- * *Given*: a partition { A_j , $j \ge 1$ } of Ω .
 - * *A priori* (before the fact) probabilities: $P(A_j)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

- * Given: a partition $\{A_j, j \geq 1\}$ of Ω .
 - * A priori (before the fact) probabilities: $P(A_i)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

- * Given: a partition $\{A_j, j \geq 1\}$ of Ω .
 - * A priori (before the fact) probabilities: $P(A_i)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

- * *Given*: a partition { A_j , $j \ge 1$ } of Ω .
 - * A priori (before the fact) probabilities: $P(A_i)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

Total probability, once more

$$\mathbf{P}(\mathbf{H}) = \sum_{j} \mathbf{P}(\mathbf{H} \mid \mathbf{A}_{j}) \, \mathbf{P}(\mathbf{A}_{j})$$

- * *Given*: a partition { A_j , $j \ge 1$ } of Ω .
 - * A priori (before the fact) probabilities: $P(A_i)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

Total probability, once more

$$\mathbf{P}(\mathbf{H}) = \sum_{j} \mathbf{P}(\mathbf{H} \mid \mathbf{A}_{j}) \, \mathbf{P}(\mathbf{A}_{j})$$

$$\mathbf{P}(\mathbf{A}_k \mid \mathbf{H}) = \frac{\mathbf{P}(\mathbf{A}_k \cap \mathbf{H})}{\mathbf{P}(\mathbf{H})}$$

- * *Given*: a partition { A_j , $j \ge 1$ } of Ω .
 - * A priori (before the fact) probabilities: $P(A_i)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

Total probability, once more

$$\mathbf{P}(\mathbf{H}) = \sum_{j} \mathbf{P}(\mathbf{H} \mid \mathbf{A}_{j}) \, \mathbf{P}(\mathbf{A}_{j})$$

$$\mathbf{P}(\mathbf{A}_k \mid \mathbf{H}) = \frac{\mathbf{P}(\mathbf{A}_k \cap \mathbf{H})}{\mathbf{P}(\mathbf{H})} = \frac{\mathbf{P}(\mathbf{H} \mid \mathbf{A}_k) \, \mathbf{P}(\mathbf{A}_k)}{\sum_{j} \mathbf{P}(\mathbf{H} \mid \mathbf{A}_j) \, \mathbf{P}(\mathbf{A}_j)}$$

- * Given: a partition $\{A_j, j \geq 1\}$ of Ω .
 - * A priori (before the fact) probabilities: $P(A_i)$.
 - * Forward conditional probabilities: $P(H \mid A_j)$.
- * Determine the *a posteriori* (reversed, after the fact) probabilities: $P(A_k \mid H)$.

Total probability, once more

$$\mathbf{P}(\mathbf{H}) = \sum_{j} \mathbf{P}(\mathbf{H} \mid \mathbf{A}_{j}) \, \mathbf{P}(\mathbf{A}_{j})$$

$$\mathbf{P}(\mathbf{A}_k \mid \mathbf{H}) = \frac{\mathbf{P}(\mathbf{A}_k \cap \mathbf{H})}{\mathbf{P}(\mathbf{H})} = \frac{\mathbf{P}(\mathbf{H} \mid \mathbf{A}_k) \, \mathbf{P}(\mathbf{A}_k)}{\sum_{j} \mathbf{P}(\mathbf{H} \mid \mathbf{A}_j) \, \mathbf{P}(\mathbf{A}_j)}$$

Bayes's rule