D. Tree

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Little X has a tree consisting of n nodes (they are numbered from 1 to n). Each edge of the tree has a positive length. Let's define the distance between two nodes v and u (we'll denote it d(v, u)) as the sum of the lengths of edges in the shortest path between v and u.

A permutation p is a sequence of n distinct integers $p_1, p_2, ..., p_n$ $(1 \le p_i \le n)$. Little X wants to find a permutation p such that sum is maximal possible. If there are multiple optimal permutations, he wants to find the lexicographically smallest one. Help him with the task!

Input

The first line contains an integer n ($1 \le n \le 10^5$).

Each of the next n - 1 lines contains three space separated integers u_i , v_i , w_i ($1 \le u_i$, $v_i \le n$; $1 \le w_i \le 10^5$), denoting an edge between nodes u_i and v_i with length equal to w_i .

It is guaranteed that these edges form a tree.

Output

In the first line print the maximum possible value of the described sum. In the second line print n integers, representing the lexicographically smallest permutation.

Examples

```
input
2
1 2 3

output
6
2 1
```

```
input

5
1 2 2
1 3 3
2 4 4
2 5 5

output

32
2 1 4 5 3
```