Linear Regression

Peter von Rohr

2024-02-26

Goal

Assessment of relationship between

- a given variable (response) and
- other measurements or observations (predictors) on the same animal

Example

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Diagram

Figure 1: ?(caption)

Observations

- relationship between breast circumference and body weight: heavier animals tend to have larger values for breast circumference
- lacktriangle same relationship across whole range ightarrow linear relationship

Regression Model

- quantify relationship between body weight and breast circumference
- practical application: measure band for animals

Created by Agniraj Chatterji from Noun Project

Created by Agniraj Chatterji from Noun Project

Model Building

lacktriangle expected body weight (E(y) in kg) based on an observed value of x cm for breast circumference

$$E(y) = b_0 + b_1 * x$$

- $\blacktriangleright b_0$ and b_1 are unknown parameters of the model
- lacktriangleright model is linear function of parameters ightarrow linear model

Parameter Estimation

- \blacktriangleright How to find values for b_0 and b_1
- several techniques available: start with Least Squares

Least Squares

Estimators

Find values \hat{b}_0 and \hat{b}_1 such that

$$\mathbf{e}^T\mathbf{e} = \sum_{i=1}^N e_i^2 = \sum_{i=1}^N \left[y_i - E(e_i)\right]^2 = \sum_{i=1}^N \left[y_i - b_0 - b_1 * x_i\right]^2$$

is minimal

Minimization

$$\begin{split} \frac{\partial \mathbf{e}^T \mathbf{e}}{\partial b_0} &= -2 \sum_{i=1}^N \left[y_i - b_0 - b_1 x_i \right] \\ &= -2 \left[\sum_{i=1}^N y_i - N b_0 - b_1 \sum_{i=1}^N x_i \right] \end{split}$$

$$\begin{split} \frac{\partial \mathbf{e}^T \mathbf{e}}{\partial b_1} &= -2 \sum_{i=1}^N x_i \left[y_i - b_0 - b_1 x_i \right] \\ &= -2 \left[\sum_{i=1}^N x_i y_i - b_0 \sum_{i=1}^N x_i - b_1 \sum_{i=1}^N x_i^2 \right] \end{split}$$

Notation

$$x. = \sum_{i=1}^{N} x_i$$