

Astroinformatics school - "Rise of the machines"

4 to 6 February 2019 Presented by Rebecca Lange and Dan Marrable

- Clustering algorithm
 - O K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of pc
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - O K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - O K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - O K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - O K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - \circ K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

- Clustering algorithm
 - O K = # of clusters

- Training
 - Randomly place K initial centroids
 - Assign each point to closest centroid
 - Update centroid position based on mean of points in assigned cluster
 - Stop when centroids don't change

- New examples
 - Assign to cluster with closest centroid

Principal Components Analysis (PCA)

- Dimensionality reduction method
- Represent data in fewer dimensions
 - Preserve as much structure as possible
- New dimensions = principal components
 - Directions where data is most spread (variance)
 - Combination of original features
- Example
 - Reduce a dataset from 2D to 1D
 - Manually try two components

Component B

Component B

Component B

Which component represents a larger spread of the data (variance)? Component A

- Find a set of principal components
 - 1st: represents most variance
 - o 2nd: perpendicular to 1st, most variance of remainder
 - ... until last dimension of dataset

- Find a set of principal components
 - 1st: represents most variance
 - o 2nd: perpendicular to 1st, most variance of remainder
 - ... until last dimension of dataset

- Find a set of principal components
 - 1st: represents most variance
 - o 2nd: perpendicular to 1st, most variance of remainder •••
 - ... until last dimension of dataset

- Find a set of principal components
 - 1st: represents most variance
 - 2nd: perpendicular to 1st, most variance of remainder
 - ... until last dimension of dataset
- Reduce dataset to k components
 - \circ E.g. keep top k components that represent at least 90% of variance in the dataset
 - Transform original data to the new dimensions

PC1 represents 99.6% of variance

- Find a set of principal components
 - 1st: represents most variance
 - o 2nd: perpendicular to 1st, most variance of remainder
 - ... until last dimension of dataset
- Reduce dataset to k components
 - \circ E.g. keep top k components that represent at least 90% of variance in the dataset
 - Transform original data to the new dimensions
- Algorithm
 - Normalise data with zero mean
 - Calculate covariance matrix
 - Calculate:
 - Eigenvectors = principal component
 - Eigenvalues = amount of variance represented

PC1 represents 99.6% of variance