CONVOLUTION

Convolution of Discrete-time (DT) signals

Any DT signal can be constructed using a sequence of DT unit impulses.

Figure 1: Decomposition of a DT signal x[n] into a weighted sum of shifted impulses.

Figure 1 shows that a DT signal x[n] can be decomposed into;

$$x[n] = \dots + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + x[3]\delta[n-3] + \dots = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k].$$

This corresponds to a representation of an arbitrary sequence as a linear combination of shifted impulses $\delta[n-k]$ with amplitudes or weights of x[n]. Since $\delta[n-k]$ is non-zero

only when n = k, $\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$ sifts through the sequence x[n] and preserves only

the value when n = k. This property is therefore known as the *sifting property* of DT unit impulse.

We have shown that a DT signal x[n] can be represented as a superposition of scaled versions of shifted impulse $\partial[n-k]$. We shall now show that it is possible to compute the LTI system response to any input if the impulse response is known. Let the impulse response of a LTI system be h[n].

1

We have

$$\begin{array}{ccc} & & & & & \\ \underline{n} & & & & \\ \delta[n] & & \rightarrow & h[n] & \text{(definition)}, \\ \delta[n-k] & & \rightarrow & h[n-k] & \text{(time shifting)}, \\ x[k]\delta[n-k] & & \rightarrow & x[k]h[n-k] & \text{(homogeneity)}, \\ x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \rightarrow \sum_{k=-\infty}^{\infty} x[k]h[n-k] & \text{(additivity)}. \end{array}$$

Thus, the response of the LTI system to an input x[k] is

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k].$$

This result is referred to as the *convolution sum* and the operation on the right hand side is called the *discrete convolution* of the sequences x[n] and h[n], which is usually represented symbolically as

$$y[n] = x[n] * h[n].$$

Example:

Consider an LTI system with impulse response h[n] and input x[n], as illustrated in figure 2.

Figure 2: Input x[n] and impulse response of an LTI system h[n].

The procedures to compute y[n] are:

- 1. Replace the variable *n* with *k*.
- 2. Flipping h[k] with respect to k = 0 to obtain h[-k].
- 3. Shifting h[-k] to n to give h[n-k].
- 4. Multiply h[n-k] and x[k] for all k.
- 5. Summing all non-zero product of h[n-k]x[k] to yield y[n].

The procedures can be outlined in a table form as:

<u>- r</u>									
	k	-2	-1	0	1	2	3	4	$\Sigma h[n-k]x[k]$
	x[k]	0	0	1	1	1	0	0	
	h[k]	0	0	2	1	0.5	0	0	
n = 0	h[-k]								
n = 1	h[1-k]								
n = 2	h[2-k]								
n = 3	h[3-k]								
n = 4	h[4-k]								

y[n] = x[n] * h[n] is sketched in figure 3

Figure 3: Computed output y[n].

We can also perform this discreet time convolution graphically.

Step 1

Figure 4: Replacing variable n with k.

Step 2

Figure 5: Flipping h[k] with respect to k = 0 to obtain h[-k].

Step 3

Figure 6: Shifting h[-k] to n to give h[n-k].

Step 4 and Step 5

Find the products h[n-k]x[k] for all k and summing all the non-zero products.

```
n = 0: y[0] = h[0]x[0] = 2 \times 1 = 2
n = 1: y[1] = h[1]x[0] + h[0]x[1] = (1 \times 1) + (2 \times 1) = 3
n = 2: y[2] = h[2]x[0] + h[1]x[1] + h[0]x[2] = (0.5 \times 1) + (1 \times 1) + (2 \times 1) = 3.5
n = 3: y[3] = h[2]x[1] + h[1]x[2] = (0.5 \times 1) + (1 \times 1) = 1.5
n = 4: y[4] = h[3]x[2] = (0.5 \times 1) = 0.5
```

More examples:

1. Consider the two sequences:

obsider the two sequences:

$$x[n] = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & otherwise \end{cases} \text{ and } h[n] = \begin{cases} n, & 0 \le n \le 4 \\ 0, & otherwise \end{cases}.$$

Figure 7: The signals x[n] and h[n] to be convolved.

Using a table to perform the discreet time convolution gives

	is a table to perform the discrete time convolution give							_			
	k	-2	-1	0	1	2	3	4	5	6	7
	x[k]	0	0	1	1	1	1	0	0	0	0
	h[k]	0	0	0	1	2	3	4	0	0	0
n=0	h[-k]										
n=1	h[1-k]										
n=2	h[2-k]										
n=3	h[3-k]										
n=4	h[4-k]										
n=5	h[5-k]										
n=6	h[6-k]										
n=7	h[7-k]										

	$\Sigma h[n-k]x[k]$
n=0	
n=1	
n=2	
n=3	
n=4	
n=5	
n=6	
n=7	

Figure 8: Computed response y[n].

$2. \ Convolution \ of two \ square \ waveforms.$

3. Convolution of an exponential impulse response $h[n] = \alpha^n u[n]$ with $\alpha = 0.95$ and a unit step input x[n] u[n].

Convolution of Continuous-time (CT) signals

Figure 9: Staircase approximation to a CT signal x(t).

Any CT signal can be approximated by a combination of delayed impulses as illustrated in figure 9 if the impulse is defined as

$$\delta(t) = \begin{cases} \frac{1}{\Delta}, & 0 \le t < \Delta \\ 0, & otherwise \end{cases},$$

where $\Delta \to 0$. Using the sifting property of impulse the signal x(t) can be represented as $x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau$. If the impulse response of an LTI system is h(t) we have

<u>input</u>	<u>r</u>	<u>esponse</u>	
$\delta\!(au)$	\rightarrow	$h(\tau)$	(definition),
$\delta(t-\tau)$	\rightarrow	$h(t-\tau)$	(time shifting),
$x(\tau)\delta(t-\tau)$	\rightarrow	$x(\tau)h(t-\tau)$	(homogeneity),

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau \to \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau \quad \text{(additivity)}.$$

Thus, the response of the LTI system to an input x(t) is

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

This equation is known as the *convolution integral* and the convolution of two signals will be represented symbolically as

$$y(t) = x(t) *h(t).$$

The procedures for evaluating convolution in CT are very similar to those for in DT.

exercise: Let h(t) = u(t) and $x(t) = e^{-at}u(t)$, a > 0. Evaluate y(t) = h(t)*x(t).

1. Replacing the variable t with τ to yield $h(\tau)$ and $x(\tau) = e^{-a\tau}u(\tau)$.

Figure 10: Changing the variable t to τ .

2. Flipping $h(\tau)$ with respect to $\tau = 0$ to obtain $h(-\tau)$.

Figure 11: Flipping $h(\tau)$ with respect to $\tau = 0$ and shifting $h(-\tau)$ by t to obtain $h(t-\tau)$.

- 3. Shift $h(\tau)$ along the τ -axis by t to give $h(t-\tau)$.
- 4. Multiply $x(\tau)$ and $h(t-\tau)$ for all τ . For t > 0,

$$x(\tau)h(t-\tau) = \begin{cases} e^{-a\tau}, & 0 < \tau < t \\ 0, & otherwise \end{cases}.$$

5. Integrate $x(\tau)h(t-\tau)$ to yield

$$y(t) = \int_{0}^{t} x(\tau)h(t-\tau)d\tau = \int_{0}^{t} e^{-a\tau}d\tau = -\frac{1}{a}(e^{-at} - e^{-0}) = \frac{1}{a}(1 - e^{-at}).$$

For all t, the response is

$$y(t) = \frac{1}{a}(1 - e^{-at})u(t)$$
.

Figure 12: Computed response y(t).

More examples:

1. Consider the input signal x(t) and impulse h(t) illustrated in figure 13.

Figure 13: Input signal x(t) and impulse h(t). Consider the following intervals:

Figure 14: Signals $x(\tau)$ and $h(t-\tau)$ for different intervals.

The signals are
$$x(t) = \begin{cases} 1, & 0 < t < T \\ 0, & otherwise \end{cases}$$
 and $h(t) = \begin{cases} 1 - \frac{t}{T}, & 0 < t < T \\ 0, & otherwise \end{cases}$. In order to

evaluate the convolution it is convenient to consider four separate intervals for t. **Interval I**: For $t \le 0$, $x(\tau)h(t-\tau) = 0$, hence y(t) = 0.

Interval II: For
$$0 < t \le T$$
, $x(\tau)h(t-\tau) = \begin{cases} 1 - \frac{(t-\tau)}{T}, & 0 < \tau \le t \\ 0, & otherwise \end{cases}$.

Hence $y(t) = \int_{0}^{t} \left(1 - \frac{(t - \tau)}{T}\right) d\tau$ = overlapping area in figure 14 II.

$$y(t) = \frac{1}{2}t\left(1+1-\frac{t}{T}\right) = t - \frac{t^2}{2T}.$$

Interval III: For
$$T < t \le 2T$$
, $x(\tau)h(t-\tau) = \begin{cases} 1 - \frac{(t-\tau)}{T}, & t-T < \tau \le T \\ 0, & otherwise \end{cases}$.

Hence $y(t) = \int_{t-T}^{T} \left(1 - \frac{(t-\tau)}{T}\right) d\tau$ = overlapping area in figure 14 III.

$$y(t) = \frac{1}{2} (T - (t - T))((2T - t)/T) = \frac{1}{2} (2T - t)(2T - t)/T = \frac{1}{2T} (2T - t)^2$$

Interval IV: For t > 2T, $x(\tau)h(t-\tau) = 0$, hence y(t) = 0.

In summary we have
$$y(t) = \begin{cases} 0, & t \le 0 \\ t - \frac{t^2}{2T} & 0 < t \le T \\ \frac{1}{2T} (2T - t)^2 & T < t \le 2T \end{cases}$$
.

Here we have evaluated the convolution y(t) = x(t)*h(t). We will now show that convolution is a commutative operation, i.e x(t)*h(t) = h(t)*x(t). As before consider the following intervals:

Figure 15: Signals $h(\tau)$ and $x(t-\tau)$ for different intervals. **Interval I**: For $t \le 0$, $h(\tau)x(t-\tau) = 0$, hence y(t) = 0.

Interval II: For
$$0 < t \le T$$
, $h(\tau)x(t-\tau) = \begin{cases} 1 - \frac{\tau}{T}, & 0 < \tau \le t \\ 0, & otherwise \end{cases}$.

Hence $y(t) = \int_{0}^{t} \left(1 - \frac{\tau}{T}\right) d\tau$ = overlapping area in figure 15 II.

$$y(t) = \frac{1}{2}t\left(1+1-\frac{t}{T}\right) = t - \frac{t^2}{2T}.$$

Interval III: For
$$T < t \le 2T$$
, $h(\tau)x(t-\tau) = \begin{cases} 1 - \frac{\tau}{T}, & t-T < \tau \le T \\ 0, & otherwise \end{cases}$.

Hence $y(t) = \int_{t-T}^{T} \left(1 - \frac{\tau}{T}\right) d\tau$ = overlapping area in figure 15 III.

$$y(t) = \frac{1}{2} (T - (t - T))((2T - t)/T) = \frac{1}{2} (2T - t)(2T - t)/T = \frac{1}{2T} (2T - t)^2$$

Interval IV: For t > 2T, $h(\tau)x(t-\tau) = 0$, hence y(t) = 0.

In summary we have
$$y(t) = \begin{cases} 0, & t \le 0 \\ t - \frac{t^2}{2T} & 0 < t \le T \\ \frac{1}{2T} (2T - t)^2 & T < t \le 2T \\ 0, & t > 2T \end{cases}$$
 as before.

Ī	t	T/4	T/2	3 <i>T</i> /4	T	5T/4	3T/2	7 <i>T</i> /4	2 <i>T</i>
ĺ	<i>y</i> (<i>t</i>)	7T/32	3 <i>T</i> /8	15T/32	T/2	9T/32	T/8	T/32	0

Figure 16: Response y(t) = h(t)*x(t).

2.
$$x(t) = e^{2t}u(-t)$$
 and $h(t) = 2u(t-1)$.

1. A basic property of convolution in both CT and DT is that it is a *commutative* operation. That is, in DT

$$x[n]*h[n] = h[n]*x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

and in CT

$$x(t)^*h(t) = h(t)^*x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau.$$

2. Another basic property of convolution is the *distributive* property. In DT $x[n]*(h_1[n]+h_2[n]) = x[n]*h_1[n] + x[n]*h_2[n]$ and in CT $x(t)*(h_1(t)+h_2(t)) = x(t)*h_1(t) + x(t)*h_2(t)$.

$$x(t) \xrightarrow{h_{I}(t)} y_{I}(t) = x(t) * h_{1}(t)$$

$$y(t) \iff x(t) \xrightarrow{h_{I}(t) + h_{2}(t)} y(t)$$

$$(a)$$

$$x(t) \xrightarrow{h_{I}(t) * h_{1}(t)} x(t) * h_{1}(t) * h_{2}(t)$$

$$(b)$$

Figure 17: (a) Distributive property and (b) associative property of convolution process.

3. Another useful property of convolution is that it is *associative*. In DT $x[n]*(h_1[n]*h_2[n]) = (x[n]*h_1[n])*h_2[n]$ and in CT $x(t)*(h_1(t)*h_2(t)) = (x(t)*h_1(t))*h_2(t)$.

Notes: