Rigidity of Expectations: Additional Evidence from Density Forecasts of Professionals and Households

Tao Wang Johns Hopkins University

April 1, 2020

Outline

- Motivation
- 2 Theory
- Stimation
 - AR(1)
 - SE
 - DE
 - NI
 - Stocastic volatility
 - SE
 - DE
 - NI
- 4 Conclusion

Motivation

- there are various theories on "irrational expectation"
- different theories can be tested using survey data in a comparable manner (Coibion and Gorodnichenko (2012))
- a good theory needs to be (relatively) consistent in predictions across different moments
- higher moments, i.e. uncertainty, brings about one more restriction
- survey also contains information about data generating process itself

What this paper does

- time series and cross-sectional pattern of uncertainty from density forecasts of the inflation
- additional reduced-form tests of the full-information rationality null using the uncertainty
- extend Coibion and Gorodnichenko (2012) in two ways
 - cross-moment estimation for each one of the particular theories on expectation
 - allowing for stochastic volatility of inflation process

Literature

- empirical tests on expectation formation
 - Mankiw et al. (2003), Carroll (2003), Branch (2004), Malmendier and Nagel (2015), Das et al. (2017), Coibion and Gorodnichenko (2012), Fuhrer (2018)
- density and probabilistic questions in expectation surveys
 - Manski (2004), Delavande et al. (2011), Manski (2018)
 - ▶ Bertrand and Mullainathan (2001), Van der Klaauw et al. (2008), Delavande (2014)
- different measures of uncertainty
 - Bachmann et al. (2013), Jurado et al. (2015), Binder (2017), Bloom (2009)

A generic framework

h-period ahead density forecast by agent i at time t based on information set $I_{i,t}$

$$f_{i,t+h|t} \equiv f_{i,t}(y_{t+h}|I_{i,t})$$

- \bullet theories of expectation differ in $I_{i,t}$
 - ▶ rational expectation (FIRE): $I_{i,t} = y_{i,t}$
 - sticky expectation (SE): $I_{i,t}=y_{t- au},\ au$ being the most recent update date
 - ▶ noisy information (NI): $I_{i,t} = s_{i,t}(y_t)$, where $s_{i,t}$ is a vector of noisy signal(s)
- the process of variable determines the mapping from $I_{i,t}$ to $f_{i,t+h|t}$

Definition and notation

Individual moments	Population moments
Mean forecast: $y_{i,t+h t}$	Average forecast: $\bar{y}_{t+h t}$
Forecast error: $FE_{i,t+h t}$	Average forecast error: $\overline{FE}_{t+h t}$
Uncertainty: $Var_{i,t+h t}$	Average uncertainty: $\overline{Var}_{t+h t}$
	Disagreement: $\overline{Disg}_{t+h t}$

Data

	SCE	SPF
Time period	2013M6-2018M6	2007Q1-2018Q4
Frequency	Monthly	Quarterly
Sample Size	1,300	30-50
Aggregate Var in Density	1-yr-ahead inflation	1-yr and 3-yr core CPI and core PCE
Pannel Structure	stay up to 12 months	average stay for 5 years
Demographic Info	Education, Income, Age	Industry

- density estimation following (Engelberg et al. (2009))
- \bullet exclude top and bottom 5% values for forecast errors and uncertainty

Basic patterns: uncertainty and realized inflation

Basic patterns: uncertainty and the size of forecast errors

 no evidence for positive correlation betwen high ex ante uncertainty and ex post forecast errors.

Basic patterns: uncertainty and disagreement

• uncertainty are not the same as disagreement for professionals

Basic patterns: summary

- uncertainty varies across time
- uncertainty contains different information from widely proxies such as disagreement and forecast error

AR(1) model of inflation

Inflation process

$$y_t = \rho y_{t-1} + \omega_t$$
$$\omega_t \sim N(0, \sigma_\omega^2)$$

- Uncertainty
 - ► FIRE: time-invariant

$$\overline{Var}_{t+h|t}^* = \sum_{s=1}^h \rho^{2s} \sigma_\omega^2$$

SE: time-invariant

$$\overline{\mathit{Var}}_{t+h|t}^{\mathsf{se}} = \sum_{ au=0}^{+\infty} \lambda (1-\lambda)^{ au} \overline{\mathit{Var}}_{t+h|t- au}^*$$

 NI: time-variant but quantitatively tiny due to highly efficient Kalman gain

$$\overline{Var}_{t+h|t}^{ni} = \rho^{2h} \overline{Var}_{t|t}^{ni} + \overline{Var}_{t+h|t}^*$$

Stocastic volatility (UCSV) inflation process (Stock and Watson (2007))

Inflation process

$$y_t = \theta_t + \eta_t$$
, where $\eta_t = \sigma_{\eta,t} \xi_{\eta,t}$
 $\theta_t = \theta_{t-1} + \epsilon_t$, where $\epsilon_t = \sigma_{\epsilon,t} \xi_{\epsilon,t}$
 $\log \sigma_{\eta,t}^2 = \log \sigma_{\eta,t-1}^2 + \mu_{\eta,t}$
 $\log \sigma_{\epsilon,t}^2 = \log \sigma_{\epsilon,t-1}^2 + \mu_{\epsilon,t}$

$$\xi_t = [\xi_{\eta,t}, \xi_{\epsilon,t}] \sim N(0, I_2)$$

$$\mu_t = [\mu_{\eta,t}, \mu_{\epsilon,t}]' \sim N(0, \gamma I_2)$$

UCSV inflation process

Uncertainty

FIRE: time-varying

$$\overline{Var}_{t+h|t}^* = \sum_{k=1}^h exp^{-0.5k\gamma_\eta} \sigma_{\eta,t}^2 + exp^{-0.5h\gamma_\epsilon} \sigma_{\epsilon,t}^2$$

SE: time-varying

$$\overline{\textit{Var}}_{t+h|t}^{\textit{se}} = \sum_{\tau=0}^{\infty} (1-\lambda)^{\tau} \lambda \overline{\textit{Var}}_{t+h|t-\tau}^{*}$$

NI (1-step-ahead): time-varying

$$\overline{\textit{Var}}_{t|t-1}^{\theta} = \overline{\textit{Var}}_{t-1|t-1}^{\theta} + \textit{Var}_{t|t-1}^{*}(y_{t})$$

Simulated method of moment estimation

$$\widehat{\Omega} = \underset{\{\Omega \in \Gamma\}}{\operatorname{argmin}} (M_{\mathrm{data}} - F^{o}(\Omega, Y)) W(M_{\mathrm{data}} - F^{o}(\Omega, Y))'$$

- Ω : parameters of the particular $o \in \{fire, se, ni, de, seni\} \times \{ar, sv\}$
- Γ: constraints for the parameter.
- M_{data}: data moments
- F: simulated model moments according to a particular theory o, a function of parameters Ω as well as the Y, the real-time data (including history) up till each point of the time t.
 - unconditional moments, not specific to time
 - moments selected from average forecast, variance and autocovariance of forecasts, average diagreement, variance and autovariance of disagreement, average uncertainty, etc.
- W: weight matrix, identity matrix for now

Estimation procedure and algorithm

- for each theory of expectation formation and the inflation process, start with an initial value for the parameter(s) of interest
- $oldsymbol{0}$ simulate individual forecasts for a large enough (N=200) number of forecasters
- compute the average forecast errors, disagreement and average uncertainty across all agents
- compute the time-series moments of the average forecast, disagreement, and uncertainty
- compute the difference between the simulated moments and the data moments
- keep searching the parameter value until reaching below a threshold of the loss

Two-step and joint estimation

- two-step estimation: separately estimate inflation process parameters and then parameters of the inflation process
 - pros: computationally lighter
 - cons: potential misspecification. does not utilize the expectation data to understand inflation process per se.
- joint estimation: targeting both moments of realized inflation series and moments of forecasts to simultaneously estimate both the inflation process and the parameter of expectation formation
 - pros: additional information gain from expectations data about inflation process itself
 - cons: more computation burden

Scoring card for a theory of expectation formation

To look if the parameter and goodness of fit is robust to

- 1 use of different moments in estimation
- alternative assumption about the underlying process
- two-step estimation or joint-estimation
- relatively fit with professionals and households

Outline

- Motivation
- 2 Theory
- 3 Estimation
 - AR(1)
 - SÈ
 - DE
 - NI
 - Stocastic volatility
 - SE
 - DE
 - NI
- 4 Conclusion

SE parameter estimate

Table: SMM Estimates of SE

0	1	2	3		SE: $\hat{\lambda}_{SPF}(Q)$	SE: $\hat{\lambda}_{SPF}(Q)$	SE: ρ	SE: σ	SE: $\hat{\lambda}_{SCE}(M)$	SE: $\hat{\lambda}_{SCE}(M)$	SE: ρ	SE: σ
FEVar	FEATV				0.47	0.36	1	0.08	0.2	0.5	0.84	0.25
FEVar	DisgATV	DisgVar			0.47	0.38	1	0.1	0.21	0.54	0.92	0.18
FEVar	FEATV	DisgVar	DisgATV	Var	0.47	0.36	1	0.08	0.21	0.5	0.84	0.25

• λ : update rate in SE

Professionals and SEAR

(a) FE (b) Disg (c) FE/Disg

Professionals and SEAR: joint estimation

(a) FE (b) Disg (c) FE/Disg

Households and SEAR

Households and SEAR: joint estimates

(a) FE (b) Disg (c) FE/Disg

DE parameter estimate

Table: SMM Estimates of DE

0	1	2	3	4	5	6	DE: θ _{SPF}	DE: $\sigma_{\theta,SPF}$	DE: θ _{SPF}	DE: $\sigma_{\theta,SPF}$	DE: ρ	DE: σ	DE: θ _{SCE}	DE: $\sigma_{\theta,SCE}$	DE: θ _{SCE}	DE: σ_{θ_SCE}	DE: ρ	DE: σ
FE	FEVar	FEATV					-0.23	0.22	NA	NA	NA	NA	9.35	10.65	0.82	0.85	1	0
FE	FEVar	FEATV	Disg	DisgVar	DisgATV		-0.26	1.41	-0.14	1.44	0.99	0.16	8.2	9.52	4.79	4.59	0.58	0.55
FE	FEVar	FEATV	Disg	DisgVar	DisgATV	Var	-0.24	1.43	-0.17	1.44	0.99	0.16	4.78	3.01	NA	NA	NA	NA

- θ : representativeness parameter, $\theta > 0$ according to DE.
- σ_{θ} : dispersion of representativeness across population

Professionals and DEAR

(a) FE (b) Disg (c) FE/Disg

Professionals and DEAR: joint estimate

Households and DEAR

(b) FE/Disg

(c) FE/Disg/Var

Households and DEAR: joint estimates

NIAR parameters

Table: SMM Estimates of NI

0	1	2	3	4	NI: $\hat{\sigma}_{pb,SPF}$	$\hat{\sigma}_{pr,SPF}$	NI: $\hat{\sigma}_{pb,SPF}$	$\hat{\sigma}_{pr,SPF}$	NI: ρ	NI: σ	NI: $\hat{\sigma}_{pb,SCE}$	$\hat{\sigma}_{pr,SCE}$	NI: $\hat{\sigma}_{pb,SCE}$	$\hat{\sigma}_{pr,SCE}$	NI: ρ	NI: σ
FEVar	FEATV				0.09	2.77	0.093	1.408	0.911	0.422	3.4	15.4	3.397	15.395	0.997	0.027
FEVar	FEATV	DisgVar	DisgATV		0.09	2.77	0.093	1.408	0.911	0.422	3.4	15.4	3.397	15.395	0.997	0.027
FEVar	FEATV	DisgVar	DisgATV	Var	0.14	3.85	0.133	1.359	0.911	0.422	4.9	22.4	4.860	22.367	0.997	0.027

- \bullet σ_{pb} : noisiness of public signals in NI
- ullet $\sigma_{\it pr}$: noisiness of private signals in NI

Professionals and NIAR

(a) FE (b) Disg (c) FE/Disg/Var

Professionals and NIAR: joint estimates

(a) FE (b) Disg (c) FE/Disg

Households and NIAR

(a) FE (b) FE/Disg (c) FE/Disg/Var

Households and NIAR: joint estimates

(a) FE

(b) FE/Disg

(c) FE/Disg/Var

Outline

- Motivation
- 2 Theory
- Stimation
 - AR(1)
 - SE
 - DE
 - NI
 - Stocastic volatility
 - SE
 - DE
 - NI
- 4 Conclusion

SESV parameters

Table: SMM Estimates of Parameters of SESV

0	1	2	3	SE: $\hat{\lambda}_{SPF}(Q)$	SE: $\hat{\lambda}_{SPF}(Q)$	SE: γ	SE: $\hat{\lambda}_{SCE}(M)$	SE: $\hat{\lambda}_{SCE}(M)$	SE: γ
DisgATV	Var			0.3	0.46	2.52	0.09	0.09	0.7
FEATV	DisgVar	DisgATV		0.3	0.46	2.53	0.07	0.07	0.26
FEATV	DisgVar	DisgATV	Var	0.3	0.46	1.26	0.07	0.07	0.26

- λ : update rate in SE
- ullet γ : size of the innovation to volatility

Professionals and SESV

(a) FE (b) Disg (c) FE/Disg

Professionals and SESV: joint estimates

(a) FE (b) Disg (c) Disg

Households and SESV

(a) Disg/Var

(b) FE/Disg

Households and SESV: joint estimates

(a) Disg/Var

(b) FE/Disg

DESV parameters

Table: SMM Estimates of Parameters of DESV

0	1	2	3	4	DE: θ	σ_{θ}	DE: θ	σ_{θ}	γ	DE: θ	σ_{θ}	DE: θ	σ_{θ}	γ
FE	FEVar	FEATV			-0.44	0.36	-0.43	1.03	0.13	7.81	4.39	7.81	2.99	0.7
FEVar	FEATV	DisgVar	DisgATV		-0.44	0.27	-0.44	0.27	0.3	7.64	6.46	7.64	6.46	0.7
FEVar	FEATV	DisgVar	DisgATV	Var	-0.43	0.26	-0.43	0.26	0.14	1.03	0	1.03	0	0.2

- θ : representativeness parameter
- σ_{θ} : dispersion of representativeness across population
- ullet γ : size of the innovation to volatility

Professionals and DESV

(a) FE (b) FE/Disg (c) FE/Disg/Var

Professionals and DESV: joint estimates

(a) FE

(b) FE/Disg

Households and DESV

Households and DESV: joint estimates

(a) FE

(b) FE/Disg

NISV parameters

Table: SMM Estimates of Parameters of NISV

0	1	2	3	4	NI: $\hat{\sigma}_{pb,SPF}$	$\hat{\sigma}_{pr,SPF}$	NI: $\hat{\sigma}_{pb,SPF}$	$\hat{\sigma}_{pr,SPF}$	γ	NI: $\hat{\sigma}_{pb,SCE}$	$\hat{\sigma}_{pr,SCE}$
FEVar	FEATV	Var			2.35	2	2.04	23.01	2.53	2.00014E+14	3.63
FEVar	FEATV	DisgVar	DisgATV	Var	3.33	1.71	2.04	22.96	2.53	1.09884E+13	3.63

• σ_{pb} : noisiness of public signals in NI

ullet σ_{pr} : noisiness of private signals in NI

ullet γ : size of the innovation to volatility

Professionals and NISV

(a) FE/Var

Professionals and NISV: joint estimates

(a) FE/Var

Households and NISV

(a) FE/Var

Households and NISV: joint estimates

(a) FE/Var

Taking stock

Table: A scoring card of different theory

Criteria	SE	NI	DE
Sensitive to moments used for estimation?	No	No	No
Sensitive to the assumed inflation process?	No	Yes	No
Sensitive to a two-step or joint estimate?	No	Yes	No
Sensitive to the type of agents?	Yes	Yes	Yes
Matching with FE	Yes	Yes	Yes
Matching with disagreement	Yes	No	Unsure
Matching with uncertainty	Unsure	No	No

Conclusion

- Sticky expectation (SE) augmented with stochastic volatility of inflation process matches data of inflation and expectations better than other theories for both professionals and households.
- Within each model, households are more inconsistent compared to professionals
- Incorporating higher moments, i.e. uncertainty, helps "discipline" theories on expectation formation
- Higher moments from surveys also contain useful information about the inflation dynamics itself

- Bachmann, R., Elstner, S., and Sims, E. R. (2013). Uncertainty and economic activity: Evidence from business survey data. *American Economic Journal: Macroeconomics*, 5(2):217–49.
- Bertrand, M. and Mullainathan, S. (2001). Do people mean what they say? implications for subjective survey data. *American Economic Review*, 91(2):67–72.
- Binder, C. C. (2017). Measuring uncertainty based on rounding: New method and application to inflation expectations. *Journal of Monetary Economics*, 90:1–12.
- Bloom, N. (2009). The impact of uncertainty shocks. *econometrica*, 77(3):623–685.
- Branch, W. A. (2004). The theory of rationally heterogeneous expectations: evidence from survey data on inflation expectations. *The Economic Journal*, 114(497):592–621.
- Carroll, C. D. (2003). Macroeconomic expectations of households and professional forecasters. *the Quarterly Journal of economics*, 118(1):269–298.

- Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? *Journal of Political Economy*, 120(1):116–159.
- Das, S., Kuhnen, C. M., and Nagel, S. (2017). Socioeconomic status and macroeconomic expectations. Technical report, National Bureau of Economic Research.
- Delavande, A. (2014). Probabilistic expectations in developing countries. *Annu. Rev. Econ.*, 6(1):1–20.
- Delavande, A., Giné, X., and McKenzie, D. (2011). Measuring subjective expectations in developing countries: A critical review and new evidence. *Journal of development economics*, 94(2):151–163.
- Engelberg, J., Manski, C. F., and Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters. *Journal of Business & Economic Statistics*, 27(1):30–41.
- Fuhrer, J. C. (2018). Intrinsic expectations persistence: evidence from professional and household survey expectations.
- Jurado, K., Ludvigson, S. C., and Ng, S. (2015). Measuring uncertainty. *American Economic Review*, 105(3):1177–1216.

- Malmendier, U. and Nagel, S. (2015). Learning from inflation experiences. *The Quarterly Journal of Economics*, 131(1):53–87.
- Mankiw, N. G., Reis, R., and Wolfers, J. (2003). Disagreement about inflation expectations. *NBER macroeconomics annual*, 18:209–248.
- Manski, C. F. (2004). Measuring expectations. *Econometrica*, 72(5):1329–1376.
- Manski, C. F. (2018). Survey measurement of probabilistic macroeconomic expectations: progress and promise. *NBER Macroeconomics Annual*, 32(1):411–471.
- Patton, A. J. and Timmermann, A. (2010). Why do forecasters disagree? lessons from the term structure of cross-sectional dispersion. *Journal of Monetary Economics*, 57(7):803–820.
- Stock, J. H. and Watson, M. W. (2007). Why has us inflation become harder to forecast? *Journal of Money, Credit and banking*, 39:3–33.
- Van der Klaauw, W., Bruine de Bruin, W., Topa, G., Potter, S., and Bryan, M. F. (2008). Rethinking the measurement of household inflation expectations: preliminary findings. *FRB of New York Staff Report*, (359).