اگر F(x) تابع مولد دنبالهٔ $\{f_n\}$ باشد،تابع مولد دنبالههای زیر را برحسب F به دست آورید:

- (1) $a_n: o, o, f_o, f_v, f_v, f_v, ...$
- (Y) $b_n: o, f_o, o, f_v, o, f_v, ...$
- ($^{\circ}$) $c_n: f_{\circ}, f_{\circ} + f_{\downarrow}, f_{\circ} + f_{\downarrow} + f_{\uparrow}, ...$

به چند طریق می توانیم ۲۰ عدد نان تهیه کنیم به طوری که حداقل یک نان بربری و حداکثر ۳ نان سنگک خریده باشیم و تعداد نانهای لواش مضرب ۴ باشد؟ فرض کنید تعداد انواع دیگر نان صفر باشد.

تابع مولد دنبالهای برابر
$$\frac{\Delta-1\pi x}{1-\Delta x+\epsilon x^{\tau}}$$
 است. جمله عمومی دنباله را بیابید.

فرض کنید $n \geq \infty$ تابع مولد دنباله $\{f_n\}$ باشد. برای هر S_n تعریف می کنیم S_n و تعریف می کنیم ولد S_n و S_n این کنید تابع مولد S_n و تامیم.) ثابت کنید تابع مولد S_n و S_n

 λ ثابت کنید تعداد افرازهای عدد طبیعی n به اعدادی که هرکدام حداکثر چهار λ بار ظاهر شده است با تعداد افرازهایی از λ به اعدادی که هیچ کدام مضرب λ نیستند برابر است.

باشد به $\{n, 1\}$ فرض کنید $\{n, 1\}$ تعداد افرازهای $\{n, 1\}$ به توانهای $\{n, 1\}$ باشد به طوری که هر عدد حداکثر $\{n, 1\}$ بار تکرار شود.

$$B(x) = \frac{1}{(1-x)(1-x^{t})}$$
 :ابت کنید تابع مولد $\{b_n\}$ برابر است با:

(۲) مقادیر b، a و c را بیابد به طوری که:

$$\frac{1}{(1-x)(1-x^{\prime})} = \frac{2}{1-x} + \frac{b}{(1-x)^{\prime}} + \frac{c}{1+x}$$

 $b_n = \frac{7n + 7n + (-1)}{4}$: ثابت کنید:

دنباله $\{a_n\}$ در رابطه $\{a_n\}$ در رابطه $\{a_n\}$ در $\{a_n\}$ در رابطه $\{a_n\}$ در $\{a_n\}$ در رابطه و به کمک آن جمله عمومی را به دست آورید.