§ 13. Смешанное произведение векторов

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение смешанного произведения

Определение

Смешанным произведением векторов \vec{a} , \vec{b} и \vec{c} называется число, равное скалярному произведению векторного произведения векторов \vec{a} и \vec{b} на вектор \vec{c} . Смешанное произведение векторов \vec{a} , \vec{b} , \vec{c} обозначается через $\vec{a}\vec{b}\vec{c}$. Таким образом, $\vec{a}\vec{b}\vec{c}=(\vec{a}\times\vec{b})\vec{c}$.

 Как и в случае со скалярным произведением, результатом смешанного произведения является число. Поэтому смешанное произведение не является алгебраической операцией на множестве всех векторов в смысле определения, данного в § 4.

Критерий компланарности векторов

Первым утверждением, показывающим полезность понятия смешанного произведения, является следующий факт.

Критерий компланарности векторов

Векторы \vec{a} , \vec{b} и \vec{c} компланарны тогда и только тогда, когда их смешанное произведение равно нулю.

Доказательство. Необходимость. Предположим, что векторы \vec{a}, \vec{b} и \vec{c} компланарны. Если $\vec{a} \parallel \vec{b}$, то $\vec{a} \times \vec{b} = \vec{0}$, и потому $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \vec{c} = 0$. Пусть теперь $\vec{a} \not\parallel \vec{b}$. Отложим векторы \vec{a}, \vec{b} и \vec{c} от одной точки. Тогда они будут лежать в некоторой плоскости. Вектор $\vec{a} \times \vec{b}$ ортогонален этой плоскости, а значит, и вектору \vec{c} . Следовательно, $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \vec{c} = 0$.

Достаточность. Если $\vec{a} \parallel \vec{b}$, то компланарность векторов \vec{a}, \vec{b} и \vec{c} очевидна. Пусть теперь $\vec{a} \not \parallel \vec{b}$. Будем считать, что векторы $\vec{a}, \vec{b}, \vec{c}$ отложены от одной и той же точки. Пусть $\vec{a}\vec{b}\vec{c}=0$. Это означает, что $(\vec{a}\times\vec{b})\vec{c}=0$. Следовательно, вектор $\vec{a}\times\vec{b}$ ортогонален вектору \vec{c} . Но вектор $\vec{a}\times\vec{b}$ ортогонален плоскости σ , образованной векторами \vec{a} и \vec{b} . Поскольку \vec{c} ортогонален этому вектору, то он лежит в σ . А это означает, что векторы \vec{a}, \vec{b} и \vec{c} компланарны.

Геометрический смысл смешанного произведения (1)

Следующее утверждение указывает еще одно важное для приложений свойство смешанного произведения.

Геометрический смысл смешанного произведения

Объем параллелепипеда, построенного на трех некомпланарных векторах, равен модулю их смешанного произведения.

Доказательство. Предположим сначала, что тройка $(\vec{a}, \vec{b}, \vec{c})$ — правая. Дальнейшие рассуждения иллюстрирует рис. 1 на следующем слайде. Отложим векторы \vec{a}, \vec{b} и \vec{c} от некоторой точки O. Пусть точка C такова, что $\overrightarrow{OC} = \vec{c},$ а D — проекция точки C на плоскость векторов \vec{a} и \vec{b} , которую мы обозначим через π . Угол между вектором \vec{c} и плоскостью π обозначим через α , а угол между векторами $\vec{a} \times \vec{b}$ и \vec{c} — через β . Учитывая, что $\alpha + \beta = \frac{\pi}{2}$, и потому $\sin \alpha = \cos \beta$, и используя геометрический смысл векторного произведения (см. § 12), имеем

$$\begin{split} V &= \mathcal{S}_{\mathsf{OCH}} \cdot h = |\ \vec{a} \times \vec{b}\ | \cdot |CD| = |\ \vec{a} \times \vec{b}\ | \cdot |\ \vec{c}\ | \cdot \sin \alpha = \\ &= |\ \vec{a} \times \vec{b}\ | \cdot |\ \vec{c}\ | \cdot \cos \beta = (\ \vec{a} \times \vec{b}\)\vec{c} = \vec{a}\vec{b}\vec{c}. \end{split}$$

Предположим теперь, что тройка $(\vec{a}, \vec{b}, \vec{c})$ — левая. Тогда тройка $(\vec{b}, \vec{a}, \vec{c})$ — правая. Но эти две тройки определяют один и тот же параллелепипед. В силу доказанного выше объем этого параллелепипеда равен $\vec{b}\vec{a}\vec{c}$.

Геометрический смысл смешанного произведения (2)

Пользуясь свойствами векторного произведения, получаем, что

$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b})\vec{c} = (-(\vec{b} \times \vec{a}))\vec{c} = -((\vec{b} \times \vec{a})\vec{c}) = -\vec{b}\vec{a}\vec{c} = -V,$$

и потому $|\vec{a}\vec{b}\vec{c}\,|=|-V|=V$.

Рис. 1. Вычисление объема параллелипипеда

Ориентация тройки векторов и знак смешанного произведения

Из доказательства геометрического смысла смешанного произведения вытекает следующий факт, который объясняет, почему правая тройка векторов называется положительно ориентированной, а левая — отрицательно ориентированной.

Замечание об ориентации тройки векторов

Тройка векторов ($\vec{a}, \vec{b}, \vec{c}$) является правой тогда и только тогда, когда их смешанное произведение больше нуля, и левой тогда и только тогда, когда оно меньше нуля.

Свойства смешанного произведения

Перечислим теперь алгебраические свойства смешанного произведения векторов.

Свойства смешанного произведения

 \vec{c} Если \vec{d} — произвольные векторы, а t — произвольное число, то:

- 1) $\vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b} = -\vec{a}\vec{c}\vec{b} = -\vec{c}\vec{b}\vec{a} = -\vec{b}\vec{a}\vec{c};$
- 2) $(t\vec{a})\vec{b}\vec{c} = \vec{a}(t\vec{b})\vec{c} = \vec{a}\vec{b}(t\vec{c}) = t(\vec{a}\vec{b}\vec{c});$
- 3) $(\vec{a} + \vec{b})\vec{c}\vec{d} = \vec{a}\vec{c}\vec{d} + \vec{b}\vec{c}\vec{d}$ (смешанное произведение дистрибутивно относительно сложения векторов по первому аргументу);
- 4) $\vec{a}(\vec{b} + \vec{c})\vec{d} = \vec{a}\vec{b}\vec{d} + \vec{a}\vec{c}\vec{d}$ (смешанное произведение дистрибутивно относительно сложения векторов по второму аргументу);
- 5) $\vec{a}\vec{b}(\vec{c}+\vec{d})=\vec{a}\vec{b}\vec{c}+\vec{a}\vec{b}\vec{d}$ (смешанное произведение дистрибутивно относительно сложения векторов по третьему аргументу).

Доказательство свойств 1) и 2) смешанного произведения

Доказательство свойства 1). Упорядоченные тройки $(\vec{a}, \vec{b}, \vec{c})$ и $(\vec{b}, \vec{c}, \vec{a})$ имеют одну и ту же ориентацию и определяют один и тот же параллелепипед. В силу геометрического смысла смешанного произведения, смешанные произведения $\vec{a}\vec{b}\vec{c}$ и $\vec{b}\vec{c}\vec{a}$ либо оба равны объему этого параллелепипеда, взятому со знаком плюс, либо оба равны объему этого параллелепипеда, взятому со знаком минус, и потому $\vec{a}\vec{b}\vec{c}=\vec{b}\vec{c}\vec{a}$. Равенство $\vec{a}\vec{b}\vec{c}=-\vec{b}\vec{a}\vec{c}$ проверено в процессе доказательства геометрического смысла смешанного произведения. Остальные равенства из свойства 1) доказываются аналогично одному из этих двух.

Доказательство свойства 2). Используя свойство 3) скалярного произведения (см. $\S 11$), имеем

$$\vec{a}\vec{b}(t\vec{c}) = (\vec{a} \times \vec{b})(t\vec{c}) = t((\vec{a} \times \vec{b})\vec{c}) = t \cdot \vec{a}\vec{b}\vec{c}.$$

Таким образом, $\vec{a}\vec{b}(t\vec{c}\,)=t\cdot\vec{a}\vec{b}\vec{c}$. Используя это равенство и свойство 1) смешанного произведения, имеем

$$(t\vec{a})\vec{b}\vec{c} = \vec{b}\vec{c}(t\vec{a}) = t \cdot \vec{b}\vec{c}\vec{a} = t \cdot \vec{a}\vec{b}\vec{c}.$$

Таким образом, $(t\vec{a})\vec{b}\vec{c}=t\cdot\vec{a}\vec{b}\vec{c}$. Равенство $\vec{a}(t\vec{b})\vec{c}=t\cdot\vec{a}\vec{b}\vec{c}$ проверяется аналогично предыдущему.

Доказательство свойств 3)-5) смешанного произведения

Используя свойство 2) скалярного произведения (см. § 11), имеем

$$\vec{a}\vec{b}(\vec{c}+\vec{d}) = (\vec{a}\times\vec{b})(\vec{c}+\vec{d}) = (\vec{a}\times\vec{b})\vec{c} + (\vec{a}\times\vec{b})\vec{d} = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{b}\vec{d}.$$

Свойство 5) доказано.

Используя свойства 1) и 5) смешанного произведения, имеем

$$(\vec{a} + \vec{b})\vec{c}\vec{d} = \vec{c}\vec{d}(\vec{a} + \vec{b}) = \vec{c}\vec{d}\vec{a} + \vec{c}\vec{d}\vec{b} = \vec{a}\vec{c}\vec{d} + \vec{b}\vec{c}\vec{d}.$$

Свойство 3) доказано. Свойство 4) доказывается аналогично.

Доказательство свойства 2) векторного произведения

Свойство, указанное в заголовке слайда, было сформулировано в § 12, но не было там доказано. Оно состоит в том, что если \vec{a} и \vec{b} — произвольные векторы, а t — произвольное число, то $(t\vec{a}) \times \vec{b} = \vec{a} \times (t\vec{b}) = t(\vec{a} \times \vec{b})$. Пусть \vec{x} — произвольный вектор. Используя свойство 2) смешанного произведения и свойство 3) скалярного произведения (см. § 11), имеем

$$((t\vec{a})\times\vec{b})\vec{x}=(t\vec{a})\vec{b}\vec{x}=t\cdot\vec{a}\vec{b}\vec{x}=t\cdot((\vec{a}\times\vec{b})\vec{x})=(t(\vec{a}\times\vec{b}))\vec{x}.$$

Таким образом, $((t\vec{a}) \times \vec{b})\vec{x} = (t(\vec{a} \times \vec{b}))\vec{x}$ для всякого вектора \vec{x} . В силу ослабленного закона сокращения для скалярного произведения (см. § 11), имеем $(t\vec{a}) \times \vec{b} = t(\vec{a} \times \vec{b})$. Аналогично проверяется, что $\vec{a} \times (t\vec{b}) = t(\vec{a} \times \vec{b})$. Свойство 2) векторного произведения доказано.

Доказательство свойства 3) векторного произведения

Как и в предыдущем случае, свойство, указанное в заголовке слайда, было сформулировано в § 12, но не было там доказано. Оно состоит в том, что если \vec{a}, \vec{b} и \vec{c} — произвольные векторы, то $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$. Пусть \vec{x} — произвольный вектор. Используя свойство 3) смешанного произведения и свойство 2) скалярного произведения (см. § 11), имеем

$$((\vec{a} + \vec{b}) \times \vec{c})\vec{x} = (\vec{a} + \vec{b})\vec{c}\vec{x} = \vec{a}\vec{c}\vec{x} + \vec{b}\vec{c}\vec{x} =$$

$$= (\vec{a} \times \vec{c})\vec{x} + (\vec{b} \times \vec{c})\vec{x} = (\vec{a} \times \vec{c} + \vec{b} \times \vec{c})\vec{x}.$$

Итак, $((\vec{a}+\vec{b})\times\vec{c})\vec{x}=(\vec{a}\times\vec{c}+\vec{b}\times\vec{c})\vec{x}$ для всякого вектора \vec{x} . Используя ослабленный закон сокращения для скалярного произведения (см. § 11), имеем $(\vec{a}+\vec{b})\times\vec{c}=\vec{a}\times\vec{c}+\vec{b}\times\vec{c}$. Свойство 3) векторного произведения доказано.

Вычисление смешанного произведения в координатах (в произвольном базисе)

Пусть векторы $\vec{b}_1, \vec{b}_2, \vec{b}_3$ образуют базис пространства, а (x_1, x_2, x_3) , (y_1, y_2, y_3) и (z_1, z_2, z_3) — координаты векторов \vec{x} , \vec{y} и \vec{z} соответственно в этом базисе. Из критерия компланарности векторов вытекает, что если два из трех векторов равны, то смешанное произведение этих трех векторов равно нулю. Используя этот факт, получаем равенства

$$\begin{aligned} \vec{x}\vec{y}\vec{z} &= (x_1\vec{b}_1 + x_2\vec{b}_2 + x_3\vec{b}_3)(y_1\vec{b}_1 + y_2\vec{b}_2 + y_3\vec{b}_3)(z_1\vec{b}_1 + z_2\vec{b}_2 + z_3\vec{b}_3) = \\ &= (x_1y_2z_3) \cdot \vec{b}_1\vec{b}_2\vec{b}_3 + (x_1y_3z_2) \cdot \vec{b}_1\vec{b}_3\vec{b}_2 + (x_2y_1z_3) \cdot \vec{b}_2\vec{b}_1\vec{b}_3 + \\ &+ (x_2y_3z_1) \cdot \vec{b}_2\vec{b}_3\vec{b}_1 + (x_3y_1z_2) \cdot \vec{b}_3\vec{b}_1\vec{b}_2 + (x_3y_2z_1) \cdot \vec{b}_3\vec{b}_2\vec{b}_1. \end{aligned}$$

Используя свойство 1) смешанного произведения, последнее выражение можно переписать в виде

$$(x_1y_2z_3 + x_2y_3z_1 + x_3y_1z_2 - x_1y_3z_2 - x_2y_1z_3 - x_3y_2z_1) \cdot \vec{b}_1\vec{b}_2\vec{b}_3.$$

Выражение, стоящее в скобках, есть не что иное, как определитель квадратной матрицы 3-го порядка, в которой по строкам записаны координаты векторов \vec{x} , \vec{y} и \vec{z} . Следовательно,

$$\vec{x}\vec{y}\vec{z} = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \cdot \vec{b}_1 \vec{b}_2 \vec{b}_3. \tag{1}$$

Критерий компланарности векторов на языке координат

В отличие от ситуации со скалярным и векторным произведением, равенство (1) дает достаточно простую и легко запоминаемую формулу, связывающую смешанное произведение векторов с их координатами в произвольном базисе. Но и в этом случае мы не можем вычислить смешанное произведение, не зная смешанного произведении базисных векторов. Справедливо, однако, следующее полезное утверждение.

Замечание о координатах компланарных векторов

Пусть (x_1,x_2,x_3) , (y_1,y_2,y_3) и (z_1,z_2,z_3) — координаты векторов \vec{x} , \vec{y} и \vec{z} соответственно в некотором (произвольном) базисе. Векторы \vec{x} , \vec{y} и \vec{z} компланарны тогда и только тогда, когда

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0.$$
 (2)

Доказательство. Пусть $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$ — базис, о котором идет речь в формулировке замечания. Из определения базиса и критерия компланарности векторов вытекает, что $\vec{b}_1\vec{b}_2\vec{b}_3 \neq 0$. Учитывая формулу (1), получаем, что $\vec{x}\vec{y}\vec{z}=0$ тогда и только тогда, когда выполнено равенство (2). Остается еще раз сослаться на критерий компланарности векторов.

Вычисление смешанного произведения в координатах (в правом ортонормированном базисе)

Если базис ($\vec{b}_1,\vec{b}_2,\vec{b}_3$) является правым ортонормированным, то $\vec{b}_1 imes \vec{b}_2 = \vec{b}_3$ (см. формулы (1) в § 12), и потому

$$\vec{b}_1\vec{b}_2\vec{b}_3 = (\vec{b}_1 \times \vec{b}_2)\vec{b}_3 = \vec{b}_3\vec{b}_3 = |\vec{b}_3|^2 = 1.$$

Поэтому в данном случае формула (1) принимает совсем простой вид:

$$(\vec{x}, \vec{y}, \vec{z}) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}.$$
 (3)

Приложения смешанного произведения

Пусть (x_1,x_2,x_3) , (y_1,y_2,y_3) и (z_1,z_2,z_3) — координаты векторов \vec{x} , \vec{y} и \vec{z} соответственно в некотором правом ортонормированном базисе. Используя смешанное произведение, можно

1) вычислить объем параллелепипеда, построенного на векторах \vec{x} , \vec{y} и \vec{z} : в силу (3) и геометрического смысла смешанного произведения верно равенство

$$V = \text{mod} \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$
 (4)

(в этой формуле символ mod имеет тот же смысл, что и в формуле (6) из $\S 12$);

- 2) определить ориентацию тройки векторов $(\vec{x}, \vec{y}, \vec{z})$: из (3) и замечания об ориентации тройки векторов вытекает, что тройка $(\vec{x}, \vec{y}, \vec{z})$
 - положительно ориентирована тогда и только тогда, когда

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} > 0,$$

• отрицательно ориентирована тогда и только тогда, когда

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} < 0.$$