Homework Assignment #2

Assigned: 30/10/2020 **Due**: 06/11/2020, 23:55

Notes:

- Submit your homework on SUCourse+. You can write on paper, take a picture and upload it on SUCourse+.
- Show your solutions clearly.
- 1. Assume that you are using 4 digit 2's complement binary system. Do the following arithmetic operations and detect overflows. (12 pts)

	0011	0101	0111	0011
	+ 0100	+ 1110	- 1111	- 1111
Result				
Overflow?				

2. Perform the following operations on two signed decimal numbers by representing them as 8-bit signed numbers in 2's-complement format and performing binary addition/subtraction. Show all the intermediate steps and indicate whether there is an overflow or not. (14 pt)

-106 → + +81 →		+95 → -53 →	
+ +81 →	+	 -53 →	+
		 •	

- 3. For the Boolean function F(x,y,z) = x'y + xy'z + z',
 - a. Generate the truth table. (15 pts)
 - b. Draw the circuit implementing Boolean function F(x,y,z). (15 pts)
- 4. Use DeMorgan's Theorem to simplify the Boolean function F(x, y, z) = ((x + yz)' + (xy')')'. (14 pts)
- 5. Implement the Boolean function F(x, y, z, t) = xy + zt + x'y't' using only two-input NOR gates. (15 pts)
- 6. Implement the Boolean function $F(x, y, z, t) = (x \oplus y') (z' \oplus t')$ using only two-input NAND gates. (15 pts)

Fall 2020 1