QCD and Monte Carlo event generators

Monte Carlo course seminar - Milan, February 2021

Outline

- Hadron collisions and strong interactions
 - Hadron collisions and strong interactions
 - Renormalization group
 - QCD factorization
- MC and Parton Showers
 - Collinear factorization
 - Final state radiation
 - Initial state radiation
- Hadronization: some basics
 - Large number of colors approximation
 - Hadronization models

Strong interactions

QCD from e^+e^- annihilation

Quantum Chromodynamics (QCD) \rightarrow theory describing the interaction between quarks and gluons (strong interactions)

QCD arises already from e^+e^- annihilation $\to R_0$ ratio

$$R_0 = \frac{\sigma(\gamma^* \to \text{hadrons})}{\sigma(\gamma^* \to \mu^+ \mu^-)} = 3 \sum_f c_f^2$$

- Color factor (3 color for each quark)
- Sum over charges of different flavors
- Threshold and higher order corrections

Strong interactions

Renormalization group

• Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_{s}(\mu)}{d\mu} = \beta(\alpha_{s}(\mu)) = -\sum_{n=0}^{\infty} \beta_{n} \left(\frac{\alpha_{s}}{\pi}\right)^{n+1}$$

- Coupling $lpha_s$ evolves with scale μ as given by RGE ightarrow LO behavior driven by eta_0
- $eta_0^{\rm QCD}>0$ \Longrightarrow weakly coupled at large energies, asymptotic freedom
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent!

Strong interactions

Renormalization group

 Running coupling given by Renormalization Group Equation (RGE)

$$\alpha_s(\mu) = \frac{1}{\beta_0 \log\left(\frac{\mu^2}{\Lambda_s^2}\right)}$$

- β_0 LO of the β function, is > 0
- Λ_s , parameter that defines value of the coupling at large scales

QCD is weakly coupled for $\mu >> \Lambda_s \longrightarrow$ asymptotically free

Perturbative Quantum Chromodynamics (pQCD)

Factorization theorem

QCD factorization

Separate process PDFs and partonic (hard) interaction

$$\sigma^{F}(p_{1},p_{2}) = \sum_{\alpha,\beta} \int_{0}^{1} dx_{1} dx_{2} f_{\alpha}(x_{1},\mu_{F}^{2}) * f_{\beta}(x_{2},\mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1},x_{2}p_{2},\alpha_{s}(\mu_{R}^{2}),\mu_{F}^{2})$$

MC Parton showers

Partons in the initial and final state emit radiation. Initial state Radiation (ISR) and Final State Radiation (FSR) model by Monte Carlo (MC) shower algorithms

Shower Monte Carlo programs (HERWIG, PYTHIA)

- Libraries for computing SM and BSM cross sections
- Shower algorithms produce a number of enhanced coloured parton emissions to be added to the hard process
- Hadronization models, underlying event, decays of unstable hadrons, etc

Collinear limit

- QCD emission processes are enhanced in the collinear limit (θ small)
- σ dominated by collinear splittings $q \to qg, g \to gg, g \to q\bar{q}$

Collinear factorization \longrightarrow The cross section factorizes into the product of a tree-level cross section and a splitting factor out tree level amplitude and splitting

$$|M_{n+1}|^2 d\Phi_{n+1} \Rightarrow |M_n|^2 d\Phi_n \ \frac{\alpha_S}{2\pi} \, \frac{dt}{t} \; P_{q,qg}(z) \; dz \; \frac{d\phi}{2\pi}.$$

$$d\Phi_{n} = (2\pi)^{4} \delta^{4} \left(\sum_{i}^{n} k_{i} - q \right) \prod_{i}^{n} \frac{d^{3}k_{i}}{(2\pi)^{3} 2k_{i}^{0}}$$

Kinematics of splitting

Kinematics of splitting given by (t, z, ϕ)

- t: parameter with dimensions of energy that vanish in the collinear limit
 - Virtuality $t = (k + l)^2 \approx z(1 z)E^2\theta^2$
 - Transverse momentum $t = k_{\perp}^2 = l_{\perp}^2 \approx z^2 (1-z)^2 E^2 \theta^2$
 - Hardness $t = E^2 \theta^2$
- z: fraction of energy of radiated parton $z = \frac{k^0}{k^0 + l^0}$
- \bullet ϕ represents azimuth of the k, l plane

AP splitting functions

Factorization holds for small angles \to small t variable Difference in the splitting \to Altarelli-Parisi splitting functions (singular in $z \to 0, 1$)

$$P_{\rm q,qg}(z) = C_{\rm F} \frac{1+z^2}{1-z}$$

$$P_{\rm g,gg}(z) = C_{\rm A} \left(\frac{z}{1-z} + \frac{1-z}{z} + z(1-z)\right)$$

$$P_{\rm g,qq}(z) = T_{\rm f}(z^2 + (1-z)^2)$$

$$m$$

$$k+l+m \quad k+l \quad x \quad k$$

$$m$$

$$1$$

We can proceed in an iterative way

$$|M_{n+2}|^2 d\Phi_{n+2} = |M_n|^2 d\Phi_n \frac{\alpha_s(t')}{2\pi} P_{q,qg}(z') \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \frac{\alpha_s(t)}{2\pi} P_{q,qg}(z) \frac{dt}{t} dz' \frac{d\phi}{2\pi}$$

Angles become small, maintaining a strong ordering relation heta' >> heta o 0

Exclusive final state

To describe exclusive final state ightarrow sum perturbative expansion to all orders in $lpha_{s}$

$$\sigma_0 \alpha_s^n \int \frac{dt_1}{t_1} \dots \frac{dt_n}{t_n} \theta(Q^2 > t_1^2 > \dots > t_n^2 > \Lambda_S^2) = \sigma_0 \frac{\alpha_s^n}{n!} \log^n \left(\frac{Q^2}{\Lambda_S^2} \right)$$

Limit to the most singular terms, in ordered sequence of angles

Collinear approximation — Leading log approximation

General structure

Approximated description of a hadronic final state Model a given hard scattering with arbitrary number of enhanced radiations

- Choose hard interaction with specified Born kinematics
- Consider all possible tree-level splittings for each coloured parton
- Assign the variables (t, z, ϕ) at each splitting vertex, t ordered in decreasing way
- At each splitting vertex assign the weight

$$\frac{\alpha_{\rm S}(t)}{2\pi} P_{\rm i,jl}(z) \frac{dt}{t} dz \frac{d\phi}{2\pi}$$

• Each line has a weight known as Sudakov factor

$$\Delta_i(t',t'') = \exp\left[-\sum_{(jl)} \int_{t''}^{t'} \frac{dt}{t} \int_0^1 dz \ \frac{\alpha_S(t)}{2\pi} \ P_{i,jl}(z)\right]$$

Formal representation of a shower

Graphical notation for the representation of a shower

$$S_i(t, E) = \frac{t, E}{i}$$

Ensemble of all possible branchings from parton i at scale t

Forward evolution equation \rightarrow recursive structure

$$S_i(t,E) = \Delta_i(t,t_0) S_i(t_0,E) + \sum_{jl} \int_{t_0}^t \frac{dt'}{t'} \int_0^1 dz \int_0^{2\pi} \frac{d\phi}{2\pi} \frac{a_S(t')}{2\pi} \Delta_i(t',t_0) S_j(t',zE) S_l(t',(1-z)E)$$

Probabilistic interpretation

$$\frac{\alpha_{\rm s}(t')}{2\pi}P_{\rm i,jl}(z')\frac{dt'}{t'}dz'\frac{d\phi'}{2\pi}$$

Probability of branching in the infinitesimal volume $\mathit{dt'}\ \mathit{dz}\ \mathit{d\phi}$

$$dP_{br} = \frac{\alpha_{\rm s}(t')}{2\pi} \frac{dt'}{t'} \int_0^1 dz' P_{\rm i,jl}(z') \int_0^{2\pi} \frac{d\phi'}{2\pi}$$

Probability of branching in the interval dt'

$$dP_{nobr} = 1 - dP_{br} = 1 - \frac{\alpha_{\rm s}(t')}{2\pi} \frac{dt'}{t'} \int_0^1 dz' P_{\rm i,jl}(z') \int_0^{2\pi} \frac{d\phi'}{2\pi}$$

Probability of no branching in the interval dt^\prime

$$\Delta_i(t,t') = 1 - dP_{br} = \prod_i^n \left(1 - \frac{\alpha_s(t_i)}{2\pi} \frac{\delta t}{t_i} \int_0^1 dz' \int_0^{2\pi} P_{i,jl}(z') \frac{d\phi'}{2\pi} \right)$$

Sudakov form factor

$$dP_{fbr} = \Delta_i(t,t') \frac{\alpha_{\rm s}(t')}{2\pi} P_{\rm i,jl}(z') \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi}$$

Probability of, starting at t, first branching in the phase space element dt' dz $d\phi$

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- **1** Set scale t = Q, hard scale of the process.
- 2 Generate random number 0 < r < 1.
- 3 Solve $r = \Delta_i(t, t')$ for t'.
- $oldsymbol{0}$ i) if $t' < t_0$, no further branching and stop shower.
- **5** ii) if $t' \geq t_0$, generate j, l with energies

$$E_i = zE_i$$
 and $E_i = (1-z)E_i$,

with z following a distribution given by $P_{i,jl}(z)$ and with azimuth ϕ uniformly distributed in the interval $[0, 2\pi]$.

6 For each branched partons set t = t' and start from (2).

General structure

- QCD coupling much larger than QED
- ullet Coupling grows for small momentum transfer o we can never neglect QCD ISR

Radiation from some initial state leading to some hard collision

ISR showers are spacelike \rightarrow initial parton is on shell

$$d\sigma_j^{\rm ISR}(p,\ldots) = \frac{\alpha_S}{2\pi} \frac{dt}{t} dz P_{ij}(z) d\sigma_i(zp,\ldots)$$

Formal representation

 $\delta x \ S_i(m,x,t,E)$ is ensemble of all possible states containing a spacelike parton m with energy between xE and $(x + \delta xE)$, scale t

$$S_i(m,x,t,E) = \frac{t_o E}{i}$$

- ullet Lines between t_1 and t_2 , t_2 and hard scattering are spacelike
- Difference from FSR in Sudakov factors and Splitting functions arise at NLO

Forward evolution equation

Backwards evolution equation

Great amount of computation time to generate configurations leading to the hard scattering that we want

Moderns MC programs \rightarrow recursive procedure starting at the large scale

$$\frac{t_{0}E}{i} = \frac{m_{0}t_{x}E}{t_{0}} + \frac{t_{0}}{i} + \frac{t_{0}}{i} + \frac{t_{0}}{i}$$

$$\frac{t_{0}E}{t_{0}E} = \frac{m_{0}t_{x}E}{t_{0}} + \frac{t_{0}}{i} + \frac{t_{0}}{i}$$

$$\sum_{\mathcal{F}} S_i(m, t, x, E) = f_m^{(i)}(x, t)$$

- The blob I at the splitting vertex is given by the inclusive splitting kernel P_{im}
- Backwards evolution equation (scale dependent parton density)

$$f_m^{(i)}(x,t) = \delta_{im}\delta(1-x)\Delta_{\rm m}(t,t_0) + \int_{t_0}^t \frac{dt'}{t'} \int_x^1 \frac{dz}{z} \sum_j f_j^{(i)}(z,t') \frac{\alpha_{\rm S}(t')}{2\pi} \hat{P}_{jm}\left(\frac{x}{z}\right) \Delta_m(t,t')$$

Shower algorithm

Generate hard process with probability proportional to its parton level cross section. For each final state colored parton:

- 1 Set scale t = Q, hard scale of the process
- ② Generate random number 0 < r < 1
- Solve

$$r = \frac{f_i^{(h)}(t', x)\Delta_i(t, t')}{f_i^{(h)}(t, x)} \quad \text{for } t'$$

- $oldsymbol{4}$ i) if $t' < t_0$, no further branching and stop shower
- **5** ii) if $t' \geq t_0$, generate j, l with energies

$$E_j = zE_i$$
 and $E_l = (1-z)E_i$,

with z following a distribution given by $P_{i,jl}(z)$ and with azimuth ϕ uniformly distributed in the interval $[0,2\pi]$

⑤ For parton j set t = t' and start from (2). For parton l generate a timelike parton shower according to the algorithm shown previously

Hadronization

Some basics

A parton becomes a measurable hadron through the emission of a partonic shower Large number of color approximation

- Color indices ranging from 1 to N_c and keep only dominant contribution
- Each parton identified by a unique label

Hadronization

Some basics

Hadronization models

- Cluster models
 - Gluons are forced to split in quark-antiquark pair
 - Then decay each color connected quark-antiquark pair independently
 - Preconfinement, assuming subsystems of color singlet partons with universal invariant mass distribution (power suppressed at high masses)
- Lund string model
 - Color connected partons collected in a system consisting of a quark, several intermediate gluons, and an antiquark
 - Intermediate gluons are transverse kicks of a continuum medium

Fragmentation models are one of the most complex aspects of Shower Monte Carlo These models have unavoidably a large number of parameters

Summary

- LHC processes factorization in perturbative and non-perturbative components
- Perturbative QCD applied only at high energies
- Monte Carlo shower algorithms describe the enhanced emissions produced by initial and final state partons
- Hadronization models describing the non-perturbative physics