ALGORITHM ANALYSIS ~ 01

CSE/IT 122 ~ Algorithms & Data Structures

WHAT IS AN ALGORITHM?

WHAT IS AN ALGORITHM?

→ Definition: An algorithm is a definite procedure for solving a problem using a *finite* number of steps

SUM THE FIRST N INTEGERS

```
As a C function, we might write:
unsigned long long sum_forloop(unsigned long n){
   unsigned long i = 1;
   unsigned long long sum = 0.0;
   for(; 1 <=n; i++)
       sum += i;
   return sum;
```

SUM THE FIRST N INTEGERS

```
As pseudo-code, we might write:
Sum(n)
   i := 1
   sum := 0
   for i := 1 to n
       sum := sum + 1
   next i
   return sum
```

THE RUNNING TIME OF A PROGRAM

- \rightarrow Running Time, denoted by T(n), where n is the input size
- → T(n) is the number of instructions executed on an idealized computer
- \rightarrow No units for T(n)

ALGORITHM ANALYSIS

→ How many instructions would our initial code execute before completing? unsigned long long sum_forloop(unsigned long n){ unsigned long i = 1; unsigned long long sum = 0.0; for(; 1 <=n; i++) sum += i;return sum;

ALGORITHM ANALYSIS

- → Can we do better than T(n) = n to sum up the first n integers?
- → Is there, perhaps a very simply way to arrive at that answer?
- → A formula???

SUM THE FIRST N INTEGERS ~ TRY 2

```
Of course we can do better (We are computer scientists!)

Long sum(long sum){

Return (n * (n + 1)) / 2; // cost $c_1$; one time
}
```

SQUARE ROOT ~ BRUTE FORCE

→ Give me a brute force solution to finding a square root

SQUARE ROOT ~ BRUTE FORCE

- → Give me a brute force solution to finding a square root
- \rightarrow An upper bound is (n/2*step) times
- → Why?
- → Is $x^{0.5} < x/2$?
- → Yes. Show:
 - Since $x^2 4x = x(x 4) > 0$ when x > 4
 - Solve $x^2 > 4x$. Take square roots of both sides
 - x > sqrt(4x)
 - \star x/2 > sqrt(x)

SQUARE ROOT ~ BINARY SEARCH

- → Find the square root using a binary search
 - Algorithm:
 - Start with start = 0, end = x
 - Do the following while start is smaller than or equal to end
 - o Compute mid as (start + end) / 2
 - Compare *mid*mid* with x
 - If x is equal to mid*mid, return mid
 - If x is greater, do binary search between mid+1 and end
 - o If x is smaller, do binary search between start and mid
- → Much better performance than brute force
- → Can we do better?

- \rightarrow Let P(x) be a polynomial of degree n
- \rightarrow A root is a solution to P(x) = 0
- → Apply this to square roots:
 - $x^2 99 = 0$ is a polynomial
 - $x^2 = 99$
 - $\cdot \quad x = sqrt(99)$
 - Solving for x gives you the square root of 99

- Assume you know x_0 is close to the solution of the equation f(x) = 0, where f(x) is a differentiable equation
- ightharpoonup Then the tangent line F to the graph of f at the point with x-coordinate x_{ϱ} will ordinarily intersect the x-axis at a point whose x-coordinate, x_{1} is closer to the solution than x_{ϱ}

- → Using the point-slope equation of the tangent line F, we can write:
 - $\bullet \quad y f(x_0) = f'(x_0)(x x_0)$
 - Using the point $(x_0, f(x_0))$ and the slope of the line is the derivative
- \rightarrow If the tangent line F intersects the x-axis at $(x_1, 0)$ then:
 - 0 $f(x_0) = f'(x_0)(x_1 x_0)$
 - If f'(x) does not equal 0,
 - $(x_1 x_0) = -f(x_0)/f'(x_0)$ and
 - $X_1 = X_0 f(X_0)/f'(X_0)$
- \rightarrow Then simply repeat this process to get closer to x_1

- → As you repeat, you produce a sequence of numbers
 - $X_0, X_1, X_2, ..., X_n, ...$
 - determined by the formula $x_{n+1} = x_n f(x_n)/f'(x_n)$
- \rightarrow For any k, finding the root of $x^2 k = 0$ will find the sqrt(k)
- → What is the derivative?
 - + 2x
- → Thus, our formula is:
 - $X_{n+1} = X_n (X_n * X_n k) / (2 * X_n)$

PROVING THE SUM OF THE FIRST N POSITIVE INTEGERS

→ Why does the sum of the first n positive integers equal n(n+1) / 2?

PROVING THE SUM OF THE FIRST N POSITIVE INTEGERS

Example:

- → 1+2+3+4+5+6+7+8+9+10• Notice the following:• 1 + 10 = 11
 - · 2 + 9 = 11
 - · 3 + 8 = 11
 - 4 + 7 = 11
 - · 5 + 6 = 11
- \rightarrow This happens 5 times so 5 * 11 = 55
- \rightarrow Same as the formula 10(10 + 1) / 2
- \rightarrow This is not a *proof* for all n. Only shows it for the case n = 10