485292

ING FILE COPY

THERMAL STABILITY OF HYDROCARBON FUELS

PROGRESS REPORT NO. 9

AIR FORCE CONTRACT AF 33(657)-10639

MARCH, 1966

58

A CONTRACTOR OF THE CONTRACTOR OF THE PROPERTY OF THE CONTRACTOR O

PHILLIPS
PETROLEUM
COMPANY

RESEARCH AND DEVELOPMENT DEPARTMENT

BARTLESVILLE OKLAHOMA

F/# 33855

Best Available Copy

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying the rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

PHILLIPS PETROLEUM COMPANY - RESEARCH DIVISION REPORT 4390-66R

Feature No. 6057

Wareh-16: 1966

THERMAL STABILITY OF HYDROCARBON FUELS.

Progress Report. No. 9, 1 Dec 65-28 Feb 66,

10 16 Mar 66,

Air Force Contract AF/33(657)-10639

10 81 p.

58

SUMMARY

10)Lucien Bagnetto R. M. Schirmer .

This report concerns work performed during the quarterly period December 1, 1965 through February 28, 1966 under Air Force Contract AF 33 (657)-10639.

A program to investigate the effect of storage time and temperature on changes in thermal stability quality as measured by the CRC-Modified (SSF) Coker for five widely different fuel types continues to show no deterioration of any fuels after 100 weeks at 40°F storage or 72 weeks at ambient field conditions. The distillate fuels (four of the five) show no serious deterioration after 54 weeks at 130°F or after 36 days at 180°F storage. A synthetic fuel, HF Alkylate containing about 2 per cent olefins showed a rapid rate of deterioration of about 100°F within 6 days at 180°F, and a moderate rate of deterioration of about 100°F within 54 weeks at 130°F. Removal of dissolved oxygen (to less than 1 ppm) from the HF Alkylate fuel prior to storage prevented deterioration.

Evaluation of the storage behavior of these fuels with Phillips 5-ml Bomb procedure resulted in remarkable agreement with the SSF Coker evaluations. The rate of deterioration curves for the 5 fuels at 4 different storage temperatures (20 total) for fuel samples stored in the absence of dissolved oxygen were identical. For aliquot fuel samples stored in the presence of dissolved oxygen only two evaluations (out of 20) could be considered major differences. A consideration of data in the literature relative to the contribution of antioxidants to storage deterioration suggests that in the two instances where the 5-ml Bomb differs with the Coker evaluations, the 5-ml Bomb would be the more accurate evaluation.

The statistical relationships between the Minex, 5-ml Bomb, and Coker fuel performance ratings have been studied. The analysis was based upon all available Minex evaluations of JP fuel thermal stability (30 fuels) and relevant ratings of threshold failure temperature by the 5-ml Bomb and Coker. From this analysis, we can state with over 99 per cent confidence that there is a linear thermal relationship between 5-ml Bomb vs Minex and 5-ml Bomb vs Coker ratings. Both of these relationships may be of numerical equality. Indications are that the precision of the 5-ml Bomb procedure is probably better than that of either the Minex or Coker.

(281510) (Continue

S U M M A R Y (Continued)

Since the 5-ml Bomb procedure evaluates storage and thermal stability quality equal to or better than the more complex and time-consuming Minex and Coker procedures it is recommended that it be used for monitoring these qualities of JP fuels.

TABLE OF CONTENTS

		PAGE
I.	INTRODUCTION	1
II.	STORAGE PROGRAM	1
	A. Storage Fuels	2
	B. Physical and Chemical Properties of Storage Fuels	2
	C. Storage Conditions	3
	D. SSF Coker Storage Results	3
	E. 5-Ml Bomb Storage Results	7
	F. Comparison of SSF Coker and 5-Ml Bomb Storage Data	11.
III.	CORRELATION STUDY OF SMALL-SCALE TEST METHODS FOR EVALUATING THE THERMAL STABILITY QUALITY OF JP FUELS.	12
	A. Test Methods	13
	B. Test Fuels	14
	C. Correlation Coefficients	16
	D. Regression Analysis	20
	E. Source of Errors	20
IV.	EFFECTS OF CONTAMINANTS ON THERMAL STABILITY QUALITY AS MEASURED BY PHILLIPS 5-ML BOMB PROCEDURE	21
٧.	MISCELLANEOUS 5-ML BOMB TESTS	21
VI.	CONCLUSIONS	21
VII.	RECOMMENDATIONS	33
mii.	REFERENCES	33

TABLES

TABLE		PAGE
1.	SSF Coker Threshold Failure Temperatures of Storage Fuels	3
2.	5-Ml Bomb Threshold Failure Temperatures of Storage Fuels	8
3.	Comparison of 5-ml Bomb and SSF Coker Evaluations of Storage Stability Quality	11
4.	Summary of All Available Minex Evaluations of JP Fuel Thermal Stability Quality and Relevant Ratings of Threshold Failure Temperature by 5-Ml Bomb and Coker	15
5.	Summary of Miscellaneous Requests for 5-Ml Bomb Evaluations.	21
6.	SS Fuel Coker Data After Aging Aerated Jet Fuels 100 Weeks at 40°F	35
7.	SS Fuel Coker Data After Aging Aerated Jet Fuels 54 Weeks at 130°F	36
8.	SS Fuel Coker Data After Aging Aerated Jet Fuels 54 Days at 180°F	37
9.	SS Fuel Coker Data After Aging Jet Fuels with Dissolved Oxygen Removed 100 Weeks at 40°F	38
10.	SS Fuel Coker Data After Aging Jet Fuels with Dissolved Oxygen Removed 54 Weeks at 130°F	39
11.	SS Fuel Coker Data After Aging Jet Fuels With Dissolved Oxygen Removed 54 Days at 180°F	40
12.	Oxygen Consumption Through SSF Coker After Aging Jet Fuels 100 Weeks at 40°F	41.
13.	Oxygen Consumption Through SSF Coker After Aging Aerated Jet Fuels 54 Weeks at 130°F	42
14.	Oxygen Consumption Through SSF Coker After Aging Aerated Jet Fuels 54 Days at 180°F	43
	(Continued)	

TABLES (Continued)

TABLE		PAGE
15.	Oxygen Consumption Through SSF Coker After Aging Jet Fuels With Dissolved Oxygen Removed 100 Weeks at 40°F.	* *
-/		44
16.	Oxygen Consumption Through SSF Coker After Aging Fuels With Dissolved Oxygen Removed 54 Weeks at	
	130°F	45
17.	Oxygen Consumption Through SSF Coker After Aging Jet Fuels With Dissolved Oxygen Removed 54 Days at	
	180°F	46
18.	5-Ml Bomb Data for Aerated Fuels in Storage	
-	Program	47
19.	5-Ml Bomb Data for Dissolved-Oxygen-Removed Fuels in Storage Program.	70
		52
20.	Minex Data for Correlation With Phillips 5-Ml Bomb	
	and Coker	53
21.	Phillips 5-Ml Bomb Thermal Stability Data for	à
	Correlation with Minex and Coi or Data	61
22.	Coker Data for Correlation with 5-MI Bomb and	. ?
	Minex.	71
23.	Physical and Chemical Properties - Test Methods	79
24.	Physical and Chemical Properties of Jet Fuels for	-
	Storage Program.	80

ILLUSTRATIONS

FIGURE		PAGE
1.	Effect of Storage Time and Temperature on Thermal Stability of Acrated Jet Fuels as Measured by SSF Coker	5
2.	Effect of Storage Time and Temperature on Thermal Stability of Jet Fuels with Dissolved Oxygen Removed Prior to Storage as Meausred by SSF Coker	6*
3.	Effect of Storage Time and Temperature on Thermal Stability of Aerated Jet Fuels as Measured by Phillips 5-Ml Bomb	9
4.	Effect of Storage Time and Temperature on Thermal Stability of Jet Fuels With Dissolved Oxygen Removed Prior to Storage As Measured by Phillips 5-Ml Bomb.	.10
5.	Relationship Between 5-M1 Bomb and Minex Ratings of JP Fuel Thermal Stability Quality	17
6.	Relationship Between Coker and Minex Ratings of JP Fuel Thermal Stability Quality	18
7.	Relationship Between 5-Ml Bomb and Coker Ratings of JP Fuel Thermal Stability Quality	19
8.	Phillips 5-Ml Bomb Data for Determination of Threshold Failure Temperature of RAF 1071X-60 (BJ66-10-G1)	22
9.	Phillips 5-Ml Bomb Data for Determination of Threshold Failure Temperature of RAF-174-63 (PJ66-10-G2)	23
10.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature Of G.E. Fuel 965-3(BJ65-10-K73)	24
11.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 1165-1 (BJ65-10-K74).	25
12.	Phillips 5-M1 Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 1265-1 (BJ65-10-K75).	26
13.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 1265-2 (BJ65-10-K76).	27
14.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 1265-2A (BJ65-10-K77)	28
	and the second s	

ILLUSTRATIONS (Continued)

FIGURE		PAGE
15.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 1265-3 (BJ66-10-K7)	29
16.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 1265-5 (BJ66-10-K8)	30
17.	Phillips 5-Ml Bomb Data For Determination of Threshold Failure Temperature of G.E. Fuel 166-1 (BJ66-10-K9).	31

PHILLIPS PETROLEUM COMPANI

BARTLESVIILE, OKLAHOMA

THERMAL STABILITY OF HYDROCARBON FUELS

Progress Report No. 9

For

Air Force Contract AF 33(657)-10639

I. INTRODUCTION

This report is concerned with activities during the quarterly period December 1, 1965 through February 28, 1966 under Air Force Contract AF 33(657)-10639.

the effect of storage temperature, storage duration, and dissolved oxygen content on thermal stability quality of five aviation turbine fuels. Thermal stability quality of the storage fuels is being determine the CRC-Modified (SSF) Coker and Phillips 5-ml Bomb procedure.

To determine if Phillips 5-mi Bomb procedure is as reliable as the Coker and the Mirex for measuring thermal stability quality, statistical analyses are shown in this report for the relationships that exist between the respective critical temperature ratings for (1) 5-mi Bomb vs. Minex; (2) 5-mi Bomb vs. Coker; (3) Coker vs. Minex.

Previous work in these areas along with related studies under this contract are given in References 1 through 10.

II. STORAGE PROGRAM

The aim of the present storage program is to determine if various aviation turbine fuels, selected to span a range in thermal stability quality from 300°F to 700°F, are susceptible to reactions during storage that would significantly lower the thermal stability quality of the fuels. Since determine is possibly time and temperature dependent and dissolved oxygen sensitive, the selected fuels have been stored at various temperatures in both an air-saturated state (40-100 ppm) and a dissolved-oxygen-removed state (<1 ppm) and are being tested periodically. The procedure for removing dissolved oxygen and preparing fuels for storage are described in References 3, 4 and 8.

Thermal stability quality is measured by the SSF Coker in terms of a threshold failure temperature which is defined as the minimum preheater outlet temperature required to devalop a colored deposit equivalent to a 3 color code (ASTM Method D 1660) as observed in a Tuberator produced by Eppi Precision Products, Inc. or 10 inches pressure rise across the filter. Storage

stability quality is measured by the magnitude of the change in thermal stability quality resulting from storage.

A. Storage Fuels

The test fuels selected for this study are:

Storage Fuel No. 1-(BJ63-10-B75). Phillips Base Oil No. 1 is a kerosine boiling range fraction of HF Alkylate, isoparaffinic in structure and low in aromatics. This fuel contains no additives.

Storage Fuel No. 2-(BJ63-10-G74). CRC SST Rig Fuel No. 1 is an "average quality" commercial turbine fuel, ASTM Type-A, supplied by Standard Oil Company of California. This fuel contains no additives.

Storage Fuel No. 3-(BJ64-10-G71). Texaco SO₂ extracted naphthenic kerosine. This fuel contains 5 lbs/1000 barrels of 2,6 ditertiary-butyl-4-methyl phenol '26B4M') antioxidant and 2 lbs/1000 barrels N,N'-disalicylidens-1, 2-propane-diamine metal deactivator (MD) additives.

Storage Fuel No. 4-(BJ64-10-G107). Texaco SO₂ extracted paraffinic kerosine. This fuel contains 5 lbs/1000 barrels N,N:-disecondary-butyl-paraphenylene-diamine (PD), antioxidant and 2 lbs/1000 barrels of MD additives.

Storage Fuel No. 5-(BJ64-10-G166). Hydrotreated West Texas kerosine supplied by Phillips. A portion of this fuel was collected from the refinery unit without exposure to the atmosphere (< 1 ppm dissolved oxygen) and is being maintained under a nitrogen blanket. This fuel contains no additives.

B. Physical and Chemical Properties of Storage Fuels

The methods used in Phillips laboratory to determine the physical and chemical properties are shown in Table 23 and the results are shown in Table 24. These data indicate that the fuels selected for this program are markedly different in (1) total potential gum, (2) total sulfur, (3) aromatics, (4) total nitrogen (5) trace copper, (6) lead, (7) water, (8) phenols, (9) total oxygen, (10) thermal stability (SSF Coker data) and (11) olefin content. In addition to these properties the fuels selected are representative of different substrates (paraffinic, naphthenic and isoparaffinic); and are also representative of fuels containing (1) no additives, (2) phenol-type and (3) amine-type additives. An attempt will be made to relate changes in storage stability quality of these fuels to their variation in physical and chemical properties and additive composition.

C. Storage Conditions

Evaluation of storage stability quality of the fuels described above is being made by periodically determining threshold failure temperatures (by the SSF Coker and 5-ml Bomo configurations) during storage at 40°F (ice house), ambient (field storage), 130°F (hot room), and 180°F (water bath).

D. SSF Coker Storage Results

 $^{(1.0)}$ SSF Coker data for all aging conditions obtained since the last report $^{(1.0)}$ are shown in Tables 6 through 17. A summary of all threshold failure temperatures for these fuels is shown in Table 1.

TABLE 1
SSF COKER THRESHOLD FAILURE TEMPERATURES OF STORAGE YUELS

SSF Coker TFT of Storage Fuels (a) . °F										
						Fuels	s Store	ed and	Teste	i
C+	rue				ir	D4				
						-				
2.100				_4_	_2_			. 2	4	_5_
72 Weeks	650	380	725	712	425	خداد		_	_	675
100 Weeks	J25	355	725	725	450	-	-	-	-	675
Initial	625	332	712	692	425	685	525	700	70 0	700
36 Weeks						-				712
72 Weeks	600	355	70C	725	425	650	-		725	688
100 Weaks									-	
6 Weeks	600	350	725	675	438	650	575	700	725	750
22 Weeks	587			700						688
54 Weeks	512	_33	663	712	450	700	575			
6 Days	517	333	725	725	437		-	_	_	_
18 Pays	538	33.0	675	700	432	700	550	762	737	725
36 Days	535	333	712	675	450	685	550	750	725	675
54 Days	513	333	450	625	675					
	Initial 36 Weeks 72 Weeks 100 Weeks 6 Weeks 22 Weeks 54 Weeks 6 Days 18 Days 36 Days	Time 1 72 Weeks 650 100 Weeks 625 Initial 625 36 Weeks 563 72 Weeks 600 100 Weaks 600 22 Weeks 587 54 Weeks 512 6 Days 517 18 Pays 538 36 Days 535	Storage Saturate Time 1 2 72 Weeks 650 380 100 Weeks 625 355 Initial 625 332 36 Weeks 563 355 72 Weeks 600 355 100 Weeks 600 350 22 Weeks 587 348 54 Weeks 512 33 6 Days 517 333 18 Pays 538 310 36 Days 535 333	Fuels Stored And Storage Time 1 2 3 72 Weeks 650 380 725 100 Weeks 325 355 725 36 Weeks 563 355 725 72 Weeks 563 355 725 72 Weeks 560 355 700 100 Weeks 600 350 725 22 Weeks 587 348 733 54 Weeks 512 33 663 6 Days 517 333 725 18 Pays 538 310 675 36 Days 535 333 712	Fuels Stored After A: Saturation Time 1 2 3 4 72 Weeks 650 380 725 712 100 Weeks 625 355 725 725 Initial 625 332 712 692 36 Weeks 563 355 725 700 72 Weeks 600 355 700 725 100 Weaks 600 350 725 675 22 Weeks 587 348 733 700 54 Weeks 512 33 663 712 6 Days 517 333 725 725 18 Pays 538 310 675 700 36 Days 535 333 712 675	Fuels Stored After Air Storage Saturation Time 1 2 3 4 5 72 Weeks 650 380 725 712 425 100 Weeks 625 355 725 725 450 Initial 625 332 712 692 425 36 Weeks 563 355 725 700 432 72 Weeks 600 355 700 725 425 100 Weaks 6 Weeks 587 348 733 700 450 54 Weeks 512 33 663 712 450 6 Days 517 333 725 725 437 18 Pays 538 310 675 700 432 36 Days 535 333 712 675 450	Fuels Stored After Air Storage Time Time Time	Fuels Stored After Air Storage Time Time Time	Fuels Stored After Air Storage Time Time Time	Fuels Stored After Air Storage Time Time Time Storage Time Time Saturation Time Time Time

Note: Blank spaces represent data to be obtained. It is not planned to obtain data for dashed spaces.

(a) Test fuels in this program are described as follows:

No. 1: Phillips Base Oil #1 (alkylate) No. 3: Texaco Naphthenic Kerosine No. 2: SST Rig Fuel #1 (RAF 176-63) No. 4: Texaco Paraffinic Kerosine No. 5: Phillips West Texas Hydrotreated Kerosine

The effect of storage duration and storage temperature on the thermal stability quality of the aerated fuels stored in air-scaled drums is shown graphically in Figure 1. These data were plotted such that the size of the data points approximates the previously determined standard deviation of $\pm 24.1^{\circ}$ F which was based on the assumption that no deterioration occurred at 40° F, ambient, or through 22 weeks at 130°F storage. Using the standard deviation as a criterion for repeatability Figure 1 shows that Storage Fuel 1, an HF alkylate containing about two per cent olefins, shows an improvement during 40° F storage; no deterioration up to 72 weeks ambient; a slow rate of deterioration at 130°F; and a rapid rate at 180°F. The maximum loss in thermal stability quality does not exceed 100°F at either 130°F or 180°F storage. Using the regression lines representing the points it appears that 52 weeks storage at 130°F is equivalent to about 8 weeks at 180°F.

Storage Fuel 2, RAF-176-63, which was reported to be unstable during ambient storage shows, no deterioration in this study up to 100 weeks at 40°F, 72 weeks ambient, 54 weeks at 130°F and 54 days at 180°F.

Storage Fuel 3, an SO₂ extracted naphthenic kerosine containing a phenolic antioxidant plus metal deactivator is storage stable up to 100 weeks at 40°F, 72 weeks at ambient and 36 days at 180°F. This fuel appears to be deteriorating very slightly after 54 weeks at 130°F, but the magnitude of this loss, if real, is not considered serious.

Storage Fuel 4, an SO₂ extracted maphthenic kerosine containing an amine type antioxidant plus metal deactivator shows no deterioration up to 100 weeks at 40°F, 72 weeks at ambient, 54 weeks at 130°F, and 36 days at 180°F.

Storage Fuel 5, a West Texas hydrotreated kerosine, shows no deterioration up to 100 weeks at 40°F, 72 weeks ambient, 54 weeks at 130°F and 54 days at 180°F.

It is observed from these data that none of the fuels in this program show any significant changes in storage stability quality at ambient field conditions. It is also recognized that none of the <u>distillate</u> fuels (Storage Fuels 2, 3, 4 and 5) show any serious deterioration at the elevated storage temperatures included in this program. From these observations it is concluded that the reported problem of storage instability for distillate-type jet fuels must be the results of (1) contamination and/or (2) exposure during storage to unlimited air such as occurs in the use of vented tanks and/or (3) poor repeatability and reproducibility of Coker measurements.

Figure 2 shows graphically the effect of storage duration and storage temperature on thermal stability quality for the aliquot samples of the fuels discussed above which were stored (and tested) with less than one part per million dissolved oxygen. It is noted that there are slightly greater deviations from the indicated regression lines which is expected in view of earlier findings (?) that, at very low concentrations of dissolved oxygen, thermal stability is extremely sensitive to small changes in dissolved oxygen. Consequently slight differences in dissolved oxygen content at the time of storage could account for the observed deviations. Overall it is apparent from these data that no serious deterioration occurs at any of the storage conditions in any of the fuels. This emphasizes that dissolved oxygen is an important contaminant affecting storage deterioration, and suggests that the removal of dissolved oxygen prior to storage, and prohibition of air exposure during storage is a preventive measure that can eliminate storage deterioration.

FIGURE 1 EFFECT OF STORAGE TIME AND TEMPERATURE ON THERMAL STABILITY OF AERATED JET FUELS AS MEASURED BY SSF COKER

FIGURE 2 EFFECT OF STORAGE TIME AND TEMPERATURE ON THERMAL STABILITY OF JET FUELS WITH DISSOLVED OXYGEN REMOVED PRIOR TO STORAGE AS MEASURED BY SSF COKER

E. 5-Ml Bomb Storage Results

Concurrently with SSF Coker determinations of the fuels in the storage program, 5-ml Bomb determinations were also made and all data obtained since last report are shown in Tables 18 and 19. (For a complete description of Phillips 5-ml Bomb procedure see Reference 8.) A summary of all the thermal stability data for the storage fuels is shown in Table 2.

A graphical representation of the effect of storage duration and storage temperature on thermal stability quality of the aerated fuels stored in air-sealed drums as measured by the 5-ml Bomb procedure is shown in Figure 3. For this presentation the repeatability of 5-ml Bomb measurements is assumed to be about + 25°F.

Storage Fuel 1, an HF alkylate, containing about 2 per cent olefins, shows an improvement in thermal stability quality during storage at 40°F; no deterioration during ambient field storage up to 72 weeks; a moderate rate of deterioration at 130°F; and a rapid rate of deterioration at 180°F. The maximum loss in thermal stability quality does not exceed 100°F at either 130°F or 180°F storage. Using the regression lines representing the data points, it appears that storage at 130°F for 54 weeks is equivalent to about 7 weeks at 180°F.

Storage Fuel 2, RAF 176-63, shows no deterioration up to 100 weeks at 40°F; 72 weeks at ambient; 54 weeks at 130°F, or 54 days at 180°F.

Storage Fuel 3, SO₂ extracted naphthenic kerosine containing a phenolic antioxidant and metal deactivator shows no deterioration at 40°F and progressively greater rates of deterioration at ambient, 130°F and 180°F. The maximum loss in thermal stability after 72 weeks at ambient is a marginal 40°F; after 54 weeks at 130°F is about 60°F and about 80°F after about 8 weeks at 180°F.

Storage Fuel 4, SO₂ extracted paraffinic kerosine containing an amine type antioxidant shows no deterioration at 40°F, ambient, or 130°F and a rapid rate of deterioration at 180°F. The maximum loss in thermal stability q lity after about 8 weeks at 180°F is about 100°F.

Storage Fuel 5, West Texas hydrotreated kerosine, shows no serious loss in thermal stability quality during storage at either 40°F, ambient, 130°F or 180°F.

Figure 4 shows graphically the storage data results using the 5-ml Bomb for aliquot fuels samples which were stored (and tested) with less than one part per million dissolved oxygen. The data points in this figure, show much less deviations from the regressions than was found for the SSF Coker data (Figure 2) and which indicates that the dissolved oxygen content is stabilized by the 50 psig nitrogen pressurization used in the 5-ml Bomb procedure. Again these data verify that in general fuels which deteriorate during storage in the presence of oxygen can be made storage stable if the dissolved oxygen is reduced to less than one part per million prior to storage and maintained throughout storage in this environment.

TABLE 2

5-ML BOMB THRESHOLD FAILURE TEMPERATURES OF STORAGE FUELS

Rating Criterion: Temperature which effects 25 per cent loss in light transmittance at 350 millimicrons wave length.

			5	-M1 B	omb T	FT of	Storage	Fuels	(a)	°F	
0.1	C 4	Fuel	s Sto	red A	fter	Air	Fuel	s Sto	red a		
Storage	Storage			<u>urati</u>			With				
Temp., °F	Time	1	2	_3_	4	_2_	1	2	3	4	_5_
40	72 Weeks	563	388	477	550	495	-	_			865
40	100 Weeks	574	372	499	551			-	-	-	
Ambient	Initial	503	395	517	526	471	773	865	822	835	874
Ambient	36 Weeks	450	377	448	502	450	776	870	840	868	874
Ambient	72 Weeks	476	383	476	517	422	721	882	830	890	854
Ambient	100 Weeks										
130	6 Weeks	479	394	440	491	477	787	-	822	864	855
130	22 Weeks	415	373	440	483	468	737	869	834	867	843
130	54 Weeks	413	358	476	551	447					
180	6 Days	410	391	507	525	446		_	_	_	-
180	18 Days	420	352	465	442	449	747	871	840	875	875
18C	36 Days	479	383	431	488	453	778	835	835	905	884
180	54 Days	458	374	.5	-	496	733				

Note: Blank spaces represent data to be obtained. It is not planned to obtain data for dashed spaces.

(a) Test fuels in this program are described as follows:

No. 1: Phillips Base Oil #1 (alkylate)
No. 2: SST Rig Fuel #1 (RAF-176-63)
No. 4: Texaco Paraffinic Kerosine
No. 5: Phillips West Texas Hydrotreated Kerosine

FIGURE 3 EFFECT OF STORAGE TIME AND TEMPERATURE ON THERMAL STABILITY OF AERATED JET FUELS AS MEASURED BY PHILLIPS 5-ML BOMB

FIGURE 4 EFFECT OF STORAGE TIME AND TEMPERATURE ON THERMAL STABILITY OF JET FUELS WITH DISSOLVED OXYGEN REMOVED PRIOR TO STORAGE AS MEASURED BY PHILLIPS 5-ML BOMB

F. Comparison of SSF Coker and 5-M1 Bomb Storage Data

The primary objective of the storage program is to determine the storage behavior of jet fuels covering a range in thermal stability quality of 300-700°F as measured by the SSF Coker. A second objective is to determine how effective the much simpler 5-ml Bomb procedure evaluates the storage stability quality of the same fuels. As shown in Figures 2 and 4 for fuels stored in the absence of dissolved oxygen the evaluation of storage stability quality by these two procedures is identical. For fuels stored in an air environment it is observed from Figures 1 and 3 that the two procedures are very similar in their evaluations. To aid in interpreting these results Table 3 shows a comparison of the two procedures based on a qualitative evaluation of the rate of change in thermal stability quality for each of the storage fuels at each storage temperature i.e., 5 fuels at 4 different storage temperatures for a total of 20 possible rate curves.

COMPARISON OF 5-ML BOMB AND SSF COKER EVALUATIONS OF STORAGE STABILITY QUALITY

TABLE 3

Fuels Stored in an Air Environment

Storage	Storage	Storage Stabi	ility Quality	
Fuel	Temp. °F	5 ml Bomb	SSF Coke	Notes Notes
No. 1	40	I	I	
	Ambient	N	N	
	130	M	M	
	180	R	R	
No. 2	40	N	N	
	Ambient	N	N	
	130	N	N	
	180	N	K	
No. 3	40	n	N	
- T T - T	Ambient	S	N	Difference in rates is marginal
	130	M	S	Magnitude of loss nearly equiva- lent at 54 weeks.
	180	R	N	Major difference
No. 4	40	N	N	
	Ambient	N	N	
-	130	N	N	
	180	R	N	Major difference
No. 5	40	N	N	
-	Ambient	N	· N	
	130	N	N -	
	180	N	N	

I Improvement in thermal stability quality (TSQ) during storage.

N No change in TSQ during storage.

S Slight rate of loss in TSQ during storage,

M Moderate rate of loss in TSQ during storage.

R Rapid rate of loss in TSQ during storage.

This comparison shows that the 5-ml Bomb evaluates the storage stability quality of 16 of the 20 possible conditions identically like that of the SSF Coker; at two conditions there are marginal differences; and at only two conditions major differences are observed. The major differences occur with the evaluations of the additive-containing fuels (Storage Fuels 3 and 4) at 180°F storage conditions. These fuels contain, in addition to metal deactivator, 2,6-ditertiary butyl-4-methyl phenol (26 B4M) and N,N'-disecondary-butyl paraphenylene-diamine (PD) antioxidants respectively. Evidence is found in the literature which indicates that the effect of antioxidants on storage stability quality is dependent on the test method used for evaluation. For example Kittredge (11) and Johnston (12) both show that 268LM and similar additives are not detrimental to storage stability quality at 130°F storage temperature as measured by Coker techniques which supports our findings in this work with the SSF Coker. Whisman (13) however, using radioactive trace techniques to study deposits formed by thermally stressing ten different faels in a bomb shows that the antioxidant 26BLM is unstable during 130°F storage for 26 weeks and participates to the "fullest extent" in reactions leading to deposits. Since participation of the 26B4M antioxidant in the deposits formed by thermal stressing was much lower prior to storage, Whiaman's work suggests that 26BAM is detrimental to storage stability quality of fuels at 130°F storage temperature. It should be noted in Figure 3 that the 5-ml Bomb procedure also recognizes this loss in storage stability quality during 130°F storage for Storage Fuel 3 which contains the 26B4M antioxidant. At 180°F storage Figure 3 shows, in addition to Storage Fuel 3, that the PD-additive fuel (Storage Fuel 4) is also detrimen al to storage stability quality.

Since these data indicate that the evaluation of storage stability quality depends on the test method, it becomes necessary to determine which procedure is more accurate. The final assessment of the accuracy of the test procedure will have to come from actual aircraft engine performance data. However, at this point it would appear that methods, which measure fundamental changes in the chemical structure of compounds entering into deterioration reactions such as measured by radioactive tracer techniques and light transmittance changes (5-ml Bomb procedure) should be considered more valid assessments than Coker techniques which rely on visual color changes of deposits on a metal surface. Consequently, the 5-ml Bomb procedure should be recognized as an acceptable storage stability rating procedure. Data will also be presented in this report to show its capabilities to evaluate JP fuel thermal stability quality.

III. CORRELATION STUDY OF SMALL-SCALE TEST METHODS FOR EVALUATING THE

THERMAL STABILITY QUALITY OF JP FUELS

There is an obvious need for improvement in the measurement of JP fuel thermal stability quality. A shortcoming of present specificatic is is the simple "pass-or fail" rating criterion, which does not require determination of a specific threshold failure temperature. It can be attributed to the large sample (5 gallons) and long time (8 hours) required to obtain a single point on the fuel temperature vs. fuel performance curve using the ASTM standard method of test D1660-64. It is further complicated by precision which is poor and has not yet been fully determined. This has resulted in meager, and frequently misleading, information concerning the initial level of thermal stability quality of JP fuels and subsequent changes in that level.

One area of interest in our work under this contract conterns the degree of association between the 5-ml Bomb procedure, which we have developed (8) for evaluating the thermal stability quality of IP fuels, and other small-scale test methods. Of all the small-scale test methods presently being considered, the 5-ml Bomb is by far the most economical of equipment, manpower, time, and fuel sample. Using it, a non-technical man can establish the usual "pass-or-fail" rating in an hour; or the complete fuel temperature vs. fuel performance curve, for a more desirable rating of the threshold failure temperature, within one 8-hour day on less than a pint of fuel. If it can be shown, with a high degree of confidence, that such an association exists, and that no loss in precision would result, it would be desirable to run regularly only the simpler test, the 5-ml Bomb. Its approval for use in monitoring JP fuel contamination during distribution, and storage, would fill a serious need. To this end, the statistical relationships between the Minex, 5-ml Bomb, and Coker fuel performance ratings have been studied.

A. Test Methods

The Minex was chosen for this study because its performance ratings of the thermal stability quality of JP fuels are considered to be the most valid attainable from the small-scale test methods which are currently available. Measurements of the change in heat transfer (h_f) characteristics of a surface being fouled by the thermal decomposition products of the fuel are made, and used to establish the rating temperature for initial loss in h_f. This is an interpolated value, obtained from a cross-plot of fuel temperature vs. per cent loss in h_f per hour. Fuel performance data were obtained from three different Minex rigs, one of which was modified by the addition of a low pressure, heated, fuel reservoir. However, a preliminary evaluation indicated that there was no reason to question the compatibility of the ratings from the different rigs, and all were treated equally in the statistical analysis.

The 5-ml Bomb ratings of threshold failure temperature are based on the temperature required to produce a 25 per cent loss in the initial light transmittance, measured at a wavelength of 350 millimicrons. This is an interpolated value, based upon 8 to 10 data points on the fuel temperature vs. loss in light transmittance curvs. While all of the 5-ml Bomb ratings were made in this laboratory during the past four years, the 5-ml Bomb procedure has undergone some modification during that period to improve precision. However, a preliminary evaluation indicated that there was no reason to question the compatibility of the ratings from the different procedures, and all were treated equally in the statistical analysis.

The Coker was included in this study for reference, because it is the test method currently used in JP fuel specifications. Coker ratings of threshold failure temperature are based upon the fuel temperature at the outlet of the preheater for a Code 3 (unwiped) deposit. This is an interpolated value, obtained by plotting fuel temperature vs. maximum preheater tube deposit rating. The additional information on filter pressure drop from the Coker tests was not used in this study, since it does not bear on the fouling of heat transfer surfaces. Fuel performance ratings were obtained using three different modifications of the Coker; (1) the ASTM-CRC Coker, which has a maximum op rating temperature of 450°F, (2) the CRC Research Coker, and (3) the CRC Modified (SSF) Coker. The Research Coker has a provision for operation with a heated fuel reservoir, but only data from ambient reservoir tests were used. The Modified Coker has a provision for

prestressing fuels by preheating, but no data from prestressed fuels were used. The Coker data were obtained from a wide variety of sources as shown in Table 22. A preliminary evaluation indicated that there was no reason to question the compatibility of the ratings from the different Cokers, and all were treated equally in the statistical analysis.

B. Test Fuels

A population sample of 30 different JP fuels, constituting all test fuels for which Minex data are available to us at this time, was used for this study. No attempt was made to explain any apparent discrepancies in any fuel performance ratings by any test methods, for use in selecting data. No attempt was made to compensate for differences in test equipment and/or test procedures, which exist in all three of the small-scale test methods. Where more than one rating was available on a given test fuel, by any of the test methods, it was included, but not averaged. Thus, no available ratings, on any of the test fuels, by any of the test methods, were excluded for any reason from this analysis.

A summary of all available Minex evaluations of JP fuel thermal stability quality, and relevant ratings of threshold failure temperature by the 5-ml Bomb and the Coker, is presented in Table 4. The detailed test data from which the Minex, 5-ml Bomb, and Coker ratings were derived are presented in Tables 20, 21, and 22, respectively. Graphical 5-ml Bomb data for 10 of the fuels in this study are shown in Figures 8 through 17.

Insufficient data were available on 4 of the 30 test fuels to allow an estimation of Minex fuel temperature for initial change in $h_{\vec{k}}$. However, more than one Minex rating was available on three of the test fuels, which provided a total of 30 Minex ratings for the statistical analysis. This is shown in the following tabulation, along with similar information for the other test methods.

	Minex	5-ml Bomb	Coker
Number of Test Fuels with Ratings	26	29	23
Number of Ratings for Analysis	30	. 44	65

Where multiple ratings were available on a given test fuel, by any of the test methods, they were used in all possible combinations for the statistical analysis. Thus, 46 comparisons were possible and were used to establish the relationship between the 5-ml Bomb and Minex ratings. However, each rating was used only once in calculations to establish the precision of this relationship, which provided 28 comparisons. This is shown in the following tabulation, along with similar information for the other relationships investigated.

	5-ml Bomb vs Minex	Coker Vs <u>Minex</u>	5-m2 Bomb vs Coker
Number of Comparisons for Relationshi	p 46	102	128
Number of Comparisons for Precision	28	25	33

SUBMARY OF ALL AVAILABLE MINEX EVALUATIONS OF JP FUEL THERMAL STABILITY QUALITY AND RELEVANT RATINGS OF THRESHOLD FAILURE TEMPERATURE BY 5-ML BOMB AND COKER

hest Fuel Identification Number		Fuel Temperature for Initial Change in hf, F			5-ML BOMB RATING Fuel Temperature for 25 % Loss in Light Transmission at 350 mu. °F	COKER RATING Fuel Temperature for Code 3 Preheater Tube Deposit, *F			
	General				GE(E)				SSF(c)
<u>Phillips</u>	Electric	Others	<u>GE</u>	AF	Mod.	<u>Phillips</u>	ASTM	Res.	Mod.
BJ62-10-K30 BJ62-10-K31 BJ63-10-G74	Kerosine JP-6	RAF-176-63	350 300 350	350		325 337 395 388 402	388 418 374 361 338 367 370	363	375
BJ64-10-G107		RAF-169YX-61		>625		562 561 516 463		700 < 45 0	692
ВЈ64-10-С144		RAF-178-64	300			350 365	300 325		
BJ64-10-0162		RAF-174-63	445 410	710		395 373	361 342 388 335 385 367	354 390 360 357 335	387 387 368
BJ64-10-G163		faF-175YX-63	470	490	. •	519 463	437	435 427 408	450
BJ64-20-G166		Storage Fuel 5		475		480	425	4	425
BJ64-10-G234		BAF176-64		430		463 384 383	363 368 384 394	363 375	
BJ64-10-K26		FA-S-1	305			354 342	338 368 325 363 350 325 313	351/	
BJ64-10-K148		F-63-18 & 523		575		574 531		537	
PJ64-10-L200 BJ65-10-G46 BJ65-10-G46A	465 465k	RAF-159X-60	500		284 365	508 385 397	375 375	655	
BJ65-10-R25	AD JA	PA -3-2A	393		5-5	451 429	450 450	467	
BJ65-10-X27		PA-S-28	425			535	50		
BJ65-10- K 62 BJ65-10- K 71	965-1	RAP176/63		470	>400	527 504 387 387	450 378 336		
BJ65-10-K72	965-2				356	40"	375 350		
BJ65-10-K73 BJ65-10-K74 BJ65-10-K75 RJ65-10-K77 BJ65-10-G1 BJ66-10-G1 BJ66-10-G2	965-3 1165-1 1265-1 1265-2 1265-24	Raf-16711-60 Raf-174-63		600 470	332 325 340 306 380	358 450 388 366 388 649 352	388 392 140	<450°	
BJ66-1C-K7 BJ66-10-K9 BJ66-10-K9	1265-3 1265-5 166-1	EAF-1771-63		460	>400 >400 350	369 361 382		475	

Fuel recervoir at 1 pans and 135°F. Ambient fuel reservoir. Fuel not prestressed.

C. Correlation Coefficients

Visual comparisons of the relationships between the fuel performance ratings are shown in Figure 5 for the 5-ml Bomb vs. Minex, Figure 6 for the Coker vs. Minex, and Figure 7 for the 5-ml Bomb vs. Coker. The 5-ml Bomb rating was chosen as the independent variable (X) in correlation studies with the Minex and Coker, because it is the easier to measure and its use for prediction of the Minex or Coker ratings is desired. The Coker rating was chosen to be the independent variable (X) in the correlation study with the Minex, because it is the current JP fuel specification test method. In particular, the general spread and shape of the points in Figure 5, where 5-ml Bomb Ratings are compared with Minex ratings, suggests more than a patternless scatter.

The degree of relationship between the fuel performance ratings determined by the three test methods was measured by calculation of correlation coefficients. The theory of linear correlation can be applied for those calculations because in each case we are concerned with a random sample of two random variables. The 99 per cent confidence interval estimate of the correlation coefficient between the various ratings is:

5-ml Bomb vs. Minex 0.452 ≤ 0.763 ≤ 0.909 5-ml Bomb vs. Coker 0.482 ≤ 0.760 = 0.899 Coker vs. Minex 0.014 ≤ 0.510 ≤ 0.804

Since none of these intervals includes zero, there is reason to believe that a relationship exists in each case. However, the Coker vs. Minex relationship is much poorer than either the 5-ml Bomb vs. Minex or the 5-ml Bomb vs. Coker relationships. This indicates that the precision of the 5-ml Bomb test method is probably better than that of either the Minex or the Coker test methods.

From this analysis, we can state with over 99 per cent confidence that there is a linear thermal relationship between the loss in 350 mu light transmittance, as measured by the 5-ml Bomb, and the loss in heat transfer characteristics, as measured by the Minex, or the formation of colored deposits, as measured by the Coker.

D. Regression Analysis

The relationships between the ratings of JP fuel thermal stability quality by the Minex, 5-ml Bomb and Coker were established by regression analysis. The regression line is shown in Figures 5, 6 and 7 for the different relationships. The standard estimate of error for the regression is also shown in each figure. The 95 per cent confidence interval estimates for the mean values and for single (future) values of Minex ratings were calculated, given 5-ml Bomb or Coker ratings of 400°F. Similar estimates were made for Coker ratings, given 5-ml Bomb ratings of 400°F. These results are summarised in the following tabulation.

	Minex Rating, given 4CO°F 5-ml Bosb Rating	Minex Rating, given 400°F Coker Rating	Coker Rating, given 400°F 5-ml Bomb Rating
Meen Value, P	386 ± 21	413 ± 22	389 ± 21
Single (Future) Value, oF	386 ± 108	413 ± 105	389 ± 122

REGRESSION EQUATION: $^{\circ}$ = 0.865X + 40.2 STANDARD ESTIMATE OF ERROR = 51.4 F CORRELATION COEFFICIENT = 0.763

FIGURE 5 RELATIONSHIP BETWEEN 5-ML BOMB AND MINEX RATINGS OF JP FUEL THERMAL STABILITY QUALITY

REGRESSION EQUATION: $\frac{4}{9}$ = 0.613X + 168.0 STANDARD ESTIMATE OF ERROR = 49.8 CORRELATION COEFFICIENT = 0.510

FIGURE 6 RELATIONSHIP BETWEEN COKER AND MINEX RATINGS OF JP FUEL THERMAL STABILITY QUALITY

FIGURE 7 RELATIONSHIP BETWEEN 5-ML BOMB AND COKER RATINGS OF JP FUEL THERMAL STABILITY QUALITY

It is of interest that a 95 per cent confidence interval estimate for the slope of the true regression line relating 5-ml Bomb and Minex or Coker ratings includes one. Thus, there may be a linear regression of numerical equality between these ratings, within the range of these data. This is shown in the following tabulation, along with the regression equations for the relationships investigated.

	5-ml Bomb	Coker	5-ml Bomb	
	vs. <u>Minex</u>	vs. Minex	vs. Coker	
Regression Equation	Ŷ=0.865X+40.2	X=0.613X+168.0	^ Y=1.137X+65.9	
Slope Interval	0.638 to 1.092	0.399 to 0.827	0.960 to 1.314	

Also indicated is that the 5-ml Bomb and Minex procedures, and the 5-ml Bomb and Coker procedures, used to obtain these fuel performance ratings are at equal levels of test severity.

E. Source of Errors

The precision with which it has been possible to establish the relationships between the Minex, 5-ml Bomb and Coker ratings of JF fuel thermal stability quality is not impressive; however, this is not surprising in view of the well established repeatability problems encountered in measuring thermal stability quality. For example, as previously reported, the standard deviation with our SSF Coker, under the very carefully controlled conditions of our current JP fuel storage stability study, is ± 24 °F. The standard estimate of error is shown in Figures 5, 6 and 7 for the different relationships investigated, and are summarized in the following tabulation.

	5-ml Bomb	Coker	5-ml Bomb
	vs. Minex	vs. Minex	vs. Minex
Standard Estimate of Error, of	± 51.4	<u>+</u> 49.8	± 59.0

The lack of fit by individual points to the regression lines relating Minex, 5-ml Bomb and Coker ratings results from:

- (1) Errors of measurement in fuel performance. The precision of these test methods has not been established, and so the magnitude of this measurement error is unknown.
- (2) Contamination of fuel during sampling and handling. This is suspected in sample GE-465, where a large discrepancy in Minex rating is evident when compared with C3-465A, and may be present in others to an unknown extent.
- (3) Inequality of response by a given test fuel. It is masked in this study by the above mentioned measurement errors and sample contamination, as well as changes in test methods which occurred during the time period these fuels were rated.

IV. EFFECTS OF CONTAMINANTS ON THERMAL STABILITY QUALITY AS MEASURED BY

PHILLIPS 5-ML BOMB PROCEDURE

Experimental data to determine the effects of thirteen different contaminants in one base fuel is now complete. Triplicate 5-ml Bomb determinations on each of these fuels have been made and the data are being analyzed statistically to determine (1) the effect of trace quantities of the contaminants on the thermal stability quality of the base fuel (Storage Fuel 5, West Texas hydrotreated kerosine) and (2) the precision of 5-ml Bomb measurements. All data and results will be shown in the next monthly progress report.

V. MISCELLANEOUS 5-ML BOMB TESTS

Two fuels from Wright-Patterson Air Force Base and eight fuels from General Electric Company were submitted for 5-ml Bomb determinations. These fuels were also used in the correlation studies described above. Detailed 5-ml Bomb data for these fuels are shown in Table 21. Graphical representation of these data are shown in Figures 8 through 17. A description of the fuels and a summary of the threshold failure temperatures is given in Table 5.

TABLE 5
SUMMARY OF MISCELLANEOUS REQUESTS FOR 5-ML BOMB EVALUATIONS

BJ-No.	Description	From	5-ml Bomb TFT, °F
BJ66-10-G1	RAF-167YX-60	WPAFB	649
BJ66-10-G2	RAF-174-63	WPAFB	392
BJ65-10-K73	965-3	G.E.	358
BJ65-10-K74	1165-1	G.E.	450
BJ65-10-K75	1265-1	Ġ.E.	388
BJ65-10-K76	1265-2	G.E.	366
BJ65-10-K77	1265-2A	G.E.	388
BJ66-10-K7	1265-3	G.E.	369
BJ66-10- K 8	1265-5	G.E.	381
BJ66-10-K9	166-1	G.E.	382

VI. CONCLUSIONS

In a continuing program to determine the storage stability quality of five ASTM Type-A aviation turbine fuels selected to span a range of thermal stability quality from about 300°F to 700°F as measured by the SSF Coker the following conclusions are drawn:

(1) At 72 weeks all of the storage fuels continue to show no deterioration in ambient field or 40°F storage. Four of the five fuels (Storage Fuels 2, 3, 4 and 5) showed no severe losses in thermal stability quality up to 54 weeks at 130°F or 36 days at 180°F. Storage Fuel 1, an HF Alkylate containing about 2 per cent olefins showed a rapid rate of deterioration of about 100°F within 6 days at 180°F, and a moderate rate of deterioration of about 100°F within 54 weeks at 130°F. The data indicate that there are no

FIGURE 8 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF RAF 167YX-60 (BJ66-10-G1)

FIGURE 9 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF RAF- 174-63 (BJ66-10-62)

FIGURE 10 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G. E. FUEL 965-3 (BJ65-10-K73)

FIGURE 11 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G, E, FUEL 1165-1 (BJ65-10-K74)

FIGURE 12 PHILLIPS 5-KI, BOMB DATA FOR DETERMINATION OF THRESKOLD FAILURE TEMPERATURE OF G. E. FUEL 1265-1

FIGURE 13 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G. E. FUEL 1265-2 (BJ65-10-K76)

FIGURE 14 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G. E. FUEL 1265-2A (BJ65-10-K77)

FIGURE 15 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G, E, FUEL 1265-3 (BJ66-10-K7)

FIGURE 16 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G. E. FUEL 1265-5 (BJ66-10-K8)

FIGURE 17 PHILLIPS 5-ML BOMB DATA FOR DETERMINATION OF THRESHOLD FAILURE TEMPERATURE OF G. E. FUEL 166-1 (BJ66-10-K9)

storage instability problems at ambient field conditions for the fuels in this study during sealed-drum storage.

- (2) Removal of dissolved oxygen (to less than 1 ppm) from the storage fuels of low (350°F) and average (425°F) thermal stability quality continue to show in every case, gross improvements (175-325°F) in thermal stability quality. Only slight improvements (0-50°F) were found for fuels of exceptionally high (625-725°F) thermal stability quality.
- (3) Removal of dissolved oxygen (to less than 1 ppm) prior to storage, followed by SSF Coker determinations in the absence of dissolved oxygen, maintained the four stable fuels (Storage Fuels 2, 3, 4 and 5) at exceptionally high thermal stability and prevented deterioration of Storage Fuel 1. This indicates that removal of dissolved oxygen prior to storage results in improved storage stability quality.

Evaluation of the storage stability quality of the fuels in the storage program with Phillips 5-ml Bomb procedure resulted in the following:

- (1) An evaluation of the storage stability quality of fuels stored in the absence of dissolved oxygen showed no deterioration of any of the fuels at any of the storage conditions which is in exact agreement with the Coker evaluations of these fuels.
- (2) For fuels stored in the aerated state the 5-ml Bomb evaluated 16 out of 20 (five fuels at four different storage temperatures) identically like that of the Coker; 2 of the 20 showed marginally different evaluations; and only 2 of the 20 could be considered major differences in evaluations.

Based upon a statistical analysis of all available Minex evaluations of JP fuel thermal stability quality, and relevant ratings of threshold failure temperature by the 5-ml Bomb and Coker test methods, it is concluded that:

- (1) With over 99 per cent confidence, there is a linear thermal relationship between the loss in heat transfer characteristics, as measured by the Minex, and the loss in 350 mm light transmittance, as measured by the 5-ml Bomb. A similar relationship exists between the formation of colored deposits, as measured by the Coker, and the loss in 350 mm light transmittance, as measured by the 5-ml Bomb.
- (2) A 95 per cent confidence interval estimate of the slope of the true regression line for 5-ml Bomb vs. Minex and 5-ml Bomb vs. Coker ratings indicates that these relationships may be of numerical equality. Thus, given a 5-ml Bomb rating of 400°F, the mean Minex and Coker ratings will be between 365-407 and 368-410°F, respectively. Also, this indicates that the 5-ml Bomb and Minex procedures, and the 5-ml Bomb and Coker procedures, are at equal levels of test severity.
- (3) The precision of the 5-ml Bomb test method is probably better than that of either the Minex or the Coker test methods.

VII. RECOMMENDATIONS

Data in this report show with a high degree of confidence that the 5-ml Bomb procedure is related to other thermal stability devices such as the Coker and the Minex procedures. The data also suggest that the precision of the 5-ml Bomb method is equivalent to or better than the Coker method. Finally, 5-ml Bomb data for storage stability evaluations is very similar to Coker evaluations and might be more a surate. It is therefore recommended that the much more economical, and le s complex 5-ml Bomb procedure be used for monitoring the storage and there is stability qualities of JP fuels.

VIII. REFERENCES

- 1. Bagnetto, L., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 1, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 3581-63R, September 1963.
- 2. Bagnetto, L., Quigg, H. T., "Thermal Stability of flydrocarbon Fuels," Progress Report No. 2, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 3654-63R, December 1963.
- 3. Bagnetto, L., Quigg, H. T., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 3, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 3714-64R, March 1964.
- 4. Bagnetto, L., Quigg, H. T., "Thermal Stability of Hydrocarbon Fuels," First Year Technical Documentary Report, APL TDR 64-89, Part I, Air Force Contract AF 33(657)-10639, July 1964.
- 5. Bagnetto, L., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 4, Air Force Contract AF 33 (657)-10639, Phillips Petroleum Company Research Division Report 3873-64R, September 1964.
- 6. Bagnetto, L., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 5, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 3963-64R, December 1964.
- 7. Bagnetto, L., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 6, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 4055-65R, March 1965.
- 8. Bagnetto, L., "Thermal Stability of Hydrocarb n Fuels," Second Year Technical Documentary Report, APL TDR 64-89, lart II, Air Force Contract AF 33(657)-10639, August 1965.
- 9. Bagnetto, L., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 7, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 4236-65R, September 1965.
- 10. Bagnetto, L., "Thermal Stability of Hydrocarbon Fuels," Progress Report No. 8, Air Force Contract AF 33(657)-10639, Phillips Petroleum Company Research Division Report 4304-65R, December 1965.
- 11. Kittredge, G. D., Streets, W. L., "Storage Life of JP-6 Grade Jet Fuels" Paper 773B Presented at SAE National Fuels and Lubricants Meeting, Tulsa, Oklahoma, October 30-31, 1963.

- 12. Johnston, R. K., Anderson, E. L., "Effect of Additives on the Storage Stability of High Temperature Fuels," Air Force Report AFAPL-TR-64-142, Air Force Contract AF 33(657)-11246, December 1964.
- 13. Whisman, M. L., Ward, C. C., "Storage Stability of High Temperature Fuels," Bureau of Mines Progress Report No. 5, Air Force Contract DO(33-615)-64-1009, November 1965.

TABLE 6

SS FUEL COKER DATA AFTER AGING AERATED JET FUELS 100 WEEKS AT 40°F

Fuel Flow Rate: 2.5 Lb/Hr.

		Temperat	tures °F	Filter			
Storage		Pre-		Δ Pro	essure	Preheater Deposi	t Color Ratings
Fuel	Run Date	heater	<u>Filter</u>	"Hg	Min.	Unwiped	Wiped
No. 1	1-7-66	600	700	0.10	300	0000001112222	0000000112222
	1-10-66	650	750	0,00	300	0000000111441	0000000011331
	1-11-66	625	725	0.00	300	0000001122331	0000001122331
No. 2	1-12-66	35 0	450	0.10	300	0000000111111	0000000111111
	1-13-66	400	500	25.0	59.84	000000011444	0000000011444
æ	1-14-66	375	475	25.0	140.60		0000000001111
No. 3	1-24-66	700	800	0.00	300	0000011112221	0000000111111
_	1-25-66	750	850	0.00	300	0000111114153	0000001114152
	1-26-66	725	825	0.00	300	000111122332	0000011111332
No. 4	1-27-66	700	800	0.00	300	0000011112221	0000000111121
	1-28-66	750	850	0.00	300	0000144545551	0000011125551
	1-31-66	725	325	0.00	300	0000001133322	0000000113322
No. 5	2-15-66	425	525	0,10	300	0000011112222	0000000011111
-	2-16-66	475	575	0.00	300	0000000134433	0000000033322
	2-17-66	450	550	0.00	300	000000012333	0000000001112

SS FUEL COKER DATA AFTER AGING AERATED JET FUELS 54 WEEKS AT 130°F

Fuel Flow Rate: 2.5 Lb/Hr.

Storage	•	Temperat Pre-	ture.°F Filter		_	Preheater Deposit Color Rating		
Fuel	Run Date	heater	<u>F</u> .	E STATE	Min.	Unwiped	Wiped	
No. 1	1-17-66 1-18-66 1-19-66	550 500 525	650 600 625	0.10 0.20	300 300 300	0000001123544 0000000111111 0000001112554	0000001123 <i>544</i> 0000000111111 0000001112 <i>554</i>	
No. 2	1-20-66 1-21-66	325 350	425 450	2.0 25.0	300 174.00	0000000011111	0000000001111	
No. 3	12-15-65 12-16-65 12-17-65	700 650 675	800 750 775	0.00 5.8 0.00	300 300 300	0000001114432 0000011111222 0000001311221	0000001114432 0000000111222 0000001311221	
No. 4	2-1-66 2-2-66 2-4-66	700 750 725	800 850 825	0.00 0.00 0.00	300 300 300	0000011122222 0000111553333 0000001144333	0000000122222 0000001443353 00000011/	
No. 5	2-10-66 2-11-66 2-14-66	425 475 450	525 575 550	0.10 0.00 0.00	300 300 300	0000000112222 0000001224433 0000000133333	0000000011111 0000000013233 0000000011123	

TABLE 8

SS FUEL COKER DATA AFTER AGING AERATED JET FUELS 54 DAYS AT 180°F

Fuel Flow Rate: 2.5 Lb/Hr.

Ct ama ma	Tamperatures. °F		Filter Δ Pressure		Preheater Deposit Color Ratings		
Storage Fuel	Run Date	heater	Filter	"Hg	Min.	Unwiped	Wip4d
No. 1	11-10-65 11-11-65	525 475	625	0.00	300 300	0000000112444 0000000011111	0000000001111
	11-12-65	500 525	575 600 625	0.00	300 300	0000000111222	0000000111122
No. 1	(Dissolved		Removed Ai		•	OCCOCCOLLINAT	COCCOUNTIER
	11-19-65	525	625	0.10	300	0000000744444	0000000111444
No. 2	1-5-66 1-6-66	325 350	425 450	1.8 25.0	300 291.70	0000000011111	0000000011111
No. 3	(To be det	ermined)					
No. 4	(To be det	ermined)					
No. 5	2-7-66 2-3-66 2-9-66	425 475 450	525 575 550	0.1 0.1 0.2	300 300 300	0000001111222 0000001134443 0000000122333	0000000111122 0000000011113 0000000112333

Research Division Report 4390-66R

TABLE 9

SSF FUEL COKER DATA AFTER AGING JET FUELS WITH DISSOLVED OXYGEN REMOVED

100 WEEKS AT 40°F

Fuel Flow Rate: 2.5 Lb/Hr.

Storage Fue!	Run Date	Pre- heater	Filter	Fili △ Pro "Hg	ter essure Min.	Preheater Deposition	it Color Ratings Wiped
No 5	2-18-66	650	750	0.0	300	0000000112222	0000000112222
	2-21-66	700	800	0.00	300	00000000134433	0000000033322
	2-22-66	675	775	0.00	300	0000000012333	000000001112

CARACTA AREA HAS BEINGERSENER TENERALENDE BEINGE BERKER SERVER

Research Division Report 4390-66R

TABLE 10

SS FUEL COKER DATA AFTER AGING JET FUELS WITH DISSOLVED CXYGEN REMOVED

54 WEEKS AT 130°F

Fuel Flow Rate: 2.5 Lb/Hr.

Storage		Temperatures.°F				Preheater Deposit Color Rating	
Fuel	Run Date	heater	Filter	"Hg	Min.	Unwiped	Wiped
No. 1	2-23-66	700	800	0.00	300	0000001223333	0000001223333
	2-24-66	650	750	0.00	300	0000001122222	0000000112222
	2-25-66	675	775	0.00	300	0000001112212	0000001112212
No. 2	3-1-66	550	650	0.00	300	0000001212_22	0060001111222
	3-2-66	600	700	25.0	108.75	0000003223443	0000000122443
	3-3-66	575	675	0.30	300	0000013311221	0000001311221

TABLE 11

SS FUEL COKER DATA AFTER AGING JET FUELS WITH DISSOLVED OXYGEN REMOVED

54 DAYS AT 180°F

Fuel Flow Rate: 2.5 Lb/Hr.

	Temperatures. °F			Pilter		-		
Storage		Fre-		Δ Pre	ssure	Preheater Deposit Color Ratings		
Fuel	Run Date	heater	<u>Filter</u>	aHg	Min.	Unwiped	Wiped	
No. 1	12-9-65 12-10-65 12-13-65 12-14-65	650 600 625 600	750 700 725 700	0.00 0.00 0.00 0.10	300 300 300 300	0000014444221 0000000231111 0000001223321 0000000112222	0000014444221 0000000221111 0000001223321 0000000112222	
No. 2	(To be determined)							
No. 3	(To be det	ermined)						
No. 4	(To be det	ermined)						
No. 5	3-4-66 3-7-66 3-8-66	650 700 675	750 800 775	0.10 0.00 0.00	300 300 300	0000001112222 0000001133333 0000001122333	0000001112222 0000001133333 0000001122333	

TABLE 12:

OXYGEN CONSUMPTION THROUGH SSF CCKEF, AFTER AGING AERATED JET FUELS 100 WEEKS

AT 40°F

Ch	-	rough Cok	ker, ppm Per Cent			
Storage Fuel	Run Date	Filter Temp., °F	Before	After	Δ	Consumed
No. 1	1-7-66	700	74.3	11.2	63.1	85.1
	1-11-66	725	76.8	9.6	67.2	87.5
	10-66	750	76.7	9.4	67.3	87.6
No. 2	1-12-66	450	65.8	54.2	11.6	17.6
	1-14-65	475	64.0	56.8	7.2	10.2
	1-13-66	500	67.2	39.6	27.6	41.1
No. 3	1- 66	600	54.0	5.7	48.3	89.5
	1-2 <i>-</i> 66	825	47.0	4.6	42.4	90.3
	1-25-66	850	50.7	4.9	45.8	90.5
No. 4	1-27-66	800	60.2	7.5	2.7	87.8
	1-31-66	825	67.5	7.3	60.2	89.3
	1-28-66	850	65.7	7.9	57.8	88.0
No. 5	2-15-66	525	60.8	10.9	49.9	82.1
	2-17-66	550	58.5	10.2	48.3	82.6
	2-16-66	575	61.0	10.6	50.4	82.5

TABLE 13

OXYGEN CONSUMPTION THROUGH SSF COKER AFTER AGING AERATED JET FUELS 54 WEEKS

AT 130°F

04			Diss	Dissolved Oo Through Coker, ppm					
Storage Fuel	Run Date	Filter Temp., °F	Before	After	\triangle	Per Cent Consumed			
No. 1	1-18-66	600	79.6	11.6	68.0	85.4			
	1-19-66	625	82.4	11.2	71.2	86.4			
	1-17-66	630	84.3	4.9	79.4	94.2			
No. 2	1-20-66	425	67.1	61.2	5.9	87.9			
	1-21-66	45 0	61.8	44.9	16.9	27.3			
No. 3	12-17-65	700	39.7	4.0	35.7	89.9			
	12-16-65	750	46.2	5.4	40.8	88.3			
	12-15-65	800	45.2	4.7	39.5	87.4			
No. 4	2-1-66	800	64.0	8.1	55.9	87.3			
	2-4-66	825	63.3	7.7	55.6	87.8			
	2-2-66	850	60.4	7.3	53.1	87.9			
No. 5	2-10-66	525	59.4	10.0	49.4	83.2			
	2-14-66	550	59.4	9.2	50.2	84.5			
	2-11-66	575	61.4	9.5	51.9	84.5			

TABLE 14

OXYGEN CONSUMPTION THROUGH SSF COKER AFTER AGING AERATED JET FUELS

54 DAYS AT 180°F

			Disselved O2 Through Coker, ppm					
Storage Fuel	Run Date	Filter Temp.,°F	Before	After		Per Cent Consumed		
No. 1	11-11-65 11-12-65 11-10-65 11-15-65	575 600 625 625	70.5 70.0 64.3 68.3	3.8 4.0 4.2 3.6	66.7 66.0 60.1 64.7	94.6 94.3 93.5 94.7		
No. 1	(Dissolved	Oxygen Remove 625	d After Agi	ing) 				
No. 2	15-66 1-6-66	425 450	68.9 70.0	58.3 47.8	10.6 22.2	15.4 31.7		
No. 3	(To be dete	rmined)						
No. 4	(To be dete	rmined)						
No. 5	2-7-66 2-9-66 2-8 -66	525 550 575	61.3 62.5 56.3	9.2 9.3 9.5	52.1 53.2 46.8	85.1 85.1 84.8		

TABLE 15

OXYGEN CONSUMPTION THROUGH SSF COKER AFTER AGING JET FUELS WITH

DISSOLVED OXYGEN REMOVED 100 WEEKS AT 40°F

			Dissolved O2 Through Coker, ppm					
Storage Fuel	Run Date	Filter Temp., °F	Before	After		Per Cent Consumed		
No. 5	2-18-66	75 0	0.7	مدينه				
	2-22-66	775	0.7	***	-			
	2-21-66	800	0.7		****			

Research Division Report 4390-66R

TABLE 16

OXYGEN CONSUMPTION THROUGH SSF COKER AFTER AGING JET FUELS WITH DISSOLVED

OXYGEN REMOVED 54 WEEKS AT 130°F

			Dissolved O, Through Coker, ppm					
Storage Fuel	Run Date	Filter Temp., °F	Before	After	Δ	Per Cent Consumed		
No. 1	2-24-66 2-25-66 2-23-66	750 775 800	0.8 0.5 1.0	marke ma marke ma marke ma ma ma ma ma ma ma ma ma ma ma ma ma	****			
No. 2	3-1-66 3-3-66 3-2-66	650 675 700	0.7 0.7 0.5	***				

OXYGEN CONSUMPTION THROUGH SSF COKER AFTER AGING JET FUKLS WITH DISSOLVED

OXYGEN REMOVED 54 DAYS AT 180°F

			Diss	Dissolved O, Through Coker, ppm					
Storage Fuel	Run Pate	Filter Temp., °F	Before	After		Per Cent Consumed			
No. 1	12-10-65	700	0.2						
	12-14-65	700	0.2		-	****			
	12-13-65	725	0.2		*****	-			
	12-9-65	750	0.3			,			
No. 2	(To be determined)								
No. 3	(To be dete	ermined)							
No. 4	(To be determined)								
No. 5	3-4-66 3-8-66	750 775	0.7 0.6			20100 SA 144			
	3-7-66	800	0.5		فيتدفون				

CABLE 18

5-M. BOMB DATA FOR AERATED FUELS IN STORAGE PROCRAM

Storage		Log		Temp.	Light 7 At 350	Light Transmittance At 350 Millimicrons	ance		
Fuel	BJ-No.	No.	Run Date	°F (Y)	Before	After	Loss(X)	Regression Data	
Aged 100	Aged 100 Weeks at 40°F (Aerated)	? (Aere	2-14-66	455	0.99	56.0		$\Phi = 18.150X + 275.0$	(8)
ı		`	} }	201	}	53.0	13.0	S.E.E. = 14.6	<u> </u>
				267		51.0		$TFT_1 = 728^{\circ}F$	છ.
				370		0.09		$TFT_2 = 574$ °F	()
				30T		65.0		ł	
				601 613		0.84	18.0		
				5.55 5.55 5.55		0.7	4.00		
				767		38.0	28.0		
	. , . ,			1	(1		· · · · · · · · · · · · · · · · · · ·	
8	79-01-79	348	1-14-00	372	0.66	78.0		1 = 1.31% + 33%.5	B (
				405		50.3		S.E.E. ■ 3.9	<u>e</u> (
				395		55.5		1'k'I' = 372°k	છે:
				347		22.5		$Ir_2 = 5/2^r$	(g)
				382		200			
				340		95.2	ر س ا		
				361		85.0			
m	965-01-79	379	3-4-66	067	97.0	75.0		$\dot{X} = 7.222X + 323.0$	(B)
•	•		•	38	•	97.0		S.E.E. = 14.8	<u>(</u> 2
				350		97.0		TFT, = 504°F	E
				450		78.0		TFT_2 = 499°F	.
				405		85.0		ı	
				380		89.0	8.0		
				580		61.0	36.0		
				534		0.69	0.8		
•						0.49	33.0		
(See expi	(See explanation of footn	ootrote	otes at end of	f table.)	_				

TABLE 18 (Continued)

	Storage		Log		Temp.,	Light At 35	Light Transmittance At 350 Millimicrons	tance crons		
	Fuel	BJ-No.	No.	Run Date	°F (T)	Before	After	Loss (X)	Regression Data	ıta
	Aged 100	Aged 100 Weeks at 40°F (Aerated)	(Aere	(pet)					<	
	. 4	64-10-C132	377	2-3-66	432	0.96	83.0	13.0	$\hat{\mathbf{Y}} = 9.748\mathbf{X} + 317.4$	(g)
					510		77.6	18.4	S.E.E. = 16.1	<u> </u>
					383		90.0	0.9	$TFT_1 = 561^{\circ}F$	છ
					7.47		29.6	16.4	$TFT_{2} = 551^{\circ}F$	(
					570		0.69	27.0	₹	
					550		70.0	% %		
					599		67.0	29.0		
					620		68.0	28.0		
					530		24.0	22.0		
1.	ĸ	(To be determined)	o du func							
B										
	Aged 54 W	Aged 54 Weeks at 130°F (Asrated)	(Aere	tea)					-	
	1	64-10-B23	353	1-18-66	417	24.0	36.0	18.0	$\hat{Y} = 10.446x + 272.4$	B
					223		33.0		S.E.E. = 20.6	<u>e</u> .
					374		44.0		TFT1 = 534°F	છે.
				-	300		51.0		$TFT_2 = 4.13$ °F	(g
					350		0.74		Į.	
					38		43.0	0.11		
					017		9.04	13.4		
					450		38.0	16.0		
					084		34.0	8.0		
	(See expl	(See explanation of footnotes at end of table)	otnote	is at end of	table)					

(See explanation of footnotes at end of table.)

	ta a	3 200	EEE	3 500
	Regression Data	X = 4.265X + 291.3 S.E.E. = 17.3 TFT1 = 398°F TFT2 = 358°F	Y = 7.426x + 294.5 S.E.E. = 2.7 TFT = 420°F TFT = 476°F	Y = 10.266X + 300.0 S.E.E. = 15.4 TFT ₁ = 557°F YFT ₂ = 551°F
tance	Loss(X)	12 23,50 23,50 10,00 4,40 10,0	8 ~ 14 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	442445 600000000000000000000000000000000000
Light Transmittance At 350 Millimicrons	After	50.00 30.00 30.00 50.00	88.00 93.00 76.00 76.00 75.00 75.00	74.0 94.0 78.0 81.6 86.0 72.0
Light At 35	Before	0.63	0.86	0.86
femp.	°F (Y)	320 330 330 330 330 330 330 330 330 330	455 555 555 555 555 555 555 555 555 555	562 252 451 407 599 585 585
	Run Date	2-1-66	.2-16-66	2-2-66
Log	N.C.	373 373	363	374
	BJ-Wo.	Aged 54 Weeks at 130°h (Aerated) 2 64-10-G58 373 2-1	<i>64-10-</i> G	64-10-G125
Storage	Fuel	Aged Su	m 	4

(See explanation of footnotes at end of talle.)

TABLE 18 (Continued)

		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	<u></u>	ਉ							(B)	<u>(a)</u>	<u></u> છે.	(g				(s)	<u>@</u>	<u>ં</u>	ਉ					
	Regression Data		1 = 5.045A + 507.1 S.E.E. = 9.2	TFT, = 448°F	TBT = 447°F	₹						$\hat{\mathbf{Y}} = 16.178X + 263.6$	S.E.E. = 15.7	TFT = 668°F	$TFT_2 = 458^{\circ}F$	•			X = 3.232X + 323.5	S.E.E. = 15.6	$TFT_1 = 404^{\circ}F$	$TFT_2 = 374^{\circ}F$	ł				
ttance	fore After Loss(X)		7.07 7.7				29.4	32.4	37.4	7,92						ار مرور	16.3							15.0	0.9	24.0	31.0
Light Transmittance At 350 Millimierons	After	6	92.6	72.6	89.0	79.6	70.6	9.79	62.6	73.6		4.5	37.5	34.2	23.	40	31.7	40.5	23.0	0.09	51.0	32.0	37.0	0.84	57.0	0.64	32.0
Light At 350	Before	0	700									0.84	•						62.0			63.0					
Temp	°F (T)	3	350	450	375	425	475	500	525	044		367	044	0947	905	702	547	386	057	305	370	425	9 7	385	341	392	970
	Run Date	ted)	24-TO-00								ted)	1-10-66							2-15-66								
Log	No.	(Aere	Š V								(Aere	342							392								
-	BJ-No	Aged 54 Weaks at 130°F (Aerated)	6/TD-0T-40	_				Ξ			Wasks at 180°F	1 64-10-B31 342 1-10-66	•				-	_	64-10-653								
Storege	Fuel	Aged 54	ý -		-			÷			Avinc. 54	1			-		-		Q		-	-					

TABLE 18 (Continued)

			(a)	<u></u>	(a)						(a)	(a)	૿	(q)					
Regression Data			Y = 7.835X + 296.6 S.E.E. = 12.2	TFT, = 4,92°F	1, 12 = 470'r					•	$\hat{Y} = 6.588X + 314.6$		II	TFT. = 476°F	V				
ttance icrons Loss(X)			3.0	19.7	3.5°	32.0	31.0	15.0	30.0		12.0	ų.9	. 1 28 . 1 . 1	32.0	32.7	19.4	7.4	10.0	22.0
Light Transmittance At 350 Millimicrons fore After Loss			92.0	82.3	67.0	70.0	71.0	87.0	72.0		86.0	91.6	9.69	66.0	65.3	78.6	9.06	88.0	0.97
Light At 350 Before			102.0						=	ted)	98.0								
Temp.			385 305	450	575 578	248	550	750	520	ns (Aera	007	350	475	. 515	575	425	375	390	450
Run Date	ted)		2-8-66							ald Conditio	12-16-65			•					
Log	F (Aeraratned)	rmined)	381							ent Fie	335								
BJ-No.	Aged 54 Weeks at 180°F (Aera)	(To be determined)	64-10-6198							Yeeks at Ambi	Nc. 3 64-10-G73 335 12-16-65 400 98								
Storage. Fuel	ARed 54 1	4	<i>بر</i>							Aged 72 1	Nc. 3								

Threshold failure Linear regression equation not determined since data points are curvilinear. temperatures obtained graphically. NOTE 1:

The dependent variable (Y-axts) in the regression equation.

The independent variable (X-axis) in the regression equation.

Linear regression equation representing experimental data in terms of units loss. Standard Estimate of Error (Sy,x) of regression data in terms of the dependent variable (°F).

TFT1 is the predicted temperature based on 25 units loss. TFT2 is the predicted temperature based on 25 per cent loss in initial light transmittance at ESESSE BRESSE

350 millimicrons wave length.

TABLE 19

5-ML BOMB DATA FOR DISSOIVED-OXIGEN-REMOVED FUELS IN STORAGE PROGRAM

	(g)	(G)	9 9	(g)
Regression Data	Note 1 TFT ₁ = 768°F TFT ₂ = 721°F	Note 1 TFT = 882°F TFT = 882°F	Note 1 TFT; = 853°F TFT; = 854°F	Note 1 $TFT_1 = 818^{\circ}F$ $TFT_2 = 733^{\circ}F$
ittance microns Loss(X)	43.5 43.5 12.0 11.5 17.5	63.0 63.0 10.0 15.7 7.52	15,4 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	47. 12.03 16.0 17.7 47.8
Light Transmittance At 350 Millimicrons ore After Loss(Zen Remo 18.5 39.5 50.0 50.5 49.3	925 925 925 925 925 925 925 925 925 925	85.6 85.6 85.6 176.6 19.0	18,2 49,2 45,2 48,3 17,7
Light At 3	olved Oxy, 62.0	0.4%	101.0	<u>a)</u> 65.5
Temp.	ns (Diss 854 753 641 672 705	678 690 790 825 865 885	700 870 850 850 900	n Removed 863 668 708 734 622 858
Run Date	#ield Conditions (Dissolved Oxygen Removed) 1-12-66 854 62.0 18.5 4 753 39.5 2 641 50.0 1 672 672 50.5 1 705 44.5 1	1-17-66	1-5-66	344 1-11-66
Log No.	346 346	351	339	344
BJ-No.	Aged 72 Weeks at Ambient 1 64-10-B7 34	64-10-643	64-10-9174	Aged 54 Weeks at 180°F 1 64-10-832
Storage Fuels	Aged 72 1	N	r.	Aged 54 1

(See explanation of footnotes at end of previous table.)

TABLE 20

MINEX DATA FOR CORRELATION WITH PHILLIPS 5-ML BOMB AND COKERS

Interpolated Fuel Temp. for Initial Loss in "h _f ", °F	350	300	Research I	Division Report 4390-66R
% Loss "ht" Per Hour	0 0 1.1 12.0	00014 4.0000	0.29 0.29 0.61 0.06 0.16	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
(F)			6.08 3.50 0 1.15 2.88	0.54 5.28 10.71 10.34 9.80 17.92 28.16 -4.52
(Ft. ²)(°	_		0 3 4 5 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	78 20 20 20 17 17
$\frac{\text{"hf",BTU/(hr)(ft}^2)(\circ F)}{\text{tart}}$	(Not Available)	(Not Available)	690 695 690 690 675	740 682 682 720 748 348 324 324
"he" Start	(Not	(Not	690 740 715 693 698 698	744 720 672 510 510 424 348 310
ours A			25.50 20.75 5.75 22.25 18.25 18.25	17.90 12.50 17.50 13.00 7.00 7.00
Total Time, Hours	(Not Available)	(Not Available)	25.50 46.25 52.00 74.25 92.50	17.00 32.50 55.00 72.50 94.00 106.00
Total Start	(Not Au	(Not An	0 25.50 46.25 52.00 74.25 92.50	0 26.25.25.00 25.55.00 20.00 20.00 20.00 20.00
Fu 11 Out Temp., °F	250 300 350 450	250 300 400 450	33 33 33 34 36 36 36 36 36 36 36 36 36 36 36 36 36	350 370 470 350 350
BJ-Number	BJ62-10-K30 (G.E. Data)	BJ62-10-K31 (G.E. Date)	BJ63-10-G74 (G.E. Data)	BJ63-10-G74 (A.F. Data)

TABLE 20 (Continued)

Interpolated Fuel Temp. for initial Loss in "ht". °F	> 625	Research	Division Report 4390-66R
% Loss "hf" Per Hour	00000000	0.00 1.12 0.17 0.17 8.65 1.62 8.61	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(°F)	00000000	0.88 8.93 2.97 16.16 14.81 15.69 23.53	0 0 0 0 1.61 5.92 27.97
Bru/(hr)(ft ²)(°F)	00000000	20 20 20 20 20 20 20 20 20 20 20 20 20 2	000 115 200 200
1	700 740 740 760 780 780	565 245 245 260 215 2160 2160	675 690 705 735 735 715 515
Start	700 740 740 760 764 772 780	570 560 505 495 405 255 210	675 690 705 715 747 760 715
ne, Hours	16.50 11.50 17.50 16.50 18.80 9.50	20.50 8.00 17.50 25.00 17.25 6.00 6.25	22.23 22.23 27.25 17.50 17.50 6.00
TI	16.50 47.00 64.50 80.00 99.50 112.50 140.00	20.50 28.50 46.00 71.00 88.25 102.75 115.00	21.75 43.50 64.50 82.00 100.0 118.50 134.50
Total Start	0 16.50 35.50 47.00 64.50 80.00 99.50 130.50	0 20.50 28.50 46.00 71.00 88.25 102.75	0 21.75 43.50 64.50 82.00 101.50 118.50
Fuel Out Temp. F	25 25 25 25 25 25 25 25 25 25 25 25 25 2	45003300033 45003300033 450033	3300 3300 444 450 480 480 480 480
BJ-Number	BJ64-10-G107 (A.F. Data)	BJ64-10-G144 (G.E. Data)	BJ64-10-G162 (G.E. Data)

TABLE 20 (Continued)

Interpolated Fuel Temp. for Initial Loss in "h _{f"} , "F	410	Rese	earch Division	Report 4390-66R
% Loss "hf" Per Hour	0 0 0 0.07 0.74	0 0 0 0 0 0 0 11.15	0.01 0.02 -0.01 -0.06 0.55	0 0 0.17 1.97
F)	0 0 0 1.32 12.50 53.85	0 0 0 5.18 0 55.77	0.27 0.68 0.68 -0.27 -0.41	0 0 0 1.90 19.71
$\frac{\operatorname{ETU}/(\operatorname{hr})(\operatorname{ft}^2)(\circ F)}{\operatorname{End}}$	0 0 0 10 95	43 43 435	042446	0 0 13 134
BTU/(hr End	665 715 725 745 665 300	785 810 820 827 787 790 345	775 743 730 730 733 685	798 762 724 672 546
Start	665 715 725 760 650	785 810 820 827 530 790	775 745 735 730 750	798 724 685 680
Hours	21.50 22.00 21.00 17.75 19.25 17.00 7.00	~ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	21.50 25.00 28.50 18.50 13.00 15.50	111988
al Time. End	21.50 43.50 64.50 82.25 101.50 118.50	64 64 64 64	21.50 46.50 75.00 93.50 106.50	82824
Total	0 21.50 43.50 64.50 82.25 101.50	0 4 8 8 8 6 0 4 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	21.50 46.50 75.00 93.50	08885 2889
Fuel Out Temp°F	330 330 340 450 450	350 400 410 430 450	350 380 410 440 500	350 410 500 510
BJ-Number	BJ64-10-F162 (G.E. Data)	BJ64-10-G162 (A.F. Data)	BJ64-10-G163 (G.E. Data)	BJ64-10-G163 (A.F. Data)

olated Fuel for Initial		Resea:	rch Division Report 4390	-66R
Interpolated Fuel Temp. for Initial	475	057	305	575
% Loss "hf" Per Hour	0 0 0 0 0 0 0 1 1 0 0 1	00000 1.00000	0.00 0.00 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0 0 0 0 0 1.95
(°F)	0 0 0.63 0 9.41 6.98	0 0 0 0 0 8.65 12.11	25.53 25.53 25.53 25.53 25.53 25.13 25.15	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\frac{\text{BTU}/(hr)(rt^2)(^{\circ}F}{\Delta}$	00040047	0000022	122 22 22 22 22 22 22 22 22 22 22 22 22	00000
	608 628 632 632 616 500	792 808 820 820 760 668	614 602 602 603 603 603 603 603 603 603 603 603 603	704 704 686 680 680 680 680
"hf". Start	6696888866 6636888866 663688888	792 808 820 820 832 760	632 61.6 61.6 61.7 61.7 73.8 53.8 53.8 53.8 53.8 53.8	704 704 686 680 680 722
Hours	9957L789	15 21 14 15 18,50 16,50	22 129 129 139 14 19	15 13 27 30 17.25 17.75
1 Time, End	25523255 7557633555	15 36 50 74,50 110	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 28 55 85 102.25 120 138
Total	0 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 36 36 34 34 34 36	0 6643 0 20 15 15 15 15 15 15 15 15 15 15 15 15 15	0 15 25 55 85 102.25
Fuel Out Temp°F	3.75 400 475 475 510	350 370 450 450 470	650 650 650 650 650 650 650 650 650 650	400 450 500 525 500 500 500 600
BJ-Number	BJ64-10-G166 (A.F. Data)	BJ64-10-G234 (A.F. Data)	BJ64-1.0-K26 (G.E. Data)	٠٠

TABLE 20 (Continued)

Fuel itial			Res	search Divisi	ion Report 4390-66R
Interpolated Fuel Temp. for Initial Loss in "hf", "F	58	284	365	353	425
% Loss "h _f " Per Hour	0 0 0.3 0.25 0.46	0.06. 0.09 0.42 0.81	0 0 0.11	0.57 -0.30 0.70 1.42 8.20	-0.40 0.50 1.40 1.30 1.30 4.30
(F)	0 0 3.68 3.01	-0,71 2.07 8.16 13.33 17.80	0 0 1.27		
BTU/(hr)(ft ²)(°F)	30 x x 0	175 778 778 778	0000		
	717 700 640 655 645	564 568 540 768 388	586 632 628 620		
"he"	717 700 668 680 665	560 580 588 540 472	586 632 628 528		
Hours A	11.50 19.00 31.25 14.75 6.50	20 23 19.50 16.50	19.75 28.00 20.25 12		
al Time, Hours	11.50 30.50 61.75 76.50 83.00	20 43 62.50 79 91	19.75 55.50 75.75 108	vailable)	(Not Available)
Total Start	0 11.50 30.55 61.75 76.55	0 20 43 62.50 79	0 27.50 55.50 96	(Not Avei	(Not A)
Fuel Out Temp F	720 240 240 280 280	275 325 350 375	300 325 375	350 405 445 445	350 465 505 505 505 505 505
B.INumber	BJ64-10-L200 (G.E. Data)	BJ65-10-G46 (G.E. Data)	BJ65-10-G46A (G.E. Data)	BJ65-10-K25 (G.E. Data)	BJ65-10-K27 (G.E. Data)

TABLE 20 (Continued)

Fuel tial			Res	search Divi	sion Rep	ort 4390	-66R
Interpolated Temp. for Interpolated	007	470	356	332	325	340	306
% Loss "hf" Per Hour	0.00	0.05 0 0 0 0 0 0 0.86 7.27	-0.35	0 0.18 0.18	0 0.24 0.53	-0.16 0.16 0.68	0.37
	-1.79 -1.38 -1.97	.32 0 0 0 1.32 0 6.86 43.64	- 4.16	0 0 14.0	0 3.16 9.30	-2.16 2.44 9.66	5.39
BTU/(hr)(ft²)(°F) End	-10 -12	2,5000000000000000000000000000000000000	27 50	င၁၇၀	0 18 54	-12 14 56	3%
1 '	570 588 620	635 635 635 635 635 635 635 635 310	676 626	562 572 566 594	565 528 528	568 560 524	632 636
"he" Start	560 580 608	6836 6836 6836 6836 6818 5518	949 649	562 572 586 594	565 570 582	556 574 580	668 657
Hours	25.50 17,80 30.50	222 222 222 223 233 233 233 233 233 233	122	12 18 18.50 22	12 13 17.50	13.50 15.25 14.25	14.50
I Time.	25.50 43.30 79.00	6597:156 6597:156	12 27.50	12 30 48.50 70.50	12 25 42.50	13.50 28.75 43.00	14.50
Total	0 25,50 48.50	25 11 12 60 60 60 60 60 60 60 60 60 60 60 60 60	0 12.50	0 12 30 48.50	0 12 25	0 13.50 28.75	0 24.50
Fuel Out Temp°F	300 325 400	350 440 440 450 450 450 450 450 450	325 400	300 325 400 400	325 350 400	325 350 400	325 350
BJ-Number	BJ65-10-K62 (G.E. Data)	BJ65-10-K71 (A.F. Date)	BJ65-10-K72 (G.E. Data)	BJ65-10-K73 (G.E. Data)	BJ65-10-K74 (G.E. Data)	BJ65-10-K75 (G.E. Data)	BJ65-10-K76 (G.E. Data)

(RIE 20 (C	Continued)	
BLE	02	
	BLE	

Fuel itial		Re	esearch Divi	sion Rep	ort 4390-66R
Interpolated Fuel Temp. for Initial Loss in "h _{f", °F}	380	89	470	007<	V400
% Loss "hf" Per Hour	0 0 11.0	0.00 0.00 0.00 0.00 0.00 0.12	0 97.0 3.86	0.10	0.08 0.18 0.04
1 1	0 0 0.93	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	0 0 2.32 14.29	17.17 2.27 0.74	2.32
$\frac{\text{BTU/(hr)(ft^2)(°F)}}{\text{End}} \triangle \triangle \triangle \triangle$	000	8400000Pb048	000	917	r → †
. 1	676 652 642	\$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20	587 580 564 547 480	534 532 536	615 590 592
"hf" Start	676 652 648	523 523 523 523 523 523 523 523 523 523	587 564 560 560	528 544 540	909 909 928 938
Hours	10 6.25 8.75	L \(\alpha \) \(204 200	11.50	14.50 13.25 16.75
Time, End	10 21.25 30.00	はいせんななななない	111 255 40	11.50 22.00 33.75	14.25 27.50 44.25
Total Start	0 15 21.25	ムなななななななななって	0218X	0 11.50 22.00	0 14.25 27.50
Fuel Out	325 350 400	\$250 \$250 \$250 \$250 \$250 \$250 \$250 \$250	450 470 480 480	325 350 400	325 350 400
BJ-Number	BJ65-13-K77 (C.E. Data)	BJ66-10-Gl (A.F. Data)	BJ66-10-G2 (A.r. Data)	BJ66-10-K7 (G.E. Data)	BJ66-10-K8 (G.E. Jata)

TABLE 20 (Continued)

Interpola	Loss	0 350	oc	46 0.53			0		ं	ဂ်	ं	ਂ	o	0.24		0.12	0.12	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	0.12 0.07 0.26	ooo
P#11/(hr)(ft.2)(oF)	\\ \frac{18}{2} \\ \tag{2}	00		•					47 5.1									9 1.33 8 1.20 22 3.35												
, APMI/(hr)	End	556 528	532	74.6		762	780	780	810	750	705	01.7	663	675		999	999 089	666 650 655	666 655 635	666 650 635	666 655 655 655	666 655 55 75	666 656 655 55	666 656 55 655	666 656 55 55	666 656 55 55	666 656 55 55	666 656 55 55	666 656 55 75 855	666 656 55 75
"h&"	Start	556	532	220		762	780	780	857	790	747	722	728	685		675	675 668	675 668 657	675 668 657	675 668 657	675 668 77	675 668 657	675 658 77	675 658 77	675 657 72	675 657 657	673 668 73	673 668 73	673 658 77	675 657 759
Hours	4	8	13.25	•		11	٠.	ĸ	8	19	82	6	2	Ś		Ħ	ដង	ដូន	ដូនដ	ដូនដ	ដូនដ	ដូនដ	ដូនដ	ដូនដ	ដូនដ	ដូនដ	1388	1388	1388	1388
Time,	End	8		48.50		검	18	R	43	62	84	8	86	104		Ę	133	133	133	133	133	133	133 146 146	153 156 166 166 166 166 166 166 166 166 166	15. 25. 26. 26. 26. 26.	153 158 158	15.5 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	15.5 2.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	253 54 7	25.7 5.2 5.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7
Total	Start	O to	19.25	32.50		0	디	18	బ	<u>4</u>	62	478	83	86	č	†2;	15 15 15	115	115	133	133	133	133	133	133	133	133	133	133	133
Fuel Out	Temp. °F	325 325	350	001			430	0917	0 8 7	067	270	525	530	550		280	60 600	6,60 6,00 6,00 6,00 6,00 6,00 6,00 6,00	6,60 20 20 20 20 20 20	600 600 600 600	6,00 6,00 6,00 6,00	6,6% 8,000 8	6,6% 8,0% 8,0%	6,6% 8,0% 8,0%	6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	6,6% 8,000 8	6,6% 8,000 8	6,6% 8,000 8	6,6% 8,000 8	6,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
 - - - -	BJ-Number	BJ66-10-K9 (G.E. Data)			(No RJ-Number)	RAF-1777-63	(A.F. Data)			-																				

PHILLIPS 5-ML BCMB THERMAL STAFILITY DATA FOR CORRELATION WITH MINEX AND

COKER DATA

TABLE 21

Light Transmittance Log Temp. At 350 Millimicrons										
BJ-Number	No.	Run Date	°F,(Y)	Before	After	Loss(X)	Regression Data			
BJ62-10-K30	2	7-23-62	322 342 365 390 404 361	42	35 27 17 14 10 22	7 15 25 28 32 20	$\hat{Y} = 4.069X + 264.6$ S.E.E. = 12.3 TFT ₂ = 32.5°F	(a) (b) (c)		
	6	7-31-62 8-1-62	345 356 382 399 440 367 409 318	41	26 23 20 12 10 21 12 32	15 18 21 29 31 20 29 9				
BJ62-10-K31	3	7-23-62	314 348 375 382 400 386 327	74	62 50 37 34 35 34 58	12 24 3? 40 39 40 16	$\hat{Y} = 2.701X \div 286.6$ S.E.E. = 8.5 TFT ₂ = 337°F	(a) (b) (c)		
-	-6	8-1-62	307 330 370 390 399 358 420	_ = = = = = = = = = = = = = = = = = = =	69 59 43 37 34 49	5 15 31 37 40 26 43		-		
BJ63-10-G74	130	3-19-64	387 368 396 402 373 380 399 375	100.0	83.0 94.7 75.0 68.7 95.0 87.7 73.0 92.0 70.0	17.0 5.3 25.0 31.3 5.0 12.3 27.0 8.0 30.0	Y = 1.150x + 365.5 5 E.E. = 2.5 TFT ₂ = 395°F	(a) (b) (c)		
BJ63-10-G74	132	3-31-64	392 382 373 357 387 360 388 369	100.0	69.0 92.0 97.0 79.0 97.0 97.0 94.0 67.0	31.0 19.0 2.0 3.0 21.0 3.0 24.0 6.0 33.0	Y = 1.129X + 359.4 S.E.E. = 3.8 TFT ₂ = 388°F	(a) (b) (c)		

(See explanation of footnotes at end of table.)
61

Research Division Report 4390-66R

TAPLE 21 (Continued)

	ъog		Temp.	At 350	Transmi Millim			
BJ-No.	No.	Run Date	•F.(Y)	Before	After	Loss(X)	Regression Data	
BJ63-10-G74	136	4-10-64	380 407 374 394 400 405 374 408 370	100.0	90.7 70.0 93.7 80.0 82.0 72.0 94.0 70.0 94.0	9.3 30.0 6.3 20.0 18.0 28.0 6.0 30.0	Ŷ = 1.454X + 365.4 S.E.E. = 3.7 TFT ₂ = 402°F	(a) (b) (c)
BJ64-10-G107	129	3-12-64	386 421 470 540 590 354 591 348 594	100.0	92.7 86.7 83.3 78.7 72.0 95.0 71.0 95.3 73.0	7.3 13.3 16.7 21.3 28.0 5.0 29.0 4.7 27.0	$\hat{Y} = 10.433X + 300.6$ S.E.E. = 12.2 TFT ₂ = 562°F	(a) (b) (c)
BJ64-10-G107	133	4-2-64	370 464 570 356	97.0	90.7 80.0 71.0 93.0	6.3 17.0 26.0 4.0	$\hat{Y} = 10.237X + 312.7$ S.E.E. = 12.7 TFT ₂ = 561°F	(a) (b) (c)
·· — ·			587 395 602 357 600		72.0 90.0 69.0 93.0 69.0	25.0 7.0 28.0 4.0 28.0		-
BJ64-10-G107	178	10-29-64	509 470 500 484 490 544 552 550 530	99.0	69.7 84.0 82.7 81.7 79.7 62.5 67.0 66.2	29.3 15.0 16.3 17.3 19.3 19.3 36.5 32.0	$\hat{Y} = 2.800X + 446.2$ S.E.E. = 21.3 TFT ₂ = 516°F	(a) (b) (c)
BJ64-10-G107	169	10-6-64	420 415 425 435 470 450 460 480 480	95.0 ·	73.0 79.0 79.6 79.3 68.8 78.0 73.8 70.5 77.5 67.6		Ŷ = 2.993X + 392.3 S.E.E. = 25.8 TFT ₂ = 463°F	(a) (b) (c)

(See explanation of footnotes at end of table.)

Research Division Report 4390-66R
TABLE 21 (Continued)

	Log	•	Temp.		Transmi Millim			
BJ-No.	No.	Run Date	<u>°F,(Y)</u>	Before	After		Regression Data	
BJ64-10-G107	133	4-1-64	376 388 355 331 320 382 316 382 319	62.0	36.0 31.7 49.0 57.0 58.0 32.0 58.0 32.0	26.0 30.3 13.0 5.0 4.0 30.0 4.0 30.0	$\hat{Y} = 2.408X + 313.0$ S.E.E. = 5.8 TFT ₂ = 350°F	(a) (b) (c)
FJ64-10-G144	130	3-20-64	413 376 331 345 361 409 333 409 330	62.0	34.5 40.0 58.3 53.7 49.5 30.8 58.3 32.0 58.7	27.5 22.0 3.7 3.3 3.2.5 31.2 3.7 30.0 3.3	$\dot{Y} = 2.947X + 320.9$ S.E.E. = 5.9 TFT. = 365°F	(a) (b) (c)
BJ64-10-G162	147	5-20-64	408 376 362 385 389 393 403 364 397	102.0	67.0 92.0 96.0 90.7 83.0 78.0 69.7 97.0 76.0	35.0 10.0 6.0 11.3 19.0 24.0 32.3 5.0 26.0	Y = 1.392X + 360.0 S.E.E. = 4.6 TFT ₂ = 395°F	(a) (b) (c)
BJ64-10-G162	139	4-22-64	357 367 330 368 350 382 325 367 332	103.0	87.7 77.7 97.0 84.0 89.0 69.3 98.0 85.0 98.0	15.3 25.3 6.0 19.0 14.0 33.7 5.0 18.0 5.0	$\hat{Y} = 1.963X + 332.3$ S.E.E. = 6.7 TFT ₂ = 373°F	(a) (b) (c)
BJ64-10-G163	144	5-11-64	459 528 584 416 420 578 392 588 417	81.0	65.7 58.3 53.0 74.0 72.0 55.0 79.0 53.0 73.0	15.3 22.7 28.0 7.9 9.0 26.0 2.0 28.0 8.0	Ŷ = 7.994X + 357.2 S.E.E. = 13.2 TFT ₂ = 519°F	(a) (b) (c)

Research Division Report 4390-66R TABLE 21 (Continued)

	Log		ittance microns					
BJ-No.	No.	Run Date	Temp. $^{\circ}F, (Y)$	Before	After		Regression Data	
BJ64-10-G163	146	5-18-64	435 391 503 482 402 392 508 400 501	83.0	68.0 77.3 53.0 56.0 58.7 80.0 54.0 77.0 58.0	15.0 5.7 30.0 27.0 24.3 3.0 29.0 6.0 25.0	$\hat{Y} = 4.390X + 372.2$ S.E.E. = 11.3 TFT ₂ = 463°F	(a) (b) (c)
BJ64-10-G166	148	5-25-65	459 511 372 349 407 500 358 506 358	105.1	83.7 76.7 97.0 101.0 88.0 74.0 99.0 74.0 97.0	21.4 28.4 8.1 4.1 17.1 31.1 6.1 31.1 8.1	$\hat{Y} = 6.170X + 317.8$ S.E.E. = 11.6 TFT ₂ = 480°F	(a) (b) (c)
BJ64-10-G166	149	5-27-64	358 458 503 485 425 358 502 358 498	103.0	95.7 78.3 72.3 74.3 84.3 95.3 68.0 96.0	7.3 24.7 30.7 28.7 18.7 7.7 35.0 7.0 33.0	$\hat{Y} = 5.592X + 318.6$ S.E.E. = 7.5 TFT ₂ = 463°F	(a) (b) (c)
BJ64-10-G234	207	1-29-65	367 380 375 377 385 386 381 395	94.3	84.2 72.0 78.5 80.5 69.2 68.7 73.5 60.5	10.1 22.3 15.8 13.8 25.1 25.6 20.8 33.8	$\hat{Y} = 1.071X + 358.3$ S.E.E. = 2.0 TFT ₂ = 384°F	(a) (b) (c)
BJ64-10-G234	219	2-19-65	350 360 375 390 385 400	95.0	91.3 89.3 84.0 66.3 73.0 53.0	3.7 5.7 11.0 28.7 22.0 42.0	$\hat{Y} = 1.205X + 354.0$ S.E.E. = 6.6 TFT ₂ = 383°F	(a) (b) (c)

Research Division Report 4390-66R

B <u>J</u> -No.	Log No.	Run Date	Temp.	At 350	Transmi Millim	ttance icrons	_ ^	
BJ64-10-K26	205		405 415 420 375 350 330 340 360 345 355	26.0	10.0 9.1 8.8 16.8 20.7 23.3 21.5 19.0 20.7	16.0 16.9 17.2 9.2 5.3 2.7 4.5 7.0 5.3 6.5	Regression Data Y = 5.875X + 316.3 S.E.E. = 3.3 TFT ₂ = 354°F	(a) (b) (c)
B64-10-K26	217	2-17-65	350 330 300 360 370 380 390 400 300	29.0	21.6 24.0 27.0 18.0 17.6 16.3 16.0 14.0 27.0	7.4 5.0 2.0 11.0 11.4 12.7 13.0 15.0 20.0	$\hat{Y} = 7.426X + 287.7$ S.E.E. = 5.7 TFT ₂ = 342°F	(a) (b) (c)
BJ64-10-K148	144	5-12-64	500 578 348 432 630 351 626 347 632	90.0	73.0 67.7 87.0 77.0 62.0 87.0 65.0 87.0 63.0	17.0 22.3 3.0 13.0 28.0 3.0 25.0 3.0 28.0	$\hat{Y} = 11.894X + 307.0$ S.E.E. = 15.6 TFT ₂ = 574°F	(a) (b) (c)
BJ64-10-K148	145	5-14-64	364 51.2 532 425 580 580 360 574 359	93.0	85.0 73.0 67.0 80.0 64.7 65.0 86.0 66.0 87.3	8.0 20.0 26.0 13.0 23.3 28.0 7.0 27.0 5.7	Y = 10.107X + 295.2 S.E.E. = 12.6°F TFT ₂ = 531°F	(a) (b) (c)
BJ64-10-L200	146	5-19-64	490 552 455 415 372 552 374 548 374	93.0	71.3 64.0 74.0 80.7 89.0 64.3 87.0 67.0 88.0	21.7 29.0 19.0 12.3 4.0 28.7 6.0 25.0 5.0	$\hat{Y} = 7.626X + 330.5$ S.E.E. = 12.4 TFT ₂ = 508	(a) (b) (c)

Research Division Report 4390-66R

TABLE 21 (Continued)

	Log		Temp.		Transm			
BJ-No	No.	Run Date	°F,(Y)			Loss(X)	Regression Data	
BJ65-10-G46	282	8-2-65	335 350 360 370 380 385 390 400 375 425 450 515	90.0	38.6	5.4 10.4 13.4 13.0 19.0 29.4 33.0 12.7	Note 1 TFT ₂ = 385°F	(c)
BJ65-10-G46A	304	9-28-65	400 350 375 385 395 390 365 408 425	84.0	55.0 81.6 77.0 70.0 61.6 64.6 79.0 60.0 53.6	2.4 7.0 14.0 22.4 19.4 5.0 24.0	Note 1 TFT ₂ = 397°F	(c)
BJ65-10-K25	206	1-28-65	370 377 382 395 405 425 450 497 475 475 508	98.7	82.5 80.2 77.7 73.3 71.0 66.5 69.7	13.0 14.4 16.2 18.5 21.0 25.4 27.7 32.2	$\hat{Y} = 6.409X + 292.6$ S.E.E. = 13.3 TFT ₂ = 451°F	(a) (b) (c)
BJ65-10-K25	218	2-19-65	350 310 375 335 390 405 400 420 440 450 465 485 530	101.0	97.7 82.7 90.0	18.8 11.0 21.4 20.4 24.7 27.0 22.7 27.4 28.0 32.4	$\hat{Y} = 6.142X + 273.8$ S.E.E. = 16.9 TFT ₂ = 429°F	(a) (b) (c)

Research Division Report 4390-66R TABLE 21 (Continued)

	Log		Temp.		Transmi Millim		
BJ-Ño.	No.	Run Date	°F,(Y)	Before		Loss(X)	Regression Data
BJ65-10-K27	205	1-27-65	385 345 355 368 475 460 485 500 552 578	99.0	89.3 96.8 94.5 93.3 79.2 83.3 82.0 79.7 72.7 68.3	9.7 2.2 4.5 5.7 19.8 15.7 17.0 19.3 26.3 30.7	$\hat{Y} = 8.683X + 319.3$ (a) S.E.E. = 12.6 (b) TFT ₂ = 535°? (c)
BJ65-10-K27	215	2-15-65	540 540 526 535 550 565 580 480 465 465 465 465 460 480 480 480	101.5	82.8 79.5 77.2 81.0 80.0 77.5 75.3 66.8 80.7 78.8 67.2 83.5 90.0 75.5 93.2	19.7 23.0 24.3 20.5 21.5 24.2 26.0 26.2 34.7 27.7 20.8 23.2 21.7 34.3 18.0 11.5 26.0 8.3	$\hat{Y} = 8.401X + 313.8$ (a) S.E.E. = 38.2 (b) TFT ₂ = 527°F (c)
BJ65-10-K62	326	11-3-65	400 450 550 600 650 575 500 475 525 400 350 375 425	74.0	64.0 65.0 51.0 45.0 35.6 47.0 57.0 60.0 74.0 71.0 66.0	10.0 9.0 23.0 29.0 38.4 27.0 17.0 14.0 20.4 6.0 8.0	$^{\wedge}$ = 8.216X + 352.0 (a) S.E.E. = 15.9 (b) TFT ₂ = 504°F (c)

Research Division Report 4390-66R TABLE 21 (Continued)

BJ-No.	Log	Run Date	Temp. °F,(Y)		Transm O Milli After	microns	Regression Dat	a
BJ65~10-K71	331	11-17-65	350 375 385 390 400 400	101.0	94.7 59.6 86.6 81.6 76.3 69.0	6.7 14.4 19.4 24.7 32.0 41.4	Note 1 TFT ₂ = 387°F	(c)
BJ65-10-K71	331	11-18-65	300 350 375 385 390 395 400 450	101.0	99.3 98.3 89.3 84.6 82.0 68.3 66.0 51.0	1.7 2.7 11.7 16.4 19.0 32.7 35.0 50.0	Note 1 TFT ₂ = 387°F	(c)
BJ&5-10-K72	332	11-19-65	400 350 375 360 380 390 395 425 450	97.0	75.0 90.0 80.6 88.5 80.0 73.6 73.3 68.0 67.0 61.0	22.0 7.0 16.4 8.5 17.0 23.4 23.7 29.0 30.0 36.0	Note 1 TFT ₂ = 407°F	(c)
BJ65-10-K73	338	1-3-66	350 320 330 340 375 360 370 350 360 370	99.0	74.0 93.0 88.0 86.0 58.0 72.0 89.0 82.0 59.0	25.0 6.0 11.0 13.0 41.0 16.0 27.0 10.0 17.0 40.0	Y = 1.211X + 327.6 S.E.E. = 11.0 TFT ₂ = 358°F	(a) (b) (c)
BJ65-10-K74	357	1-20-66	342 444 370 400 420 432 460 480 385 510 530	69.0	66.0 49.0 61.3 57.3 55.3 52.0 50.0 51.0 43.0 45.0	3.0 20.0 7.7 11.7 13.7 17.0 19.0 18.0 8.0 26.0 24.0	$\hat{Y} = 7.846X + 314.0$ S.E.E. = 16.9 TFT ₂ = 450°F	(a) (b) (c)

TABLE 21 (Continued)

	Log		Temp.		Transmi Millim			
BJ-No.	No.	Run Date	of (Y)	Before	After	Loss(X)	Regression Data	
BJ65-10-K75	358	1-21-66	387 300 364 375 330 420 405 395 370	90.0	67.0 88.0 81.3 72.0 88.3 56.6 59.3 66.6 75.0	23.0 2.0 8.7 18.0 1.7 33.4 30.7 23.4 15.0	Ŷ = 3.071X + 318.6 S.E.E. = 12.6 TFT ₂ = 388°F	(a) ('.') (c)
вј65-10-к76	355	1-19-66	370 326 355 395 340 365 380 350 360	92.0	65.0 85.3 71.3 54.0 87.0 71.0 59.0 87.3 80.3	27.0 6.7 20.7 38.0 5.0 21.0 33.0 10.7	Y = 1.648X + 328.3 S.E.E. = 8.0 TFT ₂ = 366°F	(a) (b) (c)
BJ65-10-K77	360	1-24-66	385 358 330 375 400 380 396 410	86.0	65.0 77.0 84.0 73.0 58.0 69.0 61.0 54.0	21.0 9.0 2.0 13.0 28.0 17.0 25.0 32.0	Y = 2.476X + 333.7 S.E.E. = 5.7 TFT ₂ = 388°T	(a) (b) (c)
BJ66-10-G1	364	1-26-66	410 457 508 578 602 646 678 768 720	33.0	30.6 29.3 28.3 27.0 26.6 25.0 21.0 24.0	2.4 3.7 4.7 6.0 6.4 8.0 8.0 12.0 9.0	Y = 40.274X + 326.9 S.E.E. = 25.5 TFT ₂ = 649°F	(a) (b) (c)
BJ66-10-G2	363	1-25-66	369 450 412 380 340 360 376 407 397	98.0	88.0 54.6 60.6 74.6 96.0 92.0 80.3 66.0 68.0	10.0 43.4 37.4 23.4 2.0 6.0 17.7 32.0 30.0	$\hat{Y} = 2.167X + 339.3$ S.E.E. = 9.6 TFT ₂ = 392 °F	(a) (b) (c)

Research Division Report 4390-66R TABLE 21 (Continued)

BJ-No.	Log Nc.	Run Date	Temp.		<u>0 Milli</u>	ittance microns Loss(X)	Regression Date	<u>a</u>
в Ј66-10-к7	403	2-25-66	340 450 360 381 401 330 390 350 310	60.0	55.6 29.0 45.6 40.6 32.0 57.0 36.0 52.0 60.0	4.4 31.6 14.4 19.4 28.0 3.0 24.0 8.0	$\hat{Y} = 3.554X + 315.8$ S.E.E. = 12.7 TFT ₂ = 369°F	(a) (b) (c)
BJ66-10-K8	403	2-28-66	435 310 396 325 340 361 376 385 405	100.0	56.0 96.0 70.0 93.0 93.0 85.0 79.0 73.0 65.0	44.0 4.0 30.0 7.0 7.0 15.0 21.0 27.0 35.0	î = 2.843X + 310.3 S.E.E. = 7.4 TFT ₂ = 381°F	,a) (b) (c)
BJ66-10-K9	405	3-1-66	360 314 375 370 390 380 399 385 340	96.0	86.0 94.0 77.0 84.0 67.0 76.0 61.0 68.0 93.0	10.0 2.0 19.0 12.0 29.0 20.0 35.0 28.0 3.0	$\hat{Y} = 2.108X + 331.1$ S.E.E. = 10.9 TFT ₂ = 382°F	(a) (b) (c)

NOTE 1: Linear regression equation not determined since data points are cu vilinear. Threshold failure temperatures obtained graphically.

- (Y) The dependent variable (Y-axis) in the regression equation.
- (X) The independent variable (X-axis) in the regression equation.
- (a) Linear regression equation representing experimental data in terms of units loss.
- (b) Standard Estimate of Error (Sy.x) of regression data in terms of the dependent variable (°F).
- (c) TFT₂ is the predicted temperature based on 25 per cent loss in initial light-transmittance at 350 millimicrons wave length.

TABLE 22

COKER DATA FOR CORRELATION WITH 5-ML BOMB AND MINEY

Notes: All Coker Data at Ambient Reservoir
All Filter Temperatures 100°F Above
Preheater Temperatures

BJ-Number	Other Identification	Coker Data, Source	Coker Config.	Preheater Tem, °F	Unwiped Preheater Code, Max.	Interpolated Threshold Failure Temp., °F
BJ62-10-K30	G.E. Kerosine	e	ASTM	350	2	388
				375	2	
				400	4	
BJ62-10-K31	G.E. JP-6	•	ASTM	375	0	418
•				400	2	
				425	4	
BJ63-10-G74	RAF-176-63	a	ASTM	300	0	374
				325	2	
				350	2	
				35 0	0	
				35 0 °	l	
				375	2	
				375	4	
				400	1	
				700	4	
BJ63-10-G74	RAF-176-63	8.	ASTM	375	6	36.1
				350	1	
BJ63-10-G74	RAF-176-63	c	ASTM	325	2	338
				35 0	4	
				375	7	
BJ63-10-G74	RAF-176-63	ь	ASTM	325	0	367
				350	1	
				375	4	
вл63-10-674	RAF-176-63	ъ	ASTM	325	0	370
				350	0	
				375	4	
BJ63-10-G74	RAF-176-63	a	RES	35 0	1	363
				375	5	
-				400	7	

Research Division Report 4390-66R TABLE 22 (Continued)

BJ-Number	Other Identification	Coker Data, Source	Coker Config.	Preheater Temp., °F	Unwiped Preheater Code, Max.	Interpolated Threshold Failure Temp., F
BJ63-10- G 74	RAF-176-63	đ	SSF	375 350 325 325 350 350	3 1 1 1	375
BJ64-10-G107	RAF-169YX-61	a	RES	500 550 600 700 750	1 1 3 3	700
BJ64-10-G107	RAF_169YX-61	8.	RES	600 500 450	5 · 3 3	< 450
BJ64-10-G107	RAF-169YX-61	đ	SSF	750 800 850 825 775 800 775	2 3 4 2 4 2	692
FJ64-10-G162	RAF-174-63	&	ASTM	325 375 350	1 6 1	361
BJ64-10-G162	RAF-174-63	c	ASTM	325 300 375 350	1 1 4 4	31,2
3J64-10-G162	RAF-174-63	6	ASTM	375 400 425	0 1 5	388
BJ64-10-G162	RAF-174-63	ė	astm	325 350 375	2 5 6	335
BJ64-10-G162	RAF-174-63	•	ASTM	350 375 400 400	0 1 6 6	385

Research Division Report 4390-66R
TABLE 22 (Continued)

B.INumber	Other <u>Identification</u>	Coker Date, Source	Coker Config.	Preheater Temp.	Unwiped Preheater Code Max.	Interpolated Threshold Failure Temp., oF
BJ64-10-G162	RAF-174-63	-	ASTM	300 300 325 325 350 350 375	1 2 4 1 1 4 3 4	367
BJ64-10-G162	RAF-174-63	æ	RES	400 350 325 375 375 425 400	7 3 1 7 1 6 7	354
BJ64-10-G162	RAF-174-63	e	RES	375 400 425	ī 7 6	390
BJ64-10-G162	RAF-174-63	e	res	350 375 400	1 6 6	360
BJ64-10-4162	RAF-174-63	e	RES	325 350 375 375	1 2 6 6	357
BJ64-10-G162	RAF-174-63	e	RES	325 325 350 350 375	2 1 6 -5 5	335
BJ64-1C-G162	RAF-174-63	•	SSF	375 400 425	2 4 4	387
BJ64-10-G162	RAF-174-63	.	SSF	350 375 375 375 375 375 400 400	1 2 3 1 2 4	387

Research Division Report 4390-66R

	TAI	BLE 22 (Continued)		
BJ-Number	Other Identifization	Coker Oate, Source	Coker Config.	Preheater Temp.,	Unwiped Freheater Code Max.	Interpolated Threshold Failure Temp., •F
BJ64-10-G107	RAF-174-63	6	SSF	325	1.	368
Dooth-tro- ero t	104 -214-03	•		350	1 6	J
				350	ì	
	•			375		
				375	4 · ·	
			-	400	6	
BJ64-10-9163	BAF-175YX-63	e	ASTM	425	2	437
- 1				450	4	
BJ64-10-G163	RAF-175Y1-63	a.	RES	400	1	435
				500	6	
				450	6	
				425	_ 1	
BJ64-10-G163	RAF-175YX-63	e	RES	450	4	427
				425	5 6	
				450	6	
			-	425	1	
				400	1	
				400	2	
BJ64-10-G163	PAF-175YX-63	e	RES	400	2	408
-				425	5	-
BJ64-10-163	RAF-175YX-63	•	SSF	475	5	450
	z _			450	5 3 1	
÷				425	1	-
BJ64-10-G166	Storage Fuel 5	c*	ASTM	450	3	425
				400	1	•
				425	3	
				425	2 3	
•				475	3	
	designated as I to RAF-179-64 l					

BJ64-10-G166	Storage Fuel 5	d	SSF	375	2	42
	-		_	425	:4	
			-	400	2	-
	-			400	2	
			-	425	2	
	÷			450	3	-
•				L25	Ĺ.	
				450	L L	_
	-			475	5	

Research Division Report 4390-66R TABLE 22 (Continued)

BJ_Number	Other Identification	Coker Date, Source	Coker Config.	Preheater Temp., °F	Unwiped Preheater Code, Max.	Interpolated Threshold Failure Temp °F
BJ64-10-G234	RAF-176-64	5	ASTM	325 350 375	1 1 5	363
BJ64-10-G234	RAF-176-64	a	astm	325 350 375 400	1 1 5 6	368
BJ64-10-G234	RAF-175-64	.5	ASTM	325 325 325 325 325	0 1 0 2	384
	· , , , , , , , , , , , , , , , , , , ,			350 350 350 350 350 375	1 0 2 1 0	
				375 375 375 375 375 400	0 5 0 2 5 6	
BJ64-10-G234	RAF-176-64	ູ້ນັ	ASTM	400 400 375	4 6 0	394
EJ64-10-G234		8-	HES	400 350 400	4 2 6	363
BJ64-10-G234		b خانسے یا درور	RES	350 375 400	2 3 6	375
BJ65-10-K26 BJ65-10-K26	FA-S-1	ъ - ъ	astm astm	325 350 375	2 4 4	338
\$603-10-1V3	**************************************		ad in	300 350 400	1 2 5	368

Research Division Report 4390-66R

	TABI		•	Interpolated		
BJ-Number	Identification	Coker Data, Source	Coker Config.	Preheater Temp., °F	Unwiped Preheater Code, Max.	Threshold Failure Temp., •F
BJ65-10-K26	FA-S-1	b	ASTM	300 325 350	2 3 5	325
BJ65-10-K26	FA-S-1	þ	ASTM	300 350 375 400	2 2 4 4	363
6J65-10-K26	FA-S-1	ģ	ASTM	325 350 375	2 3 5	350
BJ65-10-K26	FA-S-1	b	ASTM	300 325 350	1 3 6	325
BJ65-10-K26	FA-S-1	b	ASTM	300 325	2 6	313
BJ65-10-K26	FA-S-1	b	RES	275 300 325 350	1 2 2 3	350
BJ64-10-K148	F-63-18(563)	c	res	525 550 600 500 525	2 2 5 3 4	537
BJ64-10- L200	RAF-159X-60	a	RES	700 650 600 500 750 750	6 3 3 1 3	655
BJ65-10-G46	G.E. 465	•	ASTM	375	3	375
BJ65-10-G46A	G.E. 465A	•	ASTM	375	3	375
BJ65-10-K25	PA-S-2A	ъ	ASTM	400 425 450	1 1 3	450

Research Division Report 4390-66R TABLE 22 (Continued)

BJ-Number	Other Identification	Coker Data, Source	Coker Config.	Preheater Temp., •F	Unwiped Preheater Code Max.	Interpolated Threshold Failure Temp., °F
BJ65-10-K25	FA-S-2A	b	ASTM	375 425 450 450 475	1 2 4 3 4	450
БЈ65-10-К25	FA-S-2A	b	RES	450 475 500	2 4 4	467
BJ65-10-K27	FA-S-2B	Ъ	astm	400 4 2 5 450	1 2 3	450
BJ65-10-K27	FA-S-2B	ъ	astm	375 425 450 475	2 2 2 3	450
BJ65-10-K62	G.E. 965-1	•	ASTM	350 375 400	1 2 6	378
BJ65-10-K71	RAF-176A-63	8.	ASTM	325 350 375	2 4 7	336
BJ65-10-K72	G.E. 965-2	e	ASTM	350 375 400	2 3 6	375
BJ65-10-K72	G.E. 965-2	e	astm	325 350 375	2 3 6	350
BJ65-10-K73	G.E. 965-3	e	astm	350 375 400	1 2 4	388
BJ65-10-K76	G.E. 1265-2	e	astm	300 325 350 375 400	1 1 1 2 4	392

Research Division Report 4390-66R TABLE 22 (Continued)

BJ-Number	Other Identification	Coker Data, Source	Coker Config.	Preheater Temp., °F	Unwiped Preheater Code, Max.	Interpolated Threshold Failure Temp., °F
BJ65-10-K77	G.E. 1265-2A	e	ASTM	425 450	2 4	440
BJ66-10-G1	raf-1671x-60	8.	RES	500 500 450	7 6 7	<450
	RAF-177Y-63	c	res	450 550 500 475	1 6 7 3	475

- a CRC Report No. LD-148
- b North American Aviation Report NA-65-753
- c Air Force Report AFAPL TR 64-154
- d Air Force Report APL TDR 64-89 Part II
- e Unpublished Industry Data

TABLE 23

PHYSICAL AND CHRMICAL PROPERTIES-TEST METHODS

Tests	Test Methods
Distillation, *F	ASTM D-86
Smoke point, Mm	ASTM D1322-59T
API Gravity @ 60°F	ASTM 287-55
Existent gum, Mg/100 ml	ASTM D381-58T
Total potential gum, Mg/100 ml	ASTM D873-57T
Insoluble potential gum, Mg/100 ml	ASTM D873-57T
Lamp sulfur (Wichbold), ppm	ASTM D1266
Mercaptan sulfur, ppm	Hg(ClO ₄) ₂ Titration
Freezing point, °F	ASTM DI477-57T
Wet heating value, Btu/1b	Fed. Std. No. 791-2502
Kinematic viscosity, cs ● -40°F	ASTM D445-53T
Aromatics, Vol % (FIA)	ASTM D1319-58T
Olefins, bromine no., Vol \$	Colorimetric Method
Corrosion, copper strip	ASTM D130-56
Water reaction	ASTM D1094-57
Aniline point, °F	ASTM D611-55T
Neutralisation Mo., Mg KOH/gram	-ASTM D664-58
Flash point, 'F	ASTM D93-58T
Total maphthalenes, Wt \$	Ultraviolet spectrophotometry
Indenes, ppm	Anal. Chem. 21, 1528 (1949)
Pyrrole nitrogen, ppm	Anal. Chem. 30 , 1528 (1958)
Basic nitrogen, ppm	Phillips Method 142-57R
Total nitrogen, ppm	Anal. Chem. 30, 1528 (1958)
Trace copper, ppb	Phillips Method MR-60R
Soluble iron, ppm	Phillips Method OG-61R
Soluble lead, ppb	Phillips Method 100-58R
Water Content, ppm	Karl Fisher
Phenols, ppm	Ind. Engr. Chem. Anal. Ed. 18,103 (1946)
Peroxides, ppm	Phillips Method 133-57R
Dissolved oxygen, ppm	Phillips Chromatographic Method RK-63R
Total oxygen, Wt %	Direct Combustion and Adsorption
Hydrogen content, Wt %	Direct Combustion and Adsorption
Saybolt color	ASTM D156-53T
% Light transmittance ● 350 mp (iso Cg = 100%)	Bausch & Lomb Spectronic 20 spectro- photometer
Threshold failure temperature, *F	Phillips Modified 5-ml Bomb and SSF Coker

TABLE 24

PHYSICAL AND CHEMICAL PROPERTIES OF JET FUELS FOR STORAGE PROGRAM

Storage Fuel No.	_1	2	_3_	<u>4</u>	_5	
Distillation, *F IBP	362	332	361	381	356	
10% 50% 90%	372 394 480	361 402 464	382 420 463	400 418 456	386 422 474	
EP Residue, Vol. % Dist. Loss, Vol. %	552 2.0 0.0	508 1.0 0.0	512 0.5 0.0	502 1.0 0.0	1.0 0.0	
Smoke point, mm	41.0	22.8	21.8	36.4	28.6	
API Gravity @ 60°D	52.5	43.9	36.7	46.7	44-0	
Existent gum, mg/100 ml	1.1	0.0	0.0	0.0	0.2	
Total potential gum, mg/100 ml	6.6	0.2	7.0	0.7	3.8	
Insoluble potential gum, gm/100	d 1.1	0.2	0.3	0.5	0.0	
Lamp sulfur, ppm	3	820	47	28	10	
Mercaptan sulfur, ppm	۷2	4	۷2	<2	<2	
Freezing point, 'F	-78	-58	-100	-72	-46	
Net heating value, Btu/lb	18,950	18,550	17,500	18,700	18,550	
Kinematic viscosity, cs € -40°F	21.34	10.14	21.33	14.28	13.21	
Aromatics, Vol % (FIA)	3.4	25.5	2.3	1.8	14.5	
Olefins, Vol \$	1.79	<0.10	0.41	0.12	0.21	
Corrosion, copper strip	JY.	14	ÀĹ	14	14	
Water reaction	1	1	0	0	1	
Neutralisation No., mg KOH/gram	0.05	0.07	< 0.05	0.05	< 0.05	
Aniline point, *F	189.2	143.3	143.2	165.5	د.84	
Flash Point, *F	144	130	146	160	146	
-		(Continued)				

Research Pivision Report 4390-66R

TABLE 24 (Continued)

Storage Fuel No.	_1		_3	_4	_5
Total Maphthalenes, Wt %	<1	2.0	<1	<1	2.0
Indenes, ppm	<5	<5	<5	<5	<5
Pyrrole mitrogen, ppm	0.10	0.30	0.01	0.02	0.15
Basic nitregen, ppm	<1.0	2.3	1.1	<1.0	2.0
Total nitrogen, ppm	<1	2	5	4	<1
Trace copper, ppb	<10	21	<10	18	<10
Soluble iron, ppm	<1	<1	<1	< 1	<1
Soluble lead, ppb	7	10	16	19	13
Water content, ppm	20	23	17	10	40
Phenols, ppm	<2	18	<2	<2	<2
Perceides, ppm	<2	<2	62	2	<2
Dissolved oxygen, pps	74	59	53	64	62
Total oxygen, Wt %	0.079	0.098	0.120	0.21	0.400
Hydrogen content, Wt \$	15.1	14.0	13.8	14.2	13.9
Saybolt color	+27	+18	÷28	+29	+30
<pre>\$ Light transmittance ● 350 Mp (iso C₈ = 100%)</pre>	63.4	98.0	93.6	97.3	98.9
Threshold failure temperature, (Phillips Nodified 5-ml Bomb 25% Loss Rating Criterion)		395	517	536	471
Threshold failure temperature, (SS Fuel Coker)	∘∓ 625	332	712	692	425