#### **SUMMER-2018**

#### UNIT-1

- **Q.1** a) Write a procedure which finds the location LOC1 of the largest element and location LOC2 of the second largest element in an array with n>1 elements.
- **b)** Describe briefly the three types of structure used for storing strings. **(7)**
- Q.2 a) For each of the following patterns P and text T find the number of comparison to find the INDEX of P in T using 'slow' algorithm.

**i.** P = abc, T = 
$$(ab)^5$$

**ii.** P = abc, T = 
$$(ab)^{2n}$$

**iii.** P = aaa, T = (aabb)<sup>3</sup> **iv.** P = aaab, T = 
$$a^{20}$$

**iv.** 
$$P = aaab, T = a^{20}$$
 (7)

b) Write a algorithm which replace every occurrence of pattern P in the text T by another pattern Q. (6)

# UNIT-2

- Q.3 a) Using bubble sort algorithm to find the number of comparison and number of interchange which alphabetized the Letter "HAWKING" (i.e. sorted to AGHIKNW). Show all intermediate steps. (6)
- **b)** Consider multidimensional arrays:

$$X(-5:5, 3:33) Y(3:10, 1:15, 10:20)$$

- i. Find length of each dimension and the number of element in X and Y.
- ii. Suppose Base (Y) = 400 and there are W = 4 words per memory location. Find the effective indices E<sub>1</sub>, E<sub>2</sub>, E<sub>3</sub> and the address of Y [5, 10, 15] assuming Y is stored in row major order. **(7)**

- **Q.4 a)** Write binary search algorithm which finds the location LOC of ITEM in the array DATA or sets LOC = NULL. (6)
- **b)** An array A contains 35 positive integers. Write a module which
- i. Finds all pairs of elements whose sum is 35
- **ii.** Find the number EVENUM of elements of A, which are even and number ODDNUMBER of elements of A which are odd. (7)

## **UNIT-3**

- Q.5 a) Write a procedure which finds location LOC of the last node in a sorted list such that INFO[LOC] < ITEM or sets LOC = NULL. (7)
- **b)** What is header linked list? Explain with example different types of header linked list. (7)
- **Q.6 a)** Explain with diagram insertion of node N in a two way linked list in between two nodes A and B. **(7)**
- **b)** The following list of names is assigned in order to a linear array INFO, Mary, June, Baby, Paula, Diana, Audrey, Karen, Nancy, Ruth, Eileen, Sandra, Helen. That is, INFO[1] = Mary INFO[2] = June ...... INFO[12] = Helen. Assign values to an array LINK and a variable START so that INFO, LINK, START from an alphabetical list of names.

## **UNIT-4**

**Q.7 a)** Using stack, translate the infix expression into its equivalent postfix expression show all steps.

$$(A - B)/((D + E)*F)$$
 (7)

**b)** Let N be an integer and suppose, H(N), is recursively defined by.

$$H(N) = \begin{cases} 3*N & \text{if } N < 5 \\ 2*H(N-5) + 7 & \text{otherwise} \end{cases}$$

Find H(2), H(8), and H(24).

**(7)** 

- **Q.8 a)** Give recursive solution to Tower of Hanoi problem form disks when three towers are used. (7)
- **b)** Using quicksort algorithm, find the final position of the first character M in the given list S "MANAGER". (7)

## **UNIT-5**

**Q.9 a)** Suppose the following sequences list the nodes of binary tree T in preorder and inorder respectively.

Preorder: G, B, Q, A, C, K, F, P, D, E, R, H

Inorder: Q, B, K, C, F, A, G, P, E, D, H, R

Draw the diagram of the tree.

- **b)** Consider the binary search tree T as shown. Describe the tree after.
- i. The node M is deleted
- **ii.** The node D is also deleted



- **Q.10 a)** Suppose six weight 4, 15, 25, 5, 8, 16 are given. Find a 2-Free T with a given weight and a minimum weighted path length P. (Use Huffman's algorithm). (7)
- **b)** Build a heap H from the following list of numbers,

#### **UNIT-6**

**Q.11 a)** Consider a directed graph G.

**i.** Find all simple paths from X to Z.

ii. Find all simple paths from Y to Z

iii. Find indeg (Y) and outdeg (Y)

iv. Is there any sink node?



**(7)** 

**b)** Apply selection sort to the following list of elements.

46, 35, 13, 57, 79, 92, 42, 62, 99, 24, 90, 68. (8)

**Q.12 a)** Explain Warshall algorithm for finding shorted path with suitable example. (7)

**b)** Suppose array A contains 14 elements as follows:

69, 36, 43, 25, 58, 91, 63, 14, 83, 23, 53, 47, 80, 33.

Apply merge sort algorithm to arrange this list in ascending orders show all passes and result. (6)