Heart Disease Diagnostic Analysis

INDRODUCTION

Health is real wealth in the pandemic time we all realized the brute effects of covid-19 on all irrespective of any status. You are required to analyze this health and medical data for better future preparation.

```
import numpy as np
In [1]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          %matplotlib inline
          import plotly.express as px
In [2]:
         # Read the File
          df=pd.read_csv('processed_cleveland.csv')
          df
Out[2]:
                    sex cp trestbps chol fbs restecg thalach exang
                                                                          oldpeak slope
                                                                                             thal
               age
                                                                                         ca
            0
                63
                      1
                          1
                                  145
                                       233
                                              1
                                                       2
                                                              150
                                                                       0
                                                                               2.3
                                                                                       3
                                                                                           0
                                                                                                 6
                                                                                                       0
                                  160
                                       286
                                              0
                                                              108
                                                                               1.5
                                                                                       2
                                                                                           3
                                                                                                 3
                                                                                                       2
                67
            2
                                  120
                                       229
                                              0
                                                       2
                                                              129
                                                                                           2
                                                                                                 7
                                                                                                       1
                67
                      1
                                                                       1
                                                                               2.6
                                                                                       2
                                                              187
                                                                                                       0
                37
                                  130
                                       250
                                              0
                                                                               3.5
                41
                          2
                                  130
                                       204
                                              0
                                                       2
                                                              172
                                                                       0
                                                                               1.4
                                                                                                 3
                                                                                                       0
                      0
          298
                45
                      1
                                  110
                                       264
                                              0
                                                       0
                                                              132
                                                                       0
                                                                               1.2
                                                                                       2
                                                                                                 7
                                                                                                       1
          299
                68
                                  144
                                       193
                                                              141
                                                                       0
                                                                               3.4
                                                                                                       2
                                                                                                 7
          300
                57
                      1
                                  130
                                       131
                                              0
                                                       0
                                                              115
                                                                       1
                                                                               1.2
                                                                                           1
                                                                                                       3
          301
                57
                                  130
                                       236
                                              0
                                                              174
                                                                       0
                                                                               0.0
                                                                                                 3
                                                                                                       1
                                                       0
                                                                       0
                                                                                           ?
                                                                                                 3
                                                                                                       0
          302
                38
                          3
                                  138
                                       175
                                              0
                                                              173
                                                                               0.0
                                                                                       1
```

303 rows × 14 columns

There are Fourteen Features in this dataset

```
age: age in years
         sex: sex (1 = male; 0 = female)
         cp: chest pain type
         Value 1: typical angina Value 2: atypical angina Value 3: non-anginal pain Value 4: asymptomatic
         trestbps: resting blood pressure (in mm Hg on admission to the hospital)
         chol: serum cholestoral in mg/dl
         fbs: fasting blood sugar > 120 \text{ mg/dl} (1 = true; 0 = false)
         restecg: resting electrocardiographic results Value 0: normal Value 1: having ST-T wave
         abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) Value 2:
         showing probable or definite left ventricular hypertrophy by Estes' criteria
         thalach: maximum heart rate achieved
         exang: exercise induced angina (1 = yes; 0 = no)
         oldpeak: ST depression induced by exercise relative to rest
         slope: the slope of the peak exercise ST segment Value 1: upsloping Value 2: flat Value 3:
         downsloping
         ca: number of major vessels (0-3) colored by flourosopy (for calcification of vessels)
         thal: results of nuclear stress test (3 = normal; 6 = fixed defect; 7 = reversable defect)
         num: Heart disease Value 0: NO Value 1: Yes
In [4]: #find the missing values
         df.isnull().sum()
                       0
         age
         sex
                       0
         ср
         trestbps
                       0
         chol
         fbs
                       0
         restecg
         thalach
                       0
         exang
                       0
         oldpeak
```

Out[4]:

0

0

slope ca

thal num

dtype: int64

There is no missing value.

```
df.dtypes
 In [5]:
                        int64
 Out[5]:
         sex
                        int64
                        int64
         ср
         trestbps
                        int64
         chol
                        int64
         fbs
                        int64
                        int64
         restecg
         thalach
                        int64
         exang
                        int64
         oldpeak
                      float64
                        int64
         slope
                       object
         ca
         thal
                       object
         num
                        int64
         dtype: object
 In [6]: df.groupby('num').size()
         num
 Out[6]:
               164
         1
               55
         2
                36
         3
                35
               13
         dtype: int64
         #Changing the variable
 In [7]:
         df['num']=df['num'].replace([2,3,4],1)
 In [8]: df.groupby('num').size()
         num
 Out[8]:
              164
              139
         dtype: int64
         #Converting numberical variable into categorical
          def heart_disease(row):
              if row==0:
                  return 'Absence'
              elif row==1:
                  return 'Presence'
         df['heart_disease'] = df['num'].apply(heart_disease)
In [10]:
          df.head()
```

```
age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal num heart_
Out[10]:
                                   233
                                         1
                                                 2
                                                       150
                                                                0
                                                                       2.3
                                                                                  0
                                                                                       6
                                                                                             0
          0
              63
                   1
                       1
                              145
                                                                               3
                                                                                                    F
          1
              67
                   1
                       4
                              160
                                   286
                                         0
                                                 2
                                                       108
                                                                1
                                                                       1.5
                                                                               2
                                                                                  3
                                                                                       3
                                                                                             1
                                                                                                    P
          2
              67
                   1
                       4
                              120
                                   229
                                         0
                                                 2
                                                       129
                                                                1
                                                                       2.6
                                                                               2
                                                                                  2
                                                                                       7
                                                                                             1
                                                                                                    Ρ
                                                       187
                                                 0
                                                                0
          3
              37
                   1
                       3
                              130
                                   250
                                         0
                                                                       3.5
                                                                               3
                                                                                  0
                                                                                       3
                                                                                             0
          4
              41
                   0
                       2
                              130
                                   204
                                         0
                                                 2
                                                       172
                                                                0
                                                                       1.4
                                                                               1
                                                                                  0
                                                                                       3
                                                                                             0
                                                                                                    F
          df.columns
In [11]:
          Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
Out[11]:
                 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'num', 'heart_disease'],
                dtype='object')
          heart_name=df.heart_disease.value_counts().index
In [12]:
          heart name
          Index(['Absence', 'Presence'], dtype='object')
Out[12]:
          heart_Val=df.heart_disease.value_counts().values
In [13]:
          heart_Val
          array([164, 139], dtype=int64)
Out[13]:
In [14]:
          #Creating Pie chart proportion of patients with and without heart disease
          plt.pie(heart Val,labels=heart name,autopct='%1.2f%%')
          plt.title('Heart Disease in Population')
          Text(0.5, 1.0, 'Heart Disease in Population')
Out[14]:
```

Heart Disease in Population

The People having Heart Disease Absence are 54.13%. The People Having Heart Disease Presence are 45.87%.

```
#Coverting the numercial Variable into Catogerical
In [15]:
          def Gender(row):
              if row==0:
                   return 'Female'
              elif row==1:
                   return 'Male'
          df['Gender'] = df['sex'].apply(Gender)
In [16]:
          df.head()
Out[16]:
             age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal num heart_
          0
              63
                              145
                                   233
                                          1
                                                  2
                                                        150
                                                                0
                                                                        2.3
                                                                                  0
                                                                                        6
                                                                                              0
                                                                                                     F
                   1
                       1
                                                                               3
          1
                              160
                                   286
                                         0
                                                  2
                                                        108
                                                                        1.5
                                                                               2
                                                                                  3
              67
                   1
                                   229
                                                 2
                                                       129
                                                                        2.6
                                                                                                     Ρ
          2
              67
                   1
                       4
                              120
                                         0
                                                                1
                                                                               2
                                                                                  2
                                                                                        7
                                                                                              1
                                                        187
                                                                        3.5
          3
              37
                       3
                              130
                                   250
                                         0
                                                  0
                                                                0
                                                                               3
                                                                                  0
              41
                   0
                       2
                              130
                                   204
                                         0
                                                  2
                                                        172
                                                                0
                                                                        1.4
                                                                               1
                                                                                  0
                                                                                        3
                                                                                              0
In [17]:
          Gender_name=df.Gender.value_counts().index
          Gender_name
          Index(['Male', 'Female'], dtype='object')
Out[17]:
```

```
In [18]: Gender_val=df.Gender.value_counts().values
Gender_val

Out[18]: array([206, 97], dtype=int64)

In [19]: #Creating Pie chart gender propertion of the Patients
    plt.pie(Gender_val,labels=Gender_name,autopct='%1.2f%%',colors=[ 'cornflowerblue', 'go plt.title('Gender Proportion of Population')

Out[19]: Text(0.5, 1.0, 'Gender Proportion of Population')
```

Gender Proportion of Population

The number of the Male are 67.99%. The number of the Female are 32.01%.

```
In [20]: #Coverting the numercial Variable into Catogerical
    def Chest_Pain(row):
        if row==1:
            return 'typical angina'
        if row==2:
            return 'atypical angina'
        if row==3:
            return 'non-anginal'
        elif row==4:
            return 'asymptomatic'
In [21]: df['Chest_Pain'] = df['cp'].apply(Chest_Pain)
    df.tail()
```

Out[21]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num	hea
	298	45	1	1	110	264	0	0	132	0	1.2	2	0	7	1	
	299	68	1	4	144	193	1	0	141	0	3.4	2	2	7	1	
	300	57	1	4	130	131	0	0	115	1	1.2	2	1	7	1	
	301	57	0	2	130	236	0	2	174	0	0.0	2	1	3	1	
	302	38	1	3	138	175	0	0	173	0	0.0	1	?	3	0	
4																•
In [22]:	<pre>Chest_name=df.Chest_Pain.value_counts().index Chest_name</pre>															
Out[22]:	<pre>Index(['asymptomatic', 'non-anginal', 'atypical angina', 'typical angina'], dtype='ob ject')</pre>															'ob
In [23]:		st_va st_va		. Che	st_Pain.	value	_cou	nts().va	alues							
Out[23]:	arra	y([14	44,	86,	50, 2	3], d [.]	type	=int64)								
In [24]:			_		art prop 1,labels		-			•		ns.col	or p	alett	te('Se	et2')

Out[24]: Text(0.5, 1.0, 'Chest Pain in Population')

plt.title('Chest Pain in Population')

Chest Pain in Population

We have asymptomatic individual of 47.52% does not show any signs of illness or experience any noticeable symptoms associated with a Chest pain. We Have non-angina individual of

28.38% chest pain in people without heart disease. we have atypical angina of 16.50% chest pain caused by reduced blood flow to the heart muscle due to narrowed or blocked coronary arteries. we have typical angina of 7.59% pain is usually described as a tightness, pressure, squeezing, or burning sensation in the chest.

```
In [25]:
          #Coverting the numercial Variable into Catogerical
          def Fasting_blood_sugar(row):
              if row==0:
                  return 'False'
              elif row==1:
                  return 'True'
          df['Fasting_blood_sugar']=df['fbs'].apply(Fasting_blood_sugar)
In [26]:
          df.head()
                                  chol fbs restecg thalach exang oldpeak slope ca thal num heart_
Out[26]:
             age sex
                      cp trestbps
          0
              63
                   1
                       1
                              145
                                   233
                                         1
                                                 2
                                                       150
                                                                0
                                                                       2.3
                                                                               3
                                                                                  0
                                                                                        6
                                                                                             0
                                                                                                     F
                                                 2
                                                                                                    P
          1
              67
                   1
                       4
                              160
                                   286
                                         0
                                                       108
                                                                1
                                                                       1.5
                                                                               2
                                                                                  3
                                                                                                    Ρ
          2
              67
                       4
                              120
                                   229
                                         0
                                                 2
                                                       129
                                                                1
                                                                       2.6
                                                                               2
                                                                                  2
                                                                                        7
                                                                                             1
                   1
                                   250
                                                 0
                                                       187
                                                                0
          3
              37
                       3
                              130
                                         0
                                                                       3.5
                                                                               3
                                                                                  0
                                                                                        3
                                                                                             0
                                                 2
                       2
                                   204
                                         0
                                                       172
                                                                0
                                                                                  0
                                                                                        3
                                                                                             0
                                                                                                     F
              41
                              130
                                                                       1.4
                                                                               1
          fbs_name=df.Fasting_blood_sugar.value_counts().index
In [27]:
          fbs name
          Index(['False', 'True'], dtype='object')
Out[27]:
In [28]:
          fbs_val=df.Fasting_blood_sugar.value_counts().values
          fbs val
          array([258, 45], dtype=int64)
Out[28]:
          #Creating Pie chart proportion of patients with Fasting blood Sugar
In [29]:
          plt.pie(fbs val,labels=fbs name,autopct='%1.2f%%',colors=['tomato', 'cornflowerblue',
          plt.title('People with Fasting blood sugar')
          Text(0.5, 1.0, 'People with Fasting blood sugar')
Out[29]:
```

People with Fasting blood sugar

The people with not fasting blood sugar are 85.15% they do not have Fasting blood sugar which is less than 120 mg/dl The people are fasting with blood sugar are 14.85%. which is greater than 120 mg/dl blood sugar levels is crucial as high blood sugar can contribute to inflammation, endothelial dysfunction, and an increased risk of cardiovascular events.

```
In [30]: # Age dirtribution in heart disease
Age_dis=sns.histplot(data=df ,x='age',bins=8,kde=True,color='purple')
Age_dis.set_xlabel('Age',fontweight='bold')
Age_dis.set_ylabel('count',fontweight='bold')
Age_dis.set_title('Age distibution',fontweight='heavy',size='xx-large',y=1.03)
plt.show()
```

Age distibution

The potential age groups of 51-65 that are more prone to heart disease.

```
In [31]: #Resting blood pressure Distribution
    res_dis=sns.histplot(data=df ,x='trestbps',bins=8,kde=True,color='red')
    res_dis.set_xlabel('trestbps',fontweight='bold')
    res_dis.set_ylabel('count',fontweight='bold')
    res_dis.set_title('Resting Blood Pressure Distribution',fontweight='heavy',size='xx-laplt.show()
```

Resting Blood Pressure Distribution

The Resting blood pressure in heart disease more likely 110-140 mm hg

```
In [32]: # Serum Cholesterol Distribution
    ser_dis=sns.histplot(data=df ,x='chol',bins=8,kde=True,color='yellow')
    ser_dis.set_xlabel('chol',fontweight='bold')
    ser_dis.set_ylabel('count',fontweight='bold')
    ser_dis.set_title('Serum Cholesterol Distribution',fontweight='heavy',size='xx-large',plt.show()
```

Serum Cholesterol Distribution

The serum Cholesterol in heart disease more likely 200-300 mg/dl

```
In [33]: # maximum heart rate achieved distribution
    ser_dis=sns.histplot(data=df ,x='thalach',bins=8,kde=True,color='blue')
    ser_dis.set_xlabel('thalach',fontweight='bold')
    ser_dis.set_ylabel('count',fontweight='bold')
    ser_dis.set_title('Maximum heart rate achieved Distribution',fontweight='heavy',size='plt.show()
```

Maximum heart rate achieved Distribution

The maximum Heart rate achieved in heart disease is 140-180

```
In [34]: # Barplot in Presence of heart disease in gender
Presence=sns.barplot(data=df ,x='Gender',y='num',palette="Set2")
Presence.set_xlabel('Sex',fontweight='bold')
Presence.set_ylabel('Heart disease',fontweight='bold')
Presence.set_title('Presence of heart disease in gender',fontweight='heavy',size='xx-]
Presence.bar_label(Presence.containers[0])
plt.show()
```

Presence of heart disease in gender

We can see that Male has high prone to heart disease.

```
In [35]: #Bar plot of Chest Pain Type and Presence of Heart Disease
Presence=sns.barplot(data=df ,x='Chest_Pain',y='num')
Presence.set_xlabel('Chest Pain',fontweight='bold')
Presence.set_ylabel('Heart disease',fontweight='bold')
Presence.set_title('Chest Pain Type and Presence of Heart Disease',fontweight='heavy',Presence.bar_label(Presence.containers[0])
plt.show()
```

Chest Pain Type and Presence of Heart Disease

The asymptomatic type of the chest pain is highly present in heart disease

```
In [36]: #Bar plot of Fasting Blood Sugar and Presence of Heart Disease
Presence=sns.barplot(data=df ,x='Fasting_blood_sugar',y='num',palette="Spectral")
Presence.set_xlabel('Fasting blood sugar',fontweight='bold')
Presence.set_ylabel('Heart disease',fontweight='bold')
Presence.set_title('Fasting Blood Sugar and Presence of Heart Disease',fontweight='heart Presence.bar_label(Presence.containers[0])
plt.show()
```

Fasting Blood Sugar and Presence of Heart Disease

The Fasting blood sugar is more high in heart Disease .

In [37]:	df	.hea	d()													
Out[37]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num	heart_
	0	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0	F
	1	67	1	4	160	286	0	2	108	1	1.5	2	3	3	1	Р
	2	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1	Р
	3	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0	F
	4	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0	ļ
1																•
In [38]:	df	['th	al']=	df['thal'].	repla	ce("	?",'7')								
In [39]:	<pre>def Thal_mai(number): replacements = {'3': 'normal', '6': 'fixed defect', '7': 'reversible defect'} if number in replacements: return replacements[number] else: return number</pre>															
In [40]:		['Th		ai']	=df['tha	l'].a	pply	(Thal_ma	ni)							

Out[40]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num	heart_
	0	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0	1
	1	67	1	4	160	286	0	2	108	1	1.5	2	3	3	1	Р
	2	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1	Р
	3	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0	ļ
	4	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0	1

```
In [41]: #Bar plot of Thalassemia and Presence of Heart Disease
Presence=sns.barplot(data=df ,x='Thal_mai',y='num',palette="flare")
Presence.set_xlabel('thal',fontweight='bold')
Presence.set_ylabel('Heart disease',fontweight='bold')
Presence.set_title('Thalassemia and Presence of Heart Disease',fontweight='heavy',size
Presence.bar_label(Presence.containers[0])
plt.show()
```

Thalassemia and Presence of Heart Disease

The Thalassemia and Presence of Heart Disease is more high in reversible defect

```
In [42]: # Calculate the correlation matrix
numerical_columns = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
```

```
correlation_matrix = df[numerical_columns].corr()
correlation_matrix.style.background_gradient(cmap='summer')
```

Out[42]:

age	trestbps	chol	thalach	oldpeak
1.000000	0.284946	0.208950	-0.393806	0.203805
0.284946	1.000000	0.130120	-0.045351	0.189171
0.208950	0.130120	1.000000	-0.003432	0.046564
-0.393806	-0.045351	-0.003432	1.000000	-0.343085
0.203805	0.189171	0.046564	-0.343085	1.000000
	1.000000 0.284946 0.208950 -0.393806	1.000000 0.284946 0.284946 1.000000 0.208950 0.130120 -0.393806 -0.045351	1.000000 0.284946 0.208950 0.284946 1.000000 0.130120 0.208950 0.130120 1.000000 -0.393806 -0.045351 -0.003432	1.000000 0.284946 0.208950 -0.393806 0.284946 1.000000 0.130120 -0.045351 0.208950 0.130120 1.000000 -0.003432 -0.393806 -0.045351 -0.003432 1.000000

In [43]:

```
heat=sns.heatmap(data=correlation_matrix)
heat.set_title('Heatmap',fontweight='bold')
plt.show()
```


Age and Maximum Heart Rate (thalach): There is a negative correlation (-0.39) between age and maximum heart rate achieved (thalach). As age increases, the maximum heart rate achieved tends to decrease.

Age and Resting Blood Pressure (trestbps): There is a positive correlation (0.28) between age and resting blood pressure (trestbps). As age increases, the resting blood pressure tends to be higher.

Age and Serum Cholesterol Level (chol): There is a positive correlation (0.21) between age and serum cholesterol level (chol). As age increases, the serum cholesterol level tends to be higher.

Maximum Heart Rate (thalach) and Oldpeak: There is a negative correlation (-0.34) between maximum heart rate achieved (thalach) and the ST depression induced by exercise relative to rest (oldpeak). As the maximum heart rate achieved increases, the ST depression tends to decrease.

In [44]:	df	hea	d()													
Out[44]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num	heart_
	0	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0	ļ
	1	67	1	4	160	286	0	2	108	1	1.5	2	3	3	1	Р
	2	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1	Р
	3	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0	ļ
	4	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0	ļ
4																•
In [45]:	pl	.ot_d	ata =	df	.groupby	(['ag	e',	'Chest_F	Pain', '	trestbp	os', 'cho	ol', '	fbs'	, 're	estecg	', 'th
	<pre>fig = px.line(plot_data, x='age', y='Gender', color='Chest_Pain') fig.update_layout(title_text='Heart Disease Risk Factors',</pre>															

height=500, width=1000)

fig.show()

The Youngest age is 29 male with the chest Pain type atypical angina. The oldest age is 77 male with the chest pain type asymptomatic.

```
In [46]: # Scatter plot Age vs. Maximum Heart Rate (thalach)
x = df['age']
y = df['thalach']
plt.scatter(x, y)
plt.xlabel('Age')
plt.ylabel('Maximum Heart Rate (thalach)')
plt.title('Age vs. Maximum Heart Rate')
plt.show()
```

Age vs. Maximum Heart Rate

The lowest heart rate is 80-100 in the Age range of 55-70 The highest heart rate is 160-200 in the Age range of 30-45

```
In [47]: # Scatterplot Resting Blood Pressure (trestbps) vs. Serum Cholesterol Level (chol)
x = df['trestbps']
y = df['chol']
plt.scatter(x, y,color='red')
plt.xlabel('Resting Blood Pressure (trestbps)')
plt.ylabel('Serum Cholesterol Level (chol)')
plt.title('Resting Blood Pressure (trestbps) vs. Serum Cholesterol Level (chol)')
plt.show()
```

Resting Blood Pressure (trestbps) vs. Serum Cholesterol Level (chol)

The highest cholersterrol level between 500-600 mg/dl with the Resting blood Pressure between 100-120 mm hg The lowest cholersterrol level between 100-200 mg/dl with the Resting blood Pressure between 100-160 mm hg

```
In [48]: # Scatterplot Maximum Heart Rate (thalach) vs. ST Depression (oldpeak)
x = df['thalach']
y = df['oldpeak']
plt.scatter(x, y,color='blue')
plt.xlabel('Maximum Heart Rate (thalach)')
plt.ylabel('ST Depression (oldpeak)')
plt.title('Maximum Heart Rate (thalach) vs. ST Depression (oldpeak)')
plt.show()
```

Maximum Heart Rate (thalach) vs. ST Depression (oldpeak)

The ST depression is 0 with the maximum heart rate of 100-200 The ST depression is 5-6 with the maximum heart rate of 100-160

```
In [49]: #Scatter plot Age vs. Serum Cholesterol Level (chol)
    x = df['age']
    y = df['chol']
    plt.scatter(x, y,color='yellow')
    plt.xlabel('Age')
    plt.ylabel('Serum Cholesterol Level (chol)')
    plt.title('Age vs. Serum Cholesterol Level (chol)')
    plt.show()
```

Age vs. Serum Cholesterol Level (chol)

The sernum cholestrol level is high 300-500 mg/dl in the age range of 50-70 The sernum cholestrol level is low 100-200 mg/dl in the age range of 40-70

```
In [50]: # Count plot Based on heart disease in Gender
  plt.figure(figsize=(7,5))
  sns.countplot(x=df['heart_disease'],hue='Gender',data=df,palette='BuGn_r')
  plt.xlabel('Heart_disease',fontsize=15)
  plt.ylabel('count',fontsize=15)
  plt.title('Heart_disease based on Gender')
  plt.show()
```

Heart disease based on Gender


```
In [51]: # Count plot Based on chest pain in heart disease
plt.figure(figsize=(7,5))
sns.countplot(x=df['heart_disease'],hue='Chest_Pain',data=df)
plt.xlabel('Heart_disease',fontsize=15)
plt.ylabel('count',fontsize=15)
plt.title('chest pain in heart disease')
plt.show()
```

chest pain in heart disease

The chest pain experience in the heart disease is more likly asymptomatic. Asymptomatic means there are no symptoms. You are considered asymptomatic if you: Have recovered from an illness or condition and no longer have symptoms of that illness or condition.

```
In [52]: # Count plot Based on chest pain in gender
plt.figure(figsize=(7,5))
sns.countplot(x=df['Gender'],hue='Chest_Pain',data=df)
plt.xlabel('Chest Pain',fontsize=15)
plt.ylabel('count',fontsize=15)
plt.title('chest pain in Gender')
plt.show()
```


The asymptomatic chest pain is occurs mostly in male.

```
df.head()
In [53]:
Out[53]:
             age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal num heart_
                                                   2
                                                                  0
                                                                                                0
          0
              63
                    1
                               145
                                    233
                                                         150
                                                                          2.3
                                                                                  3
                                                                                     0
                                                                                           6
                                                                                                        F
                                                                          1.5
              67
                        4
                               160
                                    286
                                                         108
                                                                                  2
                                                                                     3
                                    229
          2
                                           0
                                                   2
                                                         129
                                                                  1
                                                                          2.6
                                                                                           7
                                                                                                        Ρ
              67
                    1
                        4
                               120
                                                                                  2
                                                                                     2
                                                                                                1
              37
                        3
                               130
                                    250
                                           0
                                                         187
                                                                  0
                                                                          3.5
                                                                                  3
                                                                                    0
          3
                                                   2
                                                                                           3
                                                                                                        F
                        2
                               130
                                    204
                                           0
                                                         172
                                                                  0
                                                                          1.4
                                                                                  1
                                                                                     0
                                                                                                0
              41
In [54]:
          #converting numercial variable into catogerical
          def angina(row):
               if row==1:
                   return 'yes'
               elif row==0:
                   return 'no'
          df['angina']=df['exang'].apply(angina)
In [55]:
          df.tail()
```

Out[55]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num	hea
	298	45	1	1	110	264	0	0	132	0	1.2	2	0	7	1	
	299	68	1	4	144	193	1	0	141	0	3.4	2	2	7	1	
	300	57	1	4	130	131	0	0	115	1	1.2	2	1	7	1	
	301	57	0	2	130	236	0	2	174	0	0.0	2	1	3	1	
	302	38	1	3	138	175	0	0	173	0	0.0	1	?	3	0	

```
In [56]: # barplot based on Exercise-induced Angina (exang) in heart disease :
    Presence=sns.barplot(data=df ,x='angina',y='num',palette='pastel')
    Presence.set_xlabel('Exercise-induced Angina',fontweight='bold')
    Presence.set_ylabel('Heart disease',fontweight='bold')
    Presence.set_title('Exercise-induced Angina (exang) in heart disease',fontweight='heav
    Presence.bar_label(Presence.containers[0])
    plt.show()
```

Exercise-induced Angina (exang) in heart disease

exang is the exercise induced angina which record pain and no pain when there is a heart disease That translates into chest pain or tightness — called angina — when those patients exercise or experience emotional stress, because their body is trying to pump more blood, but can't do so effectively through such a restricted space. When patients rest, though, the pain goes away.

```
In [57]: # Barplot in Exercise-induced Angina (exang) in Gender

Presence=sns.barplot(data=df ,x='Gender',y='exang',palette='dark')
Presence.set_xlabel('Gender',fontweight='bold')
Presence.set_ylabel('Exercise-induced Angina (exang)',fontweight='bold')
Presence.set_title('Exercise-induced Angina (exang) in Gender',fontweight='heavy',size(Presence.bar_label(Presence.containers[0])
plt.show()
```

Exercise-induced Angina (exang) in Gender

The exercise induced angina is high in male that least when those patients exercise or experience emotional stress.

```
In [58]: # barplot on resting blood pressure Vs heart disease
Presence=sns.barplot(data=df ,x='heart_disease',y='trestbps')
Presence.set_xlabel('Heart disease',fontweight='bold')
Presence.set_ylabel('Resting Blood pressure',fontweight='bold')
Presence.set_title('Resting blood pressure Vs heart disease',fontweight='heavy',size='Presence.bar_label(Presence.containers[0])
plt.show()
```

Resting blood pressure Vs heart disease

The blood pressure is more high in heart disease.

```
In [59]: # barplot on resting blood pressure Vs Gender
Presence=sns.barplot(data=df ,x='Gender',y='trestbps',palette='plasma')
Presence.set_xlabel('Gender',fontweight='bold')
Presence.set_ylabel('Resting Blood pressure',fontweight='bold')
Presence.set_title('Resting blood pressure Vs Gender',fontweight='heavy',size='xx-large Presence.bar_label(Presence.containers[0])
plt.show()
```

Resting blood pressure Vs Gender

The blood pressure is most equal in male and female.

```
In [60]: # barplot on Serum Cholesterol Vs Gender
Presence=sns.barplot(data=df ,x='Gender',y='chol',palette='turbo')
Presence.set_xlabel('Gender',fontweight='bold')
Presence.set_ylabel('Serum Cholesterol',fontweight='bold')
Presence.set_title('Serum Cholesterol Vs Gender',fontweight='heavy',size='xx-large',y=Presence.bar_label(Presence.containers[0])
plt.show()
```

Serum Cholesterol Vs Gender

The cholesterol level is high in female as compared to male

```
In [61]: # barplot on Serum Cholesterol Vs heart disease

Presence=sns.barplot(data=df ,x='heart_disease',y='chol',palette='ocean_r')

Presence.set_xlabel('heart disease',fontweight='bold')

Presence.set_ylabel('Serum Cholesterol',fontweight='bold')

Presence.set_title('Serum Cholesterol Vs heart disease',fontweight='heavy',size='xx-lapresence.bar_label(Presence.containers[0])

plt.show()
```

Serum Cholesterol Vs heart disease

The Cholesterol is highly risk factor which can lead to heart disease.

```
In [62]: # lineplot on Serum Cholesterol Vs Age
Presence=sns.lineplot(data=df ,x='age',y='chol',color='r')
Presence.set_xlabel('Age',fontweight='bold')
Presence.set_ylabel('Serum Cholesterol',fontweight='bold')
Presence.set_title('Serum Cholesterol Vs Age',fontweight='heavy',size='xx-large',y=1.6
plt.show()
```

Serum Cholesterol Vs Age

The cholesterol level is increase at the age of 50-60 and then continue the same pattern

```
In [63]: # lineplot on Resting blood pressure Vs Age
Presence=sns.lineplot(data=df ,x='age',y='trestbps',color='b')
Presence.set_xlabel('Age',fontweight='bold')
Presence.set_ylabel('Resting blood pressure',fontweight='bold')
Presence.set_title('Resting blood pressure Vs Age',fontweight='heavy',size='xx-large',plt.show()
```

Resting blood pressure Vs Age

The blood pressure is increase at the age of 50-65 and then continue the same pattern.

```
In [64]: # lineplot on ST depression Vs Age
Presence=sns.lineplot(data=df ,x='age',y='oldpeak',color='g')
Presence.set_xlabel('Age',fontweight='bold')
Presence.set_ylabel('ST depression',fontweight='bold')
Presence.set_title('ST depression Vs Age',fontweight='heavy',size='xx-large',y=1.03)
plt.show()
```

ST depression Vs Age

We can see that ST depression is increase suddenly at the age of 30-40. An ST depression can be an outcome of an electrocardiogram (ECG) test. It can indicate health conditions like hypokalemia, myocardial ischemia, or a side effect of medications

```
In [65]: # barplot on ST Depression Vs heart disease
Presence=sns.barplot(data=df ,x='heart_disease',y='oldpeak',palette='ocean_r')
Presence.set_xlabel('heart disease',fontweight='bold')
Presence.set_ylabel('ST Depression',fontweight='bold')
Presence.set_title('ST Depression Vs heart disease',fontweight='heavy',size='xx-large'
Presence.bar_label(Presence.containers[0])
plt.show()
```

ST Depression Vs heart disease

The ST Depression is highly present in heart disease.

```
In [66]: # barplot on ST Depression Vs gender
Presence=sns.barplot(data=df ,x='Gender',y='oldpeak',palette='twilight_r')
Presence.set_xlabel('Gender',fontweight='bold')
Presence.set_ylabel('ST Depression',fontweight='bold')
Presence.set_title('ST Depression Vs Gender',fontweight='heavy',size='xx-large',y=1.03
Presence.bar_label(Presence.containers[0])
plt.show()
```

ST Depression Vs Gender

The ST depression is more in male .

elif row==3:

return 'downsloping'

In [67]:	df	.hea	d()													
Out[67]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num	heart_
	0	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0	ļ
	1	67	1	4	160	286	0	2	108	1	1.5	2	3	3	1	Р
	2	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1	Р
	3	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0	F
	4	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0	ļ
																•
In [68]:	de	<pre>def ST_segment(row): if row==1: return 'upsloping' if row==2: return 'flat'</pre>														

In [69]:		<pre>df['ST_segment']=df['slope'].apply(ST_segment) df.head()</pre>														
Out[69]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	•••	ca	thal	num	heart_dise
	0	63	1	1	145	233	1	2	150	0	2.3		0	6	0	Abse
	1	67	1	4	160	286	0	2	108	1	1.5		3	3	1	Prese
	2	67	1	4	120	229	0	2	129	1	2.6		2	7	1	Prese
	3	37	1	3	130	250	0	0	187	0	3.5		0	3	0	Abse
	4	41	0	2	130	204	0	2	172	0	1.4		0	3	0	Abse

5 rows × 21 columns

```
In [70]: # barplot on ST segment Vs heart disease
Presence=sns.barplot(data=df ,x='ST_segment',y='num',palette='twilight_r')
Presence.set_xlabel('Slope',fontweight='bold')
Presence.set_ylabel('Heart disease',fontweight='bold')
Presence.set_title('ST segment Vs heart disease',fontweight='heavy',size='xx-large',y=Presence.bar_label(Presence.containers[0])
plt.show()
```

ST segment Vs heart disease

We see that in ST segment Flat excerice is highly visible throught out heart disease The ST segment shift relative to exercise-induced increments in heart rate, the ST/heart rate slope (ST/HR slope), has been proposed as a more accurate ECG criterion for diagnosing significant coronary artery disease (CAD).

```
#Converting numercial value into categorical
In [71]:
          def age_category(row):
               if row>=29 and row<40:
                   return 'Young age'
               elif row>=40 and row<55:</pre>
                   return 'Middle age'
               elif row>55:
                   return 'Elder age'
          df['age_category']=df['age'].apply(age_category)
In [72]:
          df.tail()
               age sex cp trestbps chol fbs restecg thalach exang oldpeak ... thal num heart_diseas
Out[72]:
          298
                45
                      1
                         1
                                 110
                                      264
                                             0
                                                     0
                                                           132
                                                                    0
                                                                            1.2 ...
                                                                                     7
                                                                                           1
                                                                                                   Present
          299
                68
                      1
                                 144
                                      193
                                             1
                                                     0
                                                           141
                                                                    0
                                                                            3.4 ...
                                                                                     7
                                                                                           1
                                                                                                   Present
          300
                                 130
                                             0
                                                     0
                                                           115
                                                                    1
                                                                            1.2 ...
                                                                                     7
                                                                                           1
                57
                      1
                          4
                                      131
                                                                                                   Present
                57
                                 130
                                      236
                                             0
                                                     2
                                                           174
                                                                    0
                                                                            0.0 ...
                                                                                           1
          301
                                                                                                   Present
                                            0
                                                     0
                                                                    0
                                                                            0.0 ...
                                                                                           0
          302
                38
                          3
                                 138
                                      175
                                                           173
                                                                                     3
                                                                                                   Absen
         5 rows × 22 columns
```

In [73]: df.isnull().sum()

```
0
         age
Out[73]:
                                0
         sex
         ср
                                0
         trestbps
                                0
         chol
                                0
         fbs
                                0
         restecg
                                0
         thalach
                                0
         exang
                                0
                                0
         oldpeak
         slope
                                0
         ca
                                0
         thal
                                0
                                0
         num
         heart disease
                                0
         Gender
                                0
         Chest_Pain
                                0
         Fasting_blood_sugar
                                0
         Thal mai
                                0
         angina
                                0
         ST_segment
                                0
         age_category
                                8
         dtype: int64
In [74]: #filing null value with the mode
         df['age_category'].fillna(df['age_category'].mode()[0],inplace=True)
         #Swarm plot creation of gender based age Category
In [75]:
         Presence=sns.swarmplot(data=df ,x='age_category',y='age',hue='Gender',palette='twiligk
         Presence.set_xlabel('Age Category',fontweight='bold')
         Presence.set_ylabel('Age',fontweight='bold')
         Presence.set_title('gender based age Category',fontweight='heavy',size='xx-large',y=1
         plt.show()
```

gender based age Category

In our population we found that maximum male are from middle age and most of the female are Elder age

```
In [76]: # Count plot Based on chest pain in gender
plt.figure(figsize=(7,5))
hue_order=['Young age', 'Middle age', 'Elder age']
sns.countplot(x=df['heart_disease'],hue='age_category',data=df,order=['Presence', 'Abse plt.xlabel('Heart disease',fontsize=15)
plt.ylabel('count',fontsize=15)
plt.title('Heart disease on age category')
plt.show()
```

Heart disease on age category

The most of the heart disease present in the elder age and the middle age people are moslty free from thhe Heart disease .