第1章

楕円曲線とテータ関数

1.1 楕円曲線

Definition 1.1.1. (楕円曲線) -

パラメータ $\lambda \in \mathbb{C} \setminus \{0,1\}$ に対して, 曲線 $C(\lambda) \subset \mathbb{P}^2$ を

$$C(\lambda) = \{ [\zeta_0 : \zeta_1 : \zeta_2] \in \mathbb{P}^2 \mid \zeta_2^2 \zeta_0 = \zeta_1(\zeta_1 - \zeta_0)(\zeta_1 - \lambda \zeta_0) \}$$

で定め, $C(\lambda)$ の $U_0 = \{\zeta_0 \neq 0\}$ へのアファイン化を

$$C_0(\lambda) = \{(v, w) \in \mathbb{C}^2 \mid w^2 = v(v - 1)(v - \lambda)\}$$

と表す.

Remark 1.1.2.

直線 $\zeta_0 = 0$ は $C(\lambda)$ と P_∞ でのみ交わる. 即ち, $C(\lambda) \setminus C_0(\lambda) = \{P_\infty = [0:0:1]\}$ である. 実際,

$$\begin{cases} \zeta_2^2 \zeta_0 = \zeta_1 (\zeta_1 - \zeta_0)(\zeta_1 - \lambda \zeta_0) \\ \zeta_0 = 0 \end{cases}$$

を解くと, $\zeta_1^3=0$ となり, P_∞ は重複度 3 の点となることから $\zeta_0=0$ と $C(\lambda)$ の交点は P_∞ のみから成る.

 $P(u,v)=v^2-u(u-1)(u-\lambda)$ とおくとき、 $\partial P/\partial v=2v$ より、 $P(a,b)=P_v(a,b)=0$ となる点 $(a,b)\in\mathbb{C}^2$ は、 $(a,b)=(0,0),(1,0),(\lambda,0)$ である。 $S=\{0,1,\lambda\}$ とおく、また、 $\mathscr{X}=\{(u,v)\in(\mathbb{C}\setminus S)\times\mathbb{C}\mid P(u,v)=0\}$ とおく、これは Riemann 面である。

Proposition 1.1.3. —

第1射影 a $\mathrm{pr}_1\colon \mathscr{X} \to \mathbb{C} \setminus S = \mathbb{P}^1 \setminus (S \cup \{\infty\}); (u,v) \mapsto u$ は $C(\lambda)$ 上の固有正則写像 $\mathrm{pr}\colon C(\lambda) \to \mathbb{P}^1$ に拡張される.

 a これは固有な局所同相写像

Proof.

今野 [?] 命題 4.15 を適応せよ.

Proposition 1.1.4. -

 $C(\lambda)$ の種数は 1 であり, 正則写像 pr は $P_0=[1:0:0], P_1=[1:1:0], P_{\lambda}=[1:\lambda:0], P_{\infty}=[0:0:1]$ で分岐する二重被覆である.

Proof.

今野 [?] 例 4.16 によると, $w^2-z(z-\lambda)(z-1)$, $\lambda\neq 0,1$ より $C(\lambda)$ の種数 1 であり, pr は $z=0,\lambda,1,\infty$ で分岐 する二重被覆である.

具体的に局所座標と局所表示を求める.

 U_0 上, $z=\frac{\zeta_1}{\zeta_0}$, $w=\frac{\zeta_2}{\zeta_0}$ とすれば, $z\neq 0,\lambda,1$ のとき $w\neq 0$ であることから z が局所座標となる. $z=0,\lambda,1$ のとき, $z_j=z-j,\ j=0,\lambda,1$ とすれば,

$$w_j = \frac{w}{\sqrt{z(z-\lambda)(z-1)}}$$

とおけば, $|z_j|$ が十分小さいとき, $w_j^2 = z_j$ となることから w_j が局所座標となる.

 $C(\lambda)\setminus C_0(\lambda)=\{P_\infty\}$ であるから、 $[\zeta_0:\zeta_1:\zeta_2]=[0:0:1]$ の周りの局所座標のみ与えればよい。 $u=\zeta_0/\zeta_1$ 、 $t=\zeta_2/\zeta_1$ とすれば、 $\zeta_2^2\zeta_0=\zeta_1(\zeta_1-\zeta_0)(\zeta_1-\lambda\zeta_0)$ は $u=t(t-u)(t-\lambda u)$ となる。 $g(u,t)=u-t(t-u)(t-\lambda u)$ は $g_u(0,0)=1-2\lambda ut+(1+\lambda)t^2|_{u=t=0}=1\neq 0$ より陰関数定理から t は (u,t)=(0,0) の周りの局所座標となっていて、 $u=c_\infty t^3+O(t^4)$ 、 $c_\infty\neq 0$ と展開される。従って t が局所座標となる。

以上により, pr の ramification point は, $P_0 = [1:0:0], P_1 = [1:1:0], P_{\lambda} = [1:\lambda:0], P_{\infty} = [0:0:1]$ であり, branched point は, $\operatorname{pr}(P_0) = [1:0], \operatorname{pr}(P_1) = [1:1], \operatorname{pr}(P_{\lambda}) = [1:\lambda]$ であり, $\operatorname{pr}(P_{\infty}) = [0:1]$ である。また, 分岐 指数はそれぞれ 2 である。これによって $(\operatorname{pr}, C(\lambda))$ は P_0 , P_1 , P_{λ} , P_{∞} で分岐する \mathbb{P}^1 の二重被覆であることがわ かる.

Remark 1.1.5.

自己同相写像 $f: C(\lambda) \to C(\lambda)$ で $\operatorname{pr} = \operatorname{pr} \circ f$ を満たすものを被覆変換という. また, 被覆変換全体 $\operatorname{Deck}(C(\lambda)/\mathbb{P}^1)$ は写像の合成によって群になり、これを被覆変換群という.

双正則写像

$$\rho \colon C(\lambda) \to C(\lambda); [\zeta_0 : \zeta_1 : \zeta_2] \to [\zeta_0 : \zeta_1 : -\zeta_2]$$

は被覆変換であり, $\rho \circ \rho = \mathrm{id}_{C(\lambda)}$, $\rho(P_j) = P_j$ $(j = 0, 1, \lambda, \infty)$ を満たす.

1.2 $C(\lambda)$ 上の微分形式

 $g(C(\lambda))=1$ より, $\dim_{\mathbb{C}}\Omega^1(C(\lambda))=1$ であるから, 1 つ 1-形式を見つければ $C(\lambda)$ 上の正則微分は全てその定数倍で書ける.

Proposition 1.2.1.

 $C_0^{\circ}(\lambda) = C_0(\lambda) \setminus \{P_0, P_1, P_{\lambda}\}$ 上で定義された 1-形式

$$\varphi = \frac{dv}{w} = \frac{dv}{\sqrt{v(v-1)(v-\lambda)}}$$

は非零な $C(\lambda)$ 上の 1-形式に φ 拡張される.

Proof.

 $v \neq 0, 1, \lambda$ なら, $w \neq 0$ であるから, $C_0^\circ(\lambda)$ 上 $\varphi \neq 0$ である. P_j $(j=0,1,\lambda)$ の周りでは, $v-j=c_jw^2+O(w^3)(c_j \neq 0,0)$ 0) と展開されることから、

$$\frac{dv}{w} = \frac{1}{w}\frac{dv}{dw}dw = (2c_j + O(w^2))dw$$

と表される. 従って, $C_0(\lambda)$ 上 φ は非零な正則微分である. $C(\lambda)$ は無限遠 P_∞ で局所座標 t によって, u= $c_{\infty}t^3+O(t^4)$ と展開されるのであった. v=t/u, w=1/u より, P_{∞} の近傍で φ は

$$\begin{split} \varphi &= ud\left(\frac{t}{u}\right) \\ &= (c_{\infty}t^3 + O(t^4))\frac{d}{dt}\left(\frac{t}{(c_{\infty}t^3 + O(t^4))}\right) \\ &= (c_{\infty}t^3 + O(t^4))\left(\frac{1}{(c_{\infty}t^3 + O(t^4))} - t\frac{3c_{\infty}t^2 + O(t^3)}{(c_{\infty}t^3 + O(t^4))^2}\right) \\ &= 1 - \frac{3c_{\infty}t^3 + O(t^4)}{c_{\infty}t^3 + O(t^4)} \end{split}$$

と表される. 従って $\varphi(P_{\infty})=(1-3)dt=-2dt\neq 0$ であるから φ は $C(\lambda)$ 上非零な正則微分である.*1

1 次ホモロジー群 $H_1(C(\lambda), \mathbb{Z})$ のシンプレクティック基底 1.3

 λ によって定まる $H_1(C(\lambda), \mathbb{Z})$ のシンプレクティック基底を定める. $P_0 \in C_0(\lambda)$ を $C(\lambda)$ の基点とする. まず, $\lambda \in (0,1)$ に対して定める.

 $\ell_{\infty,0},\ell_{0,\lambda},\ell_{\lambda,1},\ell_{1,\infty}$ をそれぞれ、 P_i から P_j への曲線で次を満たすものとする: $\operatorname{pr}(\ell_{i,j}([0,1])) = [i,j], (i,j) = [i,j]$ $(\infty,0),(0,\lambda),(\lambda,1),(1,\infty)^{*2}$ かつ、これらの曲線の $w=\sqrt{v(v-\lambda)(v-1)}$ における偏角が次の表 1.1 で与えられ る*³.

v	$-\infty$	$\ell_{\infty,0}$	0	$\ell_{0,\lambda}$	λ	$\ell_{\lambda,1}$	1	$\ell_{1,\infty}$	∞
arg(v)		π	*	0	0	0	0	0	*
$arg(v - \lambda)$	*	π	π	π	*	0	0	0	*
arg(v-1)	*	π	π	π	π	*	0	0	*
arg(w)	*	$\frac{3\pi}{2}$	*	π	*	$\frac{\pi}{2}$	*	0	*
表 $1.1 \arg(w)$									

即ち, $\ell_{\infty,0}$, $\ell_{1,\infty}$ は w 上 $\sqrt{1}=1$ となる分枝で, $\ell_{0,\lambda}$, $\ell_{\lambda,1}$ は w 上 $\sqrt{1}=-1$ となる分枝である. こうして得られ た曲線によって $H_1(C(\lambda),\mathbb{Z})$ のシンプレクティック基底 A,B を構成する: Remark 1.1.5 で与えられた被覆変換 ρ によって終点が $P_0 = [1:0:0]$ であるような曲線 A, B を

$$A = \ell_{\infty,0} \cdot (-\rho(\ell_{\infty,0})), B = (-\ell_{0,\lambda}) \cdot \rho(\ell_{0,\lambda})$$

と定める. ただし, 曲線 c_1 , c_2 に対して, 曲線 $c_2 \cdot c_1$ を

$$c_2 \cdot c_1(t) = \begin{cases} c_1(2t) & 0 \le t \le \frac{1}{2} \\ c_2(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

^{*1} 正則微分の空間 $\Omega^1(X)$ の基底は共通零点を持たないことから, φ は零点を持たない. *2 $\ell_{i,j}$ の pr による像が \mathbb{P}^1 の各平面の実軸上にあることだと思う. *3 各曲線を上半平面 Π を通じて解析接続することにより表の偏角が得られる.

で定める. これを

$$A = (1 - \rho) \cdot \ell_{\infty,0}, B = -(1 - \rho) \cdot \ell_{0,\lambda}$$

と表す. $-B\cdot A$ は 0 の周りを負の方向に周る閉曲線となるから, 交点数は $-B\cdot A=-1$ となる. よって $A\cdot B=-1$ となることから交点行列は,

$$\begin{pmatrix} A \cdot A & A \cdot B \\ B \cdot A & B \cdot B \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

となり, A, B は $H_1(C(\lambda), \mathbb{Z})$ のシンプレクティック基底である.

任意の $\lambda \in \mathbb{C} \setminus \{0,1\}$ に対して A,B を定める. (0,1) のある一点に対して定まる $\ell_{j,k}$ と A,B を λ への曲線によって解析接続することにより定める. これは経路の取り方によるが, 周期の違いを除けば一意に定まる.

1.4 Abel-Jacobi **写像**

これまでで得られたシンプレクティック基底 A,B と正則微分の空間の基底 φ によって Abel-Jacobi 写像を定義していく.これらの基底に関する周期行列は,

$$\Pi = \left(\frac{\tau_A}{\tau_B}\right), \ \tau_A = \int_A \varphi, \ \tau_B = \int_B \varphi$$

であり、Riemann の双線形関係*4 から $\tau = \frac{\tau_A}{\tau_B}$ は ${\rm Im}(\tau) > 0$ を満たす.

Definition 1.4.1. (Abel-Jacobi 写像, 周期写像)

 $\lambda \in \mathbb{C} \setminus \{0,1\}$ に対して定まるシンプレクティック基底 A,B と正則微分 φ , 周期行列

$$\Pi = \begin{pmatrix} \tau \\ 1 \end{pmatrix}, \ au_A = \int_A \varphi, \ au_B = \int_B \varphi, \ au = \frac{ au_A}{ au_B}$$

を取り, $L_{\tau} = \mathbb{Z}\tau + \mathbb{Z}$ とするとき, Abel-Jacobi 写像を

$$j \colon C(\lambda) \to \mathbb{C}/L_{\tau} = E_{\tau}; P \mapsto \frac{1}{\tau_B} \int_{P_0}^{P} \varphi$$

と定める. これは P_0 から P への経路の取り方の違いから出る積分は L_τ に入るため well-defined である. また, 各 $\lambda \in \mathbb{C}\setminus\{0,1\}$ に対して τ が定まったことから, 周期写像を

per:
$$\mathbb{C} \setminus \{0,1\} \to \mathbb{H}; \lambda \mapsto \tau$$

と定める. ただしこれは (0,1) から λ への解析接続による違いがあるため多価関数である.

Remark 1.4.2.

種数 g>0 の閉 Riemann 面の上の Abel-Jacobi 写像は全射かつ埋め込みになっていたことから g は全単射正則写像であり、周期写像 per は単射であった g に g に g に g を通して複素トーラス g に Riemann 面として同型である。 従って、 g に g に対して、 g に g を満たす g に g となるものが唯一つ存在する.

^{*4} 一般に種数 g の閉 Riemann 面上のシンプレクティック基底と正規基底から定める周期行列 Π は, $\Pi=\begin{pmatrix} Z\\I_g\end{pmatrix}$ であり, Riemann の双線 形関係は $Z-{}^tZ=O_g,$ $i(\bar{Z}-{}^tZ)>0$ である.

 $^{^{*5}}$ U_0 や U_2 で \mathbb{C}^2 と同一視している

<u>Theorem 1.4.3.</u>

Abel-Jacobi 写像の逆写像 $j^{-1}: E_{\tau} \to C(\lambda); z \mapsto (v, w)$ は、テータ関数を用いて

$$v = \frac{\vartheta_{[1,0]}(0,\tau)^2 \vartheta_{[1,1]}(z,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2 \vartheta_{[0,1]}(z,\tau)^2},\tag{1.1}$$

$$w = -\frac{\vartheta_{[0,1]}(0,\tau)^2 \vartheta_{[1,0]}(0,\tau)^2 \vartheta_{[0,0]}(z,\tau) \vartheta_{[1,0]}(z,\tau) \vartheta_{[1,1]}(z,\tau)}{\vartheta_{[0,0]}(0,\tau)^4 \vartheta_{[0,1]}(z,\tau)^3} \tag{1.2}$$

と表される.

また、周期写像 per の逆写像 per^{-1} : $per(\mathbb{C} \setminus \{0,1\}) \to \mathbb{C} \setminus \{0,1\}$ は、

$$\lambda = \frac{\vartheta_{[1,0]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^4} \tag{1.3}$$

によって与えられる.

Proof.

まず, $\jmath(P_{\jmath})$ を求める. P_0 は Abel-Jacobi 写像の基点であったため, $\jmath(P_0)\equiv 0$ であることは明らかである. ρ によってもう一つの分枝に写るとき, \sqrt{z} は $-\sqrt{z}$ になることに注意すると,

$$\int_{A} \varphi = \int_{(1-\rho)\cdot \ell_{\infty,0}} \varphi = 2 \int_{-\ell_{\infty,0}} \varphi$$

$$\int_{B} \varphi = \int_{(\rho-1)\cdot \ell_{0,\lambda}} \varphi = 2 \int_{\ell_{0,\lambda}} \varphi$$

より,

$$\int_{P_0}^{P_\infty} \varphi = \frac{\tau_A}{2}$$

$$\int_{P_0}^{P_\lambda} \varphi = \frac{\tau_B}{2}$$

であるから,

$$\jmath(P_{\lambda}) = \frac{1}{\tau_B} \int_{P_0}^{P_{\lambda}} \varphi = \frac{1}{2}$$

$$\jmath(P_{\infty}) = \frac{1}{\tau_B} \int_{P_0}^{P_{\infty}} \varphi = \frac{1}{\tau_B} \frac{\tau_A}{2} = \frac{\tau}{2}$$

である. また, $(1-\rho)\cdot \ell_{\lambda,1}$ は B とのみ交点を持つことから, $H_1(C(\lambda),\mathbb{Z})$ のサイクルとして $(1-\rho)\cdot \ell_{\lambda,1}=-A^{*6}$ であるから,

$$\int_{-A} \varphi = \int_{(1-\rho) \cdot \ell_{\lambda,1}} \varphi = 2 \int_{P_{\lambda}}^{P_{1}} \varphi$$

より,

$$\int_{P_{\lambda}}^{P_{1}}\varphi=-\frac{1}{2}\int_{A}\varphi=-\frac{\tau_{A}}{2}\equiv\frac{\tau_{A}}{2}$$

^{*6 1} を始点とするサイクル

従って,

$$\jmath(P_1) = \frac{1}{\tau_B} \int_{P_0}^{P_1} \varphi$$

$$= \frac{1}{\tau_B} \left(\int_{P_0}^{P_\lambda} + \int_{P_\lambda}^{P_1} \right) \varphi$$

$$= \jmath(P_\lambda) + \frac{1}{\tau_B} \frac{\tau_A}{2} = \frac{1+\tau}{2}$$

である. 以上により,

$$\jmath(P_0) = 0, \ \jmath(P_\lambda) = \frac{1}{2}, \ \jmath(P_\infty) = \frac{\tau}{2}, \ \jmath(P_1) = \frac{1+\tau}{2}$$

を得る.

 U_0 上の局所座標 (v,w) は (v,w)=(0,0) の周りで、 $v=cw^2+O(w^3)$ 、 $c\neq 0$ 、 U_2 上の局所座標 (u,t) は (u,t)=(0,0) の周りで $u=t/u=t/(c_\infty t^3+O(t^3))$ 、 $c_\infty\neq 0$ と展開できたことから、v を P_0 で 2 位の零を持ち、 P_∞ で 2 位の極を持つ有理型関数と見做す。 $\vartheta_{[1,1]}(z,\tau)$ は $z=0(=\jmath(P_0))$ とで 1 位の零を持ち、 $\vartheta_{[0,1]}(z,\tau)$ は $z=\frac{\tau}{2}(=\jmath(P_\infty))$ で 1 位の零を持つのであった.

$$h(z,\tau) = \frac{\vartheta_{[1,1]}(z,\tau)^2}{\vartheta_{[0,1]}(z,\tau)^2}$$

は、 $\vartheta_{a,b}(z+1,\tau)=\exp(2\pi ia)\vartheta_{a,b}(z,\tau)$ 、 $\vartheta_{a,b}(z+\tau,\tau)=\exp(-2\pi ib)\exp(-\pi i(\tau+2z))\vartheta_{a,b}(z,\tau)$ より、 $h(z+p\tau+q,\tau)=h(z,\tau)(p,\ q\in\mathbb{Z})$ を満たすことから E_{τ} 上の有理型関数と見做すことができる.これを Abel-Jacobi 写像 g によって引き戻し $G(\lambda)$ 上の有理型関数だと思うと、

$$v = c_v \frac{\vartheta_{[1,1]}(\jmath(P),\tau)^2}{\vartheta_{[0,1]}(\jmath(P),\tau)^2}$$

となる定数 $c_v \in \mathbb{C}$ が取れる. この定数 c_v を確定させる. $\jmath(P_1) = (1+\tau)/2, P_1 = (1,0) \in C_0(\lambda)$ より、

$$1 = c_v \frac{\vartheta_{[1,1]} \left(\frac{1+\tau}{2}, \tau\right)^2}{\vartheta_{[0,1]} \left(\frac{1+\tau}{2}, \tau\right)^2}$$

$$\iff c_v = \frac{\vartheta_{[1,0]} (0, \tau)^2}{\vartheta_{[0,0]} (0, \tau)^2}$$

よって,

$$v = \frac{\vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2} \frac{\vartheta_{[1,1]}(z,\tau)^2}{\vartheta_{[0,1]}(z,\tau)^2}$$

を得る.

 $P_{\lambda}=[1:\lambda:0]$ より、 $\lambda=v|_{P_{\lambda}}$ であるから、 $z=\jmath(P_{\lambda})=\frac{1}{2}$ を代入すると、

$$\lambda = \frac{\vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2} \frac{\vartheta_{[1,1]}(\frac{1}{2},\tau)^2}{\vartheta_{[0,1]}(\frac{1}{2},\tau)^2} = \frac{\vartheta_{[1,0]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^4}$$

を得る.

w を P_0 , P_λ , P_1 で 1 位の零を持ち, P_∞ で 3 位の極を持つ *7 E_τ 上の有理型関数と見做す. v のときと同様,

$$\frac{\vartheta_{[0,0]}(z,\tau)\vartheta_{[1,0]}(z,\tau)\vartheta_{[1,1]}(z,\tau)}{\vartheta_{[0,1]}(z,\tau)^3}$$

 $^{^{*7}}U_2$ で $w=1/u, u=c_{\infty}t^3+O(t^4)$ という表示を持つことから従う.

は $C(\lambda)$ 上の有理型関数と見做すと,

$$w = c_w \frac{\vartheta_{[0,0]}(\jmath(P),\tau)\vartheta_{[1,0]}(\jmath(P),\tau)\vartheta_{[1,1]}(\jmath(P),\tau)}{\vartheta_{[0,1]}(\jmath(P),\tau)^3}$$

を満たす定数 $c_w \in \mathbb{C}$ が取れる. これを求める. $w^2 = v(v - \lambda)(v - 1)$ に代入すると,

$$\begin{split} c_w^2 \frac{\vartheta_{[0,0]}(z,\tau)^2 \vartheta_{[1,0]}(z,\tau)^2 \vartheta_{[1,1]}(z,\tau)^2}{\vartheta_{[0,1]}(z,\tau)^6} \\ = & \frac{\vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2} \frac{\vartheta_{[1,1]}(z,\tau)^2}{\vartheta_{[0,1]}(z,\tau)^2} (v-\lambda)(v-1) \\ \iff & c_w^2 \frac{\vartheta_{[0,0]}(z,\tau)^2 \vartheta_{[1,0]}(z,\tau)^2}{\vartheta_{[0,1]}(z,\tau)^4} = \frac{\vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2} (v-\lambda)(v-1) \end{split}$$

より, $z \to 0$ と極限を取ると, $\vartheta_{[1,1]}(0,\tau) = 0$ より, $v \to 0$ であるから

$$c_w^2 \frac{\vartheta_{[0,0]}(0,\tau)^2 \vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,1]}(0,\tau)^4} = \frac{\vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2} \lambda$$

となり,

$$\begin{split} c_w^2 &= \frac{\vartheta_{[0,1]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^2\vartheta_{[1,0]}(0,\tau)^2} \frac{\vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^2} \lambda \\ &= \frac{\vartheta_{[0,1]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^4} \lambda = \frac{\vartheta_{[0,1]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^4} \frac{\vartheta_{[1,0]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^4} = \frac{\vartheta_{[0,1]}(0,\tau)^4\vartheta_{[1,0]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^8} \end{split}$$

を得る. よって,

$$c_w = \pm \frac{\vartheta_{[0,1]}(0,\tau)^2 \vartheta_{[1,0]}(0,\tau)^2}{\vartheta_{[0,0]}(0,\tau)^4}$$

を得る。符号を確定させればよい。 $\lambda \in (0,1)$ と $P=(v_1,w_1)$ を $\ell_{0,\lambda}$ の端点以外から取る。このとき、 $w_1^2=v_1(v_1-\lambda)(v_1-1)>0$ より、 $w_1\in\mathbb{R}$ であり、表 1.1 から、 $\arg(w)=\pi$ であるから、 $w_1<0$ となる。 τ_A は純虚数であり、 $\tau_B\in\mathbb{R}$ であるため、 $\tau=\tau_A/\tau_B$ は純虚数となる。また、 $\jmath(P)=z_1$ と表すと、

$$z_1 = \int_{P_0}^{P} \varphi = \frac{1}{\tau_B} \int_{0}^{v_1} \frac{-dv}{\sqrt{v(v-\lambda)(v-1)}}$$

は

$$0 < \int_0^{v_1} \frac{dv}{\sqrt{v(v-\lambda)(v-1)}} < \int_0^{\lambda} \varphi = \tau_B$$

より, $-1 < z_1 < 0$ を満たす.

$$\vartheta_{p,q}(z,\tau) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i (n+p)^2 \tau + 2\pi i (n+p) (z+q)\right)$$

より, $p, q \in \{0, \frac{1}{2}\}$ のとき,

$$\vartheta_{[p,q]}(0,\tau) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i (n+p)^2 \tau + 2\pi i (n+p)q\right)$$

であるから.

$$\pi i(n+p)^2 \tau + 2\pi i(n+p)q = \begin{cases} \pi i n^2 \tau & [p,q] = [0,0] \\ \pi i (n^2 + n + \frac{1}{4})\tau & [p,q] = [1,0] \\ \pi i (n^2 \tau + n) & [p,q] = [0,1] \end{cases}$$

より, τ が純虚数の場合, $\exp(\pi i (n+p)^2 \tau + 2\pi i (n+p)q) > 0$ となり, $\vartheta_{[0,0]}(0,\tau)$, $\vartheta_{[0,1]}(0,\tau)$, $\vartheta_{[1,0]}(0,\tau) \in \mathbb{R}_{>0}$ となる. また,

$$\vartheta_{p,q}(z_1,\tau) = \sum_{n \in \mathbb{Z}} \exp\left(\pi i(n+p)^2 \tau + 2\pi i(n+p)(z_1+q)\right)$$

より,

$$\pi i(n+p)^{2}\tau + 2\pi i(n+p)(z_{1}+q) = \begin{cases} \pi i(n^{2}\tau + 2nz_{1}) & [p,q] = [0,0] \\ \pi i((n+1/2)^{2}\tau + 2(n+1/2)z_{1}) & [p,q] = [1,0] \\ \pi i(n^{2}\tau + 2n(z_{1}+1/2)) & [p,q] = [0,1] \\ \pi i((n+1/2)^{2}\tau + 2(n+1/2)(z_{1}+1/2)) & [p,q] = [1,1] \end{cases}$$

$$= \begin{cases} \pi i n^{2}\tau + 2n\pi i z_{1} & [p,q] = [0,0] \\ \pi i (n+1/2)^{2}\tau + 2\pi i (n+1/2)z_{1} & [p,q] = [1,0] \\ \pi i n^{2}\tau + 2n\pi i (z_{1}+1/2) & [p,q] = [0,1] \\ \pi i (n+1/2)^{2}\tau + 2\pi i (n+1/2)(z_{1}+1/2) & [p,q] = [0,1] \end{cases}$$

ここが分からない $\vartheta_{[p,q]}(z_1,\tau)>0$ となる. 以上により, $w_1<0$ であることから $c_w<0$ となり符号が確定し,

$$w = -\frac{\vartheta_{[0,1]}(0,\tau)^2\vartheta_{[1,0]}(0,\tau)^2\vartheta_{[0,0]}(z,\tau)\vartheta_{[1,0]}(z,\tau)\vartheta_{[1,1]}(z,\tau)}{\vartheta_{[0,0]}(0,\tau)^4\vartheta_{[0,1]}(z,\tau)^3}$$

を得る.

第2章

Jacobi の周期公式

Theorem 2.0.1. (Jacobi's period formula) -

$$\tau \in \left\{\tau \in \mathbb{H} \mid -1 < \operatorname{Re}(\tau) < 1, \mid \tau - \frac{1}{2} \mid > \frac{1}{2}, \mid \tau + \frac{1}{2} \mid > \frac{1}{2} \right\} \ \ \angle \ \ \lambda(\tau) = \frac{\vartheta_{[1,0]}(0,\tau)^4}{\vartheta_{[0,0]}(0,\tau)^4} \ \ \wr \ \ \forall t \cup ,$$

$$\vartheta_{[0,0]}(0,\tau)^2 = F\left(\frac{1}{2}, \frac{1}{2}, 1; \lambda(\tau)\right)$$

が成立. ただし, F は Gauss の超幾何関数である.