Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	21 October 2022
Team ID	PNT2022TMID33098
Project Name	Project – Real Time River Water Quality Monitoring System
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional	User Story	User Story / Task	Story Points	Priority	Team
	Requirement (Epic)	Number				Members
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with python code	2	High	Subashini,
						Akshaya
Sprint-2	Software	USN-2	Creating device in the IBM Watson IoT	2	High	Varshini,
			platform, workflow for IoT scenarios using			Akshaya,
			Node-Red			Sundaravalli
Sprint-3	MIT App Inventor	USN-3	Develop an application for the real time	2	High	Subashini,
			river water quality management project			Sundaravalli,
			using MIT App Inventor			Varshini
Sprint-3	Dashboard	USN-3	Design the Modules and test the app	2	High	Subashini,
						Sunderavalli
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2	High	Varshini,
J			To make the user to interact with software.	_	9	Akshaya

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022		05 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022		12 Oct 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022		15 Oct 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/

https://www.atlassian.com/aqile/tutorials/burndown-charts

Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/aqile/tutorials/how-to-do-scrum-with-iira-software

https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/aqile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts