RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Fast Track Examinations July-19

Computer Science and Engineering

DISCRETE MATHEMATICS

Time: 03 Hours

Maximum Marks: 100

- Instructions to candidates:
 - 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
 - 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART A

1	1.1	Determine the co-efficient of $W^3X^2YZ^2$ in $(2W - X + 3Y - 2Z)^8$.	02
	1.2	A six faced die is tossed four times and the numbers shown are recorded in	
		a sequence. How many different sequences are there?	01
	1.3	Define surjective function with an example.	02
	1.4	Find the recurrence relation with initial conditions that uniquely	
		determines each of the following sequence.	
		a) 3,7,11,15,19,	
		b) $8, \frac{25}{7}, \frac{72}{49}, \frac{216}{343}, \dots$	02
	1.5	7 77 373	02
		Obtain a recursive definition for the sequence $a_n = 2 - (-1)^n$.	
	1.6	Show that (W_4,\times) is an abelian group where $W_4 = \{1,-1,i,-i\}$.	02
	1.7	Let $g(x) = 2x - 3$, $x \in \mathbb{R}$. Is g one-to-one and onto?	02
	1.8	Consider the following open statements with the set of all real numbers as	
		the universe $p(x): x >3$, $q(x):x>3$. Find the truth value of the statement	
		$\forall x, [p(x) \rightarrow q(x)].$	02
	1.9	If $f: A \to B$ and $ A = m$, $ B = n$, then number of onto functions from A to B is	
		given by formula	01
	1.10	Obtain an NFA to accept strings of 0's and 1's such that left most symbol is	
		different fromthe right most symbol.	02
	1.11	Define DFA.	02

PART B

2	a	In how many ways can 10 identical pencils be distributed among 5 children	
		in the following cases:	
		i) There are no restrictions	
		ii) Each child gets at least one pencil	
		iii) The youngest child gets at least two pencils.	04
	b	i) How many arrangements are there of all letters in SOCIOLOGICAL?	
		ii) In how many of the arrangements in part (i) are A and G adjacent?	
		iii) In how many arrangements in part(i) are all vowels adjacent?	06
	c	If A, B and C are sets, prove both analytically and graphically (Venn	
		diagram) $A - (B \cap C) = (A - B) \cup (A - C)$.	06

3	а	Prove that the following argument is valid:	
		$\forall x, [p(x) \lor q(x)]$	
		$ \exists x, \neg p(x) \\ \forall x, [\neg q(x) \lor r(x)] $	
		$\forall x, [s(x) \to \neg r(x)]$	
	L	$\therefore \exists x, \neg s(x)$	06
	b	Prove the following by mathematical induction. $n(n+1)(2n+7)$	
		$1.3 + 2.4 + 3.5 + \dots + n. (n+2) = \frac{n(n+1)(2n+7)}{6}$	06
	C	Define the following:	
		i) Modus tollens.	0.4
		ii) Modus Ponens.	04
		OR	
4	а	Solve the recurrence relation	
		$a_{n+2} - 4a_{n+1} + 3a_n = -200, n \ge 0, a_0 = 3000, a_{1} = 3300$	06
	b	A bank pays a certain percentage of annual interest on deposits,	
		compounding the interest once in 3 months. If a deposit doubles in 6 years	04
	С	and 6 months, what is the annual percentage of interest paid by the bank? Write the following argument in a symbolic form and validate the argument:	04
	C	If Dominic goes to racetrack, then Helen will be mad. If Ralph plays cards	
		all night, them Carmella will be mad. If either, Helen or Carmella gets mad,	
		then Veronica (their attorney) will be notified. Veronica has not heard from	
		either of these two clients. Consequently, Dominic did not make it to the	06
		racetrack and Ralphdid not play cards all night.	06
5	a	Define NFA. Construct an NFA to accept all strings which have second	
		symbol from <i>RHS</i> is 'b' over $\Sigma = \{a, b\}$. Write the transition table.	05
	b	Convert the following NFA into an equivalentDFA and informally describe	
		the language it accepts.	
		$ ightarrow p \mid \{p,q\} \mid \{p\} \mid$	
		$\left \begin{array}{c c} q & \left\{r,s\right\} & \left\{t\right\}\end{array}\right $	
		$ \mid r \mid \{p,r\} \mid \{t\} \mid $	
		$\begin{vmatrix} *s & \emptyset & \emptyset \\ *s & \emptyset & \emptyset \end{vmatrix}$	06
	С		06 05
	C	Obtain DPA to accept the language $L = \{w : w mou 3 \neq 0 \}$ on $L = \{u\}$	
		OR	
6	a	Define \in -NFA. Construct \in -NFA to accept strings over $\sum = \{a, b, c\}$ such that	
		the string contains any number of a's followed by any number of b's	
	1.	followed by any number of c 's.	05
	b	Give <i>DFA</i> 's accepting the following languages over the alphabet $\Sigma = \{a, b\}$ i) The language of all strings that do not end with ab .	
		ii) The language of all strings that do not end with <i>ab</i> . iii) The language of all strings in which the number of <i>a's</i> is even.	06
	С	Draw a <i>DFA</i> to accept the language $L = \{W: \text{every run of } a's \text{ has length either } \}$	
		two or more}	05

7	а	Let $A = \{1,2,3,4\}, B = \{a,b,c\}$ and $C = \{w,x,y,z\}$ with $f: A \to B$ and $g: B \to C$ given by $f = \{(1,a),(2,a),(3,b),(4,c)\}, g = \{(a,x),(b,y),(c,z)\}.$ Find $g \circ f$.	04
	Ъ	Find:	04
	S	i) glb{b, w}	
		ii) $lub\{d,x\}$	
		iii) lease element and	
		iv) Greatest element.	
		of the Hasse diagram given in fig 7b.	
		x v v v e	
		E: 71-	0.4
	С	Fig 7b Define an equivalence relation. Find equivalence relation induced by the	04
	C	partition {{1,2}, {3,4,5}, {6}} of the set {1,2,3,4,5,6}.	04
	d	If $A = \{x \in R : x \neq \frac{1}{2}\}$ and $f: A \to R$ is defined by $f(x) = \frac{4x}{2x-1}$. Find the range of f	
			0.4
		and show that f is invertible.	04
8	<u>а</u>	The generator matrix for an encoding function $E: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ is given by	
	u	$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$	
		$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$	
		i) Find the code words assigned to 110 and 010	
	1	ii) Obtain the associated parity check matrix.	06
	b	Define the binary operation ' \circ ' on Z by $x \circ y = x + y + 1$. Verify that (Z, \circ) is	٥٢
		an abelian group. Define the following:	05
		i) Group homomorphism.	
		ii) Group isomorphism.	
		iii) Subgroup.	05