Bases de dades relacionals

Programació i tractament de dades II

- Bases de dades relacionals
 - o Programació i tractament de dades II
- Proceso general
- Modelo Entidad-Relación
 - 1. Define claramente los requisitos
 - o 2. Identifica las entidades
 - 3. Determina las relaciones
 - 4. Especifica los atributos
- Modelo relacional
- SQL
 - Create
 - Insert
 - Alter
 - Delete
 - Update
 - Select
- Select con SUM
- Select con COUNT
- Select con COUNT y SUM
- JOIN
- Selección de tablas
- Select todos con todos
- Select filtrado
- Select con campos y Orden
- Tabla Libros
- Tabla Autores
- Tabla Libro_Autor
- Programación Python
- Prueba insertar Libros
- Gestión de libros
- Función para mostrar los libros existentes
- Función para agregar un nuevo libro
- Función para eliminar un libro
- Función principal
- API con Flask

Proceso general

Modelo Entidad-Relación

Crear un modelo entidad-relación (ER) es una parte fundamental del diseño de bases de datos, ya que te ayuda a estructurar y organizar la información de manera lógica. Aquí tienes algunos consejos clave para hacerlo bien:

1. Define claramente los requisitos

Antes de dibujar nada, comprende el propósito del sistema y recopila todos los requisitos funcionales. Habla con los usuarios finales o stakeholders para asegurarte de que entiendes qué datos necesitan manejar y cómo se relacionan.

2. Identifica las entidades

Piensa en las principales "cosas" de tu sistema que necesitas almacenar. Estas suelen ser sustantivos: por ejemplo, Cliente, Producto, Pedido. Evita incluir atributos o relaciones en esta etapa; concéntrate solo en identificar entidades.

3. Determina las relaciones

Identifica cómo interactúan las entidades entre sí. Ejemplo: un Cliente realiza un Pedido. Define la cardinalidad (uno a uno, uno a muchos, muchos a muchos).

- 1:1: Un empleado tiene un único número de seguridad social.
- 1:N: Un cliente puede hacer muchos pedidos.
- M:N: Muchos estudiantes pueden estar en muchos cursos.

4. Especifica los atributos

Asocia cada atributo a la entidad o relación correspondiente. Ejemplo: para la entidad Cliente, puedes añadir atributos como Nombre, Teléfono, Email. Selecciona un identificador único o clave primaria para cada entidad.

Modelo relacional

A partir del modelo entidad-relación, diseñaremos las tablas que serán necesarias, siguiendo los siguientes pasos:

- A cada entidad le corresponderá una tabla
- Cada relación 1:N resultará en una columna nueva en una de las tablas.
- Cada relación N:M dará lugar a una nueva tabla.

Así pues, las 4 entidades nos darán 4 tablas, y las dos relaciones N:M, otra tabla cada una.

Las claves primarias son campos en una tabla que identifican de forma única cada registro. No pueden ser nulas ni repetidas. Las claves foráneas son columnas en una tabla que establecen una relación con la clave primaria de otra tabla, asegurando la integridad referencial entre ellas.

SQL

SQL (Structured Query Language) es un lenguaje de programación diseñado para gestionar y manipular bases de datos relacionales mediante operaciones como consulta, inserción, actualización y eliminación de datos.

En SQL, una sentencia o query es una instrucción completa que el sistema de gestión de bases de datos (DBMS) ejecuta para realizar una acción, como crear, modificar, consultar o eliminar datos. Cada sentencia SQL sigue una estructura específica y termina con un punto y coma (en la mayoría de los casos.

Ejemplos de sentencias SQL:

```
CREATE TABLE usuarios (id INT PRIMARY KEY, nombre VARCHAR(50)); → Crea una tabla. INSERT INTO usuarios (id, nombre) VALUES (1, 'Juan'); → Inserta un registro. SELECT * FROM usuarios; → Consulta todos los datos de la tabla. UPDATE usuarios SET nombre = 'Carlos' WHERE id = 1; → Modifica un registro. DELETE FROM usuarios WHERE id = 1; → Elimina un registro.
```

Básicamente, una sentencia SQL es una orden que se le da a la base de datos para que haga algo.

Create

El comando CREATE TABLE en SQL se utiliza para crear una nueva tabla en una base de datos. Especifica el nombre de la tabla y define las columnas que tendrá, junto con sus tipos de datos y restricciones.

El elemento básico son las sentencias o queries.

Sintaxis básica:

```
CREATE TABLE nombre_tabla (
    columna1 tipo_dato restricciones,
    columna2 tipo_dato restricciones,
    ...
);
```

Tipos de datos

En SQL, los **tipos de datos** o tipos de campos definen el tipo de información que se puede almacenar en una columna de una tabla. Se pueden clasificar en varias categorías:

Tablas Libros

```
CREATE TABLE Libros (
    ID_Libro INTEGER PRIMARY KEY AUTOINCREMENT, -- Identificador único,
autoincremental
    Titulo VARCHAR(255), -- Título del libro (máx. 255 caracteres)
    ISBN VARCHAR(13), -- Código ISBN del libro (máx. 13 caracteres)
    Editorial VARCHAR(100), -- Nombre de la editorial (máx. 100 caracteres)
    Año_Publicación INT, -- Año en que se publicó el libro
    Ejemplares_Disponibles INT -- Cantidad de ejemplares disponibles
);
```

Tabla Autores

```
CREATE TABLE Autores (
    ID_Autor INTEGER PRIMARY KEY AUTOINCREMENT,
    Nombre VARCHAR(100),
    Apellidos VARCHAR(100),
    Fecha_Nacimiento DATE,
    Nacionalidad VARCHAR(100)
);
```

Tabla Libro_Autor

```
CREATE TABLE Libro_Autor (

ID_Libro INTEGER,

ID_Autor INTEGER,

PRIMARY KEY (ID_Libro, ID_Autor),

FOREIGN KEY (ID_Libro) REFERENCES Libros(ID_Libro),
```

```
FOREIGN KEY (ID_Autor) REFERENCES Autores(ID_Autor)
);
```

Los campos ID_Libro e ID_Autor conforman la clave primaria. ID_Libro y ID_Autor son claves foráneas de los respectivos campos de las tablas Libros y Autores.

```
CREATE TABLE Socios (
    ID_Socio INTEGER PRIMARY KEY AUTOINCREMENT,
    Nombre VARCHAR(100),
    Apellidos VARCHAR(100),
    Dirección VARCHAR(255),
    Teléfono VARCHAR(15),
    Email VARCHAR(100),
    Fecha_Alta DATE
);
CREATE TABLE Prestamos (
    ID_Prestamo INTEGER PRIMARY KEY AUTOINCREMENT,
    ID_Socio INT,
    Fecha_Prestamo DATE,
    Fecha_Devolución DATE,
    Estado VARCHAR(20),
    FOREIGN KEY (ID_Socio) REFERENCES Socios(ID_Socio)
);
CREATE TABLE Prestamo_Libro (
    ID_Prestamo INT,
    ID_Libro INT,
    Cantidad INT,
    PRIMARY KEY (ID Prestamo, ID Libro),
    FOREIGN KEY (ID Prestamo) REFERENCES Prestamos(ID Prestamo),
    FOREIGN KEY (ID_Libro) REFERENCES Libros(ID_Libro)
);
```

Insert

El comando INSERT en SQL se utiliza para agregar nuevas filas (registros) a una tabla en una base de datos. Cuando usas INSERT, estás diciendo a la base de datos que agregue nuevos datos a la tabla que has especificado.

Sintaxis básica:

```
INSERT INTO nombre_tabla (columna1, columna2, columna3, ...)
VALUES (valor1, valor2, valor3, ...);
```

Puedes insertar varias filas al mismo tiempo en una única consulta utilizando el comando INSERT INTO. Esto mejora el rendimiento al evitar múltiples consultas individuales.

Utilizamos insert para crear nuevos registros en las tablas Libros y Autores.

```
INSERT INTO Libros (Titulo, ISBN, Editorial, Año_Publicación,
Ejemplares_Disponibles) VALUES
('Dune', '978-0441013593', 'Chilton Books', 1965, 5),
('El Hobbit', '978-0618968633', 'Allen & Unwin', 1937, 3),

INSERT INTO Autores (Nombre, Apellidos, Fecha_Nacimiento, Fecha_Fallecimiento,
Nacionalidad) VALUES
( 'Frank', 'Herbert', '1920-10-08', '1986-02-11', 'Estadounidense'),
( 'J.R.R.', 'Tolkien', '1892-01-03', '1973-09-02', 'Británico')
```

Deberemos introducir el Libro y el Autor antes de rellenar la tabla Libro_Autor.

```
INSERT INTO Libro_Autor (ID_Libro, ID_Autor) VALUES
(1,1),
(2,2)
```

Alter

El comando ALTER en SQL se utiliza para modificar la estructura de una tabla existente en una base de datos. Es decir, permite agregar, eliminar o modificar columnas, cambiar el tipo de datos de las columnas, renombrar tablas, entre otros

Agregar un columna

```
ALTER TABLE empleados ADD columna_edad INT;
```

Modificar el tipo de dato de una columna existente:

```
ALTER TABLE empleados MODIFY columna_edad DECIMAL(5, 2);
```

```
Cambiar el nombre de una columna:
ALTER TABLE empleados CHANGE columna_edad edad_empleado INT;
```

Eliminar una columna de una tabla:

```
ALTER TABLE empleados DROP COLUMN edad_empleado;
```

Agregar una restricción de clave primaria:

```
ALTER TABLE empleados ADD CONSTRAINT pk_empleados PRIMARY KEY (id_empleado);
```

Delete

El DELETE en SQL és una instrucció que s'utilitza per **eliminar files** d'una taula en una base de dades. Aquesta operació és irreversible, és a dir, un cop eliminada la fila, no es pot recuperar, excepte si es té una còpia de seguretat de la base de dades.

```
DELETE FROM Libros

DELETE FROM Libros WHERE ID_Libro = 3

DELETE FROM Libros WHERE Titulo = "Dune"
```

Update

UPDATE en SQL és una instrucció que s'utilitza per modificar els valors de les files existents en una taula. Aquesta operació permet actualitzar dades específiques basant-se en una condició

Actualizar un campo de todos los registros.

```
UPDATE Libros SET Ejemplares_Disponibles = 5
```

Permite actualizar datos de ciertos regitros

```
UPDATE Libros SET Ejemplares_Disponibles = 5 WHERE ID_Libro = 1
```

Aumentar salario un 10% a ciertos trabajadores

```
UPDATE empleados SET salario = salario * 1.10 WHERE fecha_ingreso < '2015-01-01';</pre>
```

Select

Permite recuperar registros de 1 o más tablas.

1. Select simple: (Devuelve todos los campos de todos los registros)

```
SELECT * FROM Libros
SELECT * FROM Autores
```

2. Select campos: (Devuelve ciertos campos de todos los registros)

```
SELECT Titulo FROM Libros
SELECT Nombre, Apellidos FROM AUTORES
```

Cláusula WHERE

La cláusula WHERE nos permitirá seleccionr solo aquellos registros cuyos campos cunmplan con las condiciones especificadas a continuación.

```
SELECT Nombre, Apellidos, Fecha_Nacimiento
FROM Autores
WHERE Fecha_Nacimiento > '1900-01-01';
```

Cláusula LIKE

1. Select con operador LIKE:

```
SELECT Titulo
FROM Libros
WHERE Titulo LIKE '%Dune%';
```

Operadores lógicos (AND, OR)

Los operadores lógicos en SQL se utilizan para combinar o modificar **condiciones** en una consulta, lo que permite realizar **filtrados** más complejos en las bases de datos. Estos operadores son fundamentales cuando se quiere hacer consultas que dependan de múltiples condiciones.

El operador AND se usa para combinar dos o más condiciones en una consulta. Devuelve true solo si todas las condiciones son verdaderas. 6 o más ejemplares y publicados a partir de 1951 (incluído)

```
SELECT Titulo, Ejemplares_Disponibles, Año_Publicacion
FROM Libros
WHERE Ejemplares_Disponibles > 5 AND Año_Publicacion > 1950;
```

Operador OR

El operador OR se usa para combinar dos o más condiciones. Devuelve true si al menos una de las condiciones es verdadera. Sintaxis:

```
SELECT * FROM empleados
WHERE edad > 30 OR salario > 2500;
```

Operador LIKE

El operador LIKE se utiliza para buscar un patrón dentro de una columna, especialmente con cadenas de texto. Usa los caracteres especiales % (cualquier secuencia de caracteres) y _ (un solo carácter).

Título que comienza por D o con 7 o más ejemplares disponibles.

```
SELECT Titulo, Ejemplares_Disponibles
FROM Libros
WHERE Titulo LIKE 'D%' OR Ejemplares_Disponibles > 6;
```

7. Select con ORDER BY (ASC por defecto, DESC opcional)

```
SELECT Titulo, Ejemplares_Disponibles
FROM Libros
ORDER BY Titulo
```

8. Select con LIMIT

```
SELECT Titulo, Ejemplares_Disponibles
FROM Libros
LIMIT 3;
```

9. Select con COUNT

```
SELECT COUNT(*) AS Total_titulos
FROM Libros
```

Select con SUM

```
SELECT SUM(Ejemplares_Disponibles) AS Total_libros FROM Libros
```

La consulta SQL suma tots els valors de la columna **Ejemplares_Disponibles** de la taula **Libros** i mostra el resultat total amb el nom d'Total_libros.

Per exemple, si la taula Libros té tres llibres amb 3, 5 i 2 exemplars disponibles, el resultat de la consulta serà:

```
Total_libros
-----10
```

Select con COUNT

Així, la consulta retorna el nombre total de títols disponibles (llibres diferents)

```
SELECT COUNT(*) AS Total_titulos FROM Libros
```

Select con COUNT y SUM

Així, la consulta retorna el nombre total d'exemplars disponibles de tots els llibres combinats.

```
SELECT COUNT(*) AS Total_titulos, SUM(Ejemplares_Disponibles) AS Total_libros FROM Libros
```

Resum:

Aquesta consulta retorna dues coses:

- Total_titulos: El nombre total de títols (llibres) que hi ha a la taula Libros. S'obté mitjançant la funció COUNT(*).
- Total_libros: El nombre total d'exemplars disponibles de tots els llibres combinats. Es calcula amb la funció SUM(Ejemplares_Disponibles).

Exemple:

Imagina que tens la següent taula Libros:

Título Ejemplares_Disponibles

Título	Ejemplares_Disponibles
Llibre A	3
Llibre B	5
Llibre C	2

El resultat de la consulta serà:

Total_titulos	Total_libros		
3	10		

JOIN

Un JOIN en SQL és una operació que permet combinar dades de **dues o més taules** en una consulta, basantse en una columna comuna entre elles. Això és útil quan les dades estan distribuïdes en diverses taules relacionades, i vols obtenir informació combinada.

Selección de tablas

Al querer información de libros con sus autores, por fuerza debremos hacer referencia a las tres tablas, incluída Libro_autor, pues es la que relaciona a las otras dos.

```
SELECT *
FROM Libros
JOIN Libro_Autor
JOIN Autores
```

Select todos con todos

Seleccionamos únicamente los campos que nos interesan.

```
SELECT L.ID_Libro, L.Titulo, LA.ID_Libro, LA.ID_Autor, A.ID_Autor, A.Nombre FROM Libros L
JOIN Libro_Autor
JOIN Autores A
```

Select filtrado

Ahora impondremos con las clausulas ON las condiciones para filtrar únicamente las filas que cumplan las condiciones.

```
SELECT L.ID_Libro, L.Titulo, LA.ID_Libro, LA.ID_Autor, A.ID_Autor, A.Nombre FROM Libros L

JOIN Libro_Autor LA ON L.ID_Libro = LA.ID_libro

JOIN Autores A ON LA.ID_Autor = A.ID_Autor
```

Select con campos y Orden

Finalmente seleccionamos solo los campos que queremos mostrar, y ordenamos por título en orden alfabético ascendente.

```
SELECT L.Titulo, A.Nombre, A.Apellidos

FROM Libros L

JOIN Libro_Autor LA ON L.ID_Libro = LA.ID_Libro

JOIN Autores A ON LA.ID_Autor = A.ID_Autor

ORDER BY L.Titulo;
```

Tabla Libros

ID_Libro	Título	ISBN	Editorial	Año_Publicacion	Ejemplares_Disponibles
1	Dune	9780441013593	Chilton Books	1965	5
2	El Hobbit	9780618968633	Allen & Unwin	1937	3
3	Fundación	9780553293357	Gnome Press	1951	7
4	Canción de Hielo y Fuego	9780553103540	Bantam Books	1996	4
5	El Juego de Ender	9780812550702	Tor Books	1985	6
6	El Señor de los Anillos: La Comunidad del Anillo	9780261103573	George Allen & Unwin	1954	5
			13 / 19		

ID_Libro	Título	ISBN	Editorial	Año_Publicacion	Ejemplares_Disponibles
7	1984	9780451524935	Secker & Warburg	1949	5
8	Fahrenheit 451	9781451673319	Ballantine Books	1953	5
9	El Mesías de Dune	9780441172719	Chilton Books	1969	7
10	Tormenta de Espadas	9780553106633	Bantam Books	2000	4

Tabla Autores

ID_Autor	Nombre	Apellidos	Fecha_Nacimiento	Fecha_Fallecimiento	Nacionalidad
1	Frank	Herbert	1920-10-08	1986-02-11	Estadounidense
2	J.R.R.	Tolkien	1892-01-03	1973-09-02	Británica
3	Isaac	Asimov	1920-01-02	1992-04-06	Estadounidense
4	George R.R.	Martin	1948-09-20	-	Estadounidense
5	Orson	Scott Card	1951-08-24	-	Estadounidense
6	George	Orwell	1903-06-25	1950-01-21	Británica
7	Ray	Bradbury	1920-08-22	2012-06-05	Estadounidense

Tabla Libro_Autor

ID_Libro	ID_Autor
1	1
2	2
3	3
4	4
5	5
6	2
7	6
8	7
9	1

ID_Libro	ID_Autor
10	4

Programación Python

Prueba insertar Libros

```
import sqlite3

conexion = sqlite3.connect("biblioteca.db")
cursor = conexion.cursor()

nombre = input("Titulo")
ISBN = input("ISBN")
editorial = input("Editorial")
año = input("año publicacion")
ejemplares_disponibles = int(input("ejemplares"))

sql = "INSERT INTO Libros (Titulo, ISBN, Editorial, Año_publicación, Ejemplares_disponibles) VALUES (?,?,?,?)"
cursor.execute(sql, (nombre, ISBN, editorial, año, ejemplares_disponibles))

conexion.commit()
conexion.close()

print("El libro se ha insertado correctamente")
```

Gestión de libros

```
import sqlite3

# Función para conectarse a la base de datos SQLite
def get_db_connection():
    conn = sqlite3.connect('prueba.db') # Archivo de base de datos
    conn.row_factory = sqlite3.Row # Permite acceder a las columnas por nombre
    return conn
```

Función para mostrar los libros existentes

```
def mostrar_libros():
    conn = get_db_connection()
    libros = conn.execute('SELECT * FROM Libros').fetchall()
    conn.close()

    print("\nLista de Libros:")
    print("-----")
    for libro in libros:
        print(f"ID: {libro['ID']} | Título: {libro['Titulo']} | ISBN:
    {libro['ISBN']} |
        Editorial: {libro['Editorial']} | Año: {libro['Año_Publicación']} |
        Ejemplares: {libro['Ejemplares_Disponibles']}")
```

Función para agregar un nuevo libro

```
def agregar libro():
   titulo = input("Introduce el título del libro: ")
   isbn = input("Introduce el ISBN del libro: ")
   editorial = input("Introduce la editorial: ")
   while True:
       try:
            año_publicacion = int(input("Introduce el año de publicación: "))
            ejemplares_disponibles = int(input("Introduce la cantidad de
ejemplares disponibles: "))
            break
        except ValueError:
            print("Por favor, introduce valores numéricos válidos.")
   conn = get_db_connection()
   try:
       # Insertar el nuevo libro en la base de datos
        conn.execute("""
            INSERT INTO Libros (Titulo, ISBN, Editorial, Año_Publicación,
Ejemplares Disponibles)
           VALUES (?, ?, ?, ?, ?);
        """, (titulo, isbn, editorial, año_publicacion, ejemplares_disponibles))
        conn.commit()
        print(f"\nLibro '{titulo}' agregado exitosamente.")
   except sqlite3.IntegrityError:
        print(f"\nError: Ya existe un libro con el ISBN '{isbn}'.")
   finally:
        conn.close()
```

Función para eliminar un libro

```
def eliminar_libro():
    mostrar_libros()
    libro_id = input("\nIntroduce el ID del libro que deseas eliminar: ")

conn = get_db_connection()
try:
    conn.execute("DELETE FROM Libros WHERE ID = ?", (libro_id,))
    conn.commit()
    print(f"\nLibro con ID {libro_id} eliminado exitosamente.")
except Exception as e:
    print(f"\nError al eliminar el libro: {e}")
finally:
    conn.close()
```

Función principal

```
def main():
   crear_tabla_libros() # Asegurarse de que la tabla exista
   while True:
        print("\nOpciones:")
        print("1. Mostrar libros")
        print("2. Agregar nuevo libro")
        print("3. Eliminar un libro")
        print("4. Salir")
       # Leer la opción elegida
       opcion = input("Elige una opción (1/2/3/4): ")
       if opcion == '1':
            mostrar libros()
        elif opcion == '2':
            agregar_libro()
        elif opcion == '3':
            eliminar_libro()
        elif opcion == '4':
           print("Saliendo del programa...")
           break
        else:
            print("Opción no válida. Por favor, elige 1, 2, 3 o 4.")
if __name__ == '__main__':
   main()
```

API con Flask

Para hacer que el código de la función mostrar_libros sea accesible a través de una API con Flask, primero necesitamos adaptar esta función para que retorne la lista de libros en formato JSON, que es el formato estándar para las API web. Aquí está cómo puedes hacerlo paso a paso.

Si aún no tienes Flask instalado, puedes hacerlo con el siguiente comando:

```
pip install flask
```

2. Código adaptado con Flask:

Haremos que la consulta SQL devuelva los libros en formato JSON y los exponga mediante una ruta de la API.

```
from flask import Flask, jsonify
import sqlite3 # O usa la biblioteca que prefieras para conectar con tu base de
datos
# Crear la aplicación Flask
app = Flask(__name___)
# Función para conectar a la base de datos (ajústala según tu base de datos)
def get_db_connection():
    conn = sqlite3.connect('tu_base_de_datos.db') # Cambia el nombre de la base
de datos
    conn.row_factory = sqlite3.Row # Esto permite acceder a las columnas por
nombre
    return conn
# Ruta de la API para obtener los libros
@app.route('/api/libros', methods=['GET'])
def get libros():
    conn = get_db_connection()
    libros = conn.execute('SELECT * FROM Libros').fetchall()
    conn.close()
    # Convertir los resultados a formato JSON
    libros list = []
    for libro in libros:
        libros list.append({
            'ID': libro['ID'],
            'Titulo': libro['Titulo'],
            'ISBN': libro['ISBN'],
            'Editorial': libro['Editorial'],
            'Año_Publicación': libro['Año_Publicación'],
            'Ejemplares_Disponibles': libro['Ejemplares_Disponibles']
        })
    return jsonify(libros_list)
# Ruta de la API para insertar un nuevo libro
```

```
@app.route('/api/libros', methods=['POST'])
def insertar_libro():
    # Obtener los datos del libro desde la solicitud JSON
    nuevo_libro = request.get_json()
    # Verificar que los campos necesarios estén presentes
    if not all(key in nuevo_libro for key in ('Titulo', 'ISBN', 'Editorial',
'Año_Publicación', 'Ejemplares_Disponibles')):
        return jsonify({'error': 'Faltan campos requeridos'}), 400 # Retorna un
error si falta algún campo
    # Insertar el nuevo libro en la base de datos
    conn = get_db_connection()
    conn.execute('''
        INSERT INTO Libros (Titulo, ISBN, Editorial, Año_Publicación,
Ejemplares_Disponibles)
       VALUES (?, ?, ?, ?, ?)
    ''', (nuevo_libro['Titulo'], nuevo_libro['ISBN'], nuevo_libro['Editorial'],
          nuevo_libro['Año_Publicación'], nuevo_libro['Ejemplares_Disponibles']))
    conn.commit()
    conn.close()
    return jsonify({'mensaje': 'Libro insertado con éxito'}), 201 # Retorna un
mensaje de éxito
# Ejecutar la aplicación Flask
if __name__ == '__main___':
    app.run(debug=True)
```