MATD49-Estatística não paramétrica Teste Exato de Fisher

Idéia

- Proposto inicialmente por [Fisher, 1966], tem grande valor histórico;
- Usado em tabelas de contingência 2 x 2, para comparar 2 grupos de acordo com a presença de uma característica;
- É indicado quando o tamanho das duas amostras independentes é pequeno e consiste em determinar a probabilidade exata de ocorrência de uma frequência observada, ou de valores mais extremos;
- É necessário que as marginais das linhas e colunas sejam fixas (não aleatórias).

Kim Samejima Teste Exato de Fisher

Distribuição Hipergeométrica

- Considere um conjunto de n elementos dos quais r são do **Tipo A** e n-r são do **Tipo B**.
- Para um sorteio de c elementos (c < n), feito ao acaso e **sem reposição**, defina a variável X como o número de elementos selecionados na amostra que são do **Tipo A**.
- X tem distribuição Hipergeométrica se sua f.d.p. é dada por:

$$P(X=x) = \frac{\binom{r}{x}\binom{n-r}{c-x}}{\binom{n}{c}}, \ 0 \le x \le \min\{c,r\}.$$

Dados

- Considere n observações sumarizados em uma tabela de contingência 2×2 .
- Os totais nas linhas correspondem a r e n-r. e os totais nas colunas correspondem a c e n-c. Os totais das linhas e das colunas é não aleatório.

Os dados são organizados na seguinte tabela de contingência 2×2 :

	Característic		
	Presença	Ausência	Total
Grupo A	X	r-x	r
Grupo B	c-x	n-r-c+x	n-r
Total	С	n − c	n

- Cada observação é classificada dentro de uma única célula.
- Os totais das linhas e colunas são fixos, não aleatórios.
- Se os totais marginais são fixos, a probabilidade de observar determinada frequência na tabela 2×2 tem distribuição hipergeométrica.

Hipóteses do Teste

Sejam p_A e p_B as probabilidades dos grupos A e B apresentarem a característica de interesse, respectivamente (i.e. os percentuais das linhas).

Bilateral:

 $H_0: p_A = p_B$, Não existe diferença entre as proporções observadas nos dois grupos; os grupos são independentes; não existe associação entre os dois grupos.

 $H_1: p_A \neq p_B$, as proporções são diferentes nos dois grupos.

Unilateral à Direita:

 $H_0: p_A = p_B$

 $H_1: p_A > p_B$, o grupo A tem maior incidência da característica de interesse que B.

Unilateral à Esquerda:

 $H_0: p_A = p_B$

 $H_1: p_A < p_B$, o grupo B tem maior incidência da característica de interesse que A.

Kim Sameijima Teste Exato de Fisher

Estatística e regra de decisão I

Estatística de teste: A estatística de teste T é o número de observações na célula da linha 1 e coluna 1:

$$T = x$$

que tem distribuição hipergeométrica, HG(n, r, c), definida por:

$$P(T=x) = \frac{\binom{r}{x}\binom{n-r}{c-x}}{\binom{n}{c}}, 0 \le x \le \min\{c, r\}.$$

Decisão:

- Encontrar o p valor usando a distribuição da estatística T.
- No caso do teste bilateral, o p valor pode ser calculado a partir de diferentes critérios:
 - Uma abordagem usual é somar todas as probabilidades p(k) = P(X = k) para todos os k tais que $p(k) \le p(x_o)$, com x_o o valor observado na tabela, isto é, o p-valor é a "probabilidade crítica" $p = P(p(k) \le p(x_o))$;

Kim Samejima Teste Exato de Fisher

Estatística e regra de decisão II

Figura: Distribuição Hipergeométrica. Fonte: wikipedia.

• Pode-se também considerar a somas dos p(k) para tabelas que estão além da tabela observada com x_0 :

$$P = P(|X - E(X)| \ge |x_o - E(X)|),$$

com E(X) = c * r/n, o que resulta no mesmo teste de qui-quadrado já visto anteriormente para tabelas 2×2 ;

Kim Samejima Teste Exato de Fisher

Estatística e regra de decisão III

- Uma terceira abordagem é considerar $p = 2min(P(T \le x), P(T \ge x))$, mas isto pode, eventualmente, ser maior que 1;
- Outra possibilidade é pegar a menor probabilidade entre $P(T \le x)$ e $P(T \ge x)$ e somar a ela uma probabilidade próxima, mas não maior que ela própria, na cauda do lado oposto.
- Veja [Agresti, 2007] para detalhes.
- Rejeitar H_0 ao nível de significância α , se o p-valor $p \leq \alpha$.

Nota:

- O teste exato de Fisher só é válido para os dados amostrais, ou seja, não é válido para a população;
- Como este teste calcula uma probabilidade exata, é necessário saber o número de casos nas marginais da tabela 2×2 antes dos dados serem analisados;
- É possível generalizar este teste para tabelas $r \times c$ maiores do que 2×2 . Veja [Freeman and Halton, 1951].

Exemplo I

[Conover, 1996] 14 novos funcionários, 10 homens e 4 mulheres, todos com iguais competências, foram atribuídos entre dois setores: 10 como atendentes e 4 como representantes comerciais. A hipótese nula é de que homens e mulheres foram igualmente distribuídos para o cargo mais desejado de representante comercial contra a alternativa de que mulheres são privilegiadas para esta posição.

Os dados observados foram:

	Rep.Comercial	Atendente	Total
Homens	1	9	10
Mulheres	3	1	4
	4	10	14

Tabela: Distribuição segundo sexo e cargo ocupado.

Exemplo II

As hipóteses são:

$$H_0: p_H \ge p_M$$

 $H_a: p_H < p_M$.

As tabelas iguais ou mais críticas do que a Tabela 1 são:

$$\begin{array}{c|cccc}
1 & 9 \\
\hline
3 & 1
\end{array}
e
\begin{array}{c|cccc}
0 & 10 \\
\hline
4 & 0
\end{array},$$

ou seja:

$$\begin{array}{lcl} \textit{P(rej H_0|H_0 verd)} & = & \textit{P(X} \leq 1) = \textit{P(X} = 1) + \textit{P(X} = 0) \\ \\ & = & \frac{\binom{10}{1}\binom{4}{3}}{\binom{14}{4}} + \frac{\binom{10}{0}\binom{4}{4}}{\binom{14}{4}} \approx 0.041 < 0.05 \end{array}$$

Logo, rejeitamos H_0 ao nível 0.05.

Aspectos computacionais

No R:

```
fisher.test()
No SAS, utilizaremos novamente o proc freq:
proc freq data=FatComp order=data;
tables Exposure*Response / fisher;
weight Cont;
run;
```

Exemplo no SAS I

Neste exemplo temos a incidência de doenças cardíacas em 23 pacientes de acordo com seu tipo de dieta.

Colesterol na dieta	Doença cardíaca		Total	
Colesteror na dieta	Sim	Não	TOLAI	
Alto	11	4	15	
Baixo	2	6	8	
Total	13	10	23	

Desejamos avaliar se o percentual de doenças cardíacas é diferente entre as dietas.

Exemplo no SAS II

run;

proc freq data=FatComp order=data; tables Exposure*Response / fisher; weight Cont;

No SAS, Utilizaremos o comando:

Teste de Mantel Haenszel

Este teste é indicado quando temos diversas tabelas 2×2 sequenciais:

Grupos na tabela <i>i</i>	Car	Total		
Grupos na tabela i	Presença	Não	- TOLAT	
Grupo A	Xi	$r_i - x_i$	r _i	
Grupo B	$c_i - x_i$	$n_i - r_i - c_i + x_i$	$n_i - r_i$	
Total	Ci	$n_i - c_i$	n _i	

respeitando as as mesmas suposições do teste exato de Fisher.

Além disso, as tabelas foram obtidas de a partir de amostras(experimentos) independentes.

Hipóteses do Teste

Sejam p_{Ai} e p_{Bi} as probabilidades dos grupos A e B apresentarem a característica de interesse na i-ésima tabela de contingência, respectivamente (i.e. os percentuais das linhas).

Bilateral:

 $H_0: p_{Ai} = p_{Bi}$, para todo i = 1, ..., k. Não existe diferença entre as proporções observadas nos dois grupos; os grupos são independentes; não existe associação entre os dois grupos, para todo i.

 H_1 : Ou $p_{Ai} > p_{Bi}$ para algum(ns) i ou $p_{Ai} < p_{Bi}$ para algum(ns) i.

Unilateral à Direita:

 $H_0: p_{Ai} = p_{Bi}$, para todo $i = 1, \ldots, k$.

 $H_1: p_{Ai} \ge p_{Bi}$, para todo $i \in p_{Ai} > p_{Bi}$, para algum(ns) i.

Unilateral à Esquerda:

 $H_0: p_{Ai} = p_{Bi}$, para todo $i = 1, \ldots, k$.

 $H_1: p_{Ai} \leq p_{Bi}$, para todo $i \in p_{Ai} < p_{Bi}$, para algum(ns) i.

Estatística e decisão

A estatística do teste é:

$$T_{mh} = \frac{\sum_{i} x_{i} - \sum_{i} \frac{r_{i}c_{i}}{n_{i}}}{\sqrt{\sum_{i} \frac{r_{i}c_{i}(n_{i}-r_{i})(n_{i}-c_{i})}{n_{i}^{2}(n_{i}-1)}}},$$
(1)

que possui, sob H_0 , distribuição aproximadamente normal padrão.

Rejeitamos H_0 ao nível α quando o valor da estatística T_{mh} for maior do que $z_{1-\alpha}$, isto é, para valores absolutos grandes da estatística.

Exemplo

[Conover, 1996], adaptado.

Três grupos de pacientes de diferentes hospitais são tratados com um mesmo tratamento ou são alocados no grupo controle. Deseja-se saber se houve melhora nas as taxas de recuperação dos pacientes tratados.

	Grupo 1		Grupo 2		Grupo 3	
	Sucesso	Fracasso	Sucesso	Fracasso	Sucesso	Fracasso
Tratamento	10	1	9	0	8	0
Controle	12	1	11	1	7	3
Total	22	2	20	1	15	3

A estatística é

$$T_{mh} = \frac{(10+9+8) - (\frac{11\cdot22}{24} + \frac{9\cdot20}{21} + \frac{8\cdot15}{18})}{\sqrt{\frac{11\cdot22\cdot13\cdot2}{24^2\cdot23} + \frac{9\cdot20\cdot12\cdot1}{21^2\cdot20} + \frac{8\cdot15\cdot10\cdot3}{18^2\cdot17}}} = \frac{1.6786}{1.1719} = 1.4323 < 1.65.$$

Logo, não rejeitamos H_0 ao nível 0.05.

Acknowledgements

Agradecemos ao prof. Anderson Ara pela disponibilização de seu material didático, no qual nos baseamos para a elaboração destes slides. Alguns trechos desta apresentação são replicados de seu material.

Referências I

Agresti, A. (2007).

An introduction to categorical data analysis.

Wiley-Interscience.

Conover, W. J. (1996).

Practical nonparametric statistics.

John Wiley and sons, 3 ed. edition.

Fisher, R. A. (1966).

The Design of Esperiments.

Edinburgh: Oliver and Boyd., 8th edition.

Freeman, G. H. and Halton, J. H. (1951).

Note on an exact treatment of contingency, goodness of fit and other problems of significance.

Biometrika. 38:141-149.