APPENDIX

In this appendix, we first provide some auxiliary lemmas, and then provide the proofs of all the statistical theoretical results in Section IV.

A. Auxiliary Lemmas

Lemma 7. Let \mathbf{x} be a sub-Gaussian random vector with zero mean and covariance $\mathbf{\Sigma}^*$ and $\{\mathbf{x}_i\}_{i=1}^n$ be a collection of i.i.d. samples from \mathbf{x} . There exists some constants c_1 , c_2 , and t_0 such that for all t with $0 < t < t_0$, the SCM \mathbf{S} satisfies the following tail bound

$$\mathbb{P}\left(\left|\Sigma_{ij}^* - S_{ij}\right| > t\right) \le c_1 \exp(-c_2 n t^2).$$

Lemma 8. Under the same conditions in Lemma 7, if taking $\lambda = \sqrt{\frac{3 \log d}{c_2 n}} \approx \sqrt{\frac{\log d}{n}} < t_0$, then the following result holds

$$\mathbb{P}\left(\left\|\mathbf{\Sigma}^* - \mathbf{S}\right\|_{\max} \le \lambda\right) \ge 1 - \frac{c_1}{d}.$$

Proof: Applying Lemma 7 and union bound, for any λ such that $0 < \lambda < t_0$, we obtain

$$\mathbb{P}\left(\|\mathbf{\Sigma}^* - \mathbf{S}\|_{\max} > \lambda\right) \le c_1 d^2 \exp(-c_2 n \lambda^2)$$

= $c_1 \exp(-c_2 n \lambda^2 + 2 \log d)$.

For n sufficiently large such that $n>\frac{3\log d}{c_2t_0^2}$, by taking $\lambda=\sqrt{\frac{3\log d}{c_2n}}\asymp \sqrt{\frac{\log d}{n}}< t_0$, we obtain

$$\mathbb{P}\left(\left\|\mathbf{\Sigma}^* - \mathbf{S}\right\|_{\max} \le \lambda\right) \ge 1 - c_1 \exp(-c_2 n\lambda^2 + 2\log d)$$
$$= 1 - \frac{c_1}{d}.$$

Lemma 9. Under the same conditions in Lemma 7, the following result holds

$$\left\| \left(\mathbf{\Sigma}^* - \mathbf{S} \right)_{\mathcal{S}^*} \right\|_F = O_p \left(\sqrt{\frac{s^*}{n}} \right).$$

Proof: Applying Lemma 7 and union bound, for any M such that $0 < M\sqrt{\frac{1}{n}} < t_0$, we obtain

$$\mathbb{P}\left(\left\|\left(\mathbf{\Sigma}^* - \mathbf{S}\right)_{\mathcal{S}^*}\right\|_{\max} > M\sqrt{\frac{1}{n}}\right)$$

$$\leq c_1 s^* \exp(-c_2 M^2)$$

$$= c_1 \exp(-c_2 M^2 + \log s^*).$$

By taking M such that $\sqrt{\frac{2\log s^*}{c_2}} < M < t_0 \sqrt{n}$ and $M \to \infty$ in the above inequality obtains

$$\lim_{M \to \infty} \sup_{n} \ \mathbb{P}\left(\left\|(\boldsymbol{\Sigma}^* - \mathbf{S})_{\mathcal{S}^*}\right\|_{\max} > M\sqrt{\frac{1}{n}}\right) = 0.$$

The proof is completed by applying $\|(\mathbf{\Sigma}^* - \mathbf{S})_{\mathcal{S}^*}\|_F \leq \sqrt{s^*} \|(\mathbf{\Sigma}^* - \mathbf{S})_{\mathcal{S}^*}\|_{\max}$.

B. Technical Lemmas

Each subproblem in (2) corresponds to a weighted ℓ_1 penalized covariance estimation problem, which generally can be written into the following form:

$$\underset{\beta \mathbf{I} \succeq \mathbf{\Sigma} \succeq \alpha \mathbf{I}}{\text{minimize}} \quad f(\mathbf{\Sigma}) + \| \mathbf{\Lambda} \odot \mathbf{\Sigma} \|_{1, \text{off}}, \tag{4}$$

where Λ is a $d \times d$ matrix of regularization parameters with $\Lambda_{ij} \in [0, \lambda]$.

Lemma 10. Suppose that Assumption 2 holds. Consider the general problem in (4). Assume that there exists a set \mathcal{E} such that

$$\mathcal{S}^* \subseteq \mathcal{E}, \ |\mathcal{E}| \le 2s^*, \ \text{and} \ \|\mathbf{\Lambda}_{\overline{\mathcal{E}}}\|_{\min} \ge \frac{\lambda}{2}.$$

If $\lambda \geq 2 \|\nabla f(\mathbf{\Sigma}^*)\|_{\max}$, then the optimal solution $\widehat{\mathbf{\Sigma}}$ satisfies

$$\begin{split} \left\| \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}^* \right\|_F &\leq \left\| (\nabla f(\boldsymbol{\Sigma}^*))_{\mathcal{E}} \right\|_F + \left\| \boldsymbol{\Lambda}_{\mathcal{S}^*} \right\|_F \\ &\leq \frac{2 + \sqrt{2}}{2} \lambda \sqrt{s^*}. \end{split}$$

Proof: By the mean value theorem, there exists a $\rho \in [0,1]$ such that

$$\langle \nabla f(\mathbf{\Sigma}) - \nabla f(\mathbf{\Sigma}^*), \mathbf{\Delta} \rangle = \text{vec}^{\top}(\mathbf{\Delta}) \nabla^2 f(\mathbf{\Sigma}^* + \rho \mathbf{\Delta}) \text{vec}(\mathbf{\Delta}),$$

where $\Delta = \Sigma - \Sigma^*$. One has

$$\operatorname{vec}^{T}(\boldsymbol{\Delta}) \nabla^{2} f(\boldsymbol{\Sigma}^{*} + \rho \boldsymbol{\Delta}) \operatorname{vec}(\boldsymbol{\Delta})$$

$$\geq \lambda_{\min} \left(\nabla^{2} f(\boldsymbol{\Sigma}^{*} + \rho \boldsymbol{\Delta}) \right) \|\boldsymbol{\Delta}\|_{F}^{2} = \|\boldsymbol{\Delta}\|_{F}^{2}.$$

Hence, we obtain

$$\|\mathbf{\Delta}\|_F^2 \le \langle \nabla f(\mathbf{\Sigma}) - \nabla f(\mathbf{\Sigma}^*), \mathbf{\Delta} \rangle.$$
 (5)

Define the Lagrangian function of (4) as

$$\begin{split} \mathcal{L}\left(\mathbf{\Sigma}, \mathbf{Z}_{1}, \mathbf{Z}_{2}\right) := & f(\mathbf{\Sigma}) + \left\|\mathbf{\Lambda} \odot \mathbf{\Sigma}\right\|_{1, \text{off}} \\ & - \left\langle\mathbf{Z}_{1}, \mathbf{\Sigma} - \alpha \mathbf{I}\right\rangle + \left\langle\mathbf{Z}_{2}, \mathbf{\Sigma} - \beta \mathbf{I}\right\rangle \end{split}$$

where \mathbf{Z}_1 and \mathbf{Z}_2 are $d \times d$ matrix of dual variables. From convex optimization theory, we know that any optimal solution $\widehat{\Sigma}$ to (4) satisfies the following KKT condition:

$$\nabla f(\widehat{\Sigma}) + \mathbf{\Lambda} \odot \widehat{\Xi} - \widehat{\mathbf{Z}}_1 + \widehat{\mathbf{Z}}_2 = \mathbf{0}, \text{ with } \widehat{\Xi} \in \partial \|\widehat{\Sigma}\|_{1,\text{off}};$$

$$\left\langle \widehat{\mathbf{Z}}_1, \widehat{\Sigma} - \alpha \mathbf{I} \right\rangle = 0;$$

$$\left\langle \widehat{\mathbf{Z}}_2, \widehat{\Sigma} - \beta \mathbf{I} \right\rangle = 0;$$

$$\beta \mathbf{I} \succeq \widehat{\Sigma} \succeq \alpha \mathbf{I};$$

$$\widehat{\mathbf{Z}}_1 \succeq \mathbf{0};$$

$$\widehat{\mathbf{Z}}_2 \succ \mathbf{0},$$
(6)

where $\nabla f(\mathbf{\Sigma}) = \mathbf{\Sigma} - \mathbf{S} + \tau \mathbf{I}$.

Let $\widehat{\Delta}=\widehat{\Sigma}-\Sigma^*$. Applying the inequality (5) with $\Sigma=\widehat{\Sigma}$ and $\Delta=\widehat{\Delta}$ yields

$$\begin{split} \left\| \widehat{\boldsymbol{\Delta}} \right\|_F^2 &\leq \left\langle \nabla f(\widehat{\boldsymbol{\Sigma}}) - \nabla f(\boldsymbol{\Sigma}^*), \widehat{\boldsymbol{\Delta}} \right\rangle \\ &= \underbrace{\left\langle \nabla f(\widehat{\boldsymbol{\Sigma}}) + \boldsymbol{\Lambda} \odot \widehat{\boldsymbol{\Xi}} - \widehat{\boldsymbol{Z}}_1 + \widehat{\boldsymbol{Z}}_2, \widehat{\boldsymbol{\Delta}} \right\rangle}_{\text{I}} - \underbrace{\left\langle \nabla f(\boldsymbol{\Sigma}^*), \widehat{\boldsymbol{\Delta}} \right\rangle}_{\text{III}} \\ &- \underbrace{\left\langle \boldsymbol{\Lambda} \odot \widehat{\boldsymbol{\Xi}}, \widehat{\boldsymbol{\Delta}} \right\rangle}_{\text{III}} + \underbrace{\left\langle \widehat{\boldsymbol{Z}}_1, \widehat{\boldsymbol{\Delta}} \right\rangle}_{\text{IV}} - \underbrace{\left\langle \widehat{\boldsymbol{Z}}_2, \widehat{\boldsymbol{\Delta}} \right\rangle}_{\text{V}}, \end{split}$$

where $\widehat{\Xi} \in \partial \|\widehat{\Sigma}\|_{1,\text{off}}$. It remains to bound terms I, II, III, IV, and V, respectively.

For term I, using the KKT condition in (6), we obtain

$$I = \left\langle \nabla f(\widehat{\mathbf{\Sigma}}) + \mathbf{\Lambda} \odot \widehat{\mathbf{\Xi}} - \widehat{\mathbf{Z}}_1 + \widehat{\mathbf{Z}}_2, \widehat{\mathbf{\Delta}} \right\rangle = 0$$

For term II, separating the support of $\nabla f(\Sigma^*)$ and $\widehat{\Delta}$ to \mathcal{E} and $\overline{\mathcal{E}}$, and then using the matrix Hölder's inequality, we obtain

$$\begin{split} & \text{II} = \left\langle \left(\nabla f(\mathbf{\Sigma}^*) \right)_{\mathcal{E}}, \widehat{\boldsymbol{\Delta}}_{\mathcal{E}} \right\rangle + \left\langle \left(\nabla f(\mathbf{\Sigma}^*) \right)_{\overline{\mathcal{E}}}, \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{E}}} \right\rangle \\ & \geq - \left\| \left(\nabla f(\mathbf{\Sigma}^*) \right)_{\mathcal{E}} \right\|_{F} \left\| \widehat{\boldsymbol{\Delta}}_{\mathcal{E}} \right\|_{F} - \left\| \left(\nabla f(\mathbf{\Sigma}^*) \right)_{\overline{\mathcal{E}}} \right\|_{\max} \left\| \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{E}}} \right\|_{1} \\ & \geq - \left\| \left(\nabla f(\mathbf{\Sigma}^*) \right)_{\mathcal{E}} \right\|_{F} \left\| \widehat{\boldsymbol{\Delta}} \right\|_{F} - \left\| \nabla f(\mathbf{\Sigma}^*) \right\|_{\max} \left\| \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{E}}} \right\|_{1}. \end{split}$$

For term III, separating the support of $\Lambda \odot \widehat{\Xi}$ and $\widehat{\Delta}$ to \mathcal{S}^* and $\overline{\mathcal{S}^*}$, and then using the matrix Hölder's inequality, we obtain

$$\begin{split} & \text{III} = \left\langle \left(\boldsymbol{\Lambda} \odot \widehat{\boldsymbol{\Xi}} \right)_{\mathcal{S}^*}, \widehat{\boldsymbol{\Delta}}_{\mathcal{S}^*} \right\rangle + \left\langle \left(\boldsymbol{\Lambda} \odot \widehat{\boldsymbol{\Xi}} \right)_{\overline{\mathcal{S}^*}}, \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{S}^*}} \right\rangle \\ & = \left\langle \left(\boldsymbol{\Lambda} \odot \widehat{\boldsymbol{\Xi}} \right)_{\mathcal{S}^*}, \widehat{\boldsymbol{\Delta}}_{\mathcal{S}^*} \right\rangle + \left\langle \boldsymbol{\Lambda}_{\overline{\mathcal{S}^*}}, \left| \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{S}^*}} \right| \right\rangle \\ & \geq - \left\| \boldsymbol{\Lambda}_{\mathcal{S}^*} \right\|_F \left\| \widehat{\boldsymbol{\Delta}}_{\mathcal{S}^*} \right\|_F + \left\langle \boldsymbol{\Lambda}_{\overline{\mathcal{E}}}, \left| \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{E}}} \right| \right\rangle \\ & \geq - \left\| \boldsymbol{\Lambda}_{\mathcal{S}^*} \right\|_F \left\| \widehat{\boldsymbol{\Delta}} \right\|_F + \left\| \boldsymbol{\Lambda}_{\overline{\mathcal{E}}} \right\|_{\min} \left\| \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{E}}} \right\|_1, \end{split}$$

where the second equality is due to

$$\left\langle \left(\mathbf{\Lambda} \odot \widehat{\mathbf{\Xi}} \right)_{\overline{\mathcal{S}^*}}, \widehat{\mathbf{\Delta}}_{\overline{\mathcal{S}^*}} \right
angle = \left\langle \mathbf{\Lambda}_{\overline{\mathcal{S}^*}}, \left| \widehat{\mathbf{\Sigma}}_{\overline{\mathcal{S}^*}} \right| \right
angle = \left\langle \mathbf{\Lambda}_{\overline{\mathcal{S}^*}}, \left| \widehat{\mathbf{\Delta}}_{\overline{\mathcal{S}^*}} \right|
ight
angle,$$

and the second inequality is due to

$$\begin{split} \left\langle \mathbf{\Lambda}_{\overline{\mathcal{E}}}, \left| \widehat{\mathbf{\Delta}}_{\overline{\mathcal{E}}} \right| \right\rangle &= \sum_{(i,j) \in \overline{\mathcal{E}}} \Lambda_{ij} |\widehat{\Delta}_{ij}| \ge \left\| \mathbf{\Lambda}_{\overline{\mathcal{E}}} \right\|_{\min} \sum_{(i,j) \in \overline{\mathcal{E}}} |\widehat{\Delta}_{ij}| \\ &= \left\| \mathbf{\Lambda}_{\overline{\mathcal{E}}} \right\|_{\min} \left\| \widehat{\mathbf{\Delta}}_{\overline{\mathcal{E}}} \right\|_{1}. \end{split}$$

For term IV, we obtain

$$\begin{split} \mathrm{IV} &= \left\langle \widehat{\mathbf{Z}}_{1}, \widehat{\boldsymbol{\Sigma}} \right\rangle - \left\langle \widehat{\mathbf{Z}}_{1}, \boldsymbol{\Sigma}^{*} \right\rangle \\ &= \left\langle \widehat{\mathbf{Z}}_{1}, \widehat{\boldsymbol{\Sigma}} - \alpha \mathbf{I} \right\rangle + \left\langle \widehat{\mathbf{Z}}_{1}, \alpha \mathbf{I} \right\rangle - \left\langle \widehat{\mathbf{Z}}_{1}, \boldsymbol{\Sigma}^{*} \right\rangle \\ &= \left\langle \widehat{\mathbf{Z}}_{1}, \alpha \mathbf{I} - \boldsymbol{\Sigma}^{*} \right\rangle \leq 0. \end{split}$$

For term V, we obtain

$$V = \langle \widehat{\mathbf{Z}}_{2}, \widehat{\boldsymbol{\Sigma}} \rangle - \langle \widehat{\mathbf{Z}}_{2}, \boldsymbol{\Sigma}^{*} \rangle$$

$$= \langle \widehat{\mathbf{Z}}_{2}, \widehat{\boldsymbol{\Sigma}} - \beta \mathbf{I} \rangle + \langle \widehat{\mathbf{Z}}_{2}, \beta \mathbf{I} \rangle - \langle \widehat{\mathbf{Z}}_{2}, \boldsymbol{\Sigma}^{*} \rangle$$

$$= \langle \widehat{\mathbf{Z}}_{2}, \beta \mathbf{I} - \boldsymbol{\Sigma}^{*} \rangle \geq 0.$$

Substituting the above results into (7) yields

$$\begin{split} \left\| \widehat{\boldsymbol{\Delta}} \right\|_{F}^{2} &\leq \left(\left\| \left(\nabla f(\boldsymbol{\Sigma}^{*}) \right)_{\mathcal{E}} \right\|_{F} + \left\| \boldsymbol{\Lambda}_{\mathcal{S}^{*}} \right\|_{F} \right) \left\| \widehat{\boldsymbol{\Delta}} \right\|_{F} \\ &+ \left(\left\| \nabla f(\boldsymbol{\Sigma}^{*}) \right\|_{\max} - \left\| \boldsymbol{\Lambda}_{\overline{\mathcal{E}}} \right\|_{\min} \right) \left\| \widehat{\boldsymbol{\Delta}}_{\overline{\mathcal{E}}} \right\|_{1} \\ &\leq \left(\left\| \left(\nabla f(\boldsymbol{\Sigma}^{*}) \right)_{\mathcal{E}} \right\|_{F} + \left\| \boldsymbol{\Lambda}_{\mathcal{S}^{*}} \right\|_{F} \right) \left\| \widehat{\boldsymbol{\Delta}} \right\|_{F}, \end{split} \tag{8}$$

where the second inequality is due to $\|\mathbf{\Lambda}_{\overline{\mathcal{E}}}\|_{\min} \geq \frac{\lambda}{2} \geq \|\nabla f(\mathbf{\Sigma}^*)\|_{\max}$. Dividing by $\|\widehat{\mathbf{\Delta}}\|_F$ on both sides of the inequality (8), we have

$$\begin{split} \left\| \widehat{\boldsymbol{\Delta}} \right\|_{F} & \leq \left\| (\nabla f(\boldsymbol{\Sigma}^{*}))_{\mathcal{E}} \right\|_{F} + \left\| \boldsymbol{\Lambda}_{\mathcal{S}^{*}} \right\|_{F} \\ & \leq \left\| (\nabla f(\boldsymbol{\Sigma}^{*}))_{\mathcal{E}} \right\|_{\max} \sqrt{|\mathcal{E}|} + \left\| \boldsymbol{\Lambda}_{\mathcal{S}^{*}} \right\|_{\max} \sqrt{|\mathcal{S}^{*}|} \\ & \leq \left\| (\nabla f(\boldsymbol{\Sigma}^{*}))_{\mathcal{E}} \right\|_{\max} \sqrt{2s^{*}} + \lambda \sqrt{s^{*}} \\ & \leq \frac{2 + \sqrt{2}}{2} \lambda \sqrt{s^{*}}. \end{split}$$

Lemma 11. Suppose that Assumptions 2 hold. Consider the problem in (3). Define the set $\mathcal{E}^{(k)}$ by

$$\mathcal{E}^{(k)} = \mathcal{S}^* \cup \mathcal{S}^{(k)}, \text{ with } \mathcal{S}^{(k)} = \Big\{(i,j) \; \big| \; \Lambda_{ij}^{(k-1)} < p_\lambda'(u) \Big\},$$

where $u=c\lambda$ and $c=\frac{2+\sqrt{2}}{2}$ is the same to that given in Assumption 2. If $\lambda \geq 2 \|\nabla f(\mathbf{\Sigma}^*)\|_{\max}$, then for $k \geq 1$, we have $|\mathcal{E}^{(k)}| \leq 2s^*$, $\left\|\mathbf{\Lambda}_{\mathcal{E}^{(k)}}^{(k-1)}\right\|_{\min} \geq \frac{\lambda}{2}$, and

$$\begin{split} \left\| \widehat{\mathbf{\Sigma}}^{(k)} - \mathbf{\Sigma}^* \right\|_F &\leq \left\| (\nabla f(\mathbf{\Sigma}^*))_{\mathcal{E}^{(k)}} \right\|_F + \left\| \mathbf{\Lambda}_{\mathcal{S}^*}^{(k-1)} \right\|_F \\ &\leq \frac{2 + \sqrt{2}}{2} \lambda \sqrt{s^*}. \end{split}$$

Proof: We first prove $|\mathcal{E}^{(k)}| \leq 2s^*$ holds by induction. For k=1, we have $\Lambda_{ij}^{(0)}=\lambda \geq p_\lambda'(u)$ and thus $\mathcal{S}^{(1)}=\emptyset$ and $\mathcal{E}^{(1)}=\mathcal{S}^*$, which implies $|\mathcal{E}^{(1)}| \leq 2s^*$ holds. Assume $|\mathcal{E}^{(k)}| \leq 2s^*$ holds at k-1, i.e., $|\mathcal{E}^{(k-1)}| \leq 2s^*$ holds for some $k\geq 2$. Next, we will prove $|\mathcal{E}^{(k)}| \leq 2s^*$ holds at k. For any $(i,j)\in\mathcal{S}^{(k)}$, we obtain $|\widehat{\mathbf{\Sigma}}_{ij}^{(k-1)}| \geq u$ and further have

$$\sqrt{|\mathcal{S}^{(k)} \setminus \mathcal{S}^*|} \leq \sqrt{\sum_{(i,j) \in \mathcal{S}^{(k)} \setminus \mathcal{S}^*} \left(u^{-1} \widehat{\Sigma}_{ij}^{(k-1)} \right)^2}
= u^{-1} \left\| \widehat{\Sigma}_{\mathcal{S}^{(k)} \setminus \mathcal{S}^*}^{(k-1)} \right\|_F
= u^{-1} \left\| \left(\widehat{\Sigma}^{(k-1)} - \Sigma^* \right)_{\mathcal{S}^{(k)} \setminus \mathcal{S}^*} \right\|_F
\leq u^{-1} \left\| \widehat{\Sigma}^{(k-1)} - \Sigma^* \right\|_F.$$
(9)

For any $(i,j) \in \overline{\mathcal{S}^{(k-1)}}$, we have $\Lambda_{ij}^{(k-2)} = p_{\lambda}'(\widehat{\Sigma}_{ij}^{(k-2)}) \geq p_{\lambda}'(u) \geq \frac{\lambda}{2}$, which implies

$$\left\|\mathbf{\Lambda}_{\overline{\mathcal{E}^{(k-1)}}}^{(k-2)}\right\|_{\min} \ge \left\|\mathbf{\Lambda}_{\overline{\mathcal{S}^{(k-1)}}}^{(k-2)}\right\|_{\min} \ge p_{\lambda}'(u) \ge \frac{\lambda}{2}.$$

One also has $|\mathcal{E}^{(k-1)}| \leq 2s^*$ and $\mathcal{S}^* \subseteq \mathcal{E}^{(k-1)}$. Applying Lemma 10 with $\widehat{\Sigma} = \widehat{\Sigma}^{(k-1)}$, $\mathcal{E} = \mathcal{E}^{(k-1)}$, and $\Lambda_{\mathcal{S}^*} = \Lambda_{\mathcal{S}^*}^{(k-2)}$ yields

$$\left\|\widehat{\mathbf{\Sigma}}^{(k-1)} - \mathbf{\Sigma}^*\right\|_{\mathcal{F}} \le \frac{2 + \sqrt{2}}{2} \lambda \sqrt{s^*}.$$

Substituting the above result into the inequality (9) yields

$$\sqrt{|\mathcal{S}^{(k)} \setminus \mathcal{S}^*|} \le \frac{2 + \sqrt{2}}{2u} \lambda \sqrt{s^*} = \sqrt{s^*}.$$

Thus, we have

$$|\mathcal{E}^{(k)}| = |\mathcal{S}^* \cup (\mathcal{S}^{(k)} \backslash \mathcal{S}^*)| = |\mathcal{S}^*| + |\mathcal{S}^{(k)} \backslash \mathcal{S}^*| \leq 2s^*,$$

completing the induction.

Then, by the definition of $\mathcal{E}^{(k)}$ and $\mathcal{S}^{(k)}$, we have

$$\left\| \mathbf{\Lambda}_{\overline{\mathcal{E}^{(k)}}}^{(k-1)} \right\|_{\min} \ge \left\| \mathbf{\Lambda}_{\overline{\mathcal{S}^{(k)}}}^{(k-1)} \right\|_{\min} \ge p_{\lambda}'(u) \ge \frac{\lambda}{2}.$$

Applying Lemma 10 with $\widehat{\Sigma}=\widehat{\Sigma}^{(k)}$, $\mathcal{E}=\mathcal{E}^{(k)}$, and $\Lambda_{\mathcal{S}^*}=\Lambda_{\mathcal{S}^*}^{(k-1)}$, the optimal solution $\widehat{\Sigma}^{(k)}$ to (3) satisfies

$$\begin{split} \left\| \widehat{\mathbf{\Sigma}}^{(k)} - \mathbf{\Sigma}^* \right\|_F &\leq \left\| (\nabla f(\mathbf{\Sigma}^*))_{\mathcal{E}^{(k)}} \right\|_F + \left\| \mathbf{\Lambda}_{\mathcal{S}^*}^{(k-1)} \right\|_F \\ &\leq \frac{2 + \sqrt{2}}{2} \lambda \sqrt{s^*}. \end{split}$$

C. Proof of Theorem 4

Proof: By Lemma 11, we have

$$\left\|\widehat{\mathbf{\Sigma}}^{(k)} - \mathbf{\Sigma}^*\right\|_F \le \underbrace{\left\|\left(\nabla f(\mathbf{\Sigma}^*)\right)_{\mathcal{E}^{(k)}}\right\|_F}_{\mathbf{I}} + \underbrace{\left\|\mathbf{\Lambda}_{\mathcal{S}^*}^{(k-1)}\right\|_F}_{\mathbf{I}} \tag{10}$$

Next, we bound the terms I and II, respectively.

For term I, separating the support set into S^* and $\mathcal{E}^{(k)} \backslash S^*$, we obtain

$$\begin{split} &\mathbf{I} \leq \left\| \left(\nabla f(\boldsymbol{\Sigma}^*) \right)_{\mathcal{S}^*} \right\|_F + \left\| \nabla f(\boldsymbol{\Sigma}^*) \right\|_{\max} \sqrt{|\mathcal{E}^{(k)} \backslash \mathcal{S}^*|} \\ &\leq \left\| \left(\nabla f(\boldsymbol{\Sigma}^*) \right)_{\mathcal{S}^*} \right\|_F + \frac{1}{2} \lambda u^{-1} \left\| \widehat{\boldsymbol{\Sigma}}^{(k-1)} - \boldsymbol{\Sigma}^* \right\|_F, \end{split}$$

where the second inequality is due to

$$\sqrt{|\mathcal{E}^{(k)} \setminus \mathcal{S}^*|} = \sqrt{|\mathcal{S}^{(k)} \setminus \mathcal{S}^*|} \le u^{-1} \left\| \widehat{\Sigma}^{(k-1)} - \Sigma^* \right\|_{F}$$

which follows from the inequality (9).

By Assumptions 1 and 3, for any Σ , if $|\Sigma_{ij} - \Sigma_{ij}^*| \ge u$, then $p'_{\lambda}(|\Sigma_{ij}|) \le \lambda \le \lambda u^{-1} |\Sigma_{ij} - \Sigma_{ij}^*|$; otherwise, $p'_{\lambda}(|\Sigma_{ij}|) \le p'_{\lambda}(|\Sigma_{ij}^*| - u) = 0$. Therefore, for term V, we have

$$II \le \lambda u^{-1} \left\| \widehat{\boldsymbol{\Sigma}}_{\mathcal{S}^*}^{(k-1)} - \boldsymbol{\Sigma}_{\mathcal{S}^*}^* \right\|_F \le \lambda u^{-1} \left\| \widehat{\boldsymbol{\Sigma}}^{(k-1)} - \boldsymbol{\Sigma}^* \right\|_F.$$

Substituting the above results into (10) yields

$$\left\|\widehat{\mathbf{\Sigma}}^{(k)} - \mathbf{\Sigma}^*\right\|_F \le \left\|\left(\nabla f(\mathbf{\Sigma}^*)\right)_{\mathcal{S}^*}\right\|_F + \delta \left\|\widehat{\mathbf{\Sigma}}^{(k-1)} - \mathbf{\Sigma}^*\right\|_F,$$

where $\delta = \frac{3\lambda}{2u} = \frac{3}{2+\sqrt{2}} \in (0,1)$.

D. Proof of Corollary 5

Proof: Since
$$\nabla f(\mathbf{\Sigma}) = \mathbf{\Sigma} - \mathbf{S} + \tau \mathbf{I}$$
, one has

$$\|\nabla f(\mathbf{\Sigma}^*)\|_{\max} \leq \|\mathbf{\Sigma}^* - \mathbf{S}\|_{\max} + \tau.$$

If λ and τ satisfy

$$\lambda \simeq \sqrt{\frac{\log d}{n}}, \ \tau \lesssim \sqrt{\frac{1}{n}},$$

then by Lemma 8, $\lambda \geq 2 \|\nabla f(\mathbf{\Sigma}^*)\|_{\text{max}}$ holds with high probability (w.h.p).

Applying Lemma 11 with k = 1, we obtain

$$\left\|\widehat{\mathbf{\Sigma}}^{(1)} - \mathbf{\Sigma}^*\right\|_F \le \frac{2 + \sqrt{2}}{2} \lambda \sqrt{s^*}.$$

If
$$\lambda \asymp \sqrt{\frac{\log d}{n}}$$
, then $\left\|\widehat{\mathbf{\Sigma}}^{(1)} - \mathbf{\Sigma}^* \right\|_F \lesssim \sqrt{\frac{s^* \log d}{n}}$ w.h.p.

E. Proof of Corollary 6

Proof: One has

$$\|\nabla f(\mathbf{\Sigma}^*)\|_{\max} \leq \|\mathbf{\Sigma}^* - \mathbf{S}\|_{\max} + \tau.$$

If λ , τ , and ε satisfy

$$\lambda \simeq \sqrt{\frac{\log d}{n}}, \ \tau \lesssim \sqrt{\frac{1}{n}},$$

then by Lemma 8, $\lambda \geq 2 \|\nabla f(\mathbf{\Sigma}^*)\|_{\max}$ holds w.h.p.

Applying Theorem 4, we obtain

$$\begin{split} &\left\|\widehat{\boldsymbol{\Sigma}}^{(k)} - \boldsymbol{\Sigma}^*\right\|_F \\ &\leq \left\|\left(\nabla f(\boldsymbol{\Sigma}^*)\right)_{\mathcal{S}^*}\right\|_F + \delta \left\|\widehat{\boldsymbol{\Sigma}}^{(k-1)} - \boldsymbol{\Sigma}^*\right\|_F \\ &\leq \frac{1}{1-\delta} \left\|\left(\nabla f(\boldsymbol{\Sigma}^*)\right)_{\mathcal{S}^*}\right\|_F + \delta^{k-1} \left\|\widehat{\boldsymbol{\Sigma}}^{(1)} - \boldsymbol{\Sigma}^*\right\|_F \\ &\leq \frac{1}{1-\delta} \left\|\left(\nabla f(\boldsymbol{\Sigma}^*)\right)_{\mathcal{S}^*}\right\|_F + \delta^{k-1} \frac{2+\sqrt{2}}{2} \lambda \sqrt{s^*}, \end{split}$$

where the last inequality is due to $\left\|\widehat{\mathbf{\Sigma}}^{(1)} - \mathbf{\Sigma}^* \right\|_F \leq \frac{2+\sqrt{2}}{2}\lambda\sqrt{s^*},$ which follows from Lemma 11 with k=1.

One has

$$\begin{split} \left\| (\nabla f(\mathbf{\Sigma}^*))_{\mathcal{S}^*} \right\|_F &= \left\| (\mathbf{\Sigma}^* - \mathbf{S} + \tau \mathbf{I})_{\mathcal{S}^*} \right\|_F \\ &\leq \left\| (\mathbf{\Sigma}^* - \mathbf{S})_{\mathcal{S}^*} \right\|_F + \tau \left\| (\mathbf{I})_{\mathcal{S}^*} \right\|_F \\ &\leq \left\| (\mathbf{\Sigma}^* - \mathbf{S})_{\mathcal{S}^*} \right\|_F + \tau \sqrt{s^*}. \end{split}$$

By Lemma 9, $\|(\mathbf{\Sigma}^* - \mathbf{S})_{\mathcal{S}^*}\|_F = O_p\left(\sqrt{\frac{s^*}{n}}\right)$. If $\tau \lesssim \sqrt{\frac{1}{n}}$, then $\|(\nabla f(\mathbf{\Sigma}^*))_{\mathcal{S}^*}\|_F = O_p\left(\sqrt{\frac{s^*}{n}}\right)$.

If $K \geq 1 + \frac{\log(\lambda\sqrt{n})}{\log\delta^{-1}} \gtrsim \log(\mathring{\lambda}\sqrt{n}) \gtrsim \log\log d$, then we have

$$\delta^{K-1} \lambda \sqrt{s^*} \le \frac{1}{\lambda \sqrt{n}} \lambda \sqrt{s^*} \le \sqrt{\frac{s^*}{n}},$$

which yields that $\left\|\widehat{\mathbf{\Sigma}}^{(K)} - \mathbf{\Sigma}^*\right\|_F = O_p\left(\sqrt{\frac{s^*}{n}}\right)$.