Filtrage numérique

I - Introduction

Une chaîne de traitement numérique est généralement structuré de la manière suivante :

- x(t) est le signal analogique d'entrée.
- x'(t) est le résultat d'un filtrage passe-bas du signal d'entrée afin de respecter la condition de Shannon.
- x_n est une séquence de nombres correspondant à l'entrée.
- y_n est une séquence de nombres correspondant à la sortie.
- y'(t) est le signal analogique en « marche d'escalier » de restitution par le CNA
- y(t) est le signal analogique de sortie après lissage afin d'éliminer les « marche d'escalier ».

Les séquences de nombres $\{x_n\}$ et $\{y_n\}$ sont des nombres binaires codés sur N bit avec une fréquence d'échantillonnage :

Exemple: séquence d'entrée $\{x_n\}$.

II - Equation de récurrence

Forme générale d'une équation de récurrence

L'algorithme de calcul d'une chaîne de traitement numérique linéaire repose sur une **équation de récurrence** qui prend la forme générale suivante :

$$y_n = a_0 \cdot x_n + a_1 \cdot x_{n-1} + a_2 \cdot x_{n-2} + \dots + b_1 \cdot y_{n-1} + b_2 \cdot y_{n-2} + \dots$$

- y_n est la sortie en cours;
- x_n est l'**entrée en cours**;
- x_{n-1}, x_{n-2}, \ldots sont les **entrées antérieures**;
- y_{n-1}, y_{n-2}, \ldots sont les sorties antérieures;
- $a_0, a_1, \ldots, b_1, b_2, \ldots$ sont des **constantes** qui caractérisent la chaîne de traitement numérique.

Algorithmes non-récursifs

Si l'échantillon de sortie y_n ne dépend que des échantillons d'entrée $x_n, x_{n-1}, x_{n-2}, \ldots$

Exemple: équation de récurrence non-recursif.

$$\underbrace{y_n}_{\text{sortie}} = \underbrace{0.8 \cdot x_n}_{\text{entrée}} + \underbrace{0.5 \cdot x_{n-1} + 0.3 \cdot x_{n-2} + 0.1 \cdot x_{n-3}}_{\text{entrées antérieures}}$$

Algorithmes récursifs

Si l'échantillon de sortie y_n dépend à la fois des échantillons d'entrée $x_n, x_{n-1}, x_{n-2}, \dots$ et des échantillons de sortie antérieure y_{n-1}, y_{n-2}, \dots

Exemple: équation de récurrence récursif.

$$\underbrace{y_n}_{\text{sortie}} = \underbrace{1.0 \cdot x_n}_{\text{entrée}} + \underbrace{0.5 \cdot x_{n-1} - 0.5 \cdot x_{n-2}}_{\text{entrées antérieures}} + \underbrace{1.0 \cdot y_{n-1} + 0.3 \cdot y_{n-2} - 0.2 \cdot y_{n-3}}_{\text{sortie antérieures}}$$

Mise en oeuvre

En pratique, cette équation de récurrence est **implémentée sous forme logiciel** (ex. microcontrôleur, DSP, ...) à l'aide d'un langage de programmation ou **sous forme matériel** à partir de composants électroniques spécialisés.

Représentation graphique d'un algorithme

Un algorithme peut-être représenté de façon structurelle à partir des trois opération élémentaires suivantes :

Exemple : pour l'équation de récurrence $y_n = 4x_n + 2y_{n-1}$

III - Filtre numérique

Un filtre numérique est une chaîne de traitement numérique qui modifie la distribution fréquentielle du signal numérique d'entrée $\{x_n\}$. Le résultat du filtrage numérique est donné par signal numérique de sortie $\{y_n\}$.

Par rapport à un filtre analogique, un filtre numérique apporte de **nombreux avantages** : précision, fiabilité, stabilité, adaptabilité, encombrement réduit, ...

D. THERINCOURT 3/6 Lycée Roland Garros

IV - Réponse impulsionnelle

Définition

La réponse d'un filtre numérique à une séquence d'impulsion permet de distinguer les filtres numériques.

Filtre à réponse impulsionnelle finie (filtre RIF)

La **réponse impulsionnelle s'annule au bout d'un certain temps**. Elle ne comporte qu'un nombre fini d'échantillons non-nuls.

Les filtres non récursif sont des filtres RIF.

Il n'y a pas d'équivalent en analogique!

Filtre à réponse impulsionnelle infinie (filtre RII)

La réponse impulsionnelle comporte une infinité d'échantillons non-nuls.

Ces filtres sont forcément des filtres récursifs.

V - Stabilité

Définition

Un filtre est **stable** lorsque sa **réponse impulsionnelle tend vers 0** lorsque n tend vers l'infini.

Stabilité d'un filtre RIF

Par conséquent, un filtre RIF (filtre non-récursif) est toujours stable!

Stabilité d'un filtre RII

Par contre, un **filtre RII** (filtre non-récursif) **peut-être instable**. Il est donc important d'étudier sa réponse impulsionnelle pour déterminer sa stabilité.

Exemple: filtre RII stable.

Exemple: filtre RII instable.

VI -Réponse en fréquence

La réponse en fréquence d'un filtre numérique s'obtient en appliquant à son entrée un signal numérique de forme sinusoïdale avec une période d'échantillonnage T_E .

Transmittance ou amplification

$$H(f) = \frac{\widehat{\{y_n\}}}{\widehat{\{x_n\}}}$$

Représentation graphique (courbe de la transmittance)

La **fréquence de coupure** f_c est définie pour $G = G_{max} - 3 \text{ dB}$

$$G = G_{max} - 3 \text{ dB}$$
 ou

$$H = \frac{H_{max}}{\sqrt{2}}$$