Całka oznaczona

Cathe ornewone f: <e,b> > R

$$f:\langle a,b\rangle \rightarrow \mathbb{R}$$

Celhe ornewone 4: < 0, 6> → R P = { x0, x1, ---, xny $T = \{t_1, t_2, ..., t_n\}$ $S(f,p,T) = f(t_1) \cdot (x_1 - x_0) + f(t_1) \cdot (x_2 - x_1) + \dots +$ $+ f(t_n) \cdot (x_n - x_{n-1})$ o collono $S(f,P,T) = \sum_{k=1}^{n} f(f_k) (x_k - x_{k-1}) = \sum_{k=1}^{n} f(f_k) \Delta x_k$ P= {xo, --, xn} / Sp - svednice poordan $\begin{pmatrix} wex(x_{k-1}) = wex \Delta x_{k} \\ k=1,...,n \end{pmatrix}$ (Pm) - cipp podsietou odelha (e,6) (Pm) naymany applem normalnym, jeieli Sp.

Def. (Catha ornanona) Jeleli die donologo d'en podriatón noumaling de (Pm) i doublineps elyge (Tm) punktou poovedulds gro nico, lim S(f, Pm, Tm)istorieje to nozytamy po
funkcji f po priedzlele cathe Greenshow

(a,b) i ornaciamy $\int f(x)dx$. $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $\int_{a}^{\infty} x \, dx = \frac{2}{2} \left(\frac{1}{b^2 - a^2} \right)$ $=\frac{1}{2} S_{p} \sum_{k=n}^{n} \Delta x_{k} = \frac{1}{2} S_{p} \left(b - a \right)$

Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli

$$F'(x) = f(x)$$

dla każdego $x \in I$.

$$(-\cos x)' = \sin x$$

$$(-\cos x)' = \sin x$$

Charakteryzacja funkcji pierwotnych

Jeśli F jest funkcją pierwotną funkcji f na przedziale I, to

- \longrightarrow G = F + C jest funkcją pierwotną f dla dowolnej stałej C,
- $\stackrel{\sim}{\sim}$ każda funkcja pierwotna funkcji f jest postaci F+C.

$$G' = f$$
 $F' = f$
 $G' = F' = 0$
 $(G - F)' = 0 = G - F$ part f . stalp
 $G = F + C$

Całka nieoznaczona

Całką nieoznaczoną funkcji f na przedziale I nazywamy zbiór funkcji

$$\{F+C\colon C\in\mathbb{R}\},\$$

gdzie F jest dowolną funkcją pierwotną funkcji f.

Zbiór ten oznaczamy

$$\int f(x) dx.$$

$$\int \sin x dx = \left\{ -\cos x + C : C \in \mathbb{R} \right\} =$$

$$= -\cos x + C \qquad C \in \mathbb{R}$$

Własności

$$\longrightarrow \left[\int f(x)dx\right]'=f(x),$$

$$\int f'(x)dx = f(x) + C.$$

Istnienie całki nieoznaczonej

Twierdzenie

Każda funkcja ciągła na przedziale I ma na tym przedziale funkcję pierwotną.

Całki nieoznaczone ważniejszych funkcji elementarnych

$$\longrightarrow$$
 $\int 0 \ dx = C, \ x \in \mathbb{R}$

$$(C)_1 = 0$$

$$\longrightarrow \int x^a \ dx = \frac{1}{a+1}x^{a+1} + C, \quad a \neq -1,$$

$$(x^{\alpha})^{1} = \alpha \times \alpha^{-1}$$

$$\rightarrow \int \frac{1}{x} dx = \ln|x| + C, \quad x \in (-\infty, 0) \text{ lub } x \in (0, \infty)$$

$$\left(\left(\mathcal{U}_{X} \right) \right)^{1} = \frac{1}{X}$$

$$\rightarrow \int a^x dx = \frac{a^x}{\ln a} + C, \quad a > 0, \ a \neq 1, \ x \in \mathbb{R}$$

$$(a^*)=a^* \ln a$$

$$\longrightarrow \int e^x dx = e^x + C, \quad x \in \mathbb{R}$$

$$\longrightarrow \int \frac{1}{\sin^2 x} dx = -\cot x + C, \quad x \in (k\pi, (k+1)\pi), \quad k \in \mathbb{Z}$$

$$\longrightarrow \int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C, \quad x \in \left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right), \quad k \in \mathbb{Z}$$

$$\longrightarrow \int \frac{1}{1+x^2} dx = \arctan x + C, \quad x \in \mathbb{R}$$

$$\longrightarrow \int \frac{-1}{1+x^2} dx = \operatorname{arcctg} x + C, \quad x \in \mathbb{R}$$

$$\rightarrow \int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C, \quad x \in (-1,1)$$

$$\rightarrow \int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x + C, \quad x \in (-1,1)$$

Przydatne wzory

$$\longrightarrow \int f(ax+b)dx = \frac{1}{a}F(ax+b)+C \text{ dla } a\neq 0 \text{ i } b\in\mathbb{R},$$

$$\longrightarrow \int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C,$$

$$\int \frac{f'(x)}{f^2(x)} dx = -\frac{1}{f(x)} + C,$$

$$\longrightarrow \int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + C.$$

$$\left(-\frac{1}{f(x)} + C\right)' = -\left(\frac{1}{f(x)}\right)' + \left(C\right)' = -\left(\left(f(x)\right)^{-1}\right)' = -\left(\frac{1}{f(x)}\right)' + \left(C\right)' = -\left(\left(f(x)\right)^{-1}\right)' = -\left(\frac{1}{f(x)}\right)' + \left(C\right)' = -\left(\frac{1}{f(x)}\right)'$$

Twierdzenie o liniowości całki nieoznaczonej

Jeśli funkcje f i g mają funkcje pierwotne, to

1.
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx,$$

2.
$$\int cf(x)dx = c \int f(x)dx$$
, gdzie $c \in \mathbb{R}$.

$$\int f(x) g(x) dx = \int f(x) dx \cdot \int g(x) dx$$

Twierdzenie o całkowaniu przez części

Jeżeli funkcje f i g mają ciągłe pochodne, to

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx.$$

$$\int (f(x)g'(x) + f'(x)g(x))dx = f(x)g(x)$$

$$\int x \sin x dx = \int x (-\cos x) dx = -x \cos x - \int (x) (-\cos x) dx$$

$$= -x \cos x + \int \cos x dx =$$

$$= -x \cos x + \sin x + C \int (-\cos x) dx =$$

$$= -x \cos x + \sin x + C \int (-\cos x) dx =$$

$$= -x \cos x + \sin x + C \int (-\cos x) dx =$$

$$= -x \cos x + \sin x + C \int (-\sin x) dx =$$

$$= x \sin x + \cos x + \cos x + \cos x =$$

$$= x \sin x + \cos x + \cos x + \cos x =$$

$$= x \sin x + \cos x + \cos x + \cos x =$$

$$= x \sin x + \cos x + \cos x + \cos x =$$

$$= x \sin x + \cos x + \cos x + \cos x + \cos x =$$

$$= x \sin x + \cos x + \cos$$

Przykład

$$\int \ln x \, dx = \int (x) \ln x \, dx = x \ln x - \int x (\ln x) \, dx =$$

$$= x \ln x - \int x \frac{1}{x} \, dx = x \ln x - \int 1 \, dx =$$

$$= x \ln x - x + C$$

Twierdzenie o całkowaniu przez podstawienie

Jeżeli

- 1. funkcja $f:(a,b)\to\mathbb{R}$ jest ciągła na przedziale (a,b),
- 2. funkcja $g:(\alpha,\beta)\to(a,b)$ ma ciągłą pochodną na przedziale (α,β) ,

to

$$\int f(g(x))g'(x)dx = F(g(x)) + C,$$

gdzie F jest dowolną funkcją pierwotną funkcji f oraz $C \in \mathbb{R}$.

$$\int \frac{1}{1+x^{h}} dx = \int \frac{1}{2} \frac{1}{(x^{2})^{2}} dx = \int \frac{1}{1+(x^{2})^{2}} dx = \int \frac{1}{1+(x^{2})^{2$$

Całkowanie funkcji wymiernych

Całkowanie ułamków prostych pierwszego rodzaju

$$\int \frac{A}{x+a} dx$$

$$\int \frac{A}{(x+a)^n} dx$$

Całkowanie ułamków prostych drugiego rodzaju

Całkowanie ułamków prostych drugiego rodzaju

Całkowanie funkcji wymiernych

Przykład

Uniwersalne podstawienie trygonometryczne

$$\rightsquigarrow$$
 Jeżeli $t = \operatorname{tg} \frac{x}{2}$, to

$$\sin x = \frac{2t}{1+t^2}, \qquad \cos x = \frac{1-t^2}{1+t^2}, \qquad dx = \frac{2}{1+t^2}dt.$$

Całki z funkcji niewymiernych

Całka oznaczona

Całka oznaczona

Wzór Newtona-Leibniza

Twierdzenie

Jeżeli F jest funkcją pierwotną funkcji f na przedziale $\langle a,b\rangle$, to

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

$$\int_{a}^{b} x dx = \frac{1}{2} (b^{2} - a^{2})$$

$$\int_{a}^{b} x dx \qquad f(x) = x \qquad f(x) = ?$$

$$\int_{a}^{b} x dx = \frac{x^{2}}{2} \begin{vmatrix} b \\ b \end{vmatrix} = \frac{b^{2}}{2} - \frac{a^{2}}{2} = \frac{1}{2} (b^{2} - a^{2})$$

$$\int_{a}^{b} x dx = \frac{x^{2}}{2} \begin{vmatrix} b \\ a \end{vmatrix} = \frac{b^{2}}{2} - \frac{a^{2}}{2} = \frac{1}{2} (b^{2} - a^{2})$$

Przykład

Interpretacja geometryczna

Jeżeli funkcja f jest nieujemna na przedziale $\langle a,b\rangle$, to całka oznaczona

$$\int_{a}^{b} f(x) \, dx$$

jest polem obszaru ograniczonego następującymi krzywymi:

- \rightsquigarrow osią Ox,
- → wykresem funkcji f,
- \rightsquigarrow prostą x = a,
- \rightsquigarrow prostą x = b.

Uwaga

Jeżeli $f(x) \geqslant g(x)$ dla $x \in \langle a, b \rangle$, to pole obszaru zawartego między wykresami funkcji f i g na przedziale $\langle a, b \rangle$ jest równe

$$\int_a^b (f(x) - g(x)) dx.$$

Własności całki oznaczonej

$$\int_a^a f(x) dx = 0,$$

$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx,$$

$$\rightarrow \int_a^b cf(x) dx = c \int_a^b f(x) dx$$
 dla dowolnego $c \neq 0$,

$$\longrightarrow \int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx,$$

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx dla b \in \langle a, c \rangle.$$

Całkowanie przez części

Jeżeli funkcje f, g są różniczkowalne na przedziale $\langle a, b \rangle$, to

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x)\big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx.$$

Całkowanie przez podstawienie

Załóżmy, że funkcja f jest określona na przedziale $\langle a,b\rangle$, a funkcja $\phi:\langle\alpha,\beta\rangle\to\langle a,b\rangle$ ma ciągłą pochodną oraz spełnia warunki

$$\rightsquigarrow \phi(\alpha) = a$$
,

$$\rightsquigarrow \phi(\beta) = b.$$

Wtedy

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\phi(x))\phi'(x) dx.$$

Załóżmy, że funkcja f ma ciągłą pochodną na przedziale $\langle a, b \rangle$. **Długość krzywej** y = f(x) dla $x \in \langle a, b \rangle$ jest równa

$$\int_a^b \sqrt{1+[f'(x)]^2}\,dx.$$

Pole powierzchni bryły powstałej przez obrót krzywej

$$y = f(x), \qquad x \in \langle a, b \rangle$$

wokół osi Ox jest równe

$$|P| = 2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx.$$

Objętość bryły powstałej przez obrót obszaru "pod krzywą"

$$y = f(x), \qquad x \in \langle a, b \rangle$$

wokół osi Ox jest równa

$$|V_x| = \pi \int_a^b [f(x)]^2 dx.$$

$$\int_{a}^{b} \sqrt{x^{2}-x^{2}} dx = \prod_{a} \int_{a}^{b} (x^{2}-x^{2}) dx = \prod_{a} \int_{a}^{b} (x$$

Objętość bryły powstałej przez obrót obszaru "pod krzywą"

$$y = f(x), \qquad x \in \langle a, b \rangle$$

wokół osi Oy jest równa

$$|V_y| = 2\pi \int_a^b x f(x) \, dx.$$

Przykłady

→ Wyprowadzić wzór na pole koła.

→ Wyprowadzić wzór na objętość stożka i kuli.