DP2 READING GROUP

Longye Tian

Sydney - September 2024

Available at https://github.com/longye-tian

DEFINITION OF ADP

Definition

We define an **abstract dynamic program (ADP)** to be a pair (V, \mathbb{T}) , where

- 1. $V = (V, \lesssim)$: partially ordered set and
- 2. $\mathbb{T} = \{T_{\sigma} : \sigma \in \Sigma\}$: nonempty family of order-preserving self-maps on V.

In what follows,

- V is called the value space
- Each operator $T_{\sigma} \in \mathbb{T}$ is called a **policy operator**
- Σ is an arbitrary index set and elements of Σ is called **policies**.
- $v_{\sigma} \in V$ is a unique fixed of T_{σ} and call it the σ -value function

GREEDY POLICIES

Definition

Let (V, \mathbb{T}) be an ADP with policy set Σ . Given $v \in V$, we say that

$$\sigma \in \Sigma$$
 if v -greedy if $T_{\tau}v \lesssim T_{\sigma}v$ for all $\tau \in \Sigma$

In other words, σ is v-greedy if and only if $T_{\sigma}v$ is a greatest element of $\{T_{\tau}v:T_{\tau}\in\mathbb{T}\}$

Remark

We let

 $V_G := \{v \in V : at least one v-greedy policy exists\}$

BELLMAN EQUATION

Definition

Let (V, \mathbb{T}) be an ADP with policy set Σ . We say that $v \in V$ satisfies the

Bellman Equation if

$$v := \bigvee_{\sigma \in \Sigma} T_{\sigma} v \qquad (v \in V)$$

We define the Bellman operator generated by the ADP via

$$Tv := \bigvee_{\sigma \in \Sigma} T_{\sigma}v$$
 whenever the supremum exists

LEMMA 1.2.1.

Lemma (Properties of Bellman Operator)

1. For $v \in V_G$, $T_{\sigma}v = Tv$ if and only if $\sigma \in \Sigma$ is v-greedy

Proof.

$$(\Longrightarrow)$$

 $T_{\sigma}v = Tv \implies T_{\sigma}v = \bigvee_{\tau \in \Sigma} T_{\tau}v \implies T_{\tau}v \lesssim T_{\sigma}v, \ \forall \tau \in \Sigma \ by \ definition, \ \sigma \ is the v-greedy policy. \ v \in V_G \ ensures \ existence.$

$$(\Longleftrightarrow)$$

By definition, $T_{\tau}v \lesssim T_{\sigma}v$, $\forall \tau \in \Sigma$. Hence, there exists a greatest element

hence supremum of $\{T_{\tau}v: T_{\tau} \in \mathbb{T}\}$. By definition, we have $T_{\sigma}v = Tv$.

LEMMA 1.2.1. CONTINUE

Lemma (Properties of Bellman Operator)

2. For $v \in V_G$, we have $T_{\sigma}v \lesssim Tv$ for all $\sigma \in \Sigma$.

Proof.

As $v \in V_G$, there exists a v-greedy policy, denoted it as τ . Then, by part 1, we have by definition of v-greedy policy,

$$T_{cr} v \lesssim T_{\tau} v = T v$$

for all $\sigma \in \Sigma$.

LEMMA 1.2.1 CONTINUE

Lemma (Properties of Bellman Operator)

3. T is well-defined and order-preserving on V_G

Proof.

For $v, w \in V_G$, there exists at least one v-greedy policy, denoted it as σ and let $v \lesssim w$.

From part 1, we know $Tv = T_{\sigma}v$. Hence, it is well-defined.

From definition of ADP, we know T_{σ} is order-preserving, hence, we have,

$$Tv = T_{\sigma}v \lesssim T_{\sigma}w \lesssim Tw$$

last step is by part 2. Hence T is order-preserving on V_G .

PROPERTIES OF ADP

We call (V, \mathbb{T})

- **well-posed** if each $T_{\sigma} \in \mathbb{T}$ has a unique fixed point in V
- **regular** if $V_G = V$, i.e., if a v-greedy policy exists for every $v \in V$.
- **bounded above** if there exists a $v \in V$ such that $T_{\sigma}v \lesssim v$ for all $T_{\sigma} \in \mathbb{T}$
- **downward stable** if each $T_{\sigma} \in \mathbb{T}$ is downward stable on V
- **upward stable** if each $T_{\sigma} \in \mathbb{T}$ is upward stable on V
- **order stable** if each $T_{\sigma} \in \mathbb{T}$ is order stable on V
- **strongly order stable** if each $T_{\sigma} \in \mathbb{T}$ is strongly order stable on V
- **order continuous** if each $T_{\sigma} \in \mathbb{T}$ is order continuous on V

LEMMA 1.2.2

Lemma

If (V, \mathbb{T}) is order continuous and V is σ -chain complete. Then the Bellman operator T is order continuous.

Proof.

Let $v_n \uparrow v$. As T is order preserving, (Tv_n) is increasing. Since V is σ -chain complete, $\bigvee_n Tv_n \in V$. We want to show $\bigvee_n Tv_n = Tv$

First, we have $Tv_n \leq Tv$ for all n by order-preserving, this implies

 $\bigvee_n Tv_n \leq Tv$. Hence, Tv is an upper bound.

Tv is the least upper bound.

Let w be an upper bound of Tv_n . Then we have $T_{\sigma}v_n \leq w$ for all $\sigma \in \Sigma$ and for all n. Then, taking the supremum over n, we have $T_{\sigma}v \leq w$ by order continuity of the ADP. Taking supremum over $\sigma \in \Sigma$, we have $Tv \leq w$. Hence

EXERCISE 1.2.3.

Let (V, \mathbb{T}) be an ADP and let V be σ -dedekind complete. Prove that if (V, \mathbb{T}) is order continuous and order stable, then (V, \mathbb{T}) is strongly order stable.

Proof.

Implore the Tarski-Kantorovich I (Theorem 1.1.9).

SUBSETS OF THE VALUE SPACE

Definition

Let (V, \mathbb{T}) be an ADP. We oftern refer to the following three subsets of the value space

- $V_G := \text{all } v \in V \text{ such that at least one } v\text{-greedy policy exists}$
- $V_{IJ} := \text{all } v \in V \text{ with } v \lesssim Tv$
- $V_{\Sigma} := \text{all } v \in V \text{ such that } T_{\sigma}v = v \text{ for some } T_{\sigma} \in \mathbb{T}$

LEMMA 1.2.3

Lemma

Let (V, \mathbb{T}) be regular, well-posed and upward stable. If V_{Σ} has greatest element v^* , then $v \lesssim v^*$ for all $v \in V_U$.

Proof.

Fix $v \in V_U$. By regularity, we let σ be the v-greedy policy, then

$$v \lesssim Tv$$
 $= T_{\sigma}v$ $\Longrightarrow v \leq v_{\sigma}$ $\leq v^*$

Lemma 1.2.1 upward stable greatest element

LEMMA 1.2.4.

Lemma

Let (V, \mathbb{T}) be an ADP. If $V_{\Sigma} \subset V_G$, then $V_{\Sigma} \subset V_U$

Proof.

Fix $v \in V_{\Sigma} \subset V_G$. Let v_{σ} be σ -value function and let τ be v_{σ} -greedy policy. By Lemma 1.2.1, we have

$$v_{\sigma} = T_{\sigma} v_{\sigma} \lesssim T_{\tau} v_{\sigma} = T v_{\sigma}$$

Hence, $v_{\sigma} \in V_U$ and $V_{\Sigma} \subset V_U$.

Remark

Lemma 1.2.4. implies that if (V, \mathbb{T}) is well-posed, then $V_U \neq \emptyset$

OPTIMALITY AND BELLMAN EQUATION

Definition

We say that a policy $\sigma \in \Sigma$ is **optimal** for (V, \mathbb{T}) if v_{σ} is a greatest element of V_{Σ} .

In other words, $\boldsymbol{\sigma}$ is optimal if it attains the highest possible lifetime value.

Definition

Suppose V_{Σ} has a greatest element v^* , which is called the **value function of** the ADP. We say that **Bellman's principle of optimality holds** if, for $\sigma \in \Sigma$,

 σ is optimal $\iff \sigma$ is the v^* -greedy policy

THREE FUNDAMENTAL ADP OPTIMALITY PROPERTIES

We say that the fundamental ADP optimality properties holds if

- (B1) V_{Σ} has a greatest element v^*
- (B2) v^* is the unique solution to the Bellman equation
- (B3) Bellman's principle of optimality holds

Remark

- (B1) means that the ADP has a solution
- (B2) characterize the solution
- (B3) implies we can compute the solution by finding v^* -greedy policy
 - * (B1) and (B2) \Longrightarrow (B3)

LEMMA 1.2.5.

Let (V, \mathbb{T}) be a well-posed ADP. If V_{Σ} has a greatest element v^* , the TFAE:

- 1. v^* satisfies the Bellman equation, i.e., $v^* = \bigvee_{\tau} T_{\tau} v^*$
- 2. Bellman's principle of optimality holds

Proof.

$$((1) \Rightarrow (2), \Rightarrow)$$
:

$$T_m v^* \lesssim \bigvee_{\tau} T_{\tau} v^* = v^* = T_{\sigma} v^* \, \forall \, T_m \in \mathbb{T}$$

$$((1) \Rightarrow (2), \Leftarrow)$$
:

$$T_m v^* \lesssim T_\sigma v^* \, \forall \, T_m \in \mathbb{T} \Rightarrow \bigvee_\tau T_\tau v^* \lesssim T_\sigma v^* \Rightarrow v^* \lesssim T_\sigma v^* \lesssim \bigvee_\tau T_\tau v^* = v^*$$

$$((1) \Leftarrow (2))$$
:

Let σ be v^* -greedy policy. Then, $T_{\tau}v^* \lesssim T_{\sigma}v^* \forall T_{\tau} \in \mathbb{T}$

Hence, v^* is an upper bound of $\{T_{\tau}v^*\}_{T_{\tau}\in\mathbb{T}}$. Let \tilde{v} be any upper bound.

Then,
$$v^* = T_{\sigma}v^* \lesssim \tilde{v}$$
. Hence $v^* = \bigvee_{\tau} T_{\tau}v^*$

LEMMA 1.2.6.

Let (V, \mathbb{T}) be a well-posed ADP. Let V_{Σ} have the greatest element v^* . If v^* is unique fixed point of T in V, then $\sigma \in \Sigma$ is optimal if and only if $Tv_{\sigma} = v_{\sigma}$.

Proof.

$$(\Rightarrow)$$

$$v_{\sigma} = v^* \Rightarrow Tv_{\sigma} = Tv^* = v^* = v_{\sigma}$$

$$(\Leftarrow)$$

$$Tv_{\sigma} = v_{\sigma} \Rightarrow v_{\sigma} = v^*$$

HPI, OPI, VFI

Definition

Let (V, \mathbb{T}) be a well-posed ADP with Bellman operator T.

The **Howard Policy Operator** corresponding to (V, \mathbb{T}) via

$$H: V_G \to V_{\Sigma}$$
, $Hv = v_{\sigma}$, σ is v -greedy

For each $m \in \mathbb{N}$, the **optimistic policy operator**

$$W_m: V_G \to V, \qquad W_m v := T_\sigma^m v, \qquad \text{where } \sigma \text{ is } v\text{-greedy}$$

So that these maps are well-defined, we always select the same v-greedy policy when applying each to v.

CONVERGENCE

Let (V, \mathbb{T}) be a well-posed ADP. Suppose that the fundamental ADP optimality properties hold. Let v^* denote the value function. We say that

- **VFI converges** if $T^n v \uparrow v^*$ for all $v \in V_U$
- **OPI converges** if $W_m^n v \uparrow v^*$ for all $v \in V_U$ and all $m \in \mathbb{N}$
- **HPI converges** if $H^n v \uparrow v^*$ for all $v \in V_U$
- If, for all $v \in V_U$, there exists $n \in \mathbb{N}$ with $H^n v = v^*$, we say that HPI converges in finitely many steps.

EXERCISE 1.2.4

Prove that convergence of OPI implies convergence of VFI.

Proof.

Let m=1. We have $W_1v=T_{\sigma}v=Tv=:v_1$, $W_1^2v=W_1v_1=Tv_1=T^2v$. By induction, we get $W_1^nv=T^nv$. Hence, we get OPI convergence implies VFI convergence.

LEMMA 1.2.7.

If (V, \mathbb{T}) is regular and well-posed, then the following statement hold.

L1 If $v \in V$ with Hv = v, then Tv = v

Proof.

$$Hv = v_{\sigma} = v \Rightarrow Tv = T_{\sigma}v = T_{\sigma}v_{\sigma} = v_{\sigma} = v$$

L2 The operators T, W_m , H all maps V_U to itself

Proof.

 $Tv \ge v$ and by T is order-preserving on V_G and by regularity, we get

$$T(Tv) \geq Tv$$
.

 $W_m v = T_\sigma^m v = T_\sigma^{m-1} T v \ge v$ by $v \in V_U$ and T_σ^{m-1} is order-preserving and by

 W_m is order-preserving, we get the claim.

$$Hv = v_{\sigma}$$
. By regularity, we get $V_{\Sigma} \subset V_{G} \implies V_{\Sigma} \in V_{U}$.

LEMMA 1.2.7. CONTINUE

If (V, \mathbb{T}) is regular and well-posed, then the following statement hold.

L3 The operator W_m is order preserving on V_U and

$$v \in V_U \implies Tv \lesssim W_m v \lesssim T^m$$

Proof.

Order preserving is from order-preserving of T_{σ} .

 $W_m v = T_{\sigma}^m v = T_{\sigma}^{m-1} T v = W m - 1 T v$. The by W_m is order preserving, we have

 $W_m v = W_{m-1} T v \ge W_{m-1} v$. Iteratively, we get $W_m \ge T v$.

For the second inequality, we have

$$W_m v = T_\sigma^m v \lesssim T_\sigma^{m-1} T v \lesssim T_\sigma^{m-2} T^2 v$$

Iteratively, we get the inequality.

LEMMA 1.2.8.

If (V, \mathbb{T}) is well-posed, regular and upward stable, then for every $v \in V_U$,

$$v \lesssim T^n v \lesssim W_m^n v \lesssim H^n v$$

for all $n \in \mathbb{N}$. And the VFI sequence $(T^n v)$, OPI sequence $(W_m^n v)$ and HPI sequence $(H^n v)$ are all increasing.

Corollary

Let (V, \mathbb{T}) be regular and upward stable. If the fundamental ADP optimality properties hold, then convergence of VFI implies convergence of OPI and HPI.

CONDITIONS FOR ADP FUNDAMENTAL PROPERTIES HOLD

Theorem

Let (V, \mathbb{T}) be well-posed, downward stable and T has a fixed point in V_G , then

- 1. the fixed point of T is the greatest element of V_{Σ}
- 2. T has no other fixed point in V_G
- 3. σ is optimal if and only if σ is v-greedy.

COROLLARY 1.2.11

Let (V, \mathbb{T}) be well-posed, regular and downward stable. If T has a fixed point in V, then T has exactly one fixed point in V and moreover, the fundamental ADP optimality properties hold.

FINITE CASE - THEOREM 1.2.12

Let (V, \mathbb{T}) be well-posed, regular and order stable. If \mathbb{T} is finite, then

- 1. the fundamental ADP optimality properties hold
- 2. HPI converges in finitely many steps