SAMPLE WORK Calculus

QUESTION: 01

$$y = \lim_{x \to \infty} \ln(x - 2)$$

Solution:

As x approaches to infinity 'y' approaches to infinity, we cannot apply L'Hospital rule because it is not in the form of $\frac{0}{0}$ and $\frac{\infty}{\infty}$. Furthermore we can see it graphically.

Thus,

$$\lim_{x\to\infty}\ln(x-2)=\infty$$

QUESTION: 02

$$y = \lim_{x \to \infty} \frac{(2x^3 + 9000)}{x^4}$$

Solution:

$$y = \lim_{x \to \infty} \frac{(2x^3 + 9000)}{x^4}$$

$$y = \lim_{x \to \infty} \left(\frac{2x^3}{x^4} + \frac{9000}{x^4} \right)$$

$$y = \lim_{x \to \infty} \left(\frac{2}{x} + \frac{9000}{x^4}\right)$$

Using limit property, we have,

$$\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$$

$$y = \lim_{x \to \infty} \left(\frac{2}{x}\right) + \lim_{x \to \infty} \frac{9000}{x^4}$$

Using limit property, we have,

$$\lim_{x \to a} cf(x) = \lim_{x \to a} f(x)$$

$$y = 2\lim_{x \to \infty} \left(\frac{1}{x}\right) + 9000\lim_{x \to \infty} \left(\frac{1}{x^4}\right)$$

$$\therefore \lim_{x\to\infty}\frac{1}{x^n}=0, where n>0$$

$$y = 2(0) + 9000(0)^4$$

$$y = 0$$

Hence,

$$\lim_{x \to \infty} \frac{(2x^3 + 9000)}{x^4} = 0$$

Statistics

QUESTION: 03

The amount of cold drink was measured (in liters, L) in 20 randomly selected 1.5L bottles of a company as given below. Construct a discrete frequency table of the measured amount of cold drink. Also compute relative and percentage frequencies.

1.48	1.51	1.50	1.49	1.49	1.49	1.51
1.48	1.49	1.52	1.51	1.49	1.51	1.50
1.50	1.50	1.51	1.49	1.49	1.50	

Solution:

The data are quantitative, and in particular continuous. The distinct numbers: 1.48, 1.49, 1.50, 1.51 and 1.52 (in ascending order) are five classes with Tally marks and frequencies, we get the discrete frequency table the relative and percentage frequencies are also computed in 4th and 5th columns.

Class limits "amounts of cold drink (L)"	Tally Marks	Frequency numbers of bottles	Relative frequency $\frac{f}{n}$	Percentage frequency (%) $\frac{f}{n} \times 100$
1.48		2	0.1	10
1.49	HH111	7	0.35	35
1.50	HH1	5	0.25	25
1.51	HH1	5	0.25	25
1.52		1	0.05	5
Total	•••	n=20	1	100

NOTE: |||||=5

Linear Algebra

Basis Representation:

Defined transformation T

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x, y, z) = (x + y, 2z - x)$

Solution:

$$V = R^3$$
 $\beta = \{v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1)\}$
 $W = R^2$
 $\gamma = \{w_1 = (1, 0), w_2 = (0, 1)\}$

$$T(1,0,0) = (1+0,2(0)-1) = (1,-1)$$

$$T(0,1,0) = (0+1,2(0)-0) = (1,0)$$

$$T(0,0,1) = (0+0,2(1)-0) = (0,2)$$

Compute inner product, $< T
u_{i,} \ w_{j} >$

$$Tv_1 = (1, -1)$$
 $< Tv_1, w_1 >= (1, -1). (1, 0) = 1 - 0 = 1$
 $< Tv_1, w_2 >= (1, -1). (0, 1) = 0 - 1 = 1$

$$Tv_2 = (1,0)$$
 $< Tv_2, w_1 >= (1,0). (1,0) = 1 + 0 = 1$
 $< Tv_2, w_2 >= (1,0). (0,1) = 0 + 0 = 0$

$$Tv_3 = (0, 2)$$

 $< Tv_3, w_1 >= (0, 2). (1, 0) = 0 + 0 = 0$
 $< Tv_3, w_2 >= (0, 2). (0, 1) = 0 + 2 = 2$
 $[T] = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$

Interpretation:

- \succ The first row represents the projection of Tv_1 , Tv_2 , Tv_3 onto w_1 .
- \succ The second row represents the projection of Tv_1 , Tv_2 , Tv_3 onto w_2 .