<u>Year 12 Chemistry – Equilibrium Practice Problems</u>

[22 marks]

	Name:
Quest	tion 1 (1 mark)
Consideration	der the following endothermic reaction for the production of hydrogen gas in a rigid ner:
	$CH_4(g) + H_2O(g) \longrightarrow CO(g) + 3 H_2(g)$
Which	of the following would increase the Final yield of hydrogen gas?
(a)	adding a catalyst
(b)	adding inert argon gas
(c)	increasing the pressure
(d)	increasing the temperature
Quest	tion 2
more	
	ringe full of nitrogen dioxide is compressed by a student to the point where no compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation [3 marks]
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation
	compression is physically possible. What will the student observe and why? a chemical reaction that describes the observation

Question 3

The following equilibrium is being investigated:

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3 H_2(g)$$
 $\Delta H = +200 \text{ kJ}$

Four identical sealed boxes are set up at 300°C and 1.00 atm, each containing the equilibrium mixture. Each of the boxes is treated as described below, and time allowed for a new equilibrium to be established. In each case describe the change between the original equilibrium and the new equilibrium.

	What happens to the total pressure? Write 'increase', 'decrease' or 'no change'.	What happens to the partial pressure of CO? Write 'increase', 'decrease' or 'no change'.	What happens to the equilibrium position? Write 'move to the right', 'move to the left' or 'no change'.
The system is heated above 300°C.			
More CH ₄ (g) (at 300°C) is injected into the box.			
Ne(g) (at 300°C) is injected into the box.			· · · · · · · · · · · · · · · · · · ·
The volume of the box is halved.			: : :

[8 marks]

Please Turn Over

Question 4

Write the equilibrium constant expression for each of the following:

Equation	$Fe(H_2O)_5NCS^{2+}(aq) + H_2O(\ell) \rightleftharpoons Fe(H_2O)_6^{3+}(aq) + NCS^{-}(aq)$
Equilibrium constant expression	

Equation	$2 \operatorname{NOC}\ell(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{C}\ell_2(g)$
Equilibrium constant expression	

[4 marks]

Question 5

rise

Hydrogen, which is used for the synthesis of ammonia, is sometimes made from the reaction

Ni catalyst
$$CH_4(g) + H_2O(g) = CO(g) + 3H_2(g); \Delta H = 206 \text{ kJ mol}^{-1}$$
 1030 K

In a research laboratory, some methane and water are added to a 1000 cm³ reaction vessel and equilibrium is established.

remain constant

a. More CO(g) at 1030 K is added. As a result, the temperature in the reaction vessel should

fall

(2

in	crease	decrease	remain constant	
Circle the co	rrect response	and explain your an	swer in the space below.	
				(2 marks)
The total prowithout cha	essure on the r	reacting system is in me. As a result the y	creased by adding argon (an iner	t gas) to the reaction
without cha	essure on the r nging its volu ncrease	reacting system is inc me. As a result the y decrease	creased by adding argon (an iner rield of hydrogen would remain constant	t gas) to the reaction
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	t gas) to the reaction
without cha	nging its volu	me. As a result the y	rield of hydrogen would	t gas) to the reaction
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	
without cha	nging its volu	me. As a result the y	rield of hydrogen would remain constant	

b. The total pressure on the reacting system is increased by decreasing the volume of the reaction vessel. As