CS 5180 Fall 2022

Exercise 7: Function Approximation

Hongyan Yang

...

ш

1. 1 point. (RL2e 10.1) On-policy Monte-Carlo control with approximation.

1.	On-policy Monte Carlo control with approximation
0	Gradient Monte Carlo for Estimating 2 29th or 9.TT
-	Input: a differential able action-value function parameterization &: SXAXRa >R
_	Input: a policy TI (if estimating 977)
_	Algorithm parameters: step size 0, small E = 0
_	Initialize value-function weights w ERd orbitrarily (eg. W=0)
_	Lop for each episode:
_	Initialize and store So # terminal, t=0.
1	Select and store an action Ao NT (Isis) or E-greedy wrt & (So, w)
4	Observe and store the next reward as R++1 and next state as S++1
	While Styl is not terminal, then:
	Select and store an action Attinti(So) or E-greedy unt & (So; w)
_	t+=1, Observe and store the next reward as R++1 and next state S++1
	T = t + 1
	G= Ei=1 yi-1R;
	w ← w + α[G- (So, Ao, w)] ∇ (So, Ao, w)
3	It is reasonable not to give pseudocode for them because Monte-Carlo
	control is an co-step TD method in nature. It takes a step size of the
	length of the whole episode.
3	As can be inferred from Figure 10.4 and because of the noture of Monte-
_	Carlo method. The algorithm will perform poorly as it suffers from high
	Variance in w due to non-botstrop and slow convergence.

2. 1 point. (RL2e 10.2) Semi-gradient expected SARSA and Q-learning.

2	Semi-gradient expected SARSA and Q-learning
(a)	Episodic Semi-gradient Expected SARSA for extincting of = 9*
	Input: a differentiable action-value function parameterization 9: SXAXRd >R
	Algorithm parameters: Stepsize 0/20, Small E20
	Initialize Value-function weights we Rd arbitrarily (e.g., w=0)
	Loop for each episode:
	S, A tinitial state and action of episode (e.g., E-greedy)
	Loop for each step of enisode:
	Chasevaction A observe R, S' based on policy (e.g., E-gready)
	If S is terminal:
	$\omega \leftarrow \omega + \alpha [R - \hat{q}(S, A, \omega)] \nabla \hat{q}(S, A, \omega)$
	an to next enicode
	w + w + α[R+ ≤η(a S) ê(S', a, w) - ê(S, A, w)] √ê(S, A, w)
	Sts'
(b),	Change the third to last above line of algorithm to
	W ← W+ d[R+ max & (s', a, w) - & (s, A, w)] \ \(\frac{1}{2} \) (s, A, w)
	to derive seni-gradient Q-learning

3. 4/6 points. Four rooms, yet again.

(b) Code/plot: [5180] Please implement the following two state aggregation strategies, and plot the learning curves.

3161	Written:
	Based on the Averaged discounted return plot. Aggregating the states will help
	to boost the learning speed. Because there's fever feature weights to be
	estimated along with a smaller state space. However, we should not aggregate
	the states as much as possible because an aggregated state space will be too
	small to derive an "accurate" optimal policy and a vague policy will result in
	poor overall performance measured by accumulated return.
<u>3</u> 4	Written:
	Yes, there's a difference between the results of semi-gradient SARSA and
	Q-learning. Unlith identical state-aggregation, Q-learning converges to a
	greedy policy while SARSA converges to an E-greedy policy. The discounted return
	is slightly higher under Q-learning and have quicker learning rate
	(2) with 2x2 and room aggregation, Q-learning converged with a slower
	learning rate and have higher variance.
	Written:
0	The constant feature is necessary as it prevents the bias resulting from
	forcing the linear function approximation to pass the origin. Without it the
	performance measured by discounted return will suffer from higher variance
	because of the inherent bias to pass the origin and will have lower convergence
	results. I incorporated actions into features by concatenate one-hot action
	after state-features in the form of [x,y, 1, up, dan, left, right].
(2)	It performs norse than State aggregation. Because this time we incorporate
	actions into features, which approximates the original Q values in a much higher
	degree. Also, the feature generated by only state's coordinates doesn't consider
	any polynomial terms to consider interactions between features.
1	•

(c) [Extra credit.] 1 point. Implement the semi-gradient one-step Q-learning and resolve (a) and questions above. Comment on whether there is a difference between the results of semi-gradient SARSA and semi-gradient Q-learning?

3. (d) Code/plot/written:

3. (e) Code/plot/written:

Written:
The linear function approximation with pormalized state coordinates performs
The linear function approximation with pormalized state coordinates performs better than the strategy without namedization. And the strategy includes
distance performs better than all the others. It shows the importance to
pick the right teatures in linear function approximation and with only a teature
added the overall performance differs greatly.