Práctica 2

Hecho por Álvaro González Plaza

27 de octubre de 2022

1. Consider the language over the alphabet a, b that only contains the string a

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_1\})$$
(1)

Sea un DFA con:

$\delta(q,\sigma)$	a	$\mid b \mid$
q_o	q_2	q_1
q_1	q_1	q_1
q_2	q_1	q_1

$$(q_0, a) \vdash (q_1, \varepsilon) \land q_1 \in F \Rightarrow a \in \mathcal{L}(M)$$

1.1. Test the automaton that you have created by introducing 6 chains

Obtenemos lo siguiente:

a: acceptedab: rejectedaaaa: rejected

ababb: rejectedabbba: rejectedbbba: rejected

2. Autómata en JFLAP

Hacemos lo siguiente:

Figura 1: Autómata determinista

3. Autómata en JSON

```
 \{ \ "K": ["q0", "q1", "q2"], "s": "q0", "F": ["q1"], "t": [["q0", .a", "q1"], ["q0", "b", "q2"], ["q1", .a", "q2"], ["q1", .a", "q2"], ["q2", .a", "q2"], ["q1", "b", "q2"]] \}
```

Automata en JSON, testeable con Octave.