Chapter 9 - Lecture 4 P-values

Yuan Huang

March 13, 2013

1 Introduction

2 Calculating p- values

3 Examples: use p-values in 5-step procedure

Introduction

In the 5-step procedure, we are given a significant level α and calculate the rejection region. If the value of test statistic falls in the rejection region, we reject H_0 ; otherwise, fail to reject H_0 .

Today, we introduce an alternative way of reaching a conclusion in hypothesis testing. In this approach, we will calculate a certain probability called *p-value*.

Definition

P-value is the probability, of obtaining a test statistic at least as contradictory to the null hypothesis as the one we have calculated from the available sample, assuming the null hypothesis is true.

- P-values are important for the following reason:
 - If p-value $\leq \alpha$ we reject H_0
 - If p-value $> \alpha$ we do not reject H_0
- So in the 5-step procedure of testing hypotheses, we can replace "Step 4: Determine the rejection/critical region *C*" with the following step:
 - Step 4: Calculate the p-value

Proposition

The P-value is the smallest significance level α at which the null hypothesis can be rejected. Because of this, the P-value is alternatively referred to as the **observed significance level** for the data.

Calculating p- values

How do we calculate p-values?

- p-values depend on the tests conducted. Hence, the calculation will be done most of the time by definition.
- 1 z test / t test;
- upper-tailed / lower-tailed / two-tailed;

- **1** Two-sided test $H_1: \mu \neq \mu_0: P(|Z| > z), P(|T| > t)$;
- 2 Upper-tailed test $H_1: \mu > \mu_0: P(Z > z)$, P(T > t);
- **3** Lower-tailed test $H_1: \mu < \mu_0$: P(Z < z), P(T < t).

Next 3 slides will use the z test as an example to illustrate the p-value. (z test has z curve and t test will have t_{n-1} curve.)

Two-sided test $H_1: \mu \neq \mu_0$

Upper-tailed test $H_1: \mu > \mu_0$

Lower-tailed test H_1 : $\mu < \mu_0$

Example 9.17

Example 9.17: The target thickness for silicon wafers used in a type of integrated circuit is 245 μm . A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of 246.18 μm and a sample standard deviation of 3.60 μm . Does this data suggest that true average wafer thickness is something other than the target value?

step1: $H_0: \mu = 245$ vs $H_1: \mu \neq 245$, where $\mu =$ true average wafer thickness

step1: $H_0: \mu =$ 245 vs $H_1: \mu \neq$ 245, where $\mu =$ true average wafer thickness

step2: Test statistic value: $z = \frac{\bar{x} - 245}{s/\sqrt{n}}$

step1: H_0 : $\mu = 245$ vs H_1 : $\mu \neq 245$, where $\mu =$ true average wafer thickness

step2: Test statistic value: $z = \frac{\bar{x}-245}{s/\sqrt{n}}$

step3: Null distribution (Distribution of Z under H_0) is N(0,1).

- step1: $H_0: \mu = 245$ vs $H_1: \mu \neq 245$, where $\mu =$ true average wafer thickness
- step2: Test statistic value: $z = \frac{\bar{x}-245}{s/\sqrt{n}}$
- step3: Null distribution (Distribution of Z under H_0) is N(0,1).
- step4: Determine the P-value. Since it's a two-sided test, $P-vlaue=P(|Z|>z)=P(Z>z)+P(Z<-z)=2[1-\Phi(z)]$

- step1: $H_0: \mu = 245$ vs $H_1: \mu \neq 245$, where $\mu =$ true average wafer thickness
- step2: Test statistic value: $z = \frac{\bar{x}-245}{s/\sqrt{n}}$
- step3: Null distribution (Distribution of Z under H_0) is N(0,1).
- step4: Determine the P-value. Since it's a two-sided test, $P-vlaue = P(|Z|>z) = P(Z>z) + P(Z<-z) = 2[1-\Phi(z)]$
- step5: Based on the data, plug in $\bar{x} = 246.18$, s = 3.60 $\rightarrow z = 2.32 \rightarrow P value = 2[1 \Phi(2.32)] = 0.0204$.
 - If $\alpha = 0.01$, fail to reject H_0 .
 - If $\alpha = 0.05$, reject H_0 .