Cholinomimetic agents

- mimic acetylcholine (ACh)
 - direct \leftrightarrow indirect
 - muscarinic \leftrightarrow nicotinic
- direct: binding to / activation of ACh rec.
- indirect: ↓ hydrolysis of endogenous ACh
 - no (sub)type selectivity
 - ACh receptors not only in ANS

Cholinergic transmission

Acetylcholine receptors

- muscarinic
 - subtypes: M_1 , M_2 , M_3 , M_4 , M_5
 - second messenger
 - IP3-DAG-Ca: M₁, M₃, M₅
 - ↓ adenylyl cyclase / ↓ cAMP: M₂, M₄

- subtypes: N_N, N_M
- major sites
 - ANS, endothelium
 - neuromuscular junctions
 - CNS

Anatomic aspects of the ANS

+ ENS = enteric nervous system

Dale's experiment

non-innervated endothelial M₃ receptors

Cholinoceptor subtypes

Receptor Type	Other Names	Location	Structural Features	Postreceptor Mechanism
M ₁		Nerves	Seven transmembrane segments, G _{q/11} protein-linked	IP ₃ , DAG cascade
M ₂	Cardiac M ₂	Heart, nerves, smooth muscle	Seven transmembrane segments, G _{i/o} protein-linked	Inhibition of cAMP production, activation of K ⁺ channels
M ₃		Glands, smooth muscle, endothelium	Seven transmembrane segments, G _{q/11} protein-linked	IP ₃ , DAG cascade
M ₄		CNS	Seven transmembrane segments, $G_{i/o}$ protein-linked	Inhibition of cAMP production
M ₅		CNS	Seven transmembrane segments, G _{q/11} protein-linked	IP ₃ , DAG cascade
N _M	Muscle type, end plate receptor	Skeletal muscle neuromus- cular junction	Pentamer ¹ [(α 1) ₂ β 1 δ γ)]	Na [†] , K [†] depolarizing ion channel
N _N	Neuronal type, ganglion receptor	CNS, postganglionic cell body, dendrites	Pentamer ¹ with α and β subunits only, eg, $(\alpha 4)_2(\beta 2)_3$ (CNS) or $\alpha 3\alpha 5(\beta 2)_3$ (ganglia)	Na ⁺ , K ⁺ depolarizing ion channel

receptors not only on effector cells (M) → modulate ANS

Classification

Direct-acting cholinomimetics

- direct
 - muscarinic
 - choline esters
 - acetylcholine (M+N!), methacholine (M) hydrolysis +
 - carbachol (M+N!), betanechol (M) hydrolysis -
 - alkaloids
 - muscarine / pilocarpine
 - nicotinic
 - nicotine, lobeline

no receptor subtype selectivity (but see cevimeline)

significant stereoselectivity – 1000x potency: (S)-bethanechol > (R)-bethanechol

Choline esters

Choline Ester	Susceptibility to Cholinesterase	Muscarinic Action	Nicotinic Action
Acetylcholine chloride	++++	+++	+++
Methacholine chloride	+	++++	None
Carbachol chloride	Negligible	++	+++
Bethanechol chloride	Negligible	++	None

quaternary N \rightarrow hydrophilic \rightarrow absorption / distribution differences in hydrolysis \rightarrow duration

Alkaloids

Amanita muscaria

Inocybe erubescens

Pilocarpus microphyllus

Action chiefly nicotinic

N
CH₃
Nicotine

O
$$C - CH_2 - CH_2 - CH_3$$
CH₃
CH₃
CH₃
Lobeline

tertiary $N \rightarrow lipid$ soluble \rightarrow good absorption quaternary $N \rightarrow$ worse absorption (but see mushroom poisoning)

Effects of direct-acting cholinoceptor stimulants

M

Organ	Response	
Eye		
Sphincter muscle of iris	Contraction (miosis)	
Ciliary muscle	Contraction for near vision	
Heart		
Sinoatrial node	Decrease in rate (negative chronotropy)	
Atria	Decrease in contractile strength (negative inotropy). Decrease in refractory period	
Atrioventricular node	Decrease in conduction velocity (negative dromotropy). Increase in refractory period	
Ventricles	Small decrease in contractile strength	
Blood vessels		
Arteries, veins	Dilation (via EDRF). Constriction (high-dose direct effect)	
Lung		
Bronchial muscle	Contraction (bronchoconstriction)	
Bronchial glands	Stimulation	
Gastrointestinal tract		
Motility	Increase	
Sphincters	Relaxation	
Secretion	Stimulation	
Urinary bladder		
Detrusor	Contraction	
Trigone and sphincter	Relaxation	
Glands		
Sweat, salivary, lacrimal, nasopharyngeal	Secretion	

but see homeostatic reflexes

N

CNS

brain: M>N / spinal cord: N>M M knockout – cognition / appetite see nicotine CNS effects

ganglia

simultaneous discharge of PNS and SNS

neuromuscular junction

initial contraction→depolarization blockade

cholinomimetics
α agonists
β blockers
prostaglandin F2α analogs
diuretics

prostaglandin E2 marijuana

Nicotine (PK)

- lipid soluble natural alkaloid
 - tobacco / insecticides
- skin absorption / CNS penetration
 - limited absorption from the stomach (base!)
- metabolism
 - primarily liver (cotinine)
 - slow hydrolysis in synapse (see depolarization block)
- excretion
 - kidney (metabolites too)
- relatively short half-life (≈ 2 hours)

Nicotine (PD)

- agonist at N ACh receptors (N_N > N_M)
- brain, ganglia, nm junction
 - brain: transmitter release modulation
 - mesolimbic dopamin ↑ → addiction, ↑ alertness
 - high cc: tremor, emesis, respiratory center ↑ → convulsions, coma, death
 - ganglia
 - parasympathetic and sympathetic
 - CV effects: hypertension, alternating tachy- and bradycardia
 - GI/urinary: nausea, vomiting, diarrhea, voiding of urine
 - nm junction
 - disorganized fasciculations → strong contraction
 - depolarization blockade

Nicotine toxicity 1.

- acute
 - lethal dose ≈ 40 mg (1 drop / 2 cigarettes)
 - effects
 - vomiting limit oral absorption, nausea, diarrhea
 - CNS: convulsions, coma, respiratory arrest
 - muscle: depol. blockade, respiratory paralysis
 - CV: hypertension, cardiac arrhythmias
 - treatment
 - symptomatic
 - atropin / diazepam
 - urinary excretion ↓ in alkaline urine

Nicotine toxicity 2.

chronic

- "cigarette smoking is clearly the largest single preventable cause of illness and premature death"
 - but delayed onset of diseases
- nicotine's role in
 - addiction +
 - other diseases? (vascular disease, sudden coronary death, peptic ulcer)
- therapy (smoking cessation)
 - nicotine replacement therapy
 - varenicline (agonist at α4β2)
 - bupropion

Indirectly acting cholinomimetics

- Reversible
 - edrophonium
 - carbamates
 - neostigmine / pyridostigmine / physostigmine
 - used in Alzheimer's disease
 - tacrine, donepezil, galantamine, rivastigmine
- Irreversible
 - organophosphates
 - echothiophate
 - malathion, parathion
 - sarin

Reversible indirectly acting cholinomimetics

Irreversible indirectly acting cholinomimetics

Edrophonium

- short duration of action
- myasthenia gravis diagnosis

Carbamates

- neostigmine, pyridostigmine, physostigmine
- clinical use
 - myasthenia gravis treatment
 - glaucoma
 - postoperative ileus / urinary retention

Organophosphates

- insecticids
 - malathion / parathion
- chemical warfares
 - sarin / tabun / soman
- was used in glaucoma
 - echothiophate
- lipid solubility
- aging
- delayed neuropathy + demyelination of axons

Indirect-acting cholinomimetics for Alzheimer's disease

- tacrine, donepezil, rivastigmine, galantamine
- oral, penetrate BBB
- modest clinical benefit
- adverse effects
 - nausea and vomiting + peripheral cholinomimetic effects

Clinical use of major cholinomimetics

Drug	Clinical Applications	Action	
Direct-acting agonists Bethanechol	70 Coperative and neurogenic ileus and	Activates bowel and bladder smooth muscle	
Carbachol	Giaucoma ^a	Activates pupillary sphincter and ciliary mus- cles of eye	
Pilocarpine	Glaucoma, a Sjögren's syndrome	Activates pupillary sphincter and ciliary mus- cles of eye; stimulates salivation	
Nicotine	Smoking deterrence (patch, chewing gum)	Replaces rapid-onset actions (cigarette) with slower action	
ndirect-acting agonists Neostigmine	Postoperative and neurogenic ileus and urinary retention	Amplifies endogenous acetylcholine	
Neostigmine, pyridostigmine, edrophonium	Myasthenia gravis, reversal of neuromuscular blockade	Amplifies endogenous acetylcholine; ↑ strength	
Physostigmine, echothiophate	Glaucoma ^a	Amplifies effects of ACh	

cevimeline – Sjögren's syndrome varenicline – smoking cessation