

تکلیف سری ۲ - فیزیک ۱ نیمسال اول سال ۱۴۰۰

توجه: درصورت نیاز به مقدار عددی شتاب جاذبه در حل مسائل، آن را $g=10~\mathrm{m/s^2}$ در نظر بگیرید.

I در شکل روبرو کابینهای آسانسور I و I توسط یک کابل کوتاه به یکدیگر متصل شده است I میتوان توسط کابلی که به بالای کابین I متصل شده است مجموعه را به بالا یا پایین حرکت داد. جرم کابین I برابر I برابر I و جرم کابین I فرار I برابر I برابر I میباشد. یک جعبهٔ با جرم I بر روی کف کابین I قرار گرفته است. اگر کشش کابل اتصال دو کابین I I I I I I باشد، مقدار نیروی عمودی سطح که از کف کابین به جعبه وارد می شود چقدر است؟

بر $m_2=1.0~{
m kg}$ به جرم $m_2=1.0~{
m kg}$ بر $m_2=1.0~{
m kg}$ به جرم $m_2=1.0~{
m kg}$ بروی سطح شیبدار بدون اصطکاکی که با افق زاویهٔ $m_2=3.0~{
m kg}$ میسازد، قرار گرفته است. این جعبه توسط ریسمان بدون جرمی به جعبهٔ $m_1=3.0~{
m kg}$ که بر

روی سطح افقی بدون اصطکاک قرار گرفته متصل شده است. قرقره بدون جرم و اصطکاک میباشد. (ب) بیشترین الف) اگر مقدار نیروی افقی \vec{F} برابر \vec{F} برابر \vec{F} برابر گشش در ریسمان اتصال چقدر است؛ (ب) بیشترین مقدار نیروی \vec{F} بدون اینکه ریسمان شُل شود چقدر میتواند باشد؛

 $M=88~{
m kg}$ و $m=16~{
m kg}$ که $m=16~{
m kg}$ که یکپارچه نیستند مطابق شکل توسط نیروی F هل داده می شوند. ضریب اصطکاک ایستایی بین قطعات $\mu_S=0.38$ می باشد و سطح زیر قطعهٔ بزرگتر بدون اصطکاک است.

تکلیف سری ۲ - فیزیک ۱ نیمسال اول سال ۱۴۰۰

کمینهٔ مقدار نیروی افقی F که قطعهٔ کوچکتر بر روی قطعهٔ بزرگتر به پایین سر نخورد چقدر است؟

 $m_A=4.0~{
m kg}$ و طعه A در شکل زیر دارای جرم A قطعه A دارای جرم B دارای جرم B دارای جرم B دارای جرم B دارای جنبشی بین قطعه B و صفحهٔ افقی زیر آن اصطکاک جنبشی بین قطعه B است. سطح شیبدار با افق زاویهٔ $\mu_k=0.5$ می سازد و بدون اصطکاک است.

نقش قرقره فقط تغییر مسیر ریسمان با جرم ناچیزی است که دو قطعه را به هم متصل کرده است. (الف) کشش در ریسمان و (ب) مقدار شتاب قطعات را بیابید.

heta یک جسم مطابق شکل روی سطح شیب داری به زاویهٔ $-\Delta$ قرار دارد. ضریب اصطکاک سطح با جسم μ میباشد. اگر و سطح شیبدار با شتاب μ به سمت راست حرکت کند و سطح شیبدار با شتاب μ باشد، کمترین و بیشترین مقدار μ برای اینکه جسم نسبت به سطح شیبدار ساکن بماند چقدر است؟

 $m_B=2m_A=1$ و اصطکاک فرض می شوند. در صورتی که $m_B=2m_A=1$ و اصطکاک فرض می شوند. در صورتی که $m_S=10~{
m kg}$ باشد، و ضریب اصطکاک جرم $m_S=10~{
m kg}$ باشد، کشش ریسمان را بیابید. $m_S=m_k=0.2$

Hill

تکلیف سری ۲ - فیزیک ۱ نیمسال اول سال ۱۴۰۰

 7 - توپی به جرم هر یک به طول 7 توسط دو ریسمان بدون جرم هر یک به طول 7 - توپی به جرم یک میلهٔ عمودی چرخان متصل شده است. دو ریسمان کاملا کشیده هستند و فاصلهٔ محل اتصال آنها به میله 7 می کاملا کشیده هستند و فاصلهٔ محل اتصال آنها به میله 7 کشش در ریسمان بالایی 7 است. مقادیر (الف) کشش در ریسمان بالایی 7 است. مقادیر (الف) کشش در ریسمان پایینی، (ب) مقدار نیروی خالص وارد شده به توپ 7 (جهت نیروی خالص وارد شده به توپ 7 را مشخص کنید.

 Λ - یک مسیر بدون اصطکاک شامل یک بخش افقی با طول نامعلوم است که به یک مسیر نیمدایروی عمودی با شعاع τ مطابق شکل متصل می شود. جسمی از ابتدای مسیر افقی با سرعت v شروع به حرکت می کند و پس از دور زدن مسیر نیمدایرهای در بازگشت به همان ابتدای مسیر سقوط می کند. کمینهٔ طول بخش افقی مسیر چقدر است؟

P قطعهٔ کوچکی به جرم m در داخل یک مغروط معکوس که حول یک محور عمودی گذرنده از راس آن میچرخد قرار T گرفته است. زمان لازم برای یک گردش کامل مغروط برابر β میباشد. دیوارههای مغروط با افق زاویهٔ β میباشد. ضریب اصطکاک ایستایی بین قطعه و مغروط μ_S میباشد. اگر قرار باشد که قطعه در ارتفاع p نسبت به راس مغروط باقی بماند روی سطح مغروط نسبت به آن حرکت نکند)، بیشینه و کمینهٔ p را بر حسب p بیابید.

تکلیف سری ۲ - فیزیک ۱ نیمسال اول سال ۱۴۰۰

A توپ توسط دو ریسمان مطابق شکل در موقعیت C در حالت سکون نگاه داشته شده است. ریسمان افقی بریده می شود و توپ همانند یک آونگ شروع به حرکت رفت و برگشتی می کند. نقطهٔ C دورترین نقطهای است که توپ در زمان حرکت رفت و برگشتی خود در سمت راست به آن می رسد. نسبت کشش ریسمان متصل به توپ در نقطهٔ C به کشش آن قبل از بریده شدن ریسمان افقی چقدر است؟