Use Random Forest classifier to make prediction. Description The Iris dataset was used in R.A. Fisher's classic 1936 paper, The Use of Multiple Mott includes three iris species with 50 samples each as well as some properties about of the columns in this dataset are: d L.SepalLengthCm			
2.SepalWidthCm 3.PetalLengthCm 4.PetalWidthCm 5.Species Sepal Width vs. Sepal Length			
<pre>#importing libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # load dataset df = pd.read_csv('iris.csv') df</pre>			
sepal_length sepal_width petal_length petal_width species 0 5.1 3.5 1.4 0.2 setosa 1 4.9 3.0 1.4 0.2 setosa 2 4.7 3.2 1.3 0.2 setosa 3 4.6 3.1 1.5 0.2 setosa 4 5.0 3.6 1.4 0.2 setosa			
145 6.7 3.0 5.2 2.3 virginica 146 6.3 2.5 5.0 1.9 virginica 147 6.5 3.0 5.2 2.0 virginica 148 6.2 3.4 5.4 2.3 virginica 149 5.9 3.0 5.1 1.8 virginica 150 rows × 5 columns			
<pre>df['species'].value_counts() virginica 50 versicolor 50 setosa 50 Name: species, dtype: int64 # checking shape of data frame df.shape</pre>			
<pre># checking data distrubution of each columns plt.figure(figsize=(10,10)) df.hist() plt.show() </pre> <pre> <pre></pre></pre>			
20 30 20 10 5 petal ength 8 2 petal width 4 40 20 20 20 20 20 20 20 20 20 20 20 20 20			
A=sns.pairplot(df, hue='species', size=4) #g.map_upper(sns.kdeplot, levels=1, color=".2") plt.show() C:\Users\Nilesh koli\anaconda3\lib\site-packages\seaborn\axisgrid.p warnings.warn(msg, UserWarning)	py:1969: UserWarning: The `size` par	ameter has been renamed to `height`;	olease update your code.
8.0 - 7.5 - 7.0 - Had 6.5 - 8.0 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9			
4.5 4.0 4.0	(CRIN) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S		· · ·
3.5 - 2.5 - 2.0 - 7	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		———— species setosa versicolor virginica
6 - 5 - 6 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		0000 0000 0000 0000 0000 0000 0000 0000 0000	
2.5 - 2.0 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	000 000 000 000 000 000 000 000 000 00		· · ·
0.5	4.5 5.0 1 2 3 4 5 6 petal_length	7 8 0.0 0.5 1.0 1.5 2.0 2.5 petal_width	3.0
<pre>countplot(df['species'], data=df) C:\Users\Nilesh koli\anaconda3\lib\site-packages\seaborn_decorator onal argument will be `data`, and passing other arguments without a warnings.warn(<axessubplot:xlabel='species', ylabel="count"> </axessubplot:xlabel='species',></pre>	rs.py:36: FutureWarning: Pass the fo an explicit keyword will result in a	llowing variable as a keyword arg: x. n error or misinterpretation.	From version 0.12, the only v
30 - 20 - 10 - setosa versicolor species virginica			
<pre>plt.figure(figsize=(10,10)) plt.pie(df['species'].value_counts(), labels=df['species'].value_counts().index, counterclock=False, shadow=True, autopct='%1.1f%%', radius=1, startangle=0) plt.show()</pre>			
33.3%			
versicolor 33.3% 33.3%			
B= df.corr() plt.figure(figsize=[24,20]) plt.title('Features Correlation-Plot') sns.heatmap(k, vmin=-1, vmax=1, center=0, annot=True)			
	res Correlation-Plot 0.87	0.82	- 1.00 - 0.75
sepal length			- 0.50
-0.12 1	-0.43	-0.37	- 0.25
0.87 -0.43	1	0.96	- 0.00 0.25
			0.50
Sepal_length sepal_width	0.96 petal_length	petal_width	0.75 1.00
<pre># input x = df.drop(columns='species') x sepal_length</pre>			
2 4.7 3.2 1.3 0.2 3 4.6 3.1 1.5 0.2 4 5.0 3.6 1.4 0.2 145 6.7 3.0 5.2 2.3 146 6.3 2.5 5.0 1.9 147 6.5 3.0 5.2 2.0 148 6.2 3.4 5.4 2.3			
149			
Y 0 0 1 0 2 0 3 0 4 0 145 1 146 1 147 1 148 1			
<pre>149 1 Name: species, Length: 150, dtype: int64 # spliting the data from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test =train_test_split(x,Y,train_size=0.8)</pre>	3)		
<pre>#using DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt DecisionTreeClassifier()</pre>			
<pre>#fit the model dt.fit(x_train,y_train) DecisionTreeClassifier() #check score</pre>			
dt.score(x_train,y_train)*100 100.0 dt.score(x_test,y_test)*100 96.66666666666667			
<pre>y_pred = dt.predict(x_test) y_pred array([2, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 2, 1, 1, 0, 2, 1, 2, 2, 0, 0, 0, 0, 1, 0, 0], dtype=int64) # check the accuracy score</pre>	2, 2,		
<pre>from sklearn.metrics import accuracy_score accuracy_score(y_test,y_pred)*100 96.6666666666667 #create an object of random forest algorithm</pre>			
<pre>from sklearn.ensemble import RandomForestClassifier # fit the model model = RandomForestClassifier() model.fit(x_train,y_train) RandomForestClassifier()</pre>			
<pre>RandomForestClassifier() #check the score model.score(x_train,y_train)*100 100.0 model.score(x test,y test)*100</pre>			
<pre>model.score(x_test,y_test)*100 96.6666666666667 y_pred = model.predict(x_test) y_pred array([2, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 2, 1, 1, 0, 2, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0], dtype=int64)</pre>	2, 2,		
<pre># check the accuracy score from sklearn.metrics import accuracy_score accuracy_score(y_test,y_pred)*100 96.666666666666667</pre>			
<pre>#checking precission ,accuracy ,recall from sklearn.metrics import classification_report print(classification_report(y_test,y_pred)) precision recall f1-score support 0 1.00 1.00 1.00 15 1 0.86 1.00 0.92 6 2 1.00 0.89 0.94 9</pre>			
accuracy 0.97 30 macro avg 0.95 0.96 0.95 30 weighted avg 0.97 0.97 0.97 30 #confusion matrix from sklearn.metrics import confusion_matrix model=confusion_matrix(y_test,y_pred)			
<pre>model=confusion_matrix(y_test, y_pred) plt.figure(figsize=(8,6)) sns.heatmap(model, annot = True, cmap = 'Blues', annot_kws = {'siz plt.title('Confusion Matrix ', size = 15) plt.xticks(size = 15) plt.yticks(size = 15) plt.show()</pre> <pre>Confusion Matrix</pre>	ze': 15}, square = True)		
0 - 15 0 0 -12 -10 -10 -8 -6			
N - 0 1 8 -2 -0			