

Julian Matschinske, M.Sc. Computer Science, UHH

Federated Learning - Introduction

ISMB 2022, Federated Learning in Biomedicine (Tutorial)

Tutorial objectives

- Introduce federated learning methods
- Raise awareness on data privacy and show privacy-preserving techniques
- Provide hands-on experience how to develop and deploy federated methods

From	То	Title and brief description	Speaker(s)
9:00 am 16:00 CEST	9:15 am 16:15 CEST	Welcome and introduction	Julian Matschinske
9:15 am 16:15 CEST	9:45 am 16:45 CEST	Federated learning in biomedicine The basic concepts and pitfalls related to federated learning, as opposed to central machine learning are shown, taking a look at loss of accuracy and performance and how to mitigate it.	
9:45 am 16:45 CEST	10:45 am 17:45 CEST	Privacy-enhancing techniques Approaches such as differential privacy and secure multi-party computation are introduced and discussed.	Niklas Probul
10:45 am 17:45 CEST	11:00 am 18:00 CEST	☼ Coffee break	-
11:00 am 18:00 CEST	12:00 pm 19:00 CEST	How to develop your federated method Having the concept ready, attendants learn how to actually implement a federated method, and take care of communication and orchestration using PySyft and FeatureCloud.	Mohammad Bakhtiari
12:00 pm 19:00 CEST	12:50 pm 19:50 CEST	How to run your federated method Central methods can be installed and executed individually, not so federated algorithms. They require a more complex deployment process which is demonstrated in this session.	Julian Späth
12:50 pm 19:50 CEST	1:00 pm 20:00 CEST	Wrap-up	

Large-scale AI in Biomedicine

 Machine learning (ML) allows for classification and predictions in different domains

Benefits hugely from larger quantities of data

Amount of data is growing continuously

Large-scale Al in Biomedicine - Classical Approach

- Merge data into big datasets
- Train ML models on the whole set
- Share models with data contributors

Problem: Privacy regulation

- General Data Protection Regulation (GDPR) and others
- Patients must have control over their data
- Data cannot leave the hospitals without big legal efforts

Idea: Federated Learning

- Data remains where is has been collected
- Split training between local training and global aggregation

"Bring the model training to the data, not the other way round"

Large-scale AI in Biomedicine - Classical Approach

Federated Learning Platforms

- Isolate data
- Impose restrictions on communication
- Provide assistance for development of federated applications

What's the price?

- Loss of performance due to communication overhead
- Loss of accuracy (in most cases) due to higher difficulty of generalization
- Less control over data quality

Is Federated Learning privacy-preserving?

- Depends on the method and the data
- Privacy leaks can still occur (e.g., due to overfitting)
- But: huge improvement over sharing raw data
- Can be enhanced with additional techniques
 - Differential privacy
 - Secure multiparty computation
 - Homomorphic encryption

Application example: GWAS

- Case/control studies on SNP data
- Each SNP examined individually (LR)
- Find SNPs related to diseases

TTGGCCAGCTGGACGAGGGCGATGAC

TTGGCCAGCTGGATGAC

- Chi-square test
- Linear regression
- Logistic regression

URL: exbio.wzw.tum.de/splink/

Reza Nasirigerdeh et al. (published in Genome Biology)

Other examples

Flimma

Differential expression analysis based on the limma voom pipeline

URL: exbio.wzw.tum.de/flimma/ | Olga Zolotareva et al. (published in Genome Biology)

Partea

Time-to-event studies

URL: exbio.wzw.tum.de/partea/ | Julian Späth et al.

Platform example: FeatureCloud

- Increase convenience for developers (including testing and deployment)
- Increase trust in apps (certification, consent management)
- Create a community (developers, researchers, patients)

App communication

- Star-based federated learning
 - Gather-broadcast
- Peer-to-peer
- Secure multi-party computation

Star-based communication

Peer-to-peer communication

Continuous vs. discrete models

- Continuous models can usually be federated 'straightforward'
 - Gradient descent
 - Federated average
 - One or multiple interactions
- Discrete models are more difficult
 - Example: Decision tree
 - Possible solutions: Ensemble techniques

Example: Random forest

- Train decision trees using bootstrapping on each site
- Transmit models and merge into big ensemble → Random Forest

Federated Random Forests can improve local performance of predictive models for various healthcare applications, Anne-Christin Hauschild, Marta Lemanczyk, Julian Matschinske, et al., Bioinformatics, Volume 38, Issue 8, 15 April 2022, Pages 2278–2286

Evaluation

Evaluation

ISMB 2022 - Tutorial - Federated Learning in Biomedicine

Thank you!