Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática – Laboratório de Organização de Computadores

Modelo do Relatório

Anexo a este documento esta um relatório modelo entregue por alunos nos semestres anteriores. As informações mínimas que devem constar em todos os relatórios entregues nesta disciplina estão citadas abaixo:

- 1. Identificação dos autores.
- 2. Descrição do problema.
- 3. Solução encontrada pelo (s) autor (es). Neste item, deve constar comentários pessoais de como resolver, das diversas soluções encontradas se este for o caso, etc.
- 4. Implementação da solução com descrições passo-a-passo de como foi feito o trabalho. Por exemplo: mostrar a solução VHDL.
- 5. Simulação com capturas de tela e formas de ondas.

Projeto de Descrição de Meio-somador em VHDL

Felipe Oliveira, Daniel Einloft

Introdução

O projeto consiste na implementação e simulação da descrição VHDL de um circuito meio-somador.

Esquemático do Circuito

Tabela Verdade do Circuito

ENTRADAS		SAÍDAS		
A	В	S	C	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Implementação

Para a implementação do meio-somador em linguagem VHDL usamos o snippet abaixo.

As saídas sendo:

- S, para representar a soma binária;
- C, para representar o bit carry.

Testbench

Para o testbench implementamos o seguinte snippet.

```
ARCHITECTURE behavior OF half adder tb IS
   signal A : std logic := '0';
   signal B : std logic := '0';
   signal Sum : std logic;
   signal Carry : std logic;
BEGIN
  uut: half adder PORT MAP (
         A => A
         B \Rightarrow B
         S => Sum,
          C => Carry
        );
   stimA : process
     begin
           wait for 100 ns;
           A <= not A;
     end process;
   stimB : process
     begin
           wait for 50 ns;
           B <= not B;
     end process;
END;
```

Aqui usamos dois estímulos (stimA, stimB) para gerar todos valores possíveis para as entradas A e B durante o intervalo de 0 a 200ns.

Simulação

Simulamos o projeto e obtivemos as seguintes formas de onda.

Que pode ser descrito na seguinte tabela.

TEMPO	ENTRADAS		SAÍDAS	
	Α	В	SUM	CARRY
0 ns	0	0	0	0
50 ns	0	1	1	0
100 ns	1	0	1	0
150 ns	1	1	0	1