anéis especiais

domínios de integridade

Definição. Um anel comutativo com identidade A diz-se um domínio (ou anel) de integridade se admitir como único divisor de zero o elemento zero do anel.

Exemplo 18. Os anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$ são domínios de integridade.

Exemplo 19. O anel das matrizes quadradas de ordem 2 não é um domínio de integridade.

Observação. Se A é um domínio de integridade, então, $A \neq \{0_A\}$.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e todo o elemento de $A \setminus \{0_A\}$ é simplificável.

Demonstração. Suponhamos que A é um domínio de integridade. Então, $A \setminus \{0_A\} \neq \emptyset$. Sejam $y \in A \setminus \{0_A\}$ e $a, b \in A$ tais que ya = yb. Então, $ya - yb = 0_A$, pelo que

$$y\left(a-b\right)=0_{A}.$$

Como A é domínio de integridade e $y \neq 0_A$, temos que

$$a - b = 0_A$$
,

i.e.,

$$a = b$$
.

Supondo que ay = by, faz-se o raciocínio análogo.

Reciprocamente, suponhamos que todo o elemento $y \in A \setminus \{0_A\} \neq \emptyset$ é simplificável. Como $A \setminus \{0_A\} \neq \emptyset$, temos que 0_A é um divisor de zero. Vejamos que é o único elemento nestas condições. Seja x_0 um divisor de zero de A, i.e., seja $x_0 \in A$ para o qual existe $b \in A \setminus \{0_A\}$ tal que

$$bx_0 = 0_A$$
 ou $x_0 b = 0_A$.

Suponhamos, sem perda de generalidade, que é a primeira condição que se verifica. Então,

$$bx_0 = 0_A = b0_A$$
.

e, como b é simplificável (já que $b \neq 0_A$), temos que

$$x_0 = 0_A$$
.

Logo, 0_A é o único dividor de zero, pelo que A é um domínio de integridade.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- 2. $A \setminus \{0_A\} \neq \emptyset$ e $A \setminus \{0_A\}$ é subsemigrupo de A relativamente ao produto.

Demonstração. Suponhamos que A é domínio de integridade. Então, $A \setminus \{0_A\} \neq \emptyset$. Provemos então que $(A \setminus \{0_A\}, \cdot)$ é subsemigrupo de (A, \cdot) . De facto:

- (a) $A \setminus \{0_A\} \subseteq A$;
- (b) se $a,b\in A\setminus\{0_A\}$, $ab\in A\setminus\{0_A\}$. Se $ab=0_A$, com $a,b\in A\setminus\{0_A\}$, $a\in b$ seriam divisores de zero e, portanto, A não seria um domínio de integridade.

Reciprocamente, suponhamos que $A\setminus\{0_A\}\neq\emptyset$ e que $(A\setminus\{0_A\},\cdot)$ é subsemigrupo de (A,\cdot) , ou seja, que

$$a \neq 0_A, b \neq 0_A \Longrightarrow ab \neq 0_A.$$
 (*)

De $A\setminus\{0_A\}\neq\emptyset$ concluímos que 0_A é divisor de zero. Provemos que é único. Seja x_0 um divisor de zero. Então, existe $y\in A\setminus\{0_A\}$ tal que

$$x_0y = 0_A$$
 ou $yx_0 = 0_A$.

Comparando com (*), concluímos que $x_0 = 0_A$.

Proposição. Seja A um anel comutativo com identidade. Então, as seguintes afirmações são equivalentes:

- 1. A é domínio de integridade;
- A\ {0_A} ≠ ∅ e, se as equações ax = b e xa = b (a ≠ 0_A) tiverem solução, então, a solução é única.

Demonstração. Seja A um domínio de integridade. Então, $A \setminus \{0_A\} \neq \emptyset$. Suponhamos que, para $a, b \in A$ com $a \neq 0_A$,

$$(\exists x_0, y_0 \in A) \qquad ax_0 = b \quad \text{e} \quad y_0 a = b.$$

Sejam x_1 e y_1 outras soluções das equações ax = b e xa = b, respetivamente. Então,

$$ax_0 = b = ax_1$$
 e $y_0 a = b = y_1 a$

e, pelo facto de todos os elementos não nulos serem simplificáveis, temos que

$$x_0 = x_1$$
 e $y_0 = y_1$.

Logo, as soluções, quando existem, são únicas.

Reciprocamente, suponhamos que $A \setminus \{0_A\} \neq \emptyset$ e que, para $a \in A \setminus \{0_A\}$ e $b \in A$, se as equações ax = b e xa = b tiverem solução, então, a solução é única.

Como $x = 0_A$ é solução de $ax = 0_A$ e $xa = 0_A$, concluímos então que $x = 0_A$ é a única solução possível. Logo, 0_A é o único divisor de zero de A, pelo que A é um domínio de integridade.

anéis de divisão e corpos

Definição. Um anel A diz-se um anel de divisão se $(A \setminus \{0_A\}, \cdot)$ é um grupo. Um anel de divisão comutativo diz-se um *corpo*.

Resulta da definição que qualquer corpo é um domínio de integridade, mas o recíproco não é verdadeiro.

Exemplo 20. O domínio de integridade $(\mathbb{Z},+,\times)$ não é um anel de divisão, pois $(\mathbb{Z}\setminus\{0\},\times)$ não é grupo.

Exemplo 21. O domínio de integridade $(\mathbb{R}, +, \times)$ é um corpo e, portanto, um anel de divisão.

Exemplo 22. Seja $\mathcal{Q}=\{a+bi+cj+dk: a,b,c,d\in\mathbb{R}\}$, onde $i^2=j^2=k^2=-1$, ij=-ji=k, ki=-ik=j, jk=-kj=i. Considere em \mathcal{Q} as operações + e \times definidas por

$$(a + bi + cj + dk) + (a' + b'i + c'j + d'k)$$

= $a + a' + (b + b')i + (c + c')j + (d + d')k$

е

$$(a + bi + cj + dk) \times (a' + b'i + c'j + d'k) =$$

$$aa' - bb' - cc' - dd' + (ab' + a'b + cd' - c'd)i +$$

$$(ac' - bd' + a'c + b'd)j + (ad' + bc' - b'c + a'd)k.$$

Então, $(Q, +, \times)$ é um anel de divisão não comutativo. Este anel designa-se por *Anel dos Quarteniões*.

