autoNomous, self-Learning, **OPTI**mal and compLete **U**nderwater **S**ystems **NOPTILUS**

FP7-ICT-2009.6: Information and Communication Technologies

Final Project Review

Situation Understanding (WP6)

E. Orfanoudakis, N. Kofinas, and M. G. Lagoudakis Telecommunication Systems Institute (TSI), Greece

June 30, 2015 Porto, Portugal

WP6 Reminder

WP6 Ojective

- recognize interesting events in streams of observations
- observations: (abstracted) sensor data
- events: patterns in observation streams

> Models

Probabilistic Context-Free Grammars (PCFGs)

>Task 6.1: Event Recognition

real-time, hierarchical parsing for on-line recognition

Task 6.2: Grammar Learning

off-line learning of PCFGs from past AUV mission logs

>Task 6.3: Integration

Outline

WP6 Update

- DUNE code (on-board) integration
- dedicated Git account
- experimentation

>WP6 Overview

- real-time, hierarchical parsing for on-line recognition
- off-line learning of PCFGs from past AUV mission logs

>WP6 Conclusion

- contribution
- considerations

WP6 Update (M43-M51)

recent developments

Integration: AUV+Dune+Parser

Thanks to Jose Braga for assistance!

WP6 Dedicated Git Account

https://github.com/noptilus-tsi-wp6

WP6 Git Repositories

WP6 Documentation

- supporting documentation for WP6
- deliverables, presentations, video, user manual

DUNE-parser

- a modified DUNE with original code for parser
- on-line, on-board event recognition
- main contributor: Emmanouil Orfanoudakis

PCFG-learner

- original code for off-line, off-board learning of PCFGs
- grammars for normal/abnormal event recognition
- main contributor: Nikolaos Kofinas

WP6 Experimentation

March-May 2015 Test Runs

- LSTS (hybrid) and APDL (real) experiments
- active parsers onboard the AUVs during a mission
- no reported CPU overload, glitches, crashes, ...

May 27, 2015 Demo Run

- open sea experiment with real AUVs
- two active parsers on noptilus-2 and noptilus-3

Demo Results: Annotated Depth

2015-05-27-apdl-demo/lauv-noptilus-3/143426

Demo Results: Annotated Pitch

2015-05-27-apdl-demo/lauv-noptilus-3/143426

Demo Results: Annotated Depth

2015-05-27-apdl-demo/lauv-noptilus-3/093556

Demo Results: Annotated Pitch

2015-05-27-apdl-demo/lauv-noptilus-3/093556

Demo Results: Annotated Depth

2015-05-27-apdl-demo/lauv-noptilus-2/140711

Demo Results: Annotated Pitch

2015-05-27-apdl-demo/lauv-noptilus-2/140711

WP6 Overview

on-line, on-board, real-time parsing for PCFG-based event recognition

15

PCFG-Based AUV Event Recognition

Probabilistic Context-Free Grammars

formal model for specifying syntax (complex patterns)

Benefits

- compact and hierarchical representation of sequences
- human-readable, self-explanatory production rules
- a variety of algorithms for parsing and learning
- applications in formal and natural language processing

Our Approach

- averaging and quantization of chosen data stream(s)
- efficient parsing over a rolling window using grammar(s)
- broadcast of recognized events through messaging
- abstract description, reduction of communication

AUV Mission Log

Diving Behavior Events

Objective

- event recognition regarding AUV diving behavior
- focus on joint patterns in depth and pitch streams

Hierarchical Grammar

- level 1: independent grammars for depth and pitch events
- level 2: grammar for the combination of level-1 outputs

Diving Behavior Event Recognition

WP6 Overview

off-line, off-board grammatical inference for learning PCFGs from AUV logs

Normal/Abnormal Events

>Learning

can we learn a grammar from past mission data?

Considerations

- likely interesting events are unusual and unexpected
- in most missions almost nothing abnormal occurs
- idea: instead of looking for the abnormal and rare, ...
- ... why not go after the normal and frequent?
- easier to model normal as opposed to abnormal

Normal Operation

typical patterns in motion and measurements (PCFG!)

Abnormal Operation

any pattern that does not occur in normal operation

PCFG Learning

Structured Prediction

make a prediction about a structured object (grammar)

Grammatical Inference

infer a PCFG (symbols, rules, probabilities) from words

Training Data

- corpus of positive (normal) examples only
- must generalize (but not too much) and must not overfit

Our Approach

- Bayesian maximization of grammar posterior over data
- beam local search to avoid local minima
- incremental progress towards higher posterior gain
- leads to a good grammar, but not necessarily optimal

AUV Normal and Abnormal Behavior

Abnormal [Testing]

[Training]

Normal

Relevant data stream

* yaw (z-angle) of the AUV

Recognition with Learned Grammar

- training corpus: 129 examples
- learned grammar: 33+12 symbols, 12+7 rules

WP6 Conclusion

contribution and considerations

WP6 Project Contribution

WP6 Function

recognizing interesting events in streams of observations

On-Line Component: Event Recognition

- real-time, hierarchical parsing for on-board recognition
- several active parsers on-board on various data streams
- hand-crafted or learned grammars for capturing events
- broadcast of reported events to any other DUNE tasks

Off-Line Component: Grammar Learning

- off-line learning of PCFGs from past AUV mission logs
- modeling patterns of normal operation/events only
- abnormality = non-parsable pattern in data stream used
- learned grammars transferred to AUV for on-line parsing

WP6 in AUV Missions

>Off-line (before)

- identify type of event
- identify related data
- collect normal data
- learn grammar(s)

>On-line (during)

- execute parser on-board
- recognize events
- report detection(s)

>Off-line (after)

- parse past mission logs
- event detection

Event

- z-spin abnormalities
- z-angle/yaw sensor
- normal mission data
- rules and probabilities

Mission

- use learned grammar
- detect abnormality
- reset AUV state, notify

Investigation

- detect past occurrences
- extract event statistics

WP6 Considerations

What is there

- generic approach for high-level event recognition
- applicable to any desired data stream within DUNE
- reported events announced through IMC messages
- foundation: PCFGs, hierarchies, Bayesian learning, ...
- potential for capturing hidden patterns in streams

What can be done

- investigation of a wider range of AUV mission events
- focus on events that leave "signatures" in AUV sensors
- identification and selection of relevant data streams
- identification of joint patterns over data streams
- better integration of event recognition into decisions

Thank you!

