CS – Machine Learning

Muhammad Hamza Lecturer, GDC KTS Haripur

Overview

- Artificial Intelligence
- Machine Learning
- Deep Learning

AI vs ML vs DL

AI vs ML vs DL

Al Artificial Intelligence

- Reactive Machines
- Limited Memory
- Theory of Mind
- · Self-awareness

Machine Learning

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

DL Deep Learning

- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Generative Adversarial Network (GAN)
- Deep Belif Network (DBN)

Machine Learning

• Machine Learning is a subset of artificial intelligence that focuses on the development of algorithms and statistical models that enable computer systems to improve their performance on a specific task through experience, without being explicitly programmed.

Traditional Programming vs Machine Learning

- Probably the most common problem type in machine learning
- Example : Predicting House Price

Applications of Machine Learning

- Personalized recommendations in e-commerce and streaming services
- Autonomous vehicles and self-driving cars
- Medical diagnosis and disease prediction
- Stock market prediction
- Spam email detection
- And many more

Types of Machine Learning

Types of Machine Learning

1. Supervised Learning

Definition:

Involves training a model on a labeled dataset, meaning that each training example is paired with an output label.

Applications: Classification, regression.

Examples: Linear regression, logistic regression, support vector machines, neural networks, k-nearest neighbors.

Types of Supervised Learning

2. Unsupervised Learning

Definition:

Involves training a model on data without labeled responses, aiming to find hidden patterns or intrinsic structures in the input data.

Applications: Clustering, dimensionality reduction, Anomaly detection, Association

Examples: K-means clustering, hierarchical clustering, principal component analysis (PCA), t-SNE.

2. Unsupervised Learning Example

Unsupervised Machine Learning

3. Reinforcement Learning

Definition:

Involves training an agent to make sequences of decisions by rewarding desired behaviors and/or punishing undesired ones. The agent learns to achieve a goal in an uncertain, potentially complex environment.

Applications: Game playing, robotic control, recommendation systems.

Examples: Q-learning, deep Q networks (DQNs), policy gradient methods.

