Review of Probability and Bayesian Networks

Yuqing Tang

Doctoral Program in Computer Science The Graduate Center City University of New York ytang@cs.gc.cuny.edu

October 6, 2010

Outline

Probability basics

Event Space

- Let U be the universe of all possible events
- For any possible event $X, Y \subseteq U$
- Set-theoretical operators
 - $X \cap Y \stackrel{\text{def}}{=} \{ z | x \in X \text{ and } z \in Y \}$
 - $X \cup Y \stackrel{\mathsf{def}}{=} \{ z | x \in X \text{ or } z \in Y \}$
 - $X \setminus Y \stackrel{\mathsf{def}}{=} \{ z | x \in X \text{ but } z \notin Y \}$
 - $\bar{X} = U \setminus X$

Kolmogorov Axioms

- **1** P(U) = 1
- 2 For any $X \subseteq U$, $P(X) \ge 0$
- **③** For any two events $X, Y \subseteq U$ if $X \cap Y = \emptyset$ then $P(X \cup Y) = P(X) + P(Y)$

Conditional Probability

Definition (Conditional Probability)

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)}$$

Bayes' Rule

Definition

Bayes' Rule [Reverend Thomas Bayes (1764)]

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

- Read P(E|H) as the likelihood of the event E given hypothesis H
- Read P(H) as the prior of the hypothesis H
- Read P(E) as the prior of the evidence E
- Read P(H|E) as the posterior belief Bel(H|E) of H given evidence E

Independence

Definition

Event X is said be independent of event Y, denoted by $X \perp \!\!\! \perp Y$,

- iff P(X|Y) = P(X)
- An equivalent definition is $P(X \cap Y) = P(X) \cdot P(Y)$
- Independence can be input knowledge
- Independence can arise from the probability

Conditional independence

Definition

Event X is said to be independent of event Y given Z, denoted $X \perp \!\!\! \perp Y|Z$

- iff P(X|Y,Z) = P(X|Z)
- An equivalent definition is $P(X \cap Y|Z) = P(X|Z) \cdot P(Y|Z)$

Outline

The notations of multivariates

Representing the event space with random variables

Event space U can be represented by a set of random variables and the values assigned to these variables.

- ullet A set of random variables $\mathcal{V} = \{V_1, V_2, \dots, V_n\}$
- A domain $Domain(V_i)$ for each variable V_i
- A variable assignment $\omega: V_i \to Domain(V_i)$ corresponds to a possible world
- All the possible value assignments corresponds to the universe event $U = \{\omega_j\}$
 - ▶ Equivalently the universe event space is the cross product $U = Domain(V_1) \times Domain(V_2) \times ... \times Domain(V_n)$
 - ▶ *U* is the set of all possible combinations of the values that can be assigned to the variables
 - ▶ One more math notation: $U = \prod_{V_i \in \mathcal{V}} Domain(V_i)$
- An expression $V_{i_1} = v_{i_1} \wedge V_{i_2} = v_{i_2} \wedge \ldots \wedge V_{i_k} = v_{i_k}$ corresponds to an event $X \subseteq U$ such that

$$X = \{\omega \mid \omega \in U \text{ and } \omega(V_{i_1}) = v_{i_1}\}$$

Examples I

- $V = \{P, S, C\}$ where P for pollution, S for smoking, and C for having cancer
- The corresponding domains are $Domain(P) = \{low, high\},$ $Domain(S) = \{T, F\}, Doman(C) = \{T, F\}$
- All possible worlds are

$\langle P, S, C \rangle$
$\langle low, T, T \rangle$
$\langle low, F, T \rangle$
$\langle \mathit{high}, T, T \rangle$
$\langle \mathit{high}, F, T \rangle$
$\langle low, T, F \rangle$
$\langle low, F, F \rangle$
$\langle \mathit{high}, T, F \rangle$
$\langle \mathit{high}, F, F \rangle$

Examples II

• Event P = low corresponds to

$$\{ \langle P = low, S = T, C = T \rangle, \langle P = low, S = F, C = T \rangle, \\ \langle P = low, S = T, C = F \rangle, \langle P = low, S = F, C = F \rangle \}$$

• Event S = T corresponds to

$$\{\langle P = low, S = T, C = T \rangle, \langle P = high, S = T, C = T \rangle, \\ \langle P = low, S = T, C = F \rangle, \langle P = high, S = T, C = F \rangle\}$$

• Event P = low, S = T corresponds to

$$\{\langle P = low, S = T, C = T \rangle, \langle P = low, S = T, C = F \rangle\}$$

Multivariate

- A vector of variables $\mathbf{X} = \langle X_1, \dots, X_k \rangle$ where $X_1, \dots, X_k \in \mathcal{V}$
- A vector of values $\mathbf{x} = \langle x_1, \dots, x_k \rangle$ where $x_i \in Domain(X_k)$ $(1 \le i \le k)$
- Multivariate notion of an event: $\mathbf{X} = \mathbf{x}$ means

$$X_1 = x_1 \wedge X_2 = x_2 \wedge \ldots \wedge X_k = x_k$$

which is usually abbreviated by \mathbf{x} if the variables \mathbf{X} is clear in the context

- P(X) corresponds to a table of probabilities with each assignment x to X having an entry in the table
- P(X, Y) corresponds to a table of probabilities with each assignment $\langle x, y \rangle$ to $\langle X, Y \rangle$ having an entry in the table

Multivariate version of conditional probability

$$P(\mathbf{X}|\mathbf{Y}) = \frac{P(\mathbf{X},\mathbf{Y})}{P(\mathbf{Y})}$$

means for every assignment $\langle \mathbf{x}, \mathbf{y} \rangle$ to $\langle \mathbf{X}, \mathbf{Y} \rangle$, we have

$$P(\mathbf{x}|\mathbf{y}) = \frac{P(\mathbf{x},\mathbf{y})}{P(\mathbf{y})}$$

Multivariate version of conditional independence

$$\mathbf{X} \perp \!\!\! \perp \mathbf{Y}$$

means

$$P(X|Y,Z) = P(X|Z)$$

means for every assignment $\langle \mathbf{x},\mathbf{y},\mathbf{z}\rangle$ to $\langle \mathbf{X},\mathbf{Y},\mathbf{Z}\rangle$, we have

$$P(\mathbf{x}|\mathbf{y},\mathbf{z}) = P(\mathbf{x}|\mathbf{z})$$

Multivariate version of Bayes' Rule

Bayes rule:

$$P(\mathbf{H}|\mathbf{E}) = \frac{P(\mathbf{E}|\mathbf{H}) \cdot P(\mathbf{H})}{P(\mathbf{E})}$$

For every assignment $\langle \mathbf{h}, \mathbf{e} \rangle$ to $\langle \mathbf{H}, \mathbf{E} \rangle$, we have

- If e is the only known evidence in the context
 - ► Read the likelihood of **e** given **h** simply as likelihood of **h**:

$$\lambda(\mathbf{h}) = P(\mathbf{e}|\mathbf{h})$$

Read the belief of h given e simply as belief:

$$Bel(\mathbf{h}) = Bel(\mathbf{h}|\mathbf{e}) = P(\mathbf{h}|\mathbf{e})$$

Bayes' rule can then be read as

$$Posterior = \frac{Likelihood \times Prior}{Prob \ of \ evidence}$$

Marginalization

$$P(\boldsymbol{\mathsf{X}} = \boldsymbol{\mathsf{x}}) = \boldsymbol{\Sigma}_{\boldsymbol{\mathsf{y}} \in \textit{Domain}(\boldsymbol{\mathsf{Y}})} P(\boldsymbol{\mathsf{X}} = \boldsymbol{\mathsf{x}}, \boldsymbol{\mathsf{Y}})$$

Example

Р	S	P(P,S)	
Н	Т	0.03	
Н	F	0.07	
L	Т	0.27	
L	F	0.63	

$$P(P = low)$$

$$= P(P = low, S = T)$$

$$+P(P = low, S = F)$$

$$= 0.9$$

Multivariate version of chain rule

Each assignment $\langle \textbf{x}_1, \dots, \textbf{x}_{\textbf{n}} \rangle$ to $\langle \textbf{X}_1, \dots, \textbf{X}_{\textbf{n}} \rangle$ satisfies

$$\begin{split} P(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n) &= \\ P(\mathbf{X}_1) \\ &\times P(\mathbf{X}_2 | \mathbf{X}_1) \\ &\times P(\mathbf{X}_3 | \mathbf{X}_1, \mathbf{X}_2) \\ &\times \dots \times P(\mathbf{X}_n | \mathbf{X}_1, \dots, \mathbf{X}_{n-1}) \\ &= & \Pi_{i=1,\dots,n} P(\mathbf{X}_i | \mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{i-1}) \end{split}$$

Example

Pollution-Smoking-Cancer

$$P(P, S, C) = P(P) \times P(S|P) \times P(C|P, S)$$

Outline

Bayesian Networks

Bayesian networks

- A Bayesian Network is a directed acyclic graph (DAG)
 - Random variables makes up the nodes
 - Directed links or arrows connects pairs of nodes representing the dependence between variables.
 - ▶ Each node has a conditional probability table that quantifies the effects the parents have on the node.
- Gives a concise specification of the joint probability distribution.

Structure terminology and layout

- Family metaphor: Parent ⇒ Child
 Ancestor ⇒ . . . ⇒ Descendant
- Tree analogy:
 - root node: no parentsleaf node: no children
 - ▶ intermediate node: non-leaf, non-root
- Layout convention: root notes at top, leaf nodes at bottom, arcs point down the page.

Local semantics

Local semantics: each node is conditionally independent of its nondescendants given its parents.

Markov blanket

Each node is conditionally independent of all others given its *Markov blanket*: parents + children + children's parents

Conditional probability tables

- One conditional probability table (CPT) for each node.
- Each row contains the conditional probability of every node value for a combination of its parents' values nodes.
- Each row sums to 1.
- A table for a Boolean var with n Boolean parents contain 2^{n+1} probabilities.
- A node with no parents has one row (the prior probabilities)

Bayesian network: A compact representation of joint probabilities

 Bayesian Network implies that the probability of a node is only conditional dependence of its parents

$$P(X_i|X_1,...,X_{i-1}) = P(X_i|Parents(X_i))$$

$$P(X_1,...,X_n) = \Pi_{i=1,...n}P(X_i|Parents(X_i))$$

- Bayesian network regulates an ordering of variables
 - $\qquad \qquad \langle X_1, X_2, \dots, X_N \rangle$
 - ▶ $Parents(X_i) \subseteq \{X_1, \dots, X_{i-1}\}$
- Factoraization of joint probability with Bayesian network

$$P(X_1,...,X_n) = P(X_1) \times ... \times P(X_n|X_1,...,X_{n-1})$$

= $\Pi_{i=1,...n}P(X_i|Parents(X_i))$

Example

Example

$$P(S = F, P = low, C = T, D = T, X = pos)$$

$$= P(S = F)$$

$$\times P(P = low|S = F)$$

$$\times P(C = T|P = low, S = F)$$

$$\times P(D = T|C = T, P = low, S = F)$$

$$\times P(X = pos|D = T, C = T, P = low, S = F)$$

$$= P(S = F)$$

$$\times P(P = low)$$

$$\times P(C = T|P = low, S = F)$$

$$\times P(D = T|C = T)$$

$$\times P(X = pos|C = T)$$

Different node ordering different compactness

- Variable order affect compactness
- Alternative structures using different orderings (a) $\langle D, X, CP, S \rangle$, (b) $\langle D, X, P, S, C \rangle$

- ▶ These BNs still represent the same joint distribution.
- Structure (b) requires many probabilities to compute the full joint distribution!

Pearl's network construction algorithm

- **Q** Choose the set of relevant variables $\{X_i\}$ that describe the domain.
- ② Choose an ordering for the variables, (X_1, \ldots, X_n) .
- While there are variables left:
 - **1** Add the next variable X_i to the network.
 - **2** Add arcs to the X_i nodes from some minimal set of nodes already in the net, $Parents(X_i)$, such that the following conditional independence property is satisfied:

$$P(X_i|X_1',\ldots,X_m') = P(X_i|Parents(X_i))$$

where X'_1, \ldots, X'_m are all the variables preceding X_i , including $Parents(X_i)$.

3 Define the CPT for X_i

References I