Recepción de datos

Se recibe la cantidad de bits junto con las variables asociadas a sus respectivos valores.

- ▶ bits = 9
- ▶ b = s-10
- ightharpoonup a = hsf

Convertir datos a binario

Se convierten los datos a listas de 0s y 1s para representar un valor binario.

$$\blacktriangleright$$
 b = - [0, 0, 0, 0, 0, 1, 0, 1, 0]

$$ightharpoonup$$
 a = + [0, 0, 0, 0, 0, 1, 1, 1, 1]

Tomar el valor absoluto de los números

Se toma el valor absoluto de los números para realizar la multiplicación.

- ightharpoonup abs(b) = [0, 0, 0, 0, 0, 1, 0, 1, 0]
- ightharpoonup abs(a) = [0, 0, 0, 0, 0, 1, 1, 1, 1]

Multiplicación binaria

Se realiza la multiplicación binaria (de valor absoluto) de los dos números binarios.

▶ $abs(b) \times abs(a) =$ [0, 0, 0, 0, 0, 1, 1, 0] × [0, 0, 0, 0, 0, 1, 1, 1, 1] = ...

Inicializar registro y empezar a multiplicar

Inicializar el resultado como una lista de ceros con longitud 2×9 y empezar a recorrer los bits de abs(a).

Si el bit de abs(a) = 1, sumar abs(b) \times 2⁰ al resultado.

▶ $abs(a)[8] = 1 \Longrightarrow Si$ se hace la suma

Sumar No.1

Sumar $abs(b) \times 2^0$ al resultado.

- $[0, 0, 0, 0, 0, 1, 0, 1, 0] \ll 0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]$
- resultado + producto =
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]

Si el bit de abs(a) = 1, sumar abs(b) \times 2¹ al resultado.

ightharpoonup abs(a)[7] = 1 \Longrightarrow Sí se hace la suma

Sumar No.2

Sumar $abs(b) \times 2^1$ al resultado.

- $[0, 0, 0, 0, 0, 1, 0, 1, 0] \ll 1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]$
- resultado + producto =
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0]

Si el bit de abs(a) = 1, sumar abs(b) \times 2² al resultado.

▶ $abs(a)[6] = 1 \Longrightarrow Si$ se hace la suma

Sumar No.3

Sumar abs(b) \times 2² al resultado.

- $[0, 0, 0, 0, 0, 1, 0, 1, 0] \ll 2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]$
- resultado + producto =
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0]

Si el bit de abs(a) = 1, sumar abs(b) \times 2³ al resultado.

ightharpoonup abs(a)[5] = 1 \Longrightarrow Sí se hace la suma

Sumar No.4

Sumar $abs(b) \times 2^3$ al resultado.

- $[0, 0, 0, 0, 0, 1, 0, 1, 0] \ll 3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]$
- resultado + producto =
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0]

Si el bit de abs(a) = 1, sumar abs(b) \times 2⁴ al resultado.

▶ $abs(a)[4] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(a) = 1, sumar abs(b) \times 2⁵ al resultado.

▶ $abs(a)[3] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(a) = 1, sumar abs(b) \times 2⁶ al resultado.

▶ $abs(a)[2] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(a) = 1, sumar abs(b) \times 2⁷ al resultado.

▶ $abs(a)[1] = 0 \Longrightarrow No se hace la suma$

Si el bit de abs(a) = 1, sumar abs(b) \times 2⁸ al resultado.

▶ $abs(a)[0] = 0 \Longrightarrow No se hace la suma$

Recortar resultado

Recortar el resultado para la cantidad de bits en cuestión.

► [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0] = [0, 1, 0, 0, 1, 0, 1, 1, 0]

Aplicando negativos

Se determina el signo del resultado y se convierte a complemento a dos si es negativo.

 $- [0, 1, 0, 0, 1, 0, 1, 1, 0] \Longrightarrow [1, 0, 1, 1, 0, 1, 0, 1, 0]$

Resultado

Se muestra el resultado de la multiplicación binaria.

▶ Resultado = $b \times a = -[0, 0, 0, 0, 0, 1, 0, 1, 0] \times + [0, 0, 0, 0, 1, 1, 1, 1] = [1, 0, 1, 1, 0, 1, 0, 1, 0]$

Diseños Lógicos

Johanel, Fabrizio, Jeaustin

Tecnológico de Costa Rica

Semestre I de 2023