Análise Matemática III (Semestral)

LICENCIATURA EM ENGENHARIA INFORMÁTICA

Tabela 1

${f Transformada}-z$

$x_k \ (k \ge 0)$	$\mathcal{Z}\{x_k\} = X(z) := \sum_{k=0}^{\infty} \frac{x_k}{z^k}$	Região de convergência
$a^k (a \in \mathbb{C}^*)$	$\frac{z}{z-a}$	z > a
$k(k-1)\cdots(k-m+1)a^{k-m} (m\in\mathbb{N}, a\in\mathbb{C}^*)$	$\frac{m!z}{(z-a)^{m+1}}$	z > a
$k^m a^k (m \in \mathbb{N}_0 , a \in \mathbb{C}^*)$	$(-1)^m \left(z\frac{\mathrm{d}}{\mathrm{d}z}\right)^m \left(\frac{z}{z-a}\right)$	z > a
$\delta_k(m) := \begin{cases} 1 & , & k = m \\ 0 & , & k \neq m \end{cases} (m \in \mathbb{N}_0)$	$\frac{1}{z^m}$	z > 0
$a^k \sin(k\omega) (a \in \mathbb{C}^*, \omega \in \mathbb{R})$	$\frac{az\sin\omega}{z^2 - 2az\cos\omega + a^2}$	z > a
$a^k \cos(k\omega) (a \in \mathbb{C}^*, \omega \in \mathbb{R})$	$\frac{z(z - a\cos\omega)}{z^2 - 2az\cos\omega + a^2}$	z > a

Nota: $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$

• Propriedades:

$$\mathcal{Z}\{x_k\} = X(z), |z| > R_1; \quad \mathcal{Z}\{y_k\} = Y(z), |z| > R_2; \quad \alpha, \beta \in \mathbb{C}; \quad a \in \mathbb{C}^*; \quad m \in \mathbb{N}$$

- 1. Linearidade: $\mathcal{Z}\{\alpha x_k + \beta y_k\} = \alpha X(z) + \beta Y(z), \quad |z| > \max\{R_1, R_2\}$
- 2. Deslocamento à direita: $\mathcal{Z}\{x_{k-m}\} = \frac{1}{z^m} X(z)$, $|z| > R_1$ [supondo $x_n = 0$ para n < 0]
- 3. Deslocamento à esquerda: $\mathcal{Z}\{x_{k+m}\}=z^m\,X(z)-\sum_{n=0}^{m-1}x_nz^{m-n}\,,\quad |z|>R_1$
- $4. \ \ \mathsf{Multiplica}\\ \mathsf{g\~{a}} \ \ \mathsf{por} \ \ a^k \colon \quad \mathcal{Z}\left\{a^k x_k\right\} = X(z/a)\,, \quad |z| > |a| R_1$
- $5. \ \, \text{Multiplicação por } k^m \colon \quad \mathcal{Z}\left\{k^m x_k\right\} = \left(-z\,\frac{\mathrm{d}}{\mathrm{d}z}\right)^m X(z)\,, \quad |z| > R_1$
- 6. Teorema do valor inicial: $x_0 = \lim_{|z| \to +\infty} X(z)$
- 7. Teorema do valor final: $\lim_{k \to +\infty} x_k = \lim_{z \to 1} (1-z^{-1}) X(z)$
- 8. Teorema da convolução: $\mathcal{Z}\left\{x_{k}*y_{k}\right\}=X(z)\,Y(z)\,,\quad |z|>\max\{R_{1},R_{2}\}\quad \left[x_{k}*y_{k}:=\sum_{n=0}^{k}x_{k-n}y_{n}\right]$
- 9. Fórmula de inversão: $x_k = \frac{1}{2\pi i} \oint_{C(0,r)} X(z) \, z^{k-1} \, \mathrm{d}z \quad (k=0,1,2,\cdots) \, , \, r > R_1$

[onde C(0,r) contém todas as singularidades de X(z) no seu interior]

Análise Matemática III (Semestral)

LICENCIATURA EM ENGENHARIA INFORMÁTICA

Tabela 2

Transformada de Laplace

f(t) (função causal)	$\mathcal{L}{f(t)} \equiv F(s) := \int_0^{+\infty} f(t)e^{-st}dt$	Região de convergência
$t^n H(t) (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$	$\Re s > 0$
$e^{at}H(t) (a \in \mathbb{C})$	$\frac{1}{s-a}$	$\Re s > \Re a$
$e^{kt} \sin(at)H(t) (a, k \in \mathbb{R})$	$\frac{a}{(s-k)^2 + a^2}$	$\Re s > k$
$e^{kt}\cos(at)H(t) (a,k\in\mathbb{R})$	$\frac{s-k}{(s-k)^2+a^2}$	$\Re s > k$

 $[H \text{ \'e a função de Heaviside}, \ H(t) := \left\{ \begin{array}{ccc} 0 & , & t < 0 \\ 1 & , & t \geq 0 \end{array} \right]$

• Propriedades:

 $\mathcal{L}{f(t)} = F(s), \Re s > \sigma_1; \quad \mathcal{L}{g(t)} = G(s), \Re s > \sigma_2; \quad a, \alpha, \beta \in \mathbb{C}, \quad k \in \mathbb{R}$

- 1. Linearidade: $\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha F(s) + \beta G(s)$, $\Re s > \max\{\sigma_1, \sigma_2\}$
- 2. Deslocamento (translação): $\mathcal{L}\{e^{at}f(t)\}=F(s-a)\,,\quad \Re s>\sigma_1+\Re a$
- 3. Derivada da transformada: $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{\mathrm{d}^n F(s)}{\mathrm{d} s^n} \quad (n=1,2,\cdots), \quad \Re s > \sigma_1$
- 4. Transformada da derivada: $\mathcal{L}\{f^{(n)}(t)\}=s^nF(s)-\sum_{k=1}^n s^{n-k}f^{(k-1)}(0)$

[supondo que f é de ordem exponencial e $f^{(n)}$ existe em $[0,+\infty[\]$

- 5. Transformada de um integral: $\mathcal{L}\left\{\int_0^t f(u)\,\mathrm{d}u\right\} = \frac{1}{s}\,F(s)$
- 6. Teorema de Heaviside: $\mathcal{L}\{f(t-k)H(t-k)\}=e^{-ks}\,F(s)\,,\quad\Re s>\sigma_1$ [onde H é a função de Heaviside]
- 7. Teorema de convolução: $\mathcal{L}\{f*g(t)\}=F(s)\cdot G(s)\,,\quad \Re s>\sigma$ [supondo que f e g são de ordem exponencial σ]
- 8. Fórmula de inversão: $f(t)=\frac{1}{2\pi i}\oint_{\gamma}F(s)e^{st}\,\mathrm{d}s \quad (t>0)$

[onde γ é um caminho fechado (orientado no sentido positivo) que contém as singularidades de F no seu interior, F função racional tal que $F(s) \to 0$ quando $|s| \to \infty$.]

• Propriedades envolvendo a função impulso de Dirac:

- 1. $\int_{-\infty}^{+\infty} f(t) \delta^{(n)}(t-a) \, \mathrm{d}t = (-1)^n f^{(n)}(a) \quad \text{[supondo } f^{(n)}(t) \text{ contínua para } t=a]$
- 2. $\mathcal{L}\{\delta^{(n)}(t-a)\} = s^n e^{-as}, \quad a \ge 0$
- 3. $H'(t-a) = \delta(t-a), \quad a \in \mathbb{R}$

Análise Matemática III (Semestral)

LICENCIATURA EM ENGENHARIA INFORMÁTICA

Tabela 3

Transformada de Fourier

$$\mathcal{F}{f(t)} \equiv F(\omega) := \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt$$

• Propriedades:

$$\mathcal{F}{f(t)} = F(\omega), \quad \mathcal{F}{g(t)} = G(\omega), \quad \omega \in \mathbb{R}, \quad \alpha, \beta \in \mathbb{C}$$

- 1. Linearidade: $\mathcal{F}\{\alpha f(t) + \beta g(t)\} = \alpha F(\omega) + \beta G(\omega)$.
- 2. Transformada da derivada: $\mathcal{F}\{f^{(n)}(t)\}=(i\omega)^nF(\omega)$
- $\text{3. Derivada da transformada:} \quad \frac{\mathrm{d}^n F(\omega)}{\mathrm{d}\omega^n} = (-i)^n \mathcal{F}\{t^n f(t)\}$
- 4. Deslocamento no tempo: $\mathcal{F}\{f(t-t_0)\} = e^{-i\omega t_0}\,F(\omega)\,.$
- 5. Deslocamento na frequência: $\mathcal{F}\{e^{i\omega_0t}f(t)\}=F(\omega-\omega_0)$.
- 6. Teorema de inversão: $f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{i\omega t}\,\mathrm{d}\omega \equiv \mathcal{F}^{-1}\{F(\omega)\}$ [supondo f contínua e f e F absolutamente integráveis]
- 7. Fórmula de simetria: $\mathcal{F}\{F(t)\} = 2\pi f(-\omega)$ [sob as mesmas hipóteses do Teorema de inversão]
- 8. Teorema de convolução no tempo: $\mathcal{F}\left\{f*g(t)\right\} = F(\omega)\,G(\omega)$
- 9. Teorema de convolução na frequência: $\mathcal{F}\left\{f(t)g(t)\right\} = \frac{1}{2\pi}F*G(\omega)$

• Transformadas de Fourier generalizadas:

- 1. $\mathcal{F}\{\delta^{(n)}(t-t_0)\} = (i\omega)^n e^{-i\omega t_0}$ 4. $\mathcal{F}\{t^n\} = 2\pi(-i)^n \delta^{(n)}(\omega)$
- 2. $\mathcal{F}\{e^{i\omega_0 t}\}=2\pi\delta(\omega-\omega_0)$ 5. $\mathcal{F}\{\cos(\omega_0 t)\}=\pi\left[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)\right]$
- 3. $\mathcal{F}{H(t)} = \frac{1}{i\omega} + \pi\delta(\omega)$ 6. $\mathcal{F}{\sin(\omega_0 t)} = i\pi \left[\delta(\omega + \omega_0) \delta(\omega \omega_0)\right]$

 $[t_0, \omega_0 \in \mathbb{R}, n \in \mathbb{N}_0; H \text{ \'e a função de Heaviside}]$