OpenSHMEM as a Portable Communication Layer for PGAS Models

A Case Study with Coarray Fortran

Naveen Namashivayam, Deepak Eachempati, Dounia Khaldi, Barbara Chapman

University of Houston

{nravi, dreachem, dounia, chapman}@cs.uh.edu

September 10, 2015

UNIVERSITY of HOUSTON

Introduction

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

Motivation

Implementation

0....

" KIVI*F*

i D Giliaco

Experimental

Analysis Conclusion PGAS Programming Models

- Emerging model in recent years
- Focus on addressing programming challenges for scalable parallel systems
- Language- and Library-based
- OpenSHMEM
 - Library-based light weight PGAS Model
 - Highly portable library available in different systems
- Can OpenSHMEM be efficiently used as a runtime layer for other PGAS models especially language-based PGAS models?

What?

Introduction to PGAS, CAF and OpenSHMEM

Why?

Using OpenSHMEM as transport layer for CAF

How?

Implement CAF over OpenSHMEM

What now?

Experimental Analysis and Future Work

Partitioned Global Address Space (PGAS)

OpenSHMEM as runtime for PGAS Languages

- A new class of languages and libraries
- Alternative to MPI for programming large-scale parallel systems
- Attempts to combine both the distributed and shared memory systems
- Logical shared memory across distributed systems

Memory Memory CPU CPU

- Background
- Motivatio

implementation

- 0....
- * 1 D Otrio
- * n-D Stride

- PGAS Languages Unified Parallel C (UPC), Coarray Fortran (CAF), Chapel and X10,
- PGAS Libraries OpenSHMEM, Global Arrays, MPI-3.0(RMA),

OpenSHMEM - Overview

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

.............

impiementatio

* RM

* 1-D Stride

* n-D Strides

Experimental Analysis PGAS Library
 Culmination of unification effort among different SHMEM implementations

OpenSHMEM (GASNet)	Cray SHMEM	SGI SHMEM	OSU SHMEM (MVAPICH2-X)
OpenSHMEM (UCCS)	OSHMPI (over MPI-3.0)	Open MPI SHMEM	Portals SHMEM
Quadrics SHMEM	Mellanox Scalable SHMEM	Intel SHMEM (libfabrics)	other implementations

- Light-weight and portable library
- SPMD-like style of programming
- Properties available in recent OpenSHMEM-1.2 specifications
 - Symmetric Data Object management
 - Remote Read and Write using Put and Get operations
 - Barrier and Point-Point synchronization
 - Atomic memory operations and
 - Collective reduction and broadcast operations

Coarray Fortran (CAF) - Overview

OpenSHMEM as runtime for PGAS Languages

Background

Motivation

Implementation

. . . .

* 1-D Strid

* n-D Stride

Experimental Analysis

- Integral part of Fortran 2008 standards
- As a language depends on compiler

PGAS Language

- Properties of Fortran 2008 CAF standards
 - · Symmetric memory object management
 - Remote Read and Write operations
 - Barrier and Point-Point synchronization
 - Critical section and locks
 - Atomic memory operations

Cray CAF Intel CAF OSU CAF (MVAPICH2-X)

UHCAF Open Coarrays (GASNet / ARMCI) (GASNet / MPI-3.0)

CAF and OpenSHMEM Example

OpenSHMEM as runtime for PGAS Languages

Introductio

Background

Motivation

Implementation

+ 0140

* DM

* 1-D Stride

* n-D Strides

```
Example CAF program
inteaer :: i
integer :: np
integer :: me
integer, allocatable :: coarray_x(:)[:]
integer, allocatable :: coarray_v(:)[:]
allocate (coarray x (4)[*])
allocate (coarray y (4)[*])
np = num_images()
me = this_image()
doi = 1.4
    coarray x (i)= me
    coarrav v(i) = 0
end do
coarray_y(2) = coarray_x(3)[4]
svnc all
```

```
Example OpenSHMEM program
start pes (0):
int i:
int np. me:
int *coarray_x, *coarray_y;
coarray_x = shmem_malloc (4 * sizeof (int));
coarray y = shmem malloc (4 * sizeof (int));
    = shmem_my_pe();
    = shmem_n_pes();
for (i = 1; i \le 4; i++) {
   coarray x[i] = me:
   coarrav v[i] = 0:
shmem int get(&coarray v[2], &coarray x[3], 1, 3);
shmem barrier all():
```

Communication Layer – System Interfaces

Simple OpenSHMEM architecture

Simple CAF architecture

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

Motivation

Implementation

+ 0140

* RM

* 1-D Stride

* n-D Stride

Communication Layer – System Interfaces

Simple OpenSHMEM architecture

Simple CAF architecture

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

Motivation

Implementation

* DM

* 1-D Stride

* n-D Stride:

Motivation – Functionality similarities

• Functionality and Features – Similar features as in CAF

OpenSHMEM
as runtime
for PGAS
Languages

Introduction

Motivation

Implementation

* SMO

KIVI

" 1-D Stride

* n-D Stride

Properties	CAF	OpenSHMEM
Symmetric data allocation	allocate	shmem_malloc()
Total image count	num_images()	shmem_n_pes()
Current image ID	this_image()	shmem_my_pe()
Collectives – reduction*	co_ <i>operator</i>	shmem_ <i>operator</i> _to_all()
Collectives – broadcast*	co_broadcast	shmem_broadcast
Barrier Synchronization	sync_all	shmem_barrier_all()
Remote memory Put/Get		shmem_put/get
Single dimensional strided put		shmem_iput/iget
Multi dimensional strided put	[]	X
Remote Locks	lock	Χ
Other Properties		

^{*} Future revision of Fortran standards - Fortran 2015

Motivation – Performance

OpenSHMEM as runtime for PGAS Languages

ntroduction

Motivation

implementation

0...0

^ RMA

1-D Strides

* n-D Stride

Experimental Analysis

Relative comparison with other PGAS libraries and PGAS runtimes

• Compared OpenSHMEM, MPI-3.0 and GASNet in 2 different systems

PGAS Microbenchmark Test Suite from University of Houston

System – 1: Stampede(TACC) – Infiniband Cluster

Nodes (cores)	OpenSHMEM	MPI-3.0 (RMA)	GASNet (conduit)
6400	MVPICH2-X	MVPICH2-X	GASNet
(16)	SHMEM		1.24.0 (IB)

System – 2: Titan(Cray XK7, ORNL) – Gemini system

Nodes (cores)	OpenSHMEM	MPI-3.0 (RMA)	GASNet (conduit)
18688	Cray SHMEM in	Cray MPICH in	GASNet
(16)	Cray MPT	Cray MPT	1.24.0 (Gemini)

Motivation - Comparing Latency

OpenSHMEM as runtime for PGAS Languages

Introduction

Motivation

Implementation

* SMO

* RM/

* 1-D Stride

* n-D Stride

Motivation - Comparing Bandwidth

OpenSHMEM as runtime for PGAS Languages

Introduction

Motivation

loon loon on totion

implementatio

.

* 1-D Stride

* n-D Stride

Implementing UHCAF over OpenSHMEM Symmetric Data Allocation

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

Motivation

Implementation

Implementation

* SMO

* RM

" 1-D Stride

* n-D Strides

Experimental Analysis

Conclusio

- How to make the data remotely accessible?
 - CAF save or allocatable
 - OpenSHMEM static/global variables or use shmalloc()
- Symmetric Heap: allocate and deallocate -> shmalloc() and shfree()
 - Allocate as a single chunk initially
 - Allocate with shmalloc() when it is necessary

Implementing UHCAF over OpenSHMEM Remote Memory Accesses

OpenSHMEM as runtime for PGAS Languages

ntroduction

.

Implementation

* RMA

.

Experimental Analysis Conclusion

- Remote Memory Access (RMA) in OpenSHMEM is done by shmem_putmem() and shmem_getmem()
- Similar properties in CAF, but not exactly matching
- Same location and from the same image
 - · CAF ensures it is ordered
 - OpenSHMEM allows out-of-order with respect to other remote access

1. Local Completion

$$coarray_y(:)[2] = coarray_x(:)$$

 $coarray_x(:) = 0$

2. Remote Completion

```
coarray\_a(:)[2] = coarray\_b(:)

coarray\_c(:) = coarray\_a(:)[2]
```

- For RMA Put : shmem_putmem() followed by shmem_quiet()
- For RMA Get : shmem_getmem() preceded by shmem_quiet()

Implementing UHCAF over OpenSHMEM Strided Data Transfer – Single Dimensional Arrays

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

Motivation

Implementation

* SMO

* RMA

* 1-D Strides

* n-D Stride

Experimenta Analysis Element-wise strided data of same basic data type (yes, with TYPE_iput/ iget)

Block-wise strided data of same basic data type

Implementing UHCAF over OpenSHMEM Strided Data Transfer – Multidimensional Arrays

OpenSHMEM as runtime for PGAS Languages

Introduction

Background

Motivation

Implementation

+4.0.00

* n-D Strides

Evnerimental

Analysis

Algorithm 1

Naïve Algorithm shmem_putmem() shmem_getmem() All possible stride size

Algorithm 2

2-DIM Algorithm shmem_TYPE_iput() shmem_TYPE_iget() Not all possibilities

- Size is even
- Size if odd (no 1 byte transfer in SHMEM)

16/23

Performance Evaluations

OpenSHMEM as runtime for PGAS Languages

Introduction Background

Implementation

* SMO

* 1-D Stride

* n-D Strides

Experimental Analysis

University of Houston – CAF Test Suite

- PGAS Microbenchmark Test Suite*
- Distributed Hash Table Benchmark and^
- Himeno Benchmark[^]

System	Stampede	Cray XC30
Interconnect	Infiniband	Aries
Native CAF Implementation	-	Cray Compiler (Cray CAF)
UHCAF over GASNet (conduit)	GASNet-1.24.0 (IB)	GASNet-1.24.0 (Aries)
UHCAF over OpenSHMEM	MVAPICH2-X	Cray SHMEM

^{*} https://github.com/uhhpctools/pgas-microbench.git

[^] https://github.com/uhhpctools/caf-testsuite.git

Experimental Analysis – Contiguous and Strided

PGAS Microbenchmark - Cray XC30 Aries System

216 218 220

Block size (# of integers

Stride Length(# of integers)

Experimental Analysis – Contiguous and Strided

• PGAS Microbenchmark - Stampede Infiniband Cluster

OpenSHMEM as runtime for PGAS Languages

Introduction

Backgroun

Mouvauon

Implementation

Olvic

* 1-D Strid

* n-D Stride:

Experimental Analysis – Himeno Benchmark

- 2-Dimensional data decomposition and strided data communication
- Advantage in using Naïve strided algorithm (shmem_putmem)
- Average 6% improvements with UHCAF(MV2-X SHMEM) and maximum 22% improvements

OpenSHMEM as runtime for PGAS Languages

Introduction Background

Implementation

* SMO

* 1-D Stric

* n-D Stride

Experimental Analysis – Distributed Hash Table

- Titan Supercomputer, Distributed Hash Table Benchmark
- Latency measurement
- UHCAF(Cray SHMEM) 28% faster than Cray CAF and 18% faster than UHCAF(GASNet)

OpenSHMEM as runtime for PGAS Languages

Introduction Background

Motivation

Implementation

+ DA44

* 1-D Stride

* n-D Stride

Experimental Analysis – Locks

- PGAS Microbenchmark Test Suite Titan (OLCF, ORNL)
- Latency measurement for Locking and Unlocking Operation

 UHCAF(Cray SHMEM) is 22% faster than Cray CAF and 10% faster than UHCAF(GASNet)

OpenSHMEM as runtime for PGAS Languages

Introduction Background

Motivation

Implementation

SIVIO

* 1-D Strid

* n-D Strides

Conclusion

OpenSHMEM as runtime for PGAS Languages

ntroduction

Motivation

Implementation

* SMO

- KIVIA

1-D Strides

* n-D Strides

Experimental Analysis

Conclusion

- Implemented UHCAF over OpenSHMEM and evaluated performance
 - UHCAF(GASNet) Vs UHCAF(MV2-X SHMEM)
 - UHCAF(GASNet) Vs Cray CAF Vs UHCAF(Cray SHMEM)
- Put Bandwidth 18% improvement
 - 2-Dimensional Strided Put Bandwidth
 - 3X improvements UHCAF(Cray SHMEM) Vs Cray CAF
 - 9X improvements UHCAF(Cray SHMEM) Vs UHCAF(GASNet)
- Why OpenSHMEM ?
 - Availability in many systems
 - System specific optimizations
 - OpenSHMEM specifications committee new extensions
- Future Work
 - · Perform tests for strong scaling
 - Optimize Symmetric memory heap maintenance
 - Optimize using native OpenSHMEM features like shmem_ptr
- Acknowledgements

OLCF - ORNL (Titan) TOTAL(Cray XC30) TACC (Stampede)

OpenSHMEM as a Portable Communication Layer for PGAS Models

A Case Study with Coarray Fortran

Naveen Namashivayam, Deepak Eachempati, Dounia Khaldi, Barbara Chapman

University of Houston

{nravi, dreachem, dounia, chapman}@cs.uh.edu

September 10, 2015

UNIVERSITY of HOUSTON

Backup Slides

Conclusion

OpenSHMEM as runtime for PGAS Languages

Background

iviotivation

Implementation

* 1_D Strid

* n-D Stride

- Implemented UHCAF over OpenSHMEM and evaluated performance for:
 - UHCAF(GASNet) vs UHCAF(MV2-X SHMEM)
 - UHCAF(GASNet) vs Cray CAF vs UHCAF(Cray SHMEM)
- Around 18% improvement for Put Bandwidth with UHCAF(Cray SHMEM) against Cray CAF and UHCAF(GASNet)
- For 2-D Strided Put Bandwidth with UHCAF(Cray SHMEM) against Cray CAF we get 3X improvements and 9X improvements against UHCAF(GASNet)
- Similar improvements in DHT and Himeno benchmarks
- OpenSHMEM is light weight and has minimum overhead and can be used to implement other PGAS Language based models

Implementing Strided Data Transfer

use ALGORITHM 1

OpenSHMEM as runtime for PGAS Languages

Algorithm

Algorithm 2

ntroduction

-----g----

Implementation

* SMC

* RM

* n-D Strides

Experimental Analysis

```
for ( i = 1, i ≤ nelems, i++) do
    shmem putmem(dest_ptr, src_ptr, blksize, pe_id)
    dest_ptr += dest_stride
    src_ptr += src_stride
end for
```

if (check whether shmem_iput32 can be used)
if (check whether shmem_iput128 can be used)
call shmem_iput128 for each 16 byte chunk
update dest_ptr and src_ptr
if (check whether shmem_iput64 can be used)
call shmem_iput64 for each remaining 8 byte chunk
update dest_ptr and src_ptr
if (check whether shmem_iput32 can be used)
call shmem_iput32 for each remaining 4 byte chunk
else

Implementing Strided Data Transfer

OpenSHMEM as runtime for PGAS Languages

Introduction

D - -1 ----

Motivation

Implementation

...p.o...o...a.

. _ . . .

* 1-D Stride

* n-D Strides

- Implementing using multiple shmem_putmem
- Call shmem_putmem along the y-axis
- Number of shmem_putmem will be equal to the number of elements (nelems)
- · More number of SHMEM calls
- Normal implementation support all possible src stride, dest stride and blksize

Implementing Strided Data Transfer

OpenSHMEM as runtime for PGAS Languages

Algorithm 2

_ .

Dackgroun

iviotivation

Implementation

SIVIO

^ KM

* n-D Strides

Experimental Analysis

Conclusio

if (check whether shmem_iput32 can be used)
if (check whether shmem_iput128 can be used)
call shmem_iput128 for each 16 byte chunk
update dest_ptr and src_ptr
if (check whether shmem_iput64 can be used)
call shmem_iput64 for each remaining 8 byte chunk
update dest_ptr and src_ptr
if (check whether shmem_iput32 can be used)
call shmem_iput32 for each remaining 4 byte chunk
else
use ALGORITHM 1

- Implementing using multiple shmem_iput128,
 shmem iput64, and/or shmem iput32 calls
- Call iput routines along the x-axis
- Shift between different types
- Suitable for small data sizes
- Does not support all the values for src_stride, dest_stride and blksize

