COS320: Compiling Techniques

Zak Kincaid

March 5, 2020

Parsing III: LR parsing

Bottom-up parsing

- * Stack holds a word in $(N \cup \)$ * such that it is possible to derive the part of the input string that has been consumed from its reverse.
- $\boldsymbol{\cdot}$ $\boldsymbol{\cdot}$ t any time, may read a letter from input string and push it on top of the stack
- · t any time, may non-deterministically choose a rule $::=\gamma_1...\gamma_n$ and apply it in reverse: pop $\gamma_n...\gamma_1$ off the top of the stack, and push .
- · ccept when stack just contains start non-terminal

State	Stack	Input
q		(x+x)+x
q_1		(x+x)+x
q_1	(x+x)+x
q_1	x(+x)+x
q_1	(+x)+x
q_1	+ (x)+x
q_1	x+ ()+x
q_1	+()+x
q_1	<s>+(</s>)+x
q_1	<s>(</s>)+x
q_1) <s>(</s>	+x
q_1		+x
q_1	+ 	х
q_1	x+ 	
q_1	+	
q_1	<s>+</s>	
q_1	<s></s>	
q		

LL vs LR

- LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
 - Every LL(k) grammar is also LR(k), but not vice versa.
 No need to eliminate left (or right) recursion
 No need to left-factor
- Harder to write LR parsers
 - But parser generators will do it for us!

Bottom-up PD· has two kinds of actions:

- Shift: move lookahead token to the top of the stack
- ullet Reduce: remove $\gamma_n,...,\gamma_1$ from the top of the stack, replace with \quad (where $\quad ::= \gamma_1...\gamma_n$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.

 - When should the parser shift?When should the parser reduce?

Determinizing the bottom-up PDA

- Intuition: reduce greedily
 - If any reduce action applies, then apply it
 - · ctually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PD· to implement greedy strategy
 - State tracks top few symbols of the stack

Determinizing the bottom-up PDA

- Intuition: reduce greedily
 - If any reduce action applies, then apply it
 - ctually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- Can use the states of the PD· to implement greedy strategy
 - State tracks top few symbols of the stack
- • hallenge: after applying reduce action, need to re-compute the state

Determinizing the bottom-up PDA

- Intuition: reduce greedily
 - If any reduce action applies, then apply it
 - ctually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
 - If no reduce action applies, then shift
- · Can use the states of the PD· to implement greedy strategy
 - State tracks top few symbols of the stack
- • hallenge: after applying reduce action, need to re-compute the state
- Solution: use the stack to store states
 - Shift reads current state off the top of the stack, then pushes the next state
 - Reduce $:= \gamma_1, ... \gamma_n$ pops last n states, then proceeds from (n-1)th state as if had been read

Warm-up: LRXD) parsing

- LR(0) = LR with O-symbol lookahead
- \cap LR(0) item of a grammar $G=(N, \ , R, S)$ is of the form $::= \gamma_1...\gamma \bullet \gamma \ _1...\gamma_n$, where $::= \gamma_1...\gamma n$ is a rule of G
 - $\gamma_1...\gamma_i$ derives part of the word that has already been read
 - $\gamma_{i=1}...\gamma_{n}$ derives part of the word that remains to be read
 - LR(O) items \sim states of an NF• that determines when a reduction applies to the top of the stack
- LR(0) items for the above grammar:
 - <\$> ::= •(<L>), <\$> ::= (<L>•), <\$> ::= (<L>•), <\$> ::= (<L>)•,
 - <S> ::= •x, <S> ::= x•,
 - <L> ::= •<S>, <L> ::= <S>•,
 - <L> ::= •<L>;<S>, <L> ::= <L>;•<S>, <L> ::= <L>;•<S>, <L> ::= <L>;<S>•,

closure and goto

- For any set of items I, define $\operatorname{closure}(I)$ to be the least set of items such that
 - closure(I) contains I
 - If $\operatorname{closure}(I)$ contains an item of the form := $B\beta$ where B is a non-terminal, then closure(I) contains $B := \bullet \gamma$ for all $B := \gamma \in R$
- $\operatorname{closure}(I)$ saturates I with all items that may be relevant to reducing via I
 - E.g., closure({<S> ::= (●<L>)}) = {<\$> ::= (•<L>),<L> ::= •<S>,<L> ::= •<L>;<S>,<S> ::= •(<L>)<S> ::= •x}
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset

closure and goto

- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If ${\sf closure}(I)$ contains an item of the form := $B\beta$ where B is a non-terminal, then ${\sf closure}(I)$ contains B:= γ for all B:= $\gamma \in R$
- $\operatorname{closure}(I)$ saturates I with all items that may be relevant to reducing via I

```
• E.g., closure({<S> ::= (•<L>)}) =
```

```
{<>> ::= (<L>),<L> ::= •<<>>,<L> ::= •<L>;<S>,<S> ::= •(<L>)<S> ::= •x}
```

- Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only
- For any item set I , and (terminal or non-terminal) symbol $\gamma \in \mathit{N} \cup -$ define

```
\mathsf{goto}(\vec{I},\gamma) = \mathsf{closure}(\{ \ ::= \ \gamma \bullet \beta \mid \ ::= \ \bullet \gamma \beta \in I \})
```

 $\begin{array}{ll} \text{l.e.} \ goto((L\gamma)) \ \text{is the result of `moving \bullet across} \ \gamma^\circ \\ \text{e.g.} \ goto(closure(\{<S>::=(\bullet<L>)\}, <L>)) = \{<S>::=(<L>\bullet), <L>::=<L>\bullet; <S>, \} \end{array}$

Mechanical construction of LRM) parsers

- $\mathbf{0} \cdot dd$ a new production S' ::= S\$ to the grammar.
 - S' is new start symbol
 - \$ marks end of the stack
- ② Construct transitions as follows: for each closed item set *I*,
 - For each item of the form $:= \gamma_1...\gamma_n \bullet$ in *I*, add *reduce* transition

$$\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$$
, where $K' = goto(K,)$

• For each item of the form $::= \gamma \bullet a\beta$ in I with $a \in A$, add a *shift* transition

$$a, I \rightarrow I'I \text{ where } I' = \text{goto}(I, a)$$

Resulting automaton is deterministic \iff grammar is LR(0)

Conflicts

- Recall: \cdot utomaton is deterministic \iff grammar is LR(0)
- Observe: for LR(0) grammars, each closed set of items is either a reduce state or a shift
 - Reduce state has exactly one item, and it's of the form $\{ = := \gamma \bullet \}$ Shift state has no items of the form $= := \gamma \bullet \}$
- Reduce/reduce conflict: state has two or more items of the form $:= \gamma \bullet$ (choice of reduction is non-deterministic!)
- Shift/reduce conflict: state has an item of the form $:= \gamma \bullet$ and one of the form $:= \gamma \bullet a\beta$ (choice of whether to shift or reduce is non-deterministic!)

Simple LR SLR)

- Simple LR is a straight-forward extension of LR(0) with a lookahead token
- $\bullet \ \, \textbf{Idea} : \textbf{proceed exactly as LR(0)}, \textbf{but eliminate (some) conflicts using lookahead token} \\$
 - For each item of the form $:= \gamma_1...\gamma_n \bullet$ in *I*, add *reduce* transition

$$\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$$
, where $K' = \mathsf{goto}(K, -)$

with any lookahead token in **follow**(·)

• Example: the following grammar is SLR, but not LR(0)

$$<$$
S> ::= b $<$ T> ::= a | ϵ

Consider: $closure({<S'> ::= •<S> })$ contains T ::= •.

• SLR parser generators: Jison

LRM) parser construction

- · LR(1) parser generators: Menhir, Bison
- • n LR(1) item of a grammar $G=(N, \quad ,R,S)$ is of the form $(\quad ::=\gamma_1...\gamma \bullet \gamma \quad _1...\gamma_n,a)$, where $\quad ::=\gamma_1\cdot\cdot\cdot\gamma_n$ is a rule of G and $a\in$
 - $\gamma_1...\gamma_i$ derives part of the word that has already been read
 - γ_{i} 1... γ_{n} derives part of the word that remains to be read
 - *a* is a lookahead symbol
- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If $\operatorname{closure}(I)$ contains an item of the form $(::= \bullet B\beta, a)$ where B is a non-terminal, then $\operatorname{closure}(I)$ contains $(B::= \bullet \gamma, b)$ for all $B::= \gamma \in R$ and all $b \in \operatorname{first}(\beta a)$.
- · Construct PD· as in LR(0)

LALRM)

- LR(1) transition tables can be very large
- L· LR(1) ("lookahead LR(1)") make transition table smaller by merging states that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is $L \cdot LR(1)$ if this merging doesn't create conflicts.
- L· LR(1) parser generators: Bison, Yacc, ocamlyacc, Jison

Summary of parsing

- For any k, LL(k) grammars are LR(k)
- SLR grammars are L LR(1) are LR(1)
- In terms of language expressivity, there is an SLR (and therefore L· LR(1) and LR(1) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context free language is LL(k): $\{a^nb^n:n\in\ \}\cup\{a^nc^n:n\in\ \}$ is DCFL but not LL(k) for any k^1

John C. Beatty, Two iteration theorems for the $\cdot \cdot (k) \cdot$ anguages