Modern Physics Final Study Guide

PHYS-122

Fall 2024

CONTENTS 2

Contents

1	\mathbf{Spe}	ecial Relativity	4
	1.1	Postulates of Special Relativity	4
	1.2	Relativity of Simultaneity	4
	1.3	Lorentz Transformations	4
	1.4	The Relativistic Invariant Interval	6
	1.5	Relativistic Velocity Addition	7
	1.6	Four-Vectors in Special Relativity	7
	1.7	Examples of Four-Vectors	8
	1.8	Relativistic Conservation Laws	8
2	Qua	antum Mechanics	11
	2.1	Quantum Theory of Light	11
		2.1.1 Blackbody Radiation and Planck Hypothesis	11
		2.1.2 Photoelectric Effect	11
		2.1.3 Compton Scattering	12
		2.1.4 Wave-Particle Duality	13
		2.1.5 Heisenberg Uncertainty Principle	13
		2.1.6 Group and Phase Velocities	15
	2.2	Schrödinger Equation	16
		2.2.1 Overview	16
		2.2.2 Different Potentials	16
	2.3	Hydrogen Atom	19
		2.3.1 Wave Functions	19
		2.3.2 Quantum Numbers	20
		2.3.3 Multi-Electron Atoms and the Pauli Exclusion Principle	21
3	Stat	tistical Mechanics	22
	3.1	Microscopic vs. Macroscopic States	22
	3.2	Multiplicity and Degeneracy	22
	3.3	Statistical Distributions	23
	3.4	Normalization Conditions	24
	3.5	Maxwell-Boltzmann Distribution	24
	3.6	Bose-Einstein Distribution	25
	3.7	Bose-Einstein Condensation	25
	3.8	Fermi-Dirac Distribution	26
	3.9	Degeneracy Pressure	27

CONTENTS	9
CONTENTS	

4	Quick Reference				
	4.1	Functions and Equations			
	4.2	Mathematical Tools			
	4.3	Important Constants			
	4.4	Unit Conversions			

1 Special Relativity

1.1 Postulates of Special Relativity

Postulates:

- The laws of physics are the same in all inertial frames.
- The speed of light is constant in a vacuum for all observers, regardless of their motion relative to the source.

1.2 Relativity of Simultaneity

Relativity of Simultaneity: Two events that appear simultaneous to one observer may not appear simultaneous to another observer moving relative to the first. This is a direct consequence of the constancy of the speed of light and the Lorentz transformations.

1.3 Lorentz Transformations

Lorentz Transformations: The Lorentz transformations relate spacetime coordinates of an event in two inertial reference frames moving at a constant velocity relative to each other. These transformations preserve the invariant interval (Δs^2) , a cornerstone of special relativity.

Transformations:

- For a frame S' moving with velocity v along the x-axis relative to S:
 - Time: $t' = \gamma \left(t \frac{vx}{c^2} \right)$
 - Space (x-direction): $x' = \gamma (x vt)$
 - Space (y- and z-directions): y' = y, z' = z
- The Lorentz factor is $\gamma = \frac{1}{\sqrt{1 v^2/c^2}}$.

Lorentz Transformation Matrix: The Lorentz transformation can be expressed using matrix multiplication:

$$x' = \Lambda x$$
,

where $x = \begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}$ and x' are the spacetime coordinates in S and S', respectively. For a boost

along the x-axis, the Lorentz transformation matrix Λ is:

$$\Lambda = egin{bmatrix} \gamma & -\gamma \beta & 0 & 0 \ -\gamma \beta & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix},$$

where $\beta = v/c$.

Key Properties:

• The inverse transformation is obtained by negating v, flipping the sign of β :

$$\Lambda^{-1} = \begin{bmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

 \bullet The Lorentz transformations preserve the invariant interval:

$$\Delta s^2 = x \cdot x = x' \cdot x'.$$

Applications:

• Lorentz transformations explain phenomena like time dilation, length contraction, and the relativity of simultaneity.

• They form the basis for defining and transforming four-vectors, such as four-momentum and four-velocity.

1.4 The Relativistic Invariant Interval

Invariant Interval: The relativistic invariant interval is a spacetime quantity that remains unchanged under Lorentz transformations.

Invariant Interval:

$$\Delta s^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$$

Classifications of the Invariant Interval:

• Time-like: $\Delta s^2 > 0$, related to proper time:

$$\Delta s^2 = c^2 \Delta \tau^2$$

• Space-like: $\Delta s^2 < 0$, related to proper length:

$$-\Delta s^2 = L^2$$

• **Light-like:** $\Delta s^2 = 0$, events are connected by light:

$$c^2 \Delta t^2 = (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2$$

1.5 Relativistic Velocity Addition

Relativistic Velocity Addition: When combining velocities in different inertial frames, the relativistic formula must be used. Typically, these problems involve 3 objects and the following reference frames and velocities are defined:

- S: The stationary reference frame.
- S': The moving reference frame.
- u: The velocity of an object relative to S.
- v: The velocity of S' relative to S.
- u': The velocity of the object relative to S'.

Relativistic Velocity Addition Formula:

$$u' = \frac{u+v}{1 + \frac{uv}{c^2}}$$

Here, u' is the velocity of the object as measured in S', given the velocity u of the object relative to S and the velocity v of S' relative to S.

1.6 Four-Vectors in Special Relativity

Four-Vectors: Physical quantities in relativity are represented as four-vectors that transform under Lorentz transformations.

General Form of a Four-Vector:

$$a^{\mu} = (a^0, \vec{a}) = (a^0, a^1, a^2, a^3), \quad a^0 = c\Delta t$$

Dot Product of Four-Vectors: The invariant dot product between two four-vectors a^{μ} and b^{μ} is:

$$a \cdot b = a^0 b^0 - \vec{a} \cdot \vec{b}$$

This quantity is Lorentz invariant (unchanged under Lorentz transformations).

1.7 Examples of Four-Vectors

Common Four-Vectors:

• Four-Position:

$$x^{\mu}=(ct,x,y,z)$$

• Four-Velocity:

$$u^{\mu} = \frac{dx^{\mu}}{d\tau} = \gamma(c, \vec{v}), \quad \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

• Four-Momentum:

$$p^\mu = m u^\mu = \gamma m(c, \vec{v})$$

For massless particles, like photons:

$$p \cdot p = 0, \quad E = |\vec{p}|c$$

1.8 Relativistic Conservation Laws

Relativistic Conservation Laws: The principles of conservation of energy and momentum extend to special relativity, incorporating the total energy (rest energy + kinetic energy) and relativistic momentum.

Relativistic Total Energy:

 \bullet The total energy E includes both the rest energy and the relativistic kinetic energy:

$$E = \gamma m_0 c^2.$$

- The rest energy is given by $E_0 = m_0 c^2$, where m_0 is the rest mass.
- In any physical process, the total energy is conserved.

Relativistic Momentum:

• The relativistic momentum is defined as:

$$\vec{p} = \gamma m_0 \vec{v},$$

where
$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$
.

• Both the magnitude and direction of total momentum in an isolated system are conserved.

Four-Momentum Conservation:

• Energy and momentum form components of the four-momentum vector:

$$p^{\mu} = \left(\frac{E}{c}, \vec{p}\right).$$

• In all inertial frames, the conservation of four-momentum holds:

$$\sum p^{\mu}_{\rm initial} = \sum p^{\mu}_{\rm final}.$$

Relativistic Collisions:

- Total energy and total momentum are conserved in collisions, including elastic and inelastic cases.
- Unlike classical mechanics, the concept of conserved "mass" is not generally applicable. For example:
 - In pair annihilation, rest mass converts to energy.
 - In particle creation, energy converts into rest mass.

Energy-Momentum Relation:

$$E^2 = (pc)^2 + (m_0c^2)^2$$

This relation connects the total energy E, the momentum p, and the rest mass m_0 of a particle.

Invariant Four-Momentum Magnitude:

$$p^\mu \cdot p^\mu = m_0^2 c^2$$

This invariant magnitude holds in all inertial frames, ensuring the consistency of relativistic conservation laws.

2 Quantum Mechanics

2.1 Quantum Theory of Light

2.1.1 Blackbody Radiation and Planck Hypothesis

Blackbody Radiation: Classical physics predicted the "ultraviolet catastrophe," where energy radiated at high frequencies diverged. Planck resolved this by quantizing energy:

$$E = nhf, \quad n = 1, 2, 3, \dots$$

Planck's Law:

$$I(\nu,T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{h\nu/k_BT}-1}, \label{eq:interpolation}$$

where $I(\nu, T)$ is the intensity of radiation at frequency ν .

2.1.2 Photoelectric Effect

Photoelectric Effect: Electrons are emitted from a material when light shines on it, with the energy of the electrons depending on the frequency of light.

$$hf = \phi + KE_{max}, \quad hf_c = \phi, \quad KE_{max} = eV_s$$

Threshold Frequency: No electrons are emitted if $f < f_c$.

2.1.3 Compton Scattering

Compton Scattering: The scattering of X-rays by electrons demonstrates particle-like behavior of light. The wavelength shift is given by:

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta).$$

Energy Relation:

$$\frac{1}{E'} - \frac{1}{E} = \frac{1 - \cos \theta}{m_e c^2}.$$

2.1.4 Wave-Particle Duality

Wave-Particle Duality: Light and matter exhibit dual behavior, displaying characteristics of both waves and particles depending on the experimental conditions.

Key Features:

- Travels as a wave, interacting with itself, and demonstrates phenomena such as interference and diffraction.
- Interacts as a particle, transferring discrete packets of energy, known as photons or quanta.
- Confirmed by experiments:
 - Double-Slit Experiment: Demonstrates interference patterns for light and electrons, showing wave-like behavior.
 - Photoelectric Effect: Demonstrates the particle nature of light, as photons eject electrons from a material.
 - Blackbody Radiation: Explained by Planck's quantization hypothesis, resolving the ultraviolet catastrophe.
 - Compton Scattering: Demonstrates photon momentum through scattering with electrons.

De Broglie Wavelength:
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

Wave Number:
$$k = \frac{2\pi}{\lambda}$$

2.1.5 Heisenberg Uncertainty Principle

Heisenberg Uncertainty Principle: A fundamental principle of quantum mechanics stating that certain pairs of physical observables cannot be simultaneously measured with arbitrary precision.

Key Relations:

• Position-Momentum Uncertainty:

$$\Delta x \Delta p \ge \frac{\hbar}{2},$$

where Δx and Δp are the standard deviations of position and momentum, respectively.

• Energy-Time Uncertainty:

$$\Delta E \Delta t \ge \frac{\hbar}{2},$$

where ΔE and Δt are the uncertainties in energy and time, respectively.

Variance-Squared Average Relationship: The uncertainty in a measurable quantity A is defined as:

$$\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2},$$

where $\langle A \rangle$ is the expectation value, and $\langle A^2 \rangle$ is the expectation value of A^2 .

Implications:

- Establishes the probabilistic nature of quantum mechanics, replacing deterministic classical physics.
- Demonstrates the impossibility of assigning definite trajectories to particles as in classical mechanics.

2.1.6 Group and Phase Velocities

Group and Phase Velocities: Velocities associated with wave propagation.

• Group velocity:

$$v_g = \frac{d\omega}{dk},$$

representing the velocity of the wave packet and the velocity of the particle

• Phase velocity:

$$v_p = \frac{\omega}{k},$$

representing the velocity of individual wave crests.

2.2 Schrödinger Equation

2.2.1 Overview

Schrödinger Equation: Governs the quantum mechanical behavior of particles. It describes how the wave function of a particle evolves under the influence of potential energy. **General Forms:**

• 1D Time-Independent Schrödinger Equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x).$$

• 3D Schrödinger Equation (spherical coordinates):

$$-\frac{\hbar^2}{2m}\nabla^2\psi(r,\theta,\phi) + V(r)\psi(r,\theta,\phi) = E\psi(r,\theta,\phi).$$

The solution is separable:

$$\psi(r, \theta, \phi) = R(r)Y(\theta, \phi),$$

where $Y(\theta, \phi)$ are spherical harmonics.

2.2.2 Different Potentials

Free Particle:

• For V(x) = 0, solutions are plane waves:

$$\psi(x) = Ae^{ikx} + Be^{-ikx},$$

where $k = \frac{p}{\hbar}$, $\omega = \frac{E}{\hbar}$, and $p = \hbar k = \sqrt{2mE}$.

- e^{ikx} is right moving plane wave and e^{-ikx} is left moving plane wave.
- For full time dependent, $\Psi(x,t) = \psi(x)e^{-i\omega t}$
- Wave function is not normalizable!

Particle in a Box/Infinite Square Well Potential:

- For V(x) = 0 inside the box and $V(x) = \infty$ outside:
 - General Solution 1D:

$$\psi_n(x) = A \sin\left(\frac{n\pi x}{L}\right)$$

- General Solution 3D:

$$\psi_{n_1,n_2,n_3} = A \sin\Bigl(\frac{n_1\pi x}{L}\Bigr) \sin\Bigl(\frac{n_2\pi y}{L}\Bigr) \sin\Bigl(\frac{n_3\pi z}{L}\Bigr)$$

- Particular Solution 1D:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right), \quad E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} = \frac{n^2 h^2}{8mL^2}$$

- Particular Solution 3D:

$$\psi_{n_1, n_2, n_3} = \left(\frac{2}{L}\right)^{3/2} \sin\left(\frac{n_1 \pi x}{L}\right) \sin\left(\frac{n_2 \pi y}{L}\right) \sin\left(\frac{n_3 \pi z}{L}\right)$$
$$E_n = \frac{\hbar^2 \pi^2}{2mL^2} (n_1^2 + n_2^2 + n_3^2)$$

Step Potential:

$$V(x) = \begin{cases} 0, & x < 0 \\ U_0, & x \ge 0 \end{cases}$$

The particle's behavior depends on whether its energy E is greater than or less than U_0 .

Case 1: $E > U_0$

Wave Function Solutions:

•
$$x < 0$$
: $\psi(x) = Ae^{ik_0x} + Be^{-ik_0x}$, $k_0 = \sqrt{\frac{2mE}{\hbar^2}}$

•
$$x \ge 0$$
: $\psi(x) = Ce^{ik_1x}$, $k_1 = \sqrt{\frac{2m(E-U_0)}{\hbar^2}}$

Reflection and Transmission Coefficients:

$$R = \left(\frac{k_0 - k_1}{k_0 + k_1}\right)^2$$
, $T = \frac{4k_0k_1}{(k_0 + k_1)^2}$, $R + T = 1$

Case 2: $E < U_0$

Wave Function Solutions:

•
$$x < 0$$
: $\psi(x) = Ae^{ik_0x} + Be^{-ik_0x}$, $k_0 = \sqrt{\frac{2mE}{\hbar^2}}$

•
$$x \ge 0$$
: $\psi(x) = De^{-\kappa x}$, $\kappa = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$

Tunneling Insight: The particle cannot propagate in the $x \geq 0$ region but has a finite probability of being found in the barrier due to tunneling.

Key Insights:

- For $E > U_0$, the particle has probabilities of transmission and reflection at the step.
- For $E < U_0$, the particle exhibits tunneling with an exponentially decaying wave function in the barrier.

2.3 Hydrogen Atom

2.3.1 Wave Functions

Wave Functions:

$$\psi(r, \theta, \phi) = R_{nl}(r)Y_l^m(\theta, \phi),$$

where $R_{nl}(r)$ is the radial wave function, and $Y_l^m(\theta,\phi)$ are spherical harmonics. **Radial Probability Distribution:** The probability density P(r) is given by:

$$P(r) = r^2 |R_{nl}(r)|^2.$$

2.3.2 Quantum Numbers

Quantum Numbers:

- Principal quantum number (n): Determines energy level (n = 1, 2, 3, ...).
 - Tells us the **energy** of the Hydrogen atom

$$E(\psi_{n,\ell,m}) = -\frac{13.6 \text{ eV}}{n^2}$$

- Orbital angular momentum quantum number (ℓ): Determines the shape of the orbital ($\ell = 0, 1, ..., n 1$).
 - Tells us the **total angular momentum** of the Hydrogen atom

$$L(\psi_{n,\ell,m}) = \hbar \sqrt{\ell(\ell+1)}$$

- Magnetic quantum number (m): Determines the orientation ($m = -\ell, -\ell + 1, ..., \ell$).
 - Tells us the **z-component of angular momentum** of the Hydrogen atom

$$L_z(\psi_{n,\ell,m}) = \hbar m$$

- Spin quantum number (m_s) : Intrinsic angular momentum $(m_s = \pm \frac{1}{2})$.
 - Has to be rotated **720 degrees** for it to return to original state
 - Fermions have half integer spin (electrons, muons, protons, neutrons, etc.)
 - Bosons have integer spin (photons, W and Z bosons, Higgs boson, etc.)
 - Stern-Gerlach Experiment

2.3.3 Multi-Electron Atoms and the Pauli Exclusion Principle

Multi-Electron Atoms: In atoms with more than one electron, the arrangement of electrons is determined by their energies and quantum states:

- Electrons occupy orbitals starting from the lowest energy levels, but no more than two electrons can share the same orbital.
- Inner electrons shield outer electrons from the full nuclear charge, affecting orbital energies.
- Example: In Potassium (Z = 19), the electron configuration is $1s^22s^22p^63s^23p^64s^1$. The last electron occupies the 4s orbital instead of 3d due to shielding.

Pauli Exclusion Principle: No two electrons in an atom can occupy the same quantum state. This means:

- No two electrons can have identical quantum numbers (n, l, m, m_s) .
- This principle determines the filling of electron orbitals and gives rise to electron configurations.

Electron Configuration: The distribution of electrons in orbitals follows these rules:

- Electrons are added one at a time to the lowest energy subshell available.
- The periodic table reflects the outer electron configurations, which dictate chemical properties.

3 Statistical Mechanics

3.1 Microscopic vs. Macroscopic States

Microscopic States: The state of a system described by the position and momentum of every particle. For N particles, this requires 6N values (3 spatial coordinates and 3 momentum components per particle).

Macroscopic States: When N is large (e.g., Avogadro's number), it is impractical to track each particle. Instead, systems are described using averaged quantities like energy, volume, and temperature.

Example: For 10 coins:

• Total **microstates:** $2^{10} = 1024$.

• Total macrostates: 11 (e.g., all heads, 1 tail and 9 heads, etc.).

3.2 Multiplicity and Degeneracy

Multiplicity (g): The number of microstates corresponding to a macrostate. Calculated as:

$$g = \binom{N}{k} = \frac{N!}{k!(N-k)!},$$

where k is the number of particles in a specific state.

Example: For 10 coins with 3 tails and 7 heads:

$$g = \binom{10}{3} = \frac{10!}{3!7!} = 120.$$

Degeneracy: The number of quantum states associated with a given energy level.

Microcanonical Ensemble: A set of all microstates with the same energy, where each is equally probable.

3.3 Statistical Distributions

Probability Distributions: The likelihood of finding a particle in a state with energy E_i depends on temperature (T) and energy. The three primary distributions are:

• Maxwell-Boltzmann (Distinguishable Particles): Applicable when $T \gg T_c$ (thermal energy kT is much larger than quantum energy level spacing) and particle density is low.

$$f(E) = f_B(E) = Ae^{-E/kT}$$

• Bose-Einstein (Indistinguishable Bosons): Below the critical temperature (T_c) , a Bose-Einstein condensate forms as many bosons occupy the ground state.

$$f(E) = f_{BE}(E) = \frac{1}{e^{\alpha} e^{E/k_B T} - 1}.$$

• Fermi-Dirac (Indistinguishable Fermions): Governed by the Pauli exclusion principle, where no two fermions occupy the same quantum state.

$$f(E) = f_{FD}(E) = \frac{1}{e^{\alpha} e^{E/k_B T} + 1}$$

Occupation Number:

- The occupation number, n(E)dE, represents the average number of particles in a quantum state with energy between E and E + dE.
- It is calculated as:

$$n(E)dE = f(E)g(E)dE$$
,

where:

- -f(E) is the probability distribution (Maxwell-Boltzmann, Bose-Einstein, or Fermi-Dirac).
- -g(E)dE is the degeneracy, or the number of states available in the energy range E to E+dE.

3.4 Normalization Conditions

Normalization Conditions:

• The total number of particles in the system:

$$N = \int f(E)g(E)dE,$$

where f(E) is the distribution function, and g(E) is the density of states.

• The total energy of the system:

$$E_{\text{tot}} = \int f(E)g(E)E dE.$$

3.5 Maxwell-Boltzmann Distribution

Maxwell-Boltzmann Distribution: Describes the distribution of particles in a system of distinguishable particles.

Degeneracy of States: For an ideal monatomic gas:

$$g(p)dp = 4\pi p^2 dp \rightarrow g(E)dE = 4\pi m\sqrt{2mE}dE$$

where:

- m: Particle mass.
- E: Energy of the particle.

Key Properties:

- Valid for classical gases where quantum effects are negligible.
- Particles are distinguishable.
- No restriction on the number of particles in a given state.

Applications: Used to describe the behavior of ideal gases in classical thermodynamics and kinetic theory.

3.6 Bose-Einstein Distribution

Bose-Einstein Distribution: Describes indistinguishable bosons, such as photons, which can occupy the same quantum state.

Degeneracy of States for Bosons:

$$g(n)dn = \frac{1}{8}4\pi n^2 dn \to g(E)dE = \frac{\pi}{4E_0^{3/2}}\sqrt{E}dE$$

where $E_0 = \frac{\hbar^2 \pi^2}{2mL^2}$ Key Properties:

- $\bullet\,$ Bosons can occupy the same quantum state.
- Leads to phenomena like Bose-Einstein condensation at low temperatures.

Applications: Used to describe systems like photons (blackbody radiation) and liquid helium (superfluidity).

3.7 Bose-Einstein Condensation

Bose-Einstein Condensation: Occurs when a system of bosons is cooled below a critical temperature (T_c) , causing many particles to occupy the ground state.

Key Relations:

• Critical temperature:

$$T_c = \left(\frac{h^2}{2\pi mk}\right) \left(\frac{N}{V\zeta(3/2)}\right)^{2/3}.$$

where $\zeta(3/2) = 2.612$

• Fraction in the ground state:

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{3/2}.$$

3.8 Fermi-Dirac Distribution

Fermi-Dirac Distribution: Describes indistinguishable fermions (particles with half-integer spin) that obey the Pauli Exclusion Principle.

Degeneracy of States for Fermions:

$$g(E)dE = \frac{\pi}{4E_0^{3/2}}\sqrt{E}dE = 8\sqrt{2}\pi\left(\frac{m^{3/2}V}{h^3}\right)\sqrt{E}dE$$

where:

- V: Volume of the system.
- m: Mass of the particle.
- $\bullet \ E_0 = \frac{h^2}{8mL^2}$

Key Properties:

- Fermions cannot occupy the same quantum state (Pauli Exclusion Principle).
- At absolute zero, all states up to the Fermi energy (E_F) are occupied, while higher energy states are empty.
 - The Fermi energy forms the boundary between occupied and unoccupied states
 - at T=0, all states with energies below E_F are occupied, and those above are not

$$E_F = \frac{h^2}{2m} \left(\frac{3N}{8\pi V}\right)^{2/3}$$

Applications: Used to study electrons in metals, semiconductors, and the behavior of neutron stars.

3.9 Degeneracy Pressure

Degeneracy Pressure: Prevents the collapse of fermionic systems due to quantum mechanical effects, critical in white dwarfs and neutron stars.

Key Relation:

$$P \propto \left(\frac{\hbar^2}{m}\right) \left(\frac{N}{V}\right)^{5/3}.$$

4 Quick Reference

4.1 Functions and Equations

Special Relativity:

- Time Dilation: $\Delta t = \gamma \Delta t_0$, where $\gamma = \frac{1}{\sqrt{1 v^2/c^2}}$.
- Length Contraction: $L = L_0 \sqrt{1 v^2/c^2}$.
- Relativistic Velocity Addition: $u' = \frac{u+v}{1+uv/c^2}$.
- Invariant Interval: $\Delta s^2 = (c\Delta t)^2 (\Delta x)^2 (\Delta y)^2 (\Delta z)^2$.
- Energy-Momentum Relation: $E^2 = (pc)^2 + (m_0c^2)^2$.
- Four-Momentum Conservation: $\sum p_{\text{initial}}^{\mu} = \sum p_{\text{final}}^{\mu}$

Quantum Theory of Light:

- Planck's Law: $I(\nu, T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{h\nu/k_B T} 1}$.
- Einstein's Photoelectric Equation: $hf = \phi + KE_{max}$.
- Compton Wavelength Shift: $\lambda' \lambda = \frac{h}{m_e c} (1 \cos \theta)$.
- De Broglie Wavelength: $\lambda = \frac{h}{p} = \frac{h}{mv}$.
- Wave Number: $k = \frac{2\pi}{\lambda}$.

Heisenberg Uncertainty Principles:

- Position-Momentum Uncertainty: $\Delta x \Delta p \geq \frac{\hbar}{2}$.
- Energy-Time Uncertainty: $\Delta E \Delta t \geq \frac{\hbar}{2}$.
- Variance-Squared Average Relationship: $\Delta A = \sqrt{\langle A^2 \rangle \langle A \rangle^2}$.

Schrödinger Equation:

- 1D Time-Independent: $-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x).$
- 3D Schrödinger (Spherical): $-\frac{\hbar^2}{2m}\nabla^2\psi(r,\theta,\phi) + V(r)\psi(r,\theta,\phi) = E\psi(r,\theta,\phi).$
- Particle in a Box Energy Levels: $E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$.
- Step Potential Coefficients:

$$R = \left(\frac{k_0 - k_1}{k_0 + k_1}\right)^2, \quad T = \frac{4k_0k_1}{(k_0 + k_1)^2}.$$

Statistical Mechanics:

- Boltzmann Factor: $P(E) = \frac{e^{-E/k_BT}}{Z}$, where $Z = \sum e^{-E_i/k_BT}$.
- Maxwell-Boltzmann Distribution: $f_{MB}(E) = Ae^{-E/kT}$.
- Bose-Einstein Distribution: $f_{BE}(E) = \frac{1}{e^{(E-\mu)/k_BT} 1}$.
- Fermi-Dirac Distribution: $f_{FD}(E) = \frac{1}{e^{(E-\mu)/k_BT} + 1}$.
- Degeneracy of States (Monatomic Gas): $g(E)dE = 4\pi m\sqrt{2mE}dE$.
- Occupation Number: n(E)dE = f(E)g(E)dE.
- Bose-Einstein Condensation:

$$T_c = \left(\frac{h^2}{2\pi mk}\right) \left(\frac{N}{V\zeta(3/2)}\right)^{2/3}, \quad \frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{3/2}.$$

- Fermi Energy: $E_F = \frac{h^2}{2m} \left(\frac{3N}{8\pi V} \right)^{2/3}$.

4.2 Mathematical Tools

• Trigonometric Identities:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
$$\sin(2x) = 2\sin x \cos x$$

- Series:
 - Taylor Series Expansion: $\sum_{n=0}^{\infty} C_n (x-a)^n \text{ where } C_n = \frac{f^{(n)}(a)}{n!}$
 - Binomial Series Expansion: $(1 \pm x)^r = 1 \pm rx \pm ...$
- Integration Tips:
 - For even functions: $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$
 - For odd functions: $\int_{-a}^{a} f(x)dx = 0$
 - Gaussian integrals often appear in wave packets
- Complex Numbers Review
 - Complex conjugate: $z^* = a bi$ for z = a + bi
 - Modulus: $|z| = \sqrt{a^2 + b^2}$
 - Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$
 - Argument: $\arg(z) = \tan^{-1}\left(\frac{y}{x}\right)$
- Second Order Differential Equations
 - If ODE has this form: $\frac{d^2f}{dx^2} = k^2f$ where k is a constant

The solution is:

$$f(x) = Ae^{kx} + Be^{-kx}$$

4.3 Important Constants

- Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \ \mathrm{W/m^2} \cdot K^4$
- Planck's constant: $h=6.626\times 10^{-34}\,\mathrm{J\cdot s}=4.136\times 10^{-15}~\mathrm{eV\cdot s}$
- Reduced Planck's constant: $\hbar = 1.055 \times 10^{-34} \, \mathrm{J \cdot s}$
- Electron mass: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$
- Speed of light: $c = 3.0 \times 10^8 \,\mathrm{m/s}$
- Bohr radius: $a_0 = 0.0529 \times 10^{-9} \,\mathrm{m}$

4.4 Unit Conversions

- $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
- $hc = 1240 \text{ eV} \cdot \text{nm}$
- $\hbar c = \frac{1240}{2\pi} \text{ eV} \cdot \text{nm}$
- Temperature: Convert between Kelvin and energy using $k_B = 1.38 \times 10^{-23}$ J/K.