

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

Chapter 4

Search in Complex Environments

Lecture Presentations: Artificial Intelligence

Adapted from:

"Artificial Intelligence: A Modern Approach, Global Edition", 4th Edition by Stuart Russell and Peter Norvig © 2021 Pearson Education.

Adapted for educational use at ACE Engineering College. Some slides customized by Mr. Shafakhatullah Khan Mohammed, Assistant Professor @ ACE Engineering College. For instructional use only. Not for commercial distribution.

Outline

- Local Search and Optimization Problems
 - ♦ Hill-climbing
 - Simulated annealing
 - ◆ Genetic algorithms
- ◆ Local search in continuous spaces
- ◆ Search with Nondeterministic Actions
- ◆ Search in Partially Observable Environments

Local Search and Optimization Problems

In many optimization problems, path is irrelevant; the goal state itself is the solution

Then state space = set of "complete" configurations; find optimal configuration, e.g., TSP or, find configuration satisfying constraints, e.g., timetable

In such cases, one can use iterative improvement algorithms; keep a single "current" state, try to improve it

Local search algorithms operate by searching from a start state to neighboring states, without keeping track of the paths, nor the set of states that have been reached.

They are not systematic—they might never explore a portion of the search space where a solution actually resides.

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: *n*-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously for very large n, e.g., n = 1 million

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia"

Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves Sescape from shoulders Sloop on flat maxima

Simulated annealing

Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function Simulated-Annealing (problem, schedule) returns a solution state
inputs: problem, a problem
           schedule, a mapping from time to "temperature"
local variables: current a node
                     next a node
                     T, a "temperature" controlling prob. of downward steps
current \leftarrow Make-Node(Initial-State[problem])
for t \leftarrow 1 to \infty do
     T \leftarrow schedule[t]
     if T = 0 then return current
      next← a randomly selected successor of current
     \Delta E \leftarrow \text{Value}[\text{next}] - \text{Value}[\text{current}]
     if \triangle E > 0 then current \leftarrow next
     else current \leftarrow next only with probability e^{\Delta E/T}
```


Properties of simulated annealing

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = ae^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Rightarrow always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}}=e^{\frac{E(x^*)-E(x)}{kT}}$ \updownarrow 1 for small T

<u>Is this necessarily an interesting guarantee??</u>

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel! Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!

Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

Fitness Selection Pairs Cross-Over Mutation

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

GAs /= evolution: e.g., real genes encode replication machinery!

Continuous state spaces

Suppose we want to site three airports in Romania:

- 6-D state space defined by (x_1, y_2) , (x_2, y_2) , (x_3, y_3)
- objective function $f(x_1, y_2, x_2, y_2, x_3, y_3) =$ sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space, e.g., empirical gradient considers $\pm \delta$ change in each coordinate

Gradient methods compute

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \end{bmatrix}$$

to increase/reduce f, e.g., by $x \leftarrow x + a\nabla f(x)$

Sometimes can solve for $\nabla f(\mathbf{x}) = \mathbf{0}$ exactly (e.g., with one city). Newton–Raphson (1664, 1690) iterates $\mathbf{x} \leftarrow \mathbf{x} - \mathbf{H}_{\mathbf{f}}^{-1}(\mathbf{x}) \nabla f(\mathbf{x})$ to solve $\nabla f(\mathbf{x}) = \mathbf{0}$, where $\mathbf{H}_{ij} = \partial^2 f / \partial x_i \partial x_j$

Search with Nondeterministic Actions

Agent doesn't know the state its transitioned to **after action**, the environment is **nondeterministic**.

Rather, it will know the possible states it will be in, which is called "belief state"

Examples:

- The erratic vacuum world (if-then-else) steps. If statement tests to know the current state.
- AND-OR search trees. Two possible actions (OR nodes).
 Branching that happens from a choice (AND nodes).
- **Try, try again**. A cyclic plan where minimum condition (every leaf = goal state & reachable from other points in the plan)

Search in Partially Observable Environments

Problem of partial observability, where the agent's percepts are not enough to pin down the exact state.

Searching with no observation: Agent's percepts provide **no information at all**, sensorless problem (or a conformant problem).

Solution: sequence of actions, not a conditional plan

Searching in partially observable environments requires a function that **monitors** or **estimates** the environment to maintain the belief state.

Summary

Local search methods keep only a **small number of states** in memory that are useful for optimization.

In **nondeterministic environments**, agents can apply **AND–OR search** to generate contingency plans that reach the goal regardless of which outcomes occur during execution.

Belief-state is the set of **possible states** that the agent is in for **partially observable environments**.

Standard search algorithms can be **applied directly to belief-state** space to solve **sensorless** problems.

