

Sistemas Digitais

Sistemas Sequenciais Blocos Sequenciais

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

Introdução aos Sistemas Digitais - AFS

1

Sumário

- · Contadores
- Registos

Introdução aos Sistemas Digitais - AFS

Contadores

- MEF simples com um comportamento temporal periódico módulo N em que N é o nº de estados
- Diagrama de estados simples com transições ao longo da sucessão ordenada de estados
- Exemplo para ilustrar vários procedimentos de síntese de MEF genéricas
- · As entradas dum sistema definem os modos de funcionamento:
 - Contagem:
 - · crescente, decrescente, hold
 - Programação externa
 - · Clear
 - Preset
 - Load

Introdução aos Sistemas Digitais - AFS

3

Exemplo

- Contador crescente módulo 8 (3 bits)
 - Não é necessário tomar decisões sobre o estado seguinte
 - A saída é próprio estado presente
 - A codificação dos estados é inerente à própria sequência de contagem
- Metodologia de síntese
 - Diagrama de estados
 - Tabela de transições
 - Escolha do FFlop
 - Tabela de excitações
 - Equações de excitação

Introdução aos Sistemas Digitais - AFS

Exemplo

· Tabela de transições

Q2	Q1	Q0	Q2+	Q1+	Q0+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Introdução aos Sistemas Digitais - AFS

5

Exemplo com f/fs D

· Tabela de Excitações

Q2	Q1	Q0	Q2+	Q1+	Q0+	D2	D1	DO
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

Introdução aos Sistemas Digitais - AFS

Exemplo com f/fs D

· Equações de excitação

· Com N bits teríamos:

$$\begin{array}{ll} D0=Q0\oplus 1, & D1=Q1\oplus Q0, & D2=Q2\oplus Q1.Q0, \\ Dn-1=Qn-1\oplus Qn-2.....Q1.Q0 \end{array}$$

 Exercício: Deduza as equações de excitação para o caso de contagem decrescente

Introdução aos Sistemas Digitais - AFS

Exercício

- Com base nos resultados do exercício anterior construa um contador módulo 8 com uma entrada "ud" que determina o sentido da contagem i.e: "ud" = 0 a contagem é crescente, "ud" = 1 a contagem é decrescente. Considere ainda que dispõe apenas para a implementação de:
 - 3 f/fs D
 - 1 Mux 2:1
 - Portas elementares

Introdução aos Sistemas Digitais - AFS

9

Flip-Flops T e contadores

			_					
Q2	Q1	Q0	Q2+	Q1+	Q0+	T2	T1	TO
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

$$T2 = Q1.Q0$$

$$Tn = \sum_{k=0}^{n-1} Qk$$

Introdução aos Sistemas Digitais - AFS

Sequências de contagem não standard

- · Sequências incompletas e/ou irregulares
- Ex: contador mod 5

Q2	Q1	Q0	Q2+	Q1+	Q0+
0	0	0	0	1	0
0	0	1	×	×	×
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	×	×	×
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	×	×	×

Introdução aos Sistemas Digitais - AFS

12

Sequências de contagem não standard

- Sequências incompletas e/ou irregulares
- Ex: contador mod 5

Q2	Q1	Q0	Q2+	Q1+	Q0+
0	0	0	0	1	0
0	0	1	×	×	×
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	×	×	×
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	×	×	×

$$D2 = Q0$$

$$D1 = \overline{Q}1 + Q0\overline{Q}2$$

$$D0 = \overline{Q}2.Q1$$

Introdução aos Sistemas Digitais - AFS

O problema do "self-starting"

- No arrranque (power-up) o contador pode assumir qualquer estado, mesmo algum que não está incluído no diagrama de estados desejável.
- O que acontece então se o sistema cair num estado não incluido no diagrama inicial?
- É desejável que qualquer que seja o estado inicial ao fim dum qualquer número finito de contagens o contador entre no diagrama de estados previsto
- Um sistema com esta capacidade diz-se um sistema com "self-starting"
- · Problema genérico de Sistemas Sequenciais

Introdução aos Sistemas Digitais - AFS

1.5

O problema do "self-starting"

Análise à posteriori

D2 = Q0

- Estados a analisar 001, 100, 111

 $D1 = \overline{Q}1 + Q0\overline{Q}2$

 $D0 = \overline{Q}2.Q1$

010 110 010

 Neste caso comprava-se à posteriori que o sistema goza de self-starting

Introdução aos Sistemas Digitais - AFS

O problema do "self-starting"

- Projecto conservador
 - Prever transições para o diagrama de estados desejado
 - 2 casos possíveis
 - Acabam os "don't care"

Introdução aos Sistemas Digitais - AFS

Contadores em modo "ripple"

- · Configuração muito simples
- Atrasos de propagação cumulativos podem ser impeditivos

Contadores MSI

- · Blocos de contagem de complexidade média
 - Versáteis
 - Programação paralela
 - Clear síncrono ou assíncrono
 - Modos de Hold
 - "Flags" de fim de contagem

Introdução aos Sistemas Digitais - AFS

19

74163

- Exercício
 - Com base em contadores 74163 projecte um contador módulo 80
 - Note que $80 = 16 \times 5$
 - E se for módulo 85?

Introdução aos Sistemas Digitais - AFS

23

74163

- Exercício
 - Determine a sequência de contagem
 - Desenhe o diagrama temporal

Introdução aos Sistemas Digitais - AFS

Linha de atraso programável

- Exercício:
 - Projectar uma linha de atraso programável
 - Até 64 atrasos
 - Registos de deslocamento de 8 bits
 - Multiplexers 8:1
 - 1 entrada de dados série
 - 6 Bits para selecção
 - Apresente mais que uma solução

Introdução aos Sistemas Digitais - AFS

Problema

- Um pequeno sistema de computação em hardware digital tem como tarefa calcular sequencialmente a expressão com 2 operandos de 4 bits. O sistema engloba dois blocos fundamentais: o bloco de manipulação de dados (datapath) e o bloco de controlo. Este problema foca-se apenas no datapath
- Considere então que dispõe dum registo de 4 bits que não é de deslocamento, um circuito somador completo de 4 bits e multiplexers 4:1.

Introdução aos Sistemas Digitais - AFS

41

Problema

 Projecte o datapath deste sistema com estes componentes, ignorando eventuais problemas de overflow e tendo em conta que as operações são realizadas sequencialmente de acordo com o seguinte algoritmo:

```
// Q = Q3...Q0

// A = A3...A0

// B = B3...B0

Begin

Q = A; // carregamento paralelo

Q = 2×Q;
```

Q = Q + B;

Q = Q/2;

End

Mencione a sequência dos códigos binários que devem aplicar-se às variáveis de selecção dos multiplexers para a correcta execução do algoritmo

Introdução aos Sistemas Digitais - AFS