BRAC University

Home Work sheet #5

MAT - 216

- 1. Evaluate the line integral $\int_C (xy + z^3) ds$ from (1,0,0) to (-1,0,0) along the helix C that is represented by the parametric equation $x = \cos t$, $y = \sin t$, z = t ($0 \le t \le \pi$).
- 2. Evaluate $\int_C xy dx + x^2 dy$ if
 - (a) C consists of line segments from (2,1) to (4,1) and from (4,1) to (4,5).
 - (b) C is the line segment from (2,1) and (4,5).
 - (c) Parametric equation for C are x = 3t 1, $y = 3t^2 2t$; $1 \le t \le 5/3$.
- 3. Show that (a) $\int (6x^2y 3xy^2) dy + (6xy^2 y^3) dx$ is independent of the path joining the points (1,2) and (3,4) (b) hence evaluate the integral.
- 4. Let $F(x, y) = (3x^2y + 2)i + (x^3 + 4y^3)j$ represents a force field. Determine if $\int_C F \, dr$ is independent of path if it is, find a potential function ϕ .
- 5. Let $F(x, y) = 2xy^3 i + (1 + 3x^2y^2) j$
 - (a) Show that $\ F$ is a Conservative Vector field on the entire $\ xy-plane$,
 - (b) find f by first integrating $\frac{\partial f}{\partial x}$,
 - (c) find f by first integrating $\frac{\partial f}{\partial y}$.
- 6. Use the potential function obtained in example (7) to evaluate the integral

$$\int_{(1,4)}^{(3,1)} 2xy^3 dx + (1+3x^2y^2) dy.$$

From Book :- (Calculus, Howard Anton 10th edition, soft copy)

Triple Integral

Exercise set 15.2 - (7-12), 14, (19-32)

INDEPENDENCE OF PATH; CONSERVATIVE VECTOR FIELDS Exercise set 15.3 - (1-6), (9-14)

Green's theorem

Exercise set 15.4 - 1-14