Student Number: 20053722 Name: Bryan Hoang

5. Answer:

Proof. For $n \in \mathbb{Z}_{\geq 1}$, let $A_n = \{X < s_n\}$. Since $\{s_n : n \in \mathbb{Z}_{\geq 1}\}$ is an increasing sequence, then it follows that $\{A_n : n \in \mathbb{Z}_{\geq 1}\}$ is an increasing sequence of events.

$$\underline{\text{Claim:}} \cup_{n=1}^{\infty} A_n = \{X < s\}$$

Proof. For some $x \in \bigcup_{n=1}^{\infty} A_n$, then $\exists n \in \mathbb{Z}_{\geq 1}$ such that $x < s_n$. But we also have $s_n < s$, which implies that x < s, and so $x \in \{X < s\}$

For some $x \in \{X < s\}$, then $x < s \Rightarrow s - x > 0$. Let $\varepsilon = s - x$. Since $s = \lim_{n \to \infty} s_n$, then $\exists N \in \mathbb{Z}_{\geq 1}$ such that $|s - s_N| < \varepsilon$. Then $x < s_N$, so $x \in \bigcup_{n=1}^{\infty} A_n$

It follows that

$$\lim_{n \to \infty} F(s_n) = \lim_{n \to \infty} P(X \le s_n)$$

$$= \lim_{n \to \infty} P(A_n)$$

$$= P(\lim_{n \to \infty} A_n) \qquad \text{by the continuity of probability}$$

$$= P(X < s) \qquad \text{by the previous claim}$$