# Graph Attention and Multi-hop Attention

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

#### Feedback of HW1 (1)

## Q1: How difficult do you think Homework 1 is?





#### Q2: Which questions are too difficult?



#### Feedback of HW1 (2)

# Q3: How much time do you spend on it?





# Q4: How helpful do you think Homework1 is?



## Readings

- Readings are updated on the website (syllabus page)
- Lecture 6 readings:
  - GraphSAINT
  - GNN AutoScale
- Lecture 7 readings:
  - Graph Attention Networks
  - Multi-hop Attention Graph Neural Networks

#### Recap: A Single GNN Layer

- Idea of a GNN Layer:
  - Compress a set of vectors into a single vector
  - Two-step process:
    - (1) Message
    - (2) Aggregation





#### Recap: Message and Aggregation

#### Putting things together:

• (1) Message: each node computes a message

$$\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right), u \in \{N(v) \cup v\}$$

• (2) Aggregation: aggregate messages from neighbors

$$\mathbf{h}_{v}^{(l)} = AGG^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$$

- Nonlinearity (activation): Adds expressiveness
  - Often written as  $\sigma(\cdot)$ : ReLU( $\cdot$ ), Sigmoid( $\cdot$ ), ...
  - Can be added to message or aggregation



#### Recap: Classical GNN Layers: GraphSAGE

GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma \left( \mathbf{W}^{(l)} \cdot \text{CONCAT} \left( \mathbf{h}_{v}^{(l-1)}, \text{AGG} \left( \left\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \right\} \right) \right) \right)$$

- How to write this as Message + Aggregation?
  - **Message** is computed within the AGG(⋅)
  - Two-stage aggregation
    - Stage 1: Aggregate from node neighbors

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

• Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)$$

## Recap: GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

AGG = 
$$\sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}$$

**Message** computation

 Pool: Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)

$$AGG = \underline{Mean}(\{\underline{MLP}(\mathbf{h}_u^{(l-1)}), \forall u \in N(v)\})$$

Aggregation

Message computation

LSTM: Apply LSTM to the reshuffled neighbors (not order invariant)

$$AGG = \underline{LSTM}([\mathbf{h}_u^{(l-1)}, \forall u \in \pi(N(v))])$$

**Aggregation** 

#### Recap: GNN Layer in Practice (1)

- In practice, these classic GNN layers are a great starting point
  - We can often get better performance by considering a general GNN layer design
  - Concretely, we can include modern deep learning modules that proved to be useful in many domains

#### An example GNN Layer



#### Machine Learning Tasks for Graph-structured Data

Graph Attention Network

Introduction of Heterogeneous Graph

Multi-hop Attention Graph Neural Network

#### Machine Learning Tasks for Graph-structured Data

Graph Attention Network

Introduction of Heterogeneous Graph

Multi-hop Attention Graph Neural Network

#### Neighborhood Aggregation: Review

• How can a node aggregate information from their neighborhood?



## Neighborhood Aggregation: Review

- How can a node aggregate information from their neighbors?
  - Firstly, build a computation graph based on its neighborhood
  - Then, average neighbor messages and apply a neural network



#### Neighborhood Aggregation: Review

Message Aggregation details





#### Importance of Neighbor

# Weighted sum for each u's message to v

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N_{v}} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

- How to determine the importance of neighbor during aggregation?
- In GCN / GraphSAGE
  - $\alpha_{vu} = \frac{1}{|N(v)|}$  is the weighting factor (importance) of node u's message to node v
  - $\Rightarrow \alpha_{vu}$  is defined explicitly based on the structural properties of the graph (node degree)
  - $\Rightarrow$  All neighbors  $u \in N(v)$  are equally important to node v

#### Graph Attention Network (GAT)

# Weighted sum for each u's message to v

$$\begin{aligned} & \boldsymbol{u} \text{'s message to } \boldsymbol{v} \\ \mathbf{h}_{v}^{(l)} &= \sigma(\sum_{u \in N_{v}} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \end{aligned}$$

- Can we do better than simple neighborhood aggregation?
  - Let weighting factors  $\alpha_{vu}$  to be learned!
- Goal: Specify arbitrary importance to different neighbors of each node in the graph
- Idea: Compute embedding  $m{h}_v^{(l)}$  of each node in the graph following an attention strategy:
  - Nodes attend over nodes in their neighborhoods
  - Determine weights for different nodes in a neighborhood through optimization

#### Attention Mechanism (1)

- Let a be an attention mechanism
  - Attention coefficient  $e_{vu}$  is computed by att based on the messages of v,u:

$$e_{vu} = att(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_v^{(l-1)})$$

•  $oldsymbol{e}_{vu}$  indicates the importance of  $oldsymbol{u}'$ s message to node  $oldsymbol{v}$ 



#### Attention Mechanism (2)

- Normalize  $e_{vu}$  into the final attention weight  $lpha_{vu}$ 
  - Apply the softmax function, so that  $\sum_{u \in N(v)} \alpha_{vy} = 1$ :

$$v$$
's Attention to  $u$ :

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N_v} \exp(e_{vk})}$$

• Aggregate the information based on  $\alpha_{vu}$ :

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N_{v}} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$



Weighted sum using 
$$\alpha_{AB}$$
,  $\alpha_{AC}$ ,  $\alpha_{AD}$ :
$$\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$$

**Exponential function** 

#### Attention Mechanism (3)

- What is the form of attention mechanism att?
  - The approach is agnostic to the choice of att
    - E.g., use a concatenate-based neural network Recall edge-level prediction head in lecture 5

$$\mathbf{h}_{A}^{(l-1)} \quad \mathbf{h}_{B}^{(l-1)} \quad \mathbf{Concatenate} \quad \mathbf{Linear} \quad e_{AB} \quad e_{AB} = att\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right) \\ = \mathrm{Linear}\left(\mathrm{Concat}\left(\mathbf{W}^{(l)}\mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)}\right)\right)$$

- att have trainable parameters (weights in the Linear layer)
  - Learn the parameters together with weight matrices (i.e., other parameter of the neural net  $\mathbf{W}^{(l)}$ ) in an end-to-end fashion

#### Attention Mechanism (4)

- The approach is **agnostic** to the function we use to compute e
  - E.g., use inner product



#### Multi-head Attention

- Multi-head attention: Stabilizes the learning process of attention mechanism
  - Run through several attention heads with different parameters (vector computation):

$$\begin{aligned} \mathbf{h}_{v}^{(l)}[1] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[2] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[3] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \end{aligned} \qquad \begin{array}{l} \alpha_{vu}^{1}, \alpha_{vu}^{2}, \alpha_{vu}^{3} \text{ are Calculated by } \alpha^{(l)}[1], \alpha^{(l)}[2], \alpha^{(l)}[3] \\ \text{respectively} \end{aligned}$$

- Outputs are aggregated:
  - By concatenation or summation
  - $\mathbf{h}_{n}^{(l)} = AGG(\mathbf{h}_{n}^{(l)}[1], \mathbf{h}_{n}^{(l)}[2], \mathbf{h}_{n}^{(l)}[3])$

#### Graph Attention Network (GAT)

Learnable single-head or multihead attention mechanism

- A GAT layer (single head):
  - Attention computing: calculate the importance of neighbors

$$\alpha_{vu} = att\left(\mathbf{h}_v^{(l-1)}, \mathbf{h}_u^{(l-1)}\right)$$

Message computing: transform information of neighbor node to a message

$$\mathbf{m}_{u}^{(l)} = \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}, u \in N_{v}$$

Aggregate message: aggregate messages from neighbor nodes

$$\mathbf{h}_{v}^{(l)} = \sigma \left( \sum_{u \in N_{v}} \mathbf{m}_{u}^{(l)} \right)$$

#### Benefit of Attention Mechanism (1)

- Allow GNNs to adaptively assign different weights to neighbors during training
  - In cases where the graphs contain many noise
    - Nodes with inaccurate feature
    - Edges that are incorrect



GCN: Aggregate the messages from neighbors with **same** weights



GAT: Aggregate the messages from neighbors with adaptive weights

#### Benefit of Attention Mechanism (2)

- Learnable weighting function can provide a good interpretability
  - Different edge weights indicates difference importance of the neighbor nodes
    - We can simply sum up the attention scores of all layers between two nodes
  - Take recommender system as an example



- User aggregates the information from items with different weights
  - High attention weights indicate that user prefers these corresponding items

#### Machine Learning Tasks for Graph-structured Data

Graph Attention Network

Introduction of Heterogeneous Graph

Multi-hop Attention Graph Neural Network

#### Heterogeneous Graph (1)

- What is heterogeneous graph (HG)?
  - A graph with multiple node types and edge types
- Example: E-Commerce graph
  - Node types: User, Item, Query, Location, ...
  - Edge types: Purchase, Visit, Guide, Search, Click, ...
  - Different node type's feature spaces can be different!



#### Heterogeneous Graph (2)

- Example: Academic Graph
  - Node type: Author, Paper, Venue, Field, ...
  - Edge type: Publish, Citation, ...



Node type: a: Author, t: Field, v: Venue

Edge type: p: Publish

Image source

#### Heterogeneous Graph (3)

- Example: Biomedical Graph
  - Node type: Drug, Disease, Protein, ...
  - Edge type: Associate, Treat, Cause, ...



#### Heterogeneous Graph (3)

- Heterogeneous Graph (HG) G(V, E, T, R)
  - V is the vertex set  $\{v_i\}$ 
    - $N_v$ : the set of neighbors of v
  - E is the edge sets with edge type  $(v_i, r, v_j) \in E$ 
    - $N_v^r$ : the set of neighbors with relation r of v
    - $|N_v^r|$ : the set size of  $N_v^r$
  - *T* is the **node type** set
  - R is the edge(relation) type set  $r \in R$ 
    - |R|: the number of relations

## Homogeneous GCN (1)

- How to learn the representation of node and edge in HG?
  - Previous GNNs (GCN, GraphSAGE, GAT) focus on homogeneous graphs
  - How to extend the GCN to handle heterogeneous graphs?
  - Recall the way GCN performs message passing on homogeneous graphs:
    - Message function
    - Aggregation of messages



INPUT GRAPH

## Homogeneous GCN (2)

- A GCN layer:
  - Message computing: transform information of neighbor node to a message

$$\mathbf{m}_{u}^{(l)} = \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}, u \in N_{v}$$

• Aggregate message: aggregate messages from neighbor nodes

$$\mathbf{h}_{v}^{(l)} = \sigma \left( \sum_{u \in N(v)} \mathbf{m}_{u}^{(l)} \right)$$



## Homogeneous GCN (3)

- A GCN layer:
  - Message computing: transform information of neighbor node to a message

$$\mathbf{m}_{u}^{(l)} = \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}, u \in N(v)$$

• In homogeneous graph, we use same weight matrix to perform message computing



#### Relational GCN (1)

How about the graph with multiple relational types?



#### Relational GCN (2)

- How about the graph with multiple relational types?
  - Extend GCN to Relational GCN (RGCN)!
  - Use different weight matrix of message process for different relation types



#### Relational GCN (3)

- How about the graph with multiple relational types?
  - Extend GCN to Relational GCN (RGCN)!
  - Use different weight matrix of message process for different relation types



#### Relational GCN (4)

Comparison between GCN and Relational GCN



All the nodes in a layer share same weight

Node with different type uses different weight

#### Relational GCN (5)

- A Relational GCN layer:
  - Message computing: transform information of neighbor node of relation r to a  $\mathbf{m}_{u,r}^{(l)} = \frac{1}{|N_v^r|} \mathbf{W}_r^{(l)} \mathbf{h}_u^{(l-1)}, u \in N_v^r$ message

$$\mathbf{m}_{u,r}^{(l)} = \frac{1}{|N_v^r|} \mathbf{W}_r^{(l)} \mathbf{h}_u^{(l-1)}, u \in N_v^r$$

• Aggregate message: aggregate messages from neighbor nodes

$$\mathbf{h}_{v}^{(l)} = \sigma \left( \sum_{r \in R} \sum_{u \in N_{v}^{r}} \mathbf{m}_{u,r}^{(l)} \right)$$

For every relation type

#### Scalability of RGCN (1)

#### Parameters of RGCN

- Suppose we have L layers, |R| relations, and the hidden size d at every layer is identical
- For each layer, model has |R| weights  $\mathbf{W}_r^{(l)} \in \mathbb{R}^{d \times d}$ . So parameters of every layer can be  $|R| \times d^2$
- Considering L layers, the parameters of RGCN can be  $L \times |R| \times d^2$ !
- How to improve the scalability of RGCN?

## Scalability of RGCN (2)

- Block Diagonal Matrix
  - Use **sparser** weight matrices
  - Parameter of a weight matrix can be reduced from  $d^2$  to  $\frac{d^2}{B}$



## Scalability of RGCN (3)

- Basis Learning
  - Share weights across different relations
  - Use B shared basis matrices  $\mathbf{M}_b^{(l)}$  and relation-specific learnable weight  $a_{rb}^{(l)}$  to represent a relation matrix:

$$\mathbf{W}_r^{(l)} = \sum_{b=1}^B a_{rb}^{(l)} \cdot \mathbf{M}_b^{(l)}$$

• Parameter of all weight matrices in a layer can be reduced from  $|R|d^2$  to  $B + Bd^2$ 

$$B ext{ scalars } \{a_{r0}^{(l)}, ..., a_{rB}^{(l)}\} ext{ Basis matrix}$$

#### Machine Learning Tasks for Graph-structured Data

Graph Attention Network

Introduction of Heterogeneous Graph

Multi-hop Attention Graph Neural Network

Multi-hop attention graph neural network. IJCAI 2020

#### Homogeneous GAT (1)

• How to extend Graph Attention Network (GAT) to heterogenous graphs?



## Homogeneous GAT (2)

#### A GAT layer:

Learnable attention mechanism

- Attention computing: calculate the importance of neighbors  $\alpha_{vu}=a\left(\mathbf{h}_v^{(l-1)},\mathbf{h}_u^{(l-1)}\right)$
- Message computing: transform information of neighbor node to a message  $\mathbf{m}_{u}^{(l)} = \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$ ,  $u \in N_{v}$
- Aggregate message: aggregate messages from neighbor nodes

$$\mathbf{h}_{v}^{(l)} = \sigma \left( \sum_{u \in N_{v}} \mathbf{m}_{u}^{(l)} \right)$$

#### Homogeneous GAT (3)

# Learnable weights for source node and target node

- Attention mechanism *a*:
  - Compute attention coefficient  $e_{vu}$  based on v,u:

$$e_{vu} = \operatorname{Linear}\left(\operatorname{Concat}\left(\mathbf{W}_{t}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}_{s}^{(l)}\mathbf{h}_{v}^{(l-1)}\right)\right)$$

Linear layer

• Normalize  $e_{vu}$  by the softmax function

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N_v} \exp(e_{vk})}$$

 $N_v$ : neighborhood nodes of v

## Homogeneous GAT (4)

- Attention mechanism a:
  - Compute attention coefficient  $e_{vu}$  based on v, u:

$$e_{vu} = \operatorname{Linear}\left(\operatorname{Concat}\left(\mathbf{W}_{t}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}_{s}^{(l)}\mathbf{h}_{v}^{(l-1)}\right)\right)$$

Assign learnable weights on node embeddings:



: learnable weights

Multi-hop Attention Graph Neural Network. IJCAI 2020

#### Heterogeneous GAT (1)

- How to compute attention coefficient with edge type?
  - Similar as RGCN, we can use an additional weight to model the relation type!



## Heterogeneous GAT (2)

- How to compute attention coefficient with edge type?
  - Similar as RGCN, we can use an additional weight to model the relation type!
  - Attention mechanism with relation:



#### Heterogeneous GAT (3)

- How to encode the relation type into a vector?
  - Simplest way: assign a learnable vector to every relation type



#### Heterogeneous GAT (4)

- Attention mechanism *att* for heterogeneous graph:
  - Compute attention coefficient  $e_{vu}$  based on  $v, u, r_{vu}$ :

$$e_{vu} = \operatorname{Linear}\left(\operatorname{Concat}\left(\mathbf{W}_{t}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}_{s}^{(l)}\mathbf{h}_{v}^{(l-1)}, \mathbf{W}_{r_{vu}}^{(l)}\mathbf{e}_{r_{vu}}\right)\right)$$

 $r_{vu}$ : relation type between v and u

• Normalize  $e_{vu}$  by softmax function

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N_v} \exp(e_{vk})}$$

## Limitation of Single Hop Attention (1)

- A single GAT layer can only explore the relationship between a node and its one-hop neighbors
  - Target node only attends to its immediate neighbors



## Limitation of Single Hop Attention (2)

- A single hop attention falls short in exploring broader graph structure and multi-hop neighbors
  - Stacking multiple GAT layers causes over-smoothing and over-fitting



#### Benefit of Multi-Hop Attention (1)

Benefit of using multi-hop neighbors in a GAT layer

Exploit important nodes that are not directed connected

• Less number of message-passing layers is needed to propagate

information



#### Benefit of Multi-Hop Attention (2)

- Benefit of using multi-hop neighbors in a GAT layer
  - Attention score not only depends on node representation
  - Compute the attention score over all the possible paths connecting two nodes



All possible paths between A and E

#### Multi-Hop Attention (1)

- How to incorporate multi-hop neighbors in a GAT layer?
  - We can first calculate the attention of one-hop neighbors

$$\alpha_{vu} = a(\mathbf{h}_u, \mathbf{h}_v, \mathbf{e}_{r_{vu}})$$
 Relation embedding

• Attention scores can be organized as an adjacent matrix A:



#### Multi-Hop Attention (2)

- Each node can access its l-hop neighbors by  $A^l = \overrightarrow{AAA} \cdots$ 
  - For example,  $A_{ij}^2$  sums up number of all the paths of length 1 between each of  $v_i$ 's neighbors and  $v_i$

 $v_3$ 's neighbors:  $v_1$ 

## Multi-Hop Attention (3)

- How to incorporate multi-hop neighbors in a GAT layer?
  - Attention diffusion!

$$\mathcal{A} = \sum_{k=0}^{\infty} \alpha (1-\alpha)^k A^k$$
 ,  $0 < \alpha < 1$ 

- Increasing the receptive field of the attention
  - Attention between two nodes not only depends on node representation, but also the paths between them:

$$\mathcal{A}_{ij} = \alpha A_{ij}^{0} + \alpha (1 - \alpha) A_{ij}^{1} + \alpha (1 - \alpha)^{2} A_{ij}^{2} + \alpha (1 - \alpha)^{3} A_{ij}^{3} + \cdots$$

1-hop path attention between  $v_i$  and  $v_i$ 

2-hop path attention 3-hop path attention between  $v_i$  and  $v_i$ 

between  $v_i$  and  $v_i$ 

#### Multi-Hop Attention (4)

- Why do we need  $\alpha(1-\alpha)^k$ ?
  - It can control the weight of attention score of different hop
  - Nodes further away should be weighted less in message aggregation!
  - For example,  $\alpha = 0.5$ :

$$\mathcal{A}_{ij} = 0.5A_{ij}^0 + 0.25A_{ij}^1 + 0.125A_{ij}^2 + 0.0625A_{ij}^3 + \cdots$$

Weight decays gradually

#### Multi-Hop Attention GNN

Multi-hop attention GNN:

#### **Attention score**

between 
$$u, v$$

• One-hop attention computing: between 
$$u, v$$
 
$$A_{vu}^{(l-1)} = att(\mathbf{h}_u^{(l-1)}, \mathbf{h}_v^{(l-1)}, \mathbf{e}_{r_{vu}})$$

Building multi-hop attention diffusion matrix:

$$\mathcal{A}=\sum_{k=0}^{\infty} lpha(1-lpha)^k A^{(l-1)^k}$$
 ,  $0$ 

• Aggregate message: aggregate messages based on multi-hop attention

$$\mathbf{h}_{v}^{(l)} = \sum_{u \in N_{v}} \mathcal{A}_{vu} \mathbf{h}_{u}^{(l-1)}$$

• Note:  $N_v$  here is defined as the set of multi-hop neighbors (instead of immediate neighbors). It can be the set of all nodes for larger k

#### Limitation of Attention Diffusion

- But computing the attention diffusion is costly
  - $\mathcal{A}^l$  will be denser with the growing of l
  - Using  $\mathcal A$  will lead to computational complexity and memory requirement of  $o(n^2)$
  - How to compute it efficiently?

#### Approximate Computation for Attention Diffusion (1)

• Let's first rewrite the aggregation step in matrix form:

$$\mathbf{H}^{(l)} = \mathcal{A}\mathbf{H}^{(l-1)} = \sum_{k=0}^{\infty} \alpha (1 - \alpha)^k A^k \mathbf{H}^{(l-1)}$$

Expand the formula:

$$\mathbf{H}^{(l)} = \alpha \mathbf{H}^{(l-1)} + \alpha (1 - \alpha) A \mathbf{H}^{(l-1)} + \alpha (1 - \alpha)^2 A^2 \mathbf{H}^{(l-1)} + \cdots$$

$$k = 0 \qquad k = 1 \qquad k = 2$$

#### Approximate Computation for Attention Diffusion (2)

• When k = 1:

$$\mathbf{Z}^{(1)} = \alpha \mathbf{H}^{(l-1)} + \alpha (1 - \alpha) A^{(l-1)} \mathbf{H}^{(l-1)}$$

• When 
$$k = 2$$
:  $k = 0$   $k = 1$   $k = 2$ 

$$\mathbf{Z}^{(2)} = \alpha \mathbf{H}^{(l-1)} + \alpha (1 - \alpha) A \mathbf{H}^{(l-1)} + \alpha (1 - \alpha)^2 A^2 \mathbf{H}^{(l-1)}$$

$$= \alpha \mathbf{H}^{(l-1)} + (1 - \alpha) A \left( \alpha \mathbf{H}^{(l-1)} + \alpha (1 - \alpha) A \mathbf{H}^{(l-1)} \right)$$

$$= \alpha \mathbf{H}^{(l-1)} + (1 - \alpha) A \mathbf{Z}^{(1)}$$

We find a pattern!

For simplicity, we rewrite  $A^{(l-1)}$  as A here

#### Approximate Computation for Attention Diffusion (3)

• When k = 3:

$$k = 0 k = 1 k = 2 k = 3$$

$$\mathbf{Z}^{(3)} = \alpha \mathbf{H}^{(l-1)} + \alpha (1 - \alpha) A \mathbf{H}^{(l-1)} + \alpha (1 - \alpha)^2 A^2 \mathbf{H}^{(l-1)} + \alpha (1 - \alpha)^3 A^3 \mathbf{H}^{(l-1)}$$

$$= \alpha \mathbf{H}^{(l-1)} + (1 - \alpha) A \left( \alpha \mathbf{H}^{(l-1)} + \alpha (1 - \alpha) A \mathbf{H}^{(l-1)} + \alpha (1 - \alpha)^2 A^2 \mathbf{H}^{(l-1)} \right)$$

$$= \alpha \mathbf{H}^{(l-1)} + (1 - \alpha) A \mathbf{Z}^{(2)}$$

• So we can conclude:

$$\mathbf{Z}^{(k)} = \alpha \mathbf{Z}^{(0)} + (1 - \alpha) A \mathbf{Z}^{(k-1)}, \mathbf{Z}^{(0)} = \mathbf{H}^{(l-1)}$$
  
 $\mathbf{H}^{(l)} = \mathbf{Z}^{(\infty)}$ 

An approximated iterative computation to the original attention diffusion!

For simplicity, we rewrite  $A^{(l-1)}$  as A here

#### Approximate Computation for Attention Diffusion (4)

- An approximated multi-hop attention GNN:
  - One-hop attention computation:

$$A_{vu}^{(l-1)} = a(\mathbf{h}_{u}^{(l-1)}, \mathbf{h}_{v}^{(l-1)}, \mathbf{e}_{r_{vu}})$$

Aggregate message: iteratively perform the following computation

$$\mathbf{Z}^{(0)} = \mathbf{H}^{(l-1)}$$

$$\mathbf{Z}^{(i+1)} = \alpha \mathbf{Z}^{(0)} + (1 - \alpha) A^{(l-1)} \mathbf{Z}^{(i)}, i = 0, ..., l - 1$$

$$\mathbf{H}^{(l)} = \mathbf{Z}^{(l)}$$

#### Summary of the Lecture

- Recap: Graph attention mechanism
  - Graph attention network on homogeneous graph:
    - Compute the importance score of neighbor by learnable weights
    - Multi-head attention
  - Heterogeneous graph:
    - Use cases
    - Relational GCN
  - Multi-hop attention network:
    - Single-hop graph attention network on heterogeneous graph
    - Multi-hop graph attention network on heterogeneous graph through diffusion