Derivatives Cheat sheet

Common Functions

Equation	Derivative
c	0
c * x	$c * \frac{d}{dx}(x)$
e^x	e^x
$e^{f(x)}$	$f'(x) * e^{f(x)}$
ln(x)	$\frac{1}{x}$
ln(f(x))	$\frac{1}{f(x)} * f'(x)$
$a^{f(x)}$	$a^{f(x)} * \ln(a) * f'(x)$

Trigonometric Derivatives

$$\frac{d}{dx}sin = cos$$

$$\frac{d}{dx}cos = -sin$$

$$\frac{d}{dx}tan = sec^{2}$$

$$\frac{d}{dx}cot = -csc^{2}$$

$$\frac{d}{dx}csc = -csc * cot$$

$$\frac{d}{dx}csc = -csc * cot$$

Derivative Rules

Power Rule	$\frac{d}{dx}(x^n) = n * x^{n-1}$
Product Rule	
Quotient Rule	$\frac{d}{dx}(f(x) * g(x)) = f'(x)g(x) + g'(x)f(x)$ $d f(x) f'(x)g(x) - g'(x)f(x)$
Chain Rule	$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}$
Nested Chain Rule	$\frac{d}{dx}f(g(x)) = f'(g(x)) * g'(x)$
	$\frac{d}{dx}f(g(h(x))) = f'(g(h(x)))$ * $g'(h(x))$
	* y(h(x)) $* h'(x)$

Other things to note

$$ln(\frac{x}{y}) = ln(x) - ln(y)$$

$$ln(xy) = ln(x) + ln(y)$$

$$ln(x^y) = y * ln(x)$$