

Corso di Fondamenti di Telecomunicazioni

3 - SEGNALI DIGITALI E A IMPULSI IN BANDA BASE Prof. Giovanni Schembra

[parte 3]

.

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Codici di linea e spettri

Codici di linea binari

- principali codici di linea binari
- spettri di potenza dei codici di linea binari
- codifica differenziale

Codici di linea multilivello

- spettro di potenza dei segnali NRZ polari multilivello
- efficienza spettrale

3 - Segnali digitali e a impulsi in banda base [parte 3]

Codici di linea binari

Segnalazione bipolare o pseudo-ternaria

- Simbolo "1" --> livello che alterna di volta in volta tra +A e -A
- Simbolo "0" --> 0
- Chiamata anche AMI (Alternate Mark Inversion)

7

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Codici di linea binari

Segnalazione Manchester:

- Simbolo "1" --> successione di due impulsi +A -A, di durata pari a metà bit
- Simbolo "0" --> successione di due impulsi -A +A, di durata pari a metà bit
- Chiamata anche split-phase o bi-phase

Fondamenti di TLC - Prof. G. Schembra 3 - Segnali digitali e a impulsi in banda base [parte 3] Realizzazione di un codice di linea Segnale codificato Passi di codifica di linea: Input: sequenza di simboli PASSO 1: imposizione dei livelli PASSO 2: applicazione dell'impulso Esempio: codice AMI w(t)s(t)pplicazione di un 1011 Codice a 3 livelli: semi-impulso +A, 0, -A $\{w_k\}$ rettangolare

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Caratteristiche di un codice di linea ideale

- Assenza di accoppiamento in continua:
 - Se un codificatore di linea genera un segnale con valore medio non nullo, si dice che presenta un accoppiamento in continua. In tal caso non possono esser utilizzati circuiti accoppiati in alternata
- Mantenimento della sincronizzazione sorgente/destinazione:
 - il codice contiene in sé informazioni riguardo alla temporizzazione dei bit (facilità di estrazione del clock)
 - lunghe sequenze di 0 o di 1 non costituiscono un problema
- Bassa probabilità di errore:
 - i decodificatori in ricezione dovrebbero fornire bassa probabilità di errore anche in presenza di rumore e di ISI (interferenza intersimbolica)
 - dipende anche dalla forma dell'impulso
- Banda:
 - dovrebbe essere la minima possibile
- Capacità di rivelazione di errori:
 - dovrebbe fornire la capacità di rivelare a ricezione gli errori

3 - Segnali digitali e a impulsi in banda base [parte 3]

Alcuni vantaggi e svantaggi dei codici di linea binari

Unipolare NRZ

- facilmente generata da circuiti con singola tensione di alimentazione (+5V dei circuiti TTL)
- ma richiede un accoppiamento in continua (circuiteria con risposta in frequenza fino a 0 Hz), poiché il relativo segnale ha una componente continua diversa da zero

Polare NRZ

- non richiede accoppiamento in continua, purché il segnale commuti frequentemente tra i livelli 0 e 1, e purché il numero di 0 inviati sia mediamente uguale al numero di 1
- richiede circuiti ad alimentazione duale (+ e intorno allo 0)

Manchester

- presenta una componente a frequenza nulla che è sempre 0, indipendentemente dalla sequenza dati
- ma richiede una banda di frequenza doppia rispetto ai circuiti NRZ

11

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Spettri di potenza dei codici di linea binari

Calcolo dello spettro di potenza:

 Approccio deterministico (se è nota a priori la forma d'onda del segnale)

Per i codici di linea

Approccio statistico (se sono note solo le statistiche del segnale)

Si può dimostrare che:

• La densità spettrale di potenza per il segnale s(t) in uscita dal codificatore di linea, in funzione della funzione di autocorrelazione della sequenza a_n di simboli da trasmettere, è:

$$\mathcal{P}_{s}(f) = \frac{\left|F(f)\right|^{2}}{T_{s}} \sum_{k=-\infty}^{+\infty} R(k) e^{j2 \cdot nk f T_{s}}$$

 T_s : intervallo di simbolo =

per segnalazione binaria

 $|l \cdot T_b|$ per segnalazione multilivello

3 - Segnali digitali e a impulsi in banda base [parte 3]

Spettri di potenza dei codici di linea binari

dove:

f(t)impulso elementare

Per esempio, per formattazione con impulso rettangolare: $f(t) = \prod_{t=0}^{\infty} \frac{t}{t}$

- TF dell'impulso elementare
- R(k)funzione di autocorrelazione del segnale w(t), prima dell'applicazione

$$R(k) = E\{a_n \, a_{n+k}\} = \sum_{i=1}^{I} (a_n \, a_{n+k})_i \, P_i$$

- Numero di possibili coppie di simboli a distanza k
- P_{i} probabilità che il prodotto $a_n a_{n+k}$ assuma l'i-esimo valore possibile

13

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Spettri di potenza dei codici di linea binari strazione $\mathbb{P}(f) = \frac{\left|F(f)\right|^2}{T_c} \sum_{k=-\infty}^{+\infty} R(k) e^{j2\pi k f T_s}$

Dimostrazione

$$\mathcal{P}(f) = \frac{|F(f)|^2}{T_s} \sum_{k=-\infty}^{+\infty} R(k) e^{j2\pi kjT_s}$$

Sappiamo che la funzione densità spettrale di potenza per un processo aleatorio è definita come:

$$\mathcal{P}(f) = \lim_{T \to \infty} \left(\frac{E\left\{ X_T(f) \right|^2}{T} \right) \qquad \text{dove:} \qquad X_T(f) = \Im\left\{ x_T(t) \right\} = \int_{-T/2}^{+T/2} x(t) \, e^{-j2\pi f t} \, dt$$

Nel nostro caso:

$$X_{T}(f) = \Im\left\{\sum_{n=-N}^{+N} a_{n} f(t-nT_{s})\right\} = F(f) \sum_{n=-N}^{+N} a_{n} e^{-j2\pi f nT_{s}}$$
Allora abbiamo:

$$P(f) = \lim_{N \to \infty} \left(\frac{1}{(2N+1)T_s} |F(f)|^2 E \left\{ \left| \sum_{n=-N}^{N} a_n e^{-j2\pi f n T_s} \right|^2 \right\} \right)$$

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

[Solo per i 9 crediti]

Spettri di potenza dei codici di linea binari $\mathcal{P}(f) = \lim_{N \to \infty} \left(\frac{1}{(2N+1)T_s} |F(f)|^2 E \left\{ \left| \sum_{n=-N}^{N} a_n e^{-j2\pi j n T_s} \right|^2 \right\} \right)$ Poniamo m=n+k $\mathcal{P}(f) = |F(f)|^2 \lim_{N \to \infty} \left(\frac{1}{(2N+1)T_s} \sum_{n=-N}^{N} \sum_{n=-N}^{N} \sum_{k=-N-n}^{N-n} E \left\{ a_n a_{n+k} \right\} e^{-j2\pi j k T_s} \right)$ Poniamo m=n+kPer $N \to \infty$ $\sum_{k=-N-n}^{N-n} E \left\{ a_n a_{n+k} \right\} e^{-j2\pi j k T_s} = \sum_{k=-\infty}^{+\infty} R(k) e^{-j2\pi j k T_s} \text{ non dipende da } n$ Quindi: $\lim_{N \to \infty} \left(\frac{1}{(2N+1)T_s} \sum_{n=-N}^{N} \sum_{k=-N-n}^{N-n} \right) = \frac{(2N+1)}{(2N+1)T_s} \sum_{k=-\infty}^{+\infty} R(k) e^{-j2\pi j k T_s}$

3 - Segnali digitali e a impulsi in banda base [parte 3

Spettro di potenza del codice NRZ unipolare

Ouindi:

$$R(k) = \begin{cases} \frac{1}{2}A^2 & k = 0\\ \frac{1}{4}A^2 & k \neq 0 \end{cases}$$

Per impulsi NRZ rettangolari:

$$f(t) = \Pi\left(\frac{t}{T_b}\right) \xrightarrow{\text{TF}} F(f) = T_b \operatorname{sinc}(f T_b)$$

$$T_s = T_b$$

$$\begin{split} & \mathcal{P}_{\text{unipolare NRZ}}(f) \equiv \frac{|F(f)|^2}{T_s} \sum_{k=-\infty}^{+\infty} R(k) \, e^{j2\pi k j T_s} = A^2 \, T_b \, \text{sinc}^2 \Big(f \, T_b \Big) \Bigg[\frac{1}{2} + \frac{1}{4} \sum_{k=-\infty}^{+\infty} e^{j2\pi k j T_b} \Bigg] \\ & = \frac{A^2 \, T_b}{4} \, \text{sinc}^2 \Big(f \, T_b \Big) \Bigg[1 + \sum_{k=-\infty}^{+\infty} e^{j2\pi k j T_b} \Bigg] = \frac{A^2 \, T_b}{4} \, \text{sinc}^2 \Big(f \, T_b \Big) \Bigg[1 + \frac{1}{T_b} \sum_{n=-\infty}^{+\infty} \delta \Bigg(f - \frac{n}{T_b} \Bigg) \Bigg] \end{split}$$

3 - Segnali digitali e a impulsi in banda base [parte 3]

Densità spettrale di potenza per segnali NRZ polari multilivello

 $\mathcal{P}_{w_2}(f) = 63T_b \operatorname{sinc}^2(3fT_b)$

In generale, per $L=2^{\ell}$ livelli:

$$\mathcal{P}_{w_2}(f) = K_b \operatorname{sinc}^2(\ell f T_b)$$

Banda al primo nullo:

$$B_{null} = R/\ell$$

$$R = \frac{1}{T_b}$$

dove:

$$K_b = \ell P T_b$$

P = R(0): potenza trasmessa

33

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Efficienza spettrale

- Definizione:
 - L'efficienza spettrale di un segnale digitale è pari al numero di bit al secondo di informazione che possono essere trasmessi nella banda di un 1 Hz:

$$\eta = \frac{R}{B}$$
 (bit/sec)/Hz

- Obiettivo per la progettazione di un sistema di telecomunicazioni:
 - scegliere il codice di linea che massimizza η
- L'efficienza spettrale è anche limitata dal rumore di canale:

$$\eta_{\text{max}} = \frac{C}{B} = \log_2 \left(1 + \frac{S}{N} \right)$$
 Formula di Shannon

 Efficienza spettrale del codice NRZ polare a L=2^l livelli con impulso formattatore a IMPULSO RETTANGOLARE:

$$\eta = \frac{R}{B} = \frac{R}{R/\ell}$$
 $\eta = \ell \text{ (bit/sec)/Hz}$

3 - Segnali digitali e a impulsi in banda base [parte 3]

Codifica differenziale

- Descrizione del problema:
 - Nella trasmissione di dati seriali, può verificarsi l'inversione di segno dei dati trasmessi (ad esempio, per scambio dei 2 fili del doppino telefonico quando si usa un codice di linea polare)
- Soluzione: codifica differenziale:

$$e_n = d_n \oplus e_{n-1}$$

dove:

 d_n : dati di ingresso

 e_n : dati trasmessi

⊕:somma modulo 2 (XOR)

=1 solo se c'è differenza

In fase di decodifica:

$$\widetilde{d}_n = \widetilde{e}_n \oplus \widetilde{e}_{n-1}$$

- Anche in caso di inversione di valori:
 - dato che trasmetto solo le differenze, la sequenza viene sempre ricostruita correttamente

Fondamenti di TLC - Prof. G. Schembra

3 - Segnali digitali e a impulsi in banda base [parte 3]

Esempio di codifica differenziale

$$e_n = d_n \oplus e_{n-1}$$

$$\widetilde{d}_n = \widetilde{e}_n \oplus \widetilde{e}_{n-1}$$

TABELLA 3-4 ESEMPIO DI CODIFICA DIFFERENZIALE

Sequenza di ingresso	d_n		1	1	0	1	0	0	1
Sequenza codificata Bit di riferimento ———	e_n		0	1	1	0	0	0	1
Sequenza di decodifica ricevuta (con la corretta polarità)	\tilde{e}_n	1	0	1	1	0	0	0	1
Sequenza decodificata	\tilde{d}_n		1	1	0	1	0	0	1
Sequenza di decodifica ricevuta (con polarità invertita)	\tilde{e}_n	0	1	0	0	1	1	1	0
Sequenza decodificata	\tilde{d}_n	·	1	1	0	1	0	0	1

