

PSLV-C2T at the First Launch Pad

India's Polar Satellite Launch Vehicle, in its twenty second flight (PSIV-C21), will launch the French earth observation satellite SPOT 6 along with a micro-satellite from Japan into a 655 km polar orbit inclined at an angle of 98.23 deg to the equator, PSIV-C21 will be launched from the First Launch Pad of Satish Dhowan Space Centre (SDSC SHAR), Sriharikota.

With a lift-off mass of 712 kg, SPOT 6 is the heaviest satellite to be launched by PSLV for an international customer. The Japanese micro-satellite PROITERES, carried as an auxiliary payload, has a lift-off mass of 15 kg. PSLV-C21 is the eighth flight of PSLV in 'core-alone' configuration (without solid strap-on motors).

Nozzle End Segment of PSLV-C2T first stage being placed on launch pedestal

Halsting of PSLV-C21 second stage

PSLV-C21 Stages at a Glance

The second of th							
	STAGE-1	STAGE-2	STAGE-3	STAGE-4			
Nomendature	PS1	PS2	753	PS4			
Propolant	Suljd (HTPB Based)	uquid (UH25 +N ₃ O ₄)	Solid (HTPB Based)	Uquid (MMH+MON+3)			
Mass (Tonne)	138.0	41.0	7.6	2.5			
Max Thrust (kN)	4727	804	242	73-2			
Burn Time (Sec)	102	[48]	110	526			
Stage Dia (m)	2,8	2.6	2,0	2.8			
Stage Length (m)	20	12.8	3.6	2.6			
Cantral	SITVC for Pitch & Yow, Reaction Control Thrusters for Roll Control	Engine Gimbai for Pitch & Yaw, Hot Gas Reaction Control Motor for Roll Control	Reis Nazzle for Pitch & Yaw, PS4 Reaction Control System (RCS)	Engine Gimbal for Pitch, Yaw 5 Roll, en-ell RCS for Coast Phase Costes			

HTPB: Hydroxyl Terminated Poly Butadiene, UH25; Unsymmetrical Dimethyl Hydrozine + 25% Hydrozine Hydrote, MMH: Mono Methyl Hydrozine, MON-3: Mixed Oxides of Nitrogen, SITVC Secondary Injection Thrust Vector Control

PSLV-C21 Typical Flight Profile

Payloads of PSLV-C21

SPOT 6 is a French Earth Observation Satellite capable of imaging the earth with a resolution of 1.5 metres. This latest generation optical remote sensing satellite is built by Astrum SAS, a leading European space technology company.

Besides SPOT 6, PSLV-C21 carries PROITERES, a 15 kg Japanese mucro-satellite as an auxiliary payload. PROITERES is intended to study powered flight of a small satellite by an electric thruster and observe Kansai district in Japan with a high-resolution cornera.

SPOI 6 in clean room (712 kg)

PROITERES (15 lig)

SATELLITES OF OTHER COUNTRIES LAUNCHED BY PSLV

SATE	LLITES OF O	THER COUNT	TRIES LA	UNCH	IED BY	Ė
	SL NAME	COUNTRY	DATE OF LAUNCH	MA5S (KG)	LAUNCH VEHICLE	I
144	1. DER-TUBSAT	GERMANY	26.05.1999	45	PSLV-C2	
	2. KITBAT-3	REPUBLIC OF KOREA	26.05,1999	110	PSLV-C2	Į
	3. BIRD	GERMANY	72 10 2901	92	PBLV-C3	1
	4. PROBA	BELGIUM	22.10.2001	94	PSLV-C3	ľ
	5. LAPAN-TUBBAT	RECORDER	10.01.2007	56	PSLV-C7	
	6. PEHUENSAT-1	ARGENTINA	10.01,2007	6	PSLV-C7	À
	7. AGILE	ITALY	23.04.2007	350	PSLV-C8	ı
ند	M. TECSAR	ISRAEL	21.01.2008	300	PSLV-C18	}
1	9. CAN-X2	CANADA	28.04.2008	7	PSLV-C9	2
	10. CUTE-1.7	AMPRIN	28.04.2008	5	PSLV-C9	١
	11. DELFI-CI	THE NETHERLANDS	28.04.2008	6.5	PSLV-CH	
	12. AAUSATHI	DENMARK	28.04.2008	3	PSLV-C9	i
	13. COMPASS-I	GERMANY	28.04.2008	3	PSLV-C9	١
	14. SEEDS	JAPAN	Z8.04.2008	3	PSLV-C9	ı
	15, NLS-5	CANADA	2E 2C20III	16	PSLV-C9	ı
	1E, RUBIN-II	HUMANAY	28.04.2008	В	PSLV-CH	ı
	17. CUBESAT-1	GERMANY	23.09.2009	1	PSLV-C14	ı
	18. CUBESAT-2	GERMANY	23.09.2009	1	PSLV-C14	ı
	18 CUBESAT-3	TURKEY	23.09.2009	1	PSLV-C14	ı
	20, CUBESAT-4	SWITZERLAND	Z3.09.2009	1	PSLV-C14	ı
	21. RUBB4-9.1	GERMANY	23.09.2009	1	PSLV-CM	ı
	22, RUBB4-9.2	HERMANY	23.09.2009	1.	PSLV-C14	ı
	23. ALSAT-ZA	ALGERIA	12,07,2010	116	PSLV-C15	ı
IV.C2	24. NLS-8.1 AISSAT-1	CANADA	12.07.2010	0.5	PSLV-C15	
POT 6	25. NE.S-6.2 TISAT-1	BWITZERLAND	12.07.2010	1	PSLV-C15	1
DITERE	26, X-SAT	BINGAPORE	20.04.2011	106	PSLV-C16	
	27. VessulSal-1	LUXEMBOURG	12.10.2011	28.7	PSLV-C18	

Indian Space Research Organisation
Publications and Public Relations, ISRO Headquarters, Artariksh Bravan
New BEL Road, Bangalons - 560 0231, India www.isro.gov.n