Topics in Physical Chemistry and Biophysics

1 Review of probability

18.04.23 lec 1

Definition 1.1)

Probability. If N is the total number of outcomes, and n_A fall in category A, then

$$p_A = \frac{n_A}{N} = \frac{\text{outcomes cat. } A}{\text{all outcomes}}$$

Rules of composite events:

- 1. Mutually exclusive: outcomes $(A_1, A_{2,...})$ are *mutually exclusive* if one outcome precludes another outcomes. (Event A_1 prevents even A_2 from happening simultaneously.)
- 2. Collectively exhaustive: if all known outcomes are also all possible outcomes. $\sum p_i = 1$.
- 3. Independence: outcomes do not depend on each other.
- 4. Multiplicity: total number of ways in which outcomes occur.

Rules of calculation:

1. Let there be 3 outcomes A, B, C with probability p_A , p_B , p_C . What is the probability that either one occurs (A or B or C)?

$$p(A \cup B \cup C) = p_A + p_B + p_C$$

That's the addition rule.

2. Probability that all outcomes occur? (Assuming independence)

$$p(A \cap B \cap C) = p_A p_B p_C$$

3. Probability that an event A is not happening? $p = 1 - p_A$

Example. We roll a die twice. What is the probability of rolling a 1 first **or** a 4 second? Split the problem to parts. Note that the events are not mutually exclusive. Condition applies if:

- 1 first and not a 4 second: $\frac{1}{6} \cdot \frac{5}{6}$
- not a 1 first and a 4 second: $\frac{5}{6} \cdot \frac{1}{6}$
- 1 first and 4 second: $\frac{1}{6} \cdot \frac{1}{6}$

Now sum up all of the options to get result.

(Definition 1.2)

Correlated events. p(B|A) is the probability that B occurs given A has occurred.

Joint probability. p(AB) that both A and B occur.

Definition 1.3

 $General\ multiplication\ rule.$

$$p(AB) = p(B|A) p(A)$$

P(A) is called the a priori probability and p(B|A) is called the a posterior probability

Theorem 1.4

Bayes theorem.

$$p(B|A) p(A) = p(A|B) p(B)$$

Example. 1% of population has breast cancer. We use mammography to detect cancer.

Event *A*: breast cancer. p(A) = 0.01. $p(\bar{A}) = 1 - p(A) = 0.99$.

Event B: diagnosis. p(B|A) = 0.8. $p(B|\bar{A}) = 0.096$. (i.e. false positive)

What is the chance that a doctor has diagnosed someone with cancer? i.e. p(A|B)

$$p(A|B) = \frac{p(B|A) p(A)}{p(B)}$$

p(B) is the diagnosis of breast cancer irrespective whether it's there or not there.

$$p(B) = p(BA) + p(B\bar{A}) = p(B|A) p(A) + p(B|\bar{A}) p(\bar{A}) = 0.8 \cdot 0.01 + 0.096 \cdot 0.99 = 0.103$$

$$p(A|B) = \frac{0.8 \cdot 0.01}{0.103} = 0.078 = 7.8\%$$

The reason that p(A|B) is so small is that the rate of false positive is really low and the rate of having breast cancer is really low.

Combinatorics. Concerned with composition of events, and not with their order.

Example. How many combinations there are of *N* amino acids?

$$W = N! = N (N-1) (N-2) \cdots$$

Example. Distinguish or not Distinguish: What are the possible number of ways to arrange *N* amino acids? Divide all permutations (assuming objects are distinguishable) by the number of permutations of objects that are indistinguishable.

$$W = \frac{N!}{N_A}$$

In general, for N objects consisting of t categories in which the objects are indistinguishable:

$$W = \frac{N!}{(n_1!)(n_2!)\cdots(n_t!)}$$

So, if t = 2, (e.g. possible number of ways to arrange three acids A,A,H)

$$W = \frac{N!}{n_1! \cdot n_2!} = \frac{N!}{n_1! (N - n_1)!} = \binom{N}{n}$$

Definition 1.5

Distribution functions. Describe collections of probabilities. Relevant for continuous variables.

$$\sum_{i} p_{i} \to \int_{a}^{b} p(x) \, \mathrm{d}x$$

Popular distributions:

1. Binomial Distribution. Relevant when there are only two outcomes.

Example. What is the probability that a series of N trials has n_H heads and n_T tails in any order? p_H , p_T are mutually exclusive, so the probability of one sequence is

$$p_H^{n_H} \cdot p_T^{n_T} = p_H^{n_H} (1 - p_H)^{N - n_H}; \quad N = n_H + n_T$$

and the number of ways to arrange the coins is

$$W = \frac{N!}{n_H! (N - n_H)!}$$

therefore, the possibility for the outcome (getting n_H and n_T) in any order is

$$p(n_H, N) = {N \choose n_H} p_H^{n_H} (1 - p_H)^{N - N_H}$$

that's the binomial distribution.

Example. Given the molecule $C_{27}H_{44}O$ such that 1.1% is ^{13}C and the rest are ^{12}C , the fraction of molecules without a single ^{13}C is given by the binomial distribution.

2. Multinomial distribution. Basically the extension of the binomial distribution.

$$p(n_1, n_2, \dots, n_t, N) = \left(\frac{N!}{n_1! \ n_2! \cdots n_t!}\right) p_1^{n_1} p_2^{n_2} \cdots p_t^{n_t}$$

Definition 1.6

Moments of distributions. Averages and Variances of distribution functions.

Given p(i) s.t. $\sum_{i} p_{(i)} = 1$, the **Average** is defined as

$$\langle i \rangle = \sum_{i} i p(i) \longrightarrow \langle x \rangle = \int x p(x) dx$$

Given f(x),

$$\langle f(x) \rangle = \int f(x) \, p(x) \, \mathrm{d}x$$

Given $a \in \mathbb{R}$

$$\langle af(x)\rangle = \int af(x) p(x) dx = a \langle f(x)\rangle$$

Given 2 functions f(x), g(x),

$$\langle f(x) + g(x) \rangle = \langle f(x) \rangle + \langle g(x) \rangle$$

$$\langle f(x) \cdot g(x) \rangle \neq \langle f(x) \rangle \langle g(x) \rangle$$

The 2nd and 3nd **Moments** of the distributions p(x) are

$$\langle x^2 \rangle = \int x^2 p(x) \, \mathrm{d}x$$

$$\langle x^3 \rangle = \int x^3 p(x) \, \mathrm{d}x$$

The **Variance** of the distribution, σ^2 is defined as

$$\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2 = \langle (x - \langle x \rangle)^2 \rangle$$