```
In [13]:
         # Importing library
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
In [14]:
         # Importing training set
         dataset train = pd.read csv('Google Stock Price Train.csv')
         training set = dataset train.iloc[:, 1:2].values
In [15]:
         # feature scaling
         from sklearn.preprocessing import MinMaxScaler
         sc = MinMaxScaler(feature range = (0,1))
         training set scaled = sc.fit transform(training set)
In [16]:
         # Creating a data scructure with 60 timesteps and 1 output
         X train = []
         Y train = []
         for i in range (60, 1258):
             X train.append(training set scaled[i-60:i, 0])
             Y_train.append(training_set_scaled[i, 0])
         X_train, Y_train = np.array(X_train), np.array(Y_train)
         # Reshaping
         X train = np.reshape(X train, (X train.shape[0], X train.shape[1], 1))
In [17]:
         # Importing KERAS
         from keras.models import Sequential
         from keras.layers import Dense
         from keras.layers import LSTM
         from keras.layers import Dropout
In [18]:
         # Initializing the RNN
         regressor = Sequential()
         # Adding the first LSTM layer and some dropout regularization
         regressor.add(LSTM(units=50, return sequences=True, input shape=(X train.sl
         regressor.add(Dropout(0.2))
In [19]:
         # Adding second LSTM layer and some another dropout regularization
         regressor.add(LSTM(units=50, return sequences=True))
         regressor.add(Dropout(0.2))
In [20]:
         # Adding third LSTM layer and some another dropout regularization
         regressor.add(LSTM(units=50, return sequences=True))
         regressor.add(Dropout(0.2))
In [21]:
         # Adding fourth LSTM layer and some another dropout regularization
         regressor.add(LSTM(units=50))
         regressor.add(Dropout(0.2))
```

```
In [22]:
       # Adding output layer
       regressor.add(Dense(units=1))
In [23]:
       # Compiling
       regressor.compile(optimizer='adam', loss='mean squared error')
In [24]:
       # fitting the RNN to training set
       regressor.fit(X train, Y train, epochs=100, batch size=32)
      Epoch 1/100
      Epoch 2/100
      38/38 [=============== ] - 5s 135ms/step - loss: 0.0057
      Epoch 3/100
      38/38 [============== ] - 6s 148ms/step - loss: 0.0056
      Epoch 4/100
      38/38 [============ ] - 6s 150ms/step - loss: 0.0056
      Epoch 5/100
      38/38 [============== ] - 5s 130ms/step - loss: 0.0060
      Epoch 6/100
      38/38 [============ ] - 6s 151ms/step - loss: 0.0052
      Epoch 7/100
      38/38 [============= ] - 6s 150ms/step - loss: 0.0050
      Epoch 8/100
      38/38 [============= ] - 5s 134ms/step - loss: 0.0044
      Epoch 9/100
      38/38 [============ ] - 6s 150ms/step - loss: 0.0047
      Epoch 10/100
      38/38 [============ ] - 6s 145ms/step - loss: 0.0047
      Epoch 11/100
      38/38 [============= ] - 5s 135ms/step - loss: 0.0045
      Epoch 12/100
      38/38 [============ ] - 6s 153ms/step - loss: 0.0041
      Epoch 13/100
      Epoch 14/100
      38/38 [============== ] - 5s 135ms/step - loss: 0.0042
      Epoch 15/100
      38/38 [============= ] - 6s 150ms/step - loss: 0.0039
      Epoch 16/100
      38/38 [============ ] - 6s 150ms/step - loss: 0.0041
      Epoch 17/100
      38/38 [============= ] - 5s 128ms/step - loss: 0.0040
      Epoch 18/100
      38/38 [============== ] - 6s 151ms/step - loss: 0.0036
      Epoch 19/100
      38/38 [============== ] - 6s 150ms/step - loss: 0.0037
      Epoch 20/100
      Epoch 21/100
      38/38 [============= ] - 5s 143ms/step - loss: 0.0036
      Epoch 22/100
      38/38 [================ ] - 6s 151ms/step - loss: 0.0034
      Epoch 23/100
      38/38 [=============== ] - 5s 136ms/step - loss: 0.0036
      Epoch 24/100
      38/38 [=============== ] - 6s 150ms/step - loss: 0.0033
      Epoch 25/100
      38/38 [============= ] - 6s 151ms/step - loss: 0.0031
```

	26/100						
	[======] 27/100	-	5s	127ms/step	-	loss:	0.0032
	[==========]	_	6s	151ms/step	_	loss:	0.0032
Epoch	28/100						
	[=========]	-	6s	151ms/step	-	loss:	0.0029
_	29/100 [======]	_	5.s	138ms/step	_	loss:	0.0033
	30/100			rooms, soop		1000.	
		-	6s	150ms/step	-	loss:	0.0034
-	31/100 [========]	_	50	1/1mg/gtan	_	1000.	0 0028
	32/100		JS	141ms/scep		1035.	0.0020
	[=====]	-	5s	139ms/step	-	loss:	0.0030
-	33/100 [========]		6.0	1 E Oma /a+an		1000.	0 0020
	34/100	_	08	130ms/scep	_	1088:	0.0030
	[=====]	-	5s	138ms/step	-	loss:	0.0031
	35/100		г.	140/-		1	0 0000
	[======] 36/100	_)S	14Ums/step	_	loss:	0.0028
	[======================================	-	6s	149ms/step	_	loss:	0.0028
-	37/100		_	100 /			
	[======] 38/100	_	5s	136ms/step	_	loss:	0.0026
-	[======]	_	5s	143ms/step	_	loss:	0.0028
-	39/100						
	[======] 40/100	-	6s	149ms/step	-	loss:	0.0025
-	[=========]	_	5s	135ms/step	_	loss:	0.0027
Epoch	41/100						
	[======] 42/100	-	6s	149ms/step	-	loss:	0.0028
-	42/100 [========]	_	6s	150ms/step	_	loss:	0.0026
Epoch	43/100						
	[======] 44/100	-	5s	128ms/step	-	loss:	0.0025
-	[==========]	_	6s	149ms/step	_	loss:	0.0026
Epoch	45/100						
	[=========]	-	6s	151ms/step	-	loss:	0.0023
	46/100 [======]	_	5.s	133ms/step	_	loss:	0.0024
Epoch	47/100						
	[======]	-	6s	152ms/step	-	loss:	0.0024
-	48/100 [======]	_	65	150ms/sten	_	1088.	0 0024
	49/100		0.5	100mb/bccp		1000.	0.0021
	[======]	-	5s	136ms/step	-	loss:	0.0023
-	50/100	_	50	1/2mg/stan	_	1000.	0 0026
	51/100		55	1421113/3000		1055.	0.0020
	[]	-	5s	138ms/step	-	loss:	0.0025
-	52/100 [========]		5.0	126mg/g+op		1000.	0 0022
	53/100		JB	100ms/step	_	1000;	0.0023
38/38	[=====]	_	5s	132ms/step	_	loss:	0.0020
-	54/100 [========]		5~	130ma/a+		1000	0 0000
	55/100	_	JS	TOPHIS/SLEP	_	TO22;	0.0022
-	[=====]	-	5s	132ms/step	-	loss:	0.0021
	56/100		6 -	150m = / - 1 -		10	0 0000
	[======] 57/100	_	ъS	TOUMS/Step	_	TOSS:	0.0026
1							

```
38/38 [============== ] - 6s 151ms/step - loss: 0.0020
Epoch 58/100
38/38 [=============== ] - 5s 131ms/step - loss: 0.0021
Epoch 59/100
38/38 [============= ] - 6s 151ms/step - loss: 0.0021
Epoch 60/100
38/38 [=============== ] - 6s 150ms/step - loss: 0.0019
Epoch 61/100
38/38 [============= ] - 5s 128ms/step - loss: 0.0023
Epoch 62/100
38/38 [=============== ] - 6s 151ms/step - loss: 0.0021
Epoch 63/100
38/38 [============== ] - 6s 148ms/step - loss: 0.0019
Epoch 64/100
38/38 [=============== ] - 5s 130ms/step - loss: 0.0021
Epoch 65/100
38/38 [============ ] - 6s 145ms/step - loss: 0.0020
Epoch 66/100
38/38 [=============== ] - 6s 151ms/step - loss: 0.0018
Epoch 67/100
38/38 [=============== ] - 5s 132ms/step - loss: 0.0018
Epoch 68/100
38/38 [=============== ] - 6s 150ms/step - loss: 0.0019
Epoch 69/100
38/38 [============ ] - 6s 152ms/step - loss: 0.0020
Epoch 70/100
Epoch 71/100
38/38 [=============== ] - 6s 151ms/step - loss: 0.0019
Epoch 72/100
38/38 [============== ] - 6s 150ms/step - loss: 0.0017
Epoch 73/100
38/38 [=============== ] - 5s 132ms/step - loss: 0.0016
Epoch 74/100
38/38 [============ ] - 6s 149ms/step - loss: 0.0017
Epoch 75/100
38/38 [============ ] - 6s 150ms/step - loss: 0.0017
Epoch 76/100
38/38 [=============== ] - 5s 128ms/step - loss: 0.0016
Epoch 77/100
38/38 [=============== ] - 6s 149ms/step - loss: 0.0016
Epoch 78/100
38/38 [============ ] - 6s 151ms/step - loss: 0.0016
Epoch 79/100
38/38 [============== ] - 5s 131ms/step - loss: 0.0015
Epoch 80/100
38/38 [=============== ] - 6s 150ms/step - loss: 0.0016
Epoch 81/100
38/38 [============== ] - 6s 148ms/step - loss: 0.0015
Epoch 82/100
38/38 [=============== ] - 5s 133ms/step - loss: 0.0014
Epoch 83/100
38/38 [============== ] - 6s 154ms/step - loss: 0.0015
Epoch 84/100
38/38 [=============== ] - 5s 144ms/step - loss: 0.0016
Epoch 85/100
38/38 [=============== ] - 5s 138ms/step - loss: 0.0015
Epoch 86/100
38/38 [=============== ] - 6s 150ms/step - loss: 0.0015
Epoch 87/100
Epoch 88/100
38/38 [============= ] - 5s 136ms/step - loss: 0.0014
```

```
Epoch 89/100
     38/38 [============= ] - 6s 151ms/step - loss: 0.0015
     Epoch 90/100
     38/38 [============== ] - 5s 136ms/step - loss: 0.0017
     Epoch 91/100
     38/38 [=============== ] - 5s 139ms/step - loss: 0.0015
     38/38 [============= ] - 6s 150ms/step - loss: 0.0016
     Epoch 93/100
     Epoch 94/100
     38/38 [============== ] - 6s 146ms/step - loss: 0.0013
     Epoch 95/100
     38/38 [=============== ] - 6s 150ms/step - loss: 0.0016
     Epoch 96/100
     38/38 [============= ] - 5s 137ms/step - loss: 0.0015
     Epoch 97/100
     Epoch 98/100
     Epoch 99/100
     38/38 [=============== ] - 5s 132ms/step - loss: 0.0016
     Epoch 100/100
     <keras.callbacks.History at 0x1fbb3ee5340>
Out[24]:
In [25]:
      regressor.save('models/Epoch100')
```

WARNING:absl:Found untraced functions such as lstm_cell_4_layer_call_fn, ls tm_cell_4_layer_call_and_return_conditional_losses, lstm_cell_5_layer_call_fn, lstm_cell_5_layer_call_and_return_conditional_losses, lstm_cell_6_layer_call_fn while saving (showing 5 of 8). These functions will not be directly callable after loading.

INFO:tensorflow:Assets written to: models/Epoch100\assets

INFO:tensorflow:Assets written to: models/Epoch100\assets

WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x000001FBA6BD2160> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when lo ading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.

WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x000001FBB50DD3A0> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when lo ading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.

WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x000001FBB515F310> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when lo ading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.

WARNING:absl:<keras.layers.recurrent.LSTMCell object at 0x000001FBB5183CD0> has the same name 'LSTMCell' as a built-in Keras object. Consider renaming <class 'keras.layers.recurrent.LSTMCell'> to avoid naming conflicts when lo ading with `tf.keras.models.load_model`. If renaming is not possible, pass the object in the `custom_objects` parameter of the load function.

```
In [26]:  # Importing testing set
    dataset_test = pd.read_csv('Google_Stock_Price_Test.csv')
    real_stock_set = dataset_test.iloc[:, 1:2].values
```

```
In [27]: # Getting the predicted stock
   dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), ax
   inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
   inputs = inputs.reshape(-1, 1)
   inputs = sc.transform(inputs)

X_test = []
   for i in range(60, 80):
        X_test.append(inputs[i-60:i, 0])
   X_test = np.array(X_test)
        X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

predicted_stock_set = regressor.predict(X_test)
        predicted_stock_set = sc.inverse_transform(predicted_stock_set)
```

In [28]: # visualizing plt.plot(real_stock_set, color='red', label='Real Google Stock Price') plt.plot(predicted_stock_set, color='blue', label='Predicted Google Stock E plt.title('Google Stock LSTM Prediction') plt.xlabel('Time') plt.ylabel('Price') plt.legend() plt.show()


```
In [ ]:
```