Guía 11: Notación declaratoria

Notación declaratoria para términos

• Si t es un término de tipo τ , entonces escribiremos $t =_d t(v_1, \ldots, v_n)$ para declarar que v_1, \ldots, v_n son variables distintas (con $n \geq 1$) y tales que toda variable que ocurre en t pertenece a $\{v_1, \ldots, v_n\}$ (no necesariamente v_j debe ocurrir en t).

Notación declaratoria para fórmulas

• Si φ es una fórmula de tipo τ , entonces escribiremos $\varphi =_d \varphi(v_1, \ldots, v_n)$ para declarar que v_1, \ldots, v_n son variables distintas (con $n \ge 1$) y tales que $Li(\varphi) \subseteq \{v_1, \ldots, v_n\}$

Elementos definibles

- Sea A un modelo de tipo τ , diremos que un elemento a de A es **definible** en \mathbf{A} si hay una fórmula $\varphi =_d \varphi(v)$ tal que $\mathbf{A} \models \varphi[a]$ y para cada $b \in A \{a\}$ se tiene que $\mathbf{A} \not\models \varphi[b]$
 - Es decir, a es el único elemento de A que cumple $\mathbf{A} \models \varphi[a]$
 - En este caso, además, diremos que φ define a en A
- Si **A** es un modelo de tipo τ y $a \in A$ es tal que $F(a) \neq a$, para algún isomorfismo $F : \mathbf{A} \to \mathbf{A}$, entonces a no es definible en **A**

Manejo técnico de la notación declaratoria

- Lectura única de términos declarados: Sea τ un tipo cualquiera y supongamos $t \in T^{\tau}$, si $t =_d t(v_1, \ldots, v_n)$, entonces se da una y solo una de las siguientes:
 - 1. t = c para algún $c \in \mathcal{C}$
 - 2. $t = v_i$ para algún j
 - 3. $t = f(t_1, \ldots, t_m)$ con $f \in \mathcal{F}_m, t_1, \ldots, t_m \in T^{\tau}$ únicos
- Carácter recursivo de la notación $t^{\mathbf{A}}[a_1,\ldots,a_n]$: Sea τ un tipo cualquiera, $t\in T^{\tau},\ t=_d t(v_1,\ldots,v_n)$, \mathbf{A} un modelo de tipo τ y $a_1,\ldots,a_n\in A$, se tiene que:
 - 1. Si t = c, entonces $t^{\mathbf{A}}[a_1, \dots, a_n] = c^{\mathbf{A}}$
 - 2. Si $t = v_j$, entonces $t^{\mathbf{A}}[a_1, \ldots, a_n] = a_j$
 - 3. Si $t = f(t_1, \ldots, t_m)$ con $f \in \mathcal{F}_m$ y $t_1, \ldots, t_m \in T^{\tau}$, entonces $t^{\mathbf{A}}[a_1, \ldots, a_n] = f^{\mathbf{A}}(t_1^{\mathbf{A}}[a_1, \ldots, a_n], \ldots, t_m^{\mathbf{A}}[a_1, \ldots, a_n])$
- Lectura única de fórmulas declaradas: Sea τ un tipo cualquiera, $\varphi \in F^{\tau}$ y $\varphi =_d \varphi(v_1, \ldots, v_n)$, entonces se da una y solo una de las siguientes:
 - 1. $\varphi = (t \equiv s)$, con $t, s \in T^{\tau}$ únicos
 - 2. $\varphi = r(t_1, \dots, t_m)$, con $r \in \mathcal{R}_m$ y $t_1, \dots, t_m \in T^{\tau}$ únicos
 - 3. $\varphi = (\varphi_1 \wedge \varphi_2)$, con $\varphi_1, \varphi_2 \in F^{\tau}$ únicas
 - 4. $\varphi = (\varphi_1 \vee \varphi_2)$, con $\varphi_1, \varphi_2 \in F^{\tau}$ únicas
 - 5. $\varphi = (\varphi_1 \to \varphi_2)$, con $\varphi_1, \varphi_2 \in F^{\tau}$ únicas
 - 6. $\varphi = (\varphi_1 \leftrightarrow \varphi_2)$, con $\varphi_1, \varphi_2 \in F^{\tau}$ únicas
 - 7. $\varphi = \neg \varphi_1$, con $\varphi_1 \in F^{\tau}$ única
 - 8. $\varphi = \forall v_j \varphi_1, \text{ con } v_j \in \{v_1, \dots, v_n\} \text{ y } \varphi_1 \in F^{\tau} \text{ únicas}$
 - 9. $\varphi = \forall v \varphi_1, \text{ con } v \in Var \{v_1, \dots, v_n\} \text{ y } \varphi_1 \in F^{\tau} \text{ únicas}$
 - 10. $\varphi = \exists v_j \varphi_1, \text{ con } v_j \in \{v_1, \dots, v_n\} \text{ y } \varphi_1 \in F^{\tau} \text{ únicas }$
 - 11. $\varphi = \exists v \varphi_1, \text{ con } v \in Var \{v_1, \dots, v_n\} \text{ y } \varphi_1 \in F^{\tau} \text{ únicas}$
- Carácter recursivo de la notación $\mathbf{A} \models \varphi[a_1, \dots, a_n]$: Sea $\varphi =_d \varphi(v_1, \dots, v_n), \mathbf{A} = (A, i)$ un modelo de tipo τ y sean $a_1, \dots, a_n \in A$, entonces:
 - 1. Si $\varphi = (t \equiv s)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $t^{\mathbf{A}}[a_1, \dots, a_n] = s^{\mathbf{A}}[a_1, \dots, a_n]$
 - 2. Si $\varphi = r(t_1, \dots, t_m)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $(t_1^{\mathbf{A}}[a_1, \dots, a_n], \dots, t_m^{\mathbf{A}}[a_1, \dots, a_n]) \in r^{\mathbf{A}}$

- 3. Si $\varphi = (\varphi_1 \wedge \varphi_2)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a_n]$ y $\mathbf{A} \models \varphi_2[a_1, \dots, a_n]$
- 4. Si $\varphi = (\varphi_1 \vee \varphi_2)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a_n]$ o $\mathbf{A} \models \varphi_2[a_1, \dots, a_n]$
- 5. Si $\varphi = (\varphi_1 \to \varphi_2)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \not\models \varphi_1[a_1, \dots, a_n]$ o $\mathbf{A} \models \varphi_2[a_1, \dots, a_n]$
- 6. Si $\varphi = (\varphi_1 \leftrightarrow \varphi_2)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a_n]$ y $\mathbf{A} \models \varphi_2[a_1, \dots, a_n]$ o $\mathbf{A} \not\models \varphi_1[a_1, \dots, a_n]$ y $\mathbf{A} \not\models \varphi_2[a_1, \dots, a_n]$
- 7. Si $\varphi = (\varphi_1 \leftrightarrow \varphi_2)$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si ya sea $\mathbf{A} \models \varphi_1[a_1, \dots, a_n]$ y $\mathbf{A} \models \varphi_2[a_1, \dots, a_n]$, o bien $\mathbf{A} \not\models \varphi_1[a_1, \dots, a_n]$ y $\mathbf{A} \not\models \varphi_2[a_1, \dots, a_n]$
- 8. Si $\varphi = \neg \varphi_1$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \not\models \varphi_1[a_1, \dots, a_n]$
- 9. Si $\varphi = \forall v_j \varphi_1$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a, \dots, a_n] \forall a \in A$
- 10. Si $\varphi = \forall v \varphi_1 \text{ con } v \notin \{v_1, \dots, v_n\}$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a_n, a] \forall a \in A$
- 11. Si $\varphi = \exists v_j \varphi_1$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a, \dots, a_n]$ para algún $a \in A$
- 12. Si $\varphi = \exists v \varphi_1$ con $v \notin \{v_1, \dots, v_n\}$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ si y solo si $\mathbf{A} \models \varphi_1[a_1, \dots, a_n, a]$ para algún $a \in A$
- Sea $F: \mathbf{A} \to \mathbf{B}$ un homomorfismo y $t =_d t(v_1, \dots, v_n)$, entonces $F(t^{\mathbf{A}}[a_1, \dots, a_n]) = t^{\mathbf{B}}[F(a_1), \dots, F(a_n)]$ para cada $a_1, \dots, a_n \in A$
- Sea $F: \mathbf{A} \to \mathbf{B}$ un isomorfismo y $\varphi =_d \varphi(v_1, \dots, v_n) \in F^{\tau}$, entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n] \iff \mathbf{B} \models \varphi[F(a_1), \dots, F(a_n)]$ para cada $a_1, \dots, a_n \in A$
- Sea $F: \mathbf{A} \to \mathbf{B}$ un homomorfismo sobre y $\varphi =_d \varphi(v_1, \dots, v_n) \in F^{\tau}$ tal que los símbolos $\neg \to \leftrightarrow$ no ocurren en φ , entonces $\mathbf{A} \models \varphi[a_1, \dots, a_n]$ implica $\mathbf{B} \models \varphi[F(a_1), \dots, F(a_n)]$ para cada $a_1, \dots, a_n \in A$.

Teoremas de reemplazo

- Teorema de reemplazo para términos Sean $t =_d t(w_1, \ldots, w_k), s_1 =_d s_1(v_1, \ldots, v_n), \ldots, s_k =_d s_k(v_1, \ldots, v_n),$ entonces:
 - Todas las variables de $t(s_1, \ldots, s_k)$ están en $\{v_1, \ldots, v_n\}$
 - Si declaramos $t(s_1,\ldots,s_k)=_d t(s_1,\ldots,s_k)(v_1,\ldots,v_n)$, entonces $\forall \mathbf{A} \ y \ a_1,\ldots,a_n \in A$ se tiene que $t(s_1,\ldots,s_k)^{\mathbf{A}}[a_1,\ldots,a_n]=t^{\mathbf{A}}[s_1^{\mathbf{A}}[a_1,\ldots,a_n],\ldots,s_k^{\mathbf{A}}[a_1,\ldots,a_n]]$
- Variable sustituible: Diremos que v es sustituible por w en φ cuando ninguna ocurrencia libre de v en φ sucede dentro de una ocurrencia de una subfórmula de la forma $Qw\psi$ en φ
 - Dado un término t, diremos que v es **sustituible** por t en φ cuando v sea sustituible en φ por cada variable que ocurre en t
 - Propiedades:
 - 1. Si φ es atómica, entonces v es sustituible por w en φ
 - 2. Si $\varphi = (\varphi_1 \eta \varphi_2)$, entonces v es sustituible por w en φ sii v es sustituible por w en φ_1 y en φ_2
 - 3. Si $\varphi = \neg \varphi_1$, entonces v es sustituible por w en φ sii v es sustituible por w en φ_1
 - 4. Si $\varphi = Qv\varphi_1$, entonces v es sustituible por w n φ
 - 5. Si $\varphi = Qw\varphi$ y $v \in Li(\varphi_1)$, entonces v no es sustituible por w en φ
 - 6. Si $\varphi = Qw\varphi$ y $v \notin Li(\varphi_1)$, entonces v es sustituible por w en φ
 - 7. Si $\varphi = Qu\varphi_1$ con $u \neq v, w$, entonces v es sustituible por w en φ sii v es sustituible por w en φ_1
- Teorema de reemplazo para fórmulas: Supongamos $\varphi =_d \varphi(w_1, \ldots, w_k), t_1 =_d (v_1, \ldots, v_n), \ldots, t_k =_d t_k(v_1, \ldots, v_n)$ y que cada w_i es sustituible por t_i en φ , entonces:
 - 1. $Li(\varphi(t_1,\ldots,t_k))\subseteq\{v_1,\ldots,v_n\}$
 - 2. Si declaramos $\varphi(t_1, \ldots, t_k) =_d \varphi(t_1, \ldots, t_k)(v_1, \ldots, v_n)$, entonces para cada estructura \mathbf{A} y $\vec{a} \in A^n$ se tiene $\mathbf{A} \models \varphi(t_1, \ldots, t_k)[\vec{a}] \iff \mathbf{A} \models \varphi[t_1^{\mathbf{A}}[\vec{a}], \ldots, t_k^{\mathbf{A}}[\vec{a}]]$