Prvi međuispit (grupa D) - 24. ožujka 2011.

- 1. Totalna snaga vremenski kontinuiranog signala $x(t) = 4 + 2\cos(t)$ je:
 - a) 4
- **b**) 6
- **c)** 16
- **d**) 18 **e**) 20
- **2.** Energija vremenski diskretnog signala $x(n) = \left(\frac{1}{4}\right)^{2n} \mu(n)$ je:
- **b**) $\frac{256}{255}$ **c**) $\frac{15}{16}$ **d**) $\frac{16}{15}$ **e**) $+\infty$

- **3.** Totalna snaga vremenski diskretnog signala $x(n) = 2 + 4\sin(\frac{\pi}{3}n)$ je
 - **a**) 2
- **b**) 4
- **c**) 6
- **d**) 12
- **e**) 20
- 4. Koji od zadanih signala NIJE periodičan?
 - a) $\sin(4\pi t)$
- **b)** $\sin(3\pi t) + \cos(5\pi t)$
- c) $\cos(3\pi t) + \sin(3t)$
- **d)** $\sin(3t) + \sin(5t)$
- e) $\operatorname{tg}(\frac{\pi}{4}t)$
- 5. Samo jedna od navednih tvrdnji NE VRIJEDI za Diracovu distribuciju $\delta(t)$. Koja?
 - a) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $\int_{-\infty}^{+\infty} f(t) \, \delta'(t) \, dt = -f'(0)$. b) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $f(t) \, \delta(t-t_0) = f(t_0)$.

 - c) Generalizirana derivacija Heavisideove step funkcije je Diracova distribucija, odnosno $\mu'(t) = \delta(t)$.
 - d) Diracova distribucija je parna distribucija.
 - e) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $\int_{-\infty}^{+\infty} f(t) \, \delta(t) \, dt = f(0)$.
- **6.** Generalizirana derivacija signala $f(t) = \mu(5-t) + \mu(t) + (t-3)^2(\mu(t-3) \mu(t-5))$ je:

 - a) $-3\delta(t-5) + \delta(t) + 2(t-3)(\mu(t-3) \mu(t-5))$ b) $-5\delta(t-5) + \delta(t) + 2(t-3)(\mu(t-3) \mu(t-5))$ c) $2(t-3)(\mu(t-3) \mu(t-5))$ d) $2(t-3)(\mu(t-3) \mu(t-5)) 4$ e) $-\delta(t-5) + \delta(t) + 2(t-3)(\mu(t-3) \mu(t-5)) 4$

- 7. Signal $f(t):[0,3]\to\mathbb{R}$ prikazujemo kao linearnu kombinaciju tri osnovna signala $b_1(t):[0,3]\to\mathbb{R},\ b_2(t):[0,3]\to\mathbb{R}$ i $b_3(t):[0,3]\to\mathbb{R}$. Kako glasi linearni rastav signala f(t) po osnovnim signalima?

- a) (2,1,-2) b) (1,3,1) c) (-2,2,1) d) (-1,-1,3) e) (-2,1,2)

- 8. Promatramo signal $x(t) = \sin(200\pi t) + \cos(400\pi t) + \sin(600\pi t)$. Kojim periodom očitanja T_S moramo očitati taj signal da ne dođe do preklapanja spektra?

- a) $T_S < 1/200$ b) $T_S < 1/600$ c) $T_S > 200$ d) $T_S > 600$ e) Ne postoji takav period $T_S!$
- 9. Zadan je signal $x(t) = 3\cos(2t + \frac{\pi}{3}) + 2\sin(3t)$. Amplitudni i fazni spektar za k = -2 i k = 3 su:
 - a) $A_{-2} = \frac{3}{2}, \ \phi_{-2} = -\frac{\pi}{3}, \ A_3 = 1, \ \phi_3 = -\frac{\pi}{2}$ b) $A_{-2} = 3, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = 2, \ \phi_3 = 0$ c) $A_{-2} = \frac{3}{2}, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = 1, \ \phi_3 = \frac{\pi}{2}$ d) $A_{-2} = 3, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = 2, \ \phi_3 = -\frac{\pi}{2}$ e) $A_{-2} = \frac{3}{2}, \ \phi_{-2} = \frac{\pi}{3}, \ A_3 = 1, \ \phi_3 = -\frac{\pi}{2}$
- 10. Za vremenski kontinuirani i periodčan signal x(t) perioda 4 zadan slikom izračunaj NULTI i DRUGI član rastava u Fourierov red.
 - a) $(X_0, X_2) = (1, \frac{2j}{\pi^2})$ b) $(X_0, X_2) = (0, \frac{j}{2\pi})$ c) $(X_0, X_2) = (0, \frac{j}{\pi^2})$ d) $(X_0, X_2) = (1, -\frac{2}{\pi^2})$ e) $(X_0, X_2) = (0, \frac{j}{\pi^2})$

11.	Snaga signala iz prethodnog zadatka je:				e:
	a) 0	b) $\frac{1}{9}$	c) $\frac{1}{6}$	d) $\frac{2}{3}$	e) 1

12. Izračunaj vremenski kontinuiranu Fourierovu transformaciju (CTFT) signala
$$f(t)=e^{-4t}\,\mu(t)+e^{3t}\,\mu(-t)$$

a)
$$F(j\omega) = \frac{1}{4 + j\omega}$$
 b) $F(j\omega) = \frac{-7}{12 + \omega^2 + j\omega}$ c) $F(j\omega) = \frac{7}{12 + \omega^2 + j\omega}$ d) $F(j\omega) = \frac{7}{12 + \omega^2 - j\omega}$ e) $F(j\omega) = \frac{7}{\sqrt{(12 + \omega)^2 + \omega^2}}$

13. Zadan je spektar
$$X(j\omega) = 2(\mu(\omega + 4\pi) - \mu(\omega - 4\pi))$$
. Signal čiji je to spektar je:

a)
$$x(t) = \frac{4}{t}\sin(4\pi t)$$
 b) $x(t) = -\frac{2}{\pi t}\sin(4\pi t)$ c) $x(t) = \frac{2}{\pi t}\sin(4\pi t)$ d) $x(t) = \frac{2}{\pi t}\cos(4\pi t)$ e) $x(t) = 2\delta(t) - \frac{2}{\pi jt}\cos(4\pi t)$

14. Energija signala iz prethodnog zadatka je:

a) 8 b) 16 c)
$$16\pi$$
 d) 32π e) $+\infty$

15. Zadan je vremenski diskretan periodičan signal
$$x(n) = \sin(\frac{\pi}{59}n)$$
. Temeljni period signala N i temeljni period spektra K su:

a)
$$(N, K) = (59, 59)$$
 b) $(N, K) = (59, 118)$ c) $(N, K) = (118, 118)$ d) $(N, K) = (118, 236)$ e) $(N, K) = (236, 118)$

16. Jedan period
 periodičnog signala perioda
$$N=6$$
 je $x(n)=\begin{cases} -2\sqrt{3}n^3, & n\in\{-2,-1,0,1,2\}\\ 6, & n=3 \end{cases}$. Prva dva člana spektra su:

a)
$$X_0 = 0$$
, $X_1 = 6$ b) $X_0 = 1$, $X_1 = -1 - 7j$ c) $X_0 = 1$, $X_1 = -1 + 7j$ d) $X_0 = 1$, $X_1 = -1 + 9j$ e) $X_0 = 1$, $X_1 = -1 + 9j$

17. Zadan je vremenski diskretan periodički signal
$$x(n) = \cos(\frac{\pi}{20}n) - \sin(\frac{3\pi}{5}n)$$
. Dvadeset i osmi član spektra je:

a)
$$X_{28} = \frac{1}{2}e^{-j\pi/2}$$
 b) $X_{28} = \frac{1}{2}e^{j\pi/2}$ c) $X_{28} = 0$ d) $X_{28} = e^{j\pi/2}$ e) $X_{28} = e^{-j\pi/2}$

18. Jedan period spektra vremenski diskretne Fourierove transformacije (DTFT) je
$$X(e^{j\Omega}) = \begin{cases} e^{-|\Omega|}, & \Omega \in [-a,a] \\ 0, & \Omega \in \langle -\pi, -a \rangle \cup \langle a,\pi] \end{cases}$$
. Signal čiji je to spektar jest:

a)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - n \cos(an) \right) \right)$$
 b) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(n \sin(an) - \cos(an) \right) \right)$ c) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\cos(an) - \sin(an) \right) \right)$ d) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - \cos(an) \right) \right)$ e) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - \cos(an) \right) \right)$

Promatramo vremenski diskretan signal čiji jedini uzorci različiti od nule su {1,5,4,5,1} (podcrtani član je uzorak za korak n=0). Vremenski diskretna Fourierova transformacija zadanog signala je:

korak
$$n = 0$$
). Vremenski diskretna Fourierova transformacija zadanog signala je:
a) $X(e^{j\Omega}) = \frac{4}{2\pi} + \frac{5}{\pi}\cos(\Omega) + \frac{1}{\pi}\cos(2\Omega)$ b) $X(e^{j\Omega}) = 4 + 10j\sin(\Omega) + 2j\sin(2\Omega)$
c) $X(e^{j\Omega}) = \frac{4}{2\pi} + \frac{5j}{\pi}\cos(\Omega) + \frac{j}{\pi}\cos(2\Omega)$ d) $X(e^{j\Omega}) = 4 + 5\cos(\Omega) + \cos(2\Omega)$
e) $X(e^{j\Omega}) = 4 + 10\cos(\Omega) + 2\cos(2\Omega)$

c)
$$X(e^{j\Omega}) = \frac{4}{2\pi} + \frac{5j}{\pi}\cos(\Omega) + \frac{j}{\pi}\cos(2\Omega)$$
 d) $X(e^{j\Omega}) = 4 + 5\cos(\Omega) + \cos(2\Omega)$

e)
$$X(e^{j\Omega}) = 4 + 10\cos(\Omega) + 2\cos(2\Omega)$$

20. Zadan je vremenski diskretni signal
$$x(n) = 3^n \mu(-n)$$
. Vremenski diskretna Fourierova transformacija (DTFT) zadanog signala je:

signal je.

a)
$$X(e^{j\Omega}) = \frac{1}{1 - 3e^{j\Omega}}$$
 b) $X(e^{j\Omega}) = \frac{3}{3 - e^{j\Omega}}$ c) $X(e^{j\Omega}) = \frac{3}{3 + e^{-j\Omega}}$ d) $X(e^{j\Omega}) = \frac{3}{1 - e^{-j\Omega}}$ e) $X(e^{j\Omega}) = \frac{1}{1 - 3e^{-j\Omega}}$