2024年度 数学AI 定期試験

(実施日:2024年7月25日)

得			
点			

2年	組	整理番号:	氏名:

注意: 試験時間は100分です. 最終的な答えがどこか分かるように解答してください. またそれに至る過程も採点対象です. 採点者に伝わるように書いてください.

- **問1**. 次の空欄に当てはまる語句・数式を答えよ. ただし (2), (3) は, { } 内から適切なものを選び○で囲むこと. [3 点 × 4]
 - (1) 関数 f(x) が微分可能であるとき、f(x) の導関数 f'(x) は

$$f'(x) = \lim_{h \to 0}$$

と定義される. さらに f'(x) も微分可能であるとき, f'(x) の導関数を f(x) の第 2 次導関数といい, f''(x) などと表す.

- (2) 関数 f(x) が区間 I=(a,b) で 2 回微分可能であるとき,
 - I で f'(x) > 0 ならば、 f(x) は I で単調に $\boxed{ (a) { 増加・減少} }$ する;
 - I で f''(x)>0 ならば, 曲線 y=f(x) は I で $\fbox{(b) \{上・下\}}$ に凸である.
- (3) 関数 f(x) が x=a で微分可能なとき, f'(a)=0 であることは, f(x) が x=a で極値をとるための (c) {必要・十分・必要十分} 条件である.
- **問 2**. 次の関数の高次導関数を求めよ. [3 点 × 5]
 - (1) $y = 6x^4 + 7x^2 + 2x + 5$ の第 3 次導関数
 - (2) $y = \log x$ の第 2 次導関数
 - (3) $y = \cos 2x + \sin 2x$ の第 2 次導関数
 - (4) $y = x^2 \sin x$ の第 4 次導関数

(5) $y = e^{-x}$ の第 n 次導関数(ただし、n は正の整数)

- **問 3**. 次の極限値を求めよ. [3 点 × 2]
 - $(1) \lim_{x \to 0} \frac{1 \cos x}{x^2}$
 - (2) $\lim_{x \to 1} \frac{2x+1}{2x^2}$
- **問 4**. 関数 $y=x^3-6x^2+9x$ $(0 \le x \le 4)$ について、次の各問に答えよ. $[(1)\ 3\ 点,\ (2)\ 7\ 点]$ $(1)\ y',y''$ をそれぞれ計算せよ.
 - (2) 増減表をかき、極値と変曲点を求めよ.

極		極		変	
大	(x =)	小	(x =)	曲	
値	,	値	,	点	

問5. $0 \le x \le \pi$ において, $\cos x \ge 1 - \frac{x^2}{2}$ を示せ.ただし, $0 < x < \pi$ で $x > \sin x$ であることは,証明せずに用いて良い. [10 点]

問名	関数 $u = xe^{-\frac{x^2}{2}}$	(x > 0)	しについて	次の各問に答えよ.
IPJ O.) 対 $y = xe^{-2}$	$(x \leq 0)$) () ()	久の谷囘に合んよ.

[(1) 3 点, (2) 7 点, (3) 5 点]

- (1) y', y'' をそれぞれ計算せよ.
- (2) 増減表をかき、極大値と変曲点を求めよ。

極大値	(x =)	変曲点	
-----	--------	-----	--

(3) $\lim_{x\to\infty} xe^{-\frac{x^2}{2}}$ を求めよ (答えのみでよい). また, グラフの概形をかけ.

問7. 媒介変数 (パラメータ) t によって表される関数:

$$x = t^3 - 2t^2 + 1$$
, $y = t^2 - t$,

について, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ をそれぞれ求めよ. ただし, $\frac{d^2y}{dx^2}=\frac{d}{dx}\left(\frac{dy}{dx}\right)$ に 注意せよ. [10 点]

問8. 円 $x^2 + y^2 = r^2$ 上の点 (x_0, y_0) における接線の傾きを求めよ.

- **問9**. 関数 $y = x^2$ のグラフについて、次の各問に答えよ. [(1), (2) 3 点, (3) 6 点, (4) 5 点]
 - (1) 曲線 $y = x^2$ 上の点 (a, a^2) における接線の方程式を書け.
 - (2) 曲線 $y = x^2$ 上の点 (a, a^2) における法線の方程式を書け.
- (1) の直線は,
- イ. 曲線 $y = x^2$ 上の点 (a, a^2) を通り,
- ロ. 傾きが関数 $y = x^2$ の x = a における微分係数 2a に等しい

直線であるといえる. ここでは, 次のような円を考えよう:

- ハ. 点 (a, a^2) を通り、この点における接線が (1) であり、
- ニ. さらにこの点での $\frac{d^2y}{dx^2}$ の値が関数 $y=x^2$ の x=a における第 2 次導

この円は、曲線 $y = x^2$ の点 (a, a^2) における接触円と呼ばれる.

(3) この円の方程式を $(x-p)^2 + (y-q)^2 = r^2$ とおくと、条件ハ、ニは

$$(a-p)^2 + (a^2-a)^2 = r^2$$
 (1)

$$2(a-p) + 4a(a^2 - q) = 0 \qquad \cdots \qquad 2$$

$$2 + 8a^2 + 4(a^2 - q) = 0 \qquad \dots$$
 3

と書ける. p, q, r を a を用いて表せ. ただし, r > 0 とする.

(4) (2) の直線と曲線 $y = x^2$ 上の点 (b, b^2) における法線(ただし $b \neq a$, $b \neq 0$ とする) との交点の座標は

$$\left(-2ab(a+b), a^2 + ab + b^2 + \frac{1}{2}\right)$$

である. $b \rightarrow a$ の極限でこれが (p,q) となることを示せ. ただし, p,qは, (3) で求めたものである.

さらに、交点 (p,q) と点 (a,a^2) との距離はr に等しいことが示される。この距離 のことを曲率半径という. (4) のようにして求めた点 (p,q) を中心とする半径 r の 円は、曲率円と呼ばれ、接触円と一致することが知られている.

なお、曲率 (curvature) は曲率半径の逆数で計算され、

曲率半径 小 ← "急カーブ" 曲率因 \iff

曲率半径 (大) ←⇒ "緩やかなカーブ" 曲率①

である.

問題は以上です.