Architecture

The high-level design of the application is shown in the diagram(s) below.

[Insert one or more software architecture diagrams here.]

Data

This section contains a description of the logical and physical view of the data used by the application.

Logical Data Model

The logical data model is shown below.

[Insert a logical data model here.]

The following data rules are derived from the logical data model.

- First rule.
- Second rule.
- Etc.

Physical Data Model

The physical data model, shown below, shows how the logical data elements will be represented in a persistent data storage facility.

[Insert a description of the persistent data store. The type of description included is based on the type of physical data store being used.]

Internal Data Structures

During execution of the application, certain data elements shall be stored in non-persistent storage using the following types of data structures.

Data Dictionary

The table below describes the characteristics of each attribute shown in the logical data model.

Interfaces

This section contains a description of interfaces that must be supported by the application.

Human-computer Interaction

The user interactions with the application are shown below.

Communication with External Entities

The way in which the application will communicate with each type of external entity is shown below.

Components

This section contains a more detailed description of each component described in the Architecture section.

[Component X]

Class Diagram

The class diagram for component X is shown below.

Behavior

The behavior diagram(s) for component X is/are shown below.

Communication between Components

The ways in which components will communicate with each other are shown below.

Class Diagram

The class diagram that shows the classes that are responsible for the components communicating with each other is shown below.