化学笔记整理 胡译文

$$\begin{array}{c} \cdot \hspace{0.1cm} = \hspace{0.1cm} \text{与非金属反应:} \end{array} \left\{ \begin{array}{l} C + 2 \hspace{0.1cm} H_2 SO_4 (\hbox{浓}) \stackrel{\Delta}{\longrightarrow} CuSO_4 + SO_2 \uparrow + 2 \hspace{0.1cm} H_2 O \\ \\ S + 2 \hspace{0.1cm} H_2 SO_4 (\hbox{٪χ}) \stackrel{\Delta}{\longrightarrow} 3 \hspace{0.1cm} SO_2 \uparrow + 2 \hspace{0.1cm} H_2 O \end{array} \right. \\ \left. \cdot \hspace{0.1cm} = \hspace{0.1cm} \begin{array}{l} 2 \hspace{0.1cm} Br^- + SO_4^{2-} + 4 \hspace{0.1cm} H^+ \longrightarrow Br_2 + SO_2 \uparrow + 2 \hspace{0.1cm} H_2 O \\ \\ 2 \hspace{0.1cm} Fe^{2+} + SO_4^{2-} + 4 \hspace{0.1cm} H^+ \longrightarrow 2 \hspace{0.1cm} Fe^{3+} + SO_2 \uparrow + H_2 O \end{array} \right.$$

・ 与化合物反应:
$$\begin{cases} 2 \operatorname{Br}^- + \operatorname{SO_4}^{2-} + 4 \operatorname{H}^+ \longrightarrow \operatorname{Br}_2 + \operatorname{SO_2} \uparrow + 2 \operatorname{H}_2 \operatorname{O} \\ \\ 2 \operatorname{Fe}^{2+} + \operatorname{SO_4}^{2-} + 4 \operatorname{H}^+ \longrightarrow 2 \operatorname{Fe}^{3+} + \operatorname{SO_2} \uparrow + \operatorname{H}_2 \operatorname{O} \end{cases}$$

6.6.3 制备

工业

沸腾炉 煅烧黄铁矿

$$4 \, FeS_2 + 11 \, O_2 \stackrel{\Delta}{\longrightarrow} 2 \, Fe_2O_3 + 8 \, SO_2$$

接触室 V₂O₅附着于网上

$$2\,SO_2 + O_2 \xrightarrow{\text{催化剂}} 2\,SO_3$$

吸收塔

$$SO_3 + H_2O \longrightarrow H_2SO_2$$

实际用浓硫酸吸收
$$\left\{ \begin{array}{l} H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7 \\ \text{ \sharp Gibbs} \end{array} \right. \\ \left. H_2S_2O_7 + H_2O \longrightarrow 2\,H_2SO_4 \right. \\ \left. H_2S_2O_7 + H_2O \longrightarrow 2\,H_2SO_5 \right. \\ \left. H_2S_2O_7 +$$

6.7 含硫酸盐

6.7.1 FeSO₄

$$FeSO_4 \xrightarrow{\Delta} Fe_2O_3 + SO_2 \uparrow + SO_3 \uparrow$$

6.7.2 CuSO₄

$$\left\{ \begin{array}{l} CuSO_4 \stackrel{\Delta}{\longrightarrow} CuO + SO_2 \\ \\ CuSO_4 \stackrel{\Delta \ (\overline{p} \cap \mathbb{A} \mathbb{B})}{\longrightarrow} CuO + SO_2 \uparrow + SO_3 \uparrow + O_2 \uparrow \end{array} \right.$$

制备
$$\begin{cases} 2Cu + 2H_2SO_4(稀) + O_2 \xrightarrow{\Delta} 2CuSO_4 + 2H_2O \\ Cu + H_2SO_4(稀) + H_2O_2 \longrightarrow CuSO_4 + 2H_2O \end{cases}$$

6.7.3 Na₂S₂O₃

- 无法在酸性条件下存在: Na₂S₂O₃ + 2 HCI → 2 NaCl + H₂O + SO₂↑ + S↓
- · 生成: Na₂So₃ + S → Na₂S₂O₃
- ・ 除氯剂: Na₂S₂O₃ + 4 Cl₂ + 10 NaOH → 8 NaCl + 2 Na₂So₄ + 5 H₂O
- ・ 測定空气中I₂含量: 2Na₂S₂O₃ + I₂ → B=Na₂S₄O₆ + 2NaI

化学笔记整理 胡译文

7 N

7.1 氨气

7.1.1 物理性质

- · 无色、刺激性气体
- · 极易溶于水
- · 加压易液化(制冷剂)

7.1.2 尾气处理防倒吸

NH₃或HCI等气体极易溶于水,直接通入水中会使水倒吸。 在水层下放CCI₄层并将气体通入,可以防止倒吸。(NH₃和HCI不溶于CCI₄)

7.1.3 喷泉实验

气体	液体
NH ₃	水或稀H ₂ SO ₄
HCI	水或NaOH溶液
Cl ₂	
CO ₂	NaOH
SO ₂	溶液
H ₂ S	

7.1.4 化学性质

可燃性

$$\cdot$$
 4 NH₃ + 3 O₂ $\xrightarrow{\Delta g, \pm m}$ 2 N₂ + 6 H₂O

碱性 唯一的碱性气体

- $NH_3 + HCI \longrightarrow NH4CI$ 白烟
- $NH_3 + H_2O \Longrightarrow NH_3 \cdot H_2O \Longrightarrow NH_4^+ + OH^-$

还原性

・ 催化氧化: $4NH_3 + 5O_2 \stackrel{Pt}{\longleftarrow} 4NO + 6H_2O$

・
$$\left\{ \begin{array}{l} 2\,\text{NH}_3 + 3\,\text{CI}_2 \longrightarrow \text{N}_2 + 6\,\text{HCI} \\ \\ 8\,\text{NH}_3 + 3\,\text{CI}_2 \longrightarrow \text{N}_2 + 6 \quad \text{NH4CI} \\ \\ \text{白烟: 检验氯气泄漏} \end{array} \right.$$

•
$$2 NH_3 + CuO \xrightarrow{\Delta} 3 Cu + N_2 + 3 H_2O$$

化学笔记整理 胡译文

7.1.5 检验与验满

・ 检验: NH₃能使湿润红色石蕊试纸变蓝(没有紫色石蕊试纸)。

・ 验满: 沾取少量浓盐酸, 置于瓶口, 出现白烟。

7.1.6 制备

• Ca(OH)₂ + 2NH₄CI $\stackrel{\Delta}{\longrightarrow}$ CaCl₂ + 2NH₃ ↑ + 2H₂O

7.1.7 用途

制硝酸、氮肥、制冷剂

7.2 氮气

7.2.1 物理性质

· 无色无味气体、难溶于水

7.2.2 化学性质

氮气常温下不活泼(氮氮三键)、高温下(氮原子)活泼。

- $N_2 + 3 Mg \xrightarrow{\text{点燃}} Mg3N2$
- ・ $N_2 + 3H_2 \xrightarrow{\overline{\text{Al}} \setminus \overline{\text{Al}}} 2NH_3$
- $N_2 + O_2 \xrightarrow{\overline{\beta}\underline{\mathbb{A}}} 2NO$

7.2.3 制备

• NaNO₂ + NH₄CI $\xrightarrow{\Delta}$ NaCl + N₂↑ + 2H₂O

7.3 氮的氧化物

7.3.1 物理性质

· NO: 无色气体、有毒、难溶于水

· NO₂: 红棕色气体、有毒、与水反应

· N₂O₄: 无色气体、有毒、与水反应、化学性质类似NO₂、标况非气体

7.3.2 化学性质

一些实际发生的反应

- · 2NO + O₂ → NO₂ (迅速转变为<u>红棕色</u>)
- · 3 NO₂ + H₂O → 2 HNO₃ + NO(歧化)
- $\cdot 2 NO_2 \Longrightarrow N_2O_4$
- $2 \text{ NO}_2 + 2 \text{ NaOH} \longrightarrow \text{NaNO}_2 + \text{NaNO}_3 + \text{H}_2\text{O}$
- NO + NO₂ + 2 NaOH \longrightarrow 2 NaNO₃ + H₂O

推导反应 (只能用于计算)

- $3 NO_2 + H_2O \longrightarrow 2 HNO_3 + NO$
- $4 NO_2 + O_2 + 2 H_2 O \longrightarrow 4 HNO_3$
- $4 \text{ NO} + 3 \text{ O}_2 + 2 \text{ H}_2 \text{O} \longrightarrow 4 \text{ HNO}_3$

与氮的氢化物反应

- 6 NO + 4 NH₃ $\stackrel{\Delta}{\longrightarrow}$ 5 N₂ + 6 H₂O
- $\cdot 6NO_2 + 8NH_3 \xrightarrow{\Delta} 7N_2 + 12H_2O$
- ・ $\underbrace{N_2O_4 + 3N_2H_4 \xrightarrow{\Delta} 3N_2 + 4H_2O}_{$ 火箭推进

7.3.3 酸酐

将可电离的H⁺配合O分解。

$$H_2SO_4 \longrightarrow SO_3 + H_2O2HNO_3 \longrightarrow N_2O_5 + H_2O_3$$

化学性质 与碱反应生成盐和水

与酸性氧化物的关系 酸酐是酸性氧化物或非氧化物,酸性氧化物一定是酸酐。

7.4 硝酸

7.4.1 物理性质

· 无色、有刺激性气味

7.4.2 化学性质

氧化性 活泼金属与硝酸反应时不生成氢气。

$$\cdot \begin{cases} \mathsf{Cu} + 4 \,\mathsf{HNO}_3(\mbox{\idargo}{\,{}^\circ}) \longrightarrow \mathsf{Cu}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO}_2 \,\uparrow + 2 \,\mathsf{H}_2 \mathsf{O} \\ \mathsf{Cu} + 8 \,\mathsf{HNO}_3(\mbox{\idargo}{\,{}^\circ}) \longrightarrow 3 \,\mathsf{Cu}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO}_1 \,\uparrow + 4 \,\mathsf{H}_2 \mathsf{O} \end{cases}$$

$$\cdot \begin{cases} \mathsf{Zn} + 4 \,\mathsf{HNO}_3(\mbox{\idargo}{\,{}^\circ}) \longrightarrow \mathsf{Zn}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO}_2 \,\uparrow + 2 \,\mathsf{H}_2 \mathsf{O} \\ \mathsf{Zn} + 8 \,\mathsf{HNO}_3(\mbox{\idargo}{\,{}^\circ}) \longrightarrow 3 \,\mathsf{Zn}(\mathsf{NO}_3)_2 + 2 \,\mathsf{NO}_1 \,\uparrow + 4 \,\mathsf{H}_2 \mathsf{O} \\ 4 \,\mathsf{Zn} + 10 \,\mathsf{HNO}_3(\mbox{\idargo}{\,{}^\circ}) \longrightarrow 4 \,\mathsf{Zn}(\mathsf{NO}_3)_2 + \mathsf{N}_2 \mathsf{O}_1 \,\uparrow + 5 \,\mathsf{H}_2 \mathsf{O} \\ 4 \,\mathsf{Zn} + 10 \,\mathsf{HNO}_3(\mbox{\idargo}{\,{}^\circ}) \longrightarrow 4 \,\mathsf{Zn}(\mathsf{NO}_3)_2 + \mathsf{NH}_4 \mathsf{NO}_3 + 3 \,\mathsf{H}_2 \mathsf{O} \end{cases}$$

· $C + 4 HNO_3(浓) \xrightarrow{\Delta} 4 NO_2 \uparrow + CO_2 \uparrow + 2 H_2 O$

不稳定性

• $4 \text{ HNO}_3 \xrightarrow{\Delta} 4 \text{ NO}_2 \uparrow + \text{O}_2 \uparrow + 2 \text{ H}_2 \text{O}$

漂白性 浓硝酸可以漂白石蕊溶液

化学笔记整理 胡译文

7.4.3 制备

2.
$$4NH_3 + 5O_2 \stackrel{Pt}{\underset{\Delta}{\longleftarrow}} 4NO + 6H_2O$$
(催化剂—明—暗)

3.
$$2 NO + O_2 \longrightarrow 2 NO_2$$

$$4. \ 3\,NO_2 + H_2O \longrightarrow 2\,HNO_3 + \mathop{NO}_{\tiny\textcircled{\tiny 2p}}$$

5.
$$(HNO_3 + NH_3 \longrightarrow NH4NO3)$$

装置: 硬质石英玻璃

现象:催化剂一明一暗,有红棕色气体和白色烟雾生成。

7.4.4 固氮

固氮 将游离态的氮 (氮气) 转化为化合态的氮

自然固氮

高能固氮 雷雨发庄稼

1.
$$N_2 + O_2 \xrightarrow{\text{ind}} 2NO$$

2.
$$2 NO + O_2 \longrightarrow 2 NO_2$$

3.
$$3 NO_2 + H_2O \longrightarrow 2 HNO_3 + NO$$

生物固氮 大豆根瘤菌

人工固氮 合成氨

7.5 盐

7.5.1 硝酸盐分解规律

- ・ K到Mg: 亚硝酸盐和氧气 $(2 \text{ NaNO}_3 \xrightarrow{\Delta} 2 \text{ NaNO}_2 + \text{O}_2 \uparrow)$
- ・ Al到Cu: 金属氧化物、二氧化氮和氧气($2 \, \text{Pb}(\text{NO}_3)_2 \stackrel{\Delta}{\longrightarrow} 2 \, \text{PbO} + 4 \, \text{NO}_2 \uparrow + \text{O}_2 \uparrow$)
- ・ Hg到Ag: 金属单质、二氧化氮和氧气($2\,\text{AgNO}_3 \stackrel{\Delta}{\longrightarrow} 2\,\text{Ag} + 2\,\text{NO}_2 + \text{O}_2 \uparrow$)

7.5.2 铵盐分解规律

- $NH_4NO_3 \xrightarrow{\Delta} N_2O \uparrow + 2H_2O$
- $NH_4HCO_3 \xrightarrow{\Delta} NH_3 \uparrow + CO_2 \uparrow + H_2O$
- $NH_4CI \xrightarrow{\Delta} N_2O \uparrow + HCI \uparrow$
- $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 \uparrow + CrO_3 + 4H_2O$