CONTEÚDO

1	Introdução à Teoria da Medida				
	1.1	Espaços	e funções mensuráveis	3	
	1.2	Medida .		9	
		1.2.1	Construindo uma medida para $\mathbb R$	12	
	1.3	Integral o	de Lebesgue	14	
	1.4	Espaços	\mathcal{L}^p	31	
2	Intro	Introdução à análise funcional			
	2.1	Espaços	de Banach	45	
3	Espaços de Sobolev				
	3.1	Preliminares		47	
	3.2	Motivação		49	
	3.3	Espaços	de Sobolev $\mathcal{W}^{k,p}(\Omega)$	49	
	3.4	Aproximações		60	
	3.5	Extensões		71	
	3.6	Traços .		75	
	3.7	Desigual	dades de Sobolev	79	
		3.7.1	Desigualdade de Gagliardo-Nirenberg-Sobolev	79	
		3.7.2	Desigualdade de Morrey	83	
		3.7.3	Desigualdades gerais de Sobolev	87	
	3.8	Compaci	dade	89	
4	Algumas aplicações dos Espaços de Sobolev 9				
	4.1	Prelimina	ares	93	
		4.1.1	Desigualdades	93	
		4.1.2 T	Fransformada de Fourier	94	
		4.1.3 S	Semigrupo do calor	95	
		4.1.4 N	Notação	96	
	4.2	Proprieda	ades da soluções de Leray	97	
		4.2.1 lı	ntrodução e contexto histórico	97	
		4.2.2 F	Resultados	98	
	43	Problems	a de Dirichlet	111	

2 CONTEÚDO

INTRODUÇÃO À TEORIA DA MEDIDA

A teoria da medida é um ramo fundamental da matemática que estuda a generalização da noção de tamanho, volume e probabilidade. Originada das necessidades da análise e da teoria da probabilidade, essa teoria oferece uma estrutura rigorosa para tratar de conjuntos, funções e integrais em contextos mais abstratos e complexos. Este capítulo explora os conceitos-chave da teoria da medida, suas principais definições e teoremas.

1.1 Espaços e funções mensuráveis

Nesta seção trataremos especificamente dos conceitos de espaços e funções mensuráveis. Para este fim, precisamos inicialmente definir o significado de σ -álgebra. A partir deste conceito estaremos prontos para estabelecer o que chamamos de espaços mensuráveis

Definição 1.1. Seja X um conjunto não vazio. Uma família \eth de subconjuntos de X é uma σ -álgebra se satisfaz as seguintes condições

- 1. $\emptyset, X \in \mathfrak{F}$
- 2. Se $S \in \mathfrak{F}$ então $S^{\mathcal{C}} = X \setminus S \in \mathfrak{F}$
- 3. Se (S_n) é uma sequência de elementos de \eth então $\bigcup_{n=1}^{\infty} S_n \in \eth$

O par (X, \eth) é dito espaço mensurável e os subconjuntos de \eth são chamados de conjuntos mensuráveis (ou \eth -mensuráveis)

Exemplo 1.2. Seja X um conjunto não vazio e considere $\eth = \{\emptyset, X\}$. Afirmamos que \eth é uma σ -álgebra. Com efeito,

- 1. $\emptyset, X \in \eth$ pela definição.
- 2. $\emptyset^{\mathcal{C}} = X \in \eth$ e $X^{\mathcal{C}} = \emptyset \in \eth$
- 3. $U\emptyset = \emptyset \in \eth$ ou $UX = X \in \eth$

Exemplo 1.3. Seja $X = \{a, b, c, d\}$. $\eth = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c, d\}\}$ não é uma *σ*-álgebra de X pois $\{a, b\}^{C} = \{c, d\} \notin \eth$

Observação: Seja (S_{α}) uma coleção de conjuntos quaisquer. Pela Regra de De Morgan tem-se

$$\left(\bigcup_{\alpha} S_{\alpha}\right)^{\mathcal{C}} = \bigcap_{\alpha} S_{\alpha}^{\mathcal{C}} \ \ \text{e} \ \left(\bigcap_{\alpha} S_{\alpha}\right)^{\mathcal{C}} = \bigcup_{\alpha} S_{\alpha}^{\mathcal{C}}$$

Dessa forma, se (S_n) é uma sequência de elementos de uma σ -álgebra, então $\bigcap_{n=1}^{\infty} S_n \in \eth$

Observação: (união finita)

Observação: (interseção finita)

Exemplo 1.4. Seja X um conjunto não enumerável e considere

$$\eth = \{ S \subseteq X ; S \text{ \'e enumer\'avel ou } S^{\mathcal{C}} \text{ \'e enumer\'avel} \}$$

Afirmamos que \eth é uma σ -álgebra. De fato

- 1. $\emptyset \in \eth$ pois é enumerável e $X \in \eth$ pois $X^{\mathcal{C}} = \emptyset$ que é enumerável
- 2. se $S \in \eth$ temos as seguintes possibilidades S é enumerável, então $S^{\mathcal{C}} \in \eth$ pois $(S^{\mathcal{C}})^{\mathcal{C}} = S$ é enumerável $S^{\mathcal{C}}$ é enumerável, então pela definição da σ -álgebra, $S^{\mathcal{C}} \in \eth$
- 3. Seja (S_n) uma sequência de subconjuntos em \eth , isto é, $S_n \in \eth$ para todo $n \in \mathbb{N}$, aqui temos três possibilidades a serem consideradas

 S_n é enumerável para todo $n \in \mathbb{N}$. Então $\bigcup_{n=1}^{\infty} S_n$ é enumerável, portanto está em $\mathfrak{F}_n^{\mathcal{C}}$ é enumerável para todo $n \in \mathbb{N}$. Então

$$\left(\bigcup_{n=1}^{\infty}\right)^{\mathcal{C}} = \bigcap S_n^{\mathcal{C}} \subseteq S_{n_0}^{\mathcal{C}}$$

é enumerável pois é subconjunto de um conjunto enumerável $S_{n_0}^{\mathcal{C}}$, portanto está em \eth Se existem $i,j\in\mathbb{N}$ tais que

$$S_i \subseteq X$$
 e $S_i^{\mathcal{C}} \subseteq X$ são enumeráveis

podemos afirmar que $\bigcup_{n=1}^{\infty} S_n$ não é enumerável, pois $S_j^{\mathcal{C}}$ é enumerável, e como X não é enumerável, segue que S_j também não é enumerável, fazendo com que a união se torne não enumerável. Dito isso, mostremos que $\left(\bigcup_{n=1}^{\infty} S_n\right)^{\mathcal{C}}$ é enumerável. Com efeito, observe que

$$\left(\bigcup_{n=1}^{\infty} S_n\right)^{\mathcal{C}} = \bigcap_{n=1}^{\infty} S_n^{\mathcal{C}} \subseteq S_j^{\mathcal{C}}$$

ou seja, o complementar da união é subconjunto de um conjunto enumerável, logo é um conjunto enumerável. Portanto $\bigcup_{n=1}^{\infty} S_n \in \eth$.

Dessa forma, \eth é uma σ -álgebra

Exemplo 1.5. Seja X um conjunto não vazio. Se \eth_1 e \eth_2 são σ -álgebras de X então $\eth = \eth_1 \cap \eth_2$ também é uma σ -álgebra de X.

Dado um conjunto cujos elementos são subconjuntos de X, o resultado abaixo nos diz como encontrar a menor σ -álgebra contendo este.

Proposição 1.6. Sejam X um conjunto não vazio e $A \subseteq \mathcal{P}(X)$ uma coleção não vazia de subconjuntos de X. Então a interseção de todas as σ -álgebras de subconjuntos de X que contem A é a menor σ -álgebra que contém A.

Demonstração. □

Observação: (σ -álgebra gerada)

Agora definimos uma σ -álgebra bastante importante para o estudo da teoria da medida conhecida como álgebra de Borel

Definição 1.7. Seja $\mathbb R$ o conjunto dos números reais. A álgebra de Borel é a σ -álgebra $\mathcal B$ gerada por todos os intervalos abertos (x,y) em $\mathbb R$, ou seja, considerando o conjunto

$$A = \{(x_{\alpha}, y_{\alpha}); x_{\alpha}, y_{\alpha} \in \mathbb{R}, x_{\alpha} < y_{\alpha}\}$$

temos que

$$\mathcal{B} = \bigcap_{\alpha} \eth_{\alpha}$$
,

onde cada \eth_{α} é uma σ -álgebra que contem A.

Equivalentemente, podemos dizer que \mathcal{B} é a σ -álgebra gerada por todos conjuntos abertos de \mathbb{R} . É fácil ver que essa equivalência é válida pois qualquer conjunto aberto de \mathbb{R} pode ser expresso como união de intervalos abertos. Ainda mais, expressndo \mathcal{B} dessa forma é possível ver que não precisamos que \mathcal{B} seja uma σ -álgebra de \mathbb{R} mas sim de qualquer espaço topólogico (X, \mathcal{T}) , nesse caso dizemos que \mathcal{B} é a σ -álgebra gerada pela topólogia \mathcal{T} . Nesse trabalho a notação \mathcal{B} será utilizada apenas para a álgebra de Borel em \mathbb{R} .

O resultado abaixo apresenta uma outra forma de definir a álgebra de Borel

Proposição 1.8. \mathcal{B} é a σ -álgebra gerada por todos intervalos fechados

Demonstração. □

Exemplo 1.9. Alguns exemplos de conjuntos que estão em ${\cal B}$ são

- ullet Todo conjunto fechado é um conjunto em ${\cal B}$ pois é o complementar de um conjunto aberto.
- Todo conjunto enumerável está em \mathcal{B} pois se $B = \{x_1, x_2, \dots\}$, então $B = \bigcup_{n=1}^{\infty} \{x_n\}$ que é um conjunto em \mathcal{B} pois cada $\{x_n\}$ é um conjunto fechado.
- Todo intervalo do tipo [a, b) ou (a, b] com $a, b \in \mathbb{R}$ é um conjunto em \mathcal{B} pois $[a, b) = \bigcap_{n=1}^{\infty} (a \frac{1}{k}, b)$ e $(a, b] = \bigcap_{n=1}^{\infty} (a, b + \frac{1}{n})$.

A sensação é de que a álgebra de Borel contem todos os subconjuntos de \mathbb{R} , isto é $\mathcal{B} = \mathcal{P}(\mathbb{R})$. Porem este não é o caso, pois existem subconjuntos de \mathbb{R} que são bastante dificeis de definir (vide [??]) que não estão em \mathcal{B} . Mas se esses conjuntos são tão dificeis de definir por que precisamos de uma σ -álgebra que exclui eles?

Na seção a seguir estudaremos o conceito de medida e suas propriedades, em um exemplo veremos que ao tentar definir uma medida no espaço $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ uma propiedade importante não é satisfeita, mas restrigindo para o espaço $(\mathbb{R}, \mathcal{B})$ conseguimos definir a mesma medida de forma que todas propriedades são satisfeitas.

Definição 1.10. O conjunto $\overline{\mathbb{R}}$ é dita reta extendida e é definido por

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} = [-\infty, +\infty]$$

Observação: Operações com ∞ em $\overline{\mathbb{R}}$

1.
$$\infty + \infty = \infty$$

4.
$$x + (-\infty) = (-\infty) + x = -\infty$$

$$2. -\infty -\infty = -\infty$$

5.
$$\infty \cdot \infty = \infty$$

3.
$$x + \infty = \infty + x = \infty$$

6.
$$x \cdot \infty = \infty \cdot x = \infty$$
 se $x > 0$

7.
$$x \cdot (-\infty) = (-\infty) \cdot x = \infty$$
 se $x < 0$

9.
$$x \cdot (-\infty) = (-\infty) \cdot x = -\infty$$
 se $x > 0$

8.
$$x \cdot \infty = \infty \cdot x = -\infty$$
 se $x < 0$

10.
$$0 \cdot \infty = \infty \cdot 0 = 0$$
.

Proposição 1.11. Seja $\overline{\mathbb{R}}$ a reta estendida. Considere $E_1 = E \cup \{-\infty\}$, $E_2 = E \cup \{+\infty\}$, $E_3 = E \cup \{-\infty, +\infty\}$ e $\widehat{\mathcal{B}} = \{E_1, E_2, E_3, E\}$ com E variando na álgebra de Borel \mathcal{B} . Então $\widehat{\mathcal{B}}$ é uma σ -álgebra em $\overline{\mathbb{R}}$ denominada álgebra estendida de Borel.

Demonstração. □

Um conceito bastante importante na teoria da medida, é a ideia de funções mensuráveis

Definição 1.12. Uma função $f: X \to \mathbb{R}$ é dita ser \eth -mensurável (ou simplesmente mensurável) se para cada $\alpha \in \mathbb{R}$, o conjunto

$$\{x \in X ; f(x) > \alpha\}$$

pertence a σ -álgebra.

Lema 1.13. As afirmações a seguir são equivalentes para uma função $f: X \to \mathbb{R}$

(a)
$$A_{\alpha} = \{x \in X ; f(x) > \alpha\} \in \eth$$
 para todo $\alpha \in \mathbb{R}$

(b)
$$B_{\alpha} = \{x \in X : f(x) \leq \alpha\} \in \eth$$
 para todo $\alpha \in \mathbb{R}$

(c)
$$C_{\alpha} = \{x \in X : f(x) \ge \alpha\} \in \eth$$
 para todo $\alpha \in \mathbb{R}$

(d)
$$D_{\alpha} = \{x \in X : f(x) > \alpha\} \in \eth$$
 para todo $\alpha \in \mathbb{R}$

Demonstração. □

Exemplo 1.14. A função constante $x \mapsto c$ é mensurável. Com efeito, se $\alpha \geqslant c$, então

$$\{x \in X : f(x) > \alpha\} = \emptyset \in \eth$$

pois o único valor que a função assume é c. Se $\alpha < c$, então

$$\{x \in X : f(x) > \alpha\} = X \in \eth$$

Portanto a função constante é mensurável

Exemplo 1.15. A função caracteristica χ_E de um subconjunto $E \in \eth$ é mensurável dada por

$$\chi_E(x) = \begin{cases} 1 \text{ se } x \in E \\ 0 \text{ se } x \notin E. \end{cases}$$

é mensurável. Dito isso, seja $\alpha \in \mathbb{R}$. Se $\alpha \geqslant 1$, então

$$\{x \in X : \chi_F(x) > \alpha\} = \emptyset \in \eth$$

pois a imagem de χ_E contem apenas os valores 0 e 1. Se $0 \leqslant \alpha < 1$ então

$$\{x \in X ; \chi_E(x) > \alpha\} = E \in \eth.$$

Por fim, se $\alpha < 0$, então

$$\{x \in X ; \chi_E(x) > \alpha\} = X \in \eth.$$

Portanto χ_E é uma função mensurável, desde que E tambem seja.

Figura 1.1: À esquerda o gráfico de f e à direita o gráfico de f_1 e f_2 Fonte: Autoral

Exemplo 1.16. Se $f: X \to \mathbb{R}$ com $X \in \mathcal{B} \subseteq \mathbb{R}$ é contínua, então f é mensurável. De fato, basta notar que

$$\{x \in X : f(x) > \alpha\} = f^{-1}((\alpha, \infty)).$$

Pela contínuidade de f, o conjunto $f^{-1}((\alpha, \infty))$ é aberto para todo $\alpha \in \mathbb{R}$. Dessa forma $\{x \in X : f(x) > \alpha\} \in \mathcal{B}$. Portanto f é mensurável.

Exemplo 1.17. Dada uma função f mensurável. A função t runcagem de f (Figura 1.1) dada por

$$f_n(x) = \begin{cases} f(x) & \text{se } f(x) \leqslant n \text{ e } f(x) \geqslant -n \\ n & \text{se } f(x) > n \\ -n & \text{se } f(x) < -n \end{cases}$$

é mensurável para todo $n \in \mathbb{N}$

Vamos estudar agora algumas propriedades elementares sobre funções mensuráveis

Proposição 1.18. Sejam X um espaço mensurável, $f,g:X\to\mathbb{R}$ funções mensuráveis e $c\in\mathbb{R}$. Então as funções

- (a) cf
- **(b)** $f^2 := f \cdot f$
- (c) f + g
- **(d)** fg
- **(e)** |*f*|

são mensuráveis

Demonstração. □

Uma outra definição importante sobre funções mensuráveis e a de parte positiva e negativa de uma função

Definição 1.19. Seja $f: X \to \mathbb{R}$ uma qualquer. Definimos as partes positiva e negativa de f respectivamente pelas funções não negativas $f^+: X \to \mathbb{R}$ e $f^-: X \to \mathbb{R}$ dadas por

$$f^+(x) = \max\{f(x), 0\} \text{ e } f^-(x) = \max\{-f(x), 0\}$$

Lema 1.20. Seja $f: X \to \mathbb{R}$ uma função qualquer. Então

- (a) $f = f^+ f^-$
- **(b)** $|f| = f^+ + f^-$
- (c) $f^+ = \frac{1}{2}(|f| + f)$
- (d) $f^- = \frac{1}{2}(|f| f)$

O lema acima é importante para demonstrar a proposição abaixo

Proposição 1.21. Seja X um espaço mensurável. Então $f:X\to\mathbb{R}$ é mensurável se, e somente se, f^+ e f^- são mensuráveis

Demonstração. Segue direto do lema anterior.

Agora, vamos passar a estudar funções mensuráveis na reta extendida.

Definição 1.22. Dizemos que uma função $f: X \to \overline{\mathbb{R}}$ é \eth -mensurável (ou mensurável) se

$$\{x \in X ; f(x) > \alpha\} \in \eth$$

para cada $\alpha \in \mathbb{R}$. Além disso, denotamos o conjunto de todas as funções $f: X \to \overline{\mathbb{R}}$ por $\mathcal{M}(X,\eth)$

Em nenhum momento da definição acima mencionamos os elementos $\pm\infty$. O motivo será mostrado abaixo

. . .

Lema 1.23. Uma função $f: X \to \overline{\mathbb{R}}$ é mensurável se, e somente se

$$A = \{x \in X : f(x) = \infty\} \in \eth$$
 e $B = \{x \in X : f(x) = -\infty\} \in \eth$

e a função $\tilde{f}: X \to \mathbb{R}$ dada por

$$\tilde{f}(x) = \begin{cases} f(x) & \text{se } x \notin A \cup B \\ 0 & \text{se } x \in A \cup B \end{cases}$$

é mensurável

Demonstração.

Observação: $(cf \cdots \in \mathcal{M}(X, \eth))$

. . .

1.2. MEDIDA 9

Lema 1.24. Seja (f_n) uma sequência em $\mathcal{M}(X,\eth)$. Então as funções

$$f(x) = \inf f_n(x)$$
 $F(x) = \sup f_n(x)$
 $f^*(x) = \liminf f_n(x)$ $F^*(x) = \limsup f_n(x)$

pertencem a $\mathcal{M}(X,\eth)$

Demonstração. □

. . .

Corolário 1.25. Se (f_n) é uma sequência em $\mathcal{M}(X,\eth)$ que converge para f. Então $f \in \mathcal{M}(X,\eth)$

Demonstração. □

O resultado abaixo é ...

Proposição 1.26. Seja f uma função não negativa em $\mathcal{M}(X,\eth)$. Então existe uma sequência (φ_n) em $\mathcal{M}(X,\eth)$ tal que

- (a) $0 \le \varphi_n(x) \le \varphi_{n+1}(x)$ para todo $x \in X$ e $n \in \mathbb{N}$.
- **(b)** cada φ_n possui um número finito de valores reais em sua imagem.
- (c) $f(x) = \lim \varphi_n(x)$ para cada $x \in X$.

Demonstração. □

Para terminar essa seção, vamos definir e ver um exemplo de funções mensuráveis entre espaços mensuráveis

Definição 1.27. Sejam (X, \eth_X) e (Y, \eth_Y) espaços mensuráveis. Dizemos que uma função $f: (X, \eth_X) \to (Y, \eth_Y)$ é mensurável quando

$$f^{-1}(E) \in \eth_X$$

para todo $E \in \eth_Y$

Exemplo 1.28.

1.2 Medida

Definição 1.29. Uma medida é uma função $\mu:\eth\to \bar{\mathbb{R}}$ que satisfaz

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(E)$ ≥ 0 para todo $S \in \eth$
- 3. se (E_n) é uma sequência de subconjuntos disjuntos em \eth , então

$$\mu\left(\bigcup_{n=1}^{\infty} S_n\right) = \sum_{n=1}^{\infty} \mu(S_n)$$

Observação: A tripla (X, \eth, μ) onde X é um conjunto, \eth é uma σ -álgebra em X e μ uma medida em \eth é chamada de espaço de medida.

Observação: (medida finita e σ -finita)

Exemplo 1.30. Seja (\mathbb{N}, \eth) um espaço mensurável, onde $\eth = \mathcal{P}(\mathbb{N})$. A função $\mu : \eth \to \mathbb{R}$ dada por $\mu(E) = \#S$, se S é finito, e $\mu(S) = \infty$ se S é infinito, é uma medida em \eth . Com efeito,

- 1. $\mu(\emptyset) = 0$ por vacuidade
- 2. $\mu(S) \geqslant 0$ por definição
- 3. Seja (S_n) uma sequência disjunta de elementos de $\mathcal{P}(\mathbb{N})$. Se existe um $k \in \mathbb{N}$ tal que $\mu(S_k) = \infty$. Então a união é infinita pois contem pelo menos um conjunto infinito. Logo

$$\mu\left(\bigcup_{n=1}^{\infty}S_n\right)=\infty=\sum_{n=1}^{\infty}\mu(S_n)$$

Por outro lado, se $\mu(S_n) < \infty$ para todo $n \in \mathbb{N}$ temos que a união pode ser infinita. Nesse caso

$$\mu\left(\bigcup_{n=1}^{\infty}S_n\right)=\infty=\sum_{n=1}^{\infty}\mu(S_n)$$

Por fim, se a união é finita, então existe $k \in \mathbb{N}$ tal que $S_n = \emptyset$ para todo n > k. Assim

$$\mu\left(\bigcup_{n=1}^{\infty}S_n\right)=\mu\left(\bigcup_{n=1}^{k}S_n\right)=\sum_{n=1}^{k}\mu(S_n)=\sum_{n=1}^{\infty}\mu(S_n).$$

Portanto μ é uma medida.

Exemplo 1.31. Sejam (X, \eth, μ) um espaço de medida e $A \in \eth$ um conjunto fixo. Então a função λ dada por

$$\lambda(S) = \mu(A \cap S)$$

é uma medida em ð. Com efeito

- 1. $\lambda(\emptyset) = \mu(A \cap \emptyset) = \mu(\emptyset) = 0$ pois μ é uma medida
- 2. $\lambda(S) \ge 0$ por definição
- 3. Seja (S_n) uma sequência de conjuntos disjuntos em \eth . Então

$$\lambda\left(\bigcup_{n=1}^{\infty}S_{n}\right) = \mu\left(A\cap\left(\bigcup_{n=1}^{\infty}S_{n}\right)\right) = \mu\left(\bigcup_{n=1}^{\infty}(A\cap S_{n})\right) = \sum_{n=1}^{\infty}\mu(A\cap S_{n}) = \sum_{n=1}^{\infty}\lambda(S_{n})$$

pois μ é uma medida e a sequência $(A \cap S_n)$ é disjunta.

1.2. MEDIDA 11

Portanto λ é uma medida

Exemplo 1.32. Sejam $\mu_1, \mu_2, \ldots, \mu_n$ medidas em uma σ -álgebra \eth e $c_1, c_2, \ldots, c_j > 0$. Então

$$\mu(S) = \sum_{j=1}^{k} c_j \mu_j(E)$$

é uma medida em ð. De fato

- 1. $\mu(\emptyset) = \sum_{j=1}^k c_j \mu_j(\emptyset) = 0$ pois $\mu_j(\emptyset) = 0$ para todo $j = 1, \dots, k$.
- 2. $\mu(S) = \sum_{j=1}^k c_j \mu_j(S) \geqslant 0$ pois $c_j \mu_j(S) \geqslant 0$ para todo $j = 1, \dots, k$.
- 3. Seja (S_n) uma sequência de conjuntos disjuntos em \eth . Então

$$\mu\left(\bigcup_{n=1}^{\infty} S_n\right) = \sum_{j=1}^{k} c_j \mu_j\left(\bigcup_{n=1}^{\infty} S_n\right) = \sum_{j=1}^{k} \sum_{n=1}^{\infty} c_j \mu_j(S_n) = \sum_{n=1}^{\infty} \sum_{j=1}^{k} c_j \mu_j(S_n) = \sum_{n=1}^{\infty} \mu(S_n).$$

Portanto μ é uma medida.

O próximo passo é estudar algumas propiedade elementares provenientes da definição de medida.

Lema 1.33. Seja (X, \eth, μ) um espaço de medida. Se $E \subseteq F$ onde E e F são conjuntos mensuráveis. Então $\mu(E) \leqslant \mu(F)$

Demonstração. Note que

$$F = E \cup F = E \cup (F \setminus E)$$
,

onde E e $F \setminus E$ são conjuntos mensuráveis disjuntos. Dessa forma

$$\mu(F) = \mu(E) + \mu(F \setminus E).$$

Portanto, como μ é uma função não-negativa $\mu(F) \leqslant \mu(E)$.

Observação: Da demonstração do lema anterior, conseguimos ver que se $E \subseteq F$

$$\mu(F \setminus E) = \mu(F) - \mu(E)$$

desde que $\mu(E) < \infty$.

Lema 1.34. Seja μ uma medida em \eth . Então

(a) se (E_n) é uma sequência crescente em \eth , então

$$\mu\left(\bigcup_{n=1}^{\infty}E_{n}\right)=\lim\mu(E_{n})$$

(b) se (E_n) é uma sequência decrescente em \mathfrak{F} e $\mu(F_1) < \infty$, então

$$\mu\left(\bigcap_{n=1}^{\infty}E_{n}\right)=\lim\mu(E_{n})$$

Demonstração.

Definição 1.35. Seja (X, \eth, μ) um espaço de medida. Dizemos que duas funções $f: X \to \mathbb{R}$ são iguais em quase toda parte em X e denotamos por f = g qtp em X se existe um conjunto $N \in \eth$ com $\mu(N) = 0$ tal que

$$f(x) = g(x)$$

para todo $x \notin N$.

Um outro conceito importante é o conceito de convergência em quase toda parte

Definição 1.36. Seja (X, \eth, μ) um espaço de medida. Dizemos que uma sequência de funções (f_n) converge para f em quase toda parte, se existe um conjunto $N \in \eth$ com $\mu(N) = 0$ tal que

$$\lim f_n(x) = f(x)$$

para todo $x \notin N$.

Por fim, para terminar essa seção, introduzimos o conceito de carga

Definição 1.37. Uma carga é uma função $\lambda: \eth \to \mathbb{R}$ que satisfaz

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(S) \ge 0$ para todo $S \in \eth$
- 3. se $(S_n) \subseteq \eth$ é uma sequência de subconjuntos disjuntos em \eth , então

$$\mu\left(\bigcup_{n=1}^{\infty} S_n\right) = \sum_{n=1}^{\infty} \mu(S_n)$$

isto é uma medida que não satisfaz a não-negatividade.

1.2.1 Construindo uma medida para \mathbb{R}

Nosso objetivo agora é construir uma medida para \mathbb{R} e mostrar o motivo de utlizar a algebra de Borel ao inves de $\mathcal{P}(\mathbb{R})$.

Definição 1.38. O comprimento de um intervalo aberto *I* é uma função ℓ dada por

$$\ell(I) = \begin{cases} b-a & \text{se } I = (a,b) \text{ com } a,b \in \mathbb{R} \text{ e } a < b \\ 0 & \text{se } I = \emptyset \\ \infty & \text{se } I = (-\infty,a) \text{ ou } I = (a,\infty) \text{ com } a \in \mathbb{R} \\ \infty & \text{se } I = (-\infty,\infty). \end{cases}$$

Seja $A \in \mathcal{P}(\mathbb{R})$. O tamanho de A deve ser no máximo a soma dos comprimentos de uma sequência de intervalos abertos tais que a união contem A. A definição abaixo formaliza essa ideia

1.2. MEDIDA 13

Definição 1.39. A medida exterior $m(\cdot)$ de um conjunto $A \in \mathcal{P}(\mathbb{R})$ é definida por

$$m(A) = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k); I_1, I_2, \dots, \text{ são intervalos abertos tais que } A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}.$$

Essa definição envolve uma soma infinita de uma sequência t_1, t_2, \ldots , de elementos de $[0, \infty]$, que é ∞ se pelo menos algum $t_k = \infty$, ou se a série definida pelas somas parciais de t_k é divergente. Dito isso

$$\sum_{n=1}^{\infty} t_k = \lim_{n \to \infty} \sum_{k=1}^{n} t_k.$$

Exemplo 1.40. Conjuntos finitos tem medida exterior nula. Seja $A = \{a_1, \ldots, a_n\} \in \mathcal{P}(\mathbb{R})$ um conjunto finito. Dado $\varepsilon > 0$ defina a sequência I_k de intervalos abertos por

$$I_k = \begin{cases} (a_k - \varepsilon, a_k + \varepsilon) & \text{se } k \leq n \\ \emptyset & \text{se } k > n \end{cases}$$

Então l_1, l_2, \ldots , é uma sequência de intervalos abertos tais que a união contem A. Dito isso

$$\sum_{n=1}^{\infty} \ell(I_k) = 2\varepsilon n.$$

Logo, $m(A) \leq 2\varepsilon n$. Como ε é arbitrário, temos que m(A) = 0

A proposição abaixo generaliza esse exemplo para conjuntos enumeráveis

Proposição 1.41. Conjuntos enumeráveis tem medida exterior nula.

Demonstração. Seja $A = \{a_1, a_2, \dots\} \in \mathcal{P}(\mathbb{R})$ um conjunto enumerável. Dado $\varepsilon > 0$, para todo $k \in \mathbb{N}$ defina a sequência

$$I_k = \left(a_k - \frac{\varepsilon}{2^k}, a_k + \frac{\varepsilon}{2^k}\right).$$

Dessa forma, l_1, l_2, \ldots , é uma sequência de intervalos abertos tais que a união contem A. Como

$$\sum_{k=1}^{\infty} \ell(I_k) = 2\varepsilon$$

temos que $m(A) < 2\varepsilon$. Pelo fato de ε ser arbitrário, temos que m(A) = 0.

Uma outra propiedade da medida exterior é sua invariância a translação

Proposição 1.42. Seja $t \in \mathbb{R}$ e $A \in \mathcal{P}(\mathbb{R})$. Então

$$m(A) = m(t + A).$$

onde

$$t + A = \{t + a : a \in A\}$$

Demonstração. Seja I_1, I_2, \ldots , uma sequência de intervalos abertos tais que a união contem A. Dito isso $t+I_1, t+I_2, \ldots$, é uma sequência de intervalos abertos tais que a união contem t+A. Logo

$$m(t+A) \leqslant \sum_{k=1}^{\infty} \ell(t+I_k) = \sum_{k=1}^{\infty} \ell(I_k).$$

Fazendo o ínfimo do ultimo termo, temos que $m(t + A) \leq m(A)$.

Para verificar a desigualdade na outra direção note que A = -t + (t + A), então utilizando a desigualdade que acabamos de provar temos

$$m(A) = m(t - (t + A)) \leqslant (t + A).$$

Portanto m(A) = m(t + A)

(texto motivador)

Proposição 1.43. Seja (A_n) uma sequência de subconjuntos de \mathbb{R} . Então

$$m\left(\bigcup_{n=1}^{\infty}A_n\right)\leqslant\sum_{n=1}^{\infty}m(A_n)$$

Demonstração. □

(medida do intervalo fechado) (explicar teorema de Heine-Borel)

Proposição 1.44. Seja $a, b \in \mathbb{R}$ com a < b. Então m([a, b]) = b - a

(o pulo do gato)

Proposição 1.45. Existem subconjuntos disjuntos de \mathbb{R} A e B tais que

$$m(A \cup B) \neq m(A) + m(B)$$

Demonstração. □

Teorema 1.46. Não é possível definir uma medida μ que generaliza ℓ em $\mathcal{P}(\mathbb{R})$.

Demonstração. □

(agora mostrar que em \mathcal{B} é uma medida)

1.3 Integral de Lebesgue

A integral de Lebesgue é uma extensão da integral de Riemann, projetada para lidar com uma classe mais ampla de funções e conjuntos. Ela permite calcular integrais considerando a medida dos valores que a função assume, tornando-se uma ferramenta fundamental na teoria da medida e análise funcional.

The "point" of Lebesgue integration is not that it's a way to do standard integrals of calculus by some new method. It's that the definition of the integral is more theoretically powerful: it leads to more elegant formalism and cleaner results (like the dominated convergence theorem) that are very useful in harmonic/functional analysis and probability theory.

Nesta seção, abordaremos os conceitos fundamentais da integral de Lebesgue, destacamos importância aos teoremas da convergência monotona e convergência dominada. Vale ressaltar que nessa seção estaremos trabalhando em um espaço de medida (X, \mathfrak{M}, μ) fixo.

Figura 1.2: Henri Lebesgue (1875 – 1941)

Definição 1.47. Uma função $\varphi: X \to \mathbb{R}$ é simples se assume apenas um número finito de valores em sua imagem $(\#\varphi(X) < \infty)$

Uma função φ simples e mensurável pode ser representada da seguinte forma

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j} \tag{1.1}$$

onde $a_j \in \mathbb{R}$ e χ_{E_j} é a função caracteristica do conjunto $E_j \in \eth$. Essa representação é única pelo fato de todos a_j serem distintos, os conjuntos E_j serem disjuntos para todo $j=1,\ldots,n$, além disso, $X=\bigcup_{j=1}^n E_j$.

Definição 1.48. Seja $\varphi \in \mathcal{M}^+(X, \eth)$ uma função simples com a representação (1.1). Definimos a integral de φ em relação a μ por

$$\int \varphi \, d\mu = \sum_{j=1}^n a_j \mu(E_j)$$

Observação: Adotamos a convenção $0 \cdot \infty = 0$. Dessa forma a integral da função identicamente nula é 0 indepdendente se o conjunto tem medida finita ou infinita.

Lema 1.49. Dadas funções simples $\varphi, \psi \in M^+(X, \eth)$ e $c \geqslant 0$ tem-se

(a)
$$\int c\varphi \, d\mu = c \int \varphi \, d\mu$$

(b)
$$\int (\varphi + \psi) d\mu = \int \varphi d\mu + \int \psi d\mu$$

(c) A aplicação $\lambda(E)=\int \varphi\chi_E\,d\mu$ para todo $E\in\mathfrak{d}$ é uma medida em \mathfrak{d} .

Demonstração.

(a) Mostremos que

$$\int c\varphi\,d\mu=c\int\varphi\,d\mu.$$

Com efeito, para c = 0,

$$\int c\varphi\,d\mu=0=c\int\varphi\,d\mu.$$

por outro lado, para c>0, podemos escrever $c\varphi$ da seguinte forma

$$c\varphi = \sum_{j=1}^{n} ca_{j} \chi_{E_{j}}$$

Dito isso.

$$\int c\varphi \, d\mu = \sum_{j=1}^n c a_j \mu(E_j) = c \sum_{j=1}^n a_j \mu(E_j) = c \int \varphi \, d\mu$$

(b) Agora, mostremos que

$$\int (\varphi + \psi) \, d\mu = \int \varphi \, d\mu + \int \psi \, d\mu$$

Para isso, podemos considerar as representações padrões das funções simples $\varphi, \psi \in \mathcal{M}^+(X, \eth)$

$$\varphi = \sum_{j=1}^n a_j \chi_{E_j}$$
 e $\psi = \sum_{k=1}^m b_k \chi_{F_k}$,

dessa forma, obtemos uma representação para $\varphi + \psi$ dada por

$$\varphi + \psi = \sum_{j=1}^{n} a_j \chi_{E_j} + \sum_{k=1}^{m} b_k \chi_{F_k}.$$

No entanto, essa representação não necessáriamente é a representação padrão, pois é possível que existam $j_0, j_1 \in \{1, \ldots, n\}$ e $k_0, k_1 \in \{1, \ldots, m\}$, tais que $a_{j_0} + b_{k_0} = a_{j_1} + b_{k_1}$.

Considere os elementos distintos do conjunto

$$H = \{a_j + b_k; j \in \{1, ..., n\}, k \in \{1, ..., m\}\}$$

e denominamos os elementos por c_h com $h=1,\ldots,\#H$, e G_h a união de todos os conjuntos $E_j\cap F_k$ tais que $a_j+b_k=c_h$

Afirmamos que os conjuntos G_h são dois-a-dois disjuntos. De fato

$$G_h \cap G_H = (E_i \cap F_k) \cap (E_J \cap F_K) = E_i \cap E_J \cap F_k \cap F_K = \emptyset \cap \emptyset = \emptyset,$$

sendo assim

$$\mu(G_h) = \widetilde{\sum} \mu(E_j \cap F_k)$$

onde o somatório $\widetilde{\Sigma}$ está relacionado aos indices $1\leqslant j\leqslant n$ e $1\leqslant k\leqslant m$ tais que $a_j+b_k=c_h$

Portanto definimos a representação padrão de $arphi+\psi$ por

$$\varphi + \psi = \sum_{h=1}^{\#H} c_h \chi_{G_h},$$

deste modo

$$\int (\varphi + \psi) d\mu = \sum_{h=1}^{\#H} c_h \mu(G_h)$$

$$= \sum_{h=1}^{\#H} \sum_{k=1}^{\#H} c_h \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k) + \sum_{j=1}^{n} \sum_{k=1}^{m} b_k \mu(E_j \cap F_k)$$

como X é a união das famílias $\{E_i\}$ e $\{F_k\}$, temos que

$$\mu(E_j) = \sum_{k=1}^m \mu(E_j \cap F_k)$$
 e $\mu(F_k) = \sum_{j=1}^n \mu(E_j \cap F_k)$.

Portanto

$$\int (\varphi + \psi) d\mu = \sum_{j=1}^n a_j \mu(E_j) + \sum_{k=1}^m b_k \mu(F_k) = \int \varphi d\mu + \int \psi d\mu.$$

(c) Por fim, queremos mostrar que

$$\lambda(E) = \int \varphi \chi_E \, d\mu$$

é uma medida em ð. Com efeito,

1.
$$\lambda(\emptyset) = \int \varphi \chi_{\emptyset} d\mu = \int 0 d\mu = 0$$

2. Note que como $\varphi \in \mathcal{M}^+(X, \eth)$ os elementos a_j na representação padrão são não negativos. Com efeito, sabemos que $0 \leqslant \varphi(x)$ para todo $x \in X$, daí

$$0 \leqslant \varphi(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x),$$

porem, como os conjuntos E_j são disjuntos, existe um único $1\leqslant j_0\leqslant n$ tal que $x\in E_{j_0}$. Dessa forma, para todo $j\neq j_0,\ \chi_{E_j}(x)=0$, então

$$0 \leqslant \varphi(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x) = a_{j_0}$$

Daí,

$$\lambda(E) = \int \varphi \chi_E \, d\mu = \sum_{j=1}^n a_j \mu(E \cap E_j) \geqslant 0$$

pois mostramos que $a_j > 0$ para todo $1 \leqslant j \leqslant n$ e μ é uma medida.

3. Considere $(F_k) \subseteq \eth$ uma sequência disjunta de conjuntos

$$\lambda \left(\bigcup_{k=1}^{\infty} F_k \right) = \int \varphi \chi_{\mathsf{U}F_k}$$

$$= \sum_{j=1}^{n} a_j \mu \left(\left(\bigcup_{k=1}^{\infty} F_k \right) \cap E_j \right)$$

$$= \sum_{j=1}^{n} a_j \mu \left(\bigcup_{k=1}^{\infty} (F_k \cap E_j) \right)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{\infty} \mu(F_k \cap E_j)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{\infty} a_j \mu(F_k \cap E_j)$$

$$= \sum_{k=1}^{\infty} \sum_{j=1}^{n} a_j \mu(F_k \cap E_j)$$

$$= \sum_{k=1}^{\infty} \int \varphi \chi_{F_k} d\mu$$

$$= \sum_{k=1}^{\infty} \lambda(F_k)$$

Exemplo 1.50. A função

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \notin \mathbb{Q} \end{cases}$$

é um exemplo clássico nos cursos de análise na reta de uma função que não é integrável. Porem essa afirmação é válida apenas quando estamos trabalhando com a integral de Riemann, pois utlizando a integral de Lebesgue, essa função tem integral com resultado bem definido Com efeito, considere o espaço de medida $(\mathbb{R}, \mathcal{B}, \mu^*)$ onde \mathcal{B} é a álgebra de Borel e μ^* é medida exterior (de Lebesgue). Dessa forma

$$\int \chi_{\mathbb{Q}} \, d\mu^* = \mu^*(\mathbb{Q}) = 0.$$

pois Q é enumerável.

Agora, podemos extender a definição da integral de Lebesgue para qualquer função mensurável não negatíva (não necessáriamente simples)

Definição 1.51. A integral de uma função $f \in \mathcal{M}^+(X, \eth)$ em relação a μ é definida por

$$\int f \, d\mu = \sup_{\varphi} \int \varphi \, d\mu$$

onde φ são funções simples em $\mathcal{M}^+(X,\eth)$ tais que $0 \leqslant \varphi(x) \leqslant f(x)$ para todo $x \in X$.

Além disso, definimos a integral da função f sobre um conjunto mensurável

Definição 1.52. A integral de $f \in \mathcal{M}^+(X, \eth)$ sobre um conjunto $E \in \eth$ é dada por

$$\int_{E} f \, d\mu = \int f \chi_{E} \, d\mu$$

. . .

Lema 1.53. Sejam $f, g \in \mathcal{M}^+(X, \eth)$ e $E, F \in \eth$. Então são válidas as afirmações abaixo

(a) se $f \leqslant g$ tem-se

$$\int f \, d\mu \leqslant \int g \, d\mu$$

(b) se $E \subseteq F$ tem-se

$$\int_{E} f \, d\mu \leqslant \int_{F} f \, d\mu$$

Demonstração.

(a) Seja φ uma função simples em M^+ , então

$$\int f \, d\mu = \sup_{\substack{0 \leqslant \varphi \leqslant f \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi \, d\mu \leqslant \sup_{\substack{0 \leqslant \varphi \leqslant g \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi \, d\mu = \int g \, d\mu$$

(b) Como $f\chi_E \leqslant f\chi_F$, segue do item anterior que

$$\int f\chi_E\,d\mu\leqslant\int f\chi_F\,d\mu,$$

dito isso

$$\int_E F \, d\mu \leqslant \int_F f \, d\mu.$$

Um dos resultados mais importantes da teoria da medida é o Teorema da Convergência Monótona, que será enunciado e demonstraado a seguir.

Teorema 1.54 (Teorema da Convergência Monótona). Seja (f_n) uma sequência monótona crescente de funções mensuráveis não-negativas convergindo para f, então,

$$\int f \, d\mu = \lim \int f_n \, d\mu.$$

Demonstração. Como $f_n \to f$ onde $(f_n) \subseteq \mathcal{M}^+(X, \eth)$, pelo corolário ?? temos que $f \in \mathcal{M}^+(X, \eth)$. Pela monotonicidade da sequência $f_n \leqslant f_{n+1} \leqslant f$, pelo item **(a)** do lema anterior

$$\int f_n d\mu \leqslant \int f_{n+1} d\mu \leqslant \int f d\mu$$

para todo $n \in \mathbb{N}$. Dito isso

$$\lim \int f_n \, d\mu \leqslant \int f \, d\mu.$$

Por outro lado, seja $0<\alpha<1$ e φ uma função simples mensurável tal que $0\leqslant \varphi\leqslant f$ e considere

$$A_n = \{x \in X ; f_n(x) \geqslant \alpha \varphi(x)\} = \{x \in X ; [f_n - \alpha \varphi](x) \geqslant 0\}$$

como f_n e φ são funções mensuráveis, temos que $A_n \in \eth$. Além disso, $A_n \subseteq A_{n+1}$ já que $f_n \leqslant f_{n+1}$ e $X = \bigcup_{n=1}^{\infty} A_n$ pois $\sup\{f_n\} = f$, $\alpha \in (0,1)$ e $0 \leqslant \varphi \leqslant f$. Daí, pelo lema anterior

$$\int_{A_n} \alpha \varphi \, d\mu \leqslant \int_{A_n} f_n \, d\mu \leqslant \int f_n \, d\mu. \tag{1.2}$$

Dessa forma, a sequência (A_n) é monótona crescente e tem união X, segue dos lemas ?? e ?? que

$$\int \varphi \, d\mu = \lim \int_{A_0} \varphi \, d\mu$$

Com efeito, sabemos que

$$\lambda(E) = \int \varphi \chi_E \, d\mu$$

é uma medida, assim

$$\int \varphi \, d\mu = \int \varphi \chi_{\mathsf{U} A_n} \, d\mu = \lambda \left(\bigcup_{n=1}^{\infty} A_n \right) = \lim \lambda(A_n) = \lim \int \varphi \chi_{A_n} \, d\mu = \lim \int_{A_n} \varphi \, d\mu$$

... fazendo $n \to \infty$ em 1.2

$$\alpha \int \varphi \, d\mu \leqslant \lim \int f_n \, d\mu.$$

Como a equação acima é válida para todo $0 < \alpha < 1$, obtemos

$$\int \varphi \, d\mu \leqslant \lim \int f_n \, d\mu,$$

ainda mais, segue do fato de φ ser uma função simples tal que $0 \leqslant \varphi \leqslant f$ tem-se que

$$\int f d\mu = \sup_{\substack{0 \leqslant \varphi \leqslant f \\ \varphi \text{ simples} \\ \varphi \in M^+}} \int \varphi d\mu \leqslant \lim \int f_n d\mu.$$

Assim

$$\int f \, d\mu \leqslant \lim \int f_n \, d\mu$$

Portanto por ?? e ??, chegamos a

$$\int f \, d\mu = \lim \int f_n \, d\mu$$

O Lema 1.49 sobre as operações elementares envolvendo a integral de funções simples mensuráveis e não-negativas, tambem é válido para funções mensuráveis não-negativas quaisquer como mostra o corolário abaixo

Corolário 1.55. Sejam $f, g \in \mathcal{M}^+(X, \eth)$ e c > 0, então são válidas as seguintes afirmações

(a)
$$\int cf \, d\mu = c \int f \, d\mu$$

(b)
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

Demonstração.

(a) Se
$$c = 0$$

$$\int cf \, d\mu = 0 = c \int f \, d\mu.$$

Se c>0, considere (φ_n) uma sequência monótona crescente de funções simples em $\mathcal{M}^+(X,\eth)$ convergindo para f (lema ??). Dito isso, $(c\varphi_n)$ é um sequência monótona crescente que converge para cf. Pelo Lema 1.49 e pelo Teorema da Convergência Monótona, temos que

$$\int cf \, d\mu = \lim \int c\varphi_n \, d\mu = c \lim \int \varphi_n \, d\mu = c \int f \, d\mu.$$

(b) De forma análoga considere (φ_n) e (ψ_n) sequências monótonas crescentes de funçoes simplies em $\mathcal{M}^+(X,\eth)$ que convergem para f e g respectivamente. Dessa forma $(\varphi_n + \psi_n)$ é uma sequência monótona crescente que converge para f + g. Portanto

$$\int (f+g) d\mu = \lim \int (\varphi_n + \psi_n) d\mu = \lim \int \varphi_n d\mu + \lim \int \psi_n d\mu = \int f d\mu + \int g d\mu.$$

Um outro resultado importante dessa seção é o lema de Fatou que será apresentado a seguir.

Lema 1.56 (Lema de Fatou). Se $(f_n) \subseteq M^+(X, \eth)$, então

$$\int \liminf f_n \, d\mu \leqslant \liminf \int f_n \, d\mu.$$

 $Demonstraç\~ao$. Seja $g_m=\inf\{f_m,f_{m+1},\dots\}$, dessa forma $g_m\leqslant f_n$ para todo $m\leqslant n$. Sendo assim,

$$\int g_m \, d\mu \leqslant \int f_n \, d\mu$$

para todo $m \leqslant n$. Desse modo

$$\int g_m \, d\mu \leqslant \liminf \int f_n \, d\mu.$$

Por outro lado, temos que (g_m) é crescente e converge para seu supremo, ou seja, liminf f_n . Portanto pelo Teorema da Convergência Monótona

$$\int \liminf f_n \, d\mu = \lim \int g_m \, d\mu \leqslant \liminf \int f_n \, d\mu.$$

Da mesma forma que definimos uma medida através de uma função simples em $\mathcal{M}^+(X,\eth)$ podemos generalizar esse resultado para funções que não são necessáriamente simples

Corolário 1.57. Seja $f \in \mathcal{M}^+(X,\eth)$. A aplicação $\lambda : \eth \to \overline{\mathbb{R}}$ definida por

$$\lambda(E) = \int f \chi_E \, d\mu$$

é uma medida.

Demonstração.

1.
$$\lambda(\emptyset) = \int_{\emptyset} f d\mu = \int f \chi_{\emptyset} d\mu = \int 0 d\mu = 0.$$

- 2. Como $f \in \mathcal{M}^+(X,\eth)$ temos que $\lambda(E) = \int_E f \ d\mu \geqslant \int_E 0 \ d\mu = 0$.
- 3. Sejam E_n uma sequência de conjuntos disjuntos em \eth , $E = \bigcup_{n=1}^{\infty} E_n$ e considere f_n definida por

$$f_n = \sum_{k=1}^n f \chi_{E_k}$$

Desse modo, pelo Corolário ?? e por indução temos que

$$\int f_n \, d\mu = \int \sum_{k=1}^n f \chi_{E_k} \, d\mu = \sum_{k=1}^n \int f \chi_{E_k} = \sum_{k=1}^n \lambda(E_k).$$

Além diso, podemos escrever

$$\lim f_n = \lim \sum_{k=1}^n f \chi_{E_k} = \sum_{k=1}^\infty f \chi_{E_k} = f \chi_E$$

desde que (E_n) é uma sequência de conjuntos disjuntos.

Por fim, como (f_n) é uma sequência crescente em M^+ que converge para $f\chi_E$, pelo Teorema da Convergência Monótona tem-se que

$$\lambda(E) = \int f \chi_E \, d\mu = \int \lim f_n \, d\mu = \lim \int f_n \, d\mu = \sum_{k=1}^{\infty} f \chi_{E_k}$$

Portanto, λ é uma medida.

Corolário 1.58. Seja $f \in \mathcal{M}^+(X,\eth)$. Então, f(x) = 0 em quase toda parte de X se, e somente se,

$$\int f \, d\mu = 0$$

Demonstração. Suponha que $\int f d\mu = 0$ e considere o conjunto

$$E_n = \left\{ x \in X \, ; f(x) > \frac{1}{n} \right\}$$

para todo $n \in \mathbb{N}$, de modo que $f \geqslant \frac{1}{n}\chi_{E_n}$. Note que

$$0 = \int f d\mu \geqslant \frac{1}{n} \int \chi_{E_n} d\mu = \frac{1}{n} \mu(E_n) \geqslant 0.$$

Isto nos diz que $\mu(E_n)=0$ para todo $n\in\mathbb{N}$. Além disso

$$E = \{x \in X ; f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$$

pois se $x\in\bigcup_{n=1}^\infty E_n$, então existe $n_0\in\mathbb{N}$ tal que $x\in E_{n_0}$, logo

$$f(x) > \frac{1}{n_0} > 0.$$

Assim, $x \in E$.

Por outro lado, se $x \in E$, temos que f(x) > 0. Utilizando a propiedade Arquimediana, existe $n_0 \in \mathbb{N}$ tal que

$$\frac{1}{f(x)} < n_0 \iff f(x) > \frac{1}{n_0},$$

isto é, $x \in E_{n_0} \subseteq \bigcup_{n=1}^{\infty} E_n$.

Portanto $E = \bigcup_{n=1}^{\infty} E_n$ como queriamos mostrar. Dito isso

$$\mu(E) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim \mu(E_n) = 0$$

desde que (E_n) é uma sequência crescente. Isto nos diz que f(x) = 0, para todo $x \in E^{\mathcal{C}}$ com $\mu(E) = 0$, ou seja f(x) = 0 em quase toda parte em X.

Reciprocamente, suponha que f(x)=0 em quase toda parte em X. Se $E=\{x\in X\,;\, f(x)>0\}$, então $\mu(E)=0$. Sendo assim, considerando $f_n=n\chi_E$ para todo $n\in\mathbb{N}$, temo que $f\leqslant \liminf f_n$ e pelo Lema de Fatou

$$0 \leqslant \int f \, d\mu \leqslant \liminf \int f_n \, d\mu = \liminf n\mu(E) = 0$$

Portanto

$$\int f \, d\mu = 0.$$

Corolário 1.59. Seja $f \in \mathcal{M}^+(X, \eth)$, então a aplicação $\lambda : \eth \to \mathbb{R}$ definida por

$$\lambda(E) = \int_E f \, d\mu.$$

Então, a medida λ é absolutamente contínua em relação a μ , isto é, se $\mu(E)=0$, então $\lambda(E)=0$

Demonstração. Se $\mu(E) = 0$, então

$$f\chi_E(x) = \begin{cases} f(x) & x \in E \\ 0 & x \notin E \end{cases}$$

isto é, $f\chi_E=0$ em quase toda parte. Portanto

$$\lambda(E) = \int_{E} f \, d\mu = \int f \chi_{E} \, d\mu = 0.$$

O corolário abaixo é uma versão mais geral do Teorema da Convergência Monótona.

Corolário 1.60. Se (f_n) é uma sequência monótona crescente de funções em $\mathcal{M}^+(X,\eth)$ que converge em quae toda parte de X para a função $f \in \mathcal{M}^+(X,\eth)$, então

$$\int f \, d\mu = \lim \int f_n \, d\mu$$

Demonstração. Seja N um conjunto de medida nula. Suponha que (f_n) converge para f em todo o pontos de $M=N^{\mathcal{C}}$. Dessa forma, a sequência $(f_n\chi_M)$ converge para $f\chi_M$, pelo Teorema da Convergência Monótona, temos que

$$\int f\chi_M d\mu = \lim \int f_n \chi_M d\mu.$$

Além disso, podemos escrever f e f_n da seguinte forma

$$f = f\chi_M + f\chi_N$$
 e $f_n = f_n\chi_M + f_n\chi_N$,

pois $M = N^{\mathcal{C}}$. Como $\mu(N) = 0$, as funções $f\chi_N$ e $f_n\chi_N$ são nulas em quase toda parte. Dito isso, pelo Corolário 1.58, seque que

$$\lim \int f_n d\mu =$$

O resultado abaixo ...

Corolário 1.61. Seja (g_n) uma sequência em $\mathcal{M}^+(X,\eth)$. Então

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \int g_n d\mu.$$

Demonstração. Seja $f_n=g_1+\cdots+g_n$ para todo $n\in\mathbb{N}$. Como $g_n\geqslant 0$, temos que (f_n) é uma sequência crecente que converge para $f=\sum_{n=1}^\infty g_n$. Pelo Teorema da Convergência Monótona, seque que

$$\lim_{k\to\infty}\int\left(\sum_{n=1}^kg_n\right)\,d\mu=\lim_{k\to\infty}\int f_k\,d\mu=\int f\,d\mu=\int\left(\sum_{n=1}^\infty g_n\right)\,d\mu.$$

Por outro lado, como $g_n \in \mathcal{M}^+(X, \eth)$, para todo $n \in \mathbb{N}$, utilizando indução e o Corolário ??

$$\lim_{k \to \infty} \int \left(\sum_{n=1}^{k} g_n \right) d\mu = \lim_{k \to \infty} \sum_{n=1}^{k} \int g_n d\mu = \sum_{n=1}^{\infty} \int g_n d\mu$$

Portanto

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \int g_n d\mu.$$

Finalmente, podemos definir a integral de uma função mensurável qualquer

Definição 1.62. O conjunto $\mathcal{L}(X, \eth, \mu)$ das funções integráveis consite em todas as funções $f: X \to \mathbb{R}$ mensuráveis, tai que as integrais

$$\int f^+ d\mu$$
 e $\int f^- d\mu$

são finitas. Neste caso, definimos a integral de f em relação a μ por

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu,$$

e se E é um conjunto mensurável

$$\int_{F} f d\mu = \int_{F} f^{+} d\mu - \int_{F} f^{-} d\mu.$$

Qualquer representação de f como subtrações de funções integráveis não-negativas resulta no mesmo valor da integral da definição acima. Com efeito seja f uma função integravel e escreva f como $f = f_1 - f_2$, onde f_1 e f_2 são funções integráveis não negativas, então

$$\int f d\mu = \int f_1 d\mu - \int f_2 d\mu.$$

Note que

$$f^+ - f^- = f = f_1 - f_2 \iff f^+ + f_2 = f_1 + f^-.$$

Dessa forma, pelo Corolário ?? temos que

$$\int f^{+} d\mu + \int f_{2} d\mu = \int f_{1} d\mu + \int f^{-} d\mu.$$

Como f_1 , f_2 , f^+ , $f^- \in \mathcal{L}(X, \eth, \mu)$, segue que

$$\int f^+ d\mu - \int f^- d\mu = \int f_1 d\mu - \int f_2 d\mu.$$

Isto é

$$\int f d\mu = \int f_1 d\mu + \int f_2 d\mu.$$

Da mesma forma que definimos um medida a partir da integral de uma função não-negativa, podemos definir uma carga partindo da integral de uma função integrável qualquer como exibe o lema abaixo

Lema 1.63. Seja $f \in \mathcal{L}(X, \eth, \mu)$. A aplicação $\lambda : \eth \to \mathbb{R}$ definida por

$$\lambda(E) = \int_{E} f \, d\mu$$

é uma carga, denominada integral indefinida de f (em relação a μ).

Demonstração. Como f^+ , $f^- \in M^+(X, \eth, \mu)$, pelo Corolário ?? temos que as funções λ^+ , λ^- : $\eth \to \mathbb{R}$ dadas por

$$\lambda^+(E) = \int_E f^+ d\mu$$
 e $\lambda^-(E) = \int_E f^- d\mu$.

são medidas em \eth e são finitas pelo fato de f ser uma função integrável. Como $\lambda = \lambda^+ - \lambda^-$ temos que λ é uma carga.

Como a aplicação λ definida acima é uma carga, vemos que se (E_n) é uma sequência de conjuntos disjuntos tal que $\bigcup_{n=1}^{\infty} E_n = E$, então

$$\int_{E} f \, d\mu = \lambda(E) = \lambda\left(\bigcup_{n=1}^{\infty} E_{n}\right) = \sum_{n=1}^{\infty} \lambda(E_{n}) = \sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mu,$$

ou seja

$$\int_{E} f \, d\mu = \sum_{n=1}^{\infty} \int_{E_{n}} f \, d\mu$$

Agora, estamos prontos para estudar algumas propriedades elementares das integrais de funções mensuráveis

Teorema 1.64. Seja $f: X \to \mathbb{R}$ uma função mensurável. Então $f \in \mathcal{L}(X, \eth, \mu)$ se, e somente se, $|f| \in \mathcal{L}(X, \eth, \mu)$. Além disso

$$\left| \int f \, d\mu \right| \leqslant \int |f| \, d\mu. \tag{1.3}$$

Demonstração. Seja f uma função integrável, mostremos que |f| também o é. Primeiramente note que

$$|f|^+ = |f| = f^+ + f^-$$
 e $|f|^- = 0$,

Dito isso

$$\int |f|^+ d\mu = \int f^+ d\mu + \int f^- d\mu$$

é finita pois f é integrável, e

$$\int |f|^- d\mu = \int 0 d\mu = 0$$

que é finita. Portanto |f| é integrável.

Reciprocamente, suponha que |f| é integrável, dessa forma

$$f^+ \le f^+ + f^- = |f|$$

 $f^- \le f^+ + f^- = |f|$

sendo assim

$$\int f^{+} d\mu \leqslant \int |f| d\mu$$
$$\int f^{-} d\mu \leqslant \int |f| d\mu$$

ambas finitas pois |f| é integrável. Portanto f é integrável.

Para mostrar a desigualdade (1.3) basta utilizar a definição de função integravel e a desigualdade triangular.

$$\left| \int f \, d\mu \right| = \left| \int f^+ \, d\mu - \int f^- \, d\mu \right| \leqslant \left| \int f^+ \, d\mu \right| + \left| \int f^- \, d\mu \right| = \int f^+ \, d\mu + \int f^- \, d\mu = \int |f| \, d\mu$$

Corolário 1.65. Se $f \in \mathcal{M}(X, \eth)$, $g \in \mathcal{L}(X, \eth, \mu)$ e $|f| \leq |g|$, então $f \in \mathcal{L}(X, \eth, \mu)$ e

$$\int |f| \, d\mu \leqslant \int |g| \, d\mu$$

Demonstração. Se g é integrável então pelo Teorema anterior |g| também o é. Além disso, como $|f| \leq |g|$

$$\int |f| \, d\mu \leqslant \int |g| \, d\mu,$$

como |g| é integrável a sua integral é finita, implicando na integral de |f| também ser finita, ou seja, |f| é integrável e novamente pelo Teorema anterior, f é integrável.

Teorema 1.66. Sejam $f, g \in \mathcal{L}(X, \eth, \mu)$ e $c \in \mathbb{R}$, então $cf, f + g \in \mathcal{L}(X, \eth, \mu)$ e

(a)
$$\int cf \, d\mu = c \int f \, d\mu$$

(b)
$$\int (f+g) d\mu = \int f d\mu + \int g d\mu$$

Demonstração.

(a) Se $c \ge 0$. Note que $(cf)^+ = cf^+$ e $(cf)^- = cf^-$. Dito isso

$$\int cf \, d\mu = \int cf^+ - cf^- \, d\mu$$

como cf^+ e cf^- são funções mensuráveis não negativas, podemos utilizar o Corolário 1.55

$$\int cf \, d\mu = c \int f^+ - f^- \, d\mu = c \int f \, d\mu$$

Se c < 0 a demonstração é análoga, basta perceber que $(cf)^+ = -cf^-$ e $(cf)^- = -cf^+$ ambas funções não negativas pois -c > 0.

(b) Sejam $f, g \in \mathcal{L}(X, \eth, \mu)$, então pelo Teorema 1.64 $|f|, |g| \in \mathcal{L}(X, \eth, \mu)$, como $|f + g| \leq |f| + |g|$ temos que f + g é integrável. Note que

$$f + q = f^{+} - f^{-} + q^{+} - q^{-} = (f^{+} + q^{+}) - (f^{-} + q^{-}),$$

onde $f^+ + g^+$ e $f^- + g^-$ são funções integráveis não negativas. Dessa forma

$$\int (f+g) \, d\mu = \int (f^+ + g^+) \, d\mu - \int (f^- + g^-) \, d\mu$$

Utilizando o Corolário 1.57 e reorganizando os termos

$$\int (f+g) \, d\mu = \int f^+ \, d\mu + \int g^+ \, d\mu - \int f^- \, d\mu - \int g^- \, d\mu$$
$$= \int f^+ \, d\mu - \int f^- \, d\mu + \int g^+ \, d\mu - \int g^- \, d\mu$$
$$= \int f \, d\mu + \int g \, d\mu.$$

O teorema a seguir é um dos mais importantes da teoria da medida, envolvendo convergência de sequência de funções e integrais.

Teorema 1.67 (Teorema da Convergência Dominada). Seja (f_n) uma sequência de funções integráveis que converge em quase toda parte para a função mensurável f. Se existe uma função integrável g tal que $|f_n| \leqslant g$ em quase toda parte, para todo $n \in \mathbb{N}$, então f é integrável e

 $\int f \, d\mu = \lim \int f_n \, d\mu.$

Demonstração. Redefinindo as funções f_n e f no conjunto de medida nula, podemos afirmar que a convergência acontece em todo X. Note que

$$\lim |f_n| \leqslant g \implies |f| \leqslant |g|,$$

como por hipótese f é mensurável e g é integrável, segue pelo Corolário 1.65 que f é integrável. Além disso, como $-g\leqslant f_n\leqslant g$ temos que $g+f_n\geqslant 0$ para todo $n\in\mathbb{N}$. Utilizando o Lema de Fatou e o Teorema 1.64 temos que

$$\int g \, d\mu + \int f \, d\mu = \int (g+f) \, d\mu$$

$$= \int (g+\lim f_n) \, d\mu$$

$$= \int \lim (g+f_n) \, d\mu$$

$$= \int \lim \inf (g+f_n) \, d\mu$$

$$\leqslant \lim \inf \int (g+f_n) \, d\mu$$

$$= \lim \inf \left(\int g \, d\mu + \int f_n \, d\mu \right)$$

$$= \int g \, d\mu + \lim \inf \int f_n \, d\mu,$$

que implica em

$$\int f \, d\mu \leqslant \liminf \int f_n \, d\mu. \tag{1.4}$$

Por outro lado, $g - f_n \geqslant 0$, de forma análoga mostramos que

$$\limsup \int f_n \, d\mu \leqslant \int f \, d\mu. \tag{1.5}$$

Pelas desigualdades (1.4) e (1.5)

$$\limsup \int f_n \, d\mu \leqslant \int f \, d\mu \leqslant \liminf \int f_n \, d\mu,$$

isto é¹

$$\int f d\mu = \lim \int f_n d\mu.$$

Finalizando a demonstração do teorema.

No restante da seção focaremos nossa atenção em funções $f: X \times [a,b] \to \mathbb{R}$ onde a aplicação $x \mapsto f(x,t)$ é mensurável para todo $t \in [a,b]$.

 $^{^{1}}$ lim sup $x_{n} \leq x \leq \liminf x_{n}$ para todo $n \in \mathbb{N} \implies \lim x_{n} = x$

Corolário 1.68. Suponha que para algum $t_0 \in [a, b]$, tenhamos

$$f(x, t_0) = \lim_{t \to t_0} f(x, t),$$

para cada $x \in X$ e que existe uma função integrável $g: X \to \mathbb{R}$ tal que $|f(x,t)| \leq g(x)$, para todo $x \in X$ e $t \in [a,b]$. Então

$$\int f(x, t_0) d\mu(x) = \lim_{t \to t_0} \int f(x, t) d\mu(x)$$

Demonstração. Seja t_n uma sequência em [a,b] que converge para t_0 e considere a sequência (f_n) dada por $f_n(x) = f(x,t_n)$. Então como $|f_n(x)| = |f(x,t_n)| \le g(x)$ para todo $n \in \mathbb{N}$ e $x \in X$ com g integrável, segue pelo Teorema da Convergência Dominada que

$$\int f(x, t_0) d\mu(x) = \int \lim_{t \to t_0} f(x, t) d\mu(x)$$

$$= \int \lim f_n(x) d\mu(x)$$

$$= \lim \int f_n(x) d\mu(x)$$

$$= \lim \int f(x, t_n) d\mu(x)$$

Consequentemente,

$$\int f(x, t_0) d\mu(x) = \lim_{t \to t_0} \int f(x, t) d\mu(x)$$

Uma consequência imediata do corolário será apresentada abaixo

Corolário 1.69. Se a aplicação $t\mapsto f(x,t)$ for contínua em [a,b] para cada $x\in X$, e se existir uma função integrável $g:X\to\mathbb{R}$ tal que $|f(x,t)|\leqslant g(x)$ para todo $x\in X$ e $t\in [a,b]$. Então a função F dada por

$$F(t) = \int f(x, t) \, d\mu(x)$$

é contínua.

Demonstração. Mostremos que $\lim_{t\to t_0} F(t) = F(t_0)$. Com efeito

$$\lim_{t \to t_0} F(t) = \lim_{t \to t_0} \int f(x, t) \, d\mu(x) = \int f(x, t_0) \, d\mu(x) = F(t_0)$$

Corolário 1.70. Suponha que ara algum $t_0 \in [a, b]$, a função $x \to f(x, t_0)$ seja integrável em X, que $\partial_t f$ existe em $X \times [a, b]$ e que existe uma função integrável g em X tal que

$$\left| \frac{\partial f}{\partial t}(x,t) \right| < g(x)$$

para todo $x \in X$ e $t \in [a, b]$. Então a função F definida por

$$F(t) = \int f(x, t) \, d\mu(x)$$

é diferenciável em [a, b] e

$$\frac{\mathrm{d}F}{\mathrm{d}t}(t) = \int \frac{\partial f}{\partial t}(x, t) \, d\mu(x)$$

Demonstração. Seja (t_n) uma sequência em [a,b] que converge para t, com $t \neq t_n$ para todo $n \in \mathbb{N}$. Então, podemos escrever

$$\frac{\partial f}{\partial t}(x, t) = \lim \frac{f(x, t_n) = f(x, t)}{t_n - t}$$

para todo $x \in X$. Desde modo a função $x \mapsto \partial f/\partial t (x, t)$ é mensurável pois é o limite de funções mensuráveis.

Agora seja $x \in X$. Pelo Teorema do Valor Médio, existe s_0 , entre t_0 e t tal que

$$f(x,t) - f(x,t_0) = (t-t_0)\frac{\partial f}{\partial t}(x,s_0)$$

Dessa forma, temos que

$$|f(x,t)| = \left|f(x,t_0) + (t-t_0)\frac{\partial f}{\partial t}(x,s_0)\right| \leqslant |f(x,t_0)| + |t-t_0|\left|\frac{\partial f}{\partial t}(x,s_0)\right|$$

Como f é mensurável e a aplicação $x\mapsto |f(x,t_0)|+|t-t_0|\,|\partial f/\partial t\,(x,s_0)|$ é integrável, pois é a soma de funções integráveis. Pelo Corolário 1.65 temos que f é integrável. Por outro lado

$$\frac{F(t_n) - F(t)}{t_n - t} = \int \frac{f(x, t_n) - f(x, t)}{t_n - t} d\mu(x)$$

Além disso, por hipótese, podemos deduzir que

$$\lim \left| \frac{f(x, t_n) - f(x, t)}{t_n - t} \right| = \left| \lim \frac{f(x, t_n) - f(x, t)}{t_n - t} \right| = \left| \frac{\partial f}{\partial t}(x, t) \right| < g(x)$$

para todo $x \in X$. Consequentemente

$$\left|\frac{f(x,t_n)-f(x,t)}{t_n-t}\right| < g(x)$$

para valores de n suficientemente grande. Pelo Teorema da Convergência Dominada, temos

$$\frac{\mathrm{d}F}{\mathrm{d}t}(t) = \lim \frac{F(t_n) - F(t)}{t_n - t} = \lim \int \frac{f(x, t_n) - f(x, t)}{t_n - t} \, d\mu(x) = \int \frac{\partial f}{\partial t}(x, t) \, d\mu(x).$$

Assim, concluindo a prova do corolário.

1.4. $ESPAÇOS \mathcal{L}^p$ 31

1.4 Espaços \mathcal{L}^p

Nesta seção, estudaremos os famosos espaços de Lebesgue \mathcal{L}^p , que desempenham um papel fundamental na análise funcional e em várias áreas da matemática aplicada. Esses espaços são construídos para acomodar funções cujas potências p-ésimas são integráveis, permitindo uma abordagem flexível e poderosa para o estudo de propriedades de funções em contextos como as equações diferenciais.

Proposição 1.71. Seja (X,\eth,μ) um espaço de medida. A aplicação $N_{\mu}:\mathcal{L}(X,\eth,\mu)\to\mathbb{R}$ dada por

$$N_{\mu}(f) = \int |f| \, d\mu$$

é uma semi-norma. Além disso $N_{\mu}(f)=0 \iff f\equiv 0$ em quase toda parte em X.

Demonstração. Note que

1.
$$N_{\mu}(f) = \int |f| d\mu \geqslant \int 0 d\mu = 0.$$

2.
$$N_{\mu}(\lambda f) = \int |\lambda f| d\mu = \int |\lambda| |f| d\mu = |\lambda| \int |f| d\mu = |\lambda| N_{\mu}(f).$$

3.
$$N_{\mu}(f+g) = \int |f+g| d\mu \leqslant \int |f| d\mu + \int |g| d\mu = N_{\mu}(f) + N_{\mu}(g).$$

Portanto N_{μ} é uma semi-norma.

Além disso é fácil ver que

$$N_{\mu}(f) = 0 \iff \int |f| \, d\mu = 0 \iff |f| \equiv 0 \text{ qtp em } X \iff f \equiv 0 \text{ qtp em } X.$$

Observação: Note que $\mathcal{L}(X,\eth,\mu)$ é um espaço vetorial com a operações usuais

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

para todo $f, g \in \mathcal{L}(X, \eth, \mu)$ e $\lambda \in \mathbb{R}$. Isto se deve ao fato que $\mathcal{L}(X, \eth, \mu)$ é um subespaço vetorial do espaço de funções $\mathcal{F}(X, \mathbb{R}) = \{f : X \to \mathbb{R}\}.$

Estamos interessados em transformar $\mathcal L$ em um espaço vetorial normado. Para isso, precisamos da seguinte definição

Definição 1.72. Sejam $f, g \in \mathcal{L}(X, \eth, \mu)$. Dizemos que f e g são μ -equivalentes $(f \sim_{\mu} g)$ se $f \equiv g$ em quase toda parte em X.

O espaço

$$\mathcal{L}^1 = \mathcal{L}^1(X, \eth, \mu) = \{ [f]; f \in \mathcal{L} \}$$

onde

$$[f] = \{ g \in \mathcal{L}(X, \eth, \mu) ; g \sim_{\mu} f \}$$

é dito Espaço de Lebesgue \mathcal{L}^1 ou espaço das funções somáveis. Esse espaço, munido das operações

$$[f] + [g] = [f + g]$$
$$[\lambda f] = \lambda [f]$$

para todo $f, g \in \mathcal{L}(X, \eth, \mu)$ e $\lambda \in \mathbb{R}$ é um espaço vetorial.

Proposição 1.73. Seja (X, \eth, μ) um espaço de medida. A aplicação $\|\cdot\|_1 : \mathcal{L}^1 \to \mathbb{R}$ dada por

$$||[f]||_1 = \int |f| \, d\mu$$

para todo $[f] \in \mathcal{L}^1$ é uma norma

Demonstração. Note que apenas precisamos mostrar que $||[f]||_1 = 0 \iff [f] = [0]$, pois as outras propriedades são análogas à demonstração da Proposição 1.71. Com efeito

$$\|[f]\|_1 = 0 \iff \int |f| \, d\mu = 0 \iff |f| \equiv 0 \text{ qtp em } X \iff f \equiv 0 \text{ qtp em } X \iff [f] = [0].$$

Portanto $\|\cdot\|_1$ é uma norma e $(\mathcal{L}^1, \|\cdot\|_1)$ é um espaço vetorial normado.

No restante do texto, adotaremos a notação [f] = f, ignorando as classes de equivalência e trabalhando apenas com o seus representantes.

Definição 1.74. Seja $1 \le p < \infty$ um número real. O espaço

$$\mathcal{L}^p = \mathcal{L}^p(X, \eth, \mu) = \left\{ f: X \to \mathbb{R} \, ; f \text{ \'e mensur\'avel}, \int |f|^p \, d\mu < \infty
ight\}$$

é dito Espaço de Lebesque \mathcal{L}^p .

Nosso intuito agora é mostrar que \mathcal{L}^p é um espaço vetorial normado, onde

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{\frac{1}{p}}$$

é sua norma. Mas antes, precisamos demonstrar algumas desigualdades importantes desses espaços que serão necessárias para mostrar que $\|\cdot\|_p$ é uma norma em \mathcal{L}^p .

Teorema 1.75 (Desigualdade de Young). Sejm $A, B \geqslant 0, 1 \leqslant p < \infty$ e $q \in \mathbb{R}$ tal que p e q são expoentes conjuntados^a. Então

$$AB \leqslant \frac{A^p}{p} + \frac{B^q}{q}$$

onde a igualdade é válida se, e somente se, $A^p = B^q$.

Demonstração. Seja $\alpha \in (0,1)$ e defina $\varphi : [0,\infty) \to \mathbb{R}$ por

$$\varphi(t) = \alpha t - t^{\alpha}$$
.

Note que $\varphi'(t) = \alpha - \alpha t^{\alpha - 1} = \alpha (1 - t^{\alpha - 1})$. Dessa forma

 $^{^{}a}p$ e q são ditos expoentes conjugados se $\frac{1}{p} + \frac{1}{q} = 1$

1.4. $ESPAÇOS \mathcal{L}^p$ 33

- $-t \in (0,1)$ então $\varphi'(t) < 0$ pois $t^{\alpha-1} > 1$ e então $1-t^{\alpha-1} < 0$
- $-t \in (1,\infty)$ então $\varphi'(t) > 0$ pois $t^{\alpha-1} < 1$ e então $1-t^{\alpha-1} > 0$

Isto nos diz que φ é decrescente em (0,1) e crescente em $(1,\infty)$. Ou seja, como φ é contínua, temos que 1 é um ponto de mínimo. Dito isso $\varphi(t) \geqslant \varphi(1)$ para todo $t \geqslant 0$ e $\varphi(t) = \varphi(1)$ se, e somente se, t=1. Assim

$$\varphi(t) \geqslant \varphi(t) \implies \alpha t - t^{\alpha} \geqslant \alpha - 1 \implies t^{\alpha} \leqslant \alpha t + (1 - \alpha).$$

Sejam a, b > 0, então para $t = \frac{a}{b}$ temos

$$\left(\frac{a}{b}\right)^{\alpha} \leqslant \alpha \frac{a}{b} + 1 - \alpha.$$

Daí

$$a^{\alpha}b^{-\alpha} \leqslant \alpha \frac{a}{b} + 1 - \alpha.$$

Multiplicando a desigualdade acima por b, encontramos

$$a^{\alpha}b^{1-\alpha} \leqslant \alpha a + (1-\alpha)b$$
.

Além disso, note que a desigualdade é uma igualdade se, e somente se t=1, isto é a=b. Agora considere que $\alpha=\frac{1}{p}\in(0,1)$, ou seja, $1< p<\infty$. Dessa forma obtemos

$$a^{\frac{1}{p}}b^{1-\frac{1}{p}} \leqslant \frac{a}{p} + \left(1 - \frac{1}{p}\right)b,$$

e por hipótese $\frac{1}{p} + \frac{1}{q} = 1$. Logo

$$a^{\frac{1}{p}}b^{\frac{1}{q}}\leqslant \frac{a}{p}+\frac{b}{q}.$$

Por fim, fazendo $a = A^p$ e $b = B^q$, temos o resultado desejado

$$AB \leqslant \frac{A^p}{p} + \frac{B^q}{q}$$
,

que é uma igualdade quando $A^p = B^q$.

Teorema 1.76 (Desigualdade de Hölder). Sejam $f \in \mathcal{L}^p$ e $g \in \mathcal{L}^q$ onde $1 \leqslant p < \infty$ e $q \in \mathbb{R}$ tal que p e q são expoentes conjugados. Então $fg \in \mathcal{L}^1$ e

$$||fg||_1 \leq ||f||_p + ||g||_q$$

Demonstração. Se $||f||_p = 0$ ou $||g||_q = 0$ então $f \equiv 0$ qtp em X ou $g \equiv 0$ qtp em X. Dessa forma

$$||fg||_1 = \int |fg| \, d\mu = 0.$$

Com isso, a desigualdade de Holder é trivial.

Agora considere que $\|f\|_p \neq 0$ e $\|g\|_q \neq 0$. Sendo assim, utilizando a Desigualdade de Young com

$$A = \frac{|f|}{\|f\|_p} \ \ \mathbf{e} \ \ B = \frac{|g|}{\|g\|_q}$$

obtemos

$$\frac{|fg|}{\|f\|_p \|g\|_q} \leqslant \frac{|f|^p}{p\|f\|_p^p} + \frac{|g|^p}{q\|g\|_q^q}.$$
 (1.6)

Como $f \in \mathcal{L}^p$ e $g \in \mathcal{L}^q$, então $|f|^p$ e $|g|^q$ são integráveis. Logo

$$\left(\frac{1}{p\|f\|_p^p}\right)|f|^p + \left(\frac{1}{q\|g\|_q^q}\right)|g|^q$$

é integrável. Além disso, pelo Corolário 1.65

$$\left(\frac{1}{\|f\|_p \|g\|_q}\right) |fg|$$

é integrável e portanto |fg| é integrável, isto é, $fg \in \mathcal{L}^1$.

Por fim, integrando (1.6) com respeito a μ , chegamos a

$$\int \frac{|fg|}{\|f\|_p \|g\|_q} d\mu \leqslant \int \left(\frac{|f|^p}{p\|f\|_p^p} + \frac{|g|^p}{q\|g\|_q^q}\right) d\mu$$

isto é

$$\frac{1}{\|f\|_p \|g\|_q} \int |fg| \, d\mu \leqslant \frac{1}{p\|f\|_p^p} \int |f|^p \, d\mu + \frac{1}{q\|g\|_q^q} \int |g|^p \, d\mu.$$

Pela definição da norma em \mathcal{L}^p segue que

$$\frac{1}{\|f\|_p \|g\|_q} \|fg\|_1 \leqslant \frac{1}{p\|f\|_p^p} \|f\|_p^p + \frac{1}{q\|g\|_q^q} \|q\|_p^p = \frac{1}{p} + \frac{1}{q} = 1.$$

Portanto

$$||fg||_1 \leq ||f||_p ||g||_q$$
.

Como queriamos demonstrar.

O corolário abaixo é um caso particular da Desigualdade de Hölder quando p=q, o que acontece apenas quando p=q=2.

Corolário 1.77 (Desigualdade de Cauchy-Schwarz). Se $f, g \in \mathcal{L}^2$, então $fg \in \mathcal{L}^1$ e

$$\left| \int fg \, d\mu \right| \leqslant \int |fg| \, d\mu \leqslant \int |f|^2 \, d\mu \int |g|^2 \, d\mu$$

Demonstração. A primeira desigualdade é o Teorema 1.64 e a segunda é uma aplicação direta da Desigualdade de Hölder. □

Teorema 1.78 (Desigualdade de Minkowski). Se $f,g\in\mathcal{L}^p$ com $1\leqslant p<\infty$, então $f+g\in\mathcal{L}^p$ e

$$||f + g||_p \le ||f||_p + ||g||_p$$

Demonstração. Na Proposição 1.71 já mostramos que a Desigualdade de Minkowski é válida para p=1. Dito isso, seja $1 . Como <math>f,g \in \mathcal{L}^p$, então f e g são mensuráveis. Dessa forma, f+g também é mensurável. Mostremos agora que $f+g \in \mathcal{L}^p$. Com efeito,

$$|f + g|^{p} \leq (|f| + |g|)^{p}$$

$$\leq (\max\{|f|, |g|\} + \max\{|f|, |g|\})^{p}$$

$$= 2^{p} \max\{|f|, |g|\}^{p}$$

$$\leq 2^{p} (|f|^{p} + |g|^{p}).$$

Daí

$$\int |f + g|^p \, d\mu \leqslant 2^p \int (|f|^p + |g|^p) \, d\mu \leqslant 2^p \left(\int |f|^p \, d\mu + \int |g|^p \, d\mu \right)$$

1.4. $ESPAÇOS \mathcal{L}^p$ 35

que é uma integral finita. Portanto $f + g \in \mathcal{L}^p$.

Também é fácil ver que

$$|f+g|^p = |f+g||f+g|^{p-1} \le |f||f+g|^{p-1} + |g||f+g|^{p-1}.$$

Agora, seja $q \in \mathbb{R}$ tal que $\frac{1}{p} + \frac{1}{q} = 1$. Daí $|f + g|^{p-1} \in \mathcal{L}^q$. De fato,

$$\||f+g|^{p-1}\|_q^q = \int |f+g|^{q(p-1)} d\mu = \int |f+g|^p < \infty$$
 (1.7)

pois $f+g\in\mathcal{L}^p$. Portanto pela Desigualdade de Hölder e por (1.7) temos que

$$\int |f||f+g|^{p-1} d\mu = ||f|+|f+g|^{p-1}||_1 \leqslant ||f|||_p ||f+g|^{p-1}||_q = ||f||_p ||f+g||_p^{\frac{p}{q}}.$$
 (1.8)

Análogamente

$$\int |g||f+g|^{p-1} d\mu \leqslant ||g||_p ||f+g||_p^{\frac{p}{q}}. \tag{1.9}$$

Dito isso, chegamos a

$$\begin{split} \|f+g\|_{p}^{p} &= \int |f+g|^{p} d\mu \\ &\leqslant \int |f||f+g|^{p-1} + |g||f+g|^{p-1} d\mu \\ &= \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu \\ &\leqslant \|f\|_{p} \|f+g\|_{p}^{\frac{p}{q}} + \|g\|_{p} \|f+g\|_{p}^{\frac{p}{q}} \\ &= (\|f\|_{p} + \|g\|_{p}) \|f+g\|_{p}^{\frac{p}{q}}. \end{split}$$

Se $||f + g||_p = 0$, então

$$||f + g||_p = 0 \le ||f||_p + ||g||_p$$

Logo a desigualdade de Minkowski é válida. Agora, considere que $\|f+g\|_p \neq 0$ para obter

$$\frac{\|f+g\|_p^p}{\|f+g\|_p^q} \leqslant \|f\|_p + \|g\|_p$$

Consequentemente

$$||f + g||_p^{p - \frac{p}{q}} \le ||f||_p + ||g||_p.$$

Por fim, como peq são expoentes conjugados, segue que $p - \frac{p}{q} = 1$. Portanto

$$||f + g||_p \le ||f||_p + ||g||_p$$
.

Assim, mostramos que a desigualdade de Minkowski é válida para $1 \le p < \infty$.

Agora, vamos provar que $(\mathcal{L}^p, \|\cdot\|_p)$ é um espaço vetorial normado para $1 \leq p < \infty$.

Proposição 1.79. A aplicação $\|\cdot\|_p:\mathcal{L}^p \to \mathbb{R}$ dada por

$$||f||_p = \left(\int |f|^p \, d\mu\right)^{\frac{1}{p}}$$

é uma norma

Demonstração. Note que

1.
$$||f||_p = \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \geqslant 0 \text{ pois } |f| \geqslant 0.$$

2.
$$||f||_p = 0 \iff \int |f|^p d\mu = 0 \iff f = 0 \ (f \sim_{\mu} 0)$$

3.
$$\|\lambda f\|_{p} = \left(\int |\lambda f|^{p} d\mu\right)^{\frac{1}{p}} = \left(\int |\lambda|^{p} |f|^{p} d\mu\right)^{\frac{1}{p}} = \left(|\lambda|^{p} \int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\lambda| \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu|^{p} \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} + |\mu|^{p} \left(\int |f|^{p} d\mu\right)^{\frac{1}{p}} = |\mu$$

4. $||f + g||_p \le ||f||_p + ||g||_p$ pela Desigualdade de Minkowski.

Portanto $\|\cdot\|_p$ é uma norma

Agora, nosso objetivo é mostrar que \mathcal{L}^p com $1\leqslant p<\infty$ é um espaço de Banach, isto é, um espaço vetorial normado completo. Para isso precisamos das seguintes definições

Definição 1.80. Seja (f_n) uma sequência em \mathcal{L}^p com $1 \le p < \infty$. Dizemos que (f_n) é de Cauchy se dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f_m||_p < \varepsilon$$

para todo $n, m \ge n_0$

Definição 1.81. Sejam (f_n) uma sequência em \mathcal{L}^p e $f \in \mathcal{L}^p$ com $1 \leq p < \infty$. Dizemos que (f_n) é convergente e converge para f se dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f||_p \leqslant \varepsilon$$

para todo $n \ge n_0$. Equivalentemente

$$\lim \|f_n - f\|_p = 0$$

Definição 1.82. Um espaço métrico (X, d) é completo se toda sequência de Cauchy é convergente.

Teorema 1.83 (Teorema de Riesz-Fischer). \mathcal{L}^p com $1 \leqslant p < \infty$ é um espaço de Banach.

Demonstração. Seja (f_n) uma sequência de Cauchy em \mathcal{L}^p . Mostremos que (f_n) é convergente. Com efeito, sabemos que dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||f_n - f_m||_p < \varepsilon$$

para todo $n,m\geqslant n_0$. Esscolhendo ε de forma adequada e passando a uma subsequência se necessário, temos que

$$||f_{n+1} - f_n||_p < 2^{-n} (1.10)$$

Defina $g: X \to \overline{\mathbb{R}}$ por

$$g(x) = |f_1(x)| + \sum_{n=1}^{\infty} |f_{n+1}(x) - f_n(x)|.$$

1.4. $ESPAÇOS \mathcal{L}^p$ 37

Observe que $g \in \mathcal{M}^+(X, \eth)$, pois $g \geqslant 0$ e

$$g = |f_1| + \lim_{k \to \infty} \sum_{n=1}^{k} |f_{n+1} - f_n|$$

isto é, g é formado pela soma e pelo limite de funções mensuráveis (f_n é integrável, em particular, mensurável). Queremos mostrar que $g \in \mathcal{L}^p$. De fato

$$\int |g|^p d\mu = \int g^p d\mu,$$

pois $g \geqslant 0$. Pela definição de g temos

$$\int g^{p} d\mu = \int \left(|f_{1}| + \lim_{k \to \infty} \sum_{n=1}^{k} |f_{n+1} - f_{n}| \right)^{p} d\mu,$$

nesse caso, como o limite existe, segue que o limite é igual ao limite inferior, logo

$$\int \left(|f_1| + \lim_{k \to \infty} \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu = \int \liminf_{k \to \infty} \left(|f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu.$$

Pelo Lema de Fatou temos que

$$\int \liminf_{k \to \infty} \left(|f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu \leqslant \liminf_{k \to \infty} \int \left(|f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right)^p d\mu$$

e utilizando definição da norma em \mathcal{L}^p e a Desigualdade de Minkowski

$$\liminf_{k \to \infty} \left\| |f_1| + \sum_{n=1}^k |f_{n+1} - f_n| \right\|_p^p \leqslant \liminf_{k \to \infty} \left(\|f_1\|_p + \sum_{n=1}^k \|f_{n+1} - f_n\|_p \right)^p = \left(\|f_1\|_p + \sum_{n=1}^\infty \|f_{n+1} - f_n\|_p \right)^p.$$

Por (1.10) temos que

$$\left(\|f_1\|_{\rho} + \sum_{n=1}^{\infty} \|f_{n+1} - f_n\|_{\rho}\right)^{\rho} \leqslant \left(\|f_1\|_{\rho} + \sum_{n=1}^{\infty} 2^{-n}\right) < \infty$$

que é finito pois o somatório é uma série geométrica com razão menor que 1. Logo

$$\int |g|^p d\mu < \infty.$$

Portanto, $g \in \mathcal{L}^p$. Agora seja, $E = \{x \in X : g(x) < \infty\} \in \mathfrak{d}$. Dito isso, $N = E^{\mathcal{C}} = \{x \in X : g(x) = \infty\} \in \mathfrak{d}$. Mostremos que N tem medida nula. Com efeito, suponha que $\mu(N) > 0$, dessa forma

$$\int_X |g|^p \geqslant \int_N |g|^p = \infty \mu(N) = \infty,$$

o que implicaria em

$$\int |g|^p = \infty$$

que é uma contradição pois $g \in \mathcal{L}^p$. Dessa forma $\mu(N) = 0$, isto é, $g < \infty$ em quase toda parte em X. Sendo assim, defina $f: X \to \mathbb{R}$ por

$$f(x) = \begin{cases} f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x)) & \text{se } x \in E \\ 0 & \text{se } x \notin E. \end{cases}$$

Mostremos que $f \in \mathcal{L}^p$. Note que

$$f(x) = \left(f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x))\right) \chi_E.$$

Daí

$$|f| = \left| f_1 + \sum_{n=1}^{\infty} (f_{n+1} - f_n) \right| |\chi_{\mathcal{E}}| \le |f_1| + \sum_{n=1}^{\infty} |f_{n+1} - f_n| = g.$$

Consequentemente, $|f|^p < g^p$. Logo

$$\int |f|^p d\mu \leqslant \int g^p d\mu < \infty.$$

Portanto, $f \in \mathcal{L}^p$. Por outro lado, para todo $x \in E$

$$f(x) = f_1(x) + \sum_{n=1}^{\infty} (f_{n+1}(x) - f_n(x))$$

$$= f_1(x) + \lim_{k \to \infty} \sum_{n=1}^{k} (f_{n+1}(x) - f_n(x))$$

$$= \lim_{k \to \infty} (f_1(x) + f_2(x) - f_1(x) + f_3(x) - f_2(x) + \dots + f_{k+1}(x) - f_k(x))$$

$$= \lim_{k \to \infty} f_{k+1}(x) = \lim_{k \to \infty} f_k(x).$$

Como $\mu(N) = 0$, então $\lim f_n = f$ em quase toda parte em X. É fácil ver que

$$|f_k| = \left| f_1 + \sum_{n=1}^{k-1} (f_{n+1} - f_n) \right| \le |f_1| + \sum_{n=1}^{k-1} |f_{n+1} - f_n| \le |f_1| + \sum_{n=1}^{\infty} |f_{n+1} - f_n| = g.$$
 (1.11)

Por isso

$$|f_p - f|^p \le (|f_p| + |f|)^p \le (2a)^p = 2^p a^p$$

para todo $n \in \mathbb{N}$. Como $g \in \mathcal{L}^p$, então $2^p g^p \in \mathcal{L}^1$. Dessa forma, pelo Teorema da Convergência Dominada, chegamos a

$$\lim \|f_n - f\|_p = \lim \left(\int |f_n - f|^p \, d\mu \right)^{\frac{1}{p}} = \int \lim |f_n - f|^p \, d\mu = 0$$

Isto prova que \mathcal{L}^p é completo.

Agora introduzimos o espaço de Lebesgue, \mathcal{L}^{∞} explorando suas características fundamentais e o papel que desempenha em diversos problemas da análise funcional.

Definição 1.84. Seja (X, \eth, μ) um espaço de medida. O espaço

$$\mathcal{L}^{\infty} = \mathcal{L}^{\infty}(X, \eth, \mu) = \{f : X \to \mathbb{R}; f \text{ \'e mensur\'avel e limitada qtp em } X\}$$

é chamado Espaço de Lebesgue \mathcal{L}^{∞} . Para cada $f \in \mathcal{L}^{\infty}$, definimos

$$||f||_{\infty} = \operatorname{ess\,sup}\{|f(x)|; x \in X\} = \inf\{M \geqslant 0; |f(x)| \leqslant M \text{ qtp em } X\}$$

Por fim, dizemos que f é uma função essencialmente limitada.

Observação: Note que

$$||f||_{\infty} = \inf\{M \geqslant 0 ; \mu(\{x \in X ; |f(x)| > M\} = 0)\}.$$

sto segue da seguinte equivalência

1.4. ESPAÇOS \mathcal{L}^p

$$|f(x)| \leq M$$
 qtp em $X \iff \mu(\{x \in X ; |f(x)| > M\}) = 0.$

De fato, $|f(x)| \le M$ em quase toda parte em X se, e somente se, existe $N \in \eth$ tal que $\mu(N) = 0$ e $|f(x)| \le M$ para todo $x \in N^{\mathcal{C}}$. Note que $\{x \in X : |f(x)| > M\} \subseteq N$, dessa forma

$$\mu(\{x \in X ; |f(x)| > M\}) \le \mu(N) = 0$$

Portanto, $\mu(\{x \in X ; |f(x)| > M\}) = 0.$

Reciprocamente, se $\mu(\{x \in X ; |f(x)| > M\}) = 0$, então $|f(x)| \leq M$ para todo $x \in \{|f(x)| > M\}^{\mathcal{C}}$, isto é, $|f(x)| \leq M$ em quase toda parte em X.

Proposição 1.85. Seja (X, \eth, μ) um espaço de medida. Então

$$|f(x)| \leq ||f||_{\infty}$$
 qtp em X

para todo $f \in \mathcal{L}^{\infty}$

Demonstração. Se $f \in \mathcal{L}^{\infty}$, então existe $M \geqslant 0$ tal que $|f(x)| \leqslant M$ em quase toda parte em X. Daí, como $||f||_{\infty} = \inf\{M_0 \geqslant 0; |f(x)| \leqslant M_0 \text{ qtp em } X\}$, temos que dado $\varepsilon > 0$ conseguimos encontrar $M_{\varepsilon} \geqslant 0$ tal que $|f(x)| \leqslant M_{\varepsilon}$ em quase toda parte em X.

$$\frac{M_{\varepsilon}}{\|f\|_{\infty}} + \|f\|_{\infty} + \varepsilon$$

Como $M_{\varepsilon} < \|f\|_{\infty} + \varepsilon$, então

$$|f(x)| \leq M_{\varepsilon} < ||f||_{\infty} + \varepsilon.$$

Fazendo $\varepsilon \to 0$ chegamos a

$$|f(x)| \leq ||f||_{\infty}$$
 qtp em X

Agora mostremos que \mathcal{L}^{∞} é um espaço vetorial normado

Proposição 1.86. A aplicação $\|\cdot\|_{\infty}:\mathcal{L}^{\infty}\to\mathbb{R}$ dada por

$$||f||_{\infty} = \inf\{M \geqslant 0; |f(x)| \leqslant M \text{ qtp em } X\}$$

é uma norma

Demonstração. Note que

- 1. $||f||_{\infty} \ge 0$ pois 0 é cota inferior de $\{M \ge 0 ; |f(x)| \le M \text{ qtp em } X\}$.
- 2. $||f||_{\infty} = 0$, assim dado $\varepsilon > 0$ existe $M_{\varepsilon} \ge 0$ tal que $|f(x)| \le M_{\varepsilon}$ em quase toda parte em X, com $M_{\varepsilon} < \varepsilon$. Daí, $|f(x)| < \varepsilon$ em quase toda parte em X. Fazendo $\varepsilon \to 0$, encontramos

$$|f(x)| \leq 0$$
 qtp em X

Dessa forma, f(x) = 0 em quase toda parte em X.

Reciprocamente,
$$||0||_{\infty} = \inf\{M \ge 0; 0 \le M \text{ qtp em } X\} = \inf[0, \infty) = 0$$

3. $\|\lambda f\|$

4. (Desigualdade de Minkowski em \mathcal{L}^{∞}) Se $f, g \in \mathcal{L}^{\infty}$ então as funções são limitadas em quase toda parte em X, dito isso, f+g também é limitada em quase toda parte em X. Logo $f+g \in \mathcal{L}^{\infty}$.

Por outro lado, como $f,g\in\mathcal{L}^{\infty}$, então existem $M,\hat{M}\in\eth$ tais que $\mu(M)=\mu(\hat{M})=0$ e $|f(x)|\leqslant \|f\|_{\infty}$ para todo $x\not\in M$ e $|g(x)|\leqslant \|g\|_{\infty}$ para todo $x\not\in \hat{M}$. Seja $N=M\cup\hat{M}\in\eth$. Daí $\mu(N)=\mu(M\cup\hat{M})\leqslant \mu(M)+\mu(\hat{M})=0+0=0$. Além disso

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$
 qtp em X

para todo $x \notin N$, com $\mu(N) = 0$. Dessa forma

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

Portanto, $\|\cdot\|_{\infty}$ é uma norma.

Proposição 1.87 (Desigualdade de Hölder em \mathcal{L}^{∞}). Seja (X, \eth, μ) um espaço de medida. Se $f \in \mathcal{L}^1$ e $g \in \mathcal{L}^{\infty}$, então $fg \in \mathcal{L}^1$ e

$$||fg||_1 \le ||f||_1 ||g||_{\infty}$$

Demonstração. Note que se $g\in \mathcal{L}^\infty$ então $|g|\leqslant \|g\|_\infty$ em quase toda parte em X. Consequentemente

$$\|fg\|_1 = \int |fg| \, d\mu = \int |f| \, |g| \, d\mu \leqslant \int |f| \|g\|_{\infty} \, d\mu = \|g\|_{\infty} \int |f| \, d\mu = \|g\|_{\infty} \|f\|_1$$

O próximo passo é mostrar que \mathcal{L}^∞ também é um espaço de Banach, como já mostramos que é um espaço vetorial normado, basta mostrar a completude

Teorema 1.88 (Teorema de Riesz-Fischer). \mathcal{L}^{∞} é um espaço completo

Agora vamos construir os espaços ℓ^p que são um caso particular dos espaços \mathcal{L}^p

Exemplo 1.89. Sejam $X = \mathbb{N}$, $\eth = \mathcal{P}(\mathbb{N})$ e $\mu : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ dada por

$$\mu(E) = \begin{cases} \#E & \text{se } E \text{ \'e finito} \\ \infty & \text{se } E \text{ \'e infinito} \end{cases}$$

Note que

$$\mathcal{L}^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu) = \left\{ (x_n) \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |x_n| < \infty \right\}$$

Observação: Denomatomos o espaço de Lebesgue $\mathcal{L}^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ por ℓ^p **Exemplo 1.90.** $\mathcal{L}^{\infty}(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$. . .

Vejamos mais alguma propriedades importantes dos espaços \mathcal{L}^p

Proposição 1.91. Sejam (X, \eth, μ) um espaço de medida e 0 . Então

$$\mathcal{L}^q \subset \mathcal{L}^p + \mathcal{L}^r$$

Demonstração. . . . □

Teorema 1.92 (Desigualdade de Interpolação). Sejam (X, \eth, μ) um espaço de medida e $0 . Então <math>\mathcal{L}^p \cap \mathcal{L}^r \subseteq \mathcal{L}^q$ e

$$||f||_q \leq ||f||_p^{\lambda} ||f||_r^{1-\lambda}$$

onde $\lambda \in (0,1)$ e

$$\frac{1}{q} = \frac{\lambda}{p} + \frac{1-\lambda}{r} \quad \left(\text{i.e., } \lambda = \frac{\frac{1}{q} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{r}}\right) \tag{1.12}$$

Demonstração. Consideremos dois casos

 $-r=\infty$ Note que

$$\lambda = \frac{\frac{1}{q} - \frac{1}{\infty}}{\frac{1}{p} - \frac{1}{\infty}} = \frac{\frac{1}{q}}{\frac{1}{p}} = \frac{p}{q} \in (0, 1)$$

Além disso, se $f \in \mathcal{L}^p \cap \mathcal{L}^r$, tem-se que

$$\|f\|_q^q = \int |f|^q d\mu = \int |f|^{q-p} |f|^p d\mu \leqslant \int \|f\|_\infty^{q-p} |f|^p = \|f\|_\infty^{q-p} \int |f|^p d\mu = \|f\|_p^p < \infty.$$

Com isso $f \in \mathcal{L}^q$ e ainda mais

$$\|f\|_{q}^{q} \leqslant \|f\|_{\infty}^{q-p} \|f\|_{p}^{p} \iff \|f\|_{q} \leqslant \|f\|_{q}^{\frac{q-p}{q}} \|f\|_{p}^{\frac{p}{q}} \iff \|f\|_{q} \leqslant \|f\|_{\infty}^{1-\frac{p}{q}} \|f\|_{p}^{\frac{p}{q}}$$

e como $\lambda = \frac{p}{a}$, segue que

$$||f||_q \leqslant ||f||_p^{\lambda} ||f||_r^{1-\lambda}.$$

 $-r < \infty$ Note que multiplicando (1.12) por q, temos

$$\frac{\lambda q}{p} + \frac{(1-\lambda)q}{r} = 1.$$

Com isso, $\frac{p}{\lambda q}$ e $\frac{r}{(1-\lambda)q}$ são expoentes conjungados. Dito isso, aplicando a Desigualdade de Hölder com $f \in \mathcal{L}^p \cap \mathcal{L}^r$ temos que

$$\int |f|^{q} d\mu = \int |f|^{\lambda q + (1 - \lambda)q} d\mu$$

$$= \int |f|^{\lambda q} |f|^{(1 - \lambda)q}$$

$$\leq ||f|^{\lambda q}||_{\frac{p}{\lambda q}} ||f^{(1 - \lambda)q}||_{\frac{r}{(1 - \lambda)q}}$$

$$= \left(\int |f|^{\lambda q \cdot \frac{p}{\lambda q}}\right)^{\frac{\lambda q}{p}} \left(\int |f|^{(1 - \lambda)q \cdot \frac{r}{(1 - \lambda)q}}\right)^{\frac{(1 - \lambda)q}{r}}$$

$$= \left(\int |f|^{p}\right)^{\frac{\lambda q}{p}} \left(\int |f|^{q}\right)^{\frac{(1 - \lambda)q}{r}}$$

$$= ||f||_{p}^{\lambda q} ||f||_{r}^{(1 - \lambda)q}$$

$$< \infty$$

Daí, $f \in \mathcal{L}^q$. Além disso

$$||f||_q^q \le ||f||_p^{\lambda q} ||f||^{(1-\lambda)q} \iff ||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda}.$$

Assim, mostrada a desiguldadde de interpolação.

Proposição 1.93. Sejam (X, \eth, μ) um espaço de medida com $\mu(X) < \infty$ e $0 . Então <math>\mathcal{L}^q \subseteq \mathcal{L}^p$ e

$$||f||_p \leq \mu(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q$$

Demonstração. . . .

Teorema 1.94 (Desigualdade de Chebyshev). Sejam (X, \eth, μ) um espaço de medida e $f \in \mathcal{L}^p$ com $1 \leq p < \infty$. Então

$$||f||_p \geqslant \alpha [\mu (\{x \in X; |f(x)| > \alpha\})]^{\frac{1}{p}}$$

para todo $\alpha > 0$.

Demonstração. . . .

Agora vamos ver um resultado sobre os espaços ℓ^p

Proposição 1.95. Sejam $0 . Então <math>\ell^p \subseteq \ell^q$ e

$$||x||_q \leqslant ||x||_p$$

Demonstração. Consideremos dois casos

 $-q=\infty$

Seja $x \in \ell^p$. Então $\sum_{n=1}^{\infty} |x_n|^p < \infty$. É fácil ver que

$$|x_n| \leqslant \left(\sum_{n=1}^{\infty} |x_n|^p < \infty\right)^{\frac{1}{p}} < \infty$$

para todo $n \in \mathbb{N}$. Isto é, $\sum_{n=1}^{\infty} |x_n|^p < \infty$ é cota superior de $x = (x_n)$. Dito isso

$$||x||_q = ||x||_{\infty} = \sup |x_n| \leqslant \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} < \infty.$$

Logo $x \in \ell^q$ e

$$||x||_q \leqslant ||x||_p.$$

 $-q<\infty$

Utilizando a Desigualdade de Interpolação com $r=\infty$ e $\lambda=\frac{p}{q}\in(0,1)$ para obter que $\ell^p=\ell^p\cap\ell^r\subseteq\ell^q$ (pelo caso $q=\infty$) e

$$\|x\|_{q} \leqslant \|x\|_{p}^{\frac{p}{q}} \|x\|_{\infty}^{1-\frac{p}{q}} \leqslant \|x\|_{p}^{\frac{p}{q}} \|x\|_{p}^{1-\frac{p}{q}} = \|x\|_{p}.$$

Assim, demonstrada a proposição.

Os proximos resultados estão relacionados a densidade das funções simples em \mathcal{L}^p e \mathcal{L}^∞

Definição 1.96. Seja (X, d) um espaço métrico. Um conjunto $E \subseteq X$ é dito denso em X se todo ponto de X é aderente a E. Isto é, dado $x \in X$ existe uma sequência (x_n) de elementos de E tal que $x_n \to x$.

1.4. ESPAÇOS \mathcal{L}^p

Teorema 1.97. Seja $1 \le p < \infty$. O conjunto das funções simples $\sum_{j=1}^n a_j \chi_{E_j}$ com $\mu(E_j) < \infty$ para todo $j=1,\ldots,n$ é denso em \mathcal{L}^p

Demonstração. Considere o conjunto

$$Y = \left\{ f = \sum_{j=1}^{n} a_j \chi_{E_j}; \mu(E_j) < \infty \right\}.$$

Note que dada uma função $f \in Y$ temos que

$$\int |f|^p d\mu = \int \left| \sum_{j=1}^n a_j \chi_{E_j} \right| d\mu = \int \sum_{j=1}^n |a_j|^p \chi_{E_j} d\mu = \sum_{j=1}^n |a_j|^p \mu(E_j) < \infty.$$

Isto é, $f \in \mathcal{L}^p$. Consequentemente $Y \subseteq \mathcal{L}^p$.

Por outro lado, seja $f \in \mathcal{L}^p$ sabemos que $f = f^+ - f^-$ onde f^+ , $f^- \in \mathcal{M}^+(X, \eth)$. Além disso pelo Lema ?? temos que existem sequências (φ_n^+) , (φ_n^-) de funções simples em $\mathcal{M}^+(X, \eth)$ tais que

$$0 \leqslant \varphi_n^{\pm} \leqslant \varphi_{n+1}^{\pm} \ e \ \varphi_n^{\pm} \to f^{\pm}.$$

É fácil ver que $(\varphi_n^+ - \varphi_n^-) \subseteq \mathcal{M}(X, \eth)$ é uma sequência de funções simples tal que

$$\lim(\varphi_n^+ - \varphi_n^-) = \lim \varphi_n^+ + \lim \varphi_n^- = f^+ - f^- = f.$$

Seja $\varphi_n = \varphi_n^+ - \varphi_n^-$ para todo $n \in \mathbb{N}$, assim (φ_n) é uma sequência de funções simples tal que $\varphi_n \to f$. Perceba que

$$|\varphi_n| = \varphi_n^+ + \varphi_n^- \leqslant f^+ + f^- = |f|,$$

para todo $n \in \mathbb{N}$. Como $f \in \mathcal{L}^p$, então

$$\int |\varphi_n|^p \, d\mu \leqslant \int |f|^p \, d\mu < \infty,$$

ou seja, $(\varphi_n) \subseteq \mathcal{L}^p$. Consequentemente, denotando φ_n por

$$\varphi_n = \sum_{i=1}^{m_n} a_i \chi_{E_i}$$

segue que

$$|a_j|^p \mu(E_j) \leqslant \sum_{j=1}^{m_n} |a_j|^p \mu(E_j) = \int \sum_{j=1}^{m_n} |a_j|^p \chi_{E_j} d\mu = \int |\varphi_n|^p d\mu < \infty.$$

Isto nos diz que $\mu(E_j) < \infty$ para todo $j = 1, ..., m_n$ e $n \in \mathbb{N}$. Logo, $(\varphi_n) \subseteq Y$. Por fim, aplicando o Teorema da Convergência Dominada, temos que

$$\lim \|\varphi_n - f\|_p^p = \lim \int |\varphi_n - f|^p d\mu = \int \lim |\varphi_n - f|^p d\mu = 0$$

pois

$$\lim \varphi_n = f \ e \ |\varphi_n - f|^p \leqslant 2^p |f|^p \in \mathcal{L}^1.$$

Portanto Y é denso em \mathcal{L}^p , já que dada uma função $f \in \mathcal{L}^p$, encontramos uma sequência em Y que converge para f.

Teorema 1.98. O conjunto das funções simples é denso em \mathcal{L}^{∞} .

Demonstração. □

O proximos resultados são uma generalização da Desigualdade de Hölder

Lema 1.99. Sejam $0 < p, q \leqslant \infty$ tais que $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, $f \in \mathcal{L}^p$ e $g \in \mathcal{L}^q$. Então $fg \in \mathcal{L}^r$ e $\|fg\|_r \leqslant \|f\|_p \|g\|_q$

Demonstração. . . . □

Proposição 1.100 (Desigualdade de Hölder Generalizada). Sejam $0 < p_1, \ldots, p_N \leqslant \infty$ tais que $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$ e $f = f_1 f_2 \cdots f_N$ onde $f_j \in \mathcal{L}^{p_j}$ para todo $j = 1, \ldots, N$. Então $f \in \mathcal{L}^p$ e $\|f\|_p \leqslant \|f_1\|_{p_1} \cdots \|f_N\|_{p_N}$

Demonstração. Segue por indução do lema anterior.

INTRODUÇÃO À ANÁLISE FUNCIONAL

(introdução)

2.1 Espaços de Banach

(introdução)

Definição 2.1. Seja X um espaço vetorial sobre um corpo \mathbb{K} . Uma função $\|\cdot\|: X \to \mathbb{R}$ é dita ser uma norma se satisfaz

- $||x|| \ge 0$ para todo $x \in X$
- $||x|| = 0 \iff x = 0$
- $\|\lambda x\| = |\lambda| \|x\|$ para todo $x \in X$ e $\lambda \in \mathbb{K}$
- $||x + y|| \le ||x|| + ||y||$ para todo $x, y \in X$

(definições iniciais)

Exemplo 2.2. O espaço euclidiano \mathbb{R}^n munido da norma

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$

onde $x = (x_1, \dots, x_n)$ é um espaço de Banach

Exemplo 2.3. O espaço

$$\ell^p \equiv \ell^p(\mathbb{R}) = \left\{ x = (x_n); \sum_{i=1}^{\infty} |x_i|^p < \infty \right\}$$

com $1 \leqslant p < \infty$ munido da norma

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$$

é um espaço de Banach.

Exemplo 2.4. O espaço

$$\ell^{\infty} \equiv \ell^{\infty}(\mathbb{R}) = \left\{ x = (x_n) ; \sup_{n \in \mathbb{N}} |x_n| < \infty \right\}$$

munido da norma

$$||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$$

é um espaço de Banach.

Exemplo 2.5. O espaço

$$\mathcal{C}([a,b],\mathbb{K}) = \{f : [a,b] \to \mathbb{K}; f \text{ \'e contínua}\}$$

munido da norma

$$||f||_{\max} = \max_{t \in [a,b]} \{|f(t)|\}$$

é um espaço de Banach

Exemplo 2.6. O espaço $\mathcal{C}([0,1],\mathbb{R})$ munido da métrica

$$d(f,g) = \int_0^1 |f(t) - g(t)| \, dt$$

não é um espaço completo

CAPÍTULO TRÊS

ESPAÇOS DE SOBOLEV

Os espaços de Sobolev desempenham um papel fundamental na análise funcional e nas equações diferenciais parciais, oferecendo uma estrutura adequada para o estudo de problemas envolvendo funções que podem não ser diferenciáveis no sentido clássico. Introduzidos como uma extensão dos conceitos de derivada e integrabilidade, esses espaços permitem trabalhar com soluções generalizadas, chamadas de soluções fracas, ampliando o escopo de problemas que podem ser tratados matematicamente. Neste capítulo, serão apresentados os conceitos básicos dos espaços de Sobolev e suas principais propriedades.

3.1 Preliminares

Antes de começar de fato o estudo dos espaços de Sobolev precisamos de algumas definições que serão usadas extensivamente nesse capítulo.

Definição 3.1. Seja $\varphi: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função qualquer. Definimos o suporte de φ por

$$\operatorname{supp} \varphi = \overline{\{x \in \Omega \, ; \, \varphi(x) \neq 0\}}.$$

Além disso, se supp φ é compacto, dizemos que φ tem suporte compacto.

Note que $\{x \in \Omega : \varphi(x) \neq 0\} \subseteq \operatorname{supp} \varphi$, então $(\operatorname{supp} \varphi)^{\mathcal{C}} \subseteq \{x \in \Omega : \varphi(x) = 0\}$. Ou seja, se $x \notin \operatorname{supp} \varphi$, então $\varphi(x) = 0$. Além disso, se Ω é um aberto, então φ se anula em $\partial\Omega$.

Definição 3.2. Seja Ω um aberto de \mathbb{R}^n . O espaço $\mathcal{C}^k(\Omega)$ é composto por todas funções $f:\Omega\to\mathbb{R}$ contínuas em que suas derivadas parciais de ordem menor ou igual a k também são contínuas. Se $f\in\mathcal{C}^k(\Omega)$ dizemos que f é de classe \mathcal{C}^k .

O conjunto das funções infinitamente diferenciáveis é definido por

$$\mathcal{C}^{\infty}(\Omega) = \bigcap_{k=0}^{\infty} \mathcal{C}^k(\Omega)$$

Definição 3.3. O conjunto das funções $f \in \mathcal{L}^p(\Omega)$ localmente somáveis, isto é, integráveis em todo conjunto compacto de Ω é denotado por $\mathcal{L}^p_{loc}(\Omega)$.

A definição abaixo será âmplamente utilizada nesse capítulo

Definição 3.4. O conjunto das funções contínuas com suporte compacto em Ω é definido por

$$C_c(\Omega) = \{f : \Omega \to \mathbb{R} \text{ contínua}; \text{supp } f \text{ \'e compacto}\}$$

Além disso definimos

$$\mathcal{C}_c^k(\Omega) = \mathcal{C}_c(\Omega) \cap \mathcal{C}^k(\Omega)$$

que é o conjunto das funções $f:\Omega\to\mathbb{R}$ de classe \mathcal{C}^k com suporte compacto.

Os resultados abaixos são de extrema importância no estudo de espaços de Sobolev.

Teorema 3.5 (Integração por partes em \mathbb{R}^n). Seja $\Omega \subseteq \mathbb{R}^n$ uma região regular e $u, v : \overline{\Omega} \to \mathbb{R}$ de classe \mathcal{C}^1 . Então,

 $\int_{\Omega} u \frac{\partial v}{\partial x_i} dx = \int_{\partial \Omega} u v \nu_i dS - \int_{\Omega} v \frac{\partial u}{\partial x_i} dx$

onde $\nu = (\nu_1, \dots, \nu_n)$ é o vetor normal unitário que aponta pra fora em $\partial \Omega$.

Demonstração. Ver [5] p.p. 628

Teorema 3.6 (Coordenadas Polares em \mathbb{R}^n). Seja $f: B(y,s) \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função integrável, então

$$\int_{B(y,s)} f \, dx = \int_0^s \int_{\partial B(y,r)} f \, dS dr.$$

Demonstração. Ver [7], p.p. 78.

Teorema 3.7. Seja $(u_n)_{n=1}^{\infty}$ uma sequência em $\mathcal{L}^p(\Omega)$ tal que $||u_n - u||_{\mathcal{L}^p(\Omega)} \to 0$ para alguma função $u \in \mathcal{L}^p(\Omega)$. Então existe uma subsequência $(u_{n_k})_{k=1}^{\infty}$ e uma função $v \in \mathcal{L}^p(\Omega)$ tal que

- (a) $u_{n_k}(x) \to u(x)$ qtp em Ω ;
- **(b)** $|u_{n_k}(x)| \leq v(x)$ para todo $k \in \mathbb{N}$, qtp em Ω .

Demonstração. Ver [3], p.p. 94.

Teorema 3.8 (Critério de compacidade de Arzelà-Ascoli). Seja (u_k) uma sequência de funções de \mathbb{R}^n em \mathbb{R} tal que

$$|u_k(x)| \leq M$$

para todo $x \in \mathbb{R}^n$, onde M > 0 é uma constante e (u_k) é uniformemente equicontínua. Então, existe uma subsequência $(u_{k_j})_{j=1}^\infty \subseteq (u_k)_{k=1}^\infty$ e uma função contínua u tal que $u_{k_j} \to u$ uniformemente em conjuntos compactos de \mathbb{R}^n .

Demonstração. Ver [12], p.p 240.

3.2. MOTIVAÇÃO 49

Teorema 3.9 (Mudança de variáveis). Seja $\Psi: A \to B$ um difeomorfismo entre abertos de \mathbb{R}^n . Seja $f: B \to \mathbb{R}$ uma função contínua. Então f é integrável sobre B se, e somente se, $(f \circ \Psi)|\det D\Psi|$ é integrável sobre A. Neste caso,

$$\int_{B} f \, dx = \int_{A} (f \circ \Psi) |\det D\Psi| \, dy.$$

Demonstração. O capítulo 4 de [14] é destinado a demonstração desse teorema.

3.2 Motivação

Considere o problema de Dirichlet

$$-\Delta u + u = f \text{ em } \Omega;$$

$$u = 0 \text{ sobre } \partial \Omega.$$
 (3.1)

onde $\Omega \subseteq \mathbb{R}^n$ é um aberto limitado. Uma solução clássica para o problema é uma função $u \in \mathcal{C}^2(\Omega)$ satisfazendo (3.1). Por outro lado, multiplicando ambos os lados da primeira equação em (3.1) por uma função $\phi \in \mathcal{C}^\infty_C(\Omega)$ e integrando sobre Ω , obtemos

$$\int_{\Omega} -\phi \Delta u \, dx + \int_{\Omega} u \phi \, dx = \int_{\Omega} f \phi \, dx.$$

Note que, utilizando integração por partes, a primeira integral pode ser reescrita como

$$\int_{\Omega} -\phi \Delta u \, dx = -\sum_{i=1}^{n} \int_{\Omega} \phi \frac{\partial^{2} u}{\partial x_{i}^{2}} \, dx = -\sum_{i=1}^{n} \left(\int_{\partial \Omega} \phi \frac{\partial u}{\partial x_{i}} \nu_{i} \, dS - \int_{\Omega} \frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \, dx \right).$$

Mas como ϕ se sobre em $\partial\Omega$, inferimos

$$\int_{\Omega} -\phi \Delta u \, dx = \sum_{i=1}^{n} \int_{\Omega} \frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \, dx = \int_{\Omega} \nabla u \cdot \nabla \phi \, dx.$$

Dito isso, dizemos que u é uma solução fraca do problema de Dirichlet se

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx + \int_{\Omega} u \phi = \int_{\Omega} f \phi, \tag{3.2}$$

para toda função $\phi \in \mathcal{C}_C^\infty(\Omega)^1$. Observe que agora, não precisamos mais que u seja de classe \mathcal{C}^2 já que a segunda derivada de u não é utilizada em (3.2). Na verdade, não precisamos nem que u seja contínua, apenas integrável em Ω . Na Seção 4.3, voltaremos a essa motivação para mostrar que para qualquer função $f \in \mathcal{L}^2(\Omega)$, existe uma única solução fraca para (3.1). Essa solução é uma função que pertece ao espaço de Sobolev $H^1_0(\Omega)$, esse e outros espaços e suas propriedades serão estudadas ao longo desse trabalho.

3.3 Espaços de Sobolev $\mathcal{W}^{k,p}(\Omega)$

Nosso objetivo agora, é generalizar a noção de derivada para funções que não são diferenciáveis em um aberto Ω do \mathbb{R}^n e explorar algumas propriedades elementares.

¹Nomenclatura: φ é chamada função teste.

Figura 3.1: Sergei Lvovich Sobolev (1908 – 1989)

Seja $u \in \mathcal{C}^1(\Omega)$, então se $\phi \in \mathcal{C}^\infty_c(\Omega)$, utilizando integração por partes em \mathbb{R}^n temos que

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_i} dx = \int_{\partial \Omega} u \phi \nu_i dS - \int_{\Omega} \phi \frac{\partial u}{\partial x_i} dx,$$

para todo $i=1,\ldots,n$. Como ϕ tem suporte compacto e Ω é um aberto, segue que ϕ se anula em $\partial\Omega$, como foi mostrado abaixo da definição de suporte. Portanto a expressão acima se torna

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_i} dx = -\int_{\Omega} \phi \frac{\partial u}{\partial x_i} dx, \tag{3.3}$$

para todo $i=1,\ldots,n$. Ademais, se agora u for de classe \mathcal{C}^k em Ω com $k\in\mathbb{N}$ e $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n$ um multi-índice de ordem $|\alpha|=\alpha_1+\cdots+\alpha_n=k$, então

$$\int_{\Omega} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \phi D^{\alpha} u \, dx. \tag{3.4}$$

Essa expressão é válida, já que

$$D^{\alpha}\phi = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$

e podemos aplicar (3.3) $|\alpha|$ vezes.

Queremos descobrir se existe uma classe de funções tal que (3.4) ainda é válida, mesmo se u não for de classe \mathcal{C}^k . Note que o lado esquerdo de (3.3) está bem definido se $u \in \mathcal{L}^1_{loc}(\Omega)$. O problema é que se u não é necessáriamente uma função de classe \mathcal{C}^k então o lado direito de (3.3) não está bem definido. Para resolver isso perguntamos se existe uma função $v \in \mathcal{L}^1_{loc}(\Omega)$ tal que (3.3) é válida quando substituimos $D^\alpha u$ por v.

Essa pergunta motiva a definição abaixo.

Definição 3.10 (Derivada fraca em Ω). Sejam $u, v \in \mathcal{L}^1_{loc}(\Omega)$ e α um multi-índice. Dizemos que v é a α -ésima derivada parcial fraca de u, denotada por

$$D^{\alpha}u=v$$
.

dado que

$$\int_{\Omega} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \phi D^{\alpha} u \, dx, \tag{3.5}$$

para toda função $\phi \in \mathcal{C}_c^{\infty}(\Omega)$.

Isto é, se dado uma função u e existe uma função v que satisfaz (3.5) para toda ϕ função teste, dizemos que $D^{\alpha}u = v$ no sentido fraco. Caso contrário, se não existir uma função v que satisfaz (3.5), então u não possui a α -ésima derivada parcial fraca.

Observação: Aqui, utilizamos a notação dx ao invés de $d\mu$ na integral de Lebesgue como convenção para dar ênfase que estamos utilizando a medida de Lebesgue (e não uma medida qualquer). Além disso, se uma função é integrável a Riemann e a Lebesgue (utilizando a medida de Lebesgue), suas integrais coincidem.

Exemplo 3.11. A função $u: \Omega = (0,2) \to \mathbb{R}$ dada por

$$u(x) = \begin{cases} x & \text{se } 0 < x \leqslant 1\\ 1 & \text{se } 1 < x < 2, \end{cases}$$

não é derivavel no sentido usual. Já que

$$\lim_{h \to 0^{-}} \frac{u(1+h) - u(1)}{h} = \lim_{h \to 0^{-}} \frac{1+h-1}{h} = 1,$$

mas

$$\lim_{h \to 0^+} \frac{u(1+h) - u(1)}{h} = \lim_{h \to 0^+} \frac{1-1}{h} = 0.$$

Porém, u possui derivada fraca dada pela função

$$v(x) = \begin{cases} 1 & \text{se } 0 < x \le 1; \\ 0 & \text{se } 1 < x < 2. \end{cases}$$

Com efeito, note que, para toda função $\phi \in \mathcal{C}_c^{\infty}(\Omega)$ temos que

$$\int_0^2 u\phi' \, dx = \int_0^1 x\phi' \, dx + \int_1^2 \phi' \, dx = x\phi \Big|_0^1 - \int_0^1 \phi \, dx + \phi \Big|_1^2.$$

Como ϕ tem suporte compacto, $\phi(0) = \phi(2) = 0$. Assim,

$$\int_0^2 u\phi' \, dx = \phi(1) - \int_0^1 \phi \, dx - \phi(1) = -\int_0^1 \phi \, dx.$$

Por fim, basta escrever 0 como uma integral.

$$\int_0^2 u\phi' \, dx = -\left(\int_0^1 1\phi \, dx - \int_1^2 0\phi \, dx\right) = -\int_0^2 v\phi \, dx.$$

Portanto, v é a derivada de u no sentido fraco.

Exemplo 3.12. A função $u: \Omega = (0,2) \to \mathbb{R}$ dada por

$$u(x) = \begin{cases} x & \text{se } 0 < x \leqslant 1; \\ 2 & \text{se } 1 < x < 2, \end{cases}$$

não possuí derivada fraca. Mostremos que u' não existe no sentido fraco. Isto significa que não existe uma função $v \in \mathcal{L}^1_{loc}(\Omega)$ que satisfaz

$$\int_{\Omega} u\phi' \, dx = -\int_{\Omega} v\phi \, dx,$$

para toda função $\phi \in \mathcal{C}_c^{\infty}(\Omega)$. Com efeito, suponha, por absurdo que existe tal v. Deste modo

$$-\int_0^2 v\phi \, dx = \int_0^2 u\phi' \, dx = \int_0^1 x\phi' \, dx + 2\int_1^2 \phi' \, dx = \int_0^1 \phi \, dx - \phi(1).$$

Seja (ϕ_n) uma sequência de funções suaves satisfazendo

$$0 \leqslant \phi_n \leqslant 1$$
, $\phi_n(1) = 1$, $\phi_n(x) \to 0$ se $x \neq 1$.

Isolando $\phi(1)$, substituindo ϕ por ϕ_n e fazendo $n \to \infty$, obtemos

$$1 = \lim \phi_n(1) = \lim \left[\int_0^2 v \phi_n \, dx - \int_0^1 \phi_n \, dx \right] = 0$$

pelo Teorema da Convergência Dominada, pois $\phi_n \to 0$ qtp em Ω . Portanto, u não possui derivada fraca.

O primeiro resultado sobre a derivada fraca que queremos mostrar é sobre sua unicidade, para isso precisamos antes do seguinte lema.

Lema 3.13. Sejam $u \in \mathcal{L}^1_{loc}(\Omega)$ e $\phi \in \mathcal{C}^{\infty}(\Omega)$. Então

$$\int_{\Omega} u\phi = 0$$

se, e somente se $u \equiv 0$ qtp em Ω .

Demonstração. Ver [3], p.p. ??.

Com o lema acima em mente, temos todas as ferramentas para mostrar a unicidade da derivda fraca.

Proposição 3.14. Seja α um multi-índice. Se v e \tilde{v} são ambas α -ésimas derivadas parciais fracas de uma função u. Então,

$$v = \tilde{v}$$
 qtp em Ω .

Demonstração. Sejam $v, \tilde{v} \in \mathcal{L}^1_{loc}(\Omega)$ tais que

$$\int_{\Omega} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} v \phi \, dx \quad \text{e} \quad \int_{\Omega} u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \tilde{v} \phi \, dx,$$

para toda $\phi \in \mathcal{C}_c^{\infty}(\Omega)$. Com isso, podemos escrever

$$\int_{\Omega} (v - \tilde{v}) \phi \, dx = 0.$$

Logo, pelo Lema anterior, chegamos a

$$v - \tilde{v} = 0$$
 qtp em Ω .

Portanto, $v = \tilde{v}$ qtp em Ω .

Exemplo 3.15. Considere a função *u* do Exemplo 3.11, vimos que

$$v(x) = \begin{cases} 1 & \text{se } 0 < x \le 1; \\ 0 & \text{se } 1 < x < 2. \end{cases}$$

é a derivada de u no sentido fraco. Porem, a função

$$\tilde{v}(x) = \begin{cases} 1 & \text{se } 0 < x < 1; \\ 0 & \text{se } 1 \le x < 2. \end{cases}$$

também satisfaz a definição de derivada fraca de u. A primeira vista, temos a sensação de que essa função é um contra-exemplo para unicidade da derivada fraca, porém v e \tilde{v} são iguais fora de um conjunto de medida nula. De fato,

$$(v - \tilde{v})(x) = \begin{cases} 1 & \text{se } x = 1 \\ 0 & \text{se } x \neq 1. \end{cases}$$

Portanto, é verdade que

$$v = \tilde{v}$$
 qtp em $(0, 2)$.

pois {1} é finito, logo tem medida nula.²

Com a definição de derivada fraca estabelecida, podemos definir os espaços de Sobolev $\mathcal{W}^{k,p}(\Omega)$.

Definição 3.16. Sejam $\Omega \subseteq \mathbb{R}^n$ um aberto e $1 \leq p \leq \infty$. Definimos o espaço de Sobolev $\mathcal{W}^{1,p}(\Omega)$ por

$$\mathcal{W}^{1,p}(\Omega) = \left\{ u \in \mathcal{L}^p(\Omega) \text{ ; existem } v_i : \Omega \to \mathbb{R} \text{ em } \mathcal{L}^p(\Omega) \text{ tais que } \int_{\Omega} u \frac{\partial \phi}{\partial x_i} \, d\mu = -\int v_i \phi \, d\mu \right\},$$
 para todo $i = 1, 2, \dots, n$.

Existem duas formas de definir os espaços de Sobolev $\mathcal{W}^{k,p}(\Omega)$ com $k \in \mathbb{N}$, indutivamente, e pela derivada fraca.

Definição 3.17. Sejam $\Omega \subseteq \mathbb{R}^n$ um aberto, $k \in \mathbb{N}$ e $1 \leqslant p \leqslant n$. Definimos o espaço de Sobolev $\mathcal{W}^{k,p}(\Omega)$ por

$$\mathcal{W}^{k,p}(\Omega) = \{ u \in \mathcal{L}^p(\Omega) ; D^\alpha u \in \mathcal{L}^p(\Omega) \text{ para todo multi-índice } \alpha \text{ com } |\alpha| \leqslant k \}$$
,

com $\phi \in \mathcal{C}_c^{\infty}(\Omega)$. Ou, de outra forma,

$$\mathcal{W}^{k,p}(\Omega) = \left\{ u \in \mathcal{W}^{k-1,p}(\Omega) ; D^{\alpha}u \in \mathcal{W}^{k-1,p}(\Omega), \text{ para todo multi-índice } \alpha \text{ com } |\alpha| = 1 \right\}$$
,

onde $D^{\alpha}u$ é a α -ésima derivada parcial de u no sentido fraco.

Observação: Quando p=2, a notação $H^k(\Omega)$ é comumente utilizada para dar ênfase que o espaço $\mathcal{W}^{k,2}(\Omega)$ é um espaço de Hilbert, munido do produto interno

$$\langle u, v \rangle_{H^k(\Omega)} = \sum_{|\alpha| \leq k} \langle D^{\alpha} u, D^{\alpha} v \rangle_{\mathcal{L}^2(\Omega)},$$

onde

$$\langle D^{\alpha}u, D^{\alpha}v\rangle_{\mathcal{L}^{2}(\Omega)} = \int_{\Omega} D^{\alpha}uD^{\alpha}v \, dx.$$

No próximo capítulo, estudaremos algumas aplicações dos espaços de Sobolev, e os espaços H^k serão utilizados.

Definição 3.18. O espaço $\mathcal{W}^{k,p}(\Omega)$ admite norma

$$||u||_{\mathcal{W}^{k,p}(\Omega)} = \left(\sum_{|\alpha| \leqslant k} ||D^{\alpha}u||_{\mathcal{L}^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

para $1 \leqslant p < \infty$ e

$$||u||_{\mathcal{W}^{k,\infty}(\Omega)} = \sum_{|\alpha| \leqslant k} ||D^{\alpha}u||_{\mathcal{L}^{\infty}(\Omega)}.$$

²Todo conjunto enumerável (em particular finito) tem medida (de Lebesque) nula.

Observação: Dizemos que uma sequência (u_n) converge para u em $\mathcal{W}^{k,p}(\Omega)$ se

$$\lim \|u_n - u\|_{\mathcal{W}^{k,p}(\Omega)} = 0,$$

e denotamos por $u_n \to u$ em $\mathcal{W}^{k,p}(\Omega)$. Além disso, dizemos que (u_n) converge para u em $\mathcal{W}^{k,p}_{loc}(\Omega)$ se u_n converge para u em $\mathcal{W}^{k,p}(\Omega')$ para todo conjunto aberto Ω' compactamente contido em Ω , isto é $\Omega' \subseteq \Omega$ e $\overline{\Omega'}$ é compacto. Essa inclusão será denotada por $\Omega' \subseteq \Omega$.

Ainda não temos todas as ferramentas necessárias para provar que as normas da definição anterior são de fato normas em $\mathcal{W}^{k,p}(\Omega)$ com $1\leqslant p\leqslant \infty$. Isso será feito após o Teorema 3.20 sobre as propriedades da derivada fraca, que são necessárias para verificar que $\|\cdot\|_{\mathcal{W}^{k,p}(\Omega)}$ satisfaz a definição de norma.

Um outro espaço importante é o espaço $\mathcal{W}_0^{k,p}(\Omega)$ ($H_0^k(\Omega)$ se p=2) que é definido como o fecho de $\mathcal{C}_c^\infty(\Omega)$ em $\mathcal{W}^{k,p}(\Omega)$. Ou seja, dada uma função em $u\in\mathcal{W}_0^{k,p}(\Omega)$ existe uma sequência (u_k) em $\mathcal{C}_c^\infty(\Omega)$ tal que $u_k\to u$ em $\mathcal{W}^{k,p}(\Omega)$. O teorema ?? mostra uma equivalência para as funções nesse espaço.

Observação: Essa não é a única forma de definir uma norma em $\mathcal{W}^{k,p}(\Omega)$, a norma que definimos acima é equivalente, por exemplo a norma

$$\sum_{|\alpha|\leqslant k} \|D^{\alpha}u\|_{\mathcal{L}^p(\Omega)},$$

com $1 \leq p \leq \infty$, e a norma $\|\cdot\|_{\mathcal{W}^{k,\infty}(\Omega)}$ é equivalente a

$$\max_{|\alpha| \leqslant k} \|D^{\alpha} u\|_{\mathcal{L}^{\infty}(\Omega)}.$$

O próximo exemplo ilustra um caso em que uma função pode ou não possuir derivada fraca dependendo da dimensão n do espaço Euclidiano e do expoente de integração p.

Exemplo 3.19. Seja $\Omega = B(\mathbf{0}, 1) \subseteq \mathbb{R}^n$ a bola aberta de raio 1 centrada na origem, e considere $u : \Omega \to \mathbb{R}$ dada por

$$x \mapsto \|x\|^{-\alpha},\tag{3.6}$$

onde $\alpha > 0$. Queremos verificar para quais valores de $\alpha > 0$, n e p a função u pertence ao espaço $\mathcal{W}^{1,p}(\Omega)$. Primeiramente, note que u é suave fora de $\mathbf{0}$ com

$$\frac{\partial u}{\partial x_i} = \frac{-\alpha x_i}{\|x\|^{\alpha+2}} \quad (x \neq \mathbf{0}),$$

e daí, como

$$Du(x) = \left(\frac{-\alpha x_1}{\|x\|^{\alpha+2}}, \dots, \frac{-\alpha x_n}{\|x\|^{\alpha+2}}\right) \quad (x \neq \mathbf{0}),$$

segue que

$$||Du(x)|| = \frac{|\alpha|}{||x||^{\alpha+1}} \quad (x \neq \mathbf{0}).$$

Seja $\phi \in \mathcal{C}^{\infty}_{c}(\Omega)$ e fixe $\varepsilon > 0$. Por integração por partes, temos que

$$\int_{\Omega \setminus B[0,\varepsilon]} u \frac{\partial \phi}{\partial x_i} \, dx = -\int_{\Omega \setminus B[0,\varepsilon]} \phi \frac{\partial u}{\partial x_i} \, dx + \int_{\partial B[0,\varepsilon]} u \phi \nu_i \, dS \tag{3.7}$$

onde $\nu = (\nu_1, \dots, \nu_n)$ denota o vetor normal unitário que aponta para dentro em $\partial B[\mathbf{0}, \varepsilon]$. Agora se $\alpha + 1 < n$, $||Du|| \in \mathcal{L}^1(\Omega)$. De fato, integrando ||Du|| sobre Ω , concluimos que

$$\int_{\Omega} \|Du\| \, dx = |\alpha| \int_{B(0,1)} \frac{1}{\|x\|^{\alpha+1}} \, dx.$$

Transformando em coordenadas polares, conseguimos simplificar essa integral da seguinte forma:

$$\int_{B(0,1)} \frac{1}{\|x\|^{\alpha+1}} dx = \int_0^1 \int_{\|x\|=r} \frac{1}{\|x\|^{\alpha+1}} dS dr = \int_0^1 \int_{\|x\|=r} \frac{1}{r^{\alpha+1}} dS dr = \int_0^1 \frac{1}{r^{\alpha+1}} \int_{\|x\|=r} dS dr,$$

onde a integral de superficie acima, é igual a área da esfera n-dimensional de raio r dada por

$$\frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}r^{n-1},$$

que por simplicidade, vamos denotar por $\sigma(n)r^{n-1}$. Dessa forma, chegamos a

$$\int_0^1 \frac{1}{r^{\alpha+1}} \int_{\|x\|=r} dS dr = \sigma(n) \int_0^1 r^{n-\alpha-2} dr = \sigma(n) \left(\frac{1^{n-\alpha-1}}{n-\alpha-1} - \frac{0^{n-\alpha-1}}{n-\alpha-1} \right).$$

Note que se $n-\alpha-1<0$ então $0^{n-\alpha-1}=\infty$. Sendo assim

$$\int_{\Omega} \|Du\| \, dx = \infty \iff \alpha + 1 > n.$$

Portanto $||Du|| \in \mathcal{L}^1(\Omega)$ desde que $\alpha + 1 < n$. Nesse caso, inferimos por () que

$$\left| \int_{\partial B[0,\varepsilon]} u \phi \nu_i \, dS \right| \leqslant \int_{\partial B[0,\varepsilon]} |u| |\phi| |\nu_i| \, dS \leqslant \|\phi\|_{\mathcal{L}^{\infty}(\Omega)} \int_{\partial B[0,\varepsilon]} |u| dS \leqslant \|\phi\|_{\mathcal{L}^{\infty}(\Omega)} \int_{\partial B[0,\varepsilon]} \varepsilon^{-\alpha} \, dS,$$

onde essa ultima integral pode ser calculada por meio de coordenadas polares de forma análoga ao que foi feito anteriormente, resultando em

$$\left| \int_{\partial B[0,\varepsilon]} u \phi \nu_i \, dS \right| \leqslant c \varepsilon^{n-1-\alpha} \to 0,$$

quando $\varepsilon \to 0$. Portanto, por () deduzimos que

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_i} \, dx = - \int_{\Omega} \phi \frac{\partial u}{\partial x_i} \, dx,$$

para toda $\phi \in \mathcal{C}_c^\infty(\Omega)$, desde que $0 < \alpha < n-1$. Além disso, $\|Du\| \in \mathcal{L}^p(\Omega)$ se, e somente se, $(\alpha+1)p < n$, esse cálculo é feito de forma análoga ao que foi feito para verificar quando $\|Du\| \in \mathcal{L}^1(\Omega)$. Consequentemente, $u \in \mathcal{W}^{1,p}(\Omega)$ se, e somente se $\alpha < \frac{n-p}{p}$. Em particular, $u \notin \mathcal{W}^{1,p}(\Omega)$ quando $p \geqslant n$.

Teorema 3.20 (Propriedades da derivada fraca). Sejam $u, v \in \mathcal{W}^{k,p}(\Omega)$ e α um multi-índice com $1 \leq |\alpha| \leq k$. Então

- (a) $D^{\beta}(D^{\alpha}u) = D^{\alpha}(D^{\beta}u) = D^{\alpha+\beta}u$ para todos multi-índices α e β com $|\alpha| + |\beta| \leq k$.
- **(b)** $D^{\alpha}u \in \mathcal{W}^{k-|\alpha|,p}(\Omega)$
- (c) (Linearidade) para todo $\lambda \in \mathbb{R}$, $\lambda u + v \in \mathcal{W}^{k,p}(\Omega)$ e

$$D^{\alpha}(\lambda u + v) = \lambda D^{\alpha} u + D^{\alpha} v$$

- (d) se Ω' é um aberto de Ω , então $u \in \mathcal{W}^{k,p}(\Omega')$
- (e) (Regra de Leibniz) se $\eta \in \mathcal{C}_c^{\infty}(\Omega)$, então $\eta u \in \mathcal{W}^{k,p}(\Omega)$ e

$$D^{\alpha}(\eta u) = \sum_{\sigma \leq \alpha} {\alpha \choose \sigma} D^{\sigma} \eta D^{\alpha - \sigma} u, \tag{3.8}$$

onde

$$\begin{pmatrix} \alpha \\ \sigma \end{pmatrix} = \frac{\alpha!}{\sigma!(\alpha - \sigma)!}, \quad \alpha! = \alpha_1! \cdots \alpha_n!$$

e $\sigma \leqslant \alpha$ significa $\sigma_i \leqslant \alpha_i$, para todo $j = 1, \ldots, n$.

Demonstração.

(a) Mostremos que $D^{\beta}D^{\alpha}u=D^{\alpha+\beta}u$. A demonstração para $D^{\alpha}D^{\beta}u$ é análoga. Com efeito, é verdade que

$$\int_{\Omega} D^{\alpha} u D^{\beta} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} D^{\beta} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha+\beta} \phi \, dx.$$

para toda $\phi \in \mathcal{C}^\infty_c(\Omega)$. Note que a ultima igualdade é válida pelo fato de ϕ ser uma função infinitamente diferenciável, então o operador D^α é a α -ésima derivada parcial no sentido usual. Dessa forma $D^\beta D^\alpha u = D^{\alpha+\beta} u$. Dito isso, utilizando a definição de derivada fraca, obtemos

$$(-1)^{|\alpha|} \int_{\Omega} u D^{\alpha+\beta} \phi \, dx = (-1)^{|\alpha|} (-1)^{|\alpha|+|\beta|} \int_{\Omega} \phi D^{\alpha+\beta} u \, dx = (-1)^{|\beta|} \int_{\Omega} \phi D^{\alpha+\beta} u \, dx.$$

Portanto $D^{\beta}D^{\alpha}u = D^{\alpha+\beta}u$ no sentido fraco.

- **(b)** Suponha que $D^{\alpha}u \notin \mathcal{W}^{k-|\alpha|,p}(\Omega)$, então existe um multi-índice β com $|\beta| \leqslant k-|\alpha|$ tal que $D^{\beta}(D^{\alpha}u) \notin \mathcal{L}^{p}(\Omega)$. Pelo item anterior temos que $D^{\alpha+\beta}u \notin \mathcal{L}^{p}(\Omega)$, o que é uma contradição, pois por hipótese $D^{\gamma}u \in \mathcal{L}^{p}(\Omega)$ para todo multi-índice γ com $|\gamma| \leqslant k$. Em particular como $|\beta| \leqslant k-|\alpha|$, tem-se $|\gamma| = |\alpha| + |\beta| \leqslant k$. Portanto $D^{\alpha}u \in \mathcal{W}^{k-|\alpha|,p}(\Omega)$.
 - (c) Note que

$$\int_{\Omega} (\lambda u + v) D^{\alpha} \phi \, dx = \int_{\Omega} \lambda u D^{\alpha} \phi \, dx + \int_{\Omega} v D^{\alpha} \phi \, dx = \lambda \int_{\Omega} u D^{\alpha} \phi \, dx + \int_{\Omega} v D^{\alpha} \phi \, dx.$$

Utilizando a definição de derivada fraca nas duas utlimas integrais acima, obtemos

$$\lambda \int_{\Omega} u D^{\alpha} \phi \, dx + \int_{\Omega} v D^{\alpha} \phi \, dx = \lambda (-1)^{|\alpha|} \int_{\Omega} \phi D^{\alpha} u \, dx + (-1)^{|\alpha|} \int_{\Omega} \phi D^{\alpha} v \, dx = \int_{\Omega} (\lambda D^{\alpha} u + D^{\alpha} v) \phi \, dx.$$

Portanto, $D^{\alpha}(\lambda u + v) = \lambda D^{\alpha}u + D^{\alpha}v$ no sentido fraco.

(d) Seja $\Omega' \subseteq \Omega$ um aberto, queremos verificar que $u \in \mathcal{W}^{k,p}(\Omega')$. De fato, basta verificar que as integrais

$$\int_{\Omega'} |u|^p dx \text{ e } \int_{\Omega'} |D^{\alpha}u|^p dx \text{ (} \forall \alpha \text{ multi-indice com } |\alpha| \leqslant k\text{)}$$

são finitas. De fato, é verdade que

$$\int_{\Omega'} |u|^p \, dx \leqslant \int_{\Omega} |u|^p \, dx < \infty$$

е

$$\int_{\Omega'} |D^{\alpha}u|^{p} dx \leqslant \int_{\Omega} |D^{\alpha}u|^{p} dx < \infty \ (\forall \alpha \text{ multi-indice com } |\alpha| \leqslant k),$$

ambas pelo fato de $u \in \mathcal{W}^{k,p}(\Omega)$. Assim $u \in \mathcal{W}^{k,p}(\Omega')$.

(e) Para mostrar que (3.8) é válida, utilizaremos indução sobre $|\alpha|$.

Com efeito, para $|\alpha|=1$, como $\eta, \phi \in \mathcal{C}_c^{\infty}(\Omega)$, temos que

$$D^{\alpha}(\eta\phi) = \phi D^{\alpha}\eta + \eta D^{\alpha}\phi.$$

Dessa forma,

$$\int_{\Omega} \eta u D^{\alpha} \phi \, dx = \int_{\Omega} u D^{\alpha} (\eta \phi) - \int_{\Omega} u \phi D^{\alpha} \eta \, dx.$$

Como η e ϕ têm suporte compacto, então $D^{\alpha}(\eta\phi)$ também tem. Dito isso, utilizando a definição de derivada fraca apenas na primeira integral do lado direito, chegamos a

$$\int_{\Omega} \eta u D^{\alpha} \phi \, dx = -\int_{\Omega} \eta \phi D^{\alpha} u \, dx - \int_{\Omega} u \phi D^{\alpha} \eta \, dx = -\int_{\Omega} (\eta D^{\alpha} u + u D^{\alpha} \eta) \phi \, dx.$$

Portanto, $D^{\alpha}(\eta u) = \eta D^{\alpha} u + u D^{\alpha} \eta$ como queriamos mostrar.

Agora seja m < k e suponha que (3.8) é válida para todo multi-índice α com $|\alpha| \leqslant m$ e toda função de teste η . Considere um multi-índice α com $|\alpha| = m+1$. Então α é da forma $\alpha = \beta + \gamma$ com $|\beta| = m$ e $|\gamma| = 1$. Deste modo, podemos escrever por **(a)** que

$$\int_{\Omega} \eta u D^{\alpha} \phi \, dx = \int_{\Omega} \eta u D^{\beta + \gamma} \phi \, dx = \int_{\Omega} \eta u D^{\beta} (D^{\gamma} \phi) \, dx = (-1)^{|\beta|} \int_{\Omega} D^{\beta} (\eta u) D^{\gamma} \phi \, dx.$$

Como $|\beta|=m$ podemos utilizar a hipótese de indução em $D^{\beta}(\eta u)$ e a γ -ésima derivada fraca. Assim, por **(c)**, deduzimos que

$$\int_{\Omega} \eta u D^{\alpha} \phi \, dx = (-1)^{|\beta|} \int_{\Omega} \sum_{\sigma \leqslant \beta} \binom{\beta}{\sigma} D^{\sigma} \eta D^{\beta - \sigma} u D^{\gamma} \phi \, dx = (-1)^{|\beta| + |\gamma|} \int_{\Omega} \left[\sum_{\sigma \leqslant \beta} \binom{\beta}{\sigma} D^{\gamma} (D^{\sigma} \eta D^{\beta - \sigma} u) \right] \phi \, dx.$$

Além disso, como $|\gamma|=1$, podemos aplicar a regra de Leibniz novamente, obtendo

$$\int_{\Omega} \eta u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \left[\sum_{\sigma \leq \beta} {\beta \choose \sigma} \left(D^{\rho} \eta D^{\alpha - \rho} u + D^{\sigma} \eta D^{\alpha - \sigma} u \right) \right] \phi \, dx \tag{3.9}$$

onde $\rho = \sigma + \gamma$. Note que podemos escrever o somatório acima da seguinte forma:

$$\sum_{\gamma \leqslant \rho \leqslant \alpha} \binom{\alpha - \gamma}{\rho - \gamma} D^{\rho} \eta D^{\alpha - \rho} u + \sum_{0 \leqslant \sigma \leqslant \beta} \binom{\alpha - \gamma}{\sigma} D^{\sigma} \eta D^{\alpha - \sigma} u,$$

que ainda pode ser expandido em quatro somatórios como abaixo:

$$\sum_{\gamma \leqslant \rho \leqslant \beta} {\alpha - \gamma \choose \rho - \gamma} D^{\rho} \eta D^{\alpha - \rho} u + \sum_{\beta < \rho \leqslant \alpha} {\alpha - \gamma \choose \rho - \gamma} D^{\rho} \eta D^{\alpha - \rho} u + \sum_{0 \leqslant \sigma < \gamma} {\alpha - \gamma \choose \sigma} D^{\sigma} \eta D^{\alpha - \sigma} u + \sum_{\gamma \leqslant \sigma \leqslant \beta} {\alpha - \gamma \choose \sigma} D^{\sigma} \eta D^{\alpha - \sigma} u.$$
(3.10)

Porém, note que $0 \leqslant \sigma < \gamma$ implica em $\sigma = 0$. Com efeito, $0 \leqslant \sigma$ significa que $0 \leqslant \sigma_i$ para todo $i = 1, \ldots, n$ e $\sigma < \gamma$ significa que existe um $j = 1, \ldots, n$ tal que $\sigma_j < \gamma_j$. Como $|\gamma| = 1$, suponha sem perda de generalidade que $\gamma = e_1 = (1, 0, \ldots, 0)$. Dessa forma, para j = 1, concluimos que $0 \leqslant \sigma_1 < 1$. Como $\sigma_1 \in \mathbb{N}$ segue que $\sigma_1 = 0$. Por outro lado, para $i = 2, \ldots, n$, vale $0 \leqslant \sigma_i < 0$, que implica em $\sigma_i = 0$. Portanto $\sigma = 0$. Da mesma forma, $\beta < \rho \leqslant \alpha$ implica em $\rho = \alpha$. Assim, (3.10) pode ser escrito da seguinte forma:

$$\eta D^{\alpha} u + \sum_{\gamma \leqslant \rho \leqslant \beta} {\alpha - \gamma \choose \rho - \gamma} D^{\rho} \eta D^{\alpha - \rho} u + \sum_{\gamma \leqslant \sigma \leqslant \beta} {\alpha - \gamma \choose \sigma} D^{\sigma} \eta D^{\alpha - \sigma} u + u D^{\alpha} \eta. \tag{3.11}$$

Por fim, a menos de uma mudança de variaveis, escrevemos (3.11) como

$$\sum_{\sigma \leq \alpha} \binom{\alpha}{\sigma} D^{\sigma} \eta D^{\alpha - \sigma} u,$$

pois

$$\begin{pmatrix} \alpha - \gamma \\ \sigma \end{pmatrix} + \begin{pmatrix} \alpha - \gamma \\ \sigma - \gamma \end{pmatrix} = \begin{pmatrix} \alpha \\ \sigma \end{pmatrix}$$

е

$$\binom{\alpha}{0} = 1 = \binom{\alpha}{\alpha}.$$

Sendo assim, voltando para a equação (3.9), temos que

$$\int_{\Omega} \eta u D^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} \left[\sum_{\sigma \leq \alpha} \binom{\alpha}{\sigma} D^{\sigma} \eta D^{\alpha - \sigma} u \right] \phi \, dx.$$

Portanto

$$D^{\alpha}(\eta u) = \sum_{\sigma \leq \alpha} {\alpha \choose \sigma} D^{\sigma} \eta D^{\alpha - \sigma} u$$

como queriamos mostrar.

Com os resultados obtidos, agora é possível verificar que os espaços de Sobolev $W^{k,p}(\Omega)$ são espaços de Banach.

Teorema 3.21. $(\mathcal{W}^{k,p}(\Omega), \|\cdot\|_{\mathcal{W}^{k,p}(\Omega)})$, com $1 \leqslant p \leqslant \infty$ é um espaço vetorial normado.

Demonstração. Observe que

1. Seja $u \in \mathcal{W}^{k,p}(\Omega)$. Daí

$$||u||_{\mathcal{W}^{k,p}(\Omega)} = 0 \iff \sum_{|\alpha| \leq k} ||D^{\alpha}u||_{\mathcal{L}^p(\Omega)}^p = 0 \iff ||D^{\alpha}u||_{\mathcal{L}^p(\Omega)}^p = 0 \iff D^{\alpha}u = 0,$$

para todo multi-índice α com $|\alpha| \leqslant k$. Em particular, se $\alpha = (0, ..., 0)$, $u = D^{\alpha}u = 0$. Por outro lado, se u = 0, $D^{\alpha}u = 0$ para todo multi-índice α . Sendo assim $||u||_{\mathcal{W}^{k,p}(\Omega)} = 0$.

2. Sejam $\lambda \in \mathbb{R}$ e $u \in \mathcal{W}^{k,p}(\Omega)$. Sendo assim, pelo Teorema 3.20, podemos escrever

$$\begin{split} \|\lambda u\|_{\mathcal{W}^{k,p}(\Omega)}^p &= \sum_{|\alpha| \leqslant k} \|D^{\alpha}(\lambda u)\|_{\mathcal{L}^p(\Omega)}^p = \sum_{|\alpha| \leqslant k} \|\lambda D^{\alpha} u\|_{\mathcal{L}^p(\Omega)}^p \\ &= |\lambda|^p \sum_{|\alpha| \leqslant k} \|D^{\alpha} u\|_{\mathcal{L}^p(\Omega)}^p = |\lambda|^p \|u\|_{\mathcal{W}^{k,p}(\Omega)}^p. \end{split}$$

Portanto, $\|\lambda u\|_{\mathcal{W}^{k,p}(\Omega)} = |\lambda| \|u\|_{\mathcal{W}^{k,p}(\Omega)}.$

3. Sejam $u, v \in \mathcal{W}^{k,p}(\Omega)$. Daí, pelo Teorema 3.20, segue que

$$\|u+v\|_{\mathcal{W}^{k,p}(\Omega)} = \left(\sum_{|\alpha| \leqslant k} \|D^{\alpha}u+D^{\alpha}v\|_{\mathcal{L}^{p}(\Omega)}^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{|\alpha| \leqslant k} \left(\|D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)}+\|D^{\alpha}v\|_{\mathcal{L}^{p}(\Omega)}\right)^{p}\right)^{\frac{1}{p}}$$

Utilizando a desigualdade de Minkowski em ℓ^p

$$\left(\sum_{|\alpha|\leqslant k} \left(\|D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)} + \|D^{\alpha}v\|_{\mathcal{L}^{p}(\Omega)}\right)^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{|\alpha|\leqslant k} \|D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)}^{p}\right)^{\frac{1}{p}} + \left(\sum_{|\alpha|\leqslant k} \|D^{\alpha}v\|_{\mathcal{L}^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}$$

Ou seja,

$$||u+v||_{\mathcal{W}^{k,p}(\Omega)} \leqslant ||u||_{\mathcal{W}^{k,p}(\Omega)} + ||v||_{\mathcal{W}^{k,p}(\Omega)}.$$

Portanto, $\|\cdot\|_{\mathcal{W}^{k,p}(\Omega)}$ é uma norma em $\mathcal{W}^{k,p}(\Omega)$ com $1 \leq p \leq \infty$.

Teorema 3.22.
$$(\mathcal{W}^{k,p}(\Omega), \|\cdot\|_{\mathcal{W}^{k,p}(\Omega)})$$
, com $1 \leqslant p \leqslant \infty$, é completo

Demonstração. Seja (u_n) uma sequência de Cauchy em $\mathcal{W}^{k,p}(\Omega)$, com $1 \leqslant p < \infty$. Isto é, dado $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que

$$||u_n - u_m||_{\mathcal{W}^{k,p}(\Omega)} < \varepsilon$$

para todo $n, m > n_0$. Note que

$$\|D^{\alpha}u_{n}-D^{\alpha}u_{m}\|_{\mathcal{L}^{p}(\Omega)}^{p}\leqslant \sum_{|\alpha|\leqslant k}\|D^{\alpha}u_{n}-D^{\alpha}u_{m}\|_{\mathcal{L}^{p}(\Omega)}^{p}=\|u_{n}-u_{m}\|_{\mathcal{W}^{k,p}(\Omega)}^{p}<\varepsilon^{p},$$

para todo $n, m > n_0$ e α multi-índice com $|\alpha| \leq k$. Ou seja, $(D^{\alpha}u_n)$ é uma sequência de Cauchy em $\mathcal{L}^p(\Omega)$, que é um espaço completo (Teorema 1.83). Dito isso, podemos escrever

$$D^{\alpha}u_n \to u_{\alpha} \text{ em } \mathcal{L}^p(\Omega).$$

Em particular, se $\alpha=(0,\ldots,0)$ denotamos $D^{\alpha}u_n$ por u_n e u_{α} por u. Por fim, precisamos mostrar que

$$D^{\alpha}u = u_{\alpha}$$

Com efeito, pelo Teorema 3.7, utlizando a definição de derivada fraca e passando a uma subsequência (se necessário), obtemos

$$\int_{\Omega} u D^{\alpha} \phi \, dx = \int_{\Omega} (\lim u_n) D^{\alpha} \phi = \lim_{\Omega} \int_{\Omega} u_n D^{\alpha} \phi \, dx = \lim_{\Omega} (-1)^{|\alpha|} \int_{\Omega} D^{\alpha} u_n \phi \, dx$$
$$= (-1)^{|\alpha|} \int_{\Omega} \lim_{\Omega} D^{\alpha} u_n \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} u_n \phi \, dx.$$

Portanto, $D^{\alpha}u = u_{\alpha}$, e consequentemente, $u_n \to u$ em $\mathcal{W}^{k,p}(\Omega)$ com $1 \leq p < \infty$.

Por outro lado, considere (u_n) uma sequência de Cauchy em $\mathcal{W}^{k,\infty}(\Omega)$. Então, dado $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

$$||u_n - u_m||_{\mathcal{W}^{k,\infty}(\Omega)} < \varepsilon$$
,

para todo $n, m > n_0$. Além disso, vale o seguinte:

$$\|D^{\alpha}u_{n}-D^{\alpha}u_{m}\|_{\mathcal{L}^{\infty}(\Omega)}\leqslant \sum_{|\alpha|\leqslant k}\|D^{\alpha}u_{n}-D^{\alpha}u_{m}\|_{\mathcal{L}^{\infty}(\Omega)}=\|u_{n}-u_{m}\|_{\mathcal{W}^{k,\infty}(\Omega)}<\varepsilon,$$

para todo $n, m > n_0$ e α multi-índice com $|\alpha| \leq k$. Isto nos diz que $(D^{\alpha}u_n)$ é uma sequência de Cauchy em $\mathcal{L}^{\infty}(\Omega)$ que é um espaço completo (Teorema 1.88). Sendo assim, obtemo

$$D^{\alpha}u_n \to u_{\alpha} \text{ em } \mathcal{L}^{\infty}(\Omega),$$

De forma análoga ao caso $1 \leqslant p < \infty$, mostramos que $D^{\alpha}u = u_{\alpha}$ e portanto $u_n \to u$ em $\mathcal{W}^{k,\infty}(\Omega)$.

3.4 Aproximações

A definição de derivada fraca, em muitos casos não é suficiente para mostrar propriedades mais profundas dos espaços de Sobolev. Uma forma de contornar esse problema é procurando formas de aproximar em $\mathcal{W}^{k,p}$ por uma sequência de funções suaves. Esse processo é conhecido como molificação ou regularização e é feito por meio de uma convolução da função a ser aproximada e uma função especial chamada função molificadora. Nesse capítulo, apresentaremos alguns resultados e exemplos da teoria de aproximação, que é de extrema importância no estudo de equações diferenciais parciais.

Um exemplo de função molificadora é

$$\eta(x) = \begin{cases}
c \exp\left(\frac{1}{|x|^2 - 1}\right) & \text{se } |x| < 1; \\
0 & \text{se } |x| \ge 1,
\end{cases}$$
(3.12)

conhecida como molificador de Friedrich, onde c > 0 é uma constante tal que

$$\int_{\mathbb{R}^n} \eta \, dx = 1.$$

De forma geral, uma função molificadora é uma função η de classe \mathcal{C}^{∞} com suporte compacto satifazendo.

- $\bullet \int_{\mathbb{R}^n} \eta \, dx = 1$
- $\lim_{\varepsilon \to 0} \varepsilon^{-n} \eta(x/\varepsilon) = \delta(x)$, onde δ é a função delta de Dirac.

Dada uma função molificadora, para cada $\varepsilon > 0$, definimos

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \eta\left(\frac{x}{\varepsilon}\right) \tag{3.13}$$

para todo $x \in \mathbb{R}^3$. Essa função η_{ε} é de classe \mathcal{C}^{∞} , supp $\eta_{\varepsilon} \subseteq B[0, \varepsilon]$ e

$$\int_{\mathbb{D}^n} \eta_{\varepsilon} \, dx = 1.$$

Essa aplicação será utilizada para realizar as convoluções que aproximam as funções em $\mathcal{W}^{k,p}(\Omega)$. Se u é uma função locamente integrável, definimos a molificação de u por $u^{\varepsilon} = \eta_{\varepsilon} * u$, isto é

$$u^{\varepsilon}(x) = \int_{\Omega} \eta_{\varepsilon}(x - y) u(y) = \int_{B[0, \varepsilon]} \eta_{\varepsilon}(y) u(x - y) dy,$$

para todo $x \in \mathbb{R}^n$.

O primeiro teorema que vamos estudar demonstra algumas propriedades importantes sobre essas aproximações.

Teorema 3.23 (Aproximação local por funções suaves). Seja $u \in \mathcal{W}^{k,p}(\Omega)$ com $1 \leqslant p < \infty$ e defina

$$u^{\varepsilon} = \eta_{\varepsilon} * u \text{ em } \Omega_{\varepsilon},$$

onde

$$\Omega_{\varepsilon} = \{ x \in \Omega ; d(x, \partial \Omega) > \varepsilon \}.$$

Então,

- (a) $u^{\varepsilon} \in \mathcal{C}^{\infty}(\Omega_{\varepsilon})$, para cada $\varepsilon > 0$;
- **(b)** $u^{\varepsilon} \to u$ em $\mathcal{W}_{loc}^{k,p}(\Omega)$, quando $\varepsilon \to 0$.

Demonstração.

(a) Seja $g(x) = (x - y)/\varepsilon$. Logo, pela Regra da cadeia

$$\frac{\partial}{\partial x_{i}} \left[\eta_{\varepsilon}(x - y) \right] = \frac{1}{\varepsilon^{n}} \frac{\partial}{\partial x_{i}} \left[\eta \left(\frac{x - y}{\varepsilon} \right) \right]
= \frac{1}{\varepsilon^{n}} \sum_{k=1}^{n} \frac{\partial \eta}{\partial x_{k}} \left(\frac{x - y}{\varepsilon} \right) \frac{\partial g_{k}}{\partial x_{i}} (x) = \frac{1}{\varepsilon^{n+1}} \frac{\partial \eta}{\partial x_{i}} \left(\frac{x - y}{\varepsilon} \right),$$
(3.14)

para todo $i=1,\ldots,n$ Por outro lado, sejam $x\in\Omega_{\varepsilon},\ i=1,\ldots,n$ e h de forma que $x+he_i\in\Omega_{\varepsilon}$. Deste modo,

$$\frac{u^{\varepsilon}(x+he_{i})-u^{\varepsilon}(x)}{h}=\frac{1}{\varepsilon^{n}}\int_{\Omega}\frac{1}{h}\left[\eta\left(\frac{x+he_{i}-y}{\varepsilon}\right)-\eta\left(\frac{x-y}{\varepsilon}\right)\right]u(y)\,dy. \tag{3.15}$$

Note que, novamente utilizando a regra da cadeia e (3.14)

$$\frac{1}{h} \left[\eta \left(\frac{x + he_i - y}{\varepsilon} \right) - \eta \left(\frac{x - y}{\varepsilon} \right) \right] \to \frac{1}{\varepsilon} \frac{\partial \eta}{\partial x_i} \left(\frac{x - y}{\varepsilon} \right) \tag{3.16}$$

quando $h \to 0$. Consequentemente, por (3.15), (3.16) e o Teorema da converência dominada, temos que

$$\frac{\partial u^{\varepsilon}}{\partial x_{i}} = \int_{\Omega} \frac{1}{\varepsilon^{n+1}} \frac{\partial \eta}{\partial x_{i}} \left(\frac{x-y}{\varepsilon} \right) u(y) \, dy = \int_{\Omega} \frac{\partial \eta_{\varepsilon}}{\partial x_{i}} (x-y) u(y) \, dy.$$

Indutivamente, mostramos que $D^{\alpha}u^{\varepsilon}$ existe e

$$D^{\alpha}u^{\varepsilon} = D^{\alpha}\eta_{\varepsilon} * u.$$

O fato de u^{ε} ser de classe \mathcal{C}^{∞} segue do fato de η_{ε} ser de classe \mathcal{C}^{∞} por definição e u ser integrável.

(b) Afirmamos que a α -ésima derivada parcial de u^{ε} no sentido usual é igual a convulução de η_{ε} com a α -ésima derivada parcial fraca de u para todo α com $|\alpha| \leq k$. Consequentemente

$$D^{\alpha}u^{\varepsilon}=\eta_{\varepsilon}*D^{\alpha}u.$$

Com efeito, no item (a) vimos que $D^{\alpha}u^{\varepsilon}=D^{\alpha}\eta_{\varepsilon}*u$. Primeiramente, se g(x)=x-y, temos

$$D_x^{e_i}\eta_{\varepsilon}(x-y) = \frac{\partial}{\partial x_i}(\eta_{\varepsilon} \circ g)(x) = \sum_{k=1}^n \frac{\partial \eta_{\varepsilon}}{\partial x_k}(x-y)\frac{\partial g_k}{\partial x_i}(x) = \frac{\partial \eta_{\varepsilon}}{\partial x_i}(x-y).$$

Por outro lado, se h(y) = x - y, obtemos

$$D_y^{e_i}\eta_{\varepsilon}(x-y) = \frac{\partial}{\partial y_i}(\eta_{\varepsilon} \circ h)(x) = \sum_{k=1}^n \frac{\partial \eta_{\varepsilon}}{\partial y_k}(x-y)\frac{\partial h_k}{\partial y_i}(y) = -\frac{\partial \eta_{\varepsilon}}{\partial y_i}(x-y).$$

Dessa forma, ao menos de uma mudança de notação, chegamos a

$$D_{x}^{e_{i}}\eta_{\varepsilon}(x-y) = -D_{y}^{e_{i}}\eta_{\varepsilon}(x-y).$$

Repetindo esse cálculo $|\alpha|$ vezes, obtemos

$$D_x^{\alpha} \eta_{\varepsilon}(x - y) = (-1)^{|\alpha|} D_y^{\alpha} \eta_{\varepsilon}(x - y).$$

Deste modo, podemos escrever

$$D^{\alpha}u^{\varepsilon}(x) = \int_{\Omega} D_{x}^{\alpha} \eta_{\varepsilon}(x-y)u(y) dy = (-1)^{|\alpha|} \int_{\Omega} D_{y}^{\alpha} \eta_{\varepsilon}(x-y)u(y) dy.$$

Fixando $x \in \Omega_{\varepsilon}$, a função $\phi_x(y) = \eta_{\varepsilon}(x - y)$ é suave e tem suporte compacto em Ω . Aplicando a definição de derivada fraca com função teste $\eta_{\varepsilon}(x - y)$, segue que

$$(-1)^{|\alpha|} \int_{\Omega} D_y^{\alpha} \eta_{\varepsilon}(x-y) u(y) \, dy. = (-1)^{|\alpha|+|\alpha|} \int_{\Omega} \eta_{\varepsilon}(x-y) D^{\alpha} u(y) \, dy.$$

Portanto, deduzimos que

$$D^{\alpha}u^{\varepsilon} = \eta_{\varepsilon} * D^{\alpha}u. \tag{3.17}$$

Além disso, afirmamos que dados abertos V,W tais que $V \subseteq W \subseteq \Omega$, uma função $v \in \mathcal{L}^p_{loc}(\Omega)$ e $\varepsilon > 0$ suficientemente pequeno, inferimos

$$\|v^{\varepsilon}\|_{\mathcal{L}^{p}(V)} \leqslant \|v\|_{\mathcal{L}^{p}(W)}. \tag{3.18}$$

Com efeito, note que se $1 e <math>x \in V$, é verdade que

$$|v^{\varepsilon}(x)| = \left| \int_{B[x,\varepsilon]} \eta_{\varepsilon}(x-y)v(y) \, dy \right| \leqslant \int_{B[x,\varepsilon]} \left| \eta_{\varepsilon}^{1-\frac{1}{p}}(x-y)\eta_{\varepsilon}^{\frac{1}{p}}(x-y)v(y) \right| \, dy.$$

Utilizando a desigualdade de Hölder na ultima integral, obtemos

$$\int_{B[x,\varepsilon]} \left| \eta_{\varepsilon}^{1-\frac{1}{p}}(x-y) \eta_{\varepsilon}^{\frac{1}{p}}(x-y) v(y) \right| dy \leqslant \left(\int_{B[x,\varepsilon]} \eta_{\varepsilon}(x-y) \, dy \right)^{1-\frac{1}{p}}$$

$$\left(\int_{B[x,\varepsilon]} \eta_{\varepsilon}(x-y) |v(y)|^{p} \, dy \right)^{\frac{1}{p}}.$$

Como $\int_{B[x,arepsilon]}\eta_{arepsilon}(x-y)\,dy=1$ e utilizando o Teorema de Fubini, segue que

$$\int_{V} |v^{\varepsilon}(x)|^{p} dx = \int_{V} \int_{B[x,\varepsilon]} \eta_{\varepsilon}(x-y) |v(y)|^{p} dy dx \leqslant \int_{W} |v(y)|^{p} \int_{B[y,\varepsilon]} \eta_{\varepsilon}(x-y) dx dy.$$

Isto é,

$$||v^{\varepsilon}||_{\mathcal{L}^p(V)} \leqslant ||v||_{\mathcal{L}^p(W)}.$$

Por fim, seja $V \subseteq \Omega$ um aberto. Afirmamos que

$$D^{\alpha}u^{\varepsilon} \to D^{\alpha}u \text{ em } \mathcal{L}^{p}(V)$$
 (3.19)

quando $\varepsilon \to 0$, para todo α com $|\alpha| \leqslant k$. De fato, seja W um aberto de forma que $V \in W \in \Omega$, $\delta > 0$. Utilizando a afirmação anterior com $v^{\varepsilon} = D^{\alpha}u^{\varepsilon}$ e $v = D^{\alpha}u$ escolhendo $w \in \mathcal{C}(W)$ tal que

$$||D^{\alpha}u - w||_{\mathcal{L}^{p}(W)} < \delta.$$

Temos

$$||D^{\alpha}u^{\varepsilon} - D^{\alpha}u||_{\mathcal{L}^{p}(V)} \leq 2\delta + ||w^{\varepsilon} - w||_{\mathcal{L}^{p}(V)}$$

Como $w \in \mathcal{C}(W)$, então $w^{\varepsilon} \to w$ uniformemente em V quando $\varepsilon \to 0$. Portanto, $D^{\alpha}u^{\varepsilon} \to D^{\alpha}u$ em $\mathcal{L}^{p}(V)$. Dessa forma,

$$\|u^{\varepsilon} - u\|_{\mathcal{W}^{k,p}(V)}^{p} = \sum_{|\alpha| \leqslant k} \|D^{\alpha}u^{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(V)}^{p} \to 0$$

quando $\varepsilon \to 0$. Portanto,

$$u^{\varepsilon} \to u \text{ em } \mathcal{W}^{k,p}_{\text{loc}}(\Omega),$$

como queriamos mostrar

Exemplo 3.24. A função u(x) = |x| definida no intervalo aberto $\Omega = (-1,1) \subseteq \mathbb{R}$ é um exemplo clássico de função que não é diferenciável. É fácil verificar que $u \in \mathcal{W}^{1,p}(\Omega)$. Com efeito, dada uma função $\phi \in \mathcal{C}_c^{\infty}(\Omega)$ temos que

$$\int_{\Omega} u\phi' \, dx = \int_{-1}^{1} u\phi' \, dx = \int_{-1}^{0} u\phi' \, dx + \int_{0}^{1} u\phi' \, dx.$$

Utlizando integração por partes, obtemos

$$\int_{\Omega} u\phi' = -\int_{-1}^{0} -\phi \, dx - \int_{0}^{1} \phi \, dx - x\phi \Big|_{-1}^{0} + x\phi \Big|_{0}^{1} = -\int_{-1}^{0} -\phi \, dx - \int_{0}^{1} \phi \, dx - \phi(-1) + \phi(1)$$

Porem, ϕ tem suorte compacto, logo, se anula em $\partial\Omega = \{-1,1\}$. Dito isso

$$\int_{\Omega} u\phi' \, dx = -\int_{-1}^{0} -\phi \, dx - \int_{0}^{1} \phi \, dx = -\int_{\Omega} \operatorname{sgn}(x)\phi \, dx.$$

Portanto

$$u' = sgn$$

no sentido fraco, onde

$$sgn(x) = \begin{cases} 1 & se \ x > 0 \\ 0 & se \ x = 0 \\ -1 & se \ x < 0 \end{cases}$$

Além disso

$$\int_{\Omega} |\operatorname{sgn}(x)|^p \, dx = \int_{-1}^1 1^p \, dx = \mu((-1,1)) = 2 < \infty,$$

onde μ é a medida de Lebesgue. Assim, $u' \in \mathcal{L}^p(\Omega)$ e, portanto, $u \in \mathcal{W}^{1,p}(\Omega)$ para para $1 \leq p < \infty$. Vamos utilizar a convolução para encontrar uma aproximação suave de u. Seja $\eta : \mathbb{R} \to \mathbb{R}$ dada por

$$\eta(x) = \begin{cases} c \exp\left(\frac{1}{x^2 - 1}\right) & \text{se } |x| \leq 1; \\ 0 & \text{se } |x| > 1, \end{cases}$$

onde c é determinado de forma que

$$\int_{\mathbb{R}} \eta \, dx = 1,$$

isto é,

$$c = \left(\int_{\mathbb{R}} \exp\left(\frac{1}{x^2 - 1}\right) \, dx \right)^{-1}.$$

Figura 3.2: Aproximações suaves da função |x| (em preto) por meio da convolução com uma função molificadora η_{ε} com $\varepsilon=1,0.5,0.25$

Fonte: Autoral

Infelizmente, a função η não tem primitiva que pode ser expressa por meio de funções elementares, então é necessário utilizar um método numérico, ou expansão em Taylor. Logo, definimos a função molificadora $\eta_{\varepsilon}: \mathbb{R} \to \mathbb{R}$ por

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon} \eta\left(\frac{x}{\varepsilon}\right).$$

para todo $x \in \mathbb{R}^n$. Note que

$$\int_{\mathbb{R}} \eta_{arepsilon} \, dx = 1 \; \; {
m e \; \; supp} \, \eta = [-arepsilon, arepsilon].$$

Portanto, podemos utilizar essa função para aproximar u. Com efeito,

$$u^{\varepsilon}(x) = \int_{[-\varepsilon,\varepsilon]} \eta_{\varepsilon}(x) u(x-y) dy.$$

A Figura 3.2 foi feita utilizando um método numérico para resolver essa integral para diferentes valores de ε .

Exemplo 3.25. Seja $\Omega=(-1,1)\times(-1,1)\subseteq\mathbb{R}^2$. A função $u:\Omega\to\mathbb{R}$ dada por

$$u(x_1, x_2) = |x_1|^{\frac{1}{2}} + |x_2|^{\frac{1}{2}}$$

não possui derivada no sentido usual pelo fato de $|\cdot|$ não ser diferenciável. Por outro lado, u possui derivadas parciais fracas em $\mathcal{L}^p(\Omega)$, quando 0 , dada por

$$D^{e_i}u(x_1,x_2)=\frac{1}{2}\mathrm{sgn}(x_i)|x_i|^{-\frac{1}{2}}.$$

Com efeito, vamos calcular a derivada parcial fraca em relação a *i*-ésima coordenada. Utilizando integração por partes, obtemos

$$\int_{\Omega} u D^{e_i} \phi \, dx = \int_{\partial \Omega} u \phi \nu^i \, ds - \int_{\Omega} \phi D^{e_i} u \, dx, \tag{3.20}$$

Figura 3.3: Funções η e η_{ε} com $\varepsilon=0.3$ Fonte: Autoral

onde $\phi \in \mathcal{C}^{\infty}_{c}(\Omega)$ e $\nu = (\nu_{1}, \nu_{2})$ é o vetor normal unitário que aponta para dentro em $\partial\Omega$. Para calcular $D^{e_{i}}u$ precisamos dividir o domínio Ω em Ω_{1} , Ω_{2} , Ω_{3} e Ω_{4} , onde Ω_{i} é a restrição ao i-ésimo quadrante (ver Figura 3.4).

Figura 3.4: Domínio da função $u(x_1, x_2) = |x_1|^{\frac{1}{2}} + |x_2|^{\frac{1}{2}}$ Fonte: Autoral

Note que em $\Omega_1=(0,1)\times(0,1)$, $u(x_1,x_2)=x_1^{\frac{1}{2}}+x_2^{\frac{1}{2}}$. Logo, nesse conjunto $D^{e_i}u$ existe no sentido usual e é dada por

$$D^{e_i}u = \frac{1}{2}x_i^{-\frac{1}{2}}.$$

De forma análoga, deduzimos que

$$D^{e_i}u(x_1, x_2) = \frac{1}{2}(-x_i)^{-\frac{1}{2}}$$
 em Ω_2 e Ω_3 ,
 $D^{e_i}u(x_1, x_2) = \frac{1}{2}x_i^{-\frac{1}{2}}$ em Ω_4 .

Dito isso, concluimos que

$$\int_{\Omega} \phi D^{e_i} u \, dx = \int_{\Omega_1} \frac{1}{2} x_i^{-\frac{1}{2}} \phi \, dx + \int_{\Omega_2} \frac{1}{2} (-x_i)^{-\frac{1}{2}} \phi \, dx + \int_{\Omega_3} \frac{1}{2} (-x_i)^{-\frac{1}{2}} \phi \, dx + \int_{\Omega_4} \frac{1}{2} x_i^{-\frac{1}{2}} \phi \, dx$$

que podemos escrever como

$$\int_{\Omega} \phi D^{e_i} u \, dx = \int_{\Omega_1 \cup \Omega_4} \frac{1}{2} x_i^{-\frac{1}{2}} \phi \, dx + \int_{\Omega_2 \cup \Omega_3} \frac{1}{2} (-x_i)^{-\frac{1}{2}} \phi \, dx = \frac{1}{2} \int_{\Omega} \operatorname{sgn}(x_i) |x_i|^{-\frac{1}{2}} \phi \, dx$$

Por fim, como ϕ tem suporte compacto em Ω , ϕ se anula em $\partial\Omega$. Dessa forma

$$\int_{\partial\Omega} u\phi \nu^i \, ds = 0.$$

Portanto, por (3.20) chegamos a

$$\int_{\Omega} u D^{e_i} \phi \, dx = -\int_{\Omega} \frac{1}{2} \operatorname{sgn}(x_i) |x_i|^{-\frac{1}{2}} \phi \, dx.$$

Isto é,

$$D^{e_i}u(x_1, x_2) = \frac{1}{2}\text{sgn}(x_i)|x_i|^{-\frac{1}{2}}$$

como queriamos mostrar. Além disso,

$$\int_{\Omega} |D^{e_i}(x_1, x_2)|^p dx = \int_{-1}^1 \int_{-1}^1 \left| \frac{1}{2} \operatorname{sgn}(x_i) |x_i|^{-\frac{1}{2}} \right|^p dx_i dx_j = \frac{1}{2^p} \int_{-1}^1 \int_{-1}^1 |\operatorname{sgn}(x_i)|^p |x_i|^{-\frac{p}{2}} dx_i dx_j.$$

Utilizando o Teorema de Fubini, encontramos

$$\frac{1}{2^{p}} \int_{-1}^{1} \int_{-1}^{1} |\operatorname{sgn}(x_{i})|^{p} |x_{i}|^{-\frac{p}{2}} dx_{i} dx_{j} = \frac{1}{2^{p}} \int_{-1}^{1} dx_{j} \int_{-1}^{1} |\operatorname{sgn}(x_{i})|^{p} |x_{i}|^{-\frac{p}{2}} dx_{i} = \frac{1}{2^{p-1}} \int_{-1}^{1} |\operatorname{sgn}(x_{i})|^{p} |x_{i}|^{-\frac{p}{2}} dx_{i}.$$

Dito isso, precisamos ver para quais valores de p essa integral é finita. Sendo assim

$$\frac{1}{2^{p-1}} \int_{-1}^{1} |\operatorname{sgn}(x_i)|^p |x_i|^{-\frac{p}{2}} dx_i = \frac{1}{2^{p-2}} \int_{0}^{1} x_i^{-\frac{p}{2}} dx = \frac{1}{2^{p-2}} \left[-\frac{1^{-\frac{p}{2}+1} - 0^{-\frac{p}{2}+1}}{\frac{p}{2} - 1} \right]$$

 $0^{-\frac{p}{2}+1} < \infty$ quando p < 2. Portanto, $u \in \mathcal{W}^{1,p}(\Omega)$ desde que 0 .

Agora defina $\eta: \mathbb{R}^2 \to \mathbb{R}$ por

$$\eta(x) = \begin{cases} c \exp\left(\frac{1}{|x|^2 - 1}\right) & \text{se } |x| < 1; \\ 0 & \text{se } |x| \geqslant 1, \end{cases}$$

(ver Figura 3.5) e η_{ε} da mesma forma que foi feita no exemplo anterior. Novamente utilizaremos a convolução para encontrar uma aproximação suave para u, dada por

$$u^{\varepsilon}(x_1, x_2) = \int_{\Omega} \eta(x_1, x_2) u(x_1 - y_1, x_2 - y_2) dy.$$

Utilizando um método numérico para integrais duplas, podemos encontrar uma solução aproximada para u^{ε} . A Figura 3.6 mostra o gráfico de u, onde é possível ver os pontos onde a função não é diferenciável, e a sua aproximação suave u^{ε} .

Teorema 3.26 (Meyers-Serrin). Sejam Ω um aberto limitado e $u \in \mathcal{W}^{k,p}(\Omega)$, com $1 \leq p < \infty$. Então, existe uma sequência $(u_n) \subseteq \mathcal{C}^{\infty}(\Omega) \cap \mathcal{W}^{k,p}(\Omega)$ tal que

$$u_n \to u \text{ em } \mathcal{W}^{k,p}(\Omega).$$

Figura 3.5: η e η_{ε} com $\varepsilon=0.5$ Fonte: Autoral

Figura 3.6: À esquerda, a função $u(x_1,x_2)=|x_1|^{\frac{1}{2}}+|x_2|^{\frac{1}{2}}$ e à direita sua aproximação suave u^ε com $\varepsilon=0.25$ Fonte: Autoral

Demonstração. Primeiramente, temos que

$$\Omega = \bigcup_{i=1}^{\infty} \Omega_i,$$

onde $\Omega_i = \{x \in \Omega ; d(x, \partial\Omega) > \frac{1}{i}\}$. Defina $\Omega_i' = \Omega_{i+3} \setminus \overline{\Omega_{i+1}}$. Além disso, escolha qualquer aberto $\Omega_0' \in \Omega$ de forma que

$$\Omega = \bigcup_{i=0}^{\infty} \Omega_i'$$

e seja $\{\phi_i\}_{i=0}^{\infty}$ uma partição da unidade suave subordinada aos abertos $\{\Omega_i'\}_{i=0}^{\infty}$, isto é,

$$0\leqslant \phi_i\leqslant 1\ \mathrm{com}\ \phi_i\in \mathcal{C}_c^\infty(\Omega_i')\ \mathrm{e}\ \sum_{i=0}^\infty \phi_i=1\ \mathrm{em}\ \Omega.$$

Como, por hipótese, $u \in \mathcal{W}^{k,p}(\Omega)$, temos pelo Teorema 3.20

$$\phi_i u \in \mathcal{W}^{k,p}(\Omega)$$
.

Além disso, supp $(\phi_i u) \subseteq \Omega_i'$. Fixando $\delta > 0$, escolha um $\varepsilon_i > 0$ de forma que $u^i := \eta_{\varepsilon_i} * \phi_i u \in \mathcal{C}^{\infty}(\Omega)$ satisfaça

$$\|u^i - \phi_i u\|_{\mathcal{W}^{k,p}(\Omega)} \leqslant \frac{\delta}{2^{i+1}} \ \ \text{e } \ \sup u^i \subseteq \Omega_i''$$

 $\operatorname{com} \Omega_i'' = \Omega_{i+4} \setminus \overline{\Omega_i} \supseteq \Omega_i'.$

Seja $v = \sum_{i=1}^{\infty} u^i \in \mathcal{C}^{\infty}(\Omega) \cap \mathcal{W}^{k,p}(\Omega)$. Como $u = u \sum_{i=1}^{\infty} \phi_i = \sum_{i=1}^n \phi_i u$, então, para cada $V \in \Omega$, inferimos que

$$\|v-u\|_{\mathcal{W}^{k,p}(V)}\leqslant \sum_{i=1}^{\infty}\|u^i-\phi_iu\|_{\mathcal{W}^{k,p}(\Omega)}\leqslant \sum_{i=1}^{\infty}\frac{\delta}{2^{i+1}}=\frac{\delta}{2}.$$

Passando ao supremo sobre os conjuntos $V \in \Omega$ obtemos

$$||v-u||_{\mathcal{W}^{k,p}(\Omega)}<\frac{\delta}{2}<\delta.$$

Isto mostra que u pertence ao fecho de $\mathcal{C}^{\infty}(\Omega) \cap \mathcal{W}^{k,p}(\Omega)$ em $\mathcal{W}^{k,p}(\Omega)$. Logo é equivalente dizer que existe uma sequência $(u_n) \subseteq \mathcal{C}^{\infty}(\Omega) \cap \mathcal{W}^{k,p}(\Omega)$ tal que $u_n \to u$ em $\mathcal{W}^{k,p}(\Omega)$

Definição 3.27. Sejam $\Omega \subseteq \mathbb{R}^n$ um aberto limitado e $k \in \mathbb{N}$. Dizemos que sua fronteira $\partial \Omega$ é de classe \mathcal{C}^k se para cada ponto $\tilde{x} \in \partial \Omega$ existe um raio r > 0 e uma função de classe \mathcal{C}^k $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ tal que, fazendo uma mudança de coordenadas se necessário, obtemos

$$\Omega \cap B[\tilde{x}, r] = \{x \in B[\tilde{x}, r]; x_n > \gamma(x_1, \dots, x_{n-1})\}.$$

De forma análoga, $\partial\Omega$ é de classe \mathcal{C}^{∞} se é de classe \mathcal{C}^{k} para todo $k\in\mathbb{N}$.

Teorema 3.28. Sejam Ω um aberto limitado com fronteira de classe \mathcal{C}^1 e $u \in \mathcal{W}^{k,p}(\Omega)$, com $1 \leq p < \infty$. Então, existe uma sequência $(u_n) \subseteq \mathcal{C}^{\infty}(\overline{\Omega})$ tal que

$$u_n \to u \text{ em } \mathcal{W}^{k,p}(\Omega).$$

Figura 3.7: Fonte: Autoral. Baseada em [5] p.p. 253

Demonstração. Seja $\tilde{x} \in \partial \Omega$, como Ω tem fronteira de classe C^1 , existe um raio r > 0 e uma função $\gamma : \mathbb{R}^{n-1} \to \mathbb{R}$ de classe C^1 tal que

$$\Omega \cap B[\tilde{x}, r] = \{ x \in B[\tilde{x}, r]; x_n > \gamma(x_1, \dots, x_{n-1}) \}.$$
 (3.21)

Definimos $V = \Omega \cap B[\tilde{x}, \frac{r}{2}]$ (ver Figura ??). Além disso, definimos para cada $\varepsilon > 0$, $\lambda > 0$ e $x \in V$

$$x^{\varepsilon} = x + \lambda \varepsilon e_n = (x_1, \dots, x_{n-1}, x_n + \lambda \varepsilon). \tag{3.22}$$

Observe que, para um $\lambda > 0$ suficientemente grande e $\varepsilon > 0$ suficientemente pequeno, a bola $B[x^{\varepsilon}, \varepsilon]$ está contída em $\Omega \cap B[\tilde{x}, r]$ para todo $x \in V$. De fato, por definição, dado $x \in V$ temos que $x \in \Omega$ e $||x - \tilde{x}|| \le \frac{r}{2}$. Note que $x^{\varepsilon} \in \Omega \cap B(\tilde{x}, r)$ para todo $\varepsilon > 0$ suficientemente pequeno e $\lambda > 0$ suficientemente grande. Com efeito, como $x \in V$, em particular $x \in \Omega \cap B[\tilde{x}, r]$. Como Ω tem fronteira de classe \mathcal{C}^1 , temos que $x_n > \gamma(x_1, \ldots, x_{n-1})$, daí

$$x_n^{\varepsilon} = x_n + \lambda \varepsilon > x_n > \gamma(x_1, \dots, x_{n-1}),$$

e por (3.22) deduzimos que

$$\|x^{\varepsilon} - \tilde{x}\| = \|x + \lambda \varepsilon e_n - \tilde{x}\| \leqslant \|x - \tilde{x}\| + \|\lambda \varepsilon e_n\| \leqslant \frac{r}{2} + \lambda \varepsilon < r$$

desde que $0 < \varepsilon < r/_{2\lambda}$. Logo, $x^{\varepsilon} \in \Omega \cap B(\tilde{x}, r)$ para todo $\varepsilon > 0$ suficientemente pequeno. Por isso, $B[x^{\varepsilon}, \varepsilon] \subseteq \Omega \cap B[\tilde{x}, r]$, diminuindo $\varepsilon > 0$ se necessário.

Agora, definimos $u_{\varepsilon}(x)=u(x^{\varepsilon})$ para todo $x\in V$ e $v^{\varepsilon}=\eta_{\varepsilon}*u_{\varepsilon}$. Assim, pelo Teorema 3.23 $v^{\varepsilon}\in \mathcal{C}^{\infty}(\overline{V})$. Dito isso, afirmamos que

$$||v^{\varepsilon}-u||_{\mathcal{W}^{k,p}(V)}\to 0.$$

De fato, seja α um multi-índice com $|\alpha| \leqslant k$, então

$$\|D^{\alpha}v^{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(V)} \leqslant \|D^{\alpha}v^{\varepsilon} - D^{\alpha}u_{\varepsilon}\|_{\mathcal{L}^{p}(V)} + \|D^{\alpha}u_{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(V)}.$$

A segunda norma do lado direito da desigualdade acima vaí a 0 quando $\varepsilon \to 0$, pois a translação é contínua na norma do espaço \mathcal{L}^p e

$$\|D^{\alpha}v^{\varepsilon}-D^{\alpha}u_{\varepsilon}\|_{\mathcal{L}^{p}(V)}=\|D^{\alpha}(\eta_{\varepsilon}*u_{\varepsilon})-u_{\varepsilon}\|_{\mathcal{L}^{p}(V)}\to 0,$$

quando $\varepsilon \to 0$ (ver Teorema 3.23). Ou seja, é verdade que

$$\begin{split} \|v^{\varepsilon} - u\|_{\mathcal{W}^{k,p}(V)} &= \sum_{|\alpha| \leqslant k} \|D^{\alpha}v^{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(V)} \\ &\leqslant \sum_{|\alpha| \leqslant k} \|D^{\alpha}v^{\varepsilon} - D^{\alpha}u_{\varepsilon}\|_{\mathcal{L}^{p}(V)} + \sum_{|\alpha| \leqslant k} \|D^{\alpha}u_{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(V)} \to 0. \end{split}$$

quando $\varepsilon \to 0$.

Note que todos os cálculos foram feitos em uma vizinhança de um ponto $\tilde{x} \in \partial \Omega$. Dito isso, como $\partial \Omega$ é compacto (pois Ω é limitado), pelo Teorema de Heine-Borel³, podemos encontrar uma quantidade finita de pontos $\tilde{x}_i \in \partial \Omega$, raios $r_i > 0$, conjuntos $V_i = \Omega \cap B[\tilde{x}_i, r_i/2]$ e funções v_i^{ε} , com $i = 1, \ldots, N \in \mathbb{N}$ tal que $\|v_i^{\varepsilon} - u\|_{\mathcal{W}^{k,p}(V_i)} \to 0$, quando $\varepsilon \to 0$, e

$$\partial\Omega\subseteq\bigcup_{i=1}^N B(\tilde{x}_i, r/2).$$

Além disso, considere um aberto limitado V_0 da forma $\Omega \cap B(\tilde{x}_0, {}^{r_0}\!/_2)$ e uma função v_0^ε com $\|v_0^\varepsilon - u\|_{\mathcal{W}^{k,p}(V_0)} \to 0$ e

$$\Omega \subseteq \bigcup_{i=0}^{N} V_i$$

Seja $\{\phi_i\}_{i=0}^N$ uma partição da unidade subordinada aos conjuntos $\{V_i\}_{i=0}^N$ em Ω . Defina

$$v^{\varepsilon} = \sum_{i=0}^{N} \phi_i v_i^{\varepsilon} \in \mathcal{C}^{\infty}(\overline{\Omega})$$

e observando que $u = \sum_{i=1}^{N} \phi_i u$, obtemos

$$\|D^{\alpha}v^{\varepsilon}-D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)}\leqslant \sum_{i=0}^{N}\|D^{\alpha}(\phi_{i}v_{i}^{\varepsilon})-D^{\alpha}(\phi_{i}u)\|_{\mathcal{L}^{p}(\Omega)}.$$

Utilizando a Regra de Leibniz, segue que

$$\begin{split} \|D^{\alpha}v^{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)} & \leq \sum_{i=0}^{N} \sum_{\sigma \leq \alpha} \binom{\alpha}{\sigma} \|D^{\sigma}\phi_{i} \left[D^{\alpha-\sigma} \left(v_{i}^{\varepsilon} - u\right)\right]\|_{\mathcal{L}^{p}(V_{i})} \\ & \leq c \sum_{i=0}^{N} \sum_{\sigma \leq \alpha} \binom{\alpha}{\sigma} \|D^{\alpha-\sigma} \left(v_{i}^{\varepsilon} - u\right)\|_{\mathcal{L}^{p}(V_{i})}, \end{split}$$

onde utilizamos o fato de ϕ_i (e por consequência $D^{\sigma}\phi_i$) ter suporte compacto e ser suave na ultima desigualdade. Ademais, como $|\alpha - \sigma| \leq k$, temos que

$$\|D^{\alpha}v^{\varepsilon} - D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)} \leqslant c \sum_{i=0}^{N} \sum_{\sigma \leqslant \alpha} {\alpha \choose \sigma} \|v_{i}^{\varepsilon} - u\|_{\mathcal{W}^{k,p}(V_{i})} \leqslant c \sum_{i=0}^{N} \|v_{i}^{\varepsilon} - u\|_{\mathcal{W}^{k,p}(V_{i})} \to 0$$

Por fim, definindo $u_n := v^{\frac{1}{n}} \in \mathcal{C}^{\infty}(\overline{\Omega})$ chegamos a

$$||u_n-u||_{\mathcal{W}^{k,p}(\Omega)}\to 0,$$

quando $n \to \infty$, como era desejado.

³Toda cobertura aberta de um conjunto compacto possui subcobertura finita.

3.5. EXTENSÕES 71

3.5 Extensões

Em alguns casos é mais viável trabalhar com funções definidas no espaço Euclidiano inteiro ao invés de funções definida em um aberto especifico. Nessa seção, veremos uma forma de estender funções em $\mathcal{W}^{1,p}(\Omega)$ para funções em $\mathcal{W}^{1,p}(\mathbb{R}^n)$ por meio de um operador linear.

Teorema 3.29. Sejam Ω um aberto limitado, com fronteira de classe \mathcal{C}^1 e Ω' um aberto tal que $\Omega \subseteq \Omega'$. Então existe um operador limear limitado $E: \mathcal{W}^{1,p}(\Omega) \to \mathcal{W}^{1,p}(\mathbb{R}^n)$, com $1 \leq p < \infty$, tal que para cada $u \in \mathcal{W}^{k,p}(\Omega)$, tem-se que

- (a) Eu = u qtp em Ω ;
- **(b)** supp $Eu \subseteq \Omega'$;
- (c) $||Eu||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c||u||_{\mathcal{W}^{1,p}(\Omega)}$, onde a constante c depende apenas de p, Ω e Ω' .

Demonstração. Seja $\tilde{x} \in \partial \Omega$ e considere inicialmente que $\partial \Omega$ esteja contido no plano $\{x_n = 0\}$ perto de \tilde{x} . Dessa forma, podemos supor que existe uma bola $B = B(\tilde{x}, r)$ tal que

$$B^{+} = B \cap \{x_{n} \geqslant 0\} \subseteq \overline{\Omega};$$

$$B^{-} = B \cap \{x_{n} \leqslant 0\} \subseteq \mathbb{R}^{n} \setminus \Omega.$$
(3.23)

Além disso, assuma que $u \in \mathcal{C}^{\infty}(\overline{\Omega})$ e defina

$$\bar{u}(x) = \begin{cases} u(x), & \text{se } x \in B^+ \\ -3u(x_1, \dots, x_{n-1}, -x_n) + 4u(x_1, \dots, x_{n-1}, \frac{x_n}{2}) & \text{se } x \in B^- \end{cases}$$

que chamamos de reflexão de ordem superior da função u de B^+ a B^- . Afirmamos que $\bar{u} \in \mathcal{C}^1(B)$. Com efeito, denotando $u^- = \bar{u}\big|_{B^-}$, $u^+ = \bar{u}\big|_{B^+}$, podemos ver que

$$\frac{\partial u^-}{\partial x_n} = \frac{\partial u^+}{\partial x_n}$$
 em $\{x_n = 0\}$.

De fato, pela regra da cadeia, podemos escrever

$$\frac{\partial u^{-}}{\partial x_{n}} = 3 \frac{\partial u}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, -x_{n}) - 2 \frac{\partial u}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, \frac{x_{n}}{2})$$

quando $x_n = 0$, obtemos

$$\left. \frac{\partial u^{-}}{\partial x_{n}} \right|_{\{x_{n}=0\}} = 3 \frac{\partial u}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, 0) - 2 \frac{\partial u}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, 0) = \left. \frac{\partial u}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, 0) = \frac{\partial u^{+}}{\partial x_{n}} \right|_{\{x_{n}=0\}}$$

Também é verdade que

$$u^+ = u^- \text{ e } \frac{\partial u^-}{\partial x_i} = \frac{\partial u^+}{\partial x_i} \text{ em } \{x_n = 0\},$$

para todo $i=1,2,\ldots,n-1$ Portanto $D^{\alpha}u^{-}=D^{\alpha}u^{+}$ em $\{x_{n}=0\}$ com $|\alpha|\leqslant 1$. Sendo assim, $\bar{u}\in\mathcal{C}^{1}(B)$, pois fora de $\{x_{n}=0\}$, as componentes de \bar{u} já eram de classe \mathcal{C}^{∞} , então apenas restava verificar que em $B^{+}\cap B^{-}=B\cap\{x_{n}=0\}$ as componentes em B^{+} e B^{-} se igualavam, implicando a continuidade \bar{u} e suas derivadas.

Agora, desejamos mostrar que

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(B)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(B^+)},$$
 (3.24)

onde c é uma constante⁴ positiva que não depende de u. De fato, sabemos que

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(B)}^p = \sum_{|\alpha| \leqslant 1} \|D^{\alpha}\bar{u}\|_{\mathcal{L}^p(B)}^p = \sum_{|\alpha| \leqslant 1} \left[\int_B |D^{\alpha}\bar{u}|^p dx \right].$$

Como $B = B^+ \cup B^-$, e denotando (x_1, \dots, x_{n-1}) por x' podemos reescrever o último somatório da seguinte forma

$$\sum_{|\alpha| \leqslant 1} \left[\int_{B} |D^{\alpha} \bar{u}|^{p} dx \right] = \sum_{|\alpha| \leqslant 1} \left[\int_{B^{+}} |D^{\alpha} u(x)|^{p} dx + \int_{B^{-}} |4D^{\alpha} [u(x', -\frac{x_{n}}{2})] - 3D^{\alpha} [u(x', -x_{n})]|^{p} dx \right]$$

$$\leq \sum_{|\alpha| \leq 1} \left[\int_{B^+} |D^{\alpha} u(x)|^p dx + 3 \cdot 2^p \int_{B^-} |D^{\alpha} u(x', -x_n)|^p dx + 4 \cdot 2^p \int_{B^-} |D^{\alpha} u(x', -x_n)|^p dx \right]$$

onde usamos o fato de que

$$(a+b)^p \le (2\max\{a,b\})^p = 2^p \max\{a,b\}^p \le 2^p (a^p + b^p)$$

para todo $a, b \ge 0$. Porem, $-x_n, -\frac{x_n}{2} \ge 0$, então podemos considerar que as integrais em B^- são integrais sobre B^+ , através de uma mudança de variáveis, para encontrar

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(B)}^{p} = \sum_{|\alpha| \leq 1} \left[\int_{B} |D^{\alpha}\bar{u}|^{p} dx \right] \leq c \sum_{|\alpha| \leq 1} \left[\int_{B^{+}} |D^{\alpha}u|^{p} dx \right] = c \|u\|_{\mathcal{W}^{1,p}(B^{+})}^{p}.$$

Portanto.

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(B)}\leqslant c\|u\|_{\mathcal{W}^{1,p}(B^+)}.$$

Por outro lado, se $\partial\Omega$ não está necessáriamente contido no plano $\{x_n=0\}$ perto de \tilde{x} , temos que existe um homeomorfismo Φ com inversa Ψ que planifica $\partial\Omega$ perto de \tilde{x} , basta usar a função γ de classe \mathcal{C}^1 da Definição 3.27 e definir Φ por

$$\Phi(x) = (x_1, x_2, ..., x_{n-1}, x_n - \gamma(x_1, ..., x_{n-1})). \tag{3.25}$$

De forma análoga definimos Ψ por

$$\Psi(y) = (y_1, y_2, \dots, y_{n-1}, y_n + \gamma(y_1, \dots, y_{n-1})). \tag{3.26}$$

Dete modo, é fácil ver que $\Psi^{-1} = \Phi$ e que Φ e Ψ são de classe \mathcal{C}^1 (por definição) . Sendo assim, seja $y = \Phi(x)$ (ou seja $x = \Psi(y)$) e definimos $u' \equiv u \circ \Psi$. Logo como foi feito anteriormente (u' é de classe \mathcal{C}^1), podemos escolher uma bola $B = B(\tilde{y}, r)$ e definimos \bar{u}' de forma que $\bar{u}' \in \mathcal{C}^1(B)$ e

$$\|\bar{u}'\|_{\mathcal{W}^{1,p}(B)} \le c\|u'\|_{\mathcal{W}^{1,p}(B^+)}.$$
 (3.27)

Seja $B' = \Psi(B)$, assim conseguimos obter uma extensão \bar{u} de u para B' com

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(B')}\leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

De fato, para $\bar{u} \equiv \bar{u}' \circ \Phi$, obtemos, utilizando o Teorema de Mudança de Variáveis

$$\|D^{\alpha}\bar{u}'\|_{\mathcal{L}^{p}(B)}^{p} = \int_{B} |D^{\alpha}\bar{u}'(y)|^{p} dy = \int_{B} |D^{\alpha}\bar{u}(\Psi(y))|^{p} dy = \int_{B'} |D^{\alpha}\bar{u}(x)|^{p} dx = \|D^{\alpha}\bar{u}\|_{\mathcal{L}^{p}(B')}^{p}.$$

⁴Durante essa e outras demonstrações, mesmo se o valor da constante c mudar, ainda continuaremos denotando por c, então por exemplo $c + 2^p$, c(1 + n), etc, ainda serão denotados por c.

3.5. EXTENSÕES 73

Figura 3.8: Representação gráfica do homemorfismo Φ Fonte: Autoral. Baseada em [5] p.p. 256

Dessa forma, passando ao somatório, quando $|\alpha| \leqslant 1$, chegamos a

$$\|\bar{u}'\|_{\mathcal{W}^{1,p}(B)} = \|\bar{u}\|_{\mathcal{W}^{1,p}(B')}.\tag{3.28}$$

Além disso, é verdade

$$\begin{split} \|D^{\alpha}u'\|_{\mathcal{L}^{p}(B^{+})}^{p} &= \int_{B^{+}} |D^{\alpha}u'(y)|^{p} dy = \int_{B^{+}} |D^{\alpha}u(\Psi(y))|^{p} dy \\ &= \int_{\Psi(B^{+})} |D^{\alpha}u(x)|^{p} dx \leqslant \int_{\Omega} |D^{\alpha}u(x)|^{p} dx = \|D^{\alpha}u\|_{\mathcal{L}^{p}(\Omega)}^{p}. \end{split}$$

Consequentemente, podemos escrever

$$||u'||_{\mathcal{W}^{1,p}(\mathcal{B}^+)} \le ||u||_{\mathcal{W}^{1,p}(\Omega)}$$
 (3.29)

Portanto, por (3.27), (3.28) e (3.29), obtemos

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(B')} = \|\bar{u}'\|_{\mathcal{W}^{1,p}(B)} \leqslant c\|u'\|_{\mathcal{W}^{1,p}(B^+)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)},\tag{3.30}$$

como queríamos mostrar.

Como $\partial\Omega$ é compacto (pois Ω é limitado) e $\partial\Omega\subseteq\bigcup_{x\in\partial\Omega}B'_x$, que é uma cobertura aberta, pois $B'_x=\Psi(B(\tilde{y},r))$, e imagem de um conjunto aberto por um homeomorfismo também é aberto. Pelo Teorema de Heine-Borel, existe uma subcobertura finita de $\partial\Omega$. Sendo assim, existem uma quantidade finita de pontos $\tilde{x}_i\in\partial\Omega$, abertos B'_i e extensões \bar{u}_i de u em B'_i de forma que $\partial\Omega\subseteq\bigcup_{i=1}^N B'_i$. Por outro lado, considere um aberto $B'_0\subseteq\Omega$ tal que

$$\Omega\subseteq\bigcup_{i=0}^N B_i'.$$

Seja $\{\phi_i\}_{i=0}^N$ uma partição da unidade suave subordinada aos abertos $\{B_i'\}_{i=0}^N$ e defina

$$\bar{u} = \sum_{i=0}^{N} \phi_i \bar{u}_i$$

onde \bar{u}_i está associada a B_i' e $\bar{u}_0 = u$. Deste modo, obtemos a desigualdade

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

Com efeito

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)}^p = \sum_{|\alpha| \leqslant 1} \|D^{\alpha}\bar{u}\|_{\mathcal{L}^p(\mathbb{R}^n)}^p \leqslant c \sum_{|\alpha| \leqslant 1} \sum_{i=0}^N \|D^{\alpha}(\phi_i\bar{u}_i)\|_{\mathcal{L}^p(\mathbb{R})}^p$$

onde c é uma constante positiva que depende de p. Logo, utilizando a Regra de Leibniz (ver Teorema 3.20), inferimos

$$c\sum_{|\alpha| \leq 1} \sum_{i=0}^{N} \|D^{\alpha}(\phi_{i}\bar{u}_{i})\|_{\mathcal{L}^{p}(\mathbb{R})}^{p} \leqslant c\sum_{|\alpha| \leq 1} \sum_{i=0}^{N} \sum_{\sigma \leq \alpha} {\alpha \choose \sigma} \|D^{\sigma}\phi_{i}D^{\alpha-\sigma}\bar{u}_{i}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}^{p}.$$

Como supp $D^{\sigma}\phi_i \subseteq \operatorname{supp}\phi_i \subseteq B'_i$, então o suporte de $D^{\sigma}\phi_i$ também é compacto (pois B'_i é limitado), sendo assim $\max |D^{\sigma}\phi_i|$ existe em B'_i . Portanto, vale a desigualdade

$$c\sum_{|\alpha| \leqslant 1} \sum_{i=0}^{N} \sum_{\sigma \leqslant \alpha} {\alpha \choose \sigma} \|D^{\sigma} \phi_{i} D^{\alpha-\sigma} \bar{u}_{i}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}^{p} \leqslant c\sum_{|\alpha| \leqslant 1} \sum_{i=0}^{N} \sum_{\sigma \leqslant \alpha} {\alpha \choose \sigma} \|D^{\alpha-\sigma} \bar{u}_{i}\|_{\mathcal{L}^{p}(B_{i}')}^{p}$$

onde agora a constante c também depende de B'_i . Além disso,

$$c\sum_{|\alpha|\leqslant 1}\sum_{i=0}^{N}\sum_{\sigma\leqslant\alpha}\binom{\alpha}{\sigma}\|D^{\alpha-\sigma}\bar{u}_{i}\|_{\mathcal{L}^{p}(\mathcal{B}'_{i})}^{p}\leqslant c\sum_{|\alpha|\leqslant 1}\sum_{i=0}^{N}\sum_{\sigma\leqslant\alpha}\binom{\alpha}{\sigma}\|\bar{u}_{i}\|_{\mathcal{W}^{1,p}(\mathcal{B}'_{i})}^{p}.$$

Por fim, utilizando (3.30), chegamos a

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)}^p \leqslant c \sum_{|\alpha| \leqslant 1} \sum_{i=0}^N \sum_{\sigma \leqslant \alpha} {\alpha \choose \sigma} \|\bar{u}_i\|_{\mathcal{W}^{1,p}(\mathcal{B}_i')}^p \leqslant c \|\bar{u}_i\|_{\mathcal{W}^{1,p}(\Omega)},$$

onde c depende de B'_i , p e N. Portanto, deduzimos que

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)} \tag{3.31}$$

Defina Ω' aberto de forma que $\bigcup_{i=0}^N B_i' \subseteq \Omega'$. Dessa forma, supp $\bar{u} \subseteq \Omega'$. Defina também $\bar{E}: \mathcal{C}^\infty(\overline{\Omega}) \to \mathcal{C}^\infty(\mathbb{R}^n)$ dada por $\bar{E}u = \bar{u}$. Temos que \bar{E} é linear,

$$\|\bar{E}u\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} = \|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

e supp $\bar{E}u\subseteq\Omega'$. Sendo assim, definimos $E:\mathcal{W}^{1,p}(\Omega)\to\mathcal{W}^{1,p}(\mathbb{R}^n)$ por

$$Eu = \lim \overline{u_k}$$

onde (u_k) é uma sequência de funções em $\mathcal{C}^{\infty}(\overline{\Omega})$ que converge para u (sabemos que essa sequência existe pois mostramos no Teorema 3.28 que $\mathcal{C}^{\infty}(\overline{\Omega})$ é denso em $\mathcal{W}^{1,p}(\Omega)$). Podemos afirmar que o limite converge em $\mathcal{W}^{1,p}(\mathbb{R}^n)$, já que

$$\|\overline{u_k} - \overline{u_\ell}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c \|u_k - u_\ell\|_{\mathcal{W}^{1,p}(\Omega)} \to 0.$$

Logo $(\overline{u_n})$ é de Cauchy em $\mathcal{W}^{1,p}(\mathbb{R}^n)$. Como $\mathcal{W}^{1,p}(\mathbb{R}^n)$ é completo (ver Teorema 3.22), deduzimos que lim $\overline{u_k}$ existe em $\mathcal{W}^{1,p}(\mathbb{R}^n)$. Além disso, é verdade que

$$||Eu - u||_{\mathcal{W}^{1,p}(\Omega)} \leq ||Eu - \overline{u_k}||_{\mathcal{W}^{1,p}(\Omega)} + ||\overline{u_k} - u_k||_{\mathcal{W}^{1,p}(\Omega)} + ||u_k - u||_{\mathcal{W}^{1,p}(\Omega)}$$

$$\leq ||Eu - \overline{u_k}||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} + ||u_k - u||_{\mathcal{W}^{1,p}(\Omega)} \to 0$$

pois $u_k \to u$ e $\overline{u_k} = u_k$ em Ω (ver ()). Portanto, Eu = u qtp em Ω , provando o item (a).

3.6. TRAÇOS 75

Para verificar o ítem **(b)**, basta ver que, por definição, supp $\overline{u_k} \subseteq \Omega'$. Dessa forma, supp $Eu \subseteq \Omega'$.

Por fim, para mostrar o item (c), note que E é um operador limitado, pois

$$||Eu||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} = ||\operatorname{lim} \overline{u_k}||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} = |\operatorname{lim} ||\overline{u_k}||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c \operatorname{lim} ||u_k||_{\mathcal{W}^{1,p}(\Omega)} = c||u||_{\mathcal{W}^{1,p}(\Omega)}.$$

Portanto,

$$||Eu||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c||u||_{\mathcal{W}^{1,p}(\Omega)}.$$

3.6 Traços

(introdução)

Teorema 3.30. Seja Ω um aberto limitado com fronteira de classe \mathcal{C}^1 . Então, existe um operador linear limitado $\mathcal{T}: \mathcal{W}^{1,p}(\Omega) \to \mathcal{L}^p(\partial\Omega)$, com $1 \leq p < \infty$, tal que

- (a) $Tu = u|_{\partial\Omega}$ se $u \in \mathcal{W}^{1,p}(\Omega) \cap \mathcal{C}(\Omega)$;
- **(b)** $||Tu||_{\mathcal{L}^p(\partial\Omega)} \leqslant c||u||_{W^{1,p}(\Omega)}$, onde c depende apenas de p e Ω .

Demonstração. Incialmente suponha que $u \in \mathcal{C}^1(\overline{\Omega})$. Da mesma forma que foi feito no Teorema 3.29 considere $\tilde{x} \in \partial \Omega$ e suponhamos que $\partial \Omega$ está contido no plano $\{x_n = 0\}$ perto de \tilde{x} . Sejam $B = B(\tilde{x}, r)$ (e defina B^+ e B^- como em (3.23)) e $\hat{B} = B(\tilde{x}, r'/2)$, e considere $\xi \in \mathcal{C}_c^{\infty}(B)$ de forma que $\xi \geqslant 0$ em B e $\xi \equiv 1$ em \hat{B} , e denote $\Gamma = \partial \Omega \cap \hat{B}$ e $\chi' = (\chi_1, \ldots, \chi_{n-1}) \in \mathbb{R}^{n-1}$. Note que, utilizando integração por partes (ver Teorema 3.5)

$$\int_{B^+} \frac{\partial (\xi |u|^p)}{\partial x_n} dx = \int_{\partial B^+} \xi |u|^p \nu_n dx'$$

onde ν é o vetor normal unitário que aponta para baixo em ∂B^+ , isto é $\nu=(0,\ldots,0,-1)$. Sendo assim, $\nu_n=-1$ e

$$\int_{B^+} \frac{\partial (\xi |u|^p)}{\partial x_p} dx = -\int_{\partial B^+} \xi(x') |u(x')|^p dx'.$$

Dessa forma, como $\Gamma \subseteq \partial B^+$ e $\xi(x) = 1$ para todo $x \in \hat{B}$, concluimos que

$$\int_{\Gamma} |u|^p dx' \leqslant \int_{\partial B^+} \xi |u|^p dx' = -\int_{B^+} \frac{\partial (\xi |u|^p)}{\partial x_n} dx.$$

Calculando a derivada acima, obtemos

$$\int_{\Gamma} |u|^p \, dx' \leqslant -\int_{B^+} \frac{\partial \xi}{\partial x_n} |u|^p + p|u|^{p-1} \operatorname{sgn} u \, \frac{\partial u}{\partial x_n} \xi \, dx \leqslant c \int_{B^+} |u|^p + |u|^{p-1} \|Du\| \, dx$$

onde utilizamos o fato de ξ e suas derivadas parciais terem suporte compacto para a ultima desigualdade. Por fim utilizando a Desigualdade de Young

$$\int_{\Gamma} |u|^p \, dx' \leqslant c \int_{B^+} |u|^p + \frac{|u|^{(p-1)p'}}{p'} + \frac{\|Du\|^p}{p} \, dx \leqslant c \int_{B^+} |u|^p + \|Du\|^p \, dx \tag{3.32}$$

Caso \tilde{x} não esteja necessáriamente contido em $\{x_n=0\}$, considere o homeomorfismo Φ com inversa Ψ da demonstração do Teorema 3.29 e defina $u'(y)=u(\Psi(y))$, daí, utilizando o Teorema de Mudança de Variáveis

$$\int_{\Gamma} |u'(y)|^p dy' = \int_{\Psi(\Gamma)} |u(x)|^p dx'$$

е

$$\int_{B^+} |u'(y)|^p + \|Du'(y)\|^p \, dy \leqslant c \int_{\Psi(B^+)} |u(x)|^p + \|Du(x)\|^p \, dx$$

onde c é uma constante que depende de γ que surge devido a regra da cadeia. Dessa forma por (3.32)

$$||u||_{\mathcal{L}^{p}(\Psi(\Gamma))}^{p} = \int_{\Psi(\Gamma)} |u|^{p} dx' = \int_{\Gamma} |u'|^{p} dy' \leqslant c \int_{B^{+}} |u'|^{p} + ||Du'||^{p} dy$$

$$\leqslant c \int_{\Psi(B^{+})} |u|^{p} + ||Du||^{p} dx = ||u||_{\mathcal{W}^{1,p}(\Psi(B^{+}))}^{p}$$

como $\Psi(B^+) \subseteq \Omega$, obtemos

$$||u||_{\mathcal{L}^p(\Psi(\Gamma))} \leqslant c||u||_{\mathcal{W}^{1,p}(\Omega)}.$$

Como $\partial\Omega$ é compacto, pelo Teorema de Heine-Borel, existe uma quantidade finita de abertos $\Psi(\Gamma_i)$ tal que

$$\partial\Omega\subseteq\bigcup_{i=1}^N\Psi(\Gamma_i)$$

e $\|u\|_{\mathcal{L}^p(\Psi(\Gamma_i))} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}$. Considere uma partição da unidade $\{\phi_i\}_{i=1}^N$ subordinada a cobertura $\{\Psi(\Gamma_i)\}_{i=1}^N$, e denote $u = \sum_{i=1}^N \phi_i u$.

Defina $\widetilde{T}: \mathcal{C}^1(\overline{\Omega}) \to \mathcal{L}^p(\partial\Omega)$ por $\widetilde{T}u = u|_{\partial\Omega}$. Dessa forma

$$\begin{split} \|\widetilde{T}u\|_{\mathcal{L}^{p}(\partial\Omega)}^{p} &= \int_{\partial\Omega} |\widetilde{T}u|^{p} \, dx = \int_{\partial\Omega} |u|^{p} \, dx \leqslant c \sum_{i=1}^{N} \int_{\partial\Omega} \phi_{i}^{p} |u|^{p} \, dx \\ &= c \sum_{i=1}^{N} \int_{\Psi(\Gamma_{i})} |u|^{p} \, dx \leqslant c \|u\|_{\mathcal{W}^{1,p}(\Omega)}^{p} \end{split}$$

onde c é uma constante que depende de p e Ω . Isto mostra que \widetilde{T} é um operador limitado. Por fim, defina $T: \mathcal{W}^{1,p}(\Omega) \to \mathcal{L}^p(\partial\Omega)$ por

$$Tu = \begin{cases} \widetilde{T}u & \text{se } u \in \mathcal{C}^{\infty}(\overline{\Omega}) \\ \lim \widetilde{T}u_k & \text{se } u \notin \mathcal{C}^{\infty}(\overline{\Omega}) \end{cases}$$

onde (u_k) é uma sequência de funções em $\mathcal{C}^{\infty}(\overline{\Omega})$ que converge para $u \in \mathcal{W}^{1,p}(\Omega)$. Sendo assim

$$||Tu||_{\mathcal{L}^p(\partial\Omega)} \leqslant c||u||_{\mathcal{W}^{1,p}(\Omega)}$$

para todo $u \in \mathcal{W}^{1,p}(\Omega)$ esss demonstração tem uma parte final que eu não entendi direito \square

Teorema 3.31 (Funções traço zero em $\mathcal{W}^{1,p}$). Seja Ω um aberto limitado com fronteira de classe \mathcal{C}^1 e $u \in \mathcal{W}^{1,p}(\Omega)$ com $1 \leq p < \infty$.

$$u \in \mathcal{W}_0^{1,p}(\Omega) \iff Tu = 0 \text{ em } \partial\Omega$$

onde $\mathcal{W}^{1,p}_0(\Omega)$ é o fecho de $\mathcal{C}^\infty_c(\Omega)$ em $\mathcal{W}^{1,p}(\Omega)$.

Demonstração. Suponha que $u \in \mathcal{W}_0^{1,p}(\Omega)$. Por definição existe uma sequência de funções $(u_k) \subseteq \mathcal{C}_c^{\infty}(\Omega)$ tal que

$$||u_k-u||_{\mathcal{W}^{1,p}(\Omega)}\to 0.$$

3.6. TRAÇOS 77

Como u_k tem suporte compacto em Ω então u_k se anula em $\partial\Omega$ para todo $k\in\mathbb{N}$. Sendo assim $Tu_k=0$ em $\partial\Omega$ para todo $k\in\mathbb{N}$ e $T:\mathcal{W}^{1,p}(\Omega)\to\mathcal{L}^p(\partial\Omega)$ é um operador linear limitado. Portanto

$$Tu = T(\lim u_k) = \lim Tu_k = 0 \text{ em } \partial\Omega.$$

Reciprocamente, suponha que Tu=0 em $\partial\Omega$. Utilizando partições da unidade e o homeomorfismo Φ que planifica $\partial\Omega$ como foi feito anteriormente, podemos supor que

$$u \in \mathcal{W}^{1,p}(\mathbb{R}^n)$$

 u tem suporte compacto em $\overline{\mathbb{R}^n_+}$
 $Tu = 0$ em $\partial \mathbb{R}^n_+ = \mathbb{R}^{n-1}$

onde \mathbb{R}^n_+ denota o semiplano superior de \mathbb{R}^n . Como Tu=0 em \mathbb{R}^{n-1} então existe um sequência de funções $(u_k)\in\mathcal{C}^1(\overline{\mathbb{R}^n_+})$ tal que $u_k\to u$ em $\mathcal{W}^{1,p}(\mathbb{R}^n_+)$ e $Tu_k=u_k|_{\mathbb{R}^{n-1}}\to 0$ em $\mathcal{L}^p(\mathbb{R}^{n-1})$.

Dito isso, seja $x' \in \mathbb{R}^{n-1}$ e $x_n \geqslant 0$. Pelo teorema fundamental do cálculo, podemos escrever u_k da seguinte forma

$$u_k(x',x_n) = u_k(x',0) + \int_0^{x_n} \frac{\partial u_k}{\partial x_n}(x',t) dt$$

e daí

$$|u_k(x',x_n)|^p \leqslant c \left(|u_k(x',0)|^p + \left(\int_0^{x_n} \left| \frac{\partial u_k}{\partial x_n}(x',t) \right| dt \right)^p \right)$$

onde aqui a constante c depende de p. Integrando ambos os lados sobre \mathbb{R}^{n-1} obtemos

$$\int_{\mathbb{R}^{n-1}} |u_k(x',x_n)|^p dx' \leqslant c \left(\int_{\mathbb{R}^{n-1}} |u_k(x',0)|^p dx' + \int_{\mathbb{R}^{n-1}} \left(\int_0^{x_n} \|Du_k(x',t)\| dt \right)^p dx' \right).$$

Utlizando a Desigualdade de Hölder na ultima integral, temos que o lado direito da equação acima é menor ou igual a

$$c\left(\int_{\mathbb{R}^{n-1}}|u_k(x',0)|^p\,dx'+\int_{\mathbb{R}^{n-1}}\left(\int_0^{x_n}\|Du_k(x',t)\|^p\,dt\right)\left(\int_0^{x_n}1^{p'}\,dt\right)^{p/p'}\,dx'\right).$$

Porem p/p'=p-1, sendo assim, resolvendo a ultima integral e utlizando o Teorema de Fubini, obtemos que o lado direito da equação acima é igual a

$$c\left(\int_{\mathbb{R}^{n-1}}|u_k(x',0)|^p\,dx'+x_n^{p-1}\int_0^{x_n}\int_{\mathbb{R}^{n-1}}\|Du_k(x',t)\|^p\,dx'dt\right).$$

Por fim, como $||u_k|_{\mathbb{R}^{n-1}}||_{\mathcal{L}^p(\mathbb{R}^{n-1})} \to 0$ e utlizando o Teorema da Convergência Dominada quando $k \to \infty$.

$$\int_{\mathbb{R}^{n-1}} |u(x', x_n)|^p dx' \leqslant c x_n^{p-1} \int_0^{x_n} \|Du(x', t)\|^p dx' dt \tag{3.33}$$

Seja $\xi \in \mathcal{C}_c^{\infty}(\mathbb{R}_+)$ tal que

$$\begin{split} \xi &\equiv 1 \text{ em } [0,1] \\ \xi &\equiv 0 \text{ em } \mathbb{R}_+ \setminus [0,2] \\ 0 &\leqslant \xi \leqslant 1 \end{split}$$

e defina $\xi_k = \xi(kx_n)$ e $v_k = u(x)(1 - \xi_k(x))$ para todo $x \in \mathbb{R}^n_+$. Dessa forma

$$\frac{\partial v_k}{\partial x_n} = (1 - \xi_k) \frac{\partial u}{\partial x_n} - k u \xi'$$

$$\frac{\partial v_k}{\partial x'} = (1 - \xi_k) \frac{\partial u}{\partial x'}.$$

Consequentemente

$$\int_{\mathbb{R}^{n}_{+}} \|Dv_{k} - Du\|^{p} dx \leq c \int_{\mathbb{R}^{n}_{+}} \left(\left\| \frac{\partial v_{k}}{\partial x'} - \frac{\partial u}{\partial x'} \right\| + \left| \frac{\partial v_{k}}{\partial x_{n}} - \frac{\partial u}{\partial x_{n}} \right| \right)^{p} dx$$

$$\leq c \int_{\mathbb{R}^{n}_{+}} \left(\xi_{k} \left\| \frac{\partial u}{\partial x'} \right\| + \xi_{k} \left| \frac{\partial u}{\partial x_{n}} \right| + k|u||\xi'| \right)^{p} dx$$

onde c é uma constante que depende de p e n. Daí utilizando a desigualdade entre a derivada parcial e a norma do gradiente

$$\int_{\mathbb{R}^{n}_{+}} \|Dv_{k} - Du\|^{p} dx \leqslant c \int_{\mathbb{R}^{n}_{+}} \xi_{k}^{p} \|Du\|^{p} dx + ck^{p} \int_{\mathbb{R}^{n}_{+}} |\xi'|^{p} |u|^{p} dx$$

Observe que supp $\xi' \subseteq \text{supp } \xi \subseteq [0,2]$. Isto nos diz que $\xi'(x) = \xi'(kx_n) = 0$ quando $kx_n > 2$ ou $x_n > 2/k$. Logo podemos escrever a ultima designaldade como

$$\int_{\mathbb{R}^n_+} \|Dv_k - Du\|^p \, dx \leqslant c \int_{\mathbb{R}^n_+} |\xi_k|^p \|Du\|^p \, dx + ck^p \int_0^{\frac{2}{k}} \int_{\mathbb{R}^{n-1}} |u|^p \, dx' dt.$$

Note que

$$\int_{\mathbb{R}^{n}_{+}} |\xi(kx_{n})|^{p} ||Du||^{p} dx = \int_{0}^{\frac{2}{k}} |\xi(kx_{n})|^{p} \int_{\mathbb{R}^{n-1}} ||Du||^{p} dx' dx_{n}$$

$$\leq c \int_{0}^{\frac{2}{k}} \int_{\mathbb{R}^{n-1}} ||Du||^{p} dx' dx_{n} \longrightarrow 0$$

quando $k \to \infty$ pois ξ tem suporte compacto e $2/k \to 0$. Além disso, utilizando (3.33)

$$ck^{p}\int_{0}^{\frac{2}{k}}\int_{\mathbb{R}^{n-1}}|u|^{p}dx'dt\leqslant ck^{p}\int_{0}^{\frac{2}{k}}t^{p-1}\int_{0}^{t}\int_{\mathbb{R}^{n-1}}\|Du\|^{p}dx'dsdt\leqslant c\int_{0}^{\frac{2}{k}}\int_{\mathbb{R}^{n-1}}\|Du\|^{p}dx'ds\to 0$$

quando $k \to \infty$. Portanto

$$\int_{\mathbb{R}^n} \|Dv_k - Du\|^p \, dx \to 0$$

isto é $||Dv_k - Du||_{\mathcal{L}^p(\mathbb{R}^n_+)} \to 0$ quando $k \to \infty$.

Por fim

$$\|v_k - u\|_{\mathcal{L}^p(\mathbb{R}^n_+)}^p = \int_{\mathbb{R}^n_+} |v_k - u|^p dx = \int_{\mathbb{R}^n_+} \xi_k |u|^p dx.$$

De forma análoga ao que foi feito anteriormente

$$\|v_k - u\|_{\mathcal{L}^p(\mathbb{R}^n_+)}^p = \int_0^{\frac{2}{k}} \xi(kx_n) \int_{\mathbb{R}^{n-1}} |u(x)|^p dx' dx_n \leqslant c \int_0^{\frac{2}{k}} \int_{\mathbb{R}^{n-1}} |u(x)|^p dx' dx_n \to 0.$$

Dessa forma

$$\|v_k - u\|_{\mathcal{W}^{1,p}(\mathbb{R}^n_+)}^p \le \|v_k - u\|_{\mathcal{L}^p(\mathbb{R}^n_+)}^p + \|Dv_k - Du\|_{\mathcal{L}^p(\mathbb{R}^n_+)}^p \to 0$$

Defina $u_k=\eta_{\frac{1}{k}}*v_k$. Assim, para k grande $u_k\in\mathcal{C}_c^\infty(\mathbb{R}^n_+)$ e

$$||u_k - u||_{\mathcal{W}^{1,p}(\mathbb{R}^n_+)} \le ||u_k - v_k||_{\mathcal{W}^{1,p}(\mathbb{R}^n_+)} + ||v_k - u||_{\mathcal{W}^{1,p}(\mathbb{R}^n_+)} \to 0$$

Portanto $u \in \mathcal{W}_0^{1,p}(\mathbb{R}^n_+)$.

3.7 Desigualdades de Sobolev

Nosso objetivo nessa seção é descobrir formas de incorporar espaços de Sobolev em outros espaços

Dividiremos o estudo dessas desigualdades em dois casos, $1 \le p < n$ e n . O caso <math>n = p não será apresentado nesse texto, aos interessados consultar [5] p.p. 275

3.7.1 Desigualdade de Gagliardo-Nirenberg-Sobolev

Seja $1 \leqslant p < n$. Queremos saber se é possível obter uma desigualdade do tipo⁵

$$||u||_{\mathcal{L}^{p}(\mathbb{R}^{n})} \leqslant c||Du||_{\mathcal{L}^{p}(\mathbb{R}^{n})} \tag{3.34}$$

onde c é uma constante positiva, $1 \leqslant q < \infty$ e $u \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$, de forma que c e q não dependam de u.

Primeiramente vamos mostrar que se uma desigualdade do tipo (3.34) existe, o valor de q não é arbitrário, mas sim admite uma forma especifica. Para isso seja $u \in \mathcal{C}_c^{\infty}(\mathbb{R}^n)$ não-nula e $\lambda > 0$. Sendo assim, definimos

$$u_{\lambda}(x) := u(\lambda x).$$

Aplicando (3.34) a u_{λ} , obtemos

$$||u_{\lambda}||_{\mathcal{L}^{q}(\mathbb{R}^{n})} \leqslant c||Du_{\lambda}||_{\mathcal{L}^{p}(\mathbb{R}^{n})}. \tag{3.35}$$

Note que

$$||u_{\lambda}^{q}||_{\mathcal{L}^{q}(\mathbb{R}^{n})} = \int_{\mathbb{R}^{n}} |u_{\lambda}|^{q} dx = \int_{\mathbb{R}^{n}} |u(\lambda x)|^{p} dx = \frac{1}{\lambda^{n}} \int_{\mathbb{R}^{n}} |u(y)|^{q} dx = \frac{1}{\lambda^{n}} ||u||_{\mathcal{L}^{q}(\mathbb{R}^{n})}$$

е

$$\begin{aligned} \|Du_{\lambda}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}^{p} &= \int_{\mathbb{R}^{n}} |Du_{\lambda}|^{p} dx = \int_{\mathbb{R}^{n}} |D(u(\lambda x))|^{p} dx \\ &= \int_{\mathbb{R}^{n}} |\lambda Du(\lambda x)|^{p} dx = \frac{\lambda^{p}}{\lambda^{n}} \int_{\mathbb{R}^{n}} |Du(y)|^{p} dy = \frac{\lambda^{p}}{\lambda^{n}} \|Du\|_{\mathcal{L}^{p}(\mathbb{R}^{n})} \end{aligned}$$

Utilizando essas igualdades em (3.35), observamos que

$$\frac{1}{\lambda^{\frac{n}{q}}} \|u\|_{\mathcal{L}^{q}(\mathbb{R}^{n})} \leqslant c \frac{\lambda}{\lambda^{\frac{n}{p}}} \|Du\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}$$

que podemos reescrever como

$$||u||_{\mathcal{L}^q(\mathbb{R}^n)} \leqslant c\lambda^{1-\frac{n}{p}+\frac{n}{q}}||Du||_{\mathcal{L}^p(\mathbb{R}^n)}$$
(3.36)

Observe que se $1-\frac{n}{p}+\frac{n}{q}>0$, obtemos uma contradição quando $\lambda\to 0$, pois isso implicaria em $\|u\|_{\mathcal{L}^q(\mathbb{R}^n)}=0$, que só acontece se u=0 que é uma contradição. De forma análoga se $1-\frac{n}{p}+\frac{n}{q}<0$ obtemos uma contradição quando $\lambda\to\infty$. Sendo assim, para que a igualdade (3.34) seja válida, precisamos que

$$1 - \frac{n}{p} + \frac{n}{q} = 0$$

ou seja

$$q = \frac{np}{n-p}$$

Isso motiva a definição abaixo

⁵Lembrando que $D: \mathbb{R}^n \to \mathbb{R}^n$ representa o gradiente fraco, quando calculamos a norma do gradiente em $\mathcal{L}^p(\Omega)$ estamos calculando a norma \mathcal{L}^p da norma euclidiana do gradiente.

Definição 3.32. Se $1 \le p < n$ o expoente conjugado de Sobolev de p é dado por

$$p^* = \frac{np}{n-p}$$

Os calculos no início da seção mostram que a desigualdade (3.34) somente é válida quando $q = p^*$. O resultado abaixo mostra que de fato a desigualdade é veridica

Teorema 3.33 (Desigualdade de Gagliardo-Nirenberg-Sobolev). Seja $1 \le p < n$. Então existe uma constante c que depende apenas de p e n, tal que

$$||u||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \leqslant c||Du||_{\mathcal{L}^p(\mathbb{R}^n)} \tag{3.37}$$

para toda função $u \in \mathcal{C}^1_c(\mathbb{R}^n)$.

Demonstração. Consideremos dois casos

$$(p = 1)$$

Como por hipótese, u tem suporte compacto, temos que

$$u(x) = \int_{-\infty}^{x_i} \frac{\partial u}{\partial x_i}(x_1, \dots, y_i, \dots, x_n) dy_i$$

e daí

$$|u(x)| \leqslant \int_{-\infty}^{x_i} \left| \frac{\partial u}{\partial x_i}(x_1, \dots, y_i, \dots, x_n) \right| dy_i \leqslant \int_{-\infty}^{\infty} |Du(x_1, \dots, y_i, \dots, x_n)| dy_i$$

e elevando ambos os lados a $\frac{1}{n-1}$ e passando ao produtório de i=1 até n obtemos

$$|u(x)|^{\frac{n}{n-1}} \leqslant \prod_{i=1}^n \left(\int_{-\infty}^{\infty} |Du(x_1,\ldots,y_i,\ldots,x_n)| \, dy_i \right)^{\frac{1}{n-1}}.$$

Denotando $(x_1, \ldots, y_i, \ldots, x_n)$ por X_i e Integrando ambos os lados em relação a x_1 de $-\infty$ a ∞ .

$$\int_{-\infty}^{\infty} |u(x)|^{\frac{1}{n-1}} dx_{1} \leq \int_{-\infty}^{\infty} \prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} |Du(X_{i})| dy_{i} \right)^{\frac{1}{n-1}} dx_{1}$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |Du(X_{1})| dy_{1} \right)^{\frac{1}{n-1}} \prod_{i=2}^{n} \left(\int_{-\infty}^{\infty} |Du(X_{i})| dy_{i} \right)^{\frac{1}{n-1}} dx_{1}.$$

Porém, $Du(X_1)$ não depende de x_1 , então a sua integral é constante em relação a x_1 e pode "sair" da integral, sendo assim

$$\int_{-\infty}^{\infty} |u(x)|^{\frac{1}{n-1}} dx_1 \leqslant \left(\int_{-\infty}^{\infty} |Du(X_1)| dy_1 \right)^{\frac{1}{n-1}} \int_{-\infty}^{\infty} \prod_{i=2}^{n} \left(\int_{-\infty}^{\infty} |Du(X_i)| dy_i \right)^{\frac{1}{n-1}} dx_1.$$

Por fim, utilizando a Desigualdade de Hölder Generalizada e o Teorema de Fubini, a desigualdade se torna

$$\int_{-\infty}^{\infty} |u(x)|^{\frac{1}{n-1}} dx_1 \leqslant \left(\int_{-\infty}^{\infty} |Du(X_1)| dy_1 \right)^{\frac{1}{n-1}} \prod_{i=2}^{n} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du(X_i)| dx_1 dy_i \right)^{\frac{1}{n-1}}.$$

Agora integrando a desigualdade acima em relação a x_2 de $-\infty$ a ∞ obtemos

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u(x)|^{\frac{1}{n-1}} dx_1 dx_2 \leqslant \int_{\infty}^{\infty} \left(\int_{-\infty}^{\infty} |Du(X_1)| dy_1 \right)^{\frac{1}{n-1}} \prod_{i=2}^{n} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du(X_i)| dx_1 dy_i \right)^{\frac{1}{n-1}} dx_2.$$

que podemos reescrever da seguinte forma

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u(x)|^{\frac{1}{n-1}} dx_1 dx_2 \leqslant \int_{\infty}^{\infty} I_1^{\frac{1}{n-1}} I_2^{\frac{1}{n-1}} \prod_{i=3}^{n} I_i^{\frac{1}{n-1}} dx_2$$

onde

$$I_1 = \int_{-\infty}^{\infty} |Du(X_1)| \, dy_1 \, e \, I_i = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du(X_i)| \, dx_1 dy_i \quad (i = 2, \dots, n).$$

Porem, I_2 é constante em relação a x_2 então

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u(x)|^{\frac{1}{n-1}} dx_1 dx_2 \leqslant I_2^{\frac{1}{n-1}} \int_{\infty}^{\infty} I_1^{\frac{1}{n-1}} \prod_{i=2}^{n} I_i^{\frac{1}{n-1}} dx_2$$

Novamente, utilizando a Desigualdade de Hölder Generalizada e o Teorema de Fubini, obtemos

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |u(x)|^{\frac{n}{n-1}} dx_1 dx_2 \leq \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du(X_1)| dy_1 dx_2 \right)^{\frac{1}{n-1}}$$

$$\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du(X_2)| dx_1 dy_2 \right)^{\frac{1}{n-1}} \prod_{i=3}^{n} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |Du(X_i)| dx_1 dx_2 dy_i \right)^{\frac{1}{n-1}}$$

Indutivamente, repetindo esse processo de integração, temos

$$||u||_{\mathcal{L}^{p^*}(\mathbb{R}^n)}^{p^*} = \int_{\mathbb{R}^n} |u|^{\frac{n}{n-1}} dx$$

$$\leq \prod_{i=1}^n \left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} |Du| dx_1 \dots dx_n \right)^{\frac{1}{n-1}} = \left(\int_{\mathbb{R}^n} |Du| dx \right)^{\frac{n}{n-1}} = ||Du||_{\mathcal{L}^1(\mathbb{R}^n)}^{p^*}$$

Ou seja

$$||u||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \leqslant ||Du||_{\mathcal{L}^1(\mathbb{R}^n)} \tag{3.38}$$

como queriamos mostrar.

$$(1$$

Considere a função $|u|^{\gamma}$ com $\gamma>1$ a ser decidido. Utilizando a desigualdade no caso p=1 temos

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma_n}{n-1}} dx\right)^{\frac{n-1}{n}} \leqslant \int_{\mathbb{R}^n} |D(|u|^{\gamma})| dx = \gamma \int_{\mathbb{R}^n} |u|^{\gamma-1} |Du| dx$$

utilizando a desigualdade de Hölder na ultima integral obtemos

$$\left(\int_{\mathbb{R}^n} |u|^{\frac{\gamma_n}{n-1}} dx\right)^{\frac{n-1}{n}} \leqslant \gamma \left(\int_{\mathbb{R}^n} |u|^{(\gamma-1)\frac{p}{p-1}} dx\right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^n} |Du|^p dx\right)^{\frac{1}{p}}.$$

Escolhendo γ de forma que $\frac{\gamma n}{n-1}=(\gamma-1)\frac{p}{p-1}.$ Isto é

$$\gamma = \frac{p(n-1)}{n-p}$$

nesse caso, $\frac{\gamma n}{n-1} = p^*$. Sendo assim

$$||u||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |u|^{p^*} dx\right)^{\frac{1}{p^*}} \leqslant c \left(\int_{\mathbb{R}^n} |Du|^p dx\right)^{\frac{1}{p}} = ||Du||_{\mathcal{L}^p(\mathbb{R}^n)}.$$

Finalizando a demonstração

Observação: Note que o suporte compato é necessário, como exemplo tome a função u(x) = 1 para todo $x \in \mathbb{R}^n$. Dessa forma |Du| = 0.

$$||u||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \leq 0 \implies u \equiv 0$$

que é uma contradição.

Teorema 3.34. Seja Ω um aberto limitado com fronteira de classe \mathcal{C}^1 e $u \in \mathcal{W}^{1,p}(\Omega)$ então $u \in \mathcal{L}^{p^*}(\Omega)$ e

$$||u||_{\mathcal{L}^{p^*}(\Omega)} \leqslant c||u||_{\mathcal{W}^{1,p}(\Omega)}$$

onde c é uma constante que depende apenas de n, p e Ω

Demonstração. Utilizando o Teorema 3.29, podemos considerar a extensão de $u Eu = \bar{u}$ tal que

$$\bar{u} = u$$
 qtp em Ω

 \bar{u} tem suporte compacto

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant \|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

Como \bar{u} tem suporte compacto, sabemos que existe uma sequência (u_k) dada por $\eta_{\frac{1}{k}}*\bar{u}$ tal que

$$||u_k-\bar{u}||_{\mathcal{W}^{1,p}(\Omega)}\to 0$$

e para k grande $u_k \in \mathcal{C}_c^\infty(\mathbb{R}^n)$. Pela Desigaldade de Gagliardo-Nirenberg-Sobolev

$$||u_k - u_\ell||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \le c||Du_k - Du_\ell||_{\mathcal{L}^p(\mathbb{R}^n)}.$$
 (3.39)

Note que

$$||Du_k - D\bar{u}||_{\mathcal{L}^p(\mathbb{R}^n)} \leqslant ||u_k - \bar{u}||_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \to 0$$

isso mostra que (Du_k) é convergente (e portanto de Cauchy) em $\mathcal{L}^p(\mathbb{R}^n)$. Consequentemente, por (3.39) observamos que (u_k) é de Cauchy em $\mathcal{L}^{p^*}(\mathbb{R}^n)$ que é um espaço completo, logo existe $v \in \mathcal{L}^{p^*}(\mathbb{R}^n)$ tal que $u_k \to v$ em $\mathcal{L}^{p^*}(\mathbb{R}^n)$. Portanto, pelo Teorema 3.7, ao menos de uma subsequência $u_k(x) \to v(x)$ qtp em \mathbb{R}^n . Análogamente, $u_k(x) \to \bar{u}(x)$ qtp em \mathbb{R}^n , desde que $\|u_k - \bar{u}\|_{\mathcal{L}^p(\mathbb{R}^n)} \leqslant \|u_k - \bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \to 0$. Com isso $v(x) = \bar{u}(x)$ qtp em \mathbb{R}^n . Dessa forma

$$||u_k - \bar{u}||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \to 0.$$

A Desigualdade de Gagliardo-Nirenberg-Sobolev também implica em

$$||u_k||_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \leqslant c||Du_k||_{\mathcal{L}^p(\mathbb{R}^n)}$$

Passando ao limite obtemos

$$\|\bar{u}\|_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \leqslant c\|Du\|_{\mathcal{L}^p(\mathbb{R}^n)}$$

Essa desigualdade finaliza a demonstração, já que

$$\|u\|_{\mathcal{L}^{p^*}(\Omega)} = \|\bar{u}\|_{\mathcal{L}^{p^*}(\Omega)} \leqslant \|\bar{u}\|_{\mathcal{L}^{p^*}(\mathbb{R}^n)} \leqslant c\|D\bar{u}\|_{\mathcal{L}^p(\mathbb{R}^n)} \leqslant c\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

Como queriamos mostrar

Teorema 3.35. Sejam Ω um aberto limitado e $u \in \mathcal{W}^{1,p}_0(\Omega)$ com $1 \leqslant p < n$, então a desigualdade

$$||u||_{\mathcal{L}^q(\Omega)} \leq c||Du||_{\mathcal{L}^p(\Omega)}$$

é válida para $1 \leqslant q \leqslant p^*$ e c é uma constante que depende de p,q e n.

Demonstração. Como $u \in \mathcal{W}_0^{1,p}(\Omega)$, conseguimos uma sequência de funções (u_k) em $\mathcal{C}_c^{\infty}(\Omega)$ tal que $u_k \to u$ em $\mathcal{W}^{1,p}(\Omega)$. Além disso, podemos extender cada u_k para ser 0 em $\mathbb{R}^n \setminus \Omega$. Sendo assim, aplicamos a Desigualdade de Gagliardo-Nirenberg-Sobolev para obter

$$||u_k||_{\mathcal{L}^{p*}(\Omega)} \leqslant c||Du_k||_{\mathcal{L}^p(\Omega)}$$

Passando ao limite

$$||u||_{\mathcal{L}^{p^*}}(\Omega) \leqslant c||Du||_{\mathcal{L}^p(\Omega)}$$

Provando o caso em que $q=p^*$. Agora considere $1\leqslant q< p^*$. Como Ω é limitado, temos que

$$||u||_{\mathcal{L}^q(\Omega)} \leq ||u||_{\mathcal{L}^{p^*}(\Omega)} \leq c||Du||_{\mathcal{L}^p(\Omega)}$$

Portanto, a desigualdade é válida para todo $1 \le p < n$ e $1 \le q \le p^*$.

Um caso particular da desigualdade acima é a Desigualdade de Poincaré que será apresentada no corolário abaixo

Corolário 3.36 (Desigualdade de Poincaré). Sejam Ω um aberto limitado e $u \in \mathcal{W}_0^{1,p}(\Omega)$ com $1 \leq p \leq \infty$. Então a desigualdade

$$||u||_{\mathcal{L}^p(\Omega)} \leqslant c||Du||_{\mathcal{L}^p(\Omega)}$$

onde c é uma constante que depende de p, q e n.

Demonstração. Primeiramente considere $1 \leqslant p < n$ Por definição, $1 \leqslant p < p^*$, pelo teorema anterior

$$||u||_{\mathcal{L}^p(\Omega)} \leqslant c||Du||_{\mathcal{L}^p}.$$

Agora considere $n \le p < \infty$ Considere $1 \le s < n$ tal que $p < s^*$. Note que

$$||u||_{\mathcal{L}^{p}(\Omega)} \leqslant ||u||_{\mathcal{L}^{s^{*}}(\Omega)} \leqslant c||Du||_{\mathcal{L}^{s}(\Omega)} \leqslant c||Du||_{\mathcal{L}^{p}(\Omega)}.$$

Por fim, considere $p = \infty$. Pelo que foi visto acima, temos que

$$||u||_{\mathcal{L}^{s^*}(\Omega)} \leqslant c||Du||_{\mathcal{L}^s(\Omega)} \leqslant c||Du||_{\mathcal{L}^{\infty}(\Omega)}.$$

Passando ao limite quando $s \to n^-$ temos que $s^* \to \infty$. Dessa forma $||u||_{\mathcal{L}^{\infty}(\Omega)} \leqslant c||Du||_{\mathcal{L}^{\infty}(\Omega)}$. Portanto

$$||u||_{\mathcal{L}^p(\Omega)} \leqslant c||Du||_{\mathcal{L}^p(\Omega)}$$

para todo $1 \leqslant p \leqslant \infty$.

O resultado acima nos diz que

$$\mathcal{W}_0^{1,p}(\Omega) \hookrightarrow \mathcal{L}^q(\Omega) \quad (1 \leqslant q \leqslant p^*) \ \ \mathbf{e} \ \ \mathcal{W}_0^{1,s}(\Omega) \hookrightarrow \mathcal{L}^{s^*}(\Omega) \quad (1 \leqslant s \leqslant \infty)$$

isto é o mesmo que dizer que $\mathcal{W}_0^{1,p}(\Omega) \subseteq \mathcal{L}^q(\Omega)$ com $1 \leqslant q \leqslant p^*$, $\mathcal{W}^{1,s}(\Omega) \subseteq \mathcal{L}^{s^*}(\Omega)$ com $1 \leqslant s \leqslant \infty$ e o operador inclusão ι (em cada um dos casos) é um operados linear limitado.

3.7.2 Desigualdade de Morrey

Para estudar essa próxima classe de desigualdades, precisamos de algumas definições relacionadas aos espaços de Hölder.

Definição 3.37. Uma função $u:\Omega\to\mathbb{R}$ é dita ser Hölder continua com expoente $\gamma\in(0,1]$ quando

$$|u(x) - u(y)| \le c||x - y||^{\gamma}$$

para todo $x, y \in \Omega$. Além disso, denotamos o espaço dessas funções por $\mathcal{C}^{0,\gamma}(\overline{\Omega})$.

Definição 3.38. Se $u: \Omega \to \mathbb{R}$ é uma função contínua e limitada, escrevemos

$$||u||_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} = ||u||_{\mathcal{C}(\overline{\Omega})} + [u]_{\mathcal{C}^{0,\gamma}(\overline{\Omega})}$$

onde

$$\|u\|_{\mathcal{C}(\overline{\Omega})} = \sup_{x \in \Omega} |u(x)| \quad \text{e} \quad [u]_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|u(x) - u(y)|}{\|x - y\|^{\gamma}} \right\}$$

para denotar a norma de u no espaço de Hölder $\mathcal{C}^{0,\gamma}(\overline{\Omega})$.

Com essas definições, estamos prontos para enunciar e demonstrar a Desigualdade de Morrey

Teorema 3.39. Seja $u \in \mathcal{C}^1(\mathbb{R}^n)$ e n . Então

$$||u||_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} \leqslant c||u||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}$$

onde c é uma constante que depende apenas de p e n e $\gamma=1-\frac{n}{p}$.

Demonstração. Primeiramente, escolha uma bola $B(x,r)\subseteq\mathbb{R}^n$. Afirmamos que existe uma constante c>0 dependendo apenas de n tal que⁶

$$\oint_{B(x,r)} |u(y) - u(x)| \, dy \leqslant c \int_{B(x,r)} \frac{\|Du(y)\|}{|y - x|^{n-1}} \, dy.$$
(3.40)

Com efeito, fixando $w \in \partial B(\mathbf{0}, 1)$, assim, se 0 < s < r segue que

$$|u(x+sw) - u(x)| = \left| \int_0^s u'(x+tw) \, dt \right| = \left| \int_0^s Du(x+tw) \cdot w \, dt \right| \le \int_0^s \|Du(x+tw)\| \, dt$$

onde utilizamos a Desigualdade de Hölder (Cauchy-Schwarz) e o fato de |w|=1. Daí integrando ambos os lados sobre $\partial B(\mathbf{0},1)$

$$\int_{\partial B(0,1)} |u(x+sw) - u(x)| \, dS \leqslant \int_0^s \int_{\partial B(0,1)} \|Du(x+tw)\| \, dS dt = \int_0^s \int_{\partial B(0,1)} \|Du(x+tw)\| \frac{t^{n-1}}{t^{n-1}} \, dS dt.$$

Seja y = x + tw, de forma que t = ||x - y||. Assim, por meio de coordenadas polares obtemos

$$\int_{\partial B(0,1)} |u(x+sw) - u(x)| \, dS \leqslant \int_0^s \int_{B(x,t)} \frac{\|Du(y)\|}{|x-y|^{n-1}} \, dS dt = \int_{B(x,s)} \frac{\|Du(y)\|}{|x-y|^{n-1}} \, dy$$

e como s < r

$$\int_{\partial B(0,1)} |u(x+sw) - u(x)| \, dS \leqslant \int_{B(x,r)} \frac{\|Du(y)\|}{|x-y|^{n-1}} \, dy.$$

Multiplicando a equação acima por s^{n-1} e integrando de 0 a r com respeito a s

$$\int_0^r s^{n-1} \int_{\partial B(0,1)} |u(x+sw) - u(x)| \, dS ds \leqslant \int_0^r s^{n-1} \int_{B(x,r)} \frac{\|Du(y)\|}{|x-y|^{n-1}} \, dy ds.$$

Fazendo y = x + sw, obtemos

$$\int_0^r \int_{\partial B(x,s)} |u(y) - u(x)| \, dS ds \leqslant \left(\int_{B(x,r)} \frac{\|Du(y)\|}{|x - y|^{n-1}} \, dy \right) \left(\int_0^r s^{n-1} ds \right)$$

$$\int_{B(x,r)} f \, dy := \frac{1}{\sigma(n)r^n} \int_{B(x,r)} f \, dy$$

onde $\sigma(n)r^n$ é o volume da esfera *n*-dimensional, representa a média da função *f* sobre B(x, r).

⁶A integral

Utilizando coordenadas polares no lado esquerdo e resolvendo a última integral do lado direito, segue que

$$\int_{B(x,r)} |u(y) - u(x)| \leqslant \frac{r^n}{n} \int_{B(x,r)} \frac{\|Du(y)\|}{\|x - y\|^{n-1}} \, dy$$

Por fim dividindo ambos os lados por $\sigma(n)r^n$ (volume da *n*-esfera de raio r), temos

$$\int_{B(x,r)} |u(y) - u(x)| \, dy \leqslant \frac{1}{n\sigma(n)} \int_{B(x,r)} \frac{\|Du(y)\|}{\|x - y\|^{n-1}} \, dy.$$

como era desejado.

Agora, fixe $x \in \mathbb{R}^n$. Note que

$$|u(x)| = \frac{|u(x)|}{\sigma(n)} \int_{B(x,1)} dy = \int_{B(x,1)} |u(x)| dy.$$

Dito isso

$$|u(x)| \le \int_{B(x,1)} |u(x) - u(y)| \, dy + \int_{B(x,1)} |u(y)| \, dy. \tag{3.41}$$

Observe que

$$\int_{B(x,1)} |u(y)| \, dy = \frac{1}{\sigma(n)} \int_{B(x,1)} |u(y)| \, dy \\
\leqslant \frac{1}{\sigma(n)} \left(\int_{B(x,1)} |u(y)|^p \, dy \right)^{\frac{1}{p}} \left(\int_{B(x,1)} 1^{p'} \, dy \right)^{\frac{1}{p'}} \leqslant c \|u\|_{\mathcal{L}^p(\mathbb{R}^n)}$$
(3.42)

Além disso

$$\int_{B(x,1)} \frac{\|Du(y)\|}{\|x-y\|^{n-1}} \, dy \leqslant \left(\int_{B(x,1)} \|Du\|^p \right)^{\frac{1}{p}} \left(\int_{B(x,1)} \frac{dy}{\|x-y\|^{(n-1)p'}} \right)^{\frac{1}{p'}}$$

onde a ultima integral é finita. De fato, utliizando coordenadas polares

$$\int_{B(x,1)} \frac{dy}{\|x-y\|^{(n-1)p'}} = \int_0^1 \int_{\partial B(x,r)} \frac{1}{r^{(n-1)p'}} dS dr = n\sigma(n) \int_0^1 r^{(n-1)(1-p')} dr = n\sigma(n) \frac{p-1}{p-n}$$

que é finito pois n < p. Dito isso

$$\int_{B(x,1)} \frac{\|Du(y)\|}{\|x-y\|^{n-1}} \, dy \leqslant c \|Du\|_{\mathcal{L}^p(\mathbb{R}^n)}. \tag{3.43}$$

Dessa forma, por (3.40), (3.41), (3.42) e (3.43)

$$|u(x)| \leqslant c ||u||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}.$$

Como x é arbitrário, também obtemos

$$||u||_{\mathcal{C}(\mathbb{R}^n)} = \sup_{x \in \mathbb{R}^n} |u(x)| \leqslant c||u||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}$$
 (3.44)

Agora, considere $x, y \in \mathbb{R}^n$ e denote $r = \|x - y\|$. Daí, seja $B = B(x, r) \cap B(y, r)$, sendo assim

$$|u(x) - u(y)| \le \int_{B} |u(x) - u(z)| dz + \int_{B} |u(y) - u(z)| dz.$$

Calculando a primeira integral obtemos

$$\int_{B} |u(x) - u(z)| \, dz \le \int_{B(x,r)} |u(x) - u(z)| \, dz \le c \int_{B(x,r)} \frac{\|Du(z)\|}{|z - x|^{n-1}} \, dz$$

onde utilizando a Desigualdade de Hölder, como foi feito anteriormente obtemos

$$\int_{B} |u(x) - u(z)| \, dz \leqslant c r^{1 - \frac{n}{p}} \|Du\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}.$$

De forma análoga

$$\int_{B} |u(y) - u(z)| \, dz \leqslant cr^{1-\frac{n}{p}} \|Du\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}.$$

Sendo assim

$$|u(x) - u(y)| \le c||x - y||^{1 - \frac{n}{p}} ||Du||_{\mathcal{L}^{p}(\mathbb{R}^{n})}.$$

Isso mostra que

$$[u]_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} = \sup\left\{\frac{|u(x) - u(y)|}{\|x - y\|^{\gamma}}\right\} \leqslant c\|Du\|_{\mathcal{L}^p(\mathbb{R}^n)}$$
(3.45)

Portanto por (3.44) e (3.45)

$$||u||_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} \leqslant c||u||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}$$

Assim, demonstrada a Desigualdade de Morrey.

Definição 3.40. Dizemos que u^* é uma versão de uma função u se

 $u = u^*$ qtp em seu domínio

Para demonstrar a próxima desigualdade, precisamos do seguinte resultado

Teorema 3.41. O espaço de Hölder $\mathcal{C}^{0,\gamma}(\overline{\Omega})$ é um espaço de Banach

Demonstração. verificar (ainda não consegui)

Teorema 3.42. Seja Ω um aberto limitado com $\partial\Omega$ de classe \mathcal{C}^1 . Considere $u\in\mathcal{W}^{1,p}(\Omega)$ com n . Então <math>u tem uma versão contínua $u^* \in \mathcal{C}^{0,\gamma}(\overline{\Omega})$ com $\gamma = 1 - \frac{n}{p}$ e

$$\|u^*\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} \leqslant \|u\|_{\mathcal{W}^{1,p}(\Omega)}$$

onde c é um constnte que depende de n, p e Ω

Demonstração. Utilizando o Teorema 3.29, podemos considerar a extensão de $u Eu = \bar{u}$ tal que

$$\bar{u}=u$$
 qtp em Ω \bar{u} tem suporte compacto

$$\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant \|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

Além disso, como supp \bar{u} é compcto, temos pelo Teorema 3.23 que existem funções $(u_k) \subseteq$ $\mathcal{C}_c^{\infty}(\mathbb{R}^n)\subseteq\mathcal{C}^1(\mathbb{R}^n)$ tal que

$$||u_k-\bar{u}||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}\to 0.$$

Além disso, pelo Teorema 3.39

$$||u_k - u_I||_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} \leqslant c||u_k - u_I||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}.$$

Isto nos diz que (u_k) é de Cauchy em $\mathcal{C}^{0,\gamma}(\mathbb{R}^n)$, já que (u_k) é convergente em ds $\mathcal{W}^{1,p}(\mathbb{R}^n)$. Como $\mathcal{C}^{0,\gamma}(\mathbb{R}^n)$ é commpleto, existe uma função $u^* \in \mathcal{C}^{0,\gamma}(\mathbb{R}^n)$ tal que

$$||u_k-u^*||_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)}\to 0.$$

Note que $u^* = \bar{u}$ qtp em \mathbb{R}^n e $u = \bar{u}$ qtp em Ω . Logo $u = u^*$ qtp em Ω , ou seja u^* é uma versão de u. O Teorema 3.39 também implica em

$$||u_k||_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} \leqslant c||u_k||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}.$$

Isto nos leva a

$$||u^*||_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} \leqslant c||\bar{u}||_{\mathcal{W}^{1,p}(\mathbb{R}^n)}.$$

Por fim

$$\|u^*\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} \leqslant \|u^*\|_{\mathcal{C}^{0,\gamma}(\mathbb{R}^n)} \leqslant c\|\bar{u}\|_{\mathcal{W}^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}.$$

Portanto

$$\|u^*\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}$$

como era desejado.

3.7.3 Desigualdades gerais de Sobolev

Teorema 3.43. Sejam Ω um aberto limitado com fronteira $\partial\Omega$ de classe \mathcal{C}^1 e $u\in\mathcal{W}^{k,p}(\Omega)$. Se kp< n, então $u\in\mathcal{L}^q(\Omega)$ onde

$$\frac{1}{q} = \frac{1}{p} - \frac{k}{n}.$$

Além disso, a desigualdade

$$||u||_{\mathcal{L}^q(\Omega)} \leqslant c||u||_{\mathcal{W}^{k,p}(\Omega)}$$

é valida, onde c depende apenas de k, p, n e Ω .

Demonstração. Como $u \in \mathcal{W}^{k,p}(\Omega)$ com $1 \leqslant p \leqslant kp < n$ temos que $D^{\alpha}u \in \mathcal{L}^p(\Omega)$ para todo multi-índice α com $|\alpha| \leqslant k$. Utilizando a Desigualdade de Gagliardo-Nirenberg-Sobolev obtemos

$$\|D^{\beta}u\|_{\mathcal{L}^{p^*}(\Omega)} \leqslant c\|u\|_{\mathcal{L}^p(\Omega)} \leqslant c\|u\|_{\mathcal{W}^{k,p}(\Omega)}$$

com $|\beta| \leqslant k-1$. Dessa forma $u \in \mathcal{W}^{k-1,p^*}(\Omega)$ e $||u||_{\mathcal{W}^{k-1,p^*}(\Omega)} \leqslant c||u||_{\mathcal{W}^{k,p}(\Omega)}$. De forma análoga temos que $u \in \mathcal{W}^{k-2,p^{**}}(\Omega)$ onde

$$\frac{1}{p^{**}} = \frac{1}{p^*} - \frac{1}{n} = \frac{1}{p} - \frac{1}{n} - \frac{1}{n} = \frac{1}{p} - \frac{2}{n}.$$

Indutivamente, chegamos a $u \in \mathcal{W}^{0,q}(\Omega) = \mathcal{L}^q(\Omega)$ com $\frac{1}{q} = \frac{1}{p} - \frac{k}{n}$ e

$$||u||_{\mathcal{L}^q(\Omega)} \leqslant c||u||_{\mathcal{W}^{k,p}(\Omega)}.$$

como queriamos mostrar.

Definição 3.44. O espaço de Hölder $\mathcal{C}^{k,\gamma}(\overline{\Omega})$ é formado pelas funções $u \in \mathcal{C}^k(\Omega) \cap \mathcal{C}^{0,\gamma}(\overline{\Omega})$. Esse espaço é munido da norma

$$||u||_{\mathcal{C}^{k,\gamma}(\overline{\Omega})} := \sum_{|\alpha| \leqslant k} ||D^{\alpha}u||_{\mathcal{C}(\overline{\Omega})} + \sum_{|\alpha| \leqslant k} [D^{\alpha}u]_{\mathcal{C}^{0,\gamma}(\overline{\Omega})}$$

Teorema 3.45. Sejam Ω um aberto limitado com fronteira de classe \mathcal{C}^1 e $u \in \mathcal{W}^{k,p}(\Omega)$. Se kp > n, então $u \in \mathcal{C}^{k-\ell-1,\gamma}(\overline{\Omega})$, onde $\ell = \left\lfloor \frac{n}{p} \right\rfloor$ e

$$\gamma = \left\lfloor \frac{n}{p} \right\rfloor + 1 - \frac{n}{p}$$

se $\frac{n}{p}$ não é um inteiro e $\gamma \in (0,1)$ se $\frac{n}{p}$ é um inteiro. Além disso a desigualdade

$$||u||_{\mathcal{C}^{k-\ell-1,\gamma}(\overline{\Omega})} \leqslant c||u||_{\mathcal{W}^{k,p}(\Omega)}$$

é valida com c dependendo apenas de k, p, n, γ e Ω .

Demonstração. Suponha que $\frac{n}{p}$ não é um inteiro. Então como visto na demonstração anterior temos que $u \in \mathcal{W}^{k-\ell,r}(\Omega)$ quando

$$\frac{1}{r} = \frac{1}{p} - \frac{\ell}{n} \tag{3.46}$$

desde que $\ell p < n$. Além disso, ℓ é um inteiro tal que

$$\ell < \frac{n}{p} < \ell + 1 \tag{3.47}$$

isto é $\ell = \left\lfloor \frac{n}{p} \right\rfloor$. Consequentemente temos por (3.46) e (3.47) que

$$r = \frac{pn}{n - pl} > n$$

Além disso, $D^{\alpha}u \in \mathcal{W}^{1,r}(\Omega)$ para todo $|\alpha| \leqslant k - \ell - 1$. Dito isso, pelo Teorema 3.29, seja $\overline{D^{\alpha}u} \in \mathcal{W}^{1,r}(\mathbb{R}^n)$ uma extensão de $D^{\alpha}u$. Assim pela Desigualdade de Morrey $\overline{D^{\alpha}u} \in \mathcal{C}^{0,\gamma}(\mathbb{R}^n)$ e

$$\begin{split} \|D^{\alpha}u\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} &= \|\overline{D^{\alpha}u}\|_{\mathcal{C}^{0,\gamma}(\mathbb{R}^{n})} \leqslant \|\overline{D^{\alpha}u}\|_{\mathcal{C}^{0,\gamma}(\mathbb{R}^{n})} \\ &\leqslant c\|\overline{D^{\alpha}u}\|_{\mathcal{W}^{1,r}(\mathbb{R}^{n})} \leqslant c\|D^{\alpha}u\|_{\mathcal{W}^{1,r}(\Omega)} \leqslant c\|u\|_{\mathcal{W}^{k-\ell,r}(\Omega)}. \end{split}$$

Mostrando que $D^{\alpha}u\in\mathcal{C}^{0,\gamma}(\overline{\Omega})$ Observe também que $1-\frac{n}{r}=\ell+1-\frac{n}{p}=\gamma$. Portanto $u\in\mathcal{C}^{k-\ell-1,\gamma}(\overline{\Omega})$ e

$$\begin{aligned} \|u\|_{\mathcal{C}^{k-\ell-1,\gamma}(\overline{\Omega})} &= \sum_{|\alpha| \leqslant k-\ell-1} \left(\|D^{\alpha}u\|_{\mathcal{C}(\overline{\Omega})} + [D^{\alpha}u]_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} \right) \\ &\leqslant \sum_{|\alpha| \leqslant k-\ell-1} \left(\|D^{\alpha}u\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} + \|D^{\alpha}u\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} \right) \\ &= \sum_{|\alpha| \leqslant k-\ell-1} 2\|D^{\alpha}u\|_{\mathcal{C}^{0,\gamma}(\overline{\Omega})} \leqslant \sum_{|\alpha| \leqslant k-\ell-1} c\|D^{\alpha}u\|_{\mathcal{W}^{1,r}(\Omega)} \leqslant c\|u\|_{\mathcal{W}^{k-\ell,r}(\Omega)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)} \end{aligned}$$

Por fim, suponha que $\frac{n}{p}$ é um inteiro. Seja $\ell = \left\lfloor \frac{n}{p} \right\rfloor - 1 = \frac{n}{p} - 1$. Como anteriormente, temos que $u \in \mathcal{W}^{k-\ell,r}$ desde que (3.46) seja satisfeito. Porém agora

$$r = \frac{pn}{n - p\ell} = n.$$

Isto nos diz que $D^{\alpha}u \in \mathcal{L}^r(\Omega)$ para todo $|\alpha| \leqslant k-\ell$. Sejam $n < q < \infty$ e $1 \leqslant s = \frac{nq}{n+q} < n$. Dessa forma $s^* = q$ e pela Desigualdade de Gagliardo-Nirenberg-Sobolev temos que

$$\|D^{\alpha}u\|_{\mathcal{L}^{q}(\Omega)}\leqslant c\|D(D^{\alpha}u)\|_{\mathcal{L}^{s}(\Omega)}\leqslant c\|D(D^{\alpha}u)\|_{\mathcal{L}^{r}(\Omega)}$$

3.8. COMPACIDADE 89

que é finito pois $u \in \mathcal{W}^{k-\ell,r}(\Omega)$. Como Ω é limitado concluimos que

$$||D^{\alpha}u||_{\mathcal{L}^{q}(\Omega)} \leqslant c||u||_{\mathcal{W}^{k-\ell,r}(\Omega)} \leqslant c||u||_{\mathcal{W}^{k,p}(\Omega)}$$

para todo $|\alpha| \le k - \ell - 1$. Isto nos diz que $D^{\alpha}u \in \mathcal{L}^q(\Omega)$ para todo $|\alpha| \le k - \ell - 1 = k - \frac{n}{p}$. Como $n < q < \infty$, utilizando a Desigualdade de Morrey

$$||D^{\alpha}u||_{\mathcal{C}^{0,1-\frac{n}{q}}(\overline{\Omega})} \leqslant c||D^{\alpha}u||_{\mathcal{W}^{1,q}(\Omega)}$$

para todo $|\alpha| \leqslant k - \ell - 2$. Assim, tomando $\gamma \in (0,1)$ obtemos

$$||u||_{\mathcal{C}^{k-\ell-1,\gamma}(\Omega)} \leqslant c||u||_{\mathcal{W}^{k-l-1,q}(\Omega)} \leqslant \cdots \leqslant c||u||_{\mathcal{W}^{k,p}}$$

como era desejado.

3.8 Compacidade

Definição 3.46. Sejam X, Y espaços de Banach com $X \subseteq Y$. Dizemos que X está compactamente mergulhado em Y e denotamos por $X \hookrightarrow Y$ se para todo $X \in X$

$$||x||_Y \leqslant c||x||_X$$

e se toda sequência limitada em X é precompacta em Y, isto é, existe uma subsequência que converge em Y.

Observação: Se um mergulho satisfaz apenas a primeira propiedade, dizemos que X está continuamente mergulhado em Y e denotamos por $X \hookrightarrow Y$.

Teorema 3.47 (Teorema de Compacidade de Rellich-Kondrachov). Seja $\Omega \subseteq \mathbb{R}^n$ um aberto limitado com fronteira de classe \mathcal{C}^1 . Então

$$\mathcal{W}^{1,p}(\Omega) \stackrel{\hookrightarrow}{\hookrightarrow} \mathcal{L}^q(\Omega)$$

com $1 \leqslant p < n$ e $1 \leqslant q < p^*$

Demonstração. Seja $1 \leqslant q < p^*$ fixo. Como Ω é limitado, segue que $\|u\|_{\mathcal{L}^q(\Omega)} \leqslant c\|u\|_{\mathcal{L}^{p^*}(\Omega)}$ e pelo Teorema 3.34 temos $\|u\|_{\mathcal{L}^{p^*}(\Omega)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}$. Logo $\mathcal{W}^{1,p}(\Omega) \subseteq \mathcal{L}^q(\Omega)$ e $\|u\|_{\mathcal{L}^p(\Omega)} \leqslant c\|u\|_{\mathcal{W}^{1,p}(\Omega)}$. Resta mostrar que se $(u_k)_{k=1}^\infty$ é uma sequência limitada em $\mathcal{W}^{1,p}(\Omega)$, então existe uma subsequência $(u_{k_i})_{i=1}^\infty$ que converge em $\mathcal{L}^q(\Omega)$.

Pelo Teorema de Extensão, podemos supor sem perda de generalidade que $\Omega=\mathbb{R}^n$ e que para todo $k\in\mathbb{N}$, u_k tem suporte compacto em algum aberto limitado $V\subseteq\mathbb{R}^n$. Também podemos supor que

$$\sup_{k} \|u_k\|_{\mathcal{W}^{1,p}(V)} < \infty \tag{3.48}$$

poisa sequência é limitada

Primeiramente vamos estudar as funções suavizadas $u_k^{\varepsilon} = \eta_{\varepsilon} * u_k$ onde η_{ε} é a função molificadora vista na Seção 3.4. Também podemos supor que para todo $k \in \mathbb{N}$ e $\varepsilon > 0$ as funções u_k^{ε} tem suporte em V. Afirmamos que

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^q(V)} \to 0 \tag{3.49}$$

uniformemente em k, quando $\varepsilon \to 0$. Com efeito, note que se u_k é suave, então

$$u_k^{\varepsilon}(x) - u_k(x) = \int_{B(0,\varepsilon)} \eta_{\varepsilon}(\tau) u_k(x - \tau) d\tau - u_k(x) = \int_{B(0,\varepsilon)} \frac{1}{\varepsilon^n} \eta\left(\frac{\tau}{\varepsilon}\right) u_k(x - \tau) d\tau - u_k(x)$$

Fazendo a substituição $\tau = \varepsilon y$ e lembrando que $\int_{B(0,1)} \eta(y) \, dy = 1$, obtemos

$$u_{k}^{\varepsilon}(x) - u_{k}(x) = \int_{B(0,1)} \eta(y) \left(u_{k}(x - \varepsilon y) - u_{k}(x) \right) dy = \int_{B(0,1)} \eta(y) \int_{0}^{1} \frac{d}{dt} u_{k}(x - \varepsilon t y) dt dy$$

Para calcular essa derivada, seja $g(t) = x - \varepsilon t y$. Pela Regra da Cadeia temos que

$$\frac{d}{dt}(u_k \circ g) = \sum_{j=1}^n \frac{\partial u_k}{\partial x_j}(g(t)) g_j'(t) = -\varepsilon \sum_{j=1}^n \frac{\partial u_k}{\partial x_j}(g(t)) y_j = -\varepsilon Du_k(x - \varepsilon t y) \cdot y$$

Sendo assim

$$u_k^{\varepsilon}(x) - u_k(x) = -\varepsilon \int_{B(0,1)} \eta(y) \int_0^1 Du_k(x - \varepsilon t y) \cdot y \, dt dy.$$

Daí, passando o módulo em ambos os lados e Utilizando a Desigualdade de Hölder (Cauchy-Schwarz) obtemos

$$|u_k^{\varepsilon}(x) - u_k(x)| \le \varepsilon \int_{B(0,1)} \eta(y) \int_0^1 \|Du_k(x - \varepsilon ty)\| dt dy$$

e integrando ambos os lados sobre V

$$\int_{V} |u_{k}^{\varepsilon}(x) - u_{k}(x)| dx \leq \int_{V} \varepsilon \int_{B(0,1)} \eta(y) \int_{0}^{1} \|Du_{k}(x - \varepsilon ty)\| dt dy dx$$

$$\leq \varepsilon \int_{B(0,1)} \eta(y) \int_{0}^{1} \int_{V} \|Du_{k}(x - \varepsilon ty)\| dx dt dy \leq \varepsilon \int_{V} \|Du_{k}(z)\| dz.$$

Isto é

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^1(V)} \leqslant \varepsilon \|Du_k\|_{\mathcal{L}^1(V)} \leqslant \varepsilon c \|Du_k\|_{\mathcal{L}^p(V)} \leqslant \varepsilon c \|u_k\|_{\mathcal{W}^{1,p}(V)}$$

Akém disso, utilizando (3.48) e o Teorema da Convergência Dominada obtemos que

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{C}^1(V)} \to 0 \tag{3.50}$$

quando $\varepsilon \to 0$ uniformemente em k. Como $1 \leqslant q < p^*$, podemos utilizar a Desigualdade de Interpolação das normas \mathcal{L}^p

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^q(V)} \leqslant \|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^1(V)}^{\theta} \|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^{p^*}(V)}^{1-\theta}$$

onde $\frac{1}{q} = \theta + \frac{(1-\theta)}{p^*}$ e $0 < \theta < 1$. Ademais, por (3.48) e pela Desigualdade de Gagliardo-Nirenberg-Sobolev, $\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^{p^*}(V)}^{1-\theta}$ é finito. De fato

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^{p^*}(V)}^{1-\theta} \leqslant c\|Du_k^{\varepsilon} - Du_k\|_{\mathcal{L}^{p}(V)}^{1-\theta} \leqslant c\|u_k^{\varepsilon} - u_k\|_{\mathcal{W}^{1,p}(V)}^{1-\theta} < \infty.$$

Assim por (3.50)

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^q(V)} \le c \|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^1(V)}^{\theta} \to 0$$

uniformemente em k, quando $\varepsilon \to 0$. Como era desejado.

Agora, afirmamos que, para cada $\varepsilon > 0$ fixo, a sequência $(u_k^{\varepsilon})_{k=1}^{\infty}$ é uniformemente limitada e equicontínua. Com efeito, se $x \in \mathbb{R}^n$

$$|u_k^{\varepsilon}(x)| \leqslant \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y)|u_k(y)| \, dy \leqslant \|\eta_{\varepsilon}\|_{\mathcal{L}^{\infty}(\mathbb{R}^n)} \|u_k\|_{\mathcal{L}^1(V)} \leqslant \frac{c}{\varepsilon^n} < \infty \tag{3.51}$$

onde por (3.48) c não depende de k. De forma análoga, mostramos que

$$||Du_k^{\varepsilon}(x)|| \le \frac{c}{\varepsilon^{n+1}} < \infty.$$
 (3.52)

3.8. COMPACIDADE 91

Isso prova que $(u_k^{\varepsilon})_{k=1}^{\infty} \subseteq \mathcal{W}^{1,p}(V)$ é uniformemente limitada pois mostramos que $\|u_k^{\varepsilon}\|_{\mathcal{W}^{1,p}(\Omega)} \leqslant M$ onde M>0 não depende de k. Ademais, $(u_k^{\varepsilon})_{k=1}^{\infty}$ é equicontínua pois, dado $\tilde{\varepsilon}>0$ existe $\delta<\tilde{\varepsilon}/L$ tal que, pela Desigualdade do Valor Médio

$$||x - y|| \le \delta \implies |u_k^{\varepsilon}(x) - u_k^{\varepsilon}(y)| \le L||x - y|| < L\delta < \tilde{\varepsilon}.$$

onde $L = \sup_{x \in V} \|Du_k(x)\|$, que existe por (3.48) e (3.52) e não depende de k e x.

Agora seja $\delta > 0$ fixo. Mostremos que existe uma subsequência $(u_{k_i})_{i=1}^{\infty} \subseteq (u_k)_{k=1}^{\infty}$ tal que

$$\limsup_{j,\ell\to\infty} \|u_{k_j} - u_{k_\ell}\|_{\mathcal{L}^q(V)} \leqslant \delta. \tag{3.53}$$

De fato, por (3.49), conseguimos um valor de $\varepsilon > 0$ suficientemente pequeno tal que

$$\|u_k^{\varepsilon} - u_k\|_{\mathcal{L}^q(V)} \leqslant \frac{\delta}{2}$$

para todo $k \in \mathbb{N}$ Além disso, sabemos que para todo $k \in \mathbb{N}$ e $\varepsilon > 0$ as funções u_k e u_k^ε tem suporte em um aberto limitado fixo $V \subseteq \mathbb{R}^n$, podemos utilizar o fato da sequência $(u_k^\varepsilon)_{k=1}^\infty$ ser equicontínua e uniformemente limitada junto do Critério de Compacidade de Arzelà-Ascoli para obter uma subsequência $(u_{k_j}^\varepsilon)_{j=1}^\infty \subseteq (u_k^\varepsilon)_{k=1}^\infty$ que converge uniformemente em V. Em particular

$$\limsup_{i,\ell\to\infty} \|u_{k_j}^{\varepsilon} - u_{k_{\ell}}^{\varepsilon}\|_{\mathcal{L}^q(V)} = 0.$$

Dessa forma

$$\begin{split} \limsup_{j,\ell\to\infty} \|u_{k_j} - u_{k_\ell}\|_{\mathcal{L}^q(V)} &\leqslant \limsup_{j,\ell\to\infty} \|u_{k_j} - u_{k_j}^\varepsilon\|_{\mathcal{L}^q(V)} \\ &+ \limsup_{j,\ell\to\infty} \|u_{k_j}^\varepsilon - u_{k_\ell}^\varepsilon\|_{\mathcal{L}^q(V)} + \limsup_{j,\ell\to\infty} \|u_{k_\ell}^\varepsilon - u_{k_\ell}\|_{\mathcal{L}^q(V)} \leqslant \delta. \end{split}$$

como era desejado. Por fim, escolhendo $\delta=1,\frac{1}{2},\ldots$ em (3.53), conseguimos extrair uma subsequência $(u_{k_j})_{j=1}^\infty\subseteq (u_k)_{k=1}^\infty$ que satisfaz

$$\limsup_{j,\ell\to\infty} \|u_{k_j} - u_{k_\ell}\|_{\mathcal{L}^q(V)} = 0$$

por que isso é suficiente?

CAPÍTULO QUATRO

ALGUMAS APLICAÇÕES DOS ESPAÇOS DE SOBOLEV

4.1 Preliminares

4.1.1 Desigualdades

O primeiro preliminar para esse capítulo é a Desigualdade de Gagliardo-Nirenberg, iremos apresentar o caso geral abaixo, mas utilizaremos apenas alguns casos particulares que serão mencionados após o teorema.

Teorema 4.1 (Desigualdade de Gagliardo-Nirenberg — Caso 1). Seja $1\leqslant q\leqslant \infty$, $\ell,k\in\mathbb{N}$ com $\ell< k$, r=1 e $\frac{\ell}{k}\leqslant \theta\leqslant 1$. Além disso, se

$$\frac{1}{p} = \frac{\ell}{n} + \theta \left(\frac{1}{r} - \frac{k}{n} \right) + \frac{1 - \theta}{q},$$

então existe uma constante positiva c que não depende de u tal que

$$||D^{\ell}u||_{\mathcal{L}^{p}(\mathbb{R}^{n})} \leqslant c||D^{k}u||_{\mathcal{L}^{r}(\mathbb{R}^{n})}^{\theta}||u||_{\mathcal{L}^{q}(\mathbb{R}^{n})}^{1-\theta}$$

para toda função $u \in \mathcal{L}^q(\mathbb{R}^n) \cap \mathcal{W}^{k,r}(\mathbb{R}^n)$.

Teorema 4.2 (Desigualdade de Gagliardo-Nirenberg — Caso 2). Seja $1 \leqslant q \leqslant \infty$, ℓ , $k \in \mathbb{N}$ com $\ell < k$, $1 < r < \infty$, $k - \ell - \frac{n}{r}$ e $\frac{\ell}{k} \leqslant \theta \leqslant 1$. Além disso, se

$$\frac{1}{p} = \frac{\ell}{n} + \theta \left(\frac{1}{r} - \frac{k}{n} \right) + \frac{1 - \theta}{q},$$

então existe uma constante positiva c que não depende de u tal que

$$\|D^{\ell}u\|_{\mathcal{L}^{p}(\mathbb{R}^{n})} \leqslant c\|D^{k}u\|_{\mathcal{L}^{r}(\mathbb{R}^{n})}^{\theta}\|u\|_{\mathcal{L}^{q}(\mathbb{R}^{n})}^{1-\theta}$$

para toda função $u \in \mathcal{L}^q(\mathbb{R}^n) \cap \mathcal{W}^{k,r}(\mathbb{R}^n)$.

Demonstração. Ver [6] □

A desigualdade de Ladyzhenskaya é um caso particular da desigualdade de Gagliardo-Nirenberg apresentada acima. Quando $\ell=0,\ m=1,\ p=4,\ q=r=2$ e $\theta=\frac{3}{4}$, obtemos

$$||u||_{\mathcal{L}^{4}(\mathbb{R}^{n})} \leqslant c||u||_{\mathcal{L}^{2}(\mathbb{R}^{n})}^{\frac{1}{4}} ||Du||_{\mathcal{L}^{2}(\mathbb{R}^{n})}^{\frac{3}{4}}$$

$$\tag{4.1}$$

Outras formas da desigualdade de Gagliardo-Nirenberg que serão utilizadas são

$$||u||_{\mathcal{L}^{\infty}(\mathbb{R}^{3})} \leq c||u||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} ||D^{2}u||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{3}{4}}, \tag{4.2}$$

onde 0 < c < 1, e

$$||Du||_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leq ||u||_{\mathcal{L}^{2}(\mathbb{R}^{3})} ||D^{2}u||_{\mathcal{L}^{2}(\mathbb{R}^{3})}. \tag{4.3}$$

4.1.2 Transformada de Fourier

A transformada de Fourier é uma ferramenta indispensável para o estudo de equações diferenciais parciais, aqui apresentaremos as definições básicas e algumas propriedades elementares que serão utlizadas ao decorrer do texto.

Definição 4.3. Seja $f \in \mathcal{L}^1(\mathbb{R}^n)$, definimos a transformada de Fourier de f por

$$\mathcal{F}[f](\omega) = \hat{f}(\omega) := \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-ix \cdot \omega} f(x) \, dx,$$

e a transformada inversa

$$\mathcal{F}^{-1}[f](x) = \check{f}(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{ix \cdot \omega} f(\omega) d\omega.$$

Como $|e^{\pm ix \cdot \omega}| = 1$ e $u \in \mathcal{L}^1(\mathbb{R}^n)$ as integrais acima convergem para todo $x \in \mathbb{R}^n$ (ou $\omega \in \mathbb{R}^n$ no caso da transformada inversa).

Teorema 4.4. Seja $f \in \mathcal{L}^1(\mathbb{R}^n) \cap \mathcal{L}^2(\mathbb{R}^n)$, então $\hat{f}, \check{f} \in \mathcal{L}^2(\mathbb{R}^n)$ e

$$||f||_{\mathcal{L}^{2}(\mathbb{R}^{n})} = ||\hat{f}||_{\mathcal{L}^{2}(\mathbb{R}^{n})} = ||\check{f}||_{\mathcal{L}^{2}(\mathbb{R}^{n})}$$

 \Box

Demonstração. Ver [5] p.p. 183.

Teorema 4.5 (Propiedades da transformada de Fourier). Seja $u, v \in \mathcal{L}^2(\mathbb{R}^n)$. Então

- (a) $\widehat{\lambda u + v} = \lambda \hat{u} + \hat{v}$;
- **(b)** $\langle u, v \rangle = \langle \hat{u}, \hat{v} \rangle$;
- (c) $\widehat{D^{\alpha}u} = (i\omega)^{\alpha}\widehat{u}$ para todo multi-índice α tal que $D^{\alpha}u \in \mathcal{L}^2(\mathbb{R}^n); 1$
- **(d)** $\widehat{u*v} = (2\pi)^{\frac{n}{2}} \widehat{u} \widehat{v}$.

Demonstração. Ver [5] p.p. 185.

Exemplo 4.6 (Transformada da derivada temporal). Considere uma função $u: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ e considere sua derivada temporal. Dessa forma

$$\frac{\widehat{\partial u}}{\partial t} = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-i\omega \cdot x} \frac{\partial u}{\partial t}(x, t) \, dx = \frac{\partial u}{\partial t} \left[\frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-i\omega \cdot x} u(x, t) \, dx \right] = \frac{\partial \widehat{u}}{\partial t}$$

onde a penultima igualdade é válida pois $e^{-i\omega \cdot x}$ não depende de t.

Exemplo 4.7 (Derivada do Laplaciano). Lembrando que dada uma função $u : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, o Laplaciano de u é dado por

$$\Delta u = \frac{\partial u}{\partial x_1} + \dots + \frac{\partial u}{\partial x_n}.$$

Dito isso, utlizando a transformada da derivada vista no item (c) do Teorema 4.5

$$\widehat{\frac{\partial u}{\partial x_i}} = -\omega_j^2 \hat{u}.$$

¹Se $\omega \in \mathbb{R}^n$ e $\alpha \in \mathbb{N}^n$ um multi-índice então $\omega^{\alpha} = \omega_1^{\alpha_1} \omega_2^{\alpha_2} \cdots \omega_n^{\alpha_n}$

4.1. PRELIMINARES 95

Dessa forma

$$\widehat{\Delta u} = -(\omega_1^2 + \dots + \omega_n^2)\widehat{u} = -\|\omega\|^2\widehat{u}.$$

4.1.3 Semigrupo do calor

Definição 4.8. Seja X um espaço de Banach. Uma família de operadores de lineares limitados $(T(t))_{t\in\mathbb{R}}$ é um semigrupo se

1.
$$T(0) = I_X$$

2.
$$T(t+s) = T(t)T(s)$$

Nesse trabalho, será importante conhecer o semigrupo do calor, que provem da solução da equação do calor

$$\mathbf{u}_t - \nu \Delta \mathbf{u} = 0 \text{ em } \mathbb{R}^n \times (0, \infty)$$
 (4.4)

$$\mathbf{u} = \mathbf{v} \ \text{em } \mathbb{R}^n \times \{0\}. \tag{4.5}$$

Para encontrar, essas soluções, utilizaremos a transformada de Fourier. Dito isso, aplicando a transformada em (4.4) e (4.5) obtemos

$$\hat{\mathbf{u}}_t - \nu \|\boldsymbol{\omega}\|^2 \mathbf{u} = 0 \quad t > 0$$
$$\hat{\mathbf{u}} = \hat{\mathbf{v}} \quad t = 0$$

Nesse caso, temporariamente ignoramos as variaveis espaciais e trabalhamos apenas no domínino do tempo, sendo assim basta resolver a equação diferencial ordinária acima e depois aplicar a transformada inversa. Com efeito, a EDO tem solução dada por

$$\hat{\mathbf{u}} = Ae^{-\nu\|\omega\|^2 t}.$$

onde A é determinado pela condição inicial, nesse caso $A = \hat{\mathbf{v}}$. Sendo assim a solução do problema auxiliar associado

$$\hat{\mathbf{u}} = \hat{\mathbf{v}} e^{-\nu t \|\boldsymbol{\omega}\|^2}$$

Dessa forma podemos aplicar a transformada inversa para obter

$$\mathbf{u} = \frac{\mathbf{v} * F}{(2\pi)^{\frac{n}{2}}}$$

onde F é a transformada inversa de $e^{\nu t \|\omega\|^2}$. Ou seja

$$F = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{i\omega \cdot x} e^{-\nu t ||\omega||^2} d\omega = \frac{1}{(2\pi)^{\frac{n}{2}}} \prod_{k=1}^n \int_{-\infty}^{\infty} e^{i\omega_k x_k - \nu t \omega_k^2} d\omega_k.$$

Para resolver essa integral, primeiramente precisamos completar o quadrado no expoente. Dito isso

$$\int_{-\infty}^{\infty} e^{i\omega_k x_k - \nu t \omega_k^2} d\omega_k = \int_{-\infty}^{\infty} \exp\left(-\nu t \omega_k^2 + i x_k \omega_k + \frac{x_k^2}{2\nu t} - \frac{x_k^2}{2\nu t}\right) d\omega_k$$

$$= \int_{-\infty}^{\infty} \exp\left(-\frac{x_k^2}{2\nu t}\right) \exp\left(-\left(\sqrt{\nu t} \omega_k - \frac{i x_k}{2\nu t}\right)^2\right) d\omega_k$$

Fazendo a substituição $t_k=\sqrt{\nu t}\omega_k-\frac{ix_k}{2\nu t}$ obtemos $dt_k=\sqrt{\nu t}\,d\omega_k$ e a integral se torna

$$\frac{1}{(\nu t)^{\frac{1}{2}}} e^{\frac{-x_k^2}{4\nu t}} \int_{-\infty}^{\infty} e^{-t_k^2} dt_k = \left(\frac{\pi}{\nu t}\right)^{\frac{1}{2}} e^{-\frac{x_k^2}{4\nu t}}$$

Sendo assim

$$F = \frac{1}{(2\pi)^{\frac{n}{2}}} \prod_{k=1}^{n} \int_{-\infty}^{\infty} e^{i\omega_k x_k - \nu t \omega_k^2} d\omega_k = \frac{1}{(2\pi)^{\frac{n}{2}}} \prod_{k=1}^{n} \left(\frac{\pi}{\nu t}\right)^{\frac{1}{2}} e^{-\frac{x_k^2}{4\nu t}} = \frac{1}{(2\nu t)^{\frac{n}{2}}} e^{-\frac{\|x\|^2}{4\nu t}}$$

Portanto

$$\mathbf{u}(x,t) = \frac{1}{(4\pi\nu t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{\|x-y\|^2}{4\nu t}} \mathbf{v}(y) \, dy$$

O semigrupo do calor, denotado por $e^{\nu\Delta\tau}$ com $\tau>0$ é uma família de operadores dada por

$$e^{\nu\Delta\tau}\mathbf{x} = \frac{\mathbf{x} * E(\cdot, t)}{(4\pi\nu\tau)^{\frac{n}{2}}}$$

com $E(x,t)=e^{-\frac{\|x\|^2}{4\nu t}}$ O resto dessa subseção será destinada a estudar algumas propriedades que serão utilizadas no restante do texto

Proposição 4.9 (Priopriedades do semigrupo do calor). Considere o semigrupo do calor $e^{\nu\Delta\tau}$ então são válidas

(a)
$$e^{\nu \Delta \tau} (\lambda u + v) = \lambda e^{\nu \Delta \tau} u + e^{\nu \Delta \tau} v$$

(b)
$$D^{\alpha}(e^{\nu\Delta\tau}u) = e^{\nu\Delta\tau}(D^{\alpha}u)$$

Demonstração. (a) Segue do fato da convolução ser um operador linear

(b) Análogo ao que foi mostrado no Teorema 3.23

Proposição 4.10. Seja $1 \leqslant r \leqslant 2$ e $u \in \mathcal{L}^2(\mathbb{R}^n)$ então

$$||D^{\alpha}(e^{\nu\Delta\tau}u)||_{\mathcal{L}^{2}(\mathbb{R}^{n})} \leqslant c(n,k)(\nu\tau)^{-\frac{n}{2}(\frac{1}{r}-\frac{1}{2})-\frac{k}{2}}||u||_{\mathcal{L}^{r}(\mathbb{R}^{n})}$$
(4.6)

onde $k = |\alpha|$.

Demonstração. Ver [13] p.p. 32

4.1.4 Notação

Introduziremos a notação que será utliizada ao decorrer do texto.

Letras em negrito representam vetores n-dimensionais $\mathbf{u} = (u_1, \dots, u_n)$ (na maioria dos casos n = 3). A k-ésima derivada parcial é denotada por D_k . Também vale ressaltar a definição da norma \mathcal{L}^p das funções vetoriais

$$\|\mathbf{u}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})} = \left(\sum_{i=1}^{n} \|u_{i}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}^{p}\right)^{\frac{1}{p}}$$
$$\|D\mathbf{u}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})} = \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \|D_{j}u_{i}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}^{p}\right)^{\frac{1}{p}},$$

e de forma geral

$$\|D^{k}\mathbf{u}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})} = \left(\sum_{j_{1}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \sum_{i=1}^{n} \|D_{j_{1}} \cdots D_{j_{k}} u_{i}\|_{\mathcal{L}^{p}(\mathbb{R}^{n})}^{p}\right)^{\frac{1}{p}},$$

e a norma em \mathcal{L}^{∞} é dada por

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{\infty}} = \max_{1 \leq i \leq n} \|u_i(\cdot,t)\|_{\mathcal{L}^{\infty}(\mathbb{R}^n)}.$$

4.2 Propriedades da soluções de Leray

4.2.1 Introdução e contexto histórico

Em 1934 no artigo "Sur le mouvement d'un liquide visqueux emplassement l'espace" [9] Leray construiu soluções fracas de energia finita²

$$\mathbf{u}(\cdot,t) \in \mathcal{L}^{\infty}([0,\infty), \mathcal{L}^{2}_{\sigma}(\mathbb{R}^{3})) \cap \mathcal{C}_{W}([0,\infty), \mathcal{L}^{2}(\mathbb{R}^{3})) \cap \mathcal{L}^{2}([0,\infty), \dot{\mathcal{H}}(\mathbb{R}^{3}))^{3}$$
(4.7)

para as equações de Navier-Stokes em \mathbb{R}^3

$$\mathbf{u}_{t} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \nu \Delta \mathbf{u}$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\mathbf{u}(\cdot, 0) = \mathbf{u}_{0} \in \mathcal{L}_{\sigma}^{2}(\mathbb{R}^{3})$$
(4.8)

onde $\nu > 0$ é constante. Estas soluções são tais que $\|\mathbf{u}(\cdot,t) - \mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \to 0$ quando $t \to 0^+$ e satisfazem a designaldade de energia

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} \leq \|\mathbf{u}(\cdot,t)\|_{L^{2}(\mathbb{R}^{3})}^{2} + 2\nu \int_{0}^{t} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} ds \leq \|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}. \tag{4.9}$$

A unicidade desas soluções ainda é um problema em aberto, porem no mesmo artigo Leray mostrou que existe um instante de tempo T_{**} tal que a solução \mathbf{u} se torna suave em $\mathbb{R}^3 \times [T_{**}, \infty)$ e $\mathbf{u}(\cdot, t) \in \mathcal{L}^{\infty}_{\mathrm{loc}}([T_{**}, \infty), H^k(\mathbb{R}^3))^4$ para cada $k \geqslant 0$. Um problema importante que foi deixado em aberto por Leray no final de seu artigo diz a respeito do decaimento de energia em L^2 da solução. Matemáticamente, isto é entender o que acontece com $\|\mathbf{u}(\cdot, t)\|_{\mathcal{L}^2(\mathbb{R}^3)}$ quando $t \to \infty$. Leray suspeitava que no limite, essa norma é igual a zero, e de fato foi provado que

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)} \to 0$$

quando $t \to \infty$. Uma demonstração para esse fato será apresentada no Teorema 4.16.

Uma outra forma de estudar propriedades das soluções das equações de Navier-Stokes é a partir das soluções $\mathbf{v}(\cdot,t)$ do problema linearizado

$$\mathbf{v}_t = \nu \Delta \mathbf{v}$$
 $\mathbf{v}(\cdot, t_0) = \mathbf{u}(\cdot, t_0)$

com $t \geqslant t_0 \geqslant 0$. Aqui $\mathbf{v}(\cdot, t) = e^{\nu \Delta(t-t_0)} \mathbf{u}(\cdot, t_0)$ onde $e^{\nu \Delta(t-t_0)}$ é o semigrupo do calor visto no preliminares. Com essas soluções é possível estudar algumas estimativas de decaimento como

$$\|\mathbf{v}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^n)} \to 0$$

$$\int_0^\infty \|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}^2 dt < \infty$$

²i.e., qual é o significado de energia finita?

 $^{^3\}mathcal{L}^{\infty}([0,\infty),\mathcal{L}^2_{\sigma}(\mathbb{R}^3))$ é o espaço das funções $\mathbf{u}=(u_1,u_2,u_3)\in\mathcal{L}^2(\mathbb{R}^3)$ (i.e., $u_i\in\mathcal{L}^2(\mathbb{R}^3)$ para todo i=1,2,3) com $\nabla\cdot\mathbf{u}=0$ tais que $\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}$ é limitada qtp. $\mathcal{C}_W\left([0,\infty),\mathcal{L}^2(\mathbb{R}^3)\right)$ é o espaço das funções $\mathbf{u}(\cdot,t):[0,\infty)\to\mathcal{L}^2(\mathbb{R}^n)$ fracamente contínuas e $\mathcal{L}^2\left([0,\infty),\dot{\mathcal{H}}(\mathbb{R}^3)\right)$ é o espaço das funções tais que

⁴i.e., qual é a definição desse espaço

$$t^{\frac{n}{4}} \| \mathbf{v}(\cdot, t) \|_{\mathcal{L}^{\infty}(\mathbb{R}^n)} \to 0$$

Uma outra pertunta importante (que não será trabalhada aqui) é sobre o erro ou diferença da solução de Leray e da solução do problema linearizado. Essa pergunta foi respondida por Weigner em [17] onde foi provado que

$$t^{\frac{n}{4}-\frac{1}{2}}\|\mathbf{u}(\cdot,t)-e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}\to 0$$

quando $t \to \infty$.

4.2.2 Resultados

Tomando uma função molificadora $\eta \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{3})$ e sua versão escalada η_{δ} como vista no Capítulo 3, Seção 3.4 definimos $\bar{\mathbf{u}}_{0,\delta} = \eta_{\delta} * \mathbf{u}_{0}$, introduzimos \mathbf{u}_{δ} , $p_{\delta} \in \mathcal{C}^{\infty}(\mathbb{R}^{3} \times [0,\infty))$ como a solução única do problema regularizado

$$\partial_{t}\mathbf{u}_{\delta} + \bar{\mathbf{u}}_{\delta}(\cdot, t) \cdot \nabla \mathbf{u}_{\delta} + \nabla \mathbf{u}_{\delta} + \nabla \rho_{\delta} = \nu \Delta \mathbf{u}_{\delta}$$

$$\mathbf{u}_{\delta}(\cdot, 0) = \bar{\mathbf{u}}_{0,\delta}$$
(4.10)

onde $\bar{\mathbf{u}}_{\delta}(\cdot,t) = \eta_{\delta} * \mathbf{u}_{\delta}(\cdot,t)$. Em seu artigo, Leray mostrou que existe uma sequência apropriada $\delta' \to 0$ tal que conseguimos a convergência fraca em $\mathcal{L}^2(\mathbb{R}^3)$

$$\mathbf{u}_{\delta'} \rightharpoonup \mathbf{u}(\cdot, t)$$

para todo $t \ge 0$, com $\mathbf{u}(\cdot, t)$ apresentada em (4.7) contínua no instante t = 0. Além disso, a designaldade de energia (4.9) é satisfeita para todo $t \ge 0$ e em particular

$$\int_0^\infty \|D\mathbf{u}_{\delta}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}^2 dt \leqslant \frac{1}{2\nu} \|\mathbf{u}_0\| \tag{4.11}$$

Outros resultados importantes se referem à projeção de Helmholtz de $-\mathbf{u}(\cdot, t) \cdot \nabla \mathbf{u}(\cdot, t)$ em $\mathcal{L}^2_{\sigma}(\mathbb{R}^3)$ isto é, o campo $\mathbf{Q}(\cdot, t) \in \mathcal{L}^2_{\sigma}(\mathbb{R}^3)$ dado por

$$\mathbf{Q}(\cdot,t) := -\mathbf{u}(\cdot,t) \cdot \nabla \mathbf{u}(\cdot,t) - \nabla p(\cdot,t)$$

para t > 0. A seguir, estudaremos algumas estimativas de $\mathbf{Q}(\cdot, t)$

Proposição 4.11. Para quase todo s > 0 (e todo $s \ge T_{**}$) tem-se

$$\|e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c\nu^{-\frac{3}{4}}(t-s)^{-\frac{3}{4}}\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$

para todo t > s, onde c é uma constante positiva.

Demonstração. Seja $\hat{f} = \mathcal{F}[f]$ a transformada de Fourier de uma função $f \in \mathcal{L}^1(\mathbb{R}^3)$, dada por

$$\hat{f}(\omega) = (2\pi)^{-\frac{3}{2}} \int_{\mathbb{R}^3} e^{-i\omega \cdot x} f(x) \, dx.$$

Dada $\mathbf{v}(\cdot,s)\in\mathcal{L}^1(\mathbb{R}^3)\cap\mathcal{L}^2(\mathbb{R}^3)$ abitrária, obtemos pelo Teorema 4.4

$$\|e^{\nu\Delta(t-s)}\mathbf{v}(\cdot,s)\|_{\mathcal{L}^{2}}^{2} = \|\mathcal{F}[e^{\nu\Delta(t-s)}\mathbf{v}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} = \int_{\mathbb{R}^{3}} e^{-2\nu\|\omega\|^{2}(t-s)}\|\hat{\mathbf{v}}(\omega,s)\| d\omega,$$

onde utlizamos o resultado sobre a transformada de Fourier do semigrupo do calor visto nos preliminares. Além disso, $\|\hat{\mathbf{v}}(\omega,s)\|^2 \le \|\hat{\mathbf{v}}(\cdot,s)\|_{\infty} = \sup\{\|\hat{\mathbf{v}}(\omega,s)\|; \omega \in \mathbb{R}^3\}$. Daí

$$\|e^{\nu\Delta(t-s)}\mathbf{v}(\cdot,s)\|_{\mathcal{L}^2}^2 \leqslant \|\hat{\mathbf{v}}(\cdot,s)\|_{\infty} \int_{\mathbb{R}^3} e^{-2\nu(t-s)\|\omega\|^2} d\omega,$$

onde a integral do lado direito é uma Gaussiana, cujo resultado é $c\nu^{-\frac{3}{2}}(t-s)^{-\frac{3}{2}}$. Portanto

$$\|e^{\nu\Delta(t-s)}\mathbf{v}(\cdot,s)\|_{\mathcal{L}^{2}} \leqslant c\nu^{-\frac{3}{4}}(t-s)^{-\frac{3}{4}}\|\hat{\mathbf{v}}(\cdot,s)\|_{\infty}. \tag{4.12}$$

O resultado que queremos, é uma aplicação direta de (4.12) com $\mathbf{v}(\cdot, s) = \mathbf{Q}(\cdot, s)$, o restante da demonstração será dedicado a estimativa do valor de $\|\hat{\mathbf{Q}}(\cdot, s)\|_{\infty}$.

Note que utilizando a derivada da transformada, temos que $\mathcal{F}[D^{\alpha}f] = (i\omega)^{\alpha}\hat{f}$, sendo assim se $\alpha = e_j$ para algum j = 1, 2, 3, $\mathcal{F}[D^{e_j}f] = i\omega_j\hat{f}$. Dito isso $\mathcal{F}[\nabla p(\cdot,s)] = i\hat{p}(\omega,s)\omega$ e $\omega \cdot \hat{\mathbf{Q}} = 0$ pois $\mathbf{Q} = \mathbf{u}_t - \nu\Delta\mathbf{u}$ e $\nabla \cdot \mathbf{Q} = (\nabla \cdot \mathbf{u})_t - \nu\Delta(\nabla \cdot \mathbf{u}) = 0$ já que $\nabla \cdot \mathbf{u} = 0$, dessa forma

$$0 = \widehat{\nabla \cdot \mathbf{Q}} = \sum_{j=1}^{3} \frac{\widehat{\partial Q_j}}{\partial x_j} = \sum_{j=1}^{3} i \omega_j \widehat{\mathbf{Q}},$$

ou seja, $\omega \cdot \hat{\mathbf{Q}} = 0$. Além disso, pela definição de $\mathbf{Q}(\cdot, s)$ temos que $\hat{\mathbf{Q}}(\omega, s) + \mathcal{F}[\nabla p(\cdot, s)](\omega) = -\mathcal{F}[\mathbf{u}(\cdot, s) \cdot \nabla \mathbf{u}(\cdot, s)](\omega)$, sendo assim, fazendo o produto interno por $\hat{\mathbf{Q}}$ em ambos os lados e utlizando a Desigualdade de Hölder (Cauchy-Schwarz) obtemos

$$\hat{\mathbf{Q}}(\omega, s) \cdot \hat{\mathbf{Q}}(k, s) + i\hat{p}(\omega, s)\omega \cdot \hat{\mathbf{Q}}(\omega, s) = -\mathcal{F}[\mathbf{u}(\cdot, s) \cdot \nabla \mathbf{u}(\cdot, s)](\omega) \cdot \hat{\mathbf{Q}}(\omega, s)$$

isto é

$$\|\hat{\mathbf{Q}}(\omega, s)\| \leq \|\mathcal{F}[\mathbf{u}(\cdot, s) \cdot \nabla \mathbf{u}(\cdot, s)](\omega)\|,$$

pois $i\hat{p}(\omega, s)\omega \cdot \hat{\mathbf{Q}}(\omega, s) = 0$, para todo $\omega \in \mathbb{R}$. Isso nos diz que

$$\|\hat{\mathbf{Q}}(\cdot,s)\|_{\infty} \leqslant \|\mathcal{F}[\mathbf{u}\cdot\nabla\mathbf{u}](\cdot,s)\|_{\infty}. \tag{4.13}$$

Por outro lado, para i = 1, 2, 3,

$$|\mathcal{F}[\mathbf{u}(\cdot,s)\cdot\nabla u_{i}(\cdot,s)](k)| \leqslant \sum_{j=1}^{3}|\mathcal{F}[u_{j}(\cdot,s)D^{e_{j}}u_{i}(\cdot,s)](k)| \leqslant (2\pi)^{-\frac{3}{2}}\sum_{j=1}^{3}\|u_{j}(\cdot,s)D^{e_{j}}u_{i}(\cdot,s)\|_{\mathcal{L}^{1}(\mathbb{R}^{3})}.$$

Por fim, novamente utilizando a Desigualdade de Hölder (Cauchy-Schwarz) e a definição das normas

$$|\mathcal{F}[\mathbf{u}(\cdot,s)\cdot\nabla u_i(\cdot,s)](k)|\leqslant c\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}\|\nabla u_j(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}.$$

Isto mostra que

$$\|\mathcal{F}[\mathbf{u}\cdot\nabla\mathbf{u}](\cdot,s)\|_{\infty} \leqslant c\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}. \tag{4.14}$$

Dito isso, por (4.12), (4.13) e (4.14)

$$\|e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c\nu^{-\frac{3}{4}}(t-s)^{-\frac{3}{4}}\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$

como queriamos mostrar.

Repetindo o argumento utilizado na demonstração para as soluções do problema regularizado (4.10) obtemos

$$\|e^{\nu\Delta(t-s)}\mathbf{Q}_{\delta}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c\nu^{-\frac{3}{4}}(t-s)^{-\frac{3}{4}}\|\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$
(4.15)

onde c é uma constante positíva e

$$\mathbf{Q}_{\delta}(\cdot,s) - = \bar{\mathbf{u}}_{\delta}(\cdot,s) \cdot \nabla \mathbf{u}_{\delta}(\cdot,s) - \nabla p_{\delta}(\cdot,s)$$

Observação: Vale ressaltar que as soluções do probblema regulariazado também satisfazem a desigualdade de energia

$$\|\mathbf{u}_{\delta}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} + 2\nu \int_{0}^{t} \|D\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} ds \leq \|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}$$
(4.16)

Proposição 4.12. Para quase todo s > 0 (e todo $s \ge T_{**}$), tem-se

$$\|D^{\alpha}(e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s))\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c(k)\nu^{-\left(\frac{k}{2}+\frac{3}{4}\right)}(t-s)^{-\left(\frac{k}{2}+\frac{3}{4}\right)}\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$

para todo t > s, onde $k = |\alpha|$ e c(m) depende apenas de m.

Demonstração. Por (4.6) obtemos

$$||D[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)]||_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c(k)\nu^{-\frac{k}{2}}(t-s)^{-\frac{k}{2}}||e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)||_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$

e pelo resultado anterior

$$\|D[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c(k)\nu^{-\left(\frac{k}{2}+\frac{3}{4}\right)}(t-s)^{-\left(\frac{k}{2}+\frac{3}{4}\right)}\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}.$$

Proposição 4.13. Seja $\mathbf{u}(\cdot,t)$ uma solução de Leray para (4.8). Então existe $t_{**} > T_{**}$ (com t_{**} dependendo da solução \mathbf{u}) suficientemente grande tal que $\|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}$ é uma funçao monotonicamente decrescente de t no intervalo $[t_{**},\infty)$.

Demonstração. Sejam $t_0 \geqslant T_{**}$ e $t > t_0$. Aplicando a k-ésima derivada parcial D_k à $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \nu \Delta \mathbf{u}$, fazendo o produto escalar com $D_k \mathbf{u}$, integrando em $\mathbb{R}^3 \times [t_0, t]$ obtemos

$$\int_{\mathbb{R}^{3}} \int_{t_{0}}^{t} D_{k} \mathbf{u}_{t} \cdot D_{k} \mathbf{u} \, ds dx + \int_{\mathbb{R}^{3}} \int_{t_{0}}^{t} D_{k} (\mathbf{u} \cdot \nabla \mathbf{u}) \cdot D_{k} \mathbf{u} \, ds dx
+ \int_{\mathbb{R}^{3}} \int_{t_{0}}^{t} D_{k} \nabla p \cdot D_{k} \mathbf{u} \, ds dx = \nu \int_{\mathbb{R}^{3}} \int_{t_{0}}^{t} D_{k} \Delta \mathbf{u} \cdot D_{k} \mathbf{u} \, ds dx$$
(4.17)

Vamos analisar cada integral separadamente. Note que $D_k \mathbf{u}_t \cdot D_k \mathbf{u} = \frac{1}{2} \frac{d}{dt} \|D_k \mathbf{u}\|^2$. Dessa forma

$$\int_{\mathbb{R}^3} \int_{t_0}^t D_k \mathbf{u}_t \cdot D_k \mathbf{u} \, ds dx = \int_{\mathbb{R}^3} \frac{1}{2} \frac{d}{ds} \|D_k \mathbf{u}(\cdot, s)\|^2 = \frac{1}{2} \int_{\mathbb{R}^3} \|D_k \mathbf{u}(\cdot, t)\|^2 - \|D_k \mathbf{u}(\cdot, t_0)\|^2 \, dx.$$

Note que expandindo a segunda integral e utilizando integração por partes⁵ temos que

$$\int_{\mathbb{R}^3} D_k(\mathbf{u} \cdot \nabla \mathbf{u}) \cdot D_k \mathbf{u} \, dx = \sum_{i=1}^3 \sum_{j=1}^3 \int_{\mathbb{R}^3} D_k u_i(D_i u_j) D_k u_j \, dx = -\sum_{i=1}^3 \sum_{j=1}^3 \int_{\mathbb{R}^3} u_j D_i(D_k u_i D_k u_j) \, dx$$

e utilizando a regra do produto na última integral

$$\int_{\mathbb{R}^3} D_k(\mathbf{u} \cdot \nabla \mathbf{u}) \cdot D_k \mathbf{u} \, dx = -\sum_{i=1}^3 \sum_{j=1}^3 \int_{\mathbb{R}^3} u_j D_k D_i u_i D_k u_j \, dx - \sum_{i=1}^3 \sum_{j=1}^3 \int_{\mathbb{R}^3} u_j D_k u_i D_i D_k u_j \, dx$$

porém a primeira integral do lado direito é igual a zero pois

$$\sum_{i=1}^{3} \sum_{i=1}^{3} \int_{\mathbb{R}^{3}} u_{j} D_{k} D_{i} u_{i} D_{k} u_{j} dx = \sum_{j=1}^{3} \int_{\mathbb{R}^{3}} u_{j} D_{k} \left(\sum_{i=1}^{3} D_{i} u_{i} \right) D_{k} u_{j} dx$$
$$= \sum_{j=1}^{3} \int_{\mathbb{R}^{3}} u_{j} D_{k} (\nabla \cdot \mathbf{u}) D_{k} u_{j} = 0$$

⁵explicar po não tem termo de fronteira, não lembro da explicação

pois $\nabla \cdot \mathbf{u} = 0$. Logo

$$\int_{\mathbb{R}^3} D_k(\mathbf{u} \cdot \nabla \mathbf{u}) \cdot D_k \mathbf{u} \, dx = -\sum_{i=1}^3 \sum_{j=1}^3 \int_{\mathbb{R}^3} u_j D_k u_i D_i D_k u_j \, dx.$$

A terceira integral é igual a zero, já que

$$\int_{\mathbb{R}^3} D_k \nabla p \cdot D_k \mathbf{u} \, dx = \sum_{j=1}^3 \int_{\mathbb{R}^3} D_k D_j p D_k u_j \, dx = \sum_{j=1}^3 \int_{\mathbb{R}^3} D_j D_k p D_k u_j \, dx$$

utlizando integração por partes, obtemos

$$\int_{\mathbb{R}^3} D_k \nabla p \cdot D_k \mathbf{u} \, dx = -\sum_{j=1}^3 \int_{\mathbb{R}^3} D_k p D_j D_k u_j \, dx = -\int_{\mathbb{R}^3} D_k p D_k \left(\sum_{j=1}^3 D_j u_j \right) \, dx = 0$$

pois novamente $\nabla \cdot \mathbf{u} = 0$. Por fim, a ultima integral

$$\int_{\mathbb{R}^3} \Delta D_k \mathbf{u} \cdot D_k \mathbf{u} \, dx = \sum_{j=1}^n \int_{\mathbb{R}^3} D_j^2 D_k \mathbf{u} \cdot D_k \mathbf{u} = \sum_{j=1}^3 \sum_{j=1}^3 \int_{\mathbb{R}^3} D_j^2 D_k u_j D_k u_j$$

novamente utilizando integração por partes, obtemos

$$\int_{\mathbb{R}^{3}} \Delta D_{k} \mathbf{u} \cdot D_{k} \mathbf{u} \, dx = -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{\mathbb{R}^{3}} (D_{j} D_{k} u_{i}) (D_{j} D_{k} u_{i})$$

$$= -\sum_{i=1}^{3} \sum_{j=1}^{3} \int_{\mathbb{R}^{3}} (D_{j} D_{k} u_{i})^{2} \, dx = -\sum_{i=1}^{3} \int_{\mathbb{R}^{3}} \|D_{j} D_{k} \mathbf{u}\|^{2} \, dx = -\int_{\mathbb{R}^{3}} \|D_{k} D \mathbf{u}\|^{2} \, dx$$

Dito isso, voltando para (4.17) e somando em $1 \le k \le 3$, segue que

$$\frac{1}{2} \sum_{k=1}^{3} \int_{\mathbb{R}^{3}} \|D_{k} \mathbf{u}(\cdot, t)\|^{2} - \|D_{k} \mathbf{u}(\cdot, t_{0})\|^{2} dx + \nu \sum_{k=1}^{3} \int_{t_{0}}^{t} \int_{\mathbb{R}^{3}} \|D_{k} D \mathbf{u}\|^{2} dx ds$$

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \int_{t_{0}}^{t} \int_{\mathbb{R}^{3}} u_{j} D_{k} u_{i} D_{j} D_{k} u_{j} dx ds.$$

Lembrando da definição das normas vistas nos preliminares, multiplicando ambos os lados por 2 e reorganizando os termos, podemos reescrever a equação acima como:

$$||D\mathbf{u}(\cdot,t)||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} + 2\nu \int_{t_{0}}^{t} ||D^{2}\mathbf{u}(\cdot,t)||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} ds$$

$$= ||D\mathbf{u}(\cdot,t_{0})||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} + 2\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \int_{t_{0}}^{t} \int_{\mathbb{R}^{3}} u_{i}D_{k}u_{j}D_{j}D_{k}u_{i} dxds.$$

Utilizando a Desigualdade de Hölder e a definição das normas, temos que o lado direito da equação acima é menor ou igual a aqui precisa detalhar, a gente fez mas não consegui entender pelas fotos

$$\|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}+2\int_{t_{0}}^{t}\|\mathbf{u}(\cdot,s)\|_{\infty}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|D^{2}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}ds$$

que pela Desigualdade de Gagliardo-Nireneberg (4.2) em $\|\mathbf{u}(\cdot, s)\|_{\infty}$ é menor ou igual a

$$\|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}+2\int_{t_{0}}^{t}\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{2}}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{2}}\|D^{2}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}\,ds.$$

Em particular temos

$$||D\mathbf{u}(\cdot,t)||_{\mathcal{L}^{2}(\mathbb{R}^{3})} + 2\nu \int_{t_{0}}^{t} ||D^{2}\mathbf{u}(\cdot,s)||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} ds$$

$$\leq ||D\mathbf{u}(\cdot,t_{0})||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} + 2\int_{t_{0}}^{t} \left[||\mathbf{u}_{0}||_{\mathcal{L}^{2}(\mathbb{R}^{3})} ||D\mathbf{u}(\cdot,s)||_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right]^{\frac{1}{2}} ||D^{2}\mathbf{u}(\cdot,s)||_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}$$

$$(4.18)$$

para todo $t \geqslant t_0$. Daí, seja $t_0 > t_*$ tal que por (4.9) $\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}(\cdot, t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)} < \nu^2$. Dessa forma, segue que

$$\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} < \nu^2 \tag{4.19}$$

para todo $s > t_0$. Com efeito, suponha que (4.19) é falso, dessa forma, existiria $t_1 > t_0$ tal que $\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant \nu^2$ para todo $t_0 \leqslant s < t_1$ com $\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}(\cdot,t_1)\|_{\mathcal{L}^2(\mathbb{R}^3)} = \nu^2$. Tomando $t = t_1$ em (4.18) temos que $\|D\mathbf{u}(\cdot,t_1)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant \|D\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}$. De fato

$$\begin{split} \|D\mathbf{u}(\cdot, t_{1})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + 2\nu \int_{t_{0}}^{t_{1}} \|D^{2}\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} ds \\ & \leq \|D\mathbf{u}(\cdot, t_{0})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} + 2\int_{t_{0}}^{t_{1}} \left[\|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \|D\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right]^{\frac{1}{2}} \|D^{2}\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} \end{split}$$

como $s \in [t_0, t_1]$ temos que $\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}(\cdot, s)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant \nu^2$ obtemos

$$\|D\mathbf{u}(\cdot,t_1)\|_{\mathcal{L}^2(\mathbb{R}^3)} + 2\nu \int_{t_0}^{t_1} \|D^2\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}^2 ds \leq \|D\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}^2 + 2\nu \int_{t_0}^{t_1} \|D^2\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}^2$$

que resulta em $\|D\mathbf{u}(\cdot,t_1)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant \|D\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}$ como desejado. Então

$$\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}\|D\mathbf{u}(\cdot,t_1)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leq \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}\|D\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leq \nu^2$$

o que é uma contradição. Dessa forma (4.19) é válido. De (4.18) e (4.19) temos

$$\|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} \leq \|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} + 2\gamma \int_{t_{0}}^{t} \|D^{2}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} ds \leq \|D\mathbf{u}(\cdot,t_{2})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}$$

para todo $t\geqslant t_2\geqslant t_0$, onde $\gamma=\nu-\|\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}^{\frac{1}{2}}\|D\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}^{\frac{1}{2}}>0$ é uma constante. Tomando $t_{**}=t_0$, finalizamos a demonstração.

Proposição 4.14. Seja $\mathbf{u}(\cdot,t)$ solução de Leray para (4.8). Dados $\tilde{t}_0>t_0>0$ tem-se

$$\|D^{\alpha}\mathbf{v}(\cdot,t) - D^{\alpha}\tilde{\mathbf{v}}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c(k)\nu^{-\left(\frac{5}{4} + \frac{k}{2}\right)}\|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}(\tilde{t}_{0} - t_{0})^{\frac{1}{2}}(t - \tilde{t}_{0})^{-\left(\frac{3}{4} + \frac{k}{2}\right)}$$

para todo
$$t > \tilde{t}_0$$
, onde $\mathbf{v}(\cdot, t) = e^{\nu \Delta(t - t_0)} \mathbf{u}(\cdot, t_0)$, $\tilde{\mathbf{v}}(\cdot, t) = e^{\nu \Delta(t - \tilde{t}_0)} \mathbf{u}(\cdot, \tilde{t}_0)$ e $k = |\alpha|$.

Demonstração. Primeiramente, escrevemos $\mathbf{v}(\cdot,t)$ como

$$\mathbf{v}(\cdot,t) = e^{\nu\Delta(t-t_0)} \left[\mathbf{u}(\cdot,t) - \mathbf{u}_{\delta}(\cdot,t) \right] + e^{\nu\Delta(t-t_0)} \mathbf{u}_{\delta}(\cdot,t_0)$$

onde $t > t_0$ e $\mathbf{u}_{\delta}(\cdot, t)$ dada em (4.10). Ademais, temos que

$$\mathbf{u}_{\delta}(\cdot, t_0) = e^{\nu \Delta t_0} \bar{\mathbf{u}}_{0,\delta} + \int_0^{t_0} e^{\nu \Delta (t_0 - s)} \mathbf{Q}_{\delta}(\cdot, s) ds$$

$$(4.20)$$

Com efeito, considere a equação

$$\partial_{\mathbf{s}}\mathbf{u}_{\delta} = \mathbf{Q}_{\delta} + \nu \Delta \mathbf{u}_{\delta}$$

aplicando o semigrupo do calor $e^{\nu\Delta(t_0-s)}$ em ambos os lados e integrando sobre $[0,t_0]$, obtemos

$$\int_{0}^{t_{0}} e^{\nu \Delta(t_{0}-s)} \partial_{s} \mathbf{u}_{\delta} ds = \int_{0}^{t_{0}} e^{\nu \Delta(t_{0}-s)} \mathbf{Q}_{\delta} ds + \nu \int_{0}^{t_{0}} e^{\nu \Delta(t_{0}-s)} \Delta \mathbf{u}_{\delta} ds. \tag{4.21}$$

Note que

$$\partial_{s} \left[e^{\nu \Delta(t_{0}-s)} \mathbf{u}_{\delta} \right] = -\nu e^{\nu \Delta(t_{0}-s)} \Delta \mathbf{u}_{\delta} + e^{\nu \Delta(t_{0}-s)} \partial_{s} \mathbf{u}_{\delta}$$

ou seja

$$e^{\nu\Delta(t_0-s)}\partial_s\mathbf{u}_{\delta} = \partial_s\left[e^{\nu\Delta(t_0-s)}\mathbf{u}_{\delta}\right] + \nu e^{\nu\Delta(t_0-s)}\Delta\mathbf{u}_{\delta}.$$

Dessa forma, (4.21) se torna

$$\int_0^{t_0} \partial_s \left[e^{\nu \Delta(t_0 - s)} \mathbf{u}_\delta \right] \, ds + \nu \int_0^{t_0} e^{\nu \Delta(t_0 - s)} \Delta \mathbf{u}_\delta \, ds = \int_0^{t_0} e^{\nu \Delta(t_0 - s)} \mathbf{Q}_\delta \, ds + \nu \int_0^{t_0} e^{\nu \Delta(t_0 - s)} \Delta \mathbf{u}_\delta \, ds$$
 isto é,

$$\mathbf{u}_{\delta}(\cdot,t_0) - e^{\nu \Delta t_0} \bar{\mathbf{u}}_{0,\delta} = \int_0^{t_0} e^{\nu \Delta (t_0 - s)} \mathbf{Q}_{\delta} \, ds$$

que reorganizando os termos, é exatamente a equação (4.20) que queriamos mostrar. Dito isso

$$\mathbf{v}(\cdot,t) = e^{\nu\Delta(t-t_0)} \left[\mathbf{u}(\cdot,t_0) - \mathbf{u}_{\delta}(\cdot,t_0) \right] + e^{\nu\Delta t} \bar{\mathbf{u}}_{0,\delta} + \int_0^{t_0} e^{\nu\Delta(t-s)} \mathbf{Q}_{\delta}(\cdot,s) \, ds$$

para $t>t_0$. De forma análoga para $t> ilde{t}_0$

$$\tilde{\mathbf{v}}(\cdot,t) = e^{\nu\Delta(t-\tilde{t}_0)} \left[\mathbf{u}(\cdot,\tilde{t}_0) - \mathbf{u}_{\delta}(\cdot,\tilde{t}_0) \right] + e^{\nu\Delta t} \bar{\mathbf{u}}_{0,\delta} + \int_0^{\tilde{t}_0} e^{\nu\Delta(t-s)} \mathbf{Q}_{\delta}(\cdot,s) \, ds.$$

Dessa forma,

$$\begin{split} D^{\alpha}\tilde{\mathbf{v}}(\cdot,t) - D^{\alpha}\mathbf{v}(\cdot,t) &= D^{\alpha}\left(e^{\nu\Delta(t-\tilde{t}_{0})}\big[\mathbf{u}(\cdot,\tilde{t}_{0}) - \mathbf{u}_{\delta}(\cdot,\tilde{t}_{0})\big]\right) \\ &- D^{\alpha}\left(e^{\nu\Delta(t-t_{0})}\big[\mathbf{u}(\cdot,t_{0}) - \mathbf{u}_{\delta}(\cdot,t_{0})\big]\right) + D^{\alpha}\int_{t_{0}}^{\tilde{t}_{0}}e^{\nu\Delta(t-s)}\mathbf{Q}_{\delta}(\cdot,s)\,ds. \end{split}$$

Portanto, seja $K\subseteq\mathbb{R}^3$ um compacto qualquer, dito isso, temos para cada $t> ilde{t}_0$ e $\delta>0$

$$\|D^{\alpha}\tilde{\mathbf{v}}(\cdot,t)-D^{\alpha}\mathbf{v}(\cdot,t)\|_{\mathcal{L}^{2}(K)}\leqslant J_{\alpha,\delta}(t)+\int_{t_{0}}^{\tilde{t}_{0}}\|D^{\alpha}\big[e^{\nu\Delta(t-s)}\mathbf{Q}_{\delta}(\cdot,s)\big]\|_{\mathcal{L}^{2}(K)}\,ds$$

utilizando (4.15), temos que o lado direito da equação acima é menor ou igual a

$$J_{\alpha,\delta}(t)+c(k)\nu^{-\frac{k}{2}}\int_{t_0}^{\tilde{t}_0}(t-s)^{-\frac{k}{2}}\|e^{\nu\Delta(t-s)}\mathbf{Q}_{\delta}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}\,ds$$

que pela Proposição 4.12, é menor ou igual a

$$J_{\alpha,\delta}(t) + c(k)\nu^{-\left(\frac{k}{2} + \frac{3}{4}\right)}(t - \tilde{t}_0)^{-\frac{k}{2}} \int_{t_0}^{t_0} (t - s)^{-\frac{3}{4}} \|\mathbf{u}_{\delta}(\cdot, s)\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}_{\delta}(\cdot, s)\|_{\mathcal{L}^2(\mathbb{R}^3)} ds. \tag{4.22}$$

Observe que a integral pode ser simplificada, já que $s \leqslant \tilde{t}_0$ implica em $(t-s)^{-\frac{3}{4}} \leqslant (t-\tilde{t}_0)^{-\frac{3}{4}}$ e pela desigualdade de energia $\|\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}$. Sendo assim

$$\int_{t_0}^{\tilde{t}_0} (t-s)^{-\frac{3}{4}} \|\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} \|D\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} ds \leq (t-\tilde{t}_0)^{-\frac{3}{4}} \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} \int_{t_0}^{\tilde{t}_0} \|D\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} ds.$$

$$(4.23)$$

Pela desigualdade de Hölder e a desigualdade de energia, segue que

$$\int_{t_0}^{\tilde{t}_0} \|D\mathbf{u}_{\delta}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} ds \leqslant \left(\int_{t_0}^{\tilde{t}_0} \|D\mathbf{u}_{\delta}\|_{\mathcal{L}^2(\mathbb{R}^3)}^2 ds\right)^{\frac{1}{2}} \left(\int_{t_0}^{\tilde{t}_0} ds\right)^{\frac{1}{2}} \leqslant \frac{1}{2\nu^{\frac{1}{2}}} \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}$$
(4.24)

Portanto, por (4.23) e (4.23), obtemos

$$\|D^{\alpha}\tilde{\mathbf{v}}(\cdot,t) - D^{\alpha}\mathbf{v}(\cdot,t)\|_{\mathcal{L}^{2}(\mathcal{K})} \leqslant J_{\alpha,\delta}(t) + c(k)\nu^{-\left(\frac{k}{2} - \frac{5}{4}\right)}(t-\tilde{t}_{0})^{-\left(\frac{k}{2} + \frac{3}{4}\right)}(\tilde{t}_{0} - t_{0})^{\frac{1}{2}}\|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}$$

onde

$$J_{\alpha,\delta}(t) = \|D^{\alpha} \left(e^{\nu\Delta(t-\tilde{t}_0)} \left[\mathbf{u}(\cdot, \tilde{t}_0) - \mathbf{u}_{\delta}(\cdot, \tilde{t}_0)\right]\right)\|_{\mathcal{L}^2(K)} + \|D^{\alpha} \left(e^{\nu\Delta(t-t_0)} \left[\mathbf{u}(\cdot, t_0) - \mathbf{u}_{\delta}(\cdot, t_0)\right]\right)\|_{\mathcal{L}^2(K)}$$

Tomando $\delta=\delta'\to 0$, temos que $J_{\alpha,\delta}(t)\to 0$. pois, dados $\sigma, au>0$

$$||D^{\alpha}(e^{\nu\Delta\tau}[\mathbf{u}(\cdot,\sigma)-\mathbf{u}_{\delta'}(\cdot,\sigma)])||_{\mathcal{L}^{2}(K)}\to 0$$

quando $\delta' \to 0$. De fato, denotando $\Phi_{\delta}(\cdot, \tau) = D^{\alpha}(e^{\nu \Delta \tau}[\mathbf{u}(\cdot, \sigma) - \mathbf{u}_{\delta}(\cdot, \sigma)])$, tem-se

$$\Phi_{\delta}(\cdot, \tau) = H_{\alpha}(\cdot, \tau) * [\mathbf{u}(\cdot, \sigma) - \mathbf{u}_{\delta}(\cdot, \sigma)]$$

onde $H_{\alpha}(\cdot,\tau) \in \mathcal{L}^1(\mathbb{R}^3) \cap \mathcal{L}^{\infty}(\mathbb{R}^3)$ não depende de δ . Como $\mathbf{u}(\cdot,\sigma) - \mathbf{u}_{\delta'}(\cdot,\sigma) \rightharpoonup 0$, segue que $\Phi_{\delta'}(x,\tau) \to 0$ para cada $x \in \mathbb{R}^3$. Por outro lado

$$|\Phi_{\delta}(x,t)| \leqslant \int_{\mathbb{R}^{3}} |H_{\alpha}(x-y,\tau)[\mathbf{u}(y,\sigma) - \mathbf{u}_{\delta}(y,\sigma)]| dy$$

$$\leqslant \int_{\mathbb{R}^{3}} |H_{\alpha}(x-y,\tau)|^{2} dy \int_{\mathbb{R}^{3}} |\mathbf{u}(y,\sigma) - \mathbf{u}_{\delta}(y,\sigma)|^{2} dy$$

$$= ||H_{\alpha}(\cdot,\tau)||_{\mathcal{L}^{2}(\mathbb{R}^{3})} ||\mathbf{u}(\cdot,\sigma) - \mathbf{u}_{\delta}(\cdot,\sigma)||_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$

utilizando a desigualdade triangular e (4.16) obtemos

$$|\Phi_{\delta}(x,t)| \leq 2\|H_{\alpha}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}$$

para todo $x \in \mathbb{R}^3$. Pelo Teorema da Convergência Dominada (pois $2\|H_{\alpha}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}$ é constante em relação a x e K é limitado, logo pertence a $\mathcal{L}^1(K)$), segue que $\|\Phi_{\delta'}(\cdot,t)\|_{\mathcal{L}^2(K)} \to 0$, quando $\delta' \to 0$ pelo fato de K ser compacto. Dito isso, fazendo $\delta = \delta' \to 0$ em (4.22) temos que

$$\|D^{\alpha}\tilde{\mathbf{v}} - D^{\alpha}\mathbf{v}(\cdot, t)\|_{\mathcal{L}^{2}(K)} \leqslant c(k)\nu^{-\left(\frac{k}{2} + \frac{5}{4}\right)}\|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2}(\tilde{t}_{0} - t_{0})^{\frac{1}{2}}(t - \tilde{t}_{0})^{-\left(\frac{k}{2} - \frac{3}{4}\right)}$$

para todo $t_0>\tilde{t}_0$. Tomando o supremo de todos $K\subseteq\mathbb{R}^3$ obtemos a desigualdade desejada. $\ \square$

Teorema 4.15. Seja $\mathbf{u}(\cdot, t)$ uma solução de Leray para (4.8), então

$$t^{\frac{1}{2}}\|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}\to 0$$

quando $t \to \infty$.

Demonstração. Suponha que a afirmação é falsa, nesse caso existe uma sequência crescente $t_\ell \to \infty$ (com $t_\ell \geqslant t_{**}$ e $t_\ell \geqslant 2t_{\ell-1}$ para todo ℓ) e um $\varepsilon > 0$ fixo tal que

$$t_{\ell} \| D\mathbf{u}(\cdot, t_{\ell}) \|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} \geqslant \varepsilon$$

para todo ℓ . Em particular

$$\int_{t_{\ell-1}}^{t_{\ell}} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}}^{2} dt \geqslant (t_{\ell}-t_{\ell-1})\|D\mathbf{u}(\cdot,t_{\ell})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{2} \geqslant \frac{1}{2} t_{\ell} \|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})^{2}} \geqslant \frac{1}{2} \eta$$

para todo ℓ , o que contradiz com a desigualdade de energia e (4.11). Portanto, a afirmação do teorema é válida.

Teorema 4.16 (Solução do problema clássico de Leray). Seja $\mathbf{u}(\cdot, t)$ uma solução de Leray para (4.8), então

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)} \to 0$$

quando $t \to \infty$.

Demonstração. Seja t_{**} como definido na Proposição 4.13. Dado $\varepsilon > 0$ tomemos $t_0 \geqslant t_{**}$ suficientemente grande tal que pelo Teorema anterior, temos

$$t^{\frac{1}{2}}\|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}\leqslant \varepsilon$$

para todo $t \geqslant t_0$. Como $\mathbf{u}(\cdot,t)$ é suave em $[t_0,\infty)$ obtemos, de forma análoga ao que foi feito na Proposição 4.14

$$\mathbf{u}(\cdot,t) = e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0) + \int_{t_0}^t e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)\,ds$$

Dito isso, utlizando a Proposição 4.11

$$\begin{aligned} \|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} &\leq \|e^{\nu\Delta(t-t_{0})}\mathbf{u}(\cdot,t_{0})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + \int_{t_{0}}^{t} \|e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds \\ &\leq \|e^{\nu\Delta(t-t_{0})}\mathbf{u}(\cdot,t_{0})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + c\nu^{-\frac{3}{4}} \int_{t_{0}}^{t} (t-s)^{-\frac{3}{4}} \|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds \end{aligned}$$

Como $\|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}\leqslant \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}$ temos que o lado direito da equação acima é menor ou igual a

$$\|e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)}+c\nu^{-\frac{3}{4}}\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}\int_{t_0}^t(t-s)^{-\frac{3}{4}}\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)}\,ds$$

e pelo Teorema 4.15 é menor ou igual a

$$\|e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)} + c\nu^{-\frac{3}{4}}\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}\varepsilon\int_{t_0}^t (t-s)^{-\frac{3}{4}}s^{-\frac{1}{2}}ds.$$

Note que

$$\int_{t_0}^t (t-s)^{-\frac{3}{4}} s^{-\frac{1}{2}} \leqslant 6\sqrt[4]{2}$$

para todo $t \geqslant t_0 + 1$. Sendo assim

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leq \|e^{\nu\Delta(t-t_{0})}\mathbf{u}(\cdot,t_{0})\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + \varepsilon\nu^{-\frac{3}{4}}\|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}.$$

Como $\|e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)} \to 0$ quando $t\to\infty$, temos que

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant (1+\nu^{-\frac{3}{4}}\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)})\varepsilon$$

para todo $t\gg 1$. Como $\varepsilon>0$ é arbitrário, isso mostra que

$$\|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)} \to 0$$

como era desejado.

Note que os Teoremas 4.15 e 4.16 juntos mostram que temos o decaimento de energia na norma do espaço de Sobolev $H^1(\mathbb{R}^n)$. Já que $\|\mathbf{u}(\cdot,t)\|_{H^1(\mathbb{R}^n)} = \|\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^n)} + \|D\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^n)}$.

A demonstração do lema abaixo é bastante extensa, porem é de extrema importância para o último teorema dessa seção

Lema 4.17. Para cada $k\geqslant 0$, denotando $U_k(t):=t^{\frac{k}{2}}\|D^k\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}$ tem-se

$$U_k \in \mathcal{L}^{\infty}([T_{**}, \infty))$$

Demonstração. O caso k = 0 segue da desigualdade de energia pois esta nos diz que

$$U_0(t) = t^0 \|D^0 \mathbf{u}(\cdot, t)\|_{\mathcal{L}^2(\mathbb{R}^3)} = \|\mathbf{u}(\cdot, t)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}$$

para todo t>0 (em particular $t\geqslant T_{**}$) e $\|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}$ é constante. Logo, U_0 é limitada e $U_0\in\mathcal{L}^\infty([T_{**},\infty))$.

O caso k=1 também já foi provado anteriormente. Pelo Teorema 4.15, temos que $U_1(t) \to 0$ quando $t \to \infty$, isso é suficiente para mostrar que $U_1 \in \mathcal{L}^{\infty}([T_{**}, \infty))$ pois (??).

Dito isso, resta provar a afirmação para $k \geqslant 2$. De forma análoga ao que foi feito na demonstração do Teorema ??, dado $t_0 \geqslant T_{**}$ podemos escrever $\mathbf{u}(\cdot, t)$ como

$$\mathbf{u}(\cdot,t)=e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0)+\int_{t_0}^t e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)\,ds.$$

Dessa forma, para cada multi-índice α temos que

$$\|D^{\alpha}\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leq \|D^{\alpha}[e^{\nu\Delta(t-t_{0})}\mathbf{u}(\cdot,t_{0})]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + \int_{t_{0}}^{t} \|D^{\alpha}[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds \quad (4.25)$$

para todo $t\geqslant t_0+1$ Defina $U^{\alpha}(t):=t^{\frac{k}{2}}\|D^{\alpha}\mathbf{u}(\cdot,t)\|$ com $k=|\alpha|$. De (4.25) segue que

$$U^{\alpha}(t) \leqslant I_1(\alpha, t) + I_2(\alpha, t) + J_{\alpha}(t)$$

onde

$$I_1(\alpha, t) = t^{\frac{k}{2}} \|D^{\alpha}[e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot, t_0)]\|_{\mathcal{L}^2(\mathbb{R}^3)},$$

$$I_2(\alpha, t) = \int_{t_0}^{t'} \|D^{\alpha}[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot, s)]\|_{\mathcal{L}^2(\mathbb{R}^3)} ds,$$

$$J_{\alpha}(t) = \int_{t'}^{t} \|D^{\alpha}[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot, s)]\|_{\mathcal{L}^2(\mathbb{R}^3)} ds.$$

com $t' = \frac{t_0 + t}{2}$. Conseguimos estimar $I_1(\alpha, t)$ de forma direta. Com efeito, por (4.6) e pela desigualdade de energia

$$|I_1(\alpha,t)| \leqslant c(k,\nu) \|\mathbf{u}(\cdot,t_0)\|_{\mathcal{L}^2(\mathbb{R}^3)} (t-t_0)^{-\frac{k}{2}} t^{\frac{k}{2}} \leqslant c(k,\nu) \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} (t-t_0)^{-\frac{k}{2}} t^{\frac{k}{2}}.$$

Porém note que

$$(t-t_0)^{-\frac{k}{2}}t^{\frac{k}{2}} = \left(\frac{t}{t-t_0}\right)^{\frac{k}{2}} = \left(1+\frac{t_0}{t-t_0}\right)^{\frac{k}{2}} \leqslant (1+t_0)^{\frac{k}{2}}.$$

pois $\frac{t_0}{t-t_0} \leqslant t_0$ para todo $t \geqslant t_0+1$. Dessa forma

$$|I_1(\alpha,t)| \leq c(k,\nu,t_0,\mathbf{u}_0)$$

para todo $t \geqslant t_0 + 1$. Por outro lado utlizando a Proposição 4.12, temos

$$|I_{2}(\alpha, t)| \leqslant c(k, \nu) \int_{t_{0}}^{t'} (t - s)^{-\left(\frac{k}{2} + \frac{3}{4}\right)} \|\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \|D\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds$$

$$\leqslant c(k, \nu) \int_{t_{0}}^{t'} (t - s)^{-\left(\frac{k}{2} + \frac{3}{4}\right)} \|\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} s^{-\frac{1}{2}} s^{\frac{1}{2}} \|D\mathbf{u}(\cdot, s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds$$

como sabemos que $U_1 \in \mathcal{L}^{\infty}([T_{**},\infty))$ temos que existe uma constante M_1 tal que $|U_1(s)| = s^{\frac{1}{2}} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^2(\mathbb{R}^3)} \leqslant M_1$ qtp em $[T_{**},\infty)$. Dessa forma, também utlizando a desigualdade de energia e o fato de $s \geqslant t_0$ (o que implica em $(t-s_0)^{-\left(\frac{k}{2}+\frac{3}{4}\right)} \leqslant (t-t_0)^{-\left(\frac{k}{2}+\frac{3}{4}\right)}$)

$$|I_2(\alpha,t)| \leqslant c(k,\nu) \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} (t-t_0)^{-\left(\frac{k}{2}+\frac{3}{4}\right)} \int_{t_0}^{t'} s^{-\frac{1}{2}} ds.$$

Sendo assim

$$|I_2(\alpha,t)| \leq c(k,\nu) \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)} (t-t_0)^{-\left(\frac{k}{2}+\frac{3}{4}\right)} (t+t_0)^{\frac{1}{2}}$$

e de forma análoga ao que foi feito para $I_1(\alpha,t)$, $(t-t_0)^{-\left(\frac{k}{2}+\frac{3}{4}\right)}(t+t_0)^{\frac{1}{2}}$ é menor que uma constante que depende apenas de t_0 e k. Por isso

$$|I_2(\alpha, t)| \leq c(k, \nu, t_0, M_1, \mathbf{u}_0)$$

para todo $t \geqslant t_0 + 1$. Assim, obtemos

$$U^{\alpha}(t) \leqslant c(k, \nu, t_0, M_1, \mathbf{u}_0) + J_{\alpha}(t).$$
 (4.26)

Logo, ainda resta estimar J_{α} , porem não conseguimos estimar J_{α} de forma geral para todo α , então faremos essa estimativa para o caso em que $|\alpha|=2$ e depois utilizaremos indução para mostrar a estimativa de forma geral. Com efeito, considerando $D^{\alpha}=D_{i}D_{j}$ (consequentemente denotando $J_{\alpha}(t)$ por $J_{ij}(t)$) temos por (4.6) que

$$J_{i\ell}(t) = t \int_{t'}^{t} \|D_{i}[e^{\nu\Delta(t-t_{0})}D_{\ell}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \leqslant c(\nu) t \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D_{\ell}\mathbf{Q}(\cdot,s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})} ds.$$

Para estimar $\|D_{\ell}\mathbf{Q}(\cdot,s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^3)}$ Note que $D_{\ell}\mathbf{Q} = -D_{\ell}[\mathbf{u}\cdot\nabla\mathbf{u}] - D_{\ell}\nabla p = -D_{\ell}[\mathbf{u}\cdot\nabla\mathbf{u}] - \nabla q_{\ell}$ onde $q_{\ell} = D_{\ell}p$. Aplicando o divergente nessa equação, temos que

$$-\Delta q_{\ell} = \operatorname{div}(D_{\ell}[\mathbf{u} \cdot \nabla \mathbf{u}])$$

Aplicando a teoria de Calderon-Zygmund, temos para cada $1 < r < \infty$

$$\|\nabla q_{\ell}(\cdot,t)\|_{\mathcal{C}^{r}(\mathbb{R}^{n})} \leq c(r,n)\|D_{\ell}[\mathbf{u}(\cdot,t)\cdot\nabla\mathbf{u}(\cdot,t)]\|$$

o que implica em

$$\|D_{\ell}\mathbf{Q}(\cdot,t)\|_{\mathcal{L}^{r}(\mathbb{R}^{n})} \leqslant c(r,n)\|D_{\ell}[\mathbf{u}(\cdot,t)\cdot\nabla\mathbf{u}(\cdot,t)]\|_{\mathcal{L}^{r}(\mathbb{R}^{n})}.$$

No nosso, caso temos

$$\|D_{\ell}\mathbf{Q}(\cdot,s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})} \leqslant c\|D_{\ell}[\mathbf{u}(\cdot,s)\cdot\nabla\mathbf{u}(\cdot,s)]\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})}$$

Dito isso

$$J_{i\ell}(t) \leqslant c(\nu) t \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D_{\ell}[\mathbf{u}(\cdot,s) \cdot \nabla \mathbf{u}(\cdot,s)]\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})}$$

$$\leqslant c(\nu) t \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \left(\|D_{\ell}\mathbf{u}(\cdot,s) \cdot \nabla \mathbf{u}(\cdot,s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})} + \|\mathbf{u}(\cdot,s) \cdot \nabla D_{\ell}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})} \right) ds$$

Utliizando a desigualdade de Hölder obtemos

$$J_{i\ell}(t) \leqslant c(\nu) t \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \Big(\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{4}(\mathbb{R}^{3})} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + \|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{4}(\mathbb{R}^{3})} \|D^{2}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \Big) ds$$

e pela desigualdade de Gagliardo-Nirenberg (4.1)

$$J_{i\ell}(t) \leqslant c(\nu) t \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \left(\|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{5}{4}} \|D^{2}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{3}{4}} + \|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} \|D\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{3}{4}} \|D^{2}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right) ds.$$

Reescrevendo a equação acima como

$$J_{i\ell}(t) \leqslant c(\nu) t \int_{t'}^{t} s^{-\frac{11}{8}} (t-s)^{-\frac{7}{8}} \left(\left(s^{\frac{1}{2}} \| D\mathbf{u}(\cdot,s) \|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right)^{\frac{5}{4}} \left(s \| D^{2}\mathbf{u}(\cdot,s) \|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right)^{\frac{3}{4}} + \| \mathbf{u}(\cdot,s) \|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \left(s^{\frac{1}{2}} \| D\mathbf{u}(\cdot,s) \|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right)^{\frac{3}{4}} \left(s \| D^{2}\mathbf{u}(\cdot,s) \|_{\mathcal{L}^{2}(\mathbb{R}^{3})} \right) \right) ds.$$

Fazendo as substituições adequadas, temos que o lado direito da equação acima é menor que

$$c(\nu) t M_1^{\frac{5}{4}} (t+t_0)^{-\frac{11}{8}} \int_{t'}^t (t-s)^{-\frac{7}{8}} U_2(s)^{\frac{3}{4}} ds + c(\nu) t M_1^{\frac{3}{4}} \|\mathbf{u}_0\|_{\mathcal{L}^2(\mathbb{R}^3)}^{\frac{1}{4}} (t+t_0)^{-\frac{11}{8}} \int_{t'}^t (t-s)^{-\frac{7}{8}} U_2(s) ds.$$

Utilizando a desigualdade de Young ($ab \leqslant a^p p^{-1} + b^q q^{-1}$ onde $p^{-1} + q^{-1} = 1$) com a = 1, $b = U_2(s)^{\frac{3}{4}}$, p = 4 e $q = \frac{4}{3}$, temos que $U_2(s)^{\frac{3}{4}} \leqslant 1 + U_2(s)$. Dessa forma

$$c(\nu, M_1) t(t+t_0)^{-\frac{11}{8}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} ds + \left(c(\nu, M_1) t(t+t_0)^{-\frac{11}{8}} + c(\nu, M_1, \mathbf{u}_0) t(t+t_0)^{-\frac{11}{8}}\right) \int_{t'}^{t} (t-s)^{-\frac{7}{8}} U_2(s) ds.$$

Para simplificar a expressão acima, note que vamos precisar olhar essa passagem. Dito isso

$$J_{i\ell}(t) \leqslant c(\nu, M_1)(t+t_0)^{-\frac{1}{4}} + c(\nu, M_1, \mathbf{u}_0)(t+t_0)^{-\frac{3}{8}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} U_2(s) ds$$

para todo i, ℓ e $t \geqslant t_0 + 1$. Dessa forma

$$U_2(t) \leqslant c_*(k, \nu, t_0, M_1, \mathbf{u}_0) + c_{**}(\nu, M_1, \mathbf{u}_0)(t + t_0)^{-\frac{3}{8}} \int_{t'}^{t} (t - s)^{-\frac{7}{8}} U_2(s) ds$$
 (4.27)

para todo $t \ge t_0 + 1$. Considere agora, t_2 , \mathbf{M}_2 dados por

$$t_2 := 1 + t_0 + 2^{16} c_{**}^4$$
 $\mathbf{M}_2 := \sup\{U_2(s) : t_0 \leqslant s \leqslant t_2\}.$

Afirmamos que

$$U_2(t) \leqslant 2c_*(k, \nu, t_0, M_1, \mathbf{u}_0) + 16c_{**}(\nu, M_1, \mathbf{u}_0) \mathbf{M}_2$$

para todo $t \geqslant t_2$. De fato, definindo $\mathbf{U}_2(t) := \sup\{U_2(s) : t_2 \leqslant s \leqslant t\}$. Se $t' \geqslant t_2$, então por (4.27) temos

$$U_{2}(t) \leqslant c_{*}(k, \nu, t_{0}, M_{1}, \mathbf{u}_{0}) + c_{**}(\nu, M_{1}, \mathbf{u}_{0}) \mathbf{U}_{2}(t) \int_{t'}^{t} (t - s)^{-\frac{7}{8}} ds$$

$$\leqslant c_{*}(k, \nu, t_{0}, M_{1}, \mathbf{u}_{0}) + 8c_{**}(\nu, M_{1}, \mathbf{u}_{0})(t + t_{0})^{-\frac{1}{4}} \mathbf{U}_{2}(t)$$

porém, como $t\geqslant t_2$ temos que, pela definição de t_2 , $t+t_0>t_2>2^{16}c_{**}^4$, isso implica em $2^{16}c_{**}^4< t+t_0$ e elevando ambos os lados por 1/4 obtemos $16c_{**}<(t+t_0)^{\frac{1}{4}}$ que podemos reescrever como $8c_{**}(t+t_0)^{-\frac{1}{4}}<1/2$. Dito isso, obtemos

$$U_2(t) < c_*(k, \nu, t_0, M_1, \mathbf{u}_0) + \frac{1}{2}\mathbf{U}_2(t).$$

Por outro lado, se $t' < t_2$, podemos reescrever (4.27) como

$$U_2(t) \leqslant c_* + c_{**}(t+t_0)^{-\frac{3}{8}} \left(\int_{t'}^{t_2} (t-s)^{-\frac{7}{8}} U_2(s) \, ds + \int_{t_2}^t (t-s)^{-\frac{7}{8}} U_2(s) \, ds \right).$$

Observe que em $[t', t_2]$ $U_2(s) \leq \mathbf{M}_2 \leq \mathbf{M}_2 + \mathbf{U}_2(s)$ e em $[t_2, t]$, $U_2(s) \leq \mathbf{U}_2(s) \leq \mathbf{M}_2 + \mathbf{U}_2(s)$. Dessa forma

$$U_{2}(t) \leqslant c_{*} + c_{**}(t+t_{0})^{-\frac{3}{8}} \mathbf{M}_{2} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} ds + c_{**}(t+t_{0})^{-\frac{3}{8}} \mathbf{U}_{2}(t) \int_{t'}^{t} (t-s)^{-\frac{7}{8}} ds$$

$$\leqslant c_{*} + c_{**}(t+t_{0})^{-\frac{1}{4}} \mathbf{M}_{2} + \frac{1}{2} \mathbf{U}_{2}(t)$$

mas $(t+t_0)^{-\frac{1}{4}} \leqslant 1$. Sendo assim

$$U_2(t) \leqslant c_* + c_{**}\mathbf{M}_2 + \frac{1}{2}\mathbf{U}_2(t).$$

Logo, $\frac{1}{2}\mathbf{U}_2(t) \leqslant c_* + 8c_{**}$, que é equivalente à

$$U_2(t) \leq 2c_*(k, \nu, t_0, M_1, \mathbf{u}_0) + 16c_{**}(\nu, M_1, \mathbf{u}_0)\mathbf{M}_2$$

ou seja, mostramos que $U_2(t)$ é limitado por uma constante que não depende de t em $[t_2, \infty)$. Portanto $U_2 \in \mathcal{L}^{\infty}([t_2, \infty])$. Porém, sabemos que em $[T_{**}, \infty)$ em particular em $[T_{**}, t_2]$ $\mathbf{u}(\cdot, t)$ é suave, o que implica em U_2 ser suave em um compacto, consequentemente limitada. Portanto $U_2 \in \mathcal{L}^{\infty}([T_{**}, \infty))$ como era desejado. Assim mostrado o caso k=2.

Suponha que $U_{\ell} \in \mathcal{L}^{\infty}([T_{**},\infty))$ para todo $\ell < k$. Dito isso seja α um multi-índice de ordem k. Denotando D^{α} por $D_{i}D^{\gamma}$ (onde γ é um multi-índice de ordem k-1), temos, de forma análoga ao que foi feito no caso k=2

$$J_{\alpha}(t) = t^{\frac{k}{2}} \int_{t'}^{t} \|D^{\alpha}[e^{\nu \Delta(t-s)} \mathbf{Q}(\cdot, s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds \leqslant c(\nu) t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{\gamma} \mathbf{Q}(\cdot, s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})} ds.$$

Além disso por Calderon-Zygmund

$$\|D^{\beta}\mathbf{Q}(\cdot,t)\|_{\mathcal{L}^{r}(\mathbb{R}^{n})} \leqslant c(r,n)\|D^{\beta}[\mathbf{u}(\cdot,t)\cdot\nabla\mathbf{u}(\cdot,t)]\|_{\mathcal{L}^{r}(\mathbb{R}^{n})}$$

para cada $1 < r < \infty$ e qualquer multi-índice β . Dessa forma

$$J_{\alpha}(t) \leqslant c(\nu) t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{\gamma}[\mathbf{u}(\cdot,s) \cdot \nabla \mathbf{u}(\cdot,s)]\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})} ds$$

Utilizando a regra de Leibniz, obtemos

$$J_{\alpha}(t) \leqslant c(\nu) \sum_{\sigma \leqslant \gamma} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{\sigma} \mathbf{u}(\cdot,s) \cdot \nabla D^{\gamma-\sigma} \mathbf{u}(\cdot,s)\|_{\mathcal{L}^{\frac{4}{3}}(\mathbb{R}^{3})},$$

e utlizando a Desigualdade de Hölder

$$J_{\alpha}(t) \leqslant c(\nu) \sum_{\ell=0}^{k-1} t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{\ell} \mathbf{u}(\cdot,s)\|_{\mathcal{L}^{4}(\mathbb{R}^{3})} \|D^{k-\ell} \mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds,$$

além disso, pela desigualdade de Gagliardo-Nirenberg (4.1) segue que

$$J_{\alpha}(t) \leqslant c(\nu) \sum_{\ell=0}^{k-1} t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{\ell} \mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} \|D^{\ell+1} \mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}}^{\frac{3}{4}} \|D^{k-\ell} \mathbf{u}(\cdot,s)\| ds.$$

Escrevendo $J_{\alpha}(t)$ como a soma $J_{1}(t)+J_{2}(t)+J_{3}(t)$ onde

$$J_{1}(t) = c(\nu)t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} \|D^{\mathbf{u}}(\cdot,s)\|_{\mathcal{L}^{2}}^{\frac{3}{4}} \|D^{k}\mathbf{u}(\cdot,s)\| ds.$$

$$J_{2}(t) = c(\nu) \sum_{\ell=1}^{k-2} t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{\ell}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} \|D^{\ell+1}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}}^{\frac{3}{4}} \|D^{k-\ell}\mathbf{u}(\cdot,s)\| ds.$$

$$J_{3}(t) = c(\nu)t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} \|D^{k-1}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} \|D^{k}\mathbf{u}(\cdot,s)\|_{\mathcal{L}^{2}}^{\frac{3}{4}} \|D\mathbf{u}(\cdot,s)\| ds.$$

Como sabemos que $\|D^q \mathbf{u}(\cdot, s)\| = s^{-\frac{q}{2}} U_q(s) \leqslant M_q$ para $q < k \text{ e } \|D^k \mathbf{u}(\cdot, s)\| = s^{-\frac{k}{2}} U_k(s)$, obtemos

$$J_{1}(t) \leqslant c(\nu) M_{1}^{\frac{3}{4}} \|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} s^{-\left(\frac{3}{8}+\frac{k}{2}\right)} U_{k}(s) ds$$

$$\leqslant c(\nu, k) M_{1}^{\frac{3}{4}} \|\mathbf{u}_{0}\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}^{\frac{1}{4}} (t+t_{0})^{-\frac{3}{8}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} U_{k}(s) ds$$

onde utilizamos o fato de $s^{-\frac{3}{8}}<(t+t_0)^{-\frac{3}{8}}$ para a ultima desigualdade. Análogamente para $J_2(t)$ temos

$$\begin{split} J_{2}(t) &\leqslant c(\nu) \sum_{\ell=1}^{k-2} M_{\ell}^{\frac{1}{4}} M_{\ell+1}^{\frac{3}{4}} M_{k-\ell} t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} s^{-\left(\frac{3}{8} + \frac{k}{2}\right)} ds \\ &\leqslant c(\nu,k) \sum_{\ell=1}^{k-2} M_{\ell}^{\frac{1}{4}} M_{\ell+1}^{\frac{3}{4}} M_{k-\ell} (t-t_{0})^{-\frac{3}{8}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} ds \\ &\leqslant c(\nu,k) \sum_{\ell=1}^{k-2} M_{\ell}^{\frac{1}{4}} M_{\ell+1}^{\frac{3}{4}} M_{k-\ell} (t-t_{0})^{-\frac{1}{4}} \end{split}$$

e para $J_3(t)$

$$J_{3}(t) \leqslant c(\nu) M_{1} M_{k-1}^{\frac{1}{4}} t^{\frac{k}{2}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} s^{-\left(\frac{3}{8} + \frac{k}{2}\right)} U_{k}(s)^{\frac{3}{4}} ds$$

$$\leqslant c(\nu, k) M_{1} M_{k-1}^{\frac{1}{4}} (t+t_{0})^{-\frac{3}{8}} \int_{t'}^{t} (t-s)^{-\frac{7}{8}} U_{k}(s)^{\frac{3}{4}} ds.$$

Lembrando que $U_k(s)^{\frac{3}{4}} \leqslant 1 + U_k(s)$, segue por (4.26) e pelas estimativas acima que

$$U^{\alpha}(t) \leqslant c(k, \nu, t_0, \mathbf{u}_0, M_1, \dots, M_1) + c(k, \nu, \mathbf{u}_0, M_1)(t + t_0) \int_{t'}^{t} (t - s)^{-\frac{7}{8}} U_k(s) ds$$

onde $U^{lpha}(t)=t^{rac{k}{2}}\|D^{lpha}\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}.$ Portanto

$$U_k(t) \leqslant c_*(k, \nu, t_0, \mathbf{u}_0, M_1, \dots, M_1) + c_{**}(k, \nu, \mathbf{u}_0, M_1)(t+t_0) \int_{t'}^t (t-s)^{-\frac{7}{8}} U_k(s) ds$$

para todo $t\geqslant t_0+1$. De forma análoga ao caso k=2, definimos t_k , \mathbf{M}_k por

$$t_k := 1 + t_0 + 2^{16} c_{**}^4$$
 $\mathbf{M}_k := \sup\{U_k(s); t_0 \le s \le t_k\}$

Sendo assim, afirmamos novamente que

$$U_k(t) = 2c_*(k, \nu, t_0, \mathbf{u}_0, M_1, \dots, M_{k-1}) + 16c_{**}(k, \nu, \mathbf{u}_0, M_1)\mathbf{M}_k$$

para todo $t \geqslant t_k$. Essa demonstração é exatamente a mesma que foi feita para o caso k=2. Ou seja, temos que U_k é limitada por uma constante que não depende de t em $[t_k, \infty)$, como U_k é limitada em $[T_{**}, \infty)$, segue que $U_k \in \mathcal{L}^{\infty}([T_{**}, \infty))$, como era desejado.

Teorema 4.18. Seja $\mathbf{u}(\cdot,t)$ uma solução de Leray para (4.8), então para todo $k \ge 0$ tem-se

$$t^{\frac{k}{2}} \| D^k \mathbf{u}(\cdot, t) \|_{\mathcal{L}^2(\mathbb{R}^3)} \to 0$$

quando $t \to \infty$

Demonstração. Os Teoremas 4.16 e 4.15 mostram os casos k=0 e k=1. Sendo assim, considere $k \ge 2$ e $t_0 \ge T_{**}$. Lembrando que

$$\begin{split} \|D^{k}\mathbf{u}(\cdot,t)\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} & \leq \|D^{k}[e^{\nu\Delta(t-t_{0})}\mathbf{u}(\cdot,t_{0})]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} + \int_{t_{0}}^{t'} \|D^{k}[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds \\ & + \int_{t'}^{t} \|D^{k}[e^{\nu\Delta(t-s)}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})} ds. \end{split}$$

Dado arepsilon > 0, seja $t_{arepsilon} > t_0$ suficientemente grande de forma que

$$t^{\frac{k}{2}}\|D^{k}[e^{\nu\Delta(t-t_0)}\mathbf{u}(\cdot,t_0)]\|_{\mathcal{L}^{2}(\mathbb{R}^3)}\leqslant \frac{1}{3}\varepsilon$$

е

$$t^{\frac{k}{2}}\int_{t_0}^{t'}\|D^k[e^{\nu\Delta(t-t_0)}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^2(\mathbb{R}^3)}\,ds\leqslant \frac{1}{3}\varepsilon.$$

Pelo Lema anterior, também é possível obter $t_{arepsilon} > t_0$ de forma que

$$t^{\frac{k}{2}}\int_{t'}^{t}\|D^{k}[e^{\nu\Delta(t-t_{0})}\mathbf{Q}(\cdot,s)]\|_{\mathcal{L}^{2}(\mathbb{R}^{3})}\,ds\leqslant\frac{1}{3}\varepsilon.$$

para todo $t\geqslant t_{\varepsilon}$. Ou seja, temos $t^{\frac{k}{2}}\|D^k\mathbf{u}(\cdot,t)\|<\varepsilon$ para todo $t\geqslant t_{\varepsilon}$. Portanto

$$t^{\frac{k}{2}}\|D^k\mathbf{u}(\cdot,t)\|_{\mathcal{L}^2(\mathbb{R}^3)}\to 0$$

como queriamos mostrar.

4.3 Problema de Dirichlet

Nessa seção retornamos ao problema visto na motivação do capítulo anterior.

O ponto principal dessa seção é o Teorema de Lax-Milgram que será utilizado para mostrar a existência de soluções fracas para o problema de Dirichet. Para demonstrá-lo, será necessário o Teorema da Representação de Riesz para espaços de Hilbert, que será apresentado abaixo

Teorema 4.19 (Teorema da representação de Riesz para espaços de Hilbert). Sejam H um espaço de Hilbert e $f: H \to \mathbb{R}$ um funcional linear limitado. Então existe um único $v \in H$ tal que $f(u) = \langle u, v \rangle$ para todo $u \in H$. Além disso ||f|| = ||v||.

Demonstração. Seja $f: H \to \mathbb{R}$ um funcional linear limitado não nulo, então existe $z \in H$ tal que $f(z) \neq 0$, como f é linear z deve ser não nulo. Ou seja, $\ker f \neq H$. Como f é limitado segue que $\ker f$ é fechado, sendo assim (por [15] p.p. 129), $H = \ker f \oplus \ker f^{\perp}$. Portanto $\ker f^{\perp} \neq \{0\}$ (pois caso contrário $\ker f = H$). Dito isso, seja $w \in \ker f^{\perp}$ não nulo, para cada $u \in H$, $f(u)w - f(w)u \in \ker f$ já que f(f(u)w - f(w)u) = f(u)f(w) - f(w)f(u) = 0. Dessa forma

$$0 = \langle f(u)w - f(w)u, w \rangle = f(u) \langle w, w \rangle - f(w) \langle u, w \rangle$$

o que implica em

$$f(u) = \left\langle u, \frac{f(w)}{\|w\|^2} w \right\rangle.$$

Denotando $v := \frac{f(w)}{\|w\|^2} w \in H$ (note que v não depende de u), temos que existe $v \in H$ tal que $f(u) = \langle u, v \rangle$ para todo $u \in H$.

Para mostrar que v é único, suponha que exista $\tilde{v} \in H$ tal que $f(u) = \langle u, \tilde{v} \rangle$ para todo $u \in H$. Dito isso $\langle u, v \rangle = f(u) = \langle u, \tilde{v} \rangle$ para todo $u \in H$, reescrevendo, temos $\langle u, v - \tilde{v} \rangle = 0$ para todo $u \in H$, em particular se $u = v - \tilde{v} \in H$, temos $||v - \tilde{v}|| = 0$, ou seja $v = \tilde{v}$. Portanto v é único.

Por fim, resta mostrar que ||f|| = ||v||. De fato, note que $f(v) = \langle v, v \rangle = ||v||^2$. Ou seja

$$||v||^2 = f(v) \le |f(v)| \le ||f|| ||v||,$$

como v é não nulo, temos $||v|| \le ||f||$. Por outro lado, por Cauchy-Schawarz

$$|f(u)| = |\langle u, v \rangle| \leq ||u|| ||v||$$

o que implica em $||f|| \le ||v||$. Portanto

$$||f|| = ||v||$$

finalizando a demonstração.

Teorema 4.20 (Teorema de Lax-Milgram). Sejam H um espaço de Hilbert e $B: H \times H \to \mathbb{R}$ uma aplicação bilinear tal que existem $\alpha, \beta > 0$ tais que

- 1. $|B(u, v)| \leq \alpha ||u|| ||v||$ para todo $u, v \in H$ i.e., a forma bilinear é limitada;
- 2. $\beta \|u\|^2 \leqslant B(u, u)$ para todo $u \in H$ i.e., a forma bilinear é coerciva,

e $f: H \to \mathbb{R}$ um funcional linear limitado. Então existe um único $v \in H$ tal que B(u, v) = f(u) para todo $u \in H$.

Demonstração. Essa demonstração sera dividida em alguns passos

Passo 1:

Para cada $v \in H$ defina $g_v : H \to \mathbb{R}$ por

$$g_{v}(u) = B(u, v).$$

Claramente g_v é linear (pois B é uma forma bilinear). Além disso g_v é limitada, já que

$$|g_{\nu}(u)| = |B(u, \nu)| \leqslant \alpha ||u|| ||\nu||$$

para todo $u \in H$, onde utilizamos o fato de B ser limitada. Sendo assim

$$|q_{v}(u)| \leq \alpha ||u||$$

para todo $u \in H$. Logo g_v é limitada. Dito isso, pelo Teorema da Representação de Riesz, existe um único $w_v \in H$ tal que

$$B(u, v) = g_v(u) = \langle u, w_v \rangle$$

para todo $u \in H$. Agora, seja $A: H \to H$ dado por $Av = w_v$. Dessa forma

$$B(u, v) = q_v(u) = \langle u, w_v \rangle = \langle u, Av \rangle$$
.

Passo 2: A é um operador linear e limitado

Sejam $x, y \in H$ e $\lambda \in \mathbb{R}$. Sendo assim

$$\langle u, A(\lambda x + y) \rangle = B(u, \lambda x + y) = \lambda B(u, x) + B(u, y) = \lambda \langle u, Ax \rangle + \langle u, Ay \rangle = \langle u, \lambda Ax + Ay \rangle$$

pois B é uma forma bilinear. Logo A é linear. Além disso, dado $v \in H$

$$||Av||^2 = \langle Av, Av \rangle = B(Av, v) \leqslant \alpha ||Av|| ||v||$$

como $Av \neq 0$ obtemos

$$||Av|| \leq \alpha ||v||$$
.

Portanto A é limitado

Passo 3: A é injetivo e ImA é fechado

Sabemos que existe $\beta > 0$ tal que $\beta ||u||^2 \le |B(u, u)|$. Dessa forma

$$\beta \|u\|^2 \leqslant |B(u,u)| = |\langle u, Au \rangle| \leqslant \|u\| \|Au\|$$

ou seja

$$\beta \|u\| \leqslant \|Au\| \tag{4.28}$$

para todo $u \in H$. Seja $u \in \ker A$, então Au = 0, daí por (4.28)

$$\beta \|u\| \leqslant \|Au\| = 0$$

o que implica em u=0. Portanto u é injetiva. Além disso, seja $(Au_k) \subseteq \operatorname{Im} A$ tal que $Au_k \to v \in H$. Mostremos que $v \in \operatorname{Im} A$. Com efeito, (Au_k) é de cauchy (porque converge). Dito isso, por (4.28)

$$\beta \|u_k - u_\ell\| \leqslant \|Au_k - Au_\ell\| \to 0$$

Ou seja, $(u_k) \subseteq H$ é de Cauchy. Como H é completo, existe $u_0 \in H$ tal que $u_n \to u_0$. Como A é limitado (o que implica em A ser contínuo) temos $Au_k \to Au_0$. Pela unicidade do limite $v = Av_0 \in \operatorname{Im} A$. Portanto $\operatorname{Im} A$ é fechado.

Passo 4: A é sobrejetivo

Sabemos que $H={\rm Im} A\oplus {\rm Im} A^{\perp}$. Mostremos que ${\rm Im} A^{\perp}=\{0\}$. Com efeito, se $w\in {\rm Im} A^{\perp}$, temos que

$$\beta ||w||^2 \le |B(w, w)| = |\langle w, Aw \rangle| = 0$$

Logo, w = 0 o que implica em H = ImA. Portanto A é sobrejetiva.

Passo 5:
$$f(u) = B(u, v)$$

Como f é um funcional linear limitado em H, pelo Teorema da Representação de Riesz existe $z \in H$ tal que $f(u) = \langle u, z \rangle$ para todo $u \in H$. Como A é uma bijeção, existe um único $v \in H$ tal que z = Av, dessa forma

$$f(u) = \langle u, z \rangle = \langle u, Av \rangle = B(u, v)$$

para todo $u \in H$.

Passo 6: Unicidade

Por fim, para mostrar que v é único, suponha que exista $\tilde{v} \in H$ tal que $f(u) = B(u, \tilde{v})$ para todo $u \in H$. Dessa forma

$$B(u, v) = f(u) = B(u, \tilde{v}).$$

Reescrevendo, temos $B(u, v - \tilde{v}) = 0$ para todo $u \in H$. Dito isso por (4.28)

$$\beta \|v - \tilde{v}\| \leq |B(v - \tilde{v}, v - \tilde{v})| = 0$$

Sendo assim, $v = \tilde{v}$. Portanto v é único.

Aplicação do Teorema de Lax-Milgram (Existência de soluções fracas). Considere o problema de Dirichlet

$$-\Delta u + u = f \text{ em } \Omega$$

$$u = 0 \text{ em } \partial \Omega$$
(4.29)

onde Ω é um aberto limitado. Na motivação vimos que u é uma solução fraca para o problema de Dirichlet se satisfaz

 $\int_{\Omega} Du \cdot D\phi \, dx + \int_{\Omega} u\phi \, dx = \int_{\Omega} f\phi \, dx$

onde $\phi \in \mathcal{C}_c^{\infty}(\Omega)$. Porem pela densidade das funções teste em $H_0^1(\Omega)$, podemos dizer que u é uma solução fraca do problema de Dirichlet se satisfaz

$$\int_{\Omega} Du \cdot Dv \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$

onde $v \in H_0^1(\Omega)$.

Defina $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ por

$$B[u, v] = \int_{\Omega} Du \cdot Dv \, dx + \int_{\Omega} uv \, dx$$

e $\varphi: H^1_0(\Omega) o \mathbb{R}$ por

$$\varphi(v) = \int_{\Omega} f v \, dx.$$

Note que B é bilinear limitado e coercivo. Com efeito, a bilinearidade de B segue do fato do gradiente fraco D e a integral serem operadores lineares. Além disso

$$B(u, u) = \int_{\Omega} Du \cdot Du \, dx + \int_{\Omega} u^2 \, dx = \int_{\Omega} \|Du\|^2 \, dx + \int_{\Omega} |u|^2 \, dx = \|u\|_{H_0^1(\Omega)}$$

Logo B é coercivo, e utilizando a Desigualdade de Hölder segue que

$$|B(u,v)| \leq \int_{\Omega} |Du \cdot Dv| \, dx + \int_{\Omega} |uv| \, dx$$

$$\leq \int_{\Omega} ||Du|| ||Dv|| \, dx + \int_{\Omega} |u||v| \, dx \leq ||Du||_{\mathcal{L}^{2}(\Omega)} ||Dv||_{\mathcal{L}^{2}(\Omega)} + ||u||_{\mathcal{L}^{2}(\Omega)} ||v||_{\mathcal{L}^{2}(\Omega)},$$

Porem, sabemos que $||u||_{\mathcal{L}^2(\Omega)}$, $||Du||_{\mathcal{L}^2(\Omega)} \leq ||u||_{H^1_0(\Omega)}$. Dito isso, obtemos

$$|B(u, v)| \le c ||u||_{H_0^1(\Omega)} ||v||_{H_0^1(\Omega)}$$

para todo $u,v\in H^1_0(\Omega)$. Logo, B é limitado. Por fim, temos que φ é limitado. De fato

$$|\varphi(v)| \le \int_{\Omega} |f||v| \, dx \le ||f||_{\mathcal{L}^{2}(\Omega)} ||v||_{\mathcal{L}^{2}(\Omega)} \le ||f||_{\mathcal{L}^{2}(\Omega)} ||v||_{H_{0}^{1}(\Omega)}$$

para todo $v \in H_0^1(\Omega)$, onde $||f||_{\mathcal{L}^2(\Omega)} < \infty$ pois por hípotese $f \in \mathcal{L}^2(\Omega)$.

Dessa forma, pelo Teorema de Lax-Milgram, existe um único $u \in H_0^1(\Omega)$ tal que

$$B(u, v) = \varphi(v)$$

para todo $v \in H_0^1(\Omega)$. Portanto existe uma única solução fraca para o problema de Dirichlet.

BIBLIOGRAFIA

- [1] Sheldon Axler. Measure, Integration and Real Analysis. Springer, 2024.
- [2] Robert G. Bartle. *The Elements of Integration and Lebesgue Measure*. John Wiley e Sons, 1995.
- [3] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010.
- [4] Richard L. Burden e J. Douglas Faires. Análise Numérica. CENGAGE DO BRASIL, 2016.
- [5] Lawrence C. Evans. Partial Differential Equations. AMS, 2010.
- [6] Alberto Fiorenza, Maria Rosaria Formica, Tomáš Roskovec e Filip Soudský. *Detailed proof of classical Gagliardo-Nirenberg interpolation inequality with historical remarks.* 2018.
- [7] Gerald B. Folland. *Real Analysis: Modern Techniques and Their Applications*. 2nd. Pure and Applied Mathematics. Wiley, 1999.
- [8] Giovanni P. Galdi. *An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems.* 2nd. Springer Monographs in Mathematics. Springer, 2011.
- [9] Jean Leray. «Sur le mouvement d'un liquide visqueux emplissant l'espace». Em: *Acta Mathematica* 63 (1934), pp. 193–248.
- [10] Jean Leray e Robert Terrell. *On the motion of a viscous liquid filling space*. 2016. arXiv: 1604.02484 [math.HO].
- [11] Elon Lages Lima. *Curso de Análise vol. 2.* 12^a ed. Instituto de Matemática Pura e Aplicada (IMPA), 2020.
- [12] Elon Lages Lima. Espaços Métricos. 6ª edição. IMPA, 2020.
- [13] Jens Lorenz e Paulo R. Zingano. *The Navier-Stokes equations for Incompressible Flows:* solution properties at potential blow-up times. 2015.
- [14] James R. Munkres. Analysis on Manifolds. CRC Press, 1991.
- [15] César R. de Oliveira. *Introdução à Análise Funcional*. 1^a ed. Instituto de Matemática Pura e Aplicada (IMPA), 2018, p. 257.
- [16] C.W. Oseen. *Hydrodynamik*. Mahtematik in Monographien und Lehrbüchern. Akademische Verlagsgesellschaft, 1927.
- [17] Michael Wiegner. «Decay Results for Weak Solutions of the Navier–Stokes Equations on Rn». Em: *Journal of The London Mathematical Society-second Series* 35 (1987), pp. 303–313.
- [18] Paulo R. Zingano. Two problems in Partial Differential Equations (in Portuguese). 2018.