CS2842 Computer Systems – Lecture VII

The CPU and Memory

Dr. Sapumal Ahangama Department of Computer Science and Engineering

COMPONENTS OF THE CPU

- The CPU comprises of the following components
 - ALU
 - Control Unit (CU)
- Key components of the CU
 - Program Counter
 - Memory Management Unit
 - ► I/O Interface

System Block Diagram

REGISTERS

- A storage location within the CPU for a specific purpose
 - Holds a binary value temporarily for storage
 - Usually each register has a defined task
 - Can be I bit or wide as several bytes
- Memory vs. Registers?
- A register may hold,
 - Data being processed
 - An instruction being executed
 - A memory or I/O address to be accessed
 - Special binary codes (status of the computer)
 - Conditions of calculations

REGISTERS

Accumulator

- A general purpose register
- Hold the data that are used for arithmetic operations
- Used for moving data in memory
- Modern computer come with multiple accumulators

REGISTERS

- Registers on Control Unit
 - Program Counter (PC) register holds the address of the current instruction being executed
 - Instruction Register (IR) holds the actual instruction being executed
 - Memory Address Register (MAR) holds the address of a memory location
 - Memory Data Register (MDR) holds a data value that is being stored to or retrieved from the memory
 - Status Registers

THE MEMORY UNIT

- ▶ Each memory location has a unique address
- Address from an instruction is copied to the MAR which finds the location in memory
- CPU determines if it is a store or retrieval
- Transfer takes place between the MDR and memory

THE MEMORY UNIT

THE MEMORY UNIT

MEMORY CAPACITY

The number of bits in the MAR determines how many different address locations can be decoded

$$M = 2^{k}$$

- ▶ 32 bits allows 4,294,967,296 or 4 GB
- The size of MDR decides how much data can be loaded in a single operation
 - Modern computer memories are designed to allow the retrieval or storage of at least 4 and, more commonly, 8 or even 16, successive bytes

MEMORY CHARACTERISTICS

- Read-Write capable or Read-only
- Volatile or Nonvolatile
 - Nonvolatile memory retains its values when power is removed
- Dynamic and Static RAM
 - Static RAM does not require refreshing, used in cache memory

ROM

- Read Only Memory
 - Software is built semi-permanently into the computer, and is not expected to change over the life of the computer
- Bootstrap programs and basic I/O system drivers
- Flash Memory?

- The physical connection that makes it possible to transfer data from one location to another
 - Computer peripherals and CPU
 - CPU and memory
 - Different point of a CPU
- Four general categories
 - Data
 - Addressing
 - Control
 - Power

Parallel Vs. Serial Buses

Parallel bus: an individual line for each bit of data

Serial bus: data is transferred sequentially, one bit at a time, using a

single data line

Multiplexed data & address

Bus protocol

Direction of transmission

Method of Interconnection

Different categories of instructions

Data Move Instructions

- Includes instructions to move data from memory to general registers, from general registers to memory, between different general registers
- LOAD and STORE of LMC
- Variations, LOAD BYTE, LOAD HALD-WORD, LOAD WORD

Arithmetic Instructions

- Every CPU instruction set includes integer addition and subtraction
- Multiplication, Division, Floating Point Arithmetic, BCD
- Most operations can be achieved using addition

Boolean Instructions

- Instructions for performing Boolean algebra
- NOT
- AND, OR, EXCLUSIVE OR

Single Operand Instructions

- Provide other convenient single operand instructions similar to NOT
- Mostly operate on values in registers
- NEGATING, INCREMENTING, DECREMENTING

- ▶ Bit Manipulation Instructions
 - For setting and resetting individual bits
 - Change, Clear, Set bits

Shift and Rotate Instructions

Means to implement multiplication, division and other operations

c. Right arithmetic shift 2 bits

Program Control Instructions

Control the flow of a program Calling program Include jumps and branches 305 instruction CALL and RETURN instructions 306 instruction before call 307 CALL 425-→ 308 instruction after call Saves program counter somewhere Jumps to 425 Subroutine 308 ► 425 first instruction 426 instruction Returns to 308 435 return-Reloads program counter with original value (308) Causing return to instruction after call

Stack Instructions

- Stack is used to store data when the most recently used data will also be the first needed, Last in First Out (LIFO)
- PUSH, POP

Stack Instructions

MEMORY ENHANCEMENTS

- Memory is slow compared to CPU processing speeds
 - ▶ 2 Ghz CPU I cycle in ½ of a billionth of a second
 - 70 ns DRAM I access in 70 millionth of a second
- Methods to improve memory accesses
 - Wide Path Memory Access
 - Memory Interleaving
 - Cache Memory

WIDE PATH MEMORY ACCESS

- Retrieve multiple bytes instead of I byte at a time
- Wider bus data path and larger MDR
- Increased number of bytes leads to increased complexity
- All retrieved bytes may not be used

MEMORY INTERLEAVING

- Partition memory into subsections
- Each with own MAR and MDR
- Each section is accessed separately
- N-way Interleaving

MEMORY INTERLEAVING

Four-Way Memory Interleaving

CACHE MEMORY

- A small amount of high speed memory between CPU and memory
- Arranged in blocks: 8 or 16 bytes Cache line
- Cache Line
 - Unit of transfer between storage and cache memory

CACHE MEMORY

- ▶ Tags : pointer to location in main memory
 - Cache controller
 - hardware that checks tags

CACHE HIT

Step-by-Step Use of Cache

CACHE MISS

THANK YOU

REFERNCES

Chapter 7 and 8: The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach -4th Edition, Irv Englander -John Wiley and Sons