

Hello, world!_

The second control of the second control of

HELLO WORLD!

TOOLS, TECHNIQUES, AND GETTING STARTED WITH COMPUTATIONAL MODELING

36th Annual Conference of the Society for Industrial & Organizational Psychology

James A. Grand

- FORMAL & ALGORITHMIC DESCRIPTION OF HOW A PHENOMENON UNFOLDS OVER TIME
 - "WHAT HAPPENS" TO PRODUCE "WHAT WE OBSERVE"

Formal

 Declarative logic and mathematical equations used to convey how, when, and why variables change

$$IF [goal_1 > goal_2]:$$
 $THEN [choice_t = goal_1]$
 $ELSE [choice_t = goal_2]$

$$goal_n = \frac{1}{1 + e^{-\lambda * (X_t - X_{t-1})}}$$

<u>Algorithmic</u>

 Proposed sequence in which actions/events occur over time or in response to other actions/events

WHAT IS A COMPUTATIONAL MODEL?

 FORMAL & ALGORITHMIC DESCRIPTION OF HOW A PHENOMENON UNFOLDS OVER TIME

Typically translate model into computer code that can enact

MECHANISMS FOR US

BUT NOTE THIS IS FOR CONVENIENCE/EFFICIENCY, NOT BECAUSE IT IS REQUIRED!

Г	•		•	0	•		0			•	•	•	0			0
•	•	•	0	Г	0	•	0		•	•	•	0		0		0
	•	0			•	0	•		•	•	0				0	
	0	•	0	•	0	•	0			0		0		0		0
0	0	0	•	0	0	0			0	0	0	•	0	0	0	
•		•	•	•			0				•	•	•	0	0	0
	•	0	•	0	•	0			0	•	•	•	•	•	•	•
	0		0			•			0	0				•	•	•
	(a)					. '	(b)									

Thomas Schelling won a Nobel Prize running computational models on a checkerboard! (sort of...)

WHAT IS A COMPUTATIONAL MODEL?

Train yourself to think in terms of actors, not factors

Step 2

Learn basic programming concepts

People perceive most important skills for computational modeling are programming and/or quantitative

But learning how to think computationally is much more important...and very different than how most of us were trained

GETTING STARTED IN TWO STEPS

Train yourself to think in terms of actors, not factors

"FACTOR" THINKING

- Causality = consistent covariation
- STABLE RELATIONSHIPS AMONG "STATIC"
 VARIABLES
- STATISTICAL
 - What are the antecedent and outcome variables?
 - How strong is the covariation?
 - What variables account for variance in other variables?

"ACTOR" THINKING

- Causality = Generative mechanisms
- FUNCTIONAL RELATIONSHIPS THAT LINK
 "DYNAMIC" VARIABLES
- COMPUTATIONAL
 - What happens to individuals?
 - How do individuals think, feel, and react?
 - Which and how do actions/events unfold?

ACTOR VS. FACTOR THINKING

Train yourself to think in terms of actors, not factors

"FACTOR" THINKING

- <u>Inference</u>: Females experience greater workfamily conflict which reduces performance and likelihood of promotion
- <u>Causal mechanism</u>: Career delays? Lack of opportunities? Discrimination/bias?

"ACTOR" THINKING

- <u>Inference</u>: Male vs. female performance is evaluated differently leading to different promotion rates
- <u>Causal mechanism</u>: Bias in performance evaluations

ACTOR VS. FACTOR THINKING

Train yourself to think in terms of actors, not factors

- PSEUDOCODE → THE "BOX AND ARROWS" OF COMPUTATIONAL THINKING
 - PROPOSED SEQUENCE OF STEPS FOR WHAT OCCURS
 - Where does this come from?
 - » THEORY
 - » Observation
 - » EMPIRICAL RESULTS...SOMETIMES
 - "DISCIPLINED IMAGINATION" (WEICK, 1989)

Pseudocode for Martell et al (1996) computational model of gender stratification						
Step Action						
1	Create hierarchical organization with k levels					
2	Populate each organizational level with n_k original employees	П				
3	Assign each employee a gender such that $n_{male} = n_{female}$	Н				
4	Randomly assign each employee a performance evaluation score such that $performance_{female} \sim N(50, 10)$ and $performance_{male} \sim N(50, 10) + bias$					
5	Randomly select TO% of employees to turnover from the organization					
6	Determine if any open positions exist at level k and promote highest performing employees from level k -1 into openings					
7	Fill open positions in lowest organizational level with new hires using procedure in Steps 3 and 4					
8	If number of original employees > 0, return to Step 5					
9	End					

I may spend days or weeks developing the logic, functions, and structure of the pseudocode before I even consider coding!

INITIALIZATION

WHAT DOES THE "WORLD" LOOK LIKE?

MODEL

WHAT HAPPENS? WHEN? HOW?

ACTOR VS. FACTOR THINKING

Programming "Philosophy"

Many choices when it comes to modeling software:

Broader/Generic

Matlab

Matlab

Python

Java

- Do anything & everything
- Only syntax/coding
- Steeper learning curve (maybe?)

Narrower/Specific

- Do particular things well
- Syntax & "point & click" hybrid
- Shallower learning curve (maybe?)

HOW DO I CHOOSE? WHICH SHOULD I LEARN?

Yes & it's the only type I'm interested in

NARROWER/SPECIFIC

Vensim
Vention
Vention
Anylogic* NetLogo

No & not interested

THREE MUST-LEARN PROGRAMMING CONCEPTS

1 IF-ELSE

- IF-ELSE STATEMENTS
 - » Branching → execute code based on whether something is true or false
 - » E.G., =, ≠, <, >, ≤, ≥


```
Untitled1* x

| Image: Source on Save | Image: Source
```

Programming Fundamentals 101

- Three must-learn programming concepts
 - LOOPS
 - » Sequence \rightarrow execute steps in code multiple times in a row
 - » FOR LOOP: EXECUTE CODE A SPECIFIC NUMBER OF TIMES
 - 1. Use an *iterator* that takes on a set of pre-determined values
 - 2. Run the code **for** each value of the iterator A. e.g., 1-10, number of rows in a matrix


```
Untitled1* Source on Save

1 for (i in 1:10) {
    print(i)
    3 }

1. Set i to first value (i = 1)
    2. Do code in between {}
    3. Set i to next value (i = 2) and repeat Step 2 until all values for i have been selected (i = 10)
```



```
Console Terminal ×

C:/Users/grandjam/Dropbox/Modeling & Related Resources/Learning how to

> for (i in 1:10) {
+ print(i)
+ }

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10
```

- THREE MUST-LEARN PROGRAMMING CONCEPTS
 - LOOPS
 - » SEQUENCE \rightarrow EXECUTE STEPS IN CODE MULTIPLE TIMES IN A ROW
 - » While loop: Execute code until a condition is satisfied
 - 1. KEEP RUNNING CODE WHILE SOMETHING IS TRUE


```
Console Terminal ×

C:/Users/grandjam/Dropbox/Modeling & Related Resources/Le

> x = 0

> while (x < 10) {
+ print(x)
+ x = x + 1
+ }

[1] 0

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9
```

- THREE MUST-LEARN PROGRAMMING CONCEPTS
 - Functions
 - » EFFICIENCY
 ightarrow perform calculations and return output
 - » Useful for running frequently used/required procedures
 - 1. Writing functions not strictly necessary...but are powerful!

1	IF-ELSE	
2	Loops	>
3	Functions	


```
Console Terminal ×

C:/Users/grandjam/Dropbox/Modeling & Related Resources/Learning how to m

> myFunction <- function(arg1, arg2) {
+ out = arg1 + arg2
+ return(out)
+ }

> myFunction(arg1 = 1, arg2 = 1)

[1] 2

1. Use function by assigning values to arguments
2. Function returns results
```

- MY ADVICE FOR THE FIRST-TIME MODELER/PROGRAMMER
 - Break the problem down
 - » What do you want accomplished?
 - » What steps are involved?
 - WHAT SHOULD THE RESULT OF EACH STEP LOOK LIKE?

FAIL FAST BY TESTING OFTEN

- » Run new code frequently
- » CONFIRM THAT WHAT SHOULD HAPPEN DOES HAPPEN

COMMENT <u>EVERYTHING</u>

- » Code doesn't run slower
- » YOU & OTHERS WILL KNOW WHAT IS HAPPENING

Programming Fundamentals 101

- POWERFUL APPROACH FOR THINKING ABOUT ORGANIZATIONAL, SOCIAL, AND PSYCHOLOGICAL PHENOMENA
 - TOOL FOR REPRESENTING DYNAMICS, PROCESS, AND WHAT HAPPENS
- Necessitates a way of thinking and skillset that our science is <u>not</u> well versed in → massive opportunity!
- NEXT STEPS
 - Read more about models and modeling
 - LOOK AT, RUN, AND TRY TO CODE SOME SIMPLE MODELS

Train yourself to think in terms of actors, not factors

Step 2

Learn basic programming concepts

FURTHER READING ON COMPUTATIONAL MODELING (FOR THE ORG SCIENCES)

Journal articles

- » Davis, J.P., Eisenhardt, K.M., & Bingham, C.B. (2007). Developing theory through simulation methods. Academy of Management Review, 32, 480-499.
- » Harrison, J.R., Lin, Z., Carroll, G.R., & Carley, K.M. (2007). Simulation modeling in organizational and management research. Academy of Management Review, 32, 1229-1245.
- » Kozlowski, S.W.J., Chao, G.T., Grand, J.A., Braun, M.T., & Kuljanin, G. (2013). Advancing multilevel research design: Capturing the dynamics of emergence. *Organizational Research Methods*, 16, 581-615.
- » Vancouver, J.B., & Weinhardt, J.M., (2012). Modeling the mind and the milieu: Computational modeling for micro-level organizational researchers. *Organizational Research Methods*, 15, 602-623.
- » Weinhardt, J.M., & Vancouver, J.B. (2012). Computational models and organizational psychology: Opportunities abound. *Organizational Psychology Review, 2*, 267-292.

Books

- » Sterman, J.D. (2000). Business dynamics. Irwin/McGraw Hill.
- » Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. MIT Press.

Learning to code models

- NetLogo (https://ccl.northwestern.edu/netlogo/download.shtml)
- File → Models Library

Learning to code models

- Start by replicating <u>simple</u> models
 - » Don't worry if you're not "interested" in the topic per se...the point is to practice fundamentals!

Martell, R.F., Lane, D.M., & Emrich, C. (1996). Malefemale differences: A computer simulation. *American Psychologist, 51*, 157-158.

Why are women underrepresented in senior leadership positions?

Scullen, S.E., Bergey, P.K., Aiman-Smith, L. (2005). Forced distribution rating systems and the improvement of workforce potential: A baseline simulation. *Personnel Psychology*, *58*, 1-32.

How does the quality of a selection system impact an organization's performance potential?

Full R code for both models can be downloaded from my GitHub

https://github.com/grandjam/SIOP2021Models

https://github.com/grandjam/SIOP2021Models

JAMES A. GRAND

E-MAIL: GRANDJAM@UMD.EDU

