Proofs

Joe Patten

July 31, 2018

1 Statements and Open Sentences

1.1 Statements

A **statement** is a declarative sentence or assertion that is either true or false. They are often labelled with a capital letter (P, Q, R) are most commonly used). Below are examples of statements:

 P_1 : The integer 6 is even.

 P_2 : A square has 5 sides.

Notice that the first statement is true, whereas the second statement is false.

1.2 Open Sentences

An **open sentence** is similar to a statement, except it contains one or more variables. Below are examples of open sentences:

 P_3 : The integer k is even.

 P_4 : A square has j sides.

Notice that in the first open sentence, there exist some values of k where the statement holds true. In the second open sentence, the statement holds true only if j = 4.

1.3 Negation

The **negation** of a statement (or proposition) P is denoted by $\sim P$ or $\neg P$, and is pronounced "not P". $\sim P$ is the opposite of P. The example below shows a statement P_5 , and its negation $\sim P_5$:

 P_5 : The integer 7 is odd. $\sim P_5$: The integer 7 is even.

Recall that a statement or open sentence can only take on one of two values: true or false. Thus, the negation of a statement or open sentence will take on the opposite truth value. This can be seen in the following truth table:

P	$\sim P$	
Τ	F	
F	Γ	

Table 1: Truth table for P and $\sim P$.

2 Logical Connectives

2.1 Disjunction

The **disjunction** of the statements P and Q is denoted as $P \vee Q$ is defined as the statement P or Q. $P \vee Q$ is true if either P or Q is true, otherwise it is false. Notice that from the first example, $P_1 \vee P_2$ is true since P_1 is true and P_2 is false. Below is a truth table for $P \vee Q$.

P	Q	$P \lor Q$
T	Τ	Т
Т	F	Γ
F	Τ	Γ
F	F	F

Table 2: Truth table for $P \vee Q$.

2.2 Conjunction

The **conjunction** of the statements P and Q is denoted as $P \wedge Q$ is defined as the statement P and Q. $P \wedge Q$ is true if either P and Q are both true, otherwise it is false. Notice that from the first example, $P_1 \wedge P_2$ is false since P_1 is true and P_2 is false. Below is a truth table for $P \wedge Q$.

P	Q	$P \wedge Q$
T	Τ	Т
T	F	F
F	Τ	F
F	\mathbf{F}	F

Table 3: Truth table for $P \wedge Q$.

2.3 Implication and Biconditional

An **implication** is usually denoted as $P \Rightarrow Q$, and means either "If P, then Q" or "P implies Q". Below is a truth table for $P \Rightarrow Q$.

P	Q	$P \Rightarrow Q$
T	Т	Т
Γ	F	\mathbf{F}
F	Τ	${ m T}$
F	F	${ m T}$

Table 4: Truth table for $P \Rightarrow Q$.

There are multiple ways of expressing $P \Rightarrow Q$:

P implies QIf P, then Q P only if Q P is sufficient for Q Q if P Q is necessary for P

 $Q \Rightarrow P$ is called the **converse** of $P \Rightarrow Q$. If $P \Rightarrow Q$ is true, it's not necessarily the case that its converse, $Q \Rightarrow P$, is true.

A **biconditional** of P and Q is usually denoted by $P \Leftrightarrow Q$, and means $(P \Rightarrow Q) \land (Q \Rightarrow P)$. There are multiple ways of expressing $P \Rightarrow Q$:

$$P$$
 if and only if Q
 P iff Q
 P is equivalent to Q

Below is a truth table for $P \Leftrightarrow Q$:

P	Q	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
Т	Т	Т	Т	Т
T	F	F	Т	F
F	Τ	Т	F	F
F	F	Т	Т	Т

Table 5: Truth table for $P \Leftrightarrow Q$.

2.4 Compound Statements

The operators explained before $(\sim, \lor, \land, \Rightarrow, \Leftrightarrow, \text{ and } \Leftrightarrow)$ are referred to as logical connectors. The combination of at least one statement and at least one connector is called a **compound statement**. Notice that the following are compound statements:

$$\begin{array}{c} \sim P \\ P \vee Q \\ P \Rightarrow Q \\ (P \wedge Q) \wedge (Q \Rightarrow \sim P) \end{array}$$

2.5 Tautologies

A compound statement is a **tautology** if all possible truth values are true. An example of a tautology is $P \vee (\sim P)$. The following truth table shows that all the possible truth values are true:

P	$\sim P$	$P \lor (\sim P)$
Τ	F	T
F	Τ	Т

Table 6: Truth table for $P \vee (\sim P)$.

2.6 Contradictions

A compound statement is a **contradiction** if all possible truth values are false. An example of a contradiction is $P \land (\sim P)$. The following truth table shows that all the possible truth values are true:

P	$\sim P$	$P \wedge (\sim P)$
T	F	F
F	Т	\mathbf{F}

Table 7: Truth table for $P \wedge (\sim P)$.

2.7 Logical Equivalence

Two compound statements R and S are logically equivalent if they have the same truth values in a truth table. If R and S are logically equivalent, then we write $R \equiv S$. For example, we see that $P \implies Q$ and $(\sim P) \lor Q$ are logically equivalent as all truth values for $P \implies Q$ and $(\sim P) \lor Q$ are the same:

P	Q	$P \Rightarrow Q$	$\sim P$	$(\sim P) \lor Q$
T	Т	\mathbf{T}	F	\mathbf{T}
T	F	\mathbf{F}	F	\mathbf{F}
F	T	\mathbf{T}	Т	\mathbf{T}
F	F	\mathbf{T}	Γ	${f T}$

Table 8: Truth table for $P \Leftrightarrow Q$.

3 Proofs

Before we discuss proofs, we need to introduce some terminology. An **axiom** is a true statement that is accepted without proof. A **theorem** is a true statement that can be proven. Oftentimes, the term theorem is only used when talking about statements that have some sort of significance or importance. A **corollary** is a result that can be derived or deduced from a previous result. A **lemma** is a result that is used to establish another result.

3.1 Direct Proof

A **direct proof**, sometimes called a constructive proof, is a method of proof that is used to show $P \Rightarrow Q$. In a direct proof, we assume P to be true, and through a number of statements make our way to a statement that shows that Q is true. In order to demonstrate how to go about doing a direct proof, I shall present a few properties about integers:

- 1. The negative or any integer is also an integer
- 2. The summation of any two integers results in an integer
- 3. The product of any two integers results in an integer
- 4. Any even number can be written in the form: 2k, where $k \in \mathbb{Z}$
- 5. Any odd number can be written in the form: 2k+1, where $k \in \mathbb{Z}$

Example 1 Let $n \in \mathbb{Z}$. If n is odd, then 5n + 9 is even.

Result 1 Assume n is odd.

```
Thus n can be written in the following form: 2k+1 where k \in \mathbb{Z}. This means that 5n+9=5(2k+1)+9=10k+14=2(5k+7). Notice that since (5k+7) \in \mathbb{Z}, therefore 5n+9 is even.
```

Example 2 Let $n \in \mathbb{Z}$. If n is even, then -3n-5 is odd.

Result 2 Assume n is even.

```
Thus n can be written in the following form: 2k where k \in \mathbb{Z}.
This means that -3n-5=-3(2k)-5=-6k-5=-6k-5=-6k-6+1=2(-3k-3)+1.
Notice that since (-3k-3) \in \mathbb{Z}, therefore -3n-5 is odd.
```

3.2 Proof by Contrapositive

The **contrapositive** for an implication $P \Rightarrow Q$ is defined as $(\sim Q) \Rightarrow (\sim P)$. Notice that $(\sim Q) \Rightarrow (\sim P)$ is the logical equivalent of $P \Rightarrow Q$. Proofs by contrapositive are very similar to direct proofs. The only difference is that we start with $\sim Q$ and and through a number of statements make our way to a statement that shows that $\sim P$ is true. Proofs by contrapositive are often used when it is easier to work with $\sim Q$ then it is to work with $\sim Q$.

Example 1 Let $n \in \mathbb{Z}$. If 3n - 9 is even, then n is odd

Result 1 Assume n is even.

Thus n can be written in the following form: 2k where $k \in \mathbb{Z}$ This means that 3n - 9 = 3(2k) - 9 = 6k - 9 = 2(3k - 10) + 1Since $(3k - 10) \in \mathbb{Z}$, it follows that 3n - 9 is odd.

Example 2 Let $x \in \mathbb{Z}$. 9n-5 is even if and only if n is odd.

Result 2 When a biconditional is involved, we need to prove both directions. In other words, we need to prove that $(9x - 5 \text{ is even}) \Rightarrow (n \text{ is odd})$, and $(n \text{ is odd}) \Rightarrow (9x - 5 \text{ is even})$. We will first show that $(9x - 5 \text{ is even}) \Rightarrow (n \text{ is odd})$.

 \Rightarrow) $(9n - 5 \text{ is even}) \Rightarrow (n \text{ is odd})$

Assume n is even.

Thus n can be written in the following form: 2k where $k \in \mathbb{Z}$

This means that 9n - 5 = 9(2k) - 5 = 2(9k - 3) + 1

Since $9k - 3 \in \mathbb{Z}$, it follows that 9n - 5 is odd.

 \Leftarrow) $(n \text{ is odd}) \Rightarrow (9n - 5 \text{ is even})$

Assume n is odd.

Thus n can be written in the following form: 2m where $m \in \mathbb{Z}$

This means that 9n - 5 = 9(2m + 1) - 5 = 2(9m - 2)

Since $9m-2 \in \mathbb{Z}$, it follows that 9n-5 is even.

3.3 Cases

Oftentimes, it is easier to break the domain of a premise into subsets. The prover then works through the proof for each subset or **case**. Notice that these subsets need to exhaust the domain, meaning every point or element in the domain needs to be covered by a case. The following are examples of cases that could be used for their domains.

Example 1: $\forall x \in \mathbb{R}$:

Case 1: x > 0

Case 2: x < 0

Case 3: x = 0

Example 2: $\forall n \in \mathbb{Z}$:

Case 1: n is odd

Case 2: n is even

Example 3: Let $m, n \in \mathbb{Z}$. If mn is odd, then m and n are odd.

Result Assume m or n are even. Then, either m is even and n is odd, n is even and m is odd, or both m and n are even.

Case 1: Assume m and n are even.

Thus m = 2r and n = 2s where $r, s \in \mathbb{Z}$.

Therefore $mn = 2r \cdot 2s = 4rs = 2(rs)$.

Since $rs \in \mathbb{Z}$, it follows that mn is even.

Case 2: Assume without loss of generality that m is even and n is odd.

Thus m=2t and n=2u+1 where $t,u\in\mathbb{Z}.$

Therefore $mn = 2t \cdot (2u + 1) = 4tu + 2t = 2(2tu + t)$.

Since $2tu + t \in \mathbb{Z}$, it follows that mn is even.

Notice that in the previous example, we had three cases: either m is even and n is odd, n is even and m is odd, or both m and n are even. However, we only walked through 2 cases: both m and n are even, and m is even and n is odd. In case 2, we used the phrase **without loss of generality**, because both the cases of m is even and n is odd, and n is even and m is odd are similar, and so the proof of one case will be sufficient to cover the two cases.