



## SEQUENCE LISTING

## (1) GENERAL INFORMATION:

- (i) APPLICANT: Harrington, Lea A.  
Robinson, Murray O.
- (ii) TITLE OF INVENTION: NOVEL GENES ENCODING TELOMERASE PROTEINS
- (iii) NUMBER OF SEQUENCES: 44
- (iv) CORRESPONDENCE ADDRESS:
  - (A) ADDRESSEE: Amgen Inc.
  - (B) STREET: One Amgen Center Drive
  - (C) CITY: Thousand Oaks
  - (D) STATE: CA
  - (E) COUNTRY: USA
  - (F) ZIP: 91320-1789
- (v) COMPUTER READABLE FORM:
  - (A) MEDIUM TYPE: Floppy disk
  - (B) COMPUTER: IBM PC compatible
  - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
  - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 08/951,733
  - (B) FILING DATE: 16-OCT-1997
  - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 08/873,039
  - (B) FILING DATE: 11-JUN-1997
- (viii) PRIOR APPLICATION DATA:
  - (A) APPLICATION NUMBER: US 08/751,189
  - (B) FILING DATE: 15-NOV-1996
- (ix) ATTORNEY/AGENT INFORMATION:
  - (A) NAME: Oleski, Nancy A.
  - (B) REGISTRATION NUMBER: 34,688
  - (C) REFERENCE/DOCKET NUMBER: A-433B
- (x) TELECOMMUNICATION INFORMATION:
  - (A) TELEPHONE: (805) 447-6504
  - (B) TELEFAX: (805) 499-8011

## (2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7881 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGAAAAAC TCCATGGGCA TGTGTCTGCC CATCCAGACA TCCTCTCCTT GGAGAACCGG

60

|            |             |             |            |             |             |      |
|------------|-------------|-------------|------------|-------------|-------------|------|
| TGCCTGGCTA | TGCTCCCTGA  | CTTACAGCCC  | TTGGAGAAC  | TACATCAGCA  | TGTATCTACC  | 120  |
| CACTCAGATA | TCCTCTCCTT  | GAAGAACCGAG | TGCCTAGCCA | CGCTTCCTGA  | CCTGAAGACC  | 180  |
| ATGGAAAAAC | CACATGGATA  | TGTGTCTGCC  | CACCCAGACA | TCCTCTCCTT  | GGAGAACCGAG | 240  |
| TGCCTGGCCA | CACTTCTGA   | CCTGAAGACC  | ATGGAGAAC  | CACATGGACA  | TGTTTCTGCC  | 300  |
| CACCCAGACA | TCCTCTCCTT  | GGAGAACCGG  | TGCCTGGCCA | CCCTCCCTAG  | TCTAAAGAGC  | 360  |
| ACTGTGTCTG | CCAGCCCCTT  | GTTCCAGAGT  | CTACAGATAT | CTCACATGAC  | GCAAGCTGAT  | 420  |
| TTGTACCGTG | TGAACAAACAG | CAATTGCCTG  | CTCTCTGAGC | CTCCAAGTTG  | GAGGGCTCAG  | 480  |
| CATTTCTCTA | AGGGACTAGA  | CCTTTCAACC  | TGCCCTATAG | CCCTGAAATC  | CATCTCTGCC  | 540  |
| ACAGAGACAG | CTCAGGAAGC  | AACTTTGGGT  | CGTTGGTTG  | ATTCAAGAAGA | GAAGAAAGGG  | 600  |
| GCAGAGACCC | AAATGCCTTC  | TTATAGTCTG  | AGCTTGGGAG | AGGAGGAGGA  | GGTGGAGGAT  | 660  |
| CTGGCCGTGA | AGCTCACCTC  | TGGAGACTCT  | GAATCTCATC | CAGAGCCTAC  | TGACCATGTC  | 720  |
| CTTCAGGAAA | AGAAGATGGC  | TCTACTGAGC  | TTGCTGTGCT | CTACTCTGGT  | CTCAGAAGTA  | 780  |
| AACATGAACA | ATACATCTGA  | CCCCACCCTG  | GCTGCCATT  | TTGAAATCTG  | TCGTGAACCT  | 840  |
| GCCCTCCTGG | AGCCTGAGTT  | TATCCTCAAG  | GCATCTTGT  | ATGCCAGGCA  | GCAGCTGAAC  | 900  |
| GTCCGGAATG | TGGCCAATAA  | CATCTTGCC   | ATTGCTGCTT | TCTTGCCGGC  | GTGTCGCCCC  | 960  |
| CACCTGCGAC | GATATTCTG   | TGCCATTGTC  | CAGCTGCCTT | CTGACTGGAT  | CCAGGTGGCT  | 1020 |
| GAGCTTTACC | AGAGCCTGGC  | TGAGGGAGAT  | AAGAATAAGC | TGGTCCCCCT  | GCCCGCCTGT  | 1080 |
| CTCCGTACTG | CCATGACGGA  | CAAATTGCC   | CAGTTGACG  | AGTACCAGCT  | GGCTAAGTAC  | 1140 |
| AACCCTCGGA | AGCACCGGGC  | CAAGAGACAC  | CCCCGCCGGC | CACCCCGCTC  | TCCAGGGATG  | 1200 |
| GAGCCTCCAT | TTTCTCACAG  | ATGTTTCCA   | AGGTACATAG | GGTTTCTCAG  | AGAAGAGCAG  | 1260 |
| AGAAAGTTG  | AGAAGGCCGG  | TGATACAGTG  | TCAGAGAAA  | AGAACCTCC   | AAGGTTCACCC | 1320 |
| CTGAAGAACG | TGGTCAGCG   | ACTGCACATC  | CACAAGCCTG | CCCAGCACGT  | TCAAGCCCTG  | 1380 |
| CTGGGTTACA | GATACCCCTC  | CAACCTACAG  | CTCTTTCTC  | GAAGTCGCCT  | TCCTGGGCCT  | 1440 |
| TGGGATTCTA | GCAGAGCTGG  | GAAGAGGATG  | AAGCTGTCTA | GGCCAGAGAC  | CTGGGAGCGG  | 1500 |
| GAGCTGAGCC | TACGGGGAA   | CAAAGCGTCG  | GTCTGGGAGG | AACTCATTGA  | AAATGGGAAG  | 1560 |
| CTTCCCTTCA | TGGCCATGCT  | TCGGAACCTG  | TGCAACCTGC | TGCGGGTTGG  | AATCAGTTCC  | 1620 |
| CGCCACCATG | AGCTCATTCT  | CCAGAGACTC  | CAGCATGGGA | AGTCGGTGAT  | CCACAGTCGG  | 1680 |
| CAGTTCCAT  | TCAGATTCT   | TAACGCCAT   | GATGCCATTG | ATGCCCTCGA  | GGCTCAACTC  | 1740 |
| AGAAATCAAG | CATTGCCCTT  | TCCTTCGAAT  | ATAACACTGA | TGAGGCCGGAT | ACTAACTAGA  | 1800 |
| AATGAAAAGA | ACCGTCCCAG  | CGGGAGGTTT  | CTTGCCACC  | TAAGCCGTCA  | GCAGCTTCGT  | 1860 |
| ATGGCAATGA | GGATACCTGT  | GTTGTATGAG  | CAGCTCAAGA | GGGAGAAGCT  | GAGAGTACAC  | 1920 |

|             |              |             |             |             |             |      |
|-------------|--------------|-------------|-------------|-------------|-------------|------|
| AAGGCCAGAC  | AGTGGAAATA   | TGATGGTGAG  | ATGCTGAACA  | GGTACCGACA  | G GCCCTAGAG | 1980 |
| ACAGCTGTGA  | ACCTCTCTGT   | GAAGCACAGC  | CTGCCCTGC   | TGCCAGGCCG  | CACTGTCTTG  | 2040 |
| GTCTATCTGA  | CAGATGCTAA   | TGCAGACAGG  | CTCTGTCCAA  | AGAGCAACCC  | ACAAGGGCCC  | 2100 |
| CCGCTGAACT  | ATGCACTGCT   | GTTGATTGGG  | ATGATGATCA  | CGAGGGCGGA  | GCAGGTGGAC  | 2160 |
| GTCGTGCTGT  | GTGGAGGTGA   | CACTCTGAAG  | ACTGCAGTGC  | TTAAGGCAGA  | AGAAGGCATC  | 2220 |
| CTGAAGACTG  | CCATCAAGCT   | CCAGGCTCAA  | GTCCAGGAGT  | TTGATGAAAA  | TGATGGATGG  | 2280 |
| TCCCTGAATA  | CTTTTGGAA    | ATACCTGCTG  | TCTCTGGCTG  | GCCAAAGGGT  | TCCTGTGGAC  | 2340 |
| AGGGTCATCC  | TCCTTGGCCA   | AAGCATGGAT  | GATGGAATGA  | TAAATGTGGC  | CAAACAGCTT  | 2400 |
| TACTGGCAGC  | GTGTGAATTC   | CAAGTGCCTC  | TTTGTGTTGA  | TCCTCCTAACG | AAGGGTACAA  | 2460 |
| TACCTGTCAA  | CAGATTTGAA   | TCCCATTGAT  | GTGACACTCT  | CAGGCTGTAC  | TGATGCGATA  | 2520 |
| CTGAAGTTCA  | TTGCAGAGCA   | TGGGGCCTCC  | CATCTTCTGG  | AACATGTGGG  | CCAAATGGAC  | 2580 |
| AAAATATTCA  | AGATTCCACC   | ACCCCCCAGGA | AAGACAGGGG  | TCCAGTCTCT  | CCGGCCACTG  | 2640 |
| GAAGAGGACA  | CTCCAAGCCC   | CTTGGCTCCT  | GTTTCCCAGC  | AAGGATGGCG  | CAGCATCCGG  | 2700 |
| CTTTTCATT   | CATCCACTTT   | CCGAGACATG  | CACGGGGAGC  | GGGACCTGCT  | GCTGAGGTCT  | 2760 |
| GTGCTGCCAG  | CACTGCAGGC   | CCGAGCGGCC  | CCTCACCGTA  | TCAGCCTTCA  | CGGAATCGAC  | 2820 |
| CTCCGCTGGG  | GC GTC ACTGA | GGAGGAGACC  | CGTAGGAACA  | GACAAC TGGA | AGTGTGCCTT  | 2880 |
| GGGGAGGTGG  | AGAACGCACA   | GCTGTTGTG   | GGGATTCTGG  | GCTCCCGTTA  | TGGATACATT  | 2940 |
| CCCCCCAGCT  | ACAACCTTCC   | TGACCATCCA  | CACTTCCACT  | GGGCCAGCA   | GTACCCTTCA  | 3000 |
| GGCGCTCTG   | TGACAGAGAT   | GGAGGTGATG  | CAGTTCCCTGA | ACCGGAACCA  | ACGTCTGCAG  | 3060 |
| CCCTCTGCC   | AAGCTCTCAT   | CTACTTCCGG  | GATTCCAGCT  | TCCTCAGCTC  | TGTGCCAGAT  | 3120 |
| GCCTGGAAAT  | CTGACTTTGT   | TTCTGAGTCT  | GAAGAGGCCG  | CATGTCGGAT  | CTCAGAACTG  | 3180 |
| AAGAGCTACC  | TAAGCAGACA   | GAAAGGGATA  | ACCTGCCGCA  | GATA CCCCTG | TGAGTGGGG   | 3240 |
| GGTGTGGCAG  | CTGGCCGGCC   | CTATGTTGGC  | GGGCTGGAGG  | AGTTTGGCA   | GTTGGTTCTG  | 3300 |
| CAGGATGTAT  | GGAAATATGAT  | CCAGAAGCTC  | TACCTGCAGC  | CTGGGCCCT   | GCTGGAGCAG  | 3360 |
| CCAGTGTCCA  | TCCCAGACGA   | TGACTTGGTC  | CAGGCCACCT  | TCCAGCAGCT  | GCAGAAGCCA  | 3420 |
| CCGAGTCCTG  | CCCAGGCCACG  | CCTTCTTCAG  | GACACAGTGC  | AACAGCTGAT  | GCTGCCCTCAC | 3480 |
| GGAAGGCTGA  | GCCTGGTGAC   | GGGGCAGTCA  | GGACAGGGCA  | AGACAGCCTT  | CCTGGCATCT  | 3540 |
| CTTGTGTCAG  | CCCTGCAGGC   | TCCTGATGGG  | GCCAAAGGTGG | CACCATTAGT  | CTTCTTCCAC  | 3600 |
| TTTCTGGGG   | CTCGTCCCTGA  | CCAGGGTCTT  | GCCCTCACTC  | TGCTCAGACG  | CCTCTGTACC  | 3660 |
| TATCTGCGTG  | GCCA ACT AAA | AGAGCCAGGT  | GCCCTCCCCA  | GCACCTACCG  | AAGCCTGGTG  | 3720 |
| TGGGAGCTGC  | AGCAGAGGCT   | GCTGCCAAG   | TCTGCTGAGT  | CCCTGCATCC  | TGGCCAGACC  | 3780 |
| CAGGT CCTGA | TCATCGATGG   | GGCTGATAGG  | TTAGTGGACC  | AGAATGGCA   | GCTGATTTC   | 3840 |

|             |      |
|-------------|------|
| GAATGAGCG   | 3900 |
| GCAGGGCTAG  | 3960 |
| CTGGAGGCCT  | 4020 |
| CTGGAGGAGT  | 4080 |
| CGGCCGCTCT  | 4140 |
| GTGTCTGAGA  | 4200 |
| AGCACACTGG  | 4260 |
| GTCACACGGA  | 4320 |
| CTACCGAAGG  | 4380 |
| TACCCCATGG  | 4440 |
| CCTCTGGAGC  | 4500 |
| AAACGTTGCT  | 4560 |
| CAGCTCTGGA  | 4620 |
| TTCCATTACCA | 4680 |
| TTGGAGGCC   | 4740 |
| GCTGACGTTG  | 4800 |
| CCCCGGCTCC  | 4860 |
| GCCTCGCTGC  | 4920 |
| CGGACCATGA  | 4980 |
| GCTGTGGCCT  | 5040 |
| TACCTGTTGG  | 5100 |
| ATCTCTGCTT  | 5160 |
| CTGGAGCTCT  | 5220 |
| CAAATCACTG  | 5280 |
| GGATGCCCTAA | 5340 |
| AAGTCCCTGA  | 5400 |
| GCTGGCAGCA  | 5460 |
| CCCGGAGCCT  | 5520 |
| CGGCTGGACA  | 5580 |
| CCTGCCACC   | 5640 |
| ATGGCTTGT   | 5700 |
| TGCTGCTGCG  |      |
| CTTTCCCTGC  |      |
| ATGCGGGTTG  |      |
| CCAGTTACTG  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |
| CTCCCTGATG  |      |
| GGCCCCTGAG  |      |
| AACAGCAGCT  |      |
| AAACGTTGCT  |      |
| ATGGGAAGAG  |      |
| GCCAGGGCTA  |      |
| GAGGACACGG  |      |
| CACACATCCT  |      |
| CATTGCAGCT  |      |
| CGCTGATGCC  |      |
| TCAGGCACCT  |      |
| TCCGAAGTTG  |      |
| CCCTCCTGAG  |      |
| ACCTGCCTTA  |      |
| CCACCTGCTC  |      |
| CAGAGCGGGA  |      |
| ACCGTGGACT  |      |
| TCTTTCGAAG  |      |
| ACCTCCATGT  |      |
| GGTGGCTGCA  |      |
| CACTTGAAT   |      |
| TGGGTCTGGT  |      |
| CTCTCGGCTC  |      |
| TGCTTCTTCA  |      |
| GTCCCCAAAG  |      |
| AGGAACAAAA  |      |
| GCTCCCCGAG  |      |
| CAGTGTTCG   |      |
| CACCTTCCTG  |      |
| AGGCAGCAGG  |      |
| CTTCAATCCT  |      |
| CAGCCAGTAC  |      |
| GGCAGCCAAC  |      |
| CAGCCCCTGG  |      |
| ACTCACCTCT  |      |
| TTGCCACCAA  |      |
| TCTCCGGAG   |      |
| ATGGCACCTC  |      |
| CAACACACAC  |      |
| TACGATGGCT  |      |
| TAATAAACCC  |      |
| AAAATCAGCA  |      |
| AAGCTCCAGC  |      |
| CTGTCTCTGG  |      |
| CAGTTCCCTC  |      |
| ATCCCCTACT  |      |
| GCTGTGGCCT  |      |
| TCTCCACCAA  |      |
| TGGGCAAAGA  |      |
| GCAGCTGTGG  |      |
| GCACTGCCAA  |      |
| TGGGACAGTT  |      |
| TTGGCAGGAG  |      |
| GAGAAGTCTG  |      |
| TGGTGAGTGG  |      |
| CTGTGATGGA  |      |
| ACACTCTTC   |      |
| TTACTGCCTT  |      |
| CGACGGGCTC  |      |
| GGACCTGCA   |      |
| GCATGGTTGT  |      |
| CGGGTGCTGC  |      |
| AGACTAAGGC  |      |
| TCACCACTGAC |      |
| GCTGCTGCCT  |      |
| GAGCCCAGAC  |      |
| TGCCGGCTGC  |      |
| TAGCCACCGT  |      |
| GTGCTTGGGA  |      |
| AGCTGTGGGA  |      |
| CACAGTCCGT  |      |
| GGGCAGCTGG  |      |
| CCTTCCAGCA  |      |
| CACCTACCCC  |      |
| ACTGTGTTGC  |      |
| CTTCCACCCA  |      |
| GAGGGGCAGG  |      |
| TAATAGCCAC  |      |
| AGGCAGCTGG  |      |
| TCAGGTTCTT  |      |
| CCAGGTGGAT  |      |
| GGGCTCAAAG  |      |
| TCACCAAGGA  |      |
| CCTGGGGGCA  |      |
| CTATCCGTAC  |      |
| CTTGGCCTTC  |      |
| AATGTGCCTG  |      |
| GGGGGGTTGT  |      |
| GGCTGTGGGC  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |
| CTCCCTGATG  |      |
| GGCCCCTGAG  |      |
| AACAGCAGCT  |      |
| AAACGTTGCT  |      |
| ATGGGAAGAG  |      |
| GCCAGGGCTA  |      |
| GAGGACACGG  |      |
| CACACATCCT  |      |
| CATTGCAGCT  |      |
| CGCTGATGCC  |      |
| TCAGGCACCT  |      |
| TCCGAAGTTG  |      |
| CCCTCCTGAG  |      |
| ACCTGCCTTA  |      |
| CCACCTGCTC  |      |
| CAGAGCGGGA  |      |
| ACCGTGGACT  |      |
| TCTTTCGAAG  |      |
| ACCTCCATGT  |      |
| GGTGGCTGCA  |      |
| CACTTGAAT   |      |
| TGGGTCTGGT  |      |
| CTCTCGGCTC  |      |
| TGCTTCTTCA  |      |
| GTCCCCAAAG  |      |
| AGGAACAAAA  |      |
| GCTCCCCGAG  |      |
| CAGTGTTCG   |      |
| CACCTTCCTG  |      |
| AGGCAGCAGG  |      |
| CTTCAATCCT  |      |
| CAGCCAGTAC  |      |
| GGCAGCCAAC  |      |
| CAGCCCCTGG  |      |
| ACTCACCTCT  |      |
| TTGCCACCAA  |      |
| TCTCCGGAG   |      |
| ATGGCACCTC  |      |
| CAACACACAC  |      |
| TACGATGGCT  |      |
| TAATAAACCC  |      |
| AAAATCAGCA  |      |
| AAGCTCCAGC  |      |
| CTGTCTCTGG  |      |
| CAGTTCCCTC  |      |
| ATCCCCTACT  |      |
| GCTGTGGCCT  |      |
| TCTCCACCAA  |      |
| TGGGCAAAGA  |      |
| GCAGCTGTGG  |      |
| GCACTGCCAA  |      |
| TGGGACAGTT  |      |
| TTGGCAGGAG  |      |
| GAGAAGTCTG  |      |
| TGGTGAGTGG  |      |
| CTGTGATGGA  |      |
| ACACTCTTC   |      |
| TTACTGCCTT  |      |
| CGACGGGCTC  |      |
| GGACCTGCA   |      |
| GCATGGTTGT  |      |
| CGGGTGCTGC  |      |
| AGACTAAGGC  |      |
| TCACCACTGAC |      |
| GCTGCTGCCT  |      |
| GAGCCCAGAC  |      |
| TGCCGGCTGC  |      |
| TAGCCACCGT  |      |
| GTGCTTGGGA  |      |
| AGCTGTGGGA  |      |
| CACAGTCCGT  |      |
| GGGCAGCTGG  |      |
| CCTTCCAGCA  |      |
| CACCTACCCC  |      |
| ACTGTGTTGC  |      |
| CTTCCACCCA  |      |
| GAGGGGCAGG  |      |
| TAATAGCCAC  |      |
| AGGCAGCTGG  |      |
| TCAGGTTCTT  |      |
| CCAGGTGGAT  |      |
| GGGCTCAAAG  |      |
| TCACCAAGGA  |      |
| CCTGGGGGCA  |      |
| CTATCCGTAC  |      |
| CTTGGCCTTC  |      |
| AATGTGCCTG  |      |
| GGGGGGTTGT  |      |
| GGCTGTGGGC  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |
| CTCCCTGATG  |      |
| GGCCCCTGAG  |      |
| AACAGCAGCT  |      |
| AAACGTTGCT  |      |
| ATGGGAAGAG  |      |
| GCCAGGGCTA  |      |
| GAGGACACGG  |      |
| CACACATCCT  |      |
| CATTGCAGCT  |      |
| CGCTGATGCC  |      |
| TCAGGCACCT  |      |
| TCCGAAGTTG  |      |
| CCCTCCTGAG  |      |
| ACCTGCCTTA  |      |
| CCACCTGCTC  |      |
| CAGAGCGGGA  |      |
| ACCGTGGACT  |      |
| TCTTTCGAAG  |      |
| ACCTCCATGT  |      |
| GGTGGCTGCA  |      |
| CACTTGAAT   |      |
| TGGGTCTGGT  |      |
| CTCTCGGCTC  |      |
| TGCTTCTTCA  |      |
| GTCCCCAAAG  |      |
| AGGAACAAAA  |      |
| GCTCCCCGAG  |      |
| CAGTGTTCG   |      |
| CACCTTCCTG  |      |
| AGGCAGCAGG  |      |
| CTTCAATCCT  |      |
| CAGCCAGTAC  |      |
| GGCAGCCAAC  |      |
| CAGCCCCTGG  |      |
| ACTCACCTCT  |      |
| TTGCCACCAA  |      |
| TCTCCGGAG   |      |
| ATGGCACCTC  |      |
| CAACACACAC  |      |
| TACGATGGCT  |      |
| TAATAAACCC  |      |
| AAAATCAGCA  |      |
| AAGCTCCAGC  |      |
| CTGTCTCTGG  |      |
| CAGTTCCCTC  |      |
| ATCCCCTACT  |      |
| GCTGTGGCCT  |      |
| TCTCCACCAA  |      |
| TGGGCAAAGA  |      |
| GCAGCTGTGG  |      |
| GCACTGCCAA  |      |
| TGGGACAGTT  |      |
| TTGGCAGGAG  |      |
| GAGAAGTCTG  |      |
| TGGTGAGTGG  |      |
| CTGTGATGGA  |      |
| ACACTCTTC   |      |
| TTACTGCCTT  |      |
| CGACGGGCTC  |      |
| GGACCTGCA   |      |
| GCATGGTTGT  |      |
| CGGGTGCTGC  |      |
| AGACTAAGGC  |      |
| TCACCACTGAC |      |
| GCTGCTGCCT  |      |
| GAGCCCAGAC  |      |
| TGCCGGCTGC  |      |
| TAGCCACCGT  |      |
| GTGCTTGGGA  |      |
| AGCTGTGGGA  |      |
| CACAGTCCGT  |      |
| GGGCAGCTGG  |      |
| CCTTCCAGCA  |      |
| CACCTACCCC  |      |
| ACTGTGTTGC  |      |
| CTTCCACCCA  |      |
| GAGGGGCAGG  |      |
| TAATAGCCAC  |      |
| AGGCAGCTGG  |      |
| TCAGGTTCTT  |      |
| CCAGGTGGAT  |      |
| GGGCTCAAAG  |      |
| TCACCAAGGA  |      |
| CCTGGGGGCA  |      |
| CTATCCGTAC  |      |
| CTTGGCCTTC  |      |
| AATGTGCCTG  |      |
| GGGGGGTTGT  |      |
| GGCTGTGGGC  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |
| CTCCCTGATG  |      |
| GGCCCCTGAG  |      |
| AACAGCAGCT  |      |
| AAACGTTGCT  |      |
| ATGGGAAGAG  |      |
| GCCAGGGCTA  |      |
| GAGGACACGG  |      |
| CACACATCCT  |      |
| CATTGCAGCT  |      |
| CGCTGATGCC  |      |
| TCAGGCACCT  |      |
| TCCGAAGTTG  |      |
| CCCTCCTGAG  |      |
| ACCTGCCTTA  |      |
| CCACCTGCTC  |      |
| CAGAGCGGGA  |      |
| ACCGTGGACT  |      |
| TCTTTCGAAG  |      |
| ACCTCCATGT  |      |
| GGTGGCTGCA  |      |
| CACTTGAAT   |      |
| TGGGTCTGGT  |      |
| CTCTCGGCTC  |      |
| TGCTTCTTCA  |      |
| GTCCCCAAAG  |      |
| AGGAACAAAA  |      |
| GCTCCCCGAG  |      |
| CAGTGTTCG   |      |
| CACCTTCCTG  |      |
| AGGCAGCAGG  |      |
| CTTCAATCCT  |      |
| CAGCCAGTAC  |      |
| GGCAGCCAAC  |      |
| CAGCCCCTGG  |      |
| ACTCACCTCT  |      |
| TTGCCACCAA  |      |
| TCTCCGGAG   |      |
| ATGGCACCTC  |      |
| CAACACACAC  |      |
| TACGATGGCT  |      |
| TAATAAACCC  |      |
| AAAATCAGCA  |      |
| AAGCTCCAGC  |      |
| CTGTCTCTGG  |      |
| CAGTTCCCTC  |      |
| ATCCCCTACT  |      |
| GCTGTGGCCT  |      |
| TCTCCACCAA  |      |
| TGGGCAAAGA  |      |
| GCAGCTGTGG  |      |
| GCACTGCCAA  |      |
| TGGGACAGTT  |      |
| TTGGCAGGAG  |      |
| GAGAAGTCTG  |      |
| TGGTGAGTGG  |      |
| CTGTGATGGA  |      |
| ACACTCTTC   |      |
| TTACTGCCTT  |      |
| CGACGGGCTC  |      |
| GGACCTGCA   |      |
| GCATGGTTGT  |      |
| CGGGTGCTGC  |      |
| AGACTAAGGC  |      |
| TCACCACTGAC |      |
| GCTGCTGCCT  |      |
| GAGCCCAGAC  |      |
| TGCCGGCTGC  |      |
| TAGCCACCGT  |      |
| GTGCTTGGGA  |      |
| AGCTGTGGGA  |      |
| CACAGTCCGT  |      |
| GGGCAGCTGG  |      |
| CCTTCCAGCA  |      |
| CACCTACCCC  |      |
| ACTGTGTTGC  |      |
| CTTCCACCCA  |      |
| GAGGGGCAGG  |      |
| TAATAGCCAC  |      |
| AGGCAGCTGG  |      |
| TCAGGTTCTT  |      |
| CCAGGTGGAT  |      |
| GGGCTCAAAG  |      |
| TCACCAAGGA  |      |
| CCTGGGGGCA  |      |
| CTATCCGTAC  |      |
| CTTGGCCTTC  |      |
| AATGTGCCTG  |      |
| GGGGGGTTGT  |      |
| GGCTGTGGGC  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |
| CTCCCTGATG  |      |
| GGCCCCTGAG  |      |
| AACAGCAGCT  |      |
| AAACGTTGCT  |      |
| ATGGGAAGAG  |      |
| GCCAGGGCTA  |      |
| GAGGACACGG  |      |
| CACACATCCT  |      |
| CATTGCAGCT  |      |
| CGCTGATGCC  |      |
| TCAGGCACCT  |      |
| TCCGAAGTTG  |      |
| CCCTCCTGAG  |      |
| ACCTGCCTTA  |      |
| CCACCTGCTC  |      |
| CAGAGCGGGA  |      |
| ACCGTGGACT  |      |
| TCTTTCGAAG  |      |
| ACCTCCATGT  |      |
| GGTGGCTGCA  |      |
| CACTTGAAT   |      |
| TGGGTCTGGT  |      |
| CTCTCGGCTC  |      |
| TGCTTCTTCA  |      |
| GTCCCCAAAG  |      |
| AGGAACAAAA  |      |
| GCTCCCCGAG  |      |
| CAGTGTTCG   |      |
| CACCTTCCTG  |      |
| AGGCAGCAGG  |      |
| CTTCAATCCT  |      |
| CAGCCAGTAC  |      |
| GGCAGCCAAC  |      |
| CAGCCCCTGG  |      |
| ACTCACCTCT  |      |
| TTGCCACCAA  |      |
| TCTCCGGAG   |      |
| ATGGCACCTC  |      |
| CAACACACAC  |      |
| TACGATGGCT  |      |
| TAATAAACCC  |      |
| AAAATCAGCA  |      |
| AAGCTCCAGC  |      |
| CTGTCTCTGG  |      |
| CAGTTCCCTC  |      |
| ATCCCCTACT  |      |
| GCTGTGGCCT  |      |
| TCTCCACCAA  |      |
| TGGGCAAAGA  |      |
| GCAGCTGTGG  |      |
| GCACTGCCAA  |      |
| TGGGACAGTT  |      |
| TTGGCAGGAG  |      |
| GAGAAGTCTG  |      |
| TGGTGAGTGG  |      |
| CTGTGATGGA  |      |
| ACACTCTTC   |      |
| TTACTGCCTT  |      |
| CGACGGGCTC  |      |
| GGACCTGCA   |      |
| GCATGGTTGT  |      |
| CGGGTGCTGC  |      |
| AGACTAAGGC  |      |
| TCACCACTGAC |      |
| GCTGCTGCCT  |      |
| GAGCCCAGAC  |      |
| TGCCGGCTGC  |      |
| TAGCCACCGT  |      |
| GTGCTTGGGA  |      |
| AGCTGTGGGA  |      |
| CACAGTCCGT  |      |
| GGGCAGCTGG  |      |
| CCTTCCAGCA  |      |
| CACCTACCCC  |      |
| ACTGTGTTGC  |      |
| CTTCCACCCA  |      |
| GAGGGGCAGG  |      |
| TAATAGCCAC  |      |
| AGGCAGCTGG  |      |
| TCAGGTTCTT  |      |
| CCAGGTGGAT  |      |
| GGGCTCAAAG  |      |
| TCACCAAGGA  |      |
| CCTGGGGGCA  |      |
| CTATCCGTAC  |      |
| CTTGGCCTTC  |      |
| AATGTGCCTG  |      |
| GGGGGGTTGT  |      |
| GGCTGTGGGC  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |
| CTCCCTGATG  |      |
| GGCCCCTGAG  |      |
| AACAGCAGCT  |      |
| AAACGTTGCT  |      |
| ATGGGAAGAG  |      |
| GCCAGGGCTA  |      |
| GAGGACACGG  |      |
| CACACATCCT  |      |
| CATTGCAGCT  |      |
| CGCTGATGCC  |      |
| TCAGGCACCT  |      |
| TCCGAAGTTG  |      |
| CCCTCCTGAG  |      |
| ACCTGCCTTA  |      |
| CCACCTGCTC  |      |
| CAGAGCGGGA  |      |
| ACCGTGGACT  |      |
| TCTTTCGAAG  |      |
| ACCTCCATGT  |      |
| GGTGGCTGCA  |      |
| CACTTGAAT   |      |
| TGGGTCTGGT  |      |
| CTCTCGGCTC  |      |
| TGCTTCTTCA  |      |
| GTCCCCAAAG  |      |
| AGGAACAAAA  |      |
| GCTCCCCGAG  |      |
| CAGTGTTCG   |      |
| CACCTTCCTG  |      |
| AGGCAGCAGG  |      |
| CTTCAATCCT  |      |
| CAGCCAGTAC  |      |
| GGCAGCCAAC  |      |
| CAGCCCCTGG  |      |
| ACTCACCTCT  |      |
| TTGCCACCAA  |      |
| TCTCCGGAG   |      |
| ATGGCACCTC  |      |
| CAACACACAC  |      |
| TACGATGGCT  |      |
| TAATAAACCC  |      |
| AAAATCAGCA  |      |
| AAGCTCCAGC  |      |
| CTGTCTCTGG  |      |
| CAGTTCCCTC  |      |
| ATCCCCTACT  |      |
| GCTGTGGCCT  |      |
| TCTCCACCAA  |      |
| TGGGCAAAGA  |      |
| GCAGCTGTGG  |      |
| GCACTGCCAA  |      |
| TGGGACAGTT  |      |
| TTGGCAGGAG  |      |
| GAGAAGTCTG  |      |
| TGGTGAGTGG  |      |
| CTGTGATGGA  |      |
| ACACTCTTC   |      |
| TTACTGCCTT  |      |
| CGACGGGCTC  |      |
| GGACCTGCA   |      |
| GCATGGTTGT  |      |
| CGGGTGCTGC  |      |
| AGACTAAGGC  |      |
| TCACCACTGAC |      |
| GCTGCTGCCT  |      |
| GAGCCCAGAC  |      |
| TGCCGGCTGC  |      |
| TAGCCACCGT  |      |
| GTGCTTGGGA  |      |
| AGCTGTGGGA  |      |
| CACAGTCCGT  |      |
| GGGCAGCTGG  |      |
| CCTTCCAGCA  |      |
| CACCTACCCC  |      |
| ACTGTGTTGC  |      |
| CTTCCACCCA  |      |
| GAGGGGCAGG  |      |
| TAATAGCCAC  |      |
| AGGCAGCTGG  |      |
| TCAGGTTCTT  |      |
| CCAGGTGGAT  |      |
| GGGCTCAAAG  |      |
| TCACCAAGGA  |      |
| CCTGGGGGCA  |      |
| CTATCCGTAC  |      |
| CTTGGCCTTC  |      |
| AATGTGCCTG  |      |
| GGGGGGTTGT  |      |
| GGCTGTGGGC  |      |
| GTATGGTGG   |      |
| GCTGTGGCC   |      |
| TGGCGAGAAG  |      |
| GGGCACGGCT  |      |
| GGCTGCCTTC  |      |
| ATGGCCTTGT  |      |
| CGCTGCTGAG  |      |

|            |            |            |            |             |            |      |
|------------|------------|------------|------------|-------------|------------|------|
| ACGGCTGGAG | AGGATGGCAA | GGTCAGGTG  | TGGTCAGGGT | CTCTGGTCG   | GCCCCGTGGG | 5760 |
| CACCTGGTT  | CCCTTCTCT  | CTCTCCTGCC | CTCTCTGTGG | CACTCAGCCC  | AGATGGTGAT | 5820 |
| CGGGTGGCTG | TTGGATATCG | AGCGGATGGC | ATTAGGATCT | ACAAAATCTC  | TTCAGGTTCC | 5880 |
| CAGGGGGCTC | AGGGTCAGGC | ACTGGATGTG | GCAGTGTCCG | CCCTGGCCTG  | GCTAAGCCCC | 5940 |
| AAGGTATTGG | TGAGTGGTGC | AGAAGATGGG | TCCTTGCAGG | GCTGGCACT   | CAAGGAATGC | 6000 |
| TCCCTTCAGT | CCCTCTGGCT | CCTGTCCAGA | TTCCAGAAGC | CTGTGCTAGG  | ACTGGCCACT | 6060 |
| TCCCAGGAGC | TCTTGGCTTC | TGCCTCAGAG | GATTTCACAG | TGCAGCTGTG  | GCCAAGGCAG | 6120 |
| CTGCTGACGC | GGCCACACAA | GGCAGAACAC | TTTCCCTGTG | GCAC TGAGCT | GCGGGGACAT | 6180 |
| GAGGGCCCTG | TGAGCTGCTG | TAGTTTCAGC | ACTGATGGAG | GCAGCCTGGC  | CACCGGGGGC | 6240 |
| CGGGATCGGA | GTCTCCTCTG | CTGGGACGTG | AGGACACCCA | AAACCCCTGT  | TTTGATCCAC | 6300 |
| TCCTTCCCTG | CCTGTCACCG | TGACTGGTC  | ACTGGCTGTG | CCTGGACCAA  | AGATAACCTA | 6360 |
| CTGATATCCT | GCTCCAGTGA | TGGCTCTGTG | GGGCTCTGGG | ACCCAGAGTC  | AGGACAGCGG | 6420 |
| CTTGGTCAGT | TCCTGGGTCA | TCAGAGTGCT | GTGAGCGCTG | TGGCAGCTGT  | GGAGGAGCAC | 6480 |
| GTGGTGTCTG | TGAGCCGGGA | TGGGACCTTG | AAAGTGTGGG | ACCATCAAGG  | CGTGGAGCTG | 6540 |
| ACCAGCATCC | CTGCTCACTC | AGGACCCATT | AGCCACTGTG | CAGCTGCCAT  | GGAGCCCCGT | 6600 |
| GCAGCTGGAC | AGCCTGGTC  | AGAGCTTCTG | GTGGTAACCG | TCGGGCTAGA  | TGGGGCCACA | 6660 |
| CGGTTATGGC | ATCCACTCTT | GGTGTGCCAA | ACCCACACCC | TCCTGGGACA  | CAGCGGCCCA | 6720 |
| GTCCGTGCTG | CTGCTGTTTC | AGAAACCTCA | GGCCTCATGC | TGACCGCCTC  | TGAGGATGGT | 6780 |
| TCTGTACGGC | TCTGGCAGGT | TCCTAAGGAA | GCAGATGACA | CATGTATACC  | AAGGAGTTCT | 6840 |
| GCAGCCGTCA | CTGCTGTGGC | TTGGGCACCA | GATGGTCCA  | TGGCAGTATC  | TGGAAATCAA | 6900 |
| GCTGGGAAAC | TAATCTTGTG | GCAGGAAGCT | AAGGCTGTGG | CCACAGCACA  | GGCTCCAGGC | 6960 |
| CACATTGGTG | CTCTGATCTG | GTCCTCGGCA | CACACCTTTT | TTGTCCTCAG  | TGCTGATGAG | 7020 |
| AAAATCAGCG | AGTGGCAAGT | GAAACTGCGG | AAGGGTTCGG | CACCCGGAAA  | TTTGAGTCTT | 7080 |
| CACCTGAACC | GAATTCTACA | GGAGGACTTA | GGGGTGCTGA | CAAGTCTGGA  | TTGGGCTCCT | 7140 |
| GATGGTCACT | TTCTCATCTT | GGCCAAAGCA | GATTGAAAGT | TACTTGCAT   | GAAGCCAGGG | 7200 |
| GATGCTCCAT | CTGAAATCTG | GAGCAGCTAT | ACAGAAAATC | CTATGATATT  | GTCCACCCAC | 7260 |
| AAGGAGTATG | GCATATTGT  | CCTGCAGCCC | AAGGATCCTG | GAGTTCTTTC  | TTTCTTGAGG | 7320 |
| CAAAAGGAAT | CAGGAGAGTT | TGAAGAGAGG | CTGAACCTTG | ATATAAACTT  | AGAGAATCCT | 7380 |
| AGTAGGACCC | TAATATCGAT | AACTCAAGCC | AAACCTGAAT | CTGAGTCCTC  | ATTTTGTGT  | 7440 |
| GCCAGCTCTG | ATGGGATCCT | ATGGAACCTG | GCCAAATGCA | GCCCAGAAGG  | AGAATGGACC | 7500 |
| ACAGGTAACA | TGTGGCAGAA | AAAAGCAAAC | ACTCCAGAAA | CCCAAACCTCC | AGGGACAGAC | 7560 |
| CCATCTACCT | GCAGGGAATC | TGATGCCAGC | ATGGATAGTG | ATGCCAGCAT  | GGATAGTGAG | 7620 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| CCAACACCAC ATCTAAAGAC ACGGCAGCGT AGAAAGATT C ACTCGGGCTC TGTCACAGCC | 7680 |
| CTCCATGTGC TACCTGAGTT GCTGGTGACA GCTTCGAAGG ACAGAGATGT TAAGCTATGG  | 7740 |
| GAGAGACCCA GTATGCAGCT GCTGGGCCTG TTCCGATGCG AAGGGTCAGT GAGCTGCCTG  | 7800 |
| GAACCTTGGC TGGGCGCTAA CTCCACCCTG CAGCTTGCCG TGGGAGACGT GCAGGGCAAT  | 7860 |
| GTGTACTTTC TGAATTGGGA A                                            | 7881 |

## (2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 7886 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

|                                                                     |      |
|---------------------------------------------------------------------|------|
| ATGGAGAACGC TCTGTGGGCA TGTGCCTGGC CATTCA GACA TCCTCTCCTT GAAGAACCGG | 60   |
| TGCCTGACCA TGCTCCCTGA CCTCCAGCCC CTGGAGAAAA TACATGGACA TAGATCTGTC   | 120  |
| CACTCAGACA TCCTTTCCCTT GGAGAACCGAG TGTCTGACCA TGCTCTCTGA CCTCCAGCCC | 180  |
| ACGGAGAGAA TAGATGGGCA TATATCTGTC CACCCAGACA TCCTCTCCTT GGAGAACCGG   | 240  |
| TGCCTGACCA TGCTCCCTGA CCTCCAGGCC CTGGAGAACG TATGTGGACA TATGTCTAGT   | 300  |
| CATCCAGACG TCCTTTCTTT GGAAAACCAA TGTCTAGCTA CTCTCCCCAC TGTAAAGAGC   | 360  |
| ACTGCATTGA CCAGCCCCCTT GCTCCAGGGT CTTCACATAT CTCATACGGC ACAAGCTGAT  | 420  |
| CTGCATAGCC TGAAAACTAG CAACTGCCTG CTCCCTGAGC TTCCTACCAA GAAGACTCCA   | 480  |
| TGTTTCTCTG AGGAACCTAGA CCTTCCACCT GGACCCAGGG CCCTGAAATC CATGTCTGCT  | 540  |
| ACAGCTCAAG TCCAGGAAGT AGCCTTGGGT CAATGGTGTG TCTCCAAAGA AAAGGAATT    | 600  |
| CAAGAAGAAG AAAGCACAGA AGTCCCAGTC CTTGTACAG TCTAAGCTTG GAAGAAGAAG    | 660  |
| AAGTGGAGGC ACCGGTCTTA AAACTCACAT CTGGAGACTC TGGCTTCCAT CCTGAAACCA   | 720  |
| CTGACCAGGT CCTTCAGGAG AAGAAGATGG CTCTCTTGAC CTTACTCTGC TCTGCTCTGG   | 780  |
| CCTCAAATGT GAATGTGAAA GATGCATCTG ACCTTACCCG GGCATCCATC CTTGAAGTCT   | 840  |
| GTAGTGCCCT GGCCTCCTTG GAACCGGAGT TCATCCTTAA GGCATCTTG TATGCTCGGC    | 900  |
| AGCAACTTAA CCTCCGGGAC ATCGCCAATA CAGTTCTGGC TGTGGCTGCC CTCTTGCCAG   | 960  |
| CCTGCCGCC CCATGTACGA CGGTATTACT CGGCCATTGT TCACCTGCCT TCAGACTGGA    | 1020 |
| TCCAGGTAGC CGAGTTCTAC CAGAGCCTGG CAGAAGGGGA TGAGAAGAAG TTGGTGTCCC   | 1080 |
| TGCCTGCCTG TCTCCGAGCT GCCATGACCG ACAAAATTGAT CGAGTTGAT GAGTACCAAGC  | 1140 |
| TAGCTAAGTA CAACCCACGG AAACATCGGT CCAAGAGGCG GTCCCGCCAG CCACCCGCC    | 1200 |

|                                                                    |      |
|--------------------------------------------------------------------|------|
| CTCAAAAGAC AGAACGTCCA TTTTCAGAGA GAGGGAAATG TTTTCCAAAG AGCCTTGCG   | 1260 |
| CCCTTAAAAA TGAACAGATT ACGTTGAAG CAGCTTATAA TGCAATGCCA GAGAAAACA    | 1320 |
| GGCTACCACG GTTCACTCTG AAGAAGTTGG TAGAGTATCT ACATATCCAC AAGCCTGCTC  | 1380 |
| AGCACGTCCA GGCCCTGCTG GGCTACAGGT ACCCAGCCAC CCTAGAGCTC TTTTCTCGGA  | 1440 |
| GTCACCTCCC TGGGCCGTGG GAGTCTAGCA GAGCTGGTCA GC GGATGAAG CTCCGAAGGC | 1500 |
| CAGAGACCTG GGAGCGGGAG CTGAGTTAC GGGGAAACAA AGCTTCTGTG TGGGAGGAGC   | 1560 |
| TCATAGACAA TGGGAAACTG CCCTTCATGG CCATGCTCCG GAACCTGTGT AACCTGCTGC  | 1620 |
| GGACTGGGAT CAGTGCCCCGC CACCATGAAC TCGTTCTCCA GAGACTCCAG CATGAGAAAT | 1680 |
| CTGTGGTTCA CAGTCGGCAG TTTCCATTCA GATTCCCTAA TGCTCATGAC TCTATCGATA  | 1740 |
| AACTTGAGGC TCAGCTCAGA AGCAAAGCAT CACCCCTTCCC TTCCAATACA ACATTGATGA | 1800 |
| AACGGATAAT GATTAGAAC TCAAAAAAAA ATAGGAGGCC TGCCAGTCGG AAGCACCTGT   | 1860 |
| GCACCCCTGAC GCGCCGGCAG CTTCGGGCAG CAATGACTAT ACCTGTGATG TATGAGCAGC | 1920 |
| TCAAGCGGGA GAAACTGAGG CTGCACAAGG CCAGACAATG GAACTGTGAT GTTGAGTTGC  | 1980 |
| TGGAGCGCTA TCGCCAGGCC CTGGAAACAG CTGTGAACCT CTCAGTAAAG CACAACCTAT  | 2040 |
| CCCCGATGCC TGGCCGAACC CTCTGGTCT ATCTCACAGA TGCAAATGCC GACAGGCTCT   | 2100 |
| GTCCCAAGAG TCACTCACAA GGGCCTCCCC TGAACTATGT GCTGCTGCTG ATCGGAATGA  | 2160 |
| TGGTGGCTCG AGCCGAGCAA GTGACTGTT GCTTGTGTGG GGGAGGATTG GTGAAGACAC   | 2220 |
| CGGTACTTAC AGCCGATGAA GGCATCCTGA AGACTGCCAT CAAACTTCAG GCTCAAGTCC  | 2280 |
| AGGAGTTAGA AGGCAATGAT GAGTGGCCCC TGGACACTTT TGGGAAGTAT CTGCTGTCTC  | 2340 |
| TGGCTGTCCA AAGGACCCCC ATTGACAGGG TCATCCTGTT TGGTCAAAGG ATGGATACCG  | 2400 |
| AGCTCCTGAA AGTAGCCAAA CAGATTATCT GGCAGCATGT GAATTCCAAG TGCCTCTTG   | 2460 |
| TTGGTGTCCCT CCTACAGAAA ACACAGTACA TATCACCAAA TTTGAATCCC AACGATGTGA | 2520 |
| CGCTCTCAGG CTGCACTGAC GGGATCCTGA AATTCAATTGC CGAACATGGA GCCTCTCGTC | 2580 |
| TCCTGGAACA TGTGGACAA CTAGATAAAC TATTCAAGAT CCCCCCACCC CCAGGAAAGA   | 2640 |
| CACAGGCACC GTCTCTCCGG CCGCTGGAGG AGAACATCCC TGGTCCCTTG GGTCTATT    | 2700 |
| CCCAGCATGG ATGGCGCAAT ATCCGGCTTT TCATTTCATC CACTTCCGT GACATGCATG   | 2760 |
| GGGAGCGAGA TTTGCTGATG AGATCTGTT TGCCCGCACT GCAGGCCAGA GTGTTCCCCC   | 2820 |
| ACCGCATCAG TCTTCACGCC ATTGACCTGC GCTGGGGTAT CACAGAGGAA GAGACCCGCA  | 2880 |
| GGAACAGACA ACTGGAAGTG TGCCTTGGGG AGGTGGAGAA CTCACAGCTG TTCGTGGGA   | 2940 |
| TTCTGGGCTC CCGCTATGGC TACATTCCCC CCAGCTATGA TCTTCCTGAT CATCCCCACT  | 3000 |
| TTCACTGGAC CCATGAGTAC CCTTCAGGGC GATCCGTGAC AGAGATGGAG GTGATGCAAT  | 3060 |

|             |             |             |            |             |             |      |
|-------------|-------------|-------------|------------|-------------|-------------|------|
| TCCCTGAACCG | TGGCCAACGC  | TCGCAGCCTT  | CGGCCAAGC  | TCTCATCTAC  | TTCCGAGATC  | 3120 |
| CTGATTCCT   | TAGCTCTGTG  | CCAGATGCCT  | GGAAACCTGA | CTTTATATCT  | GAGTCAGAACG | 3180 |
| AAGCTGCACA  | TCGGGTCTCA  | GAGCTGAAGA  | GATATCTACA | CGAACAGAAA  | GAGGTTACCT  | 3240 |
| GTCGCAGCTA  | CTCCTGTGAA  | TGGGGAGGTG  | TAGCGGCTGG | CCGGCCCTAT  | ACTGGGGGCC  | 3300 |
| TGGAGGAGTT  | TGGACAGTTG  | GTTCTCCAGG  | ATGTGTGGAG | CATGATCCAG  | AAGCAGCACC  | 3360 |
| TGCAGCCTGG  | GGCCCAGTTG  | GAGCAGCCAA  | CATCCATCTC | AGAAGACGAT  | TTGATCCAGA  | 3420 |
| CCAGCTTCA   | GCAGCTGAAG  | ACCCCAACGA  | GTCCGGCACG | GCCACGCCTT  | CTTCAGGATA  | 3480 |
| CAGTGCAGCA  | GCTGTTGCTG  | CCCCATGGGA  | GGCTGAGCCT | AGTGACTGGG  | CAGGCAGGAC  | 3540 |
| AGGGAAAGAC  | TGCCTTCTG   | GCATCCCTTG  | TGTCTGCCCT | GAAGGTCCCT  | GACCAGCCCA  | 3600 |
| ATGAGCCCCC  | GTTCGTTTTC  | TTCCACTTTG  | CAGCAGCCCG | CCCTGACCAG  | TGTCTGCTC   | 3660 |
| TCAACCTCCT  | CAGACGCCTC  | TGTACCCATC  | TGCGTAAAAA | ACTGGGAGAG  | CTGAGTGCCC  | 3720 |
| TCCCCAGCAC  | TTACAGAGGC  | CTGGTGTGGG  | AACTGCAGCA | GAAGTTGCTC  | CTCAAATTG   | 3780 |
| CTCAGTCGCT  | GCAGCCTGCT  | CAGACTTTGG  | TCCTTATCAT | CGATGGGGCA  | GATAAGTTGG  | 3840 |
| TGGATCGTAA  | TGGGCAGCTG  | ATTCAGACT   | GGATCCCCAA | GTCTCTTCCG  | CGGCGAGTAC  | 3900 |
| ACCTGGTGCT  | GAGTGTGTCC  | AGTGACTCAG  | GCCTGGGTGA | GACCCTTCAG  | CAAAGTCAGG  | 3960 |
| GTGCTTATGT  | GGTGGCCTTG  | GGCTCTTGG   | TCCCACATTC | AAGGGCTCAG  | CTTGTGAGAG  | 4020 |
| AAGAGCTAGC  | ACTGTATGGG  | AAACGACTGG  | AGGAGTCACC | TTTAACAAAC  | CAGATGCGGC  | 4080 |
| TGCTGCTGGC  | AAAGCAGGGT  | TCAAGCCTGC  | CATTGTACCT | GCACCTTGTC  | ACTGACTACC  | 4140 |
| TGAGGCTCTT  | CACACTGTAT  | GAACAGGTGT  | CTGAGAGACT | TCGAACCCCTG | CCCGGCCACTC | 4200 |
| TCCCCACTGCT | CTTGCAGCAC  | ATCCTGAGCA  | CCTTGGAGCA | AGAACATGGC  | CATGATGTCC  | 4260 |
| TTCCTCAGGC  | TTTGACTGCC  | CTTGAGGTCA  | CACGAAGTGG | TCTGACTGTG  | GACCAGCTAC  | 4320 |
| ATGCAATCCT  | GAGCACATGG  | CTGATCTTC   | CCAAGGAGAC | TAAGAGCTGG  | GAAGAAGTGC  | 4380 |
| TGGCTGCCAG  | TCACAGTGGA  | AACCCTTCC   | CCTTGTGTCC | ATTTGCCTAC  | CTTGTCCAGA  | 4440 |
| GTCTACGCAG  | TTTACTAGGG  | GAGGGCCAG   | TGGAGCGCCC | TGGTGCCCGT  | CTCTGCCTCT  | 4500 |
| CTGATGGGCC  | CCTGAGGACA  | ACAATTAAAC  | GTCGCTATGG | GAAAAGGCTG  | GGGCTAGAGA  | 4560 |
| AGACTGCGCA  | TGTCCCTCATT | GCAGCTCACC  | TCTGGAAGAC | GTGTGATCCT  | GATGCCTCGG  | 4620 |
| GCACCTTCCG  | AAAGTGCCT   | CCTGAGGCTC  | TGAAAGATTT | ACCTTACAC   | CTGCTCCAGA  | 4680 |
| GCGGGAAACCA | TGGTCTCCTT  | GCCGAGTTTC  | TTACCAATCT | CCATGTGGTT  | GCTGCATATC  | 4740 |
| TGGAAGTGGG  | TCTAGTCCCC  | GACCTTGG    | AGGCTCATGT | GCTCTATGCT  | TCTTCAAAGC  | 4800 |
| CTGAAGCCAA  | CCAGAAGCTC  | CCAGCGGCAG  | ATGTTGCTGT | TTTCCATACC  | TTCCTGAGAC  | 4860 |
| AACAGGCTTC  | ACTCCTTACC  | CAGTATCCTT  | TGCTCCTGCT | CCAGCAGGCA  | GCTAGCCAGC  | 4920 |
| CTGAAGAGTC  | ACCTGTTGC   | TGCCAGGGCCC | CCCTGCTCAC | CCAGCGATGG  | CACGACCAGT  | 4980 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| TCACACTGAA ATGGATTAAT AAACCCCAGA CCCTGAAGGG TCAGCAAAGC TTGTCTCTGA   | 5040 |
| CAATGTCCCTC ATCCCCAACT GCTGTGGCCT TCTCCCCGAA TGGGCAAAGA GCAGCTGTGG  | 5100 |
| GGACCGCCAG TGGGACAATT TACCTGTTGA ACTTGAAAAC CTGGCAGGAG GAGAAGGCTG   | 5160 |
| TGGTGAGTGG CTGTGACGGG ATTTCCTCTT TTGCATTCCCT TTCGGACACT GCCCTTTCC   | 5220 |
| TTACTACCTT CGACGGGCAC CTAGAGCTTT GGGACCTGCA ACATGGTTGT TGGGTGTTTC   | 5280 |
| AGACCAAGGC CCACCAAGTAC CAAATCACTG GCTGCTGCCT GAGCCCAGAC CGCCGCCCTGC | 5340 |
| TGGCCACTGT GTGTTGGGA GGATACCTAA AGCTGTGGGA CACAGTCCGA GGACAGCTGG    | 5400 |
| CTTTTCAGTA CACCCATCCA AAGTCTCTCA ACTGCGTTGC CTTCCACCCA GAGGGGCAGG   | 5460 |
| TGGTAGCCAC AGGCAGCTGG GCTGGCAGCA TTACCTTCTT CCAGGCAGAT GGACTCAAAG   | 5520 |
| TCACCAAGGA ACTAGGGGCC CCCGGACCCCT CTGCTGTAG TTTGGCATTC AACAAACCTG   | 5580 |
| GGAAGATTGT GGCTGTGGC CGGATAGATG GGACAGTGGA GCTGTGGCC TGGCAAGAGG     | 5640 |
| GTGCCCGGCT GGCGGCCTTC CCTGCACAGT GTGGCTGTGT CTCTGCTGTT CTTTCTTGC    | 5700 |
| ATGCTGGAGA CCGGTTCTG ACTGCTGGAG AAGATGGCAA GGCTCAGTTA TGGTCAGGAT    | 5760 |
| TTCTTGGCCG GCCCAGGGGT TGCCTGGGCT CTCTTCCTCT TTCTCCTGCA CTCTCGGTGG   | 5820 |
| CTCTCAACCC AGACGGTGAC CAGGTGGCTG TTGGGTACCG AGAAGATGGC ATTAACATCT   | 5880 |
| ACAAGATTTC TTCAGGTTCC CAGGGGCCTC AGCATCAAGA GCTAAATGTG GCGGTGTCTG   | 5940 |
| CACTGGTGTG GCTGAGCCCT AGTGTGTTGG TGAGTGGTGC AGAAGATGGA TCCCTGCATG   | 6000 |
| GTTGGATGTT CAAGGGAGAC TCCCTTCATT CCCTGTGGCT GTTGTGAGA TACCAGAAC     | 6060 |
| CTGTGCTGGG ACTGGCTGCC TCCCAGGAAC TCATGGCTGC TGCCTCAGAG GACTTCAC     | 6120 |
| TGAGACTGTG GCCCAGACAG CTGCTGACAC AGCCACATGT GCATGCGGTA GAGTTGCCCT   | 6180 |
| GTTGTGCTGA ACTCCGGGGA CACGAGGGC CAGTGTGCTG CTGTAGCTTC AGCCCTGATG    | 6240 |
| GAGGCATCTT GGCCACAGCT GGCAGGGATC GGAATCTCCT TTGCTGGAC ATGAAGATA     | 6300 |
| CCCAAGCCCC TCTCCTGATT CACACTTTCT CGTCCTGTCA TCGTGA                  | 6360 |
| CTGGACTGGAC CAAAGACAAC ATCCTGGTCT CCTGCTCGAG TGATGGCTCT GTGGGACTCT  | 6420 |
| GGAACCCAGA GGCAGGGCAG CAACTTGGCC AGTTCTCAGG CCACCAGAGT GCCGTGAGCG   | 6480 |
| CCGTGGTTGC TGTGGAGGAA CACATTGTAT CTGTGAGCCG AGATGGGACC TTGAAAGTGT   | 6540 |
| GGGACCATCA GGGTGTGGAG CTGACCAGCA TCCCTGCCA TTCCGGACCC ATCAGCCAGT    | 6600 |
| GTGCAGCTGC TCTGGAGCCC CGCCCAGGGG GACAGCCTGG ATCAGAGCTT CTGGTGGTGA   | 6660 |
| CTGTTGGACT AGATGGGCC ACAAAAGTTGT GGCATCCCCT GTTGGTGTGC CAAATACGTA   | 6720 |
| CTCTCCAGGG ACACAGTGGC CCAGTCACAG CAGCTGCTGC TTCAGAGGCC TCAGGCCTCC   | 6780 |
| TGCTGACCTC AGATGATAGC TCTGTACAGC TCTGGCAGAT ACCAAAGGAA CCAGATGATT   | 6840 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| CATAACAAACC TAGGAGTTCT GTGGCCATCA CTGCTGTGGC ATGGGCACCG GATGGTTCTA  | 6900 |
| TGGTGGTGTGTC CGGAAATGAA GCCGGGAAAC TGACACTGTG GCAGCAAGCC AAGGCTGTGG | 6960 |
| CTACCGCACA GGCTCCAGGC CGCGTCAGTC ACCTGATCTG GTACTCGGCA AATTCAATTCT  | 7020 |
| TCGTTCTCAG TGCTAATGAA AACGTCAGCG AGTGGCAAGT GGGACTGAGG AAAGGTTCAA   | 7080 |
| CGTCCACCAG TTCCAGTCTT CATCTGAAGA GAGTTCTGCA GGAGGACTGG GGAGTCTTGA   | 7140 |
| CAGGTCTGGG TCTGGCCCCT GATGGCCAGT CTCTCATCTT GATGAAAGAG GATGTGGAAT   | 7200 |
| TACTAGAGAT GAAGCCTGGG TCTATTCCAT CTTCTATCTG CAGGAGGTAT GGAGTACATT   | 7260 |
| CTTCAATACT GTGCACCAGC AAGGAGTACG GCTTGTCTA CCTGCAGCAG GGGGACTCCG    | 7320 |
| GATTACTTTC TATATTGGAG CAAAAGGAGT CAGGGGAGTT TGAAGAGATC CTGGACTTCA   | 7380 |
| ATCTGAACCT AAATAATCCT AATGGGTCCC CAGTATCAAT CACTCAGGCC AAACCTGAGT   | 7440 |
| CTGAATCATC CCTTTTGTGC GCCACCTCTG ATGGGATGCT GTGGAACCTTA TCTGAATGTA  | 7500 |
| CCTCAGAGGG AGAATGGATC GTAGATAACA TTTGGCAGAA AAAAGCAAAA AAACCTAAAA   | 7560 |
| CTCAGACTCT GGAGACAGAG TTGTCCCCGC ACTCAGAGTT GGATTTTCC ATTGATTGCT    | 7620 |
| GGATTGATCC CACAAATTAA AAGGCACAGC AGTGTAAAAA GATCCACTTG GGCTCTGTCA   | 7680 |
| CAGCCCTCCA TGTGCTTCCG GGATTGCTGG TGACAGCTTC GAAGGACAGA GATGTTAAC    | 7740 |
| TGTGGGAGAG ACCCAGTATG CAGCTGCTGG GCTTGTCTCG ATGTGAAGGG CCAGTGAGCT   | 7800 |
| GTCTGGAACC TTGGATGGAG CCCAGCTCTC CCCTGCAGCT TGCTGTGGGAA GACACACAAG  | 7860 |
| GAAACTTGTAA TTTTCTATCT TGGGAA                                       | 7886 |

## (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2627 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: unknown
  - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Met Glu Lys Leu His Gly His Val Ser Ala His Pro Asp Ile Leu Ser |    |    |    |
| 1                                                               | 5  | 10 | 15 |
| Leu Glu Asn Arg Cys Leu Ala Met Leu Pro Asp Leu Gln Pro Leu Glu |    |    |    |
| 20                                                              | 25 | 30 |    |
| Lys Leu His Gln His Val Ser Thr His Ser Asp Ile Leu Ser Leu Lys |    |    |    |
| 35                                                              | 40 | 45 |    |
| Asn Gln Cys Leu Ala Thr Leu Pro Asp Leu Lys Thr Met Glu Lys Pro |    |    |    |
| 50                                                              | 55 | 60 |    |
| His Gly Tyr Val Ser Ala His Pro Asp Ile Leu Ser Leu Glu Asn Gln |    |    |    |
| 65                                                              | 70 | 75 | 80 |

Cys Leu Ala Thr Leu Ser Asp Leu Lys Thr Met Glu Lys Pro His Gly  
85 90 95

His Val Ser Ala His Pro Asp Ile Leu Ser Leu Glu Asn Arg Cys Leu  
100 105 110

Ala Thr Leu Pro Ser Leu Lys Ser Thr Val Ser Ala Ser Pro Leu Phe  
115 120 125

Gln Ser Leu Gln Ile Ser His Met Thr Gln Ala Asp Leu Tyr Arg Val  
130 135 140

Asn Asn Ser Asn Cys Leu Leu Ser Glu Pro Pro Ser Trp Arg Ala Gln  
145 150 155 160

His Phe Ser Lys Gly Leu Asp Leu Ser Thr Cys Pro Ile Ala Leu Lys  
165 170 175

Ser Ile Ser Ala Thr Glu Thr Ala Gln Glu Ala Thr Leu Gly Arg Trp  
180 185 190

Phe Asp Ser Glu Glu Lys Lys Gly Ala Glu Thr Gln Met Pro Ser Tyr  
195 200 205

Ser Leu Ser Leu Gly Glu Glu Glu Val Glu Asp Leu Ala Val Lys  
210 215 220

Leu Thr Ser Gly Asp Ser Glu Ser His Pro Glu Pro Thr Asp His Val  
225 230 235 240

Leu Gln Glu Lys Lys Met Ala Leu Leu Ser Leu Leu Cys Ser Thr Leu  
245 250 255

Val Ser Glu Val Asn Met Asn Asn Thr Ser Asp Pro Thr Leu Ala Ala  
260 265 270

Ile Phe Glu Ile Cys Arg Glu Leu Ala Leu Leu Glu Pro Glu Phe Ile  
275 280 285

Leu Lys Ala Ser Leu Tyr Ala Arg Gln Gln Leu Asn Val Arg Asn Val  
290 295 300

Ala Asn Asn Ile Leu Ala Ile Ala Ala Phe Leu Pro Ala Cys Arg Pro  
305 310 315 320

His Leu Arg Arg Tyr Phe Cys Ala Ile Val Gln Leu Pro Ser Asp Trp  
325 330 335

Ile Gln Val Ala Glu Leu Tyr Gln Ser Leu Ala Glu Gly Asp Lys Asn  
340 345 350

Lys Leu Val Pro Leu Pro Ala Cys Leu Arg Thr Ala Met Thr Asp Lys  
355 360 365

Phe Ala Gln Phe Asp Glu Tyr Gln Leu Ala Lys Tyr Asn Pro Arg Lys  
370 375 380

His Arg Ala Lys Arg His Pro Arg Arg Pro Pro Arg Ser Pro Gly Met  
385 390 395 400

Glu Pro Pro Phe Ser His Arg Cys Phe Pro Arg Tyr Ile Gly Phe Leu  
405 410 415

Arg Glu Glu Gln Arg Lys Phe Glu Lys Ala Gly Asp Thr Val Ser Glu  
420 425 430

Lys Lys Asn Pro Pro Arg Phe Thr Leu Lys Lys Leu Val Gln Arg Leu  
435 440 445

His Ile His Lys Pro Ala Gln His Val Gln Ala Leu Leu Gly Tyr Arg  
450 455 460

Tyr Pro Ser Asn Leu Gln Leu Phe Ser Arg Ser Arg Leu Pro Gly Pro  
465 470 475 480

Trp Asp Ser Ser Arg Ala Gly Lys Arg Met Lys Leu Ser Arg Pro Glu  
485 490 495

Thr Trp Glu Arg Glu Leu Ser Leu Arg Gly Asn Lys Ala Ser Val Trp  
500 505 510

Glu Glu Leu Ile Glu Asn Gly Lys Leu Pro Phe Met Ala Met Leu Arg  
515 520 525

Asn Leu Cys Asn Leu Leu Arg Val Gly Ile Ser Ser Arg His His Glu  
530 535 540

Leu Ile Leu Gln Arg Leu Gln His Gly Lys Ser Val Ile His Ser Arg  
545 550 555 560

Gln Phe Pro Phe Arg Phe Leu Asn Ala His Asp Ala Ile Asp Ala Leu  
565 570 575

Glu Ala Gln Leu Arg Asn Gln Ala Leu Pro Phe Pro Ser Asn Ile Thr  
580 585 590

Leu Met Arg Arg Ile Leu Thr Arg Asn Glu Lys Asn Arg Pro Arg Arg  
595 600 605

Arg Phe Leu Cys His Leu Ser Arg Gln Gln Leu Arg Met Ala Met Arg  
610 615 620

Ile Pro Val Leu Tyr Glu Gln Leu Lys Arg Glu Lys Leu Arg Val His  
625 630 635 640

Lys Ala Arg Gln Trp Lys Tyr Asp Gly Glu Met Leu Asn Arg Tyr Arg  
645 650 655

Gln Ala Leu Glu Thr Ala Val Asn Leu Ser Val Lys His Ser Leu Pro  
660 665 670

Leu Leu Pro Gly Arg Thr Val Leu Val Tyr Leu Thr Asp Ala Asn Ala  
675 680 685

Asp Arg Leu Cys Pro Lys Ser Asn Pro Gln Gly Pro Pro Leu Asn Tyr  
690 695 700

Ala Leu Leu Leu Ile Gly Met Met Ile Thr Arg Ala Glu Gln Val Asp  
705 710 715 720

Val Val Leu Cys Gly Gly Asp Thr Leu Lys Thr Ala Val Leu Lys Ala  
725 730 735

Glu Glu Gly Ile Leu Lys Thr Ala Ile Lys Leu Gln Ala Gln Val Gln  
740 745 750

Glu Phe Asp Glu Asn Asp Gly Trp Ser Leu Asn Thr Phe Gly Lys Tyr  
 755 760 765  
 Leu Leu Ser Leu Ala Gly Gln Arg Val Pro Val Asp Arg Val Ile Leu  
 770 775 780  
 Leu Gly Gln Ser Met Asp Asp Gly Met Ile Asn Val Ala Lys Gln Leu  
 785 790 795 800  
 Tyr Trp Gln Arg Val Asn Ser Lys Cys Leu Phe Val Gly Ile Leu Leu  
 805 810 815  
 Arg Arg Val Gln Tyr Leu Ser Thr Asp Leu Asn Pro Asn Asp Val Thr  
 820 825 830  
 Leu Ser Gly Cys Thr Asp Ala Ile Leu Lys Phe Ile Ala Glu His Gly  
 835 840 845  
 Ala Ser His Leu Leu Glu His Val Gly Gln Met Asp Lys Ile Phe Lys  
 850 855 860  
 Ile Pro Pro Pro Pro Gly Lys Thr Gly Val Gln Ser Leu Arg Pro Leu  
 865 870 875 880  
 Glu Glu Asp Thr Pro Ser Pro Leu Ala Pro Val Ser Gln Gln Gly Trp  
 885 890 895  
 Arg Ser Ile Arg Leu Phe Ile Ser Ser Thr Phe Arg Asp Met His Gly  
 900 905 910  
 Glu Arg Asp Leu Leu Leu Arg Ser Val Leu Pro Ala Leu Gln Ala Arg  
 915 920 925  
 Ala Ala Pro His Arg Ile Ser Leu His Gly Ile Asp Leu Arg Trp Gly  
 930 935 940  
 Val Thr Glu Glu Glu Thr Arg Arg Asn Arg Gln Leu Glu Val Cys Leu  
 945 950 955 960  
 Gly Glu Val Glu Asn Ala Gln Leu Phe Val Gly Ile Leu Gly Ser Arg  
 965 970 975  
 Tyr Gly Tyr Ile Pro Pro Ser Tyr Asn Leu Pro Asp His Pro His Phe  
 980 985 990  
 His Trp Ala Gln Gln Tyr Pro Ser Gly Arg Ser Val Thr Glu Met Glu  
 995 1000 1005  
 Val Met Gln Phe Leu Asn Arg Asn Gln Arg Leu Gln Pro Ser Ala Gln  
 1010 1015 1020  
 Ala Leu Ile Tyr Phe Arg Asp Ser Ser Phe Leu Ser Ser Val Pro Asp  
 1025 1030 1035 1040  
 Ala Trp Lys Ser Asp Phe Val Ser Glu Ser Glu Glu Ala Ala Xaa Arg  
 1045 1050 1055  
 Ile Ser Glu Leu Lys Ser Tyr Leu Ser Arg Gln Lys Gly Ile Thr Cys  
 1060 1065 1070  
 Arg Arg Tyr Pro Cys Glu Trp Gly Gly Val Ala Ala Gly Arg Pro Tyr  
 1075 1080 1085

Val Gly Gly Leu Glu Glu Phe Gly Gln Leu Val Leu Gln Asp Val Trp  
1090 1095 1100

Asn Met Ile Gln Lys Leu Tyr Leu Gln Pro Gly Ala Leu Leu Glu Gln  
1105 1110 1115 1120

Pro Val Ser Ile Pro Asp Asp Asp Leu Val Gln Ala Thr Phe Gln Gln  
1125 1130 1135

Leu Gln Lys Pro Pro Ser Pro Ala Arg Pro Arg Leu Leu Gln Asp Thr  
1140 1145 1150

Val Gln Xaa Leu Met Leu Pro His Gly Arg Leu Ser Leu Val Thr Gly  
1155 1160 1165

Gln Ser Gly Gln Gly Lys Thr Ala Phe Leu Ala Ser Leu Val Ser Ala  
1170 1175 1180

Leu Gln Ala Pro Asp Gly Ala Lys Val Ala Xaa Leu Val Phe Phe His  
1185 1190 1195 1200

Phe Ser Gly Ala Arg Pro Asp Gln Gly Leu Ala Leu Thr Leu Leu Arg  
1205 1210 1215

Arg Leu Cys Thr Tyr Leu Arg Gly Gln Leu Lys Glu Pro Gly Ala Leu  
1220 1225 1230

Pro Ser Thr Tyr Arg Ser Leu Val Trp Glu Leu Gln Gln Arg Leu Leu  
1235 1240 1245

Pro Lys Ser Ala Glu Ser Leu His Pro Gly Gln Thr Gln Val Leu Ile  
1250 1255 1260

Ile Asp Gly Ala Asp Arg Leu Val Asp Gln Asn Gly Gln Leu Ile Ser  
1265 1270 1275 1280

Asp Trp Ile Pro Lys Lys Leu Pro Arg Cys Val His Leu Val Leu Ser  
1285 1290 1295

Val Ser Ser Asp Ala Gly Leu Gly Glu Thr Leu Glu Gln Ser Gln Gly  
1300 1305 1310

Ala His Val Leu Ala Leu Gly Pro Leu Glu Ala Ser Ala Arg Ala Arg  
1315 1320 1325

Leu Val Arg Glu Glu Leu Ala Leu Tyr Gly Lys Arg Leu Glu Glu Ser  
1330 1335 1340

Pro Phe Asn Asn Gln Met Arg Leu Leu Val Lys Arg Glu Ser Gly  
1345 1350 1355 1360

Arg Pro Leu Tyr Leu Arg Leu Val Thr Asp His Leu Arg Leu Phe Thr  
1365 1370 1375

Leu Tyr Glu Gln Val Ser Glu Arg Leu Arg Thr Leu Pro Ala Thr Val  
1380 1385 1390

Pro Leu Leu Leu Gln His Ile Leu Ser Thr Leu Glu Lys Glu His Gly  
1395 1400 1405

Pro Asp Val Leu Pro Gln Ala Leu Thr Ala Leu Glu Val Thr Arg Ser  
1410 1415 1420

Gly Leu Thr Val Asp Gln Leu His Gly Val Leu Ser Val Trp Arg Thr  
1425 1430 1435 1440

Leu Pro Lys Gly Thr Lys Ser Trp Glu Glu Ala Val Ala Ala Gly Asn  
1445 1450 1455

Ser Gly Asp Pro Tyr Pro Met Gly Pro Phe Ala Cys Leu Val Gln Ser  
1460 1465 1470

Leu Arg Ser Leu Leu Gly Glu Gly Pro Leu Glu Arg Pro Gly Ala Arg  
1475 1480 1485

Leu Cys Leu Pro Asp Gly Pro Leu Arg Thr Ala Ala Lys Arg Cys Tyr  
1490 1495 1500

Gly Lys Arg Pro Gly Leu Glu Asp Thr Ala His Ile Leu Ile Ala Ala  
1505 1510 1515 1520

Gln Leu Trp Lys Thr Cys Asp Ala Asp Ala Ser Gly Thr Phe Arg Ser  
1525 1530 1535

Cys Pro Pro Glu Ala Leu Gly Asp Leu Pro Tyr His Leu Leu Gln Ser  
1540 1545 1550

Gly Asn Arg Gly Leu Leu Ser Lys Phe Leu Thr Asn Leu His Val Val  
1555 1560 1565

Ala Ala His Leu Glu Leu Gly Leu Val Ser Arg Leu Leu Glu Ala His  
1570 1575 1580

Ala Leu Tyr Ala Ser Ser Val Pro Lys Glu Glu Gln Lys Leu Pro Glu  
1585 1590 1595 1600

Ala Asp Val Ala Val Phe Arg Thr Phe Leu Arg Gln Gln Ala Ser Ile  
1605 1610 1615

Leu Ser Gln Tyr Pro Arg Leu Leu Pro Gln Gln Ala Ala Asn Gln Pro  
1620 1625 1630

Leu Asp Ser Pro Leu Cys His Gln Ala Ser Leu Leu Ser Arg Arg Trp  
1635 1640 1645

His Leu Gln His Thr Leu Arg Trp Leu Asn Lys Pro Arg Thr Met Lys  
1650 1655 1660

Asn Gln Gln Ser Ser Ser Leu Ser Leu Ala Val Ser Ser Ser Pro Thr  
1665 1670 1675 1680

Ala Val Ala Phe Ser Thr Asn Gly Gln Arg Ala Ala Val Gly Thr Ala  
1685 1690 1695

Asn Gly Thr Val Tyr Leu Leu Asp Leu Arg Thr Trp Gln Glu Glu Lys  
1700 1705 1710

Ser Val Val Ser Gly Cys Asp Gly Ile Ser Ala Cys Leu Phe Leu Ser  
1715 1720 1725

Asp Asp Thr Leu Phe Leu Thr Ala Phe Asp Gly Leu Leu Glu Leu Trp  
1730 1735 1740

Asp Leu Gln His Gly Cys Arg Val Leu Gln Thr Lys Ala His Gln Tyr  
1745 1750 1755 1760

Gln Ile Thr Gly Cys Cys Leu Ser Pro Asp Cys Arg Leu Leu Ala Thr  
1765 1770 1775

Val Cys Leu Gly Gly Cys Leu Lys Leu Trp Asp Thr Val Arg Gly Gln  
1780 1785 1790

Leu Ala Phe Gln His Thr Tyr Pro Lys Ser Leu Asn Cys Val Ala Phe  
1795 1800 1805

His Pro Glu Gly Gln Val Ile Ala Thr Gly Ser Trp Ala Gly Ser Ile  
1810 1815 1820

Ser Phe Phe Gln Val Asp Gly Leu Lys Val Thr Lys Asp Leu Gly Ala  
1825 1830 1835 1840

Pro Gly Ala Ser Ile Arg Thr Leu Ala Phe Asn Val Pro Gly Gly Val  
1845 1850 1855

Val Ala Val Gly Arg Leu Asp Ser Met Val Glu Leu Trp Ala Trp Arg  
1860 1865 1870

Glu Gly Ala Arg Leu Ala Ala Phe Pro Ala His His Gly Phe Val Ala  
1875 1880 1885

Ala Ala Leu Phe Leu His Ala Gly Cys Gln Leu Leu Thr Ala Gly Glu  
1890 1895 1900

Asp Gly Lys Val Gln Val Trp Ser Gly Ser Leu Gly Arg Pro Arg Gly  
1905 1910 1915 1920

His Leu Gly Ser Leu Ser Leu Ser Pro Ala Leu Ser Val Ala Leu Ser  
1925 1930 1935

Pro Asp Gly Asp Arg Val Ala Val Gly Tyr Arg Ala Asp Gly Ile Arg  
1940 1945 1950

Ile Tyr Lys Ile Ser Ser Gly Ser Gln Gly Ala Gln Gly Gln Ala Leu  
1955 1960 1965

Asp Val Ala Val Ser Ala Leu Ala Trp Leu Ser Pro Lys Val Leu Val  
1970 1975 1980

Ser Gly Ala Glu Asp Gly Ser Leu Gln Gly Trp Ala Leu Lys Glu Cys  
1985 1990 1995 2000

Ser Leu Gln Ser Leu Trp Leu Leu Ser Arg Phe Gln Lys Pro Val Leu  
2005 2010 2015

Gly Leu Ala Thr Ser Gln Glu Leu Leu Ala Ser Ala Ser Glu Asp Phe  
2020 2025 2030

Thr Val Gln Leu Trp Pro Arg Gln Leu Leu Thr Arg Pro His Lys Ala  
2035 2040 2045

Glu Asp Phe Pro Cys Gly Thr Glu Leu Arg Gly His Glu Gly Pro Val  
2050 2055 2060

Ser Cys Cys Ser Phe Ser Thr Asp Gly Gly Ser Leu Ala Thr Gly Gly  
2065 2070 2075 2080

Arg Asp Arg Ser Leu Leu Cys Trp Asp Val Arg Thr Pro Lys Thr Pro  
2085 2090 2095

Val Leu Ile His Ser Phe Pro Ala Cys His Arg Asp Trp Val Thr Gly  
2100 2105 2110

Cys Ala Trp Thr Lys Asp Asn Leu Leu Ile Ser Cys Ser Ser Asp Gly  
2115 2120 2125

Ser Val Gly Leu Trp Asp Pro Glu Ser Gly Gln Arg Leu Gly Gln Phe  
2130 2135 2140

Leu Gly His Gln Ser Ala Val Ser Ala Val Ala Val Glu Glu His  
2145 2150 2155 2160

Val Val Ser Val Ser Arg Asp Gly Thr Leu Lys Val Trp Asp His Gln  
2165 2170 2175

Gly Val Glu Leu Thr Ser Ile Pro Ala His Ser Gly Pro Ile Ser His  
2180 2185 2190

Cys Ala Ala Ala Met Glu Pro Arg Ala Ala Gly Gln Pro Gly Ser Glu  
2195 2200 2205

Leu Leu Val Val Thr Val Gly Leu Asp Gly Ala Thr Arg Leu Trp His  
2210 2215 2220

Pro Leu Leu Val Cys Gln Thr His Thr Leu Leu Gly His Ser Gly Pro  
2225 2230 2235 2240

Val Arg Ala Ala Ala Val Ser Glu Thr Ser Gly Leu Met Leu Thr Ala  
2245 2250 2255

Ser Glu Asp Gly Ser Val Arg Leu Trp Gln Val Pro Lys Glu Ala Asp  
2260 2265 2270

Asp Thr Cys Ile Pro Arg Ser Ser Ala Ala Val Thr Ala Val Ala Trp  
2275 2280 2285

Ala Pro Asp Gly Ser Met Ala Val Ser Gly Asn Gln Ala Gly Glu Leu  
2290 2295 2300

Ile Leu Trp Gln Glu Ala Lys Ala Val Ala Thr Ala Gln Ala Pro Gly  
2305 2310 2315 2320

His Ile Gly Ala Leu Ile Trp Ser Ser Ala His Thr Phe Phe Val Leu  
2325 2330 2335

Ser Ala Asp Glu Lys Ile Ser Glu Trp Gln Val Lys Leu Arg Lys Gly  
2340 2345 2350

Ser Ala Pro Gly Asn Leu Ser Leu His Leu Asn Arg Ile Leu Gln Glu  
2355 2360 2365

Asp Leu Gly Val Leu Thr Ser Leu Asp Trp Ala Pro Asp Gly His Phe  
2370 2375 2380

Leu Ile Leu Ala Lys Ala Asp Leu Lys Leu Leu Cys Met Lys Pro Gly  
2385 2390 2395 2400

Asp Ala Pro Ser Glu Ile Trp Ser Ser Tyr Thr Glu Asn Pro Met Ile  
2405 2410 2415

Leu Ser Thr His Lys Glu Tyr Gly Ile Phe Val Leu Gln Pro Lys Asp  
2420 2425 2430

Pro Gly Val Leu Ser Phe Leu Arg Gln Lys Glu Ser Gly Glu Phe Glu  
 2435 2440 2445  
 Glu Arg Leu Asn Phe Asp Ile Asn Leu Glu Asn Pro Ser Arg Thr Leu  
 2450 2455 2460  
 Ile Ser Ile Thr Gln Ala Lys Pro Glu Ser Glu Ser Ser Phe Leu Cys  
 2465 2470 2475 2480  
 Ala Ser Ser Asp Gly Ile Leu Trp Asn Leu Ala Lys Cys Ser Pro Glu  
 2485 2490 2495  
 Gly Glu Trp Thr Thr Gly Asn Met Trp Gln Lys Lys Ala Asn Thr Pro  
 2500 2505 2510  
 Glu Thr Gln Thr Pro Gly Thr Asp Pro Ser Thr Cys Arg Glu Ser Asp  
 2515 2520 2525  
 Ala Ser Met Asp Ser Asp Ala Ser Met Asp Ser Glu Pro Thr Pro His  
 2530 2535 2540  
 Leu Lys Thr Arg Gln Arg Arg Lys Ile His Ser Gly Ser Val Thr Ala  
 2545 2550 2555 2560  
 Leu His Val Leu Pro Glu Leu Leu Val Thr Ala Ser Lys Asp Arg Asp  
 2565 2570 2575  
 Val Lys Leu Trp Glu Arg Pro Ser Met Gln Leu Leu Gly Leu Phe Arg  
 2580 2585 2590  
 Cys Glu Gly Ser Val Ser Cys Leu Glu Pro Trp Leu Gly Ala Asn Ser  
 2595 2600 2605  
 Thr Leu Gln Leu Ala Val Gly Asp Val Gln Gly Asn Val Tyr Phe Leu  
 2610 2615 2620  
 Asn Trp Glu  
 2625

## (2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2629 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: unknown
  - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Glu Lys Leu Cys Gly His Val Pro Gly His Ser Asp Ile Leu Ser  
 1 5 10 15  
 Leu Lys Asn Arg Cys Leu Thr Met Leu Pro Asp Leu Gln Pro Leu Glu  
 20 25 30  
 Lys Ile His Gly His Arg Ser Val His Ser Asp Ile Leu Ser Leu Glu  
 35 40 45

Asn Gln Cys Leu Thr Met Leu Ser Asp Leu Gln Pro Thr Glu Arg Ile  
 50 55 60  
 Asp Gly His Ile Ser Val His Pro Asp Ile Leu Ser Leu Glu Asn Arg  
 65 70 75 80  
 Cys Leu Thr Met Leu Pro Asp Leu Gln Pro Leu Glu Lys Leu Cys Gly  
 85 90 95  
 His Met Ser Ser His Pro Asp Val Leu Ser Leu Glu Asn Gln Cys Leu  
 100 105 110  
 Ala Thr Leu Pro Thr Val Lys Ser Thr Ala Leu Thr Ser Pro Leu Leu  
 115 120 125  
 Gln Gly Leu His Ile Ser His Thr Ala Gln Ala Asp Leu His Ser Leu  
 130 135 140  
 Lys Thr Ser Asn Cys Leu Leu Pro Glu Leu Pro Thr Lys Lys Thr Pro  
 145 150 155 160  
 Cys Phe Ser Glu Glu Leu Asp Leu Pro Pro Gly Pro Arg Ala Leu Lys  
 165 170 175  
 Ser Met Ser Ala Thr Ala Gln Val Gln Glu Val Ala Leu Gly Gln Trp  
 180 185 190  
 Cys Val Ser Lys Glu Lys Glu Phe Gln Glu Glu Glu Ser Thr Glu Val  
 195 200 205  
 Pro Met Pro Leu Tyr Ser Leu Ser Leu Glu Glu Glu Val Glu Ala  
 210 215 220  
 Pro Val Leu Lys Leu Thr Ser Gly Asp Ser Gly Phe His Pro Glu Thr  
 225 230 235 240  
 Thr Asp Gln Val Leu Gln Glu Lys Lys Met Ala Leu Leu Thr Leu Leu  
 245 250 255  
 Cys Ser Ala Leu Ala Ser Asn Val Asn Val Lys Asp Ala Ser Asp Leu  
 260 265 270  
 Thr Arg Ala Ser Ile Leu Glu Val Cys Ser Ala Leu Ala Ser Leu Glu  
 275 280 285  
 Pro Glu Phe Ile Leu Lys Ala Ser Leu Tyr Ala Arg Gln Gln Leu Asn  
 290 295 300  
 Leu Arg Asp Ile Ala Asn Thr Val Leu Ala Val Ala Ala Leu Leu Pro  
 305 310 315 320  
 Ala Cys Arg Pro His Val Arg Arg Tyr Tyr Ser Ala Ile Val His Leu  
 325 330 335  
 Pro Ser Asp Trp Ile Gln Val Ala Glu Phe Tyr Gln Ser Leu Ala Glu  
 340 345 350  
 Gly Asp Glu Lys Lys Leu Val Ser Leu Pro Ala Cys Leu Arg Ala Ala  
 355 360 365  
 Met Thr Asp Lys Phe Ala Glu Phe Asp Glu Tyr Gln Leu Ala Lys Tyr  
 370 375 380

Asn Pro Arg Lys His Arg Ser Lys Arg Arg Ser Arg Gln Pro Pro Arg  
385 390 395 400

Pro Gln Lys Thr Glu Arg Pro Phe Ser Glu Arg Gly Lys Cys Phe Pro  
405 410 415

Lys Ser Leu Trp Pro Leu Lys Asn Glu Gln Ile Thr Phe Glu Ala Ala  
420 425 430

Tyr Asn Ala Met Pro Glu Lys Asn Arg Leu Pro Arg Phe Thr Leu Lys  
435 440 445

Lys Leu Val Glu Tyr Leu His Ile His Lys Pro Ala Gln His Val Gln  
450 455 460

Ala Leu Leu Gly Tyr Arg Tyr Pro Ala Thr Leu Glu Leu Phe Ser Arg  
465 470 475 480

Ser His Leu Pro Gly Pro Trp Glu Ser Ser Arg Ala Gly Gln Arg Met  
485 490 495

Lys Leu Arg Arg Pro Glu Thr Trp Glu Arg Glu Leu Ser Leu Arg Gly  
500 505 510

Asn Lys Ala Ser Val Trp Glu Glu Leu Ile Asp Asn Gly Lys Leu Pro  
515 520 525

Phe Met Ala Met Leu Arg Asn Leu Cys Asn Leu Leu Arg Thr Gly Ile  
530 535 540

Ser Ala Arg His His Glu Leu Val Leu Gln Arg Leu Gln His Glu Lys  
545 550 555 560

Ser Val Val His Ser Arg Gln Phe Pro Phe Arg Phe Leu Asn Ala His  
565 570 575

Asp Ser Ile Asp Lys Leu Glu Ala Gln Leu Arg Ser Lys Ala Ser Pro  
580 585 590

Phe Pro Ser Asn Thr Thr Leu Met Lys Arg Ile Met Ile Arg Asn Ser  
595 600 605

Lys Lys Asn Arg Arg Pro Ala Ser Arg Lys His Leu Cys Thr Leu Thr  
610 615 620

Arg Arg Gln Leu Arg Ala Ala Met Thr Ile Pro Val Met Tyr Glu Gln  
625 630 635 640

Leu Lys Arg Glu Lys Leu Arg Leu His Lys Ala Arg Gln Trp Asn Cys  
645 650 655

Asp Val Glu Leu Leu Glu Arg Tyr Arg Gln Ala Leu Glu Thr Ala Val  
660 665 670

Asn Leu Ser Val Lys His Asn Leu Ser Pro Met Pro Gly Arg Thr Leu  
675 680 685

Leu Val Tyr Leu Thr Asp Ala Asn Ala Asp Arg Leu Cys Pro Lys Ser  
690 695 700

His Ser Gln Gly Pro Pro Leu Asn Tyr Val Leu Leu Leu Ile Gly Met  
705 710 715 720

Met Val Ala Arg Ala Glu Gln Val Thr Val Cys Leu Cys Gly Gly Gly  
 725 730 735  
 Phe Val Lys Thr Pro Val Leu Thr Ala Asp Glu Gly Ile Leu Lys Thr  
 740 745 750  
 Ala Ile Lys Leu Gln Ala Gln Val Gln Glu Leu Glu Gly Asn Asp Glu  
 755 760 765  
 Trp Pro Leu Asp Thr Phe Gly Lys Tyr Leu Leu Ser Leu Ala Val Gln  
 770 775 780  
 Arg Thr Pro Ile Asp Arg Val Ile Leu Phe Gly Gln Arg Met Asp Thr  
 785 790 795 800  
 Glu Leu Leu Lys Val Ala Lys Gln Ile Ile Trp Gln His Val Asn Ser  
 805 810 815  
 Lys Cys Leu Phe Val Gly Val Leu Leu Gln Lys Thr Gln Tyr Ile Ser  
 820 825 830  
 Pro Asn Leu Asn Pro Asn Asp Val Thr Leu Ser Gly Cys Thr Asp Gly  
 835 840 845  
 Ile Leu Lys Phe Ile Ala Glu His Gly Ala Ser Arg Leu Leu Glu His  
 850 855 860  
 Val Gly Gln Leu Asp Lys Leu Phe Lys Ile Pro Pro Pro Pro Gly Lys  
 865 870 875 880  
 Thr Gln Ala Pro Ser Leu Arg Pro Leu Glu Glu Asn Ile Pro Gly Pro  
 885 890 895  
 Leu Gly Pro Ile Ser Gln His Gly Trp Arg Asn Ile Arg Leu Phe Ile  
 900 905 910  
 Ser Ser Thr Phe Arg Asp Met His Gly Glu Arg Asp Leu Leu Met Arg  
 915 920 925  
 Ser Val Leu Pro Ala Leu Gln Ala Arg Val Phe Pro His Arg Ile Ser  
 930 935 940  
 Leu His Ala Ile Asp Leu Arg Trp Gly Ile Thr Glu Glu Glu Thr Arg  
 945 950 955 960  
 Arg Asn Arg Gln Leu Glu Val Cys Leu Gly Glu Val Glu Asn Ser Gln  
 965 970 975  
 Leu Phe Val Gly Ile Leu Gly Ser Arg Tyr Gly Tyr Ile Pro Pro Ser  
 980 985 990  
 Tyr Asp Leu Pro Asp His Pro His Phe His Trp Thr His Glu Tyr Pro  
 995 1000 1005  
 Ser Gly Arg Ser Val Thr Glu Met Glu Val Met Gln Phe Leu Asn Arg  
 1010 1015 1020  
 Gly Gln Arg Ser Gln Pro Ser Ala Gln Ala Leu Ile Tyr Phe Arg Asp  
 1025 1030 1035 1040  
 Pro Asp Phe Leu Ser Ser Val Pro Asp Ala Trp Lys Pro Asp Phe Ile  
 1045 1050 1055

Ser Glu Ser Glu Glu Ala Ala His Arg Val Ser Glu Leu Lys Arg Tyr  
1060 1065 1070

Leu His Glu Gln Lys Glu Val Thr Cys Arg Ser Tyr Ser Cys Glu Trp  
1075 1080 1085

Gly Gly Val Ala Ala Gly Arg Pro Tyr Thr Gly Gly Leu Glu Glu Phe  
1090 1095 1100

Gly Gln Leu Val Leu Gln Asp Val Trp Ser Met Ile Gln Lys Gln His  
1105 1110 1115 1120

Leu Gln Pro Gly Ala Gln Leu Glu Gln Pro Thr Ser Ile Ser Glu Asp  
1125 1130 1135

Asp Leu Ile Gln Thr Ser Phe Gln Gln Leu Lys Thr Pro Thr Ser Pro  
1140 1145 1150

Ala Arg Pro Arg Leu Leu Gln Asp Thr Val Gln Gln Leu Leu Leu Pro  
1155 1160 1165

His Gly Arg Leu Ser Leu Val Thr Gly Gln Ala Gly Gln Gly Lys Thr  
1170 1175 1180

Ala Phe Leu Ala Ser Leu Val Ser Ala Leu Lys Val Pro Asp Gln Pro  
1185 1190 1195 1200

Asn Glu Pro Pro Phe Val Phe Phe His Phe Ala Ala Ala Arg Pro Asp  
1205 1210 1215

Gln Cys Leu Ala Leu Asn Leu Leu Arg Arg Leu Cys Thr His Leu Arg  
1220 1225 1230

Gln Lys Leu Gly Glu Leu Ser Ala Leu Pro Ser Thr Tyr Arg Gly Leu  
1235 1240 1245

Val Trp Glu Leu Gln Gln Lys Leu Leu Leu Lys Phe Ala Gln Ser Leu  
1250 1255 1260

Gln Pro Ala Gln Thr Leu Val Leu Ile Ile Asp Gly Ala Asp Lys Leu  
1265 1270 1275 1280

Val Asp Arg Asn Gly Gln Leu Ile Ser Asp Trp Ile Pro Lys Ser Leu  
1285 1290 1295

Pro Arg Arg Val His Leu Val Leu Ser Val Ser Ser Asp Ser Gly Leu  
1300 1305 1310

Gly Glu Thr Leu Gln Gln Ser Gln Gly Ala Tyr Val Val Ala Leu Gly  
1315 1320 1325

Ser Leu Val Pro Ser Ser Arg Ala Gln Leu Val Arg Glu Glu Leu Ala  
1330 1335 1340

Leu Tyr Gly Lys Arg Leu Glu Glu Ser Pro Phe Asn Asn Gln Met Arg  
1345 1350 1355 1360

Leu Leu Leu Ala Lys Gln Gly Ser Ser Leu Pro Leu Tyr Leu His Leu  
1365 1370 1375

Val Thr Asp Tyr Leu Arg Leu Phe Thr Leu Tyr Glu Gln Val Ser Glu  
1380 1385 1390

Arg Leu Arg Thr Leu Pro Ala Thr Leu Pro Leu Leu Leu Gln His Ile  
1395 1400 1405

Leu Ser Thr Leu Glu Gln Glu His Gly His Asp Val Leu Pro Gln Ala  
1410 1415 1420

Leu Thr Ala Leu Glu Val Thr Arg Ser Gly Leu Thr Val Asp Gln Leu  
1425 1430 1435 1440

His Ala Ile Leu Ser Thr Trp Leu Ile Leu Pro Lys Glu Thr Lys Ser  
1445 1450 1455

Trp Glu Glu Val Leu Ala Ala Ser His Ser Gly Asn Pro Phe Pro Leu  
1460 1465 1470

Cys Pro Phe Ala Tyr Leu Val Gln Ser Leu Arg Ser Leu Leu Gly Glu  
1475 1480 1485

Gly Pro Val Glu Arg Pro Gly Ala Arg Leu Cys Leu Ser Asp Gly Pro  
1490 1495 1500

Leu Arg Thr Thr Ile Lys Arg Arg Tyr Gly Lys Arg Leu Gly Leu Glu  
1505 1510 1515 1520

Lys Thr Ala His Val Leu Ile Ala Ala His Leu Trp Lys Thr Cys Asp  
1525 1530 1535

Pro Asp Ala Ser Gly Thr Phe Arg Ser Cys Pro Pro Glu Ala Leu Lys  
1540 1545 1550

Asp Leu Pro Tyr His Leu Leu Gln Ser Gly Asn His Gly Leu Leu Ala  
1555 1560 1565

Glu Phe Leu Thr Asn Leu His Val Val Ala Ala Tyr Leu Glu Val Gly  
1570 1575 1580

Leu Val Pro Asp Leu Leu Glu Ala His Val Leu Tyr Ala Ser Ser Lys  
1585 1590 1595 1600

Pro Glu Ala Asn Gln Lys Leu Pro Ala Ala Asp Val Ala Val Phe His  
1605 1610 1615

Thr Phe Leu Arg Gln Gln Ala Ser Leu Leu Thr Gln Tyr Pro Leu Leu  
1620 1625 1630

Leu Leu Gln Gln Ala Ala Ser Gln Pro Glu Glu Ser Pro Val Cys Cys  
1635 1640 1645

Gln Ala Pro Leu Leu Thr Gln Arg Trp His Asp Gln Phe Thr Leu Lys  
1650 1655 1660

Trp Ile Asn Lys Pro Gln Thr Leu Lys Gly Gln Gln Ser Leu Ser Leu  
1665 1670 1675 1680

Thr Met Ser Ser Ser Pro Thr Ala Val Ala Phe Ser Pro Asn Gly Gln  
1685 1690 1695

Arg Ala Ala Val Gly Thr Ala Ser Gly Thr Ile Tyr Leu Leu Asn Leu  
1700 1705 1710

Lys Thr Trp Gln Glu Glu Lys Ala Val Val Ser Gly Cys Asp Gly Ile  
1715 1720 1725

Ser Ser Phe Ala Phe Leu Ser Asp Thr Ala Leu Phe Leu Thr Thr Phe  
1730 1735 1740

Asp Gly His Leu Glu Leu Trp Asp Leu Gln His Gly Cys Trp Val Phe  
1745 1750 1755 1760

Gln Thr Lys Ala His Gln Tyr Gln Ile Thr Gly Cys Cys Leu Ser Pro  
1765 1770 1775

Asp Arg Arg Leu Leu Ala Thr Val Cys Leu Gly Gly Tyr Leu Lys Leu  
1780 1785 1790

Trp Asp Thr Val Arg Gly Gln Leu Ala Phe Gln Tyr Thr His Pro Lys  
1795 1800 1805

Ser Leu Asn Cys Val Ala Phe His Pro Glu Gly Gln Val Val Ala Thr  
1810 1815 1820

Gly Ser Trp Ala Gly Ser Ile Thr Phe Phe Gln Ala Asp Gly Leu Lys  
1825 1830 1835 1840

Val Thr Lys Glu Leu Gly Ala Pro Gly Pro Ser Val Cys Ser Leu Ala  
1845 1850 1855

Phe Asn Lys Pro Gly Lys Ile Val Ala Val Gly Arg Ile Asp Gly Thr  
1860 1865 1870

Val Glu Leu Trp Ala Trp Gln Glu Gly Ala Arg Leu Ala Ala Phe Pro  
1875 1880 1885

Ala Gln Cys Gly Cys Val Ser Ala Val Leu Phe Leu His Ala Gly Asp  
1890 1895 1900

Arg Phe Leu Thr Ala Gly Glu Asp Gly Lys Ala Gln Leu Trp Ser Gly  
1905 1910 1915 1920

Phe Leu Gly Arg Pro Arg Gly Cys Leu Gly Ser Leu Pro Leu Ser Pro  
1925 1930 1935

Ala Leu Ser Val Ala Leu Asn Pro Asp Gly Asp Gln Val Ala Val Gly  
1940 1945 1950

Tyr Arg Glu Asp Gly Ile Asn Ile Tyr Lys Ile Ser Ser Gly Ser Gln  
1955 1960 1965

Gly Pro Gln His Gln Glu Leu Asn Val Ala Val Ser Ala Leu Val Trp  
1970 1975 1980

Leu Ser Pro Ser Val Leu Val Ser Gly Ala Glu Asp Gly Ser Leu His  
1985 1990 1995 2000

Gly Trp Met Phe Lys Gly Asp Ser Leu His Ser Leu Trp Leu Leu Ser  
2005 2010 2015

Arg Tyr Gln Lys Pro Val Leu Gly Leu Ala Ala Ser Arg Glu Leu Met  
2020 2025 2030

Ala Ala Ala Ser Glu Asp Phe Thr Val Arg Leu Trp Pro Arg Gln Leu  
2035 2040 2045

Leu Thr Gln Pro His Val His Ala Val Glu Leu Pro Cys Cys Ala Glu  
2050 2055 2060

Leu Arg Gly His Glu Gly Pro Val Cys Cys Cys Ser Phe Ser Pro Asp  
2065 2070 2075 2080

Gly Gly Ile Leu Ala Thr Ala Gly Arg Asp Arg Asn Leu Leu Cys Trp  
2085 2090 2095

Asp Met Lys Ile Ala Gln Ala Pro Leu Leu Ile His Thr Phe Ser Ser  
2100 2105 2110

Cys His Arg Asp Trp Ile Thr Gly Cys Ala Trp Thr Lys Asp Asn Ile  
2115 2120 2125

Leu Val Ser Cys Ser Ser Asp Gly Ser Val Gly Leu Trp Asn Pro Glu  
2130 2135 2140

Ala Gly Gln Gln Leu Gly Gln Phe Ser Gly His Gln Ser Ala Val Ser  
2145 2150 2155 2160

Ala Val Val Ala Val Glu Glu His Ile Val Ser Val Ser Arg Asp Gly  
2165 2170 2175

Thr Leu Lys Val Trp Asp His Gln Gly Val Glu Leu Thr Ser Ile Pro  
2180 2185 2190

Ala His Ser Gly Pro Ile Ser Gln Cys Ala Ala Ala Leu Glu Pro Arg  
2195 2200 2205

Pro Gly Gly Gln Pro Gly Ser Glu Leu Leu Val Val Thr Val Gly Leu  
2210 2215 2220

Asp Gly Ala Thr Lys Leu Trp His Pro Leu Leu Val Cys Gln Ile Arg  
2225 2230 2235 2240

Thr Leu Gln Gly His Ser Gly Pro Val Thr Ala Ala Ala Ala Ser Glu  
2245 2250 2255

Ala Ser Gly Leu Leu Leu Thr Ser Asp Asp Ser Ser Val Gln Leu Trp  
2260 2265 2270

Gln Ile Pro Lys Glu Ala Asp Asp Ser Tyr Lys Pro Arg Ser Ser Val  
2275 2280 2285

Ala Ile Thr Ala Val Ala Trp Ala Pro Asp Gly Ser Met Val Val Ser  
2290 2295 2300

Gly Asn Glu Ala Gly Glu Leu Thr Leu Trp Gln Gln Ala Lys Ala Val  
2305 2310 2315 2320

Ala Thr Ala Gln Ala Pro Gly Arg Val Ser His Leu Ile Trp Tyr Ser  
2325 2330 2335

Ala Asn Ser Phe Phe Val Leu Ser Ala Asn Glu Asn Val Ser Glu Trp  
2340 2345 2350

Gln Val Gly Leu Arg Lys Gly Ser Thr Ser Thr Ser Ser Leu His  
2355 2360 2365

Leu Lys Arg Val Leu Gln Glu Asp Trp Gly Val Leu Thr Gly Leu Gly  
2370 2375 2380

Leu Ala Pro Asp Gly Gln Ser Leu Ile Leu Met Lys Glu Asp Val Glu  
2385 2390 2395 2400

Leu Leu Glu Met Lys Pro Gly Ser Ile Pro Ser Ser Ile Cys Arg Arg  
 2405 2410 2415  
 Tyr Gly Val His Ser Ser Ile Leu Cys Thr Ser Lys Glu Tyr Gly Leu  
 2420 2425 2430  
 Phe Tyr Leu Gln Gln Gly Asp Ser Gly Leu Leu Ser Ile Leu Glu Gln  
 2435 2440 2445  
 Lys Glu Ser Gly Glu Phe Glu Glu Ile Leu Asp Phe Asn Leu Asn Leu  
 2450 2455 2460  
 Asn Asn Pro Asn Gly Ser Pro Val Ser Ile Thr Gln Ala Lys Pro Glu  
 2465 2470 2475 2480  
 Ser Glu Ser Ser Leu Leu Cys Ala Thr Ser Asp Gly Met Leu Trp Asn  
 2485 2490 2495  
 Leu Ser Glu Cys Thr Ser Glu Gly Glu Trp Ile Val Asp Asn Ile Trp  
 2500 2505 2510  
 Gln Lys Lys Ala Lys Lys Pro Lys Thr Gln Thr Leu Glu Thr Glu Leu  
 2515 2520 2525  
 Ser Pro His Ser Glu Leu Asp Phe Ser Ile Asp Cys Trp Ile Asp Pro  
 2530 2535 2540  
 Thr Asn Leu Lys Ala Gln Gln Cys Lys Ile His Leu Gly Ser Val  
 2545 2550 2555 2560  
 Thr Ala Leu His Val Leu Pro Gly Leu Leu Val Thr Ala Ser Lys Asp  
 2565 2570 2575  
 Arg Asp Val Lys Leu Trp Glu Arg Pro Ser Met Gln Leu Leu Gly Leu  
 2580 2585 2590  
 Phe Arg Cys Glu Gly Pro Val Ser Cys Leu Glu Pro Trp Met Glu Pro  
 2595 2600 2605  
 Ser Ser Pro Leu Gln Leu Ala Val Gly Asp Thr Gln Gly Asn Leu Tyr  
 2610 2615 2620  
 Phe Leu Ser Trp Glu  
 2625

## (2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCTCTGCGGC CGCTACANNNNNNNT

## (2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 14 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGAGACGCCG GCGA

14

## (2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 16 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCGACCCACG CGTCCG

16

## (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 12 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGGTGCGCAG GC

12

## (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 18 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGTAAAACGA CGGCCAGT

18

## (2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 18 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "Oligo nucleotide"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CAGGAAACAG CTATGACC

18

## (2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 19 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "Oligo nucleotide"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CAATTAACCC TCACTAAAG

19

## (2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 154 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "Oligo nucleotide"

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGTACCGCCA GCCGAGCCAC ATCGCTCAGA CACCATGATC GCAAATGTGA ATATTGCTCA

60

GGAACAAAAG CTTATTTCTG AAGAAGACTT GGCTCAGGAA CAAAAGCTTA TTTCTGAAGA

120

AGACTTGGCT CAGCAGAGTG GCGGAGGACT CGAG

154

## (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2848 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

|            |             |            |            |             |              |      |
|------------|-------------|------------|------------|-------------|--------------|------|
| CACGCGTCCG | GGCAGCGCTG  | CGTCCTGCTG | CGCACGTGGG | AAGCCCTGGC  | CCC GGCC ACC | 60   |
| CCCGCGATGC | CGCGCGCTCC  | CCGCTGCCGA | GCCGTGCGCT | CCCTGCTGCG  | CAGCCACTAC   | 120  |
| CGCGAGGTGC | TGCCGCTGGC  | CACGTTCGTG | CGGCGCCTGG | GGCCCCAGGG  | CTGGCGGCTG   | 180  |
| GTGCAGCGCG | GGGACCCGGC  | GGCTTCCGC  | GCGCTGGTGG | CCCAGTGCCT  | GGTGTGCGTG   | 240  |
| CCCTGGGACG | CACGGCCGCC  | CCCCGCCGCC | CCCTCCTTCC | GCCAGGGTGT  | CTGCCTGAAG   | 300  |
| GAGCTGGTGG | CCCGAGTGCT  | GCAGAGGCTG | TGCGAGCGCG | GCGCGAAAGAA | CGTGCTGGCC   | 360  |
| TCGGGCTTCG | CGCTGCTGGA  | CGGGGCCCCG | GGGGGGCCCC | CCGAGGCCTT  | CACCACCAGC   | 420  |
| GTGCGCAGCT | ACCTGCCAA   | CACGGTGACC | GACGCACTGC | GGGGGAGCGG  | GGCGTGGGGG   | 480  |
| CTGCTGCTGC | GCCGGTGGG   | CGACGACGTG | CTGGTTCA   | TGCTGGCACG  | CTGCGCGCTC   | 540  |
| TTTGTGCTGG | TGGCTCCCAG  | CTGCGCCTAC | CAGGTGTGCG | GGCCGCCGCT  | GTACCAGCTC   | 600  |
| GGCGCTGCCA | CTCAGGCCCG  | GCCCCCGCCA | CACGCTAGTG | GACCCCGAAG  | CGTCTGGGA    | 660  |
| TGCGAACGGG | CCTGGAACCA  | TAGCGTCAGG | GAGGCCGGGG | TCCCCCTGGG  | CCTGCCAGCC   | 720  |
| CCGGGTGCCA | GGAGGCGCGG  | GGGCAGTGCC | AGCCGAAGTC | TGCCGTTGCC  | CAAGAGGCC    | 780  |
| AGGCGTGGCG | CTGCCCCTGA  | GCCGGAGCGG | ACGCCCGTTG | GGCAGGGTC   | CTGGGCCAC    | 840  |
| CCGGGCAGGA | CGCGTGGACC  | GAGTGACCGT | GGTTTCTGTG | TGGTGTCA    | TGCCAGACCC   | 900  |
| GCCGAAGAAG | CCACCTCTTT  | GGAGGGTGCG | CTCTCTGGCA | CGCGCCACTC  | CCACCCATCC   | 960  |
| GTGGGCCGCC | AGCACCAACGC | GGGCCCCCA  | TCCACATCGC | GGCCACCACG  | TCCCTGGGAC   | 1020 |
| ACGCCTTGTG | CCCCGGTGT   | CGCCGAGACC | AAGCACTTCC | TCTACTCCTC  | AGGCGACAAG   | 1080 |
| GAGCAGCTGC | GGCCCTCCTT  | CCTACTCAGC | TCTCTGAGGC | CCAGCCTGAC  | TGGCGCTCGG   | 1140 |
| AGGCTCGTGG | AGACCATCTT  | TCTGGGTTC  | AGGCCCTGG  | TGCCAGGGAC  | TCCCCGCAGG   | 1200 |
| TTGCCCGGCC | TGCCCGAGCG  | CTACTGGCAA | ATGCCGCC   | TGTTTCTGG   | GCTGCTTGGG   | 1260 |
| AACCACGCGC | AGTGCCCTA   | CGGGGTGCTC | CTCAAGACGC | ACTGCCGCT   | GCGAGCTGCG   | 1320 |
| GTCACCCAG  | CAGCCGGTGT  | CTGTGCCCGG | GAGAAGCCCC | AGGGCTCTGT  | GGCGGCC      | 1380 |
| GAGGAGGAGG | ACACAGACCC  | CCGTCGCCTG | GTGCAGCTGC | TCCGCCAGCA  | CAGCAGCCCC   | 1440 |
| TGGCAGGTGT | ACGGCTTCGT  | GGGGGCCTGC | CTGCGCCGGC | TGGTCCCCC   | AGGCCTCTGG   | 1500 |
| GGCTCCAGGC | ACAACGAACG  | CCGCTTCC   | AGGAACACCA | AGAAGTTCAT  | CTCCCTGGGG   | 1560 |
| AAGCATGCCA | AGCTCTCGCT  | GCAGGAGCTG | ACGTGGAAGA | TGAGCGTGCG  | GGACTGCGCT   | 1620 |
| TGGCTCGCA  | GGAGGCCAGG  | GGTTGGCTGT | GTTCCGGCCG | CAGAGCACCG  | TCTGCGTGAG   | 1680 |
| GAGATCCTGG | CCAAGTTCC   | GCACTGGCTG | ATGAGTGTGT | ACGTCGTCGA  | GCTGCTCAGG   | 1740 |
| TCTTTCTTTT | ATGTCACGGA  | GACCACGTTT | CAAAAGAAC  | GGCTCTTTT   | CTACCGGAAG   | 1800 |

|            |            |             |             |            |            |      |
|------------|------------|-------------|-------------|------------|------------|------|
| AGTGTCTGGA | GCAAGTTGCA | AAGCATTGGA  | ATCAGACAGC  | ACTTGAAGAG | GGTGCAGCTG | 1860 |
| CGGGAGCTGT | CGGAAGCAGA | GGTCAGGCAG  | CATCGGGAAG  | CCAGGCCCGC | CCTGCTGACG | 1920 |
| TCCAGACTCC | GCTTCATCCC | CAAGCCTGAC  | GGGCTGCGGC  | CGATTGTGAA | CATGGACTAC | 1980 |
| GTCGTGGGAG | CCAGAACGTT | CCGCAGAGAA  | AAGAGGGCCG  | AGCGTCTCAC | CTCGAGGGTG | 2040 |
| AAGGCACTGT | TCAGCGTGCT | CAAATACCGAG | CGGGCGCGGC  | GCCCCGGCCT | CCTGGGCGCC | 2100 |
| TCTGTGCTGG | GCCTGGACGA | TATCCACAGG  | GCCTGGCGCA  | CCTTCGTGCT | GCGTGTGCGG | 2160 |
| GCCCAGGACC | CGCCGCCTGA | GCTGTACTTT  | GTCAAGGTGG  | ATGTGACGGG | CGCGTACGAC | 2220 |
| ACCATCCCCC | AGGACAGGCT | CACGGAGGTC  | ATCGCCAGCA  | TCATCAAACC | CCAGAACACG | 2280 |
| TACTGCGTGC | GTCGGTATGC | CGTGGTCCAG  | AAGGCCGCC   | ATGGGCACGT | CCGCAAGGCC | 2340 |
| TTCAAGAGCC | ACGTCTCTAC | CTTGACAGAC  | CTCCAGCCGT  | ACATGCGACA | GTTCGTGGCT | 2400 |
| CACCTGCAGG | AGACCAGCCC | GCTGAGGGAT  | GCCGTCGTCA  | TCGAGCAGAG | CTCCTCCCTG | 2460 |
| AATGAGGCCA | GCAGTGGCCT | CTTCGACGTC  | TTCCCTACGCT | TCATGTGCCA | CCACGCCGTG | 2520 |
| CGCATCAGGG | GCAAGTCCTA | CGTCCAGTGC  | CAGGGGATCC  | CCGAGGGCTC | CATCCTCTCC | 2580 |
| ACGCTGCTCT | GCAGCCTGTG | CTACGGCGAC  | ATGGAGAACAA | AGCTGTTTGC | GGGGATTCCG | 2640 |
| CGGGACGGGC | TGCTCCTGCG | TTTGGTGGAT  | GATTCTTGT   | TGGTGACACC | TCACCTCACC | 2700 |
| CACGCGAAAA | CCTTCCTCAG | GACCCTGGTC  | CGAGGTGTCC  | CTGAGTATGG | CTGCGTGGTG | 2760 |
| AACTTGCAGA | AGACAGTGGT | GAACCTCCCT  | GTAGAAGACG  | AGGCCCTGGG | TGGCACGGCT | 2820 |
| TTTGTTCAGA | TGCCGGCCCA | CGGCCTAT    |             |            |            | 2848 |

## (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 949 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: unknown
  - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His | Ala | Ser | Gly | Gln | Arg | Cys | Val | Leu | Leu | Arg | Thr | Trp | Glu | Ala | Leu |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |
| Ala | Pro | Ala | Thr | Pro | Ala | Met | Pro | Arg | Ala | Pro | Arg | Cys | Arg | Ala | Val |
|     | 20  |     |     |     |     | 25  |     |     |     |     |     | 30  |     |     |     |
| Arg | Ser | Leu | Leu | Arg | Ser | His | Tyr | Arg | Glu | Val | Leu | Pro | Leu | Ala | Thr |
|     |     | 35  |     |     |     |     | 40  |     |     |     |     | 45  |     |     |     |
| Phe | Val | Arg | Arg | Leu | Gly | Pro | Gln | Gly | Trp | Arg | Leu | Val | Gln | Arg | Gly |
|     | 50  |     |     |     | 55  |     |     |     |     | 60  |     |     |     |     |     |
| Asp | Pro | Ala | Ala | Phe | Arg | Ala | Leu | Val | Ala | Gln | Cys | Leu | Val | Cys | Val |
|     | 65  |     |     |     | 70  |     |     |     |     | 75  |     |     | 80  |     |     |

Pro Trp Asp Ala Arg Pro Pro Pro Ala Ala Pro Ser Phe Arg Gln Val  
85 90 95

Ser Cys Leu Lys Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu  
100 105 110

Arg Gly Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly  
115 120 125

Ala Arg Gly Gly Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr  
130 135 140

Leu Pro Asn Thr Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly  
145 150 155 160

Leu Leu Leu Arg Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala  
165 170 175

Arg Cys Ala Leu Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val  
180 185 190

Cys Gly Pro Pro Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro  
195 200 205

Pro Pro His Ala Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala  
210 215 220

Trp Asn His Ser Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala  
225 230 235 240

Pro Gly Ala Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu  
245 250 255

Pro Lys Arg Pro Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro  
260 265 270

Val Gly Gln Gly Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser  
275 280 285

Asp Arg Gly Phe Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala  
290 295 300

Thr Ser Leu Glu Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser  
305 310 315 320

Val Gly Arg Gln His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro  
325 330 335

Arg Pro Trp Asp Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His  
340 345 350

Phe Leu Tyr Ser Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu  
355 360 365

Leu Ser Ser Leu Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu  
370 375 380

Thr Ile Phe Leu Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg  
385 390 395 400

Leu Pro Arg Leu Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu  
405 410 415

Glu Leu Leu Gly Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys  
420 425 430

Thr His Cys Pro Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys  
435 440 445

Ala Arg Glu Lys Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp  
450 455 460

Thr Asp Pro Arg Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro  
465 470 475 480

Trp Gln Val Tyr Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro  
485 490 495

Pro Gly Leu Trp Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn  
500 505 510

Thr Lys Lys Phe Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln  
515 520 525

Glu Leu Thr Trp Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg  
530 535 540

Ser Pro Gly Val Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu  
545 550 555 560

Glu Ile Leu Ala Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val  
565 570 575

Glu Leu Leu Arg Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys  
580 585 590

Asn Arg Leu Phe Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser  
595 600 605

Ile Gly Ile Arg Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser  
610 615 620

Glu Ala Glu Val Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr  
625 630 635 640

Ser Arg Leu Arg Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val  
645 650 655

Asn Met Asp Tyr Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg  
660 665 670

Ala Glu Arg Leu Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn  
675 680 685

Tyr Glu Arg Ala Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly  
690 695 700

Leu Asp Asp Ile His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg  
705 710 715 720

Ala Gln Asp Pro Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr  
725 730 735

Gly Ala Tyr Asp Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala  
740 745 750

Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val  
 755 760 765  
 Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His  
 770 775 780  
 Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala  
 785 790 795 800  
 His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln  
 805 810 815  
 Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu  
 820 825 830  
 Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val  
 835 840 845  
 Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys  
 850 855 860  
 Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg  
 865 870 875 880  
 Arg Asp Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr  
 885 890 895  
 Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly  
 900 905 910  
 Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn  
 915 920 925  
 Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met  
 930 935 940  
 Pro Ala His Gly Leu  
 945

## (2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 22 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
  - (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCAAGTTCCCT GCACTGGCTG AT

22

## (2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 22 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
 (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GCTCGTAGTT GAGCACGCTG AA

22

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 6 amino acids  
 (B) TYPE: amino acid  
 (C) STRANDEDNESS: unknown  
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Phe Phe Tyr Val Thr Glu  
 1 5

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 949 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| TCCCCTGGTG CGGCCTGCTG CTGGATACCC GGACCCCTGGA GGTGCAGAGC GACTACTCCA | 60  |
| GCTATGCCCG GACCTCCATC AGAGCCAGTC TCACCTTCAA CCGCGGCTTC AAGGCTGGGA  | 120 |
| GGAACATGCG TCGCAAACTC TTTGGGGTCT TGCGGCTGAA GTGTACAGC CTGTTCTGG    | 180 |
| ATTTGCAGGT GAACAGCCTC CAGACGGTGT GCACCAACAT CTACAAGATC CTCCTGCTGC  | 240 |
| AGGCGTACAG GTTTCACGCA TGTGTGCTGC AGCTCCCATT TCATCAGCAA GTTTGGAAGA  | 300 |
| ACCCCCACATT TTTCCTGCGC GTCATCTCTG ACACGGCCTC CCTCTGCTAC TCCATCCTGA | 360 |
| AAGCCAAGAA CGCAGGGATG TCGCTGGGG CCAAGGGCGC CGCCGGCCCT CTGCCCTCCG   | 420 |
| AGGCCGTGCA GTGGCTGTGC CACCAAGCAT TCCTGCTCAA GCTGACTCGA CACCGTGTCA  | 480 |
| CCTACGTGCC ACTCCTGGGG TCACTCAGGA CAGCCCAGAC GCAGCTGAGT CGGAAGCTCC  | 540 |
| CGGGGACGAC GCTGACTGCC CTGGAGGCCG CAGCCAACCC GGCACTGCC TCAGACTTCA   | 600 |
| AGACCATCCT GGACTGATGG CCACCCGCC ACAGCCAGGC CGAGAGCAGA CACCAGCAGC   | 660 |
| CCTGTCACGC CGGGCTCTAC GTCCCAGGGA GGGAGGGCG GCCCACACCC AGGCCCGCAC   | 720 |
| CGCTGGGAGT CTGAGGCCTG AGTGAGTGTT TGGCCGAGGC CTGCATGTCC GGCTGAAGGC  | 780 |

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| TGAGTGTCCG GCTGAGGCCT GAGCGAGTGT CCAGCCAAGG GCTGAGTGTC CAGCACACCT | 840 |
| GCCGTCTTCA CTTCCCCACA GGCTGGCGCT CGGCTCCACC CCAGGGCCAG CTTTCCTCA  | 900 |
| CCAGGAGCCC GGCTTCCACT CCCACATAG GAATAGTCCA TCCCCTGAT              | 949 |

## (2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 3798 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

|                                                                    |      |
|--------------------------------------------------------------------|------|
| CCACCGTCC GGGCAGCGCT GCGTCCTGCT GCGCACGTGG GAAGCCCTGG CCCCAGGCCAC  | 60   |
| CCCCCGCATG CCGCGCGCTC CCCGCTGCCG AGCCGTGCGC TCCCTGCTGC GCAGCCACTA  | 120  |
| CCCGGAGGTG CTGCCGCTGG CCACGTTCGT GCGGCCGCTG GGGCCCCAGG GCTGGCGGCT  | 180  |
| GGTGCAGCGC GGGGACCCGG CGGCTTCCG CGCGCTGGTG GCCCAGTGCC TGGTGTGCGT   | 240  |
| GCCCTGGGAC GCACGGCCGC CCCCCGCCGC CCCCTCCTTC CGCCAGGTGT CCTGCCTGAA  | 300  |
| GGAGCTGGTG GCCCGAGTGC TGCAGAGGCT GTGCGAGCGC GGCGCGAAGA ACGTGCTGGC  | 360  |
| CTTCGGCTTC GCGCTGCTGG ACGGGGCCCG CGGGGGCCCC CCCGAGGCCT TCACCACCAAG | 420  |
| CGTGCAGCAGC TACCTGCCCA ACACGGTGAC CGACGCAGTG CGGGGGAGCG GGGCGTGGGG | 480  |
| GCTGCTGCTG CGCCCGTGG GCGACGACGT GCTGGTTCAC CTGCTGGCAC GCTGCGCGCT   | 540  |
| CTTTGTGCTG GTGGCTCCA GCTGCGCTA CCAGGTGTGC GGGCCGCCGC TGTACCAAGCT   | 600  |
| CGGCGCTGCC ACTCAGGCCCG GGCCCCCGCC ACACGCTAGT GGACCCCGAA GGCGTCTGGG | 660  |
| ATGCGAACGG GCCTTGAACC ATAGCGTCAG GGAGGGCGGG GTCCCCCTGG GCCTGCCAGC  | 720  |
| CCCGGGTGGC AGGAGGCGCG GGGCAGTGC CAGCCGAAGT CTGCCGTTGC CCAAGAGGCC   | 780  |
| CAGGGCGTGGC GCTGCCCTG AGCCGGAGCG GACGCCCGTT GGGCAGGGGT CCTGGGCCCA  | 840  |
| CCCGGGCAGG ACGCGTGGAC CGAGTGACCG TGGTTCTGT GTGGTGTAC CTGCCAGACC    | 900  |
| CGCCGAAGAA GCCACCTCTT TGGAGGGTGC GCTCTCTGGC ACGGCCACT CCCACCCATC   | 960  |
| CGTGGGCCGC CAGCACCAAG CGGGCCCCCCC ATCCACATCG CGGCCACAC GTCCCTGGGA  | 1020 |
| CACGCCCTGT CCCCCGGTGT ACGCCGAGAC CAAGCACTTC CTCTACTCCT CAGGCGACAA  | 1080 |
| GGAGCAGCTG CGGCCCTCCT TCCTACTCAG CTCTCTGAGG CCCAGCCTGA CTGGCGCTCG  | 1140 |
| GAGGCTCGTG GAGACCATCT TTCTGGGTTG CAGGCCCTGG ATGCCAGGGA CTCCCCGCAG  | 1200 |
| GTTGCCCGGC CTGCCCGAGC GCTACTGGCA AATGCCGGCCC CTGTTCTGG AGCTGCTTGG  | 1260 |
| GAACCACGGC CAGTGCCCT ACGGGGTGCT CCTCAAGACG CACTGCCGC TGCGAGCTGC    | 1320 |

|             |            |             |             |             |            |      |
|-------------|------------|-------------|-------------|-------------|------------|------|
| GGTCACCCCA  | GCAGCCGGTG | TCTGTGCCCG  | GGAGAAAGCCC | CAGGGCTCTG  | TGGCGGCC   | 1380 |
| CGAGGAGGAG  | GACACAGACC | CCCGTCGCCCT | GGTGCAGCTG  | CTCCGCCAGC  | ACAGCAGCCC | 1440 |
| CTGGCAGGTG  | TACGGCTTCG | TGCGGGCCTG  | CCTGCGCCGG  | CTGGTGCCCC  | CAGGCCTCTG | 1500 |
| GGGCTCCAGG  | CACAACGAAC | GCCGCTTCCT  | CAGGAACACC  | AAGAACGTTCA | TCTCCCTGGG | 1560 |
| GAAGCATGCC  | AAGCTCTCGC | TGCAGGAGCT  | GACGTGGAAG  | ATGAGCGTGC  | GGGACTGCGC | 1620 |
| TTGGCTGCGC  | AGGAGCCCAG | GGGTTGGCTG  | TGTTCCGGCC  | GCAGAGCACC  | GTCTGCGTGA | 1680 |
| GGAGATCCTG  | GCCAAGTTCC | TGCACTGGCT  | GATGAGTGTG  | TACGTCGTCG  | AGCTGCTCAG | 1740 |
| GTCTTCTTT   | TATGTCACGG | AGACCACGTT  | TCAAAAGAAC  | AGGCTCTTT   | TCTACCGGAA | 1800 |
| GAGTGTCTGG  | AGCAAGTTGC | AAAGCATTGG  | AATCAGACAG  | CACTGAAGA   | GGGTGCAGCT | 1860 |
| GCGGGAGCTG  | TCGGAAGCAG | AGGTCAAGGCA | GCATCGGGAA  | GCCAGGCC    | CCCTGCTGAC | 1920 |
| GTCCAGACTC  | CGCTTCATCC | CCAAGCCTGA  | CGGGCTGCGG  | CCGATTGTGA  | ACATGGACTA | 1980 |
| CGTCGTGGGA  | GCCAGAACGT | TCCGCAGAGA  | AAAGAGGGCC  | GAGCGTCTCA  | CCTCGAGGGT | 2040 |
| GAAGGCACTG  | TTCAGCGTGC | TCAACTACGA  | GCAGGGCGCGG | CGCCCCGGCC  | TCCTGGCGC  | 2100 |
| CTCTGTGCTG  | GGCCTGGACG | ATATCCACAG  | GGCCTGGCGC  | ACCTTCGTGC  | TGCGTGTGCG | 2160 |
| GGCCCAGGAC  | CCGCCGCTG  | AGCTGTACTT  | TGTCAGGTG   | GATGTGACGG  | GCGCGTACGA | 2220 |
| CACCATCCCC  | CAGGACAGGC | TCACGGAGGT  | CATCGCCAGC  | ATCATCAAAC  | CCCAGAACAC | 2280 |
| GTACTGCGTG  | CGTCGGTATG | CCGTGGTCCA  | GAAGGCGGCC  | CATGGGCACG  | TCCGCAAGGC | 2340 |
| CTTCAAGAGC  | CACGTCTCTA | CCTTGACAGA  | CCTCCAGCCG  | TACATGCGAC  | AGTTCGTGGC | 2400 |
| TCACCTGCGAG | GAGACCAGCC | CGCTGAGGGG  | TGCCGTCGTC  | ATCGAGCAGA  | GCTCCTCCCT | 2460 |
| GAATGAGGCC  | AGCAGTGGCC | TCTTCGACGT  | CTTCCTACGC  | TTCATGTGCC  | ACCACGCCGT | 2520 |
| GCGCATCAGG  | GGCAAGTCCT | ACGTCCAGTG  | CCAGGGGATC  | CCGCAGGGCT  | CCATCCTCTC | 2580 |
| CACGCTGCTC  | TGCAGCCTGT | GCTACGGCGA  | CATGGAGAAC  | AAGCTTTTG   | CGGGGATTG  | 2640 |
| GCAGGACGGG  | CTGCTCCTGC | GTGGTGGGA   | TGATTTCTTG  | TTGGTGACAC  | CTCACCTCAC | 2700 |
| CCACCGAAA   | ACCTCCTCA  | GGACCTGGT   | CCGAGGTGTC  | CCTGAGTATG  | GCTGCGTGGT | 2760 |
| GAACCTGCGG  | AAGACAGTGG | TGAACCTCCC  | TGTAGAACAC  | GAGGCCCTGG  | GTGGCACGGC | 2820 |
| TTTTGTTCAAG | ATGCCGGCCC | ACGGCCTATT  | CCCCTGGTGC  | GGCCTGCTGC  | TGGATAACCG | 2880 |
| GACCCCTGGAG | GTGCAGAGCG | ACTACTCCAG  | CTATGCCCGG  | ACCTCCATCA  | GAGCCAGTCT | 2940 |
| CACCTTCAAC  | CGCGGCTTCA | AGGCTGGGAG  | GAACATGCGT  | CGCAAACCT   | TTGGGGTCTT | 3000 |
| GCGGCTGAAG  | TGTCACAGCC | TGTTTCTGGA  | TTTGCAGGTG  | AACAGCCTCC  | AGACGGTGTG | 3060 |
| CACCAACATC  | TACAAGATCC | TCCTGCTGCA  | GGCGTACAGG  | TTTCACGCAT  | GTGTGCTGCA | 3120 |
| GCTCCCATTT  | CATCAGCAAG | TTTGGAAAGAA | CCCCACATTT  | TTCCCTGCGCG | TCATCTCTGA | 3180 |

|             |            |            |            |            |            |      |
|-------------|------------|------------|------------|------------|------------|------|
| CACGGCCTCC  | CTCTGCTACT | CCATCCTGAA | AGCCAAGAAC | GCAGGGATGT | CGCTGGGGC  | 3240 |
| CAAGGGCGCC  | GCCGCCCTC  | TGCCCTCCGA | GGCCGTGCAG | TGGCTGTGCC | ACCAAGCATT | 3300 |
| CCTGCTCAAG  | CTGACTCGAC | ACCGTGTAC  | CTACGTGCCA | CTCCTGGGT  | CACTCAGGAC | 3360 |
| AGCCCAGACG  | CAGCTGAGTC | GGAAGCTCCC | GGGGACGACG | CTGACTGCC  | TGGAGGCCG  | 3420 |
| AGCCAACCCG  | GCACTGCCCT | CAGACTTCAA | GACCATCCTG | GAUTGATGGC | CACCCGCCA  | 3480 |
| CAGCCAGGCC  | GAGAGCAGAC | ACCAGCAGCC | CTGTCACGCC | GGGCTCTACG | TCCCAGGGAG | 3540 |
| GGAGGGGCCG  | CCCACACCCA | GGCCCGCACC | GCTGGGAGTC | TGAGGCCTGA | GTGAGTGT   | 3600 |
| GGCCGAGGCC  | TGCATGTCCG | GCTGAAGGCT | GAGTGTCCGG | CTGAGGCCTG | AGCGAGTGTC | 3660 |
| CAGCCAAGGG  | CTGAGTGTCC | AGCACACCTG | CCGTCTTCAC | TTCCCCACAG | GCTGGCGCTC | 3720 |
| GGCTCCACCC  | CAGGCCAGC  | TTTCCTCAC  | CAGGAGCCCG | GCTTCCACTC | CCCACATAGG | 3780 |
| AATA GTCCAT | CCCCTGAT   |            |            |            |            | 3798 |

## (2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1154 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: unknown
  - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| His | Ala | Ser | Gly | Gln | Arg | Cys | Val | Leu | Leu | Arg | Thr | Trp | Glu | Ala | Leu |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |     |
| Ala | Pro | Ala | Thr | Pro | Ala | Met | Pro | Arg | Ala | Pro | Arg | Cys | Arg | Ala | Val |
|     | 20  |     |     |     |     | 25  |     |     |     | 30  |     |     |     |     |     |
| Arg | Ser | Leu | Leu | Arg | Ser | His | Tyr | Arg | Glu | Val | Leu | Pro | Leu | Ala | Thr |
|     | 35  |     |     |     |     | 40  |     |     |     |     | 45  |     |     |     |     |
| Phe | Val | Arg | Arg | Leu | Gly | Pro | Gln | Gly | Trp | Arg | Leu | Val | Gln | Arg | Gly |
|     | 50  |     |     |     | 55  |     |     |     | 60  |     |     |     |     |     |     |
| Asp | Pro | Ala | Ala | Phe | Arg | Ala | Leu | Val | Ala | Gln | Cys | Leu | Val | Cys | Val |
|     | 65  |     |     |     | 70  |     |     |     | 75  |     | 80  |     |     |     |     |
| Pro | Trp | Asp | Ala | Arg | Pro | Pro | Ala | Ala | Pro | Ser | Phe | Arg | Gln | Val |     |
|     |     | 85  |     |     |     | 90  |     |     |     |     | 95  |     |     |     |     |
| Ser | Cys | Leu | Lys | Glu | Leu | Val | Ala | Arg | Val | Leu | Gln | Arg | Leu | Cys | Glu |
|     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |     |     |     |     |
| Arg | Gly | Ala | Lys | Asn | Val | Leu | Ala | Phe | Gly | Phe | Ala | Leu | Leu | Asp | Gly |
|     |     | 115 |     |     |     | 120 |     |     |     |     | 125 |     |     |     |     |
| Ala | Arg | Gly | Gly | Pro | Pro | Glu | Ala | Phe | Thr | Thr | Ser | Val | Arg | Ser | Tyr |
|     | 130 |     |     |     | 135 |     |     |     |     | 140 |     |     |     |     |     |

Leu Pro Asn Thr Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly  
145 150 155 160

Leu Leu Leu Arg Arg Val Gly Asp Asp Val Leu Val His Leu Leu Ala  
165 170 175

Arg Cys Ala Leu Phe Val Leu Val Ala Pro Ser Cys Ala Tyr Gln Val  
180 185 190

Cys Gly Pro Pro Leu Tyr Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro  
195 200 205

Pro Pro His Ala Ser Gly Pro Arg Arg Arg Leu Gly Cys Glu Arg Ala  
210 215 220

Trp Asn His Ser Val Arg Glu Ala Gly Val Pro Leu Gly Leu Pro Ala  
225 230 235 240

Pro Gly Ala Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu  
245 250 255

Pro Lys Arg Pro Arg Arg Gly Ala Ala Pro Glu Pro Glu Arg Thr Pro  
260 265 270

Val Gly Gln Gly Ser Trp Ala His Pro Gly Arg Thr Arg Gly Pro Ser  
275 280 285

Asp Arg Gly Phe Cys Val Val Ser Pro Ala Arg Pro Ala Glu Glu Ala  
290 295 300

Thr Ser Leu Glu Gly Ala Leu Ser Gly Thr Arg His Ser His Pro Ser  
305 310 315 320

Val Gly Arg Gln His His Ala Gly Pro Pro Ser Thr Ser Arg Pro Pro  
325 330 335

Arg Pro Trp Asp Thr Pro Cys Pro Pro Val Tyr Ala Glu Thr Lys His  
340 345 350

Phe Leu Tyr Ser Ser Gly Asp Lys Glu Gln Leu Arg Pro Ser Phe Leu  
355 360 365

Leu Ser Ser Leu Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu Val Glu  
370 375 380

Thr Ile Phe Leu Gly Ser Arg Pro Trp Met Pro Gly Thr Pro Arg Arg  
385 390 395 400

Leu Pro Arg Leu Pro Gln Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu  
405 410 415

Glu Leu Leu Gly Asn His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys  
420 425 430

Thr His Cys Pro Leu Arg Ala Ala Val Thr Pro Ala Ala Gly Val Cys  
435 440 445

Ala Arg Glu Lys Pro Gln Gly Ser Val Ala Ala Pro Glu Glu Glu Asp  
450 455 460

Thr Asp Pro Arg Arg Leu Val Gln Leu Leu Arg Gln His Ser Ser Pro  
465 470 475 480

Trp Gln Val Tyr Gly Phe Val Arg Ala Cys Leu Arg Arg Leu Val Pro  
485 490 495

Pro Gly Leu Trp Gly Ser Arg His Asn Glu Arg Arg Phe Leu Arg Asn  
500 505 510

Thr Lys Lys Phe Ile Ser Leu Gly Lys His Ala Lys Leu Ser Leu Gln  
515 520 525

Glu Leu Thr Trp Lys Met Ser Val Arg Asp Cys Ala Trp Leu Arg Arg  
530 535 540

Ser Pro Gly Val Gly Cys Val Pro Ala Ala Glu His Arg Leu Arg Glu  
545 550 555 560

Glu Ile Leu Ala Lys Phe Leu His Trp Leu Met Ser Val Tyr Val Val  
565 570 575

Glu Leu Leu Arg Ser Phe Phe Tyr Val Thr Glu Thr Thr Phe Gln Lys  
580 585 590

Asn Arg Leu Phe Phe Tyr Arg Lys Ser Val Trp Ser Lys Leu Gln Ser  
595 600 605

Ile Gly Ile Arg Gln His Leu Lys Arg Val Gln Leu Arg Glu Leu Ser  
610 615 620

Glu Ala Glu Val Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu Thr  
625 630 635 640

Ser Arg Leu Arg Phe Ile Pro Lys Pro Asp Gly Leu Arg Pro Ile Val  
645 650 655

Asn Met Asp Tyr Val Val Gly Ala Arg Thr Phe Arg Arg Glu Lys Arg  
660 665 670

Ala Glu Arg Leu Thr Ser Arg Val Lys Ala Leu Phe Ser Val Leu Asn  
675 680 685

Tyr Glu Arg Ala Arg Arg Pro Gly Leu Leu Gly Ala Ser Val Leu Gly  
690 695 700

Leu Asp Asp Ile His Arg Ala Trp Arg Thr Phe Val Leu Arg Val Arg  
705 710 715 720

Ala Gln Asp Pro Pro Pro Glu Leu Tyr Phe Val Lys Val Asp Val Thr  
725 730 735

Gly Ala Tyr Asp Thr Ile Pro Gln Asp Arg Leu Thr Glu Val Ile Ala  
740 745 750

Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val  
755 760 765

Val Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His  
770 775 780

Val Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala  
785 790 795 800

His Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln  
805 810 815

Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu  
820 825 830

Arg Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val  
835 840 845

Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys  
850 855 860

Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg  
865 870 875 880

Arg Asp Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu Val Thr  
885 890 895

Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly  
900 905 910

Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn  
915 920 925

Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met  
930 935 940

Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg  
945 950 955 960

Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile  
965 970 975

Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met  
980 985 990

Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe  
995 1000 1005

Leu Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr  
1010 1015 1020

Lys Ile Leu Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln  
1025 1030 1035 1040

Leu Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg  
1045 1050 1055

Val Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys  
1060 1065 1070

Asn Ala Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro  
1075 1080 1085

Ser Glu Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu  
1090 1095 1100

Thr Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr  
1105 1110 1115 1120

Ala Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala  
1125 1130 1135

Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile  
1140 1145 1150

Leu Asp

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 24 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TGGATGATT CTTGTTGGTG ACAC

24

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 8 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown  
(D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Asp Tyr Lys Asp Asp Asp Asp Lys  
1 5

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 36 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

AGCTTGGTAC CAACATGGAC TACAAGGACG ACGATG

36

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 36 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid

(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

AATTCCCTTG TCATCGTCGT CCTTGTAGTC CATGTT

36

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CGTTTGGTGG CTGATTCTT GTTGGTGAC

29

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GTCACCAACA AGAAATCAGC CACCAAACG

29

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GTCACCAACA AGAAAGCATC CACCAAACG

29

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GTCACCAACA AGAAAGCAGC CACCAAACG

29

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 58 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GAATTCTAGA TCACTTGTCA TCGTCGTCCCT TGTAGTCGTC CAGGATGGTC TTGAAGTC

58

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 29 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CGTTTGGTGG CTGATTTCTT GTTGGTGAC

29

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 29 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CGTTTGGTGG ATGCTTTCTT GTTGGTGAC

29

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 29 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

CGTTTGGTGG CTGCTTCCTT GTTGGTGAC

29

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 26 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown  
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Ser Glu Ala Glu Val Arg Gln His Arg Glu Ala Arg Pro Ala Leu Leu  
1 5 10 15

Thr Ser Arg Leu Arg Phe Ile Pro Lys Cys  
20 25

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 24 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown  
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Arg Ser Lys Arg Arg Ser Arg Gln Pro Pro Arg Pro Gln Lys Thr Glu  
1 5 10 15

Arg Pro Phe Ser Glu Arg Gly Lys  
20

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 19 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown  
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Asp Pro Asp Ala Ser Gly Thr Phe Arg Ser Cys Pro Pro Glu Ala Leu  
1 5 10 15  
Lys Asp Leu

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CCCGGGTGGC GGAGGGTGGG C

21

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CGACTTTGGA GGTGCCTTCA

20

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

- (A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GGGAAGCTTT AATACGACTC ACTATAGGGT GGGCCTGGGA G

41

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CCCGGGGGTTT CACAAAGCCCC C

21

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 44 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GGGAAGCTTT AATACGACTC ACTATAGGGG GTTCACAAGC CCCC

44

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 18 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid  
(A) DESCRIPTION: /desc = "Oligo nucleotide"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CCCGGGTGAG CCTGGGAG

18

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 5 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown  
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Arg Phe Ile Pro Lys  
1 5

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 6 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown

(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Gly Ile Pro Gln Gly Ser  
1 5

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 11 amino acids  
(B) TYPE: amino acid  
(C) STRANDEDNESS: unknown  
(D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu  
1 5 10