SENSOR SERIAL NUMBER: 0400 CALIBRATION DATE: 05-Jun-25

Glider APL CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

i = 2.96845794e-04

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (kHz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.00000	2.99327	0.0000	0.00000
1.0001	34.6502	2.96313	5.92766	2.96311	-0.00002
4.4999	34.6320	3.26904	6.15098	3.26905	0.00001
15.0001	34.5955	4.24739	6.81545	4.24741	0.00002
18.5000	34.5884	4.59139	7.03387	4.59138	-0.00001
23.9999	34.5814	5.14752	7.37303	5.14750	-0.00002
29.0000	34.5789	5.66779	7.67642	5.66781	0.00001
32.5001	34.5785	6.03921	7.88570	6.03933	0.00012

f = Instrument Output (kHz)

 $t = temperature \ (^{\circ}C); \quad p = pressure \ (decibars); \quad \delta = CTcor; \quad \epsilon = CPcor;$

Conductivity (S/m) = (g + h * f^2 + i * f^3 + j * f^4) /10 (1 + δ * t + ϵ * p)

Residual (Siemens/meter) = instrument conductivity - bath conductivity

