SISTEMAS MULTIMÍDIA IMAGEM

Prof.: Danilo Coimbra

(coimbra.danilo@ufba.br)

Introdução

70% das informações que coletamos vêm da visão

- □ A visão é o nosso sentido mais importante
 - Relativamente à audição, olfato, tato e paladar
 - É a mais utilizada nos sistemas multimídia
 - □ É importante estudar o sistema humano da visão
 - Para usarmos efetivamente a tecnologia multimídia

Imagem

 O sistema visual humano capta ondas de luz (fótons) e transforma essas ondas em impulsos nervosos (elétricos), conduzindo-as ao cérebro

Para a maioria dos animais a visão é apenas um elemento de <u>sobrevivência</u>, mas para o **homem** é também um instrumento de desenvolvimento do pensamento e de comunicação na vida em sociedade

lmagem

O que é Luz?

- □ A luz é uma radiação eletromagnética que interage com as superfícies por:
 - □ reflexão
 - absorção
 - transmissão

- Dado que a luz é uma forma de radiação eletromagnética
 - □ É possível medir o seu comprimento de onda

Imagem

 É um tipo de onda eletromagnética que estimula a retina do olho humano

 A região de luz visível consiste num espectro de comprimento de onda que varia desde os 700nm aos 400nm

 Espectro visível situa-se entre a luz vermelha (maior comprimento de onda) e a luz violeta (menor comprimento de onda)

Imagem

- O que é Cor?
 - □ Para os físicos: a cor é uma experiênciafisiológica e reside no olho do espectador
 - As cores que vemos dependem da frequência da luz incidente
 - Diferentes frequências são percebidas em diferentes cores
 - A luz branca do Sol é a composição destas frequências

É uma estrutura transparente e resistente que **permite a passagem da luz** para dentro do olho e ajuda a **focalizá-la na retina**

9

É a parte que dá a cor dos olhos. Controla a entrada de luz através da pupila.

Pupila É uma abertura na íris que aumenta ou diminui, controlando a quantidade de

luz que penetra no olho.

Cristalino É uma lente biconvexa que auxilia na focalização da imagem sobre a retina.

Músculos Ciliares Ajustam a forma do cristalino. Com o envelhecimento eles perdem sua elasticidade, dificultando a focagem dos objetos próximos e provocando presbiopia.

Retina É responsável pela transmissão das imagens recebidas pelo cérebro, através do nervo óptico.

Nervo Óptico É a estrutura formada pelos prolongamentos das células nervosas que formam a retina. Transmite a imagem capturada pela retina para o cérebro.

Formação da imagem no olho (tamanhos/distâncias)

- Percepção
 - Cones e bastonetes

A perceção da cor é resultado da combinação das três cores que os três tipos de cones são capazes de detetar: vermelho, verde e azul.

- Bastonetes: fotorreceptores para intensidade luminosa (brilho)
 - 75 a 150 milhões
 - Espalhados por toda a retina
 - Resposta para baixa iluminação
- Cones: fotorreceptores para cor
 - 6 a 7 milhões
 - Concentrados na fóvea
 - Resposta para alta iluminação
- Com alta iluminação é possível detectar as cores e detalhes dos objetos, o que não acontece em baixa luminosidade

- Adaptação ao brilho
 - □ Percepção de ampla faixa <u>de intensidades de luz</u>
 - Não é simultâneo: ocorre uma mudança da sensibilidade global de acordo com as propriedades da cena
 - Brilho perceptível não é simplesmente uma função de intensidade
 - Olho humano tende a destacar regiões próximas com diferentes intensidades

- No caso de uma cena complexa
 - sistema visual não se adapta a um nível único de intensidade
 - mas sim a um nível médio que depende das propriedades desta cena
 - À medida que o olho a percorre, o nível de adaptação instantâneo flutua em torno desta média

Faixas de Mach:

Contraste simultâneo:

- Cones:
 - Possuem três tipos de fotopigmentos:
 - Azul, Verde e Vermelho.
 - Sensibilidade: 430nm, 530nm e 560nm
 - Espectro visível: ~400nm a 700nm de comprimento de onda.
 - Porcentagem de cones: 4%, 32% e 64%.

- As ondas eletromagnéticas existem dentro de uma gama alargada de frequências
- Esta gama contínua de frequências é chamada de epectro eletromagnético
 - Divide-se em regiões específicas, baseada na forma como cada região do espectro interage com a matéria

Espectro Eletromagnético

Cores espectrais (arco íris)

Espectro Eletromagnético

Cores espectrais (arco írias)

- Produção de cores:
 - Praticamente t<u>odas as cores visíveis podem ser</u> produzidas utilizando alguma mistura de cores primárias por combinação aditiva ou subtrativa
 - As cores em cada círculo são diferentes e chamadas de primárias

- Produção de cores:
 - Cores primárias aditivas luz
 - Obtidas diretamente da decomposição da luz solar e focos emissores de luz (monitor)
 - Azul, verde e vermelho (RGB)
 - Cores primárias subtrativas pigmento
 - Luz refletida de objetos, sendo uma parte absorvida (pintura)
 - Magenta, amarelo e ciano (CMY)
 - Impressora (CMYK) preto black

RGB

Representação como pontos de um espaço 3D de Cor

Cores criadas com o vetor cromático R,G,B

Cor	R (%)	G (%)	B (%)	
vermelho puro	100	0	0	
azul puro	0	0	100	
amarelo	100	100	0	
laranja	100	50	0	
verde musgo	0	25	0	
salmão	100	50	50	
cinza	50	50	50	

- Cor e frequência
 - No intervalo do espectro eletromagnético que corresponde a cor visível, cada frequência equivale à sensação de uma cor
 - Conforme a frequência aumenta, o comprimento de onda diminui

Cor	Comprimento de onda $(\dot{A} = 10^{-10}m)$	Frequência (10 ¹⁴ Hz)
Violeta	3900 - 4500	7,69 - 6,65
Anil	4500 - 4550	5,65 - 6,59
Azul	4550 - 4920	6,59 - 6,10
Verde	4920 - 5770	6,10 - 5,20
Amarelo	5770 - 5970	5,20 - 5,03
Alaranjado	5970 - 5220	5,03 - 4,82
Vermelho	6220 - 7800	4,82 - 3,84

Cor e frequência

- Além da frequência, três outros aspectos são considerados:
 - Radiância
 - Total de energia que flui da fonte luminosa. Media em watts (W)
 - Luminosidade
 - Quantidade de energia de uma fonte de luz percebida por um observador. Medida em lumens (lm)
 - Brilho
 - Noção acromática de intensidade. Subjetivo.