

ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level Ellipsoid and Signed Distance Function Description

Mo Shan, Qiaojun Feng, You-Yi Jau, Nikolay Atanasov University of California San Diego

Motivations & Contributions

Motivations:

- Maps offering geometric and semantic information are useful and understandable for humans, allowing specification of symbolic tasks in terms of object entities.
- Striking the right balance between a faithful object reconstruction and a compact object representation remains an open research problem.

Contributions:

- A bi-level object model consisting of coarse and fine levels, which enables joint optimization of object pose and shape. The coarse-level uses a primitive shape for robust pose and scale initialization, and the finelevel model uses SDF residual directly to allow accurate shape modeling. The two levels are coupled via a shared latent space.
- A cost function to measure the mismatch between the bi-level object model and the segmented RGB-D observations in the world frame.

Overview: We propose ELLIPSDF, an expressive yet compact model of object pose and shape, and an associated optimization algorithm to infer an object-level map from multi-view RGB-D camera observations.

Problem Formulation

Definitions:

- An object class is a tuple $\mathbf{c} \triangleq (\nu, \mathbf{z}, f_{\theta}, g_{\phi})$, where $\nu \in$ $\mathbb N$ is the class identity, e.g., chair, table, sofa, and $z \in$ \mathbb{R}^d is a latent code vector, encoding the average class shape. Shape is represented in a canonical coordinate frame at two levels of granularity: coarse and fine.
- Coarse shape is specified by an ellipsoid \mathcal{E}_{u} with semiaxis lengths $u = g_{\phi}(z)$ decoded from the latent code z via a function $g_{\phi}: \mathbb{R}^d \mapsto \mathbb{R}^3$ with parameters ϕ .
- Fine shape is specified by the signed distance $f_{\theta}(x, z)$ from any $x \in \mathbb{R}^3$ to the average shape surface, decoded from the latent code z via a function f_{θ} : $\mathbb{R}^3 \times \mathbb{R}^d \mapsto \mathbb{R}$ with parameters $\boldsymbol{\theta}$.
- An object instance of class c is a tuple $i \triangleq (T, \delta z)$, where $T \in SIM(3)$ specifies the transformation from the global frame to the object instance frame, and $\delta z \in$ \mathbb{R}^d is a deformation of the latent code z, specifying the average shape of class c.

Error Functions:

- Error function e_{ϕ} measures the discrepancy between a distance-labelled point $(\boldsymbol{x},d) \in \mathcal{X}_k(\boldsymbol{p})$ observed close to the instance surface and the coarse shape $\mathcal{E}_{\boldsymbol{u}}$ provided by $u = g_{\phi}(z)$. Error function e_{θ} is used for the difference between (x, d) and the SDF value $f_{\theta}(x, z)$ predicted by the fine shape model.
- Overall function $\alpha e_r(\delta z) + \sum \sum \beta e_{\theta}(x, d, T, \delta z) + \gamma e_{\phi}(x, d, T, \delta z).$

Object Pose and Shape Optimization

We distinguish between a training phase, where we optimize the parameters z, θ, ϕ of an object class using offline data from instances with known mesh shapes, and a testing phase, where we optimize the pose T and shape deformation δz of a previously unseen instance from the same category using online distance data from an RGB-D camera.

Training an ELLIPSDF Model:

• Latent shape code shared by coarse shape decoder g_{ϕ} and fine shape decoder f_{θ} :

• Fine-level shape error function $e_{\theta}(x, d, T, \delta z) \triangleq$ $\rho(sf_{\theta}(PT\underline{x};z+\delta z)-d)$. Coarse-level shape error $e_{\phi}(\boldsymbol{x}, d, \boldsymbol{T}, \delta \boldsymbol{z}) \triangleq \rho(sh(\boldsymbol{PT}\underline{\boldsymbol{x}}, g_{\phi}(\boldsymbol{z} + \delta \boldsymbol{z})) - d).$

Joint Pose and Shape Optimization:

• The Jacobian of e_{θ} wrt transformation perturbation is:

$$\frac{\partial e_{\boldsymbol{\theta}}}{\partial \boldsymbol{\xi}} = \frac{\partial \rho(r)}{\partial r} \left(\hat{s}[\mathbf{0}_{6}, 1] f_{\boldsymbol{\theta}}(\boldsymbol{x}, \delta \hat{\boldsymbol{z}}) + \hat{s} \nabla_{\boldsymbol{x}} f_{\boldsymbol{\theta}}(\boldsymbol{x}, \delta \hat{\boldsymbol{z}})^{\top} \boldsymbol{P} \left[\hat{\boldsymbol{T}} \underline{\boldsymbol{x}} \right]^{\odot} \right)
\frac{\partial e_{\boldsymbol{\theta}}}{\partial \delta \tilde{\boldsymbol{z}}} = \frac{\partial \rho(r)}{\partial r} \hat{s} \nabla_{\boldsymbol{z}} f_{\boldsymbol{\theta}}(\boldsymbol{x}, \delta \hat{\boldsymbol{z}}).$$

• Given initial transformation and deformation, solve joint pose and shape optimization via gradient descent:

$$egin{aligned} oldsymbol{T}^{i+1} & riangleq \exp\left(-\eta_1 rac{\partial e(oldsymbol{T}, \delta oldsymbol{z}, oldsymbol{ heta}^*, oldsymbol{\phi}^*, oldsymbol{\phi}^*; \{\mathcal{X}_k(oldsymbol{p})\})}{\partial oldsymbol{x}i} igg) oldsymbol{T}^i, \ \delta oldsymbol{z}^{i+1} & riangleq \delta oldsymbol{z}^i - \eta_2 \left(rac{\partial e(oldsymbol{T}, \delta oldsymbol{z}, oldsymbol{ heta}^*, oldsymbol{\phi}^*, oldsymbol{\phi}^*; \{\mathcal{X}_k(oldsymbol{p})\})}{\partial \delta oldsymbol{z}}
ight). \end{aligned}$$

Experiments & Results

We evaluate ELLIPSDF on the ScanNet dataset, which provides 3D scans captured by a RGB-D sensor of indoor scenes with chairs, tables, displays etc. We segment out the objects from the scene-level mesh using provided instance labels and sample points from the object meshs to generate the point observations.

Visualizations of Intermediate Results:

- The ELLIPSDF decoder model is trained on synthetic CAD models from ShapeNet. Each model's scale is normalized to be inside a unit sphere.
- First column: RGB image, depth image, instance segmentation (yellow), fitted ellipse (red) for a chair in ScanNet scene 0461. Second column: mean shape and ellipsoid with initialized pose. Third column: optimized fine-level and coarse-level shapes with optimized pose.
- Optimization step improves the scale and shape estimates notably, e.g. by transforming the four-leg mean shape into an armchair.

Intermediate ELLIPSDF stages.

Qualitative Results on a larger scale:

Column a): Ground-truth scene in ScanNet Sequences. Column b): The ellipsoids (black for chair, red for sofa, blue for monitor, brown for table) are the initialized objects. Column c): Reconstructed meshes using ELLIPSDF.

Quantitative results for pose estimation on ScanNet:

	Scan2CAD	Vid2CAD	ELLIPSDF (init)	ELLIPSDF (opt)						
	31.7	38.3	31.5	39.6						
Juantitative results for shape evlaution on ScanNet										

Quantitative results for shape eviaution on Scannet

Method	cabinet	chair	display	table	avg.
# intances	132	820	209	146	327
ELLIPSDF (fine)	88.4	88.3	90.6	76.2	85.9
ELLIPSDF (coarse+fine)	91.0	90.6	96.9	77.3	89.0

Comparison of 3D detection results on ScanNet:

mAP @ IoU=0.5	Chair	Table	Display
FroDO	0.32	0.06	0.04
MOLTR	0.39	0.06	0.10
ELLIPSDF (fine)	0.42	0.26	0.25
ELLIPSDF (coarse+fine)	0.43	0.27	0.31