

ROTARY INVERTED PENDULUM CONTROLLED WITH FLC, PID AND FSF

Presented by Fouad Atwi
Presented to Prof. Youssef Harkouss

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Introduction

Introduction

Control systems are found all around

Used in variety of different applications

 Different techniques differ hugely in both complexity and performance

Introduction

Objective

Study the behavior of some control techniques on a rotary inverted pendulum

Compare the results of the controllers

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Controllers

Controllers

■ In this chapter we will introduce the concepts behind the controllers used

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Controllers
 - Fuzzy Logic Controller

Fuzzy Logic Controller

Uses Fuzzy Logic

 Deals with analog inputs and produces an output based on specified membership functions and rules

■ Term "fuzzy" refers to the fact that logic involved can deal with partially true or partially false instead of discrete states

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Controllers
 - PID Controller

PID Controller

- Commonly used in many applications
- Consist of three different controllers whose outputs are summed:
 - Proportional
 - Integral
 - Derivative

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Controllers

- Full State Feedback Controller

Full State Feedback Controller

- Uses several algorithm to attain control
 - Here we use Linear-Quadratic Regulator
- LQR provides a solution to minimize the cost function

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Modeling of Rotary Inverted Pendulum

MODELING OF ROTARY INVERTED PENDULUM

Modeling of Rotary Inverted Pendulum

- Model was provided by the manufacturer of the kit and has the form:
- $\begin{cases} \dot{X} = AX + Bu \\ Y = CX + Du \end{cases}$ Where:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & \frac{M_{p}^{2} \cdot l_{p}^{2} \cdot r \cdot g}{J_{eq} \cdot M_{p} \cdot l_{p}^{2} + M_{p} \cdot r^{2} \cdot J_{p} + J_{eq} \cdot J_{p}} & -\frac{(J_{p} \cdot K_{t} \cdot K_{m} + M_{p} \cdot l_{p}^{2} \cdot K_{t} \cdot K_{m})}{R_{m} \cdot (J_{eq} \cdot J_{p} + J_{eq} \cdot M_{p} \cdot l_{p}^{2} + M_{p} \cdot r^{2} \cdot J_{p})} & -B_{eq} \\ 0 & \frac{M_{p} \cdot l_{p} \cdot g (J_{eq} + M_{p} \cdot r^{2})}{J_{eq} \cdot M_{p} \cdot l_{p}^{2} + M_{p} \cdot r^{2} \cdot J_{p} + J_{eq} \cdot J_{p}} & -\frac{M_{p} \cdot l_{p} \cdot r \cdot K_{t} \cdot K_{m}}{R_{m} \cdot (J_{eq} \cdot J_{p} + J_{eq} \cdot M_{p} \cdot l_{p}^{2} + M_{p} \cdot r^{2} \cdot J_{p})} & -B_{p} \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ -\frac{K_t.(J_p + M_p.l_p^2)}{R_m.(J_{eq}.J_p + J_{eq}.M_p.l_p^2 + M_p.r^2.J_p)} \\ -\frac{M_p.l_p.r.K_t}{R_m.(J_{eq}.J_p + J_{eq}.M_p.l_p^2 + M_p.r^2.J_p)} \end{bmatrix}$$

$$D = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Controlling the Pendulum

Controlling the Pendulum

- Simulated on MATLAB and Simulink according to the provided model
- The scope of this project focuses only on the balance controller of the pendulum
- Initial Conditions are:

$$-\theta = 0$$
 $\alpha = 0.2$

$$\alpha = 0.2$$

$$\dot{\theta} = 0$$

$$\dot{\Theta} = 0$$
 $\dot{\alpha} = 0$

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Controlling the Pendulum
 - Fuzzy Logic

FUZZY LOGIC

defuzzied using centroid method

- If input is pos, then output is pos
- If input is zero, then output is zero
- If input is neg, then output is neg

FUZZY LOGIC

Fuzzy Logic

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Controlling the Pendulum
 - PID

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Controlling the Pendulum

- Full State Feedback

Full State Feedback

$$Q = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R = 1$$

 K is calculated using lqr function in MATLAB

Full State Feedback

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

Controlling the Pendulum

- Results

Results

- FLC couldn't keep the pendulum balanced
- PID was able to stabilize the pendulum but the arm kept spinning without adding another PID controller
- FSF using LQR was able to provide smooth balancing of the pendulum along with setting reference points for the arm to follow

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Conclusion
 - Summary

Summary

- FLC proved its near impossibility to control complex systems
- PID proved that it is a controller that is simple enough yet effective enough in most cases
- FSF using LQR showed excellent performance and proved its ability to tackle complex systems with ease

- Introduction
- Controllers
 - Fuzzy Logic Controller
 - PID Controller
 - Full State Feedback Controller
- Modeling of Rotary Inverted Pendulum
- Controlling the Pendulum
 - Fuzzy Logic
 - PID
 - Full State Feedback
 - Results
- Conclusion
 - Summary
 - Perspective

- Conclusion
 - Perspective

Perspective

- Design a more advanced controller using PID as building blocks
- Implementing a swing up and catch controller
 - Might utilize different controllers
 - Dealing with the nonlinear aspect of the system
 - Combine the different controllers and switching
- Implementing the controllers on physical hardware

THANK YOU FOR YOUR TIME

Feel free to reach out by email for any question