Transformações Geométricas

Chessman Kennedy

Escala (Redimensionamento)

- Tem como finalidade mudar o tamanho do objeto.
- As posições dos vértices do objeto são multiplicados por um determinado valor.
- Valores de escala maiores que um aumentam o tamanho do objeto.
- Valores de escala maiores que zero e menores que um diminuem o tamanho do objeto.
- Valores de escala negativo invertem o objeto,

Escala

fator de escala > 1

$$\mathbf{A}' = \mathbf{A} \cdot E = \begin{bmatrix} 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} 1.5 & 0.0 \\ 0.0 & 1.5 \end{bmatrix} = \begin{bmatrix} 1.5 & 1.5 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{B} \cdot E = \begin{bmatrix} 3.0 & 4.0 \end{bmatrix} \begin{bmatrix} 1.5 & 0.0 \\ 0.0 & 1.5 \end{bmatrix} = \begin{bmatrix} 4.5 & 6.0 \end{bmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot E = \begin{bmatrix} 5.0 & 1.0 \end{bmatrix} \begin{bmatrix} 1.5 & 0.0 \\ 0.0 & 1.5 \end{bmatrix} = \begin{bmatrix} 7.5 & 1.5 \end{bmatrix}$$

Escala

fator de escala < 1 e > 0

$$\mathbf{A}' = \mathbf{A} \cdot E = \begin{bmatrix} 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 0.5 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{B} \cdot E = \begin{bmatrix} 5.0 & 8.0 \end{bmatrix} \begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 0.5 \end{bmatrix} = \begin{bmatrix} 2.5 & 4.0 \end{bmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot E = \begin{bmatrix} 9.0 & 1.0 \end{bmatrix} \begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 0.5 \end{bmatrix} = \begin{bmatrix} 4.5 & 0.5 \end{bmatrix}$$

Escala

fator de escala = -1

$$\mathbf{A}' = \mathbf{A} \cdot E = \begin{bmatrix} 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} -1.0 & 0.0 \\ 0.0 & -1.0 \end{bmatrix} = \begin{bmatrix} -1.0 & -1.0 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{B} \cdot E = \begin{bmatrix} 5.0 & 8.0 \end{bmatrix} \begin{bmatrix} -1.0 & 0.0 \\ 0.0 & -1.0 \end{bmatrix} = \begin{bmatrix} -5.0 & -8.0 \end{bmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot E = \begin{bmatrix} 9.0 & 1.0 \end{bmatrix} \begin{bmatrix} -1.0 & 0.0 \\ 0.0 & -1.0 \end{bmatrix} = \begin{bmatrix} -9.0 & -1.0 \end{bmatrix}$$

Tem como finalidade rotacionar o objeto.

Matriz de Rotação:

$$R = \begin{bmatrix} cos(\theta) & -sen(\theta) \\ sen(\theta) & cos(\theta) \end{bmatrix}$$

onde θ é o ângulo de rotação desejado.

rotação de $\theta = 90 \ (cos(\theta) = 0 \ e \ sen(\theta) = 1)$

$$\mathbf{A}' = \mathbf{A} \cdot R = \begin{bmatrix} 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} 0.0 & -1.0 \\ 1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 1.0 & -1.0 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{B} \cdot R = \begin{bmatrix} 5.0 & 8.0 \end{bmatrix} \begin{bmatrix} 0.0 & -1.0 \\ 1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 8.0 & -5.0 \end{bmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot R = \begin{bmatrix} 9.0 & 1.0 \end{bmatrix} \begin{bmatrix} 0.0 & -1.0 \\ 1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 1.0 & -9.0 \end{bmatrix}$$

rotação de $\theta = 90$ com um dos vértices na origem

$$\mathbf{A}' = \mathbf{A} \cdot R = \begin{bmatrix} 0.0 & 0.0 \end{bmatrix} \begin{bmatrix} 0.0 & 1.0 \\ -1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 0.0 & 0.0 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{B} \cdot R = \begin{bmatrix} 4.0 & 7.0 \end{bmatrix} \begin{bmatrix} 0.0 & 1.0 \\ -1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} -7.0 & 4.0 \end{bmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot R = \begin{bmatrix} 8.0 & 0.0 \end{bmatrix} \begin{bmatrix} 0.0 & 1.0 \\ -1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 0.0 & 8.0 \end{bmatrix}$$

rotação de $\theta = 90$ com centro do objeto na origem

$$\mathbf{A}' = \mathbf{A} \cdot R = \begin{bmatrix} -4.0 & -3.0 \end{bmatrix} \begin{bmatrix} 0.0 & 1.0 \\ -1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 3.0 & -4.0 \end{bmatrix}$$

$$\mathbf{B}' = \mathbf{B} \cdot R = \begin{bmatrix} 0.0 & 4.0 \end{bmatrix} \begin{bmatrix} 0.0 & 1.0 \\ -1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} -4.0 & 0.0 \end{bmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot R = \begin{bmatrix} 4.0 & -3.0 \end{bmatrix} \begin{bmatrix} 0.0 & 1.0 \\ -1.0 & 0.0 \end{bmatrix} = \begin{bmatrix} 3.0 & 4.0 \end{bmatrix}$$

Translação

 Tem como finalidade mover o objeto de uma posição para outra.

$$[x' \ y'] = [x \ y] + [d_x \ d_y] = [x + d_x \ y + d_y]$$

Translação

translação de $d_x = -2.0$ e $d_y = 1.0$

$$\mathbf{A}' = \mathbf{A} + T = [0.0 \ 0.0] + [-2.0 \ 1.0] = [-2.0 \ 1.0]$$
 $\mathbf{B}' = \mathbf{B} + T = [4.0 \ 7.0] + [-2.0 \ 1.0] = [2.0 \ 8.0]$
 $\mathbf{C}' = \mathbf{C} + T = [8.0 \ 0.0] + [-2.0 \ 1.0] = [6.0 \ 1.0]$

Sistema de Coordenadas Homogêneas

- Tem como finalidade facilitar a execução de transformações a partir da matrizes com a mesma quantidade de linhas e colunas.
- No espaço 2D, utilizam-se matrizes 3x3.
- No espaço 3D, utilizam-se matrizes 4x4.

Sistema de Coordenadas Homogêneas Escala

$$E = \begin{bmatrix} E_x & 0.0 & 0.0 \\ 0.0 & E_y & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Exemplo: seja o vértice $\mathbf{A} = (2.0, 0.5)$ e fatores de escala $E_x = 2.0$ e $E_y = 1.0$

$$\mathbf{A}' = \mathbf{A} \cdot E = \begin{bmatrix} 2.0 & 0.5 & 1.0 \end{bmatrix} \begin{bmatrix} 2.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix} = \begin{bmatrix} 4.0 & 0.5 & 1.0 \end{bmatrix}$$

Sistema de Coordenadas Homogêneas Rotação

$$R = \left[egin{array}{ccc} cos(heta) & -sen(heta) & 0.0 \ sen(heta) & cos(heta) & 0.0 \ 0.0 & 0.0 & 1.0 \ \end{array}
ight]$$

Exemplo: seja o vértice $\mathbf{A}=(2.0,0.5)$ e rotação de 90° $(cos(\theta)=0$ e $sen(\theta)=1)$

$$\mathbf{A}' = \mathbf{A} \cdot R = \begin{bmatrix} 2.0 & 0.5 & 1.0 \end{bmatrix} \begin{bmatrix} 0.0 & -1.0 & 0.0 \\ 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix} = \begin{bmatrix} 0.5 - 2.0 & 1.0 \end{bmatrix}$$

Sistema de Coordenadas Homogêneas Translação

$$T = \left[egin{array}{cccc} 1.0 & 0.0 & 0.0 \ 0.0 & 1.0 & 0.0 \ d_x & d_y & 1.0 \end{array}
ight]$$

Exemplo: seja o vértice $\mathbf{A}=(2.0,0.5)$ e fatores de translação $d_{x}=-5.0$ e $d_{y}=2.0$

$$\mathbf{A}' = \mathbf{A} \cdot T = \begin{bmatrix} 2.0 & 0.5 & 1.0 \end{bmatrix} \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ -5.0 & 2.0 & 1.0 \end{bmatrix} = \begin{bmatrix} [-3.0 & 2.5 & 1.0] \end{bmatrix}$$

Aplicando os Matrizes do Sistema de Coordenadas Homogêneas

Multiplique cada vértice do objeto pela matriz.

• **Exemplo**: Dado um vértice A = (2, 5), calcular A' a partir da escala de fatores $E_x = 2$ e $E_y = 1$.

$$\mathbf{A}' \ = \ \mathbf{A} \cdot \mathbf{E} \ = \ [2.0 \ 0.5 \ 1.0] \left[\begin{array}{cccc} 2.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{array} \right] \ = \ \overline{\left[4.0 \ 0.5 \ 1.0 \right]}$$

Observe que o vértice é representado por uma matriz linha, com o terceiro valor = 1.

Composição de Transformações

- A partir das matrizes do sistema de coordenadas homogêneas, é possível aplicar todas as transformações de uma única vez.
- **Exemplo**: Dado um vértice A = (2, 5), calcular A' a partir da escala de fatores $E_x = 2$ e $E_y = 1$ e uma translação $d_x = -5$ e $d_y = 2$.

$$\mathbf{A}' = \mathbf{A} \cdot E \cdot T = \begin{bmatrix} 2.0 & 0.5 & 1.0 \end{bmatrix} \begin{bmatrix} 2.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{bmatrix} \cdot T =$$

$$= \begin{bmatrix} 4.0 & 0.5 & 1.0 \end{bmatrix} \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 \\ -5.0 & 2.0 & 1.0 \end{bmatrix} = \begin{bmatrix} -1.0 & 2.5 & 1.0 \end{bmatrix}$$

Composição de Transformações

 Atenção: a ordem da multiplicação das matrizes de transformação geram resultados diferentes.

Transformações Tridimensionais Escala

$$P' = P \cdot E = [xE_x \ yE_y \ zE_z \ 1]$$

$$E = \begin{bmatrix} E_x & 0.0 & 0.0 & 0.0 \\ 0.0 & E_y & 0.0 & 0.0 \\ 0.0 & 0.0 & E_z & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Transformações Tridimensionais Rotação

$$R_{x} = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & cos(\theta) & -sen(\theta) & 0.0 \\ 0.0 & sen(\theta) & cos(\theta) & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

$$R_y = \begin{bmatrix} \cos(\theta) & 0.0 & -sen(\theta) & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ sen(\theta) & 0.0 & cos(\theta) & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

$$R_z = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0.0 & 0.0 \\ \sin(\theta) & \cos(\theta) & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}$$

Transformações Tridimensionais Translação

$$T = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ d_x & d_y & d_z & 1.0 \end{bmatrix}$$

Escala em OpenGL

- Use função:
 void glScalef(GLfloat ex, GLfloat ey, GLfloat ez)
- Passe 1 para ez quando no caso de 2D.

Rotação em OpenGL

• Use função:

void glRotatef(GLfloat angulo, GLfloat x, GLfloat y, GLfloat z)

- Passe 0 para dz quando no caso de 2D.
- Quando o ângulo é positivo, a rotação é realizado no sentido anti-horário.

Translação em OpenGL

- Use função:
 - void glTranslatef(GLfloat dx, GLfloat dy, GLfloat dz)
- Passe 0 para dz quando no caso de 2D.

Considerações sobre Transformações em OpenGL

- Chame as funções de transformação antes das funções de desenho.
- Para combinar transformações, basta executar as funções correspondentes na sequência desejada.
- As transformações são aplicadas a todos os objetos desenhados após as chamadas das funções.
- Para voltar o openGL ao estado anterior das transformações, use glPushMatrix antes de realizar as transformações e glPopMatrix após a execução dos desenhos.

```
#include <ql/qlut.h>
float escalaX;
float escalaY;
// Inicializa parâmetros de rendering
void inicializar (void)
    // Define a cor de fundo da janela de visualização como preta
    glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
    // Determina a região onde a imagem pode ser exibida.
    // O desenho não aparece se esta função não for usada
    gluOrtho2D (0.0f, 250.0f, 0.0f, 250.0f);
```

```
void desenhar(void)
  glPushMatrix();
  glClear(GL COLOR BUFFER BIT);
  glColor3f(1.0f, 0.0f, 0.0f);
  glScalef(escalaX, escalaY,1);
  glBegin(GL QUADS);
    glVertex2i(100,150);
    glVertex2i(100,100);
    glVertex2i(150,100);
    glVertex2i(150,150);
  glEnd();
  glPopMatrix();
  glFlush();
```

```
void eventoTeclado(unsigned char tecla, int x, int y) {
     switch (tecla) {
       case '+': escalaX += 0.1;
                 escalaY += 0.1;
                 break:
       case '-': escalaX -= 0.1;
                 escalaY -= 0.1;
                 break:
       case 27: exit(0);
                break;
       glutPostRedisplay();
```

```
// Programa Principal
int main(void)
  escalaX = 1;
  escalaY = 1;
  glutInitDisplayMode(GLUT SINGLE | GLUT RGB);
  glutInitWindowSize(400,350);
  glutInitWindowPosition(10,10);
  glutCreateWindow("Escala de um Quadrado");
  glutDisplayFunc(desenhar);
  glutKeyboardFunc(eventoTeclado);
  inicializar();
 glutMainLoop();
```

Exercícios

- Altere o exemplo para fazer a rotação do objeto.
- Altere o exemplo para fazer a translação do objeto.
- Faça um programa para fazer a escala, translação e rotação da casinha desenhada na aula anterior.