вой Вивиани $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 = ax$ ($z \ge$ > 0, a > 0), пробегаемая против часовой стрелки, если

смотреть с положительной части (x > a) оси Ox. 4283. $\begin{cases} (y^2 - z^2) & dx + (z^2 - x^2) & dy + (x^2 - y^2) & dz, \end{cases}$

где C — контур, ограничивающий часть сферы $x^2 + y^2 + y^2$ $+z^2=1$, $x\geqslant 0$, $y\geqslant 0$, $z\geqslant 0$, пробегаемый так, что внешняя сторона этой поверхности остается слева.

Найти следующие криволинейные интегралы от полных дифференциалов:

4284.
$$\int_{\substack{(1, 1, 1, 1) \\ (6, 1, 1)}} x \, dx + y^2 dy - z^3 \, dz.$$
4285.
$$\int_{\substack{(1, 2, 3) \\ (x_2, y_2, z_2) \\ (x_1, y_1, z_2)}} yz \, dx + xz \, dy + xy \, dz.$$
4286.
$$\int_{\substack{(x_2, y_1, z_2) \\ (x_1, y_1, z_2)}} \frac{x \, dx + y \, dy + z \, dz}{\sqrt{x^2 + y^2 + z^2}}, \quad \text{ГДе ТОЧКА} \ (x_1, y_1, z_1)$$

расположена на сфере $x^2 + y^2 + z^2 = a^2$, а точка (x_3, y_2, z_2) — на сфере $x^2 + y^2 + z^2 = b^2$ (a > 0, b > 0).

4287.
$$\int\limits_{(x_1,\ y_1,\ z_1)}^{(x_2,\ y_2,\ z_2)} \phi(x)\ dx+\psi(y)\ dy+\chi(z)\ dz$$
, где ϕ , ψ , χ — непрерывные функции.

 $\int f(x+y+z) (dx+dy+dz), rge f$ 4288. непрерывная функция.

4289. $\int_{-\infty}^{(x_1, y_2, z_2)} f(\sqrt{x^2 + y^2 + z^2}) (x dx + y dy + z dz), \text{ где}$ f — непрерывная функция.

Найти первообразную функцию и, если:

Наити первоооразную функцию
$$u$$
, если:

4290. $du = (x^2 - 2yz) dx + (y^2 - 2xz) dy + (z^2 - 2xy) dz$.

4291. $du = \left(1 - \frac{1}{y} + \frac{y}{z}\right) dx + \left(\frac{x}{z} + \frac{x}{y^2}\right) dy - \frac{xy}{z^2} dz$.

4292. $du = \frac{(x+y-z) dx + (x+y-z) dy + (x+y+z) dz}{x^2 + y^2 + z^2 + 2xy}$.