1080 - Binary Simulation

Given a binary number, we are about to do some operations on the number. Two types of operations can be here.

'I i j' which means invert the bit from i to j (inclusive)

'Q i' answer whether the i^{th} bit is 0 or 1

The MSB (most significant bit) is the first bit (i.e. i=1). The binary number can contain leading zeroes.

Input

Input starts with an integer $T \leq 10$, denoting the number of test cases.

Each case starts with a line containing a binary integer having length n ($1 \le n \le 10^5$). The next line will contain an integer q ($1 \le q \le 50000$) denoting the number of queries. Each query will be either in the form 'I i j' where i, j are integers and $1 \le i \le j \le n$. Or the query will be in the form 'Q i' where i is an integer and $1 \le i \le n$.

Output

For each case, print the case number in a single line. Then for each query ' \mathbf{Q} i' you have to print 1 or 0 depending on the \mathbf{i}^{th} bit.

Sample Input	Output for Sample Input
2	Case 1:
0011001100	0
6	1
I 1 10	1
I 2 7	0
Q 2	Case 2:
Q 1	0
Q 7	0
Q 5	0
1011110111	1
6	
I 1 10	
I 2 7	
Q 2	
Q 1	
Q 7	
Q 5	

Note

Dataset is huge, use faster i/o methods.