5. Bezdrátová přenosová média používaná v LAN, bezdrátový přenos dat, standard WiFi, přístupová metoda CSMA/CA, bluetooth, IR spoje.

Počítačové sítě a programování

Bezdrátová přenosová média

- Spočívá ve spojení dvou subjektů jiným způsobem než mechanicky.
- Oficiálně je objevitelem Nikola Tesla.

Typy:

- Optická
 - o Infračervené spoje
- Rádiová
 - o WiFi, Bluetooth
 - Vysílačky, televizní přenos
- Sonická
 - Verbální komunikace

WiFi

- WiFi je označení pro několik standardů popisujících bezdrátovou komunikaci v sítích.
- Standardy označujeme IEEE 802.11x (x je písmeno; čím vyšší písmeno, tím vyšší verze).
- Tato technologie využívá "Bezlicenčního frekvenčního pásma" proto je ideální pro budování levné, ale výkonné infrastruktury bez nutnosti kabelů.
 - Ke každé bezdrátové síti musí mít provozovatel od státu licenci pro vysílání v určité frekvenci.
 - Je omezené množství frekvencí.
 - Stát je za velké částky pronajímá a následně chrání.
 - o Některé frekvence jsou ale pohlcovány při dešti (Mikrovlnka)
 - Stát je uvolnil pro průmyslové, vědecké a lékařské užití. Je však nutné dodržovat podmínky Českého telekomunikačního úřadu.
 - Z počátku je využívali výrobci různými technologiemi, ale poté došlo k sjednocení.
- Wifi původně neznamenalo nic, lidé to nazývali "Wireless Fidelity" (bezdrátová věrnost) podle zkratky Hi-Fi.
- Původně bylo cílem zajišťovat vzájemné bezdrátové spojení přenosných zařízení a dále jejich připojování na lokální síti LAN.

Struktura

- Je třeba určit identifikátor SSID (Service Set Identifier)
 - Řetězec 32 ASCII znaků
 - Je v pravidelných intervalech vysílán jako broadcast, aby bylo možné se připojit.
- Velkou roli hraje zabezpečení
 - Můžeme zamezit vysílání SSID
 - o Kontrolovat MAC adresy (blacklist, whitelist)

o WEP

- Šifrování komunikace pomocí statických klíčů symetrické šifry.
- Jednoduché dešifrovat
- Algoritmus CRC-32

o WPA

- Používá také WEP klíče, ale jsou dynamické.
- Používá algoritmus MAC (Message Authentication Code).
- Obsahuje počítadlo, aby někdo nemohl odposlouchat komunikaci a zopakovat.

Standard WiFi

- Standardy 802.11 zahrnuje několik druhů modulací.
- IEEE 802.11 je standard pro bezdrátové lokální sítě.
- Používají se písmena pro různá pásma a rychlosti.

Přehled standardů IEEE 802.11

Standard	Označení	Rok vydání	Pásmo [GHz]	Maximální rychlost [Mbit/s]	Fyzická vrstva
původní IEEE 802.11	-	1997	2,4	2	DSSS a FHSS
IEEE 802.11a	Wi-Fi 1	1999	5	54	OFDM
IEEE 802.11b	Wi-Fi 2	1999	2,4	11	DSSS
IEEE 802.11g	Wi-Fi 3	2003	2,4	54	OFDM
IEEE 802.11n	Wi-Fi 4	2009	2,4/5	600	MIMO OFDM
IEEE 802.11y	-	2008	3,7	54	
IEEE 802.11ac	Wi-Fi 5	2013	5	3466.8	MU-MIMO OFDM
IEEE 802.11ad	-	2012	60	6757	
IEEE 802.11ax	Wi-Fi 6	2019	2,4/5/6	10530	MIMO-OFDM

• Certifikační proces deklarovaných logem WiFi Alliance zaručuje zpětnou komptabilitu se staršími zařízeními.

IEEE 802.11a (WiFi 1)

- Tento standard využívá WiFi v pásma 5GHz.
- Jedná se o stabilnější a vyspělejší verzi než g nebo b.
- Lze ho používat na větší vzdálenosti.

IEEE 802.11b

• Navyšuje rychlost na 11Mbit/s

IEEE 802.11g

- Rozšiřuje IEEE 802.11b
- Je zpětně kompatibilní
- 2,4GHz s rychlostí 54Mbit/s

IEEE802.11ac

Technologie OFDM a MU-MIMO

CSMA/CA

- Carrier Sense Multiple Acces with Collision Avoidance
- Protokol pro metody s vícenásobným přístupem.
- Podobný jako CSMA//CD, což je pro half-duplex sítě.
- Zařízení poslouchá, jestli probíhá přenos.
 - o Pokud probíhá, počká krátkou dobu a začne znovu.
- Pokud neprobíhá, počká náhodnou krátkou dobu a začne posílat data.
- Zařízení, které přijímá data musí odpovědět, že data dorazila. Pokud nedorazila proces se bude opakovat.
- Používá se u bezdrátových sítí.
- Je možné použít dodatečný protokol RTS/CTS (Read to send, clear to send).
 - o Pokud probíhá provoz, zařízení pošle příslušnému bodu RTS.
 - Požádá o přenos dat
 - O WAP může odpovědět CTS zprávou (Clear to send) a zastaví ostatní komunikaci.
 - o Po obdržení této zprávy začne zařízení vysílat.

Bluetooth

- Jedná se o otevřený standard pro bezdrátovou komunikaci propojující dvě nebo více zařízení.
- Nahradilo IrDa a také RS-232 (sériový port).
- Je definována standardem IEEE 502.12.1 pro bezdrátovou komunikaci.
- Vyvinuto společností Ericsson v roce 1994.
- Pracuje v ISM pásmu 2,4 GHz (jako WiFi).
- Pásmo je rozděleno na 79 komunikačních kanálů po 1MHz.
- Propojení zařízení vznikne PAN síť.
 - O Nutnost spárování (z bezpečnostních důvodů).
 - O Zařízení, které inicializovalo spojení funguje jako master a zajišťuje identifikaci zařízení a synchronizaci komunikace.
 - O Ostatní zařízení jsou typu slave.

• Třídy Bluetooth

- \circ Class 1 dosah ~ 100 m
- \circ Class 2 dosah ~ 10 m
- \circ Class 3 dosah ~ 1 m

Class	Maximální p	Dosah	
	mW	dBm	(přibližný)
Class 1	100	20	~100 metrů
Class 2	2,5	4	~10 metrů
Class 3	1	0	~1 metr

• Verze Bluetooth

Verze	Rychlost přenosu dat	Maximální propustnost	
Verze 1.2	1 Mbit/s	0.7 Mbit/s	
Verze 2.0 + EDR	3 Mbit/s	1.4 Mbit/s	
Verze 3.0 + HS	24 Mbit/s		
Verze 4.0	24 Mbit/s		
Verze 5.0	255 Mbit/s		

 K přenosu využívá metodu FHSS, kdy během sekundy je provedeno 1600 skoků mezi 79 frekvencemi s rozestupem 1MHz (aby se zamezilo rušení).

- Bluetooth je vydáváno ve verzích, kdy nejpoužívanější je 2.0.
 - Nové Bluetooth podporuje vysoký dosah, šifrování AES-128 a menší spotřebu.
- o Používá Párovací mechanismy pro propojení:
 - Dědičné párování
 - Musí se zadat pin na obou zařízení a musí se shodovat.
 - Bluetooth 2.0 a starší
 - Jednoduché bezpečné párování
 - Používá kryptografii s veřejným klíčem

IrDa – infračervený port

- Vyvinut pro komunikaci mobilních zařízení bez nutnosti kabelu.
- Infračervené světlo o vlnové délce 875 m vysílané led diodami.
- Maximální rychlost 115 kb/s
- Asynchronní sériový přenos
- Používá pulzní modulaci trvání bitu
- Využití v dálkových ovladačích

Možnosti přenosu záření:

- o Přímo koncentrované paprsky namířeny na přijímač
- o Rozptýlené, kdy se od stěn dostanou k cíli.

IrDA

- Průmyslové sdružení zabývající se specifikací protokolů pro infračervenou komunikaci.
- První specifikace IrDA vznikla 1993 jako náhrada kabel, ale vyvinula se i další norma pro bezdrátovou komunikaci.
 - o IrOBEX pro výměnu vizitek, záznamů v kalendáři a dalších objektů.

Infračervený vysílač

- Dioda pracující na pásmu 780 950 nm.
- Intenzita je omezena předpisy pro bezpečnost očí.
- Má větší šířku pásma než rádiová komunikace.

Protokolová architektura

IrPHY

Fyzický protokol

IrLAP

- Navazuje spolehlivé spojení.
- Založený na HDLC

IrLMP

Multiplexuje službu a aplikace na spojení LAP

	IrDA	Bluetooth	Wi-Fi
vznik specifikace		1998	1999
médium	světlo o vlnové délce 780-950 nm	rádiový kmitočet 2,4 GHz	rádiový kmitočet 2,4 GHz
fyzický dosah	l m (směrově)	10 m	100+ m
maximální rychlost na fyzické vrstvě	4 Mbit/s	1 Mbit/s	11 Mbit/s
užitečná rychlost	3 Mbit/s	400 kbit/s	6 Mbit/s
spotřeba energie	minimalni		vysoká

Antény

Dipólová anténa

- Jedná se o nejjednodušší typ antény ve tvaru dvojice tyčí, nebo smyčky.
- Pro dosažení dobré účinnosti musí být délka dipólu rovna polovině vlnové délky vysílaného nebo přijímaného vlnění.
- Proto se tato anténa označuje jako půlvlny dipól.
- Jednoduchý dipól je obvykle doplněn dalšími prvky, případně se dipóly propojují do soustav.

Parabolická anténa

- Tento typ je při práci s mikrovlnami nejpoužívanější.
- Má tvar rotačního paraboloidu a slouží nejen k radiolokaci, ale např. i k příjmu satelitního televizního vysílání.
- Parabolický tvar přijímací antény zajišťuje, že přicházející signály z určitého směru se po odrazu od paraboly soustřeďují do jednoho bodu ohniska.
- Z něho se výsledný signál přivádí do přijímače. Pokud je naopak v ohnisku umístěn výstup z vysokofrekvenčního generátoru (zářič), funguje anténa jako vysílací.
- Energie ze zářiče se po odrazu od paraboly soustředí do úzkého svazku mikrovln.

Mřížková anténa

- Variantou talířové antény je mřížková anténa.
- Vzhledem k tomu, že parabolický reflektor představuje velkou pevnou plochu pro působení větru, při silném nebo i středně silném větru může docházet k vyosení, dokonce i k deformaci talíře.
- Aby k tomu nedocházelo, reflektor je perforován do podoby mřížky.
- Rozestup prvků mřížky je závislý na frekvenci je jí nepřímo úměrný.

Zisk a šířka svazku jsou podobné jako u parabolické antény.

Fázová (plochá) anténa

• Antény některých typů moderních radarů nejsou parabolické, ale mají tvar plochých desek. Rozdělují se na aktivní a pasivní.

Pasivní anténní soustava protiletadlového raketového systému PATRIOT (vlevo) a aktivní fázovaná anténa palubního radaru letadla Gripen (vpravo)

Aktivní

- Aktivní fázovaná anténa je tvořena velkým počtem (i několik desítek tisíc!) malých modulů.
- Každý modul obsahuje miniaturní polovodičový vysokofrekvenční generátor, tzv. vysílací a přijímací modul (T/R modul transmitter/receiver) o malém výkonu, např. několik wattů.

Pasivní

• Pasivní fázovaná anténa je také tvořena velkým počtem zářičů. Tyto zářiče však – na rozdíl od aktivní antény – neobsahují polovodičové vysokofrekvenční generátory.

Částečně směrové antény

Flíčková anténa, mikropásková anténa

- Flíčková anténa je částečně směrovým zářičem využívajícím plochý kovový pásek instalovaný nad rovinou země.
- Vyzařování ze zadní části antény je efektivně odstraněno rovinou země, což zvyšuje dopřednou směrovost.
- Tento typ antény se označuje také jako mikropásková anténa.

Sektorová anténa

- Sektorové antény jsou dalším typem částečně směrových antén.
- Sektorové antény mají výsečový vzor vyzařování a obvykle se instalují do sektorového pole.
- Sektorové antény se široce využívají pro mobilní komunikaci.

Anténa Yagi

- Běžně používanou směrovou anténou je pole Yagi– Uda, obvykle označované jen jako Yagi.
- Anténa Yagi používá několik prvků a tvoří směrové pole.
- Jeden napájený prvek, obvykle dipól, vyzařuje rádiovou energii.
- Prvky umístěné bezprostředně před a za napájeným prvkem opětovně vysílají rádiovou energii ve fázi, respektive v protifázi, čímž signál zesilují, resp. brzdí.
- Tyto prvky se nazývají parazitní prvky.

Fresnelova zóna

