HOMEWORK #2 EE 1190 Adam Krivka

I did VO, V1 and the non-delimiter paris

of V2, V3 by inspection.

helper variable for the block of 1s for the delimiters

Here are the Karnaugh maps for VD, S, G:

٧	$\widehat{\mathbb{D}}$										
			I.	0	0	0	0	1	1	1 0	1
I,	Ì,	Ţ,	1,1,	0	1	1	0	0	1	1	0
0	0	0	0			0		0			
0	0	0	1		1						0
0	0	1	1	1							
0	0	1	0				O			1	
0	1	1	0	0							
0	1	1	1	χ							
0	1	0	1		х						
0	1	0	0		0						0
1	1	0	0	0							
1	1	0	1	Х							
1	1	1	1								
1	1	1	0								
1	0	1	0		1						1
1	0	1	1								
1	0	0	1	0			X				
1	0	0	0				0			1	

G

											I.	I,	I,	1/4	0	1	1	0	0	1	1	0
											0	0	0	0			0		0			
											0	0	0	1		0						0
											0	0	1	1	0							
											0	0	1	0				O			O	
											0	1	1	0	0							
											0	1	1	1	1							
											0	1	0	1		1						
											0	1	0	0		0						0
											1	1	0	0	0							
											1	1	0	1	1							
											1	1	1	1								
											1	1	1	0								
		T.	0	0	0	0	1	1	1	1	1	0	1	0		0						0
		1,	0	0	1	1	0	0	1	1	1	0	1	1								
Ĭ,	I,	1/4	0	1	1	0	0	1	1	0	1	0	0	1	0			1				
0	0	0			(1)					(1)	1	0	0	0				0			0	
0	0	1		1			<u>(1)</u>			\cup												
0	1	1	1			2	\cup	-														
0	1	0				(Λ)		h)														
1	0	0		1			5	\vee														

$$I_{1}I_{3} + I_{3}I_{5}$$

$$I_{3}(I_{1} + I_{5})$$

helper variable for the block of 1s for the delimiters

•
$$VD = \overline{\int_{0}^{\infty} \overline{\int_{1}^{\infty} \overline{\int_{0}^{\infty} \overline{\int_{0}^{$$

•
$$V3 = I_4 + J_3 \overline{J_6} + VD$$

•
$$G = \bar{I}_4 \bar{I}_5 \bar{I}_6 (\bar{I}_6 \bar{I}_2 \bar{I}_3 + \bar{I}_6 \bar{I}_1 \bar{I}_2 + \bar{I}_6 \bar{I}_2 \bar{I}_3 + \bar{I}_6 \bar{I}_1 \bar{I}_2) + \bar{I}_6 \bar{I}_2 \bar{I}_3 + \bar{I}_6 \bar{I}_1 \bar{I}_2) + \bar{I}_6 \bar{I}_2 \bar{I}_3 + \bar{I}_6 \bar{I}_1 \bar{I}_2) + \bar{I}_6 \bar{I}_1 \bar{I}_2 + \bar{I}_6 \bar{I}_1 \bar{I}_1 + \bar{I}_6 \bar{I}_1 \bar{I}_1 + \bar{I}_6 \bar{I}_1 \bar{I}_2 + \bar{I}_6 \bar{I}_1 \bar{I}_1 + \bar{I}_6 \bar{I}_$$

+
$$\bar{I}_{4}\bar{I}_{5}\bar{I}_{6}(\bar{I}_{0}\bar{I}_{2}\bar{I}_{3} + \bar{I}_{0}\bar{I}_{1}\bar{I}_{2} + \bar{I}_{0}\bar{I}_{1}\bar{I}_{2}\bar{I}_{5})$$
 + $\bar{I}_{6}\bar{I}_{1}\bar{I}_{2}\bar{I}_{5})$ +

l'11 draw logic diagrams for {VO, V1, V2, V3, S} and {G} separately.

An even more simplified expression for G using XORs (shared terms are highlighted):

using XORs (shared terms are highlighted):
$$G = \bar{I}_{4} \bar{I}_{5} \bar{I}_{6} (\bar{I}_{1} + \bar{I}_{3}) (\bar{I}_{0} + \bar{I}_{2}) + \\
+ \bar{I}_{4} \bar{I}_{5} \bar{I}_{6} (\bar{I}_{0} \bar{I}_{2} (\bar{I}_{1} + \bar{I}_{3}) + \bar{I}_{0} \bar{I}_{1} \bar{I}_{2} \bar{I}_{5}) + \\
+ \bar{I}_{4} \bar{I}_{5} \bar{I}_{6} \bar{I}_{1} \bar{I}_{3} (\bar{I}_{0} + \bar{I}_{1}) + \\
+ \bar{I}_{4} \bar{I}_{5} \bar{I}_{6} \bar{I}_{1} (\bar{I}_{0} \bar{I}_{2} \bar{I}_{3} + \bar{I}_{0} \bar{I}_{2}) + \\
+ \bar{I}_{5} \bar{I}_{1} \bar{I}_{2} \bar{I}_{3} \bar{I}_{5} (\bar{I}_{4} + \bar{I}_{1}) + \\
+ \bar{I}_{6} \bar{I}_{5} \bar{I}_{6} (\bar{I}_{5} \bar{I}_{1} \bar{I}_{1} \bar{I}_{3} + \bar{I}_{0} \bar{I}_{1} \bar{I}_{3} + \bar{I}_{0} \bar{I}_{1} \bar{I}_{3})$$

Flipping A czn'e czuse s glitch beczuse it appears in the tormula only once.

Here's the Karnaugh map wishs pairs across terms that cause a glitch

		4			_		
[Z	1	1					ABCD
U	1			1		=>	•
							$A \frac{B}{B} \bar{C} D$
		1	1				
		ſ)		-		

Thus, the circuit glitches for 1100=>1110 and 1101 <=> 1001.

We can tix this by adding a term for each of the pains:

Y= (A·B·c) + (0·c·D) + (0·c·D) + (A·B·D) + (A·c·D)

