Cube Attacks on Ascon Internship - Symmetric cryptanalysis

ROUSSEAU Jules

Research team : CAPSULE Univesité de Rennes - Irisa

July 17, 2024

Supervisors: André SCHROTTENLOHER, Patrick DERBEZ

Lightweight encryption

Why?

- Little memory
- Low power consumption
- High performance
- Security in IoT

Ascon¹

- ▶ Ascon is a family of lightweight ciphers
- ▶ Futur standard selected by NIST, 2023
- ▶ Design based on a sponge construction (AEAD cipher, hash function)

¹Dobraunig, Eichlseder, Mendel, Schläffer. Ascon v1.2. Journal of Cryptology 2021

Ascon Specification

Duplex-Sponge mode in Ascon

- ▶ *IV*,*A* are public
- $\triangleright K, N$ are secret

Parameters

Bit size of						Rounds	
Key K	Nonce N	Tag T	Data block	State S	p ^a	p^b	
128	128	128	64	320	12	6	

Ascon Specification

Permutation P in Ascon

$$P = P_L \circ P_S \circ P_C$$

- $\triangleright P_C$ 1-byte constant addition
- $\triangleright P_S$ Nonlinear Substitution layer : 5-bit **S-box** on each of the 64 columns
- $\triangleright P_L$ Linear Diffusion Layer on each of the 5 rows

Ascon Specification

$$x_0 := x_0 \oplus (x_0 \gg 19) \oplus (x_0 \gg 28)$$

$$x_1 := x_1 \oplus (x_1 \gg 61) \oplus (x_1 \gg 39)$$

$$x_2 := x_2 \oplus (x_2 \gg 1) \oplus (x_2 \gg 6)$$

$$x_3 := x_3 \oplus (x_3 \gg 10) \oplus (x_3 \gg 17)$$

$$x_4 := x_4 \oplus (x_4 \gg 7) \oplus (x_4 \gg 41)$$

Ascon's linear diffusion layer

Sbox as a lookup table

Algebraic Normal Form (ANF)

Let $f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2$ be a Boolean function, its ANF is given by :

$$f(x) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$

 $x = (x_0, \dots, x_{n-1})$ the public variables

examples

ANF:
$$n = 4$$
, $f(x) = x_0x_1x_2x_3 + x_1x_3 + x_0x_2$

Monomial : $x_1x_3 = x^u$ with u = (01010)

$$x^{u} = (x_{0}, x_{1}, x_{2}, x_{3})^{(0,1,0,1)} = x_{0}^{0} x_{1}^{1} x_{2}^{0} x_{3}^{1} = x_{1} x_{3}$$

Cube

$$x = (x_0, x_1, x_2, x_3)$$
, let's consider $I = (0, 2)$ so $x^I = \mathbf{x_0} \mathbf{x_2}$.
The cube C_I associated to x^I is $C_I = \{\mathbf{0000}, \mathbf{1000}, \mathbf{0010}, \mathbf{1010}\}$

Cube

$$x = (x_0, x_1, x_2, x_3)$$
, let's consider $I = (0, 2)$ so $x^I = \mathbf{x_0} \mathbf{x_2}$.
The cube C_I associated to x^I is $C_I = \{\mathbf{0000}, \mathbf{1000}, \mathbf{0010}, \mathbf{1010}\}$

Division Property

Cube

$$x = (x_0, x_1, x_2, x_3)$$
, let's consider $I = (0, 2)$ so $x^I = \mathbf{x_0} \mathbf{x_2}$.
The cube C_I associated to x^I is $C_I = \{\mathbf{0000}, \mathbf{1000}, \mathbf{0010}, \mathbf{1010}\}$

Division Property

$$f_k(x) = p_I(x[\bar{I}], k) \cdot x^I + q(x, k)$$

$$\bigoplus_{x[I]} f_k(x) = p_I(x[\bar{I}], k)$$

Division trails

$$u \xrightarrow{f} v$$
 is a trail from x^u to $y^v \iff x^u$ belongs to y^v

In our case : $u \xrightarrow{f} v$ where $v = e_i \iff x^u$ appears in the ANF of y_i

Division trails

$$u \xrightarrow{f} v$$
 is a trail from x^u to $y^v \iff x^u$ belongs to y^v

In our case : $u \xrightarrow{f} v$ where $v = e_i \iff x^u$ appears in the ANF of y_i

3SBDP without unknown subset

$$\bigoplus_{x \in \mathbb{X}} x^{u} = \begin{cases} 1 & \text{if the number of trails is odd} \\ 0 & \text{otherwise} \end{cases}$$

Division trails

 $u \xrightarrow{f} v$ is a trail from x^u to $y^v \iff x^u$ belongs to y^v

In our case : $u \xrightarrow{f} v$ where $v = e_i \iff x^u$ appears in the ANF of y_i

3SBDP without unknown subset

$$\bigoplus_{x \in \mathbb{X}} x^u = \begin{cases} 1 & \text{if the number of trails is odd} \\ 0 & \text{otherwise} \end{cases}$$

Drawback

We need to count ALL the trails!

Cube attacks usual purposes

Finding distinguishers

- ▶ distinguish a cryptographic function from a random one
- ▶ Bounds on the degree of monomials
- $\triangleright \bigoplus_{x \in \gamma} f(x) = 0$

Recover information on the key

- ▶ Result of the sum determined by the key bits
- $\triangleright \bigoplus_{x \in \gamma} f(x) \neq 0$

My work on Ascon

The attack model of Ascon²

- ▶ Modelization in MILP and SAT
- ightharpoonup GOAL : Accelerating the trails calculation : fewer trails or making it more efficient

XOR	$a \stackrel{\oplus}{\longrightarrow} b$	$b = a_1 + \dots + a_n$	
AND	$a \xrightarrow{\odot} b$	$b = a_i \forall i \in \{1, \dots, n\}$	
COPY	$a \xrightarrow{copy} b$	$a \geq b_i \forall i \in \{1, \dots, n\}$, and $b_1 + \dots + b_n \geq a$	
NEGATION		$b \ge a$	

 $^{^2}$ Rohit, Hu, Sarkar, Sun. Misuse-free key-recovery and distinguishing attacks on 7-round ascon. IACR Trans. Symmetric Cryptol. 2021

My work on Ascon

Equivalent modelizations

According to the ANF of the Sbox

$$y_0 = x_4x_1 + x_3 + x_2x_1 + x_2 + x_1x_0 + x_1 + x_0$$

$$y_1 = x_4 + x_3x_2 + x_3x_1 + x_3 + x_2x_1 + x_2 + x_1 + x_0$$

$$y_2 = x_4x_3 + x_4 + x_2 + x_1 + 1$$

$$y_3 = x_4x_0 + x_4 + x_3x_0 + x_3 + x_2 + x_1 + x_0$$

$$y_4 = x_4x_1 + x_4 + x_3 + x_1x_0 + x_1$$

GIFT-64

What's GIFT?

SubCells: 4-bit SBox

PermBits: Permutation of bits

AddRoundKey: XORing of key bits and round constants

28 rounds keys derived from the 128-bit master Key

GIFT Super Sbox

Discard inconsistent trails in middle rounds \implies fewer trails to compute?

Verify trail consistency through a Super Sbox (SSB)

Algorithm 1: trails_checking

Input: Truth table of Super Sbox

Output: Verification of $u \xrightarrow{f_{SSB}} v$

- □ Calculate y, the ANF of SSB using the Moebius Transform
- $_{2}$ ⊳ Calculate y^{ν}

What did I do?

Cipher	Known integral distinguisher	Integral-resistance property
SKINNY-64	12	13
CRAFT	13	14
GIFT-64	10	12
PRESENT	9	13
SIMON32	15	16
SIMON48	16	17
SIMON64	18	19
SIMON96	22	23
SIMON128	26	27
Simeck32	15	16
Simeck48	18	19
Simeck64	21	22

[HLLT21]³

- Trying to fill the gap
- Finding the cause : The lower bound or the best distinguisher known ?
- Using fixed keys

³Hebborn, Lambin, Leander, Todo. Strong and tight security guarantees against integral distinguishers. ASIACRYPT 2021

Future work

- Obtain results on the lower bound for fixed-key GIFT
- Apply the implementation to key-independent GIFT
- Fill the gap between the lower bound and the known distinguisher

References

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer, *Ascon v1.2: Lightweight authenticated encryption and hashing*, Journal of Cryptology **34** (2021).

Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo, *Strong and tight security guarantees against integral distinguishers*, Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part I (Mehdi Tibouchi and Huaxiong Wang, eds.), Lecture Notes in Computer Science, vol. 13090, Springer, 2021, pp. 362–391.

Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun, *Misuse-free key-recovery and distinguishing attacks on 7-round ascon*, IACR Trans. Symmetric Cryptol. **2021** (2021), no. 1, 130–155.