文章编号: 1009-444X(2011)04-0370-04

关于大城市道路封锁问题的一个注记

方 涛,李 路,肖 翔

(上海工程技术大学 基础教学学院,上海 201620)

摘要: 给出了大城市道路实时封锁问题的数学模型,并基于 Matlab 软件和遗传算法给出了某城市实时道路封锁的具体调度方案,该方案在 5 min,8 min 和 15 min 内,其围堵成功率分别为90%,99%和100%.

关键词:数学模型;道路封锁;遗传算法中图分类号:U 260 文献标志码:A

A Note on Blockade Problem of Urban Road

FANG Tao, LI Lu, XIAO Xiang

(College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract: The mathematical model of the blockade problem for urban roads was presented and the dispatching scheme of roads blockade for a certain city was given based on Matlab software and genetic algorithm. The success probability of dispatching schemes in five minutes, eight minutes and fifteen minutes is 90%,99% and 100%, respectively.

Key words: mathematical model; road blockade; genetic algorithm

1 问题描述

"有困难找警察"是家喻户晓的一句流行语.警察肩负着刑事执法、治安管理、交通管理和服务群众等4大职能.为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要地点设置交巡警服务平台,每个交巡警服务平台的职能和警力配备基本相同.由于警务资源是有限的,如何根据城市的实际情况与需求,合理地设置交巡警服务平台、分配各平台的管辖范围和调度警务资源是警务

部门面临的实际课题,其研究具有重要意义.本文结合 2011 年全国大学生数学建模竞赛 B 题所提供的城市信息数据,给出了该城市某地点发生重大案件时,如何调动全市警力资源,实行道路封锁以快速搜捕嫌疑犯这一问题的数学模型,并利用Matlab 软件和遗传算法给出了具体的调度方案.

图 1 为某城市的部分交通地图,共有交通路口582 个,编号分别为 1,2,…,582,其中 80 个路口设有交巡警服务平台,各交通路口的相对坐标已知.图中,p点为第 32 个交通路口,假设 p点处发生了重大刑事案件,在案发 3 min 后接到报警,犯罪嫌

收稿日期: 2011 - 10 - 31

基金项目: 上海市教委学科建设专项基金资助项目(11xk11);上海市教委学科建设专项基金资助项目(2001x33);

上海市教委自然科学基金资助项目(A-0501-10-020)

作者简介: 方 涛(1979-),男,讲师,在读博士,研究方向为非线性系统优化控制. E-mail:ftwwww@163.com

疑人已驾车逃跑. 为了快速搜捕嫌疑犯,给出调度 全市交巡警服务平台警力资源的最佳围堵方案.

图 1 某城市交通图

Fig. 1 Traffic map of a certain city

2 模型建立与求解

2.1 模型建立

设市区最大驾车速度为v,每个服务平台只能封锁一个交通路口,所有交通路口编号构成的集合记为X,所有交巡警服务平台编号构成的集合记为Y.嫌疑犯开始逃跑的时刻记为 t_0 ,并令 $t_0=0$, t_1 为接到报案的时间,t为嫌疑犯在逃时间,即从开始逃跑到当前时刻的时间差. Q(t)为与p点距离小于等于vt的所有交通路口的集合,这里的距离是指 q_i 到p的最短路径距离, q_i 为Q(t)中第i个元素. R(t)为与p点距离大于vt,且与Q(t)中点相邻的所有交通路口的集合,这里的"相邻"是指两交通路口中间不再有其他交通路口,如图 2 所示.

图 2 封堵示意图

Fig. 2 Schematic diagram of blockade

封锁道路问题可转化为在 $t-t_1$ 时间内封锁 R(t)中所有交通路口的问题,R(t)中第 i 个交通路口记为 r_i . 封锁方案用数组 S(t) 表示,S(t) 中元素为部分交巡警服务平台, s_i 为S(t) 中第 i 个元素,给定 S(t) 即给定封锁方案:第 r_i 个交通路口,由第 s_i 个交巡警服务平台实行封堵,则该问题可化为下

面的规划问题,即

$$\begin{cases} \min f = \alpha(t - t_1) + \beta \dim S(t) \\ s. t. \ t_1 < t < + \infty \\ s_i \in S(t) \subset Y, \ r_i \in R(t) \subset X, \ s_i \neq s_i \end{cases}$$

式中: f 为目标函数; α , β 为权重; $\dim S(t)$ 为 S(t) 的维数.

2.2 模型求解

对上述模型的精确求解是比较困难的,看上去好像是一个线性规划模型,但事实上它比线性规划复杂得多,无法调用 Lingo,Matlab 等软件的某一规划软件包进行求解[1-2]. 主要原因在于,虽然变量 t 决定 R(t) 和 S(t) 的维数,以及 s_i , r_i 的取值范围,但是它们之间的关系很复杂,难以发现规律,无法给出函数关系和约束条件. 考虑到问题的复杂性,本文利用 Matlab 软件,采用近似算法建立模型,用遗传算法进行局部优化. 具体算法如下:

- 1) 读取各交通路口的坐标和编号,确定 X,Y 以及邻接矩阵 $a_{582\times582}$;
- 2) 依据读入的数据重构城市地图,并在地图 上标出各节点的编号;
- 3) 根据弗洛伊德算法求得任意两点间的最短 距离矩阵 **d**_{582×582};
- 4) 考虑到服务平台的反应速度以及围捕罪犯的时效性,只考虑 6 $\min \le t \le 30$ \min 的情况,并将 t 的取值离散化,步长取 1 \min ;
- 5) 对于给定的 t,依据 $d(q_i, p) \leq vt$, $q_i \in X$,确定 Q(t):
- 6) 依据 $d(r_i, q_i) > vt$ 和邻接矩阵 $a_{582 \times 582}$,以及 $q_i \in Q(t)$, $r_i \in X$ 等条件, 确定 R(t);
- 7) 依据 $d(r_i, s_{ij}) < (t t_1)v$,确定可以封堵第 r_i 个路口的可选交巡警服务平台 $\{s_{ij}\}$,如果没有可选的交巡警服务平台 $\{g_{ij}\}$ 为 \emptyset ,并令 $g_{ij}=0$;
- 8) 考虑在 $t-t_1$ 时间内,可以封堵第 r_i 个路口的交巡警服务平台不止一个,即 $\{s_{ij}\}$ 中元素个数 \geq 1,可以用枚举法计算所有可行解,通过计算发现:当 t=8 min, $t_1=3$ min 时,需封堵的交通路口为 21个,多数路口可选的交巡警服务平台数达 6~7个,可行解空间过大,计算时间过长. 因此,考虑用遗传算法进行局部优化,优化目标为封堵方案的最长封堵时间最短,或者封堵总时间最短.

3 结果分析

当 $t=8 \min_{t=1}^{\infty} t=3 \min_{t=1}^{\infty}$ 时,即 5 min 内实现封

堵的较优封堵方案见表 1. 表中,第 1 列数据表示 用编号为17的交巡警服务平台去封堵编号为2的 路口,其他列数据可类似理解,注意到在第7列和 第17列中,有0号交巡警服务平台出现,这表明编 号为 29 和 239 的路口没有足够的资源实现封堵.

从图 1 可以看出,这两个路口距离相对偏远,

能在 5 min 内赶到这两个路口的交巡警服务平台 实际上是不太可能的,因此,这是一个不可行的封 堵方案. 但是考虑到封堵的时效性,且注意到仅有 两个路口不能实现封堵,从概率的角度来看,表1 提供的封堵方案在 5 min 内围堵成功的概率为 90%,因此,它又是可选的较优方案.

表 1 5 min 内实现封堵的较优封堵方案

Table 1	Optimal	solution	of blocka	de in	five minute	2
---------	----------------	----------	-----------	-------	-------------	---

序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	_	168																			
封堵 节点	2	4	14	17	26	28	29	41	62	63	65	67	168	216	228	229	239	241	488	549	561

当 $t=11 \text{ min}, t_1=3 \text{ min}$ 时,即 8 min 内实现 的概率为99%. 封堵的较优封堵方案见表 2, 其 8 min 内围堵成功

表 2 8 min 内实现封堵的较优封堵方案

Table 2 Optimal solution of blockade in eight minutes

序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28.	29
封堵 方案	372	373	383	10	19	3	18	2	4	1	176	173	175	171	174	178	321	169	180	320	0	11	477	475	482	478	481	480	476
封堵 节点	12	21	22	25	73	79	80	81	85	92	168	170	190	215	219	226	248	253	273	3713	70	459	481	482	487	548	550	558	562

当 t=18 min,t1=3 min 时,即 15 min 内实现 封堵的较优封堵方案见表 3,其 15 min 内围堵成

功的概率为 100%.

表 3 15 min 内实现封堵的较优封堵方案

Table 3 Optimal solution of blockade in fifteen minutes

序号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
封堵 方案	171	4	168	176	172	182	167	169	320	179	170	173	166	178	180	181	322
封堵 节点	180	183	184	198	204	210	248	250	255	257	269	286	287	297	298	299	349
序号	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
封堵 方案	326	10	378	13	93	372	373	477	479	483	478	481	480	475	16	485	476
封堵 节点	369	374	378	383	456	469	471	484	485	507	508	510	513	514	525	539	574

表 4 列出了 t 取不同值时的部分较优封堵方 案,其中 t = 18 min 时封堵方案的围堵成功率为

100%, 封堵所用的时间为 15 min.

表 4 t-3 min 内实现封堵的部分封堵方案

Table 4 Optimal solutions of blockade in t-3 minutes

t/min	6	7	8	9	10	11	12	13	14	15	16	18
封堵节点数	17	20	21	24	28	29	37	40	38	41	39	34
封堵成功率/%	53	75	90	92	89	99	84	93	95	93	95	100
封堵最长时间/min	3	4	5	6	7	8	9	10	11	12	13	15

4 结 语

本文针对大城市发生重大刑事案件时,如何调动全市警力资源,实行道路封锁以快速搜捕嫌疑犯这一难题,结合 2011 年全国大学生数学建模竞赛 B 题所提供的城市信息数据,给出了该城市某点发生重大案件时,调动全市警力资源,实行道路封锁以快速搜捕嫌疑犯的数学模型,并利用 Matlab 软件和遗传算法给出了具体调度方案.结果表明:该市 p 点发生重大案情时,在 8 min 内实现道路封锁

的成功率为 99%,在 15 min 内实现道路封锁的成功率为 100%.

参考文献:

- [1] 甘若迅,吕睿,江一飞,等.基于遗传算法的警车巡逻问题求解[J].**计算机应用**,2011,31(1):116-121.
- [2] 谢金星, 薛毅. 优化建模与 LINDO/LINGO 软件 [M]. 1版. 北京: 清华大学出版社, 2005.
- [3] 李路,袁震东.用于神经网络权系数的遗传算法[J]. 上海工程技术大学学报,2004,18(1):47-49.

(上接第 365 页)

面缺陷的检测、物体尺寸的测量^[6]等试验.本系统集成了机器视觉技术和运动控制技术.从本系统中,可以了解到机器视觉和运动控制^[7]结合的相关知识,并可以运用本系统来完成控制四轴电机.同时完成任意 2 个轴到 4 个轴之间的直线插补、任意 2 个轴的圆弧插补、持续插补运动、梯形与 S 曲线、可编程控制加速与减速时间、运动中改变速度、多轴同步启动/停止等功能.基于 PC 的运动控制系统可充分利用计算机资源,满足运动过程、运动轨迹都比较复杂,柔性、开放性^[8]要求较强的机器和设备.

参考文献:

- [1] Jain R, Kasturi R, Schunck B G. Machine Vision[M].
 1st edition. New York: McGraw-Hill, 1995.
 - [2] 韩九强. 机器视觉技术及应用[M]. 北京:高等教育出版社,2009.

- [3] Davies E R. Machine Vision: Theory, Algorithms, Practicalities [M]. 3rd edition. Waltham: Morgan Kaufmann, 2005.
- [4] 章毓晋. 图像工程[M]. 2版. 北京: 清华大学出版 社,2007.
- [5] Gonzalez R C, Woods R E. 数字图像处理[M]. 2 版. 阮宇智, 阮秋琦, 译. 北京: 电子工业出版社, 2007.
- [6] Snyder W E, Qi H R. 机器视觉教程[M]. 林学間, 崔锦实, 赵清杰, 译. 北京: 机器工业出版社, 2005.
- [7] Wei L S, Jiao Z X. Visual location system for placement machine based on machine vision[C]//Proceedings of 2008 the 15th IEEE International Symposium on Embeded Computing, Washington: IEEE Computer Society, 2008; 141-146.
- [8] Zhang P,Zhu Z H. Machine vision technique and its application to automation of mechnical manufacture [J]. Journal of Hefei University of Technology: Natural Science, 2007, 30(10): 1292 1293.