Everything You Need for Experimental Quantum Hardware Engineering

University of Minnesota

Onri Jay Benally

July 2023

This document is meant to provide some level of consolidation for those desiring to be involved with quantum hardware engineering. By doing one's best to maintain familiarity with these topics, it is possible to become one who designs, builds, tests, operates, and maintains real quantum machines - a quantum mechanic. Another possibility is to begin working on a doctorate degree in the associated field with these training resources on hand. There are many clickable links in this document, so it might be best to view it using a browser or PDF viewer.

My decision to share these resources is because they have been useful to me in my PhD work. This has been a very interesting path for me as an tribesman from the Navaho Nation. Here is the path: carpenter \Longrightarrow electric vehicle researcher \Longrightarrow nanotechnologist \Longrightarrow quantum mechanic.

Please note that open access is a key theme held herein. Enjoy. -Onri

Scan QR code to access digital downloadable version.

Creative Commons License

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Contents

1	Open Access Quantum Device Tools	3
2	Training Videos	4
3	Books & References	7
4	Quantum Hardware Lab Galleries	11
5	Quantum-Applicable Degrees: BS to PhD	12
6	Quantum Science Curriculum Example	13
7	Quantum Career Opportunities	15

Open Access Quantum Device Tools

Free tools for designing, simulating, & analyzing quantum/ nano devices:

- Semiconductor Process & Device Simulation (SILVACO, browser-based): https://nanohub.org/resources/silvacotcad
- KLayout, Pattern Generation & Layout, Direct-Download: https://www.klayout.de/build.html
- Elmer FEM, Multiphysics Simulation Tool, Direct-Download: https://www.csc.fi/web/elmer/binaries
- COMSOL Superconducting Simulation Tool, Browser-Based: https://aurora.epfl.ch/app-lib
- scQubits, Superconducting Qubit Simulation Tool, Python-Based: https://scqubits.readthedocs.io/en/v3.2/index.html
- QTCAD, Spin Qubit Design/Simulation/Analysis, Python-Based: https://docs.nanoacademic.com/qtcad/introduction
- Qiskit Metal, Qubit Design/ Analysis, Python-Based: https://github.com/qiskit-community/qiskit-metal#qiskit-metal
- Quantum Photonic Gate Array Simulation, Python-Based: https://github.com/fancompute/qpga#quantum-programmable-gate-arrays
- Quantum Photonics Design/Simulation/Fabrication, Analysis, Python-Based: https://github.com/SiEPIC/SiEPIC-Tools#siepic-tools
- Qubit Design & Fabrication Example (applies codes to run lithography machines in the lab after pattern generation with Qiskit Metal): https://github.com/OJB-Quantum/Qiskit-Metal-to-Litho#qiskit-metal-to-litho
- GitHub Usage Tutorial: https://github.com/OJB-Quantum/How-to-GitHub#how-to-use-github

Training Videos

Related Open Access Lectures & Tutorials (Up to Graduate-Level):

- Quantum Transport (Prof. Sergey Frolov):
 https://youtube.com/playlist?list=PLtTPtV8SRcxjedflXwNPSI_fxvxwUCjsd
- Quantum Many-Body Physics (Prof. Luis Gregório Dias): https://youtube.com/playlist?list=PL6FyrZIBwD8LMWizZW1FUN2dS_144yuiy
- Quantum Matter (Prof. Steven Simon): https://youtube.com/playlist?list=PLrNpJOaBSWSCrLUO_tuKa515YJlOJNr1z
- Quantum Computing Hardware & Architecture (Prof. Hiu Yung Wong): https://youtube.com/playlist?list=PLnK6MrIqGXsL1KShnocSdwNSiKnBodpie
- Quantum Hardware Series (Onri Jay Benally, QuantumGrad & UMN): https://youtube.com/playlist?list=PLD9iE8dbH_2WOww1HL1gSskSYPcSlf6cd
- Circuit Quantum Electrodynamics & Qubit Hamiltonian (Prof. Gerhard Kirchmair):

https://youtu.be/BAt2PFVQE3w

- Josephson Junctions & SQUIDs (Prof. Kevin F. Kelly): https://youtu.be/sNOpmTWlMwk
- Silicon Photonics & Photonic Integrated Circuits Overview (Ghent University): https://youtube.com/playlist?list=PLuNPwP_PUkFRcW4apwKHC7oXSTyV3zPbv
- Photonic Integrated Circuit Design (Ghent University): https://youtu.be/Zcle3hNmblg
- Virtual Hands-On Nanofabrication (Dr. Jorg Scholvin): https://youtu.be/01J8qKjcp0M
- Micro & Nanofabrication (Prof. Chris Mack): https://youtube.com/playlist?list=PLM2eE_hI4gSDjK4SiDbhpmpjw31Xyqfo

• Nanotechnology [Tools] (Duke University): https://youtube.com/playlist?list=PLQcKpS4i0cAHES0sjJTXDZnWa3wtuixQl

• Qiskit Metal Overview, Gmsh & ElmerFEM [Open-Source] (Diego Emilio Serrano & Abeer Vaishnav):

https://youtu.be/84j31_9fHko

• Pulse Sequence Shaping (Thomas Alexander, IBM): https://www.youtube.com/watch?v=sMUPL8SR2oE&t=665s

• Physical Sciences & Engineering Lectures (Dr. Jordan Edmunds): https://www.youtube.com/@JordanEdmundsEECS/playlists

• Animated Physics Lectures (ZAP Physics): https://www.youtube.com/@zapphysics/playlists

• More Animated Physics Lectures (Alexander Fufaev): https://www.youtube.com/@universaldenker/playlists

• Even More Animated Physics Lectures (Dr. Elliot Schneider): https://www.youtube.com/@PhysicswithElliot/playlists

• Oscillator Tutorial (Afrotechmods): https://youtu.be/aJAZHPqEUKU?si=a18oKNZBRZaG564o

• The Beauty of LC Oscillations! (Sabin Mathew): https://youtu.be/2_y_3_3V-so?si=viKn72TnpgGTPhfu

• Electronic Circuits (Julio Gonzalez): https://youtube.com/playlist?list=PL0o_zxa4K1BV9E-N8tSExU1djL6slnjbL

Miscellaneous:

- A Homemade Trapped Ion Quantum Computer (Yann Allain): https://tinyurl.com/homemade-tr-ion
- Heidelberg DWL66+ LASER Lithography Training (University of Pennsylvania): https://youtube.com/playlist?list=PLiihbHV9HgpWAcmgdpMGBkejcBhEzoKJO
- Electron-Beam Lithography (MIT.nano): https://youtu.be/yJF9s2MJLLM
- Layout Editor Training (University of Pennsylvania): https://youtube.com/playlist?list=PLiihbHV9HgpX_9m5Khz2wn-XaxM5-yErU
- KLayout Training (University of Waterloo): https://youtube.com/playlist?list=PL12BCN5zxKhysQPbl0Fy0a6x0fiCPJZB-
- Oscilloscope Usage (GreatScottLab): https://youtu.be/d58GzhXKKG8
- Harvard Architecture vs. von Neumann Architecture (Computer Science): https://youtu.be/4nY7mNHLrLk
- Analog vs. Digital Computing (Derek Muller): https://youtu.be/IgF30X8nT0w?si=hWCan3S5Mx5NsdfE
- Flipper Zero Transceiver Hardware (Securiosity): https://youtu.be/eYCMIYsP23k?si=U8L04s7Jun-RQV-L
- Understanding Radio Signals with Flipper Zero (TechAndFun): https://youtu.be/zhg41DbxIEc?si=SG0jI6vYYOd1tfip
- Software Defined Radio (SDR) Tutorial (Andreas Spiess): https://youtu.be/xQVm-YTKR9s?si=fD03k6WQYokeyx0-
- The Fetch-Execute Cycle (Tom Scott): https://youtu.be/Z5JC9Ve1sfI
- Blender Basics for Scientists (Dr. Joseph G. Manion): https://youtube.com/playlist?list=PLcKSD7dOT-HBmOH-NYYgMgVX1LZF72K-3

Books & References

Free or Open Access Literature & More (Up to Graduate-Level):

• Olivier Ezratty's "Understanding Quantum Technologies" (research, manufacturing, & more):

https://arxiv.org/abs/2111.15352

• Olivier Ezratty's "Where are we heading with NISQ?":

https://arxiv.org/abs/2305.09518

• Computer-Inspired Quantum Experiments:

https://arxiv.org/abs/2002.09970

• Open Hardware in Quantum Technology:

https://arxiv.org/abs/2309.17233

• The Transmon Qubit for Electromagnetics Engineers:

https://ieeexplore.ieee.org/document/9789946

• Thomas Wong's "Introduction to Classical & Quantum Computing":

https://www.thomaswong.net/introduction-to-classical-and-quantum-computing-1e3p.pdf

• Probing Quantum Devices with Radio-Frequency Reflectometry:

https://arxiv.org/abs/2202.10516

• Microwave Control of Superconducting Cavity & Qubit (MediaWiki):

https://qt5201.org/index.php/Microwave_control_of_superconducting_cavity_and_qubit

• [Quantum] Transport in Semiconductor Mesoscopic Devices:

https://iopscience.iop.org/book/mono/978-0-7503-1103-8/chapter/bk978-0-7503-1103-8ch8

• Quantum Materials Roadmap:

https://iopscience.iop.org/article/10.1088/2515-7639/abb74e

• Quantum Nanostructures:

https://www.sciencedirect.com/science/article/pii/B9780081019757000038

• From Nanoelectronics to Future Technologies: https://link.springer.com/chapter/10.1007/978-3-030-44398-6_6#Sec5

• Materials Challenges & Opportunities for Quantum Computing Hardware: https://www.science.org/doi/epdf/10.1126/science.abb2823

• A Practical Guide for Building Superconducting Quantum Devices: https://arxiv.org/pdf/2106.06173.pdf

• Handbook of Vacuum Science & Technology:

https://www.sciencedirect.com/book/9780123520654/handbook-of-vacuum-science-and-technology

• Practical Cryogenics:

http://research.physics.illinois.edu/bezryadin/links/practical%20Cryogenics.pdf

• Hitchhiker's Guide to the Dilution Refrigerator:

https://www.roma1.infn.it/exp/cuore/pdfnew/Fridge.pdf

• Dry Dilution Refrigerator with 4He-1 K-Loop: https://arxiv.org/ftp/arxiv/papers/1412/1412.3597.pdf

• Coplanar Waveguide Resonators:

https://link.springer.com/article/10.1007/s10948-018-4959-2

• When to Use Coplanar Waveguide Routing:

https://blog.upverter.com/2019/10/15/when-to-use-coplanar-waveguide-routing-for-hf-boards

• Basic Qubit Characterization by Zurich Instruments:

https://docs.zhinst.com/hdawg_user_manual/tutorials/qubit_characterization.html? h=basic+qubit

• Qubit Spectroscopy: Microwave Control of Superconducting Cavity & Qubit https://qt5201.org/index.php/Microwave_control_of_superconducting_cavity_and_qubit

• Quantum Control Documentation by Qblox Instruments:

https://qblox-qblox-instruments.readthedocs-hosted.com/en/master

• Overview of Quantum Control Equipment by Qblox Instruments:

https://www.qblox.com

• Control & Readout of a Superconducting Qubit Using a Photonic Link: https://rdcu.be/dhLr3

• Cryo-CMOS Qubit Control:

https://ieeexplore.ieee.org/document/9895434

 \bullet The Electronic Interface for Quantum Processors:

https://arxiv.org/pdf/1811.01693.pdf

• Cryo-CMOS Interfaces for Large-Scale Quantum Computers:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9372075

- Spiderweb Array: A Sparse Spin-Qubit Array: https://journals.aps.org/prapplied/pdf/10.1103/PhysRevApplied.18.024053
- A Cryogenic Interface for Controlling Many Qubits: https://arxiv.org/abs/1912.01299
- Cryogenic Memory Technologies: https://arxiv.org/abs/2111.09436

Miscellaneous:

• NASA Wire Bonding Standards:

https://nepp.nasa.gov/index.cfm/20911

• NASA Soldering & Workmanship Standards:

 $\label{lem:https://nepp.nasa.gov/docuploads/06AA01BA-FC7E-4094-AE829CE371A7B05D/NASA-STD-8739. \\ 3.pdf$

 $\label{lem:https://standards.nasa.gov/sites/default/files/standards/NASA/A/4/nasa-std-87394a_w_change_4_0.pdf$

https://workmanship.nasa.gov/lib/insp/2%20books/frameset.html

• Semiconductor Education Online, Browser-Based, No Installation Required: https://nanohub.org/groups/semiconductoreducation

• Quantum Mechanics Visualization (browser-based):

https://www.st-andrews.ac.uk/physics/quvis

• Classical Physics Simulation (browser-based): https://phet.colorado.edu/en/simulations/browse

 \bullet Classical 2D Optics Simulation (browser-based):

https://phydemo.app/ray-optics

Quantum Hardware Lab Galleries

T	RI	/	Researc	٠h
		/	11636411	

https://www.flickr.com/photos/ibm_

research_zurich/albums

ETH Zurich

https://qudev.phys.ethz.ch/

responsive/?q=gallery

UWaterloo

https://uwaterloo.ca/quantum-nano-fabrication-and-characterization-facility/

virtual-tours

Quantum-Applicable Degrees: BS to PhD

Non-Exhaustive List:				
Physics (Experimental or Applied)	Computer Engineering			
Quantum Science & Engineering	Chemistry			
Quantum Technology	Chemical Engineering			
Engineering Physics	Physical Chemistry			
Electrical Engineering	Systems Engineering			
Electrical & Computer Engineering	Mechanical Engineering			
Materials Science	Nanoscience			
Materials Science & Engineering	Nanoengineering			

Quantum Science Curriculum Example

Courses:						
AEP	1200	Introduction to Nanoscience & Nanoengineering				
AEP	2550	Engineering Quantum Information Hardware				
AEP	3100	Introductory Quantum Computing				
AEP	3610	Introductory Quantum Mechanics				
AEP	3620	Intermediate Quantum Mechanics				
AEP	4400	Nonlinear & Quantum Optics				
AEP	4500 / PHYS 4454	Introductory Solid State Physics				
CHEM	7870	Mathematical Methods of Physical Chemistry				
CHEM	7910	Advanced Spectroscopy				
CHEM	7930	Quantum Mechanics I				
CHEME	6860 / SYSEN 5860	Quantum Computing & Artificial Intelligence				
CS	4812 / PHYS 4481	Quantum Information Processing				
ECE	4060	Quantum Physics & Engineering				
ECE	4070	Physics of Semiconductors & Nanostructures				
ECE	5310	Quantum Optics for Photonics & Optoelectronics				
ECE	5330	Semiconductor Optoelectronics				
MSE	5720	Computational Materials Science				
MSE	6050	Physics of Semiconductors & Nanostructures				
PHYS	2214	Physics III: Oscillations, Waves, & Quantum Physics				
PHYS	3316	Basics of Quantum Mechanics				
PHYS	3317	Applications of Quantum Mechanics				
PHYS	4443	Intermediate Quantum Mechanics				
PHYS	4444	Introduction to Particle Physics				
PHYS	4410 / PHYS 6510	Advanced Experimental Physics				
PHYS	6572	Quantum Mechanics I				
PHYS	6574	Applications of Quantum Mechanics II				
PHYS	7636	Solid-State Physics II				
PHYS	7645	An Introduction to the Standard Model of Particle Physics				
PHYS	7651	Relativistic Quantum Field Theory I				
PHYS	7652	Relativistic Quantum Field Theory II				
PHYS	7654	Basic Training in Condensed Matter Physics				
Adapted From: https://quantum.cornell.edu/education						

Quantum Career Opportunities

Quantum Job Resources (Hardware & Software):

- https://www.youtube.com/watch?v=7dfw8k2p1to
- https://ieeexplore.ieee.org/document/9733176
- http://ibm.techtechpotato.com
- https://chicagoquantum.org/resources
- https://www.quantiki.org/jobs
- https://qubitjobs.com
- https://medium.com/@russfein/quantum-computing-jobs-5e67f72fb113
- https://quantumconsortium.org/quantum-jobs
- https://qhack.ai/job-board
- https://www.globalquantumleap.org/quantum-opportunities-1
- https://chicagoquantum.org/education-and-training/internships
- https://www.quantumgrad.com/jobs

Roughly All Physical Qubits:

Borrowed from: Ezratty, *Understanding Quantum Technologies*, p. 220, https://doi.org/10.48550/arXiv.2111.15352 https://creativecommons.org/licenses/by-nc-nd/4.0/