Learning to Track: Online Multi-Object Tracking by Decision Making

Yu Xiang^{1,2}, Alexandre Alahi¹, and Silvio Savarese¹

¹Stanford University, ²University of Michigan

ICCV 2015

Multi-Object Tracking

Visual surveillance

Sport Analysis

Robot navigation

Autonomous driving

Batch Mode vs. Online Mode

• Batch Mode

Tracking by Detection

Data Association

Challenges

Noisy detection: false alarms and missing detections

Challenges

Occlusion

Similarity Function for Data Association

Ours

8

Learning to Track

Different features/cues between targets and detections

- Appearance
- Location
- Motion Etc.

Similarity =
$$w_1 \phi_1(\mathbf{w}, \mathbf{l}) + \cdots + w_n \phi_n(\mathbf{w}, \mathbf{l})$$

Weights to combine different cues (to be learned)

Offline-learning vs. Online-learning

Offline-learning vs. Online-learning

	Offline- learning
Training time	Before Tracking
With supervision	
Use history of the target	*

- Li et al., CVPR'09
- Kim et al., ACCV'12 Etc.

Offline-learning vs. Online-learning

	Offline- learning	Online- learning
Training time	Before Tracking	During Tracking
With supervision		*
Use history of the target	*	

- Song et al., ECCV'08
- Kuo et al., CVPR'10
- Bae et al., CVPR'14 Etc.

Our Solution: Tracking by Decision Making

Inverse Reinforcement Learning

Comparison between Different Learning Strategies

	Offline- learning	Online- learning
Training time	Before Tracking	During Tracking
With supervision		*
Use history of the target	*	

Comparison between Different Learning Strategies

	Offline- learning	Online- learning	Ours
Training time	Before Tracking	During Tracking	Before Tracking
With supervision		*	
Use history of the target	*		

Outline

Markov Decision Process (MDP) for a Single Target

Online Multi-Object Tracking with MDPs

Experiments

Conclusion

Outline

Markov Decision Process (MDP) for a Single Target

Online Multi-Object Tracking with MDPs

Experiments

Conclusion

TLD Tracker. Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. TPAMI, 34(7):1409–1422, 2012.²³

Data Association in Lost States

Learning the Similarity Function

Similarity =
$$w_1\phi_1(\mathbf{w}, \mathbf{l}) + \cdots + w_n\phi_n(\mathbf{w}, \mathbf{l}) + b$$

Inverse reinforcement learning: tracking objects in training videos!

Inverse Reinforcement Learning

Markov Decision Process for a Single Target

Outline

Markov Decision Process (MDP) for a Single Target

Online Multi-Object Tracking with MDPs

Experiments

Conclusion

Ensemble MDPs for Online Multi-Object Tracking

Step 1: Process tracked targets

Step 2: Process lost targets

Step 3: Initialize new targets

Online Multi-Object Tracking with MDPs

Outline

Markov Decision Process (MDP) for a Single Target

Online Multi-Object Tracking with MDPs

Experiments

Conclusion

Experiments: Dataset

- Multiple Object Tracking Benchmark [1]
 - 11 training sequences
 - 11 test sequences
 - Object detections from the ACF detector [2]

^[1] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler. MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking. arXiv:1504.01942 [cs], 2015.

Contribution of different components

MOTA: multiple object tracking accuracy

Contribution of different components

MOTA: multiple object tracking accuracy

Cross-domain tracking

Cross-domain tracking

Cross-domain tracking

Experiments: Evaluation on Test Set

Tracker	Tracking	Learning	MOTA
DP_NMS [1]	Batch	N/A	14.5
TC_ODAL [2]	Online	Online	15.1
TBD [3]	Batch	Offline	15.9
SMOT [4]	Batch	N/A	18.2
RMOT [5]	Online	N/A	18.6
CEM [6]	Online	N/A	19.3
SegTrack [7]	Batch	Offline	22.5
MotiCon [8]	Batch	Offline	23.1
MDP (Ours)	Online	Online	30.3

MOTA: multiple object tracking accuracy

- [1] Pirsiavash et al., CVPR' 11
- [2] Bae et al., CVPR'14
- [3] Geiger et al., TPAMI'14

- [4] Dicle et al., ICCV'13
- [5] Yoon et al., WACV'15
- [6] Milan et al., TPAMI'14

- [7] Milan et al., CVPR'15
- [8] Leal-Taixé et al., CVPR'14

Tracking Results

MDP [Ours]

MotiCon [Leal-Taixé et al., CVPR'14]

MDP [Ours]

MotiCon [Leal-Taixé et al., CVPR'14]

MDP [Ours]

MotiCon [Leal-Taixé et al., CVPR'14]

Outline

Markov Decision Process (MDP) for a Single Target

Online Multi-Object Tracking with MDPs

Experiments

Conclusion

Conclusion

Single Object Tracking

Code

Single Object Tracking

Thank you!

