Consider the following transition system

$$\langle A [e_1@e_2]; \; \Gamma; \; \Delta \rangle \longrightarrow \langle A [e_1@e_2]; \; \Gamma; \; e_2 \bullet \Delta \rangle$$

$$\langle A [\underline{\lambda x}.e]; \; \Gamma; \; \$ \bullet \Delta \rangle \longrightarrow \langle A [\lambda x.\underline{e}]; \; \Gamma; \; \$ \bullet \Delta \rangle$$
[Lam-Non-Elim]
$$\langle A [\underline{\lambda x}.e]; \; \Gamma; \; B \bullet \Delta \rangle \longrightarrow \langle A [\lambda x.\underline{e}]; \; (x, B, B') \bullet \Gamma; \; \Delta \rangle, \; B \neq \$$$
[Lam-Elim]

 $\langle A[\underline{x}]; (x, B, B') \bullet \Gamma; \Delta \rangle \longrightarrow \langle A[\underline{B}]; (x, B, B') \bullet \Gamma; \Delta \rangle$ [BVar]

Th 1. The above TS has following properties:

 $\underline{if}\langle A; \Gamma; \Delta \rangle \to \langle A'; \Gamma'; \Delta' \rangle \underline{then}$

1. either $\Gamma' = \Gamma$ or $\Gamma' = (x, B, B') \bullet \Gamma$ and (x, B') is a redex or it will become a redex after sequence of consecutive reductions that strongly follow Γ

Denotation: let \rightrightarrows denotes a sequential substition sequence of elements in Γ

2. $A \sim_{\beta} A'$

Proof .

First, note that all TS rules except [Lam - Elim] do not change context Γ .

Second, also note that obviously the first element that will be added in Γ is a redex.

Third, note that when we extend context Γ with (x, B, B') we have one of the following situations:

• (x, B') is a redex itself. In other words, current term A is as follows:

And there is nothing to prove.

• (x, B') is not a redex. In other words, current term A is as follows:

Note that in this case subterm C contains only application nodes $@_i$ and lambda nodes λx_i . Moreover, from the TS rules it is easy to see that each lambda node λx_i is bound to some application node $@_i$ and vise versa. This bound nodes are well-bracketed sequence.

In other words, there is no λx_j that have no binders becase in this case it have to be bound to $@_0$ and there is no $@_1$ such that it is not bound because in this case our λx have to be bound to it insted of a_0 . One can easly see it following the fact that Δ is a LIFO-stack.

Thus pairs (y, \neg, D') from Γ will eliminate all of these intermediate nodes and by definition (x, \neg, B') becomes a redex.

To prove the second statement note that only [BVar] rule is of interest because all other TS rules do not change term itself.

In BVar-case we have a left side term $A[\underline{x}]$ and a right side term $A[\underline{B}]$ such that $(x, B, B') \in \Gamma$. Let $A[\underline{x}] \rightrightarrows A'[B']$ where A' is some new term. But in then $A[\underline{B}] \rightrightarrows A'[B']$ because $A[\underline{x}] == A[\underline{B}]$ up to the underlined subterm and $B \rightrightarrows B'$ by condition.