A Simple Latent Variable Model for Graph Learning and Inference

Manfred Jaeger Aalborg University

Antonio Longa Trento University Steve Azzolin
Trento University

Oliver Schulte
Simon Fraser University

Andrea Passerini Trento University

The Naive Histogram AHK Model

The AHK Model

Generating a random graph with n nodes, node attributes A_0, \ldots, A_{a-1} and edge relations E_0, \ldots, E_{e-1} :

- ▶ U_i : latent variable for node i; uniformly distributed in [0, 1]
- ► T_i^1 : random variable defining the attribute vector of i, conditional on U_i
- ► $T_{i,j}^2$: random variable defining the edge connections between i and j, conditional on U_i , U_i .

Projectivity: probability of an induced sub-graph of m < n nodes does not depend on n.

Naive Histogram AHK

The conditional distributions for T_i^1 , $T_{i,i}^2$ are defined

- piecewise constant on a partition of [0, 1] ("histogram")
- ightharpoonup attributes, edges independent given U_i ("naive")
- permutation invariant

Special case of AHK model: *Graphon*; special case of NH-AHK: *Stochastic block model*

Inference and Learning

Inference requires summation over unobserved bin memberships of the U_i :

NP-hard in *n* (reduction of 3-coloring problem)

Importance sampling: for observed graph ω , bins b_0, \ldots, b_{n-1} sampled according to a proposal distribution Q that approximates

$$Q(b_0,\ldots,b_{n-1})\approx P(\omega|b_0,\ldots,b_{n-1})$$

(also used for approximate gradient computation).

- sample generation cubic in *n*
- + in practice very good approximation of target distribution $P(b_0, \ldots, b_{n-1} | \omega)$
- + no extra cost for handling incomplete data
- + projectivity of AHK ⇒ can query or learn (approximately) from smaller induced sub-graphs.

Learning and Querying: DAGs

Training data: 100 directed acyclic graphs with 3 to 7 nodes.

Learned model: granularity 2, 6 parameters.

Task: Infer probabilities of (combinations of) edges.

Query graph: all edges that are not drawn are assumed *unknown*

	Query edge(s)	Probability (exact)						
_	$1 \rightarrow 0$	0.43						
	0 o 3	0.29						
	$3 \rightarrow 0$	0.16						
	3 o 2	0.005						
	$1 \rightarrow 0\&0 \rightarrow 3$	0.134						
	$0 \rightarrow 3\&3 \rightarrow 0$	0.0017						

Sampling inference for larger query graph (5 runs; 100 to 20.000 samples):

Nodes 0 - 1 - 2

Learning and Querying: Molecules

Training data: MUTAG molecules (187 out of 188) Learned model: granularity 10, 125 parameters.

Query molecule (last out of 188):

Graph Generation

Training data: • Community: 500 two-community graphs.

EGO: 816 2-hop ego networks from the Citeseer network.

Learned models: • (Community) granularity 2, 3 parameters.

• (EGO) granularity 2, 6 parameters.

Task: generate new graphs; also bigger than training examples.

Results: EMD between number of communities, modularity, diameter and radius of generated and test networks.

	Community							EGO						
Method	Stat.	Scaling factor					Stat.	Scaling factor						
Method		1	1.5	2	4	8		Siai.	1	1.5	2	4	8	
NH-AHK-		0.02	0.00	0.00	0.00	0.00		dia.	0.47	0.75	1.00	1.15	1.73	
DiGress	nb of	0.00	0.20	0.53	-	-			0.32	0.78	0.33	0.35	0.40	
GraphRNN	com.	1.05	_	-	_	- Uia	uia.	2.08	_	-	-	-		
ER		2.42	2.07	1.90	1.25	1.23			0.40	2.03	1.48	0.96	2.05	
NH-AHK-		0.03	0.03	0.02	0.02	0.02		rad	0.39	0.13	0.03	0.10	0.05	
DiGress	mod.	0.00	0.08	0.14	-	_			80.0	0.29	0.05	0.85	1.05	
GraphRNN	mou.	0.06	_	_	_	_		rad.	1.11	_	_	-	-	
ER		0.29	0.34	0.36	0.40	0.43			0.39	1.13	1.29	1.77	1.94	
	•		•		'			'		•	•		'	

Summary

NH-AHK ... ► lightweig

- ► lightweight model (few parameters)
- support for general inference tasks
- graph generation for arbitrary target sizes

Paper & Code: https://github.com/manfred-jaeger-aalborg/AHK

Learning on Graphs 2023 Contact: jaeger@cs.aau.dk