我们这里还有鱼

2018 年 10 月 23 日 08:30 - 12:00

题目概况

题目名称	集合问题	序列	拉密
源程序文件名	set.c/cpp/pas	sequence.c/cpp/pas	rummikub.c/cpp/pas
每个测试点时限	1 秒	1 秒	1 秒
测试点数目	捆绑测试	20	25
每个测试点分值		5	4
运行内存上限	512 MiB	512 MiB	512 MiB
结果比较方式	全文比较(过滤行末空格及文末回车)		

^{*}除特殊说明外,输入、输出文件的数字之间均以恰一个空格分隔,行末字符为 Line Feed ('\n', ASCII 10) ,且该字符也存在于输入文件的最后一行末尾。

编译命令(以第一题为例)

C	gcc -o set set.c -02 -lm
C++	g++ -o set set.cpp -02 -lm
Pascal	fpc set.pas -02

Problem A. 集合问题

输入文件:set.in输出文件:set.out时间限制:1 秒内存限制:512 MiB

你有 n 个集合 S_1, S_2, \dots, S_n , 其中每一个集合都可以是 \emptyset 或 \mathbb{Z} 的子集.

我们定义两个集合之间的 × 运算, $A \times B = \{x \mid \exists a + b = x, a \in A, b \in B\}$.

有 m 个限制条件,每个限制条件给定一个 (i,j) , $S_i \times S_i \subseteq S_j$.

对每一个 i, 回答 $1 \in S_i$ 且所有限制都被满足的条件下以下命题是否一定是真命题:

存在一个非负整数 N, 对于任意的正整数 x > N, 都满足 $x \in S_i$.

输入

第一行两个非负整数 n, m.

接下来 m 行,每行两个数 (i,j),表示一条限制.

输出

输出 n 行, 第 i 行表示第 i 个集合的答案. 如果答案是一定成立,这一行为 1,否则这一行为 0.

样例

set.in	set.out
5 6	1
1 2	1
2 3	1
1 3	1
3 4	0
4 1	
1 5	

限制

本题共有 6 个子任务,它们都满足 $n \le 10^6$, $m \le 2 \times 10^6$.

特殊性质中 G 是指可以把 m 个限制条件看作一个**有向图** G,一条边 (i,j) 存在,当且仅当存在一个限制 (i,j).

子任务 1 (分值: 5)

保证 n = 0, m = 0.

子任务 2 (分值: 10)

保证 $n \le 1000000$, $m \le 1000000$, n = m 且 G 强连通.

子任务 3 (分值: 35)

保证 $n \le 300$, $m \le 300$, m = n + 3 且 G 强连通.

子任务 4 (分值: 20)

保证 $n \le 1000, m \le 1000.$

子任务 5 (分值: 15)

保证 $n \le 1000000$, $m \le 2000000$, 且 G 强连通.

子任务 6 (分值: 15)

保证 $n \le 1000000$, $m \le 2000000$.

Problem B. 序列

输入文件: sequence.in 输出文件: sequence.out

时间限制: 1 秒 内存限制: 512 MiB

对于一个长度为偶数的序列 $a_1, a_2, a_3, \ldots, a_n$,

定义这个序列为好的序列,当且仅当 $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \ldots = a_{\frac{n}{2}} + a_{\frac{n}{2}+1}$.

定义一个对序列的翻滚操作,使所有元素向前移一个位置,第一个元素移到最后的位置。

现在小 A 有一个长度为偶数的序列 $b_1, b_2, b_3, \ldots, b_n$,他想知道至少需要翻滚多少次才能使这个序列 成为好的序列。

输入

第一行一个整数 n 表示序列的长度, 保证 n 为一个偶数。

第二行 n 个正整数, 第 i 个数表示 b_i 。

输出

如果有解,输出一个正整数,表示最少需要翻滚多少次才能使这个序列成为好的序列。

如果没有解,输出 IMPOSSIBLE。

样例

sequence.in	sequence.out
6	1
2 8 7 9 1 3	

限制

对于 30% 的数据, $n \le 1000$ 。

对于 60% 的数据, $n \le 200000$ 。

对于 100% 的数据, $n \le 1000000$, $b_i \le 1000000$.

Problem C. 拉密

输入文件: rummikub.in 输出文件: rummikub.out

时间限制: 1秒

内存限制: 512 MiB

Asher 和 Bendit 在玩拉密 (Rummikub, 亦称以色列麻将)游戏。

Bendit 不幸告负。"再也不打麻将了,这种全靠运气的辣鸡游戏!"Bendit 悻悻而去。

"且慢!"还未尽兴的 Asher 赶忙制止,"有一个更辣鸡的运气游戏,挑战一下?"

"来就来,本欧皇哪里怕这个!"

"那,刚才一局'全靠运气'的游戏,何以解释呢?"

"……" Bendit 一时语塞。

"这个游戏的规则取之于拉密牌。

"每张拉密牌的颜色用 K(黑),R(红),B(蓝),O(橙)中的一个字母表示,点数为 1 至 13 中的一个整数。

"游戏中只使用其中 p 张固定的、不重复的牌、剩余的牌不使用。游戏进行 r 轮,每轮独立进行。游戏开始时,你将得到 k 张手牌,其余牌均匀随机打乱后组成牌堆。

"此后, 你可以从牌堆中摸取牌加入你的手牌, 一次只取一张。

"你需要将所有的手牌组成若干个**牌组**,每张牌在恰好一个牌组中。在摸到任一张牌后达成这个目标即获胜;牌堆为空且未达成目标为失败。

"牌组分为两种:

"群组:不少于三张相同点数的牌,如 R1, B1, O1 或 K2, R2, B2, O2;

"顺组:不少于三张连续点数的同花牌,如 K3, K4, K5 或 R9, R10, R11, R12。需要注意的是,13 与 1 并不能顺次相接。

"获胜时,仍留在牌堆中牌的点数之和即为得分;失败时的得分为零。"

Bendit 思忖片刻,"好啊,来啊!"

这当然是个真正的全靠运气的辣鸡游戏。帮助 Bendit 计算游戏的期望得分吧!

输入

第一行包含两个空格分隔的整数 $p, r \longrightarrow$ 分别表示游戏牌的数量和游戏的轮数;

第二行包含 p 个空格分隔的字符串,每个字符串形如 $\mathbf{X}y$,其中字符 \mathbf{X} 为花色,正整数 y 为点数,描述一张游戏中的拉密牌。游戏牌依输入顺序编号为 $1,2,\ldots,p$ 。

接下来 r 行每行描述一轮游戏,包含空格分隔的整数 k 及 h_1, h_2, \ldots, h_k — 本轮的手牌数量,以及手牌的编号。

输出

对于每一轮游戏依次输出一行,包含一个整数,表示 Bendit 获胜的概率,对 10^9+7 取模。具体而言,设概率为有理数 $\frac{n}{d}$,输出一个整数 m,使得 $0 \le m < 10^9+7$ 且 $m \cdot d \equiv n \pmod{10^9+7}$ 。可以证明,对于任意的 n 与 d,整数 m 存在且惟一。

样例

rummikub.in	rummikub.out	
6 5	12	
K1 K2 K3 K4 K5 K7	750000007	
4 1 2 3 4	266666671	
2 5 1	233333340	
1 5	41666671	
1 3		
2 3 5		
12 6	250000005	
K1 K3 K4 K5 R1 R2 B1 B2 B3 O1 O2 O3	20000003	
8 5 6 7 8 9 10 11 12	0	
7 2 1 4 7 8 3 6	880357151	
7 3 1 4 5 9 2 6	80674606	
4 1 2 3 4	428095242	
2 2 3		
2 5 6		
见选手目录下 rummikub/rummikub3.in	见选手目录下 rummikub/rummikub3.ans	
见选手目录下 rummikub/rummikub4.in	见选手目录下 rummikub/rummikub4.ans	
见选手目录下 rummikub/rummikub5.in	见选手目录下 rummikub/rummikub5.ans	

样例解释

第一组样例中:

- 对于第一轮游戏, 手牌 K1, K2, K3, K4 已经满足获胜条件, 得分为 12。
- 对于第二轮游戏,惟一的获胜情况是连续取到三张 K2, K3, K4(顺序无关),概率为 $\frac{1}{4}$,得分为 7,因此期望得分为 $\frac{7}{4}$ 。

第三、四、五组样例分别满足测试点 13、17、21 的限制。

限制

对于所有数据,有 $1 \le p \le 20$, $1 \le r \le 500$, $\max\{p-10,1\} \le k \le p-1$, $h_i \ne h_j \ \forall i \ne j$; 对于所有牌有 $\mathbf{X} \in \{'\mathbf{K}', '\mathbf{R}', '\mathbf{B}', '\mathbf{O}'\}$, $1 \le y \le 13$; 同一种牌在游戏牌中出现不超过一次。

测试点	p	附加限制	
1	= 2		
2	= 3	1	
3	= 4	_	
4	_		
5	=5		
6	= 9		
7	= 10		
8	= 11		
9	= 12	$r \le 10$	
10	= 14	1	
11	= 16		
12	= 18		
13	= 12		
14	= 14		
15	= 16	游戏牌全为黑色或红色	
16	= 18		
17	= 12		
18	= 14	<u></u>	
19	= 16	游戏牌的点数不超过 5	
20	= 18		
21	= 12	游戏的古石和北色树左左,口上彩	
22	= 14	游戏牌中每种花色均存在,且点数 均为从 1 开始的若干连续整数 (不同花色数量可能不同)	
23	= 16		
24	= 18		
25	= 20	_	