Evaluating Finite State Machine-Based Testing Methods on RBAC systems

Carlos Diego Nascimento Damasceno – <u>damascenodiego@usp.br</u>

Advisor: Prof. Dr. Adenilso da Silva Simão

Laboratory of Software Engineering – LabES

Institute of Mathematics and Computer Science – ICMC

University of Sao Paulo – USP

Sao Carlos - SP - Brazil

Agenda

- 1. Context, Motivation and Objectives
- 2. Role-Based Access Control (RBAC) Testing
- 3. Comparing FSM-Based Testing Methods on RBAC
- 4. Investigating Test Prioritization on RBAC
- 5. Conclusion, Limitations, Results and Future work

Context

- Software security is a major requirement of industrial-scale IT systems
 - Confidentiallity information
- Access control systems
 - Mediates user access to resources
 - Role-Based Access Control (RBAC)

Motivation

- - **Security Testing**

- Faults on RBAC systems can threat user's privacy
- Software testing is necessary!
 - Model Based Security Testing
 - State based models (e.g. Finite State Machines FSM) [1,2]

[1] FELDERER, M.; ZECH, P.; BREU, R.; BÜCHLER, M.; PRETSCHNER, A. Model-based security testing: a taxonomy and systematic classification. Software Testing, Verification and Reliability, p. n/a–n/a, 2015.

[2] **DAMASCENO, C. D. N.**; DELAMARO, M. E.; SIMÃO, A. d. S. Uma revisão sistemática em teste de segurança baseado em modelos. In: Anais do Workshop Brasileiro de Testes de Software Automatizados e Sistemático - CBSoft - Congresso Brasileiro de Software: Teoria e Prática. Porto Alegre: SBC, 2014. p. 31–40.

- [3] MASOOD, A.; BHATTI, R.; GHAFOOR, A.; MATHUR, A. P. Scalable and effective test generation for role-based access control systems. IEEE Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 35, n. 5, p. 654–668, Sep. 2009.
- [4] ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and effectiveness of fsmbased testing methods. Information and Software Technology, v. 55, n. 6, p. 1045 1062, 2013.
- [5] CARTAXO, E. G.; MACHADO, P. D. L.; NETO, F. G. O. On the use of a similarity function for test case selection in the context of model-based testing. Software Testing, Verification and Reliability, John Wiley & Sons, Ltd., v. 21, n. 2, p. 75–100, 2011.
- [6] BERTOLINO, A.; DAOUDAGH, S.; KATEB, D. E.; HENARD, C.; TRAON, Y. L.; LONETTI, F.; MARCHETTI, E.; MOUELHI, T.; PAPADAKIS, M. Similarity testing for access control. Information and Software Technology, v. 58, p. 355 372, 2015.

Research Objectives

- 1. Compare recent and traditional FSM-based testing methods on RBAC domain
 - a. Test characteristics and Effectiveness
 - i. number of resets, avg. test case length and test suite length
 - ii. RBAC fault domain

Resemblance between FSMs expressing RBAC policies and random FSM models is unclear [1]

Research Objectives

- 2. Investigate and compare test prioritization approaches for RBAC testing
 - a. Similarity-based test prioritization for RBAC domain
 - a. Simple similarity [5]
 - b. XACML similarity [6]

Effectiveness of test criteria → Ability to represent specific-domain faults [1]

- [1] FELDERER, M.; ZECH, P.; BREU, R.; BÜCHLER, M.; PRETSCHNER, A. Model-based security testing: a taxonomy and systematic classification. Software Testing, Verification and Reliability, p. n/a–n/a, 2015.
- [5] CARTAXO, E. G.; MACHADO, P. D. L.; NETO, F. G. O. On the use of a similarity function for test case selection in the context of model-based testing. Software Testing, Verification and Reliability, John Wiley & Sons, Ltd., v. 21, n. 2, p. 75–100, 2011.
- [6] BERTOLINO, A.; DAOUDAGH, S.; KATEB, D. E.; HENARD, C.; TRAON, Y. L.; LONETTI, F.; MARCHETTI, E.; MOUELHI, T.; PAPADAKIS, M. Similarity testing for access control. Information and Software Technology, v. 58, p. 355 372, 2015.

(FSM-Based Testing)

- Finite state machines (FSM) are widely used for modeling reactive systems [7]
- FSM-Based Testing → Check that an FSM behavior conforms to given specifications
- Mealy Machine is a 5-tuple $M = \langle I, O, S, \delta, \lambda \rangle$
- Mutation Analysis
 - Model faults in SUTs
 - Mutation operators
 - Represent typical faults

(FSM-Based Testing)

- FSM-Based Testing Methods [7]
 - Traditional methods (W and HSI)
 - State and transition cover sets
 - Characterization set (W set) / Harmonized Identifiers (H_i)
 - Recent methods (SPY method)
 - Sufficient conditions and on-the-fly test sequence generation
 - Reduces test tree branching → On average 40% shorter than HSI
 - Higher fault detection effectiveness (underestimating extra states)
 - Recent test methods rely on fewer and longer test cases (random FSMs)[4]

state	a	b
q0	0	1
q1	1	1
q2	0	0

Characterization Set

[7] BROY, M.; JONSSON, B.; KATOEN, J.-P.; LEUCKER, M.; PRETSCHNER, A. Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer Science). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005. I

[4] ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and effectiveness of fsmbased testing methods. Information and Software Technology, v. 55, n. 6, p. 1045 – 1062, 2013.

(RBAC model)

RBAC: Users receive privileges through role assignments

ANSI RBAC and Administrative RBAC models [8]

(RBAC constraints)

- RBAC constraints [8]
 - Cardinality constraints
 - Separation of duty (SoD) constraints

[3] MASOOD, A.; BHATTI, R.; GHAFOOR, A.; MATHUR, A. P. Scalable and effective test generation for role-based access control systems. IEEE Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 35, n. 5, p. 654–668, Sep. 2009.

- 1. Compare recent and traditional FSM-based testing methods on RBAC domain
 - a. Recent (SPY) and Traditional (W and HSI) methods
 - b. Test characteristics and Effectiveness
 - i. number of resets, avg. test case length and test suite length
 - ii. RBAC fault domain

(Selection of RBAC policies)

Policy name	U	R	$log_{10}(3^{UR})$	States	Transitions	Mutants
01_Masood2010Example1	2	1	0.9542	8	64	9
02_SeniorTraineeDoctor	2	2	1.9084	21	336	17
03_ExperiencePointsv2	2	4	2.7092	203	6496	11
04_users11roles2_v2	11	2	10.4966	485	42680	28
05_Masood2009P2v2	2	5	3	857	34280	48
06_Masood2009P1v2	3	4	3.2375	1880	90240	40
07_ProcureToStockv2	3	5	3.5282	5859	351540	14

15 test scenarios: {W,HSI,SPY} × {P01,P02,P03,P04,P05}

(Test Suite Length)

- Test generation duration
 - Total: 63 hours
 - Min: 5 ms / Max: 24 h
- Strong positive correlation [4]
 - |Users|x|Roles|
- SPY test suite length (average)
 - 61% of HSI
 - **31%** of W

- Strong positive correlation [4]
- SPY number of resets (average)
 - 42.3% of HSI

(Number of Resets)

- Corroborated SPY's paper [9]
- **21.5%** of W

[4] ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and effectiveness of fsmbased testing methods. Information and Software Technology, v. 55, n. 6, p. 1045 – 1062, 2013.

[9] SIMÃO, A.; PETRENKO, A.; YEVTUSHENKO, N. Generating reduced tests for fsms with extra states. In: NUNEZ, M.; BAKER, P.; MERAYO, M. (Ed.). Testing of Software and Communication Systems. Springer Berlin Heidelberg, 2009, (Lecture Notes in Computer Science, v. 5826). p. 129–145.

(Average Test Case Length)

- No negative correlation [4]
- Average test case length
 - W and HSI were similar
 - SPY ~78% longer than {W, HSI}
- Maximum test case length
 - SPY was 14 times longer
- Test case length tends to increase
 - SPY method

(Test analysis)

- The SPY testing method enabled significant reduction of the overall test costs
 - Lower: Test Suite Length, Number of Resets
 - Greater: Average Test Case Length
- 100% of effectiveness on all 15 scenarios: {W,HSI,SPY} × {P01,P02,P03,P04,P05}
 - State and transition coverage [4]
- Order of dominance: SPY > HSI > W
- A large amount of test cases tends to be generated on RBAC domain
 - |Users|x|Roles|

(Test Prioritization) [10]

- Time and resources constraints
- Identify an efficient ordering of the test cases to maximize certain properties
- Average Percentage Fault Detected (APFD)

test	fault									
	1	2	3	4	5	6	7	8	9	10
A	X				X					
В	x				X	X	X			
C	x	X	X	X	X	X	X			
D					\mathbf{x}					
E								X	X	X

(Test Similarity)

- Similar test cases are redundant [6]
 - Resembling fault detection capabilities → No additional gain
- Test similarity on XACML and MBT domains
 - On MBT, test similarity can be more effective than random approaches [5]
 - XACML prioritization effectiveness is higher than of random prioritization [6]

- [5] CARTAXO, E. G.; MACHADO, P. D. L.; NETO, F. G. O. On the use of a similarity function for test case selection in the context of model-based testing. Software Testing, Verification and Reliability, John Wiley & Sons, Ltd., v. 21, n. 2, p. 75–100, 2011.
- [6] BERTOLINO, A.; DAOUDAGH, S.; KATEB, D. E.; HENARD, C.; TRAON, Y. L.; LONETTI, F.; MARCHETTI, E.; MOUELHI, T.; PAPADAKIS, M. 24 Similarity testing for access control. Information and Software Technology, v. 58, p. 355 372, 2015.

- 2. Investigate and compare test prioritization approaches for RBAC testing
 - a. Simple similarity
 - b. RBAC similarity
 - c. Random prioritization

(RBAC Similarity)

$$d_{sd}(t_i, t_j) = \frac{ndt(t_i, t_j)}{avg(length(t_i) + length(t_j))}$$

- 1. Simple similarity (d_{sd}): <u>n</u>umber of <u>d</u>istinct <u>t</u>ransitions
- 2. Applicability degree (AppValue)
 - a. Policy Applicability Degree (pad_{P(t)})
 - b. Assignment Applicability Degree ($asad_{P(t)}$)
 - c. Activation Applicability Degree ($acad_{P(t)}$)
 - d. Permission Applicability Degree (prad_{P(t)})
- 3. Priority value (PriorityValue)
 - a. alpha > beta > gamma > delta

$$d_{rs}(P,t_i,t_j) = \begin{cases} 0 & \text{if } d_{sd}(t_i,t_j) = 0 \\ d_{sd}(t_i,t_j) + \\ AppValue_{(P,t_i,t_j)} + \\ PriorityValue_{(P,t_i,t_j)} & \text{otherwise} \end{cases}$$

$$PriorityValue_{P(t_i,t_j)} = \begin{cases} & \alpha \text{ if } (pad_{P(t_i)} = pad_{P(t_j)} = 1) \\ & \beta \text{ if } (pad_{P(t_i)} XOR \ pad_{P(t_j)}) \\ & \gamma \text{ if } (0 < pad_{P(t_i)}, pad_{P(t_j)} < 1) \\ & \delta \text{ otherwise} \end{cases}$$

- Test Prioritization methods
 - a. RBAC similarity
 - b. Simple similarity
 - c. Random prioritization
- 2. Test fragmentations
 - a. 21 fragments
- 3. Test analysis
 - a. Test effectiveness
 - b. APFD metric

(Test analysis)

- RBAC presented better APFD
 - Issues on {P02,P03} + HSI
- Good prioritization: W and SPY
 - Some "oscillations"
 - 5 to 25% test suite → Max. effectiv.
- Test prioritization methods
 - RBAC > Random > Simple

Table 21 – APFD of the complete test suites

	Scenario	$APFD_{RBAC}$	$APFD_{Simple}$	$APFD_{Random}$
	P01 + W	0.964	0.857	0.95
	P02 + W	0.969	0.874	0.965
	P01 + HSI	0.952	0.726	0.917
>	P02 + HSI	0.921	0.778	0.959
•	P01 + SPY	0.916	0.785	0.907
	P02 + SPY	0.962	0.826	0.957

Table 25 – APFD of the subtest suites

,	Scenario	$APFD_{RBAC}$	$APFD_{Simple}$	$APFD_{Random}$
	P03 + W	0.973	0.97	0.97
	P04 + W	0.646	0.641	0.638
	P05 + W	0.811	0.788	0.797
\Rightarrow	P03 + HSI	0.96	0.967	0.966
	P04 + HSI	0.706	0.676	0.675
·	P05 + HSI	0.797	0.772	0.777
	P03 + SPY	0.974	0.969	0.97
	P04 + SPY	0.922	0.794	0.856
	P05 + SPY	0.819	0.794	0.80%

(Test analysis)

- Random prioritization outperformed Simple similarity
 - Similar tests have resembling effectiveness
 - RBAC fault domain
 - One RBAC fault → Many FSM(P) transitions
 - Dissimilarity

 Applicability
- Applicability degree can improve RBAC prioritization
 - Similarity + Applicability

Distinct test cases but with different AppValue (e.g. Sr(r1)=1)

Conclusion, Limitations, Results and Future work

Conclusion

- On comparing FSM-based testing methods on RBAC
 - Recent FSM testing methods can be mode adequate on RBAC testing
 - Less resets (test cases)
 - Shorter test suites
 - Longer test cases
 - Fault detection does not change (100% effective)

Conclusion

- On investigating test prioritization criteria on RBAC
 - Random prioritization outperformed simple similarity
 - Distribution of RBAC faults along FSM(P)
 - On average, the proposed RBAC similarity
 - Outperformed simple similarity and random prioritization

Limitations

- Other test generation methods
 - Test prioritization effectiveness depends on the test cases
- Role hierarchies (Hierarchical RBAC)
- Large number of users and roles → <u>State explosion</u>

Results

□ damascenodiego / rbac-bt

- Lab package for further replications
 - Test artifacts: RBAC policies, protocols, test suites...
 - RBAC-BT tool: https://github.com/damascenodiego/rbac-bt

O Watch 1 ★ Star 1 Y Fork 0

Results

One <u>published</u> work → Workshop on Systematic and Automated Software Testing (**SAST 2014**)

- Authors: DAMASCENO, C. D. N.; DELAMARO, M. E.; SIMÃO, A. S.
- Title: Uma revisão sistemática em teste de segurança baseado em modelos. [2]
- In: Congresso Brasileiro de Software: Teoria e Prática (CBSoft) Porto Alegre,
- Year: 2014
- Source: http://www.ic.ufal.br/evento/cbsoft2014/anais/sast_v1_p.pdf

Uma Revisão Sistemática em Teste de Segurança Baseado em Modelos

Carlos Diego Nascimento Damasceno , Márcio Eduardo Delamaro, Adenilso da Silva Simão

31

[2] DAMASCENO, C. D. N.; DELAMARO, M. E.; SIMÃO, A. d. S. Uma revisão sistemática em teste de segurança baseado em modelos. In: Anais do Workshop Brasileiro de Testes de Software Automatizados e Sistemático - CBSoft - Congresso Brasileiro de Software: Teoria e Prática. Porto Alegre: SBC, 36 2014. p. 31–40.

Results

One **<u>submitted</u>** work → XXX Simpósio Brasileiro de Engenharia de Software 2016 (**SBES 2016**)

- Authors: DAMASCENO, C. D. N.; MASIERO, P. C.; SIMÃO, A. S.
- Title: Evaluating test characteristics and effectiveness of FSM-based testing methods on RBAC systems.
- Year: 2016.

Evaluating test characteristics and effectiveness of FSM-based testing methods on RBAC systems

Carlos Diego Nascimento Damasceno University of São Paulo – USP São Carlos, SP, Brazil damascenodiego@usp.br Paulo Cesar Masiero University of São Paulo – USP São Carlos, SP, Brazil masiero@icmc.usp.br Adenilso Simao University of São Paulo – USP São Carlos, SP, Brazil adenilso@icmc.usp.br

Future work

Under development

- Title: Similarity Testing for Role Based Access Control Systems
- Research Topics
 - Test prioritization for Role Based Access Control
 - Compare RBAC similarity vs. Simple similarity vs. Random prioritization

Future work

- Further replications
 - Other policies and/or test generation methods
- Extending RBAC-BT with Hierarchical RBAC
- RBAC similarity as test criteria
 - Deterministic generation
 - Random generation
 - Search-Based Software Testing

References

- [1] FELDERER, M.; ZECH, P.; BREU, R.; BÜCHLER, M.; PRETSCHNER, A. Model-based security testing: a taxonomy and systematic classification. Software Testing, Verification and Reliability, p. n/a–n/a, 2015.
- [2] DAMASCENO, C. D. N.; DELAMARO, M. E.; SIMÃO, A. d. S. Uma revisão sistemática em teste de segurança baseado em modelos. In: Anais do Workshop Brasileiro de Testes de Software Automatizados e Sistemático CBSoft Congresso Brasileiro de Software: Teoria e Prática. Porto Alegre: SBC, 2014. p. 31–40.
- [3] MASOOD, A.; BHATTI, R.; GHAFOOR, A.; MATHUR, A. P. Scalable and effective test generation for role-based access control systems. IEEE Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 35, n. 5, p. 654–668, Sep. 2009.
- [4] ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and effectiveness of fsm based testing methods. Information and Software Technology, v. 55, n. 6, p. 1045 1062, 2013.
- [5] CARTAXO, E. G.; MACHADO, P. D. L.; NETO, F. G. O. On the use of a similarity function for test case selection in the context of model-based testing. Software Testing, Verification and Reliability, John Wiley & Sons, Ltd., v. 21, n. 2, p. 75–100, 2011.
- [6] BERTOLINO, A.; DAOUDAGH, S.; KATEB, D. E.; HENARD, C.; TRAON, Y. L.; LONETTI, F.; MARCHETTI, E.; MOUELHI, T.; PAPADAKIS, M. Similarity testing for access control. Information and Software Technology, v. 58, p. 355 372, 2015.
- [7] BROY, M.; JONSSON, B.; KATOEN, J.-P.; LEUCKER, M.; PRETSCHNER, A. Model-Based Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer Science). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.
- [8] FADHEL, A. B.; BIANCULLI, D.; BRIAND, L. A comprehensive modeling framework for role-based access control policies. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 107, n. C, p. 110–126, Sep. 2015.
- [9] SIMÃO, A.; PETRENKO, A.; YEVTUSHENKO, N. Generating reduced tests for fsms with extra states. In: NUNEZ, M.; BAKER, P.; MERAYO, M. (Ed.). Testing of Software and Communication Systems. Springer Berlin Heidelberg, 2009, (Lecture Notes in Computer Science, v. 5826). p. 129–145.
- [10] ELBAUM, S.; MALISHEVSKY, A. G.; ROTHERMEL, G. Prioritizing test cases for regression testing. SIGSOFT Softw. Eng. Notes, ACM, New York, NY, USA, v. 25, n. 5, p. 102–112, Aug. 2000.

Thank you!

Carlos Diego Nascimento Damasceno – <u>damascenodiego@usp.br</u>

Advisor: Prof. Dr. Adenilso da Silva Simão

Laboratory of Software Engineering – LabES

Institute of Mathematics and Computer Science – ICMC

University of Sao Paulo – USP

Sao Carlos – SP – Brazil

