Method for Overlapping Community Detection in Networks

Alexander Ponomarenko

National Research University Higher School of Economics Laboratory of Algorithm and Technologies for Network Analysis

Problem statement

Let G(V, E) is a graph with the set of n nodes V = 1, 2, ..., n and set of m edges $E \subset V \times V$. Needs to build a cover $C = \{C_1, C_2, ..., C_k\}$, and matrix of belonging factor $A = (a_{ic})_{i=1,c=1}^{n,k}$, where is k is the number of clusters,

$$0 \le a_{ic} \le 1 \ \forall i \in V, \forall c \in C \tag{1}$$

and,

$$\sum_{c=1}^{k} a_{ic} = 1 \tag{2}$$

The proposed method has the following steps:

- 1. Building liner graph L(G)
- 2. Find k disjoint communities.
 - (a) Compute the distance matrix between each pair of nodes based on the structure of L(G)
 - (b) Solve the *P*-median problem with the *P* equals to the given number of clusters.
- 3. Build covering for the original graph G

Link partitioning approach

Let $D = (d_{ij})_{i=1,j=1}^{m,m}$ is a distance matrix defined on the set of edges

We calculate the belonging factor of node i to cluster c as

$$a_{ic} = \frac{\sum_{(i,j)\in E} x_{jc}}{|N_G(i)|}$$

Partitioning around medoids

Let $D = (d_{ij})_{i=1,j=1}^{m,m}$ is a distance matrix defined on the set of edges

Centers of the clusters is a set of k vertices of line graph L(G)

$$S = \{s_1, s_2, ..., s_k\}$$

$$\sum_{c=1}^{k} d_{jc} x_{jc}, j \in E \to \min,$$
(3)

$$x_{jc} = \begin{cases} 1, & \text{if } d_{jc} \le d_{js}, \ s \in S, \\ 0, & \text{otherwise} \end{cases}$$
 (4)

[Kaufman, L., & Rousseeuw, P. (1987). Clustering by means of medoids. North-Holland.]

Partitioning around medoids

Let $D = (d_{ij})_{i=1,j=1}^{m,m}$ is a distance matrix defined on the set of edges

Centers of the clusters is a set of k vertices of line graph L(G)

$$S = \{s_1, s_2, ..., s_k\}$$

$$\sum_{c=1}^{k} d_{jc} x_{jc}, j \in E \to \min, \tag{3}$$

$$x_{jc} = \begin{cases} 1, & \text{if } d_{jc} \le d_{js}, \ s \in S, \\ 0, & \text{otherwise} \end{cases}$$
 (4)

p-median problem also known as facility location problem

We solve *p*-median problem exactly with LP_solve by using efficient model of Goldengorin

[AlBdaiwi, B. F., Ghosh, D., & Goldengorin, B. (2011). Data aggregation for p-median problems. *Journal of Combinatorial Optimization*, 21(3), 348-363.]

Distance functions

Shortest path distance

[Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345]

Commute distance

[Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., & Saerens, M. (2005). clustering using a random walk based distance measure. In *ESANN* (pp. 317-324)]

Amplified commute distance

[Luxburg, U. V., Radl, A., & Hein, M. (2010). Getting lost in space: Large sample analysis of the resistance distance. In *Advances in Neural Information Processing Systems* (pp. 2622-2630)]

Distance: Shortest path

Original Graph

Line Graph

Distance: Shortest path

Commute distance

Commute distance is $C_{ij} := H_{ij} + H_{ji}$

where H_{ij} is a hitting time, defined as the expected time for a random walk starting in vertex v_i to travel to vertex to v_j

A nice property: it becomes smaller when the number of path are increasing

[Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., & Saerens, M. (2005). clustering using a random walk based distance measure. In *ESANN* (pp. 317-324)]

Distance: Commute Distance Number of clusters: 2 Clusters

Distance: Commute Distance

Number of clusters: 3 Clusters

Original graph

Line graph

Compared methods

Label Propagation Method

[Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. *Physical review E*, 76(3), 036106]

Modularity optimisation with simulated annealing

[Sales-Pardo, M., Guimera, R., Moreira, A. A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. *Proceedings of the National Academy of Sciences*, 104(39), 15224-15229]

Clique percolation method

[Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. *nature*, *435*(7043), 814.]

OSLOM

[Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011). Finding statistically significant communities in networks. *PloS one*, *6*(4), e18961.]

Louvain

[Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008]

Comparing with the ground truth

(. , .) graphs was generated by benchmark graphs generating tool

[Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. *Physical review E*, 78(4), 046110]

	LPM	SA	Louvain	СРМ	НІ	OSLOM	Comm ute dist.	Shortest path PMP
Overlappin g	-	-	-	+	-	+	+	+
Zachary (34, 78)	0.70	0.54	0.49	0.09	0.7	0.93	0.5	0.29
Word adj (112, 425)	-0.006	-0.01	-0.01	-0.001	-0.003	0	0.001	0.001
Pol. Books (105, 441)	0.60	0.59	0.31	0.52	0.58	0.60	0.51	0.30
Football (115, 613)	0.85	0.81	0.89	0.06	0.9	0.076	0.12	-
(20, 33)	0.057	0.007	0.04	0.04	0.007	0	-0.005	0.06
(30, 42)	0.63	0.65	0.55	0.59	0.63	0	0.62	0.66
(40, 124)	0.66	0.66	0.7	0.78	0.66	0.58	0.41	0.30
(50, 125)	0.73	0.74	0.78	0.82	0.76	0.7	0.36	0.07
(80, 265)	0.61	0.58	0.64	0.56	0.63	0.3	0.20	0.20
(100, 221)	0.34	0.45	0.41	0.28	0.51	0.17	0.19	0.36
(120, 293)	0.53	0.60	0.50	0.38	0.56	0.45	0.32	0.36
(150, 593)	0.60	0.56	0.54	0.57	0.53	0.15	0.15	0.2
(200, 534)	0.69	0.60	0.77	0.63	0.72	0.41	0.41	0.4

Omega index results

[Collins, L. M., & Dent, C. W. (1988). Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions. *Multivariate Behavioral Research*, 23(2), 231-242.]

Distance: Commute Distance Number of clusters: 6 Clusters

ground truth

method output

Distance: Commute Distance Number of clusters: 6 Clusters

Zachary Karate Club

ground truth

method output

Les Miserables

Distance: Commute Distance

Les Miserables – line graph

Distance: Commute Distance

Community distance lost in space

Property (\bigstar) : Vertices in the same cluster of the graph have a small commute distance, whereas two vertices in different clusters of the graph have a "large" commute distance.

$$\frac{1}{vol(g)}C_{ij} \approx \frac{1}{d_i} + \frac{1}{d_j}$$

The commute distance is not a useful distance function on large graphs

[Luxburg, U. V., Radl, A., & Hein, M. (2010). Getting lost in space: Large sample analysis of the resistance distance. In *Advances in Neural Information Processing Systems* (pp. 2622-2630)]

Amplified Commute distance

$$C_{amp}(i,j) = \frac{C_{i,j}}{vol(G)} - \frac{1}{d_i} - \frac{1}{d_j} + \frac{2w_{ij}}{d_i d_j} - \frac{w_{ii}}{d_i^2} - \frac{w_{jj}}{d_j^2}$$

[Luxburg, U. V., Radl, A., & Hein, M. (2010). Getting lost in space: Large sample analysis of the resistance distance. In *Advances in Neural Information Processing Systems* (pp. 2622-2630)]

Les Miserables – line graph

Les Miserables

Distance: Amplified Commute Distance

Les Miserables

Distance: Amplified Commute Distance

Number of Clusters: 7 Bruion Guerlemer Montp Chenildieu Boulatruelle Jondrette MmeBurgon eville Magnon Woman1 **1otherRutarch** yrac Perpetue Prot event MmeHu MlleBaptistine Toussain ormand La Mme Magloire Gran and -Cravatte Napoleon MlleVaubois CountessDeLo BarorlessT Pontmercy Geborand MmePontmercy

Thank you for your attention

"And what is the next step?"

-Panos M. Pardalos © 2018