

TÜV AUSTRIA SERVICES GMBH

Office: Deutschstrasse 10 1230 Vienna/Austri

1230 Vienna/Austria T: +43 5 0454-0 F: +43 5 0454-6505 E: pzw@tuv.at W: www.tuv.at

Business Area Industry & Energy Austria

Technik

TEST REPORT

of the accredited test laboratory

TÜV Nr.: INE-AT/FG-17/101

Applicant:

SES-imagotag GmbH

St. Peter Gürtel 10b

A - 8042 Graz

Tested Product:

Networking transceiver master (Access Point): Model: A02

FCC-ID:

2ACQM-AP0002

IC-ID:

12154A-AP0002

Manufacturer:

SES-imagotag GmbH St. Peter Gürtel 10b

A - 8042 Graz

Output power /

28,0 mV/m average

power supply:

5V DC

field strength:

@ 3m distance

Frequency range:

2404 - 2479,25 MHz

Channel separation: 0.35 MHz

Standard:

FCC: 47 CFR Part 15 (October 1, 2015 edition)

RSS-210 Issue 9, August 2016

TÜV AUSTRIA SERVICES GMBH Test laboratory for EMC

Supervisor of EMC-laboratory:

ing. Wilhelm Seier

Rundsiegel S

06.04.2017

Copy Nbr.:

checked by:/

Ing. Michael Emminger

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of TÜV AUSTRIA

SERVICES GMBH.

The results of this test report only refer to the provided equipment.

Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory, Verifizierungsstelle

Notified Body 0408 IC 2932K-1

Non-executive Board of Directors: KR DI Johann Marihart

Management: DI Dr. Stefan Haas Mag. Christoph Wenninger

Registered Office: Deutschstrasse 10 1230 Vienna/Austria

Branch Offices: www.tuv.at/standorte

Company Register Court / - Number: Vienna / FN 288476 f

Bank Details: IBAN AT131200052949001066 BIC BKAUATWW

IBAN AT153100000104093282 BIC RZBAATWW

VAT ATU63240488 DVR 3002476

Relative humidity: 32%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 15 and RSS-210 is given below.

SUBCLAUSE		PARAMETER TO BE MEASURED		
		Intentional Radiators		
		Test object data		3
2.1033	(%)	Number of channels and channel spacing		4
15.249 (e) B.10 (a)		Duty Cycle for averaging		5
15.249 (a) (c) B.10 (a)		Field strength at 2400 – 2483,5 MHz	6	8-8
15.249 (d) (e) B.10 (b)		Emissions outside 2400 – 2483,5 MHz (15.209)	9.	-20

Relative humidity: 32%

TEST OBJECT DATA

General EUT Description

This transceiver module is working in a network consisting of a controller station, so called Accesspoint, and various displays. The Accesspoint transmits information to the displays and receives acknowledgements.

This device is operating as the Accesspoint in the network.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: Minimum shift keying declared channel bandwidth 250 kHz –

 'virtual' channel spacing 0,35 MHz. Only 11 channels from the channel plan are

 used, therefore the channel spacing in reality is much higher and varies from

 2,45 MHz minimum up to 17,15 MHz.
- 2.1033 (5) Frequency range: 2404 2479,25 MHz (channel center frequencies of channel 0 up to ch. 10)
- 2.1033 (6) Power range and Controls: The maximum field strength measured is 28,0 mV/m average @ 3m distance. There is no power control or regulation.
- 2.1033 (7) Maximum output power rating: 28,0 mV/m average @ 3m distance.
- 2.1033 (8) DC Voltage and Current: 5 VDC maximum current consumption: 3A during continuous transmission
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Tests were performe on: January 12th and 13th 2017.

Relative humidity: 32%

Number of channels and channel spacing

§ 2.1033

Channel plan:

Channel Number	Center frequency (MHz)	Channel spacing (MHz)		
0	2404			
1	2409,95	5,95		
2	2421,85	11,9		
3	2424,65	2,8		
4		17,15		
	2441,8	7,35		
5	2449,15	12,6		
6	2461,75	7,7		
7	2469,45	4,9		
8	2474,35	2,45		
9	2476,8			
10	2479,25	2,45		

Tests were performed on channels 0, 4 and 10.

Test Equipment used: N/A

Relative humidity: 32%

Duty Cycle measurements for averaging

§ 15.249 (e)

Mode: data transmission (worst case in 100ms)

Date: 12.JAN.2017 13:26:53

According to the timing protocol description provided by the manufacturer and attached as technical description to the application for certification, the transmission burst time was checked to not exceed the declared value. The declared value was taken for calculation, as that gives the worst case. 2 Transmission bursts of 1,48ms length an 14 transmission burst of 1,97ms length occuring in 100ms give a duty cycle of 30,54% or an average factor of -10,3 dB. This is the maximum duty cycle according to the protocol description.

LIMIT SUBCLAUSE 15.249(e)

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Test Equipment used: EMV-200

Relative humidity: 32%

TUV

Field strength of emissions at 2400 - 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 0 (2404 MHz)

The maximum peak value measured was 98,76 dBμV/m = 86,7 mV/m at 3m distance.

With the averaging factor calculated on page 5 of this test report of -10,3 dB the maximum average value is then $88,46 \text{ dB}\mu\text{V/m} = 26,5 \text{ mV/m}$ at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0-24.25 GHz	250	2500

⁽c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200

Relative humidity:

32%

Field strength of emissions at 2400 - 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 4 (2441,8 MHz)

The maximum peak value measured was 99,23 dB μ V/m = 91,5 mV/m at 3m distance.

With the averaging factor calculated on page 5 of this test report of -10,3 dB the maximum average value is then $88,93 \text{ dB}\mu\text{V/m} = 28,0 \text{ mV/m}$ at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0-24.25 GHz	250	2500

⁽c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200

Relative humidity: 32%

Field strength of emissions at 2400 - 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 10 (2479,25 MHz)

The maximum peak value measured was 98,99 dBµV/m = 89,0 mV/m at 3m distance.

With the averaging factor calculated on page 5 of this test report of -10,3 dB the maximum average value is then $88,69 \text{ dB}\mu\text{V/m} = 27,2 \text{ mV/m}$ at 3m distance.

LIMIT

SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400-2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

⁽c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz Channel 0 (2404 MHz)

§ 15.249 (d) (e)

LIMIT

SUBCLAUSE 15.249(d) (e) (15.209)

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88-216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 0 (2404 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case emission: 37,07 dBµV/m QP.

LIMIT

see page 9

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 0 (2404 MHz) – average values above 1 GHz are shown in magenta – green = peak

LIMIT

see page 9

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 0 (2404 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case emission: 52,7 dBµV/m PK, with -10,3 dB averaging: 42,4 dBµV/m Average.

LIMIT

see page 9

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz. Average values are lower in real application, as for testing the EUT was operated with continuous transmission.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz Channel 4 (2441,8 MHz)

§ 15.249 (d) (e)

LIMIT

SUBCLAUSE 15.249(d) (e) (15.209)

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 4 (2441,8 MHz) – average values above 1 GHz are shown in magenta – green = peak

Preview Result 1-QPK [Preview Result 1. Result 1. Testility]

Worst case emission: 37,51 dBµV/m QP_{*}

LIMIT

see page 13

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 4 (2441,8 MHz) – average values above 1 GHz are shown in magenta – green = peak

LIMIT

see page 13

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 4 (2441,8 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case emission: 48,7 dBµV/m PK, with -10,3 dB averaging: 38,4 dBµV/m Average.

LIMIT

see page 13

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz. Average values are lower in real application, as for testing the EUT was operated with continuous transmission.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz Channel 10 (2479,25 MHz)

§ 15.249 (d) (e)

LIMIT

SUBCLAUSE 15.249(d) (e) (15.209)

- (d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
- (e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 10 (2479,25 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case emission: 33,54 dBµV/m QP.

LIMIT

see page 17

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 10 (2479,25 MHz) – average values above 1 GHz are shown in magenta – green = peak

LIMIT

see page 17

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

Relative humidity: 32%

Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 10 (2479,25 MHz) – average values above 1 GHz are shown in magenta – green = peak

Worst case emission: 53,4 dBµV/m PK, with -10,3 dB averaging: 43,1 dBµV/m Average.

LIMIT

see page 17

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-200; NT-416

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz. Average values are lower in real application, as for testing the EUT was operated with continuous transmission.

Appendix 1 Test equipment used

	Anechoic Chamber with 3m measurement distance	NT-100	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200	Division: Industry & Energy
	Stripline according to ISO 11452-5	NT-108	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	B 4 1 F0
	MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESI26 Test receiver 20 Hz 26,5 GHz	NT-207	Department: FG Test report number:
	DS - Turntable 0 - 400 ° Azimuth	NT-111/1	Digital Radio Tester	NT-208	INE-AT/FG-17/101
	CO3000 Controller Mast+Turntable	NT-112/1	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	Page: 1 of 4 Date: 06.04.2017
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210	Checked by:
	HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	Digital Radio Tester Aeroflex 3920	NT-212/1	
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	RubiSource T&M Timing reference	NT-216	
	3116 - Horn Antenna 18 - 40 GHz	NT-126	Radiocommunicationanalyzer SWR 1180 MD	NT-217	
	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Mixer M19HWD 40 GHz – 60 GHz	NT-218	
	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M12HWD 60 GHz – 90 GHz	NT-219	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	DSO9104 Digital scope	NT-220/1	
	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	TPS 2014 Digital scope	NT-222	
	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	Artificial Ear according to IEC 60318	NT-224	
	VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	1 kHz Sound calibrator	NT-225	
	Loop Antenna H-Field	NT-132	B10 - Harmonics and flicker analyzer	NT-232	
	Horn Antenna 500 MHz - 2900 MHz	NT-133	SRM-3000 Spectrumanalyzer	NT-233	
	Horn Antenna 500 MHz - 6000 MHz	NT-133/1	SRM-3006 Spectrumanalyzer	NT-233/1a	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-134	E-field probe SRM 75 MHz – 3 GHz	NT-234	
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d	
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	Hall-Teslameter ETM-1	NT-241	
	Conical Dipol Antenna PCD8250	NT-138	EFA-3 H-field- / E-field probe	NT-243	
	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	EHP-50F H-field- / E-field probe	NT-243/1	
	HZ-1 Antenna tripod	NT-150	Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
	BN 1500 Antenna tripod	NT-151	E-field probe 100 kHz – 3 GHz	NT-245	
	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	H-field probe 300 kHz – 30 MHz	NT-246	
	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173			

E-field probe 3 MHz – 18 GHz	NT-247	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c
H-field probe 27 MHz – 1 GHz	NT-248	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330
ELT-400 1 Hz – 400 kHz	NT-249	T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
FCC-203I EM Injection clamp	NT-251	AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
FCC-203I-DCN Ferrite decoupling network	NT-252	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
PR50 Current Probe	NT-253	Preamplifier 1 GHz - 4 GHz	NT-335
i310s Current Probe	NT-254/1	Preamplifier for GPS MKU 152 A	NT-336
Fluke 87 V True RMS Multimeter	NT-260	Preamplifier 100 MHz – 23 GHz	NT-337
Model 2000 Digital Multimeter	NT-261	DC Block 10 MHz – 18 GHz Model 8048	NT-338
Fluke 87 V Digital Multimeter	NT-262/1	2-97201 Electronic load	NT-341
ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	VDS 200 Mobil-impuls-generator	NT-350
ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	LD 200 Mobil-impuls-generator	NT-351
PHE 4500/B Power amplifier	NT-304	MPG 200 Mobil-Impuls-Generators	NT-352
EZ10 T-Artificial Network	NT-305	EFT 200 Mobil-impuls-generator	NT-353
SMG - Signal generator 0,1 - 1000 MHz	NT-310	AN 200 S1 Artificial Network	NT-354
SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
RefRad Reference generator	NT-312	PHE 4500 - Mains impedance network	NT-401
SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	IP 6.2 Coupling filter for data lines (Surge)	NT-403
40 MHz Arbitrary Generator TGA1241	NT-315	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
Artificial mains network NSLK 8127-PLC	NT-316	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
PEFT - Burst generator up to 4 kV	NT-320	IP 4 - Capacitive clamp (Burst)	NT-411
ESD 30 System up to 25 kV	NT-321	Highpass-Filter 100 MHz – 3 GHz	NT-412
PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 600 MHz – 4 GHz	NT-413
IMU4000 Immunity test system	NT-325/1	Highpass-Filter 1250 MHz – 4 GHz	NT-414
VCS 500-M6 Surge-Generator	NT-326	Highpass-Filter 1800 MHz – 16 GHz	NT-415

Division: Industry & Energy

Department: FG

Test report number: INE-AT/FG-17/101

Page: 2 of 4

Date: 06.04.2017

Appendix 1 (continued) Test equipment used

Coupling decoupling network

Highpass-Filter 3500 MHz – 18 GHz	NT-416	FCC-801-S25 Coupling decoupling network	NT-462	Division: Industry & Energy
RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	FCC-801-T4 Coupling decoupling network	NT-463	Department: FG
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	FCC-801-C1 Coupling decoupling network	NT-464	Test report number:
RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	INE-AT/FG-17/101
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Page: 3 of 4 Date: 06.04.2017
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Checked by:
RF-Attenuator 30 dB	NT-424	GA 1240 Power amplifier according to EN 61000-4-16	NT-480	101
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	Van der Hoofden Test Head	NT-484	
RF-Attenuator 6 dB	NT-428	PC P4 3 GHz Test computer	NT-500	
RF-Attenuator 0 dB - 81 dB	NT-429	PC P4 1700 MHz Notebook	NT-505	
	NT-430	Monitoring camera with Monitor	NT-511	
	NT-431	ES-K1 Version 1.71 SP2 Test software	NT-520	
	NT-432	EMC32 Version 10.20.01 Test software	NT-520/1	
RF-Load 150 W	NT-433	SRM-TS Version 1.3 software for SRM-3000	NT-522	
Impedance transducer 1:4; 1:9; 1:16	NT-435	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
	NT-436	Spitzenberger und Spies Test software V4.1	NT-525	R 2
RF-Attenuator DC – 18 GHz 6 dB	NT-437	Noise power test apparatus according to EN 55014	NT-530	
RF-Attenuator DC – 18 GHz 10 dB	NT-438	Vertical coupling plane (ESD)	NT-531	
RF-Attenuator DC – 18 GHz 20 dB	NT-439	Test cable #4 for EN 61000-4-6	NT-553	
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Test cable #3 for conducted emission	NT-554	
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #8 Sucoflex 104EA	NT-559	
Directional coupler 0,1 MHz – 70 MHz	NT-444	Test cable #9 (for outdoor measurements)	NT-580	
Directional coupler 0,1 MHz – 70 MHz	NT-445	Test cable #10 (for outdoor measurements)	NT-581	
Tube imitations according to EN 55015	NT-450	Test cable #13 Sucoflex 104PE	NT-584	
	NT-458	Test cable #21 for SRM-3000	NT-592	
	NT-459	Shield chamber	NT-600	
	NT-460	Climatic chamber	M-1200	
	NT-461			

Appendix 1 (continued) Test equipment used

Anechoic Chamber	EMV-100	Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	Division: Industry & Energy
3 m / 5 m measuring distance Turntabel	EMV-101	Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	Department: FG
6 m diameter Antenna mast	EMV-102	Load Dump Generator LD 200N	EMV-350	Test report number:
1 – 4 m Mast and Turntable controller	EMV-103	Ultra Compact Symulator UCS 200N100	EMV-351	INE-AT/FG-17/101 Page: 4 of 4
FC-06 EMC Video/Audiosystem	EMV-104	Automotive Power fail module PFM 200N100.1	EMV-352	Date: 06.04.2017
EMC Software	EMV-105	Voltage Drop Symulator VDS 200Q100	EMV-353	Checked by:
EMC32 Version 10.20.01 Hornantenna 1 – 18 GHz HF 907	EMV-110	Arb. Generator AutoWave	EMV-354	1
Antennapre.amp. 1 – 18 GHz ERZ-LNA0200-1800-30-2	EMV-111	Ultra Compact Symulator UCS 500N7	EMV-355	
Trilog Antenna 30-3000 MHz VULB9163	EMV-112	Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	Telecom Surge Generator TSurge 7	EMV-358	
DC Artificial Network PVDC 8300	EMV-150	Coupling decoupling network CNI 508N2	EMV-359	
AC Artificial Network NNLK 8121 RC	EMV-151	Coupling decoupling network CNV 504N2.2	EMV-360	
EMI Receiver ESR26	EMV-200	Immunity generator NSG4060/NSG4060-1	EMV-361	
Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	Coupling network CDND M316-2	EMV-362	
GPS Frequency normal B-88	EMV-202	Coupling network CT419-5	EMV-363	
DC Power supply N5745A	EMV-203	ESD Generator NSG 437	EMV-364	
DC Power supply	EMV-204	Pulse Limiter VTSD 9561-F BNC	EMV-405	
Spektrum Analyzator FSV40	EMV-205	Transient emission BSM200N40+BS200N100	EMV- 450+451	
Thd Multimeter Model 2015	EMV-206	Cap. Coupling Clamp HFK	EMV-455	
Poweramplifier PAS15000	EMV- 207/abc	Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	
Inrush Current Source	EMV- 208/abc	Coupling network CDN M2-100A	EMV-459	
Arbgenerator Sycore	EMV-209	Coupling network CDN M3-32A	EMV-460	
Harmonics/Flicker analyzer ARS 16/3	EMV-210	Coupling network CDN M5-100A	EMV-461	
HF- Ampflifier 9 kHz-250 MHz BBA150	EMV-300	Current Clamp CIP 9136A	EMV-462	
HF- Amplifier 80 -1000 MHz BBA150	EMV-301	DC Artificial Network HV-AN 150	EMV- 464+465	
HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Coupling Clamp EM 101	EMV-466	
High Power Ant. 20-200 MHz VHBD 9134	EMV-303	Decoupling Clamp FTC 101	EMV-467	
		Power attenuator DG 250 W 6 GHz 6 dB	EMV-469	

Description: General view

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 1 of 11

Date: 06.04.2017

Description: Backside view

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 2 of 11

Date: 06.04.2017

Description: Antenna detached

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 3 of 11

Date: 06.04.2017

Description: Case opened

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 4 of 11

Date: 06.04.2017

Description: Inside view #1

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 5 of 11

Date: 06.04.2017

Description: Inside view #2

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 6 of 11

Date: 06.04.2017

Description: Inside view #3

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 7 of 11

Date: 06.04.2017

Description: Inside view #4

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 8 of 11

Date: 06.04.2017

Description: Test setup view #1

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 9 of 11

Date: 06.04.2017

Description: Test setup view #2

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 10 of 11

Date: 06.04.2017

Description: Test setup view #3

Division: Industry & Energy

Department: FG

Test report reference: INE-AT/FG-17/101

Page: 11 of 11

Date: 06.04.2017

