CQF Exercises The Black Scholes Model

Throughout this exercise you may use assume (where appropriate) the following results without proof

$$d_1 = \frac{\log(S/E) + (r - D + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}},$$

$$d_2 = \frac{\log(S/E) + (r - D - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}} \text{ and}$$

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-\phi^2/2) d\phi; \quad N'(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

where $S \geq 0$ is the spot price, $t \leq T$ is the time, E > 0 is the strike, T > 0

the expiry date, $r \geq 0$ the interest rate, D is the dividend yield and σ is the volatility of S.

1. The Black–Scholes formula for a European call option $C\left(S,t\right)$ is given by

$$C(S,t) = S \exp(-D(T-t))N(d_1) - E \exp(-r(T-t))N(d_2).$$

By differentiating with respect to S and σ show that the delta and vega are given by

$$\Delta = \exp(-D(T-t))N(d_1)$$
, and $v = \sqrt{\frac{T-t}{2\pi}}S\exp(-D(T-t))\exp(-{d_1}^2/2)$.

You may find the following relationship useful:

$$Se^{(-D(T-t))} \exp\left(-\frac{d_1^2}{2}\right) = Ee^{(-r(T-t))} \exp\left(-\frac{d_2^2}{2}\right)$$

2. The Black-Scholes formula for a European call option C(S,t) is

$$C(S,t) = S \exp(-D(T-t))N(d_1) - E \exp(-r(T-t))N(d_2)$$

From this expression, find the Black–Scholes value of the call option in the following limits:

- (a) (time tends to expiry) $t \to T^-$, $\sigma > 0$ (this depends on S/E);
- (b) (volatility tends to zero) $\sigma \to 0^+, t < T$; (this depends on $S \exp(-D(T-t))/E \exp(-r(T-t))$)
 - (c) (volatility tends to infinity) $\sigma \to \infty$, t < T;

3. Consider an option which pays a continuous cash-flow to the holder at a rate proportional to the square of the underlying asset's price, so that during a time interval dt the holder receives S^2dt . Suppose that at expiry the value of the option is

$$V\left(S,T\right) =S^{2}.$$

The underlying evolution follows geometric Brownian motion

$$dS = \mu S dt + \sigma S dX.$$

Derive the Black-Scholes partial differential equation for this "power" option and show that it is

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = -S^2.$$

By assuming a solution of the form

$$V(S,t) = \phi(t) S^2$$

show that

$$\phi\left(t\right) = \frac{1}{\sigma^2 + r} \left(\left(\sigma^2 + r + 1\right) e^{\left(\sigma^2 + r\right)(T - t)} - 1 \right).$$