PH101: PHYSICS1

Lecture 3

II. Cylindrical coordinate system (r, θ, z)

 \Box (r, θ, z) coordinates system is known as cylindrical coordinate system

Why the name cylindrical?

 \square Point 'P' is the intersection of three surfaces: A cylindrical surface r =**constant**; A half plane containing z-axis with θ =constant and a plane z=constant.

Coordinate transformation: Cartesian to cylindrical

Transformation equation is very similar to polar coordinate with additional z-coordinate.

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

Reverse transformation

$$r = (x^2 + y^2)^{1/2}$$
$$\theta = \tan^{-1} \frac{y}{x}$$
$$z = z$$

Note: Instead of (r, θ) many books use notation (ρ, φ) .

Unit vectors in cylindrical coordinate system

 \hat{r} and $\hat{\theta}$ are **orthogonal** but their directions depend on location.

Position, Velocity, Acceleration, Newton's law in cylindrical coordinate system

Vector components are very similar to polar coordinate+ z –component

Position vector
$$\overrightarrow{OP} = \overrightarrow{R} = r\hat{r} + z\hat{z}$$
Velocity
$$\overrightarrow{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + \dot{z}\hat{z}$$

Acceleration
$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} + \ddot{z}\hat{z}$$

Newton's law
$$\vec{F} = F_r \hat{r} + F_\theta \hat{\theta} + F_z \hat{z}$$
$$= m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} + \ddot{z}\hat{z}]$$

III. Spherical polar coordinate system

Note that point (r, θ, φ) is at the intersection of three surfaces

- \square A sphere where r =Constant
- \square A cone about z=axis with θ =constant.
- \square A half plane containing z-axis and φ = constant

Be careful, notations are different. r and θ are not planer coordinate.

Connection of spherical polar with cartesian

Transformation relations

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

Hence

$$r = (x^2 + y^2 + z^2)^{1/2}$$

$$\theta = \tan^{-1} \frac{(x^2 + y^2)^{1/2}}{z}$$

$$\varphi = \tan^{-1} \frac{z}{y}$$

Unit vectors in spherical polar

X

☐ Position vector

 $\vec{r} = r \sin \theta \cos \varphi \,\hat{x} + r \sin \theta \sin \varphi \,\hat{y} + r \cos \theta \,\hat{z}$

$$\hat{r} = \frac{\vec{r}}{r}$$

 $\hat{r} = \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$

 \hat{r} , $\hat{\theta}$ and $\hat{\varphi}$ are, respectively perpendicular to r = const. $\theta = const.$ $\varphi = const.$ $\widehat{\varphi} \text{ is the unit vector perpendicular to}$ $\varphi = \text{constant plane } (\mathbf{rz} \ \mathbf{plane}),$ $\mathbf{I,e, perpendicular to unit vectors } \widehat{r} \text{ and } \widehat{z}$ $\mathbf{Thus} \qquad \widehat{\varphi} = \frac{\widehat{r} \times \widehat{z}}{|\widehat{r} \times \widehat{z}|}$ $= \frac{(-\widehat{x} \sin \theta \sin \varphi + \widehat{y} \sin \theta \cos \varphi)}{\sin \theta}$ $\widehat{\varphi} = -\widehat{x} \sin \varphi + \widehat{y} \cos \varphi$

$$\Box \hat{\boldsymbol{\theta}} = \frac{\hat{\boldsymbol{\varphi}} \times \hat{\boldsymbol{r}}}{|\hat{\boldsymbol{\varphi}} \times \hat{\boldsymbol{r}}|} \\
= \hat{x} \cos \varphi \cos \theta + \hat{y} \sin \varphi \cos \theta - \hat{z} \sin \theta$$

Unit vectors in spherical polar

 \bigcirc

$$\vec{r} = r \sin \theta \cos \varphi \, \hat{x} + r \sin \theta \sin \varphi \, \hat{y} + r \cos \theta \, \hat{z}$$

$$\hat{r} = \frac{\vec{r}}{r} = \hat{x}\cos\varphi\sin\theta + \hat{y}\sin\varphi\sin\theta + \hat{z}\cos\theta$$

$$\widehat{\theta} = \frac{\partial \widehat{r}}{\partial \theta} = \widehat{x} \cos \varphi \cos \theta + \widehat{y} \sin \varphi \cos \theta - \widehat{z} \sin \theta$$

$$\widehat{\varphi} = -\widehat{x}\sin\varphi + \widehat{y}\cos\varphi \ (\equiv \widehat{\theta} \ of \ Plane \ Polar \ \theta \rightarrow \varphi!)$$

Partial differential of unit vectors in spherical polar

Unit vectors in spherical polar coordinate are function of θ and φ only.

$$\frac{\partial \hat{r}}{\partial \theta} = \frac{\partial}{\partial \theta} (\hat{x} \sin \theta \cos \varphi + \hat{y} \sin \theta \sin \varphi + \hat{z} \cos \theta)$$
$$= (\hat{x} \cos \theta \cos \varphi + \hat{y} \cos \theta \sin \varphi - \hat{z} \sin \theta) = \hat{\theta}$$

$$\frac{\partial \hat{r}}{\partial \varphi} = \frac{\partial}{\partial \varphi} (\hat{x} \sin \theta \cos \varphi + \hat{y} \sin \theta \sin \varphi + \hat{z} \cos \theta)$$
$$= (-\hat{x} \sin \theta \sin \varphi + \hat{y} \sin \theta \cos \varphi) = \sin \theta \hat{\varphi}$$

Additionally, you may verify:

$$\frac{\partial \widehat{\theta}}{\partial \theta} = \frac{\partial}{\partial \theta} (\widehat{x} \cos \theta \cos \varphi + \widehat{y} \cos \theta \sin \varphi - \widehat{z} \sin \theta)$$
$$= (-\widehat{x} \sin \theta \cos \varphi - \widehat{y} \sin \theta \cos \varphi - \widehat{z} \cos \theta) = -\widehat{r}$$

$$\frac{\partial \widehat{\boldsymbol{\theta}}}{\partial \boldsymbol{\varphi}} = \frac{\partial}{\partial \boldsymbol{\varphi}} (\widehat{\boldsymbol{x}} \cos \boldsymbol{\theta} \cos \boldsymbol{\varphi} + \widehat{\boldsymbol{y}} \cos \boldsymbol{\theta} \sin \boldsymbol{\varphi} - \widehat{\boldsymbol{z}} \sin \boldsymbol{\theta})$$
$$= (-\widehat{\boldsymbol{x}} \cos \boldsymbol{\theta} \sin \boldsymbol{\varphi} + \widehat{\boldsymbol{y}} \cos \boldsymbol{\theta} \cos \boldsymbol{\varphi}) = -\cos \boldsymbol{\theta} \, \widehat{\boldsymbol{r}}$$

Velocity in spherical polar coordinate

 $\vec{r} = r \sin \theta \cos \varphi \, \hat{x} + r \sin \theta \sin \varphi \, \hat{y} + r \cos \theta \, \hat{z}$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(r\hat{r})$$

$$= \frac{dr}{dt}\hat{r} + r\frac{d\hat{r}}{dt}$$

$$= \dot{r}\hat{r} + r\left(\frac{\partial \hat{r}}{\partial \theta}\frac{d\theta}{dt} + \frac{\partial \hat{r}}{\partial \varphi}\frac{d\varphi}{dt}\right)$$

$$= \dot{r}\hat{r} + r\left(\dot{\theta}\hat{\theta} + \sin\theta\dot{\varphi}\hat{\varphi}\right)$$

Chain rule

$$\bigcirc$$

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\varphi}\hat{\varphi}$$

Acceleration

You must try to prove this

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\varphi}^2 \sin^2\theta)\hat{r} + (r\ddot{\theta} - 2\dot{r}\dot{\theta} - r\dot{\varphi}^2 \sin\theta\cos\theta)\hat{\theta} + (r\ddot{\varphi}\sin\theta + 2r\dot{\theta}\dot{\varphi}\cos\theta + 2\dot{r}\dot{\varphi}\sin\theta)\hat{\varphi}$$

Velocity –to remember!

Elementary displacement in arbitrary direction $\overrightarrow{\Delta r}$ in Δt

$$\overrightarrow{\Delta r} = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta \,d\varphi \,\hat{\varphi}$$

$$\vec{v} = \frac{\overrightarrow{\Delta r}}{\Delta t} = \frac{dr}{\Delta t}\hat{r} + \frac{rd\theta}{\Delta t}\hat{\theta} + \frac{r\sin\theta \,d\varphi}{\Delta t}\hat{\varphi}$$

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\sin\theta\dot{\varphi}\hat{\varphi}$$

Done!

Well, We are done with the necessary mathematical concepts!

Ok, Now in to Physics!