Microprogrammed Control Unit

Control signals:

☐ Group of bits used to select paths in multiplexers, decoders, arithmetic logic units

Control variables:

☐ Binary variables specify microoperations

• Certain microoperations initiated while others idle

Control word:

☐ String of 1's and 0's represent control variables

Control memory:

Memory contains control words

Microinstructions:

Control words stored in control memory

Specify control signals for execution of

microoperations

Microprogram:

Sequence of microinstructions

Control Unit Implementation

Hardwired

Microprogrammed

Control Memory

- ☐Read-only memory (ROM)
- □Content of word in ROM at given address specifies microinstruction
- □Each computer instruction initiates series of microinstructions (microprogram) in control memory

These microinstructions generate microoperations to

- •Fetch instruction from main memory
- •Evaluate effective address
- •Execute operation specified by instruction
- •Return control to fetch phase for next instruction

Microprogrammed Control Organization

Control memory

- □Contains microprograms (set of microinstructions)
- ☐Microinstruction contains
 - •Bits initiate microoperations
 - •Bits determine address of next microinstruction

Control address register (CAR)

☐ Specifies address of next microinstruction

Microprogrammed Control Organization

□Next address generator (microprogram sequencer)

Determines address sequence for control memory

☐Microprogram sequencer functions

- •Increment CAR by one
- •Transfer external address into CAR
- •Load initial address into CAR to start control operations

Control data register (CDR)- or pipeline register

- •Holds microinstruction read from control memory
- •Allows execution of microoperations specified by control word simultaneously with generation of next microinstruction

Control unit can operate without CDR

Microprogram Routines

□ Routine

Group of microinstructions stored in control memory

□Each computer instruction has its own microprogram routine to generate microoperations that execute the instruction

□ Subroutine

Sequence of microinstructions used by other routines to accomplish particular task

□Example

Subroutine to generate effective address of operand for memory reference instruction

☐Subroutine register (SBR)

Stores return address during subroutine call

Conditional Branching

- Branching from one routine to another depends on status bit conditions
- ☐ Status bits provide parameter info such as
 - Carry-out of adder
 - •Sign bit of number
 - Mode bits of instruction
- □Info in status bits can be tested and actions initiated based on their conditions: 1 or 0
- ☐Unconditional branch
 Fix value of status bit to 1

Mapping of Instruction

Each computer instruction has its own microprogram routine stored in a given location of the control memory

Mapping

Transformation from instruction code bits to address in control memory where routine is located

Example

Mapping 4-bit operation code to 7-bit address

Address Sequencing

Address sequencing capabilities required in control unit

- •Incrementing CAR
- •Unconditional or conditional branch, depending on status bit conditions
- •Mapping from bits of instruction to address for control memory
- •Facility for subroutine call and return

Microprogram Example

Microprogram Example

Computer instruction format

15	14 11	10	0
1	Opcode	Address	

Four computer instructions

	Symbol	OP-code	Description
	ADD	0000	$AC \leftarrow AC + M[EA]$
١	BRANCH	0001	if (AC < 0) then (PC ← EA)
١	STORE	0010	M[EA] ← AC
١	EXCHANGE	0011	$AC \leftarrow M[EA], M[EA] \leftarrow AC$

EA is the effective address

Microinstruction Format

2	3	3	3	2	2	7
	F1	F2	F3	CD	BR	AD

F1, F2, F3: Microoperation fields CD: Condition for branching

BR: Branch field AD: Address field

Microinstruction Fields

F1	Microoperation	Symbol
000	None	NOP
001	AC ← AC + DR	ADD
010	$AC \leftarrow 0$	CLRAC
011	AC ← AC + 1	INCAC
100	AC ← DR	DRTAC
101	$AR \leftarrow DR(0-10)$	DRTAR
110	AR ← PC	PCTAR
111	$M[AR] \leftarrow DR$	WRITE

F2	Microoperation	Symbol
000	None	NOP
001	AC ← AC - DR	SUB
010	$AC \leftarrow AC \lor DR$	OR
011	AC ← AC ∧ DR	AND
100	$DR \leftarrow M[AR]$	READ
101	DR ← AC	ACTOR
110	$DR \leftarrow DR + 1$	INCDR
111	DR(0-10) ← PC	PCTDR

F3	Microoperation	Symbol
000	None	NOP
001	AC ← AC ⊕ DR	XOR
010	AC ← AC'	COM
011	AC ← shl AC	SHL
100	AC ← shr AC	SHR
101	PC ← PC + 1	INCPC
110	PC ← AR	ARTPC
111	Reserved	

Microinstruction Fields

CD	Condition	Symbol	Comments
00	Always = 1	U	Unconditional branch
01	DR(15)	1	Indirect address bit
10	AC(15)	S	Sign bit of AC
11	AC = 0	Z	Zero value in AC

BR	Symbol	Function
00	JMP	CAR ← AD if condition = 1
		CAR ← CAR + 1 if condition = 0
01	CALL	CAR ← AD, SBR ← CAR + 1 if condition = 1
	0000000	CAR ← CAR + 1 if condition = 0
10	RET	CAR ← SBR (Return from subroutine)
11	MAP	$CAR(2-5) \leftarrow DR(11-14), CAR(0,1,6) \leftarrow 0$

Symbolic Microinstruction

- Sample Format Label: Micro-ops CD BR AD
- Label may be empty or may specify symbolic address terminated with colon
- Micro-ops consists of 1, 2, or 3 symbols separated by commas
- CD one of {U, I, S, Z}

U: Unconditional Branch

I: Indirect address bit

S: Sign of AC

Z: Zero value in AC

- BR one of {JMP, CALL, RET, MAP}
- AD one of {Symbolic address, NEXT, empty}

Fetch Routine

- •Fetch routine
 - Read instruction from memory
 - Decode instruction and update PC

Microinstructions for fetch routine:

```
AR \leftarrow PC
DR \leftarrow M[AR], PC \leftarrow PC + 1
AR \leftarrow DR(0-10), CAR(2-5) \leftarrow DR(11-14), CAR(0,1,6) \leftarrow 0
```

Symbolic microprogram for fetch routine:

FETCH:	ORG 64 PCTAR	U	JMP	NEXT
0.70000	READ, INCPC DRTAR	U	JMP MAP	NEXT

Binary microporgram for fetch routine:

Binary address	F1	F2	F3	CD	BR	AD
1000000	110	000	000	00	00	1000001
1000001	000	100	101	00	00	1000010
1000010	101	000	000	00	11	0000000

Symbolic Microprogram

Control memory: 128 20-bit words

First 64 words: Routines for 16 machine instructions

Last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

Mapping: OP-code XXXX into 0XXXX00, first address for 16 routines are

0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

Partial Symbolic Microprogram

Label	Microops	CD	BR	AD
H2562	ORG 0	389	5/0/4937	\$25000(35%)
ADD:	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
	ADD	U	JMP	FETCH
	ORG 4			
BRANCH:	NOP	S	JMP	OVER
	NOP	U	JMP	FETCH
OVER:	NOP	1	CALL	INDRCT
	ARTPC	U	JMP	FETCH
	ORG 8			
STORE:	NOP	21	CALL	INDRCT
	ACTDR	U	JMP	NEXT
	WRITE	U	JMP	FETCH
	ORG 12			
EXCHANGE:	NOP	1	CALL	INDRCT
	READ	U	JMP	NEXT
	ACTOR, DRTAC	U	JMP	NEXT
	WRITE	U	JMP	FETCH
20.00.000000	ORG 64	19001	A-B-GAM	Y-1 20000
FETCH:	PCTAR	U	JMP	NEXT
	READ, INCPC	U	JMP	NEXT
	DRTAR	U	MAP	
INDRCT:	READ cpe 25	2: Comp	ute prg	ani2ation

Binary Microprogram

	Addr	ess		Binary	Binary Microinstruction				
Micro Routine	Decimal	Binary	F1	F2	F3	CD	BR	AD	
ADD	0	0000000	000	000	000	01	01	1000011	
	1	0000001	000	100	000	00	00	0000010	
	2	0000010	001	000	000	00	00	1000000	
	3	0000011	000	000	000	00	00	1000000	
BRANCH	4	0000100	000	000	000	10	00	0000110	
	5	0000101	000	000	000	00	00	1000000	
	6	0000110	000	000	000	01	01	1000011	
	7	0000111	000	000	110	00	00	1000000	
STORE	8	0001000	000	000	000	01	01	1000011	
	9	0001001	000	101	000	00	00	0001010	
	10	0001010	111	000	000	00	00	1000000	
	11	0001011	000	000	000	00	00	1000000	
EXCHANGE	12	0001100	000	000	000	01	01	1000011	
	13	0001101	001	000	000	00	00	0001110	
	14	0001110	100	101	000	00	00	0001111	
	15	0001111	111	000	000	00	00	1000000	
FETCH	64	1000000	110	000	000	00	00	1000001	
	65	1000001	000	100	101	00	00	1000010	
	66	1000010	101	000	000	00	11	0000000	
INDRCT	67	1000011	000	100	000	00	00	1000100	
	68	1000100	101	000	000	00	10	0000000	

Design of Control Unit

Microprogram Sequencer

Input Logic for Microprogram Sequencer

Input Logic

1110T	Meaning	Source of Address	S ₁ S ₀	L
000	In-Line	CAR+1	00	0
001	JMP	CS(AD)	01	0
010	In-Line	CAR+1	00	0
011	CALL	CS(AD) and SBR <- CAR+1	01	1
10x	RET	SBR	10	0
11x	MAP	DR(11-14)	11	0

$$S1 = I1$$

 $S_0 = I_0I_1 + I1'T$
 $L = I_1'I0T$