Fisica

UniShare

Davide Cozzi @dlcgold

Indice

1	Introduzione Meccanica			
2				
	2.1	Cinem	natica	5
		2.1.1	Moto Rettilineo	5
		2.1.2	Moto Verticale	11
		2.1.3	Moto nel Piano	15
		2.1.4	Moto Circolare	21
		2.1.5	Moto Parabolico	25
		2.1.6	Esercizi	29
	2.2	Dinan	nica	33
		2.2.1	Forza elastica	34
		2.2.2	Lavoro e Energia	34
		2.2.3	Esercizi	38
	2.3	Gravit	tazione	40

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

Capitolo 2

Meccanica

Si comincia con la Meccanica, la branca della fisica classica che studia il moto dei corpi, esprimendolo con leggi quantitative. Si ha la seguente divisione:

- Cinematica, dove si studia il moto e le sue caratteristiche indipendentemente dalle cause
- Dinamica, dove si studia l'influenza delle forze nel moto

Si utilizzano i cosiddetti punti materiali per semplificare lo studio dei fenomeni. Un punto materiale infatti non ha estensione ma è dotato di una massa. In pratica ha dimensioni trascurabili rispetto allo spazio nel quale si muove. Un altro strumento essenziale per lo studio dei fenomeni è il sistema di riferimento mediante gli assi ortogonali:

e si hanno le seguenti formule:

$$R = \sqrt{X^2 + Y^2}$$

$$sin\vartheta = \frac{Y}{R}$$

$$cos\vartheta = \frac{X}{R}$$

$$tan\vartheta = \frac{Y}{X}$$

$$\vartheta = arctan\frac{Y}{X}$$

e per gli angoli si usano i *radianti* in quanto adimensionali. L'angolo in radianti infatti è:

$$\vartheta_{rad} = \frac{Lunghezza_arco}{raggio}$$

dove le due unità di misura esprimenti una lunghezza vengono "semplificate". Si ricordano inoltre le basi del calcolo vettoriale. Tra due vettori posso fare somme e sottrazioni La somma non è altro che la diagonale maggiore del parallelogramma che si forma tra i due vettori. Inoltre se $\vec{A}=(a_x,a_y)$ e $\vec{B}=(b_x,b_y)$ si ha:

$$\vec{C} = \vec{A} + \vec{B} = (a_x + b_x, a_y + b_y)$$

la sottrazione è la diagonale minore e:

$$\vec{C} = \vec{A} - \vec{B} = (a_x - b_x, a_y - b_y)$$

2.1 Cinematica

Innanzitutto qualche definizione:

- Moto: posizione in funzione del tempo in un dato sistema di riferimento
- Traiettoria: luogo dei punti attraversati dal punto materiale in movimento
- Velocità: variazione della posizione
- Accelerazione: variazione della velocità
- Quiete: assenza di movimento in un certo sistema di riferimento

Come grandezze fondamentali del movimento si hanno quindi posizione, velocità e accelerazione, tutte e tre funzioni del tempo.

2.1.1 Moto Rettilineo

Rappresentando su un piano cartesiano avente la posizione come ordinata e il tempo come ascisse e rappresentando vri momenti del moto si ottiene una curva. Questa curva rappresenta la legge oraria.

Si ha la traiettoria più semplice, una retta. Il moto del punto quindi è esprimibile come funzione solo di

$$\vec{x}(t)$$

, che sarà la nostra equazione del moto.

Si passa quindi da un sistema di riferimento a 3 assi:

ad uno a un asse:

La scelta dell'origine della coordinata spaziale (x = 0) e di quella temporale (t = 0) sono arbitrari.

Si definisce la **distanza** come una quantità scalare la lunghezza del tratto percorso da un punto per cambiare posizione.

Velocità

Per ottenere la velocità di un punto materiale ne misuro la posizione in due diversi istanti di tempo. Si ha:

- Spostamento: $\Delta \vec{x} = x(t_2) x(t_1) = x_2 x_1$ è un vettore che descrive la differenza di posizione tra due punti. Viene misurato in *Metri (m)* secondo il Sistema Internazionale (SI). Il metro è definito come la distanza percorsa dalla luce in $\frac{1}{299792458}s$
- Intervallo di Tempo: $\Delta t = t_2 t_1$ che viene misurato in *Secondi* (s) secondo il Sistema Internazionale (SI). Il secondo è definito come la durata di 9192631770 periodi della radiazione corrispondente alla transizione tra 2 livelli iperfini dello stato fondamentale dell'atomo di Cesio-133

Possiamo quindi definire la Velocità Media:

$$v_m = \frac{\Delta \vec{x}}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\vec{v_2} - \vec{v_1}}{2}$$

Questa grandezza però non fornisce nessuna indicazione sulle caratteristiche effettive del moto. Provo a spezzare il moto in più intervalli temporali al fine di studiarne ogni variazione. Si ottiene quindi la **Velocità Istantanea**:

$$v = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}(t)}{dt}$$

La velocità istantanea rappresenta la rapidità di variazione temporale della posizione nell'istante t considerata. Il segno della velocità indica la direzione del moto sull'asse delle ascisse. La velocità è a sua volta funzione del tempo:

$$v(t) = \frac{d\vec{x}(t)}{dt}$$

che è ben rappresentata dai seguenti grafici:

Se v è costante si parla di Moto Rettilineo Uniforme. Si ha quindi:

$$\Delta x = v \Delta t \to x - x_0 = v(t - t_0) \to x = x_0 + v(t - t_0)$$

che vale anche per v non costante ma per intervalli di tempo approssimati 0, infatti tra brevi istanti di tempo si può approssimare la velocità istantanea $v(t) = \frac{dx}{dt}$ come una velocità costante. Disegniamo ora un grafico velocità tempo con la curva rappresentante la legge oraria, indicando velocità e tempo in due momenti del moto:

calcolare l'area sottesa alla curva implica calcolare la differenza di posizione. Approssimo la curva ad una retta e procedo col banale calcolo del trapezio sottostante:

$$A = (t_1 - t_0)(\frac{\vec{v_1} - \vec{v_0}}{2}) + (t_1 - t_0)\vec{v_0} = (\frac{\vec{v_1} - \vec{v_0}}{2})\Delta t + \vec{v_0}\Delta t$$
$$A = \frac{\Delta t}{2}(\vec{v_1} - \vec{v_0} + 2\vec{v_0}) = \frac{\Delta t}{2}(\vec{v_0} + \vec{v_1}) = \Delta t v_{med}$$

Nota quindi l'equazione del moto

$$\vec{x}(t)$$

possiamo ricavare v(t) derivando, infatti la posizione si ottiene, partendo dal grafico sopra, riducendo al massimo gli intervalli di tempo e calcolando la somma delle aree dei vari rettangolini .

Si può procedere anche al calcolo di

$$\vec{x}(t)$$

avendo nota $\vec{v}(t)$. Sappiamo che lo spostamento totale è: $\Delta \vec{x} = \sum_{i=1}^{n} \Delta \vec{x}_i = \sum_{i=1}^{n} v_{m_i} \Delta t$ e che, per intervalli infinitesimi $dx = \vec{v}(t)dt$. Si ha quindi:

$$\Delta x = \underbrace{\int_{x_0}^x dx}_{\vec{x}(t) - x_0} = \int_{t_0}^t \vec{v}(t)dt$$

$$\vec{x}(t) = x_0 + \int_{t_0}^t \vec{v}(t)dt$$

che è l'equazione del moto rettilineo per una velocità qualunque. Possiamo ora anche riscrivere la forma completa della velocità media, essendo $x-x_0=\int_{t_0}^t \vec{v}(t)dt$ si ha:

 $1 \int_{-t}^{t} dt$

$$v_m = \frac{1}{t - t_0} \int_{t_0}^t \vec{v}(t) dt$$

Possiamo analizzare ora il moto rettilineo uniforme con v costante. Essendo v costante, e non più dipendente dal tempo, può essere portata fuori dall'integrale:

$$\vec{x}(t) = x_0 + v \int_{t_0}^t dt = x_0 + v(t - t_0)$$

che è l'equazione generale del moto rettilineo uniforme dove lo spostamento varia linearmente col tempo.

La velocità di esprime in metri al secondo $(\frac{m}{s} \text{ o } m/s)$ o in kilometri all'ora $\frac{km}{h}$ o km/h). Per passare da km/h a m/s divido la grandezza in km/h per 3,6, per passare da m/s a km/h moltiplico la grandezza in m/s per 3,6.

Accelerazione

Si ha che in due istanti di tempo diversi abbiamo due diverse velocità: $\vec{v}(t_1) = \vec{v_1}$ e $\vec{v}(t_2) = \vec{v_2}$. Si definisce l'**Accelerazione Media:**

$$a_m = \frac{\vec{v_2} - \vec{v_1}}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Procediamo come per la velocità, con un grafico accelerazione-tempo e la legge del moto, calcolando l'area sottostante ottengo la differenza di posizione. Si ha una situazione più semplice ancora perché avendo a costante (e quindi $\overline{a}(t) = a_{med} = \frac{\Delta v}{\Delta t}$ e quindi $v_1 = v_0 + a(t_1 - t_0)$) essa può essere rappresentata come una retta l'area sottostante, che questa volta è letteralmente un trapezio senza approssimazioni, è lo spostamento.

ovvero:

$$A = x - x_0 = t_1 - v_0 + \frac{t_1(v_1 - v_0)}{2} = t_1 \frac{v_1 + v_0}{2}$$

e quindi

$$v_1 = v_0 + at_1$$

unendo con $v_1 = v_0 + a(t_1 - t_0)$ si ottiene:

$$x - x_0 = \frac{t_1}{2}(v_0 + at_1 + v_0) = \frac{t_1}{2}(2v_0 + at_1) = v_0t_1 + \frac{a}{2}t_1^2$$

$$\downarrow$$

$$x = x_0 + v_0t_1 + \frac{a}{2}t_1^2$$

Ora, come per la velocità, analizziamo intervalli di tempo infinitesimi ricordando che anche l'accelerazione è una funzione del tempo:

$$a(t) = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

ovvero la derivata seconda della posizione rispetto al tempo e si ha che:

- a = 0 implica un moto rettilineo uniforme (si deriva una costante, v, e si ottiene 0)
- a > 0 implica una velocità crescente
- a < 0 implica una velocità decrescente

Proviamo ora a risalire a $\vec{v}(t)$ conoscendo a(t). Sappiamo che $a = \frac{dv}{dt} \rightarrow dv = a(t)dt$. Risolviamo quindi l'equazione differenziale :

$$\int_{\vec{v_0}}^{v} dv = \int_{t_0}^{t} a(t)dt \to \vec{v}(t) = \vec{v_0} + \int_{t_0}^{t} a(t)dt$$

che è l'equazione generale per la velocità, dove, nel caso di $a \neq 0$, ovvero di accelerazione costante, si ha:

$$\vec{v}(t) = \vec{v_0} + a \int_{t_0}^t dt = \vec{v_0} + a(t - t_0)$$

dove si nota come la velocità sia una funzione lineare del tempo se $t_0 = 0$, ottenendo $\vec{v}(t) = \vec{v_0} + at$.

Cerchiamo ora l'equazione del moto in caso di *moto rettilineo uniformemente accelerato*. si ha che:

$$\vec{x}(t) = x_0 + \int_{t_0}^t \vec{v}(t)dt = x_0 + \int_{t_0}^t [\vec{v_0} + a(t - t_0)]dt$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Si ha che $\overline{x}(t)$ con accelerazione costante è una parabola. Ricapitolando si ha.

- $v = v_0 + at$
- $x = x_0 + vt + \frac{1}{2}at^2$

Possiamo usare le due formule combinandole. Per esempio dalla prima prendo

$$t = \frac{v - v_0}{a}$$

e lo metto nella seconda formula:

$$x = x_0 + v \frac{v - v_0}{a} + \frac{1}{2}a \left(\frac{v - v_0}{a}\right)^2 = x_0 + \frac{v_0}{a}(v - v_0) + \frac{1}{2a}(v - v_0)^2$$

$$= x_0 + \frac{1}{a}(v_0v - v_0^2 + \frac{1}{2a}(v^2 + v_0^2 - 2vv_0)) = x_0 + \frac{1}{2a}(2v_0v - 2v_0^2 + v^2 + v_0^2 - 2v_0v)$$

$$x = x_0 + \frac{v^2 - v_0^2}{2a} \to v^2 - v_0^2 = 2a(x - x_0)$$

Si nota come sia il termine at nel caso di $\vec{v}(t)$ che il termine $\frac{1}{2}at^2$ nel caso di a(t) non dipendono dalle condizioni iniziali.

Si definisce anche la velocità finale come:

$$v_{fin}^2 = v_0^2 + 2a\Delta x$$

L'accelerazione si esprime in metri al secondo quadrato $(\frac{m}{s^2}, \, m/s^2 \, o \, ms^-2)$

2.1.2 Moto Verticale

Sperimentale si scopre come un qualunque corpo lasciato libero di cadere nei pressi della superficie terrestre si muove verso il basso con un'accelerazione costante $g \simeq 9.81 \, ms^{-2}$ (si trascurano attrito dell'aria e si trattano piccole altitudini). Il valore di g non è costante in ogni parte del mondo ma può variare fino a circa il 0.6%.

Impostiamo un sistema di riferimento con l'asse x crescente verso l'alto e quindi con $a=-g=-9.81ms^{-2}$. Si avrà un corpo in caduta libera da un'altezza h:

Si hanno le seguenti condizioni iniziali:

- $t = t_0 = 0$
- $\bullet \ x_0 = h$
- $\bullet \ \vec{v_0} = 0$

Con queste premesse otteniamo:

• Equazione del moto:

$$\vec{x}(t) = x_0 + \vec{v_0}t + \frac{1}{2}at^2$$

$$\downarrow$$

$$\vec{x}(t) = h - \frac{1}{2}gt^2$$

• Equazione della velocità:

$$\vec{v}(t) = \vec{v_0} + at$$

$$\downarrow$$

$$\vec{v}(t) = -gt$$

Posso quindi ottenere il tempo di caduta, ponendo x=0 nell'equazione del moto:

$$h - \frac{1}{2}gt^2 = 0 \to t_c = \sqrt{\frac{2h}{g}}$$

e posso ottenere la velocità al suolo:

$$v_c = v(t_c) = -gt_c = -g\sqrt{\frac{2h}{g}} = -\sqrt{2gh}$$

Imponiamo ora una velocità iniziale $-\vec{v_1}$, quindi verso il basso:

Si hanno le seguenti condizioni iniziali:

- $t = t_0 = 0$
- $x_0 = h$
- $\vec{v_0} = -\vec{v_1}$
- Equazione del moto:

$$\vec{x}(t) = x_0 + \vec{v_0}t + \frac{1}{2}at^2$$

$$\downarrow$$

$$\vec{x}(t) = h - \vec{v_1}t - \frac{1}{2}gt^2$$

• Equazione della velocità:

$$\vec{v}(t) = \vec{v_0} + at$$

$$\downarrow$$

$$\vec{v}(t) = -\vec{v_1} - gt$$

Posso quindi ottenere il tempo di caduta, ponendo x=0 nell'equazione del moto:

$$h - \vec{v_1}t - \frac{1}{2}gt^2 = 0 - \frac{1}{2}gt^2 + \vec{v_1}t - h = 0$$

$$\downarrow$$

$$t_c = \frac{-\vec{v_1} \pm \sqrt{\vec{v_1}^2 + 2gh}}{q}$$

 $ma\ t < 0\ non\ \grave{e}\ una\ soluzione\ fisica,\ quindi\ tengo\ solo\ la\ soluzione\ col\ +$

$$t_c = -\frac{\vec{v_1}}{g} + \frac{1}{g}\sqrt{\vec{v_1}^2 + 2gh}$$

e posso ottenere la velocità al suolo:

$$v_c = -\vec{v_1} - gt_c = -\vec{v_1} - g\left[-\frac{\vec{v_1}}{g} + \frac{1}{g}\sqrt{\vec{v_1}^2 + 2gh} \right] = -\sqrt{\vec{v_1}^2 + 2gh}$$

Con una velocità iniziale verso il basso avremo un tempo di caduta inferiore e una velocità al suolo maggiore rispetto alla partenza da fermo.

Analizziamo ora il moto verticale di un punto materiale lanciato dal basso verso l'alto con velocità $\vec{v_2}$:

Si hanno le seguenti condizioni iniziali:

- $t = t_0 = 0$
- $x_0 = 0$
- $\bullet \ \vec{v_0} = \vec{v_2}$
- Equazione del moto:

$$\vec{x}(t) = x_0 + \vec{v_0}t + \frac{1}{2}at^2$$

$$\downarrow$$

$$\vec{x}(t) = \vec{v_2}t - \frac{1}{2}gt^2$$

• Equazione della velocità:

$$\vec{v}(t) = \vec{v_0} + at$$

$$\downarrow$$

$$\vec{v}(t) = \vec{v_2} - gt$$

Inizialmente si ha v > 0, finché il punto sale verso l'alto, fino a fermarsi. Con v = 0 si ha l'altezza massima. Si ha quindi:

$$v = \vec{v_2} - gt = 0 \to t_{max} = \frac{\vec{v_2}}{q}$$

e quindi:

$$x_{max} = x(t_{max}) = \vec{v_2} \frac{\vec{v_2}}{g} - \frac{1}{2}g \frac{\vec{v_2}^2}{g^2} = \frac{1}{2}\frac{\vec{v_2}^2}{g}$$

raddoppiando la velocità iniziale avrò quindi un'altezza 4 volte superiore. Da questp momento in poi di avrà la caduta libera da h = x - max con $\vec{v_0} = 0$:

$$t_c = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2x_{max}}{g}} = \sqrt{\frac{2}{g} \left(\frac{1}{2} \frac{\vec{v_2}^2}{g}\right)} = \frac{\vec{v_2}}{g}$$

e quindi si avrà:

$$t_{tot} = t_{max} + t_c = \frac{2\vec{v_2}}{g}$$

2.1.3 Moto nel Piano

Si passa ora al moto in 2 dimensioni quindi con una traiettoria curva (e non più una retta).

Si introducono le coordinate cartesiane (x(t) e y(t)) e quelle polari $(r(t) e \vartheta(t))$. Si hanno le seguenti formule per il passaggio da coordinate cartesiane a polari:

$$r = \sqrt{x^2 + y^2}$$
$$\tan \vartheta = \frac{y}{x}$$

e le seguenti per il passaggio da coordinate polari a cartesiane:

$$x = r\cos\vartheta$$

$$y = r \sin \vartheta$$

Il moto di P è descritto attraverso l'evoluzione del vettore posizione:

$$\vec{r}(t) \equiv (\vec{x}(t), y(t))$$

Si introducono inoltre i versori degli assi \vec{u}_x , \vec{u}_y , ricordando che $|\vec{u}_x| = |\vec{u}_y| = 1$ e che i versori restano fissi nel tempo. Si ottiene quindi:

$$\vec{r}(t) = \vec{x}(t)\vec{u}_x + y(t)\vec{u}_y$$

Suppongo ora la traiettoria fissata e nota a priori. Fissata un'origine O, una posizione s(t) e la velocità $v=\frac{ds}{dt}$ si ha che il moto è completamente determinato. Si ha una generalizzazione del moto rettilineo su una traiettoria curva.

Prendiamo ora in considerazione il seguente caso:

si ha il vettore spostamento:

$$\Delta \vec{r}(t) = \vec{r}(t + \Delta t) - \vec{r}(t)$$

e il vettore velocità media:

$$\vec{v}_m \equiv \frac{\Delta \vec{r}}{\Delta t}$$

e il vettore velocità istantanea:

$$\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \frac{d\vec{r}}{dt}$$

al limite $\Delta t \to 0$ lo spostamento infinitesimo si dispone sulla tangente alla traiettoria nel punto P:

$$d\vec{r} = ds\vec{u}_T$$

con $|\vec{u}_T| = 1$ versore della tangente che indica una direzione variabile nel tempo. Per il vettore velocità avremo:

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{ds}{dt}\vec{u}_T = v\vec{u}_T$$

con v indicate il modulo della velocità e \vec{u}_T la direzione.

Quanto appena descritto è visualizzabile nelle seguenti immagini:

Analizziamo ora meglio la velocità nelle componenti cartesiane. Essendo $\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t}$ e $\vec{r}(t) = \vec{u}_x + y(t)\vec{u}_y$ si ottiene:

$$\vec{v} = \frac{dx}{dt}\vec{u}_x + \frac{dy}{dt}\vec{u}_y = v_x\vec{u}_x + v_y\vec{u}_y$$

con il modulo della velocità:

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

Ecco un'immagine di quanto detto:

Passiamo alle componenti polari. Essendo $\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t}$ e $\vec{r}(t) = r(t)\vec{u}_r(t)$ (col versore \vec{u}_r mostrato in figura) si ottiene:

$$\vec{v} = \frac{d}{dt}(r\vec{u}_r) = \frac{dr}{dt}\vec{u}_r + r\frac{d\vec{u}_r}{dt} = \frac{dr}{dt}\vec{u}_r + r\frac{d\vartheta}{dr}\vec{u}_\vartheta$$

in quanto solitamente la derivata di un versore è:

$$\frac{d\vec{u}}{dt} = \frac{\vec{u}(t+dt) - \vec{u}(t)}{dt} = \frac{d\vartheta}{dt} \vec{u}_{\perp}$$

Ecco un'immagine di quanto detto:

Possiamo approfondire ancora lo studio della velocità in componenti polari infatti:

$$\vec{v} = \underbrace{\frac{dr}{dt}\vec{u}_r}_{r_r^2} + \underbrace{r\frac{d\vartheta}{dr}\vec{u}_\vartheta}_{\vec{q}_z}$$

con:

- $\bullet \ \vec{v_r}$ è la velocità radiale e $|\vec{v_r}| = \frac{dr}{dt}$ è la variazione di r
- $\vec{v_{\vartheta}}$ è la **velocità traversa** e $|\vec{v_{\vartheta}}| = r \frac{d\vartheta}{dt}$ è la variazione della direzione quindi:

$$\vec{v} = \vec{v_r} + \vec{v_\theta}$$

e quindi:

$$|\vec{v}| = \sqrt{v_r^2 + v_\vartheta^2} = \sqrt{\left(\frac{dr}{dt}\right)^2 + r^2 \left(\frac{d\vartheta}{dt}\right)^2}$$

Ecco un'immagine che spiega quanto detto:

Passiamo ora all'accelerazione nel piano. Essa è, come sappiamo, la variazione della velocità $\vec{v} = v\vec{u}_T$ ma, se nel moto rettilineo è solo la variazione del modulo, nel moto del piano si ha anche la variazione della direzione. Iniziamo sapendo che $\vec{a} = \frac{d\vec{v}}{dt}$. Quindi:

$$\vec{a} = \frac{d}{dt}(v\vec{u}_t) = \frac{dv}{dt}\vec{u}_T + v\frac{d\vec{u}_t}{dt}$$

ricordando la derivata di un versore si ottiene:

$$\vec{a} = \frac{dv}{dt}\vec{u}_T + v\frac{d\phi}{dt}\vec{u}_N$$

con:

- \vec{u}_N versore perpendicolare al versore tangente
- $\frac{dv}{dt}\vec{u}_T$ variazione del modulo velocità, detta \vec{a}_T accelerazione tangenziale
- $v\frac{d\phi}{dt}\vec{u}_N$ variazione della direzione, detta \vec{a}_T accelerazione normale o centripeta

quindi:

$$\vec{a} = \vec{a}_T + \vec{a}_N$$

procedendo con l'analisi della traiettoria si nota come essa possa essere approssimata da una circonferenza con un certo raggio R che può essere usato come raggio di curvatura. Si ha quindi $ds=R\,d\phi$ e quindi:

$$\frac{d\,\phi}{dt} = \frac{1}{R}\frac{ds}{dt} = \frac{1}{R}v$$

Posso quindi sostituire $\frac{d\phi}{dt}$ nella formula precedentemente trovata dell'accelerazione ottenendo:

$$\vec{a} = \frac{dv}{dt}\vec{u}_T + \frac{v^2}{R}\vec{u}_N$$

quindi \vec{a}_N può anche essere indicata con $\vec{a}_N = \frac{v^2}{R} \vec{u}_N$. Da questi ultimi due risultati si intuiscono due cose:

- 1. se $r \to \infty$ si ha $\vec{a}_N = 0$ e quindi un moto rettilineo
- 2. se $\frac{dv}{dt}=0$ si ha $\vec{a}_T=0$ e quindi un moto curvilineo uniforme con solo il cambiamento della direzione

Si ha infine il modulo dell'accelerazione:

$$a = |\vec{a}| = \sqrt{\left(\frac{dv}{dt}\right)^2 + \frac{v^4}{R^2}}$$

Ecco un'immagine di quanto detto:

Proiettiamo ora l'accelerazione sugli assi del sistema cartesiano:

$$\vec{a} = \frac{dv_x}{dt}\vec{u}_x + \frac{dv_y}{dt}\vec{u}_y = a_x\vec{u}_x + a_y\vec{u}_y$$

analizziamo anche quanto succede sul piano:

Possiamo ora scrivere le componenti cartesiane in funzione di quella tangenziale e di quella centripeta:

• per l'ascisse:

$$a_x = (a_T)_x + (a_N)_x = a_t \cos \alpha + a_n \cos \left(\frac{\pi}{2} - \alpha\right) = \frac{dv}{dt} \cos \alpha + \frac{v^2}{R} \sin \alpha$$

• per l'ordinata:

$$a_y = \frac{dv}{dt}\sin\alpha - \frac{v^2}{R}\cos\alpha$$

2.1.4 Moto Circolare

Si tratta di un caso particolare di moto curvilineo nel piano. In generale si ha il modulo della velocità non uniforme. Si hanno quindi:

- \bullet coordinate polari:
 - angolo $\theta(t)$
 - raggio r(t) = R = costante
- coordinate curvilinee:
 - posizione misurata lungo la traiettoria $s(t) = R\theta(t)$
- coordinate cartesiane:

$$-\vec{x}(t) = R\cos\theta(t)$$

$$-y(t) = R \sin \theta(t)$$

ovvero:

Iniziamo ad analizzare il moto circolare. Considero il punto P in due istanti t e $t + \Delta t$. Quindi avrò $\theta(t) = \theta_1$ e $\theta(t + \Delta t) = \theta_2$. Nel complesso si ha $\Delta \theta = \theta_2 - \theta_1$:

Si definisce innanzitutto la velocità angolare media:

$$\omega_m = \frac{\Delta \theta}{dt}$$

mentre per la velocità angolare istantanea si ha:

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{dt} = \frac{d\theta}{dt}$$

Si indica ora la velocità angolare in funzione di $v \in R$, ricordando che $ds = Rd\theta$:

$$\omega = \frac{d\theta}{dt} = \frac{1}{R}\frac{ds}{dt} = \frac{v}{R}$$

quindi la velocità angolare è proporzionale al modulo della velocità ed inversamente proporzionale al raggio. Inoltre $v=\omega R$. Partiamo da qui per approfondire la velocità nel moto circolare. Sappiamo che in generale nel moto curvilineo si ha: $\vec{v} = \frac{dr}{dt}\vec{u_r} + r\frac{d\theta}{dt}\vec{u_\theta}$. Si ha che $\frac{dr}{dt} = 0$ quindi:

$$\vec{v} = R \frac{d\theta}{dr} \vec{u}_{\theta} = R\omega \vec{u}_{\theta}$$

in quanto R è costante e quindi si ha come modulo della velocità:

$$\vec{v}(t) = |\vec{v}(t)| = \omega(t)R$$

graficamente si ha:

Si ha inoltre che se si parla di moto circolare uniforme si ha che $v = \omega R$ è costante in quanto ω è costante.

Passiamo all'accelerazione nel moto circolare uniforme. Si ha solo l'accelerazione centripeta in quanto $\frac{dv}{dt}=0$

$$\vec{a} = \frac{v^2}{R} \vec{U}_N$$

con v^2 costante e si ha il modulo dell'accelerazione pari a:

$$a = |\vec{a}| = \frac{v^2}{R} = \frac{(\omega R)^2}{R} = \omega^2 R = \omega v$$

Quindi per il moto lungo la traiettoria si ha:

- $s(t) = s_0 + vt$
- $\theta(t) = \theta_0 + \omega t$

e nel moto circolare uniforme si può notare un moto periodico con periodo:

$$T = \frac{2\pi R}{v} = \frac{2\pi R}{\omega R} = \frac{2\pi}{\omega}$$

vediamo ora l'accelerazione in caso di moto non uniforme, quindi con $\vec{a} = \vec{a}_T + \vec{a}_N$ e con $\vec{v}(t) = \omega(t)R$. Definisco un'accelerazione angolare media:

$$\alpha_m = \frac{\omega_2 - \omega_1}{\Delta t} = \frac{\Delta \omega}{\Delta t}$$

e l'accelerazione angolare istantanea, si ricorda che $\omega = \frac{v}{r}$:

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt} = \frac{1}{R} \frac{dv}{dt} = \frac{1}{R} a_T$$

visivamente:

Possiamo quindi riscrivere accelerazione normale e tangenziale in funzione di quantità angolari:

•
$$a_N = \frac{v^2}{R} \xrightarrow{v = \omega R} a_N = \omega^2 R$$

•
$$a_T = \frac{dv}{dt} \xrightarrow{v = \omega R} a_T = \frac{d\omega}{dt} R = \alpha R$$

quindi:

$$\vec{a} = \alpha R \vec{u}_T + \omega^2 R \vec{u}_N = R(\alpha \vec{u}_T + \omega^2 \vec{u}_N)$$

quindi infine:

•
$$\omega(t) = \omega_0 + \int_{t_0}^t \alpha dt = \omega_0 + \alpha \int_{t_0}^t dt = \omega_0 + \alpha t$$
 in quanto $t_0 = 0$

- $\theta(t) = \theta_0 + \int_{t_0}^t \omega(t)dt = \theta_0 + \int_{t_0}^t (\omega_0 + \alpha t)dt = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$, dove si nota l'analogia con l'accelerazione nel moto rettilineo
- $a_N = \omega^2 R = (\omega_0 + \alpha t)^2 R$

Diamo nuovamente un'occhiata alla velocità angolare $\omega=\frac{d\theta}{dt}=\frac{v}{R}$. Si ha che è una quantità scalare. Studiamo ora la notazione vettoriale di $\vec{\omega}$. Questo vettore ha direzione ortogonale alla circonferenza e , visto dalla punta di $\vec{\omega}$ il moto appare antiorario. SI ha quindi che $\vec{\omega} \times \vec{r} = \vec{v}$ e:

$$|\vec{v}| = \omega R \sin \frac{\pi}{2} = \omega R$$

anche se il vettore $\vec{\omega}$ si può applicare a qualunque punto dell'asse z, ottenendo:

$$|\vec{v}| = \omega R \sin \phi = \omega R$$

graficamente si ha a sinistra il caso con applicazione sull'origine normale e a destra il caso applicazione in un punto a scelta:

2.1.5 Moto Parabolico

Consideriamo il moto di un punto materiale lanciato da terra (con angolo θ_0) con una certa velocità iniziale v_0 :

posto $t_0=0$ e $\vec{r}(t_0)=0$ otteniamo per la velocità:

$$\vec{v}(t) = \vec{v}(t_0) + \int_{t_0}^t \vec{a}(t) dt = \vec{v_0} - g\vec{u}_y \int_{t_0}^t dt = \vec{v_0} - gt\vec{u}_y$$

$$\downarrow$$

$$\begin{cases} v_x = v_0 cos\theta_0 \\ v_y = v_0 sin\theta_0 - gt \end{cases}$$

e per la posizione:

$$\vec{r}(t) = \vec{r}(t_0) + \int_{t_0}^t \vec{v}(t) dt$$

$$\downarrow$$

$$\begin{cases} x = x(t) = \int_{t_0}^t v_x = (v_0 cos \theta_0) t \\ y = y(t) = \int_{t_0}^t v_y = (v_0 sin \theta_0) t - \frac{1}{2} gt^2 \end{cases}$$

notiamo che la componente x rappresenta un moto rettilineo uniforme mentre quella y un moto uniformemente accelerato. Passiamo ora al calcolo della traiettoria y(x). Dall'equazione di x(t) otteniamo:

$$t = \frac{x}{v_0 cos\theta_0}$$

quindi:

$$y(x) = (v_0 sin\theta_0) \frac{x}{v_0 cos\theta_0} - \frac{1}{2} g \frac{x^2}{v_0^2 cos\theta_0^2}$$

$$\downarrow$$

$$y(x) = (tan\theta_0) x - \frac{g}{2v_0^2 cos^2\theta_0} x^2$$

ovvero l'equazione di una parabola con asse verticale, infatti:

Studiamo ora la gittata, che si ha con y(x) = 0:

Quindi, essendo y(x) = 0, si ha:

$$tan\theta_0 = \frac{g}{2v_0^2 cos^2 \theta_0}$$

quindi:

$$x_G = \frac{2v_0^2}{g}cos^2\theta_0tan\theta_0 = \frac{2v_0^2}{g}cos\theta_0sin\theta_0$$

$$\downarrow$$

$$x_G = \frac{v_0^2}{g}sin(2\theta_0)$$

e, fissata la velocità iniziale si ha la gittata massima con $sin(2\theta_0) = 1$ (quindi con $\theta_0 = \frac{\pi}{4} = 45^{\circ}$). Si ha quindi:

$$x_{G_{max}} = \frac{v_0^2}{g}$$

la parabola è simmetrica rispetto all'asse e a x_M si ha l'altezza massima $y_M = y(x_M)$. Si ha:

$$x_M = \frac{1}{2} \frac{v_0^2}{q} sin(2\theta_0)$$

e, mettendo x_M nella formula della traiettoria, si ottiene:

$$y_M = \frac{v_0^2}{2q} sin^2 \theta_0$$

che è l'altezza massima lungo la traiettoria. Ne segue che l'altezza massima si ha sulla verticale (con $\theta_0 = \frac{\pi}{2}$) e quindi si ha l'altezza massima pari a:

$$Y_{M_{max}} = \frac{v_0^2}{2q}$$

Possiamo ora calcolare il tempo di volo, ovvero il tempo impiegato a raggiungere la gittata x_G :

$$t_G = \frac{x_G}{v_x} = \frac{v_0^2}{g} sin(2\theta_0) \frac{1}{v_0 cos\theta_0}$$

$$\downarrow$$

$$t_G = \frac{2v_0}{g} sin\theta_0$$

che con $sin\theta_0=1$, ovvero con $\theta_0=\frac{\pi}{2}$ (sulla verticale), raggiunge il suo massimo:

$$t_{G_{max}} = \frac{2v_0}{q}$$

si hanno inoltre le seguenti velocità finali:

$$\begin{cases} v_x(t_G) = v_x(t_0) = v_0 cos\theta_0 \\ v_y(t_G) = -v_y(t_0) = -v_0 sin\theta_0 \end{cases}$$

Vediamo ora un punto materiale lanciato orizzontalmente da altezza h.

è un moto parabolico con condizioni iniziali diverse:

- x(0) = 0
- y(0) = h
- $v_x(0) = v_0$
- $v_y(0) = 0$

con la seguente equazione del moto:

$$\begin{cases} x(t) = v_0 t \\ y(t) = h - \frac{1}{2}gt^2 \end{cases}$$

che implicano:

$$\begin{cases} v_x(t) = v_0 \\ v_y(t) = -gt \end{cases}$$

si hanno quindi:

• tempo di volo: $t = \frac{x}{v_0}$

• traiettoria: $y(x) = h - \frac{g}{2v_0^2}x^2$

• tempo di caduta: $y(t) = 0 \rightarrow h - \frac{1}{2}gt^2 = 0 \rightarrow t_c = \sqrt{\frac{2h}{g}}$

• gittata: $x(t_c) = x_G = v_0 t_c = v_0 \sqrt{\frac{2h}{g}}$

• velocità finale: $v_x(t_c) = v_0 \ e \ v_y(t_c) = -\sqrt{2gh} \rightarrow v_c = \sqrt{v_0^2 + 2gh}$

2.1.6 Esercizi

prodotto scalare:

$$\vec{a} \cdot \vec{b} = ab \cos\theta$$

prodotto vettoriale:

$$\vec{a} \times \vec{b} = \vec{c} \rightarrow |\vec{c}| = ab \sin\theta$$

Esercizio 1. si ha una strada rettilinea di 5.2km percorsa in auto a 43km/h, dopo si ha un altro percorso di 1.2km (fatto in 27m). Trovo velocità media nei due tratti:

$$\begin{split} v_{med} &= \frac{\Delta x}{\Delta t} \\ \Delta x &= \Delta x_1 + \Delta x_2 = 5.2 + 1.2 = 6.4 km \\ \Delta t &= \Delta t_1 + \Delta t_2 = \frac{\Delta x_1}{v} + \Delta t_2 = \frac{5.2}{43} + 0.45 = 0.12 + 0.45 = 0.57 h \\ v_{med} &= \frac{\Delta x}{\Delta t} = \frac{6.4}{0.57} = 11 km/h \end{split}$$

ora torna alla macchina, tornando indietro di 1.2km in 35m, quindi la nuova velocità media totale sarà:

$$v_{med2} = \frac{5.2}{0.57 + 0.58} = 4.5 km/h$$

sistemare parte finale

Esercizio 2. negli anni '60 c'è stato il record di velocità al suolo con 631km/h in 3.72s. L'accelerazione media è maggiore di quella di gravità?

$$a_{med} = \frac{\Delta v}{\Delta t} = \frac{631}{3.6} \frac{1}{3.72} = 47, 2m/s^2$$

che è maggiore di 9.81

Esercizio 3. la metro va da A a B. Quando parte accelera con 1.2m/s², per metà tratta accelera così positivamente e poi frena con lo stesso modulo. Tra A e B ci sino 1100m. Calcolo tempo e velocità massima:

$$v_{max} = v\frac{\Delta x}{2} = \sqrt{2a\Delta x} \frac{1}{2} = \sqrt{a\Delta x} = \sqrt{1.2 * 1100} = 36, 3m/s$$
$$v = v_0 + at \rightarrow t = \frac{v_{fin}}{a} = \frac{36.3}{1.2} = 30.3s$$
$$\Delta t_{tot} = 30.3 \cdot 2 = 60.6s$$

in quanto accelera e frena con lo stesso modulo

Esercizio 4. un tizio urla in un pozzo e l'eco gli torna dopo 2s. Quanto è profondo il pozzo $(v_{suono} = 344m/s)$

$$2\Delta x = v\Delta t \to t = \frac{344 \cdot 2}{2} = 344m$$

Esercizio 5. Un aereo per staccarsi dalla pista deve avere una velocità finale di 360km/h. La pista è lunga 1,8km. Si ha accelerazione costante. Qual è l'accelerazione minima?

$$v_{fin}^2 = v_0^2 + 2a\Delta x \to a = \frac{360}{3.6} \frac{1}{2 \cdot 1.8 \times 10^3} = 2.7m/s^2$$

Esercizio 6. Un tizio fa cadere una chiave inglese da un grattacielo. Dov'è la chiave dopo 1.5s?

$$\Delta x = -\frac{1}{2}gt^2 = -\frac{9.81 \cdot 1.2^2}{2} = -11m$$

negativo nel mio sistema di riferimento

Esercizio 7. lancio una palla in alto con $v_0 = 12m/s$, quanto ci impiega ad arrivare alla massima altezza?

$$v_f = v_0 - gt \to t = \frac{v_0}{g} = \frac{12}{9.81} = 1.2s$$

quanta strada fa?

$$x = -\frac{v_0^2}{2q} = -\frac{12^2}{2 \cdot (-9.81)} = 7.3m$$

quanto impiega la palla per arrivare a 5m sopra il punto di lancio?

$$x = v_0 t - \frac{1}{2}gt^2 \to \frac{1}{2}9,81t^2 + 12t + 5 = 0$$

$$\downarrow t = \frac{12 \pm \sqrt{12^2 - 4\frac{9,81}{2}5}}{2,45} = \begin{cases} 0,53s\\1,9s \end{cases}$$

sappiamo che per arrivare all'altezza massima impiega 1,2s, quindi impiegherà 0,53s per arrivare a 5m e 1,9s per salire all'apice e scendere nuovamente a 5m.

Esercizio 8. Un aereo getta aiuti umanitari ad una quota di 1200m volando a 430km/h. Calcolo a quale angolo devono essere gettati gli aiuti?

$$\begin{cases} x = v_{0x}t \\ y = v_{0y}t - \frac{1}{2}gt^2 = -\frac{1}{2}gt^2 \end{cases}$$

$$t = \sqrt{\frac{2y}{g}} = \sqrt{\frac{2400}{9,81}} = 15,6s$$

$$\downarrow$$

$$x = \frac{430}{3,6} \cdot 15, 6 = 1863m$$

$$\downarrow$$

$$tan(\frac{\pi}{2} - \theta) = \frac{\Delta x}{\Delta y} = \frac{1869}{1200}$$

$$\downarrow$$

$$\frac{\pi}{2} - \theta = \arctan\left(\frac{1869}{1200}\right) = 57^{\circ}$$

Esercizio 9. una pallina viene scagliata contro un muro a 25m/s. Dopo l'impatto torna indietro a -22m/s. Calcolo l'accelerazione media sapendo che l'impatto dura 3,5ms

$$a_{med} = \frac{\Delta v}{\Delta t} = \frac{25 - (-22)}{3,5 \times 10^{-3}} = \frac{47}{3,5 \times 10^{-3}}$$

Esercizio 10. una pallina viene lanciata su uno scalino. Sapendo che viene lanciata con un angolo di 60 gradi a 42m/s e che atterra dopo 5,53s calcolo l'altezza del gradino

$$y(5,53) = v_{0y}t - \frac{1}{2}gt^2 = 42sin\left(\frac{\pi}{3}\right) - \frac{1}{2} \cdot 9, 8 \cdot 5, 53^2 = 51, 8m$$

calcolo la velocità d'impatto:

calcolo prima la velocità sulle ordinate:

$$v_y(5,53) = v_{0y} - gt = v_0 \sin\left(\frac{pi}{3}\right) - 9,81 \cdot 5,53 = -17m/s$$

e infine:

$$v = \sqrt{v_{o_y}^2 v_{0_x}^2} = \sqrt{21^2 + (-17)^2} = 27m/s$$

Esercizio 11. ho una pallina che si muove lungo un cerchio di raggio 0,1m. Si ha la velocità iniziale pari a 0,05m/s e dopo 1s si trova a 0,08m. Calcolo accelerazione tangenziale e centripeta a 1s: parto dall'accelerazione tangenziale

$$x(t) = v_0 t + \frac{1}{2} a_T t^2$$

$$\downarrow$$

$$8 \times 10^{-2} = 0,05 \times 1 \frac{1}{2} a_T (1)^2$$

$$\downarrow$$

$$a_T = 6 \times 10^{-2} m/s^2$$

passo all'accelerazione centripeta:

$$a_N(1) = \frac{v(1)^2}{R} = \frac{(v_0 + a_T t^2)^2}{R} = 0,121m/s^2$$

??????????????????????

Esercizio 12. Un oggetto posto a 1,2m di altezza viene spinto in avanti, cadendo a 1,5m di distanza. Calcolo il tempo di volo mi basta il tempo su y:

$$\Delta y = v_{0y}t + \frac{1}{2}gt^{2}$$

$$\downarrow v_{0y} = 0$$

$$t = \sqrt{\frac{2\Delta y}{g}} = \sqrt{\frac{2 \cdot 1, 2}{9, 81}} = 0,49s$$

trovo ora la velocità su x:

$$v_{0_x} = \frac{\Delta x}{\Delta t} = \frac{1,5}{0,49} = 3m/s$$

2.2 Dinamica

La dinamica studia le cause del moto. Si studia un punto materiale con una certa massa, detta anche massa inerziale, (che è una proprietà intrinseca dei corpi, è una quantità scalare, mentre il peso è una quantità scalare rivolta verso il basso e dipendente dall'accelerazione di gravità, e si esprime in kg secondo il SI) in un certo ambiente che condiziona quel punto materiale. Si hanno le tre leggi di Newton:

- Prima legge: in assenza di forze esterne (ovvero la somma delle forze vettoriali applicate è 0) su un corpo si ha che lo stesso non cambia velocità (il suo moto non cambia); si ha quindi un sistema inerziale. Nel caso di presenza di forze nel sistema di ha un sistema non inerziale, dove agiscono forze non apparenti
- Seconda legge: si ha una relazione tra forza (espressa in Newton, N, è una quantità vettoriale) e accelerazione. Si ha inoltre la presenza della massa in questa relazione. Si scopre sperimentalmente che vale la seguente relazione, in quanto massa e accelerazioni sono inversamente proporzionali:

$$\vec{F} = m\vec{a} \rightarrow \vec{a} = \frac{\vec{F}}{m}$$

$$\downarrow$$

$$\frac{d^2\vec{x}(t)}{dt^2} = \frac{\vec{F}(t)}{m}$$

ovviamente posso anche scomporre:

$$\vec{F} \equiv \begin{cases} \vec{F}_z = m\vec{a}_x \\ \vec{F}_z = m\vec{a}_y \\ \vec{F}_z = m\vec{a}_z \end{cases}$$

• Terza legge: è il principio di azione-reazione

Un Newton è:

$$N = kg \frac{m}{s^2}$$

2.2.1 Forza elastica

Si definisce la legge di Hooke:

$$\vec{F} = -k\Delta \vec{x}$$

dove k è la costante elastica. La forza elastica si oppone all'allungamento della molla. Quindi si ha:

$$\vec{F}(x) = -k(x - x_0) = m\vec{a}$$

$$\vec{a} = \frac{-k(x - x_0)}{m}$$

Il moto poi dell'estremità della molla viene espresso da un moto armonico.

2.2.2 Lavoro e Energia

Lavoro

La conservazione dell'energia è un principio base della fisica. Ci sono delle combinazioni matematiche di cinematica e forze che costruiscono l'energia, che non è frutto di un'indagine sperimentale. L'energia va individuata i vari aspetti del sistema considerato. Un sistema può essere formato da più punti materiali e l'energia può studiare i sistemi senza doverne scomporre le parti. Se un sistema non scambia energia con l'esterno mantiene costante l'energia interna.

Sappiamo che:

$$\vec{F} = m\vec{a}$$

$$\downarrow$$

$$\frac{d^2\vec{x}(t)}{dt^2} = \frac{\vec{F}(\vec{x}, t)}{m}$$

Definiamo ora il lavoro di una forza:

Definizione 1. Il lavoro di una forza è la rappresentazione dello spostamento di un corpo causato da una certa forza. Quindi se applico una forza costante ad un corpo e si ha uno spostamento si ha che il lavoro è:

$$L = \vec{F_x} \vec{\Delta x} [Nm]$$

Forza e spostamento sono vettori, si ha quindi la direzione degli stessi. Si ha invece che il lavoro è uno scalare, quindi in realtà si ha, con θ angolo tra i due vettori:

$$L = |\vec{F}| \, |\vec{\Delta x}| cos\theta = \vec{F}\vec{s}$$

ovvero si ha il prodotto scalare tra i due vettori. Se la forza è ortogonale allo spostamento si ha che il lavoro è nullo. \vec{s} è lo spostamento e non si ha più necessità di sapere l'orientamento (potrebbe non giacere più sull'asse delle ascisse). L'unità di misura del lavoro è il **Joule** (J = Nm).

Il lavoro totale può essere ottenuto dal lavoro della risultante delle forze o sommando i singoli lavori di oqni forza.

Non si hanno però ne forze costanti ne spostamenti lineari. Quindi prendo piccoli intervalli di spazio ne calcolo i vari lavori:

$$\sum L_i = \sum \vec{F_{x_i}} \vec{\Delta x}$$

quella somma sarà più vera più si riducono gli intervalli di spazio. Calcolo quindi l'integrale:

$$L = \int_{x_0}^x \vec{F_x} \, dx$$

e nello spazio si generalizza così:

$$\begin{cases} L_x = \vec{F}_x x \\ L_y = \vec{F}_y y \\ L_z = \vec{F}_z z \end{cases}$$

$$\downarrow$$

$$L = L_x + L_y + L_z = \vec{F} \vec{s}$$

se le tre componenti non sono costanti si ha, con a indicante una traiettoria:

$$L = \int_{a} \vec{F} \, ds$$

Energia

Il lavoro rappresenta anche il trasferimento di energia che la forza fa su un punto materiale. Partiamo da una forza costante (quindi anche l'accelerazione sarà costante):

$$\vec{F} = \sum \vec{F_i} = m\vec{a}$$
 e che $\vec{a} = \frac{\vec{F}}{m}$

ricordiamo che:

$$v_f^2 = v_0^2 + 2a\Delta x$$

Unendo le due formule sopra si ha che:

$$v_f^2 = v_0^2 + 2\frac{\vec{F}}{m}\Delta x$$

e sappiamo che:

$$L = \vec{F_x} \vec{\Delta x}$$

quindi:

$$v_f^2 = v_0^2 + 2\frac{L}{m}$$

$$\downarrow$$

$$L = \frac{v_f^2 - v_0^2}{2}m = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2$$

e definiamo quest'ultima relazione come variazione dell'energia cinetica:

$$E_k = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2$$

Teorema 1 (teorema dell'energia cinetica). Se un corpo possiede un'energia cinetica iniziale e una forza agisce sul corpo effettuando un lavoro si ha che l'energia cinetica finale del corpo è uguale alla somma dell'energia cinetica iniziale e del lavoro compiuto dalla somma delle forze risultati lungo la traiettoria del moto.

Questo teorema vale anche per forze variabili con il tempo o con la posizione, per sistemi a massa costante. Ovvero si ha:

$$dW = F ds = ma ds = m \frac{dv}{dt} ds = m \frac{ds}{dt} dv = mv dv$$

e avendo un percorso finito tra A e B si ha:

$$W_{ab} \int_{v_a}^{v_b} mv \, dv = \frac{1}{2} m v_b^2 - \frac{1}{2} m v_a^2 = E_{k,b} - E_{k,a} = \Delta E_k$$

Definiamo ora i lavori per varie forze:

• lavoro della forza peso:

$$W_{AB} = \int_{A}^{B} \vec{F} d\vec{s} = \int_{A}^{B} mg \, ds = mg \int_{A}^{B} ds = mg \, r_{AB} = mg(z_{B} - z_{A})$$

$$W_{AB} = -(mgz_b - mgz_A)) - (E_{PB} - E_{PA}) = -\Delta E_P$$

quindi il lavoro della forza peso è pari alla differenza di energia potenziale tra i due punti.

in generale:

$$E_P = mgh$$

• lavoro della forza elastica:

$$w = \int_{A}^{B} -kx \, dx = -k \int_{A}^{B} x \, dx = -\left(\frac{1}{2}kx_{b}^{2} - \frac{1}{2}kx_{a}^{2}\right) = -(E_{PB} - E_{PA}) - \Delta E_{P}$$
con
$$E_{P} = \frac{1}{2}kx^{2}$$

che è l'energia potenziale elastica

Forze Conservative e non Conservative

Al moto si possono opporre delle forze, come la forza di attrito dinamico:

$$\vec{f}_{AD} = -\mu_D N$$

che si differenzia dalla forza di attrito statico

$$\vec{f}_{AS} = -\mu_S N$$

per il fatto che si applica su un corpo in movimento. Posso calcolare il lavoro della forza di attrito dinamico:

$$W_{AD} = \int_{A}^{B} \vec{f}_{AD} \, ds = -\mu_{D} N \int_{A}^{B} ds = -\mu_{D} N l_{AB}$$

che è sempre negativo in quanto resistente ed è proporzionale alla lunghezza del tratto da A e B. Non si può esprimere come differenza di coordinate tra A e B.

Si hanno:

- forze conservative, dove il lavoro non dipende dal percorso, come per la forza peso o quella elastica e si possono esprimere come Energia Potenziale
- forze non conservative, dove il lavoro dipende dal percorso, come nel caso della forza elastica. NON si possono esprimere mediante l'energia potenziale

Nel caso di forze conservative si definisce la **conservazione dell'energia** meccanica:

$$E_{KB} + E_{PB} = E_{KA} + E_{PA}$$

e si ha che l'energia si conserva durante il moto.

In presenza di forze non conservative l'energia meccanica non si conserva:

$$E_{KB} + E_{PB} - E_{KA} + E_{PA} = E_{MB} - E_{MA} = \Delta E_{M}$$

$$W = W_{cons} + W_{non-cons}$$
$$W_{non-cons} = \Delta E_M$$

quindi, per esempio, nel caso delle forze d'attrito si ha:

$$\Delta E_M = -\mu_D N l_{AB}$$

2.2.3 Esercizi

Esercizio 13. Un corpo di M=33kg è attaccato, mediante un filo inestensibile e privo di massa passante per una carrucola anch'essa priva di massa, ad un'altra massa di m=0,1kg in sospensione. Trovo la tensione sul filo e l'accelerazione

$$\begin{cases} T = Ma \\ T = mg - ma \end{cases}$$

$$\downarrow$$

$$T = Ma = \frac{Mm}{m+M}g$$

$$\downarrow$$

$$\begin{cases} T = 0.98N \\ a = 32,28m/s^2 \end{cases}$$

Esercizio 14. ho una massa di m=15kg su un piano inclinato di 27 $gradi(\theta=\frac{3}{20}\pi)$ è attaccata mediante un filo inestensibile e privo di massa all'estremità superiore del piano. Trovo la tensione e la forza normale

$$T = mg \sin\left(\frac{3}{20}\pi\right) = 15 \cdot 9, 8 \cdot 0, 54 = 66, 8N$$
$$F_N = mg \cos\left(\frac{3}{20}\pi\right) = 15 \cdot 9, 8 \cdot 0, 9 = 132, 4N$$

Esercizio 15. Ho un disco di 1kg legato a una fune, di 3,2m al palo. Gira senza attrito a 4m/s. Trovo la tensione.

$$T = F_c = m\frac{v^2}{R} = 5N$$

Esercizio 16. ho un oggetto su un piano inclinato scende se $\mu > 0$, nel doppio del tempo necessario in assenza di attrito (t_0) : Il piano è inclinato di 35 gradi. Calcolo μ :

$$l = \frac{1}{2}at^2$$

senza attrito:

$$t_0 = \sqrt{\frac{2l}{a_0}}$$

con attrito:

$$t_1 = \sqrt{\frac{2l}{a_1}}$$

trovo il rapporto tra i tempi:

$$\frac{t_0}{t_1} = \frac{1}{2}$$

quindi:

$$\frac{a_1}{a_0} = \frac{1}{4}$$

quindi nel caso di assenza di attrito:

$$F = mq \sin\theta \rightarrow F = ma \rightarrow a_0 = q \sin\theta$$

con attrito:

$$F = mg \sin\theta - \mu_D mg \cos\theta \rightarrow F = ma \rightarrow a_1 = g \sin\theta - \mu_D g \cos\theta$$

quindi:

$$\frac{a_1}{a_0} = \frac{g \sin\theta - \mu_D g \cos\theta}{g \sin\theta} = \frac{1}{4}$$

$$\downarrow$$

$$\frac{\sin\theta - \mu_D \cos\theta}{\sin\theta} = \frac{1}{4} \to \mu_D = 0,52$$

Esercizio 17. AGGIUNGERE ESERCIZIO CON TRE CAVI

Esercizio 18.

2.3 Gravitazione

La gravità è una delle 4 forze principali dell'universo (insieme all'interazione forte, all'interazione elettromagnetica e all'interazione debole).

La gravità è una forza centrale. La forza in un qualsiasi punto P è nella direzione \overline{OP} , con O dentro della forza. Il primo a porre le basi per lo studio della gravitazione è stato Tycho Brahe e dai suoi studi Keplero formulò le tre leggi:

- 1. **prima legge:** le orbite dei pianeti sono ellittiche e il fuoco occupa uno dei tre fuochi
- 2. **seconda legge:** la velocità areale del raggio che unisce il sole al pianeta è costante:

$$velocita \ areale = \frac{\Delta A}{\Delta t} = const$$

3. **terza legge:** il quadrato del periodo di ricoluzione è proporzionale al cubo del semiasse maggiore:

$$T^2 = k_S a^3$$

con k_S costante per tutte le orbite intorno al sole

si definisce anche l'eccentricità:

$$\varepsilon = \sqrt{1 - \frac{b^2}{a^2}} \le 1$$

con $\varepsilon = 0$ si ha un cerchio.

Si definisce anche l'area dell'ellisse:

$$A = \pi ab = \pi a^2 \sqrt{1 - \varepsilon^2}$$

Assumiamo per comodità un'orbita circolare:

$$\frac{\Delta A}{\Delta t} = const = \frac{1}{2}r^2\frac{d\theta}{dt} con \frac{d\theta}{dt} = const$$

e si ha la forza centripeta:

$$F = m\omega^2 r = m \frac{4\pi^2}{T^2} r = \frac{4\pi^2}{k_S} \frac{m}{r^2}$$

quindi la forza che il sole esercita sulla terra è:

$$F_{S,T} = \frac{4\pi^2}{k_S} \frac{m_T}{r^2}$$

inoltre per il principio di azione reazione si ha la forza esercitata dalla terra sul sole:

$$|\vec{F_{S,T}}| = |\vec{F_{T,S}}| \to \frac{4\pi^2}{k_S} \frac{m_T}{r^2} = \frac{4\pi^2}{k_T} \frac{m_S}{r^2}$$

$$\downarrow$$

$$\frac{4\pi^2}{k_S m_S} \frac{1}{r^2} = \frac{4\pi^2}{k_T m_T} \frac{1}{r^2}$$

definiamo

$$\frac{4\pi^2}{k_S m_S} = \frac{4\pi^2}{k_T m_T} = G_{TS}$$

$$\downarrow$$

$$F_{S,T} = G_{TS} \frac{m_S m_T}{r^2} = F_{T,S}$$

Si scopre che G_{TS} vale per ogni coppia di masse e quindi la si indica semplicemente con G:

$$F = G \frac{m_1 m_2}{r^2}$$

che è la legge di gravitazione universale, meglio scritta come:

$$F = -G \frac{m_1 m_2}{r^2} \vec{u}_r$$

Possiamo ora scrivere come ottenere l'accelerazione di gravità g sulla superficei terrestre:

$$G\frac{m_T m}{r_T^2} = mg \to g = \frac{F m_T}{r_T^2}$$