SVM (Support Vector Machine)

SVM은 N차원을 공간을 (N-1)차원으로 나눌 수 있는 **초평면(Hyperplane)**을 찾는 분류 기법 분류나 회귀 문제를 해결하기 위해 사용 가능(주로 분류에서 사용)

초평면

- 직선: 2차원의 초평면
- 평면: 3차원의 초평면

선형분류

평면 상태에서 초평면에 의해 분류가 가능한 상태

어느 것이 잘 분류한 것인가?

- 어느 한쪽에 치우치지 않게 분류
- 공통되는 빈 공간의 경우에도, 양쪽 데이터와 균등한 위치에 기준을 세움

마진

분류 기준선과 데이터간의 여유거리

SVM 최고의 마진을 가져가는 방법으로 분류기준을 세움

비어 있는 마진이 많아야 새로운 데이터가 투입되어도 분류가 잘 될 가능성이 높다.

장단점

장점

- 범주나 수치 예측에 사용 가능
- 이상치에 영향이 적음
- 과적합이 발생하는 경우가 적음
- SVM 알고리즘이 신경망보다 사용하기 쉽게 구성된 것이 많음.

단점

- 최적의 모델을 찾기 위해서 커널과 모델에 대한 다양한 조합 테스트가 필요.
- 입력 데이터 셋이 클수록 학습속도가 느려질 수 있다.
- 다소 해석이 복잡함

SVM의 일반화 적용

일부 오류를 감안할 것인가? 최적 마진을 목표로 할 것인가?

마진이 넓은 것을 최우선(데이터 일반화)

- 일부 오류가 발생할 수 있음
- 새로 들어오는 데이터에 대해서는 마진이 넓어 잘 분류될 가능성이 높다.

오류 가능성을 최소

- 오류 발생 가능성이 거의 없다
- 새로 들어오는 데이터에 대해서는 마진이 좁아서 분류가 잘못될 수 있다.

비선형 데이터

초평면으로 데이터가 일정하게 나누어져 있지 않은 경우

하나의 직선으로는 분류가 불가능한 형태

〈비선형 데이터의 분류〉

위상 변화를 통한 초평면 분류

데이터의 위상을 변화하여 초평면에 의한 분류가 가능하도록 함.

구별이 가능한 방향으로 Mapping 시키면 새로운 공간 영역으로 변환.

새로 생성된 공간 영역에서는 초평면 분류가 가능해 짐

〈데이터 위상 변환을 통한 분류〉

X,Y 기준의 2차원 평면상에서 선형으로 구분이 불가능한	데이터라면 Mapping 함수를 활용하여 3차원으로 변경