Primeira Prova de Lógica, 2021.2

Pontuação máxima: 10

- 1 (2P) Coloque todos os parênteses nos devidos lugares e apresente todas as subfórmulas de $x \vee \neg y \to x \to z$.
- **2** (3P) Seja $\Phi \subseteq Fm$. Prove a equivalência dos enunciados seguintes (não use a demonstração da equivalência dos enunciados negados dada no script):
- (i) Φ é insatisfatível, isto é, $Mod(\Phi) = \emptyset$.
- (ii) $\Phi \Vdash \varphi$ para qualquer fórmula $\varphi \in Fm$.
- (iii) $\Phi \Vdash \bot$.

Relembre que a equivalência de uma série de enunciados pode ser mostrada em forma de um "ciclo de implicações".

- **3** (2P) Desenvolva uma FND e uma FNC de $\varphi = \neg p \lor q \to \neg (r \to q)$.
- **4** (2P) Teorema: Se $\Phi \vdash \varphi \rightarrow \psi$, então $\Phi \cup \{\varphi\} \vdash \psi$.

Prove este teorema justificando os 4 passos seguintes considerando o cálculo de Hilbert: 1. $\Phi \vdash \varphi \rightarrow \psi$, 2. $\Phi \cup \{\varphi\} \vdash \varphi \rightarrow \psi$, 3. $\Phi \cup \{\varphi\} \vdash \varphi$, 4. $\Phi \cup \{\varphi\} \vdash \psi$.

 $\frac{\textbf{5} \text{ (2P) Considere a regra seguinte de um cálculo de sequentes e prove sua corretude:}}{\Delta \vdash \varphi, \Delta \cup \{\varphi\} \vdash \psi}.$