Particle spectrograph

Wave operator and propagator

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_1^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#1}$	${\mathfrak r}_{1}^{\#2}{}_{\alpha}$
	$\frac{1}{k^2 (2 r_1 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	0	0	0	0
2]	$\frac{1}{\sqrt{2} (k^2 + k^4) (2r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
\\\\\	$\frac{i}{\sqrt{2} \ (k+k^3) \ (2 \ r_1 + r_5)}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
	0	0	0	0	0	0	0
	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$

	$\sigma_0^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{#1}$ †	0	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_2^{\#1}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	SO	(3) ir	reps			Μ	lultip	licitie	es
	$\sigma_0^{\#}$	¹ == 0				1			
	$\tau_{0}^{#2}$	== 0				1			
	$ au_0^{\#1}$: - 2 i k	$\sigma_{0}^{\#1} =$	= 0		1			
	$ au_1^{\#2}$	$2^{\alpha} + 2$	2 ik σ	#2α 1 ==	0	3			
	τ#1	1 ^α == (0			3			
	$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$								
	$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$					5			
	To	tal co	nstra	ints:		1	7		
C# つ	$f_{1}^{"-}\alpha$	0	0	0	īkt,	. v v 1	0	0	0
	χ								

Source constraints/gauge generators

Quadratic (free) action $S == \begin{cases} S == \\ \int \int \int \int \int_{3}^{1} (3t_{1} \ \omega^{\alpha_{i}} \ \omega_{i}^{\beta} + 3 \ f^{\alpha\beta} \ t_{\alpha\beta} + 3 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 6t_{1} \ \omega_{\alpha}^{\beta} \ \partial_{i} f^{\alpha i} + 6t_{1} \ \omega_{i}^{\beta} \\ \partial^{i} f^{\alpha}_{\alpha} - 3t_{1} \partial_{i} f^{\beta}_{\alpha} \partial^{\beta} f^{\alpha}_{\alpha} + 3t_{1} \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta}_{\alpha} + 6t_{1} \partial^{j} f^{\alpha}_{\alpha} \partial_{\theta} f^{\beta}_{i} + 2t_{1} \ \omega_{i\beta\alpha} \partial^{\beta} f^{\alpha i} + \\ 2t_{1} \partial_{\alpha} f_{i\beta} \partial^{\beta} f^{\alpha i} - 2t_{1} \partial_{\alpha} f_{\theta_{i}} \partial^{\beta} f^{\alpha i} + t_{1} \partial_{i} f_{\alpha\theta} \partial^{\beta} f^{\alpha i} + 2t_{1} \partial_{\theta} f^{\alpha}_{\alpha} \partial^{\beta} f^{\alpha i} + \\ t_{1} \partial_{\theta} f_{i\alpha} \partial^{\beta} f^{\alpha i} + t_{1} \ \omega_{\alpha i\theta} (\omega^{\alpha i\theta} + 2 \partial^{\beta} f^{\alpha i}) + t_{1} \ \omega_{\alpha i\theta} (\omega^{\alpha i\theta} + 2 \partial^{\beta} f^{\alpha i}) + \\ 4r_{1} \partial_{\beta} \omega_{\alpha i\theta} \partial^{\beta} \omega^{\alpha \beta i} + 2r_{1} \partial_{\beta} \omega_{\alpha \beta i} + 2r_{1} \partial_{\beta} \omega_{\alpha \beta i} - \\ 2r_{1} \partial_{i} \omega_{\alpha \beta \theta} \partial^{\beta} \omega^{\alpha \beta i} + 2r_{1} \partial_{\theta} \omega_{\alpha \beta i} \partial^{\beta} \omega^{\alpha \beta i} + 2r_{1} \partial_{\theta} \omega_{\alpha i\beta} \partial^{\beta} \omega^{\alpha \beta i} + \\ 3r_{5} \partial_{i} \omega_{\theta}^{\kappa} \partial^{\beta} \omega^{\alpha i} - 3r_{5} \partial_{\theta} \omega^{\kappa}_{i}^{\kappa} \partial^{\beta} \omega^{\alpha i} - 3r_{5} \partial_{\alpha} \omega^{\alpha i} \partial_{\kappa} \omega^{\kappa}_{i}^{\kappa} \partial^{\beta} \omega^{\alpha i} \\ \partial_{\kappa} \omega_{i}^{\kappa} \partial^{\beta} \partial_{\alpha} \omega^{\alpha i} \partial_{\alpha} \partial_{\alpha} \omega^{\kappa}_{i} - 6r_{5} \partial^{\beta} \omega^{\alpha i} - 3r_{5} \partial_{\alpha} \omega^{\alpha i} \partial_{\kappa} \omega^{\kappa}_{i}^{\kappa} \partial_{\kappa} \omega^{\kappa}_{i}^{\kappa} \partial^{\beta} \partial_{\alpha} \omega^{\alpha i} \partial_{\alpha} \partial_{\alpha}$

		ω_{z}^{\sharp}	#1 2 ⁺ αβ	$f_{2}^{#1}$	αβ	$\omega_{2}^{\sharp 1}{}_{lphaeta\chi}$
$\omega_2^{\#}$	÷1 †α	β	<u>t</u> 1 2	$-\frac{ikt}{\sqrt{2}}$		0
$f_{2}^{\#}$	±1 †α,	_	$\frac{kt_1}{\sqrt{2}}$	$k^2 t$	1	0
$\omega_2^{\#1}$	$+^{\alpha\beta}$	x	0	0		$k^2 r_1 + \frac{t_1}{2}$
$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	0		
$f_{0}^{\#2}$	0	0	0	0		
$f_{0}^{\#1}$	$i\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0		
$\omega_{0}^{\#1}$	$-t_1$	$-i \sqrt{2} kt_1$	0	0		
	$\omega_0^{\#1}$ †	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0^{\text{-}}}^{\#1}\dagger$		

$\omega_{1^{-}}^{*2} _{lpha} f_{1^{-}}^{*1} _{lpha} f_{1^{-}}^{*2}$	0 0	0	0 0	0 ikt	0 0	0 0	
$\omega_{1}^{\#^2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	
$\omega_{1^{^{-}}\alpha}^{\#_{1}}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	
$f_1^{r} + \alpha \beta$	$-\frac{ikt_1}{3\sqrt{2}}$	<i>i k t</i> ₁	$\frac{k^2 t_1}{3}$	0	0	0	
$\omega_1^{r\pm}_{\alpha\beta} \ f_1^{r\pm}_{\alpha\beta}$	$-\frac{t_1}{3\sqrt{2}}$	£1 3	$-\frac{1}{3}$ ikt ₁	0	0	0	
$\omega_1^{r+} _{\alpha\beta}$	$+^{\alpha\beta} k^2 (2 r_1 + r_5) + \frac{t_1}{6}$	$-\frac{t_1}{3\sqrt{2}}$	$\frac{ikt_1}{3\sqrt{2}}$	0	0	0	
	$+^{\alpha\beta}$	$+_{\alpha\beta}$	$+^{\alpha\beta}$	<u>.</u> 1 † ^α	<u>-</u> 2 †α	$-1+\alpha$,

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_1} > 0$$
Polarisations: 5
Square mass: $-\frac{t_1}{2r_1} > 0$
Spin: 2
Parity: Odd

Unitarity conditions

 $r_1 < 0 \&\& r_5 > -2 r_1 \&\& t_1 > 0$