Reflected Ornstein-Uhlenbeck (ROU) Process

Brolin O'Connell

2025-06-17

Contents

Introduction	1
1. Ornstein-Uhlenbeck Process (1D)	1
2. Stationarity and Ergodicity	2
3. Multivariate OU Process (2D) {=latex} \vspace{10pt}	2 3

Introduction

The Ornstein–Uhlenbeck (OU) process is a classical mean-reverting stochastic process used in a variety of applications including physics, finance, and queueing theory. In this document, we simulate and analyze both the standard OU process and its **reflected** form (ROU) in one and two dimensions, examining key properties such as stationarity, ergodicity, and convergence.

{=latex} \vspace{10pt}

1. Ornstein-Uhlenbeck Process (1D)

The 1D OU process is governed by the stochastic differential equation:

$$dX_t = -\theta(X_t - \mu) dt + \sigma dW_t \tag{1}$$

Where: - X_t : state at time t - μ : long-run mean - $\theta > 0$: mean reversion speed - σ : volatility - dW_t : standard Brownian motion increment

This process is stationary and has a well-defined limiting distribution:

$$Var(X_t) = \frac{\sigma^2}{2\theta} \tag{2}$$

(see Lemma 7, Huang & Pang, 2022)

{=latex} \vspace{10pt}

2. Stationarity and Ergodicity

The OU process is **second-order stationary**: its mean and variance are time-invariant, and autocovariance depends only on lag. It is also **ergodic**, meaning:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T X_t \, dt = \mathbb{E}[X_t] = \mu \tag{3}$$

(see Theorem 2.4, Huang & Pang, 2022) {=latex} $\vspace{10pt}$ —

3. Multivariate OU Process (2D)

We now extend the OU process to two dimensions, where the state vector $\mathbf{X}_t = (X_t, Y_t) \in \mathbb{R}^2$ evolves as:

$$d\mathbf{X}_{t} = -\Theta(\mathbf{X}_{t} - \boldsymbol{\mu}) dt + \Sigma d\mathbf{W}_{t}$$
(4)

Where: - Θ : mean reversion matrix - Σ : diffusion matrix - μ : long-run mean vector - $d\mathbf{W}_t$: vector of independent Brownian motions

2D Ornstein-Uhlenbeck Process Components

{=latex} \vspace{10pt}

4. Reflected Ornstein-Uhlenbeck Process (1D)

We now simulate a **reflected OU process** in 1D, where the process is constrained to remain in \mathbb{R}_+ . This imposes a Skorokhod reflection at the boundary $X_t = 0$, approximated here by taking the absolute value of a standard OU trajectory.

True Reflection of Ornstein–Uhlenbeck Process at x = 0

5. Local Time Approximation

Following Huang & Pang (2022), the reflected process introduces a local time L_t , which increases only when $X_t = 0$. To approximate this numerically, we accumulate the negative excursions of the unreflected path:

{=latex} \vspace{10pt}

6. Reflected OU Process in \mathbb{R}^2_+

We extend the OU system to 2D and impose reflection into the nonnegative orthant by projecting any negative value to zero.

Original vs Reflected 2D OU Process (|Xt| and |Yt|)

7. Autocorrelation Function (ACF)

Autocorrelation of OU Process

OU processes exhibit exponentially decaying autocorrelations: $\rho(\tau) = e^{-\theta \tau}$.

{=latex} \vspace{10pt}

8. Stationary Distribution Convergence

We compare empirical distribution at time T to the theoretical stationary normal:

Empirical Stationary Distribution vs Theoretical Norm

Huang & Pang (2022) confirm the convergence of the ROU process toward a stationary distribution under bounded local time and ergodicity (Theorem 2.4).