Arquitetura de Computadores I 1ª série de problemas

13.10.2014

- 1. O que é um circuito integrado? Que impacte teve a tecnologia integrada no desenvolvimento dos computadores? Que geração de computadores é caraterizada pela utilização de circuitos integrados?
- 2. Qual a tecnologia usada pela 1º geração de memórias de semicondutores de grande escala de integração (LSI)? Qual a empresa que as introduziu no mercado?
- 3. Por que é que John von Neumann é considerado o "pai" dos computadores digitais?
- 4. Descreva em assembly do MIPS o cálculo da seguinte expressão: x = x + y + z q; Assuma que x, y, z, q estão armazenados nos registos \$s1-\$s4.
- 5. Escreva em assembly do MIPS, duas versões, uma sem utilizar ponteiros e a outra recorrendo a ponteiros, do seguinte segmento de código C:

```
int A[100], B[100];
for (i=1; i < 100; i++)
{
    A[i] = A[i-1] + B[i];
}
```

No início os únicos valores em registos são os endereços base dos arrays A e B nos registos **\$a0** e **\$a1**. Não utilize instruções de multiplicação.

6. No código MIPS assembly seguinte, quantas vezes é acedida a memória de instruções? E a memória de dados?

```
lw $v1, 0($a0)
addi $v0, $v0, 1
sw $v1, 0($a1)
addi $a0,$a0,1
```

7. Use os valores dos registos e da memória indicados na Tabela para responder às questões seguintes. As questões são independentes – em cada uma delas assuma que os valores iniciais são os indicados na Tabela.

Registo	Valor	Endereço de memória	Valor
R1	12	12	16
R2	16	16	20
R3	20	20	24
R4	24	24	28

- a) Quais os valores de R1, R2, e R3depois de executada a instrução: add R3, R2, R1
- b) Quais os valores de R1 e R3 depois de executada a instrução: load R3,12(R1)
- c) Quais os valores nos registos depois de executada a instrução: addi R2, R3, 16
- 8. A instrução *la* (Load Address) é uma instrução virtual. Qual a tradução em instruções nativas de la \$t0, 0x10010020
- 9. No MIPS as únicas instruções nativas de **branch** são branch on equal e branch on not equal. Indique como são traduzidas para instruções nativas as seguintes instruções:
 - a) bgt \$t0, \$t1, Label
 - b) ble \$t0, \$t1, Label