MA 361 : Traitement du signal et Probabilités continues

Chapitre 1 : Variables aléatoires à densité

Pierre-Alain TOUPANCE pierre-alain.toupance@esisar.grenoble-inp.fr

> Grenoble INP - ESISAR 3^{ième} année

12 octobre 2016

Organisation

Organisation

- Enseignants: Romain Siragusa et Pierre-Alain Toupance
- Volume horaire
 - 6 CM de probas + 10 CM de Traitement Du Signal.
 - 4 TD de probas + 9 TD de TDS.
 - 3 TP de TDS
 - Fin des cours de Probas : le 09/12

Organisation

Organisation

- Crédits : 5 ECTS
- UE : Mathématiques pour l'ingénieur (MA331 Théorie de l'information (3 ECTS) et MA361 TDS + probabilités)
- Modalités d'évaluation : examen (40 %) + CC (30 %) + TP (30 %)
 - Contrôle continu : devoir 1h30.
 - Examen de 3 heures : 1/3 proba 2/3 TDS

- Pré-requis : Mathématiques du 1er cycle (opérations ensemblistes, analyse (intégrales sur un intervalle quelconque, intégrales multiples).
- Objectifs:
 - Etre capable de formuler un problème sous forme probabiliste dans le cas continue.
 - Etre capable en statistiques de définir les caractéristiques significatives d'une population de données (moments, intervalles de confiance, corrélations, etc.) qui permettent à un ingénieur d'en comprendre le sens, d'en saisir les limites et de les analyser ayant de prendre des décisions

- Pré-requis : Mathématiques du 1er cycle (opérations ensemblistes, analyse (intégrales sur un intervalle quelconque, intégrales multiples).
- Objectifs:
 - Etre capable de formuler un problème sous forme probabiliste dans le cas continue.
 - o Etre capable en statistiques de définir les caractéristiques significatives d'une population de données (moments, intervalles de confiance, corrélations, etc.) qui permettent à un ingénieur d'en comprendre le sens, d'en saisir les limites et de les analyser ayant de prendre des décisions

- Pré-requis : Mathématiques du 1er cycle (opérations ensemblistes, analyse (intégrales sur un intervalle quelconque, intégrales multiples).
- Objectifs:
 - Etre capable de formuler un problème sous forme probabiliste dans le cas continue.
 - Etre capable en statistiques de définir les caractéristiques significatives d'une population de données (moments, intervalles de confiance, corrélations, etc.) qui permettent à un ingénieur d'en comprendre le sens, d'en saisir les limites et de les analyser avant de prendre des décisions.

- Pré-requis : Mathématiques du 1er cycle (opérations ensemblistes, analyse (intégrales sur un intervalle quelconque, intégrales multiples).
- Objectifs:
 - Etre capable de formuler un problème sous forme probabiliste dans le cas continue.
 - Etre capable en statistiques de définir les caractéristiques significatives d'une population de données (moments, intervalles de confiance, corrélations, etc.) qui permettent à un ingénieur d'en comprendre le sens, d'en saisir les limites et de les analyser avant de prendre des décisions.

Plan du cours

- Chapitre 1 : Variables aléatoires à densité
- 2 Chapitre 2 : Vecteurs de variables aléatoires continues.
- 3 Chapitre 3 : Théorèmes de convergence.
- 4 : Estimation et intervalle de confiance.

Rappel

Définition:

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé.

On appelle Fonction de répartition de X l'application F_X telle que :

$$F_X : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \mathbb{P}(X \le x)$$

Variable à densité

Définition:

Soit X une variable aléatoire réelle. On dit que X est une variable aléatoire à densité ou que X admet une densité f si sa fonction de répartition F_X est continue et peut s'écrire sous la forme :

$$\forall x \in \mathbb{R}, F_X(x) = \int_{-\infty}^x f(t)dt$$

avec:

- i) $\forall x \in \mathbb{R}, f(x) \ge 0$,
- ii) f possède un nombre fini de points de discontinuité,

iii)
$$\int_{-\infty}^{+\infty} f(t)dt = 1.$$

La fonction f est appelée densité de X (ou densité de la loi de

Fonction de répartition et densité

Propriété:

En tout point x_0 où f est continue, F_X est dérivable et on a : $F'_X(x_0) = f(x_0)$

Fonction densité

Propriété:

Une fonction f définie sur \mathbb{R} est une densité de probabilité ssi :

- i) $\forall x \in \mathbb{R}, f(x) \ge 0$,
- ii) f possède un nombre fini de points de discontinuité,

iii)
$$\int_{-\infty}^{+\infty} f(t)dt = 1.$$

La densité d'une variable aléatoire permet de définir la loi de cette variable. Connaître f permet de savoir quelles sont les valeurs que peut prendre la variable aléatoire, ainsi que les probabilités associées à ces valeurs.

$$\forall A \subset \mathbb{R}, \ \mathbb{P}(X \in A) = \int_A f(t)dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est une densité de probabilité.

• f est continue sur \mathbb{R} .

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a :

$$\int_{-\infty}^{+\infty} f(t)dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a :

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} \frac{\sin t}{2} dt$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a :

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} \frac{\sin t}{2} dt = \left[-\frac{\cos t}{2} \right]_{0}^{\pi}$$

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

- f est continue sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \ f(x) \geqslant 0$
- On a :

$$\int_{-\infty}^{+\infty} f(t)dt = \int_{0}^{\pi} \frac{\sin t}{2} dt = \left[-\frac{\cos t}{2} \right]_{0}^{\pi} = 1$$

Propri<u>étés</u>

 $\forall (a,b) \in \mathbb{R}^2, \ a < b, \text{ on a}$

- $\mathbb{P}(X = b) = 0$
- $\mathbb{P}(X \le b) = \mathbb{P}(X < b) = \int_{-\infty}^{b} f_X(t)dt$
- $\mathbb{P}(a \le X \le b) = \mathbb{P}(a < X < b) = \int_{-b}^{b} f_X(t)dt$

◆□ > ◆罰 > ◆意 > ◆意 >

Espérance

Définition:

Soit X une variable aléatoire de densité f.

On appelle Espérance de X, notée $\mathbb{E}(X)$, le réel :

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} t f(t) dt.$$

Cette quantité est définie sous réserve de convergence absolue de l'intégrale.

Remarque: $\mathbb{E}(X)$ n'est pas toujours définie, par exemple soit

$$X$$
 la VA à densité $f_X: t \mapsto \frac{1}{\pi} \frac{1}{1+t^2}$

Exemple : X VA à densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

Exemple: X VA à densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X) = \frac{1}{2} \int_0^{\pi} t \sin t dt$$

Exemple : X VA à densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X) = \frac{1}{2} \int_0^{\pi} t \sin t dt$$

$$\mathbb{E}(X) = \frac{1}{2} ([-t\cos t]_0^{\pi} + \int_0^{\pi} \cos t dt) = \frac{\pi}{2}$$

Propriétés de l'espérance

Propriétés:

14/42

• Linéarité de l'espérance :

Soit X et Y deux v.a. à densité admettant une espérance et a et b deux réels, on a alors :

$$\mathbb{E}(aX + Y) = a\mathbb{E}(X) + \mathbb{E}(Y)$$

En particulier
$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

• Théorème de transfert :

Soit X une v.a. de densité f et $\Phi : \mathbb{R} \to \mathbb{R}$ telle que $|\Phi|f$ soit intégrable sur \mathbb{R} , alors $\Phi(X)$ possède une espérance et :

$$\mathbb{E}(\Phi(X)) = \int_{-\infty}^{+\infty} \Phi(t) f(t) dt$$

Variance et écart-type

Définitions:

Soit X une variable aléatoire de densité f, sous réserve de convergence des intégrales :

- On appelle moment d'ordre 2 de X, le nombre réel : $m_2(X) = \mathbb{E}(X^2) = \int_{\mathbb{R}} t^2 f(t) dt$
- On appelle variance de X, le nombre réel $\mathbb{V}(X) = \mathbb{E}[(X \mathbb{E}(X))^2].$ $\mathbb{V}(X) = \int_{-\infty}^{+\infty} (t \mathbb{E}(X))^2 f(t) dt.$
- On appelle écart-type de X, le nombre réel $\sigma(X) = \sqrt{\mathbb{V}(X)}$

Propriétés de la variance

Propriétés :

Soient X et Y deux v.a. à densité, admettant respectivement des moments d'ordre 2.

- $\mathbb{V}(X) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$
- Soit a et b deux réels quelconques, on a alors : $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$
- Si X et Y sont indépendantes, on a alors : $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(Y)$

Exemple : X VA à densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

Exemple : X VA à densité f définie par :

$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0; \pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X^2) = \frac{1}{2} \int_0^{\pi} t^2 \sin t dt$$

Exemple: X VA à densité f définie par :

Example:
$$X$$
 VA a defisite f definite pare:
$$f(x) = \begin{cases} \frac{1}{2}\sin x & \text{si } x \in [0;\pi] \\ 0 & \text{sinon} \end{cases}$$

$$\mathbb{E}(X^2) = \frac{1}{2} \int_0^{\pi} t^2 \sin t dt$$

$$\mathbb{E}(X^2) = \frac{1}{2} \left([-t^2 \cos t]_0^{\pi} + \int_0^{\pi} 2t \cos t dt \right)$$

$$\mathbb{E}(X^2) = \frac{1}{2} \left(\pi^2 + [2t \sin t]_0^{\pi} - \int_0^{\pi} 2 \sin t dt \right) = \frac{\pi^2}{2} - 2$$
 Ainsi $\mathbb{V}(X) = \frac{\pi^2}{4} - 2$

Loi uniforme

Définition : Loi uniforme sur $[\alpha; \beta]$

On dit que la v.a. X suit une loi uniforme sur $[\alpha; \beta]$ si la densité f de la variable aléatoire X est définie par :

$$f(t) = \begin{cases} \frac{1}{\beta - \alpha} & \text{si } t \in [\alpha; \beta] \\ 0 & \text{si } t \notin [\alpha; \beta] \end{cases}$$

La loi uniforme La loi exponentielle La loi de Laplace-Gaus: Les lois normales

Loi uniforme

Loi uniforme

Propriétés :

Si X est une v.a. qui suit une loi uniforme sur $[\alpha; \beta]$ alors X admet des moments d'ordre 1 et 2 et on a :

•
$$\mathbb{E}[X] = \frac{\alpha + \beta}{2}$$

•
$$\mathbb{E}[X] = \frac{\alpha + \beta}{2}$$

• $\mathbb{V}(X) = \frac{(\beta - \alpha)^2}{12}$

•
$$F_X(x) = \begin{cases} 0 & \text{si } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{si } \alpha \le x \le \beta \text{ On le note } X \sim \mathcal{U}(\alpha, \beta). \\ 1 & \text{si } x > \beta \end{cases}$$

La loi uniforme La loi exponentielle La loi de Laplace-Gauss Les lois normales

Loi uniforme

Loi exponentielle

Loi exponentielle

Une v.a. X suit une loi exponentielle de paramètre $\lambda > 0$ lorsque X admet pour densité la fonction f définie par :

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{si } t \ge 0\\ 0 & \text{si } t < 0 \end{cases}$$

On le note $X \sim \mathcal{E}(\lambda)$

La loi uniforme La loi exponentielle La loi de Laplace-Gaus Les lois normales

Loi exponentielle

Loi exponentielle

Propriétés

Si X suit une loi exponentielle de paramètre λ alors X admet des moments d'ordre 1 et 2, et on a :

•
$$\mathbb{E}[X] = \frac{1}{\lambda}$$

•
$$\mathbb{V}(X) = \frac{1}{\lambda^2}$$

•
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}$$

Loi exponentielle

Loi exponentielle

Propriété

Soit X une variable aléatoire de loi exponentielle de paramètre λ , on a:

$$\forall (a,b) \in (\mathbb{R}_+^*)^2, \ \mathbb{P}_{X>b}(X>a+b) = \mathbb{P}(X>a)$$

On dit que la variable aléatoire X est sans mémoire.

Cette propriété est même une caractérisation de la loi exponentielle

Loi de Laplace-Gauss

Définition:

27/42

Une variable aléatoire X suit une loi de Laplace-Gauss, on dit également loi normale centrée réduite, notée $\mathcal{N}(0,1)$, si X admet pour densité la fonction f définie par :

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

On le note $X \sim \mathcal{N}(0,1)$

Loi de Laplace-Gauss

Loi de Laplace-Gauss

Propriétés:

Si X suit une loi normale $\mathcal{N}(0,1)$ alors

- X admet des moments d'ordre 1 et $\mathbb{E}[X] = 0$
- X admet des moments d'ordre 2 et $\mathbb{V}(X) = 1$
- Sa fonction de répartition, parfois notée Π ou Φ existe mais on ne peut l'exprimer à l'aide des fonctions usuelles.

Loi de Laplace-Gauss : fonction de répartition

Loi de Laplace-Gauss

Propriétés:

31/42

Si $X \sim \mathcal{N}(0,1)$ et si Π est sa fonction de répartition alors on a :

$$\forall x \in \mathbb{R} \qquad \Pi(-x) = 1 - \Pi(x)$$

$$\mathbb{P}(X > x) = \mathbb{P}(X < -x) = \Pi(-x)$$

$$\mathbb{P}(-x < X < x) = 2\Pi(x) - 1$$

Loi de Laplace-Gauss

Pour effectuer des calculs de probabilité avec la loi normale centrée réduite, on utilise sa fonction de répartition, via un logiciel ou une table de probabilité :

t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	IP. I
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	יון
1.0	0.8/113	0.8438	0.8461	0.8485	0.8508	0.8531	0.855/	10

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X\leqslant 1,5) \quad P(X\leqslant -1,8) \quad P(X\geqslant 1) \text{ et } P(1\leqslant X\leqslant 2,3).$$

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \le 1, 5)$$
 $P(X \le -1, 8)$ $P(X \ge 1)$ et $P(1 \le X \le 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

$$P(X \geqslant 1)$$

6

$$P(1 \leqslant X \leqslant 2,3)$$

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \le 1, 5)$$
 $P(X \le -1, 8)$ $P(X \ge 1)$ et $P(1 \le X \le 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

$$P(X \le -1, 8) = 1 - P(X \le 1, 8)$$

$$P(X \geqslant 1)$$

6

$$P(1 \leqslant X \leqslant 2,3)$$

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \leqslant 1, 5)$$
 $P(X \leqslant -1, 8)$ $P(X \geqslant 1)$ et $P(1 \leqslant X \leqslant 2, 3)$.

- $P(X \le 1, 5) = 0,9332$
- $P(X \le -1, 8) = 1 P(X \le 1, 8)$ Ainsi $P(X \le -1, 8) = 1 - 0,9641 = 0,0359$ $P(X \geqslant 1)$

6

$$P(1 \leqslant X \leqslant 2, 3)$$

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \leqslant 1, 5)$$
 $P(X \leqslant -1, 8)$ $P(X \geqslant 1)$ et $P(1 \leqslant X \leqslant 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

②
$$P(X \le -1, 8) = 1 - P(X \le 1, 8)$$

Ainsi $P(X \le -1, 8) = 1 - 0,9641 = 0,0359$
 $P(X \ge 1) = 1 - P(X < 1)$

$$= 1 - 0,8413$$

$$= 0,1587$$

$$P(1 \leqslant X \leqslant 2, 3)$$

Exemple: Soit $X \rightsquigarrow \mathcal{N}(0,1)$.

Calculer

$$P(X \leqslant 1, 5)$$
 $P(X \leqslant -1, 8)$ $P(X \geqslant 1)$ et $P(1 \leqslant X \leqslant 2, 3)$.

$$P(X \le 1, 5) = 0,9332$$

$$P(X \le -1, 8) = 1 - P(X \le 1, 8)$$
Ainsi $P(X \le -1, 8) = 1 - 0,9641 = 0,0359$

$$P(X \ge 1) = 1 - P(X < 1)$$

$$= 1 - 0,8413$$

$$= 0.1587$$

$$P(1 \leqslant X \leqslant 2, 3) = P(X \leqslant 2, 3) - P(X < 1)$$

$$= 0,9893 - 0,8413$$

$$= 0,148$$

Lois normales

Définition:

Une variable aléatoire X suit une loi normale de paramètre (m, σ) , notée $X \sim \mathcal{N}(m, \sigma)$, si X admet pour densité la fonction f définie par :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-1/2((x-m)/\sigma)^2}$$

La loi uniforme Les lois normales

Lois normales

イロト イ部ト イミト イミト

Lois normales

Propriété:

$$X \sim \mathcal{N}(m,\sigma) \frac{X-m}{\sigma} \sim \mathcal{N}(0,1).$$
 On note parfois $X^* = \frac{X-m}{\sigma}$.

Remarque: pour calculer des probabilités d'évènements à partir d'une loi normale, on utilise la table d'une loi normale centrée réduite.

Exemple: Soit $X \rightsquigarrow \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$

• On a $P(X < 3) = P(X^* < -1)$

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$

- On a $P(X < 3) = P(X^* < -1)$ Ainsi P(X < 3) = 1 - 0,8413 = 0,1587
- $P(X \ge 2) = P(X^* \ge -3/2) = P(X^* < 1, 5)$ Ainsi $P(X \ge 2) = 0,9332$

Exemple: Soit $X \leadsto \mathcal{N}(5,2)$ Calculer P(X < 3) $P(X \ge 2)$ et $P(1 \le X \le 6)$. On pose $X^* = \frac{X-5}{2} \leadsto \mathcal{N}(0,1)$

- On a $P(X < 3) = P(X^* < -1) = 1 P(X^* < 1)$ Ainsi P(X < 3) = 1 - 0,8413 = 0,1587
- $P(X \ge 2) = P(X^* \ge -3/2) = P(X^* < 1, 5)$ Ainsi $P(X \ge 2) = 0,9332$
- $P(1 \le X \le 6) = P(-2 \le X^* \le 1/2)$ $P(1 \le X \le 6) = P(X^* < 0, 5) - (1 - P(X^* \le 2))$ Ainsi $P(1 \le X \le 6) = 0,6915 - (1 - 0,9772) = 0,6687$

Somme de lois normales

Soit X_1 et X_2 deux variables aléatoires **indépendantes** qui suivent les lois normales $\mathcal{N}(m_1, \sigma_1)$ et $\mathcal{N}(m_2, \sigma_2)$ alors :

$$X_1 + X_2$$
 suit une loi normale $\mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$

Si X_1 et X_2 ne sont pas indépendantes on a :

$$X_1 + X_2 \leadsto \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2 + 2Cov(X_1, X_2)})$$

où
$$Cov(X_1, X_2) = \mathbb{E}(X_1 X_2) - \mathbb{E}(X_1)\mathbb{E}(X_2)$$

Admis pour l'instant.

Exercice

On suppose que la distance en mètres parcourue par un javelot suit une loi normale. Au cours d'un entraînement, on constate que :

- 10% des javelots atteignent plus de 75 mètres.
- 25% des javelots parcourent moins de 50 mètres.

Calculer la longueur moyenne parcourue par un javelot, ainsi que l'écart-type de cette longueur.

La loi uniforme Les lois normales

Démonstrations

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{X>b}(X > a + b) = \frac{\mathbb{P}(\{X > a + b\} \cap \{X > b\})}{\mathbb{P}(X > b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

 $\mathbb{P}_{X>b}(X>a+b)=e^{-\lambda a}$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$\mathbb{D}_{--}(V > a + b) = \mathbb{D}(V > a)$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{1-F_X(a+b)}{1-F_X(b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$\mathbb{P}_{X>b}(X>a+b) = e^{-\lambda a}$$

$$\mathbb{P}_{X>b}(X>a+b) = \mathbb{P}(X>a)$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$\mathbb{P}_{X>b}(X>a+b) = e^{-\lambda a}$$

$$\mathbb{P}_{X>b}(X>a+b) = \mathbb{P}(X>a)$$

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$\mathbb{P}_{X>b}(X>a+b) = e^{-\lambda a}$$

$$\mathbb{P}_{X>b}(X>a+b) = \mathbb{P}(X>a)$$

4 D > 4 A > 4 B > 4 B > ...

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\} \cap \{X>b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{\mathbb{P}(\{X>a+b\})}{\mathbb{P}(X>b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{1-F_X(a+b)}{1-F_X(b)}$$

$$\mathbb{P}_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

$$\mathbb{P}_{X>b}(X>a+b) = e^{-\lambda a}$$

$$\mathbb{P}_{X>b}(X>a+b) = \mathbb{P}(X>a)$$

Démonstration

42/42

$$P_{X>b}(X > a+b) = \frac{P(\{X > a+b\} \cap \{X > b\})}{P(X > b)}$$
$$P_{X>b}(X > a+b) = \frac{P(\{X > a+b\})}{P(X > b)}$$

$$P_{X>b}(X>a+b) = \frac{1 - F_X(a+b)}{1 - F_X(b)}$$

$$P_{X>b}(X>a+b) = \frac{e^{-\lambda(a+b)}}{e^{-\lambda b}}$$

Démonstration

Soit $a \in \mathbb{R}_+^*$ et soit $b \in \mathbb{R}_+^*$.

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\} \cap \{X > b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{1 - F_X(a + b)}{1 - F_X(b)}$$

$$P_{X>b}(X > a + b) = \frac{e^{-\lambda(a + b)}}{e^{-\lambda b}}$$

$$P_{X>b}(X>a+b) = e^{-\lambda a}$$

Démonstration

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\} \cap \{X > b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{1 - F_X(a + b)}{1 - F_X(b)}$$

$$P_{X>b}(X > a + b) = \frac{e^{-\lambda(a + b)}}{e^{-\lambda b}}$$

$$P_{X>b}(X>a+b) = e^{-\lambda a}$$

Démonstration

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\} \cap \{X > b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{1 - F_X(a + b)}{1 - F_X(b)}$$

$$P_{X>b}(X > a + b) = \frac{e^{-\lambda(a + b)}}{e^{-\lambda b}}$$

$$P_{X>b}(X>a+b) = e^{-\lambda a}$$

Démonstration

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\} \cap \{X > b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{1 - F_X(a + b)}{1 - F_X(b)}$$

$$P_{X>b}(X > a + b) = \frac{e^{-\lambda(a + b)}}{e^{-\lambda b}}$$

$$P_{X>b}(X > a + b) = e^{-\lambda a}$$

Démonstration

Soit $a \in \mathbb{R}^*_{\perp}$ et soit $b \in \mathbb{R}^*_{\perp}$.

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\} \cap \{X > b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{P(\{X > a + b\})}{P(X > b)}$$

$$P_{X>b}(X > a + b) = \frac{1 - F_X(a + b)}{1 - F_X(b)}$$

$$P_{X>b}(X > a + b) = \frac{e^{-\lambda(a + b)}}{e^{-\lambda b}}$$

$$P_{X>b}(X > a + b) = e^{-\lambda a}$$

