

planetmath.org

Math for the people, by the people.

proof of existence of the Lebesgue measure

 ${\bf Canonical\ name} \quad {\bf ProofOfExistenceOfTheLebesgueMeasure}$

Date of creation 2013-03-22 18:33:14 Last modified on 2013-03-22 18:33:14

Owner gel (22282) Last modified by gel (22282)

Numerical id 10

Author gel (22282) Entry type Proof

Classification msc 26A42 Classification msc 28A12 First, let \mathcal{C} be the collection of bounded open intervals of the real numbers. As this is a http://planetmath.org/PiSystem π -system, http://planetmath.org/UniquenessOf of measures extended from a π -system shows that any measure defined on the σ -algebra $\sigma(\mathcal{C})$ is uniquely determined by its values restricted to \mathcal{C} . It remains to prove the existence of such a measure.

Define the length of an interval as p((a,b)) = b - a for a < b. The Lebesgue outer measure $\mu^* \colon \mathcal{P}(X) \to \mathbb{R}_+ \cup \{\infty\}$ is defined as

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} p(A_i) : A_i \in \mathcal{C}, \ A \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$
 (1)

This is indeed an http://planetmath.org/OuterMeasure2outer measure (see construction of outer measures) and, furthermore, for any interval of the form (a,b) it agrees with the standard definition of length, $\mu^*((a,b)) = p((a,b)) = b-a$ (see http://planetmath.org/ProofThatTheOuterLebesgueMeasureOfAnIntervath that the outer (Lebesgue) measure of an interval is its length).

We show that intervals $(-\infty, a)$ are http://planetmath.org/CaratheodorysLemma μ^* -measurable. Choosing any $\epsilon > 0$ and interval $A \in \mathcal{C}$ the definition of p gives

$$p(A) = p(A \cap (-\infty, a)) + p(A \cap (a, \infty)).$$

So, choosing an arbitrary set $E \subseteq \mathbb{R}$ and a sequence $A_i \in \mathcal{C}$ covering E,

$$\sum_{i=1}^{\infty} p(A_i) = \sum_{i=1}^{\infty} p(A_i \cap (-\infty, a)) + \sum_{i=1}^{\infty} p(A_i \cap (a, \infty))$$
$$\geq \mu^*(E \cap (-\infty, a)) + \mu^*(E \cap (a, \infty)).$$

So, from equation (??)

$$\mu^*(E) \ge \mu^*(E \cap (-\infty, a)) + \mu^*(E \cap (a, \infty)).$$
 (2)

Also, choosing any $\epsilon > 0$ and using the subadditivity of μ^*

$$\mu^*(E \cap (a, \infty)) \ge \mu^*(E \cap (a - \epsilon, \infty)) - \mu^*(E \cap (a - \epsilon, a + \epsilon))$$

$$\ge \mu^*(E \cap [a, \infty)) - \mu^*((a - \epsilon, a + \epsilon))$$

$$= \mu^*(E \cap [a, \infty)) - 2\epsilon.$$

As $\epsilon > 0$ is arbitrary, $\mu^*(E \cap (a, \infty)) \ge \mu^*(E \cap [a, \infty))$ and substituting into $(\ref{eq:condition})$ shows that

$$\mu^*(E) \ge \mu^*(E \cap (-\infty, a)) + \mu^*(E \cap [a, \infty)).$$

Consequently, intervals of the form $(-\infty,a)$ are μ^* -measurable. As such intervals generate the Borel σ -algebra and, by Caratheodory's lemma, the μ^* -measurable sets form a σ -algebra on which μ^* is a measure, it follows that the restriction of μ^* to the Borel σ -algebra is itself a measure.