Chapitre 1.B. Premières fonctions usuelles.

1 Fonctions polynomiales

Par exemple, $x \mapsto 4x^3 - 5x^2 + 7$ est une fonction polynomiale (notion différente de celle de polynôme, qui est plus générale; c.f. second semestre).

Plus généralement, on appelle fonction polynômiale réelle toute fonction de la forme

où $n \in \mathbb{N}$ et où les a_i sont des réels, appelés <u>coefficients</u>.

On admet provisoirement que "deux polynômes sont égaux si et seulement si ils ont mêmes coefficients", ce qui signifie :

$$(\forall x \in \mathbb{R}, \ a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n) \iff$$

On dit qu'un réel λ est racine de $f(x) = a_0 + a_1x + \cdots + a_nx^n$ si $a_0 + a_1\lambda + a_2\lambda^2 + \cdots + a_n\lambda^n = 0$. C'est équivalent à la possibilité de mettre $(x - \lambda)$ en facteur dans f(x), i.e. à :

À savoir faire : factorisation d'un polynôme de degré 3 à l'aide d'une racine évidente Factoriser $x^3 - 2x^2 - 5x + 6$.

Démonstration 1

Lorsque f est de la forme $x \mapsto a_1x + a_0$, il s'agit plus précisément d'une fonction affine.

$\mathbf{2}$ Fonctions logarithme, exponentielle, puissances

2.a Fonction logarithme népérien

Définition:

On appelle logarithme népérien la fonction suivante :

Proposition:

- ln est dérivable sur \mathbb{R}_+^* , et $\forall x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x}$.
- ln(1) = 0.
- ln est strictement croissante.
- $\forall x \in [0, 1[, \ln(x) < 0 ; \forall x \in [1, +\infty[, \ln(x) > 0.]]$

Démonstration 2

Proposition: Propriété fondamentale

Démonstration 3

 \triangle Avant de transformer $\ln(ab)$, assurez-vous que a et b sont strictement positifs (ils pourraient être tous les deux strictement négatifs, et alors la propriété est grossièrement fausse).

Corollaire:

- $\forall a > 0$, $\ln(\frac{1}{a}) = -\ln(a)$
- $\forall a > 0, \ \forall b > 0, \ \ln(\frac{a}{b}) = \ln(a) \ln(b)$
- $\forall a > 0, \ \forall n \in \mathbb{Z}, \ \ln(a^n) = n \ln(a)$

Démonstration 4

Proposition: Limites

- $\lim_{x \to +\infty} \ln x =$ $\lim_{x \to 0} \ln x =$

- $\lim x \ln x =$
- $\bullet \quad \lim_{x \to 1} \frac{\ln x}{x 1} =$
- $\bullet \quad \lim_{h \to 0} \frac{\ln(1+h)}{h} =$

Graphe de ln:

Définition:

On appelle <u>logarithme décimal</u> et on note \log_{10} la fonction définie sur \mathbb{R}_+^* par :

$$\log_{10}(x) = \frac{\ln x}{\ln 10}$$

On appelle <u>logarithme en base 2</u> et on note \log_2 la fonction définie sur \mathbb{R}_+^* par :

$$\log_2(x) = \frac{\ln x}{\ln 2}$$

2

De manière générale, on peut définir le logarithme en base t (avec t > 0), il s'agit de la fonction ln multipliée par la constante $\frac{1}{\ln(t)}$. On a donc des propriétés similaires à celles de ln, en particulier $\log_2(1) = \log_{10}(1) = 0$, $\log_t(ab) = \log_t(a) + \log_t(b)$, pour a, b dans \mathbb{R}_+^* ...

Par construction, $\log_{10} 10 = 1$, $\log_2(2) = 1$, et, mieux : pour tout $n \in \mathbb{Z}$, $\log_{10}(10^n) = n$, $\log_2(2^n) = n$.

2.b Fonction exponentielle

Définition:

La fonction ln est continue et strictement croissante sur l'intervalle \mathbb{R}_+^* .

D'après le théorème de la bijection, elle réalise donc une bijection de \mathbb{R}_+^* dans $\ln(\mathbb{R}_+^*)$, i.e. de \mathbb{R}_{+}^{*} dans \mathbb{R} .

Sa réciproque est appelée exponentielle et notée exp.

On a donc exp : $\mathbb{R} \longrightarrow \mathbb{R}_+^*$.

Conséquence fondamentale :

$$\forall x > 0, \ \forall y \in \mathbb{R}, \ y = \ln x \iff x = \exp(y).$$

Les graphes de exp et ln sont symétriques par rapport à la première bissectrice :

Proposition:

- exp est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $\exp'(x) = \exp(x)$.
- $\exp(0) = 1$.
- ullet exp est strictement croissante.
- $\forall x \in]-\infty, 0[, \exp(x) < 1; \forall x \in]0, +\infty[, \exp(x) > 1.$

Démonstration 5

Proposition:

(Propriété fondamentale)

Démonstration 6

Corollaire:

•
$$\forall a \in \mathbb{R}, \ \exp(-a) = \frac{1}{\exp(a)}$$

• $\forall (a,b) \in \mathbb{R}^2, \ \exp(a-b) = \frac{\exp(a)}{\exp(b)}$
• $\forall a \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ \exp(na) = (\exp(a))^n$.

•
$$\forall (a,b) \in \mathbb{R}^2$$
, $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$

•
$$\forall a \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ \exp(na) = (\exp(a))^n$$

Démonstration 7

Proposition: Limites

•
$$\lim_{x \to +\infty} \exp(x) =$$

$$\lim_{x \to -\infty} \exp(x) =$$

$$\bullet \quad \lim_{x \to +\infty} \frac{\exp(x)}{x} =$$

•
$$\lim_{x \to -\infty} x \exp(x) =$$

$$\bullet \quad \lim_{x \to 0} \frac{\exp(x) - 1}{x} =$$

2.c Fonctions puissances

Définition:

Soit $\alpha \in \mathbb{R}$. On définit la puissance α pour un réel strictement positif de la façon suivante :

Remarques:

• Si $\alpha = n \in \mathbb{N}$, on retrouve la notion de puissance connue.

• De même si $\alpha \in \mathbb{Z}_{-}^{*}$:

Avec cette définition, la propriété de ln vis-à-vis de la puissance se généralise au cas $\alpha \in \mathbb{R}$: Pour tout x > 0, $\ln(x^{\alpha}) = \alpha \ln(x)$.

4

Proposition:

Soient x et y des réels strictement positifs, α, β des réels.

•
$$x^0 = 1, x^1 = x$$

$$(x^{\alpha})^{\beta} = x^{\alpha\beta}$$

$$\bullet \quad x^{\alpha+\beta} = x^{\alpha}x^{\beta}$$

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha}$$

•
$$x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}}$$

$$\bullet \quad \left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$$

Démonstration 8

Proposition:

Pour tout $\alpha \in \mathbb{R}$, l'application $f_{\alpha} \colon x \mapsto x^{\alpha}$ est dérivable sur \mathbb{R}_{+}^{*} et

$$\forall x > 0, \quad f_{\alpha}'(x) = \alpha x^{\alpha - 1}$$

Démonstration 9

Allure des graphes:

Puissance $\frac{1}{n}$:

Pour $n \in \mathbb{N}^*$, $x^{\frac{1}{n}}$ est noté $\sqrt[n]{x}$.

Comme pour tout x>0, $(x^{\frac{1}{n}})^n=(x^n)^{\frac{1}{n}}=x,$ la fonction $x\mapsto x^{\frac{1}{n}}$ est en fait la bijection réciproque de $x \mapsto x^n$ (qui réalise une bijection de \mathbb{R}_+^* dans \mathbb{R}_+^*).

Exemples : $x^{\frac{1}{2}} = \sqrt[2]{x}$, noté \sqrt{x} .

$$\sqrt[3]{8} =$$

Prolongement de la fonction $x \mapsto \sqrt[n]{x}$:

- Par convention, pour tout $n \in \mathbb{N}^*$, $\sqrt[n]{0} = 0$.
- Prenons n=3: la fonction $f: x \mapsto x^3$ est en fait bijective de \mathbb{R} dans \mathbb{R} (exo!). La fonction $x \mapsto \sqrt[3]{x}$ peut donc être définie sur \mathbb{R} comme réciproque de $f: x \mapsto x^3$. Par exemple, $\sqrt[3]{-8} =$

On peut faire cela pour tout n impair.

• En résumé : $x \mapsto x^{\frac{1}{n}} = \sqrt[n]{x}$ est défini sur \mathbb{R}_+ si n est pair, sur \mathbb{R} si n est impair.

Remarque : notation e^x pour $\exp(x)$

On pose $e = \exp(1)$ (environ 2, 72), de sorte que Alors, par définition de la puissance,

2.d Croissances comparées

Proposition:

Soient α et β deux réels tels que

$$\bullet \quad \lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0$$

$$\bullet \lim_{x \to 0} x^{\alpha} |\ln x|^{\beta} = 0$$

$$\bullet \quad \lim_{x \to +\infty} \frac{e^{\alpha x}}{x^{\beta}} = +\infty$$

•
$$\lim_{x \to -\infty} |x|^{\beta} e^{\alpha x} = 0$$

3 Fonctions trigonométriques

3.a Définitions, propriétés de base

Le plan orienté est muni d'un repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j})$.

On note $\mathcal C$ le cercle de centre O et de rayon 1 (cercle trigonométrique).

Soit $x \in \mathbb{R}$ et M le point du cercle tel que l'angle $(\overline{i}', \overline{OM})$ vaut x.

On a (en mesure algébrique) : $\cos(x) = \overline{OH}$, $\sin(x) = \overline{OK}$

$$\tan(x) = \overline{AL} \quad (\text{si } x \notin \{\frac{\pi}{2} + k\pi \ / \ k \in \mathbb{Z}\})$$

Proposition:

- $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$
- $\cos^2 x + \sin^2 x = 1$

Démonstration 10

Les angles x et $x+2\pi$ correspondent au même point M donc : sin, cos et tan sont

3.b Valeurs d'annulation, conditions d'égalité

Rappel : y = x[Q] signifie :

Valeurs d'annulation de cos:

$$\cos(x) = 0 \iff$$

Version plus concise : $cos(x) = 0 \iff$

Valeurs d'annulation de sin :

$$\sin(x) = 0 \iff$$

Version plus concise : $sin(x) = 0 \iff$

- Valeurs d'annulation de tan :
- Conditions d'égalité :

$$\cos x = \cos y \iff$$

 $\tan x = \tan y \iff$

$$\sin x = \sin y \iff$$

Relations élémentaires

Sous réserve de définition :

$$\cos(-x) =$$

$$\sin(-x) =$$

$$\tan(-x) =$$

$$\cos(\frac{\pi}{2} + x) = \sin(\frac{\pi}{2} + x) = 0$$

$$\cos(\frac{\pi}{2} + x) = \\ \sin(\frac{\pi}{2} + x) =$$

$$\cos(\pi - x) =$$

$$\sin(\pi - x) =$$

$$\tan(\pi - x) =$$

$$\cos(\frac{\pi}{2} - x) = \sin(\frac{\pi}{2} - x) =$$

$$\cos(\pi + x) =$$

$$\sin(\pi + x) =$$

$$\tan(\pi + x) =$$

Valeurs particulières à connaître

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$					
$\cos \theta$					
$\tan \theta$					

3.e Dérivées et graphes

Proposition:

cos, sin, tan sont dérivables sur leurs domaines de définition respectifs et :

- $\forall x \in \mathbb{R}, \cos'(x) =$
- $\forall x \in \mathbb{R}, \sin'(x) =$
- $\forall x \in \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}, \tan'(x) =$

Démonstration 11

Proposition:

cos est

; sin est

; tan est

3.f Formules trigonométriques

(Sous réserve de définition - attention aux tangentes!)

Celles à connaître par cœur

Formules d'addition

$$\cos(a+b) =$$

$$\cos(a-b) =$$

$$\sin(a+b) =$$

$$\sin(a-b) =$$

$$\tan(a-b) =$$

Formules de duplication

$$\cos(2x) = \\ = \\ = \\ \sin(2x) = \\ \tan(2x) =$$

On tire des formules de cos(2x) les importantes formules de linéarisation suivantes :

$$\cos^2(x) = \sin^2(x) =$$

Démonstration 12

Celles à savoir retrouver

Transformation de produits en sommes

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$$

Transformation de sommes en produits

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

Démonstration 13

Celles hors programme

Expressions en fonction de la tangente de l'arc moitié

En posant $t = \tan\left(\frac{x}{2}\right)$, sous réserve de définition,

$$\tan x = \frac{2t}{1 - t^2}$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

Démonstration 14

Plan du cours

1	Fo	onctions polynomiales					
2	Fo	Fonctions logarithme, exponentielle, puissances					
	2.a	Fonction logarithme népérien					
	2.b	Fonction exponentielle					
	2.c	Fonctions puissances					
	2.d	Croissances comparées					
3	Fo	onctions trigonométriques					
	3.a	Définitions, propriétés de base					
	3.b	Valeurs d'annulation, conditions d'égalité					
	3.c	Relations élémentaires					
	3.d	Valeurs particulières à connaître					
	3.e	Dérivées et graphes					
	3.f	Formules trigonométriques					