Análise e Complexidade de Algoritmos

UFFS Ciência da Computação Estrutura de Dados

Prof. Denio Duarte Prof. Geomar A. Schreiner

- Informalmente, um algoritmo é um procedimento computacional bem definido que:
 - Recebe um conjunto de valores como entrada.
 - Produz um conjunto de valores como saída
- Assim, um algoritmo é uma ferramenta para resolver um problema computacional.

- Problema
 - Primalidade (determinar se um número é primo):

• Entrada: 9411461

• Saída: é primo

• Entrada: 8411461

Saída: Não é primo

- Problema:
 - Ordenação: A[1..n] é crescente se A[1] $\leq ... \leq$ A[n]¹
 - Rearranjar o vetor A de modo que fique ordenado.
 - Entrada: 1

Saída:

¹ Por simplificação, a primeira posição do vetor será considerada a 1

- Instância de um problema: conjunto de valores que serve de entrada para um determinado problema:
 - Os números 9411461 e 8411461 são instâncias para o problema de primalidade.

é uma instância para o problema de ordenação.

- Descrição de algoritmos:
 - Linguagem de programação (C, Pascal, Java, etc)
 - implementando como um hardware
 - Pseudo-Código

- Razões para o estudo:
 - Evitar reinventar a roda:
 - Existem bons algoritmos que solucionam problemas importantes.
 - Ajudar no desenvolvimento de seus algoritmos:
 - Nem sempre existe um algoritmo de prateleira que sirva para resolver o seu problema.

- Muitas vezes, não é suficiente saber que um determinado algoritmo produz uma saída correta.
 - Um algoritmo extremamente lento em geral n\u00e3o tem muita utilidade.
- Queremos projetar/desenvolver algoritmos eficientes (=rápidos).

- Mas o que seria uma boa medida da eficiência de um algoritmo?
 - Uma possibilidade: estimar através de uma análise matemática o tempo que o algoritmo gasta em função do tamanho da entrada.

Exemplo

- O tamanho do problema de ordenação corresponde ao tamanho do vetor a ser ordenado.
- Dado um vetor de n posições, o tamanho do problema será n.

- O comportamento limite de um algoritmo (em tempo ou espaço) conforme o crescimento da entrada é chamado comportamento assintótico.
- Ou seja, o comportamento de um algoritmo para uma entrada GRANDE.
- Podemos dizer que o comportamento assintótico representa o "pior caso" para um algoritmo.

- A complexidade é dada por uma fórmula matemática:
 - 3+n+4n, onde n é o tamanho da entrada.
 - Como estamos interessados em n_s GRANDES, na formula acima o termo dominante é 4n, assim podemos simplificar a complexidade para 4n.
 - Chamamos de notação assintótica

er	ntrada	complexidade real	notação assintótica
n		3+n+4n	4n
1	.0	53	40
5	0	253	200
1	.00	503	400
5	000	25003	20000

- Se um algoritmo A processa um entrada n no tempo kn² (onde k é uma constante), dizemos que a complexidade de A é n².
- Formalmente escrevemos $A \in O(n^2)$, ou seja, A pertence a classe dos algoritmos quadráticos
- Dizemos também que A é da ordem de n² (daí o símbolo O)

Exemplo de cálculo:

```
procedimento teste (inteiro n)
variaveis
    inteiros b, c, i;
inicio
    b:=n*2;
    c:=0;
    para i de 1 ate n faça
        c:=b+n;
    fim para;
fim;
```

```
procedimento teste (inteiro n) custo vezes variaveis inteiros b, c, i; inicio b:=n*2; c<sub>1</sub> c<sub>2</sub> 1 c:=0; para i de 1 ate n faça c<sub>3</sub> n c:=b+n; c<sub>4</sub> n fim para; fim;
```

A constante c_k representa o custo (tempo) de cada instrução.

```
procedimento teste (inteiro n) custo vezes variaveis inteiros b, c, i; inicio b:=n*2; c<sub>1</sub> c<sub>2</sub> 1 c:=0; para i de 1 ate n faça c<sub>3</sub> n c:=b+n; c<sub>4</sub> n fim para; fim;
```

T(n), tempo de execução com entrada de tamanho n, é de: $T(n)=1*c_1+1*c_2+c_3*n+c_4*n$, ou $c_1+c_2+c_3n+c_4n$.

T(n), tempo de execução com entrada de tamanho n, é de: $T(n)=1 \times c_1+1 \times c_2+c_3 \times n+c_4 \times n$, ou $c_1+c_2+c_3 n+c_4 n$.

Para o pior caso (comportamento assintótico) podemos resumir a complexidade de tempo em O(n).

 A importância de medir a complexidade nasce da necessidade de comparar algoritmos.

Exemplo:

Algoritmo	Complexidade Tempo
A_1	n
A_2	n log n
A_3	n^2
A_4	n ³
A_5	2 ⁿ

Suponhamos que o custo da instrução é 1 milisegundo.

Algoritmo	0	1seg	1min	1h
$\overline{A_1}$	n	1000	6*10 ⁴	3,6*10 ⁶
A_2	n log n	140	4893	$2,0*10^5$
A_3	n^2	31	244	1897
A_4	n ³	10	39	153
A_5	2 ⁿ	9	15	21

Qual é o melhor?

 Por que se importar com a complexidade de tempo se os computadores aumentam seus poderes de processamento?

 Por que se importar com a complexidade de tempo se os computadores aumentam seus poderes de processamento?

Algoritmo		Máquina Atual	10 vezes mais rápida
A_1	n	V ₁	10v ₁
A_2	n log n	V_2	$\simeq 10 v_2$
A_3	n^2	V_3	3,16v ₃
A_4	n ³	$V_{\underline{4}}$	$2,15v_4$
A_5	2 ⁿ	V_5	v ₅ +3,3

- Armadilhas da notação assintótica:
 - Se temos um algoritmo A cujo T(n)=100n podemos dizer que A é O(n).
 - Se temos um algoritmo B cujo $T(n)=n \log_{10} n$ podemos dizer que B é $O(n \log_{10} n)$.
 - Assim A é assintoticamente mais eficiente que B, certo?

- Armadilhas da notação assintótica:
 - Se temos um algoritmo A cujo T(n)=100n podemos dizer que A é O(n).
 - Se temos um algoritmo B cujo $T(n)=n \log_{10} n$ podemos dizer que B é $O(n \log_{10} n)$.
 - Assim A é assintoticamente mais eficiente que B, certo?
 - Errado, A só e mais eficiente que B quando $n=10^{100}$

Aviso: cuidado com as constantes no momento da análise assintótica

Cálculo

Valor dominante da direita VDD:

```
-L = (10; 9; 5; 13; 2; 7; 1; 8; 4; 6; 3)
- VDD=(13,8,6,3)
//Entrada: Vetor L[1..n]
//Retorno: Vetor com os elementos dominantes à direita
   DominanteADireita(L) {
      D = vetor vazio
      for (i = 1 \text{ to } n) {
         isDominante = true
         for (j = i+1 \text{ to } n)
            if (L[i] \le L[j]) isDominante = false
         if (isDominante) acrescenta L[i] em D
      return I
```

Cálculo

```
// Entrada: Vetor L[1..n]
// Retorno: Vetor com os elementos dominantes à direita
DominanteADireita(L) {
    D = vetor vazio
    for (i = 1 to n) {
        isDominante = true
        for (j = i+1 to n)
            if (L[i] <= L[j]) isDominante = false
        if (isDominante) acrescenta L[i] em D
    }
    return L
}</pre>
```

- Temos o bloco do for (variável i) executado n vezes
- O bloco do for (variável j) é executado de i+1 até n vezes,
 totalizando n-(i+1)+1 vezes que é igual à n-i (pois a constante 1 não tem grande influência no resultado).

Cálculo

- Temos o bloco do for (variável i) executado n vezes
- O bloco do for (variável j) é executado de i+1 até n vezes,
 totalizando n-(i+1)+1 vezes que é igual à n-i.
- Assim temos:

$$\sum_{i=1}^{n} (n-i) = (n-1) + (n-2) + \dots + 1 + 0 = \frac{(n-1)*(n+1)}{2} = \frac{n^2 - 1}{2}$$

Assintoticamente o algoritmo *DominanteADireita* é $O(n^2)$.

Ordens de Complexidade

- Melhor caso, notação Ω (limite assintótico inferior)
- Caso médio, notação Θ (limite assintótico médio)
- Pior caso, notação O (limite assintótico superior)

Ordens de Complexidade

Cola:

<i>f</i> é	significa que f cresce	e se escreve ¹
O de g theta de g ômega de g	não mais depressa que g aproximadamente como g não mais devagar	$f=O(g)$ $f=\Theta(g)$ $f=\Omega(g)$

¹ Lembrem-se o correto é utilizar o sinal ∈ pois as ordens são classes e f é um elemento da classe

Classes do Comportamento Assintótico

CLASSE
O(1)
O(log n)
O(n)
O(n log n)
$O(n^2)$
O(n³)
$O(n^k)$ com k >= 1
$O(2^n)$
$O(a^n)$ com a > 1

constante
logarítmica
linear
n log n
quadrática
cúbica
polinomial
exponencial
exponencial

Crescimento das Classes

Primo – Versão 1

```
int IsPrimeV1(int n)
{
   int i;
   for (i=2;i<n;i++)
      if (n%i==0)
      return 0;
   return 1;
}</pre>
```

Primo – Versão 2

```
int IsPrimeV2(int n)
{
   int i;
   for (i=2;i<n/2;i++)
      if (n%i==0)
      return 0;
   return 1;
}</pre>
```

Primo – Versão 2

```
int IsPrimeV2(int n)
{
   int i;
   for (i=2;i<sqrt(n);i++)
      if (n%i==0)
      return 0;
   return 1;
}</pre>
```

- Valor dominante da direita VDD:
 - Versão anterior O(n²)
 - É possível fazer uma versão O(n)?

- Valor dominante da direita VDD:
 - Versão anterior O(n²)
 - É possível fazer uma versão O(n)?

```
//Entrada: Vetor L[1..n]
//Retorno: Vetor com os elementos dominantes à direita
   DominanteADireita(L) {
      D, bigger = L[n]
      for (i = n-1 \text{ to } 1) {
         if (L[i]>bigger)
            acrescenta L[i] em D
            bigger=L[i]
      return L
```