

EEL7045 – CIRCUITOS ELÉTRICOS A ROTEIRO PARA AULA DE LABORATÓRIO

ANÁLISE DE CIRCUITOS DE PRIMEIRA ORDEM

A – ANÁLISE DE CIRCUITO RC

1. INTRODUÇÃO

Tipicamente, um capacitor é constituído por duas placas condutoras separadas por um material isolante. O comportamento do capacitor se baseia em fenômenos associados ao campo elétrico produzido pela separação de cargas elétricas, ou seja, à tensão. A conexão série entre um capacitor e um resistor origina um sistema de primeira ordem, cuja evolução das tensões e correntes se estabelece exponencialmente. No presente ensaio objetiva-se obter as curvas que caracterizam o comportamento do circuito RC, bem como medir a constante de tempo do circuito experimentalmente e diferenciar os conceitos de regime permanente e regime transitório.

2. EQUACIONAMENTO DO CIRCUITO RC

Sabendo-se que a carga armazenada em um capacitor é proporcional à diferença de potencial (q = Cv) e que por definição i = dq / dt, a relação tensão corrente em um capacitor passa a ser definida por:

$$i_c = C \frac{dv_c}{dt}$$

Nessa equação, i_c [A] representa a corrente que atravessa o capacitor, v_c [V] a tensão aplicada a seus terminais, C [F] a capacitância e t [s], o tempo.

Para avaliar o comportamento de um circuito RC, aplica-se um degrau de tensão Eu(t) em sua entrada, conforme ilustra a Figura 1. Logo, para a condição inicial $v_c(0) = 0 \text{ V}$, escreve-se:

Figura 1: Degrau aplicado no circuito RC.

$$\frac{dv_c(t)}{dt} + \frac{v_c(t)}{RC} = \frac{E}{RC}, \quad \text{para } t > 0$$

$$v_c(t) = E\left(1 - e^{-\frac{t}{\tau}}\right), \quad \text{para } t > 0$$

$$i(t) = \frac{E}{R}e^{-\frac{t}{\tau}}, \quad \text{para } t > 0$$

$$\tau = RC$$

3. PARTE EXPERIMENTAL

Passo 1: monte o circuito apresentado na Figura 2.

Figura 2: Circuito RC a ser experimentado.

Passo 2: selecione a onda quadrada no gerador de sinal e, com o auxílio do osciloscópio digital, ajuste a amplitude E para 5 V, aplicando *offset* de forma que o nível baixo da onda quadrada esteja em 0 V, conforme a Figura 3.

Figura 3: Forma de onda a ser aplicada na entrada do circuito.

Passo 3: ajuste a frequência f_S do gerador, a partir em 1 kHz, tal que o capacitor tenha alcançado regime permanente em $T_S/2$, para logo após iniciar o processo de descarga.

Verifique se o resultado encontrado coincide com o apresentado na Figura 3. Meça T_S e anote as escalas utilizadas.

Figura 4: Ajuste da tensão do capacitor.

Passo 4: determine o valor da constante de tempo experimentalmente. Utilize o recurso "cursor" do osciloscópio para essa finalidade. Para minimizar o erro de leitura utilize a maior área possível da tela do osciloscópio.

4. ANÁLISE DOS RESULTADOS

- Meça o valor de R com o ohmímetro digital e determine C (medida indireta). Compare os valores medidos de τ , R e C com seus respectivos valores nominais;
- Comente a relação entre o tempo para que o sistema entre em regime permanente e a constante de tempo τ;
- ➤ Apresente as formas de onda da tensão aplicada ao capacitor e da corrente que o atravessa. Use a queda de tensão sobre o resistor como imagem da corrente no circuito;
- > Salve as formas de onda e as inclua no relatório.

FOLHA DE DADOS (ALUNO)

Aula:/_	<u></u>
Nome:	Assinatura:
Nome:	Assinatura:

Tabela 1 – Circuito de primeira ordem RC.

R	\boldsymbol{C}	τ	τ	R	\boldsymbol{C}	Tempo para
(nominal)	(nominal)	(calculado)	(medido)	(medido)	(calculado)	entrar em RP

É importante sempre anotar a escala e o erro associado a cada medida.

FOLHA DE DADOS (PROFESSOR)

Aula:	Data:/		
Nome:		Assinatura:	
Nome:		Assinatura:	

Tabela 2 – Circuito de primeira ordem RC.

R (nominal)	C (nominal)	τ (obelialea)	τ (medido)			Tempo para entrar em RP
(nommar)	(nommar)	(carculauo)	(mediao)	(medido)	(carculauo)	chtrar chi Ki

É importante sempre anotar a escala e o erro associado a cada medida.

B – ANÁLISE DE CIRCUITO RL

1. INTRODUÇÃO

O indutor é um elemento capaz de armazenar energia no campo magnético que o circunda. Basicamente, é um fio condutor enrolado na forma de espiras que se opõe a variações instantâneas da corrente que o atravessa, a fim de manter seu campo magnético constante. A conexão série entre um indutor e um resistor origina um sistema de primeira ordem, cuja evolução das tensões e correntes se estabelece exponencialmente. No presente ensaio objetiva-se obter as curvas que caracterizam o comportamento do circuito RL, bem como medir a constante de tempo do circuito experimentalmente e diferenciar os conceitos de regime permanente e regime transitório.

5. Equacionamento do CirCUITO rl

Sabendo-se que o fluxo magnético ϕ [Wb] oriundo de um indutor percorrido por uma corrente i [A] \acute{e} proporcional à indutância L [H] e inversamente proporcional ao número de espiras $N\left(\phi = \frac{Li}{N}\right)$ e que a tensão v_L [V] induzida em um indutor dada por $v_L = N\frac{d\phi}{dt}$, encontra-se:

$$v_L = L \frac{di_L}{dt}$$

Para avaliar o comportamento de um circuito RL, aplica-se um degrau de tensão Eu(t) em sua entrada, conforme ilustra a Figura 1. Logo, para a condição inicial $i_L(0) = 0$ A, escreve-se:

Figura 5: Degrau aplicado no circuito RL.

$$\begin{split} \frac{di_L}{dt} + \frac{R}{L}i_L &= \frac{E}{L}, \quad \text{para } t > 0 \\ i_L &= \frac{E}{R} \Big(1 - e^{-t/\tau} \Big), \quad \text{para } t > 0 \\ v_L &= E e^{-t/\tau}, \quad \text{para } t > 0 \\ \tau &= \frac{L}{R} \end{split}$$

2. PARTE EXPERIMENTAL

PASSO1: MONTE O CIRCUITO APRESENTADO NA FIGURA 6.

Figura 6: Circuito proposto para realização do ensaio.

Passo2: selecione a onda quadrada no gerador de sinal e, com o auxílio do osciloscópio digital, ajuste a amplitude *E* para 5 V, aplicando *offset* de forma que o nível baixo da onda quadrada esteja em 0 V, conforme a Figura 3.

Figura 7: Forma de onda a ser aplicada na entrada do circuito.

PASSO 3: AJUSTE A FREQUÊNCIA F_S DO GERADOR DE TAL MODO QUE A TENSÃO SOBRE O INDUTOR SE ANULE EXATAMENTE EM T/2, CONFORME ILUSTRA A FIGURA 4.

Figura 8: Ajuste da tensão do indutor.

Passo 4: determine o valor da constante de tempo experimentalmente. Utilize o recurso "cursor" do osciloscópio para essa finalidade. Para minimizar o erro de leitura utilize a maior área possível da tela do osciloscópio.

3. ANÁLISE DOS RESULTADOS

- Meça o valor de R com o ohmímetro digital e determine L (medida indireta). Compare os valores medidos de τ , R e C com seus respectivos valores nominais;
- Comente a relação entre o tempo para que o sistema entre em regime permanente e a constante de tempo τ;
- Apresente as formas de onda da tensão aplicada ao indutor e da corrente que o atravessa. Use a queda de tensão sobre o resistor como imagem da corrente no circuito;
- > Salve as formas de onda e as inclua no relatório.

4. FOLHA DE DADOS (ALUNO)

Aula:	Data:/		
Nome:		Assinatura:	
Nome:		Assinatura:	

Tabela 3 – Circuito de primeira ordem RL.

R (nominal)	L (nominal)	τ (calculado)	τ (medido)		Tempo para entrar em RP

5. FOLHA DE DADOS (PROFESSOR)

Aula:	Data:/		
Nome:		Assinatura:	
Nome:		Assinatura:	

Tabela 4 – Circuito de primeira ordem RL.

\boldsymbol{R}	L	τ	τ	\boldsymbol{R}	L	Tempo para
(nominal)	(nominal)	(calculado)	(medido)	(medido)	(calculado)	entrar em RP