Introduction
The vanishing gradient problem
Solutions
Open issues

Recurrent neural networks

Giulio Galvan

The model

RNN

Given an input sequences $\{\boldsymbol{u}\}_{t=1,...,T}$, with $\boldsymbol{u}_t \in \mathbb{R}^p$, the output sequence of a RNN $\{\boldsymbol{y}\}_{t=1,...,T}$, with $\boldsymbol{y}_t \in \mathbb{R}^o$, is defined by the following:

$$\mathbf{y}^t \triangleq F(W^{out} \cdot \mathbf{a}^t + \mathbf{b}^{out}) \tag{1}$$

$$\boldsymbol{a}^t \triangleq W^{rec} \cdot \boldsymbol{h}^{t-1} + W^{in} \cdot \boldsymbol{u}^t + \boldsymbol{b}^{rec} \tag{2}$$

$$\boldsymbol{h}^t \triangleq \sigma(\boldsymbol{a}^t) \tag{3}$$

$$\mathbf{h}^0 \triangleq \overrightarrow{0},$$
 (4)

where $\sigma(\cdot): \mathbb{R} \to \mathbb{R}$ is a non linear function applied element-wise called activation function.

The optimization problem

Given a dataset D:

$$D \triangleq \{\{\overline{\boldsymbol{u}}^{(i)}\}_{t=1,...,T}, \overline{\boldsymbol{u}}_t^{(i)} \in \mathbb{R}^p, \{\overline{\boldsymbol{y}}^{(i)}\}_{t=1,...,T}, \overline{\boldsymbol{y}}_t^{(i)} \in \mathbb{R}^o; i = 1,...,N\}$$
(5)

we define a loss function $L_D: \mathbb{R}^N \to \mathbb{R}_{\geq 0}$ over D as

$$L_D(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} L_t(\overline{\mathbf{y}}_t^{(i)}, \mathbf{y}_t^{(i)}(\mathbf{x})), \tag{6}$$

where $L_t(\cdot, \cdot)$ is an arbitrary loss function for the time step t. The problem is

$$\min_{\mathbf{x} \in \mathbb{R}^N} L_D(\mathbf{x}) \tag{7}$$

Stochastic gradient descent (SGD)

SGD is the standard framework in most of the applications.

Algorithm 1: Stochastic gradient descent

Data:

```
D = \{\langle \boldsymbol{u}^{(i)}, \boldsymbol{y}^{(i)} \rangle\}: training set
```

 x_0 : candidate solution

m: size of each minibatch

Result:

x: solution

$$\mathbf{1} \ \mathbf{x} \leftarrow \mathbf{x}_0$$

2 while stop criterion do

3 $I \leftarrow \text{select } m \text{ training example } \in D$

4 $\alpha \leftarrow$ compute learning rate

5
$$\mathbf{x} \leftarrow \mathbf{x} - \alpha \sum_{i \in I} \nabla_{\mathbf{x}} L(\mathbf{x}; \langle \mathbf{u}^{(i)}, \mathbf{y}^{(i)} \rangle)$$

6 end

A pathological problem example

An input sequence:

marker	0	1		 0	1	0	0
value	0.3	0.7	0.1	 0.2	0.4	0.6	0.9

The predicted output should be the sum of the two one marked positions (1.1).

Why is this a difficult problem?

Because of it's long time dependencies

A pathological problem example

An input sequence:

marker	0	1		 0	1	0	0
value	0.3	0.7	0.1	 0.2	0.4	0.6	0.9

The predicted output should be the sum of the two one marked positions (1.1).

Why is this a difficult problem?

Because of it's long time dependencies

A pathological problem example

An input sequence:

marker	0	1	0	 0	1	0	0
value	0.3	0.7	0.1	 0.2	0.4	0.6	0.9

The predicted output should be the sum of the two one marked positions (1.1).

Why is this a difficult problem?

Because of it's long time dependencies.

Unfolding

Understanding the gradient structure

Simply applying the chain rule it's easy to see that

$$\nabla L(\mathbf{x}) = \sum_{t=1}^{T} \nabla L_{|t}(\mathbf{x}), \tag{8}$$

where $\nabla L_{|t}$ is ...

Vanishing gradient: an upper bound

$$\frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k}} = \prod_{i=t-1}^{k} diag(\sigma'(\mathbf{a}^{i})) \cdot W^{rec}. \tag{9}$$

Taking the singular value decomposition of W^{rec} :

$$W^{rec} = S \cdot D \cdot V^T \tag{10}$$

where S, V^T are squared orthogonal matrices and $D \triangleq diag(\mu_1, \mu_2, ..., \mu_r)$ is the diagonal matrix containing the singular values of W^{rec} . Hence:

$$\frac{\partial \mathbf{a}^t}{\partial \mathbf{a}^k} = \prod_{i=t-1}^k diag(\sigma'(\mathbf{a}^i)) \cdot S \cdot D \cdot V^T$$
(11)

Since U and V are orthogonal matrix, hence

$$||U||_2 = ||V^T||_2 = 1,$$

and

$$\|diag(\lambda_1, \lambda_2, ..., \lambda_r)\|_2 \leq \lambda_{max},$$

we get

$$\left\| \frac{\partial \mathbf{a}^{t}}{\partial \mathbf{a}^{k}} \right\|_{2} = \left\| \left(\prod_{i=t-1}^{k} diag(\sigma'(\mathbf{a}^{i})) \cdot S \cdot D \cdot V^{T} \right) \right\|_{2}$$
 (12)

$$\leq (\sigma'_{max} \cdot \mu_{max})^{t-k-1} \tag{13}$$

Temporal gradient norms: an illustration

- ▶ Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)
 - the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed
- ► Hessian-Free optimization (HF). Martens (2010)
 - a second order method
 - ▶ a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013)
 - a first order method
 - uses a penalty to deal with the vanishing gradient problem

- ▶ Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)
 - ▶ the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed
- ► Hessian-Free optimization (HF). Martens (2010)
 - a second order method
 - ▶ a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013)
 - a first order method
 - uses a penalty to deal with the vanishing gradient problem

- ▶ Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)
 - the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed
- ► Hessian-Free optimization (HF). Martens (2010)
 - a second order method
 - ▶ a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013)
 - a first order method
 - uses a penalty to deal with the vanishing gradient problem

- ▶ Long short-term memory (LSTM). Hochreiter, Schmidhuber (1997)
 - the network structure is modified with specialized "memory cells"
 - a truncated version of back-propagation is employed
- ► Hessian-Free optimization (HF). Martens (2010)
 - a second order method
 - a "cheap" approximation of the Hessian is employed
 - the quadratic sub-problem is solved through conjugate gradient + structural damping
- ▶ Pascanu, Bengio (2013)
 - a first order method
 - uses a penalty to deal with the vanishing gradient problem

A new proposal

- use the structure of the gradient to compute a descent direction which does not suffer from the vanishing gradient problem
- normalize the temporal components

$$d(\mathbf{x}) = \sum_{t=1}^{T} \frac{\nabla L_{|t}(\mathbf{x})}{\|\nabla L_{|t}(\mathbf{x})\|}$$
(14)

add some randomness for robustness:

$$d(\mathbf{x}) = \sum_{t=1}^{T} \beta_t \frac{\nabla L_{|t}(\mathbf{x})}{\left\|\nabla L_{|t}(\mathbf{x})\right\|},$$
 (15)

with
$$\sum_{t=1}^{T} \beta_t = 1, \beta_t > 0$$

Open Issues: Initialization

- Some tasks, like the XOR one, are still "unresolved" (even for the other approaches). They cannot be solved with high probability (varying the seed)
- ▶ it seems to be an initialization matter

Popular strategies for initialization are:

- "small random weights", usually drawn from Gaussian distribution with zero mean.
- "reservoir initialization"
- sparse gaussian initialization, only some weights are actually sampled from a Gaussian the other are zero. (Used by HF)

Open Issues: Learning rate

- ▶ the **learning rate** is usually tuned by hand, there is no convergence theory for SGD in the non convex case
- some momentum or averaging technique often yield better convergence time, again tuned by hand

Introduction
The vanishing gradient problem
Solutions
Open issues

The end