Utilização Prática da Programação Evolucionária ao Despacho Económico

Diogo António Costa Martins, up201305326 Professor Vladimiro Miranda Faculdade de Engenharia da Universidade do Porto

O presente relatório, no âmbito da unidade curricular Decisão, Otimização e Inteligência Computacional, tem como objetivos apresentar os dados e analisar os resultados obtidos através de um algoritmo de programação evolucionária implementado em *Matlab*. O algoritmo foi concebido com o objetivo de resolver um despacho económico ótimo que conduzirá ao mínimo custo de produção. Numa primeira fase foi considerado apenas o sistema gerador e, posteriormente, os limites de trânsito de potências de toda a rede de transporte.

Index Terms—Despacho Económico, Programação evolucionária, Otimização, Sistema Elétrico de Energia

I. Introdução

A atual sociedade, a energia elétrica é um bem essencial para o quotidiano de toda a população. Com efeito, é indispensável a existência de um eficiente planeamento da distribuição de energia desde os pontos de produção até aos locais de consumo. No processo de distribuição deve haver continuidade de serviço e a frequência e a tensão devem estar dentro dos limites impostos pelos regulamentos, tendo sempre por base o mínimo custo possível. É neste contexto que se integra o despacho económico.

Este trabalho utiliza modelos referentes a sistemas elétricos com produção térmica controlada pela concessionária de produção. O sistema é constituído por 5 barramentos que possuem quatro geradores, distribuídos por dois barramentos, e por 4 cargas, como representado na figura 1.

II. DADOS DA REDE

O sistema elétrico de energia em estudo, assim como, a sua estrutura e características dos geradores, cargas e linhas que o compõem. É ainda de notar que a potencia de base (S_{base}) é de 100 MVA e que a admitância das linhas é desprezável (Y=0).

Figura 1. Esquema do SEE em estudo

Nó	V _n (kV)	V_{esp} (pu)	P_g MW	Q_g MW	P_c MW	Q_c MW
1	150		0	0	50	20
2	150		0	0	100	40
3	150	1.02			0	0
4	150	0.99			0	0
5	150		0	0	50	25

Tabela I Dados dos Barramentos

Nó	Grupo	P_{max} MW	P_{min} MW	$\binom{a}{(R/h)}$	b (R/MWh)	$(R/(MW)^2h)$
3	150	80	40	1100	20	0.1
3	150	60	20	1200	25	0.07
4	150	70	30	300	10	0.2
4	150	60	20	650	20	0.05

Tabela II
Dados referentes aos geradores

II, "R"é uma unidade monetária fictícia e O custo de produção é dado através da expressão 1.

$$C = a + b \times P + c \times P^2 \tag{1}$$

Nó i	Nó j	R (pu)	X (pu)	Limite MVA			
1	2	0.03	0.08	48			
1	5	0.05	0.16	59			
2	3	0.06	0.20	89			
2	4	0.05	0.16	94			
3	4	0.06	0.20	59			
4	5	0.06	0.20	74			
Tabela III							

Dados referentes às linhas

III. RESOLUÇÃO DA ALÍNEA 1

Na primeira fase do trabalho, considerou-se apenas o sistema gerador, apresentado um barramento único [1], composto pelos geradores presentes na rede de transporte analisada anteriormente, ligando todos os geradores, onde toda a carga será alimentada.

Primeiramente, foi escolhido um dos métodos estudados no decorrer da Unidade Curricular para a implementação do trabalho, optando-se pelo método designado por Programação Evolucionária (EP). Este método tem a particularidade de poder ser decomposto em várias fases, quer será analisado nas seguintes subsecções.

A. Gerar População

Permite obter a população inicial do despacho económico tendo em conta que a potência total gerada tem de ser igual à potência total consumida.

B. Clonar

Duplicação da população original com vista a ser mutada.

C. Mutar

Permite mutar a população clonada (equação 2).

$$P_{mutada} = P_{clonada} + \sigma \times \mathcal{N}(rand, 0, 1) \tag{2}$$

É necessário salientar, que numa parte posterior do trabalho, irá ser experimentado com utilização de um valor de sigma auto-adaptativo, obtido pela equação 3 .Onde τ representa um fator de aprendizagem fixo externamente responsável pelo controlo da amplitude das mutações.

$$\sigma_{mutado} = \sigma_{clonado} + \tau \times \mathcal{N}(rand, 0, 1)$$
 (3)

D. Calcular Custo

Calculo dos custos de despacho de cada geração de cada individuo segundo a equação 4 ou 5, sendo que o coeficiente M_1 corresponde a um parâmetro de penalização que é aplicada sempre que qualquer um dos geradores de cada individuo ultrapasse os seus limite

$$\sum_{i} C_i \times P_{Gi} + \sum_{i} M_1 \times (P_{Gi} - P_i^{max})^2 \tag{4}$$

$$\sum_{i} C_i \times P_{Gi} + \sum_{i} M_1 \times (P_i^{min} - P_{Gi})^2 \tag{5}$$

E. Avaliar

1) Solução Elitista

Ordena o custos por ordem crescente e seleciona as populações às quais correspondem os custos mais baixos.

2) Solução Determinista

É realizado um torneio estocástico em que são sorteados dois indivíduos da população. É ainda sorteado um número entre 0 e 1. Se este valor for menor que 0.2 é escolhido o individuo que conduz ao maior custo de operação. Caso contrário é escolhido o individuo que leva ao menor custo de operação.

Este procedimento é repetido $\frac{n}{2}$ vezes, até que todos os elementos da população tenham sido comparados.

Numero inicial	Número médio	Custo	Desvio
de individuos	de iterações	médio	Padrão
2	174	6838,9	0,6413
10	87	6838,4	0,2362
20	68	6838,2	0,1463
30	60	6838,2	0,1198
40	58,9	6838,2	0,1068
50	58,5	6838,2	0,0885
60	58,1	6838,1	0,0796
70	55	6838,1	0,0787
80	51	6838,1	0,0743
90	50	6838,1	0,0753
100	48	6838,1	0,0706
120	49	6838,1	0,0587

Tabela IV

Variação no número médio de iterações, custo médio e desvio padrão com o número de populações inicial, para uma amostra de 100 iterações do algoritmo de programação evolucionária

F. Selecionar

Permite escolher os despachos mais económicos aplicando uma seleção elitista, isto é, permite escolher despachos cujo custo seja duas vezes o valor da população inicial.

Cada etapa é implementada como uma função que será posteriormente chamada. Inicialmente é criada a população inicial, o que corresponde a correr 30 vezes as etapas anteriormente referidas. De seguida estas etapas são corridas as vezes necessárias para que a diferença entre o elemento atual e o elemento n-20 seja menor que 0.0001R.

$$|x - x_{-20}| \le \epsilon = 0.0001$$

IV. ALÍNEA 1 - ANÁLISE DOS RESULTADOS

A. Influência do tamanho da população inicial

Nesta alínea, o despacho foi executado várias vezes fazendose variar os parâmetros: número de elementos da população, valor da carga e $\sigma=1$,para que, desta forma, se poder estudar a influência destes nos resultados finais.

Para a recolha de dados, o processo foi repetido em 100. Sendo efetuada a recolha uma média de iterações necessárias para atingir o melhor individuo, a média do custo do melhor valor e o seu desvio padrão.

Após a simulação inicial é possível concluir que o algoritmo converge mais rapidamente do que na situação inicial, isto deve-se à maior variedade de indivíduos e da sua avaliação ser feita individualmente, o que se traduz num melhor alcance do algoritmo, levando à diminuição do tempo de convergência.

Nos gráficos 2a e 2b esta diminuição é facilmente observada, bem como da tabela IV.

B. Influência do coeficiente de mutação escolhido

Para estudar a influencia do coeficiente de mutação realizam-se dois testes distintos mantendo constante, e igual a 50 indivíduos, o número de populações iniciais e o valor de carga que está ligado ao barramento único.

Inicialmente manteve-se o valor do coeficiente de mutação (σ) constate, testaram-se vários valores e os resultados obtidos podem ser consultados através das tabela V e dos gráficos 3a

- (a) Variação do desvio padrão com a variação do tamanho da população inicial
- (b) Variação do número médio de iterações com a variação do tamanho da população inicial

Figura 2. Gráficos referentes à variação do número médio de interação e erro padrão médio com o tamanho inicial da população

- (a) Variação do desvio padrão com a variação do coeficiente de mutação escolhido
- (b) Variação do número médio de iterações com a variação do coeficiente de mutação escolhido

Figura 3. Gráficos referentes à variação do número médio de interações e erro padrão médio com o coeficiente de mutação escolhido

e 3b. É verificado que com o aumento da taxa de conversão existe uma diminuição do tempo de conversão e consequente aumento do desvio padrão médio registado ao longo das 100 iterações. Esta variação é simplesmente justificada com o aumento do coeficiente de mutação levar a uma maior diversidade de valores gerados.

Sigma	Número Médio	Custo	Desvio Padrão
Sigilia	de Iterações	Médio	Médio
0,01	4490	6838	0,0011
0,05	931,7	6838	0,0134
0,1	467,19	6838	0,0139
0,2	249	6838	0,0183
0,3	160	6838	0,0286
0,4	120	6838	0,0279
0,5	103	6838,1	0,0471
0,6	87	6838,1	0,0565
0,7	84	6838,1	0,0609
0,8	66,5	6838,1	0,0817
0,9	62,76	6838,1	0,0906
1	55	6838,2	0,1006
5	33	6839,3	0,6699
10	33	6840,9	1,4209

Tabela V

Variação no número médio de iterações, custo médio e desvio padrão com o valor do coeficiente de mutação para uma amostra de 100 iterações do algoritmo de programação evolucionária

De seguida utilizou-se um algoritmo de programação evolutiva para o qual se utiliza um coeficiente de mutação auto-

adaptativo obtido através da equação 3. É do nosso interesse entender o comportamento do resultado final do algoritmo em função da alteração do fator de aprendizagem (τ) . Para tal, manteve-se constante o número de populações inicial, tal como o valor de carga ligado ao barramento único. Seguiuse o mesmo método usado anteriormente, para o estudo da influencia de sigma constante, e chegou-se aos resultados apresentados na tabela VI.

tau	Número médio	Custo	Desvio
ιuu	de iterações	médio	Padrão
0,01	887	6856	17,2109
0,1	152	6838	0,116
0,2	92,31	6838	0,1342
0,5	55	6838	0,2767
1	39	6838	0,4199
10	28	6838	4,01

Tabela VI

Variação no número médio de iterações, custo médio e desvio padrão com o coeficiente de aprendizagem, para uma amostra de 100 iterações do algoritmo de programação evolucionária

Verifica-se que utilizando um valor extremo para o coeficiente de aprendizagem ($\tau=0.01$ ou $\tau=10$) o algoritmo não se comporta corretamente: apresenta valores muito elevados para o número médio de interações e para o desvio padrão médio. Estes são explicados tanto devido à mutação demasiado lenta do coeficiente de mutação (σ), aumentando assim o número de iterações e a probabilidade de encontrar falsos resultados, uma vez que o critério de paragem utilizado é dependente das alterações registadas no valor de custo final.

A mutação demasiado rápida do coeficiente de mutação, obtida ao utilizar um valor de coeficiente de aprendizagem demasiado alto ($\tau=10$), leva à diminuição do número de iterações e ao aumento do desvio padrão uma vez o valor de σ apresenta valores demasiado diversificados.

Verifica-se no entanto, que para valores entre-médios do coeficiente de aprendizagem, utilizar um algoritmo auto-adaptativo conduz à resultados mais rapidamente que utilizando σ constante, uma vez que este se adapta a necessidade dos indivíduos utilizados para o calculo do despacho económico ótimo (figura 4).

Figura 4. Variação do valor de σ utilizando o algoritmo auto-adaptativo

Pode-se ainda concluir que, a utilização de um algoritmo auto-adaptativo conduz a valores do coeficiente de mutação muito mais elevados quando este se encontra *longe* da solução do que quando se começa a aproximar da solução final.

C. Comparação entre seleção elitista e determinista

Para poder ser realizada uma comparação entre os dois métodos de seleção a estudar manteve-se o número inicial de populações constante e igual a 50 indivíduos e o valor do coeficiente de mutação igual a 0,7 e, mais uma vez, constante. Manteve-se a carga igual a 160MW. Foram realizados um conjunto de 100 ensaios para cada método cujos resultados se encontram expostos na tabela VII.

Método de Seleção	Número médio de iterações
Elitista - $\sigma = const$	87
Elitista auto-adaptativo	92
Determinista	724

Tabela VII

Número médio de interação para os vários métodos de seleção do algoritmo de programação evolucionária

Verifica-se que a seleção determinista conduz a valores muito menores de convexão que a seleção elitista, o que seria de esperar, uma vez que estamos a analisar um problema de domínio convexo, com funções convexas e um único mínimo. Neste caso a introdução de indivíduos com custos mais elevados só irá afastar o algoritmo da solução ideal.

V. RESOLUÇÃO DA ALÍNEA 2

Nesta alínea foi acrescentada a rede de transporte ao problema descrito, passando-se a considerar cinco barramentos, dos quais dois são de geração (barramento 3 e 4) e os restantes (barramentos 1,2,5) são de consumo.

Foi calculado o trânsito de potências nas linhas aplicandose o *Modelo DC* [2] para depois o poder comparar com o limite de cada linha. Se o limite da linha for ultrapassado é então aplicada uma penalização. Para uma correta aplicação do *Modelo DC*, e tendo em conta que os limites máximos das linhas se apresentam em MVA, são apenas consideradas as potencias ativas. Estamos também a considerar que as linhas são ideias, não existindo perdas. No entanto, podemos verificar qual o custo associado às possíveis perdas aumentando em 1MW a energia produzida por cada gerador.

$$P_{max} = S_{max} \times 0.85 \tag{6}$$

VI. ALÍNEA 2 - ANÁLISE DOS RESULTADOS

A. Influencia do tamanho da população inicial e coeficiente de mutação

Para analisar a influencia do tamanho da população inicial e coeficiente de mutação utilizou-se o mesmo método da primeira alínea (secções IV-A e IV-B) cujos resultados se encontram representados nas figuras 5, 6 e tabela VIII.

Parâmetros a alterar	r Tamanho da população inicial		Sigma constante			Seleção Determinista	Seleção Determinista			
i arametros a anerar	5	10	25	50	0.1	0.5	1	Scieção Determinista	Scieção Determinista	
Número de Iterações	98	78	58	49	331	77	48	752	66	

Tabela VIII

Influencia do tamanho da população inicial, valor do coeficiente de mutação e tipo de seleção da próxima geração no número médio de iterações, considerando a rede associada ao sistema

Figura 5. Variação do número médio de iterações com a variação do tamanho da população inicial

Figura 6. Variação do número médio de iterações com a variação do coeficiente de mutação

Verificou-se novamente que o aumento da população projeta a uma diminuição do número de iterações necessárias para determinar o melhor custo. Por sua vez, o aumento do coeficiente de aprendizagem, também diminui o número médio de iterações.

B. Influencia da variação dos limites das linhas e variação da carga

Com o objetivo de estudar a influencia da carga na rede fez-se variar, de forma proporcional, o valor das cargas nodais entre 150MW e 250MW. Tal como o esperado, o custo total do despacho aumenta com a carga devido ao desrespeito dos limites das linhas. Assim, ao diminuir o limite nas linhas aumenta o preço total de despacho.

Conclui-se que o custo de despacho mais elevado irá ocorrer quando o limite de linhas é mínimo e quando a carga é máxima (figure 7).

No estudo da influência na variação dos limites das linhas utilizou-se $100\% \times P_{carga}$ e que para a influência na variação da carga $P_{i,j_{max}} = 0.5 \times P_{i,j}$ Os resultados obtidos durante este estudo estão na tabela IX.

-	Limite das Linhas (%)			Carga (%)		
	0.5	0.7	0.9	0.75	1	1.25
Custo Total (R)	8821	8263	8000	6800	8263	8263

Tabela IX Influencia da variação dos limites das linhas e variação da carga no custo total de despacho

C. Comparação com trânsito de potências AC

Com o auxílio da ferramenta *Power World* dimensionou-se a rede em estudo e procedeu-se à sua simulação. Verifica-se o que se tinha verificado com a aplicação do algoritmo de programação evolucionária. As linhas VER se encontram em sobrecarga.

Figura 8. Sistema simulado no Power World

VII. CONCLUSÃO

Com a realização deste trabalho foi possível compreender e aprofundar os conhecimentos relacionados com programação evolucionária. Verificou-se que este método permite, com grande rigor e rapidez, produzir um despacho económico ótimo independentemente da complexidade do sistema em questão. Pode-se notar que para acelerar a convergência para o valor ótimo se deve aumentar o valor do fator de aprendizagem (τ), uma vez que isso leva a uma maior taxa de mutação, conduzindo então à obtenção do resultado pretendido mais rapidamente. Por outro lado, observou-se que o aumento do valor da população gerada inicialmente origina uma convergência mais rápida visto que, quanto maior for a população, maior a probabilidade de encontrar a solução ótima.

Por fim, importa salientar a enorme implicação da rede de transporte no problema, uma vez que esta proporciona custos superiores em relação à abordagem simplificada. Com efeito, a programação evolucionária assume uma grande importância aquando da previsão e produção de despachos económicos otimizados.

REFERÊNCIAS

- V. Miranda, "Despacho economico ded sistemas de produção-transporte," feb 2014.
- [2] M. A. Matos, "Introdução ao trânsito de potências apontamentos para a disciplina de sistemas eléctricos de energia i," jan 1999.

Figura 7. Gráficos referentes à solução do despacho económico considerando a rede do sistema com carga máxima e limites de linha mínimos