

COMPUTAÇÃO GRÁFICA

Prática 2 – Funções Gráficas (Matlab)

Ivan Nunes da Silva

Funções Gráficas Básicas

- Objetivos da Aula:
 - Demonstrar as funções elementares que são utilizadas pelo Matlab para a plotagem gráfica.
 - Destacar as potencialidades das funções do Matlab para propósitos de computação gráfica.
 - Entender a anatomia de uma plotagem gráfica em duas dimensões.
 - Como escolher diferentes tipos de plotagens visando um melhor efeito.
 - Realizar exercícios visando a familiarização das funções gráficas elementares.

Funções Gráficas Elementares

- O Matlab dispõe de 6 funções básicas para manipulação gráfica em duas dimensões, sendo diferenciadas principalmente pelo tipo de escala que utilizam nos eixos.
 - * plot(.) → cria um gráfico a partir de vetores colunas de matrizes com escalas lineares sobre ambos eixos.
 - *loglog(.) → cria um gráfico a partir de vetores colunas de matrizes com escalas logarítmicas sobre ambos eixos.
 - semilogx(.) → cria um gráfico a partir de vetores colunas de matrizes com escala linear no eixo das ordenadas e logarítmicas no eixo das abscissas.
 - * semilogy(.) → cria um gráfico a partir de vetores colunas de matrizes com escala logarítmica no eixo das ordenadas e linear no eixo das abscissas.
 - * plotyy(.) → gráfico com duas escalas na vertical (uma à esquerda e outra à direita
 - polar(.) → gráfico em coordenadas polares.

3

TSP

Plotagem Gráfica (I)

 O Matlab dispõe de diversas outras funções básicas que permitam manipular gráficos de forma eficiente.

Símbolo	Cor
у	amarelo
m	magenta
С	ciano
r	vermelho
g	verde
b	azul
w	branco
k	preto

Símbolo	Estilo de Marcador
	ponto
О	círculo
х	х
+	sinal positivo
*	estrela
s	quadrado
d	losango
^	triângulo p/cima

	Símbolo	Estilo de Linha
	1	sólida
	:	pontilhada
	٠.	traço e ponto
		tracejada

Plotagem Gráfica (II)

- As funções básicas plot(.), loglog(.), semilogx(.) e semilogy(.) podem ser configuradas da seguinte forma:
 - plot(y) → plota os valores de y no eixo das ordenadas sendo que o eixo x é incrementado de uma unidade para cada valor de y.
 - $plot(x,y) \rightarrow plota$ o valor de x no eixo das abscissas e y no eixo das ordenadas.
 - $plot(x,y,'r') \rightarrow plota$ o gráfico em cor vermelha referente aos valores de x e y.
 - plot(x,y,'b:d') → plota o gráfico em cor azul, estilo de linha pontilhada e estilo de marcador em losango.
 - * plot $(x_1, y_1, s_1, x_2, y_2, s_2, x_3, y_3, s_3, ...)$
 - (x_n, y_n) são conjuntos de dados e s_n são strings de caracteres opcionais especificando cor, símbolos marcadores e/ou estilos de linha

5

TSP

Manipulação Gráfica (I)

- Diversas outras funções básicas são definidas no Matlab visando a manipulação gráfica:
 - linspace(valor_{inicial}, valor_{final}, número_{pontos})
 - Especifica diretamente o espaçamento entre os pontos entre o valor_{inicial} e o valor_{final} a fim de obter o número_{pontos} previamente especificado.
- Manipulação de textos em gráficos:
 - title('título') → insere o título no gráfico.
 - xlabel('label') \rightarrow insere legenda no eixo x.
 - ylabel('label') → insere legenda no eixo y.
 - legend('leg1','leg2',...) → define rótulos para os plots do gráfico.
 - $text(x,y,'texto') \rightarrow insere 'texto' na posição (x,y).$
 - gtext('texto') → insere 'texto' com o auxílio do mouse.

Manipulação Gráfica (II)

- Funções para controle de eixos em gráficos:
 - * $axis([x_{min} \ x_{max} \ y_{min} \ y_{max}]) \rightarrow define os valores mínimos e máximos dos eixos com base nos valores fornecidos pelo vetor linha.$
 - $\mathbf{v} = \mathbf{axis} \rightarrow \mathbf{guarda}$ em \mathbf{v} o vetor linha que contem os dados de escala do gráfico atual: $[\mathbf{x}_{\min} \ \mathbf{x}_{\max} \ \mathbf{y}_{\min} \ \mathbf{y}_{\max}]$.
 - * axis xy → usa o sistema de coordenadas cartesianas (default), de modo que a origem do gráfico apareça no canto inferior esquerdo.
 - * axis ij → usa o sistema de coordenadas matriciais, de modo que a origem do gráfico apareça no canto superior esquerdo.
 - * axis square → faz com que o gráfico atual tenha a forma de um quadrado em lugar do retângulo habitual.
 - * axis equal → define o fatores de escalamento para ambos os eixos como sendo iguais.
 - axis normal → desfaz o efeito dos comandos axis square e axis equal.
 - axis off → retira a cor de fundo e os nomes dos gráficos.
 - axis on \rightarrow devolve a cor de fundo e os nomes dos eixos.

7

Manipulação Gráfica (III)

- Funções auxiliares para a manipulação gráfica:
 - figure → utilizada para criar múltiplas janelas de gráficos.
 - gcf → fornece o número da janela de gráficos atualmente em uso.
 - **clf** → limpa a janela de gráficos atual.
 - close → fecha a janela de gráfico atual.
 - close all → fecha todas as janelas de gráfico.
 - hold on/off → em (on) mantém a tela atual para os próximos plots. Em (off) limpa a tela atual antes de traçar o próximo gráfico.

Manipulação Gráfica (IV)

• Exercício 1:

- Para as funções sin(x) e cos(x) faça as seguintes ações:
 - Defina o domínio para ambas entre 0 e 2pi com 30 pontos usando coordenadas cartesianas.
 - Traçar no mesmo gráfico ambas as funções, tendo as seguintes características:
 - Função sen(x) na cor vermelha, estilo de linha cheia (sólido) e marcador em estrela.
 - Função cos(x) na cor verde, estilo de linha pontilhado e marcador em círculo.
 - Repita o item anterior usando as coordenadas matriciais.

9

Plotagem de Sub-gráficos (I)

- Em determinadas aplicações de computação gráfica é necessária a plotagem de diversos gráficos menores arranjados em uma ordem predefinida.
- O comando **subplot(m,n,k)** subdivide a janela de figuras atual em uma matriz com m por n regiões nas quais se pode traçar gráficos, ativando a região de ordem k:
 - Exemplo: subplot(2,3,1)

TSP

Plotagem de Sub-gráficos (II)

- Exercício 2:
 - Dada as seguintes funções:
 - 1.) f(x) = sen(x);
 - 2.) f(x) = cos(x);
 - 3.) f(x) = 2.sen(x).cos(x)
 - 4.) $f(x) = \frac{\sin(x)}{\exp(x)}$
 - Trace cada uma delas em sub-gráficos, com domínio entre 0 e 5pi/2, tendo ainda este intervalo 500 pontos e eixos dimensionados automaticamente.
 - Coloque rótulos nos eixos das ordenadas.

11

TSP

Funções Gráficas Especiais

- Em determinadas aplicações de computação gráfica é necessário conhecer o valor do ponto de mínimo ou de máximo de uma função.
- Dado um vetor de pontos do eixo das ordenadas definido por fx, a função fminbnd(fx, $x_{inicial}$, x_{final}) procura o valor mínimo da função fx entre os valores de domínio especificados entre $x_{inicial}$ e x_{final} .
 - Sintaxe da função:
 - $[x_{min}, y_{min}] = fminbnd(fx, x_{inicial}, x_{final})$
- A construção de funções de usuário é também facilitada no matlab através do comando **inline('expressão')**, o qual cria uma função matemática a partir de sua 'expressão' string.
 - *Sintaxe da função:
 - x = 0:0.01:5;
 - y = '1/x';
 - fx = inline(y); $\rightarrow fx(5) = 0.2000$

Funções Gráficas Especiais

- Exercício 3:
 - * Dada a função $\frac{1}{(x-0.3)^2+0.01} + \frac{1}{(x-0.9)^2+0.04} 6$
 - Elabore um programa conforme as definições abaixo:
 - Gerar a curva acima com 1000 pontos no intervalo de -0.5 a 2.0.
 - Traçar a curva com eixo horizontal definido entre –0.6 e 2.1, deixando o eixo vertical em escala automática.
 - Encontrar o ponto de mínimo referente ao domínio de 0.5 e 1.0.
 - Encontrar o ponto de máximo referente ao domínio de 0.0 e 0.5.
 - Colocar marcador 'o' em vermelho para o ponto de máximo e marcador 'o' em verde para o ponto de mínimo.
 - Colocar legendas para a curva e marcadores.