

Fundamentos de Bacos de Dados

Restrições de Integridade

Descrição

- As restrições básicas de integridade podem ser definidas no comando SQL como parte da criação de uma tabela.
- Elas podem ser usadas para impor regras no nível da tabela, sempre que uma operação de incluir uma nova linha, remover ou modificar uma linha existente for executada.
- Possibilitam, ainda, impedir que uma tabela seja removida se houver dependências de outras tabelas.

Restrições básicas de integridade

- As restrições básicas de integridade de dados são:
 - NOT NULL;
 - PRIMARY KEY;
 - UNIQUE;
 - FOREIGN KEY.

- Como a SQL permite NULLs como valores de atributo, uma restrição NOT NULL pode ser especificada se o valor NULL não for permitido para determinado atributo.
- Isso sempre é especificado de maneira implícita para os atributos que fazem parte da chave primária de cada relação.

Esta coluna permite valores nulos

	matricula	nome_aluno	cod_curso	endereco
1	111	Joaquim	MAT	
2	123	Fulano	cc	
3	234	Beltrano	MAT	
4	456	Ciclano	FIS	
5	789	Maria	HIS	

NOT NULL - Declaração

- É possível definir o NOT NULL na definição de atributo durante a criação da tabela ou após a criação da tabela.
- Declaração do NOT NULL na definição do atributo durante a criação da tabela.
 - Sintaxe:

<nome coluna> <tipo coluna> NOT NULL;

• Por exemplo:

Endereço e matrícula não podem conter o valores NULL.

```
matricula decimal(4) NOT NULL
endereco varchar(40) NOT NULL
```

 Declaração do NOT NULL após a criação da tabela.

• Sintaxe:

```
ALTER TABLE <nome_da_tabela> MODIFY <nome_da_coluna> <tipo_da_coluna> NOT NULL;
```

• Exemplo:

alter table aluno modify endereco varchar(40) not null;

 Se tentássemos inserir um novo aluno sem o campo endereço obteríamos a seguinte mensagem de erro:

• É possível definir um valor padrão para um atributo, para isto basta adicionar à cláusula **DEFAULT** <valor> a uma definição de atributo.

• Se nenhuma cláusula default for especificada, o valor padrão será NULL para atributos que não possuem a restrição NOT NULL.

• Sintaxe:

<nome coluna> <tipo coluna>[restrições de atributo] **DEFAULT** <valor>;

Por exemplo:

```
nome varchar(30),
tipo_aluno integer(1) default 1,
curso varchar(3));
```

• Se nenhum valor for especificado durante a inserção de um aluno a coluna tipo_aluno receberá o valor 1.

```
tipo_aluno integer(1) default 1
```

 Ao inserirmos um novo aluno sem especificar o valor do campo tipo_aluno ele automaticamente receberá o valor default que é 1.

 Declaração do DEFAULT após a criação da tabela.

• Sintaxe:

```
ALTER TABLE <nome_da_tabela> MODIFY <nome_da_coluna> <tipo_da_coluna> DEFAULT <valor> ;
```

• Exemplo:

```
alter table aluno modify endereco varchar(40) default '?';
```

Esta coluna possui o valor default '?'

	matricula	nome_aluno	cod_curso	endereco
1	111	Joaquim	MAT	?
2	123	Fulano	CC	?
3	234	Beltrano	MAT	?
4	456	Ciclano	FIS	?
5	789	Maria	HIS	?

Restrições de chave

- Como chaves e restrições de integridade referencial são muito importantes, existem cláusulas especiais dentro da instrução CREATE TABLE para especificá-las.
- A cláusula PRIMARY KEY especifica um ou mais atributos que compõem a chave primária de uma relação.

PRIMARY KEY (chave primária)

• Chave primária: é uma chave escolhida dentre as chaves candidatas.

• A coluna que contém a chave primária não pode conter valores nulos e nem valores repetidos. Os valores contidos nesta coluna devem ser capazes de representar univocamente as tuplas contidas na tabela.

PRIMARY KEY (chave primária)

• Exemplos:

Chave candidata

Chave primária

	matricula	nome	endereco	cidade	cpf
1	200001	Marcos Alfredo	Rua Margarida, 32	Juiz de Fora	11122233344
2	200002	Periceles de Abreu	Rua Leopoldo, 12	Juiz de Fora	22233344455
3	200003	Antônia de Souza	Rua Itamar, 563	Juiz de Fora	33344455566
4	200004	Raimundo Silva	Rua Pereira, 456	Juiz de Fora	44455566677
5	200005	Escobar Peres	Rua Moraes, 451	Juiz de Fora	55566677788
6	200006	Daniela Araújo	Rua Catarina, 14	Juiz de Fora	66677788899
7	200007	Daniel Duarte	Rua Pedro Aquino,	Juiz de Fora	77788899900
8	200008	Gabriela Caldas	Rua Jose, 23	Juiz de Fora	88899900011
9	200009	Fernando Henrique	Rua Tadeu, 458	Juiz de Fora	99900011122

PRIMARY KEY

• Exemplos:

	num_peca	pnome	cor	peso	cidade	preco	
1	1	Porca	Vermelho	12	Londres	2.2	
2	2	Pino	Verde	17	Paris	1.3	
3	3	Parafuso	Azul	17	Oslo	1.2	
4	4	Parafuso	Vermelho	14	Londres	1.21	
5	5	Came	Azul	12	Paris	1.32	
6	6	Tubo	Vermelho	19	Londres	3.85	
7	7	Prego	Preto	12	Paris	3	

PRIMARY KEY- Declaração

- É possível definir a PRIMARY KEY durante a criação da tabela ou após a criação da tabela.
- Declaração de PRIMARY KEY durante a criação da tabela.
 - Sintaxe:

CONSTRAINT<nome constraint>**PRIMARY KEY** (<nome coluna>);

PRIMARY KEY

• Se uma chave primária tiver um único atributo, a cláusula pode acompanhar o atributo diretamente.

• Por exemplo:

 Ou pode ser colocada ao final da declaração da tabela.

PRIMARY KEY

 Se a tabela já tiver sido criada a inserção da chave primária é feita da seguinte forma:

• Sintaxe:

ALTER TABLE <nome tabela> **ADD CONSTRAINT**<nome constraint> **PRIMARY KEY** (<nome coluna>);

Por exemplo:

```
alter table aluno add constraint pk_aluno
primary key(matricula);
```

Nomeando as restrições

- Os nomes de todas as restrições dentro de um esquema em particular precisam ser exclusivos.
- Um nome de restrição é usado para identificar a restrição em particular caso ela deva ser removida mais tarde e substituída por outra.

constraint pk_aluno primary key(matricula)

• Usada para especificar as chaves candidatas.

Chave candidata

Chave primária

	matricula	nome	endereco	cidade	cpf
1	200001	Marcos Alfredo	Rua Margarida, 32	Juiz de Fora	11122233344
2	200002	Periceles de Abreu	Rua Leopoldo, 12	Juiz de Fora	22233344455
3	200003	Antônia de Souza	Rua Itamar, 563	Juiz de Fora	33344455566
4	200004	Raimundo Silva	Rua Pereira, 456	Juiz de Fora	44455566677
5	200005	Escobar Peres	Rua Moraes, 451	Juiz de Fora	55566677788
6	200006	Daniela Araújo	Rua Catarina, 14	Juiz de Fora	66677788899
7	200007	Daniel Duarte	Rua Pedro Aquino,	Juiz de Fora	77788899900
8	200008	Gabriela Caldas	Rua Jose, 23	Juiz de Fora	88899900011
9	200009	Fernando Henrique	Rua Tadeu, 458	Juiz de Fora	99900011122

UNIQUE - Declaração

- É possível definir UNIQUE durante a criação da tabela ou após a criação da tabela.
- Declaração de UNIQUE durante a criação da tabela.
 - Sintaxe:

CONSTRAINT <nome constraint> **UNIQUE** <nome coluna>;

• A cláusula **UNIQUE** especifica chaves alternativas (candidatas), como:

constraint ck unique(cpf)

 Esta cláusula também pode ser especificada diretamente para uma chave candidata se esta for um único atributo, como no exemplo a seguir:

cpf decimal(11) NOT NULL UNIQUE

• Se a tabela já tiver sido criada a inserção da chave candidata é feita da seguinte forma:

Sintaxe:

ALTER TABLE <nome tabela> ADD CONSTRAINT<nome constraint> UNIQUE (<nome coluna>);

Por exemplo:

alter table aluno add constraint ck unique(cpf);

• Exemplo:

Aluno

Chave estrangeira

	matricula	nome_aluno	curso
1	111	Joaquim	MAT
2	123	Fulano	cc
3	234	Beltrano	MAT
4	456	Ciclano	FIS
5	789	Maria	MED

Curso

	codigo	nome
1	cc	Ciência da Computação
2	FIS	Física
3	GEO	Geografia
4	HIS	História
5	MAT	Matemática Aplicada
6	MED	Medicina

FOREIGN KEY

- É possível definir a FOREIGN KEY durante a criação da tabela ou após a criação da tabela.
- Declaração de FOREIGN KEY durante a criação da tabela.
 - Sintaxe:

CONSTRAINT<nome constraint>**FOREIGN KEY**(<nome coluna>) **REFERENCES** <nome tabela>(<nome coluna>);

Integridade referencial

• A integridade referencial é especificada por meio da cláusula **FOREIGN KEY**.

```
create table aluno(matricula decimal(4) NOT NULL,
                  nome varchar(30),
                  cpf decimal(11) NOT NULL UNIQUE,
                  tipo_aluno integer,
                  curso varchar(3),
                  primary key (matricula),
                  CONSTRAINT fk_curso foreign key(curso)
                  references curso(codigo));
CONSTRAINT fk curso foreign key(curso)
references curso(codigo));
```

Integridade referencial

• Se a tabela já tiver sido criada a inserção da chave estrangeira é feita da seguinte forma:

• Sintaxe:

```
ALTER TABLE <nome tabela > ADD CONSTRAINT < nome constraint > FOREIGN KEY (<nome coluna > ) REFERENCES < nome tabela > (<nome coluna > )
```

Por exemplo:

```
alter table aluno add constraint fk_curso
foreign key (curso) references curso(codigo);
```

• Exemplo:

 Caso tentássemos inserir um aluno que com o valor de curso que não está cadastrado na tabela curso, obteríamos a seguinte mensagem de erro:

Integridade referencial

 Uma restrição de integridade pode ser violada quando tuplas são inseridas, atualizadas ou excluídas.

 A ação default que a SQL toma para uma violação de integridade é rejeitar a operação de atualização que causará uma violação, o que é conhecido como opção RESTRICT.

Integridade referencial

- Porém o projetista de BD pode especificar uma ação alternativa para ser tomada conectando uma cláusula de ação de disparo referencial a qualquer restrição de chave estrangeira.
- As opções incluem SET NULL, CASCADE e RESTRICT.

 Uma opção deve ser qualificada com ON DELETE ou ON UPDATE.

RESTRICT

- O commando RESTRICT rejeita a operação de exclusão ou atualização para tabela que é referenciada por outras tabelas.
- Por exemplo: A tabela curso é referenciada na tabela aluno, logo se declararmos a chave estrangeira na tabela aluno com a opção restrict e tentarmos eliminar uma linha da tabela curso a operação não será efetuada.

RESTRICT

• Exemplo:

Aluno

Chave estrangeira

	matricula	nome_aluno	curso
1	111	Joaquim	MAT
2	123	Fulano	cc
3	234	Beltrano	MAT
4	456	Ciclano	FIS
5	789	Maria	MED

Chave primária

Curso

codigo	nome
cc	Ciência da Computação
FIS	Física
GEO	Geografia
HIS	História
MAT	Matemática Aplicada
MED	Medicina
	CC FIS GEO HIS

RESTRICT

• Exemplo:

alter table aluno add constraint fk_curso
foreign key(curso) references curso(codigo)
on delete restrict;

CASCADE

- Elimina ou atualiza a linha da tabela que é referenciada por outras tabelas e apaga automaticamente ou atualiza as linhas correspondentes na tabela que a referenciou.
- Por exemplo: A tabela curso é referenciada na tabela aluno, logo se declararmos a chave estrangeira na tabela aluno com a opção cascade e tentarmos eliminar uma linha da tabela curso a operação será efetuada e a linha que continha o código na tabela aluno será apagada.

CASCADE

• Exemplo:

alter table aluno add constraint fk_curso foreign key (curso)
references curso(codigo) on delete cascade

matricula	nome	tipo_aluno	curso	endereco
456	Ciclano	1	FIS	?

Integridade referencial

• Exemplo:

```
create table aluno(matricula decimal(4) NOT NULL primary key,
                   nome varchar(30),
                   cpf decimal(11),
                   tipo_aluno integer,
                   curso varchar(3),
                   constraint fk_curso foreign key(curso)
                   references curso(codigo) on delete cascade
                   on update cascade);
alter table aluno add constraint fk_curso foreign key(curso)
                   references curso(codigo) on delete cascade
                   on update restrict;
alter table aluno add constraint fk_curso foreign key(curso)
                   references curso(codigo) on delete cascade
                   on update set null;
```