Mortero valenciano

Reto 2 - Análisis numérico

Anggie Correa Sofia Moreno Brayan Giraldo Julio Mejia

Descripción del problema

Objetivo:

Modelar un mortero valenciano de un pico en un lenguaje de programación tratando de aproximarse lo máximo posible a este objeto en la realidad.

Metodología y métodos numéricos

Se realizó un modelo inicial en un programa de diseño, en nuestro caso Blender, con el fin de hallar algunos puntos de control y con estos partir a la utilización de las herramientas necesarias

Modelo Blender

Datos obtenidos de Blender

575 coordenadas

El área superficial del mortero es: 7.2156m^2

\boldsymbol{x}	y	z
0	1.0	-1.0
-0.980785071849823	0.1950913518667221	-1.0
0.878602147102356	0.5870630741119385	-0.9205889105796814
-1.600400447845459	-0.6629062294960022	-0.4821978211402893
2.357809066772461	-2.1443733544401766e-07	0.3243255615234375
-2.1944737434387207	0.9089831709861755	1.0606906414031982
1.524717092514038	-1.5247197151184082	1.7605034112930298
-0.3462047874927521	0.8358157873153687	-1.0
-2.0174326209598803e-08	-0.290657639503479	-0.881237268447876
0.824410617351532	1.9903031587600708	2.0910534858703613
-1.2805064916610718	-1.2805052995681763	-0.2806932330131531
2.1488771438598633	0.42743873596191406	1.6819599866867065
-1.0960412311078471e-07	2.190979480743408	1.6783939599990845

Curvas de Bézier:

Es una curva paramétrica basada en 4 puntos de control. La curva comienza en el primer punto de control con su pendiente tangente a la línea entre los dos primeros puntos de control y la curva termina en el cuarto punto de control con su pendiente tangente a la línea entre los dos últimos puntos de control.

Implementación

Liberías:

- Bézier
- MathPlot
- Numpy
- Math

- Array
- Axes3D
- Mplot3d

Construcción:

Parte por parte, dependiendo el tipo de curva y apoyados en la librería para Python "Bézier"

Construcción en detalle:

1. Dibujo 3D de la base recta del mortero

2. Diseño parte superior

3. Unión y curvaturas

Curvas cuadráticas:

Para las formas como parábolas. La forma paramétrica de la curva es:

$$B(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2, t \in [0,1]$$

Curvas cúbicas:

Para las formas circulares. La forma paramétrica de la curva es:

$$B(t) = P_0(1-t)^3 + 3P_1t(1-t)^2 + 3P_2t^2(1-t) + P_3t^3, t \in [0,1]$$

Diagrama de flujo:

Resultados

Modelo Python

Datos obtenidos de Python

- El área superficial del mortero es: 6.823185307179586 m^2
- El volumen superficial del mortero es: 0.06415175343259741 m^3

Comparación y error

Error de área:

$$Ea = \frac{7.2156 - 6.823185307179586}{7.2156} * 100$$
 Ea=5.4 %

Referencias

- http://www.geometriadinamica.cl/2010/12/curvas-de-bezier/
- http://disi.unal.edu.co/~lctorress/MetNum/LiMetNu2.pdf
- https://www.youtube.com/watch?v=v1GSlLD7qqo
- Iconos tomados de: https://www.flaticon.com/
- Morten, A., Kjetil, A. and Fonn, E., SpliPy, BSplineBasis, From: https://sintefmath.github.io/Splipy/basic-classes.htmlsplipy.BSplineBasis
- Olsen, A., Toolkit for Bezier Curves and Splines, From: https://uvirtual.javeriana.edu.co/webapps/blackboard/execute/content/file? cmd=viewcontentid=-383105-1course-id=-11616-1

Gracias

