UAV-based 3D-Space Mapping System

via a 3D camera and a mmWave radar

Formal Design Presentation

CM/TM: Dr. Honggang Zhang

10/15/2020

Zhuoming Huang Alinson Sanquintin (Junior)

Access Needs and Problem Statement

Access Needs:

- Needs access to high-risk areas for explorations or rescues.
- Needs managements of large-scale facilities.
- Needs non-intrusive monitoring for public health and safety

Problem Statement:

- For missions above:
 - unsafe to access an unknown environment
 - needs plenty of resource (time or labor)
 - difficult to non-intrusively monitor large public areas
- ► UAV(drones) with cameras and radar sensors can 3D-image and track objects with ease, low cost, high efficiency and flexibility.

Requirements

- 1. Capability to outline shapes of objects in a 3D space
- 2. Accurately estimates positions of objects
- 3. Portable (small and lightweight)
- 4. Mounted on a drone (connector)
- 5. Low-cost
- 6. Easy to use

Proposed Solution: Hardware Block Diagram

The computing platform Jetson Nano and the power supply system are not included in our mapping system

Proposed Solution: System Architecture

Subsystem: 3D Camera

- ZED mini from StereoLABS
- Depth sensing and motion tracking
- Visual-inertial stereo SLAM
- Size: 124.5 x 30.5 x 26.5 mm (≈100.63cm³)
- Weight: 62.9g
- Satisfies requirements 1, 3, 5, 6
 - (3D-Mapping; Portable; Low-cost; Easy-to-use)

Subsystem: mmWave Radar Sensor

- IWR6843ISK from Texas Instruments
- Long-range antennas, 4RX, 3TX
- Operating frequency 60GHz (5mm wavelength)
- FMCW technology
- Ability to detect movements that are as small as a fraction of a millimeter
- Size: 69 x 55 x 7mm (≈27cm³)
- Weight: 18g
- Satisfies requirements 2, 3, 5, 6
 - (Accurate; Portable; Low-cost; Easy-to-use)

Subsystem: Device Connector

- 3D-printed
- Simple frame to hold camera and radar sensor
- Extendable to other platforms (e.g. drone, ceiling, wall)
- Satisfies requirements 3, 5, 6
 - (Portable; Low-cost; Easy-to-use)
- Helps satisfying requirement 4
 - (Mount to a drone)

Subsystem: Embedded Software

- For Jetson Nano to process sensor data
- Enables different configurations
- Developed from SDKs provided by StereoLABS and TI

Preliminary Budget

No.	Item	Qty	Unit Price (USD)	Price (USD)	Note
1	ZED mini	1	399	399	3D camera
2	IWR6843ISK	1	135	135	mmWave radar sensor
3	3D-printed connector	1	N/A	10	Holding radar and camera, extend to a drone
	Total			544	

Design Alternatives - The Kinect

- 3D cameras for depth sensing and motion tracking
- Products by Microsoft
- Kinect V2
 - ► 249 x 67 x 66 mm (≈1101cm³)
 - ► 1400g
 - **\$289**
- Azure Kinect DK
 - ► 103 x 39 x 126 mm (≈506cm³)
 - ► 440g
 - **\$399**
- Captured data can be used as ground truth for reference
- Partly satisfy requirements 3 (portable, requires a bigger drone)

Design Alternatives - Lidar

- 3D laser scanning for imaging, detection, ranging, mapping
- High resolution and accuracy
- Cannot deal with smoke and fog
- Velodyne Lidar Puck
- ► VLP-16
 - ► 103Ø x 72mm (≈600cm³)
 - ▶ 830g
 - **\$8000**
- Partly satisfy requirement 3
 (portable, requires a bigger drone)
- Does NOT satisfy requirement 5 (Low-cost)
- Some Lidar products are less expensive

Design Alternatives - The milliMap

- Low-cost indoor 2D-mapping system
- Available on Github
- Uses mmWave inputs
- Accuracy comparable to lidar
- Relies on radar point cloud data
 - Sparse
 - not information-rich
- Does NOT satisfy requirements 1, 6
 (2D-mapping only, needs to be upgraded to 3D)

Design Alternatives - Slider for SAR

- Uses small, lightweight, precise slider to perform SAR on drone
- Off-the-shelf sliders are large and heavy
 - Needs to be customized
 - Hard to guarantee precision
- Needs redesigning the connector
- Increases size, weight, power consumption
- Limited space for installation

Metrics for Performance Measurement

Requirement	Measurement				
 Capability to outline shapes of objects in a scene 	Operate the system with and without the drone and observe that objects in a scene are successfully outlined.				
 Accurately estimates positions of objects 	Compare our result to ground truth given by Kinect or OptiTrack system				
 Portable (small and lightweight) 	Measure physical dimension and weight (≈ 100g)				
 Mounted on a drone (connector) 	Confirm that a connector is given, and all hardware components can be secured on a drone through this connector.				
• Low-cost	Calculate the overall budget (≤ \$1000)				
Easy to use	Count the steps for configuration and operation (≤ 10)				

Project Management (GANTT Chart)

	0	Tas Moć ▼	Task Name	Durati ▼	Start +	Finish +
1		*	Protable 3D Mapping System Design	193 days?	Tue 9/8/20	Mon 5/31/21
2	III	-5	Reasech mmWave radars	5 days	Tue 9/8/20	Mon 9/14/20
3	III	-5	Configure radar	5 days	Tue 9/15/20	Mon 9/21/20
4		-5	Test radar data collecting	7 days	Tue 9/22/20	Wed 9/30/20
5		-5	Reasech 3D camera	5 days	Tue 9/8/20	Mon 9/14/20
6	===	<u>-</u> 5	Configure camera	5 days	Tue 9/15/20	Mon 9/21/20
7		<u>-5</u>	Test camera data collecting	7 days	Tue 9/22/20	Wed 9/30/20
8		-5	SAR experiments	7 days	Thu 10/1/20	Wed 10/7/20
9		-3	Integrate sensor data	7 days	Thu 10/8/20	Fri 10/16/20
10		-5	Analyze and process data	21 days	Mon 10/19/20	Mon 11/16/20
11		-5	Firmware modification	10 days	Tue 11/17/20	Mon 11/30/20
12		-3	3D printing a connector	3 days	Thu 10/8/20	Mon 10/12/20
13		-	Prototype ready	1 day	Tue 12/1/20	Tue 12/1/20
14	===	5	System building on UAV and tests	30 days	Wed 12/2/20	Tue 1/12/21
15		-5	System test & data processing-1	30 days	Wed 1/13/21	Tue 2/23/21
16		-5)	System test & data processing-2	30 days	Wed 2/24/21	Tue 4/6/21
17		<u>-5</u>	Optimize the product	18 days	Wed 4/7/21	Fri 4/30/21
18	III	-5	Final product ready	1 day	Sat 5/1/21	Sat 5/1/21

Qtr 2, 201

Deliverables

- A fully functioning 3D-space mapping system
 - ► With ZED mini and TI IWR6843ISK
 - Accurate
 - Low-cost
- Modified radar firmware
- Embedded software for Jetson Nano to process sensor data
- A holder for connecting the camera and radar, and mounting the system on the drone

Anticipated problems/Risk Management

- Safety issue during flight tests
 - Wear eye protectors, gloves
 - Use mats on floor, nets on surrounding for protection
 - Make sure everything is alright before the launch
- Privacy issue and low-visibility conditions (smoke, fog)
 - Pick another time or place
 - Turn off camera and use pre-trained models
- Access to flight-test room on campus:
 - Use the public facility with nets covering

Members, Activities, and Communication Plan

- CM/TM: Dr. Honggang Zhang
- Basic members
 - Zhuoming Huang
 - Major data collecting, processing, validating.
 - Alinson Sanquintin
 - Junior observer
 - Assist with minor research, data processing, reviewing.
- External help:
 - Lucas Lomba and Yue Sun
 - For SAR data processing and model training issues
- Weekly meetings:
 - CM/TM/Team meetings: 15:30 17:00 Monday
 - Zoom
 - File sharing on Google Drive

Question?

