

SF1624 Algebra och geometri Lösningsförslag till tentamen 15.03.13

DEL A

1. Planet H ges av ekvationen 3x - 2y + 5z + 1 = 0.

a) Bestäm en linje
$$N$$
 som är vinkelrät mot H . (2 p)

b) Bestäm en linje
$$L$$
 som inte skär planet H . (2 p)

Lösningsförslag. a) Vi vet att vektorn $\vec{n} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}$ är vinkelrät mot planet H. Därmed vill

varje linje på formen $\{P+t\cdot\vec{n}\mid {\rm tal}\ t\}$ vara vinkelrät mot H, för varje vald punkt P. T.ex kan vi välja P som origo, och vi har att linjen $\begin{bmatrix} 3t \\ -2t \\ 5t \end{bmatrix}$ (parameter t) är vinkelrät mot H.

b) Vi väljer två punkt Q och R i planet, och bildar vektorn $\vec{v}=R-Q$. Då vill varje linje på formen $\{P+t\vec{v}\mid tal\ t\}$ vara parallell med planet H. Om vi sedan väljer punkten P att inte ligga i planet, har vi en linje som inte skär H. Vi väljer punkterna

$$Q = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \quad \text{och} \quad R = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix},$$

vilket ger $\vec{v}=\begin{bmatrix} -1\\1\\1 \end{bmatrix}$. Och vi väljer $P=\begin{bmatrix} 0\\0\\0 \end{bmatrix}$. Detta ger oss linjen

$$\left\{ \begin{bmatrix} -t \\ t \\ t \end{bmatrix} \mid \text{tal } t \right\}.$$

2. Låt $\vec{e_1}, \vec{e_2}, \vec{e_3}$ vara standardbasen för \mathbb{R}^3 . Betrakta den linjära avbildningen $F \colon \mathbb{R}^3 \to \mathbb{R}^2$ som är definierad genom

$$F(\vec{e_1}) = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], F(\vec{e_2}) = \left[\begin{array}{c} 2 \\ -1 \end{array} \right] \quad \text{och} \quad F(\vec{e_3}) = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].$$

(a) Bestäm
$$F(\vec{v})$$
 där $\vec{v} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$. (1 p)

- (b) Bestäm dimensionen av nollrummet Ker(F), och bildrummet Im(F). (2 p)
- (c) Bestäm en bas för nollrummet Ker(F). (1 p)

Lösningsförslag.

(a) Standardmatrisen för F är $\begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$, så

$$F(\vec{v}) = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

(a) Standardmatrisen Gauss-reduceras till

$$A = \left[\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & -1 \end{array} \right].$$

Man konstaterar att rangen av standardmatrisen är 2, vilket betyder att $\dim \operatorname{Im}(F) = 2$. Enligt dimensionssatsen är $\dim \mathbb{R}^3 = \dim \operatorname{Im}(F) + \dim \operatorname{Ker}(F)$ och alltså är $\dim \operatorname{Ker}(F) = 1$.

(b) Eftersom $\dim \operatorname{Ker}(F)=1$ utgör varje enskild vektor $\vec{v}\neq\vec{0}$ som uppfyller $F(\vec{v})=0$ en bas. Från (a) följer att $\{\begin{bmatrix} -3\\1\\1\end{bmatrix}\}$ är en bas.

(1 p)

- 3. (a) Vad menas med begreppet egenvektor?
 - (b) Avgör vilka vektorerna

$$\vec{x} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} 10 \\ -2 \end{bmatrix}, \quad \vec{z} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{och} \quad \vec{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

som är egenvektorer till matrisen $A = \begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix}$. (2 p)

(c) Bestäm egenvärden och tillhörande egenrum till matrisen A. (1 p)

Lösningsförslag.

- (a) Att \vec{x} är en egenvektor till matrisen A betyder att \vec{x} är nollskild och parallell med $A\vec{x}$, dvs att det finns en skalär λ så att $A\vec{x} = \lambda \vec{x}$.
- (b) För att se vilka av vektorerna som är egenvektorer multiplicerar vi dem med matrisen och ser om resultatet är parallellt med vektorn.

$$A\vec{x} = \begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 5 \cdot 5 \\ 1 \cdot 1 + 5 \cdot 5 \end{bmatrix} = \begin{bmatrix} 26 \\ 26 \end{bmatrix} \quad \text{som inte "ar parallell med "x"},$$

$$A\vec{y} = \begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 10 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 10 + 5 \cdot (-2) \\ 1 \cdot 10 + 5 \cdot (-2) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{som \"{ar} parallell med } \vec{y},$$

$$A\vec{z} = \begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 5 \cdot 1 \\ 1 \cdot 1 + 5 \cdot 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix} \quad \text{som \"{ar} parallell med } \vec{z}$$

och

$$A\vec{w} = \begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 5 \cdot (-1) \\ 1 \cdot 1 + 5 \cdot (-1) \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \end{bmatrix} \quad \text{som \"{a}r inte parallell med } \vec{y}.$$

Alltså ser vi att \vec{y} och \vec{z} är egenvektorer, medan \vec{x} och \vec{w} inte är det.

(c) Från beräkningen i del (b) ser vi att \vec{y} är en egenvektor med egenvärde 0 och \vec{z} är en egenvektor med egenvärde 6. Eftersom det högt kan finnas två olika egenvärden måste dessa vara samtliga och motsvarande egenrum ges av multiplerna av vektorerna \vec{y} och \vec{z} .

- (b) \vec{y} och \vec{z} är egenvektorer till A.
- (a) Egenvärdena är 0 med egenrum $\operatorname{Span}\{\vec{y}\}$ och 6 med egenrum $\operatorname{Span}\{\vec{z}\}$.

DEL B

4. I \mathbb{R}^4 har vi, för varje tal a, följande tre vektorer

$$\vec{v_1} = \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \ \vec{v_2} = \begin{bmatrix} 2\\a\\1\\3 \end{bmatrix} \quad \text{och} \quad \vec{v_3} = \begin{bmatrix} 4\\2\\3\\11 \end{bmatrix}.$$

Vi låter $V = \operatorname{Span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ vara deras linjära hölje.

- (a) Bestäm för vilka värden a vektorrummet V har dimension tre. (2 p)
- (b) Låt a=1, och bestäm en bas till det ortogonala komplementet V^{\perp} .

Lösningsförslag.

a) Vektorrummet V har dimension tre om (och endast om) vektorerna \vec{v}_1, \vec{v}_2 och \vec{v}_3 är linjärt oberoende. Detta är ekvivalent med att matrisen

$$A = \left[\begin{array}{rrr} 1 & 2 & 4 \\ 2 & a & 2 \\ 0 & 1 & 3 \\ -1 & 3 & 11 \end{array} \right]$$

har rang tre. Matrisens rang bestämmer vi med hjälp av elementära radoperationer.

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & a & 2 \\ 0 & 1 & 3 \\ -1 & 3 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & a - 4 & -6 \\ 0 & 1 & 3 \\ 0 & 5 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & a - 4 & -6 \\ 0 & 5 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 6 - 3a \\ 0 & 0 & 0 \end{bmatrix}$$

Matrisen A har rang 3 om (och endast om) $6 - 3a \neq 0$ dvs om $a \neq 2$. Därmed har V dimension 3 om $a \neq 2$.

b) Det ortogonala komplementet V^{\perp} består av alla vektorer $\vec{u} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$ som är ortogo-

nala mot basvektorerna

$$ec{v}_1 = \left[egin{array}{c} 1 \ 2 \ 0 \ -1 \end{array}
ight], \quad ec{v}_2 = \left[egin{array}{c} 2 \ 1 \ 1 \ 3 \end{array}
ight] \quad ext{och} \quad ec{v}_3 = \left[egin{array}{c} 4 \ 2 \ 3 \ 11 \end{array}
ight].$$

Detta betyder att $\vec{v}_1 \cdot \vec{u} = 0$, $\vec{v}_2 \cdot \vec{u} = 0$ och $\vec{v}_3 \cdot \vec{u} = 0$. Skriver vi ut detta erhåller vi det homogena ekvationssystemet

$$\begin{cases} x + 2y - w = 0 \\ 2x + y + z + 3w = 0 \\ 4x + 2y + 3z + 11w = 0. \end{cases}$$

Vi gör elementära radoperationer på totalmatrisen till systemet

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & 1 & 3 \\ 4 & 2 & 3 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & -3 & 1 & 5 \\ 0 & -6 & 3 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & -3 & 1 & 5 \\ 0 & 0 & 1 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

Vi betecknar w = t och får z = -5t, y = 0 och x = t. Alltså har vi att

$$V^{\perp} = \{t \left[egin{array}{c} 1 \ 0 \ -5 \ 1 \end{array}
ight] \mid al \quad t\}.$$

Härav följer att vektorn $\begin{bmatrix} 1\\0\\-5\\1 \end{bmatrix}$ är en bas till $V^{\perp}.$

- 5. (a) Definiera vad som menas med *koordinatvektorn* för en vektor med avseende på en bas. (1 p)
 - (b) Betrakta följande vektorer i \mathbb{R}^2 :

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 och $\vec{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Bestäm en bas \mathcal{B} för \mathbb{R}^2 sådan att koordinatvektorn för \vec{v} är \vec{w} och koordinatvektorn för \vec{w} är \vec{v} .

Lösningsförslag. a) Låt $\beta = \{\vec{e}_1, \dots, \vec{e}_n\}$ vara en bas för vektorrummet V, och låt \vec{x} vara en vektor. Då kan \vec{x} uttryckas som

$$\vec{x} = \sum_{i=1}^{n} a_i \vec{e_i},$$

för några skalärer a_1,\ldots,a_n . Den ordnade sekvensen av skalärer

$$\left[\vec{x} \right]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

kallas koordinatvektorn till \vec{x} med avseende på basen β .

b) Låt $\{\vec{e}, \vec{f}\}$ vara den sökta basen för \mathbb{R}^2 . Kraven är att $\vec{v} = \vec{e} - \vec{f}$ och att $\vec{w} = \vec{2} + 2\vec{f}$. Dessa två krav kan vi skriva som

$$\begin{bmatrix} \vec{v} \\ \vec{w} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \vec{e} \\ \vec{f} \end{bmatrix}.$$

Inverterar vi 2×2 -matrisen, får vi sambandet att

$$\frac{1}{3} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \vec{v} \\ \vec{w} \end{bmatrix} = \begin{bmatrix} \vec{e} \\ \vec{f} \end{bmatrix}.$$

Med andra ord har vi att

$$\vec{e} = \frac{2}{3}\vec{v} + \frac{1}{3}\vec{w} = \frac{2}{3}\begin{bmatrix}1\\2\end{bmatrix} + \frac{1}{3}\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

och

$$\vec{f} = -\frac{1}{3}\vec{v} + \frac{1}{3}\vec{w} = -\frac{1}{3}\begin{bmatrix}1\\2\end{bmatrix} + \frac{1}{3}\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}0\\-1\end{bmatrix}.$$

- 6. Låt $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ och $\vec{n} = \begin{bmatrix} c \\ d \end{bmatrix}$ vara två nollskilda vektorer i \mathbb{R}^2 , där ac + bd = 0. Låt L vara det linjära höljet till \vec{v} .
 - (a) Varför är $\beta = \{\vec{v}, \vec{n}\}$ en bas för \mathbb{R}^2 ? (1 p) (b) Låt $T : \mathbb{R}^2 \to \mathbb{R}^2$ vara speglingen om linjen L. Bestäm matrisrepresentationen B till
 - (b) Låt $T: \mathbb{R}^2 \to \mathbb{R}^2$ vara speglingen om linjen L. Bestäm matrisrepresentationen B till T med avseende på basen β .
 - (c) Låt P vara basbytesmatrisen från standardbasen till β . Bestäm $P^{-1}BP$. (2 p)

Lösningsförslag.

- a) Två vektorer i ett tvådimensionellt vektorrum bildar en bas om och endast om de är linjärt oberoende. Noll-skilda vektorerna \vec{v} och \vec{n} är ortogonala eftersom skalärprodukten $\vec{v} \cdot \vec{n} = ac + bd = 0$. Detta medför att \vec{v} och \vec{n} är två linjärt oberoende vektorer och därmed bildar de en bas i \mathbb{R}^2 .
- b) Vid speglingen i linjen $L = \operatorname{Span}(\vec{v})$ avbildas \vec{v} på \vec{v} och \vec{n} på $-\vec{n}$. Från $T(\vec{v}) = \vec{v} = 1 \cdot \vec{v} + 0 \cdot \vec{n}$ och $T(\vec{n}) = -\vec{n} = 0 \cdot \vec{v} 1 \cdot \vec{n}$ får vi att avbildningens matris i basen $\beta = \{\vec{v}, \vec{n}\}$ är $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- c) Matrisen $Q=\begin{bmatrix}a&c\\b&d\end{bmatrix}$ är övergångsmatrisen från β till standardbasen. Därmed är $P=Q^{-1}=\frac{1}{ad-bc}\begin{bmatrix}d&-c\\-b&a\end{bmatrix}$ övergångsmatrisen från standardbasen till β . Härav

$$P^{-1}BP = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{ad - bc} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

$$\frac{1}{ad-bc} \left[\begin{array}{cc} a & c \\ b & d \end{array} \right] \left[\begin{array}{cc} d & -c \\ b & -a \end{array} \right] = \frac{1}{ad-bc} \left[\begin{array}{cc} ad+bc & -2ac \\ 2bd & -bc-ad \end{array} \right].$$

Anmärkning: Om $b \neq 0$ och vi substituerar d = -ac/b, kan vi förenkla svaret till

$$P^{-1}BP = \frac{1}{a^2 + b^2} \begin{bmatrix} a^2 - b^2 & 2ab \\ 2ab & b^2 - a^2 \end{bmatrix}.$$

c') Alternativt: Eftersom $P^{-1}BP$ är avbildningens matris i standardbasen kan vi beräkna matrisprodukten genom att avbilda en godtyckligt vektor. Låt $\vec{u} = \begin{bmatrix} x \\ y \end{bmatrix}$ vara en vektor i \mathbb{R}^2 . Vi har att

$$\vec{u} = \mathrm{proj}_L(\vec{u}) + (\vec{u} - \mathrm{proj}_L(\vec{u})).$$

Detta ger att $T(\vec{u}) = 2\operatorname{proj}_L(\vec{u}) - \vec{u}$. Vi har att linjen L spänns upp av vektorn $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$, och vi erhåller att

$$T(\vec{u}) = 2\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} - \vec{u} = 2\frac{ax + by}{a^2 + b^2} \begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \left[\begin{array}{c} \frac{2a^2x + 2aby}{a^2 + b^2} \\ \frac{2abx + 2b^2y}{a^2 + b^2} \end{array}\right] - \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} \frac{a^2 - b^2}{a^2 + b^2} & \frac{2ab}{a^2 + b^2} \\ \frac{2ab}{a^2 + b^2} & \frac{b^2 - a^2}{a^2 + b^2} \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

 $= \begin{bmatrix} \frac{2a^2x + 2aby}{a^2 + b^2} \\ \frac{2abx + 2b^2y}{a^2 + b^2} \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{a^2 - b^2}{a^2 + b^2} & \frac{2ab}{a^2 + b^2} \\ \frac{2ab}{a^2 + b^2} & \frac{b^2 - a^2}{a^2 + b^2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ Alltså är $\begin{bmatrix} \frac{a^2 - b^2}{a^2 + b^2} & \frac{2ab}{a^2 + b^2} \\ \frac{2ab}{a^2 + b^2} & \frac{b^2 - a^2}{a^2 + b^2} \end{bmatrix}$ avbildningens matris i standard basen och därmed är

$$P^{-1}BP = \begin{bmatrix} \frac{a^2 - b^2}{a^2 + b^2} & \frac{2ab}{a^2 + b^2} \\ \frac{2ab}{a^2 + b^2} & \frac{b^2 - a^2}{a^2 + b^2} \end{bmatrix}.$$

DEL C

7. Talföljden $\{f_0, f_1, f_2, f_3, \dots, \}$ satisfierar följande rekursiva formel

$$f_{n+2} = 2f_{n+1} + 8f_n, \qquad (*)$$

för alla $n \ge 0$. De två första termerna i talföljden är kända, $f_0 = a$ och $f_1 = b$. Uttryck f_{n+1} som en sluten formel i a och b. (Tips: Beteckna $F(n+1) = \begin{bmatrix} f_{n+1} \\ f_n \end{bmatrix}$ och skriv ekvationen (*) på matrisform). (4 p)

Lösningsförslag. Vi har att F(n+1) = AF(n), där

$$A = \begin{bmatrix} 2 & 8 \\ 1 & 0 \end{bmatrix}.$$

Det följer då att $F(n+1) = A^n F(1)$. Om vi betraktar matrisen A som en linjär avbildning på \mathbb{R}^2 , så har vi att $A = PDP^{-1}$ där P är övergångsmatrisen från en bas av egenvektorer till standardbasen, och där D är en diagonalmatris med egenvärden på diagonalen. Specielt vill vi använda detta för att beräkna A^n .

Det karakteristiska polynomet till A är $c(\lambda) = (\lambda - 2)\lambda - 8$. Nollställerna är

$$0 = c(\lambda) = \lambda^2 - 2\lambda + 1 - 9 = (\lambda - 1)^2 - 9.$$

Det vill säga, $\lambda=-2$ och $\lambda=4$. Vi bestämmer sedan de tillhörande egenrummen. För $\lambda=-2$ ges egenrummet av ekvationen x+2y=0. En bas är $\vec{e}=\begin{bmatrix}2\\-1\end{bmatrix}$. Egenrummet tillhörande egenvärdet $\lambda=4$ ges av ekvationen x-4y=0. En bas är $\vec{f}=\begin{bmatrix}4\\1\end{bmatrix}$. Detta ger övergångsmatriserna

$$P = \begin{bmatrix} 2 & 4 \\ -1 & 1 \end{bmatrix} \quad \text{och} \quad P^{-1} = \frac{1}{6} \begin{bmatrix} 1 & -4 \\ 1 & 2 \end{bmatrix}.$$

Vi har att

$$A^{n} = PD^{n}P = P \begin{bmatrix} (-2)^{n} & 0 \\ 0 & 4^{n} \end{bmatrix} P^{-1}$$

$$= \frac{2^{n}}{6} \begin{bmatrix} 2 & 4 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} (-1)^{n} & 0 \\ 0 & 2^{n} \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 1 & 2 \end{bmatrix}$$

$$= \frac{2^{n-1}}{3} \begin{bmatrix} (-1)^{n} \cdot 2 & 4 \cdot 2^{n} \\ (-1)^{n+1} & 2^{n} \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 1 & 2 \end{bmatrix}$$

$$= \frac{2^{n-1}}{3} \begin{bmatrix} (-1)^{n} \cdot 2 + 4 \cdot 2^{n} & (-1)^{n+1} \cdot 8 + 8 \cdot 2^{n} \\ (-1)^{n+1} + 2^{n} & (-1)^{n} \cdot 4 + 2^{n+1} \end{bmatrix}.$$

Vi har att
$$F(n+1)=A^nF(1)$$
, vilket ger att
$$f_{n+1}=\frac{2^{n-1}}{3}\Big(\big((-1)^n\cdot 2+4\cdot 2^n\big)b+\big((-1)^{n+1}\cdot 8+8\cdot 2^n\big)a\Big)$$

$$=\frac{2^n}{3}((-1)^n+2^{n+1})b+\frac{2^{n+2}}{3}((-1)^{n+1}+2^n)a.$$

8. Betrakta följande två figurer. (Vid varje punkt anges dess koordinater i ett vanligt cartesiskt koordinatsystem.)

- (a) Bestäm en linjär avbildning $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ som transformerar den vänstra figuren till den högra. Du ska ange matrisen för T. (2 p)
- (b) Bestäm arean för det inneslutna området i den högra figuren. (2 p)

Lösningsförslag.

(a) Det gäller först att lista ut vilka punkter i den vänstra figuren som ska avbildas på vilka punkter i den högra figuren. Låt oss ge namn åt tre (ortsvektorer till) punkter i den vänstra figuren: $\vec{p} := \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \vec{q} := \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ och $\vec{r} := \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

den vänstra figuren: $\vec{p} := \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \vec{q} := \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ och $\vec{r} := \begin{bmatrix} 3 \\ 0 \end{bmatrix}$. Eftersom $\vec{q} = \frac{2}{3}\vec{r}$ och T är linjär så måste $T(\vec{q}) = \frac{2}{3}T(\vec{r})$. Dom enda punkter i den högra figuren som uppfyller denna relation är (4,2) och (6,3) så vi måste ha $T(\vec{q}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ och $T(\vec{r}) = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$. I den vänstra figuren är \vec{p} granne till \vec{q} , så vi vill att $T(\vec{p})$ ska vara granne till $T(\vec{q})$ och då måste $T(\vec{p}) = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$.

Ekvationerna $T(\begin{bmatrix} 2 \\ 0 \end{bmatrix}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ och $T(\begin{bmatrix} 0 \\ 2 \end{bmatrix}) = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$ ger tillsammans att matrisen för T måste vara

$$A = \frac{1}{2} \begin{bmatrix} 4 & -3 \\ 2 & 1 \end{bmatrix}.$$

En kontroll visar att A avbildar även dom andra punkterna korrekt:

$$A \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 3/2 \\ 9/2 \end{bmatrix}, \ A \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 11/2 \\ 13/2 \end{bmatrix}, \ A \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 13/2 \\ 9/2 \end{bmatrix}.$$

(b) Om vi ritar in några hjälplinjer i den vänstra figuren blir det lätt att beräkna arean av dess inneslutna område.

Dom skuggade trianglarna har arean 3/2 och 1, och den resterande arean är $5+\frac{3}{2}$. Alltså blir den totala arean av det vänstra området $\frac{3}{2}+1+5+\frac{3}{2}=9$. Determinanten av A är $(1/2)^2\cdot(4\cdot 1-(-3)\cdot 2)=5/2$ så det högra området har arean $9\cdot\frac{5}{2}=45/2$.

9. Om A, B, C och D är kvadratiska matriser av samma storlek kan vi bilda en större kvadratisk matris som blockmatrisen

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

Antag att A är inverterbar och att matriserna A och C kommuterar med varandra, dvs att AC = CA. Visa att (4 p)

$$\det(M) = \det(AD - CB).$$

(Du kan använda fritt att om B eller C är noll-matrisen, då gäller att det(M) = det(AD).)

Lösningsförslag. Då matrisen A^{-1} existerar kan vi konstruera matrisen

$$\begin{bmatrix} I & 0 \\ -A^{-1}C & I \end{bmatrix},$$

där I är identitetsmatrisen, och 0 är noll-matrisen. Båda av samma storlek som matriserna A, B, C och D. Den konstruerade matrisen har uppenbarligen determinant 1. Detta betyder att matrisen, som ges av produkten,

$$\begin{bmatrix} I & 0 \\ -A^{-1}C & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

har den sökta determinanten det(M). När vi beräknar produkten ovan erhåller vi matrisen

$$\begin{bmatrix} A & B \\ -A^{-1}CA + C & -A^{-1}CB + D \end{bmatrix}.$$

Vi använder nu att CA = AC. Blocket längst ned till vänster blir då $-A^{-1}CA + C = -A^{-1}AC + C = -C + C = 0$. Vi använder sedan att vi känner till determinanten för blockmatriser där ena blocket är noll, dvs att

$$\det\begin{pmatrix} A & B \\ 0 & -A^{-1}CB + D \end{pmatrix} = \det(A)\det(-A^{-1}CB + D).$$

Detta betyder att den sökta determinanten är $\det(M) = \det(A) \det(-A^{-1}CB + D)$. Vi vet från kursen att determinanten bevarar produkt, så

$$\det(A)\det(-A^{-1}CB + D) = \det(A(-A^{-1}CB + D)) = \det(-CB + AD).$$

Och då -CB + AD = AD - CB har vi visat påståendet.