

POLYNOMIAL MULTIPLICATION

USING THE FAST FOURIER TRANSFORM

Thomas Helbrecht
June 12, 2020

Motivation

- Polynomials model real world objects on paper
- Faster multiplication leads to improvement in wide variety of fields, such as
 - Image processing
 - Compression
 - Cryptography

Dramatic performance improvement with Fast Fourier Transform(FFT)

- Traditional approach of multiplying two polynomials: $O(n^2)$
- Polynomial multiplication using FFT: $O(n \cdot log(n))$

Preliminaries

• Polynomials usually appear in form $f(x) = \sum_{i=0}^{n-1} a_i \cdot x^i$ and have degree(f) = n-1

Representation	Definition
Coefficient matrices	$(a_0, a_1,, a_{n-1})$
Roots	$\{x \mid f(x) = 0\}$
Values at random points	$\{f(x_k) \mid x_k \in \{x_k \mid x_k \text{ chosen arbitrarily }\}\}$
Values at n^{th} roots of unity	$\{f\left(\omega_{n}^{j}\right)\mid \text{with }\omega_{n}=e^{\frac{2\pi i}{n}}forallj\in\{0,1,\ldots,n-1\}\}$

Complex nth roots of unity:

$$\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$$

Halving Lemma: If n>0 is even, then the squares of the n complex $n^{\rm th}$ roots of unity are the $\frac{n}{2}$ complex $\frac{n^{\rm th}}{2}$ roots of unity.

Euler's formula: $e^{iu} = \cos(u) + i \cdot \sin(u)$

Example:

Let f(x) = x + 1.

- 1. (1,1)
- $2. \{-1\}$
- 3. $\{1,2,3\}$ at x = 0,1,2
- 4. $\{2,0\}$ at $x = \omega_2^0, \omega_2^1$

Fast Fourier Transform(FFT)

Discrete Fourier Transform(DFT)

- Input: $A(x) = \sum_{j=0}^{n-1} a_j x^j$ in coefficient form as a vector $(a_0, a_1, ..., a_{\{n-1\}})$
- **Result:** Vector $(y_0, y_1, ..., y_{n-1})$ with $y_k = A(\omega_n^k) = \sum_{i=0}^{n-1} a_i \omega_n^{k \cdot j}$
- Calculation takes $O(n^2)$ time(n times evaluating in O(n) time)

Fast Fourier Transform(FFT)

- Divide and conquer approach to computing the Discrete Fourier transform
- Let $n = 2^r$ for some n. We get:

$$A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \cdot \omega_n^{kj} = \sum_{j=0}^{2^{r-1}} a_j \cdot e^{\frac{2\pi i k j}{2^r}} = \sum_{m=0}^{2^{r-1}-1} a_{2m} \cdot e^{\frac{2\pi i k m}{2^{r-1}}} + \sum_{m=0}^{2^{r-1}-1} a_{2m+1} \cdot e^{\frac{2\pi i k (2m+1)}{2^r}}$$

$$= \sum_{m=0}^{2^{r-1}-1} a_{2m} \cdot e^{\frac{2\pi i k m}{2^{r-1}}} + \sum_{m=0}^{2\pi i k m} a_{2m+1} \cdot e^{\frac{2\pi i k m}{2^{r-1}}}$$

$$With:$$

$$A^{[0]}(x) = a_0 + a_2 \cdot x + \dots + a_{n-2} x^{\frac{n}{2}-1}$$

$$A(\omega_n^k) = A^{[0]}(\omega_n^{2k}) + \omega_n^k \cdot A^{[1]}(\omega_n^{2k})$$

Horner's rule: $A(x) = a_0 + x(a_1 + \dots + x(a_{n-1} + xa_n) \dots)$

$$A[0](x) = a + a \cdot x + \dots + a \cdot x$$

$$A^{[1]}(x) = a_1 + a_3 \cdot x + \dots + a_{n-1} x^{\frac{n}{2} - 1}$$

Fast Fourier Transform(FFT)

Calculating the FFTs of the vectors with entries of even indexes and odd indexes makes it
possible to calculate the FFT of the original vector

Pseudocode

Pseudocode adapted from Wilf, H. (1994). *Algorithms and Complexity*. Internet Edition. https://www.math.upenn.edu/~wilf/AlgoComp.pdf

Complexity:

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

Applying the master theorem yields:

$$O(n \cdot \log(n))$$

Polynomial multiplication using FFT

- **Goal:** Computing $fg(x) = f(x) \cdot g(x) \ \forall x$
- **Input:** Two polynomials p, q in coefficient representation with degree m, n respectively
- Output: Coefficient representation of product fg

Algorithm

- 1. Double the degree of input to smallest power of two that is greater than m + n + 1
- 2. Extend input vectors with zero's
- 3. Compute the **FFT** of both vectors
- 4. Pointwise multiply $f(\omega_n^k) \cdot g(\omega_n^k)$ for each $k \in \{0,1,...,n-1\}$ to obtain **FFT** vector of fg
- 5. Use **IFFT** to convert from **FFT** of the product back to the coefficient representation of fg

Complexity:
$$3 \cdot O(n \cdot log(n)) + O(n) = O(n \cdot log(n))$$

Inverse Fourier Transform(IFFT)

Obtained by applying simple modifications to the FFT algorithm

From
$$A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \cdot e^{\frac{2\pi i j k}{n}}$$
 we get $a_j = \frac{1}{n} \cdot \sum_{j=0}^{n-1} A(\omega_n^k) \cdot e^{\frac{-2\pi i j k}{n}}$

degree(fg)
= degree(f) + degree(g)

THANK YOU FOR YOUR ATTENTION

References

- Cormen, T. H., Leiderson, C. E., Rivest, R. L. & Stein C.(2013). *Introduction to Algorithms. Third edition.* The MIT Press
- Wilf, H. (1994). *Algorithms and Complexity*. Internet Edition. https://www.math.upenn.edu/~wilf/AlgoComp.pdf
- Figures 1-6 can be found in my GitHub repository at https://github.com/thelbrecht/ac-fft