Lecture notes of Analysis

Penggao Yan

October 2023

Chapter 1

Introduction

1.1 Lecture 1

• P1. 导论

• Create Date: 26 Oct. 2023

• Last Update: 7 Nov. 2023

Chapter 2

L1-L10

2.1 Lecture 2

- P2. 最小上界、最大下界、Dedekind cut、数列极限的定义与性质
- Create Date: 26 Oct. 2023
- Last Update: 27 Oct. 2023

2.1.1 最小上界、最大下界、Dedekind cut

Definition 2.1.1 (Upper bound and lower bound). Let $S \subseteq \mathbb{R}$ and $r \in \mathbb{R}$, we say that:

1. r is an upper (resp. lower) bound of S if

$$\forall s \in \mathcal{S}, r \ge s \text{ (resp. } \forall s \in \mathcal{S}, r \le s).$$
 (2.1)

- 2. r is the greatest (resp. least) element of S if
 - (a) r is an upper (resp. lower) bound of S; and
 - (b) $r \in \mathcal{S}$.

We can use the notation:

$$r = \max \mathcal{S} \text{ (resp. } r = \min \mathcal{S}).$$
 (2.2)

3. r is the least upper (greatest lower) bound of S if

$$r = \min \{ u \in \mathbb{R} | u \text{ is an upper bound of } \mathcal{S} \}$$

(resp. $r = \max \{ u \in \mathbb{R} | u \text{ is a lower bound of } \mathcal{S} \}$).

We can use the notation:

$$r = \sup \mathcal{S} \text{ (resp. } r = \inf \mathcal{S}).$$
 (2.4)

Exe 0: 自己举例,任选一个集合 S,判断它是否有上下界,如果有分别是多少。

在 least upper (or greatest lower) bound, 我们最常用到的定理是什么?

- "比 least upper bound 小的不是 upper bound, 比 greatest lower bound 大的不是 lower bound". 这可以作为脑子里的一个反证工作。
- Every $r \in \mathbb{R}$ is an upper and lower bound of \emptyset . 我们可以从定义出发来想这件事,因此,我们一般不会谈论空集的上下界。

对于第二点,我们有如下 convention:

1. We write

$$\sup \mathcal{S} = \infty \text{ (resp. inf } \mathcal{S} = -\infty), \qquad (2.5)$$

if and only if (iif.) S has no upper (resp. lower) bound. If this is the case, we say that $\sup S$ (resp. inf S) doesn't exist.

2. $\mathcal S$ is bounded from above (resp. below) iff. $\mathcal S$ has an upper (resp. lower) bound.

Definition 2.1.2 (Dedekind cut). Let $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}$. We say that $(\mathcal{A}, \mathcal{B})$ is Dedekind cut (of \mathbb{R}) if

- 1. $\mathcal{A} \neq \emptyset \neq \mathcal{B}$, and
- 2. $A \cup B = \mathbb{R}$, and
- 3. $\forall a \in \mathcal{A}, b \in \mathcal{B} \ [a < b].$

We usually call \mathcal{A} (resp. \mathcal{B}) the lower (resp. upper) part of $(\mathcal{A}, \mathcal{B})$.

From now on (until Dr. Qi say stop), we assume that $\mathbb R$ has the following property:

(**Dedekind's gapless property**) If (A, B) is a D-cut of \mathbb{R} , then exactly one of the following happens:

- 1. $\max A$ exists but $\min B$ doesn't
- 2. $\min \mathcal{B}$ exists but $\max \mathcal{A}$ doesn't

We call $\max A$ in (1) (resp. $\min B$) is the cutting of (A, B).

Exe 1: We may define Dedekind cuts of \mathbb{Q} (or \mathbb{Z}) similarly. Does the Dedekind gapless property still hold for \mathbb{Q} (or \mathbb{Z})?

Hint: Consider $\mathcal{B} = \{x \in \mathbb{Q} | x > 0, x^2 > 2\}$. You are allowed to use the fact $\forall r \in \mathbb{Q}[r \neq 2]$.

Hint: 假设 $b \in \mathcal{B}$ 的最小数,我们需要在 \mathcal{B} 里面找一个比 b 更小的数.

2.1. LECTURE 2 7

Theorem 2.1.1 (Weierstrass). Let $\emptyset \neq S \subseteq \mathbb{R}$. If S has an upper bound, then $\sup S$ exists.

Proof. Let $\mathcal{B} = \{b \in \mathbb{R} | b \text{ is an upper bound of } \mathcal{S}\}$ and $\mathcal{A} = \mathbb{R} \setminus \mathcal{B}$. It is sensed that $(\mathcal{A}, \mathcal{B})$ is a D-cut of \mathbb{R} .

Goal: We need to show that $\min \mathcal{B}$ exists.

Step 1: Prove (A, B) is a D-cut of \mathbb{R} . Our thoughts are:

- 1. S has upper bound $\Rightarrow S \neq \emptyset \Rightarrow A \neq \emptyset$.
- 2. S has upper bound $\Leftrightarrow \mathcal{B} \neq \emptyset$.
- 3. $\mathcal{A} = \mathbb{R} \setminus \mathcal{B} \Rightarrow \mathcal{A} \cup \mathcal{B} = \mathbb{R}$.
- 4. For $a \in \mathcal{A}$ and $b \in \mathcal{B}$, we need to show that a < b. Were this false, then $a \geq b$, and hence a is a upper bound of \mathcal{S} , i.e., $a \in \mathcal{B}$. This is impossible. Therefore, a < b.

It is proved that (A, B) is a D-cut of \mathbb{R} .

Step 2: Prove min \mathcal{B} exists. Our thoughts are:

1. Were this false, according to Dedekind's gapless property, $\max A$ exists, denoted by a_0 . We have

$$a_0 \in \mathcal{A} \Leftrightarrow a_0 \notin \mathcal{B}$$

 $\Leftrightarrow a_0 \text{ is not an upper bound of } \mathcal{S}.$ (2.6)

This means at least one element in S is larger than a_0 , i.e.,

$$\Leftrightarrow \exists s_0 \in \mathcal{S} \ [a_0 < s_0] \,. \tag{2.7}$$

2. Since $a_0 < s_0$, s_0 cannot belong to \mathcal{A} , i.e.

$$\Leftrightarrow s_0 \notin \mathcal{A} \Leftrightarrow s_0 \in \mathcal{B}. \tag{2.8}$$

3. Choose x such that $a_0 < x < s_0$ (We can always find a x that satisfies this equation, e.g., $x = (a_0 + s_0)/2$). In this case, $x \in \mathcal{B} \Leftrightarrow x$ is an upper bound of \mathcal{S} . However, $s_0 \in \mathcal{S}$. This is impossible.

Therefore, $\min \mathcal{B}$ exists.

Exe 2. Prove the following statement:

(The Archimedean property) $\forall r \in \mathbb{R} \ [r > 0 \Rightarrow \exists n \in \mathbb{N} \ [1/n < r]]$. 直观理解:将整数 1 切为 n 等分,当 n 最够大的时候,每一份将比任意正实数小.

Hint: Rephrase this statement in a way linking it to the upper bounds of the set $S = \mathbb{N} \subseteq \mathbb{R}$. You can consider to prove whether an positive integer has an upper bound in \mathbb{R} .

Figure 2.1: Enter Caption

2.1.2 数列极限的定义与性质

Definition 2.1.3 (Limit). Let a_n $(n \in \mathbb{N})$ (or say $\{a_n\}_{n=1}^n$) be a sequence in \mathbb{R} and $L \in \mathbb{R}$. We say that a_n converges to L (as $n \to \infty$) if

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; [n \ge N \Rightarrow |a_n - L| < \epsilon] \; . \tag{2.9}$$

This means that 第 N 项后所有的项都要落在 Fig.2.1红色区间内.

<u>Terminology</u>. If such L exists (resp. doesn't exist), we call it the limit of a_n and call a_n is a convergent (resp. divergent)sequence. We can use the notation:

$$\lim_{n \to \infty} a_n = L. \tag{2.10}$$

Some generalized notations.

$$\lim_{n \to \infty} a_n = \infty \Rightarrow \forall M > 0 \ \exists N \in \mathbb{N} \ [n \ge N \Rightarrow a_n \ge M]$$
$$\lim_{n \to \infty} a_n = -\infty \Rightarrow \forall M > 0 \ \exists N \in \mathbb{N} \ [n \ge N \Rightarrow a_n \le M].$$
 (2.11)

In these two cases, we don't say that a_n is convergent.

Exe 3.

- 1. Prove that $\lim_{n\to\infty}a_n=L\ \lim_{n\to\infty}a_n=M\Rightarrow L=M.$ **Hint**. 分别在 L 和 M 处取一个小区间,让他们不相交,根据极限定义来证明(反证)。
- 2. Prove that $a_n(n \in \mathbb{N})$ is convergent $\Rightarrow \{a_n | n \in \mathbb{N}\}$ is bounded. **Hint**. a_n 收敛说明某项(例如 10,000 项)后,所有项都被包在某个区间内,这说明 10,000 项后所有项都是有界的。我们只需要再证明 10,000 之前的所有项也是有界的即可。
- 3. Prove that if $a_n \leq b_n$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = M$, then $L \leq M$. What if \leq is replaced by <?

Remark 2.1.1. Changing of removing finitely many terms in a_n does not affect $a_n (n \in \mathbb{N})$'s being convergent (and its limit)/divergent.

2.1. LECTURE 2

CTURE~2

Proposition 2.1.1. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$, then

- 1. $\lim_{n\to\infty} a_n \pm b_n = L \pm M$
- 2. $\lim_{n\to\infty} a_n b_n = LM$
- 3. if $M \neq 0$, then $b_n \neq 0$ for all but finitely many n, and $\lim_{n\to\infty} a_n/b_n = L/M$ (Hint: we can remove the terms with $b_n = 0$; removing finitely many terms in b_n does not affect b_n 's limit).

Proof. (1) Consider $|(a_n \pm b_n) - (L \pm M)|$, we have

$$|(a_n \pm b_n) - (L \pm M)| = |(a_n - L) \pm (b_n - M)|$$

$$\leq |a_n - L| + |b_n - M|$$
(2.12)

$$\forall \epsilon > 0 \ \exists N_1, N_2 \in \mathbb{N} \ [n \ge N_1 \Rightarrow |a_n - L| < \epsilon/2]$$

and $[n > N_2 \Rightarrow |b_n - M| < \epsilon/2].$ (2.13)

Let $N = \max\{N_1, N_2\}$. Then $n \ge N \Rightarrow |a_n - L| + |b_n - M| < \epsilon/2 + \epsilon/2 = \epsilon$. Therefore, $\forall \epsilon > 0 \ |(a_n \pm b_n) - (L \pm M)| < \epsilon$.

(2) Consider $|a_n b_n - LM|$, we have

$$|a_n b_n - LM| = |a_n b_n - L b_n + L b_n LM|$$

$$= |(a_n - L) b_n + L (b_n - M)|$$

$$\leq |a_n - L| |b_n| + |L| |b_n - M|.$$
(2.14)

Choose C > 0 such that $|b_n| \le C$ and $|L| \le C$ for all $n \in \mathbb{N}$ (PS: $|b_n| \le C$ 的存在性可以用 Ex.3(2) 证明). Then we have

$$|a_n - L| |b_n| + |L| |b_n - M| \le C |a_n - L| + C |b_n - M|$$
 (2.15)

(三角不等式)

9

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \left[n \ge \mathbb{N} \Rightarrow |a_n - L| < \frac{\epsilon}{2C} \text{ and } |b_n - M| < \frac{\epsilon}{2C} \right].$$
 (2.16)

Therefore,

$$|a_n b_n - LM| < C \times \frac{\epsilon}{2C} + C \times \frac{\epsilon}{2C} = \epsilon.$$
 (2.17)

Exe 4.

1. Prove (3) of Proposition 2.1.1.

Hint: $a_n/b_n = L/M$ can be written as $a_n \frac{1}{n_n} = L \frac{1}{M}$. You only need to prove $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{M}$ when $\lim_{n\to\infty} a_n/b_n = L/M$. Nevertheless, you are wellcome to prove this Proposition following the above process.

- 2. (Optional) What if $L = \pm \infty$ or $M = \pm \infty$ in Proposition 2.1.1.
- 3. If $a_n = \frac{1-(\frac{1}{2})^n}{1-\frac{1}{2}}$, prove that $\lim_{n\to\infty} a_n = \frac{1}{1-\frac{1}{2}}$. You can use knowledge learned so far.

Hint: 阿基米德性质.

2.2 Lecture 3

• P3. 單調數列的收斂性、區間套定理、Cauchy 數列的概念

• Create Date: 7 Nov. 2023

• Last Update: 7 Nov. 2023

2.2.1 單調數列的收斂性

Example If a>1, then $\lim_{n\to\infty} \frac{1}{a^n} = 0$.

$$\frac{1}{a^n} = \frac{1}{(1 + (a-1))^n} \tag{2.18}$$

Let b = a - 1 > 0, 利用二项式定理展开分母可得,

$$(1+b)^{n} \ge 1 + nb$$

$$\lim_{n \to \infty} \frac{1}{a^{n}} \le \lim_{n \to \infty} \frac{1}{1 + nb} = 0.$$
(2.19)

Since $\frac{1}{a^n} \ge 0$, we have $\lim_{n \to \infty} \frac{1}{a^n} = 0$.

Exe 1(Squzzing therome). If $a_n \leq c_n \leq b_n$ $n \in \mathbb{N}$, $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} b_n = L$, prove that $\lim_{n \to \infty} c_n = L$.

Hint: Use definition of limit.

Definition 2.2.1 (monotone). A seq. a_n $n \in \mathbb{N}$ in \mathbb{R} is

• nondecreasing monotone/ increasing (resp. nonincreasing monotone/ decreasing) if $\forall n \in \mathbb{N} \ a - N \leq a_{n+1}$ (resp. $\forall n \in \mathbb{N} \ a - N \geq a_{n+1}$), we use **notation**:

$$a_n \uparrow \text{ (resp. } a_n \downarrow \text{)}$$
 (2.20)

• strictly increasing (resp. strictly decreasing) if $\forall n \in \mathbb{N} \ a - N < a_{n+1}$ (resp. $\forall n \in \mathbb{N} \ a - N > a_{n+1}$), we use **notation**:

$$a_n \uparrow \uparrow \text{ (resp. } a_n \downarrow \downarrow \text{)}$$
 (2.21)

Theorem 2.2.1 (??). If $a_n \uparrow$ and $\{a_n | n \in \mathbb{N}\}$ has a upper bound, then a_n converges (to $\sup \{a_n | n \in \mathbb{N}\}$).

Proof. Our thinking are:

1. (use the limit property) $\{a_n|n\in\mathbb{N}\}$ has an upper bound $\Rightarrow L=\sup\{a_n|n\in\mathbb{N}\}$ exists. (ref. convention 2 in 2.1.1)

2.2. LECTURE 3 11

Figure 2.2: Illustrating proof of Them2.2.1.

2. (use the monotone property) We claim that $\lim_{n\to\infty} a_n = L$. Now we need to prove it:

 $\forall \epsilon \ L - \epsilon < L$ (which means $L - \epsilon$ is not an upper bound) and hence $\exists N \in \mathbb{N} [L - \epsilon < a_N]$, as shown in Figure 2.2. Therefore, we have

$$\forall n > N \left[a_N \le a_n \right] . \tag{2.22}$$

Since $a_N > L - \epsilon$ and $a_n \leq L + \epsilon$, we have

$$|a_n - L| \le \epsilon. \tag{2.23}$$

This is the proof of $\forall \epsilon \ L - \epsilon < L$.

Examples

1. A decimal expression (小数表示法) gives a real number: $0.d_1d_2d_3\ldots$

update on 0:29:29