2. Kolokvij iz Moderne fizike 2 31. 5. 2013

- 1. Nevtron z $|\vec{p}|c = 300$ MeV se elastično siplje na mirujočem $^{29}_{63}Cu$, prenašalci močne interakcije pa so v tem primeru pioni π^0 z $m_{\pi}c^2 = 135$ MeV. Pri elastičnem sipanju se energija nevtrona ne spremeni.
 - a) Določi razmerje verjetnosti za sipanje pod dvema različnima kotoma

$$\frac{P(\theta_1 = 60^{\circ} \pm 5^{\circ})}{P(\theta_2 = 20^{\circ} \pm 3^{\circ})}$$

kjer detektiramo sipane nevtrone pri danih kotih θ in seštejemo po kotu φ .

- b) Kolikšno je pri tem razmerje prostorskih kotov $d\Omega_1/d\Omega_2$?
- 2. Barion Ξ^- ima kvarkovsko sestavo dss in maso 1321.71 MeV/ c^2 . S fotoprodukcijo na mirujočem protonu tvorimo njegov antidelec:

$$\gamma + p \longrightarrow \overline{\Xi}^- + X$$

- a) Kakšna je kvarkovska sestava $\overline{\Xi}^-$?
- b) Ugotovi, kateri najlažji možni delci lahko nastanejo med reakcijskimi produkti X.
- c) Izračunaj najnižjo energijo fotonov za tvorbo teh delcev (kinetična energija hadronov v končnem stanju je pri tem zanemarljiva).

3. Iz podatkov za kvarkovsko sestavo, spin in maso mezonov $\pi^+, \rho^+,$ in $K^+,$

$$\pi^{+}(u\overline{d})$$
, $S_{\pi} = 0$, $m_{\pi} = 140 \,\text{MeV}/c^{2}$,
 $\rho^{+}(u\overline{d})$, $S_{\rho} = 1$, $m_{\rho} = 776 \,\text{MeV}/c^{2}$,
 $K^{+}(u\overline{s})$, $S_{K} = 0$, $m_{K} = 494 \,\text{MeV}/c^{2}$,

izračunaj maso kvarka s v preprostem modelu, v katerem lahko maso mezona izračunamo po spodnji formuli (privzemi $m_u \approx m_d$)

$$M_{\text{mezon}} = m_{q1} + m_{q2} + a \frac{\langle \vec{\sigma}_{q1} \cdot \vec{\sigma}_{q2} \rangle}{m_{q1} m_{q2}}$$
.

4. V detektorju imamo $N_{\pi}^{0}=1000$ mirujočih pionov π^{-} ob času t=0. Pion razpada (skoraj) izključno preko razpada $\pi^{-} \to \mu^{-} \bar{\nu}_{\mu}$ z lastnim razpadnim časom $\tau_{\pi}=2.6 \cdot 10^{-8}$ s. Nastali mion pa razpada (skoraj) izključno preko $\mu^{-} \to e^{-} \bar{\nu}_{e} \nu_{\mu}$ z lastnim razpadnim časom $\tau_{\mu}=2.2 \cdot 10^{-6}$ s. Določi časovno odvisnost števila mionov $N_{\mu}(t)$ in elektronov $N_{e}(t)$ za opazovalca, ki miruje glede na detektor. Na začetku mionov in elektronov ni.