

Цикл лекций по теме «Сети Петри» Лекция №3

автор – д.т.н., профессор Лисицына Л.С.

Содержание

- 1. Понятие и структура СП
- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП
- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам

7. Динамические свойства автоматных СП

- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев

Динамические свойства автоматных СП

Автоматная сеть Петри — это ординарная СП, в которой *каждый переход* имеет ровно одну входную и ровно одну выходную позицию.

Ограниченная и строго сохраняющаяся.

Безопасная, если в начальный момент времени есть только одна фишка.

Живая, если СП является сильно связным графом.

Содержание

- 1. Понятие и структура СП
- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП
- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП

8. Динамические свойства синхрографов

9. Метод анализа динамических свойств СП на основе покрывающих деревьев

Динамические свойства синхрографов

Синхрограф (маркированный граф)

– это ординарная СП, в которой каждая позиция является входной и (или) выходной позицией только для одного перехода.

$$c_1 = (p_1, t_2, p_2, t_1, p_1) \quad c_2 = (p_5, t_3, p_6, t_4, p_5) \quad c_3 = (p_1, t_2, p_3, t_4, p_5, t_3, p_4, t_1, p_1)$$

Синхрограф является живой СП, если каждый простой цикл в нем не пуст, т.е. содержит хотя бы одну позицию с ненулевой ёмкостью.

Динам. свойства живых синхрографов

Живой синхрограф является безопасной (следовательно, ограниченной и строго сохраняющейся) сетью Петри, если при заданном ненулевом векторе начальной маркировки каждая его позиция входит в простой цикл, а каждый цикл содержит один единственный маркер.

Содержание

- 1. Понятие и структура СП
- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП
- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев

Алгоритм для анализа динам. свойств СП

Расширенная маркировка — это такая маркировка (разметка) сети Петри, при которой ёмкость неограниченной позиции можно заменить на «w», т.е. если в процессе функционирования сети наблюдается $\mu(p_k) \to \infty$, то считаем, что в векторе маркировки $\mu_k = w$.

Для расширенной маркировки справедливо следующее тождество

$$w+n=w-n=w+w=w$$

где n – счетное количество маркеров, т.е. $n << \infty$.

Теоремы теории СП:

- 1. Покрывающее дерево, построенное с помощью описанного выше алгоритма, является конечным графом.
- 2. Процесс построения покрывающего дерева этим алгоритмом заканчивается за конечное число шагов.

Алгоритм для анализа динам. свойств СП

Алгоритм содержит следующие два этапа.

- 1. Построение покрывающего дерева СП (с расширенной маркировкой при наличии неограниченных позиций в сети).
- 2. Определение динамических свойств СП (безопасность, ограниченность, сохраняемость и живость) на основе анализа ее покрывающего дерева.

Этап № 1

Метка	Определение метки					
Γ	Метка граничной вершины дерева (вершины, не обработанной					
	данным алгоритмом).					
T	Метка терминальной вершины дерева (вершины,					
	моделирующей тупиковую маркировку).					
Д	Метка дублирующей вершины дерева (вершины,					
	моделирующей маркировку, которая уже встречалась).					
В	Метка внутренней вершины дерева (вершины, обработанной					
	данным алгоритмом и не являющейся терминальной или					
	дублирующей).					

Этап № 2

•••

ЕСЛИ в дереве есть терминальные вершины,

ТО эта СП *неживая*,

ИНАЧЕ ВЫПОЛНЯТЬ:

ЕСЛИ для разметки дуг дерева были использованы все перехода сети,

то эта СП живая,

ИНАЧЕ эта СП неживая.

Пример № 1

No	Условие	?	Свойства СП
1.	При построении дерева использовалась	+	небезопасная, неограниченная,
	расширенная маркировка?		несохраняющаяся
2.	В дереве есть терминальные вершины?	+	неживая

Пример №2

Nº	Условие	?	Свойства СП
1.	При построении дерева использовалась расширенная маркировка ?	+	небезопасная, неограниченная, несохраняющаяся
2.	В дереве есть терминальные вершины?	-	
2.1	Для разметки дуг дерева использованы все переходы?	+	живая (условно!)

TЗ

Спасибо за внимание!

www.ifmo.ru

ITSMOre than a
UNIVERSITY