Exercícios

1-6 \square Use a Regra da Cadeia para determinar dz/dt ou dw/dt.

1.
$$z = x^2y + xy^2$$
, $x = 2 + t^4$, $y = 1 - t^3$

2.
$$z = \sqrt{x^2 + y^2}$$
, $x = e^{2t}$, $y = e^{-2t}$

3.
$$z = \sin x \cos y$$
, $x = \pi t$, $y = \sqrt{t}$

4.
$$z = x \ln(x + 2y)$$
, $x = \sin t$, $y = \cos t$

5.
$$w = xe^{y/z}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

a , w 4 n 4 n

6.
$$w = xy + yz^2$$
, $x = e^t$, $y = e^t \operatorname{sen} t$, $z = e^t \cos t$

7-12 \Box Utilize a Regra da Cadeia para determinar $\partial z/\partial s$ e $\partial z/\partial t$.

7.
$$z = x^2 + xy + y^2$$
, $x = s + t$, $y = st$

8.
$$z = x/y$$
, $x = se^t$, $y = 1 + se^{-t}$

9.
$$z = arctg(2x + y)$$
, $x = s^2t$, $y = s \ln t$

10.
$$z = e^{xy} \operatorname{tg} y$$
, $x = s + 2t$, $y = s/t$

11.
$$z = e^r \cos \theta$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$

12.
$$z = \operatorname{sen} \alpha \operatorname{tg} \beta$$
, $\alpha = 3s + t$, $\beta = s - t$

- **13.** Se z = f(x, y), onde f é diferenciável x = g(t), y = h(t), g(3) = 2, g'(3) = 5, h(3) = 7, h'(3) = -4, $f_x(2, 7) = 6$, e $f_y(2, 7) = -8$, determine dz/dt quando t = 3.
- **14.** Seja W(s, t) = F(u(s, t), v(s, t)), onde F, u, e v são diferenciáveis, u(1, 0) = 2, $u_s(1, 0) = -2$, $u_t(1, 0) = 6$, v(1, 0) = 3, $v_s(1, 0) = 5$, $v_t(1, 0) = 4$, $F_u(2, 3) = -1$ e $F_v(2, 3) = 10$. Determine $W_s(1, 0)$ e $W_t(1, 0)$.
- **15.** Suponha que f seja uma função diferenciável de x e y, e $g(u, v) = f(e^u + \sin v, e^u + \cos v)$. Use a tabela de valores para calcular $g_u(0, 0)$ e $g_v(0, 0)$.

		f	g	f_x	$f_{\scriptscriptstyle Y}$
	(0, 0)	3	6	4	. 8
-	(1, 2)	6	3	2	5

16. Suponha que f seja uma função diferenciável de x e y, e $g(r, s) = f(2r - s, s^2 - 4r)$. Use a tabela de valores do Exercício 15 para calcular $g_r(1, 2)$ e $g_s(1, 2)$.

17-20 🗆 Utilize o grafo da árvore para escrever a Regra da Cadeia para o caso dado. Assuma que todas as funções sejam diferenciáveis.

$$u = f(x, y)$$
, onde $x = x(r, s, t)$, $y = y(r, s, t)$

18.
$$w = f(x, y, z)$$
, onde $x = x(t, u)$, $y = y(t, u)$, $z = z(t, u)$

19.
$$v = f(p, q, r)$$
, onde $p = p(x, y, z)$, $q = q(x, y, z)$, $r = r(x, y, z)$

20.
$$u = f(s, t)$$
, onde $s = s(w, x, y, z)$, $t = t(w, x, y, z)$

21-26
Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.

21.
$$z = x^2 + xy^3$$
, $x = uv^2 + w^3$, $y = u + ve^w$;

$$\frac{\partial z}{\partial u}$$
, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$ quando $u = 2$, $v = 1$, $w = 0$

22.
$$u = \sqrt{r^2 + s^2}$$
, $r = y + x \cos t$, $s = x + y \sin t$; $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial t}$ quando $x = 1$, $y = 2$, $t = 0$

23.
$$R = \ln(u^2 + v^2 + w^2)$$
, $u = x + 2y$, $v = 2x - y$, $w = 2xy$; $\frac{\partial R}{\partial x}$, $\frac{\partial R}{\partial y}$ quando $x = y = 1$

24.
$$M = xe^{y-z^2}$$
, $x = 2uv$, $y = u - v$, $z = u + v$; $\frac{\partial M}{\partial u}$, $\frac{\partial M}{\partial v}$ quando $u = 3$, $v = -1$

25.
$$u = x^2 + yz$$
, $x = pr\cos\theta$, $y = pr\sin\theta$, $z = p + r$; $\frac{\partial u}{\partial p}$, $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$ quando $p = 2$, $r = 3$, $\theta = 0$

26.
$$Y = w \operatorname{tg}^{-1}(uv)$$
, $u = r + s$, $v = s + t$, $w = t + r$; $\frac{\partial Y}{\partial r}$, $\frac{\partial Y}{\partial s}$, $\frac{\partial Y}{\partial t}$ quando $r = 1$, $s = 0$, $t = 1$

27-30 \Box Utilize a Equação 6 para determinar dy/dx.

27.
$$\sqrt{xy} = 1 + x^2y$$

28.
$$y^5 + x^2y^3 = 1 + ye^{x^2}$$

$$29. \cos(x-y)=xe^y$$

31-34 \Box Utilize as Equações 7 para determinar $\partial z/\partial x \in \partial z/\partial y$.

31.
$$x^2 + y^2 + z^2 = 3xyz$$

$$32 xyz = \cos(x + y + z)$$

33.
$$x - z = arctg(yz)$$

34.
$$yz = \ln(x + z)$$

- A temperatura em um ponto (x, y) é T(x, y), medida em graus Celsius. Um inseto rasteja de modo que sua posição depois de t segundos seja dada por $x = \sqrt{1 + t}$, $y = 2 + \frac{1}{3}t$, onde x e y são medidas em centímetros. A função temperatura satisfaz $T_x(2, 3) = 4$ e $T_y(2, 3) = 3$. Quão rápido a temperatura aumenta no caminho do inseto depois de três segundos?
- 36. A produção de trigo em um determinado ano W depende da temperatura média T e da quantidade anual de chuva R. Cientistas estimam que a temperatura média anual está crescendo à taxa de 0,15 °C/ano, e a quantidade anual de chuva está decrescendo à taxa de 0,1 cm/ano. Eles também estimam que, no corrente nível de produção, ∂W/∂T = -2 e ∂W/∂R = 8.
 - (a) Qual é o significado do sinal dessas derivadas parciais?
 - (b) Estime a taxa de variação corrente da produção de trigo dW/dt.
- 37. A rapidez da propagação do som através do oceano com salinidade de 35 partes por milhar foi modelada pela equação

$$C = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3 + 0.016D$$

onde C é a rapidez do som (em metros por segundo), T é a temperatura (em graus Celsius) e D é a profundidade abaixo