MLE Exercise 6

1. Convolutions of Continuous and Discrete Variables

1(a) Adding two Gaussians

Let

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2), \qquad Y \sim \mathcal{N}(\mu_2, \sigma_2^2), \qquad Z = X + Y,$$

with X and Y independent.

Because of independence we can write the pdf of Z as a convolution of pdfs of X and Y:

$$f_Z(z) = (f_X * f_Y)(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx.$$

This comes from the definition of convolution.

Both f_X and f_Y have the familiar bell-curve form

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left[-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right], \quad f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left[-\frac{(y-\mu_2)^2}{2\sigma_2^2}\right].$$

Substituting y = z - x for the second one gives

$$f_Z(z) = \frac{1}{2\pi\sigma_1\sigma_2} \int_{-\infty}^{\infty} \exp\left[-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(z-x-\mu_2)^2}{2\sigma_2^2}\right] dx.$$

Completing the square: The exponent is a quadratic in x plus some terms that do *not* depend on x. We collect the quadratic terms and rewrite them as a single perfect square:

$$-\frac{1}{2} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(z-x-\mu_2)^2}{\sigma_2^2} \right] = -\frac{(x-\mu_{\star})^2}{2\Sigma^2} - \frac{(z-(\mu_1+\mu_2))^2}{2(\sigma_1^2+\sigma_2^2)},$$

where

$$\Sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}, \qquad \mu_{\star} = \Sigma^2 \left(\frac{\mu_1}{\sigma_1^2} + \frac{z - \mu_2}{\sigma_2^2}\right).$$

The factor $e^{-(x-\mu_{\star})^2/(2\Sigma^2)}$ integrates to $\sqrt{2\pi\Sigma^2}$ (the standard Gaussian integral), so we are left with

$$f_Z(z) = \frac{1}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}} \exp\left[-\frac{(z - (\mu_1 + \mu_2))^2}{2(\sigma_1^2 + \sigma_2^2)}\right].$$

This is a Gaussian pdf, with mean $\mu_1 + \mu_2$ and variance $\sigma_1^2 + \sigma_2^2$. Therefore the final result:

 $Z \sim \mathcal{N}(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2)$

1(b) Output size of a 2-D convolution layer

Problem: Given

- input image size (H, W),
- kernel / filter size (K_H, K_W) ,
- zero-padding of p pixels on each edge, and
- stride s (same in both spatial dimensions),

derive the height H_{out} and width W_{out} of the resulting feature map.

Answer: Padding inflates the useful image region to $(H + 2p) \times (W + 2p)$. With stride s, the kernel's top-left corner "jumps" by s pixels each step.

One dimension first. Along, the vertical axis, the kernel can land at positions.

0,
$$s$$
, $2s$, ..., $(H_{\text{eff}} - K_H)$, where $H_{\text{eff}} = H + 2p$.

Counting how many multiples of s fit into that range gives

$$\left\lfloor \frac{H_{\text{eff}} - K_H}{s} \right\rfloor + 1.$$

Exactly the same argument applies horizontally.

Final formulae:

$$H_{\text{out}} = \left\lfloor \frac{H + 2p - K_H}{s} \right\rfloor + 1$$

$$H_{\mathrm{out}} = \left\lfloor \frac{H + 2p - K_H}{s} \right\rfloor + 1, \qquad W_{\mathrm{out}} = \left\lfloor \frac{W + 2p - K_W}{s} \right\rfloor + 1$$

Special-cases:

- "Valid" convolution (p = 0, s = 1): $H_{\text{out}} = H K_H + 1, W_{\text{out}} = W -$
- "Same" convolution (choose $p = \frac{K_H 1}{2}$, K odd, s = 1): $H_{\text{out}} = H$ etc. Nice consistency check!
- Down-sampling (s > 1) visibly reduces the size.