

Facultad de Ingeniería Ingeniería en Computación e Informática Teoría de Autómatas y Lenguajes Formales Tarea 2

"Diseño e Implementación de Autómatas de Pila"

Integrantes:

Leticia Palazuelos Maussi Fritz Katherine Labarca Soto I.palazuelosgutirrez@uandresbello.edu
m.fritzaravena@uandresbello.edu
k.labarcasoto@uandresbello.edu

Contenido

Intr	oducción	2
F	PDA 1: COVID	2
	Autómata:	2
	Conjunto de Tuplas:	2
	Descripción:	2
	Tabla de Cadenas:	3
F	PDA 2: NEUMONÍA	4
	Autómata:	4
	Conjunto de Tuplas:	4
	Descripción:	4
	Tabla de Cadenas:	6
F	PDA 3: RSV	7
	Autómata:	7
	Conjunto de Tuplas:	7
	Descripción:	8
	Tabla de Cadenas:	9
	Anexo	9

Introducción

PDA 1: COVID

Autómata:

Conjunto de Tuplas:

Q	{q0,q1,q2,q3,q4}
Σ	{A,C,T,G}
Г	{\$}
S	{q0}
F	{q4}

Descripción:

Para el diseño del PDA, se toma la expresión mínima que es ACTG si i=1 y j=1. Se comienza armando el autómata para cubrir el requerimiento de la expresión mínima.

A continuación, se agregan las demás transiciones.

En las primeras dos transiciones donde se consume A y C se agregan a la pila, mientras que al llegar a las transiciones T y G se van removiendo los elementos permitiendo tener la misma cantidad de A que de G y de C que de T.

Tabla de Cadenas:

$$(A^i C^j T^j G^i / i,j >= 1)$$

VÁLIDAS	NO VÁLIDAS
ACTG	ACT
A CC TT G	AA CCC TTT GGGG
AA CC TT GG	AAAA C TT GG
AAA C T GGG	A CC TTT G
AAA CCCCC TTTTT GGG	ACGT
AAAA CCC TTT GGGG	AA CC T G

PDA 2: NEUMONÍA

Autómata:

Conjunto de Tuplas:

Q	{q0,q1,q2,q3,q4,q5,q6,q7}
Σ	{A,C,T,G}
Г	{\$}
S	{q0}
F	{q3,q7}

Descripción:

Para el diseño del PDA, se toma la expresión mínima que es AGG si i=0 y j=1. Se comienza armando el autómata para cubrir el requerimiento de la expresión mínima.

A continuación, se agregan las demás transiciones. Estas transiciones cubren todas las cadenas donde i=0, es decir que solo se toma en cuenta las A y G.

Luego se comienza por la validación de las demás cadenas que contienen los demás elementos en el alfabeto.

En la fila de abajo podemos ver que se trabaja con T, C, A y G. Cuando se tiene por ejemplo TTTT se apilan cuatro \$\$\$\$ y al momento de removerlos tomamos dos en cada transición para asegurarnos de que C sea la mitad de T. Lo mismo sucede con A y G, pero a la inversa. Por cada A apilamos dos \$\$ y por cada G removemos 1 obligándolo a tener el doble de G que de A.

Tabla de Cadenas:

$$(T^{2i} C^i A^j G^{2j} / i >= 0, j >= 1)$$

VÁLIDAS	NO VÁLIDAS
AGG	AA GGG
TT C AA GGGG	TTT CCC AAA GGG
TTTTTT CCC AAAA GGGGGGGG	TT C AA GG
TTTTTTT CCCC AAA GGGGGG	CAGT
TT C A GG	TCAG
AAAAGGGGGGG	AAA GG

PDA 3: RSV

Autómata:

Conjunto de Tuplas:

Q	{q0,q1,q2,q3,q4,q5,q6}
Σ	{A,C,T,G}
Г	{\$,&}
S	{q0}
F	{q2,q4,q6}

Descripción:

Para el diseño del PDA, se toma la expresión mínima que es TTCC si i=1, j=0, k=0. Se comienza armando el autómata para cubrir el requerimiento de la expresión mínima. En la primera transición se apila una \$, luego en el estado q1, se apilan el resto de ellas, luego de pasar la transición vacía, en el estado q2, se elimina la misma cantidad de \$ que se apiló anteriormente, para poder cumplir con la expresión mínima.

A continuación, se agregan las demás transiciones.

En primer estado que aparece en la imagen (q3) se llega a él con una transición vacía, y en este estado, se consumirá la C y se apilara &, lo que en la transición y siguiente estado (q4), estos serán eliminados, si estas son la misma cantidad que la anterior, para así dejar la pila vacía para que la cadena sea aceptada, y en el caso que exista alguna A, se consumirá y colocará un signo del dólar (\$) a la pila, y se eliminará en la siguiente transición y estado, y este también es un estado de aceptación.

Tabla de Cadenas:

$$(T^{2i} C^{2i+j} G^j A^k / i >= 1, j,k >= 0)$$

VÁLIDAS	NO VÁLIDAS
TTCC	GG AA CCC TT
TT CC CCGG A	TTTTTT CC CC GGAAA
TTCC C G AA	GG AA TTT CC
TT TT TT CC CC CC CC GG AAA	TT TT CC CC C GGG GGG
TT CC C G AA	G AA TTT C
TTTT CC CC CG AA	TT TT CC CC C GG GG GG
TT TT T TTTTT CC CC C CCCCC	GG AA TTT CC
TT TT T TTTTT CC CC C CCCC CCGG	TTTT CCCCC GGGGGG

Anexo

Tabla de cadenas que no cumple:

CADENAS INVÁLIDAS
GGAATTTCC
TTTTCCCCCGGGGGG
GGAATTCC
GAATTTC
TTTTCCCCCGGGGGG
TTTTTCCCCGGAAA
GGAATTCC