ProgSet 3

CS 124: Data Structures and Algorithms

Due: Thursday, April 18, 2024 Denny Cao and Ossimi Ziv

§1 Number Partition

Input : A sequence of n numbers $A = \{a_1, a_2, \dots, a_n\}$

Output: A sequence of n numbers $S = \{s_1, s_2, \dots, s_n\}$ of signs $s_i \in \{+1, -1\}$

such that the residual sum of the numbers in A is minimized.

Computational Problem: Number Partition

Claim 1.1 — Number Partition can be solved in pseudo-polynomial time.

Proof. Suppose the sequence of terms in A sum up to some number b. Then each of the numbers in A has at most $\log b$ bits. We will show there exists a dynamic programming algorithm that solves the Number Partition problem that takes time polynomial nb:

- Subproblems: Let D[i,j] be whether it is possible for A[0,i] to sum up to j.
- **Recurrence:** The recurrence relation is given by:

$$D[i,j] = (D[i-1, j+a_i] \vee D[i-1, |j-a_i|])$$

Our recurrence is correct because if $D[i-1, j+a_i]$ is true, then we can subtract a_i from $j+a_i$ (which is obtainable with the first i-1 elements) to get j. Similarly, if $D[i-1, |j-a_i|]$ is true, then either we can add a_i to the $j-a_i$ (which is obtainable with the first i-1 elements) to get j or subtract a_i-j (which is obtainable with the first i-1 elements) from a_i to get j. In doing so, we obtain every possible sum of the first i elements of A.

- **Topological Order:** We solve the subproblems in increasing order of i and j.
- Base Case: D[0,0] = True and D[i,j] = False for all other i,j.
- Original: The original problem is to find the smallest j such that D[n, j] is true, or:

$$\min\{j: D[n, j] == \mathtt{True}, j \in [b]\}$$

• **Time Complexity:** The time complexity of this algorithm is O(nb). This is because for each subproblem we check if b sums are possible (The maximum sum is b). When checking if a sum is possible, we take O(1) time to check 2 previous subproblems. Thus, the total time complexity is O(nb) to fill the table. Iterating to find the smallest j such that D[n, j] is true takes O(b) time. Therefore, the total time complexity is O(nb) + O(b) = O(nb).

Therefore, the Number Partition problem can be solved in pseudo-polynomial time.

§2 Karmarkar-Karp

Claim 2.1 — Karmarkar-Karp can be implemented in $O(n \log n)$ time

Proof. The algorithm suggests that we are given a list of numbers, A, we select the two largest elements, a_i , and a_j , difference them, replace the larger of the two by the absolute value of their difference, and replace the smaller with 0. Repeat this until there is only one number left. To analyze the time complexity of a potential implementation, we can split the problem into steps:

- Sorting: To make it convenient to find the two largest elements, we can create a max-heap. Building this structure will take O(n) time given that A has n elements.
- Selecting: Actually extracting the two largest elements involves running extract-max twice from our max-heap. Each of these extractions and restructuring of the heap afterwards will take $O(\log n)$ time.
- Comparison: Comparing the two values and computing their difference involves basic arithmetic and can be done in constant time given the problem definition.
- **Inserting**: Inserting both the absolute value of the difference back into the heap takes $O(\log n)$ time.

Every time we replace one of the elements with zeros, we are one step closer to the algorithm terminating, going from n steps left to 1 step left. (given that it ends when the two max's are a number and zero). So the number of iterations of the [select, compare, insert loop] that we have to do is n-1. As a result, our time complexity is $O(n*(\log n+1+1))+O(n)=O(n\log n+n)+O(n)=O(n\log n)$.

Therefore we have shown it is possible to implement the Karmarkar-Karp algorithm in $O(n \log n)$.

§3 Using Karmarkar-Karp as a starting point

Using KK as a starting point for the various random algorithms we get varying levels of improvement depending on the algorithm.

- Repeated Random: using the starting point from KK in the repeated random algorithm will not necessarily have a big impact on its efficiency. Given that the algorithm randomly generates solutions anyway, any improvement will be a good improvement over the already good KK partition, but the random nature of the algorithm's selection would be equally likely to arrive to that bound anyway, so while the worst case scenario return is better from KK, there would be no other substantial improvement.
- Hill Climbing: This case is relatively similar to the previous. Setting KK as our starting point in Hill Climbing will definitely allow us to refine the solution further per the nature of the hill climbing algorithm selecting the best possible neighbor. That said, it will potentially trap us in a local minimum residue that isn't the global minimum. Even still, already having a strong starting point will provide a good jumping off point and any improvement will be even closer to ideal. Though when max-iter is very large, it may arrive at a similar, if not better solution regardless of starting point by continuously improving.

- Simulated Annealing: KK will provide the most significant improvement here. Given the already strong solution from KK, the exploration involved in not picking an always better neighbor will allow for ideal use of this jumping off point. The original random starting point has a good chance to be too far away to explore ideal possibilities fully before temperature allows exploration. With KK's near-optimal residue, conditions are perfectly suited for the simulated annealing to explore neighboring solutions and quickly approach the minimum residue.
- Effect on Prepartition: Using KK to start for the prepartition will create a binary assignment to two sign groups among which the elements will be split. This will create a P array such that the numbers are all 1 or 2. Consequently, the selection of neighbors will vary than if we had pre-partitioned normally where the group assignment is variable 1...N. The swaps would be between two selected sets of elements. This would put us closer to an ideal solution by the nature of the strong partitioning obtained by KK, making neighbor selection more efficient for pre-partitioned random algorithms.

§4 Experimental Data

Trial	KK	Repeated Random	Hill Climbing	Simulated Annealing	Repeated Random PP	Hill Climbing PP	Simulated Annealing PP
1	243525	365989989	130413807	820476299	721021115	1649	1193
2	75459	749147571	49649365	110886859	453801311	993	543
3	333585	60791321	592031675	410208631	382961939	103	95
4	364573	1019154041	525860527	559980607	572481879	2505	215
5	499274	1663890668	9600502	177089450	425379162	324	12
6	50679	983355655	61558941	91014911	483885527	537	619
7	6297	289923365	141851981	93675167	391212795	11	733
8	79255	52619949	41953499	186719479	530051507	611	115
9	17592	450914866	326632432	13836614	409700748	2032	538
10	46863	155134253	393724045	226479395	504317933	1009	1207
11	43178	334809164	208661436	297150226	309984058	2300	26
12	14289	95311037	106630491	525908655	311990773	145	319
13	7964	814199544	120018340	153072086	582754252	140	462
14	1084011	351859313	101787919	76680837	455126029	423	99
15	125164	503947338	301696718	733990202	517703010	54	522
16	111640	331168558	503991656	150497122	513564604	682	380
17	52602	250699462	10557910	833848632	279942744	1916	220
18	48789	1132800455	16538989	37511737	310552989	405	109
19	714008	370595408	45397324	211348136	604250196	118	882
20	104493	249088631	111054379	55343659	502681395	923	533
20	1528478	238734766	195013800	568113386	450889340	923 1178	432
22	26423	422879069	146569383	939114721	543061263	145	123
23	145283	1236219271	55103153	221245635	418310477	511	161
23	13428	168078920	466859430	268728928	378196608	368	330
	l						
25	25127	449412203	410386189	466687861	681660055	487	113
26	118098	250827774	42106260	37768412	314325108	922	154
27	620257	191868027	106642211	109380535	778808941	1271	113
28	174312	51826154	33569164	206867538	492283932	2068	584
29	369267	940519427	591488585	215969543	395210615	1737	17
30	34617	30235707	82435633	52819311	454803825	369	889
31	79954	460060798	498708382	442097596	387721818	156	582
32	102734	71237852	111295898	651610774	399201556	1824	70
33	56344	296305734	233808082	33672900	760619780	1442	84
34	67309	206556833	386724715	115222913	368287833	2389	103
35	136493	538893389	52846929	67880597	390770209	43	535
36	330164	39215638	610324334	716191394	333574470	32	76
37	142413	262801565	126215233	285896785	1089348671	719	25
38	191694	51841656	6374792	352337616	506461030	614	118
39	133514	142928562	389524862	134834086	380314252	424	132
40	186766	460056552	1010404346	233133226	424693488	28	112
41	9981	352892269	33401523	773077949	400312089	109	261
42	271	26638341	121317129	2258165	487764263	1567	323
43	328860	259517152	323308008	514894280	352148016	366	10
44	488087	75670641	155951977	290257285	275895987	2027	413
45	20099	97684499	8263465	67611609	502274553	129	195
46	152253	84980193	1105069359	806007089	538698021	1391	127
47	25640	546039342	43459306	559689932	639759114	206	186
48	3313304	26877136	544196480	1421963684	388432910	698	48
49	290118	113329412	91852728	260402170	512143770	334	222
50	102994	209427994	91332756	1995555168	359393702	690	58
Average	264750.44	370579149.3	239754098.3	371540195.8	473374593.2	822.48	308.36

Table 1: Experimental Data

Figure 1: Scatter Plot of Experimental Data

We notice that there are 3 distinct "areas" created by the different algorithms defined by whether they used standard or prepartitioned solutions with the latter producing the best results and the former producing the worst, bounding the middle ground of Karman-Karp.