

# MCAL WDG Module Software Design Document

Document Version: 82

Document Owner: Texas Instruments

Document Status: Published Last Approval Date: Mar 11, 2022

TI Confidential - NDA Restrictions

Copyright ©2022 Texas Instruments Incorporated



- Revision History
- Terms and Abbreviations
- Introduction
  - Overview
  - Purpose and Scope
  - Module Overview
  - Requirements
    - Features Supported
    - Features Not Supported / NON-Compliance
  - Assumptions
  - Constraints
  - Hardware and SW platforms
  - Dependencies
    - SBL
    - ESM
  - Stakeholders
  - References
- Design Description
  - WDG Configuration Sequence
  - Directory Structure
  - Configurator
    - NON-Standard configurable parameters
    - Variant Support
    - Windowed Watchdog
  - Error Classification
    - Development Errors



- Error Detection
- Error notification (DET)
- Runtime Errors
- Error notification (DEM)
- Implementation Details
  - Data structures and resources
    - Global Variables
  - Dynamic Behavior Control Flow Diagram
  - Dynamic Behavior Data Flow Diagram
  - Application Parameters
  - Safety Diagnostic Features
- Low Level Definitions
  - Driver API's
    - Wdg\_Init
    - Wdg\_SetTriggerCondition
    - Wdg\_GetVersionInfo
    - Wdg\_Trigger
    - Wdg\_RegisterReadback
- Performance Objectives
  - Resource Consumption Objectives
  - Critical timing and Performance
  - Watchdog SOC Reset Functionality
  - Watchdog Service Routine
- Testing Guidelines
- Template Revision History



Page 4 of 57



# **1 Revision History**

| Version | Date           | Author    | Document Status | Comments                    |
|---------|----------------|-----------|-----------------|-----------------------------|
| 0.1     | 30 Nov 2018    | Sunil M S | Draft           | First version               |
| 0.2     | 6 Dec 2018     | Sunil M S | In Review       | Addressed Review Comments   |
| 0.3     | ≅ 20 Apr 2021  | Murthy N  | In Review       | Format change as per ASPICE |
| 0.4     | ii 13 Aug 2021 | Nikki S   | In Review       | Adding Design IDs           |
| 0.5     | ii 19 Aug 2021 | Murthy N  | In Approval     | Fixing Review Comments      |
| 1.0     | ii 07 Sep 2021 | Nikki S   | Published       | Upload to Galileo           |
| 1.1     | 🖆 24 Jan 2022  | Nikki S   | In Review       | JACINTOREQ-1870             |

TI Confidential - NDA Restrictions Revision: 82

Page 5 of 57



| Version | Date        | Author  | Document Status | Comments                  |
|---------|-------------|---------|-----------------|---------------------------|
| v82     | 04 Mar 2022 | Nikki S | Published       | Review Comments Addressed |

Page 6 of 57



# **2 Terms and Abbreviations**

| Abbreviation /Term | Meaning / Explanation             |
|--------------------|-----------------------------------|
| CS                 | Chip select                       |
| DIO                | Digital Input Output              |
| ECU                | Electric Control Unit             |
| ICU                | Interrupt Capture Unit            |
| MCAL               | Microcontroller Abstraction Layer |
| MCU                | Microcontroller Unit              |
| MMU                | Memory Management Unit            |
| os                 | Operating System                  |

TI Confidential - NDA Restrictions Revision: 82

Page 7 of 57



| Abbreviation /Term | Meaning / Explanation                                                   |
|--------------------|-------------------------------------------------------------------------|
| PWM                | Pulse Width Modulation                                                  |
| SFR                | Special Function Register                                               |
| RTE                | Runtime environment                                                     |
| DIP                | Digital Input/ Output                                                   |
| DET                | Default Error Tracer                                                    |
| DEM                | Diagnostic Event Manager – module to handle diagnostic relevant events. |
| WDG                | Watchdog (module specific prefix)                                       |
| UNINIT             | Uninitialized (= not initialized)                                       |

Page 8 of 57



## 3 Introduction

This document describes the design of the AUTOSAR BSW module WDG.

- Supported AUTOSAR Release : 4.3.1
- Supported Configuration Variants: Pre-Compile & Link Time
- Vendor ID: WDG\_VENDOR\_ID (44)
- Module ID: WDG\_MODULE\_ID (102)

### 3.1 Overview

The figure below depicts the AUTOSAR layered architecture as 3 distinct layers,

- Application
- Runtime Environment (RTE) and
- Basic Software (BSW).

The BSW is further divided into 4 layers:

- Services
- Electronic Control Unit Abstraction
- MicroController Abstraction (MCAL) and
- Complex Drivers.





**AUTOSAR Architecture** 

MCAL is the lowest abstraction layer of the Basic Software. It contains software modules that interact with the Microcontroller and its internal peripherals directly. WDG driver is part of the Microcontroller Drivers (block, shown above). Below shows the position of the WDG driver in the AUTOSAR Architecture.

TI Confidential - NDA Restrictions Revision: 82





**AUTOSAR Architecture - WDG MCAL** 

# 3.2 **Purpose and Scope**

TI Confidential - NDA Restrictions Revision: 82

Page 11 of 57



This document specifies the implementation of MCAL driver for the module WDG. All requirements for implementing the driver are mapped in the document itself. Also, document holds the detailed information regarding the MACROs, structures and APIs for the implementation.

#### 3.3 Module Overview

RTI (Real Time Interrupt using hardware IP "rti\_10\_rel.0.0.x") module supports three functional modes Counter mode, Capture mode & Windowed watchdog timer mode. Only Windowed watchdog timer mode is used to meet AUTOSAR WDG requirements.

The digital windowed watchdog generates an interrupt after a programmable period, if trigger is not serviced in the allowed timeframe. Windowed watchdog timer is such that key can be only written in the configured window programmed through software. The watchdog opens a configurable time window in which it must be serviced. Any attempt to service the watchdog outside this time window, or a failure to service the watchdog in this time window, will cause the watchdog to generate a NMI interrupt.

### 3.4 Requirements

The WGD driver shall implement as per requirements detailed in the Reference Documents. It is recommended to refer Reference 1 - AUTOSAR 4.3.1 for clarification.

### 3.4.1 Features Supported

Below listed are some of the key features that are supported

- Initialization and configuration of WDG (configure window size, timeout value etc.).
- Setting default mode(FAST/SLOW).
- Service trigger via WDG Trigger API if called within the allowed time window.
- Supports all instances of RTI present in MCU domain.



Supports additional configuration parameters, refer section (Implementation specific parameters (computed)) & (WDG Register Readback).

### 3.4.2 Features Not Supported / NON-Compliance

- [NON-Compliance] WDG\_SetMode API is not supported. Due to hardware limitations, Mode and Timeout can't be modified if watchdog is already running i.e. only during initialization Mode and Timeout can be set.
- OFF-Mode is not supported.

## 3.5 **Assumptions**

Below listed are assumed to be valid for this design/implementation, exceptions and other deviations are listed for each explicitly. Care should be taken to ensure these assumptions are addressed.

- 1. The functional clock to the WDG module is expected to be enabled before calling any WDG module API.
- 2. The WDG driver as such doesn't perform any PRCM programming to get the functional clock.
- 3. The clock-source selection for WDG is not performed by the WDG driver, other entities such as SBL, MCAL module MCU shall perform the same.
- 4. Assumed that only one of the RTI instance is initiated per core at which driver is running.

Note that assumption 1 and 2 are specified by AUTOSAR WDG specification and 3 and 4 are device specific assumption.

### 3.6 Constraints

Some of the critical constraints of this design are listed below



In case where MCU module is not employed (supported) to configure the clock source for WDG module, refer Assumptions sub-item 3. Clock sources are listed in TRM, refer to SoC User Manual.

Also refer section features not supported. (Features Not Supported / NON-Compliance).

## 3.7 Hardware and SW platforms

#### **Hardware Platforms**

• Refer to specified SoC User Manual to check if ADC module is supported.

#### **Software Platforms**

Bare metal

### 3.8 **Dependencies**

A WDG module for an internal (on-chip) watchdog accesses the microcontroller hardware directly and is located in the Microcontroller Abstraction layer.

A WDG module for an external watchdog uses other modules (e.g. SPI) to access the external watchdog device. Such a WDG module is located in the Onboard Device Abstraction Layer.

In addition to dependencies listed in section 5 of Reference 1 - AUTOSAR 4.3.1, WDG driver shall depend on these modules to meet the required functionality. WDG uses RTI module present in the device to meet the required functionality.

TI Confidential - NDA Restrictions Revision: 82



This peripheral also requires 2 different clocks to be operational, namely ICLK and FCLK.

#### 3.8.1 **SBL**

- ICLK: Is interface clock required for internal read/write registers of the peripheral. This is not expected to change and typically programmed by SBL, please refer the device specific manual for details and valid value.
- FCLK: Is functional clock, used to operate the module. As detailed in section (Constraints), other entity would require selecting the right clock source for the peripheral.

#### 3.8.2 **ESM**

There is no direct reset signal generation from watchdog when it expires instead it generates an ESM interrupt. ESM module will signal ESM pin error and then external controller resets the SOC.

| Design Identifier | Description                                           |
|-------------------|-------------------------------------------------------|
| MCAL-5597         | [WDG example application] RTI interrupt routed to ESM |

### 3.9 Stakeholders

- Developers
- Test Engineers



• Customer Integrator

# 3.10 **References**

|   | Specification                                | Comment/Link                                        |
|---|----------------------------------------------|-----------------------------------------------------|
| 1 | AUTOSAR 4.3.1                                | AUTOSAR Specification for WDG Driver.               |
| 2 | BSW General Requirements / Coding guidelines | Autosar and Coding guidelines for the Mcal drivers. |
| 3 | Software Product Specification (SPS)         | Product Functional Requirements.                    |
| 4 | Software Architecture                        | Mcal Software Architecture.                         |

TI Confidential - NDA Restrictions Revision: 82

Page 16 of 57



# **4 Design Description**

The Digital Watchdog Timer(DWT) generates reset after a programmable period, if not serviced within that period. In DWT, time-out boundary is configurable. In DWWD, along with configurable time-out boundary, the start time boundary is also configurable. The DWWD can generate Reset or Interrupt, if not serviced within window (Open Window) defined by start time and time-out boundary. Also the DWWD can generate Reset or Interrupt if serviced outside Open Window (i.e within Closed Window). Generation of Reset or Interrupt depends on the DWWD Reaction configuration.

TI Confidential - NDA Restrictions Revision: 82



```
DWWD Down Counter Overview :
  Upper 12 bit part of the down counter is configurable and
  remaining 13 bit are always 1.
  Minimum possible time-out value is 2^13 RTI clock cycles.
  Maximum possible time-out value is 2^25 RTI clock cycles.
  Example:
  The expiration time of the DWD Down Counter can be determined with following equation
  texp= (RTI DWDPRLD + 1) x 2^13 / RTI FCLK
  where RTI_DWDPRLD(12 bit) = 0...4095 and RTI_FCLK is RTI functional frequency.
  RTI FCLK: 32kHz
  12 bit preload value : 0x004
  25 bit preload value : 0x0009FFF
  time-out value(in RTI clock cycles) : 40959.
  time-out value(in seconds) : (40959 + 1) / 32000 = 1.28 seconds.
   DWWD Window Sizes Overview :
   Open Window
 (100%)|
                                                    Open Window
                Closed Window
  (50%)
  (25%)
                  Closed Window
                                                        0W
                       Closed Window
(12.5\%)
                                                             0W
(6.25\%)
                          Closed Window
                                                              _0W_
                              Closed Window
(3.125\%)
                                                               | OW |
```

Revision: 82

Page 18 of 57



# **4.1 WDG Configuration Sequence**

The following diagram depicts the configuration sequence.





Page 20 of 57



#### **Watch Dog Timer Configuration Sequence**

## **4.2 Directory Structure**

| Design Identifier | Description                         |
|-------------------|-------------------------------------|
| MCAL-5559         | SWS_Wdg_00079 : Code File Structure |

The directory structure is as depicted in figures below, the source files can be categorized under "Driver Implementation" and "Example Application".

#### **Driver Implemented by**

All Mcal drivers share the same common directory structure as shown in the figure below (Common Driver Layout).

- Wdg.h and Wdg\_Priv.h: Shall implement the interface provided by the AUTOSAR.
- Wdg\_Priv.c and Wdg\_Priv.h: Shall implement the driver functionality.
- Wdg\_Dbg.h: Shall contain debug variable declarations of the driver.
- hw\_rti.h: Shall include the SOC specific register definitions.





Page 22 of 57



|                                    | _             |
|------------------------------------|---------------|
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
|                                    |               |
| TI Confidential - NDA Restrictions | Revision: 82  |
|                                    | Page 23 of 57 |
|                                    |               |
|                                    |               |



#### **Example Application**

- Wdg\_Cfg.h and Wdg\_Cfg.c: Shall implement the generated configuration for pre-compile variant.
- Wdg\_Lcfg.c: Shall implement the generated configuration for link-time variant.
- Wdg\_PBcfg.c: Shall implement the generated configuration for post-build variant.
- WdgApp.c and WdgApp.h: Shall implement the example application that demonstrates the use of the driver.

TI Confidential - NDA Restrictions Revision: 82

Page 24 of 57





Page 25 of 57



# 4.3 **Configurator**

The AUTOSAR WDG Driver Specification details mandatory parameters that shall be configurable via the configurator. Please refer section 10 of Reference 1 - AUTOSAR 4.3.1.

| Design Identifier | Description                               |
|-------------------|-------------------------------------------|
| MCAL-5627         | WDG : ECUC : WdgReaction                  |
| MCAL-5626         | ECUC_Wdg_00148 : WdgDemEventParameterRefs |
| MCAL-5617         | ECUC_Wdg_00150: WDG_E_DISABLE_REJECTED    |
| MCAL-5615         | ECUC_Wdg_00120 : WdgDefaultMode           |
| MCAL-5613         | ECUC_Wdg_00115 : WdgDevErrorDetect        |
| MCAL-5611         | WDG: ECUC: WdgDeviceVariant               |
| MCAL-5610         | ECUC_Wdg_00119 : WdgVersionInfoApi        |
| MCAL-5609         | WDG : ECUC : WdgInstanceId                |
| MCAL-5608         | ECUC_Wdg_00147 : WdgRunArea               |

TI Confidential - NDA Restrictions Revision: 82

Page 26 of 57



| Design Identifier | Description                              |
|-------------------|------------------------------------------|
| MCAL-5606         | WDG : ECUC : WdgRtiFrequency             |
| MCAL-5605         | ECUC_Wdg_00121 : WdgSettingsFast         |
| MCAL-5602         | ECUC_Wdg_00149: WDG_E_MODE_FAILED        |
| MCAL-5601         | ECUC_Wdg_00113 : WdgExternalContainerRef |
| MCAL-5600         | ECUC_Wdg_00074 : WdgPublishedInformation |
| MCAL-5589         | ECUC_Wdg_00116 : WdgDisableAllowed       |
| MCAL-5588         | ECUC_Wdg_00122 : WdgSettingsOff          |
| MCAL-5585         | ECUC_Wdg_00114 : WdgGeneral              |
| MCAL-5581         | ECUC_Wdg_00117 : WdgIndex                |
| MCAL-5577         | WDG : ECUC : WdgWindowSize               |
| MCAL-5574         | ECUC_Wdg_00123 : WdgSettingsSlow         |

Page 27 of 57



| Design Identifier | Description                                       |
|-------------------|---------------------------------------------------|
| MCAL-5570         | WDG : ECUC : WdgTimeoutValue                      |
| MCAL-5566         | ECUC_Wdg_00118 : WdgTriggerLocation               |
| MCAL-5565         | ECUC_Wdg_00127 : WdgTriggerMode                   |
| MCAL-5562         | ECUC_Wdg_00082 : WdgSettingsConfig                |
| MCAL-5561         | ECUC_Wdg_00112 : WdgExternalConfiguration         |
| MCAL-5556         | ECUC_Wdg_00130 : WdgInitialTimeout                |
| MCAL-5552         | ECUC_Wdg_00131 : WdgMaxTimeout                    |
| MCAL-5541         | WDG : ECUC : WdgRegisterReadbackApi               |
| MCAL-5599         | SWS_Wdg_00086 : Static Configuration Params Check |
| MCAL-5560         | SWS_Wdg_00168 : Wdg Code Run Area                 |

Page 28 of 57



# 4.3.1 **NON-Standard configurable parameters**

Following lists this design's specific configurable parameters

| Parameter        | Usage comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WdgReaction      | Watchdog reaction for timer expiration or incorrect service.0x5 = This is the default value. The windowed watchdog will cause a reset if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. 0xA = The windowed watchdog will generate a non-maskable interrupt to the CPU if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. Writing any other value will cause a system reset if the watchdog is serviced outside the time window. |
| WdgWindowSize    | Digital Windowed Watchdog Window Size. Selecting 100% enables standard watchdog (not windowed). WWDSIZE: 0x00000050 = 50%, WWDSIZE: 0x00000500 = 25%, WWDSIZE:0x00005000 = 12.5%, WWDSIZE: 0x00050000 = 6.25%, WWDSIZE: 0x00500000 = 3.125%, WWDSIZE: Any other value = 3.125%.                                                                                                                                                                                                                                                                                                      |
| WdgTimeoutValue  | Watchdog timeout period in mill seconds. Watchdog generates a non-maskable interrupt to the CPU if the watchdog is serviced after this timeout period.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| WdgDeviceVariant | Select SOC variant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WdgInstanceId    | Selects Watchdog HW instance id.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

TI Confidential - NDA Restrictions Revision: 82

Page 29 of 57



| WdgRtiFrequency        | RTI Clock Frequency (Hz) used to calculate preload value during init time. |
|------------------------|----------------------------------------------------------------------------|
| WdgRegisterReadbackApi | Compile switch to enable / disable the Critical Registers Readback API.    |

## 4.3.2 **Variant Support**

The driver shall support all variants VARIANT-PRE-COMPILE, VARIANT-LINK-TIME and VARIANT-POST-BUILD.

| Design Identifier | Description                         |
|-------------------|-------------------------------------|
| MCAL-5616         | SWS_Wdg_00157 : VARIANT-PRE-COMPILE |
| MCAL-5624         | SWS_Wdg_00159 : VARIANT-POST-BUILD  |
| MCAL-5578         | SWS_Wdg_00158 : VARIANT-LINK-TIME   |

## 4.3.3 Windowed Watchdog

The digital windowed watchdog generates an interrupt after a programmable period, if trigger is not serviced in the allowed time frame.

TI Confidential - NDA Restrictions Revision: 82



| Design Identifier | Description                                                           |
|-------------------|-----------------------------------------------------------------------|
| MCAL-5614         | SWS_Wdg_00035 : Windowed Watchdog : DET WDG_E_DRIVER_STATE            |
| MCAL-5612         | SWS_Wdg_00094 : Windowed Watchdog : Trigger Cycle For Activation Code |
| MCAL-5598         | SWS_Wdg_00052 : Windowed Watchdog : Module State WDG_IDLE/WDG_BUSY    |
| MCAL-5594         | SWS_Wdg_00135 : Windowed Watchdog : Trigger Counter Zero              |
| MCAL-5569         | SWS_Wdg_00093 : Windowed Watchdog : Handling Activation Code          |
| MCAL-5551         | SWS_Wdg_00095 : Windowed Watchdog : Initial Activation Code           |
| MCAL-5543         | SWS_Wdg_00134 : Windowed Watchdog : Trigger Counter Non Zero          |

## 4.4 Error Classification

Errors are classified in two categories, development error and runtime / production error.

TI Confidential - NDA Restrictions Revision: 82

Page 31 of 57



| Design Identifier | Description                                                                    |
|-------------------|--------------------------------------------------------------------------------|
| MCAL-5625         | SWS_Wdg_00183 : Extended production error : WDG_E_DISABLE_REJECTED : Case PASS |
| MCAL-5620         | SWS_Wdg_00179 : Extended production error : WDG_E_DISABLE_REJECTED             |
| MCAL-5613         | ECUC_Wdg_00115 : WdgDevErrorDetect                                             |
| MCAL-5591         | SWS_Wdg_00010 : Error Classification                                           |
| MCAL-5580         | SWS_Wdg_00178 : Extended production error : WDG_E_MODE_FAILED                  |
| MCAL-5563         | SWS_Wdg_00181 : Extended production error : WDG_E_MODE_FAILED : Case PASS      |
| MCAL-5548         | SWS_Wdg_00182 : Extended production error : WDG_E_DISABLE_REJECTED : Case FAIL |
| MCAL-5544         | SWS_Wdg_00180 : Extended production error : WDG_E_MODE_FAILED : Case FAIL      |
| MCAL-5614         | SWS_Wdg_00035 : Windowed Watchdog : DET WDG_E_DRIVER_STATE                     |

Page 32 of 57



## **4.4.1 Development Errors**

| Type of Error                                                      | Related Error code  | Value (Hex) |
|--------------------------------------------------------------------|---------------------|-------------|
| API service used in wrong context (e.g. module not initialized).   | WDG_E_DRIVER_STATE  | 0x10        |
| API service called with wrong / inconsistent parameter(s).         | WDG_E_PARAM_MODE    | 0x11        |
| API service called with wrong / inconsistent parameter(s).         | WDG_E_PARAM_CONFIG  | 0x12        |
| The passed timeout value is higher than the maximum timeout value. | WDG_E_PARAM_TIMEOUT | 0x13        |
| API is called with wrong pointer value (e.g. NULL pointer).        | WDG_E_PARAM_POINTER | 0x14        |
| Invalid configuration set selection.                               | WDG_E_INIT_FAILED   | 0x15        |

### 4.4.2 Error Detection

The detection of development errors is configurable (ON / OFF) at pre-compile time. The switch WDG Dev Error Detect will enable or disable the detection of all development errors.



## 4.4.3 **Error notification (DET)**

All detected development errors are reported via Det\_ReportError service of the Development Error Tracer (DET).

### 4.4.4 Runtime Errors

The following runtime/production errors shall be detectable by WDG driver.

| Type of Error                                                                                                                         | Related Error code     | Value(Hex)            |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|
| Setting a watchdog mode failed (during initialization or mode switch).                                                                | WDG_E_MODE_FAILED      | Defined by integrator |
| Initialization or watchdog mode switch failed because it would disable the watchdog though this is not allowed in this configuration. | WDG_E_DISABLE_REJECTED | Defined By Integrator |

## 4.4.5 Error notification (DEM)

All detected run time errors shall be reported via Dem\_ReportErrorStatus() service of the Diagnostic Event Manager (DEM).



# **5 Implementation Details**

## **5.1 Data structures and resources**

## 5.1.1 MACROS, Data Types & Structures

The sections below list some of key data structures that shall be implemented and used in driver implementation.

| Design Identifier | Description                                                |
|-------------------|------------------------------------------------------------|
| MCAL-5587         | SWS_Wdg_00171: Wdg_ConfigType                              |
| MCAL-5557         | SWS_Wdg_00105 : Imported Type                              |
| MCAL-5627         | WDG: ECUC: WdgReaction                                     |
| MCAL-5577         | WDG : ECUC : WdgWindowSize                                 |
| MCAL-5570         | WDG : ECUC : WdgTimeoutValue                               |
| MCAL-5615         | ECUC_Wdg_00120 : WdgDefaultMode                            |
| MCAL-5547         | SWS_Wdg_00153 : Debugging: Internal Driver Timeout Counter |

TI Confidential - NDA Restrictions Revision: 82

Page 35 of 57



### WDG\_ModeInfoType

Used to define watchdog hardware specific parameters per instance and the values of these are expected to be populated by configurator

| Туре   | Variable<br>Name | comments                                                                                                                                                                                                                                                                                                                                                                            |
|--------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| uint32 | reaction         | Reaction type: 0x5 - This value causes a reset if the watchdog is serviced outside the time windowdefined by the configuration, or if the watchdog is not serviced at all. 0xA - The windowed watchdog willgenerate a non-maskable interrupt to the CPU if the watchdog is serviced outside the time windowdefined by the configuration, or if the watchdog is not serviced at all. |
| uint32 | windowSize       | Digital Windowed Watchdog Window Size. Selecting 100% enables standard watchdog (notwindowed). WWDSIZE: 0x00000050 = 50%, WWDSIZE: 0x00000500 = 25%, WWDSIZE: 0x00005000 = 12.5%, WWDSIZE: 0x00050000 = 6.25%, WWDSIZE: 0x00500000 = 3.125%, WWDSIZE: Any othervalue = 3.125%                                                                                                       |
| uint32 | timeOutVal       | Watchdog timeout period in milli seconds.Watchdog generates a non-maskable interrupt or reset to the CPU if the watchdog is serviced after this timeout period.                                                                                                                                                                                                                     |

## Wdg\_ConfigType

TI Confidential - NDA Restrictions Revision: 82



Refer section 8.2.1 of Reference 1 - AUTOSAR 4.3.1. Used for pointers to structures holding configuration data provided to the WDG module initialization routine for configuration of the module and watchdog hardware.

| Туре             | Variable Name | comments                                                                |
|------------------|---------------|-------------------------------------------------------------------------|
| Wdglf_ModeType   | defaultMode   | Default watchdog mode(WDGIF_FAST_MODE/WDGIF_SLOW_MODE).                 |
| Wdg_ModeInfoType | fastModeCfg   | Contains fast mode hardware specific configuration. (Wdg_ModeInfoType). |
| Wdg_ModeInfoType | slowModeCfg   | Contains slow mode hardware specific configuration. (Wdg_ModeInfoType). |

### Wdg\_ConfigType\_PC

Used to define Pre-Compile parameters populated by configurator.

| Туре   | Variable Name    | comments                                                                                                                                     |
|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| uint16 | Instance Id      | Hardware Instance Id.                                                                                                                        |
| uint32 | Initial Time Out | The initial timeout (seconds) for the trigger condition to be initialized during Init function. It shall be not larger than WDG Max Timeout. |



### Wdg\_RegisterReadbackType

| Name           | Туре   | Range           | comments                                 |
|----------------|--------|-----------------|------------------------------------------|
| rtiDwdCtrl     | uint32 | 0 to 0xFFFFFFF  | Digital Watchdog Control, To Enable DWD. |
| rtiWdStatus    | uint32 | 0 to 0xFFFFFFFF | Digital Watchdog Status Register.        |
| rtiWdKey       | uint32 | 0 to 0xFFFFFFFF | Digital Watchdog Key Register.           |
| rtiWwdRxnCtrl  | uint32 | 0 to 0xFFFFFFFF | Digital Windowed Watchdog Reaction.      |
| rtiWwdSizeCtrl | uint32 | 0 to 0xFFFFFFFF | Digital Windowed Watchdog Window Size.   |

## **5.1.2 Global Variables**

This design expects that implementation require to use following global variables.

| variable | Туре | Description | Default value |
|----------|------|-------------|---------------|
|          |      |             |               |

TI Confidential - NDA Restrictions Revision: 82

Page 38 of 57



| Wdg_DrvStatus | Wdg_StatusType    | Initialization status of the driver is maintained.                                      | WDG_UNINIT |
|---------------|-------------------|-----------------------------------------------------------------------------------------|------------|
| Wdg_DrvObj    | Wdg_DriverObjType | WDG driver object, local to the implementation and scope shall NOT be limited to Wdg.c. | Undefined  |

## **5.2 Dynamic Behavior - Control Flow Diagram**

#### States

As detailed in specification of Reference 1 - AUTOSAR 4.3.1, Driver will be in one of the following states.

WDG\_UNINIT: Default state indicating a non-initialized module.

WDG\_IDLE: Indicating initialization is successful.

WDG\_BUSY: Indicating module is busy(during execution).





**Driver States** 

TI Confidential - NDA Restrictions Revision: 82

Page 40 of 57



| Design Identifier | Description                                      |
|-------------------|--------------------------------------------------|
| MCAL-5622         | SWS_Wdg_00152 : Debugging: Internal Driver State |

## 5.3 **Dynamic Behavior - Data Flow Diagram**

Note Applicable

## **5.4 Application Parameters**

### Wdg\_GetVersionInfo

| Parameter   | Description                                                                          | Possible Value ranges | Unit of Value | Default Value | Variant |
|-------------|--------------------------------------------------------------------------------------|-----------------------|---------------|---------------|---------|
| versioninfo | Pointer to where to store the version information of this module (output parameter). | 0 to 0xFFFFFFF        | -             | -             | N.A     |

### Wdg\_Init

| Parameter | Description | Possible Value ranges | Unit of Value | Default Value | Variant |
|-----------|-------------|-----------------------|---------------|---------------|---------|
|           |             |                       |               |               |         |



| CfgPtr Pointer to WDG driver configuration se t(input parameter) | 0 0xFFFFFFF - | - | N.A |
|------------------------------------------------------------------|---------------|---|-----|
|------------------------------------------------------------------|---------------|---|-----|

### Wdg\_SetTriggerCondition

| Parameter | Description                                                                     | Possible Value ranges | Unit of Value | Default Value | Variant |
|-----------|---------------------------------------------------------------------------------|-----------------------|---------------|---------------|---------|
| timeout   | Timeout value (milliseconds) for setting the trigger counter (input parameter). | 0 to 0xFFFF           | ms            | -             | N.A     |

## **5.5 Safety Diagnostic Features**

### **CLK5C - External Watchdog**

This is for use of an external watchdog. Software necessary is defined by the External Watchdog selected by the System Integrator. This is provided by PMIC in TI solution. PMIC driver supports this.

### **Software Readback of Static Configuration Registers**

Periodic readback of configuration registers can provide a diagnostic for inadvertent writes to these registers.

The WDG MCAL driver provides the API - Wdg\_RegisterReadback to readback static and written configuration registers to implement this diagnostic feature.



## **6 Low Level Definitions**

## 6.1 **Driver API's**

Refer to section 8.3 of the WDG AutoSar Specification as listed in Reference 1 - AUTOSAR 4.3.1.

## 6.1.1 **Wdg\_Init**

Initializes the module.

| Design Identifier | Description                                                   |
|-------------------|---------------------------------------------------------------|
| MCAL-5621         | SWS_Wdg_00100 : Wdg Initialization Global Variables           |
| MCAL-5618         | SWS_Wdg_00173: Wdg Initialization DEM WDG_E_MODE_FAILED       |
| MCAL-5586         | SWS_Wdg_00101 : Wdg Initialization Controller Registers       |
| MCAL-5579         | SWS_Wdg_00090 : Wdg Initialization DET WDG_E_PARAM_CONFIG     |
| MCAL-5572         | SWS_Wdg_00019 : Wdg Initialization DET WDG_UNINIT             |
| MCAL-5550         | SWS_Wdg_00025 : Wdg Initialization DEM WDG_E_DISABLE_REJECTED |



| ı | Design Identifier | Description                                 |
|---|-------------------|---------------------------------------------|
|   | MCAL-5542         | SWS_Wdg_00001 : Wdg Initialization Hardware |
|   | MCAL-5558         | SWS_Wdg_00031 : De-initialization Interface |

## $6.1.2 \ \textbf{Wdg\_SetTriggerCondition}$

Sets the timeout value for the trigger counter.

| Design Identifier | Description                                                            |
|-------------------|------------------------------------------------------------------------|
| MCAL-5592         | SWS_Wdg_00136 : Wdg Set Trigger Condition Reset Timeout Counter        |
| MCAL-5555         | SWS_Wdg_00146: Wdg Set Trigger Condition DET WDG_E_PARAM_TIMEOUT       |
| MCAL-5593         | SWS_Wdg_00138 : Wdg Set Trigger Condition Timeout Value Interpretation |
| MCAL-5592         | SWS_Wdg_00136 : Wdg Set Trigger Condition Reset Timeout Counter        |
| MCAL-5590         | SWS_Wdg_00139: Wdg Set Trigger Condition Current Watchdog Mode         |
| MCAL-5571         | SWS_Wdg_00140 : Wdg Set Trigger Condition Timeout Value Zero           |



### 6.1.3 Wdg\_GetVersionInfo

Returns the version information of the module.

| Design Identifier | Description                                             |
|-------------------|---------------------------------------------------------|
| MCAL-5575         | SWS_Wdg_00174: Wdg Get Version Info WDG_E_PARAM_POINTER |

### 6.1.4 Wdg\_Trigger

Trigger routine which should be called by application periodically.

| Design Identifier | Description                                       |
|-------------------|---------------------------------------------------|
| MCAL-5604         | WDG: Wdg_Trigger API Service ID                   |
| MCAL-5603         | SWS_Wdg_00034 : Wdg Trigger Routine Start Address |

### 6.1.5 Wdg\_RegisterReadback

As noted from previous implementation, the WDG configuration registers could be potentially corrupted by other entities (s/w or h/w). One of the recommended detection methods would be to periodically read-back the configuration and confirm configuration is consistent. The service API defined below shall be implemented to enable this detection. Constraint: Should be called only after module initialization.



The critical register listed is a recommendation and implementation shall determine appropriate registers.

This service could potentially be turned OFF in the configurator.

|              | Description                                                                                             | Comments                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Service Name | Wdg_RegisterReadback                                                                                    | Can potentially be turned OFF.                                                       |
| Design ID    | MCAL-5553                                                                                               |                                                                                      |
| Syntax       | Std_ReturnTypeWdg_RegisterReadback(P2VAR( Wdg_RegisterReadbackType ,AUTOMATIC, WDG_APPL_DATA) regRbPtr) | Wdg_RegisterReadbackType  Defines the type, that holds critical values, refer below. |
| Service ID   | 0x06                                                                                                    |                                                                                      |
| Sync / Async | Sync                                                                                                    |                                                                                      |
| Reentrancy   | Non Reentrant                                                                                           |                                                                                      |



| Parameter in      | None                 |                                                                | None                                                                            |
|-------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| Parameters out    |                      |                                                                | A pointer of type  Wdg_RegisterReadbackType , which holds the read back values. |
| Return Value      | Standard return type |                                                                | E_OK or E_NOT_OK in case of DET error.                                          |
| Design Identifier | Design Identifier    |                                                                |                                                                                 |
| MCAL-5553         |                      | WDG: Register Readback: service API                            |                                                                                 |
| MCAL-5619         |                      | WDG: Safety Diagnostic: Reference and Example for external WDG |                                                                                 |

TI Confidential - NDA Restrictions

Revision: 82

Page 47 of 57



## **7 Performance Objectives**

## **7.1 Resource Consumption Objectives**

| ROM - Program(KB) | ROM - Data(KB) | RAM - Program(KB) | RAM - Data(KB) | Stack Size (KB) | EEPROM (KB) | % CPU Utilization |
|-------------------|----------------|-------------------|----------------|-----------------|-------------|-------------------|
| 30                | NA             | NA                | 2              | 2               | NA          | NA                |

## 7.2 Critical timing and Performance

Not Applicable



## 8 Decision Analysis & Resolution (DAR)

Sections below list some of the important design decisions and rationale behind those decisions.

## 8.1 Watchdog SOC Reset Functionality

The watchdog hardware generates a violation interrupt or ESM interrupt after a programmable period, if no correct key sequence is written to the RTI watchdog key register.



| No. | Decision Criteria                                                    | Alternatives                                                                                                                        | Selected alternative | Rationale                                                                   | Trade-offs                                       |
|-----|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------|--------------------------------------------------|
| 1   | Guarantee reset on watchdog expiry and minimal software load on CPU. | <b>CPU Interrupt Mode</b> : RTI expires (AUTOSAR Core) -> R5F Interrupt -> Safety R5F -> DMSC -> Reset Core Available Alternatives. | ESM interrupt mode.  | ESM will make sure to signal the severe device failure if interrupt occurs. | Dependency on external module to reset the core. |
|     |                                                                      | Advantages:                                                                                                                         |                      | •                                                                           |                                                  |
|     |                                                                      | <ul><li>Simple to implement.</li><li>No dependency on external modules.</li></ul>                                                   |                      |                                                                             |                                                  |
|     |                                                                      | Disadvantages:                                                                                                                      |                      |                                                                             |                                                  |
|     |                                                                      | <ul> <li>If CPU is not able to execute<br/>the ISR (eg DDR,OCMC Failure)<br/>reset may not occur.</li> </ul>                        |                      |                                                                             |                                                  |

TI Confidential - NDA Restrictions Revision: 82

Page 50 of 57



| No. | Decision Criteria | Alternatives                                                                                                                          | Selected alternative | Rationale | Trade-offs |
|-----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------|
|     |                   | <b>ESM Interrupt Mode</b> : RTI expires (AUTOSAR Core) -> ESM Interrupt -> ESM pin Error -> External controller resets the whole SoC. |                      |           |            |
|     |                   | Advantages:                                                                                                                           |                      |           |            |
|     |                   | <ul> <li>No overhead to CPU.</li> </ul>                                                                                               |                      |           |            |
|     |                   | Disadvantages:                                                                                                                        |                      |           |            |
|     |                   | <ul> <li>Dependency on external module to reset the core.</li> </ul>                                                                  |                      |           |            |

## 8.2 Watchdog Service Routine

The routine servicing a watchdog shall be implemented as an interrupt routine driven by a hardware timer/GPT.ReferSWS\_Wdg\_00166 AUTOSAR WDG specification in Reference 1 - AUTOSAR 4.3.1.



| No. | Decision Criteria                                 | Alternatives                                                                                                                                                    | Selected alternative                   | Rationale                                                                                                                   | Trade-offs                                                                                  |
|-----|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1   | There should be no dependency on external module. | Driven by Hardware Timer  Advantages:  Guarantees timing constraints required for windowed watchdog conditions.  Disadvantages:  Dependency on external module. | Driven by Application<br>Periodically. | To avoid dependency on the external module, Wdg_Trigger API is provided which should be called by application periodically. | Application need to take care of the latency by calling service API within the time window. |

TI Confidential - NDA Restrictions Revision: 82

Page 52 of 57



| No. | Decision Criteria | Alternatives                                                                                                                | Selected alternative | Rationale | Trade-offs |
|-----|-------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------|
|     |                   | Driven by Application<br>Periodically                                                                                       |                      |           |            |
|     |                   | Advantages:                                                                                                                 |                      |           |            |
|     |                   | <ul> <li>No dependency on<br/>external module.</li> </ul>                                                                   |                      |           |            |
|     |                   | Disadvantages:                                                                                                              |                      |           |            |
|     |                   | <ul> <li>Application need to take<br/>care of the latency by<br/>calling service API within<br/>the time window.</li> </ul> |                      |           |            |

TI Confidential - NDA Restrictions Revision: 82

Page 53 of 57



## **9 Testing Guidelines**

The sections below identify some of the aspects of design that would require emphasis during testing of this design implementation.

#### **Timeout**

Test cases shall ensure watchdog generates ESM interrupts and thereby reset occurs for the configured timeout value.

Also test with different set of timeout values (Equivalence partition test).

#### **State Transitions**

Test cases shall exercise all state transitions as detailed in section (States).

#### Modes

Test cases shall ensure watchdog support both fast/slow modes.

### **Trigger Condition**

Test cases shall ensure driver test with different set of trigger condition timeout values (Equivalence partition test).

#### **Window Sizes**

Test cases shall ensure watchdog operation test with all window sizes that hardware supports.

#### **Window Violation Test**

Test cases shall ensure watchdog start time violation test.

### **Test for all instances**



Test cases shall ensure watchdog operation for all the RTI instances supported.

### **Test for different clock sources**

Test cases shall ensure watchdog operation for all the RTI clock sources supported.



# 10 **Template Revision History**

| Author Name   | Description                                                                                          | Version | Date          |
|---------------|------------------------------------------------------------------------------------------------------|---------|---------------|
| Yaniv Machani | Initial version                                                                                      | 0.1     | © 03 Oct 2018 |
| Yaniv Machani | Updated to include EP views                                                                          | 0.4     | © 02 Nov 2018 |
| Yaniv Weizman | Restructuring and editing to further meet the A-SPICE and EP requirements                            | 0.5     | ₹ 27 Dec 2018 |
| Yaniv Weizman | Adding link to Architecture review template                                                          | 0.6     | 22 Oct 2019   |
| Yaniv Weizman | Adding requirement type column for requirements table (Functional/Non-Functional).  Adding DAR table | 0.65    | 13 Nov 2019   |

TI Confidential - NDA Restrictions Revision: 82

Page 56 of 57



| Author Name   | Description                              | Version | Date               |
|---------------|------------------------------------------|---------|--------------------|
| Yaniv Weizman | Adding tables for Testing guidelines     | 0.7     |                    |
| Krishna       | Updated based on ASPICE requirements     | 0.8     | <b>20</b> Aug 2020 |
| Krishna       | Updated based on the feedback from Jon N | 0.9     | ₱ 09 Oct 2020      |
| Krishna       | Updated the traceability scheme          | 1.0     | in 17 Dec 2020     |

TI Confidential - NDA Restrictions

Revision: 82

Page 57 of 57