I. Temat

Sieć autostrad

Przygotować algorytm poszukujący optymalnej sieci autostrad tworzącą siatkę połączeń pomiędzy miastami z danego zbioru. Rozwiązanie powinno uwzględniać również miejsca zjazdów z autostrady (nie mogą one znajdować się zbyt blisko siebie).

II. Krótki opis zagadnienia, sformułowanie przyjętych założeń

- Nie interesuje nas rozmiar miast. Zakładamy, że każde miasto ma taki sam priorytet przy dostępie do autostrady.
- Poprzez sieć autostrad rozumiemy zbiór prostych odcinków autostradowych, które muszą być ze sobą połączone tak, że jadąc po autostradzie (i drogach dojazdowych) jesteśmy wstanie odwiedzić każde miasto.
- Miasta traktowane są jako punkty rozmieszczone w badanym obszarze.
- Problem należy podzielić na dwa etapy. Pierwszy polega na określeniu określeniu przebiegu autostrad tak aby z żadnego miasta nie było do autostrady daleko(zadany odległość r). Drugi polega na takim poprowadzeniu zjazdów z autostrad aby sumaryczna długość dróg dojazdowych do miast była możliwie najmniejsza, zaś zjazdy były oddalone od siebie przynajmniej o minimalną, zadaną odległości.
- Podsumowując będziemy dążyć do tego aby sumaryczna długość dróg dojazdowych oraz sumaryczna długość autostrad były jak najkrótsze.

III. Przestrzeń przeszukiwań

Dla pierwszego problemu przestrzeń przeszukiwań zrealizowana jest jako dwuwymiarowa przestrzeń (układ kartezjański), w którym są umieszczone pary punktów, czyli początki i końce poszczególnych odcinków autostrad. W przestrzeni tej może być umieszczona dowolna liczba odcinków, które mogą przecinać się w dowolnie wielu miejscach. Tak więc przestrzeń można przedstawić jako zbiór drzew, gdzie każde drzewo jest zbudowane z kolejnych możliwych odcinków, które odzwierciedlają autostradę.

Dla drugiego problemu przestrzeń przeszukiwań jest zrealizowana przez strukturę tablicową złożoną z liczby punktów nie większej niż długość autostrady podzielona przez minimalną odległość między zjazdami. Punkty te leżą na autostradzie. Początkowo szukamy 1 punktu, który zagwarantuje najmniejszą sumaryczną długość dróg dojazdowych. W przyszłości może nastąpić mutacja, która wygeneruje dwa punkty i tak dalej, aż po maksymalną liczbę punktów lub przekroczenie warunku zatrzymania, którym będzie wykonanie n iteracji algorytmu, w których nie znajdzie się lepszego rozwiązania.

IV. Funkcja celu

Zdecydowaliśmy, że najlepszym podejściem do rozwiązania pierwszego problemu jest zastosowanie algorytmu ewolucyjnego. Gdzie mutacja polegałaby na dodaniu nowej autostrady o losowych współrzędnych. W takim rozwiązaniu:

funkcja celu = $X^*x_1 + Y^*y_1$, gdzie:

X – suma długości dróg dojazdowych, w km

Y – suma długości autostrad, w km

x₁ – współczynnik kosztu 1km dróg dojazdowych

v₁ – współczynnik kosztu 1km autostrad

Będziemy dążyć do tego, aby funkcja celu była jak najmniejsza. W przypadku rozwiązania idealnego wszystkie miasta leżałyby "na" autostradach (przy czym sumaryczna długość autostrad byłaby jak najmniejsza).

W pierwszej kolejności będziemy ustalać potencjalne punkty krańcowe odcinków autostrad. Potencjalne punkty krańcowe będziemy umieszczać w pobliżu miast. Większość potencjalnych punktów krańcowych będziemy umieszczać w pobliżu peryferyjnych miast.

Następnie będziemy starali się wybrać optymalne punkty krańcowe autostrad (stworzyć zbiór potencjalnych odcinków autostrad). Przeszukiwanie będziemy prowadzić według współrzędnych x-wych, y-wych, oraz będziemy rozważać proste o różnych kątach nachylenia.

Po otrzymaniu zbioru odcinków autostrad będziemy generować nowe odcinki, modyfikując ich kat nachylenia oraz przesunięcie względem współrzędnych x-wych oraz y-wych.

Po otrzymaniu sieci autostrad, spełniającej założenia (nieprzekroczenie maksymalnej długości drogi dojazdowej oraz połączenie wszystkich odcinków ze sobą) zapisujemy tę sieć i generujemy kolejną.

Następnie będziemy przeprowadzać mutacje wcześniej otrzymanych sieci. Poza mutacją w której będziemy brać średnią(z zadanymi współczynnikami) z 2 prostych, będziemy przeprowadzać mutację, której efektem będzie pojawienie się dodatkowej autostrady o losowych współrzędnych krańców. Mutacja ta ma na celu uniknięcie wpadnięcia w lokalne minima.

Rozwiązanie drugiego problemu jest podobne do pierwszego ale wiemy, że liczba punktów jest z góry ograniczona, zaś przestrzeń przeszukiwań jest dużo mniejsza. Mutacją jest pojawienie się dodatkowego punktu. Pojawia się funkcja celu, której zadaniem będzie minimalizacja odległości miast do najbliższego zjazdu z autostrady.

Przykładowa sieć autostrad dla zadanej mapy miast:

Podsumowując: na początku otrzymamy populację sieci autostrad o zadanej wielkości N. Osobnik będzie reprezentowany jako kolekcja dróg o zadanym typie(autostrada/droga dojazdowa) o 2 punktach krańcowych. Prawdopodobieństwo mutacji będzie wynosić około 1-5% (spełnia rolę wariacji), prawdopodobieństwo skrzyżowania będzie wynosić około 50-70% (spełnia rolę adaptacji modelu), a rolę selekcji będzie pełnił wybór osobników spośród potomków i rodziców(według zadanej funkcji celu). Przy rozwiązywaniu problemu wykorzystamy regułę 1/5 sukcesów Rechenberga.

V. Określenie heurystyki:

Jak już wcześniej wspomniano mamy zamiar wykorzystać algorytm ewolucyjny, aby najpierw znaleźć najlepszy przebieg autostrad. A następnie za pomocą drugiego algorytmu ewolucyjnego określić najlepszy rozkład zjazdów korzystając z funkcji celu opisanych w punkcie IV. W pierwszym przypadku mutacją jest modyfikacja współrzędnych krańcowych autostrady. W drugim przypadku mutacją jest pojawienie się kolejnego zjazdu na jednej z już uzyskanych z pierwszego algorytmu autostrad.

Jako heurystykę wykorzystamy pojawienie się w niektórych potomkach dodatkowych odcinków autostrad o pseudolosowych punktach krańcowych. Umożliwi nam to wyjście poza minima lokalne.

Jako dodatkową heurystykę rozważaliśmy wykorzystanie odległości w linii prostej między miastami aby określić długość podróży. Wymagałoby to modyfikacji funkcji celu w pierwszym problemie, uwzględniającą różnicę między odległością, którą trzeba pokonać po autostradzie aby dotrzeć z miasta A do miasta B, a odległością w linii prostej pomiędzy tymi miastami.

VI. Przewidujemy, że wyniki końcowe będą zbliżone do tych które uzyskamy w pierwszych próbach, ponieważ przy dobrym dobraniu punktów startowych autostrad, nie będzie można uzyskać znaczącej poprawy. Oczywiście, wprowadzenie czynnika losowego – modyfikacja współrzędnych punktów krańcowych autostrad może dać zaskakującą poprawę wyników. Mutację będziemy prowadzić do momentu, w którym funkcja celu nie zostanie poprawiona w kolejnych kilkunastu – kilkudziesięciu iteracjach algorytmu. Będziemy przeprowadzać testy algorytmu dla różnych rozkładów miast:

- a) rozkład losowy
- b) rozkład peryferyjny miast
- c) równomierny rozkład miast na całej mapie
- d) skupiskowy rozkład miast (wiele skupisk miast rozsianych po mapie)

Kluczowe dla rozwiązania tego problemu będzie zdefiniowanie zależności pomiędzy kosztem km autostrady a kosztem km drogi dojazdowej. Na pewno koszt kilometra autostrady będzie większy od kosztu kilometra drogi dojazdowej ($x_1 < y_1$), natomiast konkretne współczynniki dobierzemy po przeprowadzeniu pierwszych testów algorytmu.

Wyniki będą prezentowane w formie podania końcowej wartości funkcji celu(dołączymy obraz końcowy z miastami, autostradami i drogami dojazdowymi) oraz historii modyfikacji wartości funkcji celu dla danej sieci miast (zapisane rozłożenie autostrad i dróg dojazdowych).