Binomial Heaps

Abstract Data Types

Abstract Data Types	Insert	Min	Extract_Min	Union
Mergeable Priority Queues				

Data Structures

Abstract Data Types	Data Structures	Insert	Min	Extract_Min	Union
Mergeable Priority Queues	Min Binomial Heap	Θ(log n)	Θ(log n)	Θ(log n)	Θ(log n)

Binomial Trees

B_k tree: defined recursively

$$k = 0$$
 B_0 :

$$k > = 1$$
 B_k :
$$B_{k-1}$$

Binomial Tree B_k

Binomial Forest F_n of size n

Sequence of B_k trees with *strictly decreasing* k's and a total of n nodes.

Example: Binomial Forest F_7 of n = 7 nodes

$$n = 7 = < 1 \ 1 \ 1 >_2 = 2^2 + 2^1 + 2^0$$

Example: Binomial Forest F_9 of n = 9 nodes $n = 9 = \langle 1001 \rangle_2 = 2^3 + 2^0$

A Min Binomial Heap of n elements is a Binomial Forest F_n such that

1. Each node of F_n stores one element

2. Each B_k tree of F_n is Min-Heap ordered

Min Binomial Heap of size $n = 13 = < 1101 >_2$

Binomial Heap Operations

Must implement the following operations:

- Union(T, Q)
- Insert(T, x)
- Min(T)
- Extract_Min(T)

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key-comparison.

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key-comparison.

Proof: To merge

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key-comparison.

Proof: To merge, if x <= y

Lemma 1: Can merge two min heap-ordered B_k trees into a single min heap-ordered B_{k+1} tree with just one key-comparison.

Proof: To merge, if x <= y

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Proof: Deleting the root of min heap-ordered B_k tree.

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Proof: Deleting the root of min heap-ordered B_k tree.

Lemma 2: Deleting the root of a min heap-ordered B_k tree gives a min binomial heap.

Proof: Deleting the root of min heap-ordered B_k tree.

$$S \leftarrow Union(T, Q)$$

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

 B_2

1 1

1 1 1

 B_1

 B_0

Т

В

 B_0

 \mathbf{O}

T is a Binomial Heap of size $n = 3 = < 11>_2$

T is a Binomial Heap of size $n = 3 = < 11>_2$

	1			B_1		Carry
	1	1 +		B ₁	B_0	: T +
1	1	1	B ₂	B ₁	B ₀	: Q
		0			X	: S

T is a Binomial Heap of size $n = 3 = < 11>_2$

1	1		B ₂	B_1			Carr	y
	1	1 +		 B ₁	B_0		: T	+
 1	1	1	 B ₂	 B ₁	 B ₀	<u> </u>	: Q	
	1	0		B_1	X		: S	

T is a Binomial Heap of size $n = 3 = < 11>_2$

1	1	1		B_3	B_2	B_1		Carry
		1	1			B ₁	B ₀	: T +
	1	1	1		B ₂	B ₁	B ₀	: Q
1	0	1	0	B ₃	X	B_1	X	: S

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

1	1	1		B ₃	B_2	B_1		Carry
		1	1			B_1	B ₀	: T +
	1	1	1		B ₂	B ₁	B ₀	: Q
1	0	1	0	B_3	X	B_1	X	: S

How many new edges were added?

T is a Binomial Heap of size $n = 3 = < 11>_2$

Q is a Binomial Heap of size $n = 7 = < 1.1.1>_2$

1	1	1		B ₃	B ₂	B_1		Carry
		1	1			B ₁	B ₀	: T +
	1	1	1		B ₂	B ₁	B ₀	: Q
1	0	1	0	B ₃	X	B_1	X	: S

How many new edges were added?

: T

MERGE

Carry

 $\mathsf{X} \qquad : \; \mathsf{S}$

Carry

MERGE

 $\mathsf{X} \qquad : \; \mathsf{S}$

Worst-Case Complexity of Union(T, Q)

Say $|T| \le n$ and $|Q| \le n$ (i.e. each contains at most n elements)

Worst-Case Complexity of Union(T, Q)

Say $|T| \le n$ and $|Q| \le n$ (i.e. each contains at most n elements)

 \Rightarrow Each of T, Q have O(log n) B_k trees.

Worst-Case Complexity of Union(T, Q)

Say $|T| \le n$ and $|Q| \le n$ (i.e. each contains at most n elements)

- \Rightarrow Each of T, Q have O(log n) B_k trees.
- ⇒ Union(T, Q) takes at most O(log n) key-comparisons

 $S \leftarrow Union(T, \{x\})$

 $S \leftarrow Union(T, \{x\})$

Trivial Binomial
Heap containing
just x

S ←Union(T, {x})

Trivial Binomial Heap containing just x

If |T| <= n, Insert(T, x) takes at most O(log n) key-comparisons

Min(T)

Min(T)

Scan the roots of the B_k trees of T and return the smallest key.

Min(T)

Scan the roots of the B_k trees of T and return the smallest key.

If |T| <= n, Min(T) takes at most O(log n) key-comparisons

Binomial Heap $S = B_3 - \{1\}$

$$B_0$$

Binomial Heap $S = B_3 - \{1\}$

Binomial Heap $U = T - B_3$

Binomial Heap $S = B_3 - \{1\}$

Binomial Heap $U = T - B_3$

Now do: $T \leftarrow Union(U,S)$

• Do Min(T) to locate the smallest element – Say it is the root of B_i

$$U = T - B_i$$

Do Min(T) to locate the smallest element – Say it is the root of B_i
 U = T - B_i

• Delete root of B_i . By Lemma 2, we get a Binomial Heap S, where $S = B_i - (\text{root of } B_i)$

• Do Min(T) to locate the smallest element – Say it is the root of B_i $U = T - B_i$

• Delete root of B_i . By Lemma 2, we get a Binomial Heap S, where $S = B_i - (\text{root of } B_i)$

• T ← Union(U, S)

• Do Min(T) to locate the smallest element – Say it is the root of B_i $U = T - B_i$

• Delete root of B_i . By Lemma 2, we get a Binomial Heap S, where $S = B_i - (\text{root of } B_i)$

• T ← Union(U, S)

If |T| <= n, Extract_Min(T) takes at most O(log n) key-comparisons

• Given pointer to a node x in a Binomial Heap T, you can do:

• Given pointer to a node x in a Binomial Heap T, you can do:

Decrease_Key(T, x, k): Decrease the key at node x to k.

• Given pointer to a node x in a Binomial Heap T, you can do:

Decrease_Key(T, x, k): Decrease the key at node x to k.

Remove(T, x): Remove the key at node x.

• Given pointer to a node x in a Binomial Heap T, you can do:

Decrease_Key(T, x, k): Decrease the key at node x to k.

Remove(T, x): Remove the key at node x.

Both in O(log n) time

• Given pointer to a node x in a Binomial Heap T, you can do:

```
Decrease_Key(T, x, k): Decrease the key at node x to k.

Remove(T, x): Remove the key at node x.
```

How do you do Increase_Key(T, x, k)?

• T: Binomial Heap with n elements.

Cost of k successive inserts into T?

• T: Binomial Heap with n elements.

Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . . , Insert(T, x_k)
```

- T: Binomial Heap with n elements.
- Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . . , Insert(T, x_k)
```

```
O(log n)
```

- T: Binomial Heap with n elements.
- Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . , Insert(T, x_k)

O( log n ) O( log (n + 1) )
```

- T: Binomial Heap with n elements.
- Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . , Insert(T, x_k)

O( log n ) O( log (n + 1) ) . . . . . O( log (n + k) )
```

- T: Binomial Heap with n elements.
- Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . , Insert(T, x_k)

O( log n ) O( log (n + 1) ) . . . . . O( log (n + k) )
```

• Total: O(k log (n + k))

Cost of k successive inserts

- T: Binomial Heap with n elements.
- Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . , Insert(T, x_k)

O( log n ) O( log (n + 1) ) . . . . . O( log (n + k) )
```

- Total: O(k log (n + k))
- Is the cost of k successive inserts actually lower?

Cost of k successive inserts

- T: Binomial Heap with n elements.
- Cost of k successive inserts into T?

```
Insert(T, x_1), Insert(T, x_2), . . . , Insert(T, x_k)

O( log n ) O( log (n + 1) ) . . . . . O( log (n + k) )
```

- Total: O(k log (n + k))
- Is the cost of k successive inserts actually lower? Yes!

```
T 11011
+
x<sub>1</sub> 1
```


Example: Say
$$|T| = 27 = < 11011 >_2$$
 $T = < B_4 B_3 B_1 B_0 >$

• Total for 5 insertions: 2 + 0 + 1 + 0 + 5 = 8 key-comparisons (not 5 x 5).

- Total for 5 insertions: 2 + 0 + 1 + 0 + 5 = 8 key-comparisons (not 5 x 5).
- Initially: Thus $27 \alpha(27) = 27 4 = 23$ edges

- Total for 5 insertions: 2 + 0 + 1 + 0 + 5 = 8 key-comparisons (not 5 x 5).
- Initially: T has $27 \alpha(27) = 27 4 = 23$ edges
- After 5 insertions: T has $32 \alpha(32) = 32 1 = 31$ edges

- Total for 5 insertions: 2 + 0 + 1 + 0 + 5 = 8 key-comparisons (not 5 x 5).
- Initially: Thus $27 \alpha(27) = 27 4 = 23$ edges
- After 5 insertions: T has $32 \alpha(32) = 32 1 = 31$ edges
- The 5 insertions added: 31-23 = 8 new edges.

- Total for 5 insertions: 2 + 0 + 1 + 0 + 5 = 8 key-comparisons (not 5 x 5).
- Initially: T has $27 \alpha(27) = 27 4 = 23$ edges
- After 5 insertions: T has $32 \alpha(32) = 32 1 = 31$ edges
- The 5 insertions added: 31-23 = 8 new edges.
- 8 new edges = 8 key-comparisons

total cost is at most $O(k \log (n + k))$ key-comparisons

Claim: If $k > log_2 n$, total cost is at most

key-comparisons

Claim: If $k > log_2 n$, total cost is at most 2k key-comparisons

Claim: If $k > log_2 n$, total cost is at most 2k key-comparisons

Proof: Do A2 − Q4 ⓒ

Claim: If $k > log_2 n$, total cost is at most 2k key-comparisons

Proof: Do A2 − Q4 ⓒ

 \Rightarrow Average cost per insert is \leq 2 key-comparisons!