Llamar al archivo de fuente de datos

Out[1]:

	articulos	peso_libra
0	1	7.90
1	2	7.31
2	3	7.36
3	4	7.31
4	5	7.35
5	6	7.32
6	7	7.48
7	8	7.37
8	9	7.32
9	10	7.28
10	11	7.36
11	12	7.32
12	13	7.37
13	14	7.33
14	15	7.36
15	16	7.35
16	17	7.34
17	18	7.33
18	19	7.26
19	20	7.33
20	21	7.38
21	22	7.30
22	23	7.25
23	24	7.35
24	25	7.34
25	26	7.40
26	27	7.40
27	28	7.27
28	29	7.32
29	30	7.42

	articulos	peso_libra
30	31	7.39
31	32	7.41
32	33	7.44
33	34	7.30
34	35	7.36
35	36	7.37
36	37	7.43
37	38	7.28
38	39	7.39
39	40	7.35
40	41	7.29
41	42	7.41

Histograma

Mediana

```
In [7]:
          1 # enviando las medias a t1, t2, t3 para su utilización
          2 print("Mediana:", )
          3 t1 = datos.median()
            print( "la Mediana de pesos es: ", t1)
            print("DIRECTAMENTE DEL DATAFRAME ")
            datos.median()
        Mediana:
        la Mediana de pesos es: articulos
                                                21.50
        peso libra
                       7.35
        dtype: float64
        DIRECTAMENTE DEL DATAFRAME
Out[7]: articulos
                      21.50
        peso libra
                       7.35
        dtype: float64
```

Media

```
In [8]:
         1 # enviando las medias a t1, t2, t3 para su utilización
         2 print("Media:", )
         3 t1 = datos.mean()
         4 print( "la Media de pesos: ", t1)
          5 print("DIRECTAMENTE DEL DATAFRAME ")
          6 datos.mean()
        Media:
        la Media de pesos: articulos
                                          21.500000
        peso libra
                       7.361905
        dtype: float64
        DIRECTAMENTE DEL DATAFRAME
Out[8]: articulos
                      21.500000
        peso_libra
                      7.361905
        dtype: float64
```

Moda

```
In [11]:
           1 # enviando las modas a mo1, mo2, mo3 para su utilización
           2 print("Moda:")
           3 mo1 = datos["peso_libra"].mode()
           4 print( "la Moda de peso de articulos: ", mo1)
           5 pd.DataFrame(mo1)
           6
         la Moda de peso de articulos: 0 7.32
              7.35
         1
              7.36
         dtype: float64
Out[11]:
              0
          0 7.32
          1 7.35
          2 7.36
```

```
In [12]: 1 # Tomamos los datos de las columnas
2 datos[['peso_libra']].describe()
3 # describe(), nos presenta directamente la media, desviación standar, el val
4 #o, valor máximo, el 1er cuartil, 2do Cuartil, 3er Cuartil
```

Out[12]:

	peso_libra
count	42.000000
mean	7.361905
std	0.099001
min	7.250000
25%	7.320000
50%	7.350000
75%	7.387500
max	7.900000

Estadisticos de 30 REGISTROS

Out[13]:

	peso_libra
count	30.000000
mean	7.359333
std	0.112769
min	7.250000
25%	7.320000
50%	7.340000
75%	7.367500
max	7.900000

```
In [14]: 1 df_2 = datos[10:21]
2 df_2
```

Out[14]:

	articulos	peso_libra
10	11	7.36
11	12	7.32
12	13	7.37
13	14	7.33
14	15	7.36
15	16	7.35
16	17	7.34
17	18	7.33
18	19	7.26
19	20	7.33
20	21	7.38

Estadisticos del mes de Mayo

Out[15]:

	peso_libra		
count	11.000000		
mean	7.339091		
std	0.032390		
min	7.260000		
25%	7.330000		
50%	7.340000		
75%	7.360000		
max	7.380000		

Out[17]: <matplotlib.legend.Legend at 0x23724e67d30>

Out[22]: Text(0.5, 1.0, 'peso_libra')

Out[23]:

	peso_libra
0	7.90
1	7.31
2	7.36
3	7.35
4	7.32
5	7.48
6	7.37
7	7.28
8	7.33
9	7.34
10	7.26
11	7.38
12	7.30
13	7.25
14	7.40
15	7.27
16	7.42
17	7.39
18	7.41
19	7.44
20	7.43
21	7.29

Frecuencias Absolutas

Out[24]:

	peso_libra	Fi
0	7.90	1
1	7.31	1
2	7.36	1
3	7.35	2
4	7.32	1
5	7.48	2
6	7.37	2
7	7.28	4
8	7.33	3
9	7.34	2
10	7.26	4
11	7.38	4
12	7.30	3
13	7.25	1
14	7.40	2
15	7.27	2
16	7.42	2
17	7.39	1
18	7.41	1
19	7.44	1
20	7.43	1
21	7.29	1

Frecuencias Relativas

Out[25]:

	peso_libra	Fi	hi
0	7.90	1	0.023810
1	7.31	1	0.023810
2	7.36	1	0.023810
3	7.35	2	0.047619
4	7.32	1	0.023810
5	7.48	2	0.047619
6	7.37	2	0.047619
7	7.28	4	0.095238
8	7.33	3	0.071429
9	7.34	2	0.047619
10	7.26	4	0.095238
11	7.38	4	0.095238
12	7.30	3	0.071429
13	7.25	1	0.023810
14	7.40	2	0.047619
15	7.27	2	0.047619
16	7.42	2	0.047619
17	7.39	1	0.023810
18	7.41	1	0.023810
19	7.44	1	0.023810
20	7.43	1	0.023810
21	7.29	1	0.023810

```
In [26]: 1 total1 = dfclases.sum(axis=0) # totales
2 total1
```

Out[26]: peso_libra 162.28 Fi 42.00 hi 1.00

dtype: float64

```
In [27]:
          1 # La suma de Las frecuencias Relativas nos da 1
          2 # aqui vamos a calcular la frecuencia absoluta
          3 FA = dfclases["Fi"].values
          4 # obtenemos FA
          5 a=[]
          6 b=0
          7
             for c in FA:
             b = c + b
          8
              a.append(b)
          9
         10 dfclases["FA"] = a
         11 HI = dfclases["hi"].values
         12 # obtenemos HI
         13 a=[]
         14 b=0
         15 for c in HI:
         16
             b = c + b
         17
              a.append(b)
         18 dfclases["HI"] = a
         19 dfclases
```

Out[27]:

	peso_libra	Fi	hi	FA	н
0	7.90	1	0.023810	1	0.023810
1	7.31	1	0.023810	2	0.047619
2	7.36	1	0.023810	3	0.071429
3	7.35	2	0.047619	5	0.119048
4	7.32	1	0.023810	6	0.142857
5	7.48	2	0.047619	8	0.190476
6	7.37	2	0.047619	10	0.238095
7	7.28	4	0.095238	14	0.333333
8	7.33	3	0.071429	17	0.404762
9	7.34	2	0.047619	19	0.452381
10	7.26	4	0.095238	23	0.547619
11	7.38	4	0.095238	27	0.642857
12	7.30	3	0.071429	30	0.714286
13	7.25	1	0.023810	31	0.738095
14	7.40	2	0.047619	33	0.785714
15	7.27	2	0.047619	35	0.833333
16	7.42	2	0.047619	37	0.880952
17	7.39	1	0.023810	38	0.904762
18	7.41	1	0.023810	39	0.928571
19	7.44	1	0.023810	40	0.952381
20	7.43	1	0.023810	41	0.976190
21	7.29	1	0.023810	42	1.000000

Genere 10 números aleatorios por el método congruencial multiplicativo

determine lo valores en peso en libras de cada uno.

 $Xn+1 = (1140671485Xn+C) \mod(M) Xn=81, C=12820163; M= 264$

```
In [33]:
          1 \# - Xn+1 = (1140671485Xn+C) \mod(M) Xn=81, C=12820163; M= 264
          2 n, m, a, x0, c = 10, 264, 1140671485, 81, 12820163
          3 x = [1] * n
          4 r = [0.1] * n
            print (" Generador Congruencial multiplicativo")
          6 | print ("-----")
          7
            for i in range(0, n):
                x[i] = ((a*x0)+c) % m
          8
          9
                x0 = x[i]
         10
                r[i] = x0 / m
         11 | d = {'Xn': x, 'ri': r }
         12 df1 = pd.DataFrame(data=d)
         13 # df1.head()
         14 df1
```

Generador Congruencial multiplicativo

Out[33]:

```
        Xn
        ri

        0
        80
        0.303030

        1
        259
        0.981061

        2
        162
        0.613636

        3
        101
        0.382576

        4
        196
        0.742424

        5
        87
        0.329545

        6
        62
        0.234848

        7
        49
        0.185606

        8
        0
        0.000000

        9
        59
        0.223485
```

```
In [ ]: 1
```