PROJET D'ANALYSE DE DONNEES

ANALYSE EN COMPOSANTES PRINCIPALES ET ANALYSE FACTORIELLE DES CORRESPONDANCES

Réalisé avec le logiciel R

Réalisé par FOKOU PENANJO VANECK ETUDIANT A L'ENSA D'AGADIR, 1ERE ANNEE FID

ANALYSE EN COMPOSANTES PRINCIPALES

Données: Taux de mortalité par groupe d'âge en France métropolitaine de 1962 à 2017

1. Etude préliminaire des données

Ce jeu de données contient 56 individus et 19 variables.

Les données sont constituées du taux de mortalité par groupe d'âge (19 groupes) recensé pendant 56 années (de 1962 à 2017). Ci-dessous on a le résumé des données.

Tous. Âges	moins d'un an	1.à.4.ans	5.à.9.ans	10.à.14.ans
Min. : 8.400	Min. : 2.800	Min. :0.2300	Min. :0.070	00 Min. :0.0800
1st Qu.: 9.000	1st Qu.: 3.475	1st Qu.:0.3500	1st Qu.:0.115	50 1st Qu.:0.1250
Median : 9.300	Median : 6.050	Median :0.7050	Median :0.205	60 Median :0.2050
Mean : 9.671	Mean : 8.021	Mean :0.7880	Mean :0.235	64 Mean :0.2136
3rd Qu.:10.500	3rd Qu.:11.000	3rd Qu.:0.9975	3rd Qu.:0.355	3rd Qu.:0.3000
Max. :11.700	Max. :21.200	Max. :2.2500	Max. :0.440	00 Max. :0.3800
15.à.19.ans	20.à.24.ans	25.à.29.ans	30.à.34.ans	35.à.39.ans
Min. :0.2100	Min. :0.3800	Min. :0.4500	Min. :0.570	Min. :0.810
1st Qu.:0.3550	1st Qu.:0.6225	1st Qu.:0.6275	1st Qu.:0.810	1st Qu.:1.188
Median :0.5550	Median :0.9800	Median :1.0450	Median :1.200	Median :1.650
Mean :0.5686	Mean :0.8873	Mean :0.9120	Mean :1.100	Mean :1.550
3rd Qu.:0.7725	3rd Qu.:1.1425	3rd Qu.:1.0925	3rd Qu.:1.343	3rd Qu.:1.860
Max. :0.9300	Max. :1.2700	Max. :1.2400	Max. :1.630	Max. :2.230
40.à.44.ans	45.à.49.ans	50.à.54.ans	55.à.59.ans	60.à.64.ans
Min. :1.250	Min. :2.040	Min. :3.290 M:	in. : 5.200	Min. : 7.80
1st Qu.:1.897	1st Qu.:3.127	1st Qu.:4.522 1	st Qu.: 6.250	1st Qu.: 8.70
Median :2.390	Median :3.500	Median :5.370 Me	edian : 8.050	Median :11.65
Mean :2.370	Mean :3.708	Mean :5.625 Me	ean : 8.261	Mean :12.09
3rd Qu.:3.002	3rd Qu.:4.720	3rd Qu.:6.957 3	^d Qu.:10.100	3rd Qu.:15.22
Max. :3.270	Max. :5.150	Max. :7.830 Max	ax. :12.300	Max. :18.70
65.à.69.ans	70.à.79.ans	80.à.89.ans	90.à.110.ans	

```
1st Qu.:12.75
                                1st Qu.: 71.62
                1st Qu.:25.77
                                                 1st Qu.:211.8
                                                 Median :232.0
Median :16.50
                Median :34.35
                                Median : 92.45
                      :35.13
                                Mean : 95.10
Mean
       :17.81
                Mean
                                                 Mean
                                                        :237.2
3rd Qu.:23.10
                3rd Qu.:46.58
                                3rd Qu.:117.65
                                                 3rd Qu.:267.5
       :28.00
                       :55.60
                                       :144.00
                                                        :314.0
Max.
                Max.
                                Max.
                                                 Max.
```

Min : Taux de mortalité minimal pour le groupe d'âge

Max : Taux de mortalité maximal pour le groupe d'âge

Median : Médiane

Mean: Moyenne

1st Qu: Premier quartile

3rd Qu : Troisième quartile

Les données sont importées sous R dans un fichier csv grâce à la syntaxe:

```
>data = read.csv(file.choose(), header = TRUE, sep = ";", row.names = 1, dec = ",")
```

L'ACP a été réalisé à l'aide du package Factoshiny. Le code qui nous a permis de la réaliser est :

>library(Factoshiny)

>Factoshiny(data)

Après ouverture de l'interface Factoshiny, on choisit Analyse en composante principale.

2. Distribution de l'inertie

L'inertie des axes factoriels indique d'une part si les variables sont structurées et suggère d'autre part le nombre judicieux de composantes principales à étudier.

Les 2 premiers axes de l'analyse expriment **96.95**% de l'inertie totale du jeu de données. Le premier facteur est largement prépondérant : il contient à lui seul **93.51**% de l'information totale des données. Cette observation suggère que seul cet axe est porteur d'une véritable information. En conséquence, la description de l'analyse sera restreinte à cet axe car il n'est absolument pas nécessaire pour l'analyse d'interpréter les dimensions suivantes.

Valeur propre	Pourcentage d'inertie	Pourcentage d'inertie cummulé
17.77	93.51	93.51
0.66	3.45	96.95
0.32	1.70	98.65
0.08	0.45	99.10
0.06	0.30	99.40
0.05	0.24	99.64
0.02	0.10	99.74
0.01	0.07	99.81
0.01	0.04	99.85
0.01	0.03	99.88
0.00	0.02	99.91
0.00	0.02	99.95
0.00	0.02	99.97
0.00	0.01	99.98
0.00	0.01	99.99
0.00	0.01	99.99
0.00	0.01	100.00
0.00	0.00	100.00

3. Résultats sur les variables (groupes d'âge)

Variables						
	Cor.1	ctr	cos2	Cor.2	ctr	cos2
Tous âges	0.959	5.178	0.920	-0.210	6.705	0.044
Moins d'un an(a)	0.921	4.770	0.848	-0.359	19.706	0.129
1.à.4.ans	0.941	4.988	0.886	-0.279	11.839	0.078
5.à.9.ans	0.987	5.483	0.974	-0.067	0.686	0.004
10.à.14.ans	0.989	5.507	0.978	0.032	0.158	0.001
15.à.19.ans	0.939	4.966	0.882	0.222	7.495	0.049
20.à.24.ans	0.924	4.802	0.853	0.353	19.014	0.125
25.à.29.ans	0.926	4.831	0.858	0.307	14.373	0.094
30.à.34.ans	0.923	4.793	0.852	0.235	8.415	0.055
35.à.39.ans	0.968	5.269	0.936	0.135	2.792	0.018
40.à.44.ans	0.983	5.443	0.967	0.111	1.881	0.012
45.à.49.ans	0.985	5.463	0.971	0.050	0.380	0.002
50.à.54.ans	0.987	5.488	0.975	-0.015	0.033	0.000
55.à.59.ans	0.991	5.526	0.982	-0.092	1.301	0.009
60.à.64.ans	0.990	5.519	0.981	-0.115	2.008	0.013
65.à.69.ans	0.992	5.540	0.984	-0.090	1.235	0.008
70.à.79.ans	0.994	5.559	0.988	-0.062	0.582	0.004
80.à.89.ans	0.993	5.554	0.987	-0.043	0.282	0.002
90.à.110.ans	0.972	5.321	0.945	-0.085	1.115	0.007

Cor : Coefficient de corrélation entre l'axe factoriel et la variable

Ctr : Contribution à l'inertie de l'axe ;

Cos2 : *Cosinus carré de l'angle entre le vecteur de la variable et l'axe factoriel.*

Interprétation: On remarque que toutes les variables (groupes d'âge) sont très fortement corrélées, positivement, au premier axe (coeff.de corrélation > 0.92) et sont très bien représentées sur celui-ci (cos^2 > 0.84); donc elles sont toutes très importantes pour l'interprétation de cet axe et on peut considérer cet axe comme une synthèse de ces variables.

4. Résultats sur les individus (années)

Individus					
	Dis	Dim.1	ctr cos2	Dim.2	ctr cos2
1962	7.46	7.088 5	.049 0.902	-1.919 10.	038 0.066
1963	7.54	7.200 5	.210 0.910	-1.924 10.	091 0.065
1964	5.966	5.762 3	.337 0.933	-1.155 3.	637 0.037
1965	6.29	6.158 3	.811 0.957	-1.058 3.	052 0.028
1966	5.640	5.498 3	.039 0.950	-0.805 1.	765 0.020
1967	5.752	5.687 3	.251 0.977	-0.739 1.	489 0.017
1968	5.85	5.780 3	.358 0.975	-0.829 1.	874 0.020
1969	6.349	6.275 3	.958 0.977	-0.653 1.	164 0.011
1970	5.054	5.009 2	.522 0.982	-0.302 0.	249 0.004
1971	5.300	5.258 2	.779 0.984	-0.092 0.	023 0.000
1972	5.08	5.007 2	.520 0.971	0.408 0.	453 0.006
1973	4.843	4.756 2	.274 0.965	0.185 0.	093 0.001
1974	4.29	4.212 1	.783 0.963	0.075 0.	015 0.000
1975	4.13	4.023 1	.627 0.949	0.033 0.	003 0.000
1976	3.97	3.833 1	.477 0.930	0.372 0.	377 0.009
1977	3.30	3.121 0	.979 0.894	0.557 0.	846 0.028
1978	3.07	2.892 0	.841 0.884	0.314 0.	268 0.010
1979	2.96	2.714 0	.741 0.840	0.686 1.	281 0.054
1980	2.939	2.679 0	.721 0.831	0.697 1.	322 0.056
1981	2.60	2.398 0	.578 0.847	0.484 0.	638 0.034
1982	2.210	1.979 0	.394 0.802	0.695 1.	316 0.099
1983	2.328	2.077 0	.434 0.796	0.596 0.	967 0.065
1984	1.70	1.369 0	.188 0.644	0.815 1.	811 0.228
1985	1.458	1.175 0	.139 0.650	0.520 0.	737 0.127
1986	1.18	0.889 0	.079 0.561	0.560 0.	856 0.223
1987	0.77	0.162 0	.003 0.044	0.551 0.	826 0.509
1988	0.91	-0.055 0	.000 0.004	0.736 1.	476 0.649
1989	1.048	0.017 0	.000 0.000	0.888 2.	149 0.717
1990	1.32	-0.353 0	.013 0.071	1.020 2.	835 0.591

1991	1.628 -0.427 0.018 0.069 1.234 4.148 0.574
1992	1.891 -0.753 0.057 0.158 1.312 4.693 0.482
1993	1.858 -0.749 0.056 0.163 1.276 4.440 0.472
1994	2.192 -1.225 0.151 0.312 1.353 4.991 0.381
1995	2.166 -1.353 0.184 0.390 1.267 4.374 0.342
1996	2.113 -1.748 0.307 0.684 0.841 1.929 0.158
1997	2.367 -2.264 0.515 0.915 0.499 0.680 0.045
1998	2.572 -2.490 0.623 0.937 0.402 0.442 0.024
1999	2.671 -2.602 0.680 0.949 0.300 0.246 0.013
2000	3.032 -2.992 0.900 0.974 0.182 0.090 0.004
2001	3.163 -3.116 0.976 0.971 0.258 0.182 0.007
2002	3.414 -3.387 1.153 0.984 0.121 0.040 0.001
2003	3.554 -3.477 1.215 0.957 -0.276 0.207 0.006
2004	4.557 -4.506 2.041 0.978 -0.079 0.017 0.000
2005	4.517 -4.482 2.019 0.985 -0.250 0.170 0.003
2006	4.819 -4.769 2.286 0.979 -0.353 0.340 0.005
2007	5.004 -4.953 2.466 0.980 -0.437 0.520 0.008
2008	5.042 -4.984 2.497 0.977 -0.541 0.799 0.012
2009	5.038 -4.992 2.505 0.982 -0.524 0.749 0.011
2010	5.356 -5.316 2.841 0.985 -0.601 0.984 0.013
2011	5.687 -5.644 3.202 0.985 -0.547 0.816 0.009
2012	5.783 -5.711 3.278 0.975 -0.851 1.976 0.022
2013	6.040 -5.955 3.565 0.972 -0.949 2.457 0.025
2014	6.413 -6.324 4.020 0.972 -0.905 2.232 0.020
2015	6.095 -5.976 3.590 0.961 -1.066 3.097 0.031
2016	6.345 -6.210 3.876 0.958 -1.140 3.544 0.032
2017	6.378 -6.208 3.874 0.947 -1.239 4.187 0.038

Dist : Distance à l'origine du plan Dim : Coordonnée sur l'axe factoriel Ctr : Contribution à l'inertie de l'axe

Cos2 : Cosinus carré de l'angle entre l'individu et l'axe factoriel

Interprétation : Les années extrêmes sont celles ayant le plus contribuées à la réalisation du premier axe factoriel et sont aussi bien représentées sur cet axe (cos^2 proche de 1).

5. Graphes de l'ACP

Figure 3.1 - Graphe des individus (ACP) *Les individus libellés sont ceux ayant la plus grande contribution à la construction du plan.*

Figure 3.2 - Graphe des variables (ACP) *Les variables libellées sont celles les mieux représentées sur le plan.*

6. Interprétations

La **dimension 1** oppose des individus tels que 1968, 1967, 1969, 1965, 1963, 1966, 1964 et 1962 (à droite du graphe, caractérisés par une coordonnée fortement positive sur l'axe) à des individus comme 2013, 2012, 2011, 2014, 2015, 2016 et 2017 (à gauche du graphe, caractérisés par une coordonnée fortement négative sur l'axe).

Le premier groupe d'années (caractérisés par une coordonnée positive sur l'axe) partage des fort taux de mortalité pour l'ensemble des 19 variables ; contrairement au deuxième groupe d'années (caractérisés par une coordonnée négative sur l'axe) qui partage des taux de mortalité beaucoup plus faible pour ces variables.

On en déduit que la dimension 1 range de la droite vers la gauche, les individus (années) du taux de mortalité général le plus élevé vers le taux de mortalité général le plus bas. Le taux de mortalité général étant le taux de mortalité de toute la population (constituée de tous les groupes d'âge) de France Métropolitaine.

ANALYSE FACTORIELLE DES CORRESPONDANCES

Données: Résultats du premier tour des élections présidentielles de 2007 en France

1. Etude préliminaire des données

Le jeu de données contient 16 lignes et 12 colonnes.

Les données utilisées sont constituées des résultats du premier tour des élections présidentielles de 2007 en France. Pour chacune des 16 régions françaises, on donne les effectifs de suffrages pour chacun des 12 candidats. L'objectif est d'analyser la structure de vote ainsi que les liaisons entre candidats et régions.

Les données sont importées sous R dans un fichier csv grâce à la syntaxe:

```
>data = read.csv(file.choose(), header = TRUE, sep = ";", row.names = 1, dec = ",")
```

Puis, on affiche le résumé du jeu de données avec la syntaxe:

>summary(data)

Sarkozy	Bayrou	Royal	Le. Pen	Besanc.
Min. : 56819	Min. : 18979	Min. : 33493	Min. : 23432	Min. :5941
1st Qu.: 244548	1st Qu.: 157707	1st Qu.: 169772	1st Qu.: 92801	1st Qu.:33396
Median : 383155	Median : 224499	Median : 278345	Median :139828	Median :53297
Mean : 454477	Mean : 283712	Mean : 389651	Mean :156662	Mean :62799
3rd Qu.: 485545	3rd Qu.: 340922	3rd Qu.: 545854	3rd Qu.:175858	3rd Qu.:72763
Max. :1931429	Max. :1143081	Max. :1593033	Max. :430553	Max. :181247
Villiers	Voynet L	.aguiller	Bove Bu	ıffet
Min. : 1908	Min. : 2119 Mir	.: 1346 Min.	: 1659 Min.	: 5163
1st Qu.:20024	1st Qu.:12682 1st	Qu.:13404 1st Q	u.:11813 1st Qu	.: 12152
Median :26944	Median :20585 Med	lian :15914 Media	n :14926 Median	: 20575
Mean :30049	Mean :23205 Mea	n :20326 Mean	:19493 Mean	: 30028
3rd Qu.:35697	3rd Qu.:26022 3rd	Qu.:23103 3rd Q	u.:27544 3rd Qu	.: 35205
Max. :89498	Max. :89885 Max	:52965 Max.	:57453 Max.	:110967
Nihous	Schivardi			
Min. : 2260	Min. : 450			

Min: Effectif minimal; Median: Médiane; Mean: Moyenne;

1st Qu: 1er quartile; 3rd Qu: 3e quartile; Max: Effectif maximal.

2. Réalisation de l'AFC

Notre analyse a été réalisée à l'aide du package Factoshiny. Ce package permet d'effectuer une analyse factorielle à partir de FactoMineR à l'aide d'une application brillante. Le code qui nous a permis d'obtenir nos résultats est le suivant:

```
> data = read.csv(file.choose(), header = TRUE, sep = ";", row.names = 1, dec = ",")
>library(Factoshiny)
>Factoshiny(data)
```

Après ouverture de l'application Factoshiny, on choisit analyse des correspondances.

3. Distribution de l'inertie

L'inertie des axes factoriels indique d'une part si les variables sont structurées et suggère d'autre part le nombre judicieux de composantes principales à étudier.

Les 2 premiers axes de l'analyse expriment 76.7% de l'inertie totale du jeu de données.

Cette observation suggère que seuls ces axes sont porteurs d'une véritable information. En conséquence, la description de l'analyse sera restreinte à ces seuls axes car il n'est probablement pas nécessaire pour l'analyse d'interpréter les dimensions suivantes.

	Valeur Propre	Pourcentage d'inertie	Pourcentage d'inertie cummulé
dim 1	0.01	51.09	51.09
dim 2	0.01	25.61	76.70
dim 3	0.00	11.50	88.20
dim 4	0.00	4.83	93.03
dim 5	0.00	3.51	96.54
dim 6	0.00	1.65	98.20
dim 7	0.00	0.86	99.06
dim 8	0.00	0.54	99.60
dim 9	0.00	0.21	99.80
dim 10	0.00	0.16	99.96
dim 11	0.00	0.04	100.00

Figure 1 - Tableau des valeurs propres

4. Résultats des colonnes

Colonnes									
	Ine	er*1000	Dim.1	ctr	cos2	Dim.2	ctr	cos2	
Sarkozy		2.756	-0.014	0.433	0.022	-0.087	32.410	0.834	
Bayrou		2.879	-0.098	12.897	0.634	-0.015	0.566	0.014	
Royal		3.731	-0.081	11.965	0.454	0.077	22.087	0.420	
Le.Pen		8.258	0.273	55.445	0.951	-0.041	2.472	0.021	
Besanc.		1.454	0.126	4.754	0.463	0.095	5.308	0.259	
Villiers		1.012	0.096	1.319	0.184	-0.028	0.227	0.016	
Voynet		0.237	-0.038	0.158	0.094	-0.061	0.817	0.244	
Laguiller		1.279	0.254	6.192	0.686	0.054	0.551	0.031	
Bove		0.637	0.006	0.004	0.001	0.107	2.111	0.235	
Buffet		1.885	0.081	0.943	0.071	0.195	10.769	0.406	
Nihous		3.031	0.261	5.539	0.259	0.361	21.155	0.495	
Schivardi		0.550	0.120	0.352	0.091	0.177	1.527	0.197	

Dim 1: coordonnée sur le premier axe

Dim 2: coordonnée sur le deuxième axe

Ctr: contribution à l'inertie de l'axe

Cos2: cosinus carré de l'angle entre le vecteur colonne (la variable) et l'axe factoriel

Iner: Inertie.

Interprétation:

Les individus Bayrou, Royal et Le Pen contribuent à 80.307% de l'inertie du premier axe. Donc on peut dire que ces individus sont les plus importants pour l'analyse de cet axe.

Les individus Sarkozy, Royal et Nihous contribuent à 75.652% de l'inertie du 2e axe. Donc ces individus sont les plus importants pour l'analyse de cet axe.

De plus, les cosinus carrés des angles entre les vecteurs des individus Sarkozy, Bayrou, Royal, Le Pen, Nihous et le plan factoriel sont respectivement: 0.856, 0.648, 0.874, 0.972, 0.754(très proche de 1). Donc ces individus sont très bien représentés dans le plan factoriel.

On pourra donc interpréter sans réserve la proximité dans le plan de ces individus.

5. Résultats des lignes

Lignes									
	Ir	ner*1000	Dim.1	ctr	cos2	Dim.2	ctr	cos2	
Alsace		2.978	0.072	1.516	0.072	-0.236	32.922	0.785	
Aquitaine		1.372	-0.068	2.691	0.278	0.092	9.682	0.501	
Auvergne		0.328	-0.011	0.030	0.013	0.076	2.869	0.621	
Bourgogne		0.248	0.067	1.295	0.739	-0.018	0.195	0.056	
Bretagne		2.002	-0.119	8.434	0.596	0.044	2.252	0.080	
Centre		0.654	0.060	1.596	0.345	-0.027	0.636	0.069	
Cham-Ard		1.302	0.176	6.928	0.753	-0.094	3.909	0.213	
Corse		0.525	0.181	1.495	0.403	-0.081	0.594	0.080	
Fr-Comte		0.546	0.112	2.535	0.657	-0.048	0.930	0.121	
Ile de Fr		6.111	-0.136	31.193	0.723	-0.061	12.684	0.147	
Lang-Rous		1.780	0.118	6.307	0.502	0.020	0.358	0.014	
Limousin		0.655	-0.028	0.109	0.023	0.165	7.512	0.814	
Lorraine		1.496	0.126	6.409	0.607	-0.056	2.519	0.120	
Midi-Pyr		1.720	-0.073	2.768	0.228	0.115	13.697	0.565	
Nord-PdC		5.022	0.197	26.414	0.745	0.082	9.194	0.130	
Basse-Nor		0.970	0.032	0.279	0.041	0.009	0.048	0.004	

Interprétation:

Les régions Ile de Fr, Nord-PdC, Bretagne et Cham-Ard contribuent à 72.969% de l'inertie du premier axe. Donc ces régions sont les plus importantes pour l'analyse de cet axe.

Les régions Alsace, Ile de Fr, Midi-pyr, Nord-PdC et Aquitaine contribuent à 78.179% de l'inertie du second axe. Donc ces régions sont les plus importantes pour l'analyse de cet axe.

De plus, les cosinus carrés des angles entre les vecteurs des régions Alsace, Aquitaine, Cham-Ard, Ile de Fr, Limousin, Midi-pyr, Nord-PdC et le plan factoriel sont respectivement: 0.857, 0.779, 0.966, 0.87, 0.837, 0.793, 0.875 (très proche de 1). Donc ces régions sont très bien représentées dans le plan factoriel.

On pourra donc interpréter la proximité dans le plan de ces régions.

6. Graphe de l'AFC

1-Graphe de l'AFC

Tous les candidats et toutes les régions de France sont libellés dans le plan factoriel.

2-Graphe (AFC) Les régions libellées sont celles ayant la plus grande contribution à la construction du plan. Les candidats libellées sont ceux les mieux représentées sur le plan.

7. Interprétations

La **dimension 1** oppose des candidats tels que Le.Pen (à droite du graphe, caractérisés par une coordonnée fortement positive sur l'axe) à des facteurs comme Royal et Bayrou (à gauche du graphe, caractérisés par une coordonnée fortement négative sur l'axe). Notons que le candidat Le.Pen est extrêmement corrélé à cette dimension (corrélation de 0.95). Ce facteur pourrait donc résumer à lui seul la dimension 1.

Par ailleurs, Le.Pen est un candidat du parti nationaliste d'extrême droite (qui s'oppose fortement à l'immigration) contrairement à Royal qui est la candidate du parti socialiste, qui est de gauche. On peut donc déduire que la première dimension classe de la droite vers la gauche, les candidats, du plus nationalistes (d'extrême droite) au moins.

D'autre part, elle oppose la région Nord-PdC (à droite du graphe) relativement pauvre aux régions ile de Fr et Midi-Pyr (à gauche) qui sont parmis les plus riches du pays.

Nous pouvons donc conclure au vue de ces observations que les régions pauvres ont, lors des présidentielles de 2007, pencher en faveur des candidats nationalistes (de droite), contrairement régions riches qui ont penché en faveur des candidats socialistes (de gauche).

La **dimension 2** oppose des facteurs tels que Limousin, Midi-Pyr et Aquitaine (en haut du graphe, caractérisés par une coordonnée fortement positive sur l'axe) à des facteurs comme Alsace (en bas du graphe, caractérisés par une coordonnée fortement négative sur l'axe). Par ailleurs, les régions Limousin, Midi-Pyr et Aquitaine ont une économie plus tournée vers l'agriculture et conservent la culture Française contrairement à Alsace qui est plus tournée vers les nouvelles technologies et l'innovation.

D'autre part, elle oppose les candidats Nihous (en haut du graphe, caractérisé par une coordonnée fortement positive) et Sarkozy (en bas du graphe, avec une coordonnée négative). De plus, lors de ces élections, le candidat Nihous axait fortement sa campagne sur la défense de la ruralité contrairement à Sarkozy.

La dimension 2 classe donc du haut vers le bas les candidats et les régions des moins modernes vers les plus.

Annexes

- ANALYSES FACTORIELLES SIMPLES ET MULTIPLES : Objectifs, méthodes et interprétation par Brigitte Escoffier et Jérôme Pagès (Livre)
- Statistique descriptive multidimensionnelle, Institut de mathématiques de Toulouse par Alain Baccini (Livre)
- Analyse en composantes principales avec FactoMineR et Factoshiny par François Husson (YouTube)
- Analyse Factorielle des correspondances avec FactoMineR et Factoshiny par François Husson (YouTube)