LPD1109 明书

1. 概述:

LPD1109 是一款高灰度(256级灰度)有9路输出(3个像素点),可以级联的LED驱动电路,工作电压1.8V-5V,输出端最高耐压可达40V,每路驱动电流不小于20mA。

2. 特点:

- 采用高压功率 CMOS 工艺。
- 9路输出,每路输出驱动电流不小于 20mA, LED 灯电压可达 40V。
- 灰度调节电路(256级灰度可调)
- LPD1109 一个 IC 可以控制 9 路 LED,每一路 LED 是通过一个字节的数据来控制它的 亮度的(即一路 LED 有 256 种亮度,它是通过 PWM 的形式来控制的)
- 双线传输,数据和时钟信号经内部再生电路后,以较强的驱动提供给下一级电路, 提高了级联级数
- 最大工作频率 15MHz。
- DIP16 封装、SOP16 封装。

3. 管脚图: DIP16

4. 引脚功能描述:

序号	管脚名称	描述
1	Vcc	电源 1.8v-7v
2	Dout	串行数据输出
3	Din	串行数据输入,内置上拉
4	Cout	时钟输出
5	Cin	时钟信号输入,内置上拉
6	NC	空脚,无用
7	GND	地线
8	G1	LED 驱动输出,第一个点的绿色输出
9	R1	LED 驱动输出,第一个点的红色输出
10	B1	LED 驱动输出,第一个点的蓝色输出
		第一个点的红绿两个输出是对调的,8 是 G1,9 是 R1
11-16	R, G, B	LED 驱动输出,后两点的按 RGB 顺序的输出

5. 基本应用时序:

6. 发同步帧

- 1: 将 Din 线置低电平
- 2: 连续从 CLKin 记脚给出 32 个脉冲

32个0起始位,注意事项 起始位必须是32位的0,多了少了都出错

7.发送数据

- 1: LPD1109 一个 IC 可以控制 9 路 LED,每一路 LED 是通过一个字节的数据来控制它的 亮度的(即一路 LED 有 256 种亮度,它是通过 PWM 的形式来控制的)
- 2: 每发3个字节的数据之前先得发一个高电平的起始位
- 3: 在时钟线为低电平时放好数据,在时钟上升沿发出数据(芯片是在时钟上升沿采 样数据的)
- 4:每一次发同步帧都是新一轮数据的开始

发了起始位后,后面数据就是 "1"+8BIT RED+8BIT GREEN+8BIT BLUE+
"1"+8BIT RED+8BIT GREEN+8BIT BLUE+"1"+8BIT RED+8BIT GREEN
+8BIT BLUE (1 个 IC 的数据到此发完)+下一个IC 的 3 个点的 RGB 数据

全部点传完后,最好在最后一个点后面再追加一个 IC 的数据(就是 3 个点的 RGB 数据),是要把前面的数据挤出去而追加的这个数据,这个数据是 3 个点的 RGB 数据就是了,而最后一个 IC 的数据就是 3 个 25BIT,可以最好全是 1

8.结连

- 1: 若有 n 个芯片结连,同步帧后的前 9 字节数送入第一个芯片,第二个 9 字节数送入第二个芯片,第三个 9 字节数送入第三个芯片等等,依此类推第 n 个 9 字节数送入第 n 个芯片。
- 2: 若要在第 n 个芯片上显示你要显示的数据; 你需先送完同步帧, 再送 n 个 9 字节数的内容 (不需改变显示的 IC 的 9 字节数不要变, 维持原数即可), 最后再送一字节的任意数即可。

9. LPD1109 参考电路:

10.参考程序 C 代码:

```
//#define
            Data_in
                                 P1_0
                                 P1_1
//#define
            Data clk
void DELAY_xus(uchar dd)
{
    while(dd--);
}
void Send_Begin(void)// 发同步帧
 uchar i;
 Data clk = 0;
 Data_in = 1;
 DELAY xus(1);
 Data clk = 1;
 Data clk = 0;
 Data in = 0; //将 Din 线置低电平
 for(i=0;i<PUB_Flage;i++)// 发所需脉冲数
     Data clk = 0;
    Data clk = 1;
    Data in = 0;
 Data clk = 0;
void Send_start_Bit(void)//发一个高电平的起始位
```

```
Data_clk = 0;
 Data in = 1;
 DELAY_xus(1);
 Data_clk = 1;
 Data_clk = 0;
 void Send_Data(uchar *dd,uchar len)// 带同步帧发数据
 uchar i,j;
 Send_Begin();//起始帧
 for(j=0;j<len;j++)
     if((j\%3) == 0)Send start Bit();
     for(i=0;i<8;i++)
     {
            Data_clk = 0;
        if(dd[j] \& 0x80)Data_in = 1;
        else Data in = 0;
        DELAY_xus(1);///
        Data clk = 1;
        dd[j] = dd[j] \ll 1;
     }
 }
 Data_in = 0;
 Data clk = 0;
}
void Send Buff(uchar *dd,uchar len)//// 不带同步帧发数据
 uchar i,j;
 uchar cc;
 for(j=0;j<len;j++)
     if((j\%3) == 0)Send_start_Bit();
    cc = dd[j];
     for(i=0;i<8;i++)
     {
            Data clk = 0;
```

11.极限参数:

参数	符号	范围	单位
供电电压	VDD	1.8~7.5	V
LED灯电压	Vled	3~30	V
数据时钟频率	Fclk	<15	MHz
最大驱动电流	Iomax	>20	mA
通道电流偏差	Dio	<6%	%
功耗	Pdmax	50	mW
焊接温度	TM	300	$^{\circ}$
工作温度	Тор	-40~80	$^{\circ}$
存储温度	Tst	-65~120	$^{\circ}$

12.建议工作参数:

参数	符号	范围	单位
供电电压	VDD	1.8~7.5	V
输入电压	Vin	-0.4~VDD+0.4	V
LED 灯电压	Vled	3~40	V
数据时钟频率	Fclk	<10	MHz
时钟高电平	Telkh	>50	ns
时钟低电平	Telkl	>50	ns
数据建立时间	Tsetup	>10	ns
数据保持时间	Thold	>5	ns
最大驱动电流	Iomax	15~25	mA
功耗	Pdmax	50	mW
工作温度	Тор	-30~60	$^{\circ}$

应用说明: 1.VCC 电压可根据应用中串联 LED 的个数适当调整,最大不得超过 40V。

2. 在 12V 及 24V 护栏管应用中,每根管中第一颗 IC 的数据和时钟输入端及最后一颗 IC 的数据和时钟输出端务必要各加一颗 47 Ω 左右电阻(如还想加长级

联距离,可适当减小输入端电阻)以防止高压串入及带电拔插烧毁 IC 数据和时钟端的情况发生,同一根管的电路之间无需串电阻。在 **5V** 供电情况下可不加数据和时钟端保护电阻

- 3.适当调整 LED 限流电阻可得到理想的输出电流(一般情况不要超过 30mA)
- 4.IC 的第 4, 5 脚在线路板上必须同时连地,不可只连其中一脚,否则可能出现不稳定现象。

13.封装外形尺寸图:

