Contents

Ι	W	eek 1	and 2					
	0.1	0.1 Introduction / Definition						
		0.1.1	What is Machine Learning?					
		0.1.2	Supervised Learning					
		0.1.3	Supervised vs. Unsupervised Learning					
	0.2							
		linear	$\operatorname{regression}$)					
		0.2.1	Application to the house pricing example					
	0.3							
		0.3.1	Hypothesis function for n features					
		0.3.2	The Cost function $J(\theta)$					
		0.3.3	Gradient descent algorithm					
	0.4	Gradie	ent descent in practice					
		0.4.1	Feature scaling: how to converge faster					
		0.4.2	Learning rate α : how to converge faster					
		0.4.3	Polynomial regression					
	0.5	Norma	d Equations					
ΑĮ	open	dices	1					
A	Line	ear Alg	gebra Review					
G		1-inde	xed versus 0-indexed vector matrix					
	A.2	Matrix						
		A.2.1	Matrix size					
		A.2.2	Matrix Operation					
		A.2.3	Derivative $\nabla_A f(A)$					
		A.2.4	Trace					
В	Mat	tlab						
\mathbf{C}	Evo	rciso	Gradient Descent Matlah					

Machine Learning

June 14, 2016

Part I Week 1 and 2

0.1 Introduction / Definition

0.1.1 What is Machine Learning?

Machine Learning: algorithms for inferring unknowns from knowns.

0.1.2 Supervised Learning

• a regression problem: predict housing price

Figure 1: The right answer in this example is the price corresponding to the house size.

• a classification problem: predict if tumor is malignant or benign.

Figure 2: In classification problems, one can have more than 2 values for the output: for example may be 3 types of cancer (0=benign, 1=malignant, 2=type2, 3=type3). The graph on the right shows an alternative way of plotting the data when using several features / attributes. The learning algorithm may decide to separate the malign and benign with a straight line, hence the example of with shown age and tumor size would have a high probability to be a malign tumor

0.1.3 Supervised vs. Unsupervised Learning

- in supervised learning, each example is labeled.
 - regression
 - classification
- in **unsupervised learning**, there is **no label**: the algorithm might look for some structures in the data, and might separate the data in to 2 clusters (clustering algorithm). Examples where unsupervised Learning algorithm is used: organize computing clusters, social network analysis, market segmentations.
 - clustering
 - density estimation
 - Dimensionality reduction

Figure 3: Illustration of supervised and unsupervised learning

There are some variations:

- Semi-supervised learning: mix of labeled and unlabeled dataset
- Active learning
- Decision Theory
- Reinforced learning

Figure 4: This is an example of density estimation. The x axis has a distribution of data point centered at -2, 1 and 6

0.2 Generative vs. Discriminative models

0.2.1 Discriminative models

Discriminative approach would model the probability p(y|x) i.e probability of y given x.

0.2.2 Generative model

Generative approach models the joint probability distribution i.e p(x, y) (probability of x and y).

$$p(x,y) = f(x|y)p(y) \tag{1}$$

where f(x|y) is the density of x given y, and p(y) ist the probability of y.

0.3 Supervised Learning: Linear regression with 1 variable/feature (aka univariable linear regression)

The Goal is to predict a unique output from a single input value.

1. The hypothesis function $h_{\theta}(x)$ (or h_{θ}):

$$h_{\theta}(x) = \theta_0 + \theta_1 x,\tag{2}$$

where θ 's are the parameters

2. The cost function (or squared error function or Mean Squared Error): measure the accuracy of our hypothesis function.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2, \tag{3}$$

where $(h_{\theta}(x^{(i)}) - y^{(i)})^2$ is the difference between the predicted value and the actual value, and m is the size of the training set (data set). $x^{(i)}$ and $y^{(i)}$ are values of examples in the given training set.

3. Gradient Descent method: to automatically improve hypothesis function.

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

simultaneous update of all θ 's: j = 0 and j = 1.

where α is called the learning rate.

The goal is to minimize the cost function i.e get θ_0 and θ_1 value for which the difference between predicted and real value is the smallest.

Gradient descent for linear regression:

Using definition of h_{θ} and $J(\theta_0, \theta_1)$:

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \times x^{(i)}$$

simultaneous update for θ_0 and θ_1

0.3.1 Application to the house pricing example

Provided training set:

	size in $ft^2(x)$	Price \$\$ (y)
$(x,y) \rightarrow$	$2104 \leftarrow x^{(1)}$	$460 \leftarrow y^{(1)}$
	$1600 \leftarrow x^{(2)}$	$330 \leftarrow y^{(2)}$
	$2400 \leftarrow x^{(3)}$	$369 \leftarrow y^{(3)}$
	$1416 \leftarrow x^{(4)}$	$232 \leftarrow y^{(4)}$
	$3000 \leftarrow x^{(5)}$	$540 \leftarrow y^{(5)}$
	$\cdots \leftarrow x^{(m)}$	$\ \dots \leftarrow y^{(m)} \ $

• x = input variables / features

- \bullet m is the total number of training examples
- y = output variable / target variable
- (x, y) = one training example
- $(x^{(i)}, y^{(i)}) = i^{\text{th}}$ training example
- Picture of the process:

In this example, we take a linear representation of h (i.e linear regression with one variable or **univariante linear regression**): $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Result

Figure 5: Result: the red line is the best fit from Gradient descent.

0.4 Multiple features

0.4.1 Hypothesis function for n features

For 1 feature, the hypothesis was:

$$h_{\theta}(x) = \theta_0 + \theta x_1$$
$$= \theta_0 x_0 + \theta x_1$$

where $x_0 = 1$ by convention.

Let's now consider the case of 4 features:

$\overline{x_0}$	size in $ft^2(x_1)$	Nbr of Bdr (x_2)	Nbr of floors	Age home (x_4)	Price \$\$
			(x_3)		(y)
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
1					
•	•				
1	$(x_1^{(m)})$	$(x_2^{(m)})$	$(x_3^{(m)})$	$(x_4^{(m)})$	$(y^{(m)})$

- n is the number of features (4)
- $x_j^{(i)}$ = value of features j in ith training example
- $x^{(2)} = \begin{bmatrix} 1\\ 1416\\ 3\\ 2\\ 40 \end{bmatrix}$ is a vector matrix of size 4 ($\mathbb{R}^{4\times 1}$), showing the feature values of training example 2.

With $x_0 = 1$, the hypothesis for n features can take the general form (multivariate linear regression):

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots \theta_n x_n$$

$$= \sum_{j=0}^{n} \theta_j x_j$$

$$= \theta^{\mathrm{T}} X \text{vectorized form}$$
(4)

where:

$$\bullet \ X = \begin{bmatrix} \frac{1}{1} & \frac{2104}{1416} & 5 & 1 & 45\\ \frac{1}{1} & \frac{1416}{16} & 3 & 2 & 40\\ \frac{1}{1} & \frac{1534}{1634} & 3 & 2 & 30\\ \frac{1}{1} & 852 & 2 & 1 & 36\\ \frac{1}{1} & \vdots & \vdots & \vdots & \vdots\\ \frac{1}{1} & (x_1^{(m)}) & (x_2^{(m)}) & (x_3^{(m)}) & (x_4^{(m)}) \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}$$

$$\bullet \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \dot{\theta_n} \end{bmatrix} \in \mathbb{R}^{n \times 1}$$

0.4.2 The Cost function $J(\theta)$

$$J(\theta_0, \theta_1, \theta_2,, \theta_n) = J(\theta)$$

$$= \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

0.4.3 Gradient descent algorithm

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(update all θ_j simultaneously: j = 0 to n). }

This is called "batch Gradient Descent": each step of gradient descent uses **all** the training examples (1 through m). This method is not appropriate (too heavy) when dealing with very high number of features (1+ million). An alternative is "**Stochastic Gradient Descent**":

Repeat until convergence $\{ \text{ for } i = 1 \text{ to } m, \{ \} \}$

$$\theta_j := \theta_j - \alpha (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(for every j). }

In this algorithm, we repeatedly run through the training set, and each time we encounter a training example, we update the parameters according to the gradient of the error with respect to that single training example only. Often stochastic gradient descent gets θ "close" to the minimum much faster than batch gradient descent (note however that it may never converge to the minimum, and θ will keep oscillating around the minimum of $J(\theta)$).

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(update all θ_j simultaneously: j = 0 to n). }

0.5 Gradient descent in practice

In practice, we stop the iteration when $\frac{\partial J}{\partial \theta} < \epsilon$, where ϵ is a tolerance set by the user.

0.5.1 Feature scaling: how to converge faster

Place all the features at same scale:

- 1. method 1: features range $\Rightarrow -1 \le x_j \ge 1$ eg: $x_1 = \text{size } (0\text{-}2000)$ and $x_2 = \text{Nbr of bdrs } (1\text{-}5)$. Use $x_1 = (\text{size } / 2000)$ $x_2 = (\text{bdr } / 5)$
- 2. method 2: mean normalization $\Rightarrow -0.5 \le x_j \ge 0.5$ Replace x_j by $(x_j - \mu_j)/s_j$ where μ_j is the mean of x_j^i for all *i*'s (i.e over all training examples), and s_j is the range, either (max-min) or stdev.

0.5.2 Learning rate α : how to converge faster

Figure 6: If gradient descent works, $J(\theta)$ must decrease after each iteration (3). If α is too small, Gradient Descent will slowly converge (1). But if α too large, Gradient descent would not converge ((case 2) or $J(\theta)$ increases)

A good approach is to try a series of α values: 0.001, 0.01, 0.1, 1 and choose α that gives fastest converging gradient descent. One can also try to reduce the step size as the number of iterations increases:

$$\alpha = \frac{\alpha_0}{t} \tag{5}$$

where t is the iteration

0.5.3 Polynomial regression

• Model exple 1: $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$ How to convert it in to hypothesis: use x_1 =size, x_2 = (size)², x_3 = (size)³. then, $h_{\theta}(x)$ becomes:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

• Model exple 2: $\theta_0 + \theta_1 x + \theta_2 \sqrt(x)$ How to convert it in to hypothesis: use x_1 =size, x_2 = (size)⁰.5, then, $h_{\theta}(x)$ becomes:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

0.6 Normal Equations

Normal equations provides an analytical solution to $\partial J(\theta)/\partial \theta = 0$.

$$\nabla_{\theta} J = \begin{bmatrix} \partial J / \partial \theta_0 \\ \partial J / \partial \theta_1 \\ \vdots \\ \vdots \\ \partial J / \partial \theta_n \end{bmatrix} \in \mathbb{R}^{(n+1)}$$

Rewrite gradient descent:

Design matrix X contains all the inputs from training set:

$$X = \begin{bmatrix} --(x^{(1)})^{\mathrm{T}} - - \\ --(x^{(2)})^{\mathrm{T}} - - \\ -- \\ \vdots \\ --(x^{(m)})^{\mathrm{T}} - - \end{bmatrix} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \dots \\ x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

is a
$$(m \times (n+1))$$
 matrix with $X^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$

$$X \times \theta = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \dots & x_n^{(1)} \\ x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & \dots & x_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \dots & \vdots \\ x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \times \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} = \begin{bmatrix} (x^{(1)})^{\mathrm{T}} \theta \\ (x^{(2)})^{\mathrm{T}} \theta \\ (x^{(3)})^{\mathrm{T}} \theta \\ \vdots \\ \theta_n \end{bmatrix} = \begin{bmatrix} h_{\theta}(x^{(1)}) \\ h_{\theta}(x^{(2)}) \\ h_{\theta}(x^{(3)}) \\ \vdots \\ h_{\theta}(x^{(n)}) \end{bmatrix}$$

$$\vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \dots \\ \dots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^{(m \times 1)}$$

and:

$$X\theta - \vec{y} = \begin{bmatrix} h(x^{(1)}) - y^{(1)} \\ h(x^{(2)}) - y^{(2)} \\ h(x^{(3)}) - y^{(3)} \\ & \dots \\ & \dots \\ & \dots \\ h(x^{(m)}) - y^{(m)} \end{bmatrix}$$

For a vector $z, z^{\mathrm{T}}.z = \sum z_i^2$, hence:

$$\frac{1}{2} (X\theta - y)^{\mathrm{T}} (X\theta - y) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2} = J(\theta)$$

Minimize $J(\theta)$ for every j:

$$\nabla_{\theta} J(\theta) = 0$$

$$\nabla_{\theta} \frac{1}{2} (X\theta - y)^{\mathrm{T}} (X\theta - y) = 0$$

$$\frac{1}{2} \nabla_{\theta} (\theta^{\mathrm{T}} X^{\mathrm{T}} X \theta - y^{\mathrm{T}} X \theta - \theta^{\mathrm{T}} X^{\mathrm{T}} y + y^{\mathrm{T}} y) = 0$$

 $J(\theta) \in \mathbb{R} \text{ so } \operatorname{tr}(J(\theta)) = J(\theta) \Rightarrow \nabla_{\theta}(J(\theta)) = \nabla_{\theta} \operatorname{tr}(J(\theta)).$

$$\frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{\mathrm{T}} X^{\mathrm{T}} X \theta - \theta^{\mathrm{T}} X^{\mathrm{T}} y - y^{\mathrm{T}} X \theta + y^{\mathrm{T}} y \right) = 0$$

$$\frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{\mathrm{T}} X^{\mathrm{T}} X \theta \right) - \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{\mathrm{T}} X^{\mathrm{T}} y \right) - \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(y^{\mathrm{T}} X \theta \right) + \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(y^{\mathrm{T}} y \right) = 0$$

 $y^{\mathrm{T}}y$ does not depend on θ so $\nabla_{\theta}y^{\mathrm{T}}y=0$:

$$\frac{1}{2}\nabla_{\theta} \operatorname{tr}\left(\theta^{\mathrm{T}} X^{\mathrm{T}} X \theta\right) - \frac{1}{2}\nabla_{\theta} \operatorname{tr}\left(\theta^{\mathrm{T}} X^{\mathrm{T}} y\right) - \frac{1}{2}\nabla_{\theta} \operatorname{tr}\left(y^{\mathrm{T}} X \theta\right) = 0$$

Note that $\theta^T X^T y \in \mathbb{R}$ (If $z \in \mathbb{R}$, then $z^T = z$), so: $(\theta^T X^T y)^T = y^T X \theta$

$$\frac{1}{2}\nabla_{\theta} \operatorname{tr}\left(\theta^{\mathrm{T}} X^{\mathrm{T}} X \theta\right) - \nabla_{\theta} \operatorname{tr}\left(y^{\mathrm{T}} X \theta\right) = 0$$

By the property of permutation: $\theta^T X^T X \theta = \theta \theta^T X^T X$, and:

$$\nabla_{\theta} \operatorname{tr}(\theta \theta^{\mathrm{T}} X^{\mathrm{T}} X) = \nabla_{\theta} \operatorname{tr}(\underbrace{\theta}_{A} \underbrace{I}_{B} \underbrace{\theta^{\mathrm{T}}_{A^{\mathrm{T}}}} \underbrace{X^{\mathrm{T}} X}_{C}) = \underbrace{X^{\mathrm{T}} X}_{C} \underbrace{\theta}_{A} \underbrace{I}_{B} + \underbrace{X^{\mathrm{T}} X}_{C} \underbrace{\theta}_{A} \underbrace{I}_{B^{\mathrm{T}}}$$

$$\nabla_{\theta} \operatorname{tr} \underbrace{y^{\mathrm{T}} X}_{B} \underbrace{\theta}_{A} = \underbrace{X^{\mathrm{T}} y}_{B^{\mathrm{T}}}$$

Hence:

$$\nabla_{\theta} J(\theta) = \frac{1}{2} \left(X^{\mathrm{T}} X \theta + X^{\mathrm{T}} X \theta \ right) - X^{\mathrm{T}} y \right) = 0$$

Finally:

$$X^{\mathrm{T}}X\theta = X^{\mathrm{T}}y = 0$$
$$\theta = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y$$

Pros and Cons of Gradient Descent and Normal Equations:

Gradient Descent	Normal Equations
Need to choose α	No need to choose α
Need to use many iterations	No iteration
works well even with large	slow for very large nbrs of
Nbrs of features	features
	Need to compute $(XX^{\mathrm{T}})^{-1}$
	: cost of inverting matrix is
	$O(n^3)$ for a $n \times n$ matrix

Appendices

Appendix A

Linear Algebra Review

A.1 1-indexed versus 0-indexed vector matrix

$$Y(1 - \text{indexed}) = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \text{ and } Y(0 - \text{indexed}) = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix},$$

A.2 Matrix

A.2.1 Matrix size

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \\ j & k & l \end{bmatrix},$$

is a 4(rows) × 3(cols) matrix ($\mathbb{R}^{3\times2}$ matrix). Length = # Rows × #Cols A_{ij} corresponds to value at row i^{th} and col j^{th}

$$A = \begin{bmatrix} a \\ d \\ g \\ j \end{bmatrix},$$

is a **vector** matrix $(n \times 1)$

A.2.2 Matrix Operation

Matrix addition

$$A + B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} (a+w) & (b+x) \\ (c+y) & (d+z) \end{bmatrix},$$

Matrix scalar multiplication

$$A \times x = x \times A = x \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (a \times x) & (b \times x) \\ (c \times x) & (d \times x) \end{bmatrix},$$

Multiplication of 2 matrix

 $A \times B$ requires that the # of rows of A be equal to # of cols of B. Matrix × a vector = a vector $(n \times m)$ matrix × $(m \times 1)$ vector = $n \times 1$ vector

$$A \times B = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} (ax + by) \\ (cx + dy) \\ (ex + fy) \end{bmatrix}$$

Matrix multiplication properties:

• Not commutative: $A \times B \neq B \times A$

• associative : $A \times B \times C = (A \times B) \times C = A \times (B \times C)$

Matrix Identity

 $A \times I = A$, where I is a matrix identity:

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrix Inverse

Inverse of A is denoted A^{-1} , and:

$$A \times A^{-1} = I$$

A non-square matrix does not have an inverse.

Transpose matrix A^{T}

$$A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$

$$A^{\mathrm{T}} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$$

so
$$A_{ij} = A_{ji}^T$$

A.2.3 Derivative $\nabla_A f(A)$

For a function $f: \mathbb{R}^{(m \times n)} \to \mathbb{R}$ mapping from m-by-n matrix to the real numbers, we define the derivative of f with respect to A to be:

14

so $\nabla_A f(A)$ is itself a $\mathbb{R}^{(m \times n)}$ whose (i, j) elements is $\partial f / \partial A_{ij}$.

For example: $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ is a 2×2 matrix, and $f : \mathbb{R}^{(2 \times 2)} \to \mathbb{R}$ is: $f(A) = \frac{3}{2}A_{11} + 5A_{12}^2 + A_{21}A_{22}$. Then $\nabla_A f(A) = \begin{bmatrix} 3/2 & 10A_{12} \\ A_{22} & A_{21} \end{bmatrix}$

A.2.4 Trace

$$\operatorname{tr} A = \sum_{i=1}^{n} A_{ii} \text{ if } A \in \mathbb{R}^{n \times n}$$

$$tr(A \times B) = tr(B \times A)$$

$$tr(ABC) = tr(CAB) = tr(BCA)$$

$$tr(ABCD) = tr(DABC) = tr(CDAB)$$

If A and B are square matrix:

$$trA = trA^{T}$$

$$tr(A+B) = trA + trB$$

If $a \in \mathbb{R}$:

$$tr(a) = a$$

If
$$f(A) = \operatorname{tr}(AB)$$

$$\nabla_A \operatorname{tr}(AB) = B^{\mathrm{T}}$$

$$\nabla_A \operatorname{tr}(ABA^{\mathrm{T}}C) = CAB + C^{\mathrm{T}}AB^{\mathrm{T}}$$

Appendix B

Matlab

- disp(a) /*show the matrix
- a=3.14567 disp(sprintf('2 decimals: %0.2f', a))
- define a row vector: $v=[1\ 2\ 3] \rightarrow v[1,2,3]$
- define a col vector: v=[1; 2; 3] $\rightarrow a = \begin{bmatrix} \frac{1}{2} \\ \frac{3}{3} \end{bmatrix}$
- define a matrix (3×2): a=[1 2; 3 4; 5 6] $\rightarrow a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
- eye(2) gives a 2×2 Identity matrix $\rightarrow a = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- zeros(2) gives a 2×2 matrix with only elements $0 \to a = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- ones(2) gives a 2×2 matrix with only elements $1\to a=\left[\begin{smallmatrix}1&1\\1&1\end{smallmatrix}\right]$
- $a \text{ matrix } (3 \times 2) \colon a = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow a = \begin{bmatrix} \frac{1}{3} & \frac{2}{4} \\ 5 & 6 \end{bmatrix}$ $\text{sz} = \text{size}(A) \rightarrow \begin{bmatrix} 3,2 \end{bmatrix}$ $\text{size}(A,1) \rightarrow \text{nbrs of rows } (3)$ $\text{size}(A,2) \rightarrow \text{nbrs of cos } (2)$ For a vector A use length(A)
- pwd \rightarrow current directory
- load(filename)
- who \rightarrow show what variables are in memory
- whos \rightarrow show list of variables (with size, type) in memory
- clear \rightarrow remove all variables from memory
- save hello.txt v -ascii \rightarrow save v as ascii
- save hello.m $v \to \text{save } v$ as matlab file
- Elements of $A = \begin{bmatrix} \frac{1}{3} & \frac{2}{4} \\ 5 & 6 \end{bmatrix}$ $A(3,2) \to 6$ $A(2,:) \to \text{return row } \# 2: (3 4)$ $A(:,2) \to \text{return col } \# 2: \begin{bmatrix} \frac{2}{4} \\ 6 \end{bmatrix}$

- $\operatorname{pinv}(A) \to A^{-1}$
- $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 11 & 12 \\ 13 & 14 \\ 15 & 16 \end{bmatrix}$ $A. * B \rightarrow \begin{bmatrix} 11 & 24 \\ 39 & 56 \\ 75 & 96 \end{bmatrix}$ (.*) element-wise multiplication of 2 matrix

Appendix C

Exercise: Gradient Descent Matlab

```
data = load( 'data.txt' );
X = data(:, 1:2);
y = data(:, 3);
m = length( y );
# scale features
mu = zeros( 1, size( X, 2 ) );
sigma = zeros( 1, size( X, 2 ) );
X_norm = X;
mu = mu * mean(X)
sigma = sigma * std(X)
X_{\text{norm}} = (X - mu) ./sigma;
X_{norm} = [ ones( m, 1 ), X_{norm} ] #add intercept term to X
# Gradient descent
alpha = 0.01;
num_iters = 400;
\# Initialize theta and J
theta = zeros(3, 1);
J_history = zeros( num_iters, 1);
for iter = 1:num_iters
        theta = theta - alpha/m * X' * ( X * theta - y );
  # Compute Cost'
        prediction = X * theta;
        sqErr = (prediction - y).^2;
        J = 1/(2 * m) sum(sqErr);
        J_history ( iter ) = J;
plot( J_history );
xlabel( 'Nb of iterations' );
ylabel( 'Cost J' );
```