Lecture Questions

1 The Tagging Problem

1.1 Question (time: 6:15)

Say we are given the following sentence with named-entity boundaries

• (Person Jane Smith) lives in (Location England)

If we encode these boundaries as a tag sequence, what is the tag for the word "Jane"?

- (a) CP
- (b) SP
- (c) NA
- (d) P

1.2 Question (time: 6:15)

Say we are given the following sentence

• Profits are topping all estimates

We also are told that

- "Profits" has 2 possible tags: N and V
- "are" has 1 possible tag: V
- "topping" has 3 possible tags: N, ADJ, and V
- "all" has 3 possible tags: DT, ADV, and N
- "estimates" has 2 possible tags: N and V

How many tag sequences are possible for this sentence?

2 HMMs

2.1 Question (time: 7:12)

Say we are given a tagset $S = \{D, N\}$, a vocabulary $V = \{\text{the}, \text{dog}\}$, and a hidden Markov model. The HMM has transition parameters

- q(D|*,*) = 1
- q(N|*, D) = 1
- q(STOP|D, N) = 1
- q(s|u,v) = 0 for all other q params

and emission parameters

- e(the|D) = 0.9
- e(dog|D) = 0.1
- e(dog|N) = 1

Under this model, how many pairs of sequences $x_1
dots x_n, y_1
dots y_{n+1}$ satisfy $p(x_1, ...x_n, y_1, ...y_{n+1}) > 0$?

2.2 Question (time: 9:20)

Say we have a tag set $S = \{D, N, V\}$, a vocabulary $V = \{\text{the, cat, drinks, milk, dog}\}$, and a hidden Markov model with parameters q(s|u,v) = 1/4 for all s, u, v and e(x|s) = 1/5 for all tags s and words x.

What is the value of p(the cat drinks milk, D N V N STOP) under this model?

- (a) $(1/4)^4(1/5)^5$
- (b) $(1/4)^5(1/5)^5$
- (c) $(1/4)^5(1/5)^4$
- (d) $(1/4)^4(1/5)^4$

2.3 Question (time: 12:00)

Which of the following is a suitable definition for $p(x_1 ... x_n, y_1 ... y_{n+1})$ under a jb; bigram;/b; hidden Markov model?

- (a) $\prod_{i=1}^{n} q(y_i|y_{i-1}) \prod_{i=1}^{n} e(x_i|y_i)$
- (b) $\prod_{i=1}^{n+1} q(y_i|y_{i-1}) \prod_{i=1}^n e(x_i|y_i)$
- (c) $\prod_{i=1}^{n+1} q(y_i|y_{i-1}) \prod_{i=1}^n e(x_i, x_{i-1}|y_i)$

3 Estimation

3.1 Question (time: 5:02)

Consider the following training corpus of tagged sentences

- $\bullet \ \, {\rm the \; dog \; barks} \rightarrow {\rm D} \, \, {\rm N} \, \, {\rm V} \, \, {\rm STOP}$
- the cat sings \rightarrow D N V STOP

Say we compute the maximum-likelihood estimates of a trigram hidden Markov model from this data. What is the value for the parameter e(cat|N) of this HMM?

3.2 Question (time: 5:02)

Consider the following training corpus of tagged sentences

- the dog barks \rightarrow D N V STOP
- the cat sings \rightarrow D N V STOP

Say we estimate the parameters for a hidden Markov model from this data using linear interpolation with $\lambda_i = 1/3$ for $i = 1 \dots 3$.

What is the value of the parameter q(STOP|N, V) under this model?

4 Viterbi 1

4.1 Question (time: 12:00)

We are given a hidden Markov model with transition parameters

- q(D|*,*) = 1, q(N|*,D) = 1
- q(V|D, N) = 1, q(STOP|N, V) = 1

and emission parameters

- e(the|D) = 0.8, e(dog|D) = 0.2
- e(dog|N) = 0.8, e(the|N) = 0.2
- e(barks|V) = 1.0

Say we have the sentence

• the dog barks

What is the value of $\pi(3, N, V)$?

5 Viterbi 2

5.1 Question (time: 3:31)

Say we are given a tag set $\mathcal{S} = \{D, N, V, P\}$ and a hidden Markov model with parameters

- q(D|N, P) = 0.4
- q(D|w, P) = 0 for $w \neq N$
- e(the|D) = 0.6

We are also given the sentence

• Ella walks to the red house

Say the dynamic programming table for this sentence has the following entries

- $\pi(3, D, P) = 0.1, \pi(3, N, P) = 0.2$
- $\pi(3, V, P) = 0.01, \pi(3, P, P) = 0.5$

What will be the value of $\pi(4, P, D)$?

A Answers

- (1.1) b
- (1.2) 36
- (2.1) 2
- (2.2) c
- (2.3) b
- (3.1) 0.5
- (3.2) 0.75
- (4.1) 0.64
- (5.1) 0.048