M 5.3 Elektronik (ELK)

Mirco Meiners

Tim Ziemann

2025-10-21

Inhaltsverzeichnis

Ur	nsyllabus	1
I.	Seminar	3
1.	Einleitung	5
	1.1. Lernziele des Moduls	5
	1.2. Wissenschaftliches Rechnen / Datenwissenschaft	5
	1.3. Schaltungsentwurf (EDA Tools)	5
	1.4. Betriebssystem (OS) - Werkzeuge (Tools)	6
	1.5. Code Editoren	6
	1.6. Datenverarbeitung / Data Sciences	6
	1.6.1. Dateisystem / Journaled File System	6
	1.6.2. Tabellenformate / Rectangular Data	7
	1.6.3. Serialisation	7
	1.6.4. Spezielle Formate / Data Frames	7
	1.6.5. Embedded DB-Engines	7
	1.7. Schreibst Du noch oder TeXst Du schon?	7
	1.8. LaTeX Editoren	8
	1.9. Literaturverwaltung und LaTeX	8
	1.10. Experimentelle Arbeit - Entwurf elektronischer Systeme	8
	1.11. ARTE Reportage - Smartphone	8
	1.12. Reiseaussichten	8
	1.13. Reiseziele	9
	1.14. Reisebedingungen	9
	1.15. Frontend Phasen	9
	1.16. Backend Phasen	9
	1.17. Sie werden Experte	10
	1.18. Evolution von Produkten	10
	1.19. EDA Kompetenz	11
	1.20. Design-/Entwurfsmethodik	11
II.	. Labor	13
2.	Laborversuche	15

Inhaltsverzeichnis

3.	IV-C	Charakterisierung von Siliziumdioden	17
	3.1.	Zielsetzung	17
	3.2.	Hintergrund	17
	3.3.	Schematische Symbole der Diode	18
	3.4.	Materialien	18
	3.5.	IV-Charakteristik	18
	3.6.	Zeitbereichsmessungen	19
		3.6.1. Messungen mit der STEMlab Oszilloskop-App	21
		3.6.2. Messungen mit SCPI-Server und Python	24
4.	Der	BJT als Diode	25
	4.1.	Zielsetzung	25
	4.2.	Materialien	25
	4.3.	Verfahren	27
	4.4.	IV-Kurvenmessungen	27
5.	Der	MOSFET als Diode	31
	5.1.	Zielsetzung	31
	5.2.	Materialien	31
	5.3.	nMOS als Diode	31
	5.4.	Verfahren	32
	5.5.	IV-Kurvenmessungen	35
	5.6.	pMOS als Diode	35
	5.7.	Verfahren	35
Lit	eratı	urverzeichnis	39

Unsyllabus

Name	Description
Course	M 5.3 Elektronik (ELK)
Term	WiSe25/26
Instructor	Prof. DrIng. M. Meiners
Lectures	Die., 9 Uhr bis 13 Uhr, E 507

Teil I.

Seminar

1. Einleitung

1.1. Lernziele des Moduls

- Einblicke in mikroelektronische Systeme
- Analyse und Funktion von Halbleiterbauelementen
 - Halbleiterphysik
 - Modellbildung
 - Netzwerkanalyse/-synthese
- Anwendung von SPICE in der Schaltunganalyse
 - Spezifikation
 - Partitionierung
 - Design
- Einsatz von Entwicklungsboards, Embedded Systems / System-on-Chip (SoC)
 - STEMlab von Red Pitaya

1.2. Wissenschaftliches Rechnen / Datenwissenschaft

- Python
- R: The R Project for Statistical Computing
- rpy2 Python and R
- Matlab
- Gnu Octave
- Command-line tools

1.3. Schaltungsentwurf (EDA Tools)

- PCB / System Design
 - LTspice
 - KiCad EDA

1. Einleitung

- Altium Designer
- SiemensEDA PCB tools
- cadence System Design & Analysis
- IC / Silicon Design
 - IIC-OSIC-TOOLS (open-source)
 - SiemensEDA IC tools
 - cadence IC Design & Verification
 - synopsys silicon design (IC)

1.4. Betriebssystem (OS) - Werkzeuge (Tools)

- SSH (Secure Shell)
- Microsoft-Terminal
- Microsoft-PowerShell
- MacOS-Terminal
- Linux/MacOS zsh-tools
- Linux/MacOS bash-it
- Git (Versionskontrolle)
- TortoiseGit Windows Shell Interface to Git

1.5. Code Editoren

- Visual Studio Code
- Notepad++ (Windows)
- Emacs
- Vim

1.6. Datenverarbeitung / Data Sciences

1.6.1. Dateisystem / Journaled File System

- Ordner / Directories
- Dateien / Files

1.6.2. Tabellenformate / Rectangular Data

- Comma-Separated-Values (CSV), Tab-Separated-Values (TSV)
- wireservice/csvkit: A suite of utilities for converting to and working with CSV, the king of tabular file formats.
- johnkerl/miller: Miller is like awk, sed, cut, join, and sort for name-indexed data such as CSV, TSV, and tabular JSON
- Spreadsheet (.xlsx, .ods)
- apache/iceberg: Apache Iceberg
- apache/iceberg-python: Apache Pylceberg

1.6.3. Serialisation

- Data Serialization The Hitchhiker's Guide to Python
- JSON
- MessagePack: It's like JSON. but fast and small.

1.6.4. Spezielle Formate / Data Frames

- Mastering Python Dictionaries: Efficient Data Storage and Retrieval Adventures in Machine Learning
- MAT-File Versions MATLAB & Simulink MathWorks Deutschland
- HDF5 Or How I Learned To Love Data Compression And Partial I/O
- Was ist Apache Parquet?
- Feather File Format
- pola-rs/polars: Dataframes powered by a multithreaded, vectorized query engine
- ibis-project/ibis: Portable Python dataframe library

1.6.5. Embedded DB-Engines

- SQL, z.B. SQLite
- OLAP, z.B. DuckDB

1.7. Schreibst Du noch oder TeXst Du schon?

- MikTeX (Windows, MacOS, Linux)
- MacTeX (MacOS)
- TeXLive (Linux)

1. Einleitung

1.8. LaTeX Editoren

- IDE's
 - TeXStudio
 - TeXMaker
 - TeXWorks
- Kollaborative Frameworks
 - ShareLaTeX, Online LaTeX
 - CoCalc Online LaTeX

1.9. Literaturverwaltung und LaTeX

- Citavi im Detail > Titel exportieren > Export nach BibTeX
- RefWorks Library Guide Univ. Melbourne
- Benutzerdefinierte BibTex-Keys mit Zotero | nerdpause
- JabRef Library Guide Univ. Melbourne
- EndNote Library Guide Univ. Melbourne

1.10. Experimentelle Arbeit - Entwurf elektronischer Systeme

Analyse und Synthese von elektronischen Bauelementen und Systemen mit

- Modellbildung auf Systemebene / Verhaltensmodellierung
- Simulation auf Schaltungsebene / SPICE
- · Charakterisierung auf Hardwareebene mit
 - Analog System Lab Kit ASLK Pro
 - Red Pitaya's STEMlab 125-14/10
- Technische Dokumentation mit quarto

1.11. ARTE Reportage - Smartphone

1.12. Reiseaussichten

Dies ist der Beginn eines Prozesses,

besser noch, eines Abenteuers.

1.13. Reiseziele

- Mehr über Signale wissen, die in elektronischen Systemen verarbeitet werden.
- Schaltungsdiagramme lesen können.
- Wissen über grundlegende Blöcke eines Systems aneignen.
- Wissen, wie Transistoren arbeiten und in modernen integrierten Technologien hergestellt werden.
- Eigenarten der Modellierung mikroelektronischer Bauelemente und der physikalischen und chemischen Prinzipien im Herstellungsprozess kennenlernen.

1.14. Reisebedingungen

Anwendung Ihres Werkzeugkastens. * Grundlagen der Elektrotechnik/Physik

- Elektromagnetische Wellen
- Angewandte Mathematik und Systemtheorie
- Trainingswille
- Pioniergeist
- Spa{ß}

Schnallen Sie sich an, die Reise beginnt ...

1.15. Frontend Phasen

1.16. Backend Phasen

- Packaging
- Zuverlässigkeit = Qualität auf Zeit
- Testing auf Wafer Level, known good die (KGD)
 - Burn-in und Accelerated Aging (thermischer Stress, Arrhenius Gesetz)
 - Automatic Test Equipment (ATE)
 - * System Probe
 - * Interconnect Test
 - * Build-in Self-Test (BIST)
- Statistische Datenanalyse und Yield Prognosen

1. Einleitung

- Ausfallrate FIT (failure in time)
- Badewannenkurve

1.17. Sie werden Experte

Leistungsmerkmale.

- Hintergrundwissen
 - Systemverständnis, Architektur, Herstellungsverfahren, Implementation
- Unterbewusste Kompetenz
 - Abgespeicherte Erfahrungen aus Erfolgsgeschichten und Misserfolgen
- Spezialwissen
 - Berufsspezifisches Wissen
- Teamwork Haltung
 - Kommunikationsfähigkeit, Berichtswesen und technische Präsentation
- Kreativität
- Tool-Kenntnisse

1.18. Evolution von Produkten

- Angetrieben durch Technologieverbesserung
 - Kosten (größere Chips, geringere Größe der Merkmale, bessere Ausbeute)
 - Leistung (neue Bauteile, höhere Geschwindigkeit, weniger Stromverbrauch)
- Angetrieben durch Verbesserung der Entwurfsmethodik
 - Architektur (Leistung, Funktionen)
 - CAD (Entwicklungskosten, Time-to-Market)
- Komplexität der Designs verdoppelt sich jedes Jahr (Moore's Gesetz)
- · Rolle von CAD
 - Verbesserung der Produktivität von Konstruktionsprozessen
 - Reduzierung der Komplexität für den Konstrukteur
 - Sicherstellung des ordnungsgemäßen Betriebs der Geräte

1.19. EDA Kompetenz

- EDA-Anbieter (Tool-Entwickler)
 - Identifikation von Entwurfsaufgaben, Bedarf an Werkzeugen
 - Entwicklung von Strategien und Algorithmen
 - Implementierung von Software-Werkzeugen
 - Verifikation der Stabilität und Funktionalität der Software-Tools
- IC-Hersteller
 - Entscheidungsplanung, welches Tool die Produktivität steigern könnte
 - EDA-Tool-Manager, Installation und Wartung
 - Experten für Softwareeinsatz, Anwendung in Produktdesign und -entwicklung
- Dozenten und Studenten
 - Jobchancen
 - Notwendigkeit, auf dem Laufenden zu bleiben

1.20. Design-/Entwurfsmethodik

- Full Custom vollständig manuell: ASIC
 - Überwiegend analoge Schaltungen
 - Einfache digitale Gatter
 - Volle Kontrolle, aber lange Entwicklungszeit (bis zu Jahren)
- Semi-custom: ASIC-Fertigung mit Verwendung von vorgefertigten Teilen
 - Standardzellen, Makrozellen, IP's
 - Wiederverwendung von vordefinierten Blöcken oder Maskensätzen
 - Eingeschränkte Kontrolle/Flexibilität, aber kürzere Entwicklungszeit (bis zu Wochen)
- Vollständig automatisiert: Keine Fertigung, reprogrammierbare ASICs
 - FPGA, PLA
 - Ausschließlich digitale Schaltungen
 - Schnelles Prototyping

Teil II.

Labor

2. Laborversuche

In den Laborversuchen des Moduls M 5.3 Elektronik (ELK) sollen Halbleiterbauelemente, wie Dioden, Bipolartransistoren (Bipolar Junction Transistor, BJT, engl.) und Feldeffektransistoren (Metal Oxide Semiconductor Field Effect Transistor, MOSFET, engl.) charakterisiert werden. Die Versuche sind der Versuchsreihe Active Learning von Red Pitaya entnommen.

Sie experimentieren in Gruppen mit bis zu vier Studierenden an elektronischen Bauelementen und Baugruppen, bspw.

- Dioden vom Typ 1N4001 und 1N4148,
- BJTs vom Typ 2N3904 (npn) und 2N3906 (pnp),
- MOSFETs vom Typ BS170 und BS250.

Die Charakterisierung geschieht über das VPN der Hochschule, in dem Sie an dem Ihnen zugewiesenen Laborplatz ELIE1 bis ELIE6 die Messungen über ein Red Pitaya STEMLab steuern. Die Steuerung der STEMLabs kann sowohl über das Web-Frontend mit der Oszilloskop-App geschehen, als auch über den jeweiligen SCPI Server des STEMlabs.

Als Ergebnis der Untersuchungen soll ein Technischer Bericht/Entwicklungsbericht mit quarto angefertigt werden.

Im Entwicklungsbericht beschreiben und vergleichen Sie die Messungen mit SPICE-Simulationen gestützt durch Literaturrecherche in Fachjournalen, Fachforen (z.B. auf den Webseiten der Halbleiterhersteller) und der Bibliothek (SuUB).

3. IV-Charakterisierung von Siliziumdioden

3.1. Zielsetzung

Ziel dieses Laborversuchs ist es, Strom- (I) und Spannungs- (V, eigentlich U) eigenschaften zwei verschiedener Siliziumdiode vom Typ 1N4001 und 1N4148 zu untersuchen. Parallel zu Messungen mit dem Red Pitaya STEMlab soll die Schaltung vollständig mit SPICE (LTspice, ngspice) simuliert werden, so dass Messdaten vom STEMLab auf dem eigenen Rechner verglichen (validiert) werden können.

Hinweis. In diesem Laborversuch wird die Terminologie aus der Dokumentation verwendet, wenn es um Verbindungen zum Red Pitaya STEMlab geht.

Die Erweiterungsstecker-Pins für die Spannungsversorgung -3.3 V und +3.3 V sind in der Dokumentation dargestellt.

Die Oszilloskop und Signalgenerator App wird zum Erzeugen und Beobachten von Signalen in der Schaltung verwendet, wenn der Web-Server des STEMlab's aktiviert ist.

3.2. Hintergrund

Eine Halbleiterdiode ist ein elektronisches Bauelement, welches häufig in Schaltungsanwendungen, bei denen der Strom nur in eine Richtung fliessen darf, als Gleichrichtung eingesetzt wird.

Wenn die Diode aus Silizium hergestellt wird, liegt die Durchlaßspannung typischerweise bei \approx 0.7 V und die IV-Charakteristik im Bezug auf Diodenstrom und -spannung kann durch eine exponentielle Beziehung beschrieben werden:

$$I_D = I_S \left(e^{\frac{V_D}{NV_T}} - 1 \right) \tag{3.1}$$

wobei I_S der Sättigungssperrstrom ist, N ein Skalierungsfaktor, genannt Emissionskoeffizient, ist und $V_T=kT/q$ die sogenannte thermische Spannung ist, die bei Raumtemperatur (T=300 K) 25,4 mV beträgt.

3.3. Schematische Symbole der Diode

Jeder Diodentyp hat ein spezifisches Schaltsymbol, welches vom herkömmlichen Diodensymbol der Siliziumdiode abgeleitet ist, vgl. Abbildung 3.1. Eine *Z*-förmige Kathode bezeichnet eine Zener-Diode, wie im zweiten Symbol von links in Abbildung 3.1 zu sehen ist. Eine *S*-förmige Kathode bezeichnet eine Schottky-Diode und Pfeile, die von der Diode wegzeigen, kennzeichnen eine LED (Light Emitting Diode, engl.), wie im rechten Symbol dargestellt. Pfeile, die auf die Diode zeigen, kennzeichnen eine Photodiode.

Abbildung 3.1.: Diodensymbole

3.4. Materialien

- Red Pitaya's STEMlab
- 10 Ω Widerstand
- Diode 1N4148
- Diode 1N4001
- Platine

3.5. IV-Charakteristik

Die Strom- und Spannungseigenschaften der pn-Übergangsdiode können mit dem STEMlab und den in Abbildung 3.2 dargestellten Anschlüssen gemessen werden. Richten Sie die Steckplatine mit dem Generator OUT1-Kanalausgang an einem Ende des Widerstandes ein. Das andere Ende des Widerstandes ist mit einem Ende der zu messenden Diode verbunden, wie im Diagramm dargestellt. Die Eingangskanäle IN1 und IN2 sind ebenfalls unterschiedlich angeschlossen, daher werden Diodenstrom und -spannung:

$$I_D = (IN_1 - IN_2)/R_1 \tag{3.2}$$

$$V_D = IN_2 \tag{3.3}$$

Abbildung 3.2.: Anschlussplan für Dioden IV-Kurven

Zur Messung der Strom- und Spannungseigenschaften einer Siliziumdiode sollte der OUT1-Generator als 1 kHz-Dreieckssignal mit einer maximalen Amplitude von 1 V und einer minimalen Amplitude von 0 V konfiguriert werden. Für die Messung der Strom-Spannungskurve (IV-Kurve) ist ein zweidimensionaler Graph (xy-Graph/Plot) erforderlich, wobei die x-Achse die Diodenspannung an IN2 und die y-Achse den Diodenstrom $I_D=(IN1-$ IN2)/R1 darstellen.

3.6. Zeitbereichsmessungen

🛕 Warnung 1: Unterschiedliche Zugriffsarten / Messverfahren mit dem STEMlab

NIEMALS UNTERSCHIEDLICHE ZUGRIFFSARTEN / MESSVERFAHREN PARALLEL VERWENDEN. NICHT MIT ZWEI ODER MEHREREN RECHNERN ZUM MESSEN AUF DAS STEMLAB ZUGREIFEN. Greifen Sie nur von einem Rechner aus auf das STEMlab zu und deaktivieren Sie die aktuell nicht genutzte Methode, bspw. Oszilloskop-App (OFF-Button), bevor Sie den Zugriff via JupyterLab oder SCPI erproben.

3. IV-Charakterisierung von Siliziumdioden

Abbildung 3.3.: Anschlussdiagramm der Messplatine

3.6.1. Messungen mit der STEMlab Oszilloskop-App

Tipp 1

URLs der STEMLabs für den Zugriff via Web-Server aus dem VPN der HSB

- Laborplatz ELIE1
- Laborplatz ELIE2
- Labroplatz ELIE3
- Laborplatz ELIE4
- Laborplatz ELIE5
- Laborplatz ELIE6
- Die Schaltung aus Abbildung 3.2 ist für Sie auf einer Platine aufgebaut und wird via SMA-Verbindern an das STEMlab angeschlossen.
- Loggen Sie sich mit vorzugsweise mit Google Chrome oder Mozilla Firefox auf dem STEMlab an ihrem Laborplatz ein und starten Sie die Oszilloskop- und Signalgenerator-App.
- Stellen Sie auf der rechten Seite im Menü bei OUT1 (Generator) den Amplitudenwert auf 0,5 V und den DC-Offset auf 0,5 V ein. Um ein Dreieckssignal als Eingangsspannung anzulegen wählen Sie im Waveform-Menü die Signalform "TRIANGLE" und aktivieren den Ausgang mit "ON". Der "SHOW"-Button dient zum Anzeigen des Signals in der Oszilloskop-App.
- Stellen Sie sicher, dass sowohl IN1 V/div als auch IN2 V/div am linken unteren Bildschirmrand auf 200 mV/div eingesetellt sind. V/div können Sie im jeweiligen Kanal über die +/- Schaltflächen rechts unten kontrollieren.
- Setzen Sie den t/div-Wert auf 200 us/div. Auch hier können Sie t/div mit den +/- Schaltflächen einstellen.
- Im Menü "MATH settings" stellen Sie die Differenz IN1-IN2 ein und aktieren diese wurch setzen des "ENABLE" Buttons. Die mathematische Kurve skaliert mit dem Faktor R1 und stellt den Diodenstrom dar.

In Abbildung 3.5 kann man sehen, dass die Diode zu leiten beginnt, wenn die Diodenspannung die Schwellenspannung von ca. 0.7 V erreicht.

Außerdem sollte der mit "MATH-Trace" dargestellte Diodenstrom beobachtet werden. Man sollte deutlich erkennen, dass der Diodenstrom 0 A beträgt, sobald die Diodenspannung unter 0.7 V liegt. Ab einem Zeitpunkt, ab dem die Diodenspannung größer 0.7 V ist, beginnt die Diode zu leiten und der Strom wird nur durch den Widerstand R_1 begrenzt.

3. IV-Charakterisierung von Siliziumdioden

Abbildung 3.4.: Verbindungen auf dem Steckbrett

Abbildung 3.5.: Spannung und Strom einer Siliziumdiode (zeitabhängig)

3. IV-Charakterisierung von Siliziumdioden

3.6.2. Messungen mit SCPI-Server und Python

Tipp 2

IP-Adressen der STEMLabs für den Zugriff via SCPI

- Laborplatz ELIE1: 192.168.111.181
- Laborplatz ELIE2: 192.168.111.182
- Labroplatz ELIE3: 192.168.111.183
- Laborplatz ELIE4: 192.168.111.184
- Laborplatz ELIE5: 192.168.111.185
- Laborplatz ELIE6: 192.168.111.186

4. Der BJT als Diode

4.1. Zielsetzung

Der Zweck dieses Versuchs ist es, die Strom- und Spannungseigenschaften eines als Diode geschalteten Bipolartransistors (Bipolar Junction Transistor, kurz BJT, engl.) zu untersuchen.

🅊 Tipp

Die für die Versorgungsspannungen von +5 V, -3,3 V und +3,3 V verwendeten Steckerstifte des STEMlab's sind in der Dokumentation aufgeführt.

Die STEMlab-Ausgänge können Spannungssignale mit einem maximalen Ausgangsbereich von $\pm\,1\,$ V (2 Vpp) erzeugen. Für diesen Versuch sind höhere Signalamplituden erforderlich. Aus diesem Grund wird ein Operationsverstärker (Opamp) als invertierender Verstärker eingesetzt, um die Signale der Ausgänge OUT1 und OUT2 für einen Spannungshub von -3,2 V bis +4,7 V zu verstärken. Der Opamp wird vom STEMlab aus mit +5 V und -3,3 V versorgt. Die Verstärkung des Opamps wird auf pprox 5 gesetzt, wobei R_i = 2,2 k Ω und R_f = 10 k Ω .

4.2. Materialien

- Red Pitaya STEMlab
- OP484
- 1 k Ω Widerstand
- 10 k Ω Widerstand
- 2,2 k Ω Widerstand
- Kleinsignal npn-Transistor (2N3904)
- Kleinsignal pnp-Transistor (2N3906)
- Platine
- Labornetzteil

Ein npn-Transistor, der wie in Abbildung 4.1 gezeigt angeschlossen ist, verhält sich wie eine Diode. Dies kann durch die Verwendung der Oszilloskop- und Signalgenerator-App gezeigt werden.

Abbildung 4.1.: npn-Transistor als Diode.

Tipp

Beachten Sie, dass die in Abbildung 4.1 (links) gezeigte Verstärkerschaltung nicht das Hauptthema dieses Versuchs ist. Diese Schaltung wird nur hinzugefügt, um das Signal OUT1 zu verstärken; von hier an können Sie den Punkt -5 $\times V_{OUT1}$ als Bezugspotenzial betrachten.

4.3. Verfahren

Im Labor in Raum E 507 ist an jedem Messplatz eine Platine, wie in Abbildung 4.2 gezeigt, an ein STEMlab angeschlossen, wobei R_1 = 2,2 k Ω , R_2 = 10 k Ω und R_3 = 1 k Ω .

Warnung

Bevor Sie eigene Schaltungen, entweder auf dem Steckbrett oder einer eigenen Platine, an die STEMlab-Pins -3,3V und +3,3V anschließen, überprüfen Sie sorgfältig die Polarität Ihrer Schaltung. Die Spannungsversorgungsstifte -3,3V und +3,3V haben keine Schutzschaltung und können im Falle eines Kurzschlusses beschädigt werden.

- Starten Sie die Oszilloskop- und Signalgenerator-App
- Stellen Sie im Menü OUT1-Einstellungen den Amplitudenwert auf 0,8 V, den DC-Offset auf -0,12 V und die Frequenz auf 1 kHz ein, um die Eingangsspannung anzulegen. Wählen Sie im Wellenform-Menü TRIANGLE, deaktivieren Sie SHOW und wählen Sie ENABLE.
- Stellen Sie sicher, dass IN1, IN2 und MATH V/div auf der linken unteren Seite des Bildschirms auf 1 V/div eingestellt sind. Sie können V/div einstellen, indem Sie den gewünschten Kanal auswählen und die vertikalen +/- Button rechts unten verwenden.
- Setzen Sie den t/div Wert auf 200 us/div. Sie können t/div mit den horizontalen +/- Button einstellen.
- Stellen Sie unter MATH-Kanaleinstellungen folgendes ein: IN1-IN2 und wählen Sie ENABLE.
- Stellen Sie unter den Menüeinstellungen IN1 und IN2 den Messtaster auf x10 und den vertikalen Offset auf 0.

Aus Abbildung 4.3 ist ersichtlich, dass der npn-Transistor in der in Abbildung 4.1 gezeigten Konfiguration sich wie eine Diode verhält. Vergleichen Sie die Ergebnisse mit den Diodenmessungen aus dem Diodenversuch.

4.4. IV-Kurvenmessungen

Da sich ein Bipolartransistor wie eine Diode verhalten kann (vgl. Konfiguration in Abbildung 4.1, können sie die IV-Charakteristik mit den gleichen Messmethoden wie im Diodenexperiment ermitteln, also mit der Oszilloskop-App im Web-Browser, mit einem SCPI-Skript und mit dem JupyterLab auf dem STEMlab.

4. Der BJT als Diode

Abbildung 4.2.: Platine mit Transistorschaltung.

Abbildung 4.3.: npn-Transistor als Diode, Messungen.

5.1. Zielsetzung

Ziel dieses Versuches ist die Untersuchung der Strom- und Spannungscharakteristik von n-Kanal und p-Kanal MOS Feldeffekttransistoren (kurz nMOS und pMOS), die jeweils als Diode geschaltet sind.

🅊 Tipp

Die STEMlab-Ausgänge können Spannungssignale mit einem maximalen Ausgangsbereich von \pm 1 V (2 Vpp) erzeugen. Für diesen Versuch werden höhere Signalamplituden benötigt. Aus diesem Grund wird wieder ein OP27 als invertierenden Verstärker benötigt, um die Signalverstärkung von OUT1 und OUT2 für einen Spannungshub von +4,7V bis -3,2V zu erreichen. Ein OP27 wird vom STEMlab über die +5 V und -3.3 V Spannungsschienen versorgt. Der Verstärkungfaktor des invertierenden Verstärkers wird auf pprox 5 gesetzt, wobei R_1 = 2,2 k Ω und R_2 = 10 k Ω eingesetzt werden.

5.2. Materialien

- Red Pitaya STEMlab
- OP27 Operationsverstärker
- 1 $k\Omega$ Widerstand
- BS170 Kleinsignal-nMOS-Transistor
- BS250 Kleinsignal-pMOS-Transistor
- Platine

5.3. nMOS als Diode

Die Schaltung des nMOS in Diodenkonfiguration ist in Abbildung 5.2 gezeigt. In Diodenkonfiguration arbeitet ein nMOS vergleichbar zu einem npn-Transistor.

Die Schwellspannung (Threshold Voltage, $V_{Tn,p}$, V_{th} , V_{TH}) liegt nicht zwingend bei pprox 0,7 V wie bei einem Bipolartransistor. Bei einem unipolaren Transistor hängt sie von der Technologie und der Kanalgröße des Transistors ab. Für den ausgewählten nMOS-Transistor liegt die Schwellenspannung V_{Tn} bei etwa 2,0 V nominal. Das bedeutet, wenn die vom Gate-Kontakt zum Source-Kontakt anliegende Spannung (V_{GS}) die Schwellspannung V_{Tn} überschreiten, schaltet der nMOS Transistor ein und beginnt zu leiten. Da bei der Diodenkonfiguration des

nMOS sein Drain-Kontakt schalttechnisch mit seinem Gate-Kontakt verbunden ist, ist die Drain-Source-Spannung gleich der Gate-Source-Spannung.

Tipp

Diese Konfiguration des nMOS erzeugt effektiv eine Diode mit einer Durchlaßspannung, die der Schwellenspannung ${\cal V}_{Tn}$ entspricht.

BS170G

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•		•
Gate Reverse Current (V _{GS} = 15 Vdc, V _{DS} = 0)	I _{GSS}	-	0.01	10	nAdc
Drain-Source Breakdown Voltage (V _{GS} = 0, I _D = 100 μAdc)	V _{(BR)DSS}	60	90	-	Vdc
ON CHARACTERISTICS (Note 1)	•				
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1.0 mAdc)	V _{GS(Th)}	0.8	2.0	3.0	Vdc
Static Drain–Source On Resistance (V _{GS} = 10 Vdc, I _D = 200 mAdc)	r _{DS(on)}	-	1.8	5.0	Ω
Drain Cutoff Current (V _{DS} = 25 Vdc, V _{GS} = 0 Vdc)	I _{D(off)}	-	-	0.5	μΑ
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 250 mAdc)	9fs	-	200	-	mmhos
SMALL-SIGNAL CHARACTERISTICS	•				•
Input Capacitance (V _{DS} = 10 Vdc, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	-	-	60	pF
SWITCHING CHARACTERISTICS					
Turn-On Time (I _D = 0.2 Adc) See Figure 1	t _{on}	_	4.0	10	ns
Turn-Off Time (I _D = 0.2 Adc) See Figure 1	t _{off}	-	4.0	10	ns

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Abbildung 5.1.: BS170 Spezifikation.

5.4. Verfahren

Für Sie ist die Schaltung aus Abbildung 5.2 auf einer Platine aufgebaut; R_1 = 2,2 k Ω , R_2 = 10 k Ω und R_3 = 1 k Ω , Transistor M1 ist der nMOS Transistor vom Typ BS170.

Abbildung 5.2.: Anschlussdiagramm nMOS-Messung

Abbildung 5.3.: nMOS-Schaltung auf der Platine

Warnung

Bevor Sie die Schaltung an die STEMlab-Pins -3,3 V und +3,3 V anschließen, überprüfen Sie Ihre Schaltung nochmal. Die Spannungsversorgungsstifte -3,3 V und +3,3 V haben keine Schutzschaltung und können im Falle eines Kurzschlusses beschädigt werden.

- Starten Sie die Oszilloskop und Signalgenerator-App
- Stellen Sie im Menü OUT1-Einstellungen den Amplitudenwert auf 0,45 V, den DC-Offset auf -0,45 V und die Frequenz auf 1 kHz ein, um die Eingangsspannung anzulegen. Wählen Sie im Wellenform-Menü TRIANGLE, deaktivieren Sie SHOW und wählen Sie ENABLE.
- Stellen Sie sicher, dass IN1, IN2 und MATH V/div auf der linken unteren Seite des Bildschirms auf 1 V/div eingestellt sind (Sie können V/div einstellen, indem Sie den gewünschten Kanal auswählen und mit dem vertikalen +/- Regler einstellen).
- Setzen Sie t/div Wert auf 200 us/div (Sie k\u00f6nnen t/div mit dem horizontalen +/- Reglern einstellen).
- Stellen Sie unter MATH-Kanaleinstellungen IN1-IN2 ein und wählen Sie ENABLE.
- Stellen Sie unter den Menueinstellungen IN1 und IN2 den Messtaster auf x10 und den vertikalen Offset auf 0.
- Stellen Sie unter Einstellungen des MATH-Menüs den vertikalen Offset auf 0 ein.
- Stellen Sie unter TRIGGER-Einstellungen den Triggerpegel auf 1 V ein

5.5. IV-Kurvenmessungen

Da sich ein nMOS wie eine Diode mit einer Durchlaßspannung entsprechend der V_{Tn} verhalten kann (Konfiguration in Abbildung 5.2, können sie die IV-Charakteristik wie bei der Diodenschaltung messen. Sie können die Oszilloskop-App, ein Jupyter Notebook oder ein SCPI-Skript verwenden.

5.6. pMOS als Diode

Die selben Messungen können auch mit einem pMOS-Transistor durchgeführt werden. Beim pMOS-Transistor wird allerdings die Polarität der Spannung umgekehrt, so dass die Konfiguration der pMOS-Diode anders sein muss als bei einem nMOS. Die Konfiguration der pMOS-Diode ist in Abbildung 5.5 dargestellt.

5.7. Verfahren

Für Sie ist die Schaltung aus Abbildung 5.5 auf einer Platine aufgebaut; R_1 = 2,2 k Ω , R_2 = 10 k Ω und für R_3 = 1 k Ω , der Transistor M1 ist ein pMOS Transistor vom Typ BS250.

Abbildung 5.4.: nMOS Diodenmessung

Warnung

Bevor Sie die Schaltung an die STEMlab-Pins -3,3V und +3,3V anschließen, überprüfen Sie Ihre Schaltung nochmal. Die Spannungsversorgungsstifte -3,3V und +3,3V haben keine Schutzschaltung und können im Falle eines Kurzschlusses beschädigt werden.

- Starten Sie die Anwendung Oszilloskop und Signalgenerator-App
- Stellen Sie im Menü OUT1-Einstellungen den Amplitudenwert auf 0,45 V, den DC-Offset auf -0,45 V und die Frequenz auf 1 kHz ein, um die Eingangsspannung anzulegen. Wählen Sie im Wellenform-Menü TRIANGLE, deaktivieren Sie SHOW und wählen Sie ENABLE.
- Stellen Sie sicher, dass IN1 und IN2 auf der linken unteren Seite des Bildschirms auf 1 V/div eingestellt sind (V/div kann im gewünschten Kanal mit den vertikalen +/- Butten einstellt werden) und MATH auf 0.5 V/div.
- Setzen Sie t/div Wert auf 200 us/div (t/div wird mit den horizontalen +/- Button eingestellt).
- Stellen Sie unter MATH-Kanaleinstellungen die Differenz IN1-IN2 ein und wählen Sie ENABLE.
- Stellen Sie unter den Menueinstellungen IN1 und IN2 den Messtaster auf x10 und den vertikalen Offset auf 0.

Abbildung 5.5.: pMOS Anschlussdiagramm.

- Stellen Sie unter Einstellungen des MATH-Menüs den vertikalen Offset auf 0 ein.
- Stellen Sie unter TRIGGER-Einstellungen den Triggerlevel auf 4 V ein.

Abbildung 5.6.: pMOS Diodenmessung.

Wie in Abbildung 5.6 zu sehen, verhält sich der pMOS in der Diodenkonfiguration wie eine Diode mit einer Durchlaßspannung gleich der pMOS Schwellenspannung V_{Tp} .

Vergleichen Sie Abbildung 5.6 mit Abbildung 5.4 und versuchen Sie, den Unterschied zwischen nMOS- und pMOS-Diodenkonfigurationen zu erklären.

Literaturverzeichnis