A Neuromorphic Tactile Sensor based on Soft Optical Fiber

Wentao Chen ^{1,2}, Guanqi Chen ^{1,2}, Zeqing Zhang ^{1,2}, Ruixing Jia ^{1,2}, Jia Pan ^{1,2}
The University of Hong Kong ¹, Centre for Transformative Garment Production ²

Problem Statement

- The robot needs a full history of force during the impact process, in order to code with the impact mitigation problem.
- This requires a novel type of sensor capable of enduring a distance of stroke longer than previous tactile sensor.
- Inspired by mammal nervous system, we propose a tactile sensor for impact robotics, with 3D-printed soft porous scaffold and soft optical fibers, analogous to mammal skin and mammal nerve.
- We use an encoder-decoder machine learning approach to recover the history of impact force from the optical fiber signal time series.

Example snapshots within the depth image sequence, showcasing the time-serial response of optical fibers.

Example history of normal force within 0.1 seconds, under different impact speeds.