Learning With Errors Problem Lattice Based Cryptography

Prof. dr. ir. Frederik Vercauteren

COSIC, KU Leuven Computer Algebra for Cryptography (B-KUL-H0E74A)

2022-2023

Learning With Errors (LWE) problem

Algorithms for LWE problem

Lattice based cryptography

Post-quantum public key cryptography

- ► Currently only two types PK are popular (see e.g. TLS 1.3 algorithms)
- ► Factoring based: mainly RSA
- ▶ Discrete logarithm based: DSA, ECDSA

Post-quantum public key cryptography

- ► Currently only two types PK are popular (see e.g. TLS 1.3 algorithms)
- ► Factoring based: mainly RSA
- Discrete logarithm based: DSA, ECDSA
- ▶ Shor (1994): quantum algorithm for factoring in time $O(\log^3 N)$, also computes discrete logarithms in polynomial time
- Initially: considered purely theoretical result. Now: threat taken seriously.
 - ► Even if Shor's algorithm is never implemented, the risk that one day it *could* is enough reason to change system (e.g. for long-term secrets)
 - History learns: long time between proposal and deployment

Post-quantum public key cryptography

- Currently only two types PK are popular (see e.g. TLS 1.3 algorithms)
- Factoring based: mainly RSA
- Discrete logarithm based: DSA, ECDSA
- ▶ Shor (1994): quantum algorithm for factoring in time $O(\log^3 N)$, also computes discrete logarithms in polynomial time
- Initially: considered purely theoretical result. Now: threat taken seriously.
 - Even if Shor's algorithm is never implemented, the risk that one day it *could* is enough reason to change system (e.g. for long-term secrets)
 - History learns: long time between proposal and deployment
- ▶ Need for new constructions for the post-quantum era (NIST):
 - Lattice based
 - Multivariate polynomial based
 - Code based
 - Hash based
 - Isogeny based

Linear algebra over \mathbb{Z}_q

- ▶ Let q be a prime and $\mathbb{Z}_q \simeq \mathbb{Z}/q\mathbb{Z}$ the field with q elements
- System of m linear equations in n unknowns $(m \ge n)$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ \vdots \\ c_m \end{pmatrix}$$

 \triangleright Given matrix A and vector C, Gaussian elimination finds s_i

Distorting right hand side

▶ Instead of exact vector *C*, only given vector *B* with

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ \vdots \\ c_m \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \\ \vdots \\ e_m \end{pmatrix}$$

- ▶ Error terms e_i are small wrt. q (in interval [-q/2, q/2])
- ▶ Suddenly becomes very hard (not so over **Z**, e.g. by least-squares method)
- Compare with disequations project:
 - disequations: every equation is incorrect,
 - ▶ here: every equation is *almost* correct.

Distorting right hand side

▶ Instead of exact vector *C*, only given vector *B* with

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \\ \vdots \\ e_m \end{pmatrix}$$

- ▶ Error terms e_i are small wrt. q (in interval [-q/2, q/2])
- ▶ Suddenly becomes very hard (not so over **Z**, e.g. by least-squares method)
- Compare with disequations project:
 - disequations: every equation is incorrect,
 - ▶ here: every equation is *almost* correct.

Learning With Errors (LWE) problem: search

Regev (2005): On lattices, learning with errors, random linear codes, and cryptography

- ▶ Secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ for some fixed n and q
- lackbox An oracle generates random $oldsymbol{a} \in \mathbb{Z}_q^n$ and a small error $e \leftarrow \chi$
- ▶ The oracle outputs $\mathbf{a}, b := \langle \mathbf{a}, \mathbf{s} \rangle + e \mod q$ (linear almost-equation)
- ▶ Process is repeated many times for fresh **a** and *e* (unlimited access to samples)

Learning With Errors (LWE) problem: search

Regev (2005): On lattices, learning with errors, random linear codes, and cryptography

- ▶ Secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ for some fixed n and q
- lacktriangle An oracle generates random $oldsymbol{a} \in \mathbb{Z}_q^n$ and a small error $e \leftarrow \chi$
- ▶ The oracle outputs $\mathbf{a}, b := \langle \mathbf{a}, \mathbf{s} \rangle + e \mod q$ (linear almost-equation)
- \triangleright Process is repeated many times for fresh **a** and *e* (unlimited access to samples)

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \\ \vdots \\ e_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \\ \vdots \\ b_m \end{pmatrix}$$

Learning With Errors (LWE) problem: example

- ▶ Secret vector $\mathbf{s} = [s_1, s_2, s_3, s_4] \in \mathbb{Z}_{13}^4$
- ▶ Given noisy inner products $\langle \mathbf{a}_i, \mathbf{s} \rangle$ of \mathbf{s} with random vectors \mathbf{a}_i , try to recover \mathbf{s}

Learning With Errors (LWE) problem: example

- ▶ Secret vector $\mathbf{s} = [s_1, s_2, s_3, s_4] \in \mathbb{Z}_{13}^4$
- ▶ Given noisy inner products $\langle \mathbf{a}_i, \mathbf{s} \rangle$ of \mathbf{s} with random vectors \mathbf{a}_i , try to recover \mathbf{s}
- ▶ Each equation is correct up to small error $\{-1,0,1\}$

$$\begin{array}{lll} 4 \cdot s_{1} + 9 \cdot s_{2} + 11 \cdot s_{3} + 3 \cdot s_{4} & \approx 9 \\ 3 \cdot s_{1} + 7 \cdot s_{2} + 9 \cdot s_{3} + 5 \cdot s_{4} & \approx 5 \\ 6 \cdot s_{1} + 8 \cdot s_{2} + 10 \cdot s_{3} + 12 \cdot s_{4} & \approx 3 \\ 9 \cdot s_{1} + 5 \cdot s_{2} + 1 \cdot s_{3} + 12 \cdot s_{4} & \approx 3 \\ 3 \cdot s_{1} + 5 \cdot s_{2} + 3 \cdot s_{3} + 5 \cdot s_{4} & \approx 10 \\ 11 \cdot s_{1} + 1 \cdot s_{2} + 1 \cdot s_{3} + 11 \cdot s_{4} & \approx 5 \end{array}$$

Learning With Errors (LWE) problem: example

- ▶ Secret vector $\mathbf{s} = [s_1, s_2, s_3, s_4] \in \mathbb{Z}_{13}^4$
- ▶ Given noisy inner products $\langle \mathbf{a}_i, \mathbf{s} \rangle$ of \mathbf{s} with random vectors \mathbf{a}_i , try to recover \mathbf{s}
- ▶ Each equation is correct up to small error $\{-1,0,1\}$

$$\begin{array}{llll} 4 \cdot s_1 + 9 \cdot s_2 + 11 \cdot s_3 + 3 \cdot s_4 & \approx 9 \\ 3 \cdot s_1 + 7 \cdot s_2 + 9 \cdot s_3 + 5 \cdot s_4 & \approx 5 \\ 6 \cdot s_1 + 8 \cdot s_2 + 10 \cdot s_3 + 12 \cdot s_4 & \approx 3 \\ 9 \cdot s_1 + 5 \cdot s_2 + 1 \cdot s_3 + 12 \cdot s_4 & \approx 3 \\ 3 \cdot s_1 + 5 \cdot s_2 + 3 \cdot s_3 + 5 \cdot s_4 & \approx 10 \\ 11 \cdot s_1 + 1 \cdot s_2 + 1 \cdot s_3 + 11 \cdot s_4 & \approx 5 \end{array}$$

- ► Solution is [8, 3, 9, 2]
- **Exercise:** use Magma to find three other solutions
- ▶ If m sufficiently large wrt to error rate $\approx \frac{\text{error size}}{\sigma}$ then expect unique solution

Discrete Gaussian distribution

- lacktriangle Theory: error distribution χ is discrete Gaussian distribution χ_s on $\mathbb Z$
 - Practice: error distribution is binomial distribution
- ▶ Width $s = \alpha q$ with error rate $\alpha < 1$
- ▶ Definition = discretization of continuous Gaussian distribution: for $z \in \mathbb{Z}$

$$\chi_s(z) = \frac{1}{C} \exp\left(\frac{-\pi z^2}{s^2}\right) \text{ with } C = \sum_{z \in \mathbf{Z}} \exp\left(\frac{-\pi z^2}{s^2}\right)$$

Note:
$$\mu = 0$$
, $\sigma = s/\sqrt{2\pi}$

Learning With Errors (LWE) problem: decision

Distinguish between two distributions:

LWE distribution	Uniform distribution
Fixed $\mathbf{s} \in \mathbb{Z}_q^n$	
\mathbf{a}_i uniform random in \mathbb{Z}_q^n	$ \mathbf{a}_i $ uniform random in \mathbb{Z}_q^n
e_i small random error from χ	b_i uniform random in \mathbb{Z}_q
$(a_1,b_1:=\langle a_1,s angle + e_1 mod q)$	(\mathbf{a}_1,b_1)
$(a_2,b_2:=\langlea_2,s angle+e_2\ mod\ q)$	(a_2, b_2)
i i	:
$(\mathbf{a}_m,b_m:=\langle \mathbf{a}_m,\mathbf{s} angle +e_m mod q)$	(\mathbf{a}_m,b_m)

ightharpoonup Hardness basically amounts to saying that b_i look completely random

Learning With Errors (LWE) problem

Algorithms for LWE problem

Lattice based cryptography

Naive algoritms

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & & \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ s_n \end{pmatrix}$$

- ▶ Trial-and-error
 - **Easy** to test candidate-solution $\mathbf{s} \in \mathbb{Z}_a^n$: check that $b_i \langle \mathbf{a}_i, \mathbf{s} \rangle$ is small for all i
 - \triangleright $O(q^n)$ candidates
- Gaussian elimination?
 - ► Eliminate $a_{2,1}$ by computing $A[2] a_{1,1}^{-1} a_{2,1} A[1]$
 - ▶ Element $a_{1,1}^{-1}a_{2,1}$ is typically large so blows up error e_1

Naive algoritms

$$\begin{pmatrix}b_1\\b_2\\\vdots\end{pmatrix}=\begin{pmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\a_{2,1}&a_{2,2}&\cdots&a_{2,n}\\\vdots&&&&\end{pmatrix}\cdot\begin{pmatrix}s_1\\s_2\\\vdots\\s_n\end{pmatrix}+\begin{pmatrix}e_1\\e_2\\\vdots\\s_n\end{pmatrix}$$

- ► Trial-and-error
 - **Easy** to test candidate-solution $\mathbf{s} \in \mathbb{Z}_q^n$: check that $b_i \langle \mathbf{a}_i, \mathbf{s} \rangle$ is small for all i
 - \triangleright $O(q^n)$ candidates
- Gaussian elimination?
 - ▶ Eliminate $a_{2,1}$ by computing $A[2] a_{1,1}^{-1} a_{2,1} A[1]$
 - ▶ Element $a_{1,1}^{-1}a_{2,1}$ is typically large so blows up error e_1
 - ▶ Only combine equations with equal $a_{i,1}$ and $a_{k,1}$
 - ▶ Blum, Kalai, Wasserman '03: combine equations with equal blocks of coefficients
 - ightharpoonup runs in time $2^{O(n)}$, best known algorithm but requires many samples

Eliminating errors via lattices

- ▶ Given $\mathbf{b} \in \mathbb{Z}_q^{m \times 1}$ and $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ with $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$
- ightharpoonup Errors are small when reduced in the interval [-q/2, q/2]
- ▶ ~ global problem with natural notion of smallness

Eliminating errors via lattices

- ▶ Given $\mathbf{b} \in \mathbb{Z}_q^{m \times 1}$ and $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ with $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$
- ightharpoonup Errors are small when reduced in the interval [-q/2, q/2]
- ▶ ~ global problem with natural notion of smallness
- \triangleright Consider the lattice in \mathbb{Z}^m

$$\mathcal{L}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m \mid \mathbf{z} = \mathbf{A} \cdot \mathbf{x} \bmod q \text{ and } \mathbf{x} \in \mathbb{Z}_q^n\}$$

- ▶ Note that if $z_1, z_2 \in \mathcal{L}(A)$ we have $z_1 z_2 \in \mathcal{L}(A)$
- **Exercise:** if **A** has rank *n* then $vol(\mathcal{L}(\mathbf{A})) = q^{m-n}$
- ▶ If $\mathbf{e} \neq 0$, then $\mathbf{b} \notin \mathcal{L}(\mathbf{A})$ but still quite close to it

Eliminating errors via lattices

- ▶ Given $\mathbf{b} \in \mathbb{Z}_q^{m \times 1}$ and $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ with $\mathbf{b} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$
- ightharpoonup Errors are small when reduced in the interval [-q/2, q/2]
- ▶ ~ global problem with natural notion of smallness
- \triangleright Consider the lattice in \mathbb{Z}^m

$$\mathcal{L}(\mathbf{A}) = \{\mathbf{z} \in \mathbb{Z}^m \mid \mathbf{z} = \mathbf{A} \cdot \mathbf{x} mod q \ \mathsf{and} \ \mathbf{x} \in \mathbb{Z}_q^n \}$$

- Note that if $z_1, z_2 \in \mathcal{L}(A)$ we have $z_1 z_2 \in \mathcal{L}(A)$
- **Exercise:** if **A** has rank *n* then $vol(\mathcal{L}(\mathbf{A})) = q^{m-n}$
- ▶ If $\mathbf{e} \neq 0$, then $\mathbf{b} \notin \mathcal{L}(\mathbf{A})$ but still quite close to it
- **Bounded Distance Decoding** (BDD_d): Given target vector with promise that it lies at distance $\leq d$ of lattice \mathcal{L} , find closest lattice vector = special case of CVP
- ▶ Note that the vector **b** is at distance $||\mathbf{e}||$ of $\mathcal{L}(\mathbf{A})$

Eliminating errors via multivariate equations

- ▶ Arora, Ge (2011): New algorithms for learning in the presence of errors
- ▶ Given LWE samples $(\mathbf{a}_i, b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i)$, express algebraically that the errors e_i are small
- Assuming errors are in [-B, B], they will be zeros of

$$F(x) = \prod_{i \in [-B,B]} (x-i)$$

▶ Replacing secret vector **s** by unknowns $(x_1, ..., x_n)$ we can write

$$e_i = b_i - \langle \mathbf{a}_i, (x_1, \dots, x_n) \rangle$$

- ▶ Obtain system of non-linear multivariate equations $F(e_i) = 0$
- ► For $\alpha q \sim n^{\epsilon}$, obtain complexity of $2^{\tilde{\mathcal{O}}(n^{2\epsilon})}$
- Useful if lot of samples and errors very small

Properties of the LWE Problems

- **Theorem** (Regev '05): for q prime with $q \le n^{\mathcal{O}(1)}$, LWE is as hard as worst-case lattice problems (γ -SVP in dimension n) with $\gamma \sim n/\alpha$
 - ▶ Width of Gaussian should be large enough $\alpha q > 2\sqrt{n}$
 - lacktriangle Big theoretical result, main selling point of LWE (but in practice: smaller lpha q)

Properties of the LWE Problems

- **Theorem** (Regev '05): for q prime with $q \le n^{\mathcal{O}(1)}$, LWE is as hard as worst-case lattice problems (γ -SVP in dimension n) with $\gamma \sim n/\alpha$
 - Width of Gaussian should be large enough $\alpha q > 2\sqrt{n}$
 - ▶ Big theoretical result, main selling point of LWE (but in practice: smaller αq)
- ightharpoonup Given LWE problem with secret $m {f s}$, can easily create LWE problem for secret $m {f s} + {f t}$
 - ightharpoonup Replace b_i with $b_i + \langle \mathbf{a}_i, \mathbf{t} \rangle$
 - Random self-reduction

Properties of the LWE Problems

- **Theorem** (Regev '05): for q prime with $q \le n^{\mathcal{O}(1)}$, LWE is as hard as worst-case lattice problems (γ -SVP in dimension n) with $\gamma \sim n/\alpha$
 - Width of Gaussian should be large enough $\alpha q > 2\sqrt{n}$
 - ▶ Big theoretical result, main selling point of LWE (but in practice: smaller αq)
- ightharpoonup Given LWE problem with secret $m {f s}$, can easily create LWE problem for secret $m {f s} + {f t}$
 - ightharpoonup Replace b_i with $b_i + \langle \mathbf{a}_i, \mathbf{t} \rangle$
 - Random self-reduction
- ightharpoonup Search and decision problems are equivalent (easy for q prime O(poly(n))

Search LWE \leq_P Decision LWE

- ▶ Given an oracle that solves Decision LWE, we will solve the Search LWE
- ▶ Idea: use Decision oracle to deduce coefficients of **s** one at a time

Search LWE \leq_P Decision LWE

- ▶ Given an oracle that solves Decision LWE, we will solve the Search LWE
- ▶ Idea: use Decision oracle to deduce coefficients of **s** one at a time
- Make guess g for the first coefficient of s
- ► Change each sample (\mathbf{a}, b) in $(\mathbf{a} + (r, 0, \dots, 0), b + g \cdot r)$

Search LWE \leq_P Decision LWE

- ▶ Given an oracle that solves Decision LWE, we will solve the Search LWE
- ▶ Idea: use Decision oracle to deduce coefficients of s one at a time
- Make guess g for the first coefficient of s
- ► Change each sample (\mathbf{a}, b) in $(\mathbf{a} + (r, 0, \dots, 0), b + g \cdot r)$
- Submit new LWE instance to Decision oracle
 - ▶ If guess g is correct, then new instance has LWE distribution
 - ▶ If guess g is incorrect, then new instance has uniform distribution
- Repeat for other coefficients of s

Variants of LWE

- ▶ The secret **s** can be taken from the error distribution
- ▶ The secret **s** can be taken binary with sufficient entropy
- ▶ The noise vector **e** can be taken binomial, or uniform in some interval
- Learning With Rounding (LWR): the noise is computed deterministically as

$$(\mathbf{a} \in \mathbb{Z}_q^n, \lfloor rac{p}{q} \langle \mathbf{a}, \mathbf{s}
angle
ceil \mod p)$$

with p a smaller integer than q (idea: divide \mathbf{Z}_q into p intervals and round to starting point of interval; suffices to encode index of interval, hence mod p)

LWR used in Saber (see later)

Learning With Errors (LWE) problem

Algorithms for LWE problem

Lattice based cryptography

Cryptographic Applications of LWE

- ► LWE is as hard as worst case lattice problems, that are believed to be hard even for quantum computers
- Concrete security estimates via Albrecht's LWE tool: https://bitbucket.org/malb/lwe-estimator
- Very versatile! LWE has been used as the basis for:
 - Public key encryption
 - Identity-based encryption
 - Oblivious transfer
 - Leakage resilient encryption
 - Homomorphic encryption
- Main downside: inefficient both in space and time (see in a couple of slides)

- **Private key**: secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ chosen uniform random
- ▶ **Public key**: m samples from LWE distribution with secret \mathbf{s} , given as $m \times n$ matrix A and $m \times 1$ matrix B

- **Private key**: secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ chosen uniform random
- ▶ **Public key**: m samples from LWE distribution with secret \mathbf{s} , given as $m \times n$ matrix A and $m \times 1$ matrix B
- **Encryption**: for each bit *b* of message do
 - choose random vector $\mathbf{r} \in \mathbb{Z}_q^m$ with small coefficients
 - ightharpoonup ciphertext = $(\mathbf{c}, d) = (\mathbf{r}^t \cdot A, \mathbf{r}^t \cdot B + b \cdot \lfloor \frac{q}{2} \rfloor) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$

- **Private key**: secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ chosen uniform random
- ▶ **Public key**: m samples from LWE distribution with secret \mathbf{s} , given as $m \times n$ matrix A and $m \times 1$ matrix B
- **Encryption**: for each bit *b* of message do
 - choose random vector $\mathbf{r} \in \mathbb{Z}_q^m$ with small coefficients
 - $lackbox{ciphertext} = (\mathbf{c},d) = (\mathbf{r}^t \cdot A, \mathbf{r}^t \cdot B + b \cdot \lfloor \frac{q}{2} \rfloor) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$
- **Decryption**: given ciphertext (\mathbf{c}, d)
 - ▶ if $d \langle \mathbf{c}, \mathbf{s} \rangle$ closer to 0 than to $\lfloor \frac{q}{2} \rfloor$ modulo q, then message is 0 else it is 1

Private/public key setup:

Encryption:

Ring-LWE

Main problem with LWE: requires n elements in \mathbb{Z}_q to generate only one extra random looking element in \mathbb{Z}_q

$$\mathbf{a}, b := \langle \mathbf{a}, \mathbf{s} \rangle + e$$

Ring-LWE

Main problem with LWE: requires n elements in \mathbb{Z}_q to generate only one extra random looking element in \mathbb{Z}_q

$$\mathbf{a}, b := \langle \mathbf{a}, \mathbf{s} \rangle + e$$

- Instead of inner product, try to use another type of product such that result is again in \mathbb{Z}_q^n and not just \mathbb{Z}_q
- ► First idea: coordinate wise multiplication
 - Not secure since each coordinate is independent (one-dimensional LWE)
 - ▶ If $q \le n^{\mathcal{O}(1)}$: easy search to find each coordinate of **s**
 - ▶ If *q* is very large: becomes related to Approximate GCD problem

Ring-LWE

- ▶ Better idea: use multiplication in polynomial ring
- Consider $R := \mathbb{Z}[x]/(x^n + 1)$ with $n = 2^k$
- ▶ For an integer q, let $R_q = R/qR$
- ▶ Then can identify \mathbb{Z}_q^n with R_q by

$$[a_0, a_1, \dots, a_{n-1}] \mapsto \sum_{i=0}^{n-1} a_i x^i$$

Ring-LWE

- Better idea: use multiplication in polynomial ring
- Consider $R := \mathbb{Z}[x]/(x^n + 1)$ with $n = 2^k$
- ▶ For an integer q, let $R_q = R/qR$
- ▶ Then can identify \mathbb{Z}_q^n with R_q by

$$[a_0, a_1, \dots, a_{n-1}] \mapsto \sum_{i=0}^{n-1} a_i x^i$$

- Addition is simply coordinate wise addition
- **Multiplication** is polynomial multiplication followed by reduction modulo $x^n + 1$

Search Ring-LWE

ightharpoonup Example: n = 4, q = 17

$$a := 9x^3 + 8x^2 + 12x + 11$$
 $s := x^3 + 12x^2 + 16x + 13$
 $\Rightarrow a * s = 9x^3 + 11x^2 + 12x + 10$

Search Ring-LWE

▶ Example: n = 4, q = 17

$$a := 9x^3 + 8x^2 + 12x + 11$$
 $s := x^3 + 12x^2 + 16x + 13$
 $\Rightarrow a * s = 9x^3 + 11x^2 + 12x + 10$

- ► Ring-LWE:
 - ightharpoonup secret element $\mathbf{s} \in R_q$ (either small or random, equivalent)
 - \triangleright elements \mathbf{a}_i chosen randomly in R_a
 - ightharpoonup coefficients noise polynomial \mathbf{e}_i small independent normal variables
- **Search**: given many tuples $(a_i, a_i * s + e_i)$ recover s
- \triangleright Can be viewed as multiplication with structured $n \times n$ matrix
- Practice: **s** is taken to be small, so only one sample suffices

Decision Ring-LWE

Decision: given many tuples $(\mathbf{a}_i, \mathbf{b}_i) \in R_q^2$, decide whether there exists an $\mathbf{s} \in R_q$ and small $\mathbf{e}_i \in R_q$ such that

$$\mathbf{b}_i = \mathbf{a}_i * \mathbf{s} + \mathbf{e}_i$$

Decision Ring-LWE

▶ **Decision**: given many tuples $(\mathbf{a}_i, \mathbf{b}_i) \in R_q^2$, decide whether there exists an $\mathbf{s} \in R_q$ and small $\mathbf{e}_i \in R_q$ such that

$$\mathbf{b}_i = \mathbf{a}_i * \mathbf{s} + \mathbf{e}_i$$

▶ If $q = 1 \mod 2n$ and prime, then $x^n + 1$ has n roots in \mathbb{Z}_q

Search Ring-LWE \leq_P Decision Ring-LWE

- ▶ Ring-LWE is as hard as worst case "structured lattice" (ideal lattice) problems
 - ▶ If **a** in lattice, then also x * a
 - ▶ For R: if $(x_1, ..., x_n)$ in lattice, then also $(x_2, ..., x_n, -x_1)$

- ► Plaintext space is taken as R₂
- $\blacktriangleright \text{ Let } \Delta = |q/2|$
- ▶ Denote $[\cdot]_q$ reduction in (-q/2, q/2]
- $ightharpoonup \chi$ error distribution on R_q

- ► Plaintext space is taken as R₂
- ightharpoonup Let $\Delta = |q/2|$
- ▶ Denote $[\cdot]_q$ reduction in (-q/2, q/2]
- \triangleright χ error distribution on R_q
- ▶ Secret key: sample $\mathbf{s} \leftarrow \chi$

- ightharpoonup Plaintext space is taken as R_2
- ightharpoonup Let $\Delta = |q/2|$
- ▶ Denote $[\cdot]_q$ reduction in (-q/2, q/2]
- $\triangleright \chi$ error distribution on R_a
- ▶ Secret key: sample $\mathbf{s} \leftarrow \chi$
- ► Public key:
 - ▶ sample $\mathbf{a} \leftarrow R_{\mathbf{a}}$, $\mathbf{e} \leftarrow \chi$ and output

$$pk = ([(-a \cdot s + e)]_q, a)$$

▶ Can interpret pk as degree 1 polynomial pk(X) = pk[1]X + pk[0] with

$$[pk(s)]_q = e$$

- ▶ Encrypt message $\mathbf{m} \in R_2$, let $\mathbf{p}_0 = \mathrm{pk}[0]$, $\mathbf{p}_1 = \mathrm{pk}[1]$
- ▶ Sample $\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2 \leftarrow \chi$ and set

$$\mathtt{ct} = \left(\left[\mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} \right]_q, \left[\mathbf{p}_1 \cdot \mathbf{u} + \mathbf{e}_2 \right]_q \right)$$

- **Encrypt** message $\mathbf{m} \in R_2$, let $\mathbf{p}_0 = \mathrm{pk}[0]$, $\mathbf{p}_1 = \mathrm{pk}[1]$
- ▶ Sample $\mathbf{u}, \mathbf{e}_1, \mathbf{e}_2 \leftarrow \chi$ and set

$$\mathtt{ct} = \left(\left[\mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} \right]_q, \left[\mathbf{p}_1 \cdot \mathbf{u} + \mathbf{e}_2 \right]_q \right)$$

Decrypt ciphertext ct: set $\mathbf{c}_0 = \mathtt{ct}[0]$, $\mathbf{c}_1 = \mathtt{ct}[1]$ and compute

$$\left[\left\lfloor rac{\left[\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s}
ight]_q}{\Delta}
ight
ceil
brace_2$$

Decryption analysis

► Writing out definition

$$\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} = \mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} + \mathbf{p}_1 \cdot \mathbf{u} \cdot \mathbf{s} + \mathbf{e}_2 \cdot \mathbf{s} \mod q$$
$$= \Delta \cdot \mathbf{m} + \mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s} \mod q$$

Decryption analysis

Writing out definition

$$\begin{aligned} \mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} &= \mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} + \mathbf{p}_1 \cdot \mathbf{u} \cdot \mathbf{s} + \mathbf{e}_2 \cdot \mathbf{s} \bmod q \\ &= \Delta \cdot \mathbf{m} + \mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s} \bmod q \end{aligned}$$

- ► Error term $\mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s}$ is small in (-q/2, q/2]
- ▶ As long as error term $< \Delta/2$ decryption works correctly

Decryption analysis

Writing out definition

$$\mathbf{c}_0 + \mathbf{c}_1 \cdot \mathbf{s} = \mathbf{p}_0 \cdot \mathbf{u} + \mathbf{e}_1 + \Delta \cdot \mathbf{m} + \mathbf{p}_1 \cdot \mathbf{u} \cdot \mathbf{s} + \mathbf{e}_2 \cdot \mathbf{s} \mod q$$
$$= \Delta \cdot \mathbf{m} + \mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s} \mod q$$

- ► Error term $\mathbf{e} \cdot \mathbf{u} + \mathbf{e}_1 + \mathbf{e}_2 \cdot \mathbf{s}$ is small in (-q/2, q/2]
- ▶ As long as error term $< \Delta/2$ decryption works correctly
- ▶ Valid ciphertext = deg 1 polynomial ct(X) = ct[1]X + ct[0] such that

$$[\mathtt{ct}(\mathbf{s})]_q = \Delta \cdot m + \mathbf{v}$$

with $|\mathbf{v}| < \Delta/2$

Additively homomorphic property

▶ Let ct_i for i = 1, 2 be two ciphertexts, with

$$[\mathsf{ct}_i(\mathbf{s})]_q = \Delta \cdot \mathbf{m}_i + \mathbf{v}_i$$

then

$$\left[\mathsf{ct}_1(\mathbf{s}) + \mathsf{ct}_2(\mathbf{s}) \right]_q = \Delta \cdot \left[\mathbf{m}_1 + \mathbf{m}_2 \right]_2 + \mathbf{v}_1 + \mathbf{v}_2 + \epsilon,$$

where ϵ comes from reduction modulo 2 of $\mathbf{m}_1+\mathbf{m}_2$

- ▶ Polynomial addition thus gives plaintext addition modulo 2
- Error grows additively in original errors
- ► Similar idea works for multiplication (requires relinearization: technical)
- ► Gentry's fantastic **bootstrapping** technique (2009): reduce the noise **v** without knowledge of **s** (very technical) \leadsto Fully Homomorphic Encryption (FHE)

- ▶ Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman (1996): NTRU: A Ring-Based Public Key Cryptosystem
- ▶ Uses same polynomial ring as RLWE: $R_q = \mathbb{Z}_q[x]/(x^n + 1)$

- ▶ Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman (1996): NTRU: A Ring-Based Public Key Cryptosystem
- ▶ Uses same polynomial ring as RLWE: $R_q = \mathbb{Z}_q[x]/(x^n + 1)$
- ▶ Secret key: $\mathbf{f}, \mathbf{g} \leftarrow \chi$ where χ samples elements with small coefficients in R_q such that \mathbf{f} is invertible in R_q
- ▶ Public key: $\mathbf{h} = \mathbf{g}/\mathbf{f} \in R_q$

- ▶ Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman (1996): NTRU: A Ring-Based Public Key Cryptosystem
- ▶ Uses same polynomial ring as RLWE: $R_q = \mathbb{Z}_q[x]/(x^n + 1)$
- ▶ Secret key: $\mathbf{f}, \mathbf{g} \leftarrow \chi$ where χ samples elements with small coefficients in R_q such that \mathbf{f} is invertible in R_q
- ▶ Public key: $h = g/f \in R_q$
- ▶ Plaintext space: ring $R_p = \mathbb{Z}_p[x]/(x^n + 1)$ with p much smaller than q, where each coefficient is taken in [-p/2, p/2]

▶ **Encryption**: to encrypt message $\mathbf{m} \in R_p$ under public key \mathbf{h} , generate polynomial $\mathbf{r} \leftarrow \chi'$ and compute

$$\mathbf{c} = p \cdot \mathbf{r} \cdot \mathbf{h} + \mathbf{m} \bmod q$$

▶ **Encryption**: to encrypt message $\mathbf{m} \in R_p$ under public key \mathbf{h} , generate polynomial $\mathbf{r} \leftarrow \chi'$ and compute

$$\mathbf{c} = p \cdot \mathbf{r} \cdot \mathbf{h} + \mathbf{m} \mod q$$

Decryption: given ciphertext **c** compute $\mathbf{c}' = \mathbf{f} \cdot \mathbf{c} \mod q$ with all coefficients in [-q/2, q/2]

$$\mathbf{c}' = \mathbf{f} \cdot p \cdot \mathbf{r} \cdot \mathbf{h} + \mathbf{f} \cdot \mathbf{m} = p \cdot \mathbf{r} \cdot \mathbf{g} + \mathbf{f} \cdot \mathbf{m} \mod q$$

Note both terms $\mathbf{r} \cdot \mathbf{g}$ and $\mathbf{f} \cdot \mathbf{m}$ are small, so centered reduction really gives

$$\mathbf{c}' = p \cdot \mathbf{r} \cdot \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$$
 (in R , i.e. no mod q anymore!)

▶ If $\mathbf{f} = 1 \mod p$, then reduction modulo p gives

$$\mathbf{c}' = \mathbf{m} \mod p$$

NTRU security

- ► NTRU problems:
 - ▶ Search: $\mathbf{h} \in R_q$, find \mathbf{f}, \mathbf{g} with small coefficients and $\mathbf{h} = \mathbf{g}/\mathbf{f}$
 - ightharpoonup Decision: distinguish \mathbf{g}/\mathbf{f} from uniform random in R_q
 - ▶ 2021: Reduction due to A. Pellet-Mary and D. Stehlé

NTRU security

- ► NTRU problems:
 - ▶ Search: $\mathbf{h} \in R_a$, find \mathbf{f}, \mathbf{g} with small coefficients and $\mathbf{h} = \mathbf{g}/\mathbf{f}$
 - ightharpoonup Decision: distinguish \mathbf{g}/\mathbf{f} from uniform random in R_q
 - ▶ 2021: Reduction due to A. Pellet-Mary and D. Stehlé
- ▶ Link with lattices: the private key **g**, **f** is small and satisfies

$$\mathbf{f} \cdot \mathbf{h} = \mathbf{g} \mod q$$

 \triangleright Vector (\mathbf{f}, \mathbf{g}) is very short vector in lattice

$$\{\,(\mathbf{u},\mathbf{v})\in R^2\,|\,\mathbf{uh}\equiv\mathbf{v}\,\,\mathrm{mod}\,\,q\,\}\subset\mathbb{Z}^{2n}$$

- (inclusion via identification of R with \mathbb{Z}^n)
- **Exercise:** show that this is the lattice

$$\begin{pmatrix} I_n & rot^-(\mathbf{h}) \\ 0 & qI_n \end{pmatrix}$$

where *i*-th row of $rot^-(\mathbf{h})$ is simply $x^i\mathbf{h} \mod q$

NIST competition

- ► Standardization effort for post-quantum cryptographic schemes
- November 2017: 69 accepted submissions
- ▶ July 2020: 7 finalists and 8 alternates

Туре	Key encapsulation	Digital signature
Lattice	Kyber, NTRU, Saber	Dilithium, Falcon
	FrodoKEM, NTRU Prime	
Code	Classic McEliece, BIKE, HQC	_
Multivariate	_	Rainbow, GeMMS
Isogeny	SIKE	_
Hash	_	SPHINCS+
ZK proofs	_	Picnic

- Saber = Cosic submission

NIST competition

- Standardization effort for post-quantum cryptographic schemes
- November 2017: 69 accepted submissions
- ▶ July 2020: 7 finalists and 8 alternates

Туре	Key encapsulation	Digital signature
Lattice	Kyber, NTRU, Saber	Dilithium, Falcon
	FrodoKEM, NTRU Prime	
Code	Classic McEliece, BIKE, HQC	_
Multivariate	_	Rainbow, GeMMS
Isogeny	SIKE	_
Hash	_	SPHINCS+
ZK proofs	_	Picnic

- ► Saber = Cosic submission
- ▶ July 22: 4 standards, 4 for further scrutiny (also in 2022: 2 complete breaks)
- ▶ New call for digital signatures (submission deadline June 2023)

Further reading

- ▶ O. Regev. The Learning with Errors Problem: http://www.cims.nyu.edu/~regev/papers/lwesurvey.pdf
- ➤ S. Galbraith. Cryptosystems based on lattices: https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch19a.pdf