2015-2016学年第一学期期末试题

	业 权 晒	(本大颢共5	小、町	后 小 晒 2	\triangle	# 15	4
一、	1九/全訳	(4 人 秋 共 5	717起,	3世/17課3	/π`.	、共工5	カ)

1.	设A为3×3矩阵,	且 $ A = -2$, 把 A 按列	分块为 $A = (A_1, A_2, A_3)$	μ_3), 其中 A_j ($j = 1, 2, 3$)				
	为 A 的第 j 列,则行列式 $ A_3-2A_1,3A_2,A_1 =()$.							
	(A) -6	(B) -12	(C) 6	(D) 12				

2. 设方阵 A 可逆, 且 AB = BA, 则下列等式未必成立的是().

(A) $A^2B = BA^2$ (B) $A^TB = BA^T$ (C) $A^{-1}B = BA^{-1}$ (D) $A^*B = BA^*$

3. 向量组线性无关的充分必要条件是().

- (A) 向量组中至少有一个部分组(非向量组本身)线性无关
- (B) 向量组中的任何一个部分组(非向量组本身)均线性无关
- (C) 向量组中至少有一个向量不能由其余的向量线性表示
- (D) 向量组中的任何一个向量均不能由其余的向量线性表示

4. 设向量组
$$\alpha_1, \alpha_2, \dots, \alpha_s$$
 与向量组 $\beta_1, \beta_2, \dots, \beta_t$ 可以相互线性表示,且 $r(\alpha_1, \alpha_2, \dots, \alpha_s) = r_1, r(\beta_1, \beta_2, \dots, \beta_t) = r_2, r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_t) = r_3, 则 ().$ (A) $r_1 = r_2 = r_3$ (B) $r_1 = r_2 < r_3$ (C) $r_1 + r_2 = r_3$ (D) $r_1 + r_2 < r_3$

5. 如果 $m \times n$ 非齐次线性方程组 AX = b 有唯一解,则().

(A) r(A) = m (B) r(A) < m (C) r(A) = n (D) r(A) < n

二、填空题(本大题共5小题,每小题3分,共15分,把答案填在题中的横线上)

2. 设方阵 A 满足 $A^2 - A - 3E = 0$, 其中 E 为单位矩阵, 则 $(A + E)^{-1} =$ ______.

- **3.** 设向量组 α_1 = (1,2,1), α_2 = (2,3,1), α_3 = (a,b,0) 线性相关, 则实数 a,b 满足的关系式为
- **5.** 设 A 是秩为 3 的 5×4 矩阵, α_1 , α_2 , α_3 是非齐次线性方程组 Ax = b 的三个不同的解, 若 $\alpha_1 + \alpha_2 + 2\alpha_3 = (2,0,0,0)^T$, $3\alpha_1 + \alpha_2 = (2,4,6,8)^T$, 则非齐次线性方程组 Ax = b 的通解是
- 三、解答题(本大题共5小题,每题12分,共60分.解答应写出推理,演算步骤)

1. 求行列式
$$D = \begin{vmatrix} 2 & 1 & 8 & 1 \\ 1 & -3 & 9 & -6 \\ 0 & 2 & -5 & 2 \\ 1 & 4 & 0 & 6 \end{vmatrix}$$
 的值。

2. 求矩阵
$$A = \begin{pmatrix} 1 & -1 & 9 & 11 \\ 0 & 1 & -5 & -3 \\ 2 & 6 & -21 & -4 \\ -1 & -3 & 11 & 2 \end{pmatrix}$$
的逆矩阵。

3. 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 6 \\ 1 & 6 & 1 \end{pmatrix}$$
 满足 $AX + E = X + A^3$, 求矩阵 X 。

- **4.** 设向量组: $\alpha_1 = (-1, 1, -1, 3)$, $\alpha_2 = (5, -2, 8, -9)$, $\alpha_3 = (1, 1, 3, 1)$, $\alpha_4 = (-1, 3, 1, 7)$
 - (1) 求该向量组的秩及一个极大线性无关向量组;
 - (2)将其余向量用该极大线性无关向量组线性表示。
- 5. 当 a 为何值时, 线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 7 \\ x_1 + 2x_2 + 3x_3 + 3x_4 + 7x_5 = 30 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = a \\ 4x_1 + 3x_2 - 4x_3 + 2x_4 - 2x_5 = 5 \end{cases}$$

无解或有解;并在有解的情况下,求出其通解。

四、证明题(本大题10分,解答应写出推理步骤)

1. 设 n 阶方阵 A 、 B 及 A+B 均可逆, 证明 $A^{-1}+B^{-1}$ 也可逆, 并求其逆矩阵。