INTRO TO DATA SCIENCE HW 2

Ben Green

Contents

Question	1																	1
1a		 																1
1b		 																1
Question	2																	1
Question	3																	1
3a		 																1
3b		 					•					•						1
Question	4																	2
Question	5																	2
Question	6																	3
6a		 																3
6b		 																3
6c		 																3
6d		 																3
Question	7																	4

Question 1

1a.

The probability of a bit in the array remaining 0 is:

$$e^{\frac{-20}{99}}$$
 (1)

which comes out to .819. So, 1-.819 = .181 is the expected fraction of 1's.

1b.

The expected fraction of 0's is 1-.181 = .819

Question 2

The false positive rate is:

$$(1 - e^{\frac{-3*2}{11}}) = (1 - e^{\frac{-6}{11}}) \tag{2}$$

Question 3

a	b	c	a	d	e	a	c	b	b
1									
.9	1								
.81	.9	1							
	.81	.9	1.81						
	.729	.81	1.1629	1					
	.6561	.729	1.4661	.9	1				
	.5905	.6561		.81	.9	2.4661			
	.5314			.729	.81	2.219	1.6561		
				.6561	.729	1.997	1.4904	1.5314	
				.5905	.6561	1.797	1.3413		2.5314

3a.

D is dropped, as its popularity score is .5905 at the end of the stream.

3b.

The most popular element is B, with a score of 2.5314.

Question 4

```
\begin{array}{l} (3x+7) \bmod 11 \\ X=1,\ 10 \bmod 11 = 10,\ 1010 \\ x=2,\ 13 \bmod 11 = 2,\ 0010 \\ X=3,\ 16 \bmod 11 = 5,\ 0101 \\ X=4,\ 19 \bmod 11 = 8,\ 1000 \\ X=5,\ 22 \bmod 11 = 0,\ 0000 \\ X=6,\ 25 \bmod 11 = 3,\ 0011 \\ X=7,\ 28 \bmod 11 = 6,\ 0110 \\ X=8,\ 31 \bmod 11 = 9,\ 1001 \\ X=9,\ 34 \bmod 11 = 1,\ 0001 \\ X=10,\ 37 \bmod 11 = 4,\ 0100 \end{array}
```

With set {10 9 1 7}, 10 would have to be in the set since the estimate of the number of distinct elements is 2^r where r is the max tail length in the set.

Question 5

Question 6

6a.

$$H[12+, 9-] = -\frac{12}{21}log_2\frac{12}{21} - \frac{9}{21}log_2\frac{9}{21} = -.5714* -.8074 -.4286* -1.2223 = .9852$$
(3)

6b.

$$IG(X1) = T[7+, 1-]F[5+, 8-]$$
 (4)

$$.9582 - \frac{8}{21} * 1.3925 - \frac{13}{21} * .6920 = .0265$$
 (5)

$$IG(X2) = T[7+, 3-]F[5+, 6-]$$
 (6)

$$.9852 - \frac{10}{21} * 1.0704 - \frac{11}{21} * 9329 = .013 \tag{7}$$

6c.

6d.

$$\frac{4}{7} = .5714$$
 (8)

Question 7

Assuming that you've picked door number 1, there are three (equally likely) possible scenarios:

- 1. You pick the door with the prize, and the other two doors are empty.
- 2. Both your door and door number 2 are empty.
- 3. Both your door and door number 3 are empty.

Overall, there are two groups of possibilities - that you've picked a winning door (1/3) or you've picked an empty door (2/3).

If an empty door is revealed, it must either be door 2 or 3, because you picked door number 1. Now you are presented with the same two groups - but the second group's doors now have probabilities 0 and 2/3 of containing the prize, when originally they were 1/3 each.

Since your door (door number 1) has a probability of 1/3 and the other closed door has a probability of 2/3, you should switch doors.