Corrigés RMS 2019

Exercice 228:

Soit G un groupe fini. Pour $x \in G$, on note $\overline{x} = \{gxg^{-1}/g \in G\}$ la classe de conjugaison de x. On dit que x est ambivalent si $x^{-1} \in \overline{x}$.

- a) Montrer que si une classe de conjugaison contient un élément ambivalent alors tous ses éléments le sont.
- **b)** Pour $x \in G$, soit $\rho(x)$ le nombre de $g \in G$ tel que $g^2 = x$. Montrer que $\frac{1}{|G|} \sum_{x \in G} \rho(x)^2$ est le nombre de classes de conjugaison ambivalentes de G.
- a) Soit C une classe de conjugaison et $x \in C$ ambivalent. On a $x^{-1} \in \overline{x} = C$ donc $C = \overline{x^{-1}}$. Soit $y \in \overline{x}$. Il existe $g \in G$ tel que $y = gxg^{-1}$. Alors $y^{-1} = gx^{-1}g^{-1} \in \overline{x^{-1}} = C$. Or on a aussi $C = \overline{y}$ donc $y^{-1} \in \overline{y}$, ce qui conclut.
- Notons Γ l'ensemble des classes ambivalentes. Par le calcul, on a :

$$\begin{split} \frac{1}{|G|} \sum_{x \in G} \rho(x)^2 &= \frac{1}{|G|} \sum_{x \in G} \left(\sum_{l \in G} \delta(l^2 = x) \right)^2 \\ &= \frac{1}{|G|} \sum_{x \in G} \left(\sum_{(l,h) \in G^2} \delta(l^2 = x) \delta(h^2 = x) \right) \\ &= \frac{1}{|G|} \sum_{(l,h) \in G^2} \delta(l^2 = h^2) \\ &= \frac{1}{|G|} \sum_{(u,h) \in G^2} \delta(huhu = h^2) \text{ car } u \to hu \text{ est une bijection} \\ &= \frac{1}{|G|} \sum_{\gamma \in \Gamma} \sum_{u \in \gamma} \sum_{h \in G} \delta(u = hu^{-1}h^{-1}) \end{split}$$

Or $\forall u \in \gamma$ considérons la fonction $\Phi_u : h \in G \to hu^{-1}h^{-1} \in \gamma = \overline{u}$. Elle est surjective. On a alors:

$$\sum_{u\in\gamma}\sum_{h\in G}\delta(u=hu^{-1}h^{-1})=\sum_{u\in\gamma}|\Phi_u^{-1}(\{u\})|$$

Cependant, $\Phi_u^{-1}(\{u\})$ et $\Phi_x^{-1}(\{u\})$ sont en bijection pour tout $x \in \gamma$.

En effet, si $x \in \gamma$ alors il existe $g \in G$ tel que $x = gu^{-1}g^{-1}$ et comme u est ambivalent il existe $h \in G$ tel que $u = hu^{-1}h^{-1}$.

x est aussi ambivalent donc il existe $k \in G$ tel que $x^{-1} = kxk^{-1}$.

On a alors en regroupant $u=(hg^{-1}k^{-1})x^{-1}(hg^{-1}k^{-1})^{-1}$. On peut donc définir $f:h\in\Phi_u^{-1}(\{u\})\to hg^{-1}k^{-1}\in\Phi_x^{-1}(\{u\})$. C'est alors clairement une bijection. Finalement, on a:

$$\sum_{u \in \gamma} |\Phi_u^{-1}(\{u\})| = \sum_{r \in \gamma} |\Phi_u^{-1}(\{r\})| = |G|$$

(La dernière somme est le cardinal de l'ensemble des antécédents des images qui est G.)

D'où $\frac{1}{|G|}\sum_{x\in G}\rho(x)^2$ est le nombre de classes de conjugaison de G.

Exercice 235:

Soit P un polynôme complexe non nul ayant au moins deux racines distinces et tel que P'' divise P.

- a) Montrer que P est à racines simples.
- b) Montrer que les racines de P sont alignées.

Soit P un polynôme complexe non nul ayant au moins deux racines distinctes et tel que P''|P.

a) Montrer que P est à racines simples.

Écrivons P sous la forme : $P = \lambda \prod_{i=1}^{p} (X - a_i) \prod_{i=1}^{q} (X - b_i)^{m_i}$ avec $p \ge 1$ et les $m_i \ge 2$ et les a_i, b_i distincts. L'objectif est de montrer q = 0.

Par hypothèse, P'' s'écrit $P'' = Q \prod_{i=1}^{q} (X - b_i)^{m_i - 2}$ avec $Q | \prod_{i=1}^{p} (X - a_i)$.

On note n le degré de P et en regardant les degrés on a : $n-2 = \deg Q + \sum_{i=1}^{q} (m_i - 2) = p + \sum_{i=1}^{q} (m_i) - 2$ d'où $2 = p - \deg Q + 2q$ avec $p \ge \deg Q$. Ainsi q = 0 ou q = 1. Par l'absurde supposons q = 1.

On pose $T = \prod_{i=1}^{n} (X - a_i)$.

On a $T'' = \lambda n(n-1)T(X-b_1)^{m_1-2} = \lambda(X-b_1)^{m_1-2}((X-b_1)^2T'' + 2m_1(X-b_1)T' + m_1(m_1-1)T)$ En divisant par $(X-b_1)^{m_1-2}$ et en évaluant en b_1 , on a $n(n-1)T(b_1) = m_1(m_1-1)T(b_1)$. Or $T(b_1) \neq 0$ et $n > m_1 \text{ car } p > 0.$

C'est absurde donc q = 0 et P est à racines simples.

b) Montrer que les racines de P sont alignées.

On rappelle le théorème de Gauss-Lucas : Si $P \in \mathbb{C}[X]$ alors les racines de P' sont des barycentres à coefficients strictement positifs de celles de P.

D'après la question précédente, P admet n racines distinctes a_1, a_2, \ldots, a_n et P'' en a n-2 parmi celles ci. Les racines de P forment un polygone G dont on note, quitte à renuméroter, $a_1, ..., a_s$ les sommets. Par l'absurde on suppose $s \ge 3$, c'est-à-dire que G n'est pas un segment.

Par théorème de Gauss-Lucas, les racines de P' sont dans l'intérieur de G et celles de P'' aussi. Or au moins une des racines de P'' n'est pas dans l'intérieur de G puisque une d'entre elle est un sommet $(k \ge 3)$, ce qui est absurde.

Finalement k=2 (deux racines distinctes) et les racines de P sont alignées.

Exercice 237:

Soient $\lambda_1, \ldots, \lambda_d$ des nombres complexes de module au plus 1, $P = \prod_{i=1}^d (X - \lambda_i)$.

Pour $n \in \mathbb{N}$, soit $f(n) = \sum_{i=1}^{d} \lambda_i^n$. On suppose que $P \in \mathbb{Z}[X]$.

- a) Montrer que $f(\mathbb{N}) \subset \mathbb{Z}$
- b) Montrer que f est périodique à partir d'un certain rang.
- c) Montrer que, pour tout $i \in \{1, ..., d\}$, λ_i est nul ou racine de l'unité.

On procède par récurrence sur $n \in \mathbb{N}$.

Initialisation: n = 0

$$\sum_{i=1}^{u} \lambda_i^0 = d \in \mathbb{Z}$$

Hérédité : On suppose, pour un certain $n \in \mathbb{N}^*$, que $\forall k < n \in \mathbb{N}^*$, $\sum_{i=1}^d \lambda_i^k \in \mathbb{Z}$

On a:

$$\begin{split} \sum_{i=1}^d \lambda_i^n &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \sum_{1\leqslant i\neq j\leqslant d} \lambda_i \lambda_j^{n-1} \\ &= \left(\sum_{i=1}^d \lambda_i\right) \left(\sum_{i=1}^d \lambda_i^{n-1}\right) - \frac{1}{2} \left(\sum_{1\leqslant i\neq j\leqslant d} \lambda_i \lambda_j\right) \left(\sum_{k=1}^d \lambda_k^{n-2}\right) + \frac{1}{2} \sum_{1\leqslant i\neq j\neq k\leqslant d} \lambda_i \lambda_j \lambda_k^{n-2} \\ &= \cdots \\ &= \sum_{k=1}^n \left((-1)^{k+1} \left(\sum_{i=1}^d \lambda_i^{n-k}\right) \left(\sum_{1\leqslant i_1<\dots< i_k\leqslant d} \prod_{j=1}^k \lambda_{i_j}\right)\right) \end{split}$$

Or, par hypothèse de récurrence, $\forall k \in [1, n], \sum_{i=1}^{a} \lambda_i^{n-k} \in \mathbb{Z}$

De plus, pour tout $k \in [1, n]$, $(-1)^k \sum_{1 \le i_1 < \dots < i_k \le d} \prod_{j=1}^n \lambda_{i_j}$ est le coefficient de degré n-k du polynôme P donc appartient à \mathbb{Z} .

Finalement,

$$\sum_{i=1}^{d} \lambda_i^n \in \mathbb{Z}$$

Cela conclut la récurrence.

b) Pour $n \ge d$, on a :

$$f(n) = \sum_{k=1}^{d} \left((-1)^{k+1} f(n-k) \left(\sum_{1 \leqslant i_1 < \dots < i_k \leqslant d} \prod_{j=1}^{k} \lambda_{i_j} \right) \right)$$

Or, $\forall n \in \mathbb{N}, f(n) \in \llbracket -d, d \rrbracket$. Comme $\llbracket -d, d \rrbracket^d$ est fini, il existe $n < n' \in \mathbb{N}$ tels que n' - n > d et $\forall k \in \llbracket 0, d - 1 \rrbracket, f(n + k) = f(n' + k)$. Et comme f(n) dépend des d termes précédents,

la suite $(f(n))_{n\in\mathbb{N}}$ est (n'-n)-périodique

c) f est périodique à partir d'un certain rang donc $\exists r \in \mathbb{N}, \forall n \in \mathbb{N}^*, f(nr) = f(r)$ On pose $S(x) = \sum_{n=0}^{+\infty} f(nr)x^n$. Alors:

$$S(x) = d + f(r) \frac{x}{1 - x}$$

$$= d + \sum_{n=1}^{+\infty} \sum_{i=1}^{d} \lambda_i^{rn} x^n$$

$$= \sum_{n=0}^{+\infty} \sum_{i=1}^{d} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \sum_{n=0}^{+\infty} (\lambda_i^r x)^n$$

$$= \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Donc
$$d - f(r) + \frac{f(r)}{1 - x} = \sum_{i=1}^{d} \frac{1}{1 - \lambda_i^r x}$$

Par unicité de la DES, tous les λ_i sont nuls ou tels que $\lambda_i^{-r} = 1$

Exercice 249:

a) Calculer
$$\prod_{\alpha \in \mathbb{T}} (1 + \omega)$$

a) Calculer
$$\prod_{\omega \in \mathbb{U}} (1 + \omega)$$

b) Pour $n \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_n$, calculer $\det(I_n + P_{\sigma})$
c) Montrer que, pour tout $n \in \mathbb{N}^*, T_{n+1} = 2T_n + n(n-1)T_{n-1}$.

c) Montrer que, pour tout
$$n \in \mathbb{N}^*$$
, $T_{n+1} = 2T_n + n(n-1)T_{n-1}$.

d) Donner une formule simple pour T_n .

a) On note
$$P = \prod_{\omega \in \mathbb{U}} (-X + \omega) = (-1)^n (X^n - 1)$$
. Ainsi, $\prod_{\omega \in \mathbb{U}} (1 + \omega) = P(-1) = 1 + (-1)^{n+1}$.

 σ se décopose en produit de cycles à support disjoint. $\sigma = c_1 \dots c_p$ où $c_i = (a_1^i \dots a_{n_i}^i)$.

Si on permute les éléments de la base canonique, alors P_{σ} devient semblable à $P_{\sigma} = \begin{pmatrix} C_1 & 0 \\ & \ddots & \\ 0 & & C_n \end{pmatrix}$

Il y a p blocs C_i où chaque C_i est de taille n_i on a alors $C_i = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & & 0 & 0 \\ & \ddots & & \vdots \\ 0 & & & 1 & 0 \end{pmatrix}$

$$\chi_{C_i} = \det(XI_n - C_i) = X^{n_i} - 1 \text{ donc } \chi_{P_{\sigma}} = \prod_{i=1}^p (X^{n_i} - 1) \text{ et } \det(I_n + P_{\sigma}) = (-1)^n \cdot \chi_{P_{\sigma}}(-1) = \prod_{i=1}^p (1 - (-1)^{n_i})$$

c) On pose E_k l'ensemble des σ tel que l'orbite de n+1 soit de longueur k.

$$T_{n+1} = \sum_{\sigma \in S_{n+1}} \det(I_{n+1} + P_{\sigma})$$

$$= \sum_{k} \sum_{\sigma \in E_k} \det(I_{n+1} + P_{\sigma})$$

$$= \sum_{k-1} \sum_{\sigma \in S_{n+1}} (1 - (-1)^k) \frac{n!}{(n+1-k)!} \det(I_{n+1-k} + P_{\sigma})$$

Donc $|E_k| = \frac{n!}{(n+1-k)!} |S_{n+1-k}| \text{ donc } \binom{n}{k-1} (k-1)! (n+1-k)! = \frac{n!}{(n+1-k)!} (n+1-k)!$ Donc $n! = \frac{n!}{(n+1-k)!} (n+1-k)!$.

$$T_{n+1} = \sum_{k=1}^{n+1} (1 - (-1^k)) \frac{n!}{(n+1-k)!} T_{n+1-k}$$

$$= \sum_{k=0}^{n} (1 + (-1)^{n-k}) \frac{n!}{k!} T_k$$

$$= 2T_n + n(n-1) \sum_{k=0}^{n-1} (1 + (-1)^{n-2-k}) \frac{(n-2)!}{k!} T_k$$

$$= 2T_n + n(n-1) T_{n-1}$$

d) Déjà, on a $T_0=0$ et $T_1=2$. On pose $f:x\in\mathbb{R}\mapsto\sum_{n=1}^{+\infty}\frac{T_n}{n!}x^n$. Alors,

$$f'(x) = \sum_{n=1}^{+\infty} \frac{T_n}{(n-1)!} x^{n-1}$$

$$= \sum_{n=0}^{+\infty} \frac{T_{n+1}}{n!} x^n$$

$$= \sum_{n=1}^{+\infty} \frac{2T_n + n(n-1)T_{n-1}}{n!} x^n + 2$$

$$= 2 + 2f(x) + \sum_{n=2}^{+\infty} \frac{T_{n-1}}{(n-2)!} x^n$$

$$= \frac{2}{1 - x^2} f(x) + \frac{2}{1 - x^2}$$

Donc f vérifie l'équation différentielle

$$y' = \left(\frac{1}{1-x} + \frac{1}{1+x}\right)y + \frac{2}{1-x^2}$$

Solution générale : $y_0(x) = \lambda \exp\left(\ln\frac{1+x}{1-x}\right) = \lambda\frac{1+x}{1-x}$. Méthode de variation de la constante : $\lambda'(x) = \frac{1-x}{1+x}\frac{2}{(1-x)(1+x)} = \frac{2}{(1+x)^2}$ donc on prend $\lambda(x) = -\frac{2}{1+x}$ et $y_1(x) = -\frac{2}{1+x}\frac{1+x}{1-x} = -\frac{2}{1-x}$

Ainsi,
$$f(x) = \lambda \frac{1+x}{1-x} - \frac{2}{1-x}$$

Comme de plus
$$f(0) = 0 = \lambda - 2$$
, on a $f(x) = \frac{2 + 2x - 2}{1 - x} = \frac{2x}{1 - x} = 2\sum_{n=1}^{+\infty} x^n = \sum_{n=1}^{+\infty} \frac{2n!}{n!} x^n$

Finalement,
$$T_0 = 0$$
 et $\forall n \in \mathbb{N}^*, T_n = 2n!$

Exercice 251:

Soit $A \in \mathcal{M}_n[\mathbb{R}]$. Comparer ses polynômes minimaux dans $\mathcal{M}_n(\mathbb{R})$ et dans $\mathcal{M}_n(\mathbb{C})$.

Soient $R \in \mathbb{R}[X]$ et $C \in \mathbb{C}[X]$ les polynômes minimaux de A dans $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$ respectivement.

On a bien sur C|R.

$$C(A) = 0$$
 donc $iC(A) = 0$ donc $Re(iC(A)) = 0$ donc $Re(iC)(A) = 0$

Or C est unitaire donc Re(iC) est de degré strictement inférieur à C (le coefficient de plus haut degré est imaginaire pur).

Ainsi, si C n'est pas à coefficients réels, Re(iC) est un polynôme non-nul, annulant A et de degré strictement inférieur à celui de C, ce qui est absurde.

Ainsi, C est réel et R|C.

Finalement,

$$R = C$$

Exercice 254:

Déterminer les $n \in \mathbb{N}$ tel qu'existe $A \in \mathcal{M}_n(\mathbb{R})$ de polynôme minimal $X^3 + 2X + 2$. Même question dans $\mathcal{M}_n(\mathbb{Q})$.

Dans $\mathcal{M}_n(\mathbb{R})$: On note $P = X^3 + 2X + 2$. On obtient $P' = 3X^2 + 2$.

x	$-\infty$ α $+\infty$
P'(x)	+
P(x)	-\infty +\infty

Ainsi, par théorème de la bijection, P n'admet qu'une seule racine réel α . On note β et $\overline{\beta}$ ses racines complexes conjuguées.

Pour n < 3, il n'existe pas de matrice de $\mathcal{M}_n(\mathbb{R})$ admettant P comme polynôme minimal (Théorème de Caley-Hamilton).

Pour
$$n = 3$$
, la matrice $A = \begin{pmatrix} 0 & 0 & 2 \\ -1 & 0 & 2 \\ 0 & -1 & 0 \end{pmatrix}$ admet comme polynôme caractéristique $\chi_A = P$.

P est un polynôme annulateur de A (théorème de Caley-Hamilton), et P est scindé à racines simples donc P est le polynôme minimal de A.

Pour n > 3, la matrice $B = \begin{pmatrix} \alpha I_{n-3} & \\ & A \end{pmatrix}$ admet comme polynôme caractéristique $\chi_B = (X - \alpha)^{n-3} P$.

P est un polynôme annulateur de B et tout polynôme annulateur de B divise P donc P est le polynôme minimal de B.

 $\begin{aligned} \mathbf{Dans} \ \mathcal{M}_n(\mathbb{Q}) \ : \quad &\text{On suppose par l'absurde que } \alpha \in \mathbb{Q}, \, \text{donc il existe } (p,q) \in \mathbb{Z} \times \mathbb{N}^* \text{ t.q. } p \wedge q = 1. \\ P(\alpha) &= 0 \implies \left(\frac{p}{q}\right)^3 + 2 \cdot \frac{p}{q} + 2 = 0 \implies p^3 + 2pq^2 + 2q^3 = 0 \, \, \text{donc par th\'eor\`eme de Gauss, } p|2 \text{ et } q|2 \, \, \text{donc } \alpha \in \left\{\frac{1}{2},1,2,-\frac{1}{2},-1,-2,\right\} \text{ Absurde. Donc } \alpha \notin \mathbb{Q} \text{ et } P, \, \text{de degr\'e 3 , est irr\'eductible dans } \mathbb{Q}[X]. \end{aligned}$

Pour
$$n \in 3\mathbb{N}$$
, la matrice $C = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix} \in \mathcal{M}_n(\mathbb{Q})$ admet bien comme polynôme minimal P .

Pour $n \notin 3\mathbb{N}$, par l'absurde on suppose qu'il existe $C \in \mathcal{M}_n(\mathbb{Q})$ ayant P comme polynôme minimal. χ_C et P ont même racines, donc $\chi_C = (X - \alpha)^p \left((X - \beta)(X - \overline{\beta}) \right)^q$ avec p + 2q = n donc $p \neq q$ car $n \notin 3\mathbb{N}$.

- Si p > q, $\chi_C = (X \alpha)^{p-q} P^q$ donc $(X \alpha)^{p-q} \in \mathbb{Q}[X]$. Or le coefficient de degré p q 1 de $(X \alpha)^{p-q}$ est $\alpha \notin \mathbb{Q}$. Absurde.
- Si q > p, $\chi_C = ((X \beta)(X \overline{\beta}))^{q-p} P^p$ donc $((X \beta)(X \overline{\beta}))^{q-p} \in \mathbb{Q}[X]$. Or le coefficient de degré q p 1 de $((X \beta)(X \overline{\beta}))^{q-p}$ est $2\text{Re}(\beta)$. Par relation coefficient racines sur P, $\alpha + 2\text{Re}(\beta) = 0$ donc $2\text{Re}(\beta) \notin \mathbb{Q}$. Absurde.

Exercice 255:

Soit $M \in \mathcal{M}_2(\mathbb{R})$. A quelle condition M admet-elle une racine carrée dans $\mathcal{M}_2(\mathbb{R})$?

 $\mathbf{1}^{\mathrm{er}}$ cas : Si $M = \lambda I_2$.

Si
$$\lambda \geqslant 0$$
 alors $M = (\sqrt{\lambda}I_2)^2$. Sinon $M = \begin{pmatrix} 0 & \sqrt{-\lambda} \\ -\sqrt{\lambda} & 0 \end{pmatrix}^2$

2ème cas : Si
$$\chi_M = (X-a)(X-b)$$
, avec $a \neq b \in \mathbb{R}$.

Analyse : On suppose qu'il existe $N \in \mathcal{M}_2(\mathbb{R})$ telle que $N^2 = M$.

$$\overline{\text{On a } (N^2 - aI_2)(N^2 - bI_2)} = 0.$$

Donc N est annulée par un polynôme scindé à racines simples dans $\mathbb C$ donc $\mathbb N$ est diagonalisable dans $\mathbb C$ de valeurs propres α et β .

Tout vecteur propre de N est vecteur propre de M donc en notant E_M , F_M , E_N et F_N les sous-espaces propres respectifs de M et N, on a $E_N \subset E_M$ et $F_N \subset F_M$. Comme tous ces sous-espaces sont de dimension 1, ces inclusions sont des égalités.

Or M est diagonalisable dans \mathbb{R} donc admet au moins un vecteur propre réel pour chaque valeur propre. Donc il en est de même de N.

En prenant ces vecteurs propres, on diagonalise simultanément M et N dans \mathbb{R} .

On note P la matrice de passage qui est réelle.

On a
$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = PMP^{-1}$$
 et $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} = PNP^{-1}$ donc α et β sont réels.

De plus, $\alpha^2 = a$ et $\beta^2 = b$.

Donc $a, b \ge 0$.

Synthèse : On suppose que $a, b \ge 0$.

 $\overline{\text{On diagonalise } M \text{ dans } \mathbb{R} \text{ et on note } P \text{ la matrice de passage.}$

Alors en posant $N = P^{-1} \begin{pmatrix} \sqrt{a} & 0 \\ 0 & \sqrt{b} \end{pmatrix} P$, on a $N^2 = M$.

 $\mathbf{3^{\grave{e}me}}$ cas: Si $\chi_M = (X-a)^2$, avec $a \in \mathbb{R}$ et M non diagonalisable.

Analyse : On suppose qu'il existe $N \in \mathcal{M}_2(\mathbb{R})$ telle que $N^2 = M$.

Comme précédemment, il existe un vecteur propre de N qui soit réel (on prend le sous-espace propre de Λ associé à a qui est de dimension 1).

En prenant un deuxième vecteur réel libre avec le premier, et en notant P la matrice de passage associée (qui

est réelle), on a
$$\begin{pmatrix} a & y \\ 0 & a \end{pmatrix} = PMP^{-1}$$
 et $\begin{pmatrix} \alpha & x \\ 0 & \beta \end{pmatrix} = PNP^{-1}$ où $y \in \mathbb{R}$ et $x, \alpha, \beta \in \mathbb{C}$.
Donc $x, \alpha, \beta \in \mathbb{R}$ car N est réelle.

Donc $x, \alpha, \beta \in \mathbb{R}$ car N est réelle. De plus, $\alpha^2 = a$, $\beta^2 = a$ et $2\alpha x = y$.

Donc $a \ge 0$.

Enfin, si a=0, N est trigonalisable dans \mathbb{C} et a toutes ses valeurs propres nulles donc est nilpotente.

Or elle est de taille 2 donc $M = N^2 = 0$. C' est absurde donc a > 0.

Synthèse : On suppose que a > 0.

 $\overline{\text{On trigonalise } M}$ dans \mathbb{R} et on note P la matrice de passage.

Alors en posant
$$N = P^{-1} \begin{pmatrix} \sqrt{a} & \frac{y}{2\sqrt{a}} \\ 0 & \sqrt{a} \end{pmatrix} P$$
, on a $N^2 = M$.

On remarquera que de cette manière, on peut traiter aussi le cas M diagonalisable. Ce cas a été traité à part pour plus de clarté.

 $\mathbf{4^{\hat{e}me}\ cas}:\ \mathrm{Enfin},\ \mathrm{si}\ \chi_M=(X-z)(X-\overline{z}),\ \mathrm{avec}\ z\in\mathbb{C}\backslash\mathbb{R},\ \mathrm{on\ note}\ z=re^{i\theta}.$

On pose $\alpha = \sqrt{r}e^{i\frac{\theta}{2}}$.

On pose
$$\alpha = \sqrt{re^{i\frac{\pi}{2}}}$$
.
Si $\alpha + \overline{\alpha} = 0$, alors $\alpha \in i\mathbb{R}$ donc $z = \alpha^2 \in \mathbb{R}$. Absurde. Donc $\alpha + \overline{\alpha} \neq 0$.
On pose $N = \frac{1}{\alpha + \overline{\alpha}}(M + \alpha \overline{\alpha}I_2) \in \mathcal{M}_2(\mathbb{R})$.
On a $N^2 - M = \frac{1}{4r\cos^2(\frac{\theta}{2})}(M^2 + r^2I_2 + (2r - 4r\cos^2(\frac{\theta}{2}))M)$.

Donc
$$N^2 - M = \frac{1}{4r\cos^2(\frac{\theta}{2})}(M^2 + r^2I_2 - 2r\cos(\theta)M) = \frac{\chi_M(M)}{4r\cos^2(\frac{\theta}{2})}$$
.

Donc $N^2 - M = 0$ par théorème de Cayley-Hamilton et $N^2 = A$

M admet une racine carrée dans $\mathcal{M}_2(\mathbb{R})$ si et seulement si $M=\lambda I_2$ ou M diagonalisable dans \mathbb{C} à valeurs propres distinctes dans $\mathbb{C}\backslash\mathbb{R}^*$ ou M trigonalisable non diagonalisable à valeurs propres strictement positives.

Exercice 256:

Quelles sont les $M \in \mathcal{M}_n(\mathbb{C})$ telles que M soit semblable à 2M?

Analyse: Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M \sim 2M$.

 $1^{\text{ère}}$ méthode: En trigonalisant M, on remarque que les valeurs propres de 2M sont le double de celles de M. Or M et 2M sont semblables donc ont les mêmes valeurs propres. Ces dernières sont donc toutes nulles.

Donc M est nilpotente.

 $2^{\text{ème}}$ méthode : Il existe $P \in GL_n(\mathbb{C})$ telle que PM = 2MP. Ainsi, $\forall n \in \mathbb{N}, PM^n = 2^nM^nP$. La famille (I_n, M) est libre tandis que I_n, M, \ldots, M^{n^2} est liée.

Il existe donc $p \in [1, n^2]$ tel que (I, \dots, M^p) est libre et (I, \dots, M^{p+1}) est liée.

On peut donc trouver a_0, \ldots, a_{p+1} non tous nuls tels que $\sum_{i=1}^{p+1} a_i M^i = 0$.

Donc
$$P \sum_{i=0}^{p+1} a_i M^i = 0$$
 donc $\left(\sum_{i=0}^{p+1} a_i 2^i M^i\right) P = 0$ donc $\sum_{i=0}^{p+1} a_i 2^i M^i = 0$.

Donc
$$2^{p+1} \sum_{i=0}^{p+1} a_i M^i - \sum_{i=0}^{p+1} a_i 2^i M^i = 0$$
 donc $\sum_{i=0}^p (2^{p+1} - 2^i) a_i M^i = 0$.
Par liberté de (I_n, \dots, M^p) , les $(2^{p+1} - 2^i) a_i$ sont nuls donc les a_i sont nuls pour $i \in [\![0, p]\!]$.
Donc $a_{p+1} \neq 0$ et $a_{p+1} M^{p+1} = 0$ donc $M^{p+1} = 0$

Donc M est nilpotente.

Synthèse: Soit $M \in \mathcal{M}_n(\mathbb{C})$ nilpotente.

Lemme: Montrons que M étant nilpotente, elle est semblable à une matrice de la forme

$$\begin{pmatrix} J_1 & & & \\ & \ddots & & \\ & & J_p & \\ & & & (0) \end{pmatrix} \text{ où les } J_i \text{ sont des blocs de Jordan} : J_i = \begin{pmatrix} 0 & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

Soit p l'ordre de nilpotence de M. Alors $M^{p-1} \neq 0$ donc il existe $x \in \mathbb{C}^n$ tel que $M^{n-1}x \neq 0$.

Alors la famille $(x, Mx, \ldots, M^{p-1}x)$ est libre, on en note E_1 l'espace engendré et J_1 la matrice de l'induit de M sur cet espace. C'est un bloc de Jordan de coefficient 0.

Le supplémentaire de E_1 dans E, qu'on note $\tilde{E_1}$, est stable par M. On note M_1 l'induit, qui est toujours nilpotent.

Soit M_1 est nulle, auquel cas on a fini, soit son ordre de nilpotence p_1 est non nul. On recommence alors le procédé précédent.

On itère cela jusqu'à tomber sur un induit nul ou un supplémentaire égal à {0}.

On prend

$$P = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 2^{n-1} \end{pmatrix}$$

Alors, pour N de la forme donnée par le lemme, PN=2NP donc N 2N. Comme M et N sont semblables,

M est semblable à 2M.

Exercice 260:

Soit E un \mathbb{C} -espace vectoriel de dimension finie n > 0.

- a) Montrer que pour tout $u \in GL(E)$ il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$, et justifier que deg $I_u < n$.
- b) Étudier la continuité de $u \in GL(E) \mapsto I_u \in \mathbb{C}_{n-1}[X]$
- a) Soient $u \in GL(E)$ et $\mu = \sum_{i=1}^{n} \mu_i X^i \in \mathcal{M}_n(\mathbb{C})$ où $r = \deg \lambda \leqslant n$ son polynôme minimal.

On a alors $0 = \mu(u) = \sum_{i=1}^{n} \mu_i u^i$ où $\mu_0 \neq 0$ (sinon μ n'est pas minimal).

Ainsi, Id =
$$-\frac{1}{\mu_0} \sum_{i=1} \mu_i u^i = u \left(\sum_{i=0}^{r-1} \lambda_i u^i \right)$$
 où $\lambda_i = -\frac{\mu_{i+1}}{\mu_0}$

Ainsi, en posant $I_u = \sum_{i=0}^{r-1} \lambda_i X^i$, comme u et $I_u(u)$ commutent, on a $u^{-1} = I_u(u)$

On suppose par l'absurde qu'il existe un autre polynôme $P = \sum_{i=1}^{r-1} \nu_i X^i$ de degré inférieur ou égal à celui de I_u tel que $u^{-1} = P(u)$.

Alors $\operatorname{Id} - \sum \nu_{i-1} u^i = 0$ donc un polynome non nul de degré inférieur à celui du polynôme minimal de u annule

ce dernier. Donc $X - \sum_{i=1}^{r} \nu_{i-1} u^i = N\lambda$ où $N \in \mathbb{C}.$

Donc I_u et P sont associés. Comme $I_u(u) = u^{-1} = P(u), P = I_u$.

Ainsi, il existe un unique polynôme $I_u \in \mathbb{C}[X]$ de degré minimal tel que $u^{-1} = I_u(u)$. De plus, $\deg I_u = r - 1 < n$.

b) On pose la suite $A_n = \begin{pmatrix} 1 & \frac{1}{n} \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}(E)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, $I_{A_n} = 2 - X$. Or, $\lim_{n \to +\infty} A_n = I_n$ et $I_{I_n} = 1$

L'application $u \in GL(E) \mapsto I_n \in \mathbb{C}_{n-1}[X]$ n'est pas continue.

Exercice 272:

Soit $n \in \mathbb{N}^*$.

- a) Soit $M \in \mathrm{GL}_n(\mathbb{R})$. Montrer que M s'écrit de façon unique OS où $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \S_n^{++}(\mathbb{R})$.
- b) Montrer que l'ensemble $\mathrm{GL}_n^+(\mathbb{R})$ est connexe par arcs.
- a) Analyse: On suppose qu'il existe $O \in \mathcal{O}_n(\mathbb{R})$ et $S \in \S_n^{++}(\mathbb{R})$ tel que M = OS.

 ${}^{t}MM = {}^{t}(OS)OS = {}^{t}S {}^{t}OOS = S^{2}.$

 ${}^tMM \in \S_n(\mathbb{R})$ et $M \in \mathrm{GL}_n(\mathbb{R})$, donc $\forall X \in \mathbb{R}^n \setminus \{0\}$, ${}^tX^tMMX = {}^t(MX)MX > 0$ donc ${}^tMM \in \S_n^{++}(\mathbb{R})$. tMM et S sont symétriques réeles et commutent donc il existe $P \in \mathrm{GL}_n(\mathbb{R})$, $\lambda_1, \ldots \lambda_n, \in \mathbb{R}_+^*$ et $\mu_1, \ldots \mu_n, \in \mathbb{R}_+^*$

tels que
$$P^t M M P^{-1} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$
 et $PSP^{-1} = \begin{pmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{pmatrix}$.

Or $S^2 = {}^tMM$ donc $PS^2P^{-1} = P{}^tMMP^{-1}$ donc $\forall i \in [1, n] \sqrt{\lambda_i} = \mu_i$.

On note L l'unique polynôme interpolateur de Lagrange tel que $\forall i \in [1, n] L(\lambda_i) = \sqrt{\lambda_i}$. Donc $L({}^tMM) = S$ ainsi S est unique.

On obtient ainsi $O = MS^{-1}$.

Synthèse : On pose $S = L({}^tMM)$ par théorème spectral il existe $P \in \mathcal{O}_n(\mathbb{R})$ tel que

$${}^{t}P^{t}MMP = \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix}$$

Donc
$${}^tPSP = \begin{pmatrix} \sqrt{\lambda_1} \\ & \ddots \\ & \sqrt{\lambda_n} \end{pmatrix}$$
 donc $S^2 = {}^tMM$ et $S \in \S_n^{++}(\mathbb{R})$.
On note $O = MS^{-1}$, $O {}^tO = MS^{-1} {}^t(MS^{-1}) = M({}^tMM)^{-1} {}^tM = I_n$. Donc $O \in \mathcal{O}_n(\mathbb{R})$.

b) Soit $A, B \in \mathrm{GL}_n^+(\mathbb{R})$.

Par pivot de Gauss, il existe $T_1, \ldots, T_k \in \mathrm{GL}_n(\mathbb{R})$ des matrices de transpositions tel que

$$A = \prod_{i=1}^{k} T_i \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & \det A \end{pmatrix}$$

On pose
$$\gamma: [0,1] \to \mathcal{M}_n(\mathbb{R}), t \mapsto \prod_{i=1}^k (T_i + t(I_n - T_i)) \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & \det A + t(1 - \det A) \end{pmatrix}. \quad \forall t \in [0,1], \forall i \in [0,1]$$

 $[1, k], T_i + t(I_n - T_i)$ est triangulaire avec des coefficients diagonaux égaux à 1. Donc $T_i + t(I_n - T_i) \in \operatorname{GL}_n(\mathbb{R})$. De plus

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & \det A + t(1 - \det A) \end{pmatrix} \in \mathrm{GL}_n(\mathbb{R})$$

Donc $\forall t \in [0,1], \gamma(t) \in \operatorname{GL}_n(\mathbb{R})$ et $\gamma(0) = A$ et $\gamma(1) = I_n$.

De plus, γ est continue, donc il existe un chemin reliant chaque matrice de $GL_n(\mathbb{R})$.

Donc $GL_n(R)$ est connexe par arcs.

Exercice 273:

Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que la classe de similitude de M est connexe par arcs si et seulement si M est diagonalisable.

 \longleftarrow On suppose que M est diagonalisable.

Il existe donc $Q \in GL_2(\mathbb{R})$ et $D \in \mathcal{M}_2(\mathbb{R})$ diagonale tels que $M = Q^{-1}DQ$. Soit $A = P^{-1}MP \in \mathcal{C}(M)$.

Dans un premier temps, on suppose que $\det PQ$ et $\det Q$ sont de même signe, tous deux positifs par symétrie. Par pivot de Gauss, il existe $T_1, \ldots, T_n \in \mathcal{GL}(\mathbb{R})$ telles que

$$P = T_1 \times \dots \times T_n \begin{pmatrix} 1 & 0 & 0 \\ & \ddots & & 0 \\ 0 & & 1 & \\ & 0 & & \det Q \end{pmatrix} = T_1 \times \dots \times T_n \times B$$

On pose alors $\gamma_1: t \in [0,1] \mapsto \prod_{i=1}^n (I_2 + t(T_i - I_2))B \in \mathcal{M}_n(\mathbb{R})$. Elle est continue, $\gamma_1(0) = I_2$ et $\gamma_1(1) = P$ $\forall t \in [0,1], \forall i \in \llbracket 1,n \rrbracket, \det(I_2 + t(T_i - I_2)) = 1 \text{ et } \det \gamma_1(t) > 0 \text{ donc } \gamma_1(t) \in \operatorname{GL}_n(\mathbb{R}) \text{ donc } \gamma_1([0,1]) \subset \operatorname{GL}_n(\mathbb{R}).$ De même, on trouve $\gamma_2:[0,1]\to \mathrm{GL}_n(\mathbb{R})$ continue telle que $\gamma_2(0)=PQ$ et $\gamma_2(1)=I_2$. Ainsi, $\gamma = \gamma_1 \gamma_2 : [0,1] \to \operatorname{GL}_n(\mathbb{R})$ est continue et $\gamma(0) = PQ$ et $\gamma(1) = Q$.

Finalement, $\mu: t \in [0,1] \mapsto \gamma(t)\gamma(t)^{-1} \in \mathcal{C}(M)$ est continue car $A \mapsto A^{-1}$ est continue sur $\mathrm{GL}_n(\mathbb{R})$. On a $\mu(0) = PQD(PQ)^{-1} = A$ et $\mu(1) = QPQ^{-1} = M$

Si det PQ et det Q sont de signes opposés, $A = (PQ)D(PQ)^{-1} = (PQC)D(PQC)^{-1}$ où $C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ dont le déterminant vaut -1.

Comme $\det PQC$ et $\det QC$ sont de même signe, on revient au premier cas.

Ainsi, la classe de similitude de M est connexe par arcs.

 \Longrightarrow On suppose que la classe de similitude de M est connexe par arcs.

$$\overline{\text{Soit } M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \text{ On pose } P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ et } M' = P^{-1}MP = \begin{pmatrix} d & c \\ b & a \end{pmatrix}.$$

La fonction $f:(a_{ij}) \in \mathcal{M}_2(\mathbb{R}) \mapsto a_{12} - a_{21} \in \mathbb{R}$ est continue et f(M) = -f(M').

Comme C(M) est connexe par arcs, on peut y trouver N telle que f(N) = 0, c'est-à-dire que N est symétrique. Elle est donc diagonalisable.

Comme N et M sont semblables,

M est diagonalisable

Exercice 275:

Soient $C = [-1, 1]^2$ et $f \in \mathcal{L}(\mathbb{R}^2)$. Étudier la suite $(f^n)_{n \in \mathbb{N}}$ sous les hypothèses suivantes :

- i) $f(C) \subset [-\frac{1}{2}, \frac{1}{2}]^2$
- ii) $f(C) \subset]-1,1[^2]$
- iii) $f(C) \subsetneq C$
- i) On travaille avec la norme infinie : $\|\cdot\|: (x,y) \in \mathbb{R}^2 \mapsto \max(x,y)$. Soit $(x,y) \in \mathbb{R}^2$.

On a
$$||f(x,y)|| \le \frac{||(x,y)||}{2} \operatorname{car} \frac{1}{||(x,y)||} (x,y) \in [-1,1]^2$$
.

Par récurrence, on suppose que pour un certain $n \in \mathbb{N}^*$ on ait $||f^n(x,y)|| \leq \frac{||(x,y)||}{2^n}$.

Alors
$$\frac{2^n}{\|(x,y)\|} f(x,y) \in [-1,1]^2$$
 donc $f(\frac{2^n}{\|(x,y)\|} f^n(x,y)) \leqslant \frac{1}{2}$ donc $\|f^n(x,y)\| \leqslant \frac{2^n}{\|(x,y)\|} f^n(x,y)$

Ainsi,
$$\forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}^*, ||f^n(x,y)|| \leq \frac{||(x,y)||}{2^n}.$$

Par encadrement, pour tout
$$(x,y) \in \mathbb{R}^2$$
, $\lim_{n \to +\infty} \|f^n(x,y)\| = 0$ donc $\lim_{n \to +\infty} f^n(x,y) = 0$.

ii) La boule unité $C = [-1, 1]^2$ est compacte et $f \in \mathcal{L}(\mathbb{R}^2)$ est continue donc elle atteint un maximum en norme sur C, atteint en (x_0, y_0) .

Comme $f(C) \subset]-1,1[^2,M=\|(x_0,y_0)\|<1.$

Ainsi, $f(C) \subset [-M, M]^2$ et on se retrouve dans un cas similaire à la question précédente :

$$\forall (x,y) \in \mathbb{R}^2, \forall n \in \mathbb{N}^*, \|f^n(x,y)\| \leqslant \frac{\|(x,y)\|}{M^n}.$$

Par encadrement, pour tout
$$(x,y) \in \mathbb{R}^2$$
, $\lim_{n \to +\infty} \|f^n(x,y)\| = 0$ donc $\lim_{n \to +\infty} f^n(x,y) = 0$.

iii) On cherche à montrer que la suite $(f^n)_{n\in\mathbb{N}}$ converge si et seulement si -1 n'est pas valeur propre de f. On note A la matrice de f dans la base canonique \mathcal{B} .

Montrons d'abord que les valeurs propres de f dans $\mathbb C$ sont de module inférieur à 1.

Soit donc λ une valeur propre de f. Alors $\exists X \in \mathbb{C}^2 \setminus \{0\}, AX = \lambda X$.

Comme $f(C) \subset C$ et que f est linéaire, $(f^n(X))$ est bornée par ||X|| donc (A^nX) également.

Donc (λ^n) est bornée, ce qui implique nécessairement que $|\lambda| \leq 1$.

On suppose que (f^n) converge. On appelle g sa limite.

Si f admet une valeur propre $\lambda \in \mathbb{R}$. Soit $x \in \mathbb{C} \setminus \{0\}$ un vecteur propre associé.

Alors $f^n(x) = \lambda^n x$ donc (λ^n) converge.

Ainsi,
$$\lambda \neq -1$$
.

On suppose maintenant que -1 n'est pas valeur propre de f.

 χ_f est de degré 2 à coefficients réels donc il est soit scindé sur $\mathbb R$ soit scindé à racines simples sur $\mathbb C/\mathbb R$, où les deux racines sont conjuguées l'une de l'autre.

 $\underline{1}^{\mathrm{er}}$ cas : χ_f est scindé à racines simples dans $\mathbb{C}\backslash\mathbb{R}$ de module 1.

On note $\lambda, \overline{\lambda}$ les racines de χ_f .

La suite (λ_n) est contenue dans le compact C donc admet une sous-suite $\lambda^{\varphi(n)}$ convergente.

Alors, $(\lambda^{\varphi(n+1)-\varphi(n)})$ converge vers 1.

Comme $A^{\varphi(n+1)-\varphi(n)} \sim \operatorname{diag}(\lambda^{\varphi(n+1)-\varphi(n)}, \overline{\lambda}^{\varphi(n+1)-\varphi(n)}), (A^{\varphi(n+1)-\varphi(n)})$ converge vers I_2 .

Donc $(f^{\varphi(n+1)-\varphi(n)})$ converge vers Id. Soit $x \in C \setminus f(C)$. La suite $(f^{\varphi(n+1)-\varphi(n)}(x))$ converge vers x et C est stable par f donc x est adhérent à f(C).

Pourtant, f est continue et C est fermé donc f(C) l'est également.

C'est absurde donc ce cas est impossible.

 2^{e} cas : χ_f est scindé à racines simples sur \mathbb{C} , de racines de module strictement inférieur à 1.

Alors A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$: $A = PDP^{-1}$ où $D = \operatorname{diag}(\lambda, \mu)$ et $P \in \operatorname{GL}_2(\mathbb{C})$.

Donc $\forall n \in \mathbb{N}, A^n = PD^nP^{-1}$ et comme $|\lambda|, |\mu| < 1$, les suites (λ^n) et (μ^n) convergent et la suite (D^n) également.

Le produit matriciel étant continu, (A^n) converge et (f^n) aussi.

C'est absurde, donc ce cas n'est pas possible.

<u>3^e cas</u>: χ_f admet 1 et $\lambda \in]-1,1[$ comme racines.

Alors (λ^n) converge vers 0 et f est diagonalisable donc $A \sim \text{diag}(1, \lambda)$.

Donc (A^n) converge vers $B \sim \text{diag}(1,0)$ et (f^n) converge vers g de matrice canoniquement associée B.

 $\underline{4^{\rm e} \ {\rm cas}}$: χ_f admet une racine double, nécessairement réelle, qu'on note λ .

Alors, $\lambda \in]-1,1]$. On trigonalise f pour obtenir $f=\lambda \mathrm{Id}+v$ où $v\in\mathcal{L}(\mathbb{R}^2)$ nilpotente.

 λ ne peut être égal à 1, sinon f = Id et f(C) = C.

Comme Id et v commutent, on a $f^n = \lambda^n \text{Id} + n\lambda^{n-1}v$ et f converge vers 0.

Dans tous les cas, (f^n) converge.

Exercice 351:

Soient $n \in \mathbb{N}^*$, M une matrice aléatoire de $\mathcal{M}_{n+1}(\mathbb{R})$, dont les coefficients sont des variables aléatoires i.i.d suivant la loi uniforme $\{-1,1\}$, N une matrice aléatoire de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients sont des variables aléatoire i.i.d suivant la loi uniforme sur $\{0,1\}$.

Montrer que $P(M \in \operatorname{GL}_{n+1}(\mathbb{R})) = P(N \in \operatorname{GL}_{n+1}(\mathbb{R}))$

On note:

$$\mathbf{1_n} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

$$X: \mathcal{M}_{n+1}(\{-1,1\}) \to \{-1,1\}^{n+1} \times \mathcal{M}_{n+1,n}(\{-1,1\})$$

$$\begin{pmatrix} m_{1,1} & L'_{1} \\ \vdots & \vdots \\ m_{1,n+1} & L'_{n+1} \end{pmatrix} \mapsto \begin{pmatrix} (m_{1,1}, \cdots, m_{1,n+1}), \begin{pmatrix} m_{1,1}L'_{1} \\ \vdots \\ m_{n+1,1}L'_{n+1} \end{pmatrix}$$

X est clairement bijective car les $m_{1,i}$ sont non nuls.

$$E: \{-1, 1\}^{n+1} \times \mathcal{M}_{n+1, n}(\{-1, 1\}) \to \{-1, 1\}^{n+1} \times \mathcal{M}_{n+1, n}(\{0, 1\})$$
$$(x, A) \mapsto \left(x, \frac{1}{2} \left(A + \begin{pmatrix} 1 & \cdots & 1\\ \vdots & & \vdots\\ 1 & \cdots & 1 \end{pmatrix}\right)\right)$$

E est le produits cartésien de 2 applications affines de coefficient directeur non nul donc bijective.

$$S: \{-1,1\}^{n+1} \times \mathcal{M}_{n+1,n}(\{0,1\}) \to \{-1,1\}^{n+1} \times \{0,1\}^n \times \mathcal{M}_{n,n}(\{0,1\})$$

$$\left(x, \begin{pmatrix} a_1 & \cdots & a_n \\ C_1' & \cdots & C_n' \end{pmatrix}\right) \mapsto (x, (a_1, \cdots, a_n), (C_1' + a_1(\mathbf{1_n} - 2C_1'), \cdots, C_n' + a_n(\mathbf{1_n} - 2C_n')))$$

S est bijective de bijection réciproque S^{-1} où

$$S^{-1}: \{-1,1\}^{n+1} \times \{0,1\}^n \times \mathcal{M}_{n,n}(\{0,1\}) \to \{-1,1\}^{n+1} \times \mathcal{M}_{n+1,n}(\{0,1\})$$

$$(x, (a_1,\dots,a_n), (C_1,\dots,C_n)) \mapsto \left(x, \begin{pmatrix} a_1 & \dots & a_n \\ \frac{1}{1-2a_1}(C_1-a_1\mathbf{1_n}) & \dots & \frac{1}{1-2a_n}(C_n-a_n\mathbf{1_n}) \end{pmatrix}\right)$$

 S^{-1} est bien définie car $a_i \neq \frac{1}{2}$.

On note $(\varphi_1(M), \varphi_2(M), \varphi_3(M)) = S \circ E \circ X(M), \varphi_3$ est donc une application de $\mathcal{M}_{n+1}(\{-1,1\})$ dans $\mathcal{M}_n(\{0,1\}).$

De plus, soit $M \in \mathcal{M}_{n+1}(\{-1,1\})$

On note
$$N = \begin{pmatrix} \frac{1}{2}(m_{2,2}m_{1,2} - m_{2,1}m_{1,1}) & \cdots & \frac{1}{2}(m_{n+1,2}m_{1,2} - m_{n+1,1}m_{1,1}) \\ \vdots & & \vdots \\ \frac{1}{2}(m_{2,n+1}m_{1,n+1} - m_{2,1}m_{1,1}) & \cdots & \frac{1}{2}(m_{n+1,n+1}m_{1,n+1}m_{n+1,1}m_{1,1}) \end{pmatrix}$$
.

À l'étape (3) tous les coefficients de det M sont à valeurs dans $\{0,1\}$. Donc les colonnes de N ont des coefficients dans $\{0,1\}$ ou dans $\{-1,0\}$. En multipliant les colonnes négatives de N par -1 et en développant det M par rapport à la première colonne, on obtient $|\det M| = 2^n |\det N| = 2^n |\det \varphi_3(M)|$.

Ainsi, $S \circ E \circ X$ est une bijection de $\mathrm{GL}_{n+1}\{-1,1\}$ dans $\{-1,1\}^{n+1} \times \{0,1\}^n \times \mathrm{GL}_n\{0,1\}$.

Ainsi
$$|GL_{n+1}\{-1,1\}| = 2^{2n+1}|GL_n\{0,1\}|.$$

Donc
$$\mathbf{P}(M \in \mathrm{GL}_{n+1}(\mathbb{R})) = \frac{|\mathrm{GL}_{n+1}\{-1,1\}|}{|\mathcal{M}_{n+1}\{-1,1\}|} = \frac{2^{2n+1}|\mathrm{GL}_n\{0,1\}|}{2^{2n+1}|\mathcal{M}_n\{0,1\}|} = \mathbf{P}(N \in \mathrm{GL}_n(\mathbb{R})).$$