Celestial Object Classification

ing ing the contract the first translation of the second of the contract of th

Presented by Parker Stratton 28 February 2022

Project Task and Purpose

<u>Task</u>: Build and train a Machine Learning Algorithm to classify celestial objects based on EM Spectrum emissions and Red Shift.

Purpose: Enable professional and amateur scientists to automate and reduce error of classification of celestial object observations.

Dataset Summary

Dataset:

- Majority of Data:
 - Location of celestial object
- Critical Data
 - Electromagnetic emissions
 - Redshift
- What we are looking for:
 - Stars
 - Galaxies
 - Quasars

Image Credit: NASA.gov

Celestial Object Classes

Key Trends:

Redshift

- 1. Stars
- 2. Galaxies
- 3. Quasars

Celestial Object Classes

Key Trends:

Redshift

- 1. Stars
- 2. Galaxies
- 3. Quasars

EM Emissions

Highly related

Celestial Object Classes

Key Trends:

Redshift

- 1. Stars
- 2. Galaxies
- 3. Quasars

EM Emissions

Highly related

Redshift and EM Emissions

 Breakout of celestial object as they related to the two

Production Model

Gradient Boosting Classifier

Reliability: 98%

Issue:

Distinguishing between Galaxies and Quasars.

Conclusion

Recommendations

- 1. Immediately roll out model for use by professional and amateur astronomers
 - Caveat: classification should be verified through traditional methods
- 2. Incorporate existing data from other observation systems to improve model
- 3. Continue to collect data from both professional and amateur astronomers to improve model