Lecture 7: Training Neural Networks, Part 2

Administrative

- Assignment 1 is being graded, stay tuned
- Project proposals due tomorrow by 11:59pm on Gradescope
- Assignment 2 is out, due Wednesday 5/2 11:59pm

Last time: Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Last time: Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

Good default choice

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Last time: Weight Initialization

Initialization too small:

Activations go to zero, gradients also zero, No learning

Initialization too big:

Activations saturate (for tanh), Gradients zero, no learning

Initialization just right:

Nice distribution of activations at all layers, Learning proceeds nicely

Last time: Data Preprocessing

Last time: Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize

Last time: Babysitting Learning

Last time: Hyperparameter Search

Coarse to fine search

```
| val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100) | val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100) | val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100) | val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100) | val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100) | val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100) | val acc: 0.241000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100) | val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01, (8 / 100) | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100) | val acc: 0.679000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100) | val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-
```

```
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val acc: 0.492000, lr: 2.279484e-04, req: 9.991345e-04, (1 / 100)
val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04,
val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03,
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01,
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04,
val acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03,
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
```

Today

- More normalization
- Fancier optimization
- Regularization
- Transfer Learning

Last time: Batch Normalization

Input: $x: N \times D$

 $\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$

Learnable params:

Intermediates: $\begin{pmatrix} \mu, \sigma : D \\ \hat{x} \cdot N \times D \end{pmatrix}$

 $\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$

 $\gamma, \beta: D$

Output: $y: N \times D$

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$ $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Lecture 7 - 11

Last time: Batch Normalization

Estimate mean and variance from minibatch; Can't do this at test-time

Input: $x: N \times D$

Learnable params:

$$\gamma, \beta: D$$

Intermediates: $\begin{pmatrix} \mu, \sigma : D \\ \hat{x} : N \times D \end{pmatrix}$

Output: $y: N \times D$

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Batch Normalization: Test Time

Input: $x: N \times D$

 $\mu_j = \underset{\text{seen during training}}{\text{(Running) average of values}}$

Learnable params:

$$\gamma, \beta: D$$

 $\sigma_j^2 = \frac{\text{(Running)}}{\text{seen during training}}$

Intermediates: $\begin{pmatrix} \mu, \sigma : D \\ \hat{x} : N \times D \end{pmatrix}$

$$N \times D$$

Output:
$$y: N \times D$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Batch Normalization for ConvNets

Batch Normalization for fully-connected networks

 $x: N \times D$ Normalize $\gamma, \beta: 1 \times D$ $y = \frac{y(x-\mu)}{\sigma+\beta}$ **Batch Normalization for** convolutional networks (Spatial Batchnorm, BatchNorm2D)

Normalize
$$\mathbf{x}: \mathbf{N} \times \mathbf{C} \times \mathbf{H} \times \mathbf{W}$$
 $\mu, \sigma: \mathbf{1} \times \mathbf{C} \times \mathbf{1} \times \mathbf{1}$
 $\gamma, \beta: \mathbf{1} \times \mathbf{C} \times \mathbf{1} \times \mathbf{1}$
 $\gamma = \gamma(\mathbf{x} - \mu) / \sigma + \beta$

Layer Normalization

Batch Normalization for fully-connected networks

Layer Normalization for fully-connected networks Same behavior at train and test! Can be used in recurrent networks

Normalize
$$\mu, \sigma: N \times D$$

$$\mu, \sigma: N \times 1$$

$$\gamma, \beta: 1 \times D$$

$$y = \gamma(x-\mu)/\sigma + \beta$$

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks Same behavior at train / test!

Normalize
$$\mu, \sigma: N \times C \times H \times W$$

$$\mu, \sigma: N \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \gamma(x - \mu) / \sigma + \beta$$

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Comparison of Normalization Layers

Wu and He, "Group Normalization", arXiv 2018

Group Normalization

Wu and He, "Group Normalization", arXiv 2018 (Appeared 3/22/2018)

Decorrelated Batch Normalization

Batch Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

BatchNorm normalizes the data, but cannot correct for correlations among the input features

Decorrelated Batch Normalization

DBN **whitens** the data using the full covariance matrix of the minibatch; this corrects for correlations

Huang et al, "Decorrelated Batch Normalization", arXiv 2018 (Appeared 4/23/2018)

Optimization

```
# Vanilla Gradient Descent
while True:
   weights_grad = evaluate_gradient(loss_fun, data, weights)
   weights += - step_size * weights_grad # perform parameter update
```


What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

What if the loss function has a local minima or saddle point?

What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck

What if the loss function has a local minima or saddle point?

Saddle points much more common in high dimension

Dauphin et al, "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", NIPS 2014

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

SGD + Momentum

SGD

```
x_{t+1} = x_t - \alpha \nabla f(x_t)
```

```
while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx
```

SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t) x_{t+1} = x_t - \alpha v_{t+1} vx = 0 while True: dx = compute gradient(x)
```

x -= learning_rate * vx

vx = rho * vx + dx

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum

SGD+Momentum

```
v_{t+1} = \rho v_t - \alpha \nabla f(x_t)x_{t+1} = x_t + v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx - learning_rate * dx
    x += vx
```

SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

SGD + Momentum

Gradient Noise

SGD+Momentum

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Momentum update:

Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Change of variables $\tilde{x}_t = x_t + \rho v_t$ and rearrange:

$$v_{t+1} = \rho v_t - \alpha \nabla f(\tilde{x}_t)$$

$$\tilde{x}_{t+1} = \tilde{x}_t - \rho v_t + (1+\rho)v_{t+1}$$

$$= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

Change of variables $\tilde{x}_t = x_t + \rho v_t$ and rearrange:

```
v_{t+1} = \rho v_t - \alpha \nabla f(\tilde{x}_t)
\tilde{x}_{t+1} = \tilde{x}_t - \rho v_t + (1+\rho)v_{t+1}
= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)
```

```
dx = compute_gradient(x)
old_v = v
v = rho * v - learning_rate * dx
x += -rho * old_v + (1 + rho) * v
```



```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q: What happens with AdaGrad?

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time?

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time?

Decays to zero

RMSProp

AdaGrad

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
  x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```


RMSProp

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
 grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
  x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Tieleman and Hinton, 2012

RMSProp

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
Momentum
AdaGrad / RMSProp
```

Sort of like RMSProp with momentum

Q: What happens at first timestep?

Adam (full form)

```
first moment = 0
second moment = 0
for t in range(1, num_iterations):
                                                                         Momentum
 dx = compute\_gradient(x)
 first_moment = beta1 * first_moment + (1 - beta1) * dx
  second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
  first unbias = first moment / (1 - beta1 ** t)
                                                                         Bias correction
  second_unbias = second_moment / (1 - beta2 ** t)
  x -= learning_rate * first_unbias /
                                     (np.sqrt(second\_unbias) + 1e-7))
                                                                       AdaGrad / RMSProp
```

Bias correction for the fact that first and second moment estimates start at zero

Adam (full form)

```
first moment = 0
second moment = 0
for t in range(1, num_iterations):
                                                                         Momentum
 dx = compute\_gradient(x)
 first_moment = beta1 * first_moment + (1 - beta1) * dx
  second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
 first_unbias = first_moment / (1 - beta1 ** t)
                                                                         Bias correction
  second_unbias = second_moment / (1 - beta2 ** t)
 x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
                                                                      AdaGrad / RMSProp
```

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta 1 = 0.9. beta2 = 0.999, and learning rate = 1e-3 or 5e-4 is a great starting point for many models!

Adam

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

Q: Which one of these learning rates is best to use?

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

$$\alpha = \alpha_0 e^{-kt}$$

1/t decay:

$$\alpha = \alpha_0/(1+kt)$$

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have learning rate as a hyperparameter.

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

First-Order Optimization

First-Order Optimization

- Use gradient and Hessian to form quadratic approximation
- Step to the **minima** of the approximation

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Q: What is nice about this update?

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) pprox J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

No hyperparameters!
No learning rate!
(Though you might use one in practice)

Q: What is nice about this update?

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Q2: Why is this bad for deep learning?

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) pprox J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Hessian has O(N²) elements Inverting takes O(N³) N = (Tens or Hundreds of) Millions

Q2: Why is this bad for deep learning?

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

- Quasi-Newton methods (BGFS most popular): instead of inverting the Hessian (O(n^3)), approximate inverse Hessian with rank 1 updates over time (O(n^2) each).
- **L-BFGS** (Limited memory BFGS): Does not form/store the full inverse Hessian.

L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an active area of research.

Le et al, "On optimization methods for deep learning, ICML 2011" Ba et al, "Distributed second-order optimization using Kronecker-factored approximations", ICLR 2017

In practice:

- Adam is a good default choice in many cases
- **SGD+Momentum** with learning rate decay often outperforms Adam by a bit, but requires more tuning
- If you can afford to do full batch updates then try out **L-BFGS** (and don't forget to disable all sources of noise)

Beyond Training Error

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

Early Stopping

Stop training the model when accuracy on the validation set decreases Or train for a long time, but always keep track of the model snapshot that worked best on val

Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results
 (Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Loshchilov and Hutter, "SGDR: Stochastic gradient descent with restarts", arXiv 2016 Huang et al, "Snapshot ensembles: train 1, get M for free", ICLR 2017 Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Cyclic learning rate schedules can make this work even better!

Model Ensembles: Tips and Tricks

Instead of using actual parameter vector, keep a moving average of the parameter vector and use that at test time (Polyak averaging)

```
while True:
   data_batch = dataset.sample_data_batch()
   loss = network.forward(data_batch)
   dx = network.backward()
   x += - learning_rate * dx
   x_test = 0.995*x_test + 0.005*x # use for test set
```

Polyak and Juditsky, "Acceleration of stochastic approximation by averaging", SIAM Journal on Control and Optimization, 1992.

How to improve single-model performance?

Regularization

Regularization: Add term to loss

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+ \lambda R(W)$$

In common use:

L2 regularization

 $R(W) = \sum_k \sum_l W_{k,l}^2$ (Weight decay)

L1 regularization

 $R(W) = \sum_k \sum_l |W_{k,l}|$

Elastic net (L1 + L2)

$$R(W) = \sum_k \sum_l eta W_{k,l}^2 + |W_{k,l}|$$

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Regularization: Dropout

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) 
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization: Dropout

How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has $2^{4096} \sim 10^{1233}$ possible masks! Only $\sim 10^{82}$ atoms in the universe...

Dropout makes our output random!

Output Input (label) (image)
$$y = f_W(x,z) \quad \text{Random} \quad \text{mask}$$

Want to "average out" the randomness at test-time

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

But this integral seems hard ...

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have: $E[a] = w_1x + w_2y$

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have:
$$E[a] = w_1x + w_2y$$

During training we have:
$$E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y) + \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y) + \frac{1}{4}(0x + w_2y) + \frac{1}{4}(0x + w_2y)$$

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.

At test time we have: $E[a] = w_1x + w_2y$ dropout probability 1/2 During training we have: $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$

At test time, **multiply** by dropout probability

$$+\frac{1}{4}(0x+0y) + \frac{1}{4}(0x+w_2y)$$

$$=\frac{1}{2}(w_1x+w_2y)$$

```
def predict(X):
  # ensembled forward pass
  H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
  out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

```
Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active, higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

Dropout Summary

drop in forward pass

scale at test time

More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
  H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
 H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
                                                                      test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Example: Batch Normalization

Training:
Normalize using
stats from random
minibatches

Testing: Use fixed stats to normalize

Regularization: Data Augmentation

Regularization: Data Augmentation

Data Augmentation Horizontal Flips

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 7 - 87

April 24, 2018

Data Augmentation Random crops and scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Data Augmentation Random crops and scales

Training: sample random crops / scales

ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

Data Augmentation Color Jitter

Simple: Randomize contrast and brightness

More Complex:

- 1. Apply PCA to all [R, G, B] pixels in training set
- 2. Sample a "color offset" along principal component directions
- 3. Add offset to all pixels of a training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Data Augmentation Get creative for your problem!

Random mix/combinations of:

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization

Data Augmentation

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation
DropConnect

Wan et al, "Regularization of Neural Networks using DropConnect", ICML 2013

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, "Fractional Max Pooling", arXiv 2014

Training: Add random noise

Testing: Marginalize over the noise

Examples:

Dropout

Batch Normalization

Data Augmentation

DropConnect

Fractional Max Pooling

Stochastic Depth

Huang et al, "Deep Networks with Stochastic Depth", ECCV 2016

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of a data if you want to train/(se CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

Lecture 7 - 10

April 24, 2018

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	?
quite a lot of data	Finetune a few layers	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, "Fast R-CNN", ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

Summary

- Lots of Batch Normalization variants
- Optimization
 - Momentum, RMSProp, Adam, etc
- Regularization
 - Dropout, etc
- Transfer learning
 - Use this for your projects!

Next time: Deep Learning Software!