Diversity in type and location of phytochemical accumulation across ... species of *Scutellaria*

Bryce Askey

Lab Meeting 12-5-19

Background

• Scutellaria baicalensis, barbata, and lateriflora are medicinal plants

Root extracts used in traditional Chinese medicine

Aerial extracts used in traditional Chinese & Korean medicine

Aerial extracts used in traditional Native American medicine

Background

- S. baicalensis, barbata, and lateriflora are well-studied
 - Anticancer, anti-Alzheimer, and antimicrobial phytochemicals identified

Phytochemical	Species	Property	Study	
Baicalin	S. baicalensis, S. lateriflora	Anti-cancer, anxiolytic	Zhao et al., 2016; Awad et al., 2003; Cole et al., 2007	
Baicalein	S. baicalensis, S. lateriflora	Anti-Alzheimer's, anxiolytic	Shang et al., 2005; Gasiorowski et al., 2011; Awad et al., 2003; Cole et al., 2007	
Wogonoside	S. baicalensis	Anti-cancer	Zhao et al., 2016	
Wogonin	S. baicalensis, S. lateriflora	Anti-cancer, anti- Alzheimer's	Zhao et al., 2016; Cole et al., 2007	
Oroxylin A	S. baicalensis	Anti-Alzheimer's	Shang et al., 2005; Gasiorowski et al., 2011	
Scutellarein	S. barbata	Anti-cancer	Wang et al., 2018; Guo et al., 2019	
Scutellarin	S. barbata, S. lateriflora	Anti-microbial	Tsai et al., 2018; Islam et al., 2011; Cole et al., 2007	
Apigenin	S. barbata	Anti-microbial	Tsai et al., 2018	

S. baicalensis metabolite pathway aerial root

Problem statement and goal

- Phytochemical profiles of S. baicalensis, barbata, and lateriflora are well characterized
 - Published pathway of *S. baicalensis*
- However, ~350 species of Scutellaria exist around the world
 - Majority of phytochemical profiles not well studied/not studied at all

Goal: Identify similarities and differences between organ-specific phytochemical profiles of a wide range of *Scutellaria* species

Objectives

- 1. Use HPLC analysis to measure phytochemical concentrations in leaves, shoots, and roots of different species of *Scutellaria*
- 2. Identify species of interest for untargeted metabolite analysis with LC-MS
- 3. Compare phytochemicals profiles for different species against:
 - Genome size
 - Published *S. baicalensis* pathway
 - Phylogenetic tree
- 4. Identify species with interesting phytochemical profiles for additional study

Significance

Intellectual merit:

- Identification of species with interesting phytochemical profiles
- Untargeted metabolite analysis to characterize unknown compounds

Broader impacts:

- Better understanding of health-beneficial phytochemicals in not wellstudied species
- Aid in development of new drugs/treatments from extracts of these species

Metabolite profiles

Comparison to genome size

No.	Taxa	Standard Plant	1C (Mean)	SD	Genome Size (Gbp)
1	S. altissima	Solanum	0.40	0.02	0.39
2	S. leonardii	Glycine	0.51	0.02	0.50
3	S. hastifolia	Solanum	0.39	0.04	0.39
4	S. havanensis	Solanum	0.38	0.03	0.37
5	S. arenicola	Glycine	0.87	0.02	0.85
6	S. tournefortii	Solanum	0.40	0.01	0.39
7-1	S. racemosa	Solanum	0.44	0.03	0.44
8	S. baicalensis	Solanum	0.55	0.00	0.54

Metabolite profiles

Comparison to pathway

root

Phylogenetic analysis

- Find clades with similar phytochemical profiles
 - Identify species with potential for further study
- Match branches in tree to differences in phytochemical profiles

Methodology for quantifying wounding response in lettuce

Background

- Pinking occurs when lettuce leaves are damaged during harvesting, shipping, or packaging
- Considered undesirable by consumers
 - Reduces value of crop
 - Increases amount of food waste

Preventing pinking

- Testing with various concentration of cystine, melatonin, and serotonin
- Traditional method –
 evaluate by visual inspection
 and rate 1-5
- Need method to objectively quantify degree of pinking

General approach

- 1. Analyze pixel RGB values @ wounding site
- 2. Use pixels from control treatment to develop RGB pixel threshold
- 3. Apply threshold to wounding sites in all images to determine % of pink pixels

OR

- 1. Convert image to L*a*b* color space
- 2. Calculate average a* value at wounding sites in all image

Differences in RGB profiles

Threshold RGB values

• 1 standard deviation above and below mean value

Quantifying pinking response

Calculate % of pixels that meet threshold to be considered pink:

- Standardize area considered
- Count pixels in area that meet threshold

Image processing in GIMP

Image processing in GIMP

Image processing in GIMP

Output

- Calculate % pink pixels for each wounding site
- Standard deviation and significance of treatments

a* method

- Calculate average a* value at each wounding site
- More pinking -> greater a*
- Drawback ignores all data in the L* and b* components

Figure 18. The L* value is represented on the center axis. The a* and b* axes