

IN THE CLAIMS:

1 - 8. (canceled)

9. (currently amended) A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having nonasaccharide and represented by the formula (14) given below, the process being characterized by hydrolyzing an asparagine linked monosialooligosaccharide derivative represented by the formula (13) using a galactosidase

wherein one of R¹ and R² is a group represented by the formula (2),

wherein R, R' and R" are in the following combinations

(a) R=F, R'=OH, R"=OH,

(b) R=OH, R'=F, R"=OH,

(c) R=OH, R'=OH, R"=F, and

(d) R=OH, R'=OH, R"=OH,

and the other thereof is a group represented by the formula (4),

the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (13) using a galactosidase

wherein one of R¹ and R² is a group represented by the formula (2),
and the other is represented by formula (3),

wherein one of R¹ and R² is a group represented by the formula (2),
and the other thereof is a group represented by the formula (4),
wherein formula (2) and formula (4) are as defined in claim 1.

10. (currently amended) A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having octasaccharide and represented by the formula (15) given below, the process being characterized by hydrolyzing an asparagine linked monosialooligosaccharide derivative represented by the formula (14) using an N-acetylglucosaminidase

wherein one of R¹ and R² is a group represented by the formula (2),

wherein R, R' and R'' are in the following combinations

(a) R=F, R'=OH, R''=OH,

(b) R=OH, R'=F, R''=OH,

(c) R=OH, R'=OH, R''=F, and

(d) R=OH, R'=OH, R''=OH,

and the other thereof is a group represented by the formula (5),

the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (14) using an N-acetylglucosaminidase

wherein one of R¹ and R² is a group represented by the formula (2), and the other thereof is a group represented by the formula (4),

~~wherein one of R¹ and R² is a group represented by the formula (2), and the other thereof is a group represented by the formula (5), wherein formula (2) and formula (5) are as defined in claim 1.~~

11. (currently amended) A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having heptasaccharide and represented by the formula (16) given below, the process being characterized by hydrolyzing an asparagine linked monosialooligosaccharide derivative represented by the formula (15) using a mannosidase

wherein one of R¹ and R² is a group represented by the formula (2),

wherein R, R' and R'' are in the following combinations

- (a) R=F, R'=OH, R''=OH,
- (b) R=OH, R'=F, R''=OH,
- (c) R=OH, R'=OH, R''=F, and
- (d) R=OH, R'=OH, R''=OH,

and the other thereof is a hydrogen atom;

the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (15)
using a mannosidase

wherein one of R¹ and R² is a group represented by the formula (2)
and the other thereof is a group represented by formula (5),

~~wherein one of R¹ and R² is a group represented by the formula (2)
as defined in claim 1, and the other thereof is a hydrogen atom.~~

12 - 13. (canceled)

14. (currently amended) A process for preparing an asparagine-linked α2,6-monosialooligosaccharide derivative having nonasaccharide and represented by the formula (19) given below, the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (18) using a galactosidase

wherein one of R^x and R^y is a group represented by the formula (7)

wherein R , R' and R'' are in the following combinations

- (a) $R=F$, $R'=OH$, $R''=OH$,
- (b) $R=OH$, $R'=F$, $R''=OH$, and
- (c) $R=OH$, $R'=OH$, $R''=F$,

and the other thereof is a group represented by the formula (4)

the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (18) using a galactosidase

wherein one of R^X and R^Y is a group represented by the formula (7) and the other thereof is a group represented by the formula (3)

15. (currently amended) A process for preparing an asparagine-linked α 2,6-monosialooligosaccharide derivative having octasaccharide and represented by the formula (20) given below, the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (19) using an N-acetylglucosaminidase

wherein one of R^x and R^y is a group represented by the formula (7)

wherein R , R' and R'' are in the following combinations

- (a) $R=F$, $R'=OH$, $R''=OH$,
- (b) $R=OH$, $R'=F$, $R''=OH$, and
- (c) $R=OH$, $R'=OH$, $R''=F$,

and the other thereof is a group represented by the formula (5)

the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (19) using an N-acetylglucosaminidase

wherein one of R^X and R^Y is a group represented by the formula (7)
and the other thereof is a group represented by the formula (4)

16. (currently amended) A process for preparing an asparagine-linked α 2,6-monosialooligosaccharide derivative having heptasaccharide and represented by the formula (21) given below, the process being characterized by hydrolyzing an asparagine-linked

~~monosialooligosaccharide derivative represented by the formula (20)~~
~~using a mannosidase~~

~~wherein one of R^X and R^Y is a group represented by the formula (7)~~
~~as defined in claim 2, and the other thereof is a hydrogen atom~~

wherein R, R' and R" are in the following combinations

(a) R=F, R'=OH, R"=OH,

(b) R=OH, R'=F, R"=OH, and

(c) R=OH, R'=OH, R"=F,

and the other thereof is a hydrogen atom,

the process being characterized by hydrolyzing an asparagine-linked

monosialooligosaccharide derivative represented by the formula (20)

using a mannosidase

wherein one of R^X and R^Y is a group represented by the formula (7)
and the other thereof is a group represented by the formula (5)

17 - 20. (canceled)

21. (currently amended) An asparagine-linked (α 2,3) (α 2,6)-oligosaccharide derivative having undecasaccharides containing fluorine and represented by the formula (22) given below

(22)

wherein R¹ is a group represented by the formula (2) as defined in claim 1,

wherein R, R' and R'' are in the following combinations

(a) R=F, R'=OH, R''=OH,

(b) R=OH, R'=F, R''=OH,

(c) R=OH, R'=OH, R''=F, and

(d) R=OH, R'=OH, R''=OH,

and R^y is a group represented by the formula (7) below

wherein R, R' and R'' are in the following combinations

(a) R=F, R'=OH, R''=OH,

(b) R=OH, R'=F, R''=OH, and

(c) R=OH, R'=OH, R''=F.

22. (currently amended) An asparagine-linked (α 2,3) (α 2,6)-oligosaccharide derivative having undecasaccharides containing fluorine and represented by the formula (23) given below

(23)

wherein R^2 is a group represented by the formula (2) ~~as defined in claim 1,~~

wherein R , R' and R'' are in the following combinations

(a) $R=F$, $R'=OH$, $R''=OH$,

(b) $R=OH$, $R'=F$, $R''=OH$,

(c) $R=OH$, $R'=OH$, $R''=F$, and

(d) $R=OH$, $R'=OH$, $R''=OH$

and R^X is a group represented by the formula (7) below[[.]]

wherein R, R' and R'' are in the following combinations

- (a) R=F, R'=OH, R''=OH,
- (b) R=OH, R'=F, R''=OH, and
- (c) R=OH, R'=OH, R''=F.

23 - 28. (canceled)