CSC236 Homework Assignment #2

Induction Proofs on Program Correctness and Recurrences

Alexander He Meng

Prepared for October 28, 2024

Consider the following program from pg. 53-54 of the course textbook:

```
def avg(A):
      0.000
2
3
      Pre: A is a non-empty list
      Post: Returns the average of the numbers in A
5
6
      sum = 0
7
      while i < len(A):
8
           sum += A[i]
9
10
           i += 1
      return sum / len(A)
11
12
13 print(avg([1, 2, 3, 4])) # Example usage
```

Denote the predicate:

$$Q(j)$$
: At the beginning of the j^{th} iteration, $\operatorname{sum}_j = \sum_{k=0}^{i_j-1} A[k]$.

Claim:

$$\forall j \in \{1, \dots, len(A)\}, Q(j)$$

Proof.

This proof leverages the Principle of Simple Induction.

Base Case:

Let
$$j = 1$$
.

At the beginning of the 1st iteration, $sum_1 = 0$ and $i_1 = 0$.

It follows that

$$\operatorname{sum}_1 = \sum_{k=0}^{i_1-1} A[k] = \sum_{k=0}^{0-1} A[k] = \sum_{k=0}^{-1} A[k] = 0.$$

Hence, Q(1).

Induction Hypothesis:

Assume for some iteration $m \in \{1, ..., len(A) - 1\}, Q(m)$.

Namely, for the $m^{\rm th}$ iteration,

$$\operatorname{sum}_m = \sum_{k=0}^{i_m-1} A[k].$$

Induction Step:

Proceed to show Q(m+1):

Notice that $sum_{m+1} = sum_m + A[i_{m+1}]$, by Line 9 of the program.

By the Induction Hypothesis,

$$\operatorname{sum}_m + A[i_{m+1}] = \sum_{k=0}^{i_m-1} A[k] + A[i_{m+1}],$$

and by Line 10 of the program, $i_{m+1} = i_m + 1$;

$$\sum_{k=0}^{i_m-1} A[k] + A[i_{m+1}] = \sum_{k=0}^{i_{m+1}-1} A[k].$$

Thus,

$$\mathrm{sum}_{m+1} = \sum_{k=0}^{i_{m+1}-1} A[k]$$

as needed.

Therefore, by the Principle of Simple Induction, Q(j) holds for all $j \in \{1, \dots, len(A)\}$.

Recall Q(j) from Question # 1:

$$Q(j)$$
: At the beginning of the j^{th} iteration, $\operatorname{sum}_j = \sum_{k=0}^{i_j-1} A[k]$.

Denote the following predicate:

$$Q'(n): 0 \le n < len(A) \implies Q(n+1)$$

Claim:

Proving $\forall j \in \{1, \dots, len(A)\}, Q(j)$ is equivalent to proving $\forall n \in \mathbb{N}, Q'(n)$.

Proof.

Remarks

It is sufficient to show that $\forall j \in \{1, ..., len(A)\}, Q(j) \iff \forall n \in \mathbb{N}, Q'(n)$, to show that proving one of these statements is equivalent to proving the other.

$$\frac{(\forall j \in \{1, \dots, len(A)\}, Q(j)) \implies (\forall n \in \mathbb{N}, Q'(n)):}{\text{Suppose } \forall j \in \{1, \dots, len(A)\}, Q(j).}$$

Then, fix $n \in \mathbb{N}$ and suppose $0 \le n < len(A)$.

Because $n \in \{0, ..., len(A) - 1\}$, it follows that $(n + 1) \in \{1, ..., len(A)\}$.

By assumption, Q(n+1).

Thus, $\forall n \in \mathbb{N}, Q'(n)$.

$$\frac{(\forall j \in \{1, \dots, len(A)\}, Q(j)) \iff (\forall n \in \mathbb{N}, Q'(n)):}{\text{Suppose } \forall n \in \mathbb{N}, Q'(n).}$$

Let
$$j \in \{1, \dots, len(A)\}.$$

Then, $(j-1) \in \mathbb{N}$.

It follows that $0 \le j - 1 \le len(A) - 1$.

Since $len(A) - 1 < len(A), 0 \le j - 1 < len(A)$.

By assumption, Q((j-1)+1).

Thus, $\forall j \in \{1, \dots, len(A)\}, Q(j)$.

Conclusion:

Therefore, $\forall j \in \{1, ..., len(A)\}, Q(j) \iff \forall j \in \mathbb{N}, Q'(n).$

As follows below, Q6-Q10 respectively represent questions 6 through 10 from pp. 64-66 of the course textbook.

Q6:

Consider the following code:

```
def f(x):
    """Pre: x is a natural number"""
    a = x
    y = 10
    while a > 0:
        a -= y
        y -= 1
    return a * y
```

(a): Loop Invariant Which Characterizes a and y:

For arbitrary natural n...

Let
$$i_1 = 0$$
 and $i_n = i_{n-1} + 1$.

Let y_n be the value of y before the (n+1)th iteration. By Line 4 (initializes y=10) and Line 7 (decrements y by 1) of the program, $y_n=10-\sum_{q=1}^n 1=10-n\times 1=10-n$. Denote the loop invariant:

$$P(j): (a_j = x - \sum_{k=0}^{i_j-1} y_k) \land (y_j = 10 - j)$$

For example, before the 1st iteration, $a_1 = x - \sum_{k=0}^{i_1-1} y_k = x - \sum_{k=0}^{0-1} y_k = x - 0 = x$.

Before the 2nd iteration, $a_2 = x - \sum_{k=0}^{i_2-1} y_k = x - \sum_{k=0}^{1-1} y_k = x - y_0 = x - 10$.

(b): Why This Function Fails to Terminate

Suppose $x > \sum_{k=1}^{10} k = 55$.

By P(j), before the 11th iteration, $a_{11} = x - \sum_{k=0}^{i_{11}-1} y_k = x - \sum_{k=0}^{10-1} y_k = x - \sum_{k=0}^{9} (10-k) = x - \sum_{k=0}^{9} (10-k)$

$$x - \left[10\sum_{k=0}^{9}(1) - \sum_{k=0}^{9}(k)\right] = x - \left[10(10) - \frac{9(9+1)}{2}\right] = x - \left[100 - 45\right] = x - 55.$$

Since x > 55, it follows that $a_{11} = x - 55 > 0$.

As well, y_{10} (the value of y after the 11th iteration) is 10 - 11 = -1.

Notice that in all subsequent iterations, a will decrement by $y_n < 0|_{n \ge 11}$ (where n is the iteration number of the corresponding iteration).

Since a decrements by a negative number subsequently, the loop causes a to grow large, thereby retaining a > 0.

Thus, the function fails to terminate for x > 55 (because $\neg(a > 0)$ is never satisfied).

Q7:

(a) Consider the recursive program below:

```
def exp_rec(a, b):
2
      if b == 0:
3
          return 1
      else if b \mod 2 == 0:
4
          x = exp_rec(a, b / 2)
5
6
          return x * x
7
      else:
8
          x = \exp_{rec}(a, (b - 1) / 2)
9
          return x * x * a
```

Preconditions:

$$(b \in \mathbb{N}) \wedge (a \neq 0)$$

Postconditions:

Returns a^b .

Denote the following predicate:

P(b): The program returns a^b .

Claim: $\forall b \in \mathbb{N}, P(b)$

Proof.

This proof explores the Principle of Complete Induction on b.

Fix $a \neq 0$.

Base Case:

Let b = 0.

Then, by Lines 2-3 of the program, the program returns $1 = a^0 = a^b$.

Hence, P(0).

Induction Hypothesis:

Assume for some $k \in \mathbb{N}$ and for all $l \in [0, k] \cap \mathbb{N}$, P(l).

This means the program returns a^l for every l as described.

Induction Step:

Proceed to show P(k+1) with case analysis:

Case 1 - Suppose $(k+1) \pmod{2} \not\equiv 0$:

Then, program again enters the else statement in Line 7.

Here, the program sets x to $\exp_{e}(a, (k + 1) - 1) / 2)$.

Notice that $\exp_{ca}((k + 1) - 1) / 2) = \exp_{ca}((k / 2)).$

Since $(k+1) \pmod{2} \not\equiv 0$, it must be that $k \pmod{2} \equiv 0$.

Thus, $\frac{k}{2} \in \mathbb{N}$ and $\frac{k}{2} < k$.

By the Induction Hypothesis, exp_rec(a, k / 2) returns $a^{\frac{k}{2}}$.

Finally, the original function call returns $x \times x \times a$, which evaluates to $a^{\frac{k}{2}} \times a^{\frac{k}{2}} \times a = a^{\frac{k}{2} + \frac{k}{2} + 1} = a^{k+1}$, as needed.

Thus, P(k+1) holds.

Case 2 - Suppose $(k+1) \pmod{2} \equiv 0$:

Then, the program reaches $Line\ 5$ and sets x to exp_rec(a, (k + 1) / 2).

Notice that $\frac{k+1}{2} \in \mathbb{N}$ and $\frac{k+1}{2} \le k$.

By the Induction Hypothesis, exp_rec(a, (k + 1) / 2) returns $a^{\frac{k+1}{2}}$.

Finally, the original function call returns $x \times x$, evaluating to $a^{\frac{k+1}{2}} \times a^{\frac{k+1}{2}} = a^{\frac{k+1}{2} + \frac{k+1}{2}} = a^{k+1}$, as needed.

Thus, P(k + 1) holds.

Conclusion:

Therefore, P(k+1) holds in all cases.

By the Principle of Complete Induction, $\forall b \in \mathbb{N}, P(b)$.

(b) Consider the iterative version of the previous program:

```
1 def exp_iter(a, b):
2    ans = 1
```

```
3    mult = a
4    exp = b
5    while exp > 0:
6         if exp mod 2 == 1:
7             ans *= mult
8         mult = mult * mult
9         exp = exp // 2
10    return ans
```

Preconditions:

$$(b \in \mathbb{N}) \wedge (a \neq 0)$$

Postconditions:

Returns a^b .

Denote the following predicate:

$$P(i): a^b = \mathtt{mult}_i^{\texttt{exp}_i} \times \mathtt{ans}_i$$

<u>Claim:</u> $(\forall b \in \mathbb{N})(\forall i \in [0, b] \cap \mathbb{N})(P(i))$ and the program terminates.

Proof.

Loop Invariant Proof:

To prove the loop invariant, this proof explores the Principle of Simple Induction on i.

Base Case:

Fix $b \in \mathbb{N}$. Let i = 0.

Then, the program retains the values $\operatorname{mult}_0 = a$, $\exp_0 = b$, and $\operatorname{ans}_0 = 1$, and does not enter the loop.

Notice that $a^b = a^b \times 1 = \text{mult}_0^{\exp_0} \times \text{ans}_0$.

Hence, P(0).

Induction Hypothesis:

Assume for some $k \in \mathbb{N}, P(k)$;

$$P(k): (a^b = \operatorname{mult}_k^{\exp_k} \times \operatorname{ans}_k).$$

Induction Step:

Suppose $\exp_{k+1} > 0$, so the following iteration runs.

Then, the program yields the following values:

$$\begin{cases} \operatorname{mult}_{k+1} = \operatorname{mult}_k \times \operatorname{mult}_k = \operatorname{mult}_k^2, & \text{by } Line \ 8 \\ \exp_{k+1} = \left| \frac{\exp_k}{2} \right|, & \text{by } Line \ 9 \end{cases}$$

 $\text{Notice that } \mathtt{mult}_{k+1}^{ \textbf{exp}_{k+1}} = (\mathtt{mult}_k^2)^{\lfloor \frac{\mathtt{exp}_k}{2} \rfloor} = \mathtt{mult}_k^{2 \lfloor \frac{\mathtt{exp}_k}{2} \rfloor}.$

Proceed to show P(k+1) with case analysis:

Case 1 - Suppose $exp_k \pmod{2} \equiv 1$:

By Lines 6-7 of the program, $ans_{k+1} = ans_k \times mult_k$.

$$\mathrm{So},\,(\mathtt{mult}_{k+1}^{\exp_{k+1}})\times(\mathtt{ans}_{k+1})=(\mathtt{mult}_{k}^{2\lfloor\frac{\exp_{k}}{2}\rfloor})\times(\mathtt{ans}_{k}\times\mathtt{mult}_{k}).$$

Since $\exp_k(\text{mod }2) \equiv 1$, it follows that $2\lfloor \frac{\exp_k}{2} \rfloor = 2(\frac{\exp_k-1}{2}) = \exp_k - 1$.

Thus,

$$\begin{split} (\mathtt{mult}_k^{2\lfloor\frac{\exp_k}{2}\rfloor}) \times (\mathtt{ans}_k \times \mathtt{mult}_k) &= (\mathtt{mult}_k^{\exp_k-1}) \times (\mathtt{mult}_k \times \mathtt{ans}_k) \\ &= \mathtt{mult}_k^{\exp_k-1} \times \mathtt{mult}_k \times \mathtt{ans}_k \\ &= (\mathtt{mult}_k^{\exp_k-1} \times \mathtt{mult}_k) \times \mathtt{ans}_k \\ &= (\mathtt{mult}_k^{(\exp_k-1)+1}) \times \mathtt{ans}_k \\ &= \mathtt{mult}_k^{\exp_k} \times \mathtt{ans}_k \\ &= a^b. \end{split}$$

by the Induction Hypothesis.

Therefore,
$$(\operatorname{mult}_{k+1}^{\operatorname{exp}_{k+1}}) \times (\operatorname{ans}_{k+1}) = a^b$$
; $P(k+1)$ holds.

Case 2 - Suppose $exp_k \pmod{2} \not\equiv 1$:

By Line 6 of the program, Line 7 does not run.

Hence, ans_{k+1} retains the value as represented by ans_k ; $ans_{k+1} = ans_k$.

$$\mathrm{So},\,(\mathtt{mult}_{k+1}^{\exp_{k+1}})\times(\mathtt{ans}_{k+1})=(\mathtt{mult}_{k}^{2\lfloor\frac{\exp_{k}}{2}\rfloor})\times\mathtt{ans}_{k}.$$

Notice that $\exp_k(\text{mod } 2) \not\equiv 1 \iff \exp_k(\text{mod } 2) \equiv 0$.

So,
$$2\lfloor \frac{\exp_k}{2} \rfloor = 2(\frac{\exp_k}{2}) = \exp_k$$
.

Then, it follows that $(\operatorname{mult}_k^{2\lfloor \frac{\exp_k}{2} \rfloor}) \times \operatorname{ans}_k = (\operatorname{mult}_k^{\exp_k}) \times \operatorname{ans}_k = a^b$, by the Induction Hypothesis.

Still,
$$(\operatorname{mult}_{k+1}^{\exp_{k+1}}) \times (\operatorname{ans}_{k+1}) = a^b$$
; $P(k+1)$ likewise holds.

Conclusion of Loop Invariant:

Collectively, P(k+1) holds in all cases.

By the Principle of Simple Induction, $(\forall b \in \mathbb{N})(\forall i \in [0, b] \cap \mathbb{N})(P(i))$.

Program Termination Proof

Notice that Line 9 of the program performs floor division by 2 on exp in each iteration.

From continual division, exp eventually becomes small enough that it reaches 0 through the next floor division by 2.

Since the program's loop requires exp > 0 to run, having exp reach 0 indeed terminates the loop.

Conclusion:

Therefore, this program is both correct (by the loop invariant) and terminates.

 $\mathbf{Q8}$

Consider the following linear time program:

```
def majority(A):
            0.00
 2
 3
            Pre: A is a list with more than half its entries equal to \boldsymbol{x}
            Post: Returns the majority element x
 4
            0.00
 5
 6
            c = 1
            m = A[O]
 8
            i = 1
 9
            while i <= len(a) - 1:
                if c == 0:
10
11
                     m = A[i]
12
                     c = 1
13
                 else if A[i] == m:
                     c += 1
14
15
                 else:
16
                     c -= 1
17
                 i += 1
18
            return m
```

Denote the following predicate:

P(n): somethinghere

Claim: expresshowthisiscorrect

Proof.

wordsgohere

Q9

Consider the bubblesort algorithm as follows:

```
def bubblesort(L):
1
           0.00
2
3
           Pre: L is a list of numbers
           Post: L is sorted
4
5
6
           k = 0
7
           while k < len(L):
8
                i = 0
9
                while i < len(L) - k - 1:
10
                    if L[i] > L[i + 1]:
                         swap L[i] and L[i + 1]
11
12
                    i += 1
13
                k += 1
```

(a): Denote the inner loop's invariant:

P(n): somethinghere

Claim: proveinnerloop

Proof.

wordsgohere

(b): Denote the outer loop's invariant:

P(n): somethinghere

Claim: proveouterloop

Page 14

Proof.

wordsgohere

(c): Denote the following predicate:

P(n): somethinghere

Claim: expresshowthisiscorrect

Proof.

wordsgohere

Q10

Consider the following generalization of the min function:

```
def extract(A, k):
2
          pivot = A[0]
          # Use partition from quicksort
3
          L, G = partition(A[1, ..., len(A) - 1], pivot)
          if len(L) == k - 1:
5
               return pivot
7
          else if len(L) >= k:
8
               return extract(L, k)
9
          else:
10
               return extract(G, k - len(L) - 1)
```

(a): Proof of Correctness

P(n): somethinghere

Claim: proofofcorrectnessclaim

Proof.

wordsgohere

(b): Worst-Case Runtime wordsgohere

As follows below, VI, VII, X, XII, and XIV respectively represent questions 6, 7, 10, 12, and 14 from pp. 46-48 of the course textbook.

VI

Let T(n) be the number of binary strings of length n in which there are no consecutive 1's. So, T(0) = 1, T(1) = 2, T(2) = 3, ..., etc.

(a): Recurrence for T(n):

recurrencehere

(b): Closed Form Expression for T(n):

closedformhere

(c): Proof of Correctness of Closed Form Expression Denote the following predicate:

P(n): somethinghere

Claim: expresshowthisiscorrect

Proof.

wordsgohere

VII

Let T(n) denote the number of distinct full binary trees with n nodes. For example, T(1) = 1, T(3) = 1, and T(7) = 5. Note that every full binary tree has an odd number of nodes.

Recurrence for T(n):

recurrencehere

P(n): somethinghere

<u>Claim:</u> $T(n) \ge (\frac{1}{n})(2)^{(n-1)/2}$

Proof.

wordsgohere

 \mathbf{X}

A *block* in a binary string is a maximal substring consisting of the same symbol. For example, the string 0100011 has four blocks: 0, 1, 000, and 11. Let H(n) denote the number of binary strings of length n that have no odd length blocks of 1's. For example, H(4) = 5:

0000 1100 0110 0011 1111

Recursive Function for H(n):

P(n): somethinghere

Claim: proveouterloop

Proof.

wordsgohere

Closed Form for H (Using Repeated Substitution):

XII

Consider the following function:

```
def fast_rec_mult(x, y):
    n = length of x # Assume x and y have the same length
    if n == 1:
        return x * y
else:
        a = x // 10^(n // 2)
```

Worst-Case Runtime Analysis:

wordsgohere

XIV

Recall the recurrence for the worst-case runtime of quicksort:

$$\begin{cases} c, & \text{if } n \leq 1; \\ T(|L|) + T(|G|) + dn, & \text{if } n > 1. \end{cases}$$

where L and G are the partitions of the list.

For simplicity, ignore that each list has size $\frac{n-1}{2}$.

(a): Assume the lists are always evenly split; that is, $|L| = |G| = \frac{n}{2}$ at each recursive call.

Tight Asymptotic Bound on the Runtime of Quicksort:

determinehere

(b): Assume the lists are always very unevenly split; that is, |L| = n - 2 and |G| = 1 at each recursive call.

Tight Asymptotic Bound on the Runtime of Quicksort:

determinehere