

High resolution low background calorimeter for SuperNEMO

Christine Marquet, Cédric Cerna CENBG – Bordeaux – France On behalf of the SuperNEMO Collaboration

The SuperNEMO detector

SuperNEMO is a $0\nu\beta\beta$ experiment based on the NEMO-3 technique of tracking and calorimetry. It will search for $0\nu\beta\beta$ decay in ~ 100 kg of enriched isotopes, reaching a half-life sensitivity of $T_{1/2} \approx 10^{26}$ years, corresponding to a neutrino

mass sensitivity of ~ 50 meV. **Calorimeters**

20 modules each containing in:

- a central thin source of 5 kg 82Se or 150Nd
- a tracking chamber made of 2000 drift cells in Geiger mode
- an e- calorimeter made up of 712 plastic scintillators and low-radioactivity PMTs acting also as a gamma tagger

a SuperNEMO module

The demonstrator:

Intermediate phase to test the technical feasibility of the experiment and the background levels with 1 module:

- > 7 kg x 2 years of 82Se
- $> T_{1/2}(\beta\beta0\nu) > 6.6 \ 10^{24} \text{ years}$
- > <m_v> < (0.15 0.4) eV

Starts running in 2017 in LSM

A tracker-calorimeter detector

A calorimeter to measure the:

- Individual deposited energy
- Time of flight difference between each fired counter

The main wall calorimeter design

520 Optical Modules each made up of

- 10 L NUVIA polystyrene **scintillator**
- R5912-03mod Hamamatsu Photonics 8" PMT
- Teflon and mylar wrapping
- Individual pure iron magnetic shields (25 G)

Requirements

Resolution ≤ 8 % [FWHM] /VE [MeV]

- note : NEMO3 \simeq 16 % [FWHM] /VE [MeV] Time resolution 400 ps (σ) @ 1 MeV
- No ageing in 5 years
- Gain survey with an accuracy < 1 %
- Low background PMT (Radon emanation)
- Low backscattering
- 4π γ tagging 50 % @ 1 MeV

Relative time/energy calibration with LED Absolute energy calibration with ²⁰⁷Bi sources

8" PMt (R5912-03 mod02)

Unique characterisation tools

> 2 electron beam spectrometers to qualify the optical modules

- Mono-energetic electron beam from a ⁹⁰Sr 370 MBq β source
 - $\sigma_{x,v} \approx 3 \text{ mm}$
 - Energy range [0.4-2.0] MeV
 - FWHM @ 1 MeV = $1.0 \pm 0.2 \%$

Automated X/Y scanning

[2 m x 1 m]

And a fine tuned optical simulations based on GEANT4

Optical module performances

Polystyrene scintillator

Mean Relative Light Yield vs Beam position @1 MeV

Enhanced Polystyrene scintillator

New composition/production procedure > 10 000 γ/MeV

 \gt 8 stages \rightarrow G = 10⁶

Example of Optical Module result

Radiopurity

- 850mBq/kg for ⁴⁰K

- The total activity of the **10 tons** of SuperNEMO materials
- 380mBq/kg for ²¹⁴Bi will be less than 20 % of the PMT's activity (350 kg).
- 150mBq/kg for ²⁰⁸Tl New glass composition under progress (Primeverre Cie)

Calorimeter production

92% of Optical modules are produced

First wall is integrated at the

Laboratoire Souterrain de Modane