E-Companion for "Unified framework for choice-based facility location problem"

EC.1 Classification and acronym of choice-based facility location problems

Figure EC.1 gives the summary of classification and acronym of the CBFL literature where only one company is involved in the decision making process.

Figure EC.1 Classification and acronym of choice-based facility location problems.

The literature is first classified according to the demand type and then categorized by the choice model employed to characterize customer choices. Then, the acronyms of different CBFL problems are derived by combining the demand type (with 'E' denoting *essential demand* and 'U' denoting *unessential demand*) and the choice model. For example, EBCR-CBFL refers to the CFLB problem under essential demand and binary choice rule.

EC.2 Proofs

EC.2.1 Lemma 1

We prove the validity of the path strengthening inequality by induction. (i) If facility σ_1 is open, then we have $\sum_{j \in \rho_i \setminus \{\sigma_1\}} y_{ij} = 0$ since facility σ_1 dominates all facilities in $\rho_i \setminus \{\sigma_1\}$. Therefore, $\sum_{j \in \rho_i} y_{ij} = y_{i\sigma_1} \le 1$. (ii) If facility σ_1 is not open and facility σ_2 is open, then we have $\sum_{j \in \rho_i \setminus \{\sigma_2\}} y_{ij} = 0$ since $x_{\sigma_1} = 0$ and facility σ_2 dominates all facilities in $\rho_i \setminus \{\sigma_1, \sigma_2\}$. Therefore, $\sum_{j \in \rho_i} y_{ij} = y_{i\sigma_2} \le 1$. (iii) If facility σ_1 and facility σ_2 are not open and facility σ_3 is open, then $\sum_{j \in \rho_i \setminus \{\sigma_3\}} y_{ij} = 0$ since $x_{\sigma_1} = x_{\sigma_2} = 0$ and σ_3 dominates all facilities in $\rho_i \setminus \{\sigma_1, \sigma_2, \sigma_3\}$. Therefore, $\sum_{j \in \rho_i} y_{ij} = y_{i\sigma_3} \le 1$. Continuing this procedure leads us to $\sum_{j \in \rho_i} y_{ij} \le 1$. Therefore, the path strengthening inequality is valid.

Moreover, σ_1 dominates $|\rho_i| - 1$ facilities; σ_2 dominates $|\rho_i| - 2$ facilities; σ_3 dominates $|\rho_i| - 3$ facilities; and so on. In total, $\sum_{i \in \rho_i} y_{ij} \le 1$ imposes $|\rho_i| (|\rho_i| - 1)/2$ pariwise dominance.

EC.2.2 Lemma 2

For the ease of exposition, we drop subscript i. For $j \in \mathbf{J}^{11}$, sort the preference u_i in nonincreasing order,

$$u_{[1]} \geq u_{[2]} \geq \cdots \geq u_{[|\mathbf{J}^{11}|]}$$

Let set $\Pi_{[j]}$ be the set of facilities in \mathbf{J}^{10} that are dominated by the facility with rank j , i.e., $\Pi_{[j]}=$ $\Delta_{i[j]} \cap \mathbf{J}^{10}$. For two facilities with ranks j and k, if j < k, then $\Pi_{[j]} \supseteq \Pi_{[k]}$ (which leverages Assumption 1). As a result, we have

$$\mathbf{J}^{10}\supseteq\Pi_{[1]}\supseteq\Pi_{[2]}\supseteq\cdots\supseteq\Pi_{[|\mathbf{J}^{11}|]}$$

Now, suppose that $\Pi_{[1]} \subsetneq \boldsymbol{J}^{10}$ (i.e., $\Pi_{[1]}$ is a strict subset of \boldsymbol{J}^{10}). Then, at least one facility from \boldsymbol{J}^{10} is not dominated by any open facility and thus should appear in the consideration set. This, however, contradicts to the definition that all facilities in J^{10} are not in the consideration set. Therefore, we must have $\Pi_{[1]} = \mathbf{J}^{10}$.

EC.2.3 Lemma 3: Recasting the KKT system

To begin with, note that if facility j is not open, then we safely have $\mu_{ij} = 0$ since Q_{ij} acts like a "Big-M", which presents the constraint from being active when $\bar{x}_i = 0$ (i.e., $j \in \bar{\mathbf{J}}_i^{00}$). Furthermore, for $j \in \bar{\mathbf{J}}_i^{10}$, facility j is not in the consideration set and thus must be dominated by at least one facility in $\bar{\mathbf{J}}_i^{11}$. Let m be a facility in $\bar{\mathbf{J}}_i^{11}$ that dominates facility j, i.e., $m_i > j_i$. We can also set μ_{ij} to 0. This is because (21c) becomes $\sum_{k \in \mathcal{N}} \delta_{ijk} y_{ik} \leq 0$. Facilities dominate by facility j are also dominated by facility m due to the transitivity of dominance relation. As a result, perturbing the right hand side of (21c) will not change the solution of y since the existence of facility m still enforce $\sum_{k \in \mathcal{N}} \delta_{ijk} y_{ik} = 0$. Therefore, we set $\mu_{ij} = 0, \forall j \in \mathbf{\bar{J}}_i^{00} \cup \mathbf{\bar{J}}_i^{10}.$

We then discuss these three scenarios in detail.

Scenario 1: $j \in \bar{\mathbf{J}}_i^{11}$. Since $\bar{x}_j = \bar{y}_{ij} = 1$, $\gamma_{ij} = 0$ due to (26e). Facility j is in the consideration set and thus must be not dominated by any open facility; therefore, $\sum_{k \in \mathcal{N}} \delta_{ikj} \mu_{ik} = \sum_{k \in \bar{\mathbf{J}}^{11}} \delta_{ikj} \mu_{ik} = 0$, giving rise to following result

$$\lambda_{ij} = \frac{\partial R_i(\bar{y})}{\partial y_{ij}} - \alpha_{ij} v_i \quad \forall j \in \bar{\mathbf{J}}_i^{11}$$
 (EC.1a)

Note that $\lambda_{ij} \geq 0$. We must have

$$\frac{\partial R_i(\bar{y})}{\partial y_{ij}} \ge \alpha_{ij} \nu_i \quad \forall j \in \bar{\mathbf{J}}_i^{11}$$
 (EC.2a)

If
$$\alpha_{ij} = 0$$
, then the above condition holds naturally. Therefore, we can set v_i as
$$v_i = \mathbb{I}_{\left\{\sum_{j \in \mathcal{N}} \alpha_{ij} \bar{y}_{ij} = 1\right\}} \cdot \min_{j \in \mathbf{J}_i^{11}: \alpha_{ij} = 1} \frac{\partial R_i(\bar{y})}{\partial y_{ij}}$$
(EC.3)

where the indicator function $\mathbb{I}_{\{\cdot\}}$ is introduced to enforce the complementary condition (26d).

Scenario 2: $j \in \bar{\mathbf{J}}_i^{10}$. Since $\bar{x}_i > \bar{y}_{ij}$, $\lambda_{ij} = 0$ due to (26b). Facility j is dominated by at least one opened facility. As a result, we have

$$\frac{\partial R_i(\bar{y})}{\partial y_{ij}} - \sum_{k \in \mathbf{J}_i^{11}} \delta_{ikj} \mu_{ik} - \alpha_{ij} v_i + \gamma_{ij} = 0 \quad \forall j \in \mathbf{\bar{J}}_i^{10}$$
 (EC.4a)

Rearranging the equation leads us to

$$\sum_{k \in \mathbf{J}_{i}^{11}} \delta_{ikj} \mu_{ik} = \frac{\partial R_{i}(\bar{y})}{\partial y_{ij}} - \alpha_{ij} \nu_{i} + \gamma_{ij} \ge \max \left\{ 0, \frac{\partial R_{i}(\bar{y})}{\partial y_{ij}} - \alpha_{ij} \nu_{i} \right\} \quad \forall j \in \mathbf{\bar{J}}_{i}^{10}$$
 (EC.5)

which can be further restated as

$$\sum_{k \in \mathbf{J}_{i}^{11}} \delta_{ikj} \mu_{ik} \ge \left[\frac{\partial R_{i}(\bar{y})}{\partial y_{ij}} - \alpha_{ij} v_{i} \right]_{+} \quad \forall j \in \mathbf{\bar{J}}_{i}^{10}$$
(EC.6)

where $[z] = \max\{0, z\}$.

Scenario 3: $j \in \bar{\mathbf{J}}_i^{00}$. Since $\bar{x}_j = \bar{y}_{ij} = 0$, we have $\mu_{ij} = 0$ and

$$\frac{\partial \vec{R}_i(\bar{y})}{\partial y_{ij}} - \lambda_{ij} - \sum_{k \in \bar{\mathbf{J}}^{1}} \delta_{ikj} \mu_{ik} - \alpha_{ij} \nu_i + \gamma_{ij} = 0 \quad \forall j \in \bar{\mathbf{J}}_i^{00}$$
 (EC.7a)

We can set

$$\lambda_{ij} = \left[\frac{\partial R_i(\bar{y})}{\partial y_{ij}} - \sum_{k \in \bar{\mathbf{J}}_i^{11}} \delta_{ikj} \mu_{ik} - \alpha_{ij} \nu_i \right]_+ \quad \forall j \in \bar{\mathbf{J}}_i^{00}$$
 (EC.8)

Summarizing the above results give rise to L

Corollary 3 EC.2.4

Based on the definition of
$$m_i$$
, we have $m_i \succ \bar{\mathbf{J}}_i^{10}$, or equivalently, $\delta_{i,m_i,j} = 1, \forall j \in \bar{\mathbf{J}}_i^{10}$. We rewrite (28) as
$$\mu_{im_i} + \sum_{k \in \bar{\mathbf{J}}_i^{11} \setminus \{m_i\}} \delta_{ikj} \mu_{ik} \ge \left[\frac{\partial R_i(\bar{\mathbf{y}})}{\partial y_{ij}} - \alpha_{ij} v_i \right]_+ \quad \forall j \in \bar{\mathbf{J}}_i^{10}$$
 (EC.9)

To have a sparse μ , we set $\mu_{ik} = 0, \forall k \in \bar{\mathbf{J}}_i^{11} \setminus \{m_i\}$, leading to (30).

EC.3 Benchmark approaches and reformulation models

KKT-based MILP reformulation technique

Here, we will show how leverage the KKT-based reformulation technique to obtain a MILP for the mixed-integer bilevel linear program relevant to CBFL problem characterizing by binary choice rule and essential demand in the manuscript Section 3.1. Let g_i and h_{ij} be the dual variables associated with Constraints (7d) and (7e). We have the KKT conditions for the lower-level problem as

$$\sum_{i \in \mathcal{N}} y_{ij} \le 1 \qquad \forall i \in \mathcal{M}$$
 (EC.10a)

$$y_{ii} \le x_i$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.10b)

$$y_{ij} \ge 0$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.10c)

$$h_{ij} \ge 0$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.10d)

$$g_i + h_{ij} - u_{ij} \ge 0$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.10e)

$$y_{ij}(g_i + h_{ij} - u_{ij}) = 0 \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
 (EC.10f)

$$h_{ij}(x_j - y_{ij}) = 0$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.10g)

(EC.10f) and (EC.10g) are bilinear but can be exactly linearized as

$$g_i + h_{ij} - u_{ij} \le M_{ij}^1 (1 - y_{ij}) \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
 (EC.11a)

$$h_{ij} \le M_{ij}^2(x_j - y_{ij})$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.11b)

where M_{ij}^1 and M_{ij}^1 are sufficiently large numbers. To achieve tight relaxation bounds, they can be set as $M_{ij}^1 = \max_{j \in \mathcal{N}} u_{ij}$ and $M_{ij}^2 = u_{ij}$. We then replace the lower-level problem by the linear constraints: (EC.10a)-(EC.11e), (EC.11a)-(EC.11b). In our experiment, we found that restricting y_{ij} to binary variable can enhance the numerical stability and efficiency of the approach.

MILP formulation for CBFL problem employing Pareto-Huff model with EC.3.2 unessential demand

This appendix shows a MILP reformulation approach for CBFL problem employing Pareto-Huff model with unessential demand. leveraging the techniques presented by Fernández et al. (2021). We first define set \mathbf{D}_{ij} as the set of facilities that dominates facility j for customer i, that is,

$$\mathbf{D}_{ij} = \{k \in \mathcal{N} \mid A_k \ge A_j \text{ and } d_{ik} \le d_{ij} \text{ and } u_{ik} > u_{ij}\}$$
 (EC.12)

Now, $y_{ij} = 1$ if and only if $x_i = 1$ (facility j is open) and $x_k = 0, \forall k \in \mathbf{D}_{ij}$ (all facilities that dominate facility j are not open). This logic can be expressed as the following constraints

$$y_{ij} \le x_j$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.13a)

$$\sum_{k \in D_{ij}} x_k + y_{ij} \ge x_j \qquad \forall i \in \mathcal{M}, j \in \mathcal{N}$$

$$\sum_{k \in D_{ij}} x_k \le |\mathbf{D}_{ij}| \cdot (1 - y_{ij}) \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
(EC.13b)
(EC.13c)

$$\sum_{i \in D_{ij}} x_k \le |\mathbf{D}_{ij}| \cdot (1 - y_{ij}) \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
 (EC.13c)

Therefore, this problem can be restated as

can be restated as

$$\max \sum_{i \in \mathcal{M}} b_i \frac{\sum_{j \in \mathcal{N}} u_{ij} y_{ij}}{\sum_{j \in \mathcal{N}} u_{ij} y_{ij} + \tilde{u}_i}$$

st.
$$\sum_{j \in \mathcal{N}} x_j = p$$
(EC.14b)
$$y_{ij} \leq x_j \qquad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
(EC.14c)
$$\sum_{k \in D_{ij}} x_k + y_{ij} \geq x_j \qquad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
(EC.14d)
$$\sum_{k \in D_{ij}} x_k \leq |\mathbf{D}_{ij}| \cdot (1 - y_{ij}) \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
(EC.14e)
$$x_j \in \{0, 1\} \qquad \forall j \in \mathcal{N}$$
(EC.14f)

st.
$$\sum_{i \in \mathcal{N}} x_j = p$$
 (EC.14b)

$$y_{ij} \le x_i$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.14c)

$$\sum_{k \in D_{i:}} x_k + y_{ij} \ge x_j \qquad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
 (EC.14d)

$$\sum_{k \in D_{ij}} x_k \le |\mathbf{D}_{ij}| \cdot (1 - y_{ij}) \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
 (EC.14e)

$$x_j \in \{0, 1\} \qquad \forall j \in \mathcal{N} \tag{EC.14f}$$

$$y_{ij} \in \{0,1\}$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.14g)

Note that in this model, y_{ij} cannot be relaxed to $y_{ij} \ge 0$.

Now, we linearize the objective function. Let $z_i = 1/(\sum_{j \in \mathcal{N}} u_{ij} y_{ij} + \tilde{u}_i)$. We have equation $\sum_{j\in\mathscr{N}}u_{ij}y_{ij}z_i+\tilde{u}_iz_i=1$, and the objective function becomes $\sum_{i\in\mathscr{M}}\sum_{j\in\mathscr{N}}b_iu_{ij}y_{ij}z_i$ with a bilinear term $y_{ij}z_i$.

To proceed, define an additional variable t_{ij} such that $t_{ij} = y_{ij}z_i$. Note that, a valid upper bound of z_i is $1/\tilde{u}_i$, we can thus rewrite $t_{ij} = y_{ij}z_i$ as

$$0 \le t_{ij} \le y_{ij}/\tilde{u}_i$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.15a)

$$z_i - (1 - y_{ij})/\tilde{u}_i \le t_{ij} \le z_i \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
 (EC.15b)

which ensure that when $y_{ij} = 0$, we have $t_{ij} = 0$ and that when $y_{ij} = 1$, we have $t_{ij} = z_i$.

Altogether, this problem can be equivalently restated as

$$\max \sum_{i \in \mathcal{M}} \sum_{i \in \mathcal{N}} b_i u_{ij} t_{ij}$$
 (EC.16a)

$$\sum_{j \in \mathcal{N}} u_{ij} t_{ij} + \tilde{u}_i z_i = 1 \qquad \forall i \in \mathcal{M}$$

$$y_{ij} \in \{0, 1\} \qquad \forall i \in \mathcal{M}, j \in \mathcal{N}$$
(EC.16d)

$$y_{ij} \in \{0,1\}$$
 $\forall i \in \mathcal{M}, j \in \mathcal{N}$ (EC.16d)

$$x \in \Omega^p$$
 (EC.16e)

which is a MILP model and is ready to be solved by off-the-shelf solvers. For notational convenience, we use the MILP_F to represent this MILP model in the manuscript.

In fact, the objective function (EC.14a) can be reformulated as a rotated conic inequality, leading to a MICQP formulation (for more details about the reformulation, refer to E-Companion EC.3.3). This MICQP, leveraging the dominance condition (EC.13), is referred to as MICQP_E, and it is used as a benchmark approach in Section 6.3.

General MICQP reformulation for G-CBFL under unessential demand EC.3.3

When demand loss or competition exists, the reward is often modeled as a linear fractional function, which is second-order conic representable. Here, we show that G-CBFL can be reformulated as a mixed-integer conic quadratic program (MICQP), to which effective algorithms are available in modern commercial solvers.

Define variable n_i such that $n_i = \sum_{j \in \mathcal{N}} u_{ij} y_{ij} + \tilde{u}_i$. We can rewrite the objective function as

we then introduce variable
$$q_i$$
 such that $q_i \geq \tilde{u}_i/n_i$ holds. Noting that \tilde{u}_i and n_i are positive by definition

and $0 \le q_i \le 1$, the following quadratic rotated conic inequality arises immediately

$$q_i n_i \ge \tilde{u}_i \quad \forall i \in \mathscr{M}$$
 (EC.18)

Therefore, G-CBFL can be equivalently restated as the following program

$$\max \sum_{i \in \mathcal{U}} b_i (1 - q_i) \tag{EC.19a}$$

$$\max \sum_{i \in \mathcal{M}} b_i (1 - q_i)$$

$$\text{st. } n_i = \sum_{j \in \mathcal{N}} u_{ij} y_{ij} + \tilde{u}_i$$

$$\forall i \in \mathcal{M}$$
(EC.19a)
(EC.19b)

$$q_i n_i \ge \tilde{u}_i$$
 $\forall i \in \mathscr{M}$ (EC.19c)

[MICQP]
$$0 \le q_i \le 1$$
 $\forall i \in \mathcal{M}$ (EC.19d)

$$\sum_{k \in \Delta_{ij}} y_{ik} \le Q_{ij} (1 - x_j) \quad \forall i \in \mathcal{M}, j \in \mathcal{N}$$

$$\sum_{j \in \mathcal{N}} \alpha_{ij} y_i \le \beta_i \qquad \forall i \in \mathcal{M}$$
(EC.19e)
(EC.19f)

$$\sum_{i \in \mathcal{N}} \alpha_{ij} y_i \le \beta_i \qquad \forall i \in \mathcal{M}$$
 (EC.19f)

$$(x,y) \in \Xi \tag{EC.19g}$$

which is a MICQP since, except for the rotated conic inequality, all other constraints and the objective function are linear.

EC.4 Supplementary computational result

EC.4.1 Complete computational results of Rnd-EBCR instances for EBCR-CBFL See Table EC.1.

branch # branch # branch rg[%] rg[%] rg[%] t[s] t[s] t[s] nodes nodes 0.00 0.00 0.00 100 113. 886 36.1 6.1 211 30.3 42.3 0.00 0.00 0.00 0.00 1188 2256 28.6 28.9 26.0 0.00 6.4 6.9 0.00 0.00 0.00 5 7 10 15 20 60 5.6 5.4 5.3 0.00 0.00 0.00 0.00 196 319 124 177 150 0.00 5532 17549 64.7 0.00 0.00 0.00 0.00 0.00 60.3 49.1 43.7 0.00 168.0 473.6 2891 0.00 795 0.00 445.2 69.4 0.00 43.2 40.7 0.00 54 38 0.00 1586 11282 14912 97.6 90.8 0.00 0.00 375 441 23.0 21.9 0.00 1616 5476 37068 8285 2847 72.4 98.1 70.9 0.00 0.00 0.00 1606 0.00 0.00 0.00 0.00 1192 0.00 540 0.00 0.00 7737 12789 3488.9 0.00171.0 0.00 305 0.00 902 0.40 0.23 0.12 0.23 0.00 231.5 409.2 0.00 0.00 7200.0 106.0 99.0 264.5 7200.0 7200.0 16829 0.00 0.00 0.00 0.00 10 15 20 19640 0.00 10322 18304 0.00 7200.0 1874 6794.6 188.9 74.8 7993 8453 4658 400 289 829 3 7 10 15 20 7200.0 7200.0 0.34 418.2 1117.5 0.00 0.00 129.60.76 0.39 7200.0 3189 1985.5 0.00 8377 706.7 0.00 3083.6

Table EC.1 Complete computational results of Rnd-EBCR instances.

EC.4.2 Complete computational results of PMPUP instances

PMPUP is a standard testbed for p-Median Problem with Users Preferences from benchmark library Discrete Location Problems (see http://old.math.nsc.ru/AP/benchmarks/Bilevel/bilevel-eng.html). There are 30 structured problem instances. The instance number identifiers are 333,433,533,...,3122,3233. Note that in the dataset, for each customer, only a subset of facilities are accessible. We thus define a parameter \mathscr{A}_{ij} , which is 1 if facility j is accessible to customer i and 0 otherwise. We then add constraints $\sum_{j\in\mathscr{N}}\mathscr{A}_{ij}x_j\geq 1$. For the case of $\mathscr{A}_{ij}=1$, the original data provides the cost c_{ij} by serving customer i from facility j and the disutility j of facility j to customer j. To adapt the data set for our problem, if $\mathscr{A}_{ij}=1$, we set j0, we set j1 and define utility j2 and if j3 and j4 and j5 are j6.

The complete computational results of these 30 instances are given in Table EC.2.

EC.4.3 *GBD* complete computational results under different values of dissimilarity factor See Table EC.3.

 $\begin{tabular}{ll} \textbf{Table EC.2} & Complete computational results of PMPUP instances. For the unsolved $\tt EBCR-KKT$, the associated relative gap is 5.61\%. \end{tabular}$

	Then were the control of the control										
inst.	EBCI	R-KKT	EBCR	R-CBFL		GBD					
11130.	4F-1	# branch	4[-]	# branch	41-1	# branch					
	t[s]	nodes	t[s]	nodes	t[s]	nodes					
333	3355.4	478462	2212.6	118139	555.2	410757					
433	1356.6	149256	557.5	30751	239.6	181913					
533	1002.3	92269	876.9	49356	72.0	48806					
633	2905.8	398720	1864.9	96586	601.8	457050					
733	1416.3	163283	1460.6	97712	450.5	344386					
833	2153.5	266050	2061.2	130103	510.3	380221					
933	1300.4	161715	1540.9	76651	377.6	277112					
1033	1989.8	168224	1137.8	67199	357.1	286651					
1133	1532.5	188952	1323.9	60954	297.6	240192					
1233	2226.5	299522	2180.8	130400	601.2	459875					
1333	3049.5	400954	2855.4	169213	693.3	502185					
1433	4417.1	603615	5376.1	343720	773.2	561274					
1533	789.8	85668	943.2	61802	293.3	233319					
1633 1733	5639.6 1211.2	439625 142690	1726.5 1000.4	125623 53957	518.3 641.4	386361 398606					
1833	1309.3	129806	1000.4	42101	262.4	224922					
1933	1620.5	196945	2587.7	158856	406.6	319641					
2033	993.3	113250	1404.6	70596	373.1	305335					
2133	2113.1	250156	1995.1	111075	402.5	315131					
2233	1004.9	93535	841.5	43975	310.0	249943					
2333	1232.2	139956	711.6	43121	320.3	263137					
2433	726.9	72235	624.1	34954	229.9	183124					
2533	2859.4	231344	516.6	22945	252.9	201687					
2633	1983.7	282047	1836.8	105071	293.9	230517					
2733	2548.1	352723	2169.4	110713	341.1	272842					
2833	7200.0*	505088	4701.9	268624	570.9	446524					
2933	967.9	89717	625.2	31027	248.1	211054					
3033	1340	158659	1287.4	108972	374.3	300182					
3133	2337.2	316049	896.6	50668	370.4	288360					
3233	1610.3	176983	3775.4	121553	574.9	439770					
Avg	2139.8	238250	1736.6	97881	410.5	314029					

Table EC.3 *GBD* computational results under different values of dissimilarity factor β .

I	J	р		$\beta = 0.3$			$\beta = 0.7$	
1	J	Ρ	t[s]	# branch nodes	Profit	t[s]	# branch nodes	Profit
100 100 100 100 100 100 100 200 200 200	50 50 50 80 80 100 100 100 100 100 100 100 100	5 7 10 5 7 10 5 7 10 5 7 10 5 7 10 5 7	4.4 6.9 4.8 6.0 8.1 7.6 13.6 9.9 18.6 43.0 37.4 35.5 60.3 62.7 54.1 44.1 86.9	211 448 213 351 1 236 535 761 1209 709 604 576 659 600 622 544 679 873	14256.3 16426.7 18731.7 14989.3 17719.4 20902.9 15433.5 18009.7 21050.4 29965.5 35870.9 42606.4 44395.4 53559.8 63137.5 61948.5 73485.1 84508.3	5.9 6.5 16.7 8.4 9.6 29.8 11.6 21.2 46.8 61.8 97.5 393.4 80.8 165.0 328.6 88.0 127.5 564.2	74 683 4066 744 1156 5367 983 1772 8586 6900 44788 2263 4126 23167 852 2471 22333	14863.7 17349.3 19937.4 15573.5 18605.0 21792.0 15942.0 18655.7 21993.5 30947.0 37430.2 44755.0 46062.8 55992.0 66006.4 64328.6 68534.5 88574.8
I	J			$\beta = 0.9$			$\beta = 1.0$	
1	J	p	t[s]	# branch nodes	Profit	t[s]	# branch nodes	Profit
100 100 100 100 100 100 100 200 200 200	50 50 80 80 80 100 100 100 100 100 100 100 1	5 7 10 5 7 10 5 7 10 5 7 10 5 7	4.2 7.4 16.9 8.5 13.7 38.2 11.4 31.5 139.1 63.0 181.3 1322.8 102.7 270.4 1356.7 70.5 252.5 2508.0	193 1026 3651 1082 2365 6376 1204 5046 30363 4018 13302 172026 3463 13951 87956 1688 7257 62447	15438.9 18198.5 21064.7 16127.4 19437.6 22712.0 16432.7 19455.6 22972.1 38972.6 46659.2 47799.8 58166.3 68694.5 66566.8 79328.7	3.9 6.4 17.8 8.8 11.6 41.7 11.6 25.9 86.7 65.4 240.5 1643.3 106.8 246.1 2569.0 58.7 214.2 4112.9	230 758 5154 977 1276 8330 1318 5613 21468 4321 21879 264490 2925 7974 127775 1557 56111 184946	15794.9 18753.8 21712.9 16472.2 19931.7 23260.1 16742.5 19966.5 23558.7 33168.3 39905.1 47823.5 48872.0 59487.9 70302.7 67956.6 811116.2 94328.3

EC.4.4 Comparing GBD and Rank-based Discrete Optimization Algorithm

The Rank-based Discrete Optimization Algorithm (RDOA) might be perceived as one of the most widely used and effective heuristic/approximation algorithms for choice-based facility location prob-

lems and competitive facility location problems in recent years (Fernández et al. 2017, Lančinskas et al. 2020, Yu 2020). In light of this, we implement the RDOA presented in Fernández et al. (2017) for solving the unified formulation and take it as a heuristic benchmark for our proposed exact algorithm *GBD*.

To facilitate the subsequent discussion, we refer to the Rank-based Discrete Optimization Algorithm with n numbers of function evaluations as RDOA-n. For example, if the algorithm is executed with 3000 function evaluations, it will be denoted as RDOA-3000. In this context, a function evaluation entails utilizing Algorithm 2 to calculate the optimal y given a location decision x, followed by evaluating the associated profit under x.

The RDOA-n employs a randomized subroutine to search for improved *x* solutions. Due to its inherent randomness, the best solution obtained by RDOA-n upon completion may vary across different runs. Consistent with Fernández et al. (2017), we conduct 10 independent runs of RDOA-n (using fixed and independent random seeds) for each problem instance. All results pertaining to RDOA-n are then averaged over these 10 independent runs. Furthermore, to facilitate solution quality comparison, we define the relative profit difference as follows:

$$diff = \frac{Profit(\textit{GBD}) - Profit(\texttt{RDOA-n})}{Profit(\textit{GBD})} \times 100\%$$

A *positive* value of diff indicates that *GBD* finds a better solution. When *GBD* achieves an optimal solution for a given instance, it guarantees that the global best solution has been reached. In such cases, the value of diff is nonnegative and can be regarded as an indicator of the "optimality gap" associated with RDOA-n.

We mainly test the *GBD* and RDOA-n on three categories of CBFL problems and analyze their computational performances as follows.

Computational results under UPHM. RDOA-n has been used to solve the CBFL under PHM. Therefore, we first compare its performance with GBD on UPHM-CBFL. We use the same random instances as presented in Section 6.3. Table EC.4 reports the computational results obtained by GBD, RDOA-3000, and RDOA-5000 for these instances. We observe that: (i) RDOA-3000 exhibits the capability to generate high-quality solutions, with several instances even achieving optimality. The maximum value of diff is 0.56%, which is an acceptable optimality gap. (ii) The computational time of RDOA-n seems to be more stable across instances. Since the function evaluation within RDOA-n can be executed in polynomial time using Algorithm 2, the computational complexity of RDOA-n increases only polynomially with respect to the problem size and near-linearly with respect to the number of function evaluations. However, as the model itself is inherently NP-hard, attempting to solve it exactly may encounter an exponential increase in computational complexity as the problem size grows. This accounts for the longer computational times observed for a few instances using GBD (mainly when $\psi = 2$ and p = 10). Despite this, GBD remains considerably efficient. As an exact algorithm, it successfully achieves optimal solutions for all instances (and it has been shown to outperform other exact approaches by a large margin in Section 6.3). In particular, when the instances are relatively less challenging (i.e., $\psi = 3$), *GBD* often takes a shorter computation time than RDOA-3000.

Table EC.4 Computational results of GBD and RDOA-n on the random instances of UPHM-CBFL.

T	,			GBD			RDOA-3000			RDOA-5000		
Ψ	Ι	J	p	t[s]	rg[%]	Profit	t[s] 4.2	Profit	diff[%]	t[s]	Profit	diff[%]
2	100	50	5	3.9	0.00	15794.9	4.2	15794.9	0.00	6.7	15794.9	0.00
	100	50	7	6.4	0.00	18753.8	6.0	18753.8	0.00	9.4	18753.8	0.00
	100	50	10	17.8	0.00	21712.9	8.3	21706.5	0.03	13.3	21712.9	0.00
	100	80	5	8.8	0.00	16472.2	5.3	16472.2	0.00	8.3	16472.2	0.00
	100	80	7	11.6	0.00	19931.7	7.6	19914.5	0.09	11.7	19931.7	0.00
	100	80	10	41.7	0.00	23260.1	10.6	23233.5	0.11	16.8	23246.5	0.06
	100	100	5	11.6	0.00	16742.5	6.0	16742.5	0.00	9.6	16742.5	0.00
	100	100	7	25.9	0.00	19966.5	8.4 12.2	19932.6	0.17 0.25	13.1	19952.2	0.07 0.00
	100 200	100 100	10 5	86.7 65.4	0.00	23558.7 33168.3	12.2	23500.5 32984.0	0.25	19.2 19.8	23558.7 32984.0	0.00
	200	100	7	240.5	0.00	39905.1	16.5	39834.4	0.30	25.7	39876.7	0.50
	200	100	10	1643.3	0.00	47823.5	23.4	47685.5	0.10	37.2	47775.0	0.10
	300	100	5	1045.5	0.00	48872.0	18.0	48621.1	0.29	28.4	48696.5	0.10
	300	100	7	246.1	0.00	59487.9	24.7	59316.9	0.29	38.6	59461.9	0.04
	300	100	10	2569.0	0.00	70302.7	35.1	70195.1	0.15	54.8	70195.1	0.15
	400	100	5	58.7	0.00	67956.6	23.2	67891.4	0.10	40.2	67956.6	0.00
	400	100	7	214.2	0.00	81116.2	32.2	81031.1	0.10	53.3	81116.2	0.00
	400	100	10	4112.9	0.00	94328.3	45.8	93846.2	0.51	73.9	94031.3	0.31
3	100	50	5	2.4	0.00	4730.9	4.0	4730.9	0.00	6.6	4730.9	0.00
	100	50	7	2.0	0.00	5863.5	5.5	5863.5	0.00	9.0	5863.5	0.00
	100	50	10	2.4	0.00	7217.7	7.4	7217.7	0.00	12.4	7217.7	0.00
	100	80	5	3.9	0.00	5538.9	5.1	5538.9	0.00	8.4	5538.9	0.00
	100	80	7	3.8	0.00	6849.6	6.9	6849.6	0.00	11.2	6849.6	0.00
	100	80	10	4.6	0.00	8532.3	9.6	8503.5	0.34	14.8	8532.3	0.00
	100 100	100 100	5 7	5.1 5.1	0.00	5595.4 7012.0	5.4 7.5	5595.4 7012.0	0.00 0.00	9.2 12.2	5595.4 7012.0	0.00 0.00
	100	100	10	5.8	0.00	8796.6	10.5	8796.3	0.00	17.7	8796.6	0.00
	200	100	5	16.2	0.00	9330.3	11.9	9330.3	0.00	19.5	9330.3	0.00
	200	100	7	14.3	0.00	12331.3	15.8	12331.3	0.00	25.3	12331.3	0.00
	200	100	10	15.9	0.00	16148.9	22.2	16058.5	0.56	35.5	16148.9	0.00
	300	100	-5	25.7	0.00	13837.6	17.6	13835.7	0.01	29.8	13837.6	0.00
	300	100	7	25.1	0.00	18035.0	23.9	18031.4	0.02	39.2	18035.0	0.00
	300	100	10	26.8	0.00	23941.6	33.0	23919.9	0.09	52.8	23931.8	0.04
	400	100	5	30.2	0.00	17740.0	23.6	17740.0	0.00	38.7	17740.0	0.00
	400	100	.7	32.9	0.00	22975.8	32.9	22968.7	0.03	52.7	22968.7	0.03
	400	100	10	33.3	0.00	30025.3	45.3	29991.1	0.11	72.3	30025.3	0.00

Computational results under UPBCR. RDOA-n has also been utilized in the context of partially binary choice rule (PBCR), which is a special case for UTLM with $\gamma = 0$. Therefore, we conduct experiments on this type of problem. We use a large-scale dataset for PBCR from Lin and Tian (2021a) and set p = 10. The computational results of GBD, RDOA-5000 and RDOA-10000 are summarized in Table EC.5. In terms of solution quality, the performance of RDOA-5000 is not satisfactory as the maximum diff can exceed 1%. This indicates the need for an increase in the number of function evaluations. On the other hand, RDOA-10000 produces better solutions, albeit at the cost of doubling the computational time. Note that for the most challenging instance with I = 3000 and J = 300, GBD fails to solve it optimally and terminates with a relative exit gap of 1.53%. Consequently, the resulting solution obtained by GBD is not optimal. Interestingly, this instance is the only case where RDOA-10000 outperforms GBD by finding a better solution. Regarding computational time, we once again observe that for relatively less complex problem instances (i.e., J = 100 and 200), GBD generally presents faster computation times compared to RDOA-10000.

Table EC.5 Computational results of GBD and RDOA-n under PBCR using the dataset from Lin and Tian (2021a).

I J	7	GBD]	RDOA-5000)	RDOA-10000		
	J	t[s]	rg[%]	Profit	t[s]	Profit	diff[%]	t[s]	Profit	diff[%]
1500	100	159.4	0.00	165283.3	314.4	165178.0	0.06	617.5	165283.3	0.00
1500	200	916.4	0.00	168425.8	537.2	167594.7	0.49	1063.8	168353.7	0.04
1500	300	2150.8	0.00	171838.0	761.3	170033.6	1.05	1471.9	171485.4	0.21
2000	100	305.7	0.00	217028.8	457.8	216560.3	0.22	940.6	216703.4	0.15
2000	200	1357.6	0.00	220568.6	713.2	218423.4	0.97	1430.1	219238.0	0.60
2000	300	4199.6	0.00	221516.6	1029.2	220292.7	0.55	1989.5	221204.6	0.14
3000	100	545.5	0.00	316193.8	671.2	313731.9	0.78	1310.2	314209.9	0.63
3000	200	3708.3	0.00	319984.4	1090.8	318738.2	0.39	2227.6	319545.8	0.14
3000	300	7200.0	1.53	316436.8	1562.3	316170.0	0.08	3108.8	317336.9	-0.28

Computational results under UTLM. In the final experiment, we conduct experiments on the UPHM-CBFL using the LLPTL instances described in Section 6.2. The computational results are presented in Table EC.6 and Figure EC.2. The key observations from this experiment align with the findings of the previous two experiments.

	CDD												
I	$p \gamma \mid_{+[c]}$			GBD			RDOA-5000			RDOA-10000			
	p	•	t[s]	rg[%]	Profit	t[s]	Profit	diff[%]	t[s]	Profit	diff[%]		
200	10	1	24.9	0.00	16066.7	41.3	16066.2	0.00	82.8	16066.7	0.00		
	10	3	23.5	0.00	16154.4	40.2	16147.3	0.04	80.6	16154.4	0.00		
	10	5	24.0	0.00	16185.4	37.7	16185.4	0.00	78.8	16185.4	0.00		
	10	7	21.4	0.00	16243.9	37.5	16242.5	0.01	78.2	16243.9	0.00		
	10	10	18.8	0.00	16299.7	36.8	16299.5	0.00	76.4	16299.7	0.00		
	10	20	16.4	0.00	16358.6	35.7	16358.6	0.00	74.0	16358.6	0.00		
	20	1	250.7	0.00	25159.3	83.8	25126.7	0.13	163.8	25142.4	0.07		
	20	3	140.1	0.00	25726.0	79.7	25688.7	0.14	155.9	25717.0	0.03		
	20	5	83.3	0.00	26157.1	77.9	26139.9	0.07	153.9	26157.1	0.00		
	20	7	41.2	0.00	26464.2	76.3	26449.2	0.06	150.2	26464.2	0.00		
	20	10	26.9	0.00	26617.1	73.1	26611.4	0.02	146.1	26617.1	0.00		
	20	20	25.8	0.00	26861.4	72.2	26826.5	0.13	143.8	26861.4	0.00		
	30	1	385.5	0.00	31790.5	123.6	31726.7	0.20	240.3	31758.9	0.10		
	30	3	217.5	0.00	32992.1	115.5	32899.8	0.28	234.2	32960.4	0.10		
	30	5	87.1	0.00	33577.4	111.8	33479.2	0.29	230.9	33559.5	0.05		
	30	7	60.5	0.00	33917 0	110.4	33850.5	0.20	224.5	33559.5 33912.9	0.01		
	30	10	34.1	0.00	34173.3	108.3	34093.9	0.23	222.3	34160.4	0.04		
	30	20	26.0	0.00	34552.8	109.3	34538.1	0.04	215.9	34549.4	0.01		
400	10	1	52.8	0.00	21625.8	106.3	21609.0	0.08	212.1	21625.8	0.00		
	10	3 5	58.6	0.00	21703.9	103.1	21627.5	0.35	202.7	21701.5	0.01		
	10	5	65.5	0.00	21732.6	101.9	21703.7	0.13	205.8	21732.6	0.00		
	10	7	58.8	0.00	21773.1	101.1	21769.1	0.02	203.4	21773.1	0.00		
	10	10	54.8	0.00	21801.4	99.6	21767.5	0.16	200.9	21801.4	0.00		
	10	20	61.0	0.00	21849.7	98.2	21787.5	0.28	194.0	21849.7	0.00		
	20	1	74.3	0.00	37284.3	214.1	36789.3	1.33	427.8	37135.6	0.40		
	20	3	67.1	0.00	37512.5	219.9	37333.6	0.48	419.7	37411.9	0.27		
	20	5	71.8	0.00	37624.2	207.8	37363.1	0.69	410.0	37555.3	0.18		
	20	7	63.0	0.00	37879.2	199.3	37651.4	0.60	405.8	37858.5	0.05		
	20	10	56.1	0.00	37987.0	198.8	37800.7	0.49	400.1	37961.7	0.07		
	20	20	50.8	0.00	38142.2	196.3	37964.8	0.47	383.4	38054.6	0.23		
	30	1	1317.9	0.00	48144.0	335.4	47728.5	0.86	645.3	47971.1	0.36		
1	30	3	1195.5	0.00	48836.2	305.5	48487.6	0.71	621.8	48696.7	0.29		
	30	5	717.8	0.00	49193.8	314.1	48890.3	0.62	617.7	49086.1	0.22		
	30	7	384.6	0.00	49608.4	300.2	49324.6	0.57	608.7	49484.0	0.25		
	30	10	192.5	0.00	49889.9	297.5	49622.4	0.54	607.1	49729.4	0.32		
	30	20	128.4	0.00	50293.1	287.9	50039.2	0.50	582.5	50158.4	0.27		

Table EC.6 Computational results of *GBD* and RDOA-n on the LLPTL instances of UPHM-CBFL.

Figure EC.2 Computational results of LLPTL instances for UPHM-CBFL: (a) run time (b) optimality gap.

Through the above experiments, we have demonstrated that the computational time of GBD is competitive when compared to the heuristic RDOA-n under acceptable optimality gaps. This provides further validation of the efficiency of GBD as an exact algorithm.