Graph Algorithms

Discrete Mathematics and Optimization Bioinformatics

1/10

Outline

- Depth First Search
- Breadth First Search
- Application: Check bipartiteness
- Minimum Spanning Tree: Kruskal algorithm
- Minimum Spanning Tree. Prim algorithm
- Application: Clustering

Depth First Search

Exploring graphs

DFS Algorithm

- Input: A graph G (by adjacency lists) and a root vertex r
- Output: An ordering of the vertices in the connected component of G containing r.
- DFS(Ex, r): Explore first indepth before backtracking

Exploring graphs

BFS Algorithm

- Input: A graph G (by adjacency lists) and a root vertex r
- Output: An ordering of the vertices in the connected component of G
 containing r.
 - ▶ Start at initial vertex (root) r.
 - ▶ Visit all vertices adjacent to the root *r* (put them on a queue).
 - Repeatedly visit the neighbours of visited vertices.
 - Stop when there are no new vertices to visit.

Exploring graphs

BFS Algorithm

- Input: A graph G (by adjacency lists) and a root vertex r
- Output: An ordering of the vertices in the connected component of G
 containing r.
 - ▶ Start at initial vertex (root) r.
 - Visit all vertices adjacent to the root r (put them on a queue).
 - Repeatedly visit the neighbours of visited vertices.
 - Stop when there are no new vertices to visit.

```
Set Explored[r] = true and Explored[v] = false for v \neq r
L[0] = s \text{ (vertices at distance 0 from } r)
i = 0 \text{ (layer counter)}
Set T = \emptyset (initial tree)
While L[i] is not empty
Initialize an empty list L[i+1]
For each vertex u in L[i] Consider each edge (u, v)
If Explored[v] = false then
Set Explored[v] = true \text{ Add } (u, v) \text{ to } T \text{ Add } v \text{ to } L[i+1]
Endif
Endfor
```

Exploring graphs

BFS Algorithm

- Input: A graph G (by adjacency lists) and a root vertex r
- Output: An ordering of the vertices in the connected component of G
 containing r.
 - Start at initial vertex (root) r.
 - ▶ Visit all vertices adjacent to the root *r* (put them on a queue).
 - Repeatedly visit the neighbours of visited vertices.
 - Stop when there are no new vertices to visit.
- Time complexity O(|V| + |E|).
- It provides a Layer decomposition $V = L_0 \cup L_1 \cup \cdots \cup L_t$ of the connected component containing r.
- It can provide the (number of) connected components of G: restart the algorithm with a new root if not all vertices have been explored.
- Can be applied to find the shortest path distance from the root to every other node in the graph.

Check if a graph is bipartite

A graph is bipartite if there is a bipartition $V = A \cup B$ such that every edge has precisely one end point in A and one endpoint in B.

- Input: A connected graph G
- Output: Decide if *G* is bipartite (decision algorithm)
 - Choose a vertex r.
 - Run BFS algorithm from r.
 - ▶ Build $A = L_0 \cup L_2 \cup \cdots$ and $B = L_1 \cup L_3 \cup \cdots$.
 - ▶ Check if there are edges in *A* or in *B*. If not, output *G* is bipartite.

Theorem

G is a bipartite graph if and only if it contains no odd cycles.

Check if a graph is bipartite

A graph is bipartite if there is a bipartition $V = A \cup B$ such that every edge has precisely one end point in A and one endpoint in B.

Theorem

G is a bipartite graph if and only if it contains no odd cycles.

- If G is bipartite then all of its subgraphs are bipartite
- An odd cycle is nonbipartite: a bipartite graph can not contain odd cycles
- If G does not contain odd cycles then $A = L_0 \cup L_2 \cup \cdots$ and $B = L_1 \cup L_3 \cup \cdots$ form a bipartition of G.

Minimum Spanning Tree

Weighted Graph G = (V, E)

- V set of nodes or vertices
- E set of edges (pairs of nodes) (can be directed, multiple, loops,...)
- $w: E \to \mathbb{R}^+$: each edge has a weight.

The weight of a subgraph $H \subset G$ is

$$w(H) = \sum_{e \in H} w(e).$$

$$w(H)=24$$

MST Problem

Given an edge-weighted graph G = (V, E, w) find a spanning tree of G with minimum weight.

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - Return F_m .

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ightharpoonup Return F_m .
- Correctedness of the algorithm
- Complexity of the algorithm
- Implementation

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ightharpoonup Return F_m .

Correctedness:

- The output is a forest:
 - acyclic by construction
 - ▶ The output is a minimum weight spanning forest: $E(F_i)$ contains the edges of an MST T for each i.

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - Return F_m .

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ▶ Return *F_m*.

Complexity:

- $O(m \log m)$ to sort the edges.
- Check acyclicity at each step: keep track of the connected components (n at the beginning). Each added edge has one only vertex in an existing connected component: check in constant time: O(m).

Complexity is $O(m \log m) = O(m \log n)$.

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ightharpoonup Return F_m .

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ▶ Return F_m.

Implementation

Disjoint Sets data structure

- makeset(x): creates a singleton set containing just x
- find(x): returns the identifier of the set containing x
- union(x,y): merges the sets containing x and y.

See kruskal.py

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ▶ Return *F_m*.

Kruskal MST algorithm is an example of a Greedy algorithm: at each step optimize locally your next move.

Greedy algorithms not always give the desired result. Hamiltonian Path with minimum weight (TSP)

- Input: An edge-weighted graph G.
- Ouput: A forest of minimum weight (in terms of its edges)
 - ▶ Sort the edges in non–decreasing weights $\{e_1, \ldots, e_m\}$
 - ▶ Initialize $F_0 = \{\emptyset\}$.
 - ▶ for i from 1 to n do if $F_{i-1} \cup e_i$ is acyclic then $F_i = F_{i-1} \cup e_i$ else $F_i = F_{i-1}$.
 - ightharpoonup Return F_m .

Joseph Kruskal (1928-2010)

American mathematician, statistician and computer scientist Worked in Bell Labs (1959–1995)

Application of Kruskal algorithm to Clustering

- Input: A set of n items and the distance (u, v) between each pair.
- Output: Divide the items into k groups so that the minimum distance between the groups is maximized

Application of Kruskal algorithm to Clustering

- Input: A set of n items and the distance (u, v) between each pair.
- Output: Divide the items into k groups so that the minimum distance between the groups is maximized

Application of Kruskal algorithm to Clustering

- Input: A set of n items and the distance (u, v) between each pair.
- Output: Divide the items into k groups so that the minimum distance between the groups is maximized
- Build the weighted graph with distances as weights
- Run Kruskal algorithm keeping track of the number of connected components at each step.
- Stop when the number of connected components is k
- Return the connected components

Prim Algorithm

- Input: An edge-weighted connected graph *G*.
- Ouput: A tree of minimum weight
 - ► Start at a vertex x₀ (root)
 - ▶ Initialize $F = (\{x_0\}, \emptyset)$.
 - ▶ While $F \neq V(G)$
 - * Find the edge e = xy with minimum weight with $x \in F$ and $y \notin F$ * $F = (V(F) \cup \{y\}, E(F) \cup \{xy\})$
 - ► Return *F*.

Prim Algorithm

- Input: An edge-weighted connected graph G.
- Ouput: A tree of minimum weight
 - Start at a vertex x₀ (root)
 - ▶ Initialize $F = (\{x_0\}, \emptyset)$.
 - ▶ While $F \neq V(G)$
 - * Find the edge e = xy with minimum weight with $x \in F$ and $y \notin F$ * $F = (V(F) \cup \{y\}, E(F) \cup \{xy\})$
 - ▶ Return *F*.
- Correctedness of the algorithm: similar to Kruskal
- Complexity of the algorithm: $O(n \log n)$
- Implementation: somewhat simpler

Prim Algorithm

- Input: An edge-weighted connected graph G.
- Ouput: A tree of minimum weight
 - Start at a vertex x₀ (root)
 - ▶ Initialize $F = (\{x_0\}, \emptyset)$.
 - ▶ While $F \neq V(\hat{G})$
 - * Find the edge e = xy with minimum weight with $x \in F$ and $y \notin F$ * $F = (V(F) \cup \{y\}, E(F) \cup \{xy\})$
 - ► Return *F*.

