Programming Assignment II

- Task: Implement the perceptron's algorithm to generate a classifier for binary classification.
- Data set: We will use the Iris flower data set
 - See the original data set description at https://archive.ics.uci.edu/ml/datasets/iris
 - Also, see the alternative data set description at https://en.wikipedia.org/wiki/lris-flower-data-set

Iris Flower Data Set (1)

 The Iris flower data set is actually one of many standard data set that came with scikit-learn

```
from sklearn import datasets
iris = datasets.load_iris()

# access the feature vectors
iris.data

# access the labels
iris.target
```

Iris Flower Data Set (2)

- The data set is featured with four attributes: the length and the width of the sepals (กลีบเลี้ยง) and petals (กลีบดอก), in centimeters.
- The data set contains 50 samples from one of three iris species: *Iris setosa*, *Iris virginica* and *Iris versicolor*.

Scatter Plots of the Iris Flower Data Set

- Observation: The Iris Setosa (red) data points is linearly separable from the other two species.
- Most likely, there will be a separating hyperplane for Iris Setosa
- Your task: Let's implement your own Perceptron's algorithm to find such a hyperplane.

Iris Data (red=setosa,green=versicolor,blue=virginica)

Submissions of Programming Assignment II

- There are two submissions:
 - The first submission (20%) is due within Monday 10th. You will need to submit your Python codes that contain the entire experiment for applying the Perceptron to generate a linear classifier on the Iris Flower Data Set. We will discuss your submission in the physical class.
 - The second submission (80%) is due within Tuesday 11th. Wait for further submission instruction until our next physical class.