ELECTROMAGNETISMO

Série 10 – Indutância

- 1. Uma *fem* de 24.0 *mV* é induzida num enrolamento com 500 espiras no momento em que a corrente tem uma intensidade de 4.00 *A* e está a variar a uma taxa de 10.0 *A*/*s*. Qual é o fluxo magnético que atravessa cada espira?
- 2. No circuito ilustrado na Fig. 1, $\varepsilon = 6.00 V$, L = 8.00 mH e $R = 4.00 \Omega$.
 - a) Qual é a constante de tempo deste circuito?
 - b) Qual é a intensidade da corrente no circuito 250 μ s depois de fechar o interruptor S?
 - c) Qual é a intensidade final da corrente, no estado estacionário?
 - d) Quanto tempo depois de se ter fechado o interruptor é que a intensidade da corrente atinge 80% do seu valor máximo?

- 3. O campo magnético no interior dum solenóide supercondutor é de $4.50\,T$. O diâmetro interno do solenóide é de $6.20\,cm$ e o seu comprimento é de $26.0\,cm$. Calcule:
 - a) a densidade de energia magnética;
 - b) a energia armazenada no campo magnético no interior do solenóide.
- 4. Num circuito impresso, um fio condutor muito longo e uma espira rectangular condutora encontram-se no mesmo plano, conforme ilustrado na Fig. 2. Calcule a indutância mútua destes dois circuitos para $h = 0.400 \ mm$, $w = 1.30 \ mm$ e $L = 2.70 \ mm$.

- 5. Um circuito LC é constituído por um indutor de $20.0\,mH$ e um condensador de $0.500\,\mu F$. Se a intensidade máxima da corrente for $0.100\,A$, qual é o valor máximo da diferença de potencial aos terminais do condensador?
- 6. Dois enrolamentos, mantidos em posições fixas, têm uma indutância mútua de 100 μH . Qual é a tensão de pico num enrolamento quando uma corrente sinusoidal dada por $I(t) = 10.0 \sin(1000t) A$ existe no outro?
- 7. No circuito da Fig. 3, a *fem* da bateria é de 50.0 V, a resistência é de 250 Ω , e o condensador é de $0.500 \, \mu F$. O interruptor S está fechado por um tempo longo e não existe diferença de potencial no condensador. Depois do interruptor ser aberto, a diferença de potencial no condensador atinge um valor máximo de 150 V. Determine o valor da indutância.

Figura 3

8. No circuito *RLC* ilustrado na Fig. 4, $R = 7.60 \,\Omega$, $L = 2.20 \,mH$ e $C = 1.80 \,\mu F$. Calcule a frequência das oscilações amortecidas no circuito. Qual é o valor da resistência crítica?

Figura 4

Soluções:

- 1. $\Phi = 19.2 \ Wb$.
- 2. a) $\tau = 2.00 \times 10^{-3} \ s$; b) $I = 0.176 \ A$; c) $I = 1.50 \ A$; d) $t = 3.22 \times 10^{-3} \ s$.
- 3. a) $u = 8.06 \times 10^6 \ J/m^3$; b) $U = 6.32 \ kJ$.
- 4. $M = 781 \ pH$.
- 5. $\Delta V_{C,max} = 20.0 \ V$.
- 6. $\varepsilon_{2,max} = 1.00 \ V$.
- 7. L = 0.281 H.
- 8. f = 2.51 kHz; $R_c = 69.9 \Omega$.