COMPLEX NETWORKS

LAB01: Structural descriptors of complex networks

a) Numerical Descriptors

For this part of the Laboratory, the NetworkX Python library has been used, as it's quite easy to compute the main structural descriptors.

The software Gephi has been also used to visually see the shape of some of the networks and check some of the results computed via NetworkX.

In the following tables, the descriptors for the Networks are shown:

TOY CATEGORY

Descriptors	circle9	star	graph3+1+3	grid-p-6x6
Number of nodes	9	9	7	36
Number of edges	9	8	8	72
Minimum degree	2	1	2	4
Maximum degree	2	8	3	4
Average degree	2.0	1.7777	2.285714285 7142856	4.0
Average clustering coefficient	0,0	0.0	0.66666666 6666667	0.0
Assortativity	nan	-1.0	-0.6	nan
Average path length	2.5	1.7777	2.190476190 4761907	3.085714285 714286
Diameter	4	2	4	6

MODEL CATEGORY

Descriptors	homoran d_N1000_ K4_0	ER1000k8	SF_1000_g2. 7	ws1000
Number of nodes	1000	1000	1000	1000
Number of edges	2000	3956	1668	3000
Minimum degree	4	1	3	3
Maximum degree	4	17	24	13
Average degree	4.0	7.912	3.336	6.0
Average clustering coefficient	0.002	0.00804211 017740429	0.006650454 3070635405	0.004364840 714840713
Assortativity	nan	-0.01683326 7357878608	-0.001960898 9554759882	-0.09992885 591125493
Average path length	5.64	3.56977777 7777778	5.468826826 8268265	4.091303303 303303
Diameter	9	6	12	6

REAL CATEGORY

Descriptors	zachary_unwh	airports_UW
Number of nodes	34	3618
Number of edges	78	14142
Minimum degree	1	1
Maximum degree	17	250
Average degree	4.5882352941 17647	7.81757877280 2653
Average clustering coefficient	0.5706384782 076823	0.49574893123 49583
Assortativity	-0.4756130976 8461457	0.04622413053 190781
Average path length	2.4081996434 93761	4.43959464191 0406
Diameter	5	17

b) <u>Plot the degree distributions (PDF, probability distribution function) and the complementary cumulative degree distributions (CCDF, complementary cumulative distribution function) for the following networks:</u>

For this part of the Laboratory, the matplotlib.pyplot Python library has been used to create the plots.

The **log-scale plots** are presented in the cases where the linear-scale presents a power-law tail, which are the cases for *SF_1000_g2.7* and *airports_UW* networks.

- For the **PDF** plot, on the left, in the x axis, the widths of the bins are constant on a logarithmic scale, where the bins of the range of logs for the different k degrees of the network are shown. The y axis shows the estimation of vertices having degree k, in log scale.
- For the **CCDF** plot, on the right, the x axis shows the bins of the range of logs for the different k degrees of the network, as the y axis shows the accumulation of the estimations for the probabilities for each log-scale bin.

For the other two cases, *ER1000k8* and *ws1000*, the **linear-scale plots** are presented.

- For the **PDF** plot, on the left, the x axis shows the different k degrees of the network, as the y axis shows the estimation of vertices having degree k.
- For the **CCDF** plot, on the right, the x axis shows the different k degrees of the network, as the y axis shows the accumulation of the estimation of vertices having degree k.

Below, the **PDF** and **CCDF** plots are shown, where the number of bins for the log-scale is 20 as it showed most defined plots than for 10 bins.

MODEL CATEGORY

ER1000k8 network → Linear-scale

$\textbf{SF_1000_g2.7 network} \rightarrow \textbf{Log-scale}$

ws1000 network → Linear-scale

REAL CATEGORY: airports_UW network → Log-scale

