## Identification and Classification in Food Images

Tom Barrett

February 14, 2018

#### Abstract

Final Year Project focused on identification and classification of food images. A background of previous work done on the subject is outlined, followed by experiments in creating neural networks to perform classifications and segmentations. These experiments will be applied to food images and evaluated.

## Contents

| 1 | Intr          | roduction                                | 2  |  |  |
|---|---------------|------------------------------------------|----|--|--|
|   | 1.1           | Overview                                 | 2  |  |  |
|   | 1.2           | Objectives                               | 4  |  |  |
|   | 1.3           | Methodology                              | 6  |  |  |
|   | 1.4           | Overview of Report                       | 7  |  |  |
|   | 1.5           | Motivation                               | 8  |  |  |
| 2 | Bac           | kground                                  | 9  |  |  |
|   | 2.1           | Introduction to Machine Learning         | 9  |  |  |
|   | 2.2           | Neural Computing                         | 10 |  |  |
|   | 2.3           | Convolutional Neural Networks Overview   | 16 |  |  |
|   | 2.4           | Convolution Neural Networks Extended     | 18 |  |  |
|   | 2.5           | Support Vector Machine                   | 18 |  |  |
|   | 2.6           | Dietary Assessment using Computer Vision | 19 |  |  |
|   | 2.7           | CNN APIs and Libraries                   | 30 |  |  |
|   | 2.8           | Evaluating the Output                    | 31 |  |  |
| 3 | Experiments 3 |                                          |    |  |  |
|   | 3.1           | Experiment 1                             | 36 |  |  |
|   | 3 2           | Experiment 2                             | 36 |  |  |

|              | 3.3  | Experiment 3                                       | 36 |
|--------------|------|----------------------------------------------------|----|
|              | 3.4  | Experiment 4                                       | 36 |
|              | 3.5  | Experiment 5 - Retrain ImageNet Inception V3 Model | 36 |
|              | 3.6  | Experiment 6 - Retrain with Extended Dataset       | 40 |
|              | 3.7  | Experiment 7 - Retrain with Parameter Tuning       | 43 |
|              | 3.8  | Experiment 8 - Sliding Window                      | 46 |
|              | 3.9  | Experiment 9 - MobileNet                           | 53 |
|              | 3.10 | Experiment 10 - Recursive Refinement               | 54 |
|              | 3.11 | Experiment 11 - Impact of Backround                | 57 |
|              | 3.12 | Experiment 12 - Alternative Test Image             | 59 |
|              | 3.13 | Experiment 13 - Scale?                             | 61 |
|              | 3.14 | Experiment 14 - Food 101 subset                    | 61 |
| 4            | Emp  | pirical Studies with Food Images                   | 63 |
| 5            | Disc | cussion and Conclusion                             | 64 |
| $\mathbf{A}$ | App  | oendix                                             | 69 |
|              | A.1  | Image Segmentation                                 | 70 |

## Chapter 1

## Introduction

## 1.1 Overview

This project explores the use of identification and classification of food images for use in a calorie measurement android application. Food calorie consumption is a huge problem in the modern world. Over 25% of the population in Ireland is obese and this figure is likely to rise over the coming years. A mobile application that could help keep track of a user's calorie intake by taking pictures of their meals would be a great help. The area of Machine Vision is a very difficult topic to address as it is a very hard task for computers to undertake. We, as humans, take vision for granted as we can soon see, from the study of Machine Vision, that there are many difficult steps that have to be made for full identification and classification of an image.

When looking into calorie measurement using an image, there are three questions that have to be answered:

- Where are the Regions of Interest (ROI) in this food image?
- What food types are in these ROI's?
- What is the portion size of each food type?



Figure 1.1: Pre-segmented Image



Figure 1.2: Segmented Image

In this project, the main focus will be on the first two questions, 'Where are the Regions of Interest (ROI) in this food image?' and 'What food types are in these ROI's'. The first step is normally achieved through image segmentation. Image segmentation is the process in which you divide an image into multiple segments as per Figure 1.2 and 1.1.

Many researchers in various machine vision labs have attempted to solve this problem using different methodologies. There has been promising results from some papers but these are mostly under highly constrained circumstances. When mixed foods are introduced to the problem, many of the methods fail. Convolutional Neural Networks (CNN) have had very promising results in the field of image classification in the recent years but to get to the classification step, image segmentation is first needed, otherwise known as image identifi-

cation. Where CNN's have been shown to work best is in the area of face detection.

Extensive research on many different methods of image segmentation has been carried out but it seems that CNN's have had the best results for multiple objects in one image and therefore, this method will be applied to for many foods in an image. This is because we will rarely want to classify an image that only has one food item in it. Therefore, the one shot approach may not be the most successful by which we build a classifier that takes in an image and gives back the most likely food in that image. In contrast to this, there could be an element of sub-sampling of the image to rectify this.

The system proposed to solve the problem statement would be able to integrate with an Android mobile phone application. The idea is, that when a user is about to eat their meal, they can simply take a picture of their meal for computation. From here, the application would take the image, find the objects (ROI) in the image and take note of them. Concurrently, the application would attempt to classify each object detected. Once this is done, the size of each food type would be measured and through this an overall calorie count would be displayed for the user. This could be logged for user metrics. The full system may not be possible to implement due to time constraints so therefore, classification will be the furthest step looked in to.

## 1.2 Objectives

## **Primary Objectives**

## Use Convolutional Neural Networks for Food Image Classification

There has been a large paradigm shift in food image recognition in recent years to using convolutional neural networks. This paradigm will be used to answer the problem statement.

#### Tune the CNN, replicating previous work

There are many different approaches to food identification and classification, many of which we will see in Chapter 2. An approach will be selected that has shown promising results in the past and replicate them. In addition to this, there are many different network architectures and parameters that can be adjusted when building CNNs and I hope to tune these in order to get the best outcome possible.

#### Develop a mobile application to leverage the CNN

Another objective for this project is to develop an application that can be used for dietary assessment. This application would be able to take an image and then identify and classify the foods within the image. Size estimation will not be explored for this project.

## Secondary Objectives

### Understanding of Convolutional Neural Networks

In the project, Convolutional Neural Networks (CNN's) will be used for object identification in Food Images. I will be using a machine learning library for this due to time constraints but it is a key objective to develop a deep understanding of CNN's as they are quite pivotal in the current Machine Vision Industry and bio-inspired systems are very interesting.

# Learn about different image identification and classification techniques

Although, CNN's will be used for implementation, other methods of identification and classification will not be ignored. It is very important to learn about other methods as different methods are better suited for some situations and it would be best to know about these methods due to the inevitability of their use.

## 1.3 Methodology

The following methodology were adapter for this project:

## Define the research question

The first step to this project was to define the research question. The general area of 'Food Identification and Classification' was known at conception but the scope of this is too broad for an FYP. Therefore it was decided that the research question would be to look at the food identification and classification aspect.

#### Literature Review

Once the research question was defined, finding related work was the next milestone. There are many attempts at Food Image Classification and these were not difficult to find, using Google Scholar, but many of these papers glossed over the segmentation aspect and relied on third parties for this step. Because of this, quite a few references to different papers had to be followed that focused solely on image segmentation and classification.

## Explore different image identification methods

Various image identification methods were collected from the literature review that was carried out, so there were many options to evaluate. Convolutional Neural Networks were the clear choice due to recent popularity, so more traditional methods of identification using colour and texture was not so strenuously explored.

## Select an image identification method

# Research technologies and develop skills in these technologies

As Convolutional Neural Network (CNN) are used in this project, many resources have been leveraged to enrich understanding of the process. Tensorflow is the main resource utilised in creating a CNN so on line tutorials for this technology were greatly beneficial. A Deep Learning Course on Udacity was also used to enhance understanding and skills.

## Build a prototype of the application

## Compare and analyse results to other implementations

## 1.4 Overview of Report

This report is broken down into various main headings:

#### Introduction

This section is to give on overview of what this project is about, how the project will be approached and why it being carried out.

#### Background

Some information on the background of the subject that is focused on will be outlined here.

#### **Experiments**

In this part of the report various experiments using tensorflow will be carried out.

#### **Empirical Studies with Food Images**

This section will analyse the results obtained and compare them against various metrics and other implementations.

#### Discussion and Conclusion

In this section, results from the empirical studies will be discussed and a conclusion will be outlined.

## 1.5 Motivation

I find the topic of Computer Vision a very interesting one. It excites me, to be able to 'teach' a machine how to see as we do. For this reason, I really wanted to learn about Neural Networks and this was a large motivator for this project.

Once I had a topic that I wanted to research, I needed a focus or problem statement for this research. I find that it is much more rewarding to work on something that positively impacts both myself and other people so I decided that I wanted to research something that fit this requirement.

Food calorie consumption is a very big problem in the modern world. Over 25 percent of the population in Ireland are obese. A mobile application that could help keep track of a user's calorie intake by taking a picture of their meals would be a big help to combat this problem. This problem statement works very well for me because of it's application use and because of its complexity. Identifying and recognising food is much more difficult than say recognising faces as it has no uniform shape. Therefore, this problem would also be very beneficial to developing skills in the computer vision area.

I would like to develop these real world skills so that I can partake in Computer Vision projects in industry or to do further research in academia. This is because machine learning has really taken off in the last few years and is used by many in industry. While machine learning as a whole has become very popular, computer vision is probably the most prominent that has come out of it. Face detection, for one, is being researched extensively for use in personalised advertising and also secure access to devices and systems.

## Chapter 2

## Background

## 2.1 Introduction to Machine Learning

In Mitchell [18], Machine Learning is defined as "the question of how to construct computer programs that automatically improve with experience". Machine Learning has blossomed in recent years with applications across multiple domains using vastly different paradigms and technologies.

There are many ways in which Machine Learning can be used in the modern world, many of which are being utilised to great affect. Some of these applications, are image recognition, natural language processing, medical diagnosis and many more. There may be fear that Machine Learning will start to take away many jobs from humans but this may not be the case. There are many practical uses such as security and safety that could be leveraged such as face detection for security in airports or autonomous cars.

One of the most exciting avenues in Machine Learning, in my opinion, is Computer Vision. Computer Vision is the process of extracting high-dimensional data from an image to produce useful information, which in terms of classification usually results in labelling. It can be used in many areas to improve our lives. As mentioned earlier, autonomous cars are only possible when a machine can determine what objects are around it. Computer Vision can allow a machine to recognise skin diseases in an image. The applications are nearly

limitless and that is without taking into account other uses.

## 2.2 Neural Computing

The main area of my focus for this project is in Artificial Neural Networks (ANN). This is because I have researched extensively into ConvolutionalNeural Networks which are based on ANN's.

#### Artificial Neural Networks

An Artificial Neural Network is a bio-inspired system that is used to model the human brain in how it learns from experience. The ANN uses this model to build a very complex web of connected units called artificial neurons. These nuerons are connected by certain weights which determines the processing capacity of the network and these weights are created by learning a dataset. (Malachy) An ANN has a set of inputs that take in a value, sometimes from network outputs and produce a single result or classification. While an ANN is bio-inspired from the human brain, there are many elements of the brain that are not present in ANN and many new elements in ANN that are not modelled from the human brain.

Before I can talk about Convolution Neural Networks which are vital the image processing, I will have to talk about the perceptron learning algorithm, the multi layer percepton, and backpropogation.

#### Perceptron Learning - Artificial Neuron

In our Artificial Neural Network a Perceptron is an Artificial Neuron. It is called an Artificial Neuron because it is a bio-inspired neuron which models a neuron in the human brain in terms of inputs and output.

In Perceptron learning, we can take two inputs which are put towards an activation function with a bias attached as seen in 2.1. These inputs are multiplied by the weights that connect the input to the activation function and



Figure 2.1: Perceptron

depending on the result, the activation function may fire an output. These inputs are either 1 or -1.

The Perceptron Training Rule is the means by which weights are selected to produce the correct output during training. As in Mitchell [18], a common way to train a perceptron is t start with random weights and change them during training as per the training rule. This rule follows the formula in Figure 2.3, where xi is the input and 2.4 is valid. In 2.4, "t is the target output for the current training example, o is the output generated by the perceptron, and n is the positive constant called the learning rate" Mitchell [18]. This Perceptron Training Rule assumes that there are two sets of instances, a positive and negative set, and that they are linearly separable, as in Figure 2.2.

A perception is trained using supervised learning. When the perceptron classifies a results, it is told if it is correct or not. If the result is incorrect, weights are changed in value so that this error can be reduced Luger [16].

The one major problem with perceptron learning and that is that it can't solve the problem if there is not a clear linear separation between the classes. There is a way in which we can attempt to solve this, through the delta rule. The delta rule utilizes gradient descent to find the best weight for the training samples Mitchell [18]. We will discuss gradient descent in the next section.



Figure 2.2: Linearly Separable, adapted from Mitchell [18]

$$w_i \leftarrow w_i + \Delta w_i$$

Figure 2.3: The Perceptron Training Rule which changes weights, sourced from Mitchell [18]

$$\Delta w_i = \eta(t - o)x_i$$

Figure 2.4: The Perceptron Training Rule condition, sourced from Mitchell [18]

#### Multi Layered Perceptron

Multi Layer Perceptrons (MLP) are made up of multiple layers of perceptrons connected together. Firstly, we have an input layer, followed by one of more hidden layers and then finally an output layer. Any Neural Network with more than three hidden layers is categorised as a deep layer.

The input layer of your network consists of the data you feed into the network in order to classify it. The input layer passes this data to a hidden layer whose purpose is to transform this data into something that the output layer can understand. The output layer normally consists of a class prediction.

Multi Layer Perceptrons are a class of feed forward Artificial Neural Networks. These means that the output of each perceptron feeds into an input in the next layer of the network.

There is one large problem with MLP's and this is why Convolutional Neural Networks (CNN) were created. If you attempting to classify images with an MLP then each pixel in that image would have to be a separate input. This created a massive amount of neurons through all the layers and this isn't feasible. CNN's solve this problem which we will discuss later.

#### Gradient Descent

Gradient Descent is an algorithm used to find the optimal weights to produce the smallest prediction error. It is used to overcome problems of non linearly separable classes. Gradient descent search selects a random weight value and then modifies it gradually to minimize the error. "At each step, the weight vector is altered in the direction that produces the steepest descent along the surface" Mitchell [18]. This step is iterated until the lowest value is met.

One problem with Gradient Descent is that if we look at 2.6, we may never get to the optimal point, point B. This is because we will find point A without too many problems but when the weights change we will get too high a slope of error and therefore will never reach point B.



Figure 2.5: Multi Layer Perceptron



Figure 2.6: Gradient Descent

Another variation of Gradient Descent is Stochastic Gradient Descent (SGD). SGD is different because it updates "weights incrementally, following the calculation of the error of each individual example" Mitchell [18].

## Backpropagation

"The Backpropagation algorithm learns the weights of a multilayer network, given a network with a fixed set of units and interconnections" Mitchell [18]. Backpropagation attempts to minimise the mean squared error between the target output and the output of a network.

Backpropagation works by starting at the output layer of the network and going back through previous hidden layers, updating weights as it goes.



Figure 2.7: CNN Architecture

## 2.3 Convolutional Neural Networks Overview

Convolutional Neural Networks (CNN's) are essentially a Multi Layered Percetron with a special structure. CNN's have one major difference from a MLP, they have extra layer of convolution and pooling. The architecture of a convolution network can be seen in Figure 2.7.

Figure 2.8a show an image that we want to compare against Figure 2.8b. For humans, it is quite easy to determine that these images are very similar but for a computer this task is surprisingly difficult.

So what a CNN does, to combat this problem, is to take a small feature from Figure 2.8a and compare it to a subsection of Figure 2.8b. The CNN multiplies the feature and a section of Figure 2.8b, adds up the results and divides by 9. This then gives a decimal value of how likely it is that the feature is in the part of the image, as seen in Figure 2.9b. This is called filtering. The Convolutional layer is composed of carrying out this filtering for every single possible location in Figure 2.8b.

Next is the Pooling Layer, what this layer does, is it takes the convoluted layer output, you can use Figure 2.9b as reference, and from a user defined size ie. 2x2, gets either the highest decimal value (Max pooling) or the average value (Mean pooling) and records that as the new value for the section. This is then applied to the entire image. As we can see in Figure 2.10 we know have a much smaller image stack in which to classify, thus making the computation easier.

Figure 2.8: Image filtering



(a) Image to Classify

(b) Image to Compare

Figure 2.9: Image Convolution



(a) Image Feature to Search

(b) Convoluted Image



Figure 2.10: Pooled Image

In between the Convolution and Pooling layer, there is sometimes a Normalization layer. This Normalization layer creates Rectified Linear Units (RLU's). In other words, if we take Figure 2.9b, it changes all minus values to zero.

There are some problems with CNN's however. One of the main problems is that you need a very large dataset in order to produce am accurate model and the training can be very time consuming without a GPU.

## 2.4 Convolution Neural Networks Extended

## Fully Convolutional Networks

A Fully Convolutional Network is one that does not have a fully connected layer and in a fully connected layers place is another convolution layer.

## 2.5 Support Vector Machine

A Support Vector Machine (SVM) is a machine learning algorithm that has been very popular before the power of a CNN was realised.

A SVM works by creating an n-dimensional space, with n as the number of inputs you have Support Vector Machines for Machine Learning [26]. The

SVM algorithm finds the hyperplane that splits this space. This hyperplane can then be used for classification.

# 2.6 Dietary Assessment using Computer Vision

## Convolution Neural Networks

Many reserachers have used convolutional neural networks for image classification with various network architectures and many have used a food image dataset. I will be looking at some of these papers below.

### Deep Learning Based Food Recognition

One paper focused on a deep learning approach to food image recognition based their neural network architecture on Inception-ResNet and Inception V3. They also used the Food-101 dataset Mao, Yu, and Wang [17]. For this system, Googles Tensorflow was used for image preprocessing. Preprocessing was needed as the environmental background is different in many food images. Because of these "Grey World method and Histogram equalization" Mao, Yu, and Wang [17] were used.

AWS GPU instances were used for training and the results on completion were quite impressive with a Top-1 Accuracy of 72.55% and a Top-5 Accuracy of 91.31% Mao, Yu, and Wang [17]

# Food Image Recognition Using Deep Convolutional Neural Network With Pre-Training and Fine-Tuning

Another research team in Japan researched this topic. They were aware of how difficult the problem was and therefore employed many techniques to solve the problem such as "pre-training with the large-scale ImageNet data, fine-tuning

and activateion features extracted from the pre-trained DCNN" Yanai and Kawano [30].

In conclusion, they found that the "fine-tuned DCNN which was pre-trained with 2000 categories" Yanai and Kawano [30] from ImageNet was the best method. A DCNN is a Deep Convolution Neural Network. The achieved results of 78.77% for Top-1 Accuracy in the UECFOOD100 dataset.

# Food Detection and Recognition Using Convolutional Neural Network

Kagaya, Aizawa, and Ogawa [14] also employed the use of convolutional neural networks for image detection. They used a CNN for the "tasks of food detection and recognition through parameter optimization" Kagaya, Aizawa, and Ogawa [14].

They found that a CNN is much better suited to the task than a Support Vector Machine (SVM). They achieved an overall classification accuracy of 93.8% against their baseline accuracy of 89.7% Kagaya, Aizawa, and Ogawa [14]. This accuracy was calculated using a dataset that they created specifically for this task. When they had completed the task they analysed the trained convolutional kernels and came to an interesting conclusion. They found that "color features are essential to food image recognition" Kagaya, Aizawa, and Ogawa [14].

## DeepFood: Deep Learning-based Food Image Recognition for Computeraided Dietary Assessment

The last paper that I will look at, oriented around using a convolutional neural network for food image recognition, focused on developing a dietary assessment application for use on a smartphone. They used the UEC-256 and Food-101 datset for their experiments and achieved impressive results.

They used a convolutional neural network but "with a few major optimizations, such as optimized model and an optimized convolution technique" Liu et al.

Table 2.1: DeepFood Results

|                           | Top-1 | Top-5 |
|---------------------------|-------|-------|
| UEC-256                   | 54.7% | 81.5% |
| UEC-100                   | 76.3% | 94.6% |
| Food-101                  | 77.4% | 93.7% |
| UEC-256 With Bounding Box | 63.8% | 87.2% |
| UEC-100 With Bounding Box | 77.2% | 94.8% |

[15]. They used the Inception module for their CNN. After the inception module was complete, they made the GoogleNet by combining modules. In total, the network had 22 layers.

They achieved the results shown in 2.1.

## Other Methods

## A Food Image Recognition System with Multiple Kernel Learning

In this paper, Joutou and Yanai [13], a practical use for food image recognition in the form of a mobile phone application was proposed. In order to classify the images, multiple kernel learning(MKL) was used. MKL is similar to am SVM expect that instead of a single kernel during training, MKL "treats with a combined kernel which is a weighted linear combination of several single kernels" Joutou and Yanai [13]. The idea behind this is that different food types are distinguishable by different factors and using this method, the best of these factors can be used for classification of that food type. In the experiment carried out by Joutou and Yanai [13], three different factors were used for learning:

- Color Histograms
- Gabor Texture Features
- Bag-of-Features using Scale Invariant Feature Transformation (SIFT)

50 different classifiers were created in a SVM using MKL with "one category as a positive set and other 49 categories as a negative set" Joutou and Yanai [13]. For each of these categories, a web scrape was carried out and then the best 100 images for each scrape was manually selected. Five-fold cross validation was utilised in the paper. MKL proceeded to yield results of 61.34% on the 50 food types and a Top-3 accuracy of 80.05% Joutou and Yanai [13]. The prototype mobile phone application resulted in a 37.55% user accuracy.

# A Novel SVM Based Food Recognition Method for Calorie Measurement Applications

Another, quite successful, study was carried out using a SVM. Pouladzadeh et al. [21] had established that both colour and texture are very important but they also decided that shape and size are vital features to analyse. The proposed system has two main parts, segmentation followed by classification. In order to create a 'robust' system, a 'Robust Handling of Different Lighting Conditions' module is added to the system Pouladzadeh et al. [21]. This is so that various lighting conditions don't cause color data to be distorted.

Since this paper calls for calorie estimation, the first step of the system calculates the size of the food portion. In order to do this, a coin or the users thumb is included in the image taken so that the pixel count of the thumb and the food can be compared to estimate the size. Following this the image is segmented into various portions. The following step classifies each segment of the image by extracting color, texture and shape features and inputing these into a SVM Pouladzadeh et al. [21].

12 different food types were trained for this SVM with an average classification accuracy of 92.6%.

### Measuring Calorie and Nutrition From Food Image

Another study that employed both a SVM and an emphasis on colour, texture and shape features, was carried out by Pouladzadeh, Shirmohammadi, and Al-Maghrabi [19]. Size was also a factor in the calorie measurement module of the system. It was found that using all four of these features increases the overall accuracy.

In order to segment the image successfully, Gabor filters were applied to separate texture features while color was also utilised. For each segment established, size, shape, color and texture features were extracted and using a SVM, a classification was made. The SVM used the radial basis function kernel Pouladzadeh, Shirmohammadi, and Al-Maghrabi [19].

Calorie estimation was also a large part of this paper, and the users thumb was taken with the food in order to calculate food size.

In the prototype application, once the classification had been made, the user can confirm or change the prediction. Another feature of the application was in regards to "Partially Eaten Food" Pouladzadeh, Shirmohammadi, and Al-Maghrabi [19]. This was done by taking a picture before and after consumption and therefore only calculated the size of the food eaten and therefore more accurate calorie counts can be produced.

15 food types were trained using the SVM with 3000 images. The accuracy for the classifier averaged at 90.41% using 10 fold cross-validation Pouladzadeh, Shirmohammadi, and Al-Maghrabi [19]. There was also a calorie count accuracy of 86%. The best classification results were on single foods followed by non mixed and finally mixed foods produced the worst results.

#### Segmentation Assisted Food Classification for Dietary Assessment

Zhu et al. [32] had a strong focus on the segmentation aspect of a dietary assessment system. The segmentation of the food images was achieved "using Normalized Cuts based on intensity and colour" Zhu et al. [32]. Normalized Cuts is a graph based segmentation method. To aid the segmentation aspect of this study, a common background colour was introduced to the images. Segmentation refinement was also an important module in the experiment. This is the process by which neighbouring segments with the same classification

label are merged together. This also helps calculate a more accurate size estimation.

The classification of the segmented image was processed by using a SVM calculating colour and texture features. Gabor filters were used for the texture feature extraction Zhu et al. [32].

In the experimental results for this study, it was found that segmentation was not always successful "when the region of interest is camouflaged by making its boundary faint" Zhu et al. [32]. In their case, it was a can of coke that wasn't segmented correctly. The classification accuracy was of 56.2% and 95.5% with ground truth segmentation data Zhu et al. [32].

## Large Scale Leaning for Food Image Classification

Abbirami.R.S et al. [1] proposed a food image recognition system using a Bag of Features model. This study used over 5000 images separated into 11 classes.

A clustering algorithm was employed on this study before classification. For the classification step, experiments were carried out using different methods:

- SVM
- ANN
- Random Forests

The final accuracy of the system was 78% Abbirami.R.S et al. [1].

#### A Personal Assistive System for Nutrient Intake Monitoring

Similar to other approaches seen thus far, Villalobos et al. [28] employs the use of the users thumb in the image for size estimation.

Once a photo has been taken by the user with their thumb present, the system segments the food on the plate using shape, colour and texture detectors. The system then classifies the food type based on these features.

In this paper, it was decided to allow the users to change the prediction by the system. The thumb of each user is calibrated upon use of the application so that size estimation can be as accurate a possible Villalobos et al. [28].

## Toward Dietary Assessment via Mobile Phone Video Camera

Another study into using computer vision for dietary assessment was carried out by Chen et al. [4]. They had a unique medium for the topic by using a video of the dishes in question and extracting frames from these videos to get the food from different angles.

Chen et al. [4] then formed a region of interest in the image, where there were the most food items and extracted colour and image features. These image features were extracted using Maximally Stable Extremal Regions (MSER), Speeded Up Robust Features (SURF) and Star detector.

This research team also uses k-means clustering to build a bag-of-words model Chen et al. [4].

The system had results as seen below across 20 categories using five images out of each video taken of the food:

- MSER 95%
- SURF 90%
- STAR 90%

### Automatic Chinese Food Identification and Quantity Estimation

There was a study carried out on food identification through a smart phone application Chen et al. [3]. This study resulted in an application that allows a user to send an image of there food to a server which can give them an automatic response in 12 seconds Chen et al. [3]. This back end service can have 34 threads working concurrently as stated at the time the paper was published Chen et al. [3].

A SVM is used to classify the image across 50 categories trained on around 100 images each. The SVM uses SIFT and Local Binary pattern feature extractors Chen et al. [3]. A separate SVM was trained for each of these extractors and was merged together using a "Multi-class AdaBoost algorithm" Chen et al. [3].

The study produced a top-1 accuracy of 68.3%. Accuracy of 80.6%, 84.8% and 90.9% were recorded using top-2, top-3 and top-5 accuracy respectively Chen et al. [3].

## An Image Processing Approach for Calorie Intake Measurement

Villalobos et al. [29] researched the question of using a computer vision approach to this topic. They focus mostly on the segmentation and region of interest calculation of the system in their study.

The system in question requires two images of the food, one from above and one from the side. This helps with size estimation. The users thumb is required to be in the image for accurate size estimation. The application also requires an image after consumption as not too calculate calories for uneaten food.

The system segments the image and then extracts colour, size and shape information from each segment. This data is then used by a SVM for classification along with a nutritional database for calorie information.

Multiple segmentation methods were tested such as:

- Semi automatic contour definition
- Watershed transformation
- Colour rasterization
- Edge accentication

The first two were dismissed due to poor results but the second two were used in conjunction for the segmentation aspect of the system.

### Food Recognition and Nutrition Estimation on a Smartphone

An application called "Snap-n-Eat" was proposed by Zhang et al. [31].

When an image is taken using this application, the first thing the system does is finds saliency regions to remove the background of the image. If the image has multiple food types present, hierarchical segmentation takes place before proceeding to a SVM. Similar segments are merged together. These are found by using colour, texture and size.

SIFT and Histogram of Oriented Gradients (HOG) feature extractors are used on the image and these features are used by the SVM for classification. The SVM is trained using Scholastic Gradient Descent. Zhang et al. [31] as uses a Bog of Visual Words model along with k-means clustering.

An accuracy of 85% on 15 classes was recorded using this method Zhang et al. [31].

#### Merging dietary assessment with the adolescent lifestyle

Schap et al. [23] proposed a system used by smart phones which sends an image of a users food to a back end system for computation.

Once this has been completed, the image is segmented, features are extracted from each segment and these segments are classified. Colour and Texture are used for classification. The user has the ability to confirm or amend predictions of the food type.

Size estimation is also an important aspect of this system. In contrast to previous studies, Zhang et al. [31] uses food type shape and then those shapes geometric properties to estimate size.

This study produced results of 94% out of 32 test cases.

## Possible Applications in Region Based CNNs

Ross Girshik and other contributers had some very positive results in the area of object detection using region based convolutional neural networks. There were four iterations of papers based on this work by Ross and groups in UC Berkley, Mircosoft and Facebook. A PHD student at the time of Ross's first paper also completed his dissertation on the subject. I will analyse this papers, their results (2.2) and the changes made through each iteration.

#### **RCNN**

In the first paper written by Ross Girshik, while researching at UC Berkeley, focused on two main insights. These were that "one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects" and that "when training data is scarce, supervised pre-training for n auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost" Girshick et al. [8].

The system that they developed followed these steps:

- Take image as input
- Extract approximately 2000 region proposals from the image
- Compute fixed length vectors of features for the regions using a convolutional neural network
- Use a Support Vector Machine (SVM) to classify these regions
- Bounding box regression for final region proposals

This system utilised selective search to gather these region proposals but they mention that a sliding-window detector is also an option. Ross Girshik and his team used the open source Caffe CNN library for this system. The system is quite efficient and scalable. It is scalable because of the fixed length vector of features which will remain constant regardless of inputs and additional outputs.

The team evaluated their results on a few metrics and test sets as seen in 2.2.

#### Fast RCNN

Ross Girshik's next iteration of work on region based convolution neural networks took place in Microsoft Research. This paper was titled "Fast R-CNN" as it's aim was to decrease training and testing time "while also increasing detection accuracy" Girshick [7].

This paper analyses why RCNN Girshick et al. [8] was slow and therefore how it could be improved. RCNN was classified to be slow because of three main factors:

- There are multiple stages to training as both a CNN and a SVM need to be trained.
- In training of the SVM, each region proposal must be written to disk and is therefore expensive.
- Object detection takes 47s per image Girshick [7].

Due to these problems with RCNN, a new algorithm, titled Fast RCNN was proposed. The architecture is as follows. An image is taken as input along with a proposals for regions. The image is pushed through convolutional and pooling layers (using max pooling). A fixed-length vector of features is then extracted from each region proposal. These vectors are inputted to fully connected layers for bounding box location prediction Girshick [7].

At detection time, a pass through of the net is all that is needed so this runtime is significantly less than RCNN.

#### Faster RCNN

Due to the success of RCNN and Fast RCNN, Faster RCNN was introduced to combat the problem of region proposal computation Ren et al. [22].

The architecture for this system comprises of two modules. These consist of a convolutional neural network for region proposals (RPN) which the feeds into

Table 2.2: Results from Region Based CNN Research

|             | VOC07 | VOC10 | VOC11 | VOC12 | COCO15 | COCO16 |
|-------------|-------|-------|-------|-------|--------|--------|
| RCNN        | 58.5% | 53.7% | 47.9% | N/A   | N/A    | N/A    |
| Fast RCNN   | 70.0% | 68.8% | N/A   | 68.4% | N/A    | N/A    |
| Faster RCNN | 78.8% | N/A   | N/A   | 75.9% | 42.7%  | N/A    |
| Mask RCNN   | N/A   | N/A   | N/A   | N/A   | N/A    | 63.1%  |

a Fast RCNN detector. These combine to produce a single neural network for object detection.

Instead of training these networks separately, the team had to look at how to share layers between the two networks. There were three option available:

- Alternating training whereby RPN is trained, and then used to train Fast RCNN. The Fast RCNN network is then used to initialise RPN and the process is iterated Ren et al. [22]. This paper follows this approach.
- Approximate joint training.
- Non- approximate joint training.

## Mask RCNN

The most recent paper on this topic was also written by Ross Girshik while working with Facebook AI Research He et al. [9]. Mask RCNN "extends Faster RCNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box regression" He et al. [9].

Mask RCNN has two modules, similar to Faster RCNN, where the first module is the Region Proposal Network. In the second module, in parallel to classification, a binary mask is outputted for each region. Bounding box regression and classification are done in parallel.

## 2.7 CNN APIs and Libraries

#### Tensorflow

Tensorflow is a deep learning software library for various machine learning paradigms. I will be using tensorflow to create neural networks. Tensorflow has two utilisations, through a Graphics Processing Unit (GPU) and also through a Central Processing Unit (CPU). GPU computation is recommended for CNN training.

## **Central Processing Unit Computation**

It is quite easy to get tensorflow up and running if you are only using a CPU to train. I have successfully installed tensorflow cpu on both Windows and Ubuntu. For Windows you can download and install using the tensorflow website and on ubuntu you can using apt-get. Once installed, tensorflow can be imported into any python shell or script for use. Tensorflow can also be used in C. There will be various python implementations of neural networks in Chapter 3.

## **Graphics Processing Unit Computation**

For use with a GPU, the set up for tensorflow is a bit more complicated. Firtsly you use check that the GPU in your machine is compatible for CUDA 8.0 using the NVIDIA website. If your GPU is compatible, you must install CUDA after signing up as an NVIDIA developer. CUDA 8.0 is compatible with tensorflow. You also need to install cudnn6. The NVIDIA website contains tutorials to install these. Once these are installed, download and install tensorflow-gpu. This can imported into python similar to CPU computation.

## OpenCV

## Numpy

## 2.8 Evaluating the Output

There are various different metrics that can be used for evaluating the output of a classifier or segmentation algorithm, many of which we have seen in previous sections. I was analyse a few of these evaluations of results so that I can use them as a reference to apply to my own experiments. I will also look into some problems associated with evaluating models.

## Research into Diagnosing Errors in Object Detectors

There has been some research into the question of how to evaluate object detectors, one of which I will discuss in detail Hoiem, Chodpathumwan, and Dai [11]. This paper in question "analyzes the influences of object characteristics on detection performance and the frequency and impact of different types of false positives" Hoiem, Chodpathumwan, and Dai [11]. They found that there were many effects that had influence on detectors as follows:

- occlusion
- size
- aspect ratio
- visibility of parts
- viewpoint
- localization error
- confusion with semantically similar objects
- confusion with other labeled objects

• confusion with background

The research team goes on to analyse false positives in object detectors. Localization errors were a large factor. This is were bounding boxes overlap to other objects in the image. Confusion with similar objects had a large influence on false positives also by which, for example, a dog detector had a high score for a cat Hoiem, Chodpathumwan, and Dai [11]. Confusion with dissimilar objects and confusion with background are the categories of the rest of the false positives they measured.

In conclusion the team would that "Most false positives are due to misaligned detection windows or confusion with similar objects" Hoiem, Chodpathumwan, and Dai [11]. They had some recommendations towards improves detectors as follows:

- Smaller objects are less likely to be detected
- Localization could be improved
- Reduce confusion with similar categories
- Robustness to object variation
- More detailed analysis

## **Detection Average Precision**

The average detection accuracy of a system. See A.1.

## Mean Average Precision

The mean accuracy of a system across all results. See A.2.

#### Distribution of top-ranked false positives

This metric is used to tell where most errors occur when false positives are evident. These errors are broken down into four categories of localization, similar objects, background confusion and others. See A.3.

## Segmentation Mean Accuracy

This is the mean accuracy of segmentation. See A.4.

#### Per-category segmentation accuracy

This metric measures the accuracy of segmentation at a category level. See A.5.

#### Per-class segmentation accuracy

The accuracy of segmentation at a class level is analysed. See A.6.

### Top-1 and Top-5 Accuracy

When a classifier is given an image it normally responds with a list of predictions along with a decimal representation of the likelihood that it is of that class. The Top-1 accuracy is the top valued prediction and Top-5 accuracy is the top 5 predictions.

## Chapter 3

## **Experiments**

## 3.1 Experiment 1

Overview

Network Architecture

Dataset

API's

Script

Results

Analysis

## 3.2 Experiment 2

Overview

**Network Architecture** 

Dataset

37

API's

 ${\bf Script}$ 

Results

order to achieve this, I retrained the final layer of the Inception V3 model which was trained on the ImageNet dataset. This is called Transfer Learning. I followed the tutorial by Google on the tensorflow website for direction on this process *How to Retrain Inception's Final Layer for New Categories* [12].

Firstly, in order to retrain the final layer of a model, a dataset must be prepared in the correct way. I used the Food-101 dataset Bossard, Guillaumin, and Van Gool [2] which I will analyse in a later section. The dataset must be structured so that there is a separated directory for each class with the directory name as the class name. These directories should contain all the images for this class.

Once this dataset has been set up correctly, a directory can be found on github which contains the necessary files for this tutorial. When the directory has been downloaded, the following command can be ran:

python tensorflow/examples/image\_retraining/retrain.py \ --image\_dir
~/dataset\_directory

The first thing that the script will do is create bottleneck files for the images. A bottleneck is a term used to define the final layer before the output layer. This is so that for each image, we do not have to push it through the entire network during training *How to Retrain Inception's Final Layer for New Categories* [12].

After, the bottlenecks are created, the training can be completed. The images are split into three sub directories of training, testing and validation. By default, these images are split into percentages of 80%, 10% and 10% respectively. The model is trained at a default of 4000 steps.

At the final stage of the script, the model is run on a batch of test images not yet seen and a final test accuracy is displayed. This can be seen in the Script section below.

The command used for using this model once it is trained is:

python tensorflow/examples/label\_image.py
 --graph=/tmp/output\_graph.pb

```
--labels=/tmp/output_labels.txt --input_layer=Mul
--output_layer=final_result
--input_mean=128 --input_std=128 --image=~/image_directory
```

#### **Network Architecture**

The Inception V3 model network architecture was used for this experiment. The Inception V3 architecture was created by building on the existing Inception model aimed at efficient image classification Szegedy et al. [27].

#### **Dataset**

The dataset used for this experiment is the Food-101 dataset **Food 101**. This dataset has 101 classes with 1000 images for each class.

#### Libraries

Tensorflow and Numpy were used to run this scipt.

#### Script

layer.

The following snippets of code are from the retrain.py script.

```
evaluation_step, prediction = add_evaluation_step(
final_tensor, ground_truth_input)
# Merge all the summaries and write them out to the summaries_dir
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                  sess.graph)
validation_writer = tf.summary.FileWriter(
   FLAGS.summaries_dir + '/validation')
# Set up all our weights to their initial default values.
init = tf.global_variables_initializer()
sess.run(init)
# We've completed all our training, so run a final test evaluation on
# some new images we haven't used before.
test_bottlenecks, test_ground_truth, test_filenames = (
   get_random_cached_bottlenecks(
       sess, image_lists, FLAGS.test_batch_size, 'testing',
       FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
       decoded_image_tensor, resized_image_tensor,
          bottleneck_tensor,
       FLAGS.architecture))
test_accuracy, predictions = sess.run(
   [evaluation_step, prediction],
  feed_dict={bottleneck_input: test_bottlenecks,
       ground_truth_input: test_ground_truth})
tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %
              (test_accuracy * 100, len(test_bottlenecks)))
```



Figure 3.1: Pizza

#### Results

The final test accuracy for this retrained model was 54.8%.

For example, an image of pizza, see 3.1 was fed into the model with the following results:

- pizza 0.925
- pancakes 0.008
- nachos 0.007
- beef carpaccio 0.006
- tiramisu 0.004

### Analysis

## 3.6 Experiment 6 - Retrain with Extended Dataset

#### Overview

As the Food-101 dataset mostly consisted of meals Bossard, Guillaumin, and Van Gool [2], I decided to extend the dataset slightly be including some single

foods such as:

- cheese
- grapes
- banana
- apple
- orange
- spaghetti
- $\bullet$  roll

In order to collect these images, I used the ImageNet repository to search for these foods individually and then downloaded the subset of images to be included with Food 101 Deng et al. [5]. I ran the retrain.py script on the extended dataset as in Experiment 5.

#### **Network Architecture**

The Inception V3 Model was used for this experiment.

#### **Dataset**

In this experiment I extended the Food-101 dataset.

#### Libraries

Tensorflow and numpy are used in the retrain.py script.

### Script

As seen in Experiment 5.



Figure 3.2: Banana

#### Results

For this model, I achieved an accuracy of 55.3%.

For example, an image of a banana, see 3.2 was fed into the model with the following results:

- banana 0.9962
- $\bullet$  orange 0.0009
- $\bullet$  cheese 0.0003
- frozen yoghurt carpaccio 0.0002
- churros 0.0001

## Analysis

The slight increase in accuracy in Experiment 5, from 54.8% to 55.3%, makes sense. Since the model was pre-trained using the ImageNet dataset and all the new images I used were from ImageNet, we would expect a higher classification accuracy on the new additions to the dataset. This would overall increase the average classification accuracy.

# 3.7 Experiment 7 - Retrain with Parameter Tuning

#### Overview

Within the retrain.py script *How to Retrain Inception's Final Layer for New Categories* [12], as mentioned in previous experiments, there are various parameters that can be set and changed. I tested out a few combinations of the parameters to see if I could increase the test accuracy of the model.

#### **Network Architecture**

The Inception V3 architecture was used for this model.

#### **Dataset**

The Food-101 dataset Bossard, Guillaumin, and Van Gool [2] with additional classes, as per experiment 6, was used for this model.

#### Libraries

The libraries in use for this experiment are tensorflow and numpy.

#### Script

Script as seen in experiment 5 but with some additions to the command as seen below:

```
python tensorflow/examples/image_retraining/retrain.py \ --image_dir
~/dataset_directory \ --how_many_training_steps 4000 \
    --learning_rate 0.01 \
--testing_percentage 10 \ --validation_percentage 10
```



Figure 3.3: Graph of accuracy of the test dataset during training



Figure 3.4: Graph of accuracy of the validation dataset during training

Some further parameters could be set such as:

- -flip\_left\_right
- $\bullet$  -random\_crop
- $\bullet \ random\_scale$
- $\bullet$  -random\_brightness

## Results

The results of each set of parameters can be seen in Table 3.1. The set of parameters that seem to be the most effective are 10000 steps with a 0.1 learning rate. Graphs of this model can be see in Figures 3.4 and 3.3. These



Figure 3.5: Comparison of accuracy



Figure 3.6: Comparison of accuracy

Table 3.1: Comparison of parameters

| Parameter Tuning | Steps | Learning Rate | Test $\%$ | Validation $\%$ | Results |
|------------------|-------|---------------|-----------|-----------------|---------|
| Configuration 1  | 8000  | default       | default   | default         | 59.1%   |
| Configuration 2  | 8000  | 0.1           | default   | default         | 65.8%   |
| Configuration 3  | 10000 | 0.1           | default   | default         | 66.3%   |
| Configuration 4  | 12000 | 0.1           | default   | default         | 66.6%   |
| Configuration 5  | 10000 | 0.2           | default   | default         | 66.0%   |
| Configuration 6  | 10000 | 0.1           | 15        | 15              | 66.3%   |

are based on the validation set and then the test set respectively. A side by side comparision can also be seen in Figures 3.5 and 3.6 where orange is for during training and blue for the validation set.

#### Analysis

There were two separate factors that each increased classification accuracy of about 5% each. These were training steps and learning rate.

Training steps are related to the number of images so before, when the training steps were at 4000, not all of our training images were being used. As the steps were increased twofold we saw a 3.8% increase in accuracy.

Another parameter that increased accuracy significantly was learning rate. The default learning rate is 0.01 which I increased to 0.1. This resulted in an increase of 6.7%. This is most likely due to the fact that since we are only looking at the last layer, we can afford to change the weights more significantly.

## 3.8 Experiment 8 - Sliding Window

#### Overview

In the preious experiments, I have looked at the one-shot approach to food image classification. That is, the model will give a prediction of the most likely food item in that image. This is a problem when there are multiple food in an image, see 3.7. There are a few options to combat this problem. Firstly, I could detect objects in the image, segment the image according to these objects and then run each segment through the model. A simple approach to this would be to segment the image into a number of sections and then run each section through the model. In order to follow the latter approach, I used a sliding window approach. This sliding window would move across the image and classify the segment of the image in the window. I had three options for window sliding shape as defined by a command line argument.



Figure 3.7: Bowl of fruit

python sliding\_window.py --image=~/image\_dir --window\_shape grid

There are three options for window shape:

- Grid based window as per 3.8
- Row based window as per 3.9
- Column based window as per 3.10

### Libraries

For this experiment Tensorflow provided the classification of each segment while also helping with resizing along with Numpy. OpenCv was used to implement the sliding window as per  $Sliding\ Windows\ for\ Object\ Detection$  with  $Python\ and\ OpenCV\ [25]$ 



Figure 3.8: Grid based window



Figure 3.9: Row based window



Figure 3.10: Column Based Window



Figure 3.11: Fruit with Color Overlay

### Script

There were four main elements to the script. Firstly, extracting a window to be classified. Secondly, resizing the image to be compatible with the Tensorflow model. Thirdly, running the window through the Tensorflow model and finally saving a new image with a coloured overlay of classifications.

#### Extracting the window from the image

```
# loop over the image pyramid
for resized in pyramid(image, scale=1.5):
    # loop over the sliding window for each layer of the pyramid
    for (x, y, window) in sliding_window(resized, stepSize=32,
        windowSize=(winW, winH)):
        # if the window does not meet our desired window size,
        ignore it
        if window.shape[0] != winH or window.shape[1] !=winW:
        continue
```

```
def sliding_window(image, stepSize, windowSize):
    # slide a window across the image
    for y in xrange(0, image.shape[0], stepSize):
        for x in xrange(0, image.shape[1], stepSize):
            # yield the current window
            yield (x, y, image[y:y + windowSize[1], x:x + windowSize[0]])
```

#### Resizing the window

```
window = cv2.resize(window, (299, 299))

resized_image = tf.reshape(image, [1, input_height, input_width, 3])
resized = tf.image.resize_area(resized_image, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]),
    [input_std])
```

#### Running the Tensorflow model

#### Saving the image with colour overlay

As seen in Figure 3.11, each square represents a window and each colour is for a different classification. Blue is for an apple, yellow for banana, green for grape, white for orange and black if an unexpected prediction is made.

Table 3.2: My caption

Food type No. of Top-1 Classifications
Apple 5
Banana 1
Grape 4
Orange 5

Table 3.3: My caption

Food type No. of Top-1 Classifications
Apple 1
Banana 0
Grape 0
Orange 0
Other 3

```
cv2.rectangle(display_image, (x, y), (x + winW, y + winH),
    colour_dict.get(top1,
(0,0,0)), 4)
```

#### Results

#### Grid based window

The grid based window resulted in fifteen separate classification. As seen in 3.7, there are multiple fruits in the image. Of these fruits, our model is trained on four, apple, banana, orange and grapes. This method classified all four to Top-1 accuracy at least once each. This method took 42.8 seconds to run.

Table 3.4: My caption

Food type No. of Top-1 Classifications
Apple 3
Banana 1
Grape 0
Orange 0
Other 1

#### Row based window

The row based method resulted in four predictions as follows in 3.3. Out of these four predictions, only one classified a known fruit at Top-1 accuracy, an apple. An apple was also predicted to Top-5 accuracy in another instance. The runtime of this method was 16.1 seconds.

#### Column based window

The column based window approach had five total predictions and ran for a total of 13 seconds. As seen in 3.4, two out of four known fruits were classified to a Top-1 accuracy with all other fruits predicted to Top-5 accuracy. Only one Top-1 prediction did not contain a correct fruit.

#### Analysis

These results are very interesting because while a banana was only predicted to Top-1 accuracy once in grid based, once in column based and zero times in row based, if the whole image is ran through the model, a banana is at the Top-1 accuracy.

## 3.9 Experiment 9 - MobileNet

#### Overview

Due to the fact that the end goal for this project is to have a smartphone application that a user can use to keep track of their calorie measurement, there are a couple of options in how to achieve this. Firstly, an image can be taken on the phone and sent to a server to run a classification algorithm. Secondly, a model can be stored on the phone for computation. I decided to train the model, using transfer learning as before, but on a different architecture, MobileNet.

#### Network Architecture

The network architecture used for this experiment is MobileNet *How to Retrain Inception's Final Layer for New Categories* [12]. This architecture is designed to be smaller so that it can be used on smartphones which have less powerful resources available.

#### **Dataset**

The Food 101 dataset Bossard, Guillaumin, and Van Gool [2] with added classes was used for this experiment.

#### Libraries

Tensorflow and numpy.

#### Script

The retrain.py script *How to Retrain Inception's Final Layer for New Cate*gories [12] was used, with a different command paramater.

```
python tensorflow/examples/image_retraining/retrain.py \ --image_dir
~/dataset_directory \ --architecture mobilenet_1.0_224 \
--how_many_training_steps 10000 \ --learning_rate 0.1
```

#### Results

The final test accuracy of this model came to 50.2%.

#### **Analysis**

There was a decrease of 16.1% in this model to the highest accuracy from experiment 7. This is due to the smaller architecture which is aimed to be faster and smaller with the expected decrease in accuracy.

## 3.10 Experiment 10 - Recursive Refinement

#### Overview

After the sliding window code was run on Figure 3.7 in experiment 8, it was observed that a sliding window was predicting grapes correctly in regions that contained a bunch of grapes. Since it would make sense that the model would be able detect an individual grape, it was decided that I would run recursive refinement on a window that contained a grape. Due to the model requiring a 299 x 299 image size, the window could only be refined once as very small segments could not be resized up to 299 x 299. I decided to use a window of  $70 \times 70$ .

### Script

As you would think with recursive refinement, a recursive function would used, but I found this unnecessary due to image size restrictions. Instead, a condi-



Figure 3.12: Recursive refinement 1

tional for loop was added to the existing code.

```
if top1 == "grape" and window_shape == "grid" and rr_grape:
        for (x_grape, y_grape, grape_window) in
            sliding_window(window_resized, stepSize=64,
           windowSize=(70, 70)):
           #reshape to square
           grape_window_resized = cv2.resize(grape_window, (299,
              299))
           top1_grape = subSample.classify(grape_window_resized,
              window_shape)
           if top1_grape == "grape":
             cv2.rectangle(display_image, (x_grape + x, y_grape +
                 y), (x_{grape} + x + 70, y_{grape} + y + 70),
                 colour_dict.get(top1, (0,0,0)), 4)
              #cv2.imshow("Window", grape_window_resized)
             cv2.waitKey(1)
time.sleep(0.025)
```



Figure 3.13: Recursive refinement 2



Figure 3.14: Recursive refinement 3



Figure 3.15: Bowl of fruit with background removed

#### Results

Some very interesting results on three separate images. Two new images are seen here which we will explore in future experiments. In all three images, while we are getting some expected predictions, grapes are being classified in locations that have nothing resembling a grape. These can be viewed in Figures 3.12, 3.13 and 3.14.

## Analysis

## 3.11 Experiment 11 - Impact of Backround

#### Overview

As we can see in Experiment 9, using sliding windows to classify many sections of an image, there were some cases where some unexpected predictions were

Table 3.5: Comparison of fruit image sliding window results with and without bakground

| Food type | $\operatorname{Grid}$ | Row | Column | Filled Grid | Filled Row | Filled Column |
|-----------|-----------------------|-----|--------|-------------|------------|---------------|
| Apple     | 5                     | 1   | 3      | 10          | 0          | 4             |
| Banana    | 1                     | 0   | 1      | 0           | 0          | 0             |
| Grape     | 4                     | 0   | 0      | 1           | 0          | 1             |
| Orange    | 5                     | 0   | 0      | 3           | 0          | 0             |
| Other     | 0                     | 3   | 1      | 1           | 4          | 0             |

made. Due to this, the decision was made to analyse the effect the background of the image has on its classification. The sliding window code was then ran on a new image. This new image was the same fruit bowl as used previously but the background was filled in as white as per Figure 3.15.

#### Results

#### Grid

For grid based sliding window approach, the results turned out to be less sucessful than with the background. In this experiment, fourteen out of fifteen of top-1 classification were of an expected food type rather than fifteen out of fifteen with the background present. We expected the food types of apple, orange, grape and banana to appear in this image but while a banana was detected to a top-5 accuracy on a few occasions it was never predicted to a top-1 accuracy. The contrast between the image results can be seen in Table 3.5.

#### Row

The row based sliding window again had worse result than its counterpart, with zero out of four correct classifications as opposed to one. In this case, an orange appeared at top-5 accuracy once. The most common prediction was ice-cream which appeared at top-1 accuracy in three out of four instancs.



Figure 3.16: Alternative Bowl of fruit

#### Column

In contrast to our previous two methods of sliding window, this method outperformed its counterpart with correct predictions of all five windows while before we only had four out of five. In this experiment, a aple was predicted four times and a grape once, with all correct fruits appearing to top-5 accuracy.

#### Analysis

It is quite interesting that removing the background to the image reduced our accuracy overall. Many white foods were classified instead which makes sense due the impact of colour expected.

## 3.12 Experiment 12 - Alternative Test Image

#### Overview

In our three previous sliding window oriented experiments, we had only used a single image. In order to see whether this image had biases unknown to us,

Table 3.6: Comparison of fruit bowl images

| Food type | $\operatorname{Grid}$ | Row | Column | New Grid | New Row | New Column |
|-----------|-----------------------|-----|--------|----------|---------|------------|
| Apple     | 5                     | 1   | 3      | 4        | 1       | 0          |
| Banana    | 1                     | 0   | 1      | 5        | 0       | 5          |
| Grape     | 4                     | 0   | 0      | 2        | 1       | 0          |
| Orange    | 5                     | 0   | 0      | 0        | 0       | 0          |
| Other     | 0                     | 3   | 1      | 1        | 2       | 1          |

I decided to use another fruit bowl image. This image was selected as fruit took up a larger portion of the image as seen in Figure 3.16

#### Results

#### Grid

The performance of this experiment was slightly worse than with the previously used image. When I ran the grid based sliding window on Figure 3.16, fourteen out of fifteen predictions had an expected value. Out of the fourteen predictions orange was not predicted to top-1 accuracy at all. This can be seen, in comparision to previously used image, in Table 3.6.

#### Row

In the column based window for the new fruit image, the results were not very successful as has been the trend for most row based classification. Two out of four predictions had an expected value at top-1 accuracy.

#### Column

The column based approach had a similar result to its counterpart in that only one of its predictions was unexpected. Although, due to the size of the new image, another column was created and thus has a better overall accuracy.

#### Analysis

A possible reason that an orange was not classified in any of these images is because in Figure 3.16, a more mandarin food is displayed.

## 3.13 Experiment 13 - Scale?

Overview

Network Architecture

**Dataset** 

API's

Script

Results

Analysis

## 3.14 Experiment 14 - Food 101 subset

#### Overview

In many of the papers that have been researched where food image classification was carried out, they attempted to classify a lot less than 108 food types as has been the case for experiments previously shown. Pouladzadeh et al. [21] used 12 classes, Pouladzadeh, Shirmohammadi, and Al-Maghrabi [19] had 15, Abbirami.R.S et al. [1] attempted to classify 11 classes of food, 20 classes were used in Chen et al. [4] and Zhang et al. [31] predicted 15 classes. Due to the lower number of classes in these papers, it was decided to retrain inception

Table 3.7: Accuracy of other studies

| Reference                       | Classes | Accuracy      |
|---------------------------------|---------|---------------|
| Novel SVM                       | 12      | 92.6%         |
| Measuring Calorie and Nutrition | 15      | 90.41%        |
| Large Scale Learning            | 11      | 78%           |
| Toward Dietary Assessment       | 20      | $\sim$ 91.67% |
| Snap-n-eat                      | 15      | 85%           |

on a subset of the food-101 extended dataset to benchmark results. 13 classes were selected from food-101 for training.

#### **Network Architecture**

Retrained Inception model.

#### **Dataset**

A subset of the Food 101 dataset was used for this experiment Bossard, Guillaumin, and Van Gool [2].

#### Results

A Final test Accuracy of 92.6% was recorded for this experiment which performs quite high in comparison to the data in Table 3.7

#### **Analysis**

It would make sense the accuracy of our model would increase when the number of classes are reduced as the margin of error is decreased.

## Chapter 4

Empirical Studies with Food Images

## Chapter 5

## Discussion and Conclusion

## Bibliography

- [1] Abbirami.R.S et al. "Large Scale Learning for Food Image Classification". In: International Journal on Recent and Innovation Trends in Computing and Communication 3.3 (Mar. 2015), pp. 973–978. URL: http://dx.doi.org/10.17762/ijritcc2321-8169.150317.
- [2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. "Food-101 Mining Discriminative Components with Random Forests". In: *European Conference on Computer Vision*. 2014.
- [3] Mei-Yun Chen et al. "Automatic chinese food identification and quantity estimation". In: SIGGRAPH Asia 2012 Technical Briefs. ACM. 2012, p. 29.
- [4] Nicholas Chen et al. "Toward dietary assessment via mobile phone video cameras". In: *AMIA Annual Symposium Proceedings*. Vol. 2010. American Medical Informatics Association. 2010, p. 106.
- [5] J. Deng et al. "ImageNet: A Large-Scale Hierarchical Image Database".In: CVPR09. 2009.
- [6] Jeffrey Donahue. "Transferrable Representations for Visual Recognition". PhD thesis. EECS Department, University of California, Berkeley, May 2017.
- [7] Ross Girshick. "Fast R-CNN". In: Proceedings of the International Conference on Computer Vision (ICCV). 2015.
- [8] Ross Girshick et al. "Rich feature hierarchies for accurate object detection and semantic segmentation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014.

- [9] Kaiming He et al. "Mask R-CNN". In: *arXiv preprint arXiv:1703.06870* (2017).
- [10] Ye He et al. "Food image analysis: Segmentation, identification and weight estimation". In: *Multimedia and Expo (ICME)*, 2013 IEEE International Conference on. IEEE. 2013, pp. 1–6.
- [11] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. "Diagnosing Error in Object Detectors". In: Computer Vision ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III. Ed. by Andrew Fitzgibbon et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 340–353.
- [12] How to Retrain Inception's Final Layer for New Categories. https://www.tensorflow.org/tutorials/image\_retraining. Accessed: 2018-01-24.
- [13] Taichi Joutou and Keiji Yanai. "A food image recognition system with multiple kernel learning". In: *Image Processing (ICIP), 2009 16th IEEE International Conference on.* IEEE. 2009, pp. 285–288.
- [14] Hokuto Kagaya, Kiyoharu Aizawa, and Makoto Ogawa. "Food detection and recognition using convolutional neural network". In: Proceedings of the 22nd ACM international conference on Multimedia. ACM. 2014, pp. 1085–1088.
- [15] Chang Liu et al. "Deepfood: Deep learning-based food image recognition for computer-aided dietary assessment". In: *International Conference on Smart Homes and Health Telematics*. Springer. 2016, pp. 37–48.
- [16] George F. Luger. Artificial Intelligence. Structures and Strategies for Complex Problem Solving/Luger GF. Pearson Education Limited, 2005.
- [17] Dongyuan Mao, Qian Yu, and Jingfan Wang. "Deep Learning Based Food Recognition". In: ().
- [18] Tom M. Mitchell. *Machine Learning*. International Edition 1997. New York: The McGraw-Hill Companies, Inc., 1997, pp. 81–126.

- [19] Parisa Pouladzadeh, Shervin Shirmohammadi, and Rana Al-Maghrabi. "Measuring calorie and nutrition from food image". In: *IEEE Transactions on Instrumentation and Measurement* 63.8 (2014), pp. 1947–1956.
- [20] Parisa Pouladzadeh, Shervin Shirmohammadi, and Abdulsalam Yassine. "Using graph cut segmentation for food calorie measurement". In: *Medical Measurements and Applications (MeMeA)*, 2014 IEEE International Symposium on. IEEE. 2014, pp. 1–6.
- [21] Parisa Pouladzadeh et al. "A novel SVM based food recognition method for calorie measurement applications". In: Multimedia and Expo Workshops (ICMEW), 2012 IEEE International Conference on. IEEE. 2012, pp. 495–498.
- [22] Shaoqing Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". In: *Neural Information Processing Systems (NIPS)*. 2015.
- [23] TE Schap et al. "Merging dietary assessment with the adolescent lifestyle". In: Journal of human nutrition and dietetics 27.s1 (2014), pp. 82–88.
- [24] Evan Shelhamer, Jonathan Long, and Trevor Darrell. "Fully Convolutional Networks for Semantic Segmentation". In: *IEEE Trans. Pattern Anal. Mach. Intell.* 39.4 (Apr. 2017), pp. 640–651.
- [25] Sliding Windows for Object Detection with Python and OpenCV. https://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opency/. Accessed: 2018-01-30.
- [26] Support Vector Machines for Machine Learning. https://machinelearningmastery.com/support-vector-machines-for-machine-learning/. Accessed: 2017-12-20.
- [27] Christian Szegedy et al. "Rethinking the inception architecture for computer vision". In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2016, pp. 2818–2826.
- [28] Gregorio Villalobos et al. "A personal assistive system for nutrient intake monitoring". In: *Proceedings of the 2011 international ACM workshop on Ubiquitous meta user interfaces.* ACM. 2011, pp. 17–22.

- [29] Gregorio Villalobos et al. "An image procesing approach for calorie intake measurement". In: Medical Measurements and Applications Proceedings (MeMeA), 2012 IEEE International Symposium on. IEEE. 2012, pp. 1–5.
- [30] Keiji Yanai and Yoshiyuki Kawano. "Food image recognition using deep convolutional network with pre-training and fine-tuning". In: *Multimedia & Expo Workshops (ICMEW)*, 2015 IEEE International Conference on. IEEE. 2015, pp. 1–6.
- [31] Weiyu Zhang et al. "Snap n Eat Food Recognition and Nutrition Estimation on a Smartphone". In: *Journal of diabetes science and technology* 9.3 (2015), pp. 525–533.
- [32] Fengqing Zhu et al. "Segmentation assisted food classification for dietary assessment". In: *Computational Imaging IX*. Vol. 7873. International Society for Optics and Photonics. 2011, 78730B.

## Appendix A

## Appendix

## A.1 Image Segmentation

## Fully Convolutional Neural Networks for Semantic Segmentation

There has been a very interesting paper from UC Berkeley focused on using Full Convolutional Networks for semantic segmentation Shelhamer, Long, and Darrell [24]. Fully Convolutional Networks (FCN) do not have any fully connected layers. They are replaced with more filtering layers. Nvidia Digits have a semantic segmentation implementation based off the work of this paper.

They took this approach because "feedforward computation and backpropogation are much more efficient when computer layer-by-layer over an entire image instead of independently patch-by-patch" Shelhamer, Long, and Darrell [24]. This was also because they were focused on object detection. Normal classifiers do not work very well when they are to classify more than one subject in an image and image segmentation was a way to solve this.

There are a set of steps you can follow to turn a CNN into a FCN for semantic segmentation as follows ie. change to a convolutional layer from a fully connected one:

- The size of the filters must be set to the size of the input layers.
- For every neuron in the fully connected layer, have a filter.

#### Segmentation

#### **Graph Based Segmentation**

Graph cut segmentation has been used extensively in image segmentation. OpenCV has an implementation of a graph cut algorithm called grabcut which has been used to segment food on occasion Pouladzadeh, Shirmohammadi, and Yassine [20].

Table A.1: FCN Resulys Shelhamer, Long, and Darrell [24]

|                         | FCN  |
|-------------------------|------|
| VOC11 mean IU           | 62.7 |
| VOC12 mean IU           | 62.2 |
| PASCAL VOC10 pixel acc. | 67.0 |
| PASCAL VOC10 mean acc.  | 50.7 |
| PASCAL VOC10 mean IU    | 37.8 |
| PASCAL VOC10 f.w. IU    | 52.5 |

Table A.2: Results

|                   | Single Food Portion | Non-mixed Food | Mixed Food   |
|-------------------|---------------------|----------------|--------------|
| Color and Texture | 92.21               | N/A            | N/A          |
| Graph Based       | 95 (3% increase)    | 5% increase    | 15% increase |

According to Pouladzadeh, Shirmohammadi, and Yassine [20], "Graph cut based method is well-known to be efficient, robust, and capable of finding the best contour of objects in n image, suggesting it to be a good method for separating food portions in a food image for calorie measurement". Along with the graph cut segmentation algorithm, this research team also used color and texture segmentation. Gabor filters were used to measure texture features Pouladzadeh, Shirmohammadi, and Yassine [20]. When color and texture segmentation was applied, the method came into difficulty with mixed foods but by applying graph cut segmentation, clearer object boundaries were shown.

In conclusion, the accuracy of the classification increased when using graph based segmentation rather than color and texture as seen in A.2.

#### Local Variation Framework

Another paper was published in which the research team attempted to create a food calorie extimation system He et al. [10]. This system would compromise of three steps, image segmentation, image classification and weight estimation. For the segmentation module, a local variation approach to segmentation was



Figure A.1: Detection Average Precision Donahue [6]



Figure A.2: Mean Average Precision Donahue [6]

performed. Local variation is by which intensity differences between neighbouring pixels is measured. This is a type of graph based segmentation.

The team also carried out some segmentation refinement when the segmentation algorithm had been performed. This consisted of removed small segments (defined as less than 50 pixels) and trying to prevent over and under segmentation. After classification was performed on each segment, segments with low confidence values were removed He et al. [10].

#### Conclusion

Both of the above papers of Pouladzadeh, Shirmohammadi, and Yassine [20] and He et al. [10] used a graph based segmentation. The first paper used a more generic implementation while the second used a local variation framework. Both methods provided successful results in the image segmentation process.



Figure A.3: Distribution of top-ranked false positives Donahue [6]

|                                          |        |                 | 2 47   |                 | full+fg R-CNN |                 |  |
|------------------------------------------|--------|-----------------|--------|-----------------|---------------|-----------------|--|
| O <sub>2</sub> P (Carreira et al., 2012) | $fc_6$ | fc <sub>7</sub> | $fc_6$ | fc <sub>7</sub> | $fc_6$        | fc <sub>7</sub> |  |
| 46.4                                     | 43.0   | 42.5            | 43.7   | 42.1            | 47.9          | 45.8            |  |

Figure A.4: Segmentation Mean Accuracy Donahue [6]

|                                          |      |      |      |      |      |      |      |      |      |     |      |      | -    |      |      | person | •    | _    |      |      |      |      |
|------------------------------------------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|------|--------|------|------|------|------|------|------|
| O <sub>2</sub> P (Carreira et al., 2012) |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      |        |      |      |      |      |      |      |
|                                          |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      | 46.0   |      |      |      |      |      |      |
| full R-CNN fe <sub>7</sub>               | 81.0 | 52.8 | 25.1 | 43.8 | 40.5 | 42.7 | 55.4 | 57.7 | 51.3 | 8.7 | 32.5 | 11.5 | 48.1 | 37.0 | 50.5 | 46.4   | 30.2 | 42.1 | 21.2 | 57.7 | 56.0 | 42.5 |
|                                          |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      | 51.3   |      |      |      |      |      |      |
| fg R-CNN fc <sub>7</sub>                 | 80.9 | 50.1 | 20.0 | 40.2 | 34.1 | 40.9 | 59.7 | 59.8 | 52.7 | 7.3 | 32.1 | 14.3 | 48.8 | 42.9 | 54.0 | 48.6   | 28.9 | 42.6 | 24.9 | 52.2 | 48.8 | 42.1 |
|                                          |      |      |      |      |      |      |      |      |      |     |      |      |      |      |      | 52.9   |      |      |      |      |      |      |
| full+fg R-CNN fc <sub>2</sub>            | 82.3 | 56.7 | 20.6 | 49.9 | 44.2 | 43.6 | 59.3 | 61.3 | 57.8 | 7.7 | 38.4 | 15.1 | 53.4 | 43.7 | 50.8 | 52.0   | 34.1 | 47.8 | 24.7 | 60.1 | 55.2 | 45.7 |

Figure A.5: Per-category segmentation accuracy Donahue [6]

| class        | $\mathbf{AP}$ | class             | $\mathbf{AP}$ | class                | $\mathbf{AP}$ | class            | AP   | class          | $\mathbf{AP}$ |
|--------------|---------------|-------------------|---------------|----------------------|---------------|------------------|------|----------------|---------------|
| accordion    | 50.8          | centipede         | 30.4          | hair spray           | 13.8          | pencil box       | 11.4 | snowplow       | 69.2          |
| airplane     | 50.0          | chain saw         | 14.1          | hamburger            | 34.2          | pencil sharpener | 9.0  | soap dispenser | 16.8          |
| ant          | 31.8          | chair             | 19.5          | hammer               | 9.9           | perfume          | 32.8 | soccer ball    | 43.7          |
| antelope     | 53.8          | chime             | 24.6          | hamster              | 46.0          | person           | 41.7 | sofa           | 16.3          |
| apple        | 30.9          | cocktail shaker   | 46.2          | harmonica            | 12.6          | piano            | 20.5 | spatula        | 6.8           |
| armadillo    | 54.0          | coffee maker      | 21.5          | harp                 | 50.4          | pineapple        | 22.6 | squirrel       | 31.3          |
| articho ke   | 45.0          | computer keyboard | 39.6          | hat with a wide brim | 40.5          | ping-pong ball   | 21.0 | starfish       | 45.1          |
| agor         | 11.8          | computer mouse    | 21.2          | head cabbage         | 17.4          | pitcher          | 19.2 | stet hoscope   | 18.3          |
| baby bed     | 42.0          | corkscrew         | 24.2          | helmet               | 33.4          | pizza            | 43.7 | stove          | 8.1           |
| backpack     | 2.8           | cream             | 29.9          | hippopotamus         | 38.0          | plastic bag      | 6.4  | strainer       | 9.9           |
| bagel        | 37.5          | croquet ball      | 30.0          | horizontal bar       | 7.0           | plate rack       | 15.2 | strawberry     | 26.8          |
| balance beam | 32.6          | crutch            | 23.7          | horse                | 41.7          | pomegranate      | 32.0 | stretcher      | 13.2          |
| banana       | 21.9          | cucumber          | 22.8          | hotdog               | 28.7          | popsicle         | 21.2 | sunglasses     | 18.8          |

Figure A.6: Per-class segmentation accuracy Donahue [6]

Table A.3: Project Plan

| Task/Deliverable                     | Deadline |
|--------------------------------------|----------|
| Interim Report                       | 21/12/17 |
| Select method and paper to replicate | 10/01/18 |
| Iteration 1                          | ???      |
| Iteration 2                          | ???      |
| Iteration 3                          | ???      |
| Draft Final Report                   | 08/03/18 |
| FYP Product                          | 10/04/18 |
| FYP Report                           | 17/04/18 |