Método del alias:			
m = m. k;	n la pices	de k	colores diferen
		-	- De rlajsias
m egjas			
20 la por, 4 volor	L; amar		, 0
A : 6 A : 4		C: 2 C: 0	·
	0 0	0 0 0 0 0 0	
P(X,=c)=1/2 P(X,	=A)=1/5		

X: una variable discreta que toma finites valores_ Xed 1, 2, 3, 43 p=0.1 pz=0.2 pz=0.3 pz=04 M= mimero de valores que toma la variable M= 4 M-1=3 Existe un j $p_j < \frac{1}{m-1}$ $(p_j < \frac{1}{3})$ De la contrario, $p_j \ge \frac{1}{m-1} = \frac{m}{m-1} > 1$ Para ese j; existe un i+j pi+pj > 1/m-1 $1-p=\sum_{i\neq j}p_i\left(x\left(m-1\right)\left(1-p_i\right)=1-\left(m-1\right)p_j\left(m-1\right)$

El metodo mais facil. 1) Multiplicamos todas las probabilidades por (m-1) = 3 $(n-1) \cdot pi$ (0.3) 0.6 0.9 (1-2)2) Beiscamos (n-1) p. < 1 ; p= 0.3 3) Buscomos (m-1)-p: \ (m-1)p: + (m-1)p: > 1 P:=1.2 4) $X_1 = 1$ Con p = 0.34 con p=0.7

Repetimos 1 2 3 4

0 0.6 0.9 0.5 Sumo 2

2. p.

$$2 \cdot p_{1}$$
 $2 \cdot p_{2}$
 $2 \cdot p_{3}$

Repetimos 1 2 3 4

 $2 \cdot p_{3}$
 $2 \cdot p_{4}$
 $2 \cdot p_{5}$
 2

Estos fueron los pasos pasa construir les (n-1) Bernoullis. X_1 , X_2 , X_3

El algoritmo: Jef AliasX():

I = rint (nandom () * 3) + 1 return X

$$P(X=2) = \frac{1}{3} P(X_1=2) + \frac{1}{3} P(X_2=2) + \frac{1}{3} P(X_3=2)$$

$$= \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{10}$$

$$= \frac{1}{3} \cdot \frac{6}{10} = 0, 2$$

generación de variables continuas

Metodo de la transformada inverse

de aceptación y rechaza.

Método de la transformade inversa

X: una v.a. absolutamente continua,

F(x) = P(X \(\frac{1}{2}\) : distribución acumulada; función continue

0 = F(x) = 1.

$$F(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x \geq 2 \end{cases}$$

$$1 & \text{if } x \geq 2$$

$$\frac{x^2}{x^2} - x + 0 = 0$$

Resolvemos la ecuación cuadratica:

$$2e = \frac{1 + \sqrt{1 - U}}{1/2}$$

$$= 2(1+\sqrt{1-0})$$
 $= 2(1-\sqrt{1-0})$

$$z = \frac{1 - \sqrt{1 - \nu}}{\sqrt{2}}$$

$$= 2 \left(1 - \sqrt{1-0} \right)$$

Algori-Imo:

def TInversa X ():

U=nandom ()

return 2 * (1 - sgrt (U)

Ejemplo: General X con densidad:
$$f(x) = \begin{cases} 0.25 & 0 \le x \le 2 \\ 0.5 & 2 < x < 3 \end{cases}$$
of the original of the case of t

1) Calcularmo F.

$$F(x) = \begin{cases}
0 & 4x' & 2 \le 0 \\
0.15z & xi & 0 < x \le 2 \\
0.5 + \int_{0.5}^{0.5} dt = 0.5(1 + x - 2) = 0.5x - 0.5
\end{cases}$$
1 $x \ge 3$

$$U = 0.25 \times$$

$$x = 40$$

$$U = \frac{2-1}{2}$$
; $z = 2U + 1$

 $F(x) = x^2$; $0 \le x \le 1;$ Gjernplo: en otro caso. Em este caso $U = x^2 = sgrt(U)$ Otra forma de generar X con distribución F es pensar $F(x) = x \cdot x = F_1(x) F_2(x)$ Fi: accemulada de Vi n U(0,1). $F_1(z) \cdot F_2(z) = P(U_1 \leq z) \cdot P(U_2 \leq z)$, if $U_1 \neq U_2$ son (ndependients = P(U, < 2 y U2 < 2) = P(ma'x { U, U, C, Ex)

Dishibución exponencial
$$\times \sim \mathcal{E}(\lambda)$$

Si $\lambda=1$; $F(x)=\int_0^x e^{-t} dt=1-e^{-x}$

Para λ en general: $F_{\lambda}(\lambda)=1-e^{-\lambda}$

Para general $\times \sim \mathcal{E}(\lambda)$; $F(\lambda)=1-e^{-\lambda}=0$
 $\lambda = \frac{1}{2}$
 $\lambda = \frac{1}{2}$

Si X N E(Z); podemos penson $X = \frac{1}{Z} Y$; donde Y N E(I)o tambien: F₂(n) = 1-e^{-1x} = U e-2x = 1-0 -2x = en (1-U) $x = -\frac{1}{2}lm\left(1-U\right)$ def exp(L): Algoritmo. return - log (1- nandom ())/L

Distribución de Poisson

lina estrategia es generar X, X, X, ..., Xn hosta que X1+ X2+---- + Xm = 1 y X3+ X2+...+ Xm+ Xm+ >1 n: es un valor de XN P(2) X = max { n | X1 + X2 + + Xn \leq 1 } = X: ~ - 1 ln (1-Ui) 1 & i \independientes $= ma'v / m / - 1 (ln(1-U_1) + ln(1-U_2) + ... + ln(1-U_n)) \le 1$