Introducción a los Sistemas Operativos

Anexo I Arquitectura de Entrada/Salida

1.5.0.

✓ Versión: Octubre 2017

✓ Palabras Claves: Dispositivos de IO, Hardware de IO, IO programada, Polling, Interrupciones, DMA

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Variedad en los dispositivos de I/O

- ☑Legible para el usuario
 - ✓ Usados para comunicarse con el usuario
 - Impresoras, Terminales: Pantalla, Teclado, Mouse
- Legible para la máquina
 - ✓ Utilizados para comunicarse con los componentes electrónicos
 - Discos, Cintas, Sensores, etc.
- **✓** Comunicación
 - ✓ Usados para comunicarse con dispositivos remotos
 - Líneas Digitales, Modems, Interfaces de red, etc.

Problemas que surgen

- Amplia Variedad
 - ✓ Manejan diferentes cantidad de datos
 - ✓ En Velocidades Diferentes
 - ✓ En Formatos Diferentes
- La gran mayoría de los dispositivos de E/S son más lentos que la CPU y la RAM

Hardware y software involucrado

- **☑** Buses
- Controladores
- Dispositivos
- ✓ Puertos de E/S Registros
- ✓ Drivers
- ☑Comunicación con controlador del dispositivo: I/O Programada, Interrupciones, DMA

Estructura de Bus de una PC

Comunicación: CPU - Controladora

- ☑¿Cómo puede la CPU ejecutar comandos o enviar/recibir datos de una controladora de un dispositivo?
 - ✓ La controladora tiene uno o mas registros:
 - Registros para señales de control
 - Registros para datos
- ✓ La CPU se comunica con la controladora escribiendo y leyendo en dichos registros

Comandos de I/O

- ✓ CPU emite direcciones
 - ✓ Para identificar el dispositivo
- ☑ CPU emite comandos
 - ✓ Control Que hacer?
 - Ej. Girar el disco
 - ✓ Test Controlar el estado
 - Ej. power? Error?
 - ✓ Read/Write
 - Transferir información desde/hacia el dispositivo

Mapeo de E/S y E/S aislada

- ☑ Correspondencia en memoria (Memory mapped I/O)
 - ✓ Dispositivos y memoria comparten el espacio de direcciones.
 - ✓ I/O es como escribir/leer en la memoria.
 - ✓ No hay instrucciones especiales para I/O
 - Ya se dispone de muchas instrucciones para la memoria
- ☑ Isolated I/O (Aislada, uso de Puertos de E/S)
 - ✓ Espacio separado de direcciones
 - ✓ Se necesitan líneas de I/O. Puertos de E/S
 - ✓ Instrucciones especiales
 - Conjunto Limitado

Memory Mapped and Isolated I/O

ADDRESS	INSTRUCTION	OPERAND	COMMENT										
200	Load AC Store AC	517	Load accumulator Initiate keyboard rea	d		7 6	5	4	3	2	1	0	1
202	Load AC	517	Get status byte	516									Keyboard input data register
	Branch if Sign = 0 Load AC) 202 516	Loop until ready Load data byte										
					_	7 6	5	4	3	2	1	0	1 Karbaratian data
	(a) Men	nory-mapped I/O		517									Keyboard input status and control register
	, , ,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•		= re					Ĺ	— Set to 1 to
						0	= bu	ısy					start read

ADDRESS 200 201	INSTRUCTION Load I/O Test I/O Branch Not Ready	OPERAND 5 5 201	COMMENT Initiate keyboard read Check for completion Loop until complete						
	In	5	Load data byte						
(b) Isolated I/O									

Técnicas de I/O - Programada

- ☑ CPU tiene control directo sobre la I/O
 - ✓ Controla el estado
 - Comandos para leer y escribir
 - ✓ Transfiere los datos
- ☑ CPU espera que el componente de I/O complete la operación
- ☑ Se desperdician ciclos de CPU

Polling

- ☑En la I/O Programada, es necesario hacer polling del dispositivo para determinar el estado del mismo
 - ✓ Listo para recibir comandos
 - ✓ Ocupado
 - ✓ Error
- ☑Ciclo de "Busy-wait" para realizar la I/O
- ☑ Puede ser muy costoso si la espera es muy larga

Técnicas de I/O - Manejada por Interrupciones

- ☑ Soluciona el problema de la espera de la CPU
- ☑ La CPU no repite el chequeo sobre el dispositivo
- ☑ El procesador continúa la ejecución de instrucciones
- ☑El componente de I/O envía una interrupción cuando termina

Técnicas de I/O - DMA

DMA (Direct Memory Access)

- ■Un componente de DMA controla el intercambio de datos entre la memoria principal y el dispositivo
- ☑ El procesador es interrumpido luego de que el bloque entero fue transferido.

Pasos para una transferencia DMA

