Lifespan Machine Software Installation Guide 1.0

Nicholas Stroustrup. 7/6/2013 nstroustrup@post.harvard.edu Harvard Systems Biology Department.

Table of Contents

Lifespan Machine Software Installation Guide	1
Table of Contents	1
Overview of Software Components	2
Required Computing Infrastructure	3
Installation of the Worm Browser and Image Analysis Server	4
Installation of the Image Acquisition Server	4
Install Scientific Linux	4
Install software packages using the package manager	5
Acquire the Lifespan Machine source code and manually installing packages	5
Compile and install the image acquisition server	6
Configure the mysql server and apache webserver httpd	7
Configure image server website	7
(Optional) Mount a Network Accessible Storage directory for long-term storage of images	8
(Optional but recommended) Disable Automatic Updates	11
Compile and run the ns_image_server source code	10
Set the image server to run at startup [optional]	11
Configure the image server	8
Δ note about Institutional IT departments	11

Overview of Software Components

The Lifespan Machine provides an automated means for performing lifespan experiments on *Caenorhabditis* nematodes. The lifespan machine operates continuously over multiple weeks, acquiring and interpreting images of nematode populations. Routine execution of such a task in a research setting requires an persistent imaging platform robust enough to withstand variety problems including network outages and scanner errors, and smart enough to handle such errors in a way that does not compromise data quality. The lifespan machine accomplishes this through the combined efforts of three compiled software components.

The first component is an *image acquisition server* runs under Linux on a dedicated PC. This PC is directly connected to scanners via USB cables. A single computer running an image acquisition server can manage up to 20 scanners. Multiple computers each running an acquisition server can be operated simultaneously, allowing very large numbers of scanners to be operated simultaneously.

The second component is an *image processing server*, which runs under windows on any computer available—for example a personal laptop or lab desktop machine. Multiple image processing servers can be run on multiple machines in parallel, allowing rapid image processing. Image processing servers run persistently in the background, analyzing images automatically as they are collected by the image acquisition server. Image processing servers can be started and stopped at any time. When running, an image processing server works its way down a central queue of image processing tasks. Turning off an image processing server simply pauses this work; turning the server back on simply resumes analysis from where it left off. The operation of several image processing servers ensures that image processing time does not become the rate-limiting step in automated lifespan experiments. When shared computers are used to run image processing servers, the bulk of analysis tends to be accomplished on nights and weekends when more computational resources are available.

The third component is a GUI client program called *the worm browser*, which runs under windows on any computer, for example your personal laptop. This program is used directly by the experimenter, allowing experiments to be scheduled, data files to be generated, and automated results to be validated.

All three software components communicate through a single, *central MySQL database*, usually hosted on one of the image acquisition servers. This database contains metadata describing collected image data, and also coordinates the automated analysis of images. All three components require access to a *central file server*, where image data is written and retrieved. This is often a departmental or university file server, but lab-specific Network Accessible Storage (NAS) can be set up in cases where pre-existing IT infrastructure is lacking.

The image acquisition server has been most thoroughly tested running in Scientific Linux versions 5.9, 6.2 and 6.3. Scientific Linux is a free Redhat variant maintained by Fermilab and CERN. The image processing server and worm browser have been most thoroughly tested under Windows XP and Windows 7. A port of the image processing server and worm browser to x86 OSX should be straightforward to someone familiar with C++ and XCode—any volunteers? All three software components of the lifespan machine are written in C++. Windows binaries are provided for the image acquisition server and worm browser; the image acquisition server needs to be compiled *in situ* on its Linux server.

Users interact with the Lifespan Machine through their web browser. The latter is used to access each lab's locally hosted *lifespan machine website*, which provides access to experiment information and allows image processing jobs to be scheduled. The website is served by a machine on the lab's local network, usually the same hardware that runs the image acquisition server. The website consists of a set of PHP scripts, usually served by the httpd apache web server.

Figure 1—Lifespan Machine Schematic. The lifespan machine collects images of nematodes and interprets them to estimate the lifespan of each individual. This is accomplished through interaction of several hardware and software components, as shown. It is important to note that routine use requires an experimenter to interact only with scanners (to load animals), the worm browser (to schedule experiments and validate automated results), and a web browser (to supervise the process and schedule image processing tasks). Most users need not understand all the details of these components, but someone needs to be available to solve problems when they arise. Problems are most frequently encountered at the very beginning of an experiment, when animals are loaded into scanners and the experiments are set up. This document details the installation and configuration of all components shown above, excepting scanners whose configuration is detailed elsewhere.

Required Computing Infrastructure

- A PC running the Image Acquisition Server
 - o At least two Gb of RAM
 - Any x86 processor made after 2010
 - o A USB 2.0 port for direct connections to scanners
 - Scientific Linux. Version 6.3 was used as the basis for these instructions. Later versions will likely work best but will likely require small alterations in the installation procedure.
 - A hard drive large enough to hold buffered images (e.g. >250Gb)
 - o The server will host a network-accessible MySQL database and apache web server.
- A PC running the Worm Browser and image processing server
 - Any Windows XP, Vista, or Windows 7. Windows 8 should work OK but has not been tested. 64bit versions will allow more memory to be used, but 32bit will work.
 - Any x86 processors made after 2010. Four core Intel i7 processors can run eight image analysis server nodes simultaneously, which is very good.

- At least two Gb of RAM; four is better.
- A long-term image storage location accessible over the network, for example an institutional fileserver, a standalone NAS attached to the local ethernet, or a directory on the machine hosting the image acquisition server shared via Samba or CIFS. All captured images will be stored here, so you'll want at least one terabyte per four week lifespan performed across 10 scanners. Note that at 2013 prices, one terabyte of storage costs less than the plates required to run the experiment itself. The storage location must be accessible by the image acquisition server, the worm browser, and the image processing server.

Installation of the Worm Browser and Image Analysis Server

The Worm Browser and Image Analysis Servers are distributed as Windows Binaries and therefore require minimal configuration beyond editing of the configuration files ns_image_server.ini and ns_worm_browser.ini. When each program is downloaded and run for the first time, the two configuration files are created automatically, each including a description of the configuration parameters. However, the two components will not function until the can contact the mysql database running on the image acquisition server. This dictates that the acquisition server be installed first. Note: the image analysis server is designed to run many instances in parallel, to allow fast processing of images. This is set in the ns_image_server.ini option nodes_per_machine. On Intel Core Duo, i3, i5, and i7 processors, the best results are obtained when nodes_per_machine is set either to twice the number of processor cores on the machine, or twice the number of GB of memory, whichever is smaller.

The Worm Browser and Image Analysis Server can be compiled from source using the provided Microsoft Visual Studio 2010 solution and project files. As of 2013, Microsoft Visual Studio Express is available free of charge.

Installation of the Image Acquisition Server

This document assumes a basic proficiency in working with Linux to install packages and use the autotools compilation system.

Install Scientific Linux

The details of how to install and maintain a Linux server are up to you. There are countless ways to configure everything, depending on personal preference and institutional policy. These installation guidelines provide a reference setup corresponding to that used by the methods paper "The *C. elegans* Lifespan Machine" (2013).

- Download the latest version of Scientific Linux and burn it onto a DVD. Boot the computer on which you're
 installing linux using the DVD. The installation procedure should run automatically. The installation might offer
 to pre-install various packages. Nothing important needs to be installed at this time—any components not
 added during installation can be added later. The standard "Deskop" configuration tends to be the easiest to
 interact with in a laboratory context.
 - Note—certain versions of Scientific Linux install with configuration problems in the GNOME windows environment. If GNOME doesn't start up correctly, tyep yum reinstall gnome*
 yum reinstall libgnome*
- 2. Make sure that the network connection is enabled (this is usually done via an icon on the Linux desktop in the top right menu bar)

- 3. (optional) Allow remote access to the machine via VNC
 - Select System/Preferences/Remote Desktop
 - Select "Allow others users to control your desktop"
 - o Deselect "you must confirm each access to this machine"
 - o Require a password
 - Select "Configure network automatically"
- 4. (optional) Configure your network connection to connect automatically (allowing you to log in remotely after a restart).
 - o Click on the menu item System/Preferences/ Network Connections in the scientific linux menu bar
 - Select your Ethernet device and click "Edit"
 - Select the field "Connect Automatically"
- 5. Allow the ports through the machine's firewall,
- 6. following standard ports through the machine's firewall, using the System/Administration/Firewall dialog
 - Allow the following "Trusted services" ports: SSH, Samba, Secure WWW (HTTPS), and WWW ports through your firewall.
 - Allow the following "Other ports": mysql port 3306 (both tcp and udp), and (optionally) the VNC ports 5900 and 5901.
- 7. Add a new use to the system: ns image server. Create a home directory ~ns image server

Install software packages using the package manager

These packages must be installed in order to compile and run the image acquisition server. They can be installed simply by finding the "System/Administration/Add Remove Software" interface in the Scientific Linux Desktop Menu, and selecting them for download and installation.

- gcc-g++
- httpd (the apache web server)
- libtiff-devel
- libjpeg-devel
- freetype 2 devel
- mysql-devel
- mysql-server
- php-5
- php-mysql-5
- libusb-devel
- libusb-static
- libpng

- zlib
- git
- openjpeg-devel
- libtool
- autoconf
- automake
- libusb1-devel (NOTE: different than libusb-devel)
- (if you're using samba to mount NAS storage)
 - o samba
 - o samba-client
 - o samba-common

IMPORTANT: Make sure the SANE scanner package (sane-backends and sane-backends-devel) are uninstalled. The standard version of these packages does not handle the v700 scanner properly. A patched version is included in the lifespan machine source distribution and will be installed in the next step.

Acquire the Lifespan Machine source code and manually installing packages

The lifespan machine source distribution can be downloaded from the online source repository. This can be done via accessing the github repository website and downloading a zip file containing the source code. More conveniently, the same files can be accessed using the git commandline client. This second method will make it easier to obtain the latest bug fixes as they are released.

- 1. Download the source code by entering the directory on your linux server /home/ns_image_server and typing the command
 - o git clone https://github.com/nstroustrup/lifespan.git
- 2. Enter the base directory of the source code (if you used git, it will be /home/ns_image_server/lifespan)
- 3. Unzip external libraries and external_compile_libraries archives:
 - o tar -xvjf external_compile_libraries.tar.bz2
 - o tar -xvjf external _libraries.tar.bz2
- 4. Make compile and install packages in the external_compile_libraries directory. These packages use autotools, and so entering the each directory and locate the script configure, and then type ./configure

and then

make install

- o dmtx (barcode reading library)
- o sane-backends (patched scanner drivers)
- o xvid
 - IMPORTANT: In the default install xvidcore, does not properly register all of its libraries. In the directory /usr/local/lib/ (or wherever you set xvidcore to install) you need to add the necessary symbolic link by typing "In –s libxvidcore.so.4.3 libxvidcore.so" and "In –s libxvidcore.so.4.3 libxvidcore.so.4")
- 5. The following packages are used during compilation of the lifespan machine source, and are included in the package external_libraries.tar.bz2 unzipped in step #3 above. These do not need to be installed on system. They only need to be referenced in the include path during compilation. If the contents of package external_libraries.tar.bz2 is unzipped into the default location, external_libraries/, then this should work without action by the user.

o ctmf

o libhungarian

o libsvm

o tiff-3.8.2 (patched source)

- o tinyxml
- triangle
- wm4_bspline (a subset of the Wild Magic graphics library)

Compile and install the image acquisition server

The image acquisition server is designed to be installed using the autotools suite.

- Enter the source code subdirectory ns_image_server
- 2. We have encountered several conflicts between different versions of automake and autoconf. The included configure script might run without problem, however what seems to work generally is to re-generate the configure file using your version of autotools, which can be done by executing the following commands in order:
 - o aclocal
 - o autoheader
 - o automake --force-missing --add-missing
 - o autoconf
 - o ./configure
 - o make install
 - If the following steps are run out of order, certain files can be scrambled. The following command, run in the source code subdirectory ns_image_server, can usually help restore the default parameters and allow the user to try again:

- rm -r -f compile config.guess config.sub depcomp missing install-sh INSTALL autom4te.cache aclocal.m4
- 3. If the command make install completes without error, the executable ns_image_server should be installed in /usr/local/bin

Configure the mysql server and apache webserver httpd

- 1. Make sure that mysql and httpd are installed. Set mysqld and httpd to start at init level 4 and 5 (you can do this under "System/Administration/Services" in the linux desktop menu)
 - If httpd doesn't appear to work correctly, one common problem is that the server name is set incorrectly. There is a line in the http.conf file (usually located in the directory /etc/httpd/conf/httpd.conf) that specifies the ServerName variable. It should be changed to ServerName localhost
- 2. Make sure you've set the root mysql password to something. Refer to the MysSQL documentation for details, but the command usually is mysqladmin -u root password 'your root password'
- 3. Log into the MySQL database with the command mysql –u root –p
- 4. Create the user accounts for the image server with the command CREATE USER 'image_server'@'*' identified by 'yourpassword';
- ${\bf 5.} \quad {\bf Create \ the \ central \ database \ for \ the \ image \ server \ with \ the \ command}$

CREATE DATABASE image_server;

and for the local buffer

CREATE DATABASE image_server_buffer;

- 6. Grant access permissions
 - GRANT ALL ON image_server.* TO 'image_server'@'localhost';
 - GRANT ALL ON image_server.* TO 'image_server@'*';
 - GRANT ALL ON image_server_buffer.* TO 'image_server'@'localhost';
 - GRANT ALL ON image_server_buffer.* TO 'image_server'@'*';
- 7. Note that sometimes mysql servers default installation sets the memory allocations ridiculously low; like 128k in some cases. In mysql.conf, the mysql configuration file, bump this up to several hundred megabytes. Check out the mysql documentation for more information
- 8. Install the mysql database schema as specified in the file /files/image_server_db_schema.sql This can be done by typing the command
 - o mysql -u root -p image_server < files/image_server_db_schema.sql</p>

Configure image server website

- 1. Copy the contents of the webcripts directory to /var/www/html . This can be done automatically by typing ./ns install website.sh from the source code directory
- 2. Allow PHP to access the mysql server using the command
 - setsebool –P httpd_can_network_connect=1
- 3. Allow PHP to access a cifs drive using the command
 - setsebool -P httpd_use_cifs=1
- 4. An example website configuration file is included,

/var/www/html/image_server_web/ns_image_server_website_template.ini

This file should be edited as necessary and renamed /var/www/html/

image_server_web/ns_image_server_website.ini

(Optional but recommended) Mount a Network Accessible Storage directory for long-term storage of images

NAS directories can be mounted by adding lines to the /etc/ fstab file. On some systems, an alternative is to use the autofs package, but the author does not have direct experience with this. To use the fstab file, first, create the desired mount point in the /mnt directory. For example /mnt/fontanalab

- 1. The following line is an example that instructs the machine to automatically mount the Harvard Medical School file server.
 - o //files.med.harvard.edu/SysBio/FontanaCluster /mnt/fontanalab cifs credentials=/root/.cifspass
- 2. The .cifspass file will be used to automatically provide credentials to the file server. The .cifspass is a simple text file with two lines:

username=myusername password=mypassword

- o Note: as of 2/10/2010 there's a bug in redhat's cifs implementation, where the credentials file is read incorrectly. If you have problems, ensure there are no trailing newlines in the password file; for example, using the command awk 'BEGIN { printf("%s\n%s","username=u","password=p")}
- 3. Mount the network folders via the commands "mount /mnt/fontanalab"

Configure the image server

The lifespan machine must be configured to interact correctly with your SQL database and your file server. A variety of important configuration options are specified in a file located on each machine running image server software. This file does not have to be written from scratch; when the image server or worm browser is launched for the first time, it will create a template ns_image_server configuration file. On Linux systems, the default location for this will be /usr/local/etc /ns_image_server.ini , though on some systems the location may be different. On windows systems, the default location is the same directory as the program executable. Image server software components, when launched for the first time, will output a message telling you where this file is located.

Once created, the configuration file can be modified with a text editor to specify a variety of important options. A list of such options and their description are included bellow.

host_name: Each instance of the image acquisition and image analysis servers needs to have a unique name to identify it. Thus, host_name should be set to a different value on every LINUX or Windows machine running the software. Use a name that you'll recognize, such as linux_server_on_my_desk, bob, or lab_desktop_1

long_term_storage_directory: All image server software must be able to access a central directory used to store images. This is often located on a NAS or institutional file server. This directory should be mounted as a path on the machine running the server. Set this parameter to the location of that directory

results_storage_directory: All image server software must be able to access a central directory used to store processed statistical data, including survival curves, descriptions of worm movement, etc. This is often located on a NAS or institutional file server. This directory should be mounted as a path of the machine running the server. Set this parameter to the location of that directory.

volatile_storage_directory: The image acquisition server and image analysis servers need to store temporary files on the local machine. Set this parameter to the location of that directory; it can be anywhere you like. For image acquisition

servers, this is the local buffer for captured images pending transfer to the long term storage directory, so you should locate the directory on a drive with a couple hundred 100 GB of free space.

Access to the central SQL database

These parameters need to be set to match the account set up on your central sql database, to allow the server to log in.

central_sql_hostname: The IP address or DNS name of the computer running the central SQL server

central_sql_username: The username with which the software should log into the central SQL server

central_sql_password: The password with which the software should log into the central SQL server

central_sql_databases: The name of the database set up on the SQL server for the image server. It's possible to specify multiple independent databases, each separated by a semi-colon, but this is not needed in simple installations.

Access to the local SQL database

Image acquisition servers use a local SQL database to store metadata pending its transfer to the central SQL database. This lets acquisition servers continue to operate correctly through network disruptions, sql database crashes, etc. These parameters need to be set to match the account set up on the machine's local sql database, to allow the server to log in

local_buffer_sql_hostname: The IP address or DNS name of the computer running the local SQL buffer. This is only needed for image capture servers, and in all but exceptional cases should be set to localhost

local_buffer_sql_username: The username with which the software should log into the local SQL buffer

local_buffer_sql_database: The name of the local SQL buffer database

local buffer sql password: The password with which the software should log into the local SQL buffer

Image Acquisition Server Settings

These settings control the behavior of image acquisition servers

act_as_image_capture_server: Should the server try to control attached scanners? (yes / no)

device capture command: the path to the SANE component scanimage, with which scans can be started

device_list_command: the path to the SANE component sane-find-scanners, with which scanners can be identified

device barcode coordinates: The coordinates of the barcode adhered to the surface of each scanner

simulated device name: For software debugging, an image acquisition server can simulate an attached device

device_names: This can be used to explicitly specify scanner names on an image acquisition server. These should be detected just fine automatically, and so in most cases this field can be left blank

Image Analysis Server Settings

These settings control the behavior of image processing servers

act_as_processing_node: Should the server run image processing jobs requested by the user via the website? (yes / no)

nodes_per_machine: A single computer can run multiple copies of the image processing server simultaneously, which allows many jobs to be processed in parallel. Set this value to the number of parallel servers you want to run on this machine. This can usually be set to the number of physical cores on the machine's processor, or the number of GB of RAM on the machine; whichever is smaller.

hide window: On windows, specifies whether the server should start minimized. (yes / no)

compile_videos: Should the server process videos? (yes / no)

video_compiler_filename: Path to the x264 transcoder program required to generate videos. Only needed on image processing servers. If you don't have this, set compile videos to no

video_ppt_compiler_filename: Path to the ffmpeg transcoder required to generate videos. Only needed on image processing servers. If you don't have this, set compile_videos to no

halt_on_new_software_release: Should the server shut down if a new version of the software is detected running on the cluster? (yes / no)

latest_release_path: Image acquisition servers can be set to automatically update if new versions of the software is identified as running on the cluster. This is the path name where the new software can be found.

run_autonomously: should the server automatically poll the MySQL database for new scans/jobs (yes) or should it only do this when a command is received from an external source (no). Most configurations set this to yes.

Other Settings

These settings control the behavior of image acquisition and image processing servers

verbose_debug_output: Set to true to generate verbose debug output

dispatcher_refresh_interval: How often should image acquisition servers check for pending scans? (in seconds). Also specifies how often analysis servers will check for new jobs.

mail_path: Each copy of the image server running on the cluster occasionally checks for errors occurring in other nodes, for example missed scans or low disk space. If problems are discovered, the image server can send users an email notifying them of the problem. To activate this feature, set mail_path to the POSIX mail program on the local system.

ethernet_interface: This field should be left blank if you want the server to access the network through the default network interface. If you have multiple network interfaces and want to use a specific one, specify it here.

dispatcher_port: Image acquisition and image processing servers open a TCP/IP port on the local machine through which control commands can be sent. dispatcher_port determines the specific port on which the dispatcher should listen for remote requests

server_crash_daemon_port: To provide some protection against server crashes, an image acquisition server running under linux launches a persistent second thread that checks whether the image acquisition server has crashed. In the event of a crash, the crash_daemon launches a new instance of the image acquisition server. Often, the crashed copy retains a lock its TCP/IP port, requiring that the crash daemon use a second port instead, specified here.

server timeout interval: How long should a server wait before giving up on a dead network connection (in seconds)

log_filename: Image acquisition and image processing servers keep a log file in the central SQL database. However, to help diagnose crashes, a text file containing the same log information is stored on the local machine. The log file is stored in the directory specified by the volatile_storage_directory option (described above), and its filename is specified by here.

Start the ns_image_server software

- 1. Start the image server by typing ns_image_server. If the server detects a problem in its configuration, it will halt and display an error message. Correct the problem and try again, until the server starts correctly.
- 2. This program should never be stopped during image acquisition.

(Optional but recommended) Disable Automatic Updates

Automatic updates have been observed to crash running image acquisition servers. It is important to keep the server software up to date, but this is best done manually at regular intervals, rather than automatically at random times in the middle of the night.

- 1. Open the interface /System/Administration/Server Settings/Services
- 2. Uncheck "yum"

Set the image server to run at startup [optional]

The image server can be configured to run automatically at startup. This is useful if, for example, there is a brief power outage in the middle of the night.

- The rc script named /files/ns_image_server_rc_script needs to be transferred to the directory and renamed /etc/rc.d/init.d/ns_image_server. This can be done automatically by typing the command ./ns_install_startup_script.sh
- 2. Go to /System/Administration/Server Settings/Services and set ns_image_server for runlevel 4 and 5.

Getting Scanners Detected

The image server interacts with scanners using the linux open source scanner driver framework SANE. There is a bug in this code concerning Epson v700 scanners, so a patched version is distributed with the lifespan machine software. SANE is extensively documented online, and handles all of the scanner-related hardware issues so that the lifespan machine doesn't have to. The basic protocol for getting the lifespan machine running is as follows

- 1. Plug a scanner into the computer via USB
- 2. Confirm that the SANE system has detected your scanner, by inspecting the results of the command sane-find-scanner. If your scanner is on this list, you're in good shape! This usually just works right out of the box, but if not, you'll need to trouble shoot. Is your scanner turned on? Plugged in? Have you set up SANE to use USB (this is the default behavior)? Are you using a supported scanner model? Check out http://www.sane-project.org
- 3. Confirm that you've correctly attached a barcode to the inside of the scanner surface, allowing the image server software to uniquely identify it.
- 4. Restart the image server, or request a "hotplug" discovery of scanners via the website. The software should scan the barcode of each scanner and report back whether the scanner could be identified.

Security

It is a poor idea to have your Linux server exposed to the public internet. Criminals looking to exploit systems have significantly more time and experience than the average researcher—the best way to keep your server secure is to keep it isolated within an institutional network, behind some type of hardware firewall. If this is not possible, a second option is to configure the machine to reject access from IP addresses outside the institutional network. There are many tutorials online describing how to do this, for example www.ghacks.net/2009/03/27/configure-a-linux-firewall-with-webmin/

It is possible to password protect the lifespan machine web interface. This can be done using the facilities provided by the apache web server. Specifically, password protection can be set up by placing an .htaccess file in the base directory of the lifespan machine website. There are many tutorials online on how to do this, for example http://www.linux.org/article/view/-htaccess-password-protection-securing-a-folder-in-a-website

A note about institutional IT departments

IT departments in research universities work hard to maintain complex services in a constantly evolving environment. This leads to a natural conservatism in access policies for network resources. The author of this document has had very good experiences working with IT departments to establish policies conducive to high-throughput automated microscopy. However, this experience may not be universally shared.

IT departments, for example, might be unhappy with having a web server running on their local network. Networked computers certainly should be forbidden from serving to the open internet, but skeptical IT staff should be encouraged to articulate the exact risks created by a properly firewalled local Linux-based web server. Some IT departments might be hesitant to grant automated software access to their file servers. However, the lifespan machine software is much better behaved and much more predictable than many organic operators. In one instance, an IT department shut down a smoothly functioning image server because it had "opened too many files". In 2013, this type of arbitrarily restrictive policies have little technical basis.

A frequent suggestion raised by IT departments is that labs should set up their own network or network file server, disjoint from the campus network resources. For the IT staff, this is certainly the simplest solution, as it requires no reconfiguration of institutional resources. For lab members this also might sound like the simplest solution, as the task of building a new network might be faster and more enjoyable than advocating for change in an institutional IT policy. In practice, however, the Do It Yourself approach to network infrastructure is rarely the best solution for a research lab. Many unforeseen complications will emerge—for example desktop computers will have to be connected to both networks. The lifespan machine will always be hard to access, isolated in its own network. Per byte, custom-built networks will be significantly more costly than large institutional network. Furthermore, the creation of a private network will force researches (usually Ph.D students or post docs in the life sciences) to shoulder the exact network administrative duties that IT departments exist to provide.

Users are encouraged to engage in a productive dialog with their institution's IT department and administration, to develop a network environment that is both safe and useful.