

智能量测终端核心板 VCM8130L-V02A.03A00 硬件手册

版本号	发布时间
V-1.0	2025.2

版本	更新内容
V1. 0	初始版本。

一、产品简介

◆ 名称: 智能量测终端核心板

◆ 型号: VCM8130L-V02A.03A00

◆ 尺寸: 41mm×57mm×1.6mm(1.6mm 为 PCB 厚度)

◆ 供电: 5V 1A

◆ 主要功能: 用于智能量测终端

二、产品示意图

核心板封装尺寸为 59mm×41mm×1.6mm,管脚间距为 1.27mm,详细封装请参见图2-1~图2-2,封装尺寸参数请参见表 2-1。

图 2-1 核心板封装顶视图

图 2-2 核心板封装底视图

表 2-1 核心板封装参数说明表

会业	尺寸 (mm)			
参数	最小值	典型值	最大值	
A	40.90	41.00	41.10	
В	56.90	57.00	57.10	
e	1.27 BSC			

注: BSC (Basic Spacing between Centers)

三、产品参数

硬件参数						
名称	标配参数	备注				
СРИ	V8130L-1GHz					
内存	2*512MB					
ЕММС	8GB					
结构参数						
名称	标配参数	备注				
尺寸	41mm×57mm×1.6mm	误差±0.1mm				
引脚间距	1.27mm					
引脚数量	140					
开窗尺寸	31mm×47mm	误差±0.1mm				
环境参数						
名称	标配参数	备注				
工作电压	4V~5.5V					
极限电压	-0.3V~6V					
峰值电流	400mA	常温 50%负载率				
工作温度	-40℃ ~ 85℃					
工作湿度	5% ~ 95%					

四、引脚定义

J1					
管脚	MPU	配置	管脚	MPU	配置
1	X_SPI_DCX2	GPIO0_30	16		GND
2	X_SPI5_DI		17	X_MII_TX_CK	MII
3	X_SPI5_CLK	SPI	18	X_RGMII_RX_CK	GPIO1_30 PHY1_RST
4	X_SPI5_CS	251	19	X_MII_TX_ER	GPIO1_15 MII
5	X_SPI5_DO		20	X_MII_MDC	GPIO0_31 MII
6	X_SPI_DCX1	GPIO0_29	21	X_MII_MDIO	GPIO1_0 MII
7	X_UART3_TX	UART	22	X_MII_COL	NATI
8	X_UART3_RX		23	X_MII_CRS	MII
9		GND	24	X_MII_RX_ER	GPIO1_27 MII
10	X_MII_RX_DV	GPIO1_26 MII	25	X_MII_RXD0	GPIO1_28 MII
11	X_MII_TXD3	MII	26	X_MII_RXD1	GPIO1_29 MII
12	X_MII_TXD2	GPIO1_16 MII	27	X_MII_RXD2	
13	X_MII_TXD1	GPIO1_24 MII	28	X_MII_RXD3	MII
14	X_MII_TXD0	GPIO1_23 MII	29	X_MII_RX_CK	
15	X_MII_TX_EN	GPIO1_25 MII			
J2					
管脚	MPU	配置	管脚	MPU	配置
30	X_UART1_TX	UART	51	X_RMII_RX_CRSDV	RMII

		I			1
31	X_UART1_RX		52	X_RMII_RX_ER	
32	X_RGMII_RXD0	GPIO1_31	53	X_RMII_RXD0	RMII
33	X_RGMII_TXD2	GPIO1_21	54	X_RMII_RXD1	
34	X_RGMII_TXD1	GPIO1_20	55		GND
35	X_RGMII_TXD3	GPIO1_22	56	USB0_DP	LICRO
36	X_RGMII_TXD0	GPIO1_19	57	USB0_DM	USB0
37	X_UART5_TX	CAN	58		GND
38	X_UART5_RX	CAN	59	X_UART4_TX	LIADT
39	X_RGMII_RXD1	GPIO1_17	60	X_UART4_RX	UART
40	X_I2S0_RXD	GPIO1_12	61	X_UART0_RX	LIADT
41	X_I2S0_SCLK	GPIO1_13	62	X_UART0_TX	UART
42	X_I2S0_TXD	GPIO1_14	63	X_UART2_TX	LIADT
43	X_RMII_TXD1		64	X_UART2_RX	UART
44	X_RMII_TXD0	RMII	65		GND
45	X_RMII_TX_EN		66	USB1_DP	11001
46	X_I2S0_FS	GPIO1_11	67	USB1_DM	USB1
47	X_RMII_REF_CLK	RMII	68		GND
48		GND	69	X_EMMC1_CLK	GPIO1_10
49	X_RMII_MDC	D. 477	70	X_EMMC1_CMD	GPIO1_9
50	X_RMII_MDIO	RMII			
J3					

管脚	MPU	和聖	管脚	MPU	和墨
	IVIPO	配置		IVIPO	配置
71	X_EMMC1_D3	GPIO1_4	86	X_LC_DATA17	GPIO0_21
72	X_EMMC1_D2	GPIO1_5	87	X_SPI2_DO	UBOOT0
73	X_EMMC1_D0	GPIO1_7	88		CORE_3V3_OK
74	X_EMMC1_D1	GPIO1_6	89	X_LC_DATA14	GPIO0_18
75	X_EMMC1_D5	GPIO1_2	90	X_LC_DATA15	GPIO0_19
76	X_EMMC1_RSTn	GPIO1_8	91	X_LC_DATA22	GPIO0_26
77	X_EMMC1_D6	GPIO1_1	92	X_LC_DATA13	GPIO0_17
78	X_EMMC1_D4	GPIO1_3	93	X_LC_DATA11	GPIO0_15
79	X_LC_HS	GPIO0_2	94	X_LC_DATA12	GPIO0_16
80	X_LC_VS	GPIO0_1	95	X_LC_DATA10	GPIO0_14
81	X_LC_DATA23	GPIO0_27	96		GND
82	X_LC_DATA16	GPIO0_20	97		DC5V_IN
83	X_LC_DE	GPIO0_3	98		DC5V_IN
84	X_LC_DATA21	GPIO0_25	99		DC5V_IN
85		GND			
J4					
管脚	MPU	配置	管脚	MPU	配置
100	X_LC_DATA9	GPIO0_13	121	X_I2C3_DATA	I2C
101	X_LC_DATA8	GPIO0_12	122	X_I2C3_CLK X_I2S_MCLK	I2C
102	ADC_XAIN3		123	X_LC_DATA5	GPIO0_9

103	ADC_XAIN2		124	X_UART9_TX	LIADT
104	ADC_XAIN1		125	X_UART9_RX	UART
105	ADC_XAIN0		126	X_LC_DATA1	GPIO0_5
106	X_UART8_TX	UART CAN	127	X_LC_DATA3	GPIO0_7
107	X_LC_DATA7	GPIO0_11	128	X_LC_DATA2	GPIO0_6
108	X_UART8_RX	UART CAN	129	X_SPI4_CLK	
109	X_UART7_TX	UART	130	X_SPI4_CS	CDI
110	X_LC_DATA6	GPIO0_10	131	X_SPI4_DI	SPI
111	X_UART7_RX	UART	132	X_SPI4_DO	
112	X_LC_DATA20	GPIO0_24	133	X_LC_DATA0	GPIO0_4
113	X_LC_PCLK	GPIO0_0	134	X_SPI3_CLK	
114	X_UART6_TX	LIADT	135	X_SPI3_DO	CDI
115	X_UART6_RX	UART	136	X_SPI3_CS	SPI
116	UART5_RX_h	PWM	137	X_SPI3_DI	
117	X_I2C2_CLK X_RGMII_RXD2	126	138	X_LC_DATA18	SPI3_CS2 GPIO0_22
118	X_I2C2_DATA	I2C	139	X_LC_DATA19	SPI3_CS3 GPIO0_23
119	X_LC_DATA4	GPIO0_8	140		GND
120		GND			

注:核心板封装中141~160为GND。

五、注意事项

- 1、核心板供电电源异常可能造成核心板上 eMMC 失效或其它器件永久损坏,电源异常如电压不稳,振荡,欠压,过压等!
- 2、SPI、I2C、UARTO—UART4、USB不能配置成 GPIO。
- 3、UBOOTO需在主控板上跳线接地,拉低后上电进入USBO烧写模式。
- 4、红外 PWM 输出固定为 116 脚。
- 5、使用串行 LCD 时,推荐 SCL/SLK 为72 脚, SDA/SDI 为71 脚。
- 6、SPI_DI 为主机输入从机输出(SPI_MISO), SPI_DO 为主机输出从机输入(SPI_MOSI)。

7、外部引脚的保护:

7.1、外部引脚

保护设计过程中首先确定芯片的哪些引脚可能受到影响并需要保护。对 PCB 的一部分的简单表示,如下图所示。一般而言,芯片的内部引脚(internal Pins)不需要做 ESD 保护,而对外部引脚(external pins)需要做 ESD 保护。外部引脚指芯片上和接口(连接器)的引脚。

特别地,和隔离芯片连接的引脚也需要当做外部引脚,如485引脚。

在外部引脚并联 TVS 管同时串联电阻可以有效的对外部引脚提供保护,一般地,输入引脚

串联 1kΩ电阻,输出引脚串联 100Ω电阻。

7.2、ESD 保护

以 HPLC 模块上的 ID (该信号在 HPLC 模块内部一般直接短接到 GND) 引脚为例, ESD 事件造成芯片外部引脚损坏原理如下图 A 所示,加 TVS 管和串联电阻对外部引脚保护原理如下图 B 所示。显然,外部引脚串联电阻可以有效抑制流经芯片的放电电流。

A、外部引脚在 ESD 事件中损坏的原理

B、加 TVS、串联电阻后对外部引脚的保护原理

7.3、串电保护

以 HPLC 模块上的 ID(该信号在 HPLC 模块内部一般直接短接到 GND)引脚为例,当 HPLC 模块的接地插针和主板上的插座良好连接时,模块工作电流路径如下图 A 中红色线条所示。当接地不良时,如用于生产测试用的 HPLC 模块插针磨损严重的情况下,此时发生的串电(HPLC 工作电流被迫流经核心板上主控芯片内部)引起芯片损坏的原理如下图 B 所示。不难得出,在外部引脚上串联电阻可以有效抑制串电电流,从而保护外部引脚。

A、接地良好时, HPLC 模块的工作电流

B、接地不良时, HPLC 模块工作电流引起的串电现象