MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/02

Paper 2

October/November 2005

2 hours

Candidates answer on the Question Paper No additional materials are required

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on page 20.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
TOTAL		

This question paper consists of 19 printed pages and 1 blank page.

1 Fig. 1.1 shows a horse pulling a cart of mass 200 kg.

Fig. 1.1

(a) The cart moved 150 m in 30 s. Calculate the average speed of the cart.

speed = m/s [2]

(b) Fig. 1.2 shows how the speed of the cart changed as it approached an intersection.

Fig. 1.2

(i) Describe the motion of the cart during the 5 s.

[1]

/::\	Calculate the	dictoroo	covered by	the co	art during	tho	50
(11)	Calculate the t	Jistance	covered by	THE CE	art during	แเษ	OS

diatanaa		 m	[O]
uisiance	_	 111	121

(c) The horse started pulling with a force of 200 N.

Calculate the acceleration of the cart.

acceleration = m/s^2 [2]

(d) Fig. 1.3 shows a car on a moving recovery truck.

Fig. 1.3

Use words from the following list to complete the sentence below.

weight	forward	backward	inertia	friction			
If the car is not securely tied down on the back of the recovery truck, when the truck							
brakes sudder	nly the car move	es	because of i	ts	 [2]		

2 Fig. 2.1 shows a solar panel used to run an electric motor.

Fig. 2.1

(a)	vvria	iat is the energy change in the solar panel?		
		—	[2	[]
(b)	The	e motor raises a load of 0.2 N to a height of 3 m i	n 5 s.	
	(i)	What form of energy does the load gain as it ri	ses?	
			[1]
	(ii)	Calculate the work done by the motor to raise	he load.	
		WOI	k done = J [2	[]
	(iii)	Define power		
			[1]

(iv) Calculate the power output of the motor.

3 Fig. 3.1 shows two rays from an object incident on a convex lens of focal length of 15 cm.

Fig. 3.1

- (a) On the diagram draw the paths of the rays after refraction by the lens. [2]
- (b) On the diagram draw the image formed. [2]
- (c) The object is moved back to a distance of 34 cm from the lens.

State two properties of the image formed.

1.

2.[2]

4 (a) Fig. 4.1 shows two kettles with equal volumes of water heated to boiling.

By which process does heat energy

Fig. 4.1

(i)	reach the water in the aluminium kettle?
	[1]
(ii)	spread in the water?
	[1]
iii)	In which kettle will the water cool faster when heating stops?
	kettle
	explanation

.....[3]

(b) Fig. 4.2 shows two flasks inverted in beakers containing water. The flasks are left in the sun.

Fig. 4.2

In which set up will bubbles be produced more rapidly?

set up	
explanation	
	[3]

he ta	ble gives s	ome informatio	on about the stru	cture of atoms of s	some elements.
	element	number of protons	arrangement of electrons	Group in the Periodic Table	metal or non metal
	P		2, 7	7	non-metal
	Q	12	2, 8, 2	2	
	R	16		6	non-metal
	S	18	2, 8, 8	0	non-metal
) E (i	lement P re	eacts with Q to		e salt. formed.	
(ii) vertica is	s the least rea	ctive element in t	ne table?	
	Explain	your answer.			

7 A list of dilute aqueous solutions is given.

sulphuric acid		c acid	lead(II) nitrate	copper(II) chloride	Iron(II) sulphate
iron(III) nitrate		nitrate	ammonia	nitric acid	sodium carbonate
(a)	Nan	ne a solutior	n in the list that		
	(i)	gives a whi	te precipitate with a	queous silver nitrates	
					[1]
((ii)		alue of approximatel		
					[1]
(iii)	is coloured			
					[1]
(iv)	would react	t with magnesium to	form hydrogen.	
					[1]
(b)	(i)	Which solu	tion in the list gives	a blue precipitate with aqu	eous sodium hydroxide?
			-		·
	(ii)			ed from the reaction in (b) (• •
	. ,				•

8 Fig. 8.1 shows how pieces of zinc were reacted with dilute hydrochloric acid to form hydrogen and zinc chloride.

Fig. 8.1

(a)	Write a balanced chemical equation for this reaction.
	[2]

(b) The experiment was carried out at 20 °C. The table shows the loss in mass of the mixture at 50 second intervals during the reaction.

time/s	50	100	150	200	250	300
loss in mass/g	0.20	0.35	0.41	0.44	0.45	0.45

Explain why the mass of the mixture decreased.	
ra	,
[1]

(i)

Draw a graph of the mass lost against time on the grid below.

- (c) The same experiment was repeated using hydrochloric acid warmed to 40 °C.
 - On the same grid, sketch the graph you would obtain from the second experiment. Label it X. [2]

(11)	hydrochloric acid of the same concentration at 20 °C.

9			million tonnes of chlorine are produced in the world each year. It is made by the sis of concentrated aqueous sodium chloride.
	(a)	Nan	ne two sources of concentrated aqueous sodium chloride.
		1	
		2	[2]
	(b)	Des	cribe a chemical test for chlorine.
		test	
		obs	ervation[2]
	(c)	Chlo	orine has many industrial uses.
		(i)	Why is chlorine added to drinking water?
			[1]
		(ii)	Name one organic product of the reaction between methane and chlorine.
			[1]
10	Etha	anol :	and propanol are members of the same homologous series.
	(a)	Wha	at is meant by a homologous series?
		••••	
			[2]
	(b)	Drav	w the structural formula of ethanol, showing all atoms and bonds.
		-	
			[2]
			(-)

11 Fig. 11.1 shows a food web in a pond near an arable farm.

Fig. 11.1

(a)	(i)	Which organisms would multiply rapidly as a result of application of fertilisers?
		[1]
	(ii)	What is this rapid growth called?
		[1]
(b)		armer sprayed a pesticide onto the crop in the farm, to kill insects which were naging the crop.
	(i)	Explain how this pesticide could enter the pond.
		[2]
	(ii)	After several months, some fish eagles had died from the effects of the pesticide.
		Explain how this could have happened.
		`

12 Match the following terms with their correct descriptions:

drug enzyme excretion fertilisation photosynthesis respiration

	description	term
(i)	biological catalyst which is protein in nature	
(ii)	production of food by plants	
(iii)	removal of metabolic waste products from the body	
(iv)	release of energy from food by living organisms	
(v)	the fusion of male and female sex cells	
(vi)	externally administered substance that affects chemical reactions in the body	

[6]

13 Fig. 13.1 shows a flower.

Fig. 13.1

(a) Name the structures labelled P and (O r	and C	labelled P	structures	tne	Name	(a)
--	-----	-------	------------	------------	-----	------	-----

	P	
	Q	
(b)	Name process O.	
		[1]
(c)	State two ways by which W may attract insects.	

2[2]

14 Fig. 14.1 shows the male reproductive system.

Fig. 14.1

(a)	On the diagram, label the structures R , S and T .	[3]
(b)	State the functions of the bladder and testis.	
	bladder	
	testis	.[2]
(c)	Structure T becomes infected with gonorrhoea bacteria.	
	State two signs or symptoms of gonorrhoea.	
	1	•••••
	2	.[2]
(d)	State how gonorrhoea is treated.	
		.[1]

15 Fig. 15.1 shows energy requirements of three people of the same sex.

Fig. 15.1

(a)	Whi	ch individual is most likely to be:
	(i)	a manual worker doing 8 hours work per day?
	(ii)	a tailor doing 8 hours work per day?
	(iii)	a six year old student?
		[2]
(b)	Sta	te the simplest form of food that is used by body cells to provide energy.
	••••	[1]
(c)		te what happens when the energy intake of an individual is greater than the daily rgy requirements.
		[1]

The table shows some information about three types of specialised cells. Complete the table by filling in the missing information. [5]

structure	name of cell	function
	phagocyte	
***		transport impulses to the central nervous system

© BEC 2005

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© BEC 2005 0569/02/O/N/05

DATA SHEET
The Periodic Table of the Elements

			_			-	_		
		0	He Helium	20 Neon 10	40 Ar Argon	84 Kr ypton 36	131 Xe Xenon	Radon 86	
		IIA		19 Fluorine	35.5 CL Chlorine	80 Br Bromine 35	127 I Iodine	At Astatine 85	
	-	I		16 Oxygen	32 Sulphur	See Selenium 34	128 Te	Po Polonium 84	
					16		20	Ì	
		۸		Nitrogen 7	31 P Phosphorus 15	AS A Arsenic	Sb Antimony	209 Bi Bismuth 83	-
		Λ		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	20 Tin 50	207 Pb Lead	
		=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T1 Tallium	
				L		65 Zn Zinc	112 Cd Cadmium 48		-
2112						1 30			
נו						64 Copper 29	108 Ag Silver 47	197 Au Gold 79	
בו בו	Group					59 Ni Nickel 28	106 Pd Palladium	195 Pt Platinum 78	
מוכ - מנו	Gr					59 Co Cobalt	103 Rh Rhodium 45	192 I.r Irdium	
			1 H Hydrogen			56 Fe Iron 26	Pu Ruthenium 44	190 Os Osmium 76	
				ı		55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73	
						48 Ti Titanium 22	Zr Zirconium 40	178 Hf Haftnium 72	· L
						45 Sc candium	89 ×	139 La Lanthanum 57 * 77	Actinium +
		=		9 Be	24 Mg Magnesium	40 Ca Sacium S	Sr Sr strontium 39	137 Ba Barium L 57	226 Radium 89
				4		20	386	56	88
		_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	BB Rubidium 37	133 CS Caesium 55	Francium 87

*58-71 Lanthanoid series †90-103 Actinoid series

	æ	a = relative atomic mass	232
Key	×	X = atomic symbol	ᆮ
	q	b = proton (atomic) number	Thoriun 90

	140	141	144		150		157	159	162	165	167	169	173	175
	రి	ፈ	PZ	P	Sm		В	4	2	운	ŭ	Ę	ζ	3
	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
	232		238											
	£	Pa	>	å	Pu	Am	C	盎	ರ	Es	Æ	Md	å	בֿ
Б	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).