Learning to Exploit Temporal Structure for Biomedical Vision–Language Processing

Shruthi Bannur, Stephanie Hyland, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori Javier Alvarez-Valle, and Ozan Oktay,

Microsoft Health Futures

Presenter: Linyang He

Overview

- This paper proposes a new self-supervised vision language processing (VLP) framework, called BioViL-T, that leverages the temporal relationship between medical images and reports to enhance the cross-modal semantic alignment.
- BioViL-T uses a hybrid CNN-Transformer multi-image encoder that can handle missing prior images and spatial misalignment in longitudinal image sequences.
- BioViL-T achieves state-of-the-art performance on multiple downstream tasks, including progression classification, phrase grounding, and report generation, and provides a new multi-modal temporal benchmark dataset MS-CXR-T to evaluate the temporal semantic quality of chest X-ray VLP models.

Background

Vision-Language Processing

Limitation of Previous Biomedical VLP

They didn't consider temporal information.

- Image Representation
- Transformer Encoding
- Text Representation
- Cross-Attention
- Loss Computation

Pre-training

- MIMIC-CXR v2
 - longitudinal chest X-ray images and radiology reports

Evaluated

- Several downstream tasks datasets
 - MS-CXR
 - RSNA Pnenumonia Detection
 - Chest ImaGenome
 - MS-CXR-T(New benchmark proposed in this paper)
 - Temporal Image Classification
 - Sentence similarity

4 tasks

- Report generation
- Temporal image classification
- Phrase grounding
- Sentence similarity (New)

Report Generation Task

	Method	Pre-training	PI/PR	BLEU-4	ROUGE	CHEXBERT	TEM
NN	CXR-RePaiR-2 [25] Baseline (NN) [9] Proposed (NN)	BioViL BioViL-T	X / X X / X √/ X	2.1 3.7 4.5	14.3 20.0 20.5	28.1 28.3 29.0	12.5 11.1 13.0
AR	Baseline (AR) [9] Proposed Proposed	BioViL-T BioViL-T	X	7.5 ± 0.1 8.2 ± 0.1 9.2 ± 0.3		29.3 ± 0.3 30.2 ± 0.7 31.7 ± 1.0	13.8 ± 0.1 16.0 ± 0.3 17.5 ± 0.1

Temporal Image Classification Task (MS-CXR-T)

	Method (% of labels)	Pre-train	Consolidation	Pl. effusion	Pneumonia	Pneumothorax	Edema
2.F	BioViL-T prompt (0%) BioViL-T (10%)	Temporal	53.6 ± 1.9	59.7 ± 2.1	58.0 ± 3.9	34.9 ± 1.0	64.2 ± 1.5
Z8	BioViL-T (10%)	Temporal	59.7 ± 2.4	62.4 ± 1.4	60.1 ± 2.1	35.3 ± 2.6	62.6 ± 1.7
Vis(CNN + Transformer	ImageNet	44.0 ± 2.0	61.3 ± 1.6	45.1 ± 3.5	31.5 ± 3.1	65.5 ± 1.1
	CheXRelNet [37]	ImageNet	47	47	47	36	49
	BioViL [9]	Static	56.1 ± 1.5	62.3 ± 1.1	59.4 ± 1.0	41.7 ± 2.8	67.5 ± 0.8
	BioViL w/reg [9]	Static	56.0 ± 1.5	63.0 ± 0.9	60.2 ± 0.7	42.5 ± 2.7	67.5 ± 0.9
	BioViL w/reg [9] BioViL-T wout curation	Temporal	58.9 ± 1.7	65.5 ± 0.7	61.5 ± 2.2	44.4 ± 2.1	67.4 ± 0.8
	BioViL-T	Temporal	61.1 ± 2.4	67.0 ± 0.8	61.9 ± 1.9	42.6 ± 1.6	68.5 ± 0.8

Phrase Grounding Task (MS-CXR)

Method	Multi-Image	Avg. CNR	Avg. mIoU
BioViL [9]	X	1.07 ± 0.04	0.229 ± 0.005
+ Local loss [9, 32]	X	1.21 ± 0.05	0.202 ± 0.010
BioViL-T	X	1.33 ± 0.04	$\textbf{0.243}\pm\textbf{0.005}$
BioViL-T	✓	1.32 ± 0.04	$\textbf{0.240}\pm\textbf{0.005}$

Sentence similarity (MS-CXR-T)

	MS-CXR-7	(361 pairs)	RadNLI (145 pairs)		
Text Model	Accuracy	ROC-AUC	Accuracy	ROC-AUC	
PubMedBERT [29]	60.39	.542	81.38	.727	
CXR-BERT-G [9]	62.60	.601	87.59	.902	
CXR-BERT-S [9]	78.12	.837	89.66	.932	
BioViL-T	87.77 ± 0.5	$\textbf{.933} \pm \textbf{.003}$	90.52 ± 1.0	$\textbf{.947} \pm \textbf{.003}$	

Results Summary

• BioViL-T achieves state-of-the-art results on chest X-ray report generation, temporal image classification, and phrase grounding tasks. It also outperforms domain-specific BERT models on sentence similarity tasks.

Conclusion

- This paper presents BioViL-T, a novel selfsupervised VLP framework that exploits the temporal structure of biomedical data to learn better cross-modal representations.
- BioViL-T demonstrates its versatility and effectiveness on various downstream tasks, both static and temporal, achieving state-ofthe-art performance.
- BioViL-T also introduces a new dataset MS-CXR-T to benchmark the temporal semantic quality of VLP models.

Future Work

• Extend BioViL-T to other modalities such as MRI or CT scans, incorporating more prior images or reports for richer temporal information, and exploring other self-supervised objectives for VLP.

Quiz

What kind of encoder does BioViL-T use to extract spatio-temporal features from a series of images?

How does BioViL-T utilize prior reports as a prompt in the report generation task?

Thank You! Q&A