

Contents

- Dataset description
- Pre-processing
 - Size and FOV removal
- Transfer Learning
 - Feature extraction and fine-tuning
- Fine-tuning
 - Architectures
 - Hyperparameters
- Results
- Final experiments

Dataset description

• Challenge 1: Binary

# images	Nevus		Others						
	Total	Total	mel	bcc	bkl	ack	scc	vac	def
Train	7725	7470	2713	1993	1574	520	376	151	143
Val	1931	1865	678	498	393	130	94	37	35

Balanced dataset

Different image sizes

• Challenge 2: Three class

# images	bcc	mel	scc	
Train	1993	2713	376	
Val	498	678	94	

Unbalanced dataset

Different image sizes

Image characteristics:

- Artifacts:
 - Dark and light hairs O Marker annotations
 - RulersStickers
- Black circular vignette (border)
- Variate non-standard lesion framing.

Preprocessing: FOV Removal and Resizing

Pipeline

FOV Removal algorithm^[1]:

- 1. Obtain the histogram of image diagonals
- 2. Obtain histograms crossing points with a selected threshold
- 3. Select the most restrictive cropping coordinates

Problems:

- Non-circular vignette (single horizontal or vertical black border)
- Off-center nearly-black lesion

Solutions:

- Remove non-circular vignette
- Obtain very restrictive crop

Resize all the images training / validation / test to 224x224.

Faster training times allowing to have more experiments.

- Experiments were carried out using the server from UdG and Google Colab.
 - UdG server: mariecurie.udg.edu
 Containing 2 GPU'S with 11 GB
 - Google Colaboratory
 Tesla K80 GPU with 12 GB
- Developed with Pytorch

As vanilla experiments, we ran some transfer learning training:

Typo	Architecture	Trainable pereme	Accuracy		Notes
Туре	Architecture	Trainable params	Train	Val	Notes
	MobileNetV2	2,226,434	0.9338	0.8609	
Fine tuning	Densenet121	6,955,906	0.9951	0.8814	
Fine-tuning	Inception-Resnet-v2	54,309,538	0.9297	0.8762	
	Resnet18	11,690,538	0.9773	0.8759	
Feature extraction	Resnet18	4,098	0.7993	0.8051	
	Resnet50	25,561,130	0.954	0.8791	
	Resnet50	17,017,834	0.9218	0.8519	Freezing first 7 layers
Fine-tuning	Resnet50	24,116,202	0.9466	0.8746	Freezing first 6 layers
	Resnet50	24,116,202	0.8058	0.7964	SGD, LR=0.0001
	Resnet50	24,116,202	0.8646	0.8322	SGD, LR=0.001

Resnet18^[2]

Densenet121

Regnet

ViT

Trainable parameters	Key elements
11,690,538	Residual connections18 convolutional layers

Resnet18

Densenet121^[3]

Regnet

ViT

Trainable parameters	Key elements
6,955,906	 4 Dense blocks L(L+1)/2 direct connections Substantial reduction of params

Resnet18

Densenet121

Regnet [4]

ViT

Trainable parameters	Key elements		
5,649,082	 Design space provides simple and fast networks, with parameters (d, g, w_m, w_a, w₀): Using RegnetY_800MF 		

Resnet18

Densenet121

Regnet

ViT [5]

Trainable parameters	Key elements
85,800,194	 Layer Norm Multi-head Attention Network (MSP) Multi-Layer Perceptrons (MLP)

Densenet121

Regnet

ViT

Swin Tiny [6]

Trainable parameters	Key elements
27,584,108	Hierarchical feature mapsShifted window attention

The hyperparameter tuning is a necessary step in order to get optimized performance from the models. It includes,

- Data augmentations
- Optimizer
- Scheduler
- Early stopping

Data augmentations are used to artificially increase the training set by creating modified copies of a dataset using existing data.

They are applied to training set using Pytorch's torchvision.transforms module.

- RandomHorizontalFlip
- RandomVerticalFlip
- RandomRotation
- RandomEqualize
- ColorJitter
- GaussianBlur
- ToTensor
- Normalize*

*We have experimented with both the mean and standard deviation of our dataset and ImageNet's.

Optimizers are used to adjust the parameters for a model in order to minimize/maximize the loss function.

- ADAM (Adaptive moment estimation)
- SGD (Stochastic gradient descent)

Learning schedulers are used to adjusts the learning rate between epochs or iterations as the training progresses.

- StepLR
- ReduceLROnPlateau

Best experiments per model

Selected to be used in the ensemble model

Model	Accuracy		
lviodei	Train	Validation	
Swin_t	0.9582	0.8938	
Regnet	0.9785	0.8930	
Densenet121	0.9791	0.8898	
Swin_t (MLP)	0.9026	0.8825	
Resnet50	0.954	0.8791	
ViT	0.9371	0.8743	
MobileNetV2	0.9338	0.8609	
Resnet18	0.9175	0.8567	

• Best model as feature extractor

Classifier	Accuracy		
Classifier	Train	Validation	
Backbone and FC layer	0.9079	0.8806	
SVM avg_pool1d → 258 features RBF kernel C=1, Gamma=0.1	0.9229	0.8843	
MLP ReLU(Linear(768, 512)) ReLU(Linear(512, 256)) Linear(256, 2)	0.9026	0.8825	

- We have performed an ensemble of the best models:
 - Majority voting
 - Soft voting

	Туре	Model's assembly	Mean validation accuracy
	MV	DN(exp6)+SW(exp15-4)+RGN(ex1)	0.91119
	MV	SW(exp15-4)+SW(exp15)+SW(exp15-4-3)	0.9
SV DN(exp6)		DN(exp6)+SW(exp15-4)+RGN(ex1)	0.911718
	MV	DN(exp6)+SW(exp15-4)+RGN(ex1)+SW(exp15)+SW(exp15-4-3)	0.910937
	SV	DN(exp6)+SW(exp15-4)+RGN(ex1)+SW(exp15)+SW(exp15-4-3)	0.9117187

The architectures we used for the multi-class problem:

- Regnet
- Swin Tiny

• To address the class imbalance we tested two losses and a data sampler.

The **loss functions** we tested were:

- Cross Entropy, with weights (as total_samples/class_count)
- Focal Loss^[7].

We tested the **WeightedRandomSampler**, so for each batch, the dataloader samples with replacement according to sample weights.

Learning schedulers are used to adjusts the learning rate between epochs or iterations as the training progresses.

- MultiStepLR
- ReduceLROnPlateau

Results Multi-class

• Best experiments per model

Selected to be used in the ensemble model

		Accuracy		Карра	
	Model	Train	Validation	Train	Validation
	Swin_T	0.9988	0.9551	0.9979	0.919
	Swin_T (Focal loss + modified head)	0.988	0.9043	0.9873	0.9117
-	Swin_T (with multistep scheduler)	0.9925	0.909	0.9943	0.9008
	Regnet	0.9989	0.9086	0.9926	0.9076

- We have performed an ensemble of the best models:
 - Majority voting
 - Soft voting

Туре	Model's assembly	Mean validation kappa
MV	SW(exp1) + SW(exp9) + SW(exp13)	0.922
MV	SW(exp1) + SW(exp9) + SW(exp13)+RGN(exp4)	0.913
SV	SW(exp1) + SW(exp9) + SW(exp13)	0.902
SV	SW(exp1) + SW(exp9) + SW(exp13)+RGN(exp4)	0.89
MV	SW(exp1) + SW(exp6) + SW(exp13)	0.87

• To test the image size as a factor of increased performance, we ran final experiments with images of size 512x512

- Less overfitted model compared to best 224 model
- Didn't reach best 224 model performance

• To test the image size as a factor of increased performance, we ran final experiments with images of size 512x512

Conclusions

- We experimented we different pre-trained deep learning models and obtaining their best training parameters.
- We reduced drastically the image size in order to perform proper experiments for the hyperparameters' tuning.
- It is particularly challenging to train complex models, to reach higher performance while monitoring the model's overfitting.
- For our validation set, we obtained an accuracy score of 0.9117 for the binary challenge, and kappa score of 0.922 for the multi-class challenge by using ensemble methods.
- Thus concluding that the selected models were able to well characterize the two lesion and multiple lesion classes.

References

- [1] https://github.com/Icambero/skin_lesion_segmentation
- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.
- [3] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. CoRR, abs/1608.06993, 2016
- [4] lija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollár. Designing network design spaces. CoRR, abs/2003.13678, 2020.
- [5] https://github.com/google-research/vision transformer
- [6]Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & EEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv48922.2021.00986
- [7] Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal Loss for Dense Object Detection, 130(4), 485–491. https://doi.org/10.1016/j.ajodo.2005.02.022

This project was developed in the beautiful city of Girona, Catalonia