Лабораторна робота Nº1

Дослідження моделі "хижак-жертва" засобами комп'ютерного моделювання

Мета роботи

Побудова математичної моделі відносин "хижак-жертва", дослідження моделі із використанням комп'ютерного моделювання

1.1 Інформаційний матеріал

В даний час комп'ютерне моделювання в наукових та практичних сферах є одним з основних інструментів дослідження різних систем, процесів та явищ навколишнього світу.

Вивчення комп'ютерного математичного моделювання дозволяє усвідомити зв'язки інформатики з науками, насамперед, з математикою та фізикою. Сама технологія комп'ютерного моделювання вимагає від дослідника вміння коректно ставити при вхідні параметри побудові задачі, ранжувати прогнозувати результати дослідження, проводити комп'ютерні експерименти та аналіз їх результатів.

1.1.1 Модель "хижак-жертва"

Вперше ця модель була отримана А. Лоткою (1925), який використовував її для опису динаміки популяцій, які взаємодіють. Трохи пізніше і незалежно від Лотки аналогічні (і складніші) моделі розробив італійський математик В.Вольтерра (1926), глибокі дослідження якого у сфері екологічних проблем заклали фундамент математичної теорії біологічних співтовариств.

Використані припущення:

Два взаємодіючі види: "хижак" і "жертва" мешкають у певному просторі.

У популяції "жертви" немає боротьби за простір та харчові ресурси; існують процеси розмноження, природної загибелі та загибелі в результаті зустрічі з "хижаком".

Вид "хижак" може їсти лише вид "жертва".

У популяціях хижака й жертви не враховуються біохімічні та фізіологічні процеси.

Позначення величин:

- x_0 вихідна кількість жертв;
- y_0 вихідне число хижаків;
- x_{st} -стаціонарне значення чисельності жертв;
- y_{st} стаціонарне значення чисельності хижаків;
- ү питомий коефіцієнт народжуваності жертви;
- δ питомий коефіцієнт народжуваності хижака;
- σ питомий коефіцієнт природної смертності жертви;
- β питомий коефіцієнт природної смертності хижака;
- ϵ = (γ σ) біотичний потенціал популяції жертв, коефіцієнт зростання;
- α коефіцієнт загибелі за рахунок зустрічі жертви з хижаком (1/ α прорідження популяції в 1/ α разів);
- β коефіцієнт природної загибелі хижаків;
- x_{t} число жертв у момент часу t;
- y_t число хижаків у момент часу t.

Початкові умови:

$$x_0 = x_{st} + \Delta_x; y_0 = y_{st} + \Delta_y,$$

де $\Delta_{_{\chi}}$, $\Delta_{_{_{\mathcal{V}}}}$ можуть приймати довільні значення.

Рівняння балансу між чисельністю народжених та загиблих особин:

• жертви

$$\frac{dx}{dt} = \gamma x - \sigma x - \alpha x y,$$

де γx – швидкість розмноження, σx - швидкість природної загибелі, axy – швидкість загибелі в результаті зустрічі з хижаком.

• хижаки:

$$\frac{dy}{dt} = \delta xy - \beta y.$$

де δxy – швидкість розмноження; βy – швидкість природної смертності.

Загальна система рівнянь цієї моделі Вольтерра-Лотки (взаємодії "хижак-жертва") має вигляд:

$$\frac{dx}{dt} = \gamma x - \sigma x - \alpha x y,$$

$$\frac{dy}{dt} = \delta x y - \beta y.$$

У загальному вигляді x(t) та y(t) - нелінійні функції часу t. Ця система рівнянь розв'язується чисельними методами.

1.1.2 Вихідні дані до роботи

Задано:

- ★ систему "хижак-жертва";
- \bigstar значення параметрів моделі ϵ , β , α , δ .

Варіант 1.

Система	ε, од∖рік	β, од∖рік	α	δ
Вовки-зайці	0,8	0,45	0,014	0,005

Варіант 2.

Система	ε, од∖рік	β, од∖рік	α	δ
Щуки-карасі	0,5	0,45	0,02	0,002

Варіант 3.

Система	ε, од∖рік	β, од∖рік	α	δ
Сови-миші	1,2	0,35	0,02	0,0001

Варіант 4.

Система	ε, од∖рік	β, од∖рік	α	δ
Крокодил-зебра	0,5	0,05	0,022	0,00001

Приклад фазових траєкторій системи наведено на рис. 1.

Рисунок 1 - Фазові траєкторії системи

1.2 Програма виконання роботи

- 1. Знайти стаціонарні точки значення чисельності жертв та хижаків для системи рівнянь моделі Вольтерра-Лотки¹.
- 2. Розв'язати систему, використовуючи чисельні методи розв'язання диференціальних рівнянь (наприклад, метод Рунге-Кутти), за ДОПОМОГОЮ вбудованих функцій пакетів прикладних програм та отримати залежності кількості жертв та хижаків з часом для заданих параметрів моделі.
- 3. Вивести графіки розв'язків у часі та у фазовому просторі.
- 4. Знайти максимальну та мінімальну кількості хижаків та жертв.
- 5. Знайти періоди коливань чисельності хижаків та жертв.
- 6. Виконати моделювання й оцінити поведінку системи за різних значень параметрів α , β , ϵ , δ , а також за різних початкових умов x_0 та y_0 .
- 7. Дослідити, при яких відхиленнях від стаціонарних значень чисельності гармонічні коливання змінюються складними коливаннями, а форма фазової траєкторії перестає бути еліпсом.
- 8. Знайти співвідношення параметрів, у яких відбувається природне зростання популяцій.
- 9. Отримані результати занести до звіту, зробити висновки.

¹ https://www.wolframalpha.com/input?i=predator-prev+model