NOM:

COGNOM:

Solucions

Puntuació: BÉ:+1 punt., MAL: -0.25 punts, N.C: 0

1. En les taules adjuntes s'indiquen les característiques elèctriques de dos famílies lògiques A i B. Assenyale l'afirmació CORRECTA:

	Fan	nília A	
V_{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}
2V	0.7V	2.5V	0.4V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
20μΑ	-400μA	-400μA	4 mA

1-4	Fam	ília B	
V _{IHmin} V _{ILmax} 3.5V 1.5V		V _{OHmin} 4.95V	V _{OLmax} 0.05V
I _{IHmax} 10pA	I _{ILmax} -10pA	I _{OHmax} -0.5mA	I _{OLmax} 0.5mA

[A] La família A té MILLOR marge de soroll que la família B, ja que és MENOR. -> no te seutit

[B] La família B té MILLOR fan-out que la família A, ja que és MAJOR. [C] El fan-out de la família A és 20.

[D] El marge de soroll de la família A és 0.5V.

N/U_A $\begin{cases}
NM_L : 0.7 - 0.9 = 0.3V \\
NMH = 2.5 - 2 = 0.5V
\end{cases}$ $\begin{cases}
NM_L : 0.7 - 0.9 = 0.3V \\
NMH = 2.5 - 2 = 0.5V
\end{cases}$ $\begin{cases}
19/0.4 = 10 \\
100/20 = 20
\end{cases}$

famout B (L > 1 0.5/10×10-9)

1 pA= 10-9 mA

2. Donat el següent circuit seqüencial, implementat amb biestables D, assenyale l'afirmació CORRECTA:

Paràmetres temporals: Biestable: (Set up: t_{su} = 20 ns, Hold: t_h = 5 ns, Retard: $t_{pd(max)}$ = 40 ns), Portes AND i OR: (Retard: $t_{pd(max)}$ = 20 ns).

[A] La freqüència màxima de funcionament és de 10MHz.

Bl La frequència màxima de funcionament es de 11.76MHz.

[C] El circuit compleix la condició de set-up per a qualsevol freqüència.

[D] El circuit no funciona bé degut als retards excessius a l'eixida dels biestables.

3. Indique l'afirmació FALSA sobre algunes famílies lògiques:

[A] La família CMOS és la que menys consum presenta.

[B] La família pseudo-NMOS és una variant de la NMOS que substitueix la resistència RD per un transistor PMOS actiu, amb l'objectiu de reduir l'àrea de silici.

IGILa subfamília LSTTL es bipolar i utilitza transistors Scottky.

[D] a família NMOS presenta consum estàtic quan l'eixida és '1'.

4. Indique l'afirmació CORRECTA sobre el circuit lògic de la figura:

[A] Pertany a la família lògica NMOS

[B] Pertany a la família lògica CMOS

[C] Utilitza diodes i transistors Schottky per disminuir el consum

[D] Es una porta lògica de la família TTL

- Supose que es connecta una eixida CMOS (+5V) amb una entrada TTL. Els nivells lògics de voltatge són els que apareixen en la figura adjunta. Indique l'afirmació CORRECTA:
- Els nivells lògics de tensió són compatibles i el marge de soroll global és 2.04V
- [B] Hi ha incompatibilitat en el "0".
- [C] Hi ha incompatibilitat en el "1".
- Els nivells lògics de tensió són compatibles i el [D]marge de soroll global és 0.3V

Es vol connectar una eixida TTL en col.lector obert amb una entrada de circuit lògic CMOS alimentat a +15V. Indique la resposta CORRECTA:

Família	A (TTL col.lector	obert)
V _{OLmax}	I _{OHmax (fuites)}	I _{OLmax}
0.4 V	100 μΑ	24 mA

T. I	Família B (0	CMOS +15V	()
V_{IHmin}	V _{ILmax}	I _{IHmax}	I _{ILmax}
11 V	4 V	0.1 μΑ	-0.1 μΑ

- Es poden connectar directament. [A]
- (B) Es necessari connectar una resistència de pull-up entre l'eixida i l'alimentació de +15V. El valor de la resistència deu estar comprés entre 0.6KΩ i 40KΩ.
- Es necessari posar un buffer TTL en l'eixida per compatibilitzar el corrent a nivell baix. [C]

Es necessari connectar una resistència de pull-up entre l'eixida i l'alimentació de +15V. El valor de la [D]resistència deu estar comprés entre $2K\Omega$ i $40K\Omega$.

Per al circuit de la figura, s'ha dibuixat el cronograma amb les distintes eixides, sent el senyal A l'entrada al mateix. Es pot afirmar que:

Dades: V_{CC} = 5V; I_{CCL} = 6 mA i I_{CCH} = 2 mA, i el retard de propagació mitjà d'una porta és de 5ns.

- [A] La potència estàtica mitjana consumida per cada porta NAND és 30mW.
- [B] La potència estàtica mitjana consumida per la porta AND és 26.7mW.
 - La potència estàtica mitiana consumida pel conjunt del circuit és 100mW.
 - Per a realitzar els càlculs de la potència estàtica mitjana consumida, es necessita conèixer la frequència del senyal d'entrada.

Proval = 2 × 40 + 26-67 = 106.67 mW

NOM:

COGNOM:

Solucions

Puntuació: BÉ:+1 punt., MAL: -0.25 punts, N.C: 0

1. En les taules adjuntes s'indiquen algunes de les característiques elèctriques de dos famílies lògiques genèriques A i B. A partir d'elles, indique la resposta **CORRECTA** (la notació X→Y indica eixida X connectada a entrada Y):

	Famí	lia A	
V _{IHmin}	V _{ILmax}	V_{OHmin}	V_{OLmax}
2 V	0.8 V	2.7 V	0.5 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
20 μΑ	- 0.36 mA -400 μA		8 mA
first &	Fami	ilia B	
V _{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}
2 V	0.8 V	2.4 V	0.4 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
40 μΑ	- 1.6mA	-400 μΑ	16 mA

[A] El marge de soroll A→B és de 0.7 V.

[B] El fan-out A→B és de 20.

[C] El fan-out B→A és de 44.

D El marge de soroll B→A és de 0.4V.

 $A \Rightarrow B \quad NH \quad \begin{cases} NH_{H} = 2.7 - 2 = 0.77 \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.3V \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.5 \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.8 - 0.5 = 0.5 \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.5 = 0.5 \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.5 = 0.5 \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{L} = 0.5 \end{cases} \Rightarrow \begin{cases} 0.3V \\ NH_{$

fan-out { + > |400/20| = 20 20

2. Donat el següent circuit seqüencial síncron, dissenyat amb portes i un biestable D, assenyale l'afirmació CORRECTA sobre la freqüència màxima de funcionament:

Paràmetres temporals: Biestables: (Set up: $t_{su} = 5$ ns, Hold: $t_h = 2$ ns, $tp_{HL} = 20$ ns, $tp_{LH} = 18$ ns), Portes: ($tp_{HL} = 10$ ns, $tp_{LH} = 8$ ns).

- 3. Indique l'afirmació FALSA sobre algunes famílies lògiques:
- [A] La família CMOS és la que menys consum presenta.
- [B] La família pseudo-NMOS és una variant de la NMOS que substitueix la resistència RD per un transistor PMOS actiu, amb l'objectiu de reduir l'àrea de silici.
- [C] La subfamília LSTTL es bipolar i utilitza transistors Scottky.
- [D] La família NMOS presenta consum estàtic quan l'eixida és '1'.
- Indique la resposta FALSA sobre el circuit de la figura:
 - [A] Es tracta d'un buffer Trigger-Schmitt
 - [B] La corba de transferencia presenta histèresi per augmentar el marge de soroll
- Es un buffer col.lector obert
 - DI Es adequat per operar amb entrades amb molt de soroll electromagnètic

- Es pretén connectar l'eixida d'una porta de la família CMOS alimentada a 9V, amb una entrada d'altra porta de la família TTL alimentada a 5V. A partir de les especificacions de les famílies indicades en les taules adjuntes i considerant que el circuit té eixida estàndard, es pot afirmar que:
- Groc [A] Es poden connectar directament.
- [B] Es necessita una resistència de pull-up connectada entre l'eixida i 9V.
- [C] Es necessita una resistència de pull-up connectada entre l'eixida i 5V.
- Es necessita intercalar un buffer drenador obert de la família A amb una resistència de pull-up connectada entre l'eixida del buffer i 5V.

 Reputa de 11 d'exista > Vitum 5 Von 5 SV

	Família (CMOS (+9V)	
17	1 amilia C		
V_{IHmin}	V _{ILmax}	V_{OHmin}	V _{OLmax}
6.3 V	2.7 V	8.9 V	0.1 V
I _{IHmax}	I _{ILmax}	I _{OHmax}	I _{OLmax}
20pA	-20pA	-0.5 mA	0.5 mA

	Famíl	ia TTL (+	5V)
V _{IHmin} 2.0 V	V _{ILmax}	V _{OHmin}	V _{OLmax}
I _{IHmax} 40μΑ	I _{ILmax} -1.6 mA	I _{OHmax} -400μA	I _{OLmax}

I IOL/A > | ITL B -> NO -> Buffer Voltains > 5V alineutris TTL, pot in perillos per als transitive de B

6. El circuit de la figura està compost de portes de la mateixa família TTL. Determine quina de les següents respostes és la CORRECTA:

- [A] El circuit no funciona perquè necessita una resistència de pull-up en l'eixida.
- [B] La funció $F = A \bullet B \bullet C \bullet D$
- [C] Es poden seleccionar vàries portes al mateix temps, perquè tenen
- [D] Si $SEL_B=$ "0", (amb $SEL_A=SEL_C=SEL_D=$ "1"), i l'entrada B=0.5V, l'eixida F tindrà un nivell alt.

amb eixida Frestat. Nomes es pot activas No cal Rpu, perpie l'eixida no es col· actor obert.

Considere el circuit adjunt i els paràmetres característics següents. Si es tracta d'eixides en col·lector obert, indique la resposta correcta.

- [A] El circuit funciona correctament amb una R_{PU} = 1.2k
- [B] El circuit funciona correctament amb una R_{PU} = 3k
- [C] El circuit funcionarà correctament si llevem la R_{PU}
- [D] El circuit funciona correctament amb una R_{PU} = 0.5k

V_{IHmin}	V _{ILmax}	V _{OHmin}	V _{OLmax}
2.5 V	0.8 V	3.0 V	0.5 V
I_{IHmax}	I _{ILmax}	I _{OHmax} (fuites)	I _{OLmax}
300 μΑ	-0.36 mA	100 μΑ	7 mA

3 eixicle i 2 enprades
$$\frac{5 - Volmex}{5 - Volmex} \le Rpu \le \frac{5 - 0.5}{3 \times Joh} = \frac{5 - 0.5}{7 - (2 \times 0.36)} \le Rpu \le \frac{5 - 2.5}{0.3 + 0.6}$$
Tolmex - 2×15µ

0.72 ka & Rpu & 2.78 Ka