

#### Protocoale de Securitate

## Rezumate de mesaje, semnaturi digitale si protocoale de securitate

23.05.2009

rotocoale de comunicatie - Curs 13.14

-1

## Rezumatele mesajelor P, D<sub>A</sub> (MD (P))

#### Proprietati MD – Message Digest:

- Cunoscand P, este usor sa se calculeze MD(P)
- Cunoscand MD(P), este practic imposibil sa se afle P
- Cunoscand P nimeni nu poate gasi P' astfel ca MD(P') = MD(P)
- O schimbare a intrarii de 1 bit produce o iesire diferita

#### Functii hash

- MD5 (Message Digest)
- SHA-1 (Secure Hash Algorithm)

#### Functii Hash: MD5



MD5 – Message Digest 5

Calculeaza un rezumat de mesaj de 128 biti

Structura algoritmului MD5 - faze



Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Functii Hash: MD5 (2)

O faza corespunde unui bloc de mesaj de 512 biti. Are 4 runde.

O runda are 16 iteratii. Fiecare runda foloseste o functie diferita:

F(x,y,z) = (x AND y) OR ((NOT x) AND z)

G(x,y,z) = (x AND z) OR (y AND (NOT z))

H(x,y,z) = x XOR y XOR z

I(x,y,z) = y XOR (x OR (NOT z))

 $b_0,...,b_{15}$  – **sub-blocuri** 32-biti (total 512) p, q, r, s – variabile *digest* 

 $C_1, ..., C_{16}$  – constante (in total 64) <<< denota rotatie stanga

| Iterations 1-8                                     | Iterations 9-16                                          |
|----------------------------------------------------|----------------------------------------------------------|
| $p \leftarrow (p + F(q,r,s) + b_0 + C_1) \ll 7$    | $p \leftarrow (p + F(q,r,s) + b_8 + C_9) \ll 7$          |
| $s \leftarrow (s + F(p,q,r) + b_1 + C_2) \ll 12$   | $s \leftarrow (s + F(p,q,r) + b_9 + C_{10}) \ll 12$      |
| $r \leftarrow (r + F(s, p, q) + b_2 + C_3) \ll 17$ | $r \leftarrow (r + F(s, p, q) + b_{10} + C_{11}) \ll 17$ |
| $q \leftarrow (q + F(r,s,p) + b_3 + C_4) \ll 22$   | $q \leftarrow (q + F(r,s,p) + b_{11} + C_{12}) \ll 22$   |
| $p \leftarrow (p + F(q,r,s) + b_4 + C_5) \ll 7$    | $p \leftarrow (p + F(q, r, s) + b_{12} + C_{13}) \ll 7$  |
| $s \leftarrow (s + F(p,q,r) + b_5 + C_6) \ll 12$   | $s \leftarrow (s + F(p,q,r) + b_{13} + C_{14}) \ll 12$   |
| $r \leftarrow (r + F(s, p, q) + b_6 + C_7) \ll 17$ | $r \leftarrow (r + F(s, p, q) + b_{14} + C_{15}) \ll 17$ |
| $q \leftarrow (q + F(r,s,p) + b_7 + C_8) \ll 22$   | $q \leftarrow (q + F(r,s,p) + b_{15} + C_{16}) \ll 22$   |



#### **Semnaturi Digitale**

- Bazate pe
  - -Chei simetrice
  - -Chei publice
- Rezumate de mesaje

## Semnaturi cu chei simetrice 1 A, K<sub>A</sub> (B, R<sub>A</sub>, t, P) 2 K<sub>B</sub> (A, R<sub>A</sub>, t, P, K<sub>BB</sub> (A, t, P)) Somnaturi digitale au Rig Brother

Semnaturi digitale cu Big Brother.

- R<sub>A</sub> numar aleator (control replici)
- t timestamp (mesaj recent)
- K<sub>A</sub> cheie secreta a lui A
- K<sub>B</sub> cheie secreta a lui B
- K<sub>BB</sub> cheie secreta Big Brother

#### Comentarii

t utilizat pentru a detecta atacuri prin replica pentru mesaje vechi  $K_{BB}$  (A, t, P)) folosit pentru non-repudiere



#### Semnaturi cu chei publice

### Utilizarea SHA-1 si RSA pentru semnarea mesajelor nesecrete.



#### Caracteristici

Rezumatul SHA-1 este semnat cu cheia secreta a transmitatorului  $\mathsf{D}_\mathsf{A}$ 

Mesajul M este transmis in clar

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Verificare semnatura digitala



Orice modificare a textului clar M este detectata prin H <>H'Un intrus nu poate modifica si M si rezumatul criptat  $D_A(H)$ 



#### Probleme cu difuzarea cheilor publice



## **Problema:** difuzarea cheii publice prin pagina de referinta a proprietarului

Trudy raspunde in locul lui Bob cu cheia sa publica Trudy poate modifica mesajele trimise de Alice lui Bob

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Managementul cheilor publice

- Certificate
  - Asociaza identitatea cu cheia publica
- X.509
  - -Standard de certificate
- PKI Public Key Infrastructures
  - Programele, echipamentele, tehnologiile de criptare si serviciile de gestiune a infrastructurii criptografice si a cheilor publice ale utilizatorilor.



#### Certificate

Rol: leaga cheia publica de un proprietar (principal) sau de un atribut

I hereby certify that the public key

19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A

belongs to

Robert John Smith

12345 University Avenue

Berkeley, CA 94702

Birthday: July 4, 1958

Email: bob@superdupernet.com

SHA-1 hash of the above certificate signed with the CA's private key

#### Un certificat nu este secret

este semnat de o autoritate de certificare - CA (Certificate Authority)

#### Verificarea certificatului de catre Alice

A calculeaza rezumatul SHA-1 al certificatului (fara semnatura)

A aplica cheia publica a CA asupra semnaturii

A compara cele doua rezultate

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Campurile de baza dintr-un certificat X.509

| Câmp                   | Seminificatie                                                                                                                                                |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Versiune               | Ce versiune de X.509 este utilizată                                                                                                                          |  |  |  |  |
| Număr Serial           | Acest număr împreună numele CA-ului identifică în mod unic certificatul                                                                                      |  |  |  |  |
| Algoritm de semnare    | Algoritmul folosit la semnarea certificatului                                                                                                                |  |  |  |  |
| Emitent                | Numele X.500 al CA-ului                                                                                                                                      |  |  |  |  |
| Perioada de validitate | Momentele de început si sfârșit ale perioadei de validitate                                                                                                  |  |  |  |  |
| Numele subiectului     | Entitatea care este certificată                                                                                                                              |  |  |  |  |
| Cheia publică          | Cheia publică a subiectului și ID-ul algoritmului folosit                                                                                                    |  |  |  |  |
| ID emitent             | Un ID opțional identificând în mod unic emitentul certificatului (nume X.500 sau DNS)                                                                        |  |  |  |  |
| ID subject             | Un ID opțional identificând în mod unic subiectul certificatului                                                                                             |  |  |  |  |
| Extensii               | ptr identificarea cheii publice a emitentului, a certificatului care contine o anumita cheie publica, scopul utilizarii cheii (criptare, semnare,) si altele |  |  |  |  |
| Semnătura              | Semnătura certificatului (semnat cu cheia privată a CA-ului)                                                                                                 |  |  |  |  |



#### **PKI - Public Key Infrastructure**

- PKI- Set de componente (hard & soft) care lucreaza impreuna pentru utilizarea sigura a tehnologiei de chei publice
- CA- autoritate de incredere care certifica faptul ca cheia publica inclusa apartine persoanei cu numele atasat
- CA- administratie centrala care elibereaza certificate:
  - organizatie sau companie pentru angajati
  - universitate pentru studenti

A cunoaste si are in credere in Root

Simplificare

gaseste certificatul lui B semnat de CA 5 certificatul lui CA 5 semnat de RA 2 certificatul lui RA 2 semnat de Root

A primeste de la B tot lantul de certificate

CA publice (VeriSign) - pentru clienti





#### **Revocarea Certificatelor**

- Un certificat trebuie revocat cand:
  - cheia primara este compromisa;
  - cheia primara este pierduta;
  - · o persoana pleaca din companie
  - · altele.
- Revocarea trebuie cunoscuta de toti utilizatorii;
- Alternativa se folosesc liste de revocare
  - CRL Certificate Revocation List;
- Greu de implementat si folosit.
  - se verifica listele de revocare inainte de utilizarea certificatelor
  - locul de pastrare a listelor de revocare duplicare, cache
  - difuzarea listelor de revocare

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Verificarea revocarii Certificatelor



#### Verificare certificate

verifica certificat
verifica CRL
repeat
verifica certificatul pentru CA
verifica CRL al CA
until radacina



#### Securitatea Comunicatiei

- IPsec
- Ziduri de protectie (Firewalls)
- Virtual Private Networks

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### **IP Security Protocol - IPSec**

- Implementat la nivel IP
- Suporta autentificarea si confidentialitatea
- Bazat pe Security Association
  - SA = relatie one-way intre transmitator si receptor, cu servicii de securizarea traficului
  - set de parametri de securitate pentru comunicare
    - algoritmul de criptare si modul (ex. DES in mod blockchaining)
    - cheia de criptare
    - parmetrii de criptare (ex. Initialization Vector)
    - · protocolul de autentificare si cheia
    - durata de viata a unei asociatii (permite sesiuni lungi cu schimbarea cheii daca este necesar)
    - · adresa capatului opus al asociatiei
    - nivelul de senzitivitate al datelor protejate.
  - pentru relatie bilaterala 2 SA



#### **SA Database**

- Doua protocoale de securitate:
  - protocol de autentificare AH (Authentication Header)
  - protocol combinat criptare/autentificare ESP (Encapsulating Security Payload)
- Un sistem pastreaza o baza de date cu asociatiile de securitate
  - include parametrii de securitate (slide precedent) si
  - contor numere de secventa: pentru antete AH si ESP
  - Indicator overflow pentru contor numere de secventa: ce-i de facut la depasire limita contor
  - fereastra anti-replay: determina daca un pachet este o copie
  - Path MTU: path Maximum Transmission Unit (pentru evitare fragmentare)
- Fiecare intrare unic identificata de:
  - Security Parameters Index (SPI): identificare SA la receptor
  - IP Destination Address
  - Security Protocol Identifier: AH sau ESP

# Protocol AH — in mod transport pentru IPv4 Authenticated IP header AH TCP header Payload + padding Next header Payload len (Reserved) Security parameters index Sequence number Authentication data (HMAC)

Authentication Header – inserat in datagrama IP

- Next header val camp protocol din IP header inlocuita cu 51
- Payload len lungime AH (nr cuvinte 32 biti) minus 2
- Security Parameter Index indica inregistrarea din BD a receptorului
- Sequence number evitare atacuri prin replica
- HMAC Hashed Message Authentication Code
  - · Utilizeaza cheia simetrica
  - Calculeaza rezumat peste intreaga datagrama (campurile variabile neincluse) + cheia simetrica



#### **ESP** in modurile transport si tunel





ESP – Encapsulating Security Payload
(a) ESP in mod transport. (b) ESP in mod tunel.

#### ESP header include

Security Parameters Index Numar de Secventa

Vector de initalizare (pentru criptare date)

La sfarsit: HMAC - Hashed Message Authentication Code

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare

## FOLITEHALIP

#### Gestiunea cheilor

- ISAKMP Internet Security Association Key Management Protocol
- Genereaza o cheie distincta pentru fiecare asociatie
- Implementat cu IKE (ISAKMP Key Exchange)
  - Foloseste Diffie Hellman
- Pentru Alice:
  - x este cheia privata
  - g<sup>x</sup> mod n este cheia publica
  - $-K_{A,B} = g^{xy} \mod n$  este cheia secreta partajata cu Bob





#### **Algoritmi IPSEC**

- IPSec permite unui sistem sa
  - selecteze protocoalele de securitate,
  - determine algoritmii folositi
  - aleaga cheile criptografice
- · Algoritmi folositi
  - DES in mod CBC pentru criptare
  - HMAC/MD5 si HMAC/SHA (trunchiat la 96 biti) pentru autentificare
- · Alti algoritmi adaugati in versiuni mai noi
  - 3DES
  - Blowfish
  - CAST-128
  - IDEA
  - RC5

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### **Protocoale de Autentificare**

#### Folosesc

- Cheie secreta partajata
- · Stabilirea unei chei partajate: Diffie-Hellman
- KDC Key Distribution Center
- Kerberos
- Public-Key Cryptography



#### Autentificare cu cheie secreta partajata



Autentificare reciproca cu un protocol challenge-response

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Autentificare cu cheie secreta partajata (2)



Reducere numar de pasi



#### Autentificare cu cheie secreta partajata (3)



Atacul prin reflexie

Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### Autentificare cu cheie secreta partajata (4)



Atacul prin reflexie pe protocolul initial









n, g – numere mari n prim (n-1)/2 prim x nu poate fi calculat din  $g^x \mod n$   $g^{xy} \mod n$  nu poate fi calculat din  $g^x \mod n$ si  $g^y \mod n$  cand n este mare

Bob computes

= gxy mod n

(gx mod n)y mod n

g < n (generator) are proprietatea: pentru fiecare p intre 1 si n-1 inclusiv, exista o putere k a lui g astfel ca  $p = g^k \mod n$ .

Alice computes

= gxy mod n

(gy mod n)x mod n







#### Protocolul Needham-Schroeder

- · Forma mai complexa de folosire a tichetelor
- R<sub>A1</sub>, R<sub>A2</sub>, R<sub>B</sub>, "leaga" doua mesaje intre ele













#### Securitatea E-Mail - PGP - Pretty Good Privacy



#### Folosirea PGP pentru a trimite un mesaj.

Autor: Phil Zimmermann

Cripteaza date folosind IDEA (International Data Encryption Algorithm)  ${\sf K_M}$  cheie de sesiune 128-biti produsa dintr-un text introdus de Alice

#### Universitatea Politehnica București - Facultatea de Automatică și Calculatoare



#### **PGP – Pretty Good Privacy (2)**



#### Mesaj PGP.

ID E<sub>B</sub> - B poate avea mai multe chei

Types – identifica algoritmul de criptare

File name – nume implicit al fisierului de utilizat la receptie

Management chei

Private key ring (key, identifier)

Public key ring (key, trust indicator)

Versiunile actuale PGP folosesc certificate X.509



#### **Securitatea Web**

- Atacuri
  - -inlocuire Home page
  - -Denial-of-service
  - -Citire mail-uri
  - -Furt numere credit card
- Solutii
  - -Secure Naming
  - –SSL The Secure Sockets Layer



### Universitatea Politehnica Bucureşti - Facultatea de Automatică și Calculatoa DNS server for com Alice's ISP's cache





- •DNS foloseste sequence numbers (pentru a mapa cererile si raspunsurile)
- Trudy inregistreaza un domeniu trudythe-intruder.com (IP 42.9.9.9) si
- Instaleaza un server dns.trudy-theintruder.com (aceeasi IP 42.9.9.9)
- 1. Cauta adresa foobar.trudy-the-intruder.com pentru a forta dns.trudy-theintruder.com in cache-ul ISP-ului lui Alice
- 2. Cere ISP-ului www.trudy-the-intruder.com
- 3. ISP intreaba DNS-ul lui Trudy; intrebarea are un numar de secventa, n asteptat de Trudy
- **4.** Repede, cere adresa **bob.com** (fortand ISP sa intrebe serverul **com** in pasul 5)
- 5. ISP transmite cererea pentru bob.com cu nr secv n+1
- 6. Trudy transmite un raspuns fals: Bob este 42.9.9.9, nr secv = n+1; raspunsul este pus in cache
- 7. ISP rejecteaza raspunsul adevarat



#### **Secure DNS**

| Domain name | Time to live | Class | Туре | Value                      |
|-------------|--------------|-------|------|----------------------------|
| bob.com.    | 86400        | IN    | Α    | 36.1.2.3                   |
| bob.com.    | 86400        | IN    | KEY  | 3682793A7B73F731029CE2737D |
| bob.com.    | 86400        | IN    | SIG  | 86947503A8B848F5272E53930C |

Un exemplu de RRSet (Resource Record Set) pentru bob.com.

Fiecare zona DNS are o pereche de chei public/private

Informatiile trimise sunt semnate cu cheia privata

**DNS records sunt grupate in RRSs** 

Se adauga noi tipuri de inregistrari

KEY record - cheia publica a unei zone, utilizator, host, etc.

SIG record - hash semnat (criptat) pentru inregistrari A si KEY pentru verificare autenticitate.

Clientii primesc un RRS semnat

aplica cheia publica a zonei pentru a decripta hash-ul calculeaza hash-ul separat

compara cele doua valori (calculata si decriptata)