

MovieMatch: Kanopy's Recommender System

Author: Chris Kucewicz

Introduction and Contents

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modeling
- 5. Evaluation
- 6. Limitations
- 7. Recommendations
- 8. Next Steps

Background

Goals

Success Criteria

- Kanopy App: streaming platform
 - Competing with Netflix, Hulu, HBO Max
- Looking to implement recommendation system

Background

Goals

Success Criteria

- Develop a recommendation system for Kanopy
 - Top 5 movies

Background

Goals

Success Criteria

- Root Mean Squared Error (RMSE)
 - Average distancebetween predictions& actual ratings

	Actual Rating	Prediction	Distance
User 1 Movie A	2.0	4.0	2

Background

Goals

Success Criteria

- Root Mean Squared Error (RMSE)
 - Average distancebetween predictions& actual ratings

	Actual Rating	Prediction	Distance
User 1 Movie A	2.0	4.0	2
User 2 Movie A	5.0	1.0	4

Mean Distance = 3 RMSE = 3.16

Data Understanding

MovieLens Database:

- movies.csv:
 - Over **9k** unique movies
- ratings.csv:
 - Over **100k** user ratings
 - Rating scale: 0.5-5.0

Data Preparation

- Minimal steps
- Dropped timestamp feature
- ratings dataset ready for modeling

• Collaborative Filtering (CF)

User A

Likes:

- Toy Story
- The Grinch

User B

Likes:

- Toy Story
- The Grinch
- Star Wars

Dislikes:

Little Mermaid

Which movie should we recommend to User A?

Star Wars or Little Mermaid?

User A

Likes:

- Toy Story
- The Grinch

User B

Likes:

- Toy Story
- The Grinch
- Star Wars

Dislikes:

Little Mermaid

Which movie should we recommend to User A?

• Star Wars or Little Mermaid?

- Collaborative Filtering (CF)
 - Key Idea: users with similar preferences tend to like
 similar items

User A

Likes:

- Toy Story
- The Grinch
- Star Wars

User B

Likes:

- Toy Story
- The Grinch
- Star Wars

- Collaborative Filtering (CF)
- Surprise library
 - Common for Recommendation Systems
- Baseline models for comparison
- Multiple iterations of model tuning

	Model	RMSE
0	NormalPredictor	1.4239
1	BaselineOnly	0.8785
2	SVD_basic	0.8808
3	KNNBasic (Cosine)	0.9823
4	KNNBasic (Pearson)	0.9829
5	SVD_GS1	0.8632
6	SVD_GS2	0.8571
7	SVD_best	0.8559

Model Evaluation

Best model: Singular Value Decomposition (SVD)

o RMSE: **0.86**

- Strengths:
 - Identifying patterns in sparse datasets
 - Scalability
- Weaknesses:
 - Struggles with Cold Start Problem

	Model	RMSE
0	NormalPredictor	1.4239
1	BaselineOnly	0.8785
2	SVD_basic	0.8808
3	KNNBasic (Cosine)	0.9823
4	KNNBasic (Pearson)	0.9829
5	SVD_GS1	0.8632
6	SVD_GS2	0.8571
7	SVD_best	0.8559

What movie should we recommend to User A?

- Cold Start Problem:
 - Limited or no data

- 1. Ratings Function:
 - a. User rates 5 movies
- 2. Recommendation system function:
 - a. User rates 5 movies
 - b. User selects genre
 - c. System provides 5 movie recommendations

```
In [57]:
                    1 # testing out function
                     2 new user genre recommend(model=svd basic, df=cleaned ratings, movies df=movies, n=5)
                   Please enter your user ID: 100000000
                   It looks like vou're a new user!
                   To provide better recommendations, we'll ask you to rate 5 movies.
                   Enter a genre you like (e.g., 'Action', 'Comedy', 'Drama'): Drama
                   You've selected the genre: Drama
                   Please rate 5 movies from the Drama genre (1-5), or type 'N/A' if you haven't seen the movi
User supplying ratings
                   Rate the movie 'Waiting to Exhale (1995)' (1–5) or 'N/A' if you haven't seen it:(	exttt{1})
                   Rate the movie 'American President, The (1995)' (1-5) or 'N/A' if you haven't seen it: (-1.5)
                   Invalid rating. Please enter a number between 1 and 5 or 'N/A'.
                   Rate the movie 'American President, The (1995)' (1-5) or 'N/A' if you_haven't seen it: (1.5)
                   Rate the movie 'Nixon (1995)' (1-5) or 'N/A' if you haven't seen it: (5)
                   Rate the movie 'Casino (1995)' (1-5) or 'N/A' if you haven't seen it: n/a
                   Rate the movie 'Sense and Sensibility (1995)' (1–5) or 'N/A' if you haven't seen it: 4.
                   Here are your top movie recommendations based on your ratings:
Recommendations
                   Recommendation #1: Shawshank Redemption, The (1994) (Predicted Rating: 4.37)
                   Recommendation #2: Rear Window (1954) (Predicted Rating: 4.35)
                   Recommendation #3: Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (19
                   64) (Predicted Rating: 4.34)
                   Recommendation #4: Lawrence of Arabia (1962) (Predicted Rating: 4.31)
                   Recommendation #5: Cinema Paradiso (Nuovo cinema Paradiso) (1989) (Predicted Rating: 4.28)
```

Limitations

- Treating as Regression (Metric: RMSE)
 - Ratings are ordinal data
- Cold Start Problem
 - Collaborative filtering weakness
- Time Constraints
 - Takes time to build out user ratings database

Recommendations

Recommendation 1: Begin ratings collection

Recommendation 2:

Recommendation 3:

Use

user_rating_collectio n() function to gather user ratings

Recommendations

Recommendation 1: Begin ratings collection

Recommendation 2: **Model Deployment**

Recommendation 3:

Use

user_rating_collectio
n() function to gather
user ratings

Implement
recommender system:
new_user_genre_recomm
endation()

Recommendations

Recommendation 1: Begin ratings collection

Recommendation 2: **Model Deployment**

Recommendation 3: Cold Start Solutions

Use
user_rating_collectio
n() function to gather
user ratings

Implement
recommender system:
new_user_genre_recomm
endation()

Explore additional solutions:

- Implicit Feedback
- Hybrid model

Next Steps

- 1. Explore Additional Models within Surprise
 - a. SVD ++
- 2. Address Cold Start Problem with Clustering
 - a. K-Means
 - b. HAC

Github Repository:

https://github.com/ckucewicz/movie_recommendation_system

Contact Chris Kucewicz at cfkucewicz@gmail.com with additional questions