Cette activité prépare les preuves par récurrence que l'on va faire en cours.

Soient $\lambda \in \mathbb{R}^*$ $\mu \in \mathbb{R}$.

Soient
$$\mathcal{M} \subset \mathbb{R}$$
 $\mu \in \mathbb{R}$.
Soient $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \text{ et } N = \begin{pmatrix} a & b & c \\ d & e & f \\ i & j & k \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

Utiliser la définition récursive du déterminant (en développant par exemple par rapport à la première colonne) pour calculer les déterminants suivants dans $\mathcal{M}_2(\mathbb{R})$ puis dans $\mathcal{M}_3(\mathbb{R})$:

EPU-PeiP1-Algèbre.

- de M;
- de D puis de DM avec $D = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$;
- de T puis de TM avec $T = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$;
- de P puis de PM avec $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$;
- de tM .
- de N: présenter chacun des 9 termes dans l'ordre lexicographique;
- de Δ puis de ΔN avec $\Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix}$;
- de τ puis de τN avec $\tau = \begin{pmatrix} 1 & 0 & 0 \\ \mu & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$;
- П puis de ПN avec П = $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$;
- de tN .

Quelles conjectures peut-on faire quant aux propriétés du déterminant?