# 进化优化算法

基于仿生和种群的计算机智能方法

第四课:实变量编码遗传算法、 顺序编码遗传算法

- 0-1背包问题,就是给定一个背包和许多物品,然后从中 挑选出一些物品放入背包
- ▶ 假设有n个不同物品,每个物品的价值为c<sub>j</sub>,重量为w<sub>j</sub>
- ▶ 背包能够容纳的总重量为W
- 问题:背包尽可能装入总价值最多的物品,但不超过背 包的承重限制
- 背包问题是一类具有单约束的纯整数规划问题,可用于许多工业建模场合的应用,最典型的应用包括资本运算、货物装卸和存储分配等,具有非常重要的研究意义

背包问题中一些常见的符号:

(1) j: 物品的索引, 其中j = 1, 2, ..., n

(2) *n*:物品的数量;

W:背包容量;  $c_i$ :第j个物品的价值;

w<sub>j</sub>:第*j*个物品的重量

(3) 决策变量

 $X_j:0$ , 1决策变量,且满足: $X_j=\begin{cases}1,&$  若选择第j个物品 0, 否则

二进制字符串是0-1背包问题解的很自然的表示方式,比如对于物品总数为7个的背包问题决策变量取值如下:  $x = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ 它表示选出物品2和4并放入背包

20

20

背包承重W=100

40

6

 $x = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ 总的价值  $f(x) = 40x_1 + 60x_2 + 10x_3 + 10x_4$  $+3x_5 + 20x_6 + 60x_7$ = 60 + 10 = 70总的重量  $g(x) = 40x_1 + 50x_2 + 30x_3 + 10x_4$  $+10x_5 + 40x_6 + 30x_7$ = 50 + 10 = 60 < W = 100

30 二进制表示方式可能产生不可行解:两 种处理方法(1.罚函数法2.解码方法)

### 不可行解的处理方法: 罚函数法

在二进制表示方式中,可能产生不可行解, Gordon和Whitney提出罚函数法, 将染色体的惩罚值设置为超出背包容量的总量 对于最大值问题,罚函数可设计为

$$\delta = \min \left\{ W, \left| \sum_{j=1}^{n} W_j - W \right| \right\}$$

$$p(x) = 1 - \frac{\left| \sum_{j=1}^{n} W_j X_j - W \right|}{\delta}$$

### 不可行解的处理方法: 罚函数法

| j                | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|------------------|----|----|----|----|----|----|----|
| 价值c <sub>j</sub> | 40 | 60 | 10 | 10 | 3  | 20 | 20 |
| 重量w <sub>j</sub> | 40 | 50 | 30 | 10 | 10 | 40 | 30 |

#### 背包承重W=100,所有物品的重量之和为210

max

eval(x) = f(x)p(x)

对于最大值问题,罚函数可设计为 
$$\delta = \min \left\{ W, \left| \sum_{j=1}^{n} W_{j} - W \right| \right\} = \min \left\{ 100, \left| 210 - 100 \right| \right\} = 100$$
 
$$p(x) = 1 - \frac{\left| \sum_{j=1}^{n} W_{j} X_{j} - W \right|}{\delta} = 1 - \frac{\left| \sum_{j=1}^{n} W_{j} X_{j} - 100 \right|}{100}$$
 得出 $p(x)$ 的定义后,就可以将优化问题转化为: max

### 不可行解的处理方法: 罚函数法

$$\delta = \min \left\{ W, \left| \sum_{j=1}^{n} W_{j} - W \right| \right\}$$

$$p(x) = 1 - \frac{\left| \sum_{j=1}^{n} W_{j} X_{j} - W \right|}{\delta}$$

$$\frac{1}{\sqrt{n}} \left( \frac{1}{\sqrt{n}} \right) \left( \frac{1}{\sqrt{n}}$$

eval(x) = f(x)p(x)可以看出,只有当选择物品重量恰为背包容量时才 不会产生惩罚,其他情况都会产生不同程度的惩罚

得出p(x)的定义后,就可以得到如下的适应度函数:

### 不可行解的处理方法:解码方法

#### 解码方法:

输入: 所有物品、物品数量、每个物品重量、每个物品价值

输出: 放入背包中的物品

#### 解码方法的运算步骤:

(1) 根据价值重量比 $c_j/w_j$ 将 $x_j = 1$ 的物品按降序排列

(2) 按照价值重量比次序选择物品,直到背包不能再放入物品

(3) 输出选择的物品并停止运算

| j                                 | 1   | 2   | 3    | 4   | 5   | 6   | 7    |
|-----------------------------------|-----|-----|------|-----|-----|-----|------|
| 价值c <sub>j</sub>                  | 40  | 60  | 10   | 10  | 3   | 20  | 20   |
| 重量w <sub>j</sub>                  | 40  | 50  | 30   | 10  | 10  | 40  | 30   |
| c <sub>j</sub> /w <sub>j</sub> 比率 | 1.0 | 1.2 | 0.33 | 1.0 | 0.3 | 0.5 | 0.67 |

#### 背包承重W=100

### 不可行解的处理方法:解码方法

(1) 根据价值重量比 $c_j/w_j$ 将 $x_j=1$ 的物品按降序排列,排序后对应的染色体如下

假设给定的染色体如下:

降序排列 1 1 1

其中2号、7号和3号基因的 $c_j/w_j$ 值分别为1.2、 0.67和0.33

| j                                 | 1   | 2   | 3    | 4   | 5   | 6   | 7    |
|-----------------------------------|-----|-----|------|-----|-----|-----|------|
| 价值c <sub>j</sub>                  | 40  | 60  | 10   | 10  | 3   | 20  | 20   |
| 重量w <sub>j</sub>                  | 40  | 50  | 30   | 10  | 10  | 40  | 30   |
| c <sub>j</sub> /w <sub>j</sub> 比率 | 1.0 | 1.2 | 0.33 | 1.0 | 0.3 | 0.5 | 0.67 |

背包承重W=100

### 不可行解的处理方法:解码方法

(2) 按照价值重量比次序选择物品,直到背包不能再放入物品首先选择出2号基因,对于重量 $g(x) = 50 \le W$ , f(x) = 60, 符合要求;其次,选择出7号基因,此时 $g(x) = 80 \le W$ , f(x) = 80, 符合要求;最后,判断3号基因,此时g(x) = 110 > W, f(x) = 90, 此时总重量超出背包最大容量,不再符合要求;

(3) 从而符合背包容量要求的物品为2号和7号物体,此时总重量和相应的价值为  $g(x) = 80 \le W$ , f(x) = 80

| j                                 | 1   | 2   | 3    | 4   | 5   | 6   | 7    |
|-----------------------------------|-----|-----|------|-----|-----|-----|------|
| 价值c <sub>j</sub>                  | 40  | 60  | 10   | 10  | 3   | 20  | 20   |
| 重量w <sub>j</sub>                  | 40  | 50  | 30   | 10  | 10  | 40  | 30   |
| c <sub>j</sub> /w <sub>j</sub> 比率 | 1.0 | 1.2 | 0.33 | 1.0 | 0.3 | 0.5 | 0.67 |

#### 背包承重W=100

| j                | 1                             | 2        | 3                                          | 4               | 5    | 6  | 7  |
|------------------|-------------------------------|----------|--------------------------------------------|-----------------|------|----|----|
| 价值c <sub>j</sub> | 40                            | 60       | 10                                         | 10              | 3    | 20 | 20 |
| 重量w <sub>j</sub> | 40                            | 50       | 30                                         | 10              | 10   | 40 | 30 |
| $\max f(x) =$    | $\dot{J}$                     |          | 背包承重                                       | <u>.</u> W=100  |      |    |    |
| s.t. $g(x) =$    | $\sum_{j} W_{j} \times X_{j}$ | $\leq W$ | $X_j = 0 \overrightarrow{\mathfrak{g}} 1,$ | $j=1, 2, \dots$ | ., n |    |    |

eval(x) = f(x)p(x)

max

对于最大值问题,罚函数可设计为 
$$\delta = \min \left\{ W, \left| \sum_{j=1}^{n} w_{j} - W \right| \right\} = \min \left\{ 100, \left| 210 - 100 \right| \right\} = 100$$
 
$$p(x) = 1 - \frac{\left| \sum_{j=1}^{n} w_{j} x_{j} - W \right|}{\delta} = 1 - \frac{\left| \sum_{j=1}^{n} w_{j} x_{j} - 100 \right|}{100}$$
 得出  $p(x)$ 的定义后,就可以将优化问题转化为: max

| 其中 $x_j = \begin{cases} 1, & \text{若选择第}j \land \text{物品} \\ 0, & \text{否则} \end{cases}$ 

| j                | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|------------------|----|----|----|----|----|----|----|
| 价值c <sub>j</sub> | 40 | 60 | 10 | 10 | 3  | 20 | 20 |
| 重量w <sub>j</sub> | 40 | 50 | 30 | 10 | 10 | 40 | 30 |

第一步:确定种群规模,迭代次数,交叉概率,变异概率

$$N_p = 4$$

$$T = 10$$

$$p_c = 0.8$$

$$N_p = 4$$
  $T = 10$   $p_c = 0.8$   $p_m = 0.3$ 

| j                | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|------------------|----|----|----|----|----|----|----|
| 价值c <sub>j</sub> | 40 | 60 | 10 | 10 | 3  | 20 | 20 |
| 重量w <sub>j</sub> | 40 | 50 | 30 | 10 | 10 | 40 | 30 |

第一步:确定种群规模,迭代次数,交叉概率,变异概率

$$N_p = 4$$

$$T = 10$$

$$N_p = 4$$
  $T = 10$   $p_c = 0.8$   $p_m = 0.3$ 

$$p_m = 0.3$$

第二步: 随机生成初始种群,并且计算适应度函数f(x)p(x)

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} \qquad f = \begin{bmatrix} 113 \\ 10 \\ 100 \\ 73 \end{bmatrix} \qquad p = \begin{bmatrix} 0.7 \\ 0.3 \\ 0.7 \\ 0.8 \end{bmatrix} \qquad eval = \begin{bmatrix} 79.1 \\ 3 \\ 70 \\ 58.4 \end{bmatrix}$$

$$f = \begin{bmatrix} 113 \\ 10 \\ 100 \\ 73 \end{bmatrix}$$

$$p = \begin{bmatrix} 0.7 \\ 0.3 \\ 0.7 \\ 0.8 \end{bmatrix}$$

$$eva1 = \begin{bmatrix} 79.1 \\ 3 \\ 70 \\ 58.4 \end{bmatrix}$$

### 选择:轮盘赌选择

第三步:利用轮盘赌方式选择一对父代解,轮盘赌运行2次

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$eva1 = \begin{bmatrix} 79.1\\ 3\\ 70\\ 58.4 \end{bmatrix}$$

选择的概率
$$P = \begin{bmatrix} 0.014 \\ 0.333 \\ 0.277 \end{bmatrix}$$

0.376

假设运行两次轮盘赌得到的第一对父代解为

$$Parent_1 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$Parent_2 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

### 交叉: 单点交叉

第三步:利用轮盘赌方式选择一对父代解,轮盘赌运行2次

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$eva1 = \begin{bmatrix} 79. \\ 3 \\ \hline 70 \\ 58. \end{bmatrix}$$

选择的概率 $P = \begin{bmatrix} 0.376\\0.014\\0.333\\0.277 \end{bmatrix}$ 

 $Parent_1 = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$  $Parent_2 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$ 

假设运行两次轮盘赌得到的第一对父代解为

假设r = 0.3  $r < p_c = 0.8 \rightarrow$  进行交叉操作

假设r = 4

### 选择:轮盘赌选择

第六步:利用轮盘赌方式选择第二对父代解,轮盘赌运行2次

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} even$$

$$eva1 = \begin{bmatrix} 79.1\\ 3\\ 70\\ 58.4 \end{bmatrix}$$

选择的概率
$$P = \begin{bmatrix} 0.014 \\ 0.333 \\ 0.277 \end{bmatrix}$$

[0. 376<sup>-</sup>

假设运行两次轮盘赌得到的第二对父代解为

$$Parent_3 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$Parent_4 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

### 交叉: 单点交叉

第六步: 利用轮盘赌方式选择第二对父代解,轮盘赌运行2次

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

 $eva1 = \begin{bmatrix} 79. \\ 3 \\ \hline 70 \\ \hline \end{bmatrix}$ 

选择的概率 $P = \begin{bmatrix} 0.370 \\ 0.014 \\ 0.333 \\ 0.277 \end{bmatrix}$ 

假设运行两次轮盘赌得到的第二对父代解为

 $Parent_3 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$ 

 $Parent_4 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$ 

第七步: 随机生成一个随机数决定是否进行交叉

假设r = 0.5  $r < p_c = 0.8 \rightarrow$  进行交叉操作

第八步:随机选择一个交叉点

假设r=2

 $Parent_3 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ Parent_4 & = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \end{bmatrix}$ 

### 变异:bit-wise 变异

第九步:对所有子代进行变异操作

 $p_{\rm m} = 0.3$ 

|                | Offspring       | Random number for mutation     | New offspring   |
|----------------|-----------------|--------------------------------|-----------------|
| O <sub>1</sub> | [1 1 1 0 0 1 0] | [0.1 0.4 0.5 0.8 0.6 0.7 0.6 ] | [0 1 1 0 0 1 0] |
| $O_2$          | [0 1 1 1 1 0 0] | [0.4 0.6 0.7 0.5 0.9 0.4 0.1 ] | [0 1 1 1 1 0 1] |
| $O_3$          | [0 1 1 0 1 1 0] | [0.7 0.1 0.9 0.4 0.6 0.5 0.2 ] | [0 0 1 0 1 1 1] |
| $O_4$          | [1 0 1 1 0 1 0] | [0.8 0.6 0.4 0.8 0.7 0.4 0.6 ] | [1 0 1 1 0 1 0] |

$$O = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} \qquad f = \begin{bmatrix} 90 \\ 143 \\ 53 \\ 80 \end{bmatrix} \qquad p = \begin{bmatrix} 0.7 \\ 0.7 \\ 0.6 \\ 0.8 \end{bmatrix} \qquad eval = \begin{bmatrix} 63 \\ 100.1 \\ 31.8 \\ 64 \end{bmatrix}$$

$$f = \begin{bmatrix} 90 \\ 143 \\ 53 \\ 80 \end{bmatrix}$$

$$p = \begin{bmatrix} 0.7 \\ 0.7 \\ 0.6 \\ 0.8 \end{bmatrix}$$

$$eval = \begin{bmatrix} 63 \\ 100.1 \\ 31.8 \\ 64 \end{bmatrix}$$

## 幸存策略

第十步: 合并所有的解,选择最佳的
$$N_p(N_p=4)$$
 个解

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix} \qquad f = \begin{bmatrix} 113 \\ 10 \\ 100 \\ 73 \end{bmatrix} \qquad p = \begin{bmatrix} 0.7 \\ 0.3 \\ 0.7 \\ 0.8 \end{bmatrix} \qquad eval = \begin{bmatrix} 0.7 \\ 0.3 \\ 0.7 \\ 0.8 \end{bmatrix}$$

$$O = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad f = \begin{bmatrix} 90 \\ 143 \\ 53 \\ 80 \end{bmatrix} \qquad p = \begin{bmatrix} 0.7 \\ 0.7 \\ 0.6 \\ 0.8 \end{bmatrix} \qquad eval = \begin{bmatrix} 63 \\ 100.1 \\ 31.8 \\ 64 \end{bmatrix}$$

#### 下一代种群

$$P = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$f = \begin{bmatrix} 113 \\ 100 \\ 143 \\ 80 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \\ 0.8 \end{bmatrix} \qquad eva1 = \begin{bmatrix} 79.1 \\ 70 \\ 100.1 \\ 64 \end{bmatrix}$$

79. 1

70

58.4

## 二进制编码遗传算法

- > 二进制编码遗传算法
- > 举例说明二进制编码遗传算法的工作机理
  - 1. Sphere function
  - 2. 0-1背包问题 (Knapsack problem)
- > 二进制编码遗传算法的优点和局限

## 遗传算法的基本流程



遗传算法最大优点:我们不需要知道如何求解问题,我们只需要知道如何 评价生成解的品质,通过选择、交叉和变异操作,我们就可以得到优质解

- ✓ 进化&选择过程对所有问题几乎一致
- ✓ 适应度函数&染色体设计:每个特定的优化问题不一样

## 二进制编码遗传算法

- 一个种群的二进制编码字符串(称为染色体)
- "种群"采用某种"自然选择"机制,结合受遗传学启发的"交 又操作"及"变异操作"等遗传操作,进行进化
- ▶ "染色体"的每一位称为"基因", "基因"由0或1组成
- "选择操作"在种群中选择染色体进行复制,通常适应度值 越高的染色体比适应度值低的染色体有更大的机会被选择
- ▶ "交叉操作"对两个染色体中的子部分进行交换
- ▶ "变异操作"对染色体中某些位置的"基因"进行随机更改

#### 优点:

- 编码解码操作简单易行、便于适应度值的计算
- > 交叉、变异等遗传操作便于实现
- 在很多组合优化问题中,目标函数和约束函数均为离散函数,采用二进制编码往往具有直接意义,可以将问题空间的特征与位串的基因相对比,其可应用在整数规划、归纳学习、机器人控制、生产计划等问题中

#### 局限:

- > 二进制遗传算法将搜索空间离散化
- ➤ 无法实现任意精度
  - ✓ 如果采用n位二进制数代表决策变量,那么在 决策变量的取值范围内有2°个不同的值
  - ✓ 为了提高精度,必须增加n,对于复杂问题编码过长
  - ✓ 增加n会导致变量维度的增加以及种群规模的 增加

#### 局限:

> 汉明悬崖(hamming cliffs):二进制编码的一个缺点,就是在某些相邻整数的二进制代码之间有很大的汉明距离(例如: 01111=15 10000=16)两个相邻的数字在二进制转换过程中需要同时改变很多位(bits)

 14: 01110
 1位改变

 15: 01111
 5位改变

### 局限:

▶ 对于一些连续函数优化问题,其随机性使得其局部搜索能力较差,如对于一些高精度的问题,当解迫近于最优解后,由于其变异后表现型变化很大,不连续,因此会远离最优解,达到不稳定。而Gray码能有效地防止这类现象出现

## 格雷编码

格雷码 (Gray Code) 是由贝尔实验室的弗兰克·格雷 (Frank Gray, 1887-1969) 在20世纪40年代提出,并在1953年取得美国专利 "Pulse Code Communication"。最初目的是在使用PCM (Pusle Code Modulation) 方法传输数字信号的过程中降低错误可能。





## 格雷编码

➤ 也称为反射二进制编码(Reflected Binary Code),格雷编码中 相邻的数只有一位不同

| 十进制 | 二进制编码 | 格雷编码 | 十进制 | 二进制编码 | 格雷编码 |
|-----|-------|------|-----|-------|------|
| 0   | 0000  | 0000 | 8   | 1000  | 1100 |
| 1   | 0001  | 0001 | 9   | 1001  | 1101 |
| 2   | 0010  | 0011 | 10  | 1010  | 1111 |
| 3   | 0011  | 0010 | 11  | 1011  | 1110 |
| 4   | 0100  | 0110 | 12  | 1100  | 1010 |
| 5   | 0101  | 0111 | 13  | 1101  | 1011 |
| 6   | 0110  | 0101 | 14  | 1110  | 1001 |
| 7   | 0111  | 0100 | 15  | 1111  | 1000 |

## 二进制编码转换为格雷编码

#### 步骤:

- 1. 记录最重要的位 (Most Significant Bit, MSB) 保持不变
- 2. 将二进制编码MSB加到二进制编码下一位,记录它们的和,忽略进位
- 3. 重复上述过程

普通二进制码  $\rightarrow n$  位格雷码:

$$\begin{cases} G_{n-1} = B_{n-1} \\ G_i = B_i \oplus B_{i+1} \end{cases}, 0 \le i \le n-2$$

其中  $\oplus$  表示异或运算(即模2加法),  $0\oplus 0=0$  ,  $0\oplus 1=1$  ,  $1\oplus 0=1$  ,  $1\oplus 1=0$  。



我们考虑一个二进制编码



## 格雷编码转换为二进制编码

#### 步骤:

- 1. 记录最重要的位 (MSB) 保持不变
- 2. 将二进制编码MSB加到格雷编码下一位,记录它们的和,忽略进 位
- 3. 重复上述过程

n 位格雷码 ightarrow 普通二进制码:

$$\begin{cases} B_{n-1} = G_{n-1} \\ B_i = G_i \oplus B_{i+1} \end{cases}, 0 \le i \le n-2$$

中 表示异或运算(即模2加法),  $0 \oplus 0 = 0$  ,  $0 \oplus 1 = 1$  ,  $1 \oplus 0 = 1$  ,



 $g_3 \quad g_2 \quad g_1 \quad g_0 \\
 1 \quad 1 \quad 0$ 

我们考虑一个格雷编码



- 1. 二进制编码遗传算法(Binary encoding genetic algorithm)
- 2. 实变量编码遗传算法(Real-number encoding genetic algorithm)
- 3. 顺序编码遗传算法(Order encoding genetic algorithm)

## 实变量编码遗传算法

- > 实变量编码遗传算法
- 举例说明实变量编码遗传算法的工作机理
- > 实变量编码遗传算法的优点和局限

## 遗传算法的基本流程



- 实变量遗传算法的交叉操作和变异操作需要结构性的变化
- 选择操作不需要改变,因为选择操作只需要适应度函数值

## 实变量编码遗传算法

- 不需要将实变量转变为二进制编码
- > 决策变量可以直接用于计算目标函数值
- > 二进制编码遗传算法的选择操作可以用于实变量遗传算法
- 交叉操作(例如单点交叉)效果可能不理想
  - 搜索范围只局限于当前决策变量数值
  - 依赖变异操作得到新的决策变量数值
- > 对搜索空间的开发依赖于变异操作的修改

```
随机选取交叉点的位置 = 3
```

```
parent_1 = \begin{bmatrix} 3.5 & 1.8 & 9.1 & 6.4 & 7.3 \end{bmatrix}
```

 $parent_2 = [8.2 \ 2.6 \ 0.3 \ 4.8 \ 1.7]$ 

```
offspring<sub>1</sub> = \begin{bmatrix} 3.5 & 1.8 & 9.1 & 4.8 & 1.7 \end{bmatrix}
offspring<sub>2</sub> = \begin{bmatrix} 8.2 & 2.6 & 0.3 & 6.4 & 7.3 \end{bmatrix}
```

## 实变量编码中的交叉操作

- 线性交叉 (Linear crossover)
- 混合交叉 (Blend crossover)
- 模拟二进制交叉(Simulated Binary crossover)

### 实变量编码中的线性交叉

• Wright在1991年提出

例子:

• 线性交叉利用父代染色体的线性函数生成子代染色体

假设 $P_1$ 和 $P_2$ 是两个父代染色体的参数值,那么相应的子代染色体的参数值利用下面公式得到  $C_i = \alpha_i P_1 + \beta_i P_2$  其中 $i = 1, 2, \ldots n$ (子代数量)

 $lpha_i$ 和 $oldsymbol{eta}_i$ 是用户采用的常数值

## 线性交叉: 例子

例子: 假设 $P_1 = 15.65$ 和 $P_2 = 18.83$ , $\alpha_1 = \beta_1 = 0.5$ 

 $C_1 = \alpha_1 P_1 + \beta_1 P_2 = 0.5 \times 15.65 + 0.5 \times 18.83 = 17.24$ 

$$\alpha_2 = 1.5$$
  $\beta_2 = -0.5$   $\alpha_3 = -0.5$   $\beta_3 = 1.5$ 

那么

$$C_2 = \alpha_2 P_1 + \beta_2 P_2 = 1.5 \times 15.65 - 0.5 \times 18.83 = 14.06$$
  
 $C_3 = \alpha_3 P_1 + \beta_3 P_2 = -0.5 \times 15.65 + 1.5 \times 18.83 = 20.24$ 

我们为下一代保留这三个后代中适应性最强的那一个,或适应性 最强的前两个,是保留一个或是保留两个取决于具体的进化算法

#### 线性交叉的优点和局限

#### 优点

- 计算简单,运算速度快
- 两个父代可以生成大量的子代
- 可以实现大范围的变化

#### 局限

- 需要确定α<sub>i</sub>和β<sub>i</sub>
- 对于缺乏经验的人员很难确定正确的α¡和β¡值
- · 如果ai和Bi值选择不合适,问题解可能会陷入局部最优解

#### 实变量编码中的交叉操作

- 线性交叉 (Linear crossover)
- 混合交叉 (Blend crossover)
- 模拟二进制交叉(Simulated Binary crossover)

## 实变量编码中的混合交叉

Eshelman和Schaffer在1993年提出 1) 假设 $P_1$ 和 $P_2$ 是两个父代染色体的参数值, $P_1 < P_2$ 

2) 混合交叉机制在下面范围内生成子代解

2)混合交义机制在下面范围内生成子代解 
$$\langle \{P_1 - \alpha(P_2 - P_1)\}\dots \{P_2 + \alpha(P_2 - P_1)\}\rangle$$
 其

3) 利用 $\alpha$ 和0到1之间随机数r得到参数 $\gamma$ 

$$\gamma = (1 + 2\alpha)r - \alpha$$

 $C_2 = (1 - \gamma)P_2 + \gamma P_1$ 

4)子代解 $C_1$ 和 $C_2$ 由下列公式生成  $C_1 = (1 - \gamma)P_1 + \gamma P_2$ 

其中α是用户采用的常数值

## 混合交叉: 例子

例子: 假设 $P_1 = 15.65$ 和 $P_2 = 18.83$ ,  $\alpha = 0.5$ 和r = 0.6那么 $\gamma = (1 + 2\alpha)r - \alpha = (1 + 2 \times 0.5) \times 0.6 - 0.5 = 0.7$   $C_1 = (1 - \gamma)P_1 + \gamma P_2 = (1 - 0.7) \times 15.65 + 0.7 \times 18.83 = 17.88$  $C_2 = (1 - \gamma)P_2 + \gamma P_1 = (1 - 0.7) \times 18.83 + 0.7 \times 15.65 = 16.60$ 



#### 混合交叉的优点和局限

#### 优点

- 计算简单,运算速度快
- 两个父代可以生成大量的子代
- 可以实现大范围的变化

#### 局限

- 需要确定α
- 对于缺乏经验的人员很难确定正确的α值
- 如果α值选择不合适,问题解可能会陷入局部最优解

#### 实变量编码中的交叉操作

- 线性交叉 (Linear crossover)
- 混合交叉 (Blend crossover)
- 模拟二进制交叉 (Simulated Binary crossover)

## 二进制遗传算法单点交叉操作的性质

▶ 性质1: 二进制编码在单点交叉操作前后,二进 制编码的解码值的平均值保持不变

随机选取交叉点的位置 = 3

$$parent_1 = [1 \ 0 \ 1 \ 0 \ 1]$$

$$parent_2 = [0 \ 1 \ 1 \ 1 \ 1]$$

 $AVG_{\text{parent}} = \frac{21 + 15}{2} = 18$ 

 $DV_{\text{parent}_2} = 15$ 

$$DV_{\mathrm{parent}_1} = 21$$



 $AVG_{\text{offspring}} = \frac{23+13}{2} = 18$ 

offspring<sub>1</sub> = 
$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$
  
offspring<sub>2</sub> =  $\begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ 

 $DV_{\text{offspring}_2} = 13$ 



#### 二进制遗传算法单点交叉操作的性质

性质2:扩展因子β定义为子代解的扩展程度与父代解的扩展程度的比值

扩展因子 
$$\beta = \frac{\left|o_2 - o_1\right|}{\left|p_2 - p_1\right|}$$

#### 三种情况:

- 1. 收缩交叉, β<1
- ✓ 子代解的扩展程度小于父代解的扩展程度,子代解被父代解围住

#### 二进制遗传算法单点交叉操作的性质

扩展因子 
$$\beta = \frac{\left|o_2 - o_1\right|}{\left|p_2 - p_1\right|}$$

- 2. 扩展交叉, β>1
  - ✓ 子代解的扩展程度大于父代解的扩展程度, 父代解被子代解围住
- 3. 静态交叉, β=1
  - ✓ 子代解的扩展程度等于父代解的扩展程度,子代解等于父代解

- ➤ Deb和Agrawal于1995年提出, K.Deb and R.B. Agrawal. Simulated binary crossover for continuous search space. Complex Systems, 9(2):115-148, 1995
- 设计思想:在实变量编码遗传算法中模拟二进制编码的单点交叉
  - 1. 平均值不变性质:二进制编码在单点交叉操作前后,其解码值的平均值保持不变
  - 2. 扩展因子性质: 扩展因子β定义为子代解的扩展程度与父代解的扩展程度的比值

利用平均值保持不变的性质,子代解通过下式生成

$$O_{a} = 0.5[(P_{a}' + P_{b}') + \beta(P_{a}' - P_{b}')] = 0.5[(1 + \beta)P_{a}' + (1 - \beta)P_{b}']$$

$$O_{b} = 0.5[(P_{a}' + P_{b}') - \beta(P_{a}' - P_{b}')] = 0.5[(1 - \beta)P_{a}' + (1 + \beta)P_{b}']$$

$$P_a$$
为父代1  $O_a$ 为子代1  $P_b$ 为父代2  $O_b$ 为子代2

> 上式保证了子代解的平均值等于父代解的平均值

其中  $eta_k$  是由下面的概率密度函数生成的随机数:



## 如何计算β?

通过计算PDF函数下面的面积等于 $u(u \in [0,1])$ 的随机数)

如果
$$u \le 0.5$$

$$\int_{0}^{\beta} \frac{1}{2} (\eta + 1) \beta^{\eta} d\beta = \frac{1}{2} \beta^{\eta + 1} = u \text{ if } 1.5$$

$$\Rightarrow \beta = (2u)^{1/(\eta + 1)}$$
otherwise

otherwise  $0.0 \frac{1}{0} = \frac{1}{2} \beta^{-(\eta+1)} \frac{1}{3} (\eta + 1) \beta^{-(\eta+2)} d\beta = 0.5 - \frac{1}{2} \beta^{-(\eta+1)} + 0.5 = u$   $\Rightarrow \beta = \left(\frac{1}{2(1-u)}\right)^{1/(\eta+1)}$ 

- > 设计思想:模拟二进制编码的单点交叉
- > 需要两个父代产生两个子代
- 两个子代之间的差距与两个父代之间的差距成正 比

$$O_a - O_b = \beta (P_a - P_b)$$

$$\beta = \begin{cases} (2u)^{1/(\eta+1)} & \text{如果随机数} u \leq 0.5\\ \left(\frac{1}{2(1-u)}\right)^{1/(\eta+1)} & \text{otherwise} \end{cases}$$

其中η是用户指定的常数

$$\beta = \begin{cases} (2u)^{1/(\eta+1)} & \text{如果随机数} u \leq 0.5 \\ \left(\frac{1}{2(1-u)}\right)^{1/(\eta+1)} & \text{otherwise} \end{cases}$$
 
$$\beta \pi u \not\in D$$
维向量,每个变量对应一个 $\beta_j$ 和随机数 $u_j$  
$$Case1: 收缩交叉 \to \beta < 1$$

其中η是用户指定的常数

Case2: 扩展交叉  $\rightarrow \beta > 1$ Case3:静态交叉  $\rightarrow \beta = 1$ 从父代解产生子代解的概率分布是多项式分布

 $O_a = 0.5[(1 + \beta)P_a' + (1 - \beta)P_b']$   $O_b = 0.5[(1 - \beta)P_a' + (1 + \beta)P_b']$ 

 $P_a$ 为父代1  $O_a$ 为子代1

 $O_b$ 为子代2

 $P_b$ 为父代2

- 交叉操作以较高的概率发生
- 两个子代关于父代对称
- 在一次交叉操作中避免了子代偏向于任何特定的父代
- > 取β为常数
  - 如果父代的距离较大,产生的子代的距离也较大
  - 如果父代比较接近,产生的子代也比较接近

Case1: 假设
$$P_a$$
 = 2  $P_b$  = 8  $\beta$  = 0.8  $O_1$  = 0.5  $[(1+0.8) \times 2 + (1-0.8) \times 8] = 2.6  $O_2$  = 0.5  $[(1-0.8) \times 2 + (1+0.8) \times 8] = 7.4$ 

Case2: 假设 $P_a$  = 4  $P_b$  = 5  $\beta$  = 0.8  $O_1$  = 0.5  $[(1+0.8) \times 4 + (1-0.8) \times 5] = 4.1  $O_2$  = 0.5  $[(1-0.8) \times 4 + (1+0.8) \times 5] = 4.9$$$ 

$$O_{a} = 0.5[(1 + \beta)P_{a}' + (1 - \beta)P_{b}']$$

$$O_{b} = 0.5[(1 - \beta)P_{a}' + (1 + \beta)P_{b}']$$

 $O_a - O_b = \beta(P_a - P_b)$ 

#### 示例: β的影响

|假设 $P_{a} = 2$   $P_{b} = 5$  $Case1: 收缩交叉 (\beta < 1)$ ⇒ 子代更近  $\beta = 0.6$  $O_1 = 0.5[(1+0.6)\times 2 + (1-0.6)\times 5] = 2.6$  $O_2 = 0.5[(1-0.6)\times 2 + (1+0.6)\times 5] = 4.4$ Case2:静态交叉( $\beta=1$ ) ⇒ 子代和父代一致  $|O_1| = 0.5[(1+1) \times 2 + (1-1) \times 5] = 2$  $|O_2| = 0.5[(1-1) \times 2 + (1+1) \times 5] = 5$  $|Case3: 扩展交叉 (\beta > 1)|$ ⇒ 子代更远  $|\beta| = 1.4$  $|O_1| = 0.5[(1+1.4) \times 2 + (1-1.4) \times 5] = 1.4$  $O_2 = 0.5[(1-1.4) \times 2 + (1+1.4) \times 5] = 5.6$ 

$$O_a - O_b = \beta(P_a' - P_b')$$

$$O_{a} = 0.5[(1 + \beta)P_{a}^{'} + (1 - \beta)P_{b}^{'}]$$

$$O_{b} = 0.5[(1 - \beta)P_{a}^{'} + (1 + \beta)P_{b}^{'}]$$

#### 模拟二进制交叉的优点和局限

#### 优点

- 两个父代可以生成大量的子代
- 结果准确,通常可以找到全局最优
- 迭代次数更少
- 交叉操作与染色体的长度无关

#### 局限

- 计算量大
- 如果参数选择不合适,可能导致早熟收敛,问题解可能会 陷入局部最优解

## 实变量编码遗传算法的变异操作

实变量编码遗传算法中变异操作存在许多变形:

- 随机变异 (Random mutation)
- 多项式变异 (Polynomial mutation)

#### 随机变异(Random mutation)

变异解采用下列公式得到

$$O_{\text{mutated}} = O_{\text{original}} + (r - 0.5) \times \Delta$$

其中r为0到1之间的随机数, $\Delta$ 是用户选择的最大扰动值

#### 例如:

$$O_{original} = 15.6$$

$$r = 0.7$$

$$\Delta = 2.5$$

$$\Rightarrow O_{\text{mutated}} = O_{original} + (r - 0.5) \times \Delta$$

$$= 15.6 + (0.7 - 0.5) \times 2.5 = 16.1$$

## 实变量编码遗传算法的变异操作

实变量编码遗传算法中变异操作存在许多变形:

- 随机变异 (Random mutation)
- 多项式变异 (Polynomial mutation)

## 多项式变异(Polynomial mutation)

$$\delta$$
采用如下多项式概率密度分布函数  $P(\delta) = 0.5(\eta_m + 1)(1 - |\delta|)^{\eta_m}$ 

计算  $\delta$ : 概率密度分布函数曲线下面积等于 $r(r \in [0,1])$ 的随机数)

$$\delta = \begin{cases} (2r)^{1/(\eta_m+1)} - 1 & \text{如果} r < 0.5 \\ 1 - [2(1-r)]^{1/(\eta_m+1)} & \text{如果} r \ge 0.5 \end{cases}$$

$$\eta_m 是用户采用的常数$$

$$\eta_m 是用户采用的常数$$

$$0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0 - 0.5 - 0.0$$

# 多项式变异(Polynomial mutation)

生成子代

$$O_{mutated} = O_{original} + (ub - 1b)\delta$$
  
其中 $O$ 是子代, $ub$ 是上限, $1b$ 是下限  
或  $O_{mutated} = O_{original} + \delta \times \Delta$ 

一个子代生成一个新的子代

其中Δ是用户选择的最大扰动值

#### 多项式变异

假设
$$O_{original}=15.6$$
,  $r=0.7$ ,  $\eta_{m}=2$ ,  $\Delta=1.2$   $r\geq0.5$ 

$$\Rightarrow \delta = 1 - \left[2 \times (1 - r)\right]^{\frac{1}{\eta_m + 1}} = 1 - \left[2 \times (1 - 0.7)\right]^{\frac{1}{3}} = 0.1566$$

$$O_{\text{mutated}} = O_{\text{original}} + \delta \times \Delta = 15.6 + 0.1566 \times 1.2 = 15.8$$

#### 实变量编码遗传算法

- > 实变量编码遗传算法
- > 举例说明实变量编码遗传算法的工作机理
- > 实变量编码遗传算法的优点和局限

#### 例题: Sphere function

决策变量:
$$x_1, x_2, x_3, x_4$$
  $f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$  第一步: 确定种群规模,交叉概率,变异概率,最大迭代次数,交叉和变异的 *distribution index*

$$N_p = 6$$
,  $p_c = 0.8$ ,  $p_m = 0.2$ ,  $T = 10$ ,  $\eta_c = 20$ ,  $\eta_m = 20$ 

min  $f(x) = \sum_{i=1}^{4} x_i^2$   $0 \le x_i \le 10$  i = 1, 2, 3, 4

### 例题: Sphere function

min 
$$f(x) = \sum_{i=1}^{4} x_i^2$$
  $0 \le x_i \le 10$   $i = 1, 2, 3, 4$  决策变量: $x_1, x_2, x_3, x_4$   $f(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2$  第一步:确定种群规模,交叉概率,变异概率,最大迭代次数,交叉和变异的 distribution index  $N_p = 6$ ,  $p_c = 0.8$ ,  $p_m = 0.2$ ,  $T = 10$ ,  $\eta_c = 20$ ,  $\eta_m = 20$  第二步:在决策变量的取值范围内生成随机解,计算适应度函数值

 $P = \begin{bmatrix} 4 & 0 & 0 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \\ 6 & 2 & 8 & 3 \\ 5 & 8 & 1 & 3 \end{bmatrix} \qquad f = \begin{bmatrix} 80 \\ 140 \\ 35 \\ 102 \\ 113 \\ 99 \end{bmatrix}$ 

#### 择:锦标赛选择

第三步: 随机选择两个解参加锦标赛 假设选择的两个解是

$$P_3 = \begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix} \qquad f_3 = 35$$

 $P_2 = [3 \ 1 \ 9 \ 7]$   $f_2 = 140$ 

3 1 5





80

6 2 8 3



第四步:比较适应度函数值,选择胜利者 进入父代群(Mating Pool)

 $f_3 < f_2 \rightarrow (f_3)$ 

 $P_3$  (35)



### 锦标赛选

第五步:经过六次锦标赛 8 0 9 最好的解在父代群中有两个 5 最差的解没有进入父代群 9 6 2 3 3  $P_3$  (35) P<sub>4</sub> (102)  $P_3$  (35)  $P_2$  (140)  $P_4$  (102)  $P_6 (99)$  $P_3$  (35)  $P_6 (99)$  $P_1 (80)$  $P_1 (80)$  $P_1 (80)$ 

 $P_{5}$  (113)

102 113 99  $P_2$  (140) P<sub>4</sub> (102)  $P_5$  (113)  $P_3$  (35)  $P_1 (80)$  $P_6 (99)$ 

80

140

35

#### 模拟二进制交叉算子的步骤

输入: P, D, p<sub>c</sub>, η<sub>c</sub>

 $O_a - O_b = \beta (P_a - P_b)$ 

- 1. 从父代群中随机选择两个父代 (e.g. P<sub>a</sub>'和P<sub>b</sub>')
- 2. 生成0到1之间的随机数
- 3. 如果r≥p,,将父代解拷贝到子代解
- 4. 如果r<p。,生成D个随机数(u),每个变量对应一个随机数u<sub>j</sub>
- 5. 针对每个变量确定β
- 6. 生成两个子代(Oa和Ob)

$$O_a = 0.5[(1 + \beta)P_a' + (1 - \beta)P_b']$$
 $O_b = 0.5[(1 - \beta)P_a' + (1 + \beta)P_b']$ 

$$\beta = \begin{cases} (2u)^{1/(\eta_c+1)} & \text{if } y \in \{0, 5\} \\ \left(\frac{1}{2(1-u)}\right)^{1/(\eta_c+1)} & \text{otherwise} \end{cases}$$

第六步: 随机选择两个父代进行交叉

假设选择的两个解是

 $Parent_1 = \begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix}$   $Parent_3 = \begin{bmatrix} 4 & 0 & 0 & 8 \end{bmatrix}$ 

第七步:产生一个随机数决定是否进行交叉

假设r = 0.2

$$Parent = \begin{bmatrix} 0 & 3 & 1 & 3 \\ 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \\ 2 & 1 & 4 & 9 \\ 0 & 3 & 1 & 5 \end{bmatrix}$$

假设
$$u = [0.2] 0.6 0.1 [0.8]$$

$$(u \le 0.5) \qquad (u >$$

$$\beta = 0.96$$

$$0.96$$
  $\beta = (-$ 

 $\begin{cases} (2u)^{1/(\eta_c+1)} & \text{if } u \leq 0.5 \\ \left(\frac{1}{2(1-u)}\right)^{1/(\eta_c+1)} & \text{otherwise} \end{cases}$ 

$$\beta = (2 \times 0.2)^{1/(20+1)} = 0.96$$

$$\beta = (\frac{1}{2 \times (1-0.8)})^{1/(20+1)} = 1.04$$

$$= \left( \frac{1}{2 \times (1 - 0)} \right)$$

$$\beta = (\frac{1}{2})$$

$$\frac{1}{2 \times (1-0.8)}$$
)<sup>1/(20+1)</sup>

$$2 \times (1 - 0.8)$$

$$2 \times (1 - 0.8)$$

$$\beta = \begin{bmatrix} 0.96 & 1.01 & 0.93 & 1.04 \end{bmatrix}$$
 $\theta_a = \begin{bmatrix} 0.96 & 1.01 & 0.93 & 1.04 \end{bmatrix}$ 

$$\beta = \begin{bmatrix} 0.96 & 1.01 & 0.93 & 1.04 \end{bmatrix}$$
  $O_a =$  第九步: 生成两个子代

 $\eta_c = 20$ 

$$O_a = 0.5[(1 + \beta)P_a' + (1 - \beta)P_b']$$

第九步: 生成两个子代 
$$offspring_1 = 0.5 \times \begin{bmatrix} (1 + [0.96 \ 1.01 \ 0.93 \ 1.04]) \times [0 \ 3 \ 1 \ 5] + \\ (1 - [0.96 \ 1.01 \ 0.93 \ 1.04]) \times [4 \ 0 \ 0 \ 8] \end{bmatrix}$$

$$offspring_1 = 0.5 \times [(1 - [0.96 \ 1.])]$$
  
=  $[0.08 \ 3.01 \ 0.97 \ 4.94]$ 

 $p_{\rm c} = 0.8$ 

$$\beta = \begin{bmatrix} 0.96 & 1.01 & 0.93 & 1.04 \end{bmatrix}$$
  
第九步: 生成两个子代 
$$O_a = 0.5 \left[ (1 + \beta) P_a' + (1 - \beta) P_b' \right]$$

 $= [0.08 \quad 3.01 \quad 0.97 \quad 4.94]$ 

 $= \begin{bmatrix} 3.92 & -0.02 & 0.03 & 8.06 \end{bmatrix}$ 

 $p_{c} = 0.8$ 

$$a = 0.5$$

$$2 = 0.5$$

 $O_b = 0.5[(1-\beta)P_a' + (1+\beta)P_b']$ 

 $Parent = \begin{bmatrix} 0 & 3 & 1 & 5 \\ 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \\ 2 & 1 & 4 & 9 \\ 0 & 3 & 1 & 5 \\ 4 & 0 & 0 & 8 \end{bmatrix}$ 

 $offspring_1 = 0.5 \times \begin{bmatrix} (1 + [0.96 & 1.01 & 0.93 & 1.04]) \times [0 & 3 & 1 & 5] + \\ (1 - [0.96 & 1.01 & 0.93 & 1.04]) \times [4 & 0 & 0 & 8] \end{bmatrix}$ 

 $offspring_2 = 0.5 \times \begin{bmatrix} (1 - \begin{bmatrix} 0.96 & 1.01 & 0.93 & 1.04 \end{bmatrix}) \times \begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix} - \\ (1 + \begin{bmatrix} 0.96 & 1.01 & 0.93 & 1.04 \end{bmatrix}) \times \begin{bmatrix} 4 & 0 & 0 & 8 \end{bmatrix} \end{bmatrix}$ 

 $\eta_c = 20$ 

$$offspring_1 = [0.08 \ 3.01 \ 0.97 \ 4.94]$$

$$offspring_2 = [3.92 - 0.02 0.03 8.06]$$

第十步: 检查是否满足变量取值范围 
$$offspring_2 = \begin{bmatrix} 3.92 & -0.02 & 0.03 & 8.06 \end{bmatrix} \rightarrow \begin{bmatrix} 3.92 & 0 & 0.03 & 8.06 \end{bmatrix}$$

offspring<sub>1</sub>满足取值范围

$$0 \le x_i \le 10$$

# 保证新解在取值范围内





第十一步: 随机选择两个父代进行交叉  $p_c = 0.8$   $\eta_c = 20$  假设选择的两个解是  $Parent_2 = \begin{bmatrix} 5 & 8 & 1 & 3 \end{bmatrix}$   $Parent_6 = \begin{bmatrix} 4 & 0 & 0 & 8 \end{bmatrix}$  第十二步: 产生一个随机数决定是否进行交叉 假设r = 0.9  $r > p_c \to \pi$ 进行交叉操作  $Parent = \begin{bmatrix} 0 & 3 & 1 & 5 \\ 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \\ 2 & 1 & 4 & 9 \end{bmatrix}$ 

 $Offspring_{3} = Parent_{2} = \begin{bmatrix} 5 & 8 & 1 & 3 \end{bmatrix}$   $Offspring_{4} = Parent_{6} = \begin{bmatrix} 4 & 0 & 0 & 8 \end{bmatrix}$   $Offspring = 0 = \begin{bmatrix} 0.08 & 3.01 & 0.97 & 4.94 \\ 3.92 & 0 & 0.03 & 8.06 \\ 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \end{bmatrix}$ 

第十三步:将两个父代解拷贝到子代解

第十四步: 随机选择两个父代进行交叉

假设选择的两个解是

 $Parent_4 = \begin{bmatrix} 2 & 1 & 4 & 9 \end{bmatrix}$   $Parent_5 = \begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix}$ 



假设r = 0.4 $r < p_c \rightarrow 进行交叉操作$ 

第十五步: 产生一个随机数决定是否进行交叉假设
$$r=0.4$$
r  $< p_c \rightarrow$  进行交叉操作  $Parent$ 



假设 $u = \begin{bmatrix} 0.3 & 0.1 & 0.8 & 0.6 \end{bmatrix}$ 

$$\beta = \begin{bmatrix} 0.98 & 0.93 & 1.04 & 1.01 \end{bmatrix}$$

第十七步: 生成两个子代

 $Offspring_5 = \begin{bmatrix} 1.98 & 1.07 & 4.06 & 9.02 \end{bmatrix}$ 

 $\begin{aligned}
O_{a} - O_{b} &= \beta(P_{a}^{'} - P_{b}^{'}) \\
O_{a} &= 0.5 \left[ (1 + \beta)P_{a}^{'} + (1 - \beta)P_{b}^{'} \right] \\
O_{b} &= 0.5 \left[ (1 - \beta)P_{a}^{'} + (1 + \beta)P_{b}^{'} \right]
\end{aligned}$   $\beta = \begin{cases}
(2u)^{1/(\eta_{c}+1)} & \text{ up } u \leq 0.5 \\
\left(\frac{1}{2(1-u)}\right)^{1/(\eta_{c}+1)} & \text{ otherwise } u \leq 0.5
\end{cases}$ 

 $Offspring_6 = \begin{bmatrix} 0.02 & 2.93 & 0.94 & 4.98 \end{bmatrix}$ 

第十六步: 为每个变量生成一个随机数执行交叉操作

 $|p_c| = 0.8 \qquad \eta_c = 20$ 

# 多项式变异的步骤

- 输入: P, D, p<sub>m</sub>, η<sub>m</sub>
- 1. 生成0到1之间的随机数u
- 2. 如果u≥ pm, 该子代解不进行变异
- 3. 如果u<p<sub>m</sub>,生成D个随机数(r),每个变量对应一个随机数r
- 4. 确定每个变量的δ

$$\delta = \begin{cases} (2r)^{1/(\eta_m+1)} - 1 & \text{m} \mathbb{R}r < 0.5\\ 1 - [2(1-r)]^{1/(\eta_m+1)} & \text{m} \mathbb{R}r \ge 0.5 \end{cases}$$

5. 利用下式对子代解进行变异

 $Offspring_1 = \begin{bmatrix} 0.08 & 3.01 & 0.97 & 4.94 \end{bmatrix}$ 

第十九步:产生一个随机数决定是否进行变异

假设
$$r = 0.1$$
  
r < p<sub>m</sub>  $\rightarrow$  进行变异操作

$$\begin{array}{r}
 8 \\
 9.02 \\
 \hline
 4.98 \\
 \hline
 = 2
\end{array}$$

如果 $r \ge 0.5$ 

假设
$$r = [0.6] 0.1 [0.2] 0.8$$
  
 $(r \ge 0.5)$   $\delta_1 = 1 - (2 \times (1 - 0.6))^{1/(20+1)} = 0.01$   
 $(r < 0.5)$   $\delta_3 = (2 \times 0.2)^{1/(20+1)} - 1 = -0.04$ 

假设
$$r = \{0.6\}$$
 0.1 (0.2) 0.8]  
 $(r \ge 0.5)$   $\delta_1 = 1 - (2 \times (1 - 0.6))^{1/(20+1)} = 0.01$   
 $(r < 0.5)$   $\delta_3 = (2 \times 0.2)^{1/(20+1)} - 1 = -0.04$   

$$\delta = \left[0.01 - 0.07 - 0.04 \ 0.04\right]$$
 
$$\delta = \begin{cases} (2r)^{1/(\eta_m+1)} - 1 & \text{如果} r < 0.5 \\ 1 - [2(1-r)]^{1/(\eta_m+1)} & \text{如果} r \ge 0. \end{cases}$$

$$= \begin{bmatrix} 0.08 & 3.01 & 0.97 & 4.94 \\ 3.92 & 0 & 0.03 & 8.06 \\ 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \end{bmatrix}$$

第二十一步: 产生一个新的子代  $0 \le x_i \le 10$  i = 1, 2, 3, 4  $Offspring_1 = \begin{bmatrix} 0.08 & 3.01 & 0.97 & 4.94 \end{bmatrix} +$ 

$$\begin{bmatrix}
10 & 10 & 10 & 10
\end{bmatrix} - \begin{bmatrix}
0 & 0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 01 & 0 & 07
\end{bmatrix} - \begin{bmatrix}
0 0 & 07
\end{bmatrix}$$

$$= \begin{bmatrix} 0.18 & 2.31 & 0.57 & 5.34 \end{bmatrix}$$
 
$$\delta = \begin{bmatrix} 0.01 & -0.07 & -0.04 & 0.04 \end{bmatrix}$$

$$O_1 = O_1 + (ub - 1b)\delta$$

$$O = \begin{bmatrix} 0.08 & 3.01 & 0.97 & 4.94 \\ 3.92 & 0 & 0.03 & 8.06 \\ 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \\ 1.98 & 1.07 & 4.06 & 9.02 \\ 0.02 & 2.93 & 0.94 & 4.98 \end{bmatrix}$$

$$O = \begin{bmatrix} 5 & 8 & 1 & 3 \\ 4 & 0 & 0 & 8 \\ 1.98 & 1.07 & 4.06 & 9.02 \\ 0.02 & 2.93 & 0.94 & 4.98 \end{bmatrix}$$

To. 18 2. 31

3. 92 0 0. 03

0. 57 5. 34

8.06

第二十二步: 选择第二个子代进行变异操作

$$Offspring_2 = [3.92 \ 0 \ 0.03 \ 8.06]$$

第二十三步: 生成一个随机数决定是否执行变异操作

假设
$$r = 0.2$$
  
 $r = p_m \rightarrow$  不执行变异操作

|     | 0. 18 | 2.31 | 0.57           | 5. 34  |  |
|-----|-------|------|----------------|--------|--|
|     | 3. 92 | 0    |                | 8.06   |  |
| 0 - | 5     | 8    | 1              | 3      |  |
| 0 – | 4     | 0    | 0              | 8      |  |
|     | 1.98  | 1.07 | 4. 06<br>0. 94 | 9.02   |  |
|     | 0.02  | 2.93 | 0.94           | 4. 98_ |  |
|     |       |      |                |        |  |

第二十五步:对所有剩余的子代进行变异  $p_m = 0.2$   $\eta_m = 20$ 

|                | Offspring             |     | δ                 | New offspring         |
|----------------|-----------------------|-----|-------------------|-----------------------|
| $O_3$          | [5 8 1 3]             | 0.1 | [0.5 0.1 0.6 0.3] | [5 7.3 1.1 2.8]       |
| $O_4$          | [4 0 0 8]             | 0.6 | r>pm不执行变异操作       | [4 0 0 8]             |
| O <sub>5</sub> | [1.98 1.07 4.06 9.02] | 0.3 | r>pm不执行变异操作       | [1.98 1.07 4.06 9.02] |
| $O_6$          | [0.02 2.93 0.94 4.98] | 8.0 | r>pm不执行变异操作       | [0.02 2.93 0.94 4.98] |

 $\eta_m = 20$ 

[1.98 1.07 4.06 9.02]

第二十五步, 对所有剩余的子代讲行变异  $p_{m}=0.2$ 

| <b>∠</b>  √ | 1 770 • 71/1111 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                   | II              |
|-------------|-----------------|----------------------------------------|-------------------|-----------------|
|             | Offspring       |                                        | δ                 | New offspring   |
| $O_3$       | [5 8 1 3]       | 0.1                                    | [0.5 0.1 0.6 0.3] | [5 7.3 1.1 2.8] |
| $O_4$       | [4 0 0 8]       | 0.6                                    | r>pm不执行变异操作       | [4 0 0 8]       |

r>pm不执行变异操作

[1.98 1.07 4.06 9.02] 0.3

 $O_5$ 

# 幸存

第二十七步:合并所有的解选择最佳的 $N_p(N_p = 6)$ 个解

$$P = \begin{bmatrix} 4 & 0 & 0 & 8 \\ 3 & 1 & 9 & 7 \\ 0 & 3 & 1 & 5 \\ 2 & 1 & 4 & 9 \end{bmatrix} \qquad f = \begin{bmatrix} 80 \\ 140 \\ 35 \\ 102 \end{bmatrix} \qquad O = \begin{bmatrix} 0.18 & 2.31 & 0.57 & 5.34 \\ 3.92 & 0 & 0.03 & 8.06 \\ 5 & 7.3 & 1.1 & 2.8 \\ 4 & 0 & 0 & 8 \end{bmatrix} \qquad f_o = \begin{bmatrix} 34.21 \\ 80.33 \\ 87.34 \\ 80 \end{bmatrix}$$

0.02

113

99

3

$$P = \begin{bmatrix} 0.18 & 2.31 & 0.57 & 5.34 \\ 0.02 & 2.93 & 0.94 & 4.98 \\ 0 & 3 & 1 & 5 \\ 4 & 0 & 0 & 8 \\ 4 & 0 & 0 & 8 \\ 3.92 & 0 & 0.03 & 8.06 \end{bmatrix} \qquad f = \begin{bmatrix} 34.21 \\ 34.27 \\ 35 \\ 80 \\ 80 \\ 80.33 \end{bmatrix}$$

1.07

2.93

4.06

0.94

9.02

4.98

102.91

34. 27

# 伪代码

```
\text{Inpu}\,t\,:\,\textit{Fitness}\quad\textit{function,}\quad\textit{1b,}\quad\textit{ub,}\quad\textit{N}_{_{p}},\quad\textit{T,}\quad\textit{p}_{_{c}},\quad\textit{p}_{_{\text{m}}},\quad\textit{\eta}_{_{c}}\quad\textit{\eta}_{_{\text{m}}}\quad\textit{k}
  Initialize a random population (P)
  Evaluate the objective function value(f) of P
   for t = 1 to T
       Perform tournament selection of tournament size, k
       for i = 1 to N_p / 2
          Randomly choose two parents
             if r < p_c
               Generate two offspring using SBX crossover
               Bound the offspring
              e1se
              Copy the selected parents as offspring
              end
       end
       for i = 1 to N_n
             if r < p_m
                 Perform polynomial mutation of ith offspring
                 Bound the mutated offspring
              e1se
                 No change in ith offspring
              end
       end
   Evaluate the fitness
   Combine population and offspring to perform (\mu + \lambda)
   end
```

# 实变量编码遗传算法

- > 实变量编码遗传算法
- > 举例说明实变量编码遗传算法的工作机理
- > 实变量编码遗传算法的优点和局限

# 实变量编码遗传算法的优点和局限

#### 优点:

- 适合于在遗传算法中表示范围较大的数
- > 适用于精度要求较高的遗传算法
- > 便于较大空间的遗传搜索
- ▶ 改善了遗传算法的计算复杂性,提高了运算效率
- > 便于遗传算法与经典优化方法的混合使用
- > 便于处理复杂的决策变量约束条件
- 局限:
- 适用范围有限,只能用于连续变量问题

- 1. 二进制编码遗传算法(Binary encoding genetic algorithm)
- 2. 实变量编码遗传算法(Real-number encoding genetic algorithm)
- 3. 顺序编码遗传算法(Order encoding genetic algorithm)[次序编码、排序编码]

- > 顺序编码遗传算法
- 举例说明顺序编码遗传算法的工作机理
- > 遗传算法的优点和局限

# 遗传算法的基本流程



遗传算法最大优点:我们不需要知道如何求解问题,我们只需要知道如何 评价生成解的品质,通过选择、交叉和变异操作,我们就可以得到优质解

- ✓ 进化&选择过程对所有问题几乎一致
- ✓ 适应度函数&染色体设计:每个特定的优化问题不一样

#### 顺序遗传算法中的交叉操作

• 二进制交叉技术不适用于顺序遗传算法

例如: 旅行商问题, 考虑两个顺序编码染色体

| 父代1:           | 5 | 7 | 2 | 8 | 1 | 6 | 3 | 4 |  |
|----------------|---|---|---|---|---|---|---|---|--|
| 父代2:           | 6 | 1 | 3 | 5 | 4 | 2 | 8 | 7 |  |
| <b>-</b> 7 //\ |   | _ |   |   |   |   |   | _ |  |

子代2: 6 1 3 5 4 6 3 4

> 子代不是有效的染色体

子代1:

### 顺序编码遗传算法中的交叉操作

- 单点排序交叉 (Single-point order crossover)
- 两点排序交叉 (Two-point order crossover)
- 部分映射交叉 (Partial mapped crossover)
- 基于位置的交叉(Position based crossover)
- 边重组交叉(Edge recombination crossover)

# 单点排序交叉 (Single-point order crossover)

假设 $P_1$ 和 $P_2$ 是两个父代染色体,染色体的长度为L步骤:

- 1) 随机产生一个交叉点K,满足 $1 \le K \le L 1$
- 2)将父代染色体 $P_1$ 在交叉点K左侧的片段,复制到 $C_1$ (初始为空),
- 将父代染色体 $P_2$ 在交叉点K左侧的片段,复制到 $C_2$ (初始为空)

子代1 (C<sub>1</sub>): **5 7 2** 子代2 (C<sub>2</sub>): **6 1 3** 

# 单点排序交叉 (Single-point order crossover)

步骤: 3)对于 $C_1$ 的右侧,从父代染色体 $P_2$ 中复制,基因值出现的顺序保持不变, 但已经出现在C的左侧的基因不进行拷贝 4) 对于C<sub>2</sub>的右侧,从父代染色体P<sub>1</sub>中复制, 基因值出现的顺序保持不变, 但已经出现在C。的左侧的基因不进行拷贝 父代1 (P<sub>1</sub>): **5 7** 8 3 父代2 (P<sub>2</sub>): 6 1 子代1 (C₁): 5

子代2 (C<sub>2</sub>): 3

# 单点排序交叉 (Single-point order crossover)

步骤: 3)对于 $C_1$ 的右侧,从父代染色体 $P_2$ 中复制,基因值出现的顺序保持不变,但已经出现在 $C_1$ 的左侧的基因不进行拷贝 4) 对于 $C_2$ 的右侧,从父代染色体 $P_1$ 中复制,基因值出现的顺序保持不变,但已经出现在 $C_2$ 的左侧的基因不进行拷贝 2 8 1 6 3 4

| 父代1 (P <sub>1</sub> ) : | 5 | 7 | 2 | 8 | 1 | 6 | 3 | 4 |
|-------------------------|---|---|---|---|---|---|---|---|
| 父代2 (P <sub>2</sub> ):  | 6 | 1 | 3 | 5 | 4 | 2 | 8 | 7 |
|                         |   |   |   |   |   |   |   |   |
| <b>-</b> //>/           | _ |   |   |   |   |   |   |   |

子代1 (C<sub>1</sub>): **5 7 2 6 1 3 4 8** 子代2 (C<sub>2</sub>): **6 1 3 5 7 2 8 4** 

#### 排序遗传算法中的交叉操作

- 单点排序交叉 (Single-point order crossover)
- 两点排序交叉 (Two-point order crossover)
- 部分映射交叉 (Partial mapped crossover)
- 基于位置的交叉(Position based crossover)
- 边重组交叉(Edge recombination crossover)

### 两点排序交叉 (Two-point order crossover)

假设 $P_1$ 和 $P_2$ 是两个父代染色体,染色体的长度为L步骤:

- 1) 随机产生两个交叉点 $K_1$ 和 $K_2$ ,满足 $1 \le K_1$ , $K_2 \le L 1$
- 2)将父代染色体 $P_1$ 位于交叉点 $K_1$ 和 $K_2$ 之间的片段,复制到 $C_1$ (初始为空),将父代染色体 $P_2$ 位于交叉点 $K_1$ 和 $K_2$ 之间的片段,复制到 $C_2$ (初始为空)

 子代1 (C<sub>1</sub>):
 2
 8
 1

 子代2 (C<sub>2</sub>):
 3
 5
 4

## 两点排序交叉 (Two-point order crossover)

#### 步骤:

3)子代 $C_1$ 和 $C_2$ 剩余的基因片段分别从 $P_2$ 和 $P_1$ 复制,基因顺序保持不变,已经在子代 $C_1$ 和 $C_2$ 中包含的基因不再复制



## 两点排序交叉 (Two-point order crossover)

#### 步骤:

子代2 (C<sub>2</sub>):

3)子代 $C_1$ 和 $C_2$ 剩余的基因片段分别从 $P_2$ 和 $P_1$ 复制,基因顺序保持不变,已经在子代 $C_1$ 和 $C_2$ 中包含的基因不再复制

| 父代1 (P <sub>1</sub> )   | : | 5 | 7 | 2 | 8 | 1 | 6 | 3 | 4 |
|-------------------------|---|---|---|---|---|---|---|---|---|
| 父代2 (P <sub>2</sub> ) : |   | 6 | 1 | 3 | 5 | 4 | 2 | 8 | 7 |
|                         |   |   |   |   |   |   |   |   |   |
| 了代1(C₁):                | : | 6 | 3 | 2 | 8 | 1 | 5 | 4 | 7 |



其中, $v_1$ 是父代染色体 1, $v_2$ 是父代染色体 2,l 是染色体的长度,v'是子代染色体,w 为工作数据, $f_x$ 为标签,s 为子字符串的起始位置,t 为子字符串的终止位置。

```
procedure: OX 交叉
```

```
input: 染色体 v₁, v₂, 染色体长度 l
output: 子代染色体 v′
begin

w←1

s←random[1:l-1];

t←random[s+1:l];

v′←v₁[s:t];
```

```
for i=1 to s-1

for j=w to l

f_s \leftarrow 0;

for k=s to t

if v_2[j]=v_1[k] then

f_s \leftarrow 1; break;
```



标签f<sub>g</sub>:父代2基因与选择的位置的基因相同为 1,不相同的为0



其中, $v_1$ 是父代染色体 1, $v_2$ 是父代染色体 2,l 是染色体的长度,v'是子代染色体,w 为工作数据, $f_x$ 为标签,s 为子字符串的起始位置,t 为子字符串的终止位置。



其中, $v_1$ 是父代染色体 1, $v_2$ 是父代染色体 2,l 是染色体的长度,v'是子代染色体,w 为工作数据, $f_x$ 为标签,s 为子字符串的起始位置,t 为子字符串的终止位置。

```
if f_g = 0 then
        v' [i] \leftarrow v_2 [j]
        w \leftarrow i + 1: break:
                                                                                                      8
                                          proto-child
for i=t+1 to l
  for j = w to l
                                              parent2
     f_g \leftarrow 0;
                                            标签f。:
     for k = s to t
        if v_2 \lceil j \rceil = v_1 \lceil k \rceil then
                                                   依次遍历父代2中所有基因位置,
          f_{\sigma} \leftarrow 1; break;
                                                   将标签f。为0的基因拷贝到子代中
     if f_g = 0 then
                                                   的第1到s-1位置以及t+1到I位置
        v' \lceil i \rceil \leftarrow v_2 \lceil j \rceil:
        w \leftarrow i + 1; break;
```

#### end

output 子代染色体 v';

其中, $v_1$ 是父代染色体 1, $v_2$ 是父代染色体 2,l 是染色体的长度,v'是子代染色体,w 为工作数据, $f_s$ 为标签,s 为子字符串的起始位置,t 为子字符串的终止位置。

#### 排序遗传算法中的交叉操作

- 单点排序交叉 (Single-point order crossover)
- 两点排序交叉 (Two-point order crossover)
- 部分映射交叉 (Partial mapped crossover)
- 基于位置的交叉(Position based crossover)
- 边重组交叉(Edge recombination crossover)

### 部分映射交叉(Partial mapped crossover)

1985年,Goldberg等针对TSP提出了部分映射交叉操作。假设 $P_1$ 和 $P_2$ 是两个父代染色体,染色体的长度为L步骤:

- 1) 先根据均匀随机分布产生父代个体的两个交叉点,定义这两点之间的区域为一匹配区域
- 2) 使用位置交叉操作交换两个父代个体的匹配区域
- 3) 对两子串匹配区域以外出现的遍历重复,依据匹配区域内的位置映射关系,逐一进行交换,此时得到的两个子代个体所表示的路径为有效路径

# 部分映射交叉(Partial mapped crossover)



# 部分映射交叉(Partial mapped crossover)



### 部分映射交叉 (Partial mapped crossover)



 $6 \leftrightarrow 5 \leftrightarrow 1$ 

#### 部分映射交叉 (Partial mapped crossover)



#### 部分映射交叉 (Partial mapped crossover)



8↔7

#### 部分映射交叉 (Partial mapped crossover)



#### 部分映射交叉伪代码

(1) 部分映射交叉 PMX。首先给出 PMX 交叉算子的运算过程。

```
procedure: PMX 交叉
input: 染色体 v_1, v_2, 染色体长度 l
output: 子代染色体 v_1', v_2'
begin
        R \leftarrow \phi
        s \leftarrow \text{random} \lceil 1 \cdot l - 1 \rceil:
        t \leftarrow \text{random}[s+1:l];
        v_1' \leftarrow v_1 \lceil 1 \cdot s - 1 \rceil / / v_2 \lceil s \cdot t \rceil / / v_1 \lceil t + 1, t \rceil:
        v_2' \leftarrow v_2 \lceil 1 \cdot s - 1 \rceil / / v_1 \lceil s \cdot t \rceil / / v_2 \lceil t + 1, l \rceil:
        R \leftarrow \text{relation}(v_1 \lceil s:t \rceil, v_2 \lceil s:t \rceil):
        legalize (v_1', v_2', R):
        output 子代 v_1', v_2':
```

end

其中, $v_1$ 是父代染色体 1, $v_2$ 是父代染色体 2,l 是染色体的长度, $v_1'$ 是子代染色体 1, $v_2'$ 是子代染色体 2,R 为两个父代染色体之间的映射关系,s 为涉及交叉操作的子字符串的起始位置,t 为涉及交叉操作的子字符串的终止位置,其中 relation( $v_1$ ,  $v_2$ )用于搜索  $v_1$ 和  $v_2$ 之间的关系,legalize( $v_1$ ,  $v_2$ , R)则基于映射关系 R 改变  $v_1$ 和  $v_2$ 的基因值。

#### 排序遗传算法中的交叉操作

- 单点排序交叉 (Single-point order crossover)
- 两点排序交叉 (Two-point order crossover)
- 部分映射交叉 (Partial mapped crossover)
- 基于位置的交叉(Position based crossover)
- 边重组交叉(Edge recombination crossover)

### 基于位置的交叉(Position based crossover)

假设 $P_1$ 和 $P_2$ 是两个父代染色体,染色体的长度为L步骤:

- 1) 随机选择n个交叉点, $j_1$ , $j_2$ ,... $j_n$ ,其中 $n \ll L$
- 2)将 $P_1$ 的第 $j_1^{th}$ , $j_2^{th}$ ,... $j_n^{th}$ 基因复制到子代 $C_1$ 和 $C_2$ 的相同位置



# 基于位置的交叉(Position based crossover)

3)子代 $C_1$ 剩余位置的基因从 $P_2$ 按照顺序复制,已经在子代 $C_1$ 中出现

的基因不再复制 4)子代 $C_2$ 剩余位置的基因从 $P_1$ 按照顺序复制,已经在子代 $C_2$ 中出现的基因不再复制



## 基于位置的交叉(Position based crossover) 3)子代 $C_1$ 剩余位置的基因从 $P_2$ 按照顺序复制,已经在子代 $C_1$ 中出现

的基因不再复制 4) 子代 $C_2$ 剩余位置的基因从 $P_1$ 按照顺序复制,已经在子代 $C_2$ 中出现 的基因不再复制

|      |   | j <sub>1</sub> ↓ |   | j <sub>2</sub> ↓ |   |   | j₃<br>↓ |   |
|------|---|------------------|---|------------------|---|---|---------|---|
| 父代1: | 5 | 7                | 2 | 8                | 1 | 6 | 3       | 4 |
| 父代2: | 6 | 1                | 3 | 5                | 4 | 2 | 8       | 7 |

子代1: 6 5 3

6

8

子代2:

#### 基于位置的交叉伪代码

```
procedure: PBX 交叉
input: 染色体 v1, v2, 染色体长度 l
output: 子代染色体 v'
begin
       S \leftarrow \phi, T \leftarrow \phi, w \leftarrow 1;
       N \leftarrow \text{random}[1:l]:
       for i=1 to N
          i \leftarrow \text{random}[1:l];
           v' \lceil i \rceil \leftarrow v_1 \lceil i \rceil;
           T \leftarrow T \cup i;
           S \leftarrow S \cup v_1 \lceil i \rceil;
       for i=1 to l
           f_{e1} \leftarrow 0;
           for i = 1 to N
              if i=t[j] then f_{g1} \leftarrow 1;
```

#### N是随机选择位置的数量 .e.g 4



$$T = \{2,5,6,9\}$$
位置合集

proto-child

$$S = \{2,5,6,9\}$$
基因合集

标签fg1:选择的位置为1,没选择的为0

#### 基于位置的交叉伪代码

```
v'[j] \leftarrow v_1[j];
    T \leftarrow T \cup i;
    S \leftarrow S \cup v_1 \lceil i \rceil;
for i=1 to l
   f_{\varrho 1} \leftarrow 0;
   for j = 1 to N
       if i=t[j] then f_{g1} \leftarrow 1;
    if f_{g1} = 1 then continue;
    for k = w to l
       f_{e2} \leftarrow 0;
        for m=1 to N
           if v_2 \lceil k \rceil = s \lceil m \rceil then
               f_{\alpha 2} \leftarrow 1; break;
       if f_{g2} = 0 then
               v' \lceil i \rceil \leftarrow v_2 \lceil k \rceil;
               w \leftarrow k + 1: break:
output 子代染色体 v';
```



标签f<sub>g2</sub>:父代2中与父代1中选择位置基因相同的位置为1,不相同的位置为0



依次遍历父代2中所有基因位置,将标签f<sub>g2</sub>为0的基因拷贝到子代中的第i个位置(标签f<sub>g1</sub>为0的位置)

其中, $v_1$ 是父代染色体 1, $v_2$ 是父代染色体 2,l 是染色体的长度,v'是子代染色体,N 为选择的位置总数, $T = \{t[j]\}$  ,j = 1,2,…,N 为选择的位置集合, $S = \{s[m]\}$ ,m = 1,2,

 $\dots$ , N 为选择位置的基因值集合,  $f_{el}$  为标签 1,  $f_{el}$  为标签 2,  $\omega$  为工作数据。

end

#### 排序遗传算法中的交叉操作

- 单点排序交叉 (Single-point order crossover)
- 两点排序交叉 (Two-point order crossover)
- 部分映射交叉 (Partial mapped crossover)
- 基于位置的交叉(Position based crossover)
- 边重组交叉(Edge recombination crossover)

- 前面介绍的TSP交叉操作基本上考虑的是城市的位置和顺序,未 考虑城市间的连接
- Grefenstette认为遗传算法应用于TSP,其遗传操作不仅要考虑城市的位置,而且有必要考虑城市间的关系,城市间的关系定义为边,让子个体继承父个体中边的信息,设计围绕边的遗传操作很有意义
- 1989年, Whitley等提出了一种被称为边重组交叉操作, 使子个体能够从父个体继承边95%~99%的信息
- 边重组操作根据继承两个父个体定义的旅程中城市间的相邻状况 生成子个体

• 例如一条路径



可以定义边有(3, 1) (1, 2) (2, 8) (8, 7) (7, 4) (4, 6) (6, 9) (9, 5) (5, 3)

- ➤ TSP中,最小化的目标函数是由合法路径中所有边的总和构成的,从这个角度考虑,路径中城市的位置不是特别重要
- 因此,边重组操作中,对于每一城市,将任意一父个体中与之邻接的其他城市列出构成列表,然后利用两个父个体对应的路径中的边表来设计交叉操作

| 父代1:      | 1  | 2         | 3  | 4      | 5     | 6  | 7  | 8 | 9 | 城市 | 连接    |
|-----------|----|-----------|----|--------|-------|----|----|---|---|----|-------|
| 父代2:      | 4  | 1         | 2  | 8      | 7     | 6  | 9  | 3 | 5 | 1  | 9 "2" |
|           |    |           |    |        |       |    |    |   |   | 2  | "1" 3 |
| ┃<br>┃根据成 | 万个 | 父代:       | 染色 | .体生    | - 成.  |    |    |   |   | 3  | 2 4 5 |
| 每一个       |    | · • • • • |    | 4      | 3 "5" |    |    |   |   |    |       |
| <br>  个体中 |    |           |    | 5      | "4" 6 |    |    |   |   |    |       |
| "",达      | 重约 | 且操        | 作中 | 产生     | 子介    | 体部 | 寸优 |   |   | 6  | 5 "7" |
| 先考点       | 慰打 |           | 7  | "6" "8 |       |    |    |   |   |    |       |
|           |    |           | 8  | "7" 9  |       |    |    |   |   |    |       |
|           |    |           |    |        |       |    |    |   |   | 0  | 0 4 0 |

| 父代1:                 | 1    | 2    | 3               | 4   | 5      | 6      | 7                  | 8   | 9  | 城市 | 连接              |
|----------------------|------|------|-----------------|-----|--------|--------|--------------------|-----|----|----|-----------------|
| 父代2:                 | 4    | 1    | 2               | 8   | 7      | 6      | 9                  | 3   | 5  | 1  | 9 "2" 4         |
| 父代染                  | 色体   | 为召利  | $\square P_2$ , | 子代  | 染色     | 体为     | C <sub>1</sub> ( 初 | ]始为 | 空) | 2  | <b>"1</b> " 3 8 |
| 步骤:                  |      | . 1  | 2               |     |        |        | 1                  |     |    | 3  | 2 4 5 9         |
| 1) 从父                | 代染   | 色体   | P的衤             | 刃始均 | 成市     | ( X) - | 开始                 |     |    | 4  | 3 "5" 1         |
| 2) 将灯                |      |      | 1               |     |        | (11)   | / I                |     |    | 5  | "4" 6 3         |
| 3)从边表                |      |      |                 |     | 1      | 4 V    |                    |     |    | 6  | 5 "7" 9         |
| 3 <i>)1)</i> \\\\\\\ | ×/口リ | リクリイ | 义中则             | 川木力 | (1/月日) | IJA    |                    |     |    | 7  | "6" "8"         |
|                      |      |      |                 |     |        |        |                    |     |    | 8  | "7" 9 2         |
|                      |      |      |                 |     |        |        |                    |     |    |    |                 |

开始城市1



8 1 6 3



| 父代1:         | 1      | 2               | 3                | 4        | 5           | 6     | 7    | 8          | 9 | 城市 | 连接            |
|--------------|--------|-----------------|------------------|----------|-------------|-------|------|------------|---|----|---------------|
| 父代2:         | 4      | 1               | 2                | 8        | 7           | 6     | 9    | 3          | 5 | 1  | 9 "2"         |
| 步骤:          |        |                 |                  |          |             |       |      |            |   | 2  | <b>"1</b> " 3 |
| 4) 从与        | 加市     | i <i>Y</i> 末日 〈 | 红的北              | 最市ス      | 列表口         | 白冼老   | 圣下-  | 一个坜        | ₽ | 3  | 2 4 5         |
| 市火,优         | ,,,,,, |                 | , , , ,          | , , ,    |             | . – . |      | •          | • | 4  | 3 "5"         |
| '  <br>  没有标 |        | _ 、 ,           | ` , `            | , ,      |             | // /  | •    | , , .      |   | 5  | "4" 6         |
| 如果连          | . — .  | , _ , _ ,       | , , ,            | , , ,    | , • • • • • | _ ,   | メロリグ | <b>火山,</b> |   | 6  | 5 "7"         |
| 5)重复9        |        |                 | ,                |          | •           | •     | 、旅名  | i<br>r     |   | 7  | "6" "8        |
| U)           | ヤムシ    | / 111/15        | 14 <i>1</i> // , | <b>.</b> | ヒノレル        | X 正   | ル以イ、 | J          |   | 8  | "7" q         |

8 1 6 3

| 父代1:  | 1                                       | 2          | 3              | 4     | 5           | 6         | 7        | 8       | 9 | 城市 | 连接            |
|-------|-----------------------------------------|------------|----------------|-------|-------------|-----------|----------|---------|---|----|---------------|
| 父代2:  | 4                                       | 1          | 2              | 8     | 7           | 6         | 9        | 3       | 5 | 1  | 9 "2"         |
| 步骤:   |                                         |            |                |       |             |           |          |         |   | 2  | <b>"1</b> " 3 |
| 5     | 胡市                                      | i <i>X</i> | 邻的出            | 成市ス   | 引表口         | 白冼君       | 圣下-      | 一个坜     | ₽ | 3  | 2 4 5         |
| 市火,优  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            |                |       |             |           |          |         | • | 4  | 3 "5"         |
| 没有标   |                                         |            |                |       |             |           |          |         |   | 5  | "4" 6         |
| 如果连   | . — .                                   | , -, -,    | • • •          | , , , | , , , , , , | _ ,       | X II J 7 | W 113 7 |   | 6  | 5 "7"         |
| 5)重复第 |                                         |            | ,              |       | •           | •         | へ旅行      | i<br>r  |   | 7  | "6" "8        |
| リ里久に  | ヤロリソ                                    | ンリカ        | 17 <i>//</i> , | Д. =  | ヒノレル        | <b>以正</b> | ル以丁、     | J       |   | 8  | "7" Q         |

8 1 6 3

| 父代1:               | 1      | 2               | 3            | 4   | 5    | 6            | 7           | 8       | 9 | 城市 | 连接              |
|--------------------|--------|-----------------|--------------|-----|------|--------------|-------------|---------|---|----|-----------------|
| 父代2:               | 4      | 1               | 2            | 8   | 7    | 6            | 9           | 3       | 5 | 1  | 9 "2" 4         |
| 步骤:                |        |                 |              |     |      |              |             |         |   | 2  | <b>"1</b> " 3 8 |
| 4) 从与              | 抽油     | î <i>X</i> 末日 : | 红的           | 最市を | 加表口  | <b>扫选</b> 求  | 圣下-         | 一个诟     | ₽ | 3  | 2 4 5           |
| 市火,他               | , ,, , | • • •           | , , , ,      |     | • •  | <i>.</i> – . |             | • //    | • | 4  | 3 "5" <i>4</i>  |
| 1977   19<br>  没有标 | _      |                 |              |     |      |              |             |         |   | 5  | "4" 6 3         |
| 如果连                |        | ,               |              |     |      |              | メロリグ        | W 114 3 |   | 6  | 5 "7" 9         |
| 5)重复               |        |                 | ,            |     | •    | •            | <b>、</b> 旅行 | ŕ       |   | 7  | "6" "8"         |
|                    |        | エリファ            | 1 <i>111</i> |     | ロノロバ | XIE I        | NK 1        |         |   | 8  | "7" 9 <i>2</i>  |
| 当前城<br> 下一城        | -      | ͻ╂ℿϼ            | つ 问          | 冼   |      |              |             |         |   | 9  | 8 1 6           |
| 择,8的               |        |                 |              |     |      |              |             |         |   |    |                 |

| 父代1:                 | 1        | 2             | 3                | 4     | 5           | 6     | 7     | 8               | 9 | 城市 | 连接                     |
|----------------------|----------|---------------|------------------|-------|-------------|-------|-------|-----------------|---|----|------------------------|
| 父代2:                 | 4        | 1             | 2                | 8     | 7           | 6     | 9     | 3               | 5 | 1  | 9 <b>"2"</b> 4         |
| 步骤:                  |          |               |                  |       |             |       |       |                 |   | 2  | <b>"1</b> " 3 <b>8</b> |
| 4)从与                 | 拉拉       | ī <i>X</i> 相? | 邻的出              | 成市ス   | 引表口         | 中选制   | 圣下-   | 一个垣             | ΐ | 3  | 2 4 5 9                |
| 市火,伊                 | , ,, ,   |               | , , , ,          | , , , | • •         | . — . |       | 如果              | • | 4  | 3 "5" 1                |
| 19.47   1/2<br>  没有标 |          |               |                  |       |             |       |       | <i>/</i> 4/   • |   | 5  | "4" 6 3                |
| 如果连                  |          | , _, _,       | • • •            | , , , | , • , , • , |       | 父ロリク  | <b>火山,</b>      |   | 6  | 5 "7" 9                |
| 5)重复                 | •> •>> • |               | ,                | _ ,   | •           | •     | \ 旅名  | į.              |   | 7  | "6" " <del>8"</del>    |
| , ,                  |          | トリント          | ( <i>1)</i> // , | -Н.   | ロノロバ        | XIE I | AK I. | J               |   | 8  | "7" 9 <b>2</b>         |
| 当前城<br>下一城           |          | ΄2∄Πα         | つ 问              | 冼     |             |       |       |                 |   | 9  | 8/1 63                 |
| Yi                   |          |               | _                | _     |             |       |       |                 |   |    |                        |

| 父代1:                 | 1        | 2             | 3                | 4     | 5           | 6     | 7     | 8                 | 9 | 城市 | 连接                     |
|----------------------|----------|---------------|------------------|-------|-------------|-------|-------|-------------------|---|----|------------------------|
| 父代2:                 | 4        | 1             | 2                | 8     | 7           | 6     | 9     | 3                 | 5 | 1  | 9 <b>"2"</b> 4         |
| 步骤:                  |          |               |                  |       |             |       |       |                   |   | 2  | <b>"1</b> " 3 <b>8</b> |
| 4)从与                 | 拉拉       | ī <i>X</i> 相? | 邻的出              | 成市ス   | 引表口         | 中选制   | 圣下-   | 一个垣               | ΐ | 3  | 2 4 5 9                |
| 市火,伊                 | , ,, ,   |               | , , , ,          | , , , | • •         | . — . |       | 如果                | • | 4  | 3 "5" 1                |
| 19.47   1/2<br>  没有标 |          |               |                  |       |             |       |       | ) 4.77 <b>1</b> • |   | 5  | "4" 6 3                |
| 如果连                  |          | , _, _,       | • • •            | , , , | , • , , • , |       | 父ロリク  | <b>火山,</b>        |   | 6  | 5 "7" 9                |
| 5)重复                 | •> •>> • |               | ,                | _ ,   | •           | •     | \ 旅名  | į.                |   | 7  | "6" " <del>8"</del>    |
| , ,                  |          | トリント          | ( <i>1)</i> // , | -Н.   | ロノロバ        | XIE I | AK I. | J                 |   | 8  | "7" 9 <b>2</b>         |
| 当前城<br>下一城           |          | ΄2∄Πα         | つ 问              | 冼     |             |       |       |                   |   | 9  | 8/1 63                 |
| Yi                   |          |               | _                | _     |             |       |       |                   |   |    |                        |

8

| 父代1:             | 1                 | 2             | 3       | 4     | 5    | 6     | 7    | 8       | 9 | 城市 |
|------------------|-------------------|---------------|---------|-------|------|-------|------|---------|---|----|
| 父代2:             | 4                 | 1             | 2       | 8     | 7    | 6     | 9    | 3       | 5 | 1  |
| 步骤:              |                   |               |         |       |      |       |      |         |   | 2  |
| 4) 从与            | 胡油                | i <i>X</i> 相; | 邻的出     | 成市る   | 引表口  | 口洗书   | 圣下-  | 一个坛     | ₿ | 3  |
| 市火,伊             | , , , , ,         |               | , , , , | , , , | • •  | . – . |      | • //    | N | 4  |
| 17.77  <br>  没有标 |                   |               |         |       |      |       |      |         |   | 5  |
| 如果连              |                   |               |         |       |      |       | メロリグ | W 113 3 |   | 6  |
| 5)重复             | 12 122 1          |               | ,       |       | •    | •     | 、旅名  | i<br>r  |   | 7  |
| 0)               | <del>77</del> 4// | イエリント         | , T     | -Н. П | ヒノロル | VE I  | カ民工、 | J       |   | 8  |
| 当前城              | रेत्ते १          |               |         |       |      |       |      |         |   | 9  |
| שלינים 🗀         | טרן ווּ           |               |         |       |      |       |      |         |   |    |

下一城市优先选择7

连接

9 "2" 4

**"1**" 3 **8** 

| 父代1:  | 1        | 2             | 3                | 4     | 5    | 6     | 7           | 8           | 9  | 城市 |
|-------|----------|---------------|------------------|-------|------|-------|-------------|-------------|----|----|
| 父代2:  | 4        | 1             | 2                | 8     | 7    | 6     | 9           | 3           | 5  | 1  |
| 步骤:   |          |               |                  |       |      |       |             |             |    | 2  |
| 4) 从与 | 拉拉       | ī <i>X</i> 相? | 邹的出              | 成市る   | 加表口  | 中冼老   | 圣下-         | 一个圻         | ₿. | 3  |
| 市火,伊  | ,,,,,,,  |               | ., ., • ,        |       | • •  |       |             | • //        | ~  | 4  |
| ''    |          | _ , , ,       |                  |       |      |       |             |             |    | 5  |
| 如果连   |          | , = , = ,     |                  | , , , | , •  |       | X 11 17     | W 113 )     |    | 6  |
| 5)重复  | 12 122 1 |               | ,                | _ ,   | •    | •     | <b>\</b> 旅行 | <del></del> |    | 7  |
| 0) 主义 | 774/1    | エリスト          | 1 1 / <b>/</b> 9 | Д. Э  | ロノロル | MIE I | NKI         | I           |    | 8  |
| 当前城   | श्रेतिर  |               |                  |       |      |       |             |             |    | 9  |
| ロリクル  | ט בו ונו |               |                  |       |      |       |             |             |    |    |

下一城市优先选择7

连接

9 "2" 4

**"1**" 3 **8** 

2 4 5 9

8

| 父代1:  | 1               | 2             | 3       | 4       | 5           | 6             | 7           | 8       | 9      | 城市 |
|-------|-----------------|---------------|---------|---------|-------------|---------------|-------------|---------|--------|----|
| 父代2:  | 4               | 1             | 2       | 8       | 7           | 6             | 9           | 3       | 5      | 1  |
| 步骤:   |                 |               |         |         |             |               |             |         |        | 2  |
| 4) 从与 | 动城市             | ī <i>X</i> 相? | 邹的地     | 成市る     | 引表口         | 中冼老           | 圣下一         | 一个坜     | ₽<br>V | 3  |
| 市火,伊  | ,,,,,,,         |               | ., ,, , |         | • •         | ,             |             | , ,,    | •      | 4  |
| 没有标   |                 |               |         |         |             |               |             |         |        | 5  |
| 如果连   |                 | , -, -,       |         |         | , , , , , , |               | X H J 7     | W 119 ) |        | 6  |
| 5)重复  | •> •> •         |               | ,       | _ ,     | •           | •             | <b>、</b> 旅行 | ŕ       |        | 7  |
| 9至久   | /\* <i>\*\*</i> | エリノリ          | 1 1/2 9 | <b></b> | ムノロル        | <b>√</b> 1E ] | ANI         | J       |        | 8  |
|       |                 |               |         |         |             |               |             |         |        | 9  |
|       |                 |               |         |         |             |               |             |         |        |    |

连接

9 "2" 4

**"1**" 3 **8** 

2 4 5 9

当前城市7 下一城市选择6

8

6

| 父代1:  | 1                | 2             | 3   | 4   | 5              | 6        | 7                          | 8                              | 9  |  |
|-------|------------------|---------------|-----|-----|----------------|----------|----------------------------|--------------------------------|----|--|
| 父代2:  | 4                | 1             | 2   | 8   | 7              | 6        | 9                          | 3                              | 5  |  |
| 步骤:   |                  |               |     |     |                |          |                            |                                |    |  |
| 4) 从与 | 5城市              | j <i>X</i> 相? | 邻的均 | 成市る | 別表「            | 中选者      | 圣下-                        | 一个坊                            | ţ. |  |
| 市火,付  |                  |               |     |     |                |          |                            |                                |    |  |
| 没有标   | -,               |               |     |     |                |          |                            |                                |    |  |
| 如果连   |                  |               |     |     |                |          | <i>&gt;</i> (   <b>4</b> ) | <b>X</b> · <b>I</b> · <b>Y</b> |    |  |
| 5)重复  | 第2步              | 到第            | 4步, | 直至  | ·<br>E完成       | ,<br>뉯整个 | 、旅行                        | ŕ                              |    |  |
| ,     | 1. >             | 421           |     |     | _, <b>_</b> ,, | ,        | / <b>///</b>               | •                              |    |  |
|       |                  |               |     |     |                |          |                            |                                |    |  |
| │     | <del>`</del> ——- |               |     |     |                |          |                            |                                |    |  |

9

连接

9 "2" 4

8183

当前城市7 下一城市选择6

8

| 父代1:                    | 1                    | 2         | 3    | 4     | 5          | 6     | 7                     | 8            | 9 | ţ |  |  |  |  |
|-------------------------|----------------------|-----------|------|-------|------------|-------|-----------------------|--------------|---|---|--|--|--|--|
| 父代2:                    | 4                    | 1         | 2    | 8     | 7          | 6     | 9                     | 3            | 5 |   |  |  |  |  |
| 步骤:                     | 步骤:                  |           |      |       |            |       |                       |              |   |   |  |  |  |  |
| 4) 从与城市 X相邻的城市列表中选择下一个城 |                      |           |      |       |            |       |                       |              |   |   |  |  |  |  |
| 市 //,优先选择具有""标记的城市码,如果  |                      |           |      |       |            |       |                       |              |   |   |  |  |  |  |
|                         | 没有标记,优先列表中具有最少连接的城市, |           |      |       |            |       |                       |              |   |   |  |  |  |  |
| 如果连                     |                      | , = , = , |      | , , , | , 4 . 1/42 |       | <b>Д</b> Н <b>3</b> 7 | <b>9</b> (1) |   |   |  |  |  |  |
| 5)重复                    | •> •> •              | ,,,,      | , ,  |       | •          | •     | <b>、</b> 旅行           | ŕ            |   |   |  |  |  |  |
| , — 2 43                | , –                  | エリント      | 1199 |       | L) U/%     | ATE 1 | AKI                   |              |   |   |  |  |  |  |
| 当前城市6<br>下一城市在5和9之间选    |                      |           |      |       |            |       |                       |              |   |   |  |  |  |  |
| 择,9的连接更少,选择9            |                      |           |      |       |            |       |                       |              |   |   |  |  |  |  |
|                         |                      |           |      |       |            |       | _                     |              |   |   |  |  |  |  |

连接

9 "2" 4

**"1**" 3 **8** 

城市

6

| 父代1:  | 1        | 2             | 3       | 4     | 5           | 6     | 7           | 8         | 9 | 城市 | 连接                     |
|-------|----------|---------------|---------|-------|-------------|-------|-------------|-----------|---|----|------------------------|
| 父代2:  | 4        | 1             | 2       | 8     | 7           | 6     | 9           | 3         | 5 | 1  | <b>%</b> "2" 4         |
| 步骤:   |          |               |         |       |             |       |             |           |   | 2  | <b>"1</b> " 3 <b>8</b> |
| 4) 从与 | 市城市      | ī <i>X</i> 相? | 红的      | 成市ス   | 引表口         | 中选者   | 圣下-         | 一个坜       | ₽ | 3  | 2 4 5 8                |
| 市火,伊  | , , , ,  | 4             | 3 "5" 1 |       |             |       |             |           |   |    |                        |
| 12.77 |          |               |         |       |             |       |             | 如果<br>表市。 |   | 5  | "4" 6 3                |
| 如果连   | . — .    | , -, -,       | • • •   | , , , | , • , , • , |       | XHJ7        | W 113 3   |   | 6  | 5 " <b>7"</b> 8        |
| 5)重复  | •> •>> • |               | ,       |       | •           | •     | <b>\</b> 旅行 | ŕ         |   | 7  | "6" "8"                |
| 当前城   | -        | エリント          | 11/2/9  | ₽     | ムノロバ        | AJE J | AKI         |           |   | 8  | "7" 82                 |
| 下一切   |          | E5和9          | 之间      | ]选    |             |       |             |           |   | 9  | 8183                   |
| 择, 9  | -        | _             |         |       | )           |       |             |           |   |    |                        |

8

6

9

| 父代1:                    | 1                      | 2         | 3 | 4     | 5   | 6 | 7    | 8    | 9 |  |  |  |  |  |  |
|-------------------------|------------------------|-----------|---|-------|-----|---|------|------|---|--|--|--|--|--|--|
| 父代2:                    | 4                      | 1         | 2 | 8     | 7   | 6 | 9    | 3    | 5 |  |  |  |  |  |  |
| 步骤:                     | 步骤:                    |           |   |       |     |   |      |      |   |  |  |  |  |  |  |
| 4) 从与城市 X相邻的城市列表中选择下一个城 |                        |           |   |       |     |   |      |      |   |  |  |  |  |  |  |
|                         | 市 /, 优先选择具有""标记的城市码,如果 |           |   |       |     |   |      |      |   |  |  |  |  |  |  |
| 17.7                    |                        | _ • • •   |   |       |     |   |      |      |   |  |  |  |  |  |  |
| 如果连                     | /                      | , = , = , |   | , , , | , • | , | 女ロJウ | 火 ロ・ |   |  |  |  |  |  |  |
|                         |                        |           |   |       | •   |   | 、旅行  | į.   |   |  |  |  |  |  |  |
| り里交り                    | 5)重复第2步到第4步,直至完成整个旅行   |           |   |       |     |   |      |      |   |  |  |  |  |  |  |
|                         |                        |           |   |       |     |   |      |      |   |  |  |  |  |  |  |
| 当前場                     | (市9                    |           |   |       |     |   |      |      |   |  |  |  |  |  |  |

连接

8 "2" 4

**"1**" 3 **8** 

2 4 5 8

3 "5" 1

下一城市选择

8

6

9

| 父代1:                    | 1                      | 2         | 3   | 4     | 5           | 6   | 7         | 8   | 9 |  |  |  |  |  |  |
|-------------------------|------------------------|-----------|-----|-------|-------------|-----|-----------|-----|---|--|--|--|--|--|--|
| 父代2:                    | 4                      | 1         | 2   | 8     | 7           | 6   | 9         | 3   | 5 |  |  |  |  |  |  |
| 步骤:                     | 步骤:                    |           |     |       |             |     |           |     |   |  |  |  |  |  |  |
| 4) 从与城市 X相邻的城市列表中选择下一个城 |                        |           |     |       |             |     |           |     |   |  |  |  |  |  |  |
|                         | 市 /, 优先选择具有""标记的城市码,如果 |           |     |       |             |     |           |     |   |  |  |  |  |  |  |
| 11.7, 1<br>  没有标        |                        | _ , , ,   |     |       |             |     |           |     |   |  |  |  |  |  |  |
|                         | . — /                  | , = , = , |     | , , , | , 4 . / 4 > |     | 女口リグ      | 火山, |   |  |  |  |  |  |  |
| 如果连                     |                        |           |     |       |             |     | . <u></u> | _   |   |  |  |  |  |  |  |
| 5)重复注                   | 第2步                    | 到第        | 4步, | 直,刍   | 已元月         | 又整个 | 、派行       | ſ   |   |  |  |  |  |  |  |
|                         |                        |           |     |       |             |     |           |     |   |  |  |  |  |  |  |
| 当前场                     | 当前城市9                  |           |     |       |             |     |           |     |   |  |  |  |  |  |  |

9

连接

**8** "2" 4

8183

下一城市选择

| 辺重组父义(Edge recombination crossover)                           |    |                 |         |     |     |     |     |     |        |    |                |  |
|---------------------------------------------------------------|----|-----------------|---------|-----|-----|-----|-----|-----|--------|----|----------------|--|
| 父代1:                                                          | 1  | 2               | 3       | 4   | 5   | 6   | 7   | 8   | 9      | 城市 | 连接             |  |
| 父代2:                                                          | 4  | 1               | 2       | 8   | 7   | 6   | 9   | 3   | 5      | 1  | <b>8 "2"</b> 4 |  |
| 步骤:                                                           |    | 2               | "1" 3 8 |     |     |     |     |     |        |    |                |  |
|                                                               | 城市 | î <i>X</i> 末日 〈 | 邻的出     | お市る | 加表口 | 中冼老 | 圣下- | 一个坛 | ₽<br>V | 3  | 2 4 5 %        |  |
| 4) 从与城市 X相邻的城市列表中选择下一个城市 Y, 优先选择具有""标记的城市码,如果 4 5 4 5 7 4 5 7 |    |                 |         |     |     |     |     |     |        |    |                |  |
| 没有标记,优先列表中具有最少连接的城市, 5 "4" 6/3                                |    |                 |         |     |     |     |     |     |        |    |                |  |

8

6

9

如果连接数相同,任意选择一个 5)重复第2步到第4步,直至完成整个旅行

8 "7" 82

5

8183

9

下一城市在4和5之间选择,4和5 的连接数相同, 随机选择-假设选择5

当前城市3

| 辺重组父义(Edge recombination crossover)           |                |               |      |     |           |                |      |                          |        |    |                |  |
|-----------------------------------------------|----------------|---------------|------|-----|-----------|----------------|------|--------------------------|--------|----|----------------|--|
| 父代1:                                          | 1              | 2             | 3    | 4   | 5         | 6              | 7    | 8                        | 9      | 城市 | 连接             |  |
| 父代2:                                          | 4              | 1             | 2    | 8   | 7         | 6              | 9    | 3                        | 5      | 1  | <b>8 "2"</b> 4 |  |
| 步骤:                                           |                |               |      |     |           |                |      |                          |        | 2  | "1" 3 8        |  |
|                                               | i 城市           | î <i>X</i> 相; | 邻的出  | が市る | 加表口       | 中冼老            | 圣下-  | 一个坛                      | ₽<br>V | 3  | 2 4 8 8        |  |
| 4) 从与城市 X相邻的城市列表中选择下一个城市 Y, 优先选择具有""标记的城市码,如果 |                |               |      |     |           |                |      |                          |        |    |                |  |
| 没有标记,优先列表中具有最少连接的城市, 5 "4" 6 3                |                |               |      |     |           |                |      |                          |        |    |                |  |
| I I X I I 1/J)                                | <i>V</i> L 1.7 | レロノしに         | ノコイベ |     | I 1 1 X . | <b>ノ ヘ</b> し.l | メロコグ | <b>7</b> A/ 1 1 <b>7</b> |        |    |                |  |

如果连接数相同,任意选择一个

5)重复第2步到第4步,直至完成整个旅行

9

8183

下一城市在4和5之间选择,4和5 的连接数相同, 随机选择-

当前城市3

假设选择5

8

6

9

5

5 "7" S

"7" 82

| 父代1:                    | 1                    | 2 | 3   | 4 | 5   | 6 | 7                   | 8                 | 9 | j |  |  |  |  |  |
|-------------------------|----------------------|---|-----|---|-----|---|---------------------|-------------------|---|---|--|--|--|--|--|
| 父代2:                    | 4                    | 1 | 2   | 8 | 7   | 6 | 9                   | 3                 | 5 |   |  |  |  |  |  |
| 步骤:                     | 步骤:                  |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |
| 4) 从与城市 X相邻的城市列表中选择下一个城 |                      |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |
| 市 /,优先选择具有""标记的城市码,如果   |                      |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |
|                         | 没有标记,优先列表中具有最少连接的城市, |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |
| 如果连                     |                      |   |     |   | , • | • | <b>Л</b> Н <b>У</b> | <b>9</b> ( ) [4 ) |   |   |  |  |  |  |  |
| <i>,,,,</i> ,           | •> •>>               | 4 | , , |   | •   |   | <b>、</b> 旅行         | <del>i</del>      |   |   |  |  |  |  |  |
| 0)主义)                   | 5)重复第2步到第4步,直至完成整个旅行 |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |
| 当前场                     | 当前城市5                |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |
|                         | 三則城巾5<br>下一城市选择4     |   |     |   |     |   |                     |                   |   |   |  |  |  |  |  |

5

6

9

连接

8 "2" 4

"1" 3 8

2 4 5 8

| 父代1:             | 1                               | 2               | 3         | 4     | 5           | 6              | 7                     | 8                  | 9  | 城市 | 连接              |  |  |  |
|------------------|---------------------------------|-----------------|-----------|-------|-------------|----------------|-----------------------|--------------------|----|----|-----------------|--|--|--|
| 父代2:             | 4                               | 1               | 2         | 8     | 7           | 6              | 9                     | 3                  | 5  | 1  | <b>8 "2"</b> 4  |  |  |  |
| 步骤:              |                                 |                 |           |       |             |                |                       |                    |    | 2  | "1" 3/8         |  |  |  |
|                  | i城市                             | ī <i>X</i> 末目 < | <b>邹的</b> | 城市ス   | 列表口         | 中选者            | 圣下-                   | 一个坊                | Ť. | 3  | 2 4 8 8         |  |  |  |
|                  | 1) 从与城市 <i>X</i> 相邻的城市列表中选择下一个城 |                 |           |       |             |                |                       |                    |    |    |                 |  |  |  |
| 没有标 <sup>-</sup> |                                 |                 |           |       |             |                |                       | Z4121 <del>4</del> |    | 5  | "4" 83          |  |  |  |
| 如果连              |                                 | , -, -,         | • • •     | , , , | , , , , , , |                | <b>Х</b> Н <b>У</b> 7 | 2N 117 /           |    | 6  | 5 "T" 8         |  |  |  |
| 5)重复第            |                                 |                 | •         |       |             |                | <b>~</b> 旅行           | r<br>r             |    | 7  | "6" "8"         |  |  |  |
| 9至久)             | 14-5                            | 27/14           |           |       |             | <b>~</b> 1L. ) | ANIS                  | ,                  |    | 8  | " <b>7</b> " 82 |  |  |  |
| 当前城              | 市4,                             | 得至              | IJC1      |       |             |                |                       |                    |    | 9  | 8188            |  |  |  |
| 同样可              | 川但                              | なりつ             |           |       |             |                |                       |                    |    |    |                 |  |  |  |

回件可以得到C2 8 5 C1: