Question			
Number	Answer		Mark
16(a)	Corresponding values from best fit line	(1)	
	Use of $P = VI$	(1)	2
	Minimum potential difference = 9.0 V	(1)	3
	Example of calculation		
	P = VI		
	At 9.0 V, $P = 9.0 \text{ V} \times 3.9 \text{ A} = 35.1 \text{ W}$		
16(b)(i)	In parallel, each headlight receives 12 V		
	Or In series, each headlight receives 6 V	(1)	
	In parallel, headlights will have higher power/brightness		
	Or In series, headlights will have lower power/brightness	(1)	
	In parallel, if one headlight breaks/fails, the other one remains on	(1)	•
	Or In series, if one headlight breaks/fails, the other one goes out	(1)	3
16(b)(ii)	Use of $R = V/I$	(1)	
	Use of resistors in parallel formula to calculate R_T in parallel	(1)	
	Reserves is not $4 \times R$ parallel, so student not correct	(1)	3
	Example of calculation		
	(Using data from the graph):		
	R of single headlight in parallel = $\frac{V}{I} = \frac{12.0 \text{ V}}{4.6 \text{ A}} = 2.61 \Omega$		
	(for parallel headlights), $\frac{1}{R_T} = \frac{1}{2.61 \Omega} + \frac{1}{2.61 \Omega}$, so $R_T = 1.30 \Omega$		
	R of single headlight in series = $\frac{V}{I} = \frac{6.0 \text{ V}}{3.2 \text{ A}} = 1.88 \Omega$		
	(for series headlights), $R_T = 1.88 \Omega + 1.88 \Omega = 3.76 \Omega$ 3.76 / 1.30 = 2.9, so is 2.9 × less in parallel, not 4 × less		
	3.707 1.30 = 2.9, 80 is 2.9 x less in parallel, not 4 x less		
16(c)	Use of $R = \rho l/A$	(1)	
	Use of $I = nqvA$	(1)	
	Drift velocity = $3.4 \times 10^{-4} \mathrm{ms^{-1}}$	(1)	3
	Example of calculation		
	$R = \rho l/A$, so $A = \frac{\rho l}{R} = \frac{1.72 \times 10^{-8} \Omega \text{m}}{0.0175 \Omega \text{m}^{-1}} = 9.83 \times 10^{-7} \text{m}^2$		
	$R = 0.0175 \Omega \mathrm{m}^{-1}$ 4.60 A		
	$v = \frac{4.60 \text{ A}}{8.49 \times 10^{28} \text{m}^{-3} \times 1.60 \times 10^{-19} \text{C} \times 9.83 \times 10^{-7} \text{m}^2} = 3.4 \times 10^{-4} \text{ m s}^{-1}$		
	Total for question 16		12