

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Photosynthesis The Light-independent Stage (Calvin Cycle)

The Light-independent Stage (Calvin Cycle)

Figure 1: An overview of the light-independent stage of photosynthesis, also called the Calvin cycle. The number of carbons present in each molecule is shown e.g. 5C.

Part A Molecule A

What is the name of molecule A, the 5-carbon compound that reacts with carbon dioxide to form an unstable 6-carbon compound?
What is the name of the enzyme that catalyses this reaction?
Part B Molecules B and C
What is the name of molecule B, the 3-carbon compound that is reduced to form molecule C?
What is the name of molecule C, the 3-carbon compound that is used in the formation of sugars, lipids, and amino acids - as well as in the regeneration of molecule A?

Part C Numbers of molecules

For each molecule of CO_2 that is "fixed" (i.e. reacts with molecule A to form the unstable 6C compound), two copies of molecule C are produced.

If 5 out of every 6 copies of molecule C are used in the regeneration of molecule A, how many molecules of CO_2 are required to produce one molecule of glucose?

How many molecules of ATP would this require?

Note that one molecule of ATP is required to regenerate each copy of molecule A, and one molecule of ATP is required to convert molecule B into molecule C.

Adapted with permission from OCR A Level November 1999, Central Concepts in Biology, Question 5

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Photosynthesis Krebs Cycle vs Calvin Cycle

Krebs Cycle vs Calvin Cycle

Part A	Compar	icon t	ahle
Parl A	Combar	เรอก เล	able

	Krebs cycle	Calvin cycle
location		
electron carriers: reduced or oxidised		
carbon dioxide: used or produced		
ATP: used or produced		

Items:

cytoplasm	mitochondrial matrix	mitocho	ndrial inner	membrar	1e) (chloroplast stroma
chloroplast t	hylakoid membrane	reduced	oxidised	used	prod	uced

Electron carriers Part B

What is the name of the main electron carrier in aerobic respiration?

What is the name of the main electron carrier in photosynthesis?

Part C Limiting factors

Which of the following may act as limiting factors in the Krebs cycle? Select all that apply.
CO_2 availability
NAD ⁺ availability
NADH availability
NADP ⁺ availability
NADPH availability
ATP availability
ADP availability
Which of the following may act as limiting factors in the Calvin cycle? Select all that apply. CO ₂ availability NAD+ availability NADP+ availability NADPH availability ATP availability ADP availability

Adapted with permission from OCR A Level January 2002 Central Concepts in Biology Question 2

Gameboard:

STEM SMART Biology Week 35 - Photosynthesis 2

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}},$ unless stated otherwise.

Home Gameboard Biology Biochemistry Photosynthesis Leaf Discs Experiment

Leaf Discs Experiment

Leaf discs were cut from destarched plants and placed either in water or in a glucose solution, and were exposed to air enriched with carbon dioxide.

The discs were kept under these conditions for 24 hours at $20\,^{\circ}\mathrm{C}$ in either light or dark.

At the end of 24 hours the leaf discs were tested for starch. The results are shown in the table below.

	Discs in water	Discs in glucose solution
Light	✓	✓
Dark	×	✓

Part A Respiration and photosynthesis

ATP is required in the synthesis of starch. ATP is produced by the phosphorylation of ADP during both respiration and photosynthesis.

In the table below, show which process(es) occurred in each experimental group.

	Discs in water	Discs in glucose solution
Light		
Dark		

Items:

photosynthesis only	neither	respiration only	both respiration and photosynthesis

Part B Testing for starch

What is the name of the test that would most likely be used to test the leaf discs for starch?

Part C Amino acid synthesis

The triose phosphate produced in the light-independent stage of photosynthesis can be used to produce glucose and other carbohydrates, but it can also be used to produce amino acids.

In addition to those found in carbon dioxide and water, which element (that is present in all amino acids) do plants need to produce amino acids?

Adapted with permission from OCR A Level June 2001, Central Concepts in Biology, Question 5

Gameboard:

STEM SMART Biology Week 35 - Photosynthesis 2

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Photosynthesis Chloroplasts and Mitochondria

Chloroplasts and Mitochondria

Figure 1: A diagram of a chloroplast and a mitochondrion. Different parts of the two organelles are labelled (A-G). The organelles are not shown to scale. The dark, oval-shaped structure in the chloroplast is a starch grain.

Part A Label the diagram

Match the descriptions to the labels in the table below.

Label	Description
Α	
В	
С	
D	
E	
F	
G	

Items:

mitochondrial outer membrane	stroma cristae (f	olds of the mitochondrial inner i	membrane)
chloroplast outer membrane	thylakoid membrane	chloroplast inner membrane	matrix

Part B Stages of photosynthesis

Match the labels from **Figure 1** to the following processes, to show where in the organelle they occur (or select "none of the above" if they do not occur in either organelle).

• The light-dependent stage of photosynthesis:		
--	--	--

•	The light-independent stage of photosynthesis	:	

Items:

A B C D E F G none of the above

Part C Stages of aerobic respiration

Match the labels from **Figure 1** to the following processes, to show where in the organelle they occur (or select "none of the above" if they do not occur in either organelle).

•	Glycolysis:	
•	The link reaction:	
•	Krebs cycle:	
•	Oxidative phosphorylati	on:

Items:

A B C D E F G no	ne of the above
------------------	-----------------

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 35 - Photosynthesis 2

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Photosynthesis Photosynthesis vs Respiration

Photosynthesis vs Respiration

Part A Processes

In the table below, identify whether the processes occur during respiration or photosynthesis, and give the specific stage during which that process occurs.

Process	Respiration or Photosynthesis	Stage
A 6-carbon compound goes through a series of reactions to produce a 4- carbon compound. ${\rm CO}_2$ is produced.		
Water is split into oxygen, hydrogen ions (protons), and electrons.		
Oxygen reacts with electrons and hydrogen ions (protons) to produce water.		
${ m CO_2}$ reacts with a 5-carbon compound to produce a 6-carbon compound, which then breaks down into two 3-carbon compounds.		
Glucose is broken down into two pyruvate molecules. NADH and ATP are produced.		
Pyruvate is used to make acetyl CoA. NADH and CO_2 are produced.		

Items:

 (respiration)
 (photosynthesis)
 (glycolysis)
 (the link reaction)
 (Krebs cycle)
 (oxidative phosphorylation)

 (the light-dependent stage)
 (the light-independent stage)

Part B Locations

In the table below, identify whether the stages are part of respiration or photosynthesis, and give the specific location of that stage.

Stage	Respiration or Photosynthesis	Location
the link reaction		
Calvin cycle		
Krebs cycle		
non-cyclic photophosphorylation		
oxidative phosphorylation		
glycolysis		
respiration photosynthesis cytoplasm mit	cochondrial matrix mitochondrial inner membrane erane	
Part C ATP production Which of the following stages directly result in		
glycolysis the link reaction Krebs cycle oxidative phosphorylation	the production of ATP? Select all that apply.	
glycolysis the link reaction Krebs cycle	the production of ATP? Select all that apply.	

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 35 - Photosynthesis 2

<u>Home</u> <u>Gameboard</u> Biology Biochemistry Photosynthesis Photosynthesis Summary

Photosynthesis Summary

Part A	Reducing chlorophyll
Which p	process releases electrons that return chlorophyll molecules to their reduced state?
	reduction of glycerate phosphate to triose phosphate
	phosphorylation of ADP
	oxidation of NADPH (reduced NADP)
	carbon fixation
	activation of photosystem I
	active transport of hydrogen ions across the thylakoid membrane
	regeneration of ribulose bisphosphate (RuBP)
	photolysis of water

Part B Linking stages

Which of the following are products of the light-dependent stage that are used in the light-independent stage? Select all that apply.	
${ m CO}_2$	
glucose	
ATP	
NADP ⁺	
ribulose bisphosphate (RuBP)	
${f O}_2$	
ADP	
NADPH (reduced NADP)	
Part C Radioactive labelling	
Carbon dioxide labelled with $^{14}{ m C}$ has been used to identify the intermediate compounds in the light-	
Carbon dioxide labelled with $^{14}{ m C}$ has been used to identify the intermediate compounds in the light-independent stage of photosynthesis.	
Carbon dioxide labelled with $^{14}{ m C}$ has been used to identify the intermediate compounds in the light-independent stage of photosynthesis.	
Carbon dioxide labelled with $^{14}{ m C}$ has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the $^{14}{ m C}$?	
Carbon dioxide labelled with $^{14}\mathrm{C}$ has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the $^{14}\mathrm{C}$? glycerate phosphate	
Carbon dioxide labelled with $^{14}\mathrm{C}$ has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the $^{14}\mathrm{C}$? glycerate phosphate oxaloacetate	
Carbon dioxide labelled with ¹⁴ C has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the ¹⁴ C? glycerate phosphate oxaloacetate triose phosphate (glyceraldehyde 3-phosphate)	
Carbon dioxide labelled with ¹⁴ C has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the ¹⁴ C? glycerate phosphate oxaloacetate triose phosphate (glyceraldehyde 3-phosphate) lactic acid	
Carbon dioxide labelled with ¹⁴ C has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the ¹⁴ C? glycerate phosphate oxaloacetate triose phosphate (glyceraldehyde 3-phosphate) lactic acid acetyl CoA	
Carbon dioxide labelled with ¹⁴ C has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the ¹⁴ C? glycerate phosphate oxaloacetate triose phosphate (glyceraldehyde 3-phosphate) lactic acid acetyl CoA citrate	
Carbon dioxide labelled with ¹⁴ C has been used to identify the intermediate compounds in the light-independent stage of photosynthesis. Which of the following compounds would be the first to contain the ¹⁴ C? glycerate phosphate oxaloacetate triose phosphate (glyceraldehyde 3-phosphate) lactic acid acetyl CoA citrate ribulose bisphosphate (RuBP)	

Question elements adapted with permission from CIE A Level November 2000 Paper 2 Question 26, CIE A Level June 1999 Paper 2 Question 26, and CIE A Level June 2001 Paper 2 Question 24