Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Моделирование

ОТЧЕТ по лабораторной работе № 7 на тему АНАЛИЗ И ОПТИМИЗАЦИЯ РЕШЕНИЙ НА ОСНОВЕ МОДЕЛЕЙ МАССОВОГО ОБСЛУЖИВАНИЯ ВАРИАНТ № 6

Проверила:	Ю.О. Герман

П.В. Сякачёв

Стулент:

1. Цель работы

Изучить виды моделей массового обслуживания и методы расчётов их параметров.

2. Задание

2.1 Одноканальные системы

Станок используется для обработки некоторых деталей. Интервалы между деталями, поступающими на обработку, составляют 10...15 минут. Время обработки детали на станке — экспоненциальная величина со средним значением 12 минут. Затраты, связанные с работой станка, составляют 18 денежных единиц в час, когда станок работает (т.е. обрабатывает детали), и 5 денежных единиц в час — когда станок простаивает. Прочие затраты на обработку одной детали составляет 3 денежных единиц. Детали продаются по цене 15 денежных единиц.

Вычислить характеристики станка, а также прибыль от его работы за 8 часов.

Предполагая, что интервалы между деталями и времена обработки – экспоненциальные случайные величины, найти следующие вероятности:

- вероятность наличия в системе ровно двух деталей;
- вероятность того, что количество деталей, ожидающих обработки, составит более трех;
- вероятность того, что количество деталей, ожидающих обработки, составит не более четырех;
- вероятность того, что в системе не будет ни одной детали, ожидающей обработки.

2.2 Многоканальные системы без ограничения на очередь

Два станка используются для обработки некоторых деталей. Интервалы между деталями, поступающими на обработку, составляют 15 минут. Время обработки детали на станке — 8 минут. Затраты, связанные с работой станка, составляют 18 денежных единиц в час, когда станок работает (т.е. обрабатывает детали), и 5 денежных единиц в час — когда станок простаивает. Прочие затраты на обработку одной детали составляет 3 денежных единиц. Детали продаются по цене 15 денежных единиц.

- а) Вычислить характеристики системы.
- б) Вычислить следующие вероятности состояний:
 - вероятность наличия в системе ровно двух деталей;
 - вероятность наличия в системе ровно пяти деталей;

- вероятность того, что поступившая деталь будет сразу же (без ожидания в очереди) принята на обработку;
- вероятность наличия в системе не более трех деталей;
- вероятность наличия в системе более чем трех деталей, ожидающих обработки.

в) Найти:

- достаточно ли одного станка для обработки деталей;
- сможет ли система с двумя станками обслуживать детали, если в нее будет поступать дополнительный поток деталей со средним интервалом между деталями 7 минут.
- г) Вычислить прибыль за 8 часов работы.

2.3 Системы с приоритетами

В некоторой система массового обслуживания обрабатываются заявки двух типов (A и B). Интервалы между моментами поступления заявок — экспоненциальные случайные величины со средним значением 10(A) и 20(B) минут. Время обработки заявок — 3 ± 1 минута (A) и экспоненциальная случайная величина со средним значением 4 минуты (B).

Вычислить характеристики системы для трех дисциплин обслуживания: а) без приоритетов; б) с относительными приоритетами; в) с абсолютными приоритетами. Для дисциплин обслуживания с приоритетами более высокий приоритет имеют заявки с меньшим ожидаемым временем обслуживания.

Проанализировать полученные характеристики и выбрать дисциплину обслуживания, обеспечивающую кратчайшее среднее время пребывания заявки в СМО.

3. Ход работы

3.1 Одноканальные системы

3.1.1 Вычисление характеристик станка

Так как известно, что распределение времени между заявками является равномерным, а распределение времени обслуживания — экспоненциальным, то можем найти коэффициенты вариации:

$$v = \frac{b-a}{(a+b)\sqrt{3}} = \frac{\sqrt{3}}{15}$$

$$\varepsilon = 1$$

Так как интервалы между деталями, поступающими на обработку, составляют 10...15 минут, то среднее время поступления заявки в систему – 12,5 минут, таким образом, интенсивность потока:

$$\lambda = \frac{1}{t} = \frac{1}{12.5} = 0.08 \text{ MuH}^{-1}$$

Интенсивность обслуживания заявок:

$$\mu = \frac{1}{\bar{x}} = \frac{1}{12} \text{ MuH}^{-1}$$

Нагрузка на СМО:

$$\rho = \frac{\lambda}{\mu} = \frac{12}{12.5} = 0.96$$

Так как коэффициент $P_{\text{отк}}=0$ (данная СМО не имеет ограничений на очередь), то коэффициент загрузки равен нагрузке и равен среднему числу заявок на обслуживании $\bar{S}=U=\rho=0.96$, а пропускная способность равна интенсивности потока $\gamma=\lambda=0.08$.

Вероятность простоя:

$$P_0 = 1 - \rho = 0.04$$

Средняя длина очереди:

$$\bar{q} = \frac{\rho^2(\nu^2 + \varepsilon^2)}{2(1-\rho)} = 11,6736$$

Среднее число заявок в СМО:

$$\bar{k} = \bar{q} + \bar{S} = 12,6336$$

Среднее время пребывания заявки в очереди:

$$\overline{w} = \frac{\overline{q}}{\gamma} = 145,92$$
 мин

Среднее время пребывание заявки в СМО:

$$ar{t}=ar{w}+ar{x}=157$$
,92 мин

3.1.2 Вычисление прибыли от работы станка за 8 часов

Выручка от обслуживания заявок в СМО в течение 8 часов (480 минут):

$$V = \gamma \cdot C \cdot T = 0.08 \cdot 15 \cdot 480 = 576$$
 д. е.

Затраты, связанные с обслуживанием заявок:

$$Z_{
m oбc\pi} = \ \gamma \cdot C_{
m oбc\pi} \cdot T = 0$$
,08 · 3 · 480 = 115,2 д.е.

Затраты, связанные с эксплуатацией СМО:

$$Z_{\text{эксп}} = (\overline{S} \cdot C_{\text{раб}} + (1 - \overline{S}) \cdot C_{\text{пр}})T = (0.96 \cdot 18 + 0.04 \cdot 5)8 = 139.84$$
 д. е.

Таким образом, прибыль от работы станка равна разности выручки от продажи деталей и затрат: 576 - 115, 2 - 139, 84 = 320, 96 денежных единиц.

3.1.3 Вычисление вероятностей

Вероятность наличия в системе ровно двух деталей:

$$P_2 = \rho^2 (1 - \rho) \approx 0.036$$

Вероятность того, что количество деталей, ожидающих обработки, составит более трех:

$$P_{j>3} = 1 - \sum_{j=0}^{3} P_j \approx 0.889$$

Вероятность того, что количество деталей, ожидающих обработки, составит не более четырех:

$$P_{j \le 3} = \sum_{i=0}^{4} P_j \approx 0.145$$

Вероятность того, что в системе не будет ни одной детали, ожидающей обработки равна вероятности простоя:

$$P_0 = 0.04$$

3.2 Многоканальные системы без ограничения на очередь

3.2.1 Вычисление характеристик системы

Так как известно, что распределение времени между заявками и распределение времени обслуживания являются экспоненциальными, то коэффициенты вариации:

$$\nu = 1$$
 $\varepsilon = 1$

Интенсивность потока заявок:

$$\lambda = \frac{1}{t} = \frac{1}{15} \text{ MuH}^{-1}$$

Интенсивность обслуживания заявок:

$$\mu = \frac{1}{\bar{x}} = \frac{1}{8} = 0,125 \text{ мин}^{-1}$$

Нагрузка на СМО:

$$\rho = \frac{\lambda}{m\mu} = \frac{4}{15}$$

Так как коэффициент $P_{\text{отк}}=0$ (данная СМО не имеет ограничений на очередь), то коэффициент загрузки равен нагрузке и равен среднему числу заявок на обслуживании $\overline{S}=U=\rho=4/15$, а пропускная способность равна интенсивности потока $\gamma=\lambda=1/15$.

Вероятность простоя:

$$P_{0} = \left(\sum_{i=0}^{m-1} \frac{(m\rho)^{i}}{i!} + \frac{(m\rho)^{m}}{m! (1-\rho)}\right)^{-1} = \left(1 + \frac{2 \cdot \frac{4}{15}}{1} + \frac{\left(2 \cdot \frac{4}{15}\right)^{2}}{(1+2)\left(1 - \frac{4}{15}\right)}\right) \approx 0,601$$

Средняя длина очереди:

$$\bar{q} = \frac{\rho(m\rho)^m}{m! (1-\rho)^2} = \frac{\frac{4}{15} (\frac{8}{15})^2}{3(\frac{11}{15})^2} = \frac{4 \cdot 64}{3 \cdot 121 \cdot 15} \approx 0,047$$

Среднее число заявок в СМО:

$$\bar{k} = \bar{q} + \bar{S} \approx 0.314$$

Среднее время пребывания заявки в очереди:

$$\overline{w} = \frac{\overline{q}}{\gamma} \approx 0,705 \text{ мин}$$

Среднее время пребывание заявки в СМО:

$$\bar{t} = \bar{w} + \bar{x} \approx 8,705$$
 мин

3.2.2 Вычисление вероятностей

Вероятность наличия в системе ровно двух деталей:

$$P_2 = \frac{(m\rho)^2}{2!} P_0 \approx 0.057$$

Вероятность наличия в системе ровно пяти деталей:

$$P_5 = \frac{(m\rho)^5}{m^{5-m} \cdot m!} P_0 \approx 0.0011$$

Вероятность того, что поступившая деталь будет сразу же (без ожидания в очереди) принята на обработку, то есть в системе на этот момент будет 1 или 0 деталей:

$$P_{j \le 1} = \sum_{i=0}^{1} P_{j} \approx 0.922$$

Вероятность наличия в системе не более трех деталей:

$$P_{j \le 3} = \sum_{j=0}^{3} P_j \approx 0.994$$

Вероятность наличия в системе более чем трех деталей, ожидающих обработки:

$$P_{j>3} = 1 - \sum_{j=0}^{3} P_j \approx 0,006$$

3.2.3 Анализ СМО

Чтобы определить, достаточно ли одного станка для обработки деталей, нужно вычислить нагрузку на СМО, приняв количество каналов (m) за 1:

$$\rho = \frac{\lambda}{\mu} = \frac{8}{15}$$

Так как полученная нагрузка меньше единицы, следовательно одного станка будет достаточно для обработки.

Чтобы определить, сможет ли система с двумя станками обслуживать детали, если в нее будет поступать дополнительный поток деталей со средним интервалом между деталями 7 минут, необходимо найти нагрузку на СМО с учетом второго потока деталей.

Найдём интенсивность обоих потоков деталей:

$$\lambda_1 = \frac{1}{t_1} = \frac{1}{15} \text{ мин}^{-1}$$
 $\lambda_2 = \frac{1}{t_2} = \frac{1}{7} \text{ мин}^{-1}$

Интенсивность потоков всех деталей:

$$\lambda = \lambda_1 + \lambda_2 = \frac{22}{105}$$

Нагрузка на СМО:

$$\rho = \frac{\lambda}{m\mu} = \frac{88}{105}$$

Так как полученная нагрузка меньше единицы, следовательно система с двумя станками может справиться с двумя потоками.

3.2.4 Вычисление прибыли от работы станка за 8 часов

Выручка от обслуживания заявок в СМО в течение 8 часов (480 минут):

$$V = \gamma \cdot C \cdot T = 480$$
 д.е.

Затраты, связанные с обслуживанием заявок:

$$Z_{\text{обсл}} = \gamma \cdot C_{\text{обсл}} \cdot T = 96$$
 д. е.

Затраты, связанные с эксплуатацией СМО:

$$Z_{\scriptscriptstyle \mathsf{ЭКСП}} = \left(\overline{\mathsf{S}} \cdot C_{\mathsf{pa6}} + (1 - \overline{\mathsf{S}}) \cdot C_{\mathsf{пр}}\right) T \approx 67,73 \, \mathsf{д.\,e.}$$

Таким образом, прибыль от работы станка равна разности выручки от продажи деталей и затрат: 576 - 115,2 - 139,84 = 320,96 денежных единиц.

3.3 Системы с приоритетом

3.3.1 Вычисление общих характеристик

Интенсивность потока заявок:

$$\lambda_{A} = \frac{1}{t_{A}} = 0,1 \text{ мин}^{-1}$$
 $\lambda_{B} = \frac{1}{t_{B}} = 0,05 \text{ мин}^{-1}$
 $\lambda_{A} = \lambda_{A} + \lambda_{B} = 0,15 \text{ мин}^{-1}$

Найдём доли для каждого потока:

$$P_{\rm A} = \frac{\lambda_{\rm A}}{\lambda} \approx 0.67$$

 $P_{\rm B} = \frac{\lambda_{\rm B}}{\lambda} \approx 0.33$

Так как время поступления заявок — случайные экспоненциальные величины, то коэффициент вариации времени поступления $\nu=1$.

3.3.2 Вычисление характеристик СМО без приоритетов

Среднее время обслуживания:

$$\bar{x} = \bar{x}_A P_A + \bar{x}_B P_B = 3.33$$

Интенсивность обслуживания:

$$\mu=rac{1}{ar{x}}pprox 0$$
,3 мин $^{-1}$

Найдём дисперсию времени обслуживания:

$$D_{\rm A} = \frac{(b-a)^2}{12} \approx 0.33$$
$$D_{\rm B} = \bar{x}_{\rm B}^2 = 16$$

Найдём коэффициент вариации времени обслуживания:

$$\alpha_{A} = D_{A} + \bar{x}_{A}^{2} = 9,33$$

$$\alpha_{B} = D_{B} + \bar{x}_{B}^{2} = 32$$

$$\alpha = P_{A} \alpha_{A} + P_{B} \alpha_{B} \approx 16,81$$

$$D = \alpha - \bar{x}^{2} \approx 5,72$$

$$\varepsilon = \frac{\sqrt{D}}{\bar{x}} \approx 0,72$$

Нагрузка на СМО:

$$\rho = \frac{\lambda}{\mu} = 0.5$$

Так как коэффициент $P_{\text{отк}} = 0$ (данная СМО не имеет ограничений на очередь), то коэффициент загрузки равен нагрузке и равен среднему числу заявок на обслуживании $\bar{S} = U = \rho = 0.5$, а пропускная способность равна

интенсивности потока $\gamma = \lambda = 0.15$.

Вероятность простоя:

$$P_0 = 1 - \rho = 0.5$$

Средняя длина очереди:

$$\bar{q} = \frac{\rho^2(\nu^2 + \varepsilon^2)}{2(1-\rho)} \approx 0.38$$

Среднее число заявок в СМО:

$$\bar{k} = \bar{q} + \bar{S} = 0.88$$

Среднее время пребывания заявки в очереди:

$$\overline{w} = \frac{\overline{q}}{\gamma} \approx 2,53$$
 мин

Среднее время пребывание заявки в СМО:

$$\bar{t} = \bar{w} + \bar{x} = 5.86$$
 мин

3.3.3 Вычисление характеристик СМО с относительными приоритетами

Найдём интенсивность обслуживания заявок с разным уровнем приоритета:

$$\mu_1 = \frac{1}{\bar{x}_1} \approx 0,33 \text{ мин}^{-1}$$
 $\mu_2 = \frac{1}{\bar{x}_2} = 0,25 \text{ мин}^{-1}$

Нагрузка на СМО:

$$\rho_{1} = \frac{\lambda_{1}}{\mu_{1}} = 0.3$$

$$\rho_{2} = \frac{\lambda_{2}}{\mu_{2}} = 0.2$$

$$\rho = \rho_{A} + \rho_{B} = 0.5$$

Так как коэффициент $P_{\text{отк}} = 0$ (данная СМО не имеет ограничений на очередь), то коэффициент загрузки равен нагрузке и равен среднему числу заявок на обслуживании $\overline{S}_i = U_i = \rho_i$, а пропускная способность равна интенсивности потока $\gamma_i = \lambda_i$.

Вероятность простоя:

$$P_0 = 1 - \rho = 0.5$$

Коэффициенты вариации времени обслуживания:

$$\varepsilon_1 = \frac{b - a}{(a + b)\sqrt{3}} = 0,19$$

$$\varepsilon_2 = 1$$

Среднее время пребывания в очереди для заявок с различным уровнем приоритета:

$$\overline{w}_1 = \frac{\sum_{j=1}^2 \rho_j \overline{x}_j (1 + \varepsilon_j^2)}{2(1 - \rho_1)} \approx 1.81$$

$$\overline{w}_2 = \frac{\sum_{j=1}^2 \rho_j \overline{x}_j (1 + \varepsilon_j^2)}{2(1 - \sum_{j=1}^1 \rho_j)(1 - \sum_{j=1}^2 \rho_j)} \approx 3.62$$

Среднее время пребывания в очереди:

$$\overline{w} = P_1 \overline{w}_1 + P_2 \overline{w}_2 \approx 2,41$$

Среднее время пребывание заявки в СМО:

$$ar{t}_1=ar{w}_1+ar{x}_1=4,\!81$$
 мин $ar{t}_2=ar{w}_2+ar{x}_2=7,\!62$ мин $ar{t}=P_1ar{t}_1+P_2ar{t}_2pprox5,\!74$ мин

Среднее число заявок в СМО:

$$\bar{k}_1 = \lambda_1 \bar{t}_1 \approx 0.48$$

$$\bar{k}_2 = \lambda_2 \bar{t}_2 \approx 0.38$$

$$\bar{k} = \bar{k}_1 + \bar{k}_2 \approx 0.86$$

Среднее число заявок в очереди:

$$\bar{q}_1 = \bar{k}_1 - \bar{S}_1 = 0.18$$
 $\bar{q}_2 = \bar{k}_2 - \bar{S}_2 = 0.18$
 $\bar{q} = \bar{q}_1 + \bar{q}_2 = 0.36$

3.3.4 Вычисление характеристик СМО с абсолютными приоритетами

Вычисление начнём с вычисления времени пребывания заявок в очереди, все необходимые значения уже рассчитаны в пунктах 3.3.1 и 3.3.4.

$$\overline{w}_{1} = \frac{\rho_{1}\overline{x}_{1}(1 + \varepsilon_{1}^{2})}{2(1 - \rho_{1})} \approx 0,77$$

$$\overline{w}_{2} = \frac{\overline{x}_{2}\sum_{j=1}^{1}\rho_{j}}{1 - \sum_{j=1}^{1}\rho_{j}} + \frac{\sum_{j=1}^{2}\rho_{j}\overline{x}_{j}(1 + \varepsilon_{j}^{2})}{2(1 - \sum_{j=1}^{1}\rho_{j})(1 - \sum_{j=1}^{2}\rho_{j})} \approx 5,33$$

Среднее время пребывания в очереди:

$$\bar{w} = P_1 \bar{w}_1 + P_2 \bar{w}_2 \approx 2.27$$

Среднее время пребывание заявки в СМО:

$$ar{t}_1=ar{w}_1+ar{x}_1=3,77$$
 мин $ar{t}_2=ar{w}_2+ar{x}_2=9,33$ мин $ar{t}=P_1ar{t}_1+P_2ar{t}_2pprox5,60$ мин

Среднее число заявок в СМО:

$$\begin{aligned} \bar{k}_1 &= \lambda_1 \bar{t}_1 \approx 0.38 \\ \bar{k}_2 &= \lambda_2 \bar{t}_2 \approx 0.47 \\ \bar{k} &= \bar{k}_1 + \bar{k}_2 \approx 0.85 \end{aligned}$$

Среднее число заявок в очереди:

$$\bar{q}_1 = \bar{k}_1 - \bar{S}_1 = 0.08$$
 $\bar{q}_2 = \bar{k}_2 - \bar{S}_2 = 0.27$
 $\bar{q} = \bar{q}_1 + \bar{q}_2 = 0.35$

3.3.4 Анализ результатов

Дисциплина обслуживания	FIFO	С относительными			С абсолютными		
		приоритетами			приоритетами		
Тип сигнала	Bce	A	B	Bce	\boldsymbol{A}	В	Bce
ρ	0,5	0,3	0,2	0,5	0,3	0,2	0,5
\overline{w} , мин	2,53	1,81	3,62	2,41	0,77	5,33	2,27
$ar{t}$, мин	5,86	4,81	7,62	5,74	3,77	9,33	5,60
\bar{k} , сигналов	0,88	0,48	0,38	0,86	0,38	0,47	0,85
\overline{S} , сигналов	0,5	0,3	0,2	0,5	0,3	0,2	0,5
\overline{q} , сигналов	0,38	0,18	0,18	0,36	0,08	0,27	0,35
γ, сигналов/мин	0,15	0,1	0,05	0,15	0,1	0,05	0,15
P_0	0,5	_	_	0,5		_	0,5
U	0,5	0,3	0,2	0,5	0,3	0,2	0,5

Из полученных результатов видно, что среднее время пребывания заявки в СМО для дисциплины без приоритетов составляет 5,86 мин, для обслуживания с относительными приоритетами — 5,74 мин, а с абсолютными приоритетами — 5,6 мин. Таким образом для того, чтобы среднее время обработки сигналов было минимальным, следует использовать дисциплину обслуживания с абсолютными приоритетами.

Вывод

В ходе выполнения лабораторной работы был получен опыт расчёта характеристик для различных СМО, расчёта прибыли и сравнения различных дисциплин обслуживания.