Additional Results for Kiez Benchmark

1 Time and Memory

Figure 1: Time in seconds on $15\mathrm{K}$ datasets

Figure 2: Time in seconds on $100 \mathrm{K}$ datasets

Figure 3: Peak memory consumption on 15K datasets

Figure 4: Peak memory consumption on 100K datasets

Figure 5: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to execution time on small datasets

Figure 6: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to execution time on large datasets

2 Results for hits@1

2.1 General

Figure 7: Exact NN improvement over baseline (exact NN without hubness reduction) for hits@1 $\,$

Figure 8: ANN improvement over baseline (exact NN without hubness reduction) for hits@1 $\,$

Figure 9: Critical distance diagram showing differences between hubness reduction techniques for exact NN with regards to hits@1 $\,$

Figure 10: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to hits@1

2.2 Individual embedding approaches

Figure 11: AttrE

Figure 12: BootEA

Figure 13: ConvE

Figure 14: GCNAlign

Figure 15: HolE

Figure 16: IMUSE

Figure 17: IPTransE

Figure 18: JAPE

Figure 19: MultiKE

Figure 20: ProjE

Figure 21: Rotat \mathbf{E}

Figure 22: RSN4EA

Figure 23: SimplE

Figure 24: TransD

Figure 25: TransH

3 Results for hits@5

3.1 General

Figure 26: Exact NN improvement over baseline (exact NN without hubness reduction) for hits@5 $\,$

Figure 27: ANN improvement over baseline (exact NN without hubness reduction) for hits @5

Figure 28: Critical distance diagram showing differences between hubness reduction techniques for exact NN with regards to hits@5 $\,$

Figure 29: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to hits@5

3.2 Individual embedding approaches

Figure 30: AttrE

Figure 31: BootEA

Figure 32: ConvE

Figure 33: GCNAlign

Figure 34: HolE

Figure 35: IMUSE

Figure 36: IPTransE

Figure 37: JAPE

Figure 38: MultiKE

Figure 39: ProjE

Figure 40: Rotat \to

Figure 41: RSN4EA

Figure 42: SimplE

Figure 43: TransD

Figure 44: TransH

4 Results for hits@10

4.1 General

Figure 45: Exact NN improvement over baseline (exact NN without hubness reduction) for hits@10 $\,$

Figure 46: ANN improvement over baseline (exact NN without hubness reduction) for hits@10 $\,$

Figure 47: Critical distance diagram showing differences between hubness reduction techniques for exact NN with regards to hits@10

Figure 48: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to hits@10 $\,$

4.2 Individual embedding approaches

Figure 49: AttrE

Figure 50: BootEA

Figure 51: ConvE

Figure 52: GCNAlign

Figure 53: HolE

Figure 54: IMUSE

Figure 55: IPTransE

Figure 56: JAPE

Figure 57: MultiKE

Figure 58: ProjE

Figure 59: Rotat \mathbf{E}

Figure 60: RSN4EA

Figure 61: SimplE

Figure 62: TransD

Figure 63: TransH

5 Results for hits@25

5.1 General

Figure 64: Exact NN improvement over baseline (exact NN without hubness reduction) for hits@25 $\,$

Figure 65: ANN improvement over baseline (exact NN without hubness reduction) for hits @25

Figure 66: Critical distance diagram showing differences between hubness reduction techniques for exact NN with regards to hits@25 $\,$

Figure 67: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to hits@25 $\,$

5.2 Individual embedding approaches

Figure 68: AttrE

Figure 69: BootEA

Figure 70: ConvE

Figure 71: GCNAlign

Figure 72: HolE

Figure 73: IMUSE

Figure 74: IPTransE

Figure 75: JAPE

Figure 76: MultiKE

Figure 77: ProjE

Figure 78: RotatE

Figure 79: RSN4EA

Figure 80: SimplE

Figure 81: TransD

Figure 82: TransH

6 Results for hits@50

6.1 General

Figure 83: Exact NN improvement over baseline (exact NN without hubness reduction) for hits@50 $\,$

Figure 84: ANN improvement over baseline (exact NN without hubness reduction) for hits @50

Figure 85: Critical distance diagram showing differences between hubness reduction techniques for exact NN with regards to hits @50

Figure 86: Critical distance diagram showing differences between hubness reduction techniques for ANN and baseline with regards to hits@50

6.2 Individual embedding approaches

Figure 87: AttrE

Figure 88: BootEA

Figure 89: ConvE

Figure 90: GCNAlign

Figure 91: HolE

Figure 92: IMUSE

Figure 93: IPTransE

Figure 94: JAPE

Figure 95: MultiKE

Figure 96: ProjE

Figure 97: RotatE

Figure 98: RSN4EA

Figure 99: SimplE

Figure 100: TransD

Figure 101: TransH