### CS 154

## Time Hierarchy, P and NP

### **An Efficient Universal TM**

Theorem: There is a (one-tape) Turing machine U which takes as input:

- the code of an arbitrary TM M
- an input string w
- and a string of t 1s, t > |w|
   such that U(M, w, 1<sup>t</sup>) halts in O(|M|<sup>2</sup> t<sup>2</sup>) steps
   and U accepts (M, w, 1<sup>t</sup>) ⇔ M accepts w in t steps

### The Universal TM with a Clock

Idea: Make a multi-tape TM U' that does the above, and runs in O(|M| t) steps

### The Time Hierarchy Theorem

Intuition: If you get more time to compute, then you can solve strictly more problems.

```
Theorem: For all "reasonable" f, g : \mathbb{N} \to \mathbb{N} where for all n, g(n) > n^2 f(n)^2, TIME(f(n)) \subseteq TIME(g(n))
```

Proof Idea: Diagonalization with a clock.

Make a TM N that on input M,
simulates the TM M on input M for f(|M|) steps,
then flips the answer.

Then, L(N) cannot have time complexity f(n)

### The Time Hierarchy Theorem

Theorem: For "reasonable" f, g where  $g(n) > n^2 f(n)^2$ ,

TIME(f(n))  $\subseteq$  TIME(g(n))

**Proof Sketch:** Define a TM N as follows:

N(M) = Compute t = f(|M|) Run U(M, M, 1<sup>t</sup>) and output the opposite answer.

Claim: L(N) does not have time complexity f(n).

**Proof:** Assume N' runs in f(n) time, and L(N') = L(N).

By assumption, N'(N') runs in f(|N'|) time and

outputs the opposite answer of U(N', N', 1f(|N'|))

But by definition of U,  $U(N', N', 1^{f(|N'|)})$  accepts

 $\Leftrightarrow$  N'(N') accepts in f(|N'|) steps.

This is a contradiction!

### The Time Hierarchy Theorem

Theorem: For "reasonable" f, g where  $g(n) > n^2 f(n)^2$ ,

TIME(f(n))  $\subseteq$  TIME(g(n))

**Proof Sketch:** Define a TM N as follows:

N(M) = Compute t = f(|M|) Run U(M, M, 1<sup>t</sup>) and output the opposite answer.

So, L(N) does not have time complexity f(n).

What do we need in order for N to run in O(g(n)) time?

- 1. Compute f(|M|) in O(g(|M|)) time ["reasonable"]
- 2. Simulate U(M, M, 1<sup>t</sup>) in O(g(|M|)) time Recall: U(M, w, 1<sup>t</sup>) halts in O(|M|<sup>2</sup> t<sup>2</sup>) steps Set g(n) so that g(|M|) >  $|M|^2$  f(|M|)<sup>2</sup> for all n. QED

**Remark:** Time hierarchy also holds for multitape TMs!

### A Better Time Hierarchy Theorem

Theorem: For "reasonable" f, g where  $g(n) > f(n) \log^2 f(n)$ ,  $TIME(f(n)) \subseteq TIME(g(n))$ 

Corollary: TIME(n)  $\subseteq$  TIME(n<sup>2</sup>)  $\subseteq$  TIME(n<sup>3</sup>)  $\subseteq$  ...

There is an infinite hierarchy of increasingly more time-consuming problems

**Question:** Are there important everyday problems that are high up in this time hierarchy?

A natural problem that needs exactly n<sup>10</sup> time?

### THIS IS AN OPEN QUESTION!

$$P = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$$

**Polynomial Time** 

### The EXTENDED **Church-Turing Thesis**

Everyone's of Efficient **Algorithms** 

Intuitive Notion = Polynomial-Time **Turing Machines** 

A controversial thesis! Pond include n<sup>100</sup> time ald algorithms, quantui

### **Nondeterminism and NP**

### **Nondeterministic Turing Machines**

...are just like standard TMs, except:

- 1. The machine may proceed according to several possible transitions (like an NFA)
- 2. The machine accepts an input string if there exists an accepting computation history for the machine on the string



### **Definition: A nondeterministic TM is a 7-tuple**

T = (Q, Σ, Γ, δ, 
$$q_0$$
,  $q_{accept}$ ,  $q_{reject}$ ), where:

Q is a finite set of states

 $\Sigma$  is the input alphabet, where  $\square \not\in \Sigma$ 

 $\Gamma$  is the tape alphabet, where  $\square \in \Gamma$  and  $\Sigma \subseteq \Gamma$ 

$$\delta: \mathbf{Q} \times \mathbf{\Gamma} \rightarrow \mathbf{2}^{(\mathbf{Q} \times \mathbf{\Gamma} \times \{\mathbf{L},\mathbf{R}\})}$$

 $q_0 \in Q$  is the start state

**q**<sub>accept</sub> ∈ **Q** is the accept state

 $q_{reject} \in Q$  is the reject state, and  $q_{reject} \neq q_{accept}$ 

### **Defining Acceptance for NTMs**

Let N be a nondeterministic Turing machine

An accepting computation history for N on w is a sequence of configurations C<sub>0</sub>,C<sub>1</sub>,...,C<sub>t</sub> where

- 1. C<sub>0</sub> is the start configuration q<sub>0</sub>w,
- 2. C, is an accepting configuration,
- 3. Each configuration C<sub>i</sub> yields C<sub>i+1</sub>

**Def.** N(w) accepts in t time ⇔ Such a history exists

N has time complexity T(n) if for all n, for all inputs of length n and for all histories, N halts in T(n) time

```
Definition: NTIME(t(n)) =

{ L | L is decided by a O(t(n)) time

nondeterministic Turing machine }
```

 $TIME(t(n)) \subseteq NTIME(t(n))$ 

Is TIME(t(n)) = NTIME(t(n)) for all t(n)?

THIS IS AN OPEN QUESTION!

## What problems can we efficiently solve nondeterministically, but not deterministically?

### **The Clique Problem**



k-clique = complete subgraph on k nodes

### **The Clique Problem**



Find a clique of 1 million nodes?

Assume a reasonable encoding of graphs (example: the adjacency matrix is reasonable)

CLIQUE = { (G,k) | G is an undirected graph with a k-clique }

**Theorem:** CLIQUE  $\in$  NTIME(n<sup>c</sup>) for some c > 1

N((V,E),k): Nondeterministically guess

a subset S of V with |S| = k

For all u, v in S,

if (u,v) is not in E then reject

Accept

### The Hamiltonian Path Problem



A Hamiltonian path traverses through each node exactly once

HAMPATH = { (G,s,t) | G is a directed graph with a Hamiltonian path from s to t }

**Theorem:**  $HAMPATH \in NTIME(n^c)$  for some c > 1

```
N((V,E),s,t): Nondeterministically guess a sequence v_1, ..., v_{|V|} of vertices If v_i = v_j for some i \neq j, reject For all i = 1,...,|V|-1, if (v_i,v_{i+1}) is not in E then reject If (v_1 = s \& v_n = t) then accept else reject
```

## $\frac{NP}{k} = \bigcup_{k \in \mathbb{N}} NTIME(n^k)$

**Nondeterministic Polynomial Time** 

```
Theorem: L \in NP \Leftrightarrow There is a constant k and
                           polynomial-time TM V such that
   L = \{x \mid \exists y \in \Sigma^* [|y| \le |x|^k \text{ and } V(x,y) \text{ accepts } ]\}
Proof: (1) If L = \{x \mid \exists y \mid y \mid \le |x|^k \text{ and } V(x,y) \text{ accepts } \}
                  then L ∈ NP
 Define the NTM N(x): Guess y of length at most |x|^k
                                Run V(x,y) and output answer
Then, L(N) is the set of x s.t. [|y| \le |x|^k \& V(x,y) accepts]
       (2) If L \in NP then
               L = \{ x \mid \exists y \mid y \mid \leq |x|^k \text{ and } V(x,y) \text{ accepts } \}
 Suppose N is a poly-time NTM that decides L.
  Define V(x,y) to accept iff y encodes an accepting
                                  computation history of N on x
```

# A language L is in NP if and only if there are polynomial-length proofs for membership in L

```
CLIQUE = { (G,k) | ∃ subset of nodes S such that S is a k-clique in G }
```

HAMPATH = { (G,s,t) | ∃ Hamiltonian path in graph G from node s to node t }

### **Boolean Formula Satisfiability**



### **Boolean Formula Satisfiability**

$$\phi = (\neg x \wedge y) \vee z$$

A satisfying assignment is a setting of the variables that makes the formula true

x = 1, y = 1, z = 1 is a satisfying assignment for  $\phi$  (in fact, any assignment with z = 1 is satisfying)

$$\phi = \neg(x \lor y) \land (z \land \neg x)$$

A Boolean formula is satisfiable if there is a true/false setting to the variables that makes the formula true

SAT =  $\{ \phi \mid \phi \text{ is a satisfiable Boolean formula } \}$ 

### A 3cnf-formula has the form:



3SAT =  $\{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula } \}$ 

```
3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula } \}
Theorem: 3SAT \in NP
 We can express 3SAT as
 3SAT = \{ \phi \mid \exists \text{ string y such that } \phi \text{ is in 3cnf and } \}
                   y encodes a satisfying assignment to \phi
The number of variables of \phi is at most |\phi|,
        so |y| \leq |\phi|.
Then, argue that the language
3SAT-CHECK = \{(\phi,y) \mid \phi \text{ is in 3cnf and y is a satisfying}\}
                                assignment to \phi}
is in P.
(Similarly, SAT \in NP)
```

### NP = Problems with the property that, once you have the solution, it is "easy" to verify the solution

When  $\phi \in SAT$ , or  $(G, k) \in CLIQUE$ , or  $(G,s,t) \in HAMPATH$ ,

I can prove that fact to you with a short proof that you can easily verify

What if  $\phi \notin SAT$ ?  $(G, k) \notin CLIQUE$ ?  $Or(G,s,t) \notin HAMPATH$ ?

P = the problems that can be efficiently solved

NP = the problems where proposed solutions can be efficiently verified

Is P = NP?

can problem solving be automated?

**If P = NP...** 

Mathematicians may be out of a job

Cryptography as we know it may be impossible

In principle, every aspect of life could be efficiently and globally optimized...
... life as we know it would be different!

**Conjecture:** P ≠ NP

### **Polynomial Time Reducibility**

 $f: \Sigma^* \to \Sigma^*$  is a polynomial time computable function if there is a poly-time Turing machine M that on every input w, halts with just f(w) on its tape

Language A is poly-time reducible to language B, written as  $A \leq_P B$ , if there is a poly-time computable  $f: \Sigma^* \to \Sigma^*$  so that:

$$w \in A \Leftrightarrow f(w) \in B$$

f is a polynomial time reduction from A to B

Note there is a k such that for all w,  $|f(w)| \le |w|^k$ 



f converts any string w into a string f(w) such that  $w \in A \iff f(w) \in B$ 

### Theorem: If $A \leq_{P} B$ and $B \leq_{P} C$ , then $A \leq_{P} C$



Theorem: If  $A \leq_{P} B$  and  $B \in P$ , then  $A \in P$ 

**Proof:** Let M<sub>B</sub> be a poly-time TM that decides B. Let f be a poly-time reduction from A to B.

We build a machine M<sub>A</sub> that decides A as follows:

$$M_A = On input w,$$

- 1. Compute f(w)
- 2. Run M<sub>B</sub> on f(w), output its answer

$$w \in A \Leftrightarrow f(w) \in B$$