Chapter 6 Orthogonality and Least Squares

David Robinson

Inner Product, Length, and Orthogonality

Theorem 1

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = u \cdot (c\mathbf{v})$
- 4. $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} = 0$ if and only if $\mathbf{u} = 0$

The Length of a Vector

The length (or norm) of \mathbf{v} is the nonnegative scalar $\|\mathbf{v}\|$ defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}, \text{ and } \|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$$

Distance in \mathbb{R}^n

For **u** and **v** in \mathbb{R}^n , the **distance between u and v**, written as $dist(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u} - \mathbf{v}$.

$$dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

Orthogonal Vectors

Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.

Theorem 2 — The Pythagorean Theorem

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Theorem 3

Let *A* be an $m \times n$ matrix. The orthogonal complement of the row space of *A* is the null space of *A*, and the orthogonal complement of the column space of *A* is the null space of A^T

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$$
 and $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$

Key Points

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \times \mathbf{v}$
- 2. A unit vector in the direction of a vector can be determined by dividing that vector by its length.
- 3. $||c\mathbf{v}||$ is not always equal to $c||\mathbf{v}||$. Since length is always positive, the value of $||c\mathbf{v}||$ is positive for all values of c. However, $c||\mathbf{v}||$ is negative if c is negative.

Orthogonal Sets

Theorem 4

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

Orthogonal Basis

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem 5

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination are

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$
 given by $c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$ $(j = 1, \dots, p)$

Theorem 6

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Theorem 7

Let U be an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be in \mathbb{R}^n . Then

- 1. $||U\mathbf{x}|| = ||\mathbf{x}||$
- 2. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- 3. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$

Key Points

- 1. A set of vectors is orthogonal if each pair of distinct vectors from the set is orthogonal.
- 2. The vector $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto \mathbf{u} .

$$\hat{\mathbf{y}} = \left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

3. y can be written s the sum of a vector in Span{u} and a vector orthogonal to u.

$$y = \hat{y} + z$$

- 4. An orthonormal set is an orthogonal set where all of the vectors are unit vectors.
- 5. If A is a matrix with orthonormal columns, then $||A\mathbf{x}|| = ||\mathbf{x}||$.
- 6. If U is an orthogonal matrix, $U^T = U^{-1}$.
- 7. A matrix with orthogonal columns is an orthonormal matrix if the matrix is also square.
- 8. If U is a $m \times n$ matrix with orthonormal columns, **x** is in \mathbb{R}^n , $||U\mathbf{x}|| = (U\mathbf{x})^T(U\mathbf{x})$

Orthogonal Projections

Theorem 8 — The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$

and $\mathbf{z} = \mathbf{y} - \mathbf{\hat{y}}$

Theorem 9 — The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$||\mathbf{y} - \mathbf{\hat{y}}|| < ||\mathbf{y} - \mathbf{v}||$$

for all \mathbf{v} in W distinct from $\mathbf{\hat{y}}$.

Theorem 10

If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_{w} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2})\mathbf{u}_{2} + \cdots + (\mathbf{y} \cdot \mathbf{u}_{p})\mathbf{u}_{p}$$

If
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_p \end{bmatrix}$$
, then

$$\operatorname{proj}_{W} \mathbf{y} = UU^{T} \mathbf{y} \quad \text{for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$

Key Points

1. If \mathbf{u}_1 and \mathbf{u}_2 are orthogonal but \mathbf{u}_3 is not orthogonal to \mathbf{u}_1 or \mathbf{u}_2 , a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 can be constructed through $\mathbf{v} = \mathbf{u}_3 - \hat{\mathbf{u}}_3$.

The Gram-Schmidt Process

Theorem 11 — The Gram-Schmidt Process

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\begin{aligned} \mathbf{v}_{1} &= \mathbf{x}_{1} \\ \mathbf{v}_{2} &= \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\ \mathbf{v}_{3} &= \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\ &\vdots \\ \mathbf{v}_{p} &= \mathbf{x}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} - \cdots \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1} \end{aligned}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W. In addition

$$\operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\} = \operatorname{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\} \quad \text{for } 1 \le k \le p$$

Theorem 12 — The QR Factorization

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

Least-Squares Problems

If A is $m \times n$ and **b** is in \mathbb{R}^m , a **least-squares solution** of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$||\mathbf{b} - A\hat{\mathbf{x}}|| \le ||\mathbf{b} - A\mathbf{x}||$$

for all \mathbf{x} in \mathbf{R}^n .

Theorem 13

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

Theorem 14

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- 1. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- 2. The columns of *A* are linearly independent.
- 3. The matrix $A^T A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\mathbf{\hat{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

Theorem 15

Given an $m \times n$ matrix A with linearly independent columns, let A = QR be a QR factorization of A. Then, for each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution, given by

$$\mathbf{\hat{x}} = R^{-1} Q^T \mathbf{b}$$

Key Points

- 1. The least-squares error is the distance from **b** to $A\hat{\mathbf{x}}$, $\|\mathbf{b} A\hat{\mathbf{x}}\|$.
- 2. If *A* is an orthogonal set, the weights that form the orthogonal projection of **b** onto Col *A*, $\frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$, form the least-squares solution of $A\mathbf{x} = \mathbf{b}$.

Machine Learning and Linear Models

To find the equation $y = \beta_0 + \beta_1 X$ of the least-squares line that best fits data points $(x_1, y_1), \dots, (x_n, y_n)$, find the least-squares solution of $X\beta = \mathbf{y}$, where the design matrix X, the parameter vector β , and observation vector \mathbf{y} are

$$X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$\beta = (X^T X)^{-1} X^T \mathbf{y}$$

Inner Product Spaces

An **inner product** on a vector space V is a function that, to each pair of vectors \mathbf{u} and \mathbf{v} in V, associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ and satisfies the following axioms, for all \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and all scalars c:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$
- 4. $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$

A vector space with an inner product is called an **inner product space**.

Theorem 16 — The Cauchy-Shwarz Inequality

For all \mathbf{u} , \mathbf{v} in V,

$$|\langle u,v\rangle| \leq \|u\|\,\|v\|$$

Theorem 17 — The Triangle Inequality

For all \mathbf{u} , \mathbf{v} in V,

$$\|u+v\|\leq \|u\|+\|v\|$$

Key Points

- 1. $\langle \mathbf{p}, \mathbf{q} \rangle = \mathbf{p}(t_1)\mathbf{q}(t_1) + \cdots + \mathbf{p}(t_n)\mathbf{q}(t_n)$
- 2. The orthogonal projection of a polynomial in an inner product space is

$$\boldsymbol{\hat{q}} = \frac{\langle q, p_1 \rangle}{\langle p_1, p_1 \rangle} \boldsymbol{p}_1 + \dots + \frac{\langle q, p_n \rangle}{\langle p_n, p_n \rangle} \boldsymbol{p}_n$$

Applications of Inner Product Spaces

Let $C[0,2\pi]$ be a space with the inner product $\langle f,g\rangle=\int_0^{2\pi}f(t)g(t)dt$. The function which approximates as closely as desired for any function in $C[0,2\pi]$ is

$$\frac{a_0}{2} + a_1 \cos t + \dots + a_n \cos nt + b_1 \sin t + \dots + b_n \sin nt$$

where
$$\frac{a_0}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt$$
, $a_k = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos kt dt$, and $b_k = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin kt dt$