OVERALGEBRAS:

EXPANSIONS AND EXTENSIONS OF FINITE ALGEBRAS

William DeMeo

williamdemeo@gmail.com

Iowa State University
Algebra & Combinatorics Seminar

22 Feb 2016

These slides and other resources are available at https://github.com/williamdemeo/Talks

Contruction of an algebra ${\bf A}$ with Con ${\bf A}\cong L_9$.

Contruction of an algebra \mathbf{A} with Con $\mathbf{A} \cong \mathbf{L}_9$.

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

Contruction of an algebra \mathbf{A} with Con $\mathbf{A} \cong L_9$.

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice Con $\mathbf{B} \cong M_4$.

Example:

- Let $B = \{0, 1, \dots, 5\}$ index the elements of S_3 and consider the right regular action of S_3 on itself.
- $g_0=(0,4)(1,3)(2,5)$ and $g_1=(0,1,2)(3,4,5)$ generate this action group, the image of $S_3\hookrightarrow S_6$.
- $\operatorname{Con} \langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

Contruction of an algebra **A** with Con $\mathbf{A} \cong L_9$.

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

Example:

•
$$g_0 = (0, 4)(1, 3)(2, 5)$$
 and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.

• Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences

$$\alpha = |{\tt 012|345|}, \; \beta = |{\tt 03|14|25|}, \gamma = |{\tt 04|15|23|}, \; \delta = |{\tt 05|13|24|}.$$

Goal: expand **B** to an algebra **A** that has α "doubled" in Con **A**.

Contruction of an algebra \mathbf{A} with Con $\mathbf{A} \cong L_9$.

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

Example:

•
$$g_0 = (0, 4)(1, 3)(2, 5)$$
 and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.

• Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences

$$\alpha = |{\tt 012|345|}, \; \beta = |{\tt 03|14|25|}, \gamma = |{\tt 04|15|23|}, \; \delta = |{\tt 05|13|24|}.$$

$$B_0 = \{0, 1, 2, 3, 4, 5\} = B$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

Contruction of an algebra \mathbf{A} with Con $\mathbf{A} \cong L_9$.

STEP 1 Take a permutational algebra $\mathbf{B} = \langle B, F \rangle$ with congruence lattice $\operatorname{Con} \mathbf{B} \cong M_4$.

Example:

•
$$g_0 = (0, 4)(1, 3)(2, 5)$$
 and $g_1 = (0, 1, 2)(3, 4, 5)$ generate this action group, the image of $S_3 \hookrightarrow S_6$.

• Con $\langle B, \{g_0, g_1\} \rangle \cong M_4$ with congruences

$$\alpha = |012|345|, \ \beta = |03|14|25|, \gamma = |04|15|23|, \ \delta = |05|13|24|.$$

Con B

Con A

STEP 2 Since $\alpha = Cg^{B}(0,2)$, we let $A = B_0 \cup B_1 \cup B_2$ where

$$B_0 = \{0, 1, 2, 3, 4, 5\} = B$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 2, 13, 14, 15\}.$$

STEP 3 Define unary operations e_0 , e_1 , e_2 , s, g_0e_0 , and g_1e_0 .

Contruction of an algebra **A** with Con $\mathbf{A} \cong L_9$.

$$\operatorname{Con}\left\langle B,\left\{ g_{0},g_{1}\right\} \right\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

 $\operatorname{Con} \langle A, F_A \rangle$

$$\widehat{\alpha} = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10, 13, 14, 15|$$

$$\alpha^* = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10|13, 14, 15|$$

$$\beta^* = |0, 3, 8|1, 4|2, 5, 15|6, 9|7, 10|11, 13|12, 14|$$

$$\gamma^* = |0, 4, 9|1, 5|2, 3, 13|6, 10|7, 8|11, 14|12, 15|$$

$$\delta^* = |0, 5, 10|1, 3|2, 4, 14|6, 8|7, 9, 11, 15|12, 13|$$

Contruction of an algebra **A** with Con $\mathbf{A} \cong L_9$.

$$\begin{array}{c}
\widehat{\alpha} \\
\alpha^* \\
\alpha^*
\end{array}$$

$$\begin{array}{c}
\beta^* \\
0_A
\end{array}$$

$$\operatorname{Con}\left\langle B,\left\{ g_{0},g_{1}\right\} \right\rangle$$

 $\alpha = [0, 1, 2|3, 4, 5]$

Con
$$\langle A, F_A \rangle$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0,4|1,5|2,3|$$

$$\delta = |0,5|1,3|2,4|$$

$$\widehat{\alpha} = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10, 13, 14, 15|$$

$$\alpha^* = |0, 1, 2, 6, 7, 11, 12|3, 4, 5|8, 9, 10|13, 14, 15|$$

$$\beta^* = |0, 3, 8|1, 4|2, 5, 15|6, 9|7, 10|11, 13|12, 14|$$

$$\gamma^* = |0, 4, 9|1, 5|2, 3, 13|6, 10|7, 8|11, 14|12, 15|$$

$$\delta^* = |0, 5, 10|1, 3|2, 4, 14|6, 8|7, 9, 11, 15|12, 13|$$

$$\alpha = \alpha^* \cap B^2 = \widehat{\alpha} \cap B^2, \quad \beta = \beta^* \cap B^2, \quad \dots$$

$$\text{Con}\,\langle B,\{g_0,g_1\}\rangle$$

$$lpha = |0,1,2|3,4,5|$$
 $eta = |0,3|1,4|2,5|$
 $\gamma = |0,4|1,5|2,3|$
 $\delta = |0,5|1,3|2,4|$

$$\operatorname{Con}\left\langle B,\left\{ g_{0},g_{1}\right\} \right\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\text{Con}\,\langle \textbf{\textit{B}},\{\textbf{\textit{g}}_0,\textbf{\textit{g}}_1\}\rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

$$\beta = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$

$$\operatorname{Con}\left\langle B,\left\{ g_{0},g_{1}\right\} \right\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

$$\delta=|0,5|1,3|2,4|$$

$$\operatorname{Con}\left\langle B,\left\{ g_{0},g_{1}\right\} \right\rangle$$

$$lpha = |0, 1, 2|3, 4, 5|$$
 $eta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\operatorname{Con}\langle B,\{g_0,g_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\bullet \ A=B_0\cup B_1\cup B_2$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

10

 B_2

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$

IIIII

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$
 $B_0 = \{ 1 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$s: A \rightarrow B_0$$

$$B_2$$

$$A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

 $B_1 = \{ 0 \ 6 \ 7 \ 8 \ 9 \ 10 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$e_1: A \rightarrow B_1$$

$$e_2: A \rightarrow B_2$$

$$S: A \rightarrow B_0$$

$$D_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$D_1 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$e_1: A \rightarrow B_1$$

$$e_2: A \rightarrow B_2$$

$$S: A \rightarrow B_0$$

$$D_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$D_1 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\begin{aligned} &\operatorname{Con} \left\langle B, \{g_0, g_1\} \right\rangle \\ &\alpha = |0, 1, 2|3, 4, 5| \\ &\beta = |0, 3|1, 4|2, 5| \\ &\gamma = |0, 4|1, 5|2, 3| \\ &\delta = |0, 5|1, 3|2, 4| \end{aligned}$$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 S : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$B_2 = \{ \, 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \, \}$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$lpha = |0,1,2|3,4,5|$$
 $eta = |0,3|1,4|2,5|$
 $\gamma = |0,4|1,5|2,3|$

 $\delta = [0, 5|1, 3|2, 4]$

Con $\langle B, \{g_0, g_1\} \rangle$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$e_1: A \rightarrow B_1$$

$$e_2: A \rightarrow B_2$$

$$S: A \rightarrow B_0$$

$$D_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$D_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$s: A \rightarrow B_0$$

$$B_2:$$
 $ge_0: A \xrightarrow{e_0} B_0 \xrightarrow{g} B_0$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\begin{split} \alpha &= |0,1,2|3,4,5| \\ \beta &= |0,3|1,4|2,5| \\ \gamma &= |0,4|1,5|2,3| \\ \delta &= |0,5|1,3|2,4| \end{split}$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

10 }

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

 $ae_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \}$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ae_0: A \xrightarrow{e_0} B_0 \xrightarrow{g} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

• $A = B_0 \cup B_1 \cup B_2$ Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0\colon A\stackrel{e_0}{\twoheadrightarrow} B_0\stackrel{g}{\to} B_0$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

 $B_1 = \{ 0 \ 6 \ 7 \ 8 \ 9 \ 10 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0$$
: $A \rightarrow B_0$
 e_1 : $A \rightarrow B_1$
 e_2 : $A \rightarrow B_2$
 s : $A \rightarrow B_0$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \}$

10 }

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

 $B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0$$
: $A woheadrightarrow B_0$
 e_1 : $A woheadrightarrow B_1$
 e_2 : $A woheadrightarrow B_2$
 s : $A woheadrightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$

 $\gamma = |0, 4|1, 5|2, 3|$ $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$lpha = |0, 1, 2|3, 4, 5|$$

 $eta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = [0, 5|1, 3|2, 4]$

•
$$A = B_0 \cup B_1 \cup B_2$$

Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

- $A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

 $ae_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$

$$B_2$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

 $\delta = [0, 5|1, 3|2, 4]$

- B₁
- 10 9 8 7 6 0

- $\bullet \ A = B_0 \cup B_1 \cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \ \}$$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

Con
$$\langle B, \{g_0, g_1\} \rangle$$

 $\alpha = |0, 1, 2|3, 4, 5|$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$
 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0, 3|1, 4|2, 5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

- $\bullet \ A=B_0\cup B_1\cup B_2$
- Unary operations

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$
 $s: A \rightarrow B_0$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$
 $B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$
 $B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$

$$ge_0: A \stackrel{e_0}{\twoheadrightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

EXTENSION & EXPANSION

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$lpha = |0, 1, 2|3, 4, 5|$$
 $eta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$
 $\delta = |0, 5|1, 3|2, 4|$

$$\bullet \ A = B_0 \cup B_1 \cup B_2$$

$$e_0: A \rightarrow B_0$$

 $e_1: A \rightarrow B_1$
 $e_2: A \rightarrow B_2$

$$\Theta_2: A \rightarrow B_2$$

 $S: A \rightarrow B_0$

$$ge_0: A \stackrel{e_0}{\rightarrow} B_0 \stackrel{g}{\rightarrow} B_0$$

$$B_1 = \{ 0 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \}$$

$$B_0 = \{ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$B_2 = \{ 11 \quad 12 \quad 2 \quad 13 \quad 14 \quad 15 \}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = [0, 1, 2|3, 4, 5]$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\text{Con}\,\langle \textbf{\textit{B}}, \{\textbf{\textit{g}}_0,\textbf{\textit{g}}_1\}\rangle$$

$$\alpha = |\mathbf{0}, \mathbf{1}, \mathbf{2}|\mathbf{3}, \mathbf{4}, \mathbf{5}|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\text{Con}\,\langle \textbf{\textit{B}}, \{\textbf{\textit{g}}_0,\textbf{\textit{g}}_1\}\rangle$$

$$\alpha = |\mathbf{0}, \mathbf{1}, \mathbf{2}|\mathbf{3}, \mathbf{4}, \mathbf{5}|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$
 $\beta = |0, 3|1, 4|2, 5|$
 $\gamma = |0, 4|1, 5|2, 3|$

 $\delta = |0, 5|1, 3|2, 4|$

Con
$$\langle A, F_A \rangle$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\text{Con}\,\langle \textbf{\textit{B}}, \{\textbf{\textit{g}}_0,\textbf{\textit{g}}_1\}\rangle$$

$$\alpha = |0, 1, 2|3, 4, 5|$$

 $\beta = |0, 3|1, 4|2, 5|$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

Con
$$\langle A, F_A \rangle$$

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15| \\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15| \\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14| \\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15| \\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

$$\operatorname{Con} \langle B, \{g_0, g_1\} \rangle$$

$$\alpha = |\mathbf{0}, \mathbf{1}, \mathbf{2}|\mathbf{3}, \mathbf{4}, \mathbf{5}|$$

$$\beta = |0,3|1,4|2,5|$$

$$\gamma = |0, 4|1, 5|2, 3|$$

$$\delta = |0, 5|1, 3|2, 4|$$

Con
$$\langle A, F_A \rangle$$

Why don't the β classes of B_1 and B_2 mix?

$$\begin{split} \widehat{\alpha} &= |0,1,2,6,7,11,12|3,4,5|8,9,10,13,14,15|\\ \alpha^* &= |0,1,2,6,7,11,12|3,4,5|8,9,10|13,14,15|\\ \beta^* &= |0,3,8|1,4|2,5,15|6,9|7,10|11,13|12,14|\\ \gamma^* &= |0,4,9|1,5|2,3,13|6,10|7,8|11,14|12,15|\\ \delta^* &= |0,5,10|1,3|2,4,14|6,8|7,9,11,15|12,13| \end{split}$$

• Suppose we want $\beta = \mathrm{Cg^B}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \operatorname{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2 \quad \text{where}$$

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$B_0 = \{0, 1, 2, 3, 4, 5\}$$

$$B_1 = \{0, 6, 7, 8, 9, 10\}$$

$$B_2 = \{11, 12, 13, 3, 14, 15\}.$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

- Suppose we want $\beta = \mathrm{Cg}^{\mathbf{B}}(0,3) = |0,3|2,5|1,4|$ to have non-trivial inverse image $\beta|_{\mathcal{B}}^{-1} = [\beta^*,\widehat{\beta}].$
- Select elements 0 and 3 as intersection points:

$$A = B_0 \cup B_1 \cup B_2$$
 where

$$\begin{split} B_0 &= \{0,1,2,3,4,5\} \\ B_1 &= \{0,6,7,8,9,10\} \\ B_2 &= \{11,12,13,3,14,15\}. \end{split}$$

The P^5 Lemma

LEMMA (PÁLFY AND PUDLÁK)

Let $\mathbf{A} = \langle A, F \rangle$ be a unary algebra with $e^2 = e \in F$.

Define $\mathbf{B} = \langle B, G \rangle$ with

$$B = e(A)$$
 and $G = \{ef|_B : f \in F\}.$

Then

$$\operatorname{Con} \mathbf{A}\ni \theta\mapsto \theta\cap B^2\in\operatorname{Con} \mathbf{B}$$

is a lattice epimorphism.

• Define $\widehat{}$: Con ${\bf B} \to {\rm Con}\, {\bf A}$ by

$$\widehat{\beta} = \{(x, y) \in A^2 : (ef(x), ef(y)) \in \beta \text{ for all } f \in \text{Pol}_1(\mathbf{A})\}.$$

• Define $\widehat{}$: Con ${\bf B} \to {\rm Con}\, {\bf A}$ by

$$\widehat{\beta} = \{(x,y) \in A^2 : (ef(x), ef(y)) \in \beta \text{ for all } f \in Pol_1(\mathbf{A})\}.$$

• For each $\beta \in \text{Con } \mathbf{B}$, let $\beta^* = \text{Cg}^{\mathbf{A}}(\beta)$. That is,

$*$
: Con ${f B}
ightarrow$ Con ${f A}$

is the congruence generation operator restricted to $\operatorname{Con} \boldsymbol{B}$.

• Define $\widehat{}$: Con ${\bf B} \to {\rm Con}\, {\bf A}$ by

$$\widehat{\beta} = \{(x,y) \in A^2 : (ef(x),ef(y)) \in \beta \text{ for all } f \in \text{Pol}_1(\mathbf{A})\}.$$

• For each $\beta \in \text{Con } \mathbf{B}$, let $\beta^* = \text{Cg}^{\mathbf{A}}(\beta)$. That is,

$*$
: Con ${f B}
ightarrow$ Con ${f A}$

is the congruence generation operator restricted to $\operatorname{Con} \boldsymbol{B}$.

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is a residuated mapping with residual $|_{\mathcal{B}}$.
- (II) $|_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is a residuated mapping with residual $\hat{\ }$.
- (III) For all $\alpha \in \text{Con } \mathbf{A}, \ \beta \in \text{Con } \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{B} = \beta = \widehat{\beta}|_{B}$.

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is $\mathbf{2}^{m-1}$.

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is $\mathbf{2}^{m-1}$.

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \dots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β:

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

The structure of the interval $[\beta^*, \widehat{\beta}] \leqslant \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is $\mathbf{2}^{m-1}$.

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \dots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β :

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

Then
$$[\beta^*, \widehat{\beta}] = \{\theta \in \text{Eq}(A) : \beta^* \subseteq \theta \subseteq \widehat{\beta}\} \cong \prod_{r=1}^m (\text{Eq}|T_r|)^{m-1}.$$

SLIGHTLY MORE GENERAL EXAMPLES...

Returning to our original example, the base algebra ${\bf B}$ is the right regular S_3 -set, and the nontrivial relations in Con ${\bf B}$ are

$$\alpha = [0, 1, 2|3, 4, 5]$$
 $\beta = [0, 3|1, 4|2, 5]$ $\gamma = [0, 4|1, 5|2, 3]$ $\delta = [0, 5|1, 3|2, 4]$

LIMITATIONS

Two limitations of the foregoing construction:

• The sizes $|T_r|$ of the partition lattice factors in

$$[\beta^*,\widehat{\beta}]\cong\prod_{r=1}^m(\mathrm{Eq}|T_r|)^{m-1}$$

are limited by the size of the blocks of β .

4 If β is not principal, $[\theta^*, \hat{\theta}]$ may be non-trivial for some $\theta \not \geq \beta$.

A GENERALIZATION

THEOREM

Let $\mathbf{B} = \langle B, F \rangle$ be a finite algebra. Suppose

$$\beta = \mathrm{Cg}^{\mathbf{B}}((a_1, b_1), \ldots, (a_{K-1}, b_{K-1}))$$

has m blocks and fix $N < \infty$.

There exists an overalgebra $\langle A, F_A \rangle$ such that the interval $\beta|_B^{-1} \leqslant \operatorname{Con} \mathbf{A}$ is

$$[\beta^*, \widehat{\beta}] \cong (\text{Eq}(N))^{m-1}.$$

Moreover, we can arrange it so that $\theta^* = \widehat{\theta}$ for all $\theta \ngeq \beta$ in Con **A**.

A GENERALIZATION

THEOREM

Let $\mathbf{B} = \langle B, F \rangle$ be a finite algebra. Suppose

$$\beta = \mathrm{Cg}^{\mathbf{B}}((a_1, b_1), \ldots, (a_{K-1}, b_{K-1}))$$

has m blocks and fix $N < \infty$.

There exists an overalgebra $\langle A, F_A \rangle$ such that the interval $\beta|_B^{-1} \leqslant \operatorname{Con} \mathbf{A}$ is

$$[\beta^*, \widehat{\beta}] \cong (\text{Eq}(N))^{m-1}.$$

Moreover, we can arrange it so that $\theta^* = \widehat{\theta}$ for all $\theta \not \geqslant \beta$ in Con **A**.

THE P^5 LEMMA

LEMMA (PÁLFY-PUDLÁK, 1980)

Let $\mathbf{A} = \langle A, F \rangle$ be a unary algebra where F is a monoid.

Suppose $e \in F$ satisfies $e \circ e = e$.

Define $\mathbf{B} = \langle B, G \rangle$

$$B = e(A)$$
 and $G = \{ef|_B \mid f \in F\}.$

Let $|_{B}: Con(\mathbf{A}) \rightarrow Con(\mathbf{B})$ be the restriction mapping:

$$\theta|_{B} = \theta \cap B^{2}$$

Then |B| is a surjective homomorphism (even for arbitrary meets and joins).

Péter Pál Pálfy and Pavel Pudlák: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups.

Algebra Universalis 11(1), 22–27 (1980).

http://dx.doi.org/10.1007/BF02483080

STAR MAP AND HAT MAP

STAR MAP * : Con ${\bf B} \to {\rm Con}\,{\bf A}$ is the congruence generation operator restricted to the set Con ${\bf B}$:

$$\beta^* = \operatorname{Cg}^{\mathbf{A}}(\beta) \qquad (\forall \, \beta \in \operatorname{Con} \mathbf{B})$$

STAR MAP AND HAT MAP

STAR MAP * : $\operatorname{Con} \mathbf{B} \to \operatorname{Con} \mathbf{A}$ is the congruence generation operator restricted to the set $\operatorname{Con} \mathbf{B}$:

$$\beta^* = \operatorname{Cg}^{\mathbf{A}}(\beta) \qquad (\forall \, \beta \in \operatorname{Con} \mathbf{B})$$

HAT MAP $\widehat{\ }$: Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is

$$\widehat{\beta} = \{(x,y) \in A^2 \mid (ef(x), ef(y)) \in \beta \text{ for all } f \in \text{Pol}_1(\mathbf{A})\}.$$

(Used by McKenzie (1982) in an alternative proof of the P^5 Lemma.)

Ralph McKenzie: Finite forbidden lattices.

In: Universal algebra and lattice theory (Puebla, 1982), Lecture Notes in Math., vol. 1004, pp. 176–205. Springer, Berlin (1983).

http://dx.doi.org/10.1007/BFb0063438

A little lemma relating the three maps *, $|_{B}$ and $\hat{}$.

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is a residuated mapping with residual $|_{\mathcal{B}}$.
- (II) $|_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is a residuated mapping with residual $\hat{\ }$.
- (III) For all $\alpha \in \operatorname{Con} \mathbf{A}$, $\beta \in \operatorname{Con} \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{B} = \beta = \widehat{\beta}|_{B}$.

ADJUNCTION LEMMA

New version (of the little lemma):

LEMMA

- (I) * : Con $\mathbf{B} \to \operatorname{Con} \mathbf{A}$ is left adjoint to $|_{\mathcal{B}}$.
- (II) $\mid_{B} : \operatorname{Con} \mathbf{A} \to \operatorname{Con} \mathbf{B}$ is **left adjoint** to $\widehat{}$.
- (III) For all $\alpha \in \text{Con } \mathbf{A}, \ \beta \in \text{Con } \mathbf{B}$,

$$\beta = \alpha|_{\mathcal{B}} \quad \Leftrightarrow \quad \beta^* \leqslant \alpha \leqslant \widehat{\beta}.$$

In particular, $\beta^*|_{B} = \beta = \widehat{\beta}|_{B}$.

PROOF OF THE P^5 LEMMA

LEMMA (PÁLFY-PUDLÁK, 1980)

The restriction mapping

$$\operatorname{Con} \mathbf{A} \ni \alpha \mapsto \alpha|_{\mathcal{B}} = \alpha \cap \mathcal{B}^2 \in \operatorname{Con} \mathbf{B}$$

is a complete lattice epimorphism.

PROOF.

Recall, for $f: X \to Y$ a monotone function on preorders X, Y, if f has a right (left) adjoint, then f preserves all joins (meets) existing in X.

By the little lemma $|_{\mathcal{B}}$ has both a left and right adjoint.

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is $\mathbf{2}^{m-1}$.

The structure of the interval $[\beta^*, \widehat{\beta}] \leq \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is $\mathbf{2}^{m-1}$.

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \dots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β:

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

The structure of the interval $[\beta^*, \widehat{\beta}] \leqslant \mathbf{Con} \mathbf{A}$.

• If $\beta \in \operatorname{Con} \mathbf{B}$ is a coatom of $\operatorname{Con} \mathbf{B}$ with m congruence classes then the interval $[\beta^*, \widehat{\beta}]$ in $\operatorname{Con} \mathbf{A}$ is 2^{m-1} .

More generally...

- Suppose $\beta \in \text{Con } \mathbf{B}$ has transversal $b_{\beta(1)}, \dots, b_{\beta(m)}$.
- Denote by T_r the set of intersection points in the r-th block of β :

$$T_r = \bigcup_{k=1}^K B_k \cap b_{\beta(r)}/\beta$$

Then
$$[\beta^*, \widehat{\beta}] = \{\theta \in \text{Eq}(A) : \beta^* \subseteq \theta \subseteq \widehat{\beta}\} \cong \prod_{r=1}^m (\text{Eq}|T_r|)^{m-1}.$$

SLIGHTLY MORE GENERAL EXAMPLES...

Returning to our original example, the base algebra ${\bf B}$ is the right regular S_3 -set, and the nontrivial relations in Con ${\bf B}$ are

$$\alpha = [0, 1, 2|3, 4, 5]$$
 $\beta = [0, 3|1, 4|2, 5]$ $\gamma = [0, 4|1, 5|2, 3]$ $\delta = [0, 5|1, 3|2, 4]$

LIMITATIONS

Two limitations of the foregoing construction:

• The sizes $|T_r|$ of the partition lattice factors in

$$[\beta^*,\widehat{\beta}]\cong\prod_{r=1}^m(\mathrm{Eq}|T_r|)^{m-1}$$

are limited by the size of the blocks of β .

• If β is not principal, $[\theta^*, \hat{\theta}]$ may be non-trivial for some $\theta \not\geqslant \beta$.

A GENERALIZATION

THEOREM

Let $\mathbf{B} = \langle B, F \rangle$ be a finite algebra. Suppose

$$\beta = \mathrm{Cg}^{\mathbf{B}}((a_1, b_1), \ldots, (a_{K-1}, b_{K-1}))$$

has m blocks and fix $N < \infty$.

There exists an overalgebra $\langle A, F_A \rangle$ such that the interval $\beta|_B^{-1} \leqslant \operatorname{Con} \mathbf{A}$ is

$$[\beta^*, \widehat{\beta}] \cong (\text{Eq}(N))^{m-1}.$$

Moreover, we can arrange it so that $\theta^* = \widehat{\theta}$ for all $\theta \ngeq \beta$ in Con **A**.

A GENERALIZATION

THEOREM

Let $\mathbf{B} = \langle B, F \rangle$ be a finite algebra. Suppose

$$\beta = \mathrm{Cg}^{\mathbf{B}}((a_1, b_1), \ldots, (a_{K-1}, b_{K-1}))$$

has m blocks and fix $N < \infty$.

There exists an overalgebra $\langle A, F_A \rangle$ such that the interval $\beta|_B^{-1} \leqslant \operatorname{Con} \mathbf{A}$ is

$$[\beta^*, \widehat{\beta}] \cong (\text{Eq}(N))^{m-1}.$$

Moreover, we can arrange it so that $\theta^* = \widehat{\theta}$ for all $\theta \not \geqslant \beta$ in Con **A**.

