

#### Тест по работе 4.03V

- 1. Прохождение данного теста является необходимым условием для проведения измерений
- 2. Проходная оценка: 7 баллов (70%)

Разрешено попыток: 7 Ограничение по времени: 1 ч.

Метод оценивания: Высшая оценка

#### Результаты ваших предыдущих попыток

| Попытка | Состояние                                                 | Оценка / 10,00 | Просмотр       |
|---------|-----------------------------------------------------------|----------------|----------------|
| 1       | Завершенные<br>Отправлено Суббота, 16 Май 2020, 16:39     | 3,00           | Не разрешается |
| 2       | Завершенные<br>Отправлено Понедельник, 18 Май 2020, 09:47 | 7,67           | Не разрешается |

Высшая оценка: 7,67 / 10,00.

Дата и время измерений: 18.05.2020 14:00



Группа: <u>Р3122</u> К работе допущен:

Студент: Громов А.С. Работа выполнена:

Преподаватель: Крылов В.А. Отчет принят:

# Рабочий протокол и отчет по лабораторной работе № 4.03V

# «Кольцо Ньютона»

#### 1. Цель работы.

Изучение интерференционной картины колец Ньютона. Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона.

- 2. Задачи, решаемые при выполнении работы.
- 1) Получить интерференционную картину методом деления амплитуд.
- 2) Изучить зависимости интенсивности от радиальной координаты для монохроматического и бихроматического излучений.
- 3) Рассчитать радиус кривизны линзы.
- 4) Исследовать функцию видности.
- 3. Объект исследования.

Интерференционная картина кольца Ньютона.

4. Метод экспериментального исследования.

Статический.

5. Рабочие формулы и исходные данные.

$$n_1=1{,}20$$
  $n_2=1{,}70$   $\lambda_1=715\,\mathrm{HM}$   $\lambda_2=650\,\mathrm{HM}$   $R=\dfrac{(r_m^2-r_n^2)n_0}{(m-n)\lambda}$   $V_{\mathrm{3CKII}}=\dfrac{I_{max}-I_{min}}{I_{max}+I_{min}}$   $V_{\mathrm{Teop}}=\left|\cos\left(\dfrac{\pi\Delta\lambda}{\lambda^2}\Delta_{opt}\right)\right|-$  для бихроматического излучения  $V_{\mathrm{Teop}}=\left|\sin c\left(\dfrac{\pi\Delta\lambda}{\lambda^2}\Delta_{opt}\right)\right|-$  для однородного сплошного спектра  $\dfrac{1}{c}=\dfrac{\pi\Delta\lambda}{\lambda^2}\Delta_{opt}$   $\Delta_{opt}=\dfrac{r^2}{R}n_0$ 

6. Измерительные приборы.

Виртуальный стенд.

### 7. Схема установки.



Рис. 2. Формирование интерференционной картины в опыте "кольца Ньютона".

## 8. Результаты прямых измерений и их обработки.





## 9. Расчет результатов косвенных измерений.

## Таблица радиусов колец для измерения из п.5

| m  | $R_{	ext{cBeT}}$ , MM | $R_{\scriptscriptstyle \mathrm{TEMH}}$ , MM | $R_{\scriptscriptstyle \mathrm{CBET}}^2$ , MM $^2$ | $R_{\scriptscriptstyle \mathrm{TeMH}}^2$ , MM $^2$ |
|----|-----------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 0  | -                     | 0,0000                                      | -                                                  | 0,0000                                             |
| 1  | 0,5525                | 0,7750                                      | 0,3053                                             | 0,6006                                             |
| 2  | 0,9525                | 1,0925                                      | 0,9073                                             | 1,1936                                             |
| 3  | 1,2250                | 1,3375                                      | 1,5006                                             | 1,7889                                             |
| 4  | 1,4500                | 1,5450                                      | 2,1025                                             | 2,3870                                             |
| 5  | 1,6425                | 1,7275                                      | 2,6978                                             | 2,9843                                             |
| 6  | 1,8150                | 1,8925                                      | 3,2942                                             | 3,5816                                             |
| 7  | 1,9725                | 2,0425                                      | 3,8908                                             | 4,1718                                             |
| 8  | 2,1175                | 2,1825                                      | 4,4838                                             | 4,7633                                             |
| 9  | 2,2525                | 2,3140                                      | 5,0738                                             | 5,3546                                             |
| 10 | 2,3825                | 2,4425                                      | 5,6763                                             | 5,9658                                             |

## Таблица радиусов колец для измерения из п.7

| m  | $R_{\scriptscriptstyle 	ext{CBET}}$ , MM | $R_{\scriptscriptstyle \mathrm{TEMH}}$ , MM | $R_{\scriptscriptstyle \mathrm{CBeT}}^2$ , MM $^2$ | $R_{\text{темн}}^2$ , мм <sup>2</sup> |
|----|------------------------------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------|
| 0  | -                                        | 0,0000                                      | -                                                  | 0,0000                                |
| 1  | 0,4675                                   | 0,6500                                      | 0,2186                                             | 0,4225                                |
| 2  | 0,8000                                   | 0,9175                                      | 0,6400                                             | 0,8418                                |
| 3  | 1,0275                                   | 1,1250                                      | 1,0558                                             | 1,2656                                |
| 4  | 1,2175                                   | 1,2975                                      | 1,4823                                             | 1,6835                                |
| 5  | 1,3800                                   | 1,4500                                      | 1,9044                                             | 2,1025                                |
| 6  | 1,5225                                   | 1,5900                                      | 2,3180                                             | 2,5281                                |
| 7  | 1,6575                                   | 1,7150                                      | 2,7473                                             | 2,9412                                |
| 8  | 1,7775                                   | 1,8350                                      | 3,1595                                             | 3,3672                                |
| 9  | 1,8925                                   | 1,9450                                      | 3,5816                                             | 3,7830                                |
| 10 | 2,0000                                   | 2,0500                                      | 4,0000                                             | 4,2025                                |
| 11 | 2,1050                                   | 2,1525                                      | 4,4310                                             | 4,6333                                |
| 12 | 2,2025                                   | 2,2475                                      | 4,8510                                             | 5,0513                                |
| 13 | 2,2950                                   | 2,3375                                      | 5,2670                                             | 5,4639                                |
| 14 | 2,3850                                   | 2,4275                                      | 5,6882                                             | 5,8928                                |
| 15 | 2,4725                                   | -                                           | 6,1133                                             | -                                     |

## Таблица для расчета радиуса кривизны линзы (п.5)

$$R = \frac{(r_m^2 - r_n^2)n_0}{(m-n)\lambda}$$

| m-n | $R_m^2$ , MM $^2$ | $R_n^2$ , $\mathrm{MM}^2$ | $R_i$ , MM |
|-----|-------------------|---------------------------|------------|
| 1-0 | 0,4536            | 0,0000                    | 1,0080     |
| 3-2 | 1,3806            | 0,9216                    | 0,9992     |
| 5-4 | 2,3028            | 1,8428                    | 1,0023     |
| 7-6 | 3,2220            | 2,7639                    | 0,9906     |
| 9-8 | 4,1514            | 3,6864                    | 0,9924     |

#### Таблица для расчета радиуса кривизны линзы (п.7)

| m-n   | $R_m^2$ , $\mathrm{MM}^2$ | $R_n^2$ , $\mathrm{MM}^2$ | $R_i$ , mm |
|-------|---------------------------|---------------------------|------------|
| 1-0   | 0,4160                    | 0,0000                    | 1,0045     |
| 3-2   | 1,2488                    | 0,8327                    | 1,0077     |
| 5-4   | 2,0808                    | 1,6641                    | 0,9962     |
| 7-6   | 2,9156                    | 2,4964                    | 0,9823     |
| 9-8   | 3,7442                    | 3,3306                    | 0,9886     |
| 11-10 | 4,5796                    | 4,1616                    | 1,0242     |
| 13-12 | 5,4056                    | 4,9952                    | 0,9811     |

#### Таблица для вычисления функции видности (п.10)

$$\lambda_1 = 715 \ \mathrm{HM}$$
  $\lambda_2 = 650 \ \mathrm{HM}$   $V_{\mathrm{ЭСКП}} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$   $V_{\mathrm{Teop}} = \left| \cos \left( \frac{\pi \Delta \lambda}{\lambda^2} \Delta_{opt} \right) \right| -$  для бихроматического излучения  $V_{\mathrm{Teop}} = \left| \sin c \left( \frac{\pi \Delta \lambda}{\lambda^2} \Delta_{opt} \right) \right| -$  для однородного сплошного спектра  $\frac{1}{c} = \frac{\pi \Delta \lambda}{\lambda^2} \Delta_{opt}$   $\Delta_{opt} = \frac{r^2}{R} n_0$   $\Delta \lambda = \lambda_1 - \lambda_2 = 645 - 594 = 65 \ \mathrm{HM}$   $\lambda = \frac{\lambda_1 + \lambda_2}{2} = \frac{645 + 594}{2} = 682, 5 \ \mathrm{HM}$ 

| n | $R_{max}$ , MM | $R_{min}$ , MM | <b>r</b> , mm | $I_{max}$ | $I_{min}$ | С      | $\Delta$ , MM <sup>2</sup> | $V_{_{\mathfrak{I}CK\Pi}}$ | $V_{\mathrm{reop}}$ |
|---|----------------|----------------|---------------|-----------|-----------|--------|----------------------------|----------------------------|---------------------|
| 1 | 0,4500         | 0,0000         | 0,2250        | 0,9995    | 0,0000    | 0,0377 | 0,0861                     | 1,0000                     | 0,9993              |
| 2 | 0,7775         | 0,6350         | 0,7063        | 0,9545    | 0,0230    | 0,3717 | 0,8479                     | 0,9529                     | 0,9317              |
| 3 | 1,0025         | 0,8950         | 0,9488        | 0,8699    | 0,0874    | 0,6708 | 1,5302                     | 0,8175                     | 0,7833              |
| 4 | 1,1850         | 1,0950         | 1,1400        | 0,7533    | 0,1888    | 0,9685 | 2,2093                     | 0,5992                     | 0,5665              |
| 5 | 1,3425         | 1,2650         | 1,3038        | 0,6148    | 0,3185    | 1,2668 | 2,8896                     | 0,3175                     | 0,2994              |
| 6 | 1,4575         | 1,4075         | 1,4325        | 0,5000    | 0,4597    | 1,5293 | 3,4885                     | 0,0420                     | 0,0415              |
| 7 | 1,5600         | 1,4975         | 1,5288        | 0,6122    | 0,4602    | 1,7417 | 3,9730                     | 0,1418                     | 0,1701              |
| 8 | 1,6800         | 1,6175         | 1,6488        | 0,7495    | 0,3184    | 2,0259 | 4,6212                     | 0,4037                     | 0,4395              |
| 9 | 1,7925         | 1,7350         | 1,7638        | 0,8702    | 0,1889    | 2,3184 | 5,2884                     | 0,6433                     | 0,6799              |

| 10 | 1,9025 | 1,8475 | 1,8750 | 0,9465 | 0,0893 | 2,6200 | 5,9766 | 0,8276 | 0,8671 |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 11 | 2,0050 | 1,9500 | 1,9775 | 0,9881 | 0,0231 | 2,9143 | 6,6479 | 0,9543 | 0,9743 |
| 12 | 2,0975 | 2,0500 | 2,0738 | 0,9977 | 0,0007 | 3,2049 | 7,3107 | 0,9986 | 0,9980 |
| 13 | 2,1950 | 2,1475 | 2,1713 | 0,9469 | 0,0246 | 3,5134 | 8,0144 | 0,9494 | 0,9317 |
| 14 | 2,2825 | 2,2375 | 2,2600 | 0,8705 | 0,0873 | 3,8065 | 8,6829 | 0,8178 | 0,7870 |
| 15 | 2,3700 | 2,3250 | 2,3475 | 0,7488 | 0,1889 | 4,1069 | 9,3683 | 0,5971 | 0,5691 |
| 16 | 2,4525 | 2,4075 | 2,4300 | 0,6118 | 0,3183 | 4,4007 | 10,038 | 0,3156 | 0,3067 |
| 17 | -      | 2,4875 | -      | -      | 0,4598 | -      | -      | -      | -      |

## Таблица для вычисления функции видности (п.12)

| n  | $R_{max}$ , MM | $R_{min}$ , MM | <i>r</i> , mm | I <sub>max</sub> | $I_{min}$ | С      | $\Delta$ , MM <sup>2</sup> | $V_{_{\mathfrak{I}CK\Pi}}$ | $V_{\text{reop}}$ |
|----|----------------|----------------|---------------|------------------|-----------|--------|----------------------------|----------------------------|-------------------|
| 1  | 0,4500         | 0,0000         | 0,2250        | 1,0000           | 0,0000    | 0,0377 | 0,0861                     | 1,0000                     | 0,9998            |
| 2  | 0,8000         | 0,6000         | 0,7000        | 0,9769           | 0,0117    | 0,3652 | 0,8330                     | 0,9763                     | 0,9779            |
| 3  | 1,0025         | 0,8950         | 0,9488        | 0,9354           | 0,0423    | 0,6708 | 1,5302                     | 0,9135                     | 0,9267            |
| 4  | 1,1850         | 1,0975         | 1,1413        | 0,8780           | 0,0939    | 0,9707 | 2,2142                     | 0,8068                     | 0,8502            |
| 5  | 1,3425         | 1,2650         | 1,3038        | 0,8090           | 0,1566    | 1,2668 | 2,8896                     | 0,6756                     | 0,7532            |
| 6  | 1,4850         | 1,4150         | 1,4500        | 0,7290           | 0,2324    | 1,5669 | 3,5743                     | 0,5165                     | 0,6382            |
| 7  | 1,6150         | 1,5500         | 1,5825        | 0,6476           | 0,3128    | 1,8664 | 4,2573                     | 0,3486                     | 0,5126            |
| 8  | 1,7375         | 1,6725         | 1,7050        | 0,5682           | 0,3923    | 2,1665 | 4,9419                     | 0,1832                     | 0,3821            |
| 9  | 1,8300         | 1,7925         | 1,8113        | 0,4960           | 0,4676    | 2,4449 | 5,5771                     | 0,0295                     | 0,2625            |
| 10 | 1,8925         | 1,8525         | 1,8725        | 0,5338           | 0,5051    | 2,6131 | 5,9606                     | 0,0276                     | 0,1930            |
| 11 | 1,9975         | 1,9475         | 1,9725        | 0,5849           | 0,4420    | 2,8996 | 6,6143                     | 0,1392                     | 0,0826            |
| 12 | 2,1000         | 2,0450         | 2,0725        | 0,6112           | 0,3980    | 3,2011 | 7,3019                     | 0,2113                     | 0,0186            |
| 13 | 2,1900         | 2,1425         | 2,1663        | 0,6349           | 0,3722    | 3,4972 | 7,9775                     | 0,2608                     | 0,0996            |
| 14 | 2,2750         | 2,2350         | 2,2550        | 0,6354           | 0,3660    | 3,7897 | 8,6445                     | 0,2691                     | 0,1593            |
| 15 | 2,3650         | 2,3200         | 2,3425        | 0,6171           | 0,3730    | 4,0895 | 9,3284                     | 0,2465                     | 0,1986            |
| 16 | 2,4475         | 2,4050         | 2,4263        | 0,5868           | 0,3977    | 4,3871 | 10,007                     | 0,1921                     | 0,2160            |
| 17 | -              | 2,4875         | -             | -                | 0,4348    | -      | -                          | -                          | -                 |

## 10. Расчет погрешностей измерений.

$$\overline{R_5} = \sum_{i=1}^{N} R_i = 1,0001 \text{ M}$$
  $\overline{R_7} = 0,9978 \text{ M}$   $S_{\overline{R_5}} = \sqrt{\frac{\sum_{i=1}^{N} (R_i - \overline{R})^2}{N(N-1)}} = 0,0033 \text{ M}$   $S_{\overline{R_7}} = 0,0059 \text{ M}$ 

Погрешность измерительных приборов невероятно мала, поэтому:

$$\begin{split} &\Delta \mathbf{R}_5 = t_{\alpha,N} \cdot S_{\overline{R_5}} = 0,0033 \cdot 2,78 = 0,0092 \approx 0,009 \text{ M} \\ &\Delta R_7 = t_{\alpha,N} \cdot S_{\overline{R_7}} = 0,0059 \cdot 2,45 = 0,00144 \approx 0,0014 \text{ M} \\ &\varepsilon_{R_5} = \frac{\Delta \mathbf{R}}{\overline{R}} \cdot 100\% = \frac{0,009}{1,000} \cdot 100\% = 0,9169\% = 0,9\% \\ &\varepsilon_{R_7} = \frac{\Delta \mathbf{R}}{\overline{R}} \cdot 100\% = \frac{0,0014}{0,9978} \cdot 100\% = 1,4404\% = 1,4\% \end{split}$$

## 11. Графики.

Синий – для темных колец.

Желтый – для светлых колец.

Зеленый – получено в эксперименте.

Красный – рассчитано теоретически.









12. Окончательные результаты.

$$R_5 = (1,000 \pm 0,009) \text{ M};$$
  $\varepsilon_R = 0,9\%;$   $\alpha = 0,95.$ 

$$R_7 = (0.9978 \pm 0.0014) \text{ m}; \qquad \qquad \varepsilon_R = 1.4\%; \qquad \qquad \alpha = 0.95.$$

#### 13. Выводы и анализ результатов работы.

Графики зависимости  $R_1^2 = R_1^2(m)$  и  $R_2^2 = R_2^2(m)$  имеют линейных характер как для темных, так и для светлых колец.

Исходя из того, что области допустимых значений вычисленных радиусов кривизны для измерений п.5 и п.7 покрывают друг друга, можно сделать вывод, что радиусы  $R_5$  и  $R_7$  равны, то есть используемый способ вычисления радиуса кривизны линзы справедлив.

Были изучены зависимости значений видности от оптической разности хода, полученные в эксперименте, а также рассчитанные теоретически, для двух типов излучения. Результат исследования этих зависимостей и соответствующих графиков функции приводит к выводу, что теоретическая формула для бихроматического излучения справедлива, а в случае однородного сплошного спектра отражает экспериментальные данные с низкой степенью точности.

#### 14. Дополнительные задания.

- 1) Показать ход лучей через данную систему, дающих интерференционную картину колец в отраженном и проходящем свете. Сравнить выражения для оптической разности хода.
- 2) Как будут отличаться картины колец Ньютона в отраженном и в проходящем свете, полученные на данной интерференционной схеме?
- 3) Что понимают под временной когерентностью? Какие ограничения она накладывает на устройство интерференционной схемы?
- 4) Почему выпуклая поверхность линзы, используемой в опыте, должна иметь большой радиус кривизны?
- 5) Что произойдет с картиной колец, если пространство между линзой и пластиной заполнить: а) водой; б) жидкостью с показателем преломления 1,67 (показатель преломления стекла, из которого изготовлены линза и пластина, 1,52)?

6) Почему такую картину интерференции называют «полосами равной толщины»? Что в отличие от этого называют «полосами равного наклона»?

#### 15. Выполнение дополнительных заданий.

1) В отраженном свете:



$$\Delta_{opt} = 2hn + \frac{\lambda}{2}$$

В проходящем свете:



$$\Delta_{opt} = 2hn$$

2) В отраженном свете:



В проходящем свете:



- 3) Временная когерентность состояние, при котором в течение некоторого времени разность фаз двух колебаний изменяется очень медленно. Чем меньше временная когерентность, тем менее четкой становится интерференционная картина.
- 4) Для того, чтобы интерференционная картина в виде чередующихся колец была более чёткой, чтобы можно было вычислить оптическую разность хода.

- 5)  $r_m^2 = \frac{m\lambda R}{n_2} \Rightarrow$  С увеличением показателя преломления среды радиус колец будет уменьшаться.
- 6) Данная картина называется «полосы равной толщины», так как образуются концентрические окружности равной оптической толщины. Потому что система из пластины и линзы освещается параллельным пучком света, и оптическая разность хода лучей по окружности постоянна и поэтому кольца (полосы минимума и максимума) представляют из себя концентрические окружности с центром в точке соприкосновения линзы и пластины.

Полосы равного наклона — это чередующиеся тёмные и светлые полосы (интерференционные полосы), возникающие при падении света на плоскопараллельную пластину под одинаковым углом.

16. Замечания преподавателя.