Problem

You are given a binary array A of N elements. The array consists of 0's and 1's. You can perform the following operations as many times as possible:

• Select a subarray starting from the first index that is inversion-free and delete it.

Determine the minimum number of operations to delete the entire array.

- Inversion free: There are no two indices i and j in array A such that (i < j) and $(A_i > A_j)$.
- **Subarray:** A subarray is an array obtained after deleting some elements from the beginning (prefix) possibly 0 and deleting some elements from the end (suffix) possibly 0.

Input format

- $\bullet\,$ The first line contains an integer T denoting the number of test cases.
- ullet The first line of each test case contains an integer N denoting the number of elements in array A.
- $\bullet\,$ The second line contains N space-separated integers of array A.

Output Format

Print T lines and for each test case:

• Print the minimum number of operations to delete the entire array.

Constraints

 $1 \leq T \leq 20000$

 $1 \leq N \leq 200000$

 $0 \le A_i \le 1$

Sample Input	%	Sample Output	8
3 4 0 0 1 1 2 1 0 2 0 0		1 2 1	

Time Limit: 1

Memory Limit: 256

Source Limit:

(+