# **Machine Learning Systems Design**

LolFFate

Milestone 1

# **Context**

- 5v5 multiplayer game
- Mix of strategy and skills
- Known for causing lots of frustration
- Players can Forfeit after 15 min of gameplay
- But should they...?







# Use case

Our solution: **FFate** 

### Machine Learning Canvas

## **FFate** Data

Product:

#### Modeling

Authors:

Date:

## 绿

Version:

1

#### Background

#### League of Legends (LoL) players waste time in unwinnable games, with no

early-game performance insight. They wonder if their game is still worth it.

### Value proposition

FFate predicts win probability after 15 minutes, helping players decide if they should keep playing or forfeit, reducing frustration and improving decisionmaking.

## Solution

- Features: Game Victory prediction + early-game analysis.
- Integration: Standalone web app (or a possible API meant for different tools).
- Constraints: Low latency (<5 sec) + app availability.
- Out-of-scope: Lategame analysis, coaching tools, real-time in-game assistance.

#### Metrics

K-Fold CV score, F1 Score. Prediction accuracy / error. RoC Curve, Calibration score, Prediction speed. User feedback, and more...

Training: 24k early-match

value and with a mean ELO

histories with no missing

between mid-emerald to

high-diamond (Kaggle).

Production: Live game

stats (Riot API) or player

or loss (=0), labeled with

match outcome, potential

use of confidence scores.

stats after the 15th minute.

Labels: Blue Team win (=1)

#### Evaluation

Offline: Accuracy on a test sample from the processed historical (Kaggle) data. Online: Live data comparison & users feedback.

- 1. Problem definition & data collection (see previous points).
- 2. Data analysis with EDA. pre-processing & features selection.
- 3. Learning algorithm selection & models training.
- 4. Models evaluation with key metrics (see previously) & best model selection.
- 5. API Deployment & if retrained with new data. redeploy with a pipeline.

#### Inference

#### Feedback



User rating & behaviour, to see if they follow the recommendations associated with the prediction

#### Project



- Team members : ML engineers and web developers
- Key deliverables in 6 sprints with timeline in weeks (W):
- Project organisation (W1 & 2) Cloud & model dev
- (W3 & 4) 3. API implementation
- (W5 & 6)
- 4. Model pipeline (W8)
- Optimisation & monitoring (W9 & 10)
- 6. CICD (W10)

#### **Objectives**

- · Build prediction model.
- · Evaluate its performance.
- · Deliver real-time predictions.
- · Make it simple to use.

### Farth

Much data available because it is the most played video game on

Feasibility

Resources needs: data fetching, feature selection, machine learning and frontend dev knowledge, cloud storage.

Online: Real-time (under 5 sec) to respond to the initial problem.

Offline: Batch possible for analysis.



Machine learning canvas from Made With ML by Goku Mohandas License: CC BY-SA 4.0







# **Data**

# League of Legends SoloQ matches at 15 minutes 2024

24000 Emerald/Diamond SoloQ match states at 15 minutes taken from EUW and EUNE



**CSV** format

24 225 observations

## Features:

- match ID
- + 14 features for the red team
- + 14 features for the blue team
- + target feature about the win

# **EDA Report**

- 1 additional column only made of 0 -> removed
- 7 duplicates observations -> removed
- no missing values

### Other observations:

- 20 numerical & 8 categorical features
- Many highly correlated features because of the game mechanics.
  - o e.g. blueTeamMinionsKilled and blueTeamXp
  - e.g. blueTeamDragonKills and redTeamDragonKills

New features: difference between the teams mirror numerical values

#### **Dataset statistics**

| Number of variables           | 28      |
|-------------------------------|---------|
| Number of observations        | 24218   |
| Missing cells                 | 0       |
| Missing cells (%)             | 0.0%    |
| Duplicate rows                | 0       |
| Duplicate rows (%)            | 0.0%    |
| Total size in memory          | 6.7 MiB |
| Average record size in memory | 289.0 B |



# **Model experimentation**

Model: Random Forest

80% / 20% for training and test set

Standard Scaler

Feature selection

Hyperparameter -> 5-split cross validation

Evaluation -> Accuracy, F1 score, ROC curve

Best K number: 15

Selected features: ['blueTeamTotalKills', 'blueTeamTotalGold', 'blueTeamXp', 'redTeamTotalKills', 'redTeamTurretPlatesDestroyed', 'redTeamTotalGold', 'redTeamXp',

'diffMinionsKilled', 'diffTotalGold', 'diffTotalKills', 'diffXp', 'diffTotalDamageToChamps', 'diffDragonKills', 'diffTowersDestroyed', 'diffTurretPlatesDestroyed']

Best Parameters: {'n\_estimators': 200, 'min\_samples\_split': 2, 'min\_samples\_leaf': 1, 'max\_depth': None, 'criterion': 'gini', 'bootstrap': True}

#### Model Evaluation:

Accuracy: 0.7487613542526838 F1 Score: 0.7487481257038276 AUC(ROC): 0.8332002422070925



# **Machine Learning Systems Design**

LolFFate

Thanks for listening!