Machine Intelligence II

Exercise Sheet 8

SS 10, Prof. Obermayer

due to 1.7.2010

Problem 8.1 (3 points)

The entropy of a random vector \mathbf{x} with probability density $p(\mathbf{x})$ is defined as

$$H(\mathbf{x}) = -E(\log p(\mathbf{x}))$$

where E denotes the expectation. Consider an invertible transformation $\mathbf{y} = \mathbf{g}(\mathbf{x})$. Using the Jacobi determinant, find the relation between $H(\mathbf{y})$ and $H(\mathbf{x})$. Use this to show that the entropy is not scale invariant, i.e. $H(a\mathbf{x}) \neq H(\mathbf{x})$, for a = const.

Problem 8.2 (3 points)

Show that the entropy of a multivariate n-dimensional Gaussian random vector \mathbf{x} with covariance matrix Σ has the form

$$H(\mathbf{x}_{Gauss}) = \frac{1}{2} \log |\det \mathbf{\Sigma}| + \frac{n}{2} (1 + \log 2\pi)$$

Problem 8.3 (4 points)

The negentropy is defined as

$$J(\mathbf{x}) = H(\mathbf{x}_{Gauss}) - H(\mathbf{x})$$

where \mathbf{x}_{Gauss} is a multivariate Gaussian with the same covariance matrix as \mathbf{x} . Show that the negentropy is invariant for invertible linear transformations $\mathbf{y} = \mathbf{A}\mathbf{x}$, i.e.

$$J(\mathbf{A}\mathbf{x}) = J(\mathbf{x})$$

from which it follows that the negentropy is scale-invariant.

Total points: 10