Теория категорий Кванторы и импликация

Валерий Исаев

05 мая 2017 г.

План лекции

Когерентные теории

Импликация и ∀

Интерпретация теории типов

Классификатор подобъектов

Определение

- Категория называется когерентной, если она регулярна, для любого объекта A в порядке подобъектов Sub(A) существуют все конечные копроизведения, и для любого морфизма $f:A\to B$ функтор $f^*:Sub(B)\to Sub(A)$ сохраняет их.
- ▶ Эта дополнительная структура это в точности то, что необходимо для интерпретации ложного утверждения и дизъюнкций.

Дистрибутивность пересечений

Proposition

В когерентной категории пересечении дистрибутивно над объединением подобъектов: $A\cap (B\cup C)\simeq (A\cap B)\cup (A\cap C)$ и $A\cap 0=0$.

Доказательство.

Функтор $A\cap -: Sub(X) o Sub(X)$ можно определить как композицию

$$Sub(X) \xrightarrow{f^*} Sub(A) \xrightarrow{\exists_f} Sub(X)$$

где $f:A\to X$ и \exists_f — левый сопряженный к f^* . Функтор f^* сохраняет копроизведения по предположению когерентности, а \exists_f сохраняет копределы как левый сопряженный.

Начальный объект

Proposition

В когерентной категории существует строгий начальный объект.

Доказательство.

Определим 0 как наименьший подобъект 1. Заметим, что $\pi_1: X \times 0 \hookrightarrow X$ является наименьшим подобъектом X. Если у нас есть стрелка $X \to 0$, то π_1 является изоморфизмом. Другими словами, он является и наибольшим подобъектом X. Следовательно, у любого такого X ровно один подобъект — он сам.

Начальный объект

Доказательство.

Докажем, что если есть морфизм $A \to 0$, то A является подобъектом 1. Дествительно, если у нас есть пара стрелок $f,g:B\to A$, то так как у нас есть стрелка $B\to 0$, то уравнитель f и g является изоморфизмом, то есть f и g равны. Следовательно $X\times 0$ изоморфен 0, то есть 0 — строгий. Докажем, что 0 — начальный. Так как у нас есть стрелка из $X\times 0$ в 0, то $X\times 0\simeq 0$, а значит у нас есть стрелка из 0 в X. Если у нас есть стрелки $f,g:0\to X$, то их уравнитель является подобъектом 0, а значит изоморфизмом, то есть f и g равны.

План лекции

Когерентные теории

Импликация и ∀

Интерпретация теории типов

Классификатор подобъектов

Квантор всеобщности

▶ Правила вывода для ∀ дуальны правилам для ∃:

$$\frac{\varphi \longmapsto \forall (x:s)\psi}{\varphi \longmapsto \psi} \qquad \frac{\varphi \longmapsto \psi}{\varphi \longmapsto \forall (x:s)\psi}$$

Интерпретация теории типов

- То есть у нас есть биекция между стрелками $\pi_1^*(\llbracket \varphi \rrbracket) \to \llbracket \psi \rrbracket$ в $Sub(X \times \llbracket s \rrbracket)$ и $\llbracket \varphi \rrbracket \to \llbracket \forall (x:s)\psi \rrbracket$ в Sub(X), где $\pi_1: X \times \llbracket s \rrbracket \to X$.
- ightharpoonup Таким образом, $\llbracket \forall (x:s)\psi
 rbracket$ можно определить как $\forall_{\pi_1}(\llbracket\psi
 rbracket)$, где $\forall_{\pi_1}: Sub(X imes \llbracket s
 rbracket) o Sub(X)$ — правый сопряженный к $\pi_1^*: Sub(X) \to Sub(X \times \llbracket s \rrbracket)$.

Гейтинговы категории

- ▶ Категория называется гейтинговой, если она регулярна, у любого объекта существует минимальный подобъект и объединения подобъектов, и для любого морфизма f:X o Y существует правый сопряженный функтор $\forall_f: Sub(Y) \rightarrow Sub(X)$ к функтору $f^*: Sub(Y) \rightarrow Sub(X)$.
- ightharpoons Так как гейтингова категория регулярна, то у функтора f^* есть и левый сопряженный. Таким образом, мы получаем цепочку сопряженных функторов:

$$\exists_f \dashv f^* \dashv \forall_f$$

 \blacktriangleright Мы не требуем, чтобы f^* сохранял наименьший подобъект и объединения, так как это следует из того, что он левый сопряженный.

∀ коммутирует с подстановкой

Чтобы доказать, что ∀ коммутирует с подстановкой, нам нужно доказать, что для любого пулбэка слева квадрат функторов справа коммутирует с точностью до изоморфизма.

$$P \xrightarrow{h} A \qquad Sub(A) \xrightarrow{h^*} Sub(P)$$

$$k \downarrow \downarrow \downarrow f \qquad \forall f \qquad \forall f \qquad \forall k \downarrow \downarrow \downarrow k$$

$$B \xrightarrow{g} C \qquad Sub(C) \xrightarrow{g^*} Sub(B)$$

∀ коммутирует с подстановкой

 Функторы в правом квадрате являются правыми сопряженными к следующим функторам:

$$Sub(A) \stackrel{\exists_h}{\longleftarrow} Sub(P)$$

$$f^* \uparrow \qquad \qquad \uparrow_{k^*}$$

$$Sub(C) \stackrel{\exists_g}{\longleftarrow} Sub(B)$$

► Так как этот квадрат коммутирует по регулярности, то квадрат на предыдущем слайде коммутирует по уникальности правых сопряженных функторов.

Импликация

- Интерпретация импликации определяется так же как интерпретация экспонент.
- lacktriangle То есть $\llbracket arphi
 ightarrow (-)
 rbracket$: Sub(X)
 ightarrow Sub(X) правый сопряженный к $\llbracket \varphi \wedge - \rrbracket = \llbracket \varphi \rrbracket \cap -.$
- ▶ Так как $A \cap -$ является композицией

$$Sub(X) \xrightarrow{f^*} Sub(A) \xrightarrow{\exists_f} Sub(X)$$

где $f:A\hookrightarrow X$, то правый сопряженный к нему существует в любой гейтинговой категориии.

- lacktriangle Таким образом, мы можем проинтерпретировать $arphi o \psi$ как $\forall \llbracket \varphi \rrbracket (\llbracket \varphi \rrbracket^* (\psi)).$
- lacktriangle Так как $orall_{\llbracket arphi
 Vert}$ и $\llbracket arphi
 Vert^*$ коммутируют с подстановкой, то и интерпретация импликации с ней коммутирует.

План лекции

Когерентные теории

Импликация и ∀

Интерпретация теории типов

Классификатор подобъектов

Интерпретация зависимых типов

- ▶ Утверждения в контексте $x_1:A_1,\ldots x_n:A_n$ мы интерпретировали как мономорфизмы $X \hookrightarrow \llbracket A_1 \rrbracket \times \ldots \times \llbracket A_n \rrbracket.$
- В теории типов это означает, что если тип В в контексте Г является утверждением, то мы его интерпретируем как такой мономорфизм.
- ▶ Если B произвольный тип, то он интерпретируется как произвольная стрелка $[\![B]\!] \to [\![\Gamma]\!]$.

- ▶ Σ и Π типы интерпретируются как \exists и \forall , только вместо категорий подобъектов Γ мы рассматриваем категории всех объектов над Γ .
- ightharpoonup Таким образом, эти конструкции будут интерпретироваться через функторы $\Sigma_f, \Pi_f: \mathbf{C}/\Gamma o \mathbf{C}/\Delta$:

$$\Sigma_f \dashv f^* \dashv \Pi_f$$

где $f^*: \mathbf{C}/\Delta \to \mathbf{C}/\Gamma$ – пулбэк функтор.

- $lacksymbol{ riangle}$ Σ_f существует всегда, он определяется как $\Sigma_f(g)=f\circ g$.
- Конечно полная категория называется локально декартово замкнутой, если Π_f существует для любого морфизма $f:\Gamma \to \Delta$.

Существование П

Proposition

Категория ${\bf C}$ локально декартово замкнута тогда и только тогда, когда для любого ее объекта ${\bf \Gamma}$ категория ${\bf C}/{\bf \Gamma}$ декартово замкнута.

Доказательство.

В одну сторону доказательство такое же как для импликаций. Функтор $A \times - : \mathbf{C}/\Gamma \to \mathbf{C}/\Gamma$ равен следующей композиции:

$$\mathbf{C}/\Gamma \xrightarrow{\rho_A^*} \mathbf{C}/A \xrightarrow{\Sigma_A} \mathbf{C}/\Gamma$$

где $p_A:A\to \Gamma$. Следовательно экспоненту B^A в ${\bf C}/\Gamma$ можно определить как $\Pi_A(p_A^*(B))$.

Существование П

Доказательство.

Пусть ${\bf C}$ – декартово замкнутая категория с конечными пределами. Докажем, что для любого объекта A у функтора $!_A^*: {\bf C} o {\bf C}/A$ есть правый сопряженный $\Pi_A: {\bf C}/A o {\bf C}$.

Мы можем определить $\Pi_A(B)$ как объект функций $f:A\to B$, таких что $p_B\circ f=id_A$. Формально, $\Pi_A(B)$ определяется как уравнитель стрелок $[\![\lambda fa.p_B(f(a))]\!], [\![\lambda fa.a]\!]:B^A\to A^A$.

Теперь мы можем закончить доказательство. Если для всех Γ категория \mathbf{C}/Γ декартово замкнута, то \mathbf{C} — конечно полна, так как произведения в \mathbf{C}/Γ — это пулбэки в \mathbf{C} . Более того, существование Π следует из доказанного свойства, примененного к категории \mathbf{C}/Γ .

Правила вывода для Σ

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B[x := a]}{\Gamma \vdash (a, b) : \Sigma(x : A) B}$$

$$\Sigma(x : A) B \qquad \Gamma \vdash p : \Sigma(x : A)$$

$$\frac{\Gamma \vdash p : \Sigma(x : A) B}{\Gamma \vdash \pi_1 p : A} \qquad \frac{\Gamma \vdash p : \Sigma(x : A) B}{\Gamma \vdash \pi_2 p : B[x := \pi_1 p]}$$

Термы $\Gamma \vdash a : A$ интерпретируются как сечения морфизма $p_A : \llbracket A \rrbracket \to \llbracket \Gamma \rrbracket$. Если $\llbracket a \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$ и $\llbracket b \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket a \rrbracket^*(\llbracket B \rrbracket)$, то $\llbracket (a,b) \rrbracket$ определяется как композиция $\llbracket b \rrbracket$ и $\llbracket a \rrbracket^*(\llbracket B \rrbracket) \to \llbracket B \rrbracket$. Если $\llbracket p \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket B \rrbracket$, то $\llbracket \pi_1 p \rrbracket = p_A \circ \llbracket p \rrbracket$ и $\llbracket \pi_2 p \rrbracket$ определяется по универсальному свойству пулбэков.

Правила вывода для П

$$\frac{\Gamma, x : A \vdash b : B}{\Gamma \vdash \lambda x. b : \Pi(x : A) B}$$

По сопряженности у нас есть биекция между сечениями $\Pi_{p_A}(\llbracket B \rrbracket) \to \llbracket \Gamma \rrbracket$ и $p_B : \llbracket B \rrbracket \to \llbracket A \rrbracket$. Так как $\llbracket b \rrbracket : \llbracket A \rrbracket \to \llbracket B \rrbracket -$ сечение, то мы можем определить интерпретацию $\lambda x.$ b как сечение $\Pi_{p_A}(\llbracket B \rrbracket) \to \llbracket \Gamma \rrbracket$.

$$\frac{\Gamma \vdash f : \Pi(x : A) B \qquad \Gamma \vdash a : A}{\Gamma \vdash f : a : B[x := a]}$$

Так как $[\![f]\!]: [\![\Gamma]\!] \to \Pi_{p_A}([\![B]\!])$ — сечение, то по биекции мы получаем сечение $f': [\![A]\!] \to [\![B]\!]$. Интерпретацию f а можно определить по универсальному свойству пулбэков. Для этого нужно построить стрелку $[\![\Gamma]\!] \to [\![B]\!]$. Мы определяем ее как композицию $[\![a]\!]: [\![\Gamma]\!] \to [\![A]\!]$ и $f': [\![A]\!] \to [\![B]\!]$.

Проблемы интерпретации

- ► На самом деле, так определить интерпретацию нельзя, так как не получится доказать лемму о подстановке.
- В отличие от интерпретации кванторов, здесь нам нужно доказывать равенство не подобъектов, а объектов.
- ▶ Проблема в том, что у нас нет равенства, есть только изоморфизм.
- ▶ Эту проблему можно исправлять различными способами, но мы их рассматривать не будем.

План лекции

Когерентные теории

Импликация и ∀

Интерпретация теории типов

Классификатор подобъектов

Интерпретация вселенных

- ▶ Нам осталось научиться интерпретировать вселенные.
- Произвольные вселенные нам не пригодятся; мы будем интерпретировать только вселенную утверждений Prop.
- ightharpoonup Этот тип характеризуется тем, что функции A o Prop соответствуют подтипам A.

Классификатор подобъектов в Set

- ▶ В **Set** существует биекция между подмножествами некоторого множества A и предикатами $A \rightarrow 2$.
- ▶ Если $2 = \{\top, \bot\}$ и $f : A \to 2$, то соответствующее подмножество A можно определить как $f^{-1}(\top)$.
- ▶ Эту конструкцию можно переформулировать категориально. Пусть $true: 1 \rightarrow 2$ функция, выбирающая элемент \top . Тогда любому морфизму $f: A \rightarrow 2$ мы можем сопоставить подобъект A пулбэк true вдоль f.
- ► B **Set** эта конструкция взаимно однозначна. В произвольной категории это может быть не верно.

Определение классификатора подобъектов

Definition

Пусть в ${f C}$ существует терминальный объект ${f 1}$. Тогда объект ${f \Omega}$ вместе с морфизмом $true: {f 1} o {f \Omega}$ называется классификатором подобъектов, если для любого мономорфизма $f: A' \hookrightarrow A$ существует уникальный морфизм $\chi_f: A \to {f \Omega}$, такой что следующий квадрат является пулбэком:

$$A' \longrightarrow 1$$

$$f \bigvee_{f} \int_{T_{f}} true$$

$$A - \frac{1}{\chi_{f}} > \Omega$$

Таким образом, существует биекция между подобъектами A и морфизмами $A \to \Omega$.

$$\frac{\Gamma \vdash A : Prop}{\Gamma \vdash El(A) \ type}$$

$$\frac{\Gamma \vdash A : Prop}{\Gamma, x : El(A), y : El(A) \vdash x = y}$$

$$\frac{\Gamma \vdash A : Prop}{\Gamma \vdash B : Prop} \qquad \frac{\Gamma, x : El(A) \vdash b : El(B)}{\Gamma, y : El(B) \vdash a : El(A)}$$

$$\frac{\Gamma \vdash iso(x, b)(y, a) : A = B}{\Gamma \vdash iso(x, b)(y, a) : A = B}$$

Интерпретация теории типов

Интерпретация *Ргор*

- ▶ Определим $\llbracket Prop \rrbracket$ как Ω .
- ▶ Если $[A] : [\Gamma] \to [Prop]$, то $[EI(A)] = [A]^*(true)$.
- lacktriangle Так как у нас есть биекция между морфизмами $X o\Omega$ и подобъектами X, то имея $\llbracket A
 rbracket, \llbracket B
 rbracket : \llbracket \Gamma
 rbracket o \Omega$ и другие посылки iso, мы получаем, что $\llbracket A \rrbracket^*(true) = \llbracket B \rrbracket^*(true)$ как подобъекты $\llbracket \Gamma
 rbracket$. Следовательно, $\llbracket A
 rbracket = \llbracket B
 rbracket$.