EE263 Autumn 2015 S. Boyd and S. Lall

Example: Linear Models

Linear elastic structure

- \triangleright x_j is external force applied at some node, in some fixed direction
- \triangleright y_i is (small) deflection of some node, in some fixed direction

(provided x, y are small) we have $y \approx Ax$

- ▶ A is called the *compliance matrix*
- ▶ a_{ij} gives deflection i per unit force at j (in m/N)

,

Total force/torque on rigid body

- $ightharpoonup x_j$ is external force/torque applied at some point/direction/axis
- ▶ $y \in \mathbb{R}^6$ is resulting total force & torque on body $(y_1, y_2, y_3 \text{ are } \mathbf{x}$ -, \mathbf{y} -, \mathbf{z} components of total force, y_4, y_5, y_6 are \mathbf{x} -, \mathbf{y} -, \mathbf{z} components of total torque)
- ightharpoonup we have y = Ax
- A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- ▶ jth column gives resulting force & torque for unit force/torque j

Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

- $\triangleright x_i$ is value of independent source i
- \triangleright y_i is some circuit variable (voltage, current)
- ightharpoonup we have y = Ax
- ightharpoonup if x_j are currents and y_i are voltages, A is called the *impedance* or *resistance* matrix

Final position/velocity of mass due to applied forces

- ▶ unit mass, zero position/velocity at t = 0, subject to force f(t) for $0 \le t \le n$
- ▶ $f(t) = x_j$ for $j 1 \le t < j$, j = 1, ..., n (x is the sequence of applied forces, constant in each interval)
- ▶ y_1 , y_2 are final position and velocity (i.e., at t = n)
- ightharpoonup we have y = Ax
- $lacktriangleq a_{1j}$ gives influence of applied force during $j-1 \leq t < j$ on final position
- ▶ a_{2j} gives influence of applied force during $j-1 \le t < j$ on final velocity

Gravimeter prospecting

- $x_j = \rho_j \rho_{\text{avg}}$ is (excess) mass density of earth in voxel j;
- ▶ y_i is measured *gravity anomaly* at location i, i.e., some component (typically vertical) of $g_i g_{\rm avg}$
- ightharpoonup y = Ax, where A comes from physics and geometry
- $lackbox{}{}$ jth column of A shows sensor readings caused by unit density anomaly at voxel j
- ▶ ith row of A shows sensitivity pattern of sensor i

Thermal system

- $ightharpoonup x_j$ is power of jth heating element or heat source
- $lackbox{} y_i$ is change in steady-state temperature at location i
- thermal transport via conduction
- y = Ax
- ▶ a_{ij} gives influence of heater j at location i (in ${}^{\circ}C/W$)
- lacksquare jth column of A gives pattern of steady-state temperature rise due to 1W at heater j
- ▶ ith row shows how heaters affect location i

Illumination with multiple lamps

- \blacktriangleright n lamps illuminating m (small, flat) patches, no shadows
- $ightharpoonup x_j$ is power of jth lamp; y_i is illumination level of patch i
- ▶ y = Ax, where $a_{ij} = r_{ij}^{-2} \max\{\cos \theta_{ij}, 0\}$ $(\cos \theta_{ij} < 0 \text{ means patch } i \text{ is shaded from lamp } j)$
- lacktriangleq jth column of A shows illumination pattern from lamp j

Signal and interference power in wireless system

- ightharpoonup n transmitter/receiver pairs
- transmitter j transmits to receiver j (and, inadvertantly, to the other receivers)
- \triangleright p_j is power of jth transmitter
- $ightharpoonup s_i$ is received signal power of ith receiver
- \triangleright z_i is received interference power of ith receiver
- ▶ G_{ij} is path gain from transmitter j to receiver i
- \blacktriangleright we have s=Ap, z=Bp, where

$$a_{ij} = \begin{cases} G_{ii} & i = j \\ 0 & i \neq j \end{cases} \qquad b_{ij} = \begin{cases} 0 & i = j \\ G_{ij} & i \neq j \end{cases}$$

ightharpoonup A is diagonal; B has zero diagonal (ideally, A is 'large', B is 'small')

Cost of production

production inputs (materials, parts, labor, ...) are combined to make a number of products

- \triangleright x_j is price per unit of production input j
- $lackbox{ } a_{ij}$ is units of production input j required to manufacture one unit of product i
- $ightharpoonup y_i$ is production cost per unit of product i
- ightharpoonup we have y = Ax
- ▶ *i*th row of *A* is *bill of materials* for unit of product *i*

Cost of production

production inputs needed

- $ightharpoonup q_i$ is quantity of product i to be produced
- $ightharpoonup r_i$ is total quantity of production input j needed
- ightharpoonup we have $r = A^{\mathsf{T}}q$

total production cost is

$$r^{\mathsf{T}}x = (A^{\mathsf{T}}q)^{\mathsf{T}}x = q^{\mathsf{T}}Ax$$

Network traffic and flows

- ▶ n flows with rates f_1, \ldots, f_n pass from their source nodes to their destination nodes over fixed routes in a network
- $ightharpoonup t_i$, traffic on link i, is sum of rates of flows passing through it
- ▶ flow routes given by flow-link incidence matrix

$$A_{ij} = \begin{cases} 1 & \text{flow } j \text{ goes over link } i \\ 0 & \text{otherwise} \end{cases}$$

lacktriangle traffic and flow rates related by t=Af

Network traffic and flows

link delays and flow latency

- ▶ let d_1, \ldots, d_m be link delays, and l_1, \ldots, l_n be latency (total travel time) of flows
- $l = A^{\mathsf{T}} d$
- $igwedge f^{\mathsf{T}}l=f^{\mathsf{T}}A^{\mathsf{T}}d=(Af)^{\mathsf{T}}d=t^{\mathsf{T}}d$, total # of packets in network

Linearization

▶ if $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x_0 \in \mathbb{R}^n$, then

$$x$$
 near $x_0 \Longrightarrow f(x)$ very near $f(x_0) + Df(x_0)(x - x_0)$

where

$$Df(x_0)_{ij} = \left. \frac{\partial f_i}{\partial x_j} \right|_{x_0}$$

is derivative (Jacobian) matrix

- ▶ with y = f(x), $y_0 = f(x_0)$, define input deviation $\delta x := x x_0$, output deviation $\delta y := y y_0$
- ▶ then we have $\delta y \approx Df(x_0)\delta x$
- ▶ when deviations are small, they are (approximately) related by a linear function

Navigation by range measurement

- $lackbox{}(x,y)$ unknown coordinates in plane
- $lackbox{}(p_i,q_i)$ known coordinates of beacons for i=1,2,3,4
- $ightharpoonup
 ho_i$ measured (known) distance or range from beacon i

Navigation by range measurement

 $ho \in \mathbb{R}^4$ is a nonlinear function of $(x,y) \in \mathbb{R}^2$

$$\rho_i(x,y) = \sqrt{(x-p_i)^2 + (y-q_i)^2}$$

▶ linearize around (x_0, y_0) : $\delta \rho \approx A \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}$, where

$$a_{i1} = \frac{(x_0 - p_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}, \quad a_{i2} = \frac{(y_0 - q_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}$$

- ith row of A shows (approximate) change in ith range measurement for (small) shift in (x,y) from (x_0,y_0)
- first column of A shows sensitivity of range measurements to (small) change in x from x_0
- ightharpoonup obvious application: (x_0,y_0) is last navigation fix; (x,y) is current position, a short time later