Kernel-Based Just-In-Time Learning For Passing Expectation Propagation Messages

Wittawat Jitkrittum,¹ Arthur Gretton,¹ Nicolas Heess, S. M. Ali Eslami Balaji Lakshminarayanan,¹ Dino Sejdinovic² and Zoltán Szabó¹

Gatsby Unit, University College London¹

University of Oxford²

Introduction

EP is a widely used message passing based inference algorithm.

- **Problem**: Expensive to compute outgoing from incoming messages.
- Goal: Speed up computation by a cheap regression function (message operator):

incoming messages \mapsto outgoing message.

Merits:

- Efficient online update of the operator during inference.
- Uncertainty monitored to invoke new training examples when needed.
- Automatic random feature representation of incoming messages.

Expectation Propagation (EP)

Under an approximation that each factor fully factorizes, an outgoing EP message $m_{f \to V_i}$ takes the form

Projected message:

- $q_{f\to V}(v) = \text{proj}\left[r_{f\to V}(v)\right] \in \text{ExpFam}$ with sufficient statistic u(v).
- Compute $q_{f\to V}(v)$ by moment matching: $\mathbb{E}_{q_{f\to V}}[u(v)] = \mathbb{E}_{r_{f\to V}}[u(v)]$.

Kernel on Incoming Messages

Propose to incrementally learn during inference a kernel-based EP message operator (distribution-to-distribution regression)

$$[m_{V_j \to f}]_{j=1}^c \mapsto q_{f \to V_i},$$

for any factor f that can be sampled.

- Product distribution of c incoming messages: $\mathbf{r} := \times_{l=1}^{c} r_{l}$, $\mathbf{s} := \times_{l=1}^{c} s_{l}$.
- Mean embedding of \mathbf{r} : $\mu_{\mathbf{r}} := \mathbb{E}_{a \sim \mathbf{r}} k(\cdot, a)$.
- Gaussian kernel on (product) distributions. Two-staged random feature approx.:

$$\kappa(\mathbf{r}, \mathbf{s}) = \exp\left(-\frac{\|\mu_{\mathbf{r}} - \mu_{\mathbf{s}}\|_{\mathcal{H}}^2}{2\gamma^2}\right) \stackrel{\mathbf{1}^{st}}{\approx} \exp\left(-\frac{\|\hat{\phi}(\mathbf{r}) - \hat{\phi}(\mathbf{s})\|_{D_{\mathrm{in}}}^2}{2\gamma^2}\right) \stackrel{\mathbf{2}^{nd}}{\approx} \hat{\psi}(\mathbf{r})^{\top} \hat{\psi}(\mathbf{s}).$$

Message Operator: Bayesian Linear Regression

- Input: $X = (x_1 | \cdots | x_N)$: N training incoming messages represented as random feature vectors.
- Output: $Y = (\mathbb{E}_{r_{f \to V}^1} u(v) | \cdots | \mathbb{E}_{r_{f \to V}^N} u(v)) \in \mathbb{R}^{D_y \times N}$: expected sufficient statistics of outgoing messages.
- Inexpensive online updates of posterior mean and covariance.
- Bayesian regression gives prediction and predictive variance.
- If predictive variance > threshold, query the importance sampling oracle.

Two-Staged Random Features

In: $\mathcal{F}(k)$: Fourier transform of k, D_{in} : #inner features, D_{out} : #outer features, k_{gauss} : Gaussian kernel on $\mathbb{R}^{D_{\text{in}}}$

Out: Random features $\hat{\psi}(\mathbf{r}) \in \mathbb{R}^{D_{\mathrm{out}}}$

- 1: Sample $\{\omega_i\}_{i=1}^{D_{\text{in}}} \overset{i.i.d}{\sim} \mathcal{F}(k), \qquad \{b_i\}_{i=1}^{D_{\text{in}}} \overset{i.i.d}{\sim} U[0, 2\pi].$
- 2: $\hat{\phi}(\mathbf{r}) = \sqrt{\frac{2}{D_{\text{in}}}} \left(\mathbb{E}_{x \sim \mathbf{r}} \cos(\omega_i^{\mathsf{T}} x + b_i) \right)_{i=1}^{D_{\text{in}}} \in \mathbb{R}^{D_{\text{in}}}$
- 3: Sample $\{\nu_i\}_{i=1}^{D_{\text{out}}} \stackrel{i.i.d}{\sim} \mathcal{F}(k_{\text{gauss}}(\gamma^2)), \qquad \{c_i\}_{i=1}^{D_{\text{out}}} \stackrel{i.i.d}{\sim} U[0, 2\pi].$
- 4: $\hat{\psi}(\mathbf{r}) = \sqrt{\frac{2}{D_{\text{out}}}} \left[\cos(\nu_i^{\top} \hat{\phi}(\mathbf{r}) + c_i) \right]_{i=1}^{D_{\text{out}}} \in \mathbb{R}^{D_{\text{out}}}$

Experiment 1: Uncertainty Estimates

- Approx. $f(p|z) = \delta \left(p \frac{1}{1 + \exp(-z)} \right)$.
- Incoming messages:

$$m_{z_i \to f} = \mathcal{N}(z_i; \mu, \sigma^2),$$

 $m_{p_i \to f} = \text{Beta}(p_i; \alpha, \beta).$

- Training messages collected from 20 EP runs on toy data.
- #Random features: $D_{in} = 300$ and $D_{out} = 500$.

Experiment 2: Real Data

- Binary logistic regression. Sequentially present 4 real datasets to the operator.
- Diverse distributions of incoming messages.

Much faster with same classification errors as obtained by importance sampling.

- Sampling + KJIT = proposed KJIT with an importance sampling oracle.
- KJIT operator can adapt to the change of input message distributions.

Experiment 3: Compound Gamma Factor

Infer posterior of the precision τ of $x \sim \mathcal{N}(x; 0, \tau^{-1})$ from observations $\{x_i\}_{i=1}^N$:

- Infer.NET + KJIT = proposed KJIT with a hand-crafted factor as oracle.
- Inference quality: as good as hand-crafted factor; much faster.