TA435 H 94

Cornell University Library

3 1924 003 648 965

RESULTS OF TESTS

MADE IN THE

COLLECTIVE PORTLAND CEMENT EXHIBIT AND MODEL TESTING LABORATORY OF THE ASSOCIATION OF AMERICAN PORTLAND CEMENT MANUFACTURERS. :: :: :: ::

LOUISIANA PURCHASE EXPOSITION St. Louis, Mo. 1904.

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

RESULTS OF TESTS

MADE IN THE

COLLECTIVE PORTLAND CEMENT EXHIBIT AND MODEL TESTING LABORATORY OF THE ASSOCIATION OF AMERICAN PORTLAND CEMENT MANUFACTURERS. :: :: :: ::

RICHARD L. HUMPHREY, M. Am. Soc. C. E. [IN CHARGE]

LOUISIANA PURCHASE EXPOSITION St. Louis, Mo. 1904.

The Association of American Portland Cement Manufacturers was awarded two Grand Prizes, one for the collective exhibit and another for the model testing laboratory.

The Collective Portland Cement Exhibit and Model Testing Laboratory of the Association of American Portland Cement Manufacturers, and the Results of Tests at the Louisiana Purchase Exposition, St. Louis, Mo.*

RICHARD L. HUMPHREY, M. AM. Soc. C. E. [IN CHARGE.]

Great expositions mark the progress made in the industrial world, and emphasize the advance in particular lines. The Louisiana Purchase Exposition was no exception. Those who were fortunate in being able to attend the Exposition at Chicago in 1893 and St. Louis in 1904 doubtless observed the progress which had been made in the branches in which they were especially interested. To those interested in cement, a very noticeable feature of the former was the absence of an American Portland Cement Exhibit. and the elaborate German exhibits of this material. This was naturally to be expected at a period when American Portland cement was hardly known and was regarded as of doubtful quality, while German Portland cement was universally used and was held in very high regard. The total consumption of Portland cement in 1903 was 3,264,801 barrels, of which 82 per cent. was of foreign and only 18 per cent. of domestic manufacture. In the decade which has since elapsed a great change has taken place in the production and consumption of American Portland cement. production has increased 450 per cent., while the importations have fallen off about 73 per cent.; the consumption now exceeds 26,505,881 barrels, and this country has grown from one of the smallest to one of the largest Portland cement producing countries of the world.

^{*}Presented jointly to the Association of American Portland Cement Manufacturers and the American Society for Testing Materials Reprinted from the copyrighted proceedings.

It was quite appropriate that this remarkable growth of the cement industry in America should be fittingly exploited at St. Louis, and it was natural that this exploitation should be made by the American Portland cement manufacturers in a collective exhibit. Such an exhibit formed the gateway to the mining gulch of the Exposition and was one of the most attractive of the outside individual exhibits. The fact that there were no foreign cement exhibits worthy of note, served to emphasize the withdrawal of the foreign Portland cement from the American market, resulting

Fig. 1.—General View of Building.

from the development of the American Portland cement industry. In yet another particular was this collective exhibit noticeable. In 1893 the American Portland cement manufacturer, while not openly hostile to the inspection and testing of his product, was nevertheless not a strong advocate and frequently rebelled against the restrictions placed on him by the testing engineer. Yet it was because of this continual raising of requirements which compelled the manufacturer to improve his product, that he occupies a premier position in the cement industry to-day. We now find the manufacturer no longer the opponent but the firm advocate of

proper methods for testing. This new attitude was shown in the equipment and operation of the Model Testing Laboratory in which was exploited the methods for testing cement proposed by the special committee of the American Society of Civil Engineers, whose report was distributed gratuitously. Only those who have had an active part in the erection of buildings and installation of exhibits at a great exposition can appreciate the vexatious delays occasioned by unforeseen difficulties; this was particularly true of the cement exhibit.

Fig. 2.—General View of Laboratory.

It was originally intended that the work of construction should be carried on during the Exposition as a working exhibit. To secure greater advantages in an educational way it was subsequently decided to complete it as soon as possible, but before this could be accomplished the Exposition was well towards its close. The buildings, and the installation of the equipment of the laboratory and of the other exhibits were quickly completed and the whole placed in a working condition.

The completed Exhibit formed a comprehensive exposition of the Portland Cement Industry, comprising:

- 1. A collection of the raw materials from which Portland cement is manufactured, together with samples of this material taken in various stages of manufacture, to the finished product.
- 2. A collection of the various sands, gravels, cinders, broken stone and metal used in concrete, together with photographs and models of structures built of concrete in all parts of the world.
- 3. A library of books and files of the various technical journals devoted to cement, mortar and concrete.

Fig. 3.—View of Cement and Concrete Materials Exhibit

- 4. A completely equipped model testing laboratory.
- 5. A collection of machines for mixing and molding concrete; and,
- 6. A collection showing the many forms in which Portland cement is used.

The exhibit building, one of two permanent structures, which has been presented to and accepted by the Park Commission of the City of St. Louis, Mo., is an excellent example of reinforced concrete construction, and consists of three pavilions separated by intermediate courts and connected across the front by a continuous loggia, the roof of which is covered with cement tiling (Spanish pattern) of a rich red color. This coloring, together with the red tinting of the ceiling of the loggia, relieve the general grey tone of the walls and forms an agreeable color contrast. The style, Spanish Mission, and the rough-finished walls are particularly well adapted to the use of concrete.

As much interest was manifested in the finish of the walls, a description of the method used is added. The forms were removed at the end of twenty-four hours after casting and the outside surface was then scrubbed with a soft wire brush, washing with a hose at the same time,—this removed the cement and sand from the surface, leaving the stone of the concrete prominently exposed and producing the effect of rough casting. The advantages of this method are, first the production of a uniform color, and second the prevention of the appearance of hair cracks by the removal of the excess of neat cement.

The superstructure of reinforced concrete rests on a substructure of concrete, carried to a solid foundation, reaching in some portions a depth of 16 feet. American Portland Cement, Mississippi River sand, chatts (the screened tailings from the Missouri lead mines) and broken stone were used in the concrete in proportions of one part cement, three parts sand, and six parts broken stone for the substructure, and one part cement, two parts sand, and four parts chatts for the superstructure.

The roofs, covering the pavilions, are of ferro-inclave construction, 3 in. thick; consisting of corrugated sheet iron plastered on both sides with a mixture of Portland cement and sand.

The walls are reinforced every foot, both horizontally and vertically, by $\frac{1}{4}$ -in. round rods. The beams of 30-ft. span have $2\frac{5}{8}$ -in. diameter round rods, in the upper and $2\frac{7}{8}$ -in. rods in the lower portion. For the 20-ft. beams $\frac{1}{2}$ -in. round rods are used in the upper and $\frac{3}{4}$ -in. rods in the lower portion. The stirrups are $1\frac{1}{4}$ -in. wide No. 16 gauge iron.

The interior walls were floated while green with a mortar of cement and sand, and subsequently tinted with rich water colors, the reception rooms being finished a deep vermilion, the laboratory a warm terra-cotta, while the exhibition room is finished in a deep green. The ceilings are uniformly of a rich cream color. Between the windows, bordering the interior courts, are medallions of the labels of the various companies, cast in Portland cement.

The south end pavilion was used as a reception room and office, and contained a reference library of books and files of the leading technical journals devoted to cement, mortar and concrete. The north end pavilion served as an exhibit room, in which was displayed the collection of the characteristic raw materials from various parts of this country used in the manufacture of Portland cement, showing raw material in the various stages of preparation to the finished product. The coal used was also shown in the raw and finished state. In all three pavilions were transparencies of some of the Portland cement plants in this country.

The various forms of metal used in reinforceing concrete, the sand, gravel, cinders, and broken stone, from all over the country, were on exhibition. Besides, there was a collection of photographs of work built of concrete, from all over the world, and of tests made to establish the fire-resisting qualities of concrete.

The wonderful growth of the Portland Cement Industry, the steadily increasing consumption of American Portland cement, and the decreasing consumption of natural and imported Portland cement was shown graphically, while by means of maps a comparison was made between the plants in existence in 1890 and those in existence at the present time.

The central pavilion contained a thoroughly modern and admirably equipped testing laboratory, the finest that has ever been installed in this country. This laboratory was in daily operation, demonstrating the methods used for testing cement and concrete.

The mixing and molding were performed on two especially designed tables, each of which is 7 ft. long, 28 in. wide, and 3 ft. high at the main portion; each end (32 in. above the floor) has a one-inch plate-glass mixing slab 2 ft. square. In the central part of one of these tables a galvanized iron pan 2 ft. square and 6 in. deep was inserted provided with a cloth-covered wire screen top, and a wooden rack in the bottom $\frac{3}{4}$ -in. high. The pan was filled with water to the top of the rack and the cloth was kept wet. The test pieces used in the determination of time of setting were

placed on this rack and kept there during the test, being removed from time to time to make trial tests of the setting. The object was to maintain the test piece under uniform conditions during the test.

The tension and compression test pieces, as well as those for the soundness, were kept in moist air for the first 24 hours after molding. For this purpose there was a moist closet, which consisted of a soapstone box 4 ft. wide, 18 in. deep and 2 ft. high resting on a wooden frame 30 in. high. The closet has a central vertical partition, and was provided with wooden doors covered with planished copper. The bottom was made water tight, and holds about 6 in. of water; the sides have cleats for holding four sets of glass shelves 4 in. wide, 22 in. long, on which were placed the molds containing the neat cement briquettes. At the bottom over the water is a wooden rack, on which were placed the molds containing the mortar briquettes.

The test pieces were removed at the end of 24 hours, marked, removed from the molds, and for all tests for longer periods than 24 hours they were immersed in tanks. These tanks were of soapstone, provided with running water and were arranged in tiers of three each. There were six tanks in all, each 6 ft. 7 in. long, 30 in. wide. One of the upper tanks is 30 in. deep, and was used for the storage of large beams and cubes of concrete; the remaining tanks were all 6 in. deep (inside measure). Each tank was provided with two inlet and two outlet pipes, by which the water was maintained at any constant level. An instantaneous gas water heater was connected to the supply so that the temperature of the water could be maintained practically at 70° F.

For the determination of time of setting and normal consistency there were two Vicat Needle apparatus, one made by Tinius Olsen and Company, and the other imported from Germany.

For the tension tests there was a long and short lever machine. The former, made and loaned by Tinius Olsen and Company, of Philadelphia, was driven by an electric motor, and was automatic in the application of the weighing load; while in the other, made and loaned by the Fairbanks Machine Company, of New York, the load was applied by a stream of shot flowing into a bucket suspended to one of the levers, the slip of the clip on the briquette being taken up by means of a worm which operates the

lower clip, a feature which has added very considerably to the value of this type of machine.

For the compression tests there was a 40,000-pound, hand-driven machine built and loaned by the Falkenau-Sinclair Machine Company, of Philadelphia, and a 200,000-pound electric motor-driven machine built and loaned by Tinius Olsen and Company, of Philadelphia. This machine was equipped with table for transverse tests up to 10 ft. clear span, and was provided with a ball and socket bed plate for compression tests up to 12 in. The former machine was new, having been built especially for this exhibit, at the request and under the supervision of the writer.

The proper way for testing cement mortars or concretes is in compression, as it approaches more nearly the conditions of When we design structures in concrete, we disreactual use. gard the tensile strength of the concrete, and figure entirely on the compressive strength, incorporating in the beam or column sufficient metal to take up the tensile stresses. Why then should we test cement in tension? We will find the reason in practical rather than theoretical conditions. The average laboratory, or more specifically, the usual laboratory of the consumer, is not provided with a large fund for its equipment or operation. usual machines used for tests of strength are the tensile testing machines, ranging in price from \$90 to \$200. The compression machines sell for from \$800 up, besides requiring power for their operation. Their cost places these machines beyond the reach of all except the large permanent laboratories. The 40,000-pound machine, in the laboratory will sell for \$300. It is to be hoped that under favorable cost conditions, compression tests will come into increasing favor, and in time supplant the unsatisfactory tension tests.

It is an encouraging fact, and worthy of note in passing, that tests of cement are being regarded of much greater importance and are receiving correspondingly greater attention than formerly. This is unquestionably the result of the increasing and varied application of cement for constructive purposes, and under conditions which render the quality of the cement of paramount importance.

The most important test that can be applied to cement is that for soundness or constancy of volume, as it is of the highest importance that a cement once set shall remain volume-constant. No entirely satisfactory test has been devised for this purpose. In the apparatus used in this laboratory the pats were placed on a rack, over boiling water, the surface of which was kept constant by means of a constant level bottle. The pats were maintained in an atmosphere of steam at a normal pressure. No matter what the character of the water may be, the steam will be pure, and thus free from the objectionable feautres that may enter into the boiling test.

The laboratory was provided with the usual standard sieves: Nos. 100 and 200 for cement; Nos. 10, 20, 30, 40, 50, 60, 80, 100 and 200 for sands, and with an analytical balance and scales, with the necessary metric weights, made and loaned by Henry Troemner, of Philadelphia. For the specific gravity determinations the Le Chatelier's apparatus was used.

There was also a Bauschinger apparatus for measuring the expansion of cement, and the usual measuring devices for the various tests.

In the rear of the building were the outside exhibits which served to illustrate a few of the many uses to which Portland cement is put, and some of the methods employed in mixing and molding.

The flexibility of reinforced concrete construction was illustrated by a cantilever beam exhibited by the Hennebique Construction Company of New York, and which was tested to destruction as described hereafter.

Adjoining this cantilever was an exhibit of the Siegwart hollow reinforced beams, by John E. Olsen, of New York.

The Trussed Concrete Steel Company, of Detroit, Michigan, made a series of test beams and erected a floor system, the latter a combination of hollow tile and concrete beams, and also some columns supporting a beam, all serving to illustrate the "Kahn System". The tests of these beams and floor slab are also described hereafter.

A floor panel between two steel beams, resting on concrete piers, served to illustrate The Roebling Construction Company, of New York, system of fireproof flooring.

The Truss Metal Lath Company, of New York, showed a section of partition, illustrating the use of the Truss metal lath.

Ornamental work in cement was illustrated by the Algonite Stone Company, of St. Louis. The exhibit comprised a porch consisting of two columns and two pilasters, supporting a pediment and roof; these pilasters and columns were connected on each side of the porch by a balustrade. Several steps led to the porch floor. They also exhibited a Corinthian column cap, and a cap for a pilaster and other forms of artificial stone work.

The National Art Stone Company, of Chester, Pa., displayed an ornamental mantel and column; the feature of the exhibit was the extremely low percentage of cement used. Samples were exhibited containing only three, seven and ten percent. of cement, and ninety-seven, ninety-three and ninety per cent. of sand.

The Art Mosaic Tile Company, of St. Louis, displayed mosaic work in Portland cement; they had a fireplace, a kitchen sink, and flooring tiles.

The Vulcanite Paving Company, of Philadelphia, showed a section of granolithic pavement, and a section of steel-bound concrete curbing.

Concrete railroad ties were exhibited by Casper Buhrer, of Sandusky, Ohio, and Frank Ford, of Albion, Mich. The former were made of old rails with the head bedded in the concrete and with the flange up, the latter serving as the bearing and means of holding the rail in place. They have been in service in the Lake Shore and Michigan Southern Railroad for over two years. They have also been used by a number of other railroads.

The Ford tie was in two pieces, connected by a rod insulated at the connection.

Reinforced concrete fence posts were exhibited by H. T. McCarthy, of Detroit, Mich.

The reinforced concrete burial vault, shown by George A. Rackle and Sons, of Cleveland, Ohio, marked a new feature in burial practice, having advantages over the wooden casket

The Kielberg pipe of Danish manufacture (made with a hydraulic press) was exhibited by F. L. Smith and Company of New York City, the American agents. The pipe was of excellent quality, and stood the long transportation without damage.

The hollow building block machines were exhibited by H. S. Palmer, of Washington, D. C., the Cement Machinery Company, of Jackson, Mich., and the Burlington Block Machine Company, of Burlington, Iowa. These machines were in operation daily, demonstrating the manufacture of cement blocks.

The two-piece block was exhibited by the American Hydraulic Stone Company, of Denver, Colo. Walls of various

thickness from three inches and upwards were shown.

Cement brick and cement paving tile machines were operated by A. D. Mackay, of Chicago, Ill.; while cement roofing tile is displayed by the American Cement Tile Manufacturing Company, of Wampum, Pa.; Brock Bros., of St. Louis; and Furman Construction Company, of Detroit, Mich. The Brock tile is plain, the American is made corrugated, diamond-shaped and in the four-foot plain form, while the Furman is diamond-shaped.

The Municipal Engineering and Contracting Company and the McKelvey Concrete Mixer Company, of Chicago, had exhibits of concrete mixers. The former was a cubical mixer, mounted on wheels, and was complete with boiler and engine for operating. The McKelvey mixer was a hand-driven barrel

machine.

The limited time available after the completion of the exhibit was insufficient for the execution of any elaborate series of investigations. It became necessary, therefore, to concentrate the work on such tests as would be productive of data of the greatest value. The tests made were of two kinds: those made in the laboratory and those made among the outside exhibits, consisting for the most part of full size concrete beams and floor slabs which were loaded to destruction with pig iron. The work in the laboratory was confined to illustrating proper methods for testing cement and to investigations of the comparative value of the various sands, gravels, and broken stone used in some of the principal cities of this country.

Inasmuch as the exhibit was the joint work of some forty Portland cement companies it was deemed undesirable to advertise any particular company either by permitting individual exhibits or by the use of a particular brand. The building was built with cement which was a mixture of four brands of Portland cement,

readily found in the St. Louis market. The same policy was followed in the cement used in the laboratory tests; in which case a

Fig. 4.—Diagrams of Results of Tests of Cements and Mortars, Showing Effect of "Personal Equation."

the results of these tests are due to two causes: (1) Changes in the quality of the cement due to atmospheric conditions, and (2) changes occasioned by the variation in the "personal equation" of the operator. Two men made the same tests simultaneously, using similar apparatus and methods. The effect of the "personal equation" and other changes is set forth in the diagrams Fig. 4;* the ordinates being the successive tests as made, practically, at daily intervals. These men were inexperienced in the beginning and it will be noted in the diagram that while the results were far apart in the beginning they became more concordant as experience was acquired.

In the comparative tests with the standard cement, of sands, gravel, and broken stone it was only possible in the limited time to test those from the following points: Berkshire, Mass.; Cleveland, Ohio; Cowe Bay, Long Island, N. Y.; Chicago, Ill.; Dallas, Tex.; Kaw River, Iola, Kan.; Philadelphia, Pa.; Plum Island, Boston, Mass.; St. Louis, Mo.

The results of these tests will be found in Tables III, IV, V, Pl. I, opposite page 16, and diagram Fig. 5, page 17. A study of the latter is quite interesting in that it shows the relation between the size of the particles and the percentage of voids. The tests seem to indicate that the smaller this percentage the greater is the strength of the mass; this percentage being dependent on the size of the particles. Where the particles are well graded from coarse to fine, the percentage of voids is reduced to a minimum. This was found to be true of the unscreened sands and gravels, the highest results being obtained with the sand or gravel containing the least percentage of voids and showing the best gradation in the size of particles from coarse to fine.

When this material is screened to one size as 20–30 the per cent. of voids and the strength become practically the same, regardless of the strength previously obtained with the unscreened material. In this particular it apparently matters not what the geological origin of the material is, provided it is not undergoing further decomposition. It is also observable that the specific gravity of the sands and gravels is practically the same.

An examination of Table IV will show the very small percentage

^{*}Acknowledgment is made to the Engineering News for the cuts used in this paper.

MPLE	FINE		TIME OF	SETTING	PER CEM					TEN	SILE	87	RENG	тн	POL	NDS F	PEF	8 5	20/	RE	INCH	_	_
NHBER			IN MIN	UTE6	WATER				NEAT										SA				
, i	ND 100	NO 200	IHITIAL	HARD		IOAY	AVER	AGE	70AY8	HOI-	RAGE SEN-	20	DAYS	AVE	P ARE	7 DAY	9	AVE UNDER	EAGE FEIL	20	DAYS		: 1
A	9.85- 9.15	2699- 2690	279- 286	510- 436		112 IFI 117	116	25	132 647 650 539 579 466	546	385	670	584 783 730 590	712	700	166 180 165 150					260 25 286 26		
8	9.80-	25.89-	50-	110-	202	142 124 133 234 206 220	220	286	591 602 615	608	628	790	756 776	776	768	267 266 259 203	270	274			428 99 896 38		
C	11.90	26.85 28.48	263-	120 495-		#28 272 260 IIZ- 107- 110	130	27	641 650 669 639 626 580	616	610	828	143 721 874 739	824	849	237 247	240	245	224	382		2 39	2 ,
D	10.00	2430	40-	495 171 -	20.0	125 120 128 215 847 231	1291	241	596 622 580	594	582	675	965 904 721 778	724	710	190 191 260 274	280	271	267	845	381 37 393 32	4 36	7
D E	8.40 4.59-	26.85	45 35-	265-	204	246 259 250 195 196 196	250		572 670 595 542 645 997	546	858	690	727 676 670 631	664	448	262 293 220 211	208	219	202	917	336 34	3 89	2 ,
E	4.10 8.84	21.50	39	280 298	20 2	290 221 226	179		\$20 596 <i>5</i> 20	545		640	678 671	737	-	170 217 234		224	-		291 20 362	0 24	+
VERAGE	8.13	25.39	149	290	20 %		196		580	502			792 761			213 263	_	⊢	_		887 891	+	+
CEMENT	7.79 7.75	2495 2560	151	314 332	20.0		280	277	621 623	628			779	770		240		251			869	58	٥

Table I.— Showing Results of Tests of Five Brands of American Portland Cement and of Samples Made From a Mixture of All Five Brands.

SAMPLE					COMPRE STRENGT		
IUMBER	AGE	PROPORTION	WEIGHT PER CU FT	AREA	ULTIMATE	PER SQ:INL	REMARKS
1	DAYS	-	13998	S 5,2 5	58500	1659	SLIGHTLY SPALLED AT EDGES.
2		ICEMENT	149.67	35.25	59910	1700	Do.
3		ISAND	143.10	35.15	68500	1943	00.
4		5 CHATTS	143.87	36.00	70350	1954	Do.
5			143.36	35.33	48000	1359	Do.
6			144.06	35.63	64250	1803	, 50.
Ava			143.04	35.42	61585	1740	
7	00	I CEMENT	143.18	35.84	29450	822	CORNERS SPALLED.
8		2 SAND	143.52	36.00	27210	759	
9		4 CHATTS	143.87	36.00	33450	929	
10			142.42	36.00	30900	858	
11			142.47	36.00	31125	865	
12			143.88	36.00	30500	848	
AVG.			143.44	35.97	30439	847	
13	00.	I GEMEN'T	146.70	34.75	30200	870	ONE CORNER SPALLED.
14		2 SAND	145.11	35.62	27880	783	
15		4 CNATTS	146.52	3563	55250	1579	
16			147.62	36.00	49 100	1364	
17			146.69	35.63	40700	1142	
18			145.73	. 36.00	35200	978	
AVG			146.23	35.61	39722	1119	,
19	DO.		114.10	22.24	14550	654	VERY BADLY SPALLED TWO CORNERS.
20		1 CEMENT	112.90	36.00	19050	530	
21		2 SAND	113.41	33.78	15900	471	VERY POROUS SPALLED ON EDGES OF FACES.
22		4 CINDERS	112.79	35.90	22750	620	SPALLED SLIGHTLY AT EDGES.
28			113.20	33.25	19000	571	EDBES AND FACES SLIGHTLY SPALLED
24			113.72	36.00	19500	542	SLIGHTLY SPALLED
AVØ			113.86	32.86	18458	565	
25	00.		140-18	36.00	59400	1650	
26			139.97	35.20	50950	1450	
27		CEMENT	14297	35.25	65650	1862	
28		2 SAND	141.80	35.25	74350	2052	
29		4 CHATTS	14229	35.25	65250	1851	
30			140.33	36.00	508	1618	
AVe	\Box		141.10	35.49	62810	1747	

TABLE II.—Results of Crushing of Cubes Made From Concrete Used in Constructing Reinforced Beams.

		SPECIFIC GRAVITY VOICE	FINE	NESS	IN PE	RCEN	T OF			N SIE	VE	PER CENT	REMARKS
NAME	200/11/0/		Nº 10		30	40	50	34.5		17.1	4.4	1.3	WHITE
BERKSHIRE	BERKSHIRE MASS	2.64 47.	2 0.0							1.3	1.0	5.8	BROWN
CLEVELAND *1	CLEVELAND OHIO	2.61 31.	41.3	21.4	13.6	4.5	6.2			1:1	1.3	2.6	LIGHT BROWN
CLEVELAND #2	44 (1	2.66 37	9 2.2	11.4	21.7	26.3	21.5	10.2	1.7				11 11
	NEW YORK	2.67 37	4 7.5	11.9	13.9	20.6	23.1	16.0	2.0	10.4			YELLOWISH
JERSEY GRAVEL	PHILADELPHIA	2.66 33	2 8.0	11.0	8.6	10.1	17.5	22.5		_		TRACE	LIGHT BROWN
KAW RIVER	IOLA KANSAS	2.62 31.	5 10.0	16.3	15.6	15.0	15.1	14.3	6.0				
	ST LOUIS MO.	2.67 35	B 6.6	28.8	14.0	8.5	6.7	6.4	3.7			21.4	
LIME STONE #2	9 2 2	2.67 44	0 34.7	24.4	10.6	6.6	5.0	4.3	1.8	1.5		26.3	
MERAMEC RIVER	(1)1 41	2.59 37.	9 0.9	9.2	11.8	22.6	30.1	20.8	3.9	0.6	0.1	48	LIGHT YELLOW
MISSISSIPPI RIVER		2.52 33	2 11.9	18.3	27.8	28.6	6.3	2.6	1.9	1.5	0.9		CHOCOLATE COLOR
	BOSTON MASS	7.66 37	5 4.5	5.6	10.8	20.2	30.7	20.B	3.8	3.0			AETTOMICH
PLUM ISLAND		2.62 34	9 11.6	18.3	15.6	18.3	18.8	13.1	2.5	1.3	0.5		YELLOWISH BROWN
TEXAS		2.67 29	c 19.5	16.8	9.5	10.6	14.6	15.8	6.4	5.6	1.2	3.5	15 11
BANK WASHED TORPED		2.66 34	2 9 9	10.2	9.6	31.4	20.3	29.7	6.2	2.3	0.3	1.8	YELLOWISH
LAKE TORPEDO	(1 1)	2.64 41	2 2 2	. 0	6	30.1	404	17.1	2.3	9.0	0.3	1.9	BROWN
BANK SAND	PHILADELPHIA	2.65 36	P 6.3	1.5	15.0	16.1	10.3	15.6	4.7	3.8	3.1	5.9	AVERAGE
	AVERAGE	2.65 36	-2111-3	13.0	14.0	110.3	10.0						

Table III.—Specific Gravity, Percentage of Voids and Granulometric Composition of Various Sands for Cement Mortar.

																						<u> </u>	21.10	<u> </u>	INCH	_									
								TEI	VSI	LE	S	TR	E١	1GT	٦.	IN	L	_BS	•	PER		3,	<u>AUA</u>				SAN			SAND	CREEN	EO TO 2	0-39	>	
					NEAT					$\neg \tau$				STAN		0 0	TTOV	VA S	AND		AVERA	+		UNSCR	EFFE	AYS AVE			AOS.	7 DAYS	WERAGE			2 MOB	AVERAGE
NAME			VERACI			AVERAL	5E .	Ze DAYS	S AVE	AGE .	2 MOS.	AVERAG		TDAYS	IND	GEN.	2 6 D	AYS 7			INO, C	EN.	7 DAYS	IND GEN							THE GEN		T		
			DI- EEN	_		IND 6	EN.		770	ORN.	55 914	205	2	28 28026	4 264	·	386 38	37 360	384 3	428 42	3 431	LIB	139 136 181 138 120 12	8 128 133	215 216	274 215	213	198 186 191 176 234 28	259						
		6 230 2	27 23	0 55	526 609 8 608 584	600	581 7	ה איר מופ 7 בפיל 190	86 782	776	54 863	865	167 2	51 243 25	2 735	137	360 3	365					136 120 12	4 288	340 34			3CH 38K 381	1 1						
	375 31		363	5.6	7 674 663	EER	l a	EO 847 P	GA 837	1 10	551 684	698 .	2	32 226 22	4 210	1454	54, 3	42 3-0	24	40	71222	366	296 201 24 271 228 22 229 229 22	2.55	300 30	340 310	انوفا	372 344 358	1 " "			767 260 310	392	3/9 23	7 324
	314 39		152 55	65	675 705	650	6	31 Bil 7	735 752	- 1	10 BA	901	2	NE 291 25	0 289		ALO 4	392	428	A72 48	5 479	446	220 225 22	7 223 205	320 370	0 320 737	337	101 362 361	375	108 PS 23	213 224	7.67 2A0 310 303 345 251	313 34	352 36	3 380 342
CLEVELAND 12	275 15 304 88		163 30	1 55	13 556 569 16 575 646	504	598 7	52 751 5	788	757	94 673	884	2	15 228 2	225	157	363 3	33 373	364	352 42	1 412		156 155 25	10 750	341 37	3 353 351	4	401 362 301 302 356 365 362 351 372	242	710 277 210	216 217	257 258 250 301 319 255 341 364 384 350 327 345	294 2	315 30	6 31Z 31A
	295 3C		97	62	# 651 E37	650	531 7	4) 752 G	45 716	736	45 823	834 6	46 2	45 240 25	257	250	710 3	7 355	347 30	393 37	2 378	398	244 280 23	5 243 251	334 311	9 329 324	6 341	330 836 337	3 253	195 212 22	2 250	301 319 295	300	B BB4 40	335
• *	305_2	70 2	268 25	° 63	S 620 578	612	7	62 745 7	753 753	1	345 872 328 834	841	. 2	65 251 2	5 264		396 3	67 410	407	02 444 45	8 451														3 9/3
KAW RIVER	257 25	10	153 24	1 2	5 640 EBI	160	627 7	23 771 7	775 750	757	13 624	819	30 2	55 254 2	31 74	6 236	385 4	9 402	402	447 44	2 468		255 257 30	6 250	372 37	0 365 36	9 200	396 391 393	420	257 233 24	0 243 ZAB	341 364 384 350 327 34 255 261 287 321 322 30	266 3	316 31 328 34	
LIMESTONE .	200 -		-	1		1				\Box		1	- 1		1			1																	
							-+					+	\rightarrow		+	1-	<u> </u>		_				260 273 25	6 236 2A	265 36	7 452 45	407	480 498 ABI	502	241 235 211	231 220	295 331 317 344 315 30	321 3	329 33	3 331 33.
LIMESTONE 42.		- 1	- 1	1			- 1								4	_				40% 41	2 408	\dashv	760 270 25	39 263	315 30	0 351 357	2 200	377 376 377	288	213 200 21	2 211 227	285 292 30	3 292 2	237 34	0 324 22
	252 28	55	207 30	6:	A 395 612	400	520 E	75 712 6	650 671	740	125 BAC	835	161 3	.73 242 2 IDS 208 2	20 210	240	A04 4	17 385	395 31	370 4	2 401	405	224 232 2	33 230 24	278 28	0 298 28	4 "13	360 322 34	1 220	225 235 24	2 243	285 292 30 302 283 28 290 301 30	7 302	336 37	B 332
	323 3																															292 263 25	790 2	323 3	29 327 32
	305 2	47	325 21	4 5	83 571 669	508	616	30 765	708 77	720	663 709	784	1001	92, 195 2	23 20	2 224	350 8	62 342	331	468 4	41 455	\neg	200 162 2	B 300	252 22	5 248 74	2	335 348 34	1 220	210 213 23	5 219 225	290 301 30 292 263 29 290 314 25	5 300 3	32.1 31	37 329 53
		546	262	3 67	72, 646 64	653																									7 221	322 309 31	1317	343 31	340
	241 2	45	243	5	570 P31	4 645	-	753 756	750 77		788 BQ6	BOI	- 1	250 277 2	40 25	9 250	449 3	73 372	355 3	78 AGG A	477 A77	451	360 303 3	27 528 284	449 42	3 403 40	416	481 407 ACI 446 461 48. 438 444 44	442		1 1				
TEXAS	205 2	06	193 206	9 6	16 675 57	421	633	783 730	732 75	764	778 793	78E	7000	18 246 2	53 24	9 250	398 2	63 400	340	401 4	17 425	-	350 340 B	OC 217	478 42	0 351 43	0 297	44 4A4 BEA	423	251 254 26	0 255 256	324 340 32	3 231 3	363 34	352 23
WASHED BANK	286 2	53	205 21	n 5	95 5AG 64	327																									7 720	324 840 32 274 290 29 302 312 31	7 310	223 3	B) 240 22
LAKE TORPED	261 2							34 68D	760 68	3	834 BIS	625	200 7	36 244 2	33 23	7 240	378 2	79 396	365 2	86 40 4	6 414	415	236 336 3	17 317 218	381 26	7 369 36	393	429 433 43 410 412 411 38	421	223 231 24	3 230 230	308 318 31	6 311 S	330 8	27 324 23
LAKE TOKPLUC	233 3		318 30	36 B	71 630 631 66 641 64	617	619	103 802	790 78	-	678 672	674		47 262 7	31 24	3	412. 2	75 372	386	~92 3	437		Tor Y/4 1	260		34	12	36	368		225 22		302 2	80	370 37
AVERAGE5			274 260 27				622		77	1 220	-		640		2.4	3 281			391 2 368	180	423			226	3	23	338	37			229	L	308		371

Table IV.—Comparative Tensile Strength of Mortars Made of Sands of the Composition Shown in Table II.

					0	10	VΡ	RESSI'	VE	ST	RE	NGI	1	_IN			35.	PER	<u> </u>	-1DC			- 5 1 5			5 - 3		
NAME	= = = = = = = = = = = = = = = = = = = =		-Τς		DAY		ΔV	DARD	TUS	<u> </u>	7 DA			SCR	DAY	. :		2 MO1	ZHTK	7	DAYS	RE	- 1015	280AY			2 MON	THE
DERKSHIRE	7 DAY	1540	375	2428 28 2350 23	25 2	877 .	9259	2275 2213	2244 2247	700	666 390	694 389		950	338	132		1500 1545 1490 1498	1523									
	1275 1280 1250 1260		267	2758 26 1725 17	53 2 75 17	706	2228	3440 2 955 2295 2775	3198 2535 2867	1458	1388	1467	1841	1885	350	386		2213 2478	2774 2396							L		
CLEVELAND #2	1275 1375	1325	1311	2208 27 2138 21	25 2 13 2	217		2463 2680 2275 2388	2331 2452	1200	1200	1200	1066	1400 1	200	350	1521	2650 2668 2453 2488	2757 2468	1185	1125	1155	172	2300 2250 2200 2413	2807	2291	2428 2450 2475 2565	2464 24 2520
14 41	2885 2703 1225 1343	12741	2039	3513 37 2658 28	38 3 00 2	526 744		4088 8975 3450 3563	3507	11014	130	3 11 61	1	2415 2	2025	236	2547	3578 3399 2890 2778	3484 3789	1473	1533	1203		2493 2488	2491	1	2380 2363 2828 2795	2812
	1300 1227 1698 1608			2:36 2:	25 2	13.1 17.5		2540 2463 2478 2450	2464	1000	1500	1594		2463 2 1900 1	863	1882			2498 2251		1200	1332		2363 2275 2675 2063	2369		2528 2488	2,508
IMESTONE *1	1380 1353	1367	1389	2188 21 2275 22	76 2 35 2	163 255	2219	2658 2589 2898 2793	2594 2844	12663	240	2532		33133	38.50	3544			3671 3735					2300 2038 2225 2/86	220/			217G
IMESTONE #2										975	1150	947			575	1475		1835 1670		[າາເສັ				2000 25 20	2015		2063 2075	2061
MERAMEC	1725 1625 1250 1275	1263	369	2975 28 2638 24				3665 3575 3800 3075				1325			703	738		2425 2288	2332 2357	1225	1218	1224		2158 2270	2214		2450 2478 2438 2432	24-80
	1155 1216 1358 1250				575 3	394		2938 3125 3625 3 250	3688	1 1-436	1-4-04	1568		3420	4123	6//3		46/44413	4544		1050	1000		2460 2748	2604		3863 3888	2657
	1368 1368 1500 1400	1450		2300 2	10 2	304			2755	Tio 13	968	991		1635	500	550		2533 2468	2501	11193	1295	1199	1211	2253 2203 2453 2054	2254	2241	2718 29 60 2600 2560	2580 2
	1205 1240 930 1095	1013		2188 25 2075 19	30 2	003	2176	3163 2820 2478 2690	2584 2584	1500	1748	1624	1446	3138 7	2308	2673	2250	3538 2475	3006 3006	1113	loco	1067		2260 2400	2330		2910 2870	Z 990 -
	1055 1780	1168		3380 2 2313 29	75 2	494		2675 2750	2713	1723	172	1384	1554	3150	3600	3475	2961	3150 2800	2975	1180	1125	1153	1105	2350 2522	2436	Z 3 8 3	2910 2870 2860 2840 2453 2488	2850
	1758 1695 1200 1070			3705 3· 2650 2					13262	1750	1101	511032	1052	1625	363	494	900	2208 223	2222 2215	700	1115 550	1130 625	577	1063 993	1028	1114	2453 2488 2315 2328 2038 2020 1990 1968	2322 4
ILA. BANK SAHD	1088 950	1019	1105	2308 2	328 2	318	2392	2750 2718 2540 2498	2519 296	450	45	453	1288		763	771	2045	1483 1543	1513 260	495	558	527	1161	1196 1203	1197	2171	1990 1968	1979

Table V — Comparative Compressive Strengths of Mortars Made of Sands of the Compositions Shown in Table II.

Fig. 5.—Diagrams Showing Granulometric Analysis of Various Sands for Cement Mortars.

of fine material passing the number 200 sieve and even of material designated as "silt" except in the case of the two limestones. This fine material in all cases being inorganic, and should not, therefore, be classed as "loam"—a term in common use. The term "loam" is a much abused one, is rarely ever used correctly, as "loam" properly so called is a vegetable mold and has a decided weakening effect on the strength of any material in which cement is used as a binder. Fine inorganic material, if not present in excessive proportion, enhances the strength of mortars or

Fig. 6.-Views of Reinforced Concrete Beams 1, 2, 3 and 4 After Failure.

concretes, as it tends to lessen the percentage of voids thereby reducing the quantity of cement required to fill the voids.

In addition to the above tests, four experimental beams were tested in the laboratory; three of these (two of rectangular and one of T-section) were made according to the Hennebique system; and the other, also rectangular in section, according to the Kahn system. The beams of rectangular section were made under identical conditions and were designed to carry the same load using the same percentage of steel reinforcement. These beams were made in the open air and were not wetted after being made

and the forms were removed just before the tests were made, at the end of 60 days. The beams remained in the open air during that time and were not moved until tested.

Test cubes were made of the concrete from which the beams were cast and the results of these tests may be found on page 16, Table II from 25 to 30 inclusive.

Fig. 6 shows the condition of the beams after testing; the photographs are not, however, sufficiently clear to show the location of the hair cracks. The poor quality of the concrete which will be alluded to later, caused the beams to fail without developing the full strength of the steel in tension, although in both the Hennebique and Kahn beams the compressive resistance of the top of the beam was materially increased by the steel reinforcement. In the latter beam the results would probably have been higher had the top reinforcing bar run the full length of the beam, as it will be observed that the concrete failed around the ends of this bar.

The following is the result of the tests of these beams in the order in which they were tested:

BEAM 1, KAHN SYSTEM.—Length over all, 11 ft. 11\(\frac{3}{4}\) ins.; clear span, 10 ft.; breadth, 6\(\frac{1}{8}\) ins.; depth over all, 8\(\frac{1}{4}\) ins.; depth to center of steel, 7\(\frac{1}{4}\) ins.; compressive strength concrete, 60 days, 1,747 lbs. per sq. in.; weight of beam, 593 lbs.; mixture, 1:2:4; reinforcement in top, one \(\frac{1}{2}\)-in, Kahn bar 9 ft. long; reinforcement in bottom, two \(\frac{1}{2}\)-in. Kahn bars 11 ft. 11\(\frac{3}{4}\) ins. long.

Steel in tension

	Steel in c	ompression80%
	Total st	zeel 2.39%
Loads. lbs.	Deflection.	Remarks.
1350	3-32	
2350	1-8	
3350	5-16	Crack appeared on right under end of top of reinforcing bar.
4350	3-8	
5350	15-32	Crack appeared on left under end of top of reinforcing bar.

Loads. lbs.	Deflection. in.	Remarks.
6350	17-32	
7350	5-8	•
7770	7-8	Failed by concrete crushing around ends of top rein-
		forcing bar. Concrete buckled at the ends of top bar.
7830		

Beam 2, Hennebique System.—Length over all, 12 ft. § in.; clear span, 10 ft.; breadth, 61 ins.; depth over all, 81 ins.; depth to center of steel, 7½ ins.; weight of beam, 620 lbs.; mixture, 1:2:4; compressive strength of beam, 60 days, 1,747 lbs. per sq. in. Steel in tension 1.60%

	Steel in o	compression
Loads lbs.	Total s Deflection in.	teel 2.40%
1850	3-32	a constitution
2350	1-8	
4350	5-16	
5350	7-16	
6350	9-16	Hair cracks appeared on either side of center, very faint.
7650	13-16	
8150	15-16	Cracks became more general.
8450	1-13-16	Failed by concrete buckling in center of beam.

BEAM 3, HENNEBIQUE SYSTEM.—Length over all, 11 ft. 112 ins.; clear span, 10 ft.; breadth, 12 ins.; depth over all, 9 ins.; depth to center of steel, 7½ ins.; weight of beam, 876 lbs.; mixture, 1:2:4; strength of beam, 60 days, 1,747 lbs. per sq. in.

Loads. lbs.	Deflection.	Remarks.
2350	1-8	
4350	5-32	
6350	3-8	
7950	15-32	First hair cracks appeared in center.
8350	9-16	
8750	7-8	Failed by concrete crushing at top in center of beam.

BEAM 4, HENNEBIQUE SYSTEM.—Length over all, 12 ft. ½ in.; clear span, 10 ft.; breadth, 6½ ins.; depth over all, 8½ ins.; depth to center steel, 7½ ins.; weight of beam, 614 lbs.; mixture, 1: 2: 4; compressive strength, 60 days, 1,747 lbs. per sq. in.

Steel in tension

	nsion	1.60% .80%	
Total		2.40%	
Deflection. in. 1-16	Remarks.		
r-8			

1350	1-16	
2350	1-8	
3350	3-16	
4350	7-32	
5350	3-8	
6350	1-2	Faint hair cracks on either side, center very faint
7350	19-32	
8350	13-16	
8650	I	Failure by concrete buckling at top in center.

Loads

An average of several tests of the $\frac{1}{2}$ inch round rods used in beams 2, 3 and 4 is as follows:

Elastic limit 41,500 lbs; modulus of elasticity 28,000,000; ultimate strengh 60,500 lbs.; elongation in 8 inches 25%: reduction of area 61%; fracture, angular, silky, blueish-grey color: surface pitted and rusty.

In the space adjacent to the Exhibit building there had been planned an elaborate series of test beams built according to the various systems in use in this country. Unfortunately, the exhibit was completed so late that it was impossible to stir up sufficient interest to carry out an elaborate program. Besides, there were no funds available for such experiments, and the expenses connected with the tests which were made were very generously borne by the Trussed Concrete Steel Co., of Detroit, Mich., and The Hennebique Construction Co., of New York, to whom the writer wishes to express his thorough appreciation and thanks for the interest taken and the assistance rendered by them in the experiments.

The tests in question consisted in reinforced concrete beams and floor slabs of 15 ft. span and a cantilever. Simultaneous with the making of the test beams 6-in cubes were made from the concrete which was used in making the beam and floor slabs. The results of these tests are found in Table II, page 16.

The chatts which were used were a calcareous chert, all of which passed a No. 10 screen. There are two varieties of chatts, a hard silicious chert which comes from Joplin, Mo., and the soft calcareous chert which comes from Bonne Terre, Mo. This material is the refuse from the lead mines and as it is relatively cheap it is extensively used in St. Louis and vicinity. The chatts used was of the calcareous variety and were quite soft and friable, having a low compressive strength and therefore making a concrete correspondingly poor.

It was for this reason that the beams tested failed in many cases under a small load before the strength of the steel was developed.

It will be noted that the cinder concrete gave correspondingly low results. The cinder was clean and of a better quality than is generally used—although it contained a large quantity of unburned coal. The strength of the concrete in which it was used was about one-half of that of a good stone concrete. The modulus of elasticity was about 1,500,000 in the concrete made with chatts and 500,000 for the cinder concrete—values materially lower than are usually quoted.

These tests show how important it is to have a hard aggregate in order to secure a strong concrete. An important feature generally overlooked in tests of concrete is the compressive strength of the aggregate itself. If a test of the aggregate was made it would serve as a basis for comparing the compressive resistance of concrete and would indicate whether the difference was due to differences in the strength of the aggregate or was due to the mixing or to character of the other aggregates.

The concrete for the beams and floor slabs was mixed by hand in the proportion of one part Portland cement, two parts Mississippi River sand and four parts chatts; wooden forms were used and were thoroughly wetted before the sloppy wet concrete was deposited in them. The concrete was not subsequently wetted and the forms were removed at the end of ten days. They remained in air, unprotected, and were not handled until tested at the end of about 60 days, when they were loaded to destruction with pig iron. This method is a slow, laborious process requiring the exercise of great care in loading so as to maintain the center of gravity of the load over the center of the beam, but there were no

other means available for testing these beams of such large size and span.

The overturning which occurred in the case of A and B was produced by the unequal compression of the earth under the bearings supporting the beams. Possibly, this will also account for the shearing of the overhanging un-reinforced slab in the T beam F. The ground on which the beams were built had been filled in with the refuse staff, scaffolding, etc., from the Exposition buildings and in proportioning the bearing area insufficient allowance was made for the compressibility of this filling.

In order to avoid arching of the pig iron, through the deflection of the beam under load, the pig iron was placed in piles and sufficient clearance was left between the piles so that the deflection would not bring them into contact. Where the load required to break the beam is large, these piles are quite high (for A and B they were 5 ft.), the piling of the pig becomes slower and the maintenance of the equilibrium much more difficult as the height increases. The rate of loading varied from 50 lbs. to 150 lbs. per minute. The deflections were measured at the center from a string stretched taut over two wire nails in the side of the beam immediately over the edge of the support and in the center line of the bottom reinforcing steel.

The following are the results of the tests of these beams:

BEAM F.—Built Sept. 13; tested Dec. 1, 1904. Length over all, 17 ft.; clear span, 15 ft.; breadth at base, 8 ins.; at top, 18 ins.; depth over all, 13½ ins.; depth to center of steel, 11½ ins.; reinforcement in bottom, two 1-in. round bars, with one 1-in. round bar just above; mixture, 1:2:4; weight of beam, 2,529 lbs., compressive strength of concrete, 1,740 lbs. per sq. in., per cent. of steel, 1.63, area of steel, 2.35 sq. ins.

Time.	Loads. 1bs.	Deflection. in.	Remarks.
10.50 A. M.	3656	3-16	
11.35 "	6877	3-16	
11.50 "	8997	1-4	
12.00 Noon.	10807		
1.05 P. M.	14105	7-16	
1.40 "	18898	9-16	Two hair cracks 1 ft. off center line either side
	20166		Failed.

Bars sliding as beam collapsed, Fig. 7. The slab sheared off on one side as will be seen, this was probably due to lack of uniformity of

Fig. 8.—Diagrams of Test Beams and Floor Slab Showing Dimensions and Reinforcement.

load. The bars did not slip until the beam collapsed. There was no reinforcing in the slab. The dimensions of beam and other information can be obtained from Fig 8, page 24.

BEAM E.—Built Sept. 13; tested, Dec. 1, 1904. Length over all, 17 ft.; clear span, 15 ft.; breadth, 12 ins.; depth over all, 13½ ins.; depth to center of steel, 12 ins.; weight of beam, 2,677 lbs.; mixture, 1:2:4;

Fig. 7.—View of End of Beam E Showing Shearing Off of Slab and Sliding of Reinforcing Rods.

compressive strength of concrete, 1,740 lbs. per sq. in.; reinforcement in bottom, three 1-in. round bars 17 ft. long; area of steel, 2.35 sq. ins.; per cent, 1.63.

l ime.	Loads. lbs. sq. in.	Deflection.	Remarks.
9.00 A. M.	16510	9-32	Deflection not noticed before 1,000 lbs.
12.00 Noon.	20166	11-32	
	24612	15-32	1
5.30 P. M.	26460	1-2	

Time.	Loads lbs. sq. in.	Deflection. in.	Remarks.
Dec. 2d. 8.30 A. M.	33198	21-32	
8.30 "	26460	11-16	Two hair cracks, one on either side of the center line.
	33108		Failed.

A series of vertical cracks appeared until the beam failed suddenly by horizontal shear at one end entirely. Bars again slipped as beam collapsed. Dimensions of beam given in Fig. 8, page 24. Fig. 9 shows beam after failure.

Dimensions, etc., see Fig. 8.

Fig. 9.-View of End of Beam E Showing Sliding of Reinforcement.

BEAM D.—Built Sept. 13; tested, Dec. 2, 3, 1904; Length over all, 17 ft.; clear span, 15 ft.; breadth, 12 ins.; depth over all, 13½ ins.; depth to center of steel, 12 ins.; weight of beam, 2,677 lbs.; mixture, 1:2:4; reinforcement in bottom, two ¾-in. Kahn bars 17 ft. long; reinforcement in bottom, one ¾-in. Kahn bar 9 ft. long, bent up slightly; area steel in tension, 2.34 sq. ins.; per cent. of steel, 1.63; compressive strength of concrete, 1,740 lbs. per sq. in.

Time.	Loads. lbs.	Deflection.	Remarks.
Dec. 2d.			
3.30 P. M.	6479	1-16	
3.50 "	8461	3-32	
5.00 "	11806	1-4	
5.30 "	15033	11-32	
Dec. 3d.			
8.30 A. M.	15033	11-16	
8.55 "	20732	3-8	
9.30 "	23476	1-2	
10.30 "	27800	11-16	
11.30 "	30719	r in.	
11.45 "	32663	r¾ in.	
11.50 "	32663		Failed slowly 4 ft. 6 ins. from each end
			of beam.

Dimensions, etc., see Fig. 8.

BEAM C.—Built Sept. 12; tested, Dec. 3, 4, 5, 1904. Length over all, 17 ft.; clear span, 15 ft.; breadth, 12 ins.; depth over all, 13½ ins.; depth to center of steel, 12 ins.; weight of beam, 2,677 lbs.; mixture, 1:2:4; reinforcement in bottom, two ¾-in. Kahn bars 17 ft. long; reinforcement in bottom, one ¾-in Kahn bar 9 ft. long, bent up slightly; reinforcement in top, two ½-in. Kahn bars 9 ft. inverted; area of steel in tension, 2.34 sq. ins.; area of steel in compression, 76 sq. in.; total area of steel, 3.10 sq. ins.; per cent. of steel, 2.15; compressive strength of concrete, 1,740 lbs. per sq. in.

	Load.	Deflection	
Time.	lbs.	ins.	Remarks.
Dec. 3.			
3.10 P. M.	5629	1-32	
3.50 "	11398	3-16	
4.20 "	15287	3-8	
Dec. 5.	Nothin	g done.	Sunday.
Dec. 6.			
8.00 A. M.	15287	3-8	
8.30 ''	18100	3-8	
9.00 ''	21688	15-32	Hair cracks appearing
9.30 "	24058	5-8	
9.55 "	29943	7-8	
10.05 "	28934	1	
10.10	29914	1 1/4	
10.15 "	30878	1-11-10	6
10.25 "			Failed.
Dimens	ions, etc., s	shown in	Fig. 8

BEAM B.—Built Sept. 12; tested, Dec. 5, 6, 1904. Length over all, 17 ft.; clear span, 15 ft.; breadth, 16 ins.; depth over all, 17½ ins.; depth to center of steel, 16 ins.; reinforcement in bottom, two 1-in. Kahn bars 17 ft. long; reinforcement in bottom, one ¾-in. Kahn bar 9 ft. long, bent slightly upwards; area of steel, 3.62 sq. ins. or 1.41%; weight of beam, 4,600 lbs.; mixture, 1:2:4; compressive strength of concrete, 1,740 lbs. per sq. in.

Time.	Load. lbs.	Deflection. ins.	Remarks.
Dec. 5.			
2.00 P. M.	10417	1-16	
2.30 "	15189	3-32	
3.20 "	22802	7-32	
4.10 "	27607	9-32	
4.45 "	31487	11-32	One hair crack on bottom of beam under each bent bar.
Dec. 6.			
8.30 A. M.	31487	11-32	
9.35 "	33403	11-32	Two more hair cracks appeared.
10.50 "	38190	11-32	
12.45 P. M.	45082	15-32	
1.30 "	47817	3-4	Two more hair cracks appeared nearer bearings.
2.10 "	50000	7-8	
3.10 "	54735	1-11-32	
	55727	1- 7-16	
	56712	1-19-32	
3.50 "	57696	1-11-16	
	58675	1-31-32	
4.15 "	59906	2	
5.00 "	60911	2-11-32	Beam overturned.

Dimensions, etc., see Fig. 8.

BEAM A.—Built Sept. 13, 1904; tested, Dec. 7-14, 1904. Length over all, 17 ft.; clear span, 15 ft.; breadth, 16 ins.; depth over all, 17½ ins.; depth to center of steel, 16 ins.; reinforcement in bottom, two 1-in. Kahn bars 17 ft. long; reinforcement in center, one ½-in. Kahn bar 9 ft. long, bent up slightly; reinforcement in top, two ½-in. Kahn bars 9 ft. long, inverted; weight of beam, 4,600 lbs.; mixture, 1:2:4; area steel in tension, 3.62 or 1.41%; area steel in compression, 1.56 or .60%; total steel, 5.18 or 2.10%; compressive strength of concrete, 1,740 lbs. per sq. in.

Time	Loads. lbs.	Deflection.		Remarks.
Dec. 7: 9.25 A.	м.		Started.	•
10.45 "	10168	1-16		
11.40 "	15937	3-32		

Time	Loads. 1bs.	Deflection. in.	Remarks.
2.25 P. M	. 20769	5-32	
3.10 "	25632	3-16	
3.25 "	27617	3-16	
3.55 "	31548	3-16	
4.30 "	33561	3-16	
4-45 ''	35477	7-32	
5.00 "	37458	7-32	I'wo faint hair cracks, one at each end of bent bar in center; beam started to overturn, bearings sinking unequally.

Dec. 8: Unloaded and straightened.

No deflection observable, then began loading.

Dec. 9:			
8.30 A. M.	37458	7-32	
9.45 "	40839	7-32	
10.35 "	44723	1-4	Four hair cracks (2 more) on each side of center.
E1.25 "	50000	5-16	Rain stopped, loading beam over- turned, due to unequal settling of foundations.
	52693		
Dec. 11:			
	52962	3-32	Set in beam.
	54945	13-32	
	60856	5-8	Beam overturned.

Foundations again settling unequally, beam straightened, one hair crack in center, 2, 3 ft. 6 ins. on either side of center of beam; \(\frac{3}{4}\)-in deflection set in beam. Foundations releveled bearing area increased and beam reloaded.

Dec. 12: Sunday-Nothing done.

Dec. 13:

11.15 A. M. 60856 3-8 Set in beam.

Several hair cracks from top $\frac{1}{2}$ -in. opening traveling off in both directions horizontally, middle each $8\frac{1}{2}$ ins. from top.

63811 Two more hair cracks appeared on either side of center line.

Loads. Deflection.

Time.	Loads. 1bs.	Deflection, in.	Remarks
3.45 P. M.	66021 74941	3-4 1-1-8	
3.43 - 1 - 21	75000		One crack 18 ins. from center line, 9 ins. from top.
· ·			One crack 36 ins. from center line, 11 inches from top.
			One crack 56 ins. from center line, 7 inches from top.
5.00 P. M.	80000	1-3-8	

Time. Dec. 14:	Loads. lbs.	Deflection. in.		Remarks.
8.00 A. M.	80000	1-3-4		
	81010	1-13-16		
	82005	1-13-16		
	83005	1- 7-8		
	83977	1- 7-8		
11.30 A. M.	85400	r- 7-8		
12.00 Noon.	87385	2- 1-32		
1.25 P. M.	90362	2- 5-8		
2.15 "	93269	3- 1-8		
2.30 "	94074	3- 5-16		
2.40 "	94512		Failed	
Weight beam	4600			
Total load	00114			

Fig. 10.-View of Kahn Beam A Under Load

Kahn System Hollow Tile Floor Construction.—Built Sept. 21, tested Nov. 30, Dec. 1, 2, 1904. Length over all, 18 ft. Clear span 16 ft. 6 ins. Width, 5 ft. 8 ins. Depth, 10 ins. Tile, 10 x 12 ins. Beam joists, five, 4 x 10 ins., 18 ft. long, 1' 4" centers.

Reinforcement, each joist, one $\frac{3}{4}$ -in. Kahn bar, 18 ft. long. Mixture, 1:3:5. Area steel, each joist, 0.78 in. or 2.30 per cent. Weight of slab, 5,800-lbs.

Fig. 11.-View of Kahn Hollow Tile Floor After Failure.

Time. Nov. 30:	Loads. 1bs.	Deflection ins.	ı .	Remarks.
4.10 P. M.	12457	n. 3-32 s		
4.43	18300	1-8	3-32	
5.10 "	22200	I-2	3-8	Hair cracks across center exactly.
5.30 " Dec. 1:	25132	5-8	3-8	•
8.30 A. M.	25132	3-4	9-16	
5.30 " Dec. 2:	25132	3-4	21-32	
8.30 A. M.	25132	3-4	23-32	
11.25 "	25132	25-32	3-4	
11.50 "	34634	2-1-2		Two vertical cracks appeared 3 ins off center line on either side.

on top over last cracks loading stopped, beam kept cracking and slowly deflected until it failed at 12.15 (20 minutes) with center cracks opening up and another 7 ft. off centre line concrete at center crushing out and a crack running along line of steel from center to right three feet. Breaking load 500 lbs. per sq. foot. The dimensions of slab are shown in Fig. 8, page 24, Fig. 11 shows floor after failure.

Siegwart Floor.—Length over all 14 ft. $3\frac{1}{2}$ ins., clear span 13 ft. $5\frac{1}{2}$ ins., depth 6 ins., width of slab 33 ins.

This floor slab was composed of beams made according to Siegwart System; in above sketch the slab is seen to be composed of three slabs 11 x 6 ins. in section, and reinforced with rods according to Hennebique System without shear straps. The beams are cast around cores (core openings shown in sketch), the steel being placed in position and the concrete cast around it; the cores are withdrawn and the beams feathered apart at the points indicated. These beams were made in New York, and were shipped by express when 60 days old to the exhibit, where they were placed in position and the joints grouted. A load of bags of sand was placed on the floor (100 lbs. per sq. ft.) and remained there until the close of the Exposition, when it was loaded with pig iron to destruction, the beams being about 6 months old. The idea of this system is to make the beams for certain loads and spans and carry them in stock as steel I-beams are carried, shipping on order.

Cantilever.—This is shown in Fig. 12 and was built to illustrate the flexibility of reinforced concrete, the dimensions and reinforcement are shown in Figs. 13, 14 and 15. The stairway hung free and led to the top which was a walk; this was in service during the Exposition.

Fig. 12.—View of Reinforced Concrete Cantilever Tested to Destruction.

The cantilever was built, as was discovered afterwards, over a wooden box drain and the settlement of the foundation caused the cantilever to tilt towards the outer end.

F1G 13

The forms, instead of being removed gradually, were quickly removed, and the sudden application of the load caused a strain

which cracked the cantilever at the shank on the left-hand side. The props were restored and the cantilever washed with neat

cement. The props were then gradually removed and the cantilever remained unchanged until tested with pig iron. The application of this load caused the cracks to open at left side of shank and the cantilever collapsed. As bars of the requisite size were not available a bundle of smaller rods was substituted; the shear members were insufficient to hold the cantilever and it pulled

Fig. 16.—View Showing Failure of Reinforced Concrete Cantilever

apart at the left shank and failed as shown in Fig. 16 before the compressive resistance of the concrete in the right center section of the shank had been reached. The loading was as follows:

Loads. lbs.	Deflection in.	Remarks
3060	1-16	
9845	1-4	
13735	11-32	
14760		Hair crack appeared.
17680	1-8	Opening at center 11-16 in. at outer end.
2 2607		Failed 4-11-16 in. extension at the center.

Besides these, tests were made of cement shingles, concrete sewer pipes, cement bricks and hollow blocks.

The Collective Portland Cement Exhibit and Model Testing Laboratory was assembled with a view of exploiting the American Portland Cement Industry and not with a view of advertising any particular process, plant or product. It was highly beneficial in disseminating a better knowledge of the proper methods of testing and of the nature, uses and properties of Portland cement; and in recognition of this fact it received two grand prizes, the highest awards of the Exposition.*

It is to be regretted that the time available for the experimental work was not longer, so that much more data could have been obtained.

It is, however, a matter of gratification to all those connected with this exhibit that the work thus started will be continued under the direction of the United States Government, the Joint Committee on Concrete and Reinforced Concrete, and other interested persons, and it is to be hoped that the exhaustive series of investigations of structural materials which have been planned under the direction of the National Advisory Board on Fuels and Structural Materials may be successfully carried out thereby supplying information of inestimable value to the engineering profession.

^{*}The Collective Portland Cement Exhibit was awarded a Grand Prize (see page 2 The Model Testing Laboratory received a second Grand Prize.

