Aufgabe	A5	A6	A7	A8	Σ
Punkte					

Aufgabe 5. (a) Beh.: \mathcal{D} ist ein Dynkinsystem.

Beweis. (i) $\Omega \in \mathcal{D}$, denn $|\Omega| = 2n$ gerade.

(ii) Sei $A \in \mathcal{D}$. Dann ist |A| = 2k für ein $k \in \mathbb{N}_0$ mit $k \leq 2n$. Da Ω endlich folgt

$$|A^c| = |\Omega| - |A| = 2n - 2k = 2(n - k).$$

Also $A^c \in \mathcal{D}$.

(iii) Sei $A_i \in \mathcal{D} \ \forall i \in \mathbb{N} \ \text{mit} \ A_i \cap A_j = \emptyset \ \text{für} \ i \neq j$. Dann ex. für $i \in \mathbb{N} \ \text{ein} \ k_i \in \mathbb{N}_0 \ \text{mit} \ |A_i| = 2k_i$. Damit folgt, da die A_i disjunkt sind

$$\left| \bigcup_{i \in \mathbb{N}} A_i \right| = \sum_{i \in \mathbb{N}} |A_i| = \sum_{i \in \mathbb{N}} 2k_i = 2 \sum_{i \in \mathbb{N}} k_i.$$

Also $\bigcup_{i\in\mathbb{N}} A_i \in \mathcal{D}$.

(b) Beh.: Für $n \geq 2$ ist \mathcal{D} keine σ -Algebra.

Beweis. Sei $n \geq 2$. Dann ist $|\Omega| \geq 4$. Seien dann $\omega_1, \omega_2, \omega_3 \in \Omega$ paarweise verschieden. Dann ist

$$\underbrace{\{\omega_1,\omega_2\}}_{\in\mathcal{D}} \cap \underbrace{\{\omega_2,\omega_3\}}_{\in\mathcal{D}} = \{w_2\} \not\in \mathcal{D}.$$

Also \mathcal{D} nicht \cap -stabil, also keine σ -Algebra.

Aufgabe 6. (a) Zu zeigen: $\mathbb{P}_1 = \mathbb{P}_2$.

Beweis. Schritt 2 und Schritt 3 sind bereits erledigt. Daher betrachten wir die Menge $\mathcal{D} = \{A \in \mathcal{A} | \mathbb{P}_1(A) = \mathbb{P}_2(A)\}.$

- (i) Da \mathcal{E} ein Erzeuger von \mathcal{A} ist, muss $\Omega \in \mathcal{E}$ liegen, somit gilt $\mathbb{P}_1(\Omega) = \mathbb{P}_2(\Omega)$ und daraus folgt $\Omega \in \mathcal{D}$.
- (ii) Sei $E \in \mathcal{D}$. Dann gilt $\mathbb{P}_1(E^c) = \mathbb{P}_1(\Omega \setminus E) = \mathbb{P}_1(\Omega) \mathbb{P}_1(\Omega \cap E) = 1 \mathbb{P}_1(E) = 1 \mathbb{P}_2(E)$. Mithilfe analoger Umformungsschritte auf der rechten Seite erhält man $\mathbb{P}_1(E^c) = \mathbb{P}_2(E^c)$ und damit $E^c \in \mathcal{D}$. \mathcal{D} ist also komplementstabil
- (iii) Sei $\forall n \in \mathbb{N} \colon E_n \in \mathcal{D}$. Dann gilt

$$\mathbb{P}_1\left(\biguplus_{n\in\mathbb{N}}E_n\right)=\sum_{n\in\mathbb{N}}\mathbb{P}_1(E_n)=\sum_{n\in\mathbb{N}}\mathbb{P}_2(E_n)=\mathbb{P}_2\left(\biguplus_{n\in\mathbb{N}}E_n\right).$$

Somit ist auch $\biguplus_{n\in\mathbb{N}} E_n \in \mathcal{D}$.

 $\mathcal D$ ist also ein Dynkin-System. Da $\mathcal E$ schnittstabil ist, gilt $\mathcal E\subset\mathcal D$. Insbesondere folgt unter Benutzung des $\pi-\lambda$ -Satzes

$$\mathcal{A} = \sigma(\mathcal{E}) = \delta(\mathcal{E}) \subset \mathcal{D},$$

da \mathcal{D} ja ein Dynkin-System ist, das \mathcal{E} enthält. Wegen $\mathcal{D} \subset \mathcal{A}$ erhalten wir die sofort $\mathcal{A} = \mathcal{D}$. Somit gilt $\mathbb{P}_1(A) = \mathbb{P}_2(A) \forall A \in \mathcal{A}$.

(b) **Behauptung:** $\sigma(\mathcal{E}) = 2^{\Omega}$. Außerdem sind die Wahrscheinlichkeitsmaße $\mathbb{P}_1, \mathbb{P}_2$ eindeutig gegeben durch

$$\mathbb{P}_1(\{x\}) = 0.25 \forall x \in \Omega$$

$$\mathbb{P}_2(\{a\}) = \mathbb{P}_2(\{c\}) = 0.2, \quad \mathbb{P}_2(\{b\}) = \mathbb{P}_2(\{d\}) = 0.3$$

und stimmen auf \mathcal{E} überein, nicht aber auf 2^{Ω} .

Beweis. Eine σ-Algebra enthält stets Ω und ist stabil bezüglich Schnitt, Vereinigung und Komplement. Daher liegen $\Omega = \{a,b,c,d\}$, $\{a\} = A \setminus C$, $\{b\} = A \cap C$, $c = C \setminus A$ und $\{d\} = \Omega \setminus (A \cup C)$ in $\sigma(\mathcal{E})$. Aus den Mengen $\{a\},\{b\},\{c\},\{d\}$ erhält man durch disjunkte Vereinigung jede Teilmenge $E \in 2^{\Omega}$. Daraus folgt auf der einen Seite $\sigma(\mathcal{E}) = \Omega$. Auf der anderen Seite folgt auch, dass \mathbb{P}_1 und \mathbb{P}_2 durch die Werte auf diesen vier einelementigen Mengen bereits eindeutig bestimmt sind, da jeder beliebige Wert als disjunkte Vereinigung aus den Mengen und damit als Summe aus den Werten von \mathbb{P}_i konstruiert werden kann. Offensichtlich ist $\mathbb{P}_1(\{a\}) \neq \mathbb{P}_2(\{a\})$. Daher stimmen die beiden Maße auf 2^{Ω} nicht überein. Es gilt aber $\mathbb{P}_1(A) = \mathbb{P}_1(\{a\} \uplus \{b\}) = \mathbb{P}_1(\{a\}) + \mathbb{P}_1(\{b\}) = 0.5 = \mathbb{P}_2(\{a\}) + \mathbb{P}_2(\{b\}) = \mathbb{P}_2(A)$ und $\mathbb{P}_1(B) = \mathbb{P}_1(\{b\} \uplus \{c\}) = \mathbb{P}_1(\{b\}) + \mathbb{P}_1(\{c\}) = 0.5 = \mathbb{P}_2(\{b\}) + \mathbb{P}_2(\{c\}) = \mathbb{P}_2(B)$.

Offensichtlich ist \mathcal{E} einfach nicht schnittstabil, da $A \cap C = \{b\} \notin \mathcal{E}$. Also lässt sich auch der Maßeindeutigkeitssatz nicht anwenden.

Aufgabe 7. (a) Beh.: $\sum_{\omega \in \Omega} p(\omega) = 1$

Beweis. (i) Z.z.: $\binom{\alpha+k-1}{k} = (-1)^k \binom{-\alpha}{k} \ \forall \alpha \in \mathbb{N}, k \in \mathbb{N}_0$. Seien $\alpha \in \mathbb{N}, k \in \mathbb{N}_0$. Dann folgt

$$\begin{pmatrix} \alpha+k-1 \\ k \end{pmatrix} = \frac{(\alpha+k-1)!}{k!(\alpha-1)!}$$

$$= \frac{(\alpha+k-1)\cdots(\alpha+1)\alpha}{k!}$$

$$= (-1)^k \frac{(-\alpha-(k-1)\cdots(-\alpha-1)(-\alpha)}{k!}$$

$$= (-1)^k \frac{(-\alpha)(-\alpha-1)\cdots(-\alpha-(k-1))}{k!}$$

$$= (-1)^k \binom{-\alpha}{k}.$$

(ii) Z.z.: $(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k \ \forall \alpha \in \mathbb{Z}, x \in (-1,1).$ Seien $\alpha \in \mathbb{Z}, x \in (-1,1)$. Dann betrachte

$$f: (-1,1) \to \mathbb{R}$$

 $x \mapsto (1+x)^{\alpha}$.

Dann ist $f^{(k)}(0) = \prod_{j=0}^{k-1} (\alpha - j)$. Damit folgt als Taylorpolynom für f im Entwicklungspunkt $x_0 = 0$:

$$T_n(x,0) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} (x-0)^k$$
$$= \sum_{k=0}^n \frac{\prod_{j=0}^{k-1} (\alpha - j)}{k!} x^k$$
$$= \sum_{k=0}^n {\alpha \choose k} x^k.$$

Mit $a_k := \binom{\alpha}{k} x^k$ folgt

$$\left| \frac{a_{k+1}}{a_k} \right| = \left| \frac{\frac{\prod_{j=0}^k (\alpha - j)}{(k+1)!} x^{k+1}}{\frac{\prod_{j=0}^{k-1} (\alpha - j)}{k!} x^k} \right|$$
$$= \left| \frac{\alpha - k}{k+1} \right| |x|$$
$$\frac{k \to \infty}{k} |x| < 1.$$

 T_n ist also konvergent $\forall x \in (-1,1)$:

$$T_n(x,0) \xrightarrow{n \to \infty} f(x) = (1+x)^{\alpha}.$$

(iii) Damit folgt nun für $r \in \mathbb{N}$ und $p \in (0, 1)$:

$$\sum_{\omega \in \mathbb{N}_0} \mathbb{p}(\omega) = \sum_{\omega \in \mathbb{N}_0} {\omega + r - 1 \choose \omega} p^r (1 - p)^{\omega}$$

$$= p^r \sum_{\omega \in \mathbb{N}_0} {\omega + r - 1 \choose \omega} (1 - p)^{\omega}$$

$$\stackrel{\text{(i)}}{=} p^r \sum_{\omega \in \mathbb{N}_0} (-1)^{\omega} {-r \choose \omega} (1 - p)^{\omega}$$

$$= p^r \sum_{\omega \in \mathbb{N}_0} {-r \choose \omega} (p - 1)^{\omega}$$

$$\stackrel{\text{(ii)}}{=} p^r (1 + p - 1)^{-r}$$

$$= p^r p^{-r}$$

$$= 1.$$

Mit Hilfe dieser Zähldichte kann modelliert werden, dass eine Münze bei $\omega + r$ Würfen genau im $\omega + r$ -ten Wurf r mal Kopf gezeigt hat.

(b) Es soll nach dem 30. Zug genau zum 6. Mal gewonnen werden, d.h. r = 6, damit

$$\omega + r = 30 \implies \omega = 24.$$

Mit p = 0.2 und der (a) folgt

$$\mathbb{P}(\{\omega\}) = \binom{24+6-1}{24} 0.2^6 (1-0.2)^{24} \approx 0.625.$$

Aufgabe 8. (a) Es gilt

$$\begin{split} \mathbb{P}_{\mathrm{Hyp}(N,M,n)}(\omega) &= \frac{\binom{N-M}{n-\omega}\binom{M}{\omega}}{\binom{N}{n}} \\ &= \frac{\frac{(N-M)!}{(N-M-(n-\omega))!\cdot(n-\omega)!} \cdot \frac{M!}{(M-\omega)!\cdot\omega!}}{\frac{N!}{(N-n)!\cdot n!}} \\ &= \frac{n!}{(n-\omega)!\cdot\omega!} \cdot \frac{M!}{(M-\omega)!} \cdot \frac{(N-n)!}{N!} \cdot \frac{(N-M)!}{(N-M-(n-\omega))!} \\ &= \binom{n}{\omega} \cdot \frac{M^{\omega} \cdot \prod_{i=1}^{\omega} (1-\frac{i}{M})}{N^{\omega} \cdot \prod_{i=1}^{\omega} (1-\frac{i}{N})} \cdot \frac{(N-M)^{n-\omega-1} \prod_{i=1}^{n-\omega-1} \left(1-\frac{i}{N-M}\right)}{N^{n-1-\omega} \prod_{i=\omega}^{n-1} (1-\frac{i}{N})} \end{split}$$

Bilden wir nun den Grenzwert $\lim_{N \to \infty}$, so erhalten wir

$$=\lim_{N,M\to\infty}\binom{n}{\omega}\cdot\left(\frac{M}{N}\right)^{\omega}\cdot\left(\frac{N-M}{N}\right)^{n-\omega-1}$$

Wegen $M/N \to p$ erhalten wir daraus

$$= \binom{n}{\omega} \cdot (p)^{\omega} \cdot (1-p)^{n-\omega-1}$$
$$= \mathbb{P}_{\mathrm{Bin}_{(n,p)}}(\omega)$$

(b) Die Situation kann durch eine hypergeometrische Verteilung $\text{Hyp}_{(N,M,n)}$ mit N=1000, M=200, n=10 modelliert werden. Daher erhalten wir als exaktes Ergebnis

$$\mathbb{P}_{\text{Hyp}_{(1000,200,10)}}(2) = \frac{\binom{800}{8}\binom{200}{2}}{\binom{1000}{10}} \approx 0.304$$

und für die Näherung durch Bin_(10.0,2) ergibt sich

$$\mathbb{P}_{\text{Bin}_{(10,0,2)}}(2) = \binom{10}{2} (0.2)^2 (0.8)^2 \approx 0.302.$$

(c) Die Zähldichte entspricht genau einer Binomialverteilung $Bin_{(n,p)}$ mit n=100 und p=0.01. Es gilt nun für das eindeutig bestimmte Wahrscheinlichkeitsmaß

$$\mathbb{P}(\{x|2 \leq x \leq 100\}) = \mathbb{P}(\{1,\dots,100\} \setminus \{0,1\}) = 1 - \mathbb{P}_{\mathrm{Bin}_{(100,0.01)}(0)} - \mathbb{P}_{\mathrm{Bin}_{(100,0.01)}(1)}.$$

Wegen $\mathbb{P}_{\text{Bin}_{(100,0.01)}}(0) = \binom{100}{0} \cdot 0.01^0 \cdot 0.99^1 00 \approx 0.366$ und $\mathbb{P}_{\text{Bin}_{(100,0.01)}}(1) = \binom{100}{1} \cdot 0.01^1 \cdot 0.99^9 9 = 0.370$ erhalten wir damit als exakte Wahrscheinlichkeit $\mathbb{P}(\{x|2 \leq x \leq 100\}) \approx 1 - 0.366 - 0.370 = 0.264$. Wir nähern nun die Binomialverteilung durch eine Poisson-Verteilung. Wegen $p \cdot n = 0.01 \cdot 100 = 1$ wählen wir $\lambda = 1$ und erhalten $\mathbb{P}_{\text{Bin}_{(100,0.01)}}(0) \approx \mathbb{P}_{\text{Poi}_1}(0) = e^{-1} \frac{1}{0!} = \frac{1}{e}$ und $\mathbb{P}_{\text{Bin}_{(100,0.01)}}(1) \approx \mathbb{P}_{\text{Poi}_1}(1) = e^{-1} \frac{1}{1!} = \frac{1}{e}$. Für die genäherte Wahrscheinlichkeit ergibt sich damit $\mathbb{P}(\{x|2 \leq x \leq 100\}) \approx 1 - \frac{2}{e} = 0.264$.