## Overview

terça-feira, 27 de agosto de 2024

Dissecando: Ultra-low-power SoC with RISC-V single-core microprocessor

# SoC (System on Chip)

Um SoC é um circuito integrado que combina diversos componentes de um sistema de computador, como <u>processador</u>, <u>memória</u> e <u>periféricos</u>, em um <u>único chip</u>.

### Ultra-low-power

Significa que o chip consome muito pouca energia, ideal para dispositivos que funcionam por longos períodos em bateria.

# Arquitetura de Conjunto de Instruções (ISA)

09:33

Para entender RISC-V, você precisa entender que uma Arquitetura de Conjunto de Instruções (ISA) é <u>um conjunto de comandos que um processador pode executar</u>. Ele <u>define como um processador deve se comportar</u>, o que permite que desenvolvedores de hardware e software criem sistemas compatíveis.

ISAs comuns incluem x86 (usado em muitos PCs) e ARM (amplamente utilizado em dispositivos móveis).

### RISC (Reduced Instruction Set Computer)

RISC-V <u>faz parte da família de arquiteturas RISC</u>, que se <u>concentra em um conjunto reduzido de instruções simples</u>, em vez de uma ampla gama de instruções complexas.

Isso torna o design do processador mais simples, eficiente e econômico em termos de energia.

Processadores RISC são <u>mais rápidos para operações simples</u> e são usados em muitos dispositivos, desde microcontroladores até supercomputadores.

#### Aberta e Gratuita

Ao contrário de outras ISAs como x86 (proprietária da Intel) e ARM (licenciada pela ARM Holdings), o RISC-V é <u>aberto e gratuita</u>. Isso significa que <u>qualquer pessoa</u> pode <u>usar</u>, <u>modificar</u> e <u>implementar</u> RISC-V sem pagar royalties ou licenças. Isso é atraente para universidades, startups, e empresas que desejam personalizar processadores sem estar amarradas a licenças caras.

#### Extensível

- RISC-V é projetada para ser altamente modular.

Ela <u>tem um conjunto básico de instruções, mas permite que os desenvolvedores adicionem extensões conforme necessário</u>. Isso significa que <u>um fabricante de chips pode criar uma versão de RISC-V que é otimizada para uma aplicação específica,</u> como inteligência artificial ou criptografia, <u>sem precisar começar do zero</u>.

#### Vantagens

- Liberdade de design: Os desenvolvedores têm a liberdade de adaptar a arquitetura conforme necessário para atender às necessidades específicas de seus projetos.
- Comunidade ativa: RISC-V é suportada por uma comunidade global de desenvolvedores, universidades e empresas, o
  que acelera a inovação e suporte.
- Independência tecnológica: RISC-V permite que países e empresas reduzam a dependência de arquiteturas de processadores proprietárias, aumentando a segurança e a soberania tecnológica.

#### **Aplicações**

- IoT e Dispositivos Embutidos: O baixo consumo de energia e a simplicidade do design o tornam ideal para dispositivos pequenos e de baixa potência, como sensores e dispositivos de IoT.
- Computação de Alto Desempenho: Grandes centros de dados e supercomputadores podem se beneficiar da escalabilidade e customização oferecida por RISC-V.
- Educação e Pesquisa: Como é uma arquitetura aberta, é amplamente utilizada em universidades para pesquisa e ensino

de design de processadores.

#### Desafios

- Maturidade: Embora esteja ganhando rapidamente tração, RISC-V ainda é mais recente que ARM e x86, o que significa que algumas ferramentas de desenvolvimento e suporte podem estar menos maduras.
- Adoção: Algumas empresas ainda estão relutantes em migrar de arquiteturas estabelecidas, devido à grande quantidade de software existente otimizado para x86 ou ARM.

#### 32-bit RISC-V

Significa que é um processador baseado em RISC e de 32 bits.

Quando dizemos que um processador é de 32 bits, estamos falando do tamanho do pacote de dados que ele pode manipular de uma vez. Isso significa que o processador pode trabalhar com instruções e endereços de memória que têm até 32 bits de

#### Capacidade de endereçamento

Um processador de 32 bits pode, teoricamente, endereçar até 4 GB de memória (2^32 endereços). Esse era o padrão em computadores e dispositivos móveis por muitos anos, embora os sistemas modernos estejam migrando para processadores de 64 bits para suportar mais memória e capacidade menores.

#### **Aplicações**

Processadores de 32 bits são comuns em sistemas embarcados, microcontroladores, e em dispositivos onde um equilíbrio entre desempenho e economia de recursos como energia e custo é importante.

# Single-core microprocessor

Um single-core microprocessor é um microprocessador que tem apenas um núcleo de processamento. Isso significa que ele pode executar apenas uma tarefa de cada vez (embora ele possa alternar rapidamente entre várias tarefas, criando a ilusão de multitarefa).

Esses tipos de processadores eram comuns em computadores e dispositivos mais antigos.

#### Características

- Processamento Sequencial: Como há somente um núcleo, ele executa uma tarefa por vez de forma sequencial.
- Eficiência Simples: Em tarefas simples, como controle de dispositivos eletrônicos básicos, um núcleo único pode ser suficiente e mais eficiente em termos de custo e energia.
- Desvantagens: Em comparação com microprocessadores multicore, ele pode se tornar um gargalo em sistemas modernos que exigem multitarefa ou processamento paralelo intensivo.

### Aplicação em Embarcados

No caso do ESP32-C6 com um single-core, ele é ideal para aplicações de IoT e sistemas embarcados que não exigem multitarefa pesada, permitindo um design mais simples e eficiente energeticamente.

Dissecando: 2.4 GHz Wi-Fi 6 (802.11ax), Bluetooth® 5 (LE), Zigbee and Thread (802.15.4)

### 2.4 GHz

Refere-se à frequência na qual o Wi-Fi opera, proporcionando bom alcance e penetração de sinal.

# Wi-Fi 6 (802.11ax)

802.11ax ou Wi-Fi 6 é a mais recente geração de tecnologia Wi-Fi, que oferece maior eficiência, velocidade, e capacidade de conexão simultânea em comparação com as versões anteriores.

É especialmente útil em ambientes com muitos dispositivos conectados.

### Bluetooth 5

Refere-se à versão mais recente do padrão Bluetooth, que oferece maior alcance e velocidade de dados em comparação com as versões anteriores.

### LE (Low Energy)

Indica que o Bluetooth é otimizado para consumir pouca energia, ideal para dispositivos IoT que precisam economizar bateria.

# Zigbee 3.0

<u>Um padrão de comunicação sem fio</u> usado para <u>criar redes de dispositivos com baixo consumo de energia</u>, tipicamente usado em automação residencial e dispositivos IoT.

### Thread 1.3

Outro <u>protocolo de rede sem fio otimizado para dispositivos IoT</u>, semelhante ao Zigbee, mas com algumas diferenças técnicas, como a <u>utilização do IPv6</u>.

### IPv6

O Internet Protocol version 6 é a versão mais recente do protocolo de internet, que é usado para identificar dispositivos em uma rede e permitir a comunicação entre eles na internet.

Dissecando: Optional 4 MB flash in the chip's package

# 4 MB flash

Refere-se à memória flash (no caso opcional) disponível dentro do chip, usada para armazenar o firmware, dados ou aplicativos.

\_\_\_\_\_\_

# Dissecando: 30 or 22 GPIOs, rich set of peripherals

### **GPIOs**

General-Purpose Input/Output, são pinos de entrada e saída de uso geral no microcontrolador que podem ser configurados pelo usuário para diferentes funções, como controlar LEDs, ler sensores e etc. O ESP32-C6 oferece até 30 GPIOs.

# Rich set of peripherals

Indica que o chip vem com uma variedade de periféricos integrados, como interfaces de comunicação (<u>I2C</u>, <u>SPI</u>, <u>UART</u>), <u>conversores analógico-digital</u> (ADC), e muito mais, permitindo diversas funcionalidades sem necessidade de componentes externos.

Dissecando: QFN40 (5×5 mm) or QFN32 (5×5 mm) package

## QFN (Quad-Flat No-leads)

É um tipo de encapsulamento de chip que não possui pinos salientes, mas sim pads metálicos na base do chip para soldagem direto na placa.

#### QFN40 or QFN32

Refere-se ao número de pads disponíveis.

#### 5x5 mm

Refere-se às dimensões físicas do chip, indicando que o chip é pequeno e adequado para projetos compactos.

Dissecando: Overview

### **Baseband**

Em uma comunicação sem fio, o baseband refere-se ao conjunto de funções responsáveis por processar o sinal de dados antes de ele ser transmitido por uma antena ou logo após ser recebido. Ele lida com a conversão do sinal digital em um formato que pode ser modulado para transmissão, ou a conversão do sinal modulado recebido de volta para um formato digital.

### Funções da Baseband

### Modulação/Demodulação

O baseband processa a modulação do sinal digital, preparando-o para ser transmitido via rádio. Isso envolve transformar os dados binários em sinais analógicos que podem ser transmitidos por meio de ondas de rádio.

#### Codificação/Decodificação

Inclui a codificação de dados para melhorar a integridade do sinal durante a transmissão, e a decodificação do sinal ao receber, para recuperar os dados originais.

#### **Filtragem**

A baseband realiza a filtragem dos sinais para remover ruídos indesejados.

# MAC (Media Acess Control)

O MAC é uma subcamada da camada de enlace de dados (Layer 2) no modelo OSI. A função principal do MAC é controlar o acesso ao meio físico de transmissão, ou seja, determinar quando e como os dispositivos na rede podem enviar e receber dados.

### Funções do MAC

#### Controle de Acesso ao Meio

Gerencia o acesso ao canal de comunicação sem fio, assegurando que não haja colisões entre os sinais transmitidos por dispositivos diferentes na mesma rede.

### Endereçamento MAC

Cada dispositivo de rede tem um endereço MAC único, que o identifica na rede. O MAC lida com o endereçamento e a entrega de quadros (frames) de dados entre dispositivos.

#### Organização e Controle de Fluxo

O MAC organiza a forma como os dados são transmitidos, dividindo-os em quadros e garantindo que eles sejam entregues de forma correta e ordenada.

### Resumo "Wireless Baseband and MAC"

Esses componentes são fundamentais em dispositivos que se conectam a redes Wi-Fi, Bluetooth ou outras formas de comunicação sem fio.

Estamos falando dos componentes que processam e gerenciam a transmissão e recepção de dados em redes sem fio:

#### **Baseband**

Lida com a conversão e processamento dos sinais digitais para que possam ser transmitidos ou recebidos corretamente.

#### MAC

Controla o acesso ao canal de comunicação e organiza como os dispositivos compartilham o meio sem fio, garantindo que os dados sejam enviados e recebidos sem colisões ou interferências.

#### Antena

Saiba que o Wi-Fi, Bluetooth e 802.15.4 coexiste e compartilham da mesma antena.

# Diagrama Funcional

### Active

O módulo está ativo em todos os modos de operação.

# Active and Modem-sleep

O módulo está ativo tanto no modo ativo quanto no modo modem-sleep.

#### Modem-sleep

É um modo onde o processador continua funcionando, mas o rádio de Wi-Fi ou Bluetooth pode estar desligado para economizar energia.

# Active, Modem-sleep, Light-sleep

O módulo está ativo em todos os modos, exceto no modo deep-sleep.

# Optional in Deep-sleep

O módulo está disponível em todos os modos, mas em deep-sleep sua ativação é opcional.

#### Deep-sleep

É o modo de menor consumo de energia. O processador é quase totalmente desligado, mantendo apenas o mínimo necessário para acordar.

# Optional in Light-sleep

O módulo é opcionalmente ativo em light-sleep e pode ser desligado para economizar energia.

#### Light-sleep

Neste modo, o processador entra em um estado de baixa energia, mas ainda pode acordar rapidamente para responder a eventos.



Dissecando: Features

Finalizarei posteriormente o overview com estas informações de features.