(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平7-212174

(43)公開日 平成7年(1995)8月11日

(51) Int.Cl.⁶

識別記号 庁内整理番号

技術表示箇所

H 0 3 H 9/145

C 7259 - 5 J

9/25

C 7259-5 J

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出願番号

特願平6-1106

(22)出願日

平成6年(1994)1月11日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 礒部 敦

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 弁理士 小川 勝男

(54) 【発明の名称】 弾性境界波装置

(57)【要約】

【目的】温度特性が良く、体積増大を伴う容器によるパッケージングを必要としない小型の弾性境界波装置を提供する。

【構成】温度特性の良い弾性境界波を強く励振するため、 $100 < \theta < 124$ または $128 < \theta < 150$ であるような θ 回転Yカットタンタル酸リチウム単結晶圧電基板10上に弾性境界波波長換算膜厚 h/λ が $h/\lambda>1$ であるシリコン酸化膜12を形成する。

1

【特許請求の範囲】

【請求項1】角度 θ の回転Yカットタンタル酸リチウム 単結晶圧電基板と、前記圧電基板の主表面に、少なくと も一対の電極指を有する電極周期入の櫛型電極と、前記 圧電基板及び前記櫛型電極の上に、膜厚hのシリコン酸 化膜を構成した弾性境界波装置において、前記圧電基板 のカット角 θ を100< θ <124または128< θ < 150とし、かつh/λ>1としたことを特徴とする弾 性境界波装置。

【請求項2】請求項1において、前記シリコン酸化膜の 10 膜厚hと前記圧電基板のカット角 θ の間に、0.5 < 1 $8 \times \lambda / h / | \theta - 126 | < 1$ の関係を有する弾性 境界波装置。

【請求項3】請求項1において、 $130<\theta<145$ と した弾性境界波装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光,無線又はテレビI F(中間周波数)フィルタ等、小型化が要求される通信 用フィルタに関する。

[0002]

【従来の技術】移動通信分野では、超小型のフィルタと して、弾性境界波装置が知られている。弾性境界波と は、特殊な条件の圧電単結晶基板上に、充分厚い非金属 膜を形成することにより、基板と非金属膜との境界近傍 に存在することができる弾性波である。このため、弾性 境界波装置は体積増大をもたらす容器によるパッケージ ングを必要としない長所がある。

【0003】従来報告されている弾性境界波(BAW) は、シリコン酸化膜(以下SiO2と略す)/126度 30 小値を示す。 回転YカットX伝搬タンタル酸リチウム単結晶圧電基板 がある(例えば、アイ・イー・イー・イー、トランザク ションズ オン ソニックスアンド ウルトラソニック ス エス ユー 25巻 6号 (1978年) 第384 頁から第389頁(IEEE Transactions on sonics and u Itrasonics, SU-25, No. 6, (1978) pp. 384-389)).

[0004]

【発明が解決しようとする課題】SiO2/126度回 転YカットX伝搬タンタル酸リチウム単結晶圧電基板は る弾性境界波装置を作製することは不可能であった。

【0005】本発明の目的は、このような従来の問題点 を解決するため、温度特性の良いBAW装置を提供する ことである。

[0006]

【課題を解決するための手段】上記目的は、圧電基板 $c, 100 < \theta < 124$ **s**t **t**t **t** る θ 度回転YカットX伝搬タンタル酸リチウム単結晶圧 電基板を用い、 SiO_2 膜の厚さを $h/\lambda>1$ とするこ とにより達成できる。

【0007】ここで、 θ °回転Yカットタンタル酸リチ ウム単結晶圧電基板とは、IRE標準の+Y軸からIR E標準の+Z軸方向に θ 。傾けた方向、またはIRE標

準の-Y軸からIRE標準の-Z軸方向に θ 。傾けた方 向に対して略垂直(誤差1°以内)であるようにタンタ ル酸リチウム結晶を切り出したタンタル酸リチウム単結 晶圧電基板を意味する。またhはSiO2膜の厚さ、λ

[0008]

は櫛型電極の周期を表す。

【作用】上記構造の作用を調べるために、発明者らはS $i O_2 / \theta$ 回転 Y カットタンタル酸リチウム単結晶圧 電基板を用いた弾性境界波素子を作製し、伝搬特性を調 べた。作成した素子の電極構造は、電極周期4 µm, 対 数10対、開口長110λ (λ:電極周期) の二開口共 振器である。またSiO2 膜はRFスパッタ法で作成し た。その結果、以下のことが分かった。

【0009】① θ にかかわらず、 $h/\lambda > 1$ のとき、 急激に、弾性境界波装置の良品率が向上する。この様子 を図1に示す。

【0010】② SiO2 /126度回転YカットX伝 搬タンタル酸リチウム単結晶圧電基板の構造で、SiO 2 膜を厚くしても、温度特性が良くならない。

【0011】③ 100 $<\theta<$ 150でも、BAWは存 在する。特に、 $100<\theta<124$ または $128<\theta<$ 150では、SiO₂ 膜の厚さをhとすると、h/ λ が 1から3近傍で、極めて温度特性が良くなる。この様子 を図2に示す。 θ , h, λ 間に $18 \times \lambda / h / | \theta - 1$ 26 = 1の関係が成立するとき、遅延時間変化率の室 温における1次温度係数TCDの絶対値 | TCD | が最

【0012】④ θ=138近傍で、電気機械結合係数 が最大になる。この様子を図3に示す。130< θ <1 45で2%を超える。

【0013】以上のことから、 $100<\theta<124$ また は $128 < \theta < 150$ のとき、 h/λ を1から3の近傍 にすることにより、 | TCD | が最小値を示すことが実 験より分かった。このため、この条件を用いることによ り、温度特性が良い弾性境界波装置を作成できる。

[0014] $\pm 18 \times \lambda/h/|\theta-126|=1$ 温度特性が悪い。このため、システムの仕様を満足でき 40 することにより、いっそう温度特性が良い装置を作成で きる。

> 【0015】また $130<\theta<145$ を用いることによ り、最も大きな圧電効果が得られる。このため、損失の 小さい弾性境界波装置を作ることができる。

> 【0016】また、 θ にかかわらず、 $h/\lambda > 1$ を用い ることにより、弾性境界波装置の量産性を向上させるこ とができる。

【0017】またBAWは、表面が非金属膜で保護され ているため、電極の物理的、化学的変質が発生しない。 50 外部応力に対しても、非金属膜を介在する間接影響であ

3

るため、モルト剤で覆う、またシリコーン接着剤を非金 属膜表面に塗っても特性の変化は極めて小さい。このた め、体積を大きくする容器を用いたパッケージングを行 う必要がなく、装置を小型化できる。

[0018]

【実施例】図1に本発明の1実施例として、SiO2/ θ 。回転YカットX伝搬タンタル酸リチウム単結晶圧電 基板におけるBAWの伝搬速度のSiO2 膜膜厚依存性 を示す。SiO2 膜厚hは、BAW波長λ (=電極周 期) で規格化してある。またSiO2 膜はRFスパッタ 10 法で作成した。作成した素子は、 $h/\lambda = 0.5$, 1, 1.5, 2.0, $\pm \theta = 100$, 108, 114, 12 0, 126, 132, 138, 144, 150である。

【0019】製品を量産するとき、伝搬速度のバラツキ は中心周波数のバラツキに比例するため、Si〇2 膜膜 厚のバラツキに対して伝搬速度の変化が小さいことは、 良品率向上に対して極めて重要な問題である。BAWを 用いた場合、いずれのθでもSiO₂膜を厚くするにつ れて、伝搬速度の変化率が小さくなる。本発明によれ ば、SiO₂ 膜作成時の膜厚のバラツキを±5%とする 20 と、 $h/\lambda > 1$ にすることにより、製品の中心周波数バ ラツキを0.15%以下にできる。

【0020】図2にSiO2 $/\theta$ °回転YカットX伝搬 タンタル酸リチウム単結晶圧電基板におけるBAWの温 度特性を示す。縦軸は「TCD」である。

 $[0\ 0\ 2\ 1]\ 1\ 0\ 0<\theta<1\ 2\ 4\ge 1\ 2\ 8<\theta<1\ 5\ 0$ に必ず | TCD | が最小になる θ が存在する。 SiO_2 膜が厚くなるにつれ、この θ は共に126度に漸近す る。なお126度は完全なBAWであるため、SiO2 膜が厚くしても、 | TCD | はゼロにならなず、一定値 30 のことはPFAを考えずに電極設計を行えるため、設計 に漸近する。測定値を内挿することにより、 | TCD | が最小になる θ とh/ λ の関係を調べた結果、 $18 \times \lambda$ $/h/|\theta-126|=1$ であった。

【0022】SiO2膜は、作成方法が異なると、弾性 特性が変化することが知られている。特に、CVD法で は、ガスソースの混合比を変えることで、SiとOの比 が変化させることができ(通称SiOx膜と表すが、こ こではこれを含めて、SiO2膜と表記する)、温度特 性が大きく変化することが知られている。このため、R により検討した。用いた圧電基板の θ は144度、Si O₂ 膜の膜厚h/λは0.5~1 である。

【0023】その結果、常圧CVD法を用いた場合、h $/\lambda = 0.8 \sim 0.96$ と、RFスパッタ法より多少小さ い値で「TCD」が最小になった。プラズマCVD法を 用いた場合、 $h/\lambda=0.5\sim0.9$ と、RFスパッタ法 よりかなり小さい値で | TCD | が最小になった。

【0024】以上の結果、0.5<18×λ/h/ | θ −126 | <1 の関係を有する場合、上記いずれかの</p> 手法により、 | TCD | を最小にできることが分かる。

本発明によれば、上記 θ , h, λ の関係を有することに

より、 | TCD | が小さい、つまり温度特性の優れた弾 性境界波装置を作ることができる。

【0025】図3にSiO2 / θ°回転YカットX伝搬 タンタル酸リチウム単結晶圧電基板におけるBAWの電 気機械結合係数(k^2) を示す。 $130 < \theta < 145$ で2 %を超える。本発明によれば、 $130 < \theta < 145$ を用 いることにより、最も大きな圧電効果を得られる。この ため、損失の小さい弾性境界波装置を作ることができ

【0026】弾性波を用いた装置では、圧電基板の結晶 の対称性から、 θ °回転Yカットと θ °+180°回転 Yカットは全く等価である。このため、上記発明が、 θ ° +180°回転Yカットタンタル酸リチウム単結晶圧 電基板にも適用できることは明らかである。

【0027】図4、図5、図6に本発明の他の実施例を 示す。図4は一開口共振器、図6は二開口共振器を示 し、図5は断面図である。タンタル酸リチウム単結晶圧 電基板10上に、Si〇2 膜12を形成している。タン タル酸リチウム単結晶圧電基板10とSiO2 膜12の 間に、波長んのBAWを励振する電極周期んの櫛型電極 11が存在する。

【0028】本発明によれば、SiO2 膜12が櫛型電 極11の保護膜として働くため、カンパッケージ等、体 積を大きくするような容器によるパッケージを行う必要

【0029】またBAWの伝搬方向をIRE標準のX軸 方向にできるため、PFA (PowerFlow Angle:位相速 度と群速度の成す角度)をゼロにすることができる。こ が容易に成る長所がある。

[0030]

【発明の効果】本発明によれば、 θ 。回転Yカットタン タル酸リチウム単結晶圧電基板上に、SiO2 膜を形成 し、 θ 及び SiO_2 膜の厚さを上記条件にすれば、温度 特性が良く、挿入損失が小さく、量産性の優れた弾性境 界波装置を作ることができる。

【0031】またSi〇2 膜が櫛型電極の保護膜として 働くため、体積増大を伴う容器によるパッケージングを Fスパッタ法以外に、常圧CVD法,プラズマCVD法 40 必要としないため、超小型の弾性境界波装置が実現でき る。このため、本発明の弾性境界波装置を各種通信分野 のフィルタ等に適用することにより、モジュールの小型 化、高性能化を実現することが可能になる。

【図面の簡単な説明】

【図1】SiO2 $/\theta$ の転YカットX伝搬タンタル酸 リチウム単結晶圧電基板における弾性境界波の伝搬速度 のSiOz膜膜厚依存性を示した特性図。

【図2】 SiO_2 $/\theta$ の転YカットX伝搬タンタル酸 リチウム単結晶圧電基板における弾性境界波の温度特性 50 図。

5

【図3】 SiO_2 $/\theta$ ° 回転YカットX伝搬タンタル酸リチウム単結晶圧電基板における弾性境界波の電気機械結合係数を示した特性図。

【図4】タンタル酸リチウム単結晶圧電基板上に、Si O2 膜を形成し、その界面に櫛型電極を設けた一開口共 振器の平面図。

【図 5】タンタル酸リチウム単結晶圧電基板上に、SiO2 膜を形成し、その界面に櫛型電極を設けた一開口共振器の断面図。

【図6】タンタル酸リチウム単結晶圧電基板上に、Si O2 膜を形成し、その界面に櫛型電極を設けた二開口共 振器の平面図。

【符号の説明】

1…θ=144の弾性境界波の伝搬速度、2…θ=130の弾性境界波の伝搬速度、3…θ=120の弾性境界波の伝搬速度、3…θ=120の弾性境界波の伝搬速度、5…シミュレーションから求めたSiO2のバルク波の伝搬速度、6…h/λ=1の弾性境界波の|TCD|、8…h/λ=1.5の弾性境界波の|TCD|、8…h/λ=1の弾性境界波の|TCD|、8…h/λ=2.5の弾性境界波の|TCD|、10…タンタル酸リチウム単結晶圧電基板、11…櫛型電極、12…SiO2膜。

6

PATENT ABSTRACTS OF JAPAN (11) Publication number: 07-212174 (43) Date of publication of application: 11.08.1995 (51) Int.Cl. H03H 9/145H03H 9/25 (21)Application number: 06-001106 (71)Applicant: HITACHI LTD (22)Date of filing: 11.01.1994 (72)Inventor: **ISOBE ATSUSHI** (54) ELASTIC BOUNDARY WAVE DEVICE (57) Abstract: PURPOSE: To make a temperature characteristic excellent, to reduce insertion loss and to make productivity excellent by forming a SiO film on a ?° rotation Y-cut tantalic acid lithium single crystal substrate and defining the thickness of ? and SiO2 films as a specified condition. CONSTITUTION: In the SiO2 film 12 thickness dependency of the propagation speed of the elastic boundary wave BAW in a SiO2/?° rotation Y-cut Xpropagation tantalic acid lithium single crystal piezoelectric substrate, the SiO2 film 12 thickness (h) is standardized by a BAW wavelength ? (electrode cycle) and a cut angle 8 is made 100<?<124 or 128<?<150. Because the dispersion of transmission speed is proportional to the dispersion of a center frequency when products are mass-produced, the small change of propagation speed for the dispersion of the SiO2 film thickness is significant to improve a good item ratio. When the BAW is used, as the SiO2 film is thickened by any ?, the change of propagation speed becomes small. When the dispersion of the film thickness at the time of the preparation of the SiO2 film is 15%, the dispersion of the center frequency of products can be made below 0.15% by setting h/?>1. Therefore, a temperature characteristic is made excellent, insertion loss is reduced and productivity is made excellent. * NOTICES * JPO and INPIT are not responsible for any damages caused by the use of this translation. 1. This document has been translated by computer. So the translation may not reflect the original precisely. 2.**** shows the word which can not be translated. 3.In the drawings, any words are not translated. **CLAIMS** [Claim(s)] [Claim 1]A rotation Y cut lithium tantalate single crystal piezoelectric board of the angle theta. To a main table side of said piezoelectric board, it is an electrode finger of a couple at least. It is the elastic boundary wave device provided with the above, and cut angle theta of said piezoelectric board was set to 100< theta<124 or 128< theta<150, and it was referred to as h/lambda >1.

[Claim 2]An elastic boundary wave device which has the relation between 0.5<18x lambda/h / |theta-126|<1 in claim 1 between cut angle theta of the thickness h of said silicon oxide, and said piezoelectric board. [Claim 3]An elastic boundary wave device set to 130< theta<145 in claim 1.

[Translation done.]
* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application]This invention relates to filters for communication with which a miniaturization is demanded, such as light, radio, or a television IF (intermediate frequency) filter.

[Description of the Prior Art] The elastic boundary wave device is known for the mobile communications field as a micro filter. An elastic boundary wave is an elastic wave which can exist near the boundary of a substrate and a nonmetallic film by forming a sufficiently thick nonmetallic film on the piezoelectric single crystal board of special conditions. For this reason, an elastic boundary wave device has the strong point which does not need packaging with the container which brings about volume increase.

[0003]The elastic boundary wave (BAW) reported conventionally, . There is a silicon oxide (it abbreviates to SiO2 below) / 126 degree rotation Y cut X propagation lithium tantalate single crystal piezoelectric board. (For example) IEEE and transactions . one And [Sonics] The ultra Sonics . S You 25 volumes From the 384th page to the 389th page of six No. (1978) (IEEE Transactions on sonics and ultrasonics, SU-25, No.6 (1978), pp.384-389) [0004]

[Problem(s) to be Solved by the Invention]A SiO2/126 degree rotation Y cut X propagation lithium tantalate single crystal piezoelectric board has bad temperature characteristics. For this reason, it was impossible to have produced the elastic boundary wave device with which it can be satisfied of the specification of a system.

[0005] The purpose of this invention is to provide the good BAW device of temperature characteristics, in order to solve such a conventional problem.

[Means for Solving the Problem] The above-mentioned purpose can be attained by setting thickness of a SiO2 film to h/lambda >1 to a piezoelectric board using a theta degree rotation Y cut X propagation lithium tantalate single crystal piezoelectric board which is 100< theta<124 or 128< theta<150. [0007] Here with a theta** rotation Y cut lithium tantalate single crystal

piezoelectric board. A lithium tantalate single crystal piezoelectric board which cut down a lithium tantalate crystal to a direction theta** Leaned to standard +Z shaft orientations for IRE from standard + Y-axis for IRE or a direction theta** Leaned to standard -Z shaft orientations for IRE from standard - Y-axis for IRE so that it might be an abbreviated perpendicular (less than 1 degree of errors) is meant. h expresses thickness of a SiO2 film and lambda expresses a cycle of a comb shaped electrode.

[8000]

[Function]In order to investigate an operation of the above-mentioned structure, artificers produced the elastic boundary wave element which used the SiO2/theta**

rotation Y cut lithium tantalate single crystal piezoelectric board, and investigated the propagation characteristic. The electrode structure of the created element is a 2 opening resonator of the electrode period of 4 micrometers, ten pairs of logarithm, and the opening length 110 lambda (lambda: electrode period). The SiO2 film was created by RF sputtering technique. As a result, the following things were understood.

[0009]** Irrespective of theta, the rate of an excellent article of an elastic boundary wave device improves rapidly at the time of h/lambda >1. This situation is

shown in drawing 1.

[0010]** With the structure of a SiO2/126 degree rotation Y cut X propagation lithium tantalate single crystal piezoelectric board, even if it thickens a SiO2

film, temperature characteristics do not become good.
[0011]** Also 100< theta<150, BAW exists. In particular, in 100< theta<124 or 128< theta<150, if thickness of a Sio2 film is set to h, in h/lambda, temperature characteristics will become good extremely 1 to about three. This situation is shown in drawing 2. When the relation of 18x lambda/h / | theta-126|=1 is materialized between theta, h, and lambda, absolute value |TCD| of the primary temperature coefficient TCD in the room temperature of a time delay rate of change shows the

[0012]** An electromechanical coupling coefficient becomes the maximum about theta= 138. This situation is shown in drawing 3. It exceeds 2% by 130< theta<145. [0013] From the above thing, the experiment showed that |TCD| showed the minimum by carrying out h/lambda near 1 to 3 at the time of 100< theta<124 or 128< theta<150. For this reason, temperature characteristics can create a good elastic boundary wave device by using this condition.

[0014] By being referred to as 18x lambda/h / |theta-126|=1, temperature

characteristics can create a good device further.

[0015]The biggest piezo-electric effect is acquired by using 130< theta<145. For this reason, the small elastic boundary wave device of a loss can be made.
[0016] The mass production nature of an elastic boundary wave device can be raised by using h/lambda >1 irrespective of theta.
[0017] Since the surface is protected by the nonmetallic film, physical and chemical deterioration of an electrode does not generate BAW. Since it is the indirect influence which intervenes a nonmetallic film also to external force, change of the characteristic is very small even if it applies a wrap and a silicone adhesive to a

characteristic is very small even if it applies a wrap and a silicone adhesive to a nonmetallic membrane surface by a malt agent. For this reason, it is not necessary to perform packaging using the container which enlarges volume, and a device can be miniaturized.

[0018]

[Example]The SiO2 film thickness dependency of the propagation rate of BAW in a SiO2/theta** rotation Y cut X propagation lithium tantalate single crystal piezoelectric board is shown in drawing 1 as one example of this invention. The SiO2 thickness h is standardized on the BAW wavelength lambda (= electrode period). The SiQ film was created by RF sputtering technique. The created elements are h/lambda=0.5, 1, 1.5, 2.0 and theta= 100, and 108, 114, 120, 126 and 132,138,144,150.

[0019]Since the variation in a propagation rate is proportional to the variation in center frequency when mass-producing a product, it is a very important problem to the improvement in the rate of an excellent article that change of a propagation rate is small to the variation in SiO2 film thickness. The rate of change in a propagation rate becomes small as any theta thickness a SiO2 film, when BAW is used. In this invention, if variation in the thickness at the time of SiO2 film creation is made into **5% h/lambda >1 will be used. is made into **5%, h/lambda >1 will be used.

Therefore, it is the center frequency variation of a product 0.15% It is made to below.

[0020]The temperature characteristics of BAW in a Si02/theta** rotation Y cut X propagation lithium tantalate single crystal piezoelectric board are shown in drawing 2. A vertical axis is |TCD|.

[0021]Theta from which |TCD| certainly becomes the minimum exists in 100< theta<124 and 128< theta<150. It carries out asymptotic [of this theta both] to 126 degrees as a SiO2 film becomes thick. Since it is perfect BAW 126 degrees, even if a SiO2 film thickens, if |TCD| is at zero, it carries out asymptotic [of it] to **** and

constant value. As a result of |TCD|'s investigating the relation between theta which becomes the minimum, and h/lambda by interpolating measured value, it was 18x lambda/h / |theta-126|=1.[0022]It is known that elasticity will change if a SiO2 film differs in a preparation method. In particular, it is known for the CVD method that the ratio of Si to O can make it change (it is written as a SiO2 film here including this although expressed a common-name SiOx film), and temperature characteristics will change a lot by changing the mixture ratio of gas sauce. For this reason, it inquired with an ordinary pressure CVD method and plasma CVD method in addition to RF sputtering technique. Thickness h/lambda of a SiO2 film of used theta of a piezoelectric board is 0.5-1 144 degrees. [0023]As a result, when an ordinary pressure CVD method was used, |TCD| was somewhat set to h/lambda=0.8 - 0.96 from RF sputtering technique to the minimum with the small value. When plasma CVD method was used, |TCD| became the minimum with h/lambda=0.5 - 0.9, and a value quite smaller than RF sputtering technique. [0024]When the above result has the relation between 0.5<18x lambda/h / |theta-126|<1, one technique of the above shows that |TCD| is made to the minimum.

In this invention, it has a relation of above-mentioned theta, h, and lambda. Therefore, |TCD| is small, that is, can make the elastic boundary wave device which was excellent in temperature characteristics.

[0025] The electromechanical coupling coefficient (k2) of BAW in a SiO2/theta** rotation Y cut X propagation lithium tantalate single crystal piezoelectric board is shown in drawing 3. It exceeds 2% by 130< theta<145. 130< theta<145 is used in this invention.

Therefore, the biggest piezo-electric effect can be acquired. For this reason, the small elastic boundary wave device of a loss can be made. [0026] In the device using an elastic wave, the symmetry of the crystal of a piezoelectric board to the theta** rotation Y cut and the theta**+180-degree rotation Y cut are completely equivalent. For this reason, the above-mentioned invention applicable also to a theta**+180-degree rotation Y cut lithium tantalate single crystal piezoelectric board is clear.

[0027]Other examples of this invention are shown in drawing 4, drawing 5, and drawing 6. Drawing 4 shows a 1 opening resonator, drawing 6 shows a 2 opening

resonator, and drawing 5 is a sectional view. The SiO2 film 12 is formed on the lithium tantalate single crystal piezoelectric board 10. Between the lithium tantalate single crystal piézoelectric board 10 and the SiO2 film 12, the comb shaped electrode 11 of the electrode period lambda which excites BAW of the wavelength lambda exists.

[0028]According to this invention, in order for the SiO2 film 12 to work as a protective film of the comb shaped electrode 11, it is not necessary to perform packages with a container which enlarges volume, such as a can package. [0029]Since the propagating direction of BAW is made in the standard X axial direction for IRE, PFA (PowerFlow Angle: angle which phase velocity and group velocity accomplish) can be made into zero. Since this can perform an electrode design, without considering PFA, there is the strong point which a design comprises easily. [0030]

[Effect of the Invention]According to this invention, a SiO2 film is formed on a theta** rotation Y cut lithium tantalate single crystal piezoelectric board, if thickness of theta and a SiO2 film is made into the above-mentioned conditions, temperature characteristics are good, insertion loss is small, and the elastic boundary wave device which was excellent in mass production nature can be made. [0031]Since packaging with the container accompanied by volume increase is not needed in order that a SiO2 film may work as a protective film of a comb shaped electrode, a micro elastic boundary wave device is realizable. For this reason, it becomes possible by applying the elastic boundary wave device of this invention to the filter of various telecommunications sectors, etc. to realize modular miniaturization and highly efficient-ization.

[Translation done.] * NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3. In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings] [Drawing 1]The characteristic figure showing the SiO2 film thickness dependency of the propagation rate of the elastic boundary wave in a SiO2/theta** rotation Y cut X propagation lithium tantalate single crystal piezoelectric board.
[Drawing 2]The temperature profile of the elastic boundary wave in a SiO2/theta** rotation Y cut X propagation lithium tantalate single crystal piezoelectric board. [Drawing 3]The characteristic figure showing the electromechanical coupling coefficient of the elastic boundary wave in a SiO2/theta** rotation Y cut X propagation lithium tantalate single crystal piezoelectric board. [Drawing 4] The top view of the 1 opening resonator which formed the SiO2 film on the lithium tantalate single crystal piezoelectric board, and provided the comb shaped electrode in the interface.

[Drawing 5] The sectional view of the 1 opening resonator which formed the SiO2 film on the lithium tantalate single crystal piezoelectric board, and provided the comb shaped electrode in the interface. [Drawing 6] The top view of the 2 opening resonator which formed the SiO2 film on the lithium tantalate single crystal piezoelectric board, and provided the comb shaped electrode in the interface. [Description of Notations] 1 -- The propagation rate of the elastic boundary wave of theta=144, 2 -- The propagation rate of the elastic boundary wave of theta=130, 3 -- The propagation rate of the elastic boundary wave of theta=120, 4 -- The propagation rate of the elastic boundary wave of theta=110, 5 -- Bulk wave propagation speed of SiO2 calculated from the simulation, 6 -- h/lambda = |TCD| of the elastic boundary wave of one, 7 -- |TCD| of the elastic boundary wave of h/lambda =1.5, 8 -- h/lambda = |TCD| of the elastic boundary wave of one, 9 [-- SiO2 film.] -- |TCD| of the elastic boundary wave of h/lambda =2.5, 10 -- A lithjum tantalate single crystal piezoelectric board, 11 -- A comb shaped electrode, 12

[Translation done.] NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.

3. In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 2]

[Drawing 3]

[Drawing 4]

[Drawing 5]

[Drawing 6]

[Translation done.]