DSO530 Applied Statistical Learning

Lecture 2: linear Regression additional exercises

Dr. Xin Tong
Department of Data Sciences and Operations
Marshall School of Business
University of Southern California

/1

J= 1+2 logxn / = 42 logxn Q2 Jn- Jo = 2. log 2/20 { kg(4n) ~ x if x ~0} sp nf by 17. He J. J. = Ily(19) : 41 by 0.02 Variability in data we employed by model. • What is the meaning of $1 - R^2$?

this can nevor be negative as it is ^2.

• True or False: " R^2 is never bigger than 2" $\int \partial u e \int R^2 \int \frac{R8}{Tss}$

- Suppose $cor(X_1, Y) = -0.5$, $cor(X_2, X_1) = 0.5$, $cor(X_2, Y) = 0.8$. Which regression will have the second largest R^2 ?

- regress Y on X_1 0.25 regress Y on X_2 0.64 regress Y on X_1 and X_2 largest (because of most usuables)

$$R_{y,/x}^{2} = 0.5 = 1 - \frac{RSS}{7cS} = 1 - \frac{S}{7cS} \rightarrow 10$$

$$TSS_{2} = 4.78S, \quad \{au T18 = |y-y|^{2} = 40$$

Co-Yelation Yemains same even if multiplied by workant.

• Regress Y_1 on X_1 , we have $R^2 = 0.5$, RSS = 5. Let $X_2 = 3X_1$ and $Y_2 = 2Y_1$. Now regress Y_2 on X_2 . What is R^2 ? And what is RSS?

$$R_{J_{1}}^{2}(x_{1} + y^{2}(x_{1}, y_{2}) = r^{2}(x_{1}, y_{1}) = R_{J_{1}}^{2}|_{x_{1}} = 0.5$$

$$R_{J_{1}}^{2}(x_{1} + y^{2}(x_{1}, y_{2}) = r^{2}(x_{1}, y_{2}) = R_{J_{1}}^{2}|_{x_{1}} = 0.5$$

$$R_{J_{1}}^{2}(x_{1} + y^{2}(x_{1}, y_{2}) = r^{2}(x_{1}, y_{2}) = R_{J_{1}}^{2}|_{x_{1}} = 0.5$$

$$R_{J_{1}}^{2}(x_{1} + y^{2}(x_{1}, y_{2}) = r^{2}(x_{1}, y_{2}) = R_{J_{1}}^{2}|_{x_{1}} = 0.5$$