บทที่ 5

พืชคณิตเชิงสัมพันธ์

(Relational Algebra)

แบบจำลองฐานข้อมูลเชิงสัมพันธ์ เป็นฐานข้อมูลที่นิยมใช้กันมากที่สุดในปัจจุบัน เพราะเป็น ฐานข้อมูลที่เข้าใจง่ายการจัดเก็บข้อมูลในรูปแบบของตารางหรือรีเลชัน ที่มีลักษณะเป็นสองมิติ คือ แถวหรือทูเพิล และคอลัมน์หรือแอททริบิวท์ ซึ่งในการเชื่อมโยงกันระหว่างข้อมูลในตาราง 2 ตาราง หรือมากกว่า จะเชื่อมโยงกันโดยใช้แอททริบิวท์ที่มีอยู่ในตารางที่ต้องการเชื่อมโยงข้อมูลกัน โดยที่ แอททริบิวท์จะแสดงคุณสมบัติของรีเลชันต่างๆ รีเลชันเหล่านี้ผ่านกระบวนการทำให้เป็นบรรทัดฐาน (Normalized) เพื่อลดความซ้ำซ้อนและให้การจัดการฐานข้อมูลเป็นไปอย่างมีประสิทธิภาพ

พีชคณิตเชิงสัมพันธ์ เป็นทฤษฎีทางภาษาสำหรับการดำเนินการระหว่างข้อมูลต่างๆในรีเลชัน ใดรีเลชันหนึ่งหรือหลายรีเลชัน เพื่อสร้างรีเลชันใหม่จากรีเลชันเดิม โดยที่ผลของการดำเนินการนั้นจะ ไม่ส่งผลกระทบต่อรีเลชันหลักหรือรีเลชันเดิม การเรียกใช้ข้อมูลจากรีเลชันหรือตารางจะใช้หลักของ พีชคณิตเชิงสัมพันธ์เข้ามาช่วย ซึ่งประกอบไปด้วยตัวดำเนินการ (operators) ทางคณิตศาสตร์ต่าง ๆ ในการสั่งกระทำการใด ๆ กับตารางข้อมูล ตัวดำเนินการที่สำคัญ ได้แก่ Restrict Operation (การดึง ทูเพิลข้อมูลเฉพาะบางทูเพิลออกมาจากรีเลชัน) Project Operation (การดึงแอททริบิวท์ข้อมูลเฉพาะ บางแอททริบิวท์ออกมาจากรีเลชัน) และ Join Operation (การเชื่อมรีเลชันตั้งแต่ 2 รีเลชันขึ้นไปเข้า ด้วยกันโดยมีค่าบางค่าในแอททริบิวท์ตรงกันเป็นหลัก)

Dr. E.F Codd ได้กำหนดแบบจำลองของการดำเนินการ (operation) ต่าง ๆ ที่เกิดขึ้นกับข้อมูลใน แบบจำลองฐานข้อมูลเชิงสัมพันธ์ มี 2 แบบ ด้วยกัน คือพีชคณิตเชิงสัมพันธ์ และ แคลคูลัสเชิงสัมพันธ์ (Relational Calculus) พีชคณิตเชิงสัมพันธ์ที่ Codd กำหนดไว้ประกอบไปด้วย 8 ตัวดำเนินการ (Codd,1972) แต่ตัวดำเนินการพื้นฐานหรือการใช้งานขั้นพื้นฐานจะมี 5 ตัวดำเนินการ คือ Selection, Projection, Cartesian product, Union และ Set difference ส่วนอีก 3 ตัวดำเนินการ จะใช้สำหรับสืบค้น ข้อมูลตามเงื่อนไขที่ผู้ใช้ต้องการ คือ Join, Intersection และ Division

พีชคณิตเชิงสัมพันธ์ประกอบด้วยโอเปอเรเตอร์ (operators) หรือตัวดำเนินการทางคณิตศาสตร์ การดำเนินการ หรือ Operation แบ่งออกได้เป็น 2 ประเภท ได้แก่

1) การดำเนินการแบบยูนารี (Unary Operations)

การดำเนินการแบบยูนารี เป็นการดำเนินการที่กระทำกับข้อมูลในรีเลชันของตัวเอง เพียงรีเลชันเดียวหรือตัวกระทำที่ต้องการเพียงรีเลชันเดียว (เลือกจากตารางเดียว) ประกอบไปด้วย 2 ตัวดำเนินการ คือ Projection และ Selection หรือ Restriction Projection (แทนด้วยสัญลักษณ์ π): "การเลือกเฉพาะแอททริบิวท์ที่ต่องการ"

Project เป็นตัวดำเนินการทางคณิตศาสตร์ที่ใช้ในการแสดงข้อมูลบางแอททริบิวท์ออกมาจาก รีเลชันที่ต้องการ หรือเป็นการเลือกเฉพาะบางแอททริบิวท์ที่ต้องการจากรีเลชันนั่นเอง นั่นคือจะได้ รีเลชันซึ่งจะมีทุกทูเพิลของรีเลชันนั้น แต่จะแสดงเฉพาะในแอททริบิวท์ที่กำหนดไว้เท่านั้น การแสดง ข้อมูลอาจจะเป็นแบบมีเงื่อนไขหรือไม่มีก็ได้

ภาพที่ 5.1 รูปแบบของ Projection

รูปแบบของ Projection :

ชื่อรีเลชัน [ชื่อแอททริบิวท์ 1, ชื่อแอททริบิวท์ 2,.......]

หรือ

π = สัญญูลักษณ์การ Projection

A 1,...A n = แอททริบิวท์ที่ต้องการแสดง

R = ชื่อรีเลชัน

ตัวอย่าง :

การเลือกดูข[้]อมูลเฉพาะ*รหัสนิสิต คณะวิชา* และ *คะแนน* จากรีเลชัน *นิสิต* เราจะเลือกเอา เฉพาะแต[่]ข[้]อมูลของ*รหัสนิสิต คณะวิชา* และ*คะแนน* นั่นเอง ซึ่งสามารถแปลงเป็นพีชคณิตเชิงสัมพันธ์ ได้ ผลลัพธ์จาก Projection นี้แสดงได้ดังตาราง

รีเลชัน "นิสิต"

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	สาขา	คะแนน
580103	น.ส.นารี	สดใส	พยาบาล	การพยาบาล	3.25
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	ชีววิทยา	2.30
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	วิศวกรรมไฟฟ้า	3.70
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	กายวิภาค	2.00

รหัสนิสิต	คณะวิชา	คะแนน
580103	พยาบาล	3.25
580314	วิทยาศาสตร์	2.30
580619	วิศวกรรมศาสตร์	3.70
580907	สหเวชศาสตร์	2.00

ภาพที่ 5.2 แสดง Projection Operation

ผลลัพธ์จากการ Projection ในรีเลชัน "นิสิต" ซึ่งจะได้เฉพาะแอททริบิวท์ที่ต้องการ

• Selection หรือ Restriction (แทนด้วยสัญลักษณ์ σ) : "การเลือกเฉพาะทูเพิลที่ ต้องการ"

Selection เป็นตัวดำเนินการทางคณิตศาสตร์ที่ใช้ในการเลือกข้อมูลจากรีเลชันเดียว เพื่อดึง ข้อมูลเฉพาะทูเพิลที่มีเงื่อนไขตรงตามที่กำหนดหรือเป็นไปตามเงื่อนไขของข้อมูลตามที่ระบุไว้เท่านั้น ผลลัพธ์จากการ select จะแสดงทุกแอททริบิวท์ แต่อาจจะมีจำนวนทูเพิลตั้งแต่ศูนย์ทูเพิลขึ้นไปขึ้นอยู่ กับเงื่อนไขที่กำหนดเอาไว้ แต่จะไม่เกินกว่าจำนวนทูเพิลทั้งหมดที่มีอยู่ในความสัมพันธ์ การกำหนด เงื่อนไข สามารถใช้เครื่องหมายแสดงการเปรียบเทียบเช่น > (มากกว่า) < (น้อยกว่า) = (เท่ากับ) และ <> (ไม่เท่ากับ) เข้ามาร่วมในการสร้างเงื่อนไข ในกรณีที่มีเงื่อนไขมากกว่าหนึ่งเงื่อนไข อาจจะใช้คำว่า "หรือ" (OR) หรือ "และ" (AND) ประกอบกันเป็นเงื่อนไขที่ต้องการได้

ภาพที่ 5.3 รูปแบบของ Selection

รูปแบบของ Selection :

σ (R) predicate

σ = สัญญลักษณ์ของ Selection

predicate = เงื่อนไขที่กำหนด

R = ชื่อรีเลชันที่ต้องการ selection

รีเลชัน "นิสิต"

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	สาขา	คะแนน
580103	น.ส.นารี	สดใส	พยาบาล	การพยาบาล	3.25
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	ชีววิทยา	2.30
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	วิศวกรรมไฟฟ้า	3.70
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	กายวิภาค	2.00

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	สาขา	คะแนน
580103	น.ส.นารี	สดใส	พยาบาล	การพยาบาล	3.25
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	วิศวกรรมไฟฟ้า	3.70

ภาพที่ 5.4 แสดง Selection Operation

จากภาพที่ 5.4 เป็นตัวอย่างการเลือกดูข้อมูลเฉพาะข้อมูลนิสิตที่มีคะแนนมากกว่า 3.00 (> 3.00) ซึ่งสามารถแปลงเป็นพีชคณิตเชิงสัมพันธ์ ผลจากการ Selection ในรีเลชัน "นิสิต" ซึ่งจะได้ เฉพาะทูเพิลที่ต้องการ คือมี คะแนน > 3.00 และได้ผลลัพธ์ดังภาพ

• การใช้งานรวมกันระวาง Projection และ Selection :

เราสามารถนำตัวดำเนินการ σ และ π มาใช้งานร่วมกันได้

รูปแบบ:

ตัวอย่าง : แสดงข้อมูล *รหัส ชื่อ สาขาวิชา* เฉพาะนิสิตที่มีคะแนน > 3.00

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	สาขา	คะแนน
580103	น.ส.นารี	สดใส	พยาบาล	การพยาบาล	3.25
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	ชีววิทยา	2.30
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	วิศวกรรมไฟฟ้า	3.70
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	กายวิภาค	2.00

รหัสนิสิต	ชื่อ	สาขา	คะแนน
580103	น.ส.นารี	การพยาบาล	3.25
580619	นายมานะ	วิศวกรรมไฟฟ้า	3.70

ภาพที่ 5.5 แสดง Projection และ Selection Operation

2) การดำเนินการแบบใบนารี หรือเซตโอเปอเรชัน (Binary or Set Operation)

การดำเนินการแบบไบนารี เป็นการดำเนินการแบบเซต (Set operation) ที่กระทำกับข้อมูล ตั้งแต[่]สองรีเลชันขึ้นไป ประกอบไปด**้**วยตัวดำเนินการ เช[่]น union, intersection, difference และ Cartesian product

Union (แทนด้วยสัญลักษณ์ ∪) : "การรวมรีเลชันเข้าด้วยกัน"

Union เป็นโอเปอเรเตอร์ทางคณิตศาสตร์ ใช้ในการแสดงข้อมูลตามทฤษฎีการ Union ของเซต เป็นการเชื่อมความสัมพันธ์ของทูเพิลของรีเลชันตั้งแต่ 2 รีเลชันขึ้นไป โดยรีเลชันที่มา Union กันจะต้อง เป็นรีเลชั่นที่ไปด้วยกันได้ (Compatible Relation) นั่นคือมีชนิดของทูเพิลที่ตรงกัน (tuple homogeneous) คือประกอบไปด้วยแอททริบิวท์ชุดเดียวกัน (มีจำนวนเท่ากัน ชื่อแอททริบิวท์เหมือนกัน และการจัดเรียง แอททริบิวท์ในตารางที่เหมือนกัน) ผลลัพธ์ของการ Union จะได้รีเลชันใหม่ที่ประกอบไปด้วยทูเพิล ทั้งหมดของรีเลชันที่มา Union กัน ทูเพิลที่เหมือนกันจะนำมาจากรีเลชันเดียว และทูเพิลที่ซ้ำกันจะถูก กำจัดออกไป

ภาพที่ 5.6 รูปแบบของ Union

รูปแบบของ Union : R1 U R2

U = สัญญลักษณ์การ Union

R1 = รีเลชัน R1

R2 = รีเลชัน R2

ตัวอย่าง : การ Union รีเลชัน 2 รีเลชัน สามารถแปลงเป็นพีชคณิตเชิงสัมพันธ์ได[้] ผลลัพธ์จากการ Union แสดงได[้]ดังตาราง

รีเลชัน "นิสิตชมรมปิงปอง"

รีเลชัน "นิสิตชมรมหมากรก"

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล	580103	น.ส.นารี	สดใส	พยาบาล
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	580316	นายสนุก	สนาน	เกษตรศาสตร์
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	580620	น.ส.พอใจ	พอดี	พยาบาล
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	580907	น.ส.วิไล	โสภา ไ	สหเวชศาสตร์
		(_			T	_

นิสิตชมรมปิงปอง 🔾 นิสิตชมรมหมากรุก

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580314	นายสะอาด	ି ବର୍ଡ଼ି	วิทยาศาสตร์
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์
580316	นายสนุก	สนาน	เกษตรศาสตร์
580620	น.ส.พอใจ	พอดี	พยาบาล

ภาพที่ 5.7 แสดง Union Operation

ผลลัพธ์จากการ Union ในรีเลชัน " นิสิตชมรมบิงปอง " และ " นิสิตชมรมหมากรุก" ซึ่งจะได้ รีเลชันใหม่ ที่ประกอบไปด้วยทุกทูเพิลจากทั้งสองรีเลชัน ซึ่งหากมีทูเพิลที่ซ้ำกัน ก็จะปรากฏเพียงครั้ง เดียวเท่านั้น

Intersection (แทนด้วยสัญลักษณ์ ∩): "การหาสมาชิกร่วม"

Intersection เป็นการแสดงข้อมูลตามทฤษฎีการ Intersection ของเซต คือ เป็นการแสดง ข้อมูล ที่มีอยู่ในรีเลชันตั้งแต่ 2 รีเลชันหรือมากกว่าขึ้นไป โดยรีเลชันที่มา Intersection กัน จะต้องมีชนิดของ ทูเพิลที่ตรงกัน (tuple-homogeneous) หรือไปกันได้ (compatible Relation) นั่นคือประกอบไปด้วย แอททริบิวท์ชุดเดียวกัน ผลลัพธ์ของการ Intersection จะได้รีเลชันใหม่ ซึ่งประกอบไปด้วย เฉพาะทูเพิล ที่ตรงกันของรีเลชันที่มา Intersection กัน

ภาพที่ 5.8 รูปแบบของ Intersection

รูปแบบของ Intersection :

R1 ∩ R2

∩ = สัญญลักษณ์การ Intersection

R1 = รีเลชัน R1

R2 = รีเลชัน R2

รีเลชัน "นิสิตชมรมปิงปอง"

รีเลชัน "นิสิตชมรมหมากรุก"

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580314	นายสะอาด	ใจดี	วิทยาศาสตร์
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์

รหัสนิสิต	- ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580316	นายสนุก	สนาน	เกษตรศาสตร์
580620	น.ส.พอใจ	พอดี	พยาบาล
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์

ү นิสิตชมรมปิงปอง ∩ นิสิตชมรมหมากรุก **↓**

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์

ภาพที่ 5.9 แสดง Intersection Operation

ภาพที่ 5.9 แสดงผลจาก Intersection ในรีเลชัน "นิสิตชมรมปิงปอง" และ "นิสิตชมรมหมาก รุก" ซึ่งจะได้รีเลชันใหม[่] ที่ประกอบไปด*้*วยทุกทูเพิลที่เหมือนกันจากทั้งสองรีเลชัน) • Difference (แทนด้วยสัญลักษณ์ -) : "การหาผลต่างระหว่างรีเลชัน"

Difference เป็นการแสดงข้อมูลตามทฤษฎีการ Difference ของเซต คือ เป็นการแสดง ข้อมูลที่มีอยู่ในรีเลชัน 2 รีเลชัน โดยรีเลชันที่มา Difference กัน จะต้องมีชนิดของทูเพิลที่ตรงกัน (tuplehomogeneous) หรือประกอบไปด้วยแอททริบิวท์ชุดเดียวกัน ผลลัพธ์ของการ Difference จะได้รี่เลชัน ใหม่ ซึ่งประกอบไปด้วยเฉพาะทูเพิลที่อยู่ในรีเลชันหนึ่งแต่ไม่พบในอีกรีเลชันที่นำมา Difference กัน

รีเลชัน "นิสิตชมรมปิงปอง"

รีเลชัน "นิสิตชมรมหมากรุก"

รหัสนิสิต	ชื่อ	สกุล คณะวิชา		รหัสนิสิต	ชื่อ	রা
580103	น.ส.นารี	สดใส	พยาบาล	580103	น.ส.นารี	ଶନ
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	580316	นายสนุก	สน
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	580620	น.ส.พอใจ	W
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	580907	น.ส.วิไล	โส

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580316	นายสนุก	สนาน	เกษตรศาสตร์
580620	น.ส.พอใจ	พอดี	พยาบาล
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์

ภาพที่ 5.10 แสดง Difference Operation

รีเลชัน "นิสิตชมรมปิงปอง"

รีเลชัน "นิสิตชมรมหมากรก"

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580314	นายสะอาด	ใจดี	วิทยาศาสตร์
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580103	น.ส.นารี	สดใส	พยาบาล
580316	นายสนุก	สนาน	เกษตรศาสตร์
580620	น.ส.พอใจ	พอดี	พยาบาล
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์

นิสิตชมรมหมากรุก - นิสิตชมรมบิงปอง

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา
580316	นายสนุก	สนาน	เกษตรศาสตร์
580620	น.ส.พอใจ	พอดี	พยาบาล

ภาพที่ 5.11 แสดง Difference Operation

การ Difference รีเลชัน สามารถแปลงเป็นพืชคณิตเชิงสัมพันธ์ได้ ผลลัพธ์จาก Difference แสดงได้ดังภาพที่ 5.10 และภาพที่ 5.11 ผลจากการ Difference รีเลชัน "นิสิตชมรมปิงปอง" และ รีเลชัน "นิสิตชมรมหมากรุก" จะได้รีเลชันใหม่ ที่ประกอบไปด้วยทุกทูเพิลที่พบในรีเลชันหนึ่งแต่ไม่พบในอีกรีเลชันหนึ่งที่มา Difference กัน

- Cartesian product หรือ product (แทนด้วยสัญลักษณ์ X) : "การคูณของ 2 รีเลชัน" Cartesian product เป็นการแสดงข้อมูลตามทฤษฎี Cartesian product ของเซต โดยเป็น การรวมข้อมูลจากสองรีเลชันโดยวิธีการคูณ หรือการจับคู่ทุกทูเพิลในรีเลชันหนึ่งกับทุกทูเพิลในอีกรีเลชัน ผลลัพธ์ของการ Cartesian product จะได้รีเลชันใหม่ ซึ่งประกอบไปด้วย ทุกทูเพิลที่เป็นไปได้จากผล คูณของทั้งสองรีเลชัน หรืออาจจะสรุปได้ว่า Product เป็นการจับคู่ข้อมูลระหว่างรีเลชันตั้งแต่ 2 รีเลชัน ขึ้นไป โดยมีหลักการดังนี้
- จำนวนทูเพิลในผลลัพธ์จะเท[่]ากับจำนวนทูเพิลจากรีเลชันแรกคูณกับจำนวนทูเพิล ของรีเลชันที่สอง
- วิธีการจับคู่ จะทำโดยนำทูเพิลของรีเลชันแรก ไปจับคู่กับข้อมูลทุกทูเพิลในอีก รีเลชันหนึ่งและ ผลลัพธ์จะแสดงทุกแอททริบิวท์

ภาพที่ 5.12 รูปแบบของ Cartesian Product

รูปแบบของ Cartesian product :

R1 X R2

X = สัญญลักษณ์การ Cartesian product

R1 = วีเลชัน R1

R2 = รีเลชัน R2

การ Cartesian product รีเลชัน ซึ่งสามารถแปลงเป็นพืชคณิตเชิงสัมพันธ์ได ้ ผลลัพธ์จาก Cartesian product แสดงได้ดังภาพที่ 5.13

รีเลชัน "นิสิต"

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	GLOGG 1 "GRO"			วีเลชัน "วิชา"		
580103	น.ส.นารี	สดใส	พยาบาล		าเพบน 'าบา				
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	รหัสวิชา	ชื่อวิชา	ภาคเรียน			
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	351022	แคลคูลัส	1/59			
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	351023	คณิตศาสตร์	2/59			

ห นิสิต X ลงทะเบียน

รหัสนิสิต	ชื่อ	สกุล	คณะวิชา	รหัสวิชา	ชื่อวิชา	ภาคเรียน
580103	น.ส.นารี	สดใส	พยาบาล	351022	แคลคูลัส	1/59
580103	น.ส.นารี	สดใส	พยาบาล	351023	คณิตศาสตร์	2/59
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	351022	แคลคูลัส	1/59
580314	นายสะอาด	ใจดี	วิทยาศาสตร์	351023	คณิตศาสตร์	2/59
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	351022	แคลคูลัส	1/59
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	351023	คณิตศาสตร์	2/59
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	351022	แคลคูลัส	1/59
580619	นายมานะ	อดทน	วิศวกรรมศาสตร์	351023	คณิตศาสตร์	2/59
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	351022	แคลคูลัส	1/59
580907	น.ส.วิไล	โสภา	สหเวชศาสตร์	351023	คณิตศาสตร์	2/59

ภาพที่ 5.13 แสดง Cartesian product Operation

ผลจาก Cartesian product ในรีเลชัน "นิสิต" และ รีเลชัน "วิชา" จะได้รีเลชันใหม่ ที่ประกอบ ไปด[้]วยทุกทูเพิลที่เป็นไปได[้] (possible tuples) จาก **ผลคูณ** ของทั้งสองรีเลชัน

3) การดำเนินการแบบ Join หรือ Natural Join (Join or Natural Join Operation) (แทนด้วย สัญลักษณ์ 🛏) : "การรวมรีเลชัน"

Join เป็นการจับคู่ข้อมูลหรือการรวมรีเลชันตั้งแต่ 2 รีเลชันขึ้นไปเพื่อสร้างเป็นรีเลชันใหม่ และ รีเลชันที่จะมารวมกันนั้นอย่างน้อยจะต้องมีแอททริบิวท์หนึ่งที่มีชื่อที่เหมือนกันและมีโดเมนของข้อมูล เดียวกัน แต่ถ้ารีเลชันที่นำมา Join กันนั้น ไม่มีแอททริบิวท์ใดที่มีชื่อเหมือนกันเลย ก็สามารถนำรีเลชัน นั้นมา Join กันได้ โดยการทำ Product คู่กับการทำ Restrict แทน (นำรีเลชันทั้งสองมาทำ Cartesian product ก่อน แล้วจึงนำผลที่ได้มาเลือกเฉพาะทูเพิลที่ตรงตามเงื่อนไขที่กำหนดในการทำ Restrict)

การ join จะคล้ายกับ product แต[่]จะต[่]างกันตรงที่การ join จะแสดงผลลัพธ์เฉพาะแถวที่ตรงกับ เงื่อนไขที่กำหนดไว้เท่านั้น รูปแบบของตัวดำเนินการ Join แบ่งออกได[้]ดังนี้

Theta Join (แทนด้วยสัญลักษณ์ θ) :

Theta-Join เป็นการเชื่อมโยงข้อมูลของ 2 รีเลชันหรือมากกว่า โดยสามารถใช้ตัวดำเนินการ <, ≤ , >, ≥, = , ≠ เพื่อนำไปเปรียบเทียบค่าตามเงื่อนไขที่ต้องการ ผลลัพธ์จากการใช้ตัวดำเนินการ Theta join จะได้รีเลชันผลลัพธ์ที่มีจำนวนแอททริบิวท์เท่ากับ จำนวนแอททริบิวท์ของสองรีเลชันรวมกัน

รูปแบบ

R M F S

🛛 = สัญลักษณ์ Product

R,S = รีเลชัน

F = เงื่อนไขในการรวมรีเลชัน

ตัวอย่าง

สินค้า

การสั่งซื้อ

รหัสสินค้า	หัสสินค้า ชื่อ	
001	ปากกา	100
003	สมุด	50
005	ดินสอ	10

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า
1	A001	003
2	A015	001

ผลลัพธ์ของ Theta Join โดยกำหนดเงื่อนไข "ชื่อสินค้า" = ปากกา

สินค้า

การสั่งซื้อ

เลขที่ ใบสั่งซื้อ	รหัส ลูกค้า	รหัส สินค <i>้</i> า	รหัส สินค <i>้</i> า	ชื่อ สินค <i>้</i> า	ราคา สินค้า
1	A001	003	001	ปากกา	100
2	A015	001	001	ปากกา	100

• Equi Join เป็นส่วนหนึ่งของ Theta Join เป็นการ Join แบบที่เงื่อนไขเท่ากับ (=) เท่านั้น และผลลัพธ์ที่ได้แอททริบิวท์ที่ซ้ำกันจะถูกแสดงทั้งหมด จะถูกแสดงเพียงแค่ครั้งเดียวหรือ อาจจะกล่าวได้ว่า Equi join เป็นการเชื่อมโยงข้อมูลตั้งแต่ 2 รีเลชันขึ้นไปตามเงื่อนไขที่ระบุไว้เหมือน Theta Join เพียงแต่ตัวดำเนินการที่แสดงการเปรียบเทียบจะใช้เครื่องหมายเท่ากับ (=) เท่านั้น

และผลลัพธ์ที่ได้คอลัมน์ที่ซ้ำกันจะถูกแสดงเพียงแค่ครั้งเดียว

ตัวอย่าง

สินค้า

การสั่งซื้อ

รหัสสินค้า	ชื่อ	ราคา
001	ปากกา	100
003	สมุด	50
005	ดินสอ	10

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า
1	A001	003
2	A015	001

ผลลัพธ์ของ Equi Join

สินค้า

การสั่งซื้อ

เลขที่ ใบสั่งซื้อ	รหัส ลูกค้า	รหัส สินค <i>้</i> า	รหัส สินค <i>้</i> า	ชื่อ สินค <i>้</i> า	ราคา สินค้า
1	A001	003	003	สมุด	50
2	A015	001	001	ปากกา	100

• Natural join หรือ join: เป็นการจับคู่ระหว่าง 2 รีเลชันโดยใช้แอททริบิวท์ที่ ทั้งสองรีเลชันใช้ร่วมกัน ผลลัพธ์ของ Natural Join จะได้แถวข้อมูลที่แอททริบิวท์ที่ใช้จับคู่มีค่าเท่ากัน และตัดแอททริบิวท์ที่ซ้ำกันออกไป 1 ตัว อาจกล่าวได้ว่า Natural join คือ Equi-Join ที่ Join ทุกคอลัมน์ แต่ขจัดคอลัมน์ที่ซ้ำกันออกไป ขั้นตอนการ join มี 3 ขั้นตอน คือ

ขั้นตอนที่ 1 ดำเนินการ*เหมือน* product

ขั้นตอนที่ 2 *เลือกแถว*ที่มีค**่**ารหัสสินค**้**าเท**่**ากัน

ขั้นตอนที่ 3 *ตัดแอททริบิวท์*ที่ซ้ำกันออกไป

ตัวอย่าง

สินค้า

การสั่งซื้อ

รหัสสินค้า	ชื่อ	ราคา
001	ปากกา	100
003	สมุด	50
005	ดินสอ	10

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า
1	A001	003
2	A015	001

ข**ั้นตอนที่ 1** ดำเนินการเหมือน product

สินค้า

การสั่งซื้อ

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า	รหัสสินค้า	ชื่อสินค้า	ราคาสินค้า
1	A001	003	001	ปากกา	100
1	A001	003	003	สมุด	50
1	A001	003	005	ดินสอ	10
2	A015	001	001	ปากกา	100
2	A015	001	003	สมุด	50
2	A015	001	005	ดินสอ	10

ข**ั้นตอนที่ 2** เลือกแถวที่มีค[่]ารหัสสินค้าเท[่]ากัน

สินค้า

การสั่งซื้อ

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า	รหัสสินค้า	ชื่อสินค้า	ราคาสินค้า
1	A001	003	001	ปากกา	100
1	A001	003	003	สมุด	50
1	A001	003	005	ดินสอ	10
2	A015	001	001	ปากกา	100
2	A015	001	003	สมุด	50
2	A015	001	005	ดินสอ	10

ขั้นตอนที่ 3 *ตัดแอททริบิวท์*ที่ซ้ำกันออกไป

เลขที่	รหัส	รหัส	รหัส	ชื่อ	ราคา
ใบสั่งซื้อ	ลูกค้า	สินค <i>้</i> า	สินค <i>้</i> า	สินค <i>้</i> า	สินค้า
1	A001	003	003	สมุด	

2 A015 001 001 ปากก _ั	
----------------------------------	--

ผลลัพธ์ของ	Natural Join
•	Į .

เลขที่	รหัส	รหัส	ชื่อ	ราคา
ใบสั่งซื้อ	ลูกค้า	สินค้า	สินค้า	สินค้า
1	A001	003	สมุด	50
2	A015	001	ปากกา	100

• Outer Join เป็นการ join ที่แสดงข้อมูลแถวที่จับคู่กันได้และข้อมูลแถวที่ไม่ สามารถจับคู่กันได้ โดยค่าของแอททริบิวท์ทางฝั่งรีเลชั่นที่จับคู่กันไม่ได้นั้นจะแสดงเป็นค่า Null (ปกติ ข้อมูลแถวที่ไม่สามารถจับคู่กันได้ จะไม่แสดงใน natural join)

Outer Join แบ่งออกเป็นประเภทย[่]อย ๆ ได**้** 2 ประเภท โดยยึดตารางใดตารางหนึ่งเป็นหลัก คือ Left Outer Join กับ Right Outer Join

- Left Outer Join จะแสดงข้อมูลทั้งหมดของตารางด้านซ้ายมือเป็นหลัก รวมไปถึง ข้อมูลที่จับคู่กันไม่ได้ของทั้ง 2 ตารางมาด้วย
- Right Outer Join จะแสดงข้อมูลทั้งหมดของตารางด้านขวามือเป็นหลัก รวมไปถึง ข้อมูลที่จับคู่กันไม่ได้ของทั้ง 2 ตารางมาด้วย

ตัวอย**่**าง

สินค้า

ชื่อ	ราคา
ปากกา	100
สมุด	50
ดินสอ	10
	บากกา สมุด

การสั่งซื้อ

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า
1	A001	003
2	A015	001
3	A016	004

ผลลัพธ์ของ Left Outer Join

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า	ชื่อสินค้า	ราคาสินค้า
1	A001	003	สมุด	50
2	A015	001	ปากกา	100
		005	ดินสอ	10

ผลลัพธ์ของ Right Outer Join

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า	ชื่อสินค้า	ราคาสินค้า
1	A001	003	สมุด	50
2	A015	001	ปากกา	100
3	A016	004		

• Semi Join เป็นการ join หรือการเชื่อมโยงระหว่าง 2 รีเลชัน หรือเป็นการ แสดงทูเพิลของรีเลชันแรกที่ Join กับรีเลชันที่สอง ข้อดีของ Semi join คือ ลดจำนวนทูเพิลที่เกิดจาก การ Join เพราะผลลัพธ์จะแสดงเฉพาะข้อมูลของรีเลชันที่อยู่ทางซ้าย เราสามารถเขียนสมการของ Semi join จากตัวดำเนินการ Projection และ Join ได้ดังนี้

รูปแบบ

R,S = รีเลชัน

π = สัญลักษณ์ Project

ตัวอย่าง

สินค้า การสั่งซื้อ

รหัสสินค้า	ชื่อ	ราคา
001	ปากกา	100
003	สมุด	50
005	ดินสอ	10

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า
1	A001	003
2	A015	001

ผลลัพธ์ของ Semi Join โดยกำหนดเงื่อนไข "รหัสลูกค้า" = 001

เลขที่ใบสั่งซื้อ	รหัสลูกค้า	รหัสสินค้า	ชื่อสินค้า	ราคาสินค้ำ
1	A001	003	สมุด	50

4) **โอเปอเรชันการหาร** (Division Operation) แทนด้วยสัญลักษณ์ ÷): "การจับคู่ที่ ตรงกันทุกค[่]าของแอททริบิวท์ระหว[่]าง 2 รีเลชัน"

Division เป็นการแสดงข้อมูลจากสองรีเลชัน โดยที่รีเลชันทั้งสองจะมีแอททริบิวท์อย่างน้อยหนึ่ง แอททริบิวท์ที่เหมือนกัน รีเลชันที่เป็นตัวตั้งจะมีแอททริบิวท์มากกว่าอีกรีเลชันที่เป็นตัวหาร ผลลัพธ์ที่ได้ จะเป็นค่าของแอททริบิวท์จากรีเลชันที่มีจำนวนแอททริบิวท์มากกว่า ซึ่งเป็นค่าของแอททริบิวท์หนึ่งที่มี ค่าหนึ่งที่จับคู่ตรงกับทุกค่าของแอททริบิวท์ที่เหมือนกันนี้ในอีกรีเลชันที่มีแอททริบิวท์น้อยกว่า

กำหนดให^{*} : รีเลชัน R มีกลุ^{*}มแอททริบิวท^{*} A
รีเลชัน S มีกลุ^{*}มของแอททริบิวท^{*} B
B เป็น subset ของ A
และ C = A – B (ซึ่ง C ประกอบด้วยแอททริบิวท์ของ A ไม่ใช^{*} B)

โดยสร[้]างรีเลชันที่มีแอททริบิวท์ของทูเพิลจากรีเลชัน R ที่ตรงกับการรวมทุกทูเพิลในรีเลชัน S

รูปแบบ R÷ S

÷ = สัญลักษณ์ Division

R,S = รีเลชัน

ตัวอย่าง

ใบสั่งซื้อ (R)

รหัสใบสั่งซื้อ	รหัสสินค้า
AAA	S01
BBB	S01
AAA	S02
550004	S02
550005	S01
550006	S03
550007	S01
550008	S04
BBB	S02

สินค้า (S)

รหัสสินค้า
S01
S02

ผลลัพธ์ของ Division

รหัสใบสั่งซื้อ
AAA
BBB

หน้งสืออ้างอิง

- 1. ศุภกฤษฎิ์ นิวัฒนากูล, **การออกแบบและพัฒนาฐานข้อมูล**, มหาวิทยาลัยเทคโนโลยีสุรนารี : นครราชสีมา, 2545
- 2. กิตติ ภักดีวัฒนะกุล และจำลอง ครูอุตสาหะ, **คัมภีร์ระบบฐานข้อมูล**, ดวงกมลสมัย : กรุงเทพฯ, 2542.
- 3. ชนวัฒน์ ศรีสอ้าน, **การออกแบบและพัฒนาฐานข้อมูล**, มหาวิทยาลัยเทคโนโลยีสุรนารี : นครราชสีมา, 2542.
- 4. ศิริลักษณ์ โรจนกิจอำนวย, ระบบฐานข้อมูล, พิมพ์ครั้งที่ 3, ดวงกลมสมัย : กรุงเทพฯ, 2542.
