Math 260 Extra Credit

Mario L Gutierrez Abed

Let V be a finite dimensional VS over a field \mathbb{F} . Let $\beta = \{\beta_1, ..., \beta_n\}$ be an ordered basis for V. Then, $\dim(V) = n$. Consider the singleton subsets of $\beta : \{\beta_i\}$, for i = 1, ..., n. Let $W_i = \text{span}(\{\beta_i\})$. Then, each of the W_i 's are 1-dimensional subspaces of V.

Complete the following:

(1) Show that $\sum_{i=1}^{n} W_i = V$.

Solution:

We have that $W_i = \text{span } \{\beta_i\}$ for i = 1, ..., n. We also know that span $\{\beta_i\}$ is the set of all linear combination representations of the singleton subsets $\{\beta_i\}$, for i = 1, ..., n.

We have n singleton subsets that span n one-dimensional subspaces W_i . Hence by adding all the linear combination representations of the n singletons $\{\beta_i\}$ we get a linear combination representation of the spanning set $\{\beta_1, ..., \beta_n\}$, which is a basis for V. Thus we can see that $\sum_{i=1}^n W_i = V$.

(2) Prove that
$$W_i \cap (\sum_{i \neq i} W_i) = \{0\}$$
.

Proof:

We are given that each of the W_i 's are one-dimensional subspaces of V. We also know that the sum of subspaces of a VS is also a subspace in that ambient VS, hence $\sum_{j\neq i}W_j$ is also a subspace of V. By an earlier theorem we proved in class, we know that the intersection of these subspaces is also a subspace of V. Hence the zero vector must lie in every W_i and W_j ($j\neq i$) and in the intersection of these subspaces as well. Now suppose $\exists \ v\in W_i\cap \left(\sum_{j\neq i}W_j\right)$ such that $v\neq 0$. Then, to satisfy one of the properties of VS's there must be an additive inverse -v such that v+(-v)=0, where $v\in W_i$ and $-v\in \sum_{j\neq i}W_j$. But then by the unique representation of the zero vector as the sum of a vector in W_i and a vector in $\sum_{j\neq i}W_j$, we must have that v=0. ($\Rightarrow \Leftarrow$)

Hence we have proven that $W_i \cap \left(\sum_{j \neq i} W_j\right) = \{0\}$.

(3) Use the above results to show that $V = W_1 \oplus ... \oplus W_n$. This is known as a direct sum decomposition of V.

Solution:

We have proven that $\sum_{i=1}^n W_i = V$ and also that $W_i \cap \left(\sum_{j \neq i} W_j\right) = \{0\}$. Since each W_i is a one-dimensional subspace and so is the summation of all W_j with $j \neq i$, by Proposition 1.9 (Axler's), we are guaranteed that $V = W_1 \oplus ... \oplus W_n$.