Chapter 6

最优化计算方法

6.1 最优化计算方法知识点总结

最优化计算方法

Chapter I. Introduction.

Convexity.

convex set: S, \forall x, y \in S \Rightarrow dx+(1-a)y \in S, \forall dx \in [0,1]

convex function: f. its domain S is convex.

Yxiy6S => f(xx+(1-a)y) = \alpha f(x)+(1-\alpha)f(y).

Convex programming min f ____ convex

min f _ convex

St. Ci(x)=0, E& __linear

Cilx 30, Te] - Oncahe

Rates of convergence

Q- Linear 11x1-2*11 =r, r=(0,1)

(e - Superlinear lim $\frac{||\chi_{k+1} - \chi^*||}{||\chi_k - \chi^*||} = 0$

Quadratic $\frac{||\chi_{k+1} - \chi^{*}||}{||\chi_{k-1} - \chi^{*}||} \leq M$, M > 0.

Chaptert. Unconstrained Optimization.

min fix).

Taylor's theorem.

If $f \in C'$, $p \in \mathbb{R}^n$, $f(x+p) = f(x) + \nabla f(x+tp)^T p$, $t \in (0,1)$ If fe C2, 5 \ f(x+p) = of (x) + 5 \ 72 f(x++p)p dt

f(x+p) = f(x) + ofrop+ > pT p2 f(x++p)p, te[0,1]

First-order necessary conditions:

 χ^{+} : a local minimizer, $f \in C'$ in an open reighborhood $\nabla f(x^{*}) = 0$.

Second-order necessary condumns

Stationary point. if \to f(x) =0.

 χ^* : a local minimizer. $\nabla^2 f(x)$ exists and nontinous in neighborhood of χ^* . $\nabla f(x^*) = 0$, $\nabla^2 f(x^*)$ is positive semidefinite.

Local minimizer is stationary point.

Sufficient conditions

v2f(x) is continous, vf(x*)=0, v2f(x*) positive definite.

=> x* is a strict local minimizer.

Convex opeimization

fis onex =) any local minimizer is a global minimizer.
In addition, fis continuous => any stationery point is global.

Chapter 3. Line search merthods.

XICHI = XK + OK PK

step length search direction

- Seepest descent direction
$$f(x_{k}+\alpha p) = f(x_{k}) + \alpha p^{T} \nabla f(x_{k}+\alpha p) p$$

$$\Rightarrow p = -\frac{\nabla f(x_{k})}{\|\nabla f(x_{k})\|} \cdot (p^{T} \nabla f(x_{k}+\alpha p)) p$$

Newton direction.

$$P_{k}^{N} = -(\nabla^{2}f_{k})^{-1}\nabla f_{k} \qquad (more accurate)$$

Quadratic-convergence rote (only local)
modification: $pN = -(D^2f_k + DL)^{-1}Df_k$

· Quasi - Neuron direction

Pifferent conditions on Bk+1 => different grasi-Neuton.

- exact line search

$$dp = argmin f(x_k + dp_k) = \phi(d)$$

- inexact line search

sufficient decreese condition

Curvature condition (avoid short steplength)

D 7f(xk+0xpx)7pk > GofkPk, Cz & (Ci, 1) O+O => Wolfe Conditions. Strong Wolfe Conditions: f(Ze+arpr) = fixe) + Gar Vfrpr (close to stationary point of \$) - Goldstein Conditions. fixe) + (1-c) die ofe pk = f(xe+dkpk) = f(xe) + cxx ofepk. => E G520K 117 fK112 < w, Zonton dyk condition Chapter4 Trust - Region Methods model function f(xx+p) = fx+gxp+ 2pTof124c++ppp MIC(P) = fk+9Tp+ = PTBKP. mk (p)- f(xx+p)= ()(||p||2)= ((||p||3) ~ f Br= 22f(xx).

The cauchy point
$$S_k^c$$
.

 $S_k^c = argmin m_k(p)$
 $s_t \cdot p_t - 20f_k$
 $IIPII \in A_k$, 230.

$$\Rightarrow S_{k}^{C} = -2k \frac{\Delta k}{\|\nabla f_{k}\|} \nabla f_{k}.$$
Where
$$2k = \begin{cases} 1 & \text{if } \nabla f_{k} \nabla f_{k} < 0 \\ \text{win } \left(\frac{\|\nabla f_{k}\|^{3}}{\|\nabla f_{k}\|^{3}}, 1\right), o, w \end{cases}$$

Dogled method: $pB = -B^{-1}g$, if $p(2) = \begin{cases} 7p^{2} & 0 \le 2 \le 1 \\ p^{2} + (2-1)(pB - p^{2}) & (62 \le 2) \end{cases}$

where $p^{\nu} = -\frac{8^{T}9}{9^{T}B}$

Chapters. Conjugate Gradient Methods

· Conjugate Direction Method.

n-dim problem => n |-dim problems

Theorem 1. {xxx} is generated by the Conjugate Direction algorithm. $Y_{K}^{T}P_{i}=0$, i=0,..., k-1.

Xxx minimizes p(x) over $\{x: x=x_{0}+spon\{p_{0}::p_{k-i}\}\}$

How to choose Epo, ..., Prij.

1 Gram - Schuldt orthognalization process

· Conjugate Gitadient Method.

Set $r_0 = Ax_0 - b$, $p_0 = -r_0$, k = 0Thile $r_k \neq 0$, do: $d_k = -\frac{r_0^T p_{lc}}{p_0^T A p_{lc}}, r_{lc}^T p_{lc} = r_0^T (-r_k + \beta_k \beta_{k-1}) = -r_0^T r_k$

to Pk-1 =0 from Theorem

21(1) = Yet apple

 $\begin{aligned}
\Gamma_{(c+1)} &= A \gamma_{(c+1)} - b, \quad \Gamma_{(c+1)} &= A (\gamma_{(c+1)} + d_{(c} \beta_{(c)}) - b = \Gamma_{(c+1)} + d_{(c} A \beta_{(c)}) \\
R_{(c+1)} &= \frac{\Gamma_{(c+1)} A \beta_{(c)}}{\Gamma_{(c+1)} A \beta_{(c)}} - \frac{\Gamma_{(c+1)} \Gamma_{(c+1)}}{\Gamma_{(c)} \Gamma_{(c)}} - \frac{\Gamma_{(c+1)} \Gamma_{(c+1)}}{\Gamma_{(c)} \Gamma_{(c)}} - \frac{\Gamma_{(c+1)} \Gamma_{(c+1)}}{\Gamma_{(c)} \Gamma_{(c)}}
\end{aligned}$ $\begin{aligned}
\Gamma_{(c+1)} &= A \gamma_{(c+1)} - b, \quad \Gamma_{(c+1)} &= A (\gamma_{(c+1)} + d_{(c} \beta_{(c)}) - b = \Gamma_{(c+1)} A \beta_{(c)} \\
\Gamma_{(c+1)} &= \Gamma_{(c+1)} A \beta_{(c)} \\
\Gamma_{(c+1)} &= \Gamma_{(c+1)} A \beta_{(c)} \\
\Gamma_{(c+1)} &= \Gamma_{(c+1)} \Gamma_{(c+1)} \\
\Gamma_{(c+1)} &= \Gamma_{(c+1)}$

Rox1 = - Vet1 + Betilk. k:= k+1.

end.

Theorem 2: { XK} generated by (6 method, XK + xx.

/ ri=o, Vi=o, ..., k-1.

span{ro,..., re] = span{ro, Aro, ..., ARro}

span { Po., Pry = span { ro, Aro, , Akro}

PETA Pi = 0, Vi = 0, ... k-1.

frict > x* in at most n steps.

· Convergence Rote

- Pre conditioning

· Nonlinear Conjugate Gradient Method

V freti D fr. V freti (Vfreti - Vfe)

Pr (ofen - ofx) DY MS

Chapter 6. Quasi-Newton Method (require only gradient)

Pic = - BK VfK

DFP:

min 11B-BEll

St. B=BT, BSK=YK

Bicti = (]- VkykskT) Bk (I-1kyksk) + Ykykyk

Yk = The Justice

SMW. Hry = HE - HEYKYKHE + SKSE YESK

BFGS: Min 11H-HKIIW

s.t. H=HT Hyk=Sk

HICH = (I-PESKYK)HE(I-PESKYK)+PKSKSK, VK= YKTSK.

Symmetric rank-1 method

St. Yk = Bp+1 Sc.
Prevent the breakdown and numerical instabilities skipping rule.

Monsymmetric rank-1 method.

Chapter 8. Least-Squeres Problems

LS problem: min
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} y_i^2(x)$$
.

$$\nabla f(x) = \sum_{j=1}^{m} \gamma_j(x) \nabla \gamma_j(x) = J(x)^{\dagger} \gamma(x)$$

$$\nabla^2 f(x) = \sum_{i=1}^{\infty} \nabla Y_i(x) \nabla Y_i(x)^T + \sum_{j=1}^{\infty} Y_j(x) \nabla^2 Y_j(x)$$

$$= \int_{\mathbb{R}^{3}} x^{1} \int_{\mathbb{R}^{3}} (x) + \sum_{j=1}^{M} f_{j}(x) \sqrt{2} f_{j}(x)$$

Chapter 10. Theory of Constrained Opernization - min fix) St. Gix)=0, ic E. Ci(x) >0, i∈Z feasible set $\mathcal{N} = \{ \chi : C_i(x) = 0, j \in \mathcal{E}; C_i(x) \geqslant 0, j \in \mathcal{L} \}$ · Local solution: f(x*) = f(x). Yx END. · strict local solution. f(x*) < f(x). Yx EMMS. - isolated local solution: x is the only local solution Active set $A(x) = EU \{i \in I : C_{i}(x) = 0\}$ index i is active, if Ei(x)=0. linearized feasible directions $\mathcal{F}(x) = \left\{ d: \frac{d^{T}C_{i}(x) = 0, i \in \mathcal{E}}{dT \nabla C_{i}(x)^{30}, i \in \mathcal{A}(x) \cap \mathcal{I}} \right\}$ Conseraints Qualifications: Fix >= Trix). LZCQ: Linear Independence constraint Qualification. {OCi(x); ic A(x)} linearly independent Lagrange function: $L(x; \lambda) = \int_{i \in \mathcal{E}U_{i}}^{(x)} \lambda_{i} C_{i}(x).$

	First order necessary conditions (KKT conditions)
	X*: local solution
	LZCQ holds at x*. 32*.
	(optimality) \ \forall \chi \lambda \l
	(complementary) (ciry) = 0, if \(\int \), \(\int \)
	(Feasibility)
	U
	cricial cone
	$C(x^*, \chi^*) = \{ w \in \mathcal{F}(x^*) : \nabla C_i(x^*)^T w = 0, \forall i \in \mathcal{A}(x^*) \cap I \text{ when } \lambda_i^* > 0 \}$
	(1) (1) (1)
	$W \in C(x^*, \Lambda^*)$
(=)	STC: (x)TW=0, YiEE
\ /	VC; (x*) TW =0, Vie S(x*) (I WITH 2; >0
	DC; (X) TW 70, Witdex, NI WHY 2; =0
	WEC(x*, x*) => li* VCi(x*, TW=0, Vi & EUI
	$=) \omega^{T} D f (\chi^{k}) = 0.$
7-xample	
Trample	min X,
	St. 2270
	$\left -(\chi_{1}-1)^{2}-\chi_{1}^{2}\right ^{7}$
(40	$T: \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \lambda_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \lambda_2 \begin{pmatrix} -2iX_1 + 1 \\ -2X_2 \end{pmatrix} = 0 = \begin{pmatrix} 1 + 2i\lambda_2(X_1 - 1) \\ -\lambda_1 + 2i\lambda_2X_2 \end{pmatrix}$
	$\chi_1 \chi_2 = 0$, $\chi_2 (-(\chi_1 - 1)^2 - \chi_2^2) = 0$
	X270, 1-1x1-1)2- x2270, 21, 270.
	$\mathcal{N}^{\star} = \begin{pmatrix} 0 \\ \overline{z} \end{pmatrix} , \chi^{\star} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} ,$

$$\int (\chi^{*}) = \begin{cases} d: & d^{\mathsf{T}}(?) \geq 0 \\ d^{\mathsf{T}}(?) \geq 0 \end{cases} = \begin{cases} d: d > 0 \end{cases}$$

$$C(X^{*}, \Lambda^{*}) = \{ w_{3}, w_{1}(\frac{2}{0}) = 0 \} = \{ (0, w_{2})^{T} : w_{2}, 0 \}$$

· Seeond-order necessary conditions

XX: local solution, LICR holds G+ XX, KK Trondhishs hold.

=> WTVxx Lixx, 27) WTO, YWE C(xx, 2x)

Second-order sufficient conditions.

X*, N*: KK | and trion & hold, WTOXX LIX*, N*) W >0

 $\Rightarrow \chi^{\forall}$ is a strict local solution.

Second-order recessary condition:

Second - order sufficient condition:

Duality.

(p) min f(x) Convex prob

(D) may $f(x) = \inf_{x \in X} L(x, \lambda)$ St. $\lambda \neq 0$

Quadratic Programming Wolfe Dual: (p) min $\frac{1}{2}x^{T}Gx + c^{T}x$ (max $\frac{1}{2}x^{T}Gx + c^{T}x - \lambda^{T}(Ax-b)$ 5-t. Ax-b > 0 | (λ, x) | (λ, x)

Chapter 11	Fundamentals of Algorithms for Nonlinear Constrained Opt.
	min fix)
	St. Cilx) =0, i6 &
	Ci.(x) 30. if I.
` (P. QP, NLP, LCO, BCO, CP.
	CC_{1} : $\nabla_{x} L(x^{*}, \lambda^{*}) = 0$
	C(x*)=0, i & E
	Cicx170. iGZ
	7, 70, ie2
	$\lambda_i^* C_{i1}x^* = 0$, if $EU2$.
	artive Constraints:
	hard constraints: must be satisfied
	soft constraints: can be penalized
	Merlt function
	s reduce objective f
	l satisfy constraints C
•	li-penalty function
	exact merit function $ \psi_{(1x;\mu)} = f(x) + \mu \sum_{i \in Q} C_i(x) + \mu \sum_{i \in Q} C_i(x) ^{-1} $ exact merit function
<u> </u>	7 11 * for any 11 > 1.7 poly, local colution of
	Int, for any u>u*, only boal solution of original publish is a local minimizer of \$1x;u).
	li merie function l'excet for unui, upin
	u= ma>{/2;* i=EUZ}
	u* = ma>{ ni* i= EU]} opeimal multiplier.
	990

Lz merit function (equality case)

$$P_{2}(x;\mu) = f(x) + \mu || (x) ||_{2}$$

- [letcher's augmented Lagrangian (equality case)

 $P_{2}(x;\mu) = f(x) - \lambda ||_{2}(x) + \frac{1}{2} \mu \sum C(x)^{2}$.

 $P_{3}(x;\mu) = f(x) - \lambda ||_{2}(x) + \frac{1}{2} \mu \sum C(x)^{2}$.

 $P_{4}(x;\mu) = f(x) - \lambda ||_{2}(x) + \frac{1}{2} \mu ||_{2}(x)^{2}$.

 $P_{5}(x;\mu) = f(x) - \lambda ||_{2}(x) + \frac{1}{2} \mu ||_{2}(x)||_{2}$

Chapter 12. Quedratic Programming.

(QP). Min $P_{3}(x) = \frac{1}{2} x^{2} G(x + x^{2}) C$
 $P_{5}(x) = P_{5}(x) + x^{2} C$
 $P_{$

Inequality - constrained OP

- · active Set method. Small-medieum-scale probs.
- · gradient projection method: bounded optimization.
- · Interior-point method: large convex QP

Bound - constrained Optimization

$$\min_{x} 9(x) = \frac{1}{2} x^{T} 6 x + x^{T} C$$

St. Lexeu. box

, box constrained

- · (i=-10, or "j=+10
- · Po not require 6, >0.

· KKT: GX+C = 21-22

LEXEU, 2,70, 7270.

Projected operator: $p(x,l,u)_{i} = \begin{cases} k_{i}, x_{i} \in l_{i}, u_{i} \end{cases}$ $u_{i}, x_{i} \neq u_{i}$

KK => x = P(x (Gx+c), Lu) LEXEU

Gradient Projection mothod

Ofirst stage

O second stage

=> unconstrained optimization.

$$min f(x) + S(x|X)$$
, where $S(x|X) = \{0, x \in X \in X\}$

St.
$$C_{0}(x)=0$$
, $i\in E$.

$$P(X;\mu) = f(x) + \frac{\mu}{z} \sum_{i\in E} C_{i}^{2}(x) = f(x) + \frac{\mu}{z} ||C(x)||_{2}^{2}$$

$$\mu>0: \text{ penaltry parameter}, \quad \mu>+\infty.$$

$$p(x;u) = f(x) + u^{-1} \stackrel{m}{\geq} \frac{1}{C_i(x)}$$

 $P(X; U) = f(x) - \mu^{-1} \sum_{i=1}^{m} \log C_{i}(x)$

Chapteri	t. Segnential Quadratic Programming
Lagrange	- Newton Mothod.
•	min fix)
	St. C(x) = 0
\	Construct a quadratic programming whose solution is used
	to define x _{C+1} .
\ \ \	
	How to construct such QP with good properties? Newton's method to KKT conditions.
\	
	A(x) = IDC((x), -, DCm(x)], A: full row rank.
KKT:	$F(x, n) = \begin{bmatrix} \nabla f(x) - A(x)^{T} n \\ C(x) \end{bmatrix} = 0$
	Newton's method
	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$
	$\overline{J}_{F} = \begin{bmatrix} \nabla_{xx} L_{1x, \lambda_{1}} & -A_{1x}\overline{J} \\ A_{1x_{1}} & 0 \end{bmatrix}$
=)	$\begin{bmatrix} \chi_{k+1} \\ \chi_{k+1} \end{bmatrix} = \begin{bmatrix} \chi_{k} \\ \chi_{k} \end{bmatrix} + \chi_{k} \begin{bmatrix} \chi_{k} \\ \chi_{k} \end{bmatrix}$
	$\begin{bmatrix} \nabla_{xx}^{2} L(y, x) & -A(x) \\ A(x) & 0 \end{bmatrix} \begin{bmatrix} P_{K} \\ P_{N} \end{bmatrix} = \begin{bmatrix} -\nabla f_{K}^{T} + A_{K} & x_{K} \\ -Q_{K} \end{bmatrix}.$
	$\begin{bmatrix} A(x) & 0 \end{bmatrix} \begin{bmatrix} b \\ b \end{bmatrix} \begin{bmatrix} b \\ c \end{bmatrix}$
	lagrange-Newton Method!
	OD: hoin for + DfrP+ = PTDxx lrP
	S.t. CK+AKP=0
	, -,- · · ·

$$(P_{lc}, l_{lc}): \int_{XX}^{Z} L_{k} P_{k} + \Im f_{k} - A_{k}^{T} l_{k} = 0$$

$$H_{k} P_{lc} + C_{k} = 0$$

$$= \begin{bmatrix} v_{xx} & U_{xx} & -A_{tx} \\ A_{tx} & 0 \end{bmatrix} \begin{bmatrix} P_{tx} \\ U_{tx} \end{bmatrix} = \begin{bmatrix} -V_{tx} \\ -C_{tx} \end{bmatrix}$$

$$\begin{cases} \chi_{|C+1|} = \chi_{|C|} + \chi_{|C|} / \kappa \\ \chi_{|C+1|} = \chi_{|C|} + \chi_{|C|} / \kappa \end{cases}$$

Example. $m in 3v^2 - 2u$ $s-t \cdot u = v^2$

Supperlinear step

| 11xk+dk-xx11 > 0 couldn't be accepted.

$$|S = \nabla_{xx}^{2}(X_{*}, \Lambda_{*}) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

$$|X_{c} = \begin{pmatrix} \varepsilon^{2} \\ \varepsilon \end{pmatrix}, ||X_{k} - X_{*}|| = \varepsilon$$

$$|C_{c} = \rho$$

$$\chi_{C} + d_{C} = \begin{pmatrix} -\epsilon^{2} \\ 0 \end{pmatrix}$$
, $||\chi_{|C} + d_{Ie} - \chi_{w}|| = \epsilon^{2}$. $\int |\chi_{C} + d_{Ie}| = 2\epsilon^{2}$. $\int |\chi_{C} + d_{Ie}| = 2\epsilon^{2}$. $\int |\chi_{C} + d_{Ie}| = 2\epsilon^{2}$.

Chapter 15. Interior - point methods.

(works new for large probs, particularly when the number of free variables is large)

S.t. ČE(X) = 0, y CI (X) 701 Z

$$|CKT: Df(x) - AEY - AIZ = 0$$

$$Z \cdot C_{2}(x) = 0$$

$$F(x, \varsigma, y, z) = C_{E}(x) = 0$$

$$C_{I}(x) - S = 0$$

$$S > 0, z > 0$$

Barrier approach: pun fix) S.t. CE(x)=0 (7 1X) - S = 0 => min f(x) - M = 108 Si St. C.(x) = 0 Cy (x)-S=0 MK70, solve above problem w.r.t. fixed yk C=(x)=0 CZ(X)-S=0 C=) Pf(x) -AT(x) y - AT(x) Z=0 - U5-1e + == 0 CF(A) = 0C7(V)-S=0.

Newton's method to perturbed KKT anditions

6.2 最优化计算方法往年期末考试题

最低低压车期末考试起。

7.32063

$$\begin{array}{lll}
& & & \\
A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 8 \end{pmatrix}, \quad \nabla f = \begin{pmatrix} \frac{\partial f}{\partial u} \\ \frac{\partial f}{\partial v} \end{pmatrix} = \begin{pmatrix} 2u - 4 \\ 8v - 8 \end{pmatrix} \\
& & & \\
D & & & \\
G & & & \\
D & & & \\
O & & &$$

$$\beta_{k+1}^{HS} = \frac{\nabla f_{k+1}^{T} (\nabla f_{k+1} - \nabla f_{k})}{P_{k}^{T} (\nabla f_{k+1} - \nabla f_{k})} = \frac{\nabla f_{k+1}^{T} \nabla f_{k+1}}{-P_{k}^{T} \nabla f_{k}}$$

$$\beta = \frac{\nabla f_{k+1} \nabla f_{k+1}}{(\nabla f_{k+1} - \nabla f_k)^T P_k} = \frac{\nabla f_{k+1} \nabla f_{k+1}}{-\nabla f_k^T P_k}$$

$$= \frac{\nabla f_{k+1} \nabla f_{k+1}}{-\nabla f_{k}^{T} \left(-\nabla f_{k}^{T} \beta_{k}^{HS} \beta_{k+1}\right)} = \frac{\nabla f_{(k+1)} \nabla f_{(k+1)}}{\nabla f_{k}^{T} \nabla f_{(k)}} = \beta_{(k+1)}^{FR}$$

西芝和港度沒有这个医界相同,在 『叶八十年八日月,及由九江之州的红华的高高多生作的可知考别

15 岁之	TA 单过泡排没性艾妮佛度法与有限的花及FG Szis
	简单过泡排汽性艾矩棉度法与有限的存货FGS与法) 加利国之处和差别。
第二	
	人用同之处:算这种如果室沙鼻梯度,不需要计算Hecsian短時
	电海安进行主连操作,同对均为这代更新计算.
	了一同之处:排污性发射神度法是有一个这些性,能够在不超过
	九多的农场,所得些代之教教》
	有限的存13下657的计算量指小,听常有情的数据较少
	プラファンス 日本 月本 在局 法に別述る 3 名
i)を3:	考虑下到三个问题是在有解,请购的看解释。 这里, (u,v) TE/R2.
	min u+v, S.t. u+v2=2, DEUSI, DEVEI
	min u + V St. u+v2=1, u+v=3
	min uv St. htv=2.
部 : ①	由的来存件知:可行案后为w={(1,1)},有解
	由的原东讲知:可行第台为 山 成无解
	多由的素的共和:阿宁菜后次W={(U,V):U+V=2},有扇。
计步生	考虑.问题:
	min - LutV X=(4,v) EIR ²
	75-(4,v) EIK
	g.t. [1-4]3-170
	V+a25U2-170.
	最优解为 2×= (0.15)T. 能记, LI(Q条件有该点处是否成是?
(9)	能记LI(Q条的有该这处是否成至?
(노)	
(c)	罗生产(x*)及C(x*,元*) 分别多定论:=所必要条件,=所充分性存件是否成之?
(9)	
	248

$$DC_1 = \begin{bmatrix} \frac{\partial C_1}{\partial u} \\ \frac{\partial C_2}{\partial v} \end{bmatrix} = \begin{bmatrix} -\frac{\partial (1-u)^2}{\partial v} \\ -1 \end{bmatrix}, \quad \nabla C_2 = \begin{bmatrix} \frac{\partial C_2}{\partial u} \\ \frac{\partial C_2}{\partial v} \end{bmatrix} = \begin{bmatrix} o. \pm u \end{bmatrix}$$

$$|K| = \frac{1}{4} \left(\frac{1}{2} + \lambda_1 \left(\frac{3(\mu_1)^2}{2} \right) + \lambda_2 \left(\frac{-\alpha_2 u}{-1} \right) = 0$$

 $\lambda_1 \left[(\mu u)^3 - V \right] = 0$, $\lambda_2 \left[V + \alpha_2 \int u^2 u^2 \right] = 0$

11-413- v70, rxa2542-170, 21,7230

秋几10.17万智·九二章,九二章,九九元初, 起点水=1011届是KF科

$$= \left\{ d: d^{\intercal} \left(\begin{array}{c} -3 \\ -1 \end{array} \right) \stackrel{?}{?} 0, d^{\intercal} \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \stackrel{?}{?} 0 \right\}$$

$$C(x^{*}/n^{*}) = \{w : \nabla C; (x^{*})^{T}w = 0\}$$

$$= \{w: (-3,-1)w=0, (0,1)w=0\}$$

= {w: w=0}

(d) 二阶部分:

二阶以常情新件:到于以水水) 高温起的双型L(x*,水)对20, tole G

$$\begin{array}{c|cccc}
\hline
 & G = \begin{cases}
 & d & VC_i(x)^T d = 0, & i \in I \underline{B} \Lambda_i \neq 0 \\
\hline
 & VC_i(x)^T d \neq 0, & i \in I \underline{B} \Lambda_i \neq 0
\end{array}$$

三阶充分准系件:对于符合一阶分客临条件分(次,处), 对任意的deG,

$$\frac{\partial C}{\partial u} = -2 + \lambda_1 \beta - 0.5 \lambda_2 u$$

$$\frac{\partial^2 \Gamma}{\partial \mu^2} = -0.5 \lambda_2$$

$$\frac{3l}{2N} = 1 + \eta_1 - \eta_2$$

$$\frac{3^2l}{> v \partial u} = 0$$

$$\frac{32}{30^2} = 0$$

$$L_{XX}^{2}(X^{2}, \mathcal{X}^{2}) = \begin{pmatrix} -as \lambda_{2} & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{cases} \int C_1^T d = 0 \\ \int C_2^T d = 0 \end{cases} \Rightarrow \begin{cases} (-3, +)^T d = 0 \\ (0, 1)^T d = 0 \end{cases} \Rightarrow d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

最初了了G=0. 包表明在到分条件中的四军和罗利自然满足 国电》24=(0,1)满足=所必要部分如于所充的存在是多部 招小点

(16)建了。利用哥函数法(可以代复批总种罚函数)和解: min 3 2-2V

X=(UV)TEIRZ

请给出算这框架,并挑选一面始点及出发计算次,义

罰函数可吸为にQ(x,M=312-2V+学(n2-y)

那么。
$$O$$
 $DL_o = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $D^2L_o = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}$. 并用牛豆は水岁长:

$$d_0 = -(p^2(0)^{-1}pl_0 = -4(04)(0) = (0)$$

$$\chi_{1} = \chi_{0} + d_{0} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \quad \nabla Q(\chi, \mu) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{P}_{q} : ||\nabla Q(\chi, \mu)|| \in \mathcal{T}_{0} = 1.$$

$$\chi_{1} = \chi_{0} + d_{0} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \quad \nabla Q(\chi, \mu) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{P}_{q} : ||\nabla Q(\chi, \mu)|| \in \mathcal{T}_{0} = 1.$$

放y更新

$$\nabla L_1 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \nabla L_1^2 = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} ,$$

$$d_1 = -\left(\begin{array}{cc} 0^2 L_1 \end{array} \right)^{-1} \nabla L_1 = -\left(\begin{array}{cc} -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array} \right) \left(\begin{array}{c} 0 \\ 2 \end{array} \right) = \left(\begin{array}{c} 0 \\ -1 \end{array} \right)$$

$$\chi_{2} = \chi_{1} + d_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \nabla Q(x, y_{1}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \forall f: ||Q_{1}x_{1}y_{1}|| \leq T_{1} = \frac{1}{2}$$

$$\nabla l_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \quad \nabla^2 l_2 = \begin{pmatrix} -2 & 0 \\ 0 & 4 \end{pmatrix}, \quad d_2 = -(\nabla^2 l_2)^{-1} \nabla l_2 = \begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$$

$$\chi_3 = \chi_2 + d_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
, $\nabla Q(1X, \mu) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

TP: 101x, will = 72 = = 3.

极如果新

和用SQP方法求解的基础处间超 Min ZU-V X=(UMTEIR2

Ct. 7+424=0

设知值为 化二(0.0寸) 情始出州的农庭代刊年龄

扇到: 建用 Lagrange-Newton 方法:

$$\chi_{0} = 10_{10})^{7}$$
, $\chi_{0} = 1$, $\beta = \frac{1}{2}$,

$$P(\gamma_{2}, \chi) = ||\nabla f(x) - \chi A(x)||_{2}^{2} + ||c(x)||_{2}^{2}$$

 $\xi + A(x) = \nabla C(x)$.

$$\nabla f(x) = \left(\frac{\partial (2u-v)}{\partial u}\right) = \left(\frac{\partial}{\partial v}\right), \quad \nabla^{2} f(x) = \left(\frac{\partial}{\partial v}\right)$$

$$A(x) = \sqrt{3 + 4^2 + 2u},$$

$$A(x) = \sqrt{(x)} = \begin{pmatrix} \frac{3(v + u^2 + 2u)}{3u} \\ \frac{3(v + u^2 + 2u)}{3v} \end{pmatrix} = \begin{pmatrix} 2u + 2 \\ 1 \end{pmatrix}, \sqrt{(x)} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

$$P(x_0, \lambda_0) = || {2 \choose 1} - {2 \choose 1}||_2^2 + || 0 + \delta^2 + 2 \cdot 0||_2^2 = 4$$

下面求解:

$$|\lambda n| \cdot |\lambda (|\lambda x|) = |\lambda n| \cdot |\lambda n| \cdot$$

$$(\lambda \lambda)_{0} = -2$$

$$\lambda = \frac{1}{4}, \quad \lambda_{0} + \alpha (\lambda \lambda)_{0} = \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} \quad A \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}$$

$$\lambda_{0} + \alpha (\lambda \lambda)_{0} = \frac{1}{2}$$

$$P(\frac{1}{2}) = ||(\frac{1}{4}) - \frac{1}{2} \cdot (\frac{3}{3})||_{2}^{2} + ||-|+|\frac{1}{3}+2\frac{1}{2}||_{2}^{2} = \frac{4}{16} < (|-\frac{1}{4}-\frac{1}{3})^{4} = \frac{7}{2}$$

有诗继续枪查

 $=5.9985 > \frac{117}{256}$. 7Fr. d=4.

$$\begin{aligned}
d_{ic} &= (-)_{ic} + \beta_{k} d_{k-1})^{T} j_{ic} \\
&= - j_{k}^{T} j_{ic} + \beta_{k} d_{k-1}^{T} j_{k} \\
&= - j_{k}^{T} j_{ic} + (\frac{j_{k}^{T} j_{k-1}}{j_{k-1}^{T} j_{k-1}} - \frac{j_{k}^{T} j_{k-1}}{j_{k-1}^{T} j_{k-1}}) d_{k}^{T} j_{k} \\
&= - j_{k}^{T} j_{k} + \frac{j_{k}^{T} j_{k-1}}{j_{k}^{T} j_{k-1}} d_{k-1}^{T} j_{k}
\end{aligned}$$

又由艾克椿霞精确选取艺术行知 水浴 = 0. 极则直接资酬:对于1100.

「Z·M:程证 fx)+の11 C(x)11心在の>11入型1、时为精确写函数 发x*为等水的来问这的局部极的点 助于 6 > 11元+11, , |1 C/x) |1 = 0. 存在 8 > 0. 下東(多当 |1 x-x* |1 c f 月,有: 6, 11 C(X) 11 < 5-11 元1111 从所当 11x-x*(15分时,有: D(x, 0) = f(x) + (1 x*11, 11 c(x) 11 + (0-11 x*11,) 11 c(x) 1/2 $\begin{array}{c}
\left(\lambda_{2}^{2}: L_{1} \chi^{2}, \chi^{2}\right) \\
= f(x^{1} - N^{2}) C_{1} \chi^{2}
\end{array}$ $\begin{array}{c}
\geq L_{1} \chi^{2}, \chi^{2} + \sigma_{1} \|c(x)\|_{\infty} \|c(x)\|_{\infty} \\
> L_{1} \chi^{2}, \chi^{2} + \frac{1}{2} \sigma_{1} \|c(x)\|_{\infty} \\
> L_{1} \chi^{2}, \chi^{2} + \frac{1}{2} \sigma_{1} \|c(x)\|_{\infty}
\end{array}$

如文を Pixon=fix)+ FIICXIIIp=fix)+Omax Cixi

粉屑。(牙格)极小点。 如河函数fix)+6max|Cixx)的极小点标原闪起的解心气 校记得于ixi+6max|Cixx)为精确沉幽数。

6.3 最优化计算方法本学期作业题:第一次

Question 1. Compute the gradient and Hessian of the function $q(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x$, where A is symmetric.

Solution.

Let $q_1(x) = b^{\top}$, $q_2(x) = \frac{1}{2}x^{\top}Ax$, and hence $q(x) := q_1(x) + q_2(x)$. We have that for $q_1(x)$, $q_1(x) = b^{\top}x = \sum_{i=1}^{n} b_i x_i$,

$$\nabla q_1(x) = \begin{bmatrix} \frac{\partial q_1}{\partial x_1} \\ \vdots \\ \frac{\partial q_1}{\partial x_1} \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = b,$$

$$\nabla^2 q_1(x) = \begin{bmatrix} \frac{\partial^2 q_1}{\partial x_1^2} & \frac{\partial^2 q_1}{\partial x_2 \partial x_1} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 \sum_i b_i x_i}{\partial x_2 \partial x_2} \end{bmatrix}_{s,t=1\cdots n} = 0.$$

For $q_2(x) = x^{\top} A x = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$, since A is symmetric we have

$$\nabla q_2(x) = \left[\frac{\partial q_2}{\partial x_s}\right]_{s=1\cdots n} = \frac{1}{2} \left[\sum_j A_{sj} x_j + \sum_i A_{is} x_i\right]_{s=1\cdots n}$$
$$= \left[\sum_{j=1}^n A_{sj} x_j\right]_{s=1\cdots n}$$
$$= Ax.$$

$$\nabla^2 q_2(x) = \left[\frac{\partial^2 q_2}{\partial x_s \partial x_t} \right] = \frac{1}{2} \left[\begin{array}{c} \frac{\partial^2 \sum_i \sum_j A_{ij} x_i x_j}{\partial x_s \partial x_t} \end{array} \right] = \frac{1}{2} \left[A_{st} + A_{ts} \right] = A.$$

$$\nabla q(x) = \nabla q_1(x) + \nabla q_2(x) = b + Ax$$

$$\nabla^2 q(x) = \nabla^2 q_1(x) + \nabla^2 q_2(x) = 0 + A = A.$$

Question 2. Compute the gradient and Hessian of

$$f(x) = 100 (x_2 - x_1^2)^2 + (1 - x_1)^2$$
.

Show that $x^* = (1,1)^{\top}$ is the only local minimizer of this function, and that the Hessian at this point is positive definite. Write a program on trust region method with subproblems solved by the Dogleg method. Apply it to minimize this function. Choose $B_k = \nabla^2 f(x_k)$. Experiment with the update rule of trust region. Give the first two iterates.

Solution.

From our target function, we can get the following by calculation that for $x = (x_1, x_2)^{\mathsf{T}}$

$$\frac{\partial f}{\partial x_1} = 100 \cdot 2 \left(x_2 - x_1^2 \right) (-2x_1) + 2 (1 - x_1) (-1)$$

$$= -400x_1 \left(x_2 - x_1^2 \right) - 2 (1 - x_1).$$

$$\frac{\partial f}{\partial x_2} = 200 \left(x_2 - x_1^2 \right).$$

Thus the gradient of f at x is

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right)^{\top}$$

$$= (100 \cdot 2 \left(x_2 - x_1^2\right) (-2x_1) + 2 (1 - x_1) (-1), 200 \left(x_2 - x_1^2\right)\right)^{\top}.$$

$$\frac{\partial^2 f}{\partial x_1^2} = -400 \left[x_1 \left(-2x_1\right) + \left(x_2 - x_1^2\right) (1)\right] + 2 = -400 \left(x_2 - 3x_1^2\right) + 2.$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1} = \frac{\partial^2 f}{\partial x_1 \partial x_2} = -400x_1 \quad \text{and} \quad \frac{\partial^2 f}{\partial x_2^2} = 200.$$

Thus the Hessian of f at x is

$$\nabla^2 f(x) = \begin{bmatrix} -400 (x_2 - 3x_1^2) + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}.$$

Therefore we know that

1.
$$x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is the only solution to $\nabla f(x) = 0$.

2.
$$\nabla^2 f(x^*) = \begin{bmatrix} 802 & -400 \\ -400 & 200 \end{bmatrix}$$
 is positive definite since $802 > 0$, and $\det \nabla^2 f(x^*) = 802 \cdot 200 - 400 \cdot 400 = 400 > 0$.

3. $\nabla f(x)$ is continuous.

Coding: See the detail of codes in the Appendix.

In my codes, the initial condition is set as the following:

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \triangle_0 = 0.1, \ \eta = 0.1, \ \hat{\Delta} = 1, \ \|\nabla f(x)\|_2 \leqslant \varepsilon = 1.0^{-7}.$$

The iteration stops after 15 steps, terminating at the optimal point, which is x^* and the optimal value is $f^* = 0$. Figure 1 shows the function value $f(x_k)$ versus iteration number k: The first two iteration points are

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow x_1 = \begin{bmatrix} 0.1 \\ 0 \end{bmatrix} \rightarrow x_2 = \begin{bmatrix} 0.2933 \\ 0.0513 \end{bmatrix}.$$

Fig.1 Trust region method with Dogleg stategy

Question 3. Apply Steepest Descent method with exact line search to the problem:

$$\min f(x) = 5x_1^2 + \frac{1}{2}x_2^2.$$

Carry out two iterations, starting from $x^0 = (0.1, 1)^{\top}$. Think about how $\{x^k\}$ will behave.

Solution.

The gradient of f at x is $\nabla f(x) = \begin{bmatrix} 10x_1 \\ x_2 \end{bmatrix}$, and the Hessian of f at x is $\nabla^2 f(x) = \begin{bmatrix} 10 & 0 \\ 0 & 1 \end{bmatrix}$

The searching direction of Steepest Descent method is $p^k = -\nabla f(x^k)$, and the step length with exact line search for the steepest descent method is as $\alpha^k = -\frac{p^{k^\top}p^k}{p^{k^\top}Ap^k}$, where $A = \nabla f(x)$. Our starting point is $x^0 = (0.1, 1)$. By computation, we know that

$$p^{0} = -\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \alpha^{0} = \frac{2}{11}, \quad x^{1} = x^{0} + \alpha^{0} p^{0} = \frac{9}{11} \left(-\frac{1}{10}, 1 \right)^{\top}$$

and we can get that

Thus x^k has the form as

$$x_k = \left(\frac{9}{11}\right)^k \left(\frac{(-1)^k}{10}, 1\right)^{\top}$$

Coding: See the detail of codes in the Appendix.

The codes show that

Fig.2 Steepest descent method with Exact line search

Question 4. Apply CG method with exact line search to solve

$$\min \frac{1}{2} x^{\top} A x + b^{\top} x,$$

starting from $x_0 = (2, 1)^T$. Here A = [4, 1; 1, 3] and b = -(1, 2).

Solution.

We choose initial searching direction is chosen to be $-\nabla f(x_0)$ at x_0 , that is

$$x_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad r_0 = Ax_0 + b = \begin{bmatrix} 8 \\ 3 \end{bmatrix}, \quad p_0 = -r_0,$$

Then we have that

$$\alpha_0 = \frac{r_0^{\top} r_0}{p_0^{\top} A p_0} = 0.2205, \quad x_1 = x_0 + \alpha_0 p_0 = \begin{bmatrix} 0.2356 \\ 0.3384 \end{bmatrix}$$

$$r_{1} = r_{0} + \alpha_{0} A p_{0} = \begin{bmatrix} 0.2810 \\ -0.7492 \end{bmatrix}, \quad \beta_{0} = \frac{r_{1}^{\top} r_{1}}{r_{0}^{\top} r_{0}} = 0.0088$$

$$p_{1} = -r_{0} + \beta_{0} p_{0} = \begin{bmatrix} -0.3511 \\ 0.7229 \end{bmatrix}, \quad \alpha_{1} = 0.4122,$$

$$x_2 = x_1 + \alpha_1 p_1 = \begin{bmatrix} 0.0909 \\ 0.6364 \end{bmatrix}, \quad r_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Then it terminates.

Coding: See the detail of codes in the Appendix.

The codes show the same thing as well.

6.4 最优化计算方法本学期作业题:第二次

Question 1. Apply the Newton's method with step size 1 to the following problem:

$$\min_{x=(t_1,t_2)^T \in \mathbb{R}^2} \quad t_1^2 + t_2^2 + t_1^4$$

with starting point $x_0 = (\varepsilon, \varepsilon)^T$ where $\varepsilon > 0$ is very small, calculate the next iterate and you should find that $||x_1||_2 = O(\varepsilon^3)$.

Solution.

Notice that the gradient is $\nabla f(x) = (2t_1 + 4t_1^3, 2t_2)^T$, and the Hessian is $\nabla^2 f(x) = [2 + 12t_1^2, 0; 0, 2]$, at the starting point $x_0 = (\varepsilon, \varepsilon)^T$, we can get that

$$\nabla f(x_0) = (2\varepsilon + 4\varepsilon^3, 2\varepsilon)^T, \quad \nabla^2 f(x_0) = \begin{bmatrix} 2 + 12\varepsilon^2 & 0\\ 0 & 2 \end{bmatrix}$$

Applying Newton's method with step size 1, we can get $x_1 = x_0 - (\nabla^2 f(x_0))^{-1} g(x_0) = \left(\frac{4\varepsilon^3}{1+6\varepsilon^2}, 0\right)^T$.

Fig.1 norm of x_1

Since $\varepsilon > 0$ is very small, we have $\frac{\|x_1\|_2}{\varepsilon^3} \to 4$, as $\varepsilon \to 0$. Therefore, $\|x_1\|_2 = O(\varepsilon^3)$. Besides, writing a program on Matlab shows us the same conclusion that $\|x_1\|_2 \to 4\varepsilon^3$. See Fig.1 for the detail.

Question 2. Write a program on quasi-Newton method with exact line search to solve the problem:

$$\min_{x=(t_1,t_2)^T \in \mathbb{R}^2} \quad t_1^2 + 2t_2^2$$

starting form $x_0 = (1, 1)^T$. Use BFGS and DFP update formula, respectively. Set the initial $H_0 = I$ for both methods.

Solution.

We show the program result by Fig.2 by writing programs on Matlab (See the detail of the codes in the Appendix).

Fig.2 shows the function value $f(x_k)$ versus iteration number k with DFP and BFGS method respectively (with different color lines).

It shows that both methods terminate the iterate at the optimal point $x = (0,0)^T$ in only two iterations, which accord with the quadratic termination property. The iterations are shown as the following:

Fig.2 Quasi-Newton Method with DFP and BFGS update formula

The iteration points of both methods are the same:

$$x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ x_1 = \begin{bmatrix} 0.4444444444444 \\ -0.1111111111111 \end{bmatrix}, \ x_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Question 3. Prove that if $J_k^T r_k \neq 0$, the Cauchy point of the trust region subproblem for nonlinear least-squares problem

$$\min q_k(d) = \frac{1}{2} \|J_k d + r_k\|_2^2$$
 s.t. $\|d\|_2 \leqslant \Delta_k$

satisfies

$$q_{k}(0) - q_{k}\left(s_{k}^{c}\right) \geqslant \frac{1}{2} \left\| J_{k}^{T} r_{k} \right\| \min \left\{ \frac{\left\| J_{k}^{T} r_{k} \right\|}{\left\| J_{k}^{T} J_{k} \right\|}, \Delta_{k} \right\}.$$

Proof.

The model function is

$$q_k(d) = \frac{1}{2} \|J_k d + r_k\|_2^2$$

= $\frac{1}{2} d^T J_k^T J_k d + (J_k^T r_k)^T d + \frac{1}{2} r_k^T r_k.$

According to the definition of the Cauchy point, we know that

$$s_k^c = \arg\min q_k(d)$$
 s.t. $d = -\tau J_k^T r_k, ||d|| \leqslant \Delta_k, \tau \geqslant 0$,

the parameter τ_k satisfies

$$\tau_k = \arg\min \phi(\tau) = \arg\min -\tau \left\| J_k^T r_k \right\|^2 + \frac{\tau^2}{2} \left(J_k^T r_k \right)^T J_k^T J_k \left(J_k^T r_k \right), \quad \text{s.t. } 0 \le \tau \le \frac{\Delta_k}{\|J_k^T r_k\|}$$

We get that if $J_k J_k^T r_k = 0$, then

$$\tau_k = \Delta_k / \|J_k^T r_k\|, \text{ then } q_k(0) - q_k(s_k^c) = \Delta_k \|J_k^T r_k\|,$$

otherwise, we have

$$au_{k} = \min \left\{ \frac{\left\| J_{k}^{T} r_{k} \right\|^{2}}{\left(J_{k}^{T} r_{k} \right)^{T} J_{k}^{T} J_{k} \left(J_{k}^{T} r_{k} \right)}, \frac{\Delta_{k}}{\left\| J_{k}^{T} r_{k} \right\|} \right\}.$$

Case (i): $\tau_k = \frac{\left\|J_k^T r_k\right\|^2}{\left(J_k^T r_k\right)^T J_k^T J_k \left(J_k^T r_k\right)}$: In this case, we have

$$q_k(0) - q_k(s_k^c) = \frac{\|J_k^T r_k\|^4}{2(J_k^T r_k)^T J_k^T J_k(J_k^T r_k)} \geqslant \frac{\|J_k^T r_k\|^2}{2\|J_k^T J_k\|}.$$

Case (ii): $\tau_k = \frac{\Delta_k}{\|J_k^T r_k\|}$: In this case, we have

$$q_{k}(0) - q_{k}(s_{k}^{c}) = \Delta_{k} \|J_{k}^{T} r_{k}\| - \frac{\Delta_{k}^{2} (J_{k}^{T} r_{k})^{T} J_{k}^{T} J_{k} (J_{k}^{T} r_{k})}{2 \|J_{k}^{T} r_{k}\|^{2}}$$

$$\geqslant \Delta_{k} \|J_{k}^{T} r_{k}\| - \frac{\Delta_{k} \|J_{k}^{T} r_{k}\|}{2}$$

$$\geqslant \frac{\Delta_{k} \|J_{k}^{T} r_{k}\|}{2}.$$

Therefore, we proved that

$$q_{k}(0) - q_{k}(s_{k}^{c}) \geqslant \frac{1}{2} \|J_{k}^{T} r_{k}\| \min \left\{ \frac{\|J_{k}^{T} r_{k}\|}{\|J_{k}^{T} J_{k}\|}, \Delta_{k} \right\}.$$

Question 4. Find the KKT point(s) of the following problem:

$$\begin{aligned} & \min_{x=(t_1,t_2)^T \in \mathbb{R}^2} & t_1 + t_2 \\ & \text{s. t.} & 2 - 2t_1^2 - t_2^2 \geqslant 0, \quad t_2 \geqslant 0 \end{aligned}$$

Solution.

We know that the KKT conditions are

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} -4t_1 \\ -2t_2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\lambda_1 \left(2 - 2t_1^2 - t_2^2 \right) = 0, \quad \lambda_2 t_2 = 0$$
$$2 - 2t_1^2 - t_2^2 \geqslant 0, \qquad t_2 \geqslant 0$$

 $\lambda_1 \geqslant 0, \qquad \lambda_2 \geqslant 0.$

We have the following two cases since $\lambda_2 t_2 = 0$:

Case (i): $t_2 = 0$. Since $1 = -2\lambda_1 t_2 + \lambda_2$, $\lambda_2 = 1$. Then we can get that $\lambda_1 \left(2 - 2t_1^2 - t_2^2\right) = 0$, $1 = -4\lambda_1 t_1$, $\lambda_1 \ge 0$, which yields $t_1 = -1$, $\lambda_1 = \frac{1}{4}$. Therefore, we know that $(-1,0)^T$ is a KKT point.

Case (ii): $\lambda_2 = 0$. Then $1 = -2\lambda_1 t_2$ which contradicts with $t_2 \ge 0, \lambda_1 \ge 0$.

Therefore, there is only one KKT point, which is $(-1,0)^T$.

Question 5. Write a program to apply a penalty function method to solve

$$\min_{x=(t_1,t_2)^T \in \mathbb{R}^2} t_1 + t_2$$
s.t. $t_1^2 + t_2^2 - 2 = 0$

Calculate the iterates generated in the first two iterations, namely, x_1 and x_2 .

Solution.

In the coding, we set the penalty parameter $\mu_0 = 1$ for Courant Penalty Method and Augmented Lagrange Method, and the Lagrange multiplier $\lambda_0 = 0.5$ for Augmented Lagrange Method. See Fig.3 for the detail and see codes in the Appendix.

Fig.3 Penalty function method

The first two iteration points of Courant Penalty Method:

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ x_1 = \begin{bmatrix} -1.05748178442269 \\ -1.05743647909116 \end{bmatrix}, \ x_2 = \begin{bmatrix} -1.00616043865704 \\ -1.00622042415767 \end{bmatrix}.$$

The first two iteration points of Augmented Lagrange Method:

$$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ x_1 = \begin{bmatrix} -1.107168992903381 \\ -1.107128887189611 \end{bmatrix}, \ x_2 = \begin{bmatrix} -1.012291549452587 \\ -1.012253996286513 \end{bmatrix}.$$

6.5 最优化计算方法 2020 期末考试理论题

Consider the following problem

$$\min_{x \in \mathbb{R}^n} c^T x$$
s.t.
$$Ax = Az$$

$$\|D^{-1}(x-z)\|_2 \le \beta$$

where $A \in \mathbb{R}^{m \times n}$ has full row rank, $z \in \mathbb{R}^n$ is a given vector with all entries being positive, D is a diagonal matrix with positive diagonal elements $D_{ii} := z_i, i = 1 \cdots, n$, and $\beta \in (0, 1)$.

- (i) Give the KKT optimality conditions for this problem.
- (ii) From the optimality conditions express the optimal solution x^* as $x^* = z + p$; i.e., what is p?

Solution.

(i) The problem's constraint $\|D^{-1}(x-z)\|_2 \leq \beta$ is equivalent to $(x-z)^T D^{-2}(x-z) \leq \beta^2$. The Lagrangian function is $L(x,\lambda) = c^T x - \lambda_1^T A(x-z) - \lambda_2 \left(\beta^2 - (x-z)^T D^{-2}(x-z)\right)$, where $\lambda_1 \in \mathbb{R}^m, \lambda_2 \in \mathbb{R}$. Suppose that x^* is a local solution, $\lambda^* = (\lambda_1^*, \lambda_2^*)^T$ is a Lagrangian multiplier vector. The KKT optimality conditions for this problem is

$$\nabla_{x}L(x^{*}, \lambda^{*}) = 0$$

$$A(x^{*} - z) = 0$$

$$\beta - \|D^{-1}(x^{*} - z)\|_{2} \ge 0$$

$$\lambda_{2}^{*} \ge 0$$

$$\lambda_{2}^{*} (\beta - \|D^{-1}(x^{*} - z)\|_{2}) = 0,$$

which means

$$c - A^{T} \lambda_{1}^{*} + 2\lambda_{2}^{*} D^{-2} (x^{*} - z) = 0$$

$$Ax^{*} = Az$$

$$\|D^{-1} (x^{*} - z)\|_{2} \leq \beta$$

$$\lambda_{2}^{*} \geq 0$$

$$(\beta - ||D^{-1}(x^* - z)||_2) \lambda_2^* = 0.$$

XieDoo

The KKT optimality conditions for this problem is above.

(ii) From (i), we get

$$c - A^{T} \lambda_{1}^{*} + 2\lambda_{2}^{*} D^{-2} p = 0$$

$$Ap = 0$$

$$\|D^{-1}p\|_{2} \leq \beta$$

$$\lambda_{2}^{*} \geq 0$$

$$(\beta - \|D^{-1}p\|_{2}) \lambda_{2}^{*} = 0.$$

Multiplying AD^2 on both sides of the first condition in KKT optimiality conditions leads to the equation

$$AD^2c - AD^2A^T\lambda_1^* = 0.$$

Then $\lambda_1^* = (AD^2A^T)^{-1}AD^2c$, and we know that the first condition of KKT optimality conditions becomes to

$$2\lambda_{2}^{*}p = -D^{2}\left(c - A^{T}\lambda_{1}^{*}\right) = -D^{2}\left(I - A^{T}\left(AD^{2}A^{T}\right)^{-1}AD^{2}\right)c.$$

There are two cases according to $(I - A^T (AD^2 A^T)^{-1} AD^2)c = 0$ or not.

CASE 1: $(I - A^T (AD^2A^T)^{-1}AD^2)c = 0$, which means $\lambda_2^*p = 0$. Besides, we know that $\lambda_2^* = 0$. Otherwise, if $\lambda_2^* > 0$, we have $\|D^{-1}p\|_2 = \beta$ according to theorem of complementary slackness. Then we get that $\lambda_2^* = 0$, which is contradict. Thus we get that $\lambda_2^* = 0$, and then $\|D^{-1}p\| < \beta$, which only needs Ap = 0. Thus Ap = 0 in CASE 1. For all p that satisfies Ap = 0, and $\|D^{-1}p\|_2 \le \beta$, $x^* = z + p$ is the optimal solution.

CASE 2: $\left(I - A^T \left(AD^2 A^T\right)^{-1} AD^2\right) c \neq 0$, which means $\lambda_2^* p \neq 0$, and $\lambda_2^* \neq 0$. Then $\|D^{-1}p\|_2 = \beta$.

Recall that
$$D^{-1}p = \frac{1}{2\lambda_2^*}D\left(I - A^T\left(AD^2A^T\right)^{-1}AD^2\right)c$$
, thus

$$D^{-1}p = -\beta \frac{D\left(I - A^{T} \left(AD^{2}A^{T}\right)^{-1} AD^{2}\right) c}{\left\|D\left(I - A^{T} \left(AD^{2}A^{T}\right)^{-1} AD^{2}\right) c\right\|_{2}},$$

then p is

$$p = -\beta \frac{D^{2} \left(I - A^{T} \left(AD^{2}A^{T}\right)^{-1} AD^{2}\right) c}{\left\|D \left(I - A^{T} \left(AD^{2}A^{T}\right)^{-1} AD^{2}\right) c\right\|_{2}}$$

in CASE 2.

All in all, we get the solution of p and the optimal solution $x^* = z + p$.