MATLAB lesson 4: Graphics Exercise sheet

Dr. Gerard Capes*

1 Based on the lesson

These exercises can be completed using information found in the lesson

- 1. Basic x-y plot
 - (a) Create a ten-element vector \mathbf{x} , with values 1 to 10
 - (b) Create a vector \mathbf{y} , containing 10 random numbers
 - (c) Plot y against x
 - (d) Close the figure
- 2. Customise lines and markers

Recreate the same \mathbf{y} vs \mathbf{x} plot but:

- (a) Set the line width to 2 and set the line style to dashed
- (b) Set the marker style to circles and set the marker size to 8
- 3. Set axis range
 - (a) Set the x-axis range to 2-8, and the y-axis range to 0.2-0.8
 - (b) Set the x-range back to 0-10
 - (c) Return both axis ranges to the default values
- 4. Turn the grid on
- 5. Clear the figure window (without closing it)
- 6. Plot \mathbf{y} vs \mathbf{x} on log-log axes
- 7. Make your figure intelligible to others
 - (a) Give your figure a title
 - (b) Label the \mathbf{x} and \mathbf{y} axes
 - (c) Add a legend in the bottom right corner

^{*}Questions and feedback can be directed to gerard.capes@manchester.ac.uk

8. Sub-plots

- (a) Create a vector y1, equal to x squared
- (b) Create a vector y2, equal to x cubed
- (c) Create a figure window
- (d) Using a 2*2 tiling pattern, create subplots for \mathbf{y} vs \mathbf{x} (top left), $\mathbf{y1}$ vs \mathbf{x} (top right) and $\mathbf{y2}$ vs \mathbf{x} (full width of bottom row).
- 9. Surface plot

Using the peaks (500) function, create a surface plot

- 10. Bar chart with sub-plot
 - (a) Use the rand function to create a matrix with 3 row and 4 columns of data
 - (b) Display the data as a bar chart and a stacked bar chart, together in the same figure window
- 11. Save (hint: print) the figure from the previous question as a png image file
- 12. Save the current figure as a figure file which can be loaded back into MATLAB

2 Using the MATLAB documentation

These exercises require information from the MATLAB help files

- 1. Open the figure from the previous question in MATLAB
- 2. Image plot

Using the peaks (500) function, create an image plot with the colours scaled to represent the values of the matrix.

(hint: read about 'CDataMapping' on the image plot help page)