9.2

Étude d'une fonction affine

SECONDE 7 - JB DUTHOIT

9.2.1 Variations et parité

Propriété 9. 44

Soit f une fonction affine définie par f(x) = mx + p.

- Si m < 0, alors f est strictement décroissante sur \mathbb{R} .
- Si m>0 , alors f est strictement croissante sur $\mathbb R$

Cas où m > 0.

Cas où m < 0.

Remarque

Si m = 0 alors la fonction f est constante sur \mathbb{R} .

Exemple

- soit f définie par f(x) = 2x + 3. m = 2 donc m > 0 et donc la fonction f est strictement croissante sur $\mathbb R$.
- soit g définie par g(x)=-x+3. m=-1 donc m<0 et donc la fonction f est strictement décroissante sur $\mathbb R$.

Propriété 9. 45

Soit \bar{f} une fonction définie sur \mathbb{R} par f(x) = mx + p, avec $m \in \mathbb{R}$ et $p \in \mathbb{R}$.

- Si $m \neq 0$ et $p \neq 0$, alors f est ni paire, ni impaire. (Figure 9.1).
- Si m = 0, alors f est paire. (Figure 9.2).
- Si p = 0, alors f est impaire. (Figure 9.3).

Figure 9.1

Figure 9.2

Figure 9.3

9.2.2 Signe d'une fonction affine

Approche : Lien entre variation d'une fonction affine et signe d'une fonction affine : étude d'un exemple

On désire déterminer le signe de f(x) = 2x + 4, quand a-t-on f(x) = 0? Quel est le sens de variations de f? Que peut-on en déduire au niveau du signe de f(x)?

Propriété

Propriété 9. 46

On considère la fonction affine f définie sur \mathbb{R} par f(x) = mx + p.

- Si m=0, la fonction f est constante, et son signe l'est également
- Si m > 0, alors on a:

• Si m < 0, alors on a:

x	$-\infty$	$-\frac{p}{m}$	$+\infty$
f(x) = mx + p	+	0 -	_

Savoir-Faire 9.32

SAVOIR ÉTUDIER LE SIGNE D'UNE FONCTION AFFINE.

Étudier le signe des fonctions affines suivantes :

- f(x) = 3x + 4
- f(x) = -3x + 4
- f(x) = 3
- f(x) = 2x 5

Se m'entraîne seul(e)

Étudier le signe des fonctions suivantes :

- f(x) = 5x + 10. Rép f(x) > 0 sur] 2; $+\infty$ [et f(x) < 0 sur $] \infty$; -2[.
- f(x) = 5x 2. Rép f(x) > 0 sur $]\frac{2}{5}$; $+\infty[$ et f(x) < 0 sur $] \infty; \frac{2}{5}[$.
- f(x) = 1 x. Rép f(x) < 0 sur $]1; +\infty[$ et f(x) > 0 sur $]-\infty; 1[$.
- f(x) = -3x + 7. Rép f(x) < 0 sur $]\frac{7}{3}$; $+\infty$ [et f(x) > 0 sur $]-\infty$; $\frac{7}{3}$ [.

• f(x) = -3. Rép Pour tout $x \in \mathbb{R}$, f(x) < 0.