

Preddiplomski stručni studij Politehnike

Konstrukcijske vježbe

ELEMENTI STROJEVA 2

(Interna skripta uz projektni zadatak)

Akad. god. 2017./2018.

Pula, 2018.

<u>VRIJEDNOSTI STATIČKE I TRAJNE DINAMIČKE ČVRSTOĆE NEKIH</u> <u>MATERIJALA</u>

Tablica 5.4 Čvrstoća općih konstrukcijskih čelika (DIN 17100, tj. DIN EN 10025); sve vrijednosti su u N/mm^2

Mat	auiia1	Stati	čka čvrsto	óća		Trajna dinamička čvrstoća							
Mai	erijal	Vlačna čvr.	Granic	a tečer	nja	Vlak/tlak		Savijanje		Torzija			
DIN	HRN	R_{m}	$R_{\rm e} (R_{\rm p0,2})$	Res	$R_{\rm et}$	R_{d-1}	R_{d0}	R_{ds-1}	R_{ds0}	R_{dt-1}	$R_{ m dt0}$		
St 37	Č0370	370	240	340	170	175	240	200	340	140	170		
St 42	Č0460	420	260	360	180	190	260	220	360	150	180		
St 50	Č0545	500	300	420	210	230	300	260	420	180	210		
St 60	Č0645	600	340	470	230	270	340	300	470	210	230		
St 70	Č0745	700	370	520	260	320	370	340	520	240	260		

Za hladno vučeni materijal mogu se usvojiti do 50% veće vrijednosti za granice tečenja, ali samo do 10% veće vrijednosti dinamičke čvrstoće.

Tablica 5.5 Čvrstoća čelika za cementiranje (DIN 17210); sve vrijednosti su u N/mm²

Mata	uiia1	Sta	Trajna dinamička čvrstoća								
Mate	rijai	Vlačna čvr.	Grani	Vlak/tlak		Savijanje		Torzija			
DIN	HRN	R_{m}	$R_{\rm c} (R_{\rm p0,2})$ $R_{\rm es}$ $R_{\rm et}$			R_{d-1}	R_{d0}	R_{ds-1}	$R_{ m ds0}$	R_{dt-1}	$R_{\rm dt0}$
Ck15	Č1221	500	300	420	210	270	300	300	420	180	210
15Cr3	Č4120	600	400	560	280	320	400	350	560	210	280
16MnCr5	Č4320	800	600	840	430	400	600	450	770	270	430
15CrNi6	Č5420	900	650	900	450	500	650	550	900	300	450
20MnCr5	Č4321	1080	700	980	490	540	700	600	980	340	490
18CrNi8	Č5421	1230	800	1060	550	580	800	650	1060	410	550

Vrijedi: 25MoCr4 ≈ 16MnCr5; 17CrNiMo8 ≈ 18CrNi8

Tablica 5.6 Čvrstoća čelika za poboljšanje u poboljšanom stanju (DIN 17200 tj. DIN EN 10083 T1 i T2); sve vrijednosti su u N/mm²

M	Materijal		Statička čvrstoća					Trajna dinamička čvrstoća						
Materijal		Vl. čvr.	Grani	Vlak/tlak		Savijanje		Torzija						
DIN	HRN	R_{m}	$R_{\rm e}\left(R_{\rm p0,2}\right)$	Res	$R_{\rm et}$	R_{d-1}	R_{d0}	R_{ds-1}	R_{ds0}	R_{dt-1}	$R_{\rm dt0}$			
Ck22 (C22)	Č1331 (Č1330)	550	360	500	250	250	360	280	480	190	250			
Ck45 (C45)	Č1531 (Č1530)	700	490	670	340	340	490	370	650	260	340			
40Mn4	Č3130	800	650	900	450	400	650	440	750	300	450			
41Cr4	Č4131	1000	800	1100	550	450	780	480	830	330	550			
50CrMo4	Č4733	1100	900	1250	630	500	860	540	940	370	630			
30CrNiMo8	Č5432	1250	1050	1450	730	570	980	600	1040	420	730			

Vrijedi: Ck35 (C35) je između Ck22 i Ck45; C60, Ck60 i 28Mn6 su između Ck45 i 40Mn4; 25CrMo4, 34Cr4, 34CrMo4, 37Cr4, 46Cr2 ≈ 40Mn4; 34CrMo4 ≈ 41Cr4; 34CrNiMo6, 36CrNiMo4, 42CrMo4, 50CrV4 ≈ 50CrMo4; 30CrMoV4, 32CrMo12 ≈ 30CrNiMo8.

Slika 1. Čvrstoća nekih materijala [1]

Kraj cilindričnog vratila

Primjer označavanja kraja vratila promjera d = 65 mm i duljine I = 140 mm:

Kraj vratila 65x140 DIN 748

c	1	- 1		r		Ba			I	r		d				r
	Toler.	Dugi	Kratki	max	Niz 1	Niz 2	Toler.	Dugi	Kratki	max	Niz 1	Niz 2	Toler.	Dugi	Kratki	max
6		16			48	-	k6			1	220	-		350	280	
7		10	-		50	-		110	82		-	240				
8		20		1 1	55	-					250	-	1	410	330	6
9		20	-		60	-					-	260				
10		22	45	1 1	65	-				1,6	280	-				
11		23	15		70	-	1	140	105		-	300		470	380	
12		30	18	0,6	75	-					320	-				
14	j6	30	10		80	-					-	340				
16		40	28	1	85	-		170	130		360	-		550	450	
19		40	20		90	-		170	130		-	380				
20					95	-				2,5	400	-	m6			10
22		50	36		100	-					-	420				
24					110	-	m6	210	165		-	440				
25		60	40		120	-	1				450	-		650	540	
28		60	42		-	130					-	460				
30				1 1	140	-		250	200		-	480				
32		80	58	20	-	150					500	-				
35		00	00	1	160	-				4	-	530				
38	k6				-	170		300	240		560	-		800	680	10
40				1 1	180	-	1				-	600		000	000	16
42		110	82		-	190	1	250	200	1	630	-	1			
45					200	-	1	350	280	6						

NAPOMENA: Ako je iz konstruktivnih razloga potrebno kraj vratila izvesti u drugom tolerancijskom polju od preporučenog, potrebno je to naglasiti, npr.:

Kraj vratila 65r6x140 DIN 748

Promjer vratila odabrati prvenstveno iz niza 1.

Slika 2. Krajevi cilindričnih vratila [2]

Politehnika Pula Visoka tehničko-poslovna škola

ULOŽNA PERA

Označavanje uložnog pera oblika B širine b = 16 mm, visine h = 10 mm i duljine l = 70 mm izrađenog iz čelika E295:

Uložno pero DIN 6885 - B 16x10x70 - E295

Područje	promjera d	Širina b	Visina h	Dub. utora u	Dub. utora u glavini	Duljina i per	Control of the control
od	do	do		vratilu t ₁	t ₂	od	do
6	8	2	2	1,2	1	6	20
8	10	3	3	1,8	1,4	6	36
10	12	4	4	2,5	1,8	8	45
12	17	5	5	3	2,3	10	56
17	22	6	6	3,5	2,8	14	70
22	30	8	7	4	3,3	18	90
30	38	10	8	5	3,3	22	110
38	44	12	8	5	3,3	28	140
44	50	14	9	5,5	3,8	36	160
50	58	16	10	6	4,3	45	180
58	65	18	11	7	4,4	50	200
65	75	20	12	7,5	4,9	56	220
75	85	22	14	9	5,4	63	250
85	95	25	14	9	5,4	70	280
95	110	28	16	10	6,4	80	320
110	130	32	18	11	7,4	90	360
130	150	36	20	12	8,4	100	400
150	170	40	22	13	9,4	110	400
170	200	45	25	15	10,4	125	400
200	230	50	28	17	11,4	140	400
230	260	56	32	20	12,4	160	400
260	290	63	32	20	12,4	180	400
290	330	70	36	22	14,4	200	400
330	380	80	40	25	15,4	220	400
380	440	90	45	28	17,4	250	400
440	500	100	50	31	19,5	280	400

Standardne dužine uložnih pera: 10 12 14 16 18 20 22 25 28 32 36 40 45 50 56 63 70 80 90 100 110 125 140 160 180 200 220 250 320 360 400 Uobičajeni materijal za izradu pera je E295 (Č0545). Širina b pera se izrađuje sa tol. h8. Širina utora b u vratilu ima toler. N9 ili P9, a u glavini D10 (pomično), JS9 ili P9.

Slika 3. Uložna pera [2]

ŽLJEBOVI ZA IZLAZ ALATA

Slika 4. Skica žlijeba za izlaz alata.

$d_2(mm)$	310	1018	1880	80
$\rho_1(\text{mm})$	0,4	0,6	0,6	1
$t_1(mm)$	0,2	0,2	0,3	0,4

Tablica 1. Dimenzije žljebova za izlaz alata

VISINA BOČNOG OSLONCA VALJNOG LEŽAJA

$d_2(mm)$	30	3550	5575	8090	95120	130150
h (mm)	3	3,5	4,5	5	6	7

Tablica 2. Visina bočnog oslonca valjnog ležaja

Osim iz tablice visina bočnog oslonca se za definirani ležaj može odrediti prema kataloškim podacima proizvođača ležajeva (npr. SKF, FAG itd.).

ODABIR VALJNOG LEŽAJA

Na temelju zadanog predloška, promjera d_2 i izračunate potrebne dinamičke nosivosti C, iz kataloga proizvođača ležajeva se odabire odgovarajući valjni ležaj. Preporuča se koristiti katalog SKF-a.

Web adresa: www.skf.com

Za jednoredni kuglični ležaj: http://www.skf.com/group/products/bearings-units-

housings/ball-bearings/deep-groove-ball-bearings/deep-groove-ball-bearings/index.html

KONTROLNI PRORAČUN VRATILA

KRITIČNI PRESJECI

FAKTOR UTJECAJA VELIČINE KONSTRUKCIJSKOG ELEMENTA

Tablica 5.15 Faktor veličine b_2 za okrugli poprečni presjek

		d (mm)	10									120
Γ	L	Čelik	1,0	0,94	0,88	0,85	0,82	0,79	0,77	0,76	0,73	0,72
	02	Aluminijske legure	0,8	0,74	0,70	0,68	0,65	0,63	0,61	0,59	0,56	0,53

Slika 7. Faktor veličine b_2 za okrugli poprečni presjek [1]

GEOMETRIJSKI FAKTORI KONCENTRACIJE NAPREZANJA

Slika 8. Geometrijski faktor koncentracije naprezanja pri savijanju osovina i vratila [1]

Slika 9. Geometrijski faktor koncentracije naprezanja pri torziji vratila [1]

Politehnika Pula Visoka tehničko-poslovna škola

Br.	Vratilo	a_{ks}	α_{kt}	ρ (mm)	Br.	Vratilo	α_{ks}	α_{kt}	ρ (mm)
1		3,3	2,1	0,25	7	0000	1.7	1,4	ę
2		2,8	1,9	0,25	8	22.27	1.7	1,4	6
3		2,6	1,7	0,25	9	e≈0.1s	1.14 + 1.08 \(\sqrt{10t/s}\)	1,48 + 0,45 \sqrt{10t/s}	e
4		1.7	1,6	e	10	,	4,2	3,6	0,25
5		4,0	2,8	0,25	11	Service Servic	3.5	2,3	0,25
6		3,8	2,6	0,15	12	- Fr	2.9	2.0	0,25

Slika 10. Geometrijski faktori koncentracije naprezanja za osovine i vratila [1]

GEOMETRIJSKE KARAKTERISTIKE POPREČNIH PRESJEKA

Poprečni presjek	W	W _p , W _t
O	$W = \frac{\pi \cdot d^3}{32}$	$W_{\rm P} = \frac{\pi \cdot d^3}{16}$
	$W \approx 0.1 \cdot d^3$	$W_{\rm P} \approx 0.2 \cdot d^3$
b = 2	Približno	Približno
_ d _	$W = \frac{\pi \cdot (d - t_1)^3}{32}$	$W_{t} = \frac{\pi \cdot (d - t_1)^3}{16}$
0.	$W = \frac{\pi \cdot d^3}{32} \cdot \left(1 - c^4\right)$	$W_{\rm P} = \frac{\pi \cdot d^3}{16} \cdot \left(1 - c^4\right)$
d ₁	$c = \frac{d_i}{d}$	$c = \frac{d_i}{d}$
da da	$W \approx \frac{\pi \cdot d^3}{32}$	$W_{\rm t} \approx \frac{\pi \cdot d^3}{16}$
b	$W = \frac{\pi \cdot d^4 - b \cdot z \cdot (D - d) \cdot (D + d)^2}{32 \cdot D}$	$W_{t} = \frac{\pi \cdot d^{4} - b \cdot z \cdot (D - d) \cdot (D + d)^{2}}{16 \cdot D}$
	ili pomoću:	ili pomoću:
z = broj žlijebova	$W = \xi \cdot \frac{\pi \cdot d^3}{32} \text{uz faktor } \xi \text{ prema:}$	$W_t = \xi \cdot \frac{\pi \cdot d^3}{16}$ uz faktor ξ prema:
	$\xi = 1,125$ za laganu izvedbu ožljebljeno $\xi = 1,205$ za srednju izvedbu ožljebljeno $\xi = 1,265$ za tešku izvedbu ožljebljenog	og spoja (DIN 5463)
puž Ö	$W = \frac{\pi \cdot d_f^3}{32}$	$W_{t} = \frac{\pi \cdot d_{t}^{3}}{16}$
navoj	$W \approx \frac{\pi \cdot d_3^3}{32}$	$W_{\rm t} \approx \frac{\pi \cdot d_3^3}{16}$

Slika 11. Geometrijske karakteristike poprečnih presjeka.

TOLERANCIJE PROMJERA VRATILA NA POZICIJI LEŽAJA

Slika 12. Tolerancije promjera vratila na poziciji ležaja.

FORMAT CRTEŽA, ZAGLAVLJE I SASTAVNICA

Formati crteža strojnog sklopa: A3 = 297 x 420 mm

Okvir crteža je od lijevog ruba udaljen 20 mm, a od ostalih rubova 10 mm.

Mjerilo mora biti standardno: 2:1, 1:1, 1:2, 1:5, 1:10 itd.

Koristiti standardno zaglavlje Politehnike Pula koje se nalazi u repozitoriju predmeta (PDF i Inventor format).

Slika 12. Standardno zaglavlje Politehnike Pula.

Literatura

- 1. Križan B., 2008. Osnove proračuna i oblikovanja konstrukcijskih elemenata, Školska Knjiga, Zagreb.
- 2. Orlić Ž., 2001. Reduktor proračun geometrije i nosivosti, Tehnički fakultet Rijeka, Rijeka.