

Repescagem Testes / 2º Exame de Mecânica e Relatividade MEFT 31 de Janeiro de 2020

Duração dos Testes: 1h45m (1 T - Perguntas 1, 2 e 3;

2 T - Perguntas 3, 4 e 5; cotações x20/18)

Duração do Exame: 2h15m (Perguntas 1, 2, 3 e 5; cotação x20/24) Só serão cotadas as respostas em que há trabalho mostrado

- Uma espingarda com uma massa de 5 kg dispara uma bala de 6 g com uma velocidade de 800 m/s
- [2,0] a) Calcule a velocidade de recuo da espingarda após o disparo.
- [2,0] **b)** Qual é a força média exercida pela espingarda no ombro do atirador, sabendo que o impacto dura cerca de 0.15 s.
- (2,0] c) Admita que o individuo que realizou o disparo tem uma massa de 75 kg e encontra-se no extremo de um vagão com 100 kg de massa e 20 m de comprimento que pode deslizar sem atrito e que está inicialmente em repouso. A bala fica encrustada na parede oposta do vagão. Qual é o deslocamento do vagão?
 - 2) Uma massa m=70 g ligada a um fio move-se no plano horizontal sem atrito como se vê na figura. Inicialmente a massa encontra-se à distância $r_0 = 0.8 \, m$ do centro e move-se com uma velocidade $v_0 = 2 \, m/s$.

- [2,0] **a)** No instante t=0 a corda passa a ser puxada para o centro com uma velocidade constante $V=3\ m/s$ até que distância do corpo ao centro se reduz a $r_0/60$. Calcule a velocidade angular do corpo em função do tempo. Qual é a velocidade do corpo na posição final?
- [2,0] **b)** Calcule a força *F* que deverá ser exercida na corda em cada instante ao longo desse período de tempo.

c) Suponha agora um outro sistema em que o fio que se liga ao corpo se enrola num tubo de raio $r_t = r_0/60$ como mostra a figura.

Despreze o efeito da gravidade. Sabendo que o corpo tem de novo velocidade $v_0 = 2 \ m/s$ num ponto à distância $r_0 = 0.8 \ m$ do centro do tubo, calcule a velocidade do corpo no instante imediatamente antes de tocar no tubo.

3) Uma roda dentada de massa m=0.3 kg e raio R=0.05 m encontra-se ligada pelo seu eixo a uma mola elástica de constante k=500 N/m e comprimento natural ℓ_0 =0.5 m. A roda apoia-se numa superfície

dentada que a impede de deslizar até à distância ℓ_0 da parede e numa superfície lisa e sem qualquer atrito daí em diante. O momento de inércia da roda é $I_{CM}=0.8~mR^2$. Inicialmente a roda é libertada do repouso de uma distância $\ell_i=0.7~m$.

- [2,0] **a)** Calcule a velocidade do centro de massa da roda imediatamente antes de atingir a superfície dentada ($\ell = \ell_0$).
- [2,0] b) No momento em que os dentes da roda e da superfície se engrenam a roda sofre uma colisão inelástica. A pequena altura dos dentes permite admitir que a força que actua sobre a roda no momento da colisão é aplicada aproximadamente ao nível do chão. Calcule a velocidade do centro de massa da roda depois da colisão.
- [2,0] c) Calcule a distância mínima a que a roda se aproxima da parede.

- **4)** A configuração de GPS atual consiste em cerca de 27 satélites de massa $m=1.8\times 10^3$ kg numa órbita terrestre média (MEO) com um período aproximado de 12 horas.
- [2,0] a) Determine a altitude da órbita de um dos satélites GPS.
- [2,0] **b)** Calcule a energia total desse satélite?
- [2,0] **c)** Suponha que um satélite colide frontalmente com um detrito de um meteoroide de massa, m_{det}=10 kg, e velocidade, v_{det}= 20 km/s. Sabendo que o detrito se incrusta no satélite sem o desintegrar, determine no movimento que o satélite adquire, a menor distância a que este passa do centro da Terra.
 - **5)** Um fotão de momento p=4x10⁻¹⁹ kg m/s colide com uma partícula em repouso de massa m=1.67x10⁻²⁷ kg.
- [2,0] **a)** Calcule a energia do sistema no referencial do laboratório.
- [2,0] **b)** Calcule a energia do sistema no referencial do centro de massa do sistema.
- [2,0] **c)** Calcule a velocidade do centro de massa do sistema no referencial do laboratório.

Aceleração da gravidade (Terra)		g=9.8 m/s ²	
Constantes de Gravitação		G=6.67260x10 ⁻¹¹ Nm ² kg ⁻²	
Massa da Terra		M _T =5.97×10 ²⁴ kg	
Raio da Terra		R⊤=6.37×10 ³ km	
1 UA		1.5×10 ¹¹ m	
Velocidade da Luz		c=2.99×10 ⁸ m/s	
Massa do protão		m _p =1.67×10 ⁻²⁷ kg	
Transformações d	le Lorentz	$x = \frac{x' + Vt'}{\sqrt{1 - \frac{V^2}{c^2}}}$ $E = \frac{E' + Vp'}{\sqrt{1 - \frac{V^2}{c^2}}}$	$t = \frac{t' + \frac{x'V}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$ $p = \frac{p' + \frac{E'V}{c^2}}{\sqrt{1 - \frac{V^2}{c^2}}}$
Conversão de Energia		1 eV= 1.6 ×10 ⁻¹⁹ J	
Conversão massa	Mass (kg)	Mass (u)	Mass (MeV/c²)
1 unidade de massa atómica	1.660540 x 10 ⁻²⁷ kg	1.000 u	931.5 MeV/c ²