CALCULATION OF COUPLING CO-EFFICENTS AND CROSS NORMS FOR TWO-WAVEGUIDE SYSTEMS

From:Modern Electrodynamics and Coupled Mode TheoryBarybin and DmitrievTODO:~FIX UP LATEX CODEADD EQUATIONS FROM EARLIER CHAPTERS REFERENCED BY APPENDIX LTRANSCRIBE ANY GREEK LETTERS TO CLOSEST ENGLISH EQUIVALENT FOR MAXIMA

1 Appendix L

1.1 Coupling Coefficients for the TE~Modes

The TE modes of planar waveguides have the following field components (From Section 5.6.1) Tex: $E_z \neq 0$, $\mu_y \neq 0$, $\mu_z \neq 0$, and $E_y = E_z = H_z = 0$ From $(7.8.64) \neq 0$ (7.8.65) it follows that the surface contribution to the coupling coefficients for the TE \sim modes in planar dielectric waveguides is absent. Tex: $\mu_z = 0$ Equations $(7.8.48) \approx 0$ (7.8.51) and $(7.8.62) \approx 0$ (7.8.63) $\mu_z = 0$ Equations $(7.8.62) \approx 0$ (7.8.63) $\mu_z = 0$ (7.8.64) and $\mu_z = 0$ (7.8.65) $\mu_z = 0$ (7.8.65) $\mu_z = 0$ (7.8.65) $\mu_z = 0$ (7.8.65) $\mu_z = 0$ (7.8.66) $\mu_z = 0$ (7.8.66) $\mu_z = 0$ (7.8.67).

_> L1:~ [c_11=c_mm_aa_bulk, c_11 = ((%i*\omega*w)/(N_m_a))*integrate(\Delta\epsilon a(y)*abs(E_mx_a(y))^2,y)];

$$[c_{11} = \text{c_mm_aa_bulk}, c_{11} = \frac{\% i w \int \text{E_mx}_a(y)^2 \ \epsilon^{\text{a}(y)} dy \ \omega}{\text{N_m}_a}, c_{22} = \text{c_nn_bb_bulk}, c_{22} = \frac{\% i w \int \text{E_nx}_b(y)^2 \ \epsilon^{\text{b}(y)} dy \ \omega}{\text{N_n}_b}$$
(L11)

L2:[c_22 = c_nn_bb_bulk , c_22= ((%i*\omega*w)/(N_n_b))*integrate($\Delta\epsilon$ ^b(y)*abs(E_nx_b(y))^2,y)];

$$[c_{22} = c_nn_bb_bulk, c_{22} = \frac{\%iw \int E_nx_b(y)^2 \epsilon^{b(y)} dy \omega}{N n_b}]$$
 (L12)

L3:[c_12=c_mn_ab_bulk, c_11 = ((%i* ω *w)/(N_m_a))*integrate($\Delta \epsilon$ ^a(y)*conjugate(E_mx_a(y))*E_nx_b(y) ,y)];

$$[c_{12} = c_{mn}ab_bulk, c_{11} = \frac{\%iw \int E_{nx_b}(y)\overline{E_{mx_a}(y)} \epsilon^{a(y)}dy\omega}{N m_a}] \text{ (L13)}$$

L4:~ [c_22 = c_nm_ba_bulk , c_22= ((%i* ω *w)/(N_n_b))*integrate($\Delta \epsilon$ ^b(y)*conjugate(E_nx_b(y))*E_mx_a(y),y)];

$$[c_{22} = \text{c_nm_ba_bulk}, c_{22} = \frac{\% iw \int \text{E_mx}_a(y) \overline{\text{E_nx}_b(y)} \ \epsilon^{\text{b}(y)} dy \, \omega}{\text{N_n}_b}] \ (\text{L}14)$$

Prior information is needed in order to make use of L1 through L4. It is necessary to know the cross-sectional field profiles (E_mx_a(y), E_nx_b)) and the norms (N_n_a,N_n_b)~ for the mth mode in waveguide a and the nth mode in waveguide b. The expressions for the fields and norms are given in sections 5.6.1 and 5.7.1 for reference. The unperturbed permittivity profiles $\hat{a}(y)\sim$ and $\epsilon\hat{b}(y)$ shown in figures 7.2 (c) and (d) are symmetric relative to the centre (y = h + \sim a and y = -(h+b)) in both waveguides. We can then apply the expressions for even modes of symmetric waveguides. Also see equations (5.7.6),(5.7.19),(5.7.20),(5.7.22).

1.2 TE_m mode of waveguide a

L5A:[E_mx_a(y)=E_m_a*cos(
$$\kappa$$
_m_a)*a*exp(- ζ _m_a*(y-(h+2*a))), y >= (h+2*a)];

$$\left[\mathrm{E}_{-}\mathrm{mx}_{a}(y) = \mathrm{E}_{-}\mathrm{m}_{a}a\%e^{-(y-h-2a)\zeta_{-}\mathrm{m}_{a}}\cos\left(\kappa_{-}\mathrm{m}_{a}\right), y \geq h+2a\right] \quad \text{(L5A)}$$

$$-> L5B:[E_mx_a(y)=E_m_a*cos(\kappa_m_a)*(y-(h+a)), h <=y, y <= (h+2*a)];$$

$$\left[\mathrm{E}_{-}\mathrm{mx}_{a}(y) = \mathrm{E}_{-}\mathrm{m}_{a}\left(y - h - a\right)\cos\left(\kappa_{-}\mathrm{m}_{a}\right), h \leq y, y \leq h + 2a\right] \tag{L5B}$$

$$->$$
 L5C:[E_mx_a(y)=E_m_a*cos(κ_m_a)*exp(-ζ_m_a*(y-h)), y <= h];

$$[N_{\underline{m}_a} = \frac{E_{\underline{m}_a}^2 d_{\underline{m}_a} w \beta_{\underline{m}_a}}{\mu_0 \omega}, d_{\underline{m}_a} = 2\left(\frac{1}{\zeta_{\underline{m}_a}} + a\right)]$$
(L6)

L7:[
$$\kappa$$
_m_a=sqrt(ω ^2* ϵ _0* μ _0-(β _m_a) ^2), ζ _m_a=sqrt((β _m_a) ^2- ω ^2* ϵ _0* μ _0)];

$$[\kappa_\mathbf{m}_a = \sqrt{\epsilon_0 \mu_0 \omega^2 - \beta_\mathbf{m}_a^2}, \zeta_\mathbf{m}_a = \sqrt{\beta_\mathbf{m}_a^2 - \epsilon_0 \mu_0 \omega^2}]$$
 (L7)

$$\left[\cos \left(a \kappa_{\underline{m}} m_a \right) = \cos \left(\frac{\kappa_{\underline{m}} m_a}{\sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right), a \cos \left(\kappa_{\underline{m}} m_a \right) = \left(\frac{\kappa_{\underline{m}} m_a}{a \sin \left(\kappa_{\underline{m}} m_a \right)} = \frac{\kappa_{\underline{m}} m_a \sqrt{\kappa_{\underline{m}} m_a^2 + \zeta_{\underline{m}} m_a^2}}{\zeta_{\underline{m}} m_a} \right)$$

where L8 are a result of he dispersion relation (5.6.15)~for even modes. Replace $i^*\kappa_y^2_\mu \to \zeta_m_a$ and $\kappa_y^1 \to \kappa_m_a$ in $\zeta_m_a = \kappa_m_a^*\tan(\kappa_m_a)^*a$

1.3 TEn Mode Of Waveguide b

L9A:
$$[E_nx_b(y) = E_n_b^*\cos(\kappa_n_b)^*b^*\exp(-\zeta_n_b^*(y+h)), y > = -h];$$

 $[E_nx_b(y) = E_n_bb\%e^{-(y+h)\zeta_n_b}\cos(\kappa_n_b), y \ge -h]$ (L9A)

L9B:[E_nx_b(y)=E_n_b*cos(
$$\kappa_n_b$$
)*(y+(h+b)), -(h+2*b)~ <=y, y <=-h];
[E $nx_b(y) = E n_b(y+h+b)cos(\kappa n_b), -h-2b \le y, y \le -h$] (L9B)

L9C:[E_nx_b(y)=E_n_b*cos(
$$\kappa_n_b$$
)*exp(abs(ζ_n_b)*y +~ (h+2*b)), y <= -(h+2*b)];
[E_nx_b(y) = E_n_b%e^{y|\zeta_n_b|+h+2b}cos(κ_n_b), $y \le -h-2b$] (L9C)

$$\left[\mathbf{N}_{\mathbf{n}_{b}} = \frac{\mathbf{E}_{\mathbf{n}_{b}}^{2} \mathbf{d}_{\mathbf{n}_{b}} w \beta_{\mathbf{n}_{b}}}{\mu_{0} \omega}, \mathbf{d}_{\mathbf{b}_{n}} = 2 \left(\frac{1}{\zeta_{\mathbf{n}_{b}}} + b\right)\right]$$
(L10)

$$\begin{array}{ll} -> & \text{L11:}[\kappa_\text{n_b} = \text{sqrt}(\omega \quad \hat{2}^*\epsilon_0^*\mu_0 - (\beta_\text{n_b}) \quad \hat{2}), \zeta_\text{n_b} = \text{sqrt}((\beta_\text{n_b}) \quad \hat{2} - \omega \\ & \hat{2}^*\epsilon_0^*\mu_0) \]; \\ \\ \left[\kappa_\text{n}_b = \sqrt{\epsilon_0\mu_0\omega^2 - \beta_\text{n}_b^2}, \zeta_\text{n}_b = \sqrt{\beta_\text{n}_b^2 - \epsilon_0\mu_0\omega^2} \right] \end{aligned} \tag{L11}$$

$$\left[\cos \left(b \kappa _ \mathbf{n}_b \right) = \cos \left(\frac{\kappa _ \mathbf{n}_b}{\sqrt{\kappa _ \mathbf{n}_b^2 + \zeta _ \mathbf{n}_b^2}} \right), b \cos \left(\kappa _ \mathbf{n}_b \right) = \left(\frac{\kappa _ \mathbf{n}_b}{b \sin \left(\kappa _ \mathbf{n}_b \right)} = \frac{\kappa _ \mathbf{n}_b \sqrt{\kappa _ \mathbf{n}_b^2 + \zeta _ \mathbf{m}_a^2}}{\zeta _ \mathbf{n}_b} \right), b \sin \left(\kappa _ \mathbf{n}_b \right) \right)$$

$$(L12)$$

$$\frac{\zeta_{-}\mathbf{n}_{b}}{\sqrt{\epsilon_{b}-\epsilon_{0}}\mu_{0}\omega}$$

where L12 are a result of he dispersion relation (5.6.15)~for even modes. where L8 are a result of he dispersion relation (5.6.15)~for even modes. Replace $i^*\kappa_y^2_\mu \to \zeta_n_b$ and $\kappa_y^1 \to \kappa_n_b$ in $\zeta_m_a = \kappa_m_a^*\tan(\kappa_m_a)^*a$. Replace $i^*\kappa_y^2_\mu \to \zeta_m_a$ and $\kappa_y^1 \to \kappa_m_a$ in $\zeta_n_b = \kappa_n_b^*\tan(\kappa_n_b)^*b$

2 Self-Coupling Coefficients

(% i27) L14:[c_11=-((i*
$$\omega$$
w)/N_m_a)('integrate((ϵ _b- ϵ _0)*(E_m_a*cos(κ _m_a)*a) ^2 *exp(2* ζ _m_a*(y-h)),y,-(h+2*b),-h))+ 'integrate((ϵ _2- ϵ _0)*(E_m_a*cos(κ _m_a)*a) ^2*exp(2* ζ _m_a*(y-h)),y,-h,h) ,c1_11=((%i* ω *w)/N_m_a)*(E_m_a) ^2*(cos(κ _m_a)*a) ^2,((_b- ϵ _0)*J_1+(ϵ _2- ϵ _0)*J_2),c_11=-%i*((κ _m_a) ^2/(β _m_a*d_m_a))*(((ϵ _b- ϵ _0)/(ϵ _a- ϵ _0))*((1-exp(-4* ζ _m_a*h))/(2* ζ _m_a))-((ϵ _2- ϵ _0)/(ϵ _a- ϵ _0))*((1-exp(-4* ζ _m_a*h))/(2* ζ _m_a))*exp(-4* ζ _m_a*h))];

$$[c_{11} = E_{m_a}^2 a^2 (\epsilon_2 - \epsilon_0) \int_{-h}^{h} \% e^{2(y-h)\zeta_{m_a}} dy \cos(\kappa_{m_a})^2 - \frac{E_{m_a}^2 a^2 iw (\epsilon_b - \epsilon_0) \int_{-h-2b}^{-h} \% e^{2(y-h)\zeta_{m_a}} dy \cos(\kappa_{m_a})^2}{N_{m_a}}$$
(L14)

$$\begin{split} & \epsilon_{-0})^*(\mathbf{E}_{-\mathbf{n}_{-}}\mathbf{b}^*\cos(\kappa_{-\mathbf{n}_{-}}\mathbf{b})^*\mathbf{b}) \qquad \hat{}_{2} \qquad \text{*exp}(2^*\zeta_{-\mathbf{n}_{-}}\mathbf{b}^*(\mathbf{y}-\mathbf{h})), \mathbf{y}, \mathbf{h}, \mathbf{h}+2^*\mathbf{a}) + \text{integrate}((\epsilon_{-\mathbf{a}^{-}}\epsilon_{-0})^*(\mathbf{E}_{-\mathbf{n}_{-}}\mathbf{b}^*\cos(\kappa_{-\mathbf{n}_{-}}\mathbf{b})^*\mathbf{b}) \\ & \hat{}_{2}^*\exp(2^*\zeta_{-\mathbf{n}_{-}}\mathbf{b}^*(\mathbf{y}-\mathbf{h})), \mathbf{y}, \mathbf{h}, \mathbf{h})) \qquad , \mathbf{c}_{-2}2 = ((\%i^*\omega^*\mathbf{w})/\mathbf{N}_{-\mathbf{n}_{-}}\mathbf{b})^*(\mathbf{E}_{-\mathbf{n}_{-}}\mathbf{b}) \\ & \hat{}_{2}^*(\cos(\kappa_{-\mathbf{n}_{-}}\mathbf{b})^*\mathbf{b}) \qquad \hat{}_{2}^*((\epsilon_{-\mathbf{a}^{-}}\epsilon_{-0})^*\mathbf{J}_{-3} + (\epsilon_{-2^{-}}\epsilon_{-0})^*\mathbf{J}_{-4}, \mathbf{c}_{-22 = -2} \\ & \%i^*((\kappa_{-\mathbf{n}_{-}}\mathbf{b}) \qquad \hat{}_{2}/(\beta_{-\mathbf{n}_{-}}\mathbf{b}^*\mathbf{d}_{-\mathbf{n}_{-}}\mathbf{b}))^*(((\epsilon_{-\mathbf{a}^{-}}\epsilon_{-0}))/(\epsilon_{-\mathbf{b}^{-}}\epsilon_{-0}))^*((1-\epsilon_{-2^{-}}\epsilon_{-0})/(\epsilon_{-\mathbf{b}^{-}}\epsilon_{-2}))/(\epsilon_{-\mathbf{b}^{-}}\epsilon_{-2}))^*((1-\epsilon_{-2^{-}}\epsilon_{-2^{-}}\mathbf{b}))^*((1-\epsilon_{-2^{-$$

integrate((ϵ a-

$$[c_{12} = \text{E}_\text{m}_a \text{E}_\text{n}_b (\epsilon_2 - \epsilon_0) \left(\frac{1}{\% e^{2h\zeta_\text{m}_a} \zeta_\text{n}_b - \zeta_\text{m}_a \% e^{2h\zeta_\text{m}_a}} - \frac{\% e^{-2h\zeta_\text{n}_b}}{\zeta_\text{n}_b - \zeta_\text{m}_a} \right) \cos(a\kappa_\text{m}_a) \cos(b\kappa_\text{n}_b) - \frac{1}{\zeta} \left(\frac{1}{\zeta_a} \right) \cos(a\kappa_a + \epsilon_b) \cos($$

L17 IS NOT CORRECT YET - EDIT TO MATCH THE TEXT

(% **i28**) L15:[c 22=-((i* ω *w)/N n b)*(

```
(\% \ \textbf{i30}) \ \text{L17:} [c\_21 = -((i^*\omega^*\mathbf{w})/\mathbf{N}_n \underline{\mathbf{n}}_b)^*( \qquad \text{integrate}((\epsilon_{\underline{\mathbf{a}}} - \epsilon_{\underline{\mathbf{0}}})^*(\underline{\mathbf{E}}_{\underline{\mathbf{n}}} \underline{\mathbf{b}}^*\cos(\kappa_{\underline{\mathbf{n}}} \underline{\mathbf{b}})^*b) \qquad \hat{\mathbf{2}} \qquad \text{exp}(2^*\zeta_{\underline{\mathbf{n}}} \underline{\mathbf{b}}^*(\mathbf{y} - \mathbf{b})), \mathbf{y}, \mathbf{h}, (\mathbf{h} + 2^*\mathbf{a})) + \text{integrate}((\epsilon_{\underline{\mathbf{a}}} - \epsilon_{\underline{\mathbf{0}}})^*(\underline{\mathbf{E}}_{\underline{\mathbf{n}}} \underline{\mathbf{b}}^*\cos(\kappa_{\underline{\mathbf{n}}} \underline{\mathbf{b}})^*b) \\ \hat{\mathbf{2}}^*\exp(2^*\zeta_{\underline{\mathbf{n}}} \underline{\mathbf{b}}^*(\mathbf{y} - \mathbf{h})), \mathbf{y}, -\mathbf{h}, \mathbf{h})) \qquad , \mathbf{c}_{\underline{\mathbf{2}}} = ((\%i^*\omega^*\mathbf{w})/\mathbf{N}_{\underline{\mathbf{n}}} \underline{\mathbf{b}})^*(\underline{\mathbf{E}}_{\underline{\mathbf{n}}} \underline{\mathbf{b}}) \\ \hat{\mathbf{2}}^*(\cos(\kappa_{\underline{\mathbf{n}}} \underline{\mathbf{b}}) + (\mathbf{y} - \mathbf{h})), \mathbf{y}, -\mathbf{h}, \mathbf{h})) \qquad , \mathbf{c}_{\underline{\mathbf{2}}} = ((\%i^*\omega^*\mathbf{w})/\mathbf{N}_{\underline{\mathbf{n}}} \underline{\mathbf{b}})^*(\underline{\mathbf{E}}_{\underline{\mathbf{n}}} \underline{\mathbf{b}}) \\ \hat{\mathbf{2}}^*(\cos(\kappa_{\underline{\mathbf{n}}} \underline{\mathbf{b}}) + (\mathbf{y} - \mathbf{h})), \mathbf{y}, -\mathbf{h}, \mathbf{h})) \qquad , \mathbf{c}_{\underline{\mathbf{2}}} = ((\%i^*\omega^*\mathbf{w})/\mathbf{N}_{\underline{\mathbf{n}}} \underline{\mathbf{b}})^*(\underline{\mathbf{E}}_{\underline{\mathbf{n}}} \underline{\mathbf{b}}) \\ \hat{\mathbf{2}}^*(\cos(\kappa_{\underline{\mathbf{n}}} \underline{\mathbf{b}}) + (\mathbf{y} - \mathbf{h})) + (\mathbf{y} - \mathbf{h}) + (\mathbf{y} - \mathbf{h}) + (\mathbf{y} - \mathbf{h}) + (\mathbf{y} - \mathbf{h})) + ((\mathbf{y} - \mathbf{h} - \mathbf{h})) + ((\mathbf{y} - \mathbf{h})) + ((\mathbf{y} - \mathbf{h} - \mathbf{h})) + ((\mathbf{y} - \mathbf{h})) + ((\mathbf{y} - \mathbf{h}) + (\mathbf{h} -
```