Exercise 1.1. [20pt] Let a = 90 and b = 218

- [7pt] Use Euclidean algorithm to find gcd(90, 218)
- [7pt] Find $\alpha, \beta \in \mathbb{Z}$ satisfying $90 \cdot \alpha + 218 \cdot \beta = \gcd(90, 218)$.
- [2pt] Find a particular solution for the linear Diophantine equation 90x + 218y = 6.
- [2pt] Write down a general solution of the equation 90x + 218y = 6. (4)
- [2pt] Compute lcm(90, 218).

Solution: Using Euclidean algorithm we get:

$$218 = 2 \cdot 90 + 38 \qquad \Rightarrow \gcd(90, 218) = \gcd(38, 90)$$

$$90 = 2 \cdot 38 + 14 \qquad = \gcd(14, 38)$$

$$38 = 2 \cdot 14 + 10 \qquad = \gcd(10, 14)$$

$$14 = 1 \cdot 10 + 4 \qquad = \gcd(4, 10)$$

$$10 = 2 \cdot 4 + 2 \qquad = \gcd(2, 4)$$

$$4 = 2 \cdot 2 + 0 \qquad = \gcd(0, 2) = 2$$

Proceeding from the bottom to the top we get a required expression for 5:

$$2 = -2 \cdot 4 + 1 \cdot 10$$

$$= -2 \cdot (14 - 1 \cdot 10) + 1 \cdot 10 = 3 \cdot 10 - 2 \cdot 14$$

$$= 3 \cdot (38 - 2 \cdot 14) + -2 \cdot 14 = -8 \cdot 14 + 3 \cdot 38$$

$$= -8 \cdot (90 - 2 \cdot 38) + 3 \cdot 38 = 19 \cdot 38 - 8 \cdot 90$$

$$= 19 \cdot (218 - 2 \cdot 90) + -8 \cdot 90 = -46 \cdot 90 + 19 \cdot 218$$

Hence $\alpha = -46$ and $\beta = 19$. Multiply the coefficients in the identity from above

$$-46 \cdot 90 + 19 \cdot 218 = 2$$

by 3 to get

$$-138 \cdot 90 + 57 \cdot 218 = 6$$

which gives a particular solution $x_0 = -138, y_0 = 57$ for 90x + 218y = 6. Now, we can immediately form a general solution for 90x + 218y = 6:

$$\begin{cases} x = -138 + \frac{218}{2}n \\ y = 57 - \frac{90}{2}n \end{cases}$$

which gives

(Janvas

$$\begin{cases} x = -138 + 109n \\ y = 57 - 45n \end{cases}$$

$$lcm(90, 218) = \frac{90 \cdot 218}{\gcd(90, 218)} = 9810.$$

Exercise 1.2. [5pts] The Fibonacci numbers $\{f_i\}$ are defined recurrently by

$$\begin{cases} f_1=1;\\ f_2=1;\\ f_3=f_1+f_2;\\ \dots\\ f_n=f_{n-1}+f_{n-2}. \end{cases}$$
 Use Euclidean lemma to prove that $\gcd(f_n,f_{n+1})=1$ for every $n\in\mathbb{N}.$

Solution: Induction on n. For n = 1 we have:

$$\gcd(f_1, f_2) = 1,$$

which is true. Assume the result holds for k:

$$\gcd(f_k, f_{k+1}) = 1,$$

and prove that $gcd(f_{k+1}, f_{k+2}) = 1$. Note that dividing f_{k+2} by f_{k+1} gives:

$$f_{k+2} = 1 \cdot f_{k+1} + f_k,$$

and, hence, by Euclidean Lemma:

$$\gcd(f_{k+1}, f_{k+2}) = \gcd(f_{k+1}, f_k) = 1.$$

Thus, the statement holds by induction on n.

Exercise 1.3. [5pt] Use mathematical induction to prove that $6 \mid 7^n - 1$ for every $n \in \mathbb{N}$.

Solution: For n = 1 we have $6 \mid 7 - 1$ which is true.

Assume that statement holds for some k, i.e.

$$6 \mid 7^k - 1$$
,

which means that $7^k - 1 = 6q$ for some $q \in \mathbb{N}$. We need to prove that $6 \mid 7^{k+1} - 1$. Indeed,

$$7^{k+1} - 1 = 7 \cdot 7^k - 1 = 7 \cdot (6q + 1) - 1 = 42q + 6 = 6(7q + 1),$$

which means that $7^{k+1} - 1$ is divisible by 6.

Exercise 1.4. [5pts] Use modulo-7 arithmetic to compute the remainder of division of 3^{100} by 7.

Solution: Notice that, $3^6 \equiv_7 1$. Therefore,

$$3^{100} = (3^6)^{16} 3^4 \equiv_7 1^{16} 3^4 = 81 \equiv_7 4.$$

Exercise 1.5. [5pts] Suppose that $gcd(n_1, n_2) = 1$.

(a) Use Bezout's identity to prove that for any $c \in \mathbb{Z}$

$$\left\{\begin{array}{ll} n_1 \mid c \\ n_2 \mid c \end{array} \Leftrightarrow n_1 n_2 \mid c.\right.$$

(b) Use item (a) to prove that for any $x, y \in \mathbb{Z}$

$$\left\{ \begin{array}{ll} x \equiv_{n_1} y \\ x \equiv_{n_2} y \end{array} \right. \Leftrightarrow x \equiv_{n_1 n_2} y.$$

(This is very useful when you deal with with a congruence modulo a large composite number – it allows to lower the modulus.)

Solution:

(a)
$$\gcd(n_1, n_2) = 1$$
 $\stackrel{Bezout}{\Rightarrow}$ $1 = \alpha n_1 + \beta n_2 \Rightarrow c = \alpha n_1 c + \beta n_2 c$. Therefore,

$$\begin{cases} n_1 \mid c \\ n_2 \mid c \end{cases} \Rightarrow \begin{cases} c = n_1 q_1 \\ c = n_2 q_2 \end{cases}$$

$$\Rightarrow c = \alpha n_1 c + \beta n_2 c = \alpha n_1 n_2 q_2 + \beta n_2 n_1 q_1 = (n_1 n_2)(\alpha q_2 + \beta q_1)$$

$$\Rightarrow n_1 n_2 \mid c.$$

Conversely,

$$n_1 n_2 \mid c \Rightarrow c = q(n_1 n_2) \Rightarrow c = n_1 \cdot q n_2 \Rightarrow n_1 \mid c$$

Same can be done to n_2 .

(b) Indeed,

$$\begin{cases} x \equiv_{n_1} y \\ x \equiv_{n_2} y \end{cases} \Leftrightarrow \begin{cases} n_1 \mid (x - y) \\ n_2 \mid (x - y) \end{cases} \Leftrightarrow n_1 n_2 \mid (x - y) \Leftrightarrow x \equiv_{n_1 n_2} y.$$

Exercise 1.6. [+3pts] Let X be a set. A function $f: X \times X \to X$ is called a **binary function** on X. If there is no ambiguity (f is the only binary function) instead of writing f(a,b) we write $a \cdot b$ or simply ab.

Definition 1.1. A binary function \cdot on a set X is

- commutative if ab = ba for every $a, b \in X$;
- associative if (ab)c = a(bc) for every $a, b, c \in X$;
- closed on a subset $S \subset X$ if $ab \in S$ for every $a, b \in S$; in this event we also say that S is closed under \cdot . A restriction of \cdot of $S \times S$ is a binary operation too.
- We say that $x \in X$ is a multiplicative identity in (X, \cdot) if xy = yx = y for every $y \in X$.

We say that a and b commute in G if ab = ba.

Consider the set of all complex numbers \mathbb{C} equipped with the standard multiplication \cdot . Which of the following subsets of \mathbb{C} are closed under \cdot ? Just circle appropriate sets, no explanation is required in this problem.

- $(1) \mathbb{R}.$
- (2) The set of purely imaginary numbers $\mathbb{R}i = \{ ai \mid a \in \mathbb{R} \}.$
- $(3) \{1, -1, i, -i\}.$
- (4) \mathbb{N} .
- (5) $\{a+b\sqrt{2}i \mid a,b \in \mathbb{Q} \}.$
- $(6) \{-1,0,1\}.$

Solution:

- (1) Yes.
- (2) No.
- (3) Yes.
- (4) Yes.
- (5) Yes.
- (6) Yes.

Exercise 1.7. [+4pts] A binary function \cdot on a small set $X = \{x_1, \dots, x_n\}$ can be defined by a table, called a composition (or multiplication) table

$$\begin{array}{c|ccccc} \cdot & x_1 & \dots & x_n \\ \hline x_1 & x_1 \cdot x_1 & \dots & x_1 \cdot x_n \\ \dots & \dots & \dots & \dots \\ x_n & x_n \cdot x_1 & \dots & x_n \cdot x_n \end{array}$$

Define \cdot on $X = \{a, b, c\}$ using the table

- (1) Is \cdot commutative?
- (2) Is · associative?
- (3) Is \cdot closed on $\{a, b\}$?
- (4) Is there a multiplicative identity in (X, \cdot) ?

Explain your answers!

Solution:

(1) \cdot is not commutative because $a \cdot b = a \neq b = b \cdot a$.

(2) \cdot is not associative because $a \cdot (b \cdot c) = a \cdot a = b \neq c = a \cdot c = (a \cdot b) \cdot c$. (3) \cdot is not closed on $\{a,b\}$ because $b \cdot b = c \notin \{a,b\}$. (4) No, we do not have a multiplicative identity:

- - -a is not an identity because $a \cdot a \neq a$;
 - b is not an identity because $a \cdot b \neq a$; c is not an identity because $a \cdot c \neq b$.