CLAIMS

1

2

1

2

What is claimed is:

- 1. An apparatus for testing a sample for constituents comprising;
 2 a plurality of electrochemical sensors, each sensor adapted to detect a different
 3 constituent within the sample;
 4 a reservoir for containing the sample;
 5 a plurality of interconnected channels fluidly coupling the reservoir to the
 6 sensors; and
- a circuit coupled to the plurality of sensors to analyze the electrochemical properties of the sensors to detect the presence of a particular constituent at each sensor.
- The apparatus of claim 1 further comprising a pump fluidly coupled to said reservoir and a plurality of interconnected channels for applying positive pressure to the reservoir and plurality of interconnected channels.
- 1 3. The apparatus of claim 2 wherein the pump is a micro-pump.
 - 4. The apparatus of claim 2 further comprising a microheater coupled to each sensor to heat the sensor.
 - 5. The apparatus of claim 2 wherein the circuit for detecting further determines the concentration of the constituent in the sample.
- 1 6. The apparatus of claim 1 wherein each sensor is adapted to detect a different constituent.

1	7.	The apparatus of claim 1 wherein the electrochemical sensors each	
2	comprise an electrochemical cell comprising:		
3	a wo	rking electrode with a coating selected to bind with a particular electro-active	
4	constituent;		
5	a cou	unter electrode;	
6	a reference electrode;		
7	filter	paper disposed so as to separate between the electrodes from each other;	
8	and		
9	an el	ectrolyte in said filter paper.	
1	8.	The apparatus of claim 7 wherein the electrochemical cell further	
2	comprises a	glass frit disposed between the channels external of the sensor and the	
3	electrodes o	of the sensor and a capillary housing the other elements of the sensor.	
1	9.	The apparatus of claim 7 wherein the working electrode is disposed	
2	closest to the channel through which sample enters the sensor, the counter electrode is		
3	disposed furthest from the channel through which sample enters the sensor, and the		
4	reference el	ectrode is disposed between the other two electrodes, and wherein the	
5	capillary inc	ludes an opening disposed adjacent the working electrode through which	
6	excess sam	ple can exit the cell.	
1	10.	The apparatus of claim 1 wherein the circuit comprises analytic circuitry	
2	for analyzing the electrochemical properties of the sensors, a multiplexer, and circuitry		
3	for controlling the multiplexer to selectively electrically couple the analytical circuitry to		
4	each of the	sensors, whereby the analytical circuitry can be used to analyze each	
5	sensor distir	nctly.	
1	11.	The apparatus of claim 10 wherein the circuit is embodied on a single	
2	microcircuit.		

The apparatus of claim 10 wherein the analytic circuitry is selectively

12.

- 2 electrically coupled to the working electrode, reference electrode and counter electrode
- 3 of each sensor cell and is adapted to apply a series of electrical pulses to the cell and
- 4 measure the transient responses through the cell to each of the pulses.
- 1 13. The apparatus of claim 12 wherein the analytic circuitry is further 2 adapted to integrate each current transient response to a pulse and derive electrical
- 3 charge Q as a function of the magnitude of the corresponding pulse.
- 1 14. The apparatus of claim 1 wherein the channels are micro-channels.
- 1 15. The apparatus of claim 7 wherein the coating of the working electrode is 2 adapted to bind with heme molecules.
- 1 16. The apparatus of claim 15 wherein the coating comprises dithiol.
- 1 17. The apparatus of claim 16 wherein the working electrode comprises a 25 to 100-micron-diameter, 1-meter long gold wired coiled around a 0.25 to 0.5-mm-
- 3 diameter gold support wire.
- 1 18. The apparatus of claim 16 wherein the working electrode comprises a powdered gold bound together by adhesive.
- 1 19. The apparatus of claim 18 wherein the adhesive is a mixture of carbon 2 powder and polytetraflourethylene adhesive.

1	An apparatus for testing a sample for constituents comprising;			
2	a plurality of electrochemical sensor cells, each sensor cell adapted to detect a differen			
3	constituent within the sample; and			
4	an analytic circuitry for analyzing the electrochemical properties of the sensors;			
5	a multiplexer; and			
6	control circuitry for controlling the multiplexer to selectively electrically couple the			
7	analytical circuitry to each of the sensors, whereby the analytical circuitry can be used			
8	to analyze each sensor distinctly.			
1	21. The apparatus of claim 20 wherein the analytic circuit, multiplexer and			
2	control circuit are embodied on a single microcircuit chip.			
1	22. The apparatus of claim 21 wherein the electrochemical sensors each			
2	comprise an electrochemical cell comprising:			
3	a working electrode with a coating selected to bind with a particular electro-active			
4	constituent;			
5	a counter electrode;			
6	a reference electrode;			
7	filter paper disposed so as to separate between the electrodes from each other;			
8	and			
9	an electrolyte in said filter paper.			
1	23. The apparatus of claim 22 wherein the analytic circuitry is selectively			
2	electrically coupled to the working electrode, reference electrode and counter electrode			
3	of each sensor cell via the multiplexer and is adapted to apply a series of electrical			
4	pulses to the cell and measure the transient responses through the cell to each of the			
5	pulses.			
1	24. The apparatus of claim 23 wherein the analytic circuitry is further adapted			
2	to integrate each current transient response to a pulse and derive electrical charge Q as			
3	a function of the magnitude of the corresponding pulse.			

- The apparatus of claim 24 wherein the circuit for detecting further 1 25. determines the concentration of the constituent in the sample. 2 1 26. The apparatus of claim 21 further comprising a microheater coupled to 2 each sensor cell to heat the sensor cell. 1 27. The apparatus of claim 20 wherein the electrochemical sensors each comprise an electrochemical cell comprising: 2 a working electrode with a coating selected to bind with a particular electro-active 3 constituent; 4 5 a counter electrode; 6 a reference electrode; 7 filter paper disposed so as to separate between the electrodes from each other; 8 and 9 an electrolyte in said filter paper; 10 wherein each working electrode has the same coating, whereby each sensor 11 tests for the same constituent. 1 28. The apparatus of claim 16 wherein the working electrode comprises a 25-2 to 100-micron-diameter, 1-meter-long gold wired coiled around a 0.25 to 0.5-mm-3 diameter gold support wire. 1 29. The apparatus of claim 22 wherein the working electrode comprises a 2 powdered gold bound together by adhesive. 1 30. The apparatus of claim 28 wherein the adhesive is a mixture of carbon 2 powder and polytetraflourethylene adhesive.
 - 31. A method for testing a sample for constituents comprising the steps

1

2	of:		
3	providing a plurality of electrochemical sensors, each sensor adapted to detect a		
4	different constituent within the sample;		
5	providing a circuit coupled to the plurality of sensors to analyze the		
6	electrochemical properties of the sensors to detect the presence of a particular		
7	constituent at each sensor;		
8	introducing a sample into each sensor; and		
9	simultaneously analyzing the electrical properties of each electrochemical sensor		
10	to detect the presence of at least one constituent in the sample at each sensor.		
1	32. The method of claim 31 wherein each sample is a part of the same larger		
2	sample.		
1	33. The method of claim 32 wherein each sensor comprises a working		
2	electrode with a coating selected to bind with a particular electro-active constituent, a		
3	counter electrode, and a reference electrode, and wherein the working electrode of		
4	each sensor has a different coating, whereby each sensor can be analyzed to detect a		
5	different constituent.		
1	34. The method of claim 33 further comprising the steps of:		
2	providing a reservoir for containing the sample;		
3	providing a plurality of interconnected channels fluidly coupling the reservoir to		
4	the sensors.		
1	35. The method of claim 34 further comprising the step of:		
2	applying positive pressure to force the samples into the plurality of sensors.		
1	36. The method of claim 31 wherein each sensor is adapted to detect a		

2

different constituent.

1	37. The method of claim 31 wherein a different sample is introduced to each		
2	sensor.		
1	38. The method of claim 31 wherein the analyzing step further comprises the		
2	step of:		
3	simultaneously determining the concentrations of the plurality of constituents in		
4	the sample at each sensor.		
1	39. The method of claim 31 wherein the detecting step comprises the steps of:		
2	selectively coupling the circuit to each sensor and analyzing each sensor		
3	sequentially.		
1	40. The method of claim 31 wherein each sensor comprises a working		
2	electrode with a coating selected to bind with a particular electro-active constituent, a		
3	counter electrode, and a reference electrode, and wherein the detecting step comprises		
4	the steps of:		
5	(1) selectively electrically coupling the circuit to the working electrode, reference		
6	electrode and counter electrode of one of the plurality of sensors;		
7	(2) applying a series of electrical pulses to the cell;		
8	(3) measuring the electrical response by the cell responsive to each of the		
9	pulses;		
1	41. The apparatus of claim 40 wherein the detecting step further comprises		
2	the step of:		
3	integrating each current transient response to a pulse and deriving electrical		

charge Q as a function of the magnitude of the corresponding pulse.