Approximate Policy Iteration and Variants

Chen-Yu Wei

Policy Iteration

```
For k=1, 2, ...

Calculate Q^{\pi_k}(s,a) \ \forall s,a

\pi_{k+1}(s) = \operatorname*{argmax}_a Q^{\pi_k}(s,a) \ \forall s
```

Asynchronous Policy Iteration

```
For k=1,\ 2,...

Pick any state \hat{s}

Calculate Q^{\pi_k}(\hat{s},a) \quad \forall a

\pi_{k+1}(\hat{s}) = \operatorname*{argmax}_{a} Q^{\pi_k}(\hat{s},a)

and \pi_{k+1}(s) = \pi_k(s) \quad \forall s \neq \hat{s}
```

Asynchronous Policy Iteration

- To improve policy, we may just evaluate Q^{π_k} on a particular state s.
- Of course, a **real improvement** is made only when $\exists a$ s.t. $Q^{\pi_k}(s, a) V^{\pi_k}(s)$ is large.
- This is **different from Value Iteration**, where ideally, we would like to find Q_{k+1} such that $Q_{k+1}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q_k(s',a') \right] \forall s,a$
- VI-based algorithm like DQN usually requires stronger function approximation that can generalize to unseen state

Policy Iteration with Samples

For k = 1, 2, ...

For i = 1, 2, ..., N:

Choose action $a_i \sim \pi_{\theta_k}(\cdot | s_i)$

Receive reward $r_i \sim R(s_i, a_i)$ and $s_i' \sim P(\cdot | s_i, a_i)$

 $s_{i+1} = s_i'$ if episode continues, $s_{i+1} \sim \rho$ if episode ends

Data collection

Evaluate $\hat{Q}_k(s, a) \approx Q^{\pi_{\theta_k}}(s, a)$ for $s = s_1, ..., s_N$ and all a or $\hat{A}_k(s, a) \approx Q^{\pi_{\theta_k}}(s, a) - b_k(s)$ for $s = s_1, ..., s_N$ and all a

Policy Evaluation

Update θ_{k+1} from θ_k using $\hat{Q}_k(s, a)$ or $\hat{A}_k(s, a)$

Using any technique we introduced for policy-based contextual bandits Just replacing r(x, a) - b(x) by $\hat{Q}_k(s, a)$ or $\hat{A}_k(s, a)$ **Policy Improvement**

Policy Evaluation

Policy Evaluation

Given: a policy π

Evaluate $V^{\pi}(s)$ or $Q^{\pi}(s, a)$

On-policy policy evaluation: the learner can execute π to evaluate π

Off-policy/offline policy evaluation: the learner can only execute some $\pi_b \neq \pi$, or can only access some existing dataset to evaluate π

Use cases:

- Approximate policy iteration: $\pi_k(s) = \underset{a}{\operatorname{argmax}} Q^{\pi_{k-1}}(s, a)$
- Estimate the value of a policy before deploying it in the real world, e.g., COVID-related border measures, economic recovery policies, or policy changes in recommendation systems.

Value Iteration for V^{π} / Q^{π}

Input: π

For k = 1, 2, ...

$$\forall s, \qquad V_k(s) \leftarrow \sum_a \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) \, V_{k-1}(s') \right)$$

Input: π

For k = 1, 2, ...

$$\forall s, a, \qquad Q_k(s, a) \leftarrow R(s, a) + \gamma \sum_{s', a'} P(s'|s, a) \, \pi(a'|s') Q_{k-1}(s', a')$$

On-Policy Policy Evaluation

Temporal Difference (TD) Learning for V^{π}

For k = 1, 2, ...

Collect $\{(s_i, a_i, r_i, s_i')\}_{i=1}^N$ using policy π

$$\theta_k \leftarrow \left. \theta_{k-1} - \alpha \, \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} \left(V_{\boldsymbol{\theta}}(s_i) - r_i - \gamma V_{\boldsymbol{\theta}_{k-1}}(s_i') \right)^2 \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

No target network needed because this is an on-policy problem.

This algorithm is also called TD(0)

Temporal Difference (TD) Learning for Q^{π}

For
$$k = 1, 2, ...$$

Collect $\{(s_i, a_i, r_i, s_i')\}_{i=1}^N$ using policy π

$$\theta_k \leftarrow \left. \theta_{k-1} - \alpha \, \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} \left(Q_{\boldsymbol{\theta}}(s_i, a_i) - r_i - \gamma \sum_{a} \pi(a|s_i') Q_{\boldsymbol{\theta}_{k-1}}(s_i', a') \right)^2 \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

No target network needed because this is an on-policy problem.

Monte Carlo Estimation

Start from $(s_1, a_1) = (\hat{s}, \hat{a})$ and execute policy π until the episode ends and obtain trajectory $s_1 = \hat{s}, a_1 = \hat{a}, r_1, s_2, a_2, r_2, \dots, s_{\tau}, a_{\tau}, r_{\tau}$

Let
$$G = \sum_{h=1}^{\tau} \gamma^{h-1} r_h$$

G is an unbiased estimator for $Q^{\pi}(\hat{s}, \hat{a})$

MC estimator: unbiased, higher variance

TD estimator: biased, lower variance

A Family of Estimators

Suppose we have a state-value function estimation $V_{\theta}(s) \approx V^{\pi}(s)$

Suppose we also have a **trajectory** s_1 , a_1 , r_2 , ..., s_τ , a_τ , r_τ generated by π where $s_{\tau+1}$ is a terminal state

The following are all valid estimators of $Q^{\pi}(s_1, a_1)$:

$$G_{1:1} = r_1 + \gamma V_{\theta}(s_2)$$

...

$$G_{1:\tau-1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} V_{\theta}(s_{\tau})$$

$$G_{1:\tau} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau}$$

$$G_{1:\tau+1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau}$$

. . .

A Family of Estimators

```
And the following are estimators of Q^{\pi}(s_1, a_1) - V_{\theta}(s_1) (baseline)
 A_{1:1} = r_1 + \gamma V_{\theta}(s_2) - V_{\theta}(s_1)
A_{1:\tau-1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} V_{\theta}(s_{\tau}) - V_{\theta}(s_1)
A_{1:\tau} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau} - V_{\theta}(s_1)
A_{1:\tau+1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau} - V_{\theta}(s_1)
```

Below, we will introduce a way to combine these estimators.

Balancing Bias and Variance

$$G_1(\lambda) = (1 - \lambda) \sum_{i=1}^{\infty} \lambda^{i-1} G_{1:i}$$

$$= (1 - \lambda) \left(G_{1:1} + \lambda G_{1:2} + \lambda^2 G_{1:3} + \dots + \lambda^{\tau-1} G_{1:\tau} + \lambda^{\tau} G_{1:\tau+1} + \lambda^{\tau+1} G_{1:\tau+2} + \dots \right)$$

$$A_1(\lambda) = (1 - \lambda) \sum_{i=1}^{\infty} \lambda^{i-1} A_{1:i}$$
 (Generalized Advantage Estimation)
$$= (1 - \lambda) \left(A_{1:1} + \lambda A_{1:2} + \lambda^2 A_{1:3} + \dots + \lambda^{\tau-1} A_{1:\tau} + \lambda^{\tau} A_{1:\tau+1} + \lambda^{\tau+1} A_{1:\tau+2} + \dots \right)$$

$$A_1(\lambda) = G_1(\lambda) - V_{\theta}(s_1)$$

Computing Generalized Advantage Estimator (GAE)

Using GAE in Policy Iteration Framework

For k = 1, 2, ...

For i = 1, 2, ..., N:

Choose action $a_i \sim \pi_{\theta_k}(\cdot | s_i)$

Receive reward $r_i \sim R(s_i, a_i)$ and $s_i' \sim P(\cdot | s_i, a_i)$

 $s_{i+1} = s_i'$ if episode continues, $s_{i+1} \sim \rho$ if episode ends

Data collection

Train $V_{\phi}(s)$ using Temporal Difference Learning

Create $\hat{A}_k(s, a) \approx Q^{\pi_{\theta_k}}(s, a) - V_{\phi}(s)$ for $s = s_1, ..., s_N$ and all a

Policy Evaluation

Update θ_{k+1} from θ_k using $\hat{A}_k(s, a)$

Using any technique we introduced for policy-based contextual bandits Just replacing r(x, a) - b(x) by $\hat{A}_k(s, a)$ **Policy Improvement**

$TD(\lambda)$

TD(0):
$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left(V_{\theta}(s_1) - r_1 - \gamma V_{\theta_k}(s_2) \right)^2 \Big|_{\theta = \theta_k}$$
TD(λ): $\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left(V_{\theta}(s_1) - G_1(\lambda) \right)^2 \Big|_{\theta = \theta_k}$