

78. The method of any one of Claims 70-73 wherein the substrate is contacted with a silver stain to produce the detectable change.

79. The method of any one of Claims 70-73 wherein the detectable change is observed with an optical scanner.

80.. A method of detecting a nucleic acid having at least two portions comprising:
 providing nanoparticles having oligonucleotides attached thereto;
 providing one or more types of binding oligonucleotides, each of the binding oligonucleotides having two portions, the sequence of one portion being complementary to the sequence of one of the portions of the nucleic acid and the sequence of the other portion being complementary to the sequence of the oligonucleotides on the nanoparticles;
 contacting the nanoparticles and the binding oligonucleotides under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles with the binding oligonucleotides;
 contacting the nucleic acid and the binding oligonucleotides under conditions effective to allow hybridization of the binding oligonucleotides with the nucleic acid; and
 observing a detectable change.

81. The method of Claim 80 wherein the nanoparticles are contacted with the binding oligonucleotides prior to being contacted with the nucleic acid.

82. A method of detecting a nucleic acid having at least two portions comprising:
 providing nanoparticles having oligonucleotides attached thereto;
 providing one or more binding oligonucleotides, each of the binding oligonucleotides having two portions, the sequence of one portion being complementary to the sequence of at least two portions of the nucleic acid and the sequence of the other portion being complementary to the sequence of the oligonucleotides on the nanoparticles;

contacting the nanoparticles and the binding oligonucleotides under conditions effective to allow hybridization of the oligonucleotides on the nanoparticles with the binding oligonucleotides;

contacting the nucleic acid and the binding oligonucleotides under conditions effective to allow hybridization of the binding oligonucleotides with the nucleic acid; and
observing a detectable change.

83. A method of detecting nucleic acid having at least two portions comprising:
contacting the nucleic acid with at least two types of particles having oligonucleotides attached thereto,

the oligonucleotides on the first type of particles having a sequence complementary to a first portion of the sequence of the nucleic acid and being labeled with an energy donor,
the oligonucleotides on the second type of particles having a sequence complementary to a second portion of the sequence of the nucleic acid and being labeled with an energy acceptor,

the contacting taking place under conditions effective to allow hybridization of the oligonucleotides on the particles with the nucleic acid; and

observing a detectable change brought about by hybridization of the oligonucleotides on the particles with the nucleic acid.

84. The method of Claim 83 wherein the energy donor and acceptor are fluorescent molecules.

85. A method of detecting nucleic acid having at least two portions comprising:
providing a type of microspheres having oligonucleotides attached thereto,
the oligonucleotides having a sequence complementary to a first portion of the sequence of the nucleic acid and being labeled with a fluorescent molecule;

providing a type of nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to a second portion of the sequence of the nucleic acid, nanoparticles being capable of producing a detectable change;

contacting the nucleic acid with the microspheres and the nanoparticles under conditions effective to allow hybridization of the oligonucleotides on the microspheres and on the nanoparticles with the nucleic acid; and

observing a change in fluorescence, another detectable change produced by the nanoparticles, or both.

86. The method of Claim 85 wherein the detectable change produced by the nanoparticles is a change in color.

87. The method of Claim 85 wherein the microspheres are latex microspheres and the nanoparticles are gold nanoparticles, and changes in fluorescence, color or both are observed.

88. The method of Claim 87 further comprising placing a portion of the mixture of the latex microspheres, nanoparticles and nucleic acid in an observation area located on a microporous material, treating the microporous material so as to remove any unbound gold nanoparticles from the observation area, and then observing the changes in fluorescence, color, or both.

89. A method of detecting nucleic acid having at least two portions comprising:
providing a first type of metallic or semiconductor nanoparticles having oligonucleotides attached thereto, the oligonucleotides having a sequence complementary to a first portion of the sequence of the nucleic acid and being labeled with a fluorescent molecule;