Planche d'Exercices n°1 : Lois, Nombres et Polynômes.

Partie I : Révisions et pré-Requis.

Exercice 1. Placer dans le plan cartésien, les points d'affixes suivantes :

$$z_1 = i$$
, $z_2 = 1 + i$, $z_3 = z_1 - z_2$, $z_4 = e^{-i\frac{\pi}{3}}z_2$.

Exercice 2. Mettre sous la forme a + ib $(a, b \in \mathbb{R})$ les nombres complexes :

$$\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i} \quad ; \quad \frac{2+5i}{1-i} + \frac{2-5i}{1+i}; \quad \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{2019} \quad ; \quad \frac{(1+i)^9}{(1-i)^7} \ .$$

Exercice 3. Résoudre l'équation du second degré : $z \in \mathbb{C}$, $z^2 + 2z + 1 + 2i = 0$. *Idem* pour l'équation : $z \in \mathbb{C}$, $iz^4 - z^2 - 3 + i = 0$.

Exercice 4. Calculer les valeurs des polynômes P pour les nombres indiqués.

- 1. $P(X) = X^3 + X^2 + X + 1$, pour X = -1, i et -i;
- 2. $P(X) = X^2 + X + 1$, pour X = i, j et \bar{j} (avec $j = -1/2 + i\sqrt{3}/2$).

Exercice 5. Trouver le polynôme P de degré inférieur ou égal à 3 tel que :

$$P(0) = 1$$
 et $P(1) = 0$ et $P(-1) = -2$ et $P(2) = 4$.

Indication: écrire que P est un polynôme de degré au plus 3 avec des coefficients inconnus. Les conditions demandées sur P se traduisent alors en un système d'équations linéaires.

Exercice 6. Rappel: la factorielle d'un entier naturel n est $n! = 1 \times 2 \times ... \times n$ (0! = 1).

- 1. Donner la décomposition en facteurs premiers du nombre 10!; 10! est-il un carré?
- 2. Combien de diviseurs positifs possède l'entier 2019?
- 3. Pour tout entier $n \ge 1$, calculer $pgcd(n!, n^2)$ et $ppcm(n!, n^2)$.
- 4. Combien de chiffres 0, l'écriture décimale de 2020! comporte-t-elle à sa droite?
- 5. Écrire 2018 en binaire (base 2) et en octal (base 8) : quel lien relie ces écritures?
- 6. Montrer que l'entier 2017 est un nombre premier; pourquoi 14 divisions suffisent?

Exercice 7. Soient les matrices réelles $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$.

- 1. Calculer les produits A^2 , AB, BA et B^2 . Que constate-t-on?
- 2. Comparer $(A + B)^2$ et $A^2 + 2AB + B^2$; idem pour $(A B)^2$ et $A^2 2AB + B^2$.
- 3. Comparer la matrice $A^2 B^2$ avec celles (A B)(A + B) et (A + B)(A B).

Partie II: Entraînement.

Exercice 8. QCM : cocher avec \checkmark ou \times (vrai/faux) la case en regard de chaque énoncé.

- 1. Pour tous polynômes réels non nuls P et Q, nous avons $d^{\circ}(P.Q) = d^{\circ}(P).d^{\circ}(Q)$.
- 2. Le polynôme réel 2X 2 est premier.
- 3. Tout polynôme réel, de degré $n \in \mathbb{N}$, admet n racines (multiplicités comptées).
- 4. Dans $M_n(\mathbb{K})$ (matrices carrées d'ordre n), le produit est associatif.
- 5. Le polynôme complexe $X^2 + 1$ est premier.
- 6. Tout polynôme réel de degré impair possède au moins une racine.
- 7. Pour $d, n \in \mathbb{N}^*$ et $A, B \in M_d(\mathbb{C})$ (matrices carrées) : $(A+B)^n = \sum_{p=0}^n \binom{n}{p} A^p B^{n-p}$.
- 8. L'entier relatif -7 n'est pas premier.
- 9. Le polynôme $X^6 2X^3 + 1$ admet X = 1 comme racine triple.
- 10. Le polynôme réel $X^6 + 3X^4 + 3X^2 + 1$ n'est pas premier.

Total 10 Compter: +1 point si réponse juste, -1 point si fausse (0 si absence).

Exercice 9. Pour tout nombre complexe z = a + ib $(a, b \in \mathbb{C})$, définissons son exponentielle "complexe" : $e^z = e^a e^{ib} = e^a (\cos(b) + i\sin(b))$.

- 1. Pour tout nombre réel θ , donner les parties réelle et imaginaire de $e^{e^{i\theta}}$.
- 2. Vérifier les formules attendues : $e^{z_1+z_2} = e^{z_1}e^{z_2}$ et $e^{z_1-z_2} = e^{z_1}/e^{z_2}$.
- 3. Montrer que la fonction exponentielle $\mathbb{C} \longrightarrow \mathbb{C}$ est périodique (période à préciser).
- 4. L'exponentielle complexe est-elle injective? Surjective, peut-être?

Exercice 10. Définissons deux lois, notées \circ et \bullet , sur l'ensemble \mathbb{R}_{+}^{*} :

$$\forall a > 0, \ \forall b > 0, \quad a \circ b = a^{\ln(b)} \quad et \quad a \bullet b = a^b.$$

- 1. Calculer: $1 \bullet 2$, $2 \circ 1$, $e \circ 1$, $2 \bullet (2 \bullet 2)$, $(2 \bullet 2) \bullet 2$ et $2 \circ e$ ($e \cong 2.7$, nombre de Neper).
- 2. L'une de ces lois est-elle commutative? Associative?
- 3. L'une de ces lois possède-t-elle un élément neutre?
- 4. L'une de ces lois distribue-t-elle l'addition? La multiplication?

Exercice 11. Effectuer la division euclidienne de A par B:

- 1. $A = 3X^5 + 4X^2 + 1$, $B = X^2 + 2X + 3$
- 2. $A = 3X^5 + 2X^4 X^2 + 1$, $B = X^3 + X + 2$
- 3. $A = X^4 X^3 + X 2$, $B = X^2 2X + 4$
- 4. $A = X^5 7X^4 X^2 9X + 9$, $B = X^2 5X + 4$

Exercice 12. Effectuer la division selon les puissances croissantes de A par B à l'ordre k (c'est-à-dire tel que le reste soit divisible par X^{k+1}):

1.
$$A = 1 - 2X + X^3 + X^4$$
, $B = 1 + 2X + X^2$, $k = 2$

2.
$$A = 1 + X^3 - 2X^4 + X^6$$
, $B = 1 + X^2 + X^3$, $k = 4$

Exercice 13. 1. Déterminer le pgcd de chacun des couples de polynômes suivants :

(a)
$$X^3 - X^2 - X - 2$$
 et $X^5 - 2X^4 + X^2 - X - 2$

(b)
$$X^4 + X^3 - 2X + 1$$
 et $X^3 + X + 1$

(c)
$$X^5 + 3X^4 + X^3 + X^2 + 3X + 1$$
 et $X^4 + 2X^3 + X + 2$

2. Calculer le pgcd D des polynômes A et B ci-dessous. Trouver des polynômes U et V tels que AU+BV=D.

(a)
$$A = X^5 + 3X^4 + 2X^3 - X^2 - 3X - 2$$

et $B = X^4 + 2X^3 + 2X^2 + 7X + 6$

(b)
$$A = X^6 - 2X^5 + 2X^4 - 3X^3 + 3X^2 - 2X$$

et $B = X^4 - 2X^3 + X^2 - X + 1$

Exercice 14. Donner la factorisation en irréductibles des polynômes de l'Exercice 4.

Exercice 15. Factoriser dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$ les polynômes suivants :

- 1. $X^4 1$;
- 2. $X^3 2X^2 + 2X 1$; on pourra remarquer que 1 est une racine du polynôme;
- 3. $X^3 2X 1$; on pourra remarquer que -1 est également une racine du polynôme;
- 4. $X^3 + 2X^2 + X + 2$; on pourra remarquer que -2 est une racine du polynôme;
- 5. $X^4 + X^3 2X$; on commencera par chercher deux racines "évidentes".

Exercice 16. Pour quelles valeurs de $a \in \mathbb{R}$ le polynôme $(X+1)^7 - X^7 - a$ admet-il une racine multiple réelle?

Exercice 17. Soient les polynômes réels $P(X) = X^7 - X - 1$ et $Q(X) = X^5 + 1$.

- 1. En utilisant l'algorithme d'Euclide, calculer le PGCD de P et Q.
- 2. En déduire deux polynômes U et V tels que UP + VQ = 1.

Exercice 18.

Exercice 19. (2nde session d'examen, juin 2018) Posons $P = X^4 + X^3 + 2X^2 + X + 1$ et $Q = X^4 + X^3 + 3X^2 + X + 2$ (2 polynômes réels).

- 1. Effectuer les divisions euclidiennes : i) P par $X^2 + 1$; ii) Q par $X^2 + X + 2$.
- 2. En déduire les polynômes pgcd(P,Q) et ppcm(P,Q).
- 3. Question subsidiaire : donner les décompositions de P et Q en facteurs premiers.

Partie III: Approfondissement.

Exercice 20. Équations diophantiennes : les inconnues (x,y,z,...) sont des entiers relatifs.

- 1. Pourquoi l'équation diophantienne 14x 7y + 35z = 13 n'admet pas de solution?
- 2. Trouver une solution à l'équation de Bézout 7x+11y=1 (équation diophantienne).
- 3. Trouver tous les $(x,y) \in \mathbb{Z}^2$, tels que 42x 18y = 12.
- 4. Résoudre l'équation de Pythagore : $(x, y, z) \in \mathbb{N}^3$, $x^2 + y^2 = z^2$ (non linéaire).

Exercice 21. Soit n un entier positif ou nul et soient a_0, \ldots, a_n des réels deux à deux distincts. Pour tout $i \in \{0, \ldots, n\}$, on pose

$$L_i(X) = \prod_{\substack{0 \le k \le n \\ k \ne i}} \frac{X - a_k}{a_i - a_k}$$

(les L_i sont appelés polynômes interpolateurs de Lagrange).

- 1. Calculer $L_i(a_i)$ pour tout $i \in \{0, ..., n\}$ et pour tout $j \in \{0, ..., n\}$.
- 2. Soient b_0, \ldots, b_n des réels fixés.
- 3. Montrer que $P(X) = \sum_{i=0}^{n} b_i L_i(X)$ vérifie :

$$P(a_j) = b_j$$
 pour tout $j \in \{0, \dots, n\}$.

- 4. Montrer que le polynôme P est l'unique polynôme de degré inférieur ou égal à n qui vérifie les conditions de la question précédente.
- 5. Interpréter ce résultat pour les petites valeurs de n, (n = 0, 1, 2, 3).
- 6. En utilisant les polynômes interpolateurs L_i retrouver le résultat de l'Exercice 5.

Exercice 22. Pour tout $n \in \mathbb{N}^*$, fixé, on a le sous-ensemble $U_n = \{e^{i2k\pi/n} | k \in \mathbb{Z}\} \subset \mathbb{C}$.

- 1. Vérifier que U_n est stable pour le produit. Quel est le cardinal de U_n ?
- 2. Clairement, tout $z \in U_n$ vérifie $z^n = 1...$ Cette équation a-t-elle d'autres solutions?
- 3. Par récurrence, montrer que nous avons : $\forall z \in \mathbb{C}, (z-1) \sum_{p=0}^{n-1} z^p = z^n 1.$
- 4. En déduire, pour tout $\theta \in \mathbb{R}$, une expression de la somme $\sum_{p=0}^{n} \cos(p\theta)$ (Moivre).
- 5. En déduire, aussi, la somme des éléments de U_n . Calculer directement leur produit.
- 6. Pour tout entier k, tel que 0 < k < n/2, montrer que $X^n 1$ est divisible par le polynôme réel $X^2 2\cos(2k\pi/n)X + 1$. Indication : apparier les éléments de U_n .
- 7. Donner la décomposition en facteurs premiers du polynôme $X^n 1$.

Exercice 23. Pour tous vecteurs $u_1 = (x_1, y_1, z_1)$ et $u_2 = (x_2, y_2, z_2)$ de \mathbb{R}^3 , définissons leur "produit vectoriel", noté \wedge , comme suit : $u_1 \wedge u_2 = (y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2, x_1 y_2 - y_1 x_2)$.

- 1. Montrer que le produit vectoriel distribue l'addition.
- 2. Pour tout $u \in \mathbb{R}^3$, calculer $u \wedge u$. Quid de l'existence d'un élément neutre?
- 3. Si (e_1, e_2, e_3) est la base canonique, calculer : $e_1 \wedge e_2$, $e_1 \wedge e_3$, $e_2 \wedge e_3$, $e_2 \wedge e_4$,...
- 4. Comparer $u \wedge v$ et $v \wedge u$, pour $u, v \in \mathbb{R}^3$: le produit vectoriel est-il commutatif?