Problem 1 Preprocessing a data set

Install the "ArrayExpress" package from Bioconductor. Load the yeast microarray data using R commands:

library(ArrayExpress)

yeast.raw = ArrayExpress('E-MEXP-1551')

- (a) Preprocess the raw data set into an expression data set using: the "mas" background correction method, the "quantiles" normalization method, "pmonly" pm correction method and "medianpolish" summary method. Give the R command here for doing this task.
- **(b)** Print out the mean expression values for the first five genes across all samples.
- **(c)** How many genes and how many samples are in the preprocessed expression data set?

A)

Rscript:

biocLite("ArrayExpress")
library(ArrayExpress)
yeast.raw = ArrayExpress('E-MEXP-1551')
eset <- expresso(yeast.raw,bgcorrect.method="mas",
normalize.method="quantiles",pmcorrect.method="pmonly",
summary.method="medianpolish")</pre>

Answer:

B)

Rscript:

expressionvalues<- exprs(eset)
expressionvalues[1:5,]</pre>

Gre_MCA_2822 Gre_MCA_5014 Gre_MCA_3174 Gre_MCA_4108							
Gre_MCA_386				0.040040			
1769308_at	9.049451	8.968067	9.203207	8.862262			
8.929268							
1769309_at	5.582373	5.671969	5.504717	5.718791			
5.833522							
1769310_at	5.697383	5.536656	5.358618	5.573735			
5.720136							
1769311_at	11.427141	11.100304	11.550417	11.407650			
11.152456							
1769312_at	9.870687	9.760277	9.673015	9.888257			
9.706339							
Gre_MCA_9147 Gre_MCA_8454 Gre_MCA_4493 Gre_MCA_9211							
Gre_MCA_382		0.054546	0.450005	0.000550			
1769308_at	8.858289	9.074716	8.453985	8.883578			
8.806324				==44404			
1769309_at	5.700246	5.479024	5.831566	5.516686			
5.940651							
1769310_at	5.598420	5.828015	5.537205	5.545576			
5.626586							
1769311_at	11.465841	11.391676	11.395314	11.234055			
11.377907							
1769312_at	9.822943	9.764995	9.626873	9.882233			
9.854645							
Gre_MCA_8298 Gre_MCA_6510 Gre_MCA_7031 Gre_MCA_6671							
Gre_MCA_217	72						
1769308_at	8.990849	8.915155	8.836336	9.060353			
8.860005							
1769309_at	5.734243	5.956699	5.707443	5.942985			
5.782136							
1769310_at	5.793489	5.760122	5.700734	5.688692			
5.687390							
1769311_at	11.269368	11.320259	11.483310	11.078343			
11.452286							
1769312_at	9.718603	9.716625	9.769313	9.539288			
9.767874							

Gre_MCA_8016 Gre_MCA_7817 Gre_MCA_6886 Gre_MCA_6857							
Gre MCA 9353							
1769308_at	9.235485	8.852164	8.853089	8.801891			
9.198097							
1769309_at	5.413773	5.852047	5.730331	5.740296			
5.203052							
1769310_at	5.531625	5.865332	5.815449	5.571610			
5.559456							
1769311_at	11.604265	11.452660	11.296400	11.466942			
11.623890							
1769312_at	9.629088	9.771854	9.793377	9.764324			
9.688466							
Gre_MCA_1726 Gre_MCA_0356 Gre_MCA_8052 Gre_MCA_9301							
Gre_MCA_5948							
1769308_at	9.134587	8.872302	8.859122	8.807088			
8.982770							
1769309_at	5.741257	5.764816	5.723271	5.554010			
5.573772							
1769310_at	5.543069	5.927136	5.792484	5.569385			
5.688268							
1769311_at	11.500176	11.372680	11.414907	11.305940			
11.320536							
1769312_at	9.734023	9.883580	9.815190	9.779764			
9.910259							
Gre_MCA_7528 Gre_MCA_1103 Gre_MCA_6052 Gre_MCA_2282							
Gre_MCA_337	78						
1769308_at	8.886055	9.068463	8.745493	8.997327			
9.038056							
1769309_at	5.707336	5.379089	5.673917	5.419490			
5.601698							
1769310_at	5.470141	5.629583	5.853489	5.389162			
5.655055							
1769311_at	11.462510	11.449835	11.393147	11.463031			
11.195200							
1769312_at	9.807047	9.730797	9.764790	9.579366			
9.560505							

C)
Rscript:
dim(exprs(eset))

Answer: 10928 30

10928 genes and 30 samples

Problem 2 Searching Annotations

- (a) What is the annotation package for the yeast data set in question 1? Install the annotation package from Bioconductor.
- **(b)** Search the 1769308_at gene GO numbers related to Molecular Function (MF). How many GO numbers do you get?
- **(c)** Find the GO parents of the GO IDs in part (b). How many GO parents are there?
- **(d)** Find the GO children of the GO IDs in part (b). How many GO children are there?

A)

Rscript:

annotation(yeast.raw)

Answer:

"yeast2" is the annotation package for the yeast data set

B)

Rscript:

biocLite("yeast2.db")
library("yeast2.db")
go<-get("1769308_at", env = yeast2G0)
gomf<-getOntology(go,"MF")
gomf</pre>

Answer:

```
[1] "G0:0016491" "G0:0003824" "G0:0016616" "G0:0016829" "G0:0016853" "G0:0004300" [7] "G0:0003857" I get 7 G0 numbers.
```

C)

Rscript:

```
library("GO.db")
go<-get("1769308_at", env = yeast2GO)
gonr <- getOntology(go, "MF")
gP <- getGOParents(gonr)</pre>
```

```
pa <- sapply(gP,function(x) x$Parents)</pre>
pa
length(unlist(pa))
Answer:
G0:0016491.is_a G0:0003824.is_a G0:0016616.is_a G0:0016829.is_a
GO:0016853.is_a
 "GO:0003824" "GO:0003674" "GO:0016614" "GO:0003824"
"GO:0003824"
GO:0004300.is_a GO:0003857.is_a
 "G0:0016836" "G0:0016616"
There are 7 GO parents
D)
Rscript:
library("GO.db")
go<-get("1769308_at", env = yeast2G0)
gonr <- getOntology(go, "MF")</pre>
gC <- getGOChildren(gonr)</pre>
ch <- sapply(gC,function(x) x$Children)</pre>
ch
length(unlist(ch))
```

423 GO children.

Problem 3 Gene filtering on B-cell ALL patients

We work with the patients in stages "B2", "B3".

- (a) We look for genes expressed differently in stages B2 and B3. Use genefilter to program the Wilcoxon test and the Welch t-test separately for each gene. For each test, we select the genes with p-value<0.001. To save computational time, we set exact=F in the Wilcoxon test function.
- (b) Compute a Venn diagram for the Wilcoxon test and the t-test, and plot it.
- **(c)** How many pass the Wilcoxon filter? How many passes both filters?
- (d) What is the annotation package for the ALL data set? Find the GO numbers for "oncogene".
- **(e)** How many genes passing the filters in (a) are oncogenes?

A)

Rscript:

```
library("genefilter")
library("ALL"); data(ALL, package = "ALL");
patientB <- exprs(ALL)[,(ALL$BT %in% c("B2","B3"))]
factor <- droplevels(ALL$BT[ALL$BT %in% c("B2","B3")])
f1 <- function(x) (wilcox.test(x \sim factor, exact = F)$p.value < 0.001)
f2 <- function(x) (t.test(x \sim factor)$p.value < 0.001)
wilcox <- genefilter(patientB, filterfun(f1))
t.test <- genefilter(patientB, filterfun(f2))
```

B)

Rscript:

library(limma)
x <- apply(cbind(wilcox,t.test), 2, as.integer)
vc <- vennCounts(x, include="both")
vennDiagram(vc)</pre>


```
C)
Answer:
From the vein diagram:

How many pass the Wilcoxon filter – 48 + 297 = 345

How many passes both filters – 297

D)
Rscript:
annotation(ALL)
library("GO.db"); library("annotate"); library("hgu95av2.db")

GOTerm2Tag <- function(term) {
   GTL <- eapply(GOTERM, function(x) {grep(term, x@Term, value=TRUE)})
   Gl <- sapply(GTL, length)
   names(GTL[Gl>0])
}

GOTerm2Tag("oncogene")
```

annotation package for the ALL data set - hgu95av2 the GO numbers for "oncogene" - "GO:0090402"

E)
Rscript:
selected<- wilcox & t.test
ALLs<-ALL[selected,]
tran <- hgu95av2G02ALLPROBES\$"G0:0090402"
inboth <- tran %in% row.names(exprs(ALLs))
print(sum(inboth))

Answer:

0 genes passing the filters in (a) are oncogenes

Problem 4

Stages of B-cell ALL in the ALL data. Use the limma package to answer the questions below.

- (a) Select the persons with B-cell leukemia which are in stage B1, B2, and B3.
- **(b)** Use the linear model to test the hypothesis of all zero group means. Use "topTable()" to report the **top five** genes with nonzero means in **B3 group**.
- **(c)** Use two contrasts to perform analysis of variance to test the null hypothesis of equal group means. Do this with a false discovery rate of 0.01. **How many** differentially expressed genes are found? Use "topTable()" to report the top five genes that express differently among the three groups.

A)

Rscript:

```
library("limma"); library("ALL"); data(ALL, package = "ALL"); allB <- ALL[,which(ALL$BT %in% c("B1","B2","B3"))] #Patients in 3 stages exprs(allB)
```

B) Rscript:

```
library("limma"); library("ALL"); data(ALL, package = "ALL"); allB <- ALL[,which(ALL$BT %in% c("B1","B2","B3"))] design.ma <- model.matrix(~ 0 + factor(allB$BT)) colnames(design.ma) <- c("B1","B2","B3") fit <- lmFit(allB,design.ma) fit <- eBayes(fit) sum(topTable(fit, number=Inf,adjust.method="fdr")$adj.P.Val<0.05) print( topTable(fit, coef=3, number=5, adjust.method="fdr"), digits=4)
```

Answer:

differently.

```
logFC AveExpr t P.Value adj.P.Val B

AFFX-hum_alu_at 13.61 13.53 355.6 5.059e-127 6.387e-123 270.8

32466_at 12.71 12.71 316.7 4.247e-123 2.681e-119 263.9

31962_at 13.05 13.09 307.1 4.695e-122 1.976e-118 262.0

32748_at 12.15 12.12 302.8 1.407e-121 4.406e-118 261.2

35278_at 12.52 12.48 302.0 1.745e-121 4.406e-118 261.0

Above we see all 12625 genes have p value less than 0.05 hence we can reject the null hypothesis off all zero group means and conclude that all the genes express
```

```
Top five genes with nonzero means in B3 group are: AFFX-hum_alu_at 32466_at 31962_at 32748_at 35278_at
```

C)

Rscript:

```
cont.ma <- makeContrasts(B1-B2,B2-B3, levels=factor(allB$BT))
fit1 <- contrasts.fit(fit, cont.ma)
fit1 <- eBayes(fit1)
sum(topTable(fit1,number=Inf,adjust.method="fdr")$adj.P.Val<0.01)</pre>
```

print(topTable(fit1, number=5,adjust.method="fdr"), digits=4)

Answer:

```
B1...B2 B2...B3 AveExpr F P.Value adj.P.Val

1389_at -1.7852 -0.74038 9.678 49.15 1.532e-14 1.934e-10

1914_at 2.0976 0.35648 4.693 42.20 3.785e-13 2.389e-09

33358_at 1.4890 -0.20733 5.214 29.52 2.837e-10 1.194e-06

38555_at 0.8058 0.62321 6.124 25.93 2.322e-09 7.329e-06

40763_at 1.5921 -0.01192 3.220 23.08 1.337e-08 2.758e-05
```

With false discovery rate of 0.01, 314 genes are found to be differentially expressed

The top five genes that express differently among the three groups are:

1389_at 1914_at 33358 at

55550_at

38555_at

40763 at