002 – Progettazione Formalismi SOA

Roberto Bruni Andrea Corradini Gianluigi Ferrari Roberto Guanciale Giorgio Spagnolo

Dipartimento di Informatica, Pisa

RUPOS Review 17 novembre 2011

Attività previste per l'Obiettivo Operativo 2

- A2.1 Linguaggi e modelli per pattern fondamentali
 - Attività di rassegna sullo stato dell'arte
 - Prevede rilascio di documento di rassegna
- A2.2 Analisi e verifica dei pattern fondamentali
 - Attività di ricerca di base e applicata
 - Prevede rilascio di documento di ricerca
- A2.3 Middleware prototipale
 - Attività di sviluppo software
 - Prevede rilascio di software e documentazione

Rassegna su Modelli di Specifica per Applicazioni SOA

- BPMN
- BPEL
- YAWL

Rassegna su Algoritmi e Tool di Traduzione

- BPMN 1.1 to BPEL
- BPMN to YAWI
- BPEL to YAWL

Rassegna su Modelli Formali: Reti di Petri

Rassegna su Supporto per Sessioni con Correlation Set (in BPEL « BPMN)

Rassegna su Modelli di Specifica per Applicazioni SOA

- BPMN
- BPEL
- YAWL

Rassegna su Algoritmi e Tool di Traduzione

- BPMN 1.1 to BPEL
- BPMN to YAWL
- BPEL to YAWL

Rassegna su Modelli Formali: Reti di Petri

Rassegna su Supporto per Sessioni con Correlation Set (in BPEL e BPMN)

Rassegna su Modelli di Specifica per Applicazioni SOA

- BPMN
- BPEL
- YAWL

Rassegna su Algoritmi e Tool di Traduzione

- BPMN 1.1 to BPEL
- BPMN to YAWL
- BPEL to YAWL

Rassegna su Modelli Formali: Reti di Petri

Rassegna su Supporto per Sessioni con Correlation Set (in BPEL e BPMN)

Rassegna su Modelli di Specifica per Applicazioni SOA

- BPMN
- BPEL
- YAWL

Rassegna su Algoritmi e Tool di Traduzione

- BPMN 1.1 to BPEL
- BPMN to YAWL
- BPEL to YAWL

Rassegna su Modelli Formali: Reti di Petri

Rassegna su Supporto per Sessioni con Correlation Set (in BPEL e BPMN)

Sommario

[A2.2] Analisi e verifica dei pattern fondamentali

Obiettivo

- Integrare in RUPOS strumenti di analisi a runtime di processi
- Analisi basata sul confronto di logs con un modello del processo

Strategia

- Adottare e raffinare metodi formali disponibili (Reti di Petri)
- Integrare ed estendere infrastrutture software esistenti (ProM)
- Work-flow metodologico:
 - I processi di business sono modellati con diagrammi BPMN
 - ② I diagrammi BPMN vengono trasformati in Reti di Petri
 - I logs di Istanze di Processi vengono analizzati con tecniche disponibili per Reti di Petri, oppurtunamente raffinate
 - I risultati dell'analisi vengono proiettati sul modello BPMN iniziale

Sommario

[A2.2] Analisi e verifica dei pattern fondamentali

Obiettivo

- Integrare in RUPOS strumenti di analisi a runtime di processi
- Analisi basata sul confronto di logs con un modello del processo

Strategia

- Adottare e raffinare metodi formali disponibili (Reti di Petri)
- Integrare ed estendere infrastrutture software esistenti (ProM)
- Work-flow metodologico:
 - I processi di business sono modellati con diagrammi BPMN
 - I diagrammi BPMN vengono trasformati in Reti di Petri
 - I logs di Istanze di Processi vengono analizzati con tecniche disponibili per Reti di Petri, oppurtunamente raffinate
 - I risultati dell'analisi vengono proiettati sul modello BPMN iniziale

Architettura complessiva: integrazione di ProM in RUPOS

- I messaggi SOAP tra attori del processo vengono intercettati dalla Porta di Servizio (PdS)
- La PdS memorizza informazioni essenziali dei messaggi nel log
- La PdS estrae parti dei messaggi memorizzandoli nel database dei log
- Il Motore di Correlazione raggruppa i messaggi in istanze di processi usando "correlation sets" (XPath)
- I log di istanze di processi vengono trasformati in tracce di eventi corrispondenti a transizioni della Rete di Petri

Esempio di processo BPMN e di traduzione in Rete di Petri

Da messaggi SOAP a eventi/transizioni della Rete di Petri

Messaggi SOAP	Eventi BPMN		
richiestaAutorizzazione	AvvioProcedimento	AvvioProcedimento	
request	start	complete	
interrogaStatoAutorizzazione	RinnovaAutorizzazione	RinnovaAutorizzazione	
response[Rinnovo]	start	complete	
interrogaStatoAutorizzazione	RilascioAutorizzazione	RilascioAutorizzazione	
response[Rilascio]	start	complete	
interrogaStatoAutorizzazione	RilascioAutorizzazione	NegaAutorizzazione	
response[Nega]	start	complete	
richiestaParere	Parere		
request	start		
emissioneParere	Parere	ParereNegativo	ParereNegativo
request[Negativo]	complete	start	complete
emissioneParere	Parere	ParerePositivo	ParerePositivo
request[Positivo]	complete	start	complete
emissioneParere	Parere	ParereConRiserva	ParereConRiserva
request[conRiserva]	complete	start	complete

Tecniche di analisi di Reti di Petri adottate

- I log delle istanze di processi sono sequenze ordinate di eventi (e.g. in base a timestamp)
- Gli eventi dei log sono mappati su transizioni della rete
- Algoritmo di log-replay: ri-esegue un log di una istanza di processo in modo "non bloccante"
 - Si mette un token nella piazza di partenza
 - ② Se estrae il primo evento del log
 - Si esegue la transizione corrispondente
 - se la transizione non è abilitata vengono creati artificialmente i token mancanti
- Metriche calcolate durante il log-replay
 - Numero di token mancanti o rimanenti per ogni piazza o transizione
 - Numero di attraversamenti per ogni arco
 - Tempo di soggiorno/attesa/sincronizzazione per ogni piazz.

Tecniche di analisi di Reti di Petri adottate

- I log delle istanze di processi sono sequenze ordinate di eventi (e.g. in base a timestamp)
- Gli eventi dei log sono mappati su transizioni della rete
- Algoritmo di log-replay: ri-esegue un log di una istanza di processo in modo "non bloccante"
 - Si mette un token nella piazza di partenza
 - 2 Se estrae il primo evento del log
 - 3 Si esegue la transizione corrispondente
 - se la transizione non è abilitata vengono creati artificialmente i token mancanti
- Metriche calcolate durante il log-replay
 - Numero di token mancanti o rimanenti per ogni piazza o transizione
 - Numero di attraversamenti per ogni arco
 - Tempo di soggiorno/attesa/sincronizzazione per ogni piazz.

Tecniche di analisi di Reti di Petri adottate

- I log delle istanze di processi sono sequenze ordinate di eventi (e.g. in base a timestamp)
- Gli eventi dei log sono mappati su transizioni della rete
- Algoritmo di log-replay: ri-esegue un log di una istanza di processo in modo "non bloccante"
 - Si mette un token nella piazza di partenza
 - 2 Se estrae il primo evento del log
 - 3 Si esegue la transizione corrispondente
 - se la transizione non è abilitata vengono creati artificialmente i token mancanti
- Metriche calcolate durante il log-replay
 - Numero di token mancanti o rimanenti per ogni piazza o transizione
 - Numero di attraversamenti per ogni arco
 - Tempo di soggiorno/attesa/sincronizzazione per ogni piazza

Un contributo originale: raffinamento dell'analisi di performance

- Sfrutta le tecniche standard di log-replay per riusare l'infrastruttura software esistente
- Trasforma la lista di transizioni risultante $R = [tr_1, ..., tr_n]$ in una sequenza "eager", cioè tale che per ogni transizione invisibile tr_i valga:
 - ullet sia tr_p l'ultima transizione visibile che la precede (p < i)
 - allora • $tr_i \cap tr_p \neq \emptyset$
- Un semplice algoritmo di trasformazione: per ogni transizione invisibile tr_i
 - ① sposta verso sinistra la transizione finché non si trova una transizione visibile tale che $\bullet tr_i \cap tr_p \bullet \neq \emptyset$
- Non sono necessari cambi relativi alle metriche di conformance

Traduzione BPMN – Rete di Petri

Tecniche di analisi

Proiezione dei risultati da Rete di Petri a BPMN

Esempio di analisi di conformance

Sommario
Traduzione BPMN – Rete di Petri
Tecniche di analisi
Proiezione dei risultati da Rete di Petri a BPMN

Proiezione dei risultati di analisi su BPMN (Conformance)

- Token mancanti: Il log-replay produce token mancanti solo per eseguire transizioni visibili ⇒ pre-set di almeno una transizione visibile
- Token rimanenti Le transizioni invisibili sono eseguite solo se richiesto da una transizione visibile ⇒ piazze nel post-set di una transizione visibile o di una transizione invisibile che produce più di un token

Sommario Traduzione BPMN – Rete di Petri Tecniche di analisi Proiezione dei risultati da Rete di Petri a BPMN

Esempio di analisi di performance

Proiezione dei risultati di analisi su BPMN (Performance)

- Tempo di attesa: transizioni invisibili eseguite immediatamente ⇒ pre-set di transizioni visibili
- Tempo di sincronizzazione piazze che hanno almeno una transizione nel loro post-set che dipende da un'altra piazza

[A2.3] Middleware prototipale: rilasci a Giugno 2011

- Raffinamento dell'algoritmo di log-replay per una migliore gestione delle transizioni invisibili
- Metodologia per proiettare misure di analisi sul modello BPMN
- Nuovo contesto ProM per eseguire plugin in ambiente senza GUI
- Plugin per trasformazione di sequence di eventi in sequenze eager
- Plugin per valutazione di performance di una Rete di Petri

Middleware prototipale: rilasci ad oggi

- Plugin per trasformazione di Modelli BPMN in Reti di Petri
- Plugin per proiezione di misure di analisi sul modello BPMN original

Middleware prototipale: sviluppi in corso

- Estensione della traduzione BPMN Rete di Petri con gestione di ciclo di vita di task con eventi intermedi
- Integrazione nella piattaforma di toolkits di Data Mining

[A2.3] Middleware prototipale: rilasci a Giugno 2011

- Raffinamento dell'algoritmo di log-replay per una migliore gestione delle transizioni invisibili
- Metodologia per proiettare misure di analisi sul modello BPMN
- Nuovo contesto ProM per eseguire plugin in ambiente senza GUI
- Plugin per trasformazione di sequence di eventi in sequenze eager
- Plugin per valutazione di performance di una Rete di Petri

Middleware prototipale: rilasci ad oggi

- Plugin per trasformazione di Modelli BPMN in Reti di Petri
- Plugin per proiezione di misure di analisi sul modello BPMN originale

Middleware prototipale: sviluppi in corso

- Estensione della traduzione BPMN Rete di Petri con gestione di ciclo di vita di task con eventi intermedi
- Integrazione nella piattaforma di toolkits di Data Mining

[A2.3] Middleware prototipale: rilasci a Giugno 2011

- Raffinamento dell'algoritmo di log-replay per una migliore gestione delle transizioni invisibili
- Metodologia per proiettare misure di analisi sul modello BPMN
- Nuovo contesto ProM per eseguire plugin in ambiente senza GUI
- Plugin per trasformazione di sequence di eventi in sequenze eager
- Plugin per valutazione di performance di una Rete di Petri

Middleware prototipale: rilasci ad oggi

- Plugin per trasformazione di Modelli BPMN in Reti di Petri
- Plugin per proiezione di misure di analisi sul modello BPMN originale

Middleware prototipale: sviluppi in corso

- Estensione della traduzione BPMN Rete di Petri con gestione di ciclo di vita di task con eventi intermedi
- Integrazione nella piattaforma di toolkits di Data Mining