CONVEX HULL

Convex Hull (CH)

Standard algorithms for constructing a Convex Hull

General pic

Pseudo code: Graham's Scan

- 1. Let p_0 be the first point (lowermost, left if tie)
- 2. Let $\{p_1, p_2, p_3 \dots p_n\}$ be the rest of the points in lexicographic polar sorted order
- Stack.push(p₀)
- 4. Stack.push(p₁)
- 5. Stack.push(p₂)
- 6. for(int i=3; i<=m; i++)
- while angle from p_i stack.top, and stack.second is a non-left turn
- 8. Stack.pop()
- Stack.push(p_i)
- 10. return the stack

Time Complexity of Graham's Scan

- O(n log n): For sorting the points in the counterclockwise angular order
- All other operations are of constant time
- In any cases, best, average or worst case, we have to sort the points with respect to the angles
- Lower bound on Time complexity is $\Omega(n \log n)$

Optimal algorithm for convex hull

- Ω(n log n) algorithm is the optimal one for convex hull construction
- Why there is no algorithm for convex hull with a less complexity than $\Omega(n \log n)$?
- We already know that $\Omega(n \log n)$ is the lower bound for comparison based sorting.
- How to prove that $\Omega(n \log n)$ is the lower bound for convex hull construction too ?
- How do we prove that convex hull construction is as easy as sorting?

Comparison between different problems

- Reduction: Problem X reduces to Problem Y, if given a subroutine for Y, can solve X
- Cost of solving X = Cost of solving Y + Cost of reduction
- One of the Consequences of reduction ?
- Establish relative difficulty between problems
- Linear time reduction from sorting problem to convex hull construction and vice versa

Linear time reductions

- Problem X linear reduces to problem Y if X can be solved with:
 - Linear number of standard computational steps.
 - One call to subroutine for Y.

Sorting Problem & Convex Hull Construction

- Claim: Sorting problem linear reduces to Convex hull construction
- Sorting instance: x₁,x₂,...,x_n
- Convex hull instance : (x_1, x_1^2) , (x_2, x_2^2) , (x_3, x_3^2) , (x_4, x_4^2) ,..., (x_n, x_n^2)
- What do we infer from the convex hull constructed?

Exercise

- Given a Sorting instance: 4,-3,0,2,1
- Write the convex hull instance (x_1, x_1^2) , (x_2, x_2^2) , (x_3, x_3^2) , (x_4, x_4^2) ,..., (x_n, x_n^2)
- Construct the convex hull
- What do we observe?

Convex function

• (x_1, x_1^2) , (x_2, x_2^2) ,..., (x_n, x_n^2) can be viewed as a parabola which is a convex function

• Region $\{x: x^2 >= x\}$ is convex \rightarrow all points are on hull

Observation

- Naming the convex hull in counter clockwise order, what do we observe?
- Starting at point with most negative x, counter-clockwise order of hull points are the numbers sorted in ascending order.
- Sorting Linear reduces to convex hull construction
- Exercise: Prove convex hull construction linear reduces to Sorting
- Hence, lower bound of convex hull is Ω(n log n)

More O(n log n) algorithms

- What is the motivation for yet another O(n log n) algorithm?
- When we design a computational geometric algorithm we should focus on :
- Efficiency (Efficient in time and space)
- Scalability to higher dimensions

Scalable algorithms

- Graham's scan is not directly scalable/extendable to 3D because it does angular sorting
- Angular sorting is difficult in 3D or it has no direct counterpart in 3D
- Scalable algorithms :
- Incremental algorithm : O(n²) / O(n log n)
- Divide and Conquer : O(n log n)

Incremental algorithm

Idea: Incremental algorithm

- First take a subset of the input small enough so that the problem is easily solved.
 - In this case, take 3 points and construct a convex hull
- Then, one by one add remaining elements (of input) while maintaining the solution at each step.

How to add points?

- Consider points one by one:
- next point inside current hull—ignore
- next point outside current hull—update
- Two sub problems to solve:
- test if point inside or outside polygon
- update hull for outside points

Assumptions

- Input (set of points) : $\{p_0, p_1, p_2, ..., p_{n-1}\}$
- Points are in general position ie. No three points are collinear

Incremental algorithm: Pseudo code

Algorithm: INCREMENTAL ALGORITHM Let $H_2 \leftarrow \text{conv} \{p_0, p_1, p_2\}$. for k = 3 to n - 1 do $H_k \leftarrow \text{conv} \{H_{k-1} \cup p_k\}$

Incremental algorithm

- First hull is a triangle conv{p₀, p₁, p₂}
- Q= H_{k-1}
- p= p_k
- Problem of computing convex hull {Q U p} falls into two cases :
- (i)p∈ Q
- (ii) p∉ Q

Point p belongs to Q

- Discard p
- Even if p is on the boundary
- How to check p belongs to Q?
- Use Left operation
- Checks p is on to the left of all directed edges of the current polygon
- Complexity: O(n)

Point p does not belong to Q

- If any Left operation test returns False, then p does not belong to Q
- We have to compute {Q U p}
- How?

Simpler idea is to draw line of tangency from p to Q

Line of tangency (tangent line)

- In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point.
- German mathematician and philosopher
 Leibniz defined it as the line through a pair of infinitely close points on the curve.

Lines of tangency from p to Q

How do we find the point of tangency?

- LeftOn Test again?
- Exercise: Check how do we find p_i is the point of tangency for p

Consider p w.r.t. (p_{i-1}, p_i) and $(p_{i,p_{i+1}})$

• P is to the left of (p_{i-1}, p_i) and right of (p_{i}, p_{i+1})

Exercise

• Check p w.r.t. (p_{j-1},p_j) and $(p_{j,p_{j+1}})$

General pic

Points of tangency

• For the lower point $p_{i,}$ p is left of (p_{i-1},p_i) and right of $(p_{i,}p_{i+1})$

• For the upper point $p_{j,}$ p is right of (p_{j-1}, p_j) and

left of $(p_{j,}p_{j+1})$

Point of tangency

 In general: p_i is a point of tangency, if two successive edges yield different results of Left or On

```
Algorithm: TANGENT POINTS
for i = 0 to n - 1 do
if Xor (p \text{ left or on } (p_{i-1}, p_i), p \text{ left or on } (p_i, p_{i+1}))
then p_i is point of tangency
```

Time Complexity

- The work at each step is O(k), where k is the number of edges of the kth hull
- In the worst case, suppose p does not belong to Q, the work done is 3+4+....+n, where 3 is the number of edges of the first hull (triangle) and so on
- 3+4+....+n = ?
- O(n²)
- It can be improved to O(n log n). Think how to improve it....left as an exercise.

Reading Exercise

DIVIDE and CONQUER

[Preparata & Hong, 1977]

References

- J. O'Rourke: Art Gallery Theorems and Algorithms
- J. O Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998)
- http://personal.denison.edu/~havill/272S04/p apers/convexhulls.pdf [Prepared by Eric Eilberg, Denison University]
- https://www.uniweimar.de/fileadmin/user/fak /medien/professuren/Computer_Graphics/Alg o19/05_MoreGeomAlgs.pdf

Thank you