TD N° 1

Exercice 1:

Un commerçant veut établir la facture d'un client ayant acheté deux produits P1 et P2 dont les quantités et les prix unitaires respectifs sont Q1, U1, Q2, U2.

- Donner l'organigramme correspondant sachant que le commerçant effectue une remise de 10% pour toute facture qui dépasse la somme de 2000 DA.
- Donner l'algorithme correspondant.

Exercice 2:

Dresser un organigramme puis donner l'algorithme permettant de résoudre chacun des problèmes suivants :

- 1- Détermination du Max de trois nombres entiers (A, B, C).
- 2- L'ordonnancement de trois nombres entiers (X, Y, Z) dans l'ordre décroissant.
- 3- La recherche des racines d'un trinôme de la forme $A x^2 + B x + C = 0$ dans l'espace des nombres réels.

Exercice 3:

Ecrire un algorithme qui calcule le coût de la quantité d'eau consommée par un abonné sachant que la SEAAL utilise un tarif par tranche représenté par le tableau suivant :

TRANCHE	QUANTITE (M3)	PRIX UNITAIRE (DA)
1	25	6.30
2	30	20.48
3	27	34.65
4	LE RESTE	40.95

Exercice 4:

Ecrire un algorithme permettant d'afficher la saison en introduisant le numéro du mois.

Exercice 5:

Ecrire un algorithme pour résoudre chacun des problèmes suivants :

- 1- Calcul du nombre de valeurs positives, du nombre de valeurs négatives, la somme de valeurs négatives, la somme de valeurs positives et le nombre des valeurs nulles d'une suite de N entiers.
- 2- Affichage du nombre de lettres majuscules et celui de lettres minuscules à partir d'une séquence de caractères se terminant par le caractère '#'.
- 3- Recherche du minimum et du maximum dans un ensemble de N nombres réels.
- 4- Calcul du quotient et reste de la division de deux entiers A et B sans utiliser l'opération de division.
- 5- Vérification si un entier positif X est premier ou non.
- 6- Calcul de la somme des nombres parfaits compris entre 5 et N. (*Un nombre entier positif A est parfait s'il est égal à la somme de ses diviseurs <A*).
- 7- L'affichage de l'alphabet complet ('A' à 'Z') ou ('a' à 'z').
- 8- Calcul de la somme des chiffres d'un entier positif.

TD ALGO1 Page 1

Exercice 6:

Méthode 1 : soustractions successives.

Ecrire l'algorithme permettant de déterminer le PGCD de deux nombres entiers A et B en utilisant les méthodes suivantes :

Méthode 2 : division euclidienne.

PGCD (3465 , 1575)	PGCD (7038, 5474)
A B Reste 3465 - 1575 = 1890 <u>1890</u> - 1575 = 315 1575 - <u>315</u> = 1260	A B Reste 7038 / <u>5474</u> <u>1564</u> <u>5474</u> / <u>1564</u> <u>782</u> 0
$ \begin{array}{r} \underline{1260} - \overline{315} &= 945 \\ \underline{945} - \overline{315} &= 630 \\ \underline{630} - \overline{315} &= 315 \\ \underline{315} - \overline{315} &= 0 \end{array} $	3465 / 1575 <u>315</u> 1575 / 315 0

Exercice 7:

Ecrire un algorithme qui détermine et affiche la $N^{\grave{e}me}$ valeur de la suite (U_N) sachant que : $U_0=0$; $U_1=1$; $U_2=2$; $U_N=U_{N-1}+U_{N-3}$ pour N>2.

TD ALGO1 Page 2

Série Complémentaire

Exercice 1:

Soient trois chiffres A, B et C ($0 \le A$, B, C ≤ 9). Ecrire un algorithme qui génère et affiche le plus grand et le plus petit nombre qu'on peut former en combinant A, B et C.

Exercice 2:

Ecrire un algorithme en utilisant l'instruction "Cas ... Vaut" pour résoudre le problème suivant : Etant donné l'âge d'un enfant, on veut l'informer de sa catégorie :

- Poussin de 6 à 7 ans
- Pupille de 8 à 9 ans
- Minime de 10 à 11 ans
- Cadet de 12 à 15 ans
- Junior de 16 à 18 ans
- Senior 19 ans et plus.

Exercice 3:

Ecrire un algorithme pour résoudre chacun des problèmes suivants :

- 1- Calcul de la somme des N premiers nombres entiers.
- 2- Le calcul du produit de deux entiers en utilisant uniquement l'opération d'addition '+'.
- 3- Calcul du nombre d'occurrences des caractères 'E' et 'e' dans une suite de N caractères.
- 4- Détermination si A est divisible par B. Avec A et B des entiers positifs.
- 5- Détermination de tous les diviseurs d'un entier X donné.
- 6- Calcul de la somme des K premiers nombres premiers.
- 7- Le calcul de la factorielle d'un entier naturel N.
- 8- Le calcul de A^N en utilisant seulement l'opérateur de multiplication. (A entier et N naturel).

Exercice 4:

Ecrire l'algorithme qui affiche les tables de multiplication de 1 à 9 pour toutes les valeurs de 1 à 9.

Exercice 5:

Ecrire un algorithme qui demande à l'utilisateur un nombre compris entre 1 et 3 jusqu'à ce que la réponse convienne.

Exercice 6:

Ecrire un algorithme qui calcule la somme d'ordre N de **Sn** définie comme suit en utilisant seulement les opérateurs de base (**sans l'utilisation de l'opérateur de puissance**).

$$Sn = \sum_{i=0}^{N} \frac{(-1)^{i+1}}{x^i}$$

Exercice 7:

Ecrire un algorithme qui détermine et affiche la $N^{\text{ème}}$ valeur U_N de la suite de 'FIBONACCI' sachant que $U_1=1$; $U_2=1$; $U_N=U_{N-1}+U_{N-2}$ pour N>2.

TD ALGO1 Page 3