2022-05-16

Tensorflow Investigation

- · An end to end open source machine learning patform
- · Core open source library to help you develop and train ML model
- · Comprehensive, flexible ecosystem of tools, libraries and community resources
- · Easy model building
- · Robust ML production anywhere
- · Powerful expirementation for research
- · Examplest
 - · Helping doctors detect respiratory disease using machine learning Enterprise

developers

- · Advancing access to human nights information
- · Enabling medical Staff to prescribe the right antibiotics with Tensor flow

Research

Image Classification-Convolutional Neural Network

- · progressively extract higher and higher level representations of the image content
- CNN takes just the image's raw pixel data as input and "learns" how to extract these features
 18 able to infer what object they constitute

Convolution

- · Convolution extracts tiles of the input feature map
- · Applies filters to them to compute new features
- ·Producing an ouput feature map
- · Convolved feature
- · Which may have a different size and depth than the input feature map
- ·Size of the tiles are extracted (ie. 3x3 or 5x5)
- · Depth of ouput feature map

- wise multiplication of the filter matrix and the tree Moutrix
- Sum all element of resulting matrix to get a single Value

varue.		3×1	5×0	2×0	8
35231	1100	9 x1	7×1	5xU	4
20616	001	200	0*0	<u>6×1</u>	1
14951	convautional	6	3	7	6
input feature	filter				

Step 1

2

Map

· CNN "learns" the optimal values for the filter matrices that enable it to extract meaningful teatures from input feature map . textures, edges, shapes

·as # of filters applied to input 1, # of features the CNN can extract 1

trade off is that filters compose the majority of resources expended by the CNN

· Training time also increases as more filters added

· Each filter added to the network provides less incremental value than the previous one

ReLU-Rectified Linear Unit

*ReLU is used as an activation function in a variety of neural network

*F(x) = max(0,x), returns x for all values of x>0, and returns 0 for all values of $x \le 0$

Pooling

*CNN downsamples the convolved feature (to save an Processing time)

· Reducing the number of dimensions of the feature map, while still preserving the most critical feature info.

*max pooling"

· SI'de over feature map and extract tiles of a

*For each tile, maximum value is output into a new feature map, rest of values are discarded *Size: max pooling filter (ie. 2×2)

· Size: max pooling filter (ie. 2×2)
· Stride: distance in pixels, seperating each
extracted tile

Example.			
1 3 5 E 2 7 1 6 4 9 3 9 0 8 4 5	7 3 /5 E 3 7 1 9 4 9 3 9 0 8 4 5	Maxpool	8 6 9 9
13 5 2 2 7 1 6 4 6 3 1 9 4 5	7 3 5 2 9 7 1 6 4 9 3 6 0 3 4 4	→	ЩТ

Fully Connected Layers

- · After CNN are one or more fully connected layers
- ·When 2 layers are "fully connected", every node in the first layer is connected to every node in the second layer
- ·To perform classification based on features extracted by convolutions
- ·Final fully connected layer contains a softmax activation function.
- of the classification labels the model is trying to predict.

