Modeling & Verification

Introduction & Labelled Transition Systems

Max Tschaikowski (tschaikowski@cs.aau.dk)
Slides courtesy of Giorgio Bacci

Aims of the Course

Present a general theory of *Reactive Systems* and its applications

- Give the students practice in modelling systems in a formal framework
- Give the students skills in analysing behaviours of reactive systems
- Introduce Algorithms and Tools based on the modelling formalism

What is a Reactive System?

the "standard" view

A computing system at a high level of abstraction can be considered as a black box

The meaning of programs

An algorithm is specified as a collection of legal inputs and, for each legal input it is associated an output

The meaning of programs

An algorithm is specified as a collection of legal inputs and, for each legal input it is associated an output

the semantics is a partial function [States - States]

Semantics

- Each input is associated with an output value
- Non-termination = undefined output

In case of termination the result is unique

is this all we need?

Reactive System

(Harel and Pnueli '85)

It is a computing system that reacts to stimuli from its environment

Key issues

Reactive systems have to deal with issues like:

- Communication & Interaction
- Parallelism (i.e., concurrency)
- The result (if any) does not have to be unique!

Sad but true...

Even small parallel systems are hard to test and may be source of errors

Toyota Prius

First mass-produced hybrid vehicle

February 2010

- software "glitch" found in Anti-lock Breaking System
- in response of numerous complains/accidents

Eventually fixed via software update

- in total ~185k cars recalled —huge cost!
- handling of the incident prompted criticism & bad publicity

Ariane 5

- ESA (European Space Agency) rocket designed to launch commercial payloads (e.g. satellites) into Earth orbit
- First test flight (4th June 1996)
 - it self-destructed 37 secs after launch

- Uncaught Realtime Exception
 - numerical overflow in a conversion routine resulted in incorrect altitude calculation by the on-board computer
 - Expensive, embarrassing...

How can we design/develop a system that works?

Modeling & Verification

How do we analyse such a system?

Labelled Transition Systems

Definition

A Labelled Transition System (LTS) is a tuple

(Proc, Act, $\{ \stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$)

where

- Proc is a set of states (or processes)
- Act is a set of actions (or labels)
- for each $\alpha \in Act$, $\xrightarrow{\alpha} \subseteq Proc \times Proc$ is a binary relation called *transition relation*

Sometimes we distinguish the initial (or start) state.

LTS (Example)

Proc = {p₀, p₁, p₂}

Act = {a, b, c}
$$\stackrel{a}{\longrightarrow} = \{(p_0, p_1), (p_0, p_2), (p_2, p_1)\}$$

$$\stackrel{b}{\longrightarrow} = \{(p_1, p_1)\}$$

$$\stackrel{c}{\longrightarrow} = \{(p_1, p_2)\}$$

For convenience we will use the infix notation $p \xrightarrow{\alpha} p'$ meaning that $(p,p') \in \xrightarrow{\alpha}$

Recap of Binary Relations

Definition

A binary relation on set A is a subset $R \subseteq A \times A$.

Sometimes we write a R a' instead of $(a,a') \in R$.

Properties

- R is *reflexive* if $(a,a) \in R$, for all $a \in A$,
- R is symmetric if (a,b) ∈ R implies (b,a) ∈ R, for all a,b ∈ A
- R is transitive if (a,b) ∈ R and (b,c) ∈ R implies that (a,c) ∈ R, for all a,b,c ∈ A

Reflexive Closure

Let R, R', and R" be binary relations on a set A

Definition

R' is the reflexive closure of R if and only if

- R ⊆ R'
- R' is reflexive, and
- R' is the *smallest* relation satisfying the two conditions above, i.e., for any relation R", if R ⊆ R" and R" is reflexive, then R' ⊆ R"

Symmetric Closure

Let R, R', and R" be binary relations on a set A

Definition

R' is the symmetric closure of R if and only if

- R ⊆ R'
- R' is symmetric, and
- R' is the *smallest* relation satisfying the two conditions above, i.e., for any relation R", if R ⊆ R" and R" is symmetric, then R' ⊆ R"

Transitive Closure

Let R, R', and R" be binary relations on a set A

Definition

R' is the transitive closure of R if and only if

- R ⊆ R'
- R' is transitive, and
- R' is the *smallest* relation satisfying the two conditions above, i.e., for any relation R", if R ⊆ R" and R" is transitive, then R' ⊆ R"

LTS - Notation

Let (Proc, Act, $\{\stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$) be an LTS.

We can extend $\stackrel{\alpha}{\longrightarrow}$ from labels $\alpha \in Act$ to words $w \in Act^*$

- $p \stackrel{\epsilon}{\longrightarrow} p$, for every $p \in Proc$, and
- p ^{αw}_→ p', if there is p"∈ Proc, such that p ^α_→ p" and p" ^w_→ p' for every p,p' ∈ Proc, α ∈ Act, and w ∈ Act*

Intuitively

If $w = \alpha_1 \alpha_2 ... \alpha_n$ then $p \xrightarrow{w} p'$ whenever

$$p = p_0 \xrightarrow{\alpha_1} p_1 \xrightarrow{\alpha_2} p_2 \xrightarrow{\alpha_3} \dots \xrightarrow{\alpha_{n-1}} p_{n-1} \xrightarrow{\alpha_n} p_n = p'$$

LTS - Notation

Let (Proc, Act, $\{\stackrel{\alpha}{\longrightarrow} \mid \alpha \in Act \}$) be an LTS.

- \longrightarrow = {(p,p') | if p $\stackrel{\alpha}{\longrightarrow}$ p', for some $\alpha \in Act$ }
- \rightarrow * is the *reflexive* and *transitive* closure of \rightarrow
- $p \xrightarrow{\alpha}$ if there exist $p' \in Proc$ such that $p \xrightarrow{\alpha} p'$
- $p \xrightarrow{\alpha}$ if there is no $p' \in Proc$ such that $p \xrightarrow{\alpha} p'$
- reachable states

Introduction to CCS

Calculus of Communicating Systems (Milner'89)

Towards a Process Algebra

Robin Milner (1989) observed that concurrent processes have an algebraic structure

Process Algebra

Basic Principle

- Define a set of atomic processes modelling the simplest process behaviour
- Define operators between processes.
 These allow one to build complex behaviours from simple ones.

Example

Imperative Parallel Programs

- Atomic instructions:
 - skip
 - assignment (eg. x:=2 and x:=x+1)
- Operators between programs:
 - sequential composition (P₁; P₂)
 - parallel composition (P₁ || P₂)

$$(x:=1 || x:=2); x:=x+2; (x:=x-1 || x:=x+5)$$

is a parallel program

Semantics (small-step)

$$\frac{\langle P, \sigma \rangle \longrightarrow \langle P', \sigma' \rangle}{\langle P; Q, \sigma \rangle \longrightarrow \langle P'; Q, \sigma' \rangle} \qquad \frac{\langle P, \sigma \rangle \not \longrightarrow}{\langle P; Q, \sigma \rangle \longrightarrow \langle Q, \sigma \rangle} \qquad (seq-2)$$

Features of the Semantics

- It is compositional (the behaviour of processes is described in terms of the behaviour of its constituents)
- It is non-deterministic
- It is terminating by construction! (usually we are not that "lucky")

CCS - Sequential Fragment

We would like to have language (process algebra) that is able to talk about *reactive systems* (LTS!)

- Nil (or 0) process (the only atomic process)
- action prefix (a.P)
- names and recursive definitions (=)
- non-deterministic choice (P+Q)

Any finite LTS can be described (up to isomorphism) by using this set of operations

What about communication and interaction? ... to be continued