

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

January 2023

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
1(a)	$\chi^2 = \frac{s^2}{\sigma_0^2} \times (n-1) = \frac{100}{\sigma_0^2} \times 9$	M1	Use of correct statistic. PI Allow n for $n-1$
	$\chi_9^2 (0.975) = 19.023$	B1	Finds critical value
	$\sigma_0^2 > \frac{900}{19.023}$ [= 47.3111]	M1	Allow either >, ≥ or = oe
	$\sigma_0 = 6.878[31]$	A 1	Must show answer at least 4 sf or explicitly state as 6.88 to 3 sf AG
		4	

Q	Answer	Marks	Comments
1(b)	$\sigma_0^2 < \frac{900}{\chi_9^2(0.025)} = \frac{900}{2.700} [= 333.333]$	M1	Allow either <, ≤ or = oe ft their degrees of freedom in (a)
	σ_0 =18.3	A 1	AWRT Allow truncation to 18.2
		2	

Question 1 Total	6	
------------------	---	--

Q	Answer					Marks	Comments
2(a)	$3 \times 0.7^2 \times 0.3$ or 0.3^3				M1	PI or one value (of 0.441 or 0.027) correct	
	v P(<i>V</i> = <i>v</i>)	15 0.343	60 0.441	105 0.189	150 0.027	B1 A1	Both 60 and 105 needed Both 0.441 and 0.027 needed
						3	

Q	Answer	Marks	Comments
2(b)(i)	0.343+0.441[=0.784] or 0.189+0.027[=0.216]	M1	PI ft their 0.441 or 0.027
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A 1	
		2	

Q	Answer	Marks	Comments
2(b)(ii)	E(M)=0.784 × 5 +0.216 × 50[=14.72] or E(M ²)=0.784 × 5 ² +0.216 × 50 ² [=559.6]	М1	PI ft their (b)(i)
	$Var(M) = 559.6 - 14.72^{2}$ $Var(M) = 343$	M1 A1	Use of $Var(M) = E(M^2) - (E(M))^2$ PI AWRT
		3	

Question 2 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	$\frac{27.8+30.4}{2}=29.1$	B1	
		1	

Q	Answer	Marks	Comments
3(b)	Critical value $z = (\pm)1.96(00)$	B1	AWRT 1.96
	$30.4 - 27.8 = 2.6 = 2 \times 1.96 \times \frac{\sqrt{6.6}}{\sqrt{n}}$	М1	Use of $\frac{\sqrt{6.6}}{\sqrt{n}}$ in an equation to find n
	$n = \frac{6.6 \times 1.96^2}{1.3^2} = 15.0027$ so 15	A1	AG CSO Either value for <i>n</i> given to at least three significant figures or calculation for <i>n</i> with correct substitution must be seen
		3	

Q	Answer	Marks	Comments
3(c)	30 is in the confidence interval	B1	Condone use of "it" for 30
	Evidence that the target (of mean conference call of 30 minutes) has been met	E1	Must be in context
		2	

Q	Answer	Marks	Comments
3(d)	It is a normal distribution with known [population] variance	B2	1 mark for each feature (normal distribution, known variance)
		2	

Question 3 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
4(a)	$M_{Z}'(t) = t e^{\frac{1}{2}t^2}$	M1	Allow $ate^{\frac{1}{2}t^2}$
	$M'_{Z}(t) = t e^{\frac{1}{2}t^{2}}$ $M'_{Z}(0) = 0 \times e^{0} = 0$	A 1	
	$M''_{Z}(t) = (1+t^{2})e^{\frac{1}{2}t^{2}}$ $\sigma^{2} = M''_{Z}(0) - \mu^{2}$ $= 1-0=1$	M1	Of form $\left(a+bt^2\right)e^{\frac{1}{2}t^2}$ oe
	$\sigma^2 = M_Z^{"}(0) - \mu^2$	M1	
	=1-0=1	A 1	
		5	

Q	Answer	Marks	Comments
4(b)	$M_X(t) = e^{at} \times e^{\frac{1}{2}(bt)^2}$	M1	Use of $M_X(t) = e^{at} \times M_Z(bt)$
	$M_X(t) = e^{at + \frac{1}{2}b^2t^2}$	A 1	
		2	

Q	Answer	Marks	Comments
4(c)	$E(X) = a$ and $Var(X) = b^2$	B1	Both E (X) and Var (X) required
		1	

Q	Answer	Marks	Comments
4(d)	$e^{\mu t +}$ or $e^{+\frac{1}{2}\sigma^2t^2}$	M1	
	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$	A 1	
		2	

|--|

Q	Answer	Marks	Comments
5(a)	$E(\overline{X}) = \frac{n\lambda}{n} = \lambda \text{ and } E(\overline{Y}) = \frac{n \times 2\lambda}{n} = 2\lambda$	B1	Both. PI
	$E(S) = \frac{\lambda + 2\lambda}{3} = \lambda \text{ or } E(T) = 2\lambda - \lambda = \lambda$	M1	Either found
	$\mathrm{E}(S) = \lambda$ and $\mathrm{E}(T) = \lambda$ so estimators are unbiased	A 1	Statement and both estimators correct
		3	

Q	Answer	Marks	Comments
5(b)	$\operatorname{Var}(S) = \left(\frac{1}{3}\right)^{2} \operatorname{Var}(\overline{X}) + \left(\frac{1}{3}\right)^{2} \operatorname{Var}(\overline{Y})$	M1	Correct expression for Var(S) or Var(T) May be seen in (c)
	$Var(T) = Var(\overline{Y}) + Var(\overline{X})$		
	$\operatorname{Var}(S) = \frac{1}{9} \times \frac{\lambda}{n} + \frac{1}{9} \times \frac{2\lambda}{n} = \frac{\lambda}{3n}$	A 1	PI May be seen in (c)
	$\operatorname{Var}(T) = \frac{\lambda}{n} + \frac{2\lambda}{n} = \frac{3\lambda}{n}$	A 1	PI May be seen in (c)
	Relative Efficiency = $\frac{\frac{1}{Var(S)}}{\frac{1}{Var(T)}} = \frac{\frac{3n}{\lambda}}{\frac{n}{3\lambda}}$	М1	ft their Var(S) and Var(T) oe
	[Relative Efficiency] = 9 [which is not a function of n , so the efficiency is independent of n]	A 1	Answer of 9 is sufficient for award of mark
		5	

Q	Answer	Marks	Comments
5(c)	$Var(S) \rightarrow 0$ or $Var(T) \rightarrow 0$ as $n \rightarrow \infty$	M1	Either may be shown from a function of <i>n</i> that tends to zero
	so estimators are consistent	A 1	Conclusion required CSO
		2	

Question 5 Total	uestion 5
------------------	-----------

Q	Answer	Marks	Comments
6(a)	$\int_{100}^{t} -\frac{\pi}{200} \sin\left(\frac{\pi x}{100}\right) \mathrm{d}x$	M1	Must have correct limits
	$= \left[\frac{1}{2}\cos\left(\frac{\pi x}{100}\right)\right]_{100}^{t}$	M1	Integrand of form $a\cos\left(\frac{\pi x}{100}\right)$ oe
	$= \frac{1}{2}\cos\left(\frac{\pi t}{100}\right) - \frac{1}{2}\cos\left(\frac{100\pi}{100}\right)$		
	$F(t) = \begin{cases} 0 & t < 100 \\ \frac{1}{2}\cos\left(\frac{\pi t}{100}\right) + \frac{1}{2} & 100 \le t \le 200 \\ 1 & t > 200 \end{cases}$	A 1	AG must see intermediate line with values substituted into integrand Limits for <i>t</i> need to be shown
		3	

Q			Ans	wer			Marks	Comments
6(b)(i)	F(160) - F(140), F(180) - F(160) or $F(200) - F(180)$ seen						M1	PI
	Interval	100- 120	120- 140	140- 160	160- 180	180- 200		
	Sprints	164	430	532	430	164		
	Either of 4	30 or 1 430, 16		en			A1 A1	Allow +/– 1 for both A marks
							3	

Q	Answer	Marks	Comments
6(b)(ii)	H_0 : Reaction times have the same distribution as T H_1 : Reaction times do not have the same distribution as T	В1	oe , eg H ₀ : Suggested model is appropriate, Athletics trainer's claim is valid (condone true), Data fits given distribution Both hypotheses
	$\sum \frac{\left(O-E\right)^2}{E} = \frac{\left(145-164\right)^2}{164} + \frac{\left(390-430\right)^2}{430} + \frac{\left(561-"532"\right)^2}{"532"} + \frac{\left(470-"430"\right)^2}{"430"} + \frac{\left(154-"164"\right)^2}{"164"}$	M1	
	= 11.8	A1ft	ft their (b)(i) given to 1 decimal place
	v=5-1=4	В1	
	$\chi^2(0.99)=13.277$	B1	
	11.8 < 13.277, Do not reject H ₀	A1ft	
	Sufficient evidence to support the athletics trainer's claim	E1ft	Must not be definite; consistent with conclusion on ${\bf H_0}$
		7	

Question 6 Total	13
------------------	----

Q	Answer	Marks	Comments
7(a)(i)	The test is a two-tailed test.	B1	
		1	

Q	Answer	Marks	Comments
7(a)(ii)	$z = \frac{53.4 - 45 - 10}{\sqrt{\left(\frac{6^2}{60} + \frac{4^2}{80}\right)}}$	M1 M1	Correct numerator Correct denominator
	= -1.788(85)	A 1	AWRT –1.79 p = 0.0736
	$z_{\rm crit} = +/-1.9600$	B1	AWRT 1.96
	-1.7889 > -1.9600 Do not reject H ₀ Sufficient evidence to suggest that the mean length of Galapagos penguins is 10 cm more than that of Fairy penguins	A1ft E1	Follow through their z and $z_{\rm crit}$ Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value
			Condone definite conclusion
		6	

Q	Answer	Marks	Comments
7(b)	The result is valid as the sample is sufficiently large to use a normal approximation for the mean (Central Limit Theorem)	E1	oe must clearly state validity with reason Condone "can use" oe
		1	

Question 7 Total	8
------------------	---

Q	Answer	Marks	Comments
8	z=1.6449	B1	AWRT 1.645
	$\overline{X_c} = 100 + 1.6449 \times \frac{10}{\sqrt{30}}$ $\boxed{= 103.00316 \Rightarrow \text{Acceptance region: } \overline{X} < 103}$	M1	
	$P(\overline{X} < 103 \mid \mu) \le 0.05$	m1	PI Condone < or = [μ is the population mean.]
	$103 < \mu - 1.6449 \times \frac{10}{\sqrt{30}}$	m1	Condone = Dependent on all previous method marks
	$\mu > 106.0(031)$	A 1	AG Strict inequality sign required
		5	

Question 8 Total 5

Q			Ansv	ver			Marks	Comments
9(a)	Computer Difference and Computer Difference	1 -2.2 6 -7.6	2 +8.1 7 +0.1	3 a–113.5 8 +4.0	4 -6.6 9 -4.2	5 -2.5 10 +1.2	M1	Attempt differences; allow 1 mistake, allow negative of table values PI
	$\overline{d} = \frac{-123.}{10}$	$\frac{2+a}{0} =$	1	1 1		<u> </u>	В1	Allow negative, 12.32 – 0.1 <i>a</i>
	$\sum d^2 = 213$ $(= a^2 - 227)$ $s^2 = \frac{1}{10 - 1}$	7 <i>a</i> +130	095.36				М1	Allow $a^2 - ba + c$, with b and c positive values
	$= \frac{1}{9} (11577)$ $= 0.1a^2 - 22$				2)		A 1	oe
	$t = \frac{\overline{d}}{\left(\frac{s}{\sqrt{10}}\right)} = \frac{1}{\sqrt{10}}$	$=\frac{1}{\sqrt{0.16}}$	$\frac{0.}{a^2-22}$	1 <i>a</i> – 12.33 2.484 <i>a</i> + 1	2 286.3	<u>928</u>	М1	ft with their mean and variance Allow – <i>t</i>
	$t = \frac{\sqrt{10} \left(}{\sqrt{0.1a^2}}\right)$	0.1 <i>a</i> – 22.48	12.32) 3a+128	 86			A1 6	AG Must be convincingly shown

Q	Answer	Marks	Comments
9(b)	H_0 : $\mu_{new} = \mu_{old}$ H_1 : $\mu_{new} < \mu_{old}$	B1	oe
	t = -1.23(1)	М1	Correct substitution of $a = 91.8$ into formula Condone 1.23
	<i>ν</i> = 9	B1	PI
	Critical value $t_9 = 1.383$	B1	
	$-1.23 > -1.383$, Do not reject H_0	A1ft	Allow 1.23 < 1.383 ft their t and critical value
	Insufficient evidence to support the reduction in start-up times	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value
		•	Condone definite conclusion
		6	

Question 9 Total	12	
------------------	----	--