# **Planificación Temporal**

Técnica de PERT

Gráfico de GANTT

Seguimiento del Proyecto

## Planificación Temporal

La planificación temporal de un proyecto de software es una actividad que distribuye el esfuerzo estimado, a lo largo de la duración prevista del proyecto, asignando dicho esfuerzo a las tareas específicas de Ingeniería de Software.

- Planificación Temporal Macroscópica, en las 1eras etapas.
- Planificación Temporal Detallada, se refina cada entrada en la planificación temporal macro.

#### Pueden existir dos situaciones muy diferentes:

- ✓ La fecha final de entrega está establecida previamente y el equipo de IS está limitado a esa fecha para distribuir el esfuerzo.
- ✓ La fecha de entrega es establecida por el equipo de IS. Se realiza un cuidadoso análisis del SW, se define la fecha de fin y se distribuye el esfuerzo aprovechando al máximo los recursos.

# Planificación Temporal y Seguimiento de Proyecto

¿Por qué no se cumplen las fechas de entrega del software?

• La fecha es poco realista.



- Por cambios en los requisitos del cliente
- Errores en las estimaciones

# Planificación Temporal y Seguimiento de Proyecto

- Por dificultades técnicas
- Por dificultades humanas
- Falla en el gerente del proyecto
- Por un mal análisis y gestión de riesgos.



## Principios Básicos de la Planificación Temporal

- Compartimentación en un nro. de actividades o tareas más manejables.
- Interdependencia entre actividades o tareas (secuenciales, paralelas).
- Asignación de Tiempo a cada tarea en un número de unidades de trabajo (persona-día de esfuerzo). Inicio y Fin de c/u.
- Validación de Esfuerzo ¿ Se ha asignado más esfuerzo del qué pueden realizar las personas disponibles ?
- **Definición del Responsable** para cada tarea.
- Definición de Resultados esperados por cada tarea (un producto o una parte).
- Hitos o iteraciones definidas: cada tarea debe ser parte de una iteración.

## Cómo distribuir el Esfuerzo

- Usar técnicas de estimación para obtener estimaciones razonables de tiempo y esfuerzo (Ej. COCOMO).
- Distribuir adecuadamente las tareas o esfuerzo entre las personas disponibles.
- El esfuerzo insumido en planificación rara vez supera el 3%.
- Si se insume un % alto (30-40%) de esfuerzo en captura de requerimientos, análisis y diseño, la codificación debería resultar más simple, no insumir demasiado esfuerzo y por consiguiente con mejores resultados de calidad.
- Es importante gastar un % importante de esfuerzo en la etapa de prueba y corrección de errores.

## Conjunto de Tareas para un Proyecto de SW

- Un conjunto de tareas es una colección de tareas de IS, hitos y entregas que deben realizarse para completar un proyecto.
- El conjunto de tareas depende del **tipo de proyecto** 
  - Desarrollar una nueva aplicación
  - Mejorar una aplicación existente
  - Reingeniería → reconstruir un sistema existente
- ¿ Quién determina las tareas qué hay que realizar ?
- ¿ Cuáles son las tareas principales en el Proceso ?
- ¿ Cuáles son las tareas luego de un refinamiento ?
- Definir una red de tareas, interdependencia, usar diagramas.

## Función del Gerente en la Planificación Temporal

- Definir todas las tareas del proyecto
- Construir una red que describa interdependencias
- Identificar tareas que son críticas dentro de la red
- Realizar un seguimiento para asegurar de que los retrasos son rápidamente reconocidos y solucionados

El gerente debe obtener una

Planificación Temporal que le permita
supervisar el progreso de cada una de las tareas y
controlar el proyecto total.

## Métodos de Planificación Temporal

- PERT: técnica de evaluación y revisión de programa.
- CPM: método de camino crítico.

Brindan herramientas cuantitativas que permiten:

- **Determinar el Camino Crítico**, cadena de tareas que determina la duración mínima del proyecto.
- Establecer las dimensiones de tiempo más probables para las tareas individuales aplicando métodos estadísticos.
- Calcular limitaciones de tiempo para cada tarea empezar la tarea lo antes posible, definir la fecha más temprana de finalización, la fecha límite, margen total → tiempos extras

Las **fechas límite** definen el **camino crítico**, y brindan al gerente un método cuantitativo para evaluar el progreso a medida que se completan las tareas.

- Desarrollado por la Special Projects Office de la Armada de EE.UU. a finales de los 50s para el programa de I+D usado para construir misiles balísticos Polaris.
- PERT, Método del tiempo o duración esperada.
- Determinación probabilística de los tiempos esperados (Te), en función de:
  - Duración más corta a. optimista
  - Duración más larga b. pesimista
  - Duración más probable m

Duración esperada: Te = (a + 4m + b) / 6

#### Actividades críticas

Si varía su instante de comienzo y/o de finalización modifica la duración total del proyecto.

La concatenación de actividades críticas forman el camino crítico.

#### Camino crítico

Es el tiempo más corto que puede insumir el desarrollo del proyecto, si se dispone de todos los recursos necesarios.

Secuencia de actividades críticas.

#### Holgura de una Actividad

Margen suplementario de tiempo para terminar la actividad.

Las actividades críticas no tienen holgura.

#### Aplicación de las técnicas PERT:

- Determinar las actividades necesarias y cuando lo son.
- Buscar el plazo mínimo de ejecución del proyecto.
- Buscar las dependencias temporales entre las actividades.
- Identificar las actividades (críticas) que podrían retrazar el proyecto.
- Identificar el camino crítico.
- Detectar y cuantificar las holguras de las actividades no críticas.
- Actividades a forzar si se está fuera de tiempo durante la ejecución.
- Obtener un proyecto de costo mínimo.

El método de PERT utiliza una estructura de **grafo** para la representación gráfica de actividades o tareas del proyecto.

- Las actividades se representan por flechas o arcos.
- Los **sucesos** se representan por círculos o nodos.



#### Notación:



- La actividad tiene un tiempo y se representa A(tiempo).
- n Suceso, ft fecha temprana y FT fecha tardía de finalización.

#### Relaciones entre Actividades:

#### lineal



A es predecesora de B. El nodo 2 indica la finalización de A y el comienzo de B.

La actividad A es predecesora de B, C y D. 2 es el nodo inicio de B, C y D y fin de A.



## Pert (program evaluation and review technique)

**Actividades ficticias**: son actividades que no consumen tiempo ni recursos. Se representan con una flecha punteada.



A y B tienen el mismo inicio, pero no la misma duración.

A y B son predecesoras de C.



|   | Actividades | Precedentes |
|---|-------------|-------------|
|   | A           |             |
|   | В           |             |
|   | С           | A, B        |
| , | D           | A           |
|   | E           | A           |
|   | F           | D           |

Matriz de encadenamientos

Cuadro de prelaciones

El grafo comienza en un vértice que representa el suceso inicio del proyecto y termina en otro vértice que representa el suceso fin.

Suceso inicio: representa el inicio de una o más actividades.

Suceso fin: representa el fin de una o más actividades.

Actividades inicio del proyecto: no tienen ninguna precedente.

Actividades fin del proyecto: no preceden a ninguna actividad.



#### Suceso (n), Fecha Temprana (ft), Fecha Tardía (FT)

Ejemplo:



Duración Total: 17 y 1/2

Camino Crítico: A, B, C, D, E, F

Actividades con Holgura: J (única actividad que podría retrasarse)

# Gráficos de tiempo - Diagrama de GANTT

el diagrama de gantt es una representación gráfica sobre dos ejes:

en el eje vertical se disponen las tareas del proyecto.

en el eje horizontal se representa el tiempo.

- Descomponer el trabajo en tareas, donde el esfuerzo, la duración y fecha de inicio son las entradas de c/u de ellas.
- Cada actividad o tarea se representa mediante un bloque rectangular cuya longitud indica su duración (la altura carece de significado).
- La posición de cada bloque indica inicio y fin de la tarea.
- Los rombos indican hitos.
- Se construyen gráficos de Gantt para todo el proyecto, para un conjunto de funciones específicas, para individuos particulares, etc.

## Gráficos de tiempo - Gráfico de GANTT

### **Ejemplo - Un Diagrama de Gantt Macroscópico**



# Gráficos de tiempo - Gráfico de GANTT

# Ejemplo - Un Diagrama de Gantt más



DIAGRAMA DE TIEMPOS CON INTERDEPENDENCIAS

## Seguimiento de la Planificación Temporal

Define las tareas e hitos que deben controlarse a medida que progresa el proyecto.

- Realizando reuniones periódicas con todo el equipo.
- Evaluando los resultados de las revisiones realizadas.
- Determinar si se han logrado los hitos en las fechas previstas.
- Comparar las fechas real de inicio con las programadas para cada actividad del proyecto.
- Obtener la valoración subjetiva de los integrantes del equipo.

El seguimiento y control es usado por el gerente para:

- Administrar los recursos
- Enfrentar los problemas
- Dirigir al personal

# El Plan del Proyecto de Software

Es un documento que proporciona información de los costos y planificación temporal que será usada en todo el proceso de IS. Se produce a la culminación de las tareas de planificación.

- Introducción, propósito del plan, ámbito, objetivos.
- Estimaciones de costo, esfuerzo y duración del Proyecto
- Estrategia de gestión de riesgo
- Planificación Temporal
- Recursos, Personal, HW, SW
- Organización del Personal
- Mecanismos de Seguimiento y Control

• ....

## Bibliografía Consultada

• ingeniería del software. un enfoque práctico. quinta edición. roger s. pressman. 2002.

capítulo 6: análisis y gestión del riesgo

capítulo 7: planificación temporal y seguimiento del producto