0.99ⁿ,
$$(\log n)^{100}$$
, \sqrt{n} , $n^* \log n$, $\frac{n^2}{\log n}$, n^3 , $n^* 2^n$, 3^n

0.99ⁿ és la menor ja que és la única funció que decreix.

Podem comprovar ràpidament mitjançant límits que \sqrt{n} creix mes ràpid que $(\log n)^{100}$:

$$\lim_{n \to \infty} \frac{n^{1/2}}{(\log n)^{100}} = \lim_{n \to \infty} \sqrt{\frac{n}{(\log n)^{200}}}$$

 \sqrt{n} creix més ràpid que ($\log n$) 100 , ja que es una funció lineal sobre una funció logarítmica.

Seguidament, es fàcil comprovar que n*log n creix més ràpid que \sqrt{n} , ja que el grau de l'exponent de la n és major. Per la mateixa raó, seguidament venen la funció quadràtica $\frac{n^2}{logn}$ i la funció cúbica n³.

Finalment només ens queda comprovar quina de les dues funcions exponencials restants es major. Emprant límits comprovem:

$$\lim_{n \to \infty} \frac{n * 2^n}{3^n} = \lim_{n \to \infty} \frac{n}{(3/2)^n} = \lim_{n \to \infty} \frac{n}{1.5^n} = 0$$

3ⁿ creix més ràpid que n*2ⁿ, ja que la funció exponencial que ens ha quedat al denominador és exponencial i per tant creix més ràpid que la funció lineal del numerador.

Lluís Cerdà Vidal i Laia Bonilla Pérez