LISTING OF THE CLAIMS (including amendments, if any)

1. (currently amended) A method implemented in a computer system, for clustering a string, the string including a plurality of characters, the method including:

identifying R unique n-grams T_{1 R} in the string;

for every unique n-gram Ts:

if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:

clustering the string with a cluster associated with Ts;

otherwise:

for every other n-gram Tv in the string T1...R, except S:

if <u>concluding that</u> the frequency of n-gram Tv is greater than the first threshold, and in response:

if the frequency of an n-gram pair T_{S} - T_{V} is not greater than a second threshold:

clustering the string with a cluster associated with the n-gram pair $T_{S^{-}}T_{V}$;

otherwise:

for every other n-gram Tx in the string T1...R. except S and y:

clustering the string with a cluster associated with an n-gram triple T_S-T_V-T_X.

otherwise:

do nothing.

where $T_{1...R}$ is a set of n-grams, R is the number of elements in $T_{1...R}$, and T_S , T_V , and T_X are members of $T_{1...R}$.

- 2. (original) The method of claim 1 further including compiling n-gram statistics.
- 3. (original) The method of claim 1 further including compiling n-gram pair statistics.

4. (currently amended) A method implemented in a computer system, for clustering a plurality of strings, each string including a plurality of characters, the method including:

identifying unique n-grams in each string; and

clustering each string with zero or more clusters associated with low frequency ngrams from that string; and

concluding that (a) none of the unique n-grams are low frequency n-grams and that

(b) one or more pairs of high frequency n-grams from the string are low

frequency pairs and, in response, clustering each string with zero one or more

clusters associated with low-frequency pairs of high frequency n-grams from that

string.

5. (currently amended) <u>A The</u> method of claim 4 further including implemented in a computer system, for clustering a plurality of strings, each string including a plurality of characters, the method including:

identifying unique n-grams in each string; and

concluding that (a) none of the unique n-grams are low frequency n-grams and that

(b) no pairs of high frequency n-grams from the string are low frequency
pairs and, in response, where a string does not include any low-frequency
pairs of high frequency n-grams, associating that string with clusters associated
with triples of n-grams including the pair.

1	6. (previously presented) A method implemented in a computer system, for clustering a string,
2	the string including a plurality of characters, the method including:
3	identifying R unique n-grams T _{1R} in the string;
4	for every unique n-gram T _S :
5	if a frequency of T_S in a set of n-gram statistics is not greater than a first threshold:
6	clustering the string with a cluster associated with Ts;
7	otherwise:
8	for $i = 1$ to Y:
9	for every unique set of i n-grams T_U in the string $T_{1\dots R,\;\text{except}}s$:
0	if the frequency of the n-gram set T _S -T _U is not greater than a second
1	threshold:
2	clustering the string with a cluster associated with the n-gram set
3	T_{S} - T_{U} ;
4	if the string has not been associated with a cluster with this value of T _S :
5	for every unique set of Y+1 n-grams T_{UY} in the string $T_{1R,\;except\;S}$:
6	clustering the string with a cluster associated with the Y+2 n-gram
7	group T_S - T_{UY} ,
8	where $T_{1\dots R}$ is a set of n-grams, R is the number of elements in $T_{1\dots R}$, T_S and T_U are

members of $T_{1...R}$, T_{UY} is a subset of $T_{1...R}$, and i and Y are integers.

1

1 1 1

19

- 7. (original) The method of claim 6 where Y = 1.
- 8. (original) The method of claim 6 further including compiling n-gram statistics.
- 9. (original) The method of claim 6 further including compiling n-gram group statistics.
- 10. (currently amended) A computer program, stored on a tangible storage medium, for use in clustering a string, the program including executable instructions that cause a computer to:
 - identify R unique n-grams T1...R in the string;

for every unique n-gram Ts:

if a frequency of T_s in a set of n-gram statistics is not greater than a first threshold: cluster the string with a cluster associated with T_s ;

otherwise:

for every other n-gram Tv in the string T1...R, except S:

- if <u>concluding that</u> the frequency of n-gram T_V is greater than the first threshold, <u>and in response</u>:
 - if the frequency of an n-gram pair $T_S\text{-}T_V$ is not greater than a second threshold:

otherwise

for every other n-gram T_X in the string $T_{1...R,\; except \, S \; and \; V}$:

cluster the string with a cluster associated with an n-gram triple $T_S \cdot T_V \cdot T_X$;

otherwise:

do nothing.

where $T_{L..R}$ is a set of n-grams, R is the number of elements in $T_{L..R.}$ and T_S , T_V , and T_X are members of $T_{L..R.}$.

- 11. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram statistics.
- 12. (original) The computer program of claim 10 further including executable instructions that cause a computer to compile n-gram pair statistics.