

Bescheinigung

Die Bayer Aktiengesellschaft in Leverkusen/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Nukleinsäuren, die für Acetylcholinrezeptor-Untereinheiten von Insekten kodieren"

am 4. Mai 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 07 K, A 61 K und C 12 N der Internationalen Patentklassifikation erhalten.

München, den 4. März 1999

Deutsches Patent- und Markenamt

Der Präsident

Auftrag

Aktenzeichen: 198 19 829.9

Hiebinger

10

15

20

25

30

35

Nukleinsäuren, die für Acetylcholinrezeptor-Untereinheiten von Insekten kodieren

Die Erfindung betrifft insbesondere Nukleinsäuren, die für Acetylcholinrezeptor-Untereinheiten von Insekten kodieren.

Nikotinische Acetylcholinrezeptoren sind ligandengesteuerte Ionenkanäle, die eine Rolle bei der Neurotransmission im Tierreich spielen. Die Bindung von Acetylcholin oder anderen Agonisten an den Rezeptor verursacht eine vorübergehende Öffnung des Kanals und gestattet den Durchstrom von Kationen. Man nimmt an, daß ein Rezeptor aus fünf Untereinheiten besteht, die sich um eine Pore gruppieren. Jede dieser Untereinheiten ist ein Protein, das aus einem extrazellulären N-terminalen Teil besteht, gefolgt von drei Transmembranregionen, einem intrazellulären Teil, sowie einer vierten Transmembranregion und einem kurzen extrazellulären C-terminalen Teil (Changeux et al. 1992).

Acetylcholinrezeptoren sind vor allem in Wirbeltieren gut untersucht. Anhand ihrer anatomischen Lokalisierung und ihrer funktionellen Eigenschaften (Leitungseigenschaften des Kanals, Desensibilisierung, Sensitivität gegenüber Agonisten und Antagonisten, sowie gegenüber Toxinen wie z.B. α -Bungarotoxin) lassen sich hier drei Gruppen unterscheiden. Die Einteilung korreliert mit der molekularen Zusammensetzung der Rezeptoren. Es gibt heterooligomere Rezeptoren mit der Untereinheitenzusammensetzung $\alpha_2\beta\gamma\delta$, die im Muskel vorkommen (Noda et al. 1982, Claudio et al. 1983, Devillers-Thiery et al. 1983, Noda et al. 1983a, b), heterooligomere Rezeptoren, die Untereinheiten aus der Gruppe $\alpha 2$ - $\alpha 6$ und $\beta 2$ - $\beta 4$ enthalten, und die im Nervensystem vorkommen (Wada et al. 1988, Schoepfer et al. 1990, Cockcroft et al. 1991, Heinemann et al. 1997), sowie homooligomere Rezeptoren, die Untereinheiten aus der Gruppe $\alpha 7$ - $\alpha 9$ enthalten, und die ebenfalls im Nervensystem vorkommen (Lindstrom et al. 1997, Elgoyhen et al. 1997). Diese Einteilung wird auch durch eine Betrachtung der Verwandschaft der Gensequenzen der

10

15

verschiedenen Untereinheiten gestützt. Typischerweise sind die Sequenzen funktionell homologer Untereinheiten verschiedener Spezies ähnlicher als Sequenzen von Untereinheiten aus verschiedenen Gruppen, aber der gleichen Spezies. So weist z.B. die muskuläre α-Untereinheit der Ratte 78 % identische und 84 % ähnliche Aminosäuren auf mit der des elektrischen Rochens Torpedo californica, aber nur 48 % Identität und 59 % Ähnlichkeit mit der α2-Untereinheit (heterooligomer, neuronal) der Ratte, und 36 % Identität und 45 % Ähnlichkeit mit der α7-Untereinheit (homooligomer, neuronal) der Ratte. Weiterhin sind die Gensequenzen aller bekannten Acetylcholinrezeptor-Untereinheitenen nicht nur untereinander in gewissem Maße ähnlich, sondern auch mit denen einiger anderer ligandengesteuerter Ionenkanäle (z.B. den Serotoninrezeptoren vom Typ 5HT₃, den GABA-gesteuerten Chloridkanälen, den Glycin-gesteuerten Chloridkanälen). Man geht daher davon aus, daß alle diese Rezeptoren von einem gemeinsamen Vorläufer abstammen und ordnet sie in eine Supergenfamilie ein (Ortells et al. 1995).

20

25

In Insekten ist Acetylcholin der wichtigste exzitatorische Neurotransmitter des zentralen Nervensystems. Dementsprechend lassen sich Acetylcholinrezeptoren an Präparaten zentraler Ganglien aus Insekten elektrophysiologisch nachweisen. Der Nachweis gelingt sowohl an post- als auch an präsynaptischen Nervenendigungen, sowie an den Zellkörpern von Interneuronen, Motorneuronen und modulatorischen Neuronen (Breer et al. 1987, Buckingham et al. 1997). Unter den Rezeptoren gibt es solche, die durch a-Bungarotoxin inhibiert werden, und solche, die insensitiv sind (Schloß et al. 1988). Die Acetylcholinrezeptoren sind außerdem der molekulare Angriffspunkt wichtiger natürlicher (z.B. Nikotin) und synthetischer Insektizide (z.B. Chloronikotinyle).

30

35

Die Gensequenz einer Anzahl von nikotinischen Acetylcholinrezeptoren der Insekten ist bereits bekannt. So sind in Drosophila melanogaster die Sequenzen fünf verschiedener Untereinheiten beschrieben (Bossy et al. 1988, Hermanns-Borgmeyer et al. 1986, Sawruk et al. 1990a, 1990b, Schulz et al. unveröffentlicht, EMBL accession

10

number Y15593), in Locusta migratoria ebenfalls fünf (Stetzer et al. unveröffentlicht, EMBL accession numbers AJ000390 - AJ000393), in Schistocerca gregaria eine (Marshall et al. 1990), in Mycus persicae zwei (Sgard et al. unveröffentlicht, EMBL accession number X81887 und X81888), in Manduca sexta eine Sequenz (Eastham et al. 1997). Zudem ist eine Reihe von partiellen Gensequenzen aus Drosophila melanogaster als sog. expressed sequence tags charakterisiert worden (Genbank accession numbers AA540687, AA698155, AA697710, AA697326). Die hohe Ähnlichkeit einzelner Sequenzen mit solchen aus anderen Insekten legt nahe, daß es sich bei diesen Untereinheiten um funktionelle Homologe handelt.

15

Es ist von großer praktischer Bedeutung, beispielsweise für die Suche nach neuen Insektiziden, neue Untereinheiten von Acetylcholinrezeptoren aus Insekten bereitzustellen, wobei besonders solche von Interesse sind, die sich von den bekannten stärker unterscheiden, als dies zwischen funktionellen Homologen der Fall ist.

20

Der vorliegenden Erfindung liegt somit insbesondere die Aufgabe zugrunde, Nukleinsäuren zur Verfügung zu stellen, die neue Acetylcholinrezeptor-Untereinheiten von Insekten kodieren.

4 📥 A

Die Aufgabe wird gelöst durch die Bereitstellung von Nukleinsäuren umfassend eine Sequenz ausgewählt aus

30

25

(a) den Sequenzen gemäß SEQ ID NO: 1, SEQ ID NO: 3 oder SEQ ID NO: 5,

(b) zumindest 14 Basenpaare langen Teilsequenzen der unter (a) definierten Sequenzen,

(c) Sequenzen, welche an die unter (a) definierten Sequenzen hybridisieren in 2 x SSC bei 60°C, bevorzugt in 0,5 x SSC bei 60°C, besonders bevorzugt in 0,2 x SSC bei 60°C (Sambrook et al. 1989),

10

(d) Sequenzen, welche eine zumindest 70 %ige Identität zu den unter (a) definierten Sequenzen zwischen Position 1295 und Position 2195 aus SEQ ID NO: 1 oder zwischen Position 432 und Position 1318 aus SEQ ID NO: 3 oder zwischen Position 154 und Position 1123 aus SEQ ID NO: 5 aufweisen,

15

(e) Sequenzen, welche zu den unter (a) definierten Sequenzen komplementär sind und

20

(f) Sequenzen, welche aufgrund der Degeneration des genetischen Codes für dieselbe Aminosäuresequenz kodieren wie die unter (a) bis (d) definierten Sequenzen.

Der Grad der Identität der Nukleinsäuresequenzen wird vorzugsweise bestimmt mit Hilfe des Programms GAP aus dem Programmpaket GCG, Version 9.1 unter Standardeinstellungen.

CO.

Die vorliegende Erfindung begründet sich auf den überraschenden Befund, daß Insekten Gene besitzen, die für Untereinheiten von insbesondere homooligomeren Acetylcholinrezeptoren kodieren.

30

35

25

Gegenstand der Erfindung sind weiterhin Vektoren, die zumindest eine der erfindungsgemäßen Nukleinsäuren enthalten. Als Vektoren können alle in molekularbiologischen Laboratorien verwendete Plasmide, Phasmide, Cosmide, YACs oder künstliche Chromosomen verwendet werden. Für die Expression der erfindungsgemäßen Nukleinsäuren können diese mit üblichen regulatorischen Sequenzen verknüpft

10

werden. Die Auswahl solcher regulatorischen Sequenzen ist davon abhängig, ob zur Expression pro- oder eukaryotische Zellen bzw. zellfreie Systeme verwendet werden. Besonders bevorzugt als Expressionskontrollsequenz sind z.B. der frühe oder späte Promotor des SV40 oder des Adenovirus, des Cytomegalovirus, das lac-System, das trp-System, die Haupt-Operator- und Promotorregionen des Phagen lambda, die Kontrollregionen des fd-Hüllproteins, der Promotor der 3-Phosphoglyceratkinase, der Promotor der Sauren Phosphatase und der Promotor des α-Mating-Faktors der Hefe.

15

Zur Expression der erfindungsgemäßen Nukleinsäuren können diese in geeignete Wirtszellen eingebracht werden. Als Wirtszellen eignen sich sowohl prokaryotische Zellen, vorzugsweise E.coli, als auch eukaryotische Zellen, vorzugsweise Säuger- oder Insektenzellen. Weitere Beispiele für geeignete einzellige Wirtzellen sind: Pseudomonas, Bacillus, Streptomyces, Hefen, HEK-293, Schneider S2, CHO-, COS1-, COS7-, Zellen, Pflanzenzellen in Zellkultur sowie Amphibienzellen, insbesondere Oocyten.

20

Gegenstand der vorliegenden Erfindung sind auch die Polypeptide, die von den erfindungsgemäßen Nukleinsäuren kodiert werden, sowie die daraus aufgebauten Acetylcholinrezeptoren, bevorzugt homooligomere Acetylcholinrezeptoren.

25

Zur Herstellung der Polypeptide, die von den erfindungsgemäßen Nukleinsäuren kodiert werden, können Wirtszellen, die zumindest eine der erfindungsgemäßen Nukleinsäuren enthalten, unter geeigneten Bedingungen kultiviert werden. Die gewünschten Polypeptide können danach auf übliche Weise aus den Zellen oder dem Kulturmedium isoliert werden.

30

35

Weiterhin sind Antikörper Gegenstand der Erfindung, die spezifisch an die vorstehend genannten Polypeptide bzw. Rezeptoren binden. Die Herstellung solcher Antikörper erfolgt auf die übliche Weise. Beispielsweise können solche Antikörper produziert werden durch die Injektion eines substantiell immunkompetenten Wirts mit einer für

10

die Antikörperproduktion effektiven Menge eines erfindungsgemäßen Acetylcholinrezeptor-Polypeptids oder eines Fragments davon und durch nachfolgende
Gewinnung dieses Antikörpers. Weiterhin läßt sich in an sich bekannter Weise eine
immortalisierte Zellinie erhalten, die monoklonale Antikörper produziert. Die
Antikörper können gegebenenfalls mit einem Nachweisreagenz markiert sein.
Bevorzugte Beispiele für ein solches Nachweis-Reagenz sind Enzyme, radioaktiv
markierte Elemente, fluoreszierende Chemikalien oder Biotin. Anstelle des
vollständigen Antikörpers können auch Fragmente eingesetzt werden, die die
gewünschten spezifischen Bindungseigenschaften besitzen.

15

20

Die erfindungsgemäßen Nukleinsäuren können insbesondere zur Herstellung transgener Invertebraten verwendet werden. Diese können in Testsysteme eingesetzt werden, die auf einer vom Wildtyp abweichenden Expression der erfindungsgemäßen Rezeptoren oder Varianten hiervon basieren. Ferner fallen hierunter sämtliche transgenen Invertebraten, bei denen durch die Modifikation anderer Gene oder Genkontrollsequenzen (Promotoren) eine Veränderung der Expression der erfindungsgemäßen Rezeptoren oder deren Varianten eintritt.

25

Die Herstellung der transgenen Invertebraten erfolgt beispielsweise in Drosophila melanogaster durch P-Element vermittelten Gentransfer (Hay et al., 1997) oder in Caenorhabditis elegans durch Transposon vermittelten Gentransfer (z.B. durch Tc1, Plasterk, 1996).

30

Gegenstand der Erfindung sind somit auch transgene Invertebraten, die zumindest eine der erfindungsgemäßen Nukleinsäuren enthalten, vorzugsweise transgene Invertebraten der Arten Drosophila melanogaster oder Caenorhabditis elegans, sowie deren transgene Nachkommen. Vorzugsweise enthalten die transgenen Invertebraten die erfindungsgemäßen Rezeptoren in einer vom Wildtyp abweichenden Form.

10

Die erfindungsgemäßen Nukleinsäuren können auf die übliche Weise hergestellt werden. Beispielsweise können die Nukleinsäuremoleküle vollständig chemisch synthetisiert werden. Man kann auch nur kurze Stücke der erfindungsgemäßen Sequenzen chemisch synthetisieren und solche Oligonukleotide radioaktiv oder mit einem Fluoreszenzfarbstoff markieren. Die markierten Oligonukleotide können verwendet werden, um ausgehend von Insekten-mRNA hergestellte cDNA-Banken zu durchsuchen. Klone, an die die markierten Oligonukleotide hybridisieren, werden zur Isolierung der betreffenden DNA ausgewählt. Nach der Charakterisierung der isolierten DNA erhält man auf einfache Weise die erfindungsgemäßen Nukleinsäuren.

15

Die erfindungsgemäßen Nukleinsäuren können auch mittels PCR-Verfahren unter

Verwendung chemisch synthetisierter Oligonukleotide hergestellt werden.

20

25

30

Die erfindungsgemäßen Nukleinsäuren können zur Isolierung und Charakterisierung der regulatorischen Regionen, die natürlicherweise benachbart zu der kodierenden

Region vorkommen, verwendet werden. Solche regulatorischen Regionen sind somit

ebenfalls Gegenstand der vorliegenden Erfindung.

Mit Hilfe der erfindungsgemäßen Nukleinsäuren können neue Wirkstoffe für den

Pflanzenschutz, wie Verbindungen, welche als Modulatoren, insbesondere als

Agonisten oder Antagonisten, die Leitungseigenschaften der erfindungsgemäßen

Acetylcholinrezeptoren verändern, identifiziert werden. Dazu wird ein rekombinantes

DNA-Molekül, das zumindest eine erfindungsgemäße Nukleinsäure umfaßt, in eine

geeignete Wirtszelle eingebracht. Die Wirtzelle wird in Gegenwart einer Verbindung

oder einer Probe, welche eine Vielzahl von Verbindungen umfaßt, unter Bedingungen

kultiviert, die die Expression der erfindungsgemäßen Rezeptoren erlauben. Eine

Veränderung der Rezeptoreigenschaften kann - wie nachstehend in Beispiel 2

beschrieben - detektiert werden. Auf diese Weise ist es möglich, insektizide Substanzen

aufzufinden.

10

Die erfindungsgemäßen Nukleinsäuren ermöglichen auch das Auffinden von Verbindungen, die an die erfindungsgemäßen Rezeptoren binden. Diese können ebenfalls als Insektizide auf Pflanzen angewandt werden. Beispielsweise werden Wirtszellen, die die erfindungsgemäßen Nukleinsäuren enthalten und die entsprechenden Rezeptoren bzw. Polypeptide exprimieren oder die Genprodukte selbst mit einer Verbindung oder einem Gemisch von Verbindungen unter Bedingungen in Kontakt gebracht, die die Wechselwirkung zumindest einer Verbindung mit den Wirtszellen, den Rezeptoren oder den einzelnen Polypeptiden erlauben.

15 T Unter Verwendung von Wirtszellen oder transgenen Invertebraten, die die erfindungsgemäßen Nukleinsäuren enthalten, ist es auch möglich, Substanzen aufzufinden, welche die Expression der Rezeptoren verändern.

20

25

Die vorstehend beschriebenen erfindungsgemäßen Nukleinsäuren, Vektoren und regulatorischen Regionen können außerdem zum Auffinden von Genen verwendet werden, die für Polypeptide kodieren, welche am Aufbau von funktionell ähnlichen Acetylcholinrezeptoren in Insekten beteiligt sind. Unter funktionell ähnlichen Rezeptoren werden gemäß der vorliegenden Erfindung Rezeptoren verstanden, die Polypeptide umfassen, welche sich zwar hinsichtlich der Aminosäuresequenz von den hierin beschriebenen Polypeptiden unterscheiden, aber im wesentlichen dieselben Funktionen haben.

Erläuterungen zum Sequenzprotokoll und zu den Figuren:

30

SEQ ID NO: 1 zeigt die Nukleotidsequenz der isolierten Da7 cDNA, beginnend mit Position 1 und endend mit Position 2886. SEQ ID NO: 1 und SEQ ID NO: 2 zeigen ferner die Aminosäuresequenzen des von der Da7 cDNA Sequenz abgeleiteten Proteins.

SEQ ID NO: 3 zeigt die Nukleotidsequenz der isolierten Hva7-1 cDNA, beginnend mit Position 1 und endend mit Position 3700. SEQ ID NO: 3 und SEQ ID NO: 4 zeigen ferner die Aminosäuresequenzen des von der Hva7-1 cDNA Sequenz abgeleiteten Proteins.

10

SEQ ID NO: 5 zeigt die Nukleotidsequenz der isolierten Hva7-2 cDNA, beginnend mit Position 1 und endend mit Position 3109. SEQ ID NO: 5 und SEQ ID NO: 6 zeigen ferner die Aminosäuresequenzen des von der Hva7-2 cDNA Sequenz abgeleiteten Proteins.

15

20

25

Figur 1 zeigt den Anstieg des intrazellulären Calciums in gentechnisch veränderten Zellen gemäß Beispiel 2 nach Gabe von Nikotin. Zellen wurden mit Fura-2-acetoxymethylester (5 - 10 μM in serumfreiem Minimal Essentiellem Medium mit 1 % Rinderserumalbumin and 5 mM Calciumchlorid) beladen, mit N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (5 mM HEPES) gepufferter Tyrode-Lösung gewaschen und unter einem Fluoreszenzmikroskop (Nikon Diaphot) abwechselnd mit Licht der Wellenlänge 340 nm und 380 nm bestrahlt. Ein Meßpunkt entspricht einem Paar von Videobildern bei beiden Wellenlängen (Belichtungszeit pro Bild 100 ms). Der Zeitabstand von zwei Meßpunkten beträgt 3 s. Nach Aufnahme von 8 Bildern (Meßpunkt 4.0) wurde Nikotin auf eine Endkonzentration von 500 μM zugegeben, und die Meßreihe fortgesetzt. Die Fluoreszenzintensität der Zellen bei Bestrahlung mit Licht der Wellenlänge 380 nm wurde durch die entsprechende Intensität bei 340 nm geteilt und so das Verhältnis ("Ratio") gebildet.

15

20

25

Beispiele:

Beispiel 1

10 Isolierung der beschriebenen Polynukleotidsequenzen

Die Manipulation von Polynukleotiden erfolgte nach Standardmethoden der rekombinanten DNA Technologie (Sambrook, et al., 1989). Die bioinformatische Bearbeitung von Nukleotid- und Proteinsequenzen erfolgten mit dem Programmpaket GCG Version 9.1 (GCG Genetics Computer Group, Inc., Madison Wisconsin, USA).

Partielle Polynukleotidsequenzen

Aus Proteinsequenzen von Genen, bei denen ihre Fähigkeit homooligomere Acetylcholinrezeptoren auszubilden bekannt war, wurden durch Sequenzvergleiche ("Clustalw") Bereiche identifiziert, aus denen durch Rücktranslation der Codons degenerierte Oligonukleotide abgeleitet wurden. Insgesamt wurden 5 solcher Oligonukleotidpaare für die Polymerasekettenreaktion (PCR) ausgewählt. Nur eine Kombination (vide infra) ergab ein Produkt sowohl aus Heliothis-cDNA als auch aus Drosophila-cDNA.

30

RNA wurde aus gesamten Heliothis virescens-Embryonen (kurz vor Schlupf) mittels Trizol-Reagenz (Gibco BRL, nach Angaben des Herstellers) isoliert. In gleicher Weise wurde mit Drosophila-Embryonen (24 h bei 25°C) verfahren. 10 µg dieser RNAs wurden in eine cDNA-Erststrangsynthese (Superscript Präamplifizierungssystem für die cDNA-Erststrangsynthese, Gibco BRL, nach Angaben des Herstellers, 45°C Reaktionstemperatur) eingesetzt.

10

Anschließend wurden jeweils 1/100 der o.g. Erststrang-cDNA in eine Poly-Oligonukleotiden merasekettenreaktion (PCR) mit den alpha7-1s: (5'-**GAYGTIGAYGARAARAAYCA-3')** und (5'alpha7-2a: CYYTCRTCIGCRCTRTTRTA-3') eingesetzt (Taq DNA Polymerase, rekombinant. Gibco BRL). Die PCR-Parameter waren wie folgt: Hva7-1 und Hva-7-2: 94°C, 2 min; 35 mal (94°C, 45 s; 50°C, 30 s; 72°C, 60 s) sowie Da7: 96°C, 2 min; 35 mal (96°C, 45 s; 50°C, 30 s; 72°C, 60 s). Hieraus ergab sich jeweils eine im Agarosegel (1 %) erkennbare Bande von ca. 0,2 kb sowohl bei Drosophila-cDNA als auch bei Heliothis-cDNA. Nach Subklonierung der DNA-Fragmente mittels SrfScript (Stratagene) und Bestimmung der DNA-Sequenz, zeigte sich sich, daß aus HeliothiscDNA zwei verschiedene DNA-Fragmente amplifiziert worden waren; diese waren 228-11 = Hva7-1(partiell, mit 165 bp) und 228-8 = Hva7-2 (partiell, mit 171 bp). Aus Drosophila-cDNA wurde nur ein DNA-Fragment isoliert; dieses war 248-5 = Da7(partiell, mit 150 bp).

20

. 15

Isolierung von poly A enthaltender RNA aus Heliothis virescens-Gewebe und Konstruktion der cDNA-Bibliotheken

25

30

35

Die RNA für die cDNA-Bibliothek I wurde aus gesamten Heliothis virescens-Embryonen (kurz vor Schlupf) mittels Trizol-Reagenz (Gibco BRL, nach Angaben des Herstellers) isoliert. Die RNA für die cDNA-Bibliothek II wurde aus gesamten Kopfganglien von 500 Heliothis virescens-Larven (Stadien 4-5) mittels Trizol-Reagenz (Gibco BRL, nach Angaben des Herstellers) isoliert. Aus diesen RNAs wurden nun die poly A enthaltenden RNAs durch Reinigung über Dyna Beads 280 (Dynal) isoliert. 5 μg dieser poly A enthaltenden RNAs wurden anschließend in die Konstruktion der cDNA-Bibliotheken I und II mit dem λ-ZAPExpress Vektor eingesetzt (cDNA Synthesis Kit, ZAP-cDNA Synthesis Kit und ZAP-cDNA Gigapack III Gold Cloning Kit, alle Stratagene). In Abweichung von den Angaben des Herstellers wurde zur cDNA-Synthese die Reverse Transkriptase Superscript (Gibco BRL) bei einer Synthesetemperatur von 45°C verwendet. Außerdem wurde

auf die Zugabe radioaktiv markierter Desoxynukleosidtriphosphate verzichtet. Desweiteren wurden die synthetisierten cDNAs nicht über das im Kit enthaltene Gelfiltrationsmedium, sondern über Size Sep 400 Spun Columns (Pharmacia) fraktioniert.

10

15

20

Vollständige Polynukleotidsequenzen

Ď.

Mit Ausnahme der ersten Screening Runde bei der Isolierung des Hva7-1 Klons, erfolgten alle Screens mit Hilfe des DIG Systems (alle Reagenzien und Verbrauchsmaterialien Boehringer Mannheim, nach Angaben im "The DIG System User's Guide for Filter Hybridization", Boehringer Mannheim). Die eingesetzten DNA-Sonden wurden durch PCR mittels Digoxygenin markiertem dUTP präpariert, Die Hybridisierungen erfolgten in DIG Easy Hyb (Boehringer Mannheim) bei 42°C über Nacht. Der Nachweis markierter DNA auf Nylonmembranen geschah durch Chemolumineszenz (CDP-Star, Boehringer Mannheim) unter Verwendung von Röntgenfilmen (Hyperfilm MP, Amersham). Die isolierten Genbankplasmide wurden zur Identifikation mittels T3 und T7 Primer ansequenziert (ABI Prism Dye Terminator Cycle Sequencing Kit, ABI, mit ABI Prism 310 Genetic Analyzer). Die Bestimmung der vollständigen Polynukleotidsequenzen in Hva7-1, Hva7-2 und Da7 erfolgte durch Primer Walking mittels Cycle Sequencing als Auftragssequenzierung bei der Firma Qiagen, Hilden.

25 . -

a. Isolierung des Da7 Klons

30

35

10⁶ Phagen einer Drosophila melanogaster-cDNA-Bibliothek in λ Phagen (Canton-S embryo, 2-14 Stunden, in Uni-ZAP XR Vektor, Stratagene) wurden einem Screening mit DIG markiertem 248-5 als Sonde unterzogen (nach Angaben des Herstellers Stratagene). Die maximale Stringenz beim Waschen der Filter betrug: 0,2 x SSC; 0,1 % SDS; 42°C; 2 x 15 min. Es konnte ein Klon isoliert werden(Klon 432-1), dessen Insert eine Größe von 2940 bp aufwies (Da7, SEQ ID NO: 1). Der größte

offene Leserahmen dieser Sequenz beginnt bei der Position 372 der dargestellten Sequenz und endet bei Position 1822. Die hieraus abgeleitete Polypeptidsequenz von 770 Aminosäuren (SEQ ID NO: 2) kodiert für ein Protein mit einem errechneten Molekulargewicht von 87,01 kD.

10

b. Isolierung des Hva7-1 Klons

15

In das Screening gingen 10⁶ Phagen der Heliothis virescens-Embryo-cDNA-Bibliothek (Bibliothek I) ein. Die erste von drei Screening Runden fand unter Verwendung α-³²P markierter 228-11 DNA als Sonde statt. Die Hybridisierung der Sonde an die Filter erfolgte in Quickhyb (Stratagene) bei 68°C für eine Stunde. Anschließend wurden die Filter zwei mal je 15 min bei Raumtemperatur in 2 x SSC; 0,1 %SDS und 2 mal je 30 min bei 42°C in 0,1xSSC; 0,1 % SDS gewaschen. Die Detektion hybridisierter Sonde erfolgte durch Autoradiographie mit XR Röntgenfilmen (Kodak) unter Verwendung von Verstärkerfolien (Amersham) bei -80°C über Nacht. Die zwei weiteren Screening Runden erfolgten unter Verwendung des DIG Systems (Boehringer Mannheim).

25

20

Der in diesem Screen isolierte Klon 241-5 enthielt ein Insert von 3630 bp. Dieses Insert (Hva7-1, SEQ ID NO: 3) besitzt einen längsten offenen Leserahmen, der bei Position 335 der dargestellten Nukleinsäuresequenz beginnt und bei Position 1821 endet. Das hieraus abgeleitete Polypeptid von 496 Aminosäuren (SEQ ID NO: 4) kodiert für ein Protein mit einem errechneten Molekulargewicht von 56,36 kD.

30

10

c. Isolierung des Hva7-2 Klons

In das Screening gingen 10⁶ Phagen der Heliothis virescens-Ganglien-cDNA-Bibliothek (Bibliothek II) ein. Als Sonde wurde Dig markierte 228-8 DNA verwendet. Die maximale Stringenz beim Waschen der Filter betrug: 0,1 x SSC; 0,1% SDS; 42°C; 2 x 15 min.

15

Der in diesem Screen isolierte Klon 241-5 enthielt ein Insert von 3630 bp. Dieses Insert (Hva7-2, SEQ ID NO: 5) besitzt einen längsten offenen Leserahmen, der bei Position 95 der dargestellten Nukleinsäuresequenz beginnt und bei Position 1598 endet. Das hieraus abgeleitete Polypeptid von 501 Aminosäuren (SEQ ID NO: 6) kodiert für ein Protein mit einem errechneten Molekulargewicht von 56,71 kD.

Beispiel 2

20

Generierung der Expressionskonstrukte

a. Da7

Mittels Polymerasekettenreaktion (PCR) wurde der Sequenzbereich von Position 372 bis Position 2681 aus SEQ ID NO: 1 amplifiziert. Hierzu wurden Desoxyoligonukleotide mit den Sequenzen

GCGAATTCACCACCATGAAAAATGCACAACTG

sowie

CGAGACAATAATGTGGTGCCTCGAG verwendet. Als DNA-Polymerase wurde die Pfu-Polymerase von Stratagene nach Angaben des Herstellers verwendet. Nach erfolgter Amplifikation wurde das generierte Stück mit den Restriktionsendonukleasen Eco RI und Xho I verdaut und in einen ebenfalls Eco RI und Xho verdauten Vektor pcDNA3.1/Zeo (Invitrogen) einkloniert.

10

b. Hva7-1

Mittels Polymerasekettenreaktion (PCR) wurde der Sequenzbereich von Position 335 bis Position 1822 aus SEQ ID NO: 3 amplifiziert. Hierzu wurden Desoxyoligonukleotide mit den Sequenzen

GCAAGCTTACCACCATGGGAGGTAGAGCTAGACGCTCGCAC sowie
GCCTCGAGCGACACCATGATGTGTGGCGC verwendet. Als DNA-Polymerase
wurde die Pfu-Polymerase von Stratagene nach Angaben des Herstellers verwendet.

Nach erfolgter Amplifikation wurde das generierte Stück mit den Restriktionsendonukleasen HindIII und Xho I verdaut und in einen ebenfalls HindIII und Xho verdauten Vektor pcDNA3.1/Zeo (Invitrogen) einkloniert.

c. Hva7-2

20

25

Mittels Polymerasekettenreaktion (PCR) wurde der Sequenzbereich von Position 95 bis Position 1597 aus SEQ ID NO: 5 amplifiziert. Hierzu wurden Desoxyoligonukleotide mit den Sequenzen

GCAAGCGCCGCTATGGCCCCTATGTTG

sowie

TTGCACGATGATATGCGGTGCCTCGAGCG verwendet. Als DNA-Polymerase wurde die Pfu-Polymerase von Stratagene nach Angaben des Herstellers verwendet. Nach erfolgter Amplifikation wurde das generierte Stück mit den Restriktionsendonukleasen HindIII und Xho I verdaut und in einen ebenfalls HindIII und Xho verdauten Vektor pcDNA3.1/Zeo (Invitrogen) einkloniert.

30

35

d.Hva7-1 / 5HT₃ sowie Hva7-2 / 5HT₃ Chimären

Durch die Methode der Overlap Extension (Jespersen et al. 1997) wurde jeweils der Bereich von Position 335 bis Position 1036 aus SEQ ID NO: 3 (Hva7-1/5HT₃ Chimäre) sowie der Bereich von Position 95 bis Position 763 aus SEQ ID NO: 5 (Hva7-2/5HT₃ Chimäre) mit dem Bereich von Position 778 bis Position 1521 aus der

10

Mus musculus 5-HT₃ Rezeptor-cDNA (Sequenz in EMBL Datenbank: M774425) fusioniert. Die beiden Fragmente wurden anschließend mittels TA Cloning (Invitrogen, nach Angaben des Herstellers) in den pcDNA3.1/Zeo Vektor kloniert. Konstrukte mit korrekter Orientierung der beiden Fragmente im Vektor wurden durch Sequenzierung mit dem T7 Primer (Invitrogen) identifiziert.

Zellkultur und Gentransfer

15

20

HEK293-Zellen, die die α-Untereinheit eines L-Typ Ca-Kanals exprimieren (Zong et al. 1995, Stetzer et al. 1996), wurden in Dulbeccos Modified Eagles Medium und 10 % foetalem Kälberserum bei 5 % CO₂ und 20°C bis 37°C kultiviert. Für den Gentransfer wurde FuGENE 6 (Boehringer Mannheim GmbH, Mannheim, Deutschland) nach Angaben des Herstellers verwendet. 24 h bis 48 h nach dem Gentransfer wurden die Zellen in verschiedenen Dichten in Mikrotiterplatten ausgesät. Gentechnisch veränderte Zellen wurden durch Wachstum in Dulbeccos Modified Eagles Medium und 10 % foetalem Kälberserum und 150 - 500 ug/ml Zeocin während 3 bis 4 Wochen selektioniert. Resistente Einzelklone wurden wie unten beschrieben analysiert.

Fura-2-Messungen

30

35

Die Veränderungen der intrazellulären Calcium-Konzentration wurden mit Fura-2 gemessen. Eine Stammlösung mit 2 mM Fura-2-acetoxymethylester (Sigma) in Dimethylsulfoxid (DMSO) wurde auf eine Endkonzentration von 5 - 10 μM in serumfreiem Minimal Essentiellem Medium (MEM, Gibco) mit 1% Rinderserumalbumin and 5 mM Calciumchlorid verdünnt. Die Zellen wurden in einer Mikrotiterplatte in dieser Lösung 45 bis 60 min lang inkubiert. Anschließend wurden die Zellen zweimal in N-(2-Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (5 mM HEPES) gepufferter Tyrode-Lösung (HEPES-gepufferte Salzlösung mit 130 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM NaHCO3, 10 mM

10

Glucose) gewaschen. 100 µl Tyrodepuffer wurde in die Vertiefungen der Mikrotiterplatte gegeben und die Zellen wurden unter einem Fluoreszenzmikroskop (Nikon Diaphot) abwechselnd mit Licht der Wellenlänge 340 nm und 380 nm bestrahlt. Eine Serie von Videobildern (Belichtungszeit pro Bild 100 ms) wurde mit Pausen von 3 Sekunden aufgenommen und als digitalisierte Bilder in einem Bildananlyse-Computer gespeichert (Leica, Quantimet 570). Nach Aufnahme von 8 Bildern (Meßpunkt 4.0 in Fig. 1) wurde Nikotin auf eine Endkonzentration von 500 µM zugegeben, und die Meßreihe fortgesetzt. Die Fluoreszenzintensität der Zellen bei Bestrahlung mit Licht der Wellenlänge 380 nm wurde durch die entsprechende Intensität bei 340 nm geteilt und so ein Verhältnis gebildet, das den relativen Anstieg der Calcium-Konzentration darstellt (Grynkiewicz et al. 1985).

15

Literatur:

Bossy et al. (1988) Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems, EMBO J. 7, 611-618

Breer et al. (1987) Molecular properties and functions of insect acetylcholine receptors, J. Insect Physiol. 33, 771-790

25

20

23

30

Buckingham et al. (1997) Imidacloprid actions on insect neuronal acetylcholine receptors, J.Exp. Biol. 200, 2685-2692

Changeux et al. (1992) The functional architecture of the nicotinic acetylcholine receptor explored by affinity labelling and site-directed mutagenesis, Quarterly Review of Biophysics 25, 395-432

Claudio et al. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor g subunit, Proc. Natl. Acad. Sci. USA 80, 1111-1115

Devillers-Thiery et al. (1983) Complete mRNA coding sequence of the acetylcholine binding a-subunit of Torpedo marmorata acetylcholine receptor: a model for the transmembrane organization of the polypeptide chain, Proc. Natl. Acad. Sci. USA 80, 2067-2071

10

Elgoyhen et al. (1997) US Pat. No. 5,683,912

Eastham et al. (1998) Characterisation of a nicotinic acetylcholine receptor from the insect Manduca sexta, Eur. J. Neurosci 10, 879-889

15

Grynkiewicz et al. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties, J Biol Chem. 260, 3440-3450

20

Hay et al. (1997), P element insertion-dependent gene activation in the Drosophila eye, Proceedings of The National Academy of Sciences of The United States of America 94 (10), 5195-5200

25

Hermans-Borgmeyer et al. (1986) Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila EMBO J. 5, 1503-1508

Heinemann et al. (1997) US Pat. No 5,591,590

Jespersen et al. (1997) Efficient Non-PCR-Mediated Overlap Extension of PCR Fragments by Exonuclease "End Polishing", Biotechniques, 23, 48-52

30

Lindstrom et al. (1997) US Pat. No. 5,599,709

Marshall et al. (1990) Sequence and functional expression of a single a subunit of an insect nicotinic acetylcholine receptor, EMBO J. 9, 4391-4398

Noda et al. (1982), Primary structure of α -subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299, 793-797

10

Noda et al. (1983a), Primary structures of β - and δ -subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequences, Nature 301, 251-255

Noda et al. (1983a), Structural homology of Torpedo californica acetylcholine receptor subunits, Nature 302, 528-532

15

Ortells et al. (1995), Evolutionary history of the ligand-gated ion-channel superfamily of receptors, Trends in Neurosience 18, 121-127

20

Plasterk (1996), The Tc1/mariner transposon family, Transposable Elements/Current Topics in Microbiology and Immunology 204, 125-143

Sambrook et al. (1989), Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbour Press

Sawruk et al. (1990a), EMBO J. 9, 2671-2677 Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α-subunit

Sawruk et al. (1990b), SBD, a novel structural subunit of the Drosophila nicotinic acetylcholine receptor, shares ist genomic localization with two a-subunits, FEBS Lett. 273, 177-181

30

25

Schloß et al. (1988), Neuronal acetylcholine receptors of Drosophila: the ARD protein is a component of a high-affinity α -bungarotoxin binding complex, EMBO J 7, 2889-2984

Stetzer et al. (1996) Stable expression in HEK-293 cells of the rat $\alpha 3/\beta 4$ subtype of neuronal nicotinic acetylcholine receptor, FEBS Lett. 397, 39-44

10

Zong et al. (1995) On the regulation of the expressed L-type calcium channel by cAMP-dependent phosphorylation, Pflügers Arch. - Eur. J. Physiol. 430, 340-347.

SEQUENZPROTOKOLL

	(1)	ALLG	EMEINE ANGABEN:	
		(i)	ANMELDER: (A) NAME: Bayer Aktiengesellschaft (B) STRASSE: Bayerwerk (C) ORT: Leverkusen (E) LAND: Deutschland (F) POSTLEITZAHL: D 51368	
	. .	(ii)	BEZEICHNUNG DER ERFINDUNG: Nukleinsäuren, die für Acetylcholinrezeptor-Untereinheiten von Insekten kodieren	
_,/	7	(iii)	ANZAHL DER SEQUENZEN: 6	
		(iv)	COMPUTER-LESBARE FASSUNG: (A) DATENTRÄGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)	
	(2)	ANGA	BEN ZU SEQ ID NO: 1:	
		(i)	SEQUENZKENNZEICHEN: (A) LÄNGE: 2886 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Doppelstrang (D) TOPOLOGIE: linear	
		(ii)	ART DES MOLEKÜLS: cDNA zu mRNA	
		(iii)	HYPOTHETISCH: NEIN	
1	<u>.</u>	(iv)	ANTISENSE: NEIN	
المسر	•	(vi)	URSPRÜNLICHE HERKUNFT: (A) ORGANISMUS: Drosophila melanogaster	
		(vii)	UNMITTELBARE HERKUNFT: (B) CLON(E): Da7	
		(ix)	MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE: 3722681	
		(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
	GGC	ACGAGA	AA AAAGTTGTGG TATAAACTTT TATTGTAGGA AAACGCATAA AAATAATAGA	60
	AAA	ACGCTO	CT TCGGGTTGTA AAGAAAATAA GAAGACAAAA GAAAGACATG AAAACGTTGC	120
	AAA	CAATAA	AA GCATATACTT GCCATATTGA TATAAAGGGA AATCGTGAAA AGGCGGTGAA 1	180

AATTTCGTAA GATTAGTTGG TATTAAGGGC AGCCCATGCA CACAGCTAAA AAGGGAACTA

AAA	AAAC	CCC (GCAC	AGAA	CA A	rgaa	AGCT	G CA	GCAG	CTGG	ATA	AGGC	CGA	CAAA	ACCGA	A	300
AAT	rata:	TTA '	TTGT	AATC	ra g	raga	GAGC	A GA	CAAC	TATA	CCG	CTGG	CAA	CAAC	CAACA	С	360
CGA	AAGA(GAC '	Me				a Gl						u Va		C GAT p Asp		410
							AGA Arg										458
							ACC Thr										506
CAG Gln	CAA Gln	CTC Leu	ACA Thr	ACA Thr 50	CTG Leu	CAA Gln	CCA Pro	AGG Arg	AGC Ser 55	TTA Leu	AGT Ser	ACA Thr	AAA Lys	CAC His 60	CAC His		554
							CAC His										602
							AAC Asn 85										650
							AGC Ser										698
							GGC Gly										746
ACA Thr	AAC Asn	ATA Ile	AGA Arg	CTG Leu 130	TGT Cys	GCA Ala	CGC Arg	AAG Lys	CGA Arg 135	CAA Gln	CGA Arg	TTG Leu	CGT Arg	CGC Arg 140	CGA Arg		794
							CCA Pro										842
							TTC Phe 165										890
TAC Tyr	AGC Ser 175	ACA Thr	CCA Pro	GCA Ala	GCA Ala	ACA Thr 180	ACC Thr	AGC Ser	TGT Cys	CCG Pro	ACA Thr 185	GCC Ala	ACC Thr	TAC Tyr	ATG Met		938
							GAG Glu									·	986
GAT Asp	AGA Arg	GTA Val	TCC Ser	ACG Thr 210	GCC Ala	ACA Thr	TTC Phe	GCC Ala	TGG Trp 215	GTG Val	TTG Leu	CAT His	GTG Val	CTG Leu 220	CAG Gln	1	034
GTG Val	CTG Leu	CTC Leu	GTG Val 225	TCG Ser	CTG Leu	CAA Gln	CAG Gln	TGG Trp 230	CAA Gln	CTT Leu	CAC His	GTG Val	CAA Gln 235	CAG Gln	CGA Arg	1	082
TCG Ser	GTG Val	CTA Leu 240	CTG Leu	TTC Phe	AGA Arg	AGG Arg	ATC Ile 245	GCA Ala	GCG Ala	AGC Ser	ACC Thr	ATC Ile 250	GCC Ala	TTC Phe	ATT Ile	1	130

	TCC Ser	TAT Tyr 255	TTA Leu	GGC Gly	AGC Ser	TTT Phe	GCA Ala 260	GCG Ala	CAA Gln	CTG Leu	AAA Lys	AAT Asn 265	AGC Ser	AGC Ser	AGC Ser	AGC Ser	:	1178
	AGT Ser 270	AGC Ser	AGC Ser	AGC Ser	AAC Asn	AGC Ser 275	AGC Ser	AAC Asn	AAC Asn	AGC Ser	AGC Ser 280	ACG Thr	CAA Gln	ATA Ile	TTA Leu	AAC Asn 285		1226
	GGA Gly	CTT Leu	AAT Asn	AAA Lys	CAC His 290	TCA Ser	TGG Trp	ATA Ile	TTT Phe	TTA Leu 295	TTG Leu	ATA Ile	TAT Tyr	TTG Leu	AAT Asn 300	TTA Leu	:	1274
							GCA Ala										:	1322
	GAT Asp	CTT Leu	TTG Leu 320	GAT Asp	CCT Pro	TAT Tyr	AAT Asn	ACA Thr 325	CTA Leu	GAA Glu	CGT Arg	CCC Pro	GTT Val 330	CTC Leu	AAT Asn	GAA Glu	-	1370
							AGC Ser 340										-	1418
**	GAT Asp 350	GTG Val	GAC Asp	GAG Glu	AAA Lys	AAT Asn 355	CAA Gln	TTG Leu	CTA Leu	GTC Val	ACT Thr 360	AAT Asn	GTG Val	TGG Trp	TTA Leu	AAA Lys 365	-	1466
							AAT Asn]	1514
							ATA Ile										1	1562
	GTG Val	CTG Leu	ATG Met 400	TAC Tyr	AAC Asn	AGT Ser	GCG Ala	GAT Asp 405	GAG Glu	GGA Gly	TTT Phe	GAC Asp	GGC Gly 410	ACC Thr	TAC Tyr	CAG Gln	1	1610
	ACG Thr	AAC Asn 415	GTG Val	GTG Val	GTG Val	CGG Arg	AAC Asn 420	AAC Asn	GGC Gly	TCG Ser	TGT Cys	CTA Leu 425	TAC Tyr	GTT Val	CCG Pro	CCG Pro	j	1658
	GGG Gly 430	ATC Ile	TTC Phe	AAG Lys	TCG Ser	ACG Thr 435	TGC Cys	AAG Lys	ATC Ile	GAC Asp	ATC Ile 440	ACG Thr	TGG Trp	TTC Phe	CCC Pro	TTC Phe 445	1	1706
							ATG Met										1	1754
	TTC Phe	CAG Gln	CTG Leu	GAT Asp 465	TTA Leu	CAA Gln	TTA Leu	CAA Gln	GAT Asp 470	GAA Glu	ACT Thr	GGC Gly	GGT Gly	GAT Asp 475	ATC Ile	AGC Ser	1	1802
	AGT Ser	TAC Tyr	GTG Val 480	CTC Leu	AAC Asn	GGC Gly	GAG Glu	TGG Trp 485	GAA Glu	CTA Leu	CTG Leu	GGT Gly	GTG Val 490	CCC Pro	GGC Gly	AAA Lys	1	1850
	CGT Arg	AAC Asn 495	GAG Glu	ATC Ile	TAT Tyr	TAC Tyr	AAC Asn 500	TGC Cys	TGC Cys	CCG Pro	GAA Glu	CCC Pro 505	TAT Tyr	ATA Ile	GAC Asp	ATC Ile	1	1898
	ACC Thr 510	TTC Phe	GCC Ala	ATC Ile	ATC Ile	ATC Ile 515	CGC Arg	CGA Arg	CGA Arg	ACA Thr	CTG Leu 520	TAC Tyr	TAT Tyr	TTC Phe	TTC Phe	AAC Asn 525	1	L946

								ATT Ile									1994
								GAA Glu									2042
								CTG Leu 565									2090
								TTG Leu									2138
	TGG Trp 590	CTG Leu	CCA Pro	TGG Trp	ATA Ile	TTG Leu 595	CGA Arg	ATG Met	AGT Ser	CGC Arg	CCA Pro 600	GGA Gly	CGA Arg	CCG Pro	CTG Leu	ATC Ile 605	2186
								TGT Cys									2234
•	CAC His							GAG Glu									2282
								ATC Ile 645									2330
								ACA Thr									2378
								GAC Asp									2426
								GTC Val									2474
								TTA Leu									2522
								GAC Asp 725									2570
	TGG Trp	AAA Lys 735	TTT Phe	GCA Ala	GCT Ala	ATG Met	GTC Val 740	GTT Val	GAC Asp	AGA Arg	CTG Leu	TGC Cys 745	CTT Leu	ATC Ile	ATA Ile	TTC Phe	2618
	ACA Thr 750	ATG Met	TTC Phe	GCA Ala	ATA Ile	TTA Leu 755	GCC Ala	ACA Thr	ATA Ile	GCT Ala	GTA Val 760	CTA Leu	CTA Leu	TCG Ser	GCA Ala	CCA Pro 765	2666
				GTC Val		TAGO	CATA	ATG G	GCGP	GGTG	G TI	TATTO	TTAT	TGC	STTTI	PATT	2721
	ATAA	AATC	CAA I	TTGT	TAAT	TA T	TAAA	ATTAA	TAA	CGAA	ACT	СТТТ	'AAGT	'AA A	ATTAP	AACTA	2781
	AAAA	GACA	ACT F	\AAA <i>F</i>	AAGC	AC AF	AAAA	ATAG	GAA	ATAA	CAT	GATA	AAAC	CC A	TGAA	СТААА	2841

- (2) ANGABEN ZU SEQ ID NO: 2:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 770 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Protein
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Lys Asn Ala Gln Leu Lys Leu Thr Glu Val Asp Asp Glu Leu
1 5 10 15

Trp Leu Ala Val Arg Leu Ala His Cys Ser Ser Asn Phe Ser Ser Ser 20 25 30

Ser Ser Thr Arg Thr Thr Ser Ser Asn Gln Arg His Asn Gln Gln Leu 35 40 45

Thr Thr Leu Gln Pro Arg Ser Leu Ser Thr Lys His His Ser Asn Ile 50 55 60

Ala Ser Glu Gln His Asn Ser Gln Gln Glu Pro Ala Ser Lys Asp 65 70 75 80

Glu Asp Val Ala Asn His Gly Arg Ser Asn Asp Gln Gln Thr His Leu 85 90 95

Gln Gln Leu Asp Ser Ser Asn Met Leu Ser Pro Lys Thr Ala Ala Ala 100 105 110

Ala Thr Ala Ala Gly Asp Glu Ala Thr Thr Gln Gln Pro Thr Asn Ile 115 120 125

Arg Leu Cys Ala Arg Lys Arg Gln Arg Leu Arg Arg Arg Lys Arg 130 135 140

Lys Pro Ala Thr Pro Asn Glu Thr Asp Ile Lys Lys Gln Gln Gln Leu 145 150 155 160

Ser Met Pro Pro Phe Lys Thr Arg Lys Ser Thr Asp Thr Tyr Ser Thr 165 170 175

Pro Ala Ala Thr Thr Ser Cys Pro Thr Ala Thr Tyr Met Gln Cys Arg 180 185 190

Ala Ser Asp Asn Glu Phe Ser Ile Pro Ile Ser Arg His Asp Arg Val 195 200 205

Ser Thr Ala Thr Phe Ala Trp Val Leu His Val Leu Gln Val Leu Leu 210 220

Val Ser Leu Gln Gln Trp Gln Leu His Val Gln Gln Arg Ser Val Leu 225 230 235 240

Leu Phe Arg Arg Ile Ala Ala Ser Thr Ile Ala Phe Ile Ser Tyr Leu 245 250 255

Ser Asn Ser Ser Asn Asn Ser Ser Thr Gln Ile Leu Asn Gly Leu Asn 275 280 285

Lys His Ser Trp Ile Phe Leu Leu Ile Tyr Leu Asn Leu Ser Ala Lys 295 Val Cys Leu Ala Gly Tyr His Glu Lys Arg Leu Leu His Asp Leu Leu Asp Pro Tyr Asn Thr Leu Glu Arg Pro Val Leu Asn Glu Ser Asp Pro 330 Leu Gln Leu Ser Phe Gly Leu Thr Leu Met Gln Ile Ile Asp Val Asp 345 Glu Lys Asn Gln Leu Leu Val Thr Asn Val Trp Leu Lys Leu Glu Trp Asn Asp Met Asn Leu Arg Trp Asn Thr Ser Asp Tyr Gly Gly Val Lys Asp Leu Arg Ile Pro Pro His Arg Ile Trp Lys Pro Asp Val Leu Met Tyr Asn Ser Ala Asp Glu Gly Phe Asp Gly Thr Tyr Gln Thr Asn Val 405 Val Arg Asn Asn Gly Ser Cys Leu Tyr Val Pro Pro Gly Ile Phe Lys Ser Thr Cys Lys Ile Asp Ile Thr Trp Phe Pro Phe Asp Asp Gln Arg Cys Glu Met Lys Phe Gly Ser Trp Thr Tyr Asp Gly Phe Gln Leu 455 Asp Leu Gln Leu Gln Asp Glu Thr Gly Gly Asp Ile Ser Ser Tyr Val Leu Asn Gly Glu Trp Glu Leu Leu Gly Val Pro Gly Lys Arg Asn Glu Ile Tyr Tyr Asn Cys Cys Pro Glu Pro Tyr Ile Asp Ile Thr Phe Ala 505 Ile Ile Ile Arg Arg Thr Leu Tyr Tyr Phe Phe Asn Leu Ile Ile 520 Pro Cys Val Leu Ile Ala Ser Met Ala Leu Leu Gly Phe Thr Leu Pro 535 Pro Asp Ser Gly Glu Lys Leu Ser Leu Gly Val Thr Ile Leu Leu Ser Leu Thr Val Phe Leu Asn Met Val Ala Glu Thr Met Pro Ala Thr Ser Asp Ala Val Pro Leu Trp Ile Arg Ile Val Phe Leu Cys Trp Leu Pro 585 Trp Ile Leu Arg Met Ser Arg Pro Gly Arg Pro Leu Ile Leu Glu Phe Thr Thr Pro Cys Ser Asp Thr Ser Ser Glu Arg Lys His Gln Ile Leu Ser Asp Val Glu Leu Lys Glu Arg Ser Ser Lys Ser Leu Leu Ala Asn Val Leu Asp Ile Asp Asp Asp Phe Arg His Asn Cys Arg Pro Met

				645					650					655		
Thr	Pro	Gly	Gly 660	Thr	Leu	Pro	His	Asn 665	Pro	Ala	Phe	Tyr	Arg 670	Thr	Val	
Tyr	Gly	Gln 675	Gly	Asp	Asp	Gly	Ser 680	Ile	Gly	Pro	Ile	Gly 685	Ser	Thr	Arg	
Met	Pro 690	Asp	Ala	Val	Thr	His 695	His	Thr	Cys	Ile	Lys 700	Ser	Ser	Thr	Glu	
Tyr 705	Glu	Leu	Gly	Leu	Ile 710	Leu	Lys	Glu	Ile	Arg 715	Phe	Ile	Thr	Asp	Gln 720	
Leu	Arg	Lys	Asp	Asp 725	Glu	Cys	Asn	Asp	Ile 730	Ala	Asn	Asp	Trp	Lys 735	Phe	
Ala	Ala	Met	Val 740	Val	Asp	Arg	Leu	Cys 745	Leu	Ile	Ile	Phe	Thr 750	Met	Phe	
Ala	Ile	Leu 755	Ala	Thr	Ile	Ala	Val 760	Leu	Leu	Ser	Ala	Pro 765	His	Ile	Ile	
Val	Ser 770			_												
(2)	ANG	ABEN	ZU S	SEQ I	D NO): 3:	:									
	(i)	(F (C	A) LÀ B) AH C) SI	RT: 1	: 370 Nucle SFORM	00 Ba eotic 1: Do	asenp i oppe]	oaare Istra								
	(ii)	AR	r DES	S MOI	LEKÜI	LS: c	DNA	zu n	nRNA							
	(iii)	HYI	POTHE	ETISC	CH: N	NEIN										
	(iv)	ANT	risen	NSE:	NEIN	J										
	(vi)			NLICH RGANI				his	vire	escer	าร					
i	(vii)			ELBAF LON (E												
	(ix)		A) NA	L: AME/S AGE:3				os								
	(xi)	SEÇ	QUENZ	ZBESC	CHRE	BUNG	S: SE	EQ II	NO:	3:						
GGC	ACGAC	SCC (CTGC	CCCC	AC GO	STCGG	CCGC	ACT	CCGC	TGA	ACAA	CAAT	GC 1	CAA	AAACAC	60
GCCC	STGAC	CTC C	CACAC	CACAT	c co	CTC	GCGC	AGI	'AGGC	GAT	GTTT	GAGG	GAT (CGGAC	CGGCAC	120
GCGT	GGCC	CGT (CGGCC	SAGCO	G TO	GTGF	ACAF	GTI	GCAT	ACA	TATO	AAAA	ACC G	TAAA	AAAGAT	180
TGAA	TTTT	'AA C	SCCG <i>I</i>	ATCGI	G TI	CGAT	`AGA'I	CCI	'AATA	GAG	AAGC	GGGF	AGT C	CGGC	GTTTG	240
GTAG	GCGG	GG G	STCGA	AGTC	GC GC	CGGTC	GGGG	GA.	ATG	CGC	GGCG	CGGG	GC G	GCGG	CGGCG	300
GCGG	GCGCG	GCG (GCGCC	GCGG	GC GI	CGCG	GCGC	TGA						CG CG .a Ar		352

												CTG Leu					400
												GAG Glu					448
	CAC His	CAC His 810	CTA Leu	TTG Leu	GAC Asp	CAC His	TAC Tyr 815	AAC Asn	GTA Val	CTG Leu	GAG Glu	AGG Arg 820	CCC Pro	GTC Val	GTC Val	AAC Asn	496
												ACG Thr					544
												ACA Thr					592
												AAC Asn					640
	GGC Gly	GGG Gly	GTC Val 875	AAA Lys	GAT Asp	TTA Leu	AGA Arg	GTG Val 880	CCA Pro	CCC Pro	CAC His	AGA Arg	CTA Leu 885	TGG Trp	AAA Lys	CCA Pro	688
												TTC Phe 900					736
	CCA Pro 905	ACG Thr	AAC Asn	GTG Val	GTG Val	GTG Val 910	CGG Arg	AAC Asn	AAC Asn	GGC Gly	TCG Ser 915	TGT Cys	CTG Leu	TAC Tyr	GTG Val	CCG Pro 920	784
												ATC Ile					832
	TTC Phe	GAC Asp	GAC Asp	CAA Gln 940	CGA Arg	TGC Cys	GAG Glu	ATG Met	AAG Lys 945	TTT Phe	GGC Gly	AGC Ser	TGG Trp	ACT Thr 950	TAT Tyr	GAT Asp	880
1	GGT Gly	TAT Tyr	CAG Gln 955	TTG Leu	GAT Asp	CTA Leu	CAA Gln	CTA Leu 960	CAG Gln	GAT Asp	GAA Glu	GGG Gly	GGC Gly 965	GGA Gly	GAT Asp	ATA Ile	928
	AGC Ser	AGT Ser 970	TTT Phe	GTC Val	ACG Thr	AAT Asn	GGC Gly 975	GAA Glu	TGG Trp	GAG Glu	TTA Leu	ATA Ile 980	GGA Gly	GTC Val	CCC Pro	GGC Gly	976
	AAG Lys 985	CGC Arg	AAC Asn	GAG Glu	ATC Ile	TAC Tyr 990	TAC Tyr	AAC Asn	TGT Cys	TGT Cys	CCG Pro 995	GAG Glu	CCA Pro	TAC Tyr	ATC Ile	GAC Asp 1000	1024
	ATC Ile	ACG Thr	TTT Phe	GCG Ala	GTG Val 1005	Val	ATC Ile	CGG Arg	AGG Arg	AAA Lys 1010	Thr	CTC Leu	TAC Tyr	TAC Tyr	TTC Phe 1015	Phe	1072
	AAT Asn	CTG Leu	ATC Ile	GTG Val 1020	Pro	TGC Cys	GTG Val	CTC Leu	ATC Ile 1025	Ala	TCC Ser	ATG Met	GCT Ala	CTA Leu 1030	Leu	GGG Gly	1120
	TTC Phe	ACC Thr	TTG Leu 1035	Pro	CCA Pro	GAC Asp	TCC Ser	GGA Gly 1040	Glu	AAG Lys	TTG Leu	TCT Ser	TTA Leu 1045	Gly	GTG Val	ACG Thr	1168

			Leu	TCG Ser				Phe					Ala				1216
		Ala		TCG Ser			Val					Thr					1264
				ATG Met		Ala					Ser					Leu	1312
				CAC His 1100	Arg					His					Trp		1360
	.CGT Arg	TGC Cys	GTG Val 1115	Phe	CTT Leu	TAT Tyr	TGG Trp	CTG Leu 1120	Pro	TGG Trp	GTG Val	CTG Leu	CGC Arg 1125	Met	TCA Ser	CGG Arg	1408
			Ser	GCG Ala				Pro					Pro				1456
		Leu		CTG Leu			Arg					Leu					1504
				GAT Asp		Asp					Gln					Gln	1552
				TAC Tyr 1180	Tyr					Glu					Leu		1600
				TGC Cys					Tyr					Ile			1648
			Arg	GTC Val				Gln					Asp				1696
•		Ile		CGC Arg			Lys					Val					1744
				ATC Ile		Thr					Ile					Val	1792
				GCG Ala 1260	Pro					Ser	TAGO	CGACC	CCG (CCCG	CTTGO	CG	1842
	GATA	ACGC	ATG (CGAAA	AAGT	гс то	STGAT	ACCO	G CGA	RTA	TTG	TTAF	AGTTO	STG A	ATGAC	GCGAAG	1902
	TGGC	CGCGC	GAC (GGTGA	ACGC	CG CC	GCGI	CGG	A GTT	rgcco	CCG	ССТО	CCT	CGC (CGCC	CGCGCC	1962
	cccc	CTGTA	AGA (CATA	AGTTA	AC CO	GCTG <i>P</i>	ACTGO	CAA	ACCCI	TGTA	CGTT	CAA	CAA A)AAT <i>P</i>	CTGCCC	2022
	ATC	CGACT	CAA (CGTCT	TTTT	AT CO	CCCTI	GAAA	AA A	TCAC	GCGA	TTGI	GTAC	ccc o	СТТТС	CTTCCA	2082
	AGAA	ATACA	TAA	GACA	AATGO	GT CO	STCAC	CGCTC	C AGT	rgga <i>i</i>	ATCA	ATCO	CCGTA	ACT (CTTCC	GCCCGA	2142
	TAT	TTCC	CTT A	AGGG"	ratg:	rc ac	CGAGT	TTG	OTA A	SAGCO	GTT	CCGI	ATC	AGA (CGTTC	CCGTCC	2202

CCGGAACGGT	CGTCCCCTGC	GATAAAGTGG	CAGTACGTGC	TATACAGGCA	CTTAAGGCCG	2262
CCACGCCACG	GCGCCGCGGT	GCGCTCGGGC	CGCGAACCCG	CGACCCTCAC	CGCTGCAAGT	2322
GGCCACCCAC	TAGACAAGAC	TGCGGCAGAA	AATATTTGCA	CAAAAACGTC	TTCCTTCTTA	2382
CCGATGAACG	ACCTGATTCG	CATTTAAAAT	TAAACTTTGT	TAGAACTTCT	TCGATTCTTG	2442
AAATCTATTG	TACAGTTTAG	AGTTTGGGCG	GTGAAACAAT	GGCCCTTTGT	TTCCTTCTTG	2502
TTCGATTCCA	TGAATCGTGG	TTATAATCCC	TAGTTTTATT	TTCGGATATA	TTTGTGTCAG	2562
TAGCTAGTAT	AGAACTTTAC	AAACAATGTT	GATTCAATTG	GTACAGGTTG	TGATATGCCT	2622
CGTTGTGAAC	GGGTCCGATA	TTGTTATAAA	TGGTAAAATA	CCCATGGCTA	TAGCTTAATA	2682
AATCGTTCGT	TAAAAGTTGT	AGTTAAACAA	ATATTATTTT	AATAAAGTCA	TATCTGGGTC	2742
TTCCGGAACG	ACTTTTACAA	ATAATTAAAT	TACATATTAA	TATCACGTTT	GTACTTCTTT	2802
CCATACAGTT	ACAGTAATTC	GTATGCTGAA	AATAATATTA	GCTTGTAAAA	TTTTCTTCTT	2862
CGAAAATTTA	TTCAAACAGA	TGCGACCATC	GTTTCAAACA	TTTACATGTA	ATATAGAACT	2922
CATTTTATAA	GATATACAAC	ATTTTATAAG	TACAAGAAGT	TGTAACATGA	ACCGGTTTTT	2982
CGTTACATAG	AGGGTATAAC	ACAAAGGTGC	CTACATATTG	ACAGATGCGA	AGCACGATCA	3042
GTTGATAAGC	ACAGGTACAC	TATATCCTGA	CATCCGACAG	TCCTGCCGCT	CGTCTGCCAC	3102
ACTCGGAAAC	ATTCGACAGT	TCAGTTTACT	GCTCCGCCAT	CATCGATTGT	TAAGTTTGTT	3162
GTTCTAACTC	ATCGCATTCA	TTTCATTCAA	AAACATTGTA	AACCTCTCAA	GGGGAAAACG	3222
TGTTGTAAAC	AGTGAGAGTG	CGCGGGTACA	ACCGACACGC	GAATGTACCC	TCGCAAGGCT	3282
CCTGTAATGT	TTTCCTCTTC	CGAGGTGTTG	CTGAGAGTAA	TCTTAGACGG	TCCGATGGAA	3342
GTTGCGGACC	GGATATGATT	ACAAGTCAAT	GTTTTTAAGT	CATCCGTTTA	TTTATTGTTA	3402
TATCTTCTTA	CCATTCGCTA	GAGGTTGTGT	GACGACCCGG	ACGGTGGGCG	CCGCAACCCG	3462
CACACGCGGG	GTTCCATCTT	TGTATTAGAT	GGAAGTTGTG	CGGCATCTCT	CCGTCGGCAA	3522
TGGGACAACC	CGTTGTCCCC	AACATTTGTT	CAATTGTTAG	GGTTAACTCT	GAATTGCACT	3582
TTGTTTATTA	AATATAAACG	AATGAAACAA	AAAAAAAAA	AAAAAACTCG	AGAGTACTTC	3642
TAGAGCGGCC	GCGGGCCCAT	CGATTTTCCA	CCCGGGTGGG	GTACCAGTAA	GTGTACCC	3700

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 496 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Met Gly Gly Arg Ala Arg Arg Ser His Leu Ala Ala Pro Ala Gly Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

His Glu Lys Arg Leu Leu His His Leu Leu Asp His Tyr Asn Val Leu Glu Arg Pro Val Val Asn Glu Ser Asp Pro Leu Gln Leu Ser Phe Gly Leu Thr Leu Met Gln Ile Ile Asp Val Asp Glu Lys Asn Gln Leu Leu 65 70 75 80 Ile Thr Asn Ile Trp Leu Lys Leu Glu Trp Asn Asp Met Asn Leu Arg Trp Asn Thr Ser Asp Phe Gly Gly Val Lys Asp Leu Arg Val Pro Pro His Arg Leu Trp Lys Pro Asp Val Leu Met Tyr Asn Ser Ala Asp Glu Gly Phe Asp Ser Thr Tyr Pro Thr Asn Val Val Arg Asn Asn Gly Ser Cys Leu Tyr Val Pro Pro Gly Ile Phe Lys Ser Thr Cys Lys Ile Asp Ile Thr Trp Phe Pro Phe Asp Asp Gln Arg Cys Glu Met Lys Phe 165 170 Gly Ser Trp Thr Tyr Asp Gly Tyr Gln Leu Asp Leu Gln Leu Gln Asp Glu Gly Gly Gly Asp Ile Ser Ser Phe Val Thr Asn Gly Glu Trp Glu 200 Leu Ile Gly Val Pro Gly Lys Arg Asn Glu Ile Tyr Tyr Asn Cys Cys 210 215 220Pro Glu Pro Tyr Ile Asp Ile Thr Phe Ala Val Val Ile Arg Arg Lys Thr Leu Tyr Tyr Phe Phe Asn Leu Ile Val Pro Cys Val Leu Ile Ala Ser Met Ala Leu Leu Gly Phe Thr Leu Pro Pro Asp Ser Gly Glu Lys 260 265 270 Leu Ser Leu Gly Val Thr Ile Leu Leu Ser Leu Thr Val Phe Leu Asn 280 Met Val Ala Glu Thr Met Pro Ala Thr Ser Asp Ala Val Pro Leu Leu Gly Thr Tyr Phe Asn Cys Ile Met Phe Met Val Ala Ser Ser Val Val 315 Ser Thr Ile Leu Ile Leu Asn Tyr His His Arg His Ala Asp Thr His 325 330 Glu Met Ser Asp Trp Ile Arg Cys Val Phe Leu Tyr Trp Leu Pro Trp 345 Val Leu Arg Met Ser Arg Pro Gly Ser Ala Thr Thr Pro Pro Pro Ala Arg Val Pro Pro Pro Pro Asp Leu Glu Leu Arg Glu Arg Ser Ser Lys Ser Leu Leu Ala Asn Val Leu Asp Ile Asp Asp Asp Phe Arg His Pro

385					390					395					400	
Gln	Ala	Gln	Gln	Pro 405	Gln	Cys	Cys	Arg	Tyr 410	Tyr	Arg	Gly	Gly	Glu 415	Glu	
Asn	Gly	Ala	Gly 420	Leu	Ala	Ala	His	Ser 425	Cys	Phe	Gly	Val	Asp 430	Tyr	Glu	
Leu	Ser	Leu 435	Ile	Leu	Lys	Glu	Ile 440	Arg	Val	Ile	Thr	Asp 445	Gln	Met	Arg	
Lys	Asp 450	Asp	Glu	Asp	Ala	Asp 455	Ile	Ser	Arg	Asp	Trp 460	Lys	Phe	Ala	Ala	
Met 465	Val	Val	Asp	Arg	Leu 470	Cys	Leu	Ile	Ile	Phe 475	Thr	Leu	Phe	Thr	Ile 480	
Ile	Ala	Thr	Leu	Ala 485	Val	Leu	Leu	Ser	Ala 490	Pro	His	Ile	Met	Val 495	Ser	
(2)	ANGA	ABEN	ZU S	SEQ I	D NO	D: 5:	:									
	(i)	(I (I	A) LA B) AH C) Si	ZKENN ÄNGE: RT: N TRANC OPOLC	310 Nucle SFORM	09 Ba eotic 4: Do	asenp d oppel				-					
	(ii)	AR:	C DES	S MOI	LEKÜI	is: d	DNA	zu r	nRNA							
	(iii)	НҮІ	POTHE	ETISC	CH: N	NEIN										
	(iv)	AN:	risen	NSE:	NEIN	Ŋ										
	(vi)			NLICE RGANI				his	vire	escer	ns					
	(vii)			ELBAI LON (I			_									
	(ix)		A) NA	L: AME/S AGE:S			L: CI	os								
	(xi)	SE	QUENZ	ZBESC	CHRE	BUNG	G: SE	EQ II	ONO:	: 5 :						
GGC	ACGA(GCC (GCC	GCAC	T TO	STCC	CAGG	C CGC	CATGA	AGCG	CGC	CGGC	STG (CTAGO	CGCAGC	60
GTG	CGCG	GGT (GTGG1	ratgo	cc co	GCGC	STCGO	C CG(CT AT				et Le	rg go eu Al		112
									GTA Val							160
									GCG Ala							208
									CTA Leu							256

ACC TTG CAG CAA ATC ATT GAC GTG GAC GAG AAG AAT CAA CTA CTT ATA

	Thr	Leu	Gln	Gln	Ile 555	Ile	Asp	Val	Asp	Glu 560	Lys	Asn	Gln	Leu	Leu 565	Ile	
									TGG Trp 575								352
	AAC Asn	GAC Asp	AGC Ser 585	GAG Glu	TAT Tyr	GGC Gly	GGG Gly	GTC Val 590	AAG Lys	GAC Asp	CTC Leu	AGG Arg	ATC Ile 595	ACG Thr	CCC Pro	AAC Asn	400
	AAG Lys	TTG Leu 600	TGG Trp	AAG Lys	CCG Pro	GAC Asp	GTC Val 605	CTT Leu	ATG Met	TAT Tyr	AAT Asn	AGT Ser 610	GCT Ala	GAC Asp	GAG Glu	GGT Gly	448
	TTT Phe 615	GAC Asp	GGG Gly	ACC Thr	TAC Tyr	CAG Gln 620	ACC Thr	AAC Asn	GTG Val	Val	GTC Val 625	AGA Arg	AGC Ser	GGC Gly	GGC Gly	AGT Ser 630	496
- 1	TGC Cys	CTG Leu	TAC Tyr	GTG Val	CCA Pro 635	CCT Pro	GGC Gly	ATA Ile	TTC Phe	AAG Lys 640	AGC Ser	ACA Thr	TGC Cys	AAG Lys	ATG Met 645	GAC Asp	544
9 ,	ÁTC Ile	GCG Ala	TGG Trp	TTT Phe 650	CCC Pro	TTC Phe	GAC Asp	GAC Asp	CAA Gln 655	CAC His	TGT Cys	GAT Asp	ATG Met	AAG Lys 660	TTC Phe	GGT Gly	592
									TTG Leu								640
	GCA Ala	GGC Gly 680	GGC Gly	GAT Asp	CTA Leu	TCG Ser	GAC Asp 685	TTC Phe	ATA Ile	ACA Thr	AAT Asn	GGG Gly 690	GAG Glu	TGG Trp	TAT Tyr	CTA Leu	688
	ATA Ile 695	GGA Gly	ATG Met	CCA Pro	GGC Gly	AAA Lys 700	AAG Lys	AAC Asn	ACA Thr	ATA Ile	ACA Thr 705	TAC Tyr	GCG Ala	TGC Cys	TGC Cys	CCC Pro 710	736
	GAG Glu	CCC Pro	TAC Tyr	GTG Val	GAC Asp 715	GTC Val	ACC Thr	TTC Phe	ACC Thr	ATC Ile 720	ATG Met	ATA Ile	AGA Arg	AGA Arg	CGA Arg 725	ACC Thr	784
	TTG Leu	TAC Tyr	TAC Tyr	TTC Phe 730	TTC Phe	AAC Asn	CTG Leu	ATC Ile	GTC Val 735	CCG Pro	TGC Cys	GTG Val	CTG Leu	ATC Ile 740	TCA Ser	TCG Ser	832
	ATG Met	GCA Ala	CTC Leu 745	CTC Leu	GGC Gly	TTC Phe	ACA Thr	CTG Leu 750	CCA Pro	CCA Pro	GAC Asp	TCC Ser	GGA Gly 755	GAG Glu	AAA Lys	CTC Leu	880
	ACA Thr	CTT Leu 760	GGA Gly	GTC Val	ACT Thr	ATT Ile	CTT Leu 765	CTA Leu	TCG Ser	CTG Leu	ACG Thr	GTG Val 770	TTC Phe	CTC Leu	AAC Asn	CTG Leu	928
	GTA Val 775	GCC Ala	GAG Glu	ACC Thr	CTG Leu	CCA Pro 780	CAG Gln	GTC Val	TCC Ser	GAC Asp	GCT Ala 785	ATC Ile	CCC Pro	CTG Leu	TTA Leu	GGG Gly 790	976
	ACG Thr	TAC Tyr	TTC Phe	AAT Asn	TGC Cys 795	ATC Ile	ATG Met	TTC Phe	ATG Met	GTA Val 800	GCG Ala	TCG Ser	TCT Ser	GTG Val	GTA Val 805	CTG Leu	1024
	ACT Thr	GTG Val	GTG Val	GTA Val 810	CTC Leu	AAT Asn	TAC Tyr	CAC His	CAT His 815	CGA Arg	ACA Thr	GCT Ala	GAT Asp	ATA Ile 820	CAT His	GAA Glu	1072

			TGG Trp													1120
			TCG Ser													1168
			AGG Arg													1216
			GCG Ala													1264
			CCT Pro 890													1312
			TTC Phe													1360
			GAC Asp													1408
			CTG Leu													1456
			GAA Glu													1504
			AGG Arg 970													1552
			GCT Ala													1597
TGA	ACCAA	ACC A	ACTGA	AGCCO	GG CA	AACTO	CCGGC	GCF	ATGA	ATGA	GAGA	AAAT	AT T	TATTA	AGATCG	1657
CCGF	ATTTC	STA A	CATTA	TAAT	rg Al	CAATO	TAAT	TAF	ATTA	TAAA	ACGT	GGTI	GA A	AACGC	CACACG	1717
TCTC	CCATA	AAC A	AAAGI	CTT	AA GA	ACATI	'AAA'	TAT	GATA	TAAA	TTAC	CATAT	TG T	ragti	TAAGTC	1777
GAGT	GTTC	GAT (GGAAA	TTTT	ra go	CCGGC	GCAF	A GGF	AGTTI	CGT	GAAG	GTCI	GT A	TATA	ATTTTT	1837
TCTI	TATTO	GTT (GTATA	ATTGT	TA TO	CGTTC	STTCF	A TGT	TTTC	CTTT	CAG	SAAGI	GA (GCTTI	GTACT	1897
GTTT	GTT	CT T	rcgar	rggc <i>i</i>	AG GT	GCAC	CTTCF	A GTI	CAGO	CTG	AAAT	TTCC	AT T	TAACA	TATTTA	1957
TTAF	AACAA	AAT (GTGAT	rgtto	GA CI	`AGGA	TGTT	ATA	ACAGA	AATA	ATGT	TGAC	GT (STATA	ATTTG	2017
TTAF	AAATA	AAA (CAATA	ATTA	AT TA	ACTAI	TACI	' AAA	ACGAT	TTAT	ATAA	ACGA	AG 7	TACTA	AACGAG	2077
GGTT	TACTI	AT7	ATGGG	SAAGA	AA CO	CTAP	AGCT	GCF	ACAGA	AGTT	GCAT	raat'	TT (AAAA	AAGAA	2137
ATTA	ACGGF	AAA A	AAAGI	CATTT	TT GF	I AAA	TGAA	A CTT	TTTG	GAA	GGAA	AGTA	AC (STTTC	SATCAA	2197
AAAA	AGTTI	GT A)AAA/	CGAAA	AG TI	CGGI	TCTG	CGC	CAAT	ACT	GGAA	ATTAF	AA 1	TCTC	CGTAAA	2257
TATI	AGGC	SAA A	AAGAA	AGGTO	CC TI	AAAT	ACAZ	AAG	SATTI	GAA	CCGG	CATO	CT 1	TTTF	ACAAGT	2317

AATGAGGGAT	CACAGATGAT	GACAAAAAAC	CTTAGGGTAT	ATAAGTAATG	TACATAATGG	2377
ATCAAATATC	GGTAGAGTCA	AGAATAGTTA	ACGATTTAAG	ATTATTCCAT	TCGATATTAA	2437
AATTCGATTA	GCGATTGTCG	CTGCGTCTAC	TTTGATACAT	ATCGATTTGA	ATCGATATTG	2497
TATAAATTTA	GATAGATCGG	ACATTAGTAA	TGAGTATGGA	CGTTTTAATT	TTTAAAAAAG	2557
AATGTACTAC	GAAGATTAAA	TCCAGGAATT	GTTAAACAGT	TATGGAATTG	ATAAGAAATC	2617
AACAATTAAT	ACGGAACCAA	AGGTAGACTA	GGTGTAGCAT	CAGGAGATTG	AATTAAAACA	2677
TAAATTAGGA	CCGACTTAAA	TGGAACTTGC	GAGTGTATTG	ATAACTTTTT	AATTTAAAAA	2737
CTCATTGTCG	ATTAAATGGA	GAATAACTTT	TGATCTCTCG	TATCGATAAA	TGCTCACTTA	2797
ACTATCGATA	GCGTAATATT	ATAACTGTTA	GTATATCGAT	ATGGGAGTAA	GTCACTAGCA	2857
TCAGAAATAG	TCATTAATTA	GGAATCGGTT	TGTGTTAATG	TTATGCTTAG	CGAAAATATT	2917
ACAATGCTGT	TGATATCACT	AACCATCACG	TAACCATATT	GATAAAATGT	AAATACAGAA	2977
TATTGCGGTG	TGTATTTGTA	TATAAATTTT	AGAAAAAAA	AAAAAAAAA	AACTCGAGAG	3037
TACTTCTAGA	GCGGCCGCGG	GCCCATCGAT	TTTCCACCCG	GGTGGGGTAC	CAGGTAAGTG	3097
TACCCAATTC	GC					3109

(2) ANGABEN ZU SEQ ID NO: 6:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 501 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Met Ala Pro Met Leu Ala Ala Leu Ala Leu Leu Ala Leu Leu Pro Val 1 5 10 15

Ser Glu Gln Gly Pro His Glu Lys Arg Leu Leu Asn Ala Leu Leu Ala 20 25 30

Asn Tyr Asn Thr Leu Glu Arg Pro Val Ala Asn Glu Ser Glu Pro Leu 35 40 45

Glu Val Arg Phe Gly Leu Thr Leu Gln Gln Ile Ile Asp Val Asp Glu 50 55 60

Lys Asn Gln Leu Leu Ile Thr Asn Ile Trp Leu Ser Leu Glu Trp Asn 65 70 75 80

Asp Tyr Asn Leu Arg Trp Asn Asp Ser Glu Tyr Gly Gly Val Lys Asp 85 90 95

Leu Arg Ile Thr Pro Asn Lys Leu Trp Lys Pro Asp Val Leu Met Tyr 100 105 110

Asn Ser Ala Asp Glu Gly Phe Asp Gly Thr Tyr Gln Thr Asn Val Val 115 120 125

Val Arg Ser Gly Gly Ser Cys Leu Tyr Val Pro Pro Gly Ile Phe Lys 130 135 140

Ser Thr Cys Lys Met Asp Ile Ala Trp Phe Pro Phe Asp Asp Gln His

150 155 160 145 Cys Asp Met Lys Phe Gly Ser Trp Thr Tyr Asp Gly Asn Gln Leu Asp Leu Val Leu Lys Asp Glu Ala Gly Gly Asp Leu Ser Asp Phe Ile Thr Asn Gly Glu Trp Tyr Leu Ile Gly Met Pro Gly Lys Lys Asn Thr Ile 195 200 205 Thr Tyr Ala Cys Cys Pro Glu Pro Tyr Val Asp Val Thr Phe Thr Ile Met Ile Arg Arg Arg Thr Leu Tyr Tyr Phe Phe Asn Leu Ile Val Pro Cys Val Leu Ile Ser Ser Met Ala Leu Leu Gly Phe Thr Leu Pro Pro 250 Asp Ser Gly Glu Lys Leu Thr Leu Gly Val Thr Ile Leu Leu Ser Leu 260 265 270 Thr Val Phe Leu Asn Leu Val Ala Glu Thr Leu Pro Gln Val Ser Asp Ala Ile Pro Leu Leu Gly Thr Tyr Phe Asn Cys Ile Met Phe Met Val Ala Ser Ser Val Val Leu Thr Val Val Val Leu Asn Tyr His His Arg 315 Thr Ala Asp Ile His Glu Met Pro Gln Trp Ile Lys Ser Val Phe Leu Gln Trp Leu Pro Trp Ile Leu Arg Met Ser Arg Pro Gly Lys Lys Ile 345 Thr Arg Lys Thr Ile Met Met Asn Thr Arg Met Arg Glu Leu Glu Leu 360 Lys Glu Arg Ser Ser Lys Ser Leu Leu Ala Asn Val Leu Asp Ile Asp Asp Asp Phe Arg His Gly Pro Pro Pro Pro Asn Ser Thr Ala Ser Thr 395 Gly Asn Leu Gly Pro Gly Cys Ser Ile Phe Arg Thr Asp Phe Arg Arg 410 Ser Phe Val Arg Pro Ser Thr Met Glu Asp Val Gly Gly Gly Leu Gly Ser His His Arg Glu Leu His Leu Ile Leu Arg Glu Leu Gln Phe Ile 440 Thr Ala Arg Met Lys Lys Ala Asp Glu Glu Ala Glu Leu Ile Ser Asp 455 Trp Lys Phe Ala Ala Met Val Val Asp Arg Phe Cys Leu Phe Val Phe Thr Leu Phe Thr Ile Ile Ala Thr Val Ala Val Leu Leu Ser Ala Pro 485 490 His Ile Ile Val Gln 500

Patentansprüche

1. Nukleinsäure umfassend eine Sequenz ausgewählt aus

10

(a) den Sequenzen gemäß SEQ ID NO: 1, SEQ ID NO: 3 oder SEQ ID NO: 5,

15

- (b) zumindest 14 Basenpaare langen Teilsequenzen der unter (a) definierten Sequenzen,
- (c) Sequenzen, welche an die unter (a) definierten Sequenzen hybridisieren in 2 x SSC bei 60°C, bevorzugt in 0,5 x SSC bei 60°C, besonders bevorzugt in 0,2 x SSC bei 60°C,

20

(d) Sequenzen, welche eine zumindest 70%ige Identität zu den unter (a) definierten Sequenzen zwischen Position 1295 und Position 2195 aus SEQ ID NO: 1 oder zwischen Position 432 und Position 1318 aus SEQ ID NO: 3 oder zwischen Position 154 und Position 1123 aus SEQ ID NO: 5 aufweisen,

25

- (e) Sequenzen, welche zu den unter (a) definierten Sequenzen komplementär sind und

- (f) Sequenzen, welche aufgrund der Degeneration des genetischen Codes für dieselbe Aminosäuresequenz kodieren wie die unter (a) bis (d) definierten Sequenzen.
- 2. Vektor umfassend zumindest eine Nukleinsäure gemäß Anspruch 1.

3. Vektor nach Anspruch 2, dadurch gekennzeichnet, daß das Nukleinsäuremolekül funktionell mit regulatorischen Sequenzen verknüpft ist, die die Expression der Nukleinsäure in pro- oder eukaryotischen Zellen gewährleisten.

10

4. Wirtszelle enthaltend eine Nukleinsäure gemäß Anspruch 1 oder einen Vektor gemäß Anspruch 2 oder 3.

5. Wirtszelle nach Anspruch 4, dadurch gekennzeichnet, daß es sich um eine pro- oder eukaryotische Zelle handelt.

15

6. Wirtszelle nach Anspruch 5, dadurch gekennzeichnet, daß die prokaryotische Zelle E.coli ist.

20

- 7. Wirtszelle nach Anspruch 5, dadurch gekennzeichnet, daß die eukaryotische Zelle eine Säuger- oder Insektenzelle ist.
- 8. Polypeptid, welches von einer Nukleinsäure gemäß Anspruch 1 kodiert wird.

25

Acetylcholinrezeptor umfassend zumindest ein Polypeptid gemäß Anspruch
 8.

10. Verfahren zur Herstellung eines Polypeptids gemäß Anspruch 8 umfassend

30

(a) das Kultivieren einer Wirtszelle gemäß einem der Ansprüche 4 bis 7 unter Bedingungen, die die Expression der Nukleinsäure gemäß Anspruch 1 gewährleisten, und

(b) die Gewinnung des Polypeptids aus der Zelle oder dem Kulturmedium.

- 11. Antikörper, welcher spezifisch mit dem Polypeptid gemäß Anspruch 8 oder dem Rezeptor gemäß Anspruch 9 reagiert.
 - 12. Transgener Invertebrat enthaltend eine Nukleinsäure gemäß Anspruch 1.

13. Transgener Invertebrat nach Anspruch 12, dadurch gekennzeichnet, daß es sich um Drosophila melanogaster oder Caenorhabditis elegans handelt.

15

- 14. Verfahren zur Herstellung eines transgenen Invertebraten gemäß Anspruch 12 oder 13 umfassend das Einbringen einer Nukleinsäure gemäß Anspruch 1 oder eines Vektors gemäß Anspruch 2 oder 3.
- 15. Transgene Nachkommen eines Invertebraten gemäß Anspruch 12 oder 13.
- 20 16. Verfahren zur Herstellung einer Nukleinsäure gemäß Anspruch 1 umfassend die folgenden Schritte:
 - (a) Vollständige chemische Synthese auf an sich bekannte Weise oder

25

(b) chemische Synthese von Oligonukleotiden, Markieren der Oligonukleotide, Hybridisieren der Oligonukleotide an DNA einer InsektencDNA-Bank, Selektieren von positiven Klonen und Isolieren der hybridisierenden DNA aus positiven Klonen oder

- (c) chemische Synthese von Oligonukleotiden und Amplifizierung der Ziel-DNA mittels PCR.
- 17. Regulatorische Region, welche natürlicherweise die Transkription einer Nukleinsäure gemäß Anspruch 1 in Insektenzellen kontrolliert und eine spezifische Expression gewährleistet.

18. Verfahren zur Auffinden neuer Wirkstoffe für den Pflanzenschutz, insbesondere von Verbindungen, welche die Leitungseigenschaften von Rezeptoren gemäß Anspruch 9 verändern, umfassend die folgenden Schritte:

10

- (a) Bereitstellen einer Wirtszelle gemäß einem der Ansprüche 4 bis 7,
- (b) Kultivieren der Wirtszelle in der Gegenwart einer Verbindung oder einer Probe, welche eine Vielzahl von Verbindungen umfaßt, und

15

(c) Detektieren veränderter Leistungseigenschaften.

19. Verfahren zum Auffinden einer Verbindung, die an Rezeptoren gemäß Anspruch 9 binden, umfassend die folgenden Schritte:

20

(a) Inkontaktbringen einer Wirtszelle gemäß einem der Ansprüche 4 bis 7, eines Polypeptids gemäß Anspruch 8 oder eines Rezeptors gemäß Anspruch 9 mit einer Verbindung oder einem Gemisch von Verbindungen unter Bedingungen, die die Interaktion der Verbindung(en) mit der Wirtszelle, dem Polypeptid oder dem Rezeptor erlauben, und

25

(b) Bestimmen der Verbindung(en), die spezifisch an die Rezeptoren binden.

- 20. Verfahren zum Auffinden von Verbindungen, die die Expression von Rezeptoren gemäß Anspruch 9 verändern, umfassend die folgenden Schritte:
 - (a) Inkontaktbringen einer Wirtszelle gemäß einem der Ansprüche 4 bis 7 oder eines transgenen Invertebraten gemäß Anspruch 11 oder 12 mit einer Verbindung oder einem Gemisch von Verbindungen,

- (b) Bestimmen der Rezeptorkonzentration, und
- (c) Bestimmen der Verbindung(en), die die Expression des Rezeptors spezifisch beeinflussen.

10

21. Verwendung zumindest einer Nukleinsäure gemäß Anspruch 1, eines Vektors gemäß Anspruch 2 oder 3, einer regulatorischen Region gemäß Anspruch 16 oder eines Antikörpers gemäß Anspruch 11 zum Auffinden neuer Wirkstoffe für den Pflanzenschutz oder zum Auffinden von Genen, die für Polypeptide kodieren, welche am Aufbau von funktionell ähnlichen Acetylcholinrezeptoren in Insekten beteiligt sind.

Figur 1

