SYNTHESIS OF Al-Si ALLOYS AND STUDY OF THEIR MECHANICAL PROPERTIES

BY

Soumyajit Nayak 107MM004

Anand Karthik K V N B 107MM036

Under the Supervision of Prof. K. Dutta

Department of Metallurgical & Materials Engineering National Institute Of Technology, Rourkela

CONTENTS:

- Introduction
- Objective
- Experimental
- Results
- Conclusion

INTRODUCTION

ALUMINIUM ALLOYS:

- High Specific strength
- High strength to weight ratio.
- These have bright lusture.
- Used in automobile and aerospace industries.
- Alloying elements copper, magnesium, manganese, silicon, and zinc.
- These are designated as from 1xxx to 8xxx.

DESIGNATION OF ALUMINUM ALLOYS:

Alloy	Main alloying element	Applications
1ххх	Mostly pure aluminum; no major alloying additions	Electrical and chemical industries
2xxx	Copper	Aircraft components
Зххх	Manganese	Architectural applications
<u>4xxx</u>	Silicon	Automobile parts, welding rods
5ххх	Magnesium	Boat hulls, marine industries
6ххх	Magnesium and silicon	Architectural extrusions
7ххх	Zinc	Aircraft components
8ххх	Other elements (e.g., Fe, Ni or Ti)	
9ххх	Unassigned	

ALUMINIUM - SILICON ALLOYS:

- These are designated as 4xxx alloys.
- > These form a eutectic mixture at 12.6 wt% silicon, 577 °C.
- > These are of significant industrial importance.

EFFECTS OF SILICON:

- Increased fluidity.
- Reduces the melting temperature.
- Decreases the shrinkage during solidification.

PHASE DIAGRAM:

PROPERTIES:

- High specific strength.
- High wear resistance.
- Seizure resistance.
- High stiffness.
- Better high temperature strength.
- Controlled thermal expansion coefficient.
- Improved damping capacity.

USES:

- Increased use in automobile industry.
- Used for forging.
- > As a weld filler alloy.

OBJECTIVE

Due to the advancements in the field of applications of Al-Si alloys, the study of their wear and tensile behaviour is necessary.

Although many investigations exist in literature, it is evident that there is enough scope for further research of Al-Si alloys especially their mechanical properties.

Therefore the objectives of this study are:

- Preparation of Al-Si alloys of hypo and hyper eutectic compositions.
- To study of their microstructure.
- To study of their mechanical properties.
- To evaluate their wear behaviour.

EXPERIMENTAL

PREPARATION OF ALLOYS:

- Prepared by casting route.
- > 99.7% pure Al and 99.5% pure Si were taken.
- The dimensions of the samples were of 100 mm in length, 30 mm in width and 20 mm in height.

Sl.No.	Material	Al (in gms)	Si (in gms)
1	Al - 7% Si	250	18.8
2	Al - 12% Si	250	34.1
3	Al - 14% Si	250	40.7

COMPOSITION ANALYSIS: OPTICAL EMISSION SPECTROSCOPY

- Analysis of chemical composition
- Model: ARL 3460 Metals Analyser, Thermo Electron Corporation Limited, Massachusetts, United States of America.
- > The dimensions of the samples are 20 mm x 20 mm.

OPTICAL MICROSCOPY:

- Microstructures of the polished alloy samples were observed under computerized optical microscope.
- Model: Olympus BX51, Essex, UK
- Etchant used is Keller's reagent.

SCANNING ELECTRON MICROSCOPY

- Model: JEOL6480 LV scanning electron microscope, JEOL Limited, Japan.
- The samples were mechanically polished and the experiment was performed in etched conditions.
- > Keller's reagent was used as etchant.

TENSILE TEST:

- Tensile properties of the alloys were analysed by carrying out tests on the
 UTM (universal testing machine)
- Model: INSTRON 1195, Instron Industrial Products, Pennsylvania, USA.
- These tests were carried out with a cross head speed of 1mm/min.

Tensile Test Specimen

CONTD...

Universal testing machine (INSTRON 1195)

VICKERS HARDNESS TEST:

- The macro hardness tests of all the samples have been carried out using a Vicker's hardness testing machine.
- > It has a square-base diamond pyramid indenter.
- > The applied load during the testing was 5 kgf with a dwell time of 15 secs,
- > The Vickers hardness number (VHN) is calculated from the following equation:

$$VHN = \frac{2 P \sin \frac{136^{\circ}}{2}}{D^2} = \frac{1.854 P}{D^2}$$

CONTD..

Vickers Hardness Testing Machine

WEAR TEST:

- This test was carried out using Computerized Ducom friction and wear monitor pin on disc wear test machine.
- Model: DUCOM Wear and Friction Monitor, TR-20-M100, Bangalore, India
- The alloy samples were held stationary and a required normal load was applied.
- The tests were carried out by varying one of the following three parameters and keeping other two constants:
 - i. applied load (is 20 N, when constant)
 - ii. sliding speed (is 20 rpm, when constant)
 - iii. sliding distance (is 1256 mm, when constant)
- This test was carried out in dry conditions.

CONTD...

Computerized Ducom friction and wear monitor pin on disc wear test machine

RESULTS

Compositional Analysis:

	Al-7% Si (wt%)	Al-12% Si (wt%)	Al-14% Si (wt%)
Si	7.003	12.002	13.76
Fe	0.157	0.151	0.14
Cu	0.007	0.003	0.005
Mn	0.008	0.009	0.007
Mg	0.001	-	-
Zn	0.038	0.022	0.019
Ti	0.016	0.011	0.018
Ni	0.002	-	-
Ca	0.003	0.003	0.001
В	0.001	0.002	0.001
Bi	-	0.001	-
V	0.004	0.004	0.004
Со	0.001	0.001	0.001
Sb	0.001	0.001	0.001
Ga	0.015	0.015	0.015
Р	0.001	-	-
As	0.002	0.002	0.002
Al	92.74	87.77	86.02

Microstructure:

Microstructure of Al-7% Si

Microstructure of Al-12% Si sample

Microstructure of Al-14% Si sample

Tensile Test:

Stress – strain curve for Al-7% Si samples

Stress – strain curve for Al-12% Si samples

Stress – strain curve for Al-14% Si samples

Comparison of ultimate tensile strength:

	UTS of Sample 1	UTS of Sample 2	Average UTS
	(In MPa)	(In MPa)	(In MPa)
Al - 7% Si	160.97	161.87	161.42
Al – 12% Si	163.21	163.71	163.46
Al – 14% Si	172.13	170.38	171.255

Comparison of yield strength:

	YS of Sample 1	YS of Sample 2	Average YS (In
	(In MPa)	(In MPa)	MPa)
Al - 7% Si	41.3	45.5	43.4
Al – 12% Si	48.7	50.6	49.65
Al – 14% Si	61	62.5	61.75

Comparison of total elongation:

	Total Elongation of Total Elongation of Sample 1 (In %) Sample 2 (In %)		Average Total Elongation (In %)	
Al - 7% Si	22.72	24.912	22.816	
Al – 12% Si	9.544	9.816	9.68	
Al – 14% Si	10.848	9.448	10.418	

Vickers Hardness Test:

Composition	D ₁ (in μm)	D ₂ (in μm)	VHN	Avg VHN
	431.6	430.5	49.9	
	421.5	416.6	52.8	
Al-7% Si	425.6	418.3	52.1	52.14
	418.7	415.9	53.2	
	421.3	417.6	52.7	
	371.8	375.0	66.5	
	369.4	386.4	64.9	
Al-12% Si	376.9	378.8	64.9	65.5
	373.6	375.8	66.0	
	376.3	378.1	65.2	
	367.3	370.4	68.2	
	359.3	362.9	71.1	
Al-14% Si	362.4	365.3	70.0	69.12
	369.7	367.8	68.2	
	368.9	369.1	68.1	

Variation of hardness along with their standard deviation

Wear Test:

Load vs. Wear

Load (kN)		Wear (μm)		
		Al – 7% Si	Al – 12% Si	Al – 14% Si
I	10	83.45	35.44	19.29
II	20	108.79	50.5	35.13
III	30	155.44	107.77	74.88

Sliding speed vs. Wear

	Sliding Speed		Wear (μm)	
	(rpm)	Al – 7% Si	Al – 12% Si	Al – 14% Si
1	10	64.44	50.5	37.55
II	20	86.62	69.77	60.48
III	30	124.11	114.74	100.79

Sliding distance vs. Wear

	Sliding Distance		Wear (μm)	
	(mm)	Al – 7% Si	Al – 12% Si	Al – 14% Si
ı	1256	135.58	124.38	117.48
II	1884	152	141.21	135.06
Ш	2512	198.42	182.43	163.51

Microstructure of worn surfaces:

a. Al-7% Si

b. Al-12% Si

c. Al-14% Si

Microstructure of Al-Si samples at low magnification

a. Al-7% Si

b. Al-12% Si

c. Al-14% Si

CONCLUSIONS

- The prepared aluminium-silicon alloys have homogenous distribution of silicon throughout the cast.
- The amount of primary silicon increases with the increase in silicon amount in the cast.
- Yield strength and ultimate tensile strength increases with the increase of weight percentage of silicon.
- Total elongation decreases with the increase of weight percentage of silicon.
- ➤ Hardness of the Al-Si composite increases with the increase in amount of silicon present.
- The height loss due to wear decreases when the percentage of silicon increases.

REFERENCES

- 1. http://en.wikipedia.org/wiki/Alloy, retrieved on 16th April 2011.
- 2. Gaber A., Gaffar M.A., Mostafa M.S., Abo Zeid E.F.; Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys, J. Alloys Compd., Vol. 429 (2007), pp. 167-175.
- 3. Davis J. R., Aluminum and aluminum alloys, J. R. Davis & Associates, ASM International. Handbook Committee, pp 3-8.
- 4. http://www.keytometals.com/Article80.htm, retrieved on 16th April 2011.
- 5. Das S., Mondal D.P., Sawla S., Ramkrishnan N.; Synergic effect of reinforcement and heat treatment on the two body abrasive wear of an Al–Si alloy under varying loads and abrasive sizes, Wear, Vol. 264 (2008): pp. 47–59.
- 6. Cornell R., Bhadeshia H.K.D.H; Aluminium-Silicon Casting Alloys,

 http://www.msm.cam.ac.uk/phase-trans/abstracts/M7-8.html, retrieved on 19th April, 2011.
- 7. Murray J.L., McAlister A.J.; ASM Handbook Volume 3: Alloy Phase Diagrams, pp. 312.
- 8. Miller W.S., Zhuang L., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, Volume 280, Issue 1, Pages 37-49.
- 9. Lee, J.A., Chen, P.S.; Aluminium silicon alloy having improved properties at elevated temperatures and articles cast therefrom, US Patent No. 6399020.
- 10. Chang J., Moon I., Choi C.; Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals, J Mater Sci, Vol.33 (1998): pp. 5015-5023.

- 11. Kori S., Murty B., Chakraborty M.; Development of an efficient grain refiner for Al-7% Si alloy, Mater. Sci. Eng.: A, Volume 280, Issue 1 (2000): pp. 58-61.
- 12. Sidjanin L., Rajnovic D.; Characterization of Microstructure in Commercial Al-Si Piston Alloy,

 Microscopy advanced tools for tomorrow's materials Autumn School on Materials Science and

 Electron Microscopy 2007.
- 13. Wislei R. Osório, Noé Cheung, Leandro C. Peixoto and Amauri Garcia; Corrosion Resistance and Mechanical Properties of an Al 9wt%Si Alloy Treated by Laser Surface Remelting, Int. J. Electrochem. Sci., Vol. 4 (2009): pp. 820-831.
- 14. Torabian H., Pathak J.P. and Tiwai S.N.; Wear Characteristics of Al-Si alloys, Wear, Vol. 172 (1994), pp. 49-58.
- 15. Chen M., Alpas A.T.; Ultra-mild wear of a hypereutectic Al–18.5 wt. % Si alloy, Wear, Vol. 265 (2008): pp. 186–195.
- 16. Goto H., Omori S. and Uchijo K.; Wear Behavior of Al-Si Alloy impregnated Graphite Composite, Tribol. Trans., Vol. 44 (2001), 4, pp. 551-558.
- 17. E8M-03, Standard test method for tension testing of metallic materials (Metric), ASTM Annual Book of Standards, 03.01, West Conshohocken, PA, 2003.
- 18. B.N. Pramila Bai and S.K. Biswas; Effect of magnesium addition and heat treatment on mild wear of hypoeutectic aluminium-silicon alloys, Acta Metall. Mater., Vol. 39:5 (1991), pp. 833-840.

THANK YOU @