. ~/0' "1

⑱ 日本 国 特 許 庁 (JP) ⋅

⑩ 特 許 出 願 公 告

⑫特 許 公 報(B2) 平2-55268

⑤Int. Cl. ⁵

識別記号

庁内整理番号

❷❸公告 平成 2年(1990)11月26日

B 62 D 65/00 B 23 P 19/00 21/00

6573-3D 8709-3C

> 発明の数 1 (全6頁)

❷発明の名称

自動車窓ガラスの自動取付装置

頭 昭60-115375 の特

❸公 開 昭62-12483

22出 願 昭60(1985)5月30日 @昭62(1987)1月21日

@発明者

秀 明 金山

富山県富山市石金20番地 株式会社不二越内

勿出 顧 人 株式会社不二越 富山県富山市石金20番地

勿出 顧 人 マッダ株式会社

広島県安芸郡府中町新地3番1号

個代 理 人 弁理士 河内 潤二

> 清 水 英雄

審査官 図参考文献

特開 昭61-132477(JP, A)

1

2

切特許請求の範囲

1 ロボットアームの先端に窓ガラス把持部材を 取付けたロボットを設け、上記把持部材により窓 ガラスを把持し、この窓ガラスの下端部が車体の 2つのストッパに当接すべく、窓ガラスを車体の 窓ガラス取付部に取付ける装置であつて、窓ガラ ス取付作業位置に設けられ車体の窓ガラス取付部 を形成するフレームの前部及び後部ピラー位置を の取付位置を検出する第2の撮像手段と、上記両 撮像手段により撮像された各画像を画像処理する 画像処理ユニットと、ロボットに車体の窓ガラス 取付部に基準位置を教示して、ロボットを各前記 せ、かつ上記画像処理ユニットからの、各位置情 報に基づき、上記教示された、各基準位置とのズ レ量を補正してロボットの動作を制御するロボッ ト制御手段とから成ることを特徴とする自動車窓 ガラスの自動取付装置。

発明の詳細な説明

(産業上の利用分野)

自動車用窓ガラスの取付に於て、TVカメラを 用い車種の選択及び基準位置に対する窓取付位置 取付ける自動車窓ガラスの自動取付装置に関す

る。

(従来の技術)

かかる従来技術としては例えば米国特許第 4453303号に記載されたものがある。これは、窓 窓ガラス取付下部位置に取付けられる少なくとも 5 ガラス取付ツール部に設置された4〜6個のアナ ログ出力の近接センサーにより、窓わくの位置に 対する窓ガラスの上下、左右方向の位置ズレを補 正しながらコンペア方向に対象ワークが進行する のに同期して、窓ガラスを取付ける装置である。 検出する第1の撮像手段、および上記各ストツパ 10 しかしながらこのものにおいては、同一車種、同 一部所にしか使用できないこと、近接センサーの 使用では、そのセンサー近くの、何かまでの距離 しか把握できないこと、および近接センサーから 外れるなどの異常事態に関して対処する方法がな ピラー及びストツパの基準位置に基づいて動作さ 15 いなどの欠点があつた。さらに例えばセンサーレ ビュー誌(雑誌 Sensor Review; IFS (Publication) LTD(Bedford、England) 発行) 1984年7月号第125頁乃至128頁に記載するものが ある。ここでは第7図に示すように、窓ガラス握 20 持部に、上部 2 ケのカメラCd, Cc 横 2 ケのカメ ラCa,Cb及び投光器があり、位置補正用として、 ステツピングモータMa, Mb, Mcがつく。ロボ ツトは、窓ガラス取付に際して、256ケのフォト ダイオードアレイを用いたカメラで、位置ズレを のズレを補正しながらロボットにより窓ガラスを 25 確認し前記3個のステッピングモータ (2ケは回 転、垂直方向補正、残る1ケで水平方向補正)で

3

位置ズレを補正するが、位置として補正されるの は、後述する本発明とは異なり、ロボットではな く、窓ガラス握持部であり、センシングは5~6 秒とかなりの時間を要するので、ロボツトに与え はいえない。この場合、カメラCc及びCdで上 下・回転方向検出し、モーターMa, Mb同方向 回転により上下補正、そしてモーターMa, Mb 逆方向回転により回転補正がなされ、カメラCa 補正がなされる。そしてロボットのすべてのアー ムは、位置の補正されず、窓握持部のみの位置補 正に止まる。さらに例えば本願出願前に出願さ れ、かつ本願出願時に未公開の特開昭61-132477 ンドガラス取付け手段と、車体の走行路に停止し た車体のウインドガラス取付枠の両側上部を映す 撮像手段と、撮像手段が捕えた像を映し出しかつ 基準線が描かれた映像手段と、映像手段を目視し る修正操作手段とを有する装置が開示されてい る。しかしながら基準線がどのように出力される かの開示はなく、さらにまた車体の停止位置のず れ及び車種による補正、取付枠及びウインドガラ スの製作誤差の補正については、映像手段を目視 25 して人間が調整し取付けするようにされ、自動的 な補正、取付手段は開示されていない。

(本発明が解決しようとする問題点)

本発明は、従来技術にくらべより確実な対象ワ ークの位置の把握、詳しくは対象ワークの形状把 30 握即ち車種選択および位置把握と、高精度の窓ガ ラス取付けを目的とする。即ちTVカメラを使用 することにより、不確定な何かまでの距離ではな く、対象ワークの位置を把握し、TVカメラを使 かつあらかじめ教示された位置を補正して対象ワ ークへの窓ガラスの高精度の取付動作を確実にす ることを目的とする。

(問題点を解決するための手段)

を提供することによつて、上述した従来製品の問 題点を解決した。

(作用効果)

かかる構成により、本発明は、ロボツトにあら

かじめ基準ロポットを教示しておき、TVカメラ を用い対象物ワークの車種及び位置を確認し、基 **単位置に対するズレを補正することにより上述し** た従来技術における問題を解決した。一般に、ロ られた作業時間が短い時には、あまり良い方法と 5 ボットを用いて窓ガラスの取付作業を行う場合、 対象ワークとロボット位置とのばらつきや窓ガラ ス取付部の加工上でのばらつきが窓ガラスを適正 な位置に取付けることを妨げる。そこで本発明 は、TVカメラを用いることにより、取付位置精 及びCbで、左右方向検出し、モーターMcで左右 10 度を最小限にすることを可能にした自動窓ガラス 取付装置を提供するものとなつた。即ち、窓ガラ ス取付部を形成するフレームの前部及び後部ピラ ーを撮像する第1の撮像手段が検出した各ピラー の位置画像により、車種と、窓ガラス取付位置の 号公報には、ガイド上を走行する制御可能なウイ 15 前後方向位置ずれ量を検出し、車種に対応した窓 ガラスを選択でき、かつ前後方向位置ずれを自動 的に補正することができるものとなつた。さらに 窓ガラス及び窓ガラス取付部である取付ワクの仕 上げ寸法精度が悪いので、本発明では仕上取付寸 て基準線に合わせるよう取付け手段を微動修正す 20 法精度がよく、かつ塗装色に影響されず識別容易 な窓ガラス取付用の2個のストツパに着目して、 第2の撮像手段により同様に対象ワークのストツ パー位置を確認することで、上下・左右・回転方 向の位置ズレの補正を行ない、取付に際しては、 窓ガラスを前記ストッパーに乗せることで、上下 方向の位置決めを確実に行ない、左右方向に関し ては、微調整用のカメラを用い、センター位置に 取付けることが可能となつた。

(実施例)

次に本発明の実施例につき図面を参照して説明 すると、自動車用窓ガラスの自動取付方法を実現 するための本発明の実施例装置構成を第1図に示 す。あらかじめ教示された位置は、通常ロボット 制御装置5からロボツト指令信号として、出力さ 用することによる、対象ワークの形状を把握し、35 れるが、この際に、TVカメラ3により得られた 画像信号を画像処理ユニット4で、上下・左右方 向の位置ズレ量に変換し、このデータをロボツト 制御装置5にとりこみ、位置ズレを補正したロボ ット指令信号がロボット1に入力される。第2図 このため本発明は、特許請求の範囲記載の装置 40 には、ロボット手首部 14のカメラの位置関係の 詳細図である。ロポット手首部14は、窓ガラス 13をつかむサクション8を支持する保持器7、 及びカメラⅠa、Ⅰb、Ⅱa、Ⅱbスリツト光投 光ユニット6から構成される。第1図で全体とし

*図、第4a図のようなストツパー12がついてい

以上のような条件の下で、対象ワーク9が窓ガ

ラス取付工程に流れてきて、停止する。この時ロ

ポット制御装置5からの検出指令(第1図参照)

て3で教示したTVカメラは、上下・左右・回転 方向の位置を検出するための II a, II b 及び、左 右方向の微調整のための I a, I b の 2 対よりな る。また、カメラ I a, I bにはそれぞれスリッ ト光投光ユニット 6 が付く。さらに第1図のTV カメラ3は、第3図で示すようなラインに2台配 置され、対象ワークの前後方向のズレと車種を検 出するカメラIIIa, IIIbを含む。第3図IIa画像 および□b画像はそれぞれ前後方向TVカメラ□ して示す。カメラ**Ⅲ**bでは自動車の前ピラー部1 0を撮像し、カメラⅢaで車後部のピラー11を 撮像す…る。画像処理ユニツト4は、予め、対象 ワーク9を実際にセツトした状態で撮像し、メモ 準位置および各車種毎の前後ピラー間の距離デー タを含む。この記録時のピラー位置を第3図で点 線15,15'で示し、再生時のピラー位置を実 **線16,16′で示す。TVカメラⅢa,Ⅲbの** 各カメラは両者間の距離を固定して地上に配置さ 20 ータ、即ち記録データ、と比較し、上下・左右・ れているので、再生時の前部及び後部の位置ずれ 量Ya及び△Ybが求まれば前部ピラー10と後部 ピラー11の間隔が求まる。今B車種のピラー間 隔をしとすれば再生時のピラー間隔は(L+△ $Ya-\Delta Yb$) となる。このピラー間隔と、上記し 25 18'で再生時のストツバー位置を実線 19, 1た記録された各車種毎の前後ピラー間の距離デー タと比較して、車種を決定する。又△Yaによよ り、前側窓ガラス取付位置の前後方向位置ずれ量 が求まり、△Ybにより後側窓ガラス取付位置の 前後方向位置ずれ量が求められる。

窓ガラス13取付に際して、上下方向は、当て 止めによるものとし、取付ワク17下部に第4*

により、カメラⅢa, Ⅲbは、対象ワーク9の画 像信号を画像処理ユニツト 4 に送る。画像処理ユ ニット4により、車種及び前後方向のズレ最 (Ya, Yb、第3図)に変換された信号を受けた aおよびⅢbの各TVカメラから得られる画像と 10 ロボット制御装置5は、対象ワーク9に応じて、 既に教示された位置データを、内部のメモリーか ら読み出し、ロボット1本体に指令信号を送る が、この時の指令位置データは、前後方向のズレ に関して補正されている (第3図参照)。その後 リに記録された各車種毎のピラー 10, 11の基 15 ロボット 1は、窓ガラス取付位置近傍に移動し、 カメラⅡa, Ⅱbにより、ストツパ12の位置を 検出し、画像処理ユニット4に予め、対象ワーク

9を実際にセツトした状態で撮像し、メモリに記

録された各車種毎のストッパー12の基準位置デ

回転方向のズレとして、位置データを補正する

(第5図参照)。第5図には第2図に示すカメラⅡ

a, Ⅱbで第4図のストツパー12を撮像した画

像を示す。記録時のストッパー位置を点線18,

9 で示す。そのずれ量を各々 (ΔXa , ΔZa), (△Xb, △Zb) とすると車体(窓ガラス取付部) の位置ずれ量は、左右方向に (△Xa,+△ Xb) /2上下方向に ($\Delta Za + \Delta b$) /2で与え 30 られる。又回転方向のずれ量を△0とすると、2 つのストッパー間隔をしとして、

$|\Delta\theta| = \cos^{-1}(\frac{2L^2 - (\Delta Xa - \Delta Xb)^2 - (\Delta Za - \Delta Zb)^2}{2L^2})$

で絶対値が与えられ($\Delta Z_a - \Delta Z_b$)が正である 35 からは窓枠 17 及び窓ガラス 13 を横切る方向に か負であるかにより $\Delta \theta$ の符号が求まる。

ロポツト1は、窓ガラス13下部をストツパー 12上部にのせ、上下・左右方向の位置決めを行 なう (第4図、第4a図参照)。 更により正確に 図のTVカメラIa, Ibにより横方向微調を行 なう。第6図にTVカメラIa, Ib及び光投光 ユニツト6の配置及び各カメラから得られた画像 Ia画像およびIb画像を示す。投光ユニット6

スリット光を照射する。窓枠へり及び窓ガラスが 途切れる部分で第6図に示す段差20,20′を 持つ画像が得られる。その段差間距離 △Ha, △ Hbを求め $\Delta H = (\Delta Ha - \Delta Hb) / 2 だけ左右方$ 車体窓枠とガラス縁との距離を等しくする為第2 40 向に微調を行ない、窓ガラス13はここで極めて 高精度に窓枠に自動的に取付けられる。

図面の簡単な説明

第1図は本発明の実施例である自動車窓ガラス の自動取付装置を示すプロック図、第2図は窓ガ

8

ラスを把持した第1図のロボット手首部を示す拡大斜視図、第3図は第1図のTVカメラの1部をなすTVカメラⅢ a,Ⅲ bと対象ワークとの配置図と各カメラから得られる画像とを示す。第4図は対象ワークの窓ワク部分を示す斜視図、第4a図は窓ガラスと第4図に示すストッパーとの関係を示す部分側面図、第5図は第2図に示すTVカメラⅡ a,Ⅱ bの画像をそれぞれ示し、第6図は

第2図に示すTVカメラIa, Ibと対象ワークとの配置および各カメラから得られる画像を示す。第7図は従来製品を示す概略構造図である。

1 ······ロボツト、3 ······ (I a, I b, II a, 5 II b, II a, II b) TVカメラ、4 ······画像処理 ユニツト、5 ······ロボツト制御装置、9 ······対象 ワーク、1 3 ······窓ガラス。

第5図

Lを既知のストッパ-間距離とすると、 純粋な平行移動による左右方向のズレΔX = (ΔXα + ΔXb)/2 " 上下方向のズレΔZ = (ΔZα + ΔZb)/2 回転方向のずれ |ΔΘ|= COS-I (<u>2L²- (ΔXα-ΔXb)²- (ΔZα-ΔZb)²</u>) 2L²

第6図

 Δ Ha = Δ Hb となるように、左右方向にシフトする シフト量 Δ H = (Δ Ha - Δ Hb) /2