

Towards A Framework For Openness Score Calculation in Scholarly Research

Master ThesisUniversity of Neuchatel

Jennifer Swaminathan

Jennifer.Swaminathan@unine.ch

12.02.24

Supervisor:

Prof. Dr. Philippe Cudré-Mauroux

- Introduction
- Research Questions
- Methodology
- Results
- Framework
- Limitations & Future Work
- Conclusion

Introduction

Open Science: Promoting transparency and accessibility

Collaborative effort: Openness Score Team

'Openness' metric: Quantifying accessibility in research

Visualization

Framework for Openness Score

swissuniversities

Research Questions:

Which scholarly APIs are effective for analyzing openness in academic publications?

How does API efficiency compare to a local server in assessing scholarly publications' openness?

What is the efficacy of LLMs in deriving additional insights for a novel openness metric from open-access articles?

Methodology for Comparative Analysis of Scholarly APIs

Data Collection

- Crossref (2000)- Comprehensive metadata retrieval of schorlarly articles
- Doaj (2015) Open access journal indexing
- Unpaywall (2017) assigns distinct status of articles
- OpenAlex (2022) includes a wealth of information from various sources

Data Analysis

- Rate Limits Determines data retrieval capacity
- Access Speed Measures API responsiveness
- Metadata Content Assesses the richness of data
- Public Dump Availability Evaluates offline data access options

RQ1

API Comparison Results: Rate Limits, Downloads, and Records

	Rate Limit	Download	Records
Crossref	Varies by authentication: Anonymous, Polite (with email), Full (paid)	185GB, snapshot	145M
Doaj	Not specified; heavy use suggests data dump	6GB on request	9M
Unpaywall	100,000 calls per day	-	48M
OpenAlex	100,000 calls per day, 10 requests per second	350GB, snapshot	253M

API Metadata Access Speed Comparison

• Experiment:

- •100 random articles
- Measured retrieval speed over 10 iterations.

Comparing API vs. Server Performance: Methodological Overview

Data Collection

Gather data using OpenAlex snapshot

Database Setup

• Configure and optimize a local Postgres database for performance

Data Analysis

- Measure speed
- Conduct data consistency checks across API and server.

Results: API vs. Server Access Speed Analysis 1/2

Experiment:

- 100 articles: 50 DOIs and 50 titles for 10 iterations
- All randomly chosen to avoid caching the data
- Gather References of the article and find the open access status

Metric	API(sec)	Server (sec)
Average	50.17	0.58
Min	0.421	0.015
Max	540.17	2.47

Results: API vs. Server Access Speed Analysis 2/2

Results: Server vs API Data Consistency

Server Snapshot: Data as of

October 18, 2023

Endpoints	Server	API (Nov 14)	Diff	API (Nov 28)	(API28-API14)
Works	245207435	246139651	932219	246537492	397841
Author	93003987	89468168	-3535819	89565600	97432
Institutions	106956	107247	291	107252	5
Concepts	65073	65073	0	65073	0
Publishers	10250	10250	0	10250	0
Sources	247955	248650	695	248643	-7

After updating:

Update: Snapshot as of November 21, 2023

Endpoints	O_Ser	U_Ser	API Nov28	O_Ser-U_Ser	API-U_Ser
Works	245207435	245207435	246537492	0	1330057
Author	93003987	89516053	89565600	3487934	49547
Institutions	106956	107246	107252	-290	6
Concepts	65073	65073	65073	0	0
Publishers	10250	10250	10250	0	0
Sources	247955	248643	248643	-688	0

Results: Summary

- Tradeoff accuracy vs speed
 - Server is faster
 - API is accurate
- Provide a hybrid solution

Methodology for Assessing Scholarly Openness Using LLMs

Data Collection

- 38 Open Access PDF articles
- Questions
 - "What are the names of the datasets used in the article to perform the experiment?"
 - "Who are the authors of this article?"
 - "Are the datasets used in the experiment in the article open access?"
- Annotate the answers for the articles
- Question Answering models

Data Analysis

- Quality of responses, and score them
- F1 score, Accuracy, Recall and Precision

Extractive Question Answering

Components

- Document Processing
- Question Processing
- Answer Selection

Models Used

- distilbert-base-cased-distilled-squad (DistilBert)
- deepset/roberta-base-squad2(RoBERTa)

Results on 38 articles: Extractive QA

DistilBert

- Fine-tuned on Squad dataset
- Version of BERT which is lighter(65.2M parameters)

Roberta

- 124M parameters
- Fine-tuned on Squad 2.0

Tradeoff

- Roberta more accurate
- DistilBert is faster

	Correct Answers		
	DistilBert	RoBERTa	
Question 1	11	8	
Question 2	10	15	
Question 3	10	15	

Model	Average Time (s)	Max Time (s)	Min Time (s)
DistilBert	21.83	131.96	6.53
RoBERTa	42.43	262.09	12.41

Abstractive Question Answering

Components

- Document Processing
- Question Processing
- Answer Generation

Models used:

- GPT series
- **S**OpenAl
- Text-davinci:003
- GPT 3.5-Turbo
- Llama2- 7Billion parameter
 [™] Meta AI

Abstractive Question Answering with Retrieval-Augmented Generation(RAG)

RAG workflow

- Relevant Information retrieval before answer generation
- Langchain modules

Evaluation

- Models evaluated on response for 'Question3'
- With & Without Prompt

Parameters:

Chunk size = 400 characters Overlap = 50 characters 'Relevant chunks 'k' = 2 Temperature = 0.1

Evaluating RAG Performance Across Models Accuracy by Model and Prompt Condition

Text-davinci:003

With prompt, has more TP+TN(31 to 34)

GPT 3.5-Turbo

 Decrease TP+TN with prompts (32 to 22)

Llama2

• Prompts increases the correct response (from 22 to 30)

Without Prompt

Model	True Positives	True Negatives
Llama2	18	4
Text-davinci:003	16	15
GPT 3.5-Turbo	18	14

With Prompt

Model	True Positives	True Negatives
Llama2	21	9
Text-davinci:003	23	11
GPT 3.5-Turbo	7	15

Comparative Performance of Language Models

Llama2-7B P

Text-davinci:003

- with prompts shows superior accuracy and F1 score
- Precision is reduced with prompt.

GPT 3.5-Turbo

- With prompts performance reduced.
- Precision improved with prompt

Llama2-7B

 with prompts overall performance improved

RQ3

Evaluating Model Efficiency and Cost-Effectiveness

GPT 3.5-Turbo

 Fast response at lowest cost among commercial models

Text-davinci:003

 Varying speed across queries, but more expensive

Llama2-7B

• Higher computing time, but is cost effective

Model	Max Time (s)	Min Time (s)	Avg Time (s)
GPT 3.5-Turbo	6.21	0.75	1.26
Text-davinci:003	11.61	0.52	0.96
Llama2-7B	77.53	37.03	53.54

Model	Cost (USD)
GPT 3.5-Turbo	0.32
Text-davinci:003	5.19
Llama2	0.00

Openness Score Evaluation Framework

Visualizing Openness Score

Openness Score = (NDOIrOA * 10/NDOIr) * K

where K = 1,
NDOIrOA is the number of DOIs that are open-access,
NDOIr is the total number of references of the given DOI

Limitations & Future Work

Additional APIs

Databases

Self-curated dataset of 38 articles

Human error on annotation

Scoring system

Prompts

Conclusion

4 Scholarly APIs

OpenAlex API vs snapshot

Leveraged LLM

Framework

Thank You!!! Questions?

Towards A Framework For Openness Score Calculation in Scholarly Articles

Jennifer Swaminathan

University of Neuchatel, Switzerland SUPERVISOR:

Prof. Dr. Philippe Cudré-Mauroux

Acknowledgements

- Prof. Dr Philippe Cudré-Mauroux
- Openness Score Team Members