function	Definition, Domain and global optimum $f(\vec{x}^*)$	3-D Plot
Ackley	$f(\vec{x}) = -20exp(-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_i^2}) - exp(\frac{1}{n}\sum_{i=1}^{n}cos(2\pi x_i)) + a + exp(1)$ $x_i \in [-32, 32]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$	111111111111111111111111111111111111111
Eggholder		IIII
Griewank	$ f(\vec{x}) = 1 + \sum_{i=1}^{n} \frac{x_i^2}{4000} - \prod_{i=1}^{n} \cos(\frac{x_i}{\sqrt{i}}) $ $ x_i \in [-600, 600] $	
Happy Cat	$f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$ $f(\vec{x}) = \left[\left(\mathbf{x} ^2 - n \right)^2 \right]^{\alpha} + \frac{1}{n} \left(\frac{1}{2} \mathbf{x} ^2 + \sum_{i=1}^n x_i \right) + \frac{1}{2}$ $x_i \in [-2, 2]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (-1, \dots, -1)$	
Rana	$f(\vec{x}^*) = 0, \text{ with } x^* = (-1, \dots, -1)$ $f(\vec{x}) = \sum_{i=1}^{n} [x_i sin(t_2) cos(t_1) + (x_1 + 1) sin(t_1) cos(t_2)]$ with $t_1 = \sqrt{ x_1 + x_i + 1 }$ and $t_2 = \sqrt{ x_1 - x_i + 1 }$ $x_i \in [-500, 500]$ $f(\vec{x}^*) = -959.64, \text{ with } x^* = (512, 404) \text{ for } n = 2$	700 mm m
Rastrigin	$f(\vec{x}) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$ $x_i \in [-5.12, 5.12]$	
Rosenbrock	$f(\vec{x}^*) = 0, \text{ with } \vec{x}^* = (0, \dots, 0)$ $f(\vec{x}) = \sum_{i=1}^{n} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]$ $x_i \in [-5, 10]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (1, \dots, 1)$	
Salomon	$\begin{split} f(\vec{x}^*) &= 0, \text{ with } x^* = (1, \dots, 1) \\ f(\vec{x}) &= 1 - \cos(2\pi \sqrt{\sum_{i=1}^D x_i^2}) + 0.1 \sqrt{\sum_{i=1}^D x_i^2} \\ x_i &\in [-100, 100] \\ f(\vec{x}^*) &= 0, \text{ with } x^* = (0, \dots, 0) \end{split}$	
Sargan	$f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$ $f(\vec{x}) = \sum_{i=1}^n n(x_i^2 + 0.4 \sum_{j \neq i}^n x_i x_j)$ $x_i \in [-100, 100]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$	John Marie Jan
Schaffer F6	$f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$ $f(\vec{x}) = \sum_{i=1}^n 0.5 + \frac{\sin^2(\sqrt{x_i^2 + x_{i+1}^2}) - 0.5}{[1 + 0.001 \cdot (x_i^2 + x_{i+1}^2)]^2}$ $x_i \in [-100, 100]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$	164 day 2 18 20
Schwefel 2.26	$f(\vec{x}^*) = 0, \text{ with } x^* = (0, \dots, 0)$ $f(\vec{x}) = 418.9829n - \sum_{i=1}^{n} x_i \sin \sqrt{ x_i }$ $x_i \in [-500, 500]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (420, 968746, \dots, 420, 968746)$	
Penalized Schwefel 2.26	$f(\vec{x}^*) = 0, \text{ with } x^* = (420, 968746, \dots, 420, 968746)$ $f(\vec{x}) = 418.9829n - \sum_{i=1}^{n} x_i \sin \sqrt{ x_i } + \left \sum_{i=1}^{\frac{n}{2}} x_{2i} - \sum_{i=1}^{\frac{n}{2}} x_{2i-1} \right $ $x_i \in [-500, 500]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (420, 968746, \dots, 420, 968746)$	
Qing	$f(\vec{x}) = \sum_{i=1}^{n} (x^2 - i)^2$ $x_i \in [-500, 500]$ $f(\vec{x}^*) = 0, \text{ with } x^* = (\pm \sqrt{i}, \dots, \pm \sqrt{i})$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE IV: Benchmark functions

	dimension	DM	FEM_{macro}	FEM_{micro}	SEM_{macro}	SEM_{micro}	PIC_{macro}	PIC_{micro}	separable
$schwefel_{2.2.6} Pen$	50	-0.006	0.869	0.659	0.566	0.729	0.609	0.316	0
	100	-0.005	0.87	0.667	0.57	0.733	0.61	0.324	0
$schwefel_{2.2.6}$	50	0.011	0.873	0.667	0.56	0.731	0.615	0.316	1
	100	-0.001	0.874	0.668	0.565	0.734	0.622	0.326	1
rastrigin	50	-0.278	0.881	0.641	0.522	0.722	0.658	0.298	1
	100	-0.191	0.88	0.62	0.526	0.728	0.655	0.278	1
griewank	50	-0.395	0.695	0.336	0.703	0.798	0.354	0.101	0
	100	-0.273	0.694	0.281	0.707	0.804	0.349	0.07	0
ackley	50	-0.322	0.872	0.885	0.531	0.515	0.64	0.682	0
	100	-0.216	0.868	0.884	0.536	0.526	0.642	0.665	0
eggholder	50	0.053	0.882	0.733	0.527	0.677	0.659	0.4	0
	100	0.025	0.884	0.739	0.531	0.677	0.664	0.406	0
qing	50	-0.364	0.747	0.398	0.667	0.788	0.405	0.138	0
	100	-0.254	0.743	0.351	0.674	0.796	0.407	0.118	0
salomon	50	-0.372	0.83	0.896	0.605	0.519	0.526	0.643	0
	100	-0.262	0.816	0.881	0.614	0.54	0.523	0.611	0
rana	50	0.024	0.887	0.771	0.505	0.653	0.698	0.453	0
	100	0.014	0.889	0.776	0.508	0.652	0.7	0.463	0
sargan	50	-0.28	0.69	0.603	0.728	0.783	0.357	0.265	0
	100	-0.173	0.697	0.618	0.735	0.79	0.373	0.28	0
$schaffer_{f6}$	50	-0.066	0.875	0.755	0.509	0.568	0.693	0.737	0
	100	-0.038	0.882	0.758	0.51	0.572	0.698	0.737	0
rosenbrock	50	-0.291	0.727	0.4	0.678	0.784	0.382	0.135	0
	100	-0.192	0.722	0.343	0.684	0.795	0.381	0.109	0
happycat	50	-0.374	0.697	0.241	0.696	0.773	0.355	0.115	0
	100	-0.263	0.688	0.197	0.705	0.777	0.353	0.085	0

TABLE V: Fitness landscape metrics for reflected benchmarks