# A Bottom-up Heirarchical Approach for Joint Inference of Overlapping Social Circles and Missing User Information



Vignesh Kannan, Siddharth Kannan

### Motivation

- Natural to think of social networks as being composed of many interconnected social circles
- Filtered sharing of content as decided by the user
- Strategic marketing and advertisements targeted at particular groups leading to higher financial returns
- Identify anomalies and terrorist connections in social circles for purposes of international security
- Infer missing information about users from their memberships to different social circles and improve friend and page suggestions
- Facilitate the automated formation of online communities and forums to mobilize support for various causes.

## **Properties of Social Circles**

- Social circles evolve in a hierarchical bottom-up fashion.
- Circles can overlap, or in other words, a user can belong to more than one circle.
- Strong circles can form within weak circles.
- Principle of homophily is captured by the framework.
- Users with many mutual friends are likely to be connected.

Principle of homophily: People who have similar attributes tend to be connected, and people who are conneced tend to have similar attributes.





#### Contribution

- A nonparametric (model-free) algorithm that is not limited by assumptions about data distribution that entail parametric approaches
- Ability to naturally infer the number of social circles without requiring it as input and therefore, very useful from a practical standpoint
- Uses both graph structure information and node attribute information
- Inbuilt mechanism to produce hierarchical, disjoint and overlapping circles
- Effective strategy to eliminate redundant circles formed
- Inference of potentially missing information in the user profile and thereby useful for recommending links between users

## **Dataset Description**

Stanford Network Analysis Project (SNAP), Social circles: Facebook

- Number of nodes: 4039
- Number of edges: 88234
- Average clustering coefficient: 0.6055 •
- Anonymized feature values obscuring interpretation of features
  - Each feature is binary-valued
- Number of ego-networks: 10

## Approach

## Algorithm 1 : procedure $MAIN(\theta, \alpha, T)$ Number the friends of the given ego from 1 to n

Define  $C = \{c_i | 1 \le i \le n\}$ Define  $\mathcal{J} = \frac{1}{n} \sum_{i=1}^{n} |x_t^{(i)} - x_{t+1}^{(i)}|$ , where  $x_t^{(i)}$  is the attribute vector of node i at the  $t^{th}$  iteration

Define  $V = \{1, 2, ...n\}, \mathcal{E} = \{(i, j) | i \text{ and } j \text{ are friends} \}$ for  $c_i \in C$  do

 $c_i.members = i$ while  $t \leq T$  do

CircleFormation( $V, \mathcal{E}, \mathcal{C}$ )  $MergeCircles(V, C, \theta)$ 

LabelPropagation( $V,C,\alpha$ ) Terminate if  $\mathcal{J} < \epsilon$ 

 $t \leftarrow t + 1$ 15: procedure CircleFormation(V, E, C)

▷ edges in E are sorted in descending order of for  $(u, v) \in \mathcal{E}$  do

for  $i \in u$ .membership / v.membership do

 $Add To Circle(c_i, v)$  $c_i.members$  and  $c_i$  to v.membership depending on the similarity of v to all the members of  $c_i$ 

for  $i \in v.membership / u.membership do$ Add To Circle  $(c_i, u)$ 

: procedure MergeCircles( $V, C, \theta$ ) for  $c_i \in C$  do for  $c_i \in C$  do if  $IoU(c_i, c_j) > \theta$  then

for  $k \in c_i.members$  do Remove  $c_i$  from k.membership Add  $c_i$  to k.membership

Add k to  $c_i.members$ Delete  $c_i$  from C: procedure LabelPropagation( $V, C, \alpha$ )

for  $i \in V$  do  $neighbors = \{j \in \mathcal{V} | j \in c.members, \forall c \in i.membership\}$ 

• node 3 is assigned to C4.

• C1 and C2 overlap.

• C3 and C4 overlap.

Terminate

 $\sum_{k \in neighbors} similarity(k,i)x^{(k)}$  $x^{(i)} \leftarrow \alpha x^{(i)} + (1 - \alpha) x_{new}^{(i)}$ 

## Initialization **Sorting Edges Circle Formation <u>Circle Formation - Iteration 1:</u>** • **node 1** is assigned to **C2**. • node 2 is assigned to C1.

Check convergence

**OR** max iterations

#### **Initialization and Sorting:**

- Initialize each node as a cluster. Hence **node** *i* is *Ci*.
- Sort the edges in decreasing order of cosine-similarity between attribute vectors of edge's nodes.





#### **Merge Circles and Label Propagation:**

- C1 and C2 have high IoU (overlap).
- C1 and C2 are merged into a single circle. Attributes propagate among circles.

#### **Circle Formation - Iteration 2**:

- **node 2** is assigned to **C4**.
- C1 and C4 overlap.
- C3 and C4 overlap.

#### Results

**Conclusion and Future Work**