DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI /BT QUAD RELAY BOARD.

DESCRIPTION DOCUMENT FOR WIFI/BT QUAD RELAY BOARD HARDWARE REVISION 0.1

Department	Name	Signature	Date
Author			
Reviewer			
Approver			

Revision History

Rev	Description of Change	Effective Date
Α	Initial Release	

ABSTRACT:

This document is a detailed product description that describes the effective features of the product. It includes a functional hardware description of the product with its internal block diagram and product images.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Table of Contents

Revision History	1
1. ABBREVIATIONS	4
2. REFERENCES	4
3. PURPOSE	4
4. SCOPE	4
5. SAFETY AND WARNING	4
6. PRODUCT FEATURES	5
7. PRODUCT DESCRIPTION	5
a. PHYSICAL DESCRIPTION	5
<u>b.</u> FUNCTIONAL DESCRIPTION	5
8. SYSTEM OVERVIEW	6
9. TECHNICAL SPECIFICATION	6
a. ELECTRICAL SPECIFICATION	6
b. MECHANICAL SPECIFICATION	7
10. ELECTRICAL CONNECTIONS	8
a. HEADER PIN CONFIGURATION	10
<u>i.</u> HEADER J2	10
ii. HEADER J3	10
iii. HEADER J4	11
<u>b.</u> APPLICATION WIRING DIAGRAM	11
11. MQTT COMMANDS TO READ INPUTS	13
a. COMMANDS TO TRIGGER RELAY THROUGH SUBSCRIPTION TOPIC	13
b. COMMAND TO RESET THE BOARD	14
c. REPONSE RECEIVED FROM THE BOARD THROUGH PUBLISHING TOPIC	14
12. HOW TO USE THE PRODUCT	15
a. STEPS TO CONFIGURE THE DEVICE TO NETWORK HOSTED BY YOU:	15
<u>b.</u> CONNECT VIA MQTT MODE	16
c. CONNECT VIA MQTT MODE	18
d. STEPS TO CONNECT SMARTPHONE TO MQTT BROKER / WIFI ROUTER / ACCESS POINT:	20
e. STEPS TO TEST THE DEVICE USING SMARTPHONE AND MQTT BROKER:	22
<u>f.</u> CONTROL OUTPUTS VIA SMARTPHONE:	24
g. RESET THE DEVICE USING MQTT COMMAND VIA SMARTPHONE.	25
<u>h.</u> READ DIGITAL INPUTS VIA SMARTPHONE	26
13. Openhab Example	29
a. Example of Openhab files in MQTT mode	29
14. HOW TO CUSTOMISE FIRMWARE	31
a. STEPS TO LOAD PROGRAM TO ESP32:	31
IMPORTANT NOTICE	34

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Table of figures

Figure 1: Block Diagram	5
Figure 2: Board Mechanical dimensions	
Figure 3: Header and Switch Details	
Figure 4: Header Pin number references	9
Figure 5: AC Input connection	
Figure 6: Relay Dry contact pin-out	
Figure 7: Application wiring example	
Figure 8: Application wiring example of DC connections	. 12
Figure 9: Application wiring example of AC connections	. 13
Figure 10: Available Wifi networks searched	
Figure 11: Smartphone Connected to Wifi hosted by board	. 15
Figure 12: Default IP address entered in the Web browser	
Figure 13: Accessed webpage of the device	
Figure 14: Entered all the required details	
Figure 15: Accessed webpage of the device	
Figure 16: Entered all the required details	
Figure 17: Smartphone searched for available Wifi networks	
Figure 18: Trying to connect to pre-configured MQTT broker	
Figure 19: Smartphone connected to MQTT broker	
Figure 20: MyMQTT app menu page	
Figure 21: MQTT broker IP address and port number entered	. 22
Figure 22: Saved the settings	
Figure 23 Entered topic and message to control outputs	
Figure 24: Message and topic published to control outputs	. 24
Figure 25: Taped on the default screen	
Figure 26: Clicked on the publish option and entered the message to be displayed on LCD	
Figure 27: Published the message by clicking on Publish button	
Figure 28: Tapped on the home screen	
Figure 29: Clicked on the Subscribe option	
Figure 30: Entered the Subscription topic and clicked on the Add button	. 27
Figure 31: Dashboard window to monitor status of Digital Inputs	
Figure 32: Openhab image of 4 relay board	
Figure 33: Program Opened in IDE	
Figure 34: Board Selection	. 32
Figure 35: Baudrate selection	. 33

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

1. ABBREVIATIONS

Term	Description
AC	Alternating Current
AP	Access Point
ВТ	Bluetooth
COM	Common
DC	Direct Current
HTTP	Hypertext Transfer Protocol
Hz	Hertz
MQTT	Message Queue Telemetry Transport
NC	Normally Closed
NO	Normally Open
UART	Universal Asynchronous Receiver Transmitter
USB	Universal Serial Bus

2. REFERENCES

Company Website link	https://www.armtronix.in
Github Weblink	https://github.com/armtronix/Wifi_Bt_Esp32_Quad_Relay
Youtube Weblink	https://www.youtube.com/watch?v=wqkkvoWiCZI

3. PURPOSE

The purpose of this document is to outline the design description for the Wifi/BT Four Relay Board. It provides a high level summary of the product.

4. SCOPE

This document describes system architecture which includes Power supply, relay, WiFi/BT ESP32 Module and UART to USB converter.

5. SAFETY AND WARNING

Note that, this board to be powered with AC 230V with required current. Work and handle carefully with AC power as it is harmful and danger for human beings. Touching live wire or board when it is ON is danger and not advisable, it may cause to death, please avoid it.

Even a 50 V AC supply is sufficient to kill you. Please Switch off the mains before you make or change connections, be very careful. If you are not sure of anything related to the AC supply lines, please call an electrician ask and him to help you with it. Do not attempt to interface to mains unless you have adequate training and access to appropriate safety equipment. Never work on high voltages by yourself when you are alone. Always ensure that you have a friend/partner who can see and hear you and who knows how to quickly turn off power in case of an accident. Use a 2A Fuse in series with the input to the board as a safety measure. Basic Wiring diagram is available on our instructables page and github. Please refer it.

Fire Hazard: Making wrong connections, drawing more than rated power, contact with water or other conducting material, and other types of misuse/overuse/malfunction can all cause overheating and risk starting a fire. Test your circuit and the environment in which it is deployed thoroughly before leaving it switched on and unsupervised. Always follow all fire safety precautions.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

6. PRODUCT FEATURES

- Works directly with AC power 100 240 V AC 50-60 Hz.
- Device firmware can be updated/reloaded/changed as per user requirement.
- Four Dry contact relay output with COM, NO and NC accessible to user.
- Board can handle up-to 4 Amps of current at relay output.
- WiFi with MQTT or HTTP protocol
- On board USB UART converter to program WiFi Module
- Basic Firmware to enter SSID and password to connect to the router
- Firmware has ability to control device through HTTP and MQTT mode.
- Push Button on board provided for configuration and Reset function.
- Board is compatible and configurable to Amazon Alexa.

7. PRODUCT DESCRIPTION

a. PHYSICAL DESCRIPTION

- > AC to DC Power supply module
- ➤ Mechanical Relay 4 numbers
- Wifi Module
- ➤ USB-UART converter

b. FUNCTIONAL DESCRIPTION Block Diagram

Figure 1: Block Diagram

Wifi/BT relay board is ESP32 based relay board, has on-board power supply module which takes standard AC power as input and provides required DC power as output. The DC power is used to power-up Wifi/BT module used on board to establish Wifi communication with mobile phones or wifi routers or access points. There are four relays mounted on board to control (ON/OFF) four external electrical loads independently from a mobile application using MQTT/HTTP protocol.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

8. SYSTEM OVERVIEW

1. AC to DC Power supply module

AC to DC converter is power supply module manufactured from Hi-Link part number HLK-PM01. This power supply module rectifies and regulates voltage from 230 V AC to 5 V DC with output current capacity of 0.6A DC. The power of HLK-PM01 is at maximum of 3W.

The 5V supply is used to power on relay and USB-UATT converter. There is a DC-DC converter on board to regulate voltage from 5 V DC to 3.3 V DC to supply power to Wifi module.

2. Wifi/BT Module

Wifi module used on the board is ESP32 with all its required GPIOs are easily accessible to user for their own application. Wifi module is powered through 3.3 V DC. It works on both MQTT / HTTP protocol.

3. Mechanical Relay – 4 Numbers

All relays are powered by 5 V DC. The three load terminals (COM, NO and NC) of all relays are given accessible to user to control loads independently. A driver circuit with an opto-isolator is used to drive the relay.

4. USB-UART converter

USB-UART converter is an integrated chip used to convert serial UART data to high speed USB to program the Wifi module using Arduino IDE. This is much user friendly to customize the code and reload it. A micro USB connector given on board to make hassle free connection between computer and Wifi Four relay board for programming purpose.

9. TECHNICAL SPECIFICATION

a. **ELECTRICAL SPECIFICATION**

Input Specifications				
Description	Min	Тур	Max	Unit
Voltage AC	100	220	230	Volts
Current AC	-	0.1	-	Amps
Power AC	-	3	-	Watts
Frequency	50	-	60	Hz

Relays Output Specifications (Maximum)				
Description	Min	Тур	Max	Unit
Voltage AC	-	-	240	Volts
Current AC	-	-	3	Amps
Power AC	-	-	980	Watts
Voltage DC	-	-	24	Volts
Current DC	-	=	3	Amps

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

b. MECHANICAL SPECIFICATION

- Mechanical Dimensions of PCB are 140 x 60 x 20 mm (Length x Width x Height)
- Mounting Holes are compatible with M3 screws pan head dia maximum of 5.65mm.

Figure 2: Board Mechanical dimensions

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

10. ELECTRICAL CONNECTIONS

Figure 3: Header and Switch Details

Description of Header and Switches shown in Figure 1:

S1 Button to GPIO_0.
 S2 Button to reset the ESP.

Power Input AC input terminal block.
 J4 Relay Selection Header.

5. J2 and J3 Headers are compatible to standard ESP32 extra GPIO headers.

6. U5 Micro USB for programming.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 4: Header Pin number references

Figure 3, shows pinout and connection of AC Phase and Neutral connection to POWER INPUT connector. Figure 4, shows J5 – J8 are output load connector.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

a. HEADER PIN CONFIGURATION

i. HEADER J2

Header Pin	ESP Pin Number	Pin Name	Arduino Pin Name /
15	3	EN	•
14	4	VP	
13	5	VN	
12	6	A6/GPIO 34	34
11	7	A7/GPIO 35	35
10	8	A4/GPIO 32	32
9	9	A5/GPIO 33	33
8	10	A8/GPIO 25	25
7	11	A9/GPIO 26	26
6	12	GPIO 27	27
5	13	GPIO 14	14
4	14	GPIO 12	12
3	16	GPIO 13	13
2	15	DGND	-
1	_	5V	-

Table 1: Header J2 Pin Configuration

ii. HEADER J3

Header	ESP Pin	Pin Name	Arduino
15	37	GPIO 23	23
14	36	GPIO 22	22
13	35	TXD0	-
12	34	RXD0	-
11	33	GPIO 21	21
10	31	GPIO 19	19
9	30	GPIO 18	18
8	29	GPIO 05	05
7	28	TXD2	17
6	27	RXD2	16
5	26	GPIO 04	04
4	25	GPIO 02	02
3	23	GPIO 15	15
2	-	DGND	-
1	_	VCC 3V3	-

Table 2: Header J3 Pin configuration

Table 1 and 2, shows the header J2 and J3 which are in compatible with Node MCU headers. Freely available GPIOs are also shown in connector, can be used for user application.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

iii. HEADER J4

Header Pin Number	Pin Name	Header Pin Number	Pin Name
1	GPIO15	2	Relay 01
3	GPIO4	4	Relay 01
5	GPIO12	6	Relay_02
7	GPIO13	8	Relay 03
9	GPIO14	10	Relay 04
11	GPIO2	12	Test_LED (D3)

Table 3: Header J4 Pin Configuration

GPIOs mentioned in the Table 3 are used to control relays. By default the GPIOs will be shorted (using removable jumpers) with respective relay pins as mentioned in above table. If you want to use those GPIOs for your own application instead of relays, then you have to disconnect by opening the jumper and make use of them.

b. APPLICATION WIRING DIAGRAM

Figure 7: Application wiring example

Figure 6 represents about application connection diagram between load and board relay output (J5-J8) connectors. Phase is given to Common terminal and load shall be connected to the NO/NC terminal of the relay.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 8: Application wiring example of DC connections

Note: Virtual switch GPIOs are 3.3 V DC connections, please do not connect AC lines to it. Connecting AC lines to it, may damage the board and may lead fire and cause hazardous effects.

Physical switch are connected to 4 GPIOs (refer to Table 4).

Relay No.	Relay GPIOs	Header Pin Number
Relay 01	GPIO 04	GPIO 33
Relay 01	GPIO 12	GPIO 32
Relay 02	GPIO 13	GPIO 35
Relay 03	GPIO 14	GPIO 34

Table 4: Virtual switch GPIO details

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 9: Application wiring example of AC connections

Outputs of relay 1-4 are connected to Socket 1-4 through NO and COM pin of relay. The socket will get power when the relay is triggered by virtual switch or mobile application. The advantage of this configuration is, it will act as two-way switch and

you can Turn-On the load through physical switch and Turn it OFF through relay or vice-versa.

The device can also be connected to Amazon Alexa by configuring using Alexa mobile App and OpenHab by configuring it with openhab sever.

11. MQTT COMMANDS TO READ INPUTS

a. COMMANDS TO TRIGGER RELAY THROUGH SUBSCRIPTION TOPIC

R4_ON ; Will turn-on the Relay_1

R4_OFF ; Will turn-off the Relay_1

R12_ON ; Will turn-on the Relay_2 R12_OFF ; Will turn-off the Relay_2

R13_ON ; Will turn-on the Relay_3 R13_OFF ; Will turn-off the Relay_3

R14_ON ; Will turn-on the Relay_4 R14_OFF ; Will turn-off the Relay_4

Note: "Subscription Topic" will be the name entered while configuring the board.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

b. COMMAND TO RESET THE BOARD

Reset ; will reset the board and board will start hosting an AP.

Note: "Subscription Topic" will be the name entered while configuring the board.

c. REPONSE RECEIVED FROM THE BOARD THROUGH PUBLISHING TOPIC

On change in status of Relay_1

R04isON

R04isOFF

On change in status of Relay_2

R12isON

R12isOFF

On change in status of Relay_3

R13isON

R13isOFF

On change in status of Relay_4

R14isON

R14isOFF

Note: "Publishing Topic" will be the name entered while configuring the board.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

12. HOW TO USE THE PRODUCT

- a. STEPS TO CONFIGURE THE DEVICE TO NETWORK HOSTED BY YOU:
 - i. Switch ON the device.
 - ii. Make sure that Power presence indication **Green LED** is glowing.
 - iii. Take any Smartphone.
 - iv. Switch ON Wifi in it. (make sure that, its Mobile Data connection is turned OFF).
 - v. Search for available Wifi networks in the range

Figure 10: Available Wifi networks searched

vi. You will observe one of the available Wifi network as "Armtronix-xx-xx-xx". Where xx: is last 6 digits of MAC address of the particular device. Click on that particular available network connect your smart phone to it. So in this scenario, the device is 'Wifi Host' and Smartphone is 'Wifi Client'.

Figure 11: Smartphone Connected to Wifi hosted by board

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

vii. Open any web browser, enter default IP address 192.168.4.1 of the device when it is hosting its own Wifi network and click enter.

Figure 12: Default IP address entered in the Web browser

b. CONNECT VIA MQTT MODE

i. Clinking on Enter button after entering default IP address, you will be able to access its webpage as shown in Figure 9.

Figure 13: Accessed webpage of the device

DOCUMENT #: BA011 **DOCUMENT REV:** A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

ii. In the accessed webpage, fill-in all the required details like:

> SSID : SSID of Access Point

Pass : Password of Access point

➤ **IOT Mode** : MQTT

➤ MQTT Broker IP/DNS : xxx.xxx.xxx (Ex. 192.168.0.1)

▶ Publish to Topic 1 (IN) : /I/xxx (Ex. /I/008)
 ▶ Subscribe to topic 1 (OP) : /O/xxx(Ex. /O/008)

Device Name : Alexa command name; Which we ask Alexa to trigger

Ex. Alexa turn ON light; "Light" is the name of the device
Ex. Alexa turn ON Fan; "Fan" is the name of the device
Ex. Alexa turn ON Charger; "Charger" is the name of the device
Ex. Alexa turn ON Tube light; "Tube Light" is the name of the device

Figure 14: Entered all the required details

iii. After entering all the required details, click on Submit button. It will save the parameters you entered and reboot the device and acknowledge the user in the webpage.Do not turn OFF the device, it will automatically reboot.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

c. CONNECT VIA MQTT MODE

i. Clinking on Enter button after entering default IP address, you will be able to access its webpage as shown in Figure 9.

Figure 15: Accessed webpage of the device

ii. In the accessed webpage, fill-in all the required details like:

SSID : SSID of Access Point

Pass : Password of Access point

➤ **IOT Mode** : HTTP

Device Name : Alexa command name; Which we ask Alexa to trigger

Ex. Alexa turn ON **light** ; "Light" is the name of the device

Ex. Alexa turn ON **Fan** ; "Fan" is the name of the device

Ex. Alexa turn ON **Charger** ; "Charger" is the name of the device

Ex. Alexa turn ON Tube light; "Tube Light" is the name of the device

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 16: Entered all the required details

iii. After entering all the required details, click on Submit button. It will save the parameters you entered and reboot the device and acknowledge the user in the webpage.

Do not turn OFF the device, it will automatically reboot.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

d. STEPS TO CONNECT SMARTPHONE TO MQTT BROKER / WIFI ROUTER / ACCESS POINT:

- i. Disconnect Smartphone from any other Wifi network if connected.
- ii. Search for available Wifi network where the MQTT broker / WIFI ROUTER / ACCESSVPOINT is running.

In our case it is "Armtronix-Home" is the wifi network where our MQTT broker is running.

Figure 17: Smartphone searched for available Wifi networks

iii. Click on that particular available network to connect your smart phone to it.

Figure 18: Trying to connect to pre-configured MQTT broker

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 19: Smartphone connected to MQTT broker

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

e. STEPS TO TEST THE DEVICE USING SMARTPHONE AND MQTT BROKER:

- i. Install 'MyMQTT' Android app in to a Smartphone you would use for testing.
- ii. Open an app 'MyMQTT' app Smartphone.

Figure 20: MyMQTT app menu page

- iii. Click on settings option.
- iv. Enter MQTT broker IP address and default Port number as 1883 (if not changed)

 Our MQTT broker IP address is 192.168.0.1

Figure 21: MQTT broker IP address and port number entered

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

v. On the completion of your IP address and port number entry, Save the settings by clicking on **Save** button. Popup will indicate once the settings saved.

Figure 22: Saved the settings

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

f. CONTROL OUTPUTS VIA SMARTPHONE:

- i. Connect Smartphone to network hosted having MQTT broker as said in section 13.d.
- ii. Open MyMQTT app in Smartphone.
- iii. Tap on the screen, it will open menu window.
- iv. Click on the Publish option.
- v. Enter topic "as you entered while configuring"
- vi. Ex. Message given in the section 11.a" (Device will trigger respective relay(from Relay-1 to Relay-4,) based on message you publish)

Figure 23 Entered topic and message to control outputs

vii. Click on Publish button to publish the topic.

Figure 24: Message and topic published to control outputs

viii. On publishing the topic, popup will arrive as 'Message Published' the device will take action on the outputs.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

g. RESET THE DEVICE USING MQTT COMMAND VIA SMARTPHONE.

- i. Connect Smartphone to network hosted having MQTT Broker as said in section 13.b.
- ii. Open MyMQTT app in Smartphone.
- iii. Tap on the screen, it will open

Figure 25: Taped on the default screen

- iv. Click on the Publish option.
- v. Enter topic "as you entered while configuring"
- vi. Enter Message as "Reset" (Device will get RESET)

Figure 26: Clicked on the publish option and entered the message to be displayed on LCD

vii. Click on Publish button on the screen to publish the topic.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 27: Published the message by clicking on Publish button

viii. On publishing on the topic, popup will arrive as 'Message Published' the device will take action on the outputs.

h. READ DIGITAL INPUTS VIA SMARTPHONE.

- i. Connect Smartphone to network hosted having MQTT Broker as said in section 13.b.
- ii. Open MyMQTT app in Smartphone.
- iii. Tap on the screen, it will open menu window.

Figure 28: Tapped on the home screen

iv. Click on the Subscribe option.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Figure 29: Clicked on the Subscribe option

i. Enter subscription topic "as you entered while configuring"

Figure 30: Entered the Subscription topic and clicked on the Add button

v. Click on back button located at left-top-corner of the screen.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

- vi. Tap on the screen. It will open the menu.
- vii. Open the dashboard by clicking on Dashboard option in the menu.

Figure 31: Dashboard window to monitor status of Digital Inputs

viii. You will receive the status of load, as and when there is a change in status.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

13. Openhab Example

Figure 32: Openhab image of 4 relay board

a. Example of Openhab files in MQTT mode

In our case,

- MQTT broker's name is "broker"
- Topic for publishing and subscription is "/test"
- Sitemap file name is Armtronix Office.sitemap
- Item file name is Armtronix_Office.items
- Map file names are r4.map, r12.map, r13.map and r14.map

Path of sitemap file: /etc/openhab2/sitempas/Armtronix_Office.sitemap

```
Code of sitemap file:
sitemap demo label="Armtronix Office"
{
Frame
{
Group item=tsu label="Wifi_BT_Board" icon="group"
{
    Switch item=GPIO4 label="Relay 1"
    Switch item=GPIO12 label="Relay 2"
    Switch item=GPIO13 label="Relay 3"
    Switch item=GPIO14 label="Relay 4"
    }
}
```

Path of item file: /etc/openhab2/items/Armtronix_Office.items

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

Code of item file:

Group All

Group tsu (All)

Switch GPIO4 "Relay 1" (tsu,Lights)

{mqtt=">[broker:/test:command:ON:R4_ON],>[broker:/test:command:OFF:R4_OFF],[broker:/test:state: MAP(r4.map)]",autoupdate="false"}

Switch GPIO12 "Relay 2" (tsu,Lights)

{mqtt=">[broker:/test:command:ON:R12_ON],>[broker:/test:command:OFF:R12_OFF],<[broker:/test:st ate:MAP(r12.map)]",autoupdate="false"}

Switch GPIO12 "Relay 2" (tsu,Lights)

{mqtt=">[broker:/test:command:ON:R12_ON],>[broker:/test:command:OFF:R12_OFF],<[broker:/test:st ate:MAP(r12.map)]",autoupdate="false"}

Switch GPIO14 "Relay 4" (tsu,Lights)

{mqtt=">[broker:/test:command:ON:R14_ON],>[broker:/test:command:OFF:R14_OFF],<[broker:/test:st ate:MAP(r14.map)]",autoupdate="false"}

Path of map file: /etc/openhab2/transform/r4.map

Code of map file r4:

R04isON=ON

R04isOFF=OFF

Path of map file: /etc/openhab2/transform/r12.map

Code of map file r12:

R12isON=ON

R12isOFF=OFF

Path of map file: /etc/openhab2/transform/r13.map

Code of map file r13:

R13isON=ON

R13isOFF=OFF

Path of map file: /etc/openhab2/transform/r14.map

Code of map file r14:

R14isON=ON

R14isOFF=OFF

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

14. HOW TO CUSTOMISE FIRMWARE

You can program this board using Arduino IDE. Please follow the below steps to program the board by yourself with easy steps as mentioned below:

a. STEPS TO LOAD PROGRAM TO ESP32:

- 1. Use external mobile USB A type to micro USB data cable between computer and device.
- Connect Micro USB cable between your computer and U5 of "Wifi/BT Quad Relay Board".
- 3. Open your code in Arduino IDE as shown.

Figure 33: Program Opened in IDE

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

4. Click on Tools Tab, move mouse pointer on "Board: xxxxxxxxxxx" and click on "NodeMCU-32S" as shown in figure 10.

Figure 34: Board Selection

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

5. Select Upload Speed as "115200".

Figure 35: Baudrate selection

- 6. Click on tools tab, move mouse pointer to "Programmer: "Arduino as ISP'", under this click on "Arduino as ISP".
- 7. Click on tools tab, move mouse pointer to "Port: "COMx", under this click on "COMx" to select. ("x" refers to port number available in your computer).
- 8. Run the program. Refer to Figure 13.

DOCUMENT REV: A

DOCUMENT NAME: DESIGN DESCRIPTION, WIFI/BT QUAD RELAY BOARD.

IMPORTANT NOTICE

ARMtronix Technologies LLP and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its products and services and to discontinue any product or service. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to ARMtronix Technologies LLPs terms and conditions of sale supplied at the time of order acknowledgment.

The information in this document is subject to update without notice. The contents of this
document thereof must not be used for any unauthorized purpose.
END OF DOCUMENT