

# Universidade do Minho Mestrado em Engenharia Informática

### Engenharia de Sistemas de Redes Trabalho Prático 1

Bernardo Saraiva (PG50259) José Gonçalves (PG50519) Daniel Azevedo (PG50311)

29-09-2022

# Conteúdo

| 1 | Etapa 1       | 3  |
|---|---------------|----|
|   | 1.1 Questão 1 | 3  |
| 2 | Etapa 2       | 6  |
|   | 2.1 Questão 2 | 6  |
|   | 2.2 Questão 3 | 7  |
|   | 2.3 Questão 4 | 9  |
| 3 | Etapa 3       | 11 |
|   | 3.1 Questão 5 | 11 |
| 4 | Conclusão     | 14 |

# Etapa 1

#### 1.1 Questão 1

Capture três pequenas amostras de trágefo no link de saída do servidor, respetivamente com 1 cliente (VLC), com 2 clientes (VLC e Firefox) e com 3 clientes (VLC, Firefox e ffplay). Identifique a taxa em bps necessária (usando o ffmpeg -i videoA.mp4 e/ou o próprio wireshark), o encapsulamento usado e o número total de fluxos gerados. Comente a escalabilidade da solução. Ilustre com evidências da realização prática do exercício (ex: capturas de ecrã).

Para verificar a taxa em bps necessária, foi utilizado o comando ffmpeg -i videoA.mp4. Através do output do mesmo, podemos verificar que a taxa é de 13 Kb/s.

No entanto, podemos verificar que a taxa real é superior à necessária. No caso de só existir um cliente, temos uma taxa de 15 Kb/s. Quando temos dois clientes a aceder ao servidor, esta taxa passa para 16 Kb/s. Por fim quando são 3 cliente, a taxa é de 37 Kb/s.

Este aumento em relação à taxa teórica deve-se a perdas e as consecutivamente retransmissões.

```
File Edit Vew Terminal Tabs Help

coreexabbuncore:-/Desktop/TPLS ffippeg -i videoA.mp4

ffippeg version 4.2.7-Gubuntub.1 copyright (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

built with ge 9 (Ubunts 4.0.-Lubuntub.2 (c) 2000-2022 the Fippeg developers

black-lubuntub.2 (c) 2000-2022 the Fippeg developer
```

Figura 1.1: Taxa em bps

| End Packet | ets End Bytes | End Bits/s   |
|------------|---------------|--------------|
| k 0        | 0             | 0            |
| 0          | 0             | 0            |
| 0          | 0             | 0            |
| 1          | 36            | 34           |
| 0          | 0             | 0            |
| k 169      | 99540         | 94 k         |
| 9          | 13428         | 12 k         |
| 2          | 0             | 0            |
| 4          | 176           | 167          |
|            | 2<br>4        | 2 0<br>4 176 |

Figura 1.2: Taxa em bps real com um cliente(vlc)

| Protocol                                          | Percent Packets | Packets | Percent Bytes | Bytes  | Bits/s | End Packets | End Bytes | End Bits/s |
|---------------------------------------------------|-----------------|---------|---------------|--------|--------|-------------|-----------|------------|
| ▼ Frame                                           | 100.0           | 389     | 100.0         | 255860 | 191 k  | 0           | 0         | 0          |
| ▼ Ethernet                                        | 100.0           | 389     | 2.1           | 5446   | 4084   | 0           | 0         | 0          |
| ▼ Internet Protocol Version 6                     | 0.3             | 1       | 0.0           | 40     | 30     | 0           | 0         | 0          |
| Open Shortest Path First                          | 0.3             | 1       | 0.0           | 36     | 27     | 1           | 36        | 27         |
| ▼ Internet Protocol Version 4                     | 99.2            | 386     | 3.0           | 7720   | 5790   | 0           | 0         | 0          |
| <ul> <li>Transmission Control Protocol</li> </ul> | 97.9            | 381     | 94.7          | 242342 | 181 k  | 366         | 221296    | 165 k      |
| <ul> <li>Hypertext Transfer Protocol</li> </ul>   | 3.9             | 15      | 8.3           | 21358  | 16 k   | 13          | 18462     | 13 k       |
| Malformed Packet                                  | 0.5             | 2       | 0.0           | 0      | 0      | 2           | 0         | 0          |
| Open Shortest Path First                          | 1.3             | 5       | 0.1           | 220    | 165    | 5           | 220       | 165        |
| Address Resolution Protocol                       | 0.5             | 2       | 0.0           | 56     | 42     | 2           | 56        | 42         |

Figura 1.3: Taxa em bps real com dois cliente(vlc + firefox)

| Protocol                                          | Percent Packets | Packets | Percent Bytes | Bytes  | Bits/s | End Packets | End Bytes | End Bits/s |
|---------------------------------------------------|-----------------|---------|---------------|--------|--------|-------------|-----------|------------|
| ▼ Frame                                           | 100.0           | 615     | 100.0         | 411853 | 360 k  | 0           | 0         | 0          |
| ▼ Ethernet                                        | 100.0           | 615     | 2.1           | 8610   | 7528   | 0           | 0         | 0          |
| <ul> <li>Internet Protocol Version 4</li> </ul>   | 100.0           | 615     | 3.0           | 12300  | 10 k   | 0           | 0         | 0          |
| <ul> <li>Transmission Control Protocol</li> </ul> | 99.3            | 611     | 94.9          | 390767 | 341 k  | 581         | 347490    | 303 k      |
| <ul> <li>Hypertext Transfer Protocol</li> </ul>   | 4.9             | 30      | 10.5          | 43109  | 37 k   | 25          | 35869     | 31 k       |
| Malformed Packet                                  | 0.8             | 5       | 0.0           | 0      | 0      | 5           | 0         | 0          |
| Open Shortest Path First                          | 0.7             | 4       | 0.0           | 176    | 153    | 4           | 176       | 153        |

Figura 1.4: Taxa em bps real com dois cliente(vlc + firefox + ffplay)

Relativamente ao encapsulamento usado, independente do número de clientes, estão presentes os 4 níveis da pilha protocolar, sendo eles: Ethernet (camada de ligação de dados), IPv4 (camada de rede), TCP (camada de transporte) e HTTP (camada de aplicação).

```
Frame 3: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface veth1.0.3, id 0

Ethernet II, Src: 00:00:00_aa:00:00 (00:00:00:aa:00:00), Dst: 00:00:00_aa:00:01 (00:00:00:aa:00:01)

Internet Protocol Version 4, Src: 10.0.0.10, Dst: 10.0.0.20

Transmission Control Protocol, Src Port: 8080, Dst Port: 43540, Seq: 2897, Ack: 1, Len: 1448

Hypertext Transfer Protocol
```

Figura 1.5: Encapsulamento

No que diz respeito ao número de fluxo podemos verificar, através das figuras 1.6, 1.7 e 1.8, que quando temos apenas um cliente (vlc) é gerado um único fluxo. Passando para dois clientes (vlc + firefox) temos dois fluxos gerados. Por fim, existe três fluxos gerados quando passamos a ter três clientes (vlc + firefox + ffplay).



Figura 1.6: Fluxo 1 cliente (vlc)



Figura 1.7: Fluxo 2 cliente (vlc + firefox)



Figura 1.8: Fluxo 3 cliente (vlc + firefox + ffplay)

Através da análise das capturas do wireshark efetuadas, foi possível observar que o servidor responde a cada cliente individualmente, independentemente se o pedido é o mesmo. Assim, podemos concluir que a solução não tem grande escalabilidade, pois com o aumento do número de clientes iria existir perda de qualidade do serviço, e consequentemente iria ficar mais lento.

## Etapa 2

#### 2.1 Questão 2

Diga qual a largura de banda necessária, em bits por segundo, para que o cliente de streaming consiga receber o vídeo no firefox e qual a pilha protocolar usada neste cenário.

Para que seja possível o cliente de streaming conseguir receber o vídeo no firefox, é necessário que a conexão permita uma largura de banda maior do que o bit rate do vídeo, já que é necessário considerar o overhead associado à trasmissão dos pacotes. Neste caso, através da análise ao ficheiro videoManifest.mpd, é possível inferir o bit rate de cada um dos vídeos nas diferentes resoluções.

Figura 2.1: Dados referentes ao vídeo na dimensão 160 x 100

Da figura 2.1 é possível verificar que é necessário uma largura de banda superior a 78530 bps, como descrito no campo *bandwidth* da primeira linha.

Figura 2.2: Dados referentes ao vídeo na dimensão 320 x 200

De igual modo, através da figura 2.2 é possível verificar que a largura de banda mínima para transmitir este vídeo é de 181115 bps.

Figura 2.3: Dados referentes ao vídeo na dimensão 640 x 400

Por fim, pela figura 2.3 verifica-se que o vídeo na dimensão 640 necessita de uma largura de banda superior a 445335 bps para que seja possível ser transmitido.

As camadas da pilha protocolar envolvidas neste processo são a camada de rede (através do protocolo IP), a camada de Transporte (com recurso ao TCP) e a de Aplicação (que trabalha com HTTP).

#### 2.2 Questão 3

Ajuste o débito dos links da topologia de modo que o cliente no portátil Bela exiba o vídeo de menor resolução e o cliente no portátil Alladin exiba o vídeo com mais resolução. Mostre evidências.

De modo a ajustar o débito dos links da topologia para que o portátil Bela exiba o vídeo com menor resolução, efetuou-se algumas tentativas de ajuste da largura de banda para a ligação ao portátil Bela. Deste modo, através de capturas Wireshark (ou análise através da aba Network do Firefox).



Figura 2.4: Topologia com restrição de largura de banda para o portátil Bela

Efetuando uma captura com limite da largura de banda a 256kbps no link que leva ao portátil Bela, verificou-se que o video apresentado é na resolução mais baixa (160 x 100).

| htt | tp               |           |             |          |                                                 |
|-----|------------------|-----------|-------------|----------|-------------------------------------------------|
| lo. | Time             | Source    | Destination | Protocol | Length Info                                     |
|     | 42 32.511800097  | 10.0.2.20 | 10.0.0.10   | HTTP     | 381 GET /favicon.ico HTTP/1.1                   |
|     | 44 32.511971827  | 10.0.0.10 | 10.0.2.20   | HTTP     | 741 HTTP/1.1 404 Not Found (text/html)          |
|     | 54 33.666090556  | 10.0.2.20 | 10.0.0.10   | HTTP     | 401 GET /videoB 640 400 1000k dash.mp4 HTTP/1.1 |
|     | 197 36.776680520 | 10.0.2.20 | 10.0.0.10   | HTTP     | 402 GET /videoB 320 200 500k dash.mp4 HTTP/1.1  |
|     | 252 37.661120836 | 10.0.2.20 | 10.0.0.10   | HTTP     | 401 GET /videoB 160 100 200k dash.mp4 HTTP/1.1  |
|     | 347 39.449774856 | 10.0.0.10 | 10.0.2.20   | MP4      | 979                                             |
|     | 359 39.801553980 | 10.0.2.20 | 10.0.0.10   | HTTP     | 402 GET /videoB 160 100 200k dash.mp4 HTTP/1.1  |
|     | 454 41.582073558 | 10.0.0.10 | 10.0.2.20   | MP4      | 979                                             |
|     | 466 41.916067570 | 10.0.2.20 | 10.0.0.10   | HTTP     | 402 GET /videoB 160 100 200k dash.mp4 HTTP/1.1  |
|     | 559 43.698029812 | 10.0.0.10 | 10.0.2.20   | MP4      | 979                                             |
|     | 572 44.038686762 | 10.0.2.20 | 10.0.0.10   | HTTP     | 402 GET /videoB 160 100 200k dash.mp4 HTTP/1.1  |
|     | 664 45.820090805 | 10.0.0.10 | 10.0.2.20   | MP4      | 979                                             |
|     | 677 46.327746755 | 10.0.2.20 | 10.0.0.10   | HTTP     | 402 GET /videoB 160 100 200k dash.mp4 HTTP/1.1  |

Figura 2.5: Captura com limite da ligação ao portátil Bela

Efetuando outros testes, testou-se o limite de largura de banda em 512kbps, verificando-se que o video apresentado foi na resolução intermédia (320 x 200).



Figura 2.6: Captura com limitação a 512kbps do link ao portátil Bela

Para obter o video de maior resolução no portátil Alladin, simplesmente não se limitou a largura de banda, como se verifica em seguida.

| 0. | Time                                   | Source    | Destination            | Protocol    | Length Info                                             |
|----|----------------------------------------|-----------|------------------------|-------------|---------------------------------------------------------|
| •  |                                        | 10.0.0.21 | 10.0.0.10              | HTTP        | 428 GET /video_manifest.mpd HTTP/1.1                    |
|    | 25 21.152008395                        | 10.0.0.10 | 10.0.0.21              | HTTP/X      | 202 HTTP/1.1 200 Ok                                     |
|    | 34 21.246179033                        | 10.0.0.21 | 10.0.0.10              | HTTP        | 381 GET /favicon.ico HTTP/1.1                           |
|    | 36 21.246384724                        | 10.0.0.10 | 10.0.0.21              | HTTP        | 741 HTTP/1.1 404 Not Found (text/html)                  |
|    | 43 21.849914709                        | 10.0.0.21 | 10.0.0.10              | HTTP        | 371 GET /video_manifest_init.mp4 HTTP/1.1               |
|    | 45 21.850118910                        | 10.0.0.10 | 10.0.0.21              | MP4         | 1060                                                    |
|    | 52 21.952181244                        | 10.0.0.21 | 10.0.0.10              | HTTP        | 401 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 480 21.966545874                       | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 501 22.034068468                       | 10.0.0.21 | 10.0.0.10              | HTTP        | 403 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 932 22.043886918                       | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 950 22.106009773                       | 10.0.0.21 | 10.0.0.10              | HTTP        | 403 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 1348 22.117658450                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 1370 22.263476654                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 403 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 1766 22.280940601                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 1779 22.351221192                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 404 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 2147 22.359782783                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 2166 22.455045297                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 2583 22.470291158                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 2596 22.579275933                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 2995 22.591743417                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 3015 22.649857233                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 3404 22.660156447                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 3419 22.685628622                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 3796 22.698036742                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 3803 22.731713220                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 4186 22.744211925                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 4205 22.767804058                      | 10.0.0.21 | 10.0.0.10              | HTTP        | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1         |
|    | 4615 22.780239107                      | 10.0.0.10 | 10.0.0.21              | MP4         | 1157                                                    |
|    | 4636 22.806094187<br>5034 22.818082570 | 10.0.0.21 | 10.0.0.10<br>10.0.0.21 | HTTP<br>MP4 | 405 GET /videoB_640_400_1000k_dash.mp4 HTTP/1.1<br>1157 |

Figura 2.7: Captura sem limitação no Portátil Alladin

#### 2.3 Questão 4

Descreva o funcionamento do DASH neste caso concreto, referindo o papel do ficheiro MPD criado.

DASH (Dynamic Adaptive Streaming over HTTP) é uma técnica de streaming conhecida por permitir um bit rate adaptativo onde um ficheiro multimédia é particionado em um ou mais segmentos e entregue a um cliente através de HTTP. Este método permite que o conteúdo se adapte dinamicamente à largura de banda disponível, sendo bastante comum e ocorre quando por vezes se repara que um conteúdo multimédia alterna automaticamente para uma imagem de qualidade inferior ou superior de modo a ajustar às condições da rede. O Youtube e a Netflix são exemplos de plataformas que contam com esta técnica.

Neste caso, o ficheiro .mpd (media presentation description) é de extrema importância para o DASH, no sentido em que estes ficheiros contêm várias informações e parâmetros para o streaming do video em questão (nas várias resoluções), nomeadamente a largura de banda. A figura 2.8 é referente ao ficheiro mpd do exercício que se trata no presente trabalho prático.

Figura 2.8: Ficheiro mpd referente ao trabalho prático

No caso da transmissão do exercício 2, foi possível verificar este mecanismo, sendo que esta técnica começa por tentar transmitir com a maior resolução disponível, mas logo se apercebe que não tem largura de banda suficiente para tal, reduzindo a capacidade sucessivamente até que esta se encaixe na largura de banda disponível.



Figura 2.9: Exemplo em que o mecanismo DASH ocorre

Como é possível verificar pela figura 2.9, o mecanismo DASH interviu na trasmissão, pelo que, por falta de largura de banda, foi recorrendo sucessivamente a um formato de qualidade inferior para que a transmissão pudesse ser efetuada.

# Etapa 3

### 3.1 Questão 5

Compare o cenário unicast aplicado com o cenário multicast. Mostre vantagens e desvantagens na solução multicast ao nível da rede, no que diz respeito a escalabilidade (aumento do  $\mathbf{n^0}$  de clientes) e tráfego na rede. Tire as suas conclusões.



Figura 3.1: Captura Wireshark no link de saída do servidor com trasmissão unicast



Figura 3.2: Captura Wireshark no link de saída do servidor com trasmissão unicast

Ao comparar o cenário unicast (transmissão baseada numa sessão entre o servidor e um cliente) com o cenário multicast (transmissão de um servidor para vários clientes), tendo como referência as figuras 3.1 e 3.2 é possível perceber vários fatores.

Cada cliente unicast ao conectar-se com o sevidor utiliza largura de banda adicional de forma a manter a conexão. Por exemplo, uma rede com 10 clientes a reproduzir uma stream de 10(kbps) geraria um tráfego de pelo menos 1000(kbps), já que o servidor terá de criar uma stream para cada cliente.

Em oposição, num cenário multicast o servidor de origem não encaminha pacotes para todos os clientes de forma direta, uma vez que confia em routers com suporte à tecnologia multicast ou switches como é apresentado na topologia em estudo para fazer o encaminhamento de pacotes. Por este motivo, cada cliente não gera overhead adicional tornando, na perspetiva do servidor, irrelevante o número de clientes, já que o servidor apenas transmite uma única stream de dados para o switch.

Por estes motivos, concluí-se que o cenário multicast é mais facilmente escalável e gere melhor o tráfego na rede, já que evita o envio de pacotes redundantes.

### Conclusão

Durante a execução da primeira etapa, foi possível verificar que o streaming via HTTP simples, não apresenta uma solução muito viável pois tem dificuldades em lidar com a escalabilidade. Com a execução do cenário prático, foi possível compreender o mecanismo DASH, que tem extrema importância em cenários do dia-a-dia pelo seu ajuste dinâmico de qualidade de vídeo conforme a qualidade da ligação, nomeadamente a largura de banda. Por fim permitiu também perceber as diferenças entre o streaming unicast e multicast, bem como as caracteristicas de ambas em relação a escalabilidade e gestão de tráfego na rede.