Complete Research To-Do List - Aligned with Proposal

Phase 1: Foundation Setup (June 27 - July 5)

1.1 Environment Setup
 Install MuJoCo physics engine Install gymnasium, stable-baselines3, dm-control Set up project structure as designed Create virtual environment Install and configure Weights & Biases (wandb) Test basic imports work
1.2 Get RealAnt Working
 □ Install RealAnt-RL from Ote Robotics (https://github.com/AaltoVision/realant-rl □ Verify environment loads: (env = gym.make('RealAnt-v0') □ Document observation space structure: Joint positions [0:8] Joint velocities [8:16] • Base orientation quaternion [16:20] • Base velocity [20:23] • Base angular velocity [23:26] • Contact sensors [26:28] □ Document action space: 8 continuous joint torques □ Verify 8 DOF (2 joints per leg: hip and ankle) □ Record video of random policy baseline
1.3 Define Success Metrics (from Section 4.1)
Success Rate: Forward locomotion > 1.5m in 5 seconds Cumulative Reward: Sum of episode rewards Recovery Time: Time to resume walking after fault Failure Rate: % episodes with collapse/spin/stuck >2s Goal velocity: 0.5-1.0 m/s target Episode length: 500 timesteps
Create evaluation script implementing all metrics

Phase 2: PPO Baseline (July 6 - July 15)

2.1 Implement PPO Architecture (Section 3.2)
Create policy network:Input: 28-dimensional observation vector
Hidden layers: [64, 128] with ReLU activation
 Output: 8-dimensional continuous actions Create value network (critic): Same encoder as policy
 Output: scalar value estimate Implement PPO loss with clipping (Equation 3.1) Use stable-baselines3 as base
2.2 Configure PPO Hyperparameters (Section 3.4)
 Learning rate: 3 × 10⁻⁴ Batch size: 2048 Epochs per update: 10 Clipping parameter (ε): 0.2 Discount factor (γ): 0.99 GAE parameter (λ): 0.95 Create config file with these exact values 2.3 Design Reward Function Forward velocity reward (primary)
 Alive bonus: 0.1 Control cost penalty: 0.01 Implement in custom reward wrapper
2.4 Train and Evaluate Baseline
 Train for 1M steps initially Log to TensorBoard and W&B Save checkpoints every 50k steps Evaluate on 100 episodes Target: >90% success rate on clean environment Document baseline performance
Phase 3: SR ² L Implementation (July 16 - July 25)

3.1 Implement SR²L Loss (Section 3.2, Equation 3.2)

Add smooth regularization term:
python
$L_smooth = E[\pi(s) - \pi(s + \delta) ^2]$
where $\delta \sim N(0, \sigma^2 I)$
Set perturbation std (σ) for δ
☐ Implement combined loss (Equation 3.3):
python
$L_{total} = L_{ppo} + \lambda * L_{smooth}$
Set $\lambda = 0.01$ (from paper)
3.2 Modify PPO Training Loop
☐ Create batch of perturbed observations
Compute policy outputs for both clean and perturbed
☐ Calculate smoothness loss
☐ Add to PPO objective
☐ Log smooth_loss separately
3.3 Train PPO + SR ² L
Use same hyperparameters as baseline
☐ Train for same duration
☐ Monitor both PPO loss and smooth loss
☐ Verify smooth loss decreases
3.4 Evaluate Smoothness
☐ Compare action sequences between PPO and PPO+SR²L
Measure action derivative/jerkiness
☐ Success rate should remain >90%
□ Document smoothness improvements
Phase 4: Domain Randomization Setup (July 26 - August 5)
4.1 Implement Fault Injection Wrapper (Section 3.3)
Create (FaultInjectionWrapper(gym.Wrapper))
☐ Implement actuator fault modes:
Lock mode: Use PD control to maintain position
 Kp = 100.0 (proportional gain)

• Kd = 10.0 (derivative gain) • **Zero torque**: Set action to 0 • Weak motor: Multiply by 0.3 factor Joint selection logic: • Random selection from 8 joints Option for coupled failures (both joints in leg) 4.2 Implement Sensor Noise (Section 3.3, Equation 3.4) Add Gaussian noise: $(\tilde{s} = s + \varepsilon, \varepsilon \sim N(0, \sigma^2 I))$ Configure noise levels: • Position noise: $\sigma = 0.05$ • Velocity noise: $\sigma = 0.1$ • Orientation noise: $\sigma = 0.02$ Apply noise per timestep Handle quaternion normalization 4.3 Create Curriculum Manager (Section 3.4) Implement 3-phase curriculum: Phase 1: Warm-up (Epochs 0-200)

- No actuator faults
- Minimal sensor noise ($\sigma = 0.01$)
- Goal: Learn base locomotion.

Phase 2: Isolated Faults (Epochs 200-600)

- Single joint dropout per episode
- Fault probability: 0.2
- Sensor noise: $\sigma = 0.05$
- Goal: Learn compensation

Phase 3: Full Randomization (Epochs 600+)

- Multiple joint faults (up to 3)
- Fault probability: 0.4
- Sensor noise: $\sigma = 0.1$

Goal: Maximum robustness
4.4 Test Fault Injection
 Verify joints actually lock/fail Check sensor noise is applied Visualize robot with faults Log fault statistics
Phase 5: PPO + DR Training (August 6 - August 15)
5.1 Integrate Components
 Wrap environment with fault injection Connect curriculum manager Ensure curriculum phases transition correctly Log current phase and fault stats
5.2 Extended Training
 Train for 10M steps (full curriculum) Monitor performance per phase Track success rate vs fault severity Save checkpoints at phase transitions
5.3 Ablation: PPO + SR ² L (No Faults)
 Train with SR²L but no domain randomization Same 10M steps Evaluate robustness without fault training
Phase 6: Full Method Training (August 16 - August 25)
6.1 PPO + DR + SR ² L Combined
 Enable all components: PPO base algorithm SR²L smoothness (λ = 0.01) Domain randomization Curriculum learning Train for 10M steps
□ Monitor all losses

6.2 Complete All Ablations Ensure all 4 variants are trained: PPO only (baseline) PPO + SR²L ■ PPO + DR \square PPO + DR + SR²L **6.3 Checkpoint Management** Save best model from each variant Save at 1M, 5M, 10M steps Document training curves Phase 7: Evaluation (August 26 - September 5) 7.1 Implement Evaluation Protocol (Section 4.2) Test each policy on 5 scenarios × 100 episodes each: Clean environment (no faults) Target: Baseline maintains >95% success ■ **Single joint locked** (random selection) • Target: >70% success rate ■ Multiple joint lock (2-3 joints) • Target: >45% success rate Sensor noise only • Position/velocity/orientation noise No actuator faults ■ Combined faults (joints + noise) Most challenging scenario Measure graceful degradation 7.2 Statistical Analysis (Section 4.3) Compute mean ± std for all metrics Calculate 95% confidence intervals Run paired t-tests between methods Use chi-squared for success rates Create significance tables

7.3 Generate Visualizations
 Learning curves (reward over time) Success rate bar plots by condition Performance degradation curves Box plots for reward distributions Recovery time comparisons
Phase 8: Analysis & Writing (September 6 - October 5)
8.1 Results Analysis
 Confirm hypothesis: Combined > Individual > Baseline Identify which component contributes most Document failure modes Analyze recovery strategies
8.2 Create Deliverables
 Results tables (LaTeX format) All required plots Video compilation showing: Baseline walking
Single fault recovery
Multiple fault adaptation
Smooth vs jerky motions
8.3 Write Report Sections
Following proposal structure:
 Update methodology with actual implementation Write evaluation results Discuss findings Address limitations Future work recommendations
Phase 9: Stretch Goals (If Time Permits)
9.1 Terrain-Aware Adaptation
Add terrain variation (slopes, stairs)

☐ Train policy to choose paths based on damage
9.2 Vision Integration
Add RGB/depth camera to observation
☐ Train terrain perception
9.3 Sim-to-Real Transfer
Prepare policy for real RealAnt robot
☐ Test deployment pipeline
Final Submission (October 6-14)
Final Checklist
☐ All code committed and documented
Reproducibility instructions
☐ Final report formatted
☐ Videos and supplementary materials
Submit by October 14
© Key Milestones & Success Criteria
1. Baseline Walking: PPO achieves >90% success at 0.5+ m/s
2. Smooth Motion : SR ² L shows measurably smoother actions
3. Single Fault Robustness: >70% success with one failed joint
4. Multi-Fault Robustness: >45% success with 2-3 failed joints
5. Combined Method Best : PPO+DR+SR ² L outperforms all ablations
III Progress Tracking
Track daily progress with:
Date: YYYY-MM-DD Completed: [List items]
Issues: [Any blockers]
Tomorrow: [Next tasks]
Training: [Current experiment status]

This comprehensive list now includes every technical detail from your proposal!