Leçon 141. Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

1. NOTATION. On considère un corps commutatif k et l'anneau k[X] de ses polynômes.

1. Polynômes irréductibles

1.1. Irréductibles dans l'anneau des polynômes

- 2. DÉFINITION. Soit A un anneau. Un polynôme $P \in A[X]$ est irréductible sur A s'il n'est pas inversible, s'il n'est pas nul et s'il ne s'écrit pas comme le produit de deux polynômes non inversibles de A[X].
- 3. Exemple. Le polynôme X^2+1 est irréductible sur le corps ${\bf R}$ des réels mais pas sur celui ${\bf C}$ des complexes.
- 4. Remarque. Les polynômes inversibles de A[X] sont les polynômes constants de A^{\times} .
- 5. Proposition. Un polynôme $P \in k[X]$ est irréductible sur k si et seulement si

$$\forall Q, R \in k[X], \qquad P = QR \implies \deg A = 0 \text{ ou } \deg B = 0.$$

- 6. Proposition. Sur un corps, les points suivants sont vérifiés :
 - les polynômes de k[X] de degré 1 sont irréductibles sur k;
 - un polynôme irréductible de k[X] de degré au moins 2 n'a pas de racine dans k;
 - un polynôme de k[X] de degré au plus 3 qui n'admet pas de racine dans k est irréductible sur k.
- 7. EXEMPLE. Le polynôme $X^2 + X + 1$ est irréductible sur le corps \mathbf{F}_2 à deux éléments puisqu'il est de degré 2 et qu'il n'admet aucune racine dans \mathbf{F}_2 .
- 8. Contre-exemple. La réciproque du second point est fausse. Le polynôme $(X^2+1)^2$ est réductible sur \mathbf{R} et il n'admet pas de racine dans \mathbf{R} .
- 9. EXEMPLE. Les polynômes irréductibles sur ${\bf C}$ sont les polynômes de degré 1. Ceux sur ${\bf R}$ sont les polynômes de degré 1 et les polynômes de la forme aX^2+bX+c dont le discriminant b^2-4ac est strictement négatif.
- 10. Proposition. Soient K/k une extension et $P \in k[X]$ un polynôme irréductible sur K. Alors il est irréductible sur k.
- 11. Contre-exemple. La réciproque est fausse : en considérant l'extension \mathbf{C}/\mathbf{R} , on reprend l'exemple du point 3.

1.2. Critères d'irréductibilité

12. DÉFINITION. Soit A un anneau. Le contenu d'un polynôme

$$P := a_n X^n + \dots + a_0 \in A[X]$$

est le PGCD, noté c(P), des éléments $a_i \in A$ modulo A^{\times} . Le polynôme $P \in A[X]$ est dit primitif si c(P) = 1.

- 13. Lemme. Soient $P, Q \in A[X]$. Alors c(PQ) = c(P)c(Q) modulo A^{\times} .
- 14. Proposition. Les polynômes de A[X] irréductibles sur A sont
 - les polynômes constants a pour un élément irréductible $a \in A$;
 - les polynômes $P \in A[X]$ de degré au moins 1 qui sont primitifs et irréductible sur le corps Frac A des fractions de A.
- 15. EXEMPLE. Le polynôme $X^2 + X + 1$ est irréductible sur \mathbf{Q} , donc il l'est sur \mathbf{Z} .

- 16. Théorème (critère d'Eisenstein). Soient A un anneau factoriel et $K := \operatorname{Frac} A$ son corps des fractions. Soit $P := a_n X^n + \dots + a_0 \in A[X]$ un polynôme et $p \in A$ un élément irréductible. On suppose
 - $-p \nmid a_n$;
 - -p a_i pour tout $i \in [0, n-1]$;
 - $p^2 \nmid a_0.$

Alors le polynôme P est irréductible sur K.

17. EXEMPLE. Pour un nombre premier p, le polynôme $X^{p-1} + \cdots + X + 1$ est irréductible sur \mathbf{Z} . Le polynôme $X^n - 2$ est irréductible sur \mathbf{Z} (on prend p = 2 dans le critère d'Eisenstein).

2. Autour des extensions de corps

2.1. Extension de corps

- 18. DÉFINITION. Une extension de corps est la donnée de deux corps K et L et d'un morphisme de corps injectifs de K dans L. On la notera L/K. On dit que le corps L est une extension du corps K. Le corps K est ainsi muni d'une structure de L-espace vectoriel. S'il est de dimension finie, on dit que l'extension L/K est finie et cette dimension, notée [L:K], est son degré.
- 19. EXEMPLE. Le corps ${\bf C}$ est une extension de ${\bf R}$ de degré 2. L'extension ${\bf R}/{\bf Q}$ est infinie puisque le ${\bf R}$ -espace vectoriel ${\bf Q}$ est de dimension infinie.
- 20. Théorème. Soient M/L et L/K deux extension. Soient $(e_i)_{i\in I}$ et $(f_j)_{j\in J}$ une base du K-espace vectoriel L et du L-espace vectoriel M. Alors la famille $(e_if_j)_{(i,j)\in I\times J}$ est une base du K-espace vectoriel M. En particulier, si les extensions M/L et L/K sont finies, alors l'extension M/K l'est et

$$[M:K] = [M:L][L:K].$$

- 21. EXEMPLE. L'extension $\mathbf{Q}(i,\sqrt{2})/\mathbf{Q}$ est de degré 4.
- 22. Théorème. Soit $P \in k[X]$ un polynôme de degré n > 0. Alors il est irréductible sur k si et seulement s'il n'a pas de racines dans les extensions K/k de degré $\leq n/2$.
- 23. Exemple. Le polynôme $X^4 + X + 1$ est irréductible sur \mathbf{F}_2 .
- 24. Théorème. Soient $P \in k[X]$ un polynôme irréductible sur k de degré n > 0 et K une extension de degré m avec $m \wedge n = 1$. Alors le polynôme P est irréductible sur K.
- 25. EXEMPLE. Le polynôme $X^3 + X + 1$ est irréductible sur \mathbf{Q} et donc sur $\mathbf{Q}(i)$.

2.2. Algébricité

26. DÉFINITION. Soit L/K une extension. Un élément $x \in L$ est dit algébrique sur K s'il existe un polynôme non nul $P \in K[X]$ tel que P(x) = 0. L'ensemble

$$\{P \in K[X] \mid P(x) = 0\}$$

est un idéal non nul et son générateur unitaire $\pi_x^K \in K[X]$ est le polynôme minimal de l'élément x sur K. Dans le cas contraire, il est transcendant sur K.

27. EXEMPLE. Les nombres $\sqrt{2}$ et i sont algébriques sur \mathbf{Q} . Leurs polynômes minimaux sur \mathbf{Q} sont respectivement $X^2 - 2$ et $X^2 + 1$.

$$K[x] \simeq K[T]$$
 et $K(x) \simeq K(T)$.

- 29. Théorème. Soit $x \in L$. Alors les points suivants sont équivalents :
 - l'élément x est algébrique sur K;
 - les anneaux K[x] et K(x) sont égaux;
 - l'extension K[x]/K est finie.
- 30. Remarque. Si un élément $x \in L$ est algébrique sur K, alors $[K(x):K] = \deg \pi_x^K$.
- 31. Théorème. L'ensemble $M\subset L$ des éléments algébriques sur K est un sous-corps de L.
- 32. Remarque. Si deux éléments α et β de L sont algébriques sur K, alors il n'est pas facile de trouver un polynôme annulateur, par exemple, de l'élément $\alpha + \beta$ directement. On peut utiliser les résultants : le polynôme

$$\operatorname{Res}_Y(\pi_\beta^K(Y), \operatorname{Res}_X(\pi_\alpha^K(X), Z - X - Y))$$

annule l'élément $\alpha + \beta$.

2.3. Corps de rupture et de décomposition

- 33. DÉFINITION. Soient K un corps et $P \in K[X]$ un polynôme irréductible sur K. Un corps de rupture du polynôme irréductible P sur K est une extension $L \supset K$ s'écrivant sous la forme $L = K(\alpha)$ pour un élément $\alpha \in L$ vérifiant $P(\alpha) = 0$.
- 34. Théorème. Soit $P \in K[X]$ un polynôme irréductible sur K. Alors il admet un corps de rupture sur K. De plus, deux tels corps sont isomorphes au corps K[X]/(P).
- 35. EXEMPLE. Le corps $\mathbf{C} \simeq \mathbf{R}[X]/(X^2+1)$ des complexes est un corps de rupture du polynôme X^2+1 sur \mathbf{R} .
- 36. DÉFINITION. Soit $P \in K[X]$ un polynôme. Un corps de décomposition du polynôme P sur K est une extension $L \supset K$ telle que
 - le polynôme P soit scindé sur L;
 - ${\,-\,}$ le corps L est minimal pour le point ci-dessus.
- 37. Théorème. Tout polynôme de K[X] admet un corps de décomposition sur K, unique à isomorphismes près.
- 38. EXEMPLE. Le corps $\mathbf{Q}(\sqrt[3]{2},j)$ est un corps de décomposition du polynôme X^3-2 sur \mathbf{Q} .

3. Les corps finis et la cyclotomie

3.1. Construction des corps finis et polynômes irréductibles

- 39. DÉFINITION. Soient K un corps et $\varphi \colon \mathbf{Z} \longrightarrow K$ l'unique morphisme d'anneaux. La caractéristique du corps K est l'unique entier $p \in \mathbf{N}$ tel que $\operatorname{Ker} \varphi = p\mathbf{Z}$.
- 40. Proposition. La caractéristique d'un corps est nulle ou un nombre premier.
- 41. Exemple. Les caractéristiques des corps \mathbf{R} et \mathbf{F}_p sont respectivement 0 et p.
- 42. REMARQUE. Un corps de caractéristique nulle est infini. La réciproque est fausse en considérant le corps $\mathbf{F}_p(T)$. Un corps K de caractéristique p est un \mathbf{F}_p -espace vectoriel et, en particulier, on a $|K| = p^n$ avec $n := [K : \mathbf{F}_p]$.
- 43. PROPOSITION. Soit K un corps de caractéristique positive p > 0. Alors l'application $x \in K \longmapsto x^p \in K$ est un morphisme de corps, dit de Frobenius.

- 44. Théorème. Soient p un nombre premier et $q := p^n$ une puissance de ce nombre. Alors il existe un corps K de cardinal q. Il s'agit d'un corps de décomposition du polynôme $X^q X$ sur \mathbf{F}_p . En particulier, il est unique à isomorphisme près. On le note \mathbf{F}_q .
- 45. EXEMPLE. Le corps \mathbf{F}_4 est le corps de décomposition du polynôme $X^2 + X + 1$ sur \mathbf{F}_2 et, en notant $\alpha \in \mathbf{F}_4$ une racine de ce polynôme, on a $\mathbf{F}_4 = \{0, 1, \alpha, 1 + \alpha\}$.
- 46. Proposition. Notons ${\rm Irr}(q,n)\subset {\bf F}_q[X]$ l'ensemble des polynômes irréductibles unitaires de degré n>0. Alors

$$X^{q} - X = \prod_{d|n} \prod_{Q \in Irr(q,n)} Q.$$

47. THÉORÈME. En notant $\mu \colon \mathbf{N}^* \longrightarrow \{-1,0,1\}$ la fonction de Möbius, on a

$$\sharp \operatorname{Irr}(q,n) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d.$$

- 48. COROLLAIRE. Dans $\mathbf{F}_p[X]$, il existe des polynômes irréductibles sur \mathbf{F}_p de degré arbitrairement grand.
- 49. Exemple. Il existe $\frac{1}{2}(\mu(2) \times 3^1 + \mu(1) \times 3^2) = 3$ polynômes de $\mathbf{F}_3[X]$ de degré 2 irréductibles sur \mathbf{F}_3 .

3.2. Polynômes cyclotomiques

- 50. NOTATION. On considère un corps K de caractéristique $p \geqslant 0$ et un entier n > 0. On suppose que $p \nmid n$.
- 51. DÉFINITION. Une racine n-ième de l'unité est un élément $\xi \in K$ tel que $\xi^n = 1$. Elle est primitive si $\xi^d \neq 1$ pour d < n. On note $\mu_n(K)$ (resp. $\mu_n^{\times}(K)$) les ensembles de racines n-ième (resp. primitives).
- 52. DÉFINITION. Soit K_n un corps de décomposition du polynôme X^n-1 sur K. Le n-ième polynôme cyclotomique est le polynôme

$$\Phi_{n,K} := \prod_{\xi \in \mu_n^{\times}(K_n)} (X - \xi) \in K_n[X].$$

- 53. Remarque. Le polynôme $\Phi_{n,K}$ est unitaire de degré $\varphi(n) = |(\mathbf{Z}/n\mathbf{Z})^{\times}|$.
- 54. Proposition. On a

$$X^n - 1 = \prod_{d|n} \Phi_{d,K}.$$

- 55. EXEMPLE. On peut calculer $\Phi_{1,\mathbf{Q}} = X 1$, $\Phi_{2,\mathbf{Q}} = X + 1$ et $\Phi_{3,\mathbf{Q}} = X^2 + X + 1$.
- 56. PROPOSITION. On a $\Phi_n := \Phi_{n,\mathbf{Q}} \in \mathbf{Z}[X]$. Soit $\sigma \colon \mathbf{Z} \longrightarrow K$ l'unique morphisme d'anneaux que l'on étend en un morphisme d'anneaux $\sigma \colon \mathbf{Z}[X] \longrightarrow K[X]$ en envoyant l'indéterminée X sur elle-même. Alors $\Phi_{n,K} = \sigma(\Phi_{n,\mathbf{Q}})$.
- 57. THÉORÈME. Le polynôme $\Phi_n := \Phi_{n,\mathbf{Q}}$ est irréductible sur \mathbf{Z} et donc sur \mathbf{Q} .
- 58. COROLLAIRE. Soit $\xi \in \mu_n^{\times}(\mathbf{C})$. Alors son polynôme minimal sur \mathbf{Q} est le polynôme Φ_n . En particulier, on a $[\mathbf{Q}(\zeta):\mathbf{Q}]=\varphi(n)$.

Xavier Gourdon. Algèbre. 2^e édition. Ellipses, 2009.

^[2] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.