Datenimport

Einlesen lokaler Datendateien

Daniela Palleschi

Di. den 04.06.2024

Inhaltsverzeichnis

	Lesungen	2			
1	Einrichtung 1.1 Pakete mit pacman	2			
2	CSV: Comma separated value	3			
	2.1 'Tidy' Daten	4			
	2.2 Tabelle zu csv	4			
	2.3 CSV speichern	5			
3	Das Paket readr	5			
4	Das Paket here	6			
5	Arbeiten mit Daten	7			
	5.1 Fehlende Werte	7			
	5.2 Spaltennamen	9			
	5.3 Pipes	10			
	5.4 Variablentypen	11			
6	Andere Dateitypen und Begrenzungszeichen	12			
Ha	ausaufgaben	12			
Se	Session Info				

Lernziele

Heute werden wir lernen, wie man:

- lokale Datendateien (.csv) erstellen und speichern
- lokale Datendateien mit dem Paket readr importieren
- mit fehlenden Werten umzugehen
- Variablen in Faktoren umwandeln

Lesungen

- Kurs-Website: Kap. 5 Datenvisualisierung 2
- Kap. 8 (Datenimport) in Wickham et al. (2023)
- Kap. 4 (Datenimport) in Nordmann & DeBruine (2022)

Wiederholung

Bis jetzt haben wir gelernt, wie man...

- Quarto-Skripte für die reproduzierbare Datenanalyse zu verwenden
- eingebaute Datensätze zu laden
- Daten mit dplyr-Verben zu verarbeiten
- Verteilungen und Beziehungen zwischen verschiedenen Variablentypen zu visualisieren

1 Einrichtung

1.1 Pakete mit pacman

- wir fangen an, das Paket pacman anstelle von install.packages() und library zu benutzen
 - die Funktion p_load() nimmt Paketnamen als Argumente
 - prüft dann, ob Sie das Paket installiert haben
 - * wenn ja -> lädt das Paket (genau wie library())
 - * wenn nicht -> wird das Paket installiert und dann geladen (wie mit install.packages() + library())
- dies erspart uns die individuelle Installation neuer Pakete

```
# install new packages IN THE CONSOLE!
install.packages("pacman")
```

- wir haben jetzt tidyverse geladen und die neuen Pakete janitor und here installiert und geladen
 - Um mehr über diese Pakete herauszufinden, geben Sie ?janitor und ?here in der Konsole ein.
- fügen Sie Ihrem Projektverzeichnis einen Ordner mit dem Namen daten hinzu (der genau gleich geschrieben ist).

- Stellen Sie sicher, dass Sie in der Klasse RProject arbeiten!
- Falls nicht, folgen Sie der Übung auf der Kurs-Website hier

2 CSV: Comma separated value

- Es gibt viele verschiedene Dateitypen, die Daten annehmen können, z. B. .xlsx, .txt, .csv, .tsv
- .csv ist der typischste Dateityp und steht für: Comma Separated Values
- So sieht eine einfache CSV-Datei aus, wenn man sie als Rohtext betrachtet

```
Student ID, Full Name, favourite.food, mealPlan, AGE 1, Sunil Huffmann, Strawberry yoghurt, Lunch only, 4 2, Barclay Lynn, French fries, Lunch only, 5 3, Jayendra Lyne, N/A, Breakfast and lunch, 7 4, Leon Rossini, Anchovies, Lunch only, 5, Chidiegwu Dunkel, Pizza, Breakfast and lunch, five 6, Güvenç Attila, Ice cream, Lunch only, 6
```

• die erste Zeile (die "Kopfzeile") enthält die Spaltennamen

- die folgenden Zeilen enthalten die Daten
- Wie viele Variablen gibt es? Wie viele Beobachtungen?

2.1 'Tidy' Daten

- Sie wollen, dass Ihre Daten aufgeräumt sind
 - aufgeräumte Daten sind rechteckig, und:
 - jede Spalte steht für eine Variable
 - jede Zeile eine Beobachtung
 - jede Zelle ein Datenpunkt (?@fig-tidy-data)

Abbildung 1: Source: Wickham et al. (2023) (all rights reserved)

2.2 Tabelle zu csv

- Lassen Sie uns einige Spielzeugdaten in einer Tabellenkalkulation sammeln, die wir dann als CSV-Datei speichern und in R laden werden
 - Klicken Sie hier, um zu einem bearbeitbaren Arbeitsblatt zu gelangen.
 - Geben Sie die relevanten Informationen über sich selbst ein, oder erfinden Sie einige Daten: den Namen eines Haustiers, das Sie haben/hatten, Größe, Geburtsmonat und -tag sowie Ihre erste Sprache. Wenn Sie kein Haustier haben, lassen Sie die Zelle leer.

Abbildung 2: Our spreadsheet

2.3 CSV speichern

• Speichern Sie die Tabelle als groesse_geburtstag.csv auf Ihrem Computer, direkt in einem Ordner namens daten in unserem Projektverzeichnis

3. Gehen Sie zu Ihrem daten-Ordner und überprüfen Sie, ob die CSV-Datei dort ist.

3 Das Paket readr

- müssen wir nun die Daten einlesen
- wir müssen eine Funktion verwenden, die CSV-Daten liest, und angeben, wo sich die Daten in unserem RProject-Ordner befinden
- Das readr-Paket (Teil von tidyverse) kann die meisten Datentypen einlesen und hat mehrere Funktionen für verschiedene Datentypen

Tabelle 1: Data from the groesse_geburt stag.csv file as a table.

Größe	Geburtsmonat	L1	Haustier	Was für ein Haustier?
171	5	Englisch	Lola	Hundin
168	11	Deutsch	keine	keine
182	4	Deutsch	N/A	NA
190	8	Deutsch	Knut	Kater
170	10	Deutsch	Emma	Hundin
163	2	Deutsch	Üzgür	Kater
164	7	Italienisch	Fipsy	Katze
167	12	Schwedisch	Anna	Fisch
189	10	Norwegisch	Arvid	Papagei
163	7	Russisch	Narzis	Kater
159	11	Punjabi	Mimi	Katze
173	9	Deutsch	Percy	Hund

• Aufgabe 3.1: readr

Beispiel 3.1.

- 1. Importieren Sie den Datensatz "groesse_geburtstag.csv" und speichern Sie ihn als Objekt mit dem Namen df_groesse.
 - df_ ist die Abkürzung für DataFrame; es ist eine gute Idee, ein Präfix vor Objektnamen zu verwenden, damit wir wissen, was jedes Objekt enthält
- 2. Beim Importieren von Daten mit read_csv werden einige Informationen in der Konsole ausgegeben. Was wird gedruckt?
- 3. Untersuche den Datensatz mit Funktionen wie summary() oder head()
- 4. Sehen Sie etwas Ungewöhnliches?

4 Das Paket here

- Woher weiß R genau, wo der Ordner daten zu finden ist?
- \bullet unser Arbeitsverzeichnisist auf den Ort unseres R
Projekts auf unserem Computer festgelegt
 - wann immer wir auf Daten in unserem RProjekt zugreifen wollen, sollten wir unseren Dateipfad in here() verschachteln

• um zu sehen, von wo aus here() startet, führen Sie here() aus

here()

$[1] \ "/Users/danielapalleschi/Documents/IdSL/Teaching/SoSe24/B.A./r4ling_sose2024" \ [2] \ "/Users/danielapalleschi/Documents/IdSL/Teaching/SoSe24/B.A./r4ling_sose2024" \ [3] \ "/Users/danielapalleschi/Documents/IdSL/Teaching/SoSe24/B.A./r4ling_sose2024" \ [4] \ "/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalleschi/Documents/Users/danielapalles$

• Die Ausgabe wird auf allen Rechnern unterschiedlich aussehen, da sie relativ zu dem Ort ist, an dem wir unseren Projektordner abgelegt haben

Abbildung 3: Image source: Allison Horst (all rights reserved)

5 Arbeiten mit Daten

5.1 Fehlende Werte

- Sie haben vielleicht einige NA oder N/A Werte bemerkt
 - N/A wurde als Text in einer unserer Beobachtungen geschrieben, und so liest R es als solches
 - NA in R bezieht sich auf fehlende Daten ("Nicht verfügbar")

- Echte fehlende Werte sind komplett leer, so dass N/A in unseren df_groesse-Daten nicht wirklich als fehlender Wert gelesen wird.
- Um dies zu beheben, können wir das Argument na = für die Funktion read_csv() verwenden, das der Funktion read_csv() mitteilt, welche Werte sie mit fehlenden Werten gleichsetzen soll

```
# print the head of the data set
head(df_groesse)
```

A tibble: 6 x 5

```
Größe Geburtsmonat L1
                              Haustier `Was für ein Haustier?`
              <dbl> <chr>
  <dbl>
                              <chr>
                                       <chr>>
1
   171
                   5 Englisch Lola
                                       "Hundin"
2
                                        "keine"
   168
                  11 Deutsch keine
3
   182
                   4 Deutsch <NA>
                   8 Deutsch Knut
4
   190
                                        "Kater"
5
   170
                  10 Deutsch Emma
                                        "Hundin"
   163
                   2 Deutsch Üzgür
                                        "Kater"
```

- der Wert, der vorher "" war, wird als NA gelesen
- aber was ist mit der leeren Zelle? Wir haben jetzt überschrieben, dass read_csv() leere Zellen als NA liest
 - Nun wollen wir read_csv() anweisen, mehr als eine Art von Eingabe als NA zu lesen, d.h. wir wollen es anweisen, "" und "N/A" als NA zu lesen
 - Dazu verwenden wir unsere immer nützliche Verkettungsfunktion: c()
 - lassen Sie uns auch 'keine' als NA's einschließen

```
# print the head of the data set
head(df_groesse)
```

1	171	5	Englisch	Lola	Hundin
2	168	11	Deutsch	<na></na>	<na></na>
3	182	4	Deutsch	<na></na>	<na></na>
4	190	8	Deutsch	Knut	Kater
5	170	10	Deutsch	Emma	Hundin
6	163	2	Deutsch	Üzgür	Kater

5.2 Spaltennamen

- Ein Spaltenname in unseren Daten ist von Backticks umgeben (z.B. `Was für ein Haustier?`)
 - Das liegt daran, dass er ein Leerzeichen enthält, das syntaktisch nicht gültig ist.
 - Eine schnelle Lösung ist die Funktion clean_names() aus dem Paket janitor, das wir bereits geladen haben

clean_names(df_groesse)

A tibble: 12 x 5

	grosse	${\tt geburtsmonat}$	11	${\tt haustier}$	was_fur_ein_haustier
	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>
1	171	5	Englisch	Lola	Hundin
2	168	11	Deutsch	<na></na>	<na></na>
3	182	4	Deutsch	<na></na>	<na></na>
4	190	8	Deutsch	Knut	Kater
5	170	10	Deutsch	Emma	Hundin
6	163	2	Deutsch	Üzgür	Kater
7	164	7	${\tt Italienisch}$	Fipsy	Katze
8	167	12	Schwedisch	Anna	Fisch
9	189	10	Norwegisch	Arvid	Papagei
10	163	7	Russisch	Narzis	Kater
11	159	11	Punjabi	Mimi	Katze
12	173	9	Deutsch	Percy	Hund

- Das sieht besser aus! Aber wenn Sie jetzt head(df_groesse) ausführen, sehen Sie dann die bereinigten Spaltennamen?
- Sie sollten nicht, denn wenn wir ein Objekt durch eine Funktion übergeben, wird das Objekt nicht 'aktualisiert'
 - Deshalb müssen wir das Objekt erneut mit dem Zuweisungsoperator <- zuweisen.

```
df_groesse <- janitor::clean_names(df_groesse)</pre>
```

5.3 Pipes

- Pipes werden am Ende eines Funktionsaufrufs platziert, wenn das Ergebnis dieser Funktion durch eine nachfolgende Funktion weitergegeben werden soll
 - Pipes können als "und dann..." gelesen werden

```
read_csv(here::here("daten", "groesse_geburtstag.csv")) |>
head()
```

A tibble: 6 x 5

	Größe	${\tt Geburtsmonat}$	L1	${\tt Haustier}$	`Was für	${\tt ein}$	Haustier?`
	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<chr></chr>	<chr></chr>		
1	171	5	Englisch	Lola	Hundin		
2	168	11	Deutsch	keine	keine		
3	182	4	Deutsch	N/A	<na></na>		
4	190	8	Deutsch	Knut	Kater		
5	170	10	Deutsch	Emma	Hundin		
6	163	2	Deutsch	Üzgür	Kater		

Derzeit gibt es 2 Pipes, die in R verwendet werden können.

- 1. die magrittr-Package-Pipe: %>%
- 2. die neuer (seit 2023) native R-Pipe: |>
- es gibt keine großen Unterschiede, die für unsere aktuellen Anwendungen wichtig sind
- Sie können das Tastaturkürzel ${\tt Cmd/Ctrl}$ + ${\tt Shift/Strg}$ + ${\tt M}$ verwenden, um eine Pipe zu erzeugen

Beispiel 5.1.

- 1. Laden Sie den Datensatz groesse_geburtstag.csv erneut mit festen NAs und dann
 - Benutzen Sie eine Pipe, um clean_names() für den Datensatz aufzurufen, und dann
 - rufen Sie die Funktion "head()" auf
 - Überprüfen Sie die Anzahl der Beobachtungen und Variablen, gibt es ein Problem?

- 2. Laden Sie den Datensatz groesse_geburtstag.csv erneut mit festen NAs, speichern Sie ihn als Objekt df_groesse, und dann
 - Verwenden Sie eine Pipe, um clean_names() auf den Datensatz anzuwenden.
- 3. Warum sollte man nicht eine Pipe und die Funktion "head()" verwenden, wenn man den Datensatz als Objekt speichert?

5.4 Variablentypen

- die wichtigsten Spaltentypen, die man kennen sollte, sind "numerisch" und "Faktor" (kategorisch)
- Faktoren enthalten Kategorien oder Gruppen von Daten, können aber manchmal aussehen wie numerische Daten
 - Unsere Spalte "Monat" enthält zum Beispiel Zahlen, aber sie könnte auch den Namen jedes Monats enthalten
 - Es ist sinnvoll, den Mittelwert einer "numerischen" Variable zu berechnen, aber nicht den eines "Faktors"
 - Es ist zum Beispiel sinnvoll, die durchschnittliche K\u00f6rpergr\u00f6\u00dfe zu berechnen, aber nicht den durchschnittlichen Geburtsmonat.

as_factor()

- Wir können die Funktion "as_factor()" verwenden, um einen Variablentyp in einen Faktor zu ändern.
- Wir können entweder die R-Basissyntax verwenden, um dies zu tun, indem wir ein \$ verwenden, um eine Spalte in einem Datenrahmen zu indizieren:

```
# mit base R
df_groesse$geburtsmonat <- as_factor(df_groesse$geburtsmonat)</pre>
```

• oder wir können die Syntax tidyverse und die Funktion mutate() verwenden

```
# mit tidyverse
df_groesse <-
   df_groesse |>
   mutate(geburtsmonat = as_factor(geburtsmonat))
```

6 Andere Dateitypen und Begrenzungszeichen

- readr hat weitere Funktionen, die ebenfalls einfach zu benutzen sind, man muss nur wissen, wann man welche benutzt
- read_csv2() liest Semikolon-getrennte csv-Dateien (;)
 - Dieser Dateityp ist in Ländern üblich, die , als Dezimaltrennzeichen verwenden (wie Deutschland)
- read_tsv() liest Tabulator-getrennte Dateien
- Die Funktion read_delim() liest Dateien mit beliebigen Trennzeichen ein.
 - sie versucht, das Trennzeichen zu erraten, es sei denn, Sie geben es mit dem Argument delim = an (z.B. read_delim(groesse_geburtstag.csv, delim = ","))

Lernziele

Heute haben wir gelernt, wie man...

- lokale Datendateien mit dem Paket readr importiert
- fehlende Werte behandeln
- Variablen in Faktoren umwandeln

Lassen Sie uns nun dieses neue Wissen anwenden.

Hausaufgaben

Anhang 6: Dateneinlesung auf der Website des Kurses.

Session Info

Hergestellt mit R version 4.4.0 (2024-04-24) (Puppy Cup) und RStudioversion 2023.12.1.402 (Ocean Storm).

sessionInfo()

```
R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Ventura 13.2.1
Matrix products: default
        /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Berlin
tzcode source: internal
attached base packages:
              graphics grDevices datasets utils
[1] stats
                                                       methods
                                                                 base
other attached packages:
 [1] magick_2.8.3
                     here_1.0.1
                                      janitor_2.2.0
                                                      lubridate_1.9.3
 [5] forcats_1.0.0
                     stringr_1.5.1
                                     dplyr_1.1.4
                                                      purrr_1.0.2
 [9] readr_2.1.5
                     tidyr_1.3.1
                                     tibble_3.2.1
                                                      ggplot2_3.5.1
[13] tidyverse_2.0.0
loaded via a namespace (and not attached):
 [1] utf8_1.2.4
                       generics_0.1.3
                                          renv_1.0.7
                                                            stringi_1.8.3
 [5] hms_1.1.3
                       digest_0.6.35
                                          magrittr_2.0.3
                                                            evaluate_0.23
 [9] grid_4.4.0
                       timechange_0.3.0 fastmap_1.1.1
                                                            rprojroot_2.0.4
[13] jsonlite_1.8.8
                       fansi_1.0.6
                                          scales_1.3.0
                                                            cli_3.6.2
[17] rlang_1.1.3
                       crayon_1.5.2
                                         bit64_4.0.5
                                                            munsell_0.5.1
[21] withr_3.0.0
                       yaml_2.3.8
                                         tools_4.4.0
                                                            parallel_4.4.0
[25] tzdb_0.4.0
                       colorspace_2.1-0 pacman_0.5.1
                                                            vctrs_0.6.5
[29] R6_2.5.1
                       lifecycle_1.0.4
                                         snakecase_0.11.1
                                                            bit_4.0.5
[33] vroom_1.6.5
                       pkgconfig_2.0.3
                                         pillar_1.9.0
                                                            gtable_0.3.5
[37] Rcpp_1.0.12
                       glue_1.7.0
                                          xfun_0.43
                                                            tidyselect_1.2.1
[41] rstudioapi_0.16.0 knitr_1.46
                                         htmltools_0.5.8.1 rmarkdown_2.26
[45] compiler_4.4.0
```

Literaturverzeichnis

Nordmann, E., & DeBruine, L. (2022). Applied Data Skills. Zenodo. https://doi.org/10.5281/zenodo.6365078

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for Data Science (2. Aufl.).