Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 9

Abgabe: Freitag, 18.06.2021, 09:15 Uhr

Aufgabe 1 (Tor und Lokalisierung).

(6 Punkte)

Sei A ein kommutativer Ring mit Eins und sei $S \subset A$ eine multiplikativ abgeschlossene Teilmenge. Ferner seien M und N zwei $S^{-1}A$ -Moduln, die wir über die kanonische Abbildung $A \to S^{-1}A$ auch als A-Moduln auffassen. Benutzen Sie Satz 16.7 um zu zeigen, dass für jedes $i \ge 0$ ein Isomorphismus

$$\operatorname{Tor}_{i}^{A}(M,N) \stackrel{\sim}{\longrightarrow} \operatorname{Tor}_{i}^{S^{-1}A}(M,N)$$

von A-Moduln existiert.

Aufgabe 2 (Ext). (6 Punkte)

Seien $m, n \in \mathbb{N}$ und $d, e \in \mathbb{N}$ Teiler von n. Ferner sei $i \in \mathbb{N}_0$.

- (a) Berechnen Sie $\operatorname{Ext}_{i}^{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$.
- (b) Bestimmen Sie $\operatorname{Ext}_i^{\mathbb{Z}/n\mathbb{Z}}(\mathbb{Z}/d\mathbb{Z},\mathbb{Z}/e\mathbb{Z})$. *Hinweis:* Blatt 6, Aufgabe 1.
- (c) Bestimmen Sie $\operatorname{Ext}_i^{\mathbb{C}[X,Y]}(\mathbb{C},\mathbb{C})$, wobei \mathbb{C} vermöge der Abbildung $\mathbb{C}[X,Y] \to \mathbb{C}, X \mapsto 0, Y \mapsto 0$ als $\mathbb{C}[X,Y]$ -Modul aufgefasst wird. *Hinweis:* Blatt 8, Aufgabe 2.

Aufgabe 3 (Abgeleitete projektive Limites).

(6 Punkte)

Zeigen Sie:

- (a) Für ein projektives System $(A_n)_{n\in\mathbb{N}}$ endlicher abelscher Gruppen ist $\lim_{n\in\mathbb{N}} A_n = 0$.
- (b) Für eine Primzahl p ist $\lim_{n\in\mathbb{N}}^1 p^n \mathbb{Z} \neq 0$, wobei die Übergangsabbildungen die Inklusionsabbildungen sind. *Hinweis:* Blatt 4, Zusatzaufgabe 5.

Aufgabe 4 (Induzierte Abbildungen auf Spektren¹).

(6 Punkte)

Sei $\phi: A \to B$ ein Morphismus kommutativer Ringe mit Eins und sei ϕ^* : Spec $(B) \to \operatorname{Spec}(A)$ die induzierte stetige Abbildung der Spektren. Zeigen Sie:

- (a) Ist ϕ injektiv, so ist das Bild von ϕ^* dicht in Spec(A), d. h. der Abschluss des Bildes ist ganz Spec(A).
- (b) Ist B treuflach über A, so ist ϕ^* surjektiv.

Zusatzaufgabe 5 (Leerer projektiver Limes).

(6 Punkte)

Sei I die Menge der endlichen Teilmengen von \mathbb{R} , halbgeordnet durch Inklusion. Für $i \in I$ setzen wir

$$M_i := \{ f : i \to \mathbb{Q} \mid f \text{ ist injektiv} \}$$

und für $i \subseteq j$ sei $\varphi_{ij}: M_i \to M_i, f \mapsto f|_i$, die Einschränkungsabbildung. Zeigen Sie:

- (a) Es ist $(M_i, \varphi_{ii})_{i \in I}$ ein projektives System nichtleerer Mengen mit surjektiven Übergangsabbildungen.
- (b) Es ist $\varprojlim_{i\in I} M_i = \emptyset$.

¹Diese Aufgabe ist Teil einer Serie von Aufgaben über das Spektrum eines Ringes.