

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) l'aternational Patent Classification 6:

G06F 15/78

A1

- (11) International Publication Number:
- WO 96/11443
- (43) International Publication Date:
- 18 April 1996 (18.04.96)

(21) International Application Number:

PCT/US95/13423

- (22) International Filing Date:
- 5 October 1995 (05.10.95)

(30) Priority Data:

BEST AVAILABLE COPY

08/319,453

6 October 1994 (06.10.94)

US Full

- (71) Applicant: THE DOW CHEMICAL COMPANY [US/US]; 2030 Dow Center, Abbott Road, Midland, MI 48640 (US).
- (72) Inventors: SEDERLUND, Edward, R.; 4710 Ashland Drive, Saginaw, MI 48603 (US). LINDESMITH, Robert, J.; 870 Patterson Road, Midland, MI 48640 (US). ROOT, Larry, A.; 3005 Camberly Lane, Midland, MI 48640 (US). DUPREE, Wayne, P.; 5301 Stoney Creek Drive, Midland, MI 48640 (US). THOMAS, Lowell, V.; 6118 Silverbrooke Drive, West Bloomfield, MI 48322 (US).
- (74) Agent: SCHULTZ, Dale, H.; The Dow Chemical Company, Patent Dept., P.O. Box 1967, Midland, MI 48641-1967 (US).

(81) Designated States: CA, JP, KR, MX, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

OKST AVAILABLE COPY

(54) Title: AN EXTENDED HARVARD ARCHITECTURE MEMORY SYSTEM

(57) Abstract

An extended Harvard architecture memory system which features an address st re for containing an ordered sequence of program memory addresses, and a value store for containing a series of related data value sets. Each of the addresses contained in the address store is associated with a distinct set of instructions, such as a subroutine, that is contained in the program memory. The address store may also contain the address of one or more instruction arguments that are, in turn, contained in the value store or in a separate data memory. Both the address store and the value store are preferably connected to the same data communication path which is used by the data memory of the computer. The value store also includes a logic interface for enabling a plurality of different address increments to be programmably selected.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauriania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
	Benin	ū	Italy	PL	Poland
BJ		JР	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	K.P	•	SE	Sweden
CG	Congo		of Korea	SI	Slovenia
CH	Switzerland	KR	Republic of Korea		
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	w	Luxembourg	TG	Togo
cz	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spein	MG	Madagascar	US	United States of America
		ML	Mali	UZ.	Uzbekistan
FI	Finland	MN	Mongolia	VN	Viet Nam
FR	France	MIN	mougous .		,
C.A	Cabon		•		

25

AN EXTENDED HARVARD ARCHITECTURE MEMORY SYSTEM

The present invintion generally relates to computer architectures, and particularly to an extended memory system for a computer based upon the Harvard architecture.

A computer which includes the following two characteristics is generally referred to as having a "Harvard" architecture. Namely, the computer will be designed with separate instruction and data stores, and independent buses will be provided to enable the central processing unit ("CPU") of the computer to communicate separately with each of these stores. 10 This is in contrast to a "von Neumann" or "Princeton" based computer architecture, which generally employs the same physical store for both instructions and data, and a single bus structure for communication with the CPU. Various approaches have been taken to designing a microcomputer or microprocessor with a Harvard architecture, as represented by the following patents: Yasui et al. U.S. Patent No. 5,034,887, issued on July 23, 1991, entitled 15 "Microprocessor With Harvard Architecture"; Portanova et al. U.S. Patent No. 4,992,934, issued on Feb. 12, 1991, entitled "Reduced Instruction Set Computing Apparatus And Methods"; Mehrgardt et al. U.S. Patent No. 4,964,046, issued on Oct. 16, 1990, entitled "Harvard Architecture Microprocessor With Arithmetic Operations And Control Tasks For Data Transfer Handled Simultaneously"; and Simpon U.S. Patent No. 4,494,187, issued on Jan. 15, 1985, 20 entitled "Microcomputer With High Speed Program Memory". Additionally, it should be noted that the Intel i860 64-bit microcomputer has been described as having an on-board Harvard architecture, due to the provision of separate instruction and data cache paths. In this regard, a description of the Intel 1860 chip design may be found in 1860 Microprocessor Architecture, by Neal Margulis, Osborne McGraw-Hill, 1990.

The use of separate instruction and data communication paths in a Harvard architecture machine effectively increases the overall speed of the computer by enabling an instruction to be accessed at the same time that data for this or another instruction is accessed. In the context of programmed operations, the instruction is usually referred to as the "opcode" (the operation code), and the data is referred to the "operand". While the benefit in speed of 30 using the Harvard architecture is significant, the full potential of a machine based upon the Harvard architecture, has yet to be realized. More specifically, it is believed that substantial advantages may be achieved by addressing the nature, roles and potential cooperation between separate memory stores in a machine which is based upon the Harvard architecture.

Accordingly, it is a principal objective of the present invention to privide a 35 unique memory syst im which significantly extends the capability of the Harvard architecture.

It is another objective of the present invention to provide an extended memory system which reduces the amount of mem ry space required to st r a computer pr gram.

30

35

It is a furth robjective of the present invention to provide an extended memory system which enables at least two different memory accessing procedures to be utilized.

It is an additional objective of the prosent invention to provide an extended memory systom which reduces the time required for fitten repeated memory operations.

It is also an objective of the present invention to provide an extended memory system which more effectively utilizes a desired data structure.

It is yet another objective of the present invention to provide an extended memory system which is particularly advantageous in a process control computer.

To achieve the foregoing objectives, the present invention provides an extended memory system which includes an address store for containing an ordered sequence of program memory addresses, and a value store for containing a series of related data value sets. Both the address store and the value store are preferably connected to the same data communication path which is used by a separate data memory of the computer.

through its stack of program memory addresses. In this regard, each of these program memory addresses identify the location of the first instruction of a particular subroutine which is contained in the program memory. The address store may also contain the address of one or more subroutine arguments which is, in turn, contained in either the value store or in the data memory. Thus, the address store may be utilized as a location server for both the program memory and the data memory of a computer which is based upon the Harvard architecture.

The value store also includes a logic interface for enabling a plurality of different address increments to be programmably selected. This variable incrementing capability is particularly advantageous in a process control environment where a relatively large number of input values need to be rapidly read, transformed and evaluated. For example, it may be useful for a process control computer to generate an expanded set of data values for each input signal that has been received from a particular process sensor. Assuming that a predetermined data structure is used for these data value sets, then the number of steps required to record or retrieve this data may be substantially reduced by changing the address increment used with the value store.

Additional features and advantages of the present invention will become more fully apparent from a reading of the detailed description of the preferred embodiment and the accompanying drawings in which:

Figure 1 is a block diagram of a computer which features an extended meming system in accordance with the present invention.

Figure 2 is a block diagram of the Q and C mem ry circuits of the xtended memory system shown in Figure 1.

Figures 3-3E r present a schematic diagram of the Q memory circuit.

Figur s 4-4A r pr s nt a sch matic diagram f the C memory circuit.

Figures 5-5D represent a schematic diagram of the Q r gist r pr grammable logic device sh wn in Figure 3.

Figures 6-6D r present a schematic diagram of th C register pr grammable l gic d vice sh wn in Figure 4.

Figur s 7-7E represent a schematic diagram of the D register propgrammable logic device shown in Figure 4.

Figure 8 is a diagrammatic illustration of the operation of the Q and D memory circuits.

Figure 9 is a diagrammatic illustration of the operation of the P and C memory circuits.

Referring to Figure 1, a block diagram of a computer 10 is shown. The computer 10 includes a Central Processor and Control Unit ("CPU") 12. In accordance with one embodiment herein, the CPU 12 is based upon the MIPROC processor from Radstone Technology plc. However, it should be appreciated that other CPU circuits or microprocessors may be used, and that the principles of the present invention are not limited to any particular CPU construction or integration. It should also be appreciated that all of the circuits in the computer 10 may be integrated into a single microcomputer chip in the appropriate application.

In accordance with a strict Harvard architecture configuration, the computer 10 includes a data memory 14, a program memory 16, and a separate bus structure for each of these memories. In this regard, the 64k data memory 14 is provided with a data bus 18 (the "B" bus), and a data memory address bus 20. Similarly, the 64k program memory 16 is provided with a program memory data bus 22 ("PM Buss"), and a program memory address bus 24 ("PC Buss"). The computer 10 also includes an Index Interrupt circuit 26, which enables the CPU 12 to access data on the data bus 18. More specifically, the Index Interrupt circuit 26 provides a 16-bit address which is derived from one of eight address modes. The addressing mode is selected by the instruction which is to be executed.

While the computer 10 employs a 16-bit bus structure, it should be understood that other suitable bus widths may be employed in the appropriate application. Similarly, the storage capacity of the data memory 14 and the program memory 16 may be altered as well. However, one of the advantages of the invention's extended memory system is that the size of the program memory 16 may be considerably smaller than would otherwise be required with a conventional Harvard architecture. Additionally, the program memory 16 may utilize random access memory ("RAM"), electrically programmable read only memory ("EPROM"), or a c mbination of both to store program instructions, as will be described below, and the operating system. For examplo, the EPROM may be used to store the operating system and the se subrountines that are unlikely to be changed, while the RAM may be used to store those subrountines that are may be more susceptible to updating. The program more more 16 may also

10

25

employ ther suitable memory circuits in the appropriate application, such as EEPROM and Flash mem ry.

As shown in Figure 1, the computer 10 also includes a c ntr | bus 28, a priority interrupt bus 30, and a Pr grammabl Interface 32. The Programmable Interfac 32 provides a pr grammable port for input and output operations. In other words, the Programmable Interface 32 may be configured to receive input signals which are representative of analog and digital values from various sensors, and configured to transmit output signals for one or more control devices. Additionally, the Programmable Interface may be used to receive and transmit communication signals as well.

In accordance with the present invention, the computer 10 includes an extended memory system 36, which is generally represented by the block labeled "Q & C Memory" in Figure 1. As will be seen in connection with Figure 2, the extended memory system 36 includes two separate memories, which are referred to herein as the Q memory and the C memory. However, it should be noted from Figure 1 that both of these memories are connected to the data bus 18. The Q and C memories also receive control signals which are decoded in the program memory 16, such as Q operation and C operation.

Referring to Figure 2, a block diagram of the extended memory system 36 is shown. The extended memory system includes a set of buffers 100, which are used to receive various control and addressing signals. These control and addressing signals are selectively 20 transmitted to three distinct registers, namely Q register 102, C register 104 and D register 106. Thus, for example, the Q register 102 will receive the Q operation signal, while the C register 104 will receive the Coperation signal. However, all three of these registers will receive certain signals in common, such as the memory clock signal ("MEMCLKB"), and certain address signals from the program memory data bus 22.

The Q register 102 controls the operation of a 256K Q memory circuit 108. The Q memory circuit is provided to store an ordered sequence of memory addresses which ultimately defines the particular program to be implemented by the computer 10. In sharp contrast to typical programs that have been compiled and linked, the application program for the computer 10 is uniquely divided between the program memory 16 and the Q memory circuit 30 108. In this regard, the program memory 16 is used to store the instructions, or opcodes, fire common set of subroutines that may be used in a variety of application programs. Thus, for example, the program memory 16 may contain a number of different arithmetic and logical subroutines, such as for adding two numbers together, and IF...THEN expressions.

In comparison, the Q memory circuit 108 is designed to store address information 35 Which is assiciated with these subroutines. More specifically, the Q memory circuit 108 is adapted to stor the addresses of thes subroutines, such as the address of the first instruction f a subrouting, in an ordiged sequence to define the computer program. Preferably, the Q memory circuit 108 als stor s the addresses of any argum into that may be riliquired by this e

WO 96/11443 PCT/US95/13423

subr utines. These arguments, or operands, may be found in the data mem ry 14 r in the C memory circuit 110 to be described below. With this division of responsibility for storing the application program, it should be understood that the routines used by though program need only be stored once, even though they may be used repeatedly through ut the program. Thus, only a minimal amount of storage capacity is required for the application program in the computer 10. The use of Q memory also has other advantages as well. For example, execution speed may be enhanced, because normal subroutine overhead is avoided, such as pushing one or more addresses on a stack. Additionally, subroutine arguments may be readily changed by a programmer without having to re-compile the program. Rather, the argument value may be changed directly in the memory location referenced in Q memory.

The C memory circuit 110 is controlled alteratively by the C register 104 and the D register 106. The C memory circuit 110 is adapted to store data values, and in this respect, the C memory circuit 110 may be used to extend the storage capacity that would otherwise be provided by the data memory 14. However, in accordance with the present invention, the C register 104 is designed to enable the C memory circuit 110 to be accessed in increments that may be varied automatically by program instructions. As will be described below, the C memory circuit 110 may be accessed in address increments of one, two or four, depending upon the instruction employed. In other words, an explicit instruction may be given to advance a counter in the C register 104 which determines the currently accessible address of the C memory circuit 110.

The D register 106 is used in order to access two different data tables in the C memory circuit 110 without having to transfer address pointers into and out of memory. In other words, the counter contained in the C register 104 may be pointing to the address of one data table in the C memory circuit 110 (where an address increment greater than one would be useful), while the counter contained in the D register 106 is pointing to the address of another data table in the C memory circuit (where an address increment of one is appropriate).

It should also be noted from Figure 2 that both the Q memory circuit 108 and the C memory circuit 110 are connected to the data bus 18. The Q memory circuit 108 is connected to the data bus 18 through data buffers 112, while the C memory circuit 110 is connected to the data bus through data buffers 114. Accordingly, it should be appreciated that the writing and reading operations for the Q memory circuit 108 and the C memory circuit 110 are effectively multiplexed through the Q__operation and C__operation control signals. A pair of address buffers 116 is also provided to present the current address of the Q register 102 to a logic analyzer debugging device connector. The current address of the Q register 102 may also be read by the CPU 12 through the data buffers 112. In light of the fact that the red in disequence of addresses in the Q memory circuit 108 define the steps the implemented by the computer 10, the current address of the Q memory circuit 108 prevides and the reway to determine the current state of the pregrammed operations.

15

Ref rring t Figures 3-4A, a schematic diagram of the extended memory system 36 is shown. The control line buffers 100 ar shown to be comprised of a tri-state octal buffer/line driver circuit U10 (74AS541), and thr e quad AND gate circuits U4, U12 and U39 (7408). The line driver circuit U10 rec ives the four least significant bits from the program m mory data bus 22 (PM0-PM3), two input/output c ntr i signals (IO16, IO29) and the two most significant Q memory address bits (QA16-QA17). The use of these signals will be described below in connection with Figure 5-5D. The AND gate circuits U4, U12 and U39 operate as buffers, since one input to each of the internal AND gates is tied to a +5 volt reference. The AND gate circuit U4 conditions the memory enable signal "/EMR", the memory read/write 10 signal "R/W" and the memory clock signal "MEMCLK". The letter "B" is added to the label for these signals at the outputs to indicate that they represent buffered versions of the signals received from the control bus 28. Similarly, the AND gate circuit U12 is used to buffer the Q operation and C operation signals. The AND gate U39 is used to both buffer and replicate the CPI clock signal from the CPU 12.

The Q register is shown to be comprised of an 18-bit programmable logic device U1 ("PLD"), and a pair of octal line drivers U21 and U22 (74AS541). In the present embodiment, the PLD is an 2100 gate application specific integrated circuit (EP1810), which has been programmed as shown in Figures 5-5D. However, it should be appreciated that other suitable logic circuits may be employed in the appropriate application. The PLD U1 allows the CPU 12 t 20 set or read an internal counter, and to increment this counter by one when so instructed. The PLD U1 outputs sixteen of the eighteen address lines to the Q memory array 108, while internally demultiplexing the remaining two most significant address lines for selecting one of four 64k RAM banks U23-U38 (6208) in the Q memory array. In this regard, RAM bank 0 is comprised of memory chips U23, U27, U31 and U35. Similarly, RAM bank 1 is comprised of memory chips U24, U28, U32 and U36; RAM bank 2 is comprised of memory chips U25, U29, U33 and U37; and RAM bank 3 is comprised of memory chips U26, U30, U34 and U38.

Figure 3 also shows that the Q address buffers 116 are comprised of a pair of line drivers U7-U8 (74AS541), and two lines from the line driver U10.

Additionally, Figure 3A shows that the data buffers 112 are comprised of a pair of octal bus transceivers U5 and U6 (74AS645).

Turning to Figure 4-4A, a schematic diagram of the C register 104, the D regist r 106 and the C memory array 110 is shown. The C register 104 is comprised of an 16-bit PLD U2. and the D register 106 is comprised of an 16-bit PLD U3. This circuit arrangement is similar t that described above in connection with the Q register 102 and the Q memory array 108, except 35 that the programming firth Cand Diregist is is different and the Cimilin ry array 110 only has one 64k memory bank U15-U18 (6208). Both the Cregist r 104 and the D register 106 all w the CPU 12 to set or r ad the ir internal 16-bit counters, and increment-by-ne when instructed. However, as indicated above, the Ciri gister 104 also includes the capability to employ

WO 96/11443 PCT/US95/13423

5

10

additi nal memory access pr cedur s with incr m nts by integers gr ater than one. In ne firm of the prisent invention, the Ciregister 104 is prigrammed to enable increments by two and four. How ver, it should be appriciated that further indifferent integer increments may als b provided under the principles of the present invention.

Additionally, it should be noted that the output bus lines from the C register 104 and the D register 106 are buffered (via octal line drivers U13-U14 and U19-U20) and joined in common with the Caddress bus to the Cmemory array 110. Similarly, data buffers 114 are shown to be comprised of a pair of octal transceivers U9 and U11. These transceivers are provided to connect the C memory data bus to the "B" data bus 18.

Referring to Figures 5-5D, a schematic diagram of the O register 102 (PLD U1) is shown. While the Q register 102 has been provided with 20-bit addressing capability in this particular embodiment, it is nevertheless treated as a 18-bit address counter when 256K memory locations are physically contained in the Q memory circuit 108. Accordingly, the Q register 102 includes a set of five 4- bit up/down counters 200-208 which operate to specify the address for the Q memory circuit 108. It should be understood that a greater or lesser number of up/down counters could be utilized, and that the specific circuit embodiments described herein are intended to be exemplary only of the principals of the present invention. However, the Q register 102 is constructed in this embodiment to set, read or increment the up/down counters 200-208 in order to determine the current address of the Q memory circuit 108. Each of the up/down counters 200-208 receives a clock signal, such as CP4 for counter 202. While separate clock signals are generally shown for these counters, this is only because the EP1810 PLD is partitioned into four ports. Accordingly, it should be understood that clock signals CP1, CP2, CP3 and CP4 represent the same clock signal.

As each of the counters 200-208 are similarly arranged, the counter 202 in Figure 25 5 will be described as a representative example. The counter 202 includes four data input ports which are connected to the input/output signal lines labeled B12, B13, B14 and B15. The counter 202 may be loaded with the value on these input/output signal lines by the SETLSB4 signal line, which is connected to the Load Enable port of the counter. As indicted by the signal line labeling, each of the data output ports of the counter 202 are connected to their respective 30 input/output signal lines through a set of buffers 210-216. Accordingly, the output signals Q12F, Q13F, Q14F and Q15F may be read from the input/output signal lines by activating the buffers 210-216 through the RDLSB4 signal.

The SETLSB 1-4 and RDLSB 1-4 signals, as well as the SETMSB and RDMSB signals, are decoded from the signals on selected lines of the program memory data bus 22 and the 35 c ntr I bus 28, as indicat d in Figur 3. These program memory data bus lines are label d ID0-1D3, and one of the control lines is labeled IIO16. As shown in Figures 5A-5C, a set of 1-of-8 decoders 218-232 are used to demultiplex each of the "SET..." signals for writing a address value into the counters 200-208, and the "RD..." signals for reading an address value from these WO 96/11443 PCT/US95/13423

5

10

counters. Figure 5D also sh ws a decod r 234 which is used for demultiplexing the chip select signals OBANK0-3.

As indicated above, the Q register 102 also includes the capability fincrementing the address of the curr int address of this Q memory circuit 108. The instruction for this operation is detected through the decoders 236-238 on Figure 5C. In this regard, it should be noted that the decoder 236 also receives the Q Operation signal, which is labeled IOOP in Figure 5C. The decoders 236-238 produce the ADD1 signal which is directed to the carry input port of the counter 208. The ADD1 signal will cause the address generated by the O register 102 to advance by the integer value of one.

Referring to Figures 6-6D, a schematic diagram of the C register 104 (PLD U2) is shown. As in the case of the Q register 102, the C register includes a set of 4-bit up/down counters 300-304 for specifying 12-bits of the address for the C memory circuit 110. Similarly, the C register 104 includes a set of decoders 306-308 for producing the SETLSB and RDLSB signals. However, the C register 104 not only has the ability to control the reading and writing of the C memory circuit 110, but the C register also has the capability to control a plurality of address increments for the C memory circuit. In this regard, a set of decoders 310-312 are provided to demultiplex an ADD1 signal, an ADD2 signal and an ADD4 signal. As the nam of these signals imply, the Cregister 104 is capable of causing the address for the C memory circuit 110 to increment by one, two or four. However, it should also be appreciated that the C 20 register 104 could also be configured to increment the address for the C memory circuit 110 by other integer values as well.

In order to implement the capability for variable address increments in the C memory circuit 110, the C register 104 includes a counter circuit 314 which is shown on Figures 6A-6C. This counter circuit 314 effectively takes the place of the fourth 4-bit up/down count r 25 that would otherwise be employed to specify the least significant 4-bits of the address for the C memory circuit 110. The counter circuit 314 includes a set of four flip flops 316-322 which are used to specify the four significant bits of the address for the C memory circuit 110. For example, the flip flop 316 is responsive the ADD1 increment signal and the clock signal CK1. The flip flop 316 is alternatively responsive to a combination of the ISETLSB signal and eith r 30 the BOF signal or the COF signal through the OR gate 326. The ISETLSB signal represents th SETLSB signal after it has been processed through inverter 324. Accordingly, as long as th current address value from the C register 1-4 is being read by the CPU 12, then the output from the flip flop 316 is presented again at its input port through the XOR gate 328 and the AND gate 330. The output signal from the flip flop 316 is also connected the next flip flop 318 35 thr ugh the AND gate 332 in order to pass the pr vi us I ast significant bit up the chain when the ADD1 signal is received. In a similar way, the flip flop 318 receives the ADD2 signal when an incr m nt by the int gervalu of tw is required. Likewise, the third flip fl p 320 rec ives the outputs from both the first flip fl p 316 and th second flip flop 318, and processes all three

WO 96/11443 PCT/US95/13423

increment signals ADD1, ADD2 and ADD4. While the third flip fl p 320 will pass a "HIGH" ADD4 signal through to its output C2F upon the appropriate clock signal transiti n, th ADD2 signal needs to be c mbined with th output fr m th second flip flop 318 (via AND gat 334), and the ADD1 signal needs to be combined with utput signals from both the first and s c nd flip fl ps 316-318 (via AND gate 336). Similar logic processing is also provided for the fourth flip flop 322. For example, in order to cause an increment in the address of the C memory circuit 110 by four when the output signal C3F was "LOW", then the ADD4 signal needs to be combined with a "HIGH" output signal C3F from the third flip flop 320 (via AND gate 338).

5

Referring to Figures 7-7E, a schematic diagram of the D register 106 (PLD U3) is shown. As in the case of the Q register 102 and the C register 104, the D register 106 includes a set of 4-bit up/down counters 400-406 for specifying the address for the C memory circuit 110. Similarly, the D register 106 includes a set of decoders 408-410 for producing the SETLSB and RDLSB signals. In addition to reading and writing, the D register also includes the capability to increment the current address for the C memory circuit 110 through the ADD1 signal shown in Figure 7E. This ADD1 signal is detected through the decoders 412-414, and it is transmitted to carry input port of the counter 406.

Referring to Figures 8 and 9, two diagrammatic illustrations of the operation of the extended memory system 36 are shown. Figure 8 specifically illustrates the division of responsibility between the Q memory circuit 108, the P (program) memory circuit 16 and the D 20 (data)memory circuit 14 through the use of a simple "add" subroutine. In this regard, a portion of the "Q list" 500 is shown by identifying an exemplary set of Q memory locations and the data contained therein. For example, the value 3284 is stored at Q memory location A000, while the value 8291 is stored at the next Q memory location A001. A comment box is arranged adjacent to each of these address/data sets in Q memory, so that the significance of the Q list may be seen. In this particular portion of the Q list 500, the CPU 12 has been programmed to add to numbers together. Accordingly, Q memory location A000 is used to store the beginning address for the "ADD" subroutine. The next two Q memory locations are used to identify the address for the two numbers to be added together. In this specific example, two analog constants "AC" will be added together. It should also be noted that these the value of these 30 two analog constants could be readily changed by the programmer without having to recompile the Q list 500. The last Q memory location in this portion of the Q list 500 is the beginning address to a "STORE" subroutine.

Figure 8 also diagrammatically shows a portion of the program memory 16. This portion of the program memory 16 represents the "ADD" subroutine called from the Q list 500.

The first instruction for this subroutine is an instruction to get the first argument address from the Q memory 108. This is accomplished by causing the Q rogister 102 to increment thou current Q more more address by one, and then roading the value on the "B" data bus. As this value reprosents a memory location in the data more represents a memory location in the data memory

pr gram m ry is a c mmand t get the data value AC(1) at this data memory location. The ADD subr utine then goes into get and add the second data value AC(2) to the first data value AC(1), and then return t th in ixt mem ry location in the Q list 500. Figure 8 als diagrammatically shows thrie adjacent memory 1 cations in the data mem ry 14. In this regard, the data value of 0064 for AC(1) is stored in memory location 8291, while the data value of 00C8 for AC(2) is stored in memory location 8293.

Turning now to Figure 9, an "AlLoop" subroutine is diagrammatically shown in the program memory 16. This particular subroutine takes advantage of an exemplary data structure section shown in the C memory 110. In this example, each analog input signal "AI" is stored in memory as an associated set of four distinct values. Thus, the signal set for the analog input signal AI(1) includes a "field" value which represents the raw signal received by the CPU 12, a "voltage" value which represents a processed value of the field signal, a scaling factor and a scaled version of the processed signal. In any event, it should be understood that a plurality of analog input signals need to be stored in memory, a this exemplary data structure is used to store these values in adjacent groups of four. As a result, the variable incrementing capability of the C register 104 is utilized in the AlLoop subroutine in order to cause each analog input "field" signal value to be read and then stored in successively spaced locations in C memory 110. More specifically, the ADD4 command signal is utilized to increment the C memory 110 by the integer value of four as each analog input "field" signal is to be stored. This is shown by 20 the "STAC4" instruction in the program memory at memory address AA15. As a result, it should be appreciated that minimal processing overhead is needed in order to read and store many signal values in the C memory 110.

The present invention has been described in an illustrative manner. In this regard, it is evident that those skilled in the art once given the benefit of the foregoing disclosure, may now make modifications to the specific embodiments described herein without departing from the spirit of the present invention. Such modifications are to be considered within the scope of the present invention which is limited solely by the scope and spirit of the appended claims.

30

35

20

30

WHAT IS CLAIMED IS:

1. In a comput r having a data memory, a program mem ry, and separate communication paths between a central processing unit of said computer and said data and program memories, an extended memory system comprising:

first storage means for containing an ordered sequence of program memory addresses, where each of said program memory addresses are associated with a distinct set of instructions which are, in turn, contained in said program memory; and

second storage means for containing a series of related data value sets, said second storage means includes at least one memory unit and logic means for providing a plurality of programmable address increments for said memory unit;

said first and second storage means each being connected to a data bus in a communication path for said data memory.

- 2. The invention according to Claim 1, wherein said logic means includes a plurality of registers which are capable of separately and alternatively addressing said second storage means.
 - 3. The invention according to Claim 1, wherein said programmable address increments include at least an increment by one, and an increment by an integer greater than one.
 - 4. The invention according to Claim 3, wherein said programmable address increments include an increment by two, and an increment by four.
- The invention according to Claim 1, wherein said first storage means includes at least one memory unit for containing said program memory addresses, and each of said program memory addresses contained in said first storage means is the address in said program memory of the first instruction for a set of instructions which represents a particular programmed procedure.
 - 6. The invention according to Claim 5, wherein said memory unit of said first storage means includes the address in said data memory of an argument for at least one of said programmed procedures.
 - 7. The invention according to Claim 5, wherein said memory unit of said first storage means includes the address in said second memory of an argument for at least one of said programmed procedures.
- 8. The invention according to Claim 1, wherein said logic means includes an address register, which in turn includes at least one decoder for detecting an address increment signal retreived from said program memory by said central pricessing unit that det irmines the magnitude of the address incremint for said second storage means.
 - 9. The invintion according to Claim 1, wherein said prigram memory includes both villatile and non-volatile mimory circuits.

10

- 10. The inventin according to Claim 1, wherein said I gic means includes a control register, which in turn includes a buffin circuit which enables the current address output from said control register to be read on said data bus.
- 11. In a computer (10) having a data memory (14), a program memory (16), and separate communication paths (18, 20, 22, 24) between a central processing unit (12) of said computer and said data and program memories, an extended memory system comprising:

storage means (36) for containing an ordered sequence of program memory addresses, where each of said program memory addresses are associated with a distinct set of instructions which are, in turn, contained in said program memory (16);

said storage means each being connected to said central processing unit.

- 12. The invention according to Claim 11, wherein said storage means (36) is connected to a data bus (18) in a communication path for said data memory (14).
- includes at least one memory unit (102) for containing said program memory addresses, and
 each of said program memory addresses contained in said storage means is the address in said program memory (16) of the first instruction for a set of instructions which represents a particular programmed procedure.
- 14. The invention according to Claim 13, wherein said memory unit (102) of said storage means (36) includes the address in said data memory (14) of an argument for at least one of said programmed procedures.
 - 15. In a computer having a data memory, a program memory, and separat communication paths between a central processing unit of said computer and said data and program memories, an extended memory system comprising:

value storage means for containing a series of related data value sets, said
value storage means being connected to a data bus in a communication path for said data
memory,

said value storage means including at least one memory unit and logic means for providing a plurality of programmable address increments for said memory unit.

- 16. The invention according to Claim 15, wherein said programmable address increments include at least an increment by one, and an increment by an integer greater than one.
 - 17. The invention according to Claim 16, wherein said programmable address increments include an increment by two, and an increment by four.
- 18. The invention acc rding to Claim 17, whir in said logic means includes a plurality fregisters which ar capable fiseparately and alternatively addrissing saids condistorage means.
 - 19. The invention according to Claim 15, wherein said logic means includes an control register, which in turn includes at 1 ast to ne decoder for detecting an address increment

signal retriev d fr m said program m mory by said c ntral pr cessing unit that determines the magnitude of the address increment for said second storage means.

- 20. The invintion according to Claim 15, wherein said related data value sits form part of a data structure.
- 21. The invention according to Claim 15, wherein said logic means includes a control register which is capable of causing a data value to be stored at predetermined address location in said value storage means and then the current address of said value storage means to be incremented by an integer greater than one from a single intruction retrieved from said program memory.

10

5

15

20

25

30

35

Fig-1

Fig-7E

	Q Memory Address	Q Memory Contents	Comment	
	A000	3284	Beginning Address of "ADD" Subroutine	-
	A001	8291	Address of Argument AC(1)	
108	A002	8293	Address of Argument AC(2)	500
	A003	3150	Beginning Address of "Store" Subroutine	

	P Memory Address	P Memory Contents	Comment
_	3284	2680	Get 1st Argument Address from Q Memory (LMNY)
<i>;</i>	3285	3800	Get 1st Argument Value from D Memory (LDAI)
) 	3286	2680	Get 2nd Argument Address from Q Memory (LMNY)
16	3287	3400	Add 2nd Argument Value from D Memory (ADDI)
	3288	8C80	Go to Next Subrout. in Q Mem., Returning Result (JMPY)

	D Memory Address	D Memory Contents	Comment	
	8291	0064	AC(1) -1 to +1	
<i></i>	8292	29F5	AC(1) Scale Factor	_;
14	8293	0008	AC(2) -1 to +1	<u>-</u> -

Fig. 8

		P Memory Contents	Comment
	AA11	E517	Save Loop Counter (STX)
	AA12	25F4	Set Analog Input Hardware Read Channel (OTA:F4)
	AA13	25E2	Start Analog/Digital Conversion (OTA:E2)
16	AA14	25E0	Read Digital Value of Analog Input (INA)
	AA15	3344	Store AI Value In C Memory And Point To Next One (STAC4)
	AA16	E417	Get Loop Counter Back (LDX)
	AA17	7200	Done Yet? (NOPT)
	AA18	6011	NoRepeat Loop (JMPC)

	C Memory Address	C Memory Contents	Comment
	5291	4000	AI(1) -1 to +1
	5292	0360	AI(1) Voltage
	5293	4000	AI(1) Field
110	5294	7FFA	AI(1) Scale Factor
	5295	6000	AI(2) -1 to +1

Fig. 9

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 G06F15/78

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system (ollowed by classification symbols) IPC-6. G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US,A,5 034 887 (YASUI IKUO ET AL) 23 July 1991	1-21
	see column 3, line 31 - line 68; figures 4B,6A	
Y	PROCEEDINGS OF THE ANNUAL SYMPOSIUM ON COMPUTER ARCHITECTURE, 20 January 1975 NEW YORK, US, pages 195-200, M. FREEMAN 'An instruction class for an extensible interpreter' see page 196, right column, line 19 - line 50; figures 1,8	1-21
Y	EP,A,0 235 912 (TEKTRONIX INC) 9 September 1987 see page 8, line 12 - line 21	1-21

* Special categories of cated documents: *A* document defining the general state of the art which is not considered to be of particular relevance.	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or	"X" document of particular relevance; the claimed invention cannot be conndered novel or cannot be conndered to involve an inventive step when the document is taken alone
which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
"O" document referring to an oral discionare, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person stalled
"P" document published prior to the international filing date but later than the priority date claimed	m the art. "A" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
6 March 1996	1 8. 03. 96
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Raptwijk Tel. (+31-70) 340-2040, Tz. 31 651 epo nl, Faz: (+31-70) 340-3016	Michel, T

1

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

		PCT/US 95/13423				
4Contanu	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
ategory "	Citation of document, with indication, where appropriate, of the relevant passages	Reievant	o claim No.			
<u>. </u>	US,A,5 255 382 (PAWLOSKI MARTIN B) 19 October 1993 see the whole document	1.	,11,15			
A	FR,A,2 579 343 (BURR BROWN LTD) 26 September 1986 see page 2, line 17 - line 31	1,	11,15			
A	EP,A,O 568 329 (ADVANCED MICRO DEVICES INC) 3 November 1993 see claim 3	1, 15	3,4,5-17,19			

PCT/US 95/13423						
	PCT	/US	95/	/ 1:	342	23

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
US-A-5034887	23-07-91	JP-A-	1014648	18-01-89	
EP-A-0235912	09-09-87	US-A- JP-A-	4755951 62207962	05-07-88 12-09-87	
US-A-5255382	19-10-93	NONE			
FR-A-2579343	26-09-86	NONE			
EP-A-0568329	03-11-93	JP-A-	6028309	04-02-94	