Fragmentation

ARP

NAT

ICMP

Maximum Transfer Unit (MTU)

- Die MTU ist die maximale Datenmenge, die ein Rahmen der Data Link Layer transportieren kann
 - Die MTU umfasst das gesamte Datagramm (IP-Header und Nutzdaten)
- IP nutzt ggf. verschiedene Protokolle der Data Link Layer

Problem:

- Link-Abschnitte zum Ziel besitzen ggf. unterschiedliche MTUs
 - → Das Datagramm kann größer sein als eine dieser MTUs

Problem:

Datagramm ist größer als die MTU

Lösung:

Fragmentierung des Datagramms

- Datagramm wird in kleinere Datagramme (Fragmente) zerlegen
- Fragmente werden unabhängig voneinander zum Ziel vermittelt
- Jedes Fragment ist ein eigenständiges Datagramm mit dupliziertem, aber modifiziertem Header
- Ein Datagramm kann mehrmals fragmentiert werden

IP-Fragmentation (2)

- Fragmentierung des Datagramms kann erfolgen
 - in jedem Router
 - prinzipiell auch im sendenden Host (gewöhnlich nicht verwendet)
- Reassemblierung des Datagramms
 - Erst der Zielhosts setzt die fragmentierten Datagramme wieder zum ursprünglichen Datagramm zusammen
 - Der Zielhosts verwirft alle Fragmente eines Datagramms, wenn
 - nicht alle Fragmente innerhalb einer Zeitspanne ankommen
 - Fragmente fehlerhaft sind

Anmerkung

- Die path-MTU ist das Datagramm maximaler Größe, das entlang der gesamten Wegstrecke ohne Fragmentierung übertragen werden kann.
- Heute sollten alle TCP/IP Implementierungen eine MTU von 576 Byte unterstützen

Beispiel: IP-Fragmentation

Fragmentation

ARP

NAT

ICMP

Address Resolution Protocol (ARP)

Übersicht

Beispiel: Ethernet LAN

- ARP und RARP Meldungen werden in den Frame des Data Link Layer Protocols eingebettet
- Beispiel: Ethernet Protocol

- Das Typfeld im Ethernet Frame wird für ARP auf 0x0806 (2054) gesetzt.
 - Dadurch lassen sich ARP-Pakete von Paketen anderer Protokolle wie beispielsweise IP unterscheiden.
- Meist Padding Bits erforderlich

Beispiel: Ethernet LAN (2)

- Alle Systeme sind durch ein Broadcast-Medium miteinander verbunden
- Jedes Interface hat eine eindeutige 48-bit (MAC) Hardware-Adresse

Aufgabe: Router 1 soll ein Datagramm des sendenden Hosts (Quell-IP 194.102.22.6) an Hosts A mit Ziel-IP 194.168.59.2 weiterleiten.

Problem: Wie lautet die Hardware (HW) - Adresse für die IP 194.168.59.2

- **Lösung**: Der ARP Cache (Adressumsetztabelle) liefert die Zuordnung

 IP-Adresse → Layer-2 Hardware-Adresse
 - ARP Cache wird automatisch durch das ARP-Protokoll erstellt
 - Einträge werden nach einem Zeitintervall gelöscht

Adresserkennung mittels ARP

Problem: MAC Adresse von Host A nicht im ARP Cache vorhanden

- Router 1 sendet ARP-Request per LAN Broadcast an alle LAN-Systeme "Wie lautet die HW-Adresse von Host A"
- Host A erkennt seine eigene IP-Adresse im *ARP-Request*
 - Quelle IP-Adresse → Quelle HW-Adresse in ARP Cache von Host A

Adresserkennung mittels ARP (2)

- Host A schickt dem Router 1 ein *ARP-Reply*
 - Dieses enthält seine IP und Layer 2 Hardware– Adresse
- Router 1 kopiert aus dem *ARP-Reply* die Zuordnung
 - Quelle IP-Adresse → Quelle HW-Adresse in ARP Cache von Router 1

Eigenschaften von ARP

- ARP Pakete (Request und Reply) werden nicht authentifiziert
- ARP ist zustandslos → Ein Host kann ein ARP Reply ohne vorheriges ARP Request senden
- Gratuitous ARP Reply (unaufgefordertes ARP)
 - Ein Host sendet ein ARP Reply für seine eigene IP-Adresse
 - Er macht sich selbst im Netz bekannt (Broadcast im LAN)
- ARP-Update
 - Existiert für eine IP ein Eintrag im ARP-Cache, muss bei Empfang eines ARP- Paketes mit dieser IP ein Update des Eintrages erfolgen

Sicherheitsproblem

- Ein ARP Request oder Reply kann verwendet werden, um gezielt einen Eintrag im ARP-Cache zu verändern (ARP Poisoning)
- Dies ermöglich es, IP Verkehr auf einen anderen Host umzuleiten

Fragmentation

ARP

NAT

ICMP

Network Address Translation (NAT)

Probleme:

- P1: Der einem Unternehmen zugeteilte IP-Adress-Bereich ist begrenzt
 - Es sind mehr Systeme als vorhandene Adressen anzuschließen
- P2: Ein Unternehmen will die interne Netzwerkstruktur verbergen

Lösung: Network Address Translation (NAT)

- NAT ist eine Funktion eines Routers, welche eine (private) IP-Adresse eines Datagramms gegen eine neue (öffentliche) Adresse ausgetauscht
- Ein NAT-Router befindet sich an der Netzwerkgrenze zwischen privatem und öffentlichem Internet
- L1: Unternehmen unterhält ein Netzwerk mit privaten IP- Adressen
 - Der private IP Adressbereich wird im Internet nicht vermittelt
 - Der private Adressbereich ist weltweit nicht eindeutig
- L2: private IP Adressen und die Netzstruktur innerhalb eines Netzwerkes können ohne Einfluss auf die Außenwelt (Routing) geändert werden

extern zur Verfügung

Beispiel: NAT (2)

Frage: Warum wird NAT in diesem Beispiel angewendet?

Network Address Translation (NAT)

Probleme:

- P1: Der einem Unternehmen zugeteilte IP-Adress-Bereich ist begrenzt
 - Es sind mehr Systeme als vorhandene Adressen anzuschließen
- P2: Ein Unternehmen will die interne Netzwerkstruktur verbergen

Lösung: Network Address Translation (NAT)

- NAT ist eine Funktion eines Routers, welche eine (private) IP-Adresse eines Datagramms gegen eine neue (öffentliche) Adresse ausgetauscht
- Ein NAT-Router befindet sich an der Netzwerkgrenze zwischen privatem und öffentlichem Internet
- L1: Unternehmen unterhält ein Netzwerk mit privaten IP- Adressen
 - Der private IP Adressbereich wird im Internet nicht vermittelt
 - Der private Adressbereich ist weltweit nicht eindeutig
- L2: private IP Adressen und die Netzstruktur innerhalb eines Netzwerkes können ohne Einfluss auf die Außenwelt (Routing) geändert werden

138.76.29.0/24

10.0.14.3

Beispiel: NAT - detailliert

NAT Erweiterung -IP Masquerade

Problem

- Es steht nur eine einzige öffentliche IP- Adresse zur Verfügung
 - Diese repräsentiert ein gesamtes lokales Subnetz in der Außenwelt

Lösung

 Die (UDP) Port Nummern des Anwendungsprotokolls werden zur Unterscheidung der lokalen Systeme verwendet

Source – Port / Destination - Port:

- Identifiziert Sende-/Empfangsprozess der Application-Layer
- Maximale Port Nummer ist 2¹⁶-1= 65.535

NAT Erweiterung -IP Masquerade (2)

Network Address and Port Number Translation

- Es wird nur eine öffentliche IP- Adresse verwendet
- Die (UDP) Quell-Port Nummer des Anwendungsprotokolls unterscheidet die lokalen Systeme

Alle Datagramme, die das lokale Subnet verlassen, haben die gleiche Quell-IP-Adresse, aber verschiedene Quell-Port Nummern des Anwendungsprotokolls

Alle Systeme im lokalen Subnetz verwenden private IP-Adressen

Beispiel: IP Masquerade

Der NAT-Router muss folgende Aufgaben erfüllen

- Ausgehenden Datagramme
 - ersetze die Quell-IP-Adresse in jedem ausgehenden Datagramm

(private Quell-IP-Adresse, Port#) → (NAT-IP-Adresse, neue Port#)

- berechne neue IP-Header- / TCP / UDP Prüfsumme
- NAT Übersetzungstabelle
 - erzeuge für jedes Adresspaar den Eintrag

(private Quell-IP-Adresse, Port#) <--> (NAT-IP-Adresse, neue Port#)

- Eingehende Datagramme
 - ersetze die Ziel-IP-Adresse in jedem eingehenden Datagramm

(Ziel-NAT-IP-Adresse, neue Port#) → (private Ziel-IP-Adresse, Port#)

• berechne neue IP-Header- / TCP/UDP-Prüfsumme

Vorteil

- 16-Bit Port-Nummern Feld im UDP / TCP Protokoll
 - ca. 60.000 Verbindungen mit einer einzigen NAT-IP-Adresse möglich

Nachteil

- NAT verletzt die Internet-Architektur
 - Router arbeiten nur bis zur Network Layer
 - geänderte Port-Adressen gehören zur Transport Layer
 - → Router muss Transport Layer Protocol interpretieren
 - Ende-zu-Ende Applikationen müssen ggf. die Verwendung von NAT berücksichtigen
 - Ein Host im öffentlichen Internet kann meist keine Verbindung zu einem Host im privatem Netz herstellen
 - Problem für Peer-to-Peer Applikationen

Problem

- External client wants to connect to internal server with address 10.0.0.3
 - client can't use server's private address 10.0.0.3 as destination address
 - only one external address is visible: 138.76.29.7

Solution: Port forwarding

- Statically configure NAT to forward incoming connection requests at given port to server
 - e.g., [138.76.29.7, port 2500] always forwarded to [10.0.0.3 port 5500]

NAT with External Relay

Solution: External relay server

- Principle used by Skype (automatic registration to external super-node)
- Der interne Client stellt eine Verbindung zum externe Relay-Knoten her:
 - registiert seine privat-Adresse und die Port-nummer am Relay-Knoten
 - der Relay-Knoten kennt die Zuordnung innerhalb der NAT-Router Ubersetzungstabelle
- Der externe Client verbindet zum Relay-Knoten.
- Der Relay-Knoten überbrückt Pakete zwischen den Verbindungen

benutzt "reverse tunnel" zum internen Klient

Fragmentation

ARP

NAT

ICMP

Übersicht

- Das ICMP Protokoll unterstützt das IP Protokolls und ermöglicht:
 - Austausch von Fehlermeldungen
 - einfache Anfragen und Meldungen

■ ICMP Meldungen werden in IP Datagrammen übermittelt

Type	Code dentifier	Checksum Sequenznummer	Abhängig vom
ICMP - Daten			- Message-Typ

ICMP – Format für Meldungen, die ein Host sendet

■ Type (1 Byte): Typ der ICMP Message

■ Code (1 Byte): Untertyp der ICMP Message

■ Checksum (2 Byte): ähnlich wie IP-Header Prüfsumme, wird über

ganze ICMP Message berechnet

Identifier: eindeutige Kennung der gesendeten ICMP-

Message

Sequenznummer: wird für Meldungen gleichen Typs hochgezählt

■ ICMP – Daten: Abhängig vom Message-Typ: häufig IP-Header+

erste 8 Byte des IP-Datagramms, das zu einer

<u>Fehlermelduna führte</u>

Befehl: "ping Ziel-IP-Adresse" "Ist der Host im Netzwerk erreichbar?"

- ICMP Request:
 - Host oder Router sendet "echo request" an einen Zielhost
- ICMP Reply:
 - Zielhost schickt "echo reply" an die Quelle zurück
 - Quelle gibt die gemessene RTT aus
- Anmerkung: Sequenznummer und Identifier einer ICMP-Reply Message haben den gleichen Wert wie die ICMP Request Message

■ Einige Beispiele für ICMP Meldungen

IP Header	ICMP Meldung
↑ _P	rotocol = 1

Тур	Code	Beschreibung
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired

typische Fehlermeldungen

typische Fehlermeldungen