

erforderlich ⊠

Hydraulik

Aufgabennummer: B_287

möglich \square

a) Hydraulikzylinder sind mittels Flüssigkeit betriebene Arbeitszylinder. Zwischen dem Durchmesser $d_{\rm K}$ des Zylinderkolbens und dem Betrag $F_{\rm A}$ der ausfahrenden Kraft besteht folgender Zusammenhang:

$$F_{A} = p \cdot \frac{d_{K}^{2} \cdot \pi}{4}$$

Technologieeinsatz:

 $F_{\scriptscriptstyle \rm A} \dots$ Betrag der ausfahrenden Kraft in Newton (N)

p ... Druck in N/mm²

 $d_{\rm \tiny K}$... Kolbendurchmesser in mm

In der nachstehenden Tabelle sind einige Messwerte einer Testreihe für einen mit dem Druck $p = 10 \text{ N/mm}^2$ belasteten Hydraulikzylinder angegeben.

d _K in mm	50	60	70	80	90
F_{A} in kN	18,59	27,15	39,03	51,29	62,24

- Berechnen Sie für den Messwert bei $d_{\rm K}$ = 70 mm den relativen Fehler des Messwerts bezüglich des aus der Formel erhaltenen Wertes für $F_{\rm A}$ in Prozent.
- Erstellen Sie für die Messwerte ein alternatives Modell zur Berechnung von $F_{\rm A}$ in Abhängigkeit von $d_{\rm K}$ in Form einer quadratischen Ausgleichsfunktion.

Hydraulik 2

Ausgleichsfunktionen werden mit der Methode der kleinsten Quadrate ermit	teit.

- Kreuzen Sie die auf diese Methode zutreffende Aussage an. [1 aus 5]

Die Parameter der Ausgleichsfunktion werden so bestimmt, dass der erste und der letzte Messpunkt auf dem Funktionsgraphen liegen.	
Die Parameter der Ausgleichsfunktion werden so bestimmt, dass möglichst viele Messpunkte genau auf dem Funktionsgraphen liegen.	
Die Parameter der Ausgleichsfunktion werden so bestimmt, dass die Summe der Quadrate der senkrechten Abstände der Messpunkte vom Funktionsgraphen möglichst klein ist.	
Die Parameter der Ausgleichsfunktion werden so bestimmt, dass die Summe der senkrechten Abstände der Messpunkte vom Funktionsgraphen null ist.	
Die Parameter der Ausgleichsfunktion werden so bestimmt, dass die Steigung der Ausgleichsfunktion möglichst gering ist.	

b) Für die Modellierung eines speziellen Gehäuses eines Hydraulikzylinders wird die Funktion *f* verwendet.

$$f(x) = \frac{1}{0.1 \cdot x + 0.35} - 0.85$$

- x, f(x) ... Koordinaten in Längeneinheiten
- Zeichnen Sie die Funktion f im Intervall [–20; 20].

Rotiert die Funktion f im Intervall $[0; x_N]$ um die x-Achse, erhält man ein Modell des gewünschten Gehäuses, wobei x_N die Nullstelle der Funktion f ist.

- Berechnen Sie das Volumen des Gehäuses.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Hydraulik

Möglicher Lösungsweg

a)
$$F_A = p \cdot \frac{d_K^2 \cdot \pi}{4}$$

$$F_A = 10 \cdot \frac{70^2 \cdot \pi}{4} = 38484,51... \text{ N} \approx 38,4845 \text{ kN}$$

relativer Fehler:
$$\frac{39,03 - 38,4845}{38,4845} = 0,01417... \approx 1,4 \%$$

Ermitteln der Ausgleichsfunktion mittels Technologieeinsatz:

 $F_{\rm A}(d_{\rm K}) = 0.0037 \cdot d_{\rm K}^2 + 0.5984 \cdot d_{\rm K} - 21.025$ (Koeffizienten gerundet)

[]	
[]	
Die Parameter der Ausgleichsfunktion werden so bestimmt, dass die Summe der Quadrate der senkrechten Abstände der Messpunkte vom Funktionsgraphen möglichst klein ist.	\boxtimes
[]	
[]	

$$X_{\rm N} \approx 8,265$$

$$V_x = \pi \cdot \int_0^{8,265} (f(x))^2 dx = 17,0678... \text{ VE}$$

Hydraulik 4

Klassifikation

Wesentlicher Bereich der Inhaltsdimension:

- a) 5 Stochastik
- b) 3 Funktionale Zusammenhänge

Nebeninhaltsdimension:

- a) 1 Zahlen und Maße
- b) 4 Analysis

Wesentlicher Bereich der Handlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) B Operieren und Technologieeinsatz

Nebenhandlungsdimension:

- a) C Interpretieren und Dokumentieren
- b) A Modellieren und Transferieren

Schwierigkeitsgrad: Punkteanzahl:

a) leicht

a) 3

b) leicht

b) 3

Thema: Sonstiges

Quellen: -