

混合异构数据的清洗、存储、挖掘架构选型和设计策略

@卢亿雷 From AdMaster johnlya@163.com

提纲

- > 混合异构数据特点
- > 混合异构数据分类
- > 混合异构处理流程
- > AdMaster混合异构数据平台架构
- ➤ AdMaster数据处理流程
- AdMaster混合异构数据分析
- > Q/A

混合异构数据特点

- > 不同的数据类型
- > 不同的数据量级
- > 不同的访问速度
- > 不同的用户类型
- > 不同的访问平台
- > 不同的存储设备
- > . . .

混合异构数据分类

	在线数据	离线数据
数据内容	短周期数据	长周期(存档、归纳、 计算结果)
数据特性	字段固定	字段不固定
数据结构	高度结构化、复杂、适合操作计算	结构简单
使用频率	非常高(热数据)	一般(冷数据)
数据访问量	KB、MB级	GB、TB、PB级
响应时间	纳秒、微秒、毫秒级	秒、分钟、小时、天级

数据采集

数据预处理

数据分析

数据展示

互联网广告监测全流程

AdMaster混合异构数据平台架构

AdMaster混合异构数据平台架构

AdMaster数据采集

AdMaster数据采集

- cat /proc/sys/net/ipv4/tcp_mem
- > cat /proc/net/sockstat
- cat /proc/sys/net/ipv4/tcp_max_orphans
- net.netfilter.nf_conntrack_max
- net.netfilter.nf_conntrack_tcp_timeout_est ablished

AdMaster离线数据分析

- /sys/kernel/mm/ redhat_transparent_hugepage/enabled
- /sys/kernel/mm/
 redhat_transparent_hugepage/defrag
- > dfs.socket.timeout
- > dfs.datanode.max.xcievers
- dfs.datanode.socket.write.timeout
- > dfs.namenode.handler.count

AdMaster在线数据分析

AdMaster在线数据分析

- > Kafka & Tail
- ➤ HBase & MongoDB
- ➤ Storm & Rsync
- ➤ Spark & Hana

AdMaster数据可视化

- 主题 (配色、品牌名、品牌logo)
- 轮播信息 (Screens、Slides、标题)
- □ 权限(用户、用户组)

- Social数据源
- **Site数据源**
- **□** Track数据源

配置信息

数据源

用户请求

配置API

中转服务器API

数据源API

前端渲染

AdMaster数据可视化

- 数据呈现方式
- 展示层与数据层松耦合,多种数据源接入
- 极高的可靠性和容错机制

Q & A

