2015—2016 学年第一学期《高等数学 AIII》试卷

2016年1月7日

 =	三	四	总 分

得 分

一、填空题(共5小题,每小题3分,共15分)

1. 设Σ 是上 半 椭 球 面 $\frac{x^2}{2}+y^2+z^2=1$ ($z\geq 0$) ,已知 Σ 的 面 积 为 $\frac{A}{2}$,则

$$\iint_{\Sigma} (x^2 + 2y^2 + 2z^2 + xyz) dS = \underline{\hspace{1cm}}^{\circ}$$

- 2. 幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^n + 3^n} x^n$ 的收敛半径为_____。
- 3. 常微分方程 $\begin{cases} xy'-y=0 \\ y(1)=1 \end{cases}$ 的解为 y=_______.

4 . 向 量 场 $\vec{A}(x,y,z) = \frac{1}{6} \left(x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k} \right)$ 在 点 M(1,1,1) 处 的 散 度 $\operatorname{div} \vec{A}(x,y,z) = \underline{\hspace{1cm}}$

5. 设Σ是球面 $x^2 + y^2 + z^2 = 1$ 的外侧,则曲面积分 $\iint_{\Sigma} (x^2 + y^2 + z^2) dx dy =$ ________.

得 分

二、选择题(共5小题,每小题3分,共15分)

1. Σ 的方程为 $y^2 + z^2 = x^2 (0 \le x \le 1)$, Σ_1 为 Σ 在第一卦限内对应的部分,则下列选项正确的是()。

(A) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma} x dS ;$

(B)
$$\iint_{\Sigma} y dS = 4 \iint_{\Sigma_{L}} x dS ;$$

(C) $\iint_{\Sigma} xyzdS \neq 4 \iint_{\Sigma} xyzdS ;$ (D) $\iint_{\Sigma} xdS = 4 \iint_{\Sigma} xdS ;$

(D)
$$\iint_{\Sigma} x dS = 4 \iint_{\Sigma_{i}} x dS$$

2. 平面曲线 L: |x|+|y|=1, 则 $\oint_{L} (|x|+|y|) ds = ($)。

(A) $4\sqrt{2}$;

(B) π ;

(C) 0;

(D) 以上都不对;

(A) 发散;

(C) 绝对收敛;

(D) 收敛性根据条件不能确定;

4. 下列微分方程中,以 $y = C_1 e^{2x} + C_2 \cos x + C_3 \sin x + x$ (C_1, C_2, C_3 为常数)为通解的是 ()。

(A) y''' + y'' + 4y' + 4y = x; (B); $y''' + y'' + 4y' + 4y = -x^2 + x$;

(C); y'''-2y''+y'-2y=-2x+1; (D) $y'''-2y''+y'-2y=-2x^2-x;$

- 5. 下列选项错误的是(
 - (A) 方程 $\left(x^3+1\right)\frac{d^2y}{dx^2}+x^2\frac{dy}{dx}=xe^{3x}$ 为非齐次二阶线性微分方程;

(B) 微分方程 $x^2y'' + 4xy' + 2y = 0$ 的通解为 $Y = C_1 \frac{1}{x^2} + C_2 \frac{1}{x^2}$;

(C) 微分方程 y"+ $y = x + \cos x$ 的特解形式可设为 $y^* = ax^2 + bx + c + Ax \sin x + (Bx + C)\cos x$;

(D) 设 y_1, y_2, y_3 是 y'' + p(x)y' + q(x)y = 0 的 三 个 不 同 的 解 , 则 该 方 程 的 通 解 为 $Y = C_1(y_1 - y_2) + C_2(y_2 - y_3)$

得 分

三、计算题(每小题 10 分, 共 40 分)

1. 判别级数 $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ 的敛散性.

2. 计算 $\int_{L} \frac{3}{2} x^2 dx + y dy$, 其中 L 是曲线 $y = x^3$ 上从点 A(-1, -1) 到 B(1, 1) 对应的一段。

3. 求微分方程 $y'-2xy=2xe^{x^2}$ 的通解。

4. 将
$$f(x) = \frac{3x}{x^2 - x - 2}$$
 展为 x 的幂级数。

得 分

四、计算题(每小题 10 分, 共 30 分)

1. 求常微分方程 $y'''-4y''+4y'=xe^x$ 的通解。

2. 计算 $I = \iint_{\Sigma} \frac{x^2 z^2}{x^2 + y^2} dy dz + y^2 \sqrt{\frac{z^2}{x^2 + y^2}} dz dx + \frac{z^3}{x^2 + y^2} dx dy$,其中 Σ为曲面 $z^2 = x^2 + y^2$ ($|z| \le 1$)的外侧。

3. 求 1) 已知 $\vec{A} = (P(x,y,z), Q(x,y,z), R(x,y,z))$,计算 $div(rot(\vec{A}))$ 。

2) 证明空间的格林第二公式
$$\iint_{\Omega} \begin{vmatrix} \Delta u & \Delta v \\ u & v \end{vmatrix} dxdydz = \iint_{\Sigma} \begin{vmatrix} \frac{\partial u}{\partial n} & \frac{\partial v}{\partial n} \\ u & v \end{vmatrix} dS$$
, 其中有界闭域 Ω 的边

界曲面为 Σ , \vec{n} 为曲面 Σ 的外法线,u=u(x,y,z),v=v(x,y,z)在 Ω 上二阶偏导连续,

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} .$$