

Set Operations

1 Why

We want to consider the elements of two sets together at once, and other sets created from two sets.

2 Definitions

Let A and B be two sets.

The union of A with B is the set whose elements are in either A or B or both. The key word in the definition is or.

The intersection of A with B is the set whose elements are in both A and B. The keyword in the definition is and.

Viewed as operations, both union and intersection commute; this property justifies the language "with." The intersection is a subset of A, of B, and of the union of A with B.

The symmetric difference of A and B is the set whose elements are in the union but not in the intersection. The symmetric difference commutes because both union and intersection commute; this property justifies the language "and." The symmetric difference is a subset of the union.

Let C be a set containing A. The *complement* of A in C is the symmetric difference of A and C. Since $A \subset C$, the union is C and the intersection is A. So the complement is the "left-over" elements of B after removing the elements of A.

We call these four operations set-algebraic operations.

2.1 Notation

Let A, B be sets. We denote the union of A with B by $A \cup B$, read aloud as "A union B." \cup is a stylized U. We denote the intersection of A with B by $A \cap B$, read aloud as "A intersect B." We denote the

symmetric difference of A and B by A+B, read aloud as "A symdiff

B." "Delta" is a mnemonic for difference.

Let C be a set containing A. We denote the complement of A in C

by C - A, read aloud as "C minus A."

2.2 Results

Proposition 1. For all sets A and B the operations \cup , \cap , and +

commute.

Proposition 2. Let S a set. For all sets $A, B \subset S$,

(1) $S - (A \cup B) = (S - A) \cap (S - B)$

(2)
$$S - (A \cap B) = (S - A) \cup (S - B)$$
.

Proposition 3. Let S a set. For all sets $A, B \subset S$,

$$A + B = (A \cup B) \cap C_S(A \cap B)$$

TODO:notation

2