

TSV620, TSV620A, TSV621, TSV621A

Rail-to-rail input/output 29 µA 420 kHz CMOS operational amplifiers

Datasheet - production data

Features

Low supply voltage: 1.5 V–5.5 V

· Rail-to-rail input and output

 Low input offset voltage: 800 μV max (A version)

Low power consumption: 29 μA typ

Low power shutdown mode: 5 nA typ (TSV620)

Gain bandwidth product: 420 kHz typ

Unity gain stability

Micropackages: SC70-5/6, SOT23-5/6

Low input bias current: 1 pA typ

• Extended temperature range: -40 to 125 °C

4 kV HBM

Applications

· Battery-powered applications

Portable device

Signal conditioning

· Active filtering

Medical instrumentation

Description

The TSV620, TSV620A, TSV621, and TSV621A are single operational amplifiers offering low voltage, low power operation, and rail-to-rail input and output.

With a very low input bias current and low offset voltage (800 μ V maximum for the A version), the TSV62x is ideal for applications requiring precision. The device can operate at a power supply ranging from 1.5 to 5.5 V, and therefore suit battery-powered devices and extend their battery life.

This product features an excellent speed/power consumption ratio, offering a 420 kHz gain bandwidth while consuming only 29 μ A at a 5 V supply voltage.

These operational amplifiers are unity gain stable for capacitive loads up to 100 pF.

The device is internally adjusted to provide very narrow dispersion of AC and DC parameters, especially power consumption, product gain bandwidth, and slew rate.

The TSV62x present high tolerance to ESD, sustaining 4 kV for the human body model.

The device is offered in macropackages, SC70-6 and SOT23-6 for the TSV620 and SC70-5 and SOT23-5 for the TSV621. They are guaranteed for industrial temperature ranges from -40 °C to 125 °C.

All these features make the TSV620, TSV620A, TSV621, and TSV621A ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

Contents

1	Abs	olute maximum ratings and operating conditions 3
2	Elec	trical characteristics4
3	Арр	lication information
	3.1	Operating voltages
	3.2	Rail-to-rail input
	3.3	Rail-to-rail output
	3.4	Shutdown function (TSV620)
	3.5	Optimization of DC and AC parameters
	3.6	Driving resistive and capacitive loads
	3.7	PCB layouts 14
	3.8	Macromodel
4	Pacl	kage information
	4.1	SOT23-5 package information
	4.2	SOT23-6 package information
	4.3	SC70-5 (or SOT323-5) package information
	4.4	SC70-6 (or SOT323-6) package information
5	Orde	ering information
6	Revi	sion history

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	
V _{id}	Differential input voltage (2)	±V _{CC}	V
V _{in}	Input voltage (3)	(V_{CC-}) - 0.2 to (V_{CC+}) + 0.2	
I _{in}	Input current (4)	10	mA
SHDN	Shutdown voltage ⁽⁵⁾	(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2	V
T _{stg}	Storage temperature	-65 to 150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁶⁾ ⁽⁷⁾ SC70-5 SOT23-5 SOT23-6 SC70-6	205 250 240 232	°C/W
Tj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁸⁾	4	kV
ESD	MM: machine model ⁽⁹⁾	300	V
	CDM: charged device model (10)	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltage are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. Vcc-Vin must not exceed 6 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Vcc-SHDN must not exceed 6 V.
- 6. Short-circuits can cause excessive heating and destructive dissipation.
- 7. R_{th} are typical values.
- 8. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 9. Machine mode: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2. Operating conditions

Symbol Parameter		Value	Unit
V _{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	'
T _{oper}	Operating free air temperature range	-40 to +125	°C

2 Electrical characteristics

Table 3. Electrical characteristics at V_{CC^+} = 1.8 V with V_{DD} = 0 V, V_{icm} = $V_{CC}/2$, T_{op} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance					
		TSV62x TSV62xA			4 0.8	
V _{io}	Offset voltage	$T_{min} < T_{op} < T_{max}$ TSV62x TSV62xA			6 2.8	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
	Input offset current			1	10 ⁽¹⁾	
I _{io}	$(V_{out} = V_{CC}/2)$	$T_{min} < T_{op} < T_{max}$		1	100	~ ^
	Input bias current			1	10 ⁽¹⁾	pA
I _{ib}	$(V_{out} = V_{CC}/2)$	$T_{min} < T_{op} < T_{max}$		1	100	
CMR	Common mode rejection ratio	0 V to 1.8 V, V _{out} = 0.9 V	53	74		
CIVIR	20 log $(\Delta V_{ic}/\Delta V_{io})$	$T_{min} < T_{op} < T_{max}$	51			٩D
^	Largo signal voltago gain	R_L = 10 kΩ, V_{out} = 0.5 V to 1.3 V	78	95		dB
A_{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	73			
\/	High level output voltage	R _L = 10 kΩ		5	35	
V_{OH}	$(V_{OH} = V_{CC} - V_{out})$	T _{min} < T _{op} < T _{max}			50	mV
V.	Low level output voltage	R _L = 10 kΩ		4	35	IIIV
V_{OL}	Low level output voltage	T _{min} < T _{op} < T _{max}			50	
	Isink	V _o = 1.8 V	6	12		
	ISIIK	$T_{min} < T_{op} < T_{max}$	4			mA
l _{out}	Isource	V _o = 0 V	6	10		ША
	isource	$T_{min} < T_{op} < T_{max}$	4			
l	Supply current (per operator)	No load, V _{out} = V _{CC} /2		25	31	μA
I _{CC}	Supply current (per operator)	$T_{min} < T_{op} < T_{max}$			33	μΛ
AC perfo	rmance					
GBP	Gain bandwidth product	R_L = 10 kΩ, C_L = 100 pF, f = 100 kHz	275	340		kHz
Fu	Unity gain frequency			280		
φm	Phase margin	R_L = 10 kΩ, C_L = 100 pF		45		Degrees
G _m	Gain margin			9		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $Av = 1$	0.084	0.11	0.14	V/µs

^{1.} Guaranteed by design.

Table 4. Shutdown characteristics V_{CC} = 1.8 V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit					
DC performance											
		SHDN = V _{CC} -		2.5	50	nA					
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85° C			200	IIA					
	(* 3)	T _{min} < T _{op} < 125° C			1.5	μΑ					
t _{on}	Amplifier turn-on time	$R_L = 2 k\Omega$ $V_{out} = (V_{CC-})$ to $V_{CC} + 0.2$		300		ns					
t _{off}	Amplifier turn-off time	$R_L = 2 k\Omega$ $V_{out} = (V_{CC+}) - 0.5 \text{ to } (V_{CC+}) + 0.7$		30		115					
V _{IH}	SHDN logic high		1.3			V					
V _{IL}	SHDN logic low				0.5	V					
I _{IH}	SHDN current high	SHDN = V _{CC+}		10							
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pА					
1	Output leakage in shutdown	SHDN = V _{CC} -		50							
^I OLeak	mode	T _{min} < T _{op} < 125 °C		1		nA					

Table 5. V_{CC+} = 3.3 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{op} = 25° C, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perfo	rmance		ı				
		TSV62x TSV62xA			4 0.8		
V _{io} Offset voltage	Offset voltage	$T_{min} < T_{op} < T_{max}$ TSV62x TSV62xA			6 2.8	mV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C	
1	Input offset current			1	10 ⁽¹⁾		
l _{io}	input onset current	$T_{min} < T_{op} < T_{max}$		1	100	pА	
I.,	Input bias current			1	10 ⁽¹⁾	pΑ	
'ib	Input bias current	$T_{min} < T_{op} < T_{max}$		1	100		
CMR	Common mode rejection ratio	0 V to 3.3 V, V _{out} = 1.75 V	57	79			
OWIX	$20 \log (\Delta V_{ic}/\Delta V_{io})$	$T_{min} < T_{op} < T_{max}$	53			dB	
A _{vd}	Large signal voltage gain	R_L =10 k Ω , V_{out} = 0.5 V to 2.8 V	81	98		uВ	
Ava	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	76				
V_{OH}	// // // // // // // // // // // // //	$R_L = 10 \text{ k}\Omega$		5	35		
VOH		$T_{min} < T_{op} < T_{max}$			50	mV	
V_{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega$		4	35	1114	
VOL	Low level output voltage	$T_{min} < T_{op} < T_{max}$			50		
	Isink	$V_0 = 5 V$	30	45			
1.	TOTAL	$T_{min} < T_{op} < T_{max}$	25			mA	
l _{out}	Isource	$V_0 = 0 V$	30	38		1117.	
	130010C	$T_{min} < T_{op} < T_{max}$	25				
I _{CC}	Supply current (per operator)	No load, V _{out} = 2.5 V		26	33	μA	
100	Cappiy current (per operator)	$T_{min} < T_{op} < T_{max}$			35	μπ	
AC perfo	rmance						
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ f = 100 kHz	310	380		kHz	
Fu	Unity gain frequency			310			
φm	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		45		Degrees	
G _m	Gain margin			9		dB	
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $A_V = 1$	0.094	0.12		V/µs	

^{1.} Guaranteed by design.

Table 6. V_{CC+} = 5 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{op} = 25° C, R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit
DC perfo	rmance					
		TSV62x TSV62xA			4 0.8	
V _{io} Offs	Offset voltage	$T_{min} < T_{op} < T_{max}$ TSV62x TSV62xA			6 2.8	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C
ı	Input offset current			1	10 ⁽¹⁾	
l _{io}	Input offset current	$T_{min} < T_{op} < T_{max}$		1	100	nΛ
	Input bias current			1	10 ⁽¹⁾	pА
I _{ib}	input bias current	$T_{min} < T_{op} < T_{max}$		1	100	
CMR	Common mode rejection ratio	0 V to 5 V, V _{out} = 2.5 V	60	80		
CIVIR	20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	55			
SVR	Supply voltage rejection ratio 20	V _{CC} = 1.8 to 5 V	75	102		dВ
SVK	$\log (\Delta V_{CC}/\Delta V_{io})$	$T_{min} < T_{op} < T_{max}$	73			- dB
^	Large signal voltage gain	R_L =10 kΩ, V_{out} = 0.5 V to 4.5 V	85	98		
A_{vd}		$T_{min} < T_{op} < T_{max}$	80			
V	High level output voltage	R _L = 10 kΩ		7	35	
V_{OH}	$(V_{OH} = V_{CC} - V_{out})$	$T_{min} < T_{op} < T_{max}$			50	m\/
\/	Low lovel output valtage	R _L = 10 kΩ		6	35	mV
V_{OL}	Low level output voltage	$T_{min} < T_{op} < T_{max}$			50	
	1	V _o = 5 V	40	69		
	Isink	$T_{min} < T_{op} < T_{max}$	35	65		mA
l _{out}	1	V _o = 0 V	40	74		IIIA
	Isource	$T_{min} < T_{op} < T_{max}$	35	68		
	Supply current (per operator)	No load, V _{out} = 2.5 V		29	36	
I _{CC}	Supply current (per operator)	$T_{min} < T_{op} < T_{max}$			38	μA
AC perfo	rmance					
GBP	Gain bandwidth product	R_L = 10 kΩ, C_L = 100 pF, f = 100 kHz	350	420		kHz
F _u	Unity gain frequency			360		
φm	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		45		Degrees
G _m	Gain margin			9		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, A_V = 1$	0.108	0.14		V/µs

Table 6. V_{CC+} = 5 V, V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{op} = 25° C, R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter		Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f = 1 kHz		70		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD	Total harmonic distortion	$Av = 1, f = 1 \text{ kHz}, R_L = 100 \text{ k}Ω,$ $V_{icm} = V_{cc}/2, V_{out} = 2 V_{pp}$		0.004		%

^{1.} Guaranteed by design.

Table 7. Shutdown characteristics $V_{CC} = 5 V$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perform	nance					
		SHDN = V _{CC} -		5	50	nA
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85 °C			200	IIA
		T _{min} < T _{op} < 125 °C			1.5	μA
t _{on}	Amplifier turn-on time	$R_L = 2 k\Omega V_{out} = (V_{CC-}) to (V_{CC-}) + 0.2$		300		
t _{off}	Amplifier turn-off time	$R_L = 2 k\Omega V_{out} = (V_{CC+}) - 0.5 to$ $(V_{CC+}) + 0.7$		30		ns
V _{IH}	SHDN logic high		4.5			V
V _{IL}	SHDN logic low				0.5	V
I _{IH}	SHDN current high	SHDN = V _{CC+}		10		
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pA
1.	Output leakage in shutdown	SHDN = V _{CC} -		50		
^I OLeak	mode	T _{min} < T _{op} < 125 °C		1		nA

Figure 3. Supply current vs. supply voltage at $V_{icm} = V_{CC}/2$ 33 30 T=25°C 27 T=125°C Supply Current (µA) 20 17 13 10 10 T=-40°C 3 Vicm=Vcc/2 0 Supply voltage (V)

10/24 DocID14912 Rev 3

3 **Application information**

3.1 Operating voltages

The TSV620, TSV620A, TSV621, and TSV621A can operate from 1.5 to 5.5 V. Their parameters are fully specified for 1.8, 3.3, and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV62x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.

Rail-to-rail input 3.2

The TSV62x is built with two complementary PMOS and NMOS input differential pairs. The device has a rail-to-rail input and the input common mode range is extended from (V_{CC_-}) - 0.1 V to (V_{CC_+}) + 0.1 V. The transition between the two pairs appears at V_{CC_-} - 0.7 V. In the transition region, the performances of CMRR, PSRR, Vio and THD are slightly degraded (as shown in Figure 14 and Figure 15 for Vio vs. Vicm).

The device is guaranteed without phase reversal.

3.3 Rail-to-rail output

12/24

The operational amplifier's output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

DocID14912 Rev 3

3.4 Shutdown function (TSV620)

The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} pin must be pulled down to V_{CC_-} . When in shutdown mode, the amplifier output is in a high impedance state. The SHDN pin must never be left floating but tied to V_{CC_+} or V_{CC_-} .

The turn-on and turn-off times are calculated for an output variation of ±200 mV (*Figure 16* and *Figure 17* show the test configurations).

Figure 16. Test configuration for turn-on time (Vout pulled down)

+Vcc

GND

Vcc-0.5V

DUT

DUT

GND

Figure 17. Test configuration for turn-off time (Vout pulled down)

+Vcc

GND

DUT

GND

GND

3.5 Optimization of DC and AC parameters

This device uses an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 μ A typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.15 V/ μ s min).

3.6 Driving resistive and capacitive loads

These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k Ω For lower resistive loads, the THD level may significantly increase.

In a *follower* configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small in-series resistor at the output can improve the stability of the device (see *Figure 20* for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

Figure 20. In-series resistor vs. capacitive load

3.7 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

577

3.8 Macromodel

An accurate macromodel of the TSV620, TSV620A, TSV621, and TSV621A is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV62x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 SOT23-5 package information

Figure 21. SOT23-5 package outline

Table 8. SOT23-5 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.013	0.015	0.019			
С	0.09	0.15	0.20	0.003	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
Е	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.013	0.023			
K	0°		10°						

4.2 SOT23-6 package information

A1

A1

A1

E e e e

Figure 22. SOT23-6 package outline

Table 9. SOT23-6 mechanical data

	Dimensions								
Ref.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.90		1.45	0.035		0.057			
A1			0.10			0.004			
A2	0.90		1.30	0.035		0.051			
b	0.35		0.50	0.013		0.019			
С	0.09		0.20	0.003		0.008			
D	2.80		3.05	0.110		0.120			
E	1.50		1.75	0.060		0.069			
е		0.95			0.037				
Н	2.60		3.00	0.102		0.118			
L	0.10		0.60	0.004		0.024			
0	0		10°						

4.3 SC70-5 (or SOT323-5) package information

Figure 23. SC70-5 (or SOT323-5) package outline

Table 10. SC70-5 (or SOT323-5) mechanical data

		Dimensions								
Ref		Millimeters		Inches						
	Min	Тур	Max	Min	Тур	Max				
Α	0.80		1.10	0.315		0.043				
A1			0.10			0.004				
A2	0.80	0.90	1.00	0.315	0.035	0.039				
b	0.15		0.30	0.006		0.012				
С	0.10		0.22	0.004		0.009				
D	1.80	2.00	2.20	0.071	0.079	0.087				
E	1.80	2.10	2.40	0.071	0.083	0.094				
E1	1.15	1.25	1.35	0.045	0.049	0.053				
е		0.65			0.025					
e1		1.30			0.051					
L	0.26	0.36	0.46	0.010	0.014	0.018				
<	0°		8°							

SC70-6 (or SOT323-6) package information 4.4

<u>Q1</u>

Figure 24. SC70-6 (or SOT323-6) package outline

Table 11. SC70-6 (or SOT323-6) mechanical data

	Dimensions						
Ref	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.80		1.10	0.031		0.043	
A1			0.10			0.004	
A2	0.80		1.00	0.031		0.039	
b	0.15		0.30	0.006		0.012	
С	0.10		0.18	0.004		0.007	
D	1.80		2.20	0.071		0.086	
E	1.15		1.35	0.045		0.053	
е		0.65			0.026		
HE	1.80		2.40	0.071		0.094	
L	0.10		0.40	0.004		0.016	
Q1	0.10		0.40	0.004		0.016	

Figure 25. SC70-6 (or SOT323-6) recommended footprint

5 Ordering information

Table 12. Order codes

Part number	Temperature range	Package	Packing	Marking
TSV620ILT	_	SOT23-6	Tape and reel	K107
TSV620ICT		SC70-6		K14
TSV620AILT		SOT23-6		K110
TSV620AICT	-40 °C to 125 °C	SC70-6		K15
TSV621ILT		SOT23-5		K106
TSV621ICT		SC70-5		K16
TSV621AILT		SOT23-5		K139
TSV621AICT		SC70-5		K39

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
12-Jan-2009	1	Initial release.
19-Oct-2009	2	Added TSV620 device (version with shutdown function). Added Table 4: Shutdown characteristics V_{CC} = 1.8 V. Added Table 7: Shutdown characteristics V_{CC} = 5 V. Added Section 3.4: Shutdown function (TSV620) on page 13. Added Section 4.2: SOT23-6 package mechanical data. Added Section 4.4: SC70-6 (or SOT323-6) package mechanical data. Added order codes in Table 12.
10-May-2017	3	Table 3, Table 5, and Table 6: changed "DV _{io} to Δ V _{io} / Δ T, updated V _{OH} parameter information, changed min. values for V _{OH} parameter to max. values. Figure 21, Figure 22, Table 8, and Table 9: removed "L" from titles

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

24/24

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID14912 Rev 3