TROPICAL VERTEX

LESHA OBLOMKOV

A strange object appears in Kontsevich–Soibelman . . .

The group $\mathrm{Aut}(\mathbb{C}^* \times \mathbb{C}^*)$ is not very interesting, just $\mathrm{GL}(2,\mathbb{Z})$ semidirect product with translations. But

$$\operatorname{Aut}(\mathbb{C}[x^{\pm}, y^{\pm}] \otimes \mathbb{C}[[t]])$$

contains some interesting elements, for example

$$x^n y^m \mapsto (1 + yt)^n x^n y^m$$

Its inverse is

$$x^n y^m \mapsto (1 + yt)^{-n} x^n y^m.$$

More generally, consider

$$T: x^m y^n \mapsto (fx)^m (gy)^n.$$

Here

$$f = 1 + tf_1(x, y) + t^2 f_2(x, y) + \dots$$

$$g = 1 + tg_1(x, y) + t^2 g_2(x, y) + \dots$$

One can find an inverse of T order-by-order.

Want to consider a group G generated by elements of this sort. What will be the corresponding Lie algebra? Lie(G) is spanned by $\langle z^m \partial_n \rangle$, where $z^{(a,b)} = x^a y^b$ and $\partial_{a,b} x^c y^d = (ac + bd) x^c y^d$. For example, $\partial_{(0,1)} = y \frac{d}{dy}$, and $\exp(x \partial_{(0,1)}) y^n = e^x y^n$. What are the relations?

$$[z^{m}\partial_{n}, z^{m'}\partial_{n'}] = \langle n, m' \rangle z^{m+m'}\partial_{n'} - \langle n', m \rangle z^{m+m'}\partial_{n}$$

Consider a subalgebra in $\mathrm{Lie}(G)$ called \mathfrak{h} spanned by elements $z^m\partial_n$ such that $\langle m,n\rangle=0$. It is a subalgebra because it is a centralizer of some symplectic form.

0.1. DEFINITION. Let R be an Artinian ring with a maximal ideal m_R . Let $\mathfrak{h}_R = m_R \otimes \mathfrak{h}$. Group spanned by $\exp(x)$, $x \in \mathfrak{h}_R$ is called a tropical vertex.

Usually we just take R to be $\mathbb{C}[[t]]$ modulo a big power of t. Later on we can take an inverse limit.

What are the relations in the tropical vertex? Gross–Pandharipande–Siebert [GPS] realized that to understand relations, we need to study rational curves on toric surfaces. Introduce

$$\theta_{(a,b),\exp(f)} := \exp(f\partial_{(b,-a)}),$$

where

$$f = t f_1(x^a y^b) + t^2 f_2(x^a y^b) + \dots$$

Let

$$S_{l_1} = \theta_{(1,0),(1+tx)^{l_1}},$$

$$S_{l_2} = \theta_{(0,1),(1+ty)^{l_2}}.$$

For example, $S_{l_1}(x^ny^m)=x^n(1+tx)^{l_1m}y^m$. Let's compute the commutator $[S_{l_1}S_{l_2}S_{l_1}^{-1}S_{l_2}^{-1}]$. It turns out that

$$[S_{l_1}S_{l_2}S_{l_1}^{-1}S_{l_2}^{-1}] = \prod^{\rightarrow} \theta_{(a,b),f_{a,b}}$$

(the product is taken counterclockwise with respect to directions of positive primitive vectors (a, b)) and

$$\ln(f_{a,b}) = \sum_{k>1} k c_{a,b}^k (l_1 l_2) (tx)^a (ty)^b,$$

where "structure constants" $c_{a,b}^k(l_1,l_2)$ count some curves. Namely, let's define a GW-style invariant $N_{a,b}[P]$. Here $P=(P_1,P_2)$. P_1 is an ordered partition $p_1^{(1)} + \ldots + p_{l_1}^{(1)}$. P_2 is an ordered partition $p_1^{(2)} + \ldots + p_{l_1}^{(2)}$

 $\dots + p_{l_2}^{(2)}$. We fix $|P_1| = ak$ and $|P_2| = bk$. Let $\mathbb{P}(a,b,1)$ be a weighted projective plane. Fix l_1 points on D_1 and l_2 points in D_1 . Partitions P^1 and P^2 describe multiplicities of these points.

Then $N_{a,b}[P]$ is a "vurtual" number of rational curves C of degree k such that $C \cap D_1$ and $C \cap D_2$ are prescribed points with prescribed multiplicities and $C \cap D_{out}$, while not fixed, must be a single point of some large multiplicity.

Then

$$c_{ab}^{k}(l_1, l_2) = \sum_{P_1, P_2} N_{a,b}[(P_1, P_2)].$$

summation over $|P_1| = ak$, $|P_2| = bk$, $l(P_1) = l_1$, $l(P_2) = l_2$.

This computes $[S_{l_1}S_{l_2}S_{l_1}^{-1}S_{l_2}^{-1}]$. The proof is of combinatorial nature, it uses counts of tropical curves in the spirit of Mikhalkin.