Nonlinear (systems of) equations

Numerical analysis - University of Luxembourg

Exercises

Introduction

Exercise 1.

Consider the system of non-linear equations in two dimensions

$$x_1^2 - x_2 + \gamma = 0$$
$$-x_1 + x_2^2 + \gamma = 0$$

Give a geometrical interpretation to the solutions of this non-linear system, by plotting the iso-contours of the two functions for different values of γ .

- define a grid $[-2,2] \times [2,2]$ using np.meshgrid
- plot the isolines using plt.contour (you can also experiment plt.contourf filled contours)
- note that you can specify the zero-valued isoline with "levels = [0]"
- How many solutions do you visually find for $\gamma = 0.5$, $\gamma = 0.25$, $\gamma = -0.5$ and $\gamma = -1$ respectively?
- finally, experiment 3D rendering

1D Root-finding

Exercise 2. Bisection method

Implement the bisection method and test you methods on the following functions

- $x^2 = 4\sin(x)$
- $x^3 2x 5 = 0$
- $x\sin(x) = 1$
- $\bullet \ e^{-x} = x$
- $x^3 3x^2 + 3x 1 = 0$

What termination criterion should you use? What convergence rate is achieved? Compare your result (solution and convergence rate) with those for a library routine for solving nonlinear equations (scipy.optimize).

Exercise 3. Fixed point method

For the equation

$$f(x) = x^2 - x - 2 = 0$$

Each of the following functions yields an equivalent fixed-point problem

$$g_1(x) = (x^2 - 2) (1)$$

$$g_2(x) = \sqrt{x+2} \tag{2}$$

$$g_3(x) = 1 + 2/x (3)$$

$$g_4(x) = (x^2 + 2)/(2x - 1).$$
 (4)

Analyze the convergence properties of each of the corresponding fixed-point iteration schemes for the root x = 2 by considering $|q_i'(2)|$.

Confirm your analysis by implementing each of the schemes and verifying its convergence (or lack thereof) and approximate convergence rate

Exercise 4. Secant and Newton's method

Consider again exercise 2, but now solve it using Secant and Newton's method.

Exercise 5. Newton fractal

Consider the polynomial function

$$f: x \mapsto x^3 - 1$$

What are the roots of this polynomial?

Report on a 1D plot the behaviour of Newton's method for many different starting points (convergence towards a root or divergence - use a different color for each behaviour and each root). Do the same exercise but for many starting points in the *complex plane*. Plot the so-called basin of attraction of the system, that is report for many different starting points the behaviour of the method. Use a different color for each root.

Replot the basin of attraction with the secant method. For the Newton or secant method you should obtain a fractal pattern. Try to explain and interpret what you observe.

Root-finding in higher dimensions

Exercise 6. 2D zero finding

Find the zeros of the following systems

$$xy + y^2 = 1$$
$$xy^3 + x^2y^2 = -1$$

and

$$x^{2} = y - x\cos(\pi x)$$
$$yx = 1/x - e^{-y}$$

using Newton's method in 2D. You will need to compute the Jacobian matrix.

Exercise 7. 3D zero finding

Let F be defined by

$$F: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} xy^2 + 2y^2z + 10y^2 + x + 2z + 10 \\ xz^2 - 2yz^2 - 10z^2 + 2x - 4y - 20 \\ 5y^3 + 4z^3 + 4y^2z + 5yz^2 - 5y^2 - 5z^2 \end{pmatrix}$$

The goal of this exercise is to find a zero of F by using three methods.

• Let ϕ such that

$$\phi(x, y, z) = f_1(x, y, z)^2 + f_2(x, y, z)^2 + f_3(x, y, z)^2$$

where f_1, f_2, f_3 are the functions that define the components of F. By using scipy.optimize.minimize, find a minimum of ϕ . Is it a zero of F? What happens if you change the initial value?

- \bullet Code the Newton method for F.
- \bullet Code the Broyden method for F.
- Run the two methods, interpret your results and conclude