Contents

	0.1	Overview of the book	11
1	Inti	$\mathbf{roduction}^{\ 1}$	15
	1.1	Teaching a computer to distinguish cats from dogs	15
		1.1.1 The pipeline of a typical machine learning problem	20
	1.2	Predictive learning problems	21
		1.2.1 Regression	21
		1.2.2 Classification	24
	1.3	Feature design	27
	1.4	Numerical optimization	31
	1.5	Summary	33
Ι	\mathbf{T}	ne basics	35
2	Fun	${f damentals}$ of numerical optimization 2	38
	2.1	Calculus defined optimality	38
		2.1.1 Taylor series approximations	38
		2.1.2 The first order condition for optimality	40
		2.1.3 The convenience of convexity	

¹This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

²This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

	2.2	Nume	rical methods for optimization
		2.2.1	The big picture
		2.2.2	Stopping condition
		2.2.3	Gradient descent
		2.2.4	Newton's method
	2.3	Summ	ary
	2.4	Exerci	ses
3	Reg	ression	n^3
	3.1	The ba	asics of linear regression
		3.1.1	Notation and modeling 6
		3.1.2	The Least Squares cost function for linear regression
		3.1.3	Minimization of the Least Squares cost function
		3.1.4	The efficacy of a learned model
		3.1.5	Predicting the value of new input data
	3.2	Knowl	edge-driven feature design for regression
		3.2.1	General conclusions
	3.3	Nonlin	near regression and ℓ_2 regularization
		3.3.1	Logistic regression
		3.3.2	Non-convex cost functions and ℓ_2 regularization
	3.4	Summ	ary
	3.5	Chapt	er exercises
4	Clas	ssificat	ion ⁴
	4.1	The p	erceptron cost functions
		4.1.1	The basic perceptron model
		4.1.2	The softmax cost function
		4.1.3	The margin perceptron

³This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

⁴This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

		4.1.4	Differentiable approximations to the margin perceptron	. 105
		4.1.5	The accuracy of a learned classifier	. 107
		4.1.6	Predicting the value of new input data	. 108
		4.1.7	Which cost function produces the best results?	. 108
		4.1.8	The connection between the perceptron and counting costs	. 111
	4.2	The lo	ogistic regression perspective on the softmax cost	. 112
		4.2.1	Step functions and classification	. 113
		4.2.2	Convex logistic regression	. 113
	4.3	The su	upport vector machine perspective on the margin perceptron	. 117
		4.3.1	A quest for the hyperplane with maximum margin	. 117
		4.3.2	The hard-margin SVM problem	. 119
		4.3.3	The soft-margin SVM problem	. 119
		4.3.4	Support Vector Machines and logistic regression	. 121
	4.4	Multio	class classification	. 121
		4.4.1	One-versus-All multiclass classification	. 122
		4.4.2	Multiclass softmax classification	. 127
		4.4.3	The accuracy of a learned multiclass classifier	. 130
		4.4.4	Which multiclass classification scheme works best?	. 131
	4.5	Knowl	ledge-driven feature design for classification	. 131
		4.5.1	General conclusions	. 134
	4.6	Histog	gram features for real data types	. 135
		4.6.1	Histogram features for text data	. 136
		4.6.2	Histogram features for image data	. 139
		4.6.3	Histogram features for audio data	. 143
	4.7	Summ	nary	. 145
	4.8	Chapt	ser exercises	. 146
II	\mathbf{A}	utom	atic feature design	158
5	Aut	omatic	c feature design for regression 5	161
	5.1	Auton	natic feature design for the ideal regression scenario	. 162

⁵This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jernwatt@gmail.edu

		5.1.1	Vector approximation	163
		5.1.2	From vectors to continuous functions	163
		5.1.3	Continuous function approximation	165
		5.1.4	Common bases for continuous function approximation	166
		5.1.5	Recovering weights	171
		5.1.6	Graphical representation of a neural network *	172
	5.2	Auton	natic feature design for the real regression scenario	172
		5.2.1	Approximation of discretized continuous functions	173
		5.2.2	The real regression scenario	174
	5.3	Cross-	-validation for regression	178
		5.3.1	Diagnosing the problem of overfitting/underfitting	181
		5.3.2	Hold out cross-validation	181
		5.3.3	Hold out calculations	183
		5.3.4	k-fold cross-validation	185
	5.4	Which	n basis works best?	188
		5.4.1	Understanding of the phenomenon underlying the data	189
		5.4.2	Practical considerations	189
		5.4.3	When the choice of basis is arbitrary	189
	5.5	Summ	nary	191
	5.6	Chapt	ser exercises	191
	5.7	Notes	on continuous function approximation*	199
6	Aut	omati	c feature design for classification 6	201
	6.1	Auton	natic feature design for the ideal classification scenario	201
		6.1.1	Approximation of piecewise continuous functions	202
		6.1.2	The formal definition of an indicator function	204
		6.1.3	Indicator function approximation	204
		6.1.4	Recovering weights	206
	6.2	Auton	natic feature design for the real classification scenario	207
		6.2.1	Approximation of discretized indicator functions	207

⁶This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

		6.2.2	The real classification scenario	208
		6.2.3	Classifier accuracy and boundary definition	213
	6.3	Multio	class classification	215
		6.3.1	One versus All multiclass classification	215
		6.3.2	Multiclass softmax classification	216
	6.4	Cross-	validation for classification	217
		6.4.1	Hold out cross-validation	218
		6.4.2	Hold out calculations	219
		6.4.3	k-fold cross validation	221
		6.4.4	k-fold cross validation for One versus All multiclass classification $$	224
	6.5	Which	basis works best?	224
	6.6	Summ	nary	226
	6.7	Chapt	er exercises	227
7	Ker	nels, b	backpropogation, and regularized cross-validation 7	23 4
	7.1	Fixed	feature kernels	234
		7.1.1	The fundamental theorem of linear algebra	235
		7.1.2	Kernelizing cost functions	236
		7.1.3	The value of kernelization	237
		7.1.4	Examples of kernels	239
		7.1.5	Kernels as similarity matrices	241
	7.2	The b	ackpropagation algorithm	242
		7.2.1	Computing the gradient of a two-layer network cost function	243
		7.2.2	Three layer neural network gradient calculations	245
		7.2.3	Gradient descent with momentum	246
	7.3	Cross-	validation via ℓ_2 regularization	248
		7.3.1	ℓ_2 regularization and cross-validation	250
		7.3.2	Regularized k-fold cross validation for regression	250
		7.3.3	Regularized cross-validation for classification	252
	7.4	Summ	uary	252

⁷This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

	7.5	Furthe	er kernel calculations*	253
		7.5.1	Kernelizing various cost functions	253
		7.5.2	Fourier kernel calculations - scalar input	255
		7.5.3	Fourier kernel calculations - vector input	256
IJ	I 7	Tools	for large scale data	257
8	Adv	vanced	gradient schemes ⁸	260
	8.1	Fixed	step length rules for gradient descent $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	260
		8.1.1	Gradient descent and simple quadratic surrogates	261
		8.1.2	Functions with bounded curvature and optimally conservative step length rules	263
		8.1.3	How to use the conservative fixed step length rule	266
	8.2	Adapt	ive step length rules for gradient descent	268
		8.2.1	Adaptive step length rule via backtracking line search	268
		8.2.2	How to use the adaptive step length rule	269
	8.3	Stocha	astic gradient descent	271
		8.3.1	Decomposing the gradient	272
		8.3.2	The stochastic gradient descent iteration	273
		8.3.3	The value of stochastic gradient descent	274
		8.3.4	Step length rules for stochastic gradient descent	275
		8.3.5	How to use the stochastic gradient method in practice	277
	8.4	Conve	ergence proofs for gradient descent schemes*	277
		8.4.1	Convergence of gradient descent with Lipschitz constant fixed step length	278
		8.4.2	Convergence of gradient descent with backtracking line search	279
		8.4.3	Convergence of the stochastic gradient method	281
		8.4.4	Convergence rate of gradient descent for convex functions with fixed step length	283
	8.5	Calcul	lation of computable Lipschitz constants*	284
			± ±	

⁸This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

	8.6	Summary	286		
	8.7	7 Chapter exercises			
9	Dim	ension reduction techniques ⁹	290		
	9.1	Techniques for data dimension reduction	290		
		9.1.1 Random subsampling	291		
		9.1.2 K-means clustering	292		
		9.1.3 Optimization of the K-means problem*	296		
	9.2	Principal Component Analysis	297		
		9.2.1 Optimization of the PCA problem	302		
	9.3	Recommender Systems	303		
		9.3.1 Matrix completion setup	305		
		9.3.2 Optimization of the matrix completion model	305		
	9.4	Summary	306		
	9.5	Chapter exercises	307		
I	I A	Appendices	310		
	9.6	Vector operations	311		
	9.7	Matrix operations	313		
	9.8	Basic definitions	316		
	9.9	Commonly used rules for computing derivatives	317		
	9.10	Examples of gradient and Hessian calculations	318		
	9.11	Fundamental matrix factorizations	324		
		9.11.1 The Singular Value Decomposition	324		
		9.11.2 Eigenvalue decomposition	326		
		9.11.3 The pseudo-inverse	327		
	9.12	Formal proofs of fundamental matrix factorizations	328		
		9.12.1 Proof of the eigenvalue decomposition	328		
		9.12.2 Proof of the Singular Value Decomposition	329		
		9.12.3 Rayleigh quotient definition and eigenvalues of a real symmetric matrix	330		

⁹This document is part of a book currently under development titled "Machine Learning Refined" (Cambridge University Press, late 2016) by Jeremy Watt, Reza Borhani, and Aggelos Katsaggelos. Please do not distribute. Feedback regarding any errors, comments on substance and style, recommendations, etc. is greatly appreciated! Contact: jermwatt@gmail.edu

	9.12.4 Proof that the pseudo-inverse is the smallest solution	332
9.13	Definitions of convexity	335
	9.13.1 0^{th} order definition of a convex function	335
	9.13.2 1st order definition of a convex function	336