

Mitglied der SUPSI

Geo.BigData(Science) Machine Learning (ML)

Supportvektormaschinen, Random Forest, Ensemble Methoden

Dr. Joachim Steinwendner

Lineare Separierbarkeit von Klassen

Lineare Separierbarkeit von Klassen

F1	F2	Klasse
1	1	\oplus
1	2	\oplus
2	1	\ominus
2	2	\oplus
3	1	\ominus
3	2	\bigcirc

$$f(x_1, x_2) = -x_1 + x_2 + \frac{1}{2}$$

Perzeptron

Ein Neuron – Graphische vs. Mathematische Darstellung

inputs weights

Perzeptron

Wesentliche Elemente:

Gleichungen: Übliche Aktivierungsfunktionen für Perzeptrons

$$heaviside(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z \ge 0 \end{cases} \qquad sgn(z) = \begin{cases} -1 & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z > 0 \end{cases}$$

Perzeptron Lernregel (Gewichtsänderung)

$$w_i^{\text{(neu)}} = w_i^{\text{(alt)}} + \eta(y - \hat{y})x_i$$

$$\vec{w}^{\text{(neu)}} = \vec{w}^{\text{(alt)}} + \eta(y - \hat{y})\vec{x}$$

wobei

 $\eta = \text{Lernrate und } (y - \hat{y}) = \text{der Fehler (erwarteter abzüglich berechneten Wert)}$

Perzeptron

Perzeptron-Notebook

Finde optimale Hyperebene definiert durch Supportvektoren

Optimierungsproblem für lineare Supportektormaschinen

Minimiere:
$$\vec{w}^*, d^* = \underset{\vec{w}, d}{\arg\min} |\vec{w}| = \frac{1}{2} \underset{\vec{w}, d}{\arg\min} |\vec{w}|^2$$

 $\min y_i(\vec{w} \cdot \vec{x}^i + d) \ge 1 \text{ für alle } x^i$

Finde optimale Hyperebene definiert durch Supportvektoren

Optimierungsproblem

Finde Werte für w, so dass der Margin möglichst gross wird.

Skalierung der Trainingsdaten

- Supportvektormaschinen sind empfindlich gegenüber Skalierung
- Mit Skalierung wird auch zentralisiert (Linear Supportvektorklassifizierer regularisieren den Bias-Term)

Hard- vs. Soft Margin

Hard- vs. Soft Margin

- Schlupfvariable

Minimiere: $y_i \cdot (\vec{w} \cdot \vec{x}^i + d) \ge 1 - \xi_i$ für alle x^i

$$\min \quad |\vec{w}|^2 + C \sum_i \xi_i$$

Bei Overfitting -> Reduziere C

Hard- vs. Soft Margin

- Schlupfvariable

$$y_i \cdot (\vec{w} \cdot \vec{x}^i + d) \ge 1 - \xi_i$$
 für alle x^i

mit
$$|\vec{w}|^2 + C \sum_i \xi$$

Bei Overfitting -> Reduziere C

Der Kerneltrick

- Features transformieren um einen Datensatz linear trennbar zu machen (PVA2)
- Features hinzufügen um einen Datensatz linear trennbar zu machen

Der Kerneltrick

$$k(\vec{x}, \vec{y}) := \Phi(\vec{x}) \cdot \Phi(\vec{y}) \tag{18}$$

Folgende Kernfunktionen werden häufig verwendet:

- Linearer Kern: Ist eigentlich nur eine Sprechweise dafür, dass die Kernel-Technik nicht verwendet wird. Φ ist die Identität und $k(\vec{x}, \vec{y}) := \vec{x} \cdot \vec{y}$
- Polynomialer Kern: $k(\vec{x}, \vec{y}) := (\vec{x} \cdot \vec{y} + c)^d$ c und d (Degree) sind Parameter, die spezifiziert werden können.
- Gauß-Kernel oder rbf-Kernel (rbf: radial basis function): $k(\vec{x}, \vec{y}) := e^{-\gamma \cdot |\vec{x} \vec{y}|^2}$ γ ist ein Parameter für diesen Kernel.

Der Kerneltrick

Polynomialer Kernel

Gausscher RBF Kernel

Berechnungskomplexität

LinearSVC

$$O(m \times n)$$

V

SGDClassifier

$$O(m \times n)$$

SVC

$$O(m^2 \times n)$$
 to $O(m^3 \times n)$

Supportvektormaschinen Notebook

Wie funktioniert der Decisiontree Algorithmus?

Am Beispiel des Iris-Datensatzes unter Verwendung on Petal Länge und Breite

Gini impurity

$$G_i = 1 - \sum_{k=1}^{n} p_{i,k}^{2}$$

 $p_{i,k}$ = Verhältnis der Anzahl der Klasse k Instanzen zu den Trainingsinstanzen im i^{ten} Knoten

Entropie

$$H_i = -\sum_{\substack{k=1 \ p_{i,k} \neq 0}}^{n} p_{i,k} \log (p_{i,k})$$

 $p_{i,k}$ = Verhältnis der Anzahl der Klasse k Instanzen zu den Trainingsinstanzen im i^{ten} Knoten

Der Trainingsalgorithmus

- 1. Splitte das Trainingsset in zwei Subsets unter Verwendung eines Features k und einer Grenze (threshold) t_k
- 2. Wähle jenes Paar (k, t_k) , dass die «reinsten (most pure)» Subsets liefert, d.h. minimiere folgende Kostenfunktion

$$J(k, t_k) = \frac{m_{\text{links}}}{m} G_{\text{links}} + \frac{m_{\text{rechts}}}{m} G_{\text{rechts}}$$
wo
$$\begin{cases} G_{\text{links/rechts}} \text{ misst die impurity des linken/rechten Subsets,} \\ m_{\text{links/rechts}} \text{ ist die Anzahl von Instanzen des linken/rechten Subsets.} \end{cases}$$

- 3. Wiederhole Schritt 1 und 2 für die beiden Subsets
- 4. Stoppe wenn max_depth erreicht oder es gibt keinen split der die Impurity verringert.

Rekursiver Algorithmus!

Berechnungskomplexität

Training $O(e^m)$ für optimalen Baum ->schlecht, weil NP-Complete,

algorithmische Veränderung und suboptimalen Baum $O(n * m \log(m))$

Klassifikation $O(log_2(m))$

Schätzen der Klassenwahrscheinlichkeiten

gini = 0.168 samples = 54 value = [0, 49, 5] class = versicolor

Instabilität – Sensibel auf einfache Trainingsdatenänderungen

Entscheidungsbaum Notebook

Ensemble Methoden - Übersicht

Eine Gruppe von Klassifikatoren wird als Ensemble bezeichnet.

■ No-free-lunch Theorem

Warum funktioniert das? Ist die Kombination mehrerer Klassifikatoren besser als EIN Klassifikator?

Gesetz der grossen Zahlen (oder wisdom of the crowd)

Ensemble Methoden - Übersicht

Mögliche Methoden

- Voting
- Random Forests
- Bagging and Pasting
- Boosting
- Stacking

Ensemble Methoden arbeiten am besten, wenn die Klassifizierer voneinander so unabhängig wie möglich sind. Folgende Möglichkeiten das annähernd zu erreichen:

- 1. Training mit unterschiedlichen Algorithmen/Modellen
- 2. Training eines Basisklassifkators mit unterschiedlichen Trainingsdaten

Voting

Voting

Voting

Hard VotingSoft Voting

(Mehrheit der Klassifikation aller Klassifikatoren) vs.

(Klassifiziere auf Basis der höchsten Klassenwahrscheinlichkeit – MW aller Klassifikatoren)

Bagging (Bootstrap Aggregating) und Pasting

Basisklassifizierer und zufällige Auswahl von Samples

Bootstrapping

Zufällige Auswahl von Samples MIT Ersetzen

Original Dataset

Bootstrap 1

 $\mathbf{x}_{3} \mathbf{x}_{7} \mathbf{x}_{10}$

Bootstrap 2

$$| X_{10} | X_1 | X_3 | X_5 | X_1 | X_7 | X_4 | X_2 | X_1 | X_8 |$$

 $X_6 X_9$

Bootstrap 3

$$X_6 X_5 X_4 X_1 X_2 X_4 X_2 X_6 X_9 X_2$$

 $\mathbf{x}_{3} \mathbf{x}_{7} \mathbf{x}_{8} \mathbf{x}_{10}$

Training Sets

Test Sets

Pasting

Zufällige Auswahl von Samples OHNE Ersetzen

Original Dataset X₁

Bootstrap 1

$$\left| \begin{array}{c|c} \mathbf{x}_8 & \mathbf{x}_6 & \mathbf{x}_2 & \mathbf{x}_9 & \mathbf{x}_5 \end{array} \right|$$

$$\mathbf{x}_{3} \mathbf{x}_{7} \mathbf{x}_{10}$$

Bootstrap 2

$$\left| \mathbf{X}_{10} \right| \mathbf{X}_{1} \left| \mathbf{X}_{3} \right| \mathbf{X}_{5}$$

$$X_7 X_4 X_2$$

Bootstrap 3

$$X_6 X_5 X_4 X_1 X_2$$

$$X_3 X_7 X_8 X_{10}$$

Training Sets

Test Sets

Bagging and Pasting

Vergleich

Bagging and Pasting

■ Out-of-Bag Evaluation

- Random Patches (zufällige Auswahl von Samples und Features)

 Zufälliges Auswählen der Features für den Klassifizierer

 z.B. bootstrap=True, max_features=50 und bootstrap_features=true

 Sinnvoll bei hochdimensionalen Datensätzen (z.B. Bilder)
- Random Subspace (Gesamttrainingsdatensatz nur zufällige Auswahl von Features)
 z.B. bootstrap=False und max_samples=1.0, bootstrap_features=True und max_features<=1.0
 Sinnvoll bei hochdimensionalen Datensätzen (z.B. Bilder)

Random Forests

= Bagging mit Decision Trees!

Vergleiche:

Random Forests

Extremely Randomized Trees (Extra-Trees)

Um die Bäume noch "zufälliger" zu machen, nimmt man zufällige Grenzen (thresholds) für jedes Feature statt die bestmögliche Grenze zu suchen!

- wie immer bei Ensemble Methoden: etwas mehr Bias aber geringere Varianz
- viel schnelleres Trainieren, da keine optimale Grenze für jedes Feature gefunden werden muss

Random Forests

Feature importance

■ Bei einfachen Entscheidungsbaum (white-box estimator)

■ Random Forests (black-box estimator) aber:

Boosting

Ursprünlich genannt: Hypothesis Boosting

Boosting

- Initialisiere Gewichte: $w_j = 1/N : j = 1, \dots, N$
- \bullet Für $l=1,\ldots,L$
 - Trainiere einen Klassifikator $f_l(\mathbf{x})$ mit Datengewichten w_j durch Minimierung der gewichteten Missklassifikationsrate $\sum_{j \in E_l} w_j$, wobei $E_l = \{j : f_l(\mathbf{x_j}) \neq y_j\}$
 - Berechne den normalisierten Fehler

$$\operatorname{err}_{l} = \frac{\sum_{j \in E_{l}} w_{j}}{\sum_{j=1}^{N} w_{j}}$$

- Berechne $\alpha_l = \log \frac{1 \operatorname{err}_l}{\operatorname{err}_l}$ (Beachte: $\operatorname{err}_l \leq 0.5$)
- Berechne neue Datengewichte für alle \mathbf{x}_j mit $j \in E_l$: $w_j \leftarrow w_j e^{\alpha_l}$

Abschließend:

$$f(\mathbf{x}) = \operatorname{sign}\left[\sum_{l=1}^{L} \alpha_l f_l(\mathbf{x})\right]$$

Boosting (adaBoost)

■ Gewichtete Fehlerrate von Klassifikator/Predictor *j*

$$r_{j} = \frac{\sum_{i=1}^{m} w^{(i)}}{\sum_{i=1}^{m} w^{(i)}}$$
 where $\hat{y}_{j}^{(i)}$ is the j^{th} predictor's prediction for the i^{th} instance.

Klassifikator Gewichtung a_i

$$\alpha_j = \eta \log \frac{1 - r_j}{r_j}$$

Boosting (adaBoost)

■ Update der Gewichte der Instanzen/Samples (m=Anzahl Instanzen)

for
$$i = 1, 2, \dots, m$$

$$w^{(i)} \leftarrow \begin{cases} w^{(i)} & \text{if } \hat{y}_j^{(i)} = y^{(i)} \\ w^{(i)} \exp(\alpha_i) & \text{if } \hat{y}_j^{(i)} \neq y^{(i)} \end{cases}$$

Boosting (adaBoost)

AdaBoost Klassifizierung (Mehrheit der gewichteten Votes)

$$\hat{y}(\mathbf{x}) = \underset{k}{\operatorname{argmax}} \sum_{j=1}^{N} \alpha_{j} \quad \text{where } N \text{ is the number of predictors.}$$

$$\hat{y}_{j}(\mathbf{x}) = k$$

Boosting (Gradient Boosting)

■ Anstatt die Instanzengewichte zu verändern, wird bei jedem Schritt der *residual error* des vorgängigen Klassifizieres trainiert!

Boosting (Gradient Boosting)

Gradient Boosting am Beispiel eines DecisionTreeRegressor

```
from sklearn.tree import DecisionTreeRegressor
tree reg1 = DecisionTreeRegressor(max depth=2)
tree reg1.fit(X, y)
y2 = y - tree reg1.predict(X)
tree reg2 = DecisionTreeRegressor(max depth=2)
tree reg2.fit(X, y2)
y3 = y2 - tree reg2.predict(X)
tree reg3 = DecisionTreeRegressor(max depth=2)
tree reg3.fit(X, y3)
```

```
y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
```

Boosting (Gradient Boosting)

■ Gradient Boosting am Beispiel eines DecisionTreeRegressor

Boosting (xgBoost=eXtreme Gradient Boosting)

Eckpunkte von XGBoost

- Regularisierung
 - Standard GradientBoosting (GBM) hat keine Regularisierung, XGBoost schon!
- Parallel Processing
 - XGBoost ist sehr viel schneller
 - Parallelisierung des Entscheidungsbaums
 - Unterstützt die Verwendung von Hadoop
- Tree Pruning
 - GBM stoppt das Teilen von Knoten bei einem negativem Impurity, XGBoost splittet bis max_depth und startet "pruning" durch Entfernen von Nodes/Splits, wo es keine positive Impurity gibt.

Stacking

■ Blending Klassifikator

Stacking

- 1. Teile den Trainingsdatensatz (Training:subset1 und Hold-out-Set:subset2)
- Trainiere die Klassifizierer mit subset1
- Klassifiziere das subset2
- 4. Die Ergebnisse der Klassifizierer bilden das Trainingsset für den Blender

Stacking

Ensemble Notebook

