KL Comparison with Forward Process and Pushforward Weighting

Mark Ogata

October 2025

1 Aligned Parameter-Gradient Forms with Forward Process and Noise Averaging

We compare the parameter derivatives of the **forward KL**, **reverse KL**, and our **pushforward score** objective under a forward diffusion process F(x,t) and noise-level expectation \mathbb{E}_t (which is exactly the procedure we use to compute DMD loss in practice).

Forward KL

$$\mathbb{E}_t \Big[D_{\mathrm{KL}}(p_{\mathrm{fake}} \| p_{\mathrm{real}}) \Big] = \mathbb{E}_t \left[\int p_{\mathrm{fake}}(x) \Big(\log p_{\mathrm{fake}}(x) - \log p_{\mathrm{real}}(x) \Big) \, dx \right]$$

$$\Rightarrow \quad \frac{d}{d\theta} \mathbb{E}_t \Big[D_{\mathrm{KL}}(p_{\mathrm{fake}} \| p_{\mathrm{real}}) \Big] = \mathbb{E}_t \left[\int \underbrace{p_{\mathrm{fake}}(x)}_{\text{marginal}} \underbrace{(s_{\mathrm{fake}}(F(x,t),t) - s_{\mathrm{real}}(F(x,t),t))}_{\text{score diff}} \frac{dG_{\theta}(x_t)}{d\theta} \, dx \right].$$

Reverse KL

$$\begin{split} & \mathbb{E}_t \Big[D_{\mathrm{KL}}(p_{\mathrm{real}} \| p_{\mathrm{fake}}) \Big] = \mathbb{E}_t \left[\int p_{\mathrm{real}}(x) \Big(\log p_{\mathrm{real}}(x) - \log p_{\mathrm{fake}}(x) \Big) \, dx \right] \\ \\ \Rightarrow & \frac{d}{d\theta} \mathbb{E}_t \Big[D_{\mathrm{KL}}(p_{\mathrm{real}} \| p_{\mathrm{fake}}) \Big] = \mathbb{E}_t \left[\int \underbrace{p_{\mathrm{real}}(x)}_{\text{marginal}} \underbrace{(s_{\mathrm{real}}(F(x,t),t) - s_{\mathrm{fake}}(F(x,t),t))}_{\text{score diff}} \frac{dG_{\theta}(x_t)}{d\theta} \, dx \right]. \end{split}$$

Our Objective

$$\frac{d}{d\theta}L_{\text{ours}} = -\mathbb{E}_t \left[\int \underbrace{r(x)}_{\text{weight}} \underbrace{(s_{\text{real}}(F(x,t),t) - s_{\text{fake}}(F(x,t),t))}_{\text{score diff}} \frac{dG_{\theta}(x_t)}{d\theta} dx \right].$$

Comparison Table

	Marginal / Weight	Score difference	Outer expectation
Forward KL	$p_{\rm fake}(x)$	$(s_{\text{fake}} - s_{\text{real}})$	$\overline{\mathbb{E}_t}$
Reverse KL	$p_{\rm real}(x)$	$(s_{\rm real} - s_{\rm fake})$	\mathbb{E}_t
Ours	r(x)	$(s_{\rm real} - s_{\rm fake})$	\mathbb{E}_t

Thus, our objective shares the same **score difference** pattern as the reverse KL, but is evaluated under a different **marginal weighting** r(x).

2 Why the Pushforward r is Not a Linear Combination of p_{data} or p_{θ}

We recall the definition of the pushforward weighting:

$$r(x) = \int p_{\theta}(x \mid x_t) q(x_t \mid x_0) p_{\text{data}}(x_0) dx_t dx_0.$$

It mixes samples by first drawing $x_0 \sim p_{\text{data}}$, then diffusing to $x_t \sim q(x_t \mid x_0)$, and finally partially denoising via $p_{\theta}(x \mid x_t)$.

We ask: could this mixture be written as a simple convex combination

$$r(x) \stackrel{?}{=} \alpha p_{\text{data}}(x) + (1 - \alpha) p_{\theta}(x)$$
, for some $\alpha \in [0, 1]$?

Step 1: What r really is

The integrand shows that r is a **mixture over many conditionals** $p_{\theta}(x \mid x_t)$, each weighted by how likely x_t is under diffused data $q(x_t \mid x_0)p_{\text{data}}(x_0)$. Explicitly,

$$r(x) = \int w(x_t) p_{\theta}(x \mid x_t) dx_t, \quad \text{where} \quad w(x_t) = \int q(x_t \mid x_0) p_{\text{data}}(x_0) dx_0.$$

Thus, r is an average of different shapes of the model conditional, each corresponding to a different noise level or latent x_t .

Step 2: Why this is not a linear combination of marginals

The key difference is that a convex combination of p_{data} and p_{θ} ,

$$\alpha p_{\text{data}}(x) + (1 - \alpha) p_{\theta}(x),$$

is a mixture of only two fixed distributions, each with a fixed shape in x.

In contrast, r(x) integrates infinitely many varying distributions $p_{\theta}(x \mid x_t)$, whose means, variances, or even supports change with x_t . Formally, unless all $p_{\theta}(x \mid x_t)$ share the same functional form as $p_{\theta}(x)$, the mixture

$$r(x) = \int w(x_t) p_{\theta}(x \mid x_t) dx_t$$

cannot be represented as a single affine combination of two fixed distributions in x.

Step 3: Simple example (Gaussian case)

Suppose

$$q(x_t \mid x_0) = \mathcal{N}(x_t; x_0, \sigma_t^2 I), \quad p_\theta(x \mid x_t) = \mathcal{N}(x; \mu_\theta(x_t), \Sigma_t).$$

Then r(x) is a Gaussian mixture:

$$r(x) = \int w(x_t) \mathcal{N}(x; \mu_{\theta}(x_t), \Sigma_t) dx_t.$$

Unless $\mu_{\theta}(x_t)$ is constant (so all components are identical), the result is a mixture of Gaussians with different means, not a single Gaussian shape. Therefore, r cannot equal any convex combination of two fixed densities p_{data} and p_{θ} —its shape has higher-order variability.

Step 4: When equality can hold

Equality could only occur in degenerate situations:

- If $p_{\theta}(x \mid x_t) = p_{\theta}(x)$ for all x_t , then $r(x) = p_{\theta}(x)$.
- If $p_{\theta}(x \mid x_t) = \delta(x x_0)$ (perfect reconstruction), then $r(x) = p_{\text{data}}(x)$.
- If $p_{\text{data}} = p_{\theta}$, then all distributions coincide.

Conclusion

In general,

$$r(x) \neq \alpha p_{\text{data}}(x) + (1 - \alpha) p_{\theta}(x),$$

because r is not built from two fixed shapes—it is the *pushforward mixture* of p_{data} through the joint stochastic map $(x_0 \to x_t \to x)$, producing a distribution with structure that lies strictly between p_{data} and p_{θ} , but not on their linear span. Since integration is a linear operation, this means we cannot write our loss as a linear combination of the forward and backward KL divergences.