Job No.: Mark Green Address: 42 Pukeora Scenic Road, Waipukurau, New Date: 10/11/2023

Zealand

Latitude: -39.990392 **Longitude:** 176.515553 **Elevation:** 140.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	2.7 m
Wind Region	NZ2	Terrain Category	2.33	Design Wind Speed	37.11 m/s
Wind Pressure	0.83 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.6763

For roof CP,e from 0 m To 2.50 m Cpe = -0.9 pe = -0.58 KPa pnet = -1.10 KPa

For roof CP,e from 2.50 m To 5.0 m Cpe = -0.5 pe = -0.32 KPa pnet = -0.84 KPa

For wall Windward Cp, i = 0.6763 side Wall Cp, i = -0.606

For wall Windward and Leeward CP,e from 0 m To 14.40 m Cpe = 0.7 pe = 0.52 KPa pnet = 1.06 KPa

For side wall CP,e from 0 m To 2.50 m Cpe = pe = -0.48 KPa pnet = 0.06 KPa

Maximum Upward pressure used in roof member Design = 1.10 KPa

Maximum Downward pressure used in roof member Design = 0.69 KPa

Maximum Wall pressure used in Design = 1.06 KPa

Maximum Racking pressure used in Design = 0.89 KPa

Design Summary

Purlin Design

Purlin Spacing = 0 mm Purlin Span = 4650 mm Try Purlin 150x50 SG8 Dry

First Page

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.00 S1 Downward =9.63 S1 Upward =Infinity

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	Infinity %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.28 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	131.25 %
$M_{0.9D\text{-W}nUp}$	0 Kn-m	Capacity	-0.00 Kn-m	Passing Percentage	NaN %
V _{1.35D}	0.00 Kn	Capacity	7.24 Kn	Passing Percentage	Infinity %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	0.00 Kn	Capacity	9.65 Kn	Passing Percentage	Infinity %
$ m V_{0.9D-WnUp}$	0.00 Kn	Capacity	-12.06 Kn	Passing Percentage	Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 0.00 mm Limit by Woolcock et al, 1999 Span/240 = 19.17 mm Deflection under Dead and Service Wind = 0.00 mm Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = 0.00 kn Maximum upward = 0.00 kn

Number of Blocking = -1 if 0 then no blocking required, if 1 then one midspan blocking required

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 2400 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Second page

Passing Percentage

NaN %

MWind+Snow	0.00 KH H	Capacity	TVATV IXII III	1 assing 1 electrage	11411 /0
$V_{0.9D\text{-W}nUp}$	0.00 Kn-m	Capacity	0.00 Kn-m	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Limit by Woolcock et al, 1999 Span/100 = 24.00 mm Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm Girt's Span = 2000 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	NaN Kn-m	Passing Percentage	NaN %
$V_{0.9 D\text{-W} n U p}$	0.00 Kn-m	Capacity	0.00 Kn-m	Passing Percentage	NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Limit by Woolcock et al. 1999 Span/100 = 20.00 mm Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(0.55) x (0.55) x Density of Soil(18) x Height of Pile(0.6) x He

Skin Friction = 0.00 Kn

Weight of Pile + Pile Skin Friction = 0.00 Kn

Uplift on one Pile = 16.80 Kn

Uplift is ok