

Laboratory III

Schörghofer Fabian

Reschenhofer Andreas

Course: Netzzuverlässigkeit und Virtualisierung

Lecturer: Mag. DI Ulrich Pache, BSc

13.06.2017

Table of Contents

Li	st of Abbreviations	1
1	Ausgangslage 1.1 Topologie	2
2	OSPF und BGP 2.1 VRF 2.2 BGP	
3	Provider Router 1	5
4	Monitoring 4.1 Switch 4.2 Wireshark	
	4.3 Traceroutes	7

List of Abbreviations

OSPF Open Shortest Path First

IP Internet Protocol

AS Autonomous System

BGP Border Gateway Protocol

MPLS Multiprotocol Label Switching

VPN Virtual Private Network

VRF Virtual Routing and Forwarding

AS Autonomes System

1 Ausgangslage

Ziel dieser Laboreinheit ist es ein Multiprotocol Label Switching (MPLS)-VPN zu konfigurieren. Dabei soll das ein VPN zwischen den Gruppenteilnehmer aufgebaut werden. Um dies über ein Providernetz zu ermöglichen wird Border Gateway Protocol (BGP) eingesetzt.

1.1 Topologie

Die Topologie (nachgebaut in Packet Tracer) ist in Abbildung 1.1 zu sehen.

Figure 1.1: Topologie

Jeder Gruppe wurde ein Provider-Edge-Router (PEx) samt zwei Kunden-Routern (CEx) zugewiesen. Der Traffic der Kundenrouter sollte voneinander abgeschirmt sein, sodass auch IP-Adressbereiche mehrfach vergeben werden können, ohne dass es zu Adresskonflikten kommt.1

Die Router P1 und P2 wurden keiner Gruppe explizit zugewiesen, ihre Konfiguration wurde gemeinsam erledigt.

2 OSPF und BGP

Zwischen den Provider-Edge und dem P-Router wurde OSPF als Routingprotokoll konfiguriert, sowie MPLS auf allen Links aktiviert.

```
interface Serial0/0/0

mpls ip

router ospf 1
network 5.5.5.5 0.0.0.0 area 0
network 172.16.0.4 0.0.0.3 area 0
Listing 2.1: PE5, MPLS und OSPF-Konfiguration
```

Alle Netze wurden in den Routing-Prozess eingetragen. Wichtig hierbei war eine Loopback-Adresse (5.5.5.5). Diese wird in einem nächsten Schritt als Quelladresse für Routing-Updates mittels BGP verwendet.

2.1 VRF

Mittels Virtual Routing and Forwarding (VRF) werden die Netze der Kunden voneinander getrennt, hierfür wird ein "virtueller" Router auf PE5 eingerichtet. Das Route-Target ist dabei gleich für alle Teilnehmer des VPNs. "65000" entspricht in dem Fall einem Autonomes System (AS).

```
ip vrf ce3
  rd 65000:3
  route-target export 65000:3
  route-target import 65000:3
    Listing 2.2: VRF CE3
```

Pro Kunde existiert ein eigener Routing-Prozess, hier ebenfalls mittels Open Shortest Path First (OSPF) realisiert.

```
router ospf 2 vrf ce3
router-id 5.5.5.3
redistribute bgp 65000 subnets
Listing 2.3: OSPF für CE3
```

Der selbe Schritt wurde auch für den CE4 Router durchgeführt.

```
ip vrf ce4
  rd 65000:4
  route-target export 65000:4
  route-target import 65000:4

router ospf 3 vrf ce4
  router-id 5.5.5.4
  redistribute bgp 65000 subnets

Listing 2.4: VRF und OSPF CE4
```

2.2 BGP

Nach dem Erstellen der beiden VRF Prozesse konnte der BGP Prozess gestartet werden. Die AS-Nummer wird dabei dem lokalen "BGP Speaker" zugewiesen. Mittels "neighbor" wird die Internet Protocol (IP)-Adresse und die AS-Nummer für einen BGP Partner festgelegt. Mittels "address-family vpnv4" wird ein Virtual Private Network (VPN) mit dem Nachbar 1.1.1.1 erstellt. Über "address-family ipv4 vrf ce3" wird der zugehörige OSPF Prozess an das jeweilige gegenüberliegende VRF verteilt.

```
router bgp 65000
   bgp log-neighbor-changes
   neighbor 1.1.1.1 remote-as 65000
   neighbor 1.1.1.1 update-source Loopback0
   neighbor 1.1.1.1 send-community extended
   address-family vpnv4
    neighbor 1.1.1.1 activate
    neighbor 1.1.1.1 send-community extended
9
   exit-address-family
11
   address-family ipv4 vrf ce3
12
   redistribute ospf 2
   exit-address-family
14
   address-family ipv4 vrf ce4
16
   redistribute ospf 3
17
   exit-address-family
18
```

Listing 2.5: BGP Process

3 Provider Router 1

Beim Provider Router 1 wurde jedem angeschlossenen seriellen Link eine IP-Adresse vergeben sowie MPLS aktiviert. Des weiteren wurde wieder die Loopback0 Adresse eingestellt.

```
interface Serial0/0/0
ip address 172.16.0.2 255.255.255.252
mpls ip
clock rate 2000000
interface Loopback0
ip address 111.111.111 255.255.255.255
```

Listing 3.1: MPLS und Loopback0 auf P-Router

Um zwischen den beidem Provider Routern zu routen wurde OSPF mit folgenden Netzwerken verwendet.

```
network 10.0.0.0 0.0.0.3 area 0
network 111.111.111 0.0.0.0 area 0
network 172.16.0.0 0.0.3 area 0
network 172.16.0.4 0.0.0.3 area 0
network 172.16.0.8 0.0.0.3 area 0
```

Listing 3.2: OSPF Process auf P-Router

4 Monitoring

4.1 Switch

Der BGP und MPLS-Traffic sollte mitgeschnitten werden. Dazu wurde zwischen Router P1 und P2 ein Switch dazwischengesschaltet. Auf diesem Switch wurde anschließend ein Monitoring-Port (bei Cisco auch Span-Port genannt) eingerichtet.

Anschließend konnte ein angeschlossener PC den Traffic mittels Wireshark mitschneiden.

```
monitor session 1 source interface Fa0/1 monitor session 1 destination interface Fa0/3 , Fa0/10 Listing 4.1: Monitoring-Ports
```

In Listing 2.5 sieht man die Konfiguration des Monitor-Ports. Traffic der von und an Port Fa0/1 geschickt wird, wird auch an den Ports Fa0/3 und Fa0/10 ausgegeben.

4.2 Wireshark

Ein Beispiel für MPLS-Traffic ist in Abbildung 4.1 zu sehen. Erkennbar sind die MPLS-Labels zwischen Layer 2 und 3. Gesendet wird ein Ping.

```
7968 55.716417
                           172.17.0.34
                                                                  122 Echo (ping) request
     65
            8124 55.717769
                                        172.17.0.34
                                                       ICMP
                                                                  122 Echo (ping) reply
> Frame 64: 122 bytes on wire (976 bits), 122 bytes captured (976 bits) on interface 0
> Ethernet II, Src: Cisco_48:ab:b0 (88:f0:31:48:ab:b0), Dst: Cisco_09:09:e8 (18:8b:9d:09:09:e8)

▼ MultiProtocol Label Switching Header, Label: 21, Exp: 0, S: 0, TTL: 253

    0000 0000 0000 0001 0101 .... = MPLS Label: 21
    .... = MPLS Experimental Bits: 0
    .... = MPLS Bottom Of Label Stack: 0
     ... .... .... 1111 1101 = MPLS TTL: 253
MultiProtocol Label Switching Header, Label: 29, Exp: 0, S: 1, TTL: 254
    0000 0000 0000 0001 1101 .... = MPLS Label: 29
    .... = MPLS Experimental Bits: 0
    .... = MPLS Bottom Of Label Stack: 1
    .... 1111 1110 = MPLS TTL: 254
> Internet Protocol Version 4, Src: 172.17.0.34, Dst: 172.17.0.6
> Internet Control Message Protocol
```

Figure 4.1: ICMP über MPLS

```
BGP
    5197
            679404 3686.944622
                                                                              77 KEEPALIVE Message
                               2.2.2.2
                                               1.1.1.1
            686596 3743.149284
                                                                              77 KEEPALIVE Message
> Frame 5197: 77 bytes on wire (616 bits), 77 bytes captured (616 bits) on interface 0
> Ethernet II, Src: Cisco_48:ab:b0 (88:f0:31:48:ab:b0), Dst: Cisco_09:09:e8 (18:8b:9d:09:09:e8)
 MultiProtocol Label Switching Header, Label: 21, Exp: 6, S: 1, TTL: 254
Internet Protocol Version 4, Src: 2.2.2.2, Dst: 1.1.1.1
 Transmission Control Protocol, Src Port: 179, Dst Port: 34126, Seq: 1875, Ack: 1846, Len: 19

▼ Border Gateway Protocol - KEEPALIVE Message

     Length: 19
    Type: KEEPALIVE Message (4)
```

Figure 4.2: BGP-Keepalive

In Abbildung 4.2 sind BGP-Keepalive-Nachrichten zu sehen die periodisch ausgetauscht werden, ebenfalls über den MPLS-Tunnel.

4.3 Traceroutes

Mittels traceroute kann die Route zu einem Zielhost festgestellt werden. Führt man diesen Befehl am Router aus (Abbildung 4.3), so sieht man ebenfalls den MPLS-Tunnel, auf einem Endgerät (Abbildung 4.4) ist diese Information nicht sichtbar, da die MPLS-Label am Zielgerät nicht mehr im Frame vorhanden sind.

```
CE4#traceroute 172.17.0.2

Type escape sequence to abort.

Tracing the route to 172.17.0.2

VRF info: (vrf in name/id, vrf out name/id)

1 172.17.0.14 0 msec 0 msec 0 msec

2 172.16.0.6 [MPLS: Labels 21/30 Exp 0] 4 msec 0 msec 4 msec

3 172.17.0.2 4 msec 0 msec *

CE4#
```

Figure 4.3: Traceroute-Router

```
C:\Users\its>tracert -d 172.17.0.2
Routenverfolgung zu 172.17.0.2 über maximal 30 Hops
                                  192.168.5.1
  1
                 <1 ms
                           <1 ms
       <1 ms
                 <1 ms
  2
       <1 ms
                           <1 ms
                                  172.17.0.14
  3
                                  172.16.0.6
        3
                  3
                            3
                             ms
          ms
                    ms
                                  Zeitüberschreitung der Anforderung.
  4
  5
        2 ms
                  2 ms
                            2 ms
                                  172.17.0.2
Ablaufverfolgung beendet.
```

Figure 4.4: Traceroute-Windows