

FACHPRAKTIKUM

Fachpraktikum

Primzahltests modifiziert zum Testen von Polynomen auf Irreduzibilität

Helena Petri, Alina Schneider, Kathrin Wirschem

14.08.2019

Einleitung

■ Primzahltests untersuchen

Einleitung

- Primzahltests untersuchen
- Übertragbarkeit auf Polynome über \mathbb{Z}_q bei festem $q \in \mathbb{P}$?

Satz von Fermat

Ist p eine Primzahl, so gilt für alle $a \in \mathbb{N}$ mit $p \nmid a$: $a^{p-1} \equiv 1 \mod p$

Satz von Fermat

Ist p eine Primzahl, so gilt für alle $a \in \mathbb{N}$ mit $p \nmid a$: $a^{p-1} \equiv 1 \mod p$

Zahlen:
$$|(\mathbb{Z}_p)^*| = p - 1$$

Satz von Fermat

Ist p eine Primzahl, so gilt für alle $a \in \mathbb{N}$ mit $p \nmid a$: $a^{p-1} \equiv 1 \mod p$

Zahlen:
$$|(\mathbb{Z}_p)^*| = p - 1$$

Polynome: $|(\mathbb{Z}_q[x]/f)^*| = q^{deg(f)} - 1$ für irreduzible Polynome f

Fermat für Polynome

Ist f irreduzibel über \mathbb{Z}_q , so gilt für alle $a \in \mathbb{Z}_q[x]$ mit $f \nmid a$: $a^{q^{deg(f)}-1} \equiv 1 \mod f$

Fermat für Polynome

Ist f irreduzibel über \mathbb{Z}_q , so gilt für alle $a \in \mathbb{Z}_q[x]$ mit $f \nmid a$: $a^{q^{deg(f)}-1} = 1 \mod f$

Als Test auf Irreduzibilität: Gilt $a^{q^{deg(f)}-1} \not\equiv 1 \mod f$, dann ist f nicht irreduzibel.

Carmichael-Polynome

Definition

Ein Carmichael-Polynom ist ein zusammengesetztes Polynom f, sodass $a^{q^{deg(f)}-1} \equiv 1 \mod f$ für alle $a \in \mathbb{Z}_q[x]$ mit deg(ggT(a,f)) = 0

Carmichael-Polynome

Definition

Ein Carmichael-Polynom ist ein zusammengesetztes Polynom f, sodass $a^{q^{\deg(f)}-1} \equiv 1 \mod f$ für alle $a \in \mathbb{Z}_a[x]$ mit $\deg(ggT(a,f)) = 0$

Satz

Sei $f \in \mathbb{Z}_q[x]$. Wenn für alle f_i irreduzibel mit $f_i|f$ gilt, dass $f_i^2 \nmid f$ und $deg(f_i)|deg(f)$, dann ist f ein Carmichael-Polynom.

Carmichael-Polynome

Definition

Ein Carmichael-Polynom ist ein zusammengesetztes Polynom f, sodass $a^{q^{deg(f)}-1} \equiv 1 \mod f$ für alle $a \in \mathbb{Z}_q[x]$ mit deg(ggT(a,f)) = 0

Satz

Sei $f \in \mathbb{Z}_q[x]$. Wenn für alle f_i irreduzibel mit $f_i|f$ gilt, dass $f_i^2 \nmid f$ und $deg(f_i)|deg(f)$, dann ist f ein Carmichael-Polynom.

⇒ false-positives einfach zu finden

lacksquare Finde $s,u\in\mathbb{N},u$ ungerade mit $p-1=2^su$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $p-1=2^s u$
- Wähle $a \in \mathbb{N}$

- lacksquare Finde $s,u\in\mathbb{N},u$ ungerade mit $p-1=2^su$
- Wähle $a \in \mathbb{N}$
- lacksquare Teste, ob $a^u \equiv 1 \mod p$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $p-1=2^s u$
- Wähle $a \in \mathbb{N}$
- Teste, ob $a^u \equiv 1 \mod p$
- Für $1 \le t < s$ teste, ob $a^{2^t u} \equiv -1 \mod p$

■ Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} - 1 = 2^s u$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} 1 = 2^s u$
- Wähle $a \in \mathbb{Z}_q[x]$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} 1 = 2^s u$
- Wähle $a \in \mathbb{Z}_q[x]$
- Teste, ob $a^u \equiv 1 \mod f$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} 1 = 2^s u$
- Wähle $a \in \mathbb{Z}_q[x]$
- Teste, ob $a^u \equiv 1 \mod f$
- Für $1 \le t < s$ teste, ob $a^{2^t u} \equiv -1 \mod f$

Schwierigkeiten

Laufzeit:

■ Sehr viele Allokationen; gelöst durch In-place-rechnen

Schwierigkeiten

Laufzeit:

- Sehr viele Allokationen; gelöst durch In-place-rechnen
- Potenzierung langsam, da *u* oft groß
 - \Rightarrow verbessert durch binäre Potenzierung

Power-Residue Symbol

Legendre Symbol für Polynome

Definition

Für d|q-1 fest, $a, f \in \mathbb{Z}_q[x]$, f irreduzibel, $f \nmid a$:

$$(\frac{a}{f})_d \equiv a^{\frac{|f|-1}{d}} \mod f$$

Power-Residue Symbol

Legendre Symbol für Polynome

Definition

Für d|q-1 fest, $a,f\in\mathbb{Z}_q[x],f$ irreduzibel, $f\nmid a$:

$$(\frac{a}{f})_d \equiv a^{\frac{|f|-1}{d}} \mod f$$

Reziprozitätsgesetz

Seien f,g irreduzible Polynome. Dann gilt: $(\frac{g}{f})_d = (-1)^{\deg(f)\deg(g)\frac{q-1}{d}} \cdot (\frac{f}{g})_d$

Jacobi Symbol

Verallgemeinerung des Power-Residue Symbols: f muss nicht irreduzibel sein.

Reziprozitätsgesetz

Seien f, g teilerfremde Polynome, g die Charakteristik von $\mathbb{Z}_q[x]$ und g ein

Teiler von q-1. $sgn(f) := lc(f)^{\frac{q-1}{d}}$ Dann gilt:

$$\left(\frac{f}{g}\right) \cdot \left(\frac{g}{f}\right)^{-1} = (-1)^{\frac{q-1}{d} \cdot \deg(f) \cdot \deg(g)} \cdot \operatorname{sgn}(f)^{\deg(g)} \cdot \operatorname{sgn}(g)^{-\deg(f)}$$

Power-Residue Test

■ Nutze Reziprozitätsgesetz, um $(\frac{a}{f})_d$ zu berechnen

Power-Residue Test

- Nutze Reziprozitätsgesetz, um $(\frac{a}{f})_d$ zu berechnen
- Vergleiche Ergebnis mit der Definition

Laufzeit

■ Ein Durchlauf sehr schnell; vergleichbar mit *isirreducible*

Laufzeit

- Ein Durchlauf sehr schnell; vergleichbar mit *isirreducible*
- Problem: gibt oft fälschlicherweise true aus

Laufzeit

- Ein Durchlauf sehr schnell; vergleichbar mit *isirreducible*
- Problem: gibt oft fälschlicherweise true aus
- Abhängig von a

Pocklington

Pocklington Kriterium

Sei $N \in \mathbb{N}_{>1}$. Sei $a \in \mathbb{N}$, s.d. $a^{N-1} \equiv 1 \mod N$.

Sei p prim, p|N-1 und $p > \sqrt{N}-1$.

Wenn $ggT(a^{\frac{N-1}{p}}-1, N)=1$, dann ist N eine Primzahl.

Pocklington

Pocklington für Polynome

Sei f das zu testende Polynom und a ein Polynom, s.d. q Charakteristik des Rings, d der Grad von f. Falls $a^{q^d-1} \equiv 1 \mod f$ und

 $\exists p \in [q^{\frac{d}{2}}, \frac{q^{d-1}}{2}], \ p \text{ prim}, \ p|q^{d-1}: ggT(a^{\frac{q^{d-1}}{p}}-1, f) = 1, \text{ dann ist } f \text{ irreduzibel}.$

Laufzeit und Probleme

- Ein Durchlauf sehr schnell; vergleichbar mit *isirreducible*
 - \Rightarrow durch In-Place-Rechnung und Binäre Potenzierung

Laufzeit und Probleme

- Ein Durchlauf sehr schnell; vergleichbar mit isirreducible
 ⇒ durch In-Place-Rechnung und Binäre Potenzierung
- $lackbox{ } p$ existiert nicht immer \Rightarrow nicht immer eine Aussage

Laufzeit und Probleme

- Ein Durchlauf sehr schnell; vergleichbar mit *isirreducible*⇒ durch In-Place-Rechnung und Binäre Potenzierung
- ightharpoonup p existiert nicht immer \Rightarrow nicht immer eine Aussage
- falls p existiert \Rightarrow Zertifikat zum Nachweisen der Irreduzibilität

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

 χ_c irreduzibel \Rightarrow $per(c) ||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Verschiedene Möglichkeiten aper zu berechnen:

■ rekursiv ⇒ Laufzeit!

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

- rekursiv ⇒ Laufzeit!
- explizit mit Matrix

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

- rekursiv ⇒ Laufzeit!
- explizit mit Matrix
- mit Lucas-Kette: bestimmte Form der Rekursionsgleichung gegeben, dafür einfache Formel, die Glieder explizit auszurechnen; rechnen im Ring

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

- rekursiv ⇒ Laufzeit!
- explizit mit Matrix
- mit Lucas-Kette: bestimmte Form der Rekursionsgleichung gegeben, dafür einfache Formel, die Glieder explizit auszurechnen; rechnen im Ring $((\mathbb{Z}_q[t]/f)[s])/(s^2 a \cdot s + b)$