Carbonyl Ligands

empty π^* -acceptor orbitals on carbonyl

powerful π -acceptor ligand! excellent ligand, therefore, for stabilizing electron-rich low-valent metal centers

Standard Bonding Modes:

terminal mode

2e⁻ neutral donor

μ₂- bridging mode2e⁻ neutral donor

μ₃- bridging mode3e⁻ neutral donor

Metal carbonyls form one of the oldest (and important) classes of organometallic complexes. Most metal carbonyls are <u>toxic</u>!

Metal carbonyls form one of the oldest (and important) classes of organometallic complexes. Most metal carbonyls are <u>toxic</u>!

Examples of *neutral*, binary metal carbonyls:

4	5	6	7	8	9	10	11
				Fe(CO) ₅	Co ₂ (CO) ₈		
Ti	V(CO) ₆	Cr(CO) ₆	Mn ₂ (CO) ₁₀	Fe ₂ (CO) ₉	Co ₄ (CO) ₁₂	Ni(CO) ₄	Cu
				Fe ₃ (CO) ₁₂			
	Nb	Mo(CO) ₆	Tc ₂ (CO) ₁₀	Ru(CO) ₅	Rh ₄ (CO) ₁₂		
Zr				Ru ₃ (CO) ₁₂	Rh ₆ (CO) ₁₆	Pd	Ag
Hf	Ta	W(CO) ₆	Re ₂ (CO) ₁₀	Os(CO) ₅	Ir ₄ (CO) ₁₂	Pt	Au
				Os ₃ (CO) ₁₂			

Molecular Orbital Diagram for CO:

Terminal and bridging CO-groups can be differentiated by IR-spectroscopy:

The CO-vibration depends on the strength of the back-bonding from the metal center and correlates with the electron density at the metal and with the energy level of the HOMO's respectively. \tilde{v} as a probe:

Ni(CO)₄ 2060 cm⁻¹ [Mn(CO)₆]⁺ 2090 cm⁻¹ [Co(CO)₄]⁻ 1890 cm⁻¹
$$Cr(CO)_6$$
 2000 cm⁻¹ [V(CO)₆]⁻ 1860 cm⁻¹ [Ti(CO)₆]²⁻ 1750 cm⁻¹ increased π -backbonding

(Attention: only isostructural complexes may be compared)

Donor/Acceptor Characteristics of Other Ligands

L in L-Ni(CO) ₃	v (CO)/cm ⁻¹
P(<i>t</i> -Bu) ₃	2056
PMe ₃	2064
PPh ₃	2069
P(OMe) ₃	2080
P(OPh) ₃	2085
PF ₃	2111

L in L ₃ Mo(CO) ₃	v (CO)/cm -1
Pyridine	1746, 1888
CH₃CN	1783, 1915
PPh_3	1835, 1934
P(OMe) ₃	1888, 1977
PCl ₃	1991, 2040
PF ₃	2055, 2090

See also L-M(CO)₅ complexes (M = Cr, Mo, W)

<u>decreasing π-acceptor strength:</u>

 $NO > CO > PF_3 > RNC > PCI_3 > P(OR)_3 > PR_3 > RCN > NH_3$

