# Week 4 Summary

Dr Na Yao

XML

# Extensible Markup Language (XML)

• A meta-language (a language for describing other languages) that enables designers to create their own customized tags to provide functionality not available with HTML.

- XML has a document format similar to HTML but...
  - Tags describe content instead of formatting

#### <Elements> and "attributes"

• First element must be a root element, which can contain other (sub)elements.

 Attributes are name-value pairs that contain descriptive information about an element.

An element can have many attributes

## Relational Model versus XML

|                | Relational                     | XML                       |
|----------------|--------------------------------|---------------------------|
| Structure      | Tables, columns, rows          | Hierarchical, tree        |
| Schema         | Fixed in advance               | Self-describing, flexible |
| Queries        | SQL, simple language, standard | Not so simple             |
| Ordering       | None                           | Ordered                   |
| Implementation | Mature, native                 | Add-on                    |

# DTD, XSD.... Why we need them??

- XML is a SEMI-STRUCTURED data-model.
- The data structure of XML does not have to be strictly followed as in the relational model

 DTD and XSD provides a schema (the valid syntax) for an XML document.

# Data Warehousing

• A *subject-oriented, integrated, time-variant,* and *non-volatile* collection of data in support of management's decision-making process (Inmon, 1993).



# Example Data Warehouse Architecture



#### OLTP and OLAP

- OLTP: OnLine Transaction Processing
  - Transactional
  - o provide source data to data warehouses

- OLAP: OnLine Analytical Processing
  - Analytical
  - Analysis of warehouse data( we will see more later)





#### Comparison of OLTP Systems and Data Warehousing

| Characteristic   | OLTP Systems                                                                                                  | Data Warehousing Systems                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Main Purpose     | Supports operational processing                                                                               | Supports analytical processing                                                                                              |
| Data age         | Current                                                                                                       | Historic (but trend is towards also including current data)                                                                 |
| Data latency     | Real-time                                                                                                     | Depends on length of cycle for data supplements to warehouse                                                                |
| Data granularity | Detailed data                                                                                                 | Detailed data, lightly and highly summarised data                                                                           |
| Data processing  | Predictable pattern of data insertions, deletions, updates and queries. High level of transaction throughput. | Less predictable pattern of data queries. Medium to low level of transaction throughput.                                    |
| Reporting        | Predictable, one-dimensional, relatively static fixed reporting                                               | Unpredictable, multi-dimensional, dynamic reporting                                                                         |
| Users            | Serves large number of operational users                                                                      | Serves lower number of managerial users (but trend is towards also supporting analytical requirements of operational users) |

# Data Mining, Definition

• The process of extracting valid, previously unknown, comprehensible, and actionable information from large databases and using it to make crucial business decisions.

 Involves the analysis of data and the use of software techniques for finding hidden and unexpected patterns and relationships in sets of data.

# Business Intelligence Technologies

- Why? Ever-increasing demand by users for more powerful access tools that provide advanced analytical capabilities.
- Main types of access tools:
  - Online Analytical Processing (OLAP)
  - Data mining.
- What? An environment that includes a data warehouse (or more commonly one or more data marts) together with tools such as OLAP and/or data mining → Business Intelligence (BI) technologies

So is data mining = data ware house??

# Data warehouse relates to the **storage** of the data used for data mining

### NoSQL

alternative, non-traditional DB technology to be used in large scale environments where (ACID) transactions are not a priority

#### What NoSQL should NOT be used for

- Anything that requires frequent updates as well as reads, or that requires high integrity and atomicity (ACID properties)
- Examples are similar to transaction databases for inventory and financial records
- This is not just a question of massive data or distributed processing!
- There are large, distributed relational databases like Visa or Amazon that need more structured data with transaction semantics
- These applications are better suited to relational databases even at large scale