Information Security CS3002 (Sections BDS-7A/B, BSE-7A) Lecture 01

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science
19, 20 August, 2024

Administrative Information

• Office: 036, 1st Floor, Block F / New Building

• Email-01: m.irteza@nu.edu.pk

• Email-02: mohammad.irteza@lhr.nu.edu.pk

- Office Hours:
 - Tues/Thursday 11:30 am ~ 12:30 pm

Office Hours

You are welcome to visit and discuss things related to the course, or general academic and/or research interests!

If this slot does not suit you, try to arrange for a separate slot through email, preferably one day before.

Mondays/Wednesdays are less suitable due to a busy schedule.

Administrative Information

- Course Website (Google Classroom):
 - BDS-7A → https://classroom.google.com/c/NzA5NDIzMjlxNTY0
 - Code: 2pxbc6i
 - BDS-7B → https://classroom.google.com/c/NzA0ODg2MjIzNDMx
 - Code: zhbekn3
 - BSE-7A → https://classroom.google.com/c/NzA3MjM5MTcyMDUx
 - Code: yuc5ldq
- Class Schedule:
 - BDS-7A Mon/Wed (08:30 10:00, Venue: NB-308)
 - BDS-7B Mon/Wed (11:30 13:00, Venue: NB-308)
 - BSE-7A Tue/Thu (08:30 10:00, Venue: CS-3)

My Research/Academic Background

- BS, MS and PhD in Computer Science from LUMS
 - 1998-2002, 2004-2005, 2012-2018
- Taught at Air University, LUMS, GIFT University, UMT
- Software Industry Experience: Alachisoft, Prosol Technologies
- PhD Thesis: Resilient Network Load Balancing for Datacenters
 - Advisor Dr. Ihsan Ayyub Qazi
- Google Scholar Page:
 - https://scholar.google.com/citations?hl=en&user=wHazKsgAAAAJ
- Main Interests:
 - Datacenter Networking: network layer and transport layer protocols
 - Network Traffic Engineering, Congestion Control, Queue Management

Classroom Etiquette

- Please come on time
- Minimize cross-talk
- Please do not attend phone calls/messages during class
- Do not copy other people's work
- Try to write notes, this will improve your retention

Course Objectives

This course serves as a comprehensive overview to the field of information security at senior undergraduate level.

At the end of the course, hopefully you will be able to:

- Explain key concepts of information security such as design principles, cryptography, risk management, and ethics
- 2. Discuss legal, ethical, and professional issues in information security
- 3. Apply various *security and risk management tools* for achieving information security and privacy
- 4. Identify appropriate techniques to tackle and solve problems in the discipline of information security

Course Outline (some changes may happen)

- Course Introduction
- Security Design Principles
- Cryptography (~7 lectures)
- Software Security (~3 lectures)
- Database Security (~2 lectures)
- Web Security (~2 lectures)
- User Authentication
- Access Control

Course Outline (some changes may happen)

- Network Security (~4 lectures)
- Theoretical Models of Access Control
- Cybercrime Laws and Ethics
- Project Evaluations and Revision (~3 lectures)
- Final Exam

Textbook

- Computer Security: Principles and Practice, William Stallings, Lawrie Brown
- Principles of Information Security, Michael E. Whitman, Herbert J. Mattord
- Cryptography and Network Security: Principles and Practice, William Stallings

- Reference:
 - Computer Security Fundamentals (second edition): William Chuck Easttom
 - Hands-on Labs for Security Education, by SEED labs

Grading Policy – Tentative

- Quizzes → 10%
 - Unannounced, can be held at the start or end of class
 - If we have 7 or more quizzes, we will drop the worst two quizzes
- Assignments → 10%
 - All assignments will count to your grade
- Project → 10%
- Midterm I & II → 25% ~ 30%
- Final Exam → 40% ~ 45%
 - Comprehensive exam (all course contents included)

What is Security?

- "The quality or state of being secure—to be free from danger"
- A well secured organization should have multiple layers of security in place:
 - Physical Security
 - Personal Security
 - Operations Security
 - Communications Security
 - Network Security

Information Security

- "The protection of information and its critical elements, including systems and hardware that use, store, and transmit that information"
- Necessary tools: policy, awareness, training, education, technology
- C.I.A. triangle was standard based on <u>confidentiality</u>, <u>integrity</u>, and <u>availability</u>
- C.I.A. triangle now expanded into list of critical characteristics of information

FIGURE 1-3 Components of Information Security

Book: Principles of Information Security

Critical Characteristics of Information

- The value of information comes from the characteristics it possesses:
 - Timeliness
 - No value if it is too late
 - Availability
 - No interference or obstruction
 - Required format
 - Accuracy
 - Free from mistakes
 - Authenticity
 - Quality or state of being genuine, i.e., sender of an email

Critical Characteristics of Information

Confidentiality

Disclosure or exposure to unauthorized individuals or system is prevented

Integrity

- Whole, completed, uncorrupted
- Cornerstone
- Size of the file, hash values, error-correcting codes, retransmission

Possession

- Ownership
- Breach of confidentiality results in the breach of possession

Components of an Information System

• An Information System (IS) is the *entire set of software, hardware, data, people, procedures, and networks* necessary to use information as a resource in the organization

Software

- Perhaps most difficult to secure
- Easy target
- Exploitation substantial portion of attacks on information

Hardware

- Physical security policies
- Securing physical location important
- Laptops
- Flash memory

Components of an Information System

Data

- Often most valuable asset
- Main target of intentional attacks

People

- Weakest link
- Social engineering
- Must be well trained and informed

Procedures

Threat to integrity of data

Networks

Locks and keys won't work

Securing Components

- A computer can be the *subject* of an attack and/or the *object* of an attack
 - When it is the subject of an attack, the computer is used as an active tool to conduct the attack
 - When it is the object of an attack, the computer is the entity being attacked
- Types of attack
 - Direct
 - Hacker uses their computer to break into a system
 - Indirect
 - System is compromised and used to attack other systems

Risk estimation

- Assets: Objects, data, people
- Vulnerability: Weakness of an asset
- Threat: loss of security due to vulnerability
- Attack: threat occurrence

• Risk estimation is the process of identifying vulnerabilities and threats and their impact and probability of an attack occurring.

OWASP top 10 Vulnerabilities

Category	IoT Security Consideration	Recommendations
I1: Insecure Web Interface	•Ensure that any web interface coding is written to prevent the use of weak passwords	When building a web interface consider implementing lessons learned from web application security. Employ a framework that utilizes security
12: Insufficient Authentication/Authorization	•Ensure that applications are written to require strong passwords where authentication is needed	Refer to the OWASP Authentication Cheat Sheet
I3: Insecure Network Services	•Ensure applications that use network services don't respond poorly to buffer overflow, fuzzing	Try to utilize tested, proven, networking stacks and interfaces that handle exceptions gracefully
I4: Lack of Transport Encryption	•Ensure all applications are written to make use of encrypted communication between devices	Utilize encrypted protocols wherever possible to protect all data in transit
I5: Privacy Concerns	•Ensure only the minimal amount of personal information is collected from consumers	Data can present unintended privacy concerns when aggregated
I6: Insecure Cloud Interface	•Ensure all cloud interfaces are reviewed for security vulnerabilities (e.g. API interfaces and cloud-based web interfaces)	Cloud security presents unique security considerations, as well as countermeasures. Be sure to consult your cloud provider about options for security mechanisms
17: Insecure Mobile Interface	•Ensure that any mobile application coding is written to disallows weak passwords	Mobile interfaces to IoT ecosystems require targeted security. Consult the OWASP Mobile
18: Insufficient Security Configurability	•Ensure applications are written to include password security options (e.g. Enabling 20 character passwords or enabling two-factor authentication)	Security can be a value proposition. Design should take into consideration a sliding scale of security requirements
19: Insecure Software/Firmware	•Ensure all applications are written to include update capability and can be updated quickly	Many IoT deployments are either brownfield and/or have an extremely long deployment cycle
I10: Poor Physical Security	•Ensure applications are written to utilize a minimal number of physical external ports (e.g. USB ports) on the device	Plan on having IoT edge devices fall into malicious hands

OWASP (Current) – Top Ten

