

Département Génie informatique Première année GI1

Initiation aux réseaux informatiques

Partie 2 : Modèle de protocoles OSI, TCP/IP

Pr Khalid BOURAGBA

Les objectifs

Les étudiants seront capables de :

- Définir les architectures réseau
- Expliquer comment les règles sont utilisées pour faciliter la communication
- Expliquer le rôle des protocoles et des organismes de normalisation en tant que facilitateurs de l'interopérabilité des communications réseau
- Expliquer comment les périphériques d'un réseau local accèdent aux ressources dans un réseau de PME

Topologies de réseaux (1)

• Physique:

- Logique: la façon de laquelle les hôtes communiquent:
 - Broadcast
 - Passage à jeton
- Les topologies logiques et physiques les plus utilisées :
 - Point à point
 - Accès multiple
 - En anneau

Topologies de réseaux (2)

Topologies de réseaux (3)

Exemple de topologie logique

Principes de communication (1)

Éléments de communications Message Signal Signal Message Source du message Émetteur Support de transmission Précepteur Destination du message

Règles de communications

- → Ou protocoles de communication = règles appliquées pour réussir les communications, propres aux caractéristiques de la source, du canal de communication et de la destination du message.
- → Les protocoles définissent tout ce qui paramètre la façon dont un message est transmis et remis

K.BOURAGBA GI1-ESTC

Principes de communication (2)

Codage des messages

- → Un codage, de format adapté au support, se produit en communication informatique entre les hôtes.
- → Les messages envoyés sur le réseau sont tout d'abord convertis en bits, par l'hôte émetteur. Chaque bit est ensuite convertit en signal électrique, lumineux ou onde électromagnétique, selon le support du réseau.
- → L'hôte de destination reçoit et décode les signaux pour interpréter le message.

Principes de communication (3)

Formatage des messages

- → Chaque message informatique est encapsulé dans un format spécifique, appelé trame, avant d'être transmis au réseau.
- → La trame fournit l'adresse de la destination souhaitée et celle de l'hôte source
- → Le format et le contenu de la trame sont déterminés par le type de message envoyé et par le canal sur lequel ce dernier est transmis.
- → Les messages qui ne sont pas correctement formatés ne sont ni livrés ni traités par l'hôte de destination

Destination (adresse matérielle / physique)	Source (adresse matérielle / physique)	Indicateur de début (indicateur de début du message)	Destinataire (identificateur de destination)	Expéditeur (identificateur de la source)	Données encapsulées (bits)	Fin de la trame (indicateur de fin du message)
Adressage des trames		Message encapsulé K BOURAGBA GI1-ESTC				

Principes de communication (4)

Taille des messages

- → Lorsqu'un long message est envoyé par un hôte à un autre sur le réseau, il est nécessaire de décomposer le message en plusieurs petites parties selon les règles qui régissent la taille des « trames » transmises au réseau et selon le canal utilisé.
- → L'hôte source décompose les longs messages en parties répondant aux impératifs de taille minimale et maximale des trames.
- → Chaque partie est encapsulée dans une trame distincte, avec les informations d'adresse, puis est transmise au réseau.
- → Au niveau de l'hôte destinataire, les messages sont décapsulés et recomposés pour être traités et interprétés.

Principes de communication (5)

Synchronisation des messages

- → Synchronisation = l'un des facteurs qui affecte la réception et la compréhension d'un message
- → Trois techniques pour assurer la synchronisation :
 - → Méthode d'accès = détermine le moment d'accéder au support et transmettre ses informations, sans risque de collisions entre plusieurs informations, ou comment gérer ce problème s'il existe.
 - → Contrôle de flux = détermine la quantité d'information à envoyer ainsi que négocier la vitesse de livraison des messages, et s'ils ont été bien reçus
 - → Délai d'attente de la réponse = Les hôtes du réseau sont également soumis à des règles qui spécifient le délai d'attente des réponses et l'action à entreprendre en cas de délai d'attente dépassé

Principes de communication (6)

Modèles des messages

- → Trois modèles de messages, ou types de communication :
 - \rightarrow **Monodiffusion** \equiv il n'existe qu'une seule destination pour le message
 - → **Multidiffusion** = la source envoie le message à un groupe spécifique de destinataires
 - → Diffusion = le message est envoyé à tous les périphériques du réseau

K.BOURAGBA GI1-ESTC

Principes de communication (7)

Application des protocoles dans la communication

→ En fonction de la source, du canal et de la destination, les protocoles définissent les détails relatifs au format des messages, à la taille des messages, à la synchronisation, à l'encapsulation, au codage et au modèle de message standard

→ Un protocole contrôle :

- Comment est construit le réseau physique
- Comment les ordinateurs se connectent au réseau
- Comment les données sont formatées pour la transmission
- Comment ces données sont envoyées
- Comment traiter les erreurs

Protocoles

Protocoles réseau

- Format ou structure du message
- La méthode selon laquelle les périphériques réseau partagent des informations à propos des chemins avec d'autres réseaux
- Le mode et le moment de transmission de messages d'erreur et de messages systèmes entre les périphériques
- L'établissement et la fin des sessions de transfert de données

Protocoles

Interaction des protocoles

- Protocole d'application : protocole de transfert hypertexte (HTTP, Hypertext Transfer Protocol)
- Protocole de transport : protocole de contrôle de transmission (TCP, Transmission Control Protocol)
- Protocole Internet : IP (Internet Protocol)
- Protocoles d'accès au réseau : liaisons de données et couches physiques

Suites de protocoles

Suites de protocoles et normes de l'industrie

	TCP/IP	ISO	AppleTalk	Novell Netware
7 6 5	HTTP DNS DHCP FTP	ACSE ROSE TRSE SESE	AFP	NDS
4	TCP UDP	TP0 TP1 TP2 TP3 TP4	ATP AEP NBP RTMP	SPX
3	IPV4 IPV6 ICMPV4 ICMPV6	CONP/CMNS CLNP/CLNS	AFP	IPX
2	Ethe	ernet PPP Frame	e Relay ATM	WLAN

Suites de protocoles

Création d'Internet et développement de la suite de protocoles TCP/IP

Suites de protocoles

Suite de protocoles TCP/IP et processus de communication

K.BOURAGBA GI1-ESTC

Normes et protocoles réseau

Organismes de normalisation

Organismes de normalisation Normes ouvertes

- Internet Society (ISOC)
- Internet Architecture Board (IAB)
- Internet Engineering Task Force (IETF)
- Institute of Electrical and Electronics Engineers (IEEE)
- International Organization for Standards (ISO)

Organismes de normalisation ISOC, IAB et IETF

Organismes de normalisation

IEEE

- 38 sociétés
- 130 journaux
- 1 300 conférences par an
- 1 300 normes et projets
- 400 000 membres
- 160 pays
- IEEE 802.3
- IEEE 802.11

Organismes de normalisation ISO

Modèle OSI

K.BOURAGBA GI1-ESTC 22

Organismes de normalisation

Autres organismes de normalisation

- Electrical Industries Association (EIA)
- Telecommunications Industry Association (TIA)
- International Telecommunications Union Telecommunications Standardization Sector (ITU-T)
- ICANN (Internet Corporation for Assigned Names and Number)
- Internet Assigned Numbers Authority (IANA)

Avantages de l'utilisation d'un modèle composé de couches

K.BOURAGBA GI1-ESTC

Le modèle de référence OSI

K.BOURAGBA GI1-ESTC

Le modèle de référence TCP/IP

K.BOURAGBA GI1-ESTC

Comparaison des modèles OSI et TCP/IP

K.BOURAGBA GI1-ESTC

Encapsulation des données

Communication des messages

- Bénéfices de la segmentation des messages Possibilité d'intercaler des conversations différentes Communications réseau plus fiables
- Inconvénients de la segmentation des messages Augmentation de la complexité

Encapsulation des données

Unités de données de protocole (PDU)

- Données
- Segment
- Paquet
- Trame
- Bits

K.BOURAGBA GI1-ESTC

Encapsulation des données Encapsulation

Termes d'encapsulation de protocole Ethernet IP TCP Données Données utilisateur Segment TCP Paquet IP Trame Ethernet Données Serveur Web Web Client

Encapsulation des données **Désencapsulation**

Déplacement des données sur le réseau

Accès aux ressources locales

Accès aux ressources locales

Adresses réseau et adresses de liaison de données

Adresse réseau

Adresse IP source

Adresse IP de destination

Adresse de liaison de données

Adresse de liaison de données source

Adresse de liaison de données de destination

Accès aux ressources locales

Communication avec un périphérique sur le même réseau

Liaison de données En-tête de trame Ethernet		Couche réseau En-tête de paquet IP		

Destination	Source	Source	Destination	
CC-CC-CC-CC	AA-AA-AA- AA-AA	Réseau Hôte 192.168.1. 110	Réseau Hôte 192.168.1. 9	Données

PC1 192.168.1.110 AA-AA-AA-AA-AA

Serveur FTP

192.1680129

CC-CC-CC-CC-CC-CC

Accès aux ressources locales

Adresses MAC et IP

K.BOURAGBA GI1-ESTC

Accès aux ressources distantes

Passerelle par défaut

Accès aux ressources distantes

Communication avec un périphérique sur un réseau distant

Liaison de données _____ Couche réseau _____ En-tête de trame Ethernet En-tête de paquet IP

Destination	Source	Source	Destination	
11-11-11-11- 11-11	AA-AA-AA-AA- AA-AA		Réseau Périphérique 172.16.1. 99	Données

PC1 192.168.1.110 AA-AA-AA-AA-AA R1 192.168.1.1 11-11-11-11-11 **R2** 172.16.1.99 22-22-22-22-22

Serveur Web 172.16.1.99 AB-CD-EF-12-34-56

Accès aux ressources distantes

Utilisation de Wireshark pour voir le trafic réseau

Les protocoles et communications réseau **Résumé**

Dans ce chapitre, vous avez appris les notions suivantes :

- Les réseaux de données sont des systèmes composés de périphériques finaux, de périphériques intermédiaires et de supports reliant les périphériques. Pour que la communication soit possible, les périphériques doivent savoir comment communiquer.
- Ces périphériques doivent être conformes aux règles et aux protocoles de communication. TCP/IP est un exemple de suite de protocoles.
- La plupart des protocoles sont créés par un organisme de normalisation tel que l'IETF ou l'IEEE.
- Les modèles de réseau les plus utilisés sont les modèles OSI et TCP/IP.

Les protocoles et communications réseau **Résumé**

Dans ce chapitre, vous avez appris les notions suivantes :

- Les données qui passent du haut vers le bas dans la pile du modèle OSI sont segmentées en différentes parties et des adresses et d'autres étiquettes viennent s'y encapsuler. Ce processus est inversé lorsque les parties sont désencapsulées et transférées vers la partie supérieure de la pile de protocoles de destination.
- Le modèle OSI décrit des processus de codage, de mise en forme, de segmentation et d'encapsulation de données pour la transmission sur le réseau.
- La suite de protocoles TCP/IP est un protocole standard ouvert qui a été approuvé par le secteur des réseaux et ratifié, ou approuvé, par un organisme de normalisation.

Les protocoles et communications réseau **Résumé**

Dans ce chapitre, vous avez appris les notions suivantes :

- La pile de protocoles IP est une suite de protocoles requis pour transmettre et recevoir des informations via Internet.
- Les unités de données de protocole (PDU) sont nommées selon les protocoles de la suite TCP/IP : données, segment, paquet, trame et bits.
- L'application de modèles permet à différentes personnes, entreprises et associations professionnelles d'analyser les réseaux existants et de concevoir les réseaux futurs.