Mini-Project 2: Rush Hour

Presented by Artificial Unintelligence

UCS

- Always gives lowest cost solution
- Longest Search Path Length of all
- Longest Execution Time of all

Table 1: Puzzle 2 results across all algorithms from input file

Algorithm	Heuristic	Length of Solution	Length of Search Path	Execution Time
ucs	NA	10	1836	15.90579
GBFS	h1	10	113	0.864389
GBFS	h2	10	113	0.790474
GBFS	h3	10	113	0.787652
GBFS	h4	15	174	1.230057
A / A*	h1	10	297	2.672071
A / A*	h2	10	297	2.823723
A / A*	h3	10	150	1.103575
A / A*	h4	13	148	0.867771

- If need of lowest cost solution -> good
- If need of a quick solution -> bad

GBFS

- Rarely gives lowest cost solution
- Much shorter search path length
- Much shorter execution time

Table 1: Puzzle 2 results across all algorithms from input file

Algorithm	Heuristic	Length of Solution	Length of Search Path	Execution Time
ucs	NA	10	1836	15.90579
GBFS	h1	10	113	0.864389
GBFS	h2	10	113	0.790474
GBFS	h3	10	113	0.787652
GBFS	h4	15	174	1.230057
A / A*	h1	10	297	2.672071
A / A*	h2	10	297	2.823723
A / A*	h3	10	150	1.103575
A / A*	h4	13	148	0.867771

- Good for easy puzzles but less good for longer puzzles as will give longer solution length than optimal

A/A*

- Here we only did A as it asked us A or A*
- Usually results in lowest cost solution (not always)
- Search path length much shorter than UCS
- Execution time much quicker than UCS

Table 1: Puzzle 2 results across all algorithms from input file

	Table 1. Fuzzle z results across all algorithms from input lile				
Algorithm	Heuristic	Length of Solution	Length of Search Path	Execution Time	
ucs	NA	10	1836	15.90579	
GBFS	h1	10	113	0.864389	
GBFS	h2	10	113	0.790474	
GBFS	h3	10	113	0.787652	
GBFS	h4	15	174	1.230057	
A / A*	h1	10	297	2.672071	
A / A*	h2	10	297	2.823723	
A / A*	h3	10	150	1.103575	
A / A*	h4	13	148	0.867771	

h1

- h1(n) = number of blocked cars
- Logical heuristic since we want to move cars in front of A
- Doesn't accurately estimate the number of moves to completion
- Gave good results compared to other heuristics

h2

- Exactly the same as h1 in almost all cases.
- If vertical car in front of A ->
 number of blocked positions =
 number of blocked cars
- Only time it is different is if there is a horizontal car in front of A which is rare
- In that case h2 had a slightly better performance than h1

h3

- GBFS → same output as h1 since it only considers h(n) and every h(n) is being multiplied with a constant value. Since all of the will have same denominator, it will act as h1 exactly.
- A → usually it is gives worst effects then h1 and h2. Since algorithm A considers both g(n) and h(n) then the constant number is having effect and worsening the length of the solution. Different constant values will have different effects.

h4

```
Puzzle #2
Puzzle in table format:
. . I . . .
B B I . K .
G H A A K L
G H D D K L
G . . J E E
F F . J . .
```

h4(n) = 7 in examples

h4(n) = all blocked positions to the right of A

Resulted in a faster algorithm (because A always wanted to move to the right)

However, no optimal moves since A was moving more than it had too.

Concluding on the Algorithms and Heuristics

Algorithm	Heuristic	Length of the Solution	Length of the Search Path	Execution Time (seconds)
UCS	NA	22.68	2492.00	56.13
GBFS	H1	26.66	1199.89	26.84
GBFS	H2	26.66	1199.89	24.61
GBFS	Н3	26.66	1199.89	25.57
GBFS	H4	31.28	1105.74	25.52
A/A*	H1	22.81	1768.06	32.07
A/A*	H2	22.81	1768.04	30.59
A/A*	Н3	23.81	1412.00	22.98
A/A*	H4	25.53	1407.60	24.76

Lowest cost solution -> UCS

Lowest search path length and execution time -> GBFS

Combination of both -> A

Lowest cost solution and quicker time -> A* (known from theory)

Interesting Facts

- No possible best algorithm, depends on requirements, what you want from algorithm

- Other ideas for h4

- A* implementation

```
Puzzle #2
Puzzle in table format:
. . I . . .
B B I . K .
G H A A K L
G H D D K L
G . . J E E
F F . J . .
```

Thank you!

Questions?