

Dezentrale Systeme und Netzdienste Institut für Telematik

Lehrstuhl

Prof. Dr. Hannes Hartenstein

Fakultät für Informatik

Diplomarbeit 2014

Analyse internationaler Nachrichtenflüsse im Twitter-Netzwerk

Peter Michael Bolch

Mat.Nr.: 1345211

Referent:

Betreuer: Matthias Keller

Ich erkläre hiermit, dass ich die vorliege anderen als die angegebenen Quellen ur			nd keine
Karlsruhe, 2014		Peter Michael	Bolch

Inhaltsverzeichnis

1	Einl	eitung		1
	1.1	Motiv	ation und Hintergründe	1
	1.2	Proble	embeschreibung	3
	1.3	Frages	stellungen und Anforderungen	4
		1.3.1	Anforderungen	4
	1.4	$\operatorname{Glied}_{\epsilon}$	erung der Arbeit	5
2	Gru	ndlage	n	7
	2.1	Geogr	afische Grundlagen und Begriffe	8
	2.2	Twitte	er	10
		2.2.1	Geschichtliches	10
		2.2.2	Was ist Twitter?	11
		2.2.3	Funktionen von Twitter	12
		2.2.4	Daten einer Twitter-Nachricht	15
		2.2.5	Geoinformationen in Twitter Daten	15
3	Star	nd der	Technik	18
	3.1	Kateg	orisierung bestehender Ansätze	18
		3.1.1	$\mathrm{ttt}{<}\mathrm{sss}$	22
		3.1.2	Probleme früherer Ansätze	24
4	Lösı	ungsan	satz	25
	4.1	Verfah	nen zur Georeferenzierung von Twitter-Nutzern	25
		4.1.1	Informationen und benötigte Daten	25
		4.1.2	Verfahrensablauf	25
	4.2	Analy	se der Tweet Daten	25
		4.2.1	Detailanalyse Standort und Zeitzone	25

	4.3	4.3 Indikatoren zur Ortsbestimmung		
		4.3.1	unmittelbar geografische Indikatoren	26
		4.3.2	mittelbar geografische Indikatoren	26
		4.3.3	Vorverarbeitung der Indikatoren (Präprozessor-Konzept)	26
		4.3.4	Encoding	26
	4.4	Geolo	cation Mapping	27
		4.4.1	nearest neighbour mapping	27
	4.5	Verkn	üpfung von Indikatoren und geografischen Lokationen zur wieder-	
		gewin	nung des erlernten Wissens	28
		4.5.1	Generierung eines Wissendatensatzes	28
		4.5.2	Verknüpfung mit Geodaten	28
		4.5.3	Auflösen auf Administartionsebenen, Länder	28
	4.6	Lokali	sieren von Tweets ohne konkrete geografische Daten	28
		4.6.1	Ablauf der Lokalisierung	28
		4.6.2	Lokalisierungssicherheit durch Ausnutzung der geografischen Hier-	
			archiebeziehungen	28
		4.6.3	Geografische Grundbegriffe und Geografiedaten	28
		4.6.4	???	29
5	lmp	lement	ierung	30
	5.1	Komp	onenten der Referenzimplementierung	30
		5.1.1	Architektur	30
		5.1.2	Präprozessorverarbeitung - Erzeugung der N-Gramme	30
	5.2	Daten	bank	30
	5.3	Geogr	afie Daten	31
	5.4	Data :	${ m Sample}$	31
	5.5	geona	mes.org	31
6	Leis	tungsb	oewertung	32
7	Sch	lussfolg	gerungen, Ausblick und Fragen	33
8	Zus	ammer	nfassung	34

9	ldee	en und Notizen	35
	9.1	Stakeholder analyse	35
	9.2	Fragen an Matthias	35
		9.2.1 Strukturell	35
		9.2.2 Inhalt	35
	9.3	Ideen	35
	9.4	Formulierungen	36
		9.4.1 unmittelbare ungesicherte geografische Indikatoren	36
	9.5	Datenbasis	37
	9.6	Vorteile neuer Ansatz bei Mapping auf Geografische Daten	37
Li	terat	urverzeichnis	38

Todo list

Bild Twitter-Nutzer als sensor		2
Diese Frage ist eventuell zu weit gegriffen. Analyse der Tweet l	0 0	4
Referenz. MAtthias Fragen, Online Lexikon zu Geoinformat	ik Uni Rostock	8
Referenz. MAtthias Fragen, Online Lexikon zu Geoinforma Vorlesungsfolien frei zugänglich Professor Bill	·	8
Bild mit Hierarchie von Deutschland		9
referenz auf Bild	1	0
1 retweet Reichweite 1000 Nutzer	1	4
Diagramm Retweet, Filterfunktion	1	4
siehe Bild ref1	1	4
siehe Bild ref2	1	5
siehe Bild ref3	1	15
siehe Bild ref4	1	15
Diagramm Antwort, Antwort Thread, Bild Antworten Butto	on, Referenzieren . 1	15
siehe Bild	1	15
Nur optional	1	15
Indikatoren aus [SHP ⁺ 13]	2	22
Tabelle einfügen, bereits fertig, nur noch Format anpassen (Lesbarkeit) 2	23

Requirements Tabelle ei	nfügen	23
geografische Entität defi	nieren	24
	ttelbar geografische Indikatoren" "Entwurf" -> "Grund- Gechnik verschieben"	25
Was bringt die Zeitzone	als zusätzlicher Indikator? Verbesserun messen	26
ne gut möglich mit ge	n für das mapping angewandt werden? auf Städteebe- ografischen Distanzen, admin2,amdin1, Land schlecht	27
	genau prüfen, Zusammenhang zu Markov Modell und usstellen	29
Datensätze in Grundlage	en?	30
Eventuell was über die G	eo Indexe in der Datenbank und die Nearest Neighbour	
Berechnungen		30
in Implementierung vers	chieben	31
In Einleitung		35
Korrelation zwischen Lo	kalisierungungssicherheit und tatsächlichem Match be-	
$\operatorname{rechnen} $		36

1 Einleitung

1.1 Motivation und Hintergründe

Über den Mikroblogging-Dienst Twitter lassen sich in Echtzeit 140 Zeichen lange Textnachrichten veröffentlichen. Seit dem Start des Mikroblogging-Dienstes im Jahr 2006 sind die Nutzerzahlen kontinuierlich angestiegen. 2010 konnte Twitter 75 Millionen aktive Nutzer verzeichnen [CCL10]. Im Jahr 2013 wird Twitter täglich von zirka 100 Millionen Menschen weltweit aktiv genutzt. Dies berichtete Twitter 2013 in seinem Prospekt zum Börsengang [ti13]. Zur Gesamtanzahl der Nutzer-Konten gibt es von Twitter keine Informationen. Dies kann mitunter damit begründet werden, dass die Gesamtanzahl der Nutzer-Konten auch inaktive Nutzer einschliesst und somit keine Informationen über die tatsächliche Aktivität im Netzwerk liefert. Auch andere soziale Netzwerke ziehen die aktiven Nutzer als Metrik heran, des weiteren wird die Metrik vom Interactive Advertising Bureau (IAB) empfohlen. [IAB]

Die Twitter-Nutzer verfassen täglich mehr als 500 Millionen Nachrichten, sogenannte Tweets [ti13]. ¹ Die meisten dieser Tweets sind öffentlich zugänglich und können von allen Twitter-Nutzern uneingeschränkt betrachtet werden. Twitter bietet zusätzlich eine sogenannte Streaming-API an, welche es ermöglicht Tweets programmatisch zu empfangen. ² Die Streaming-API stellt ein Echtzeit-Sample der aktuell versendeten Tweets bereit und liefert maximal 1% aller Tweets die zum aktuellen Zeitpunkt verfasst wurden [MPLC13]. Über die sogenannte Filter-API lassen sich die Tweets nach bestimmten Kriterien wie Nutzer-ID, geografischer Region oder Schlüsselwörtern filtern. ³

¹Im Abschnitt Grundlagen wird der Begriff Tweet genauer untersucht, für den Moment sollen darunter die Nachrichten verstanden werden, welche von den Twitter-Nutzern verfasst werden

²API: Application Programming Interface oder auch Programmierschnittstelle

³https://dev.twitter.com/docs/streaming-apis

Ein Tweet besteht aus einer Reihe von Informationen. Neben dem Verfasser, ist der Tweet-Text die wichtigste Information die in einem Tweet enthalten ist. Der Tweet-Text wird vom Nutzer verfasst und abgesendet, er beinhaltet die zentrale Information eines Tweets. In den 140 Zeichen des Tweet-Textes teilen Twitter-Nutzer Informationen unterschiedlicher Ausprägung aus. Unter anderem wird über privates, Sportergebnisse, Großereignisse, persönliche Erfahrungen oder persönliche Meinungen berichtet. Auch Bilder und Web-Links können in einem Tweet-Text enthalten sein.

Mit Hilfe der Streaming-API ist es erstmals möglich, große Mengen nutzergenerierter Informationen unterschiedlichster Ausprägung direkt zu erhalten. Durch die Möglichkeiten die Twitter bietet kann theoretisch jeder Mensch Nachrichten und Informationen über das Twitter-Netzwerk verbreiten und weitergeben. Diese Masse an nutzergenerierten Informationen bietet Wissenschaftlern in verschiedenen Bereichen zahlreiche neue Möglichkeiten.

Sakaki et al interpretieren die Twitter-Kurznachrichten beispielsweise als Sensor-Daten [SOM10]. Der Twitter-Nutzer fungiert dabei als Sensor, der ein beliebiges Ereignis erfährt oder erlebt. Möglicherweise berichtet der Twitter-Nutzer im Tweet-Text über dieses Ereignis. Damit kann der Text als Sensor-Datum interpretiert werden, wenn auch erhebliches Rauschen in der gesamtheit der Tweets zu erwarten ist. Sakaki et al zeigen aber, dass mit diesem Vorgehen, Erdbebenzentren lokalisiert oder die Trajektorie eines Typhoons vorhergesagt werden können.

Bild Twitter-Nutzer als sen

Auch die Sozialwissenschaften und die Meinungsforschung profitieren von dem enormen Informationsfundus der durch Twitter geboten wird. Tumasjan et al. untersuchen in [TSSW11] wie sich die politische Landschaft im Twitter-Netzwerk wiederspiegelt. Die Wissenschaftler haben zur Bundestagswahl 2009 100.000 Tweets analysiert und stellten fest, dass die Erwähnungen von Parteien und Politikern in Twitter, den Wahlausgang sehr genau wiederspiegelten.

Die Kommunikation innerhalb des Twitter-Netzwerks kann aber auch neue Einsichten über die globale Kommunikation oder die Ausbreitung von Nachrichten liefern. Garcia-Gavilanes et al. erforschen in [GGMQ14] die Kommunikation zwischen Ländern. Es wird gezeigt, dass die globale Kommunikation innerhalb des Twitter-Netzwerks nicht nur von der geografischen Distanz abhängig ist, sondern auch von sozialen, ökonomischen und kulturellen Attributen eines Landes.

Selbst die Epidemieforschung kann von den Daten des Twitter-Netzwerks profitieren. So zeigten Szomsor et al. in [SKD11], dass die Vorhersage der Schweingrippe im Jahr 2009 durch die Analyse von Tweets eine Woche früher möglich gewesen wäre als dies mit konventionellen Frühwarnsystemen der Fall war.

Diese Erkenntnisse und Informationen sind allerdings nur gewinnbringend einzusetzen, wenn der Standort des Twitter-Nutzers bekannt ist. Die Information, dass eine Krankheit ausgebrochen ist, ist mit einer exakten Georeferenz wertvoller als ohne diese. Auch die Arbeit von Sakaki et al. ist auf eine Georeferenz angewiesen, wobei die Wissenschaftler angeben, dass die ungefähre Position für ihre Anwendung ausreichend ist. Bei der Untersuchung internationaler Kommunikation wiederum, ist es wichtig zu Wissen in welchem Land ein Tweet verfasst wurde. In diesem Fall kann die Georefrenz eine größere Region umfassen und muss nicht GPS-Genauigkeit aufweisen. Wohingegen eine detaillierte Untersuchung des politischen Klimas innerhalb Deutschlands eine Auflösung auf Bundesländer-Ebene erforderlich machen würde.

Twitter bietet seinen Nutzern die Möglichkeit ihren Standort im Nutzerprofil anzugeben. Hecht et al. stellen in [HHSC11] eine erste ausführliche Analyse der eingegebenen Standort-Daten bereit. Ab 2009 ermöglichte Twitter ein "per-tweet geo-tagging" [CCL10]. Dadurch können Anwendungen, auf Endgeräten mit GPS, Längen- und Breitengrad des aktuellen Standorts als Georeferenz an den Tweet anhängen. Nur ca. 1,7% der Twitter-Kurznachrichten enthalten allerdings eine konkrete Georeferenz in dieser Form. ⁴

1.2 Problembeschreibung

Um gewinnbringende Informationen aus den Tweets erzeugen zu können, ist es wichtig Tweets eine Georeferenz zuordenen zu können. Die Anzahl der Twitter-Kurznachrichten die mit Hilfe von Längen- und Breitengrad unmittelbar einem geografischen Ort zugeordnet werden können ist sehr gering.

Es ist also wichtig ein Verfahren zu finden um Twitter-Nutzer oder Tweets eine Georeferenz zuzuordnen. Mit Hilfe der in einem Tweet vorhandenen Daten sollte eine möglichst

⁴Prüfung durch Datensatz XYZ was sich mit den Ergebnissen von [PCV13] und [SHP⁺13]

genaue Position bestimmt werden. Dies soll auch möglich sein, wenn keine konkrete geografische Angabe in Form von Längen- und Breitengrad vorliegt.

1.3 Fragestellungen und Anforderungen

Die folgenden Fragestellungen sollen beantwortet:

- Q1 Wie kann Twitter-Nutzern eine Georeferenz zugeordnet werden?
- Q2 Kann die Lokalisierung von Twitter-Nutzern durch die Anwendung von probabilistischen Sprach-Modellen auf das Standort-Feld im Vergleich zum nachschlagen in einer Geodatenbank verbessert werden?

Diese Frage ist eventuell zu weit gegriffen. Analyse der Tweet Daten auf Eignung fü Lokalisierung entfällt

1.3.1 Anforderungen

Das erarbeitete verfahren soll folgende anforderungen erfüllen.

- R1 Zuordnung einer Georefrenz zu einem Twitter-Nutzer. (R1)
- R2 Unabhängig von kommerziellen Anbietern geografischer Informationen, oder sonstiger benötigter Daten. (R2)
- R3 Das Ergebniss ist eine Georeferenz welche einer geografischen Hierarcheiebene enstpricht. Folgende Hierarcheiebenen werden angeboten (R3):
 - a) Land oder Staat
 - b) Verwaltungsebene erster Ordnung ⁵
 - c) Verwaltungsebene zweiter Ordnung ⁶
 - d) Stadt
- R4 Es soll möglich sein eine Mindestanforderung für die Konfidenz, mit welcher die Georeferenz bestimmt wurde, anzugeben.
- R5 Verfahren unabhängig von Sprache und Schriftzeichen weltweit einsetzbar.

⁵in D Bundesländer, bspsw. Baden-Württemberg, Bayern usw.

⁶in D Regierungsbezirke bspsw. Regierungsbezirk Stuttgart, Regierungsbezirk Karlsruhe usw.

1.4 Gliederung der Arbeit

Abschnitt 2: Grundlagen

In diesem Abschnitt sollen die Grundlagen für die entwickelte Methode vermittelt werden. Es wird auf den Mikroblogging-Dienst Twitter eingegangen und es werden grundsätzliche Methoden und Verfahren vorgestellt welche zum Verständnis der entwickelten Methode benötigt werden. Ebenso werden häufig genutzte geografische Grundbegriffe vermittelt.

Abschnitt 3: Stand der Technik

Es werden aktuelle Ansätze betrachtet, eingeordnet und in Bezug auf die angegebenen Anforderungen untersucht. Es werden sowohl die Verfahren zur 'Änalyse'ünd Zuordnung als auch die Verfahren zum abbilden der geografischen Einheiten untersucht und eingeordnet.

Abschnitt 4: Lösungsansatz

In diesem Kapitel wird, unter Berücksichtigung der gegebenen Anforderungen, ein Verfahren zur Lösung der Fragestellungen entwickelt. Um einen Überblick zu gewährleisten, wird das Verfahren zunächst allgemein betrachtet, danach wird jeder Verfahrensschritt dargelegt. Es wird gezeigt wie aus Tweet-Daten der Standort eines Twitter-Nutzers bestimmen werden kann. Dabei werden Methoden der Sprachverarbeitung, Statistik und geografische Hierarchien eingesetzt.

Bottom-Up:

- 1. NGramme aus Indikatoren erzeugen
- 2. Geomapping
- 3. Datenstruktur
- 4. Treffer zählen (NGramm + Geoid gleich usw.)

- 5. Geografische Hierarchiebene
- 6. Unsicherheit bei Lokalisierung messen (neuer Daten)
- 7. Justierung der Lokalisierungsunsicherheit auf geografischen Hierarchiebenen

Abschnitt 5: Referenzimplementierung der entwickelten Methode

Es werden ausgewählte Auszüge, Probleme und Fallstricke der Referenzimplementierung erläutert und erklärt.

Abschnitt 6: Leistungsbewertung der entwickelten Methode

In diesem Kapitel werden die Ergebnisse der Refernzimplementierung bewertet und, soweit sinnvoll, gegenüber bestehenden Ansätze einer kritischen Betrachtung unterzogen.

Abschnitt 7: Schlussfolgerungen

Unter besonderer Berücksichtigung der Ergebnisse des letzten Kapitels werden Schlussfolgerungen gezogen. Der Beitrag und nutzen der entwickelten Methode soll kritisch hinterfragt werden.

Abschnitt 8: Zusammenfassung und Ausblick

Zusammenfassung der Arbeit und kritischer Rückblick. Im Ausblick werden mögliche Verbesserungen und Ideen zur Weiterentwicklung gegeben.

2 Grundlagen

In den folgenden Abschnitten werden eine Reihe von Begriffen und Verfahren genutzt, die hier eingeführt werden sollen. Dies ermöglicht dem Leser die Beantwortung der Fragestellungen aus Abschnitt 4 nachzuvollziehen.

Zunächst werden einige geografische Grundbegriffe eingeführt. Danach wird auf Twitter eingegangen, es werden grundsätzliche Funktionen und Begriffe von Twitter eingeführt.

Zum Schluss wird die genutzte Datenbasis und der Einfluss der von Twitter genutzten Sampling-Strategie vorgestellt und erläutert.

2.1 Geografische Grundlagen und Begriffe

In diesem Kapitel sollen geografische Grundbegiffe erläutert werden. Einige geografische Begriffe werden in verschiedenen wissenschaftlichen Bereichen unterschiedlich genutzt und teilweise widersprüchlich definiert. Um Missverständnissen vorzubeugen wird hier definiert was in der vorliegenden Arbeit unter den einzelnen Begriffen zu verstehen ist. Eine Reihe von Begriffen wird selbst definiert um bestimmte Sachverhalte klarer ausdrücken zu können.

Geodätisches Referenzsystem Ein geodätisches Referenzsystem dient als einheitliche Grundlage zur Angabe einer Position auf der Erde. In diesem Referenzsystem werden unter anderem Referenzpunkte und ein geeignetes Koordinatensystem festgelegt.

Referenz.
M Atthias Fragen, Online Lexikon zu Geoinformatik Uni
Rostock

Georeferenz Eine Georeferenz (engl. Spatial Reference) wird auch als Raumbezug bezeichnet. Unter dem Begriff der Georeferenz versteht man die zugeordnete der Lage beziehungsweise Position zu einem Datensatz. Die konkreten Angaben zum Raumbezug und deren Genauigkeit hängen von den Anforderungen ab, die an die Georeferenz gestellt wird. Auch die in Kapitel 1 erwähnten Anwendungen stellen unterschiedliche Anforderungen an die Genauigkeit der Georeferenz. Die Georeferenz lässt sich weiter unterteilen in:

Referenz.
M Atthias Fragen, Online Lexikon zu Geoinformatik Uni
Rostock / Vorlesungsfolien
frei zugänglich
Professor Bill

- Direkte Georeferenz (direkter Raumbezug) Unter direktem Raumbezug versteht man die Angabe einer konkreten Koordinate bezüglich eines geeigneten, unveränderlichen geodätischen Referenzsystems.
- Indirekte Georeferenz (indirekter Raumbezug) Unter indirektem Raumbezug werden alle Angaben verstanden die eine ungenaue Position bezüglich eines beliebigen Referenzysystems bestimmen. Ungenau ist in dem Sinne zu verstehen, dass die Angabe der Position auch eine Fläche beschreiben kann. Zusätzlich muss das gewählte Referenzsystem nicht zwingenderweise unveränderlich sein. Beispiele für die Angabe eines indirekten Raumbezugs wären Länder, Adressen, Postleitzahlen oder auch Telefonvorwahlen. Alle diese Angaben, mit Ausnahme der Adresse, definieren eine geografische Fläche. Diese Fläche ist nicht zwingenderweise klar abzugrenzen.

Georeferenzierung Unter Georeferenzierung versteht man die Zuordnung einer Georeferenz zu einem Datensatz. Also den Vorgang einem Datensatz, zum Beispiel einem Twitter-Nutzer eine Georeferenz zuzuordnen.

Aufrgund der einfacheren Verständlichkeit werden die folgenden zwei Begriffe definiert, welche in der restlichen Arbeit verwendet werden.

Geografische Position Unter geografischer Position wird hier ein konkreter Ort, unter Angabe geografischer Koordinaten verstanden. Eine geografische Position entspricht somit einer direkten Georeferenz (direktem Raumbezug).

Geografische Region Unter einer geografischen Region werden Flächen verstanden welche nicht mit einem Punkt, in Form von Längen- und Breitengrad, beschrieben werden können. Hierbei kann es sich beispielsweise um Bundesländer oder Länder. Somit entspricht der Begriff geografische Region einer indirekten Georeferenz (indirektem Raumbezug).

Geografische Hierarchie In der vorliegenden Arbeit wird eine geografische Hierarchie verwendet um eine Einteilung der Erde in geografische Regionen umzusetzen. Dabei können geografische Regionen wiederum geografische Regionen oder geografische Positionen enthalten, wodurch sich eine hierarchische Gliederung ergibt. Diese Einteilung spiegelt im wesentlichen die Einteilung der Erde in Staaten und deren individuellen Verwaltungseinheiten wieder. Im vorliegenden Fall ist das Staatsgebiet, also die Fläche über die sich der Staat erstreckt, von Interesse. ¹

Im Gegensatz dazu könnte die Erde auch in ein Gitternetz eingeteilt werden. Die einzelnen Zellen würden dann als Referenz für eine geografische Region verwendet werden. Dieses vorgehen wird unter anderem in [SMvZ09] angewendet.

Eine Aufteilung der Erde in geografische Regionen lässt sich auf oberster Ebene mit Hilfe von Ländern und deren Grenzen umsetzen. Daraus resultiert eine Einteilung, welche direkt intuitiv verständlich ist und vielen Anforderungen an geografische Informationen gerecht wird. Die meisten Länder sind in weitere administrative Einheiten aufgeteilt.

Bild mit Hierarchie von Deutschland

¹Die genaue Definition eines Staatsgebietes kann in [JJ21] nachgelesen werden.

Diese geografischen Regionen werden hier als Administartionsebenen bezeichnet. Es wird zwischen Administrationsebenen erster und zweiter Ordnung unterschieden. Des weiteren werden Städte in der untersten Ebene der Hierarchie dargestellt. Ausnahmen sind besipielsweise Stadtstaaten wie der Vatikan-Staat oder das Fürstentum Monaco, welche aufgrund ihrer Größe nicht in Verwaltungsbezirke unterteilt werden und keine Städte. Wenn man als Beispiel Deutschland heranzieht, ergibt sich eine Einteilung wie in Bild dargestellt wird. Die oberste Ebene beschreibt das Land worauf die zweite Ebene die Bundesländer darstellt. Auf der dritten Ebene werden die Regierungsbezirke abgebildet, worauf die Städte in der letzten Ebene folgen. Analog kann die Einteilung für die USA vorgenommen werden woraus sich die Hierarchie Country->State->County->City ergibt.

referenz auf

Bis auf die letzte Ebene wird den Objekten in der Hierarchie eine geografische Region zugeordnet. Lediglich die unterste Ebene, die der Städte, wird durch eine geografische Position genau beschrieben. Die Ausdehnung einer Stadt wird in der gegebenen Hierarchie also nicht berücksichtigt. Jeder Stadt werden als konkrete geografische Koordinate in Form von Längen- und Breitengrad repräsentiert.

2.2 Twitter

In diesem Kapitel werden grundlegende Begriffe rund um das Twitter-Netzwerk erläutert. Weiter werden die Mechanismen in Twitter erläutert und an praktischen Beispielen erklärt. Zum Schluss wird aufgezeigt welche Informationen pro Tweet übermittelt werden und welche Daten zur Lokalisierung verwendet werden können.

2.2.1 Geschichtliches

Twitter wurde 2006 von Jack Dorsey, Biz Stone, Noah Glass und Evan Williams gegründet. Ursprünglich war Twitter zur internen Kommunikation innerhalb der Firma Odeo geplant. Schnell wurde allerdings klar, dass in dem Dienst mehr potenzial steckt und so wurde Twitter öffentlich gemacht. Seitdem erfreut sich der Dienst einer wachsenden Nutzer-Gemeinde. Die Twitter-Gründer haben von Anfang an keine exakten

Nutzer-Zahlen oder die Anzahl der versendeten Twitter-Kurznachrichten bekanntgegeben. Dies geschah einerseits, weil die Gründer davon überzeugt sind, dass anhand der reinen Nutzer-Zahlen und gesendeten Twitter-Kurznachrichten nicht die '"Gesundheit" des Twitter-Netzwerks nachvollzogen werden kann, andererseits werden durch diese Massnahme auch strategische Ziele verfolgt. ² 2013 ging Twitter an die Börse und vermeldete 100 Millionen täglich aktive Nutzer und über 500 Millionen Twitter-Kurznachrichten, die täglich über den Dienst versendet werden.

2.2.2 Was ist Twitter?

Twitter wird als Kurznachrichten-Dienst, Mikroblogging-Dienst oder auch als soziales-Netzwerk bezeichnet. Twitter Geschäftsführer Kevin Thau hat 2010 auf dem Nokia-World Kongress öffentlich bestritten, dass Twitter ein Soziales-Netzwerk ist. Laut Thau handelt es sich um ein Nachrichten-, Inhalts- und Informations-Netzwerk. Er begründete dies damit, dass Twitter die Art und Weise wie Nachrichten verteilt werden geändert hat und praktisch jeder zum Journalisten werden kann. Als Beispiel nennt er die Landung des Fluges 1549 auf dem Hudson River. Die Augenzeugen hätten damals keine Mails versendet um die Nachricht zu verbreiten, sondern die Nachricht via Twitter weitergegeben. Es lassen sich eine Reihe weitere Beispiele derselben Art finden. In [POM⁺13] wird ein Vergleich zwischen sogenannten Newswire anbietern und Twitter gezogen. ³ Es stellte sich heraus, dass über nahezu alle Nachrichten, welche in den Newswires verbreitet wurden auch im Twitter-Netzwerk berichtet wird. Nachrichten zu bestimmten, vermutlich sehr speziellen Themen oder Auslandsnachrichten wurden ausschliesslich in Twitter gefunden. Diese Erkenntnisse decken sich mit der Einschätzung von Kevin Thau. In [KLPM10] wird die Einschätzung, bei Twitter handele es sich nicht um ein soziales Netzwerk, wissenschaftlich bestätigt. Kwak et al überprüfen die in [NP03] beschriebenen Eigenschaften sozialer Netzwerke und kommen zu dem Schluss, dass Twitter diese Eigenschaften nicht erfüllt.

Die Bezeichnung Kurznachrichten-Dienst ist irreführend, da dieser mit sms (small messeneger service) in Verbindung gebracht werden kann. Tatsächlich galt der sms in der

diesem Konzept am nächsten.

 ²http://www.pbs.org/mediashift/2007/05/twitter-founders-thrive-on-micro-blogging-constraints137
 ³Newswire stellt eine Art Nachrichtenaggregator dar, über welchen Nachrichten aus verscheidenen Quellen aggregiert und weitergegeben werden. In deutschland kommt die Deutsche Presse agentur

Anfangsphase von Twitter als Vorbild für den Dienst. In Twitter werden Nachrichten allerdings standardmäßig allen Benutzern zur Verfügung gestellt und können eingesehen werden. Des weiteren wird eine Liste der Nachrichten, welche von einem Nutzer verfasst wurden, als Liste in umgekehrter chronologischer Reihenfolge auf dessen Profil dargestellt. Damit ähnelt das Twitter-Profil einem Blog mit Einträgen deren Länge 140 Zeichen nicht überschreiten darf. Die Darstellung als Liste, und die Funktion einen Tweet standardmäßig allen Nutzern freizugeben unterscheidet sich grundlegend von der Funktion des sms, bei dem eine Nachricht direkt an einen Empfänger gesendet wird und nicht öffentlich ist. Im sms steht die Konversation zweier Nutzer im Vordergrund, wohingegen Nachrichten im Twitter-Netzwerk einen Brodcast an alle Nutzer darstellen.

Die 140 Zeichen langen Nachrichten in Twitter werden als Tweets bezeichnet. Tweet bedeutet übersetzt Zwitschern, womit die Redenwendung '"Die Spatzen zwitschern es von den Dächern" auch im Twitter-Netzwerk zu einer passenden Redenwendung wird. In der vorliegenden Arbeit wird Twitter deshalb als Mikroblogging-Dienst bezeichnet.

2.2.3 Funktionen von Twitter

Der Mikroblogging-Dienst Twitter bietet neben dem Profil, auf dem die Tweets des Nutzers angezeigt werden, noch eine Reihe weiterer Funktionen. Im folgenden soll das Twitter-Profil und die Timeline kurz erläutert werden. Eine der zentralen Funktionen von Twitter ist das sogennante Folgen, womit sich Nutzer win Netzwerk aufbauen können aus dem sie Twitter Nachrichten erhalten. Danach werden Funktionen wie das weitergeben eines Tweets, Favorisieren und Antworten erklärt. Zum Schluss wird auf den gesendeten Tweet Inhalt eingenagen und der Netzwerk-Charakter von Twitter untersucht.

Das Nutzer-Profil und die Nutzer-Timeline Das Nutzer-Profil kann über die Url http://twitter.com/BENUTZERNAME abgerufen werden und bietet neben der Nutzer-Timeline, in der die Tweets des Nutzers angezeigt werden, eine Reihe an weiteren Informationen. In Abbildung 2.1 ist in der mitte die Timeline des Benutzers dargestellt in der dei Tweets zu sehen sind. Unter dem Profilbild links sind Informationen des Nutzers aufgelistet. Diese Informationen kann der Nutzer selbst einstellen und entscheiden welche er angeben möchte.

Abbildung 2.1: Die Twitter-Timeline auf einem Twitter Profil. 1: Nutzername und Informationen über den Nutzer. 2: Profilbild 3: Allgemeine Informationen über den Benutzer und dessen Netzwerk 4: Nutzer-Timeline: Tweets des Nutzer in umgekehrter chronologischer Reihenfolge 5: Button zum Folgen

Folgen (Following/Follower/Tweeps) Diese Funktion erlaubt es Tweets eines bestimmten Nutzers zu abonnieren. Im Twitter-Umfeld spricht man von '"following" oder '"folgen", wenn man die Tweets eines bestimmten Nutzers abonniert. Hat man Tweets eines bestimmten Nutzers abonniert so wird man als dessen '"Follower" bezeichnet. Das englische Wort '"Follower" hat sich im Twitter-Umfeld und darüber hinaus eingebürgert und wird selten übersetzt. Auch auf der Twitter Website wird '"Follower" nicht ins deutsche übersetzt. In der vorliegenden Arbeit wird deshalb auch auf eine Übersetzung verzichtet.

In Abbildung 2.1 an Position 3 wird unter '"Folge ich" die Anzahl der Twitter-Nutzer angezeigt denen der Beispielnutzer folgt. Neben dem Feld '"Folge ich" wird unter '"Follower" angezeigt wieviele Nutzer dem Beispielnutzer folgen.

Netzwerk Charakter Netzwerke in Twitter entstehen ausschliesslich durch Follower-Beziehungen.

Persönliche Timeline Jeder Twitter-Nutzer hat seine persönliche Timeline, auf dieser werden die Tweets derjenigen Nutzer angezeigt, denen er folgt. Die Timeline kann als Aggregation von Tweets betrachtet werden. Diese Timeline ist die zentrale Stelle, an der die Nutzer Tweets anderer Nutzer empfangen und lesen. Auch hier werden die Tweets in umgekehrter chronologischer Reihenfolge angezeigt.

Weitergeben eines Tweets (Retweet) Unter einem Retweet versteht man die Weitergabe eines Tweets den man nicht selbst verfasst hat an die eigenen Follower. Genauer gesagt wird der Tweet übernommen und ein Hinweis hinzugefügt, dass es sich um einen sogenannten Retweet handelt, und nicht einen vom Nutzer selbst verfassten Tweet. Diese Funktion wird hauptsächlich genutzt um Nachrichten schnell zu verbreiten ohne diese neu eingeben zu müssen. Die Weitergabe an die eigenen Follower impliziert einen gewissen Grad an Kontrolle und Filterfunktion. Der weitergebende Nutzer kontrolliert und filtert die Nachrichten die er erhält und gibt diejenigen weiter, denen er eine Gewisse Relevanz beimisst, oder von denen er erwartet, dass sie seine Follower interessieren. Mit dieser Funktion können einzelne Nutzer eine Art Filterfunktion übernehmen, welche früher Journalisten vorbehalten war. Es darf jedoch nicht vergessen werden, dass der Nutzer nur im Rahmen seiner eigenen Möglichkeiten einen Tweet verifizieren kann und Nachrichten in Twitter keinesfalls gesicherte Fakten darstellen. Auch können Nutzer durch diese Funktion zu Tweet-Aggregatoren werden, welche Tweets von mehreren Nutzern erhalten oder sammeln, aber nur relevante oder themenspezifische Tweets weitergeben.

1 retweet Reichweite 1000 Nutzer

Diagramm Retweet, Filterfunktion

Antworten und direktes ansprechen eines Nutzers Twitter bietet die Möglichkeit einzelne Nutzer direkt anzusprechen. Mit Hilfe des @-Symbols kann ein Nutzer referenziert werden. Der referenzierte Nutzer, besipielsweise @alfred, wird dann benachrichtigt, dass er in einem Tweet erwähnt wurde. Der erwähnte Nutzer muss dabei nicht Follower des Verfassers sein. Eine weitere Funktion im Twitter-Netzwerk ist das Antworten auf einen Tweet. Über eine Schaltfläche wird es ermöglicht auf einen Tweet zu Antworten.

siehe Bild refl

Das @-Symbol und der Nutzername des Verfassers werden automatisch eingetragen, womit eine Benachrichtigung an den Verfasser des Ursprungstweets erfolgt. Es ist möglich, das auf einen Antwort-Tweet wiederum geantwortet wird, wodurch ein sogenannter Thread oder Konversation entsteht. Auch ist es möglich, dass an einer solchen Konversation mehrere Twitter-Nutzer beteiligt sind. Dies ist dann der Fall, wenn im ursprünglichen Tweet, auf weitere User referenziert wurde. Aber auch wenn ein Nutzer auf eine bestehende Konversation antwortet, werden alle beteiligtien Nutzer referenziert.

Favorisieren Mit dieser Funktion lässt sich ausdrücken, dass man einen Tweet interessant oder gut findet. Auch Zustimmung wird durch favorisieren ausgedrückt. Einen Tweet zu favorisieren kann aber auch bedeuten 'ich habe deine Reaktion registriert", oft um einen Antwort-Thread nicht abrupt abzubrechen sondern eine zustimmende Rückmeldung zu geben ohne extra einen Tweet zu verfassen.

2.2.4 Daten einer Twitter-Nachricht

Neben den direkt sichtbaren Informationen enthält ein Tweet eine Reihe weiterer Daten. Betrachtet man einen einzelnen Tweet, beispielsweise auf twitter.com, wird der Tweet-Text, der Verfasser und die Zeit, wann der Tweet verfasst wurde, mitgeteilt. Die Gesamtheit der Daten die in einem Tweet enthalten sind werden hier allgemein als Tweet-Daten bezeichnet.

Daten Neben den sichtbaren Daten, welche in der Timeline angezeigt werden, enthält ein Tweet eine Reihe weiterer interessanter Informationen.

2.2.5 Geoinformationen in Twitter Daten

Welche Tweet-Daten können zur Georeferenzierung herangezogen werden

Nur optional

Um diese Frage zu beantworten, müssen die Tweet-Daten eingehend untersucht werden. Dabei spielt nicht nur die reine Information die den Daten entnommen werden kann Diagramm Antwort, Antwort

siehe Bild ref4

siehe Bild

Abbildung 2.2: Was ist zu sehen?

eine Rolle, sondern auch wie die Daten generietr oder eingegeben wurden. Beispielsweise kann bei einem Tweet, dem ein Längen- und Breitengrad mit einer Genauigkeit von 14 Nachkommastellen zugeordnet ist, davon ausgegangen werden, dass die geografische Position der tatsächlichen geografischen Position, von welcher der Tweet abgesetzt wurde, entspricht. Es liegt hier die Vermutung nahe, dass diese Werte durch ein mobiles GPS ⁴ erfasst worden sind. Anders verhält sich dies beispielsweise beim Tweet-Text, eine Erwähnung der Stadt New York, muss nicht bedeuten, dass der Tweet aus dieser Stadt stammt. Es impliziert nicht einmal, dass der Verfasser jemals in dieser Stadt war. Im folgenden werden einige Datenfelder, welche mit jedem Tweet versandt werden, untersucht. Dabei wird die Eignung dieser Daten als geografischer Indikatoren bewertet. Waährenddessen werden anhand geeigneter Beispiele die Bergiffe gesicherter -, ungesicherter -, mittelbarer - und unmittelbarer geografischer Indikator eingeführt.

⁴Global Positioning System

gesicherte geografische Indikatoren in Tweet-Daten ungesicherte geografische Indikatoren in Tweet-Daten mittelbare geografische Indikatoren in Tweet-Daten unmittelbare geografische Indikatoren in Tweet-Daten

3 Stand der Technik

Die Georeferenzierung von Tweets oder Twitter-Nutzern ist ein Feld an dem nach wie vor aktiv geforscht wird. Nicht zuletzt trägt auch die große Verfügbarkeit an Twitter-Daten zu dem Umstand bei, dass Twitter in den letzten Jahren Forschungsgegenstand zahlreicher Publikationen war.

In diesem Abschnitt sollen bestehende Ansätze zur Georeferenzierung im Twitter-Umfeld untersucht werden. Es werden Kriterien zur Einordnung der bestehenden Ansätze erarbeitet und erläutert. Die Arbeiten werden mit Hilfe der Kriterien schematisch eingeordnet um einen Überblick zu erhalten. Zum Schluss wird untersucht ob die Arbeiten die bereits formulierten Anforderungen aus 1.3.1 erfüllen, und wie sich die vorliegende Arbeit von den bestehenden Ansätzen abgrenzt.

3.1 Kategorisierung bestehender Ansätze

In früheren Arbeiten wurde bereits versucht, eine Einordnung der bestehenden Verfahren vorzunehmen. Es ist interessant die Kategoriesierungsansätze und die verwandten Arbeiten einiger Autoren zu studieren. Es lässt sich dadurch die Entwicklung zum Thema Lokalisierung im Twitter-Umfeld beobachten. Einige Kategorisierungsansätze werden im folgenden aufgelistet und erläutert.

Sowohl in [HHSC11] als in [CCL10] beschränken sich die verwandten Arbeiten nicht auf die Lokalisierung im Twitter-Umfeld, es werden Arbeiten zur Lokalisierung von Web-Inhalten im Allgemeinen aufgelistet. Dies lässt darauf schliessen, dass sich vor den Jahren 2010/2011 nur wenige Arbeiten mit der Lokalisierung im Twitter-Umfeld beschäftigt haben.

Kategorisierung über die untersuchte Ressource

[HHSC11] nimmt deshalb eine Kategorisierung anhand der untersuchten Ressource vor. Es wird unterschieden zwischen Forschungen zur "Lokalisierung von Microblogging-Seiten und deren Inhalten" und der "Lokalisierung von Nutzern, welche Inhalte zu Web 2.0 Seiten beisteuern". Zusätzlich wird in dieser Arbeit das "Verhalten der Nutzer im Umgang mit der Veröffentlichung ihres aktuellen Standorts" und die "Vorhersage privater Informationen" betrachtet. Darauf soll hier allerdings nicht weiter eingegangen werden.

Kategorisierung über die verwendete Methode

[CCL10] klassifiziert die vorgestellten Arbeiten anhand der verwendeteten Methodik. Es wird auf Arbeiten zur Lokalisierung von Webseiten, Web-Logs, Suchanfragen und Web-Nutzern verwiesen. Diese werden in die folgenden drei Kategorien eingeteilt.

"Inhaltsanalyse mit Begriffen in einem geografischen Verzeichnis (Content analysis with terms in a gazetteer)" Es wird darunter eine einfache Datenbanksuche verstanden. Es werden einzelne Wörter in einer Datenbank nachgeschlagen um diese einem konkreten geografischen Ort zuweisen zu können. Dabei kann sowohl lokal auf eine Geo-Datenbank als auch auf Internet Ressourcen zurückgegriffen werden. In der Regel durchläuft der untersuchte Text eine manuelle oder automatische Vorverarbeitung um potenziell geografische Begriffe, sogenannte Toponyme, herauszufiltern.

"Inhaltsanalyse mit probabilistischen Sprachmodellen (Content analysis with probabilistic language models)" Dabei werden Texte oder Textteile einer Twitter-Kurznachricht zu vordefinierten geografischen Regionen wie Ländern oder Städten zugeordnet. Nach einer Vorverarbeitung des Textes erfolgt eine statistische Auswertung, um danach den Text oder einzelne Textteile, wie beispielsweise Wörter, einer geografischen Region zuzuordnen. Eine unbekannter Text kann dann mit Hilfe der zuvor gelernten Zuordnung einer geografischen Region zugeordnet werden.

"Schlussfolgerungen durch soziale Verbindungen (Inference via social relations)" es werden soziale Verbindungen, die in Netzwerken abgebildet sind, herangezogen um Rückschlüsse auf den geografischen Ort des untersuchten Inhaltes oder einer Person ziehen zu können.

Preidhorsky et al. schlagen in [PCV13] eine weitere Einteilung anhand der Methodik vor. Allerdings werden hier ausschließlich Arbeiten im Twitter-Umfeld betrachtet.

"Geocoding" Im wesentlichen entspricht dies der "Inhaltsanalyse mit Begriffen in einem geografischen Verzeichnis" aus [CCL10]. "Geocoding" wird als Begriff in vielen Fachrichtungen unterschiedlich definiert, was zu Missverständnissen führen kann. In [Gol08] wird genauer auf den Begriff des Geocoding und die Poblematik eingegangen und eine Definition des Begriffs vorgeschlagen. Im vorliegenden Kontext ist es präziser und weniger missverständlich die Methodik als "Inhaltsanalyse mit Begriffen in einem geografischen Verzeichnis" zu bezeichnen, anstatt den Begriff "Geocoding" einzusetzen.

"Geografische Themenmodelle (geografic Topic Modeling)" wird definiert als die Verbindung von "Themenmodellierung" und "Standorterkennung (Location Awareness)". Durch klassisches "Themenmodellierung" lässt sich aus aus Texten eine Menge von Themen extrahieren. Durch eine Lernphase werden Wörterbücher zu den Themen erstellt. Mit Hilfe dieser Themen-Wörterbücher kann später das Thema eines Textes bestimmt werden. [BNJ12] Unter "Standorterkennung" wird hier verstanden, dass nicht nur das Thema sondern auch eine bestimmte Region extrahiert werden kann. Dies kann durch geografischen Koordinaten in Twitter-Kurznachrichten realisiert werden. Im Unterschied zur Kategorie "Inhaltsanalyse mit probabilsitischen Sprachmodellen" aus [CCL10] wird hier jedoch keine vorgegebene geografische Region gefordert. Vielmehr ergeben sich die geografischen Regionen aus den Themenmodellen und den zugehörigen geografischen Koordinaten. Es wird damit eine kontinuierliche Region beschrieben, welche nicht zwangsweise durch Stadt-, Staaten- oder Ländergrenzen beschränkt ist.

"Statistische Klassifizierung (Statistical classifiers)" Diese Kategorie entspricht der "Inhaltsanalyse mit probabilsitischen Sprachmodellen" wobei in [CCL10] nur eine Arbeit in dieser Kategorie betrachtet wird. [PCV13] listet mehrere Arbeiten auf, die sich in diese Kategorie einordnen lassen.

"Informationen aus sozialen Verbindungen (Social Network Information)" analog zu "Schlussfolgerungen durch soziale Verbindungen" aus [CCL10] werden soziale Verbindungen herangezogen um den Standort zu bestimmen.

Priedhorsky et al. wählen eine ähnliche Einteilung wie vormals Cheng et al. in 2010, die verwandten Arbeiten stammen allerdings aus dem Twitter-Umfeld. Dabei ist zu bemerken, dass sich die verwendeten Methoden zur Lokalisierung im Twitter-Umfeld nicht wesentlich von denen in anderen Bereichen unterscheiden. Um die Arbeiten im Twitter-Umfeld sinnvoll voneinander abgrenzen zu können muss die Kategorisierung mehr Dimensionen umfassen. Es müssen mehr Kriterien zur Kategorisierung herangezogen werden als die reine Methodik.

Mahmud et al. betrachten in [MND12] hauptsächlich Arbeiten im Twitter-Umfeld. Diese werden in die folgenden Kategorien unterteilt.

- 1. "Inhaltsbasierte Standortschätzung von Tweets (Content-based Location Estimation from Tweets)"
- 2. "Inhaltsbasierte Standortextrahierung von Tweets (Conetnt-based Location Extraction from Tweets"
- 3. "Standortschätzung ohne den Tweet Inhalt zu nutzen (Location Estimation without using Tweets Content)"

"Inhaltsbasierte Standort-Schätzung von Tweets (Content-based Location Estimation from Tweets)" hier wird die geografische Position durch eine Inhaltsanalyse der Twitter-Kurznachricht geschätzt. Die Schätzung erfolgt dabei durch probabilistische Modelle. Diese Kategorie vereint damit "Geografische Themenmodelle", "Statistische Klassifizierung" aus [PCV13] mit "Inhaltsanalyse mit probabilistischen Sprachmodellen" aus [CCL10] und ist damit als genereller anzusehen, als die vorgenannten Kategorien.

"Inhaltsbasierte Standort-Extrahierung von Tweets (Content-based Location Extraction from Tweets" die verwandten Arbeiten in dieser Kategorie versuchen direkte Hinweise auf einen geografischen Ort aus einer Twitter-Kurznachricht zu extrahieren. Diese Kategorie ähnelt dem "Geocoding" beziehungsweise der "Inhaltsanalyse mit Begriffen in einem geografischen Verzeichnis".

"Standortschätzung ohne den Tweet Inhalt zu nutzen (Location Estimation without using Tweets Content)" hierunter versteht der Autor alle Informationen die nicht unmittelbar im Tweet-Text enthalten sind. Dazu zählen Informationen aus dem Nutzerprofil oder Informationen über die sozialen Verbindungen des Nutzers.

[MND12] nutzt ebenfalls die Methodik um die Arbeiten zu kategorisieren. Allerdings wird hier eine generellere Einteilung vorgenommen. So wird unterteilt, ob der Standort geschätzt oder extrahiert wurde. Mahmud et al. bringen aber auch eine weitere Dimension ein. Es wird hier zusätzlich unterschieden ob das angewendete Verfahren den Tweet-Inhalt nutzt oder andere Informationen.

Dies ist sinnvoll, denn die genannten Methoden lassen sich sowohl auf den Tweet-Inhalt als auch auf andere Informationen, beispielsweise aus dem Nutzerprofil, anwenden.

Frühere Arbeiten verweisen auf ein weiteres Spektrum an Arbeiten aus anderen Bereichen, wie Lokalisierung von Flickr Bildern oder Web-Log Einträgen. Arbeiten zur Lokalisierung im Twitter-Umfeld werden hier seltener erwähnt. In späteren Arbeiten, wie in [PCV13], wird hingegen fast ausschließlich auf Arbeiten aus dem Twitter-Umfeld verwiesen. Dies spiegelt die steigende Anzahl der Arbeiten zur Lokalisierung im Twitter-Umfeld wieder. Betrachtet man die Ausarbeitungen zur Lokalisierung im Twitter-Umfeld genauer, wird allerdings schnell klar, dass die Kategorisierung der Arbeiten anhand der verwendeten Methodik, dem Umfang nicht mehr gerecht wird.

Bei genauerer Betrachtung der Arbeiten stellt man allerdings fest, dass diese Klassifizierungen dem Umfang der Arbeiten nicht gerecht wird. [HHSC11] verweist auf ähnliche Ansätze mit einem anderen Untersuchungsgegenstand. [CCL10] kategorisiert die Arbeiten anhand der Methodik, und verweist ebenso auf andere Untersuchungsgegenstände. [PCV13] verweist ausschliesslich auf Arbeiten im Twitter-Umfeld und kategorisiert diese anhand der verwendeten Methodik. Die Methodeneinteilung ist aufgrund der Begriffswahl missverständlich und kann somit zu Problemen führen.

3.1.1 ttt<sss

In [SHP⁺13] werden die folgenden Dimensionen zur Abgrenzung herangezogen.

Indikatoren au ISHP⁺131 Allerdings lassen sich noch andere Dimensionen zur Klassifizierung der Arbeiten heranziehen. Wird besipielsweise der Text einer Twitter-Kurznachricht durch eine einfache Geokodierung untersucht wird dies andere Ergebnisse liefern als eine Untersuchung auf Basis eines geografischen Themenmodells.

[HHSC11] nutzen diese Methode um eine Ground-Truth zu bestimmen indem das Userlocation-Feld in Wikipedia nachschlagen wird. Wikipedia bietet zu vielen Artikeln eine grografische Position in Form von Längen- und Breitengrad an, diese werden dann der untersuchten Twitter-Kurznachricht zugeordnet. [HGG12] nutzen die Yahoo und die Google Geocoding Api um das Userlocation-Feld eingehender zu untersuchen.

Eine weitere zu betrachtende Dimension stellt daher der konkrete Untersuchungsgegenstand in Form des Indikators dar.

Betrachtet man die Gesamtheit an arbeiten im Bereich der Lokalisierung im Twitter Netzwerk drängen sich noch mehr Dimensionen zur Klassifizeirung der arbeiten auf.

- 1. Räumliche Indikatoren
- 2. Techniken
- 3. Fokus der Lokalisierung
- 1. Naiver Ansatz -> Geocoding mit Google Maps API V3, nur Indikatoren die geografische Namen enthalten. Prinzipiell einfache Datenbankabfrage mit ein wenig semantik. Keine Jargon Namen wie Big Apple etc.

- a) Funktion der GMaps Api V3
- b) Einschränkungen der GMaps Api V3
- c) zurückgelieferte Daten der GMaps Api V3
- d) Kurze Beschreibung wie ich die API genutzt habe
- 2. aktuelle Ansätze
 - a) Verfahren mit Inhaltsanalysen
 - b) Verfahren mit Indikatoren einzelne oder mehrere

c) Welche Verfahren kommen beim mapping auf geografische Entitäten zum Einsatz

geografische Entität definieren

3.1.2 Probleme früherer Ansätze

- 1. Genutzte API's und Indikatoren nur in bestimmten Sprachen verfügbar
- 2. keine Schätzung für Genauigkeit auf verschiedenen geografischen Hierarchieebenen verfügbar

4 Lösungsansatz

In diesem Kapitel wird ein Verfahren zur Lokalisierung von Twitter-Nutzern vorgestellt, welches die Fragestellungen aus 1.3 beantwortete. Es werden dabei die Anforderungen aus Kapitel 1.3.1 berücksichtigt. Zunächst soll das Verfahren und die Vorgehensweise allgemein erklärt um dem Leser ein Überblick zu bieten. Daraufhin wird die Lösung systematisch von grundauf erarbeitet.

4.1 Verfahen zur Georeferenzierung von Twitter-Nutzern

- 4.1.1 Informationen und benötigte Daten
- 4.1.2 Verfahrensablauf
- 4.2 Analyse der Tweet Daten
- 4.2.1 Detailanalyse Standort und Zeitzone
- 4.3 Indikatoren zur Ortsbestimmung
 - 1. Training und Validierungsdaten erklären

u.U. "unmittelbar und mittelbar geografische Indikatoren" "Entwurf" -> "Grundlagen und Stand der Technik verschieben"

4.3.1 unmittelbar geografische Indikatoren

- 1. Mögliche Alternativen
- 2. Begründung warum Userlocation und Timezone
- 3. Beispiele und Auswertungen (manuell getaggter Datensatz)
- 4. [HHSC11]

4.3.2 mittelbar geografische Indikatoren

1. bspsw. Hashtags, Inhaltsanalysen ohne spezielle geografische Hinweise,

4.3.3 Vorverarbeitung der Indikatoren (Präprozessor-Konzept)

- 1. geonames matching (geonames tree) für geografische Namen bestehend aus mehreren Wörtern
- 2. Eliminierung von Sonderzeichen
- 3. Tokenizing
- 4. Ngram Erzeugung allgemein
- 5. Zeitzone als "schärfenden Indikator für doppeldeutige Namen"

Was bringt di Zeitzone als z sätzlicher Indi kator? Verbes serun messen

4.3.4 Encoding

Problematik unterschiedlicher Sprachen, url-encoding sinnvoll als Vorbereitung auf Webservice.

4.4 Geolocation Mapping

4.4.1 nearest neighbour mapping

- 1. Wie genau kann gemappt werden? Fehler Durchschnitt.
- 2. Mapping auf cities 1000/1000/15000 mit Daten zu durchschnitll. Abstand
- 3. Hier ist noch Verbesserungspotenzial -> wenn Mapping Distanz zu weit entfernt -> verwerfen!

Welches Fehlermaß kann für das mapping angewandt werden? auf Städteebene gut möglich mi geografischen Distanzen, admin2,amdin1, Land schlecht möglich mit Distanzen

- 4.5 Verknüpfung von Indikatoren und geografischen Lokationen zur wiedergewinnung des erlernten Wissens
- 4.5.1 Generierung eines Wissendatensatzes
- 4.5.2 Verknüpfung mit Geodaten
- 4.5.3 Auflösen auf Administartionsebenen, Länder
- 4.6 Lokalisieren von Tweets ohne konkrete geografische Daten
- 4.6.1 Ablauf der Lokalisierung
- 4.6.2 Lokalisierungssicherheit durch Ausnutzung der geografischen Hierarchiebeziehungen

einbauen!!!

4.6.3 Geografische Grundbegriffe und Geografiedaten

Geografische Grundbegriffe

Geonames.org

¹eventuell erst in Implemetierung darauf eingehen

4.6.4 ???

N-Gramme

- 1. NGramme allgemein, Verwendung, Beispiele.
- 2. Zusammenhang zwischen Länge/Grad eines N-Grammes und Wahrscheinlichkeiten. -> mathematische Herleitung?!

NGramme -> Nochmal genau prüfen, Zusammenhang zu Markov Modell und NGram Statistik herausstellen

5 Implementierung

Im Rahmen dieser Diplomarbeit ist eine Referenzimplementierung des vorgestellten Verfahrens entstanden. In Auszügen soll die Referenzimplementierung hier vorgestellt werden. Hierbei sollen insbesondere Probleme bei der Umsetzung betrachtet werden, und wie diese gelöst wurden. Damit soll die Möglichekit gegeben werden, in eigenen Implementierungungen die Probleme frühzeitig zu erkennen und zu vermeiden. Des weiteren soll ein Überblick über die genutzten Datensätze und API's gegeben werden.

Datensätze in Grundlagen?

5.1 Komponenten der Referenzimplementierung

5.1.1 Architektur

Allgemeine Architektur der Refernzimplementierung

5.1.2 Präprozessorverarbeitung - Erzeugung der N-Gramme

Warum Präprozessoren -> schnelleres ändern der Vorverarbeitung.

5.2 Datenbank

5.2.1

Eventuell was über die Geo Indexe in der Datenbank und die Nearest Neighbour Berechnungen.

5.3 Geografie Daten

5.4 Data Sample

Beschreibung wie Daten erzeugt wurden, Zeiträume, Analysen

5.5 geonames.org

Allgemeines zu geonames.org, was ist geonames.org.

- 1. Woher stammen die Daten?
- 2. Umfang und Informationen
- 3. Aktualität
- 4. Hierarchiebeziehungen im geonames.org Datensatz

6 Leistungsbewertung

7 Schlussfolgerungen, Ausblick und Fragen

8 Zusammenfassung

9 Ideen und Notizen

9.1 Stakeholder analyse

Welche potenziellen Stakeholder profitieren von der Arbeit? Was benötigt jeder dieser Stakeholder? Bedürfnisse analysieren und Begründen.

- 1. Marketing Professionals
- 2. Statistiker allgemein
- 3. Sozialwissenschaftler -> Analyse von Informationsströmen

9.2 Fragen an Matthias

9.2.1 Strukturell

- 1. Soll ich noch auf die Messung eines Informationsflusses eingehen? Wenn ich keine Informationsflüsse untersuche hängt dieses Thema ein wenig in der Luft.
- 2. ???

9.2.2 Inhalt

9.3 Ideen

1. Voraussetzungen zur Anwendung des Verfahrens

- a) Lerndaten mit konkreten geografischen Angaben
- b) Indikatoren in Lerndaten, welche auch in Datensätzen ohne konkrete geografische Angaben vorkommen (hier eventuelle Diskrepanzen zwischen geogetaggten und nicht geogetaggten tweets + Mentalität in bestimmten Ländern)
- c) Indikatoren mit geografischem Bezug, oder hinreichendem geografischen Bezug, Mittelbar oder unmittelbar
- 2. Auf Jargon Namen für Städte eingehen, wie bspsw. the big apple -> New York City
- 3. Landesgrenzen-Problematik wird durch meine Lösung obsolet -> auf stakeholder eingehen
- 4. Wahrscheinlichkeiten für korrekte Lokalisierung kann angegeben und justiert werden
- 5. Wenn Wahrscheinlichkeiten auf best. Ebene nicht hoch genug dann verschieben auf Admin2 -> Admin1 -> Länderebene
- 6. mit vorherigem werden Unsicherheiten bei Lokalisierung abgebildet (Wichtig für Informationsflüsse)

7.

9.4 Formulierungen

9.4.1 unmittelbare ungesicherte geografische Indikatoren

Das "userlocation" Feld in einem Tweet kann durchaus eine konkrete Lokation beinhalten, jedoch wird auch oft irgendetwas eingetragen. [HHSC11] Es kann sich dabei um beliebige Wörter oder Sätze handeln, die einzige Limitierung ist die Anzahl zur Verfügung stehender Zeichen. Nichtsdestotrotz ist es das Ziel dieses Feldes seinen eigene Standort anzugeben. Dabei kann allerdings nicht davon ausgegangen werde, das der eingetragene Wert nicht doch in einem Zusammenhang mit einer geografischen Lokation steht. Bezeichnungen von Städten in Umgangssprache wie besipielsweise "The Big Apple" für New York City oder Motown für Detroit, sind für einige Personen nicht unmittelbar

Korrelation zwischen Lokalisierungung: sicherheit und tatsächlichem Match berechnen zuzuordenen, geben allerdiings eine konkrete Lokation an. Da die Masse an Bei bzw. Spitznamen für Städte nicht überschaubar ist und auch sprachliche Probleme bestehen ist es sinnvoll alle userlocation Einträge gleich zu behandeln und diese in erster Linie als Lokationsangaben zu behandeln. Durch die Einschränkung auf eine Geolocation werden einzelne gleich lautende Einträge, welche aber nicht auf einen konkreten Ort hinweisen in einzelnen Datensätzen abgelegt.

9.5 Datenbasis

- 1. Welche Datenbasis wurde genutzt
 - a) Streaming API
 - b) Is the Sample good enough (Morstatter et al 13)
 - c) When is it biased? (Morstatter et al)
 - d) How does the Data sampling Startegy Impact the Discovery of Information Diffusion in Social Media (De Choudhurry, 1)
- 2. Lerndatensatz
- 3. Kontrolldatensatz
- 4. Manuell getaggter Datensatz
- 5. Google Maps getaggter Datensatz

9.6 Vorteile neuer Ansatz bei Mapping auf Geografische Daten

Notwendigkeit/Vorteile von Hierarchiebeziehungen im Mapping auf Geograohie Daten

Literaturverzeichnis

- [BNJ12] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of Machine Learning Research*, 3:993–1022, 2012.
- [CCL10] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet. In Proceedings of the 19th ACM international conference on Information and knowledge management CIKM '10, page 759, 2010.
- [EOSX10] Jacob Eisenstein, Brendan O'Connor, Noah A. Smith, and Eric P. Xing. A latent variable model for geographic lexical variation. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 1277–1287, 2010.
- [FVMF13a] Emilio Ferrara, Onur Varol, Filippo Menczer, and Alessandro Flammini.

 Traveling trends: social butterflies or frequent fliers? ... conference on Online social ..., 2013.
- [FVMF13b] Emilio Ferrara, Onur Varol, Filippo Menczer, and Alessandro Flammini. Traveling trends: Social butterflies or frequent fliers? CoRR, abs/1310.2671, 2013.
- [GGMQ14] R Garcia-Gavilanes, Y Mejova, and D Quercia. Twitter ain't without frontiers: Economic, social, and cultural boundaries in international communication. ... cooperative work & social ..., pages 1511–1522, 2014.
- [Gol08] Daniel W Goldberg. A Geocoding Best Practices Guide. North American Association of Central Cancer Registries (NAACCR), 2008.
- [HGG12] S Hale, D Gaffney, and M Graham. Where in the world are you? geolocation and language identification in twitter. *Proceedings of ICWSM'12*, (2013), 2012.

- [HHSC11] Brent Hecht, Lichan Hong, Bongwon Suh, and Ed H. Chi. Tweets from justin bieber's heart: The dynamics of the location field in user profiles. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '11, pages 237–246, New York, NY, USA, 2011. ACM.
- [IAB] Interactive Advertising Bureau IAB. Social media ad metrics definitions. Internet.
- [JJ21] G. Jellinek and W. Jellinek. Allgemeine Staatslehre. J. Springer, 1921.
- [KA08] Balachander Krishnamurthy and Martin Arlitt. A few chirps about twitter. In *Proceedings of the first workshop on Online social networks (WOSP '08)*, pages 19–24, 2008.
- [KCLC13] Krishna Y. Kamath, James Caverlee, Kyumin Lee, and Zhiyuan Cheng. Spatio-temporal dynamics of online memes: A study of geo-tagged tweets. In *Proceedings of the 22Nd International Conference on World Wide Web*, WWW '13, pages 667–678, Republic and Canton of Geneva, Switzerland, 2013. International World Wide Web Conferences Steering Committee.
- [KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social network or a news media? In *The International World Wide Web Conference Committee (IW3C2)*, pages 1–10, 2010.
- [MND12] Jalal Mahmud, Jeffrey Nichols, and Clemens Drews. Where is this tweet from? inferring home locations of twitter users. *ICWSM*, pages 511–514, 2012.
- [MPLC13] Fred Morstatter, J Pfeffer, H Liu, and KM Carley. Is the sample good enough? comparing data from twitter's streaming api with twitter's firehose. *Proceedings of ICWSM*, pages 400–408, 2013.
- [NP03] M E J Newman and Juyong Park. Why social networks are different from other types of networks. *Physical review. E, Statistical, nonlinear, and soft matter physics*, 68:036122, 2003.
- [PCV13] Reid Priedhorsky, Aron Culotta, and Sara Y. Del Valle. Inferring the origin locations of tweets with quantitative confidence. CoRR, abs/1305.3932, 2013.

- [POM⁺13] S. Petrovic, M. Osborne, R. Mccreadie, C. Macdonald, and I. Ounis. Can twitter replace newswire for breaking news? In *ICWSM* 13, 2013.
- [SHP⁺13] Axel Schulz, Aristotelis Hadjakos, Heiko Paulheim, Johannes Nachtwey, and Max Mühlhäuser. A multi-indicator approach for geolocalization of tweets. Seventh International AAAI Conference on Weblogs and Social Media, pages 573–582, 2013.
- [SKD11] Martin Szomszor, Patty Kostkova, and Ed De Quincey. #swineflu: Twitter predicts swine flu outbreak in 2009. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, volume 69 LNICST, pages 18–26, 2011.
- [SMvZ09] Pavel Serdyukov, Vanessa Murdock, and Roelof van Zwol. Placing flickr photos on a map. In *Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval SIGIR '09*, page 484, 2009.
- [SOM10] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. *Proceedings of the 19th international conference on World wide web*, pages 851–860, 2010.
- [ti13] twitter inc. Final initial public offering(ipo) prospectus, 11 2013.
- [TSSW11] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Election forecasts with twitter: How 140 characters reflect the political landscape, 2011.