

OP07C

VERY LOW OFFSET SINGLE BIPOLAR OPERATIONAL AMPLIFIERS

■ EXTREMELY LOW OFFSET: 150µV MAX ■ LOW INPUT BIAS CURRENT: 1.8nA

■ LOW V_{io} DRIFT: 0.5µV/°C

■ ULTRA STABLE WITH TIME: 2µV/month max.

■ WIDE SUPPLY VOLTAGE RANGE:

 \pm 3V to \pm 22V

DESCRIPTION

The OP07C is a very high precision op amp with an offset voltage maximum of 150μV.

Offering also low input current (1.8nA) and high gain (400V/mV), the OP07C is particularly suitable for instrumentation applications.

ORDER CODES

Part Number	Temperature	Package	
Fait Number	Range	N	
OP07C	-40°C, +105°C	•	

PIN CONNECTIONS (top view)

October 1997 1/4

SCHEMATIC DIAGRAM

INPUT OFFSET VOLTAGE NULLING CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	±22	V
V _{id}	Differential Input Voltage	±30	V
Vi	Input Voltage	±22	V
T _{oper}	Operating Temperature	-40 to +105	°C
T _{stg}	Storage Temperature	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

 $V_{CC} = \pm 15V$, $T_{amb} = +25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vio	Input Offset Voltage $0^{\circ}C \le T_{amb} \le +70^{\circ}C$		60	150 250	μV
	Long Term Input Offset Voltage Stability - (note 1)		0.4	2	μV/Mo
DV _{io}	Input Offset Voltage Drift		0.5	1.8	μV/°C
I _{io}	Input Offset Current $0^{\circ}C \le T_{amb} \le +70^{\circ}C$		0.8	6 8	nA
DI _{io}	Input Offset Current Drift		15	50	pA/°C
I _{ib}	Input Bias Current $0^{\circ}C \le T_{amb} \le +70^{\circ}C$		1.8	7 9	nA
DI _{ib}	Input Bias Current Drift		15	50	pA/°C
Ro	Open Loop Output Resistance		60		Ω
R _{id}	Differential Input Resistance		33		ΜΩ
R _{ic}	Common Mode Input Resistance		120		GΩ
V _{icm}	Input Common Mode Voltage Range $0^{\circ}C \le T_{amb} \le +70^{\circ}C$	±13 ±13	±13.5		V
CMR	Common Mode Rejection Ratio $(V_i = V_{icm} min)$ $0^{\circ}C \le T_{amb} \le +70^{\circ}C$	100 97	120		dB
SVR	Supply Voltage Rejection Ratio $(V_{CC} = \pm 3 \text{ to } \pm 18V)$ $0^{\circ}C \le T_{amb} \le +70^{\circ}C$	90 86	104		dB
A _{vd}	Large Signal Voltage Gain $ \begin{array}{l} V_{CC}=\pm 15,R_L=2k\Omega,V_O=\pm 10V,\\ 0^{\circ}C\leq T_{amb}\leq +105^{\circ}C\\ V_{CC}=\pm 3V,R_L=500\Omega,V_O=\pm 0.5V \end{array} $	120 100 100	400 400		V/mV
V _{opp}	Output Voltage Swing $\begin{array}{c} R_L = 10k\Omega \\ R_L = 2k\Omega \\ R_L = 1k\Omega \\ 0^\circ C \leq T_{amb} \leq +70^\circ C \end{array}$ $\begin{array}{c} R_L = 10k\Omega \\ R_L = 1k\Omega \\ R_L = 2k\Omega \end{array}$	±12 ±11.5	±13 ±12.8 ±12		V
SR	Slew Rate (R _L = $2k\Omega$, C _L = $100pF$)		0.17		V/µS
GBP	Gain Bandwidth Product $(R_L = 2k\Omega, C_L = 100pF, f = 100kHz)$		0.5		MHz
I _{CC}	Supply Current - (no load) $0^{\circ}C \le T_{amb} \le +70^{\circ}C$ $V_{CC} = \pm 3V$		2.7 0.67	5 6 1.3	mA
en	Equivalent Input Noise Voltage f = 10Hz f = 100Hz f = 1kHz		11 10.5 10	20 13.5 11.5	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
in	Equivalent Input Noise Current f = 10Hz f = 100Hz f = 1kHz		0.3 0.2 0.1	0.9 0.3 0.2	pA √Hz

Note 1: 1. Long Term Input Offset Voltage Stability refers to the average trend line of V_{io} vs time over extended periods after the first 30 days of operation.

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dimensions	Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.150 0.060

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 \odot 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.