选择题(本大题共12题,每小题3分,共36分)

- **1.** 设集合 $M = \{x | x > 0\}$,则下列选项正确的是().
 - A. $0 \in M$
- $\mathsf{B.}\ \{1\}\in M$
- C. $2 \notin M$
- $\mathsf{D.}\ \{1\}\subseteq M$
- **2.** 已知集合A到B的映射 $f: x \rightarrow y = 2x^2 + 1$,则A中元素2在B中的象是().
 - A. 7

B. 8

C. 9

D. 10

- **3.** 集合{1,2,3} 的子集的个数为().
 - A. 5

B. 6

C. 7

D. 8

- **4.** 下列函数中,与函数 $y=x(x\geqslant 0)$ 有相同图象的一个是().
 - A. $y = \sqrt{x^2}$
- B. $y = (\sqrt{x})^2$
- C. $y = \sqrt[3]{x^3}$
- D. $y = \frac{x^2}{x}$

5. 下列四个图形中,不是以x为自变量的函数的图象是().

В.

 \mathcal{C}

D.

- **6.** 函数 $f(x) = \frac{\lg(x+3)}{x}$ 的定义域是().
 - A. $(-3,0)\cup(0,+\infty)$

B. $[-3,0) \cup (0,+\infty)$

C. $(-3, +\infty)$

- D. $[-3, +\infty)$
- **7.** 给定函数① $y=\sqrt{x}$,② $y=\log_{\frac{1}{2}}(x+1)$,③ $y=x^2-4x+1$,④ $y=2^x-1$,其中在区间(0,1)上单调递减的函数序号是() .
 - A. 13

B. ③

C. 23

D. 14

8. 已知f(x)是定义在 $[-2,0)\cup(0,2]$ 上的奇函数, 当x>0时, f(x)的图象如右图所示, 那么f(x)的值域是()

A. [-3,3]

B. [-2,2]

C. $[-3, -2) \cup (2, 3]$

D. $(-3, -2] \cup [2, 3)$

9. 下列大小关系正确的是().

A.
$$0.4^2 < 3^{0.4} < \log_4 0.3$$

B.
$$\log_4 0.3 < 0.4^2 < 3^{0.4}$$

$$\mathsf{C.} \ \ 0.4^2 < \log_4 \! 0.3 < 3^{0.4}$$

D.
$$\log_4 0.3 < 3^{0.4} < 0.4^2$$

10. 设 $f(x) = -5x^3 + 2x + 1$,则在下列区间中使函数f(x)有零点的区间是() .

A.
$$[-2,1]$$

B.
$$[-1,0]$$

C.
$$[0,1]$$

D.
$$[1, 2]$$

11. 已知函数 f(x) = (x-a)(x-b) (其中a > b),若 f(x) 的图象如右图所示,则函数 $g(x) = a^x + b$ 的图象是().

Α.

В.

C.

D.

12. 定义域为R的偶函数 f(x)在 $[0,+\infty)$ 为减函数,当不等式 $f(a)-f(a^2)<0$ 成立时,实数a的取值范围是().

A.
$$a < -1$$
 或 $a > 0$

B.
$$-1 < a < 0$$
 或 $0 < a < 1$

填空题(每题共8小题,每小题3分)

- **13.** 函数 $f(x) = \frac{1}{x+2} (x > 1)$ 的值域为 ______.
- **14.** 已知幂函数 $y=x^a(a\in\mathbf{R})$ 的图象经过点(2,8) ,则f(-2)= ______ .
- **15.** 已知函数 $f(x) = \left\{ egin{aligned} x^2+1, x \leqslant 0 \\ -2x, x > 0 \end{aligned} \right.$,若f(a) = 10 ,则a的值是 ______ .
- **16.** $\left(\frac{1}{36}\right)^{-\frac{1}{2}} + \lg 4 + \lg 25$ 的值是 _____.
- **17.** 若函数 $f(x) = x^2 2ax + 1$ 在区间 $[1, +\infty)$ 上单调递增,则a的取值范围是 ______.
- **18.** 已知函数 $f(x) = a^{x+1} 2$ (a > 0且 $a \neq 1$) 恒过定点P, 那么点P的坐标为 ______ .
- **19.** 已知函数 $y = \log_3 x$ 的图象上有两点 $A(x_1, y_1)$, $B(x_2, y_2)$, 且线段AB的中点在x轴上,则 $x_1 \cdot x_2 =$ ______.
- 20. 下列几个命题:
 - ①若方程 $x^2 + (a-3)x + a = 0$ 有一个正实根 , 一个负实根 , 则a < 0 ;
 - ②对定义域内任意两个变量 x_1 , x_2 , 都有 $\dfrac{f(x_1)-f(x_2)}{x_1-x_2}>0$, 则f(x)在定义域内是减函数 ;
 - ③方程 $x^2 2 + \log_2 x = 0$ 在(1,2)内只有一个实根;
 - ④若函数f(x)的定义域为[1,3],则 $f(\ln x)$ 的定义域为 $[e,e^3]$;

其中正确命题的序号有 _____.

解答题:共5题,共40分

- **21.** 设全集为R,集合 $A = \{x | 7 \le x < 7\}$, $B = \{x | (x-2)(x-10) < 0\}$.
 - (1) 求集合A∪B.
 - (2) 求 $(C_{\mathbf{R}}A) \cap B$.
- **22.** 已知 $f(x) = -x^2 + 6x 8$.
 - (1) 若 $x \in [1,4]$, 求f(x)的值域.
 - (2) 若当 $x \in [1,2]$ 时, f(x)的图象均在直线y = a的下方, 求实数a的取值范围.
- **23.** 已知函数 $f(x) = x \frac{1}{x}$.

- (1) 判断f(x)的奇偶性.
- (2) 证明f(x)在 $(0,+\infty)$ 上是增函数.
- **24.** 为了预防H1N1等流感,某学校对教室用过氧乙酸熏蒸进行消毒,已知药物在释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比,药物释放完毕后,y与t的函数关系式为 $y=\left(\frac{1}{16}\right)^{t-a}$ (a为常数),如右图所示.

- (1) 从药物释放开始,写出y与t的函数关系式.
- (2)据测定,当教室空气中的含药量降低到每立方米0.25毫克以下时,学生可进教室,问这次消毒多久后学生才能 回到教室.
- (3) 若空气中每立方米的含药量不少于0.5毫克,且连续16分钟时,才有消毒效果,根据所得函数模型,问这样消毒是否达到预期的效果.
- **25.** 对于区间,若函数y=f(x)同时满足:①f(x)在[a,b]上是单调函数;②函数y=f(x) , $x\in [a,b]$ 的值域是[a,b] ,则称区间 [a,b]为函数f(x)的 "保值" 区间 .
 - (1) 求函数 $y = x^2$ 的所有"保值"区间.
 - (2) 函数 $y=x^2+m(m\neq 0)$ 是否存在"保值区间"?若存在,求出m的取值范围,若不存在,说明理由.