Comparativa de herramientas de visualización para el análisis de datos criminalísticos

Susana Barrera García

ÍNDICE

- 01 -Estado del arte
- 02 -Objetivos
- 03 Metodología de trabajo
- 04 Desarrollo de la contribución
- 05 Conclusiones

De los mapas antiguos al Big Data

 Figuras clave: Playfair, Minard, Tufte → cada uno cambió la forma de representar la información.

De los mapas antiguos al Big Data

 Figuras clave: Playfair, Minard, Tufte → cada uno cambió la forma de representar la información.

SECOND EDITION

The Visual Display of Quantitative Information

EDWARD R. TUFTE

De los mapas antiguos al Big Data

- Figuras clave: Playfair, Minard, Tufte → cada uno cambió la forma de representar la información.
- La visualización ha pasado de ser arte y cartografía a ser ciencia y tecnología de decisión.

De los mapas antiguos al Big Data

- Figuras clave: Playfair, Minard, Tufte → cada uno cambió la forma de representar la información.
- La visualización ha pasado de ser arte y cartografía a ser ciencia y tecnología de decisión.
- En la era del Big Data, no basta con tener datos: hay que verlos para comprenderlos.

Aplicaciones en criminología y seguridad.

- Permite identificar zonas de riesgo, patrones delictivos y tendencias temporales.
- Ejemplos internacionales:
 - CompStat 2.0 (NYPD) → mapas y estadísticas interactivas.
 - CrimeRadar (Brasil) → predicción del riesgo con machine learning.

Aplicaciones en criminología y seguridad.

- Permite identificar zonas de riesgo, patrones delictivos y tendencias temporales.
- Ejemplos internacionales:
 - CompStat 2.0 (NYPD) → mapas y estadísticas interactivas.
 - CrimeRadar (Brasil) → predicción del riesgo con machine learning.

Apartado 02 OBJETIVOS ESPECÍFICOS

caracterís

✓ Identificar las característica Power BI y Pyr (Plotly/Matple aplicabilidad datos crimina

OBJETIVO GENERAL.

Comparar tres herramientas de visualización: Tableau, Power BI y Python (Plotly/Matplotlib) para analizar tendencias criminales en Europa y determinar cuál comunica mejor la información compleja de forma clara, eficaz y accesible.

ción

efectividad tiva de cada nta, su utilidad tuciones públicas y cuál resulta más según el perfil del el contexto de

Apartado 02 OBJETIVOS ESPECÍFICOS

características

✓ Identificar las principales características de Tableau, Power BI y Python (Plotly/Matplotlib) y su aplicabilidad al análisis de datos criminalísticos..

usabilidad

o Comparar la facilidad de uso, el rendimiento y la calidad visual de las representaciones creadas con cada herramienta.

análisis visual

✓ Diseñar visualizaciones representativas a partir de datos criminalísticos europeos y analizar su capacidad para mostrar tendencias y patrones delictivos.

evaluación

o Evaluar la efectividad comunicativa de cada herramienta, su utilidad para instituciones públicas y proponer cuál resulta más adecuada según el perfil del usuario o el contexto de uso.

Apartado 03 METODOLOGÍA DE TRABAJO: CRISP-DM

Preparación de los datos

✓ Se seleccionan datos criminalísticos europeos y se preparan mediante limpieza y transformación para asegurar su coherencia y calidad.

Business + Data preparation

2

Creación de visualizaciones

✓ Se elaboran las representaciones gráficas con cada herramienta siguiendo recomendaciones de diseño que favorecen la claridad y la comprensión de la información

Modelling

Comparación de resultados

✓ Se evalúan algunos criterios, aplicando un sistema de evaluación multicriterio adaptado a los objetivos del estudio.

Evaluation

Conclusiones

✓ Se resumen los hallazgos y se determina qué herramienta ofrece mejores resultados dependiendo de los casos de uso, como orientación para futuros analistas.

Deployment

Selección y estructura de los datos

- Se emplean tres datasets de criminalidad europea (Eurostat, formato CSV).
- Temas: asaltos sexuales, homicidios intencionados y población penitenciaria.
- Periodo analizado: 2014–2022
- Se seleccionan 6 países: España, Suecia, Países Bajos, Alemania, Rumanía y Lituania.

DATAFLOW	LAST UPDATE	freq	iccs	unit	geo	TIME_PERIOD	OBS_VALUE
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2014	97
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2015	149
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2016	120
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2017	113
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2018	109
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2019	154
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2020	145
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2021	135
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2022	169
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Albania	2023	134
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2014	3564
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2015	3479
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2016	4391
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2017	4253
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2018	4425
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2019	4509
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2020	4141
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2021	4354
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2022	4968
STAT:CRIM_OFF_CAT(1.0)	23/04/2025 11:00:00	Annual	Sexual violence	Number	Austria	2023	5447

Preparación en Power BI

- Limpieza y tipificación de columnas con Power Query.
- Creación de un modelo en estrella con tablas de hechos y dimensiones (país, año).

Preparación en Power BI

- Limpieza y tipificación de columnas con Power Query.
- Creación de un modelo en estrella con tablas de hechos y dimensiones (país, año).
- Verificación de relaciones entre tablas para asegurar coherencia analítica.
- Base preparada para visualizaciones dinámicas.

Visualizaciones en PowerBI

 Esta herramienta permite representar la información de forma dinámica e interactiva, facilitando la exploración de patrones y comparaciones entre países, años y tipos de delito.

Power BI LA UNIVERSIDAD EN INTERNET

barras

Gráficos de barras agrupadas para comparar tasas de asaltos sexuales, homicidios y prisioneros.

barras

Gráficos de barras agrupadas para comparar tasas de asaltos sexuales, homicidios y prisioneros.

Highlight por defecto

barras

Gráficos de barras agrupadas para comparar tasas de asaltos sexuales, homicidios y prisioneros.

Gráfico de líneas

Evolución de homicidios (2014–2022).

Comparativa de la tasa de homicidios por localización

Mapa de burbujas

Geográfico con integración de bing maps.

Preparación en Python

- Carga de datos con Pandas (read_csv()).
- Mismos pasos de limpieza que en Power BI: [13]: eliminación y renombrado de columnas.

```
[1]: import pandas as pd
    df_prisioneros= pd.read_csv('Crime prisoners by age and sex.csv')
    df_homicidios= pd.read_csv('Intentional homicide per country.csv')
    df_violenciasex= pd.read_csv('Sexual assault.csv')

[13]: #Limpiamos columnas del df de prisioneros.
    columnas_eliminadas= ['DATAFLOW', 'LAST UPDATE', 'freq', 'age', 'sex', 'unit', 'OBS_FL df_prisioneros= df_prisioneros.drop(columns= columnas_eliminadas)
    df_prisioneros.head()
```

	geo	TIME_PERIOD	OBS_VALUE
0	Albania	2013	4998.0
1	Albania	2014	5689.0
2	Albania	2015	5981.0
3	Albania	2016	6031.0
4	Albania	2017	5674.0

```
[23]: #Quitamos paises que no quiero
paises_deseados= ['Sweden', 'Netherlands', 'Romania', 'Spain', 'Lithuania', 'Germany']
df_prisioneros = df_prisioneros[df_prisioneros['geo'].isin(paises_deseados)]
#df_prisioneros['geo'].unique()
df_prisioneros.head()
```


Preparación en Python

- Carga de datos con Pandas (read_csv()).
- Mismos pasos de limpieza que en Power BI: eliminación y renombrado de columnas.
- Unificación de los tres datasets con merge() → dataset único consolidado.

```
#Juntamos los 3 datasets limpios
#primero junto el df_prisioneros y el de df_violenciasex
df_combinado = df_prisioneros.merge(df_violenciasex, on=['País', 'Año'])

#Merge con homicidios
df_completo = df_combinado.merge(df_homicidios, on=['País', 'Año'])
```

	País	Año	Tasa_prisioneros	Tasa_asaltos_sexuales	Tasa_homicidios
0	Germany	2014	63228.0	34959	645.00
1	Germany	2014	63228.0	34959	0.80
2	Germany	2014	63228.0	34959	34959.00
3	Germany	2014	63228.0	34959	43.28
4	Germany	2014	63228.0	34959	7345.00

df_completo.head()

gráficos Python+Matplotlib

Con Matplotlib podemos Representar correctamente los datos, pero con limitada interactividad y personalización.

Gráfico de barras

Gráfico de barras agrupadas

gráficos Python+Plotly

Se integra Plotly para añadir interactividad y atractivo visual.

barras

Reproducción de las gráficas de Power Bl con funciones dinámicas (hover, filtrado, selección).

gráficos Python+Plotly

Mapa burbujas

Incorporación manual de coordenadas geográficas para posicionar los países.

Preparación en Tableau

- Tableau Prep para limpieza y transformación visual.
- Construcción de flujos de trabajo con pasos secuenciales (filtros, uniones, tipos de datos).

Preparación en Tableau

- Tableau Prep para limpieza y transformación visual.
- Construcción de flujos de trabajo con pasos secuenciales (filtros, uniones, tipos de datos).
- Exportación del resultado limpio a Tableau Desktop.
- Carga algo más lenta, pero flujo reproducible y estable

gráficos Tableau

barras agrupadas

Muestran tasas de homicidios, prisioneros y asaltos sexuales por país.

Uso de paletas diferenciadas para facilitar la comparación.

líneas

Representa la evolución temporal de la tasa de homicidios por país.

mapa burbujas

Integra automáticamente OpenStreetMap sin necesidad de configuración.

tabla Evaluación técnica

Criterio	PowerBI	Python+Plotly	Tableau
Facilidad de uso	Alta	Baja	Media
Calidad Visual	Alta	Variable	Media
Rendimiento	Bueno	Muy bueno	Dispar
Flexibilidad de análisis	Medio	Alto	Media
Curva de aprendizaje	Bajo	Alto	Media

Apartado 05 Conclusiones

Resultados por objetivo

- Se identificaron las fortalezas y limitaciones técnicas de cada herramienta.
- Todas las plataformas permitieron generar visualizaciones homogéneas (barras, líneas, mapas, burbujas).
- Tableau facilita la exploración visual directa, Power Bl la integración rápida, y Python la profundización analítica.

Apartado 05 Conclusiones

Aplicabilidad institucional

- Power Bl / Tableau: ideales para informes periódicos en organismos públicos o agencias.
- Python: recomendable para investigación académica o desarrollos a medida.

No existe una herramienta "mejor", sino la más adecuada al contexto y perfil del usuario

