Linear Mixed Model Cheat Sheet

LINEAR MIXED MODEL

$$y = X\tau + Zu + e$$
 (1)

where

- ${m y}$ is a $n \times 1$ vector of observations,
- \boldsymbol{X} is a $n \times p$ design matrix of fixed effects $\boldsymbol{\tau}$ with rank $p_0 \leq p$,
- ${m Z}$ is a $n \times q$ design matrix of random effects ${m u}$, and
- e is a $n \times 1$ vector of random error.

Assume

$$\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{e} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}, \begin{bmatrix} \boldsymbol{G}(\boldsymbol{\kappa}_G) & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}(\boldsymbol{\kappa}_R) \end{bmatrix} \end{pmatrix}.$$

MIXED MODEL EQUATION

$$\underbrace{\begin{bmatrix} \boldsymbol{X}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{X}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{Z} \\ \boldsymbol{Z}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{X} & \boldsymbol{Z}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{Z} + \boldsymbol{G}^{-1} \end{bmatrix}}_{(\boldsymbol{W}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{W} + \boldsymbol{G}^*)} \underbrace{\begin{bmatrix} \hat{\boldsymbol{\tau}} \\ \tilde{\boldsymbol{u}} \end{bmatrix}}_{\tilde{\boldsymbol{\beta}}} = \underbrace{\begin{bmatrix} \boldsymbol{X}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{y} \\ \boldsymbol{Z}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{y} \end{bmatrix}}_{\boldsymbol{W}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{y}}$$

$$\left. \begin{array}{l} \hat{\boldsymbol{\tau}} = (\boldsymbol{X}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{X})^{\!\top} \boldsymbol{X}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{y} \\ \tilde{\boldsymbol{u}} = \boldsymbol{G} \boldsymbol{Z}^{\!\top} \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{y} = \boldsymbol{G} \boldsymbol{Z}^{\!\top} \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\tau}}) \end{array} \right\} \tilde{\boldsymbol{\beta}} = \boldsymbol{C}^{\!\top} \boldsymbol{W}^{\!\top} \boldsymbol{R}^{-1} \boldsymbol{y}$$

PREDICTION ERROR VARIANCE

$$\operatorname{var}(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}) = \boldsymbol{C}^-$$

$$\begin{bmatrix} (\boldsymbol{X}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{X})^{-} & -(\boldsymbol{X}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{X})^{\!-} \boldsymbol{X}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{Z} \boldsymbol{G} \\ -\boldsymbol{G} \boldsymbol{Z}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{V}^{-1} \boldsymbol{X})^{-} & \boldsymbol{G} - \boldsymbol{G} \boldsymbol{Z}^{\!\top} \boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{Z} \boldsymbol{G} \end{bmatrix}$$

Non-full rank $oldsymbol{X}$

- If rank(X) is less than full-rank then the inverse of $X^{\top}V^{-1}X$ does not exist.
- Let T be a permutation matrix such that $XT = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$ where X_2 is full rank.
- Let $X^* = XT$ and $au^* = T^{\scriptscriptstyle op} au$. Note that $X au = X^* au^*$.
- Note $X_1 = X_2 F$ for some matrix F.
- Note T is orthogonal so $T^{-1} = T^{T}$.
- Selected generalise inverse of $oldsymbol{X}^{\! op} oldsymbol{V}^{-1} oldsymbol{X}$ is

$$m{T}egin{bmatrix} m{0} & m{0} \ m{0} & (m{X}_2^{\! op}m{V}^{-1}m{X}_2)^{-1} \end{bmatrix}m{T}^{\! op}$$

and we select $\tau_1 = 0$.

MISCELLANEOUS

- $V = ZGZ^{\mathsf{T}} + R$
- $P_X = V^{-1} V^{-1}X(X^{T}V^{-1}X)^{-}X^{T}V^{-1}$
- $P_X = V^{-1} V^{-1} X_2 (X_2^{\mathsf{T}} V^{-1} X_2)^{-1} X_2^{\mathsf{T}} V^{-1}$
- $P_X = R^{-1} R^{-1}WC^{-}W^{T}R^{-1}$
- $V^{-1} = R^{-1} R^{-1}Z(Z^{T}R^{-1}Z + G^{-1})^{-1}Z^{T}R^{-1}$
- $GZ^{T}V^{-1} = (Z^{T}R^{-1}Z + G^{-1})^{-1}Z^{T}R^{-1}$

RESIDUAL

- Marginal residual $\hat{e}=y-X\hat{ au}=Z ilde{u}+e.$
- Model-based residual $ilde{e} = oldsymbol{R} oldsymbol{P}_X oldsymbol{y} = oldsymbol{R} oldsymbol{V}^{-1} \hat{e}$
- Conditional residual is $r_i = (oldsymbol{\delta}_i^{\! {\scriptscriptstyle extsf{T}}} oldsymbol{P}_X oldsymbol{\delta}_i)^{-1} oldsymbol{\delta}_i^{\! {\scriptscriptstyle extsf{T}}} oldsymbol{P}_X oldsymbol{y}.$
- Studentised conditional residual $t_i = r_i/\sqrt{\mathrm{var}(r_i)}$ where $\mathrm{var}(r_i) = (\boldsymbol{\delta}_i^{\scriptscriptstyle \sf T} \boldsymbol{P}_X \boldsymbol{\delta}_i)^{-1}$.
- Residual sum of squares $y^{\mathsf{T}} P y$.

VARIANCE PARAMETERS

Suppose $L = \begin{bmatrix} L_1 & L_2 \end{bmatrix}$ is a non-singular matrix and L_1 and L_2 are $n \times p_0$ and $n \times (n - p_0)$ matrices such that

$$oldsymbol{L}_1^{\!\scriptscriptstyle op} oldsymbol{X}_2 = oldsymbol{I}_{p_0} \qquad \text{and} \qquad oldsymbol{L}_2^{\!\scriptscriptstyle op} oldsymbol{X}_2 = oldsymbol{0}.$$

Residual likelihood

$$\ell_{R} = -\frac{n-p_{0}}{2} \log 2\pi - \frac{1}{2} \log |\boldsymbol{L}_{2}^{\mathsf{T}} \boldsymbol{V} \boldsymbol{L}_{2}| - \frac{1}{2} \boldsymbol{y}_{2}^{\mathsf{T}} (\boldsymbol{L}_{2}^{\mathsf{T}} \boldsymbol{V} \boldsymbol{L}_{2})^{-1} \boldsymbol{y}_{2}$$

$$= -\frac{n-p_{0}}{2} \log 2\pi - \frac{1}{2} \log |\boldsymbol{L}^{\mathsf{T}} \boldsymbol{L}| - \frac{1}{2} |\boldsymbol{V}| - \frac{1}{2} \log |\boldsymbol{X}_{2}^{\mathsf{T}} \boldsymbol{V}^{-1} \boldsymbol{X}_{2}| - \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \boldsymbol{P}_{X} \boldsymbol{y}$$

$$= \text{constant w.r.t. } \boldsymbol{\kappa} - \frac{1}{2} |\boldsymbol{V}| - \frac{1}{2} \log |\boldsymbol{X}_{2}^{\mathsf{T}} \boldsymbol{V}^{-1} \boldsymbol{X}_{2}| - \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \boldsymbol{P}_{X} \boldsymbol{y}$$

$$\ell_R = -\frac{1}{2} \left\{ \log |\boldsymbol{G}| + \log |\boldsymbol{R}| + \log |\boldsymbol{C}| + \boldsymbol{y}^{\mathsf{T}} \boldsymbol{P}_X \boldsymbol{y} \right\}$$

Residual score equations

$$\boldsymbol{u}_R(\kappa_i) = -\frac{1}{2} \left\{ \operatorname{tr} \left(\boldsymbol{P}_X \boldsymbol{\mathring{V}}_i \right) - \boldsymbol{y}^{\!\top} \boldsymbol{P}_X \boldsymbol{\mathring{V}}_i \boldsymbol{P}_X \boldsymbol{y} \right\}$$

where $\mathbf{\dot{V}}_i = \partial \mathbf{V}/\partial \kappa_i$.

$$u_R(\kappa_{R_i}) = -\frac{1}{2} \left(\operatorname{tr} \left(\boldsymbol{R}^{-1} \boldsymbol{\mathring{R}}_i \right) - \operatorname{tr} \left(\boldsymbol{C}^{-} \boldsymbol{W}^{\mathsf{T}} \boldsymbol{R}^{-1} \boldsymbol{\mathring{R}}_i \boldsymbol{R}^{-1} \boldsymbol{W} \right) - \tilde{\boldsymbol{e}} \boldsymbol{R}^{-1} \boldsymbol{\mathring{R}}_i \boldsymbol{R}^{-1} \tilde{\boldsymbol{e}} \right)$$
$$u_R(\kappa_{G_i}) = -\frac{1}{2} \left(\operatorname{tr} \left(\boldsymbol{G}^{-1} \boldsymbol{\mathring{G}}_i \right) - \operatorname{tr} \left(\boldsymbol{G}^{-1} \boldsymbol{\mathring{G}}_i \boldsymbol{G}^{-1} \boldsymbol{C}^{ZZ} \right) - \tilde{\boldsymbol{u}}^{\mathsf{T}} \boldsymbol{G}^{-1} \boldsymbol{\mathring{G}}_i \boldsymbol{G}^{-1} \tilde{\boldsymbol{u}} \right)$$

where $\mathbf{\mathring{R}}_i = \partial \mathbf{R}/\partial \kappa_{R_i}$ and $\mathbf{\mathring{G}}_i = \partial \mathbf{G}/\partial \kappa_{G_i}$.

Quasi Newton-Raphson algorithm

$$oldsymbol{\kappa}^{(m+1)} = oldsymbol{\kappa}^{(m)} - \left[rac{\delta oldsymbol{u}_R(oldsymbol{\kappa})}{\delta oldsymbol{\kappa}^{ op}}
ight]_{oldsymbol{\kappa} = oldsymbol{\kappa}^{(m)}}^{-1} oldsymbol{u}_R(oldsymbol{\kappa}^{(m)})$$

Information Matrix

$$\mathcal{I}_{o}(\kappa_{i}, \kappa_{j}) = \frac{1}{2} \left\{ \operatorname{tr} \left(\boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{ij} \right) - \operatorname{tr} \left(\boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{i} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{j} \right) + \boldsymbol{y}^{\mathsf{T}} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{i} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{j} \boldsymbol{P}_{X} \boldsymbol{y} - \boldsymbol{y}^{\mathsf{T}} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{ij} \boldsymbol{P}_{X} \boldsymbol{y} \right\}
\mathcal{I}_{e}(\kappa_{i}, \kappa_{j}) = \frac{1}{2} \operatorname{tr} \left(\boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{i} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{j} \boldsymbol{P}_{X} \right)
\mathcal{I}_{A}(\kappa_{i}, \kappa_{j}) = \frac{1}{2} \boldsymbol{y}^{\mathsf{T}} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{i} \boldsymbol{P}_{X} \boldsymbol{\dot{V}}_{j} \boldsymbol{P}_{X} \boldsymbol{y} = \frac{1}{2} \boldsymbol{Q}^{\mathsf{T}} \boldsymbol{P}_{X} \boldsymbol{Q}$$

where $m{Q} = egin{bmatrix} m{q}_1 & \cdots & m{q}_{n_\kappa} \end{bmatrix}$ and $m{q}_i = m{\dot{V}}_i m{P}_X m{y}$ (the working vector for κ_i).

Augmented MMEs

$$oldsymbol{M} = egin{bmatrix} oldsymbol{C}_{QQ} & oldsymbol{C}_{yQ}^{ op} & oldsymbol{C}_{XQ}^{ op} & oldsymbol{C}_{ZQ}^{ op} \ oldsymbol{C}_{yQ} & oldsymbol{C}_{yy} & oldsymbol{C}_{Xy}^{ op} & oldsymbol{C}_{Zy}^{ op} \ oldsymbol{C}_{XQ} & oldsymbol{C}_{XY} & oldsymbol{C}_{XX} & oldsymbol{C}_{XZ} \ oldsymbol{C}_{ZQ} & oldsymbol{C}_{Zy} & oldsymbol{C}_{ZX} & oldsymbol{C}_{ZZ} \ \end{bmatrix}$$

where $C_{QQ} = Q^T R^{-1}Q$, $C_{XQ} = X^T R^{-1}Q$, and so on. Following the absorption of C provides $\tilde{\beta}$, C_+^{-1} (and C_-^{-1}) as well as $\log |C|_+$.

MEAN SHIFT OUTLIER MODEL

$$y = X\tau + Zu + \delta_I\phi_I + e \tag{2}$$

where $\pmb{\delta}_I$ is a $n \times 1$ binary vector where the $i \in I$ positions is 1 and 0 else where and ϕ_I is the fixed mean shift effect for the set I

Solution

$$\hat{\boldsymbol{\tau}} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{P}_{\delta_I} \boldsymbol{X})^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{P}_{\delta_I} \boldsymbol{y}
\hat{\phi}_I = (\boldsymbol{\delta}_I^{\mathsf{T}} \boldsymbol{P}_X \boldsymbol{\delta}_I)^{\mathsf{T}} \boldsymbol{\delta}_I^{\mathsf{T}} \boldsymbol{P}_X \boldsymbol{y}
\tilde{\boldsymbol{u}} = \boldsymbol{G} \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\tau}} - \boldsymbol{\delta}_I \hat{\phi}_I)$$

where $m{P}_{m{\delta}_I} = m{V}^{-1} - m{V}^{-1} m{\delta}_I (m{\delta}_I^{\scriptscriptstyle \intercal} m{V}^{-1} m{\delta}_I)^- m{\delta}_I^{\scriptscriptstyle \intercal} m{V}^{-1}.$

VARIANCE SHIFT / ALTERNATIVE OUTLIER MODEL

$$y = X\tau + Zu + \delta_I o_I + e \tag{3}$$

where $o_I \sim N(0, \sigma_o^2 \boldsymbol{I}_{|I|})$.

Solution

$$\begin{array}{rcl} \hat{\boldsymbol{\tau}} & = & (\boldsymbol{X}^{\!\top} (\boldsymbol{V} + \boldsymbol{\sigma}_o^2 \boldsymbol{I}_{|I|})^{-1} \boldsymbol{X})^{\!-} \boldsymbol{X}^{\!\top} (\boldsymbol{V} + \boldsymbol{\sigma}_o^2 \boldsymbol{I}_{|I|})^{-1} \boldsymbol{y} \\ \tilde{o}_I & = & (\boldsymbol{\delta}_I^{\!\top} \boldsymbol{P}_X \boldsymbol{\delta}_I)^{\!-} \boldsymbol{\delta}_I^{\!\top} \boldsymbol{P}_X \boldsymbol{y} \\ \tilde{\boldsymbol{u}} & = & \boldsymbol{G} \boldsymbol{Z}^{\!\top} (\boldsymbol{V} + \boldsymbol{\sigma}_o^2 \boldsymbol{I}_{|I|})^{-1} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\tau}}) \end{array}$$

where $m{P}_{m{\delta}_I} = m{V}^{-1} - m{V}^{-1} m{\delta}_I (m{\delta}_I^{\scriptscriptstyle op} m{V}^{-1} m{\delta}_I)^{\scriptscriptstyle op} m{\delta}_I^{\scriptscriptstyle op} m{V}^{-1}.$

REFERENCES

- [1] Charles Roy Henderson. Estimation of changes in herd environment. *Journal of Dairy Science*, 32(Abstract):706, 1949.
- [2] Alison B Smith, Brian R Cullis, and Robin Thompson.
 The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches.
 The Journal of Agricultural Science, 143(06):449—-462, 2005.