Module 2 Efficient Fine-Tuning

Doing more with less

Learning Objectives

By the end of this module you will:

- Understand what fine-tuning is and why we do it
- Learn what parameter-efficient fine-tuning is and what the popular strategies are
- Understand the limitations of parameter-efficient fine-tuning
- Gain knowledge about data preparation best practices

Fine tuning vs. transfer learning

They are often referenced interchangeably

- Transfer learning
 - Apply a general pre-trained model to a new, but related task
- Fine tuning
 - Use a general pre-trained model and then train that model further

- Train it more
- Train on different data

How to leverage a pre-trained foundation model?

Examples:

- T5
- BloombergGPT
- GPT-4

How to leverage a pre-trained foundation model?

Examples:

- T5
- BloombergGPT
- GPT-4

Example:

Use BERT embeddings as inputs to a random forest classifier

→ classify movie reviews

How to leverage a pre-trained foundation model?

Why fine tuning?

Leverage an effective pre-trained model on our own data - it's not new

- Improve performance downstream
 - Different pre-trained vs fine-tuned tasks
 - Different domains
- Ensure regulatory compliance
- Not new:
 - <u>ULMfit paper</u> in 2018

Source: Howard and Ruder 2018

Fine tune = update foundation model weights

AKA parameter fine tuning

- Update more layers = better model performance
- Full fine-tuning typically produces one model per task
 - Serve one model per task
 - May forget other pre-trained tasks: catastrophic forgetting
 - Full fine-tuning LLMs is expensive. How to avoid it?
 - X-shot learning
 - Parameter-efficient fine tuning

Source: Devlin et al 2019

X-shot learning

Provide several examples of new tasks

Prompt engineering

- = developing prompts
- = prompt design
- = hard/discrete prompt
 tuning

Not updating model weights

```
pipeline(
"""For each tweet, describe its sentiment:
                                                  Instruction
[Tweet]: "I hate it when my phone battery dies."
[Sentiment]: Negative
###
                                                Few-shot
[Tweet]: "My day has been 👍"
                                                examples
[Sentiment]: Positive
###
[Tweet]: "This is the link to the article"
[Sentiment]: Neutral
###
[Tweet]: "This new music video was incredible"
                                                  Prompt
[Sentiment]:"")
```

Pros and cons of X-shot learning

Also known as in-context learning

Pros

- No need for huge labeled training data
- No need to create a copy of model for each task
 - Simplify model serving
- Text prompts feel interpretable

Cons

- Manual prompt engineering
- Prompts are specific to models
- Context length limitation
 - Add more examples? Less space for instructions
 - Longer context = higher latency
 - LLMs forget middle portion
 - <u>Liu et al 2023</u> (released in July)
 - Longer context window is not the solution!
- Performance might still be lackluster

Fine-tuning outperforms X-shot learning

Example: GOod at Arithmetic Tasks (Goat-7B)

- Foundation model = Llama
- Trained on 1M synthetic data samples
- Accuracy outperforms
 - Few-shot PaLM-540B (much bigger model !!)
 - GPT-4
 - Typically doesn't do well in arithmetics; accuracy ~O
- SOTA on arithmetic benchmark (BIG-bench)
- Supervised instruction fine-tuning
 - Trained using LoRA on a 24GB VRAM GPU
 - LoRA to be covered soon!

Goat-7B

3978640188 + 42886272 =

3978640188 + 42886272 = 4021526460

4523646 minus 67453156

4523646 - 67453156 = -62929510

Calculate 397 x 4429

 397×4429

 $=4429 \times (300 + 90 + 7)$

 $= 4429 \times 300 + 4429 \times 90 + 4429 \times 7$

= 1328700 + 398610 + 31003

= 1727310 + 31003

= 1758313

What is 8914/64?

 $8914 - 64 \times 100 = 8914 - 6400 = 2514$

 $2514 - 64 \times 30 = 2514 - 1920 = 594$

 $594 - 64 \times 9 = 594 - 576 = 18$

Therefore, $8914 \div 64 = 139 \text{ R } 18$

Source: Liu and Low 2023 (released in May)

Image Source

Important observations about Goat

Instruction fine-tuned

Multi-task serving

Addition

Task 1

Task 3

Multiplication, mix of NL + mathematical symbols Goat-7B

3978640188 + 42886272 =

3978640188 + 42886272 = 4021526460

4523646 minus 67453156

4523646 - 67453156 = -62929510

Calculate 397 x 4429

 397×4429

 $=4429 \times (300 + 90 + 7)$

 $= 4429 \times 300 + 4429 \times 90 + 4429 \times 7$

= 1328700 + 398610 + 31003

= 1727310 + 31003

= 1758313

What is 8914/64?

 $8914 - 64 \times 100 = 8914 - 6400 = 2514$

 $2514 - 64 \times 30 = 2514 - 1920 = 594$

 $594 - 64 \times 9 = 594 - 576 = 18$

Therefore, $8914 \div 64 = 139 \text{ R } 18$

Task 2

Subtraction, using natural language (NL)

Task 4

Division, mix of NL + mathematical symbols

Instruction-tuned, multi-task LLM

Instruction-tuned = tune general purpose LLMs to follow instructions

FLAN (Fine-tuned LAnguage Net)

- Foundation model = 137B model
- Instruction-tuned on over 60 NLP datasets with different task types
 - Task types: Q/A, translation, reasoning, comprehension, etc.
- Examples
 - T5 -> FI AN-T5
 - PaLM -> FLAN-PaLM

- Foundation model = Pythia-12B
- Instruction-tuned on 15k
 prompt/response pairs
 - Task types: Q/A, classification, information extraction, etc.

Source: Wei et al 2022

Quick recap

We want efficient training, serving, and storage

- Full fine-tuning can be computationally prohibitive
 - Memory usage: activation, optimizer states, gradients, parameters
 - This gives the best performance
- Compromise: Do some, but not full, fine-tuning
 - Saves cost to use low-memory GPUs
- We want multi-task serving, rather than one model per task
 - E.g. one model for Q/A, summarization, classification

Enter parameter-efficient fine-tuning

Parameter-efficient fine-tuning (PEFT)

3 categories of PEFT methods

Additive

- Soft prompt
 - Prompt tuning
 - Prefix tuning

Selective

- Akin to updating a few foundation model layers
 - BitFit
 - Only updates bias parameters
 - <u>Diff Pruning</u>
 - Creates
 task-specific "diff"
 vectors and only
 updates them

Re-parameterization

- Decompose weight matrix updates into smaller-rank matrices
 - LoRA

We will cover additive and reparameterization

Additive

- Soft prompt
 - Prompt tuning
 - Prefix tuning

Selective

- Model quality performance is not as good
- Akin to updating a few foundation model layers
 - BitFit
 - Only updates bias parameters
 - DiffPruning
 - Creates
 task-specific "diff"
 vectors and only
 update them

Re-parameterization

- Decompose weight matrix into smaller-rank matrices
 - LoRA

High-level overview of PEFT

Active research area: >100 papers in last few years!

- Additive: Add new tunable layers to model
 - Keep the foundation model weights frozen and update only the new layer weights
- Reparameterization: Decompose a weight matrix into lower-rank matrices
- Implementation:
 - Acts on the core Transformer block
 - Basic multi-head attention and/or feed forward network
 - Some act specifically on the weight matrices: Query, Key, Value
 - These matrices pass information from one token to another

Source: Vasmani et al 202

Additive: Prompt Tuning (and prefix tuning)

Soft prompt tuning

Concatenates trainable parameters with the input embeddings

- Learn a new sequence of task-specific embeddings
- We call this prompt tuning, not model tuning, because we only update prompt weights

What are these *virtual* tokens?

Goal: remove manual element of engineering prompts!

Randomly initialized embedding vectors

- Not part of vocabulary
- Analogy:
 - Bitcoin: We can't touch it like cash. We don't know how it "looks", but it exists and works.

What are these *virtual* tokens?

Goal: remove manual element of engineering prompts!

- Randomly initialized embedding vectors
 - We can also initialize to discrete prompts
 - But random initialization is nearly as good as informed initialization (Qin and Eisner 2021)
- Not part of vocabulary
- Analogy:
 - Bitcoin: We can't touch it like cash. We don't know how it "looks", but it exists and works.

Compare full fine-tuning vs prompt tuning

Scenario: full fine-tuning

Backprop: update all weights based on loss

Task: Classify sentiment; task batch = 4

Compare full fine-tuning vs prompt tuning

Scenario: prompt tuning

Backprop: update only prompt weights based on loss

The model learns the optimal representation of the prompt automatically

Task: Classify sentiment; task batch = 4

Allows swapping of task prompts

Efficient for multi-task serving

- Each task is a prompt, not a model
 - Only need to serve a single copy of the frozen model for multi-task serving
- Prompts for various tasks can be applied to different inputs
 - A serving request can be a single, larger mixed task batch

Matches fine tuning performance for >11B model

- Comparable with full fine-tuning at the 10B model scale
- More applicable to larger models
- SuperGLUE (2019)
 - Styled after <u>GLUE</u>, but more difficult and diverse
 - Boolean questions, comprehension, etc.

Source: Lester et al 2021

Prompt length affects larger models less

Prompt length of 20-100 is typical

In this example:

(Virtual) prompt length = 2

Source: Lester et al 2021

Advantages of prompt tuning

- Use whole training set
 - Not limited by # of examples that can fit in the context
- Automatically learn a new prompt for a new model
 - Backprop helps us find the best representation
- One foundation model copy only
- Resilient to domain shift

Source: Google Al Blog

Disadvantages of prompt tuning

Less interpretable

- Need to convert the embeddings back to tokens
- Use cosine distance to find the top-K nearest neighbors

Find which tokens are nearest to the virtual tokens

Unstable performance

Source: Lester et al 2021

Prefix tuning is very similar to prompt tuning

Adding tunable layer to each transformer block, rather than just the input layer

Source: Li and Liang 2021

Source: Lightning Al

Re-parameterization: LoRA

Low-Rank Adaptation (LoRA)

Decomposes the weight change matrix into lower-rank matrices

Low-Rank Adaptation (LoRA)

Decomposes the weight change matrix into lower-rank matrices

Rank? Brief visit to linear algebra

Maximum # of linearly independent columns or rows

- How many unique rows or columns?
- Full rank = no redundant row or column in the matrix
- Linear = can multiply by a constant
- Independence = no dependence on each other

$\lceil 1 \rceil$	2	3
3	6	9

- Row rank: 1
 - 2nd row = 3x 1st row
- Column rank: 1
 - 2nd column = 2x 1st column
 - 3rd column = 2x 2nd column

How does weight matrix decomposition work?

Observation: Actual rank of the attention weight matrices is low

$$W_{delta} = W_a * W_b$$

- Total parameters = $(100 \times 2) + (2 \times 100) = 400$
- Original parameters = $(100 \times 100) = 10,000$ parameters
- Reduction = 10,000 400 = 96%!

LoRA matches/~outperforms full fine-tuning

- 37.7 / 175255.8
 - = 0.0002
 - = 0.02% of parameters!

Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL	Rouge
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5	7.3
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5	
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5	
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5	
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8	
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1	
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9	
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1	

Source: Hu et al 2021

LoRA performs well with very small ranks

GPT-3's validation accuracies are similar across rank sizes

$$W_q = query$$

$$W_k = \text{key}$$

$$W_{v}$$
 = value

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	W_{a}	68.8	69.6	70.5	70.4	70.0
	W_q, W_v	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
MultiNLI (±0.1%)	W_{q}	90.7	90.9	91.1	90.7	90.7
	W_q, W_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

Source: <u>Hu et al 2021</u>

But, small r likely won't work for all tasks/datasets.

• E.g. downstream task is in a different language

Advantages of LoRA

Similar to prompt tuning, majority of the model weights are frozen

- Able to share and re-use the foundation model
 - Swap different LoRA weights for serving different tasks
- Improves training efficiency
 - Lower hardware barrier (no need to calculate most gradients or optimizer states)
- Adds no additional serving latency
 - W_a * W_b can be merged

Can be combined with other PEFT methods

Limitations of LoRA

- Not straightforward to do multi-task serving
 - How to swap different combos of A and B in a single forward pass?
 - If dynamically choose A and B based on tasks, there is additional serving latency
- Future research
 - From LoRA authors: If W_{delta} is rank-deficient, is W too?
 - Newer PEFT technique: <u>IA3 (2022)</u>
 - Reduces even more trainable parameters than LoRA!

PEFT Limitations

Model performance limitations

- Difficult to match the performance of full fine-tuning
 - Sensitive to hyperparameters
 - Unstable performance
- Current research area: where is best to apply PEFT?
 - E.g. why apply PEFT to only attention weight matrices? Soft prompts?
 - Vu et al 2022: Soft prompt transfer
- We may still need full-parameter fine-tuning
 - <u>Lv et al 2023</u> (released in June): use new optimizer, LOMO, to reduce memory usage to ~11%

Compute limitations

Doesn't reduce the cost of **storing** massive foundation models

Doesn't reduce time complexity of **training**

Requires full forward and backward passes

Data Preparation Best Practices

Better models from better training data

Many newer good models use C4 (e.g. MPT-7B)

Llama

 Trained on 20 most-spoken languages, focusing on those with Latin and Cyrillic alphabets

Colossal Cleaned Crawled Corpus

Dataset	Sampling prop.	Epochs	Disk size	
CommonCrawl	67.0%	1.10	3.3 TB	
C4	15.0%	1.06	783 GB	
Github	4.5%	0.64	328 GB	
Wikipedia	4.5%	2.45	83 GB	
Books	4.5%	2.23	85 GB	
ArXiv	2.5%	1.06	92 GB	
StackExchange	2.0%	1.03	78 GB	

Source: Touvron et al 2023

GPT-Neo and **GPT-J**

- Trained on the Pile: 22 diverse datasets
- Outperformed GPT-3 in some instances (Read more here)

Training data makes the biggest difference

Not necessarily the model architecture

- Bloomberg created 363B-token dataset of English financial documents spanning 40 years
 - Augmented with 345B-token public dataset
- Outperforms existing open models on financial tasks

Finance-Specific	BloombergGPT	GPT-NeoX	OPT-66B	BLOOM-176B
Financial Tasks	62.51	51.90	53.01	54.35
Bloomberg Tasks	62.47	29.23	35.76	33.39
(Sentiment Analysis)				

General-Purpose	BloombergGPT	GPT-NeoX	OPT-66B	BLOOM-176B	GPT-3
MMLU	39.18	35.95	35.99	39.13	43.9
Reading	61.22	42.81	50.21	49.37	67.0
Comprehension					
Linguistic Scenarios	60.63	57.18	58.59	58.26	63.4

Source: Wu et al 2023

How much fine-tuning data do I need?

- <u>Zhou et al 2023</u> (May): fine-tune 1,000 high-**quality** labeled examples from LLaMa 65B
 - When scaling up data quantity, need to scale up prompt diversity
- OpenAl: At least a couple hundred
 - Doubling dataset size leads to linear increase in model performance
- How to get more data? Synthetic data
 - Synonym replacement / rewrite
 - Word deletion: "brilliantly expressed" => "expressed"
 - Word position swapping: "It is lovely" -> "Lovely, it is"
 - Noise injection: introduce typos

Data preparation best practices

Quantity, diversity, and quality

- Don't provide detailed instructions.
 Only prompt and completion.
 - Fixed separator \n\n##\n\n to inform when the prompt ends and completion begins
 - The separator shouldn't appear anywhere else

```
1 {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
2 {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
3 {"prompt": "<prompt text>", "completion": "<ideal generated text>"}
4 ...
```

Source: OpenAl

[Manually Authored - Writing]

I am planning to start a book club with some friends. Can you write an email invitation for the same?

Here is an example email invitation for a book club:

Subject: Join me for a book club!

Hi [Friend's Name], how are you?

I'm starting a book club with some friends, and I'd love to have you join us!

The book club is a casual and fun way to read and discuss books that we love or want to learn more about, and also make new friends. We plan to meet more-or-less once a month.

We're thinking of having our first meeting on [Date & Time]. Could that work for you?

Would love to see you there!

Thanks, [Your Name]

Source: Zhou et al 2023

Data preparation best practices

- Remove undesired data
 - Offensive, toxic content
 - Private or confidential information
- Using LLM output as data is not always the answer
 - Imitation models learn style, rather than content (<u>Gudibande et al 2023</u>)
 - Consistent with <u>Zhou et al 2023</u>: knowledge is largely learned during pre-training
- Manually verify data quality

Module Summary

Efficient Fine-Tuning - What have we learned?

- Fine-tuning gives the best results, but can be computationally expensive
- Parameter-efficient fine-tuning reduces # of trainable parameters
- Prompt tuning allows virtual prompts to be learned automatically
- LoRA decomposes the weight change matrix into lower-rank matrices
- Fine-tuning data quality and diversity matters a lot

Time for some code!

Course Outline

Course Introduction

<u>Module 1 - Transformers: Attention and the Transformer Architecture</u>

Module 2 - Parameter Efficient Fine-Tuning: Doing more with less

Module 3 - Deployment Optimizations: Improving model size and speed

Module 4 - Multi-modal LLMs: Beyond text-based transformers

