HF Sourcing: Pedestal Oscillation Analysis

Edmund Berry, Vladimir Gavrilov, Richard Kellogg, Viktor Krishtenko

Sunday, June 22, 2014

Introduction

Issue: HF pedestal oscillating for some channels

- Plot from Viktor Khristenko
- Run: ???; Channel: HF(40, 23, 1)
- Full x-axis range shown

Introduction

Issue: HF pedestal oscillating for some channels

- Same plot as last slide, but zoomed x-axis range
- Data broken into 0.35s chunks (expected)
- Oscillations are clear (not in all channels)

Goals

Introduction

- Three (more?) main goals for this analysis:
 - Identify oscillating channels
 - Quantify oscillation
 - 3 See if oscillation varies with time
- Focus on Goal 1 (identification) for now

Method: overview

- Viktor provides a TGraph (slide 2) for each channel in run
- 2 For each channel, break TGraph into 0.35s chunks
- 3 Convert each chunk's x-axis from OrN to time
 - Divide OrN by orbit frequency in Hz
- 4 Fit each chunk (\approx 200) with a sinusoid
- 5 Use collection of fits to identify oscillating pedestals:
 - Oscillating channels have good fits & big amplitudes
 - Non-oscillating channels have bad fits & low amplitudes

Method: the fit

■ Fit function with 4 degrees of freedom:

$$f(t) = a_0 + a_1 \cdot \sin(2\pi \cdot (f \cdot x + \phi))$$

- Limits on parameters:
 - Let *y_i* be the SPE of the *i*-th point in the chunk
 - lacksquare a_0 varies between 0 and $\left[2\cdot\left(rac{y_{ ext{max}}+y_{ ext{min}}}{2}
 ight)
 ight]$
 - **a**₁ varies between 0 and $\left[2 \cdot \left(\frac{y_{\text{max}} y_{\text{min}}}{2}\right)\right]$
 - Let f_{FFT} be the frequency found by the peak of an FFT on the chunk
 - f varies between 0 and sampling frequency
 - \blacksquare f initially set to f_{FFT}
 - No restrictions on phase
 - lacksquare ϕ varies between 0 and 1

Method: example on oscillating channel

Example 0.35s chunk input

Example FFT output

- Channel = HF(40, 23, 1): oscillating
- FFT peaks around 5.2 Hz: f is within [2.6, 10.4] Hz in fit
- Fit on next slide

Method: example on oscillating channel

■ Channel = HF(40, 23, 1): oscillating

Method

Method: define fit significance

- Define variable to quantify residuals of data w.r.t. fit
- Each point, *i*, in chunk has coordinate in time and SPE:
 - time value: t_i [s]
 - SPE value: *y_i* [linear ADC]
- Fit function, f, is defined for each t_i
- There are N points in a given chunk
- Define significance, σ , for a chunk as follows:

$$\sigma = \frac{1}{N} \cdot \sqrt{\sum_{i=1}^{i=N} \left[f(t_i) - y_i \right]^2}$$

- lacksquare σ small for oscillating distributions
- lacksquare σ large for non-oscillating distributions

Method: example on oscillating channel

- Channel = HF(40, 23, 1): oscillating
- $\sigma = 9.2e-5$; a_1 (amplitude from fit) = 4.7e-3
- $\sigma/a_1 = 15.9$ (large)

Method: example on non-oscillating channel

Example 0.35s chunk input

Example FFT output

- Channel = HF(38, 21, 1): non-oscillating
- FFT peaks around 2.6 Hz: f is within [1.3, 5.2] Hz in fit
- Fit on next slide

Method: example on non-oscillating channel

- Channel = HF(38, 21, 1): non-oscillating
- $\sigma = 1.6\text{e-4}$; a_1 (amplitude from fit) = 2.8e-4
- $\sigma/a_1 = 1.8 \text{ (small)}$

Method: look at all 0.35s chunks for two channels

- Define $\chi = \sigma/a_1$: a good measure for "oscillating-ness"
- lacksquare Naively look for chunks with $\chi>10$
- Enough method: let's look at results

Results: χ vs. time for all chunks

- Plot is a 2D histogram
- One entry per chunk, per channel
- \blacksquare x-axis: time [seconds], y-axis: χ

Results: Freq. vs. time for chunks with $\chi > 10$

- Plot is a 2D histogram
- One entry per chunk, per channel, if chunk $\chi > 10$
- x-axis: time [seconds], y-axis: frequency from fit

Observations:

- Observations from the χ vs time plot:
 - Most chunks have $\chi < 10$ (non-oscillating)
 - There are spikes in χ at time = 40s and 150s
- Observations from the frequency vs time plot:
 - Two frequencies of oscillation observed
 - Spikes in χ at time = 40s and 150s are mostly 0-2 Hz
 - Roughly constant rate of 5-7 Hz chunks between time = 40s and 150s
- Next:
 - Where (ieta, iphi, depth) are the 0-2 Hz chunks?
 - Where (ieta, iphi, depth) are the 5-7 Hz chunks?

Results: Where are the 0-2 Hz chunks (30-60 s)?

Occupancy, Depth = 1

Occupancy, Depth = 2

- Plot is a 2D histogram
- One entry per chunk, per channel, if freq < 4 Hz, $\chi > 10$, and time ϵ [30, 60]
- x-axis: ieta, y-axis: iphi

Results: Where are the 0-2 Hz chunks (140-160 s)?

Occupancy, Depth = 2

- Plot is a 2D histogram
- One entry per chunk, per channel, if freq < 4 Hz, $\chi > 10$, and time ϵ [140, 160]
- x-axis: ieta, y-axis: iphi

Results: What does an 0-2 Hz chunk look like?

- Channel: HF(29, 5, 1)
- Time: 145s
- Frequency: 1.3 ± 0.2 Hz

Observations: 0-2 Hz chunks

- 0-2 Hz chunks more common at 140-160 than at 30-60 s
- No single channel contributing most of the 0-2 Hz chunks
- Low-ieta channels are far more likely to have 0-2 Hz chunks
- Side effect from sourcing?

Results: Where are the 5-7 Hz chunks?

Results

Occupancy, Depth = 1

Occupancy, Depth = 2

- Plot is a 2D histogram
- One entry per chunk, per channel, if freq > 4 Hz and $\chi > 10$
- x-axis: ieta, y-axis: iphi

Observations:

- 5-7 Hz chunks mostly come from three hot channels:
 - HF(40, 23, 1)
 - HF(40, 23, 2)
 - HF(38, 25, 1)
- Other channels contribute relatively few chunks per run
- Next:
 - More investigation into these oscillating channels
 - Compare against HF(38, 21, 1) (non-oscillating)

Results: $\langle \chi \rangle$ for 5-7 Hz hot channels

- HF(40, 23, 1): $\langle \chi \rangle = 21.2$
- HF(38, 25, 1): $\langle \chi \rangle = 17.2$
- HF(40, 23, 2): $\langle \chi \rangle = 7.2$

Results: Amplitude and Frequency HF(38, 21, 1)

Amplitude from fit

- Non-oscillating channel
- Avg. amplitude = 0.00038 ± 0.00020

Results: Amplitude and Frequency HF(40, 23, 1)

Amplitude from fit

- Oscillating channel
- Avg. amplitude = 0.00484 ± 0.00064
- Avg. frequency = 5.54 ± 0.44

Results: Amplitude and Frequency HF(40, 23, 2)

Amplitude from fit

- Oscillating channel
- \blacksquare Avg. amplitude = 0.00040 ± 0.00013
- Avg. frequency = 5.65 ± 1.99

Results: Amplitude and Frequency HF(38, 25, 1)

Amplitude from fit

- Oscillating channel
- Avg. amplitude = 0.00415 ± 0.00092
- Avg. frequency = 5.88 ± 1.11

Results: Amplitude and Frequency observations

- Avg. amplitudes of oscillating channels vary by an order of magnitude:
 - Avg. amplitude = 0.00484 ± 0.00064 in HF(40, 23, 1)
 - Avg. amplitude = 0.00040 ± 0.00013 in HF(40, 23, 2)
 - Units are linear ADC (y-axis of Viktor's plots)

Conclusions

- Used χ to find oscillating channels
 - Variable determined from FFT + sine-wave fit
- Found two kinds of oscillations:
 - 0-2 Hz, spread in low-ieta channels at specific times
 - Related to movement of the source?
 - 5-7 Hz, mostly from three hot channels at all times:
 - HF(40, 23, 1)
 - HF(40, 23, 2)
 - HF(38, 25, 1)
- 5-7 Hz chunks have widely varying amplitudes:
 - Avg. amplitude = 0.00484 ± 0.00064 in HF(40, 23, 1)
 - Avg. amplitude = 0.00040 ± 0.00013 in HF(40, 23, 2)

Results

Backup: Mean χ

$$\langle \chi \rangle$$
, Depth = 2

- HF(40, 23, 1): $\langle \sigma/a_1 \rangle = 21.2$
- HF(38, 25, 1): $\langle \sigma/a_1 \rangle = 17.2$
- HF(40, 23, 2): $\langle \sigma/a_1 \rangle = 7.2$

