FISEVIER

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbagrm

Review

Inhibiting NF-kB activation by small molecules as a therapeutic strategy

Subash C. Gupta, Chitra Sundaram, Simone Reuter, Bharat B. Aggarwal *

Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA

ARTICLE INFO

Article history: Received 26 March 2010 Accepted 8 May 2010 Available online 21 May 2010

Keywords: Inflammation NF-ĸB Small molecule inhibitors Therapeutics

ABSTRACT

Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The nuclear factor-κB (NF-κB) signaling pathway plays a major role in the development, maintenance, and progression of most chronic diseases. NF-κB controls the expression of genes involved in a number of physiological responses, including immune inflammatory responses, acute-phase inflammatory responses, oxidative stress responses, cell adhesion, differentiation, and apoptosis [1]. Recent studies have suggested that NF-κB dysregulation is associated with many diseases including AIDS, atherosclerosis, asthma, arthritis, diabetes, inflammatory bowel disease, stroke, muscle wasting and viral infections. Mounting evidence indicates that NF-κB acts as a link

Abbreviations: AgR, antigen receptor; ATM, ataxia-telangiectasia mutant; BAFF, Bcell activating factor; BCL, B-cell lymphoma; BCR, B cell receptor; CARMA, CARDcontaining MAGUK protein; CD40L, CD40 ligand; CK, casein kinase; DSBS, Doublestranded DNA breaks; ECSIT, evolutionary conserved signaling intermediates on Toll pathways; EGF, epidermal growth factor; EGFR, EGF receptor; ELKS, glutamate, leucine, lysine, serine-rich protein; GSK, glycogen synthase kinase; Hsp90, heat shock protein 90; ΙκΒ, inhibitor of NF-κΒ; ΙΚΚ, ΙκΒ kinase; IRAK, IL-1R-associated kinase; LTβ, lymphotoxin B; LPS, lipopolysaccharide; MALT, mucosa-associated lymphoid tissue; MAPK, mitogen activated protein kinase; MAPK/Erk, kinase kinase; MyD88, myeloid differentiation factor; NF-kB, nuclear factor-kB; NIK, NF-kB-inducing kinase; NEMO, NFкВ essential modulator; PDK, Phosphoinositide-dependent kinase; PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PLC, phospholipase C; RANKL, receptor activator of NF-κB ligand; RIP, receptor-interacting protein; Syk, Spleen tyrosine kinase; TAB, TAK1-binding protein; TAK, transforming growth factor-β-activated kinase; TCR, T cell receptor; TLR, Toll-like receptor; TNF, tumour necrosis factor; TNFR1, TNF receptor 1; Tpl2, tumour progression locus-2; TRADD, TNF-receptor-associated death domain protein; TRAF, TNF-receptor-associated factor

between inflammation and cancer progression [2–11], making NF- κ B essential to and a potential drug target in hematological malignancies and solid tumors [12,13].

NF-kB was first identified in 1986 by Sen and Baltimore [6] in the nucleus bound to an enhancer element of the immunoglobulin kappa light chain gene in B cells [6,14]. It is now known to be ubiquitous in nature present in all the cell types and is evolutionary conserved. It belongs to the family of Rel proteins that includes c-Rel, RelA (p65), RelB, NF-kB1 (p50 and its precursor p105), and NF-kB2 (p52 and its precursor p100) all of which can form hetero- or homodimers [15–17].

NF-KB activation is tightly regulated mainly through its localization. In resting cells, NF-kB proteins are kept in the cytoplasm in association with inhibitory IκB proteins including IκBα, IκBβ, and IκBε [16] among which IκBα is the most abundant. NF-κB signaling occurs through the canonical (classical) pathway initiated by NF-KB1 (p50/p105) and a noncanonical (alternative) pathway initiated by NF-KB2 (p52/p100) (Fig. 1). Before the active NF-kB is translocated into the nucleus, NF-kB1 and NF-kB2 are cleaved to the active p50 and p52 subunits, respectively. While the classical pathway depends on IKK complex consisting of IKK α , IKK β , IKK γ and the inhibitory subunit IkBs, the alternative pathway depends on IKKα homodimers and NF-κB inducing kinase (NIK) [18-20]. During classical activation, the IKK complex specifically phosphorylates IkBs on two conserved N-terminal serine residues which target them for E2- and E3-ligase-mediated polyubiquitination and subsequent 26S proteasomal mediated degradation. This process releases and activates NF-KB which now translocates to the nucleus. The activation of alternative pathway, which is commonly associated with RelB results in regulated processing of the p100 precursor protein to p52 and subsequent translocation of p52-RelB

^{*} Corresponding author. Tel.: +1 713 794 1817; fax: +1 713 745 6339. E-mail address: aggarwal@mdanderson.org (B.B. Aggarwal).

Fig. 1. Schematic representation of major NF-κB activation pathways. In the classical pathway, binding of TNFα to the receptor triggers the sequential recruitment of the adaptors TRADD, TRAF2 and RIP to the membrane. TRAF2 then recruits the IKK complex composed of IKKQ, IKKB and IKKY (NEMO) through mediation of kinases like TAK1, MEKK1, MEKK3. Activation of the IKK complex leads to the phosphorylation and ubiquitination of IκBα at specific residues followed by its degradation via the proteasome pathway. The p105 subunit of NF-κB then undergoes GSK3β and Tpl2 mediated phosphorylation at S903 and Subsequent degradation. The heterodimer p50-p65 is then released and migrates to the nucleus where it undergoes a series of posttranslational modifications including phosphorylation, acetylation and methylation and binds to specific KB sites and activates NF-KB target genes [49,209,210]. The alternative pathway is IKKy independent and is triggered by binding of the CD40, RANK, LTBR, BAFF ligands to their receptor, leading to recruitment of TRAF proteins and the sequential activation of NIK and IKKα. Activation of IKKα then induces the processing of the inhibitory protein p100. p100 proteolysis releases p52 which then translocates to the nucleus and triggers transcription of NF-KB target genes [211]. NF-KB activation in response to UV-C does not depend on IKK activation and relies on sequential recruitment of p38MAPK and CKII. Activated CKII phosphorylates IrB\(\text{R}\) at C-terminus (\$\s^{283}\$-T^{299}). The phosphorylated IrB\(\text{R}\) undergoes ubiquitination and degradation leading to release of active NF- κ B in to the nucleus [212,213]. EGF induced NF- κ B activation proceeds without serine phosphorylation and ubiquitination of κ B α and is IKK independent. It relies on phosphorylation of κ B α at Tyr⁴² through mediation of tyrosine kinases that triggers its proteasome mediated degradation and subsequent release of active NF- κ B to the nucleus [214]. NF-kB activation in response to bacterial endotoxin LPS involves Toll like receptor and is mediated through recruitment of MyD88, TRAF6 and ECSIT. Recruitment of these adaptors leads to sequential activation of IRAK1/2 and IKK and eventual release of active NF-kB [215]. NF-kB activation by pervanadate and H₂O₂ induces phosphorylation of $I\kappa B\alpha$ at Tvr^{42} by protein tyrosine kinase like Syk. The Tyr phosphorylation does not lead to $I\kappa B\alpha$ degradation but makes the binding weak thereby dissociating the $I\kappa B\alpha$ and releasing active NF-KB to the nucleus [216,217]. Antigen receptor viz., T-cell receptor and B-cell receptor mediated signaling to NF-KB activation depends on recruitment of a trimolecular protein complex CARMA1-BCL10-MALT1. In this pathway PKCθ (in T cells) and PKCβ (in B cells) along with other kinases act upstream to the trimolecular complex to promote IKKγ polyubiquitination and consequent IKK activation. Activation of IKK through this pathway involves mediation of TRAF2, TRAF6, TAK1 and TAB1 [218,219]. A novel pathway of NF-kB activation originating from the nucleus is associated with DNA damage. Double-stranded DNA breaks in response to genotoxic agents initiate signals that trigger SUMOylation of nuclear-localized IKKy, preventing its nuclear export. Concomitantly, these breaks activate ATM which phosphorylates SUMO-modified IKKy, promoting the removal of SUMO and enhancing IKKy ubiquitination. Ubiquitinated IKKy then translocates to the cytoplasm, where it activates IKK in cooperation with ATM and the ELKS protein, leading to IKBQ phosphorylation and degradation, p65 nuclear translocation and induction of NF-KB dependent target genes [220-223]. NF-KB can also be regulated by phosphatases. WIP1, a Ser/Thr phosphatase was recently shown to negatively regulate NF-κB activation by dephosphorylating p65 at Ser⁵³⁶ [80].

heterodimers to the nucleus [19]. Although NF-κB activation occurs mainly through canonical and non-canonical pathways, during the past decade a number of pathways for NF-κB activation has been elucidated (Fig. 1).

Once in the nucleus, activated NF-κB undergoes a series of posttranslational modifications, including phosphorylation, acetylation, and methylation. These modifications regulate both the strength and duration of NF-κB activity. RelA/p65 is directly phosphorylated by

cAMP-dependent protein kinase (PKA) at Ser²⁷⁶, casein kinase II (CKII) at Ser⁵²⁹, and IKK at Ser⁵³⁶ [21,22]. RelA dephosphorylation by protein phosphatase 2A (PP2A) has been reported to decrease NF- κ B activity [23]. RelA is subject to inducible acetylation by p300/CBP, and acetylated RelA interacts weakly, if at all, with $I\kappa$ B α [24,25], but maintains its nuclear localization and NF- κ B transcriptional response. RelA is also subject to methylation by lysine methyltransferase Set9 (also called Set7 or KMT7) at Lys^{314/315} [26].

Activated NF-κB binds to specific DNA sequences in target genes, which are designated as κB elements, and regulates the transcription of over 500 genes involved in immunoregulation, growth regulation, inflammation, carcinogenesis, and apoptosis (Fig. 2). NF-κB is frequently constitutively activated in patients with chronic inflammatory conditions such as cancer and pulmonary, cardiovascular, autoimmune, skin, and neurodegenerative diseases [27]. NF-κB's ability to control multiple genes involved in human diseases makes the NF-κB signaling pathway a novel target for therapy [28,29].

Due to the various levels of regulation, NF-κB signaling pathway can be potentially targeted at various levels including kinases, phosphatases, ubiquitination, nuclear translocation, DNA binding, protein acetyl transferases and methyl transferases (Fig. 3).

2. Inhibitors of the NF-KB activation pathway

Given NF-κB's relevance in human diseases and the fact that many drugs interfere with NF-κB signaling, the NF-κB signaling pathway provides a highly attractive target for the therapeutic development. More than 700 inhibitors of the NF-κB activation pathway, including antioxidants, peptides, small RNA/DNA, microbial and viral proteins, small molecules, and engineered dominant-negative or constitutively active polypeptides have been described (Table 1). Several of these molecules act as general inhibitors of NF-κB activation, while other molecules target specific steps; some molecules possibly target multiple steps in the NF-κB pathway (Fig. 3).

2.1. Inhibition of protein kinases

NF-KB activation requires the phosphorylation, polyubiquitination, and subsequent degradation of its inhibitory subunit, IκBα. Hence, inhibiting IκBα phosphorylation ultimately inhibits NF-κB's transcriptional activity [30]. IκBα phosphorylation is carried out by IKK, a serine/ threonine protein kinase composed of three basic subunits: the kinases IKK α , IKK β , and the regulatory subunit IKK γ (NEMO). The IKK activation is usually the first common step in the integration of many NF-KBactivating pathways; therefore, one strategy for inhibiting NF-кВ activation is to block IKK activation. However, although more than 150 agents have been shown to inhibit NF-KB activation at the IKK step, few studies have investigated the mechanism by which a given agent can inhibit IKK or its activation. The few IKK inhibitors for which a mechanism of action is known can be divided into three general groups: adenosine triphosphate (ATP) analogs, which show some specificity for interacting with IKK: compounds that have allosteric effects on IKK structure: and compounds that interact with a specific cysteine residue (Cys-179) in the activation loop of IKKB. ATP analogs include natural products such

Fig. 3. Potential targets for inhibition of NF-κB activation pathway. NF-κB can be targeted at various steps including protein kinases, protein phosphatases, ubiquitination step, acetylation step, methylation step, nuclear translocation step and DNA binding step.

as β -carboline and synthetic compounds such as SC-839, which has an approximately 200-fold preference for IKK β compared to IKK α [28,31]. Compounds that have allosteric effects on IKK structure include BMS-345541, a synthetic compound that binds to an allosteric site on both IKK α and IKK β and has an approximately 10-fold greater inhibitory effect on IKK β than on IKK α [32]. Compounds that interact with Cys-179 IKK β include thiol-reactive compounds such as parthenolide, arsenite, and certain epoxyquinoids [33–36]; these compounds' interactions with Cys-179 are believed to interfere with phosphorylation- induced IKK β activation because Cys-179 is located between Ser¹⁷⁷ and Ser¹⁸¹, which are required for IKK β activation in response to upstream signals such as tumor necrosis factor (TNF) and lipopolysaccharide (LPS) [37,38].

Gene-based inhibitors can also block IKK activation. Specifically, mutations at the ATP-binding site or in the kinase activation loop can create dominant-negative IKK α and IKK β , which are capable of blocking NF- κ B activation [39–43]. Because of their distinct roles in the canonical and non-canonical NF- κ B activation pathways, dominant-negative IKK mutants can show stimulus-dependent inhibition [44]. Adenoviral-mediated delivery of an IKK β dominant-negative kinase has been shown to have therapeutic potential for airway inflammatory diseases such as asthma [45,46]. NEMO can also serve as a target for inhibiting the IKK complex. In particular, introducing a cell-permeable 10 amino-acid peptide that corresponds to the NEMO-binding domain of IKK β can block the binding of NEMO to IKK in response to TNF in the canonical pathway [47].

While activation of NF-κB by many stimuli depends on the phosphorylation of IκBs at N-terminal sites by the IKK complex, the mechanism of NF-κB activation by ultraviolet (UV) radiation involves the IKK-independent phosphorylation of IκBα at a cluster of C-terminal sites that are recognized by casein kinase II (CKII). CKII activity toward IκBα depends on p38 mitogen-activated protein kinase (MAPK) activation. CKII's role as a key survival signal that activates NF-κB and protects tumor cells from apoptosis suggests that CKII may be an attractive target for the treatment of diverse cancers. Apigenin, a plant flavonoid, and emodin, a plant anthraquinone, are competitive inhibitors of CKII that directly interact with the nucleotide-binding sites of CKII [48].

Besides phosphorylating and subsequently degrading the molecules that inhibit NF-KB, protein kinases can also target the functional domains of NF-kB proteins themselves to optimally activate NF-kB. NFκB proteins can be phosphorylated in the cytoplasm or nucleus by such kinases as glycogen synthase kinase 3\beta (GSK3\beta) [49], TRAF-associated NF-KB activator (TANK)-binding kinase 1 (TBK1) [50,51], PKAc [21], mitogen- and stress-activated protein kinase-1 (MSK-1) [52], MAP3K NIK[53], Tpl2, PKC-θ [54], PI3K, Akt [55–57], p38 MAPK [58], protein tyrosine kinase, PKC-δ [59], RHO-kinase 2 [60], mitogen-activated protein kinase kinase 3 (MEKK3) [61], and receptor tyrosine kinases such as epidermal growth factor receptor, human epidermal growth factor receptor 2 [62]. Antagonistic antibodies or kinase inhibitors that target these molecules may decrease NF-KB activation. Some kinase inhibitors that have the potential to inhibit NF-kB activation include SB203580 and PD0980589 (MAPK inhibitors) [58]; denbinobin (TAK1 inhibitor) [63]; tyrosine kinase inhibitors [62]; rhein, (an MEKK inhibitor) [64,65]; TNAP, betaine (NIK inhibitors) [66–68], epoxyquinol B (a TAK1 crosslinker) [69]; M2L (an extracellular signal-regulated kinase 2 inhibitor) [70,71]; CCK-8 (a p38 kinase kinase inhibitor) [72], KSR2 (an MEKK3 inhibitor) [73], golli BG21 (a PKC inhibitor) [74].

2.2. Inhibition of NF-KB activation by protein phosphatases

Because protein phosphorylation is a dynamic process whereby phosphatases counterbalance kinase action, phosphatases may be used to inhibit NF-κB activation. Protein phosphatase 2A is a serine/ threonine phosphatase that has been reported to dephosphorylate and modulate the activity of IKKβ [75]. Cytosine arabinoside, a pyrimidine analogue used to effectively treat acute leukemia, has been reported to induce apoptosis by activating protein phosphatases

Table 1A list of small molecules as inhibitors of NF-kB pathway.

A list of small molecules as i	IIIIIDILOIS OI INF-KD PALIIWAY.				
A. Upstream NF-KB	ox-LDL	Cyclopentenones	Poncirus trifoliata fruit extract	JM34	Natural product
Natural product	Panduratin A	CYL-19 s	Probiotics	KIOM-79	Actinodaphine
15d-PGJ(2)	PEITC	CYL-26z	Prostaglandin	Leptomycin B	Anthocyanins
Calagualine	Petrosaspongiolide M	Diaylpyridine derivative	Resiniferatoxin	Neomycin	Arnica montana extract
Conophylline Evodiamine	Phytic acid Piceatannol	DPE	Stinging nettle extracts	Nucling	Artemisinin Baicalein
Geldanamycin	Pinosylvin	Epoxyquinone Gabexate mesilate	Thiopental Tipifarnib	Oregonin OXPAPC	Bambara groundnut
Perrilyl alcohol	Plagius flosculosus extract	Gleevec	Titanium	Paeoniflorin	β-lapachone
PSK	Plumbagin	Hydroquinone	TNP-470	Phallacidin	Biliverdin
Rocaglamides	Pomegranate extract	Ibuprofen	Trichomomas vaginalis	Piperine	Brazilian
Viral protein	Prostaglandin A1	IQCAD	TG-rich lipoproteins	Pitavastatin	Calcitriol
Adenovirus E1A	Quercetin	Indolecarboxamide	Ursodeoxycholic acid	Platycodi radix extract	Campthothecin
NS5A (Hep-C virus)	Rengyolone	Isobutyl nitrite	Xanthium strumarium extract	Probiotics	Sutherlandia frutescens
Protein	Rosmarinic acid	Jesterone dimer	β- PEITC	Rapamycin	Capsiate
Erbin overexpression	Rottlerin	15-deoxyspergualine analog	8-MSO	Rhubarb aqueous extract	Catalposide
Golli BG21	Saikosaponin-d	Methotrexate	β-lapachone	Salvia miltiorrhoza extract	Cat's claw bark
KSR MAST205	Salvia miltiorrhoza extract	MLB120** Monochloramine	Peptide Penetratin	SH extract Selenomethionine	Cheongyeolsaseuptang*** Chitosan
NPM-ALK oncoprotein	Sanguinarine SAm extract	MX781 (Retinoid antagonist)	VIP	Shenfu	Chicory root
Hep-C virus protease	Staurosporine	4-HPR	Protein	Sophorae radix extract	CSPDP
PEDF	Sesquiterpene lactones	Nafamostat mesilate	Activated protein C	Sopoongsan	Clarithromycin
Rituximab	Scoparone	NSAIDs	HSP-70	Sorbus commixta extract	Cloricromene
TNAP	Silibinin	PS-1145 (MLN1145)	Interleukin-13	Sphondin	C-K and Rh(2)
Synthetic	Silymarin	PQD	Intravenous Ig	T. polyglycosides	Cortex cinnamomi extract
Betaine	Sulforaphane	Pyridooxazinone derivative	Murr1 gene product	Younggaechulgam-tang***	Cryptotanshinone
Desloratadine	Sulindac	SC-514**	Neurofibromatosis-2 protein	α-pinene	Cytochalasin D
LY29 and LY30	Tetrandine	Scytonemin	PACAP	Peptide	Black rice extract
MOL 294**	Theaflavin	Sodium salicylate	SAIF	NCPP	Danshenshu
Pefabloc	Thienopyridine	Statins (several)	ST2 (IL-1-like receptor)	PN50	Diterpenoids
Rhein	Tilianin	Sulfasalazine	α-MSH	RelA peptides (P1 & P6)	Ent-kaurane diterpenoids Epinastine hydrochloride
SMI and FP	Ursolic acid	Sulfasalazine analogs	γ-glutamylcysteine synthetase	Viral Protein	Epoxyquinol A
B. IKK activity and	Vesnarinone	Survanta	Bacterial/Viral Protein	3C protease (EMC virus)	Erythromycin
IkB phosphorylation					
Natural product	Wedelolactone	Thalidomide	K1L (Vaccinia virus protein)	Canine Distemper Virus	Evodiamine
[6]-gingerol	Withanolides	THI 52	Nef (HIV-1)	MNF (myxoma virus)	Fish oil
1'-Acetoxychavicol acetate	Xanthoangelol D	YC-1*	Vpu protein (HIV-1)	Protein	Fomes fomentarius extracts
20(S)-Protopanaxatriol 4-Hydroxynonenal	Zerumbone β-carboline	Others Lead	YopJ Synthetic	C5a DO 65-79	Fucoidan Gallic acid
Acetyl-boswellic acids	γ-mangostin	Mild hypothermia	1-Bromopropane	Fox1j	Ganoderma lucidum
Anandamide	γ-mangostin γ-Tocotrienol	Saline (low Na+)	Acetaminophen	GILZ	Garcinol
Anethole	Peptide	C. IkB degradation	Diamide	HSCO	Geranylgeraniol
Apigenin	IKKβ peptide	Natural product	Dobutamine	HSP-72	Ginkgolide B
Artemisia vestita ¹	NEMO CC2-LZ peptide	5'-methylthioadenosine	E-73	Interleukin-10	Glycyrrhizin
Baoganning	Protein	Artemisia iwayomogi extract	Ecabet sodium	Interleukin -11	Halofuginone
Betulinic acid	Anti-thrombin III	Alachlor	Gabexate mesilate	Interleukin -13	Hematein
Black raspberry extracts	Chorionic gonadotropin	Amentoflavone	Glimepiride	MTS-SR-IκBα	Herbal compound 861
Buddlejasaponin IV	FHIT	Antrodia camphorata#	Hypochlorite	Onconase	Hydroxyethyl starch
Cacospongionolide B	HB-EGF	Artemisia capillaries extract	Losartin	RASSF1A gene	Hydroxyethylpuerarin
Calagualine	Hepatocyte growth factor	Aucubin	LY294002	ROR-alpha	Hypericin
Cardamomin	Interferon-α	Baicalein	Pervanadate	Surfactant protein A	Kamebakaurin
Cardamonin	Interleukin-10	Blackberry extract Buchang-tang****	Phenylarsine oxide	TAT-SR- IκBα	Linoleic acid
Casparol Cobrotoxin	PAN1 PTEN	Capsaicin	Phenytoin Ro106-9920**	ZAS3 protein ZUD protein	Lithospermi radix Macrolide antibiotics
Cycloepoxydon	SOCS1	Catalposide	Sabaeksan	β-amyloid protein	Mediterranean plant extracts
Decursin	Viral Protein	Cyclolinteinone	U0126 (MEK inhibitor)	Synthetic	2-methoxyestradiol
Dehydroascorbic acid	Adenovirus	Dihydroarteanniun	Others	BMD	6-MITC
Dexanabinol	Core protein (Hep-C virus)	Docosahexaenoic acid	Vagus nerve stimulation	Carbaryl	Nicotine
Digitoxin	Cytomegalovirus	Emodin	Low level laser therapy	CGS 25462	Ochna macrocalyx bark ext.
Diosgenin	E7 (Papillomavirus)	Ephedrae herba (Mao) extract	Zinc	DHMEQ	Oridonin
Diterpenes	MC159	Equol	D. IkB upregulators/	Diltiazem	PC-SPES (8 herb mixture)
Docosahexaenoic acid	MC160	Erbstatin	NF-KB translocation	Dioxin	PGG
Falcarindol	NS5B (Hep-C virus)	Estrogen	Natural product	Dipyridamole	Pepluanone
Flavopiridol Furonaphthoquinone	vIRF3 (KSHV) Synthetic	Ethacrynic acid Fosfomycin	PGG 15-deoxyspergualin	Disulfiram Enalapril	Phyllanthus amarus extracts Plant compound A
I OLOHADIUHUUUUHUU	•	Fungal gliotoxin	2',8"-biapigenin	mEET	Polyozellin
	AIDCA derivative		, 10		
Garcinone B	AIDCA derivative TDZD	Gamisanghyulvunbueum***	5F (from Pteri sveminninnata)	LIUVASIAUII	Prenylbisabolane 3
Garcinone B Glossogyne tenuifolia extract		Gamisanghyulyunbueum***	5F (from <i>Pteri syeminpinnata</i>) Agastache rugosa leaf extract	Fluvastatin Indole-3-carbinol	Prenylbisabolane 3 Prostaglandin E2
Garcinone B	TDZD	Gamisanghyulyunbueum*** Genipin Genistein	Agastache rugosa leaf extract Alginic acid	Indole-3-carbinol JSH-23	Prenylbisabolane 3 Prostaglandin E2 PSK
Garcinone B Glossogyne tenuifolia extract Glycine chloramine	TDZD TPCA-1	Gamisanghyulyunbueum*** Genipin	Agastache rugosa leaf extract	Indole-3-carbinol	Prostaglandin E2
Garcinone B Glossogyne tenuifolia extract Glycine chloramine Guggulsterone	TDZD TPCA-1 Pyridine derivatives ACHP Acrolein	Gamisanghyulyunbueum*** Genipin Genistein	Agastache rugosa leaf extract Alginic acid	Indole-3-carbinol JSH-23	Prostaglandin E2 PSK
Garcinone B Glossogyne tenuifolia extract Glycine chloramine Guggulsterone Herbimycin A	TDZD TPCA-1 Pyridine derivatives ACHP	Gamisanghyulyunbueum*** Genipin Genistein Glabridin Glucosamine sulfate Glutamine	Agastache rugosa leaf extract Alginic acid Antrodia camphorata extract	Indole-3-carbinol JSH-23 KL-1156 Leflunomide Levamisole	Prostaglandin E2 PSK Quinic acid Sanggenon C Sesamin
Garcinone B Glossogyne tenuifolia extract Glycine chloramine Guggulsterone Herbimycin A Honokiol Hypoestoxide Indirubin-3'-oxime	TDZD TPCA-1 Pyridine derivatives ACHP Acrolein AGR0100* Amino-pyrimidine	Gamisanghyulyunbueum*** Genipin Genistein Glabridin Glucosamine sulfate Glutamine Gumiganghwaltang***	Agastache rugosa leaf extract Alginic acid Antrodia camphorata extract Apigenin Astragaloside IV AT514 (serratamolide)	Indole-3-carbinol JSH-23 KL-1156 Leflunomide Levamisole MEB	Prostaglandin E2 PSK Quinic acid Sanggenon C Sesamin Shen-Fu#
Garcinone B Glossogyne tenuifolia extract Glycine chloramine Guggulsterone Herbimycin A Honokiol Hypoestoxide	TDZD TPCA-1 Pyridine derivatives ACHP Acrolein AGRO100*	Gamisanghyulyunbueum*** Genipin Genistein Glabridin Glucosamine sulfate Glutamine Gumiganghwaltang*** Isomallotochromanol	Agastache rugosa leaf extract Alginic acid Antrodia camphorata extract Apigenin Astragaloside IV	Indole-3-carbinol JSH-23 KL-1156 Leflunomide Levamisole	Prostaglandin E2 PSK Quinic acid Sanggenon C Sesamin
Garcinone B Glossogyne tenuifolia extract Glycine chloramine Guggulsterone Herbimycin A Honokiol Hypoestoxide Indirubin-3'-oxime	TDZD TPCA-1 Pyridine derivatives ACHP Acrolein AGR0100* Amino-pyrimidine	Gamisanghyulyunbueum*** Genipin Genistein Glabridin Glucosamine sulfate Glutamine Gumiganghwaltang***	Agastache rugosa leaf extract Alginic acid Antrodia camphorata extract Apigenin Astragaloside IV AT514 (serratamolide)	Indole-3-carbinol JSH-23 KL-1156 Leflunomide Levamisole MEB	Prostaglandin E2 PSK Quinic acid Sanggenon C Sesamin Shen-Fu#

Table 1 (continued)

Kava derivatives ²	Azidothymidine	L-ascorbic acid	Buthus martensi extract	R-etodolac	Sword brake fern extract
Licorce extracts	BAY-11-7082	Leflunomide metabolite	Cantharidin	Rolipram	Tanacetum larvatum extra
Manumycin A	BAY-11-7083	Melatonin	Chiisanoside	SC236 (COX-2 inhibitor)	Tansinones
Monochloramine N-acetylcysteine	Benzoimidazole derivative Benzyl isothiocyanate	Midazolam Momordin I	Clarithromycin Cornus officinalis extract	Triflusal Volatile anesthetics	Taurine + niacine TZD MCC-555
Nitric oxide	BMS-345541	Morinda officinalis extract	Eriocalyxin B	E. NF-kB DNA-binding Inorganic Complex	Trichostatin A
Nitrosylcobalamin	Carboplatin	Mosla diantherra extract	Gangliosides	Metals (chromium, cadmium, gold, lead, mercury, zinc, arsenic)	Triptolide
Oleandrin	CDDO-Me	Opuntia ficus indica extract	Glucocorticoids	Apocynin	Tyrphostin AG-126
Omega 3 fatty acids	CHS 828*	Platycodin saponins	HP extracts	Apple juice/extracts	Ursolic acid
Withaferin A	Compound 5	Polymyxin B	Hirsutenone	Arctigenin	Ligonberries
Xanthohumol	Compound A	Ritonavir	Human breast milk	Aretemisa p7F	Lupeol
Xylitol "	Synthetic	Rosiglitazone	BZLF1 (EBV protein)	Astaxanthin	Magnolol
Yan-gan-wan [#]	ADP ribosylation inhibitor	Roxithromycin	SH gene products (PMV)	Benidipine	Maltol
Yin-Chen-Hao [#] Yucca schidigera extract	7-amino-4-methylcoumarin Amrinone	DAAS Serotonin derivative	Protein Antithrombin	bis-eugenol BG compounds	Mangifera indica bark extr Mangiferin
Peptide	Atrovastat	Simvastatin	NF-kappaB-repression factor	BHA	Melatonin
Ghrelin	Benfotiamine	SM-7368**	PIAS3	CAPE	Mn-SOD
Peptide YY	Benzamide	T-614	PTX-B	Carnosol	Mulberry anthocyanins
Rapamycin	Bisphenol A	Sulfasalazine	Synthetic	Carvedilol	Myricetin
Viral Protein	Caprofen	SUN C8079	17-AAG	Catechol derivatives	N-acetyl-L-cysteine
African Swine Fever virus	Carbocisteine	Triclosan plus CPC	TMFC	Celasterol	Nacyselyn
Sendai Virus-C,V proteins	Celecoxib	Tobacoo smoke	AQC derivatives	Cepharanthine	Naringin
E1B (Adenovirus) ICP27 (HSV-1)	Germcitabine Cinnamaldehyde	Verapamil Others	9-aminoacridine derivatives Chromene derivatives	Chlorogenic acid Chlorophyllin	N-ethyl-maleimide Nitrosoglutathione
H4/N5 (bracovirus)	2-methoxy CNA	Heat (fever-like)	D609	Cocoa polyphenols	NDGA
NS3/4A (Hep-C)	2-hydroxy CNA	Hypercapnic acidosis	Dimethylfumarate	Curcumin	Ochnaflavone
Protein	CDS	Hyperosmolarity	EMDPC	DHEA	Orthophenanthroline
Adiponectin	CP Compound	Hypothermia	Histidine	DHEA sulfate	Phenylarsine oxide
AIM2 overexpression	Cyanoguanidine	Alcohol	HIV-1 PI	Dehydroevodiamine	PhIP
Angiopoietin-1	HMP	E. NF-kB transactivation	Mesalamine	Demethyltraxillagenin	Phyllanthus urinaria
Antithrombin	α-difluoromethylornithine	Natural products	PEITC	Diethyldithiocarbamate	PMC
AvrA protein (Salmonella)	DTD	4'-DM-6-Mptox	Pranlukast	Diferoxamine	PTX
β-catenin	Evans Blue	4-phenylcoumarins	RO31-8220 (PKC inhibitor)	Dihydroisoeugenol	Pyrithione
Bromelain	Evodiamine	AHUP	SB203580 (MAPK inhibitor)	Dihydrolipoic acid	Pyrrolinedithiocarbamate Quercetin
CaMKK	Fenoldopam	Adenosine	Tetrathiomolybdate	Dilazep	Quinozolines
CD43 overexpression	FEX	c-AMP	Tranilast	Fenofibric acid	Rebamipide
FLN29 overexpression	Fibrates	Artemisia sylvatica extract	Troglitazone	DMDTC	Red wine
FLIP G-120	FK778 Flunixin meglumine	Bifodobacteria Blueberry & berry mix	Others Low gravity	Dimethylsulfoxide Disulfiram	Redox factor 1 Resveratrol
Gax (homeobox protein)	Flurbiprofen	BSASM	Low gravity F. Proteasome/protease	Ebselen	Ginseng derivative
HIV-1 Resistance Factor	Hydroquinone	BF phenylpropanoids	Natural product	Edaravone	Rotenone
Interleukin 4	IMD-0354	cPrG.HC	Cyclosporin A	EGTA	Roxithromycin
SspH1 and IpaH9.8	JSH-21	Seaweed extract	Lactacystine	EPC-K1	S-allyl-cysteine
NDPP1 (CARD protein)	KT-90	Fructus benincasae extract	β-lactone	Epigallocatechin-3-gallate	Sauchinone
Overexpressed ZIP1	Lovastatin	Glucocorticoids	Peptide	Ergothioneine	Spironolactone
p8	Mercaptopyrazine Mayinglin	Gypenoside XLIX	ALLnL	Ethyl pyruvate	Strawberry extracts
p202a	Mevinolin,	Kwei Ling Ko ³	LLM	Ganoderma lucidum polysaccharides	Taxifolin
p21 (Rec) PIAS1	Monoethylfumarate Moxifloxacin	LC root Luteolin	Ubiquitin ligase Z-LLL	Garcinol y-glutamylcysteine	Tempol Tepoxaline
11131	MOMINACIII	Lattomi	E LLL	synthetase	геролание
Pro-opiomelanocortin	Nicorandil	Manassantins A,B	Z-LLnV	Ginkgo biloba extract	tert-butyl hydroquinone Tetracylic A
PYPAF1 protein	Nilvadipine	MI bark extract	Synthetic	Glutathione	Vitamin B6
Raf Kinase inhibitor protein <i>Rhus</i> <i>verniciflua</i> fruits	NO-ASA	Mesuol	APNE	Hematein	Vitamin C
SLPI	Panepoxydone	Nobiletin	Boronic acid peptide	Hydroquinone	Vitamin D
Siah2	Peptide nucleic acids	Phomol	BTEE	Hydroquinone	Vitamin E derivatives
SIRT1 Deacetylase	Perindopril	Psychosine	3,4-dichloroisocoumarin	IRFI 042	Wogonin
overexpression					
Siva-1	PAD	Qingkailing [#]	Deoxyspergualin	Iron tetrakis	xanthohumol
Solana nigrum L.	α-PBN	Saucerneol D & E	DFP	Isovitexin	Yakuchinone A, B
Surfactant protein A Fom1 overexpression	Pioglitazone Pirfenidone	Shuanghuanglian [#] Smilax bockii extract	Disulfiram FK506 (Tacrolimus)	Kangen-karyu extract Ketamine	α-lipoic acid α-tocopherol
Fransdominant p50	PNO derivatives	Trilinolein	Bortezomib	Lacidipine	α-torphryl acetate
Jteroglobin	Quinadril	Uncaria tomentosum extract	Salinosporamide A	Lazaroids	α-torphryl succinate
VEGF	Raloxifene	WS extracts	TLCK	L-cysteine	β-Carotene
	Raxofelast	Wortmannin	TPCK		
	Ribavirin	α-zearalenol	G. Antioxidants		
	Rifamides	Viral Protein	23-hydroxyursolic acid Aged garlic extract		

2A and 2B-A and dephosphorylating the p65 subunit of NF-kB [23,76]. Recently, OspF, a protein phosphatase from Shigella flexneri, was found to dephosphorylate MAPK and prevent histone H3 phosphorylation at Ser¹⁰ in a gene-specific manner to block the activation of a subset of NF-kB responsive genes [77]. Our previous studies have shown that protein tyrosine phosphatase (PTP) inhibitors can suppress NF-KB activation and that phenylarsine oxide, a specific PTP inhibitor, can promote tyrosine 42 phosphorylation of IκBα [78]. While some PTPs stimulate NF-KB activation, other PTPs negatively regulate NF-kB activation. For instance, PTEN, a tumor suppressor with phosphatase activity is known to inhibit NF-KB activation [79]. Recently, Chew et al. [80] found that WIP1, a Ser/Thr PP2C family of phosphatases, acts as a negative regulator of NF-kB activation. Overexpression of WIP1 was associated with decreased NF-кВ activation, whereas WIP1 knockdown resulted in increased NF-KB activation. The group further showed that WIP1 target Ser⁵³⁶ of the p65 subunit of NF-kB.

2.3. Proteasome inhibitors and IkB ubiquitination blockers

The step before NF- κ B leaves the cytoplasm involves the ubiquitination of I κ B by the SCF- β -TrCP ubiquitin ligase complex followed by the rapid degradation of ubiquitinated I κ B by the 26S proteasome [38]. Because I κ B α degradation is an important step in the NF- κ B activation pathway, inhibiting the proteasomes that degrade I κ B α may also serve as a tool for pharmacological intervention. Very specific and potent proteasome inhibitors have been engineered by coupling boronic acid to dipeptides [81]. The dipeptide boronate, bortezomib, the most-studied proteasome inhibitor in clinical development, has been shown to inhibit proliferation and induce apoptosis in head and neck [82–84], prostate

[85], pancreatic [86], gastric [87], and ovarian [88] cancers. Bortezomib's antitumor properties correlate in part with its ability to inhibit $I\kappa B\alpha$ degradation [82,89]. Other well-known proteasome inhibitors include ALLnL, LLM, Z-LLnV, and Z-LLL, lactacystine, N-cbz-Leu-Leu-leucinal (MG132), MG115, and ubiquitin ligase inhibitors [90]. In addition, we recently identified a novel proteasome inhibitor, salinosporamide A (NPI-0052), which can suppress both constitutive and inducible NF- κB activation in a nanomolar range [91].

Several serine protease inhibitors with chymotrypsin-like specificity, including DCIC, TPCK, TLCK, BTEE, APNE, are also able to block proteasome function. However, unlike other protease inhibitors that block only IkB degradation, serine protease inhibitors can block IkB phosphorylation as well as degradation. However, not all serine protease inhibitors can inhibit NF-kB activation [92–94].

Among IkB ubiquitination blockers, the YopJ protein of the bacterial pathogen Yersinia deubiquitinates and stabilizes IκBα to prevent NF-κB nuclear translocation [95]. The small molecule R0196-9920 has been reported to inhibit IκBα ubiquitination and oral inflammation in mouse models [96,97]. Yaron et al. [97] blocked TNF α -induced IKB α degradation by microinjecting phosphopeptides that corresponded to IκBα's signal-dependent phosphorylation site. Presumably these phosphopeptides acted as competitive inhibitors for binding to the ubiquitin ligase complex essential to IκBα degradation. Inhibiting β-TrCP (the recognition subunit of the SCF E3 ligase complex) by specific RNAi treatment or by overexpression of dominant-negative β-TrCP mutants blocked NF-KB activity and sensitized breast cancer cells to chemotherapeutic agents [98]. Recently, A20 (TNFAIP3), a cytoplasmic zinc finger protein, was shown to inhibit NF-KB activation in the TNFR and TLR pathways. The ubiquitin editing property of A20 was shown to be essential for NF-KB inhibition [99].

Notes to Table 1:

15d-PGJ(2), 15-deoxy-prostaglandin J(2); 17-AAG, 17-allylamino-17-demethoxygeldanamycin; 20(S)-PPT, 20(S)-Protopanaxatriol; 4'-DM-6-Mptox, 4'-demethyl-6methoxypodophyllotoxin; 6-MITC, 6-Methylsulfinyl) hexyl isothiocyanate; α-MSH, α-melanocyte-stimulating hormone; α-PBN, alpha-phenyl-N-tert-butylnitrone; ACHP, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile; AGR0100, G-quadruplex oligodeoxynucleotide; AHUP, 8-acetoxy-5-hydroxyumbelliprenin; AIDCA, (Amino)imidazolyl carboxaldehyde derivative; ALLnL, N-acetyl-leucinyl-leucynil-norleucynal; APNE, N-acetyl-DL-phenylalanine-b-naphthylester; AQC, 6-aminoquinazoline; BAY-11-7082, E3((4-methylphenyl)-sulfonyl)-2-propenenitrile; BAY-11-7083, E3((4-t-butylphenyl)-sulfonyl)-2-propenenitrile; BF, Bupleurum fruticosum; BG, Bruguiera gymnorrhiza; BHA, Butylated hydroxyanisole; BMD, N(1)-Benzyl-4-methylbenzene-1,2-diamine; BMT, o,o'-bismyristoyl thiamine disulfide; BSASM, plant extract mixture; BTEE, N-benzoyl L-tyrosineethylester; CaMKK, Calcium/calmodulin-dependent kinase kinase; CAPE, Caffeic Acid Phenethyl Ester; CDDO-Me, C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDS. Commerical peritoneal dialysis solution; CMP, Chinese medicinal preparations; CNA, Cinnamaldehyde; Compound 5, Uredio-thiophenecarboxamide derivative; CP Compound, 6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide); CPC, cetylpyridinium chloride; cPrG.HC, Cycloprodigiosin hycrochloride; CSPDP, Chondrotin sulfate proteoglycan degradation product; CYL-19 s and CYL-26z, two synthetic alpha-methylene-gamma-butyrolactone derivatives; D609, phosphatidylcholine-specific phospholipase C inhibitor; DAAS, diacetoxy acetal derivative of santonin; DFP, diisopropyl fluorophosphates; DHEA, Dehydroepiandrosterone; DHMEQ, Dehydroxymethylepoxyquinomicin; DMDTC, Dimethyldithiocarbamates; DPE, 2-(3,4-dihydroxyphenyl)ethanol; DTD, 4,10-dichloropyrido[5,6:4,5]thieno[3,2-d':3,2-d]-1, 2, 3-ditriazine; EGTA, Ethylene glycol tetraacetic acid; EMC virus, encephalomyocarditis virus; EMDPC, Ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl)) pyrimidine-5-carboxylate; EPC-K1, phosphodiester compound of vitamin E; FEX, Fexofenadine hydrochloride; FHIT, Fragile histidine triad protein; FLIP, FLICE-Like Inhibitory Protein; G-120, Ulmus davidiana Nakai glycoprotein; GILZ, Glucorticoid-induced leucine zipper protein; HB-EGF, Heparin-binding epidermal growth factor-like growth factor; HMP, 7-(4'-hydroxy-3'-methoxyphenyl)-1-phenylhept-4en-3-one; HP, Harpagophytum procumbens; HSCO, Hepatoma Subtracted-cDNA library Clone One; IQCAD, Imidazolylquinoline-carboxaldehyde derivative; JSH-23, 4-Methyl--(3-phenylpropyl)-benzene-1,2-diamine; KL-1156, 6-Hydroxy-7-methoxychroman-2-carboxylic acid phenylamide; KSHV, Kaposi's sarcoma-associated herpesvirus; KSR, Kinase suppressor of ras; LC, Ligusticum chuanxiong; LLM, N-acetyl-leucinyl-leucynil-methional; LY294002, [2-(4-morpholinyl)-8-phenylchromone]; MAST205, a serine/threonine kinase; MC160, Mollusum contagiosum virus; MEB, 2-(4-morpholynl) ethyl butyrate hydrochloride; mEET, Mouse estrogen enhanced transcript; Mn-SOD,Manganese superoxide dismutase; MSO, 8methylsulphinyloctyl; N-(4-hydroxyphenyl) retinamide [4-HPR; NDGA, Nordihydroguaiaritic acid; NCPP, NLS Cell permeable peptides; NFD-37, 2-Methyl-2-(2methylpropenyl)-2,3-dihydronaphthoquinone [2,3-b]furan-4,9-dione; NH(2)Cl, monochloramine; NO-ASA, Nitric-oxide-donating aspirin; ox-LDL, Oxidized low density lipoprotein; OXPAPC, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine; PACAP, Pituitary adenylate cyclase-activating polypeptide; PAD, 6(5H)phenanthridinone; PEDF, pigment epithelium derived factor; PEITC, Phenethyl isothiocyanate; PGG, 1,2,3,4,6-penta-O-galloyl-β-D-glucose; PhIP, 2-Amino-1-methyl-6phenylimidazo[4,5-b]pyridine; PI, protease inhibitor; PIAS1, protein inhibitor of activatated STAT1; Plant compound A, plant-derived phenyl aziridine precursor; PMC, (2,2,5,7,8-pentamethyl-6-hydroxychromane); PMV, Paromyxovirus; PNO, Pyridine N-oxide; PQD, Pyrazolo[4,3-c]quinoline derivative; PSK, Protein-bound polysaccharide; PTEN, phosphatase and tensin homolog; PTX, Pentoxyifylline (1-(5'-oxohexyl) 3,7-dimehylxanthine; PTX-B, pertussis toxin binding protein; Pyridine derivatives, 2-amino-3cyano-4-aryl-6-(2- hydroxy-phenyl)pyridine derivatives; RH(2) & C-K, intestinal bacterial metabolites Rh(2) and compound K (C-K); RORalpha, Retinoic acid receptor-related orphan receptor-alpha; SH, Sargassum hemiphyllum; SAIF, Saccharomyces boulardii anti-inflammatory factor; SLPI, Secretory leucoprotease inhibitor; SMI and FP, Salmeterol and Fluticasone propionate; SOCS, suppressor of cytokine signaling proteins; SspH1 and IpaH9.8, Leucine-rich effector proteins of Salmonella & Shigella; TDZD, 1,2,4-thiadiazolidine derivative; TG, triglyceride; THI 52, 1-naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TLCK, N-\(\alpha\)-tosyl-L-lysine chloromethyl ketone; TMFC, 3,4,5-trimethoxy-4'-fluorochalcone; TNAP, TRAFs and NIK-associated protein; ; TP, Tripterygium polyglycosides; TPCA-1, 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thionphenecarboxamides; TPCK, N-α-tosyl-L-phenylalanine chloromethyl ketone; TZD, Thiazolidinedione; VEGF, Vascular endothelial growth factor; VIP, Vasoactive intestinal peptide; VVP, Vaccinia virus protein; WS, Witheringia solanacea; Z-LLL, Ncarbobenzoxyl-L-leucinyl-L-norleucinal; Z-LLnV (carbobenzoxyl-leucinyl-leucynil-norvalinal.

- ¹ Tibetan medicine.
- ² Piper methysticum.
- ³ Tortoise shell-Rhizome jelly.
 - * Anticancer drugs.
 - ** Small molecules.
- *** Oriental medicines.
- # Traditional Chinese Medicine.

2.4. Blockage of NF-кВ nuclear translocation

One approach for inhibiting NF- κ B activation is to use small peptides that cross the cell membrane and block the nuclear translocation of the NF- κ B complex [100–102]. For example, SN50, a forty-one-residue synthetic peptide that contains a hydrophobic membrane-translocating region and the nuclear localization sequence of NF- κ B p50 [100], can enter cells and compete with NF- κ B complexes for the machinery responsible for the nuclear translocation of NF- κ B. SN50 effectively inhibits the LPS- and TNF- α -induced nuclear translocation of NF- κ B in different cell lines [100, 103–106] and mitigates inflammatory responses *in vivo* [107,108]. However, SN50 also blocks the nuclear translocation of a number of other transcription factors [101]. Dehydroxymethylepoxyquinomicin, a fungal epoxyquinoid that has anti-inflammatory and antitumor activity in several mouse models, has been reported to be a specific inhibitor of NF- κ B nuclear translocation [109].

2.5. Blocking NF-κB activation by inhibitors of p65 acetylation

The activated p65 subunit of NF-κB undergoes acetylation in the nucleus at multiple lysine residues including K¹²², K¹²³, K²¹⁸, K²²¹ and K³¹⁰ [24,110]. The opposing activities of histone acetyltransferases and histone deacetylases (HDACs) regulate p65 complex acetylation [25]. Acetylation of p65 also depends on coactivators such as p300 and CREB-binding protein (CBP) [111]. The K²²¹ and K³¹⁰ acetylation are associated with increased NF-κB target gene transcription [111] and are required for p65 activation [25], which is supported by the observations that SIRT driven deacetylation at K³¹⁰ inhibits NF-κB target gene transcription [112]. Additionally, K¹²² and K¹²³ acetylation reduces p65 DNA binding affinity and increases lκB interaction and nuclear export [110]. Site-specific p300-mediated p65 acetylation thus regulates the specificity of NF-κB- dependent gene expression [110,113].

During the last 5 years, a number of compounds have been reported to inhibit NF-кB by inhibiting acetylation. Gallic acid obtained from natural products such as gallnuts, sumac, oak bark, and green tea was recently reported to possess anti-histone acetyltransferase activity, thus showing potential to downregulate NF-кB activation [114]. Daxx, a protein associated with the death domain of Fas receptor, has been reported to suppress NF-кB transcriptional activity by inhibiting p300/CBP-mediated p65 acetylation [115]. Anacardic acid derived from traditional medicinal plants can also inhibit NF-кB activation by inhibiting p65 acetylation [116].

2.6. Blocking NF-KB activation by methyltransferases

The RelA subunits of NF-κB undergo various posttranslational modifications that create specific marks to recruit different effectors to control NF-κB's temporal and spatial activation [117]. RelA is subject to monomethylation by lysine methyltransferase Set9 (also called Set7 or KMT7) at Lys^{314/315} in vitro and in vivo in response to stimuli [26]. RelA methylation at these two residues negatively regulates NF-κB function by triggering the ubiquitination and proteasome-mediated degradation of promoter-associated RelA. RelA methylation also serves as a "death" signal for the destruction of DNA-bound, activated NF-κB [26]. Because RelA subunit methylation negatively impacts NF-κB function, designing a molecule that activates Set9 function could potentiate NF-κB inhibition.

2.7. Blockage of NF-κB to DNA binding

The most direct strategy for blocking NF-κB activation is to block NF-κB from binding to specific κB sites on DNA. Some sesquiterpene lactones (SLs) have been reported to inhibit NF-κB [118] by interacting with Cys-38 in the DNA-binding loop of RelA [119,120]. Most SLs can also inhibit DNA binding through an analogous Cys residue in the DNA-binding loops of p50 and c-Rel. Recently, a computer-based structural comparison of 103 SLs predicted that a methylene-carbonyl substructure is important for SL-based inhibition

of RelA at Cys-38 [121]. Some SLs, including parthenolide, have been shown to inhibit IKKβ through the reactive Cys-179 in the kinase activation loop [34,120]. Thus, SLs, which target both IKK activity and NF-κB subunit DNA binding [36], have multistep inhibitory activity within the NF-κB signaling pathway.

Blocking specific NF-κB-DNA binding can also be accomplished with decoy oligodeoxynucleotides (ODNs). These ODNs have κB sites and competes for NF-κB dimer binding to specific genomic promoters [122–124]. These oligonucleotides have modifications to increase their stability and their affinity for NF-κB *in vivo* [125–127]. Decoy ODNs have been reported to have therapeutic potential in a number of animal models of inflammation and cancer; for example, directly injecting NF-κB decoy ODNs into implanted adenocarcinoma colon 26 tumors in mice inhibited cachexia without affecting tumor growth [128].

2.8. Other mechanisms of NF-KB inhibition

2.8.1. By gene transfer

One strategy to block NF-KB activation is through the transfer of genes that code for proteins shown to suppress NF-kB activation. The most direct target is $I \ltimes B \alpha$. $I \ltimes B \alpha$ mutation at specific phosphorylation sites (Ser³² and Ser³⁶ replaced to alanine) and ubiquitination sites (Lys²¹ and Lys²² mutated to arginine) results in a nondegradable form of $I \ltimes B \alpha$. This results in a stable cytoplasmic pool of $I \ltimes B \alpha$, thereby preventing NF-kB activation [129–131]. Injecting a nonphosphorylatable form of IkB α into bone marrow macrophages has been shown to inhibit osteoclastogenesis and block bone resorption [132]. Additionally, specific C-terminal serine-to-alanine mutations are sometimes included to reduce the constitutive turnover of $I \ltimes B\alpha$ [133]. These super-repressor forms of IκBα can still interact with NF-κB dimers to keep the dimers in the cytoplasm permanently [131,133,134]. Such molecules have been used successfully to inhibit NF-KB activity and to study its role in tumor development [135,136] and to sensitize tumor cells to apoptosis-inducing agents [133,134]. Inhibiting NF-кВ through the expression of an IkB α super-repressor (IkB α SR) has also been used to sensitize chemoresistant tumors to TNF α - and CPT-11induced apoptosis, resulting in tumor regression [137], and to inhibit the proliferation of human head and neck carcinoma cells in vitro and in vivo [138]. However, IkBaSRs have also been shown to interact with and affect the activity of non-NF-KB pathway proteins including p53 [139], cyclin-dependent kinase 4 [140], and HDACs [141]. Furthermore, IκBαSR overexpression has been associated with the spontaneous development of squamous cell carcinoma in a murine model [142].

2.8.2. Antioxidants

Antioxidants were suggested as possible NF-kB inhibitors many years ago [143,1444]. Treatment with oxidants such as hydrogen peroxide can activate NF-kB in many cell types. In some cell types, antioxidants can inhibit the induction of NF-KB activity in response to a variety of stimuli (e.g., interleukin-1 β , LPS, TNF α) [145,146]. However, using antioxidants as NF-KB inhibitors is now regarded with increasing scepticism because the NF-kB-inhibiting properties of pyrrolidine dithiocarbamate, a thiol-containing compound, cannot be attributed to its antioxidant function but rather to its effects as an inhibitor of IkB ubiquitin ligase activity [147]. The ways in which antioxidants block NF-KB activation remain unclear, but it is likely that they act at different steps in the NF-KB pathway in different cell types. Antioxidants have been suggested to inhibit NF-KB activation by scavenging reactive oxygen intermediates that act as signaling molecules to activate the NF-KB pathway and by directly inhibiting IKK kinase activity by modifying critical Cys residues in the IKK kinase activation loop [145,146]. Mitochondrial electron transport inhibitors that suppress reactive oxygen intermediate production (e.g., rotenone) and overexpression of antioxidizing enzymes (e.g., manganese superoxide dismutase and catalase) can block TNF α -induced NF- κ B activation [148–150]. Caffeic acid phenethyl ester, a phenolic antioxidant, has been reported to cause direct interference with DNA binding by NF- κ B [151] that can be reversed by dithiothreitol [78]. Other antioxidants, *viz.*, N-acetylcysteine, calcium chelators (e.g., EGTA, lacidipine), and vitamin C and E derivatives have been reported to inhibit hydrogen peroxide- or stimulus-induced NF- κ B activation.

2.8.3. Bacterial, fungal, and viral proteins

Several microorganisms and viruses encode proteins that can inhibit NF-κB activation. Many viruses have developed a number of mechanisms to inhibit NF-κB signaling [152], and three viruses–African swine fever virus (ASFV) [153], rabbit myxoma virus [154], and insect *Microplitis demolitor* bracovirus [155]–encode IκB-like NF-κB inhibitors. The ASFV encodes the A238L IκB-like protein, which can stably interact with RelA to inhibit TNFα-, IFN-γ-, and phorbol ester-induced NF-κB-DNA binding [156]. The poliovirus 3C protease cleaves RelA to reduce NF-κB signaling [157]. In addition, several viruses have adaptor-like or small proteins that inhibit IKK activity [152]. For example, the MC160 protein of *Molluscum contagiosum* [158] and the nonstructural 5B protein of the hepatitis C virus [159] appear to be IKKα-specific and thus may specifically inhibit the noncanonical NF-κB pathway.

The YopJ protein, a Src homology 2 domain protein encoded by Yersinia pseudotuberculosis, inhibits NF- κ B activation by preventing the phosphorylation and degradation of $I\kappa$ B α [160]. YopJ has also been shown to bind directly to IKK β in vitro and in vivo [161]. The Salmonella typhimurium AvrA protein also inhibits NF- κ B activation, although its mechanism of action may be different than that of the YopJ protein [162].

Gliotoxin produced by the fungus *Aspergillus fumigatus* has been reported to inhibit NF-κB activation by preventing IκB degradation [163]. Several other small molecules synthesized by microorganisms or designed derivatives of such compounds that have NF-κB-inhibiting potential include panepoxydone (from *Lentinus crinitus*) [164], 5,6 epoxycyclohexenone compounds (from *Amycolatopsis*), and cycloepoxydon [165]. Such compounds may affect distinct parts of the NF-κB pathway including DNA binding, nuclear translocation, and IκBα phosphorylation and degradation.

2.8.4. Anti-inflammatory and immunosuppressive agents

Various anti-inflammatory agents including glucocorticoids, non-steroid anti-inflammatory drugs (NSAIDs), and immunosuppressants have been developed to block NF-kB activation. Glucocorticoids, which are commonly used as anti-inflammatory drugs, strongly inhibit NF-kB activation by mechanisms that are not completely understood but likely include inhibition of DNA binding, IKK activity and transactivation [166]. The glucocorticoids dexamethasone, prednisone and methylprednisolone have been reported to inhibit NF-kB activation. In addition, estrogen and selective estrogen receptor modulators (SERMs) such as raloxifene can act through the estrogen receptor to inhibit NF-kB activation [167,168].

NSAIDs such as sodium salicylate (aspirin) and sulindac have been reported to inhibit NF- κ B activation by inhibiting I κ B α phosphorylation [169,170]. At higher concentrations, aspirin has been shown to block NF- κ B activity by directly binding to and inhibiting the kinase activity of IKK β by reducing its ability to bind ATP [171]. More recently, aspirin was reported to inhibit proteasome activity [172]. As such, high-dose aspirin therapy may have applications in treating diseases in which NF- κ B activity is involved, including cancer [173], diabetes [174], and heart disease [175]. Other NSAIDs such as ibuprofen and indomethacin have also been reported to inhibit NF- κ B activation in cell culture [176–179].

Several well known immunosuppressants are known to target NF-κB by distinct mechanisms, some precluding NF-κB nuclear translocation [180], some through inhibiting calcineurin [181], some by binding heat-shock proteins [182] and some by modulating the DNA binding or transactivation potential of NF-κB [183–186]. Examples of immunosuppressants having inhibitory effect on NF-κB activation include cyclosporin A (CsA) [180], FK506 [187,188], PG490 (diterpene triepoxide) [186] and deoxyspergualin [182].

2.8.5. p53 induction

It is known that p53 and NF-KB pathways play opposing roles in human cancer, with p53 acting as a tumor suppressor and NF-kB acting as a tumor activator. The crosstalk between p53 and NF-kB indicates that p53 and NF-kB repress each other's activities owing to their competition for transcriptional coactivator proteins p300 and CBP [189]. A recent study has proposed an additional mechanism of how CBP phosphorylation by IKK α determines whether CBP binds to p53 or NF-kB [190]. Although a number of studies have focused on identifying p53 activators and NF-KB inhibitors individually, few studies have investigated the molecules that target both the pathways simultaneously. Identifying molecules that simultaneously activate p53 and inhibit NF-KB would have great potential in combination therapy for cancer and various other diseases and could provide helpful tools to better understand the crosstalk between the p53 and NF-KB pathways. Quinacrine, an antimalarial drug, and other derivatives of 9 aminoacridine have been shown to simultaneously repress NF-KB and activate p53 in renal cell carcinoma [191]. Other molecules with similar potential include nutlins [192,193], cisplatin [194,195], leptomycin B [196,197], adenosine-2,3-dialdehyde [198], the NSAID [TE-522 [199], and the cyclin-dependent kinase inhibitors R-roscovitine [200,201]; and flavopiridol [202,203]. While most reports indicate antiapoptotic role of NF-kB, some suggest proapoptotic role of this transcription factor depending on the stimulus, cell type and subunit involved [204-206]. In addition, under certain circumstances, the apoptosis induced by p53 may involve the activation of NF-kB [207,208]. Thus, inhibition of NF-kB in tumors that exhibit wild type p53 may diminish, rather than augment a therapeutic response.

3. Conclusions and future perspective

NF-KB has been implicated in almost all chronic diseases, and more than 40,000 studies on NF-kB have been published with 9000 on its inhibitors. Although more than 700 different inhibitors (aspirin to IκBα super repressor) of this transcription factor have been reported, yet no NF-kB blocker has been approved for human use. Various steroids and NSAIDs have been found to block NF-KB, but their effects are highly pleiotropic. The molecules that block NF-kB activation lack specificity and thus interfere with NF-kB's physiological roles in immunity, inflammation, and cellular homeostasis. Additionally, whether the concentrations of inhibitors used in tissue culture experiments can be applied in vivo is often unclear. Therefore, one of the major challenges facing researchers is to develop NF-KB inhibitors aimed at treating different diseases based on their ability to target specific pathways or cells, thereby avoiding the risk of undesired side effects. Future studies should also focus on validating in vitro data in vivo.

Acknowledgments

We thank Joe Munch for carefully proof-reading the manuscript and providing valuable comments. Dr. Aggarwal is the Ransom Horne, Jr., Professor of Cancer Research. This work was supported by a grant from the Clayton Foundation for Research (B.B.A.), a core grant from the National Institutes of Health (CA-16 672), a program project grant from National Institutes of Health (NIH CA-124787-01A2), and grant from Center for Targeted Therapy of M.D. Anderson Cancer Center.

References

- H.L. Pahl, Activators and target genes of Rel/NF-kappaB transcription factors, Oncogene 18 (1999) 6853–6866.
- [2] M. Karin, Y. Cao, F.R. Greten, Z.W. Li, NF-kappaB in cancer: from innocent bystander to major culprit, Nat. Rev. Cancer 2 (2002) 301–310.
- [3] B. Haefner, NF-kappa B: arresting a major culprit in cancer, Drug Discov. Today 7 (2002) 653–663.

- [4] A. Richmond, Nf-kappa B, chemokine gene transcription and tumour growth, Nat. Rev. Immunol. 2 (2002) 664–674.
- [5] B.B. Aggarwal, Nuclear factor-kappaB: the enemy within, Cancer Cell 6 (2004) 203–208.
- [6] R. Sen, D. Baltimore, Multiple nuclear factors interact with the immunoglobulin enhancer sequences, Cell 46 (1986) 705–716.
- [7] H. Clevers, At the crossroads of inflammation and cancer, Cell 118 (2004) 671–674.
- [8] F. Balkwill, K.A. Charles, A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7 (2005) 211–217.
- [9] M. Karin, F.R. Greten, NF-kappaB: linking inflammation and immunity to cancer development and progression, Nat. Rev. Immunol. 5 (2005) 749–759.
- [10] Q. Li, S. Withoff, I.M. Verma, Inflammation-associated cancer: NF-kappaB is the lynchpin, Trends Immunol. 26 (2005) 318–325.
- [11] J.L. Luo, H. Kamata, M. Karin, IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy, J. Clin. Invest. 115 (2005) 2625–2632.
- [12] A.L. Shaffer, A. Rosenwald, L.M. Staudt, Lymphoid malignancies: the dark side of B-cell differentiation, Nat. Rev. Immunol. 2 (2002) 920–932.
- [13] A. Panwalkar, S. Verstovsek, F. Giles, Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies, Cancer 100 (2004) 1578–1589.
- [14] S. Shishodia, B.B. Aggarwal, Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer, Cancer Treat. Res. 119 (2004) 139–173.
- [15] S. Ghosh, M.J. May, E.B. Kopp, NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses, Annu. Rev. Immunol. 16 (1998) 225–260
- [16] S. Ghosh, M. Karin, Missing pieces in the NF-kappaB puzzle, Cell 109 (Suppl) (2002) S81-96
- [17] M.S. Hayden, S. Ghosh, Signaling to NF-kappaB, Genes Dev. 18 (2004) 2195–2224.
- [18] U. Senftleben, Y. Cao, G. Xiao, F.R. Greten, G. Krahn, G. Bonizzi, Y. Chen, Y. Hu, A. Fong, S.C. Sun, M. Karin, Activation by IKKalpha of a second, evolutionary conserved NF-kappa B signaling pathway, Science 293 (2001) 1495–1499.
- [19] E. Dejardin, N.M. Droin, M. Delhase, E. Haas, Y. Cao, C. Makris, Z.W. Li, M. Karin, C.F. Ware, D.R. Green, The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways, Immunity 17 (2002) 525–535.
- [20] E. Dejardin, The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development, Biochem. Pharmacol. 72 (2006) 1161–1179.
- [21] H. Zhong, H. SuYang, H. Erdjument-Bromage, P. Tempst, S. Ghosh, The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism, Cell 89 (1997) 413-424.
- [22] D. Wang, S.D. Westerheide, J.L. Hanson, A.S. Baldwin Jr., Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II, J. Biol. Chem. 275 (2000) 32592–32597.
- [23] J. Yang, C.H. Fan, B.E. Wadzinski, H. Sakurai, A. Richmond, Protein phosphatase 2A interacts with and directly dephosphorylates RelA, J. Biol. Chem. 276 (2001) 47828–47833.
- [24] L. Chen, W. Fischle, E. Verdin, W.C. Greene, Duration of nuclear NF-kappaB action regulated by reversible acetylation, Science 293 (2001) 1653–1657.
- [25] L.F. Chen, Y. Mu, W.C. Greene, Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB, EMBO J. 21 (2002) 6539–6548.
- [26] X.D. Yang, B. Huang, M. Li, A. Lamb, N.L. Kelleher, L.F. Chen, Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit, EMBO J. 28 (2009) 1055–1066.
- [27] G. Sethi, B. Sung, B.B. Aggarwal, Nuclear factor-kappaB activation: from bench to bedside, Exp. Biol. Med. (Maywood) 233 (2008) 21–31.
- [28] M. Karin, Y. Yamamoto, Q.M. Wang, The IKK NF-kappa B system: a treasure trove for drug development, Nat. Rev. Drug Discov. 3 (2004) 17–26.
- [29] K. Nagashima, V.G. Sasseville, D. Wen, A. Bielecki, H. Yang, C. Simpson, E. Grant, M. Hepperle, G. Harriman, B. Jaffee, T. Ocain, Y. Xu, C.C. Fraser, Rapid TNFR1-dependent lymphocyte depletion in vivo with a selective chemical inhibitor of IKKbeta, Blood 107 (2006) 4266–4273.
- [30] M. Karin, How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex, Oncogene 18 (1999) 6867–6874.
- [31] V. Pande, M.J. Ramos, NF-kappaB in human disease: current inhibitors and prospects for de novo structure based design of inhibitors, Curr. Med. Chem. 12 (2005) 357–374.
- [32] J.R. Burke, M.A. Pattoli, K.R. Gregor, P.J. Brassil, J.F. MacMaster, K.W. McIntyre, X. Yang, V.S. Iotzova, W. Clarke, J. Strnad, Y. Qiu, F.C. Zusi, BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice, J. Biol. Chem. 278 (2003) 1450–1456.
- [33] P. Kapahi, T. Takahashi, G. Natoli, S.R. Adams, Y. Chen, R.Y. Tsien, M. Karin, Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase, J. Biol. Chem. 275 (2000) 36062–36066.
- [34] B.H. Kwok, B. Koh, M.I. Ndubuisi, M. Elofsson, C.M. Crews, The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase, Chem. Biol. 8 (2001) 759–766.
- [35] M.C. Liang, S. Bardhan, C. Li, E.A. Pace, J.A. Porco Jr., T.D. Gilmore, Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor kappaB by inhibiting the inhibitor of kappaB kinase, Mol. Pharmacol. 64 (2003) 123–131.
- [36] M.C. Liang, S. Bardhan, E.A. Pace, D. Rosman, J.A. Beutler, J.A. Porco Jr., T.D. Gilmore, Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer:

- correlation with its anti-cancer cell growth activity, Biochem. Pharmacol. 71 (2006) 634-645.
- [37] N.D. Perkins, Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway, Oncogene 25 (2006) 6717–6730.
- [38] C. Scheidereit, IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25 (2006) 6685–6705.
- [39] J.A. DiDonato, M. Hayakawa, D.M. Rothwarf, E. Zandi, M. Karin, A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB, Nature 388 (1997) 548–554.
- [40] F. Mercurio, H. Zhu, B.W. Murray, A. Shevchenko, B.L. Bennett, J. Li, D.B. Young, M. Barbosa, M. Mann, A. Manning, A. Rao, IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation, Science 278 (1997) 860-866.
- [41] C.H. Regnier, H.Y. Song, X. Gao, D.V. Goeddel, Z. Cao, M. Rothe, Identification and characterization of an IkappaB kinase, Cell 90 (1997) 373–383.
 [42] J.D. Woronicz, X. Gao, Z. Cao, M. Rothe, D.V. Goeddel, IkappaB kinase-beta: NF-kappaB
- [42] J.D. Woronicz, X. Gao, Z. Cao, M. Rothe, D.V. Goeddel, IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK, Science 278 (1997) 866–869.
- [43] E. Zandi, D.M. Rothwarf, M. Delhase, M. Hayakawa, M. Karin, The IkappaB kinase complex (IKK) contains two kinase subunits IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation, Cell 91 (1997) 243–252.
- [44] Y. Shikama, M. Yamada, T. Miyashita, Caspase-8 and caspase-10 activate NF-kappaB through RIP, NIK and IKKalpha kinases, Eur. J. Immunol. 33 (2003) 1998–2006.
- [45] D.H. Broide, T. Lawrence, T. Doherty, J.Y. Cho, M. Miller, K. McElwain, S. McElwain, M. Karin, Allergen-induced peribronchial fibrosis and mucus production mediated by IkappaB kinase beta-dependent genes in airway epithelium, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 17723–17728.
- [46] M.C. Catley, J.E. Chivers, N.S. Holden, P.J. Barnes, R. Newton, Validation of IKK beta as therapeutic target in airway inflammatory disease by adenoviral-mediated delivery of dominant-negative IKK beta to pulmonary epithelial cells, Br. J. Pharmacol. 145 (2005) 114–122.
- [47] M.J. May, F. D'Acquisto, L.A. Madge, J. Glockner, J.S. Pober, S. Ghosh, Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex, Science 289 (2000) 1550–1554.
- [48] R. Battistutta, S. Sarno, E. De Moliner, E. Papinutto, G. Zanotti, L.A. Pinna, The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2, J. Biol. Chem. 275 (2000) 29618–29622.
- [49] F. Demarchi, C. Bertoli, P. Sandy, C. Schneider, Glycogen synthase kinase-3 beta regulates NF-kappa B1/p105 stability, J. Biol. Chem. 278 (2003) 39583–39590.
- [50] R.F. Schwabe, D.A. Brenner, Role of glycogen synthase kinase-3 in TNF-alpha-induced NF-kappaB activation and apoptosis in hepatocytes, Am. J. Physiol. 283 (2002) G204–211.
- [51] F. Fujita, Y. Taniguchi, T. Kato, Y. Narita, A. Furuya, T. Ogawa, H. Sakurai, T. Joh, M. Itoh, M. Delhase, M. Karin, M. Nakanishi, Identification of NAP1, a regulatory subunit of IkappaB kinase-related kinases that potentiates NF-kappaB signaling, Mol. Cell. Biol. 23 (2003) 7780–7793.
- [52] L. Vermeulen, G. De Wilde, P. Van Damme, W. Vanden Berghe, G. Haegeman, Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1), EMBO J. 22 (2003) 1313–1324.
- [53] X. Jiang, N. Takahashi, N. Matsui, T. Tetsuka, T. Okamoto, The NF-kappa B activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536, J. Biol. Chem. 278 (2003) 919–926.
- [54] I. Mattioli, A. Sebald, C. Bucher, R.P. Charles, H. Nakano, T. Doi, M. Kracht, M.L. Schmitz, Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import, J. Immunol. 172 (2004) 6336–6344.
- [55] N. Sizemore, S. Leung, G.R. Stark, Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit, Mol. Cell. Biol. 19 (1999) 4798–4805.
- [56] L.V. Madrid, M.W. Mayo, J.Y. Reuther, A.S. Baldwin Jr., Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38, J. Biol. Chem. 276 (2001) 18934–18940.
- [57] N. Sizemore, N. Lerner, N. Dombrowski, H. Sakurai, G.R. Stark, Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B, J. Biol. Chem. 277 (2002) 3863–3869.
- [58] W. Vanden Berghe, S. Plaisance, E. Boone, K. De Bosscher, M.L. Schmitz, W. Fiers, G. Haegeman, p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor, J. Biol. Chem. 273 (1998) 3285–3290.
- [59] K.H. Bhatt, R.K. Pandey, Y. Dahiya, A. Sodhi, Protein kinase Cdelta and protein tyrosine kinase regulate peptidoglycan-induced nuclear factor-kappaB activation and inducible nitric oxide synthase expression in mouse peritoneal macrophages in vitro, Mol. Immunol. 47 (2010) 861–870.
- [60] H. Shimada, L.E. Rajagopalan, RHO kinase-2 activation in human endothelial cells drives LPA-mediated expression of cell adhesion molecules via NF-{kappa}B p65, J. Biol. Chem. 285 (2010) 12536–12542.
- [61] W. Sun, N. Ge, Y. Yu, S. Burlingame, X. Li, M. Zhang, S. Ye, S. Fu, J. Yang, Phosphorylation of Thr-516 and Ser-520 in the kinase activation loop of MEKK3 is required for lysophosphatidic acid-mediated optimal I{kappa}B kinase beta (IKK{beta})/nuclear factor-{kappa}B (NF-{kappa}B) activation, J. Biol. Chem. 285 (2010) 7911–7918.
- [62] R. Ravi, A. Bedi, NF-kappaB in cancer—a friend turned foe, Drug Resist. Updat. 7 (2004) 53–67.

- [63] G. Sanchez-Duffhues, M.A. Calzado, A.G. de Vinuesa, G. Appendino, B.L. Fiebich, U. Loock, A. Lefarth-Risse, K. Krohn, E. Munoz, Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells, Biochem. Pharmacol. 77 (2009) 1401–1409.
- [64] D. Martin, A. Daulny, M. Decoville, D. Locker, Mutagenesis analysis of the interaction between the dorsal rel homology domain and HMG boxes of DSP1 protein, J. Biochem. 134 (2003) 583–589.
- [65] F. Domagala, G. Martin, P. Bogdanowicz, H. Ficheux, J.P. Pujol, Inhibition of interleukin-1beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappaB and AP-1: potential mechanism for Diacerein effects in osteoarthritis, Biorheology 43 (2006) 577–587.
- [66] Y. Hu, H.F. Wang, W.Q. Sun, C.S. Xie, W.N. Wei, J.E. Zheng, J.X. Yao, Regulation of tissue factor expression in brain microvascular endothelial cells by PLA nanoparticles coating NF-kappaB decoy oligonucleotides, Zhonghua Xue Ye Xue Za Zhi 26 (2005) 534–538.
- [67] S.K. Manna, C. Bueso-Ramos, F. Alvarado, B.B. Aggarwal, Calagualine inhibits nuclear transcription factors-kappaB activated by various inflammatory and tumor promoting agents, Cancer Lett. 190 (2003) 171–182.
- [68] E.K. Go, K.J. Jung, J.M. Kim, H. Lim, H.K. Lim, B.P. Yu, H.Y. Chung, Betaine modulates age-related NF-kappaB by thiol-enhancing action, Biol. Pharm. Bull. 30 (2007) 2244–2249.
- [69] H. Kamiyama, T. Usui, H. Sakurai, M. Shoji, Y. Hayashi, H. Kakeya, H. Osada, Epoxyquinol B, a naturally occurring pentaketide dimer, inhibits NF-kappaB signaling by crosslinking TAK1, Biosci. Biotechnol. Biochem. 72 (2008) 1894–1900.
- [70] R. Gedey, X.L. Jin, O. Hinthong, J.L. Shisler, Poxviral regulation of the host NF-kappaB response: the vaccinia virus M2L protein inhibits induction of NF-kappaB activation via an ERK2 pathway in virus-infected human embryonic kidney cells, J. Virol. 80 (2006) 8676–8685.
- [71] O. Hinthong, X.L. Jin, J.L. Shisler, Characterization of wild-type and mutant vaccinia virus M2L proteins' abilities to localize to the endoplasmic reticulum and to inhibit NF-kappaB activation during infection, Virology 373 (2008) 248–262.
- [72] Y. Li, N. Chu, A. Hu, B. Gran, A. Rostami, G.X. Zhang, Inducible IL-23p19 expression in human microglia via p38 MAPK and NF-kappaB signal pathways, Exp. Mol. Pathol. 84 (2008) 1–8.
- [73] P.L. Channavajhala, V.R. Rao, V. Spaulding, L.L. Lin, Y.G. Zhang, hKSR-2 inhibits MEKK3-activated MAP kinase and NF-kappaB pathways in inflammation, Biochem. Biophys. Res. Commun. 334 (2005) 1214–1218.
- [74] B. Feng, S. Cheng, W.S. Pear, H.C. Liou, NF-kB inhibitor blocks B cell development at two checkpoints, Med. Immunol. 3 (2004) 1.
- [75] S. Barisic, E. Strozyk, N. Peters, H. Walczak, D. Kulms, Identification of PP2A as a crucial regulator of the NF-kappaB feedback loop: its inhibition by UVB turns NF-kappaB into a pro-apoptotic factor, Cell Death Differ. 15 (2008) 1681–1690.
- [76] Y. Sreenivasan, A. Sarkar, S.K. Manna, Mechanism of cytosine arabinoside-mediated apoptosis: role of Rel A (p65) dephosphorylation, Oncogene 22 (2003) 4356–4369.
- [77] L. Arbibe, D.W. Kim, E. Batsche, T. Pedron, B. Mateescu, C. Muchardt, C. Parsot, P.J. Sansonetti, An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses, Nat. Immunol. 8 (2007) 47–56.
- [78] S. Singh, B.B. Aggarwal, Protein-tyrosine phosphatase inhibitors block tumor necrosis factor-dependent activation of the nuclear transcription factor NF-kappa B, J. Biol. Chem. 270 (1995) 10631–10639.
- [79] D. Koul, Y. Yao, J.L. Abbruzzese, W.K. Yung, S.A. Reddy, Tumor suppressor MMAC/ PTEN inhibits cytokine-induced NFkappaB activation without interfering with the IkappaB degradation pathway, J. Biol. Chem. 276 (2001) 11402–11408.
- [80] J. Chew, S. Biswas, S. Shreeram, M. Humaidi, E.T. Wong, M.K. Dhillion, H. Teo, A. Hazra, C.C. Fang, E. Lopez-Collazo, D.V. Bulavin, V. Tergaonkar, WIP1 phosphatase is a negative regulator of NF-kappaB signalling, Nat. Cell Biol. 11 (2009) 659–666.
- [81] M. Iqbal, S. Chatterjee, J.C. Kauer, M. Das, P. Messina, B. Freed, W. Biazzo, R. Siman, Potent inhibitors of proteasome, J. Med. Chem. 38 (1995) 2276–2277.
- [82] J.B. Sunwoo, Z. Chen, G. Dong, N. Yeh, C. Crowl Bancroft, E. Sausville, J. Adams, P. Elliott, C. Van Waes, Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma, Clin. Cancer Res. 7 (2001) 1419–1428.
- [83] M. Lun, P.L. Zhang, P.K. Pellitteri, A. Law, T.L. Kennedy, R.E. Brown, Nuclear factor-kappaB pathway as a therapeutic target in head and neck squamous cell carcinoma: pharmaceutical and molecular validation in human cell lines using Velcade and siRNA/NF-kappaB, Ann. Clin. Lab. Sci. 35 (2005) 251–258.
- [84] C. Allen, K. Saigal, L. Nottingham, P. Arun, Z. Chen, C. Van Waes, Bortezomib-induced apoptosis with limited clinical response is accompanied by inhibition of canonical but not alternative nuclear factor-{kappa}B subunits in head and neck cancer, Clin. Cancer Res. 14 (2008) 4175–4185.
- [85] S. Williams, C. Pettaway, R. Song, C. Papandreou, C. Logothetis, D.J. McConkey, Differential effects of the proteasome inhibitor bortezomib on apoptosis and angiogenesis in human prostate tumor xenografts, Mol. Cancer Ther. 2 (2003) 835–843.
- [86] S.T. Nawrocki, J.S. Carew, M.S. Pino, R.A. Highshaw, R.H. Andtbacka, K. Dunner Jr., A. Pal, W.G. Bornmann, P.J. Chiao, P. Huang, H. Xiong, J.L. Abbruzzese, D.J. McConkey, Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells, Cancer Res. 66 (2006) 3773–3781.
- [87] M. Adachi, Y. Zhang, X. Zhao, T. Minami, R. Kawamura, Y. Hinoda, K. Imai, Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells, Clin. Cancer Res. 10 (2004) 3853–3862.
- [88] H. Zhu, L. Zhang, F. Dong, W. Guo, S. Wu, F. Teraishi, J.J. Davis, P.J. Chiao, B. Fang, Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors, Oncogene 24 (2005) 4993–4999.

- [89] M. Lun, P.L. Zhang, N. Siegelmann-Danieli, T.M. Blasick, R.E. Brown, Intracellular inhibitory effects of Velcade correlate with morphoproteomic expression of phosphorylated-nuclear factor-kappaB and p53 in breast cancer cell lines, Ann. Clin. Lab. Sci. 35 (2005) 15–24.
- [90] Y. Ishii, S. Waxman, D. Germain, Targeting the ubiquitin-proteasome pathway in cancer therapy. Anticancer Agents Med. Chem. 7 (2007) 359–365.
- [91] K.S. Ahn, G. Sethi, T.H. Chao, S.T. Neuteboom, M.M. Chaturvedi, M.A. Palladino, A. Younes, B.B. Aggarwal, Salinosporamide A (NPI-0052) potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through down-modulation of NF-kappaB regulated gene products, Blood 110 (2007) 2286–2295.
- [92] M. Higuchi, S. Singh, H. Chan, B.B. Aggarwal, Protease inhibitors differentially regulate tumor necrosis factor-induced apoptosis, nuclear factor-kappa B activation, cytotoxicity, and differentiation, Blood 86 (1995) 2248–2256.
- [93] F. D'Acquisto, L. Sautebin, T. Iuvone, M. Di Rosa, R. Carnuccio, Prostaglandins prevent inducible nitric oxide synthase protein expression by inhibiting nuclear factor-kappaB activation in J774 macrophages, FEBS Lett. 440 (1998) 76–80.
- [94] A. Rossi, G. Elia, M.G. Santoro, Activation of the heat shock factor 1 by serine protease inhibitors. An effect associated with nuclear factor-kappaB inhibition, J. Biol. Chem. 273 (1998) 16446–16452.
- [95] H. Zhou, D.M. Monack, N. Kayagaki, I. Wertz, J. Yin, B. Wolf, V.M. Dixit, Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation, J. Exp. Med. 202 (2005) 1327–1332.
- [96] D.C. Swinney, Y.Z. Xu, L.E. Scarafia, I. Lee, A.Y. Mak, Q.F. Gan, C.S. Ramesha, M. A. Mulkins, J. Dunn, O.Y. So, T. Biegel, M. Dinh, P. Volkel, J. Barnett, S.A. Dalrymple, S. Lee, M. Huber, A small molecule ubiquitination inhibitor blocks NF-kappa B-dependent cytokine expression in cells and rats, J. Biol. Chem. 277 (2002) 23573–23581.
- [97] A. Yaron, H. Gonen, I. Alkalay, A. Hatzubai, S. Jung, S. Beyth, F. Mercurio, A.M. Manning, A. Ciechanover, Y. Ben-Neriah, Inhibition of NF-kappa-B cellular function via specific targeting of the I-kappa-B-ubiquitin ligase, EMBO J. 16 (1997) 6486–6494.
- [98] W. Tang, Y. Li, D. Yu, A. Thomas-Tikhonenko, V.S. Spiegelman, S.Y. Fuchs, Targeting beta-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells, Cancer Res. 65 (2005) 1904–1908.
- [99] N. Shembade, A. Ma, E.W. Harhaj, Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes, Science 327 (2010) 1135–1139.
- [100] Y.Z. Lin, S.Y. Yao, R.A. Veach, T.R. Torgerson, J. Hawiger, Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence, J. Biol. Chem. 270 (1995) 14255–14258.
- [101] T.R. Torgerson, A.D. Colosia, J.P. Donahue, Y.Z. Lin, J. Hawiger, Regulation of NF-kappa B, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-kappa B p50, J. Immunol. 161 (1998) 6084–6092.
- [102] T. Letoha, C. Somlai, T. Takacs, A. Szabolcs, K. Jarmay, Z. Rakonczay Jr., P. Hegyi, I. Varga, J. Kaszaki, I. Krizbai, I. Boros, E. Duda, E. Kusz, B. Penke, A nuclear import inhibitory peptide ameliorates the severity of cholecystokinin-induced acute pancreatitis, World J. Gastroenterol. 11 (2005) 990–999.
- [103] A. Abate, S. Oberle, H. Schroder, Lipopolysaccharide-induced expression of cyclooxygenase-2 in mouse macrophages is inhibited by chloromethylketones and a direct inhibitor of NF-kappa B translocation, Prostaglandins Other Lipid Mediat 56 (1998) 277–290.
- [104] V. Kolenko, T. Bloom, P. Rayman, R. Bukowski, E. Hsi, J. Finke, Inhibition of NF-kappa B activity in human T lymphocytes induces caspase-dependent apoptosis without detectable activation of caspase-1 and -3, J. Immunol. 163 (1999) 590-598.
- [105] R.R. Mohan, R.R. Mohan, W.J. Kim, S.E. Wilson, Modulation of TNF-alpha-induced apoptosis in corneal fibroblasts by transcription factor NF-kappaB, Invest. Ophthalmol. Vis. Sci. 41 (2000) 1327–1336.
- [106] E. Koulich, T. Nguyen, K. Johnson, C. Giardina, S. D'Mello, NF-kappaB is involved in the survival of cerebellar granule neurons: association of IkappaBbeta [correction of Ikappabeta] phosphorylation with cell survival, J. Neurochem. 76 (2001) 1188–1198.
- [107] F. D'Acquisto, A. Ialenti, A. Ianaro, R. Di Vaio, R. Carnuccio, Local administration of transcription factor decoy oligonucleotides to nuclear factor-kappaB prevents carrageenin-induced inflammation in rat hind paw, Gene Ther. 7 (2000) 1731–1737.
- [108] F. D'Acquisto, A. Ianaro, A. Ialenti, P. Maffia, M.C. Maiuri, R. Carnuccio, Transcription factor decoy oligodeoxynucleotides to nuclear factor-kappaB inhibit reverse passive Arthus reaction in rat, Naunyn-Schmiedeberg's Arch. Pharmacol. 364 (2001) 422–429.
- [109] K. Umezawa, Inhibition of tumor growth by NF-kappaB inhibitors, Cancer Sci. 97 (2006) 990–995.
- 110] R. Kiernan, V. Bres, R.W. Ng, M.P. Coudart, S. El Messaoudi, C. Sardet, D.Y. Jin, S. Emiliani, M. Benkirane, Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65, J. Biol. Chem. 278 (2003) 2758–2766.
- [111] L.F. Chen, W.C. Greene, Shaping the nuclear action of NF-kappaB, Nat. Rev. Mol. Cell Biol. 5 (2004) 392–401.
- [112] F. Yeung, J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, M.W. Mayo, Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J. 23 (2004) 2369–2380.
- [113] W.C. Greene, L.F. Chen, Regulation of NF-kappaB action by reversible acetylation, Novartis Found. Symp. 259 (2004) 208–217 discussion 218–225.
- 114] K.C. Choi, Y.H. Lee, M.G. Jung, S.H. Kwon, M.J. Kim, W.J. Jun, J. Lee, J.M. Lee, H.G. Yoon, Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells, Mol. Cancer Res. 7 (2009) 2011–2021.

- [115] J. Park, J.H. Lee, M. La, M.J. Jang, G.W. Chae, S.B. Kim, H. Tak, Y. Jung, B. Byun, J.K. Ahn, C.O. Joe, Inhibition of NF-kappaB acetylation and its transcriptional activity by Daxx, J. Mol. Biol. 368 (2007) 388–397.
- [116] B. Sung, M.K. Pandey, K.S. Ahn, T. Yi, M.M. Chaturvedi, M. Liu, B.B. Aggarwal, Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis, Blood 111 (2008) 4880–4891.
- [117] X.D. Yang, E. Tajkhorshid, L.F. Chen, Functional Interplay between Acetylation and Methylation of the RelA Subunit of NF-{kappa}B, Mol. Cell. Biol. 30 (2010) 2170–2180
- [118] S. Zhang, Y.K. Won, C.N. Ong, H.M. Shen, Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms, Curr. Med. Chem. Anticancer Agents 5 (2005) 239–249.
- [119] A.J. Garcia-Pineres, V. Castro, G. Mora, T.J. Schmidt, E. Strunck, H.L. Pahl, I. Merfort, Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones, J. Biol. Chem. 276 (2001) 39713–39720.
- [120] A.J. Garcia-Pineres, M.T. Lindenmeyer, I. Merfort, Role of cysteine residues of p65/ NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential, Life Sci. 75 (2004) 841–856.
- [121] S. Wagner, A. Hofmann, B. Siedle, L. Terfloth, I. Merfort, J. Gasteiger, Development of a structural model for NF-kappaB inhibition of sesquiterpene lactones using self-organizing neural networks, J. Med. Chem. 49 (2006) 2241–2252.
- [122] R. Morishita, T. Sugimoto, M. Aoki, I. Kida, N. Tomità, A. Moriguchi, K. Maeda, Y. Sawa, Y. Kaneda, J. Higaki, T. Ogihara, In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction, Nat. Med. 3 (1997) 894–899
- [123] A.R. Khaled, E.J. Butfiloski, E.S. Sobel, J. Schiffenbauer, Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-kappaB expression and lymphocyte function, Clin. Immunol. Immunopathol. 86 (1998) 170–179.
- [124] C. Kupatt, R. Wichels, M. Deiss, A. Molnar, C. Lebherz, P. Raake, G. von Degenfeld, D. Hahnel, P. Boekstegers, Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs, Gene Ther. 9 (2002) 518–526.
- [125] N. Tomita, T. Ogihara, R. Morishita, Transcription factors as molecular targets: molecular mechanisms of decoy ODN and their design, Curr. Drug Targets 4 (2003) 603–608.
- [126] R. Crinelli, M. Bianchi, L. Gentilini, L. Palma, M. Magnani, Locked nucleic acids (LNA): versatile tools for designing oligonucleotide decoys with high stability and affinity, Curr. Drug Targets 5 (2004) 745–752.
- [127] I. Isomura, A. Morita, Regulation of NF-kappaB signaling by decoy oligodeoxynucleotides, Microbiol. Immunol. 50 (2006) 559–563.
- [128] I. Kawamura, R. Morishita, N. Tomita, E. Lacey, M. Aketa, S. Tsujimoto, T. Manda, M. Tomoi, I. Kida, J. Higaki, Y. Kaneda, K. Shimomura, T. Ogihara, Intratumoral injection of oligonucleotides to the NF kappa B binding site inhibits cachexia in a mouse tumor model, Gene Ther. 6 (1999) 91–97.
- [129] D.J. Van Antwerp, I.M. Verma, Signal-induced degradation of I(kappa)B(alpha): association with NF-kappaB and the PEST sequence in I(kappa)B(alpha) are not required, Mol. Cell. Biol. 16 (1996) 6037–6045.
- [130] C. Jobin, A. Panja, C. Hellerbrand, Y. Iimuro, J. Didonato, D.A. Brenner, R.B. Sartor, Inhibition of proinflammatory molecule production by adenovirus-mediated expression of a nuclear factor kappaB super-repressor in human intestinal epithelial cells, J. Immunol. 160 (1998) 410–418.
- [131] M. Bentires-Alj, A.C. Hellin, M. Ameyar, S. Chouaib, M.P. Merville, V. Bours, Stable inhibition of nuclear factor kappaB in cancer cells does not increase sensitivity to cytotoxic drugs, Cancer Res. 59 (1999) 811–815.
- [132] Y. Abu-Amer, S.F. Dowdy, F.P. Ross, J.C. Clohisy, S.L. Teitelbaum, TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis, J. Biol. Chem. 276 (2001) 30499–30503.
- [133] D.J. Van Antwerp, S.J. Martin, T. Kafri, D.R. Green, I.M. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science 274 (1996) 787–789.
- [134] C.Y. Wang, M.W. Mayo, A.S. Baldwin Jr., TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB, Science 274 (1996) 784–787
- [135] P.B. Bushdid, D.M. Brantley, F.E. Yull, G.L. Blaeuer, L.H. Hoffman, L. Niswander, L.D. Kerr, Inhibition of NF-kappaB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis, Nature 392 (1998) 615–618.
- [136] Y. Kanegae, A.T. Tavares, J.C. Izpisua Belmonte, I.M. Verma, Role of Rel/NF-kappaB transcription factors during the outgrowth of the vertebrate limb, Nature 392 (1998) 611–614.
- [137] C.Y. Wang, J.C. Cusack Jr., R. Liu, A.S. Baldwin Jr., Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB, Nat. Med. 5 (1999) 412–417.
- [138] D.C. Duffey, Z. Chen, G. Dong, F.G. Ondrey, J.S. Wolf, K. Brown, U. Siebenlist, C. Van Waes, Expression of a dominant-negative mutant inhibitor-kappaBalpha of nuclear factor-kappaB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo, Cancer Res. 59 (1999) 3468–3474.
- [139] N.S. Chang, The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression, I. Biol, Chem. 277 (2002) 10323–10331.
- [140] J. Li, S.H. Joo, M.D. Tsai, An NF-kappaB-specific inhibitor, IkappaBalpha, binds to and inhibits cyclin-dependent kinase 4, Biochemistry 42 (2003) 13476–13483.

- [141] C. Aguilera, R. Hoya-Arias, G. Haegeman, L. Espinosa, A. Bigas, Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 16537–16542.
- [142] M. van Hogerlinden, B.L. Rozell, L. Ahrlund-Richter, R. Toftgard, Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factorkappaB signaling, Cancer Res. 59 (1999) 3299–3303.
- [143] F.J. Staal, M. Roederer, L.A. Herzenberg, L.A. Herzenberg, Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus, Proc. Natl. Acad. Sci. U. S. A. 87 (1990) 9943–9947.
- [144] S. Mihm, J. Ennen, U. Pessara, R. Kurth, W. Droge, Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives, AIDS 5 (1991) 497–503
- [145] C. Bubici, S. Papa, K. Dean, G. Franzoso, Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance, Oncogene 25 (2006) 6731–6748.
- [146] G. Gloire, S. Legrand-Poels, J. Piette, NF-kappaB activation by reactive oxygen species: fifteen years later, Biochem. Pharmacol. 72 (2006) 1493–1505.
- [147] M. Hayakawa, H. Miyashita, I. Sakamoto, M. Kitagawa, H. Tanaka, H. Yasuda, M. Karin, K. Kikugawa, Evidence that reactive oxygen species do not mediate NF-kappaB activation, EMBO J. 22 (2003) 3356–3366.
- [148] K. Schulze-Osthoff, R. Beyaerí, V. Vandevoorde, G. Haegeman, W. Fiers, Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF, EMBO J. 12 (1993) 3095–3104.
- [149] S.K. Manna, H.J. Zhang, T. Yan, L.W. Oberley, B.B. Aggarwal, Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1, J. Biol. Chem. 273 (1998) 13245–13254.
- [150] S.K. Manna, M.T. Kuo, B.B. Aggarwal, Overexpression of gamma-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1, Oncogene 18 (1999) 4371–4382.
- [151] K. Natarajan, S. Singh, T.R. Burke Jr., D. Grunberger, B.B. Aggarwal, Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 9090–9095.
- [152] J. Hiscott, T.L. Nguyen, M. Arguello, P. Nakhaei, S. Paz, Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses, Oncogene 25 (2006) 6844–6867.
- [153] P.P. Powell, L.K. Dixon, R.M. Parkhouse, An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages, J. Virol. 70 (1996) 8527–8533.
- [154] C. Camus-Bouclainville, L. Fiette, S. Bouchiha, B. Pignolet, D. Counor, C. Filipe, J. Gelfi, F. Messud-Petit, A virulence factor of myxoma virus colocalizes with NF-kappaB in the nucleus and interferes with inflammation, J. Virol. 78 (2004) 2510–2516.
- [155] H. Thoetkiattikul, M.H. Beck, M.R. Strand, Inhibitor kappaB-like proteins from a polydnavirus inhibit NF-kappaB activation and suppress the insect immune response, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 11426–11431.
- [156] Y. Revilla, M. Callejo, J.M. Rodriguez, E. Culebras, M.L. Nogal, M.L. Salas, E. Vinuela, M. Fresno, Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein, J. Biol. Chem. 273 (1998) 5405–5411.
- [157] N. Neznanov, K.M. Chumakov, L. Neznanova, A. Almasan, A.K. Banerjee, A.V. Gudkov, Proteolytic cleavage of the p65-RelA subunit of NF-kappaB during poliovirus infection, J. Biol. Chem. 280 (2005) 24153–24158.
- [158] D.B. Nichols, J.L. Shisler, The MC160 protein expressed by the dermatotropic poxvirus molluscum contagiosum virus prevents tumor necrosis factor alpha-induced NF-kappaB activation via inhibition of I kappa kinase complex formation, J. Virol. 80 (2006) 578–586.
- [159] S.H. Choi, K.J. Park, B.Y. Ahn, G. Jung, M.M. Lai, S.B. Hwang, Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular IkappaB kinase, Mol. Cell. Biol. 26 (2006) 3048–3059.
- [160] K. Schesser, A.K. Spiik, J.M. Dukuzumuremyi, M.F. Neurath, S. Pettersson, H. Wolf-Watz, The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity, Mol. Microbiol. 28 (1998) 1067–1079.
- [161] K. Orth, L.E. Palmer, Z.Q. Bao, S. Stewart, A.E. Rudolph, J.B. Bliska, J.E. Dixon, Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector, Science 285 (1999) 1920–1923.
- [162] L.S. Collier-Hyams, H. Zeng, J. Sun, A.D. Tomlinson, Z.Q. Bao, H. Chen, J.L. Madara, K. Orth, A.S. Neish, Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway, J. Immunol. 169 (2002) 2846–2850.
- [163] H.L. Pahl, B. Krauss, K. Schulze-Osthoff, T. Decker, E.B. Traenckner, M. Vogt, C. Myers, T. Parks, P. Warring, A. Muhlbacher, A.P. Czernilofsky, P.A. Baeuerle, The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB, J. Exp. Med. 183 (1996) 1829–1840.
- [164] G. Erkel, T. Anke, O. Sterner, Inhibition of NF-kappa B activation by panepoxydone, Biochem. Biophys. Res. Commun. 226 (1996) 214–221.
- [165] K. Umezawa, A. Ariga, N. Matsumoto, Naturally occurring and synthetic inhibitors of NF-kappaB functions, Anticancer Drug Des. 15 (2000) 239–244.
- [166] K. De Bosscher, W. Vanden Berghe, G. Haegeman, Cross-talk between nuclear receptors and nuclear factor kappaB, Oncogene 25 (2006) 6868–6886.
- [167] D. Kalaitzidis, T.D. Gilmore, Transcription factor cross-talk: the estrogen receptor and NF-kappaB, Trends Endocrinol. Metab. 16 (2005) 46–52.
 [168] S. Olivier, P. Close, E. Castermans, L. de Leval, S. Tabruyn, A. Chariot, M. Malaise,
- [168] S. Olivier, P. Close, E. Castermans, L. de Leval, S. Tabruyn, A. Chariot, M. Malaise, M.P. Merville, V. Bours, N. Franchimont, Raloxifene-induced myeloma cell

- apoptosis: a study of nuclear factor-kappaB inhibition and gene expression signature, Mol. Pharmacol. 69 (2006) 1615–1623.
- [169] T.P. McDade, R.A. Perugini, F.J. Vittimberga Jr., R.C. Carrigan, M.P. Callery, Salicylates inhibit NF-kappaB activation and enhance TNF-alpha-induced apoptosis in human pancreatic cancer cells, J. Surg. Res. 83 (1999) 56–61.
 [170] Y. Yamamoto, M.J. Yin, K.M. Lin, R.B. Gaynor, Sulindac inhibits activation of the
- [170] Y. Yamamoto, M.J. Yin, K.M. Lin, R.B. Gaynor, Sulindac inhibits activation of the NF-kappaB pathway, J. Biol. Chem. 274 (1999) 27307–27314.
- [171] M.J. Yin, Y. Yamamoto, R.B. Gaynor, The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta, Nature 396 (1998) 77–80.
- [172] P. Dikshit, M. Chatterjee, A. Goswami, A. Mishra, N.R. Jana, Aspirin induces apoptosis through the inhibition of proteasome function, J. Biol. Chem. 281 (2006) 29228–29235
- [173] M.F. McCarty, K.I. Block, Preadministration of high-dose salicylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy, Integr. Cancer Ther. 5 (2006) 252-268
- [174] M. Yuan, N. Konstantopoulos, J. Lee, L. Hansen, Z.W. Li, M. Karin, S.E. Shoelson, Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of lkkbeta, Science 293 (2001) 1673–1677.
- [175] J.J. Li, C.H. Fang, C-reactive protein is not only an inflammatory marker but also a direct cause of cardiovascular diseases, Med. Hypotheses 62 (2004) 499–506
- [176] E. Kopp, S. Ghosh, Inhibition of NF-kappa B by sodium salicylate and aspirin, Science 265 (1994) 956–959.
- [177] M. Grilli, M. Pizzi, M. Memo, P. Spano, Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation, Science 274 (1996) 1383–1385.
- [178] S.T. Palayoor, E.A. Bump, S.K. Calderwood, S. Bartol, C.N. Coleman, Combined antitumor effect of radiation and ibuprofen in human prostate carcinoma cells, Clin. Cancer Res. 4 (1998) 763–771.
- [179] Y. Takada, A. Bhardwaj, P. Potdar, B.B. Aggarwal, Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation, Oncogene 23 (2004) 9247–9258.
- [180] S. Meyer, N.G. Kohler, A. Joly, Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation, FEBS Lett. 413 (1997) 354–358
- [181] B. Frantz, E.C. Nordby, G. Bren, N. Steffan, C.V. Paya, R.L. Kincaid, M.J. Tocci, S.J. O'Keefe, E.A. O'Neill, Calcineurin acts in synergy with PMA to inactivate I kappa B/MAD3, an inhibitor of NF-kappa B, EMBO J. 13 (1994) 861–870.
- [182] M.A. Tepper, S.G. Nadler, J.M. Esselstyn, K.G. Sterbenz, Deoxyspergualin inhibits kappa light chain expression in 70Z/3 pre-B cells by blocking lipopolysaccharide-induced NF-kappa B activation, J. Immunol. 155 (1995) 2427–2436.
- [183] P.G. McCaffrey, P.K. Kim, V.E. Valge-Archer, R. Sen, A. Rao, Cyclosporin A sensitivity of the NF-kappa B site of the IL2R alpha promoter in untransformed murine T cells, Nucleic Acids Res. 22 (1994) 2134–2142.
- [184] A.S. Wechsler, M.C. Gordon, U. Dendorfer, K.P. LeClair, Induction of IL-8 expression in T cells uses the CD28 costimulatory pathway, J. Immunol. 153 (1994) 2515–2523.
- [185] D. Kunz, G. Walker, W. Eberhardt, D. Nitsch, J. Pfeilschifter, Interleukin 1 beta-induced expression of nitric oxide synthase in rat renal mesangial cells is suppressed by cyclosporin A, Biochem. Biophys. Res. Commun. 216 (1995) 438–446.
- [186] D. Qiu, G. Zhao, Y. Aoki, L. Shi, A. Uyei, S. Nazarian, J.C. Ng, P.N. Kao, Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation, J. Biol. Chem. 274 (1999) 13443–13450.
- [187] J. Sen, L. Venkataraman, Y. Shinkai, J.W. Pierce, F.W. Alt, S.J. Burakoff, R. Sen, Expression and induction of nuclear factor-kappa B-related proteins in thymocytes, J. Immunol. 154 (1995) 3213–3221.
- [188] L. Venkataraman, S.J. Burakoff, R. Sen, FK506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells, J. Exp. Med. 181 (1995) 1091–1099.
- [189] G.A. Webster, N.D. Perkins, Transcriptional cross talk between NF-kappaB and p53, Mol. Cell. Biol. 19 (1999) 3485–3495.
- [190] W.C. Huang, T.K. Ju, M.C. Hung, C.C. Chen, Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB, Mol. Cell 26 (2007) 75–87.
- [191] K.V. Gurova, J.E. Hill, C. Guo, A. Prokvolit, L.G. Burdelya, E. Samoylova, A.V. Khodyakova, R. Ganapathi, M. Ganapathi, N.D. Tararova, D. Bosykh, D. Lvovskiy, T.R. Webb, G.R. Stark, A.V. Gudkov, Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 17448–17453.
- [192] C. Tovar, J. Rosinski, Z. Filipovic, B. Higgins, K. Kolinsky, H. Hilton, X. Zhao, B.T. Vu, W. Qing, K. Packman, O. Myklebost, D.C. Heimbrook, L.T. Vassilev, Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 1888–1893.
- [193] A. Dey, E.T. Wong, P. Bist, V. Tergaonkar, D.P. Lane, Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner: implications in lung cancer therapy, Cell Cycle 6 (2007) 2178–2185.
- [194] K.J. Campbell, J.M. Witty, S. Rocha, N.D. Perkins, Cisplatin mimics ARF tumor suppressor regulation of RelA (p65) nuclear factor-kappaB transactivation, Cancer Res. 66 (2006) 929–935.
- [195] A. Dey, V. Tergaonkar, D.P. Lane, Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways, Nat. Rev. Drug Discov. 7 (2008) 1031–1040.

- [196] M.S. Rodriguez, J. Thompson, R.T. Hay, C. Dargemont, Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation, J. Biol. Chem. 274 (1999) 9108–9115.
- [197] T.R. Kau, P.A. Silver, Nuclear transport as a target for cell growth, Drug Discov. Today 8 (2003) 78–85.
- [198] A. Dasgupta, K.J. Jung, S.J. Jeong, J.N. Brady, Inhibition of methyltransferases results in induction of g2/m checkpoint and programmed cell death in human T-lymphotropic virus type 1-transformed cells, J. Virol. 82 (2008) 49–59.
- [199] H.L. Li, D.D. Chen, X.H. Li, H.W. Zhang, Y.Q. Lu, C.L. Ye, X.D. Ren, Changes of NF-kB, p53, Bcl-2 and caspase in apoptosis induced by JTE-522 in human gastric adenocarcinoma cell line AGS cells: role of reactive oxygen species, World J. Gastroenterol. 8 (2002) 431–435.
- [200] W. Lu, L. Chen, Y. Peng, J. Chen, Activation of p53 by roscovitine-mediated suppression of MDM2 expression, Oncogene 20 (2001) 3206–3216.
- [201] A. Dey, E.T. Wong, C.F. Cheok, V. Tergaonkar, D.P. Lane, R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy, Cell Death Differ. 15 (2008) 263–273.
- [202] Z.N. Demidenko, M.V. Blagosklonny, Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosisreluctant cells to tumor necrosis factor. Cancer Res. 64 (2004) 3653–3660.
- [203] Y. Takada, B.B. Aggarwal, Flavopiridol inhibits NF-kappaB activation induced by various carcinogens and inflammatory agents through inhibition of IkappaBalpha kinase and p65 phosphorylation: abrogation of cyclin D1, cyclooxygenase-2, and matrix metalloprotease-9, J. Biol. Chem. 279 (2004) 4750–4759.
- [204] D. Bernard, D. Monte, B. Vandenbunder, C. Abbadie, The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD, Oncogene 21 (2002) 4392–4402.
- [205] A.M. Sheehy, M.S. Schlissel, Overexpression of RelA causes G1 arrest and apoptosis in a pro-B cell line, J. Biol. Chem. 274 (1999) 8708–8716.
- [206] B. Kaltschmidt, C. Kaltschmidt, T.G. Hofmann, S.P. Hehner, W. Dröge, M.L. Schmitz, The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus, Eur. J. Biochem. 267 (2000) 3828–3835.
- [207] J. Bohuslav, L.F. Chen, H. Kwon, Y. Mu, W.C. Greene, p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1, J. Biol. Chem. 279 (2004) 26115–26125.
- [208] K.M. Ryan, M.K. Ernst, N.R. Rice, K.H. Vousden, Role of NF-kappaB in p53-mediated programmed cell death, Nature 404 (2000) 892–897.
- [209] M. Karin, M. Delhase, The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling, Semin. Immunol. 12 (2000) 85–98.
- [210] M.P. Belich, A. Salmeron, L.H. Johnston, S.C. Ley, TPL-2 kinase regulates the proteolysis of the NF-kappaB-inhibitory protein NF-kappaB1 p105, Nature 397 (1999) 363–368.
- [211] P. Viatour, M.P. Merville, V. Bours, A. Chariot, Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation, Trends Biochem. Sci. 30 (2005) 43–52.
- [212] N. Li, M. Karin, Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 13012–13017.
- [213] T. Kato Jr., M. Delhase, A. Hoffmann, M. Karin, CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response, Mol. Cell 12 (2003) 829–839.
- [214] G. Sethi, K.S. Ahn, M.M. Chaturvedi, B.B. Aggarwal, Epidermal growth factor (EGF) activates nuclear factor-kappaB through IkappaBalpha kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IkappaBalpha, Oncogene 26 (2007) 7324–7332.
- [215] A.P. West, A.A. Koblansky, S. Ghosh, Recognition and signaling by toll-like receptors, Annu. Rev. Cell Dev. Biol. 22 (2006) 409–437.
- [216] Y. Takada, A. Mukhopadhyay, G.C. Kundu, G.H. Mahabeleshwar, S. Singh, B.B. Aggarwal, Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk proteintyrosine kinase, J. Biol. Chem. 278 (2003) 24233–24241.
- [217] V. Imbert, R.A. Rupec, A. Livolsi, H.L. Pahl, E.B. Traenckner, C. Mueller-Dieckmann, D. Farahifar, B. Rossi, P. Auberger, P.A. Baeuerle, J.F. Peyron, Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha, Cell 86 (1996) 787–798.
- [218] J. Schulze-Luehrmann, S. Ghosh, Antigen-receptor signaling to nuclear factor kappa B, Immunity 25 (2006) 701–715.
- [219] H. Noels, G. van Loo, S. Hagens, V. Broeckx, R. Beyaert, P. Marynen, M. Baens, A Novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-kappaB activation by API2middle dotMALT1 fusions, J. Biol. Chem. 282 (2007) 10180–10189.
- [220] R.R. Rosato, S.S. Kolla, S.K. Hock, J.A. Almenara, A. Patel, S. Amin, P. Atadja, P. Dent, S. Grant, HDAC inhibitors activate NF-{kappa}B in human leukemia cells through an ATM/nemo-related pathway, J. Biol. Chem. 285 (2010) 10064–10077.
- [221] Z.H. Wu, Y. Shi, R.S. Tibbetts, S. Miyamoto, Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli, Science 311 (2006) 1141–1146.
- [222] S. Janssens, A. Tinel, S. Lippens, J. Tschopp, PIDD mediates NF-kappaB activation in response to DNA damage, Cell 123 (2005) 1079–1092.
- [223] G.M. Hur, J. Lewis, Q. Yang, Y. Lin, H. Nakano, S. Nedospasov, Z.G. Liu, The death domain kinase RIP has an essential role in DNA damage-induced NF-kappa B activation, Genes Dev. 17 (2003) 873–882.