STAT 431 — Applied Bayesian Analysis — Course Notes

Random Effects and Hierarchical Models

Recall that models may have more than one "level" of unobserved random quantities, e.g., the airliner fatalities example, with hyperparameters (having hyperpriors) defining the distribution of fatal accident rate parameters of different airliners.

Models with more than one level are often called hierarchical.

1

Exchangeability

Random variables Y_1, \ldots, Y_n are **exchangeable** if any (non-random) permutation of their indices results in the same joint distribution.

Eg: Y_1, Y_2 are exchangeable if (Y_1, Y_2) has the same distribution as (Y_2, Y_1)

Note: Exchangeable random variables all have the same marginal distribution.

1

Fact: Y_1, \ldots, Y_n are exchangeable if there exists a random variable (or vector) V such that

$$Y_1, \ldots, Y_n \mid V \sim iid$$

that is, if they are conditionally independent and identically distributed, given V.

Note: Y_1, \ldots, Y_n need not be *unconditionally* (marginally) independent.

Practical implication:

If we believe some random variables in a model are exchangeable, we should try to model them as iid, conditional on some *latent* (unobserved) variable V.

We would then have to choose the nature of the dependence on V and the distribution of V.

The distribution of V could depend on parameters. We could give priors to those parameters, creating a hierarchical model.

Example: Dye Yield

 Y_{ij} = yield of dye in jth preparation made from ith batch of raw material

Goal: Distinguish within-batch variation from between-batch variation.

The classical variance-components model is

$$Y_{ij} = \mu + \tilde{\alpha}_i + \varepsilon_{ij}$$

where $\tilde{\alpha}_i$ s are **random effects** and ε_{ij} s are errors:

$$\left. \begin{array}{lll} \tilde{\alpha}_i & \mid \ \sigma_B^2 & \sim & iid \ \operatorname{Normal}(0,\sigma_B^2) \\ \varepsilon_{ij} & \mid \ \sigma_W^2 & \sim & iid \ \operatorname{Normal}(0,\sigma_W^2) \end{array} \right\} \text{ conditionally indep.}$$

5

Hierarchical representation:

Let

$$\alpha_i = \mu + \tilde{\alpha}_i$$

Then

$$Y_{ij} \mid \alpha_i, \sigma_W^2 \sim indep \text{ Normal}(\alpha_i, \sigma_W^2)$$

 $\alpha_i \mid \mu, \sigma_B^2 \sim iid \text{ Normal}(\mu, \sigma_B^2)$

Note:

- ▶ For each i, the Y_{ij} s are exchangeable. (Why?)
- ▶ The α_i s are exchangeable.

[Graph densities in hierarchy ...]

For priors, we must be careful.

We will take

$$\begin{array}{ccc} \mu & \sim & \text{Normal}(0, 1000000) \\ \\ \sigma_W^2 & \sim & \text{InvGamma}(0.001, 0.001) \\ \\ \sigma_B & \sim & \text{Exponential}(0.001) \end{array} \right\} \text{ independent}$$

where $\sigma_B = \sqrt{\sigma_B^2}$.

The prior on σ_B is related to *penalized complexity priors* (see BSM, Sec. 2.3.5, if interested).

۶

Why not just take a semi-conjugate prior

$$\sigma_B^2 \sim \text{InvGamma}(0.001, 0.001)$$

similarly to the recommendation in BSM, Sec. 4.4?

This would approximate the improper prior

$$\pi(\sigma_B^2) \propto \frac{1}{\sigma_B^2} \qquad (\sigma_B^2 > 0)$$

but it turns out that this would lead to an improper posterior!

Since JAGS prefers precisions to variances, define

$$\tau_W^2 = 1/\sigma_W^2$$

We might also be interested in the intra-class correlation:

$$\rho = \frac{\sigma_B^2}{\sigma_B^2 + \sigma_W^2}$$

This is the (frequentist) correlation between responses from samples from the same batch (same i).

 $[\ \mathsf{Draw} \ \mathsf{model} \ \mathsf{graph} \ \dots \]$

```
data {
  dimy <- dim(y)
  batches <- dimy[1]
  samples <- dimy[2]
model {
  for (i in 1:batches) {
    for (j in 1:samples) {
      y[i,j] ~ dnorm(alpha[i], tausqW)
    alpha[i] ~ dnorm(mu, 1/sigmasqB)
  mu ~ dnorm(0, 0.000001)
  tausqW ~ dgamma(0.001, 0.001)
  sigmaB \sim dexp(0.001)
  sigmasqW <- 1 / tausqW
  sigmasqB <- sigmaB^2
  rho <- sigmasqB / (sigmasqB + sigmasqW)</pre>
```

R/JAGS Example 4.2:

Normal Random-Effects Model

Notes:

- ▶ The dim function is allowed only in the data block.
- ► We can specify initial values for top-level nodes (no incoming arrows), and then let the rest be auto-generated.

Hierarchical Normal Regression

Consider a one-predictor regression (Y versus X), but suppose that, in addition to Y and X, there is a grouping variable.

Let

$$Y_{ij}$$
 = response of j th observation in group i

$$X_{ij}$$
 = its predictor value

Let

$$\bar{X}$$
 = average of all X_{ij} values

(We will use the same covariate centering for all groups.)

Each group can have its own regression line:

$$Y_{ij} = \alpha_{i1} + \alpha_{i2}(X_{ij} - \bar{X}) + \varepsilon_{ij}$$

 $\varepsilon_{ij} \sim iid \text{ Normal}(0, \sigma_y^2)$

The data model becomes

$$Y_{ij} \mid \alpha_{i1}, \alpha_{i2}, \sigma_y^2 \sim indep \text{ Normal}(\alpha_{i1} + \alpha_{i2}(X_{ij} - \bar{X}), \sigma_y^2)$$

A semi-conjugate prior for the variance:

$$\sigma_y^2 \sim \text{InvGamma}(a_y, b_y)$$

We will assume it is independent of the other parameters.

Two potential prior formulations for α_{i1} and α_{i2} :

- ▶ Univariate: assumes α_{i1} and α_{i2} are (a priori) independent
- ▶ Bivariate: allows (conditional) prior correlations between α_{i1} and α_{i2}

Correlations between α_{i1} and α_{i2} are frequently encountered ...

[Illustrate with regression lines ...]

Univariate Formulation

$$\begin{array}{cccc} \alpha_{i1} \mid \beta_1, \sigma^2_{\alpha_1} & \sim & \operatorname{Normal}(\beta_1, \sigma^2_{\alpha_1}) \\ \alpha_{i2} \mid \beta_2, \sigma^2_{\alpha_2} & \sim & \operatorname{Normal}(\beta_2, \sigma^2_{\alpha_2}) \end{array} \right\} \begin{array}{c} \text{all} \\ \text{conditionally} \\ \text{independent} \end{array}$$

$$\left. \begin{array}{lll} \beta_1 & \sim & \operatorname{Normal}(\mu_1, \sigma_1^2) \\ \\ \beta_2 & \sim & \operatorname{Normal}(\mu_2, \sigma_2^2) \\ \\ \sigma_{\alpha_1} & \sim & \operatorname{Exponential}(b_{\alpha_1}) \\ \\ \sigma_{\alpha_2} & \sim & \operatorname{Exponential}(b_{\alpha_2}) \end{array} \right\} \text{ independent}$$

 $[\ \mathsf{Draw} \ \mathsf{model} \ \mathsf{graph} \ \dots \]$

Example: Baby Rat Weights

$$Y_{ij} = \max \text{ of rat } i \text{ (g?) at } j \text{th measurement}$$
 $X_{ij} = \text{ age of rat } i \text{ (days) at } j \text{th measurement}$

The measurements were synchronous:

$$X_{ij} = X_j$$
 (8, 15, 22, 29, or 36)

so $\bar{X}=22$.

Rat mass values in file ex4.3data.txt (truncated):

```
151
     199
           246
                 283
                       320
145
     199
           249
                 293
                      354
147
     214
           263
                 312
                       328
155
     200
           237
                 272
                      297
135
     188
           230
                 280
                      323
159
     210
           252
                 298
                      331
. . .
```

Each row is a different rat, and each column is a different age.

Plot of the "growth curves":

We can create the necessary data objects in R:

Y is a data frame, but it can be indexed like a matrix.

The JAGS code:

```
data {
  dim.Y \leftarrow dim(Y)
model {
  for(i in 1:dim.Y[1]) {
    for(j in 1:dim.Y[2]) {
      Y[i,j] ~ dnorm(mu[i,j], tausq.y)
      mu[i,j] <- alpha[i,1] + alpha[i,2] * (X[j] - Xbar)</pre>
    alpha[i,1] ~ dnorm(beta1, 1 / sigma.alpha1^2)
    alpha[i,2] ~ dnorm(beta2, 1 / sigma.alpha2^2)
  tausq.y ~ dgamma(0.001, 0.001)
  sigma.y <- 1 / sqrt(tausq.y)</pre>
  beta1 ~ dnorm(0.0, 1.0E-6)
  beta2 ~ dnorm(0.0, 1.0E-6)
  sigma.alpha1 ~ dexp(0.001)
  sigma.alpha2 ~ dexp(0.001)
```

R/JAGS Example 4.3:

Hierarchical Normal Regression: Univariate Formulation

Bivariate Formulation

$$oldsymbol{lpha}_i = egin{bmatrix} lpha_{i1} \ lpha_{i2} \end{bmatrix} egin{bmatrix} oldsymbol{eta}, oldsymbol{\Omega} & \sim & iid \ \operatorname{Normal}(oldsymbol{eta}, oldsymbol{\Omega}) \end{pmatrix}$$

where

$$oldsymbol{eta} = egin{bmatrix} eta_1 \ eta_2 \end{bmatrix} \qquad & oldsymbol{\Omega} = egin{bmatrix} \Omega_{11} & \Omega_{12} \ \Omega_{12} & \Omega_{22} \end{bmatrix}$$

But we probably want to let β and Ω be chosen by the data, rather than arbitrarily specified, so we add another prior level ...

A semi-conjugate hyperprior specification:

$$\left. egin{array}{ll} oldsymbol{eta} & \sim & \operatorname{Normal}(oldsymbol{\mu}_0, oldsymbol{\Sigma}_0) \\ oldsymbol{\Omega} & \sim & \operatorname{InvWishart}(
u, \,
u \, oldsymbol{\Omega}_0) \end{array}
ight.
ight.$$
 independent

where

$$\mu_0$$
 is a 2×1 vector

 Σ_0 and Ω_0 are 2×2 invertible covariance-type matrices and $\nu > 1$ is a scalar.

The InvWishart distribution generalizes the inverse gamma distribution to covariance matrices (see BSM, Sec. 2.1.7).

Remarks:

Need $\nu > p-1$ for the $p \times p$ InvWishart distribution to exist.

This suggests $\nu=p$ might be a good choice — not quite "vague," but at least has relatively little information.

► If a matrix is InvWishart, then its inverse has a **Wishart** distribution.

JAGS provides the Wishart distribution, rather than ${
m InvWishart}$, and with a different parameterization than in BSM.

 $[\ \mathsf{Draw} \ \mathsf{model} \ \mathsf{graph} \ \dots \]$

Example: Baby Rat Weights (continued)

As before, we define the data in R.

We also add to the data some objects to help specify the prior:

(File ex4.4data.txt contains the mass data, as before.)

The JAGS code:

```
data {
  dim.Y \leftarrow dim(Y)
model {
  for(i in 1:dim.Y[1]) {
    for(j in 1:dim.Y[2]) {
      Y[i,j] ~ dnorm(mu[i,j], tausq.y)
      mu[i,j] <- alpha[i,1] + alpha[i,2] * (X[j] - Xbar)</pre>
    alpha[i,1:2] ~ dmnorm(beta, Omega.inv)
  tausq.y ~ dgamma(0.001, 0.001)
  sigma.y <- 1 / sqrt(tausq.y)</pre>
  beta ~ dmnorm(mu0, Sigma0.inv)
  Omega.inv ~ dwish(2*Omega0, 2)
  Omega <- inverse(Omega.inv)</pre>
  rho <- Omega[1,2] / sqrt(Omega[1,1] * Omega[2,2])
```


R/JAGS Example 4.4:

Hierarchical Normal Regression: Bivariate Formulation

