실력 완성 | 수학 I

2-2-1.삼각함수의 그래프

(1)주기함수, 함수 $y = \sin x$, $y = \cos x$, $y = \tan x$ 의 그래프와 성질

수학 계산력 강화

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-02-13
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

주기함수

- (1) **주기함수** : 함수 y=f(x)의 정의역에 속하는 모든 실수 x에 대하여 f(x+p)=f(x)를 만족시키는 0이 아닌 상수 p가 존재하는 함수
- (2) 주기: 상수 p 중에서 최소인 양수

☑ 다음 값을 구하여라.

- **1.** 함수 f(x)의 주기가 2이고, f(1) = 1일 때, f(3)
- **2.** 함수 f(x)의 주기가 3이고, f(1) = 2일 때, f(10)
- **3.** 함수 f(x)의 주기가 3이고, f(1)=1, f(2)=4일 때, f(10)의 값
- **4.** 함수 f(x)의 주기가 5이고, f(2) = 11일 때, f(222)
- **5.** 함수 f(x)의 주기가 3이고, f(10) = -2일 때, f(-5)
- **6.** 함수 f(x)의 주기가 π 이고 f(0) = 0일 때, $f(2\pi)$

- 7. 함수 f(x)의 주기가 2이고, f(1) = 1일 때, f(9)
- 8. 함수 f(x)가 모든 실수 x에 대하여 f(x+1) = f(x-1)을 만족하고 f(3) = 1, f(4) = -2**일 때,** f(121) - f(452)
- 9. 함수 f(x)가 모든 실수 x에 대하여 f(x+4) = f(x)이고 f(2) = 3일 때, f(18)
- **10.** 함수 f(x)가 모든 실수 x에 대하여 f(x+6) = f(x)이고 f(1) = 1일 때, f(25)
- **11.** 함수 f(x)가 모든 실수 x에 대하여 f(x+3) = f(x)이고 $-\frac{3}{2} \le x \le \frac{3}{2}$ 일 때, $f(x) = \cos \pi x$ **일 때**, f(17)
- 12. 함수 f(x)가 모든 실수 x에 대하여 $f(x+2\pi)=f(x)$ 이고 $f\left(\frac{\pi}{2}\right)=1$ 일 때, $f\left(\frac{13}{2}\pi\right)$

함수 $y = \sin x$ 의 그래프의 성질

- (1) 정의역 : 실수 전체의 집합
- (2) 치역 : $\{y | -1 \le y \le 1\}$
- (3) 그래프는 원점에 대하여 대칭이다.
- (4) 주기가 2π 인 주기함수이다.

즉 $\sin(x+2n\pi) = \sin x$ (n은 정수)

- (5) 함수 $y = \sin x$ 는 직선 $\cdots x = -\frac{3}{2}\pi$, $x = -\frac{\pi}{2}$, $x = \frac{\pi}{2}$, …에 대하여 대칭이다.
- ightharpoonup 다음은 함수 $y = \sin x$ 에 대한 설명이다. 옳은 것에는 \bigcirc 표, 옳지 않은 것에는 ×표를 하여라.
- **13.** 최댓값은 1이고, 최솟값은 -1이다. ()
- **14.** x축에 대하여 대칭이다.)
- **15.** $\sin (\pi + x) = \sin x$ ()
- **16.** 원점에 대하여 대칭이다. ()
- **17.** 주기가 2π 인 주기함수이다.)
- **18.** 치역은 $\{y \mid -1 \le y \le 1\}$ 이다.
- 19. 정의역은 양의 실수 전체의 집합이다.

)

- **20.** 어떤 실수 x에 대하여 $\sin x = 2$ 이다. ()
- 21. 정의역은 실수 전체의 집합이다.)

☑ 좌표평면 위에 다음 함수의 그래프를 그리고, 치역과 주 기를 구하여라.

22.
$$y = \sin\left(x - \frac{\pi}{2}\right)$$

23.
$$y = |\sin x|$$

ightharpoonup 다음과 같이 $0 \le x \le 3\pi$ 에서 함수 $y = \sin x$ 의 그래프 와 직선 y=k (0 < k < 1)의 교점의 x좌표를 작은 것부 터 차례로 x_1 , x_2 , x_3 , x_4 라 할 때, 다음 식의 값을 구하

- **24.** $x_1 + x_2$
- **25.** $x_1 + x_4$
- **26.** $x_1 + x_2 + x_3 + x_4$

☑ 다음 물음에 답하여라.

27. 다음과 같이 $0 \le x \le 3\pi$ 에서 함수 $f(x) = \sin x$ 의 그래프와 직선 $y=\frac{2}{3}$ 의 교점의 x좌표를 작은 것부 터 차례로 a, b, c, d라 할 때, f(a+b+c+d)의 값 을 구하여라.

28. $f(x) = \sin x \ (x > 0)$ 의 그래프와 직선 $y=a\ (0 < a < 1)$ 의 교점의 x좌표를 작은 것부터 차례로 α , β , γ 라 하자. $A = f(\alpha)$, $B = f(\alpha + \beta)$, $C = f(\alpha + \beta + \gamma)$ 라고 할 때, 다음 중 A, B, C의 대소 관계를 구하여라.

29. 그림과 같이 함수 $f(x) = \sin 2x \ (0 \le x \le \pi)$ 의 그 래프가 직선 $y=\frac{3}{5}$ 과 두 점 A, B에서 만나고, 직선 $y=-rac{3}{5}$ 과 두 점 C, D에서 만난다. 네 점 A, B, C, D의 x좌표를 각각 $\alpha, \beta, \gamma, \delta$ 라 할 때, $f(2\alpha+\beta+\gamma+\delta)$ 의 값을 구하여라.

30. 함수 $f(x) = \sin \pi x$ 의 그래프와 직선 $y = \frac{2}{3}$ 가 만 나는 점 중에서 그림과 같이 이웃하는 세 점의 x좌 표를 차례로 α , β , γ 라고 할 때, $f(\alpha+\beta+\gamma)$ 의 값 을 구하여라.

함수 $y = \cos x$ 의 그래프의 성질 03

- (1) 정의역 : 실수 전체의 집합
- (2) 치역 : $\{y | -1 \le y \le 1\}$
- (3) 그래프는 y축 대하여 대칭이다.
- (4) 주기가 2π인 주기함수이다.
- 즉 $\cos(x+2n\pi) = \cos x$ (n은 정수)
- (5) 함수 $y = \cos x$ 는 직선 $\cdots x = -\pi$, x = 0, $x = \pi$, \cdots 에 대하여 대칭이다.
- Arr 다음은 삼각함수 $y = \cos x$ 에 대한 설명이다. 옳은 것은 ○표, 옳지 않은 것은 ×표를 하여라.
- **31.** 그래프는 함수 $y = \sin x$ 의 그래프를 x축의 방향 으로 $\frac{\pi}{2}$ 만큼 평행이동한 것과 같다.
- **32.** 최댓값은 1이고, 최솟값은 없다.)
- **33.** $\cos (\pi + x) = \cos x$)
- **34.** 최댓값은 1이고, 최<u>소</u>값은 -1이다. ()

- **35.** 어떤 실수 x에 대하여 $\cos x = \frac{3}{2}$ 이다. (
- **36.** 정의역은 $\{x \mid -1 \le x \le 1\}$ 이다.
- **37.** *y*축에 대하여 대칭이다.
- **38.** 주기가 2π 인 주기함수이다.)
- 39. 치역은 양의 실수 전체의 집합이다.)
- ☑ 좌표평면 위에 다음 함수의 그래프를 그리고, 치역과 주 기를 구하여라.
- **40.** $y = |\cos x|$

Arr 다음과 같이 $0 \le x \le 4\pi$ 에서 함수 $y = \cos x$ 의 그래프 와 직선 y=k (0 < k < 1)의 교점의 x좌표의 작은 것부 터 차례로 x_1, x_2, x_3, x_4 라 할 때, 다음 식의 값을 구하 여라.

- **41.** $x_1 + x_2$
- **42.** $x_2 + x_3$
- **43.** $x_1 + x_2 + x_3 + x_4$

- ☑ 다음 물음에 답하여라.
- **44.** 다음과 같이 $0 \le x \le \frac{3}{2} \pi$ 에서 함수 $y = \cos 2x$ 의 그래프와 직선 y=k (-1 < k < 0)의 교점의 x좌표 작은 것부터 차례로 a, b, c라 할 때, $\cos(a+2b+c)$ 의 값을 구하여라.

45. 함수 $y = \cos x$ 의 그래프와 직선 $y = \frac{2}{5}$ 와 만나는 점 중에서 다음 그림과 같이 이웃하는 세 점의 x좌 표를 차례로 a, b, c라고 할 때, $\frac{1}{\cos\left(\frac{a+2b+c}{6}\right)}$ 의

값을 구하여라.

46. 그림과 같이 함수 $f(x) = \cos x$ 의 그래프와 직선 $y = \frac{3}{5}$ 의 교점의 x작표 중 양수인 것을 차례로 α , β , γ 라 할 때, $f(\alpha+\beta+\gamma)$ 의 값을 구하여라.

함수 $y = \tan x$ 의 그래프의 성질

- (1) 정의역: $n\pi + \frac{\pi}{2}(n$ 은 정수)를 제외한 실수 전체의 집합
- (2) 치역 : 실수 전체의 집합
- (3) 점근선: 직선 $x = n\pi + \frac{\pi}{2}$ (n은 정수)
- (4) 그래프는 원점에 대하여 대칭이다.
- (5) 주기가 π 인 주기함수이다.
- 즉 $tan(x+n\pi) = tanx$ (n은 정수)
- ightharpoonup 다음은 삼각함수 $y = \tan x$ 에 대한 설명이다. 옳은 것은 ○표, 옳지 않은 것은 ×표를 하여라.
- 47. 점근선의 방정식은 $x=2n\pi+\frac{\pi}{2}$ (n은 정수)이다.
- **48.** $\tan (-x) = -\tan x$
- 49. 원점에 대하여 대칭이다.)
- **50.** 주기가 π 인 주기함수이다.
- **51.** 치역은 $\{y \mid -1 \le y \le 1\}$ 이다.
- 52. 정의역은 양의 실수 전체의 집합이다. (
- **53.** 최댓값은 1이고, 최솟값은 -1이다.
- **54.** 정의역은 실수 전체의 집합이다. ()

- ☑ 좌표평면 위에 다음 함수의 그래프를 그리고, 치역과 주 기를 구하여라.
- **55.** $y = |\tan x|$

☑ 다음 함수의 그래프를 그리고, 치역, 주기, 점근선의 방정 식을 구하시오.

56.
$$y = \tan\left(x - \frac{\pi}{2}\right) + 2$$

ightharpoonup 다음 삼각함수의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동한 그래프의 식을 구하고, 점근 선의 방정식과 주기를 각각 구하여라.

57.
$$y = \tan x \left[p = \frac{\pi}{6}, \ q = 5 \right]$$

58. 다음 표를 완성하여라.

함수	$y = \sin x$	$y = \cos x$	$y = \tan x$
정의역	실수 전체의 집합		
치역		$ \{y \mid -1 \le y \le 1\} $	
대칭성			원점에 대하여 대칭
주기	2π		

- **59.** 함수 $y = |\sin x|$ 와 $y = |\cos x|$ 에 대하여 다음
- (1) 정의역
- (2) 치역
- (3) 주기
- 60. 함수 $y = |\tan x|$ 에 대하여 다음을 구하여라.
- (1) 정의역
- (2) 치역
- (3) 주기
- ☑ 다음 주어진 세 수의 대소 관계를 비교하여라.
- **61.** 1, sin1, cos1
- **62.** $\sin 0$, $\sin 1$, $\sin \frac{\pi}{4}$
- **63.** sin219°, cos219°, sin315°
- **64.** $\sin \frac{\pi}{7}$, $\sin \frac{\pi}{6}$, $\sin \frac{\pi}{5}$

- **65.** $\cos 0$, $\cos 1$, $\cos \frac{\pi}{2}$
- **66.** $\cos \frac{\pi}{3}, \cos \frac{\pi}{2}, \cos \frac{\pi}{5}$
- **67.** $\tan \frac{\pi}{3}$, $\tan \frac{\pi}{4}$, $\tan \frac{\pi}{5}$

4

정답 및 해설

- 1) 1
- \Rightarrow 함수 f(x)의 주기가 2이므로 f(x+2) = f(x)
 - f(3) = f(1+2) = f(1) = 1
- 2) 2
- \Rightarrow 함수 f(x)의 주기가 3이므로 $f(x+n\cdot 3) = f(x)$ (n은 정수) $f(10) = f(1+3 \cdot 3) = f(1) = 2$
- 3) 1
- \Rightarrow 함수 f(x)의 주기가 3이므로 f(x+3n) = f(x) (단, n은 정수) $f(10) = f(1+3\times3) = f(1) = 1$
- 4) 11
- \Rightarrow 함수 f(x)의 주기가 5이므로 f(x+5n) = f(x) (단, n은 정수) $f(222) = f(2+5\times44) = f(2) = 11$
- \Rightarrow 함수 f(x)의 주기가 3이므로 f(x+3) = f(x)
- 6) 0
- \Rightarrow 함수 f(x)의 주기가 π 이므로 $f(x+n\pi) = f(x)$ (n은 정수) $f(2\pi) = f(0+2\pi) = f(0) = 0$
- 7) 1
- \Rightarrow 함수 f(x)의 주기가 2이므로 f(x+2)=f(x)f(9) = f(7) = f(5) = f(3) = f(1) = 1
- 8) 3
- \Rightarrow f(x+1) = f(x-1)의 양변에 x 대신 x+1을 대 입하면 f(x+2) = f(x)이므로 $f(121) = f(119) = \dots = f(3) = 1$ $f(452) = f(450) = \cdots = f(4) = -2$ f(121) - f(452) = 1 - (-2) = 3
- 9) 3
- $\Rightarrow f(x+4) = f(x)$ 이므로 f(18) = f(14) = f(10) = f(6) = f(2) = 3
- 10) 1
- $\Rightarrow f(x+6) = f(x)$ 이므로 f(25) = f(19) = f(13) = f(7) = f(1) = 1
- 11) -1
- $\Rightarrow f(17) = f(14) = f(11) = \cdots = f(2) = f(-1)$ $f(-1) = \cos(-\pi) = -1$
- 12) 1
- $\Rightarrow f(x+2\pi) = f(x) \circ \Box \Box \Box$

$$f\!\left(\frac{13}{2}\pi\right)\!\!=\!f\!\left(\frac{9}{2}\pi\right)\!\!=\!f\!\left(\frac{5}{2}\pi\right)\!\!=\!f\!\left(\frac{\pi}{2}\right)\!\!=\!1$$

- 13) 🔾
- 14) ×
- 15) ×
- 16) \bigcirc
- 17) 🔾
- 18) 🔾
- 19) ×
- ⇒ 정의역은 실수 전체의 집합이다.
- 20) ×
- \Rightarrow $-1 \le \sin x \le 1$
- 21) 🔾

치역 : $\{y \mid -1 \le y \le 1\}$,

 $\Rightarrow y = \sin\left(x - \frac{\pi}{2}\right)$ 의 그래프는 $y = \sin x$ 의 그래프를 x축의 방향으로 $\frac{\pi}{2}$ 만큼 평행이동한 것이므로 그 림은 위와 같다.

따라서 치역은 $\{y \mid -1 \le y \le 1\}$, 주기는 2π 이다.

치역 : $\{y \mid 0 \le y \le 1\}$, 주기 : π

- 24) π
- \Rightarrow 함수 $y = \sin x$ 의 그래프는 직선 $x = \frac{\pi}{2}$ 에 대하여 대칭이므로 $\frac{x_1+x_2}{2}=\frac{\pi}{2}$ \therefore $x_1+x_2=\pi$
- 25) 3π
- \Rightarrow 함수 $y = \sin x$ 의 그래프는 직선 $x = \frac{3}{2}\pi$ 에 대하여 대칭이므로 $\frac{x_1+x_4}{2}=\frac{3}{2}\pi$ $\therefore x_1+x_4=3\pi$

26) 6π

학 함수 $y = \sin x$ 의 그래프는 직선 $x = \frac{\pi}{2}, x = \frac{5}{2}\pi$ 에 대하여 대칭이므로

$$\frac{x_1 + x_2}{2} = \frac{\pi}{2} \qquad \therefore \quad x_1 + x_2 = \pi$$

$$\frac{x_3 + x_4}{2} = \frac{5}{2}\pi \qquad \therefore \quad x_3 + x_4 = 5\pi$$

$$\therefore \quad x_1 + x_2 + x_3 + x_4 = \pi + 5\pi = 6\pi$$

27) 0

 \Rightarrow 함수 $f(x) = \sin x$ 의 그래프는 직선 $x = \frac{3}{2}\pi$ 에 대하여 대칭이므로

하여 대칭이므로
$$\frac{a+d}{2} = \frac{3}{2}\pi \qquad \therefore a+d=3\pi$$

$$\frac{b+c}{2} = \frac{3}{2}\pi \qquad \therefore b+c=3\pi$$
 따라서 $a+b+c+d=3\pi+3\pi=6\pi$ 이므로
$$f(a+b+c+d) = \sin 6\pi = 0$$

28) A > B > C

다
$$\alpha + \beta = \pi$$
, $\gamma = 2\pi + \alpha$ 이므로 $A = f(\alpha) > 0$, $B = f(\pi) = 0$, $C = -f(\alpha) < 0$ $C < B < A$

29) $\frac{3}{5}$

$$\Rightarrow \alpha + \beta = \frac{\pi}{2}$$

$$\gamma + \delta = \frac{\pi}{2} + \alpha + \frac{\pi}{2} + \beta = \frac{3\pi}{2}$$

$$2\alpha + \beta + \gamma + \delta = \alpha + 2\pi$$

$$\therefore f(\alpha + 2\pi) = f(\alpha) = \frac{3}{5}$$

30)
$$-\frac{2}{3}$$

31) ×

학 함수 $y = \cos x$ 의 그래프는 함수 $y = \sin x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{2}$ 만큼 평행이동한 것과같다.

32) ×

33) ×

 $\Rightarrow \cos(\pi + x) = -\cos x$

34) 🔾

35) ×

 \Rightarrow $-1 \le \cos x \le 1$

36) ×

⇒ 정의역은 실수 전체의 집합이다.

37) 🔾

38) 🔾

39) ×

치역 : $\{y \mid 0 \le y \le 1\}$, 주기 : π

41) 2π

당 함수 $y=\cos x$ 의 그래프는 직선 $x=\pi$ 에 대하여 칭이므로 $\frac{x_1+x_2}{2}=\pi$ \therefore $x_1+x_2=2\pi$

42) 4π

다 함수 $y=\cos x$ 의 그래프는 직선 $x=2\pi$ 에 대하여 대칭이므로 $\frac{x_2+x_3}{2}=2\pi$ \therefore $x_2+x_3=4\pi$

43) 8π

 \Rightarrow 함수 $y = \cos x$ 의 그래프는 직선 $x = 2\pi$ 에 대하여 대칭이므로

$$\frac{x_1 + x_4}{2} = 2\pi \qquad \therefore \quad x_1 + x_4 = 4\pi$$
$$\therefore \quad x_1 + x_2 + x_3 + x_4 = 4\pi + 4\pi = 8\pi$$

44) -1

 \Rightarrow 함수 $y = \cos 2x$ 의 그래프는 직선 $x = \frac{\pi}{2}, \ x = \pi$ 에 대하여 대칭이므로

$$\frac{a+b}{2} = \frac{\pi}{2}$$
 \therefore $a+b=\pi$

$$\frac{b+c}{2} = \pi$$
 \therefore $b+c=2\pi$
따라서 $a+2b+c=\pi+2\pi=3\pi$ 이므로 $\cos{(a+2b+c)}=\cos{3\pi}=\cos{(\pi+2\pi)}$
 $=\cos{\pi}=-1$

45) -1

46) $\frac{3}{5}$

 $\cos x = \frac{3}{5}$ 를 만족하는 x좌표들에 대하여 $\alpha = \pi - k$ 라 하면 $\beta = \pi + k$, $\gamma = 2\pi + \alpha$ 이다. 따라서 $\alpha + \beta + \gamma = 4\pi + \alpha$ 이므로 $f(\alpha + \beta + \gamma) = f(4\pi + \alpha) = \cos \alpha = \frac{3}{5}$

47) ×

48) 🔾

- 49) 🔾
- 50) 🔾
- 51) ×
- ⇒ 치역은 실수 전체의 집합이다.
- 52) ×
- \Rightarrow 정의역은 $n\pi + \frac{\pi}{2}(n$ 은 정수)를 제외한 실수 전체 의 집합이다.
- 53) ×
- ⇒ 최댓값, 최솟값은 없다.
- 54) ×
- \Rightarrow 정의역은 $x = n\pi + \frac{\pi}{2}$ (n은 정수)를 제외한 실수 전체의 집합이다.

치역 : $\{y \mid 0 \le y\}$

주기: π

치역: 실수 전체의 집합

주기 : π ,

점근선의 방정식 : $x = n\pi + \pi$ (n은 정수)

 $\Rightarrow y = \tan\left(x - \frac{\pi}{2}\right) + 2$ 의 그래프는 $y = \tan x$ 의 그래 프를 x축의 방향으로 $\frac{\pi}{2}$ 만큼, y축의 방향으로 2만큼 평행이동한 것이므로 다음 그림과 같다. 따라서 치역은 실수 전체의 집합, 주기는 π , 점근 선의 방정식은 $x = n\pi + \pi$ (n은 정수)이다.

57)
$$y = \tan\left(x - \frac{\pi}{6}\right) + 5$$
, 점근선의 방정식 : $x = n\pi + \frac{2}{3}\pi$ (n은 정수),

$$\implies y-5 = \tan\left(x-\frac{\pi}{6}\right) \text{ on } \quad y = \tan\left(x-\frac{\pi}{6}\right) + 5$$

따라서 점근선의 방정식은
$$x-\frac{\pi}{6}=n\pi+\frac{\pi}{2}$$
에서 $x=n\pi+\frac{2}{3}\pi$ (n 은 정수), 주기는 π

58)

	1		
함수	$y = \sin x$	$y = \cos x$	$y = \tan x$
정의역	실수 전체의 집합	실수 전체의 집합	$n\pi + \frac{\pi}{2}$ 를 제외한 실수 전체의 집합 (단. n 은 정수)
치역	$\{y\mid -1\leq y\leq 1\}$	$\{y -1\leq y\leq 1\}$	실수 전체의 집합
대칭성	원점에	<i>y</i> 축에 대하여	원점에 대하여
	대하여 대칭	대칭	대칭
주기	2π	2π	π

- 59) (1) 실수 전체의 집합
 - (2) $\{y \mid 0 \le y \le 1\}$
 - $(3) \pi$
- 60)(1) $n\pi + \frac{\pi}{2}(n$ 은 정수)를 제외한 실수 전체의 집합
 - (2) $\{y \mid y \ge 0\}$
 - $(3) \pi$
- 61) $\cos 1 < \sin 1 < 1$
- \Leftrightarrow $0 < \frac{\pi}{4} < 1 < \frac{\pi}{2}$ 이므로 $\cos 1 < \sin 1$ 이고, $\sin 1 < \sin \frac{\pi}{2} = 1$
- 62) $\sin 0 < \sin \frac{\pi}{4} < \sin 1$
- $\Rightarrow 0 < \frac{\pi}{4} < 1 < \frac{\pi}{2}$
 - $\therefore \sin 0 < \sin \frac{\pi}{4} < \sin 1$
- 63) cos219° < sin315° < sin219°
- \Rightarrow $\sin 219^{\circ} = -\sin 39^{\circ}$, $\sin 315^{\circ} = -\sin 45^{\circ}$ cos219°=-cos39°이므로 대소관계를 나타내면 cos219° < sin315° < sin219°
- 64) $\sin \frac{\pi}{7} < \sin \frac{\pi}{6} < \sin \frac{\pi}{5}$
- $\Rightarrow 0 < \frac{\pi}{7} < \frac{\pi}{6} < \frac{\pi}{5} < \frac{\pi}{2}$
 - $\therefore \sin \frac{\pi}{7} < \sin \frac{\pi}{6} < \sin \frac{\pi}{5}$
- 65) $\cos \frac{\pi}{2} < \cos 1 < \cos 0$
- $\Rightarrow 0 < 1 < \frac{\pi}{2}$

$$\therefore \cos \frac{\pi}{2} < \cos 1 < \cos 0$$

66)
$$\cos \frac{\pi}{2} < \cos \frac{\pi}{3} < \cos \frac{\pi}{5}$$

$$\Rightarrow 0 < \frac{\pi}{5} < \frac{\pi}{3} < \frac{\pi}{2}$$

$$\therefore \cos \frac{\pi}{2} < \cos \frac{\pi}{3} < \cos \frac{\pi}{5}$$

67)
$$\tan \frac{\pi}{5} < \tan \frac{\pi}{4} < \tan \frac{\pi}{3}$$

$$\Rightarrow 0 < \frac{\pi}{5} < \frac{\pi}{4} < \frac{\pi}{3} < \frac{\pi}{2}$$

$$\therefore \tan \frac{\pi}{5} < \tan \frac{\pi}{4} < \tan \frac{\pi}{3}$$