Tutorial Questions: Windowing and Zero Padding

- 1. A single complex sinusoid with frequency f_0 exists for all time and has a spectrum $\delta(f f_0)$. Show that this is the case.
- 2. Determine the spectrum for the above single complex sinusoid but now multiplied by a rectangular window with width T_c and centered at t=0 *i.e.* from $-T_c/2$ to $+T_c/2$.
- 3. A sinc function results in the above case. Sketch the magnitude spectrum of the determined sinc function and determine the locations of the nulls under two scenarios:
 - (a) When $f_0T_c = n$ where n is an integer;
 - (b) When f_0T_c is not equal to an integer.
- 4. Sketch the magnitude of a sinc function and label the main lobe, nulls and side lobes.
- 5. Explain clearly, in your own words, the following terms, in the context of the DFT and windowing giving equations where possible:
 - (a) Coherent gain;
 - (b) Side lobe fall off rate in:
 - i. Decibels per decade;
 - ii. Decibels per octave.
 - (c) Spectral leakage;
 - (d) Scalloping loss;
 - (e) Absolute dynamic range;
 - (f) Far-field dynamic range;
 - (g) Resolution.
- 6. If a signal has a magnitude A and a measurement of the signal yields a value B instead, write down, in simple text form (i.e. no special formatting; use _ for subscript and ^ for superscript), the formulas for:
 - (a) The measurement error;
 - (b) The fractional error;
 - (c) The percentage error;
 - (d) The dB error.
- 7. When carrying out an FFT of a cosine wave whose frequency is 0.1Hz and whose amplitude is unity, explain why the peak amplitude measurement obtained in the range 0.09Hz to 0.11Hz should ideally have a value of 0.5?
- 8. Explain the concept of linear interpolation in your own words, without using any mathematical formulae.
- 9. Explain the reasons for performing zero padding? Describe the process in the time domain and the effect on the resulting frequency domain.