EXAMEN ALGEBRĂ

2017

- 1) Grupuri ciclice (definiție, exemple, teorema de caracterizare).
- 2) Pe \mathbb{N}^* se consideră relația $a \sim b \Leftrightarrow \frac{a}{(a,b)}$ și $\frac{b}{(a,b)}$ au aceeași paritate, unde (a, b) este cmmdc(a, b).
 - a) Arătați că $a \sim b \iff \exists \ t \in \mathbb{N} \ a. \ \hat{1}. \ 2^t \mid a,b \ \text{și} \ 2^{t+1} \nmid a,b.$
 - b) Demonstrați că ~ este relație de echivalență.
 - c) Descrieți clasele de echivalență $\hat{1}$, $\hat{6}$, $\hat{48}$.
 - d) Scrieți un sistem complet de reprezentanți pentru ~.
- 3) Fie $f:(\mathbb{Q},+)\to(\mathbb{C}^*,\cdot)$ definit prin $f(x)=\cos 2\pi x+i\sin 2\pi x$, $\forall x\in\mathbb{Q}$
 - a) Arătați că f este morfism de grupuri.
 - b) Calculați Ker(f), Im(f) și aplicați teorema de izomorfism lui f.
 - c) Dați exemplu de $H\subseteq (\mathbb{Q},+)$ astfel încât $\mathbb{Z}\subset H\subset \mathbb{Q}$.
- 4) Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 4 & 5 & 6 & 7 & 2 & 9 & 10 & 1 & 12 & 11 & 8 \end{pmatrix} \in S_{12}$.
 - a) Descompuneți σ în produs de cicluri disjuncte de transpoziții.
 - b) Calculați ordinul și signatura lui σ .
 - c) Rezolvați ecuația $x^2 = \sigma$ în S_{12} .