MINH HOA CO SỞ LOGIC

 $C = "4 \le 1" \Leftrightarrow C = "(4 < 1) hay (4 = 1)" (mệnh đề phức hợp).$

E = "Tỉ lệ số sinh viên của lớp 20CTT thi đạt môn Toán là 1/2 (= 1 / 2)".

 \overline{E} = "Tỉ lệ số sinh viên của lớp 20CTT thi đạt môn Toán không phải là 1/2 ($\neq 1/2$)".

F= "Không quá 15 (\leq 15) học sinh của trường được dự trại hè quốc tế".

 \overline{F} = "Hơn 15 (>15) học sinh của trường được dự trại hè quốc tế".

A = "Đại dịch Covid 19 chấm dứt trước năm 2025" (?).

B = "Đội tuyển bóng đá Lào đoạt chức vô địch worldcup năm 2030" (sai).

C = "Đội tuyển bóng đá Anh đoạt chức vô địch Euro trước năm 2060" (?).

B sai nên (B \rightarrow C) đúng và do đó D=[A \rightarrow (B \rightarrow C)] đúng.

 P_1 (chân trị 1 hoặc 0), P_2 (chân trị 1 hoặc 0), và P_n (chân trị 1 hoặc 0) nên

 P_1, P_2, \dots và P_n có đồng thời $2 \times 2 \times \dots \times 2$ (n lần) = 2^n trường hợp về chân trị.

 $f(x) = \sin^2 x + \cos^2 x = 1$, $\forall x \in \mathbf{R}$ (hằng đúng) và $g(x) = 3x^4 + 2e^x = 0$, $\forall x \in \mathbf{R}$ (hằng sai).

 $a \in \mathbf{R}$. Ta có $[(a > -7) \rightarrow (a \le 8)]$ (hình thức) và $[(a < -4) \Rightarrow (a \ne 5)]$ (thực sự)

 $k \in \mathbb{Z}$. Ta có $[(k : 12) \leftrightarrow (k : 2 \text{ và } k : 6)]$ (hình thức) và $[(k : 12) \Leftrightarrow (k : 4 \text{ và } k : 6)]$ (thực sự).

 $F(p, q, r, t) = [(p \wedge \overline{q}) \rightarrow (\overline{q} \vee r \vee \overline{t})] \Leftrightarrow \mathbf{1} \text{ bằng cách lập luận như sau : Nếu } p = 0 \text{ thì}$ $(p \wedge \overline{q}) = 0 \text{ nên } F(p, q, r, t) \text{ đúng. Nếu } q = 0 \text{ thì } (\overline{q} \vee r \vee \overline{t}) = 1 \text{ nên } F(p, q, r, t) \text{ đúng.}$

Khi (p = 1 và q = 1) thì $(p \wedge \overline{q}) = 0$ nên F(p, q, r, t) cũng đúng. Vậy $F(p, q, r, t) \Leftrightarrow 1$.

Khi (p = 1 và q = 1) thì $[p \rightarrow (p \land \overline{q})]$ sai. Do đó không có $[p \Rightarrow (p \land \overline{q})]$.

Khi (p = 1 và q = 0) thì $[(p \lor q) \leftrightarrow (p \land q)]$ sai. Do đó không có $[(p \lor q) \Leftrightarrow (p \land q)]$.

Nếu p = 0 thì $(p \wedge \overline{r}) = 0$ nên $[(p \wedge \overline{r}) \rightarrow (p \vee \overline{q} \vee s)]$ đúng. Nếu p = 1 thì

 $(p \lor \overline{q} \lor s) = 1$ nên $[(p \land \overline{r}) \rightarrow (p \lor \overline{q} \lor s)]$ cũng đúng. Vậy $[(p \land \overline{r}) \Rightarrow (p \lor \overline{q} \lor s)]$.

Nếu p = 0 thì ta có $[p \land (p \lor q)] = 0$, $(p \land q) = 0$ và $[p \lor (p \land q)] = 0$.

Nếu p = 1 thì ta có $[p \lor (p \land q)] = 1$, $(p \lor q) = 1$ và $[p \land (p \lor q)] = 1$.

Vậy ta có sự tương đương $[p \land (p \lor q)] \Leftrightarrow [p \lor (p \land q)] \Leftrightarrow p$.

Cho các tập hợp A và B \subset E. Xét *luật hấp thu* tập hợp đối với các phép toán \cap và \cup :

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

[A : tập hợp $l\acute{o}n$, A \cap B : tập hợp $nh\acute{o}$]

[A : tập hợp nhỏ, A \cup B : tập hợp $l\acute{o}n$]

Tương tự, ta cũng có luật hấp thu mệnh đề đối với các phép toán \wedge và \vee :

$$[\mathbf{E} \wedge (\mathbf{E} \vee \mathbf{F})] \Leftrightarrow \mathbf{E}.$$

$$[E \lor (E \land F)] \Leftrightarrow E$$
.

a.(b+c) = a.b + a.c: phép nhân số thực (.) *phân phối với* phép cộng (+) số thực. $a+(b.c) \neq (a+b).(a+c)$: phép công số thực *không phân phối với* phép nhân số thực.

$$4x^2 + e^y > 0$$
 (vì $4x^2 \ge 0$ và $e^y > 0$) nên ($4x^2 + e^y \ge -1$) \iff 1.

$$8\sin x - 5\cos(y^3) \le 13$$
 (vì $8\sin x \le 8$ và $-5\cos(y^3) \le 5$) nên $[8\sin x - 5\cos(y^3) = 14] \Leftrightarrow \mathbf{O}$.

Do
$$|\sinh| \le |b|$$
 nên $\sin^2 b \le b^2$, nghĩa là $(b^2 \le \sin^2 b) \iff \mathbf{O}$.

Do
$$e^{ab} + e^{-ab} \ge 2\sqrt{e^{ab}e^{-ab}} = 2$$
 nên $(e^{ab} + e^{-ab} \ge 1) \iff 1$.

Rút gọn dạng mệnh đề
$$A = [(p \land q) \lor (\overline{p} \land q) \lor (p \land \overline{q})]$$

$$A \Leftrightarrow [(p \land q) \lor (\overline{p} \land q)] \lor (p \land \overline{q}) [luật kết hợp]$$

$$\Leftrightarrow [(p \lor \overline{p}) \land q] \lor (p \land \overline{q}) [luật phân phối (thu gọn lại)]$$

$$\Leftrightarrow$$
 $(1 \land q) \lor (p \land \overline{q}) [luật bù] \Leftrightarrow $q \lor (p \land \overline{q}) [luật trung hòa]$$

$$\Leftrightarrow$$
 $(q \lor p) \land (q \lor \overline{q}) [luật phân phối (khai triển ra)] \Leftrightarrow $(q \lor p) \land 1 [luật bù]$$

$$\Leftrightarrow$$
 $(q \lor p) [luật trung hòa].$

Chứng minh
$$B = \{ [p \rightarrow (q \lor r)] \rightarrow [(p \rightarrow q) \lor (p \rightarrow r)] \} \Leftrightarrow 1.$$

$$\mathbf{B} \iff \overline{p \to (q \lor r)} \lor \overline{p} \lor \mathbf{q} \lor \overline{p} \lor \mathbf{r} \ [x\'{o}a \, c\'{a}c \, d\^{a}u \to th\'{u} \, hai, th\'{u} \, ba, th\'{u} \, tu \, v\`{a} \, luật \, k\'{e}t \, hợp \,]$$

$$\Leftrightarrow \overline{p \to (q \lor r)} \lor (\overline{p} \lor \overline{p}) \lor (q \lor r) [luật giao hoán và luật kết hợp]$$

$$\Leftrightarrow \overline{p \to (q \lor r)} \lor [\overline{p} \lor (q \lor r)] [luật lũy đẳng]$$

$$\Leftrightarrow \overline{G} \vee G \text{ v\'oi } G = [p \rightarrow (q \vee r)] (ph\'ep đổi biển}) \Leftrightarrow 1 [luật bù].$$

Chứng minh
$$C = \{ [p \land (q \lor r)] \land \overline{(p \land q) \lor r} \} \Leftrightarrow \mathbf{O}.$$

$$C \Leftrightarrow [(p \land q) \lor (p \land r)] \land \overline{p \land q} \land \overline{r} [luật phân phối (khai triển ra) và luật De Morgan]$$

$$\Leftrightarrow$$
 (H \vee K) \wedge ($\overline{H} \wedge \overline{r}$) với H = (p \wedge q) và K = (p \wedge r) (phép đổi biến)

$$\Leftrightarrow$$
 $(H \land \overline{H} \land \overline{r}) \lor (K \land \overline{H} \land \overline{r}) [luật phân phối (khai triển ra) và luật kết hợp]$

$$\Leftrightarrow (\mathbf{O} \wedge \overline{r}) \vee (\mathbf{K} \wedge \overline{H} \wedge \overline{r}) [luật bù] \Leftrightarrow \mathbf{O} \vee (\mathbf{K} \wedge \overline{H} \wedge \overline{r}) [luật thống trị]$$

$$\Leftrightarrow$$
 K \wedge \overline{H} \wedge \overline{r} [luật trung hòa] \Leftrightarrow \overline{H} \wedge K \wedge \overline{r} [luật giao hoán]

$$\Leftrightarrow \overline{H} \wedge (p \wedge r) \wedge \overline{r} \ [\text{trở về } K \] \Leftrightarrow (\overline{H} \wedge p) \wedge (r \wedge \overline{r}) \ [\text{luật kết hợp }]$$

$$\Leftrightarrow (\overline{H} \wedge p) \wedge \mathbf{O} [luật bù] \Leftrightarrow \mathbf{O} [luật thống trị].$$

Cho $E = \{ [q \to (p \land r)] \land \overline{(p \lor r) \to q} \}$ và $F = \overline{(p \lor r) \to q}$. Chứng minh $E \Leftrightarrow F$. $E \Leftrightarrow [\overline{q} \lor (p \land r)] \land (p \lor r) \land \overline{q} [x \'{o}a d \mathring{a}u \to v \grave{a} ph \mathring{u} d \mathring{q}nh d \mathring{a}u \to]$ $\Leftrightarrow (\overline{q} \lor u) \land \overline{q} \land v \text{ với } u = (p \land r) \text{ và } v = (p \lor r) [luật giao hoán và phép đổi biến}]$ $\Leftrightarrow [(\overline{q} \lor u) \land \overline{q}] \land v [luật kết hợp] \Leftrightarrow \overline{q} \land (p \lor r) [luật hấp thu và trở về v]$ $\Leftrightarrow (p \lor r) \land \overline{q} [luật giao hoán] \Leftrightarrow \overline{(p \lor r) \to q} = F[phục hồi d \mathring{a}u \to dạng phủ định].$

" $\exists x \in A, \forall y \in B, p(x, y)$ " : có một x $c\acute{o}$ định thuộc A sao cho với mọi y thuộc B, p(x, y) xảy ra.

" $\forall x \in A, \exists y \in B, p(x, y)$ ": với mỗi x thuộc A, có tương ứng <math>y thuộc B sao cho p(x, y) xảy ra (x này có tương ứng với y này, x khác có thể tương ứng với y khác). " $\exists x \in \mathbf{R}, \forall y \in \mathbf{R}, (x^2 - 3).y = y$ " ($x \in \mathbf{R}, \forall y \in \mathbf{R}, (x^2 - 3).y = y$ ") ($x \in \mathbf{R}, \forall y \in \mathbf{R}, (x^2 - 3).y = y$). " $x \in \mathbf{R} \setminus \{0\}, \exists y \in \mathbf{R}, xy^3 = -1$ " [$x \in \mathbf{R} \setminus \{0\}, \exists y = -x^{\frac{1}{3}} \in \mathbf{R}, xy^3 = x(-x^{\frac{1}{3}})^3 = -1$].

a) [$p \to t(1)$ và $\overline{r} \to q(2)$ và p(3) và $t \to \overline{q}(4)$] \Rightarrow [$r \lor s$] (5).

Ta chứng minh a) đúng bằng Cách 1:

Từ (1) và (3), ta có t (6) [qui tắc khẳng định dạng l].

Từ (6) và (4), ta có \overline{q} (7) [qui tắc khẳng định dạng 1].

Từ (7) và (2), ta có \overline{r} (8) [qui tắc phủ định]. Từ (8), ta có r (9) [luật phủ định kép].

Từ (9), ta có $r \vee s$ (5) [qui tắc tuyển đơn giản]. Như vậy suy luận a) đúng.

a) [
$$p \to t(1)$$
 và $\overline{r} \to q(2)$ và $p(3)$ và $t \to \overline{q}(4)$] \Rightarrow [$r \lor s$] (5).

Ta chứng minh a) đúng bằng Cách 2: Giả sử (1), (2), (3), (4) đúng và (5) sai.

Do (3) đúng nên p đúng.

Do (5) sai nên r và s đều sai.

Do (1) đúng và p đúng nên t đúng.

Do (2) đúng và r sai nên q đúng.

Do t và q đều đúng nên (4) sai : $m\hat{a}u$ thuẫn với điều đã giả sử.

Như vậy suy luận a) đúng.

b) $[p \rightarrow r(1) \text{ và } \overline{u}(2) \text{ và } s \rightarrow t(3) \text{ và } \overline{s} \rightarrow \overline{r}(4) \text{ và } \overline{t} \vee u(5)] \Rightarrow [p \rightarrow q](6)$.

Ta chứng minh b) đúng bằng Cách 2: Giả sử (1), (2), (3), (4), (5) đúng và (6) sai.

Do (2) đúng nên u sai.

Do (6) sai nên p đúng và q sai.

Do (1) đúng và p đúng nên r đúng.

Do (5) đúng và u sai nên t sai.

Do (3) đúng và t sai nên s sai.

Do s sai và r đúng nên (4) sai : $m\hat{a}u$ thuẫn với điều đã giả sử.

Như vậy suy luận b) đúng.

b) $[p \rightarrow r(1) \text{ và } \overline{u}(2) \text{ và } s \rightarrow t(3) \text{ và } \overline{s} \rightarrow \overline{r}(4) \text{ và } \overline{t} \vee u(5)] \Rightarrow [p \rightarrow q](6).$

Ta chứng minh b) đúng bằng Cách 3: Giả sử (1), (2), (3), (4) và (5) đều đúng.

- Do (2) đúng nên u sai.
- Do (5) đúng và u sai nên t sai.
- Do (3) đúng và t sai nên s sai.
- Do (4) đúng và s sai nên r sai. Do (1) đúng và r sai nên p sai.

Do p sai nên (6) đúng. Như vậy suy luận b) đúng.

c) $[(\overline{p} \lor q) \to (r \land s)(1)$ và $\overline{t}(2)$ và $r \to t(3)] \Rightarrow [s \to p](4)$.

Ta chứng minh c) đúng bằng Cách 1:

- Từ (2) và (3), ta có \overline{r} (5) [qui tắc phủ định].
- Từ (5), ta có $\overline{r} \vee \overline{s}$ (6) [qui tắc tuyển đơn giản].
- Từ (6), ta có $\overline{r \wedge s}$ (7) [luật phủ định De Morgan].
- Từ (7) và (1), ta có $\overline{\overline{p} \vee q}$ (8) [qui tắc phủ định].
- Từ (8), ta có $\bar{p} \wedge \bar{q}$ (9) [luật phủ định De Morgan].
- Từ (9), ta có $p \wedge \overline{q}$ (10) [luật phủ định kép].
- Từ (10), ta có p(11) [qui tắc hội đơn giản].
- Từ (11), ta có $\overline{s} \vee p$ (12) [qui tắc tuyển đơn giản].

Từ (12), ta có $s \to p$ (4) [phục hồi dấu \to]. Như vậy suy luận c) đúng.

c) $[(\overline{p} \lor q) \to (r \land s)(1)$ và $\overline{t}(2)$ và $r \to t(3)$ \Rightarrow $[s \to p](4)$.

Ta chứng minh c) đúng bằng Cách 3: Giả sử (1), (2) và (3) đều đúng.

- Do (2) đúng nên t sai.
- Do (3) đúng và t sai nên r sai.
- Do r sai nên $(r \wedge s)$ sai.
- Do (1) đúng và $(r \wedge s)$ sai nên $(\overline{p} \vee q)$ sai.

Do $(\bar{p} \vee q)$ sai nên \bar{p} sai.

Do \bar{p} sai nên p đúng.

Do p đúng nên (4) đúng. Như vậy suy luận c) đúng.

d) [
$$p(1)$$
 và $\overline{p} \rightarrow q(2)$ và $(q \land r) \rightarrow s(3)$ và $t \rightarrow r(4)$] $\Rightarrow \overline{s} \rightarrow \overline{t}(5)$.

Ta chứng minh d) sai bằng cách gán các chân trị đặc biệt 0 hoặc 1 cho các biến mệnh đề p,q,r,s và t sao cho (1),(2),(3),(4) đều đúng và (5) sai.

Gán chân trị 1 cho p, r, t và gán chân trị 0 cho q, s thì (1), (2), (3), (4) đều đúng và (5) sai. Như vậy suy luận d) sai trong một trường hợp đặc biệt đã gán nên d) sai.

<u>GHI CHÚ</u>: Trong việc kiểm tra suy luận e) dưới đây là đúng, ta chỉ nên dùng **Cách 1** hay **Cách 2** mà thôi (nếu dùng **Cách 3** sẽ phức tạp và khó khăn vì khi xem xét khả năng đúng của một mệnh đề dạng \rightarrow hoặc dạng \vee , ta phải xử lý 3 trường hợp xảy ra).

e)
$$[\overline{p} \lor q(1) \quad \text{và} \quad \overline{p} \to r(2) \quad \text{và} \quad \overline{r} \lor s(3)] \Rightarrow [\overline{q} \to s] (4).$$

Cách 1: Từ (3), ta có $r \rightarrow s$ (5) [phục hồi dấu \rightarrow].

Từ (2) và (5), ta có $\bar{p} \rightarrow s$ (6) [qui tắc tam đoạn luận].

Từ (1), ta có $\overline{q} \rightarrow \overline{p}$ (7) [phục hồi dấu \rightarrow].

Từ (7) và (6), ta có (4) [qui tắc tam đoạn luận].

Như vậy suy luận e) đúng.

e)
$$[\overline{p} \lor q(1) \quad \text{và} \quad \overline{p} \to r(2) \quad \text{và} \quad \overline{r} \lor s(3)] \quad \Rightarrow \quad [\overline{q} \to s](4).$$

Cách 2: Giả sử (1), (2) và (3) đều đúng và (4) sai.

Do (4) sai nên q và s đều sai.

Do (1) đúng và q sai nên p sai.

Do (2) đúng và p sai nên r đúng.

Do r đúng và s sai nên (3) sai : $m\hat{a}u$ thuẫn với điều đã giả sử.

Như vậy suy luận e) đúng.