Solutions to homework 1:

1. Your solution to question 1.

Proof. Let $n \in \mathbb{Z}$, Prove that if $3 \mid n+1$ then $3 \nmid n^2 + 5n + 5$.

- Assume for some $n \in \mathbb{Z}, 3 \mid n+1$
- Then $(n+1) = 3\ell$ for $\ell \in \mathbb{Z}$
- $n^2 + 5n + 5 = (n+1)^2 + 3(n+1) + 1 = (3\ell)^2 + 3(3\ell) + 1$
- By fact, $(3l)^2 + (3l) \in \mathbb{Z}$ so $n^2 + 5n + 5 = 3(3\ell^2 + 3\ell) + 1$
- This shows that $3 \nmid n^2 + 5n + 5$

2. Your solution to question 2.

Proof. Let $a \in \mathbb{Z}$. Prove that if 5a + 11 is odd then 9a + 3 is odd.

- Let's assume that 5a + 11 is odd, then we can see that $5a + 11 = 2\ell + 1$ for $\ell \in \mathbb{Z}$.
- $9a + 3 = (5a + 11) + (4a 8) = (2\ell + 1) + (4a 8) = 2(\ell + 2a 4) + 1$
- As it is known by fact that $2\ell + 2a 4 \in \mathbb{Z}$, we can conclude that 9a+3 is odd.

3. Your solution to question 3.

Proof. If -1 < x < 2, then $x^2 - x - 2 < 0$.

- Assume that -1 < x < 2.
 - We change the expression $x^2 x 2$ to (x 2)(x + 1).
 - For some $x \in (-1,2)$, we know that (x-2) < 0 and (x+1) > 0.
 - This shows that (x-2)(x+1) < 0 because we know that for some $a, b \in \mathbb{R}$ if ab < 0 then a < 0, b > 0 or a > 0, b < 0.
 - Therefore, we can conclude that if -1 < x < 2 then $x^2 x 2 < 0$

4. Your solution to question 4.

Proof. Let a, b, c, d be integers. Suppose that a, c, b + d are all odd numbers. Prove ab + cd is odd.

• Let's assume that a, b, c, d be integers and a, c, b + d are all odd numbers.

- Then we can see that $a=2\ell+1, c=2k+1, b+d=2m+1$. for $\ell, k, m \in \mathbb{Z}$.
- When b+d is odd, we can express b+d as a sum of an even number and an odd number.
- For instance, let's consider the case when b is even and d is odd.
- Then we can express these as b=2n and d=2p+1 for $n,p\in\mathbb{Z}$.
- We can see that $ab+cd = (2\ell+1)*(2n)+(2k+1)*(2p+1) = 2(2n\ell+n+2kp+k+p)+1$
- As we know that $n, l, k, p \in \mathbb{Z}$, $2nl + n + 2kp + k + p \in \mathbb{Z}$.
- Therfore, from the form ab + cd = 2(2nl + n + 2kp + k + p) + 1 we can conclude that ab + cd is odd.
- ullet And this also is satisfied even for the case when b is an odd and d is an even number.
- 5. Your solution to question 5.

Proof. Let x and y be real numbers. Show that

$$xy \le \frac{1}{2}(x^2 + y^2)$$

- Let's assume that $x, y \in \mathbb{R}$
- $\frac{1}{2}x^2 + \frac{1}{2}y^2 xy = \frac{1}{2}(x^2 2xy y^2) = \frac{1}{2}(x y)^2$
- We know for some $n \in \mathbb{R}$ that $n^2 \geq 0$.
- As $x, y \in \mathbb{R}$ we also can find out that $(x y) \in \mathbb{R}$, thus $(x y)^2 \ge 0$.
- If $(x-y)^2 \ge 0$, then $\frac{1}{2}(x-y)^2 = \frac{1}{2}x^2 + \frac{1}{2}y^2 xy \ge 0$.
- Therefore, we can conclude that $\frac{1}{2}x^2 + \frac{1}{2}y^2 \ge xy$.
- 6. Your solution to question 6.

Proof. Let x and y be real numbers. Suppose that x < y and $y^2 < x^2$. Show that x + y < 0.

- Let's assume that x < y and $y^2 < x^2$ for $x, y \in \mathbb{R}$.
- x < y shows that x y < 0. And $y^2 < x^2$ shows that $x^2 y^2 > 0$.
- $x^2 y^2 = (x y)(x + y)$ and as we know that x y < 0 then in order to satisfy $x^2 y^2 > 0$, x + y < 0 has to be satisfied.
- This is due to the fact that for $a, b \in \mathbb{R}$. If a > 0 then b > 0, and if a < 0 then b < 0 to make ab > 0.

- Notice that if $x, y \in \mathbb{R}$ then both $x y, x + y \in \mathbb{R}$
- Therefore, x + y < 0 when x < y and $y^2 < x^2$.
- 7. Your solution to question 7.

Proof. For an integer n, prove that if $5 \mid (n+7)$, then $5 \mid (n^2+1)$.

- Let's assume that for $n \in \mathbb{Z}$, $5 \mid (n+7)$.
- Then, $n+7=5\ell$ for some $\ell \in \mathbb{Z}$.
- $n^2 + 1 = (5\ell 7)^2 + 1 = 5(5\ell^2) 5(14\ell) + 50 = 5(5\ell^2 14\ell + 10)$.
- We know that as $\ell \in \mathbb{Z}$, $5\ell^2 14\ell + 10 \in \mathbb{Z}$.
- Then, $n^2 + 1 = 5(5\ell^2 14\ell + 10)$ showds that $5 \mid (n^2 + 1)$.
- Therefore, we can conclude that if $5 \mid (n+7)$, then $5 \mid (n^2+1)$.
- 8. Your solution to question 8.

Proof. Let $n, a, b, x, y \in \mathbb{Z}$ with n > 0. Prove that if $n \mid a$ and $n \mid b$ then $n \mid (ax + by)$.

- Let $n \mid a$ and $n \mid b$ for $n, a, b, x, y \in \mathbb{Z}$ and n > 0.
- Then a = nl, b = nk for $l, k \in \mathbb{Z}$.
- ax = nlx, by = nky we know that ax + by = n(lx + ky).
- We can see that $lx + ky \in \mathbb{Z}$, because $l, k, x, y \in \mathbb{Z}$.
- Therefore, ax + by = n(lx + ky) shows that $n \mid ax + by$, when n > 0.