- The S-DES encryption algorithm takes an 8-bit block of plaintext and a 10-bit
- key as input and produces an 8-bit block of ciphertext as output.
- S-DES depends on the use of a 10-bit key shared between sender and receiver.
- From this key, two 8-bit subkeys are produced for use in particular stages of
- the encryption and decryption algorithm.
- The S-DES decryption algorithm takes an 8-bit block of ciphertext and the
- same 10-bit key used to produce that ciphertext as input and produces the
- original 8-bit block of plaintext.

The encryption algorithm involves five functions:

- Initial permutation (IP).
- A complex function labeled f_K : which involves both permutation and substitution operations and depends on a key input.
- A simple permutation function that switches (SW) the two halves of the
- The function f_K again.
- Finally a permutation function that is the inverse of the initial permutation (IP^{-1}) .

Figure: key generation for S-DES

Ciphertext = IP-1 \circ f_{K2} \circ SW \circ f_{K1} \circ IP

Ciphertext = $IP^{-1}(f_{K2}(SW(f_{K1}(IP(plaintext)))))$

$$K_1 = P8(Shift(P10(key)))$$

$$K_2 = P8(Shift(Shift(P10(key))))$$

plaintext = $\text{IP}^{-1}\left(f_{K_1}\left(\text{SW}\left(f_{K_2}\left(\text{IP}\left(\text{ciphertext}\right)\right)\right)\right)\right)$

S-DES: Key Computation

	9
	8
	6
	_
0]	10
P10	4
	7
	2
	5
	3

Shift 1 (LS-1): Divide input to equal halves and perform a circular left shift (LS-1), or rotation, separately on the first five bits and the second five bits

Shift 2 (LS-2): We then go back to the pair of 5-bit strings produced by the two LS-1 functions and perform a circular left shift of 2 bit positions on each string

S-DES Encryption

	7
	2
	8
Ь	4
IP	1
	3
	9
	2

	9
	8
	2
-1	7
IP-1	5
	3
	П
	4

- The most complex component of S-DES is the function f_K, which consists of a combination of permutation and substitution functions.
- The functions can be expressed as follows: Let L and R be the leftmost 4 bits and rightmost 4 bits of the 8-bit input to $f_{\rm K}$

$$f_K(L, R) = (L \oplus F(R, SK), R)$$

where SK is a subkey and xor is the bit-by-bit exclusive-OR function. The F(R,SK) will execute in similar manner as for DES.

a row of the S-box, and the second and third input bits specify a The first and fourth input bits are treated as a 2-bit number that specify column of the S-box.

$$S0 = 1 \begin{bmatrix} 0 & 1 & 2 & 3 & 0 & 1 & 2 \\ 1 & 0 & 3 & 2 & 0 \\ 3 & 2 & 1 & 0 & 0 \end{bmatrix}$$

$$S1 = 1 \begin{bmatrix} 0 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 \\ 0 & 2 & 1 & 3 \\ 3 & 3 & 1 & 3 & 2 \end{bmatrix}$$

$$S1 = 1 \begin{bmatrix} 0 & 0 & 1 & 2 \\ 2 & 0 & 1 & 2 \\ 3 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

- The Switch Function the function f_K only alters the leftmost 4 bits right 4 bits so that the second instance of f_K operates on a different of the input. The switch function (SW) interchanges the left and 4 bits.
- In this second instance, the E/P, S0, S1, and P4 functions are the same. The key input is K2.

Key Generation

Key (10-bit):	H	0	H	0	0	0	0	0	H	0	Input
P10:	1	0	0	0	0	0	7	7	0	0	
Shift (1-Bit):	0	0	0	0	4	-	-	0	0	0	
	Key -1		P8:	H	0	1	0	0	1	0	0
Shift (2-Bit):	0	0	4	0	0	0	0	0	-	-	
	Key -2		P8:	0	4	0	0	0	0	1	1

$$K_2 = P8(Shift_2(Shift_1(P10(Key))))$$

9	
∞	
6	
1	
10	
4	
7	
2	
2	
8	
210:	

6	
10	
2	
∞	
4	
7	
က	
9	
P8:	

Encryption

The second	
×	
ai	
۳	
ס	

0	
1	
0	
0	
1	
1	
1	
0	

<u>Б</u>

0	1
1	0
0	0
0	1
1	0
1	1
1	0
0	1

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

<u>P</u>

7	
2	
∞	
4	
1	
3	
9	
2	

 IP^{-1} :

9	
8	
2	
7	
5	
3	
1	
4	

Plaintext:

<u>Б</u>

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $F_{k_i}(L,R) = (L \oplus P4(F(R,k_i)), R)$

<u>–</u>

~

 IP^{-1}

E/P:

 ∞

Ŋ

Ŋ

 ∞

Plaintext:

0

0

0

0

0

0

0

<u>--</u>

0

 $0 = 0 \oplus 0$

 $0 \oplus 1 = 1$

 $1 \oplus 0 = 1$

 $0 = 0 \oplus 0$ $1 \oplus 1 = 0$

 $0 \oplus 1 = 1$

 $1 \oplus 0 = 1$

 $1 \oplus 0 = 1$

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $F_{k_i}(L,R) = (L \oplus P4(F(R,k_i)), R)$

<u>Б</u>

9 ~ Ŋ

3

4

 IP^{-1}

2

 ∞

Ŋ

 ∞

4

 \blacksquare

3

9

E/P:

4

7

3

7

3

Plaintext:	0	1	4	1	0	0		0
<u>-</u>	-	0	-	0	4	0	0	1
S-Box I	——————————————————————————————————————	$1 \oplus 1 = 0$ $0 \oplus 0 = 0$ Row		$1 \oplus 0 = 1$ $0 \oplus 1 = 1$ Column		$0 \oplus 1 = 1$ $1 \oplus 0 = 1$ Column		$0 \oplus 0 = 0$ $1 \oplus 0 = 1$ Row

$$F_{k_1}(L,R) = (1010 \oplus 0111,1001) = (1101 1001)$$

1001 1101

SW:

0111

P4:

 $F(R, k_i) = 10 \, 11$

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

١.	
l	R)
	R
က	(k_i)
7	(F(R))
	P4
7) F
	\oplus

P4:

3	7	0	m	2
2	m	⊣	_	3
1	0	7	7	1
0	7	m	0	3
: 0	0	Н	7	က

3	က	m	0	3
2	7	⊣	⊣	0
1	Н	0	0	_
0	0	7	m	7
1:	0	Н	2	m
S				

-
4 8 1
_
_
_
4 6 7
4-1
_
_
- 1
_

0
1
0
0
1
1
-
0

SW:

0	1
1	0
0	1
0	1
1	1
1	0
1	0
0	1

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

<u>P</u>

7	
2	
∞	
4	
1	
3	
9	
2	

 IP^{-1} :

9	
8	
2	
7	
5	
3	
1	
4	
	-

Plaintext:

SW:

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $F_{k_i}(L,R) = (L \oplus P4(F(R,k_i)), R)$

<u>–</u>

~

Ŋ

 IP^{-1}

 ∞

Ŋ

 ∞

E/P:

Plaintext:

0

0

0

0

SW:

0 0

0

 $1 \oplus 1 = 0$

 $1 \oplus 0 = 1$

 $0 = 0 \oplus 0$

$$1 \oplus 0 = 1$$
$$1 \oplus 0 = 1$$

$$0 = 0 \oplus 0$$

$$1 \oplus 1 = 0$$

$$1 \oplus 1 = 0$$

 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $F_{k_i}(L,R) = (L \oplus P4(F(R,k_i)), R)$

<u>Б</u>

 \blacksquare 3 9 ~

Ŋ

 ∞

4

 IP^{-1}

4

Ŋ

3

9

 ∞

2

4

E/P:

7 4

7 3

Plaintext:		1	H	4	0	0	-	0
SW:	4	0	0	H	-	-	0	+
S-Box I		= 0 ⊕		1 🕀 1 =	0	(0 = 1	0	0 = 0

S-Box I
$$1 \oplus 0 = 1$$
 $1 \oplus 1 = 0$ $1 \oplus 0 = 1$

S-Box II $1 \oplus 0 = 1$ $0 \oplus 0 = 0$ $1 \oplus 1 = 0$

Row Column Column Column

 $1 \oplus 1 = 0$

Row

0111

$$F_{k_2}(L,R) = (1001 \oplus 0111,1101) = (11101101)$$

κ_{i}), κ	က
F (K)	4
⊕ r 4(2

P4:

3	7	0	m	7
2	က	⊣	⊣	m
T	0	7	7	\vdash
0	Н	m	0	m
: 0	0	1	2	က
			·	-

m	ĸ	m	0	æ
7	7	_	_	0
1	1	0	0	-
0	0	7	m	7
1.	0	H	2	က
S				

Plaintext:	0	1	1	1	0	0	1	
SW:	\vdash	0	0	1	-	1	0	

S-Box I
$$1 \oplus 0 = 1$$
 $1 \oplus 1 = 0$ $1 \oplus 0 = 1$ $0 \oplus 0 = 0$
S-Box II $1 \oplus 0 = 1$ $0 \oplus 0 = 0$ $1 \oplus 1 = 0$ $1 \oplus 1 = 0$
Row Column Column Row

$$F_{k_2}(L,R) = (1001 \oplus 0111,1101) = (1110 1101) \ | P^{-1} :$$

$$101) = (1110 \ 1101) \ | P^{-1}$$
: 01110111

0111

P4:

 $F(R,k_i)=10\,11$

$$Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$$

9
∞
2
7
5
m
1
4
P^{-1} :

0	1
H	0
0	1
0	1
H	1
H	0
H	0
0	1
Plaintext:	: MS

S-Box I
$$1 \oplus 0 = 1$$
 $1 \oplus 1 = 0$ $1 \oplus 0 = 1$ $0 \oplus 0 = 0$
S-Box II $1 \oplus 0 = 1$ $0 \oplus 0 = 0$ $1 \oplus 1 = 0$ $1 \oplus 1 = 0$
Row Column Column Row

$$F_{k_2}(L,R) = (1001 \oplus 0111,1101) = (1110 1101)$$
 IP^{-1} : 0111 0111

0111

P4:

 $F(R, k_i) = 10 \, 11$

Row

$$Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$$

9 ∞ ~ Ŋ 3 4

Decryption

0 0

<u>Б</u>

0 0 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

<u>Б</u>

Ŋ ∞ 4 3 9

 IP^{-1} :

9 ∞ ~ Ŋ \mathbf{c} 4

0 0

<u>Р</u>:

0 0

0

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

 $F_{k_i}(L,R) = (L \oplus P4\big(F(R,k_i)\big), R)$

<u>–</u>

Ŋ

 ∞

4

 IP^{-1}

4

3

4 3

7

4

E/P:

9

 ∞

2

Ŋ

3

0

0

<u>–</u>

0

0

 $1 \oplus 0 = 1$

 $0 = 0 \oplus 0$ $1 \oplus 1 = 0$

 $1 \oplus 0 = 1$

 $1 \oplus 1 = 0$ $1 \oplus 0 = 1$

 $1 \oplus 1 = 0$

 $0 = 0 \oplus 0$

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

 $F_{k_i}(L,R) = (L \oplus P4(F(R,k_i)), R)$

<u>Б</u>

3 9 ~ Ŋ

3

4

 IP^{-1}

2

 ∞

Ŋ

 ∞

4

7

9

E/P:

4

7

3

7

1	
1	
1	
0	
1	
1	
1	
0	
xt :	
Ciphertex	

0

S-Box I
$$1 \oplus 0 = 1$$
 $1 \oplus 1 = 0$
S-Box II $1 \oplus 0 = 1$ $0 \oplus 0 = 0$
Row Column

$$1 \oplus 0 = 1$$
 $0 \oplus 0 = 0$
 $1 \oplus 1 = 0$
 $1 \oplus 1 = 0$

Row

Column

$$F_{k_1}(L,R) = (1110 \oplus 0111,1101) = (1001 1101)$$

P4:

 $F(R, k_i) = 10 \, 11$

$$Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$$

	1
R)	
$\vec{r}_i)$	က
(E,R)	4
P4(F)	
, H	7

P4:

m	7	0	m	7
2	m	T	T	m
1	0	7	7	⊣
0	⊣	m	0	m
: 0	0	Н	2	ന
S				

	က			
	7			
	1			
0	0	7	m	7
<i>S</i> ₁ :	0	П	2	ന
S				

•	•
4	5
	<
(D
ŧ	2
7	D
7	3
C	

0 0

SW:

0 0 0 $Ciphertext = IP^{-1}(F_{k2}(SW(F_{k1}(IP(Plaintext)))))$

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

<u>Б</u>

Ŋ ∞ 4 3 9

 IP^{-1} :

9 ∞ ~ Ŋ \mathbf{c} 4

SW:

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

 $F_{k_i}(L,R) = (L \oplus P4\big(F(R,k_i)\big), R)$

<u>–</u>

~

 IP^{-1}

E/P:

 ∞

Ŋ

Ŋ

 ∞

0 0

0

0

0

SW:

 $0 \oplus 1 = 1$

 $0 = 0 \oplus 0$

 $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 1 = 0$ $0 = 0 \oplus 0$

 $1 \oplus 0 = 1$

 $1 \oplus 0 = 1$

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

 $F_{k_i}(L,R) = (L \oplus P4(F(R,k_i)), R)$

<u>Б</u>

Ŋ

 ∞

E/P: IP^{-1}

4

3 7 4

Ŋ

9

 ∞

2

7

3

3

Ciphertext:	0	-	1	1	0	1	1	1
SW:	1	1	0	1	1	0	0	1

S-Box I
$$1 \oplus 1 = 0$$
 $1 \oplus 0 = 1$ $0 \oplus 1 = 1$
S-Box II $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$
Row Column Column

 $0 = 0 \oplus 0$

 $1 \oplus 0 = 1$

Row

0111

$$F(R, k_i) = 10\,11$$
 P4: 01. $F_{k_2}(L, R) = (1101 \oplus 0111, 1001) = (1010\,1001)$

S_0 : 0 1 2	0 1 0 3 2	1 3 2 1 0	2 0 2 1 3	3 3 1 3 2
$F_{k_i}(L,R) =$	$L \oplus P4(F(R, k_i)), R)$		2 4 3 1	

P4:

m	m	m	0	m
7	7	7	1	0
1	П	0	0	⊣
0	0	7	m	7
	0	⊣	7	က
\vdash				
S				

τ
0
1
1
1
0
Ciphertext:

0

S-Box I
$$1 \oplus 1 = 0$$
 $1 \oplus 0 = 1$ $0 \oplus 1 = 1$ $0 \oplus 0 = 0$
S-Box II $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 0 = 1$
Row Column Column Row

$$F_{k_2}(L,R) = (1101 \oplus 0111,1001) = (1010 1001) \ | IP^{-1}:$$

0111 0010

0111

P4:

 $F(R,k_i)=10\,11$

$$ntoxt - ID^{-1}(E_{++}(CM/(E_{++}(ID(Cinhortoxt)))))$$

1	
1	
1	
0	
1	
1	
1	
0	
	ı
Ciphertext :	

0 0 SW:

0

 $0 = 0 \oplus 0$ $1 \oplus 0 = 1$ Row $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ Column $1 \oplus 0 = \mathbf{1}$ $0 \oplus 1 = 1$ Column $1 \oplus 1 = 0$ $0 = 0 \oplus 0$ Row S-Box II S-Box I

 $F_{k_2}(L,R) = (1101 \oplus 0111,1001) = (1010 1001)$

Plaintext

0111

P4:

 $F(R,k_i)=10\,11$

0111 0010

 $Plaintext = IP^{-1}(F_{k1}(SW(F_{k2}(IP(Ciphertext)))))$

9 ∞ ~ Ŋ 3 4

Examples

1	
0	
1	
0	
1	
0	
1	
П	
Plaintext:	

Plaintext:	н	1	0	4	0	4	0	1			
(ey (10-bit):	0	1	Н	1	0	Н	0	0	0	1	

Examples

	0
1	0
0	0
H	4
0	0
Н	
0	1
Н	
Н	0
Plaintext:	Kev (10-bit):

0

0

 \vdash

0

Ciphertext:

Thank You.