# Electronic Devices

Lecture 3 P-N Junction

Dr. Roaa Mubarak

# P-N Junction Diode

### P-N Junction Diode

 P-N junction is formed when a single crystal of semiconductor is doped with acceptors on one side and donors on the other side.



# **Equilibrium P-N junction:**

- Uniform doping in each region
- Thermal equilibrium



• A diffusion of free carriers due to the non-uniform concentration of charges between the two regions.



#### **Open Circuit P-N Junction**



$$V_o = \frac{KT}{q} \ln \left( \frac{N_A N_D}{ni^2} \right) = V_T \ln \left( \frac{N_A N_D}{ni^2} \right)$$

 $V_T$ = 26 mv at room temperature (300 K)

K: Boltzman Constant

 $N_A$ : Acceptor Concentration

 $N_D$ : Donor Concentration

ni: Intrinsic Concentration

$$\frac{KT}{q} \approx 0.026 \text{ V} = \text{VT}$$

### Biased P-N Junction

• Reverse Biased P-N junction (التوصيل المعكوس)

• Forward Biased P-N junction (التوصيل الأمامي )



### Reverse Biased P-N Junction



Reverse bias

## **Capacitor:**

- Used to store energy electrostatically.
- Contains 2 electrical conductors separated by dielectric.

• 
$$C = \frac{Q}{V}$$

$$\bullet V = \varepsilon L$$

$$\cdot C = \frac{Q}{\epsilon L}$$

More Space Less Capacitance





### Reverse Biased P-N Junction

- The P-N junction operates as a capacitor.
- The junction Capacitance can be written as:

$$\bullet \ C_j = C_{jo} \left(1 + \frac{V_R}{V_O}\right)^{-\frac{1}{2}}$$

 $C_{io}$ : the junction capacitance at zero applied voltage.

 $V_R$ : the reverse battery voltage.

 $V_o$ : the potential barrier.

#### Forward Biased P-N Junction

- Steady State minority Carrier Concentrations in a P-N junction under forward bias.
- The gradients in the minority carrier concentrations generate diffusion currents in the device.



#### **Diode symbol**





• Diode current voltage Relation :

$$I_D = I_S \left( e^{\frac{V_D}{\eta V_T}} - 1 \right)$$

*V<sub>D</sub>: Voltage across diode* 

*I<sub>D</sub> : Diode current* 

 $I_{S}$ : Reverse sturation current

*V<sub>T</sub>: Thermal voltage* 

η: Ideality Factor Constant (Si η=2, Ge η=1)