

Yulius Palumpun n2.ardelia@gmail.com

Pengantar

Matakuliah : Sistem Pakar

sks : 2 + 1 (Praktikum)

Semester : VII (tujuh)

Kode Matakuliah : 32972

Prasyarat : Kecerdasan Buatan (Artificial Intelligence)

Tujuan Perkuliahan :

Setelah menyelesaikan perkuliahan, mahasiswa diharapkan mampu memahami konsep-konsep sistem pakar (*expert system*), mampu membangun pengetahuan dan mendesain/merancang suatu sistem pakar

Silabus

- Definisi & ruang lingkup sistem pakar
- 2. Arsitektur Sistem Pakar
- 3. Rekayasa Pengetahuan (Akuisisi Pengetahuan, Validasi Pengetahuan, Representasi Pengetahuan, Penalaran Pengetahuan, Transfer Pengetahuan)
- 4. Motor Inferensi (Runut Maju Forward Chaining dan Runut Mundur Backward Chaining)
- 5. Masalah *ketidak-pastian* dalam sistem pakar dan metode-metode yang dapat digunakan untuk mengatasinya (*Dempster Shafer, Certainty Factor, Fuzzy Logic*)
- Pengembangan Sistem Pakar (misalnya menggunakan CBR/Case Base Reasoning)
- 7. Bahasa Pemrograman PROLOG (*Programming in Logic*)

Referensi

- 1. Turban, Efraim; Aronson, Jay, E.; Liang, Ting-Peng, 2005, *Decision Support System and Intelligent Systems*, International Edition, Edisi 7, New Jersey: Pearson Prentice-Hall Education International
- 2. Muhammad Arhami, 2005, Konsep Dasar Sistem Pakar, Andi Yogyakarta
- 3. Jhon Durkin, 1994, *Expert System: Design and Development*, Prentice International Edition
- 4. Kusumadewi Sri, 2003, *Artificial Intelligent*, Andi Offset, Yogyakarta
- 5. Kusrini, 2008, *Aplikasi Sistem Pakar*, Andi Offset, Yogyakarta
- 6. Siswanto, 2010, Kecerdasan Tiruan, Edisi 2, Graha Ilmu, Yogyakarya
- 7. Hartati Sri, Iswanti Sari, 2008, *Sistem Pakar dan Pengembangannya*, Graha Ilmu, Yogyakarta
- 8. Kusumadewi Sri, Purnomo Hari, 2010, *Aplikasi Logika Fuzzy untuk Pendukung Keputusan*, Edisi 2, Graha Ilmu, Yogyakarta
- 9. Sutojo T., Mulyanto E., Suhartono V., 2011, *Kecerdasan Buatan*, Penerbit Andi, Yogyakarta

Definisi #1

- Kecerdasan Buatan (Artificial Intelligence) merupakan salah satu Bidang Ilmu Komputer yang mempelajari bagaimana membuat agar mesin (komputer) dapat melakukan pekerjaan seperti manusia.
- Manusia bisa menjadi pandai dalam menyelesaikan permasalahan karena memiliki:
 - pengetahuan
 - kemampuan untuk melakukan penalaran (punya logika) serta
 - kemampuan untuk mengambil kesimpulan berdasarkan pengetahuan yang dimiliki.
- Pengetahuan diperoleh dari belajar. Semakin banyak bekal pengetahuan yang dimiliki oleh seseorang, diharapkan akan lebih mampu dalam menyelesaikan permasalahan.

Definisi #2

- Agar komputer bisa bertindak seperti dan sebaik manusia, maka komputer juga harus diberi bekal pengetahuan, dan mempunyai kemampuan untuk menalar.
- Untuk itu pada artificial intelligence, akan mencoba untuk memberikan beberapa metode untuk membekali komputer dengan kedua komponen tersebut agar komputer bisa menjadi mesin yang pintar.

Problem Solving Human vs Expert System

Human Expert

Gambar 2.1 Human Expert Problem Solving

Expert System

Gambar 2.2 Expert System Problem Solving

Rantai Nilai Data → Pengetahuan

Rantai Nilai Data → Pengetahuan

Contoh rantai nilai → pengetahuan di:

- Sistem Administrasi BAAK
- Sistem Administrasi Perpustakaan
- Sistem Perbankan
- Sistem Rumah Makan Cepat Saji

Pengantar Sistem Pakar

Definisi Sistem Pakar

Sumber	Definisi
Martin dan Oxman (1988)	Sistem berbasis komputer yang menggunakan pengetahuan, fakta, dan teknik penalaran dalam memecahkan masalah, yang biasanya hanya dapat diselesaikan oleh seorang pakar dalam bidang tertentu
Ignizio (1991)	Sistem pakar merupakan bidang yang dicirikan oleh sistem berbasis pengetahuan (<i>Knowledge Base System</i>), memungkinkan komputer dapat berfikir dan mengambil kesimpulan dari kesimpulan kaidah
Turban dan Aronson (2001) Sistem yang menggunakan pengetahuan manusia yang dimasukkan ke dalam komputer untuk memecahkan masalah-masalah yang biasanya diselesaikan oleh paka	
Giarratano dan Riley (2005)	Salah satu cabang kecerdasan buatan yang menggunakan pengetahuan-pengetahuan khusus yang dimiliki oleh seorang ahli untuk menyelesaikan suatu masalah tertentu

Sistem Pakar (Expert System)

- Sistem Pakar (Expert System) adalah sistem yang berusaha mengadopsi pengetahuan manusia (pakar) ke dalam mesin komputer, agar komputer tersebut dapat menyelesaikan masalah seperti yang biasa dilakukan oleh seorang ahli.
- Sistem pakar yang baik dibangun agar dapat menyelesaikan suatu permasalahan tertentu dengan meniru kerja dari seorang ahli.
- Pakar adalah orang yang mempunyai keahlian dalam domain/ bidang tertentu, yaitu pakar yang mempunyai pengetahuan (knowledge) atau kemampuan khusus yang tidak diketahui orang lain yang bukan pakar. Contoh: dokter adalah seorang pakar yang mampu mendiagnosis penyakit yang diderita pasien serta dapat memberikan penatalaksanaan terhadap penyakit tersebut.
- Sistem Pakar mulai dikembangkan pertama kali tahun 1960

Tujuan ES

- Tujuan sistem pakar adalah mentransfer kepakaran yang dimiliki seorang pakar ke dalam komputer, dan kemudian kepada orang lain (expert maupun nonexpert).
- Proses atau aktivitas dalam melakukan rekayasa pengetahuan dapat dilakukan dengan cara:
 - 1. Knowledge Acquisition (Akuisisi Pengetahuan)
 - 2. Knowledge Validation (Validasi Pengetahuan)
 - 3. Knowledge Representation (Representasi Pengetahuan)
 - 4. Knowledge Inferencing (Penalaran Pengetahuan)
 - 5. Knowledge Transfering (Transfer Pengetahuan)

Proses Rekayasa Pengetahuan

 Knowledge Acquisition, yaitu bagaimana memperoleh pengetahuan dari pakar atau sumber lain (sumber terdokumentasi, buku, sensor, file komputer, dll)

Akuisisi pengetahuan dapat dilakukan dengan 3 (tiga) cara:

- Wawancara
- Analisis Protokol, pakar diminta untuk melakukan suatu pekerjaan dan mengungkapkan proses pemikiran dengan menggunakan katakata, selanjutnya direkam, ditulis dan dianalisa
- Observasi pada pekerjaan pakar

Proses Rekayasa Pengetahuan #1

- Knowledge Validation, yaitu untuk menjaga kualitas pengetahuan hasil akuisisi, misalnya dengan melakukan uji kasus
- 3. Knowledge Representation, yaitu bagaimana mengorganisasi pengetahuan yang diperoleh, mengkodekan dan menyimpannya dalam suatu basis pengetahuan
- 4. Knowledge Inferencing, yaitu bagaimana menggunakan mesin inferensi untuk mengakses basis pengetahuan dan kemudian melakukan penyimpulan
- 5. Knowledge Transfering, yaitu pemberian hasil inferensi berupa nasehat, rekomendasi, atau jawaban, kemudian dijelaskan ke pengguna oleh sub sistem penjelas

#1

Pohon Keputusan

- Pohon keputusan adalah representasi dari Tabel Keputusan.
- Tabel Keputusan adalah matriks kondisi yang digunakan dalam mendeskripsikan kaidah/aturan.
- Pohon Keputusan nantinya dapat dikonversi dalam Aturan Produksi.

Tipe pesawat	C420	C4.44	CEA	D747
Atribut	C130	C141	C5A	B747
Tipe mesin	Prop (baling-baling)	Jet	Jet	Jet
Posisi sayap	High	High	High	Low
Bentuk sayap	Conventional	Swept-back (berlekuk ke belakang)	Swept-back	Swept-back
Bentuk ekor	Conventional	T-tail	T-tail	Conventional
Bulges (tonjolan)	Under-wings	Aft wings	None	Aft cockpit

Pohon Keputusan

Pohon Keputusan

Pohon Keputusan Menjadi Kaidah Produksi

Himpunan Kaidah

- Kaidah 1: IF tipe mesin Prop THEN tipe pesawat C130
- Kaidah 2: IF tipe mesin Jet AND posisi sayap Low THEN tipe pesawat B747
- Kaidah 3: IF tipe mesin Jet AND posisi sayap High AND Bulges None THEN tipe pesawat C5A
- Kaidah 4: IF tipe mesin Jet AND posisi sayap High AND Bulges Aft-wings THEN tipe pesawat C141

Proses Rekayasa Pengetahuan #2

- Menjadikan pengetahuan dan nasihat lebih mudah didapat
- Menyimpan kemampuan dan keahlian dari seorang pakar atau lebih
- Membuat seorang yang awam dapat bekerja seperti layaknya seorang pakar
- Dapat bekerja dengan informasi yang kurang lengkap dan mengandung ketidakpastian
- Meningkatkan output dan produktivitas, karena ES:
 - a. dapat bekerja lebih cepat dari manusia, ini berarti mengurangi jumlah pekerja yang dibutuhkan, dan akhirnya dapat mereduksi biaya
 - b. tidak cepat lelah atau bosan,
 - c. konsisten dalam memberi jawaban dan selalu memberikan perhatian penuh (karena ES tidak tergantung *mood*) sehingga dapat mengurangi tingkat kesalahan

Keuntungan Sistem Pakar

- ES dapat melatih pekerja yang tidak berpengalaman sehingga membuat peralatan yang kompleks lebih mudah dioperasikan
- Handal (reliability)
- Memiliki kemampuan untuk memecahkan masalah yang kompleks
- Memungkinkan pemindahan pengetahuan ke lokasi yang jauh serta memperluas jangkauan seorang pakar, dapat diperoleh dan dipakai di mana saja.
- Merupakan arsip yang terpercaya dari sebuah keahlian sehingga user seolah-olah berkonsultasi langsung dengan sang pakar meskipun mungkin sang pakar sudah pensiun.
- Meningkatkan kemampuan untuk menyelesaikan masalah karena Sistem Pakar mengambil sumber pengetahuan dari banyak pakar

Kelemahan Sistem Pakar

- Pembuatan dan pengembangan ES merupakan pekerjaan yang melelahkan dan memerlukan biaya yang besar.
- Untuk ES yang kompleks dibutuhkan waktu yang lama.
- Pengembangan ES sangat sulit karena sulitnya mencari seorang pakar.
- Kadang-kadang pendekatan yang digunakan oleh pakar berbedabeda.
- ES tidak selalu benar sebab itu perlu dilakukan pengujian secara berulang-ulang.
- Jawaban yang diterima tidak selalu benar bila basis pengetahuan yang dibuat tidak akurat atau kurang sempurna.

Alasan mengembangkan Sistem Pakarı

- Dapat menyediakan kepakaran setiap waktu dan di berbagai lokasi
- Secara otomatis mengerjakan tugas-tugas rutin yang membutuhkan seorang pakar
- Seorang pakar akan pensiun atau pergi
- Menghadirkan/menggunakan jasa seorang pakar memerlukan biaya yang mahal
- Kepakaran dibutuhkan pada lingkungan yang tidak bersahabat (hostile environtment). Misalnya: Ketika sang pakar takut bertugas di medan perang, Sistem Pakar dapat diandalkan

Elemen manusia pada Sistem Pakar

- Pakar (expert)
 - Orang yang memiliki pengetahuan khusus, pendapat, pengalaman dan metode, serta kemampuan untuk mengaplikasikan keahliannya tersebut guna menyelesaikan masalah (dalam bidang yang spesifik)
- Pembangun pengetahuan (knowledge engineer)
 Orang yang menerjemahkan pengetahuan seorang pakar dalam bentuk deklaratif sehingga mudah digunakan oleh sistem pakar.
- Pembangun sistem (system engineer)
 Orang yang membuat antarmuka pengguna dan mengimplementasikan bentuk deklaratif yang telah dibuat oleh knowledge engineer ke dalam mesin inferensi
- Pemakai (user)
 Dapat terdiri dari pengelola ES, pemakai bukan pakar, pelajar, pembangun sistem pakar yang ingin meningkatkan dan menambah

basis pengetahuan, dan pakar (sebagai asisten pakar)

Ciri-ciri Sistem Pakar

- Terbatas pada bidang yang spesifik
- Dapat memberikan penalaran untuk data-data yang tidak lengkap atau tidak pasti
- Dapat mengemukakan rangkaian alasan yang diberikannya dengan cara yang dapat dipahami
- Berdasarkan pada rule atau kaidah tertentu
- Dirancang untuk dapat dikembangkan secara bertahap
- Outputnya bersifat nasihat atau anjuran
- Output tergantung pada dialog dengan user
- Basis Pengetahuan (Knowledge base) dan inference enginee (otak dari ES yang berfungsi mencari solusi permasalahan) terpisah

Area permasalahan yang dapat diselesaikan Sistem Pakar #1

- Diagnosis, sistem pakar ini misalnya digunakan untuk memberikan rekomendasi obat kepada seorang pasien, penanganan kerusakan mesin, kerusakan rangkaian elektronika, dll. Prinsipnya adalah menemukan masalah/kerusakan yang terjadi kemudian memberikan rekomendasi. Contoh ES: MYCIN, VM
- Pengajaran, sistem pakar ini digunakan untuk mendukung proses pengajaran dan dapat mendiagnosa apa penyebab kegagalan, kekurangan, dari seorang peserta didik, kemudian memberikan cara untuk memperbaikinya

Area permasalahan yang dapat diselesaikan Sistem Pakar #1

- Interprestasi, digunakan untuk menganalisa data yang tidak lengkap, tidak teratur dan data yang kontradiktif berdasarkan hasil pengamatan.
 Misalnya: ES untuk interpretasi citra, pemetaan data GPS menjadi sebuah peta. Contoh ES: PROSPECTOR, MUD
- Proyeksi, ES jenis ini dapat digunakan untuk memprediksi/ memproyeksikan kemungkinan/akibat-akibat ke depan dari situasi-situasi tertentu. Misalnya: ES untuk peramalan kemungkinan gempa, cuaca, saham, penentuan masa tanam. Contoh ES: FOLIO
- Perencanaan, ES jenis ini digunakan untuk melakukan perencanaan, misalnya perencanaan mesin-mesin sampai dengan manajemen bisnis. Penggunaan ES ini dapat menghemat biaya, waktu dan material, sebab pembuatan model tidak dibutuhkan lagi. Misalnya: ES untuk konfigurasi komputer, tata letak sirkuit (dengan menentukan komponen-komponen yang paling optimal digunakan, dll. Contoh ES: EURIKSO

Area permasalahan yang dapat diselesaikan Sistem Pakar #1

Aplikasi Sistem Pakar

	4
TT	

BIDANG	NAMA	FUNGSI
CRYSAL		Menginterpretasi struktur 3-D suatu protein
Kimia	DENDRAL	Menganalisis struktur molekul suatu senyawa
SPEX		Merencanakan eksperimen biologi melekul
	EURIKSO	Merancang microelektronik 3-D
Elektronika	SOOPHIE	Mendiagnosa kesalahan sirkuit
	ACE	Mendiagnosa kegagalan jaringan telepon
	MYCIN	Mendiagnosa penyakit infeksi bacterial pada darah
Medis	VM	Memonitor pasien gawat darurat
	ONCOCIN	Membantu pengobatan dan penanganan pasien dengan kemoterapi

Aplikasi Sistem Pakar

Ħ	2
ш	

Contoh Peramalan Saham

Kemampuan Seorang Pakar

- Dapat mengenali (recognizing) dan merumuskan masalah
- Menyelesaikan masalah dengan cepat dan tepat
- Menjelaskan solusi
- Belajar dari pengalaman
- Restrukturisasi pengetahuan
- Menentukan relevansi/hubungan
- Memahami batas kemampuan

Ahli Pakar Vs Sistem Pakar

Ahli Pakar Vs Sistem Pakar

Faktor	Ahli Pakar	Sistem Pakar
Pergantian (waktu)	Sulit digantikan dengan kualitas yang sama (jika seorang pakar meninggal, akan sulit untuk mencari pakar dengan kualitas yang setara) umur mempengaruhi	Mudah digantikan atau diduplikasikan/direplikasi, tidak terpaku pada umur
Portable	Tidak portable (tidak mobile)	Portable, dapat diakses dari manapun (<i>online</i>)
Fleksibilitas Waktu	Terbatas waktu (misalnya tengah malam)	Tidak terbatas waktu, kapanpun bisa diakses

Sistem Konvensional Vs ES

Sistem Konvensional	Sistem Pakar
Informasi dan pemrosesan umumnya digabung dengan satu program sequensial	Knowledge base terpisah dari mekanisme pemrosesan (inference)
Program tidak pernah salah (kecuali programnya yang salah)	Program bisa saja melakukan kesalahan
Tidak menjelaskan mengapa input dibutuhkan atau bagaimana hasil diperoleh	Penjelasan (<i>explanation</i>) merupakan bagian dari ES
Membutuhkan semua input data	Tidak harus membutuhkan semua input data atau fakta
Perubahan pada program merepotkan	Perubahan pada <i>rules</i> dapat dilakukan dengan mudah
Sistem bekerja jika sudah lengkap	Sistem dapat bekerja hanya dengan <i>rules</i> yang sedikit

Sistem Konvensional Vs ES

Sistem Konvensional	Sistem Pakar
Eksekusi secara algoritmit (step-by-step)	Eksekusi dilakukan secara <i>heuristik</i> (berdasarkan panduan/ <i>rules</i>) dan logik
Manipulasi efektif pada database yang besar	Manipulasi efektif pada <i>knowledge-base</i> yang besar
Efisiensi adalah tujuan utama	Efektivitas adalah tujuan utama
Lebih banyak data kuantitatif	Lebih banyak data kualitatif
Representasi data dalam numerik	Representasi pengetahuan dalam simbolik
Menangkap, menambah dan mendistribusikan data numerik atau informasi	Menangkap, menambah, dan mendistribusikan pertimbangan (<i>judgment</i>) dan pengetahuan
Yang diproses adalah data	Yang diproses adalah <i>pengetahuan</i>