EE-224: Digital Design

Minimization of Logic Expression using Boolean Algebra

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab Indian Institute of Technology Bombay Department of Electrical Engineering http://www.ee.iitb.ac.in/~viren/ E-mail: viren@ee.iitb.ac.in

- Boolean Algebra is defined as
- 1. Set of elements {0, 1}
- 2. Set of operators $\{+, ., ^{\sim}\}$
- Number of postulates
- **Boolean Algebra: 5-tuple**

$$\{B, +, .., \sim, 0, 1\}$$

- Closure: If a and b are Boolean then (a, b) and
- (a + b) are also Boolean

03 Sep 2020

CADSL

Postulates

0+0 +00	Duals	<u>S</u>
rostulate	Expression 1	Expression 2
0	a, b, a + b ∈ B	a, b, a · b ∈ B
3	a + 0 = a	a · 1 = a
	a + b = b + a	$a \cdot b = b \cdot a$
2	a + (b + c) = (a + b) + c	$= (a + b) + c a \cdot (b \cdot c) = (a \cdot b) \cdot c$
4	$a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$	$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
9	a + ā = 1	a.ā=0

Theorems

	Di	Duals
lleolelli	Expression 1	Expression 2
Idempotency	a + a = a	a · a = a
IInN	a + 1 = 1	$a \cdot 0 = 0$
Involution	= = a	= a
Absorption	a + a.b = a	a · (a + b) = a
Adsorption	a + ā .b = a + b	$a \cdot (\overline{a} + b) = a.b$
Uniting	a.b + a.b = a	$(a + b)(a + \overline{b}) = a$

Theorems

	nQ	Duals
	Expression 1	Expression 2
DeMorgan	${a+b} = \frac{-}{a} \cdot \frac{-}{b}$	$a \cdot b = a + b$
Consensus	a.b + <u>a</u> .c + b.c = a.b + <u>a</u> .b	$(a + b)(\overline{a} + c) (b + c)$ = $(a + b).(\overline{a} + c)$

Understanding Minimization

• Logic function: $F = ab + \overline{a}b + bd + cd$

Logic Minimization

Reducing products:

$$F = a\overline{b} + a\overline{b} + bd + cd$$

$$= \overline{b}(a + \overline{a}) + bd + cd$$

$$= \overline{b}(a + \overline{a}) + bd + cd$$

$$= \overline{b}(c + \overline{c}) + \overline{b}(c + \overline{c})$$

$$= \overline{b}(c + \overline{c}) + \overline{b}(c + \overline{c})$$

$$= \overline{b}(c + \overline{c})$$

Adsorption

CADSL

CADSL

Logic Minimization

• Minimized expression: $F=\overline{b}+d$

03 Sep 2020

EE-224@IITB

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of literals (complemented and uncomplemented variables):

$$a.b + \overline{a}.c.d + \overline{a}.b.d + \overline{a}.c.\overline{d} + a.b.c.d$$

 $= a.b + a.b.c.d + \overline{a}.c.d + \overline{a}.c.\overline{d} + \overline{a}.b.d$
 $= a.b + a.b.(c.d) + \overline{a}.c.(d + \overline{d}) + \overline{a}.b.d$
 $= a.b + \overline{a}.c + \overline{a}.b.d = b(a + \overline{d}) + \overline{a}.c$
 $= b.(a + d) + \overline{a}.c$

5 literals

Expression Simplification

Logic minimization

$$F = \overline{x}.\overline{y}.z + x.\overline{y}.\overline{z} + x.\overline{y}.z + x.y.\overline{z} + x.y.z$$

$$F = \overline{x}.\overline{y}.z + x.\overline{y}.(\overline{z} + z) + x.y.(\overline{z} + z)$$

$$F = \overline{x}.\overline{y}.z + x.\overline{y} + x.y = \overline{x}.\overline{y}.z + x.(\overline{y} + y)$$

$$F = \overline{x}.\overline{y}.z + x = \overline{y}.z + x$$

Theorem 7: DeMorgan's Theorem

•
$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
, $\forall a, b \in B$

1806 - 1871

Generalization of DeMorgan's Theorem:

$$a + b + \dots + z = a \cdot b \dots z$$

 $a \cdot b \dots z = a + b + \dots + \overline{z}$

03 Sep 2020

CADSL

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
- 1. Interchange AND and OR operators
- 2. Complement each constant value and
- Example: Complement F = x.y.z + x.y.z $F = (x + \overline{y} + z)(\overline{x} + y + z)$

EE-224@IITB

EE-224@IITB