Recitation 2

These problems will review key mathematical concepts that we will need throughout the course.

1. (Discrete random variable) Let X be a discrete random variable with pmf p given by:

- (a) Let $Y = X^2$. Find the pmf of Y.
- (b) Find the value the cdf of X at -1/2, 3/4, 7/8, 1, 1.5, 5.
- (c) Find the value the cdf of Y at -1/2, 3/4, 7/8, 1, 1.5, 5.
- 2. (Probability mass function) Derive the probability mass function of binomial distribution and poisson distribution.
- 3. (Probability distribution) Given that $X \sim Bin(10,0.7)$, $Y \sim Pois(5)$, $Z \sim Geom(0.5)$, compute the following:
 - (a) The probability of X < 3
 - (b) The probability of $Y \ge 3$
 - (c) The probability of Z>2
- 4. (Binomial Distribution) Suppose that X is an observation from a binomial distribution, $X \sim \text{Bin}(n,\theta)$, where n is known and θ is to be estimated. The likelihood function is

$$L(\theta) = \frac{n!}{x!(n-x)!} (\theta)^{x} (1-\theta)^{n-x}$$

- (a) Find the maximum likelihood estimate $\tilde{\theta}$ of θ .
- (b) What observation can you make about the ML estimate of binomial distribution(comparing to ML estimate of Bernoulli distribution)? And why is that reasonable?
- $5. \ (Empirical \ Probability)$ Note Example 3.4
- 6. (Code) Free throws