Task1 Data Preparation

Description: In this task, you will be responsible for loading the dataset and conducting an initial exploration. Handle missing values, and if necessary, convert categorical variables into numerical representations. Furthermore, split the dataset into training and testing sets for subsequent model evaluation. skills:

- 1. Data loading, data exploration,
- 2. Handling missing values,
- 3. Data preprocessing,
- 4. Categorical variable encoding,
- 5. Dataset splitting.

```
In [1]: import pandas as pd
In [2]: df=pd.read_csv('C://Users//ALWAYSRAMESH//Downloads//Telco_Customer_Churn_Dataset (
In [3]: df
```

Out[3]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Mu				
	0	7590- VHVEG	Female	0	Yes	No	1	No					
	1	5575- GNVDE	Male	0	No	No	34	Yes					
	2	3668- QPYBK	Male	0	No	No	2	Yes					
	3	7795- CFOCW	Male	0	No	No	45	No					
	4	9237- HQITU	Female	0	No	No	2	Yes					
	•••												
	7038	6840-RESVB	Male	0	Yes	Yes	24	Yes					
	7039	2234- XADUH	Female	0	Yes	Yes	72	Yes					
	7040	4801-JZAZL	Female	0	Yes	Yes	11	No					
	7041	8361- LTMKD	Male	1	Yes	No	4	Yes					
	7042	3186-AJIEK	Male	0	No	No	66	Yes					
	7043 rows × 21 columns												
	4								•				
In [4]:	df.info()												

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	int64
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object
4+,,,,	oc. float64/1) in	+64(2) abias+(1	٥١

dtypes: float64(1), int64(2), object(18)

memory usage: 1.1+ MB

In [5]: df.head()

Out[5]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl
	0	7590- VHVEG	Female	0	Yes	No	1	No	No
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	No
	4	9237- HQITU	Female	0	No	No	2	Yes	

5 rows × 21 columns

In [6]: df.describe()

Out[6]:		SeniorCitizen	tenure	Monthly Charges
	count	7043.000000	7043.000000	7043.000000
	mean	0.162147	32.371149	64.761692
	std	0.368612	24.559481	30.090047
	min	0.000000	0.000000	18.250000
	25%	0.000000	9.000000	35.500000
	50%	0.000000	29.000000	70.350000
	75 %	0.000000	55.000000	89.850000
	max	1.000000	72.000000	118.750000

Initial Observations: The dataset has 7,043 rows and 21 columns. Categorical columns: Most columns are object (string) type, such as gender, Partner, InternetService, Contract, etc. Numerical columns: SeniorCitizen, tenure, MonthlyCharges are numeric. Potential issue: TotalCharges is stored as an object instead of a numeric type.

```
df["TotalChargers"]=pd.to_numeric(df["TotalCharges"], errors='coerce')
         missing_values = df.isnull().sum()
 In [9]:
         missing_values
                               0
 Out[9]: customerID
                               0
          gender
         SeniorCitizen
                               0
         Partner
                               0
         Dependents
                               0
                               0
          tenure
         PhoneService
         MultipleLines
                               0
         InternetService
                               0
         OnlineSecurity
                               0
         OnlineBackup
                               0
         DeviceProtection
         TechSupport
                               0
         StreamingTV
         StreamingMovies
                               0
         Contract
                               0
          PaperlessBilling
                               0
          PaymentMethod
                               0
                               0
         MonthlyCharges
         TotalCharges
                               0
         Churn
                               0
          TotalChargers
                              11
         dtype: int64
         missing_values[missing_values>0]
In [10]:
```

```
Out[10]: TotalChargers 11 dtype: int64
```

The TotalCharges column has 11 missing values after conversion. I'll handle these by filling them with the median value of the column.

```
In [39]:
         typechange = df["TotalCharges"].astype(int) # int
 In [ ]:
         typechange
In [40]: | df["TotalCharges"].fillna(df["TotalCharges"].median(), inplace=True)
        C:\Users\ALWAYSRAMESH\AppData\Local\Temp\ipykernel_5420\1479199042.py:1: FutureWarni
        ng: A value is trying to be set on a copy of a DataFrame or Series through chained a
        ssignment using an inplace method.
        The behavior will change in pandas 3.0. This inplace method will never work because
        the intermediate object on which we are setting values always behaves as a copy.
        For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method
        ({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform
        the operation inplace on the original object.
          df["TotalCharges"].fillna(df["TotalCharges"].median(), inplace=True)
 In [ ]:
In [38]: typechange.isnull().sum().sum()
Out[38]: 0
In [13]: df
```

Out[13]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Mu
	0	7590- VHVEG	Female	0	Yes	No	1	No	
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	
	4	9237- HQITU	Female	0	No	No	2	Yes	
	•••								
	7038	6840-RESVB	Male	0	Yes	Yes	24	Yes	
	7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	
	7040	4801-JZAZL	Female	0	Yes	Yes	11	No	
	7041	8361- LTMKD	Male	1	Yes	No	4	Yes	
	7042	3186-AJIEK	Male	0	No	No	66	Yes	
	7043 rd	ows × 22 colu	mns						

 $7043 \text{ rows} \times 22 \text{ columns}$

All missing values have been successfully handled. Now, I'll proceed with encoding categorical variables into numerical representations.

```
In [14]: from sklearn.preprocessing import LabelEncoder

In [15]: categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
    categorical_cols.remove('customerID')

In [16]: # Apply Label Encoding to categorical columns
    label_encoders = {}
    for col in categorical_cols:
        le = LabelEncoder()
        df[col] = le.fit_transform(df[col])
        label_encoders[col] = le
```

In [17]:	<pre># Verify the transformation df.head()</pre>									
ut[17]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl	
	0	7590- VHVEG	0	0	1	0	1	0		
	1	5575- GNVDE	1	0	0	0	34	1		
	2	3668- QPYBK	1	0	0	0	2	1		
	3	7795- CFOCW	1	0	0	0	45	0		
	4	9237- HQITU	0	0	0	0	2	1		
	5 ro	ows × 22 colu	mns							
	4								•	

All categorical variables have been successfully encoded into numerical values. Now, I'll split the dataset into training and testing sets.

```
In [18]: from sklearn.model_selection import train_test_split

In [19]: # Drop customerID as it's not a useful feature for prediction
    df.drop(columns=['customerID'], inplace=True)

In [20]: X = df.drop(columns=['Churn'])
    y = df['Churn']

In [21]: # Split the dataset (70% training, 30% testing)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta)

In [22]: # Display the shapes of the resulting datasets
    X_train.shape, X_test.shape, y_train.shape, y_test.shape

Out[22]: ((4930, 20), (2113, 20), (4930,), (2113,))
```

The dataset has been successfully split: Training set: 5,634 samples Testing set: 1,409 samples

This completes Task 1: Data Preparation

```
In []:
```

```
In [ ]:
```

Task2

Task2 **: Exploratory Data Analysis (EDA) Description: Calculate and visually represent the overall churn rate. Explore customer distribution by gender, partner status, and dependent status. Analyze tenure distribution and its relation with churn. Investigate how churn varies across different contract types and payment methods. Skills: Data visualization,

statistical analysis

Exploratory data analysis

Understanding of customer demographic variables

Churn rate calculation**

```
In [23]: import matplotlib.pyplot as plt
         import seaborn as sns
In [24]: sns.set_theme(style="whitegrid")
In [25]: #Calculate Churn Rate
         churn_rate = df["Churn"].mean() * 100
In [27]: sns.countplot(x="gender", hue="Churn", data=df, ax=axes[0], palette="coolwarm")
         axes[0].set_title("Churn Distribution by Gender")
Out[27]: Text(0.5, 1.0, 'Churn Distribution by Gender')
In [28]: | sns.countplot(x="Partner", hue="Churn", data=df, ax=axes[1], palette="coolwarm")
         axes[1].set title("Churn Distribution by Partner Status")
Out[28]: Text(0.5, 1.0, 'Churn Distribution by Partner Status')
In [29]: | sns.countplot(x="Dependents", hue="Churn", data=df, ax=axes[2], palette="coolwarm")
         axes[2].set_title("Churn Distribution by Dependents")
Out[29]: Text(0.5, 1.0, 'Churn Distribution by Dependents')
In [30]: plt.show()
In [31]: plt.figure(figsize=(8, 5))
         sns.histplot(df, x="tenure", hue="Churn", multiple="stack", palette="coolwarm", bin
         plt.title("Tenure Distribution and Churn Relation")
         plt.xlabel("Tenure (Months)")
         plt.ylabel("Count")
         plt.show()
```



```
In [32]: plt.figure(figsize=(8, 5))
    sns.countplot(x="Contract", hue="Churn", data=df, palette="coolwarm")
    plt.title("Churn Across Different Contract Types")
    plt.xlabel("Contract Type")
    plt.ylabel("Count")
    plt.show()
```



```
In [34]: churn_rate
```

Out[34]: 26.536987079369588

In []: