 IV.3 QUESTIONNAIRE CODE DE L'EPREUVE M 1 0 Q 2 0 S 4 H 4 17. Une batterie de f.é.m égale à 2,5 V fournit un courant de 0,4 A à un voltamètre dont la force contre électromotrice est de 1,5 V. La résistance totale du circuit vaut : 1. 0,8 Ω. 2. 1,5 Ω. 3. 1,8 Ω. 4. 2,5 Ω. 5. 3 Ω. 18. La bobine d'un galvanomètre contient 3000 spires et sa longueur est de 2 cm. Le courant qui y circule étant de 6 mA, l'intensité du champ magnétique de la bobine vaut ; www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique qui la traverse augmente en 0,4 s de 5.10° Wb, est de :
force contre électromotrice est de 1,5 V. La résistance totale du circuit vaut : 1. 0,8 Ω. 2. 1,5 Ω. 3. 1,8 Ω. 4. 2,5 Ω. 5. 3 Ω. 18. La bobine d'un galvanomètre contient 3000 spires et sa longueur est de 2 cm. Le courant qui y circule étant de 6 mA, l'intensité du champ magnétique de la bobine vaut : www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
force contre électromotrice est de 1,5 V. La résistance totale du circuit vaut : 1. 0,8 Ω. 2. 1,5 Ω. 3. 1,8 Ω. 4. 2,5 Ω. 5. 3 Ω. 18. La bobine d'un galvanomètre contient 3000 spires et sa longueur est de 2 cm. Le courant qui y circule étant de 6 mA, l'intensité du champ magnétique de la bobine vaut ; www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
18. La bobine d'un galvanomètre contient 3000 spires et sa longueur est de 2 cm. Le courant qui y circule étant de 6 mA, l'intensité du champ magnétique de la bobine vaut ; www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
Le courant qui y circule étant de 6 mA, l'intensité du champ magnétique de la bobine vaut ; www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
vaut ; www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
www.ecoles-rdc.net 1. 900 A/m. 2. 600 A/m. 3. 300 A/m. 4. 200 A/m. 5. 150 A/m. 19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique
19. La force électromotrice dans une bobine de 10.000 spires, lorsque le flux magnétique qui la traverse augmente en 0.4 s de 5.10 ⁻⁴ Wb. est de :
qui la traverse augmente en 0,4 s de 5.10 ° Wb, est de :
· · · · · · · · · · · · · · · · · · ·
1. 0,13 V. 2. 0,15 V. 3. 0,18 V. 4. 1,5 V. 5. 15 V.
20. L'induction magnétique d'un solénoïde est de 0,314 T. La perméabilité relative du
noyau de fer est égale à 500. Le solénoïde a 5 spires par centimètre de longueur.
L'intensité du courant électrique qui le traverse vaut :
1. 0,8 A. 2. 1,02 A. 3. 1,25 A. 4. 2,5 A. 5. 3,10 A.
<u> </u>
1