Szarlotka

Letni obóz treningowy OIJ, dzień 1.

17 sierpnia 2020

Babcia Bitka, Bajtyna, robi najlepszą na świecie szarlotkę (przynajmniej według Bitka). Bitek poprosił ją o przepis i zebrał już wszystkie składniki, poza najważniejszym – jabłkami. Bitek ma w swoim sadzie N drzew ustawionych w jednej linii i ponumerowane kolejno od 1 do N. Na każdej jabłonce znajduje się dokładnie jedno jabłko, ale każde jest z innego gatunku. Na drzewie o numerze i znajduje się jabłko o poziomie słodkości równym A_i , przy czym niektóre jabłka mogą bardzo kwaśne i mogą mieć ujemny poziom słodkości. Do szarlotki babci Bajtyny potrzebne są jabłka, które sumarycznie będą dawać poziom słodkości równy K. Bitek zdecydował że wybierze sobie **niepusty**, **spójny** podciąg drzew (bez dziur) i zbierze z nich wszystkie jabłka, tak aby suma poziomów słodkości S tych jabłek była jak najbliższa K, tj. tak aby wyrażenie |S-K| było jak najmniejsze.

Napisz program, który wczyta poziomy słodkości kolejnych jabłek oraz poziom słodkości szarlotki babci Bajtyny, policzy jaka jest minimalna wartość |S - K| oraz wypisze wynik na standardowe wyjście.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby: N oraz K ($1 \le N \le 500\,000$, $-10^{18} \le K \le 10^{18}$). W drugim wierszu wejścia znajduje się ciąg N liczb całkowitych A_i oznaczające kolejno poziom słodkości jabłka na i-tym drzewie ($-10^{12} \le A_i \le 10^{12}$).

Wyjście

W pierwszym (i jedynym) wierszu wyjścia należy wypisać jedną liczbę całkowitą – minimalną możliwą do osiągnięcia wartość |S - K|.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
$N \le 100$	10
$N \le 5000$	20
$A_i \ge 0$	70

Przykłady

Wejście dla testu sza0a:	Wyjście dla testu sza0a:
5 12	2
4 3 -9 16 9	

Wyjaśnienie do przykładu: Bitek może zebrać jabłka z drzew drugiego, trzeciego i czwartego. W ten sposób będzie miał jabłka o poziomach słodkości 3, -9 i 16 dają sumaryczny poziom słodkości S równą 10, który jest najbliższy poszukiwanemu poziomowi K=12. Wartość wyrażenia |S-K| wynosi zatem 2. Żaden inny spójny podciąg drzew nie da lepszego wyniku.

Wejście dla testu sza0b:	Wyjście dla testu sza0b:
2 7	12
-5 -10	

Wyjaśnienie do przykładu: Niestety Bitek ma w sadzie jedynie kwaśne jabłka, wybierze on zatem to najmniej kwaśne. Zauważ, że Bajtek musi wybrać jakieś jabłka, nie ma przecież szarlotki bez jabłek (nawet tych kwaśnych).

Wejście dla testu sza0c:

8	30						
4	12	12	10	-5	15	6	-5

Wejście dla testu sza0d:

6 10	
1 4 20 -	-21 8 4

Wyjście dla testu sza0c:					
1					
Wyjście dla testu sza0d:					
1					

Pozostałe testy przykładowe

- test sza0e: N = 5000, $-1000 \le A_i \le 1000$
- test sza0f: Losowy test z $N=500\,000$.