School of Mathematics and Statistics MAST30012 Discrete Mathematics 2021

Assignment 1 – Solutions

Q1: We first state an equivalent counting problem and then give the answer.

(a) This is equivalent to choosing a subset of size 5 (the people given apples) from a set of size 12. The answer is:

$$\binom{12}{5} = \frac{12!}{7! \, 5!}.$$

(b) This is like distributing 16 balls (people) into 3 boxes (oranges, pears and bananas) with 7 balls in box 1, 4 balls in box 2, and 5 balls in box 3. The answer is

$$\binom{16}{7, 4, 5} = \frac{16!}{7! \, 4! \, 5!}.$$

(c) The distribution of each type of fruit (oranges or apples) is independent.

Alegistein on expart enacy e of fruit ix tarpoble estappling with replacement (think of people as labelled boxes and fruit as identical balls) so the oranges can be distributed in:

ways, while the lipites can be distributed in wooder $\binom{20+12-1}{12} = \binom{31}{12}$

$$\binom{20+12-1}{12} = \binom{31}{12}$$

ways. By the multiplication principle the oranges and apples can then be distributed in

$$\binom{25}{6} \binom{31}{12}$$

ways.

(d) Each integer can be represented as an n-tuple or as a word of length n with entries from $\{0, 1, ..., 9\}$. In the case n = 3 we would have 7 = (0, 0, 7), 389 =(3,8,9),1000 = (0,0,0) etc. with the entries being the coefficients in the base 10 expansion of the integer. There are 10^n tuples and in each position (column) of the n-tuples there will be 10^{n-1} occurrences of the digit 3. Since there are n positions we would write down the digit 3 a total $n10^{n-1}$ times.

Q2: In each case we make use of the probability axiom. Let T be the set of possible outcomes and F the set of favourable outcomes. Assuming each outcome is equally likely, the probability of F is:

$$\Pr(F) = \frac{\text{number of favourable outcomes}}{\text{total number of outcomes}} = \frac{\mid F \mid}{\mid T \mid}.$$

Now each roll of five dice can be represented as a five tuple (we distinguish between the dice) with entries 1, 2, 3, 4, 5 or 6. Hence $|T| = 6^5 = 7776$.

(a) Five of a kind can be achieved in 6 ways. Hence

$$Pr(Five of a kind) = \frac{6}{6^5} = \frac{1}{6^4} \approx 0.0771\%.$$

(b) The required dice values can appear in any order. Hence |F| = 5! is the number of permutations of 2, 3, 4, 5, 6, and

$$Pr(A \text{ large straight}) = \frac{5!}{6^5} \approx 1.543\%.$$

(c) The number of different full-houses is $6 \times 5 = 30$ (6 choices for three of a kind And 5 jostworth elint). Pheobjective The annival elipe placed in

(d) We partition F into 4 cases: Five of a kind, Four of kind and one other, Fullhouse, and Three of a kind and two **distinct** other dice.
Four of kindard on vile can late i DOWC-OU ways (30 combinations

of dice and 5 configuration in each case).

Three of kind and two **distinct** other dice can occur in $6 \times 5 \times 4 \times {5 \choose 3} = 1200$

Hence
$$|F| = 6 + 150 + 300 + 1200 = 1656$$
 and

$$Pr(Three of a kind) = \frac{1656}{6^5} \approx 21.296\%.$$

(e) The only way two of a kind **cannot** occur is that all dice show distinct values. This can happen in $(6)_5 = 6!$ ways. So $|F| = 6^5 - 6! = 7056$ by the complement principle and hence

$$Pr(Two of a kind) = \frac{7056}{6^5} \approx 90.74\%.$$

Alternative Solution: Two of a kind obviously appear in any configuration with three of a kind. There are two further cases two pairs and a distinct third (as in 22445) or two of a kind and three distinct others as in (55136).

Two pairs and a distinct third: $6 \times 5 \times 4/2$ possible combinations (divide by 2 to avoid counting combinations of pairs twice) and for each combination $\binom{5}{2}\binom{3}{2}$ configurations. In total there are 1800 possibilities.

Two of a kind and three distinct others: $6 \times 5 \times 4 \times 3$ possible combinations and for each combination $\binom{5}{2}$ configurations (note configurations of the distinct 3 are already counted via the combinations). In total there are 3600 possibilities.

Adding it all up we get 1656 + 1800 + 3600 = 7056 as before.

Note that had we not already done the hard work with three of a kind the complement way is so much easier.

- **Q3**: A configuration of leaders is an m-tuple with n possible distinct 'values' (students) per entry.
 - (a) With no constraint there are n^m ways of choosing the leaders.
 - (b) There are $(n-k)^m$ ways of choosing the leaders if a group a size k are excluded from leading.
 - (c) Let $L = \{1, 2, ..., n\}$ denote the set of possible leaders and $L_j = L \setminus \{j\}$ the set of leaders with student j excluded. The set of configurations in which every student gets to lead at least once is the complement of L^m with $\bigcup_{j=1}^n L_j^m$ since A_m^m is the set of configurations where student j never gets to lead on any of the large A_m^m says. So the set of configurations where student j never gets to lead on any of the

S(m,n) https://powcoder.com

Add tweethatspowcoder

$$= n^m - \sum_{k=1}^n (-1)^{k-1} \sum_{\{s_1,\dots,s_k\} \subset \{1,2,\dots,n\}} |L_{s_1}^m \cap L_{s_2}^m \cap \dots \cap L_{s_k}^m|$$

 $L_{s_1}^m \cap L_{s_2}^m \cap \cdots \cap L_{s_k}^m$ is a set with k students s_1, s_2, \ldots, s_k excluded so $|L_{s_1}^m \cap L_{s_2}^m \cap \cdots \cap L_{s_k}^m| = (n-k)^m$ and there are $\binom{n}{k}$ such subsets.

$$= n^m - \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} (n-k)^m$$

$$= \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m.$$

(d) You didn't try to show this using the formula, did you? Combinatorially, this is easy!

If there are fewer days than students, then clearly it is impossible to have a configuration in which every students leads at least once. Hence S(m, n) = 0, m < n.

When m = n there are n days and n students. Every permutation of the students is a valid configuration and hence S(n, n) = n!.

Note: This is a famous result since S(m, n) counts the number of **onto** functions from a set of size m to a set of size n.

Q4: (a) Given a group of 33 students choose a committee of size 12 with a subcommittee of size 6 and from these six an executive committee of size 3.

LHS: Choose the 12 students for the committee in $\binom{33}{12}$ ways. From the committee of 12 choose a subcommittee of size 6 in $\binom{12}{6}$, and finally choose the executive committee of size 3 in $\binom{6}{3}$ ways. The choices at each step are independent and the result follows.

RHS: Choose the executive committee of size 3 from all students in $\binom{33}{3}$ ways. Then choose the remaining 3 members of the subcommittee from the remaining of students in $\binom{30}{3}$ ways. Project Exam Help

Note how you can now derive endless lists of binomial identities such as in this case

https://powcoder.com
$$\binom{33}{12}\binom{12}{6}\binom{6}{3} = \binom{33}{6}\binom{27}{6}\binom{6}{3} = \binom{33}{9}\binom{9}{3}\binom{24}{3} = \cdots$$

(b) This is a great satisfied the 'Mattern Doe'N GOO Cam parlour' example from lectures.

An ice cream parlour serves n flavours. How many different ice cream platters are there with k scoops of ice cream.

LHS: $\binom{n}{k}$ by definition using sampling with replacement or multi-choice.

RHS: We partition on the number $m \leq k$ of distinct flavours. The m flavours can be chosen in $\binom{n}{m}$ ways and we take one scoop of each. Then we multichoose the remaining k-m scoops from the m flavours in $\binom{m}{k-m}$ ways. We then sum over the number of chosen flavours while appealing to the addition and multiplication principles.

Alternatively:

Distribute k oranges to n children with no constraint on how many oranges a child may get.

LHS: $\binom{n}{k}$ by definition.

RHS: Condition on the number, m, of children who gets at least one orange. We choose m children in $\binom{n}{m}$ ways and give each child an orange. Next dis-

tribute the remaining k-m oranges among the m children in any way. Sum over the number of chosen children.

(c) Choose subsets of size k + 1 from the set $\{1, 2, \dots, n, n + 1\}$.

LHS: By definition, $\binom{n+1}{k+1}$ is the number of subsets.

RHS: Condition on the largest number m+1 in the subset. The remaining k elements can be chosen in $\binom{m}{k}$ ways from $\{1,2,\ldots,m\}$. Now m+1 can range from k+1 to n+1 and the result follows by the addition principle.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder