Satisfiability Checking 23 The virtual substitution method II

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 22/23

- 1 The idea
- 2 Test candidate generation for a single constraint
- 3 Test candidates for a set of constraints
- 4 Virtual substitution

- 1 The idea
- 2 Test candidate generation for a single constraint
- 3 Test candidates for a set of constraints
- 4 Virtual substitution

- 1 The idea
- 2 Test candidate generation for a single constraint
- 3 Test candidates for a set of constraints
- 4 Virtual substitution

- 1 The idea
- 2 Test candidate generation for a single constraint
- 3 Test candidates for a set of constraints
- 4 Virtual substitution

- Standard substitution $\varphi[t/x]$ could lead to formulas containing ϵ , ∞ , $\sqrt{}$ or division.
- Virtual substitution $\varphi[t/\!/x]$ generates real algebraic formulas that are semantically equivalent to the application of standard substitution but these formulas do not contain ϵ , ∞ , $\sqrt{}$ or division.
- There are rules that define how to virtually substitute a test candidate into a constraint. These rules distinguish between
 - the constraint's relation symbol, and
 - the test candidate's type (whether it contains $-\infty$, ϵ , $\sqrt{}$ or division).

We look at all rules for substituting $-\infty$ and fractions of polynomials, and a few rules for the other cases.

	$p(x) \sim 0$	$(p(x) \sim 0)[-\infty//x]$
	bx + c = 0	$b = 0 \land c = 0$
	$bx + c \neq 0$	b ≠ 0 ∨ c ≠ 0 ★ 此条件 10 も V
	bx + c < 0	$b>0 \lor (b=0 \land c<0)$
ق م	bx + c > 0	$b < 0 \lor (b = 0 \land c > 0)$
	$bx + c \leq 0$	$b>0 \lor (b=0 \land c \le 0)$
	$bx + c \ge 0$	$b < 0 \lor (b = 0 \land c \ge 0)$
	$ax^{2} + bx + c = 0$	$a = 0 \land b = 0 \land c = 0 $
22.	$ax^2 + bx + c \neq 0$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	$ax^2 + bx + c < 0$	$a < 0 \lor (a = 0 \land b > 0) \lor (a = 0 \land b = 0 \land c < 0)$
	$ax^{2} + bx + c > 0$	$a > 0 \lor (a = 0 \land b < 0) \lor (a = 0 \land b = 0 \land c > 0)$
	$ax^2 + bx + c \leq 0$	$a < 0 \lor (a = 0 \land b > 0) \lor (a = 0 \land b = 0 \land c \le 0)$
	$ax^2 + bx + c \ge 0$	$a > 0 \lor (a = 0 \land b < 0) \lor (a = 0 \land b = 0 \land c \ge 0)$

Virtual substitution: An univariate example

$$\exists x. \ [(x > 0 \land 1 - x^2 \ge 0) \lor (x < 0 \land 1 - x^2 \le 0)] \land 1 - x^2 < 0 \land x \ne 0$$
Eliminate x . 1. test candidate: $-\infty$

$$\exists x \text{ False, } t \text{ so the } t \text{ s$$

$$(x > 0)[-\infty/x]$$

$$= (1 < 0 \lor (1 = 0 \land 0 > 0))$$

(1+0 × 0 + 0)

$$(x < 0)[-\infty/x]$$

$$= (1 > 0 \lor (1 = 0 \land 0 < 0))$$

Virtual substitution: A multivariate example

$$\exists x. \exists y. ((xy-1=0 \lor y-x\geq 0) \land y^2-1<0)$$
, eliminate y

1. test candidate: $-\infty$

$$\exists x. (\qquad (xy - 1 = 0)[-\infty/y]$$

$$\lor (y - x \ge 0)[-\infty/y]$$

$$\land \qquad (y^2 - 1 < 0)[-\infty/y]$$

$$\Leftrightarrow \exists x. (\qquad (x = 0 \land -1 = 0)$$

$$\lor (1 < 0 \lor (1 = 0 \land -x \ge 0))$$

$$\land \qquad (1 < 0 \lor (1 = 0 \land 0 > 0) \lor (1 = 0 \land 0 = 0 \land -1 < 0))$$

$$\Leftrightarrow \exists x. (false)$$

Note that for the quadratic case k=2, $\delta=0$, $p(e)\cdot r^{k}=(ax^{2}+bx+c)[\frac{q}{r}/x]\cdot r^{2}=(a\frac{q^{2}}{r^{2}}+b\frac{q}{r}+c)\cdot r^{2}=aq^{2}+bqr+cr^{2}$ always has the same sign as p(e), and in this case $r^{\delta}=r^{0}=1>0$. However, for the linear case k=1, $\delta=1$, $p(e)\cdot r^{k}=(bx+c)[\frac{q}{r}/x]\cdot r^{1}=(b\frac{q}{r}+c)\cdot r^{1}=b\cdot q+c\cdot r$ the sign might change if r<0.

Virtual substitution: Example

$$(p(x) = 0) \left[\frac{q + r\sqrt{t}}{s} / / x \right]$$

- 1 Substitute x by $\frac{q+r\sqrt{t}}{s}$ in p(x)=0 in the common way.
- 2 Transform the result to $\frac{\hat{q}+\hat{r}\sqrt{t}}{\hat{s}}=0$ where $\hat{q},\ \hat{r},\$ and \hat{s} are polynomials (always possible, proof exercise)
- $(p(x) = 0) \left[\frac{q + r\sqrt{t}}{s} / / x \right] := (\hat{q}\hat{r} \le 0 \land \hat{q}^2 \hat{r}^2 t = 0)$
- 4 Explanation:

$$(p(x) < 0)[e + \epsilon//x]$$

Explanation:

Complexity

We consider in the following the elimination of one existential quantifier (existentially quantified variable):

$$\exists x_1 \dots \exists x_n \varphi \equiv \exists x_1 \dots \exists x_{n-1}, \bigvee_{t \in T} \varphi[t /\!\!/ x_n].$$

■ Degree $D(x_i, \cdot)$ of a remaining variable x_i , $1 \le i < n$:

$$\mathcal{D}(x_i, \bigvee_{t \in T} \varphi[t/\!\!/ x_n]) \in \mathcal{O}(6D(x_i, \varphi) - 8)$$

Number of atoms $at(\cdot)$:

$$\underbrace{\mathsf{at}}(\bigvee_{t \in T} \varphi[t/\!\!/x_n]) \in \mathcal{O}(8\mathsf{at}(\varphi) + \mathsf{at}(\varphi)(8 + 63\mathsf{at}(\varphi)))$$

Learning target

- What is the basic idea of the virtual substitution?
- How to compute the test candidates?
- How to apply virtual substitution?
- Is the virtual substitution method complete?