Digitalisierung

Björn Enders-Müller

Agenda

- Definition
- Probleme (kleine Unternehmen)
- Dynamik der Digitalisierung
- Gemeinsamkeiten Organismus und Maschine
- Der digitale Alltag
- Anforderungen an Systeme (Effizienz und Verlässlichkeit)
- Anwendungsbereiche der Digitalisierung
- Datenkomprimierung
- Bandbreite vs. Latenz
- Digitale Arbeits- und Produktionswelt
- KI und kognitive Maschinen
- Security
- Mixed-Reality
- Herausforderungen

Grundlagen für Definition

- Unterschiedliche Sichtweisen
 - Technisch
 - A/D-Wandlung in diskrete abgestufte Werte
 - Volkswirtschaftlich
 - Digitale Infrastrukturen, Arbeit, Gesundheit, Bildung, Forschung und Sicherheit
 - Betriebswirtschaftlich
 - Gewinnmaximierung (Wie viel Geld kann eingespart werden?)
 - Neue Produkte und Dienstleistungen
- Unterschiedliches Verständnis
- Resultiert in unterschiedlicher Zielsetzung
- Verwässerung des Begriffs

Anforderungen an die Definition

- Entscheidbarkeit
 - Handelt es sich beim dem Phänomen um Digitalisierung?
- Umfassend
 - Bisheriges sollte auch weiterhin zur Digitalisierung z\u00e4hlen
 - Verwendung und Akzeptanz
 - Auswirkungen und Konsequenzen nur ableitbar
- Grundlage f

 ür Skala
 - Fortschritt und Qualität bewerten
 - Vergleichbar gestalten

Definition

Es wird von Digitalisierung gesprochen, wenn analoge Leistungserbringung durch Leistungserbringung in einem digitalen, computerhandhabbaren Modell ganz oder teilweise ersetzt wird.

Probleme (primär bei kleine Unternehmen)

- Schnelllebiger Produktmarkt
- Digitalisierung im Unternehmen selbst umsetzen
 - Existierende Prozesse neu ("digitalisiert") umsetzen
 - Probleme bei Kompatibilität zu veralteter Technik
 - Fachkräftemangel (siehe neues Datenschutzgesetz)
- Neue Produkte -> Risiko
- Customer-Relationship-Management immer wichtiger
 - Neue Vertriebswege
 - Digitale Geschäftsplattform
- Unternehmensstruktur umstellen um Flexibilität zu steigern

Dynamik der Digitalisierung

- Beschleunigung des Fortschritts
 - Computer unterstützte Entwicklung und Planung
 - Computer unterstützte Produktion
 - Planung und Entwicklung von Computern
 - Schneller und einfacher Datenaustausch
- Angesammelte Daten als Grundlage für Produkte
- Neue Erkenntnisse durch Computer unterstützte Analyse
 - Früher zu langsame Computer
 - Händisch nicht möglich und zu hoher Aufwand

Dynamik der Digitalisierung

- Anwendungsfelder und Bedarf erscheint grenzenlos
- "Alles" verbessern und optimieren
 - Mehr Leistung
 - Höhere Effizienz
 - Geringerer Ressourcenverbrauch
- Führt zur "digitalen Revolution"

Dynamik der Digitalisierung (Moore's law)

Alle 18 Monate Transistoren Anzahl verdoppeln

- 1941 Konrad Zuse Z3 (Binärcode und programmierbar)
- 1971 erster Mikroprozessor 8.000 Transistoren
- 1981 80.000 Transistoren
- 2017 19,2 Milliarden Transistoren (AMD Epyc)

Year of introduction

Eigenschaften von Maschinen

- Praktisch alle Maschinen digital
- Sensoren erfassen Umwelt
- Programmierung entscheidet über Verhalten
- Aktor ermöglicht Eingriff in die Umwelt
- Dabei Daten sammeln und abspeichern

Gemeinsamkeiten Organismus und Maschine

- Sehr ähnlich zu Maschinen
- Daten sind die DNA der Maschinen
- Gemeinsamkeiten
 - Speichern von Informationen über sich selbst und Umgebung
 - Komplexe Informationen mit wenigen Zeichen kodiert
 - DNA vier Zeichen (Nukleotide-Adenin, Guanin, Thymin und Cytosin)
 - Binär zwei Zeichen (0 und 1)
 - Dezimalrechner
 - Qubits
 - Vervielfältigung
 - Zellteilung
 - Copy & Paste
 - inklusive Fehlerkorrektur z.B. Hamming-Code bei Übertragungen

Gemeinsamkeiten Organismus und Maschine

- Veränderbar
 - Mutation
 - Editierbar
 - Simulation von Evolution bei Evolutionären Algorithmen
- Grundsätzliche Lernfähigkeit
 - Hohe allgemeine Intelligenz
 - Maschinelles Lernen generiert Wissen beim Lernen
- Nächste Evolutionsstufe basiert auf dem Vorgänger
 - Auf existierendem Wissen wird aufgebaut
 - Bei Maschinen ist der Austausch (ein Update) schnell und einfach

Der digitale Alltag

- Veränderte Kommunikation (Skype, WhatsApp, Facebook)
- Mobilitätsverhalten
 - Home-Office
 - Ubiquitäre Kontakt- und Kommunikationsmöglichkeiten
- Individuelles Produktdesign (3D-Druck)
- Schnelle und einfach Verbreitung und Erstellung von
 - Medien, Meinungen, Ideen, Gegenständen und Programmen
 - Kein Verlag benötigt, kaum oder keine Zensur
- Lebenslange Lernen zwingend notwendig
 - Selbständiges lernen mit Guides und Tutorials erleichtert

Anforderungen an Systeme

- Hohe Anforderungen, da hohe Abhängigkeit
- Digitaltechnik ist praktisch allgegenwertig
 - Energieversorgung
 - Produktion
 - Gesundheit
 - Mobilität
 - Kommunikation
 - Medien
 - usw.
- Ausfälle können gravierend sein

Anforderungen hinsichtlich der Effizienz

- Energieverbrauch
 - Neue Fertigungstechniken bei CPUs
 - Höhere Akkukapazität bei gleicher Größe
 - Umweltschutz und Energiekosten
- Codegröße und Speicherplatz
 - Datenkomprimierung
 - Datendichte angestiegen z.B. HDD
 - Verschleißteilen vermeiden durch Flash-Speicher
- Laufzeit
 - Harte und weiche Echtzeitanforderungen
 - Kürzere Laufzeit senkt Energieverbrauch
 - Zeit ist Geld
- Gewicht und Größe
 - Wearables
 - Transportkosten und Verbaubarkeit
- Preis

Anforderungen hinsichtlich der Verlässlichkeit

- Zuverlässigkeit (Ausfallsicherheit)
 - Ersatzkomponenten (Notstromgenerator)
 - Parallele Komponenten (Mehrstrahliges Flugzeug)
 - Funktionsredundanz durch verschiedene Prinzipien (elektronisch und mechanisch Messen)
- Wartbarkeit
 - Schnelle Diagnose und Reparatur
 - Lesbarkeit und Qualität von Quelltext
 - Dokumentation und Benutzerhandbuch
- Verfügbarkeit
 - Kombination von Wartbarkeit und Zuverlässigkeit
- Sicherheit (Safety und Security)

Daten und Informationen

- Praktisch alle Informationen digital
 - Transportiert
 - Gespeichert
- Erzeugt durch Menschen und Maschinen
 - Maschinen Anteil wird steigen (Industrie 4.0 und Internet of Things)
 - Generierung durch Menschen kann nicht vermieden werden
- Sicherheit (Safety und Security) sind Kernthemen

Anwendungsbereiche der Digitalisierung

- Digitalisierung als Universalübersetzer
- Vollständig digitaler Entwurfsprozess von Produkten
- Brain-Computer-Interface (BCI)
 - Prothesen und Computer steuern
 - Empfindungen an Prothesen erzeugen
 - Digitalisierung Bindeglied zwischen biologischer und cyber-physischer Welt
- Digitalisierung der materiellen Welt
 - Informationen über Objekte identifizieren und in Modell überführen
 - Simulationen für z.B. Tauglichkeit
 - Beispiele: VINI Vehicle Identification Number Index

Anwendungsbereiche der Digitalisierung

Medizin

- Bewältigung von großen Datenmengen in der Medizin
- KI um Krankheitsbilder zu erkennen
- Health Ledger: Die digitale Patientenakte
- Telerobotik in menschenfeindlichen Umgebungen
 - Chirurgie roboter
 - Tiefseeroboter
 - Entschärfung von Bomben
 - Verarbeitung von Radioaktiven Materialen

Datenkomprimierung

- Jährliche Datenerzeugung
 - 2016 ca. 16 Zettabyte
 - 2025 ca. 163 Zettabyte (41.000 Milliarden DVDs)
- Datenkomprimierung (verlustfrei wenn möglich)
- H.265 Video-Encoder
 - gleiche Qualität wie H.264
 - Datenkomprimierung verdoppelt
- Mp3
 - Gleich Klangqualität
 - Bis zu 10-Mal kleiner als unkomprimiert
- Ohne Komprimierung wäre das Internet so nicht nutzbar

Bandbreite vs. Latenz

- Latenz entspricht Ping
- Bandbreite beschreibt Datendurchsatzrate
- Zeitkritisch Anwendungsfälle
 - Teleroboter
 - Autonomes Fahren
 - Automatisierte und vernetzte Maschinen
- Mögliche Lösung
 - Edge Computing f
 ür Vorverarbeitung
 - Bessere Infrastruktur

Digitale Arbeits- und Produktionswelt

- Siehe Dynamik der Digitalisierung
 - Computer unterstützt Entwickeln und Produzieren
- Kooperative Roboter
 - Beim Entwickeln den Menschen nicht vergessen!
 - Schlechter Usability führt zu Safety-Problemen
- Digitaler Zwilling
 - Betriebsrelevanten Eigenschaften im Modell digitalisieren
 - Ermöglicht
 - Optimierung
 - Fehlererkennung
 - Simulation von ganzen Systemen
 - Predictive-Maintenance

Generative Fertigung

- Daten "materialisieren"
- Daten bestimmten wie DNA die physische Erscheinung
- 3D-Druck
 - Preiswerte Prototypen
 - Spezialanfertigungen
 - Hohe Materialvielfalt
 - Materialeffizienz
 - Ersatzteile vor Ort und On-Demand produzieren
- Könnte Teleporter realisieren

KI und kognitive Maschinen

- Features
 - Interaktionsfähigkeit
 - Erinnerungsvermögen
 - Kontexterfassung
 - Anpassungsfähigkeit
 - Lernfähigkeit
- Universelle Einsatzmöglichkeit
- Auswirkungen extrem gravierend
- AI-Singularität und AI-Safety berücksichtigen!

Wichtigkeit von Daten und Informationen

- Im Informationszeitalter sind Daten und Informationen "Macht".
- CAD-Modell für 3D-Drucker ist wertvoller als Produkt
 - Jederzeit und beliebig oft produzieren
- Besitz liefert Wettbewerbsvorteil
- Privatpersonen sind unwissend und sorglos
- "Geistiges Eigentum" der Unternehmen
- Beispiele für die Wichtigkeit sind endlos

Security

- Datenaustausch ist essenziel
- Datentransport potentielle Schwachstelle
 - Fehlerhafte Übertragung
 - Blockiert
 - Manipuliert
 - Abgefangen (mitgelesen)
- Hohes Schadenspotential
- Wettrüsten zwischen SW-Herstellern und Angreifern
- Daten sind leichter zu manipulieren als physische Objekte

Security – Der Mensch als Sicherheitslücke

- Wer nutzt:
 - E-Mail Verschlüsselung
 - Passwort-Manager
 - Multifaktor-Authentifizierung (wenn nicht per Default aktiv)
 - Passwörter mehrfach verwendet
- Social-Engineering-Angriffe
 - Schwächstes Glied in sicherheitsrelevanten Systemen
 - Workarounds
- Benutzername-Passwort-Authentifizierung nicht mehr zeitgemäß
- Mensch sollte im Fokus stehen und nicht die Technologie
- Sicherheitsbewusstsein bei Fachleute und Bevölkerung fördern
 - Datenschutz
 - Selbstverständlichkeit von Verschlüsselung etc.

Security – potentielle Angriffsziele

- Energieversorgung
- Wasserversorgung
- Transportsysteme
- Finanz- und Währungssysteme
- Fertigungsanlagen
- Militärische Einrichtungen
- Kommunikationssysteme
 - Mobilfunknetze
 - Internet

Mixed-Reality

- Hohe Plattformdiversität
 - Rechenkapazität
 - Betriebsysteme
 - Ein- und Ausgeabemöglichkeiten
- Daten Sicherheit
- Skalierbarkeit

Mixed Reality

Echte Umgebung Erweiterte Realität (AR) Erweiterte Virtualität (AV)

Virtuelle Realität (VR)

Virtual-Reality (VR) in der Industrie

- Seit 25 Jahren im Einsatz
- Digitale Mock-Ups ersetzen physikalische
- Konsumentenprodukte nicht übertragbar
- Hohe FPS-Zahlen nötig
- Große Datenmengen
 - Hardware upgraden reicht nicht aus
 - Neue Datenstrukturen nötig
 - Harte Echtzeitanforderungen
 - Out-of-Core-Technologien

Augmented-Reality (AR) in der Industrie

- Einsatzbereich: Planungs- und Prüfprozesse
- SOLL-IST-Abgleich (Cyber-physikalische Äquivalenz)
 - Simulations- und Fertigungsprozesse abgleichen
 - IST-Daten in Produktionsplanung zurückführen
- AR kann SOLL-IST-Abgleich in Echtzeit feststellen

AR Anwendungsbeispiele

- Beispiele
 - AR-Reparaturanleitung
 - Step-by-Step Guide mit visueller Unterstützung
 - Exakte Abstimmung auf Modell und Ausstattung
 - AR-gestützte-Wartung
 - Experten über Livestream dazu ziehen
 - Anleitung erweitern
 - AR-Handbücher
 - Graphische Anleitung sind sprachunabhängig
 - App-Store erhöht Wartbarkeit
- Produktionsplanung und Qualitätskontrolle werden revolutioniert

HoloLens

- Multimodale Sensorik
 - Kamera, Mikrofon, Gyroskope, Kompass und usw.
- Simultaneous Localization and Mapping (SLAM)
- Qualität der Modelle zu hoch
 - 100.000 Polygone empfohlen
- Tracking
 - Für SOLL-IST-Abgleich unzureichend
 - Über Gestensteuern Fenster "anpinnen"
 - Objekte und Hintergrund nicht unterscheidbar (SLAM)
 - Bewegung von Objekten problematisch

HoloLens

- Security
 - Modelle auf dem Gerät gespeichert
 - W-Lan
- Lösungsmöglichkeit: Web-Technolgie bringt
 - Hohe Plattformdiversität
 - Rechenkapazität
 - Betriebsysteme
 - Ein- und Ausgeabemöglichkeiten
 - Daten Sicherheit
 - Skalierbarkeit

Mixed-Reality (AR) und Web-Technolgie

- Server-Client Architektur mit Webbrowser
 - keine nativen Softwarekomponenten von dritten
 - Aktuellste Daten als Grundlage
- Modell via Stream an Client schicken
 - Daten/Modelle verlassen Server nicht
- Rechenkapazität der Server nutzen
 - schlanke Endgeräte
 - On-Chip-Verarbeitung von WebGl/WebCL
 - Keine Browser-Plugins
 - Skalier- und Verteilbarkeit
- Plattformunabhängigkeit

Herausforderungen

- Langfristig wegfall von Arbeitsplätzen
- Fear-of-missing-out
- Jugendschutz
- Kriminalität
 - Datenmissbrauch
 - Identitätsdiebstal
 - Waffen, Munition, Drogen
 - Menschenhandel
 - Urheberrechtsverletzungen
 - Stalking und Mobbing

Fragen und Feedback