TA9 - Localização por landmarks

Marcelo dos Santos e Odair Mario

Junho de 2021

1 Cálculo da posição

No artigo [2] é descrita uma forma de localizar o robô apenas com medidas dos ângulos. No nosso caso, como também medimos as distâncias até os landmarks, não precisamos seguir o algoritmo descrito em [2]. Para cada landmarks medido (pelo menos 2), podemos estimar a posição P = (px, py) do robô. Ao final do processo, se tivermos várias estimativas de P, podemos calcular uma média.

Considere 3 sistemas de coordenadas, um externo $S_e = (x^{(e)}, y^{(e)})$, outro localizado no robô $\hat{S}_r = (\hat{x}^{(r)}, \hat{y}^{(r)})$ e paralelo ao primeiro, e um terceiro $S_r = (x^{(r)}, y^{(r)})$, também localizado no robô, mas com eixo $x^{(r)}$ apontando pra orientação do robô, ou seja, $x^{(r)}$ e $x^{(e)}$ formam um ângulo θ , ver Figura 1.

Figura 1: Sistemas de coordenadas. Obtido de [2].

Cada landmarks i é localizado no sistema S_e por $z_i^{(e)}$, no sistema S_r por $z_i^{(r)}$ e no sistema \hat{S}_r por $\hat{z}_i^{(r)}$. Vamos representar $z_i^{(r)}$ na forma polar como

$$z_i^{(r)} = l_i e^{j\tau_i},\tag{1}$$

onde $j=\sqrt{-1}$ e τ_i é o ângulo que $z_i^{(r)}$ faz com $x^{(r)}$. Considerando a razão entre as posições de 2 landmarks temos

$$\frac{z_i^{(r)}}{z_0^{(r)}} = \frac{l_i}{l_0} e^{j(\tau_i - \tau_0)} = \frac{l_i}{l_0} e^{j\phi_i},\tag{2}$$

onde $\phi_i = \tau_i - \tau_0$. Por outro lado, no sistema \hat{S}_r temos

$$\frac{\hat{z}_i^{(r)}}{\hat{z}_0^{(r)}} = \frac{l_i}{l_0} e^{j\phi_i},\tag{3}$$

ou seja, não temos alteração em ϕ_i . Vamos definir um vetor $\hat{v}_i^{(r)}$ que é a diferença entre os $\hat{z}_i^{(r)}$ e $\hat{z}_0^{(r)}$ acima:

$$\hat{v}_i^{(r)} = v_i^{(e)} = \hat{z}_i^{(r)} - \hat{z}_0^{(r)} = z_i^{(e)} - z_0^{(e)}. \tag{4}$$

Esta igualdade é verdadeira porque S_e e \hat{S}_r são paralelos. Como sabemos as posições dos landmarks no referencial externo, sabemos $\hat{v}_i^{(r)}$ na equação acima. Isolando $\hat{z}_i^{(r)}$ temos

$$\hat{z}_i^{(r)} = v_i^{(e)} + \hat{z}_0^{(r)}. (5)$$

Substituindo 5 em 3 e isolando $\hat{z}_0^{(r)}$ temos

$$\hat{z}_0^{(r)} = \frac{v_i^{(e)}}{(l_i/l_0)e^{j\phi_i} - 1}. (6)$$

Os l_i e ϕ_i nós sabemos, são as medidas obtidas dos sensores. Os $v_i^{(e)}$ também sabemos pois sabemos as posições dos landmarks no referencial externo. A posição P=(px,py) do robô pode ser calculada por:

$$P = z_0^{(e)} - \hat{z}_0^{(r)} \tag{7}$$

Para cada landmark~i teremos um P_i calculado pela equação acima. Assim, a posição média \tilde{P} do robô será

$$\tilde{P} = \frac{1}{n} \sum_{i=1}^{n} P_i,\tag{8}$$

onde n é o número de estimativas da posição.

Para cada $\hat{z}_0^{(r)}$ estimado por meio da equação 6, podemos calcular um θ pode meio de (ver Figura 1)

$$\theta = \angle (\hat{z}_0^{(r)}, \hat{x}^{(r)}) - \tau_0. \tag{9}$$

Se calcularmos n estimativas de θ (chamaremos cada uma de θ_i), podemos estimar um valor médio $\tilde{\theta}$ por

$$\tilde{\theta} = \frac{1}{n} \sum_{i=1}^{n} \theta_i. \tag{10}$$

2 Implementação e resultados

O algoritmo implementado pode ser obtido em [1].

A Figura 2 dois exemplos de estimativa da pose do robô usando 10 (esquerda) e 20 (direita) landmarks.

Figura 2: Exemplo de estimativa da posição do robô usando 10 (esquerda) e 20 (direita) landmarks.

A Figura 3 mostra o erro na distância estimada do robô como função do número de *landmarks*. Em geral, percebe-se uma tendência de diminuição do erro quando se aumenta o número de *landmarks*.

Para se estimar corretamente a posição do robô, é preferível que os *landmarks* estejam uniformente distribuídos em uma faixa grande de ângulos. Se os *landmarks* estiverem todos localizados muito próximos dificultará a localização. Outro caso difícil de lidar é quando os *landmarks* e o robô estão distribuídos ao longo de uma linha, nesse caso não é possível determinar a posição do robô.

Se não tivéssemos informação de distância, mas apenas informação de ângulo, também não seria possível determinar a posição do robô no caso em que os *landmarks* e o robô estão sobre um círculo.

Figura 3: Erro médio na distância como função do número de landmarks.

Referências

- [1] https://github.com/marcelowds/Robotica_t9, 2021. [Online; accessed 05-June-2021].
- [2] Margrit Betke and Leonid Gurvits. Mobile robot localization using landmarks. *IEEE Transactions on Robotics and Automation*, 13(2):251–263, 1997.