09.07.2019 г.

<u>Задача 6</u>. Нека Σ и Ω са две непразни и непресичащи се азбуки. За дума $w \in (\Sigma \cup \Omega)^*$ с $w_{\Sigma} \in \Sigma^*$ означаваме редицата от букви от Σ в реда, в който се срещат в w. Думата $w_{\Omega} \in \Omega^*$ се дефинира аналогично.

За езици $L_1 \subseteq \Sigma^*$ и $L_2 \subseteq \Omega^*$ с $L_1 \otimes L_2$ означаваме езика:

$$L_1 \otimes L_2 = \{ w \in (\Sigma \cup \Omega)^* \mid w_\Sigma \in L_1, w_\Omega \in L_2 \text{ и } |w_\Sigma| = |w_\Omega| \, \}$$

Винаги ли е вярно, че:

- 1. Ако L_1 е краен, то $L_1 \otimes L_2$ е регулярен?
- 2. Ако L_1 и L_2 са регулярни, то езикът $L_1 \otimes L_2$ е регулярен?

Отговорите да се обосноват. Отговор, който не е обоснован, се оценява с 0 точки.