IFSC - São José Engenharia de Telecomunicações

Redes de Transmissão Fábio Alexandre de Souza Professor

- FDM: multiplexação em Frequência.
 Rádio, TV...
- TDM: multiplexação no Tempo. E1, PDH, SDH.
- WDM?
 - Multiplexação no comprimento de onda
 - Fibra óptica
 - Mas $c = \lambda$. f = c = velocidade da luz = constante

[3]

ZTE University

Fibra Óptica

Espectro Óptico

- Fibra óptica como meio de transmissão de sistemas de telecomunicações, final da década de 1970.
- Busca por formas de utilizar toda a banda passante oferecida pela fibra.
- Alcançar taxas de transmissões cada vez maiores.

- Sistemas de transmissão telefônicos PDH e SDH, baseadas em TDM, taxas entre 2Mbit/s até 10 Gbit/s.
- Menos de 5% da capacidade de transmissão da fibra.
- Mais recentemente equipamentos SDH com taxas de 40 Gbit/s.

Figure 1-2 Data Traffic Overtakes Voice Traffic

- No começo dos anos 80 surgiram propostas de equipamentos WDM (Multiplexação por Divisão de Comprimento de onda).
- Permitiam lançar numa mesma fibra dezenas de canais com altas taxas de transmissão.

.

- O espectro de transmissão óptico é dividido em diversos canais, mantendo entre eles uma banda de guarda.
- Todos os canais enviados pela mesma fibra.

Canais WDM

Figura 2.43 - Sistemas WDM, utilizando a janela de 1550nm, enviam diversos canais ópticos numa mesma fibra.

- Inicialmente a tecnologia permitia apenas 4 ou 8 canais com grande separação entre eles.
- Mais tarde surgiram sistemas WDM com menor espaçamento entre canais, permitindo um maior número.
- Hoje os sistemas WDM são divididos em três categorias.

- CWDM (coarse WDM) espaçamento de 200 GHz entre canais, com 4 a 16 canais.
- DWDM (dense WDM) espaçamentos de 100, 50 ou 25 GHz, com 16 a 128 canais.
- UDWDM (ultra dense WDM)
 espaçamentos inferiores a 25 GHz e com
 número de canais superior a 128.

- Em termos de espectro os sistemas WDM utilizam as bandas C e L, próximas ao comprimento de onda de 1550 nm.
- Em alguns casos podem-se utilizar todas as bandas entre as janelas de 1310nm e 1550nm.

Bandas

Figura 2.44 - Classificação das bandas do espectro óptico entre 1310nm e 1550nm.

Bandas

Banda	Significado	Espectro óptico	Largura de banda	
О	Original	1.260 a 1.360 nm	100 nm	
S	Short	1.360 a 1.460 nm	100 nm	
Е	Expanded	1.460 a 1.530 nm	70 nm	
С	Conventional	1.530 a 1.565 nm	35 nm	
L	Long	1.565 a 1.625 nm	60 nm	
U	Ultra long	1.625 a 1675 nm	50 nm	

Figura 2.45 - Denominação, λ e largura de banda das faixas do espectro óptico nas janelas de 1310 e 1550 nm

ITU G.692

Frequency (THz ¹)	Wavelength (nm²)	Frequency (THz)	Wavelength (nm)	Frequency (THz)	Wavelength (nm)
196.1	1528.77	164.6	1540.56	193.1	1552.52
196.0	1529.55	194.5	1541.35	193.0	1553.33
195.9	1530.33	194.4	1542.14	192.9	1554.13
195.8	1531.12	194.3	1542.94	195.8	1554.94
195.7	1531.9	194.2	1543.73	192.7	1555.75
195.6	1532.68	194.1	1544.53	192.6	1556.56
195.5	1533.47	194.0	1545.32	195.5	1557.36
195.4	1534.25	193.9	1546.12	192.4	1558.17
195.3	1535.04	193.8	1546.92	192.3	1558.98
195.2	1535.82	193.7	1547.72	192.2	1559.79
195.1	1536.61	193.6	1548.51	192.1	1560.61
195.0	1537.40	193.5	1549.32	192.0	1561.42
194.9	1538.19	192.4	1550.12	191.9	1562.23
194.8	1538.98	193.3	1550.92	191.8	1563.05
194.7	1539.77	193.2	1551.72	191.7	1563.86

^{1.} THz = terahertz

^{2.} nm = nanometer

Enlace WDM

Figura 2.49 - Enlace ponto a ponto de WDM.

Enlace WDM

Figura 2.46 - Transponder Óptico.

- Fontes:
 - LEDs e Lasers

Figure 2-15 Typical Laser Design

- Receptores:
 - Fotodiodo PIN (positve-intrinsic-negative)
 - Fotodiodo de avalanche (APD)

Transponder

- Conversor de comprimento de onda: converte o sinal de um λ de entrada para outro λ de saída (canal WDM).
- Tipos:
 - Optoeletrônico *;
 - Optical gating;
 - Interferometric;
 - Wave mixing.

Transponder * (ref: Ramaswani)

Transponder

Exemplo:

- Four wave mixing. W canais = $W(W-1)^2$ sinais

$$\omega_f = \omega_i + \omega_j - \omega_k$$
, onde i # k e j # k

https://www.youtube.com/watch? v=8nwmpgn_Kyc

Four wave mixing

Exemplo:

```
-\omega_{1}, \ \omega_{2} \ \mathbf{e} \ \omega_{3} \omega_{f:} \omega_{1} + \omega_{1} - \omega_{3} \quad \omega_{1} + \omega_{1} - \omega_{2} \quad \omega_{2} + \omega_{2} - \omega_{1} \omega_{1} + \omega_{2} - \omega_{3} \quad \omega_{1} + \omega_{3} - \omega_{2} \quad \omega_{2} + \omega_{3} - \omega_{1} \omega_{2} + \omega_{1} - \omega_{3} \quad \omega_{3} + \omega_{1} - \omega_{2} \quad \omega_{3} + \omega_{2} - \omega_{1} \omega_{2} + \omega_{2} - \omega_{3} \quad \omega_{3} + \omega_{3} - \omega_{2} \quad \omega_{3} + \omega_{3} - \omega_{1}
```

Equipamentos – mux

Figura 2.47 - Princípio de funcionamento do acoplador óptico.

Equipamentos – mux/demux

Figure 2-20 Prism Refraction Demultiplexing

Equipamentos – mux/demux

Figure 2-21 Waveguide Grating Diffraction

9172

Equipamentos - mux/demux

Figura 2.48 - Grade de Bragg e um circuito com circuladores e a grade de Bragg selecionando comprimentos de onda para demultiplexação.

Equipamentos - Amp

Equipamentos – Amp EDFA

Figure 2-17 Erbium-Doped Fiber Amplifier Design

Figura 2.50 - Diagrama do OADM.

Figura 2.51 - Diagrama do ODXC.

Reconfigurable Optical Add/Drop Multiplexing - ROADM

Mux/Demux DWDM Passivo

Transceiver DWDM

SFP+ 80KM 10G U DWDM-SFP10G-1

R\$3.673,67

ou 10x de R\$367.37

R\$3.416,51

à vista no cartão ou boleto

Ocompre agora e receba até: *

Segunda, 18/Jul - Capitais Sul e

Sudeste 🕀

(*) prazo válido para compra com frete expresso

VOA

https://info.support.huawei.com/network/ptmngsys/Web/transmission Network_portal/en/engineer/tools/calculator_WDM.html #

Exemplo 1:

- Tráfego 10G
- SFP+ ZR transceiver.
- Power budget is 23 dB.
- Mux/demux 16 canais com perda de 4,5 dB.
- Perda na fibra igual a 0,25 dB/km. Enlace de $60 \text{ km} = 0,25 \text{ dB/km} \times 60 = 15 \text{ dB}$.

Exemplo 1:

- Link budget:
- Transceiver power budget: 23 dB
- Perda na fibra: 15 dB
- Perda no Mux/Demux: 4,5 dB
- Link margin (conectores, divisores, etc):
 1,0 dB

•

Perda total no link: 20,5 dB

•

Exemplo 2:

 Se a perda na fibra for igual a 0,4 dB/km (em vez de 0,25 dB).

•

- Link budge:
- Transceiver power budget: 23dB
- Perda na fibra de 60 km com at 0,4 dB/km: 24dB

Exemplos de aplicação

https://www.youtube.com/watch?v=7JoK-NqzkBI

https://www.youtube.com/watch?v=inOh_W1oz PY&t=1151s

https://info.support.huawei.com/network/ ptmngsys/Web/transmissionNetwork_portal/ en/engineer/tools/calculator_WDM.html

Optical Transport Networks

- G.872: Architecture for the Optical
 Transport Network (canal óptico, seção de multiplexação óptica e seção de transmissão óptica.
- G.709: Interfaces for the optical transport network.

Optical Transport Networks

Maximum Utilization of Optical Resources

• [5]

Optical Transport Networks (G.709 - OTN)

- Mais "simples" que SONET/SDH.
- Cabeçalhos específicos para transporte de serviços em redes DWDM.
- Transporte transparente dos serviços.
- Redução de custos das operadoras.

Por que usar OTN

- Melhor correção de erros (FEC: Forward Error Correction).
- Mais níveis de TCM Tandem
 Connection Monitoring: interconexão.
- Maior granularidade (níveis de transmissão).

Por que usar OTN: FEC

• [4]

Figure 6 BER vs E_b/N₀

Por que usar OTN: TCM

- Interconexão entre operadoras.
- Interoperabilidade entre diferentes fabricantes.
- Supervisão, QoS, proteção.

Por que usar OTN: granularidade

Table 1 OTN signal and payload rates

k	OTUk signal rate	OPUk payload area rate	OTUk/ODUk/OPUk frame period
0	Not applicable	238/239 × 1 244 160 kbit/s	98.354 μs
		= 1 238 954 kbit/s	Q ⁱ
1	255/238 × 2 488 320 kbit/s		
	= 2 666 057 kbit/s	2 488 320 kbit/s	48.971 μs
2	255/237 × 9 953 280 kbit/s	238/237 × 9 953 280 kbit/s	V
	= 10 709 225 kbit/s	= 9 995 277 kbit/s	12.191 μs
3	255/236 × 39 813 120 kbit/s	238/236 × 39 813 120 kbit/s	Zi'
	= 43 018 414 kbit/s	= 40 150 519 kbit/s	3.035 μs
4	255/227 × 99 532 800 kbit/s	238/227 × 99 532 800 kbit/s	
	= 111 809 974 kbit/s	= 104 355 975 kbit/s	1.168 µs
Note: Al	l rates are ±20 ppm.	,00	

• [4]

Por que "não" usar OTN

 Hardware e sistemas de gerência adicionais.

OTN

Figure 2 Information flow illustration for an OTN signal

OTN: quadro Obs: detalhar OPU, ODU e OTU.

OTN: mapeamento

- OPU: payload do serviço acrescido de cabeçalho de via OPU_OH;
- ODU: é a estrutura necessária para transportar o OPU. O ODU consiste do payload do OPU acrescido do ODU Overhead (ODU-OH). O ODU-OH fornece funções de monitoramento da conexão da camada de via.

 OTU: realiza o tratamento da ODU para a transmissão óptica. Composta pela ODU, mais o OPU Overhead (OTU-OH), mais o bloco Forward Error Correction (FEC). O OTU-OH fornece funções de monitoramento da conexão da camada de seção.

 Och: várias seções overhead são adicionadas ao sinal de cliente, o qual junto com o FEC forma o Optical Transport Unit (OTU). O OTU é carregado então por um único comprimento de onda como um Optical Channel (OCh);

 Non-Associated Overhead: como múltiplos comprimentos de onda são transportados sobre a OTN, um overhead deve ser adicionado para habilitar a funcionalidade de gerenciamento do OTN.

 Uma vez que o optical channel é formado, um adicional OH não associado é adicionado aos comprimentos de onda OCh, o qual forma a Optical Multiplexing Sections (OMS) e a Optical Transmission Sections (OTS).

 Optical Multiplexing Sections (OMS): na camada OMS, o payload OMS e o Non-Associated Overhead (OMS OH) são transportados. O payload OMS consiste de OCh's multiplexados.

 O OMS-OH, embora indefinido neste ponto, suporta a monitoração da conexão e assiste a provedores de serviço na solução e isolamento de falhas na OTN;.

 Optical Transmission Sections (OTS): na camada OTS, o payload OTS e o OTS Overhead (OTS-OH) são transportados. Similar ao OMS, o OTS transporta as seções multiplexadas opticamente.

 O OTS-OH, embora não completamente definido, é usado para funções de manutenção e operação. A camada OTS permite ao operador da rede executar trabalhos de monitoração e manutenção entre NEs, os quais incluem: OADMs, multiplexers, demultiplexers e optical switches.

Referências

- [1]Apostila IFSC Transmissão Digital
- [2] ITU G.709
- [3] https://www.cisco.com/c/dam/global/de_at/assets/docs/dwdm.pdf
- [4]https://www.itu.int/ITU-T/studygroups/com15/ otn/OTNtutorial.pdf
- [5] https://www.techonline.com/tech-papers/atutorial-on-itu-t-g-709-optical-transport-networks-otn/
- [6] https://www.youtube.com/watch?
 v=eh8NucgzfyU&t=302s