CORRECTION SERIE 4

Cours : Vérification formelle **Filière/Classe :** 3^{ème} ING

Exercice 1:

Soit la structure de Kripke N définie dans la figure 2.

Dites si M, $s0 \models \varphi$ pour chacune des formules φ en appliquant l'algorithme de marquage :

- a. AFq.
- b. AG(EF(p)).
- c. EX(EXr).
- d. AG(AFq)

Correction

Dites si M, $s0 \models \varphi$ pour chacune des formules φ en appliquant l'algorithme de marquage :

- a. AFq.
- b. AG(EF(p)).
- c. EX(EXr).
- d. AG(AFq)

Correction

a. AFq = TAUq

Marquage de T et q et initialisation de ϕ à faux.

	S _O	S1	<i>S</i> 2	S3
T	vrai	vrai	vrai	vrai
Q	faux	faux	vrai	vrai
$\phi = TAUq$	faux	faux	faux	faux

Initialisation de nb.

	S _O	S1	<i>S</i> ₂	S3
Nb	3	1	1	1

Initialisation de L= \emptyset .

 $L=\{s_2, s_3\}\ (s_2.q=vrai\ et\ s_3.q=vrai)$

1) Traitement de $s_2, L=\{s_3\}$

$$s_2.\phi := vrai$$

a.
$$S_1 \rightarrow S_2$$

$$s_1.nb := s_1.nb - 1 = 0$$
, avec $s_1.T = vrai\ et\ s_1.\phi = faux\ donc\ L = L \cup \{s_1\} = \{s_1, s_3\}$

b.
$$s_3 \rightarrow s_2$$

$$s_3.nb := s_3.nb - 1 = 0$$
, avec $s_3.T = vrai$ et $s_3.\phi = faux$ donc $L = L \cup \{s_3\} = \{s_1, s_3\}$

Après mise à jour de nb et de ϕ .

	S _O	S1	S2	<i>S</i> 3
Nb	3	0	1	0
$\phi = TAUq$	faux	faux	vrai	faux

2) Traitement de s_1 , $L=\{s_3\}$

$$s_1.\phi := vrai$$

a.
$$S_0 \rightarrow S_1$$

$$s_0.nb := s_0.nb - 1 = 2 \neq 0$$
 rien à faire

b.
$$s_2 \rightarrow s_1$$

$$s_2.nb := s_2.nb - 1 = 0$$
, avec $s_2.T = vrai \ mais \ s_2.\phi = vrai \ donc \ rien \ à faire.$

Après mise à jour de nb et de ϕ .

	So	S1	S2	S 3
Nb	2	0	0	0
$\phi = TAUq$	faux	vrai	vrai	faux

3) Traitement de s_3 , $L=\{\}$

$$s_3.\phi := vrai$$

C.
$$S0 \rightarrow S3$$

$$s_0.nb := s_0.nb - 1 = 1 \neq 0$$
 rien à faire

Après mise à jour de nb et de ϕ .

	S _O	S1	<i>S</i> 2	S3
Nb	1	0	0	0
$\phi = TAUq$	faux	vrai	vrai	vrai

$$L=\{ \}$$
 arrêt

Comme K,
$$s_0 \not\models \phi$$
 donc K $\not\models \phi$

b.
$$\phi = \mathbf{AG}(\mathbf{EF} \ p) = \neg \mathbf{EF} \neg (\mathbf{EF} \ p) = \neg (\mathbf{TEU} \neg (\mathbf{TEU} \ p))$$

$$\phi_1 = T\mathbf{E}\mathbf{U}p$$

Marquage de T et p et initialisation de ϕ_I à faux.

marquage ac 1 ct	p	71 01 - 01 - 01		
	S _O	S1	<i>S</i> 2	S 3
T	vrai	vrai	vrai	vrai
P	faux	vrai	faux	vrai
$\phi_I = T\mathbf{E}\mathbf{U}p$	faux	faux	faux	faux
$\neg \phi_{l} = \neg (T\mathbf{E}\mathbf{U}p)$				
$\phi_2 = T\mathbf{E}\mathbf{U} \neg \phi_1$				
$\phi = \neg \phi_2$				

Initialisation de déjà vu (dv).

	s_0	S_{I}	<i>S</i> ₂	S3
Dv	faux	faux	faux	faux

Initialisation de $L=\emptyset$.

 $L=\{s_1, s_3\}\ (s_1.p=vrai\ et\ s_3.p=vrai)$

1) Traitement de s_1 , $L=\{s_3\}$

$$s_1.\phi_1 := vrai$$

a. $s_0 \rightarrow s_1$

 $s_0.dv = faux$, $donc \ s_0.dv := vrai \ avec \ s_0.T = vrai \ donc \ L = L \cup \{s_0\} = \{s_0, s_3\}$

b. $s_2 \rightarrow s_1$ $s_2.dv = faux$, $donc \ \underline{s_2.dv} := vrai \ avec \ s_2.T = vrai \ donc \ L = L \cup \{s_2\} = \{s_0, s_2, s_3\}$

Mise à jour de dv et de ϕ_I .

	So	S1	S2	S3
T	vrai	vrai	vrai	vrai
p	faux	vrai	faux	vrai
$\phi_l = T\mathbf{EU}p$	faux	vrai	faux	faux
dv	vrai	faux	vrai	faux

2) Traitement de s_0 , $L = \{s_2, s_3\}$

s₀.φ₁:=vrai

a. $s_0 \rightarrow s_0$

*s*₀.*dv*=*vrai*, *rien* à *faire*

Mise à jour de dv et de ϕ_I .

	So	S ₁	<i>S</i> ₂	S 3
T	vrai	vrai	vrai	vrai
p	faux	vrai	faux	vrai
$\phi_I = T\mathbf{E}\mathbf{U}p$	vrai	vrai	faux	faux
dv	vrai	faux	vrai	faux

3) Traitement de s_2 , $L=\{s_3\}$

$$s_2. \phi_1 := vrai$$

a. $S_1 \rightarrow S_2$

 $s_1.dv = faux$, $donc \underline{s_1.dv} = vrai \ avec \ s_1.T = vrai \ donc \ L = L \cup \{s_1\} = \{s_1, s_3\}$

b. $S_3 \rightarrow S_2$

 $s_3.dv=faux$, $donc \ \underline{s_3.dv}:=vrai \ avec \ s_3.T=vrai \ donc \ L=L \cup \{s_3\}=\{s_1, s_3\}$ Mise à jour de dv et de ϕ_1 .

	So	S1	<i>S</i> ₂	S3
T	vrai	vrai	vrai	vrai
p	faux	vrai	faux	vrai
$\phi_I = T\mathbf{E}\mathbf{U}p$	vrai	vrai	vrai	faux
dv	vrai	vrai	vrai	vrai

4) Traitement de s_1 , $L=\{s_3\}$

$$s_1.\phi_1 := vrai$$

a. $s_0 \rightarrow s_1$

 $s_0.dv=vrai$, donc rien à faire

b. $s_2 \rightarrow s_1$ $s_2.dv = vrai$, donc rien à faire

Mise à jour de dv et de ϕ_1 : rien à faire

J				
	s_0	S_I	<i>S</i> ₂	S3
T	vrai	vrai	vrai	vrai
p	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U}p$	vrai	vrai	vrai	faux
Dv	vrai	vrai	vrai	vrai

5) Traitement de s_3 , $L=\{\}$

$$s_3.\phi_1 := vrai$$

a. $S_0 \rightarrow S_3$

 $s_0.dv=vrai$, donc rien à faire

b. $S_2 \rightarrow S_1$

*s*₂.*dv*=*vrai*, *donc rien* à *faire*

Mise à jour de ϕ_l et marquage de $\neg \phi_l$. Le marquage de ϕ_2 est simple. En effet, comme $\neg \phi_l$ est toujours fausse, l'ensemble L (utilisé pour l'algorithme de marquage de la formule $T\mathbf{E}\mathbf{U}\neg\phi_l$) est vide, puisqu'aucun état ne satisfait faux.

	S _O	S1	S2	S 3
T	vrai	vrai	vrai	vrai
P	faux	vrai	faux	vrai
$\phi_I = T\mathbf{E}\mathbf{U}p$	vrai	vrai	vrai	vrai
$\neg \phi_{I} = \neg (T\mathbf{EU}p)$	faux	faux	faux	faux

$\phi_2 = T\mathbf{E}\mathbf{U} \neg \phi_1$	faux	faux	faux	faux
$\phi = \neg \phi_2$	vrai	vrai	vrai	vrai

Comme K, $s_0 \models \phi$ donc K $\models \phi$

c. $\phi = \mathbf{E}\mathbf{X}(\mathbf{E}\mathbf{X} r)$

Marquage de *r*.

	SO	S1	<i>S</i> 2	<i>S</i> 3
R	vrai	vrai	vrai	faux
$\psi = \mathbf{E} \mathbf{X} r$				
$\phi = \mathbf{EX}(\mathbf{EX} \ r)$				

$\psi = \mathbf{E} \mathbf{X} r$

Soit T l'ensemble de toutes les transitions (q,q').

 $T = \{ s_0 \rightarrow s_0, s_0 \rightarrow s_1, s_0 \rightarrow s_3, s_1 \rightarrow s_2, s_2 \rightarrow s_1, s_3 \rightarrow s_2 \}$

Nous avons $s_1 \rightarrow s_2$ et $s_2.r = vrai$ donc $s_1.\psi = vrai$.

Nous avons $s_3 \rightarrow s_2$ et $s_2.r = vrai$ donc $s_3.\psi = vrai$.

Nous avons $s_0 \rightarrow s_0$ et $s_0.r = vrai$ donc $s_0.\psi = vrai$.

Nous avons $s_2 \rightarrow s_1$ et $s_1.r = vrai$ donc $s_2.\psi = vrai$.

D'où:

	SO	S1	S2	S3
R	vrai	Vrai	vrai	faux
$\psi = \mathbf{E} \mathbf{X} r$	vrai	vrai	vrai	vrai
$\phi = \mathbf{E}\mathbf{X}(\mathbf{E}\mathbf{X} \ r)$				

$\phi = \mathbf{E}\mathbf{X}(\mathbf{E}\mathbf{X} \ r) = \mathbf{E}\mathbf{X}(\psi)$

Soit T l'ensemble de toutes les transitions (q,q').

 $T = \{ s_0 \rightarrow s_0, s_0 \rightarrow s_1, s_0 \rightarrow s_3, s_1 \rightarrow s_2, s_2 \rightarrow s_1, s_3 \rightarrow s_2 \}$

Nous avons $s_1 \rightarrow s_2$ et $s_2 \cdot \psi = vrai$ donc $s_1 \cdot \phi = vrai$.

Nous avons $s_3 \rightarrow s_2$ et $s_2 \cdot \psi = vrai$ donc $s_3 \cdot \phi = vrai$.

Nous avons $s_0 \rightarrow s_0$ et $s_0 \cdot \psi = vrai$ donc $s_0 \cdot \phi = vrai$.

Nous avons $s_2 \rightarrow s_1$ et $s_1 \cdot \psi = vrai$ donc $s_2 \cdot \phi = vrai$.

D'où:

	S _O	S1	<i>S</i> ₂	S3
R	vrai	vrai	vrai	faux
$\psi = \mathbf{E} \mathbf{X} r$	vrai	vrai	vrai	vrai
$\phi = \mathbf{E}\mathbf{X}(\mathbf{E}\mathbf{X}\ r)$	vrai	vrai	vrai	vrai

d.
$$\phi = \mathbf{AG}(\mathbf{AF} q) = \neg \mathbf{EF} \neg (T\mathbf{AUq}) = \neg T\mathbf{EU} \neg (T\mathbf{AUq})$$

Pour **TAUq**, c'est déjà fait dans (a) ci-haut.

 $\psi' = T\mathbf{E}\mathbf{U}\psi$

Marquage de T et initialisation de ψ ' à faux.

	S 0	S1	S 2	S3
T	vrai	Vrai	vrai	vrai
Q	faux	faux	vrai	vrai
TAUq	<mark>faux</mark>	<mark>vrai</mark>	<mark>vrai</mark>	<mark>vrai</mark>
$\psi = \neg TAUq$	vrai	faux	faux	faux
$\psi' = T\mathbf{E}\mathbf{U}\psi$	faux	faux	faux	faux
φ= ¬ψ'				
Initialisation de <i>dé</i>	jà vu (dv).			

	<i>S</i> 0	S1	<i>S</i> ₂	S3
Dv	faux	faux	faux	faux

Initialisation de L= \emptyset .

$$L = \{s_0\} (s_0, \psi = vrai)$$

1) Traitement de $s_0, L=\{ \}$

$$s_0. \psi' := vrai$$

a. $s_0 \rightarrow s_0$

 $s_0.dv = faux$, $donc \ s_0.dv := vrai \ avec \ s_0.T = vrai \ donc \ L = L \cup \{s_0\} = \{s_0\}$

Mise à jour de dv et de ψ' .

	S 0	S ₁	S2	<i>S</i> 3
T	vrai	Vrai	vrai	vrai
Q	faux	faux	vrai	vrai
TAUq	faux	vrai	vrai	vrai
$\psi = \neg TAUq$	vrai	faux	faux	faux
$\psi' = T\mathbf{E}\mathbf{U}\psi$	vrai	faux	faux	faux
φ= ¬ψ'				
dv	vrai	faux	faux	faux

2) Traitement de s_0 , $L=\{ \}$

 $s_0. \psi' := vrai$

a. $s_0 \rightarrow s_0$

s₀.dv=vrai, donc rien à faire.

Arrêt de l'algorithme puisque L est vide.

Mise à jour de ψ' et calcul de ϕ .

while a join we φ -ci calcul we φ .					
	So	S1	<i>s</i> ₂	S 3	

T	vrai	Vrai	vrai	vrai
q	faux	faux	vrai	vrai
TAUq	faux	vrai	vrai	vrai
$\psi = \neg TAUq$	vrai	faux	faux	faux
$\psi' = T\mathbf{E}\mathbf{U}\psi$	vrai	faux	faux	faux
φ= ¬ <i>ψ</i> '	faux	vrai	vrai	vrai

Comme K, $s_0 \not\models \phi$ donc K $\not\models \phi$