Radiation Interactions

- 2 classes: uncharged undergoing a catastrophic event and charged particulate
 - 1) Uncharged: Neutrons ($\lambda \cong 10^{-1}$ m) \Rightarrow heavy charged particles x-rays or γ -rays ($\lambda \cong 10^{-1}$ m) \Rightarrow fast e⁻.
 - 2) Charged: Heavy charged particles ($\lambda \cong 10^{-5}$ m); Fast e⁻ ($\lambda \cong 10^{-3}$ m).

Heavy Charged Particles

Nature of interaction:

- Primary interaction through coulomb forces with the orbital e⁻'s of the absorber.
- Nuclei interactions are much less likely (Rutherford scattering).
- Results in: Excitation (raise E of e); ionization (remove an e).
- Maximum deliverable energy from a particle of mass m with kinetic energy E to electron of mass m_o is: 4Em_o/m. This is about 1/500 of the particle energy per nucleon so many such interactions must occur to stop the particle.
- Particles tend to follow a straight path and have a definite range beyond which the particles do not penetrate.
- May excite e⁻'s with enough energy to allow more interactions. These secondary e⁻'s are known as delta rays.
- Delta rays tend to ionize close to the primary track and have smaller ranges than the primary particle.

Stopping Power:

- The differential energy loss per unit length in the absorber (S), also called the specific energy loss:

$$S = -\frac{dE}{dx}$$

 A charged particle will lose more energy with decreasing velocity: The relation is described by the Bethe formula:

$$-\frac{dE}{dx} = \frac{4\pi e^4 z^2}{m_o v^2} NB \; ; \quad B = Z \left[\ln \frac{2m_o v^2}{I} - \ln \left(1 - \frac{v^2}{c^2} \right) - \frac{v^2}{c^2} \right]$$

where v & ze are the velocity and charge of the primary particle. N & Z are the number density and atomic number of the absorber. $m_o \& e$ are the rest mass and charge of the e^- .

I is the average ionization potential of the absorber and is considered an experimentally determined #.

For particles with v << c:

$$B = Z \cdot \ln \left(\frac{2m_o v^2}{I} \right)$$

- B varies slowly with E, so behavior of dE/dx is in the multiplicative factor.
- dE/dx ∝ $1/v^2$ (inversely with particle energy), so the slower the particle the e⁻'s feel the influence of the particle and the larger the energy transfer.
- For particles of the same velocity and differing charge the z^2 term dominates, showing more energy transfer for more highly charged particles (i.e. α 's > protons).
- For varying the absorber, NZ dominates (outside the ln() term), this is the
 electron density, thus higher density materials and higher atomic # will have
 better stopping power.
- For large v/c (particles with velocities close to c) and light materials: $\frac{dE}{dx} \approx 2 \frac{MeV}{g \cdot cm^2}$, also known as "minimally ionizing particles".
- Fast electrons fall into the min. ionizing particles at \sim 1 MeV due to light mass, allowing v to approach c at low energies.
- Bethe formula fails at low energies, where the particle picks up e⁻'s from the absorber and becomes a neutral atom at the end of its range (attracts z e⁻'s).

Energy loss Characteristics:

Bragg Curve:

- A plot of specific energy loss with distance into the absorber.
- Note the energy loss goes as 1/E (fig. 2.2) until it drops off at the end of the range, where it begins to acquire neutralizing charge.

Energy Straggling:

 Due to the statistical nature of the interactions within an absorber, there is a spread of energies produced in a monoenergetic beam after passing through a given thickness of absorber - this is termed "energy straggling".

Range:

Definitions of range:

- Experimental set-up of α emitter and detector with a varying thickness of absorber in between.
- By varying the thickness measuring the intensity of the α beam.
- We define 2 ranges from the variation in thickness.
 - 1) Mean range (R_m) is the thickness that reduces the α intensity to ½ the initial value.
 - 2) Extrapolated range (R_e) is the linear extrapolation along the linear portion of the end of the transmission curve to 0.
- Fig. 2.6 shows the range in air for α particles. Note that, for radiation safety purposes, you need less than 4 cm of air to stop a 4 MeV α particle.
- Note in fig. 2.7 that the range for various particles is suggested to have an empirical relation of R=aE^b, where b is relatively constant.
- Note also that to collect all the energy from a particle, a detector would need to have at least the thickness of the range of the particle in the detector material

Range Straggling:

- The fluctuation in path length is called range straggling and for charges particles is ~ a few percent.
- Can be qualitatively found by taking the derivative w.r.t. x in the dE/dx plot.
- The largest change (peak) occurs at the drop off of the dE/dx curve and the range straggling can be characterized by the width of the peak.
- The wider the peak, the more of an issue the range straggling is for that particle in the absorber.

Stopping Time

- For non-relativistic particles of mass m, and energy E:

$$v = \sqrt{\frac{2E}{m}} = c\sqrt{\frac{2E}{mc^2}} = (3.0 \times 10^8 \ m/s^2)\sqrt{\frac{2E}{(931 \ MeV/amu) \cdot m_A}}$$

where m_A is the particle mass in atomic mass units (amu).

- We assume the average particle velocity (as it slows) is $\langle v \rangle = Kv$, where v is evaluated at the initial energy.
- Since the particle loses most of its energy at the end K > 0.5 (K=0.5 for a uniform deceleration), and we will assume 0.6:

$$T = \frac{R}{\langle v \rangle} = \frac{R}{kv} = \frac{R}{kc} \sqrt{\frac{mc^2}{2E}} = \frac{R}{k(3.0 \times 10^8 \ m/s)} \sqrt{\frac{931 \ MeV/amu}{2}} \cdot \sqrt{\frac{m_A}{E}}$$

$$T \approx 1.2 \times 10^{-7}$$
 $R \cdot \sqrt{\frac{m_A}{E}}$; $T[s]$, $R[m]$, $m_A[amu]$, $E[MeV]$

- T ranges from picoseconds (in solids & liquids) to nanoseconds (in gases).
- Only the fastest detectors would require attending to these stopping times.

Energy loss in thin absorbers

- Particles that penetrate an absorber (thin) lose energy as:

$$\Delta E = -\left(\frac{dE}{dx}\right)_{avg} \Delta x$$

where Δx is the thickness of the absorber and $(dE/dx)_{avg}$ is the linear stopping power averaged over the energy of the particle while in the absorber.

- One can use this equation and the linear portion of a (-dE/dx vs. E) plot to determine the thickness of an absorber from a given range.
- In some cases it may be simpler to use Range and Energy plots to determine the thickness of an absorber.
- Figure 2.12 shows increasing energy loss of protons in Si, where a
 discontinuity arises when the energy of the proton exceeds the range of the
 thickness of the detector.
- Once the energy exceeds the range, less energy is deposited in the Si (since the bragg curve shows most energy is deposited at the end of the range).

Scaling Laws

 For compound absorbers, one can approximate the stopping power of the compound, assuming it is additive (Bragg-Kleeman rule):

$$\frac{1}{N_c} \left(\frac{dE}{dx} \right) = \sum_i W_i \frac{1}{N_i} \left(\frac{dE}{dx} \right)_i;$$

where *N* is the atomic density, dE/dx is the linear stopping power, and W_i is the atom fraction of the i^{th} component of the compound (subscript *c*).

- Expect 10-20% differences from actual values for some components.
- Range scaling:

$$R_c = \frac{m_c}{\sum_{i} n_i \cdot \left(\frac{A_i}{R_i}\right)}$$

where R_i is the range of element i, n_i is the number of atoms of element i in the molecule, A_i is the atomic weight of element i, and m_c is the molecular weight of the compound.

 If range data is not available, estimates can be based on semi-empirical formula (also called Bragg-Kleeman rule):

$$\frac{R_1}{R_0} \approx \frac{\rho_1 \sqrt{A_1}}{\rho_0 \sqrt{A_0}},$$

where $\rho \& A$ are the density and atomic weight of the absorbers.

- The ratio of R's is only really reasonable for materials of similar atomic weight.
- By integrating the Bethe formula, it can be shown that the range of the particle of mass m and charge z is:

$$R(v) = \frac{m}{v^2} \cdot F(v)$$

where F(v) is a unique function of initial velocity for the particle.

- For particles of the same initial velocity:

$$R_a(v) = \frac{m_a z_a^2}{m_b z_b^2} \cdot R_b(v),$$

where a and b refer to different charged particles.

Behavior of Fission Fragments

- Large effective charge (stripped of electrons) yield high initial specific energy loss.
- Range is $\approx \frac{1}{2}$ that of a 5 MeV α particle.
- Picking up electrons on path then decreases the specific energy loss for the particle.

Secondary e⁻ Emission from Surfaces

- e⁻'s may be given enough energy to reach the surface and escape, these are secondary e⁻'s (one type of secondary and different from those produced in γ -ray interactions these are much lower energy).
- Generally the number produced will be proportional to the energy deposited at the surface of the absorber.
- One application is the photomultiplier tube, where a fast e⁻ hits a plate and excites 5-10 secondary e⁻'s.