A13,27/14:1820

MECHANICAL PROPERTIES OF PLASTIC LAMINATES

Information Reviewed and Reaffirmed

September 1958

No. 1820

UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE

MECHANICAL PROPERTIES OF PLASTIC LAMINATES

By

FRED WERREN, Engineer

Forest Products Laboratory, 2 Forest Service U. S. Department of Agriculture

Summary

This report presents the results of tension, compression, bending and shear tests of 14 laminated plastic materials. Tests of laminates were made after the specimens had been subjected to normal or to wet conditioning. The mechanical properties of the laminates, both dry and wet, are presented in the form of tables and by average stress-strain curves.

The results of the glass-fabric-polyester laminates are considered to be typical of laminates made with any polyester resin conforming to U. S. Air Force Specification 12049 and a specific glass fabric with finish 114. The mechanical properties of such laminates are substantially reduced after exposure to wet atmospheric conditions.

Introduction

This study was made to determine the mechanical properties parallel to the orthotropic axes of several plastic laminates, in tension, compression bending, and shear. The laminates tested include some that are now in considerable use for certain structural applications, especially aircraft, and others that have not been generally used.

This progress report is one of a series prepared and distributed by the Forest Products Laboratory under U. S. Navy, Bureau of Aeronautics No. NAer Order 00793 and U. S. Air Force No. USAF-P0-33-038 (50-1078-E). Results here reported are preliminary and may be revised as additional data become available. Original report published Feb. 1951.

² Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

The primary purpose of the study was to obtain typical data on the mechanical properties, dry and wet, of laminates made of a glass fabric (with finish 114) and a polyester resin conforming with the requirements for Types I, II, and III of U. S. Air Force Specification 12049. Available data indicate that such a laminate, made from a specific glass fabric, will have about the same strength properties regardless of the type of polyester resin used. Further, the reduction in strength properties after wet conditioning is about the same for all such laminates. Thus, any polyester resin conforming to the above requirements may be used with a selected glass fabric, and the mechanical properties of the resultant laminate may be estimated from the corresponding values reported herein. This assumes, of course, that accepted and comparable fabrication techniques will be employed.

The typical data reported herein may be used also for other purpose. For example, the data may be used to estimate the strength at any angle to the warp direction or to estimate the strength of cross laminates or of laminates made of a combination of fabrics.

It should be noted that the strength properties are based on tests of specimens from flat panels. It is not to be expected that the values reported herein will be typical of structural parts molded to curved forms.

Results of tests of plastic laminates have been reported from many other sources, but they are too numerous to mention here. There is much variation between their reports in the types of resins and fabrics used, molding pressures and temperatures, test methods and conditions, and like factors. The laminates for the tests reported herein are considered to be reasonably representative of other laminates made by similar fabrication procedures.

Tests were made after normal or after wet conditioning. The wet test condition simulates service conditions that might exist after exposure to a tropical climate.

This investigation was made at the U.S. Forest Products Laboartory at Madison, Wis., between February 1949 and May 1950. It was made in cooperation with ANC-17 Panel on Plastics.

Forest Products Laboratory Reports No. 1803 (April 1949) and 1803-A (April 1950), "Directional Properties of Glass-Fabric-Base Plastic Laminates of Sizes That Do Not Buckle."

Forest Products Laboratory Report No. 1821, "Mechanical Properties of Cross-Laminated and Composite Glass-Fabric-Base Plastic Laminates." February 1951.

Description of Material

Two 36- by 36-inch panels of each laminate supplied the specimens for these tests. The glass-fabric-base plastic laminates were made at the Forest Products Laboratory, and the cotton-fabric panels were purchased from the manufacturer of that type of laminate.

All panels were parallel laminated, including those of cotton fabric. The fabrication methods are indicated briefly in table 1, except that the procedures employed in making the cotton-fabric panels are not known.

The 11 laminates made with resin 2 were fabricated by essentially the same procedures. The lay-up of fabric and resin was made between cellophane-covered, 1/4-inch-thick aluminum cauls. After impregnation and lay-up, each panel was cured at a pressure of 14 pounds per square inch for 1 hour and 40 minutes in a press at a temperature gradually increasing from 220° to 250° F. Pressure was applied by means of an oil-filled steel bladder located on the bottom platen of the press.

The two panels made with resin 1 were made by methods slightly different from those just mentioned. The sheets were impregnated separately and rolled up to permit the resin to soak into the fabric. After about 16 hours the sheets were unrolled and laid up in panel form. The panels were cured between cellophane-covered aluminum cauls at a pressure of 14 pounds per square inch for 1 hour and 30 minutes in a press at a temperature of 220° F.

For the panels made with resin 9 the individual sheets were impregnated and hung up to dry overnight at room temperature. The panel was laid up the following day and pressed between cellophane-covered aluminum cauls at a pressure of 75 pounds per square inch for 1 hour and 30 minutes in a press at a temperature of 275° F.

In general, the two panels of each type of laminate were reasonably comparable in thickness, specific gravity, resin content, and Barcol hardness. The panels made of glass mat were, however, and exception. Although similar methods were used in fabrication, the panels are quite different due to the difference in resin content. No explanation is offered for this substantial variation.

After the pressing was completed, each panel was trimmed to size with a metal-cutting band saw. The panel was carefully measured and weighed, and the overall average resin content and specific gravity were calculated. Barcol hardness readings (fig. 1) were also made at various positions on each face of the panel. General information concerning each panel is included in table 1.

The cutting diagram for a typical laminated panel is shown in figure 2. The system of numbering clearly identifies each specimen. For example, specimen TA90-1-5-1 indicates:

- T = Tension (C for compression, F for bending, and V for shear)
- A = Type of laminate. In this case, glass 112-114, resin 2
- 90 = Angle of loading to direction of warp of laminations
- 1 = Project number
- 5 = Panel number
- 1 = Specimen number. Odd numbers tested dry; even numbers tested wet.

The tension, compression, and bending specimens were cut from glass-fabric panels with a 1/8-inch emery wheel rotated at 1,770 revolutions per minute in the arbor of a variable-speed table saw. This method of cutting assured square and smooth edges. The loading edges of the wet compression specimens were, however, ground flat with a surface grinder before testing to eliminate any slight distortion that might have taken place during the wet conditioning. The cotton-fabric panels were cut with a high-speed-steel circular saw. All tensile specimens were finished to the desired shape and curvature by use of an emery wheel mounted on a shaper head.

Panel shear specimens were cut to shape with a metal-cutting band saw.

Testing

General

Tension, compression, and bending specimens were conditioned to what is herein referred to as a "dry" (normal) or "wet" condition. Dry specimens were those conditioned for at least 1 month at a temperature of 75° F. and a relative humidity of 50 percent. Wet specimens were also conditioned as above, weighed, and then conditioned for at least 2 months more at a temperature of 100° F. and a relative humidity of near 100 percent. The wet tension and bending specimens were reweighed just before test to obtain a value of "percentage weight increase."

Panel shear specimens were not conditioned as above. The method of test and type of conditioning is described under "Panel Shear Tests," which follows.

Dry and wet specimens were stored in their respective atmosphere until time for test. The specimens were then removed and tested as soon as practicable under ordinary room conditions.

Tension Tests

The tensile specimens used in these tests were 16 inches long and of the thickness of the laminate. The maximum sections at the ends were 1-1/2 inches wide and 2-7/8 inches long. The minimum section at the center was 0.8 inch wide and 2-1/2 inches long. The maximum and minimum sections were connected by circular arcs of 20-inch radius tangent to the minimum section. This type of specimen was selected because it has a long tapered section that greatly reduces the

stress concentration at the test section. Experience has shown that the failure is not appreciably influenced by restraint at the ends of the specimen and generally occurs at the minimum section of the specimen.

The specimens were tested in a mechanical testing machine equipped with Templin tension grips (fig. 3). Load was applied at a head speed of about 0.035 inch per minute, and load-deformation readings were taken to failure. The strains were measured parallel to the applied load across a 2-inch gage length with a pair of Marten's mirrors reading to 0.0000l inch. The specimens failed suddenly in tension when the maximum load was reached.

Compression

The compression specimens used in these tests were 1 inch wide, 4 inches long, and of the thickness of the laminate. The specimens were loaded on the 1-inch ends and restrained from buckling by means of the apparatus illustrated in figure 4, which is described elsewhere. 5

The specimens were loaded by means of a testing machine employing a spherical head. Load was applied at a head speed of about 0.012 inch per minute, and load-deformation readings were taken at regular increments of load until failure. The strains were measured parallel to the applied load with gages mounted on opposite edges of the specimen. For the dry specimens, a pair of Marten's mirrors were used at a 2-inch gage length. In the tests of wet specimens, Tuckerman strain gages of 1-inch gage length were employed.

A slight modification of the above procedure was required for the specimens of cotton-fabric laminate. Because of its low modulus of elasticity, excessive deformation occurred that made it impossible to use the restraining apparatus at higher loadings. Each specimen was therefore loaded in the apparatus to a stress well beyond the proportional limit so that the elastic properties might be determined. The load was then removed, and a specimen, 1 inch wide and 3/4-inch high, was cut from the center of the original specimen. The small specimen was then carefully alined in the testing machine without lateral support and loaded to failure.

For all specimens, the failure occurred suddenly when the maximum load was reached. Although there were slight differences in the character of failure between different laminates, all failures (including dry and wet specimens) were of the same type. Failures were a combination of transverse shear failure and crushing of the fibers, sometimes followed by some delamination of the specimen. A typical type of failure is shown in figure 5.

A. S. T. M. Designation D805-47, "Methods of Testing Plywood, Veneer, and Other Wood-Base Materials." 1947.

Bending Tests

Bending specimens were tested flatwise in a mechanical testing machine. The specimens were about 1/2 inch wide, 6 inches long, and of the thickness of the laminate, and were tested over a span of 4 inches. The contact edges of the end supports were of 1/8-inch radius, and the center loading piece had a radius of 3/8 inch. The rate of head travel was about 0.078 inch per minute, corresponding to a unit rate of fiber strain of about 0.007 inch per inch of outer fiber length per minute. Load was applied at the center of the specimen, and the deflection was measured with a dial gage (reading to 0.001 inch) having its spindle in contact with the bottom of the specimen at the center (fig. 6). Simultaneous readings of load and deflection were taken until the specimen failed at the maximum load.

In general, the glass-fabric laminates appeared to fail by a combination of compression and tension in both the dry and the wet conditions. Failure on the compression side was usually due to shear (as in the compression specimens described previously) and might be called a compression-shear type of failure. In most cases, this compression-shear type of failure probably occurred first, with the tension failure following immediately. There were only two laminates that failed differently from this general type. The 143-114 laminate failed in compression-shear at 0°, but in tension at 90°, and the cotton-fabric laminate failed in tension at both 0° and 90°.

Panel Shear Tests

The panel shear specimens were cut somewhat to the shape of a formee cross, the outline of which is that of figure 7. The part of the specimen common to the four arms of the cross was 3 inches square. Four pairs of machine-steel plates (fig. 8) having the shape of the arms of the cross, excluding the 3-inch square at the center, were bonded to the arms, with one plate on each side of each arm. Each plate was alined to its mate, during the bonding process, by two pins. When bonding was completed, machine bolts were added and tightened so that the specimen would be clamped between two plates. An assembled specimen with rollers and roller pins in place is shown in figure 7.

The load was applied to the rollers through triangular steel pieces that directed the load along the edges of the 3-inch-square central section of the specimen. Thus a condition of approximately pure shear was obtained in this section. The apparatus is shown, set up ready for test, in figure 9.

Load was applied at a head speed of about 0.01 inch per minute. Load and compression strain readings were taken at regular intervals of load. Strain measurements were made on opposite faces with a l-inch-gage-length Tuckerman strain gage reading to 0.00001 inch. (Note that figures 7 and 9 show metalectric strain gages attached to the specimen. This was an exploratory specimen; metalectric gages were not used in the tests reported herein.)

There was considerable variation in the type of failure due to the shear stresses. Some of the laminates failed in the plane of maximum tension some

failed in the plane of maximum compression, some failed in shear along the warp or fill direction, and others failed by a combination of tension or compression with shear. In the laminate reinforced with glass mat, the maximum shear stress could not be developed because of failure in the bond between the metal plates and the specimen.

The reference to dry and wet test conditions in shear differs from that described for tension, compression, and bending tests. For the dry shear tests, the specimens were conditioned at a temperature of 75° F. and a relative humidity of 50 percent for at least 1 month prior to test. The steel plates were bonded to the arms of the specimen in a hot press, at a temperature of about 320° F., for 2 hours at a pressure of 200 pounds per square inch. The panel was tested as soon as the specimen had cooled to room temperature. Under these conditions, the moisture content of the specimen was undoubtedly lower than that of the other types of specimens that had been subjected to normal conditioning. The specimens to be used for wet tests were cut to shape and then conditioned at a temperature of 80° F. and 97 percent relative humidity for at least 1 month. When ready to test, the steel plates were cemented to the arms of the specimen (in the 80° F., 97 percent relative humidity room) with a room-temperature-setting adhesive. The assembled specimen was taken from the conditioning room just before test and was then tested as described previously.

Presentation of Data

Table 1 indicates the fabrication methods used in making the various laminated panels and gives some general information on each cured panel.

Average values from tension, compression, and bending tests are given in tables 2, 3, and 4, respectively.

Table 5 presents the results of the individual shear tests, including some that had been wet conditioned.

The ratios of wet-to-dry properties for the laminates are given in table 6. At the bottom of the table are included the average ratios for the 10 laminates made of glass cloth and resin 2. (Values from items 1-12, 1-14, 1-15, and 1-19 are not included in these averages.)

A series of average stress-stain curves in tension, compression and shear, and average load-deflection curves in bending are shown in figures 10 through 23 for each laminate. From the origin to the proportional limit, the curves are made to represent the average properties given in tables 2 through 5. beyond the proportional limit, they represent average tendencies from the load-deformation data.

The relationship between tangent modulus and stress, in compression and shear, is shown in figures 24 through 37 for each laminate. These curves are plotted from the corresponding average stress-strain curves of figures 10 through 23.

Discussion of Results

General

The mechanical properties of the 14 laminates reported herein are presented in the form of both tables and curves. Thus the dry and wet values may be readily compared by either method. The results from the various types of tests will be discussed separately.

Incidental to obtaining the mechanical properties of the laminates some information was gathered on the dimensional and weight change due to wet conditioning. Tension and bending specimens were measured and weighed after dry conditioning before being subjected to the wet atmosphere. The specimens were remeasured and reweighed just before test, and the linear measurements thus recorded were used for calculating the mechanical properties observed in test. Actually, the change in dimension due to wet conditioning was small for all laminates, averaging roughly 1 percent increase in thickness and less than 1/2 percent increase in width. Similarly, the percentage increase in weight was small. These values of weight change are given with the properties for tension and bending in tables 2 and 4 respectively.

The small absorption of moisture does, in general, appreciably lower the mechanical properties of the laminate. The series of curves included in this report are intended, in part, to help visualize the changes resulting from wet conditioning. Table 6, which gives the ratios of wet properties to the corresponding dry ones, is also a convenient method of comparison.

The results tabulated in table 6 show that the mechanical properties of the glass-fabric laminate made with the phenolic resin (resin 9) were affected much less by wet conditioning than those made with the polyester resins (resins 1 and 2). This was true in tension, compression, and bending tests, and it would probably also apply to shear. It is of interest to note, however, that the percentage weight increase due to wet conditioning was more than three times greater for the 181-114, (9) laminate than for 181-114, (2) laminate.

The 128-114 fabric used in item 1-13 was approximately the same as the 128-114 fabric used in item 1-3, but it was made by a different manufacturer. Dry and wet properties of these two laminates were reasonably comparable, but those of the laminate under item 1-13 were slightly lower. The manufacturer of this latter fabric has, however, since reportedly imporved his manufacturing techniques. It is expected that subsequent 128-114 fabric may be assumed to be the same as the 128-114 fabric tested under item 1-3.

The laminated panels reinforced with M-503 mat varied considerably in resin content and in other properties, although the same techniques were used in making each. In addition, another panel was manufactured, but it was culled because of its poor quality. It appears that improved techniques would be required to manufacture uniform flat panels of this type. Because of the variation of the two panels tested, the average values of each have been reported separately in both tables and curves.

Detailed discussion on each of the laminates is not included in this report because the information is presented in both tables and curves and is therefore readily available. It should be remembered that all panels for these tests were parallel laminated, including the one made of 143-114 fabric. Some dry tests of composite and cross-laminated glass-fabric laminates have been made in connection with this program, and these are reported in another publication.

The average wet-to-dry ratios for the mechanical properties of 10 laminates made of glass fabric with resin 2 are given at the bottom of table 6. These values were averaged because each laminate was made from a glass fabric, a single resin, and by the same fabrication techniques, and the ratios of the wet-to-dry properties are reasonably comparable. The ratios from the other polyester laminate (item 1-14) are also comparable. The ratios of wet strength to dry strength, expressed as percentages, are roughly as follows: (1) tension (0° and 90°), 80 percent; (2) tension (45°), 65 percent; (3) compression (0° and 90°), 60 percent; and (4) bending (0° and 90°), 65 percent.

Tension

The significance of the dual straight lines that occur in many tensile stress-strain curves of laminates, and that result in initial and secondary values of modulus of elasticity and proportional limit, has been questioned for some time. A previous report on the effect of prestressing indicates that once the material has been stressed beyond the initial proportional limit, the initial tensile properties are changed. If the material is stressed as high as the secondary proportional limit, these dual properties are no longer present. Thus, these data indicate that the dual values reported with tensile properties are probably not significant for ordinary structural applications of the material and might be replaced by a single value of modulus of elasticity and of proportional limit. The report suggests that, in the absence of additional data, the secondary values of modulus of elasticity and proportional limit might be reasonable values to use for most design purposes. The above comments are applicable to specimens that were tested in the dry condition.

A study of the dry and the wet tensile values included in this report minimizes further the significance of the dual values. While there may be about 15 or 20 percent difference between the initial and secondary moduli in the dry condition, the difference is usually well under 10 percent for specimens tested in the wet condition, and in some cases the dual values do not appear to exist. It would seem, therefore, that the wet secondary values of modulus of elasticity and proportional limit might also be reasonable values to use when designing for laminates to be used in the wet condition.

Forest Products Laboratory Report No. 1811, "Effect of Prestressing in Tension or Compression on the Mechanical Properties of Two Glass-Fabric-Base Plastic Laminates." September 1950.

It may be noted that the above comments are applicable particularly to glass-fabric polyester laminates. In the 181-114, (9) laminate, the tensile properties were about the same in both the dry and the wet conditions.

Wet conditioning caused a greater percentage reduction in the tensile properties at 45° than at the 0° or 90° angles of loading.

Compression

The results of compression tests, table 3, show that dual values were not observed in compression, with the exception of the M-503 laminate in the dry condition. When tested in the wet condition, the dual characteristics of this laminate likewise did not appear to be present. Occasionally, a specimen of some other laminate would seem to have dual-line tendencies, but these were indefinite. Where these tendencies did appear to exist, the test was in the dry condition and the difference in the slopes of the lines was small. Therefore, for practical consideration, a single value of modulus of elasticity and of proportional limit seems applicable to the fabric-reinforced laminates.

Examination of the average stress-strain curves in compression shows that most curves do not deviate greatly from initial straight portion to failure. Thus the value of 0.2 percent offset stress is usually equal to the ultimate stress.

Bending

The bending tests were made as described previously under "Testing," and the results are given in table 4.

Panel Shear Tests

The difficulty of making an accurate shear test has long been recognized. Although approximately pure shear stresses may be applied to a panel when first loaded, subsequent deformation or local failures cause a complication distribution of stress. However, the type of apparatus used for these tests has proven reasonably satisfactory for other shear tests of glass-fabric laminates. The correlation between experimental and theoretical shear values is included in the reports of these previous tests.

An examination of the results of individual shear tests shows that the agreement of properties between the two or more tests of a laminate is generally good (table 5). Values of ultimate stress are especially in good agreement. In the three instances where these values are not given, the ultimate stress was not attained because failure occurred in the laminate between the metal plates.

The theoretical shear stress has been calculated for each laminate from the corresponding results of tension tests at 0°, 45°, and 90°. The equation used in making these calculations is taken from a previous report.

$$\frac{1}{F_{x}^{2}} = \frac{\cos^{4}\theta}{F_{a}^{2}} + \frac{\sin^{4}\theta}{F_{b}^{2}} + \frac{\sin^{2}\theta}{F_{ab}^{2}} + \frac{\cos^{2}\theta}{F_{ab}^{2}}$$
(15)

where $\theta = 45^{\circ}$

 $F_x = F_{45} = \text{maximum tensile stress at } 45^{\circ}$

F_a = maximum tensile stress at 0°

F_b = maximum tensile stress at 90°

A comparison of observed and theoretical values of ultimate stress in the dry condition (columns 7 and 9 of table 5) shows that values are in reasonable agreement, but that the observed values are generally higher. This is as expected because, as has been mentioned previously, the panel shear test specimen undoubtedly had a lower moisture content than the related tensile specimens and the shear strength would thus be expected to be higher. From these dry tests it would appear that the shear strength could be calculated from the tension tests, as has been mentioned in previous reports on glass-fabric laminates.

A comparison between observed and theoretical values from tests in the wet condition (columns 13 and 15 of table 5) indicates poor agreement between these values. The theoretical shear strength (based on tensile tests) is considerably lower than the observed shear strength. This may be due, in part, to differences of temperature and of moisture absorption that might result from the conditioning methods. Tensile specimens were conditioned at 100° F. and near 100 percent relative humidity, but the closed containers used for this conditioning were not adaptable to the storage and gluing required for the panel shear specimens. The shear specimens were, therefore, placed in the conditioning room maintained at 80° F. and 97 percent relative humidity, which was the only suitable room available with atmospheric conditions near those desired. Results of bending tests show that the bending properties of specimens conditioned at 100° F. are slightly lower than those of specimens conditioned at 75° F., even though the relative humidity is about the same. A similar effect might be expected in shear. Another factor that might account for a difference in shear strength is that the width of the shear specimen in the plane of the panel is 3 inches, while in the tension specimen it is only 0.8 inch. It might be expected that vapor or water would penetrate through the laminate more readily along the fibers than through the thickness of the laminate, although no such comparative tests have been made at this Laboratory. Thus it would appear that moisture absorption and consequent strength reduction would be greater for tensile specimens because of the combination of higher temperature and shorter distance for moisture penetration. It is believed that since

Forest Products Laboratory Report No. 1819, "Effect of Moisture Absorption on Flexural Properties of Glass-Fabric-Polyester Laminate." October 1950.

⁷

the laminated materials remain orthotropic even when in the wet condition, the theoretical analysis should apply. Therefore the theoretical values (based on wet tension tests) are probably more nearly representative of the wet shear strength at 100° F. than the panel-shear-test values themselves. Wet shear strength would be expected to be roughly 60 percent of the dry strength for glass-fabric-polyester laminates.

The equation previously given is not applicable to the laminated panels made of M-503 mat, since this material might be considered isotropic in the plane of the laminate.

Conclusions

The mechanical properties of the 14 laminates tested for this study may be seen by reference to the tables and curves presented in this report. Results for the glass-fabric-polyester laminates are considered to be typical of laminates made with specific glass fabrics with finish 114 and any polyester resin conforming to U. S. Air Force Specification 12049.

Wet conditioning, in general, substantially reduced the mechanical properties of glass-fabric-polyester laminates. Ratios of wet strength to dry strength, expressed as percentages, were roughly as follows: (1) tension (0° and 90°), 80 percent; (2) tension (45°), 65 percent; (3) compression (0° and 90°), 60 percent; and (4) bending (0° and 90°), 65 percent.

The dry mechanical properties of the single glass-fabric-phenolic laminate tested were generally a little less than those of the comparable polyester laminate. However, the properties of the phenolic laminate were only slightly decreased after wet conditioning, and were higher than those of the wet polyester laminate.

In tension, at 0° and 90° loading, the ratio of initial to secondary modulus of elasticity in the wet condition was usually considerably less than the same ratio in the dry condition. It appears that secondary values of modulus of elasticity and of proportional limit would probably be satisfactory for most design purposes. Actually, the secondary modulus from the wet tests is, on the average, only a few percent less than the corresponding modulus of elasticity from the dry tests.

There is reasonable agreement between observed and theoretical values of shear strength in the dry condition, but the agreement is not good in the wet condition. Actually, the theoretical wet values are expected to be near the true wet strength at 100° F., and, if used, would be conservative values.

APPENDIX 1

Description of Laminating Resins and Fabrics Used in Making Laminates

- Resin 1.--A high-temperature-setting, high-viscosity, laminating resin of the polyester (diallyl phthalate-alkyd) type.
- Resin 2.--A high-temperature-setting, low-viscosity, laminating resin of the polyester (styrene-alkyd) type.
- Resin 9.--A high-temperature-setting laminating resin of the phenolic type.
- Glass Fabric. -- All glass fabric is of the weave listed in table 1, and of finish 114. Except for items 1-13 and 1-19, the fabric and mat were purchased from Manufacturer A. The 128 fabric for item 1-13 was purchased from Manufacturer B.
- Cotton Fabric. -- The cotton-fabric-base phenolic panels were purchased from Manufacturer C. The laminate was reinforced with 8.15-ounce cotton fabric, and the resin content was about 50 percent by weight.

Table 1.--Fabrication methods used in making laminated panels and general information on cured panels

			Fabricati	lon methods			:	Average val	ues from cu	red panel	
	Type of :	Resin <u>l</u>	Number :	: Pressure	: Temperature	Time of cure			Specific:		
	:	:	:	P.s.i.	°F.	Min.	:	Inch		Percent	:
1 - 1	Glass 112 - 114	2	84	14 : 14	220 - 250	100	5 6	0.250	1.71 1.70	43.5 43.4	69 69
1 - 2	: Glass : 116 - 114	2	70	14	220 - 250	: 100	: 60 : 61	.243 .249	1.83	34.0 35.1	69 68
	: Glass : 128 - 114	2	: 36	: 14 :	220 - 250	: 100	: 12 : 13	.245 .244	1.80	35.0 34.8	67 67
1 - 4	: Glass : 162 - 114	2	17	14 : 14	220 - 250	100	: 52 : 53	.252 .254	1.76 1.76	37.7 38.2	62 62
	Glass: 143 - 114	2	26 :	1 ⁴	220 - 250	100	: 7 : 8	.247 .247	1.85 1.85	32.2 32.1	69 70
*	: Glass : 120 - 114	2	61 :	14 :	220 - 250	100	14 15	.256 .250	1.72 1.74	41.8 40.9	71 71
1 - 8	Glass : 181 - 114	2	: 23 :	14 : 14	220 - 250	100	16 17	.249 .244	1.77 1.77	37.8 36.8	69 70
	: Glass : 182 - 114	2 :	18	: 14 :	220 - 250	100	: 63 : 64	.245 .245	1.82 1.84	33.4 33.8	68 66
1 - 11	Glass : 184 - 114	2	9	: 14 :	220 - 250	100	55 56	.238 .238	1.87 1.87	30.1 29.9	67 67
	: Glass mat : M-503	2	13	14	220 - 250	100	: 18 : 68	.268 .338	1.69 1.61	32.6 43.9	62 55
	: Glass 2 : 128 - 114	2	36 :	: 14 :	220 - 250	100	: 27 : 28	.264 .262	1.78 1.79	40.3 40.0	: 71 : 69
1 - 14.	: Glass : 181 - 114	1	23	14	220	. , , -	19 20 271	. 263 . 266 . 248	1.81 1.80 1.85	42.8 42.8 40.2	74 73 68
1 - 15	: Glass : 181114	9	: : 23 :	: : 75	275	90	: 65 : 66	.231 .236	1.83	35.3 35.8	61 58
1 - 19	Cotton 4	Phenolic	: 16 :		• • • • • • • • •		: 50 : 51 :	.260 .254	1.36 : 1.36 :		47 46

key to fabrics and resins in appendix.

²Fabric for this laminate made by different manufacturer than fabric used in item 1 - 3.

²Special panel, 12 by 12 inches, for shear test only.

 $[\]frac{h}{L}$ Cotton-fabric-base phenolic, postforming stock. Panels furnished by commercial manufacturer.

Z м 85622 F

Table 2.-Fesults of tension tests of laminated plastic specimens after normal or wet conditioning. Six specimens tested in each direction for each laminate

Item	Panel	Laminate	Con-		Loaded parallel		0°) to warp of laminations	aminations		I	Loaded perpendicular (90°) to warp	dicular (9	0°) to warp	of leminations	: 900	Loaded	Loaded at 45° to warp of laminations	of laminat	lone
	. 00		altion		Modulus of elasticity : Proportional limit	Proportion		Ultimate	Increase	Modulus of elasticity		: Proportional limit	1	1 0	Increase	Modulus : Pr	i o		Increase
				Initial :	Secondary	Initial :	: Secondary	88000	·	Initial :	Secondary	Initial :	Initial : Secondary	Brress	in weignt	or :	TIBIT	Brrees	in weight=
(1)	(2)	(3)	(†)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(21)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
				1,000 p.8.1.	1,000 P.8.1.	P.8.1.	P.s.1.	P.8.1.	Percent	1,000	1,000 p.8.1.	P.8.1.	P.8.1.	P.8.1.	Percent	1,000 P.8.1.	P.8.1.	P.8.1.	Percent
	5, 6	: 112 - 114, (2)	A 34	2,690	2,390	11,780	29,480	31,900	1.36	2,640	2,240	9,800	27,050 14,900	38,660	1.48	1,540	3,760	20,560	1.42
1 - 2	60, 61	: 116 - 114, (2)	A 34	3,570 : 2,810 :	5,010 :	5,960	29,300	1,7,010	57.	2,950 :	2,640	8,200	33,110 19,340	46,680 33,180	.62	1,850	3,740 :	22,790	
1 - 3	12, 13	12, 13 : 128 - 114, (2)	ДЗ	5,590 : 3,150 :	3,140	6,660 : 8,240 :	29,100	51,610	1.00	2,760 : 2,370 :	2,160	6,450	24,460	39,640	1.07	1,790	3,940 : 2,160 :	23,360	1.15
7 - 1	52, 53	: 162 - 114, (2)	 	3,160	2,840	069'9	22,580	45,160	.78	2,220	1,730	4,510	16,700 6,500	29,710	65.	1,520	4,120	17,180	
л - е	7,8	: 143 - 114, (2)	A 34		5,690 4,990		61,680	89,850	16.	1,690	077 077	2,650	8,460	9,120	1.18	1,660 :	3,890 :	14,000	1.15
1 - 7	14, 15	: 120 - 114, (2)	Α3	5,060	2,720	12,380	37,510 21,700	49,780	1.18	2,970	2,560	6,580	26,370	46,800 38,470	1.24	1,870 :	3,720 :	25,450 :	1.27
1 - 8	16, 17	: 181 - 114, (2)	Α3	2,950	2,626	7,020 : 5,030 :	29,270	49,100	.78	2,800 : 2,770 :	2,420	6,710	25,120	45,380 38,790	-82	1,770 :	3,700	22,930 :	42.
6 - 1	63, 64	: 182 - 114, (2)	А3	3,210 :	2,800	6,250	28,840	51,230	79	3,050 : 2,760 :	2,600	5,980	26,720	50,160	61	1,850	3,600	21,790	1/L
1 - 11 :	55, 56	55, 56 : 184 - 114, (2)	Α34	3,510 : 2,970 :	3,110 :	7,260:	29,550	53,720	57.	2,950 : 2,600 :	2,460	5,640	24,690 19,250	45,020		1,930	3,730	18,940	92.
1 - 12 :	18	: M-503, (2)	А	1,990	1,550	4,870	11,980	28,540		2,090 :	1,680	5,960	17,600	28,420	. 21	2,050	21 4,310	27,280	
	99	: M-503, (2)	≱ A	1,860	1,580	3,790	9,860	22,920 : 24,500 :	.56	1,930	1,570	4,230	14,290	25,340		2,180	11,220	26,260	%: :
			3		1,300		8,980	18,510	89.		1,420		8,020	19,190	. 19.		10,440	19,700	.93
1 - 15 :	27, 28	27, 28 : 128 - 114, (2)	ΑЗ.	2,810	2,750	6,670 :	25,990	36,840	.83	2,650 : 2,380 :	2,080	5,360	21,350	28,290	8.	1,580	5,310 : 2,580 :	19,630	76.
1 - 14	.: 19, 20	: 181 - 114, (1)	Αз.	2,690 :	2,410	5,610 : 5,770 :	25,210 : 22,830 :	43,450	1.93	2,530 : 2,500 :	2,280	5,630	22,520	41,970 35,920	1.96	1,300 :	3,630	20,150	1.99
1 - 15 :	65, 66	65, 66 : 181 - 114, (9)	A 34	2,980 ::	2,580	6,940 :	27,570	45,450	2.99	2,830 :	2,520	6,420	25,330	43,520	2.64	1,770	4,720 :	21,000	2.15
1 - 19 : 50,	51	: Cotton fabric	A 34		1,050 :		2,930	9,530	2.82		1,030		2,610	10,430	2.37	076	3,860	8,410 :	2.92
1 2		9																	

D = Dry, conditioned at 75° F. and 50 percent relative humidity.

W = Wet, conditioned at 100° F. and near 100 percent relative humidity.

Elnorease in weight = weight after wet conditioning - weight after normal conditioning X 100 veight after normal conditioning

21 = initial value; 8 = secondary value

Frantic for this laminate made by different manufacturer than fabric used in item 1 - 3

NO E	× ×		100										
				Thickness	Modulus of elasticity	Proportional:	: 0.2 percent offset stress	Ultimate:	Thickness	Modulus of elasticity	Proportional : limit stress :	0.2 percent offset stress	: Ultimate
(7)	(2)	(5)	(†)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)	(†7)
1	1 1 1 1 1 1 1			Inch	1,000 p.s.1.	P.B.1.	P.B.1.	P.B.1.	Inch	1,000 p.s.1.	P.8.1.	P.8.1.	P.8.1
	5, 6	112 - 114, (2)	Αз	0.248	2,820 2,470	23,250	36,840 28,360	. 36,840 : 28,360	0.254	2,630	21,620	32,900 21,860	: 32,900 : 21,860
cu	60, 61	116 - 114, (2)	ДЗ	247	3,200	17,960	28,900 16,660	28,900	.249	3,120	17,630	26,460	26,460 13,960
· · · · ·	12, 13:	128 - 114, (2)	ДЗ	.241 .245	3,690	15,530	25,980	25,980	.251	2,830	15,820	25,810 15,080	: 25,810 : 15,080
77 -	52, 53:	162 - 114, (2)	AB	.250	2,810	12,530	18,680 10,860	18,680	.258	2,190	16,210 :	21,240	: 21,240 : 12,400
9 -	7, 8	143 - 114, (2)	ДЗ	.245 .246	5,180	36,680 28,360	51,980 32,990	51,980	.253	1,590	11,450	20,660	: 21,920 : 14,130
- 7	14, 15:	120 - 114, (2)	ДЗ	.254	2,960	23,170	35,220 24,540	. 35,220 : 24,540 :	.253	2,880	18,470	30,600	30,600 20,440
ω	16, 17:	181 - 114, (2)	Аз	. 242 . 243	3,300	22,530 18,550	34,510	: 34,510 : : 23,940 :	249 249	3,170	22,780 : 17,220 :	36,350	: 36,350 : 22,340
6	63, 64	182 - 114, (2)	Αз	245 745	3,140 2,920	25,120 16,880	34,270 21,870	34,270 : 21,870 :	.248 .248	3,000	21,880	27,720	27,720 19,670
11 ::	55, 56:	184 - 114, (2)	Αз	.237	5,330	24,600	28,400	: 28,400 : : 17,330 :	.242 545.	2,960	20,150	25,670	: 25,670 : 16,450
	18	M-503, (2)	A 3A 3	. 259 . 263 . 348 . 348	2, 2,290 1,900 2, 2,210 1,540 1,540 1,860 1,370	=1 10,270 = 18,960 = 6,410 = 6,440 = 6,290 = 6,290	24,200 11,340 21,070 9,370	25,920 11,340 21,660 9,370	. 3472 . 3474 . 348	[21 2,280 5] [21 2,000 5] [21 2,160 5] [21 2,160 5] [21 2,180 5] [21 2,180 5] [21 2,180 5] [21 2,180 5]	21 14,190 8 20,770 6,910 8 13,830 6,380	25,970 12,250 22,010 9,500	25,970 12,250 23,510 9,300
13 :	27, 28:2128	_ 2128 - 114, (2) : :	ДЗ	261 .264	3,470	15,680 : 9,680 :	27,690	27,690 : 13,780 :	.268	2,980	15,180	28,550 14,680	: 28,550 : 14,680
14 ::	19, 20:	20: 181 - 114, (1)	Αз	.272	2,650	26,140	33,070 24,240	. 33,070 . 24,240	.262	2,890	19,950	36,320	36,320
15	65, 66	66: 181 - 114, (9) : 51: Cotton fabric	A 2 A 3	253 253 253 253	3,040 3,200 940 780	24,220 24,220 3,200	32,560 31,650 6,830	32,560 31,650 23,040 15,650	.232 .253 .253 .265	3,110 3,060 930	27,320 20,720 3,260 1,390	29,800 28,510 6,970 4,580	29,800 28,510 23,270 14,790

W = Wet, conditioned at 100° F. and near 100 percent relative humidity.

^{21 =} initial value; s = secondary value.

Zrabric for this laminate made by different manufacturer than fabric used in item 1 - 3.

Table 4.--Results of bending tests of laminated plastic specimens after normal or wet conditioning. Specimens were 1/2 inch wide and center-loaded over a 4-inch span. Six specimens tested in each direction for each laminate

	: Increase 2	(16)	Percent	0.92				. 98.		1.01		1.03		85	1.64	3.36	3.96
minations	Modulus of rupture	(15)	P.8.1	: 48,340 : 29,960	: 38,810 : 24,300	: 39,840 : 23,260	: 32,470 : 23,470	18,080 14,550	. 45,320 : 27,650	: 50,290 : 31,700	47,520 33,360	. 43,980 : 29,380	58,650 18,910 51,900 18,550	. 40,080 : 23,640	: 53,320 : 32,660	: 43,830 : 39,350	: 18,680 : 17,500
to warp of la	0.2 percent offsst yield stress	(14)	P.8.1.	48,340	38,570 24,300	39,280 22,940	28,450	10,320	45,320	50,200 31,540	46,140 33,100	42,380 28,030	32,260 18,240 31,260 18,400	39,340 23,240	52,770 32,660	43,830 39,350	10,590
Span perpendicular (90°) to warp of laminations	Proportional limit stress	(13)	P.8.1.	26,430	26,280 16,610	19,810	15,300	5,620 4,250	24,890 21,660	29,500	31,400 24,750	27,670 19,930	15,980 13,530 16,110 14,910	22,440 14,310	33,680 25,050	36,140 29,440	6,380 4,918
Span per	: Modulus : of : elasticity	(12)	1,000 p.s.1.	2,400	2,690	2,470	1,920	1,440	2,580	2,640	2,730	2,550	1,950 1,310 1,550 1,180	2,580	2,550	2,450	960
	Depth	(1)	Inch :1	0.251 :	.248 :	.247 .248	.253 .254	.248 :	.250	.253 .	.247 .248	.242 .243	.262 .269 .351	.262 .	.260	.236 :	.256 :
	In weight	(10)	Percent	1.02	: : : : : : : : : : : : : : : : : : :	02.	: : : : : : :		46.		82.	1.11			1.64	3.74	3.65
ations	Modulus of rupture	(6)	P.8.1.	58,260 38,130	43,800 : 27,260 :	46,950 26,070	36,550 23,850	93,540	57,320	55,340 33,830	50,280	48,190 32,230	36,370 18,980 33,200 18,120	43,520	56,160	51,190	16,910 : 15,380 :
o warp of lamin	0.2 percent offset yield stress	(8)	P.8.1.	58,260 38,130	43,800 27,160	46,410 25,860	33,750 22,010	93,540 47,480	57,320 35,150	54,410	50,280 33,430	43,580 30,590	28,430 18,460 32,860 17,790	43,520	55,520 35,120	51,190 44,600	10,030 8,060
Span parallel (0°) to warp of laminations	Proportional :	(7)	P.8.1.	31,000	28,650 20,040	26,080 15,360	19,890 14,970	85,300	32,380 27,510	34,200	39,480 25,450	34,780 : 21,470 :	13,040 13,080 19,120 11,570	27,440	31,560	37,420 31,190	5,850
Spen	Modulus : of elasticity:	(9)	1,000 p.8.1	2,590 : 2,180 :	2,860 : 2,590 :	3,180 2,700	2,660	4,750 : 4,320 :	2,660	2,810 : 2,450 :	2,790 : 2,620 :	2,870 : 2,850 :	2,020 1,410 1,710 1,460	3,030	2,680	2,640 : 2,810 :	910 : 710 :
	Depth:	(5)	Inch :1	0.250 :	.248 :	.237	.250 :	: 742. : 248	.258 :	.252 :	.251 :	: 542. : 242.	245 246 364 365	. 259 : 260 :	.262	.235 :	.254 :258 : 878
Con-1:	d1t1on-	(†)	 	ДЗ	ДЖ	Αз	А.	ДΣ	ΑΣ	ДЖ	Α≥	Α.Σ	A 3 A 3	ΩΞ	ΩΣ	ΩЖ	ДВ
Laminate	•• •• •• •	(3)	112 - 114, (2)	116 - 114, (2) :	128 - 114, (2)	162 - 114, (2) :	143 - 114, (2) :	120 - 114, (2) :	181 - 114, (2) :	182 - 114, (2) :	184 - 114, (2) :	M-503, (2)	2128 - 114, (2)	181 - 114, (1) :	181 - 114, (9)	Cotton fabric :
l				• •• ••									M-503				
		(2)		5,6	: 60,61	: 12,13	52,53	: 7,8 :	: 14,15	; 16,17 :	63,64	55,56	18	: 27,28	: 19,20	99'59 :	50,51
Item	NO.	(1)		1 - 1	1 - 2	1 - 3	1 - 4	1 - 6	1 - 7	1 - 8	1 - 9	1 - 11	1 - 12	1 - 13	1 - 14	1 - 15	1 - 19

10 = Dry, conditioned at 75° R. and 50 percent relative humidity.

W = Wet, conditioned at 100° F. and near 100 percent relative humidity.

Encrease in weight = Weight after wet conditiong - weight after normal conditioning x 100 Febric for this laminste made by different manufacturer than fabric used in item 1 - 5.

Conton fibril Conton fibri					Dry condition1						Wet condition1			
(1)	Panel No.	: Laminate	Modulus of rigidity	Proportional limit stress	0.2 percent: offset yigld: stress	Ultimate	Type of failure2:	Theoretical ultimate stress.	Modulus of rigidity			Ultimate	Type of failure2	Theoretical ultimate stress
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(2)	(5)	(7)	(5)	(9)	(1)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1,000	P.8.1.	P.B.1.	P.8.1.	• • • •	P.8.1.	1,000	P.8.1.	P.B.1.	P.8.1.		P.8.1.
116 - 114, (2) 668 1,680 3,490 11,260 C 12,140 128 - 114, (2) 596 2,900 4,290 14,120 S and T 12,580 129 - 114, (2) 593 2,110 14,700 11,690 S 9,160 120 - 114, (2) 593 2,110 14,700 11,690 S 9,160 120 - 114, (2) 566 2,160 14,180 11,510 S 9,120 602 2,410 121 - 114, (2) 566 2,160 14,180 11,180 C 11,440 11,180 122 - 114, (2) 664 2,250 14,180 11,180 C 11,440 601 124 - 114, (2) 664 2,250 14,180 11,180 C 11,440 11,180 125 - 114, (2) 664 2,250 14,180 11,180 S 12,210 601 126 - 114, (2) 664 2,250 14,180 11,180 S 12,210 601 127 - 114, (2) 664 1,180 11,180 S 11,180 11,180 128 - 114, (2) 664 2,250 14,180 11,180 S 12,210 601 129 - 114, (2) 664 1,180 11,180 S 11,180 S 11,180 120 - 114, (2) 664 1,180 11,180 S 11,180 S 11,180 121 - 114, (3) 665 1,180 14,180 11,180 S 11,180 121 - 114, (4) 560 1,180 14,180 S 11,180 S 11,180 121 - 114, (4) 560 1,180 14,180 S 11,180 S 11,180 121 - 114, (4) 560 1,180 S 11,180 S 11,180 121 - 114, (5) 561 1,180 S 1,180 S 1,180 S 11,180 121 - 114, (6) 561 1,180 S 1,180 S 1,180 S 11,180 121 - 114, (6) 561 1,180 S 1,180 S 1,180 S 11,180 121 - 114, (7) 561 1,180 S 1,180 S 1,180 S 11,180 121 - 114, (8) 561 1,180 S 1	6.0	: 112 - 114, (2)	652 672	1,920	3,840 : 4,300 :	13,430	H EH	11,010	1,175 1,024 1,034	2,130	1,080 1,600	11,640	00	6,790
128 - 114, (2) 596 1,990 3,990 14,126 S 9,160 162 - 114, (2) 558 2,300 4,290 11,590 S 9,160 162 - 114, (2) 568 2,340 4,700 11,690 S 9,160 113 - 114, (2) 646 2,340 4,900 13,030 S 9,290 662 2,400 113 - 114, (2) 646 2,450 4,360 14,270 T 12,470 4,50 110 - 114, (2) 666 2,450 4,360 14,270 T 12,470 4,61 1,480 111 - 114, (2) 664 2,660 1,570 15,750 C 11,440 1,480 1,700 182 - 114, (2) 660 2,530 4,560 10,360 S 12,210 1,480 184 - 114, (2) 662 2,530 4,760 10,360 S 1,440 1,480 184 - 114, (2) 662 2,750 4,760 10,360 S 1,480	60	: 116 - 114, (2)	608	1,680	3,450	11,260	00	12,140						7,050
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	: 128 - 114, (2) :	596	1,990	3,990 :	14,220	and S	12,580						7,340
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 52		593	2,110	4,700 : 4,920 :	11,690	യയ	9,160				1		6,140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-8	143 - 114, (2)	: 646 : 881	2,870	4,800 : 4,410 :	13,030	യയ	9,290	602	2,410	4,140	8,080	 	5,080
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14		578 606 598	2,530 2,160 2,140	4,380 : 4,120 : 4,190 :	14,270	HO	12,470	450	1,860	3,480	10,440	00	7,230
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	181 - 114, (2)	60 ⁴	2,660	4,630	16,180	യയ	12,210	620 617	1,700	3,640	10,770	S pure 2	7,860
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69	182 - 114, (2)	: 612 : 522	1,630	3,840 :	10,350	00	11,440						7,150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	184 - 114, (2)	572 650	2,750	4,100 : 4,700 :	10,690	ΗØ	9,850	482 500	1,250	2,910 : 5,620 ::	7,220	C and S	6,510
5128 - 114, (2) 610 2,280 4,350 14,020 C 10,670 466 2,000 181 - 114, (1) 666 1,730 4,560 12,400 s and C 10,690 2,000 181 - 114, (1) 666 1,730 4,560 12,400 s and C 10,690 181 - 114, (1) 566 1,730 4,500 15,060 s and C 11,150 181 - 114, (9) 560 1,730 4,510 11,020 s and C 11,150 Cotton fabric 336 1,800 3,780 7,610 T 5,110	18	: 2M-503, (2)	980	: 4,380 :		513,150								
181 - 114, (1) 666 1,730 4,560 12,400 S and C 10,690 5 56 1,530 4,560 12,400 S and C 556 1,530 4,590 15,060 S 1		5128 - 114, (2)	610	2,280	4,350	14,020	ပတ	10,670	1,66	2,190	5,770	9,110	C and S	6,950
181 - 114, (9) 560 1,790 4,510 11,020 S and C 11,150 Cotton fabric 336 1,800 3,780 7,610 T 5,110 T 5,110	12 00 00 00 00 00 00 00 00 00 00 00 00 00	181 - 114, (1)		1,730 2,830 1,530 2,020	4,560 4,590 4,590	12,400		10,690						6,890
Cotton fabric 336 1.800 3.780 7.610 T 5,110	69	181 - 114, (9)	560	1,790	, 510 , 140	11,020	end	11,150						8,980
	50	Cotton fabric	356	1,800	3,780 : 3,780 :	7,610	EH EH	5,110						1,740

1Dry specimens tested shortly after specimen was removed from hot press. Wet specimens conditioned at 80° F. and 97 percent relative humidity.

20.2 percent offset yield stress is stress at point where strain deviates 0.002 inch per inch from initial straight line of stress-strain curve in shear.

Zrype of failure indicated as primarily S (shear), T (tension), or C (compression) or a combination thereof.

 $\frac{1}{2}$ Theoretical ultimate stress calculated from results of tension tests at 0°, 45°, and 90°.

2Poor failure. Ultimate stress probably higher than value given.

Exabric for this laminate made by different manufacturer than fabric used in item 1 - 3.

_Excludes items 1 - 12, 1 - 14, 1 - 15, and 1 - 19.

Figure 1. --Barcol hardness tester used for comparing the surface hardness of various plastic laminates.

ZM 79027 F

Figure 2. --Cutting diagram for laminated plastic specimens, from 1/4- by 36- by 36-inch panels.

Figure 3. -- Tensile test used in testing plastic laminate specimens.

Figure 4. --Compression pack test of the type used in testing plastic laminate specimens.

ZM 81129 F

Figure 5. -- Typical failure of plastic laminate compression specimen.

ZM 78990 F

Figure 6.--Static bending set-up used in testing plastic laminate specimens.

ZM 81128 F

Figure 7.--Panel shear apparatus used in testing plastic laminates.

ZM 80082.F

Figure 8. -- Drawing of 3-inch panel shear apparatus used in testing plastic laminate specimens.

2 M 60098 F

Figure 9.--Method of testing plastic laminate panel shear specimens. Strain measurements can be made with metalectric gages (shown) or with other types.

Figure 10. -- Average stress-strain curves in tension, compression, and shear, and load-deflection curves in bending for laminate made of 112-114 glass fabric and resin 2.

Figure 11. -- Average stress-strain curves in tension, compression, and shear and loaddeflection curves in bending for laminate made of 116-114 glass fabric and resin 2.

Figure 12. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 128-114 glass fabric and resin 2.

Figure 13. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 162-114 glass fabric and resin 2

Figure 14. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 143-114 glass fabric and resin 2

Figure 15. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 120-114 glass fabric and resin 2.

Figure 16. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 181-114 glass fabric and resin 2.

Figure 17. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 182-114 glass fabric and resin 2.

Figure 18. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 184-114 glass fabric and resin 2

Figure 19. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of M-503 glass-fiber mat and resin 2. Curves shown for both panels 18 and 68.

deflection curves in bending for laminate made of 128-114 glass fabric and resin 2. (The 128-114 fabric represented by this figure was made by a different manufacturer than was that for which results are given in figure 12.)

Figure 21. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 181-114 glass fabric and resin l.

Figure 22. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of 181-114 glass fabric and resin 9.

Figure 23. -- Average stress-strain curves in tension, compression, and shear, and loaddeflection curves in bending for laminate made of cotton fabric and phenolic resin.

Z M 85375 F

Figure 24. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 112-114 glass fabric and resin 2. Based on curves of figure 10.

7. M 85376 F

Figure 25. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 116-114 glass fabric and resin 2. Based on curves of figure 11.

Z M 85377 F

Figure 26. --Relationship between tangent modulus and stress in compression or shear for laminate made of 128-114 glass fabric and resin 2. Based on curves of figure 12.

z м 85378 г

Figure 27. -- Relationship between tangent modulus and stress in compression or shear, for laminate made of 162-114 glass fabric and resin 2. Based on curves of figure 13.

z м 85379 F

Figure 28. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 143-114 glass fabric and resin 2. Based on curves of figure 14.

Z M 85380 F

Figure 29. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 120-114 glass fabric and resin 2. Based on curves of figure 15.

z m 85381 f

Figure 30. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 181-114 glass fabric and resin 2. Based on curves of figure 16.

Z M 85382 F

Figure 31. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 182-114 glass fabric and resin 2. Based on curves of figure 17.

z m 85383 f

Figure 32. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 184-114 glass fabric and resin 2. Based on curves of figure 18.

Z M 85384 F

Figure 33. --Relationship between tangent modulus and stress in compression or shear, for laminate made of M-503 glass-fiber mat and resin 2. Based on curves of figure 19.

и 85385 г

Figure 34. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 128-114 glass fabric and resin 2. Based on curves of figure 20. (The 128-114 fabric represented by this figure was made by a different manufacturer than was that for which results are given in figure 26.)

z м 85386 F

Figure 35. --Relationship between tangent modulus and stress in compression or shear, for laminate made of 181-114 glass fabric and resin 1. Based on curves of figure 21.

Z M 85387 F

Figure 36. -- Relationship between tangent modulus and stress in compression or shear, for laminate made of 181-114 glass fabric and resin 9. Based on curves of figure 22.

z M 85388 F

Figure 37. -- Relationship between tangent modulus and stress in compression or shear, for laminate made of cotton fabric and phenolic resin. Based on curves of figure 23.

JE 8 '64

UNIVERSITY OF FLORIDA 3 1262 08928 6271