Math H1b Quiz 4

Don't forget to write down clearly your Name:

and **ID number**:

1. True or False (4 points). Mark the box in front of a correction	et answei
---	-----------

 \square If $\{b_n\}$ is a positive sequence, then the series $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.

 \square If $\{a_n\}$ is a sequence whose limit is zero, then the series $\sum_{n=1}^{\infty} a_n$ converges.

 \Box If f(x) is a positive function with $\int_0^\infty f(x)dx < \infty$, then the series $\sum_{n=1}^\infty f(n)$ converges.

 \square The series $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=10^{100}}^{\infty} a_n$ converges.

2. Multiple choices (6 points). Mark the box in front of the correct answer.

(1) Which of the following series is absolutely convergent? $\square \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \quad \square \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3} \quad \square \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \quad \square \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n}$

(2) On which of the following sequences is the Root Test inconclusive?

 $\Box \quad a_n = (1 + \frac{1}{n})^n \qquad \Box \quad a_n = \frac{(-1)^{n-1}}{n^n} \qquad \Box \quad a_n = \frac{1}{3^n} \qquad \Box \quad a_n = \left(\frac{3n+3}{2n+5}\right)^n$

(3) Which of the following power series has its radius of convergence equal to \mathbb{R} ? $\Box \quad \sum_{n=0}^{\infty} x^n \quad \Box \quad \sum_{n=0}^{\infty} n x^{n-1} \quad \Box \quad \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1} \quad \Box \quad \sum_{n=0}^{\infty} \frac{x^n}{n!}$

3. Taylor Series (4 points). Find the Taylor series expansion for the function $f(x) = x^3$ near x = 1.

- **4. Maclaurin Series (6 points).** Consider the Maclaurin series for $f(x) = \sin x$ and $g(x) = \cos x$.
- (a). Write down the best degree-five polynomial approximations for the functions f(x) and g(x).

(b). Use part (a) to find the first three terms of the Maclaurin expansion for $h(x) = \sin(2x)$. Compare it directly with the result you get by considering f(2x) to show that these expressions agree.