Math 591 Lecture 16

Thomas Cohn

The Hopf Fibration

$$\mathbb{C}^2 \supset S^3
\downarrow^{\pi}
\mathbb{RP}^1 \cong S^1 \backslash S^3$$

$$\pi(z_0, z_1) = \{ (e^{i\theta} z_0, e^{i\theta} z_1) \mid \theta \in \mathbb{R}/2\pi\mathbb{Z} \}.$$

$$\pi(z_0, z_1) = [z_0 : z_1].$$

Claim: This is a fiber bundle with fiber $\Phi = S^1$.

For the covering of \mathbb{RP}^1 , we choose the same covering as used in the homework: $U_0 = \{[z_0 : z_1] \mid z_0 \neq 0\}$ and $U_1 = \{[z_0 : z_1] : z_1 \neq 0\}$.

Define $\mathscr{S}(\mathfrak{z}) = \frac{1}{\sqrt{1+|\mathfrak{z}|}}(1,\mathfrak{z})$. Then we have

$$\mathbb{R}^2 \cong \mathbb{C} \longleftarrow \stackrel{\cong}{\longleftarrow} U_0 \stackrel{\mathcal{S}^3}{\longleftarrow} \mathbb{RP}^1$$

$$\mathfrak{z} = \frac{z_1}{z_0} \longleftarrow [z_0 : z_1]$$

Note: $\pi \circ \mathscr{S} = I_{U_0}$, since $\pi(\mathscr{S}(\mathfrak{z})) = \mathfrak{z}$.

Defn: If $\pi: M \to N$ is a fiber bundle, a section of π is a C^{∞} map $\mathscr{S}: N \to M$ s.t. $\pi \circ \mathscr{S} = I_N$.

Observe: The Hopf fibration does not have a global section.

Observe: Local sections always exist, because they always exist for the trivial bundle $N \to N \times \Phi$: fix $\nu \in \Phi$, and map $p \mapsto (p, \nu)$.

More on the Hopf fibration... Define a trivialization

$$\pi^{-1}(U_0) \xrightarrow{\chi} U_0 \times \Phi$$

$$U_0$$

1

with
$$\chi(\mathfrak{z},e^{i\theta})=e^{i\theta}\mathscr{S}(\mathfrak{z})=\frac{e^{i\theta}}{\sqrt{1+|\mathfrak{z}|}}(1,\mathfrak{z}).$$
 Then $\pi\circ\mathscr{S}=I_{U_0},$ and $\forall \mathfrak{z}\in U_0,$ $\mathscr{S}(\mathfrak{z})=\pi^{-1}(\mathfrak{z}).$

 $\chi(z_0,z_1)=(\frac{z_1}{z_0},\frac{z_0}{|z_0|})$ (note that $z_0\neq 0$). Then $S^3\cong \mathbb{R}^3\cup \{\infty\}=\bigcup S^1$, an uncountable disjoint union.

Vector Bundles

Defn: $\pi: E \to B$ is a vector bundle with base B and rank $k \in \mathbb{N}$ iff

- a) It's a fibration.
- b) $\forall p \in B$, the fiber $\pi^{-1}(p)$ is a vector space.
- c) There is an open covering $\{U_{\alpha}\}$ of B and all trivializations $\chi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ restrict to linear maps on each fiber, i.e.,

$$\chi_{\alpha}|_{\pi^{-1}(p)}: \pi^{-1}(p) \xrightarrow{\cong} \{p\} \times \mathbb{R}^k \cong \mathbb{R}^k$$
Linear Isomorphism

Note: $\forall p \in B$, the zero section applied to $p \in B$ gives $0 \in \pi^{-1}(p)$.

 $\mathbf{E}\mathbf{x}$:

- 1) The tangent bundle $TB \to B$.
- 2) The cotangent bundle $T^*B = \bigsqcup_{p \in B} \{p\} \times T_p^*B \to B$.

Defn: If $S \subseteq M$ is a submanifold, then the <u>co-normal bundle of S</u> is $\mathcal{N} = \{(p, \alpha) \in T^*M \mid \alpha|_{T_pS} = 0\}$.

The co-normal bundle is a vector bundle.

Note: If we give $T_p M$ a Euclidean inner product, we can identify

$$T_p^*M \cong T_pM$$

 $\langle \cdot , v \rangle \longleftrightarrow v$

Claim: $\mathcal{N} \subset T^*M$ is a submanifold, and $\pi : \mathcal{N} \to S$ is a vector bundle of rank codim $S = \dim M - \dim S$. The fiber of \mathcal{N} over p is the annihilator of T_pS .