Supervised Machine Learning II: Heterogeneous Treatment Effects

Paul Goldsmith-Pinkham

April 29, 2021

Machine Learning + Causality

- Today, focusing on how to tie machine learning methods into estimation of causal effects
- Most of our ideas revolve around how to think about estimating CATEs conditional average treatment effects
 - Why is this interesting? Why is knowing CATEs preferable to ATEs?
- Recall that with exhaustively defined CATEs, we can estimate our ATE
 - But, crucially, we could target appropriately
 - Well-estimated CATEs help identify better decisions based on decision rules
 - Also good for economic theory!
- But, can be hard to do in a disciplined way

Why can ML be powerful in this space?

- A serious concern in empirical work is specification hunting looking for significant effects in subgroups, and then telling a story about it
- One solution is pre-analysis plans tying our hands before the fact about what we will look at
- However, sometimes we would like to let the "data speak"
 - What if we could automate the process for estimating signficant CATEs?
- Machine learning could allow us to estimate these approaches in a standardized way, while using out-of-sample testing to ensure that we are not data mining

The literatures with Machine learning and CATEs

- Today, will talk about two papers/lits:
 - Causal Trees (From Athey and Imbens (2016)
 - More generally in the space of causal partitioning
 - Causal "Forests" by Wager and Athey (2019) as well
 - GATES and CLAN from Chernozhukov et al. (2020)
 - GATES = Sorted Group Average Treatment Effects
 - CLAN = Classification Analysis
- These approaches are similarly focusing on CATEs, but solving a crucial statistical problem in two distinct ways

Machine learning and CATEs

- What is the statistical problem? There are two (related) issues:
 - 1. Inference: even if we predict or show the effect of a treatment is higher in one subgroup than another, can we say whether this is just due to random variation, or a meaningful difference?
 - 2. Testing causal inference out-of-sample: Evaluating how "accurate" you are requires knowing your target outcome. E.g. $Y_i \hat{Y}_i$. But, $\tau_i = Y_i(1) Y_i(0)$ is fundamentally unknown.
- These issues are in large part solved by additional sample splitting
- Importantly: these approaches do *not* solve the issue of exogeneous variation
 - In most settings, this should be viewed as a setting where we have a randomly varying treatment (e.g. an RCT) and we want to study CATEs
 - However, if we have a good IV, we could study the reduced form quite sensibly!

- Necessary notation: Binary treatment,
 D_i, and covariates (potentially high dimensional) X_i. Outcome Y_i.
- In our discussion, we'll assume completely random assignment of D_i , but it is possible to account for conditioning variables as well using a p-score method
- The key approach will be following the tree-based approach from last class, but with some essential modifications
 - Recall that trees worked by splitting up observations at a given node based on a given characteristic

- Key insight of this paper: when you choose what to split on, you are picking something that is "unusual" relative to the underlying data generating process
 - This induces bias!
- Hence, the CT approach splits the sample again – first using part of the sample to pick the tree leaves, then testing the effects within the leaves using the left-out sample
 - This gives you three samples: two training, and one true test

 How to implement? In R, there's a very nice package that includes the Random Forest (see Wager and Athey (2019)) approach as well:

https://grf-labs.github.io/grf/

The GRF Algorithm

The following guide gives an introduction to the generalized random forests algorithm as implemented in the grf package. It aims to give a complete description of the training and prediction procedures, as well as the options available for tuning. This guide is intended as an informal and practical reference; for a theoretical treatment of GRF, please consult the 'Generalized Random Forests' paper.

GRF extends the idea of a classic random forest to allow for estimating other statistical quantities besides the expected outcome. Each forest type, for example

quantile_forest , trains a random forest targeted at a particular problem, like quantile estimation. The most common use of GRF is in estimating treatment effects through the function causal_forest.

 How to implement? In R, there's a very nice package that includes the Random Forest (see Wager and Athey (2019)) approach as well:

https://grf-labs.github.io/grf/

 For Python, the econml package can do this as well (as well as many other approaches): https://econml. azurewebsites.net/spec/spec.html

Welcome to econml's documentation! %

- EconML User Guide
 - Machine Learning Based Estimation of Heterogeneous Treatment Effects
 - Motivating Examples
 - Customer Targeting
 - Personalized Pricing
 - Stratification in Clinical Trials
 - Learning Click-Through-Rates
- Problem Setup and API Design
 - API of Conditional Average Treatment Effect Package
 - Linear in Treatment CATE Estimators
 - Example Use of API

 How to implement? In R, there's a very nice package that includes the Random Forest (see Wager and Athey (2019)) approach as well:

https://grf-labs.github.io/grf/

- For Python, the econml package can do this as well (as well as many other approaches): https://econml. azurewebsites.net/spec/spec.html
- Nothing in Stata, sorry

- The causal tree approach is a beautiful approach in solving the bias and infernece issues
- However, the general inference solution does not account for the uncertainty in the binning of the covariates
 - Recall how the method works by using a split sample to choose the bins, the CATEs within those bins work just as well as any standard regression approach
 - But this fails to account for the fact that these bins may change in different samples
- Chernozhukov et al. (2020) highlight this issue, and propose a much more general approach
 - This approach has more limitations, but at the benefit of being even more general

- This approach has a lot of technical details
 - I will not be able to do it justice today
- However, the key concept, as highlighted in the paper, is that instead of trying to identify the CATEs directly, identify the key features of the CATEs instead
 - More precisely, identify how much heterogeneity there is in the underlying estimates
 - Then, figure out the characteristics of those groups with heterogeneous effects
- The key approach starts with the following concept:
 - Randomly split the sample into a main and auxiliary sample
 - In the auxiliary sample, estimate the control mean, B(X) and the treatment effect $\tau(X)$ using any ML method.
 - With these predictions, we will now proceed

- The problem is that $\tau(X)$ is very high-dimensional
- The GATES approach says what if we grouped the effects into bins G. increasing in effect size.
 - We can talk about the property of these GROUPED average treamtent effects, which average of the high dimensional properties

 In turns out we can say a lot about that,
 - statistically
- Moreover, we can test for whether these are all the same
 - Harkens back to binscatter and testing for monotonicity!

- The issue is that we still haven't solved for what these groups are
 - Knowledge of heterogeneity doesn't get us very far
- The CLAN approach asks how important characteristics vary by these binned groups
- We can use this to identify bins worth targetting

Table 5. CLAN of Immunization Incentives

	Elastic Net			
	20% Most	20% Least	Difference	
	(δ_5)	(δ_1)	$(\delta_5-\delta_1)$	
Number of vaccines	2.161	2.288	-0.128	
to pregnant mother	(2.110, 2.212)	(2.237, 2.337)	(-0.200,-0.055)	
	-	-	[0.001]	
Number of vaccines	4.230	4.714	-0.513	
to child since birth	(4.100, 4.369)	(4.573,4.860)	(-0.710, -0.311)	
	-	-	[0.000]	
Fraction of children	1.000	1.000	0.000	
received polio drops	(1.000, 1.000)	(1.000, 1.000)	(0.000,0.000)	
	-	-	[0.000]	
Number of polio	2.964	2.998	-0.033	
drops to child	(2.954,2.975)	(2.987, 3.007)	(-0.047, -0.019)	-
	-	-	[0.000]	
Fraction of children	0.899	0.932	-0.036	
received immunization card	(0.878, 0.922)	(0.908, 0.956)	(-0.065, -0.004)	
	-	-	[0.000]	
Fraction of children received	0.127	0.255	-0.131	
Measles vaccine by 15 months of age	(0.100, 0.155)	(0.230, 0.282)	(-0.167, -0.094)	
	-	-	[0.052]	
Fraction of children received	0.290	0.435	-0.152	
Measles at credible locations	(0.252, 0.327)	(0.400, 0.470)	(-0.198,-0.097)	
	- '	-	[0.000]	

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.

Notes: P-values for the hypothesis that the parameter is equal to zero in brackets.

Implementation in practice

- Chernozhukov et al. (2020) outline the algorithm in detail in the paper
- Best I have found is Max Eber has code here: https://github.com/maximilianeber/ml-treat
- Otherwise... good luck! I think this is very doable, if you've done it once, but there's a serious learning curve