Part 1

Exercise 13.5. Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by A equals the intersection of all topologies on X that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.

Proof. Let \mathcal{T} be the topology generated by \mathcal{A} and $\{\mathcal{T}_{\beta}\}_{{\beta}\in H}$ be the collection of all topologies on X that contain \mathcal{A} .

- (\subset) Obviously $\mathcal{A} \subset \mathcal{T}$ so $\mathcal{T} = \mathcal{T}_{\beta}$ for some $\beta \in H$ and it must be the case that $\cap_{\beta \in H} \mathcal{T}_{\beta} \subset \mathcal{T}$.
- (\supset) Conversely suppose $U \in \mathcal{T}$. By Lemma 13.1, U is a union of basis elements in \mathcal{A} . But for any $\beta \in H$ we know \mathcal{T}_{β} contains \mathcal{A} and is closed under unions. Hence $U \in \cap_{\beta \in H} \mathcal{T}_{\beta}$ and we conclude $\mathcal{T} \subset \cap_{\beta \in H} \mathcal{T}_{\beta}$.

Therefore the topology \mathcal{T} generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} .

Proof. Suppose \mathcal{A} is a subbasis for a topology \mathcal{T} on X. Let $\{\mathcal{T}_{\beta}\}_{{\beta}\in H}$ be the collection of topologies on X that contain \mathcal{A} .

- (\subset) Just as in the preceding proof, note that since \mathcal{T} contains \mathcal{A} , $\mathcal{T} = \mathcal{T}_{\beta}$ for some $\beta \in H$, and therefore $\cap_{\beta \in H} \mathcal{T}_{\beta} \subset \mathcal{T}$.
- (\supset) Conversely suppose $U \in \mathcal{T}$. Then U is a union of finite intersections of elements of \mathcal{A} . But for any $\beta \in H$ we know \mathcal{T}_{β} contains \mathcal{A} and is closed under finite intersections and arbitrary unions. Hence $U \in \cap_{\beta \in H} \mathcal{T}_{\beta}$ and we conclude $\mathcal{T} \subset \cap_{\beta \in H} \mathcal{T}_{\beta}$.

Therefore the topology \mathcal{T} generated by the subbasis \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} .

Exercise 13.7. Consider the following topologies on \mathbb{R} :

 $\mathcal{T}_1 = \text{ the standard topology}$

 $\mathcal{T}_2 = \text{ the topology of } \mathbb{R}_K$

 \mathcal{T}_3 = the finite complement topology

 \mathcal{T}_4 = the upper limit topology, having all sets (a, b] as basis

 \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x : x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

(1) $\mathcal{T}_1 \supset \mathcal{T}_3, \mathcal{T}_5$

- (2) $\mathcal{T}_2 \supset \mathcal{T}_1, \mathcal{T}_3, \mathcal{T}_5$
- (3) \mathcal{T}_3 does not contain any of the others
- (4) $\mathcal{T}_4 \supset \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_5$
- (5) \mathcal{T}_5 does not contain any of the others

Most of these relations are very straightforward to verify. One that I feel needs justification is $\mathcal{T}_2 \subset \mathcal{T}_4$. Consider an arbitrary basis element of \mathcal{T}_2 which has the form (a,b) or (a,b)-K. If $x\in (a,b)$ then obviously $x\in (a,x]\subset (a,b)$. If $x\in (a,b)-K$, we need to be more careful because we're not guaranteed that $(a,x]\subset (a,b)-K$. However, in this case we can choose the least n such that $\frac{1}{n}< x$ and pick a real number c such that $\frac{1}{n}< c< x$. Then $x\in (c,x]\subset (a,b)-K$. By Lemma 13.3 we conclude that $\mathcal{T}_2\subset \mathcal{T}_4$.

Exercise 13.8 (a). Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) : a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates the standard topology on \mathbb{R} .

Proof. Let \mathcal{T} denote the standard topology on \mathbb{R} . First note that \mathcal{B} is clearly a collection of open sets in \mathcal{T} . Next let $U \in \mathcal{T}$ and $x \in U$. Since

$$C = \{(a, b) : a < b, a \text{ and } b \text{ real}\}$$

is a basis for \mathcal{T} we know that U is a union of open intervals in \mathbb{R} . It follows that $x \in (a,b) \subset U$ for some real numbers a,b. Since \mathbb{Q} is dense in \mathcal{R} we can find rational numbers p,q such that

$$a$$

so $x \in (p,q) \subset (a,b) \subset U$. By Lemma 13.2, \mathcal{B} is a basis for \mathcal{T} .

Exercise 13.8 (b). Show that the collection

$$C = \{ [a, b) : a < b, a \text{ and } b \text{ rational} \}$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

Proof. First we will show that C is indeed a basis for a topology on \mathbb{R} . First, for any $x \in \mathbb{R}$, we have $x \in [\lfloor x \rfloor, \lceil x \rceil + 1) \in C$. Next suppose that $x \in [a_1, b_1) \cap [a_2, b_2)$ for some $a_1, b_1, a_2, b_2 \in \mathbb{Q}$. Let $c = \max\{a_1, a_2\}$ and $d = \min\{b_1, b_2\}$. Then $[c, d) \in C$ and

$$x \in [c, d) \subset [a_1, b_1) \cap [a_2, b_2).$$

Therefore \mathcal{C} is indeed a basis for a topology on \mathbb{R} .

Consider the interval $[\pi, 4)$ which is an element of the basis $\mathcal{B} = \{[a, b) : a < b, a, b \in \mathbb{R}\}$ of the lower limit topology on \mathbb{R} . Notice $\pi \in [\pi, 4)$ and there is no $[a, b) \in \mathcal{C}$ such that $\pi \in [a, b) \subset [\pi, 4)$. By Lemma 13.3 we know that the topology generated by \mathcal{C} does not contain the lower limit topology, and thus must be different than the lower limit topology.

Exercise 16.4. A map $f: X \to Y$ is said to be an open map if for every open set U of X, the set f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open maps.

Proof. Let W be open in $X \times Y$. Then W is a union of basis elements

$$W = \bigcup_{\alpha \in J} U_{\alpha} \times V_{\alpha}$$

where U_{α} and V_{α} are open sets in X and Y respectively. Notice that

$$\begin{split} x \times y \in \bigcup_{\alpha \in J} U_\alpha \times V_\alpha &\iff x \times y \in U_\alpha \times V_\alpha \text{ for some } \alpha \in J \\ &\iff x \in U_\alpha \text{ and } y \in V_\alpha \text{ for some } \alpha \in J \\ &\iff x \in \bigcup_{\alpha \in J} U_\alpha \text{ and } y \in \bigcup_{\alpha \in J} V_\alpha \\ &\iff x \times y \in \bigcup_{\alpha \in J} U_\alpha \times \bigcup_{\alpha \in J} V_\alpha \end{split}$$

Therefore $W = \bigcup U_{\alpha} \times \bigcup V_{\alpha}$, so $\pi_1(W) = \bigcup U_{\alpha}$ and $\pi_2(W) = \bigcup V_{\alpha}$. Since each U_{α} and V_{α} is open in X and Y respectively, and these topologies are closed under unions, we see that $\pi_1(W)$ and $\pi_2(W)$ are both open. Therefore π_1 and π_2 are open maps.

Part 2

Let $X = \{p \in \mathbb{Z}_+ : p \text{ is prime}\} = \{2, 3, 5, 7, 11, \ldots\}$. Given $n \in \mathbb{Z}_+$, let $B_n = \{p \in x : p \text{ is not a divisor of } n\}$. As an example, $B_{42} = \{5, 11, 13, 17, 19, 23, 29, \ldots\} = X - \{2, 3, 7\}$. Let $\mathcal{B} = \{B_n : n \in \mathbb{Z}_+\}$.

(a) Prove that \mathcal{B} is a basis for a topology on X.

Proof. Let $p \in X$. Then p does not divide 1, so $p \in B_1$. We will show that $B_{nm} = B_n \cap B_m$ for any $n, m \in \mathbb{Z}_+$. So let $p \in B_{nm}$, which means that $p \nmid nm$. Then of course $p \nmid n$ and $p \nmid m$, so that $p \in B_n \cap B_m$. Conversely if $p \in B_n \cap B_m$, which means $p \nmid n$ and $p \nmid m$,

since p is prime we know that $p \nmid nm$ so that $p \in B_{nm}$. Therefore $B_{nm} = B_n \cap B_m$. Of course, this means that for any $p \in B_n \cap B_m$ we have $p \in B_{nm} \subset B_n \cap B_m$. Therefore \mathcal{B} is a basis.

(b) The topology generated by \mathcal{B} is a familiar topology. Which one is it? Explain.

Solution. This is the finite complement topology on X. To see why, we can use Lemma 13.2. For any $B_n \in \mathcal{B}$, n has only finitely many prime divisors p_1, \ldots, p_k , so that $X - B_n = \{p_1, \ldots, p_k\}$ is finite. Thus \mathcal{B} is indeed a collection of open sets in the finite complement topology. Next let U be an open set in the finite complement topology. Then X - U is either equal to X or finite. If X - U = X then U is empty and it is vacuously true that for any $x \in U$ we have $x \in B \subset U$ for some $B \in \mathcal{B}$. In the more interesting case, suppose X - U is finite. Then $X - U = \{p_1, \ldots, p_k\}$ for some finite number of primes p_1, \ldots, p_k . Thus we have

$$B_n = X - \{p_1, \dots, p_k\} = X - (X - U) = U,$$

which of course implies that for any $x \in U$ we have $x \in B_n \subset U$. Therefore \mathcal{B} is a basis for the finite complement topology.

Part 3

Let $X = \{1, 2, 3, \dots, n\}$. Let \mathcal{T} be a topology on X.

(a) For each $k \in X$, let B_k be the intersection of all elements of \mathcal{T} which contain k. Show that $\mathcal{B} = \{B_k : k \in X\}$ is a basis for \mathcal{T} .

Proof. We will use Lemma 13.2 yet again. First note that $\mathcal{T} \subset \mathcal{P}(X)$ is finite, so the collection of open sets containing k is finite, and thus each B_k is a finite intersection of open sets. Therefore \mathcal{B} is a collection of open sets. Next let $U \in \mathcal{T}$ and $x \in U$. Then $x \in B_x$ and since B_x is the intersection of all open sets containing x, it must be the case that $x \in B_x \subset U$. Therefore \mathcal{B} is a basis for \mathcal{T} .

(b) Show that any topology on an n-point set must have some basis containing n or fewer open sets. What is the largest possible number of open sets in \mathcal{T} ? (for a fixed n)

Proof. Any n-point set Y is isomorphic to X, so let $f: X \to Y$ be a bijection. Then it follows from part (a) that the collection $\mathcal{C} = \{B_{f(k)} : k \in X\}$ is a basis for the topology on Y. Obviously this collection has size n or less (less is possible when $B_j = B_k$ for some $j \neq k$). The largest possible number of open sets is the size of the discrete topology $|\mathcal{P}(X)| = 2^n$.

(c) Find an infinite space X (and choice of topology) for which the process described in part (a) will produce a basis for the topology.

Solution. Let $X = \mathbb{Z}_+$ and \mathcal{T} be the order topology. Then we know that \mathcal{T} is the discrete topology which contains all singleton sets. Thus each $B_k = \{k\}$ and \mathcal{B} is a basis for \mathcal{T} . \square

(d) Find an infinite space X (and choice of topology) for which the process described in part (a) will not produce a basis for the topology.

Solution. Consider the finite complement from Part 2. When constructing B_p , notice that for any prime $q \neq p$ we have $p \in X - \{q\} \in \mathcal{T}$. Therefore

$$B_p \subset \bigcap_{q \neq p} X - \{q\} = X - \bigcup_{q \neq p} \{q\} = \{p\},$$

and it follows that $B_p = \{p\}$. But B_p is not even open in \mathcal{T} , since $X - B_p = X - \{p\}$ is neither finite nor equal to X. Thus \mathcal{B} does not generate \mathcal{T} .