NAND/NOR gates + Quine McCluskey + Petricks

Vikas Dhiman for ECE275

September 28, 2022

1 Circuit design using NAND/NOR gates

Example 1. Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using (1) NAND gates only and (2) NOR gates only.

Remark 1. NAND-NAND logic is generated from SOP form. NOR-NOR logic is generated from POS form.

Remark 2. NOT gate can also be created from a NAND gate $\bar{x} = \overline{x \cdot x}$.

Remark 3. NOT gate can also be created from a NOR gate $\bar{x} = \overline{x+x}$.

$$x$$
 —

Problem 1. Design the simplest circuit that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7)$ using (1) NAND gates only (2) NOR gates only.

2 Quine-McCluskey

This is not in the text-book. For additional reading, please refer to the linked resources on the website.

Definition 1 (Implicant). Given a function f of n variables, a product term P is an implicant of f if and only if for every combination of values of the n variables for which P = 1, f is also equal to f.

Definition 2 (Prime Implicant). A prime implicant of a function f is an implicant which is no longer an implicant if any literal is removed from it.

There are 4 main steps in the Quine-McCluskey algorithm:

- 1. Generate Prime Implicants
- 2. Construct Prime Implicant Table. PIs as columns, and minterms as rows (don't cares are excluded).
- 3. Reduce Prime Implicant Table by repeating following steps until they it cannot be reduced further
 - (a) Remove Essential Prime Implicants
 - (b) Row Dominance: Remove dominating rows. (i.e. unnecessary minterms)
 - (c) Column Dominance: Remove dominated columns. (i.e. remove unnecessary PIs)
- 4. Solve Prime Implicant Table by Petricks method

2.1 Generate Prime Implicants

Example 2. Generate prime implicants of the function $F(A, B, C, D) = \sum m(0, 2, 5, 6, 7, 8, 10, 12, 13, 14, 15)$ using Quine-McCluskey method

Steps:

- 1. Start with writing minterms in binary format (include don't cares as minterms).
- 2. Create potential groups of minterms that can be combined (merged). The only minterms that can be combined differ only be single 1. Create a new list of combined minterms as n-1 literal implicants.

- 3. Check off the minterms that could be combined. Unchecked minterms are prime implicants (PIs).
- 4. Repeat the grouping process with n-1 literal implicants.

Problem 2. Generate PIs for the function $F(A, B, C, D) = \sum m(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)$.

2.2 Prime Implicants table and reduction

Example 3. Reduce the prime implicants $\{\bar{B}\bar{D}, C\bar{D}, BD, BC, A\bar{D}, AB\}$ using prime implicants table.

Example 4.

Example 5.

CD A	B_{00}	01	11	10	
00	d	0	0	0	
01	1	1	d	d	
11	1	1	0	0	
10	1	d	0	0	

Example 6. Reduce the following PI table

Example 6. Reduce the following PI table									
	$\bar{A}\bar{D}$	$\bar{B}\bar{D}$	$\bar{C}\bar{D}$	$\bar{A}C$	$\bar{B}C$	$\bar{A}B$	$B\bar{C}$	$A\bar{B}$	$A\bar{C}$
0	X	X	X						
2	X	X		X	X				
3				X	X				
4	X		X			X	X		
4 5						X	X		
6	X			X		X			
γ				X		X			
8		X	X					X	X
g								X	X
10		X			X			X	
11					X			X	
12			X		X		X		X
13							X		X

2.3 Petricks method

Example 7. Solve the Prime Implicant table using Petrick's method

	$p_1 = \bar{A}C$	$p_2 = \bar{B}C$	$p_3 = \bar{A}B$	$p_4 = B\bar{C}$	$p_5 = A\bar{B}$	$p_6 = A\bar{C}$
- 1	X	X				
$\frac{5}{\gamma}$	X		X V	X		
$\begin{vmatrix} 7 \\ 9 \end{vmatrix}$	Λ		Λ		X	X
11		X			X	
13				X		X

Example 8. Find the minimum SOP expression for the function $F(A, B, C, D) = \sum m(2, 3, 7, 9, 11, 13) + \sum d(1, 10, 15)$ using Quine-McCluskey method.