

Preliminary datasheet EasyPACK[™] module with CoolSiC[™] Trench MOSFET and PressFIT / NTC

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 100 \text{ A} / I_{DRM} = 200 \text{ A}$
 - Increased DC-link voltage
 - High current density
 - Low switching losses
- Mechanical features
 - Rugged mounting due to integrated mounting clamps
 - PressFIT contact technology
 - Integrated NTC temperature sensor

Potential applications

- Three-level applications
- High-frequency switching application
- Solar applications

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyPACK[™] module

Table of contents

	Description
	Features
	Potential applications
	Product validation
	Table of contents
1	Package
2	MOSFET 3
3	Body diode
4	IGBT, 3-Level
5	Diode, 3-Level
6	NTC-Thermistor
7	Characteristics diagrams
8	Circuit diagram
9	Package outlines
10	Module label code
	Revision history
	Disclaimer

EasyPACK[™] module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d_{Creep}	terminal to heatsink	11.5	mm
Creepage distance	d_{Creep}	terminal to terminal	6.3	mm
Clearance	d_{Clear}	terminal to heatsink	10.0	mm
Clearance	d_{Clear}	terminal to terminal	5.0	mm
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition	Values		Unit	
			Min.	Тур.	Max.	
Stray inductance module	$L_{\sf sCE}$			15		nH
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting force per clamp	F		40		80	N
Weight	G			39		g

Note: The current under continuous operation is limited to 25 A rms per connector pin.

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit	
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			100	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 15 V	T _H = 65 °C	85	А
Repetitive peak drain current	/ _{DRM}	verified by design, t _p lim	ited by T _{vjmax}	200	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V

EasyPACK[™] module

2 MOSFET

Table 4 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 100 A	$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		11.3		mΩ
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		14.8		
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 150 ^{\circ}\text{C}$		16.5		
Gate threshold voltage	$V_{\rm GS(th)}$	$I_D = 40 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$	= 25 °C, (tested after	3.45	4.5	5.15	V
Total gate charge	Q_{G}	$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -5/15 V			0.277		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			2		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		8.8		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.42		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.028		nF
C _{OSS} stored energy	Eoss	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -5/15 V,	T _{vj} = 25 °C		176		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -5 V	T _{vj} = 25 °C		0.4	380	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 100 \text{A}, R_{\rm Gon} = 3.9 \Omega,$	<i>T</i> _{vj} = 25 °C		45.1		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		43.9		
			T _{vj} = 150 °C		42		
Rise time (inductive load)	t _r	$I_{\rm D} = 100 \text{A}, R_{\rm Gon} = 3.9 \Omega,$	T _{vj} = 25 °C		25.5		ns
		$V_{\rm DD} = 600 \text{V}, V_{\rm GS} = -5/15 \text{V}$	T _{vj} = 125 °C		25.3		
			T _{vj} = 150 °C		24.4		
Turn-off delay time	t _{d off}	$I_{\rm D} = 100 \text{ A}, R_{\rm Goff} = 3.9 \Omega,$	T _{vj} = 25 °C		84.2		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		86.7		
			T _{vj} = 150 °C		87.5		
Fall time (inductive load)	t _f	$I_{\rm D} = 100 \text{ A}, R_{\rm Goff} = 3.9 \Omega,$	T _{vj} = 25 °C		32.2		ns
		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -5/15 \text{ V}$	T _{vj} = 125 °C		35.5		
			T _{vj} = 150 °C		37.3		
Turn-on energy loss per	E _{on}	$I_{\rm D} = 100 \text{ A}, V_{\rm DD} = 600 \text{ V},$	T _{vj} = 25 °C		1		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -5/15 \text{ V},$ $R_{Gon} = 3.9 \Omega, \text{ di/dt} = 4.5$	T _{vj} = 125 °C		1.15		
		$kA/\mu s (T_{vj} = 150 ^{\circ}C)$			1.24		

heet 4 Revision 0.20 2022-05-25

EasyPACK[™] module

3 Body diode

Table 4 (continued) Characteristic values

Parameter	Symbol	Note or test condition		Values			Unit
				Min.	Тур.	Мах.	
Turn-off energy loss per $E_{\rm off}$	$I_{\rm D}$ = 100 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		1.62		mJ	
pulse		$L_{\rm o}$ = 35 nH, $V_{\rm GS}$ = -5/15 V, $R_{\rm Goff}$ = 3.9 Ω , dv/dt = 21	T _{vj} = 125 °C		1.85		
			T _{vj} = 150 °C		1.93		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET			0.58		K/W
Temperature under switching conditions	T _{vj op}			-40		150	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Note AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

3 Body diode

Table 5 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj} = 175 {\rm ^{\circ}C}, V_{\rm GS} = -5 {\rm V}$	T _H = 20 °C	32	A

Table 6 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 100 \text{ A}, V_{GS} = -5 \text{ V}$	T _{vj} = 25 °C		4.6	5.65	V
			T _{vj} = 125 °C		4.35		
			T _{vj} = 150 °C		4.3		

4 IGBT, 3-Level

Table 7 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Collector-emitter voltage	V _{CES}		T _{vj} = 25 °C	1200	V
Implemented collector current	I _{CN}			100	А
Continuous DC collector current	I _{CDC}	T _{vj max} = 175 °C	T _H = 65 °C	60	А
Repetitive peak collector current	I _{CRM}	t _p limited by T _{vj op}		200	А

(table continues...)

EasyPACK[™] module

4 IGBT, 3-Level

Table 7 (continued) Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Gate-emitter peak voltage	V_{GES}		±20	V

Table 8 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Collector-emitter	V _{CE sat}	$I_{\rm C} = 100 \text{ A}, V_{\rm GE} = 15 \text{ V}$	T _{vj} = 25 °C		1.50	TBD	V
saturation voltage			T _{vj} = 125 °C		1.64		
			T _{vj} = 175 °C		1.72		
Gate threshold voltage	V _{GEth}	$I_{\rm C}$ = 2.5 mA, $V_{\rm CE}$ = $V_{\rm GE}$, $T_{\rm vj}$	= 25 °C	5.15	5.80	6.45	V
Gate charge	Q _G	$V_{\rm GE} = \pm 15 \text{V}, V_{\rm CC} = 600 \text{V}$	$V_{GE} = \pm 15 \text{ V}, V_{CC} = 600 \text{ V}$		1.8		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			1.5		Ω
Input capacitance	C _{ies}	$f = 100 \text{ kHz}, T_{\text{vj}} = 25 \text{ °C}, V_{\text{C}}$	_{CE} = 25 V, V _{GE} = 0 V		21.7		nF
Reverse transfer capacitance	C _{res}	$f = 100 \text{ kHz}, T_{\text{vj}} = 25 ^{\circ}\text{C}, V_{\text{C}}$	_{CE} = 25 V, V _{GE} = 0 V		0.076		nF
Collector-emitter cut-off current	I _{CES}	$V_{\text{CE}} = 1200 \text{ V}, V_{\text{GE}} = 0 \text{ V}$	T _{vj} = 25 °C			0.009	mA
Gate-emitter leakage current	I _{GES}	$V_{\text{CE}} = 0 \text{ V}, V_{\text{GE}} = 20 \text{ V}, T_{\text{vj}} = 25 \text{ °C}$				100	nA
Turn-on delay time	, , , , ,	V -+15V D -100	T _{vj} = 25 °C		0.153		μs
(inductive load)			T _{vj} = 125 °C		0.166		
			T _{vj} = 175 °C		0.174		
Rise time (inductive load)	t _r	$I_{\rm C}$ = 100 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.033		μs
		$V_{\rm GE} = \pm 15 \text{V}, R_{\rm Gon} = 1.8 \Omega$	T _{vj} = 125 °C		0.037		1
			T _{vj} = 175 °C		0.040		
Turn-off delay time	t _{doff}	$I_{\rm C}$ = 100 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.283		μs
(inductive load)		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 1.8 \Omega$	T _{vj} = 125 °C		0.368		
			T _{vj} = 175 °C		0.421		
Fall time (inductive load)	t _f	$I_{\rm C}$ = 100 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		0.149		μs
		$V_{\rm GE} = \pm 15 \text{ V}, R_{\rm Goff} = 1.8 \Omega$	T _{vj} = 125 °C		0.221		
			T _{vj} = 175 °C		0.273		
Turn-on energy loss per	E _{on}	$I_{\rm C}$ = 100 A, $V_{\rm CC}$ = 600 V,	T _{vj} = 25 °C		6.75		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GE} = \pm 15 \text{ V},$ $R_{Gon} = 1.8 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		9.8		
		$2400 \text{ A/µs} (T_{vj} = 175 ^{\circ}\text{C})$	T _{vi} = 175 °C		11.5		

(table continues...)

EasyPACK[™] module

5 Diode, 3-Level

Table 8 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-off energy loss per pulse	E _{off}		T _{vj} = 25 °C		6.6		mJ
	$L_{\sigma} = 35 \text{ nH}, V_{GE} = \pm 15 \text{ V},$ $R_{Goff} = 1.8 \Omega, \text{ dv/dt} =$	T _{vj} = 125 °C		10.2			
		$2700 \text{ V/}\mu\text{s} (T_{\text{vj}} = 175 \text{ °C})$	T _{vj} = 175 °C		12.7		
SC data	I _{SC}	$V_{\text{GE}} \le 15 \text{ V}, V_{\text{CC}} = 800 \text{ V},$ $V_{\text{CEmax}} = V_{\text{CES}} - L_{\text{sCE}} * \text{di/dt}$	$t_{\rm P} \le 8 \mu \text{s},$ $T_{\rm vj} \le 150 ^{\circ}\text{C}$		370		А
			$t_{\rm P} \le 7 \mu \text{s},$ $T_{\rm vj} \le 175 ^{\circ}\text{C}$		350		
Thermal resistance, junction to heat sink	R _{thJH}	per IGBT			0.920		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note: Tvj op > 150°C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14

5 Diode, 3-Level

Table 9 Maximum rated values

Parameter	Symbol	Note or test condition	n	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		T _{vj} = 25 °C	1200	V
Continuous DC forward current	I _F			100	А
Repetitive peak forward current	I _{FRM}	t _P = 1 ms		200	А
I ² t - value	I ² t	$t_{\rm P}$ = 10 ms, $V_{\rm R}$ = 0 V	T _{vj} = 125 °C	970	A ² s
			T _{vj} = 175 °C	860	

Table 10 Characteristic values

Parameter	Symbol	Note or test condition			Values		
				Min.	Тур.	Max.	
Forward voltage	V _F	$I_{\rm F} = 100 \text{ A}, V_{\rm GE} = 0 \text{ V}$	T _{vj} = 25 °C		1.72	TBD	V
			T _{vj} = 125 °C		1.59		
			T _{vi} = 175 °C		1.52		

(table continues...)

EasyPACK[™] module

6 NTC-Thermistor

Table 10 (continued) Characteristic values

Parameter	Symbol	ol Note or test condition			Values		
				Min.	Min. Typ.	Max.	
Peak reverse recovery current	I _{RM}	$V_{CC} = 600 \text{ V}, I_F = 100 \text{ A},$ $V_{GE} = -15 \text{ V}, -di_F/dt =$ $2400 \text{ A}/\mu \text{s} (T_{vj} = 175 ^{\circ}\text{C})$	T _{vj} = 25 °C		95.5		Α
			<i>T</i> _{vj} = 125 °C		119		1
			<i>T</i> _{vj} = 175 °C		134		
Recovered charge	Qr	$V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} = 2400 \text{ A/}\mu\text{s} (T_{vi} = 175 ^{\circ}\text{C})$	<i>T</i> _{vj} = 25 °C		8.64		μC
			<i>T</i> _{vj} = 125 °C		15.1		
			<i>T</i> _{vj} = 175 °C		20		
Reverse recovery energy		$V_{CC} = 600 \text{ V}, I_F = 100 \text{ A},$ $V_{GE} = -15 \text{ V}, -\text{di}_F/\text{dt} =$ 2400 A/µs (T _{vj} = 175 °C)	<i>T</i> _{vj} = 25 °C		3.13		mJ
			<i>T</i> _{vj} = 125 °C		5.83		
			<i>T</i> _{vj} = 175 °C		7.58		
Thermal resistance, junction to heat sink	R _{thJH}	per diode			1.03		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note: Tvj op > 150°C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.

6 NTC-Thermistor

Table 11 Characteristic values

Parameter	Symbol	Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$ 341.		3411		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: Specification according to the valid application note.

EasyPACK[™] module

7 Characteristics diagrams

7 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

T_{vj} = 150 °C

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

Gate charge characteristic (typical), MOSFET

 $V_{GS} = f(Q_G)$

 $I_D = 100 \text{ A}, T_{vj} = 25 ^{\circ}\text{C}$

EasyPACK[™] module

7 Characteristics diagrams

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

f = 100 kHz, $T_{vi} = 25 \,^{\circ}\text{C}$, $V_{GS} = 0 \,^{\circ}\text{V}$

Switching losses (typical), MOSFET

 $E = f(I_D)$

 R_{Goff} = 3.9 Ω , R_{Gon} = 3.9 Ω , V_{DS} = 600 V, V_{GS} = -5/15 V

Switching losses (typical), MOSFET

 $E = f(R_G)$

 V_{DS} = 600 V, I_D = 100 A, V_{GS} = -5/15 V

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

 $R_{Goff} = 3.9 \Omega$, $T_{vj} = 150 \, ^{\circ}$ C, $V_{GS} = -5/15 \, V$

EasyPACK[™] module

7 Characteristics diagrams

Transient thermal impedance, MOSFET

 $Z_{th} = f(t)$

Output characteristic (typical), IGBT, 3-Level

 $I_C = f(V_{CE})$

 $V_{GE} = 15 V$

Output characteristic field (typical), IGBT, 3-Level

 $I_C = f(V_{CE})$

 $T_{vi} = 175 \,^{\circ}\text{C}$

Transfer characteristic (typical), IGBT, 3-Level

 $I_C = f(V_{GE})$

 $V_{CE} = 20 \text{ V}$

EasyPACK[™] module

7 Characteristics diagrams

Switching losses (typical), IGBT, 3-Level

 $E = f(I_C)$

$$R_{Goff} = 1.8 \Omega$$
, $R_{Gon} = 1.8 \Omega$, $V_{CC} = 600 V$, $V_{GE} = \pm 15 V$

Switching losses (typical), IGBT, 3-Level

 $E = f(R_G)$

$$I_C = 100 \text{ A}, V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$$

Switching times (typical), IGBT, 3-Level

 $t = f(I_C)$

$$R_{Goff}$$
 = 1.8 Ω , R_{Gon} = 1.8 Ω , V_{CC} = 600 V, V_{GE} = ± 15 V, T_{vj} = 175 °C

Switching times (typical), IGBT, 3-Level

 $t = f(R_G)$

$$I_C = 100 \text{ A}, V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}, T_{vj} = 175 \,^{\circ}\text{C}$$

EasyPACK[™] module

7 Characteristics diagrams

Voltage slope (typical), IGBT, 3-Level

 $dv/dt = f(R_G)$

$$I_{C}$$
 = 100 A, V_{CC} = 600 V, V_{GE} = ±15 V, $T_{\nu j}$ = 25 °C

${\bf Transient\ thermal\ impedance\ ,\ IGBT,\ 3-Level}$

 $Z_{th} = f(t)$

Reverse bias safe operating area (RBSOA), IGBT, 3-Level

 $I_C = f(V_{CE})$

$$R_{Goff} = 1.8 \Omega, V_{GE} = \pm 15 V, T_{vj} = 175 °C$$

Capacity characteristic (typical), IGBT, 3-Level

 $C = f(V_{CE})$

f = 100 kHz, $V_{GE} = 0 \text{ V}$, $T_{vj} = 25 \,^{\circ}\text{C}$

EasyPACK[™] module

7 Characteristics diagrams

Gate charge characteristic (typical), IGBT, 3-Level

 $V_{GE} = f(Q_G)$

 $I_C = 100 A$, $T_{vi} = 25 °C$

Forward characteristic (typical), Diode, 3-Level

 $I_F = f(V_F)$

Switching losses (typical), Diode, 3-Level

 $E_{rec} = f(I_F)$

 R_{Gon} = 1.8 Ω , V_{CC} = 600 V

Switching losses (typical), Diode, 3-Level

 $E_{rec} = f(R_G)$

 $I_F = 100 A, V_{CC} = 600 V$

EasyPACK[™] module

7 Characteristics diagrams

Transient thermal impedance, Diode, 3-Level

Temperature characteristic (typical), NTC-Thermistor $\boldsymbol{R} = \boldsymbol{f}(\boldsymbol{T}_{NTC})$

8 Circuit diagram

8 Circuit diagram

Figure 1

9 Package outlines

9 Package outlines

Figure 2

EasyPACK[™] module

10 Module label code

10 Module label code

Code format	Data Matrix		Barcode (Code128		
Encoding	ASCII text		Code Set	A		
Symbol size	16x16		23 digits	23 digits		
Standard	IEC24720 and IEC16022		IEC8859-1			
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	per 12 - 19 year) 20 – 21		Example 71549 142846 55054991 15 30		
Example	71549142846550549911530			#6550549911530		

Figure 3

EasyPACK[™] module

Revision history

Revision history

Document revision	Date of release	Description of changes
V1.0	2020-05-29	Target datasheet
V2.0	2020-09-04	Preliminary datasheet
n/a	2020-09-01	Datasheet migrated to a new system with a new layout and new revision number schema: target or preliminary datasheet = 0.xy; final datasheet = 1.xy
0.20	2022-05-25	Preliminary datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-05-25 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAJ559-003

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.