Unfair Coin Tossing

Grégory Demay and Ueli Maurer

Department of Computer Science ETH Zürich

ISIT 2013

Outline

Coin Tossing Protocols

Blum's Coin Tossing Protocol

Unfair Coin Tossing

Summary

Outline

Coin Tossing Protocols

Blum's Coin Tossing Protoco

Unfair Coin Tossing

Summary

Coin Tossing Protocols

Setting

- ▶ 2 distrustful parties: one of them being potentially dishonest
- ► Goal: construct an ideal coin tossing resource

Ideal Coin Tossing Resource

Perfect Communication Channel

Perfect Communication Channel

Perfect Communication Channel

Perfect Communication Channel

Perfect Communication Channel

Perfect Communication Channel

Perfect Communication Channel

Perfect Communication Channel

(Unachievable) Goal

(Unachievable) Goal

Previous Work

Cl86: every coin tossing protocol with r rounds has a bias of $\Omega\left(\frac{1}{r}\right)$

- ▶ No guarantee in case of abortion
- Notion of optimally fair coin tossing protocol [Katz07], [MNS09], [BOO10] . . .

Cl86: every coin tossing protocol with r rounds has a bias of $\Omega\left(\frac{1}{r}\right)$

- ▶ No guarantee in case of abortion
- Notion of optimally fair coin tossing protocol [Katz07], [MNS09], [BOO10] . . .

This Work

Previous Work

Cl86: every coin tossing protocol with r rounds has a bias of $\Omega\left(\frac{1}{r}\right)$

- ▶ No guarantee in case of abortion
- Notion of optimally fair coin tossing protocol [Katz07], [MNS09], [BOO10] . . .

The Construction Paradigm¹

Construction Concept

real resource R $\xrightarrow{\text{(protocol } \pi, \varepsilon)}$ ideal resource S

¹U. Maurer and R. Renner: Abstract Cryptography, 2011

The Construction Paradigm¹

Construction Concept

real resource R $\xrightarrow{\text{(protocol } \pi, \varepsilon)}$ ideal resource S

Generally Composable Constructions

Sequential Composability

$$\mathsf{R} \xrightarrow{(\pi_1, \varepsilon_1)} \mathsf{S} \wedge \mathsf{S} \xrightarrow{(\pi_2, \varepsilon_2)} \mathsf{T} \implies \mathsf{R} \xrightarrow{(\pi_1 \circ \pi_2, \varepsilon_1 + \varepsilon_2)} \mathsf{T}$$

¹U. Maurer and R. Renner: Abstract Cryptography, 2011

The Construction Paradigm¹

Construction Concept

real resource R $\xrightarrow{\text{(protocol } \pi, \varepsilon)}$ ideal resource S

Generally Composable Constructions

Sequential Composability

$$R \xrightarrow{(\pi_1,\varepsilon_1)} S \wedge S \xrightarrow{(\pi_2,\varepsilon_2)} T \implies R \xrightarrow{(\pi_1\circ\pi_2,\varepsilon_1+\varepsilon_2)} T$$

Parallel Composability

¹U. Maurer and R. Renner: Abstract Cryptography, 2011

Outline

Coin Tossing Protocols

Blum's Coin Tossing Protocol

Unfair Coin Tossing

Summary

Blum's Coin Tossing Protocol²

Unachievable Goal

²M. Blum: Coin Flipping By Telephone A Protocol For Solving Impossible Problems, 1983

Comparing Resources

Distinguishing advantage of a distinguisher D

Comparing Resources

Distinguishing advantage of a distinguisher D

Pseudo-metric induced

$$\mathbf{R} \approx_{\varepsilon} \mathbf{S}$$
 : $\Leftrightarrow \forall \mathbf{D} \in \mathcal{D} : \Delta^{\mathbf{D}}(\mathbf{R}, \mathbf{S}) \leq \varepsilon$.

Comparing Resources

Distinguishing advantage of a distinguisher D

Pseudo-metric induced

$$\mathbf{R} \approx_{\varepsilon} \mathbf{S} :\Leftrightarrow \forall \mathbf{D} \in \mathcal{D} : \Delta^{\mathbf{D}}(\mathbf{R}, \mathbf{S}) \leq \varepsilon.$$

lacktriangleright Information-theoretic constructions \implies no restriction on $\mathcal D$

Honest Execution

Honest Execution

- ▶ 2 distrustful parties: one of them being potentially dishonest
- ▶ Goal: construct an ideal coin tossing resource

Malicious Alice

Malicious Alice

Simulator

$$P(Z=1)=\frac{3}{4}$$

$$\forall$$
 \biguplus \forall sim : $P(C=1)=\frac{1}{2}$

Malicious Alice

Outline

Coin Tossing Protocols

Blum's Coin Tossing Protocol

Unfair Coin Tossing

Summary

(Unachievable) Goal

Blum's protocol

Multiple Unfair Coin Tossing Resources

Outline

Coin Tossing Protocols

Blum's Coin Tossing Protocol

Unfair Coin Tossing

Summary

Unfair Coin Tossing Resource

State the Exact Resource Constructed

Unfair Coin Tossing Resource

State the Exact Resource Constructed

Unfair Coin Tossing Resource

State the Exact Resource Constructed

Unfair Coin Tossing Resource

State the Exact Resource Constructed

Majority Protocol

Thank You!

Construction in (Alice, Bob)-setting

For a 2-party protocol $\pi = (\alpha, \beta)$,

$$R \xrightarrow{(\pi,\varepsilon)} S \Leftrightarrow$$

