Logarithmic pooling of probability distributions: advances and prospects.¹

Luiz Max F. de Carvalho [Imax.procc@gmail.com], Daniel Villela, Flávio

School of Applied Mathematics, Getúlio Vargas Foundation (FGV), Rio de Janeiro, Brazil.

Presented at the School of Mathematics and Statistics, the Open University, UK.

May 25, 2021

¹This talk is available on-line at https://github.com/maxbiostat/opinion_pooling/blob/master/presentations/open_university_2021/lmcarvalho_OpenUni_2021.pdf

- Part I: paper.
 - Review and problem statement;
 - Hierarchical modelling of the weights;
 - ♦ Examples + Discussion.
- Part II: avenues of research.
 - ⋄ Transformations;
 - Connection with other theories (Bayesian predictive synthesis, BPS);
 - ♦ Practical challenges.

Let $F_{\theta} = \{f_0(\theta), f_1(\theta), \dots, f_K(\theta)\}$ be the set of prior distributions representing the opinions of K+1 experts and let $\alpha = \{\alpha_0, \alpha_1, \dots, \alpha_K\}$ be the vector of weights, such that $\alpha_i > 0 \ \forall i$ and $\sum_{i=0}^K \alpha_i = 1$. Then the log-pooled prior is

$$\mathcal{LP}(\mathsf{F}_{ heta}, oldsymbol{lpha}) := \pi(oldsymbol{ heta} \mid oldsymbol{lpha}) = t(oldsymbol{lpha}) \prod_{i=0}^K f_i(oldsymbol{ heta})^{lpha_i},$$
 (1)

where the normalising term $t(\alpha) = \int_{\Theta} \prod_{i=0}^{\kappa} f_i(\theta)^{\alpha_i} d\theta$ is guaranteed to exist for all proper f_i . We simplify the proof given by Genest et al. (1986) by using Hölder's inequality. This operator enjoys a number of desirable properties such as external Bayesianity (Genest et al., 1986), relative propensity consistency (Genest et al., 1984) and log-concavity (Carvalho et al., 2021).

Property 1

External Bayesianity (Genest et al., 1984). Combining the set of posteriors $p_i(\theta \mid x) \propto l(x \mid \theta) f_i(\theta)$ yields the same distribution as combining the densities f_i to obtain a prior $\pi(\theta)$ and then combine it with $l(x \mid \theta)$ to obtain a posterior $p(\theta \mid x) \propto l(x \mid \theta)\pi(\theta)$.

Property 2

Log-concavity (Carvalho et al., 2021). Let F_{θ} be a set of log-concave distributions, i.e., each f_i can be written as $f_i(\theta) \propto e^{\nu_i(\theta)}$, where $\nu_i(\cdot)$ is a concave function. Then $\pi(\theta \mid \alpha)$ is also log-concave. Moreover, LP is the **only** operator that **always** preserves log-concavity.

Property 3

Relative propensity consistency (Genest et al., 1984). Taking \mathbf{F}_X as a set of expert opinions with support on a space \mathcal{X} , define $\boldsymbol{\xi} = \{\mathbf{F}_X, a, b\}$ for arbitrary $a, b \in \mathcal{X}$. Let \mathcal{T} be a pooling operator and define two functions U and V such that

$$U(\xi) := \left(\frac{f_0(a)}{f_0(b)}, \frac{f_1(a)}{f_1(b)}, \dots, \frac{f_K(a)}{f_K(b)}\right) \text{ and}$$
 (2)

$$V(\xi) := \frac{\mathcal{T}_{F_X}(a)}{\mathcal{T}_{F_X}(b)}.$$
 (3)

We then say that $\mathcal T$ enjoys relative propensity consistency (RPC) if and only if

$$U(\xi_1) \ge U(\xi_2) \implies V(\xi_1) \ge V(\xi_2),$$
 (4)

for all ξ_1, ξ_2 .

• All of these properties, especially 1 and 3 are unique to logarithmic pooling.

• In theory, the weights should reflect the *reliabilities* of the experts/information sources;

- In theory, the weights should reflect the reliabilities of the experts/information sources;
- In practice, reliabilities are hard to determine;

- In theory, the weights should reflect the reliabilities of the experts/information sources;
- In practice, reliabilities are hard to determine;
- As we will see, combining probability distributions in particular can lead to counterintuitive results.

- In theory, the weights should reflect the reliabilities of the experts/information sources;
- In practice, reliabilities are hard to determine;
- As we will see, combining probability distributions in particular can lead to counterintuitive results.

Here we will consider three ways of constructing the weights "objectively":

 \rightarrow Maximise the entropy of π ;

- In theory, the weights should reflect the reliabilities of the experts/information sources;
- In practice, reliabilities are hard to determine;
- As we will see, combining probability distributions in particular can lead to counterintuitive results.

Here we will consider three ways of constructing the weights "objectively":

- \rightarrow Maximise the entropy of π ;
- \rightarrow Minimise the Kullback-Leibler divergence between π and each f_i ;

- In theory, the weights should reflect the reliabilities of the experts/information sources;
- In practice, reliabilities are hard to determine;
- As we will see, combining probability distributions in particular can lead to counterintuitive results.

Here we will consider three ways of constructing the weights "objectively":

- \rightarrow Maximise the entropy of π ;
- \rightarrow Minimise the Kullback-Leibler divergence between π and each f_i ;
- → Place a probability measure over $A \subset [0,1]^{K+1}$.

ullet If there is no information about the reliabilities of the experts one might want to construct lpha so as to maximise entropy of the resulting distribution:

$$H_{\pi}(\theta) = -\int_{\Theta} \pi(\theta) \ln \pi(\theta) d\theta$$
 $H_{\pi}(\theta; \alpha) = -\sum_{i=0}^{K} \alpha_i E_{\pi}[\log f_i] - \log t(\alpha).$

ullet Formally, we want to find \hat{lpha} such that

$$\hat{oldsymbol{lpha}} := \operatorname{arg\,max} H_{\pi}(heta;oldsymbol{lpha})$$

• Caveats: (i) is not guaranteed to yield an unique solution; (ii) is rather prone to yield "degenerate" (trivial) solutions.

- What if we want to minimise conflict between the consensus and each individual opinion?
- Let $d_i = \mathsf{KL}(f_i||\pi)$ and let $L(\alpha)$ be a loss function such that

$$egin{aligned} L(oldsymbol{lpha}) &= \sum_{i=0}^K d_i \ &= -(K+1)\log t(oldsymbol{lpha}) - (K+1)\sum_{i=0}^K lpha_i \mathbb{E}_i [\log f_i] + \sum_{i=0}^K \mathbb{E}_i \left[\log f_i
ight], \ &\hat{oldsymbol{lpha}} := rg \min L(oldsymbol{lpha}) \end{aligned}$$

• Contrary to the maximum entropy problem, the loss function is convex, thus there is a unique solution (Rufo et al., 2012).

- An appealing alternative is to place a (hyper) prior on the weights (α) ;
- Two approaches
 - (a) Dirichlet prior:

$$\pi_{A}(\boldsymbol{\alpha} \mid \boldsymbol{X}) = \frac{1}{\mathcal{B}(\boldsymbol{X})} \prod_{i=0}^{K} \alpha_{i}^{\mathsf{x}_{i}-1}.$$

(b) logistic-normal:

$$\begin{split} & \pi_{A}(\alpha \mid \mu, \Sigma) = \frac{1}{|2\pi\Sigma|^{\frac{1}{2}}} \frac{1}{\prod_{i=0}^{K} \alpha_{i}} \exp\left(\left(\eta - \mu\right)^{T} \Sigma^{-1} \left(\eta - \mu\right)\right), \\ & \eta := \log\left(\frac{\alpha_{-K}}{\alpha_{K}}\right). \end{split}$$

- Advantage: accomodates uncertainty in natural way, and is very flexible;
- Caveat(s): may yield inconsistent results and hardly ever allows for analytical solutions for the marginal prior $g(\theta) = \int_A \pi(\theta \mid \alpha) d\Pi_A$.

 Match the first two moments of the Logistic-normal to the Dirichlet (Aitchison and Shen, 1980):

$$\mu_{i} = \psi(x_{i}) - \psi(x_{K}), \quad i = 0, 1, ..., K - 1,$$
 $\Sigma_{ii} = \psi'(x_{i}) + \psi'(x_{K}), \quad i = 0, 1, ..., K - 1,$
 $\Sigma_{ij} = \psi'(x_{K}),$

where $\psi(\cdot)$ is the digamma function, and $\psi'(\cdot)$ is the trigamma function.

- Exploit a non-centering trick to sample from the logistic normal via Cholesky decomposition of Σ ;
- We explore two sets of hyperparameters: $\mathbf{X} = \{1, 1, \dots, 1\}$ and $\mathbf{X}' = \mathbf{X}/10$ ("flexible" henceforth);

- Savchuk and Martz (1994) consider an example in which four experts are required supply prior information about the survival probability of a certain unit for which there have been y = 9 successes out of n = 10 trials;
- $Y \sim Bernoulli(\theta)$ and

$$f_i(\theta; a_i, b_i) = \frac{\Gamma(a_i + b_i)}{\Gamma(a_i b_i)} \theta^{a_i - 1} (1 - \theta)^{b_i - 1}$$

- Allows for simple expressions for the entropy and KL divergence $\pi(\theta \mid \alpha)$ is also Beta and efficient sampling from the hyperpriors;
- For this example, we can evaluate performance using integrated (marginal) likelihoods, a.k.a., prior evidence.

Method	α_{0}	α_1	α_2	α_3
Maximum entropy	0.00	0.00	0.00	1.00
Minimum KL divergence	0.04	0.96	0.00	0.00
Rufo et al. (2012)	0.00	0.00	0.00	1.00
Dirichlet prior	0.26	0.24	0.27	0.23
Logistic-normal prior	0.27	0.24	0.31	0.18

Expert priors		Pooled priors	
Expert 0	0.237	Equal weights	0.254
Expert 1	0.211	Maximum entropy	0.163
Expert 2	0.256	Minimum KL	0.223
Expert 3	0.163	Hierarchical prior (Dirichlet/logistic-normal)	0.255

Setup: Five experts elicit Beta priors on a quantity p. Data will be x/n=5/10. Only expert 2 (let's call her Mãe Diná) gives a reasonable prior with mean $\mu_2=0.50$ and coefficient of variation c_2 .

• Let $c_2 = 0.2$ and $c_j = 0.1$ for all $j \neq 2$, with $\mu = \{0.1, 0.2, 0.5, 0.8, 0.9\}$;

- Let $c_2 = 0.2$ and $c_j = 0.1$ for all $j \neq 2$, with $\mu = \{0.1, 0.2, 0.5, 0.8, 0.9\}$;
- • This setup leads to ${\it a}=\{89.9,79.8,12.0,19.2,9.1\}$ and ${\it b}=\{809.1,319.2,12.0,4.8,1.01\};$

- Let $c_2 = 0.2$ and $c_j = 0.1$ for all $j \neq 2$, with $\mu = \{0.1, 0.2, 0.5, 0.8, 0.9\}$;
- This setup leads to $\mathbf{a} = \{89.9, 79.8, 12.0, 19.2, 9.1\}$ and $\mathbf{b} = \{809.1, 319.2, 12.0, 4.8, 1.01\};$
- If the data are x = 5 and n = 10, computing marginal likelihoods and normalising would lead to weights $\alpha'' = \{0.006, 0.095, 0.710, 0.142, 0.048\}$;

- Let $c_2 = 0.2$ and $c_j = 0.1$ for all $j \neq 2$, with $\mu = \{0.1, 0.2, 0.5, 0.8, 0.9\}$;
- This setup leads to $\mathbf{a} = \{89.9, 79.8, 12.0, 19.2, 9.1\}$ and $\mathbf{b} = \{809.1, 319.2, 12.0, 4.8, 1.01\};$
- If the data are x=5 and n=10, computing marginal likelihoods and normalising would lead to weights $\alpha''=\{0.006,0.095,0.710,0.142,0.048\}$;
- However, by calculating $a^{\star\star} = \sum_{i=0}^K \alpha_i'' a_i = 19.75$ and $b^{\star\star} = \sum_{i=0}^K \alpha_i'' b_i = 44.00$, we obtain a pooled prior with $\mathbb{E}_{\pi}[p] = 0.31$, far off the "optimal" 1/2;

- Let $c_2 = 0.2$ and $c_j = 0.1$ for all $j \neq 2$, with $\mu = \{0.1, 0.2, 0.5, 0.8, 0.9\}$;
- This setup leads to $\mathbf{a} = \{89.9, 79.8, 12.0, 19.2, 9.1\}$ and $\mathbf{b} = \{809.1, 319.2, 12.0, 4.8, 1.01\};$
- If the data are x=5 and n=10, computing marginal likelihoods and normalising would lead to weights $\alpha''=\{0.006,0.095,0.710,0.142,0.048\}$;
- However, by calculating $a^{\star\star} = \sum_{i=0}^K \alpha_i'' a_i = 19.75$ and $b^{\star\star} = \sum_{i=0}^K \alpha_i'' b_i = 44.00$, we obtain a pooled prior with $\mathbb{E}_{\pi}[p] = 0.31$, far off the "optimal" 1/2;
- If the data were, say, x = 50, n = 100, then one would obtain a pooled prior for which $\mathbb{E}_{\pi}[p] = 0.51$.

- Let $c_2 = 0.2$ and $c_j = 0.1$ for all $j \neq 2$, with $\mu = \{0.1, 0.2, 0.5, 0.8, 0.9\}$;
- This setup leads to $\mathbf{a} = \{89.9, 79.8, 12.0, 19.2, 9.1\}$ and $\mathbf{b} = \{809.1, 319.2, 12.0, 4.8, 1.01\};$
- If the data are x=5 and n=10, computing marginal likelihoods and normalising would lead to weights $\alpha'' = \{0.006, 0.095, 0.710, 0.142, 0.048\}$;
- However, by calculating $a^{\star\star} = \sum_{i=0}^K \alpha_i'' a_i = 19.75$ and $b^{\star\star} = \sum_{i=0}^K \alpha_i'' b_i = 44.00$, we obtain a pooled prior with $\mathbb{E}_{\pi}[p] = 0.31$, far off the "optimal" 1/2;
- If the data were, say, x = 50, n = 100, then one would obtain a pooled prior for which $\mathbb{E}_{\pi}[p] = 0.51$.
- Now let $c_2 = 0.001$. Then $a_2 = b_2 = 4999999.5$. Can you see the problem?

Bayesian melding

Suppose we have deterministic model M with inputs $\theta \in \Theta \subseteq \mathbb{R}^p$ and outputs $\phi \in \Phi \subseteq \mathbb{R}^q$, such that $\phi = M(\theta)$. We have the combined prior on the outputs:

$$\tilde{q}_{\Phi}(\phi) \propto q_1^*(\phi)^{\alpha} q_2(\phi)^{1-\alpha},$$
 (5)

where $q_1^*()$ is the **induced** and q_2 is "natural" prior on ϕ . The prior in (5) can then be inverted to obtain a *coherised* prior on θ , $\tilde{q}_{\Theta}(\theta)$. Standard Bayesian inference may then follow, leading to the posterior

$$p_{\Theta}(\theta \mid \mathbf{y}, \alpha) \propto \tilde{q}_{\Theta}(\theta) L_1(\theta) L_2(M(\theta)) \pi_A(\alpha).$$
 (6)

In 1978, 512 out of 763 lads got came down with the flu. We model the spread using a standard SIR model

$$\begin{array}{ll} \frac{dS}{dt} & = & -\beta SI, \\ \frac{dI}{dt} & = & \beta SI - \gamma I, \\ \frac{dR}{dt} & = & \gamma I, \end{array}$$

where $S(t) + I(t) + R(t) = N \, \forall t$, β is the transmission (infection) rate and γ is the recovery rate. The basic reproductive number is

$$R_0 = \frac{\beta N}{\gamma}. (7)$$

We choose $\beta, \gamma \sim \text{log-normal}(0,1)$ (q_1) and $R_0 \sim \text{log-normal}(\mu_2, \sigma_2)$ (q_2) such that R_0 has a mean of 1.5 and a standard deviation of 0.25 (q_2) which is informed by seasonal flu.

Posterior for α : **0.77** (0.18–0.99).

• Optimality criteria often give weird results;

- Optimality criteria often give weird results;
- It is possible to learn about the weights from data, for some configurations of the opinions F_X (and the data y);

- Optimality criteria often give weird results;
- It is possible to learn about the weights from data, for some configurations of the opinions F_X (and the data y);
- Interpretation of the weights is not always straightforward;

- Optimality criteria often give weird results;
- It is possible to learn about the weights from data, for some configurations of the opinions F_X (and the data y);
- Interpretation of the weights is not always straightforward;
- \bullet In Bayesian melding, letting the pooling weight α vary can protect against prior misspecification.

Part II: "Cool. What else?"

→ If we apply $M(\cdot)$ to each component of F_{θ} , we get a set induced distributions G_{ϕ} , which are then pooled to get $\pi_{P}(\phi)$ [induce-then-pool];

- → If we apply $M(\cdot)$ to each component of F_{θ} , we get a set induced distributions G_{ϕ} , which are then pooled to get $\pi_{P}(\phi)$ [induce-then-pool];
- → Alternatively, we can combine the $f_i(\theta)$ to obtain $\pi_T(\theta)$ and then transform to get a distribution $\pi'_P(\phi)$ [pool-then-induce];

- → If we apply $M(\cdot)$ to each component of F_{θ} , we get a set induced distributions G_{ϕ} , which are then pooled to get $\pi_{P}(\phi)$ [induce-then-pool];
- → Alternatively, we can combine the $f_i(\theta)$ to obtain $\pi_T(\theta)$ and then transform to get a distribution $\pi'_P(\phi)$ [pool-then-induce];
- **Remark:** if $M(\cdot)$ is invertible, $\pi_P(\phi) \equiv \pi_P'(\phi)$.

- → If we apply $M(\cdot)$ to each component of F_{θ} , we get a set induced distributions G_{ϕ} , which are then pooled to get $\pi_{P}(\phi)$ [induce-then-pool];
- → Alternatively, we can combine the $f_i(\theta)$ to obtain $\pi_T(\theta)$ and then transform to get a distribution $\pi'_P(\phi)$ [pool-then-induce];
 - Remark: if $M(\cdot)$ is invertible, $\pi_P(\phi) \equiv \pi_P'(\phi)$.
- When *M* is non-invertible, things get complicated, as we shall see.

Recall that $\theta = \{\beta, \gamma\}$ and $M(\theta) = R_0$. Suppose $p(\beta, \gamma) = p(\beta)p(\gamma)$.

Useful result:

If $\beta \sim \mathsf{Gamma}(k_{\beta}, t_{\beta})$ and $\gamma \sim \mathsf{Gamma}(k_{\gamma}, t_{\gamma})$, then

$$f_{R_0}(r \mid k_\beta, t_\beta, k_\gamma, t_\gamma, N) = \frac{(Nt_\beta t_\gamma)^{k_1 + k_2}}{\mathcal{B}(k_\beta, k_\gamma)(Nt_\beta)^{k_\beta} t_\gamma^{k_\gamma}} R_0^{k_\beta - 1} (t_\gamma R_0 + Nt_\beta)^{-(k_\beta + k_\gamma)}$$

where $\mathcal{B}(a,b) = \Gamma(a+b)/\Gamma(a)\Gamma(b)$ is the Beta function.

Pool:

$$\pi(\beta) = \textit{Gamma}(t_1^*, k_1^*)$$

$$\pi(\gamma) = \textit{Gamma}(t_2^*, k_2^*)$$
 where $t^* = \sum_{i=0}^K \alpha_i t_i$ and $k^* = \sum_{i=0}^K \alpha_i k_i$. Then

• Induce:

$$\pi(R_0) \propto R_0^{k_1-1} (t_2^* R_0 + N t_1^*)^{-(k_1^* + k_2^*)}$$

• Nice!

• Induce (transform) each distribution (Gamma ratio):

$$g_i(R_0) \propto R_0^{k_1-1} (t_2 R_0 + N t_1)^{-(k_1+k_2)}$$

then

Pool:

$$\pi'(R_0) \propto \prod_{i=0}^K g_i(R_0)^{\alpha_i}$$

Ugly!

Question: can we derive a formal, measure-theoretical framework to further our understanding?

0.25

0.20

Density 0.15

0.10

0.05

0.00

R₀

10

15

Pooled distributions

Remark 1

It is possible to have $\pi_{\Phi} \equiv \pi'_{\Phi}$ even when M is not invertible.

Proof.

By an explict example. Let $\theta \sim \text{normal}(0, \sigma^2)$ and let $M(\theta) = \theta^2$. If we define $\Omega(\phi) := \{x : M(x) = \phi\}$ then clearly $\Omega(\phi) = \{\omega_0, \omega_1\} = \{-\sqrt{\phi}, \sqrt{\phi}\}$ and hence

$$\begin{split} g_i(\phi) &= \frac{f_i(\omega_0)}{|2\omega_0|} + \frac{f_i(\omega_1)}{|2\omega_1|}, \\ &= \frac{f_i(\sqrt{\phi})}{\sqrt{\phi}} = \frac{1}{\sqrt{2\pi v_i \phi}} \exp\left(-\frac{\phi}{2v_i}\right), \end{split}$$

where the second line follows by using the symmetry of f_i around zero. Rest of the proof follows analogously to the arguments in Carvalho et al. (2021) for the pool of Gaussians.

Bayesian predictive synthesis (BPS) is a general framework for combining models/forecasts (see McAlinn et al. (2018)). Take $\mathcal{H} = \{h_1, \ldots, h_J\}$ a set of densities on Y and write:

$$\pi(y \mid \mathcal{H}) = \int \alpha(y \mid \mathbf{X}) \prod_{j=1}^{J} h_j(x_j) dx_j.$$

Taking $\alpha(y \mid \mathbf{X}) = \sum_{j=1}^J w_j \delta_{x_j}(y)$, for instance, recovers the usual Bayesian model averaging (BMA): $\pi(y \mid \mathcal{H}) = \sum_{j=1}^J w_j h_j(y)$.

Remark 2 (BPS recovers LP in a toy example)

Assume that

- A_1 : the h_i are Normal densities with parameters m_i and v_i ;
- A_2 : the parameters m_i and v_i do not depend on any x_i $i \neq j$.

Then BPS recovers the Normal pool if we pick

$$\alpha(y \mid \mathbf{x}) = \prod_{j=1}^{J} g_j(y \mid x_j), \tag{8}$$

with

$$g_j(y \mid x_j) = \frac{1}{\sqrt{2\pi (1/w_j - 1) v_j}} \exp\left(-\frac{(y - x_j)^2}{2 (1/w_j - 1) v_j}\right).$$

Question: can we find a general solution that does **not** depend on \mathcal{H} ?

Suppose one has fitted K models to a set of data and thus obtained M samples for each of the K posterior predictive distributions. One is only able to evaluate the unnormalised posterior densities $f_i^*(\tilde{x} \mid x)$ and the Z_i are unknown. We want to sample from

$$\pi(\tilde{x} \mid x, \alpha) = t(\alpha) \prod_{i=1}^{K} f_i(\tilde{x} \mid x)^{\alpha_i},$$

using an $M \times K$ matrix of samples

$$egin{aligned} ilde{m{X}} &= ilde{X}_1^{(1)}, \dots, ilde{X}_1^{(M)} \ & ilde{X}_2^{(1)}, \dots, ilde{X}_2^{(M)} \ & ilde{arphi} \ & ilde{arphi} \ & ilde{m{X}}_{
u}^{(1)}, \dots, ilde{m{X}}_{
u}^{(M)} \end{aligned}$$

and a fixed vector of weights α .

Question: can we devise an (efficient!) importance sampling scheme to re-use the samples?

 au_h : Log-linear mixtures have many desirable properties;

 au_h : Log-linear mixtures have many desirable properties;

 au_h : It is possible to learn the weights from data, under certain constraints;

- au_h : Log-linear mixtures have many desirable properties;
- $au_{\it h}$: It is possible to learn the weights from data, under certain constraints;
- au_h : Letting the weights vary can lead to more flexible prior modelling and better posterior inferences;

- au_h : Log-linear mixtures have many desirable properties;
- au_h : It is possible to learn the weights from data, under certain constraints;
- au_h : Letting the weights vary can lead to more flexible prior modelling and better posterior inferences;
- au_h : Further work on both theory and methods is needed in order to make logarithmic pooling widely applicable in Statistics.

- Thank you very much for your attention!
- The authors would like to thank Professors Adrian Raftery (Washington) and Mike West (Duke) for helpful suggestions. DAMV was supported in part by Capes under Capes/Cofecub project (N. 833/15). FCC is grateful to Fundação Getulio Vargas for funding during this project.
- All the necessary code and data are publicly available at https://github.com/maxbiostat/opinion_pooling

- Aitchison, J. and Shen, S. M. (1980). Logistic-normal distributions: Some properties and uses. *Biometrika*, 67(2):261–272.
- Carvalho, L. M., Villela, D. V., Coelho, F. C., and Bastos, L. S. (2021). Combining probability distributions: Extending the logarithmic pooling approach. Submitted.
- Genest, C., McConway, K. J., and Schervish, M. J. (1986). Characterization of externally bayesian pooling operators. The Annals of Statistics, pages 487–501.
- Genest, C., Weerahandi, S., and Zidek, J. V. (1984). Aggregating opinions through logarithmic pooling. *Theory and Decision*, 17(1):61–70.
- McAlinn, K., Aastveit, K. A., and West, M. (2018). Bayesian predictive synthesis—discussion of: Using stacking to average bayesian predictive distributions, by y. yao et al. *Bayesian Analysis*, 13:971–973.
- Rufo, M., Martin, J., Pérez, C., et al. (2012). Log-linear pool to combine prior distributions: A suggestion for a calibration-based approach. *Bayesian Analysis*, 7(2):411–438.
- Savchuk, V. P. and Martz, H. F. (1994). Bayes reliability estimation using multiple sources of prior information: binomial sampling. *Reliability, IEEE Transactions* on, 43(1):138–144.