Вписанные углы

- Дан треугольник ABC. I центр вписанной окружности. Докажите (и запомните), что $\angle AIB = 90^\circ + \frac{\angle A}{2}$
- 4 Дан треугольник ABC. BH_1 , CH_2 высоты треугольника. Докажите, что C, B, H_1 , H_2 лежат на одной окружности.
- $\boxed{5}$ В условии предыдущей задачи пусть $H=BH_1\cap CH_2$. Докажите, что A,H,H_1,H_2 лежат на одной окружности.
- [6] Рассмотрим вписанный четырёхугольник ABCD. Пусть дуга $\breve{AB} = \alpha$, дуга $\breve{CD} = \beta$. O точка пересечения диагоналей. Докажите, что $\angle AOB = \frac{\alpha + \beta}{2}$.
- [7] Дана точка O и окружность ω , так что $O \notin \omega$. Через O провели 2 прямые, которые пересекают ω в точках A, B и C, D. Докажите, что $OA \cdot OB = OC \cdot OD$
- [8] На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону треугольника построен квадрат с центром в точке O. Докажите, что CO биссектриса угла ACB.
- [9] В остроугольном треугольнике ABC на высоте, проведённой из вершины C, выбрана точка X. Пусть A_1 и B_1 основания перпендикуляров из точки X на стороны AC и BC соответственно. Докажите, что точки A, B, B_1 , A_1 лежат на одной окружности.
- 10 Пусть AA_1 , BB_1 , CC_1 высоты остроугольного треугольника ABC. Докажите, что основания перпендикуляров из точки A_1 на прямые AB, AC, BB_1 , CC_1 лежат на одной прямой.
- 11 Дан выпуклый шестиугольник ABCDEF. Известно, что $\angle FAE = \angle BDC$, а четырёхугольники ABDF и ACDE являются вписанными. Докажите, что прямые BF и CE параллельны.
- 12 Дан остроугольный треугольник ABC, в котором AB < AC. Пусть M и N середины сторон AB и AC соответственно, а D основание высоты, проведённой из A. На отрезке MN нашлась точка K такая, что BK = CK. Луч KD пересекает окружность Ω , описанную около треугольника ABC, в точке Q. Докажите, что точки C, N, K и Q лежат на одной окружности.