Algorithmik für Schwere Probleme

thgoebel@ethz.ch

ETH Zürich, FS 2021

This documents is a **short** summary for the course *Algorithmik für Schwere Probleme* at ETH Zurich. It is intended as a document for quick lookup, e.g. during revision, and as such does not replace attending the lecture, reading the slides or reading a proper book.

We do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any erratas.

Contents

	Einführung 1.1 Definitionen	3
	Pseudopolynomielle Algorithmen	6
3	Parametrisierte Algorithmen	7
	3.1 Kernbildung	7
	3.2 Suchbäume	7
	3.3 Iterative Kompression	7

1 Einführung

Polynomzeit-Reduzierbarkeit Ein Entscheidungsproblem Π_1 ist "polynomzeit-reduzierbar" auf ein anderes Entscheidungsproblem Π_2 :

 $\iff \exists \text{ Algo } \mathcal{A} \text{ s.t. } \text{time}_{\mathcal{A}} \in \text{poly} \land \Pi_1(x) = \Pi_2(\mathcal{A}(x))$ $\iff \Pi_2 \text{ mindestens so schwer wie } \Pi_1$ $\iff \Pi_1 \text{ h\"ochstens so schwer wie } \Pi_2$

 $\iff \Pi_1 \preceq_P \Pi_2$

NP-schwer (NP-hard) Ein Problem Π das "mindestens so schwer" ist wie alle Probleme in NP. D.h. alle Probleme in NP lassen sich auf Π reduzieren:

$$\forall \Pi' \in NP : \Pi' \preceq_P \Pi$$

 Π muss nicht notwendigerweise in NP liegen (d.h. kann schwerer sein)! Beispiel: das Halteproblem (nicht entscheidbar, daher $\notin NP$).

NP-vollständig (NP-complete) Ein Problem Π, das in NP liegt <u>und</u> NP-schwer ist. "Repräsentativ" für die Menge NP, da sich alle Probleme aus NP darauf reduzieren lassen. Beispiel: Satisfiability-Problem SAT (Satz von Cook).

Figure 1: Mengendiagramm der Beziehungen (Quelle: Wikipedia)

"Schwere Probleme" In dieser Vorlesung: NP-schwere Probleme, aber generell alle Probleme die sich nicht in Polynomzeit lösen lassen. Sinnvollerweise gehen wir davon aus dass $P \neq NP$.

Alle Instanzen unseres Problems sind deterministisch in Polynomzeit nicht lösbar. Mögliche Ansätze:

- a) nicht exakt sondern approximativ lösen (Approximationsalgorithmen)
- b) nicht deterministisch sondern nichtdeterministisch lösen (Randomisierte Algorithmen)
- c) nicht polynomiell sondern moderat exponentiell lösen 1
- d) nicht alle sondern alle Instanzen mit einer bestimmten Struktur lösen (Parametrisierte Algorithmen)

 $^{^{1}}$ D.h. die Basis der Exponentation ist klein, z.B. 1.4^{n} statt 2^{n} .

- e) anderweitig zusätzliche Informationen über die Eingabe nutzen (Reoptimierung, Win-Win-Strategy)
- f) Heuristiken²

1.1 Definitionen

Entscheidungsproblem $P = (L, U, \Sigma)$ wobei

- Σ ein Alphabet
- $U \subseteq \Sigma^*$ die Menge der zulässigen Eingaben (als Wörter über dem Alphabet, als Sprache)
- $L \subseteq U$ die Menge der akzeptierten Eingaben (JA-Instanzen)

Ein Algorithmus \mathcal{A} löst P falls gilt:

$$\forall u \in U : A(x) = \begin{cases} 1 \text{ oder JA, if } x \in L \\ 0 \text{ oder NEIN, if } x \in U - L \end{cases}$$

Vertex Cover Problem VC "Der Hefepilz der parametrisierten Algorithmiker – ein Modellproblem." Eingabe U: ungerichteter Graph G=(V,E) und $k\leq |V|, k\in \mathbb{N}$. Ausgabe L: JA falls $\exists C\subseteq V$ s.t. $|C|\leq k$ mit $\forall \{u,v\}\in E: u\in C \lor v\in V$.

Satisfiability-Problem SAT

Eingabe: CNF-Formel $\Phi = C_1 \wedge \cdots \wedge C_m$ mit Klauseln C_i über Variablen x_1, \dots, x_n . Ausgabe: eine Variablen-Belegung die Φ erfüllt.

Bei l-SAT enthält jede Klausel maximal l Literale.

Optimierungsproblem U = (L, M, cost, goal) wobei

- L die Sprache der zulässigen Eingaben³
- $\mathcal{M}: L \mapsto \Sigma^*$ so dass M(x) die Sprache der akzeptierten Lösungen für Eingabe x
- cost: $\forall x \in L \ \forall y \in M(x) : cost(y, x) = Kosten der Lösung y für Eingabe x$
- $goal \in \{\min, \max\}$ das Optimierungsziel
- $Opt_U(x) = goal\{cost(y, x)|y \in M(x)\}$ die Kosten einer optimalen Lösung für Eingabe x

Minimum Vertex Cover Problem MIN-VC Wie VC, mit $cost(C,G) = |C| = Gr{\"{o}}sse$ des Vertex Covers und goal = min.

MAX-SAT Wie SAT, mit cost = Anzahl belegte Variablen und goal = max.

Laufzeit eines Algorithmus' \mathcal{A} auf Eingabe x ist $\operatorname{time}_{\mathcal{A}}(x)$ wobei $\operatorname{time}_{\mathcal{A}}: \mathbb{N} \to \mathbb{N}$. Die Laufzeit von \mathcal{A} in Abhängigkeit von der Grösse n der Eingabe ist: $\operatorname{time}_{\mathcal{A}}(n) = \max\{\operatorname{time}_{\mathcal{A}}(x) \mid |x| = n, x \in L\}$. Die Laufzeit wird in \mathcal{O} -Notation angegeben.

²Nachteil: Im Gegensatz zu den anderen Ansätzen ist hier die Qualität (Laufzeit, ...) nicht beweisbar.

 $^{^3}$ Oben noch U!

Schwellwertsprache (threshold language) definiert für ein Optimierungsproblem U:

$$Lang_U = \{(x, a) \in L \times \{0, 1\}^* \mid Opt_U(x) \le Number(a)\}$$

wo Number(a) die Zahl mit der Binärdarstellung a (der Schwellwert) ist und goal = min. Beispiel: $Lang_{MIN-VC} = VC$. Aber $Lang_{MAX-SAT} \neq SAT$ (da SAT leichter sein kann)! U heisst "NP-schwer" falls $Lang_U$ NP-schwer ist (warum?).⁴

 $^{^4\}mathrm{Recall}$ that NP-Schwere für Entscheidungsprobleme definiert ist.

2 Pseudopolynomielle Algorithmen

Zahlproblem (integer value problem IVP)

Eingabe: darstellbar als Zahl $x = x_1 \# \dots \# x_n$; $x_i \in \{0,1\}^*$ und interpretiert als Vektor $Int(x) = (Number(x_i), \dots, Number(x_n))$.

Beispiel: Travelling Salesman Problem TSP (via Adjazenzmatrix des Graphen).

Sei $Max - Int(x) = \max\{Number(x_i)\}\$ die grösste vorkommende Zahl (im Wert, nicht in der Darstellung). Max - Int(x) kann exponentiell in |x| sein.

Pseudopolynomiell Sei U ein Zahlproblem und A ein Algorithmus der U löst. A heisst pseudopolynomiell falls für alle Eingaben x ein Polynom p existiert, so dass

$$time_{\mathcal{A}}(x) \in \mathcal{O}(p(|x|, Max - Int(x)))$$

D.h. auf Eingaben mit "kleinen Zahlen" ist \mathcal{A} polynomiell.

Rucksackproblem (Knapsack problem KP)

Eingabe I: Gewichte $w_i \in \mathbb{N}^+$, Kosten/Nutzen $c_i \in \mathbb{N}^+$, Limit/Kapazität $b \in \mathbb{N}^+$, wo $i \in \{1, \ldots, n\}$.

Ausgabe: Indexmenge $T \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in T} \leq b$

Kosten: $cost(T, I) = \sum_{i \in T} c_i$

Ziel: max

Lösung mit DP: Iteration über alle Teilprobleme I_i und Speichern von Tripeln $(k, W_{i,k}, T_{i,k}) = (Nutzen, Gewicht, Indexmenge)$, also Mengen $T_{i,k}$ die exakt Nutzen k mit minimalen Gewicht $W_{i,k}$ erreichen. In jeder Iteration behalte für jeden vorhandenen Nutzen ein Tripel mit minimalen Gewicht. Lese am Ende den maximal erreichten Nutzen k^* (und sein T_{n,k^*}) aus.

Laufzeit: $\mathcal{O}(|I|^2 \cdot Max - Int(I))$ da |I| Iterationen und jeder Schritt in $\leq \sum_{j=1}^{n} c_j = |I| \cdot Max - Int(I)$.

3 Parametrisierte Algorithmen

- 3.1 Kernbildung
- 3.2 Suchbäume
- 3.3 Iterative Kompression