Intégration et Mesure

Cours de Emmanuel Grenier Notes de Alexis Marchand

ENS de Lyon S1 2017-2018 Niveau L3

Table des matières

1	Rap	opels sur la dénombrabilité	2	
2	σ -algèbres et mesures			
	2.1	Algèbres et σ -algèbres	2 2	
	2.2	σ -algèbres engendrées	3	
	2.3	Mesures	3	
	2.4	Mesure de Lebesgue	4	
	2.5	Mesure d'équiprobabilité sur $\{0,1\}^{\mathbb{N}}$	5	
	2.6	Classes monotones	6	
	2.7	Théorème de Carathéodory	7	
3	Inté	égration	8	
	3.1	Fonctions mesurables	8	
	3.2	Intégrale des fonctions positives	9	
	3.3	· .	11	
	3.4	ů	12	
	3.5	•	14	
4	Espaces fonctionnels 15			
	4.1	Les inégalités de Hölder et de Minkowski	15	
	4.2		15	
	4.3	L'espace L^2	17	
	4.4	-	17	
	4.5		17	
	4.6		18	
5	Espaces de Hilbert			
	5.1		18	
	5.2	· ·	19	
	5.3	Exemples classiques de bases hilbertiennes	20	
	5.4		20	
	5.5		21	
	5.6		22	
	5.7	0	23	
\mathbf{R}	éfére	nces	23	

1 Rappels sur la dénombrabilité

Définition 1.0.1 (Ensemble dénombrable). On dit qu'un ensemble E est dénombrable s'il est en bijection avec \mathbb{N} .

Proposition 1.0.2. Une partie de N est soit finie, soit dénombrable.

Proposition 1.0.3. Soit E un ensemble. S'il existe une injection $E \hookrightarrow \mathbb{N}$ ou une surjection $\mathbb{N} \twoheadrightarrow E$, alors E est fini ou dénombrable.

Exemple 1.0.4. \mathbb{N} , \mathbb{Z} , \mathbb{N}^k (pour $k \in \mathbb{N}$), \mathbb{Q} sont dénombrables.

Proposition 1.0.5.

- (i) Un produit fini d'ensembles dénombrables est dénombrable.
- (ii) Une réunion finie ou dénombrable d'ensembles finis ou dénombrables est finie ou dénombrable.

Exemple 1.0.6. $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$, $\mathbb{Z}[X]$ et l'ensemble des nombres algébriques sont dénombrables.

Théorème 1.0.7. $\{0,1\}^{\mathbb{N}}$ n'est pas dénombrable.

Corollaire 1.0.8. $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable.

Théorème 1.0.9 (Théorème de Cantor Bernstein). Soit E et F deux ensembles. S'il existe une injection $E \hookrightarrow F$ et une injection $F \hookrightarrow E$, alors E et F sont en bijection.

Théorème 1.0.10. \mathbb{R} est en bijection avec $\mathcal{P}(\mathbb{N})$, donc non dénombrable.

Remarque 1.0.11. Comme \mathbb{R} est infini non dénombrable alors que l'ensemble des nombres algébriques est dénombrable, il existe des nombres transcendants (i.e. non algébriques).

2 σ -algèbres et mesures

2.1 Algèbres et σ -algèbres

Définition 2.1.1 (Algèbre). Soit X un ensemble. On dit que $A \subset \mathcal{P}(X)$ est une algèbre sur X lorsque les trois conditions suivantes sont vérifiées :

- (i) $X \in \mathcal{A}$.
- (ii) $\forall (A, B) \in \mathcal{A}^2, A \cup B \in \mathcal{A}.$
- (iii) $\forall A \in \mathcal{A}, (X \backslash A) \in \mathcal{A}.$

Remarque 2.1.2. Dans la définition, on peut remplacer la condition (i) par $\emptyset \in \mathcal{A}$. On peut aussi remplacer la condition (ii) par $\forall n \in \mathbb{N}^*, \ \forall (A_1, \ldots, A_n) \in \mathcal{A}^n, \ \bigcup_{i=1}^n A_i \in \mathcal{A} \text{ ou par } \forall (A, B) \in \mathcal{A}^2, \ A \cap B \in \mathcal{A}$.

Exemple 2.1.3. Soit X un ensemble. Alors les ensembles suivants sont des algèbres sur X : $\{\emptyset, X\}$, $\mathcal{P}(X)$, $\{A \subset X, A \text{ ou } (X \setminus A) \text{ est fini}\}$, $\{A \subset X, A \text{ ou } (X \setminus A) \text{ est fini ou dénombrable}\}$.

Définition 2.1.4 (σ -algèbre). Soit X un ensemble. On dit que $\mathcal{B} \subset \mathcal{P}(X)$ est une σ -algèbre (ou tribu) sur X lorsque les trois conditions suivantes sont vérifiées :

- (i) $X \in \mathcal{B}$
- (ii) $\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{B}^{\mathbb{N}}, \ \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{B}.$
- (iii) $\forall A \in \mathcal{B}, (X \backslash A) \in \mathcal{B}.$

On dit alors que (X, \mathcal{B}) est un espace mesurable.

Remarque 2.1.5. Dans la définition, on peut remplacer la condition (i) par $\emptyset \in \mathcal{B}$. On peut aussi remplacer la condition (ii) par $\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}$, $\bigcap_{n \in \mathbb{N}} A_n \in \mathcal{B}$.

Remarque 2.1.6. Toute σ -algèbre est une algèbre.

Exemple 2.1.7. Soit X un ensemble. Alors les ensembles suivants sont des σ -algèbres : $\{\emptyset, X\}$, $\mathcal{P}(X)$, $\{A \subset X, A \text{ ou } (X \setminus A) \text{ est fini ou dénombrable}\}$. Mais $\{A \subset X, A \text{ ou } (X \setminus A) \text{ est fini}\}$ n'est en général pas une σ -algèbre sur X.

2.2 σ -algèbres engendrées

Lemme 2.2.1. Soit X un ensemble. Alors une intersection quelconque de σ -algèbres sur X est une σ -algèbre sur X.

Définition 2.2.2 (σ -algèbre engendrée). Soit X un ensemble. Étant donné $\mathcal{C} \subset \mathcal{P}(X)$, on appelle σ -algèbre engendrée par \mathcal{C} , notée $\sigma(\mathcal{C})$, la plus petite σ -algèbre sur X contenant \mathcal{C} .

Définition 2.2.3 (Tribu borélienne). Si X est un espace topologique, on appelle tribu borélienne de X, notée Bor(X), la σ -algèbre engendrée par les ouverts de X. Les éléments de Bor(X) sont appelés boréliens. Sauf mention contraire, les espaces topologiques seront désormais munis de leurs tribus boréliennes.

Remarque 2.2.4. Soit X un espace topologique. Pour montrer qu'une propriété \mathfrak{P} est vérifiée par tout $A \in \text{Bor}(X)$, il suffit de montrer que $\{A \in \mathcal{P}(X), A \text{ vérifie } \mathfrak{P}\}$ est une σ -algèbre contenant \mathfrak{M} , où $\mathfrak{M} \subset \mathcal{P}(X)$ vérifie $\sigma(\mathfrak{M}) = \text{Bor}(X)$.

2.3 Mesures

Définition 2.3.1 (Mesure). Soit (X, \mathcal{B}) un espace mesurable. On appelle mesure sur (X, \mathcal{B}) toute application $\mu : \mathcal{B} \to [0, +\infty]$ vérifiant les propriétés suivantes :

- (i) $\mu(\varnothing) = 0$.
- (ii) Pour toute famille $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{B} deux à deux disjoints, on a $\mu(\bigsqcup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} \mu(A_n)$.

On dit alors que (X, \mathcal{B}, μ) est un espace mesuré.

Exemple 2.3.2. Soit (X, \mathcal{B}) un espace mesurable.

(i) Soit $a \in X$. On appelle mesure de Dirac en a la mesure

$$\delta_a: A \in \mathcal{B} \longmapsto \begin{cases} 1 & si \ a \in A \\ 0 & sinon \end{cases}.$$

(ii) On appelle mesure de comptage la mesure

$$\mu: A \in \mathcal{B} \longmapsto |A| \in \mathbb{N} \cup \{+\infty\}$$
.

Proposition 2.3.3. Soit (X, \mathcal{B}, μ) un espace mesuré. Alors :

- (i) $\forall (A, B) \in \mathcal{B}^2$, $A \cap B = \emptyset \Longrightarrow \mu(A \sqcup B) = \mu(A) + \mu(B)$.
- (ii) $\forall (A, B) \in \mathcal{B}^2$, $A \subset B \Longrightarrow \mu(A) \leqslant \mu(B)$.
- (iii) $\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}, \ \mu(\bigcup_{n \in \mathbb{N}} A_n) \leqslant \sum_{n \in \mathbb{N}} \mu(A_n).$

Proposition 2.3.4. *Soit* (X, \mathcal{B}, μ) *un espace mesuré.*

(i) Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{B}^{\mathbb{N}}$ une suite croissante pour l'inclusion. Alors :

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \lim_{n\to+\infty}\mu\left(A_n\right).$$

(ii) Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{B}^{\mathbb{N}}$ une suite décroissante pour l'inclusion. Alors :

$$\mu(A_0) < +\infty \Longrightarrow \mu\left(\bigcap_{n \in \mathbb{N}} A_n\right) = \lim_{n \to +\infty} \mu(A_n).$$

Exemple 2.3.5. On se place dans \mathbb{N} , muni de la mesure de comptage μ (sur la tribu $\mathcal{P}(\mathbb{N})$). Pour $i \in \mathbb{N}$, on pose $A_i = [i, +\infty[$. Alors $\forall i \in \mathbb{N}$, $\mu(A_i) = +\infty$ mais $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \mu(\emptyset) = 0$.

Définition 2.3.6 (Mesures finies, de probabilité, σ -finies). Soit (X, \mathcal{B}, μ) un espace mesuré.

- (i) Si $\mu(X) < +\infty$ (ce qui implique $\forall A \in \mathcal{B}, \ \mu(A) < +\infty$), on dit que μ est une mesure finie.
- (ii) $Si \mu(X) = 1$, on dit que μ est une mesure de probabilité.
- (iii) S'il existe une suite $(X_n)_{n\in\mathbb{N}}\in\mathcal{B}^{\mathbb{N}}$ t.q. $X=\bigcup_{n\in\mathbb{N}}X_n$ et $\forall n\in\mathbb{N}, \ \mu(X_n)<+\infty$, on dit que μ est une mesure σ -finie.

Définition 2.3.7 (Ensembles de mesure nulle et ensembles négligeables). Soit (X, \mathcal{B}, μ) un espace mesuré.

- (i) On dit qu'un ensemble $A \in \mathcal{B}$ est de mesure nulle lorsque $\mu(A) = 0$.
- (ii) On dit qu'un ensemble $C \in \mathcal{P}(X)$ est négligeable lorsque $\exists A \in \mathcal{B}, C \subset A$ et $\mu(A) = 0$. On dit qu'une propriété est vraie presque-partout si elle est vraie partout sauf sur un ensemble négligeable.

Définition 2.3.8 (Complétion d'une tribu). Soit (X, \mathcal{B}, μ) un espace mesuré. On appelle complétion de \mathcal{B} par μ la tribu suivante :

$$\mathcal{B}_{\mu} = \left\{ A \in \mathcal{P}(X), \ \exists (B, C) \in \mathcal{B}^2, \ B \subset A \subset C \ \text{et} \ \mu\left(C \backslash B\right) = 0 \right\}.$$

Si $A \in \mathcal{B}_{\mu}$, $(B,C) \in \mathcal{B}^2$ avec $B \subset A \subset C$ et $\mu(C \setminus B) = 0$, on définit $\widetilde{\mu}(A) = \mu(B) = \mu(C)$. Alors $(X, \mathcal{B}_{\mu}, \widetilde{\mu})$ est un espace mesuré, et $\widetilde{\mu}_{\mid \mathcal{B}} = \mu$.

2.4 Mesure de Lebesgue

Théorème 2.4.1 (Théorème de Carathéodory). Soit \mathcal{A} une algèbre sur un ensemble X, et $m: \mathcal{A} \to [0, +\infty]$ une fonction additive (i.e. $\forall (A, B) \in \mathcal{A}^2$, $A \cap B = \varnothing \Longrightarrow m(A \sqcup B) = m(A) + m(B)$). On suppose que :

- (c) Pour toute suite décroissante $(A_p)_{p\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ t.q. $m\left(A_0\right)<+\infty$ et $\bigcap_{p\in\mathbb{N}}A_p=\varnothing$, on a $m\left(A_p\right)\xrightarrow[p\to+\infty]{}0$.
- (c_{∞}) Il existe une suite croissante $(X_p)_{p\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ t.q. $X=\bigcup_{p\in\mathbb{N}}X_p$ avec $\forall p\in\mathbb{N},\ m\left(X_p\right)<+\infty$ t.q. $\forall A\in\mathcal{A},\ m(A)=+\infty\Longrightarrow m\left(A\cap X_p\right)\xrightarrow[p\to+\infty]{}+\infty.$

Alors m se prolonge de manière unique en une mesure μ définie sur $\sigma(A)$.

Démonstration. Voir paragraphe 2.7.

Définition 2.4.2 (Pavés et ensembles pavables).

(i) On appelle pavé de \mathbb{R}^n tout ensemble $P \subset \mathbb{R}^n$ de la forme $P = \prod_{k=1}^n (a_k, b_k)$, où (a_k, b_k) est un intervalle quelconque de \mathbb{R} pour $k \in [1, n]$. On pose alors $m(P) = \prod_{k=1}^n |b_k - a_k|$, avec la convention $0 \times (+\infty) = 0$.

(ii) On dit qu'un sous-ensemble de \mathbb{R}^n est pavable s'il s'écrit comme réunion finie de pavés. On prolonge m (de manière additive) à tout ensemble pavable en remarquant qu'un ensemble pavable s'écrit toujours comme réunion finie disjointe de pavés.

Lemme 2.4.3. Soit $M \subset \mathbb{R}^n$ un ensemble pavable avec $m(M) < +\infty$. Alors pour tout $\varepsilon > 0$, il existe un ensemble $M' \subset M$ pavable et compact $t,q,0 \leq m(M) - m(M') \leq \varepsilon$.

Théorème 2.4.4 (Existence de la mesure de Lebesgue). Il existe une unique mesure notée λ (ou λ_n s'il peut y avoir ambiguïté), appelée mesure de Lebesgue, sur Bor (\mathbb{R}^n) t.q. pour tout pavé P, $\lambda(P) = m(P)$.

Démonstration. Appliquer le théorème de Carathéodory (théorème 2.4.1), en utilisant l'algèbre des ensembles pavables. L'hypothèse (c_{∞}) est vérifiée avec $X_p = \prod_{i=1}^n [-p, p]$, pour $p \in \mathbb{N}$. Quant à l'hypothèse (c), montrer qu'elle est vérifiée en utilisant le lemme 2.4.3.

Proposition 2.4.5. La mesure de Lebesgue est invariante par translation.

Démonstration. Si $\tau : \mathbb{R}^n \to \mathbb{R}^n$ est une translation, définir $\mu : A \in \text{Bor}(\mathbb{R}^n) \longmapsto \lambda(\tau(A)) \in [0, +\infty]$. Montrer que μ est une mesure sur $\text{Bor}(\mathbb{R}^n)$, et coïncide avec λ sur les pavés. Selon le théorème 2.4.4, en déduire que $\lambda = \mu$.

Remarque 2.4.6. Soit μ une mesure sur Bor (\mathbb{R}^n) invariante par translation t.q. $\mu([0,1]^n) < +\infty$. Alors $\mu = \mu([0,1]^n) \cdot \lambda$.

Lemme 2.4.7. Soit μ une mesure sur Bor (\mathbb{R}^n) t.q. tout compact est de mesure finie. Alors pour tout $H \subset \mathbb{R}^n$ s'écrivant comme réunion dénombrable de fermés, et pour tout $\varepsilon > 0$, il existe un fermé $G \subset H$ t.q. $0 \leq \mu(H \setminus G) < \varepsilon$.

Démonstration. On écrit $H = \bigcup_{p \in \mathbb{N}} F_p$, où $(F_p)_{p \in \mathbb{N}}$ est une suite de fermés de \mathbb{R}^n , qu'on peut supposer croissante quitte à remplacer F_p par $\bigcup_{q \leqslant p} F_q$. Si $\mu(H) < +\infty$, on pose $G = F_p$, où $p \in \mathbb{N}$ est choisi t.q. $\mu(H \backslash F_p) < \varepsilon$. Si $\mu(H) = +\infty$, soit $\Gamma_q = \{x \in \mathbb{R}^n, \ q \leqslant \|x\| \leqslant q+1\}$ pour $q \in \mathbb{N}$. Comme Γ_q est un compact, on a $\mu(\Gamma_q) < +\infty$. Donc $H \cap \Gamma_q$ est une réunion dénombrable de fermés, et est de mesure finie. D'après le premier cas, il existe donc un fermé $G_q \subset H \cap \Gamma_q$ t.q. $\mu(H \cap \Gamma_q \backslash G_q) \leqslant \frac{\varepsilon}{2^{q+2}}$. On pose alors $G = \bigcup_{q \in \mathbb{N}} G_q$. On montre aisément que G est fermé (car les G_q sont inclus dans des couronnes disjointes). De plus $G \subset H$ et $\mu(H \backslash G) < \varepsilon$.

Proposition 2.4.8. Soit μ une mesure sur Bor (\mathbb{R}^n) t.q. tout compact est de mesure finie. Alors pour tout $A \in \text{Bor }(\mathbb{R}^n)$ et pour tout $\varepsilon > 0$, il existe un fermé $F \subset \mathbb{R}^n$ et un ouvert $\mathcal{U} \subset \mathbb{R}^n$ t.q. $F \subset A \subset \mathcal{U}$ et $0 \leq \mu(\mathcal{U} \setminus F) < \varepsilon$.

Démonstration. On note \mathfrak{M} l'ensemble des $A \in \mathcal{P}(\mathbb{R}^n)$ t.q. pour tout $\varepsilon > 0$, il existe un fermé F et un ouvert \mathcal{U} t.q. $F \subset A \subset \mathcal{U}$ et $0 \leq \mu(\mathcal{U} \setminus F) < \varepsilon$. Montrer d'abord que \mathfrak{M} contient les compacts de \mathbb{R}^n . Comme les compacts engendrent la tribu borélienne de \mathbb{R}^n , il reste à prouver que \mathfrak{M} est une σ -algèbre. En effet, on a $\varnothing \in \mathfrak{M}$, \mathfrak{M} est stable par passage au complémentaire. Et la stabilité de \mathfrak{M} par réunion dénombrable s'obtient à l'aide du lemme 2.4.7.

2.5 Mesure d'équiprobabilité sur $\{0,1\}^{\mathbb{N}}$

Notation 2.5.1. On munit $\{0,1\}^{\mathbb{N}}$ de la topologie produit, qui est générée par la distance suivante :

$$d: \left| \left(\{0,1\}^{\mathbb{N}} \right)^2 \longrightarrow \mathbb{R}_+ \right| (u,v) \longmapsto \sum_{n \in \mathbb{N}} \frac{|u_n - v_n|}{2^n}.$$

Notation 2.5.2. Étant donné $\ell \in \mathbb{N}$ et $s = (s_0, \dots, s_{\ell-1}) \in \{0, 1\}^{\ell}$, on pose :

$$C_s = \{ \omega \in \{0, 1\}^{\mathbb{N}}, \ \forall i \in [0, \ell - 1], \ \omega_i = s_i \}.$$

On pose de plus \mathcal{F}_{ℓ} l'algèbre engendrée par $\{C_s, s \in \{0,1\}^{\ell}\}$. Alors $\bigcup_{\ell \in \mathbb{N}} \mathcal{F}_{\ell}$ est une algèbre, qu'on munit d'une fonction additive $\tilde{P}: \bigcup_{\ell \in \mathbb{N}} \mathcal{F}_{\ell} \to [0, +\infty[$ en posant $\tilde{P}(C_s) = \frac{1}{2^{\ell}}$ pour tout $s \in \{0,1\}^{\ell}$.

Proposition 2.5.3. $\sigma(\bigcup_{\ell\in\mathbb{N}}\mathcal{F}_{\ell}) = \mathrm{Bor}(\{0,1\}^{\mathbb{N}}).$

Lemme 2.5.4. Soit $(M_p)_{p\in\mathbb{N}}$ une suite décroissante d'éléments de $\bigcup_{\ell\in\mathbb{N}} \mathcal{F}_{\ell}$ t.q. $\bigcap_{p\in\mathbb{N}} M_p = \varnothing$. Alors $\exists p_0 \in \mathbb{N}, M_{p_0} = \varnothing$.

Remarque 2.5.5. Le lemme 2.5.4 est équivalent à dire que $\{0,1\}^{\mathbb{N}}$ est un espace topologique compact.

Théorème 2.5.6. Il existe une unique mesure P sur $Bor(\{0,1\}^{\mathbb{N}})$ t.q.

$$\forall \ell \in \mathbb{N}, \ \forall s \in \{0,1\}^{\ell}, \ P(C_s) = \frac{1}{2^{\ell}}.$$

Démonstration. Appliquer le théorème de Carathéodory (théorème 2.4.1). L'hypothèse (c_{∞}) est trivialement vérifiée car $\tilde{P}\left(\{0,1\}^{\mathbb{N}}\right) = 1 < +\infty$. Quant à l'hypothèse (c), montrer qu'elle est vérifiée en utilisant le lemme 2.5.4.

Proposition 2.5.7.

- (i) Pour tout $\omega \in \{0, 1\}^{\mathbb{N}}, P(\{\omega\}) = 0.$
- (ii) Pour tout $\Delta \subset \{0,1\}^{\mathbb{N}}$ dénombrable, $P(\Delta) = 0$.

Théorème 2.5.8. On considère :

$$\psi: \begin{vmatrix} \{0,1\}^{\mathbb{N}} \longrightarrow [0,1] \\ \omega \longmapsto \sum_{n \in \mathbb{N}} \frac{\omega_n}{2^{n+1}} \end{aligned}$$

- (i) ψ est surjective et continue.
- (ii) Pour tout $A \in \text{Bor}([0,1]), \ \psi^{-1}(A) \in \text{Bor}(\{0,1\}^{\mathbb{N}}) \ et \ P(\psi^{-1}(A)) = \lambda(A).$

2.6 Classes monotones

Définition 2.6.1 (Classe monotone). Soit X un ensemble. On dit que $\mathcal{M} \subset \mathcal{P}(X)$ est une classe monotone sur X lorsque les trois propriétés suivantes sont vérifiées :

- (i) $X \in \mathcal{M}$.
- (ii) $\forall (A, B) \in \mathcal{M}^2, A \supset B \Longrightarrow (A \backslash B) \in \mathcal{M}.$
- (iii) $\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{M}^{\mathbb{N}}, (A_n)_{n\in\mathbb{N}} \ croissante \Longrightarrow \bigcup_{n\in\mathbb{N}} A_n \in \mathcal{M}.$

Remarque 2.6.2. Toute σ -algèbre est une classe monotone.

Définition 2.6.3 (Classe monotone engendrée). Soit X un ensemble. Étant donné $\mathcal{C} \subset \mathcal{P}(X)$, on appelle classe monotone engendrée par \mathcal{C} , notée $\mathcal{M}(\mathcal{C})$, la plus petite classe monotone sur X contenant \mathcal{C} .

Théorème 2.6.4 (Lemme de classe monotone). Soit X un ensemble, $C \subset \mathcal{P}(X)$. On suppose que C est stable par intersections finies. Alors $\mathcal{M}(C) = \sigma(C)$.

Démonstration. (\subset) Comme σ (\mathcal{C}) est une classe monotone contenant \mathcal{C} , on a \mathcal{M} (\mathcal{C}) \subset σ (\mathcal{C}). (\supset) Il suffit de prouver que \mathcal{M} (\mathcal{C}) est une σ -algèbre. On a bien $X \in \mathcal{M}$ (\mathcal{C}) et $\forall A \in \mathcal{M}$ (\mathcal{C}), ($X \setminus A$) $\in \mathcal{M}$ (\mathcal{C}). Montrons que \mathcal{M} (\mathcal{C}) est stable par intersections finies. Soit $A \in \mathcal{C}$. On considère :

$$\mathcal{N}_1 = \{ B \in \mathcal{P}(X), \ A \cap B \in \mathcal{M}(\mathcal{C}) \}.$$

 \mathcal{N}_1 est une classe monotone contenant \mathcal{C} donc $\mathcal{N}_1 \supset \mathcal{M}(\mathcal{C})$. Donc $\forall A \in \mathcal{C}, \forall B \in \mathcal{M}(\mathcal{C}), A \cap B \in \mathcal{M}(\mathcal{C})$. On se donne alors $A' \in \mathcal{M}(\mathcal{C})$ et on considère :

$$\mathcal{N}_{2} = \{B' \in \mathcal{P}(X), A' \cap B' \in \mathcal{M}(\mathcal{C})\}.$$

 \mathcal{N}_2 est une classe monotone contenant \mathcal{C} (d'après ce qui précède) donc $\mathcal{N}_2 \supset \mathcal{M}(\mathcal{C})$. Ceci prouve que $\mathcal{M}(\mathcal{C})$ est stable par intersections finies, donc par réunions finies. Soit alors $(A_n)_{n\in\mathbb{N}} \in \mathcal{M}(\mathcal{C})^{\mathbb{N}}$. Pour $n \in \mathbb{N}$, on pose $B_n = \bigcup_{k \leqslant n} A_k \in \mathcal{M}(\mathcal{C})$. Alors la suite $(B_n)_{n\in\mathbb{N}}$ croît donc $\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} B_n \in \mathcal{M}(\mathcal{C})$. Donc $\mathcal{M}(\mathcal{C})$ est une σ -algèbre contenant \mathcal{C} , donc $\mathcal{M}(\mathcal{C}) \supset \sigma(\mathcal{C})$.

2.7 Théorème de Carathéodory

Notation 2.7.1. Dans ce paragraphe, \mathcal{A} est une algèbre sur un ensemble X, et $m: \mathcal{A} \to [0, +\infty]$ est une fonction additive vérifiant les hypothèses suivantes :

- (c) Pour toute suite décroissante $(A_p)_{p\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ t.q. $m(A_0)<+\infty$ et $\bigcap_{p\in\mathbb{N}}A_p=\varnothing$, on a $m(A_p)\xrightarrow[p\to+\infty]{}0$.
- (c_{∞}) Il existe une suite croissante $(X_p)_{p\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ t.q. $X=\bigcup_{p\in\mathbb{N}}X_p$ avec $\forall p\in\mathbb{N},\ m\left(X_p\right)<+\infty$ t.q. $\forall A\in\mathcal{A},\ m(A)=+\infty\Longrightarrow m\left(A\cap X_p\right)\xrightarrow[p\to+\infty]{}+\infty.$

Lemme 2.7.2. Soit μ_1, μ_2 deux mesures définies sur $\sigma(A)$ et prolongeant m (i.e. $\mu_{1|A} = \mu_{2|A} = m$). Alors $\mu_1 = \mu_2$.

Démonstration. On considère :

$$\mathcal{M} = \{ M \in \sigma(\mathcal{A}), \forall A \in \mathcal{A}, m(A) < +\infty \Longrightarrow \mu_1(A \cap M) = \mu_2(A \cap M) \}.$$

 \mathcal{M} est une classe monotone stable par intersections finies. Selon le lemme de classe monotone (théorème 2.6.4), \mathcal{M} est une σ -algèbre. Or $\mathcal{M} \supset \mathcal{A}$ donc $\mathcal{M} \supset \sigma(\mathcal{A})$. Avec la suite $(X_p)_{p \in \mathbb{N}}$ de l'hypothèse (c_{∞}) , on a alors :

$$\forall M \in \sigma(\mathcal{A}), \forall p \in \mathbb{N}, \ \mu_1(X_p \cap M) = \mu_2(X_p \cap M).$$

En faisant tendre $p \to +\infty$, on obtient $\forall M \in \sigma(A)$, $\mu_1(M) = \mu_2(M)$.

Lemme 2.7.3. Soit $(A_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{A} deux à deux disjoints $t.q. \bigsqcup_{n\in\mathbb{N}} A_n \in \mathcal{A}$. Alors:

$$m\left(\bigsqcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}m\left(A_n\right).$$

Démonstration. On note $B = \bigsqcup_{n \in \mathbb{N}} A_n$. Si $m(B) < +\infty$, on considère $C_n = B \setminus \bigsqcup_{k \le n} A_k$ pour $n \in \mathbb{N}$. Alors $(C_n)_{n \in \mathbb{N}}$ est une suite décroissante et $\bigcap_{n \in \mathbb{N}} C_n = \emptyset$. Comme $m(C_0) < +\infty$, l'hypothèse (c) fournit $m(C_n) \xrightarrow[n \to +\infty]{} 0$, ce qui donne l'égalité voulue. Si $m(B) = +\infty$, soit $(X_p)_{p \in \mathbb{N}}$ la suite de l'hypothèse (c_∞) . Alors $m(B \cap X_p) \xrightarrow[p \to +\infty]{} +\infty$. Or $\forall p \in \mathbb{N}$, $m(B \cap X_p) < +\infty$. D'après ce qui précède, on a donc :

$$\forall p \in \mathbb{N}, \ m\left(B \cap X_p\right) = m\left(\bigsqcup_{n \in \mathbb{N}} \left(A_n \cap X_p\right)\right) = \sum_{n \in \mathbb{N}} m\left(A_n \cap X_p\right) \leqslant \sum_{n \in \mathbb{N}} m\left(A_n\right).$$

En faisant tendre $p \to +\infty$, il vient $\sum_{n \in \mathbb{N}} m(A_n) = +\infty = m(\bigsqcup_{n \in \mathbb{N}} A_n)$.

Définition 2.7.4 (Mesure extérieure). On définit :

$$\mu^*: \left| \begin{array}{c} \mathcal{P}(X) \longrightarrow [0, +\infty] \\ E \longmapsto \inf_{\substack{(A_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}} \\ E \subset \bigcup_{n \in \mathbb{N}} A_n}} \sum_{n \in \mathbb{N}} m(A_n) \right|.$$

Lemme 2.7.5.

- (i) μ^* est croissante : $\forall (E, F) \in \mathcal{P}(X)^2, E \subset F \Longrightarrow \mu^*(E) \leqslant \mu^*(F)$.
- (ii) μ^* est sous-additive: $\forall (E_n)_{n\in\mathbb{N}} \in \mathcal{P}(X)^{\mathbb{N}}, \ \mu^*(\bigcup_{n\in\mathbb{N}} E_n) \leqslant \sum_{n\in\mathbb{N}} \mu^*(E_n).$
- (iii) μ^* prolonge $m : \forall A \in \mathcal{A}, \ \mu^*(A) = m(A)$.

Définition 2.7.6 (Partie μ -mesurable). On définit :

$$\mathcal{B} = \{ B \in \mathcal{P}(X), \ \forall E \in \mathcal{P}(X), \ \mu^*(E) = \mu^* \left(E \cap B \right) + \mu^* \left(E \backslash B \right) \}.$$

Les éléments de \mathcal{B} sont appelés les parties μ -mesurables de X.

Lemme 2.7.7. \mathcal{B} est une algèbre contenant \mathcal{A} , et $\forall (B,C) \in \mathcal{B}$, $B \cap C = \varnothing \Longrightarrow \mu^*(B \sqcup C) = \mu^*(B) + \mu^*(C)$.

Lemme 2.7.8. \mathcal{B} est une σ -algèbre contenant \mathcal{A} , et pour toute famille $(B_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{B} deux disjoints, $\mu^*(\sqcup_{n\in\mathbb{N}}B_n) = \sum_{n\in\mathbb{N}}\mu^*(B_n)$.

Théorème 2.7.9 (Théorème de Carathéodory). Soit \mathcal{A} une algèbre sur un ensemble X, et $m: \mathcal{A} \to [0, +\infty]$ une fonction additive. On suppose que :

- (c) Pour toute suite décroissante $(A_p)_{p\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ t.q. $m(A_0)<+\infty$ et $\bigcap_{p\in\mathbb{N}}A_p=\varnothing$, on a $m(A_p)\xrightarrow[p\to+\infty]{}0$.
- (c_{∞}) Il existe une suite croissante $(X_p)_{p\in\mathbb{N}}\in\mathcal{A}^{\mathbb{N}}$ t.q. $X=\bigcup_{p\in\mathbb{N}}X_p$ avec $\forall p\in\mathbb{N},\ m\left(X_p\right)<+\infty$ t.q. $\forall A\in\mathcal{A},\ m(A)=+\infty\Longrightarrow m\left(A\cap X_p\right)\xrightarrow[p\to+\infty]{}+\infty.$

Alors m se prolonge de manière unique en une mesure μ définie sur $\sigma(A)$.

3 Intégration

3.1 Fonctions mesurables

Définition 3.1.1 (Fonction mesurable). Soit (X, A) et (Y, B) deux espaces mesurables. On dit qu'une fonction $f: X \to Y$ est mesurable lorsque:

$$\forall B \in \mathcal{B}, \ f^{-1}(B) \in \mathcal{A}.$$

Proposition 3.1.2. Soit (X, \mathcal{A}) et (Y, \mathcal{B}) deux espaces mesurables, $f : X \to Y$. Soit $\mathfrak{M} \subset \mathcal{P}(Y)$ t.q. $\sigma(\mathfrak{M}) = \mathcal{B}$. Alors f est mesurable ssi $\forall M \in \mathfrak{M}$, $f^{-1}(M) \in \mathcal{A}$.

Corollaire 3.1.3. Si X et Y sont deux espaces topologiques, alors toute fonction continue de X dans Y est mesurable (X et Y étant munis de leurs tribus boréliennes respectives).

Proposition 3.1.4. Soit (X, \mathcal{A}) un espace mesurable, $f: X \to \overline{\mathbb{R}}$. Alors f est mesurable ssi pour tout $a \in \mathbb{R}$, $f^{-1}(]a, +\infty]) \in \mathcal{A}$.

Proposition 3.1.5. Soit (X, A) un espace mesurable, $f: X \to \mathbb{R}^d$. Pour $i \in [1, d]$, soit $f_i: X \to \mathbb{R}$ t.q. $\forall x \in X$, $f(x) = (f_1(x), \dots, f_d(x))$. Alors f est mesurable ssi $\forall i \in [1, d]$, f_i est mesurable.

Proposition 3.1.6. Toute composée de fonctions mesurables est mesurable.

Proposition 3.1.7. Soit (X, A) un espace mesurable, $f, g: X \to \mathbb{R}$. On suppose f et g mesurables. Alors (f+g) est mesurable, (λf) est mesurable pour $\lambda \in \mathbb{R}$, (fg) est mesurable. De plus, si g ne s'annule pas, alors $\left(\frac{f}{g}\right)$ est mesurable.

Proposition 3.1.8. Soit (X, A) un espace mesurable, $(f_n)_{n \in \mathbb{N}} \in (\overline{\mathbb{R}}^X)^{\mathbb{N}}$ une suite de fonctions mesurables. Alors:

- (i) $\sup_{n\in\mathbb{N}} f_n$ et $\inf_{n\in\mathbb{N}} f_n$ sont mesurables.
- (ii) $\limsup_{n\to+\infty} f_n$ et $\liminf_{n\to+\infty} f_n$ sont mesurables.
- (iii) Si $(f_n)_{n\in\mathbb{N}}$ converge simplement, alors $\lim_{n\to+\infty} f_n$ est mesurable.

Proposition 3.1.9. Soit (X, \mathcal{A}, μ) un espace mesuré, $(f_n)_{n \in \mathbb{N}} \in (\overline{\mathbb{R}}^X)^{\mathbb{N}}$ une suite de fonctions mesurables. On suppose que $(f_n)_{n \in \mathbb{N}}$ converge presque-partout (i.e. $\{x \in X, (f_n(x))_{n \in \mathbb{N}} \text{ diverge}\}$ est de mesure nulle). On pose :

$$f: \begin{vmatrix} X \longrightarrow \overline{\mathbb{R}} \\ x \longmapsto \begin{cases} \lim_{n \to +\infty} f_n(x) & si \ (f_n(x))_{n \in \mathbb{N}} \ converge \\ 0 & sinon \end{cases}$$

Alors f est mesurable.

Exemple 3.1.10. On munit $\{0,1\}^{\mathbb{N}}$ de la tribu \mathcal{F}_{ℓ} définie dans la notation 2.5.2. Alors une fonction $f:\{0,1\}^{\mathbb{N}}\to\mathbb{R}$ est mesurable ssi elle ne dépend que des ℓ premières coordonnées.

3.2 Intégrale des fonctions positives

Définition 3.2.1 (Fonction simple). Soit (X, \mathcal{A}, μ) un espace mesuré. On dit qu'une fonction mesurable $\varphi: X \to [0, +\infty]$ est simple lorsque $\varphi(X)$ est fini et $\varphi(X) \subset [0, +\infty[$.

Définition 3.2.2 (Intégrale d'une fonction simple). Soit (X, \mathcal{A}, μ) un espace mesuré et $\varphi : X \to [0, +\infty]$ une fonction simple. On définit :

$$\int_{X} \varphi \, d\mu = \sum_{\alpha \in \varphi(X)} \alpha \mu \left(\varphi^{-1} \left(\{ \alpha \} \right) \right),$$

avec la convention $0 \times (+\infty) = 0$.

Définition 3.2.3 (Intégrale d'une fonction positive). Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \to [0, +\infty]$ une fonction mesurable. On définit :

$$\int_X f \, \mathrm{d}\mu = \sup_{\substack{\varphi \text{ simple} \\ 0 \le \varphi \le f}} \int_X \varphi \, \mathrm{d}\mu.$$

Proposition 3.2.4. Soit (X, \mathcal{A}, μ) un espace mesuré et $f, g: X \to [0, +\infty]$ deux fonctions mesurables.

- (i) Si $f \leq g$ alors $\int_X f d\mu \leq \int_X g d\mu$.
- (ii) Pour $\lambda \in \mathbb{R}_+$, $\int_X \lambda f \, d\mu = \lambda \int_X f \, d\mu$.

Théorème 3.2.5 (Théorème de convergence monotone, ou théorème de Beppo Levi). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n\in\mathbb{N}}\in\left([0,+\infty]^X\right)^\mathbb{N}$ une suite de fonctions mesurables. On suppose que :

$$\forall n \in \mathbb{N}, f_n \leqslant f_{n+1}.$$

Alors $\sup_{n\in\mathbb{N}} f_n$ est mesurable et:

$$\int_X \left(\sup_{n \in \mathbb{N}} f_n \right) d\mu = \sup_{n \in \mathbb{N}} \left(\int_X f_n d\mu \right).$$

Démonstration. On note $f = \sup_{n \in \mathbb{N}} f_n$. D'après la proposition 3.1.8, f est mesurable. Montrons l'égalité voulue. (\geqslant) On a $\forall n \in \mathbb{N}$, $f_n \leqslant f$, donc d'après la proposition 3.2.4, $\forall n \in \mathbb{N}$, $\int_X f_n \, \mathrm{d}\mu \leqslant \int_X f \, \mathrm{d}\mu$. Donc :

$$\sup_{n \in \mathbb{N}} \left(\int_X f_n \, d\mu \right) \leqslant \int_X f \, d\mu.$$

(\leq) Soit φ une fonction simple t.q. $0 \leq \varphi \leq f$. Soit $c \in]0,1[$. On a $\forall x \in X, \exists n \in \mathbb{N}, f_n(x) \geq c\varphi(x)$. On pose, pour $n \in \mathbb{N}, A_n = \{x \in X, f_n(x) \geq c\varphi(x)\}$. Alors $(A_n)_{n \in \mathbb{N}}$ est une suite croissante et:

$$\bigcup_{n\in\mathbb{N}} A_n = X.$$

Or, on a:

$$\forall n \in \mathbb{N}, \int_{X} f_n \, \mathrm{d}\mu \geqslant \int_{X} f_n \mathbb{1}_{A_n} \, \mathrm{d}\mu \geqslant \int_{X} c\varphi \mathbb{1}_{A_n} \, \mathrm{d}\mu = c \int_{X} \varphi \mathbb{1}_{A_n} \, \mathrm{d}\mu. \tag{*}$$

On montre de plus que l'application $\nu:A\in\mathcal{A}\longmapsto\int_X\varphi\mathbbm{1}_A\,\mathrm{d}\mu$ est une mesure, d'où on déduit avec la proposition 2.3.4 que $\int_X\varphi\mathbbm{1}_{A_n}\,\mathrm{d}\mu\xrightarrow[n\to+\infty]{}\int_X\varphi\mathbbm{1}_X\,\mathrm{d}\mu=\int_X\varphi\,\mathrm{d}\mu$. En faisant tendre $n\to+\infty$ dans (*), on obtient donc $\sup_{n\in\mathbb{N}}\int_Xf_n\,\mathrm{d}\mu\geqslant c\int_X\varphi\,\mathrm{d}\mu$. En faisant tendre $c\to1$, on a $\sup_{n\in\mathbb{N}}\int_Xf_n\,\mathrm{d}\mu\geqslant \int_X\varphi\,\mathrm{d}\mu$. Puis en passant au sup sur φ , on obtient finalement $\sup_{n\in\mathbb{N}}\int_Xf_n\,\mathrm{d}\mu\geqslant \int_Xf\,\mathrm{d}\mu$.

Proposition 3.2.6. Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \to [0, +\infty]$ une fonction mesurable. Alors il existe une suite croissante $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions simples t, q. $f = \sup_{n\in\mathbb{N}} \varphi_n$.

Démonstration. Pour $n \in \mathbb{N}$, on pose :

$$\varphi_n = \sum_{k=0}^{4^n - 1} \frac{k}{2^n} \mathbb{1}_{f^{-1}(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right])} + 2^n \mathbb{1}_{f^{-1}(\left[2^n, +\infty\right])}.$$

Alors $(\varphi_n)_{n\in\mathbb{N}}$ convient.

Lemme 3.2.7. Soit (X, \mathcal{A}, μ) un espace mesuré, $\varphi, \psi : X \to [0, +\infty]$ deux fonctions simples. Alors $\int_X (\varphi + \psi) d\mu = \int_X \varphi d\mu + \int_X \psi d\mu$.

Lemme 3.2.8. Soit (X, \mathcal{A}, μ) un espace mesuré, $f, g: X \to [0, +\infty]$ deux fonctions mesurables. Alors $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$.

Théorème 3.2.9. Soit (X, \mathcal{A}, μ) un espace mesuré, $(u_n)_{n \in \mathbb{N}} \in ([0, +\infty]^X)^{\mathbb{N}}$ une suite de fonctions mesurables. Alors $\sum_{n \in \mathbb{N}} u_n$ est mesurable et :

$$\int_X \left(\sum_{n \in \mathbb{N}} u_n \right) d\mu = \sum_{n \in \mathbb{N}} \left(\int_X u_n d\mu \right).$$

Théorème 3.2.10 (Théorème de convergence monotone décroissant). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n\in\mathbb{N}} \in ([0,+\infty]^X)^{\mathbb{N}}$ une suite décroissante de fonctions mesurables. On suppose que $\int_X f_0 d\mu < +\infty$. Alors $\inf_{n\in\mathbb{N}} f_n$ est mesurable et :

$$\int_X \left(\inf_{n \in \mathbb{N}} f_n \right) d\mu = \inf_{n \in \mathbb{N}} \left(\int_X f_n d\mu \right).$$

Proposition 3.2.11. Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \to [0, +\infty]$ mesurable. S'équivalent :

- (i) $\int_X f \, \mathrm{d}\mu = 0$.
- (ii) f est nulle presque-partout (i.e. $\mu(\{x \in X, f(x) > 0\}) = 0$).

Démonstration. On note $A = \{x \in X, f(x) > 0\}$. (ii) \Rightarrow (i) On a $f \leq \sup_{p \in \mathbb{N}} p\mathbb{1}_A$, donc, en utilisant le théorème de convergence monotone (théorème 3.2.5) :

$$\int_X f \, \mathrm{d}\mu \leqslant \int_X \left(\sup_{p \in \mathbb{N}} p \mathbb{1}_A \right) \, \mathrm{d}\mu = \sup_{p \in \mathbb{N}} \int_X p \mathbb{1}_A \, \mathrm{d}\mu = \sup_{p \in \mathbb{N}} \left(p \cdot \mu(A) \right) = 0.$$

(i) \Rightarrow (ii) On raisonne de même en utilisant le fait que $\mathbb{1}_A \leq \sup_{p \in \mathbb{N}} pf$.

Théorème 3.2.12 (Lemme de Fatou). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n \in \mathbb{N}} \in ([0, +\infty]^X)^{\mathbb{N}}$ une suite de fonctions mesurables. Alors :

$$\int_X \left(\liminf_{n \to +\infty} f_n \right) d\mu \leqslant \liminf_{n \to +\infty} \left(\int_X f_n d\mu \right).$$

Démonstration. Pour $n \in \mathbb{N}$, soit $g_n = \inf_{p \geqslant n} f_p$. Alors $(g_n)_{n \in \mathbb{N}}$ est une suite croissante de fonctions mesurables et $\sup_{n \in \mathbb{N}} g_n = \liminf_{n \to +\infty} f_n$. D'après le théorème de convergence monotone (théorème 3.2.5) :

$$\int_X g_n \ d\mu \xrightarrow[n \to +\infty]{} \int_X \left(\liminf_{n \to +\infty} f_n \right) d\mu.$$

Soit de plus $n \in \mathbb{N}$. On a $\forall p \geq n$, $g_n \leq f_p$ donc $\forall p \geq n$, $\int_X g_n \, \mathrm{d}\mu \leq \int_X f_p \, \mathrm{d}\mu$. En passant à l'inf sur p, il vient $\int_X g_n \, \mathrm{d}\mu \leq \inf_{p \geq n} \left(\int_X f_p \, \mathrm{d}\mu \right)$. En faisant tendre $n \to +\infty$, on obtient alors l'inégalité voulue.

3.3 Intégrale des fonctions sommables réelles

Notation 3.3.1. Si X est un ensemble et $f: X \to \mathbb{R}$, on notera $f^+: x \in X \longmapsto \max(f(x), 0) \in \mathbb{R}_+$ et $f^-: x \in X \longmapsto \max(-f(x), 0) \in \mathbb{R}_+$.

Définition 3.3.2 (Fonction sommable). Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction mesurable. On dit que f est sommable lorsque:

$$\int_X |f| \, \mathrm{d}\mu < +\infty.$$

Si tel est le cas, on définit :

$$\int_X f \, \mathrm{d}\mu = \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu.$$

De même, une fonction $f: X \to \mathbb{C}$ est dite sommable lorsque $\int_X |f| d\mu < +\infty$, et on définit alors son intégrale en passant à la partie réelle et à la partie imaginaire de f.

Lemme 3.3.3. Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \to \mathbb{R}$ une fonction mesurable. Soit $u_1, u_2: X \to \mathbb{R}_+$ deux fonctions mesurables positives t.q. $f = u_1 - u_2$. Alors $\int_X f d\mu = \int_X u_1 d\mu - \int_X u_2 d\mu$.

Notation 3.3.4. Dans toute la suite, on notera $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Proposition 3.3.5. Soit (X, \mathcal{A}, μ) un espace mesuré. On note $\mathcal{L}^1(X, \mathcal{A}, \mu)$ l'ensemble des fonctions $X \to \mathbb{K}$ sommables. Alors :

- (i) $\mathcal{L}^1(X, \mathcal{A}, \mu)$ est un \mathbb{K} -espace vectoriel.
- (ii) L'application $f \in \mathcal{L}^1(X, \mathcal{A}, \mu) \longmapsto \int_X f \, d\mu \in \mathbb{K}$ est une forme linéaire.
- (iii) $\forall f \in \mathcal{L}^1(X, \mathcal{A}, \mu), |\int_X f d\mu| \leq \int_X |f| d\mu.$
- (iv) Si $f_1 \in \mathcal{L}^1(X, \mathcal{A}, \mu)$, $f_2 \in \mathbb{K}^X$ mesurable, $f_1 = f_2$ presque-partout, alors $f_2 \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ et $\int_X f_1 d\mu = \int_X f_2 d\mu$.

Définition 3.3.6 (Intégrale sur un sous-ensemble). Soit (X, \mathcal{A}, μ) un espace mesuré, soit $f \in \mathcal{L}^1(X, \mathcal{A}, \mu)$. Étant donné $A \in \mathcal{A}$, on définit :

$$\int_A f \, \mathrm{d}\mu = \int_X f \mathbb{1}_A \, \mathrm{d}\mu.$$

Remarque 3.3.7. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $M \in \mathcal{A}$; on note $\mathcal{A}_M = \{A \in \mathcal{A}, A \subset M\}$ et $\mu_M = \mu_{|\mathcal{A}_M}$. Alors $(M, \mathcal{A}_M, \mu_M)$ est un espace mesuré et, pour tout $f \in \mathcal{L}^1(X, \mathcal{A}, \mu)$, $\int_A f d\mu_M = \int_A f d\mu$.

Théorème 3.3.8 (Théorème de convergence dominée). Soit (X, \mathcal{A}, μ) un espace mesuré. On considère $(f_n)_{n\in\mathbb{N}} \in (\mathbb{K}^X)^{\mathbb{N}}$ une suite de fonctions mesurables. On suppose que $(f_n)_{n\in\mathbb{N}}$ converge presquepartout vers une fonction f (qui est donc mesurable) et que :

$$\exists h \in \mathcal{L}^1(X, \mathcal{A}, \mu), \ \forall n \in \mathbb{N}, \ \exists A_n \in \mathcal{A}, \ \forall x \in X \backslash A_n, \ |f_n(x)| \leqslant h(x) \ \text{et} \ \mu(A_n) = 0.$$

Alors:

- (i) $\int_X |f_n f| d\mu \xrightarrow[n \to +\infty]{} 0.$
- (ii) $\int_X f_n d\mu \xrightarrow[n \to +\infty]{} \int_X f d\mu$.

Démonstration. Remarquons d'abord que (ii) est une conséquence immédiate de (i) (avec la proposition 3.3.5). Prouvons donc (i). Pour $n \in \mathbb{N}$, posons $u_n = |f_n - f|$. Alors $(u_n)_{n \in \mathbb{N}}$ converge presquepartout vers 0. On note de plus $A = \{x \in X, (u_n(x))_{n \in \mathbb{N}} \text{ ne converge pas vers } 0\} \cup (\bigcup_{n \in \mathbb{N}} A_n)$. On a

 $\mu(A) = 0$ et $\forall n \in \mathbb{N}, \forall x \in X \setminus A, 0 \leq u_n(x) \leq 2h(x)$. On applique alors le lemme de Fatou (théorème 3.2.12) à la suite $(2h - u_n)_{n \in \mathbb{N}}$:

$$\begin{split} 2\int_X h \ \mathrm{d}\mu &= 2\int_{X\backslash A} h \, \mathrm{d}\mu = \int_{X\backslash A} \left(\liminf_{n\to +\infty} \left(2h - u_n\right) \right) \, \mathrm{d}\mu \\ &\leqslant \liminf_{n\to +\infty} \left(\int_{X\backslash A} \left(2h - u_n\right) \, \mathrm{d}\mu \right) = \liminf_{n\to +\infty} \left(2\int_{X\backslash A} h \, \, \mathrm{d}\mu - \int_{X\backslash A} u_n \, \, \mathrm{d}\mu \right) \\ &= 2\int_{X\backslash A} h \, \, \mathrm{d}\mu + \liminf_{n\to +\infty} \left(-\int_{X\backslash A} u_n \, \, \mathrm{d}\mu \right) \\ &= 2\int_{X\backslash A} h \, \, \mathrm{d}\mu - \limsup_{n\to +\infty} \int_{X\backslash A} u_n \, \, \mathrm{d}\mu = 2\int_X h \, \, \mathrm{d}\mu - \limsup_{n\to +\infty} \int_X u_n \, \, \mathrm{d}\mu. \end{split}$$

On en déduit :

$$0 \leqslant \liminf_{n \to +\infty} \int_X u_n \, d\mu \leqslant \limsup_{n \to +\infty} \int_X u_n \, d\mu \leqslant 0.$$

Donc $\liminf_{n\to+\infty} \int_X u_n \ d\mu = \limsup_{n\to+\infty} \int_X u_n \ d\mu = 0$, d'où $\int_X u_n \ d\mu \xrightarrow[n\to+\infty]{} 0$.

Théorème 3.3.9 (Continuité d'une intégrale à paramètre). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $\Omega \subset \mathbb{K}^n$, $t_0 \in \Omega$ et $f: X \times \Omega \to \mathbb{K}$. On suppose que :

- (i) Pour tout $t \in \Omega$, $f(\cdot,t)$ est mesurable.
- (ii) Pour presque tout $x \in X$, $f(x, \cdot)$ est continue en t_0 .
- (iii) Il existe $h \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ t.q. pour tout $t \in \Omega$, pour presque tout $x \in X$, $|f(x,t)| \leq h(x)$.

Alors l'application $F: t \in \Omega \longmapsto \int_X f(\cdot,t) d\mu$ est bien définie et continue en t_0 .

Remarque 3.3.10. L'hypothèse (iii) du théorème 3.3.9 s'écrit : $\forall t \in \Omega, \exists A_t \in \mathcal{A}, \mu(A_t) = 0 \text{ et } \forall x \in X \setminus A_t, |f(x,t)| \leq h(x)$. Ainsi, A_t peut dépendre de t.

Théorème 3.3.11 (Dérivabilité d'une intégrale à paramètre). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit I un intervalle de \mathbb{R} et $f: X \times I \to \mathbb{K}$. On suppose que :

- (i) Pour tout $t \in I$, $f(\cdot,t)$ est mesurable.
- (ii) Il existe $h \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ et $A \in \mathcal{A}$ avec $\mu(A) = 0$ t.q. $\frac{\partial f}{\partial t}(x, t)$ est définie en tout point de $(X \setminus A) \times I$ et :

$$\forall t \in I, \ \forall x \in (X \backslash A), \left| \frac{\partial f}{\partial t}(x, t) \right| \leqslant h(x).$$

Alors l'application $F: t \in I \longrightarrow \int_X f(\cdot, t) d\mu$ est bien définie et dérivable sur I et :

$$\forall t \in I, \ F'(t) = \int_X \frac{\partial f}{\partial t} (\cdot, t) \ d\mu.$$

Remarque 3.3.12. Dans l'hypothèse (ii) du théorème 3.3.11, A doit être indépendant de t.

3.4 Intégrales multiples

Définition 3.4.1 (Tribu produit). Soit (X, A) et (Y, B) deux espaces mesurables. On appelle tribu produit de A et B la tribu sur $X \times Y$ définie par :

$$\mathcal{A} \otimes \mathcal{B} = \sigma\left(\left\{A \times B, (A, B) \in \mathcal{A} \times \mathcal{B}\right\}\right) \subset \mathcal{P}\left(X \times Y\right).$$

Proposition 3.4.2. Soit (X, \mathcal{A}) et (Y, \mathcal{B}) deux espaces mesurables. Soit $\mathfrak{M} \subset \mathcal{P}(X)$, $\mathfrak{N} \subset \mathcal{P}(Y)$ t.q. $\mathcal{A} = \sigma(\mathfrak{M})$ et $\mathcal{B} = \sigma(\mathfrak{N})$. Alors $\mathcal{A} \otimes \mathcal{B} = \sigma(\{M \times Y, M \in \mathfrak{M}\} \cup \{X \times N, N \in \mathfrak{N}\})$.

Démonstration. On note $L = \{M \times Y, M \in \mathfrak{M}\} \cup \{X \times N, N \in \mathfrak{N}\}$. L'inclusion $\mathcal{A} \otimes \mathcal{B} \supset \sigma(L)$ est claire. Réciproquement, considérer $\{A \in \mathcal{P}(X), A \times Y \in \sigma(L)\}$. C'est une σ -algèbre qui contient \mathfrak{M} donc \mathcal{A} . Ceci prouve que $\forall A \in \mathcal{A}, A \times Y \in \sigma(L)$. De même, $\forall B \in \mathcal{B}, X \times B \in \sigma(L)$. Donc $\forall (A, B) \in \mathcal{A} \times \mathcal{B}, A \times B = (A \times Y) \cap (X \times B) \in \sigma(L)$, d'où $\mathcal{A} \otimes \mathcal{B} \subset \sigma(L)$.

Corollaire 3.4.3. Soit X et Y deux espaces métriques séparables. Alors :

$$Bor(X \times Y) = Bor(X) \otimes Bor(Y).$$

Lemme 3.4.4. Soit (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés σ -finis. On note \mathcal{E} l'algèbre sur $X \times Y$ engendrée par $\{A \times B, (A, B) \in \mathcal{A} \times \mathcal{B}\}$. On munit \mathcal{E} d'une fonction additive θ définie par $\forall (A, B) \in \mathcal{A} \times \mathcal{B}, \theta(A \times B) = \mu(A)\nu(B)$. Soit $S \in \mathcal{E}$. Pour $x \in X$, on note $S_x = \{y \in Y, (x, y) \in S\}$. Alors:

- (i) Pour tout $x \in X$, $S_x \in \mathcal{B}$.
- (ii) La fonction $f_S: x \longmapsto \nu(S_x) \in [0, +\infty]$ est mesurable et:

$$\int_X f_S \, \mathrm{d}\mu = \theta(S).$$

Théorème 3.4.5. Soit (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés σ -finis. Alors il existe une unique mesure notée $(\mu \otimes \nu)$ sur $\mathcal{A} \otimes \mathcal{B}$ t.q.

$$\forall (A, B) \in \mathcal{A} \otimes \mathcal{B}, \ (\mu \otimes \nu) \ (A \times B) = \mu(A)\nu(B).$$

Démonstration. Appliquer le théorème de Carathéodory (théorème 2.7.9), en utilisant l'algèbre \mathcal{E} engendrée par $\{A \times B, (A, B) \in \mathcal{A} \times \mathcal{B}\}$. L'hypothèse (c_{∞}) est vérifiée (en utilisant le fait que X et Y sont σ -finis). Pour l'hypothèse (c), montrer qu'elle est vérifiée en utilisant le lemme 3.4.4 puis le théorème de convergence monotone décroissant (théorème 3.2.10).

Remarque 3.4.6. Soit $(p,q) \in \mathbb{N}^2$. Alors Bor $(\mathbb{K}^{p+q}) = \text{Bor } (\mathbb{K}^p) \otimes \text{Bor } (\mathbb{K}^q)$ et $\lambda_{p+q} = \lambda_p \otimes \lambda_q$.

Proposition 3.4.7 (Sommation par tranches). Soit (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés σ -finis. Soit $S \in \mathcal{A} \otimes \mathcal{B}$. Pour $x \in X$, soit $S_x = \{y \in Y, (x, y) \in S\}$. Alors:

- (i) Pour tout $x \in X$, $S_x \in \mathcal{B}$.
- (ii) La fonction $f_S: x \longmapsto \nu(S_x) \in [0, +\infty]$ est mesurable et :

$$\int_{V} f_{S} \, \mathrm{d}\mu = (\mu \otimes \nu) (S).$$

Démonstration. On pose \mathcal{C} l'ensemble des $S \in \mathcal{A} \otimes \mathcal{B}$ vérifiant la conclusion du théorème. $\mathcal{C} \supset \{A \times B, (A, B) \in \mathcal{A} \times \mathcal{B}\}$ selon le lemme 3.4.4. Montrer que \mathcal{C} est une classe monotone stable par intersections finies et en déduire que \mathcal{C} est une σ -algèbre à l'aide du lemme de classe monotone (théorème 2.6.4). Ainsi, $\mathcal{C} \supset \mathcal{A} \otimes \mathcal{B}$.

Théorème 3.4.8 (Théorème de Fubini pour les fonctions positives). Soit (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés σ -finis. Soit $f: X \times Y \to [0, +\infty]$ une fonction mesurable. Alors :

- (i) $\forall x \in X, f(x, \cdot)$ est mesurable et $x \longmapsto \int_Y f(x, \cdot) d\nu$ est mesurable.
- (ii) $\forall y \in Y, f(\cdot, y)$ est mesurable et $y \longmapsto \int_X f(\cdot, y) d\mu$ est mesurable.
- (iii) On a l'égalité :

$$\int_X \left(\int_Y f(x,y) \, d\nu \right) \, d\mu = \int_{X \times Y} f \, d(\mu \otimes \nu) = \int_Y \left(\int_X f(x,y) \, d\mu \right) \, d\nu.$$

Démonstration. Si $f = \mathbb{1}_S$, avec $S \in \mathcal{A} \otimes \mathcal{B}$, le théorème n'est qu'une réécriture de la proposition 3.4.7. On en déduit le résultat pour toutes les fonctions simples, puis pour toutes les fonctions positives à l'aide de la proposition 3.2.6 et du théorème de convergence monotone (théorème 3.2.5).

Théorème 3.4.9 (Théorème de Fubini). Soit (X, \mathcal{A}, μ) et (Y, \mathcal{B}, ν) deux espaces mesurés σ -finis. Soit $f \in \mathcal{L}^1(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \otimes \nu)$. Alors :

- (i) Il existe $A \in \mathcal{A}$ avec $\mu(A) = 0$ t.q. $\forall x \in X \backslash A$, $f(x, \cdot) \in \mathcal{L}^1(Y, \mathcal{B}, \nu)$ et $x \in X \backslash A \longmapsto \int_Y f(x, \cdot) d\nu$ est sommable.
- (ii) Il existe $B \in \mathcal{B}$ avec $\nu(B) = 0$ t.q. $\forall y \in Y \backslash B$, $f(\cdot, y) \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ et $y \in Y \backslash B \longmapsto \int_X f(\cdot, y) d\mu$ est sommable.
- (iii) On a l'égalité :

$$\int_X \left(\int_Y f(x,y) \, d\nu \right) \, d\mu = \int_{X \times Y} f \, d(\mu \otimes \nu) = \int_Y \left(\int_X f(x,y) \, d\mu \right) \, d\nu.$$

3.5 Mesure image et changement de variable

3.5.1 Mesure de densité

Théorème 3.5.1. Soit (X, \mathcal{A}, μ) un espace mesuré σ -fini, $\rho: X \to [0, +\infty]$ mesurable et finie presque-partout. On pose :

$$\nu: A \in \mathcal{A} \longmapsto \int_{A} \rho \ \mathrm{d}\mu.$$

Alors:

- (i) ν est une mesure σ -finie, dite mesure de densité ρ par rapport à μ .
- (ii) Pour toute function $f: X \to [0, +\infty]$ mesurable, on a:

$$\int_X f \, \mathrm{d}\nu = \int_X f \rho \, \mathrm{d}\mu.$$

(iii) Pour toute fonction $f: X \to \mathbb{K}$ mesurable, $f \in \mathcal{L}^1(X, \mathcal{A}, \nu)$ ssi $(f\rho) \in \mathcal{L}^1(X, \mathcal{A}, \mu)$. Dans ce cas, $\int_X f \, d\nu = \int_X f \rho \, d\mu$.

3.5.2 Mesure image

Définition 3.5.2 (Mesure image). Soit (X, \mathcal{A}, μ) un espace mesuré et (Y, \mathcal{B}) un espace mesurable. Si $\phi: X \to Y$ est une fonction mesurable, on définit la mesure image de μ par ϕ par :

$$\phi_*\mu: B \in \mathcal{B} \longmapsto \mu\left(\phi^{-1}(B)\right).$$

C'est une mesure sur (Y, \mathcal{B}) .

Proposition 3.5.3. Soit (X, \mathcal{A}, μ) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $\phi : X \to Y$ une fonction mesurable. On suppose que $\phi_*\mu$ est σ -finie. Alors :

(i) Pour toute function $f: Y \to [0, +\infty]$ mesurable, on a:

$$\int_{Y} f \ d(\phi_* \mu) = \int_{X} (f \circ \phi) \ d\mu.$$

(ii) Pour toute fonction $f: Y \to \mathbb{K}$ mesurable, $f \in \mathcal{L}^1(Y, \mathcal{B}, \phi_* \mu)$ ssi $(f \circ \phi) \in \mathcal{L}^1(X, \mathcal{A}, \mu)$. Dans ce cas, $\int_Y f d(\varphi_* \mu) = \int_X (f \circ \varphi) d\mu$.

3.5.3 Changement de variable

Théorème 3.5.4. On se place dans $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}), \lambda)$, où λ est la mesure de Lebesgue. Soit Ω_1, Ω_2 deux ouverts de \mathbb{R} et $\varphi : \Omega_1 \to \Omega_2$ un C^1 -difféomorphisme. Alors :

(i) Pour toute function $f: \Omega_2 \to [0, +\infty]$, on a:

$$\int_{\Omega_2} f \, d\lambda = \int_{\Omega_1} (f \circ \varphi) \cdot |\varphi'| \, d\lambda.$$

(ii) Pour toute fonction $f: \Omega_2 \to \mathbb{R}$ mesurable, f est sommable sur Ω_2 ssi $(f \circ \varphi) \cdot |\varphi'|$ est sommable sur Ω_1 . Dans ce cas, $\int_{\Omega_2} f \, d\lambda = \int_{\Omega_1} (f \circ \varphi) \cdot |\varphi'| \, d\lambda$.

Remarque 3.5.5. On peut généraliser le théorème 3.5.4 au cas où Ω_1, Ω_2 sont des ouverts de \mathbb{R}^n et $\varphi: \Omega_1 \to \Omega_2$ est un \mathcal{C}^1 -difféomorphisme. Il faut alors remplacer $|\varphi'|$ par $|\mathrm{jac}\,\varphi|$, où $\mathrm{jac}\,\varphi$ est le jacobien de φ (défini par $\forall \omega \in \Omega_2$, $(\mathrm{jac}\,\varphi)$ (ω) = det $(\mathrm{d}\varphi(\omega))$).

4 Espaces fonctionnels

4.1 Les inégalités de Hölder et de Minkowski

Théorème 4.1.1 (Inégalité de Hölder). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit φ, ψ deux fonctions positives sommables sur X. Alors pour tout $\theta \in]0,1[$, la fonction $\varphi^{\theta}\psi^{1-\theta}$ est sommable et :

$$\int_X \varphi^{\theta} \psi^{1-\theta} d\mu \leqslant \left(\int_X \varphi d\mu \right)^{\theta} \left(\int_X \psi d\mu \right)^{1-\theta}.$$

Démonstration. Pour $(a,b) \in (\mathbb{R}_+^*)^2$, la fonction $\theta \longmapsto a^{\theta}b^{1-\theta}$ est convexe, d'où $a^{\theta}b^{1-\theta} \leqslant \theta a + (1-\theta)b$. En notant $C = \int_X \varphi \ d\mu$ et $D = \int_X \psi \ d\mu$ et en appliquant l'inégalité précédente avec $a = \frac{\varphi}{C}$ et $b = \frac{\psi}{D}$, on obtient le résultat.

Théorème 4.1.2 (Inégalité de Minkowski). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $p \in [1, +\infty[$. Soit $f, g : X \to \mathbb{K}$ deux fonctions t.q. f^p et g^p sont sommables. Alors $(f+g)^p$ est sommable et :

$$\left(\int_{X} |f+g|^{p} d\mu\right)^{\frac{1}{p}} \leqslant \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} + \left(\int_{X} |g|^{p} d\mu\right)^{\frac{1}{p}}.$$

Démonstration. On note h = |f| + |g|. En appliquant l'inégalité de Hölder (théorème 4.1.1) avec $\theta = \frac{p-1}{p}$, $\varphi = h^p$ et $\psi = |f|^p$ (puis idem en remplaçant f par g), obtenir :

$$\int_X h^{p-1} \left| f \right| \, \mathrm{d}\mu \leqslant \left(\int_X h^p \, \, \mathrm{d}\mu \right)^{\frac{p-1}{p}} \left(\int_X \left| f \right|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}} \, \mathrm{et} \, \int_X h^{p-1} \left| g \right| \, \mathrm{d}\mu \leqslant \left(\int_X h^p \, \, \mathrm{d}\mu \right)^{\frac{p-1}{p}} \left(\int_X \left| g \right|^p \, \mathrm{d}\mu \right)^{\frac{1}{p}}.$$

En sommant ces deux inégalités, on obtient $(\int_X h^p d\mu)^{\frac{1}{p}} \leqslant (\int_X |f|^p d\mu)^{\frac{1}{p}} + (\int_X |g|^p d\mu)^{\frac{1}{p}}$, d'où le résultat car $|f+g|^p \leqslant h^p$.

4.2 Les espaces L^p

Définition 4.2.1 (L^p) . Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $p \in [1, +\infty[$. On définit :

$$\mathcal{L}^{p}(X, \mathcal{A}, \mu) = \left\{ f : X \to \mathbb{K} \text{ mesurable, } \int_{X} |f|^{p} d\mu < +\infty \right\}.$$

 $\mathcal{L}^{p}(X, \mathcal{A}, \mu)$ est un K-espace vectoriel. Et l'application

$$\left\|\cdot\right\|_{p}:f\in\mathcal{L}^{p}\left(X,\mathcal{A},\mu\right)\longmapsto\left(\int_{X}\left|f\right|^{p}\mathrm{d}\mu\right)^{\frac{1}{p}}$$

est une semi-norme. On considère :

$$F = \left\{ f \in \mathcal{L}^p \left(X, \mathcal{A}, \mu \right), \ \left\| f \right\|_p = 0 \right\} = \left\{ f \in \mathcal{L}^p \left(X, \mathcal{A}, \mu \right), \ f(x) = 0 \ pour \ presque \ tout \ x \in X \right\}.$$

F est un sous-espace vectoriel de $\mathcal{L}^{p}(X, \mathcal{A}, \mu)$. Et on définit :

$$L^{p}(X, \mathcal{A}, \mu) = \mathcal{L}^{p}(X, \mathcal{A}, \mu) / F.$$

Autrement dit, on identifie les fonctions égales presque-partout. On définit alors $\|\cdot\|_p$ sur $L^p(X, \mathcal{A}, \mu)$ de manière naturelle. Ainsi, $\left(L^p(X, \mathcal{A}, \mu), \|\cdot\|_p\right)$ est un espace vectoriel normé. Par la suite, on notera parfois \mathcal{L}^p et L^p plutôt que $\mathcal{L}^p(X, \mathcal{A}, \mu)$ et $L^p(X, \mathcal{A}, \mu)$ lorsqu'il n'y a pas d'ambiguïté. De plus, une fonction de \mathcal{L}^p sera identifiée à sa classe dans L^p .

Théorème 4.2.2 (Théorème de Riesz-Fischer). Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $p \in [1, +\infty[$. Alors L^p est un espace de Banach.

Démonstration. Il suffit de prouver que toute série absolument convergente à valeurs dans L^p est convergente. Soit donc $(u_n)_{n\in\mathbb{N}}\in (L^p)^{\mathbb{N}}$ t.q. $\sum_{n\in\mathbb{N}}\|u_n\|_p<+\infty$. On considère $g:x\in X\longmapsto\sum_{n\in\mathbb{N}}\|u_n(x)\|\in [0,+\infty]$ et $g_N:x\in X\longmapsto\sum_{n=0}^N|u_n(x)|\in [0,+\infty]$ pour $N\in\mathbb{N}$. Comme $g_N^p\xrightarrow[N\to+\infty]{}g^p$, le lemme de Fatou (théorème 3.2.12) fournit:

$$\|g\|_p = \left(\int_X \left(\liminf_{N \to +\infty} g_N^p\right) d\mu\right)^{\frac{1}{p}} \leqslant \left(\liminf_{N \to +\infty} \left(\int_X g_N^p d\mu\right)\right)^{\frac{1}{p}} = \liminf_{N \to +\infty} \|g_N\|_p \leqslant \sum_{n \in \mathbb{N}} \|u_n\|_p < +\infty.$$

Donc $g \in L^p$. En particulier, la série $\sum u_n(x)$ est absolument convergente (donc convergente) pour presque tout $x \in X$. Pour $n \in \mathbb{N}$, soit alors $S_n = \sum_{k=0}^n u_k$ et $S = \sum_{k \in \mathbb{N}} u_k$ (qui est définie presque-partout). Alors $S_n \xrightarrow[n \to +\infty]{} S$ presque-partout et $\forall n \in \mathbb{N}$, $|S_n|^p \leqslant g^p$. Par le théorème de convergence dominée (théorème 3.3.8), il vient $||S_n - S||_p \xrightarrow[n \to +\infty]{} 0$. Donc la série $\sum u_n$ converge au sens de L^p . \square

Corollaire 4.2.3. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $p \in [1, +\infty[$. Soit $(f_n)_{n \in \mathbb{N}} \in (L^p)^{\mathbb{N}}$ et $f \in L^p$ t.q. $f_n \xrightarrow[n \to +\infty]{} f$ (au sens de L^p). Alors on peut extraire de $(f_n)_{n \in \mathbb{N}}$ une sous-suite $(f_{\varphi(n)})_{n \in \mathbb{N}}$ t.q. $f_{\varphi(n)}(x) \xrightarrow[n \to +\infty]{} f(x)$ pour presque tout $x \in X$.

Démonstration. On choisit φ une extractrice t.q. $\forall n \in \mathbb{N}$, $\|f_{\varphi(n+1)} - f_{\varphi(n)}\|_p \leqslant 2^{-n}$, et on note $g = \sum_{n \in \mathbb{N}} |f_{\varphi(n+1)} - f_{\varphi(n)}|$. On a $\|g\|_p \leqslant \sum_{n \in \mathbb{N}} \|f_{\varphi(n+1)} - f_{\varphi(n)}\|_p < +\infty$. En particulier, $g(x) < +\infty$ pour presque tout $x \in X$. Donc la série $\sum (f_{\varphi(n+1)}(x) - f_{\varphi(n)}(x))$ converge absolument donc converge pour presque tout $x \in X$. Donc il existe $\ell : X \to \mathbb{K}$ t.q. $f_{\varphi(n)}(x) \xrightarrow[n \to +\infty]{} \ell(x)$ pour presque tout $x \in X$. Montrer ensuite que $\ell \in L^p$ et $\|f_n - \ell\|_p \xrightarrow[n \to +\infty]{} 0$, d'où $\ell(x) = f(x)$ pour presque tout $x \in X$. \square

Lemme 4.2.4. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $p \in [1, +\infty[$. On note S l'ensemble des fonctions φ réelles simples (i.e. mesurables et d'image finie) vérifiant $\mu(\varphi^{-1}(\mathbb{K}^*)) < +\infty$. Alors S est dense dans L^p .

Théorème 4.2.5. Soit $p \in [1, +\infty[$, Ω un ouvert de \mathbb{R}^n . On se place dans $(\Omega, \text{Bor}(\Omega), \lambda)$, où λ est la mesure de Lebesgue. On note $C_c^0(\Omega)$ l'ensemble des fonctions continues à support compact $\Omega \to \mathbb{K}$. Alors $C_c^0(\Omega)$ est dense dans L^p .

Démonstration. Notons d'abord que $C_c^0(\Omega) \subset L^p$. Selon le lemme 4.2.4, il suffit de prouver que $S \subset \overline{C_c^0(\Omega)}$. Pour cela, il suffit de montrer que $\forall A \in \operatorname{Bor}(\Omega), \ \lambda(A) < +\infty \Longrightarrow \mathbbm{1}_A \in \overline{C_c^0(\Omega)}$. Soit donc $A \in \operatorname{Bor}(\Omega)$ avec $\lambda(A) < +\infty$. Avec la proposition 2.4.8, pour tout $N \in \mathbb{N}^*$, il existe un compact K_N et un ouvert U_N t.q. $K_N \subset A \subset U_N$ et $\lambda(U_N \backslash K_N) \leqslant \frac{1}{N}$. Pour $N \in \mathbb{N}^*$, on note $\delta_N = d(K_N, \Omega \backslash U_N) > 0$ et on pose :

$$f_N: x \in \Omega \longmapsto \max \left(0, 1 - \frac{d(x, K_N)}{\delta_N}\right).$$

On a alors $(f_N)_{N\in\mathbb{N}^*}\in\mathcal{C}^0_c\left(\Omega\right)^{\mathbb{N}}$ et :

$$\forall N \in \mathbb{N}^*, \ \mathbb{1}_{K_N} \leqslant f_N \leqslant \mathbb{1}_{U_N}.$$

On en déduit $\|f_N - \mathbb{1}_A\|_p \xrightarrow[N \to +\infty]{} 0$, d'où $\mathbb{1}_A \in \overline{\mathcal{C}_c^0(\Omega)}$.

4.3 L'espace L^2

Définition 4.3.1 (Structure préhilbertienne de L^2). Soit (X, \mathcal{A}, μ) un espace mesuré. On munit L^2 du produit scalaire $\langle \cdot | \cdot \rangle$ défini par :

$$\forall (f,g) \in (L^2)^2, \langle f \mid g \rangle = \int_X f\overline{g} \, d\mu.$$

 $Ainsi,\ L^{2}\ est\ un\ espace\ pr\'ehilbertien,\ et\ la\ norme\ pr\'ehilbertienne\ est\ exactement\ \|\cdot\|_{2}.$

Théorème 4.3.2. Soit (X, \mathcal{A}, μ) un espace mesuré. Alors L^2 est un espace de Hilbert.

4.4 L'espace L^{∞}

Définition 4.4.1 (Presque majorant). Soit (X, \mathcal{A}, μ) un espace mesuré, $f: X \to \mathbb{R}$. On dit qu'un réel $M \in \mathbb{R}$ est un presque majorant de f lorsque $f(x) \leq M$ pour presque tout $x \in X$.

Définition 4.4.2 (L^{∞}) . Soit (X, \mathcal{A}, μ) un espace mesuré. On définit :

$$\mathcal{L}^{\infty}(X, \mathcal{A}, \mu) = \{f : X \to \mathbb{K} \text{ mesurable, } |f| \text{ admet un presque majorant} \}.$$

 $\mathcal{L}^{\infty}(X, \mathcal{A}, \mu)$ est un \mathbb{K} -espace vectoriel. Pour $f \in \mathcal{L}^{\infty}(X, A, \mu)$, on note $\|f\|_{\infty}$ le plus petit presque majorant de f. Ainsi $\|\cdot\|_{\infty}$ est une semi-norme. On considère $F = \{f \in \mathcal{L}^{\infty}(X, \mathcal{A}, \mu), \|f\|_{\infty} = 0\}$, et on définit :

$$L^{\infty}(X, \mathcal{A}, \mu) = \mathcal{L}^{\infty}(X, \mathcal{A}, \mu) / F.$$

On définit alors $\|\cdot\|_{\infty}$ sur $L^{\infty}(X, \mathcal{A}, \mu)$ de manière naturelle. Ainsi, $(L^{\infty}(X, \mathcal{A}, \mu), \|\cdot\|_{\infty})$ est un espace vectoriel normé.

Théorème 4.4.3. Soit (X, \mathcal{A}, μ) un espace mesuré. Alors L^{∞} est un espace de Banach.

Remarque 4.4.4. Le théorème 4.2.5 et le lemme 4.2.4 sont faux pour $p = \infty$.

4.5 Dualité

Définition 4.5.1 (Réels conjugués). Soit $(p,q) \in [1,+\infty]^2$. On dit que p et q sont conjugués lorsque $\frac{1}{p} + \frac{1}{q} = 1$.

Théorème 4.5.2. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(p, q) \in [1, +\infty]^2$ un couple de réels conjugués.

(i) Si $f \in L^p$ et $g \in L^q$, alors $(fg) \in L^1$ et :

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$
.

(ii) $Si \ f \in L^p$, alors:

$$||f||_p = \sup_{g \in L_q \setminus \{0\}} \frac{|\int_X fg \, \mathrm{d}\mu|}{||g||_q}.$$

Corollaire 4.5.3. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(p,q) \in [1, +\infty]^2$ un couple de réels conjugués. On note $(L^p)' = \mathcal{L}_{\mathcal{C}}(L^p, \mathbb{K})$ le dual topologique de L^p . On considère :

$$\Psi: \begin{vmatrix} L^p \longrightarrow (L^q)' \\ f \longmapsto \begin{vmatrix} L^q \longrightarrow \mathbb{K} \\ g \longmapsto \int_X fg \, d\mu \end{vmatrix}.$$

Alors Ψ est une isométrie linéaire injective. Et, si $p \in]1, +\infty[$, on peut montrer que Ψ est bijective.

4.6 Liens entre les espaces L^p

Proposition 4.6.1. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $1 \leq p < s < q \leq +\infty$. Alors :

$$L^p \cap L^q \subset L^s$$
.

Proposition 4.6.2. Soit (X, \mathcal{A}, μ) un espace mesuré. Si $\mu(X) < +\infty$, alors pour tout $1 \leq p < q \leq +\infty$, on a $L^p \supset L^q$.

5 Espaces de Hilbert

5.1 Théorème de Radon-Nikodym

Définition 5.1.1 (Mesure admettant une densité). Soit μ et ν deux mesures sur un espace mesurable (X, \mathcal{A}) . On dit que ν admet une densité par rapport à μ lorsqu'il existe $\rho: X \to [0, +\infty]$ mesurable t.q.

$$\forall A \in \mathcal{A}, \ \nu(A) = \int_A \rho \ \mathrm{d}\mu.$$

Lemme 5.1.2. Soit μ et ν deux mesures finies sur un espace mesurable (X, \mathcal{A}) . On suppose que :

$$\forall A \in \mathcal{A}, \ \nu(A) \leqslant \mu(A).$$

Alors ν admet une densité ρ par rapport à μ . De plus, on a $0 \leqslant \rho \leqslant 1$ presque-partout.

Démonstration. Montrer d'abord que, pour toute fonction $f: X \to [0, +\infty]$ mesurable, $\int_X f \, d\nu \le \int_X f \, d\mu$ (le montrer pour les fonctions simples, puis pour les fonctions mesurables par passage à la limite). On se place maintenant dans l'espace $L^2(X, \mathcal{A}, \mu)$. Notons que $L^2(X, \mathcal{A}, \mu) \subset L^2(X, \mathcal{A}, \nu) \subset L^1(X, \mathcal{A}, \nu)$ (car $\nu(X) < +\infty$). On considère donc :

$$\ell: \begin{vmatrix} L^2(X, \mathcal{A}, \mu) \longrightarrow \mathbb{K} \\ f \longmapsto \int_X f \, d\nu \end{vmatrix}.$$

 $\ell \in \mathcal{L}\left(L^{2}\left(X, \mathcal{A}, \mu\right), \mathbb{K}\right)$. Et on a :

$$\forall f \in L^2\left(X, \mathcal{A}, \mu\right), \ |\ell(f)| \leqslant \int_X |f| \ \mathrm{d}\nu \leqslant \int_X |f| \ \mathrm{d}\mu \leqslant \sqrt{\int_X |f|^2 \ \mathrm{d}\mu} \cdot \sqrt{\int_X 1 \ \mathrm{d}\mu} = \sqrt{\mu(X)} \ \|f\|_2.$$

Donc $\ell \in \mathcal{L}_{\mathcal{C}}(L^2(X, \mathcal{A}, \mu), \mathbb{K})$. Selon le théorème de Riesz, comme $L^2(X, \mathcal{A}, \mu)$ est un espace de Hilbert, il existe $\rho \in L^2(X, \mathcal{A}, \mu)$ t.q. $\ell = \langle \cdot \mid \rho \rangle$. On montre alors que $\rho(x) \in [0, +\infty]$ pour presque tout $x \in X$. Ainsi, ν est de densité ρ par rapport à μ (car $\forall A \in \mathcal{A}, \nu(A) = \ell(\mathbb{1}_A) = \langle \mathbb{1}_A \mid \rho \rangle = \int_A \rho \ d\mu$). De plus, on montre aisément que $0 \leq \rho \leq 1$ presque partout.

Théorème 5.1.3 (Théorème de Radon-Nikodym). Soit μ et ν deux mesures σ -finies sur un espace mesurable (X, \mathcal{A}) . S'équivalent :

- (i) ν admet une densité par rapport à μ .
- (ii) $\forall A \in \mathcal{A}, \ \mu(A) = 0 \Longrightarrow \nu(A) = 0.$

Démonstration. (i) \Rightarrow (ii) Clair. (ii) \Rightarrow (i) Première étape : $\mu(X) < +\infty$ et $\nu(X) < +\infty$. On note alors $\theta = \mu + \nu$. Alors θ est une mesure finie sur (X, \mathcal{A}) et on a $\mu \leq \theta$ et $\nu \leq \theta$. Selon le lemme 5.1.2, il existe $(g, h) \in L^2(X, \mathcal{A}, \theta)^2$ t.q.

$$\forall A \in \mathcal{A}, \ \mu(A) = \int_X g \ d\theta \ \text{et} \ \nu(A) = \int_X h \ d\theta.$$

On pose alors $N=g^{-1}(\{0\})$. On a $\mu(N)=\int_N g\,\mathrm{d}\theta=0$, donc par hypothèse, $\nu(N)=0$. On définit donc :

$$\rho: x \in X \longmapsto \begin{cases} \frac{h(x)}{g(x)} & \text{si } x \notin N \\ 0 & \text{si } x \in N \end{cases}.$$

On a ainsi $\forall A \in \mathcal{A}, \ \nu(A) = \int_A \rho \ d\mu$, ce qui prouve le résultat dans le cas particulier où μ et ν sont finies. Deuxième étape. Soit $(X_p)_{p\in\mathbb{N}}$ une suite croissante t.q. $X = \bigcup_{p\in\mathbb{N}} X_p$ et $\forall p \in \mathbb{N}, \ \mu(X_p) < +\infty$ et $\nu(X_p) < +\infty$. D'après la première étape, pour tout $p \in \mathbb{N}$, il existe $\rho_p : X_p \to [0, +\infty]$ mesurable t.q. $\forall A \in \mathcal{A}, \ A \subset X_p \Longrightarrow \nu(A) = \int_A \rho_p \ d\mu$. Montrer maintenant que :

$$\forall p \in \mathbb{N}, \ \mu(\{x \in X_p, \ \rho_{p+1}(x) \neq \rho_p(x)\}) = 0.$$

On peut donc poser une fonction $\rho: X \to [0, +\infty]$ vérifiant pour tout $p \in \mathbb{N}$, $\rho_{|X_p} = \rho_p$ presquepartout. Ainsi, ν est de densité ρ par rapport à μ .

5.2 Bases hilbertiennes

Définition 5.2.1 (Partie totale). Soit H un espace de Hilbert, $A \subset H$. S'équivalent :

- (i) $H = \overline{\text{Vect}(A)}$.
- (ii) $A^{\perp} = \{0\}.$

Si ces conditions sont vérifiées, on dit que A est une partie totale de H.

Exemple 5.2.2. Soit X un ensemble, A une algèbre sur X, μ une mesure finie sur $(X, \sigma(A))$. Alors $\{\mathbb{1}_A, A \in A\}$ est une partie totale de $L^2(X, \sigma(A), \mu)$.

Démonstration. On note $C = \{\mathbb{1}_A, A \in \mathcal{A}\}$. Soit $f \in C^{\perp}$. On écrit $f = f^+ - f^-$. Soit μ^+ la mesure de densité f^+ par rapport à μ , μ^- la mesure de densité f^- par rapport à μ . On vérifie que :

$$\forall A \in \mathcal{A}, \ \mu^+(A) = \mu^-(A).$$

Il vient, d'après l'unicité dans le théorème de Carathéodory (théorème 2.7.9) : $\forall A \in \sigma(A)$, $\mu^+(A) = \mu^-(A)$, i.e. $\mu^+ = \mu^-$. Ainsi :

$$\forall A \in \sigma(A), \int_A f^+ d\mu = \int_A f^- d\mu.$$

On considère alors $A^+ = f^{-1}([0, +\infty[) \text{ et } A^- = f^{-1}(] - \infty, 0])$. Comme $\int_X f^+ d\mu = \int_{A^+} f^+ d\mu = \int_{A^+} f^- d\mu = 0$, et $f^+ \ge 0$, il vient $f^+ = 0$ presque-partout. De même, $f^- = 0$ presque-partout, donc f = 0 presque-partout. Ceci prouve que $C^{\perp} = \{0\}$.

Définition 5.2.3 (Espace séparable). Un espace de Hilbert est dit séparable lorsqu'il admet une partie totale dénombrable.

Définition 5.2.4 (Base hilbertienne). Soit H un espace de Hilbert. On appelle base hilbertienne de H toute famille totale et orthonormale.

Théorème 5.2.5. Tout espace de Hilbert séparable admet une base hilbertienne dénombrable.

Théorème 5.2.6. Soit H un espace de Hilbert, $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de H.

(i) Pour tout $x \in H$, il existe une unique suite $(\alpha_n(x))_{n \in \mathbb{N}}$ t.q.

$$x = \sum_{n=0}^{\infty} \alpha_n(x)e_n.$$

Et on $a \ \forall n \in \mathbb{N}, \ \alpha_n(x) = \langle x \mid e_n \rangle$. De plus, on a l'identité de Bessel-Parseval :

$$||x|| = \sum_{n=0}^{\infty} |\langle x \mid e_n \rangle|^2.$$

(ii) Réciproquement, si $(\gamma_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$ vérifie $\sum_{n=0}^{\infty}|\gamma_n|^2<+\infty$, alors la série $\sum\gamma_ne_n$ converge dans H vers un élément x. Et on a alors $\forall n\in\mathbb{N},\ \gamma_n=\langle x\mid e_n\rangle$.

Démonstration. (i) Pour $n \in \mathbb{N}$, poser $f_n = \sum_{k=0}^n \langle f \mid e_k \rangle e_k$. Montrer que $(f_n)_{n \in \mathbb{N}}$ est de Cauchy, donc converge vers un $g \in H$ (car H est complet). Montrer ensuite que $\forall n \in \mathbb{N}$, $\langle g - f \mid e_n \rangle = 0$, donc $(g - f) \in \{e_n, n \in \mathbb{N}\}^{\perp} = \{0\}$, d'où g = f. L'unicité et l'identité de Bessel-Parseval sont claires. (ii) Pour $n \in \mathbb{N}$, poser $f_n = \sum_{k=0}^n \gamma_k e_k$. Montrer que $(f_n)_{n \in \mathbb{N}}$ est de Cauchy, et en déduire le résultat. \square

5.3 Exemples classiques de bases hilbertiennes

Exemple 5.3.1 (Système de Haar). On se place dans $([0,1], Bor([0,1]), \lambda)$. On définit une suite $(h_n)_{n\in\mathbb{N}^*}\in (L^2)^{\mathbb{N}^*}$ par $h_1=1$ et :

$$\forall k \in \mathbb{N}, \ \forall \ell \in [1, 2^k], \ h_{2^k + \ell} = 2^{\frac{k}{2}} \left(\mathbb{1}_{\left[\frac{2\ell - 2}{2^{k+1}}, \frac{2\ell - 1}{2^{k+1}}\right]} - \mathbb{1}_{\left[\frac{2\ell - 1}{2^{k+1}}, \frac{2\ell}{2^{k+1}}\right]} \right).$$

Alors $(h_k)_{k\in\mathbb{N}^*}$ est une base hilbertienne de L^2 .

Remarque 5.3.2. On peut aussi voir le système de Haar dans $(\{0,1\}^{\mathbb{N}}, \operatorname{Bor}([0,1]^n), P)$. Pour cela, on pose $p_n : u \in \{0,1\}^{\mathbb{N}} \longmapsto (u_0,\ldots,u_n) \in \{0,1\}^{n+1}$ pour $n \in \mathbb{N}$. On note $J = \{0\} \cup (\bigcup_{n \in \mathbb{N}} \{0,1\}^n)$, et on définit $(H_j)_{j \in J}$ par $H_0 = 1$ et :

$$\forall n \in \mathbb{N}, \ \forall s \in \{0,1\}^n, \ H_j = 2^{\frac{k}{2}} \left(\mathbb{1}_{p_n^{-1}(\{(s_0,\dots,s_n,0)\})} - \mathbb{1}_{p_n^{-1}(\{(s_0,\dots,s_n,1)\})} \right).$$

Alors $(H_j)_{j \in J}$ est une base hilbertienne de L^2 .

Exemple 5.3.3 (Quelques bases hilbertiennes de polynômes).

(i) Polynômes de Legendre. On se place sur un segment [a,b]. Pour $n \in \mathbb{N}$, on définit $P_n \in \mathbb{R}[X]$ par :

$$\forall x \in [a, b], P_n(x) = c_n \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(\left(1 - x^2 \right)^n \right),$$

où c_n est une constante choisie t.q. $\|P_n\|_2 = 1$. Alors $(P_n)_{n \in \mathbb{N}}$ est une base hilbertienne de L^2 .

(ii) Polynômes de Laguerre. On se place sur \mathbb{R}_+ . Pour $n \in \mathbb{N}$, on définit $L_n \in \mathbb{R}[X]$ par :

$$\forall x \in \mathbb{R}_+, \ L_n(x) = \frac{e^x}{n!} \cdot \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(e^{-x}x^n\right).$$

Alors $(L_n)_{n\in\mathbb{N}}$ est une base hilbertienne de L^2 .

5.4 Séries de Fourier

Notation 5.4.1. On se place sur un segment $[a,b] \subset \mathbb{R}$, avec a < b. On note $\omega = \frac{2\pi}{b-a}$ et on munit L^2 du produit scalaire $\langle \cdot | \cdot \rangle$ défini par :

$$\forall (f,g) \in \left(L^2\right)^2, \ \langle f \mid g \rangle = \frac{1}{b-a} \int_{[a,b]} f\overline{g} \ \mathrm{d}\lambda.$$

 $\langle\cdot\mid\cdot\rangle$ n'est pas le produit scalaire canonique sur L^2 (c.f. définition 4.3.1) mais induit la structure hilbertienne canonique de L^2 .

Lemme 5.4.2. Il existe une suite $(P_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}$ t.q.

$$\forall t \in [-1, 1], \ P_n(t) \xrightarrow[n \to +\infty]{} \mathbb{1}_{]0,1]}(t) - \mathbb{1}_{[-1,0[}(t),$$

 $et \ \forall n \in \mathbb{N}, \ \forall t \in [-1, 1], \ |P_n(t)| \leq 1.$

Démonstration. Pour $n \in \mathbb{N}$, soit $\alpha_n = \int_0^1 (1 - s^2)^n ds$. On définit $P_n \in \mathbb{R}[X]$ par :

$$\forall t \in [-1, 1], P_n(t) = \frac{1}{\alpha_n} \int_0^t (1 - s^2)^n ds.$$

Montrer que $(P_n)_{n\in\mathbb{N}}$ convient.

Théorème 5.4.3. Pour $n \in \mathbb{Z}$, on considère :

$$e_n: t \in [a, b] \longmapsto \exp(in\omega t)$$
,

 $où \omega = \frac{2\pi}{b-a}$. Alors $(e_n)_{n\in\mathbb{Z}}$ est une base hilbertienne de L^2 .

Démonstration. On vérifie aisément que $(e_n)_{n\in\mathbb{Z}}$ est une famille orthonormale. Reste à prouver qu'elle est totale. Pour cela, soit $I\subset [a,b]$ un segment. Il suffit de prouver que $\mathbb{1}_I\in \overline{\mathrm{Vect}\,(e_n,\,n\in\mathbb{Z})}$. On écrit I=[c-h,c+h] et on pose :

$$\varphi: t \in [a, b] \longmapsto \frac{1}{2} \left[\cos \left(\omega(t - c) \right) - \cos(\omega h) \right].$$

On a $\varphi \in \text{Vect}(1, e_1, e_{-1})$. Et, pour $t \in [a, b]$, $\varphi(t) > 0$ si $t \in \mathring{I}$, $\varphi(t) < 0$ si $t \notin I$. Avec la suite $(P_n)_{n \in \mathbb{N}} \in \mathbb{R}[X]^{\mathbb{N}}$ du lemme 5.4.2, on en déduit que $\frac{1}{2}(1 + (P_n \circ \varphi)) \xrightarrow[n \to +\infty]{} \mathbb{1}_I$ presquepartout. Par convergence dominée, on montre ensuite qu'on a convergence au sens de L^2 , d'où $\mathbb{1}_I \in \overline{\text{Vect}(e_n, n \in \mathbb{Z})}$.

Corollaire 5.4.4.

(i) Pour tout $f \in L^2$, il existe une unique suite $(c_n(f))_{n \in \mathbb{N}}$ t.q.

$$f = \sum_{n \in \mathbb{Z}} c_n(f)e_n$$
 au sens de L^2 .

Et on $a \forall n \in \mathbb{N}, c_n(f) = \langle f \mid e_n \rangle$. De plus :

$$\frac{1}{b-a} \int_{[a,b]} |f|^2 d\lambda = \sum_{n \in \mathbb{Z}} |c_n(f)|^2.$$

(ii) Réciproquement, si $(\gamma_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$ vérifie $\sum_{n=0}^{\infty}\left|\gamma_n\right|^2<+\infty$, alors la série $\sum\gamma_ne_n$ converge dans L^2 vers un élément f. Et on a alors $\forall n\in\mathbb{N},\ \gamma_n=\langle f\mid e_n\rangle$.

Démonstration. Appliquer le théorème 5.4.3 et le théorème 5.2.6.

Remarque 5.4.5. Le corollaire 5.4.4 fournit une écriture de f comme série de fonctions au sens de L^2 , mais on ne sait pas a priori si la série converge simplement.

5.5 Théorème de Radon

Définition 5.5.1 (Forme linéaire positive). Soit Ω un ouvert de \mathbb{R}^n . Une forme linéaire $I: \mathcal{C}_c^0(\Omega) \to \mathbb{K}$ est dite positive lorsque:

$$\forall f \in \mathcal{C}_{c}^{0}(\Omega), f \geqslant 0 \Longrightarrow I(f) \geqslant 0.$$

Remarque 5.5.2. Toute forme linéaire positive est continue.

Notation 5.5.3. Soit Ω un ouvert de \mathbb{R}^n . Étant donnée une mesure μ sur $(\Omega, \text{Bor}(\Omega))$, on définit :

$$I_{\mu}: \begin{vmatrix} \mathcal{C}_c^0(\Omega) \longrightarrow \mathbb{K} \\ f \longmapsto \int_{\Omega} f \, d\mu \end{vmatrix}.$$

Alors I_{μ} est une forme linéaire positive sur $C_c^0(\Omega)$.

Théorème 5.5.4 (Théorème de Radon). Soit Ω un ouvert de \mathbb{R}^n . Alors l'application $\mu \longmapsto I_{\mu}$ définit une bijection entre les mesures sur $(\Omega, \operatorname{Bor}(\Omega))$ et les formes linéaires positives sur $C_c^0(\Omega)$.

5.6 Mesures signées

Définition 5.6.1 (Mesure signée). Soit (X, A) un espace mesurable. Une application $\nu : A \to \mathbb{R}$ est appelée mesure signée sur (X, A) lorsqu'il existe deux mesures (positives) μ_1, μ_2 t.q. $\nu = \mu_1 - \mu_2$.

Définition 5.6.2 (Intégrale selon une mesure signée). Soit (X, A) un espace mesurable. Si ν est une mesure signée sur (X, A), on définit, pour $f: X \to [0, +\infty]$:

$$\int_X f \, \mathrm{d}\nu = \int_X f \, \mathrm{d}\mu_1 - \int_X f \, \mathrm{d}\mu_2,$$

 $où (\mu_1, \mu_2)$ est un couple quelconque de mesures (positives) sur (X, A) t.q. $\nu = \mu_1 - \mu_2$.

Notation 5.6.3. Soit K un espace topologique compact. On munit $C^0(K)$ de $\|\cdot\|_{\infty}$ et on note $C^0(K)^* = \mathcal{L}_{\mathcal{C}}(C^0(K), \mathbb{R})$.

Proposition 5.6.4. Soit K un espace topologique compact. Si ℓ est une forme linéaire positive sur $C^0(K)$, alors ℓ est continue, et $||\ell|| = \ell(1)$.

Proposition 5.6.5. Soit K un espace topologique compact. Si $\ell \in C^0(K)^*$, alors il existe deux formes linéaires positives ℓ^+, ℓ^- sur $C^0(K)$ t.q.

- (i) $\ell = \ell^+ \ell^-$,
- (ii) $\|\ell\| = \|\ell^+\| + \|\ell^-\|$.

Démonstration. Première étape. Étant donné $f \in \mathcal{C}^0(K)$, $f \geqslant 0$, on pose :

$$\ell^+(f) = \sup_{\substack{u \in \mathcal{C}^0(K)\\0 \le u \le f}} \ell(u).$$

Montrer d'abord que si $(f_1, f_2) \in \mathcal{C}^0(K)^2$, avec $f_1 \geq 0$ et $f_2 \geq 0$, alors $\ell^+(f_1 + f_2) = \ell^+(f_1) + \ell^+(f_2)$. Deuxième étape. Étant donné $f \in \mathcal{C}^0(K)$, il existe $(f_1, f_2) \in \mathcal{C}^0(K)^2$, avec $f_1 \geq 0$ et $f_2 \geq 0$ t.q. $f = f_1 - f_2$. On pose alors $\ell^+(f) = \ell^+(f_1) - \ell^+(f_2)$, indépendamment du choix de (f_1, f_2) . Il est alors clair que ℓ^+ est une forme linéaire positive sur $\mathcal{C}^0(K)$. Troisième étape. On pose $\ell^- = \ell^+ - \ell$, qui est une forme linéaire positive sur $\mathcal{C}^0(K)$, et qui vérifie $\ell = \ell^+ - \ell^-$. On a en fait, pour $f \geq 0$:

$$\ell^{-}(f) = \sup_{\substack{v \in \mathcal{C}^{0}(K) \\ -f \leqslant v \leqslant 0}} \ell(v).$$

Quatrième étape. Montrons que $\|\ell\| = \|\ell^+\| + \|\ell^-\|$. On a $\|\ell^+\| = \ell^+(1)$ et $\|\ell^-\| = \ell^-(1)$. Il existe donc des suites $(u_n)_{n\in\mathbb{N}} \in \mathcal{C}^0(K)^{\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}} \in \mathcal{C}^0(K)^{\mathbb{N}}$ avec $\forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant 1$ et $\forall n \in \mathbb{N}, \ 0 \leqslant v_n \leqslant 1$ t.q.

$$\|\ell^{+}\| = \lim_{n \to +\infty} \ell(u_n)$$
 et $\|\ell^{-}\| = \lim_{n \to +\infty} \ell(v_n)$.

Notons que $\forall n \in \mathbb{N}$, $\ell(u_n) = \ell^+(u_n) - \ell^-(u_n) \leqslant \ell^+(1) - \ell^-(u_n)$. En faisant tendre $n \to +\infty$, on voit que $\ell^-(u_n) \xrightarrow[n \to +\infty]{} 0$. Donc $\|\ell^+\| = \lim_{n \to +\infty} \ell^+(u_n)$. Idem pour ℓ^- . Ainsi, comme $\|u_n - v_n\|_{\infty} \leqslant 1$:

$$\left\|\ell^{+}\right\| + \left\|\ell^{-}\right\| = \lim_{n \to +\infty} \left(\ell^{+}\left(u_{n}\right) + \ell^{-}\left(v_{n}\right)\right) = \lim_{n \to +\infty} \underbrace{\ell\left(u_{n} - v_{n}\right)}_{\leqslant \frac{\ell\left(u_{n} - v_{n}\right)}{\left\|u_{n} - v_{n}\right\|_{\infty}} \leqslant \left\|\ell\right\|} \leqslant \left\|\ell\right\|.$$

L'autre inégalité est claire.

Théorème 5.6.6. Soit K un espace topologique compact. Soit $\ell \in C^0(K)^*$. Alors il existe une mesure signée ν sur (K, Bor(K)) t.g.

$$\forall f \in \mathcal{C}^0(K), \ \ell(f) = \int_X f \ d\nu.$$

On peut de plus choisir des mesures (positives) μ_1, μ_2 sur (K, Bor(K)) t.q. $\nu = \mu_1 - \mu_2$ et $\|\ell\| = \mu_1(X) + \mu_2(X)$.

Définition 5.6.7 (Mesures étrangères). Soit (X, A) un espace mesurable. Deux mesures (positives) μ_1, μ_2 sur (X, A) sont dites étrangères s'il existe $A \in A$ t.q. $\mu_1(X \setminus A) = 0$ et $\mu_2(A) = 0$.

Exemple 5.6.8. Sur $(\mathbb{R}, \operatorname{Bor}(\mathbb{R}))$, la mesure de Dirac en 0 et la mesure de Lebesque sont étrangères.

Théorème 5.6.9. Soit K un espace topologique compact.

- (i) $\mathcal{C}^0(K)^*$ est en bijection avec l'ensemble des mesures signées sur $(K, \operatorname{Bor}(K))$.
- (ii) Toute mesure signée sur (K, Bor(K)) peut s'écrire comme différence de deux mesures boréliennes étrangères.

5.7 Séries de Fourier – convergence ponctuelle

Théorème 5.7.1 (Théorème de Dirichlet). Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction 2π -périodique C^1_{pm} (mais pas nécessairement C^0). Pour $n \in \mathbb{Z}$, on pose $c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$. Alors:

$$\forall x \in \mathbb{R}, \ \sum_{n \in \mathbb{Z}} c_n(f)e^{inx} = \frac{1}{2} \left(\lim_{x^+} f + \lim_{x^-} f \right).$$

Démonstration. On peut se ramener au cas où x=0. On suppose d'abord f continue en 0. Pour $N \in \mathbb{N}$, on pose :

$$D_N: t \in \mathbb{R} \longmapsto \sum_{|n| \leqslant N} e^{int} = \begin{cases} \frac{\sin([2N+1]\frac{t}{2})}{\sin(\frac{t}{2})} & \text{si } t \not\equiv 0 \\ 2N+1 & \text{sinon} \end{cases}.$$

On pose de plus $P_N f: t \in \mathbb{R} \longmapsto \sum_{|n| \leqslant N} c_n(f) e^{int}.$ Ainsi :

$$P_N f(0) - f(0) = \frac{1}{2\pi} \int_0^{2\pi} (f(t) - f(0)) D_N(t) dt = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(t) - f(0)}{\sin\left(\frac{t}{2}\right)} \cdot \sin\left([2N + 1]\frac{t}{2}\right) dt.$$

Avec cette expression, montrer que $P_N f(0) - f(0) \xrightarrow[N \to +\infty]{} 0$, d'où le résultat si f est continue en 0. Sinon, poser :

$$f_p: x \in \mathbb{R} \longmapsto \begin{cases} \frac{1}{2} \left(f(x) + f(-x) \right) & \text{si } x \not\equiv 0 \quad [2\pi] \\ \frac{1}{2} \left(\lim_{0^+} f + \lim_{0^-} f \right) & \text{sinon} \end{cases},$$

$$f_i: x \in \mathbb{R} \longmapsto \begin{cases} \frac{1}{2} \left(f(x) - f(-x) \right) & \text{si } x \not\equiv 0 \quad [2\pi] \\ 0 & \text{sinon} \end{cases}.$$

Alors f_p est continue en 0, f_i est impaire et $f = f_p + f_i$ presque-partout, ce qui permet d'obtenir le résultat.

Références

- [1] P. Malliavin. Intégration et probabilités.
- [2] W. Rudin. Real and complex analysis.