Data Visualisation Chapter 7: Spatial Data Dr James Baglin

How to use these slides

Viewing slides...

- Press 'f' enable fullscreen mode
- Press 'o' or 'Esc' to enable overview mode
- Pressing 'Esc' exits all of these modes.
- Hold down 'alt' and click on any element to zoom in. 'Alt' + click anywhere to zoom back out.
- Use the Search box (top right) to search keywords in presentation

Printing slides...

- Click here to open a printable version of these slides.
- Right click and print from browser or save as PDF (e.g. Chrome)

Spatial Data Visualisation

- Everything happens somewhere - variables can be linked with location.
- The spatial dimension of the data must be used to convey meaning or a spatial trend.
- Spatial autocorrelation:

Everything is related to everything else, but near things are more related than distant things. – Tolber (1970)

Spatial Data Visualisation Cont.

- The most common spatial data visualisations map data to a geographical coordinate system.
- Other spatial systems might include the following:
 - sporting arenas
 - the universe/galaxy
 - a building
 - a virtual world in a computer game

Spatial Referencing Systems

- Spatial referencing system refers to a system for defining a spatial location on Earth using coordinates.
- Australia's official system is the Geocentric Datum of Australia 2020 (GDA2020)
- Referencing systems need to be updated:
 - continental drift (plate tectonics)
 - Improved measurements of the Earth's shape
 - changes to Australia's crust (Geoscience Australia 2018).
- This system projects latitude and longitude to a coordinate system composed of Eastings and Northings.

Map Projection Cont.

- Map projection is the process of transforming geographic coordinates from a three-dimensional surface (latitude and longitude) to a two-dimensional plane (Cartesian x and y coordinates).
- The Map Grid of Australia (MGA)
 coordinate system is based upon the
 Universal Transverse Mercator (UTM)
 projection.
- The UTM projection splits Earth into 60 zones of 6 degrees (6 * 60 = 360 degrees).
- The main advantage of the UTM system is that it minimises distortions to maps due to projection.

Map Projection Cont.

 Projections distort area, particularly at the edges of maps - The True Size of

UTM Zones - Wikimedia Commons, Link

People and Organisational Systems

- Street addresses, electorates, local government areas, postcodes, and suburbs are examples of people or organisational reference systems.
- These systems are more practical but sacrifice precision.
- Often, spatial data visualisation will require People/Organisational reference system to be converted to coordinates.
- PSMA Geocoded National Address File (G-NAF) which provides longitude and latitude coordinates for over 13 million Australian addresses.

Thematic Mapping - Isarithmic Map

 Thematic maps link an area with a variable of interest, i.e. theme.

- The five main types of thematic maps include isarithmic maps, choropleth maps, points/dot density maps, proportional symbol/bubble maps and cartograms.
- Isarithmic maps, also known as a contour or topological maps, use colour or lines to convey the spatial variability in a statistical quantity across the map
- Example: Australia in winter 2018 -BOM

Thematic Mapping - Choropleth Map

- Choropleth maps use predefined regions of a map and a colour scale to visualise the variability in a statistical quantity
- Example: Journalist Killing
 Map

Thematic Mapping - Point/Dot Density Map

- Point maps, also known as dot density maps, use location points to visualise the spatial distribution of a statistical frequency.
- Example: Sightsmap

Thematic Mapping -Proportional Symbol/Bubble Maps

- Proportional symbol/bubble maps are point maps with the added advantage of being able to map an additional variable to the size of a point.
- Example: Earthquakes PTWC

Thematic Mapping - Cartograms

- Cartograms take a map and then distort the distance or area of the map to represent a variable
- Example: Australia's Population 2016

Choropleth Maps - Packages

- Let's create a choropleth map using R.
- You will need to install and load the following packages.
- Order is important!

```
library(ggplot2)
library(dplyr)
library(rgeos)
library(maptools)
library(ggmap)
library(broom)
```

Leaflet

 Leaflet is an open-source JavaScript library for interactive maps

- Leaflet for R allows you to easily create Leaflet maps using R.
- Ensure you install and load Leaflet in R.

```
install.packages("leaflet")
library(leaflet)
```

Australian Marriage Law Postal Vote Survey 2017

- We will demonstrate how to create a choropleth map of the 2017 Australian Marriage Law Postal Vote Survey
- We are interested in the spatial distribution of the percentage of "Yes" votes based on Commonwealth Electorate Divisions (CED)
- The ABS reports the data which can be downloaded as a .csv here.
- Load the data into R

```
vote <-
read.csv("../data/australian_marriage_law_postal_sur</pre>
```

Federal Electorate Boundaries

- In order to draw the Federal Electorate
 Divisions we will need an Esri . shp file.
- The ABS also hosts the official boundaries file for 2016 here.
- We will download the Commonwealth Electoral Divisions ASGS Ed 2016 Digital Boundaries in ESRI Shapefile.
- Extract the files from the .zip archive and save them into a folder.

Import .shp file

Now we can import the .shp file into R.

• Confirming...

```
class (national)
```

```
## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"
```

Import .shp file Cont.

Checking variables...

```
head (national@data)
```

```
CED CODE16 CED NAME16 AREASQKM16
##
## 0
                                49.4460
             101
                      Banks
                                39.6466
## 1
             102
                     Barton
## 2
                                58.6052
             103
                  Bennelong
                               749.6360
## 3
                    Berowra
             104
                                61.1166
                   Blaxland
## 4
             105
                  Bradfield
                                98.3974
## 5
             106
```

Simplify

- Polygons in shape files might be too accurate and slow down visualisation.
- The gSimplify function from the rgeos package can help speed things up.

```
print(object.size(national), units = "MB")
```

```
## 50.3 Mb
```

```
national_simp <- gSimplify(national, tol = .001,
  topologyPreserve=TRUE)
national_simp <-
  SpatialPolygonsDataFrame(national_simp,

  data=national@data)
print(object.size(national_simp), units = "MB")</pre>
```

```
## 17.2 Mb
```

Merge .shp with ABS data

 We need to ensure both data objects have an electorate column named CED_NAME16 for matching

```
names (vote)
   [1] "CED NAME16"
                                                   "yes"
                             "STATE"
## [4] "yes perc"
                             "no"
                                                   "no pe
## [7] "n"
                                                   "n cle
                             "n clear"
## [10] "not clear"
                             "not clear perc"
                                                   "non r
## [13] "non response perc" "n total"
names (national simp)
## [1] "CED_CODE16" "CED_NAME16" "AREASQKM16"
```

Merge .shp with ABS data Cont.

Perfect. Now for the merge.

```
electorates_vote<-sp::merge(national_simp, vote,
   by="CED_NAME16")</pre>
```

Basemap and View

- Let's start creating the choropleth map.
- We begin by setting a default view and zoom level.
- We can quickly check our choices using addTiles()

```
map <- leaflet(national_simp) %>%
  setView(lng = 134, lat = -28, zoom = 4)
map %>% addTiles()
```

The result...

Basemap and View Cont.

Add Polygons

- We can check the electorial boundaries using addPolygons()
- This function automatically detects and projects the polygons in the .shp file.

```
map %>% addPolygons()
```

• The result...

Add Polygons Cont.

Continuous Colour Scale

- We need to create a continuous colour scale to represent the yes vote percentage
- We will use the colorNumeric() function from the Leaflet package and the RbBu palette from the colour Brewer system.

```
pal <- colorNumeric(
   "RdBu",
   domain = electorates_vote$yes_perc
)</pre>
```

Add Colour Scale to Polygons

 The colour scale can now be added to the polygons.

```
map %>% addPolygons(
  fillColor = ~pal(yes_perc),
  weight = 2,
  opacity = 1,
  color = "white",
  dashArray = "3",
  fillOpacity = 0.7)
```

• The result...

Add Colour Scale to Polygons Cont.

Adding a Title, Highlights, Labels and Legend

```
labels <- sprintf(
  "<strong>%s</strong><br/>%g%% Yes",
  electorates_vote$CED_NAME16,
  electorates_vote$yes_perc
) %>% lapply(htmltools::HTML)

library(htmlwidgets)
library(htmltools)

title <- tags$div(
   HTML('<h3>Australian Marriage Law Postal Vote
   Survey 2017</h3>')
)

map %>% addPolygons(
  fillColor = ~pal(yes_perc),
```

Adding ... Cont.

Choropleth Caution

- Choropleth maps have a few key limitations
 - Large regions can dominate
 - Small regions can be hard to see
 - Rely on colour low visual comparison accuracy
 - Changing colour scales can drastically change appearance

Cartograms

 Can cartograms fix some of the issues with choropleths?

```
library(cartogram)

# Use detailed shp file
electorates_vote<-sp::merge(national, vote,
    by="CED_NAME16")

# Filter VIC divisions

electorates_vote@data <-
    na.omit(electorates_vote@data)
vic <- electorates_vote[electorates_vote$STATE ==
    "VIC",]

# Convert .shp to cartogram .shp</pre>
```

Cartograms Cont.

Chapter 7 - Further Reading

- Further details in Chapter 7:
 - Understanding spatial data
 - Choropleth maps in ggplot2 and Leaflet
 - Point maps in ggplot2
 - Case study The City of Melbourne's Urban Forest
- Enjoy

References

Geoscience Australia. 2018. "Geocentric Datum of Australia 2020 (GDA2020)." http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/datums-projections/gda2020.