Cours de Statistique Inférentielle

Jean Christophe Meunier

Rappel 2 Calculs de probabilités

2^{ème} Bac, Commerce Extérieur Année Académique 2015-2016

I. Événements

- Problème:
 - On peut prévoir quels sont les résultats possibles d'une expérience mais non, parmi ces possibles, celui qui se réalisera
 - Jet d'un dé : 6 résultats possibles mais lequel sortira ?
- Espace fondamental Ω
 - Ensemble des résultats possibles
 - $\Omega = \{1,2,3,4,5,6\}$
- Événement A (ou B, C, D,...si plusieurs)
 - Le résultat du jet est un chiffre impair,
 - A = {1,3,5}

I. Événements

- Événement élémentaire e_i
 - Partie de Ω qui ne contient qu'une seule possibilité
 - Ex. $\{1\}$ est un événement élémentaire de Ω
- Événement impossible
 - Événement qui ne contient aucun des éléments de Ω
 - Ex. 7 ou 8 correspond à la partie vide \emptyset de Ω
- Événement certain
 - L'ensemble de toutes les possibilités de Ω
 - Ex. {1,2,3,4,5,6}

I. Événements

- Deux (ou plusieurs) événements incompatibles
 - Deux parties disjointes de $\boldsymbol{\Omega}$
 - $-A = \{pairs\} \text{ et } B = \{impairs}\}$

- Deux (ou plusieurs) événements composés
 - Deux parties jointes de $\boldsymbol{\Omega}$
 - $A = \{1,2,3,4\} \text{ et B} = \{\text{impairs}\}\$

II. Axiome de Kolmogorov

- Faire correspondre une probabilité à chaque événement A $\subset \Omega \rightarrow 3$ conditions :
 - Positivité :
 - probabilité de A est positive ou nulle
 ∀ A ∈ Ω, p(X) ≥ 0,
 - Echelle:
 - Probabilité d'un événement impossible est nulle
 - Probabilité d'un événement certain est égale à 1 $p(\phi) = 0, p(\Omega) = 1,$
 - Additivité:
 - L'union de deux événements incompatibles a pour probabilité la somme de leur probabilité

$$p(A \cup B) = p(A) + p(B)$$

III. Algèbre des événements

- Relation d'inclusion
 - Lorsque tout élément de A appartient à B : A ⊂ B
 - A implique B : si A se réalise B aussi
 - $Ex. A = \{1,3\}, B=\{1,3,5\}$
- Complémentarité
 - $A \{1,2,3\}$; non $A = \bar{A} = \{4,5,6\}$
- Relations de correspondance
 - Réunion A U B : A ou B se réalise
 - Intersection A ∩ B : A et B se réalise

III. Algèbre des événements

- U et ∩ dans événements composés
 - $-Pr(A \cup B)$

$$p(A \bigcup B) = p(A \cap \overline{B}) + p(A \cap B) + p(\overline{A} \cap B)$$

Avec,
$$p(A) = p(A \cap \overline{B}) + p(A \cap B)$$

$$p(B) = p(\overline{A} \cap B) + p(A \cap B)$$

D'où,
$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

 $-Pr(A \cap B) = +/-Pr(A) \cdot Pr(B) \neq \emptyset \text{ (non nul)}$

III. Algèbre des événements

- U et ∩ dans événements incompatibles
 - $-Pr(A \cup B)$

$$p(A \cup B) = p(A) + p(B)$$

- Principe d'additivité (Kolmogorov)
- $-Pr(A \cap B) = \emptyset$

III. Algèbre des événements

- U et ∩ dans événements complémentaires
 - $-Pr(A \cup \bar{A}) = Pr(A) + Pr(\bar{A}) = \Omega = 1$
 - D'où, Pr(A) = 1 Pr(Ā)
 - $-Pr(A \cap \bar{A}) = \emptyset$

IV. Probabilité conditionnelle : Pr(B/A)

- Probabilité d'un événement B sachant que l'événement A s'est déjà réalisé
 - Pr (B/A)
 - $-\,$ Si A se réalise, les événements possibles deviennent l'ensemble des parties de A, et non plus l'ensemble des parties de Ω :
 - les événements A et B sont dits dépendants (probabilité de B change lorsque A s'est réalisé)

IV. Probabilité conditionnelle : Pr(B/A)

• D'où, Pr(B/A) est

$$p(B/A) = \frac{p(B \cap A)}{p(A)}$$

- Si $Pr(A) = \emptyset$, $Pr(B) = \emptyset$ aussi
- Théorème des probabilités composées
 - Pour des événements dépendant (probabilité de B change lorsque A s'est réalisé), on peut définir Pr (A ∩ B) à partir de Pr(B/A)

$$p(A \cap B) = p(A) \times p(B/A)$$
, et $p(A \cap B) = p(B) \times p(A/B)$

IV. Probabilité conditionnelle : Pr(B/A)

• Exemple:

Soit, par exemple, à calculer la probabilité pour que, tirant successivement deux cartes d'un jeu de 32 cartes, ces deux cartes soient des valets. Appelons A et B les deux événements suivants :

- A: la première carte est un valet,
- B: la deuxième carte est un valet.

La probabilité cherchée est $p(A \cap B)$ avec $p(A \cap B) = p(A) \times p(B/A)$.

Lors du premier tirage, il y a 32 cartes et 4 valets dans le jeu, d'où $p(A) = \frac{4}{32}$.

Lors du second tirage, il reste 31 cartes et seulement 3 valets, puisque l'événement A est réalisé, d'où $p(B/A) = \frac{3}{31}$.

Le résultat est donc : $p(A \cap B) = \frac{4}{32} \times \frac{3}{31} = \frac{3}{248} \approx 0.012$.

IV. Probabilité conditionnelle : Pr(B/A)

- Cas particulier : événements indépendants
 - deux événements sont indépendants si la probabilité de l'un n'est pas modifiée lorsque l'autre est réalisé

$$p(A/B) = p(A)$$

- Il en résulte,

$$p(A \cap B) = p(A) \times p(B)$$

- Dans l'exemple des cartes, A et B dépendants
 - Mais si remise de la première carte, les résultats des deux tirages deviennent indépendants

$$p(A \cap B) = p(A) \times p(B) = \frac{4}{32} \times \frac{4}{32} = \frac{1}{64} \approx 0.0156$$