MAT 283 Calculus III

Peter Schaefer

Fall 2023

Contents

1	A Function Primer	3
2	Limits and the Derivative	4
3	Differentiation	5
4	Applications of Differentiation	6
5	Integration	7
6	Applications of the Definite Integral	8
7	Techniques of Integration	9
8	Differential Equations	10
9	Parametric Equations and Polar Coordinates	11
10	Sequences and Series	12
11	Vectors and the Geometry of Space 11.1 Three-Dimensional Cartesian Space 11.2 Vectors and Vector Algebra 11.3 The Dot Product 11.4 The Cross Product 11.5 Describing Lines and Planes 11.6 Cylinders and Quadric Surfaces	13 13 13 13 14 14 14
12	Vector Functions 12.1 Vector-Valued Functions	15 15 15 15
13	Partial Derivatives 13.1 Functions of Several Variables	16 16 16 16 16 16 16
	13.8 Lagrange Multipliers	16

CONTENTS

14 Multiple Integrals	17
14.1 Double Integrals	17
14.2 Double Integrals in Polar Coordinates	
14.3 Triple Integrals	
14.4 Triple Integrals in Cylindrical and Spherical Coordinates	17
14.5 Substitutions and Multiple Integrals	
15 Vector Calculus	18
15.1 Vector Fields	18
15.2 Line Integrals	
15.3 The Fundamental Theorem for Line Integrals	
15.4 Green's Theorem	
15.5 Parametric Surfaces and Surface Area	
15.6 Surface Integrals	
15.7 Stokes' Theorem	
15.8 The Divergence Theorem	

1 A Function Primer

2 Limits and the Derivative

3 Differentiation

4 Applications of Differentiation

5 Integration

6 Applications of the Definite Integral

7 Techniques of Integration

8 Differential Equations

9 Parametric Equations and Polar Coordinates

10 Sequences and Series

11 Vectors and the Geometry of Space

11.1 Three-Dimensional Cartesian Space

Cartesian Coordinates in Three Dimensions

The **projection** of a point (x, y, z) in \mathbb{R}^3 onto a plane is the point in that plane closest to (x, y, z). The projection of the points constituting a given object onto a coordinate plane is often useful in helping to visualize or better understand the object.

Distance in Three Dimensions

The distance between two points, (x_1, y_1, z_1) and (x_2, y_2, z_2) is found by applying the *Pythagorean Theorem* successively, and is

 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$.

11.2 Vectors and Vector Algebra

Vector Terminology and Notation

In two- and three-dimensional space, vectors are often depicted as **directed line segments**. Such a directed line segment begins at an **initial point** P and ends at a **terminal point** Q, and the notation \overrightarrow{PQ} is used to refer to the vector.

A subtle but very important point is that a vector is characterized *entirely* by its direction and magnitude, not by its initial and terminal points.

If a vector \vec{u} is depicted with the origin as its initial point, the vector is said to be in **standard position**. The **component form** of \vec{u} takes the form

$$\vec{u} = \langle u_1, \dots, u_n \rangle$$

Additionally, the length or **norm** of a vector \vec{u} is

$$\|\vec{u}\| = \sqrt{u_1^2 + \dots + u_n^2}.$$

Vector Algebra

Vectors are added and scaled component-wise. Assume \vec{u}, \vec{v} , and \vec{w} represent vectors, while $a, b \in \mathbb{R}$.

$$\begin{array}{lll} \text{Scalar Multiplication Properties} & \text{Vector Addition Properties} \\ & a(\vec{u}+\vec{v})=a\vec{u}+a\vec{v} & \vec{u}+\vec{v}=\vec{v}+\vec{u} \\ & (a+b)\vec{u}=a\vec{v}+b\vec{u} & \vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w} \\ 1\vec{u}=\vec{u}; \ 0\vec{u}=\vec{0}; \ a\vec{0}=\vec{0} & \vec{u}+(-\vec{u})=\vec{0} \\ & \|a\vec{u}\|=|a|\cdot\|\vec{u}\| \\ \end{array}$$

11.3 The Dot Product

The Dot Product and Its Properties

Given two vectors $\vec{u} = \langle u_1, \dots, u_n \rangle$ and $\vec{v} = \langle v_1, \dots, v_n \rangle$, the **dot product**, denoted as $\vec{u} \cdot \vec{v}$, is the scalar defined by

$$\vec{u} \cdot \vec{v} = u_1 v_1 + \dots + u_n v_n$$

Properties of the Dot Product

Assume \vec{u}, \vec{v} , and \vec{w} represent vectors, while $a \in \mathbb{R}$.

Dot Product and the Angle between Two Vector

If two nonzero vectors \vec{u} and \vec{v} are depicted so that their initial points coincide, and if θ represents the smaller of the two angles formed by \vec{u} and \vec{v} , so that $0 \le \theta \le \pi$, then

$$\vec{u} \cdot \vec{v} = \|\vec{v}\| \|\vec{u}\| \cos \theta$$

Orthogonal Vectors

Two vectors \vec{u} and \vec{v} are **orthogonal**, **perpendicular**, or **normal**, if $\vec{u} \cdot \vec{v} = 0$

- 11.4 The Cross Product
- 11.5 Describing Lines and Planes
- 11.6 Cylinders and Quadric Surfaces

- 12 Vector Functions
- 12.1 Vector-Valued Functions
- 12.2 Arc Length and the Unit Tangent Vector
- 12.3 The Unit Normal and Binormal Vectors, Curvature, and Torsion
- 12.4 Planetary Motion and Kepler's Laws

13 Partial Derivatives

- 13.1 Functions of Several Variables
- 13.2 Limits and Continuity of Multivariable Functions
- 13.3 Partial Derivatives
- 13.4 The Chain Rule
- 13.5 Directional Derivatives and Gradient Vectors
- 13.6 Tangent Planes and Differentials
- 13.7 Extreme Values of Functions of Two Variables
- 13.8 Lagrange Multipliers

14 Multiple Integrals

- 14.1 Double Integrals
- 14.2 Double Integrals in Polar Coordinates
- 14.3 Triple Integrals
- 14.4 Triple Integrals in Cylindrical and Spherical Coordinates
- 14.5 Substitutions and Multiple Integrals

- 15 Vector Calculus
- 15.1 Vector Fields
- 15.2 Line Integrals
- 15.3 The Fundamental Theorem for Line Integrals
- 15.4 Green's Theorem
- 15.5 Parametric Surfaces and Surface Area
- 15.6 Surface Integrals
- 15.7 Stokes' Theorem
- 15.8 The Divergence Theorem