I Exercice CCP

Rappelons les règles de déduction naturelle suivantes, où A et B sont des formules logiques et Γ un ensemble de formules logiques quelconques :

- 1. Montrer que le séquent $\vdash \neg A \to (A \to \bot)$ est dérivable, en explicitant un arbre de preuve.
- 2. Montrer que le séquent $\vdash (A \to \bot) \to \neg A$ est dérivable, en explicitant un arbre de preuve.
- 3. Donner une règle correspondant à l'introduction du symbole \wedge ainsi que deux règles correspondant à l'élimination du symbole \wedge . Montrer que le séquent $\vdash (\neg A \to (A \to \bot)) \wedge ((A \to \bot) \to \neg A)$ est dérivable.
- 4. On considère la loi de Peirce $P = ((A \to B) \to A) \to A$. Montrer que $\models P$, c'est-à-dire que P est une tautologie.
- 5. Pour montrer que le séquent $\vdash P$ est dérivable, il est nécessaire d'utiliser la règle d'absurdité classique \perp_c (ou une règle équivalente), ce que l'on fait ci-dessous (il n'y aura pas besoin de réutiliser cette règle). Terminer la dérivation du séquent $\vdash P$, dans laquelle on pose $\Gamma = \{(A \to B) \to A, \neg A\}$:

$$\frac{?}{\Gamma \vdash A}? \frac{?}{\Gamma \vdash \neg A}^{AX}$$

$$\frac{\Gamma = (A \to B) \to A, \neg A \vdash \bot}{(A \to B) \to A) \vdash A}^{\neg_i}$$

$$\frac{(A \to B) \to A) \vdash A}{\vdash ((A \to B) \to A) \to A}^{\rightarrow_i}$$

II Lois de de Morgan

- 1. Prouver le séquent $\neg p \lor \neg q \vdash \neg (p \land q)$.
- 2. Prouver le séquent $\neg(p \lor q) \vdash \neg p \land \neg q$.
- 3. Prouver le séquent $\neg p \land \neg q \vdash \neg (p \lor q)$.
- 4. En utilisant le tiers exclu de la logique classique $\frac{1}{\Gamma \vdash p \lor \neg p}$ te, prouver le séquent $\neg (p \land q) \vdash \neg p \lor \neg q$.

III Complétude de la logique classique

On souhaite montrer dans cet exercice que la logique classique est complète. On suppose $V = \{x_1, x_n\}$ l'ensemble des variables propositionnelles. Pour A une formule et μ une valuation, on note :

$$|A|_{\mu} = \begin{cases} A & \text{si } \mu(A) = 1\\ \neg A & \text{sinon} \end{cases}$$

- 1. Soit A une formule et μ une valuation. On note $\Gamma = \{|x_1|_{\mu}, |x_2|_{\mu}, |x_n|_{\mu}\}$. Montrer par induction structurelle sur A que $\Gamma \vdash |A|_{\mu}$.
- 2. Soit x une variable et Γ un contexte quelconque. Montrer que si Γ , $x \vdash A$ et Γ , $\neg x \vdash A$, alors $\Gamma \vdash A$.
- 3. En déduire que si A est une tautologie, alors A est un théorème.
- 4. En déduire la complétude de la logique classique : si $\Gamma \models A$ alors $\Gamma \vdash A$ est prouvable.

IV Quantificateurs

Montrer les séquents suivants :

- 1. $\vdash \forall x A \rightarrow \exists x A$.
- 2. $\exists x \neg A \vdash \neg(\forall x A)$.

V Typage OCaml

On souhaite formaliser le typage OCaml. Pour cela, on notera $\Gamma \vdash e : \tau$ si l'expression OCaml e est typée par le type τ et on utilisera les règles suivantes :

$$\frac{\Gamma \vdash \mathsf{false} : \mathsf{bool}}{\Gamma \vdash \mathsf{false} : \mathsf{bool}} (1) \qquad \frac{\Gamma \vdash \mathsf{true} : \mathsf{bool}}{\Gamma \vdash \mathsf{true} : \mathsf{bool}} (2) \qquad \frac{n \in \mathbb{N}}{\Gamma \vdash n : \mathsf{int}} (3)$$

$$\frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \mathsf{fun} \ x \to e : \sigma \to \tau} (5) \qquad \frac{\Gamma \vdash f : \sigma \to \tau \quad \Gamma \vdash e : \sigma}{\Gamma \vdash f \ e : \tau} (6)$$

- 1. Soit $\Gamma = \{ f : a \rightarrow (b \rightarrow a), g : b \rightarrow a \}$. Montrer $\Gamma \vdash fun \ x \rightarrow f \ (g \ x) \ x : \tau$ pour un certain type τ à déterminer.
- 2. Quelles analogies peut-on faire entre le typage OCaml et la déduction naturelle ?
- 3. Montrer que (fun g -> g 1 2) (fun x -> 3) n'est pas typable, c'est-à-dire qu'il n'existe pas de type τ tel que \vdash (fun g -> g 1 2) (fun x -> 3) : τ soit prouvable.

On ajoute maintenant les tuples :

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2}$$

On veut aussi ajouter des fonctions polymorphes.

- 4. En utilisant des quantificateurs, proposer des types pour fst et snd, et une règle d'élimination.
- 5. Montrer alors que fst (42, true) est bien typé.