

Septembre 2022

Artur César Araújo Alves João Pedro Tanaka Montalvão Rafael Ryoma Nagai Matsutane

SOMMAIRE

1	Estimation Par moindres carrés du vecteur β			
	1.1	Exercice 1	3	
	1.2	Exercice 2	3	
	1.3		4	
	1.4	Exercice 4	4	
	1.5	Exercice 5	4	
	1.6		5	
	1.7		5	
	1.8	Exercice 8	5	
2	Estimation de la variance σ^2 et Coefficient de détermination			
	2.1	Exercice 9	6	
	2.2		7	
3	Cas de la régression linéaire gaussienne			
			7	
	3.2		8	
	3.3	Exercice 13	8	
	3.4	Exercice 14	9	
4	Test	s statistiques, cas régression linéaire gaussienne	9	
			9	
	4.2	Exercice 16	0	
	4.3	Exercice 17	0	
	4.4	Exercice 18	_	
	4.5	Exercice 19	-	
		Exercise 20		

1

ESTIMATION PAR MOINDRES CARRÉS DU VECTEUR β

1.1 Exercice 1

Montrons que $\arg\min_{u\in\mathbb{R}^p} J_n(u)$ est solution de $Z^TY=Z^TZu$.

Notons P la projection orthogonale de Y sur $F = Vect\left(Z^{(1)}, Z^{(2)}, \cdots, Z^{(n)}\right)$ et \hat{u} le vecteur tel que $PY = Z\hat{u}$.

— Soit $u = \arg\min_{u \in \mathbb{R}^p} J_n(u)$, on peut montrer que $Zu = Z\hat{u}$:

$$J_n(u) = ||Y - Zu||^2 = ||Y - Z\hat{u} - Z(u - \hat{u})||^2$$

Comme $Y - Z\hat{u}$ est orthogonal à $Z(u - \hat{u})$:

$$||Y - Z\hat{u} - Z(u - \hat{u})||^2 = ||Y - Z\hat{u}||^2 + ||Z(u - \hat{u})||^2$$

Alors:

$$J_n(u) = J_n(\hat{u}) \Leftrightarrow Zu = Z\hat{u}$$

— Comme Z est orthogonal à $Y-Z\hat{u}$, on a que Z^T aussi est orthogonal à $Y-Z\hat{u}$ et alors :

$$Z^{T}(Y - Z\hat{u}) = 0 \Leftrightarrow Z^{T}Y = Z^{T}Z\hat{u}$$

Donc, $Z^TY = Z^TZ\hat{u}$

Finalement, $Z\hat{u}=ZU$ pour $u=\arg\min_{u\in\mathbb{R}^p}J_n(u)$ nous donne le résultat.

1.2 Exercice 2

- $-Z^{\#}Z = (Z^TZ)^{-1}Z^TZ = I_p$
- $ZZ^{\#} = H$ est le projecteur orthogonal sur F si et seulement si :

$$\forall v, u : \langle v - Hv, Zu \rangle = 0$$

Ce qui est verifié :

$$\langle v - Hv, Zw \rangle = u^T Z^T (v - Z(Z^T Z)^{-1} Z^T v) = u^T Z^T v = u^T Z^T Z (Z^T Z)^{-1} Z^T v$$

En utilisant que $(Z^TZ)^{-1}Z^TZ=I_p$, on obtient que :

$$\langle v - Hv, Zw \rangle = u^T Z^T v - u^T Z^T v = 0$$

1.3 Exercice 3

On cherche directement des minimuns locaux de $J_n(u)$:

$$J_n(u) = ||Y^T - u^T Z^T|| = (Y^T - u^T Z^T)(Y - Zu) = ||Y||^2 - Y^T Zu - u^T Z^T Y + u^T Z^T Zu$$

D'où
$$\nabla J_n(\hat{u}) = -(Y^TZ)^T - (Z^TY) + 2Z^TZu = -2Z^TY + 2Z^TZu$$
, et alors :

$$\nabla J_n(u) = 0 \Leftrightarrow \hat{u} = (Z^T Z)^{-1} Z^T Y = Z^\# Y$$

Alors, $Z^{\#}Y$ est l'unique point critique. En plus, $H_{J_n(u)}=2Z^TZ$ qui est une matrice positive definite. Donc, \hat{u} est un minimun local.

1.4 Exercice 4

Montrons que $\mathbb{E}_{\theta}[\hat{\beta}] = \beta$:

$$\mathbb{E}_{\theta}[\hat{\beta}] = \mathbb{E}_{\theta}[Z^{\#}Y] = Z^{\#}\mathbb{E}_{\theta}[Y] = Z^{\#}(Z\beta) = I_{p}\beta = \beta$$

1.5 Exercice 5

Montrons que $Var_{\theta}(\hat{\beta}) = \sigma^2(Z^TZ)^{-1}$:

$$Var_{\theta}(Z^{\#}Y) = Z^{\#}Var_{\theta}(Y)(Z^{\#})^{T} = \sigma^{2}Z^{\#}(Z^{\#})^{T}$$

$$Var_{\theta}(Z^{\#}Y) = \sigma^{2}(Z^{T}Z)^{-1}Z^{T}((Z^{T}Z)^{-1}Z^{T})^{T} = \sigma^{2}(Z^{T}Z)^{-1}Z^{T}Z(Z^{T}Z)^{-1}$$

En utilisant que $(Z^TZ)^{-1}Z^TZ=I_p$:

$$Var_{\theta}(Z^{\#}Y) = \sigma^{2}I_{p}(Z^{T}Z)^{-1} = \sigma^{2}(Z^{T}Z)^{-1}$$

1.6 Exercice 6

$$\mathbb{E}_{\theta}[\tilde{\beta}] = \mathbb{E}_{\theta}[BY] = B\mathbb{E}_{\theta}[Y]BZ\beta \Leftrightarrow BZ - I_p = 0$$

La dernière equivalence peut être vue en choisissant $\beta=e_i$, car ça montre que la colonne i de $BZ-I_p$ vaut bien zéro.

1.7 Exercice 7

$$\mathbb{E}_{\theta}[(\tilde{\beta} - \beta)(\hat{\beta}^T - \beta^T)] = \mathbb{E}_{\theta}[\tilde{\beta}\hat{\beta}^T] + \beta\beta^T - \beta\mathbb{E}_{\theta}[\hat{\beta}^T] - \mathbb{E}_{\theta}[\tilde{\beta}]\beta^T$$

En utilisant que $\mathbb{E}_{\theta}[\hat{\beta}^T] = \beta^T$ et $\mathbb{E}_{\theta}[\tilde{\beta}] = \beta$, on obtient que :

$$\mathbb{E}_{\theta}[(\tilde{\beta} - \beta)(\hat{\beta}^T - \beta^T)] = \mathbb{E}_{\theta}[(BY)(Y^TZ(Z^TZ)^{-1})] - \beta\beta^T = B\mathbb{E}_{\theta}[YY^T]Z(Z^TZ)^{-1} - \beta\beta^T$$

Or,
$$\mathbb{E}_{\theta}[YY^T] = Var_{\theta}(Y) + \mathbb{E}_{\theta}[Y](\mathbb{E}_{\theta}[Y])^T = \sigma^2 I_n + Z\beta\beta^T Z^T$$
.

Alors:

$$\mathbb{E}_{\theta}[(\tilde{\beta} - \beta)(\hat{\beta}^T - \beta^T)] = B(\sigma^2 I_n + Z\beta\beta^T Z^T)Z(Z^T Z)^{-1} - \beta\beta^T$$

$$\mathbb{E}_{\theta}[(\tilde{\beta} - \beta)(\hat{\beta}^{T} - \beta^{T})] = \sigma^{2}BZ(Z^{T}Z)^{-1} + BZ\beta\beta^{T}Z^{T}Z(Z^{T}Z)^{-1} - \beta\beta^{T} = \sigma^{2}(Z^{T}Z)^{-1}$$

Où on a utilisé que $BZ = I_p$.

1.8 Exercice 8

Calculons d'abord les deux matrices de covariance :

$$- Var_{\theta}(\tilde{\beta}) = \mathbb{E}_{\theta}[\tilde{\beta}\tilde{\beta}^{T}] - \mathbb{E}_{\theta}[\tilde{\beta}](\mathbb{E}_{\theta}[\tilde{\beta}])^{T} = \mathbb{E}_{\theta}[BYY^{T}B^{T}] - \beta\beta^{T} =$$

$$= B(\sigma^{2}I_{n} + Z\beta\beta^{T}Z^{T})B^{T} - \beta\beta^{T} = \sigma^{2}BB^{T} + BZ\beta\beta^{T}Z^{T}B^{T} - \beta\beta^{T} = \sigma^{2}BB^{T}$$

$$- Var_{\theta}(\hat{\beta}) = \sigma^2(Z^T Z)^{-1}$$

Ainsi, $Var_{\theta}(\tilde{\beta})-Var_{\theta}(\hat{\beta})=\sigma^2(BB^T-(Z^TZ)^{-1})$ et si on pose $N=B-Z^\#$, on obtient que $\sigma^2NN^T=\sigma^2(BB^T-(Z^TZ)^{-1})$.

Puisque $\sigma^2 NN^T$ est une matrice positive semi-definite, on voit bien que, pour $x \in \mathbb{R}^p$

$$X^T \sigma^2 N N^T X > 0 \Leftrightarrow X^T (Var_{\theta}(\tilde{\beta}) - Var_{\theta}(\hat{\beta})) > 0 \Leftrightarrow X^T Var_{\theta}(\tilde{\beta}) X > X^T Var_{\theta}(\hat{\beta}) X$$

Et, alors, on a que $Var_{\theta}(\tilde{\beta}) \succeq Var_{\theta}(\hat{\beta})$.

2

ESTIMATION DE LA VARIANCE σ^2 ET COEFFICIENT DE DÉTERMINATION

2.1 Exercice 9

Calculons l'espérance de $SSE = ||Y - HY||^2$:

$$\mathbb{E}_{\theta}[||Y - HY||^2] = \mathbb{E}_{\theta}[||(I - H)Y||] = \mathbb{E}_{\theta}[Tr\left((I - H)YY^T(I - H)^T\right)]$$

En utilisant que $\mathbb{E}[Tr(X)] = Tr(\mathbb{E}[X])$, on a que :

$$\mathbb{E}_{\theta}[Tr\left((I-H)YY^{T}(I-H)^{T}\right)] = Tr\left(\mathbb{E}_{\theta}[(I-H)YY^{T}(I-H)^{T}]\right) = Tr\left((I-H)\mathbb{E}_{\theta}[YY^{T}](I-H)^{T}\right)$$

En utilisant que $\mathbb{E}_{\theta}[YY^T] = \sigma^2 I + Z\hat{\beta}(\hat{\beta}Z)^T$ et le fait que Z est orthogonal à (I-H), on a que :

$$Tr\left((I-H)\mathbb{E}_{\theta}[YY^{T}](I-H)^{T}\right) = Tr\left((I-H)(\sigma^{2}I + Z\hat{\beta}(\hat{\beta}Z)^{T})(I-H)^{T}\right) =$$

$$= Tr\left(\sigma^{2}(I-H)(I-H)^{T}\right) = \sigma^{2}Tr\left((I-H)(I-H)^{T}\right)$$

Comme A=I-H est une projection orthogonale, on a que $A=A^T$; de plus, como A est une projection, on a que $A^2=A$ et alors :

$$\sigma^2 Tr\left((I-H)(I-H)^T\right) = \sigma^2 Tr[(I-H)^2] = \sigma^2 Tr(I-H)$$

Finalement, si A est une projection orthogonale, alors Tr(A) = rank(A); comme rank(H) = p, on a que $rank(I_H) = n - p$ et alors :

$$\sigma^2 Tr(I - H) = \sigma^2 rank(I - H) = \sigma^2 (n - p)$$

On peut conclure alors que, comme $\mathbb{E}_{\theta}[SSE] = \sigma^2(n-p)$, alors :

$$\mathbb{E}_{\theta}[\hat{\sigma}^2] = \mathbb{E}_{\theta}[(n-p)^{-1}SSE] = \sigma^2 \Rightarrow \mathbb{E}_{\theta}[\hat{\sigma}^2] = \sigma^2$$

2.2 Exercice 10

On utilise ici que Y-HY est orthogonal à HY, car H est une projection orthogonale. Alors, on a que :

$$||Y||^2 = ||(Y - HY) + HY||^2 = ||Y - HY||^2 + ||HY||^2 = SSE + RSS$$

3

CAS DE LA RÉGRESSION LINÉAIRE GAUSSIENNE

3.1 Exercice 11

On calcule la vraisemblance en faisant le produit des densités de probabilité pour chaque y_i de l'observation, où l'on note u_i la moyenne correspondante :

$$L(\theta, Y) = \prod_{i=1}^{n} f(y_i) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_i - u_i)^2}{2\sigma^2}\right)$$

D'où, la log-vraisemblance $l(\theta,Y)=n^{-1}logL(\theta,Y)$:

$$l(\theta, Y) = -n^{-1} \sum_{i=1}^{n} \left(-\frac{(y_i - u_i)^2}{2\sigma^2} \right) - \log(\sigma\sqrt{2\pi}) = -\frac{||Y - Z\beta||^2}{2\sigma^2 n} - \log\sigma - \log\sqrt{2\pi}$$

On calcule la dérivé par rapport à β et σ :

$$\frac{\partial l(\theta, Y)}{\partial \beta} = -\frac{2Z^T(Z\beta - Y)}{2\sigma^2 n}$$

$$\frac{\partial l(\theta, Y)}{\partial \sigma} = \frac{||Y - Z\beta||^2}{n\sigma^3} - \frac{1}{\sigma}$$

Les estimateurs de EMV sont des points de maximum locaux pour la fonction de vraisemblance. Puisque la matrice hessienne est positive semi-définie il suffit de resoudre $\nabla l(\theta,Y)=\vec{0}$. On trouve alors,

$$\hat{\beta}_{emv} = (Z^T Z)^{-1} Z^T Y$$

$$\hat{\sigma}_{emv}^2 = \frac{||Y - Z\hat{\beta}_{emv}||^2}{n}$$

3.2 Exercice 12

Puisque l'estimateur est une transformation affine d'une variable gaussienne $\hat{\beta}=Z^{\#}Y$, il l'est aussi.

Or,
$$Y \sim N(Z\beta, \sigma^2 I_n)$$
. Alors, $\hat{\beta} \sim N(Z^\# Z\beta, (Z^\#)\sigma^2 I_n(Z^\#)^T)$
Donc, $\hat{\beta} \sim N(\beta, \sigma^2 (Z^T Z)^{-1})$.

3.3 Exercice 13

On remarque que $Y-Z\hat{\beta}\sim N(0,\sigma^2I_n)$ est une variable gaussienne centré et en plus c'est la projection de Y sur l'espace orthogonal à $F=Vect(Z^1,...,Z^p)$, i.e, $Y-Z\hat{\beta}=(I-P_F)Y=P_{F^\perp}Y$.

On utilise le fait que la projection orthogonal preserve la norme et puis le théorème de Cochran pour trouver la distribution de la norme carré :

$$(n-p)\hat{\sigma}^2 = \left| \left| Y - Z\hat{\beta} \right| \right|^2 = \left| \left| P_{F^{\perp}}(Y - Z\hat{\beta}) \right| \right|^2 = \left| \left| P_{F^{\perp}}Y \right| \right|^2 \sim \sigma^2 \chi^2 (dim(F^{\perp}))$$

Or, $dim(F^{\perp}) = n - p$ et donc, en divisant par σ^2 ,

$$(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p)$$

3.4 Exercice 14

On utilise les résultats de l'exercice 2 pour montrer que chaque estimateur est fonction unique soit de $P_F Y$ soit de $P_{F^{\perp}} Y$:

$$\begin{split} \hat{\beta} &= (I_p) Z^\# Y = (Z^\# Z) Z^\# Y = Z^\# (H) Y = Z^\# P_F Y \\ \hat{\sigma^2} &= \tfrac{1}{n-p} ||Y - Z \hat{\beta}||^2 = \tfrac{1}{n-p} ||(I-H)Y||^2 = \tfrac{1}{n-p} ||P_{F^\perp} Y||^2 \end{split}$$

Par le théorème de Cochran ces projections sont indépendants et donc des transformations fixes de ces variables le seront aussi.

4

TESTS STATISTIQUES, CAS RÉGRESSION LINÉAIRE GAUSSIENNE

4.1 Exercice 15

Une loi de student à (n-p) degrés de liberté est une variable $T=\frac{G}{\sqrt{K/(n-p)}}$ où G est une gaussienne centrée réduite et K suit la loi $\chi^2(n-p)$. On cherche à trouver G et K telle que T soit égale à l'expression donné.

Or,

$$\hat{\beta} \sim N(\beta, \sigma^2(Z^T Z)^{-1})$$

Alors,

$$x^T(\hat{\beta} - \beta) \sim N(0, \sigma^2 x^T (Z^T Z)^{-1} x)$$

D'où,

$$G = \frac{x^{T}(\hat{\beta} - \beta)}{\sqrt{\sigma^{2}x^{T}(Z^{T}Z)^{-1}x}} \sim N(0, 1)$$

De plus, le résultat d'une question précedante nous donne,

$$K = (n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p)$$

Finalement, il est facile de montrer que,

$$\frac{x^T(\hat{\beta} - \beta)}{\hat{\sigma}\sqrt{x^T(Z^TZ)^{-1}x}} = \frac{G}{\sqrt{K/(n-p)}}$$

4.2 Exercice 16

On utilise les quantiles de la loi de student à (n-p) pour trouver un intervalle de niveau $1-\alpha$,

$$\mathbb{P}_{\theta} \left(\frac{x^T \hat{\beta} - x^T \beta}{\hat{\sigma} \sqrt{x^T (Z^T Z)^{-1} x}} \in [t_{\alpha/2}^{(n-p)}, t_{1-\alpha/2}^{(n-p)}] \right) = 1 - \alpha$$

Alors,

$$\mathbb{P}_{\theta} \left((x^T \hat{\beta} - t_{1-\alpha/2}^{(n-p)}) \hat{\sigma} \sqrt{x^T (Z^T Z)^{-1} x} \le x^T \beta \le (x^T \hat{\beta} - t_{\alpha/2}^{(n-p)}) \hat{\sigma} \sqrt{x^T (Z^T Z)^{-1} x} \right) = 1 - \alpha$$

Ce qui nous donne bien l'intervalle,

$$\left[\hat{\sigma}(x^T\hat{\beta} - t_{1-\alpha/2}^{(n-p)})\sqrt{x^T(Z^TZ)^{-1}x}, \, \hat{\sigma}(x^T\hat{\beta} - t_{\alpha/2}^{(n-p)})\sqrt{x^T(Z^TZ)^{-1}x}\right]$$

4.3 Exercice 17

On considère le test $\phi_c:Z\to\{0,\,1\}$ tel que :

$$\phi_c(Z) = \mathbf{1}_{\{T(Z) \ge c\}}$$

Où $T(Z)=rac{x^T\hat{eta}}{\hat{\sigma}\sqrt{x^T(Z^TZ)^{-1}x}}$ suit la loi de Student à (n-p) degrés de liberté sous $\theta\in\Theta_0=\{eta^Tx=0\}.$

Comme ϕ_c est de niveau α , on a que :

$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left(T(Z) > c_{\alpha} \right) \le \alpha \Rightarrow \mathbb{P}_{\{\beta^T x = 0\}} \left(T(Z) > c_{\alpha} \right) \le \alpha$$

En considérant l'égalité :

$$\mathbb{P}_{\{\beta^T x = 0\}} \left(T(Z) > c_{\alpha} \right) = \alpha \Rightarrow 1 - \mathbb{P}_{\{\beta^T x = 0\}} \left(T(Z) \le c_{\alpha} \right) = \alpha$$

Donc:

$$\mathbb{P}_{\{\beta^T x = 0\}} \left(T(Z) \le c_{\alpha} \right) = 1 - \alpha \Rightarrow c_a = q_{1-\alpha}^{S(n-p)}$$

Où $q_{1-\alpha}^{S(n-p)}$ est la quantille d'ordre $1-\alpha$ de la loi de Student à (n-p) degrés de liberté. Alors, le test désiré est décrit par :

$$\phi(Z) = \mathbf{1}_{T(Z) > q_1^{S(n-p)}}$$

4.4 Exercice 18

Si nous observons Z et alors la statistique $T(Z)=\frac{x^T\hat{\beta}}{\hat{\sigma}\sqrt{x^T(Z^TZ)^{-1}x}}$, le test sera rejecté si $T(Z)>q_{1-\alpha}^{S(n-p)}$, et donc la p-valeur $\alpha(Z)$ est la solution de l'équation :

$$T(Z) = q_{1-\alpha(Z)}^{S(n-p)} \Rightarrow 1 - \alpha(Z) = \mathbb{P}\left(S \le \frac{x^T \hat{\beta}}{\hat{\sigma}\sqrt{x^T(Z^T Z)^{-1}x}}\right)$$

Alors, la p-valeur est donné par $\alpha(Z)$, où :

$$\alpha(Z) = \mathbb{P}\left(S > \frac{x^T \hat{\beta}}{\hat{\sigma} \sqrt{x^T (Z^T Z)^{-1} x}}\right)$$

Où S suit une loi de Student à (n-p) degrés de liberté.

4.5 Exercice 19

Puisque $\hat{\beta} \sim N(\beta, \sigma^2(Z^TZ)^{-1})$, $A(\hat{\beta} - \beta)$ est un vecteur gaussien centré de matrice de covariance $\sigma^2 A(Z^TZ)^{-1}A^T$ qui est de rang q car A l'est aussi par hypothèse.

Alors,

$$\frac{1}{\sigma^2} (A(\hat{\beta} - \beta))^T [A(Z^T Z)^{-1} A^T]^{-1} (A(\hat{\beta} - \beta)) \sim \chi^2(q)$$

De plus, par un résultat précedant,

$$(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-p)$$

On en déduit que l'expression donnée est la raison de deux chi-deux divisés par leurs degrés de liberté q et n-p, ce qui conclut la démonstration.

4.6 Exercice 20

La région de confiance RC_{α} de niveau α est donné en prennant $A \in \mathbb{R}^{2 \times p}$ tel que :

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \end{bmatrix}$$

Donc, on a que:

$$A(\hat{\beta} - \beta) = \begin{bmatrix} \hat{\beta}_1 - \beta_1 \\ \hat{\beta}_2 - \beta_2 \end{bmatrix}$$

Alors, en prennant l'expression de l'exercice 19, la région de confiance de niveau $1-\alpha$ pour $\beta=(\beta_1,\,\beta_2)$ est donné par :

$$RC_{\alpha}(\beta_1, \beta_2) = \left\{ (\beta_1, \beta_2) \in \mathbb{R}^2, \ \frac{1}{2\hat{\sigma}^2} [\hat{\beta}_1 - \beta_1, \hat{\beta}_2 - \beta_2] [A(Z^T Z)^{-1} A^T]^{-1} \begin{bmatrix} \hat{\beta}_1 - \beta_1 \\ \hat{\beta}_2 - \beta_2 \end{bmatrix} \le f_{(2, n-p, 1-\alpha)} \right\}$$

Où $f_{(q,\,n-p,\,1-\alpha)}$ est le fractile de niveau $(1-\alpha)$ d'une loi de Fisher admettant $(q,\,n-p)$ degrés de liberté.

Si on note c_{ij} le terme géneral de $(Z^TZ)^{-1}$ et en développent la dernière expression, on obtient que :

$$RC_{\alpha}(\beta_1, \beta_2) = \left\{ (\beta_1, \beta_2) \in \mathbb{R}^2, \frac{B}{2\hat{\sigma}^2(c_{11}c_{22} - c_{12}^2)} \le f_{(2, n-p, 1-\alpha)} \right\}$$

Où B est donné par :

$$B(\beta_1, \beta_2) = \left(c_{22}(\hat{\beta}_1 - \beta_1)^2 - 2c_{12}(\hat{\beta}_1 - \beta_1)(\hat{\beta}_2 - \beta_2) + c_{11}(\hat{\beta}_2 - \beta_2)^2\right)$$

On peut remarquer que $B(\beta_1,\,\beta_2)$ denote une ellipse, et comme la région $RC_{\alpha}(\beta_1,\,\beta_2)$ est donné par un produit entre $B(\beta_1,\,\beta_2)$ par $\frac{1}{2\hat{\sigma}^2(c_{11}c_{22}-c_{12}^2)}$, on a aussi que la région de confiance $RC_{\alpha}(\beta_1,\,\beta_2)$ de niveau $1-\alpha$ est décrit par une ellipse.