CSX415 Data Science Principals and Practice Model Measurement

Christopher Brown
U.C. Berkeley / Decision Patterns LLC
Spring 2018

Model Measurement

Many of you have struggled with model measurements?

What is a good metric? Which metric do Luse? How do I use that metric. What data do I use to calculate performance? What do I need to

communicate model

performance?

Metric Requirements

- 1. Quantify model performance (numeric)
- 2. Should be a scalar value
- 3. Allow for comparison of models .. having the same response

Be independent of the model methods

Be stationary wrt to the data.

Caveats

- 1. No single metric can tell you whether a model is good or bad.
- 2. Model performance is always evaluated wrt some other value.
 - Existing model
 - Naïve Model
- 3. The metric that you use for measuring model performance may not be the one used in the algorithm (search function)

Note

Loss ≠ Model Performance

For example:

Linear Regression uses SSE, often model evaluated with RMSE | MAE.

You need to understand this distinction...

--> algorithms may not be optimizing your performance measure.

Regression Models

They all have the form

Regression metrics all have the same recipe.

```
(y - y_hat) %>% # error
  [abs|sq] %>% # fix sign
  [agg_fun(s)] %>% # aggreg.
  [scale|normalize] %>% #
```

→ one numeric value per model.

Binomial Metrics

"How many did I get right"

Accuracy.

Accuracy =
$$\begin{cases} 1 \mid y = \hat{y} \\ 0 \mid y \neq \hat{y} \end{cases}$$

* Usually expressed as a ratio/percentage.

"How many did I get wrong"

$$\mathsf{Error} = \begin{cases} 0 \mid y = \hat{y} \\ 1 \mid y \neq \hat{y} \end{cases}$$

- Usually expressed as a ratio/percentage.
- 1 accuracy

Many of you have decided to use accuracy ...

Problematic because accuracy/error rate does:

- not describe the nuances story about your model.
- Does not account for the "state" of the system.

So What's Better?

Problematic because accuracy/error rate does:

- not describe the nuances story about your model.
- Does not account for the "state" of the system.

Cohen's Kappa

- Accuracy can be misleading because:
 - 1. Does not account for highly imbalanced classes

Cohen's Kappa compensates for these two.

→ Think of it as *adjusted* accuracy.

$$\kappa = \frac{O - E}{1 - E}$$
 Ranges between 0-1

*Rule of thumb: Kappa values within (0.30-0.50)+ → good fit

What is this?

Think of it as a journey to 100% Accuracy (or 0% Error).

$$\kappa = \frac{How \ Far \ You've \ Come}{How \ Far \ You \ Can \ Go}$$

There is a more nuanced way to think about it.

Total Population

Total Population

Positive

Predicted

Negative

Total Donula	ntion	Observed	
Total Population			
		Positive	Negative
•			
Predicted	Positive		MIAL) JSION
	Negative		ΓRIX

Total Population		Observed	
		Positive	Negative
Predicted	Positive	"True" Positive	"False" Positive (Type I Error)
	Negative	"False" Negative (Type II Error)	"True" Negative

Total Population		Observed	
I		Positive	Negative
Predicted	Positive	+ benefit	- cost
	Negative	- cost	+ benefit

Note

Loss ≠ Model Performance

Most algorithms optimize using 0-1 Loss.

$$\text{Loss} = \begin{cases} 0 | y = \hat{y} \\ 1 | y \neq \hat{y} \end{cases}$$

Enumerating the TP, FP, FN, TN isn't enlightening ...

Need to normalize by the number of observations ...

but generally not the total true positives

Alternatives: "Rates" Normed by Observed

Total Population		Observed	
Total Popula	ation	Positive	Negative
Predicted	Positive	True Positive Rate (TPR), Sensitivity, Recall True Positives Observed Positives	False Positive Rate (FPR), Fall-Out False Positives Observed Negatives
	Negative	False Neg. Rate (FNR), Miss rate False Negatives Observed Positives	True Neg. Rate (TNR), Specificity (SPC) True Negatives Observed Negatives

Alternatives: Norm by Predicted

Total Popula	ation	Obse	erved
Ţ		Positive	Negative
Predicted	Positive	Pos. Predictive Value (PPV), Precision True Positives Predicted Positives	False Discovery Rate (FDR) False Positives Predicted Positives
	Negative	False Omission Rate(FOR) False Negatives Predicted Negatives	Negative Predictive Value (NPV) True Negatives Predicted Negatives

More Fun ...

https://en.wikipedia.org/wiki/Sensitivity_and_specificity https://en.wikipedia.org/wiki/precision_and_recall

Classification Performance

- Accuracy ... problems?
- Confusion Matrix
 - table
 - caret::confusionMatrix
 - ModelMetrics::confusionMatrix(actual, predict, cutoff)

18 Separate Measure, 20+ different names ... Which do you use?

1.You need 2. Why?

2. Have to be same type

3. Is determined by the specific application

What is important?

What does the industry use?

Use the one that suits your needs.

1.You need 2. Why?

2. Have to be same type

3. Is determined by the specific application

What is important?

What does the industry use?

If Models How Are Classes Discriminated?

Models Put Out Class Probabilities ...

The Distinction Between the Class is determined by the Data Scientist

Decision Point Analysis

ROC Curves

Sensitivity (true positive rate)

1 - specificity (false positive rate)

ROC Recipe

Order Observations According to model predictions probability...

Choose two metrics (for the axis)

Calculate cumulative metrics

Resource: ROCR, pROC, plotROC (packages)

Mutli-nomial Classification

Classification Performance

- predict methods can provide
 - Classes
 - Class probabilities
- Class probs → Classes?
 - Apply softmax function

$$\hat{p}_{\ell}^* = \frac{e^{\hat{y}_{\ell}}}{\sum_{l=1}^{C} e^{\hat{y}_{l}}}$$

Probabilities often need post predict → calibrations (talk about this with deployment)

Even More Complication ...

- Not all errors need count "equivocal zone" or "intermediate zone"
- Prevalent when the model has three choices, e.g. A or B or Nothing.

Assets

Model Performance

- Determine performance metric:
 - -Regression: RMSE, MAE, MAPE, ...
 - -Classification: Accuracy, TPR, Kappa

Fit Model

Calculate statistic ("metric") on data

Problems

"training" or "apparent" performance will:

predict very well, unbelievably well

Not generalize to new data.

Cardinal Rule

DO NOT ESTIMATE PERFORMANCE ON YOUR TRAINING DATA

→ Need technique for unbiased estimate for calculating performance

1: Hold Out Method

How confident are you about your performance metric?

Measurements and Statistics

Measurement: quantification of a phenomena

Statistic measurement of a stochastic phenomena

Examples:

mean(x) <- x measurements of stochastic process
 mean is a statistic

Exercise

calculate the mean of some measurement of (x)?

Exercise (cont.)

```
Question:
```

```
How good is your estimate of the statistic `mean(x)`?
```


Statistics

- "True" value unknown → uncertainty
- Uncertainty can be measured
 - Variance
 - Standard deviation
 - Confidence Interval
 - **—** ...
- · Repeated measurements decrease the uncertainty

Works the same for models!

x : measure of model performance statistic?

Resampling

Kuhn – Two benefits of resampling

- Selection of optimal tuning parameter(s) to come
- Unbiased estimate of model performance

Resampling Strategies

- Repeated Holdouts
- K-Fold Cross Validation
- Bootstrap

Repeated Holdout

AKA Monte Carlo Splitting

- Split data 75%-25%
 - Fit Model
 - Calculate Performance Metric
 - Repeat with Different Split(K-times)
- Calculate Metric

 $Metric = AVG_i(metric)$

10-Fold Cross Validation

- Split the data set into 10 equal sized samples.
- Leave one sample out (fold)
 - Fit the model
 - calculate the metric on the fold
 - Repeat choosing another sample until done
- Calculate Metric

 $Metric = AVG_i(metric)$

• 5 or 10-fold common

Bootstrap

"Sampling with Replacement"

Which Is Best?

There isn't one.

K-fold cross validation

Higher Variance Lower Bias

Bootstrap

Lower Variance Higher Bias

Better to employ resampling than worry about not resampling

Resampling Process

Today's Focus

Resampling

- Best Solution (n-permitting)
 - split data into training and test data
 - and do what Kuhn says.

Why(?)

- Easy to interpret defend
- Requires data not be consumed by model
- Computationally easy
- Is generally not (by itself) the most accurate → no confidence

MODEL PERFORMANCE IS <u>NOT</u> Training PERFORMANCE

