Beyond learning with labels

Laura Rieger (lauri@dtu.dk)

Beyond learning with labels

Rieger, Singh, Murdoch, Yu (2019).

Interpretations are useful: penalizing explanations to align neural networks with prior knowledge

In submission at ICLR

Are labels enough?

Learning from labels (step by step)

Benign

What did the network learn?

Benign

We know the bias (sometimes)

Gender is not important for job applications!

Race shouldn't determine jail time!

Rulers aren't cancerous!

Band aids don't protect against cancer!

Regularize with prior knowledge

Augmenting the loss function

Augmenting the loss function

Contextual Decomposition Explanation Penalty

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \ \mathcal{L}\left(f_{\theta}(X), y\right) + \lambda \ \mathcal{L}_{\operatorname{expl}}\left(\operatorname{expl}_{\theta}(X), \operatorname{expl}_{X}\right)$$

Any differentiable explanation method works

We used Contextual Decomposition [1]

... skipping the math part here

Does it work?

Using CDEP improves accuracy

Test F1: 0.57 -> **0.62**

Saliency makes more sense

Conclusion

Conclusion

Interpretability is a growing field

Can be used for more than post-hoc analysis!

More research needed for more complicated priors

https://beenkim.github.io/slides/DLSS2018Vector_Been.pdf