拥抱云原生 数十万规模GPU卡的利用率极致优化之路

陈煜东

腾讯云异构计算、THPC研发负责人

关于我

陈煜东 dondonchen

腾讯云异构计算、THPC研发负责人

现负责腾讯云异构计算、裸金属高性能集群等相关研发工作,具有多年的分布式资源调度、大规模集群调度理论与实践经验。

大约

- 1. 自研 GPU 业务上云历程
- 2. qGPU 共享技术: 如何实现容器级细粒度算力切分
- 3. 基于 Taco 的异构计算加速实践
- 4. 容器实例的 GPU 混部方案

打破自研上云疑问点

- 稳定性
- 灵活性
- 成本降低
- 监控完善
- 部署难易度

自研GPU业务上云历程

大约

- 1. 自研 GPU 业务上云历程
- 2. qGPU 共享技术: 如何实现容器级细粒度算力切分
- 3. 基于 Taco 的异构计算加速实践
- 4. 容器实例的 GPU 混部方案

音乐、广告面临的问题

GPU 算力 & 显存利用率低

- GPU资源价格昂贵、利用率低
- vGPU资源切割不灵活

- 多业务混合部署
 - 仅支持最高端GPU
 - 故障隔离性

NVIDIA vGPU

虚拟化级切卡 固定比例切分

GPU共享方案几个层次

- ① Framework (如TensorFlow、PyTorch) 拦截、控制
- ②CUDA API,包括Runtime API和Driver API,拦截、控制
- ③ UMD/KMD中间拦截、控制

qGPU架构

qGPU调度策略

k8s集群调度策略

- Spread: 平均分配 保证负载稳定均衡
- Binpack: 尽量填满保证利用率
- Best Effort: 保证最大的Throughput
- Fixed Share: 算力最低配置保证
- Burst Share: 算力最低保证,允许占用空闲

单节点单卡离线PODs支持的调度策略

policy	中文名	含义
Best Effort (默认值)	争抢模式	默认值。各个 Pods 不限制算力,只要卡上有剩余算力就可使用。 如果一共启动 N 个 Pods,每个 Pod 负载都很重,则最终结果就是 1/N 的算力。
Fixed Share	固定配额	每个 Pod 有固定的算力配额,无法超过固定配额,即使 GPU 还有空闲算力。
Guaranteed Share with Burst	保证配额加弹性能力	调度器保证每个 Pod 有保底的算力配额,但只要 GPU 还有空闲算力,就可被 Pod 使用。例如,当 GPU 有空闲算力时(没有分配给其他 Pod),Pod 可以使用超过它的配额的算力。注意,当它所占用的这部分空闲算力再次被分配出去时,Pod 会回退到它的算力配额。

qGPU 单卡调度policy

qGPU在离线混部及调度方式

- 高优任务 平均分配 保证负载均衡
- 低优任务 尽量填满 保证资源利用率
- 支持在线 100% 抢占
- GPU利用率的极致提高
- · 业内唯一GPU在离线混部技术

qGPU 性能测评 - 多 Pod 场景

大约

- 1. 自研 GPU 业务上云历程
- 2. qGPU 共享技术: 如何实现容器级细粒度算力切分
- 3. 基于 Taco 的异构计算加速实践
- 4. 容器实例的 GPU 混部方案

广告分布式训练性能不升反降

T=M/E	3+a1N	/I+a2
-------	-------	-------

	理论	速度(GB/s)	场景
A100 Device Mem		1555	Device2Device
A100 Nvlink		600	Peer2Peer
PCIe Gen4 x1	6	32	Host2Device, Device2Host
Tencent 50G V	PC	6. 25	Node2Node
	最小(MB)	最大 (MB)	50G VPC 所需要耗时
ResNet50	2	20. 35	0.3ms ~ 3.2ms
TransformerXL	0.06	137	0.01ms ~ 21ms
	V100_	FP32/VPC	A100_TF32/VPC
Tflops/Gbs	15	. 6/25	156/50

如何解决网络通信问题?

两个维度的优化手段:

- ●通信算法。主要定义在分布式框架当中 → LightCC
- ●通信协议。主要定义在集合通信协议当中 → HARP

LightCC

全局allreduce:

- · 只有首尾的两个GPU是进行数据交互的
- 网络带宽的利用率比较低

2D allreduce:

- · 先单机卡内nvlink进行数据传输计算
- 然后跨机通信切分数据计算
- 单机内nvlink传输计算
- 所有卡都同时在跨机收发数据,带宽利用率
- 传输的数据量减少

HARP自定义协议栈

问题:

- ●多机分布式训练中网络通信占比越来越重
- ●云上没有RDMA环境下,内核socket通信效率低

HARP的特点:

- ●Bypass kernel,全路径内存零拷贝
- ●模块化无锁设计,可以进行多核性能扩展,cache miss低,I/0吞吐高
- ●NCCL Plugin方式集成,无需任何业务改动

效果

大约

- 1. 自研 GPU 业务上云历程
- 2. qGPU 共享技术: 如何实现容器级细粒度算力切分
- 3. 基于 Taco 的异构计算加速实践
- 4. 容器实例的 GPU 混部方案

为配合业务降本带来的问题

弹性容器实例宿主机

降本带来的问题:

- 1. 业务需要的CPU、MEM无法GPU等比例切分
- 2. 复用机型,后端无法定制多种规格物理机

富裕年代,这些都不是事

混部充分利用碎片资源

应对思路:将空洞的资源与CPU弹性容器实例混部

带来的问题:

- 1. 频繁的弹性伸缩,碎片资源如何高效利用
- 2. 资源的迁入与迁出如何设定

迁移策略

迁入

- 规格
 - 小规格, 创建时间早的
- 时机
 - 凌晨业务低谷迁入在线容器实例
- 宿主机
 - GPU卡全部售卖完,直接迁移 GPU卡部分售卖完,预留GPU实例需要的cpu/mem,剩余混部

迁移中

- 实例信息生成最大堆结构
- 母机信息生成最小堆结构
- 先大规格实例迁移(避免更碎片化)
- 小规格实例填充碎片

迁出

- 时机
 - GPU资源空出 计算预留GPU实例需要的数量,迁出多余的实例
- · 目的端 其他GPU母机或者通用母机
- 重复迁移中的动作

弹性容器实例 1 · · · n

收益

总结

- · 通过在GPU UMD KMD增加一层,实现更灵活的算力、显存切分调度
- 通过减少跨机数据通信与优化协议栈耗时,提升分布式训练效率
- 弹性容器实例通过资源混部与动态迁移能力,提供能灵活的规格,降低成本

沟通交流

- 技术交流
 - · 微信: daoiqi
- 求贤若渴
 - dondonchen@tencent.com
 - 深圳、北京
 - · 调度、异构计算、裸金属、HPC

想一想,我该如何把这些技术应用在工作实践中?

THANKS

