《密码学原理》作业 2 答案

- 敌方可以向 MAC Oracle 提交一个查询 m,从而得到相应的(t₀, t)。显然有 Vrfyk(m,t₀, t)=1。然后,任意选择一个 m₁'≠m₁,并且选择 t₀'使得 t₀'⊕ m₁'= t₀⊕m₁。而 m₂', m₃', ……, m₁'都分别与 m₂, m₃, ……, m₁相同, t₁'=tړ。因此, m'≠m 但 Vrfyk(m', t₀', t₁')= Vrfyk(m, t₀, t)=1。
- 2. 对于第 i 轮, 我们有 L_i=R_{i-1}, R_i=L_{i-1} 。 因此, 当 r 为奇数时, L_r=R₀, R_r=L₀; 当 r 为偶数时, L_r=L₀, R_r=R₀。
- 3. 对于第 i 轮,我们有 L_i=R_{i-1}, R_i=L_{i-1}⊕R_{i-1}。所以,L_{i+1}=R_i=L_{i-1}⊕R_{i-1}, R_{i+1}=L_i⊕R_i= R_{i-1}
 ⊕L_{i-1}⊕R_{i-1}= L_{i-1}。进一步,我们得到 L_{i+2}=R_{i+1}= L_{i-1}, R_{i+2}=L_{i+1}⊕R_{i+1}= L_{i-1}⊕R_{i-1}⊕L_{i-1}= R_{i-1}。
 所以,该网络每 3 轮循环一次。当 r 是 3 的倍数时,输出就等于输入。
- 4. 助教准备一个密钥和一个 plain. txt 文件,抽查若干名同学,核对他们加密后生成的 encrypted. txt 是否正确。
- 5. 敌方可以向 MAC Oracle 提交两个查询 m 和 m',从而得到相应的(t₁, t₂, …, t៧)和 (t₁', t₂', …, t៧')。显然有 Vrfyk(m, t₁, t₂, …, t៧)=1 和 Vrfyk(m', t₁', t₂', …, t៧')=1。取 n₂使得 n₂⊕t₁= m₂'⊕t₁',并且令 n=(m₁, n₂, m₃', m₄', …m /'), v=(t₁, t₂', t₃', …, t៧')。显然 n 不等于 m 和 m',并且不难验证 Vrfyk(n, v)=1。