Real Analysis

Gerald B. Folland

2024年3月11日

序

天道几何,万品流形先自守; 变分无限,孤心测度有同伦。

> 2024 年 3 月 11 日 长夜伴浪破晓梦,梦晓破浪伴夜长

目录

第零章	课程要求	1
第一章	集合论	2
1.1	集合列的上下极限	2
	1.1.1 集合族的上下确界	2
	1.1.2 集合列的上下极限	2
1.2	Descartes 积的推广	3
1.3	序关系	5
	1.3.1 偏序,全序,预序	5
	1.3.2 极大元/极小元, 上界/下界, 良序	6
	1.3.3 保序同构,序型	7
1.4	Hausdorff 极大原理,Zorn 引理	8
1.5	良序原理,选择公理	9
	1.5.1 良序原理	9
	1.5.2 选择公理	10
1.6	集合的势 Cardinality	11
1.7	幂集的势,可数	15
	1.7.1 幂集的势	15
	1.7.2 可数	16
1.8	可数集的幂集,连续统	17
1.9	理想实数系及上面的求和	
	1.9.1 实数系的推广	

第零章 课程要求

- 任课教师: 刘小川
- 辅导时间: 希腊奶
- 办公室: 数学楼 206
- Email: liuxiaochuan@mail.xjtu.edu.cn
- 总评成绩组成: 期末 70% + 平时 30%
- 考试英文题, 答题中 / 英

第一章 集合论

1.1 集合列的上下极限

1.1.1 集合族的上下确界

定义 首先,对于任意一族集合 $\{E_n\}_{n\in I}$,我们给出其上界和上确界的定义:

定义 1.1.1. 对于 $\{E_n\}_{n\in I}$,若集合 F 满足 $E_n\subseteq F, \forall n\in I$,则称 F 为集合族 $\{E_n\}_{n\in I}$ 的上界 定义 1.1.2. $\{E_n\}_{n\in I}$ 的上界的交成为 $\{E_n\}_{n\in I}$ 的上确界,即

$$\sup_{n \in I} E_n = \bigcup_{n \in I} E_n \tag{1.1}$$

类似的可给出下界及下确界的定义.

性质 下面给出两条关于上下确界的显然的性质:

命题 1.1.1. 若指标集 $I_1 ⊇ I_2$,则:

$$\sup_{n \in I_1} E_n \supseteq \sup_{n \in I_2} E_n \tag{1.2}$$

$$\inf_{n \in I_1} E_n \subseteq \inf_{n \in I_2} E_n \tag{1.3}$$

1.1.2 集合列的上下极限

定义 我们取

$$I_k := \{ n \in \mathbb{N} \mid n \ge k \} \tag{1.4}$$

则 $\{I_k\}_{k=1}^{\infty}$ 单调,从而根据命题1.1.1可知,集合列 $\{\sup_{n\in I_k} E_n\}_{k=1}^{\infty}$, $\{\inf_{n\in I_k} E_n\}_{k=1}^{\infty}$ 也单调 (前者递减,后者递增),从而可定义任一集合列的上下极限:

定义 1.1.3.

$$\limsup_{n \to \infty} E_n = \overline{\lim}_{n \to \infty} E_n := \lim_{k \to \infty} \sup_{n \in I_k} E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$
 (1.5)

$$\liminf_{n \to \infty} E_n = \lim_{n \to \infty} E_n := \lim_{k \to \infty} \inf_{n \in I_k} E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n \tag{1.6}$$

性质 下面给出集合列的上下极限的性质,也可视作等价定义 / 不同观点

命题 1.1.2.

$$\overline{\lim}_{n \to \infty} E_n = \{ x \mid x \in E_n 対无穷多个 n 成立 \}$$
 (1.7)

$$\underline{\lim}_{n\to\infty} E_n = \{x \mid x \in E_n 対除有限个 n 成立\}$$
 (1.8)

根据 Demorgan 定律可得,

$$\underline{\lim_{n\to\infty}} E_n = (\overline{\lim_{n\to\infty}} E_n^c)^c$$

1.2 Descartes 积的推广

引入 首先我们回忆两个 (有限个) 集合的 Descartes 积的定义

$$A \times B := \{(x, y) \mid x \in A, \ y \in B\}$$
 (1.9)

此处定义的 Descartes 积与普通的集合的一个显著的区别就是他是**有序的**,这里的"**有序对**" (x,y) 与 (y,x) 并不相同,这就引出了几个问题:

- 什么是 (x, y), 即 "有序对"的定义是什么?
- x, y 的顺序是否重要?

或者对于更一般的一族集合的 Descartes 积是否仍可定义 "顺序"?

在解答这些问题之前,我们先来引入一个函数

$$f: \{1, 2\} \longrightarrow A \cup B \tag{1.10}$$

$$1 \longmapsto x \in A \tag{1.11}$$

$$2 \longmapsto y \in B \tag{1.12}$$

则此时函数 f 已经给出了我们上面所需的"序关系",即可用以表示 (x, y) 但这时又冒出了几个新的疑惑:

• 指标集 {1,2} 的选取是否重要?

注. 此处的回答显然为否,即我们选取指标集时不应牵扯到角标,比如此处可用 $\{1,2\}$,也可用 $\{3,4\}$,或是 $\{c,d\}$,即只需指标集中"元素的个数"相同,而无需考虑具体形式

• 指标集是否必须为有限集? 或是可数集?

定义 为了解答上述疑惑,下面我们给出更一般的 Descartes 积的定义:

定义 1.2.1. 设 J 为一个指标集, $\{E_n\}_{n\in J}$ 为一族集合,定义集合 T

$$T := \left\{ f : I \longrightarrow \bigcup_{n \in J} E_n \mid I \approx J \right\} \tag{1.13}$$

并在集合 T 上定义等价关系 ~:

在此基础上,定义集合族 $\{E_n\}_{n\in J}$ 的Descartes 积:

$$\prod_{n \in J} E_n := \left\{ \overline{f} \mid f : J \longrightarrow \bigcup_{n \in J} E_n, \ \forall n \in J, \ f(n) \in E_n \right\}$$
(1.15)

注. • $I \approx J$ 表示集合 I = J 等势,即存在 $I \supseteq J$ 的双射

- \bar{f} 表示 f 在集合 T 上的等价类,注意此处 Descartes 积中的 \bar{f} 剔除了 f 在 T 的等价类中不满足条件 " $\forall n \in J, f(n) \in E_n$ "的部分函数
- 此定义可理解为: 从每个 E_n 中各选一者一一置于一些**不记次序**的空位中,即构成一个**多重集**
- 这里 T 上的等价关系 ~ 保证了 Descartes 积中函数 f 指标集的选取只需考虑**集合的势** 相等,即元素的个数相同

推广 事实上,推广后的定义已不包含集合的序概念,此时再将推广后的 Descartes 积与传统意义上在可列集 (有限 / 可数) 上定义的 Descartes 积进行对比:

设 J 是可列的,可先将 J 中元素排序为 j_1 , j_2 , j_3 , ..., 由此回到"传统的" Descartes 积:

$$E_{j_1} \times E_{j_2} \times E_{j_3} \times \cdots \tag{1.16}$$

事实上,该定义即为定义1.2.1中 $\prod_{n\in I} E_n$ 的一个代表元集

同时,在此基础上,我们还可将传统的二元关系拓展为多元关系(即为 Descartes 积的子集)

1.3 序关系

1.3.1 偏序,全序,预序

首先回顾关系 (二元关系) 的概念:

定义 1.3.1. 设 X, Y 是两个集合, 如果集合 R 是 X 与 Y 的 Descartes 积的子集, 即

$$R \subseteq X \times Y \tag{1.17}$$

则称 R 是从 X 到 Y 的一个二元关系 (一般称作关系).

于是, 若 $(x, y) \in R$, 我们称 x = y 是 R- 相关的, 记作 xRy.

偏序 此时便能给出偏序的定义:

定义 1.3.2. 设 X 为一个集合,满足如下三条公理的关系 $R \subseteq X \times X$ 称作 X 上的一个偏序关系:

- 1. if xRy, $yRz \Rightarrow xRz$ (传递性)
- 2. *if xRy*, $yRx \Rightarrow x = y$ (反对称性)
- 3. xRx, $\forall x \in X$ (自反性)

例 1.3.1. 常见的偏序关系有: \leq , \geq , \subseteq , \supseteq , 通常把一般的偏序关系记作小于等于 \leq , 上述定义是对常见的偏序关系的推广.

注. 偏序关系是由等价关系所衍生出来的,即先有了相等的概念后才能定义偏序关系. 每一个等价关系可以衍生出很多偏序关系,实际上由同一个等价关系所衍生出的偏序关系并不是完全独立的,而是成对出现的(类似于 ⊆ 与 ⊇).

例 1.3.2 由上述定义的偏序关系 R 可得到一个对偶的偏序关系 R',其有如下的关系:

$$xRy \Leftrightarrow yR'x$$
 (1.18)

下面给出一个偏序集的例子

例 1.3.3. 记全体复数构成集合 \mathbb{C} , 则 (\mathbb{C}, \leq) 是偏序集

注. 在例1.3.3中,我们不能说形如 $a + bi(b \neq 0)$ 的元素之间不满足传递性/反对称性,因为形如 $a + bi(b \neq 0)$ 两个元素之间没有序关系,此处实际只需考虑 $\mathbb C$ 中实数之间的序关系(之所以称偏序集中要求部分元素之间存在序关系,是因为除了反身性以外,其前提均要求选取的对象之间存在序关系。)

全序 在偏序的基础上,可再进一步地给出全序的概念:

定义 1.3.3. 设 X 为一个集合,R 为 X 上的一个偏序关系,如果 R 再同时满足以下性质:

$$\forall x, \ y \in X, \ \text{s. t. } xRy \ or \ yRx \tag{1.19}$$

则称 R 为集合 X 上的一个全序关系

注. 通俗地讲,若 X 中任意两个元素之间都满足关系 R,即任意两个元素之间都可比较,则 (X,R) 为一个全序集

下面给出一个全序集的例子

例 1.3.4. 设集合 $P = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$, 则 (P, \subseteq) 构成全序集

预序

定义 1.3.4. 设 X 为一个集合,R 为 X 上的一个二元关系,若 R 只满足自反性和传递性,即

- 1. xRx, $\forall x \in X$ (自反性)
- 2. if xRy, $yRz \Rightarrow xRz$ (传递性)

则称 R 为集合 X 上的一个预序关系

注. 由定义可知,全序集一定是偏序集,偏序集一定是预序集

1.3.2 极大元/极小元,上界/下界,良序

极大元/极小元 下面给出偏序集上极小元的定义

定义 1.3.5. 设 X 为一个集合, \prec 为 X 上的一个偏序关系, 如果存在 $x \in X$. s.t.

$$\forall y \in X, \text{ if } y \le x, \text{ then } y = x \tag{1.20}$$

则称 x 为 X 的一个极小元

注. 1. 极小元即表示集合中小于或等于它的元素只有它本身,以下为一个等价定义:

$$\nexists y \in X, \ y \neq x, \ \text{s. t. } y < x \tag{1.21}$$

- 2. 并不一定 X 中所有的元素都可与 x 进行比较,即可以有很多元素与 x 没有关系 (不可比较大小)
- 3. 对于任一偏序集 (*X*, ≺),极小元的存在性和唯一性都不一定成立 同理可给出极大元的定义.

上界/下界 下面给出下界的定义

定义 1.3.6. 设 X 为一个集合, \prec 为 X 上的一个偏序关系, 子集 $E \subseteq X$, 如果存在 $x \in X$, s.t.

$$x \le y, \ \forall y \in E \tag{1.22}$$

则称 E (在 X 中) 有下界, x 称为 E 的一个下界

注. 集合 E 中的每一个元素 y 都与下界 x 有关系 (与极小元的区别)

同理可给出上界的定义.

良序 在定义了极小元的基础上,可以进一步来给出良序的定义.

定义 1.3.7. 设 (X, \prec) 为全序集,如果对于 $\forall Y \subseteq X$, $Y \neq \emptyset$, Y 有极小元,则称 \prec 为 X 上的一个良序关系

1.3.3 保序同构,序型

1.4 Hausdorff 极大原理, Zorn 引理

注意这两个都是公理性质,是无法被证明的,只能互相推导

Hausdorff 极大原理 下面给出 Hausdorff 极大原理的叙述.

定理 1.4.1. 任一偏序集都有极大的全序子集.

注. 此处的"**极大**"指的是,对于集合 {该偏序集的所有全序子集},在包含 ⊆ 的偏序关系下的极大元

Zorn 引理 下面给出 Zorn 引理的叙述.

定理 1.4.2. 若偏序集 X 的每个全序子集都有上界,则 X 有极大元.

注. 此处的上界只需满足存在性,而无需满足唯一性.

相互推导 事实上,Hausdorff 极大原理和 Zorn 引理是等价的. 证明.

"⇒": 设 (X. <) 为一个偏序集,

根据 Hausdorff 极大原理,在包含关系 \subset 下,得到极大全序子集 Y.

根据 Zorn 引理的假设, $Y \subset X$ 存在上界 x, 则 $x \in Y$

(否则 $Y \cup \{x\}$ 构成的全序子集与 Y 的极大性矛盾)

从而 x 即为 X 的极大元.(否则若存在更大的 y,则同理 $Y \cup \{y\}$ 与 Y 极大性矛盾)

"←": 设 (X, <) 为一个偏序集,下面证明 X 有极大的全序子集:

记集合 Z

$$Z = \{X \text{的所有全序子集}\}\tag{1.23}$$

从而集合 Z 与包含关系 ⊆ 构成了一个偏序集. 令

$$A = \bigcup_{U \in Z} U \tag{1.24}$$

从而 $A \subseteq X$ 即为 Z 中所有元素的上界.

根据 Zorn 引理, Z 在偏序关系 \subseteq 下有极大元, 也就说明了 X 有极大的偏序子集.

1.5 良序原理,选择公理

对这两个公理的证明需要首先承认 Hausdorff 极大原理 / Zorn 引理

1.5.1 良序原理

下面给出良序原理的叙述.

定理 1.5.1. 任一非空集必为良序集.(任一非空集存在良序)

证明. 设 X 是个非空集, 考虑 X 的所有子集的良序构成的集合 W.

注意到 W 中的每个元素,即为各良序关系 $<_1$, $<_2$,都附着着其对应的 X 的子集 E_1 , E_2 (因为对于不同的子集 E_1 , E_2 ,即使在相同的位置其良序关系相同 (即 $x_1 <_1 x_2 \&\& x_1 <_2 x_2$),但其在整个子集上的良序关系还是不同的)

因此 W 中的元素应当表述为各良序关系 (主体) 与其对应的子集构成的有序对 (<,E) 在 W 中引入这样的偏序关系,记作 \leq :

$$(\prec_{1}, E_{1}) \leq (\prec_{2}, E_{2}) \Leftrightarrow \begin{cases} E_{1} \subseteq E_{2} \\ <_{2}|_{E_{1}} = \prec_{1} \end{cases}$$

$$\forall x \in E_{2} \backslash E_{1}, \ y \in E_{1}, \ y \prec_{2} x$$

$$(1.25)$$

也就是说, $<_2$ 是 $<_1$ 的延拓, $<_1$ 是 $<_2$ 在 E_1 上的限制,同时 E_2 超出 E_1 的部分在 $<_2$ 的意义下总是比 E_1 中的元素更大.

下面我们尝试运用 Zorn 引理 (定理1.4.2) 来证明. 任取 W 的全序子集 Y, 记

$$Y = \{ <_a \}_{a \in I} \tag{1.26}$$

令

$$E_Y = \bigcup_{a \in I} E_a \tag{1.27}$$

同理可得到该 X 的子集 E_Y 下的良序关系 $<_Y$,此 $<_Y$ 即为 W 的全序子集 Y 的上界. 根据 Zorn 引理 (定理1.4.2),W 中有极大元 (<,E).

事实上,此处 E = X, < 即为 X 上的一个良序关系.

(反证法. 假设 $E \neq X$,设 $x \in X \setminus E$,此时可定义 x < y, $\forall y \in E$,则 $E \cup \{x\}$ 即可得到 X 的一个全序子集, $E \cup \{x\} \in W$,这与 E 的极大性矛盾.)

选择公理 1.5.2

下面给出选择公理的叙述.

定理 1.5.2. 非空的非空集族的 Descartes 积非空.

- 注. • "非空的非空集族" 就是指有一族非空集,其中这一族非空集的个数至少为1
- "Descartes 积非空"大致上说的是可以不计次序从每个非空集中取出一个元素,构成一 个多重集 (具体可见定义1.2.1)

下面我们利用良序原理来对选择公理进行证明.

证明. 设 $\{X_a\}_{a\in I}$ 为一族非空集,其中 $X_a \neq \emptyset$, $I \neq \emptyset$.

根据良序原理 (定理1.5.1),集合 $\bigcup_{a\in I} X_a$ 存在一个良序关系 < 由于 ($\bigcup_{a\in I} X_a$, <) 为良序集,因此其非空子集 $X_a\subseteq \bigcup_{a\in I} X_a$ 均有极小元. 定义映射 f

$$f: I \longrightarrow \bigcup_{a \in I} X_a \tag{1.28}$$

$$a \mapsto \min_{\prec} X_a$$
 (1.29)

从而

$$\overline{f} \in \prod_{a \in I} X_a, \ \prod_{a \in I} X_a \neq \emptyset$$
 (1.30)

1.6 集合的势 Cardinality

引入 为了更好地理解势的概念,我们先给出势的比较关系. 对于非空集 X, Y, 我们定义.

$$\begin{cases} card(X) \leq card(Y) \\ card(X) = card(Y) \\ card(X) \geq card(Y) \end{cases}$$
 (1.31)

定义 此时再去赋予势 card 的意义.

定义 1.6.1. 设 X 为一个集合,定义 X 的势 (Cardinality).

$$card(X) := \{Y 为集合 \mid 存在由 X 到 Y 的单射\}$$
 (1.32)

记 S 为全体集合构成的真类, S^* 为全体非空集合构成的真类. 在 S^* 上定义等价关系 R:

$$xRy \Leftrightarrow$$
 存在由 X 到 Y 的双射 (1.33)

则势的概念自然即为 X 在关系 R 下的等价类,即

$$card(X) = \overline{X} \tag{1.34}$$

注. 规定 $card(\emptyset) < card(X)$, $card(X) > card(\emptyset)$, $\forall X \neq \emptyset$, 进而定义中的 S^* 可修正为 S. 其中 $card(\emptyset) = \{\emptyset\}$.

严格证明 在大致给出了集合的势的概念后,下面对其中的一些概念进行严格的定义和证明. 对于最开始在全集合类 S 中引入的关系 \leq ,下面证明其为 S 上的一个偏序关系. 事实上,我们还会证明 \leq 是 S 上的全序关系,即任意两个集合的势都可比较.

对偏序关系的三条公理进行一一验证. 即**传递性、自反性、反对称性**. 同时证明 \leq 与 \geq 互为逆关系, \leq 同时为全序关系.

自反性、传递性 事实上自反性和传递性的证明是显然的.

逆关系 下面的引理证明了≤与≥互为逆关系.

引理 1.6.1. 设 X, $Y \in S^*$, 则

$$card(X) \le card(Y) \Leftrightarrow card(Y) \ge card(X)$$
 (1.35)

证明. 即证: 存在 X 到 Y 的单射 $f \Leftrightarrow 存在 Y 到 X 的满射 <math>g$.

 \Rightarrow : 由于 f 为单设,因此 $\forall y \in f(X)$,3 唯一的 $x \in X$,s.t. y = f(x). 于是可构造

$$g: Y \longrightarrow X$$
 (1.36)

$$y \longmapsto \begin{cases} x, \ y = f(x) & y \in f(X) \\ x_0, \ \forall x_0 \in X & y \notin f(X) \end{cases}$$
 (1.37)

从而 q 即为 Y 到 X 的满射.

←: 由于 g 为 Y 到 X 的满射,因此对于 $\forall x \in X$, $g^{-1}(x) \subseteq Y$ 为 Y 的一个非空子集. 记 Y 的子集族 Z 为

$$Z = \{g^{-1}(x) \mid x \in X\} = \{g^{-1}(x)\}_{x \in X}$$
(1.38)

由于 $X, Y \in S^*$ 非空, 因此 Z 为非空的非空集族.

根据选择公理 (定理1.5.2), Z 的 Descartes 积非空,

即存在一个由指标集 X 到 $\bigcup_{x \in X} g^{-1}(x)$ 的单射 f

$$f: X \longrightarrow \bigcup_{x \in X} g^{-1}(x) \subseteq Y$$
 (1.39)

$$x \longmapsto f(x)$$
 (1.40)

此选择映射f即为所求单射.

全序关系 下面的引理说明了 \leq 实际上还是 S 上的一个全序关系,其证明具有一定技巧性.

引理 $1.6.2. \ \forall X, \ Y \in S$

证明. 不妨设 $X, Y \in S^*$.(映射实际上为特殊的二元关系). 令

$$I = \{ f : X_0 \longrightarrow Y \mid X_0 \subseteq X, f 为 单 射 \} \subseteq X \times Y \tag{1.42}$$

类比良序原理 (定理1.5.1) 的证明, 在集合 I 上定义偏序 \subseteq .

$$f \subseteq g \Leftrightarrow \begin{cases} X_f \subseteq X_g \\ g \Big|_{X_f} = f \end{cases} \tag{1.43}$$

从而对于 I 的每个全序子集 E,取 $X_E = \bigcup_{f \in E} X_f$,其对应的映射 f_E 即为 E 的上界. 于是偏序集 (I, \subseteq) 满足 Zorn 引理 (定理1.4.2) 的条件,存在极大元 $f: X_0 \longrightarrow Y$. 假设 $X_0 \neq X$ 且 $f(X_0) \neq Y$,则 $\exists x \in X \setminus X_0$, $y \in Y \setminus f(X)$,此时令

$$f'|_{X_0} = f (1.44)$$

$$f': x \longmapsto y \tag{1.45}$$

从而得到单射 $f' \in I$,且 $f \subseteq f'$,这与 f 的极大性矛盾.

综上,
$$X_0 = X$$
 或 $f(X_0) = Y$, 即必定存在 X 到 Y 的单射或满射.

反对称性 (*Schröder – Bernstein* 定理) 下面的定理说明了 ≤ 具有反对称性. 其证明技巧性比较强.

定理 1.6.3. (Schröder – Bernstein 定理)

设 $X, Y \in S$,若 $card(X) \leq card(Y)$ 且 $card(Y) \leq card(X)$,则

$$card(X) = card(Y) \tag{1.46}$$

证明. 即已知存在单射 $f: X \longrightarrow Y$, $g: Y \longrightarrow X$, 证明 X 与 Y 之间存在双射: 考虑 X, Y 的如下划分:

 $\forall x \in X$, 构造序列

$$\{x_n\}_{n=1}^{\infty} = \{x, \ g^{-1}(x), \ (f^{-1} \circ g^{-1})(x), \ (g^{-1} \circ f^{-1} \circ g^{-1})(x), \cdots \}$$
 (1.47)

则称

$$\begin{cases} x \in X_{\infty} : x_n \neq \emptyset, \forall n \in \mathbb{N} \\ x \in X_X : x_{n_0} \in X \\ x \in X_Y : x_{n_0} \in Y \end{cases} , n_0 := \max_{x_n \neq \emptyset} n$$

$$(1.48)$$

类似的, 也有 Y_{∞} , Y_X , Y_Y . 容易证明

$$f(X_{\infty}) = Y_{\infty}, \ f(X_X) = Y_X, \ f(X_Y) = Y_Y$$
 (1.49)

从而 X, Y 的三个部分分别可以建立双射,最终 X, Y 之间存在双射.

1.7 幂集的势,可数

1.7.1 幂集的势

通过比较任一集合与其幂集的势,可以得到全集合类 S 上的势关系 \leq 不存在极大元,即不存在某个集合的势最大.

命题 1.7.1. $\forall X \in S^*$,

$$card(X) < card(2^X) \tag{1.50}$$

证明.

• 首先, $card(X) \leq card(2^X)$. 存在 X 到 2^X 的映射 f,

$$f: X \longrightarrow 2^X \tag{1.51}$$

$$x \longmapsto \{x\}$$
 (1.52)

从而 f 为单射, $card(X) \leq card(2^X)$.

• 其次,不存在 X 到 2^{X} 的满射. $\forall g: X \longrightarrow 2^{X}$,令

$$Y := \{ x \in X \mid x \notin g(x) \} \tag{1.53}$$

下面证明: $\nexists y \in X$, s.t. $g(y) = Y \in 2^X$.

反证法. 假设 $\exists x_0 \in X$, s.t. $g(x_0) = Y$, 则

- i. 若 $x_0 \in Y$,则根据 Y 的定义, $x_0 \notin g(x_0) = Y$,这与 $x_0 \in Y$ 矛盾.
- ii. 若 $x_0 \notin Y$, 则 $x_0 \notin g(x_0) = Y$, 根据 Y 的定义, $x_0 \in Y$, 矛盾.

综上,不存在 X 到 2^{X} 的满射.

Therefore,

$$card(X) < card(2^X) \tag{1.54}$$

1.7.2 可数

定义

定义 1.7.1. 设 X 为一个集合,则称

$$X$$
 可数 \Leftrightarrow $card(X) \leq card(\mathbb{N})$ (1.55)

注. 常将上述定义的集合称为至多可数,即包含有限和无限可数两种情况.

性质 下面是可数集的两条重要的性质.

若
$$\{X_a\}_{a\in I}$$
 满足 $\begin{cases} I$ 可数 $&, \ \bigcup\limits_{a\in I} X_a$ 可数. $\forall a\in I, \ X_a$ 可数.

(ii) (无限可数集与自然数集 № 等势)

若 X 可数且 X 为无限集,则 card(X) = card(N).

例 1.7.1. ℤ, ℚ 是可数集.

1.8 可数集的幂集,连续统

定义 下面给出连续统的定义.

定义 1.8.1. 设 $X \in S$,则

$$X$$
为连续统 $\Leftrightarrow card(X) = card(\mathbb{R}) := c$ (1.56)

注. 提及连续统,就不得不谈到连续统假设 (Continuum Hypothesis, 简记 CH).

定理 1.8.1 (连续统假设 CH). $AX \subseteq \mathbb{R}$, s.t.

$$card(\mathbb{N}) < card(X) < card(\mathbb{R})$$
 (1.57)

而对于康托尔提出的这样一个假设,美国数学家科恩在1963年证明:

在 ZFC 公理系统上, CH 既不可被证明, 也不可被证伪.

连续统的势 下面给出有关连续统的一个重要的命题,它刻画了连续统与可数集的幂集之间的关系.

命题 1.8.1.

$$card(2^{\mathbb{N}}) = card(\mathbb{R}) = c \tag{1.58}$$

证明. 具体证明过程见视频可数集的幂集与连续统.

由此可得到推论.

推论 1.8.2. 设 $X \in S$,若 $card(X) \ge c$,则 X 不可数.

性质

命题 1.8.2. 若 {X_a}_{a∈I} 满足

$$\begin{cases} \operatorname{card}(I) = \operatorname{card}(\mathbb{R}) \ (\leq) \\ \forall a \in I, \ \operatorname{card}(X_a) = \operatorname{card}(\mathbb{R}) \ (\leq) \end{cases}$$

$$(1.59)$$

则

$$card\left(\bigcup_{a\in I} X_a\right) = card(\mathbb{R}) \ (\leq) \tag{1.60}$$

在进行证明之前,先证明以下引理.

引理 1.8.3. 若 $card(X) \leq card(\mathbb{R})$, $card(Y) \leq card(\mathbb{R})$, 则 $card(X \times Y) \leq card(\mathbb{R})$

证明. 由于 $card(X \times Y) \leq card(X \times \mathbb{R}) \leq card(\mathbb{R} \times \mathbb{R})$,因此即证 $card(\mathbb{R} \times \mathbb{R}) = card(\mathbb{R})$. 由于可列集的幂集与连续统等势 (命题1.8.1),因此即证 $card(2^{\mathbb{N}} \times 2^{\mathbb{N}}) = card(2^{\mathbb{N}})$. 下面分别构造 $2^{\mathbb{N}} \times 2^{\mathbb{N}}$ 到 $2^{\mathbb{N}}$ 的单射和满射:

• 令

$$f: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}} \tag{1.61}$$

$$A \times B \longmapsto C \tag{1.62}$$

其中

$$C := \left\{ c \mid c = \begin{cases} 2a+1, & \forall a \in A \\ 2b, & \forall b \in B \end{cases} \right\}$$
 (1.63)

从而得到了单射 $f: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}}$.

令

$$g: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \longrightarrow 2^{\mathbb{N}} \tag{1.64}$$

$$A \times B \longmapsto C \tag{1.65}$$

其中

$$A \coloneqq \{ \alpha \mid \alpha = \frac{c+1}{2}, \ \forall c \in C \ 为奇数 \}$$
 (1.66)

$$B \coloneqq \{b \mid b = \frac{c}{2}, \ \forall c \in C \ 为偶数\}$$
 (1.67)

容易证明, $g: \mathbf{2}^{\mathbb{N}} \times \mathbf{2}^{\mathbb{N}} \longrightarrow \mathbf{2}^{\mathbb{N}}$ 为满射, 从而得证.

下面对命题1.8.2进行证明.

证明. 由于 $\forall a \in I$, $card(X_a) \leq card(\mathbb{R})$, 因此存在满射 $f_a : \mathbb{R} \longrightarrow X_a$.

令

$$f: I \times \mathbb{R} \longrightarrow \bigcup_{a \in I} X_a \tag{1.68}$$

$$(a, r) \longmapsto f_a(r)$$
 (1.69)

由于 f_a 为满射,因此 $f: I \times \mathbb{R} \longrightarrow \bigcup_{a \in I} X_a$ 为满射,从而根据引理1.8.3

$$card(\bigcup_{a \in I} X_a) \le card(I \times \mathbb{R}) \le card(\mathbb{R})$$
 (1.70)

1.9 理想实数系及上面的求和

1.9.1 实数系的推广

定义 1.9.1. 理想实数系 \mathbb{R} 是对实数系的推广.

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\} \tag{1.71}$$

其中我们规定实数系 ℝ中,

$$-\infty < x < +\infty, \ \forall x \in \mathbb{R}$$
 (1.72)

这样我们便可自然地将 ℝ 上的偏序关系延拓到 ℝ 中.

1.9.2 $\overline{\mathbb{R}}_{>0}$ 中的和

引入 在实数系 \mathbb{R} 中,我们所定义的级数求和 Σ 都是建立在**至多可数项**的基础之上,并且它对于**求和顺序**大多时候是有关系的.

而对于任意一族数,我们就会面临以下的问题:

- 这族数能否求和?
- 若能求和,则其结果是否与求和顺序有关?

定义 为了解决上述问题,我们在对实数系 \mathbb{R} 进行延拓后,在理想实数系 \mathbb{R} 上对求和 Σ 进行推广.

首先考虑非负理想实数系 ℝ≥o 中的和.(排除了**求和顺序**的考虑)

定义 $1.9.2. \ \forall I \in S^*, f: I \longrightarrow \overline{\mathbb{R}}_{\geq 0}.$ 定义 f 的和 \sum_f 是这样一个映射.

$$\sum_{f}: \mathcal{P}(I) \longrightarrow \overline{\mathbb{R}}_{\geq 0} \tag{1.73}$$

$$X \longmapsto \sum_{x \in X} f(x) \coloneqq \sup_{F \subseteq X, \ F \neq \mathbb{R}} \left(\sum_{x \in F} f(x) \right)$$
 (1.74)

注. 1. 当 I 为可数集时,映射 $f: I \longrightarrow \mathbb{R}_{\geq 0}$ 可视作非负数列,而此处定义的 $\sum_{x \in X} f(x)$ 与正项级数的定义吻合.

2. 此处对于任意一族数的和 $\sum\limits_{x \in X} f(x)$ 的定义事实上与 Lesbesgue 积分的定义是吻和的.

性质 下面给出 $\mathbb{R}_{\geq 0}$ 中的和的几条重要的性质.

命题 1.9.1. Let $X \in S^*$, $\forall f: X \longrightarrow \overline{\mathbb{R}}_{\geq 0}$,若集合 $A \coloneqq \{x \mid f(x) > 0\}$ 为不可数集,则

$$\sum_{x \in X} f(x) = +\infty \tag{1.75}$$

证明. 反证法. 假设 $\sum_{x \in X} f(x) = \sum_{x \in A} f(x) = M < +\infty$,记

$$A_n := \{ x \in X \mid f(x) \in (\frac{1}{n+1}, \frac{1}{n}) \}$$
 (1.76)

由于 $\sum_{x \in A} f(x) = M$ 有界,因此

$$A \setminus \bigcup_{n=1}^{+\infty} A_n = \{ x \in X \mid f(x) \ge 1 \} \le \mathbb{N}$$
 (1.77)

$$A_n \le \mathbb{N} \tag{1.78}$$

从而

$$\bigcup_{n=1}^{+\infty} A_n \le \mathbb{N} \tag{1.79}$$

$$A = \left(A \setminus \bigcup_{n=1}^{+\infty} A_n\right) \cup \left(\bigcup_{n=1}^{+\infty} A_n\right) \le \mathbb{N}$$
 (1.80)

而这与 A 不可数矛盾.

下面的这个命题是对**正项级数的可交换性**在理想实数系 $\mathbb{R}_{\geq 0}$ 上的推广形式.

命题 1.9.2. Let $X \in S^*$, $\forall f: X \longrightarrow \overline{\mathbb{R}}_{\geq 0}$,若集合 $A \coloneqq \{x \mid f(x) > 0\}$ 无穷可数,则

$$\sum_{x \in X} f(x) = \sum_{n=0}^{+\infty} f \circ g(n)$$
 (1.81)

其中 $g: \mathbb{N} \longrightarrow A$ 为双射.

证明. 易证.