

Relatório Técnico: Avaliação Analítica e Simulada de um Sistema com CTMC e Controle de Admissão

Avaliação de desempenho de sistemas (ASD029009)

Matheus Pires Salazar Rhenzo Hideki Silva Kajikawa

22 de maio de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Introdução	. 3
2.	Especificações do Sistema	. 3
3.	Metodologia	. 3
	3.1. Metodologia Analítica	. 3
	3.2. Metodologia Simulada	. 3
4.	Resultados	. 4
	4.1. Comparação da Distribuição Estacionária	. 4
	4.2. Indicadores de Desempenho	. 4
5.	Análise de Resultados	. 4
6	Conclusão	5

1. Introdução

Este relatório apresenta a modelagem, simulação e análise de desempenho de um sistema com duas classes de tráfego (prioritário e não prioritário) sob controle de admissão com base em Cadeias de Markov em Tempo Contínuo (CTMC). O sistema admite sessões de tráfego que ocupam recursos limitados, respeitando uma política de reserva mínima para a classe prioritária.

2. Especificações do Sistema

- Capacidade total (C): 5 unidades
- Reserva mínima para tráfego prioritário (R): 2 unidades
- Classe 1 (prioritária):
 - Taxa de chegada: λ₁ = 10 requisições/minuto
 - Taxa de serviço: μ₁ = 15 requisições/minuto
- Classe 2 (não prioritária):
 - Taxa de chegada: λ₂ = 15 requisições/minuto
 - Taxa de serviço: μ₂ = 25 requisições/minuto
- Restrições:
 - ▶ O número total de sessões ativas (classe 1 + classe 2) não pode exceder 5.
 - O número de sessões da classe 2 está limitado a no máximo 3 para garantir a reserva para a classe 1.

3. Metodologia

3.1. Metodologia Analítica

O sistema foi modelado como um CTMC, onde os estados representado pelo par (n_1,n_2) , indicando o número de sessões ativas da classe 1 e classe 2, respectivamente. A matriz infinitesimal Q foi construída com base nas taxas de chegada e saida. A distribui;áo estacionária π foi obtida resolvendo o sistema linear $\pi \cdot Q = 0$, com a confição de normalização $\sum \pi_i = 1$.

3.2. Metodologia Simulada

Para validar o modelo analítico, foi realizada uma simulação estocástica com relógios exponenciais para cada transição possível. A simulação foi executada por 10.000 minutos, desprezando os primeiros 1.000 minutos como período de aquecimento. A distribuição empírica π' for obtida a partr do tempo de permanência em cada estado.

4. Resultados

4.1. Comparação da Distribuição Estacionária

Estado	π (analítica)	$\hat{\pi}(\text{simulação})$
(0; 0)	0.2831	0.2826
(0; 1)	0.1699	0.1708
(0; 2)	0.0510	0.0511
(0; 3)	0.0102	0.0101
(1; 0)	0.1887	0.1893
(1; 1)	0.1132	0.1133
(1; 2)	0.0340	0.0335
(1; 3)	0.0068	0.0068
(2; 0)	0.0629	0.0618
(2; 1)	0.0377	0.0380
(2; 2)	0.0113	0.0116
(2; 3)	0.0023	0.0024
(3; 0)	0.0140	0.0139
(3; 1)	0.0084	0.0084
(3; 2)	0.0025	0.0025
(4; 0)	0.0023	0.0023
(4; 1)	0.0014	0.0014
(5; 0)	0.0003	0.0003

4.2. Indicadores de Desempenho

Indicador	Valor Analítico	Valor Simulado
Prob_bloqueio_classe_1	0.0065	0.0066
Prob_bloqueio_classe_2	0.0235	0.0235
Utilizacao_media	0.2497	0.2496
Media_conexoes_classe_1	0.6623	0.6609
Media_conexoes_classe_2	0.5859	0.5871
Fracao_tempo_capacidade_maxima	0.0065	0.0066

5. Análise de Resultados

- Coerência entre métodos: Os resultados da simulação apresentaram excelente concordância com os valores obtidos analiticamente, validando tanto a modelagem quanto a implementação da simulação.
- Bloqueio: A probabilidade de bloqueio da classe 1 (prioritária) é inferior a 1%, o que atende a requisitos típicos de QoS. A classe 2 possui maior probabilidade de bloqueio (cerca de 2,35%), em razão da reserva mínima para a classe 1.

- Utilização: A utilização média do sistema gira em torno de 25% da capacidade total, o que sugere que há folga na infraestrutura ou que os parâmetros de chegada/serviço estão ajustados para garantir alta disponibilidade.
- Capacidade máxima: O sistema opera em sua capacidade total apenas cerca de 0,65% do tempo.

6. Conclusão

O sistema proposto foi modelado e simulado com sucesso, e os resultados obtidos demonstram a eficiência do controle de admissão com reserva. A modelagem CTMC permite uma análise precisa, enquanto a simulação por relógios concorrentes confirma os resultados de forma empírica. A baixa probabilidade de bloqueio para a classe 1 confirma que os parâmetros de projeto são adequados para priorizar tráfego crítico.