#### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-140589

(P2000-140589A)

(43)公開日 平成12年5月23日(2000.5.23)

| (51) Int.Cl.7 |       | 識別記号 | FΙ      |       |     | テーマコード(参考) |
|---------------|-------|------|---------|-------|-----|------------|
| B 0 1 D       | 71/68 |      | B01D    | 71/68 |     | 4 C 0 7 7  |
| A 6 1 M       | 1/16  | 500  | A 6 1 M | 1/16  | 500 | 4D006      |
|               | 1/34  | 500  |         | 1/34  | 500 | •          |
| B 0 1 D       | 69/08 |      | B 0 1 D | 69/08 |     |            |
|               |       |      |         |       |     |            |

審査請求 未請求 請求項の数2 FD (全 6 頁)

| (21)出願番号 | 特願平10-341165            | (71) 出願人 000116806    |
|----------|-------------------------|-----------------------|
| (22)出顧日  | 平成10年11月16日(1998.11.16) | 旭メディカル株式会社            |
| (22)山殿日  | 平成10年11月10日(1996.11.10) | 東京都千代田区神田美土代町9番地1     |
|          |                         | (72)発明者 池永 正子         |
|          |                         | 大分県大分市大字里2620番地 旭メディメ |
|          |                         | ル株式会社内                |
|          |                         | (72)発明者 山田 雅一         |
|          |                         | 大分県大分市大字里2620番地 旭メディカ |
|          |                         | ル株式会社内                |
|          |                         |                       |
|          |                         | (74)代理人 100068238     |
|          |                         | 弁理士 清水 猛 (外3名)        |
|          |                         |                       |
|          |                         |                       |
|          |                         |                       |

最終頁に続く

## (54) 【発明の名称】 ポリスルホン系多孔質膜

### (57) 【要約】

【課題】 製造時に膜同士の固着による成型不良を起こすことなく、しかも、透析液に含まれる菌塊片が膜内部へ侵入しない構造を有するポリスルホン系多孔質膜を提供する。

【解決手段】 ポリスルホン系樹脂と親水性高分子からなり、内面側に緻密層、外表面に開孔部を持った中空糸膜において、特定の孔面積の孔の存在率、平均孔面積、および開孔率を規定すると、汚染透析液に由来する菌塊片の膜内部への侵入を防ぐことができ、かつ、中空糸同士の固着も防止できる。

【効果】 本発明のポリスルホン系多孔質膜は、製造時に膜固着による成型不良を起こすことなく、しかも、透析液に含まれる菌塊片の膜内部へ侵入によるエンドトキシンの逆濾過が事実上起こらないため、血液浄化分野で好適に使用できる。

#### 【特許請求の範囲】

ポリスルホン系樹脂と親水性高分子から 【請求項1】 なり、内表面側に緻密層、外表面に開孔部を有する中空 糸膜であって、外表面における開孔部の開孔率が10~ 30%、外表面における孔面積が0.5 μm²以上の孔 の存在率が10%以下、かつ、孔面積が0.1μm2以 下の孔の存在率が75%以下であること、および/また は外表面における平均孔面積が0.05~0.35 μm 2 であることを特徴とするポリスルホン系多孔質膜。

【請求項2】 親水性高分子がポリビニルピロリドンで あることを特徴とする請求項1に記載のポリスルホン系 多孔質膜。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、体外循環による血 中老廃物の除去を目的とした医療用分離膜に関するもの で、血液浄化、特に腎機能を代用するための血液透析、 血液濾過、および血液濾過透析の分野で利用されるもの である。

#### [0002]

【従来の技術】近年、腎機能の低下により血液中の老廃 物除去能力が低い患者に対し、透析膜を用いた透析療法 が行われ患者の延命がなされいる。一方、このような透 析療法の長期化に伴い、透析アミロイドーシスと呼ばれ る合併症が出現している。これはアミロイドと呼ばれる 繊維蛋白が靭帯、腱、関節などに沈着し、さまざまな臨 床症状をもたらす疾患である。このアミロイドを構成す る蛋白の一つとしてβ2-ミクログロブリンが同定され て以来、これら低分子蛋白の除去が治療目標の一つとな り、それを可能とする高性能透析膜の市場要求が高まっ た。高性能透析膜に求められる特性としては、β2-ミ クログロブリンに代表される低分子蛋白の高い除去性 能、および優れた生体適合性であるが、これらを満足す る膜素材として合成高分子であるポリスルホン系樹脂が 注目されており、ポリスルホン系樹脂を主体とする高性 能透析膜の開発が積極的に進められている。

【0003】ところが、ポリスルホン系樹脂は疎水性が 高く、そのままでは水濡れ性が悪いため濾過性能が十分 に発揮できない。さらに、本発明のように血液浄化分野 で使用される場合、血液凝固系の活性化を抑制する必要 もあり、膜表面を親水化するために親水性高分子やグリ セリン等の親水化剤が添加される場合が多い。これらの 親水化剤は膜表面に存在するため、製造プロセスにおけ る乾燥時に親水化剤が糊の役目を果たし、隣接する膜同 士で固着が生じる結果、ポッティング剤の浸透不良によ

【0008】膜を構成する第二の成分は親水性高分子で あり、主に膜の親水化と孔形成を目的として添加されて いる。親水性高分子はポリスルホン系樹脂と共通の溶剤 る成型不良が発生することがあった。

【0004】この欠点を改善する試みは、例えば、中空 糸膜の外表面に大きな開孔部を作って隣接する膜同士の 接触面積を軽減する技術として、特開平7-28986 3に開示されている。しかしながら、エンドトキシンカ ットフィルターの使用によって透析液の水質管理状況が 飛躍的に向上した一方で、透析液供給カプラー等の構造 因による透析液汚染は依然として発生しており、使用時 にカプラーからはがれ落ちた菌塊片が、膜外表面の開孔 部から膜内部の多孔質部に侵入してくる可能性があっ た。しかも、これら高性能透析膜においては、侵入時の 物理的ショックで菌塊片から遊離したエンドトキシンが 緻密層を透過し、血液側に移行して生体を刺激するおそ れがあった。

#### [0005]

【発明が解決しようとする課題】本発明は、製造時に膜 固着による成型不良を起こすことなく、しかも、透析液 に含まれる菌塊片が膜内部へ侵入しないポリスルホン系 多孔質膜を提供することを目的とする。

#### [0006]

【課題を解決するための手段】本発明者らは、上記課題 を解決するために鋭意研究した結果、ポリスルホン系樹 脂と親水性高分子からなり、内表面側に緻密層、外表面 に開孔部を持った中空糸膜において、特定の孔面積の存 在率、平均孔面積、および開孔率を特定の範囲にする と、中空糸同士の固着が防止できるのみでなく、汚染透 析液から由来する菌塊片の膜内部への侵入を高率に阻止 できることを見出し、本発明を完成すに至った。すなわ ち、本発明は、ポリスルホン系樹脂と親水性高分子から なり、内表面側に緻密層、外表面に開孔部を有する中空 糸膜であって、外表面における開孔部の開孔率が10~ 30%、外表面における孔面積が0.5μm<sup>2</sup>以上の孔 の存在率が10%以下で、かつ、孔面積が0.1μm<sup>2</sup> 以下の孔の存在率が75%以下であること、および/ま たは外表面における平均孔面積が0.05~0.35μ m<sup>2</sup> であることを特徴とするポリスルホン系多孔質膜に 関するものである。

【0007】本発明の膜は、ポリスルホン系樹脂と親水 性高分子からなるが、膜を構成する主な成分はポリスル ホン系樹脂であり、下記に示す化学構造式(1)、もし くは(2)のユニットの繰り返し構造からなる。これ以 外にも芳香環上に官能基やアルキル基が結合した、いわ ゆるポリスルホン誘導体も本発明の範疇に含まれる。な お、式中のArはパラ置換の二価フェニル基を示す。

$$-O-Ar-SO3-Ar-$$
 (1) (2)

に溶解し、相溶性を有するという点からビニル系高分子 が好ましく、例えば、ポリビニルピロリドン、ポリエチ レングリコール、ポリアミド、ポリビニルアルコール、

エチレンビニルアルコール共重合体から選択することができる。中でも、ポリビニルピロリドンはポリスルホン系樹脂と適度な親和性を有し、膜表面に残って親水化による抗血栓化や濾過性能に寄与できるため、もっとも好ましい。これらの親水性高分子の含有率については、最終的に膜表面を親水化できていればよいので、3~12重量%であれば十分である。より好ましくは5~9重量%である。したがって、膜の残りの部分、88~97重量%がポリスルホン系樹脂である。

【0009】本発明の多孔質膜の構造は、内径が $80\sim400\mu$ mの中空部と厚みが $35\sim85\mu$ mの膜厚部を持つ中空糸状であり、血液浄化用途として十分な耐圧性と引っ張り強度を兼ね備えている。内径がこれ以下に小さいと血流抵抗が高まって血流速度が確保できないが、必要以上に大きくなっても血中の物質移動効率が低下して治療効果の低下につながる。また、膜厚は薄すぎると強度が保てずに潰れやリークの原因となり、厚すぎると膜中の物質移動抵抗が大きくなって透過性能が低下する。この中空糸膜は、内表面側に分離機能を有する緻密層、外表面側に支持体としての粗密層からなる非対称構造をなし、しかも、透析液と接する外表面には制御され

存在率(%)=(任意の孔面積の孔の総数/画像中の孔の総数)×100

【0012】通常、透析液の一部は膜の外表面の開孔部から膜内部の多孔部に流れ込むが、その透析液にカプラー等由来の菌塊片が含まれると菌塊片が膜内部まで侵入し、侵入時の物理的なショックで菌塊片から遊離したエンドトキシンの一部が、緻密層を通過して血液側に移行してくることがある。一般に、菌体の大きさは長径が1~3 $\mu$ mであるため、孔面積が0.5 $\mu$ m²以下では菌塊片の侵入は殆ど起こらない。菌塊片の侵入を事実上阻止するには、孔面積0.5 $\mu$ m²以上の孔の存在率を10%以下に抑えることが必要であり、7%以下に抑えるとさらに好ましい。もっとも好ましくは5%以下である。一方、孔面積が小さな孔が増えすぎると今度は成型

平均孔面積=画像中の孔面積の総和/画像中の孔総数

平均孔面積も菌塊片の侵入だけではなく、成型性、特に 膜同士の固着にも関係している。これは、小さいほど隣 接する膜同士が固着する傾向が強くなり、成型不良を生 じやすい。反対に大きいほど菌塊片の侵入が起こるため、 $0.05\sim0.35\,\mu\text{m}^2$ の範囲に抑える必要がある。より好ましくは $0.10\sim0.30\,\mu\text{m}^2$ 、もっとも好ましくは $0.10\sim0.20\,\mu\text{m}^2$ の範囲である。

開孔率(%)=(開孔部の孔面積の総和/取り込んだ画像の面積)×100

【0015】開孔率は膜同士の固着への寄与に大きく関与し、開孔率が小さいと隣接する膜同士の接触面積が増えて固着が起こり、ひどい場合は、東全体が棒状に固着することさえある。このため、開孔率は10%以上を確保する必要がある。しかし、開孔率を不必要に大きくす

た孔分布を持った開孔部を有して本発明の効果を発揮し ている。

【0010】本発明の膜の孔分布は、乾燥膜の外表面の走査型電子顕微鏡写真を画像解析することで数値化される。具体的には膜に付着した孔径保持材や充填液を水洗後、冷エタノールから凍結乾燥した膜を銀蒸着し、電子顕微鏡で倍率600倍における膜の外表面写真を撮影する。これを90mm×70mmの大きさにプリントし、写真の全範囲を画像解析ソフトを用いてパソコンに取り込み、画像を二値化することで、外表面の各々の開孔部について孔面積を求めることができる。その結果、本発明者らは、孔面積の分布や平均孔面積と透析液中の菌塊片侵入量や成型性との間に一定の関係があること、および開孔率と成形性との間にも一定の関係があって、いずれをも制御する必要性があることを見出した。

【0011】まず第一に、特定の孔面積を有する孔の存在率について説明するが、本発明でいう存在率とは、取り込んだ画像中の孔の総数に対する任意の孔面積の孔の総数の百分率と定義され、下記の式(3)で与えられる。なお、10ピクセル以下はノイズと見なして計数から除外した。

(3)

上の問題が起こりやすい。特に、孔面積が $0.1\mu m^2$ 以下の孔が増えると隣接する膜同士で固着が生じ、膜間へのポッティング剤の浸透不良によって中空糸膜内外の分離が不完全になる。このような固着による成型不良を無くすには、孔面積が $0.1\mu m^2$ 以下の孔の存在率を7.5%以下におさえる必要がある。より好ましくは6.0%以下、もっとも好ましくは4.5%以下である。

【0013】第二に平均孔面積について説明するが、本発明でいう平均孔面積とは、取り込んだ画像中の全ての孔の孔面積の平均値と定義され、下記の式(4)で与えられる。ここでも、10ピクセル以下はノイズと見なして計数から除外した。

8数 (4)

【0014】一方、これらのパラメーターに加えて外表面の開孔率も成形上、重要なパラメーターである。本発明でいう開孔率とは、取り込んだ画像の面積に対する開孔部の孔面積の総和の百分率と定義され、下記の式

(5) で与えられる。ここでも、10ピクセル以下はノイズとみなして計数から除外した。

(5)

ると、今度は膜の長軸方向へのしなり、すなわち、腰の強さが損なわれる結果、成型時にポッティング部での糸流れによる成型不良が多発する。腰の強さを損なわないために開孔率は30%を上限とするべきで、したがって、外表面の開孔率の範囲は10~30%であることが

必要である。より好ましい範囲は15~30%である。 【0016】次に、本発明のポリスルホン系多孔質膜を 製造する方法として、親水性高分子にポリビニルピロリ ドン(以下、PVPという)を用いる場合について例示 する。該膜を製造するために用いる製膜原液は、ポリス ルホン系樹脂、PVP、および溶媒の3成分を基本構成 成分とする。製膜原液の組成として、ポリスルホン系樹 脂の濃度は製膜可能な粘度を有し、かつ、膜としての特 徴を発揮できる範囲であればよく、通常10~25重量 %、好ましくは15~20重量%である。10重量%未 満では膜としての十分な強度を得ることができず、25 重量%を超えるとポリマー密度が高まって慣通孔が減少 し、十分な透過性能が得られないため実用的ではない。 これらのポリスルホン系樹脂は、重量平均分子量が1~ 5万のものが市販されており、それを使用すれば十分で ある。特に、限定はしない。

【0017】 PVPは主としてポリスルホン系多孔質膜 の孔形成、および残存して親水性を付与させるために使 用される。燎くべきことに、PVPとポリスルホン系樹 脂の割合が孔形成、特に膜の外表面における孔形成に関 与していることが、本発明者らの鋭意研究の結果、見出 された。詳細な原理は未だ不明な部分もあるが、ポリス ルホン系樹脂に対してPVPの分子サイズがはるかに大 きいことが主な要因ではないかと思われる。すなわち、 ポリスルホン系樹脂に対するPVPの割合がある範囲で 低くなると、吐出された原液粘度が低下してPVPの拡 散によるミクロ相分離速度が早まって、PVPの小胞同 志の融合が進む。その結果、数としては少ないが、比較 的面積の大きい孔が形成される。反対にPVPの割合が 高くなると、原液粘度の上昇のためにPVPの小胞同志 の融合速度が低下し、その一方でポリスルホン系樹脂の 析出が進行する結果として、面積の小さい孔が多数形成 されて開孔率も高くなるものと考えられる。

【0018】このように膜の外表面に面積の大きい孔がある場合、たとえその数が少なくても、透析液中の菌塊片が孔から膜内部に侵入し、侵入時の物理的ショックで遊離したエンドトキシンが緻密層を通過して血液側に移行する可能性が生じてくる。反対に面積の小さい孔が増えると膜同士の固着が増えたり、開孔率が上がりすぎて膜の腰の強さが低下して、成型不良の要因となってくる。したがって、以上を満たすには、製膜原液におけるPVPのポリスルホン系樹脂に対する割合が0.25~0.45が好ましく、0.30~0.40であればさらに好ましい。

【0019】PVPは分子量別に様々な種類が市販されているので、それらを使用すればよく、特に限定はしない。ただし、上述のように外表面の開孔に重要であると同時に、膜表面を親水化する目的もある。この観点から、製膜時に膜表面に残存しやすいものが好ましく、分子量が大きいほどその傾向にあるので、重量平均分子量

が少なくとも10万以上のものを使用するとよい。溶媒はポリスルホン系樹脂、およびPVPを共に溶解する溶媒であり、ジメチルスルホキシンド、N、Nージメチルアセトアミド、N、Nージメチルホルムアミド、Nーメチルー2ーピロリドン、スルホラン、ジオキサン等から選択されるが、これらの各々の組み合わせは任意である。また、凝固速度を制御する目的で少量の水や塩類を添加することもできる。

【0020】以上の系からなる製膜原液を用いてポリスルホン系多孔質膜を得るには、公知の乾湿式法を用いればよい。製膜原液と内部凝固液とを30~60℃に保温された2重管構造の環状ノズル(二重紡糸口金)より同時に吐出し、凝固浴に導入する。その際、ノズル吐出から凝固浴に導入する前に空中走行させる。このノズルの吐出面と凝固浴表面の空中走行長は、通常10~100 cm、特に30~85 cmが好ましい。10 cmより短いと凝固が不完全なまま凝固浴に達する結果、外表面にも緻密層が形成されるので本発明の膜が得られない。反対に100 cmを超えると糸揺れが生じて凝固不完全な糸同士の接着が起こる可能性があり、製造プロセス上好ましくない。

【0021】また、空中走行部の雰囲気も、本発明を達 成する上で重要であり、走行部周辺をフードで囲って密 閉し、内部を湿潤状態に保持する。湿潤状態は下部の凝 固浴から発生する水蒸気を利用し、凝固浴の温度を30 ~70℃の範囲で調整して、フード内を水蒸気で飽和さ せればよい。より好ましくは45~60℃の範囲であ る。内部凝固液は製膜原液に対して凝固性の高いものよ り、低いものを用いた方が紡糸安定性は良く、水と溶剤 の混合液を用いることが好ましい。溶剤としてN,N-ジメチルアセトアミド、N. N-ジメチルホルムアミ ド、N-メチル-2-ピロリドン、ジメチルスルホキシ ド等から選択される。内部凝固液の好ましい組成は、溶 剤が5~40重量%であり、残りが水である。水の割合 がこれ以上高まると、膜として十分な透水性能が達成で きない可能性がある。より好ましくは溶剤が10~25 重量%である。

【0022】上記のように凝固させた中空糸は、内表面側に緻密層、外表面に開孔部を有する非対称の多孔質構造を有している。この中空糸膜を力セに巻き取って一定束長にカットした後、残存している溶剤を水洗し、次いで、乾燥処理前に孔径保持剤として、例えば、グリセリン水溶液を付着させ、70~80℃で10時間以上乾燥処理を行えば、本発明の膜が得られる。当該膜を使用する際には、両端をポリウレタン等でポッティングして所定の膜面積を有するモジュールに成型し、必要に応えばよる際には、両端をポリウレタン等でポッティングして所定の膜面積を有するモジュールには公知の方法に従えばよく、特に限定はしない。滅菌方法も用途に応じて公知の方法から選択すればよく、例えばエチレンオキサイトガス滅菌、高圧蒸気滅菌、放射線滅菌等の処理をすればよ

610

#### [0023]

【発明の実施の形態】次に、実施例および参考例によっ て本発明を詳細に説明するが、本発明は、それに限定さ れるものではない。なお、実施例で用いた諸数値は、以 下の手順によって測定した。(外表面の孔面積、孔の存 在率、および開孔率) 膜を流水下で1時間水洗後、ドラ イアイス含有エタノールで凍結乾燥させた。この膜を専 用の試料台に固定して銀蒸着後、走査型電子顕微鏡(日 立製: S-2460N、以下、SEMという) にて倍率 6000倍の外表面写真を撮影した。画像処理は、この 写真(90mm×70mm)をイメージスキャナーで取 り込み、処理ソフト(コーシン・グラフィク・シスタム ズ社製:カラーマジシャン7、バージョン1.0)を用 いて、取り込み範囲を写真全面、解像度320、明るさ 2、256階調で実施した。この画像を処理ソフト (N IHイメージ、バージョン1.57)により二値化し、 各々の孔の孔面積を算出した。なお、10ピクセル以下 の画像はノイズと見なし、計数から除外した。また、電

逆濾過率 (%) = (C1/C0) ×100

#### [0025]

【実施例1】ポリスルホン系樹脂(Amoco社製:P -1700) 17重量%、PVP (BASF社製: K9 0) 7重量%、N, N-ジメチルアセトアミド(以下、 DMACという) 76重量%を50℃で8時間攪拌溶 解、脱泡し製膜原液を得た。内部凝固液はDMAC15 重量%と水85重量%とを混和して調製した。この製膜 原液と内部凝固液を55度に保温した二重紡糸口金から 吐出させ、フードで密閉した60cmの空中走行部を経 て凝固浴に導入した。凝固浴は52.5℃の温水とし、 フード内部は水蒸気の飽和状態にあった。凝固浴を通過 させ、カセに巻き取った膜を熱水で洗浄した。さらに孔 径保持剤として15重量%のグリセリン水溶液を付着さ せ、70℃で12時間乾燥処理を行った。得られた膜を 膜面積1.5m2のモジュールにポリウレタンを用いて 成型し、水を充填して25KGyのγ線を照射した。こ の膜を図1に示すSEM写真をもとに画像処理した結 果、外表面における孔面積 0.5 μm²以上の孔の割合 が3.0%、孔面積0.1 μ m² 以下の孔の割合が4 2. 9%で、平均孔面積は0. 16μm<sup>2</sup>、開孔率は1 5. 5%であった。この膜は固着がなく、成形性は良好 であった。また、逆濾過液中のエンドトキシン濃度は検 出限界以下(9.0EU/リットル以下)であったた め、事実上侵入を認めなかった。

#### [0026]

【実施例2】ポリスルホン系樹脂(Amoco社製:P-1700)17重量%、PVP(BASF社製:K90)4.5重量%、DMAC78.5重量%を混合し、50℃で8時間機拌溶解、脱泡し製膜原液を得た。内部凝固液はDMAC20重量%と水80重量%とを混和し

子線照射により孔径の揃ったメンプレンフィルター(ミ リポア社製:アイソポア、孔直径2μm)における真円 の孔を同時測定して、キャリプリーションを行った。 【0024】(菌塊逆濾過試験)自家作成した高菌塊含 有水溶液を用いて、透析液(AK-ソリタ・DL、清水 製薬株式会社製)を調製した。用いた菌塊量は、エンド トキシンの含有量を測定することで代用した。エンドト キシン濃度として15800EU/リットルの菌塊汚染 透析液を含む回路をモジュール透析液入側に接続し、透 析液出側には栓をした。モジュールの血液出側に回路を 接続、血液入側には栓をした。透析液入側回路にポンプ をセットし、流速200cc/分にて2リットルを血液 出側に逆濾過させて排出後、血液出側より逆濾過液を採 取した。採取した逆濾過液中に含まれるエンドトキシン 量をエンドスペシー(生化学工業社製:ES-50セッ ト)により定量し、下記の式(6)から逆濾過率を算出

した。なお、式中のC0は透析液中のエンドトキシン濃

度、C1は逆濾過液中のエンドトキシン濃度を示す。

#### (6)

て調製した。空中走行長を $45\,\mathrm{cm}$ 、凝固浴温度を $65\,\mathrm{C}$ とした以外は、実施例1と同条件で乾燥膜を得た。得られた膜を膜面積 $1.5\,\mathrm{m}^2$ のモジュールにポリウレタンを用いて成型し、水を充填して $25\,\mathrm{KGy}$ の $\gamma$ 線を照射した。実施例1と同様に、 $\mathrm{SEM}$ 写真をもとに画像処理した結果、外表面における孔面積 $0.5\,\mu\,\mathrm{m}^2$ 以上の孔の割合が9.3%、孔面積 $0.1\,\mu\,\mathrm{m}^2$ 以下の孔の割合が39.6%で、平均孔面積が $0.19\,\mu\,\mathrm{m}^2$ 、開孔率が10.6%であった。この膜も固着はなく、良好に成型できた。また、逆濾過液中のエンドトキシン濃度は検出限界以下( $9.0\,\mathrm{EU}/\mathrm{Uy}$ トル以下)であったため、事実上侵入を認めなかった。

#### [0027]

【比較例1】ポリスルホン系樹脂(Amoco社製:P -1700) 17重量%、PVP(BASF社製:K9 0) 9. 0重量%、DMAC74. 0重量%を混合し、 50℃で8時間攪拌溶解、脱泡し製膜原液を得た。内部 凝固液はDMAC20重量%と水80重量%とを混和し て調製した。空中走行長を60cm、凝固浴温度を55 ℃とした以外は、実施例1と同条件で乾燥膜を得た。得 られた膜を膜面積1.5 m2 のモジュールにポリウレタ ンを用いて成型し、水を充填して25KGyのγ線を照 射した。この膜は、外表面における孔面積 0. 5 μ m<sup>2</sup> 以上の孔の割合が0.8%、孔面積0.1 μm²以下の 孔の割合が88.5%であり、平均孔面積は0.03μ m<sup>2</sup>、開孔率は3.3%であった。乾燥後は膜固着が激 しく、そのままでは成型することができなかった。補修 して成型後、菌塊逆濾過試験を実施したところ、逆濾過 液中のエンドトキシン濃度は検出限界以下(9.0EU /リットル以下)と、事実上侵入を認めなかった。

[0028]

【比較例2】ポリスルホン系樹脂(Amoco社製:P-1700)17重量%、PVP(BASF社製:K90)3.5重量%、DMAC79.5重量%を混合し、50℃で8時間機拌溶解、脱泡し製膜原液を得た。内部 凝固液はDMAC15重量%と水85重量%とを混和して調製した。空中走行長を45cm、凝固浴温度を25℃とした以外は、実施例1と同条件で乾燥膜を得た。得られた膜を膜面積1.5m²のモジュールにポリウレタンを用いて成型し、水を充填して25KGyのγ線を照射した。この膜は、外表面における孔面積が0.5μm²以上の孔の割合が47.5%、孔面積が0.1μm²以下の孔の割合が18.8%で、平均孔面積は0.59μm²、開孔率は35.8%であった。乾燥後の膜固着

はなく、成型はできたが、ポッティング部全体に渡って 糸流れが見られた。菌塊逆濾過試験を実施したところ、 逆濾過率は0.13%であり、菌塊片の侵入によるエン ドトキシンの逆濾過が認められた。

[0029]

【発明の効果】本発明のポリスルホン系多孔質膜は、製造時に膜固着による成型不良を起こすことなく、しかも、透析液に含まれる菌塊片が膜内部へ侵入してエンドトキシンの逆濾過が事実上起こらないため、血液浄化分野で好適に使用できる。

【図面の簡単な説明】

【図1】本発明で得られる膜の一例として、実施例1で得られた膜のSEM写真(倍率6000倍)を示す。

【図1】

# BEST AVAILABLE COP



#### フロントページの続き

F ターム(参考) 4C077 AA05 BB01 BB02 KK09 LL05 LL14 LL16 LL17 NN20 PP15 PP18

4D006 GA13 LA06 MA01 MA23 MA25 MA26 MA31 MA33 MA40 MC33 MC34 MC40X MC45 MC54 MC62X MC83 MC88 NA04 NA10 NA27 NA28 NA64 NA71 PA01 PB09 PB54 PC41 PC47