Ecuaciones diferenciales ordinarias FES Acatlán Actuaria

Enrique Abdeel Muñoz de la Colina 15 de noviembre de 2024

1. Producto interno

Definición 1.1. Sea V un espacio vectorial complejo. Una función $p: V \times V \to \mathbb{R}$ se llama producto interno en V si satisface las siquientes propiedades:

a) p es lineal respecto al primer argumento:

$$p(\lambda x + y, z) = \lambda p(x, z) + p(y, z), \quad \forall x, y, z \in V, \quad \forall \lambda \in \mathbb{C}.$$

b) p es simétrica conjugada:

$$p(x,y) = \overline{p(y,x)}, \quad \forall x, y \in V.$$

c) p es definida positiva:

$$p(x,x) > 0, \quad \forall x \in V \setminus \{0\}.$$

Con estas propiedades es posible concluir propiedades adicionales de los productos internos.

Proposición 1.2. Sea V un espacio vectorial real $y p: V \times V \to \mathbb{R}$. Entonces, p es lineal conjugada respecto al segundo argumento, es decir,

$$p(x, \lambda y + z) = \overline{\lambda}p(x, y) + p(x, z), \quad \forall x, y, z \in V, \quad \forall \lambda \in \mathbb{C}.$$

Un espacio vectorial puede tener varios productos internos. Cuando el producto interno está fijo, una notación habitual para él es $\langle \cdot, \cdot \rangle$. Así, en lugar de escribir p(x, y), escribimos $\langle x, y \rangle$.

Proposición 1.3 (Desigualdad de Cauchy–Schwarz). Sean $x, y \in \mathbb{R}^n$. Entonces,

$$(\langle x, y \rangle)^2 \le \langle x, x \rangle \langle y, y \rangle.$$

Demostración. Si x = 0, se tiene la igualdad.

Si $x \neq 0$, hacemos $\lambda \coloneqq \frac{\langle x,y \rangle}{\langle x,x \rangle}$ y $z \coloneqq y - \lambda x$. Utilizando la linealidad del producto interno, observamos que $\langle x,z \rangle = 0$. Luego, $\langle z,z \rangle = \langle y,y \rangle - \frac{(\langle x,y \rangle)^2}{\langle a,a \rangle}$. Como el producto interno es definido positivo, se cumple la desigualdad deseada.

Ejemplo 1.4. Sea $n \in \mathbb{N}$. Hacemos $\mathcal{P}_n := \{f(x) \in \mathbb{C}[x] : \deg(f) \leq n\}$. En \mathcal{P}_n definitions $\langle \cdot, \cdot \rangle : \mathcal{P}_n^2 \to \mathbb{C}$ mediante

$$\langle f, g \rangle \coloneqq \int_0^1 \overline{g(t)} f(t) dt.$$

Entonces, $\langle \cdot, \cdot \rangle$ es un producto interno en \mathcal{P}_n .

1 Producto interno 3

En adelante, consideraremos $\mathcal{H} := L_2([0,2\pi))$ con la medida $\frac{1}{2\pi}d\mu$, donde μ es la medida de Lebesgue usual. Definimos el producto interno $\langle \cdot, \cdot \rangle \colon \mathcal{H}^2 \to \mathbb{C}$ mediante

$$\langle \cdot, \cdot \rangle \coloneqq \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g}(t) \, \mathrm{d}\mu(t)$$

También, utilizaremos el hecho de que para cada $t \in \mathbb{R}$, $e^{it} = \cos(t) + i\sin(t)$.

Definición 1.5. Para cada $k \in \mathbb{Z}$, hacemos

$$\varphi_k(t) := e^{-kit}$$
.

Una base de \mathcal{H} es $(\varphi_k)_{k\in\mathbb{Z}}$. Veremos que es una base ortonormal.

Lema 1.6. Para cada $m \in \mathbb{Z}$,

$$\frac{1}{2\pi} \int_0^{2\pi} \varphi_m \, \mathrm{d}\mu = \delta_{m,0}.$$

Lema 1.7. Para cada $p, q \in \mathbb{Z}$,

$$\varphi_p \varphi_q = \varphi_{p+q}$$
$$\overline{\varphi_p} = \varphi_{-p}.$$

Lema 1.8. Para cada $p, q \in \mathbb{Z}$,

$$\langle \varphi_p, \varphi_q \rangle = \delta_{p,q}.$$

Como $(\varphi_k)_{k\in\mathbb{Z}}$ es base ortonormal de \mathcal{H} , para cada $f\in\mathcal{H}$, podemos escribir

$$f = \sum_{k \in \mathbb{Z}} a_k \varphi_k,$$

donde para cada $k \in \mathbb{Z}$, $a_k = \langle f, \varphi_k \rangle$.

Ejemplo 1.9. Calcular la serie de Fourier de f(x) = x.

Demostración. Para cada $k \in \mathbb{Z}$,

$$a_k = \langle f, \varphi_k \rangle.$$

Entonces, integrando por partes y usando el lema 1.6,

$$a_k = \frac{1}{2\pi} \int_0^{2\pi} t e^{ikt} dt = \frac{1}{ik} (-1)^k = \frac{i}{k} (-1)^{k+1}.$$

Luego,

$$f(x) = \sum_{k \in \mathbb{Z}} \frac{i}{k} (-1)^{k+1} \varphi_k.$$

Notamos que la serie se puede escribir como

$$f(x) = \sum_{k=0}^{\infty} \frac{2\pi i}{k} (-1)^{k+1} \varphi_k + \sum_{k=0}^{\infty} \frac{2\pi i}{-k} (-1)^{-k+1} \varphi_{-k}.$$

Además, tomando el k-ésimo término de cada suma, tenemos

$$a_k \varphi_k = \overline{a_{-k} \varphi_{-k}}.$$

Luego, por las propiedades de los números complejos,

$$a_k \varphi_k + a_{-k} \varphi_{-k} = a_k \varphi_k + \overline{a_k \varphi_k}$$

$$= 2 \operatorname{Re}(a_k \varphi_k) = 2 \operatorname{Re}\left(\frac{i}{k} e^{-ikt}\right)$$

$$= 2 \operatorname{Re}\left(\frac{i}{k} (\cos(kt) - i\sin(kt))\right)$$

$$= 2 \operatorname{Re}\left(\frac{2}{k} (\sin(kt) + i\cos(kt))\right)$$

$$= \frac{2}{k} \sin(kt).$$

Por lo tanto, podemos escribir ambas series como

$$f(x) = \sum_{k=0}^{\infty} \frac{2}{k} \sin(kt).$$