_n^2)$

Τελεστές Ανασυνδυασμού (1/4)

Δυαδική Αναπαράσταση

□ Single Point Crossover

- A: 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1
- B: 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0

□ N Point Crossover

- A: 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0
- B: 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1

Uniform

 Οι τιμές σε κάθε γονίδιο των απογόνων επιλέγονται τυχαία από τις τιμές των αντίστοιχων γονιδίων των γονέων.

- B: 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1

Φώτης Κόκκορας

Ευφυή Συστήματα

11

Τελεστές Ανασυνδυασμού (2/4)

Αναπαράσταση Κινητής Υποδιαστολής

Flat

 Δ ημιουργείται ένας απόγονος $H=(h_1,h_2,...h_i,h_{i+1},...h_n)$, με h_i μία τυχαία τιμή από το διάστημα $[c_i^{min},c_i^{max}]$, όπου $c_i^{min}=min(c_i^1,c_i^2)$ και $c_i^{max}=max(c_i^1,c_i^2)$.

Arithmetical

Δημιουργούνται δύο απόγονοι, $H_k=(h_1^k,h_2^k,...h_i^k,h_{i+1}^k,...h_n^k)$ με $h_i^1=\lambda c_i^1+(1-\lambda)c_i^2$, όπου $k=1,2,\ h_i^2=\lambda c_i^2+(1-\lambda)c_i^1$ και λ ένας τυχαίος αριθμός στο [0,1].

Extended Line

Δημιουργείται ένας μόνο απόγονος $H=(h_1,h_2,...h_i,h_{i+1},...h_n)$, με $h_i=c_i^{min}+\alpha(c_i^{max}-c_i^{min})$ όπου α ένας τυχαίος αριθμός στο [-0.25,1.25], $c_i^{min}=min(c_i^1,c_i^2)$ και $c_i^{max}=max(c_i^1,c_i^2)$.

Average

Δημιουργείται ένας απόγονος $H=(h_1,h_2,...h_i,h_{i+1},...h_n)$ με $h_i=\frac{c_i^1+c_i^2}{2}$.

BLX-α

Δημιουργείται ένας απόγονος $H=(h_1,h_2,...h_i,h_{i+1},...h_n)$ με h_i ένας τυχαίος αριθμός στο διάστημα $[c_i^{min}-I\alpha,c_i^{max}+I\alpha]$, όπου $c_i^{min}=min(c_i^1,c_i^2)$, $c_i^{max}=max(c_i^1,c_i^2)$, $I=c_i^{max}-c_i^{min}$ και α μία σταθερά. Παρατηρούμε ότι ο BLX-α με $\alpha=0.0$ είναι ισοδύναμος με τον Flat.

Heuristic

Έστω ότι ο γονέας C_1 έχει καλύτερη τιμή ποιότητας από τον C_2 . Τότε δημιουργείται ένας απόγονος $H=(h_1,h_2,...h_i,h_{i+1},...h_n)$ με $h_i=r(c_i^1-c_i^2)+c_i^1$ όπου r ένας τυχαίος αριθμός στο διάστημα [0,1].

Φώτης Κόκκορας

Ευφυή Συστήματα

13

Τελεστές Ανασυνδυασμού (3/4)

Αναπαράσταση Ακεραίων

- Μπορούμε να χρησιμοποιήσουμε τελεστές παρόμοιους με αυτούς της δυαδικής αναπαράστασης.
- Οι τελεστές αναπαράστασης κινητής υποδιαστολής δεν εξυπηρετούν γιατί δεν παράγουν ακέραιες τιμές!

Τελεστές Ανασυνδυασμού (4/4)

Αναπαράσταση Permutation (Μετάθεσης)

❖ PMX (Partially Mapped Crossover)

- □ Επιλέγουμε ένα υποσύνολο των χρωμοσωμάτων διαλέγοντας τυχαία δύο σημεία και ανταλλάσσουμε τα εσωτερικά τμήματα.
- Από τα υπόλοιπα γονίδια, κρατούμε αυτά που δεν εμφανίζονται ήδη στους απογόνους.

H ₁	Х	2	3	1	8	7	6	Х	9
H ₂	Χ	Х	2	4	5	6	7	9	3

- Συμπληρώνουμε τα κενά με τα εναπομείναντα γονίδια των γονέων.
- **Ταραλλαγή της PMX** (εφαρμογή στους γονείς P1 και P2 προηγούμενου παραδείγματος)

 - Για να συμπληρώσουμε το H1
 - αναδιατάσσουμε τον γονέα P2 φέρνοντας το δεύτερο τμήμα εμπρός: 93 4 5 2 1 8 7 6
 - αφαιρούμε τα γονίδια που υπάρχουν ήδη στον απόγονο H_1 : $9 \ 3 \ 4 \ 5 \ 2 \ 1 \ 8 \ 7 \ 6 o 9 \ 3 \ 2 \ 1 \ 8$
 - με τα γονίδια που έμειναν συμπληρώνουμε τον H_1 ως εξής: $\frac{2}{18} | 4567 | \frac{9}{93}$
 - αντίστοιχα προκύπτει ο απόγονος H₂: 3 4 5 | 1 8 7 6 | 9 2

Φώτης Κόκκορας

Ευφυή Συστήματ

15

P₁ 1 2 3 4 5 6 7 8 9

P₂ 4 5 2 1 8 7 6 9 3

H₁ X X X 1 8 7 6 X X

H₂ X X X 4 5 6 7 X X

* Κυκλικός Ανασυνδυασμός (Cycle Recombination)

- □ Κανόνες "κύκλου":
 - 1) Εκκίνηση από πρώτο διαθέσιμο γονίδιο του Ρ1.
 - 2) Κατακόρυφη μετάβαση από P1 σε P2.
 - 3) Μετάβαση από Ρ2 στο ίδιο γονίδιο του Ρ1.
 - 4) Επανάληψη από βήμα (2) μέχρι να "πέσουμε" στο γονίδιο εκκίνησης του βήματος (1).
- Επανάληψη του "κύκλου" μέχρι να χρησιμοποιηθούν όλα τα γονίδια του P1.
- Οι απόγονοι σχηματίζονται παίρνοντας γονίδια από τους γονείς, από αριστερά προς δεξιά, με τη σειρά που ορίζουν οι "κύκλοι":
 - τα γονίδια αυτούσια για "μονούς" κύκλους (1°, 3°, κ.ο.κ.)
 - τα γονίδια αντεστραμμένα για "ζυγούς" κύκλους (2°, 4°, κ.ο.κ.)

Φώτης Κόκκορας

Ευφυή Συστήματα

Μετάλλαξη (1/2)

***** Δυαδικής Αναπαράστασης

* Αναπαράστασης Κινητής Υποδιαστολής

Uniform Random

Στην περίπτωση αυτή, το c_i' είναι ένας τυχαίος αριθμός από το διάστημα $[a_i,b_i]$, όπου $a_i,\,b_i$ είναι αντίστοιχα το έλαχιστο και το μέγιστο όριο της τιμής του c_i .

Creep

Ο τελεστής αυτός λειτουργεί προσθέτοντας μία μιχρή θετιχή ή αρνητιχή τιμή σε ένα τυχαίο γονίδιο, δηλαδή $c_i'=c_i+(b_i,a_i)r$, όπου r ένας τυχαίος αριθμός από το διάστημα [-1,1] και a_i,b_i το ελάχιστο και μέγιστο επιτρεπτό όριο του c_i γονίδιου.

Non-Uniform Random

Έστω t η τρέχουσα γενιά και g_{max} ο μέγιστος αριθμός επαναλήψεων. Τότε ο τελεστής αυτός έχει αποτέλεσμα:

$$c_i^{'} = \begin{cases} c_i + \triangle(t, b_i - c_i) & \text{an } r{=}0 \\ c_i - \triangle(t, c_i - a_i) & \text{an } r{=}1 \end{cases}$$

όπου $\triangle(t,y)=y(1-r^{(1-\frac{t}{g_{max}})^b})$, με r ένας τυχαίος αριθμός ίσος με 0 ή 1 και b μία σταθερά που ορίζεται από τον χρήστη και δηλώνει το βαθμό εξάρτησης στο πλήθος των επαναλήψεων. Η συνάρτηση $\triangle(t,y)$ δίνει αποτέλεσμα στο διάστημα [0,y].

Αναπαράσταση Ακεραίων

Uniform Random και non-Uniform Random

Φώτης Κόκκορας

Ευφυή Συστήματα

17

Μετάλλαξη (2/2)

Αναπαράσταση Permutation (Μετάθεσης)

□ Inversion

□ Swap

1 2 4 13 3 8 6 7 9 16 12 15 14 10 11 5

\$

Φυσική Επιλογή

(ή Τελεστής Αντικατάστασης)

**	Zŋ	ιτούμενο : να επιλέξουμε τα "καλύτερα" άτομα του τρέχοντος πληθυσμού (γενιάς)
	<mark>με</mark>	τα οποία θα δημιουργήσουμε την επόμενη γενιά.

**	Επιλέγ	ουμε	από:

- μ άτομα της τρέχουσας γενιάς (όχι αυτά που επιλέχθηκαν για αναπαραγωγή!)
- λ απογόνους (τα άτομα που προέκυψαν από την αναπαραγωγή)
- ❖ Επιπλέον μπορούμε να κρατούμε το καλύτερο "άτομο" (ελιτισμός elitism).
 - Διατηρείται η καλύτερη λύση (στο σύνολο αρχικού πληθυσμού και παιδιών) μέχρι να βρεθεί καλύτερη.

Φώτης Κόκκορας

Ευφυή Συστήματα

19

Επιλογή ως προς την Ηλικία

- ❖ Κρατούνται οι απόγονοι και αντικαθιστούν αντίστοιχο πλήθος της τρέχουσας γενιάς.
- 1. Αντικατάσταση του χειρότερου. Τα λ χειρότερα άτομα του πληθυσμού της τρέχουσας γενιάς, επιλέγονται για να καταλάβουν τη θέση τους οι λ απόγονοι. Στη περίπτωση όπου οι απόγονοι είναι όσο όλος ο πληθυσμός, δηλαδή ισχύει $\lambda=\mu$, τότε αντικαθιστώνται όλα τα άτομα από τους απογόνους.
- 2. Τυχαία αντικατάσταση. Η αντικατάσταση των ατόμων του πληθυσμού από τους απογόνους τους πραγματοποιείται με τυχαίο τρόπο. Δηλαδή επιλέγονται τυχαία τα λ άτομα που θα εγκαταλείψουν τον πληθυσμό και την θέση τους καταλαμβάνουν οι απόγονοι.

Φώτης Κόκκορας

Ευφυή Συστήματα

20

Επιλογή ως προς την Ποιότητα

- Κριτήριο Επιλογής είναι η τιμή ποιότητας.
- 1. Tournament. Από το σύνολο των ατόμων (απόγονοι και τρέχουσα γενιά) επιλέγεται ένα μικρό υποσύνολο k ατόμων και το άτομο με την χειρότερη τιμή ποιότητας απομακρύνεται. Η διαδικασία αυτή επαναλαμβάνεται έως ότου παραμείνουν μ άτομα.
- 2. GENITOR. Από το σύνολο όλων των ατόμων $(\lambda + \mu)$ απομακρύνονται τα λ χειρότερα άτομα. Παρόλα αυτά η μέθοδος αυτή μπορεί να οδηγήσει τον ΓΑ σε πρόωρη σύγκλιση, καθώς τον κατευθύνει μόνο προς τα υπάρχοντα ποιοτικότερα άτομα.

Φώτης Κόκκορας

Ευφυή Συστήματα

21

Συνθήκη Τερματισμού ΓΑ

Ο ΓΑ εκτελείται επαναληπτικά έως ότου ικανοποιηθεί η συνθήκη ή ικανοποιηθούν οι συνθήκες τερματισμού που έχουν οριστεί. Συνήθως η συνθήκη τερματισμού ορίζεται από το πρόβλημα, ωστόσο οι περισσότερο συνηθισμένες είναι η εξής:

- 1. Μέγιστο πλήθος επαναλήψεων.
- 2. Μέγιστος χρόνος εκτέλεσης του ΓΑ.
- 3. Η μη βελτίωση της ποιότητας του καλύτερου ατόμου για ένα προκαθορισμένο πλήθος γενεών.
- 4. Η εύρεση της βέλτιστης ή μίας αποδεκτής λύσης.

Φώτης Κόκκορας

Ευφυή Συστήματα

22