Machine Learning for All: Examples for Subset Selection & Lasso

Anastasiya Yarygina

Monday, January 21, 2019

Practical Excercises

- Subset selection
 - ► False Discovery Rate (FDR)¹ as a selection tool
 - In-sample and Out of Sample (OOS) fit
 - Forward stepwise Regression
- Regularization
 - LASSO Regularization Path
 - ► Parameter selection using Cross Validation
- ► Data: Semiconductors dataset

Semiconductors dataset: explore predictors

- ► This dataset has 201 predictors
- ► Some p-values are clustered at zero. But which are **significant signals**?

Select predictors using FDR

► How many predictors are in fact good signals (q=10% FDR)?

The nubmer of significant signals:

[1] 25

Compare in-sample fit of full and cut models

- Fit a new **cut** model using only 25 best signals
- ► How does the in-sample fit change?

```
## Full model R2= 0.5621432
```

```
## Cut model R2= 0.1811822
```

Compare OOS fit of full and cut models

Split data in 10 random samples, fit **full** and **cut** models on 9 samples, predict on 10th. What are the average R^2 ?

Cut model mean OOS \mathbb{R}^2 is about 1/2 in-sample \mathbb{R}^2 . Full model is terrible!

Forward Stepwise Regression

- 1. Fit all univariate models. Choose the one with the highest R^2 , keep this variable, say X1, for your final model.
- 2. Fit all bivariate models including X1, choose the one with the highest R^2 , keep two variables, say, X1 and X15.
- 3. Repeat: $\max R^2$ by adding one variable at time to the model.
- 4. Stop when AIC is lower for the current model than for any of the models that add one variable.

The Forward Stepwise procedure chooses around 70 coefficients.

Regularization using LASSO²

- ► Depart from optimality:
 - minimize deviance + cost on an absolute size of coefficients
- By penalizing we shrink some estimates towards zero
- Some coefficients can become zero and get eliminated from the model
- ▶ Tunning parameter λ is the **amount of shrinkage**

LASSO Algorithm using gamlr³ package

- Start with large λ_1 so that $\hat{eta}=0$
- ▶ For t = 2...T update $\hat{\beta}$ to be optimal under $\lambda_t < \lambda_{t-1}$

At the top of the figure: number of non-zero coefficients

³Gamma-Lasso regression

Cross Validation using gamlr

- ▶ Set a sequence of $\lambda_1, ..., \lambda_T$
- For each k = 1, ..., K folds:
 - Fit the path on all data except fold k
 - Get fitted deviance on left-out data
- ightharpoonup Select λ that gives minimum average OOS deviance

Cross Validation using gamlr

Compare AICc selection and Cross Validation selection

► Compare log(lambda) under different selection criteria