Network monitoring

And wireless

Options for creating snmp users

- noAuthNoPriv
 - No authorisation and no encryption, basically no security at all!
- authNoPriv
 - Authorisation is required but collected data sent over the network is not encrypted.
- authPriv
 - The strongest form. Authorisation required and everything sent over the network is encrypted.

Installing snmp-agent on ubuntu

```
sudo apt-get install snmpd
sudo mv /etc/snmp/snmpd.conf /etc/snmp/snmpd.conf.org
sudo nano /etc/snmp/snmpd.conf
```

Add the following to the file

```
#
createUser user1
createUser user2 MD5 user2password
createUser user3 MD5 user3password DES user3encryption
#
rouser user1 noauth 1.3.6.1.2.1.1
rouser user2 auth 1.3.6.1.2.1
rwuser user3 priv 1.3.6.1.2.1
```

Installing snmp-agent on ubuntu

sudo nano /etc/default/snmpd

• Comment out the following line, by adding # to it

#SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux,mteTrigger,mteTriggerConf -p /run/snmpd.pid'

Add the following line to the file:

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux,mteTrigger,mteTriggerConf -p /run/snmpd.pid -c /etc/snmp/snmpd.conf'

• Then you restart the service sudo service snmpd restart

Walking the Ubuntu agent

• Now walk the snmp with the created user (this is 1 line)

snmpwalk -v3 -l authPriv -u user3 -a MD5 -A "user3password" -x DES -X "user3encryption" localhost

Install the mibs for Ubuntu to make it more readable.

```
sudo apt-get install snmp-mibs-downloader
sudo download-mibs
```

sudo nano /etc/snmp/snmp.conf

- Enable using the mibs by changing the line mibs:
- to

mibs :

Walking the Ubuntu agent

• Now walk the snmp with the created user again (this is 1 line)

```
snmpwalk -v3 -l authPriv -u user3 -a MD5 -A "user3password" -x DES -X
"user3encryption" localhost
```

You can see the installed MIB structure by running

```
snmptranslate -Tp
```

Exercise

- Now select a value you would like to monitor and add it to Nagios.
- Have a look at the guides from last time, but this time do it using SNMP v3

Characteristics of selected wireless links

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET

Wireless Link Characteristics (I)

important differences from wired link

- *decreased signal strength*: radio signal attenuates as it propagates through matter (path loss)
- *interference from other sources*: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- *multipath propagation*: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- *SNR* versus *BER* tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - *given SNR:* choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- . B,A hear each other
- ♣ B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- ❖ B,A hear each other
- . B, C hear each other
- A, C can not hear each other interfering at B

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- *encoded signal* = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps
- 802. I In: multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802. I I: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must *associate* with an AP
 - scans channels, listening for *beacon frames* containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP's subnet

802. I I: passive/active scanning

<u>passive scanning:</u> <u>active scanning:</u>

- (I) beacon frames sent from APs
- (2) association Request frame sent: HI to selected AP
- (3) association Response frame sent from selected AP to HI

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: *no* collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: *avoid collisions:* CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

- 1 if sense channel idle for **DIFS** then transmit entire frame (no CD)
- 2 if sense channel busy then
 start random backoff time
 timer counts down while channel idle
 transmit when timer expires
 if no ACK, increase random backoff interval,
 repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits *small* request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they' re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: more

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning: switch will see frame from H1 and "remember" which switch port can be used to reach H1

802. Il: advanced capabilities

Rate adaptation

base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

Wifi Security

WEP design goals

- symmetric key crypto
 - confidentiality
 - end host authorization
 - data integrity
- self-synchronizing: each packet separately encrypted
 - given encrypted packet and key, can decrypt; can continue to decrypt packets when preceding packet was lost (unlike Cipher Block Chaining (CBC) in block ciphers)
- Efficient
 - implementable in hardware or software

Review: symmetric stream ciphers

generator

• combine each byte of keystream with byte of plaintext to get ciphertext:

keystream

- m(i) = ith unit of message
- ks(i) = ith unit of keystream
- c(i) = ith unit of ciphertext
- $c(i) = ks(i) \oplus m(i)$ (\oplus = exclusive or)
- $m(i) = ks(i) \oplus c(i)$

key

WEP uses RC4

Stream cipher and packet independence

- recall design goal: each packet separately encrypted
- if for frame n+1, use keystream from where we left off for frame n, then each frame is not separately encrypted
 - need to know where we left off for packet n
- WEP approach: initialize keystream with key + new IV for each packet:

VEP encryption (1) sender calculates Integrity Check Value (ICV) over data

- - four-byte hash/CRC for data integrity
- each side has 104-bit shared key
- sender creates 24-bit initialization vector (IV), appends to key: gives 128-bit key
- sender also appends keyID (in 8-bit field)
- 128-bit key inputted into pseudo random number generator to get keystream
- data in frame + ICV is encrypted with RC4:
 - B\bytes of keystream are XORed with bytes of data & ICV
 - IV & keyID are appended to encrypted data to create payload
 - payload inserted into 802.11 frame

WEP encryption (2)

new IV for each frame

WEP decryption overview

- receiver extracts IV
- inputs IV, shared secret key into pseudo random generator, gets keystream
- XORs keystream with encrypted data to decrypt data + ICV
- verifies integrity of data with ICV
 - note: message integrity approach used here is different from MAC (message authentication code) and signatures (using PKI).

End-point authentication w/ nonce

Nonce: number (R) used only once —in-a-lifetime

How to prove Alice "live": Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

WEP authentication

Notes:

- not all APs do it, even if WEP is being used
- * AP indicates if authentication is necessary in beacon frame
- done before association

Breaking 802.11 WEP encryption

security hole:

- 24-bit IV, one IV per frame, -> IV's eventually reused
- IV transmitted in plaintext -> IV reuse detected

attack:

- Trudy causes Alice to encrypt known plaintext $d_1 d_2 d_3 d_4 \dots$
- Trudy sees: $c_i = d_i XOR k_i^{IV}$
- Trudy knows $c_i d_i$, so can compute k_i^{IV}
- Trudy knows encrypting key sequence $k_1^{IV} k_2^{IV} k_3^{IV} \dots$
- Next time IV is used, Trudy can decrypt!

802.11i: improved security

- numerous (stronger) forms of encryption possible
- provides key distribution
- uses authentication server separate from access point

802.11i: four phases of operation

EAP: extensible authentication protocol

- EAP: end-end client (mobile) to authentication server protocol
- EAP sent over separate "links"
 - mobile-to-AP (EAP over LAN)
 - AP to authentication server (RADIUS over UDP)

