

00360899.TXT

SEQUENCE LISTING

<110> Lobley, Anna Elizabeth
 Michalovich, David
 Stancovski, Ilana
 Allen, Kathryn Elizabeth
 Allen, Janet Marjorie
 Osypenko, Vadym Nikolaevich
 Gurney, Alison Marion

<120> SEROTONIN RECEPTOR

<130> 04270/0202281-US0

<140> 10/520,052

<141>

<150> PCT/GB03/03130
 <151> 2003-07-21

<150> GB 0216903.5
 <151> 2002-07-19

<160> 30

<170> Seqwin99, version 1.02

<210> 1
 <211> 1236
 <212> DNA
 <213> Homo sapiens

<400> 1

atggccctat	ggccctgtct	ccatctcacc	ttccctgggt	tcagcattac	cttgctgttg	60
gtccacgggc	agggcttcca	aggcacagca	gccatctggc	catcccttct	caacgtcaac	120
ttgtccaaga	agggttcagga	aagcatccag	atcccgaaca	atgggagtgc	gcccctgctc	180
gtggatgtgc	gggtgtttgt	ctccaaacgtg	ttaatgtgg	acatcctgcg	atacacaatg	240
tcctccatgc	tgctgtcttag	gctgtccctgg	ctggacactc	gcctggccctg	gaacactagt	300
gcacacccgc	ggcacgccccat	cacgctgccc	tgggagtc	tctggacacc	aaggctcacc	360
atccctggagg	cgctctgggt	ggactggagg	gaccagagcc	cccaggctcg	agtagaccag	420
gacggccacg	tgaagctcaa	cctggccctc	gccacggaga	ccaactgcaa	ctttgagctc	480
ctccacattcc	ccccgggacca	cagcaactgc	agcctcagat	tctacgctc	cagcaacacg	540
gcgatggagt	tagatgttca	ggcccacgtg	gtgaacgaga	ttgtgagtgt	caagagggaa	600
taatgtttt	atgatctgaa	gacccaagtc	ccaccccccagc	agctgggtgc	ctgcttccag	660
gtgacgctga	ggctgaagaa	cacggcgctc	aagtccatca	tcgctcttct	gggcctcgca	720
gaggcactgc	tgttggctga	cgtgtgcggg	gggttgcgtc	ccctccgggc	cattgagcgc	780
ataggctaca	aggtgacatt	gctgtctgat	tacctcgatc	tccactccctc	cctggtgccag	840
gccctggcca	gctcctccctc	ctgcaaccca	ctgctcattt	actacttcac	catcctgctg	900
ctgctgtct	tcctcagcac	catagagact	gtgctgctgg	ctgggctgtc	ggcccggggc	960
aacctgggg	ccaagagcgg	ccccagccca	gccccgagag	ggaaacagcg	agagcacggc	1020
aacccagggc	ctcatactgc	tgaagagccc	tccagaggag	taaagggtc	acagagaagc	1080
tggcctgaga	ctgctgaccg	catcttcttc	ctcgtgtatg	tgggtgggt	gctgtgcacc	1140
caattcgct	ttgcaggaat	ctggatgtgg	gcagcgtgca	agtctgacgc	agcccctgga	1200
gaggctgcac	cccatggcag	gcggcctaga	ctgtaa			1236

<210> 2

<211> 411

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Leu Trp Ser Leu Leu His Leu Thr Phe Leu Gly Phe Ser Ile

1

5

10

15

00360899.TXT

Thr Leu Leu Leu Val His Gly Gln Gly Phe Gln Gly Thr Ala Ala Ile
20 25 30

Trp Pro Ser Leu Phe Asn Val Asn Leu Ser Lys Lys Val Gln Glu Ser
35 40 45

Ile Gln Ile Pro Asn Asn Gly Ser Ala Pro Leu Leu Val Asp Val Arg
50 55 60

Val Phe Val Ser Asn Val Phe Asn Val Asp Ile Leu Arg Tyr Thr Met
65 70 75 80

Ser Ser Met Leu Leu Leu Arg Leu Ser Trp Leu Asp Thr Arg Leu Ala
85 90 95

Trp Asn Thr Ser Ala His Pro Arg His Ala Ile Thr Leu Pro Trp Glu
100 105 110

Ser Leu Trp Thr Pro Arg Leu Thr Ile Leu Glu Ala Leu Trp Val Asp
115 120 125

Trp Arg Asp Gln Ser Pro Gln Ala Arg Val Asp Gln Asp Gly His Val
130 135 140

Lys Leu Asn Leu Ala Leu Ala Thr Glu Thr Asn Cys Asn Phe Glu Leu
145 150 155 160

Leu His Phe Pro Arg Asp His Ser Asn Cys Ser Leu Ser Phe Tyr Ala
165 170 175

Leu Ser Asn Thr Ala Met Glu Leu Glu Phe Gln Ala His Val Val Asn
180 185 190

Glu Ile Val Ser Val Lys Arg Glu Tyr Val Val Tyr Asp Leu Lys Thr
195 200 205

Gln Val Pro Pro Gln Gln Leu Val Pro Cys Phe Gln Val Thr Leu Arg
210 215 220

Leu Lys Asn Thr Ala Leu Lys Ser Ile Ile Ala Leu Leu Val Pro Ala
225 230 235 240

Glu Ala Leu Leu Leu Ala Asp Val Cys Gly Gly Leu Leu Pro Leu Arg
245 250 255

Ala Ile Glu Arg Ile Gly Tyr Lys Val Thr Leu Leu Leu Ser Tyr Leu
260 265 270

Val Leu His Ser Ser Leu Val Gln Ala Leu Pro Ser Ser Ser Cys
275 280 285

Asn Pro Leu Leu Ile Tyr Tyr Phe Thr Ile Leu Leu Leu Leu Phe
290 295 300

Leu Ser Thr Ile Glu Thr Val Leu Leu Ala Gly Leu Leu Ala Arg Gly
305 310 315 320

Asn Leu Gly Ala Lys Ser Gly Pro Ser Pro Ala Pro Arg Gly Glu Gln
325 330 335

Arg Glu His Gly Asn Pro Gly Pro His Pro Ala Glu Glu Pro Ser Arg
340 345 350

00360899.TXT

Gly Val Lys Gly Ser Gln Arg Ser Trp Pro Glu Thr Ala Asp Arg Ile
355 360 365

Phe Phe Leu Val Tyr Val Val Gly Val Leu Cys Thr Gln Phe Val Phe
370 375 380

Ala Gly Ile Trp Met Trp Ala Ala Cys Lys Ser Asp Ala Ala Pro Gly
385 390 395 400

Glu Ala Ala Pro His Gly Arg Arg Pro Arg Leu
405 410

<210> 3

<211> 94

<212> DNA

<213> Homo sapiens

<400> 3

atggccctat ggtccctgct ccatctcacc ttcctgggt tcagcattac cttgctgttg 60
gtccacgggc agggcttcca agggacagca gcca 94

<210> 4

<211> 32

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Leu Trp Ser Leu Leu His Leu Thr Phe Leu Gly Phe Ser Ile
1 5 10 15

Thr Leu Leu Leu Val His Gly Gln Gly Phe Gln Gly Thr Ala Ala Ile
20 25 30

<210> 5

<211> 125

<212> DNA

<213> Homo sapiens

<400> 5

tctggccatc cctttcaac gtcaacttgt ccaagaaggt tcagggaaagc atccagatcc 60
cgaacaatgg gagtgcgccc ctgctcgtgg atgtgcgggt gtttgtctcc aacgtgttta 120
atgtg 125

<210> 6

<211> 41

<212> PRT

<213> Homo sapiens

<400> 6

Trp Pro Ser Leu Phe Asn Val Asn Leu Ser Lys Lys Val Gln Glu Ser
1 5 10 15

Ile Gln Ile Pro Asn Asn Gly Ser Ala Pro Leu Leu Val Asp Val Arg
20 25 30

Val Phe Val Ser Asn Val Phe Asn Val
35 40

<210> 7

<211> 45

<212> DNA

00360899.TXT

<213> Homo sapiens

<400> 7
gacatccctgc gatacacaat gtcctccatg ctgctgctta ggctg 45<210> 8
<211> 15
<212> PRT
<213> Homo sapiens<400> 8
Asp Ile Leu Arg Tyr Thr Met Ser Ser Met Leu Leu Leu Arg Leu
1 5 10 15<210> 9
<211> 107
<212> DNA
<213> Homo sapiens<400> 9
tcctggctgg acactcgccct ggccttggaaac actagtgcac acccgccggca cgccatcacg 60
ctgcctctggg agtctctctg gacaccaagg ctcaccatcc tggaggc 107<210> 10
<211> 36
<212> PRT
<213> Homo sapiens<400> 10
Ser Trp Leu Asp Thr Arg Leu Ala Trp Asn Thr Ser Ala His Pro Arg
1 5 10 15His Ala Ile Thr Leu Pro Trp Glu Ser Leu Trp Thr Pro Arg Leu Thr
20 25 30Ile Leu Glu Ala
35<210> 11
<211> 170
<212> DNA
<213> Homo sapiens<400> 11
gctctgggtg gactggaggg accagagccc ccaggctcga gtagaccagg acggccacgt 60
gaagctcaac ctggccctcg ccacggagac caactgcaac tttgagctcc tccacttccc 120
ccgggaccac agcaactgca gcctcagctt ctacgctctc agcaacacgg 170<210> 12
<211> 57
<212> PRT
<213> Homo sapiens<400> 12
Leu Trp Val Asp Trp Arg Asp Gln Ser Pro Gln Ala Arg Val Asp Gln
1 5 10 15Asp Gly His Val Lys Leu Asn Leu Ala Leu Ala Thr Glu Thr Asn Cys
20 25 30Asn Phe Glu Leu Leu His Phe Pro Arg Asp His Ser Asn Cys Ser Leu
35 40 45

00360899.TXT

Ser Phe Tyr Ala Leu Ser Asn Thr Ala
50 55

<210> 13
<211> 125
<212> DNA
<213> Homo sapiens

<400> 13
cgatggagtt agagttccag gcccacgtgg tgaacgagat tgtgagtgtc aagagggaat 60
acgttagttt ttagtctgaag acccaagtcc caccggcagca gctggtgccc tgcttccagg 120
tgacg 125

<210> 14
<211> 41
<212> PRT
<213> Homo sapiens

<400> 14
Met Glu Leu Glu Phe Gln Ala His Val Val Asn Glu Ile Val Ser Val 60
1 5 10 15

Lys Arg Glu Tyr Val Val Tyr Asp Leu Lys Thr Gln Val Pro Pro Gln 120
20 25 30

Gln Leu Val Pro Cys Phe Gln Val Thr
35 40

<210> 15
<211> 211
<212> DNA
<213> Homo sapiens

<400> 15
ctgaggctga agaacacggc gctcaagtcc atcatcgctc tcttggtgcc tgcagaggca 60
ctgttgtgg ctgacgtgtg cgggggttg ctgcccctcc gggccattga ggcgcataaggc 120
tacaaggtga cattgctgtc gagttacctc gtcctccact cctccctggc gcaggccctg 180
cccaagctcct cctcctgcaa cccactgctc a 211

<210> 16
<211> 71
<212> PRT
<213> Homo sapiens

<400> 16
Leu Arg Leu Lys Asn Thr Ala Leu Lys Ser Ile Ile Ala Leu Leu Val 60
1 5 10 15

Pro Ala Glu Ala Leu Leu Ala Asp Val Cys Gly Gly Leu Leu Pro 120
20 25 30

Leu Arg Ala Ile Glu Arg Ile Gly Tyr Lys Val Thr Leu Leu Leu Ser 60
35 40 45

Tyr Leu Val Leu His Ser Ser Leu Val Gln Ala Leu Pro Ser Ser Ser 120
50 55 60

Ser Cys Asn Pro Leu Leu Ile
65 70

<210> 17
<211> 168
<212> DNA

00360899.TXT

<213> Homo sapiens

<400> 17 tttactactt caccatcctg ctgctgctgc tcttcctcag caccatagag actgtgctgc 60
tggctgggct gctggcccg ggcacccctg gggccaagag cggccccagc ccagccccga 120
gaggggaaca gcgagagcac ggcaacccag ggccctcatcc tgctgaag 168

<210> 18
<211> 56
<212> PRT
<213> *Homo sapiens*

<400> 18
 Tyr Tyr Phe Thr Ile Leu Leu Leu Leu Phe Leu Ser Thr Ile Glu
 1 5 10 15
 Thr Val Leu Leu Ala Gly Leu Leu Ala Arg Gly Asn Leu Gly Ala Lys
 20 25 30
 Ser Gly Pro Ser Pro Ala Pro Arg Gly Glu Gln Arg Glu His Gly Asn
 35 40 45

Pro Gly Pro His Pro Ala Glu Glu
50 55

<210> 19
<211> 191
<212> DNA
<213> *Homo sapiens*

<400> 19 agccctccag aggagtaaag gggtcacaga gaagctggcc tgagactgct gaccgcac 60
tcttcctcgt gtatgtggtt ggggtgttgt gcacccaatt cgtcttgca ggaatctgga 120
tgtgggcagc gtgcaagtct gacgcagccc ctggagaggc tgcaccccat ggcaggcg 180
ctagactgt a 191

<210> 20
<211> 62
<212> PRT
<213> *Homo sapiens*

<400> 20
Pro Ser Arg Gly Val Lys Gly Ser Gln Arg Ser Trp Pro Glu Thr Ala
1 5 10 15

Asp Arg Ile Phe Phe Leu Val Tyr Val Val Gly Val Leu Cys Thr Gln
20 25 30

Ala Pro Gly Glu Ala Ala Pro His Glu Arg Arg Pro Arg Lys
50 55 60

<210> Z1
<211> 1411
<212> DNA
<213> *Homo sapiens*

<400> 21 atggccctat ggtccctgct ccatctcacc ttcctgggt tcagcattac cttgctgttgc 60
gtccacggc agggcttcca agggacagca gccatctggc catccctctt caacgtcaac 120
ttgtccaaga agttcagga aagcatccag atcccgaaca atgggagtgc gccccgtgctc 180

00360899.TXT

gtggatgtgc	gggtgttgt	ctccaacgtg	ttaatgtgg	acatccctgcg	atacacaatg	240
tcctccatgc	tgtgtcttag	gctgtcctgg	ctggacactc	gcctggcctg	gaacactagt	300
gcacacccgc	ggcacgccat	cacgctgccc	tgggagtc	tctggacacc	aaggctcacc	360
atccctggagg	cgctctgggt	ggactggagg	gaccagagcc	cccaggctcg	agtagaccag	420
gacggccacg	tgaagctcaa	cctggccctc	gccacggaga	ccaactgcaa	cttgagctc	480
ctccacttcc	cccgggacca	cagcaactgc	agcctcagct	tctacgctct	cagcaacacg	540
gcgatggagt	tagagttcca	ggcccacgtg	gtgaacgaga	ttgtgagtgt	caagagggaa	600
tacgttagtt	atgatctgaa	gacccaagtc	ccaccccccagc	agctggtgcc	ctgcttccag	660
gtgacgctga	ggctgaagaa	cacggcgaa	ttccggcggc	ccctcttcta	tgtggtcagc	720
ctgctactgc	ccagcatctt	cctcatggtc	atggacatcg	ttggcttcta	cctgcccccc	780
aacagtggcg	agagggtctc	tttcaagatt	acactcctcc	ttggctactc	ggttttcttg	840
atcatcgtt	ctgacacgct	gccgggacact	gccatggca	ctccctctat	tgtgttctac	900
tttgggtgt	gcatggctct	gctgggtata	agtttggccg	agaccatctt	cattgtgcgg	960
ctggtgacaca	agcaagacct	gcagcagccc	gtgcctgctt	ggctgcgtca	cctggttctg	1020
gagagaatcg	cctggctact	ttgcctgagg	gagcagtc	cttcccagag	gcccccaagcc	1080
acctcccaag	ccaccaagac	tgatgactgc	ttagccatgg	gaaaccactg	cagccacatg	1140
ggaggacccc	aggacttcga	gaagagcccg	agggacagat	gtagccctcc	cccacccact	1200
cgggaggcct	cgctggcggt	gtgtggctg	ctgcaggagc	tgtctccat	ccggcaattc	1260
ctggaaaagc	gggatgagat	ccgagaggtg	gcccggagact	ggctgcgcgt	gggctccgtg	1320
ctggacaagc	tgttatttcca	catttacctg	ctggcggtgc	tggcttacag	catcaccctg	1380
qttagtgcct	gttccatctg	gcagtcgtc	c			1411

<210> 22

<211> 1269

<212> DNA

<213> Homo sapiens

<400> 22

atgctgtgt	gggtccagca	ggcgctgctc	gccttgctcc	tccccacact	cctggcacag	60
ggagaagcca	ggaggagccg	aaacaccacc	aggcccgcct	tgctgaggct	gtcggttac	120
cttttgcaca	actacaggaa	gggtgtgcgc	cccgtgaggg	actggaggaa	gccaaccacc	180
gtatccattg	acgtcattgt	ctatgcccattc	ctcaacgtgg	atgagaagaa	tcaaggctgt	240
accacctaca	tctggtaccg	gcagtactgg	actgatgagt	ttctccagtg	gaaccctgag	300
gactttgaca	acatcaccaa	gttgcctatc	cccacggaca	gcatctgggt	cccggacatt	360
ctcatcaatg	agttcgtgga	tgtgggaaag	tctccaaata	tcccgtacgt	gtatattcgg	420
catcaaggcg	aagttcagaa	ctacaagccc	cttcaggtgg	tgactgcctg	tagcctcgac	480
atctacaact	tccccttcga	tgtccagaac	tgctcgctga	ccttcaccag	ttggctgcac	540
accatccagg	acatcaacat	ctctttgtgg	cgcttgccag	aaaaggtgaa	atccgacagg	600
agtgtcttca	tgaaccagggg	agagtgggag	ttgctgggggg	tgctgcccta	ctttcgggag	660
ttcagcatgg	aaagcagtaa	ctactatgca	gaaatgaagt	tctatgtgt	catccgcgaa	720
ttcctcaagt	ccatcatcgc	tctcttggtg	cttcgcagagg	cactctgtt	ggctgcacgt	780
tgcgggggggt	tgtgccttcc	ccggccatt	gagcgcata	gctacaaggt	gacattgtctg	840
ctgaggattacc	tcgtccttcca	ctcctccctg	gtcgaggcccc	tgcccagtc	ctccttctgc	900
aaccctactgc	tcatttacta	cttaccatc	ctgtgtctgc	tgctcttctt	cagcaccata	960
gagactgtgc	tgctggctgg	gctgtggcc	cggggcaacc	ttggggccaa	gagcggcccc	1020
agcccagccc	cgagaggggg	acagcgtgg	cacggcaacc	cagggcctca	tcctgtctgaa	1080
gagcccttca	gaggagtaaa	ggggtcacag	agaagctggc	ctgagactgc	tgaccgcattc	1140
ttcttcctcg	tgtatgtgg	tggggtgcgt	tgccaccaat	tcgtcttgc	aggaatctgg	1200
atgtgggcag	cgtgcagtc	tgacgcagcc	cctggagagg	ctgcacccca	tggcaggccgg	1260
ccttagactg						1269

<210> 23

<211> 470

<212> PRT

<213> Homo sapiens

<400> 23

Met Ala Leu Trp Ser Leu Leu His Leu Thr Phe Leu Gly Phe Ser Ile
1 5 10 15

Thr Leu Leu Leu Val His Gly Gln Gly Phe Gln Gly Thr Ala Ala Ile
20 25 30

00360899.TXT

Trp Pro Ser Leu Phe Asn Val Asn Leu Ser Lys Lys Val Gln Glu Ser
 35 40 45
 Ile Gln Ile Pro Asn Asn Gly Ser Ala Pro Leu Leu Val Asp Val Arg
 50 55 60
 Val Phe Val Ser Asn Val Phe Asn Val Asp Ile Leu Arg Tyr Thr Met
 65 70 75 80
 Ser Ser Met Leu Leu Arg Leu Ser Trp Leu Asp Thr Arg Leu Ala
 85 90 95
 Trp Asn Thr Ser Ala His Pro Arg His Ala Ile Thr Leu Pro Trp Glu
 100 105 110
 Ser Leu Trp Thr Pro Arg Leu Thr Ile Leu Glu Ala Leu Trp Val Asp
 115 120 125
 Trp Arg Asp Gln Ser Pro Gln Ala Arg Val Asp Gln Asp Gly His Val
 130 135 140
 Lys Leu Asn Leu Ala Leu Ala Thr Glu Thr Asn Cys Asn Phe Glu Leu
 145 150 155 160
 Leu His Phe Pro Arg Asp His Ser Asn Cys Ser Leu Ser Phe Tyr Ala
 165 170 175
 Leu Ser Asn Thr Ala Met Glu Leu Glu Phe Gln Ala His Val Val Asn
 180 185 190
 Glu Ile Val Ser Val Lys Arg Glu Tyr Val Val Tyr Asp Leu Lys Thr
 195 200 205
 Gln Val Pro Pro Gln Gln Leu Val Pro Cys Phe Gln Val Thr Leu Arg
 210 215 220
 Leu Lys Asn Thr Ala Glu Phe Arg Arg Pro Leu Phe Tyr Val Val Ser
 225 230 235 240
 Leu Leu Leu Pro Ser Ile Phe Leu Met Val Met Asp Ile Val Gly Phe
 245 250 255
 Tyr Leu Pro Pro Asn Ser Gly Glu Arg Val Ser Phe Lys Ile Thr Leu
 260 265 270
 Leu Leu Gly Tyr Ser Val Phe Leu Ile Ile Val Ser Asp Thr Leu Pro
 275 280 285
 Ala Thr Ala Ile Gly Thr Pro Leu Ile Gly Val Tyr Phe Val Val Cys
 290 295 300
 Met Ala Leu Leu Val Ile Ser Leu Ala Glu Thr Ile Phe Ile Val Arg
 305 310 315 320
 Leu Val His Lys Gln Asp Leu Gln Gln Pro Val Pro Ala Trp Leu Arg
 325 330 335
 His Leu Val Leu Glu Arg Ile Ala Trp Leu Leu Cys Leu Arg Glu Gln
 340 345 350
 Ser Thr Ser Gln Arg Pro Pro Ala Thr Ser Gln Ala Thr Lys Thr Asp
 355 360 365

00360899.TXT

Asp Cys Ser Ala Met Gly Asn His Cys Ser His Met Gly Gly Pro Gln
 370 375 380
 Asp Phe Glu Lys Ser Pro Arg Asp Arg Cys Ser Pro Pro Pro Pro Pro
 385 390 395 400
 Arg Glu Ala Ser Leu Ala Val Cys Gly Leu Leu Gln Glu Leu Ser Ser
 405 410 415
 Ile Arg Gln Phe Leu Glu Lys Arg Asp Glu Ile Arg Glu Val Ala Arg
 420 425 430
 Asp Trp Leu Arg Val Gly Ser Val Leu Asp Lys Leu Leu Phe His Ile
 435 440 445
 Tyr Leu Leu Ala Val Leu Ala Tyr Ser Ile Thr Leu Val Met Leu Trp
 450 455 460
 Ser Ile Trp Gln Tyr Ala
 465 470
 <210> 24
 <211> 423
 <212> PRT
 <213> Homo sapiens
 <400> 24
 Met Leu Leu Trp Val Gln Gln Ala Leu Leu Ala Leu Leu Leu Pro Thr
 1 5 10 15
 Leu Leu Ala Gln Gly Glu Ala Arg Arg Ser Arg Asn Thr Thr Arg Pro
 20 25 30
 Ala Leu Leu Arg Leu Ser Asp Tyr Leu Leu Thr Asn Tyr Arg Lys Gly
 35 40 45
 Val Arg Pro Val Arg Asp Trp Arg Lys Pro Thr Thr Val Ser Ile Asp
 50 55 60
 Val Ile Val Tyr Ala Ile Leu Asn Val Asp Glu Lys Asn Gln Val Leu
 65 70 75 80
 Thr Thr Tyr Ile Trp Tyr Arg Gln Tyr Trp Thr Asp Glu Phe Leu Gln
 85 90 95
 Trp Asn Pro Glu Asp Phe Asp Asn Ile Thr Lys Leu Ser Ile Pro Thr
 100 105 110
 Asp Ser Ile Trp Val Pro Asp Ile Leu Ile Asn Glu Phe Val Asp Val
 115 120 125
 Gly Lys Ser Pro Asn Ile Pro Tyr Val Tyr Ile Arg His Gln Gly Glu
 130 135 140
 Val Gln Asn Tyr Lys Pro Leu Gln Val Val Thr Ala Cys Ser Leu Asp
 145 150 155 160
 Ile Tyr Asn Phe Pro Phe Asp Val Gln Asn Cys Ser Leu Thr Phe Thr
 165 170 175
 Ser Trp Leu His Thr Ile Gln Asp Ile Asn Ile Ser Leu Trp Arg Leu
 180 185 190

00360899.TXT

Pro Glu Lys Val Lys Ser Asp Arg Ser Val Phe Met Asn Gln Gly Glu
195 200 205

Trp Glu Leu Leu Gly Val Leu Pro Tyr Phe Arg Glu Phe Ser Met Glu
210 215 220

Ser Ser Asn Tyr Tyr Ala Glu Met Lys Phe Tyr Val Val Ile Arg Glu
225 230 235 240

Phe Leu Lys Ser Ile Ile Ala Leu Leu Val Pro Ala Glu Ala Leu Leu
245 250 255

Leu Ala Asp Val Cys Gly Gly Leu Leu Pro Leu Arg Ala Ile Glu Arg
260 265 270

Ile Gly Tyr Lys Val Thr Leu Leu Leu Ser Tyr Leu Val Leu His Ser
275 280 285

Ser Leu Val Gln Ala Leu Pro Ser Ser Ser Cys Asn Pro Leu Leu
290 295 300

Ile Tyr Tyr Phe Thr Ile Leu Leu Leu Leu Phe Leu Ser Thr Ile
305 310 315 320

Glu Thr Val Leu Leu Ala Gly Leu Leu Ala Arg Gly Asn Leu Gly Ala
325 330 335

Lys Ser Gly Pro Ser Pro Ala Pro Arg Gly Glu Gln Arg Glu His Gly
340 345 350

Asn Pro Gly Pro His Pro Ala Glu Glu Pro Ser Arg Gly Val Lys Gly
355 360 365

Ser Gln Arg Ser Trp Pro Glu Thr Ala Asp Arg Ile Phe Phe Leu Val
370 375 380

Tyr Val Val Gly Val Leu Cys Thr Gln Phe Val Phe Ala Gly Ile Trp
385 390 395 400

Met Trp Ala Ala Cys Lys Ser Asp Ala Ala Pro Gly Glu Ala Ala Pro
405 410 415

His Gly Arg Arg Pro Arg Leu
420

<210> 25

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> oligonucleotide primer

<400> 25

caactgcagc ctcagttct ac

22

<210> 26

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> oligonucleotide probe

00360899.TXT

<400> 26	
ctcagcaaca cggcgatgga gtttagagtt	29
<210> 27	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide primer	
<400> 27	
tcttgacact cacaatctcg ttca	24
<210> 28	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide primer	
<400> 28	
caactgcagc ctcagttct ac	22
<210> 29	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide probe	
<400> 29	
ctcagcaaca cggcgatgga gtttagagtt	29
<210> 30	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide primer	
<400> 30	
tcttgacact cacaatctcg ttca	24