Capítulo 12

Examen final

Ejercicio 1. Sea M una superficie diferenciable conexa y sea $f: M \to \mathbb{R}$ una función difererenciable tal que $df_p = 0$ para todo $p \in M$. Demuestre que f es constante.

Solución. Sea F la familia de componentes conexas por caminos de M. Sean $V \in F$, $p \in V$. Entonces,

- \blacksquare Como M es una superficie, p tiene una vecindad U homeomorfa a una bola.
- Como U es conexa por caminos, $U \subset V$.
- \blacksquare Como p es arbitrario, V es una vecindad de todos sus puntos, i.e., V es abierta en M.
- lacktriangle Como V es arbitraria, F es una partición de M en subconjuntos abiertos.
- lacktriangle Como M es conexa, F consta de un único elemento, que es todo M.

Ahora sea $\gamma: I \to M$ un camino arbitrario. Puesto que $\gamma(I)$ es compacto, podemos tomar una cobertura abierta finita de $\gamma(I)$ por vecindades $B_1, \ldots, B_n \subset M$ difeomorfas a bolas, de tal manera que

- Existan puntos de control $q_0, \ldots, q_n \in M$.
- Los extremos inicial y final de γ sean q_0, q_n , respectivamente.
- Cada par de puntos de control consecutivos q_{i-1}, q_i esté contenido en B_i .

Tomemos un camino regular $\phi_i: I \to B_i$ entre dos puntos de control consecutivos. Entonces,

$$f(q_i) - f(q_{i-1}) = \int_{\phi_i} df = 0$$

Como esto es válido para todo i = 1, ..., n, tenemos

$$f(q_0) = f(q_1) = f(q_2) = \dots = f(q_n)$$

Entonces f es constante en cada componente conexa por caminos de M. Como M es conexa por caminos, hemos demostrado que f es constante en todo M.

Ejercicio 2. Sea $f: U \to \mathbb{R}^n$ una función diferenciable definida en un abierto $U \subset \mathbb{R}^n$ y sea $\varphi: \mathbb{R}^n \to \mathbb{R}$ una función de clase C^1 tal que $\varphi \circ f(x) = 0$ para todo $x \in U$. Dado $a \in U$ tal que $\nabla \varphi \circ f(a) \neq 0$, muestre que det f'(a) = 0.

Solución. Usando la regla de la cadena la hipótesis de que $\varphi \circ f$ es constante, tenemos

$$(\varphi \circ f)'(x) = (\varphi' \circ f)(x) \cdot f'(x) = (\nabla \varphi \circ f)(x)^T \cdot f'(x) = 0$$

Entonces $(\nabla \varphi \circ f)(x)$ siempre pertenece al espacio de la matriz $f'(x)^T$.

En particular, en el punto dado $a \in U$, tenemos

- $(\nabla \varphi \circ f)(a) \neq 0$
- $f'(x)^T: \mathbb{R}^n \to \mathbb{R}^n$ no es transformación lineal inyectiva.
- $f'(x)^T : \mathbb{R}^n \to \mathbb{R}^n$ no es invertible.
- $\det \circ f'(x) = \det \circ f'(x)^T = 0$

Ejercicio 3. Sea $f: \mathbb{R} \times [-\pi/2, \pi/2] \to [0, \infty[\times \mathbb{R} \ la función dada por$

$$f(x,y) = (e^x \cos y, e^x \sin y)$$

Demuestre que f es un difeomorfismo global.

Solución. Identifiquemos $\mathbb{C} = \mathbb{R}^2$ de la manera obvia. Entonces,

$$f(z) = f(x+iy) = e^x(\cos y + i\sin y) = e^x e^{iy} = e^{x+iy} = e^z$$

Esta función es holomorfa. Las siguientes proposiciones son equivalentes:

- \bullet f es un difeomorfismo local.
- \bullet f es un biholomorfismo local.
- $f'(z) = e^z \neq 0$ para todo punto z en el dominio de f.

Lo último es obviamente cierto. Entonces las siguientes proposiciones son equivalentes:

- f es un biholomorfismo global.
- f es un difeomorfismo global.
- \bullet f es una bivección.
- Todo punto en el semiplano derecho $\Re(z) > 0$ tiene exactamente un logaritmo complejo en la franja horizontal $-\pi/2 < \Im(z) < \pi/2$.

Nuevamente, lo último es obviamente cierto.

Ejercicio 4. Sea $f: U \to \mathbb{R}^m$ una función diferenciable en un abierto $U \subset \mathbb{R}^m$. Demuestre que, si ||f|| es constante, entonces $\det \circ f'(x) = 0$.

Solución. Si ||f|| es constante, entonces la imagen de f está confinada a una esfera (o al origen). Por ende, la imagen del diferencial $f'(x): \mathbb{R}^m \to \mathbb{R}^m$ está confinada al plano tangente de dicha esfera (o al origen). Esto implica que f'(x) no es invertible, i.e., tiene un autovalor igual a cero, i.e., $\det \circ f'(x) = 0$.