Fully Convolutional Networks for Semantic Segmentation

JONATHAN LONG, EVAN SHELHAMER, TREVOR DARRELL

CHANDANA AMANCHI, AMIN ANVARI

Background

(a) Siberian husky

(b) Eskimo dog

Classification

Bounding box object detection

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

Classify regions

Semantic Segmentation

Classification networks

Network for Semantic Segmentation?

Classification Networks

Classification -> Full Convolution

Fully Convolution Networks

convolution

Fully Convolution Networks

End-to-end Dense predictions

Shift and Stitch

Patch wise Training

Upsampling

Upsampling

convolution

Fully Convolution Networks

Convolution H × W H/4 × W/4 H/8 × W/8 H/16 × W/16 H/32 × W/32 H × W upsampling tonv, pool, nonlinearity pixelwise output + loss

Spatial Precision of the O/P

Combining What and Where

image

intermediate layers

Skip Architecture

Pros

Well structured paper

Supervised pre-training

Intuitive idea

Combining what & where

Combining what & where

Discussion of approaches for dense predictions

Good Results

Results

mean IU:
$$(1/n_{\rm cl}) \sum_i n_{ii} / \left(t_i + \sum_j n_{ji} - n_{ii}\right)$$

	FCN-	FCN-	FCN-
	AlexNet	VGG16	GoogLeNet ⁴
mean IU	39.8	56.0	42.5
forward time	50 ms	210 ms	59 ms
conv. layers	8	16	22
parameters	57M	134M	6M
rf size	355	404	907
max stride	32	32	32

Results

	mean IU	mean IU	inference		
	VOC2011 test	VOC2012 test	time		
R-CNN [12]	47.9	-	-		
SDS [17]	52.6	51.6	$\sim 50 \text{ s}$		
FCN-8s	62.7	62.2	\sim 175 ms		

PASCAL VOC

	pixel	mean	mean	f.w.		pixel	mean	mean	f.w.	geom.
	acc.	acc.	IU	IU		acc.	acc.	IU	IU	acc.
C 4 1 [15]	(0.2		20.6	47.0	- Liu <i>et al</i> . [25]	76.7	-	-	-	-
Gupta <i>et al</i> . [15]	60.3	-	28.6	47.0	Tighe <i>et al</i> . [36]	-	-	-	-	90.8
FCN-32s RGB	60.0	42.2	29.2	43.9	Tighe <i>et al</i> . [37] 1	75.6	41.1	-	-	-
FCN-32s RGBD	61.5	42.4	30.5	45.5	Tighe <i>et al</i> . [37] 2					-
		25.2	24.2	10.4	Farabet <i>et al</i> . [9] 1	72.3	50.8	-	-	-
FCN-32s HHA	57.1	35.2	24.2	40.4	Farabet <i>et al</i> . [9] 2	78.5	29.6	_	_	_
FCN-32s RGB-HHA	64.3	44.9	32.8	48.0	Pinheiro <i>et al.</i> [31]			_	-	_
FCN-16s RGB-HHA	65.4	46.1	34.0	49.5	FCN-16s	85.2	51.7	39.5	76.1	94.3

NYUDv2

SIFT Flow

Results – PASCAL VOC

Speed improvement

Whole image Vs Patchwise training

Heavily used in practice

fully convolutional networks for semantic segmentation

Scholar

Articles

Case law

My library

Any time

Since 2017

Fully convolutional networks for semantic segmentation

J Long, <u>E Shelhamer</u>, <u>T Darrell</u> - Proceedings of the IEEE ..., 2015 - cv-foundation.org Abstract Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build" fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully ...

Cited by 2439 Related articles All 21 versions Cite Save

Cons

Cons1: What about Fully connected CRF?

(Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials, Krähenbühl and Koltun)

Cons2: Qualitative Claims -> possible explanations?

Cons3: Execution time vs Memory footprint vs. Accuracy trade-off

SegNet vs. FCN

Cons4: Future directions?

Questions?