Laboratorio: Control de un Péndulo Invertido con PID en Python

Luis Felipe Rubio Morelo Universidad Militar Nueva Granada Laboratorio inteligencia artificial

29 de agosto de 2025

1. Introducción

El péndulo invertido es uno de los problemas clásicos en control automático debido a su inestabilidad inherente. Se utiliza como sistema de referencia en la enseñanza y validación de técnicas de control, pues representa un modelo simplificado de problemas reales como el control de cohetes, robots bípedos y sistemas de transporte.

En este laboratorio se implementó una simulación en Python de un péndulo invertido montado sobre un carro, controlado por un controlador PID (Proporcional-Integral-Derivativo). El objetivo principal es mantener el péndulo en posición vertical ($\theta=0$) mediante la acción del carro, que se desplaza horizontalmente para compensar las perturbaciones iniciales.

2. Objetivos

- Implementar un modelo físico-matemático del sistema carro-péndulo.
- Diseñar un controlador PID para estabilizar el ángulo del péndulo.
- Visualizar la dinámica del sistema en una simulación gráfica interactiva.
- Analizar el comportamiento del controlador frente a condiciones iniciales.

3. Marco Teórico

3.1. Dinámica del péndulo invertido

El sistema está compuesto por:

- \blacksquare Carro de masa M.
- Péndulo de masa m y longitud L.
- Ángulo θ respecto a la vertical.

Las ecuaciones de movimiento que gobiernan la dinámica son:

$$\ddot{x} = \frac{F - b\dot{x} + m\sin(\theta)(L\dot{\theta}^2 + g\cos(\theta))}{M + m\sin^2(\theta)} \tag{1}$$

$$\ddot{\theta} = \frac{-F\cos(\theta) - mL\dot{\theta}^2\cos(\theta)\sin(\theta) - (M+m)g\sin(\theta) + b\dot{x}\cos(\theta)}{L(M+m\sin^2(\theta))}$$
(2)

donde:

- x: posición del carro.
- F: fuerza de control aplicada.
- b: coeficiente de fricción.

3.2. Control PID

El controlador PID calcula la fuerza aplicada sobre el carro en función del error del ángulo:

$$F(t) = -\left[K_p e(t) + K_i \int e(t)dt + K_d \frac{de(t)}{dt}\right]$$
(3)

donde:

- $e(t) = \theta(t)$ (error angular).
- K_p : ganancia proporcional.
- K_i : ganancia integral.
- K_d : ganancia derivativa.

3.3. Control Difuso

A diferencia del controlador PID, el control difuso no requiere un modelo matemático exacto del sistema. En su lugar, utiliza reglas heurísticas basadas en lógica difusa para decidir la fuerza F aplicada al carro según el ángulo θ y su velocidad angular $\dot{\theta}$.

Definición de variables

- Entrada 1: Ángulo θ con etiquetas neg, zero, pos.
- Entrada 2: Velocidad angular $\dot{\theta}$ con etiquetas neg, zero, pos.
- Salida: Fuerza F aplicada sobre el carro con etiquetas left, zero, right.

Cada variable se representó con funciones de membresía triangulares, por ejemplo:

$$\mu_{\text{neg}}(\theta) = \text{trimf}(\theta; -0.5, -0.25, 0), \quad \mu_{\text{zero}}(\theta) = \text{trimf}(\theta; -0.1, 0, 0.1), \quad \mu_{\text{pos}}(\theta) = \text{trimf}(\theta; 0, 0.25, 0.5)$$

Base de reglas difusas

El conocimiento de control se modeló con un conjunto de reglas tipo "SI-ENTONCES":

- SI θ es neg Y $\dot{\theta}$ es zero $\to F$ es left.
- SI θ es pos Y $\dot{\theta}$ es zero $\to F$ es right.
- SI θ es zero Y $\dot{\theta}$ es pos $\to F$ es left.
- SI θ es zero Y $\dot{\theta}$ es neg $\to F$ es right.

Estas reglas reflejan la intuición de que, si el péndulo cae hacia un lado, el carro debe moverse en esa dirección para compensar.

Inferencia y defuzzificación

El motor de inferencia combina las reglas activadas para un valor específico de entrada y calcula una función difusa de salida. Finalmente, se aplica el método del **centroide** para obtener un valor crisp de la fuerza F:

$$F = \frac{\int_{\Omega} \mu_F(f) f df}{\int_{\Omega} \mu_F(f) df}$$

4. Metodología

- 1. Se definieron los parámetros físicos del sistema (masas, gravedad, longitud del péndulo, fricción).
- 2. Se resolvieron las ecuaciones de movimiento usando integración numérica con paso dt = 0.02 s.
- 3. Se implementó el controlador PID con saturación de la fuerza |F| < 5 N.
- 4. Se utilizó Pygame para simular gráficamente el movimiento del carro y el péndulo, con una cámara que sigue al carro.

5. Resultados

- La simulación muestra cómo el carro se desplaza horizontalmente para compensar el ángulo del péndulo.
- El controlador PID logra estabilizar el péndulo dentro de ciertos límites, evitando que este caiga rápidamente.
- Se observó que con ciertas ganancias $(K_p = 20, K_i = 0.5, K_d = 15)$ el sistema presenta oscilaciones, lo que indica que aún requiere ajuste fino del PID.
- El comportamiento demuestra la interacción directa entre el error angular y el movimiento del carro, evidenciando la retroalimentación del sistema de control.

Figura 1: Control Péndulo

6. Conclusiones

- El péndulo invertido es un sistema altamente inestable que requiere control en lazo cerrado.
- El controlador PID es capaz de estabilizar el péndulo, pero la selección de parámetros es crucial.
- La simulación en Python con Pygame permite visualizar en tiempo real la dinámica del sistema, lo cual facilita el análisis.
- Se recomienda aplicar métodos de sintonización más precisos (Ziegler-Nichols o LQR) para mejorar la estabilidad.

7. Recomendaciones

- Probar condiciones iniciales más exigentes (ángulos mayores).
- Incluir ruido o perturbaciones externas para simular condiciones reales.
- Comparar el desempeño del PID con controladores más avanzados (LQR, MPC).
- Extender el modelo a más grados de libertad (doble péndulo invertido).

A. Código de Simulación en Python

A continuación, se presenta el código utilizado para la simulación del sistema carro-péndulo invertido con un controlador PID. El mismo fue implementado en Python utilizando la librería Pygame para la visualización gráfica.

Listing 1: Simulación del péndulo invertido con PID

```
import pygame
import numpy as np
```

g = 9.81

```
M = 1.0
m = 2.0
L = 0.5
dt = 0.02
b = 20
Kp = 20.0
Ki = 0.5
Kd = 15.0
x = 0.0
x_{dot} = 0.0
theta = np.deg2rad(5)
theta dot = 0.0
integral\_error = 0.0
prev error = 0.0
F \max = 5.0
pygame.init()
WIDTH, HEIGHT = 1000, 600
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("P ndulo_Invertido_con_Carro_(PID_con_c mara)"
clock = pygame.time.Clock()
\operatorname{origin}_{y} = \operatorname{HEIGHT} / 2 + 100 \# altura del riel
scale = 200 \# escala: 1m = 200px
running = True
while running:
    for event in pygame.event.get():
         if event.type == pygame.QUIT:
             running = False
    error = theta \# queremos que theta = 0
    integral error += error * dt
    derivative_error = (error - prev_error) / dt
    prev_error = error
    F = -(Kp * error + Ki * integral\_error + Kd * derivative\_error)
```

```
F = \max(\min(F, F \max), -F \max)
\sin_{\text{theta}} = \text{np.}\sin(\text{theta})
\cos_{\text{theta}} = \text{np.}\cos(\text{theta})
denom = M + m * sin theta**2
x_ddot = (F - b*x_dot + m*sin_theta*(L*theta_dot**2 + g*cos_theta_dot*)
theta_ddot = (-F * cos_theta - m * L * theta_dot**2 * cos_theta * sin_total_dot**2 * cos_theta * cos_thet
                                          (M+m) * g * sin theta + b * x dot * cos theta) / (L * dot * cos theta) / (L * dot * cos theta)
x_{dot} += x_{dot} * dt
x += x dot * dt
theta\_dot += theta\_ddot * dt
theta += theta dot * dt
screen. fill ((255, 255, 255))
offset x = WDTH//2 - int(x*scale)
for k in range (-20, 21):
            pos_x = int(k*0.5*scale) + offset_x
            if 0 \le pos_x \le WIDTH:
                        pygame.draw.line(screen, (200, 200, 200), (pos x, 0), (pos x, H
                        font = pygame.font.SysFont(None, 20)
                        text = font.render(f''\{k*0.5:.1f\}'', True, (100, 100, 100))
                        screen. blit (text, (pos x-10, origin y+40))
cart x = int(x*scale) + offset x
cart_y = origin_y
pygame.draw.rect(screen, (0, 0, 0), (cart_x-40, cart_y-20, 80, 40))
pend x = cart x + int(L*scale * np.sin(theta))
pend_y = cart_y - int(L*scale * np.cos(theta))
pygame.draw.line(screen, (0, 0, 255), (cart_x, cart_y), (pend_x, pend_y
pygame.draw.circle(screen, (255, 0, 0), (pend_x, pend_y), 12)
```

```
pygame.draw.line(screen, (100, 100, 100), (0, cart_y+20), (WIDTH, cart_
pygame.display.flip()
clock.tick(1/dt)

pygame.quit()
```

Anexo: Código en Python del Controlador Difuso

A continuación, se presenta el código completo utilizado en la simulación del sistema carro-péndulo con controlador difuso implementado en Python:

Listing 2: Simulación del péndulo invertido con carro usando Control Difuso en Python

```
import pygame
import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl
             ———— Parmetros f sicos –
          \# gravedad (m/s^2)
g = 9.81
           \# masa del carro (kg)
M = 1.0
           \# masa del p ndulo (kg)
m = 2.0
L = 0.5
           \# longitud del p ndulo (m)
dt = 0.02
          \# paso de integraci n (s)
b = 20
            \# fricci n del carro
\# Estado inicial [x, x_dot, theta, theta dot]
x = 0.0
x dot = 0.0
theta = np.deg2rad(10) \# inclinaci n inicial
theta dot = 0.0
\# Saturaci n de fuerza (N)
F \max = 10.0
             \# Variables ling
                    sticas
theta_var = ctrl. Antecedent (np. linspace (-1, 1, 200), 'theta')
theta_dot_var = ctrl.Antecedent(np.linspace(-3, 3, 200), 'theta_dot')
force var = ctrl.Consequent(np.linspace(-F max, F max, 200), 'force')
\# Functiones de membres a
theta\_var\,[\ 'neg\ ']\ =\ fuzz\,.\,trimf\,(\,theta\_var\,.\,universe\ ,\ [\,-1\,,\ -0.5\,,\ 0\,]\,)
theta_var['zero'] = fuzz.trimf(theta_var.universe, [-0.1, 0, 0.1])
theta_var['pos'] = fuzz.trimf(theta_var.universe, [0, 0.5, 1])
theta_dot_var['neg'] = fuzz.trimf(theta_dot_var.universe, [-3, -1.5, 0])
theta dot var ['zero'] = fuzz.trimf(theta dot var.universe, [-0.5, 0, 0.5])
```

```
theta dot var['pos'] = fuzz.trimf(theta dot var.universe, [0, 1.5, 3])
force var ['left'] = fuzz.trimf(force var.universe, [-F max, -F max/2, 0])
force\_var['zero'] = fuzz.trimf(force\_var.universe, [-1, 0, 1])
force var ['right'] = fuzz.trimf(force var.universe, [0, F max/2, F max])
\# Reglas difusas
rules = [
    ctrl.Rule(theta_var['neg'] & theta_dot_var['zero'], force_var['left']),
    ctrl.Rule(theta_var['pos'] & theta_dot_var['zero'], force_var['right'])
    ctrl.Rule(theta_var['zero'] & theta_dot_var['neg'], force_var['right'])
    ctrl.Rule(theta_var['zero'] & theta_dot_var['pos'], force_var['left']),
    ctrl.Rule(theta_var['neg'] & theta_dot_var['neg'], force_var['left']),
    ctrl.Rule(theta_var['pos'] & theta_dot_var['pos'], force_var['right']),
    ctrl.Rule(theta_var['zero'] & theta_dot_var['zero'], force_var['zero'])
1
\# Construir el sistema de control difuso
system = ctrl.ControlSystem(rules)
fuzzy_controller = ctrl.ControlSystemSimulation(system)
                — Pygame setup —
pygame.init()
WIDTH, HEIGHT = 1000, 600
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("P ndulo_Invertido_con_Carro_(Control_Difuso)")
clock = pygame.time.Clock()
origin_y = HEIGHT // 2 + 100 # altura del riel
scale = 200 \# escala: 1m = 200px
running = True
              while running:
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            running = False
    # --- Controlador Difuso ----
    fuzzy_controller.input['theta'] = theta
    fuzzy_controller.input['theta_dot'] = theta_dot
    try:
        fuzzy_controller.compute()
        F = fuzzy controller.output['force']
    except:
        F=0 \# si no hay salida, ponemos fuerza neutra
```

```
\sin \tanh = np.\sin(\tanh a)
\cos theta = np.cos(theta)
denom = M + m * sin theta**2
x_ddot = (F - b*x_dot + m*sin_theta*(L*theta_dot**2 + g*cos_theta_dot*)
theta ddot = (-F * cos theta - m * L * theta dot**2 * cos theta * sin t
                (M+m) * g * sin theta + b * x dot * cos theta) / (L * dot * cos theta) / (L * dot * cos theta)
\# Integracin
x dot += x ddot * dt
x += x dot * dt
theta_dot += theta_ddot * dt
theta += theta dot * dt
                ---- Dibujar -
screen.fill((255, 255, 255))
\# \ C \ mara \ sigue \ al \ carro
                                 offset en X
offset x = WIDTH//2 - int(x*scale)
\# \ Dibujar \ eje \ X
for k in range (-20, 21):
    pos_x = int(k*0.5*scale) + offset_x
    \mathbf{if} \ 0 \le \mathrm{pos}_{\mathbf{x}} \le \mathrm{WIDTH}:
         pygame.draw.line(screen, (200, 200, 200), (pos x, 0), (pos x, H
         font = pygame.font.SysFont(None, 20)
         text = font.render(f"\{k*0.5:.1f\}", True, (100, 100, 100))
         screen.blit(text, (pos x-10, origin y+40))
# Posici n del carro en pantalla
cart_x = int(x*scale) + offset_x
cart y = origin y
# Carro
pygame.draw.rect(screen, (0, 0, 0), (cart_x-40, cart_y-20, 80, 40))
\# P n du lo
pend_x = cart_x + int(L*scale * np.sin(theta))
pend y = cart y - int(L*scale * np.cos(theta))
pygame.draw.line(screen, (0, 0, 255), (cart_x, cart_y), (pend_x, pend_y
pygame.draw.circle(screen, (255, 0, 0), (pend x, pend y), 12)
pygame.\,draw.\,line\,(\,screen\,\,,\,\,\,(100\,,\,\,100\,,\,\,100\,)\,\,,\,\,\,(0\,,\,\,cart\_y+20)\,,\,\,\,(WIDTH,\,\,cart\_y+20)\,,
pygame.display.flip()
```

 $clock.\,tick\,(1/\,dt\,)$

pygame.quit()