第9章自测练习

1、有一接地的金属球,用一弹簧吊起,金属球原来不带电.若 在它的下方放置一电荷为 q 的点电荷, 如图所示, 则

- (B) 只有当q < 0时,金属球才下移.
- (C) 无论 q 是正是负金属球都下移.
- (D) 无论 q 是正是负金属球都不动.

2、如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在 球壳中一点 P 处的场强大小与电势(设无穷远处为电势零点)分别为:

Γ

7

- (A) E = 0, U > 0. (B) E = 0, U < 0.
- (C) E = 0, U = 0. (D) E > 0, U < 0.

3、如图所示,一封闭的导体壳 A 内有两个导体 B 和 C. A、C 不 带电, B 带正电, 则 $A \setminus B \setminus C$ 三导体的电势 $U_A \setminus U_B \setminus U_C$ 的大小 关系是[٦

- (B) $U_B > U_A = U_C$.
- (C) $U_B > U_C > U_A$.
- (D) $U_B > U_A > U_C$.

4、 图示一均匀带电球体, 总电荷为+O, 其外部同心地罩一内、外半径分别为 r_1 、 r_2 的金属球壳. 设无穷远处为电势零点,则在球壳内半径为r的P点处的场 强和电势为:

(A)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(B)
$$E=0$$
, $U=\frac{Q}{4\pi\varepsilon_0 r_1}$.

(C)
$$E = 0$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(D)
$$E = 0$$
, $U = \frac{Q}{4\pi\varepsilon_0 r_2}$.

在带有电荷+O 的金属球产生的电场中,为测量某点场强 \bar{E} ,在该点引入 一电荷为+Q/3的点电荷,测得其受力为 \bar{F} .则该点场强 \bar{E} 的大小

(A)
$$E = \frac{3F}{Q}$$
. (B) $E > \frac{3F}{Q}$.

(B)
$$E > \frac{3F}{O}$$

(C)
$$E < \frac{3F}{O}$$
. (D) 无法判断.

ГВ

- 6、半径分别为 R 和 r 的两个金属球,相距很远. 用一根细长导线将两球连接在一起并使它们带电. 在忽略导线的影响下,两球表面的电荷面密度之比 σ_R/σ_r 为
 - (A) R/r.
- (B) R^2 / r^2 .
- (C) r^2 / R^2 .
- (D) r/R.

- 7、 选无穷远处为电势零点,半径为R的导体球带电后,其电势为 U_0 ,则球外离球心距离为r处的电场强度的大小为
 - $(A) \quad \frac{R^2 U_0}{r^3}.$

(B) $\frac{U_0}{R}$.

(C) $\frac{RU_0}{r^2}$.

(D) $\frac{U_0}{r}$.

[C

7

8、 一长直导线横截面半径为a,导线外同轴地套一半径为b的薄圆筒,两者互相绝缘,并且外筒接地,如图所示. 设导线单位长度的电荷为+ λ ,并设地的电势为零,则两导体之间的P点(OP=r)的场强大小和电势分别为:

(A)
$$E = \frac{\lambda}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{a}$.

- (B) $E = \frac{\lambda}{4\pi\varepsilon_0 r^2}$, $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{r}$.
- (C) $E = \frac{\lambda}{2\pi\varepsilon_0 r}$, $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{a}{r}$.
- (D) $E = \frac{\lambda}{2\pi\varepsilon_0 r}$, $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{r}$.

9、一带电大导体平板,平板二个表面的电荷面密度的代数和为 σ ,置于电场强度为 \bar{E}_0 的均匀外电场中,且使板面垂直于 \bar{E}_0 的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为[

Γ

- (A) $E_0 \frac{\sigma}{2\varepsilon_0}$, $E_0 + \frac{\sigma}{2\varepsilon_0}$.
- (B) $E_0 + \frac{\sigma}{2\varepsilon_0}$, $E_0 + \frac{\sigma}{2\varepsilon_0}$.
- (C) $E_0 + \frac{\sigma}{2\varepsilon_0}$, $E_0 \frac{\sigma}{2\varepsilon_0}$.
- (D) $E_0 \frac{\sigma}{2\varepsilon_0}$, $E_0 \frac{\sigma}{2\varepsilon_0}$.
- 10、A、B 为两导体大平板,面积均为 S,平行放置,如图所示. A 板带电荷+ Q_1 ,B 板带电荷+ Q_2 ,如果使 B 板接地,则 AB 间电场强度的大小 E 为

- (A) $\frac{Q_1}{2\varepsilon_0 S}$.
- (B) $\frac{Q_1 Q_2}{2\varepsilon_0 S}.$
- (C) $\frac{Q_1}{\varepsilon_0 S}$.
- (D) $\frac{Q_1 + Q_2}{2\varepsilon_0 S}.$

-

(D)
$$d_2^2/d_1^2$$
.

12、 同心导体球与导体球壳周围电场的电场线分布如图 所示, 由电场线分布情况可知球壳上所带总电荷

(B)
$$q = 0$$
.

(C)
$$q < 0$$
.

Γ

7

- (A) 表面上电荷密度较大处电势较高.
- (B) 表面曲率较大处电势较高.
- (C) 导体内部的电势比导体表面的电势高.
- (D) 导体内任一点与其表面上任一点的电势差等于 零. [D]

14、 在一点电荷 q 产生的静电场中,一块电介质如图放置,以点电荷所在处 为球心作一球形闭合面 S,则对此球形闭合面:

- (A) 高斯定理成立,且可用它求出闭合面上各点的场强.
- (B) 高斯定理成立,但不能用它求出闭合面上各点的场强.
- (C) 由于电介质不对称分布,高斯定理不成立.
- 即使电介质对称分布,高斯定理也不成 (D) $\lceil B \rceil$

15、一平行板电容器中充满相对介电常量为 ε 的各向同性均匀电介质. 已知介质 表面极化电荷面密度为 $\pm \sigma'$,则极化电荷在电容器中产生的电场强度的大小为:

(A)
$$\frac{\sigma'}{\varepsilon_0}$$
.

(B)
$$\frac{\sigma'}{\varepsilon_0 \varepsilon_r}$$
.
(D) $\frac{\sigma'}{\varepsilon_r}$.

(C)
$$\frac{\sigma'}{2\varepsilon_0}$$
.

(D)
$$\frac{\sigma'}{\varepsilon_{-}}$$
.

电

质

16、一平行板电容器始终与端电压一定的电源相联. 当电容器两极板间为真空时, 电场强度为 \vec{E}_0 , 电位移为 \vec{D}_0 , 而当两极板间充满相对介电常量为 ϵ , 的各向同性 均匀电介质时, 电场强度为 \bar{E} , 电位移为 \bar{D} , 则

(A)
$$\vec{E} = \vec{E}_0 / \varepsilon_r$$
, $\vec{D} = \vec{D}_0$

$$({\rm A}) \quad \vec{E} = \vec{E}_0 \, / \, \varepsilon_r \, , \quad \vec{D} = \vec{D}_0 \, . \qquad \qquad ({\rm B}) \quad \vec{E} = \vec{E}_0 \, , \quad \vec{D} = \varepsilon_r \vec{D}_0 \, . \label{eq:equation_eq}$$

(C)
$$\vec{E} = \vec{E}_0 / \varepsilon_r$$
, $\vec{D} = \vec{D}_0 / \varepsilon_r$. (D) $\vec{E} = \vec{E}_0$, $\vec{D} = \vec{D}_0$.

(D)
$$\vec{E} = \vec{E}_0$$
, $\vec{D} = \vec{D}_0$.

17、两只电容器, $C_1 = 8 \mu F$, $C_2 = 2 \mu F$, 分别把它们充电到 1000 + V, 然后将它们反接(如图所示), 此时两极板间的电势差为:

 C_1 和 C_2 两空气电容器串联以后接电源充电. 在电源保持联接的情况下,在 C_2 中插入一电介质板,则

- (A) C_1 极板上电荷增加, C_2 极板上电荷增加.
- (B) C_1 极板上电荷减少, C_2 极板上电荷增加.
- (C) C_1 极板上电荷增加, C_2 极板上电荷减少.
- (D) C₁ 极板上电荷减少, C₂ 极板上电荷减少. [A]

- (A) 增大.
- (B) 减小.
- (C) 不变.
- (D) 如何变化无法确定.

20、将一空气平行板电容器接到电源上充电到一定电压后, 在保持与电源连接的情况下,再将一块与极板面积相同的金属板 平行地插入两极板之间,如图所示.金属板的插入及其所处位置 的不同,对电容器储存电能的影响为:

Γ

- (B) 储能减少,且与金属板相对极板的位置有关.
- (C) 储能增加,但与金属板相对极板的位置无关.
- (D) 储能增加,且与金属板相对极板的位置有关.

 $\begin{bmatrix} C \end{bmatrix}$

答案:

C B C D B D C D A C B C D B A B C A B C