Yoneda Lemma For any functor $F: \mathcal{C} \to \mathsf{Set}$, whose domain \mathcal{C} is locally small and any object $c \in \mathcal{C}$, there is a bijection

$$\operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(c,-),F) \cong Fc$$

that associates a natural transformation $\alpha : \operatorname{Mor}_{\mathcal{C}}(c, -) \Rightarrow F$ with the element $\alpha_c(1_c) \in Fc$. Moreover, this correspondence is natural in both c and F.

Yoneda Lemma' For any functor $F: \mathcal{C} \to \mathsf{Set}$, whose domain \mathcal{C} is locally small and any object $c \in \mathcal{C}$, there is a bijection

$$\operatorname{Mor}_{[\mathcal{C},\mathsf{Set}]}(h_c,F) \cong Fc$$

that associates a natural transformation $\alpha: h_c \to F$ with the element $\alpha_c(1_c) \in Fc$. Moreover, this correspondence is natural in both c and F.

Proof. The map $\Phi: \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(c,-), F) \to Fc$ is easy to construct. Given a natural transformation $\alpha: \operatorname{Mor}_{\mathcal{C}}(C,-) \Rightarrow F$, we simply define

$$\Phi(\alpha) := \alpha_c(1_c),$$

where $\alpha_c : \operatorname{Mor}_{\mathcal{C}}(c,c) \to Fc$ is the component of α at c.

We now wish to construct Φ 's inverse, $\Psi: Fc \to \operatorname{Nat}(\operatorname{Mor}_{\mathcal{C}}(c, -), F)$. That is, given an element $x \in Fc$, we must construct a natural transformation $\Psi(x): \operatorname{Mor}_{\mathcal{C}}(c, -) \Rightarrow F$. To do this, we will construct its components $\Psi(x)_a: \operatorname{Mor}_{\mathcal{C}}(c, a) \to Fa$ for each object $a \in \mathcal{C}$. Moreover, this construction must adhere to the naturality condition, i.e., for all morphisms $f: a \to b$ in \mathcal{C} , the following diagram must commute:

$$\operatorname{Mor}_{\mathcal{C}}(c, a) \xrightarrow{\Psi(x)_{a}} Fa$$

$$f_{*} \downarrow \qquad \qquad \downarrow^{Ff}$$

$$\operatorname{Mor}_{\mathcal{C}}(c, b) \xrightarrow{\Psi(x)_{b}} Fb$$

Here, $f_* = \operatorname{Mor}_{\mathcal{C}}(c, f)$ is the function which takes a morphism $g: c \to a$ and sends it to the composition $f_*g = f \circ g: c \to b$.

Let us look at what this diagram is saying in the particular case of $f: c \to a$. The diagram looks like this:

$$\operatorname{Mor}_{\mathcal{C}}(c,c) \xrightarrow{\Psi(x)_{c}} Fc$$

$$f_{*} \downarrow \qquad \qquad \downarrow_{Ff}$$

$$\operatorname{Mor}_{\mathcal{C}}(c,a) \xrightarrow{\Psi(x)_{a}} Fa$$

Consider the identity 1_c in the upper left corner. Following the left side of the square, we obtain

$$\Psi(x)_a(f_*1_c) = \Psi(x)_a(f \circ 1_c) = \Psi(x)_a(f).$$

Since we eventually want to this square to commute, this must be equal to the result of following the right side, i.e., we must have

$$\Psi(x)_a(f) = Ff(\Psi(x)_c(1_c)).$$

In other words, it would suffice to define $\Psi(x)_c(1_c)$.

Recall our definition of Φ , for which we want Ψ to be an inverse. Plugging in $\Psi(x)$ for α ,

$$\Psi(x)_c(1_c) = \Phi(\Psi(x)) = x.$$

Our hand is now forced to define

$$\Psi(x)_a(f) := Ff(x).$$

We can be reasonably confident that because we made only the "obvious" choices that Ψ is correct, but there are a few things we must check to be sure.

First, we check the naturality of $\Psi(x)$, i.e., that the diagram from earlier commutes for all $f: a \to b$ in \mathcal{C} . For a morphism $g: c \to a$ in \mathcal{C} , we find

$$\Psi(x)_b(f_*g) = \Psi(x)_b(f \circ g) \qquad \text{def of } f_*$$

$$= F(f \circ g)(x) \qquad \text{def of } \Psi$$

$$= (Ff \circ Fg)(x) \qquad \text{functorality of } F$$

$$= Ff(Fg(x)) \qquad \text{def of } \circ$$

$$= Ff(\Psi(x)_g(g)). \qquad \text{def of } \Psi$$

This tells us that $\Psi(x)$ is indeed a natural transformation $\operatorname{Mor}_{\mathcal{C}}(c,-) \Rightarrow F$, so Ψ is a well-defined map.

Lastly, we check that Φ and Ψ are inverses.

For $x \in Fc$, we apply definitions to obtain

$$\Phi(\Psi(x)) = \Psi(x)_c(1_c) = F1_c(x) = 1_{Fc}(x) = x.$$

For a natural transformation $\alpha: \operatorname{Mor}_{\mathcal{C}} C(c, -) \Rightarrow F$, we consider the natural transformation $\Psi(\Phi(\alpha))$ at a morphism $f \in \operatorname{Mor}_{\mathcal{C}}(c, b)$.

$$\Psi(\Phi(\alpha))_b(f) = Ff(\alpha_c(1_c)) \qquad \text{defs of } \Phi \text{ and } \Psi$$

$$= (Ff \circ \alpha_c)(1_c)$$

$$= (\alpha_b \circ f_*)(1_c) \qquad \text{naturality of } \alpha$$

$$= \alpha_b(f_*1_c)$$

$$= \alpha_b(f)$$

This shows that $\Psi(\Phi(\alpha)) = \alpha$.

We conclude that Φ and Ψ are inverses.

remains to prove naturality in c and F then do embedding