Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	9

[5352]-135

SE (E & TC/ELECT) EXAMINATION, 2018 DIGITAL ELECTRONICS (2012 PATTERN)

Time	:	Two H	Iours			M	aximum	Marks	:	50
N.B.	:						wherever		ary	•
			Assur			. 0	l marks. ry.	•		

- 1. (a) State the following characteristics of digital TTL and CMOS ICS: [6]
 - (1) Noise Margins
 - (2) Propagation Delay Time
 - (3) Current Parameters.
 - (b) Explain the design of full adder using 8: 1 Multiplexer IC. [6]

0r

- 2. (a) Draw and explain the working of two input CMOS NOR gate. [6]
 - (b) Design a 2-bit comparator circuit using gates. [6]

P.T.O.

3.	(a)	Differentiate between Moore and Mealy machine with
		example. [6]
	(<i>b</i>)	Explain the design of J-K latch using 2-input NAND
		gates. [6]
		Or
4.	(a)	Design a sequence generator circuit to generate the following
		sequence 101 using non-overlapping technique. [6]
	(<i>b</i>)	Explain the following basic steps used to design the state
		machines: [6]
		(1) State Diagram
		(2) State Table
		(3) State Reduction.
		(5) State Reduction.
_	(-)	
5 .	(a)	With neat diagram, explain in brief the architecture of
		FPGA.
	(<i>b</i>)	What is PAL ? Explain the various types of PALs ? [7]
		Or
6 .	(a)	Obtain a 1024×8 (RAM) memory using 256×8 memory
		chips. [7]
	(<i>b</i>)	Implement the following Boolean functions with a PLA: [6]
		$F1(A, B, C) = \Sigma M(0, 1, 2, 4)$
		$F2(A, B, C) = \Sigma M(3, 5, 6, 7)$

7.	(a)	Write a VHDL code for D Flip-flop using synchronous reset
		input. [6]
	(<i>b</i>)	Explain the difference between concurrent statement and sequential
		statement in VHDL. [4]
	(<i>c</i>)	Write a short note on entity. [3]
		Or
8.	(a)	Write a VHDL code for 4: 1 Multiplexer. [6]
	(<i>b</i>)	Write a short note on data objects in VHDL. [4]
	(<i>c</i>)	Explain signal and variable used in VHDL. [3]
		Explain signal and variable used in VHDL. [3]
[5352]]-135	3