Proves d'accés a la Universitat. Curs 2007-2008

Tecnologia industrial

Sèrie 2

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna, i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada, 0,5 punts; qüestió mal contestada, -0,16 punts; qüestió no contestada, 0 punts.]

Qüestió 1

L'Administració d'un país fa una inversió de 10 200 M€ en la millora de la xarxa de transports. Aquesta inversió es destina a quatre actuacions: tres en la xarxa ferroviària (I, II, IV) i una en la de carreteres (III). Si les quantitats invertides són I: 4000 M€, II: 1100 M€, III: 3800 M€ i IV: 1300 M€, quin percentatge correspon a la inversió en la xarxa ferroviària i quin a la inversió en carreteres?

Xarxa ferroviària	Carreteres
a) 87,25%	12,75%
b) 60,78%	39,22%
c) 62,75%	37,25%
d) 89,22%	10,78%

Qüestió 2

Un avió que transporta 325 passatgers recorre 8000 km i emet 340 t de CO₂ a l'atmosfera. Quina és la quantitat de CO₂ per passatger i quilòmetre emesa a l'atmosfera per l'avió?

- a) 130,8 g
- **b)** 115,4 g
- **c)** 119,5 g
- d) 127,8 g

Qüestió 3

Un vehicle circula entre dues poblacions properes per una carretera de 10 km de longitud a una velocitat de 50 km/h. El cost econòmic del temps emprat per a fer aquest viatge s'estima que és 8,4 €/h, i se sap que el cost econòmic de tot el trajecte és 3,68 €. Quin s'estima que és el cost econòmic directe, en €/km, del vehicle?

- a) 0,20 €/km
- **b)** 0,34 €/km
- *c*) 0,37 €/km
- d) 0,47 €/km

Qüestió 4

En el plànol d'una peça que s'ha de fabricar amb acer s'indica que la distància entre dos punts és $\left(65^{+0,2}_{-0,1}\right)$ mm. El valor nominal d'aquesta distància és

- a) 65,2 mm
- **b**) 65 mm
- c) 64,9 mm
- d) 65,15 mm

Qüestió 5

Una barra massissa, la secció rectangular de la qual mesura 25 mm x 300 mm, pot suportar una força axial de tracció màxima de 360 kN sense trencar-se. Quina és la resistència a la ruptura del material?

- a) 4,8 MPa
- **b)** 48 MPa
- c) 480 MPa
- d) 576 MPa

Exercici 2

[2,5 punts]

Un tendal automàtic està equipat amb un sensor que el plega o el desplega en funció de les condicions meteorològiques. Si el vent bufa per sobre d'un valor fixat v_0 , independentment de la radiació solar, el sensor activa el tancament del tendal si aquest està desplegat, o el manté tancat si està plegat. El sensor activa el desplegament del tendal si el vent bufa per sota de v_0 i la radiació solar és superior a un valor fixat s_0 . Si la radiació solar és inferior a s_0 , el tendal es plega. Utilitzant les variables d'estat:

vent superior a
$$v_0$$
: $v = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$; radiació solar superior a s_0 : $s = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$;

tendal:
$$t = \begin{cases} 1 & \text{plegat} \\ 0 & \text{desplegat} \end{cases}$$
; canvi d'estat (plegat/desplegat) del tendal: $c = \begin{cases} 1 & \text{si} \\ 0 & \text{no} \end{cases}$

a) Escriviu la taula de veritat del sistema.

[1 punt]

- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de contactes equivalent.

[0,5 punts]

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

Un sistema de calefacció amb gas natural, de poder calorífic p = 39,9 MJ/kg i cost c = 0,19 €/kg, escalfa l'aire d'un local de volum V = 750 m³. Inicialment, la temperatura del local és la mateixa que la temperatura exterior, t_1 = 10 °C, i es vol escalfar fins a t_2 = 23 °C. Per a aquest rang de temperatures, la densitat de l'aire és ρ = 1,2 kg/m³, i la calor específica, c_p = 1 kJ/(kg·K). El rendiment del sistema de calefacció és η = 80 %.

a) Si no hi ha fuites, determineu el cost econòmic c₁, en €, del combustible per a escalfar l'aire del local.

Se suposa que les fuites a través dels orificis i parets són proporcionals a la diferència Δt entre la temperatura interior t_{int} i la temperatura exterior t_{ext} , de manera que $P_{\text{f}} = k \cdot \Delta t$, si $k = 1231 \text{ W/}^{\circ}\text{C}$:

- **b)** Representeu, de manera aproximada i indicant les escales, el gràfic de la potència P_f per a $0 \le \Delta t \le 13$ °C. [1 punt]
- c) Determineu el cost econòmic c_2 , en €, del combustible per a mantenir calent durant 12 h l'aire del local quan $\Delta t = 13$ °C. [0,5 punts]

Exercici 4

[2,5 punts]

Un eixugador de cabells té un commutador per a seleccionar la potència que subministra. En la figura de dalt se'n mostra el circuit elèctric, format per dues resistències iguals de valor $R = 70 \Omega$ i alimentat a U = 230 V. Determineu:

a) La resistència mínima R_{min} del circuit.

[0,5 punts]

b) El corrent / consumit per l'eixugador quan la resistència és la mínima.

[0,5 punts]

c) El valor de les dues potències, P_1 i P_2 , que pot proporcionar l'eixugador.

[1 punt]

d) La longitud L del fil d'una resistència, tenint en compte que les resistències són fetes amb fil de constantà de diàmetre d = 0,15 mm i resistivitat ρ = 4,9 · 10⁻⁷ Ω · m. [0,5 punts]

OPCIÓ B

Exercici 3

[2,5 punts]

Pel motor d'un trepant elèctric alimentat a U=230 V circula un corrent I=4,2 A. En règim de funcionament nominal, proporciona a l'eix de sortida, que gira a n=3000 min⁻¹, una potència $P_s=650$ W. Determineu:

a) El parell Γ_s a l'eix de sortida.

[0,5 punts]

b) El rendiment electromecànic η del trepant.

[1 punt]

c) L'energia elèctrica consumida $E_{\text{elèctr}}$ i l'energia dissipada E_{diss} si es fa funcionar durant un temps t = 2 min. [1 punt]

Exercici 4

[2,5 punts]

La finestra horitzontal de la figura es manté oberta mitjançant la corda AC, que en la posició indicada, α = 30°, queda perpendicular a AB. Determineu:

a) La longitud L_c de la corda AC.

[0,5 punts]

b) La força F que fa la corda.

[1 punt]

 \emph{c}) La força vertical \emph{F}_{v} i la força horitzontal \emph{F}_{h} que fa la frontissa.

[1 punt]

Proves d'accés a la Universitat. Curs 2007-2008

Tecnologia industrial

Sèrie 5

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna, i la segona té dues opcions (A o B), de les quals cal triar-ne UNA.

PRIMERA PART

Exercici 1

[2,5 punts]

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada, 0,5 punts; qüestió mal contestada, -0,16 punts; qüestió no contestada, 0 punts.]

Qüestió 1

L'aprofitament de restes vegetals i deixalles orgàniques per a produir adob orgànic que substitueixi els fertilitzants químics és un procés

- a) inútil, perquè es necessita molt de temps per a poder fer el procés correctament.
- b) inútil, perquè l'adob que s'obté no té la qualitat dels fertilitzants químics.
- c) inútil, perquè es necessita molt d'espai per a poder fer el procés correctament.
- d) útil, perquè forma part dels mecanismes de recuperació, reciclatge i reutilització dels residus.

Qüestió 2

 $L_1 = (125 \pm 0.5) \text{ mm}$ $L_2 = (130 \pm 0.5) \text{ mm}$ $L_3 = (325 \pm 0.5) \text{ mm}$ En un plànol s'ha acotat la peça tal com s'indica en la figura. L'amplada màxima de la ranura central és

- a) 68,5 mm
- **b)** 69,5 mm
- c) 70,5 mm
- d) 71,5 mm

Qüestió 3

Un amperímetre dóna el resultat d'una mesura en mA. El full de característiques de l'amperímetre indica que per a l'escala en mA la precisió és \pm 1,5 mA \pm 1% de la lectura. L'error relatiu màxim d'una lectura de 300 mA és

- a) 1,5%
- **b)** 2,5%
- **c)** 3,0%
- d) 4,5%

Qüestió 4

Un comprimit per a combatre el refredat és format per tres components principals, amb una proporció del 62,5 %, el 31,25 % i l'1,25 %, respectivament. El 5 % restant es reparteix entre altres components. Quina quantitat del component majoritari és necessària per a obtenir 30 kg d'aquests comprimits?

- a) 18,75 kg
- **b)** 11,25 kg
- c) 9,375 kg
- d) 6,25 kg

Qüestió 5

Una barra d'alumini mesurada a 20 °C amb un regle d'acer inoxidable té una longitud L_{20} . Quina seria la longitud que es mesuraria a 40 °C, a causa de la dilatació tèrmica? (Coeficient de dilatació tèrmica de l'alumini: $\alpha_{\rm Al} = 23,6\cdot 10^{-6}~{\rm K}^{-1}$, i de l'acer inoxidable: $\alpha_{\rm inox} = 9,9\cdot 10^{-6}~{\rm K}^{-1}$.)

- a) > L_{20}
- **b)** $< L_{20}$
- $c) = L_{20}$
- **d)** > L_{20} o $\leq L_{20}$, dependent del valor de L_{20}

Exercici 2

[2,5 punts]

La porta d'un local amb atmosfera controlada s'obre si han passat 30 min des de l'última obertura tan sols introduint un codi de control; si no han passat els 30 min, s'obre introduint un codi de control i un codi d'urgència. Utilitzant les variables d'estat:

temps
$$t = \begin{cases} 1 & \text{han transcorregut 30 min} \\ 0 & \text{no han transcorregut 30 min} \end{cases}$$
; codi de control $c = \begin{cases} 1 & \text{vàlid} \\ 0 & \text{no vàlid} \end{cases}$;

codi d'urgència
$$u = \begin{cases} 1 & \text{vàlid} \\ 0 & \text{no vàlid} \end{cases}$$
; porta $p = \begin{cases} 1 & \text{s'obre} \\ 0 & \text{no s'obre} \end{cases}$

a) Escriviu la taula de veritat del sistema.

[1 punt]

[0,5 punts]

- b) Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
- c) Dibuixeu l'esquema de portes lògiques equivalent.

SEGONA PART

OPCIÓ A

Exercici 3

[2,5 punts]

Un vehicle amb motor de gasoil que circula a una velocitat mitjana v = 70 km/h té un consum mitjà c = 5,9 l/(100 km) en un recorregut de s = 155 km, sense fer funcionar l'aire condicionat. L'aire condicionat incrementa el consum del vehicle en c_a = 0,25 l/h. El rendiment del motor és η = 0,32, i el poder calorífic del gasoil és c_e = 35,8 MJ/l.

- a) Determineu la quantitat q de gasoil consumida en el trajecte, amb aire condicionat i sense. [1 punt]
- **b)** Determineu l'increment de consum Δc , expressat en l/(100 km), que representa la utilització de l'aire condicionat en aquest trajecte. [0,5 punts]
- c) Determineu la potència P subministrada a l'equip d'aire condicionat. [0,5 punts]
- d) Raoneu quina incidència té en el consum total un augment de la velocitat mitjana.

[0,5 punts]

Exercici 4

[2,5 punts]

En un motor de corrent continu, el parell motor Γ i la velocitat angular ω de l'eix estan relacionats amb la tensió d'alimentació U i el corrent consumit I per les expressions:

$$\Gamma = cI$$
; $\omega = \frac{U - IR}{c}$, amb $c = 0.08 \text{ N} \cdot \text{m/A}$, $R = 0.6 \Omega$

Si aquest motor s'alimenta a U = 24 V:

- a) Determineu l'expressió que relaciona el parell motor amb la velocitat angular (expressió sense I).
- **b)** Dibuixeu, de manera aproximada i indicant les escales, la corba característica parell-velocitat per a $0 \le \omega \le 300$ rad/s. [1 punt]
- c) Calculeu l'energia elèctrica E que consumeix el motor si funciona contínuament durant t = 1,5 h amb un parell Γ = 0,3 N·m. [1 punt]

OPCIÓ B

Exercici 3

[2,5 punts]

Una bomba elèctrica emprada per a elevar aigua per a regar un petit hort té les característiques nominals següents:

Cabal, q = 75 l/min

Pressió, p = 0.56 MPa

Rendiment del motor, η_{mot} = 0,8

Potència del motor a $n = 2850 \text{ min}^{-1}$, $P_{\text{mot}} = 950 \text{ W}$

L'energia elèctrica té un cost *c* = 0,10 €/(kW·h).

a) Determineu el rendiment $\eta_{ ext{bomba}}$ de la bomba.

[1 punt]

Si la bomba funciona en condicions nominals durant t = 3 h, determineu:

b) La quantitat V, en I, d'aigua elevada durant aquest temps.

[0,5 punts]

 ${\it c}$) El cost econòmic ${\it c}_{\rm e}$ de l'energia elèctrica consumida per m $^{\rm 3}$ d'aigua elevada.

[1 punt]

Exercici 4

[2,5 punts]

g

Per a mantenir oberta la finestra de la figura, s'utilitza la barra articulada PP'. Determineu:

a) La força F que fa la barra.

[1 punt]

b) Els components vertical F_v i horitzontal F_h de la força que la frontissa O fa a la finestra. [1 punt]

Per a poder automatitzar l'obertura de la finestra, es proposa substituir la barra per un cilindre pneumàtic:

c) Expliqueu si per a α = 0 (iniciar l'obertura de la finestra) la solució és bona o no. [0,5 punts]

