# Reliability of IGBT devices via prognostic approach

EE765 : Course Project

Ritesh Kumar(2-6 & 12) | Mohak Sahu(7-11)

Department of Electrical engineering Indian Institute of Technology, Mumbai

26-11-2018

### Outline

- 1 Introduction: What are IGBT's and why do we care?
- 2 Prognostic Approach
- 3 Precursor parameters
- 4 Aging Methods
- 5 Results
- 6 Real life

## Introduction: IGBTs and thier applications

### What are IGBT's?

Insulated Gate Bippolar transistor: three-terminal power semiconductor device primarily used as an electronic switch.



- lacktriangle Conducts when Gate Voltage  $> V_{th}$
- High frequency switching
- Blocks large voltage, high current handling
- Low on state power loss

Source:https://en.wikipedia.org/wiki/Insulated-gate\_bipolar\_transistor

### **Applications:**

- High power consuming electronic devices
- Switching of automobile and train traction motors
- Switched Mode Power Supply (SMPS)



Ritesh Kumar

## Motivation : About prognostic approach

The failure of these switches can reduce the efficiency of the system, or lead to system failure.

There are two methods for reliability estimation:

- Post failure diagnosis
- Prognosis : Pre-failure analysis

### Prognostic Approach

- Predict future health of the product
- By measuring the deviation or degradation from expected behaviour
- Extrapolating the damage with appropriate physics of failure models
- Cost benefits by avoidance of unscheduled maintenance.
- Taking measures to enhance reliability

## Prognostic and Health Management method[3]



Figure: Flow chart of generic PHM method

## First step: FMMEA

## Failure Modes for IGBT: [1]

- Lost Gate control
- Short circuit
- Increased leakage current

#### Potential causes:

- High temperature
- High Electric Field
- Overvoltage

#### Failure mechanisms for IGBT:

- Dielectric breakdown
- Hot electron
- Latch up



## Precursor parameters

- Failure precursor is an event or series of events indicative of an impending failure
- Precursor parameters are the device parameters to be monitored whose deviation from the baseline standard will be indicative of failure.

List of probable precursor parameters for IGBT failure:

- Thermal voltage
- Emitter collector current
- Emitter-collector ON voltage drop
- Turn-off time of the transistor
- Transconductance

## Aging Process

- Accelerated aging is done while montitoring of selected parameters
- Electrical and physical degradation analysis to correlate changes in monitored parameters to degradation in the devices under test
- Accelerated aging conditions were based on failure modes, mechanisms, and effects analysis (FMMEA) of IGBT described.
- The damage was realized by removing the heat sink, then switching the component such that it would heat itself
- For aging the IGBT, the gate voltage was chosen to be a square signal with amplitude of 8 V, a frequency of 1 kHz, and a duty cycle of 40%.
- Thermal cycling was done through switching  $(T_{min}toT_{max})$  until latch up was seen
- On latch-up, the collector current is no longer controlled by the gate

### Observations

### Following electrical observations were made:







### Observations

Physical degradation measurement via Scanning acoustic microscopy.

## SAM( Scanning acoustic microscopy)[2]

Used to detect delaminations and voids in microelectronic packages.





■ The C-scan image of the die attach of IGBT before, and after aging

- The brighter parts shows the degradation in the die attach of IGBT.
- It was found that the degradation was proportional to reduction in collector-emitter ON voltage after aging

### Discussion

- The right shift in C-V plot indicates the degradation of gate oxide due to the electron trapped.
- The die attach is an integral part of the heat dissipation path, and its degradation is hypothesized to be the cause for drop in collector-emitter ON voltage.
- The degraded die attach leads to an increased temperature at the p-n junction above the collector which increases the number of intrinsic carrier concentration which eventually leads to the decrease in the voltage.[4]
- Increase in minority carriers also leads to the reduction in turnoff time.

# Real Life Realization of prognostic approach

The idea is to apply PHM on students performances and derive the probable outcomes in future.



Figure: FMMEA

12/13

## Bibliography

- Nishad Patil et. al. "Identification of Failure Precursor Parameters for Insulated Gate Bipolar Transistors (IGBTs)". In: INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (2008).
- Nishad Patil et al. "Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics". In: IEEE (2009).
- Rui Wu et al. "Catastrophic failure and faultOtolerant design of IGBT power electronic converters: an overview". In: 39th Annual Conference, IEEE (2013).
- Wuchen Wu et al. "Thermal Reliability of Power Insulated Gate Bipolar Transistor (IGBT) Modu1es". In: IEEE (1996).