作业 三

- 1. 设 $\{x_n\}$ 是无穷大量,且 $\{y_n\}$ 满足: $\exists \delta > 0, \exists N \in \mathbb{N}$,使得 $\forall n \geq N$,有 $|y_n| \geq \delta$,则 $\{x_n y_n\}$ 是无穷大量.
- 2. 给定数列 $\{a_n\}$, $\forall m \in \mathbb{N}$, 记 $S_m := \sum_{k=1}^m a_k$, 即 $S_1 = a_1$, $S_2 = a_1 + a_2$, $S_3 = a_1 + a_2 + a_3$ ···

证明:如果 $\{S_m\}$ 收敛,则 $\{a_n\}$ 是无穷小量.并举例说明, $\{a_n\}$ 是无穷小并不能保证 $\{S_n\}$ 的收敛.

- 3. $\forall \alpha > 0$, $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = ?$ 证明你的论断.
- 4. 计算 $\lim_{n\to\infty} \left(\frac{1}{3n^3+2n^2+1} + \frac{2^2}{3n^3+2n^2+1} + \dots + \frac{n^2}{3n^3+2n^2+1} \right)$
- 5. 计算 $\lim_{n\to\infty} \sqrt{n}(\sqrt{n+1}-\sqrt{n})$.
- 6. 计算 $\lim_{n\to\infty} \left(1 + \frac{1}{n^3}\right)^{2n^3}$
- 7. 计算 $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{(-1)^n \sin n}$
- 8. 计算 $\lim_{n\to\infty} (n^2 n + 2)^{\frac{1}{n}}$
- 9. 计算 $\lim_{n\to\infty} \left(\frac{1}{n^2} + \frac{3}{n^2} + \dots + \frac{2n-1}{n^2}\right)$
- 10. 计算 $\lim_{n\to\infty} \left[\frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + \dots + \frac{1}{n(n+2)} \right]$
- 11. 计算 $\lim_{n\to\infty} \left(1+\frac{1}{2}\right) \left(1+\frac{1}{2^2}\right) \left(1+\frac{1}{2^4}\right) \left(1+\frac{1}{2^n}\right)$
- 12. 计算 $\lim_{n\to\infty} \left(1 \frac{1}{1+2}\right) \left(1 \frac{1}{1+2+3}\right) \cdots \left(1 \frac{1}{1+2+3+\cdots+n}\right)$
- 13. 利用夹逼定理计算 $\lim_{n\to\infty} \frac{(2n-1)!!}{(2n)!!}$ (其中 $(2n-1)!! = (2n-1)(2n-3)\cdots 5\cdot 3\cdot 1$; $(2n)!! = (2n)(2(n-1))\cdots 4\cdot 2$)
- 14. 没 $A = \max\{a_1, a_2, \dots, a_m\}(a_i > 0, i = 1, 2, \dots, m)$, 证明

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = A$$

15. 利用单调有界数列极限存在定理,证明先烈数列极限的存在性.

(a)
$$a_n = \frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \dots + \frac{2n+1}{n^2(n+1)^2}$$

(b)
$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^3} + \dots + \frac{1}{n^n}$$

16. 证明下列递归数列收敛,并求其极限.

(a)
$$a_1 > 0$$
, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) (n = 1, 2, \dots)$

(b)
$$a_1 = 1$$
, $a_{n+1} = 1 + \frac{a_n}{1+a_n}$, $n = 1, 2, \cdots$

(c)
$$a_1 = 2$$
, $a_{n+1} = 2 + \frac{1}{a_n}$, $n = 1, 2, \dots$