C3879C Capstone Project

Credit Card Fraud Detection System

Kandasamy Subbaian <u>Karthik</u>

ID# 18061866

INTRODUCTION:

 It is about automation of identifying fraudulent Credit Card transaction with the help of supervised machine learning (ML) algorithms such as Naïve Bayes, Support Vector Machine (SVM) and Logistics Regression.

• In the Artificial Intelligence (AI) era, It helps Financial Institutions (FI) to leverage Machine Learning (ML) to perform anomaly detection.

PROBLEM STATEMENTS:

- With the legacy systems, Financial Institutions (FIs) are struggling to automate detection of credit card fraudulent transaction precisely.
- As a pre-emptive approach to tackle fraud, Machine Learning (ML) helps FIs to detect anomaly precisely in a cost-effective manner.
- As a counter measure, the "Credit Card Fraud Detection" system helps FIs to find anomaly and increase customer experience (or) satisfaction.

PROJECT REQUIREMENTS:

There is a need to develop a system to identify/classify whether the new credit card transaction is a fraud or normal transaction with the help of Machine Learning Models.

Fraudulent transaction will be notified to the concerned financial officer for their further action, if the transaction is fraudulent.

SYSTEM REQUIREMENTS:

SOFTWARE REQUIREMENT	VERSION
Python	2.7 (Or above)
Scipy	1.3.0
Numpy	1.3.0
matplotlib	3.1.0
Pandas	0.24.2
scikit-learn	0.21.1
Windows 64 bit	10

HARDWARE REQUIREMENT

RAM 8 GB

CPU 1,80 GHz

Storage 40 GB (minimum)

CONSTRAINT/ASSUMPTIONS:

- ➤ Since the data collection is a time-consuming process, I intend to use the dataset available on www.kaggle.com.
- ➤ The dataset has 31 features, of which 28 features do not have any description about it.
- https://www.kaggle.com/mlg-ulb/creditcardfraud

DATA FLOW DIAGRAM:

IMPLEMENTAION:

Dataset Features:

- The dataset has 31 features.
 - 28 anonymized features
 - 3 non-anonymized features (Time, Amount and Class)
- The 28 features are already in the form of a PCA (Principal Component Analysis) complaint.
- They are labeled V1 through V28.
- Both Time and Amount are not in the form of PCA.

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9 .	V2 1	V22	V23	V24	V2
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.018307	0.277838	-0.110474	0.066928	0.12853
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425 .	0.225775	-0.638672	0.101288	-0.339846	0.16717
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654 .	0.247998	0.771679	0.909412	-0.689281	-0.32764
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024 .	0.108300	0.005274	-0.190321	-1.175575	0.64737
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739 .	0.009431	0.798278	-0.137458	0.141267 8	3-0.20601

Exploratory Data Analysis (EDA):

Imbalanced Dataset:

- Positive (1) Fraud Transactions: 0.173%
- Negative(0) Normal Transactions: 99.827%

FEATURES CORRELATION:

Correlations between our **features** w.r.t the **Class**.

IMPUTATION OF MISSING VALUE:

- All predictors are PCA-compliant.
- No missing/Null values (i.e., No Imputation)
- All values

 Int (or) float data type.

V1	284807	non-null	float64	V15	284807	non-null	float64
V2	284807	non-null	float64	V16	284807	non-null	float64
V3	284807	non-null	float64	V17	284807	non-null	float64
V4	284807	non-null	float64	V18	284807	non-null	float64
V5	284807	non-null	float64	V19	284807	non-null	float64
V6	284807	non-null	float64	V20	284807	non-null	float64
V7	284807	non-null	float64	V21	284807	non-null	float64
V8	284807	non-null	float64	V22	284807	non-null	float64
V9	284807	non-null	float64	V23	284807	non-null	float64
V10	284807	non-null	float64	V24	284807	non-null	float64
V11	284807	non-null	float64	V25	284807	non-null	float64
V12	284807	non-null	float64	V26	284807	non-null	float64
V13	284807	non-null	float64	V27	284807	non-null	float64
V14	284807	non-null	float64	V28	284807	non-null	float64
				Amount	284807	non-null	float64
				Class	284807	non-null	int64

DATA PREPARATION – DATA SCALING:

- Anonymized (v1 to 28) features → Scaled (i.e., centered around 0).
- Time and Amount → Not in line with other features in terms of scaling. It affects the model performance.

```
# Consider Non-anonymized (Amount and Time) features for normalisation.
from sklearn.preprocessing import StandardScaler|
scaleTime = StandardScaler()
scaled_Time = scaleTime.fit_transform(cc_df[['Time']])
list_scaledTime = [stime for sublist in scaled_Time.tolist() for stime in sublist]
series_scaledTime = pd.Series(list_scaledTime)

scaleAmount = StandardScaler()
scaled_Amount = scaleAmount.fit_transform(cc_df[['Amount']])
list_scaledAmt = [amt for sublist in scaled_Amount.tolist() for amt in sublist]
series_scaledAmt = pd.Series(list_scaledAmt)

# Concatenating scaled time and amount with original dataframe
scaled_df = pd.concat([cc_df, series_scaledAmt.rename("scaled_amount"), series_scaledTime.rename("scaled_time")], axis=1)
```

12

scaled df.head()

CREATE DATASET (Techniques):

- Since the dataset is highly imbalanced, it will <u>lead ML Algorithms</u> "to generalize the unseen data incorrectly". In other words, it will classify most of the (unseen) data as "Non-Fraud" Transaction.
- In order to avoid this, we can use below <u>resampling</u> techniques to create a balanced dataset.
 - Oversampling (minority class Fraud Transaction)
 - Undersampling (majority class Normal Transaction)
 - Generate synthetic samples (SMOTE or Synthetic Minority Oversampling Technique uses a nearest neighbors algorithm)

CREATE DATASET - Undersampling:

Split the scaled dataset into Train and Test

```
mask = np.random.rand(len(scaled_df)) < 0.9
train = scaled_df[mask]
test = scaled_df[~mask]
print('Train Shape: {}\nTest Shape: {}'.format(train.shape, test.shape))

Train Shape: (256293, 31)
Test Shape: (28514, 31)

train.reset_index(drop=True, inplace=True)
test.reset_index(drop=True, inplace=True)</pre>
```

Create a sub-sample dataset with balanced class distribution

```
# Find how many Fraud Transactions are there in the (Random) Training Data
no_of_fraud_trans = train['Class'].value_counts()[1]
print('There are {} fraudulent transactions in the train data.'.format(no_of_fraud_trans))
```

There are 443 fraudulent transactions in the train data.

```
# Segregate Normal and Fraud Transactions from the Train Data
normal_trans_df = train[train['Class']==0]
fraud_trans_df = train[train['Class']==1]
```

```
# Randomly selecting the same no of Normal Trans (that is, 445) as Fraud Trans from Normal Trans Data selected_norml_trans_df = normal_trans_df.sample(no_of_fraud_trans) selected norm1 trans df.head()
```

CREATE DATASET – Final Dataset:

```
# Concatenate both selected_norml_trans_df and fraud_trans_df
subsample_df = pd.concat([selected_norml_trans_df, fraud_trans_df])
subsample_df.shape

#shuffle the subsample df/dataset
subsample_df = subsample_df.sample(frac=1).reset_index(drop=True)
```

Count of Fraudulent vs. Non-Fraudulent Transactions In Subsample

REMOVE OUTLINERS:

```
# Remove Extreme outliers
Q1_feature_val = subsample_df.quantile(0.25)
Q3_feature_val= subsample_df.quantile(0.75)
IQR = (Q3_feature_val - Q1_feature_val)
wo_outliner_df = subsample_df[~((subsample_df < (Q1_feature_val - 2.5 * IQR)) | (subsample_df > (Q3_feature_val + 2.5 * IQR))).ang
```

REMOVE OUTLINERS:

Features With High Positive Correlation

SPLIT TRAIN & TEST:

 Split the dataset into Train and Test for learning.

Split Final Dataset into Train and Test

```
# Train and Test Split
from sklearn.model_selection import train_test_split
X = wo_outliner_df.drop('Class', axis=1)
y = wo_outliner_df['Class']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

SPOT-CHECK ALGORITHMS:

```
##Spot-Checking Algorithms
models = []
models.append(('LR', LogisticRegression()))
models.append(('SVM', SVC()))
models.append(('GNB', GaussianNB()))
#testing models
results = []
names = []
for name, model in models:
    kfold = KFold(n splits=10, random state=42)
    cv_results = cross_val_score(model, X_train, y_train, cv=kfold, scoring='roc_auc')
    results.append(cv_results)
    names.append(name)
    msg = '%s: %f (%f)' % (name, cv_results.mean(), cv_results.std())
    print(msg)
LR: 0.971002 (0.028816)
SVM: 0.955585 (0.043666)
GNB: 0.955635 (0.037525)
```

PREDICTION ON TEST DATA:

- Model = Algorithm(DATA)
- Predict on Test Data
- Find Accuracy Score
- Confusion Matrix
- Classification Report

MODEL PERFORMANCE:

- <u>Precision</u>: The number of true positives divided by all positive predictions. Precision is also called Positive Predictive Value. It is a measure of a classifier's exactness. Low precision indicates a high number of false positives.
- <u>Recall:</u> The number of true positives divided by the number of positive values in the test data. Recall is also called Sensitivity or the True Positive Rate. It is a measure of a classifier's completeness.
- <u>F1-Score</u>: The weighted average of precision and recall.
- Confusion Matrix:

	Prediction							
Actual	0 (Negative)	1 (Positive)						
0 (-ve)	TN (True Positive)	FP (False Positive)						
1 (+ve)	FN (False Negative)	TP (True Positive)						

PERFORMANCE TEST DATA:

weighted avg

0.91

0.90

	Predictions w	ith LR:				Prediction	ons wit	h SVM:			
	accuracy_sco 0.91869918699					accuracy 0.9186991	_				
TN —	Confusion Ma [[78 2] 8 35]]	trix: -FP TP				Confusio [[78 2] [8 35]]		rix:			
FN [^]	Classificati	on Report: precision	recall	f1-score	support	Classifi		Report:	recall	f1-score	support
	0	0.91	0.97	0.94	80		0	0.91	0.97	0.94	80
	1	0.95	0.81	0.88	43		1	0.95	0.81	0.88	43
	micro avg	0.92	0.92	0.92	123	micro	avg	0.92	0.92	0.92	123
	macro avg	0.93	0.89	0.91	123	macro	avg	0.93	0.89	0.91	123
	weighted avg	0.92	0.92	0.92	123	weighted	_	0.92	0.92	0.92	123
	ictions wi				+TN)/Tota		-				
	2439024390		Error	Rate = 1	- Accuracy	/ = (FN + F	P)/To	otal = (8+	+2)/123	= 0.0813	3008130
Con ⁻ [[78	fusion Mat	rix:	Sensit	ivity/Red	call = TP /(TP + FN) :	= 35/	(8+35) =	0.8139	53488	
	33]]		F1 Scc	re = (Pre	cision + R	ecall)/2 =	(0.95	5 + 0.88)	<mark>/2 = 0.8</mark>	8	
Clas	ssificatio	on Report	:								
		precisio		recall	f1-sco	re sup	port	=			
	Ø	0.8	39	0.97	0.9	93	86	•			
	1	0.9	94	0.77	0.	85	43	3			
m:	icro avg	0.9	90	0.90	0.9	90	123	3			
ma	acro avg	0.9	91	0.87	0.8	89	123	3			22
					_						22

0.90

123

HYPERPARAMETERS - GridSearchCV:

- Of 3 Algorithms compared above, Logistic Regression is better than both SVM and GNB.
- Performance of both Logistic Regression and SVM are sometime equal.

Hyperparameters Tuning - Logistic Regression

```
# Grid search cross validation
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
grid={"C":np.logspace(-3, 3, 20), "penalty":['l1', 'l2'], "solver":["liblinear"]} # l1 ->lasso l2->ridge
logreg=LogisticRegression()
logreg_cv=GridSearchCV(logreg,grid,cv=10,scoring='roc_auc')
logreg_cv= logreg_cv.fit(X_train,y_train)

print("accuracy :",logreg_cv.best_score_)
print('Best Penalty:', logreg_cv.best_estimator_.get_params()['penalty'])
print('Best C:', logreg_cv.best_estimator_.get_params()['C'])
```

accuracy: 0.9797634107406404

Best Penalty: 12

Best C: 0.1623776739188721

PREDICT ON TEST DATA WITH BEST MODEL:

Predict on Test Data with the best model

```
logreg cv.predict(X test)
array([1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,
      1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
      1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
      0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
      1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0], dtype=int64)
```

Accuracy Before Tuning	Accuracy After Tuning
0.91869918699	0.9797634107406404

```
logreg cv
GridSearchCV(cv=10, error score='raise-deprecating',
       estimator=LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
```

```
intercept scaling=1, max iter=100, multi class='warn',
n jobs=None, penalty='l2', random state=None, solver='warn',
tol=0.0001, verbose=0, warm_start=False),
```

fit params=None, iid='warn', n jobs=None,

scoring='roc auc', verbose=0)

```
param grid={'C': array(|1.00000e-03, 2.06914e-03, 4.28133e-03, 8.85867e-03, 1.83298e-02,
3.79269e-02, 7.84760e-02, 1.62378e-01, 3.35982e-01, 6.95193e-01,
1.43845e+00, 2.97635e+00, 6.15848e+00, 1.27427e+01, 2.63665e+01,
5.45559e+01, 1.12884e+02, 2.33572e+02, 4.83293e+02, 1.00000e+03]), 'penalty': ['l1', 'l2'], 'solver': ['liblinear']},
pre dispatch='2*n jobs', refit=True, return train score='warn',
                                                                                                              24
```

ROC-AUC:

• The receiver operating characteristic (ROC) curve is another common tool used with binary classifiers.

```
from sklearn.metrics import roc_auc_score, roc_curve
y_pred_proba = logreg_cv.predict_proba(X_test)[::,1]
fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
plt.figure(figsize=(8,8))
plt.plot(fpr, tpr, linewidth=2, label=None)
plt.plot([0, 1], [0, 1],"--")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
```

```
# ROC AUC SCORE
auc = roc_auc_score(y_test, y_pred_proba)
print(auc)
0.9558823529411765
```

ROC-AUC:

- Perfect classifier will have a ROC AUC equal to 1.
- Random classifier will have a ROC AUC equal to 0.5.

