Problem 1. Consider the optimal BST problem on $S = \{1, 2, 3, 4\}$ and the weight array W = (10, 20, 30, 40).

- Give the values of optcost(a, b) for all a, b satisfying $1 \le a \le b \le 4$. Recall that optcost(a, b) is the smallest average cost of all BSTs on $\{a, a+1, \ldots, b\}$.
- Give the value of optcost(1,4|3). Recall that this is the smallest average cost of a BST on $\{1,2,3,4\}$ conditioned on that 3 must be the root of the BST.
- \bullet Show an optimal BST on S with the smallest average cost.

Solution.

(a)

optcost(a,b)	b=1	b=2	b=3	b=4
a=1	10	40	100	180
a=2	0	20	70	150
a=3	0	0	30	100
a=4	0	0	0	40

(b)

$$optcost(1,4|3) = \left(\sum_{i=1}^{4} W[i]\right) + optcost(1,2) + optcost(4,4) = 100 + 40 + 40 = 180.$$

(c) Optimal BST:

Problem 2. For the optimal BST problem, recall that

$$optavg(a,b) = \begin{cases} 0, & \text{if } a > b, \\ \sum_{i=a}^{b} W[i] + \min_{r=a}^{b} \{optavg(a,r-1) + optavg(r+1,b)\}, & \text{otherwise.} \end{cases}$$

Give an algorithm to compute optavg(1, n) in $O(n^3)$ time.

Solution. Maintain a look-up table storing the value all optavg(a, b)'s, initialized to infinity for all entries, except for the case where a > b is set to zero.

Every optavg(a,b) depends on optavg(a,r-1) and optavg(r+1,b) with $a \le r \le b$. We order the subproblems such that all the f(a,b) where $1 \le a \le b \le n$ and b=a+i is calculated ahead of all the f(a,b) satisfying b=a+i+1. Additionally, we order the calculation of optavg(a,a+i)'s such that smaller values of a's come first. Namely, in round i ($i \in [0,n]$), all dependencies of optavg(a,a+i) are resolved and the computation of optavg(a,a+i) for all $1 \le a \le n$ only carries an additional cost of O(n) due to the summation and min operations.

Problem 3. Describe an algorithm to construct an optimal BST in $O(n^3)$ time after computing optavg(a,b) for all $1 \le a \le b \le n$.

Solution. Define bestroot(a,b) to be the $r \in [a,b]$ minimizing optavg(a,r-1) + optavg(r+1,b). As all optavg(a,b) have been computed, such r can be found in O(n) time.

Compute bestroot(a, b) for all $1 \le a \le b \le n$ in $O(n^3)$ time. Using the piggyback technique, the optimal BST on $S = \{1, 2, ..., n\}$ is rooted on r = bestroot(a, b) with left subtree as the optimal BST on $S_1 = \{1, 2, ..., r-1\}$ and the right subtree as the optimal BST on $S_2 = \{r+1, ..., n\}$, which can be obtained recursively.

We obtain the recursive formula for computing the optimal BST:

$$g(n) \le g(r-1) + g(n-r) + 1,$$

which is evaluated to O(n).

Problem 4. Consider again the optimal BST problem on $S = \{1, 2, ..., n\}$ and a weight array W. Prof. Goofy proposes the following greedy algorithm for finding an optimal BST T:

- Let r be the integer $i \in [1, n]$ with the largest W[i].
- Make r the root of T.
- Apply the above strategy to build a tree T_1 on $\{1, 2, ..., r-1\}$ and a tree T_2 on $\{r+1, r+2, ..., n\}$.
- Make the root of T_1 the left child of r, and the root of T_2 the right child of r.

Solution. Let $S = \{1, 2, 3, 4\}$ and W = (10, 20, 30, 40).

$$cost = 40 + 30 \times 2 + 20 \times 3 + 10 \times 4 = 200 > optcost(1, 4) = 180.$$

Hence, the greedy strategy does not guarantee optimality.

Problem 5. Describe an algorithm to find the most terrible BST: the one with the largest average cost, in $O(n^3)$ time.

Solution.

$$optavg(a,b) = \begin{cases} 0, & \text{if } a > b, \\ \left(\sum_{i=a}^{b} W[i]\right) + \max_{r=a}^{b} \left\{ optavg(a,r-1) + optavg(r+1,b) \right\}, & \text{otherwise.} \end{cases}$$

Similarly, optavg(a, b) for all $1 \le a \le b \le n$ can be computed in $O(n^3)$ time and the optimal BST can be constructed in $O(n^3)$ time using the piggyback technique.