– INF01147 –Compiladores

Análise Sensível ao Contexto (Análise Semântica 1/2)

Prof. Lucas M. Schnorr

– Universidade Federal do Rio Grande do Sul –

Plano da Aula de Hoje

► Revisão LR(1)

- ► Contextualização da Análise Semântica
- ► Análise Sensível ao Contexto
- ► Ordem de Avaliação dos Atributos

► Lançamento da Etapa 4

Estrutura de um Compilador em fases

Análise Semântica – Motivação

- ► A análise sintática é o suficiente?
- ► Faltam uma série de informações
 - Quais são os valores representados
 - Onde eles residem dentro do programa
 - ► Como eles fluem de nome em nome
- ► Um compilador precisa entender a estrutura do programa

- Através de uma Análise Sensível ao Contexto
 - "Elaboração Semântica"
 - ► "Análise Semântica"
 - "Tradução Dirigida pela Sintaxe"

Análise Semântica – Visão Geral

- ► Considerando um nome x, no código fonte
- ► Antes da geração de código, o compilador precisa saber
 - Qual o tipo do valor estocado em x?
 inteiro, caractere, boleano, ponteiro, conjunto, vetor, estrutura, cadeia, . . .
 - ► Qual o tamanho de x? inteiro: 4 bytes, caractere: 1 byte, ponteiro: 4 bytes, cadeia: ?
 - ► Se x é uma função, quais são seus argumentos/retorno? tipo dos argumentos, tipo do retorno, onde o valor de retorno será guardado, ...
 - Por quanto tempo o valor de x tem que ser mantido? qual o escopo, qual o tempo de vida do nome
 - ► Quem é responsável por alocar espaço para x? vinculação de estocagem é estática ou dinâmica (explícita ou implícita)
- ► Respostas para estas questões
 - ► Devem ser derivadas a partir do código fonte
 - ► Obtidas das regras do projeto da linguagem de entrada
- ► Durante o processo de Análise Sensível ao Contexto

Análise Semântica – Alguns usos

- Associa um significado ao código de entrada
- ► Algumas associações possíveis
 - Associar uma representação abstrata
 - ► Criar a AST
 - ► Etapa 3 do Projeto de Compiladores
 - ► Associar tipos
 - Permitir a verificação de tipos (de variáveis, de instruções)
 Em tempo de compilação (vinculação de tipos estática)

Em tempo de execução (dinâmica; fornecendo suporte)

- ► Etapa 4 do Projeto de Compiladores
- ► Associar código executável à estrutura sintática
 - ► Etapa de Geração de Código
 - (Será o assunto chave desta disciplina)
 ► Etapa 5 do Projeto de Compiladores
- ► Tradução Dirigida pela Sintaxe
 - ► Código intermediário é gerado durante a análise sintática

Análise Semântica – Funcionamento

- ► Ações semânticas são associadas às regras de produção
 - ► Executadas no momento da derivação ou redução
 - Ações possíveis
 - ► Gerar código
 - Armazenar informações na tabela de símbolos
 - ► Emitir mensagens de erro
- ► Ação Principal: Associar variáveis aos símbolos de G
 - ► Armazenam valores durante a tradução
 - ► São perenes durante a análise
- ► Definindo atributos para um símbolo

Análise Semântica – Exemplo

► Gramática para declarar uma variável (mais ações semânticas)

- ► Com a entrada float pi e a entrada int iterador
- Anotação da árvore de derivação
 - Propagar os atributos que definem a semântica
 - Das folhas (tokens) para cima
 - ► Exemplos
 - ► Cada não-terminal tem um ou mais atributos associados
 - ► Cada terminal (token) tem um atributo definido pelo léxico
 - Podem ser comunicados durante a criação da árvore (ou depois, se a análise semântica for independente)

Exercício

► Considerando a gramática com ações semânticas

- ► Crie a árvore de derivação anotada para
 - (3+4)*(5+6)n
- ► O que faz este compilador?

Análise Semântica – Tipos de Atributos

- ► Atributos Sintetizados
 - → Depende somente de atributos dos filhos

- ► Atributos Herdados
 - ightarrow Depende de atributos do pai ou dos irmãos

Análise Semântica – Atributos herdados

► Considerando a gramática com ações semânticas

▶ Crie a árvore de derivação anotada para

Ordem de Avaliação dos Atributos

Análise Semântica – Ordem de Avaliação

- ► Cálculo de Atributos
 - ► Calculam atributos considerando outros atributos
 - ► Estabelece uma dependência entre as regras semânticas

► Grafo de dependências

- Representa o fluxo de informações entre os atributos
- ► Somente atributos sintetizados
 - ► O grafo é igual a árvore sintática
- Atributos sintetizados e herdados
 - ► O grafo é parecido com a árvore sintática
- ► Outra configuração de cálculo de atributo
 - ► Obriga uma análise semântica independente da sintática
- ► Esquemas S-atribuídos e L-atribuídos
 - ► Têm restrições para criar o grafo de dependência

Análise Semântica – Exemplo

► Considerando a gramática com ações semânticas

► Calcular o grafo de dependências para 3 * 5

Análise Semântica – S-Atribuído

- ► Requisitos
 - ► Todos os atributos são sintetizados
 - Ações semânticas dispostas à direita das produções
- ► Exemplo

```
L \rightarrow E n { L.val = E.val }

E \rightarrow E<sub>1</sub> + T { E.val = E<sub>1</sub>.val + T.val }

E \rightarrow T { E.val = T.val }

T \rightarrow T<sub>1</sub> * F { T.val = T<sub>1</sub>.val * F.val }

T \rightarrow F { T.val = F.val }

F \rightarrow (E) { F.val = digit.lexval }
```

- ► Especialmente útil em analisadores ascendentes (LR)
 - ► Não precisamos criar a árvore explicitamente
 - ► Possibilita geração de código durante a análise sintática

Análise Semântica – L-Atribuído

- ► Requisitos
 - Atributos podem ser sintetizados ou
 - ► Atributos podem ser herdados se
 - ► A dependência é da esquerda para a direita (e jamais da direita para a esquerda)
- ► Formalmente, considerando
 - ► $A \rightarrow X_1 X_2 ... X_n$ e atributo herdado $X_i.a$ $X_i.a$ só pode depender de
 - ▶ atributos herdados associados à cabeça A
 - ▶ atributos herdados/sintetizados às ocorrências dos símbolos X₁, X₂, ..., X_{i-1} localizados à esquerda de X_i
- ► Exemplo

$$D \rightarrow T \{ L.in = T.tipo + D.val \} L$$

Exercícios

▶ Para cada f e cada regra, diga se é S-Atribuída, L-Atribuída, ou nenhuma delas?

A
$$\rightarrow$$
 BC B.h = f_1 (A.h)
C.h = f_2 (B.s)
A.s = f_3 (C.s)
A \rightarrow DE E.h = f_4 (A.h)
D.h = f_5 (E.s)
A.s = f_6 (D.s)

► Considerando esta G, crie o grafo para float id_1 , id_2 , id_3

D	\rightarrow	I L	L.n = 1.tipo
Т	\rightarrow	int	T.tipo = inteiro
Т	\rightarrow	float	T.tipo = flutuante
L	\rightarrow	L_1 , id	$L_1.h = L.h$
			adicionaTipo (id.kev.

 $\mathsf{L} \; o \; \mathsf{id} \qquad \; \mathsf{adicionaTipo} \; (\mathsf{id.key, L.h})$

Projeto de Compilador

Lançamento da Etapa 4

Conclusão

- ► Leituras Recomendadas
 - ► Livro do Dragão
 - ► Capítulo 5 até 5.2 inclusive
 - ► Série Didática
 - ► Capítulo 4 até 4.3 inclusive
 - ► Keith Cooper
 - ► Capítulo 4, seções 4.1 e 4.3

▶ Próxima Aula Análise Semântica 2/2