Poisson Matting

Jian Sun1 Jiaya Jia2* Chi-Keung Tang2 Heung-Yeung Shum1

1Microsoft Research Asia 2Hong Kong University of Science and Technology

ACM Transactions on Graphics (TOG) Volume 23 Issue 3, August 2004
Pages 315-321

What is Poisson matting?

Poisson Matting

Global Poisson matting

If it fails to produce high quality mattes due to a complex background

Local Poisson matting

$$\nabla \alpha \approx \frac{1}{F - B} \nabla I$$

For each pixel p = (x, y),

$$\alpha^* = \arg\min_{\alpha} \int \int_{p \in \Omega} \left\| \nabla \alpha_p - \frac{1}{F_p - B_p} \nabla I_p \right\|^2 dp$$

with
$$\alpha|_{\partial\Omega}=\hat{\alpha}|_{\partial\Omega}$$

which is defined
$$\widehat{\alpha_p}|_{\partial\Omega} = \begin{cases} 1 & p \in \Omega_F \\ 0 & p \in \Omega_B \end{cases}$$

$$\Delta \alpha = div(\frac{\nabla I}{F - B})$$

Iterative optimization

Global Poisson matting is an iterative optimization process:

- 1. (F B) initialization: For each pixel p in Ω , F_p and B_p are approximated by corresponding the nearest foreground pixel in Ω_F and background pixel in Ω_B .
- 2. α reconstruction
- 3. F, B refinement

$$\Omega_F^+ = \{ p \in \Omega | \alpha_p > 0.95, I_p \approx F_p \}$$

$$\Omega_B^+ = \{ p \in \Omega | \alpha_p < 0.05, I_p \approx B_p \}$$

Global Poisson Matting in the colourscale channel

Problem

Solution

$$(F - B)\nabla\alpha = \nabla I$$

$$\downarrow$$

$$(F - B) \cdot (F - B)\nabla\alpha = (F - B) \cdot \nabla I$$

$$\nabla \alpha = \frac{(F - B) \cdot \nabla I}{\left| |F - B| \right|^2}$$

1. Set ∇I

```
//gradient x, y
Mat Ix, Iy;
gradient(img, Ix, Iy);
```

```
void gradient(cv::Mat src, cv::Mat& x, cv::Mat& y) {
              x.create(src.size(), CV_32FC3);
              y.create(src.size(), CV_32FC3);
              for (int i = 0; i < src.rows; i++){
                            for (int j = 0; j < src.cols; j++){
                                           if (i == 0) y.at < Vec3f > (i, j) = src.at < Vec3f > (i + 1, j) - src.at < Vec3f > (i, j);
                                           else if (i == src.rows - 1) y.at<Vec3f>(i, j) = src.at<Vec3f>(i, j) - src.at<Vec3f>(i - 1, j);
                                           else y.at<Vec3f>(i, j) = (Vec3f)(src.at<Vec3f>(i + 1, j) - src.at<Vec3f>(i - 1, j)) / 2;
                                           if (j == 0) x.at<Vec3f>(i, j) = src.at<Vec3f>(i, j + 1) - src.at<Vec3f>(i, j);
                                           else if (j == src.cols - 1) x.at<Vec3f>(i, j) = src.at<Vec3f>(i, j) - src.at<Vec3f>(i, j - 1);
                                           else x.at<Vec3f>(i, j) = (Vec3f)(src.at<Vec3f>(i, j + 1) - src.at<Vec3f>(i, j - 1)) / 2;
                            }}}
```

2. Find the nearest F and B from the unknown pixel and initialise (F-B) value

Х	X	Х	Х	Х		
Х	X	Х	х			
Х	Х	Х				
Х	Х		*		0	0
Х					0	0
				0	0	0
			0	0	0	0

Х	Х	Х	Х	Х		
Х	Х	Х	Х			
Х	Х	X				
Х	Х		*		0	0
Х					0	0
				0	0	0
			0	0	0	0

x : Definitely background

o: Definitely foreground

<How to find the nearest F and B>

3. α reconstruction

For each pixel p = (x, y),

$$\alpha^* = \arg\min_{\alpha} \int \int_{p \in \Omega} \left\| \nabla \alpha_p - \frac{(F - B) \cdot \nabla I}{\left| |F - B| \right|^2} \right\|^2 dp$$

with
$$\alpha|_{\partial\Omega} = \hat{\alpha}|_{\partial\Omega}$$

which is defined $\widehat{\alpha_p}|_{\partial\Omega} = \begin{cases} 1 & p \in \Omega_F \\ 0 & p \in \Omega_B \end{cases}$

Discrete Poisson solver

$$\min_{f|_{\Omega}} \sum_{\langle p,q \rangle \cap \Omega \neq \emptyset} (f_p - f_q - v_{pq})^2$$

with $f_p=f_p^*$, for all $p\in\partial\Omega$

For all $p \in \Omega$,

$$\alpha_p = \frac{1}{|N_p|} \left(\sum_{\partial \Omega} \alpha_q^* + \sum_{N} \alpha_q^0 + \sum \nabla \alpha_{pq} \right)$$

Patrick P'erez*, Michel Gangnet, Andrew Blake, "Poisson Image Editing", Microsoft Research UK, 2003

Discrete Poisson solver

For all
$$p \in \Omega$$
,
$$\alpha_p = \frac{1}{|N_p|} \left(\sum_{\partial \Omega} \alpha_q^* + \sum_{N} \alpha_q^0 + \sum_{N} \nabla \alpha_{pq} \right)$$

 N_{p} : the set of its 8-connected neighbors

: the set of q

Boundary $(\partial\Omega)$								
<u>†</u>								
Х	Х	Х	Х	X				
X	Х	Х	Х					
Х	Х	X	$-\nabla I_{y}$					
Х	Х	$-\nabla I_{\chi}$	*	∇I_{χ}	0	0		
Х			∇I_{y}		0	0		
				0	0	0		
			0	0	0	0		

x : Definitely background

o: Definitely foreground

Calculate iteratively the value of α until the difference is so small

4. F and B refinement

$$\Omega_F^+ = \{ p \in \Omega | \alpha_p > 0.95, I_p \approx F_p \}$$

$$\Omega_B^+ = \{ p \in \Omega | \alpha_p < 0.05, I_p \approx B_p \}$$

```
Vec3f second con;
if (1> alpha1.at<float>(y, x)&&alpha1.at<float>(y, x) > 0.95) {
             for (auto& NB pixel: neighbour pixels) {
                          if (NB pixel.p == Point(x, y)) {
                                        second con = img.at < Vec3f > (y, x) - NB pixel.F pixel;
                                        if (dot(second con, second con) < 0.0001) {
                                                     trimap.at<uchar>(y, x) = WHITE;}
                                        break;}}}
if (0 < alpha1.at < float > (y, x) & alpha1.at < float > (y, x) < 0.05) {
             for (auto& NB pixel: neighbour pixels) {
                          if (NB pixel.p == Point(x, y)) {
                                        second con = img.at < Vec3f > (y, x) - NB pixel.B pixel;
                                        if (dot(second con, second con) < 0.0001) {
                                                     trimap.at<uchar>(y, x) = BLACK;}
                          break;}}}
```

5. Iterative optimization

```
Mat alpha;
trimap.convertTo(alpha, CV_32F, 1 / 255.f); //from 0 to 1
int result;
for (int i = 0; i < 50; i++) {
    result = Iterative_opti(trimap, img, alpha);
    if (result == 1) break;

imshow("Alpha", alpha);
    waitKey(10);
}</pre>
```

- 1. Set *∇*I
- 2. Find the nearest F and B from the unknown pixel and initialise (F-B) value
- 3. α reconstruction
- 4. F and B refinement
- 5. Iterative optimization

Alpha mattes based on the greyscale and the colourscale

Grey

Local Poisson Matting

Local Poisson Matting

Channel Selection

$$\min_{a,b,c} \sum_{i} [(a \ b \ c) \cdot (R_i \ G_i \ B_i)^T - (a \ b \ c) \cdot (\bar{R} \ \bar{G} \ \bar{B})]^2 \ s. \ t. \ a + b + c = 1$$

A new channel $\gamma = aR + bG + cB$

The error of D is reduced and the hair shape is better recovered.