Christian-Albrechts-Universität zu Kiel Institut für Informatik Dozent: Prof. Berghammer Sommersemester 2012

BDD - Binary Decision Diagrams

Mitschrift von Sandra Dylus

Letzte Aktualisierung: 26. Juni 2012

 ${\bf Kontaktadresse} \colon {\rm sad@informatik.uni\text{-}kiel.de}$

Hinweis: Keine Garantie auf Richtigkeit, bei Fehlerfindung bitte kontaktieren.

Binary Decision Diagrams - SoSe 12

Inhaltsverzeichnis

1	Gru	ndlagen	3
	1.1	Aussagenlogik	3
	1.2	Boolesche Algebra	5
	1.3		9
	1.4	Einige spezielle Konstruktionen	1
2	Bina	äre Entscheidungsdiagramme 1	4
	2.1	Graphentheoretische Grundlagen	4
	2.2	Grundlagen BDDs	5
	2.3	Darstellung von Booleschen Funktionen durch BDDs	7
	2.4	OBDDs für wichtige Funktionen	8
3	Algo	prithmen 1	9
	3.1	Minimierung	ç
	3.2	Auswertung und Erfüllbarkeit	0
	3.3	Äquivalenztest	1
	3.4	Negation	2
	3.5	Binäre Operationen	3
	3.6	BDD-Pakete	5
4	Anv	vendung der Spieltheorie 2	6
	4.1	Einfache Spiele und QOBDDs	6
	4.2	Bestimmung von Schlüsselspielern	9
	4.3	Die Wünschenswert-Relation	1
	4.4	Eigenschaften von einfachen Spielen	E

1 Grundlagen

1.1 Aussagenlogik

Was ist eine Aussage? - Ein sprachliches Gebilde, von dem es Sinn macht, zu sagen, es sei wahr oder falsch.

Beispiel

Kiel liegt an der Ostsee. Kiel liegt an der Nordsee.

Beispiel

$$x \in A, X = Y, \exists x : A(x), \forall x : B(x)$$

Kurze Wiederholung von Junktoren:

- 1. Negation: $\neg A$
- 2. Konjunktion: $A \wedge B$
- 3. Disjunktion: $A \vee B$
- 4. Implikation: $A \to B$
- 5. Äquivalenz: $A \leftrightarrow B$

1.1.1 Definition

Sei X eine Menge von Aussagenvariablen . Dann ist die Menge $\mathcal{A}(X)$ der <u>aussagenlogischen Formeln</u> über X wie folgt definiert:

- 1. Für alle $a \in X$ gilt $a \in \mathcal{A}(X)$
- 2. Für alle $\phi \in \mathcal{A}(X)$ gilt $(\neg \phi) \in \mathcal{A}(X)$
- 3. Für alle $\phi, \psi \in \mathcal{A}(X)$ gelten
 - $(\phi \wedge \psi) \in \mathcal{A}(X)$
 - $(\phi \lor \psi) \in \mathcal{A}(X)$
 - $(\phi \to \psi) \in \mathcal{A}(X)$
 - $(\phi \leftrightarrow \psi) \in \mathcal{A}(X)$
- 4. Es gibt keine Elemente in $\mathcal{A}(X)$, außer denen, die (1.) bis (3.) zulassen.

Die Negation (\neg) bindet am stärksten, danach die Konjunktion (\land) und Disjunktion (\lor) und zuletzt die Implikation (\rightarrow) sowie die Äquivalenz (\leftrightarrow) (Vorrangregeln).

Beispiel

$$X = \{a, b, c, d, e\}$$

$$(((\underbrace{\neg a}) \lor (\underline{\neg b})) \lor ((\underbrace{c \land d}) \land e))$$

$$\leadsto (\neg a \lor \neg b) \lor ((c \land d) \land e)$$

$$\leadsto \neg a \lor \neg b \lor (c \land d \land e)$$

1.1.2 Definition

Es ist $\mathbb{B} := \{0, 1\}$ die Menge der Wahrheitswerte.

1.1.3 Definition

Eine Belegung ist eine Funktion $v:X\to\mathbb{B}$. Zu $a\in X$ heißt v(a) die Belegung von a mittels der Belegung. \square

1.1.4 Definition

Die Funktionen $\bar{}: \mathbb{B} \to \mathbb{B}, +, \cdot : \mathbb{B} \to \mathbb{B}$ sind durch die folgende Tafeln festgelegt:

			+					•				
a	0	1	\overline{a}	0	0	1	1	\overline{a}	0	0	1	1
\overline{a}	1	0	b	0	1	0	1	b	0	1	0	1
			$ \begin{array}{c} a \\ b \\ a+b \end{array} $	0	1	1	1	$a \cdot b$	0	0	0	1

1.1.5 Definition

Zu einer Belegung $v: X \to \mathbb{B}$ ist der Wert $\underline{val}_v(\phi)$ für $\phi \in \mathcal{A}(X)$ induktiv wie folgt festgelegt:

- 1. $val_v(a) = v(a)$ für $a \in X$
- 2. $val_v(\neg \phi) = \overline{val_v(\phi)}$ für $\phi \in \mathcal{A}(X)$
- 3. $val_v(\phi \lor \psi) = val_v(\phi) + val_v(\psi)$ für alle $\phi, \psi \in \mathcal{A}(X)$
- 4. $val_v(\phi \wedge val_v(\psi) = val_v(\phi) \cdot val_v(\psi)$ für alle $\phi, \psi \in \mathcal{A}(X)$
- 5. $val_n(\phi \to \psi) = \overline{val_n(\phi)} + val_n(\psi)$ für alle $\phi, \psi \in \mathcal{A}(X)$
- 6. $\underline{val}_v(\phi \leftrightarrow \psi) = \underline{val}_v(\phi \to \psi) \cdot \underline{val}_v(\psi \to \phi)$ für alle $\phi, \psi \in \mathcal{A}(X)$

1.1.6 Definition

Die Relation $\Leftrightarrow \subset \mathcal{A}(X) \times \mathcal{A}(X)$ ist für alle $\phi, \psi \in \mathcal{A}(X)$ definiert durch:

$$\phi \Leftrightarrow \psi : \iff$$
 für alle $v \in \mathbb{B}^X$ gilt $val_n(\phi) = val_n(\psi)$

 ϕ und ψ sind logisch äquivalent, falls $\phi \Leftrightarrow \psi$ gilt.

1.1.7 Definition

Die Relation $\Rightarrow \subseteq \mathcal{A}(X) \times \mathcal{A}(X)$ ist für alle $\phi, \psi \in \mathcal{A}(X)$ definiert durch:

 $\phi \Rightarrow \psi :\iff$ für alle $v \in \mathbf{B}^X$ gilt, wenn $val_v \phi = 1$, dann $val_v \psi = 1$

 ϕ impliziert logisch $\psi,$ falls $\phi \Rightarrow \psi$ gilt.

1.1.8 Satz

Für alle $\phi, \psi \in \mathcal{A}(X)$ gelten:

- 1. $\phi \Leftrightarrow \psi$ ist äquivalent zu $\underline{val}_{v}(\phi \leftrightarrow \psi) = 1$ für alle $v \in \mathbf{B}^{X}$
- 2. $phi \Rightarrow \psi$ ist äquivalent zu $\underline{val}_v(\phi \rightarrow \psi = 1 \text{ für alle } v \in \mathbb{B}^X$
- **1.1.9 Satz** 1. \Leftrightarrow ist Äquivalenzrelation auf $\mathcal{A}(X)$, d.h. reflexiv, symmetrisch und transitiv
 - 2. \Rightarrow ist Quasiordnung auf $\mathcal{A}(X)$, d.h. reflexiv und transitiv
 - 3. für alle $\phi, \psi, \rho \in \mathcal{A}(X)$ gilt: $\phi \Rightarrow \psi$ und $\psi \Rightarrow \rho$ impliziert $\phi \Rightarrow \rho$
 - 4. für alle $\phi, \psi \in \mathcal{A}(X)$ gilt $\phi \Leftrightarrow \psi$ genau dann, wenn $\phi \Rightarrow \psi$ und $\psi \Rightarrow \phi$ gelten

1.1.10 Beispiel

Seien $a, b, c \in X$. Dann gilt:

$$\begin{array}{cccc} a \rightarrow (b \rightarrow c) & \overset{Def.}{\Leftrightarrow} & \neg a \lor (b \rightarrow c) \\ & \overset{Def.}{\Leftrightarrow} & \neg a \lor (\neg b \lor c) \\ & \overset{Ass.}{\Leftrightarrow} & (\neg a \lor \neg b) \lor c \\ & \overset{DeM.}{\Leftrightarrow} & \neg (a \land b) \lor c \\ & \overset{Def.}{\Leftrightarrow} & (a \land b) \rightarrow c \end{array}$$

1.2 Boolesche Algebra

1.2.1 Definition

Ein Verband ist eine algebraische Struktrur (V, \sqcap, \sqcup) mit $V \neq \emptyset$ und $\sqcap, \sqcup : V \times V \to V$, so dass für alle $x, y \in V$ gilt:

1.
$$x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$$

2.
$$x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$$

3.
$$x \sqcup y = y \sqcup x$$

$$4. \ x \sqcap y = y \sqcap x$$

5.
$$x \sqcap (y \sqcup x) = x$$

6.
$$x \sqcup (y \sqcap x) = x$$

1.2.2 Beispiel 1. $(\mathbb{B}, \cdot, +)$ ist Verband

2. $(2^M, \cap, \cup)$ ist Verband

3. (\mathbb{N}, ggT, kgV) ist Verband

4. $(\mathbb{N}, \underline{min}, \underline{max})$ ist Verband

1.2.3 Satz

Es sei (V, \sqcap, \sqcup) ein Verband. Dann gelten für alle $x, y \in V$ die folgenden Eigenschaften:

1.
$$x \sqcup x = x$$
 und $x \sqcap x = x$

$$2. x \sqcap y = x \Leftrightarrow x \sqcup y = y$$

Beweis

(1)

$$x \sqcup x = x \sqcup (x \sqcap (x \sqcup x))$$
$$= x \sqcup ((x \sqcup x) \sqcap x)$$
$$= x$$

$$x \sqcap x = x \sqcap (x \sqcup (x \sqcap x))$$
$$= x \sqcap ((x \sqcap x) \sqcup x)$$
$$= x$$

 $(2) \Rightarrow \text{Sei } x \sqcap y = x, \text{ dann}$

$$x \sqcup y = (x \sqcap y) \sqcup y$$
$$= y \sqcup (x \sqcap y)$$
$$= y$$

 \Leftarrow Sei $x \sqcup y = y$, dann

$$x \sqcap y = x \sqcap (x \sqcup y)$$
$$= x \sqcap (y \sqcup x)$$
$$= x$$

1.2.4 Satz

Es sei (V, \sqcap, \sqcup) ein Verband. Definiert man auf V eine Relation $\sqsubseteq \subseteq V \times V$ für alle $x, y \in V$ durch $x \sqsubseteq y :\iff x \sqcap y = x (\iff x \sqcup y = y)$, so ist (V, \sqsubseteq) eine geordnete Menge.

Beweis

Reflexivität: Sei $x \in V$

$$x \sqsubseteq x \overset{Def.}{\Leftrightarrow} x \sqcap x = x \overset{Satz1,2.3(1)}{\Leftrightarrow} wahr$$

Antisymmetrie: Seien $x, y \in V$

$$x \sqsubseteq y \wedge y \sqsubseteq x \overset{Def.}{\Leftrightarrow} x \sqcap y = x \wedge y \sqcap x = y \overset{Komm.}{\Leftrightarrow} x = y$$

Transitivität: Seien $x,y,z\in V$

$$\begin{array}{ccc} x \sqsubseteq y \wedge y \sqsubseteq z & \overset{Def.}{\Leftrightarrow} & x \sqcap y = x \wedge y \sqcap z = y \\ & \overset{Vor.+Ass.}{\Rightarrow} & x \sqcap z = (x \sqcap y) \sqcap z = x \sqcap (y \sqcap z) = x \sqcap y = x \\ & \overset{Def.}{\Leftrightarrow} & x \sqsubseteq z \end{array}$$

Beispiel 1. $(V, \sqcap, \sqcup, \sqsubseteq)$

- $2. (\mathbb{B}, \cdot, +, \Leftarrow)$
- 3. $(2^M, \cap, \cup, \subseteq)$
- 4. $(\mathbb{N}, ggT, kgV, \backslash)$
- 5. $(\mathbb{N}, \underline{min}, \underline{max}, \leq)$

1.2.5 Definition

Ein Verband (V, \sqcap, \sqcup) heißt distributiv, falls für alle $x, y, z \in V$ gelten:

- 1. $x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$
- $2. \ x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)$

1.2.6 Definition

Eine Boolesche Algebra ist eine algebraische Struktur $(V, \sqcap, \sqcup, \bar{}, \mathbf{0}, \mathbf{L})$ mit $\sqcap, \sqcup : V \times V \to V, \bar{} : V \to V, \mathbf{0}, \mathbf{L} \in V$, so dass folgende Eigenschaften gelten:

- 1. (V, \sqcap, \sqcup) ist ein Verband
- 2. für alle $x \in V$ gilt $x \sqcap \neg x = \mathbf{0}$ und $x \sqcup \neg x = \mathbf{L}$

Daraus kann man Folgendes observieren:

$$x \sqsubseteq \mathbf{L} \quad \Leftrightarrow \quad x \sqcup \mathbf{L} = \mathbf{L}$$

$$\Leftrightarrow \quad x \sqcup (x \sqcup \neg x) = x \sqcup \neg x$$

$$\Leftrightarrow \quad (x \sqcup x \sqcup) \neg x = x \sqcup \neg x$$

$$\Leftrightarrow \quad x \sqcup \neg x = x \sqcup \neg x$$

$$x \sqsubseteq \mathbf{0} \quad \Leftrightarrow \quad \mathbf{0} \sqcap x = \mathbf{0}$$
$$\Leftrightarrow \quad (x \sqcap \neg x) \sqcap x = x \sqcap \neg x$$
$$\Leftrightarrow \quad x \sqcap \neg x = x \sqcap \neg x$$

Also ist **L** größtes Element und **0** kleinstes Element von V in (V, \sqsubseteq) .

	Boolesche Algebra	Aussagenlogik
Trägermenge	V	$\mathcal{A}(X)$
Operationen	П	\land
	Ш	V
	_	_
Elemente	О	$\underline{\mathrm{falsch}}$
	$\mathbf L$	$\underline{\text{wahr}}$
Ordnung		\rightarrow
Gleichheit	=	\leftrightarrow

Tabelle 1: Vergleich der Booleschen Algebra und Aussagenlogik

1.2.7 Satz

Sei $(V, \sqcap, \sqcup, \bar{}, \mathbf{O}, \mathbf{L})$ eine Boolesche Algebra. Dann gelten für alle $x, y \in V$ folgende Eigenschaften:

- 1. $\overline{\overline{x}} = x$
- 2. $\overline{x \sqcap y} = \overline{x} \sqcup \overline{y} \text{ und } \overline{x \sqcup y} = \overline{x} \sqcap \overline{y}$
- 3. $x \sqsubseteq y \Leftrightarrow \neg x \sqcap y = \mathbf{L} \Leftrightarrow x \sqcap \neg y = \mathbf{0}$
- 4. $\overline{\mathbf{0}} = \mathbf{L} \text{ und } \overline{\mathbf{L}} = \mathbf{0}$

1.2.8 Satz

Gilt eine Gleichung $t_1 = t_2$ in allen Booleschen Verbänden, so gilt auch $t_1^d = t_2^d$, wobei t_i^d aus t_i dadurch entsteht, dass man \sqcap und \sqcup sowie **0** und **L** vertauscht.

1.2.9 Definition

Es sei $(V, \sqcap, \sqcup, \bar{\ }, \mathbf{0}, \mathbf{L})$ eine Boolesche Algebra, dann heißt $a \in V$ Atom, falls $a \neq \mathbf{0}$ und für alle $x \in V$ gilt $x \sqsubseteq a \Rightarrow x = \mathbf{0} \lor x = a$.

 $\mathcal{A}(X)$ sei die Menge der Atome von V.

Daraus folgern wir: falls $|V| < \infty$ und $|V| \ge 2$, dann gilt $\mathcal{A}t(V) \ne \mathbf{0}$ und für alle $x \in V$ gibt es $a \in \mathcal{A}t(V)$ mit $a \sqsubseteq x$.

1.2.10 Lemma

In einer Booleschen Algebra $(V, \sqcap, \sqcup, \bar{}, \mathbf{0}, \mathbf{L})$ gelten die folgenden Eigenschaften:

- 1. für alle $a, b \in \mathcal{A}t(V)$ mit $a \neq b$ gilt $a \cap b = \mathbf{0}$
- 2. für alle $a \in \mathcal{A}t(V)$ mit $x \in V$ gilt $a \not\sqsubseteq x \Rightarrow a \sqsubseteq \overline{x}$
- 3. für alle $a \in \mathcal{A}t(V)$ und $x_1, \ldots, x_n \in V, n \ge 1$ gilt $a \sqsubseteq \bigsqcup_{i=1}^n x_i \Leftrightarrow \exists j \in \{1, \ldots, n\} : a \sqsubseteq x_j$

Beweis

- (1) Angenommen $a \sqcap b \neq \mathbf{0}$. Dann gilt $a \sqcap b = a$, da $a \sqcap b \sqsubseteq a$, und $a \sqcap b = b$, da $a \sqcap b = b$. Also gilt a = b und das widerspricht $a \neq b$.
- (2) $a \not\sqsubseteq x \Leftrightarrow a \sqcap \overline{x} \neq a$.

Da $a \cap \overline{x} \sqsubseteq a$ folgt $a \cap \overline{x} = \mathbf{0}$. Also $a \sqsubseteq \overline{x}$ nach Satz 1.2.7 (3).

(3)

$$\exists j \in \{1, \dots, n\} : a \sqsubseteq x_j \iff \forall j \in \{1, \dots, n\} : a \not\sqsubseteq x_j
\Rightarrow \forall j \in \{1, \dots, n\} : a \sqsubseteq \overline{x_j}
\Rightarrow a \sqcap \bigsqcup_{i=1}^n x_i = \bigsqcup_{i=1}^n (a \sqcap x_i) = \bigsqcup_{i=1}^n \mathbf{0}
\Rightarrow a \not\sqsubseteq \bigsqcup_{i=1}^n x_i \text{ da } a \in \mathcal{A}t(V)$$

1.2.11 Satz

Ist $(V, \sqcap, \sqcup, \bar{}, \mathbf{0}, \mathbf{L})$ eine endliche Boolesche Algebra, so ist die Funktion

$$f:V\to 2^{\mathcal{A}t(V)}, \hspace{1cm} f(x)=\{a\in \mathcal{A}t(V)|a\sqsubseteq x\}$$

eine bijektive Funktion. Also gilt $|V| = 2^{|\mathcal{A}t(V)|}$.

Beweis

Injektivität: Seien $x, y \in V$ mit $x \neq y$, z.z. ist $f(x) \neq f(y)$. Aus $x \neq y$ folgt $(x \not\sqsubseteq y \text{ oder } y \not\sqsubseteq x)$. Es gelte o.B.d.A. $x \not\sqsubseteq y$. Dann gilt $x \sqcap \overline{y} \neq \mathbf{0}$. Also gibt es, da $|V| < \infty$, ein Atom $a \in \mathcal{A}t(V)$ mit $a \sqsubseteq x \sqcap \overline{y}$.

$$(1) \ a \sqsubseteq x \qquad \qquad (2) \ a \sqsubseteq \overline{y}$$

Aus (1) und $a \in \mathcal{A}t(V)$ folgt $a \in f(x)$. Aus (2) folgt $a \not\sqsubseteq y$. Wäre $a \subseteq y$, dann golte $a \sqsubseteq \overline{y}$ und $a \subseteq y$, also $a \sqsubseteq y \sqcap \overline{y} = \mathbf{0}$, daraus folgt wiederum $a = \mathbf{0}$, dies steht aber im Widerspruch zu $a \in \mathcal{A}t(V)$. Also gilt $a \notin f(y)$.

Da $a \in f(x)$ und $a \notin f(y)$ gilt $f(x) \neq f(y)$.

Surjektivität: Sei $A \in 2^{\mathcal{A}t(V)}$. Da $|V| < \infty$ gibt es $a_1, \dots a_n \in \mathcal{A}t(V)$ mit $A = \{a_1, \dots, a_n\}$

 $\overline{\operatorname{Beh.:} f(\bigsqcup_{i=1}^n a_i)} = \{a_1, \cdots, a_n\} \text{ für } n \ge 1 \text{ und } f(\mathbf{0}) = \emptyset \text{ für } n = 0$

Bew.: \subseteq

Sei $b \in f(\bigsqcup_{i=1}^n a_i)$, d.h. $b \in \mathcal{A}t(V)$ unf $b \sqsubseteq \bigsqcup_{i=1}^n a_i$. Lemma 1.2.10 (3) zeigt, dass es $j \in \{1, \dots, n\}$ mit $b \sqsubseteq a_j$ gibt. Wegen $b \in \mathcal{A}t(V)$ gilt $b = a_j$, also $b \in A$.

Sei $b \in A$, d.h. $b = a_j$ für ein $j \in \{1, ..., n\}$. Dann gilt $b \in \mathcal{A}t(V)$ und $b \sqsubseteq \bigsqcup_{i=1}^n a_i$ (da $b \sqcup \bigsqcup_{i=1}^n a_i = a_i \sqcup \bigsqcup_{i=1}^n a_i$). Die Definition von f bringt letztendlich $b \in f(\bigsqcup_{i=1}^n a_i)$.

Weiterhin gelten für f noch folgene Eigenschaften:

- 1. $f(x \sqcup y) = f(x) \cup f(y)$
- 2. $f(x \sqcap y) = f(x) \cap (fy)$
- 3. $f(\overline{x}) = \overline{f(x)} = At(V) \setminus f(x)$
- 4. $f(0) = \emptyset$
- 5. $f(\mathbf{L}) = \mathcal{A}t(V)$

1.3 Boolesche Funktionen

1.3.1 Definition

Ist $(V, \sqcap, \sqcup, \bar{}, \mathbf{0}, \mathbf{L})$ eine Boolesche Algebra und $n \in V$ mit $n \geq 1$, dann ist V_n die Menge der n-stelligen Funktionen $f: V^n \to V$.

1.3.2 Definition

Zu $(\mathbb{B}, \cdot, +, \bar{}, \mathbf{0}, \mathbf{L})$ und $n \geq 1$ heißt $f \in \mathbb{B}_n$ Boolesche Funktion (Schaltfunktion).

1.3.3 Satz

Ist $(V, \sqcap, \sqcup, \bar{}, \mathbf{0}, \mathbf{L})$ eine Boolesche Algebra, so wird auch $(V_n, \widetilde{\sqcap}, \widetilde{\sqcup}, \tilde{}, \widetilde{\mathbf{0}}, \widetilde{\mathbf{L}})$ zu einer Booleschen Algebra, indem man definiert:

$$\widetilde{\mathbf{0}}: V^n \to V$$
 $\widetilde{\mathbf{0}}(x_1, \dots, x_n) = \mathbf{0}$
 $\widetilde{\mathbf{L}}: V^n \to V$ $\widetilde{\mathbf{L}}(x_1, \dots, x_n) = \mathbf{L}$

und für alle $f: V^n \to V$ Funktionen $f \widetilde{\sqcap} g: V^n \to V$, $f \widetilde{\sqcup} g: V^n \to V$, $\widetilde{f}: V^n \to V$ definiert durch: $(f \widetilde{\sqcap} g)(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) \sqcap g(x_1, \ldots, x_n) \atop (f \widetilde{\sqcup} g)(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) \sqcup g(x_1, \ldots, x_n)$ $\widetilde{f}(x_1, \ldots, x_n) = \overline{f(x_1, \ldots, x_n)}$

Beweis

Seien $f, g: V^n \to V$, dann:

$$f \sqcap g = g \sqcap f$$

$$\Leftrightarrow \forall x_1, \dots, x_n \in V : (f \sqcap g)(x_1, \dots, x_n) = (g \sqcap f)(x_1, \dots, x_n)$$

$$\Leftrightarrow \forall x_1, \dots, x_n) \in V : f(x_1, \dots, x_n) \sqcap g(x_1, \dots, x_n) = g(x_1, \dots, x_n) \sqcap f(x_1, \dots, x_n)$$

$$\Leftrightarrow \forall x_1, \dots, x_n \in V : \underline{\text{wahr}}$$

Rest analog. \Box

Die Mächtigkeit von V_n sei kurz festzuhalten: $|V_n| = |V|^{(|V|^n)} = (2^a)^b = 2^{a \cdot 2^{a \cdot n}}$

Des Weiteren schauen wir uns kurz Boolesche Funktionen auf \mathbb{B} an. Dabei ist $\mathbf{0} : \mathbb{B}^n \to \mathbb{B}$ eine Kontraktion und $\mathbf{L} : \mathbb{B}^n \to \mathbb{B}$ eine Tautologie. Weiter gilt $+ : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ mit $+ \in \mathbb{B}_2$, $\cdot : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ mit $- \in \mathbb{B}_2$ und $- : \mathbb{B} \to \mathbb{B}$ mit $- \in \mathbb{B}$. Allgemein gilt $f : \mathbb{B}^n \to \mathbb{B}$, $f(x_1, \ldots, x_n) = t$, wobei t mittels $x_1, \ldots, x_n, +, \cdot$ und - aufgebaut ist.

1.3.4 Definition

Seien $n \ge 1$ und $x := (x_1, \dots, x_n), a := (a_1, \dots, a_n)$ Vektoren aus \mathbb{B}^n . Dann definiert man:

- 1. $x_i^{a_i} = x_i$, falls $a_i = 1$ (positives Literal)
- 2. $x_i^{a_i} = \overline{x_i}$, falls $a_i = 0$ (negatives Literal)
- 3. $m_a(x) = \prod_{i=1}^n x_i^{a_i}$ ist Minterm x bzgl. a

1.3.5 Satz

Für alle $f \in \mathbb{B}_n$ mit $n \geq 1$ und $f \neq \mathbf{0}$ gilt:

$$f(x_1, \dots, x_n) = \sum_{a \in f^{-1}(1)} m_a(x)$$
 DNF

Falls $f(x_1, \ldots, x_n) = \sum_{a \in f^{-1}(1)} m_a(x) = \mathbf{0}$ definiert, dann ist $f \neq 0$ nicht wahr.

1.3.6 Beispiel

$$f: \mathbb{B}^3 \to \mathbb{B}, f(x, y, z) = "x + y + z"$$
gerade

$$f^{-1}(1) = \{(0,0,0), (0,1,1), (1,0,1), (1,1,0)\}$$

$$f(x,y,z) = \bar{x} \cdot \bar{y} \cdot \bar{z} + \bar{x} \cdot y \cdot z + x \cdot \bar{y} \cdot z + x \cdot y \cdot \bar{z}$$

Im Folgenden werden wir das Nicod-Nor und Sheffer-Nand verwenden.

1.
$$\nabla \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$
 mit $x \nabla y = \overline{x+y}$

2.
$$\triangle \mathbb{B} \times \mathbb{B} \to \mathbb{B}$$
 mit $x \triangle y = \overline{x \cdot y}$

1.3.7 Satz

- 1. Jede Boolesche Funktion $f: \mathbb{B}^n \to \mathbb{B}$ ist durch ∇ (bzw. durch \triangle) darstellbar.
- 2. ∇ und \triangle sind die einzigen Funktionen aus \mathbb{B}_2 , mit denen man alle $f: \mathbb{B}^n \to \mathbb{B}$ darstellen kann.

Beweis

(1) Es genügt +, ·, - darzustellen, dann folgt die Behauptung aus Satz 1.3.5 (DNF).

$$x + y = \overline{\overline{x + y}} = \overline{\overline{x} \cdot \overline{y}} = \overline{x} \triangle \overline{y} = (x \triangle x) \triangle (y \triangle y)$$
 (1)

$$x \cdot y = \overline{\overline{x \cdot y}} = \overline{\overline{x} + \overline{y}} = \overline{x \triangle y} = (x \triangle y) \triangle (x \triangle y)$$
 (2)

$$\bar{x} = \overline{x \cdot x} = x \triangle x \tag{3}$$

Analog für ∇ .

(2) Sei $\otimes \mathbb{B} \times \mathbb{B} \to \mathbb{B}$, so dass jede Funktion $f: \mathbb{B}^n \to \mathbb{B}$ nur durch \otimes und Variablen darstellbar ist.

 $0 \otimes 0 = 0$ erlaubt nicht, – darzustellen, da $\bar{0} = 1$.

 $1 \otimes 1 = 1$ erlaubt nicht, – darzustellen, da $\bar{1} = 0$.

Also muss $0 \otimes 0 = 1$ sowie $1 \otimes 1 = 0$ gelten.

Die restlichen Auswertungen erfordern eine Fallunterscheidung:

Fall 1: $0 \otimes 1 = 1$ und $1 \otimes 0 = 0$, dann wäre $x \otimes y = \bar{x}$

Fall 2: $0 \otimes 1 = 0$ und $1 \otimes 0 = 1$, dann wäre $x \otimes y = \bar{y}$

Somit können Fall 1 und Fall 2 nicht auftreten.

Fall 3: $0 \otimes 1 = 0$ und $1 \otimes 0 = 0$, dann wäre $\otimes = \nabla$

Fall 4: $0 \otimes 1 = 1$ und $1 \otimes 0 = 1$, dann wäre $\otimes = \triangle$

Insgesamt sind also folgende Wertetafeln möglich:

Sei $X = \{x_1, \dots, x_n\}$ Menge von Booleschen Variablen.

a) Zu jedem $\phi \in \mathcal{A}(X)$ gibt es eine Boolesche Funktion $f_{\phi} : \mathbb{B}^n \to \mathbb{B}$, so dass für alle Belegungen $V : X \to \mathbb{B}$ gilt:

$$f(v(x_1),\ldots,v(x_n)) = \underline{val}_v(\phi)$$

b) Zu jeder Booleschen Funktion $f: \mathbb{B}^n \to \mathbb{B}$ gibt es $\phi_f \in \mathcal{A}(X)$, so dass für alle Belegungen $V: X \to \mathbb{B}$ gilt:

$$f_{\phi}(v(x_1),\ldots,v(x_n)) = \underline{val}_v(\phi_f)$$

1.3.8 Beispiel

Sei
$$X = \{x, y, z\}.$$

 $\phi \in \mathcal{A}(X) : \neg x \lor \neg (\neg y \lor z) \lor \neg x$

daraus ergibt sich dann die Funtkion $f_{\phi}(a,b,c) = \bar{a} + (\overline{b} + c) + \bar{a} = \bar{a} + b \cdot \bar{c}$.

Sei $V:X\to\mathbb{B}$ Belegung. Dann

$$\begin{array}{rcl} \underline{val}_v(\phi) & = & \underline{val}_v(\neg x \vee \neg (\neg y \vee z) \vee \neg x) \\ & = & \underline{val}_v(\neg x) + \underline{val}_v(\neg (\neg y \vee z)) + \underline{val}_v(\neg x) \\ & = & \overline{v(x)} + \underline{\underline{val}_v(\neg y \vee z)} + \overline{v(z)} \\ & = & \overline{v(x)} + \overline{\overline{v(y)}} + v(z) + \overline{v(x)} \\ & = & f_\phi(v(x), v(y), v(z)) \end{array}$$

Grundprobleme

- 1. Erfüllbarkeit: Gegeben sei $\phi \in \mathcal{A}(X)$, gibt es $V: X \to \mathbb{B}$ mit $\underline{val}_v(\phi) = 1$ Äquivalent dazu: Gilt $f_\phi \neq \mathbf{0}$
- 2. Berechnung: Gegeben sei $\phi \in \mathcal{A}(X)$ und $V: X \to \mathbb{B}$. Bestimme $\underline{val}_v(\phi)$. Äquivalent dazu: $f_{\phi}(v(x_1), \dots, v(x_n))$
- 3. Äquivalenztest: Gegeben sei $\phi, \psi \in \mathcal{A}(X)$, gilt $\phi \Leftrightarrow \psi$ Äquivalent dazu: $f_{\phi} = f_{\psi}$
- 4. Erfüllende Belegung: Gegeben sei $\phi \in \mathcal{A}(X)$, bestimme $\{v \in \mathbb{B}^X | \underline{val}_v \phi = 1\}$ Äquivalent dazu: $f_\phi^{-1}(1)$
- 5. Anzahl der erfüllenden Belegungen: Gegeben sei $\phi \in \mathcal{A}(X)$, bestimme $|\{v \in \mathbb{B}^X | \underline{val}_v(\phi) = 1\}|$ Äquivalent dazu: $|f_{\phi}^{-1}(1)|$

1.4 Einige spezielle Konstruktionen

Definiere wie folgt: \mathbb{B}_n Menge, $f: \mathbb{B}^n \to \mathbb{B}$ $\mathbf{0}: \mathbb{B}^n \to \mathbb{B}, \mathbf{L}: \mathbb{B}^n \to \mathbb{B}$ $\sqcap: \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n, \; \sqcup: \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n, \; \bar{}: \mathbb{B}_n \to \mathbb{B}_n.$ Dann ist $(\mathbb{B}_n, \sqcap, \sqcup, \bar{}, \mathbf{0}, \mathbf{L})$ eine Boolesche Algebra.

1.4.1 Definition

Es sei $f: \mathbb{B}^n \to \mathbb{B}$ Boolesche Funktion. Eine Varibale x_i heißt wesentlich, falls es $a_1, \ldots, a_{n-1} \in \mathbb{B}$ gibt mit $f(a_1, \ldots, a_{i-1}, 1, a_i, \ldots, a_{n-1}) \neq f(a_1, \ldots, a_{i-1}, 0, a_i, \ldots, a_{n-1})$.

Man kann mit Hilfe von zwei Schritten, feststellen, welche Variablen wesentlich sind:

- 1. Konstruktion einer Formel $\phi_f \in \mathcal{A}(X)$ zu f
- 2. Äquivalenzumformungen, um Variablen zu entfernen

Wesentliche Variablen werden dabei nicht entfernt, bleiben also stehen.

1.4.2 Beispiel

Sei $X = \{x, y, z\}$ und $f : \mathbb{B}^3 \to \mathbb{B}, f(x, y, z) = x + y \cdot x + z \cdot x$ Formel $\phi_f : x \vee (y \wedge x) \vee (z \wedge x)$

$$x \lor (y \land x) \lor (z \land x)$$

logisch äquivalent zu: $x \lor (z \land x)$ Absorption logisch äquivalent zu: x Absorption

Also f(a,b,c)=a für alle $a,b,c\in\mathbb{B}$. Das heißt x ist wesentlich, y und z hingegen sind unwesentlich.

1.4.3 Definition

Es sei $f: \mathbb{B}^n \to \mathbb{B}$ eine Boolesche Funktion. Zu $i, 1 \leq i \leq n$ ist der positive Co-Faktor definiert als

$$f_{x_i}: \mathbb{B}^n \to \mathbb{B}^n, f_{x_i}(y_1, \dots, y_n) = f(y_1, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_n)$$

und der negative Co-Faktor definiert als

$$f_{\overline{x_i}}: \mathbb{B}^n \to \mathbb{B}^n, f_{\overline{x_i}}(y_1, \dots, y_n) = f_{\overline{x_i}}(y_1, y_{i-1}, 0, y_{i+1}, \dots, y_n).$$

Im Folgenden wird die Shannon-Zerlegung verwendet:

$$f = x_i \cdot f_{x_i} + \overline{x_i} \cdot f_{\overline{x_i}}$$

1.4.4 Definition

Die Projektionsfunktion $x_i: \mathbb{B}^n \to \mathbb{B}$ ist für $i, 1 \leq i \leq n$ definiert durch $x_i(y_1, \dots, y_n) = y_i$.

Für die Operatoren der Booleschen Algebra bedeutet das wie folgt:

1.
$$x_i \cdot f_{x_i} = x_i \cap f_{x_i} \text{ mit } \cap : \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n$$

2.
$$g + h \stackrel{\frown}{=} g \sqcup h \text{ mit } \sqcup : \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n$$

3.
$$\widehat{} = \widehat{} : \mathbb{B}_n \to \mathbb{B}_n$$

1.4.5 Satz

Für alle $f \in \mathbb{B}_n$ und alle $i, 1 \le i \le n$ gilt

$$f = x_i \cdot f_{x_i} + \overline{x_i} \cdot f_{\overline{x_i}}.$$

¹auch: Stelle i in f ist wesentlich.

Beweis

Sei $(y_1, \ldots, y_n) \in \mathbb{B}^n$ beliebig.

Zu zeigen: $f(y_1, \ldots, y_n) = (x_i \cdot f_{x_i} + \overline{x_i} \cdot f_{\overline{x_i}})(y_1, \ldots, y_n).$

$$(x_{i} \cdot f_{x_{i}} + \overline{x_{i}} \cdot f_{\overline{x_{i}}})(y_{1}, \dots, y_{n})$$

$$= (x_{i} \cdot f_{x_{i}})(y_{1}, \dots, y_{n}) + (\overline{x_{i}} \cdot f_{\overline{x_{i}}})(y_{1}, \dots, y_{n})$$

$$= x_{i}(y_{1}, \dots, y_{n}) \cdot f_{x_{i}}(y_{1}, \dots, y_{n}) + \overline{x_{i}}(y_{1}, \dots, y_{n}) \cdot f_{\overline{x_{i}}}(y_{1}, \dots, y_{n})$$

$$= y_{i} \cdot f(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n}) + x_{i}(y_{1}, \dots, y_{n}) \cdot f(y_{1}, \dots, y_{i-1}, 0, y_{i+1}, \dots, y_{n})$$

$$= y_{i} \cdot f(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n}) + \overline{y_{i}} \cdot f(y_{1}, y_{i-1}, 0, y_{i+1}, \dots, y_{n})$$

Fall 1: $y_i = 1$

$$(x_i \cdot f_{x_i} + \overline{x_i} \cdot f_{\overline{x_i}})(y_1, \dots, y_n) = f(y_1, \dots, y_i, \dots, y_n) + 0 = f(y_1, \dots, y_n)$$

Fall 2: $y_i = 0$

$$(x_i \cdot f_{x_i} + \overline{x_i} \cdot f_{\overline{x_i}})(y_1, \dots, y_n) = 0 + f(y_1, \dots, y_i, \dots, y_n) = f(y_1, \dots, y_n)$$

1.4.6 Definition

Es sei $f: \mathbb{B}^n \to \mathbb{B}$, zu $i, 1 \leq i \leq n$ heißt die Funktion

$$\exists x_i f : \mathbb{B}^n \to \mathbb{B}, \quad \exists x_i f = f_{x_i} + f_{\overline{x_i}}$$

die Existenzialquantifizierung und

$$\forall x_i f : \mathbb{B}^n \to \mathbb{B}, \quad \forall x_i f = f_{x_i} \cdot f_{\overline{x_i}}$$

die Allquatifizierung von f nach x_i .

1.4.7 Satz

Es seien $f: \mathbb{B}^n \to \mathbb{B}^n$ und $i, 1 \leq i \leq n$. Dann gilt für alle $(y_1, \dots, y_n) \in \mathbb{B}$

$$(\exists x_i f)(y_1, \dots, y_n) = 1 \Leftrightarrow \exists a \in \mathbb{B} : f(y_1, \dots, y_{i-1}, a, y_{i+1}, \dots, y_n) = 1$$

$$(\forall x_i f)(y_1, \dots, y_n) = 1 \Leftrightarrow \forall a \in \mathbb{B} : f(y_1, \dots, y_{i-1}, a, y_{i+1}, \dots, y_n) = 1$$

Beweis

Für $\exists x_i f$:

$$(\exists x_i f)(y_1, \dots, y_n) = (f_{x_i} + f_{\overline{x_i}})(y_1, \dots, y_n)$$

$$= f_{x_i}(y_1, \dots, y_n) + f_{\overline{x_i}}(y_1, \dots, y_n)$$

$$= y_i \cdot f_{x_i}(y_1, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_n) + \overline{y_i} \cdot f_{\overline{x_i}}(y_1, \dots, y_{i-1}, 0, y_{i+1}, \dots, y_n)$$

$$(\exists x_i f)(y_1, \dots, y_n) = 1 \Leftrightarrow y_i \cdot f(y_1, \dots, 1, \dots, y_n) + \overline{y_i} \cdot f(y_1, \dots, 0, \dots, y_n) = 1$$

$$y_i = 1 \text{ oder } y_i = 0$$

$$\Leftrightarrow f(y_1, \dots, 1, \dots, y_n) = 1 \text{ oder } f(y_1, \dots, 0, \dots, y_n) = 1$$

2 Binäre Entscheidungsdiagramme

Folgende Themen sollen behandelt werden:

- Grundlagen Graphentheorie
- Grundlagen BDDs
- BDDs und Boolesche Funktionen
- BDDs für spezielle Funktionen

2.1 Graphentheoretische Grundlagen

Es soll die übliche Konvention gelte: $g=(V,P), V\neq\emptyset, |V|<\infty$ Knotenmenge , $P\subseteq V\times V$ Pfeilmenge , $(x,y)\in P, x,y\in V$.

2.1.1 Definition

Ein gerichteter (Multi-) Graph ist ein 4-Tupel $g = (V, P, \alpha, \omega)$ mit

- (1) V endlich und $V \neq \emptyset, x \in V$ heißt Knoten
- (2) P endliche Menge, $p \in P$ heißt Pfeil
- (3) $\alpha, \omega: P \to V$ sind Funktionen, dabei heißen $\alpha(p)$ und $\omega(p)$ Anfangs- bzw. Endknoten von $p \in P$.

Gilt für $x, y \in V$ und $p \in P$, dass $\alpha(p) = x$ und $\omega(p) = y$, so heißt x Vorgänger von y und y Nachfolger von x.

- (4) $d^+g(x) = |\{p \in P \mid \alpha(p) = x\}|$ heißt Außengrad von $x \in V$
- (5) $d^-g(x) = |\{p \in P \mid \omega(p) = x\}|$ heißt Innengrad von $x \in V$

2.1.2 Definition

Sei $g = (V, P, \alpha, \omega)$ ein Graph.

- (1) Eine Folge $(p_1, \ldots, p_n) \in P^{+2}$ heißt Weg von αp_1 nach $\omega(p_n)$, falls für alle $i, 1 \leq i \leq n$ gilt: $\omega(p_i) = \alpha(p_{i+1})$. Sind alle paarweise verschieden, so heißt der Weg einfach.
- (2) Ein Weg (p_1, \ldots, p_n) heißt <u>Kreis</u>, falls $\omega(p_n) = \alpha(p_1)$. Ein Kreis heißt <u>einfach</u>, falls alle Pfeile paarweise verschieden sind.
- (3) Knotenlisten von Wegen nach Pfeilen³ (p_1, \ldots, p_n) lassen sich wie folgt darstellen: $(\alpha(p_1), \ldots, \alpha(p_n), \omega(p_n))$
- (4) Seien $x, y \in V$. Dann heißt y "von x aus erreichbar", falls x = y oder ein Weg $(p_1, \ldots, p_n) \in P^+$ mit $\alpha(p_1) = x$ und $\omega(p_n) = y$ existiert.
- (5) g heißt <u>kreisfrei</u>, falls es keinen Kreis gibt.

2.1.3 Beispiel

BILD

Die Weglänge entspricht der Anzahl der Pfeile.

 $^{^2}$ nichtleere Liste bzw $n \geq 1$

³Pfeile sind eindeutig

2.1.4 Definition

Seien $g=(V,P,\alpha,\omega)$ Graph und $x\in V.$ Dann heißt x

- (1) Quelle, falls $d^-g(x) = 0$ ($\omega(p) \neq x$ für alle p inP)
- (2) Senke, falls $d^+g(x) = 0$ ($\alpha(p)$ /x für alle $p \in P$)
- (3) Wurzel, falls jeder Knoten $y \in V$ von x aus erreichbar ist.

2.1.5 Definition

Sei $g = (V, P, \alpha, \omega)$ Graph. Dann heißt g

- (1) Knotenmarkiert, falls es eine Funktion $m: V \to M$ gibt (m(x)) heißt Marke von $x \in V$).
- (2) Pfeilmarkiert, falls es eine Funktion $m: P \to M$ gibt (m(x)) heißt Marke von $p \in P$).

2.2 Grundlagen BDDs

2.2.1 Beispiel

Hier könnte Ihre Werbung stehen!

2.2.2 Definition

Es sei $X = \{x_1, \dots, x_n\}$ eine Menge von Variablen. Ein <u>BDD</u> zu X ist ein gerichteter Graph $g = (V, P, \alpha, \omega)$ mit den folgenden Eigenschaften

- (1) Der Graph g ist kreistfrei, hat genau eine Wurzel und genau zwei Senken, genannt I und O.
- (2) Jeder Knoten ungleich \mathbb{I} und \mathbb{O} heißt <u>innerer Knoten</u> und trägt eine Variable aus X als Marke. \mathbb{I} heißt 1-Senke und trägt die 1 als Marke und \mathbb{O} heißt 0-Senke und trägt die 0 als Marke. Falls $V' = V \cup \{\mathbb{I}, \mathbb{O}\}$, dann V innere Marken.
- (3) Jeder Knoten ungleich I und O hat genau zwei ausgehende Pfeile. Ein Pfeil ist mit 1 markiert und heißt 1-Pfeil, der andere ist mit 0 markiert und heißt 0-Pfeil. 1- und 0-Nachfolger von $x \in V$ sind entsprechend definiert.
- (4) Für alle Wege von der Wurzel zu einem Knoten sind die Knotenmarkierungen der Knoten der Knotenlisten paarweise verschieden.

2.2.3 Bezeichnungen (1) \mathbb{I} 1-Senke, \mathbb{O} 0-Senke.

- (2) Für $x \in V$ ist $\underline{var}(x) \in X$ Markierung $(\underline{var}(\mathbb{I}) = 1 \text{ und } \underline{var}(\mathbb{O}) = 0)$.
- (3) $\underline{size}(g) = |V|$ ist die Anzahl der <u>inneren Knoten</u>, $\underline{height}(g)$ bezeichnet die Länge eines längsten Weges von Wurzel zu einer Senke⁴, $\underline{width}(g) = \max_{i \in \{1, ..., n\}} |V_i|$ mit $V_i = \{a \in V | \underline{var}(a) = x_i\}$.
- (4) Zu $a \in V$ heißt ist 1-Nachfolger. then(a) und 0-Nachfolger else(a)

2.2.4 Definition

Sei (X, >) Variablenordnung, wobei > lineare Striktordnung auf X. Ein BDD g heißt geordnet oder OBDD, falls für alle Wege (p_1, \ldots, p_n) von der Wurzel bis zur einer Senke gilt:

$$var(p_i) < var(p_{i+1})$$
 für $i, 1 \le i \le n-1$

,

 $^{^4}$ Höhe von g

Beispiel

Regelbsp. Entfernen eines redundanten Knotens

2.2.5 Regel

Es sei $g = (V, P, \alpha, \omega)$ ein OBDD. Ein innerer Knoten $a \in V$ heißt redundant, falls $\underline{then}(a) = \underline{else}(a)$. Das Entfernen eines redundanten Knotens a funktioniert wie folgt:

- (1) a wird aus V entfernt.
- (2) Jeder Pfeil $p \in P$ mit $\alpha(p) = a$ oder $\omega(p) = a$ wird aus P entfernt.
- (3) Für jeden Vorgängerknoten von a, füge einen
 - (i) 1-Pfeil nach $\underline{then}(a)$, falls es ein 1-Pfeil war.
 - (ii) 0-Pfeil nach $\underline{else}(a)$, sonst.

2.2.6 Definition

Sei $g=(V,P,\alpha,\omega)$ ein OBDD und $a\in V$ innerer Knoten. Das durch a induzierte Unter-OBDD $g'=(V',P',\alpha\,\omega')$ ist wie folgt definiert:

- (1) $V' = \{b \in V \mid b \text{ von } a \text{ aus erreichbar } \}$
- (2) $P' = \{ p \in P \mid \alpha(p) \in V' \land \omega(p) \in V' \}$
- (3) $\alpha': V' \to P'$ ist definiert durch $\alpha'(p) = \alpha(p)$ für alle $p \in P$. $\omega': V' \to P'$ ist definiert durch $\omega'(p) = \omega(p)$ für alle $p \in P$.
- (4) Jedes $a \in V'$ hat die gleiche Marke wie in g.
- (5) Jeder $p \in P$ hat den selben Typ (0- oder 1-Pfeil) wie in g.

2.2.7 Definition

Seien $g = (V, P, \alpha, \omega)$ und $g' = (V', P', \alpha', \omega')$ OBDDs. Dann heißen g ung g' strukturgleich⁵, fall es bijektive Funktionen

$$\Phi: V \to V'$$
 $\Psi: P \to P'$

gibt, so dass für alle $p \in P$ gilt

- (1) $\alpha'(\Psi(p)) = \Phi(\alpha(p))$
- (2) $\omega'(\Psi(p)) = \Phi(\omega(p))$
- (3) p ist 1-Pfeil $\rightarrow \Psi(p)$ ist 1-Pfeil
- (4) p ist 0-Pfeil $\rightarrow \Psi(p)$ ist 0-Pfeil

und für alle $a \in V$ gilt

(5) $var(\Phi(a)) = var(a)$

2.2.8 Beispiel

Hier sollte ein Bild sein.

⁵auch: isomorph

2.2.9 Regel

Sei $g = (V, P, \alpha, \omega)$ OBDD. Innere Knoten $a, b \in V$ heißen äquivalent, falls gilt:

$$\underline{then}(a) = \underline{then}(b) \\
\underline{else}(a) = \underline{else}(b) \\
\underline{var}(a) = \underline{var}(b)$$

Das Verschmelzen von a und b^6 funktioniert wie folgt:

- (1) b wird aus V entfernt.
- (2) Jeder Pfeil $p \in P$ mit $\alpha(p) = b$ bzw. $\omega(p) = b$ wird aus P entfernt.
- (3) Für alle Vorgänger c von b füge
 - (i) 1-Pfeil von c nach a ein gdw. 1-Pfeil von c nach b existierte,
 - (ii) 0-Pfeil von c nach a ein, sonst.

2.2.10 Definition

Sei g ein OBDD über Variablenmenge X. Dann heißt g

- (1) vollständig, falls für jeden Weg (p_1, \ldots, p_n) von der Wurzel zu einer Senke (\mathbb{I} oder \mathbb{O}) gilt: n = |X|.
- (2) quasi-reduziert (kurz: QOBDD), falls er vollständig ist und es keine äquivalenten Knoten gibt.
- (3) reduziert (kurz: ROBDD), falls es keine redundanten und äquivalenten Knoten besitzt.

Ist $\Pi = (x_1, \dots, x_n)$ die Variablenordnung, so nennt man $V_i = \{a \in V \mid \underline{var}(a) = x_i\}$ die *i*-te <u>Schicht</u>, wobei $1 \le i \le n$ und $\{\mathbb{I}, \mathbb{O}\}$ heißt die n + 1-te Schicht.

2.2.11 Beispiel

Ein weiteres Beispiel

2.3 Darstellung von Booleschen Funktionen durch BDDs

2.3.1 Definition

Sei $g = (V, P, \alpha, \omega)$ OBDD.

$$f_{\mathbb{I}}: \mathbb{B}^n \to \mathbb{B}, \qquad f_{\mathbb{I}}(x_1, \dots, x_n) = 1$$

 $f_{\mathbb{O}}: \mathbb{B}^n \to \mathbb{B}, \qquad f_{\mathbb{O}}(x_1, \dots, x_n) = 0$

und für jeden inneren Knoten $a \in V$ ist

$$f_a: \mathbb{B}^n \to \mathbb{B}, \qquad f_a(x_1, \dots, x_n) = x \cdot f_{then(a)}(x_1, \dots, x_n) + \overline{x} \cdot f_{else(a)}(x_1, \dots, x_n)$$

mit $x := \underline{var}(a)$ definiert. Ist w Wurzel von g, so ist f_w die von g dargestellte Funktion.

2.3.2 Beispiel

Sei $X = \{x, y, z, u\}$ und $\Pi = (x, y, z, u)$.

Hier fehlt ein Bild.

$$\begin{split} f_{a}(x,y,z,u) &= x \cdot f_{c}(x,y,z,u) + \overline{x} \cdot f_{b}(x,y,z,u) \\ &= x \cdot (z \cdot f_{d}(x,y,z,u) + \overline{z} \cdot f_{\mathbb{O}}(x,y,z,u)) + \overline{x} \cdot (y \cdot f_{c}(x,y,z,u) + \overline{y} \cdot f_{\mathbb{O}}(x,y,z,u)) \\ &= x \cdot (z \cdot (u \cdot f_{\mathbb{I}}(x,y,z,u) + \overline{u} \cdot f_{\mathbb{O}}(x,y,z,u)) + \overline{z} \cdot 0) + \\ & \overline{x} \cdot (y \cdot (z \cdot (u \cdot f_{\mathbb{I}}(x,y,z,u) + \overline{u} \cdot f_{\mathbb{O}}(x,y,z,u)) + \overline{z} \cdot 0)) \\ &= x \cdot (z \cdot (u \cdot 1 + \overline{u} \cdot 0)) + \overline{x} \cdot (y \cdot (z \cdot (u \cdot 1 + \overline{u} \cdot 0))) \\ &= x \cdot z \cdot u + \overline{x} \cdot y \cdot z \cdot u \end{split}$$

 $^{^6}$ durch Entfernen von b

2.3.3 Satz

Sei g ein OBDD. Zu einem Weg (p_1, \ldots, p_n) von der Wurzel w bis zur \mathbb{I} (1-Senke) sei definiert:

$$m(p_1, \dots, p_k) = \sum_{i=1}^k \underline{var}(\alpha(p_i))^{a_i}$$

wobei $x_i^{a_i}$ wie in Def. 1.3.4 und $a_i = 1$ gdw. p_i 1-Pfeil bzw. $a_i = 0$ gdw. p_i 0-Pfeil ist, dann gilt

$$f_w(x_1,\ldots,x_n) = \sum_{w \in \mathcal{W}} m(w)$$

wobei \mathcal{W} die Menge der Wege von w nach \mathbb{I} ist.

Beweis

Induktion über die Höhe des OBDDs

IA: Höhe sei 1.

Hier fehlen wieder Bilder.

1. Fall:

$$f_w(x_1,\ldots,x_n) = x \cdot f_{mathdsI}(x_1,\ldots,x_n) + \overline{x} \cdot f_{\mathbb{O}}(x_1,\ldots,x_n) = x$$

Dann gilt $W = \{(p)\}, m((p)) = x$ und schließlich $\sum_{w \in W} m(w) = m((p)) = x = f_w(x_1, \dots, x_n)$. Analog für Fall 2 bis 4. <u>IS:</u> Sei Höhe > 1 und g habe folgende Form (Bild).

$$f_{a}(x_{1},...,x_{n}) = x \cdot f_{b}(x_{1},...,x_{n}) + \overline{x} \cdot f_{c}(x_{1},...,x_{n})$$

$$= x \cdot \sum_{w \in \mathcal{W}_{1}} m(w) + \overline{x} \cdot \sum_{v \in \mathcal{W}_{2}} m(v)$$

$$= \sum_{w \in \mathcal{W}_{1}} x \cdot m(w) + \sum_{v \in \mathcal{W}_{2}} \overline{x} \cdot m(v)$$

$$= \sum_{w \in \mathcal{W}, w_{1} = p} m(w) + \sum_{v \in \mathcal{W}, v_{1} = q} m(v)$$

$$= \sum_{w \in \mathcal{W}} m(w)$$

2.3.4 Konvention

Bei ROBDDs werden auch die 1- und 0-Senke als OBDDs aufgefasst, mit \mathbb{I} bzw. \mathbb{O} bezeichnet und es wird $f_{\mathbb{I}}$ und $f_{\mathbb{O}}$ wie in Def. 2.3.1 definiert.

2.3.5 Satz

Zu jeder Booleschen Funktion existiert ein OBDD, welcher die Funktion darstellt. Dies gilt auch, wenn man QOBDDs bzw. ROBDDs betrachtet. \Box

2.3.6 Satz

Es sei f eine Boolesche Funktion. Wird f durch zwei ROBDDs (oder QOBDDs) g_1 und g_2 dargestellt, so sind g_1 und g_2 strukturgleich.

Es ist festzuhalten, dass die Variablenordnung Einfluss auf die Größe hat.

2.3.7 Beispiel

BILD

2.4 OBDDs für wichtige Funktionen

Gaaaanz viele Bilder.

3 Algorithmen

- Minimierung
- Konstruktion (Zusammenbau, Synthese)
- Operation für Basisfragen von logischen Formeln

3.1 Minimierung

Gegeben: OBDD

Aufgabe: Konstruiere einen ROBDD durch Anwenden der Regeln "Entfernen redundanter Knoten" und "Verschmelzen äquivalenter Knoten" soweit wie möglich.

3.1.1 OBDDs als Zeigergeflecht

Sei g ein OBDD. Jeder Knoten a wird als Record mit 4 Komponenten dargestellt.

- (1) a.id Knotenbezeichnung, natürliche Zahl (alle verschieden)
- (2) a.var Beschriftung, d.h. Variable⁷
- (3) a.then Verweis auf then(a), falls a innerer Knoten, sonst nil
- (4) a.else Verweis auf else(a), falls a innerer Knoten, sonst nil

Zusätzlich: Mengen S_1, \ldots, S_n mit $S_i = \{a | \underline{var}(a) = x_i\}$. Im konkreten S_i gibt es eine Liste von Verweise auf Records mit $a.var = x_i$ (bzw. a.var = i).

3.1.2 Beispiel

BIldchen

3.1.3 Algorithmus Reduce

Eingabe: OBDD g zu einer Variablenordnung (in Zeigergeflechtdarstellung)

Ausgabe: ROBDD - Geflechtdarstellung zu g

Reduce(g):

- (1) Durchlaufe g in DFS-Ordnung und setze dabei
 - 0-Senke.id := 0
 - 1-Senke.id := 1
 - z[0] = 0-Senke
 - z[1] = 1-Senke
- (2) k := 2

for i=n-1 until 1 do

- (1) Suche in S_i alle redundanten Knoten und markiere sie als entfernbar.
- (2) Sortiere die Mengen S_i nach der folgenden Ordnung: $a \sqsubseteq b \Leftrightarrow (\text{a.then.id}, \text{ a.else.id}) \leq_{lex.} (\text{b.then.id}, \text{ b.else.id})$ Damit stehen äquivalente Knoten in der Liste immer hintereinander.
- (3) Suche die verschmelzbaren Knoten und markiere alle bis auf einen als entfernbar. Für jede Teilliste a_1, \ldots, a_n von äquivalenten Knoten wird a_1 Vertreterknoten und a_2, \ldots, a_n werden als entfernbar markiert.

$$k := k+1$$

$$a1.id = k$$

$$z[k] = a_1$$

 $^{^7 {\}rm Index~der~Variable~bei~Implementierung}$

(4) Alle in (1) und (3) als entferbar markierten Knoten werden entfernt und auf sie verweisende Zeiger mithilfe von z entsprechend umgelenkt.

3.2 Auswertung und Erfüllbarkeit

Auswertung:

Gegeben sei ein OBDD zur Funktion $f: \mathbb{B}^n \to \mathbb{B}$ und $b_1, \ldots b_n \in \mathbb{B}^n$. Bestimme $f(b_1, \ldots, b_n)$.

Erfüllbarkeit:

Gegeben sei ein OBDD zur Funktion $f: \mathbb{B}^n \to \mathbb{B}$. Gibt es $(b_1, \ldots, b_n) \in \mathbb{B}^n$ mit $f(b_1, \ldots, b_n) = 1$?

3.2.1 Auswertungsalgorithmus Value

Eingabe: OBDD g zu f und $(b_1, \ldots, b_n) \in \mathbb{B}^n$.

Value(g,b)

```
a := g
while a keine Senke do
  if b[a.var] = 0 then a := a.else
  else a := a.then
return a.var
```

3.2.2 Beispiel

$$X = \{x_1, x_2, x_3, x_4\}, \ \pi = (x_1, x_2, x_3, x_4), \ b = (0, 1, 0, 1)$$
$$f(x) = x_1 \cdot x_2 \cdot x_3 \cdot x_4 + x_1 \cdot x_2 \cdot \overline{x_3} \cdot x_4 + x_1 \cdot \overline{x_2} \cdot x_3 \cdot x_4 + \overline{x_1} \cdot x_2 \cdot \overline{x_3} \cdot x_4 + \overline{x_1} \cdot x_2 \cdot \overline{x_3} \cdot x_4 + \overline{x_1} \cdot \overline{x_2} \cdot x_3 \cdot x_4$$

3.2.3 Erfüllbarkeitsalgorithmus Satisfy

Eingabe: OBDD g und globales Feld B

Ausgabe: 1 und Belegung von B, die den Wert 1 liefert, sonst 0

Satisfy(g,B)⁸

$$a := g$$
if a Senke then return $a.var$
else $B[a.var] = 1$
if $Satisfy(a.then, B)$ then return 1
 $B[a.var] := 0$
if $Satisfy(a.else, B)$ then return 1

3.2.4 Beispiel

Sei
$$X = \{x_1, x_2, x_3\}$$
 und $\pi = (x_1, x_2, x_3)$, sowie $f(x) = x_1 \cdot \overline{x_2} \cdot x_3 = \overline{x_1} \cdot \overline{x_2} \cdot x_3$

3.2.5 Satz

Sei $f: \mathbb{B}^n \to \mathbb{B}$ Boolesche Funktion, die durch ein QOBDD dargestellt wird. Dann ist die Anzahl der erfüllenden Belegungen gegeben durch anz(a), wobei anz rekursiv wie folgt definiert ist⁹:

$$\underline{anz}(\mathbb{O}) = 0$$
 $\underline{anz}(\mathbb{I}) = 1$
 $\underline{anz}(a) = \underline{anz}(a.then) + \underline{anz}(a.else)$, wobei a keine Senke

3.2.6 Beispiel

QOBDD zur Funktion von Beispiel 2.2.1

$$X = \{x_1, x_2, x_3\}, \ \pi = (x_1, x_2, x_3)$$

⁸Komplexität: $O(\underline{size}(g))$

⁹Für ROBDDs gilt dies jedoch nicht.

Sei g ein ROBDD über $X = \{x_1, \dots, x_n\}$. Für Knoten a von g wird level(a) definiert als

- Index von var(a), falls a innerer Knoten
- n+1, falls a Senke

3.2.7 Satz

Sei g ein ROBDD, welches Funktion $f: \mathbb{B}^n \to \mathbb{B}$ darstellt. Dann ist die Anzhal der erfüllenden Belegungen von f gegeben durch $\underline{anz}(g)^{10}$, wobei die Funktion anz auf ROBDD Knoten definiert ist durch:

$$\begin{aligned} &\underline{anz}(\mathbb{I}) = 1 \\ &\underline{anz}(\mathbb{O}) = 0 \\ &\underline{anz}(a) = \frac{1}{2} \cdot \underline{anz}(\underline{then}(a)) \cdot 2 \ \underline{level(then(a) - level(a))} + \underline{anz}(\underline{else}(a)) \cdot 2 \ \underline{level(else(a) - level(a))} \end{aligned}$$

3.2.8 Beispiel

Boolesche Addition.

ROBDD zur Funktion von Beispiel 2.2.1.

3.3 Äquivalenztest

Problem: $f_1, f_2 : \mathbb{B}^n \to \mathbb{B}$. Gilt $f_1 = f_2$? (D.h. $f_1(a_1, \dots, a_n) = f_2(a_1, \dots, a_n)$ f.a. $(a_1, \dots, a_n) \in \mathbb{B}^n$) Lösung: Formuliere f_1 und f_2 über gleichen Variablen $X = \{x_1, \dots, x_n\}$. Lege (möglichst günstige) Variablenordnung fest und stelle f_1 und f_2 durch BDDs¹¹ g_1, g_2 dar. Dann gilt: $f_1 = f_2 \Leftrightarrow g_1$ und g_2 strukturgleiche BDDs.

3.3.1 Algorithmus Equiv

Notwendig zur Effizienzsteigerung: Computed Table

Computed Table CT mit Einträgen ((a, b,), r) als Paare, wobei a, b BDD-Knoten sind und r ein Wahrheitswert ist. Dabei gilt:

$$((a,b),r)$$
 in CT \Rightarrow Equiv $(a,b)=r$

Die Tabellenoperationen umfassen dabei folgende Funktionalitäten:

- Einfügen eines Paares
- Testen, ob zu (a, b) ein Eintrag existiert
- Auslesen des Wahrheitwertes r zum Eintrag ((a,b),r)

Die Implementierung von CTs erfolgt zumeist durch AVL-Bäume, wodurch logarithmische Zugriffszeiten möglich sind.

 $^{^{10}}$ wenn g
 Wurzel ist

¹¹am besten sogar als ROBDDs

3.4 Negation

Gegeben sei eine Funktion $f: \mathbb{B}^n \to \mathbb{B}$ und die Negation $\bar{f}: \mathbb{B}^n \to \mathbb{B}$, $\bar{f}(x_1, \dots, x_n) = \overline{f(x_1, \dots, x_n)}$. Problem: Ist g OBDD zur Darstellung von f, wie bekommt man OBDD zur Darstellung von \bar{f} ? Bei ROBDDs und QOBDDs wird mit barg das BDD bezeichnet, welches \bar{f} darstellt. Man erhält also die ROBDD- bzw. QOBDD-Negation durch die Berechnung von \bar{g} aus g.

3.4.1 Satz

Sei g das ROBDD (QOBDD), welches $f: \mathbb{B}^n \to \mathbb{B}$ darstellt. Ist \bar{g} das BDD, welches aus g dadurch entsteht, dass man \mathbb{O} und \mathbb{I} vertauscht, so stellt \bar{g} die Funktion \bar{f} dar.

3.4.2 Definition

Es seien g_1, g_2 OBDDs mit fester Variablenordnung und $x \in X$, so dass $\underline{var}(a) < x$ für alle Kntoen a von g_1 und g_2 gilt. Dann ist OBDD $\underline{cons}(x, g_1, g_2)$ festgelegt durch:

$$\underline{var(cons}(x, g_1, g_2)) = x$$

$$\underline{then(cons}(x, g_1, g_2)) = g1$$

$$\underline{else(cons}(x, g_1, g_2)) = g2$$

Implementierung:

new(a) $a.id := \underline{max}(g_1.id, g_2.id) + 1$ a.var := x a.then := g1 a.else := g2 $return \ \mathtt{Reduce}(a)$

3.4.3 Beispiel

$$X = \{x, y, z\}, \pi = (x, y, z) \ f_1(x, y, z) = y + z, f_2(x, y, z) = y \cdot z$$

- (1) Konstruiere $cons(x, g_1, g_2)$. ¹²
- (2) Konstruiere $\underline{cons}(x, g_1, g_1) = g_1$.

3.4.4 Satz

Seien $f_1, f_2 : \mathbb{B}^n \to \mathbb{B}$ dargestellt durch OBDDs g_1 bzw. g_2 . Dann wird durch $\underline{cons}(x, g_1, g_2)$ die Funktion $f : \mathbb{B}^n \to \mathbb{B}$ dargestellt, wobei gilt:

$$f = x \cdot f_1 + \bar{x}f_2$$

3.4.5 Algorithmus Negation

Voraussetzung: Computed Table CT mit Einträgen (a, r), wobei a und r OBDD-Knoten sind.

 $[\]overline{\ ^{12}f(x,y,z)=x\cdot y+x\cdot \bar{y}\cdot z=\bar{x}\cdot y\cdot z=x\cdot f_1+\bar{x}\cdot f_2}$

3.4.6 Beispiel

Sei $X = \{y, z\}$ und f = y + z. Konstruiere $\underline{cons}(y, \mathbb{I}, \underline{cons}(z, \mathbb{I}, \mathbb{O}))$. Wie sieht die Negation aus?

3.5 Binäre Operationen

Es gibt 16 Funktionen von $\mathbb{B} \times \mathbb{B}$ nach \mathbb{B} , da $|\mathbb{B}^{\mathbb{B} \times \mathbb{B}}| = 2^4 = 16$. So sind bspw. $+, \cdot, \rightarrow, \leftrightarrow$ solche Funktionen.

Wenn $f: \mathbb{B}^n \to \mathbb{B}$, $g: \mathbb{B}^n \to \mathbb{B}, \otimes: \mathbb{B} \times \mathbb{B} \to \mathbb{B}$, dann ist $f \otimes g: \mathbb{B}^n \to \mathbb{B}$, wobei $f \otimes g$ definiert ist durch:

$$(f \otimes g)(x_1,\ldots,x_n) = f(x_1,\otimes,x_n) \otimes g(x_1,\ldots,x_n)$$

Also $\otimes : \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n$.

Beispiele:

$$+: f + g: \mathbb{B}^n \to \mathbb{B} \quad (f \sqcup g)$$

 $\cdot: f \cdot g: \mathbb{B}^n \to \mathbb{B} \quad (f \sqcap g)$

Problem:

Gegeben seien Funktionen $f_1, f_2 : \mathbb{B}^n \to \mathbb{B}, \otimes : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$ und OBDDs g_1 für f_1 und g_2 für f_2 . Konstruiere g_1 und g_2 OBDD zur Darstellung von $f_1 \otimes f_2$ (Binäre Synthese).

Im Folgenden sollen zwei Ansätze zur Binären Synthese betrachtet werden

- (1) ITH-Funktion (if-then-else)
- (2) Apply-Funktion

Zu (1): ITH-Funktion

$$ITH: \mathbb{B}_n \times \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n, \ ITH(f, g, h) = f \cdot g + \bar{f}h$$

Nun soll gezeigt werden, dass die Funktionen $f_1 + f_2$, $f_1 \cdot f_2$, \bar{f} mit der ITH-Funktion darstellbar sind.

$$ITH(f, \mathbf{0}, \mathbf{L}) = f \cdot \mathbf{0} + \overline{f} \cdot \mathbf{L} = \overline{f}$$

$$ITH(f_1, f_2, \mathbf{0}) = f_1 \cdot f_2 + \overline{f_1} \cdot \mathbf{0} = f_1 \cdot f_2$$

$$ITH(f_1, \mathbf{L}, f_2) = f_1 \cdot \mathbf{L} + \overline{f_1} \cdot f_2 = f_1 + \overline{f_1} \cdot f_2 = (f_1 + \overline{f_1}) \cdot (f_1 + f_2) = f_1 + f_2$$

Damit ist jede Funktion $f: \mathbb{B}^n \to \mathbb{B}$ durch einen Term in ITH und $\mathbf{0}, \mathbf{L}$ ausdrückbar.

Zu (2): Apply-Funktion

 $Apply: \mathbb{B}_n \times \mathbb{B}_n \times \mathbb{B}_2 \to \mathbb{B}_n$, wobei die ersten zwei Argumente, sowie das Resultat OBDDs sind und das dritte Argument ein Operation (\otimes) ist.

Die Apply-Funktion soll nun im weiteren Verlauf verwendet werden.

3.5.1 Satz

Es sei $f, g : \mathbb{B}^n \to \mathbb{B}$ und $\otimes : \mathbb{B} \times \mathbb{B} \to \mathbb{B}$. Dann gilt für jede Variable x_i (aufgefasst als Projektion $x_i : \mathbb{B}_n \to \mathbb{B}$:

$$f \otimes g = x_i \cdot (f_{x_i} \otimes g_{x_i}) + \overline{x_i} \cdot (f_{\overline{x_i}} \otimes g_{\overline{x_i}})$$

Beweis

Seien $(y_1, \ldots, y_n) \in \mathbb{B}^n$. Dann gilt $f \otimes g(y_1, \ldots, y_n) = f(y_1, \ldots, y_n) \otimes g(y_1, \ldots, y_n)$.

Rechte Seite:

$$(x_{i} \cdot (f_{x_{i}} \otimes g_{x_{i}}) + \overline{x_{i}} \cdot (f_{\overline{x_{i}}} \otimes g_{\overline{x_{i}}}))(y_{1}, \dots, y_{n})$$

$$= x_{i} \cdot (f_{x_{i}} \otimes g_{x_{i}})(y_{1}, \dots, y_{n}) + \overline{x_{i}} \cdot (f_{\overline{x_{i}}} \otimes g_{\overline{x_{i}}})(y_{1}, \dots, y_{n})$$

$$= x_{i}(y_{1}, \dots, y_{n}) \cdot (f_{x_{i}}(y_{1}, \dots, y_{n}) \otimes g_{x_{i}}(y_{1}, \dots, y_{n})) + \overline{x_{i}}(y_{1}, \dots, y_{n}) \cdot (f_{\overline{x_{i}}}(y_{1}, \dots, y_{n}) \otimes g_{\overline{x_{i}}}(y_{1}, \dots, y_{n}))$$

$$= y_{i} \cdot f(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n}) \otimes g(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n})$$

$$+ \overline{y_{i}} \cdot f(y_{1}, \dots, y_{i-1}, 0, y_{i+1}, \dots, y_{n}) \otimes g(y_{1}, \dots, y_{i-1}, 0, y_{i+1}, \dots, y_{n})$$
Fall 1: $y_{i} = 1$

$$= f(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n}) \otimes g(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n}) + 0$$

$$= f(y_{1}, \dots, y_{n}) \otimes g(y_{1}, \dots, y_{n})$$
Fall 2: $y_{1} = 0$

$$= 0 + f(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n}) \otimes g(y_{1}, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_{n})$$

$$= f(y_{1}, \dots, y_{n}) \otimes g(y_{1}, \dots, y_{n})$$

3.5.2 Binäre Synthese bei QOBDDs

Voraussetzung: $f_1, f_2 : \mathbb{B}^n \to \mathbb{B}$ werden durch die QOBDDs g_1 bzw. g_2 (mit gleicher Variablenordnung) dargestellt und $\otimes : \mathbb{B} \to \mathbb{B}$ sei die gegebene binäre Operation.

Dann berechnet $Apply(g_1, g_2, \otimes)$ das QOBDD für $g_1 \otimes g_2$ (mit CT).

 $\text{apply}(a,b,\otimes) \\ \text{if } a \wedge b \text{ Senken then return } a \otimes b \text{ als QOBDD} \\ \text{elseif } \exists r: ((a,b),r) \text{ in CT then return } r \text{ mit } ((a,b),r) \text{ in CT} \\ \text{else } r_1 := \text{Apply}(\underline{then}(a),\underline{then}(b),\otimes) \\ r_2 := \text{Apply}(\underline{else}(a),\underline{else}(b),\otimes) \\ r := \text{Cons}(\underline{var}(a),r_1,r_2) \\ \underline{add}((a,b),r) \text{ to CT} \\ \text{return } r \\ \\ \text{ } \\ \text{$

3.5.3 Beispiel

(1)

Seien x und $f_1, f_2 : \mathbb{B}^n \to \mathbb{B}, \otimes : \mathbb{B} \to \mathbb{B}$ gegeben mit

$$f_1(x) = x, \ f_2(x) = \bar{x}, \ \otimes = \cdot$$

 $(f_1 \cdot f_2)(x) = x \cdot \bar{x} = 0$

 $(Apply(g_1, g_2, \otimes))$ durchführen, wobei g_1 und g_2 QOBDDs zu f_1 bzw. f_2 .

(2)
$$X = x, y, \ \pi = (x, y), \ f_1 : \mathbb{B}^2 \to \mathbb{B}, \ f_2 : \mathbb{B}^2 \to \mathbb{B}, \ \otimes : \mathbb{B} \to \mathbb{B}.$$

$$f_1(x, y) = x$$

$$f_2(x, y) = x + y$$

$$\otimes = \cdot$$

$$(f_1 \cdot f_2)(x, y) = f_1(x, y) \cdot f_2(x, y) = x \cdot (x + y) = x$$

3.5.4 Algorithmus Apply bei ROBDDs

Im Gegensatz zu den QOBBDs müssen hier 4 Fälle unterschieden werden.

- (1) a und b sind Senken: $\mathtt{Apply}(a,b,\otimes) = a \otimes b$ (als ROBDD)
- (2) a und b sind keine Senken und $\underline{var}(a) = \underline{var}(b) = x$: $\mathsf{Apply}(a, b, \otimes) = \mathsf{Cons}(x, \mathsf{Apply}(\underline{then}(a), \underline{then}(b), \otimes), \mathsf{Apply}(\underline{else}(a), \underline{else}(b), \otimes))$
- (3) a ist keine Senke und b beliebig, aber $\underline{var}(b) < \underline{var}(a) = x$, falls b keine Senke ist: $\mathtt{Apply}(a,b,\otimes) = \mathtt{Cons}(x,\mathtt{Apply}(\underline{then}(a),b,\otimes),\mathtt{Apply}(\underline{else}(a),b,\otimes))$
- (4) b keine Senke und a beliebig, aber $\underline{var}(a) < \underline{var}(b) = x$, falls a keine Senke ist: $\mathtt{Apply}(a,b,\otimes) = \mathtt{Cons}(x,\mathtt{Apply}(a,\underline{then}(b),\otimes),\mathtt{Apply}(a,\underline{else}(b),\otimes))$

3.5.5 Beispiel

Seien
$$X = \{x\}, f_1, f_2 : \mathbb{B}^2 \to \mathbb{B}, \otimes : \mathbb{B} \to \mathbb{B}.$$

$$f_1(x,y) = x$$

$$f_2(x,y) = x + y$$

$$\otimes = \cdot$$

$$(f_1 \otimes f_2)(x,y) = x \cdot (x+y) = x$$

3.6 BDD-Pakete

Anwendung:

- (1) Schaltungsentfwurf, VLSI-Design
- (2) Symbolisches Model Checking
- (3) Algorithmik, große Graphen
- (4) Spieltheorie (Stefan Bolus)
- (5) Relationentheorie

Pakete:

- (1) CUDD
- (2) CMU-BDD-Paket
- (3) BuDDv
- (4) CrocoPat
- (5) RelView und Kure

4 Anwendung der Spieltheorie

In diesem Abschnitt werden folgende Themen bearbeitet:

- Einfache Spiele und QOBDDs
- Berechnung von Schlüsselspielern
- Bestimmung der Wünschenswert-Relation

Kurz zur Spieltheorie:

Man unterscheidet zwischen Konkurrierenden und kooperierenden Spielen. Zweiteres wird noch in einfache Spiele¹³ und nicht-einfach Spiele unterteilt.

Mit BDDs kann man einfache Spiele besonders gut berechnen. Einfache Spiele entsprechen monotonen Funktionen.

4.1 Einfache Spiele und QOBDDs

4.1.1 Definition

Ein faches Spiel ist ein Par (X, \mathcal{W}) mit:

- (1) X endliche, nicht-leere Menge von Spielern
- (2) $\mathcal{W} \subseteq 2^X$ mit der Eigenschaft, dass für alle $Y, Z \in 2^X$:

$$Y \subseteq \mathcal{W} \land Y \subseteq Z \Rightarrow Z \in W$$

 $Y \in 2^X$ heißt <u>Koalition</u>, $Y \in \mathcal{W}$ heißt gewinnende Koalition und $Y \in 2^{X \setminus \mathcal{W}}$ <u>verlierende Koalition</u>.

4.1.2 Definition

Sei (X, \mathcal{W}) ein einfacher Spiel. Ein Paar (Q, w) mit $Q \in \mathbb{N}_{>0}$ und $w : X \to \mathbb{N}$ heißt gewichtete Dartellung, falls für alle $Y \in 2^X$ gilt:

$$Y \in \mathcal{W} \Leftrightarrow \sum_{x \in Y} w(x) \ge Q$$

Besitzt ein Spiel eine gewichtete Darstellung, so heißt es gewichtetes Mehrheitsspiel (GMS).

Normalfall der Schreibweise ist dabei wie folgt:

$$X = \{x_1, ..., x_n\}, [Q; w_1, ..., w_n], \text{ wobei } w_i = w(x_i) \text{ und } Q \text{ Quote.}$$

4.1.3 Beispiel

(1)

Sei
$$(X, W)$$
 mit $X = \{x_1, x_2, x_3\}, W = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_1, x_3\}, \{x_1, x_2, x_3\}\}.$
 (X, W) ist GMS mit $[6; 5, 5, 1].$

Warum sind die Mengen in \mathcal{W} gewinnende Koalitionen?

(2)

Sei (X, W) einfaches Spiel, gegeben durch $X = \{x_1, x_2, x_2, x_4, x_5\}$ und $[312; 239, 146, 93, 76, 68]^{14}$. Hierbei stehen die Elemente aus X für die folgenden Partein:

 $x_1 \cong \text{CDU/CSU}, x_2 \cong \text{SPD}, x_3 \cong \text{FDP}, x_4 \cong \text{Die Linke}, x_5 \cong \text{Die Grünen}$ und die Gewichte entsprechen der Sitzverteilung nach der Bundestagswahl 2009.

Wie sieht nun W aus?

¹³Nutzen ist hier 0 oder 1

 $^{^{14} \}mathrm{oder} \ [3;2,1,1,1,0]$ in der minimalen Variante

4.1.4 Definition

Sei (X, \mathcal{W}) einfaches Spiel. Dann heißt dies <u>Vektorgerichtetes Mehrheitsspiel</u> (VGMS), falls es $k \in \mathbb{N}_{>0}$ und $Q^{(1)}, \dots, Q^{(k)} \in \mathbb{N}_{>0}$ und $w^{(j)}: X \to \mathbb{N}$ für alle $j \in \{1, \dots, k\}$ gibt mit der Eigenschaft, dass für alle $Y \in 2^X$ gilt:

$$Y \in \mathcal{W} \Leftrightarrow \forall j \in \{1, \dots, k\} : \sum_{x \in Y} w^{(j)}(x) = Q^{(j)}$$

 $(Q^{(j)}, w^{(j)})$ heißt j-tes GMS von VGMS. Weiter gilt:

Y gewinnend in VGMS $\Leftrightarrow Y$ gewinnend in jedem der einzelnen GMS

Normfall der Schreibweise ist dabei wie folgt:

$$[Q^{(1)}, w_1^{(1)}, \dots, w_n^{(1)}] \wedge \dots \wedge [Q^{(k)}, w_1^{(k)}, \dots, w_n^{(k)}]$$
 mit $w_i^{(j)} = w^{(j)}(x_i)$ und x_1, \dots, x_n als Reihenfolge.

4.1.5 Beispiel

Vertrag von Nizza

$$X = \{x_1, \dots, x_{27}\}$$

 $\begin{array}{l} [265;29,29,29,29,27,27,14,13,12,12,12,12,12,10,10,10,7,7,7,7,4,4,4,4,4,4,3] \; \wedge \; [14;1,\ldots,1] \; \wedge \\ [620;170,123,122,120,82,89,47,33,22,21,21,21,21,18,17,17,11,11,11,8,8,4,4,3,2,1,1] \\ \text{VGMS kann dabei nicht auf GMS minimiert bzw. zurürckgeführt werden.} \end{array}$

4.1.6 Konvention

Bei einem eifnach Spiel (X, W) ist im Folgenden $X = \{x_1, \ldots, x_n\}$ und X ist auch die Menge der Variablen zur Definition von $f : \mathbb{B}^n \to \mathbb{B}$ und der darstellenden QOBDDs Variablenordnung sei $\pi = (x_1, \ldots, x_n)$.

4.1.7 Definition

Sei (X, \mathcal{W}) einfaches Spiel. Zu $Y \in 2^X$ ist der <u>charakteristische Verktor</u> $\chi(Y) \in \mathbb{B}^n$ definiert durch:

$$\chi(Y)_i = 1 \Leftrightarrow x_i \in Y \text{ für alle } i \in \{1, \dots, n\}$$

4.1.8 Definition

Sei (X, \mathcal{W}) enfaches Spiel.

(1) Eine Funktion $f: \mathbb{B}^n \to \mathbb{B}$ stellt (X, \mathcal{W}) dar, falls für alle $Y \in 2^X$ gilt:

$$Y \in W \Leftrightarrow f(\chi(Y)) = 1$$

(2) Ein QOBDD g über X stellt (X, \mathcal{W}) dar, falls es die Funktion f darstellt, die auch (X, \mathcal{W}) darstellt.

4.1.9 Beispiel

- (1) Spiel von Bsp. 4.1.3 (1)
- (2) Bundestag Sept. 2009

4.1.10 Definition

Sei g ein QOBDD und $w=(p_1,\ldots,p_k)$ ein Weg von einem inneren Knoten in g zu \mathbb{I} . Dann definiert man

$$\underline{eins}(w) = \{\underline{var}(\alpha(p_i)) \mid 1 \le i \le k \land p_i \text{ 1-Pfeil}\}$$

4.1.11 Satz

Es sei (X, W) ein einfaches Spiel und r Wurzel des QOBDDs, das (X, W) darstellt. Dann gilt für alle $Y \in 2^X$:

$$Y \in W \Leftrightarrow \text{ Es gibt Weg } w \text{ von } r \text{ nach } \mathbb{I} \text{ mit } Y = eins(w)$$

4.1.12 Definition

Es sei ein QOBDD g mit Knotenmengen V gegeben. Dann ist die Funktion $\underline{set}:V\to 2^X$ definiert durch:

$$\underline{set}(a) = \begin{cases} \{\underline{eins}(w) \mid w \text{ ist Weg von } a \text{ nach } \mathbb{I} \} &, \ a \text{ ist innerer Knoten} \\ \{\emptyset\} &, \ a = \mathbb{I} \\ \emptyset &, \ a = \mathbb{O} \end{cases}$$

4.1.13 Satz

Es seien g QOBDD und a innerer Knoten. Dann gilt:

$$\underline{set}(a) = \{Y + \underline{var}(a) \mid Y \in \underline{set}(\underline{then}(a)) \cup \underline{set}(\underline{else}(a))\}$$

Beweis

 $\underline{set}(a) = \{eins(w) \mid w \text{ Weg von } a \text{ nach } \mathbb{I} \}$ $= \{eins(w) \mid w \text{ Weg von } a \text{ nach } \mathbb{I} \land w_1 \text{ 1-Pfeil} \} \cup eins(w) \mid w \text{ Weg von } a \text{ nach } \mathbb{I} \land w_1 \text{ 0-Pfeil} \}$ $= \{eins(w) + \underline{var}(a) \mid w \text{ Weg von } \underline{then}(a) \text{ nach } \mathbb{I} \} \cup \{eins(w) \mid w \text{ Weg von } \underline{else}(a) \text{ nach } \mathbb{I} \}$ $= \{Y + \underline{var}(a) \mid \exists \text{ Weg } w \text{ von } \underline{then}(a) \text{ nach } \mathbb{I} \text{ mit } Y = eins(w) \} \cup \underline{set}(\underline{else}(a))$ $= \{Y + \underline{var}(a) \mid Y \in \underline{set}(\underline{then}(a) \cup \underline{set}(\underline{else}(a)) \}$

Wenn (X, \mathcal{W}) ein einfaches Spiel ist und r die Wurzel des dargestellten QOBDDs, dann gilt $\underline{set}(r) = \mathcal{W}$.

4.1.14 Satz

Es sei (X, \mathcal{W}) ein GMS mit gewichteter Darstellung $[Q; w_1, \dots w_n]$. Definiere für alle $i \in \{1, \dots, n+1\}$ und $q \in \mathbb{R}$ (die Funktion $f : \{1, \dots, n+1\} \times \mathbb{R} \to QOBDD$):

$$f(i,q) = \begin{cases} \mathbb{I} & , i = n + 1 \land q \le 0 \\ \mathbb{O} & , i = n + 1 \land q > 0 \\ \underline{cons}(x_i, f(i+1, q - w_i), f(i+1, q)) & , \text{ sonst} \end{cases}$$

Dann gilt:

$$\underline{set}(f(i,q)) = \left\{ Y \in 2^{\{x_1, \dots, x_n\}} \middle| \sum_{x \in Y} w(x) \ge q \right\}$$

Insbesondere gilt:

$$\underline{set}(f(1,Q)) = \left\{ Y \in 2^X \middle| \sum_{x \in Y} w(x) \ge Q \right\} = \mathcal{W}$$

Beweis

Induktion nach Differenz von n+1-i

<u>IA</u>: n+1-i=0, d.h. i=n+1Fall 1. $q \le 0$. Dann gilt

$$\begin{split} f(i,q) &= \mathbb{I} \\ \left\{ Y \in 2^{\emptyset} \middle| \sum_{x \in Y} w(x) \geq q \right\} &= \{\emptyset\} = \underline{set}(\mathbb{I}) = \underline{set}(f(i,q)) \end{split}$$

Fall 2. q > 0. Dann gilt

$$\begin{split} f(i,q) &= \mathbb{O} \\ \left\{ Y \in 2^{\emptyset} \middle| \sum_{x \in Y} w(x) \ge q \right\} &= \emptyset = \underline{set}(\mathbb{O}) = \underline{set}(f(i,q)) \end{split}$$

 $\underline{\mathrm{IS:}}$ Sei n+1-i>0,d.h. i< n+1. Dann gilt für alle $Y \in 2^X$

$$Y \in \underline{set}(f(i,q)) \Leftrightarrow Y \in \underline{set}(\underline{cons}(x_i, f(i+1, q-w_i, f(i+1, q)))$$

$$\Leftrightarrow (Y \subseteq \{x_i, \dots, x_n\} \land x_i \in Y \land \sum_{x \in Y-x_i} w(x) \ge q - w_i)$$

$$\lor (Y \subseteq \{x_i, \dots, x_n\} \land x_i \in Y \land \sum_{x \in Y-x_i} w(x) \ge q)$$

$$\Leftrightarrow (Y \subseteq \{x_i, \dots, x_n\} \land x_i \in Y \land \sum_{x \in Y} w(x) \ge q)$$

$$\lor (Y \subseteq \{x_i, \dots, x_n\} \land x_i \in Y \land \sum_{x \in Y} w(x) \ge q)$$

$$\Leftrightarrow Y \subseteq \{x_1, \dots, x_n\} \land x_i \in Y \land \sum_{x \in Y} w(x) \ge q$$

4.1.15 Beispiel

Sei $X = \{x_1, x_2, x_3\}$ gewichtete Darstellung [6, 5, 5, 1]. Bestimmte f(1, 6).

4.2 Bestimmung von Schlüsselspielern

4.2.1 Definition

Sei (X, \mathcal{W}) einfaches Spiel.

- (1) Eine gewinnende Koalition $Y \in \mathcal{W}$ heißt <u>minimal</u> gewinnend, falls $Z \notin \mathcal{W}$ für alle $Z \subseteq Y$.
- (2) $W_{min} = \{Y \in W \mid Y \text{ minimal gewinnend}\}$

4.2.2 Definition

Sei (X, \mathcal{W}) einfaches Spiel. Ein Spieler $x \in X$ heißt

- (1) <u>Diktator</u>, falls $W_{min} = \{\{x\}\},\$
- (2) Vetospieler, falls für alle $Y \in \mathcal{W}$ gilt: $x \in Y$,
- (3) belanglos, falls für alle $Y \in \mathcal{W}_{min}$ gilt: $x \notin Y$.

Der Diktator ist am mächtigsten; Vetospieler können nichts erzwingen, aber alles verhindern; belanglose Spieler haben keinerlei Macht.

4.2.3 Satz

In einem einfachen Spiel gibt es höchstens einen Diktator.

4.2.4 Satz

Ist $x \in X$ ein Diktator im einfachen Spiel (X, \mathcal{W}) , so gilt für alle $y \in X \setminus \{x\} : y$ ist belanglos.

Beweis

Da x Diktator ist, gilt $\mathcal{W}_{min} = \{\{x\}\}$. Ist $Y \in \mathcal{W}_{min}$, so gilt $Y = \{\{x\}\}$, also gilt $y \notin Y$, da $y \neq x$. Damit ist y belanglos.

4.2.5 Beispiel

- (1) Im Spiel, dass den Bundestag von 1957 modelliert ist x_1 Diktator. Dabei sei $X = \{x_1, x_2, x_3, x_4\}$ mit gewichteter Darstellung [260; 277, 181, 44, 17].
- (2) Sei $X = \{x_1, \ldots, x_15\}$ mit gewichteter Darstellung [39; 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Dieses Spiel modelliert den UN Sicherheitsrat. Die Darstellung als VGMS mit 2 GMS sieht dabei wie folgt aus: $[5; 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \land [9; 1, \ldots, 1]$
- (3) Im Spiel, das den 1. EU Vetrag von 1958 modelliert, ist x_6 (Luxemburg) ein belangloser Spieler. Dabei sei $X = \{x_1, \dots, x_6\}$ GMS mit gewichteter Darstellung [12; 4, 4, 4, 2, 2, 1].

4.2.6 Lemma

Es sei (X, \mathcal{W}) einfach Spiel. Dann gilt für alle $x \in X$:

$$x \text{ belanglos } \Leftrightarrow \forall Y \in \mathcal{W} : Y - x \in \mathcal{W}$$

Beweis

"⇒": Sei $Y \in \mathcal{W}$ beliebig. Der Fall, dass $x \notin Y$ ist klar, daher sei $x \in Y$. Definiere:

$$\mathcal{K} := \{ Z \in \mathcal{W} \mid x \in Z \land Z \subseteq Y \}$$

 $\mathcal{K} \neq \emptyset$, da $Y \in \mathcal{K}$. Wegen $|X| < \infty$ gilt auch $\mathcal{K} < \infty$ und damit existiert in \mathcal{K} mindestens ein Element Z_0 .

Angenommen $Y - x \notin \mathcal{W}$. Dann gilt $Z_0 - x \notin \mathcal{W}$, denn $Z_0 - x \in \mathcal{W}$ würde $Y - x \in \mathcal{W}$ implizieren (Monotonie). Also gilt Z_0 minimal gewinnend mit $x \in Z_0$. Das ist ein Widerspruch sazu, dass x belanglos ist.

"

—": Sei x nicht belanglos. Dann gibt es $Z \in \mathcal{W}_{min}$ mit $x \in Z$. Da $Z \in \mathcal{W}_{min}$ folgt $Z \in \mathcal{W}$. Also gilt nach Annahme $Z - x \in \mathcal{W}$ und damit wiederum $Z \notin \mathcal{W}_{min}$. Widerspruch! □

Folgende Aussagen sind ebenfall äquivalent:

$$x \text{ belanglos } \Leftrightarrow \forall \ Y \in 2^X : Y \in \mathcal{W} \leftrightarrow Y - x \in \mathcal{W}$$

Sei nun f eine Funktion, die QOBDD darstellt und $x = x_i$. Dann gilt:

$$x_i$$
 belanglos $\Leftrightarrow \forall y_1, \dots, y_{n-1}: f(y_1, \dots, y_{i-1}, 1, y_{i+1}, \dots, y_n) = f(y_1, \dots, y_{i-1}, 0, y_{i+1}, \dots, y_n)$

4.2.7 Satz

Sei (X, \mathcal{W}) durch QOBDD g dargestellt. Dann gilt für alle $x \in X$:

$$x_i$$
 belanglos \Leftrightarrow für alle $a \in V$ mit $\underline{var}(a) = x_i$ gilt $\underline{then}(a) = \underline{else}(a)$

4.2.8 Satz

Seien (X, \mathcal{W}) einfach Spiel, q darstellendes QOBDD und $x \in X$. Dann gilt:

x Vetospieler
$$\Leftrightarrow$$
 Für alle Knoten a mit $var(a) = x$ gilt $set(else(a)) = \emptyset$

Beweis

Es soll bewiesen werden:

x kein Vetospieler $\Leftrightarrow \exists$ Knoten a und var(a) = x und $set(else(a)) \neq \emptyset$

Zum Beweis sei o.B.d.A. $x = x_i$ angenommen.

"⇒" Sei x_i kein Vetospieler. Dann gibt es $Y \in W$ mit $x \notin Y$. Also gibt es einen Weg von der Wurzel r zu \mathbb{I} mit $Y = \underline{eins}(w)$. Sei $w = (p_1, \dots, p_n)$. Dann ist $\alpha(p_i) \notin Y$ und somit p_i 0-Pfeil.

Es gilt mit $a := \alpha(p_i)$, dass $\underline{var}(a) = x_i$. Definiere nun $w' := (p_{i+1}, \dots, p_n)$. Dann ist w' Weg von $\underline{else}(a)$ nach \mathbb{I} . (Damit gilt $\underline{eins}(w) \neq \emptyset$.) Weil w' ein Weg von $\underline{else}(a)$ nach \mathbb{I} ist, gilt $\underline{set}(\underline{else}(a)) \neq \emptyset$.

"⇐" Es sei a ein Knoten mit $\underline{var}(a) = x_i$ und $\underline{set}(\underline{else}(a)) \neq \emptyset$. Damit gibt es einen Weg w' von $\underline{else}(a)$ nach \mathbb{I} . Ergänze w' zu einem Weg von r nach \mathbb{I} namens w. Sei nun $Y := \underline{set}(w)$. Dann gilt $Y \in \mathcal{W}$. Nach Konstruktion von w gilt, dass w_i ein 0-Pfeil ist. Damit $x_i \notin \underline{set}(w)$, also $x_i \notin Y$. Also ist x_i kein Vetospieler.

4.2.9 Satz

Es seien (X, \mathcal{W}) einfach Spiel, g darstellendes QOBDD und x_i Spieler. Dann gilt x_i Vetospieler genau dann, wenn für alle Knoten der Schicht i, \mathbb{I} über alle Wege über den <u>else</u>-Nachfolger nicht erreichbar ist.

4.2.10 Lemma

Es sei (X, \mathcal{W}) ein einfaches Spiel. Dann gilt für alle $x \in X$:

$$x \text{ Diktator} \Leftrightarrow \mathcal{W} = \{Y \in 2^X \mid x \in Y\}$$

Beweis

" \Longrightarrow " zu zeigen: $Y \in \mathcal{W} \Leftrightarrow x \in Y$ für alle $Y \in 2^X$

"⇒" Wenn $Y \in \mathcal{W}$, dann gibt es $Z \in \mathcal{W}_{min}$ mit $Z \subseteq Y$ (da $|X| < \infty$). Da x Diktator ist, gilt $\mathcal{W}_{min} = \{\{x\}\}$, also $Z = \{x\}$, also $x \in Y$.

"←" Sei $x \in Y$. Dann $\{x\} \subseteq Y$. Da x ein Diktator ist, gilt $\{x\} \in \mathcal{W}_{min} \subseteq W$. Monotonie und $\{x\} \in Y$ bringen $Y \in \mathcal{W}$.

" —" Es gilt $\{x\} \in \mathcal{W}$, da $\{x\} \in 2^X$ und $x \in \{x\}$ und vorausgesetzer Gleichheit. Also gilt $\{x\} \in \mathcal{W}_{min}$. Sei $Y \in \mathcal{W}_{min}$. Dann gelten $Y \in \mathcal{W}$ und $x \in Y$ wegen gefordeter Gleichheit. Also gilt $Y = \{x\}$ und letztendlich ist damit $\{x\}$ ein Diktator.

Im Folgenden soll ein spezieller QOBDD namens \underline{ith} betrachtet werden. Dafür ist mit a als Wurzel des QOBDDs definiert:

$$\underline{set(\underline{ith}(i))} = \{eins(w) \mid w \text{ Weg von } a \text{ nach } \mathbb{I}\} = \{Y \in 2^X \mid x_i \in Y\}$$

4.2.11 Satz

Es sei (X, \mathcal{W}) einfaches Spiel und g das darstellende QOBDD. Es ist $x_i \in X$ genau dann Diktator, wenn g gleich $\underline{ith}(i)$ ist.

BILD von ith.

4.3 Die Wünschenswert-Relation

4.3.1 Definition

Sei (X, \mathcal{W}) einfaches Spiel. Die Relation \leq_I auf X ist für alle $x, y \in X$ definiert durch:

$$x \preccurlyeq_I y \Leftrightarrow \forall Y \in 2^X : x \notin Y \land y \notin Y \land Y + x \in \mathcal{W} \Rightarrow Y + y \in \mathcal{W}$$
$$\Leftrightarrow \forall Y \in 2^{X - x - y} : Y + x \in \mathcal{W} \Rightarrow Y + y \in \mathcal{W}$$

 \preccurlyeq_I heißt Wünschenswert-Relation (auf Spielern) und $x \preccurlyeq_I y$ bedeutet "y ist wünschenswerter als x".

4.3.2 Satz

Für alle einfachen Spiele (X, \mathcal{W}) ist \leq_I eine Quasi-Ordnung¹⁵.

Beweis

Reflexivität:

trivial

Transitivität:

Seien $x, y, z \in X$ mit $x \preccurlyeq_I y$ und $y \preccurlyeq_I z$. zum Beweis von $x \preccurlyeq_I z$ sei $Y \in 2^X$ mit $x \notin Y$ und $z \notin Y$ beliebig vorgegeben. Weiterhin sei $Y + x \in \mathcal{W}$.

<u>Fall 1:</u> $y \notin Y$ Wegen $x \notin Y$, $y \notin Y$ und $x \preccurlyeq_I y$ sowie $Y + x \in \mathcal{W}$ folgt $Y + x \in \mathcal{W}$. Analog ist $Y + x \in \mathcal{W}$.

Fall 2: $y \in Y$.

Unterfall 1. x = z trivial

Unterfall 2. $x \neq z$ Definiere Y' := Y - y. Dann $x, y, z \notin Y'$.

$$Y + x \in \mathcal{W} \Leftrightarrow Y' + y + x \in \mathcal{W}$$
$$(x \neq y) \Leftrightarrow Y' + x + y \in \mathcal{W}$$
$$(y \notin Y' + x, z \notin Y' + x, y \preccurlyeq_{I} z) \Rightarrow Y' + x + z \in \mathcal{W}$$
$$x \neq z \Leftrightarrow Y' + z + x \in \mathcal{W}$$
$$x \notin Y' + z, y \notin Y' + z, x \preccurlyeq_{I} y \Leftrightarrow Y' + z + y \in \mathcal{W}$$
$$y \neq z \Leftrightarrow Y' + y + z \in \mathcal{W}$$
$$\Leftrightarrow Y + z \in \mathcal{W}$$

4.3.3 Satz

Ist (X, \mathcal{W}) GMS mit gewichteter Darstellung (Q, w), so gilt für alle $x, y \in X$:

$$w(x) \le w(y) \Rightarrow x \le_I y$$

Beweis

Sei $Y \in 2^X$ mit $x \notin Y$ und $y \notin Y$. Dann gilt

$$Y + x \in \mathcal{W} \Leftrightarrow w(x) + \sum_{z \in Y} w(z) \ge Q$$
$$\Rightarrow w(y) + \sum_{z \in Y} w(z) \ge Q$$
$$\Leftrightarrow Y + y \in \mathcal{W}$$

4.3.4 Satz

Die Relation \leq_I und \approx_I auf X sind für ein einfach Spiel (X, \mathcal{W}) und alle Spieler $x, y \in X$ definiert durch:

$$x \prec_I y \Leftrightarrow (x \preccurlyeq_I y) \land (y \preccurlyeq_I x)$$

,y echt wünschenswerter als x"

¹⁵also reflexiv und transitiv

$$x \approx_I y \Leftrightarrow (x \preccurlyeq_I y) \land (y \preccurlyeq_I x)$$

"x,y gleich wünschenswert"

Dabei gilt, dass \prec_I eine strikte Quasi-Ordnung¹⁶ und \approx_I eine Äquivalenzrelation¹⁷ ist.

4.3.5 Lemma

Es sei (X, \mathcal{W}) ein einfaches Spiel, dann sind für alle $x, y \in X$ mit $x \neq y$ die folgenden zwei Aussagen äquivalent:

(1)
$$x \preccurlyeq_I y$$

$$(2) \{Y - x \mid x \in Y \land Y \in \mathcal{W} \land y \notin Y\} \subseteq \{Y - y \mid y \in Y \land Y \in \mathcal{W}\}\$$

Beweis

"(1) \Rightarrow (2)" Es gelte $x \leq_I y$. Sei $Z \in \{Y - x \mid x \in Y \land Y \in \mathcal{W} \land y \notin Y\}$. Also gibt es Y mit $Y \in \mathcal{W}$, $x \in Y$, $y \notin Y$ und Z = Y - x.

$$Y \in W \Leftrightarrow Y - x + x \in W$$
 we gen $x \in Y$ gilt $Y = Y - x + x$
 $\Leftrightarrow Z + x \in W$ we gen $x \preccurlyeq_I y, x \notin Z$ und $y \notin Z$

Definiere nun Y' := Z + y. Dann gilt $Y' \in \mathcal{W}$. Weiter gilt $y \in Y'$. Also ist $Y' - y \in \{Y - y \mid y \in Y \land Y \in \mathcal{W}\}$. Weiter ist $y \notin Y$, also Y' - y = Z + y - y = Z und letztendlich Z = Y' - y. Damit gilt $Z \in \{Y - y \mid y \in Y \land Y \in \mathcal{W}\}$.

"(2) \Rightarrow (1)" Es gelte die Mengeninklusion. Zum Beweis von $x \preccurlyeq_I y$ sei $Y \in 2^X$ mit $x \notin Y, y \notin Y$ und $Y + x \in \mathcal{W}$ gegeben.

Definiere nun Z = Y + x. Dann ist $Z \in \mathcal{W}$, $x \in Z$ und $y \notin Z$ (wegen $x \neq y$). Damit gilt $Z - x \in \{Y - x \mid x \in Y \land Y \in \mathcal{W} \land y \notin Y\}$. Folglich gilt auch $Z \in \{Y - y \mid y \in Y \land Y \in \mathcal{W}\}$. Wegen Z - x = Y ist $Y \in \{Y - x \mid x \in Y \land Y \in \mathcal{W} \land y \notin Y\}$. Dann gibt es $Z' \in \mathcal{W}$ mit $y \in Z'$ und Y = Z' - y. Dann ist $Y + y = Z' - y + y = Z' \in \mathcal{W}$.

Die Voraussetzung für solch ein Vorgehen ist eine Operation Remove auf QOBDDs, so dass für alle Knoten a und alle $i \in \{1, \dots, n\}$ gilt:

$$\underline{set}(\mathtt{Remove}(a,i))) = \{Y - x_i \mid Y \in \underline{set}(a) \land x_i \in Y\}$$

4.3.6 Lemma (1) Für alle QOBDDs ith(i) gilt:

$$\underline{set}(\mathtt{Neg}(\underline{ith}(i)) = 2^X \setminus \underline{set}(\underline{ith}(i)) = 2^{X-x_i}$$

(2) Für alle QOBDDs g_1 und g_2 gilt mit $g_1 \sqcap g_2 = \text{Apply}(g_1, g_2, \cdot)$:

$$set(q_1 \sqcap q_2) = set(q_1) \cap set(q_2)$$

4.3.7 Satz

Es sei (X, \mathcal{W}) einfaches Spiel. Dann sind für alle $x_i, x_j \in X$ mit $i \notin j$ die folgenden Aussagen äquivalent:

- $(1) x_i \preccurlyeq_I x_j$
- (2) Ist g das QOBDD zur Darstellung von (X, \mathcal{W}) mit Wurzel r so ist $\mathsf{Remove}(r \cap \mathsf{Neg}(ith(j)), i) \cap \mathsf{Neg}(\mathsf{Remove}(r, j))$ gleich dem QOBDD zur Darstellung von $\mathbf{0} : \mathbb{B}^n \to \mathbb{B}$

¹⁶ asymmetrisch und transitiv bzw. irreflexiv und transitiv

¹⁷symmetrisch, transitiv und reflexiv

Beweis

Sei r Wurzel von g. Dann gilt $\underline{set}(r) = \mathcal{W}$.

$$x_{i} \preccurlyeq_{I} x_{j} \Leftrightarrow \{Y - x_{i} \mid x_{i} \in Y \land Y \in \mathcal{W} \land x_{j} \notin Y\} \subseteq \{Y - x_{j} \mid x_{j} \in Y \land Y \in \mathcal{W}\}$$
$$\Leftrightarrow \{Y - x_{i} \mid x_{i} \in Y \land Y \in \underline{set}(r) \land x_{j} \notin Y\} \subseteq \{Y - x_{j} \mid x_{j} \in Y \land Y \in \underline{set}(r)\}$$

$$\begin{aligned} \{Y - x_i \mid x_i \in Y \land Y \in \underline{set}(r) \land x_j \not \in Y\} &= \{Y - x_i \mid Y \in 2^{X - x_j} \land Y \in \underline{set}(r) \land x_i \in Y\} \\ &= \{Y - x_i \mid Y \in \underline{set}(\mathtt{Neg}(\underline{ith}(j))) \land Y \in \underline{set}(r) \land x_i \in Y\} \\ &= \{Y - x_i \mid Y \in \underline{set}(r \sqcap \mathtt{Neg}(\underline{ith}(j))) \land x_i \in Y\} \\ &= \underline{set}(\mathtt{Remove}(\underline{set}(r \sqcap \mathtt{Neg}(\underline{ith}(j))), i)) \end{aligned}$$

$$\{Y - x_j \mid x_j \in Y \land Y \in \underline{set}(r)\} = \underline{set}(\text{Remove}(\underline{set}(r), j))$$

Also gilt nun insgesamt:

$$x_i \preccurlyeq_I x_j \Leftrightarrow \underbrace{\underbrace{set}(\operatorname{Remove}(\underline{set}(r \cap \operatorname{Neg}(\underline{ith}(j))), i))}_{f_1:\mathbb{B}^n \to \mathbb{B}} \subseteq \underbrace{\underbrace{set}(\operatorname{Remove}(\underline{set}(r), j))}_{f_2:\mathbb{B}^n \to \mathbb{B}}$$

$$\Leftrightarrow f_1 \sqsubseteq f_2$$

$$\Leftrightarrow f_1 \sqcap \overline{f_2} = \mathbf{0}$$

Beispiel

4.3.8 Satz

Die Funktion

$$\mathtt{Remove}(a,i) = \begin{cases} \underline{cons}(x_i, \mathbb{O}_{i+1}, \underline{then}(a)) &, \text{ falls } \underline{var}(a) = x_i \\ \underline{cons}(\underline{var}(a), \mathtt{Remove}(\underline{then}(a), i), \mathtt{Remove}(\underline{else}(a), i)) &, \text{ falls } \underline{var}(a) > x_i \\ a &, \text{ sonst} \end{cases}$$

erfüllt die Gleichung

$$\underline{set}(\mathtt{Remove}(a,i)) = \{Y - x_i \mid Y \in \underline{set}(a) \land x_i \in Y\}$$

4.3.9 Algorithmus Remove

 $\mathsf{Remove}(a,i) \begin{tabular}{ll} \textbf{if } \underline{var}(a) = x_i \ \text{then return } (\underline{cons}(x_i, \mathbb{O}_{i+1}, \underline{then}(a)) \\ & \text{elseif } \exists r \ \text{in CT with } (a,i,r) \ \text{then return } r \ \text{with } (a,i,r) \ \text{in CT} \\ & \text{else } r := \underline{cons}(\underline{var}(a), \mathtt{Remove}(\underline{then}(a),i), \mathtt{Remove}(\underline{else}(a),i)) \\ & \text{add } (a,i,r) \ \text{to CT} \\ & \text{return } r \end{tabular}$

4.3.10 Beispiel

$$\begin{array}{l} \mathrm{Sei}\;X=\{x_1,x_2,x_3,x_4\},\pi=(x_1,x_2,x_3)\\ \underline{set}(a)=\{\{x_1,x_2,x_3,x_4\},\{x_1,x_2,x_4\},\{x_1,x_3,x_4\},\{x_1,x_4\},\{x_2,x_3,x_4\},\{x_2,x_4\},\{x_3,x_4\},\{x_4\}\}\\ \underline{set}(\mathtt{Remove}(a,3))=\{\{x_1,x_2,x_4\},\{x_1,x_4\},\{x_2.x_4\},\{x_4\}\}\\ \end{array}$$

4.3.11 Beispiel

Siehe Tabelle 4.3.11.

\preccurlyeq_I	CDU/CSU	SPD	FDP	Die Linke	Die Grünen
CDU/CSU	X	О	О	О	О
SPD	X	X	Y	Y	О
FDP	X	X	X	Y	О
Die Linke	X	X	X	X	О
Die Grünen	X	X	X	X	X
$pprox_I$	CDU/CSU	SPD	FDP	Die Linke	Die Grünen
CDU/CSU	X	О	О	О	О
SPD	О	X	X	X	О
FDP	О	X	X	X	О
Die Linke	О	X	X	X	О
Die Grünen	О	О	О	О	X
\prec_I	CDU/CSU	SPD	FDP	Die Linke	Die Grünen
CDU/CSU	О	О	О	О	О
SPD	X	О	О	О	О
FDP	X	О	О	О	О
Die Linke	X	О	О	О	О
Die Grünen	X	X	X	X	О

Tabelle 2: Alle Einträge bis auf die Ys ergeben sich aus der Quote $(w(x) < w(y) \Rightarrow x \preccurlyeq_I y)$

4.4 Eigenschaften von einfachen Spielen

Bisher wurde nur zwischen GMS und VGMS unterschieden.

4.4.1 Definition

Ein eifnach Spiel (X, \mathcal{W}) heißt

(1) echt, falls für alle $Y \in \mathcal{W}$ gilt: $X \setminus Y \notin \mathcal{W}$

(2) <u>fest,</u> falls für alle $Y \in 2^X \setminus W$ gilt: $X \setminus Y \in W$

(3) entscheidend, falls es echt und fest ist

(4) dual-gleichwertig, falls es echt oder fest ist

4.4.2 Satz

Für alle einfachen Spiele (X, \mathcal{W}) gilt:

$$(X, \mathcal{W})$$
 entscheidend $\Leftrightarrow |\mathcal{W}| = 2^{|X|-1}$

Beweis

Definiere $\Phi: 2^X \to 2^X$, $\Phi(Y) = X \setminus Y$. Dann gilt $\Phi^2 = id$, also Φ bijektiv.

$$\begin{split} (X, \mathcal{W}) \text{ echt } &\Leftrightarrow \Phi(\mathcal{W}) \subseteq 2^X \setminus \mathcal{W} \\ &\Rightarrow |\mathcal{W}| = |\Phi(\mathcal{W})| \le |2^X \setminus \mathcal{W}| \\ (X, \mathcal{W}) \text{ fest } &\Leftrightarrow \Phi(2^X \setminus \mathcal{W}) \subseteq \mathcal{W} \\ &\Rightarrow |2^X \setminus \mathcal{W}| = |\Phi(2^X \setminus \mathcal{W})| \le |\mathcal{W}| \end{split}$$

4.4.3 Satz

Ist (X, \mathcal{W}) ein GMS, so gilt:

- (1) (X, \mathcal{W}) ist echt oder fest
- (2) $|\mathcal{W} = 2^{|X|-1} \Rightarrow (X, \mathcal{W})$ entscheidend

Beweis

(1) Es sei (Q, w) gewichtete Darstellung und (X, \mathcal{W}) weder echt noch fest.

$$(X, \mathcal{W})$$
 nicht echt $\Rightarrow \exists Y \in 2^X : Y \in \mathcal{W} \land X \setminus Y \in \mathcal{W}$

Dann gilt für so ein Y:

$$\sum_{x \in Y} w(x) \geq Q \text{ und } \sum_{x \in X \backslash Y} w(x) \geq X \text{ also auch } \sum_{x \in X} w(x) = \sum_{x \in Y} w(x) + \sum_{x \in X \backslash Y} \geq 2 \cdot Q$$

$$(X, \mathcal{W})$$
 nicht fest $\Rightarrow \exists Z \in 2^X : Z \in 2^X \setminus \mathcal{W} \land X \setminus Z \in 2^X \setminus \mathcal{W}$

Dann gilt für so ein YZ:

$$\sum_{x \in Z} w(x) < Q \text{ und } \sum_{x \in X \backslash Z} w(x) < X \text{ also insgesamt } \sum_{x \in X} w(x) = \sum_{x \in Z} w(x) + \sum_{x \in X \backslash Z} < 2 \cdot Q$$

Widerspruch!

(2) Sei $|\mathcal{W}| = 2^{|X|-1}$, aber (X, \mathcal{W}) nicht entscheidend. Fall 1: Es sei (X, \mathcal{W}) echt, aber nicht fest.

$$(X, W)$$
 echt $\Leftrightarrow \Phi(\mathcal{W}) \subseteq 2^X \setminus \mathcal{W}$
 $\Rightarrow |\mathcal{W}| \le |2^x \setminus \mathcal{W}|$

Da $|\mathcal{W}| = 2^{|X|-1}$ gilt und $(\mathcal{W}, 2^X \setminus \mathcal{W})$ eine Partition bilden, gilt:

$$|W| = |2^X \setminus \mathcal{W}| = |\Phi(\mathcal{W})|$$

Also gilt $\Phi(W) = 2^X \setminus W$. Und damit auch $W = \Phi(\Phi(W)) = \Phi(2^X \setminus W)$. Also insgesamt $\Phi(2^X \setminus W) \subseteq W$, d.h. (X, W) ist fest. Widerspruch!

4.4.4 Algorithmus Decisive

Der folgende Algorithmus testet, ob ein GMS (X, \mathcal{W}) entscheidend ist.

 $\mathtt{Decisive}(Q, w)$

- (1) Berechne das QOBDD zur Darstellung des Spiels mit Hilfe von Satz 4.1.14
- (2) Zähle in diesem QOBDD die Anzahl m der erfüllenden Belegungen nach Satz 3.2.5
- (3) return $m = 2^{|X|-1}$

4.4.5 Definition

Sei (X, \mathcal{W}) einfaches Spiel.

- (1) Eine Koalition $Y \in 2^X$ heißt blockierend, falls $X \setminus Y \notin \mathcal{W}$.
- (2) Es heißt $W^d = \{Y \in 2^X \mid Y \text{ blockierend}\} \underline{\text{Dual}} \text{ von } W.$

(3) (X, \mathcal{W}^d) ist das zu (X, \mathcal{W}) duale einfache Spiel.

Beachte dabei, dass $Y \in \mathcal{W}^d$ und $Y \subseteq Z \Rightarrow Z \in \mathcal{W}^d$ gilt.

4.4.6 Beispiel

(1) (fest und echt)

$$X = \{x_1, x_2, x_3\}, \ \mathcal{W} = \{\{x_1, x_2, x_3\}, \{x_1, x_2\}, \{x_1, x_3\}, \{x_2, x_3\}\}^{18}$$

x_1	0	0	0	0	1	1	1	1
x_2	0	0	1	1	0	0	1	1
x_3	0	1	0	1	0	1	0	1
\mathcal{W}	0	0	0	1	0	1	1	1
$ \mathcal{W}^d $	0	0	0	1	0	1	1	1

(2) (nicht fest, aber echt)

$$X = \{x_1, x_2, x_3\}, \ \mathcal{W} = \{\{x_1, x_2, x_3\}, \{x_2, x_3\}\}$$

x_1	0	0	0	0	1	1	1	1
x_2	0	0	1	1	0	0	1	1
x_3	0	1	0	1	0	1	0	1
\mathcal{W}	0	0	0	1	0	0	0	1
\mathcal{W}^d	0	1	1	1	0	1	1	1

4.4.7 Satz

Es sei (X, \mathcal{W}) einfaches Spiel. Dann gelten die Äquivalenzen:

(1)
$$(X, \mathcal{W})$$
 echt $\Leftrightarrow \mathcal{W} \subseteq \mathcal{W}^d$

(2)
$$(X, \mathcal{W})$$
 fest $\Leftrightarrow \mathcal{W}^d \subseteq \mathcal{W}$

Beweis

(1) " \Rightarrow " Sei $Y \in 2^X$, dann gilt:

$$Y \in \mathcal{W} \Rightarrow X \setminus Y \in 2^X \setminus \mathcal{W}$$
 wegen (X, \mathcal{W}) echt $\Leftrightarrow Y \in \mathcal{W}^d$ Def. von \mathcal{W}^d

Also $W \subseteq W^d$.

 $, \Leftarrow$ "Seien $\mathcal{W} \subseteq W^d$ und $Y \in 2^X$.

$$Y \in W \Rightarrow Y \in W^d$$
 we
gen $\mathcal{W} \subseteq \mathcal{W}^d$ bef. von echt

Also ist (X, \mathcal{W}) echt.

(2) Analog.

 $\overline{\ ^{18}\text{Bei}\ W=W^d}$ spricht man von einem Selbstdual.