中国科学技术大学计算机学院《数据隐私的方法伦理和实践》作业

2021.06.06

学生姓名: 胡毅翔

学生学号: PB18000290

计算机实验教学中心制 2019 年 9 月 1 CONCEPT OF DP 2

1 Concept of DP

1.1

Prove that the Laplace mechanism preserves $(\epsilon, 0)$ -DP.

Proof. Let $x \in \mathbb{N}^{|\mathcal{X}|}$ and $y \in \mathbb{N}^{|\mathcal{X}|}$ be such that $||x - y||_1 \leq 1$, and let $f(\cdot)$ be some function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$. Let p_x denote the probability density function of $\mathcal{M}_L(x, f, \varepsilon)$, and let p_y denote the probability density function of $\mathcal{M}_L(y, f, \varepsilon)$. We compare the two at some arbitrary point $z \in \mathbb{R}^k$

$$\frac{p_x(z)}{p_y(z)} = \prod_{i=1}^k \left(\frac{\exp\left(-\frac{\varepsilon |f(x)_i - z_i|}{\Delta f}\right)}{\exp\left(-\frac{\varepsilon |f(y)_i - z_i|}{\Delta f}\right)} \right)$$

$$= \prod_{i=1}^k \exp\left(\frac{\varepsilon \left(|f(y)_i - z_i| - |f(x)_i - z_i|\right)}{\Delta f}\right)$$

$$\leq \prod_{i=1}^k \exp\left(\frac{\varepsilon |f(x)_i - f(y)_i|}{\Delta f}\right)$$

$$= \exp\left(\frac{\varepsilon \cdot ||f(x) - f(y)||_1}{\Delta f}\right)$$

$$\leq \exp(\varepsilon)$$

where the first inequality follows from the triangle inequality, and the last follows from the definition of sensitivity and the fact that $||x-y||_1 \le 1$. That $\frac{p_x(z)}{p_y(z)} \ge \exp(-\varepsilon)$ follows by symmetry.

1.2

Please explain the difference between $(\epsilon, 0)$ – DP and (ϵ, δ) -DP. Typically, what range of δ we're interested in? Explain the reason.

Solution. Even δ is negligible, there are theoretical distinctions between $(\varepsilon, 0)$ - and (ε, δ) - differential privacy.

- $(\varepsilon, 0)$ -differential privacy: for every run of the mechanism M(x), the output observed is (almost) equally likely to be observed on every neighboring database, simultaneously.
- (ε, δ) differential privacy: given an output $\xi \sim M(x)$ it may be possible to find a database y such that ξ is much more likely to be produced on y than it is when the database is x. The privacy loss (divergence) incurred by observation ξ :

$$\mathcal{L}_{\mathcal{M}(x)||\mathcal{M}(y)}^{(\xi)} = \ln \left(\frac{\Pr[\mathcal{M}(x) = \xi]}{\Pr[\mathcal{M}(y) = \xi]} \right)$$

 (ε, δ) - differential privacy ensures that for all adjacent x, y, the absolute value of the privacy loss will be bounded by ε with probability at least $1 - \delta$.

1 CONCEPT OF DP 3

Typically, we are interested in values of δ that are less than the inverse of any polynomial in the size of the database.

Because, for each piece of data in data set, there is a probability that it will be released. Each piece of different data in this ralease is independent, so this mechanism can release $n\delta$ sample. So in order to prevent such leakage, it must be less than 1/n.

1.3

Please explain the difference between DP and Local DP.

Solution. Definition of ϵ -local differential privacy is that a randomized function f satisfies ϵ local differential privacy if and only if for any two input tuples t and t' in the domain of f, and for any output t^* of f, we have:

$$\Pr[f(t) = t^*] \le \exp(\epsilon) \cdot \Pr[f(t') = t^*]$$

- 1. The notation $\Pr[\cdot]$ means probability. If f 's output is continuous, $\Pr[\cdot]$ is replaced by the probability density function.
- 2. Basically, local differential privacy is a special case of differential privacy where the random perturbation is performed by the users, not by the aggregator.
- 3. According to the above definition, the aggregator, who receives the perturbed tuple t, cannot distinguish whether the true tuple is t or another tuple t' with high confidence (controlled by parameter ϵ), regardless of the background information of the aggregator.
- 4. This provides plausible deniability to the user.

While the definition of differential privacy is that A randomized algorithm M with domain $\mathbb{N}^{|X|}$ is (ϵ, δ) -differentially private if for all $S \subset \text{Range }(M)$ and for all $x, y \in \mathbb{N}|X|$ such that $||x - y||_1 \leq 1$:

$$\Pr[M(x) \in S] \le \exp(\epsilon) \Pr[M(y) \in S] + \delta$$

where the probability space is over the coin flips of the mechanism M. If $\delta = 0$, we say that M is δ -differentially private.

We can find out the difference between LDP and DP is that DP restrictions on tuple $x, y \in \mathbb{N}|X|$ such that $||x - y||_1 \le 1$, while LDP restrictions on any two input tuples t and t'.

2 BASICS OF DP 4

2 Basics of DP

ID	Sex	Chinese	Mathematics	English	Physics	Chemistry	Biology
1	Male	96	58	80	53	56	100
2	Male	60	63	77	50	59	75
3	Female	83	86	98	69	80	100
2000	Female	86	83	98	87	82	92

Table 1: Scores of students in School A

Table 1 is the database records scores of students in School A in the final exam. We need to help teacher query the database while protecting the privacy of students' scores. The domain of this database is $\{$ Male, Female $\} \times \{0, 1, 2, ..., 100\}^6$. In this question, assume that two inputs X and Y are neighbouring inputs if X can be obtained from Y by removing or adding one element. Answer the following questions.

2.1

What is the sensitivity of the following queries:

1.
$$q_1 = \frac{1}{2000} \sum_{ID=1}^{2000} \text{ Mathematics }_{ID}$$

2.
$$q_2 = \max_{ID \in [1,2000]} \text{ English }_{ID}$$

Solution. 1.
$$q_1 = \frac{1}{2000} \sum_{ID=1}^{2000}$$
 Mathematics $ID = \frac{100}{2000} = 0.05$

2. $q_2 = \max_{ID \in [1,2000]} \text{ English }_{ID} = 100$

2.2

Design ϵ -differential privacy mechanisms corresponding to the two queries in 2.1 where $\epsilon = 0.1$. (Using Laplace mechanism for q_1 , Exponential mechanism for q_2 .)

$$q_1 = \frac{1}{2000} \sum_{ID=1}^{2000} Mathematics_{ID} + Y$$

where Y is random variable drawn from Lap(0.5)

2. Output y with probability $\propto exp\left(\frac{0.1*u(x,y)}{2*100}\right)$, $y=q_2$

3 LOCAL DP 5

2.3

Let $M_1, M_2, \ldots, M_{100}$ be 100 Gaussian mechanisms that satisfy (ϵ_0, δ_0) – DP, respectively, with respect to the database. Given $(\epsilon, \delta) = (1.25, 10^{-5})$, calculate σ for every query with the composition theorem (Theorem 3.16 in the textbook) and the advanced composition theorem (Theorem 3.20 in the textbook, choose $\delta' = \delta$) such that the total query satisfies (ϵ, δ) - DP.

Solution. 1.

$$\sum k = 1100\epsilon_0 = 1.25, \sum k = 1100\delta_0 = 10^{-5}$$
$$\epsilon_0 = 0.0125, \delta_0 = 10^{-7}$$

2.

$$k\delta_0 + \delta_0 = 10^{-5}$$

$$\epsilon_0 = \frac{1.25}{2\sqrt{2kln(\frac{1}{\delta_0})}}$$

$$\delta_0 = 9.9 \times 10^{-8}$$

$$\epsilon_0 = 0.011$$

3 Local DP

This question focuses on the problem of estimating the mean value of a numeric attributes by collecting data from individuals under ϵ -LDP. Assume that each user u_i 's data record t_i contains a single numeric attribute whose value lies in range [-1,1]. Answer the following questions.

3.1

Prove that Algorithm 1 satisfies ϵ -LDP.

Proof.

$$l(t_i) = \frac{e^{\epsilon/2}t_i - 1}{e^{\epsilon/2} - 1}$$
$$r(t_i) = \frac{e^{\epsilon/2}t_i + 1}{e^{\epsilon/2} - 1}$$

$$\forall t_i, t_j \in [-1, 1]$$

$$Pr[f(t_i) = t^*] = \frac{(e^{\epsilon/2} - 1)e^{\epsilon/2}}{2(e^{\epsilon/2} + 1)}, t^* \in [l(t_i), r(t_i)]$$

$$Pr[f(t_i) = t^*] = \frac{(e^{\epsilon/2} - 1)}{2(e^{\epsilon/2} + 1)e^{\epsilon/2}}, t^* \in [-C, l(t_i)] \cup [r(t_i), C]$$

Thus,

$$\Pr[f(t_i) = t^*] \le \exp(\epsilon) \cdot \Pr[f(t_i) = t^*]$$

3.2

Prove that given an input value t_i , Algorithm 1 returns a noisy value t_i^* with $\mathbb{E}\left[t_i^*\right] = t_i$ and $\operatorname{Var}\left[t_i^*\right] = \frac{t_i^2}{e^{\epsilon/2}-1} + \frac{e^{\epsilon/2}+3}{3\left(e^{\epsilon/2}-1\right)^2}$

Proof.

$$E[t_i^*] = \int_{-C}^{l(t_i)} x \frac{(e^{\epsilon/2} - 1)}{2(e^{\epsilon/2} + 1)e^{\epsilon/2}} dx + \int_{r(t_i)}^C x \frac{(e^{\epsilon/2} - 1)}{2(e^{\epsilon/2} + 1)e^{\epsilon/2}} dx + \int_{l(t_i)}^{r(t_i)} x \frac{(e^{\epsilon/2} - 1)e^{\epsilon/2}}{2(e^{\epsilon/2} + 1)} dx = t^*$$

$$\begin{split} Var[t_i^*] = & E[(t_i^*)^2] - (E[t_i^*])^2 \\ = & \int_{-C}^{l(t_i)} x^2 \frac{(e^{\epsilon/2} - 1)}{2(e^{\epsilon/2} + 1)e^{\epsilon/2}} dx + \int_{r(t_i)}^C x^2 \frac{(e^{\epsilon/2} - 1)}{2(e^{\epsilon/2} + 1)e^{\epsilon/2}} dx + \int_{l(t_i)}^{r(t_i)} x^2 \frac{(e^{\epsilon/2} - 1)e^{\epsilon/2}}{2(e^{\epsilon/2} + 1)} dx - (t^*)^2 \\ = & \frac{t_i^2}{e^{\epsilon/2} - 1} + \frac{e^{\epsilon/2} + 3}{3(e^{\epsilon/2} - 1)^2} \end{split}$$

4 Random Subsampling

Given a dataset $x \in \mathcal{X}^n$, and $m \in \{0, 1, ..., n\}$, a random m -sumsample of x is a new (random) dataset $x' \in \mathcal{X}^m$ formed by keeping a random subset of m rows from x and throwing out the remaining n - m rows.

4.1

Show that for every $n \in \mathbb{N}, \mathcal{X} \geq 2, m \in \{1, \dots, n\}, \epsilon > 0$ and $\delta < m/n$ the mechanism M(x) that outputs a random m-subsample of $x \in \mathcal{X}^n$ is not (ϵ, δ) – DP

Proof. Let $\mathcal{X} = \{0,1\}$ and consider the two datasets $x = 0^n$ and $x' = 10^{n-1}$. Now define $S = \{z \in \{0,1\}^m \mid z \neq 0^m\}$. Then for every ϵ and every $\delta < m/n$

$$e^{\varepsilon} \Pr[A(x) \in S] + \delta = \delta < \frac{m}{n} = \Pr[A(x') \in S]$$

contradicting (ε, δ) – dp of M.

4.2

Although random subsamples do not ensure differential privacy on their own, a random subsample dose have the effect of "amplifying" differential privacy. Let $M: \mathcal{X}^m \to \mathcal{R}$ be any algorithm. We define the algorithm $M': \mathcal{X}^n \to \mathcal{R}$ as follows: choose x' to be a random m-subsample of x, then output M(x'). Prove that if M is (ϵ, δ) -DP, then M' is $((e^{\epsilon} - 1) \cdot m/n, \delta m/n)$ -DP. Thus, if we have an algorithm with the relatively weak guarantee of 1-DP, we can get an algorithm with ϵ -DP by using a random subsample of a database that is larger by a factor of $1/(e^{\epsilon} - 1) = O(1/\epsilon)$.

Proof. We'll use $T \subseteq \{1, ..., n\}$ to denote the identities of the m-subsampled rows (i.e. their row number, not their actual contents). Note that T is a random variable, and that the randomness of M' includes both the randomness of the sample T and the random coins of M. Let $x \sim x'$ be adjacent databases and assume that x and x' differ only on some row t. Let x_T (or x'_T) be a subsample from x (or x') containing the rows in T. Let S be an arbitrary subset of the range of M'. For convenience, define p = m/n To show $(p(e^{\varepsilon} - 1), p\delta) - dp$, we have to bound the ratio

$$\frac{\Pr\left[M'(x) \in S\right] - p\delta}{\Pr\left[M'(x') \in S\right]} = \frac{p\Pr\left[M\left(x_T\right) \in S \mid i \in T\right] + (1-p)\Pr\left[M\left(x_T\right) \in S \mid i \notin T\right] - p\delta}{p\Pr\left[M\left(x_T'\right) \in S \mid i \in T\right] + (1-p)\Pr\left[M\left(x_T'\right) \in S \mid i \notin T\right]}$$

by $e^{p(e^{\varepsilon}-1)}$. For convenience, define the quantities

$$C = \Pr \left[M \left(x_T \right) \in S \mid i \in T \right]$$

$$C' = \Pr \left[M \left(x_T' \right) \in S \mid i \in T \right]$$

$$D = \Pr \left[M \left(x_T \right) \in S \mid i \notin T \right] = \Pr \left[M \left(x_T' \right) \in S \mid i \notin T \right]$$

We can rewrite the ratio as

$$\frac{\Pr\left[M'(x) \in S\right]}{\Pr\left[M'\left(x'\right) \in S\right]} = \frac{pC + (1-p)D - p\delta}{pC' + (1-p)D}$$

Now we use the fact that, by (ε, δ) -dp, $A \leq e^{\varepsilon} \min \{C', D\} + \delta$. The rest is a calculation:

$$\begin{split} & pC + (1-p)D - p\delta \\ & \leq p \left(e^{\varepsilon} \min \left\{ C', D \right\} + \delta \right) + (1-p)D - p\delta \\ & \leq p \left(\min \left\{ C', D \right\} + \left(e^{\varepsilon} - 1 \right) \min \left\{ C', D \right\} \right) + \delta \right) + (1-p)D - p\delta \\ & \leq p \left(\min \left\{ C', D \right\} + \left(e^{\varepsilon} - 1 \right) \left(pC' + (1-p)D \right) + \delta \right) + (1-p)D - p\delta \\ & \left(Because \min \left\{ x, y \right\} \leq \alpha x + (1-\alpha)y \ for \ every \ 0 \leq \alpha \leq 1 \right) \\ & \leq p \left(C' + \left(e^{\varepsilon} - 1 \right) \left(pC' + (1-p)D \right) + \delta \right) + (1-p)D - p\delta \quad \left(Because \ \min \left\{ x, y \right\} \leq x \right) \\ & \leq p \left(C' + \left(e^{\varepsilon} - 1 \right) \left(pC' + (1-p)D \right) \right) + (1-p)D \\ & \leq \left(pC' + (1-p)D \right) + \left(p \left(e^{\varepsilon} - 1 \right) \right) \left(pC' + (1-p)D \right) \\ & \leq \left(1 + p \left(e^{\varepsilon} - 1 \right) \right) \left(pC' + (1-p)D \right) \\ & \leq e^{p \left(e^{\varepsilon} - 1 \right)} \left(pC' + (1-p)D \right) \end{split}$$

So we've succeeded in bounding the necessary ratio of probabilities. Note, if you are willing to settle for $(O(cm/n), O(\delta m/n)) - dp$ the calculation is much simpler. All this algebra is mostly just to get the tight bound.