CONTROLE DIGITAL - SEL0620

Tarefa 4 e 5 - Controle Proporcional

Hugo Hiroyuki Nakamura NUSP: 12732037 Isaac Santos Soares NUSP: 12751713

1. Implemente no Simulink um sistema de realimentação unitária contínuo para um controlador proporcional C(s) = Kp = 1. A Figura 2 representa o diagrama do Simulink para a malha de controle contínua. Além dos blocos utilizados na prática anterior, utilize os blocos Sum, Saturation, e Gain, que podem ser encontrados na sub-categoria de blocos chamada Commonly Used Blocks.

Figura 1: diagrama do sistema de realimentação unitária contínuo no Simulink para $K_p = 1$.

2. Implemente no Simulink um sistema de realimentação unitária discreta para um controlador proporcional C(z)=Kp=1. A Figura 3 representa o diagrama do Simulink para a malha de controle discreta. Mantenha a planta como uma função de transferência contínua, mas discretize a saída utilizando um bloco Zero Order Holder. Como o controlador é apenas um ganho, então não é necessário utilizar o bloco de Zero Order Holder novamente na entrada da planta.

Figura 2: diagrama do sistema de realimentação unitária discreta no Simulink para $K_p = 1$.

3. Defina o período de amostragem T_0 do bloco Zero Order Holder. Verifique se o mesmo período de amostragem utilizado em malha aberta na experiência anterior pode ser utilizado na malha fechada. Para isso, compare qualitativamente a saída da malha fechada contínua com a da malha fechada discreta. Se preciso, altere o valor de T_0 para a malha fechada. Explique sua escolha por manter ou alterar o valor de T_0 .

O período de amostragem T_0 foi de 0,951 [s]. Esse valor está em conformidade com o Teorema da Amostragem de Nyquist, garantindo que a discretização do sinal de resposta seja adequada. Qualitativamente, a discretização do sinal de resposta mostrou-se satisfatória, conforme ilustrado na figura 3a.

4. Mostre as curvas de resposta do sistema.

Figura 3: curvas de resposta do sistema

(c) entrada da planta contínua e discreta do sistema.

5. Qual o erro absoluto em regime permanente do sistema antes de ser aplicado o distúrbio? Qual o erro absoluto em regime permanente após o distúrbio ser aplicado? Em porcentagem, qual o valor de cada um dos erros em regime permanente (antes e após o distúrbio) em relação ao degrau de referência?

O erro absoluto em regime permanente antes e após a aplicação do distúrbio pode ser medido diretamente da Figura 3b, em ambos os regimes permanente antes e depois de 15 [s]. Os valores foram coletados e reunidos na Tabela 1.

Tabela 1: valores de erro antes e depois da aplicação do distúrbio

Tipo	Degrau	$\mathbf{e_{ss}}$	${ m e_{ss}(\%)}$
Sem distúrbio	1,25	0,625	50,0
Com distúrbio	1,20	0,700	56,0

6. Mostre o Lugar das Raízes do sistema contínuo de malha fechada controlado por um controle proporcional. Para isso, utilize o comando rlocus, no qual o argumento é a função de transferência de malha aberta para $K_p = 1$:

Figura 4: lugar das raízes para G(s)

7. Para quais valores de K_p o sistema é estável?

Seja G_{MF} o ganho de malha fechada do sistema

$$G_{MF} = \frac{1,092K_p}{s^2 + 2,113s + 1,092(K_p + 1)}.$$

Os polos do sistema são, respectivamente

$$p = -1,057 \pm \sqrt{0,024 - 1,092K_p}.$$

O único caso em que o sistema será instável é na presença de um polo no semiplano lateral direito, ou seja:

$$-1,057 + \sqrt{0,024 - 1,092K_p} > 0$$
$$K_p < -1,001$$

Dessa forma, como o ganho é sempre positivo, o sistema em malha fechada é estável para qualquer valor de $K_p > 0$.

8. Mostre o diagrama de Bode do sistema contínuo de malha aberta para $K_p = 1$, e as margens de ganho e fase. Para isso, utilize a seguinte sequência de comandos:

figure
bode(G)
margin(G)

Figura 5: diagrama de bode para G e suas margens de ganho e fase.

9. Quais as margens de ganho e de fase do sistema? O que se pode concluir sobre a estabilidade do sistema para $K_p = 1$?

As margens de ganho e de fase são, respectivamente, ∞ e 180°. A margem de ganho infinita e a margem de fase positiva indicam que o sistema é estável.

10. O comando do Matlab chamado feedback pode ser usado para obter a função de transferência de malha fechada do sistema. Desconsiderando o distúrbio, e considerando que no workspace do Matlab já foram definidas a função de transferência contínua da planta G, a função de transferência discreta da planta Gz (encontrada com o valor de To definido para esta prática, se diferente da prática anterior), o ganho do controlador proporcional Kp, e a amplitude do degrau r, obtenha a função de transferência de malha fechada do sistema contínuo e do sistema discreto utilizando a seguinte sequência de comandos:

Gmf = feedback(K_p*G , 1) Gmfz = feedback(K_p*Gz , 1) 11. Quais os polos e zeros das funções de transferência de malha fechada contínua e discreta (desconsiderando o distúrbio)?

Tabela 2: tabela de polos e zeros para as funções contínuas e discretas.

Tipo	Gmf	Gmfz
Polos	-1.057 + 1.033i	0.240 + 0.458i
	-1.057 - 1.033i	0.240 + 0.458i
Zeros	-	-0.511

12. Desconsiderando o distúrbio, plote a saída do sistema de malha fechada contínuo a uma entrada degrau de amplitude r. Sobreponha a saída contínua à saída do sistema de malha fechada discreto. Utilize a seguinte sequência de comandos do Matlab, considerando que a função de transferência de malha fechada contínua Gmf, a função de transferência discreta de malha fechada Gmfz, e a amplitude do degrau r já foram definidas:

Acrescente título e legenda para completar a figura.

Figura 6: respostas contínua e discreta para o sistema de malha fechada

13. Qual o tempo de acomodação (t_s) da resposta do sistema discreto considerando o critério de $\pm 2\%$? Qual o tempo de subida (t_r) da resposta do sistema discreto? Para encontrar esse valor, clique com o botão direito

do mouse no gráfico mostrado pelo MATLAB como resposta ao comando step. Então, selecione Characteristics e depois Settling Time (t_s) e Rise Time (t_r) .

Tabela 3: tempo de acomodação e subida do sistema discreto.

Parâmetro	Valor [s]
Tempo de acomodação (t_s)	5,77
Tempo de subida (t_r)	1,47

14. Considere agora os seguintes casos: $K_p=5$ e $K_p=8$. Mostre as curvas de resposta do sistema para as simulações utilizando cada um dos valores de K_p .

Figura 7: respostas do sistema para $K_p = 5$.

Figura 8: respostas do sistema para $K_p = 8$.

15. Verifique se é possível utilizar o período de amostragem T_0 definido para ganho $K_p = 1$ para estes casos ($K_p = 5$ e $K_p = 8$). Explique.

Utilizando o comando bandwidth(Gmf), pode-se encontrar a largura de banda da função de transferência contínua de malha fechada para os três valores de K_p . Os resultados estão na Tabela 4.

Tabela 4: largura de banda e período de amostragem de Gmf para valores de K_p .

$\mathbf{K}_{\mathbf{p}}$	Largura de Banda [rad/s]	T ₀ máximo [s]	T ₀ escolhido [s]
1	1,460	2,152	0,430
5	3,486	0,901	0,180
8	4,472	0,703	0,141

Observa-se que quanto maior for o valor de K_p , maior é a largura de banda do sistema. Dependendo do novo valor, o teorema da amostragem pode não ser mais satisfeito e ocasionar sobreposição de sinal. Por esse motivo, utilizar o mesmo $T_0 = 0.951$ [s] para o sistema com K_p maior resulta em uma dissimilaridade do sinal discreto com o sinal contínuo, como é possível visualizar nas Figuras 7 e 8. Dessa forma, a Tabela 4 propõe um novo valor para T_0 , de modo que o critério de Nyquist para amostragem seja atingido.

Refazendo as curvas de resposta do sistema com o novo período de amostragem escolhido, obtivemos os seguintes resultados:

Figura 9: respostas do sistema para $K_p=5$ com $T_0=0,180$ [s].

Figura 10: respostas do sistema para $K_p = 8$ com $T_0 = 0.141$ [s].

17. Para cada valor de K_p : Qual o erro absoluto em regime permanente do sistema antes de ser aplicado o distúrbio? Qual o erro absoluto em regime permanente após o distúrbio ser aplicado? Em porcentagem, qual o valor de cada um dos erros em regime permanente (antes e após o distúrbio)?

Tabela 5: valores de erro antes e depois da aplicação do distúrbio para diferentes K_p .

K _p Degrau		Sem distúrbio		Com distúrbio	
1xp	K _p Degrau	e_{ss}	$e_{ss}(\%)$	e_{ss}	$e_{ss}(\%)$
1		0,625	50,00	0,700	56,00
5	1,25	0,208	16,64	0,234	18,72
8		0,139	11,12	0,156	12,48

18. Comente sobre o efeito do aumento do ganho proporcional no valor do erro em regime permanente.

Segundo a Tabela 5, observa-se que o aumento do ganho K_p reduz o valor do erro, no geral, e, também, diminui o impacto do distúrbio no erro. Isso evidencia que o aumento de K_p torna o sistema mais estável.

19. Comente se houve saturação na entrada da planta.

Para os valores $K_p = 1$ e $K_p = 5$, não houve saturação na entrada da planta, o que pode ser visto nas Figuras 3c e 9c. Entretanto, para o caso $K_p = 8$, observase, através da Figura 10c, que o sinal discreto está limitado a 10 [V], indicando saturação na entrada da planta.

20. Comente sobre o efeito do aumento do ganho proporcional no valor do tempo de subida e de acomodação (2%) antes do distúrbio.

A Tabela 6 apresenta o tempo de acomodação e subida para o sistema de malha fechada, sem a presença de distúrbios, aplicando três valores K_p diferentes.

Tabela 6: tempos de acomodação e subida do sistema, sem distúrbio, para diferentes K_p .

K_p	Tempo de acomodação [s]	Tempo de subida [s]	
1	4,02	1,470	
5	3,28	0,581	
8	3,53	0,439	

É perceptível que o aumento de K_p resulta na diminuição do tempo de subida do sistema. Entretanto, o tempo de acomodação não mantém a mesma linearidade decrescente: ele começa a crescer novamente depois de $K_p = 5$.

21. Encontre o valor de K_p necessário para que o erro de regime permanente (antes do distúrbio) seja igual a ess% (ver Tabela 1), dado em porcentagem do valor de r. Por exemplo, se ess% = 10% e r = 1V, então o valor absoluto do erro deve ser 0.1.

O valor de erro de regime permanente deve ser $e_{ss}(\%) = 14, 5$. O cálculo do erro absoluto é o da Equação 1.

$$e_{ss} = \frac{e_{ss}(\%)}{100} \cdot R = \frac{R}{1 + K_p}$$

$$0,145 = \frac{1}{1 + K_p}$$

$$K_p = \frac{1}{0,145} - 1$$

$$K_p = 5,987$$
(1)

Dessa forma, $K_p = 5,987$ (Equação 2) deve gerar um erro de 0,1812 (14,5%).

22. Mostre as curvas de resposta do sistema para as simulações utilizando cada um dos valores de K_p .

Figura 11: respostas do sistema para $K_p = 5,987$.

23. Verifique se é possível utilizar o período de amostragem T_0 definido para ganho $K_p = 1$ para este caso. Explique.

Através da Figura 11, é possível ver que o sinal discretizado não representa corretamente o sinal contínuo. Como explicado anteriormente, o aumento de K_p resulta num aumento de largura de banda, que por sua vez, pode resultar na sobreposição do sinal, ao não atender o *Teorema da Amostragem*.

Para o valor $K_p = 5,987$, a largura de banda do sistema passa a ser $\omega_s = 3,807$ [rad/s]. Dessa forma, o novo período de amostragem, deve ser menor que $T_0 = 0,825$ [s].

Utilizando o período de amostragem $T_0=0,165~[\mathrm{s}],$ obtivemos as seguintes respostas do sitema:

Figura 12: respostas do sistema para $K_p=5,987$ com $T_0=0,165$ [s].

24. Qual o tempo de subida da resposta do sistema de malha fechada antes do distúrbio? Qual o tempo de acomodação do sistema de malha fechada (critério de 2%) antes do distúrbio?

Tabela 7: tempo de acomodação e subida do sistema para $K_p=5,987.$

Parâmetro	Valor [s]
Tempo de acomodação (t_s)	3,060
Tempo de subida (t_r)	0,484