Teorema di Rouche-Capelli

In questa nota, enunciamo e dimostriamo il teorema di Rouché-Capelli, che caratterizza la compatibilità di un sistema di equazioni lineari. La dimostrazione proposta fa uso del metodo di riduzione di Gauss di una matrice a matrice a gradini.

Definizione. Sia $\Sigma: AX = \underline{b}$ un sistema di m equazioni lineari in n incognite su un campo K e sia S l'insieme delle sue soluzioni. Si dice che Σ è compatibile se $S \neq \emptyset$, ossia se Σ ammette almeno una soluzione.

Denotiamo con C la matrice completa $(A \underline{b})$ del sistema Σ .

Teorema di Rouché-Capelli. Σ compatibile \iff rango(A) =rango(C)

Dim. Siccome le colonne della matrice C sono $\underline{a}_1, \ldots, \underline{a}_n, \underline{b}$, ossia sono le colonne della matrice A con in aggiunta la colonna \underline{b} dei termini noti, si può verificare solo uno dei seguenti due casi:

- [1] $\operatorname{rango}(A) = \operatorname{rango}(C)$,
- [2] $\operatorname{rango}(A) = \operatorname{rango}(C) 1$.

Sia C' una matrice a gradini ottenuta a partire da C. Allora le prime n colonne di C' costituiscono le colonne di una matrice a gradini A' ottenuta a partire da A. Quindi, il caso [1] si verifica se e solo se i pivot della matrice C' coincidono con quelli di A'. Questo equivale a dire che il sistema lineare Σ' che ha C' come matrice associata è compatibile, in quanto possiamo applicare la sostituzione a ritroso e in questo modo ricavare le soluzioni. Siccome Σ' e Σ sono equivalenti, anche Σ è compatibile. La dimostrazione risulta così conclusa.

Ecco come possiamo rappresentare i due possibili casi considerati nella dimostrazione. Con p_i denotiamo l'i-esimo pivot e con h denotiamo il rango di C', che è uguale a quello di C:

$$[1]: \begin{pmatrix} p_1 & \dots & \dots & \dots & | & \dots \\ 0 & p_2 & \dots & \dots & | & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & | & \dots \\ 0 & 0 & \dots & p_{h-1} & \dots & | & \dots \\ 0 & 0 & \dots & 0 & \dots & p_h & | & \dots \\ 0 & 0 & \dots & 0 & \dots & 0 & | & 0 \end{pmatrix} \quad [2]: \begin{pmatrix} p_1 & \dots & \dots & | & \dots & | & \dots \\ 0 & p_2 & \dots & \dots & | & \dots & | & \dots \\ \vdots & | & \dots \\ 0 & 0 & \dots & p_{h-1} & \dots & | & \dots \\ 0 & 0 & \dots & 0 & | & 0 & | & p_h \\ 0 & 0 & \dots & 0 & | & 0 & | & 0 \end{pmatrix}$$