This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 780 472 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 25.06.1997 Bulletin 1997/26

(21) Application number: 96120662.0

(22) Date of filing: 20.12.1996

(51) Int. Cl.⁶: **C12N 15/12**, C07K 14/435, C12N 1/21, C12N 15/70, C07K 16/18, A61K 31/70, C12Q 1/68, A61K 39/00, G01N 33/577, C12N 15/79

(84) Designated Contracting States:

AT BE CH DE ES FR GB IT LI NL SE

(30) Priority: 20.12.1995 JP 349661/95 23.07.1996 JP 213181/96

(71) Applicant: Hsp Research Institute, Inc. Chuo-ku, Osaka-shi, Osaka (JP)

(72) Inventors:

- Ikeda, Jun Tokyo (JP)
- Kaneda, Sumiko Kyoto-shi, Kyoto (JP)

- Yanagi, Hideki Takarazuka-shi, Hyogo-ken (JP)
- Matsumoto, Masayasu Mino-shi, Osaka (JP)
- Yura, Takashi
 Kyoto-shi, Kyoto (JP)

(74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) Stress proteins

(57) Described is a stress protein named ORP150, polynucleotides encoding said protein as well as antibodies against the ORP150 protein. Furthermore, pharmaceutical compositions comprising these proteins, polynucleotides or antibodies are described and their use for the treatment of ischemic diseases.

Description

25

30

35

45

50

55

The present invention relates to an oxygen-regulated protein 150 (ORP150). Specifically, the invention relates to the amino acid sequence of such ORP150 polypeptides, polynucleotides encoding ORP150 polypeptides, promoters of ORP150 genes and antibodies specific to ORP150 polypeptides.

Since the expression of a 70 kDa heat shock protein (HPS70) in cerebral ischemic lesions was reported for the first time, various stress proteins, represented by HSP70, have been reported to be expressed in myocardial ischemic and atherosclerotic lesions, as well as cerebral ischemic lesions. The fact that the induction of HSP, a mechanism of defence against heat stress, is seen in ischemic lesions, suggests that the stress response of the body to ischemic hypoxia is an active phenomenon involving protein neogenesis. Regarding cultured cells, stressful situations that cause ischemia in vivo, such as hypoglycemia and hypoxia, have been shown to induce a group of non-HSP stress proteins, such as glucose-regulated protein (GRP) and oxygen-regulated protein (ORP).

ORP is therefore expected to serve in the diagnosis and treatment of ischemic diseases.

Hori et al. have recently found that exposure of cultured rat astrocytes to hypoxic conditions induces 150, 94, 78, 33 and 28 kDa proteins [J. Neurochem., 66, 973-979(1996)]. These proteins, other than the 150 kDa protein, were identified as GRP94, GRP78, hemoxygenase 1 and HSP28, respectively, while the 150 kDa protein (rat ORP150) remains not to be identified. In addition, there has been no report of human ORP150 protein.

Accordingly, the technical problem underlying the present invention is to provide ORP150 proteins, namely those of human and rat origin, the amino acid sequences of these proteins as well as nucleotide sequences encoding these proteins, the promoter regions of the corresponding genes and antibodies against ORP150 proteins or fragments thereof which are useful in the diagnosis and treatment of ischemic diseases.

This technical problem has been solved by the provision of the embodiments characterized in the claims.

Thus, in a first aspect, the present invention relates to a polynucleotide encoding an ORP150 polypeptide selected from the group consisting of:

(a) polynucleotides encoding the polypeptide having the amino acid sequence as depicted in SEQ ID NO:1 or a fragment of the polypeptide;

(b) polynucleotides comprising the coding region of the nucleotide sequence as shown in SEQ ID NO:2 or a fragment thereof;

(c) polynucleotides encoding the polypeptide having the amino acid sequence as depicted in SEQ ID NO:3 or a fragment of the polypeptide;

(d) polynucleotides comprising the coding region of the nucleotide sequence as depicted in SEQ ID NO:4 or a fragment thereof;

(e) polynucleotides encoding an ORP 150 polypeptide which differs from the polypeptide encoded by the polynucleotide of (a) or (c) due to deletion(s), addition(s), insertion(s) and/or substitutions (s) of one or more amino acid residues; and

(f) polynucleotides the complementary strand of which hybridizes to a polynucleotide of any one of (a) to (e) and which encode an ORP150 polypeptide;

and the complementary strand of such a polynucleotide.

In still another embodiment, the present invention relates to a polynucleotide capable of hybridizing to the above polynucleotide or a fragment thereof and having promoter activity.

In still another embodiment, the present invention relates to a recombinant DNA, e.g. vectors, which contains a nucleotide sequence of the present invention.

In still another embodiment, the present invention relates to an expression vector which contains the recombinant DNA of the present invention, to host cells transformed with polynucleotides or vectors of the invention and to a process for the production of an ORP150 protein by cultivating such host cells. In a further embodiment, the present invention relates to the polypeptides encoded by the polynucleotides of the invention.

In still another embodiment, the present invention relates to an antibody or fragment thereof which specifically binds to the polypeptide of the present invention, and to nucleic acid molecules which specifically hybridize to polynucleotides of the present invention.

In still another embodiment the present invention relates to pharmaceutical and diagnostic compositions comprising the above-described polynucleotides, polypeptides, antibodies and/or nucleic acid molecules.

Figure 1 indicates a schematic diagram of the exon-intron structure of the human ORP gene. Black squares represent the exons.

Figure 2 shows the results of the Northern blot analysis of ORP150 mRNA extracted from human astrocytoma. U373 cells after exposure to various types of stress.

Figure 3 shows the results of the Northern blot analysis of ORP150 mRNA from adult human tissues.

One embodiment of a polynucleotide of the present invention is a polynucleotide encoding a polypeptide compris-

ing the amino acid sequence shown by SEQ ID NO:1 in the sequence listing, and constituting the human oxygen-regulated protein ORP150 which is obtainable by inducement under hypoxic conditions. Another embodiment of a polynucleotide of the present invention is a polynucleotide encoding a polypeptide comprising the amino acid sequence shown by SEQ ID NO: 3 in the sequence listing, and constituting the rat oxygen-regulated protein ORP150 which is obtainable by inducement under hypoxic conditions. The polynucleotides of the present invention also include those which code for polypeptides each comprising a portion of the above-described polypeptides, and those encoding the entire or portion of the above-described polypeptides. It is a well-known fact that mutation occurs in nature; some of the amino acids of ORP150 protein may be replaced or deleted, and other amino acids may be added or inserted. Mutation can also be induced by gene engineering technology. It is therefore to be understood that substantially homologous polypeptides resulting from such mutations in one or more amino acid residues are also included in the scope of the present invention as long as they are obtainable by inducement under hypoxic conditions.

Further embodiments of a polynucleotide of the present invention are polynucleotides comprising the nucleotide sequence shown by SEQ ID NO.2 in the sequence listing, i.e., human ORP150 cDNA and polynucleotides comprising the nucleotide sequence shown by SEQ ID NO.4 in the sequence listing which represents rat ORP150 cDNA. Polynucleotides comprising a portion of these polynucleotides, and those containing the entire or portion of these polynucleotides are also included in the scope of the present invention. As stated above, the ORP150 gene may have some bases replaced, deleted, added or inserted by mutations, and the resulting polynucleotides with partially different nucleotide sequences are also included in the scope of the present invention, as long as they are substantially homologous and encode a polypeptide obtainable by inducement under hypoxic conditions.

The present invention also relates to a polynucleotide the complementary strand of which hybridizes to a polynucleotide as described above and which codes for an ORP150 polypeptide, this means for a polypeptide inducible under hypoxic conditions. "Hybridizing" in this regard means preferably hybridization under stringent conditions. The hybridizing polynucleotides have preferably a sequence identity of at least 50% most preferably of at least 70%, with the polynucleotides described above. The term "stringent conditions" means that hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences.

The polynucleotides of the present invention may be RNA or DNA molecules. DNA molecules can, for example, be cDNA, genomic DNA, double or single stranded DNA, isolated from natural sources, produced in vitro or by chemical synthesis methods. The polynucleotides of the invention can code for an ORP150 polypeptide from any organism expressing such a polypeptide, preferably from eukaryots, for example, insects, vertebrates, preferably mammals and most preferably from human, rat, mouse, bovine, sheep, goat or pig.

Furthermore, the present invention also relates to recombinant nucleic acid molecules which comprise a polynucleotide according to the invention. Examples for such molecules are vectors, namely plasmids, cosmids, phagemids, recombinant phages, viruses etc.

In a preferred embodiment the polynucleotide according to the invention present in such a recombinant nucleic acid molecule is linked to regulatory elements which allow for expression in prokaryotic or eukaryotic host cells. Such regulatory elements are well known in the art and include promoters, transcriptional and translational enhancers and the like.

The term "recombinant DNA" as used herein is defined as any DNA containing a polynucleotide described above. The term "expression vector" as used herein is defined as any vector containing the recombinant DNA of the present invention and expressing a desired protein by introduction into the appropriate host.

The term "clone" as used herein means not only a cell into which a polynucleotide of interest has been introduced but also the polynucleotide of interest itself.

The term "inducement under hypoxic conditions" used herein means an increase in protein synthesis upon exposing cells to an oxygen-depleted atmosphere.

The present invention furthermore relates to host cells transformed and genetically engineered with a polynucleotide according to the invention. These may be prokaryotic or eukaryotic ells. They may be homologous or heterologous with respect to the introduced polynucleotide. If they are homologous they can be distinguished from naturally occurring cells by the feature that they comprise in addition to a naturally occurring ORP150 gene, at least one further copy of an ORP150 coding region which is integrated into the genome in a position in which it does normally not occur. This can be confirmed, e.g., by Southern blotting. Suitable host cells include, for example, bacteria such as E. coli and Bacillus subtilis, yeast such as S. cerevisiae, vertebrate cells, insect cells, mammalian cells, e.g. rat, mouse or human cells.

Moreover, the present invention relates to a process for the production of an ORP150 polypeptide which comprises the steps of culturing the host according to the invention and recovering the produced polypeptide from the cells and/or the culture medium.

The present invention also relates to the polypeptides encoded by the polynucleotides according to the invention or obtainable by the above described process.

The amino acid sequences and nucleotide sequences of the present invention can, for example, be determined as follows: First, poly(A)* RNA is prepared from rat astrocytes exposed to hypoxic conditions. After cDNA is synthesized from said poly(A)*RNA using random hexamer primers, a cDNA library is prepared using the pSPORT1 vector (pro-

20

duced by Life Technology), or the like.

Next, PCR is conducted using oligonucleotide primers synthesized on the basis of the nucleotide sequence of the pSPORT1 vector used to prepare the cDNA library above and the degenerate nucleotide sequences deduced from the N-terminal amino acid sequence of purified rat ORP150, to yield a large number of amplified DNA fragments. These DNA fragments are then inserted into the pT7 Blue vector (produced by Novagen), or the like, for cloning to obtain a clone having nucleotide sequence which perfectly encodes the N-terminal amino acid sequence. Purification of ORP150 can be achieved by commonly used methods of protein purification, such as column chromatography and electrophoresis, in combination as appropriate.

In addition, by screening the above-described rat astrocyte cDNA library by colony hybridization using the insert in above clone as a probe, a clone having an insert thought to encode rat ORP150 can be obtained. This clone is subjected to stepwise deletion from both the 5'- and 3'-ends, and oligonucleotide primers prepared from determined nucleotide sequences are used to determine the nucleotide sequence sequentially. If the clone thus obtained does not encode the full length of rat ORP150, an oligonucleotide probe is synthesized on the basis of the nucleotide sequence of the 5'- or 3'-region of the insert, followed by screening for a clone containing the nucleotide sequence extended further in the 5' or 3' direction, for example, the Gene Trapper cDNA Positive Selection System Kit (produced by Life Technology) based on hybridization using magnetic beads. The full-length cDNA of the rat ORP150 gene is thus obtained.

Separately, the following procedure is followed to obtain a human homologue of rat ORP150 cDNA. Poly(A)*RNA is prepared from the human astrocytoma U373 exposed to hypoxic conditions. After cDNA is synthesized from said poly(A)*RNA using random hexamer primers and an oligo(dT) primer, said cDNA is inserted into the EcoRI site of the pSPORT1 vector to prepare a cDNA library. Human ORP150 cDNA is then obtained using the Gene Trapper Kit and the nucleotide sequence is determined in the same manner as with rat ORP150 above.

The nucleotide sequence of human ORP150 cDNA is thus determined as that shown by SEQ ID NO:2 in the sequence listing, based on which the amino acid sequence of human ORP150 is determined.

Exposure of astrocytes to hypoxic conditions can, for example, be achieved by the method of Ogawa et al. [Ogawa, S., Gerlach, H., Esposito, C., Mucaulay, A.P., Brett, J., and Stern, D., J. Clin. Invest., 85, 1090-1098 (1990)].

Furthermore, the following procedure is followed to obtain human ORP150 genomic DNA. A genomic library purchased from Clontech (derived from human placenta, Cat. #HL1067J) is used. Screening is conducted by hybridization using a DNA fragment consisting of 202 bp of the 5' untranslated region and 369 bp of the coding region, derived from the rat cDNA clone, as well as a 1351 bp DNA fragment containing the termination codon, derived from the human cDNA, as probes. Two clones containing the ORP150 gene are isolated, one containing exons 1 through 24 and the other containing exons 16 through 26; the entire ORP150 gene is composed by combining these two clones. The nucleotide sequence of the 15851 bp human ORP150 genomic DNA is determined; its nucleotide sequence from the 5'-end to just before the translation initiation codon ATG in exon 2 is shown by SEQ ID NO:12 in the sequence listing.

As stated above, the present invention includes polypeptides containing the entire or portion of the polypeptide (human ORP150) having the amino acid sequence shown by SEQ ID NO:1 in the sequence listing. The present invention also includes the entire or portion of the polypeptide having the amino acid sequence shown by SEQ ID NO:1 in the sequence listing; for example, polynucleotides containing the entire or portion of the nucleotide sequence shown by SEQ ID NO:2 in the sequence listing are included in the scope of the present invention. The present invention also includes specific antibodies against these polypeptides of the present invention, and fragments thereof.

An antibody against a polypeptide of the present invention, which polypeptide contains the entire or portion of human or rat ORP150, can be prepared by a conventional method [Current Protocols in Immunology, Coligan, J.E. et al. eds., 2.4.1-2.4.7, John Wiley & Sons, New York (1991)]. Specifically, a rat ORP150 band, separated by, for example, SDS-polyacrylamide gel electrophoresis, is cut out and given to a rabbit etc. for immunization, after which blood is collected from the immunized animal to obtain an antiserum. An IgG fraction can be obtained if necessary by affinity chromatography using immobilized protein A, or the like. A peptide identical to the partial amino acid sequence of ORP150 can be chemically synthesized as a multiple antigen peptide (MAP) [Tam, J.P., Proc. Natl. Acad. Sci. USA, 85, 5409-5413 (1988)], and can be used for immunization in the same manner as above.

It is also possible to prepare a monoclonal antibody by a conventional method [Cell & Tissue Culture; Laboratory Procedure (Doyle, A. et al., eds.) 25A:1-25C:4, John Wiley & Sons, New York (1994)] using a polypeptide containing the entire or portion of human or rat ORP150 as an antigen. Specifically, a hybridoma is prepared by fusing mouse splenocytes immunized with said antigen and a myeloma cell line, and the resulting hybridoma is cultured or intraperitoneally transplanted to the mouse to produce a monoclonal antibody.

The fragments resulting from protease digestion of these antibodies as purified can also be used as antibodies of the present invention.

The present invention also relates to nucleic acid molecules which specifically hybridize with a polynucleotide according to the invention or with the complementary strand of such a polynucleotide. "Specifically hybridizing" means that such molecules show no significant cross-hybridization to polynucleotides coding for proteins other than an ORP150 polypeptide. Preferably these nucleic acid molecules have a length of at least 15 nucleotides, more preferably of at least 30 nucleotides and most preferably of at least 50 nucleotides. In a preferred embodiment these molecules

have over their entire length a sequence identity to a corresponding region of a polynucleotide of the invention of at least 85%, preferably of at least 90% and most preferably of at least 95%. In a particularly preferred embodiment the sequence identity is at least 97%. These nucleic acid molecules can be used, for example, as hybridization probes for the isolation of related genes, as PCR primers, for the diagnosis of mutations of ORP150 genes, for the use in antisense molecules or ribozymes or the like.

The polynucleotides of the present invention, the polypeptides encoded by them, specific antibodies against these polypeptides or fragments thereof and the nucleic acid molecules specifically hybridizing to the above-mentioned polynucleotides are useful in the diagnosis and treatment of ischemic diseases, permitting utilization for the development of therapeutic drugs for ischemic diseases.

Thus, the present invention also relates to a pharmaceutical composition comprising a polynucleotide, polypeptide, antibody and/or nucleic acid molecule according to the invention. Optionally, such a composition also comprises a pharmaceutically acceptable carrier.

The invention also relates to diagnostic composition comprising a polynucleotide, polypeptide, antibody and/or nucleic acid molecule according to the invention.

In another embodiment the present invention relates to a polynucleotide comprising or containing the entire or portion of the nucleotide sequence shown by SEQ ID NO:12 in the sequence listing. This is a polynucleotide containing the promoter region of the human ORP150 gene. Polynucleotides capable of hybridizing to this polynucleotide under conventional hybridizing conditions (e.g., in 0.1 x SSC containing 0.1% SDS at 65°C) and possessing promoter activity are also included in the scope of the present invention. Preferably, such a promoter is able to promote transcription in cells when exposed to hypoxia. Successful cloning of said promoter region would dramatically advance the functional analysis of the human ORP150 gene and facilitate its application to the treatment of ischemic diseases.

The term "promoter" as used herein is defined as a polynucleotide comprising a nucleotide sequence that activates or suppresses the transcription of a desired gene by being present upstream or downstream of said gene.

The following examples illustrate the present invention

Example 1

10

15

25

30

Cell culture and achievement of hypoxic condition

Rat primary astrocytes and microglia were obtained from neonatal rats by a modification of a previously described method [Maeda, Y., Matsumoto, M., Ohtsuki, T., Kuwabara, K., Ogawa, S., Hori, O., Shui, D.Y., Kinoshita, T., Kamada, T., and Stern, D., J. Exp. Med., 180, 2297-2308(1994)]. Briefly, cerebral hemispheres were harvested from neonatal Sprague-Dawley rats within 24 hours after birth, meninges were carefully removed, and brain tissue was digested at 37°C in minimal essential medium (MEM) with Joklik's modification (Gibco, Boston MA) containing Dispase II (3mg/ml; Boehringer-Mannheim, Germany). After centrifugation, the cell pellet was resuspended and grown in MEM supplemented with fetal calf serum (FCS; 10%; CellGrow, MA).

After 10 days, cytosine arabinofuranoside (10µg/ml; Wako Chemicals, Osaka, Japan) was added for 48 hours to prevent fibroblast overgrowth, and culture flasks were agitated on a shaking platform. Then, floating cells were aspirated (these were microglia), and the adherent cell population was identified by morphological criteria and immunohistochemical staining with anti-glial fibrillary acidic protein antibody. Cultures used for experiments were >98% astrocytes based on these techniques.

Human astrocytoma cell line U373 was obtained from American Type Culture Collection (ATCC) and cultured in Dulbecco's modified Eagle medium (produced by Life Technology) supplemented with 10% FCS.

Cells were plated at a density of about 5 X 10⁴ cells /cm² in the above medium. When cultures achieved confluence, they were exposed to hypoxia using an incubator attached to a hypoxia chamber which maintained a humidified atmosphere with low oxygen tension (Coy Laboratory Products, Ann Arbor MI) as described previously [Ogawa, S., Gerlach, H., Esposito, C., Macaulay, A.P., Brett, J., and Stern, D., J. Clin. Invest., 85, 1090-1098 (1990)].

Example 2

50

Purification and N-terminal sequencing of the rat 150 kDa polypeptide

Rat primary astrocytes (about 5×10^8 cells) exposed to hypoxia for 48 hours were harvested, cells were washed three times with PBS(pH 7.0) and protein was extracted with PBS containing NP-40 (1%), PMSF (1mM), and EDTA (5mM). Extracts were then filtered (0.45 μ m nitrocellulose membrane), and either subjected to reduced SDS-PAGE (7.5%, about 25 μ g) or 2-3 mg of protein was diluted with 50 ml of PBS (pH 7.0) containing NP-40(0.05%) and EDTA (5mM), and applied to FPLC Mono Q(bed volume 5 ml, Pharmacia, Sweden).

The column was washed with 0,2M NaCl, eluted with an ascending salt gradient (0.2 to 1.8 M NaCl) and 10 μ l of each fraction (0.5 ml) was applied to reduced SDS-PAGE (7.5%), along with molecular weight markers (Biorad). Pro-

teins in the gel were visualized by silver staining. Fractions eluted from FPLC Mono Q which contained the 150 kDa polypeptide (#7-8) were pooled and concentrated by ultrafiltration (Amicon) 50-fold and about 200 µg of protein was applied to preparative, reduced SDS-PAGE (7.5%). Following electrophoresis, proteins in the gel were transferred electrophoretically (2A/cm²) to polyvinylidene difluoride (PVDF) paper (Millipore, Tokyo), the paper was dried, stained with Coomassie Brilliant blue, and the band corresponding to 150 kDa protein (OPR150) was cut out for N-terminal sequencing using an automated peptide sequencing system (Applied Biosystems, Perkin-Elmer). The N-terminal 31-amino acid sequence was thus determined (SEQ ID NO:5).

Example 3

10

20

25

Preparation of rat astrocyte cDNA library

Total RNA was prepared from rat primary astrocytes (1.1 x 10^8 cells), in which ORP150 had been induced under hypoxic conditions, by the acid guanidinium-phenol-chloroform method [Chomczynski, P. and Sacchi, N., Anal. Biochem., 162, 156-159 (1987)]. Using 300 μ g of the total RNA obtained, purification was conducted twice in accordance with the protocol for poly(A)⁺ RNA purification using oligo(dT)-magnetic beads (produced by Perceptive Diagnostics), to yield poly(A)⁺ RNA. Double-stranded cDNA was then synthesized using random hexamer primers, in accordance with the protocol for the Superscript Choice System (produced by Life Technology), and inserted into the EcoRI site of the pSPORT1 vector to prepare a cDNA library consisting of 5.4 x 10^5 independent clones.

Example 4

Cloning of rat ORP150 cDNA

Rat ORP150 cDNA was cloned as follows: First, to obtain a probe for colony hybridization, the cDNA library was subjected to PCR using a 20-base primer, 5'-AATACGACTCACTATAGGGA-3' (SEQ ID NO:6), which corresponds to the antisense strand of the T7 promoter region in the pSPORT1 vector, and 20 base mixed primers, 5'-AARCCIGGIGT-NCCNATGGA-3' (SEQ ID NO:8), which contains inosine residues and degenerate polynucleotides and which was prepared on the basis of the oligonucleotide sequence deduced from a partial sequence (KPGVPME) (SEQ ID NO:7) within the N-terminal amino acid sequence (LAVMSVDLGSESMKVAIVKPGVPMEIVLNKE) (SEQ ID NO:5); the resulting PCR product with a length of about 480 bp was inserted into the pT7 Blue Plasmid vector. Nucleotide sequences of the clones containing an insert of the expected size (480 bp) corresponding to the PCR product were determined using an automatic nucleotide sequencer (produced by Perkin-Elmer, Applied Biosystems). A clone containing a 39-nucleotide sequence encoding a peptide identical to the rat ORP150-specific amino acid sequence KPGVPMEIVLNKE (SEQ ID NO:9) in the insert was thus obtained.

Using the above insert of the clone as a probe, RNA from cultured rat astrocytes were subjected to Northern blotting; the results demonstrated that mRNA with a length of about 4 Kb was induced by hypoxic treatment. Thereupon, the above insert of the clone was labeled by the random prime labeling method (Ready TOGO, produced by Pharmacia) using α -[32 P]dCTP to yield a probe. Using this probe, 1.2 x 104 clones of the cDNA library were screened by colony hybridization to obtain a clone containing a 2800 bp insert. The nucleotide sequence of this clone insert was determined by preparing deletion mutants using a kilosequence deletion kit (produced by Takara Shuzo).

Since this clone did not contain the 3'-region of the ORP150 coding sequence, the following two 20-base oligonucleotides were prepared on the basis of the specific nucleotide sequence near the 3' end of the above insert, to obtain the full-length sequence.

5'-GCACCCTTGAGGAAAATGCT-3' (SEQ ID NO:10)

5'-CCCAGAAGCCCAATGAGAAG-3' (SEQ ID NO:11)

Using the two oligonucleotides, a clone containing the entire coding region was selected from the rat astrocyte cDNA library in accordance with the protocol for the Gene Trapper cDNA Positive Selection System (produced by Life Technology), and its nucleotide sequence was determined.

The nucleotide sequence of rat ORP150 cDNA was thus determined as shown by SEQ ID NO:4 in the sequence listing. Based on this nucleotide sequence, the amino acid sequence of rat ORP150 was determined as shown by SEQ ID NO:3 in the sequence listing.

Example 5

50

55

Preparation of human U373 cDNA library

Poly(A)⁺ RNA was purified from U373 cells (1 x 10⁸ cells) in which human ORP150 had been induced under hypoxic conditions, in the same manner as described in Example 3. Double-stranded cDNA was then synthesized in

accordance with the protocol for the Superscript Choice System (produced by Life Technology) using a 1:1 mixture of random hexamer primers and an oligo(dT) primer. This cDNA was inserted into the EcoRI site of the pSPORT1 vector to prepare a cDNA library consisting of 2 \times 10⁵ independent clones.

Specifically, the library was prepared as follows: Human U373 cells, cultured in 10 plastic petri dishes (150 mm in diameter)(1 x 10^7 cells/dish), were subjected to hypoxic treatment for 48 hours by the method of Ogawa et al. [Ogawa, S., Gerlach, H., Esposito, C., Mucaulay, A.P., Brett, J., and Stern, D., J. Clin. Invest., 85, 1090-1098 (1990)] as described in Example 3, after which total RNA was prepared by the acid guanidinium-phenol-chloroform method [Chomczynski, P. and Sacchi, N., Anal. Biochem., 162, 156-159 (1987)]. Using 500 μ g of the total RNA obtained, purification was conducted twice in accordance with the protocol for poly(A)⁺ RNA purification using oligo(dT)-magnetic beads (produced by Perceptive Diagnostics), to yield poly(A)⁺ RNA. Double-stranded cDNA was then synthesized using 5 μ g of the poly(A)⁺ RNA and a 1:1 mixture of random hexamer primers and an oligo(dT) primer, in accordance with the protocol for the Superscript Choice System (produced by Life Technology), and inserted into the EcoRI site of the pSPORT1 vector to prepare a human U373 cDNA library consisting of 2 x 10^5 independent clones.

5 Example 6

Cloning of human ORP150 cDNA

Using two primers (SEQ ID NO:10 and SEQ ID NO:11) prepared on the basis of the above-described rat ORP150 cDNA specific sequence, a clone containing the entire coding region was selected from the human U373 cDNA library in accordance with the protocol for the Gene Trapper cDNA Positive Selection System (produced by Life Technology), and its nucleotide sequence was determined. The nucleotide sequence of human ORP150 cDNA was thus determined as shown by SEQ ID NO:2 in the sequence listing.

Specifically, 2 x 10⁴ clones of the human U373 cDNA library were amplified in accordance with the protocol for the Gene Trapper cDNA Positive Selection System (produced by Life Technology). Five micrograms of the plasmid purified from amplified clones were treated with the Gene II and Exo III nuclease included in the kit to yield single-stranded DNA. An oligonucleotide (SEQ ID NO:10) prepared on the basis of the above-described rat ORP150 cDNA-specific sequence was biotinylated and subsequently hybridized to the above single-stranded DNA at 37°C for 1 hour. The single-stranded DNA hybridized to the oligonucleotide derived from rat ORP150 cDNA was selectively recovered by using streptoavidin-magnetic beads, and was treated with the repair enzyme included in the kit using the oligonucleotide shown by SEQ ID NO:10 in the sequence listing as a primer, to yield double-stranded plasmid DNA.

The double-stranded plasmid DNA was then introduced to ElectroMax DH10B cells (produced by Life Technology) in accordance with the protocol for the Gene Trapper cDNA Positive Selection System, followed by colony PCR in accordance with the same protocol using two primers (SEQ ID NO:10 and SEQ ID NO:11) prepared on the basis of the rat ORP150 cDNA-specific sequence, to select clones that yield an about 550 bp PCR product. The nucleotide sequence of the longest insert among these clones, corresponding to the human ORP150 cDNA, was determined as shown by SEQ ID NO:2 in the sequence listing.

On the basis of this nucleotide sequence, the amino acid sequence of human ORP150 was determined as shown by SEQ ID NO:1 in the sequence listing.

The N-terminal amino acid sequence (SEQ ID NO: 5) obtained with purified rat ORP150 corresponded to amino acids 33-63 deduced from both the human and rat cDNAs, indicating that the first 32 residues represent the signal peptides for secretion. The C-terminal KNDEL sequence, which resembles KDEL sequence, a signal to retain the ER-resident proteins [Pelham, H.R.B., Trends Biochem. Sci. 15, 483-486 (1990)], may function as an ER-retention signal. The existence of a signal peptide at the N-terminus and the ER-retention signal-like sequence at the C-terminus suggests that ORP150 resides in the ER, consistent with the results of immunocytochemical analysis reported by Kuwabara et al. [Kuwabara, K., Matsumoto, M., Ikeda, J., Hori, O., Ogawa, S., Maeda, Y., Kitagawa, K., Imuta, N., Kinoshita, T., Stern, D.M., Yanagi, H., and Kamada, T., J. Biol. Chem. 271, 5025-5032 (1996)].

Analysis of protein data bases with the BLAST program [Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., J. Mol., Biol. 215, 403-410(1990)] showed that the N-terminal half of ORP150 has a modest similarity to the ATPase domain of numerous HSP70 family sequences. An extensive analysis with pairwise alignments [Pearson, W.R., and Lipman, D.J., Proc. Natl. Acad. Sci. USA 85, 2444-2448(1988)] revealed that amino acids 33-426 of human ORP150 was 32% identical to amino acids 1-380 of both inducible human HSP70.1 [Hunt, C., and Morimoto, R.I., Proc. Natl. Acad. Sci. USA 82, 6455-6459 (1985)] and constitutive bovine HSC70 [DeLuca-Flaherty, C., and McKay, D.B., Nucleic Acids Res. 18, 5569(1990)], typical members of HSP70 family. An additional region similar to HSP70RY and hamster HSP110, which both belong to a new subfamily of large HSP70-like proteins [Lee-Yoon, D., Easton, D., Murawski, M., Burd, R., and Subjeck, J.R., J. Biol. Chem. 270, 15725-15733 (1995)], extended further to residue 487. A protein sequence motif search with PROSITE [Bairoch, A., and Bucher, P., Nucleic Acids Res. 22, 3583-3589(1994)] showed that ORP150 contains two of the three HSP70 protein family signatures: FYDMGSGSTVCTIV (amino acids 230-243, SEQ ID NO:1) and VILVGGATRVPRVQE (amino acids 380-394, SEQ ID NO:1) which completely matched

with the HSP70 signatures 2 and 3, respectively, and VDLG (amino acids 38-41, SEQ ID NO:1) which matched with the first four amino acids of the signature 1. Furthermore, the N-terminal region of ORP150 contained a putative ATP-binding site consisting of the regions (amino acids 36-53, 197-214, 229-243, 378-400, and 411-425, SEQ ID NO:1) corresponding to the five motifs specified by Bork et al. [Bork, P., Sander, C., and Valencia, A., Proc. Natl. Acad. Sci. USA 89, 7290-7294 (1992)]. Although the C-terminal putative peptide-binding domains of HSP70 family are generally less conserved [Rippmann, F., Taylor, W.R., Rothbard, J.B., and Green, N.M., EMBO J. 10, 1053-1059 (1991)], the C-terminal region flanked by amino acids 701 and 898 (SEQ ID NO:1) shared appreciable similarity with HSP110 (amino acids 595-793; 29% identity).

Example 7

Cloning of human ORP150 genomic DNA

A human genomic library purchased from Clontech (derived from human placenta, Cat. #HL1067J, Lot #1221, 2.5 \times 10⁶ independent clones) was used. A DNA fragment consisting of 202 bp of the 5' untranslated region and 369 bp of the coding region derived from the rat cDNA clone, as well as a 1351 bp DNA fragment containing the termination codon, derived from the human cDNA, were used as probes for plaque hybridization.

Escherichia coli LE392, previously infected with 1 x 10^6 pfu of the human genomic library, was plated onto 10 petri dishes 15 cm in diameter to allow plaque formation. The phage DNA was transferred to a nylon membrane (Hybond-N⁺, Amersham) and denatured with sodium hydroxide, after which it was fixed by ultraviolet irradiation. The rat cDNA probe was labeled using a DNA labeling kit (Ready To Go, Pharmacia), and hybridized with the membrane in the Rapid-hyb buffer (Amersham). After incubation at 65°C for 2 hours, the nylon membrane was washed with 0.2 x SSC-0.1% SDS, and a positive clone was detected on an imaging plate (Fuji Photo Film). Since the clone isolated contained only exons 1 through 24, 1.5×10^6 clones of the same library was screened again using the human cDNA probe in the same manner, resulting in isolation of one clone. This clone was found to contain exons 16 through 26, with an overlap with the 3' region of the above-mentioned clone. The entire region of the ORP150 gene was thus cloned by combining these two clones.

These two clones were cleaved with BamHI and subcloned into pBluescript IISK (Stratagene), followed by nucleotide sequence determination of the entire 15851 bp human ORP150 genomic DNA. The nucleotide sequence from the 5' end to just before the translation initiation codon ATG in exon 2 is shown by SEQ ID NO:12 in the sequence listing.

Furthermore, the nucleotide sequence of the 15851 bp human ORP150 genomic DNA was compared with that of the human ORP150 cDNA shown by SEQ ID NO:2 in the sequence listing, resulting in the demonstration of the presence of the exons at the positions shown below. A schematic diagram of the positions of the exons is shown in Figure 1.

35

30

40

45

50

		(Base position in SEQ ID:2)
Exon 1	1908 - 2002	(1 - 95)
Exon 2	2855 - 2952	(96 - 193)
Exon 3	3179 - 3272	(194 - 287)
Exon 4	3451 - 3529	(288 - 366)
Exon 5	3683 - 3837	(367 - 521)
Exon 6	3962 - 4038	(522 - 598)
Exon 7	4347 - 4528	(599 - 780)
Exon 8	4786 - 4901	(781 - 896)
Exon 9	6193 - 6385	(897 - 1089)
Exon 10	6593 - 6727	(1090 - 1224)
Exon 11	6850 - 6932	(1225 - 1307)
Exon 12	7071 - 7203	(1308 - 1440)
Exon 13	7397 - 7584	(1441 - 1628)
Exon 14	7849 - 7987	(1629 - 1767)
Exon 15	9176 - 9236	(1768 - 1828)
Exon 16	9378 - 9457	(1829 - 1908)
Exon 17	9810 - 9995	(1909 - 2094)
Exon 18	10127 -10299	(2095 - 2267)
Exon 19	10450 -10537	(2268 - 2355)
Exon 20	10643 -10765	(2356 - 2478)
Exon 21	10933 -11066	(2479 - 2612)
Exon 22	11195 -11279	(2613 - 2697)
Exon 23	12211 -12451	(2698 - 2938)
Exon 24	12546 -12596	(2939 - 2989)
Exon 25	13181 -13231	(2990 - 3040)
Exon 26	13358 -14823	(3041 - 4503)

Example 8

Northern blot analysis

A 4.5-kb EcoRI fragment of human ORP150 cDNA was labeled with $[\alpha^{-32}P]dCTP(3,000\ Ci/mmol;$ Amersham Corp., Arlington Heights, IL) by using a DNA labeling kit (Pharmacia), and used as a hybridization probe. $20\mu g$ of total RNA prepared from U373 cells exposed to various stresses were electrophoresed and transferred onto a Hybond N⁺ membrane (Amersham Corp.). Multiple Tissue Northern Blots, in which each lane contained $2\mu g$ of poly(A)RNA from the adult human tissues indicated, was purchased from Clontech. The filter was hybridized at 65°C in the Rapid-hyb buffer (Amersham Corp.) with human ORP150, GRP78, HSP70, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), and β -actin cDNAs each labeled with $[\alpha^{32}-P]$ dCTP, washed with 0.1 x SSC containing 0.1% SDS at 65°C, and followed by autoradiography.

As shown in Figure 2, the ORP150 mRNA level was highly enhanced upon 24 - 48 hours of exposure to hypoxia. In parallel experiments, treatment with 2-deoxyglucose (25 mM, 24 hours) or tunicamycin (5μg/ml, 24 hours) enhanced

ORP150 mRNA to the levels comparable to that induced by hypoxia. The induction levels were also comparable with those observed for mRNA of a typical glucose-regulated protein GRP78. Heat shock treatment failed to enhance ORP150 mRNA appreciably.

ORP150 mRNA was found to be highly expressed in the liver and pancreas, whereas little expression was observed in kidney and brain (Figure 3). Furthermore, the tissue specificity of ORP150 expression was quite similar to that of GRP78. The higher expression observed in the tissues that contain well-developed ER and synthesize large amounts of secretory proteins is consistent with the finding that ORP150 is localized in the ER (Kuwabara, K., Matsumoto, M., Ikeda, J., Hori, O., Ogawa, S., Maeda, Y., Kitagawa, K., Imuta, N., Kinoshita, T., Stern, D.M., Yanagi, H., and Kamada, T., J. Biol. Chem. 271, 5025-5032(1996)).

In conclusion, both the characteristic primary protein structure and the similarity found with GRP78 in stress inducibility and tissue specificity suggest that ORP150 plays an important role in protein folding and secretion in the ER, perhaps as a molecular chaperone, in concert with other GRPs to cope with environmental stress.

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the present invention described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.

SEQUENCE LISTING

5	(1)	GEN (11		INI	ORMA UMBE	TION R OF	: SEC	QUENC	CES:		12					
	(2)	INF	ORMA	1OIT	1 FOF	SEC] ID	NO:1	L:							
10		(i)	(SEQUE (A) (B) (D)	LENO TYPE	GTH: S: 8		amin ac:							
		(ii)	ì	MOLE	CULE	TYPI	E: pe	epti	de						
15			xi)		SEQUI						SEQ					
					5					Pro 10					12)
				20					25	Leu				30	,	
20			35					40		Ser			4:	•		
		50					55			Ile		60)			
2 5	65					70				Leu	75					80
					85					Ile 90)				9:	•
				100					105					T T (J	
3 <i>0</i>			115					120		Glu			12:	o		
		130					135			Ile		140	,			
	145					150				Leu	155					TOO
35					165					Lys 170)				1.	၁
				180	}				185	Arg				19	U	
			195					200)	Leu			20	၁		
40		210					215	•		Arg		22	U			
	225					230				Gly	235				•	240
45					245	i				Thr 250	כ				25	5
				260)				265	Phe				21	U	
			275					280)	Arg			20)		
50		290	Arg	Lys			295	5		Asp		30	U			
	Ala 305	Met	Ala	Lys	Leu	Leu 310		Glu	Ala	Asn	Arg 315	Leu	Lys	Thr	Val	Leu 320

	Ser	Ala	Asn	λla	Asp 325	His	Met	Ala	Gln	Ile 330		Gly	Leu	Met	Asp 335	
5	Val	Asp	Phe	Lys 340		Lys	Val	Thr	Arg 345	Val		Phe	Glu	Glu 350		Cys
	Ala	Asp	Leu 355	Phe	Glu	Arg	Val	Pro 360		Pro	Val	Gln	Gln 365		Leu	Gln
	Ser	Ala 370	Glu	Met	Ser	Leu	Asp 375	Glu	Ile	Glu	Gln	Val 380		Leu	Val	Gly
10	385			Arg		390					395					400
				Glu	405					410)				415	5
				Val 420					425	i				430)	
15			435	Val				440	ı				44	5		
		450	_	Glu			455					460)			
20	465			Val		470					475					480
				Phe	485	_				490)				495	5
		_	_	Leu 500					505	5				510)	
25			515	Leu				520)				52	5		
		530		Pro			535					540)			
	545			Ser		550					555					560
30				Val	565	-				570)				579	5
				Thr 580					585	5				590)	
			595					600)				60	5		
35		610		Ser		-	615	i				620)			
	625			Ala		630					635					640
40				Asp	645					650)				65	5
		-	_	Lys 660					665	5				67	0.	
			675					680)				68	5		
45		690		Lys	_	_	695	•				70	0			
	705			Leu		710					715					720
				Gln	725	;				730)				73	5
50				Ala 7 4 0	1				74	5				75	0	
	Lys	Leu	755	Gln	Pro	Glu	Tyr	Gln 760	_	Val	Ser	Thr	Glu 76		Gln	Arg

	Glu	Glu 770	Ile	Ser	Gly	Lys	Leu 775		Ala	Ala	Ser	Thr 780		Leu	Glu	Asp
5	Glu 785	Gly	Val	Gly	Ala	Thr 790	Thr	Val	Met	Leu	Lys 795	Glu	Lys	Leu	Ala	Glu 800
J	Leu	Arg	Lys	Leu	Cys 805	Gln	Gly	Leu	Phe	Phe 810		Val	Glu	Glu	Arg 81	
	Lys	Trp	Pro	Glu 820	Arg	Leu	Ser	Ala	Leu 825		Asn	Leu	Leu	Asn 830		Ser
10	Ser	Met	Phe 835	Leu	Lys	Gly	Ala	Arg 840		Ile	Pro	Glu	Met 845		Gln	Ile
	Phe	Thr 850	Glu	Val	Glu	Met	Thr 855		Leu	Glu	Lys	Val 860		Asn	Glu	Thr
	Trp 865	Ala	Trp	Lys	Asn	Ala 870	Thr	Leu	Ala	Glu	Gln 875	Ala	Lys	Leu	Pro	Ala 880
15	Thr	Glu	Lys	Pro	Val 885	Leu	Leu	Ser	Lys	Asp 890		Glu	Ala	Lys	Met 89	
	Ala	Leu	Asp	Arg 900	Glu	Val	Gln	Tyr	Leu 905		Asn	Lys	Ala	Lys 91		Thr
	Lys	Pro	Arg 915	Pro	Arg	Pro	Lys	Asp 920		Asn	Gly	Thr	Arg 925	Ala 5	Glu	Pro
20	Pro	Leu 930	Asn	Ala	Ser	Ala	Ser 935		Gln	Gly	Glu	Lys 94(Ile	Pro	Pro
	Ala 945	Gly	Gln	Thr	Glu	Asp 950	Ala	Glu	Pro	Ile	Ser 955	Glu	Pro	Glu	Lys	Val 960
	Glu	Thr	Gly	Ser	Glu 965	Pro	Gly	Asp	Thr	Glu 970		Leu	Glu	Leu	Gly 97	
25	Pro	Gly	Ala	Glu 980	Pro	Glu	Gln	Lys	Glu 985		Ser	Thr	Gly	Gln 99		Arg
	Pro	Leu	Lys	Asn	Asp	Glu	Leu									

(2) INFORMATION FOR SEQ ID NO:2:

- SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 4503 base pairs
 - TYPE: nucleic acid (B)
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- MOLECULE TYPE: cDNA (ii)
- (ix) **FEATURE**
 - (A) NAME/KEY: CDS
 - (B) IDENTIFICATION METHOD: E
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- TTGTGAAGGG CGCGGGTGGG GGGCGCTGCC GGCCTCGTGG GTACGTTCGT GCCGCGTCTG 45 TCCCAGAGCT GGGGCCGCAG GAGCGGAGGC AAGAGGGGCA CTATGGCAGA CAAAGTTAGG 120 AGGCAGAGGC CGAGGAGGCG AGTCTGTTGG GCCTTGGTGG CTGTGCTCTT GGCAGACCTG 180 TTGGCACTGA GTGATACACT GGCAGTGATG TCTGTGGACC TGGGCAGTGA GTCCATGAAG 240 50

55

30

35

40

	GTGGCCATTG	TCAAACCTGG	AGTGCCCATG	GAAATTGTCT	TGAATAAGGA	ATCTCGGAGG	300
	AAAACACCGG	TGATCGTGAC	CCTGAAAGAA	AATGAAAGAT	TCTTTGGAGA	CAGTGCAGCA	360
5	AGCATGGCGA	TTAAGAATCC	AAAGGCTACG	CTACGTTACT	TCCAGCACCT	CCTGGGGAAG	420
	CAGGCAGATA	ACCCCCATGT	AGCTCTTTAC	CAGGCCCGCT	TCCCGGAGCA	CGAGCTGACT	480
10	TTCGACCCAC	AGAGGCAGAC	TGTGCACTTT	CAGATCAGCT	CGCAGCTGCA	GTTCTCACCT	540
	GAGGAAGTGT	TGGGCATGGT	TCTCAATTAT	TCTCGTTCTC	TAGCTGAAGA	TTTTGCAGAG	600
	CAGCCCATCA	AGGATGCAGT	GATCACCGTG	CCAGTCTTCT	TCAACCAGGC	CGAGCGCCGA	660
15	GCTGTGCTGC	AGGCTGCTCG	TATGGCTGGC	CTCAAAGTGC	TGCAGCTCAT	CAATGACAAC	720
	ACCGCCACTG	CCCTCAGCTA	TGGTGTCTTC	CGCCGGAAAG	ATATTAACAC	CACTGCCCAG	780
	AATATCATGT	TCTATGACAT	GGGCTCAGGC	AGCACCGTAT	GCACCATTGT	GACCTACCAG	840
20	ATGGTGAAGA	CTAAGGAAGC	TGGGATGCAG	CCACAGCTGC	AGATCCGGGG	AGTAGGATTT	900
	GACCGTACCC	TGGGGGGCCT	GGAGATGGAG	CTCCGGCTTC	GAGAACGCCT	GGCTGGGCTT	960
	TTCAATGAGC	AGCGCAAGGG	TCAGAGAGCA	AAGGATGTGC	GGGAGAACCC	GCGTGCCATG	1020
25	GCCAAGCTGC	TGCGTGAGGC	TAATCGGCTC	AAAACCGTCC	TCAGTGCCAA	CGCTGACCAC	1080
	ATGGCACAGA	TTGAAGGCCT	GATGGATGAT	GTGGACTTCA	AGGCAAAAGT	GACTCGTGTG	1140
30	GAATTTGAGG	AGTTGTGTGC	AGACTTGTTT	GAGCGGGTGC	CTGGGCCTGT	ACAGCAGGCC	1200
	CTCCAGAGTG	CCGAAATGAG	TCTGGATGAG	ATTGAGCAGG	TGATCCTGGT	GGGTGGGGCC	1260
	ACTCGGGTCC	CCAGAGTTCA	GGAGGTGCTG	CTGAAGGCCG	TGGGCAAGGA	GGAGCTGGGG	1320
35	AAGAACATCA	ATGCAGATGA	AGCAGCCGCC	ATGGGGGCAG	TGTACCAGGC	AGCTGCGCTC	1380
	AGCAAAGCCT	TTAAAGTGAA	GCCATTTGTC	GTCCGAGATG	CAGTGGTCTA	CCCCATCCTG	1440
	GTGGAGTTCA	CGAGGGAGGT	GGAGGAGGAG	CCTGGGATTC	ACAGCCTGAA	GCACAATAAA	1500
40	CGGGTACTCT	TCTCTCGGAT	GGGGCCCTAC	CCTCAACGCA	AAGTCATCAC	CTTTAACCGC	1560
	TACAGCCATG	ATTTCAACTT	CCACATCAAC	TACGGCGACC	TGGGCTTCCT	GGGGCCTGAA	1620
	GATCTTCGGG	TATTTGGCTC	CCAGAATCTG	ACCACAGTGA	AGCTAAAAGG	GGTGGGTGAC	1680
45	AGCTTCAAGA	AGTATCCTGA	CTACGAGTCC	AAGGGCATCA	AGGCTCACTT	CAACCTGGAT	1740
	GAGAGTGGCG	TGCTCAGTCT	AGACAGGGTG	GAGTCTGTAT	TTGAGACACT	GGTAGAGGAC	1800
50	AGCGCAGAAG	AGGAATCTAC	TCTCACCAAA	CTTGGCAACA	CCATTTCCAG	CCTGTTTGGA	1860
	GGCGGTACCA	CACCAGATGO	CAAGGAGAAT	GGTACTGATA	CTGTCCAGGA	GGAAGAGGAG	1920

AGCCCTGCAG	AGGGGAGCAA	GGACGAGCCT	GGGGAGCAGG	TGGAGCTCAA	GGAGGAAGCT	1980
GAGGCCCCAG	TGGAGGATGG	CTCTCAGCCC	CCACCCCCTG	AACCTAAGGG	AGATGCAACC	2040
CCTGAGGGAG	AAAAGGCCAC	AGAAAAAGAA	AATGGGGACA	AGTCTGAGGC	CCAGAAACCA	2100
AGTGAGAAGG	CAGAGGCAGG	GCCTGAGGGC	GTCGCTCCAG	CCCCAGAGGG	AGAGAAGAAG	2160
CAGAAGCCCG	CCAGGAAGCG	GCGAATGGTA	GAGGAGATCG	GGGTGGAGCT	GGTTGTTCTG	2220
GACCTGCCTG	ACTTGCCAGA	GGATAAGCTG	GCTCAGTCGG	TGCAGAAACT	TCAGGACTTG	2280
ACACTCCGAG	ACCTGGAGAA	GCAGGAACGG	GAAAAAGCTG	CCAACAGCTT	GGAAGCGTTC	2340
ATATTTGAGA	CCCAGGACAA	GCTGTACCAG	CCCGAGTACC	AGGAAGTGTC	CACAGAGGAG	2400
CAGCGTGAGG	AGATCTCTGG	GAAGCTCAGC	GCCGCATCCA	CCTGGCTGGA	GGATGAGGGT	2460
GTTGGAGCCA	CCACAGTGAT	GTTGAAGGAG	AAGCTGGCTG	AGCTGAGGAA	GCTGTGCCAA	2520
GGGCTGTTTT	TTCGGGTAGA	GGAGCGCAAG	AAGTGGCCCG	AACGGCTGTC	TGCCCTCGAT	2580
AATCTCCTCA	ACCATTCCAG	CATGTTCCTC	AAGGGGGCCC	GGCTCATCCC	AGAGATGGAC	2640
CAGATCTTCA	CTGAGGTGGA	GATGACAACG	TTAGAGAAAG	TCATCAATGA	GACCTGGGCC	2700
TGGAAGAATG	CAACTCTGGC	CGAGCAGGCT	AAGCTGCCCG	CCACAGAGAA	GCCTGTGTTG	2760
CTCTCAAAAG	ACATTGAAGC	TAAGATGATG	GCCCTGGACC	GAGAGGTGCA	GTATCTGCTC	2820
AATAAGGCCA	AGTTTACCAA	GCCCGGCCC	CGGCCTAAGG	ACAAGAATGG	GACCCGGGCA	2880
GAGCCACCCC	TCAATGCCAG	TGCCAGTGAC	CAGGGGGAGA	AGGTCATCCC	TCCAGCAGGC	2940
CAGACTGAAG	ATGCAGAGCC	CATTTCAGAA	CCTGAGAAAG	TAGAGACTGG	ATCCGAGCCA	3000
GGAGACACTG	AGCCTTTGGA	GTTAGGAGGT	CCTGGAGCAG	AACCTGAACA	GAAAGAACAA	3060
TCGACAGGAC	AGAAGCGGCC	TTTGAAGAAC	GACGAACTAT	AACCCCCACC	TCTGTTTTCC	3120
CCATTCATCT	CCACCCCTT	CCCCACCAC	TTCTATTTAT	TTAACATCGA	GGGTTGGGGG	3180
AGGGGTTGGT	CCTGCCCTCG	GCTGGAGTTC	CTTTCTCACC	CCTGTGATTT	GGAGGTGTGG	3240
AGAAGGGGAA	GGGAGGGACA	GCTCACTGGT	TCCTTCTGCA	GTACCTCTGT	GGTTAAAAAT	3300
GGAAACTGTT	CTCCTCCCCA	GCCCACTCC	CTGTTCCCTA	CCCATATAGG	CCCTAAATTT	3360
GGGAAAAATC	ACTATTAATT	TCTGAATCCT	TTGCCTGTGG	GTAGGAAGAG	AATGGCTGCC	3420
AGTGGCTGAT	GGGTCCCGGT	GATGGGAAGG	GTATCAGGTT	GCTGGGGAGT	TTCCACTCTT	3480
CTCTGGTGAT	TGTTCCTTCC	CTCCCTTCCT	CTCCCACCAT	GCGATGAGCA	TCCTTTCAGG	3540
CCAGTGTCTG	CAGAGCCTCA	GTTACCAGGT	TTGGTTTCTG	AGTGCCTATC	TGTGCTCTTT	3600

CCTCCCTCTG CGGGCTTCTC TTGCTCTGAG CCTCCCTTCC CCATTCCCAT GCAGCTCCTT 3660 TCCCCCTGGG TTTCCTTGGC TTCCTGCAGC AAATTGGGCA GTTCTCTGCC CCTTGCCTAA 3720 AAGCCTGTAC CTCTGGATTG GCGGAAGTAA ATCTGGAAGG ATTCTCACTC GTATTTCCCA 3780 CCCCTAGTGG CCAGAGGAGG GAGGGGCACA GTGAAGAAGG GAGCCCACCA CCTCTCCGAA 3840 GAGGAAAGCC ACGTAGAGTG GTTGGCATGG GGTGCCAGCA TCGTGCAAGC TCTGTCATAA 3900 TCTGCATCTT CCCAGCAGCC TGGTACCCCA GGTTCCTGTA ACTCCCTGCC TCCTCCTCTC 3960 TTCTGCTGTT CTGCTCCTCC CAGACAGAGC CTTTCCCTCA CCCCCTGACC CCCTGGGCTG 4020 ACCAAAATGT GCTTTCTACT GTGAGTCCCT ATCCCAAGAT CCTGGGGAAA GGAGAGACCA 4080 TCGTGTGAAT GTAGAGATGC CACCTCCCTC TCTCTGAGGC AGGCCTGTGG ATGAAGGAGG 4140 AGGGTCAGGG CTGGCCTTCC TCTGTGCATC ACTCTGCTAG GTTGGGGGCC CCCGACCCAC 4200 CATACCTACG CCTAGGGAGC CCGTCCTCCA GTATTCCGTC TGTAGCAGGA GCTAGGGCTG 4260 CTGCCTCAGC TCCAAGACAA GAATGAACCT GGCTGTTGCA GTCATTTTGT CTTTTCCTTT 4320 CACCTCTTCT GTATGTTTGA ATTCTTTCAG TAGCTGTTGA TGCTGGTTGG ACAGGTTTGA 4440 GTCAAATTGT ACTTTGCTCC ATTGTTAATT GAGAAACTGT TTCAATAAAA TATTCTTTTC 4500 4503 TAC

*3*0

35

40

45

5

10

15

w

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

 Met Ala Ala Thr Val Scr Scr Arg Sch Arg Sch Arg Pro 10
 Arg Pro 10
 Arg Arg Leu Leu Cys Trp 15

 Ala Leu Val Ala Val Met Scr Val Asp Leu Gly Scr Glu Scr Met Lys Val Ala 35
 Leu Ala Val Met Scr Val Asp Leu Gly Scr Glu Scr Met Lys Val Ala 45

 Ile Val Lys Pro Gly Val Pro Met Glu Ile Val Leu Asn Lys Glu Scr 50

 Arg Arg Lys Thr Pro Val Thr Val Thr Leu Lys Glu Asn Glu Arg Phe 65

 Leu Gly Asp Scr Ala Ala Gly Met Ala Ile Lys Asn Pro Lys Ala Thr 90

55

	Leu	Arg	Tyr	Phe	Gln	His	Leu	Leu	Gly	Lys	Gln	Ala	Asp	Asn	Pro	His
	Val	Ala	Leu	100 Tyr	Arg	Ser	Arg	Phe	105 Pro	Glu	His	Glu	Leu	110 Asn	Val	Asp
5	*		115					120					125			
	Pro	Gln 130	Arg	Gln	Thr	Val	Arg 135	Phe	Gln	Ile	Ser	Pro 140	Gln	Leu	GIn	Phe
	Ser 145	Pro	Glu	Glu	Val	Leu 150	Gly	Met	Val	Leu	Asn 155	Tyr	Ser	Arg	Ser	Leu 160
10	Ala	Glu	Asp	Phe	Ala 165	Glu	Gln	Pro	Ile	Lys 170	Asp	Ala	Val	Ile	Thr 175	Val
	Pro	Ala	Phe	Phe 180		Gln	Ala	Glu	Arg 185	Arg	Ala	Val	Leu	Gln 190	Ala	Ala
	Arg	Met	Ala 195	Gly	Leu	Lys	Val	Leu 200	Gln	Leu	Ile	Asn	Asp 205	Asn	Thr	Ala
15	Thr	Ala 210		Ser	Tyr	Gly	Val 215		Arg	Arg	Lys	Asp 220	Ile	Asn	Ser	Thr
	Ala 225		Asn	Ile	Met	Phe 230		Asp	Met	Gly	Ser 235		Ser	Thr	Val	Cys 240
		Ile	Val	Thr	Tyr 245		Thr	Val	Lys	Thr 250		Glu	Ala	Gly	Thr 255	Gln
20	Pro	Gln	Leu	Gln 260		Arg	Gly	Val	Gly 265		Asp	Arg	Thr	Leu 270	Gly	Gly
	Leu	Glu	Met 275	Glu	Leu	Arg	Leu	Arg 280		His	Leu	Ala	Lys 285	Leu	Phe	Asn
<i>25</i>	Glu	Gln 290		Lys	Gly	Gln	Lys 295		Lys	Asp	Val	Arg 300	Glu	Asn	Pro	Arg
	Ala 305		Ala	Lys	Leu	Leu 310	Arg	Glu	Ala	Asn	Arg 315	Leu	Lys	Thr	Val	Leu 320
		Ala	Asn	Ala	Asp 325		Met	Ala	Gln	Ile 330	Glu	Gly	Leu	Met	Asp 335	Asp
30	Val	Asp	Phe	Lys 340		Lys	Val	Thr	Arg 345	Val	Glu	Phe	Glu	Glu 350	Leu	Cys
			355	Phe				360					365			
		370		Met			375					380				
35	385			Arg		390					395					400
				Glu	405					410					415	
40				Val 420					425					430		
			435	Val				440					445			
		450		Glu			455					460				
45	465			Val		470					475					480
				Phe	485					490					495	
				Leu 500					505					510		
50			515	Leu				520					525			
	Lys	Lys 530		Pro	Asp	Tyr	Glu 535		Lys	Gly	Ile	Lys 540		His	Phe	Asn

17

-55

	Leu 545	Asp	Glu	Ser	Gly	Val 550	Leu	Ser	Leu	Asp	Arg 555	Val	Glu	Ser	Val	Phe 560
5	Glu	Thr	Leu	Val	Glu 565	Asp	Ser	Pro	Glu	Glu 570	Glu	Ser	Thr	Leu	Thr 575	Lys
3	Leu	Gly	Asn	Thr 580		Ser	Ser	Leu	Phe 585	Gly	Gly	Gly	Thr	Ser 590	Ser	Asp
	Ala	Lys	Glu 595	Asn	Gly	Thr	Asp	Ala 600	Val	Gln	Glu	Glu	Glu 605	Glu	Ser	Pro
10	Ala	Glu 610	Gly	Ser	Lys	Asp	Glu 615	Pro	Ala	Glu	Gln	Gly 620	Glu	Leu	Lys	Glu
	625					630	Glu	-			635					640
				_	645		Arg			650					655	
15	Ser	Gly	Asp	Lys 660	Ser	Glu	Ala	Gln	Lys 665	Pro	Asn	Glu	Lys	Gly 670	Gln	Ala
			675	-			Pro	680					685			
		690	_	. –		_	Met 695					700				
20	705					710	Leu				715					720
		_			725		Thr		_	730					735	
25				740			Leu		745					750		
			755				Tyr	760					765			
		770				-	Leu 775					780				
30	785	_		_		790	Thr				795					800
					805		Gly			810					815	
				820			Ser		825					830		
35			835		_		Ala	840					845			
		850	_				Thr 855					860				
40	865		_	_		870	Thr				875	•				880
					885		Leu			890					895	
				900			Gln	_	905					910		
45			915					920					925			Pro
		930					Gly 935					940				
	945					950					955					Glu 960
50					965					970					975	Gly
	PTO	GLY	Ala	G1u 980		Glu	Gln	Ala	985		ınr	ATA	GIĀ	990		Arg

Pro Leu Lys Asn Asp Glu Leu 995

(2)	INFORMATION	FOR	SEQ	ID	NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3252 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) IDENTIFICATION METHOD: E
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TGAGGATGGA GCAGCGGTCG GGCCGCGGCT CCTAGGGGAG GCAGCGTGCT AGCTTCGGGG GCGGGCCAGT AGCGGGAGCG AGGGCCGTAC GGACACCGGT CCCTTCGGCC TTGAAGTTCA 120 GGCGCTGAGC TGCCCCCTCG CGCTCGGGGT GGGCCGGAAT CCATTTCTGG GAGTGGGATC 180 TTCCACCTTC ATCAGGGTCA CAATGGCAGC TACAGTAAGG AGGCAGAGGC CAAGGAGGCT 240 ACTCTGTTGG GCCTTGGTGG CTGTCCTCTT GGCAGACCTG TTGGCACTGA GTGACACACT 300 GGCTGTGATG TCTGTGGACC TGGGCAGTGA ATCCATGAAG GTGGCCATTG TCAAGCCTGG 360 AGTGCCCATG GAGATTGTAT TGAACAAGGA ATCTCGGAGG AAAACTCCGG TGACTGTGAC 420 CTTGAAGGAA AACGAAAGGT TTCTAGGTGA CAGTGCAGCT GGCATGGCCA TCAAGAACCC 480 AAAGGCTACG CTCCGTTATT TCCAGCACCT CCTTGGAAAG CAGGCAGATA ACCCTCATGT 540 GGCTCTTTAC CGGTCCCGTT TCCCAGAACA TGAGCTCAAT GTTGACCCAC AGAGGCAGAC 600 TGTGCGCTTC CAGATCAGTC CGCAGCTGCA GTTCTCTCCC GAGGAGGTGC TGGGCATGGT 660 TCTCAACTAC TCCCGTTCCC TGGCTGAAGA TTTTGCAGAA CAACCTATTA AGGATGCAGT 720 GATCACCGTG CCAGCCTTTT TCAACCAGGC CGAGCGCCGA GCTGTGCTGC AGGCTGCTCG 780 TATGGCTGGC CTCAAGGTGC TGCAGCTCAT CAATGACAAC ACTGCCACAG CCCTCAGCTA 840 TGGTGTCTTC CGCCGGAAAG ATATCAATTC CACTGCACAG AATATCATGT TCTATGACAT 900 GGGCTCGGGC AGCACTGTGT GTACCATCGT GACCTACCAA ACGGTGAAGA CTAAGGAGGC 960 TGGGACGCAG CCACAGCTAC AGATCCGGGG CGTGGGATTT GACCGCACCC TGGGTGGCCT 1020 GGAGATGGAG CTTCGGCTGC GAGAGCACCT GGCTAAGCTC TTCAATGAGC AGCGCAAGGG 1080

55

5

10

15

20

25

30

35

40

45

CCAGAAAGCC AAGGATGTTC GGGAAAACCC CCGAGCCATG GCCAAACTGC TTCGGGAAGC 1140
CAATCGGCTT AAAACCGTCC TGAGTGCCAA TGCTGATCAC ATGGCACAGA TTGAAGGCTT 1200
GATGGACGAT GTGGACTTCA AGGCAAAAGT AACTCGAGTG GAGTTTGAGG AGCTGTGTGC 1260
AGATTTGTTT GATCGAGTGC CTGGGCCTGT ACAGCAGGCC CTGCAGAGTG CTGAGATGAG 1320
CCTGGATCAA ATTGAGCAGG TGATCCTGGT GGGTGGGCCC ACTCGTGTTC CCAAAGTTCA 1380
AGAGGTGCTG CTGAAGCCTG TGGGCAAGGA GGAACTAGGA AAGAACATCA ATGCCGATGA 1440
AGCAGCTGCC ATGGGGGCCG TGTACCAGGC AGCGGCACTG AGCAAAGCCT TCAAAGTGAA 1500
GCCATTTGTT GTGCGTGATG CTGTTATTTA CCCCATCCTG GTGGAGTTCA CAAGGGAGGT 1560
GGAGGAGGAG CCTGGGCTTC GAAGCCTGAA GCACAATAAA CGTGTGCTCT TCTCCCGAAT 1620
GGGGCCCTAC CCTCAGCGCA AAGTCATCAC CTTTAACCGA TACAGCCATG ATTTCAACTT 168
TCACATCAAC TACGGTGACC TGGGCTTCCT GGGGCCTGAG GATCTTCGGG TATTTGGCTC 174
CCAGAATCTG ACCACAGTGA AACTAAAAGG TGTGGGAGAG AGCTTCAAGA AATATCCTGA 180
CTATGAGTCC AAAGGCATCA AGGCCCACTT TAACCTAGAC GAGAGTGGAG TGCTCAGTTT 186
AGACAGGGTG GAGTCCGTAT TCGAGACCCT GGTGGAGGAC AGCCCAGAGG AAGAGTCTAC 192
TCTTACCAAA CTTGGCAACA CCATTTCCAG CCTGTTTGGC GGTGGTACCT CATCAGATGC 198
CAAAGAGAAT GGTACTGATG CTGTACAGGA GGAGGAGGAG AGCCCTGCTG AGGGGAGCAA 204
GGATGAGCCT GCAGAACAGG GGGAACTCAA GGAGGAAGCT GAAGCCCCAA TGGAGGATAC 210
CTCCCAGCCT CCACCCTCTG AGCCTAAGGG GGATGCAGCC CGTGAGGGAG AAACACCTGA 216
TGAAAAGAA AGTGGGGACA AGTCTGAGGC CCAGAAGCCC AATGAGAAGG GGCAGGCAGG 222
GCCTGAGGGT GTCCCTCCAG CTCCCGAGGA AGAAAAAAG CAGAAACCTG CCCGGAAGCA 228
GAAAATGGTG GAGGAGATAG GTGTGGAACT GGCTGTCTTG GACCTGCCAG ACTTGCCAGA 234
GGATGAGCTG GCCCATTCCG TGCAGAAACT TGAGGACTTG ACCCTGCGAG ACCTTGAAAA 240
GCAGGAGAGG GAGAAAGCTG CCAACAGCTT AGAAGCTTTT ATCTTTGAGA CCCAGGACAA 246
ACTGTACCAA CCTGAGTACC AGGAAGTGTC CACTGAGGAA CAACGGGAGG AGATCTCTGG 252
AAAACTCAGT GCCACTTCTA CCTGGCTGGA GGATGAGGGA TTTGGAGCCA CCACTGTGAT 258
GTTGAAGGAC AAGCTGGCTG AGCTGAGAAA GCTGTGCCAA GGGCTGTTTT TTCGGGTGGA 264
AGAGCGCAGG AAATGGCCAG AGCGGCTTTC AGCTCTGGAT AATCTCCTCA ATCACTCCAG 270
CATTTTCCTC AAGGGTGCCC GACTCATCCC AGAGATGGAC CAGATCTTCA CTGACGTGGA 276

the group of the second of

GATGACAACG TTGGAGAAAG TCATCAATGA CACCTGGACC TGGAAGAATG CAACCCTGGC 2820
CGAGCAGGCC AAGCTTCCTG CCACAGAGAA ACCCGTGCTG CTTTCAAAAG ACATCGAGGC 2880
CAAAATGATG GCCCTGGACC GGGAGGTGCA GTATCTACTC AATAAGGCCA AGTTTACTAA 2940
ACCCCGGCCA CGGCCCAAGG ACAAGAATGG CACCCGGACA GAGCCTCCCC TCAATGCCAG 3000
TGCTGGTGAC CAAGAGGAAA AGGTCATTCC ACCTACAGGC CAGACTGAAG AGGCGAAGGC 3060
CATCTTAGAA CCTGACAAAG AAGGGCTTGG TACAGAGGCA GCAGACTCTG AGCCTCTGGA 3120
ATTAGGAGGT CCTGGTGCAG AATCTGAACA GGCAGAGCAG ACAGCAGGGC AGAAGCGGCC 3180
TTTGAAGAAT GATGAGCTGT GACCCCGCGC CTCCGCTCCA CTTGCCTCCA GCCCCTTCTC 3240
CTACCACCTC TA

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Leu Ala Val Met Ser Val Asp Leu Gly Ser Glu Ser Met Lys Val Ala
5 10 15

Ile Val Lys Pro Gly Val Pro Met Glu Ile Val Leu Asn Lys Glu
20 25 30

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid, synthetic nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AATACGACTC ACTATAGGGA

20

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7 amino acids

21

5

10

15

20

25

30

40

45

50

	(B) TYPE: amino acid (D) TOPOLOGY: linear
5	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
	Lys Pro Gly Val Pro Met Glu
10	3
	(2) INFORMATION FOR SEQ ID NO:8:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: other nucleic acid, synthetic nucleic acid
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
	AARCCIGGIG TNCCNATGGA 20
25	(2) INFORMATION FOR SEQ ID NO:9:
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 13 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
0 F	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
35	Lys Pro Gly Val Pro Met Glu Île Val Leu Asn Lys Glu 5 10
40	(2) INFORMATION FOR SEQ ID NO:10:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: other nucleic acid, synthetic nucleic acid
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
50	GCACCCTTGA GGAAAATGCT 20

	(2) INFORMATION FOR SEQ ID NO:11:	
5	 (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: other nucleic acid, synthetic nucle acid	ic
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
15	CCCAGAAGCC CAATGAGAAG 20	
	(2) INFORMATION FOR SEQ ID NO:12:	
20	 (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2861 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(11) MOLECULE TYPE: genomic DNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
	GAAAGAAGTA GACATGGGAG ACTTCATTTT GTTCTGTACT AAGAAAAATT CTTCTGCCTT	60
<i>30</i>	GGGAIGCIGI IGAICIAIGA CCITACCCCO AMOCOIOTOC TOTOCOMO MICOCOTO CONTROL MICOCOTO MICOCOTO TOTOCOMO MICOCOTO MICOC	120
	TCCACTCAGG GITAAATGGA TTAAGGGCGG TGCAAGATGT GGTTTGTTTGTTGTTGTTGTTGTTGTTGTTGTTGTT	180
	GAAGGCAGCA TGCTCGTTAG GAGTCATCAC CACTCCCTAA TCTCAAGTAC CCAGGGACAC	
35	AAACACTGCG GAAGGCCACA GGGTCCTCTG CCTAGGAAAG CCAGAGACCT TTGTTCACTT	
	GITTATETEC TOACCTTCCC TCCACTATTO TCCT	360
	AGAMACACCC AAGAMIGMIC AMIMAMAMA AAAAAAAAA IAAAAAAA IAAAAAAAA	420
40	CTCTGGGACT GCCAATAATT TTTCCTTCTA AGCATAGACA CCGGACCACT CTCCACCTAA	
	GCATCACGAA AAATGTAGAG AAAGGAAGAG CTAAGAGCTC CTTAAACAAG TTCAGGCTTG	
45	ACACAACCCT GGCCCTGACA GCCAGGGTCT TCAAGCGGGC CTTTCTGTGA AGGGTGGCCA	
	GOCATCAACT TAGTAGGAGA GAAAACAGAT GACTIMITTO CITTOGGAGT	660 720
	GCAGTCTCCA AGGACTGCGT ACATTTCTTT TTCGAGAAGG AGTCTCGCTG TTGTCGCCCA	/ ZU

55

50

GGCTGGAGTG CAGTGGCGCA GTCTGGGCTC ACAGCAACCT CTGCCTCCCG GATTCAAGCA 780

ATTCTCCTGC CTCAGCCTCG TGAGTAGCTG GGATTACAGG CACCCGCCAC CACGCCTGGC 840

	TAATTTTTGT AGTTTTGGTA GAGACGGGGT TTCACCATGT TGGCCAGGCT GGTCTCGAAC 900
	TCCTGACCTC CAGTGATTCG CCCGCCTTGG CCTCCCAAAA TGCTGGGATT ACAGGCGTGA 960
5	GCCACCGCGC CCGGGCGACT GCGCACATTT CTATGGAGCT GTAAGTTAAA AGAGAAGGCA 1020
	GTGAGGTGCT TCTGTCATTC TATGACAGAA ACAGCTAAAG AGTAGAGAAA TGTTCACAAG 1080
	ATTTAATAGA ACAGAAATAG GAGAAGGTGC ACACAAGCTC AACCAACTAT AGCCTCACAA 1140
10	ATAAAAGTGT CTTTTGTGTG TAGTACTTAA GTTTGGAATA TTCTTTCTTA TACAAATGAG 1200
	TGGGGCTTAA CCTAAGAAAT CCTGGCCAGA TTCTGCGACG AATGCATCGG TTATCTCTGA 1260
15	CCCATCAGCA AACATCTTTT TCTGTGGCTT CAGTTTCCTC AGTAAAACAG AGGGGGTTGC 1320
	GACGGACTCA GTCCGAGGCA CAGCCATTCT CCAACGTCTA TCCAAAGCCT AGGGCACCTC 1380
	AATACTAACC GGCAGGCCAG CGCCCCCTCC GCGGGGCTGC GGACAGGACG CCTGTTATTC 1440
20	CATTCCTCGG CCGGGCTCTA CAGGTGACCG GAAGAAGAGC CCCGAGTGCG GGACTGCAGT 1500
	GCGCCCGACC TGCTCTAGGC GCAGGTCACT CCCGAACCCC GGCAGCAAAG CATCCAGCGC 1560
	CGGAAAAGGT CCCGCGGTCG CCCCGGGGCC GGCGCTGGGG AGGAAGGAGT GGAGCGCGCT 1620
25	GGCCCCGTGA CGTGGTCCAA TCCCAGGCCG ACGCCGGCTG CTTCTGCCCA ACCGGTGGCT 1680
	GGTCCCCTCC GCCGCCCCA TTACAAGGCT GGCAAAGGGA GGGGGCGGGG CCTGGGACGT 1740
	GGTCCAATGA GTACGCGCGC CGGGGCGGCG GGGGCGGGGC
30	GGGCGCCGA GGCTCCAATG AGCGCCCGCC GCGTCCGGGG CCGGCTGGTG CGCGAGACGC 1860
	CGCCGAGAGG TTGGTGGCTA ATGTAACAGT TTGCAAACCG AGAGGAGTTG TGAAGGGCGC 1920
35	GGGTGGGGG CGCTGCCGGC CTCGTGGGTA CGTTCGTGCC GCGTCTGTCC CAGAGCTGGG 1980
	GCCGCAGGAG CGGAGGCAAG AGGTAGCGGG GGTGGATGGA GGTGCGGGCC GGCCACCCCT 2040
	CCTAGGGGAG ACAGCGTGCG AGCTCCGGGG GCGGGTCGGG AGCGCAAGGG AGGGCCGCGC 2100
40	GGACGCCGGG CGCTCGGCCT CGCACCGGGG GGCACGCAGC TCGGCCCCCG GTCTGTCCCC 2160
	ACTTGCTGGG GCGGGCCGGG ATCCGTTTCC GGGAGTGGGA GCCGCCGCCT TCGTCAGGTG 2220
	GGGTTTAGGT GAACACCGGG TAACGGCTAC CCGCCGGGCG GGGAACCTTA CCGCCCCTGG 2280
45	CACTGCGTCT GTGGGCACAG CGGGGCCGGG GAGTGAGCTG GGAAAGGGGA GGGGGCGGGA 2340
	CAACCCGCAG GGATGCCGAG GAGGAGATAG GCCTTTCCTT CATCCTAGCT ACCCCCAACG 2400
50	TCATTACCTT TCTCTTCCCG TCCAGGCCCA GCTGGCTTTC CCCGTCAGCG GGGGAGCTCC 2460
50	AGGTGTGGGG AGGTGGTTGA GCCCTGGGCG GGGATCCCTG GCCGCACCCC AGGTGTCTGA 2520

5

	CAACAGGC	AC AGT	GCTGCGG	TGCGCCACTC	ACTGCCTGTG	TGGTGGACAA	AAGGCTCGGG	2580
	TCTCCTTTC	CT CTT	GTCCTGT	TAGCTTCTCT	GTTTAGGGAT	GTGGCAAAGC	CGAGGACCCA	2640
5	TGCTCTTTC	CA CTT	GGGCCTT	TGTGTGGGCG	CTGCTGGGAT	GATTAGAGAA	TGGTTTGTAC	2700
	CCATCAGG	AG GGA	GAAGGGG	AGAAGTAGGC	TGATCTGCCC	TGGGTAAGAA	TGAAGTAGAT	2760
10	ATGAATCT	ra cag	CCTCTCC	GTTCTGGGAT	GTGATTCTGT	CTCCTTCACT	CCGGGTATCC	2820
	AGTTTTAA	ST GTT	TTCTTTC	TTCGCCTCC	C CCAGGGGCA	СТ		2861
15								
20								
						•		
25								
25								
30								
35								
40								
40								
45								

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:														
10	 (i) APPLICANT: (A) NAME: HSP Research Institute, Inc. (B) STREET: 2-8, Doshomachi 2-chome, Chuo-ku, (C) CITY: Osaka-shi, Osaka (E) COUNTRY: JP (F) POSTAL CODE (ZIP): none 														
	(ii) TITLE OF INVENTION: STRESS PROTEINS														
	(iii) NUMBER OF SEQUENCES: 12 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPC														
20	(v) CURRENT APPLICATION DATA: APPLICATION NUMBER: EP 96 12 0622.0 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 7-349661 (B) FILING DATE: 20-DEC-1995 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 8-213181														
25															
30	(2) INFORMATION FOR SEQ ID NO: 1:														
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 999 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:														
40	Met Ala Asp Lys Val Arg Arg Gln Arg Pro Arg Arg Arg Val Cys Trp 1 5 10 15														
	Ala Leu Val Ala Val Leu Leu Ala Asp Leu Leu Ala Leu Ser Asp Thr 20 25 30														
45	Leu Ala Val Met Ser Val Asp Leu Gly Ser Glu Ser Met Lys Val Ala 35 40 45														
	Ile Val Lys Pro Gly Val Pro Met Glu Ile Val Leu Asn Lys Glu Ser 50 55 60														
50	Arg Arg Lys Thr Pro Val Ile Val Thr Leu Lys Glu Asn Glu Arg Phe 65 70 75 80														
	Phe Gly Asp Ser Ala Ala Ser Met Ala Ile Lys Asn Pro Lys Ala Thr 85 90 95														

	Leu	Arg	Tyr	Phe 100	Gln	His	Leu	Leu	Gly 105	Lys	Gln	Ala	Asp	Asn 110	Pro	Hîs
5	Val	Ala	Leu 115	Tyr	Gln	Ala	Arg	Phe 120	Pro	Glu	His	Glu	Leu 125	Thr	Phe	Asp
		Gln 130	Arg	Gln	Thr	Val	His 135	Phe	Gln	Ile	Ser	Ser 140	Gln	Leu	Gln	Phe
10	Ser 145	Pro	Glu	Glu	Val	Leu 150	Gly	Met	Val	Leu	Asn 155	Tyr	Ser	Arg	Ser	Leu 160
	Ala	Glu	Asp	Phe	Ala 165	Glu	Gln	Pro	Ile	Lys 170	Asp	Ala	Val	Ile	Thr 175	Val
15	Pro	Val	Phe	Phe 180	Asn	Gln	Ala	Glu	Arg 185	Arg	Ala	Val	Leu	Gln 190	Ala	Ala
	Arg	Met	Ala 195	Gly	Leu	Lys	Val	Leu 200	Gln	Leu	Ile	Asn	Asp 205	Asn	Thr	Ala
<i>20</i> ·	Thr	Ala 210	Leu	Ser	Tyr	Gly	Val 215	Phe	Arg	Arg	Lys	Asp 220	Ile	Asn	Thr	Thr
	Ala 225	Gln	Asn	Ile	Met	Phe. 230	Tyr	Asp	Met	Gly	Ser 235	Gly	Ser	Thr	Val	Cys 240
25	Thr	Ile	Val	Thr	Tyr 245	Gln	Met	Val	Lys	Thr 250	Lys	Glu	Ala	Gly	Met 255	Gln
30	Pro	Gln	Leu	Gln 260	Ile	Arg	Gly	Val	Gly 265	Phe	Asp	Arg	Thr	Leu 270	Gly	Gly
	Leu	Glu	Met 275	Glu	Leu	Arg	Leu	Arg 280	Glu	Arg	Leu	Ala	Gly 285	Leu	Phe	Asn
35	Glu	Gln 290	Arg	Lys	Gly	Gln	Arg 295	Ala	Lys	Asp	Val	Arg 300	Glu	Asn	Pro	Arg
	Ala 305		Ala	Lys	Leu	Leu 310		Glu	Ala	Asn	Arg 315	Leu	Lys	Thr	Val	Leu 320
40	ser	Ala	Asn	Ala	Asp 325		Met	Ala	Gln	11e 330	Glu	Gly	Leu	Met	Asp 335	Asp
•	Val	Asp	Phe	Lys 340		Lys	Val	Thr	Arg 345		Glu	Phe	Glu	Glu 350	Leu	Сув
45	Ala	Asp	Leu 355		Glu	Arg	Val	Pro 360		Pro	Val	Gln	Gln 365	Ala	Leu	Gln
	Ser	Ala 370		Met	Ser	Leu	375		Ile	Glu	Gln	Val 380		Leu	Val	Gly
50	Gly 385		Thr	Arg	Val	Pro 390		Val	Gln	Glu	Val 395		Leu	Lys	Ala	Val 400
	Gly	Lys	Glu	Glu	Leu 405		Lys	Asn	Ile	Asn 410		Asp	Glu ,	Ala	Ala 415	Ala

	Met	Gly	Ala	Val 420	Tyr	Gln	Ala		Ala 425	Leu	Ser	Lys	Ala	Phe 430	Lys	Val
5	Lys	Pro	Phe 435	Val	Val	Arg	Asp	Ala 440	Val	Val	Tyr	Pro	Ile 445	Leu	Val	Glu
	Phe	Thr 450	Arg	Glu	Val	Glu	Glu 455	Glu	Pro	Gly	Ile	His 460	Ser	Leu	Lys	His
10	Asn 465	Lys	Arg	Val	Leu	Phe 470	Ser	Arg	Met	Gly	Pro 475	Tyr	Pro	Gln	Arg	Lys 480
	Val	Ile	Thr	Phe	Asn 485	Arg	Tyr	Ser	His	Asp 490	Phe	Asn	Phe	His	Ile 495	Asn
15	Tyr	Gly	Asp	Leu 500	Gly	Phe	Leu	Gly	Pro 505	Glu	Asp	Leu	Arg	Val 510	Phe	Gly
	Ser	Gln	Asn 515	Leu	Thr	Thr	Val	Lys 520	Leu	Lys	Gly	Val	Gly 525	Asp	Ser	Phe
રુ	Lys	Lys 530	Tyr	Pro	Asp	Tyr	Glu 535	Ser	Lys	Gly	Ile	Lys 5 4 0	Ala	His	Phe	Asn
or.	Leu 545	Asp	Glu	Ser	Gly	Val 550	Leu	Ser	Leu	Asp	Arg 555	Val	Glu	Ser	Val	Phe 560
25	Glu	Thr	Leu	Val	Glu 565	Asp	Ser	Ala	Glu	Glu 570	Glu	Ser	Thr	Leu	Thr 575	Lys
3 <i>0</i>	Leu	Gly	Asn	Thr 580	Ile	Ser	Ser	Leu	Phe 585	Gly	Gly	Gly	Thr	Thr 590	Pro	Ąsp
	Ala	Lys	Glu 595	Asn	Gly	Thr	Asp	Thr 600	Val	Gln	Glu	Glu	Glu 605	Glu	Ser	Pro
35	Ala	Glu 610	Gly	Ser	Lys	Asp	Glu 615	Pro	Gly	Glu	Gln	Val 620	Glu	Leu	Lys	Glu
	Glu 625	Ala	Glu	Ala	Pro	Val 630	Glu	Asp	Gly	Ser	Gln 635	Pro	Pro	Pro	Pro	Glu 640
40	Pro	Lys	Gly	Asp	Ala 645	Thr	Pro	Glu	Gly	Glu 650	Lys	Ala	Thr	Glu	Lys 655	Glu
	Asn	Gly	Asp	Lys 660	Ser	Glu	Ala	Gln	Lys 665	Pro	Ser	Glu	Lys	Ala 670	Glu	Ala
4 5	Gly	Pro	Glu 675	Gly	Val	Ala	Pro	Ala 680		Glu	Gly	Glu	Lys 685		Gln	Lys
	Pro	Ala 690	Arg	Lys	Arg	Arg	Met 695	Val	Glu	Glu	Ile	Gly 700	Val	Glu	Leu	Val
50	Val 705		Asp	Leu	Pro	Asp 710	Leu	Pro	Glu	Asp	Lys 715	Leu	Ala	Gln	Ser	Val 720
	Gln	Lys	Leu	Gln	Asp 725		Thr	Leu	Arg	Asp 730		Glu	Lys	Gln	Glu 735	_

	Glu	Lys	Ala	Ala 740	Asn	Ser	Leu	Glu	Ala 745	Phe	Ile	Phe	Glu	Thr 750	Gln	Ąsp
5	Lys	Leu	Tyr 755	Gln	Pro	Glu	Tyr	Gln 760	Glu	Val	Ser	Thr	Glu 765	Glu	Gln	Arg
	Glu	Glu 770	Ile	Ser	Gly	Lys	Leu 775	Ser	Ala	Ala	Ser	Thr 780	Trp	Leu	Glu	Asp
10	Glu 785	Gly	Val	Gly	Ala	Thr 790	Thr	Val	Met	Leu	Lys 795	Glu	Lys	Leu	Ala	Glu 800
	Leu	Arg	Lys	Leu	Cys 805	Gln	Gly	Leu	Phe	Phe 810	Arg	Val	Glu	Glu	Arg 815	Lys
15	Lys	Trp	Pro	Glu 820	Arg	Leu	Ser	Ala	Leu 825	Asp	Asn	Leu	Leu	Asn 830	His	Ser
	Ser	Met	Phe 835	Leu	Lys	Gly	Ala	Arg 840		Ile	Pro	Glu	Met 845	Asp	Gln	Ile
20	Phe	Thr 850	Glu	Val	Glu	Met	Thr 855	Thr	Leu	Glu	Lys	Val 860	Ile	Asn	Glu	Thr
25	Trp 865		Trp	Lys	Asn	Ala 870	Thr	Leu	Ala	Glu	Gln 875	Ala	Lys	Leu	Pro	Ala 880
	Thr	Glu	Lys	Pro	Val 885	Leu	Leu	Ser	Lys	Asp 890	Ile	Glu	Ala	Lys	Met 895	Met
30	Ala	Leu	Asp	Arg 900		Val	Gln	Tyr	Leu 905		Asn	Lys	Ala	Lys 910	Phe	Thr
	Lys	Pro	Arg 915		Arg	Pro	Lys	Asp 920		Asn	Gly	Thr	Arg 925		Glu	Pro
<i>35</i>	Pro	Leu 930		Ala	Ser	Ala	Ser 935		Gln	Gly	Glu	Lys 940		Ile	Pro	Pro
	Ala 945	_	Gln	Thr	Glu	Asp 950		Glu	Pro	Ile	Ser 955		Pro	Glu	Lys	Val 960
40	Glu	Thr	Gly	Ser	Glu 965		Gly	Asp	Thr	970		Leu	Glu	Leu	Gly 975	Gly
	Pro	Gly	Ala	980		Glu	Gli	Lys	985	-	Ser	Thr	Gly	Gln 990	Lys	Arg
45	Pro	Leu	Lys 995		Asp	Glu	Leu	ι								
	(2)				FOR											
50		(i		(A) I (B) I (C) S	ICE (LENGT TYPE : STRAM	H: 4 nuc	503 cleic ESS	base aci	pa: id	irs						

(ii) MOLECULE TYPE: cDNA

5		(ix)	(2	ATURI A) NZ B) LO	ME/I		CDS	. 3099	•								
		(xi)	SEÇ	QUENC	CE DI	SCR:	IPTIC	ON: S	EQ 1	D NO): 2:	:					
10	TTG	rgaa(agg (CGCGC	GTG	eg go	3GCG(CTGC	G GGG	CTC	etgg	GTA	CGTT	CGT (3CCG(CGTCTG	60
	TCC	CAGAC	CT (GGGG	CCGCI	AG GI	AGCG	GAGG	C AAC	BAGGO	GCA				GAC Asp 1		114
15																	
							AGG Arg										162
20							TTG Leu										210
							GAG Glu										258
25							GTC Val										306
30							AAA Lys 75										354
35							AAG Lys										402
							CAG Gln										450
40							CAC His										498
45				Phe			AGC Ser		Gln								546
							AAT Asn									TTT Phe	594

55

50

GCA GAG CAG CCC ATC AAG GAT GCA GTG ATC ACC GTG CCA GTC TTC TTC Ala Glu Gln Pro Ile Lys Asp Ala Val Ile Thr Val Pro Val Phe

	AAC Asn	CAG Gln	GCC Ala	GAG Glu	CGC Arg 185	CGA Arg	GCT Ala	GTG Val	CTG Leu	CAG Gln 190	GCT Ala	GCT Ala	CGT Arg	A1G Met	GCT Ala 195	GGC Gly	•	690
5	CTC Leu	AAA Lys	GTG Val	CTG Leu 200	CAG Gln	CTC Leu	ATC Ile	AAT Asn	GAC Asp 205	AAC Asn	ACC Thr	GCC Ala	ACT Thr	GCC Ala 210	CTC Leu	AGC Ser	•	738
10	TAT Tyr	GGT Gly	GTC Val 215	TTC Phe	CGC Arg	CGG Arg	AAA Lys	GAT Asp 220	ATT Ile	AAC Asn	ACC Thr	ACT Thr	GCC Ala 225	CAG Gln	AAT Asn	ATC Ile	•	786
15	ATG Met	TTC Phe 230	TAT Tyr	GAC Asp	ATG Met	GGC Gly	TCA Ser 235	GGC Gly	AGC Ser	ACC Thr	GTA Val	TGC Cys 240	ACC Thr	ATT Ile	GTG Val	ACC Thr	;	834
	TAC Tyr 245	CAG Gln	ATG Met	GTG Val	AAG Lys	ACT Thr 250	AAG Lys	GAA Glu	GCT Ala	GGG Gly	ATG Met 255	CAG Gln	CCA Pro	CAG Gln	CTG Leu	CAG Gln 260	;	882
20 ,	ATC Ile	CGG Arg	GGA Gly	GTA Val	GGA Gly 265	TTT Phe	GAC Asp	CGT Arg	ACC Thr	CTG Leu 270	GGG Gly	GGC Gly	CTG Leu	GAG Glu	ATG Met 275	GAG Glu		930
25	CTC Leu	CGG Arg	CTT Leu	CGA Arg 280	GAA Glu	CGC Arg	CTG Leu	GCT Ala	GGG Gly 285	CTT Leu	TTC Phe	AAT Asn	GAG Glu	CAG Gln 290	CGC Arg	AAG Lys		978
	GGT Gly	CAG Gln	AGA Arg 295	GCA Ala	AAG Lys	GAT Asp	GTG Val	CGG Arg 300	GAG Glu	AAC Asn	CCG Pro	CGT Arg	GCC Ala 305	ATG Met	GCC Ala	AAG Lys	1	026
30	CTG Leu	CTG Leu 310	CGT Arg	GAG Glu	GCT Ala	AAT Asn	CGG Arg 315	CTC Leu	AAA Lys	ACC Thr	GTC Val	CTC Leu 320	AGT Ser	GCC Ala	AAC Asn	GCT Ala	1	074
35	GAC Asp 325	His	ATG Met	GCA Ala	CAG Gln	ATT Ile 330	GAA Glu	GGC	CTG Leu	ATG Met	GAT Asp 335	Asp	GTG Val	GAC Asp	TTC Phe	AAG Lys 340	1	122
	GCA Ala	AAA Lys	GTG Val	ACT Thr	CGT Arg 345	GTG Val	GAA Glu	TTT	GAG Glu	GAG Glu 350	Leu	TGT Cys	GCA Ala	GAC Asp	TTG Leu 355	TTT Phe	1	170
40	Glu	Arg	Val	Pro 360	GGG Gly	Pro	Val	Gln	Gln 365	Ala	Leu	Gln	Ser	Ala 370	Glu	Met	1	218
45	AGT Ser	CTG Leu	GAT Asp 375	Glu	ATT	GAG Glu	CAG Gln	GTG Val 380	Ile	CTG	GTG Val	GGT Gly	GGG Gly 385	Ala	ACT Thr	CGG	1	.266
50	Val	Pro 390	Arg	Val	Gln	Glu	Val 395	Leu	Leu	Lys	Ala	Val 400	Gly	Lys	Glu	GAG Glu	1	.314
	CTG Leu 405	Gly	AAG Lys	AAC Asn	ATC Ile	AAT Asn 410	Ala	GAT Asp	GAA Glu	GCA Ala	GCC Ala 415	Ala	ATG Met	GGG	GCA Ala	GTG Val 420	1	1362

·												GTG Val					1410
5	GTC Val											GAG Glu					1458
10	GTG Val											CAC His					1506
15												AAA Lys 480	_	_	_	_	1554
												AAC Asn					1602
20	Gly	Phe	Leu	Gly	Pro 505	Glu	Asp	Leu	Arg	Val 510	Phe	GGC	Ser	Gln	Asn 515	Leu	1650
25	Thr	Thr	Val	Lys 520	Leu	Lys	Gly	Val	Gly 525	Asp	Ser	TTC Phe	Lys	Lys 530	Tyr	Pro	1698
	Asp	Tyr	Glu 535	Ser	Lys	Gly	Ile	Lys 540	Ala	His	Phe	AAC Asn	Leu 545	Ąsp	Glu	Ser	1746
30	Gly	Val 550	Leu	Ser	Leu	Asp	Arg 555	Val	Glu	Ser	Val	Phe	Glu	Thr	Leu	Val	1794
35	Glu 565	Asp	Ser	Ala	Glu	Glu 570	Glu	Ser	Thr	Leu	Thr 575	AAA Lys	Leu	Gly	Asn	Thr 580	1842
40	Ile	Ser	Ser	Leu	Phe 585	Gly	Gly	Gly	Thr	Thr 590	Pro	GAT Asp	Ala	Lys	Glu 595	Asn	1890
	Gly	Thr	Asp	Thr 600	Val	Gln	Glu -	Glu	Glu 605	Glu	Ser	Pro	Ala	Glu 610	Gly	Ser	1938
45												GAG Glu					1986
50	Pro	Val 630	Glu	Asp	Gly	Ser	Gln 635	Pro	Pro	Pro	Pro	GAA Glu 640	Pro	Lys	Gly	Asp	2034
									_	_		GAA Glu					2082

State of State

					AAA Lys 665												2130
5					CCA Pro												2178
10	CGG Arg	CGA Arg	ATG Met 695	GTA Val	GAG Glu	GAG Glu	ATC Ile	GGG Gly 700	GTG Val	GAG Glu	CTG Leu	GTT Val	GTT Val 705	CTG Leu	GAC Asp	CTG Leu	2226
15	CCT Pro	GAC Asp 710	TTG Leu	CCA Pro	GAG Glu	GAT Asp	AAG Lys 715	CTG Leu	GCT Ala	CAG Gln	TCG Ser	GTG Val 720	CAG Gln	AAA Lys	CTT Leu	CAG Gln	2274
					CGA Arg												2322
20					GCG Ala 745												2370
25	CCC Pro	GAG Glu	TAC Tyr	CAG Gln 760	GAA Glu	GTG Val	TCC Ser	ACA Thr	GAG Glu 765	GAG Glu	CAG Gln	CGT Arg	GAG Glu	GAG Glu 770	ATC Ile	TCT Ser	2418
	GGG Gly	AAG Lys	CTC Leu 775	AGC Ser	GCC Ala	GCA Ala	TCC Ser	ACC Thr 780	TGG Trp	CTG Leu	GAG Glu	GAT Asp	GAG Glu 785	GGT Gly	GTT Val	GGA Gly	2466
30	GCC Ala	ACC Thr 790	ACA Thr	GTG Val	ATG Met	TTG Leu	AAG Lys 795	GAG Glu	AAG Lys	CTG Leu	GCT Ala	GAG Glu 800	CTG Leu	AGG Arg	AAG Lys	CTG Leu	2514
35	TGC Cys 805	CAA Gln	GGG Gly	CTG Leu	TTT Phe	TTT Phe 810	CGG Arg	GTA Val	GAG Glu	GAG Glu	CGC Arg 815	AAG Lys	AAG Lys	TGG Trp	CCC	GAA Glu 820	2562
	CGG Arg	CTG Leu	TCT Ser	GCC Ala	CTC Leu 825	GAT Asp	AAT Asn	CTC Leu	CTC Leu	AAC Asn 830	CAT His	TCC Ser	AGC Ser	ATG Met	TTC Phe 835	CTC Leu	2610
40	AAG Lys	GGG Gly	GCC Ala	CGG Arg 840	CTC Leu	ATC Ile	CCA Pro	GAG Glu	ATG Met 845	GAC Asp	CAG Gln	ATC Ile	TTC Phe	ACT Thr 850	GAG Glu	GTG Val	2658
45	GAG Glu	ATG Met	ACA Thr 855	Thr	TTA Leu	GAG Glu	AAA Lys	GTC Val 860	Ile	AAT Asn	GAG Glu	ACC Thr	TGG Trp 865	GCC	TGG Trp	AAG Lys	2706
	AAT Asn	GCA Ala 870	Thr	CTG Leu	GCC Ala	GAG Glu	CAG Gln 875	Ala	AAG Lys	CTG Leu	CCC	GCC Ala 880	Thr	GAG Glu	AAG Lys	CCT Pro	2754
50	GTG Val 885	Leu	CTC	TCA Ser	AAA Lys	GAC Asp 890	Ile	GAA Glu	GCT Ala	AAG Lys	ATG Met 895	Met	GCC Ala	CTG Leu	GAC Asp	CGA Arg 900	2802

	GAG Glu	GTG Val	CAG Gln	TAT Tyr	CTG Leu 905	CTC Leu	TAA Asn	AAG Lys	GCC Ala	AAG Lys 910	TTT Phe	ACC Thr	AAG Lys	CCC Pro	CGG Arg 915	CCC Pro	2850
5	CGG Arg	CCT Pro	AAG Lys	GAC Asp 920	AAG Lys	AAT Asn	GGG Gly	ACC Thr	CGG Arg 925	GCA Ala	GAG Glu	CCA Pro	CCC Pro	CTC Leu 930	AAT Asn	GCC Ala	2898
10	AGT Ser	GCC Ala	AGT Ser 935	GAC Asp	CAG Gln	GGG Gly	GAG Glu	AAG Lys 940	GTC Val	ATC Ile	CCT Pro	CCA Pro	GCA Ala 945	GGC Gly	CAG Gln	ACT Thr	2946
	GAA Glu	GAT Asp 950	GCA Ala	GAG Glu	CCC Pro	ATT Ile	TCA Ser 955	GAA Glu	CCT Pro	GAG Glu	AAA Lys	GTA Val 960	GAG Glu	ACT Thr	GGA Gly	TCC Ser	2994
15	GAG Glu 965	CCA Pro	GGA Gly	GAC Asp	ACT Thr	GAG Glu 970	CCT Pro	TTG Leu	GAG Glu	TTA Leu	GGA Gly 975	ggt Gly	CCT Pro	GGA Gly	GCA Ala	GAA Glu 980	3042
20	CCT Pro	GAA Glu	CAG Gln	AAA Lys	GAA Glu 985	CAA Gln	TCG Ser	ACA Thr	GGA Gly	CAG Gln 990	AAG Lys	CGG Arg	CCT Pro	TTG Leu	AAG Lys 995	AAC Asn	3090
25		GAA Glu			ccc	CAC (CTCT	GTTT:	rc c	CCAT	rcat(C TC	CACC	CCCT			3139
	тссс	CCA	CCA	CTTC	TATT	ra t	TTAA	CATC	G AG	GGTT	GGGG	GAG	GGGT	TGG	TCCT	GCCCTC	3199
	GGC	rgga	3TT	CCTT	rctc:	AC C	CCTGʻ	TGAT	T TG	GAGG'	TGTG	GAG.	AAGG	GGA	AGGG	AGGGAC	3259
30																СТСССС	3319
																ATTAAT TCCCGG	3379 3439
35																TCCTTC	3499
	CCT	CCCT	TCC	тстс	CCAC	CA T	GCGA	TGAG	C AT	CCTT	TCAG	GCC	agtg	TCT	GCAG	AGCCTC	3559
	AGT"	TACC	AGG	TTTG	GTTT	CT G	agtg	CCTA	т ст	GTGC	тстт	TCC	TCCC	TCT	GCGG	GCTTCT	3619
40	CTT	GCTC	TGA	GCCT	CCCT	TC C	CCAT	TCCC	A TG	CAGC	TCCT	TTC	cccc	TGG	GTTT	CCTTGG	3679
	CTT	CCTG	CAG	CAAA	TTGG	GC A	GTTC	TCTG	c cc	CTTG	CCTA	AAA	GCCT	GTA	CCTC	TGGATT	3739
	GGC	GGAA	GTA	AATC	TGGA	AG G	ATTC	TCAC	T CG	TATT	TCCC	ACC	CCTA	GTG.	GCCA	GAGGAG	3799
45	GGA	GGGG	CAC	AGTG	AAGA	AG G	GAGC	CCAC	C AC	CTCT	'CCGA	AGA	GGAA	AGC	CACG	TAGAGT	3859
	GGT	TGGC	ATG	GGGI	GCCA	GC A	TCGT	GCAA	G CI	CTGI	'CATA	ATC	TGCA	TCT	TCCC	AGCAGC	3919
50																CTCCTC	3979
																TTCTAC	4039
	TGT	GAGT	CCC	TATO	CCAA	GA 7	CCTG	GGG#	A AC	GAGA	GACC	: ATC	GTGT	GAA	TGT	AGAGATG	4099

	CCAC	CTC	CT C	TCTC	TGAG	G C	AGGCC	TGTG	GAT	GAAG	GAG	GAGO	GTC	AGG (CTG	CCTTC	4	4159
	crci	GTGC	CAT C	ACTO	TGCI	A GO	TTGG	GGGC	ccc	CCGAC	CCA	CCAT	racci	rac c	CCT	AGGGAG	4	4219
5	ററന്ദ	TCCT	rcc A	GTAT	TCCG	т ст	GTAG	CAGG	AGC	TAGG	GCT	GCTC	CCTC	CAG C	CTCC	AAGACA	4	1279
	AGAA	TGA	CC 1	GGCI	GTTG	C AC	TCAT	TTTG	TCI	TTTC	CTT	TTT	rrr	CTT I	rgccz	ACATTG	4	4339
	GCAG	AGAT	rgg d	SACCI	CAAGG	G TO	CCAC	cccı	CAC	CCCA	ACCC	CCAC	CTC1	rtc 1	GTA	GTTTG	4	4399
10	AATT	CTT	CA G	TAGO	TGTI	G AT	GCT	GTTG	GAC	CAGGI	TTG	AGTO	CAAAT	rtg 1	CACT	TGCTC	4	4459
	CATT	GTTA	TAJ	GAGA	AACI	G TI	TCA	TAA	ATA	TTCI	TTT	CTAC	2				4	4503
15	(2)		(i) S	EQUE	FOR ENCE ENGTH	CHAF	eacte	ERIST	rics:									
		,			PE:													
20					LE TY		-		SEQ 1	ID NO): 3:	:						
25	Met 1	Ala	Ala	Thr	Val 5	Arg	Arg	Gln	Arg	Pro 10	Arg	Arg	Leu	Leu	Суs 15	Trp		
	Ala	Leu	Val	Ala 20	Val	Leu	Leu	Ala	Asp 25	Leu	Leu	Ala	Leu	Ser 30	Asp	Thr		
3 <i>0</i>	Leu	Ala	Val 35	Met	Ser	Val	Asp	Leu 40	Gly	Ser	Glu	Ser	Met 45	Lys	Val	Ala		
	Ile	Val 50	Lys	Pro	Gly	Val	Pro 55	Met	Glu	Ile	Val	Leu 60	Asn	Lys	Glu	Ser		
35	Arg 65	-	Lys	Thr	Pro	Val 70	Thr	Val	Thr	Leu	Lys 75	Glu	Asn	Glu	Arg	Phe 80		
	Leu	Gly	Asp	Ser	Ala 85	Ala	Gly	Met	Ala	Ile 90	Lys	Asn	Pro	Lys	Ala 95	Thr		
40	Leu	Arg	Tyr	Phe 100	Gln	His	Leu	Leu	Gly 105	Lys	Gln	Ala	Asp	Asn 110	Pro	His		
	Val	Ala	Leu 115	Tyr	Arg	Ser	Arg	Phe 120	Pro	Glu	His	Glu	Leu 125	Asn	Val	Asp		
45	Pro	Gln 130	Arg	Gln	Thr	Val	Arg 135	Phe	Gln	Ile	Ser	Pro 140	Gln	Leu	Gln	Phe		
	Ser 145	Pro	Glu	Glu	Val	Leu 150	Gly	Met	Val	Leu	Asn 155	Tyr	Ser	Arg	Ser	Leu 160		
50	Ala	Glu	Asp	Phe	Ala 165	Glu	Gln	Pro	Ile	Lys 170	Asp	Ala	Val	Ile	Thr 175	Val		
	Pro	Ala	Phe	Phe 180		Gln	Ala	Glu	Arg 185	Arg	Ala	Val	Ļeu	Gln 190	Ala	Ala		

·	Arg	Met	Ala 195	Gly	Leu	Lys	Val	Leu 200	Gln	Leu	Ile	Asn	Asp 205	Asn	Thr	Aľa
5	Thr	Ala 210	Leu	Ser	Tyr	Gly	Val 215	Phe	Arg	Arg	Lys	Asp 220	Ile	Asn	Ser	Thr
	Ala 225	Gln	Asn	Ile	Met	Phe 230	Tyr	Asp	Met	Gly	Ser 235	Gly	Ser	Thr	Val	Cys 240
10	Thr	Ile	Val	Thr	Tyr 245	Gln	Thr	Val	Lys	Thr 250	Lys .	Glu	Ala	Gly	Thr 255	Gln
	Pro	Gln	Leu	Gln 260	Ile	Arg	Gly	Val	Gly 265	Phe	Asp	Arg	Thr	Leu 270	Gly	Gly
15	Leu	Glu	Met 275	Glu	Leu	Arg	Leu	Arg 280	Glu	His	Leu	Ala	Lys 285	Leu	Phe	Asn
	Glu	Gln 290	Arg	Lys	Gly	Gln	Lys 295	Ala	Lys	Asp	Val	Arg 300	Glu	Asn	Pro	Arg
20	Ala 305	Met	Ala	Lys	Leu	Leu 310	Arg	Glu	Ala	Asn	Arg 315	Leu	Lys	Thr	Val	Leu 320
	Ser	Ala	Asn	Ala	Asp 325	His	Met	Ala	Gln	Ile 330	Glu	Gly	Leu	Met	Asp 335	Asp
25	Val	Asp	Phe	Lys 340	Ala	Lys	Val	Thr	Arg 345	Val	Glu	Phe	Glu	Glu 350	Leu	Cys
30	Ala	Asp	Leu 355	Phe	Asp	Arg	Val	Pro 360	Gly	Pro	Val	Gln	Gln 365	Ala	Leu	Gln
30	Ser	Ala 370	Glu	Met	Ser	Leu	Asp 375	Gln	Ile	Glu	Gln	Val 380	Ile	Leu	Val	Gly
35	Gly 385	Pro	Thr	Arg	Val	Pro 390	Lys	Val	Gln	Glu	Val 395	Leu	Leu	Lys	Pro	Val 400
	Gly	Lys	Glu	Glu	Leu 405	Gly	Lys	Asn	Ile	Asn 410	Ala	Asp	Glu	Ala	Ala 415	Ala
40	Met	Gly	Ala	Val 420	Tyr	Gln	Ala	Ala	Ala 425	Leu	Ser	Lys	Ala	Phe 430	Lys	Val
	Lys	Pro	Phe 435	Val	Val	Arg	Asp	Ala 440		Ile	Tyr	Pro	Ile 445	Leu	Val	Glu
45	Phe	Thr 450	_	Glu	Val	Glu	Glu 455	Glu	Pro	Gly	Leu	Arg 460	Ser	Leu	Lys	His
	Asn 465	-	Arg	Val	Leu	Phe 470	Ser	Arg	Met	Gly	Pro 475		Pro	Gln	Arg	Lys 480
50	Val	Ile	Thr	Phe	Asn 485		Tyr	Ser	His	Asp 490	Phe	Asn	Phe	His	Ile 495	
	туг	Gly	Asp	Leu 500	-	Phe	Leu	Gly	Pro 505		Asp	Leu	Arg	Val 510		Gly

	Ser	Gln	Asn 515	Leu	Thr	Thr	Val	Lys 520	Leu	Lys	Gly	Val	Gly 525	Glu	Ser	Phe
5	Lys	Lys 530	Tyr	Pro	Asp	туг	Glu 535	Ser	Lys	Gly	Ile	Lys 540	Ala	His	Phe	Asn
	Leu 545	Asp	Glu	Ser	Gly	Val 550	Leu	Ser	Leu	Asp	Arg 555	Val	Glu	Ser	Val	Phe 560
10	Glu	Thr	Leu	Val	Glu 565	Asp	Ser	Pro	Glu	Glu 570	Glu	Ser	Thr	Leu	Thr 575	Lys
	Leu	Gly	Asn	Thr 580	Ile	Ser	Ser	Leu	Phe 585	Gly	Gly	Gly	Thr	Ser 590	Ser	ĄsĄ
15	Ala	Lys	Glu 595	Asn	Gly	Thr	Asp	Ala 600	Val	Gln	Glu	Glu	Glu 605	Glu	Ser	Pro
	Ala	Glu 610	Gly	Ser	Lys	Asp	Glu 615	Pro	Ala	Glu	Gln	Gly 620	Glu	Leu	Lys	Glu
20	Glu 625	Ala	Glu	Ala	Pro	Met 630	Glu	Asp	Thr	Ser	Gln 635	Pro	Pro	Pro	Ser	Glu 640
	Pro	Lys	Gly	Asp	Ala 645	Ala	Arg	Glu	Gly	Glu 650	Thr	Pro	Asp	Glu	Lys 655	Glu
25	Ser	Gly	Asp	Lys 660	Ser	Glu	Ala	Gln	Lys 665	Pro	Asn	Glu	Lys	Gly 670	Gln	Ala
	Gly	Pro	Glu 675	Gly	Val	Pro	Pro	Ala 680	Pro	Glu	Glu	Glu	Lys 685	Lys	Gln	Lys
30	Pro	Ala 690	Arg	Lys	Gln	Lys	Met 695	Val	Glu	Glu	Ile	Gly 700	Val	Glu	Leu	Ala
	Val 705	Leu	Asp	Leu	Pro	Asp 710	Leu	Pro	Glu	Asp	Glu 715	Leu	Ala	His	Ser	Val 720
35	Gln	Lys	Leu	Glu	Asp 725	Leu	Thr	Leu	Arg	Asp 730	Leu	Glu	Lys	Gln	Glu 735	Arg
40	Glu	Lys	Ala	Ala 740	Asn	Ser	Leu	Glu	Ala 745	Phe	Ile	Phe	Glu	Thr 750	Gln	Asp
40	Lys	Leu	Tyr 755	Gln	Pro	Glu		Gln 760		Val	Ser	Thr	Glu 765	Glu	Gln	Arg
45	Glu	Glu 770	Ile	Ser	Gly	Lys	Leu 775	Ser	Ala	Thr	Ser	Thr 780	Trp	Leu	Glu	As è.
	Glu 785	Gly	Phe	Glγ	Ala	Thr 790		Val	Met	Leu	Lys 795		Lys	Leu	Ala	Glu 800
5O	Leu	Arg	Lys	Leu	Cys 805	Gln	Gly	Leu	Phe	Phe 810		Val	Glu	Glu	Arg 815	Arg
	Lys	Trp	Pro	Glu 820		Leu	Ser	Ala	Leu 825		Asn	Leu	Leu	Asn 830	His	Ser

·	Ser	Ile	Phe 835	Leu	Lys	Gly	Ala	Arg 840	Leu	Ile	Pro	Glu	Met 845	Asp	Gln	IIe		
5	Phe	Thr 850	Asp	Val	Glu	Met	Thr 855	Thr	Leu	Glu	Lys	Val 860	Ile	Asn	Asp	Thr		
	Trp 865	Thr	Trp	Lys	Asn	Ala 870	Thr	Leu	Ala	Glu	Gln 875	Ala	Lys	Leu	Pro	Ala 880		
10	Thr	Glu	Lys	Pro	Val 885	Leu	Leu	Ser	Lys	Asp 890	Ile	Glu	Ala	Lys	Met 895	Met		
15	Ala	Leu	Asp	Arg 900	Glu	Val	Gln	Tyr	Leu 905	Leu	Asn	Lys	Ala	Lys 910	Phe	Thr		
15	Lys	Prc	Arg 915	Pro	Arg	Pro	Lys	Asp 920	Lys	Asn	Gly	Thr	Arg 925	Thr	Glu	Pro		
20	Pro	Leu 930	Asn	Ala	Ser	Ala	Gly 935	Ąsp	Gln	Glu	Glu	Lys 940		Ile	Pro	Pro		
	Thr 945	Gly	Gln	Thr	Glu	Glu 950	Ala	Lys	Ala	Ile	Leu 955	Glu	Pro	Asp	ГÀЗ	Glu 960		
25	Gly	Leu	Gly	Thr	Glu 965	Ala	Ala	Asp	Ser	Glu 970	Pro	Leu	Glu	Leu	Gly 975	Gly		
	Pro	Gly	Ala	Glu 980	Ser	Glu	Gln	Ala	Glu 985		Thr	Ala	Gly	Gln 990	Lys	Arg		
30	Pro	Leu	Lys 995	Asn	Asp	Glu	Leu											
	(2) IN	FORM	ATIO	N FO	R SE	Q ID	NO:	4:									
35		(i	() ()	QUEN A) L B) T C) S D) T	ENGT YPE : TRAN	H: 3 nuc DEDN	252 leic ESS:	base aci dou	pai d	rs								
40		(ii) MO	LECU	LE T	YPE:	cDN	A										
45		(ix	. (ATUR A) N B) L	AME/				9									
70		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEO	ID N	iO: 4	:						
	TGA		-	_									\GCG1	GCT	agct	TCGGGG		60
50																AGTTCA		120
	GGC	GCTG	AGC	TGCC	CCCT	CG C	GCTC	GGGG	T GG	GCCG	GAAT	CCA	ATTT(TGG	GAGT	GGGATC	:	180

	TTCCACCTTC ATCAGGGTCA CA ATG GCA GCT ACA GTA AGG AGG CCA 232 Met Ala Ala Thr Val Arg Arg Gln Arg Pro 5 10	
5	AGG AGG CTA CTC TGT TGG GCC TTG GTG GCT GTC CTC TTG GCA GAC CTG Arg Arg Leu Leu Cys Trp Ala Leu Val Ala Val Leu Leu Ala Asp Leu 15 20 25	
10	TTG GCA CTG AGT GAC ACA CTG GCT GTG ATG TCT GTG GAC CTG GGC AGT Leu Ala Leu Ser Asp Thr Leu Ala Val Met Ser Val Asp Leu Gly Ser 30 35 40	
15	GAA TCC ATG AAG GTG GCC ATT GTC AAG CCT GGA GTG CCC ATG GAG ATT 376 Glu Ser Met Lys Val Ala Ile Val Lys Pro Gly Val Pro Met Glu Ile 45 50 55	
	GTA TTG AAC AAG GAA TCT CGG AGG AAA ACT CCG GTG ACT GTG ACC TTG Val Leu Asn Lys Glu Ser Arg Arg Lys Thr Pro Val Thr Val Thr Leu 60 65 70	
20	AAG GAA AAC GAA AGG TTT CTA GGT GAC AGT GCA GCT GGC ATG GCC ATC Lys Glu Asn Glu Arg Phe Leu Gly Asp Ser Ala Ala Gly Met Ala Ile 75 80 85 90	
25	AAG AAC CCA AAG GCT ACG CTC CGT TAT TTC CAG CAC CTC CTT GGA AAG 520 Lys Asn Pro Lys Ala Thr Leu Arg Tyr Phe Gln His Leu Leu Gly Lys 95 100 105	
	CAG GCA GAT AAC CCT CAT GTG GCT CTT TAC CGG TCC CGT TTC CCA GAA 568 Gln Ala Asp Asn Pro His Val Ala Leu Tyr Arg Ser Arg Phe Pro Glu 110 115 120	
30	CAT GAG CTC AAT GTT GAC CCA CAG AGG CAG ACT GTG CGC TTC CAG ATC His Glu Leu Asn Val Asp Pro Gln Arg Gln Thr Val Arg Phe Gln Ile 125 130 135	
<i>35</i>	AGT CCG CAG CTG CAG TTC TCT CCC GAG GAG GTG CTG GGC ATG GTT CTC Ser Pro Gln Leu Gln Phe Ser Pro Glu Glu Val Leu Gly Met Val Leu 140 145 150	
	AAC TAC TCC CGT TCC CTG GCT GAA GAT TTT GCA GAA CAA CCT ATT AAG Asn Tyr Ser Arg Ser Leu Ala Glu Asp Phe Ala Glu Gln Pro Ile Lys 155 160 165 170	
40	GAT GCA GTG ATC ACC GTG CCA GCC TTT TTC AAC CAG GCC GAG CGC CGA Asp Ala Val Ile Thr Val Pro Ala Phe Phe Asn Gln Ala Glu Arg Arg 175 180 185	
45	GCT GTG CTG CAG GCT GCT CGT ATG GCT GGC CTC AAG GTG CTG CAG CTC Ala Val Leu Gln Ala Ala Arg Met Ala Gly Leu Lys Val Leu Gln Leu 190 195 200	
<i>50</i>	ATC AAT GAC AAC ACT GCC ACA GCC CTC AGC TAT GGT GTC TTC CGC CGG Ile Asn Asp Asn Thr Ala Thr Ala Leu Ser Tyr Gly Val Phe Arg Arg 205 210 215	
	AAA GAT ATC AAT TCC ACT GCA CAG AAT ATC ATG TTC TAT GAC ATG GGC Lys Asp Ile Asn Ser Thr Ala Gln Asn Ile Met Phe Tyr Asp Met Gly 220 225 230	

				ACT Thr													952
5				GGG Gly													1000
10				CTG Leu 270													1048
15				CTC Leu													1096
	GTT Val	CGG Arg 300	GAA Glu	AAC Asn	CCC Pro	CGA Arg	GCC Ala 305	ATG Met	GCC Ala	AAA Lys	CTG Leu	CTT Leu 310	CGG Arg	GAA Glu	GCC Ala	AAT Asn	1144
20				ACC Thr													1192
25				ATG Met													1240
				GAG Glu 350													1288
30 ·	GTA Val	CAG Gln	CAG Gln 365	GCC Ala	CTG Leu	CAG Gln	AGT Ser	GCT Ala 370	GAG Glu	ATG Met	AGC Ser	CTG Leu	GAT Asp 375	CAA Gln	ATT	GAG Glu	1336
35			Ile	CTG Leu				Pro								GAG Glu	1384
	GTG Val 395	Leu	CTG Leu	AAG Lys	CCT Pro	GTG Val 400	Gly	AAG Lys	GAG Glu	GAA Glu	CTA Leu 405	Gly	AAG Lys	AAC Asn	ATC Ile	AAT Asn 410	1432
40	GCC Ala	GAT Asp	GAA Glu	GCA Ala	Ala	GCC	Met	GGG	GCC Ala	GTG Val 420	Tyr	CAG Gln	GCA Ala	GCG Ala	GCA Ala 425	CTG Leu	1480
45					Lys					Val					Val	ATT Ile	1528
50	TAC	Pro	ATC Ile 445	Leu	GTG Val	GAG Glu	TTC Phe	ACA Thr 450	Arg	GAG Glu	GTG Val	GAG Glu	GAG Glu 455	Glu	CCT Pro	GGG	1576
			Ser					Lys					Ser			GGG Gly	1624

													TAC Tyr				1672
5													CTG Leu				1720
10	Asp	Leu	Arg	Val 510	Phe	Gly	Ser	Gln	Asn 515	Leu	Thr	Thr	GTG Val	Lys 520	Leu	Lys	1768
15	Gly	Val	Gly 525	Glu	Ser	Phe	Lys	Lys 530	Tyr	Pro	Asp	Tyr	GAG Glu 535	Ser	Lys	Gly	1816
	Ile	Lys 540	Ala	His	Phe	Asn	Leu 545	Asp	Glu	Ser	Gly	Val 550	CTC Leu	Ser	Leu	Asp	1864
20	Arg 555	Val	Glu	Ser	Val	Phe 560	Glu	Thr	Leu	Val	Glu 565	qeA	AGC Ser	Pro	Glu	Glu 570	1912
25	Glu	Ser	Thr	Leu	Thr 575	Lys	Leu	Gly	Asn	Thr 580	Ile	Ser	AGC Ser	Leu	Phe 585	Gly	1960
	Gly	Gly	Thr	Ser 590	Ser	Asp	Ala	Lys	Glu 595	Asn	Gly	Thr	GAT Asp	Ala 600	Val	Gln	2008
30	Glu	Glu	Glu 605	Glu	Ser	Pro	Ala	Glu 610	Gly	Ser	Lys	Asp	GAG Glu 615	Pro	Ala	Glu	2056
35	Gln	Gly 620	Glu	Leu	Lys	Glu	Glu 625	Ala	Glu	Ala	Pro	Met 630	GAG Glu	Asp	Thr	Ser	2104
40	Gln 635	Pro	Pro	Pro	Ser	Glu 640	Pro	Lys	Gly	Asp	Ala 645	Ala	CGT Arg	Glu	Gly	Glu 650	2152
	Thr	Pro	Asp	Glu	Lys 655	Glu	Ser	Gly	Asp	Lys 660	Ser	Glu	GCC Ala	Gln	Lys 665	Pro	2200
45	Asn	Glu	Lys	Gly 670	Gln	Ala	Gly	Pro	Glu 675	Gly	Val	Pro	CCA Pro	Ala 680	Pro	Glu	2248
50	Glu	Glu	Lys 685	Lys	Gln	Lys	Pro	Ala 690	Arg	Lys	Gln	Lys	ATG Met 695	Val	Glu	Glu	2296
	ATA Ile	GGT Gly 700	Val	GAA Glu	CTG Leu	GCT Ala	GTC Val 705	Leu	GAC Asp	CTG Leu	CCA Pro	GAC Asp 710	TTG Leu	CCA Pro	GAG Glu	GAT Asp	2344

41

סופרומנים כבי בסטובא

	GAG Glu 715	CTG Leu	GCC Ala	CAT His	Ser	GTG Val 720	CAG Gln	AAA Lys	CTT Leu	GAG Glu	GAC Asp 725	TTG Leu	ACC Thr	CTG Leu	CGA Arg	GAC Asp 730	2392
5	CTT Leu	GAA Glu	AAG Lys	Gln	GAG Glu 735	AGG Arg	GAG Glu	AAA Lys	GCT Ala	GCC Ala 740	AAC Asn	AGC Ser	TTA Leu	GAA Glu	GCT Ala 745	TTT Phe	2440
10 ,	ATC Ile	TTT Phe	GAG Glu	ACC Thr 750	CAG Gln	GAC Asp	AAA Lys	CTG Leu	TAC Tyr 755	CAA Gln	CCT Pro	GAG Glu	TAC Tyr	CAG Gln 760	GAA Glu	GTG Val	2488
15	TCC Ser	ACT Thr	GAG Glu 765	GAA Glu	CAA Gln	CGG Arg	GAG Glu	GAG Glu 770	ATC Ile	TCT Ser	GGA Gly	AAA Lys	CTC Leu 775	AGT Ser	GCC Ala	ACT Thr	2536
	TCT Ser	ACC Thr 780	TGG Trp	CTG Leu	GAG Glu	GAT Asp	GAG Glu 785	GGA Gly	TTT Phe	GGA Gly	GCC Ala	ACC Thr 790	ACT Thr	GTG Val	ATG Met	TTG Leu	2584
20	AAG Lys 795	GAC Asp	AAG Lys	CTG Leu	GCT Ala	GAG Glu 800	CTG Leu	AGA Arg	AAG Lys	CTG Leu	TGC Cys 805	CAA Gln	GGG Gly	CTG Leu	TTT	TTT Phe 810	2632
<i>2</i> 5	CGG Arg	GTG Val	GAA Glu	GAG Glu	CGC Arg 815	AGG Arg	AAA Lys	TGG Trp	CCA Pro	GAG Glu 820	CGG Arg	CTT Leu	TCA Ser	GCT Ala	CTG Leu 825	GAT Asp	2680
	AAT Asn	CTC Leu	CTC Leu	AAT Asn 830	CAC His	TCC Ser	AGC Ser	ATT Ile	TTC Phe 835	CTC Leu	AAG Lys	GGT	GCC Ala	CGA Arg 840	CTC Leu	ATC Ile	2728
30	CCA Pro	GAG Glu	ATG Met 845	Asp	CAG Gln	ATC Ile	TTC Phe	ACT Thr 850	Asp	GTG Val	GAG Glu	ATG Met	ACA Thr 855	ACG Thr	TTG Leu	GAG Glu	2776
35	AAA Lys	GTC Val 860	Ile	AAT Asn	GAC Asp	ACC Thr	TGG Trp 865	Thr	TGG Trp	AAG Lys	AAT Asn	GCA Ala 870	Thr	CTG	GCC	GAG Glu	2824
	CAG Gln 875	Ala	AAG Lys	CTT	CCT	GCC Ala 880	Thr	GAG	AAA Lys	Pro	GTG Val 885	Leu	CTT	TCA Ser	Lys	GAC 890	2872
40	ATC Ile	GAG Glu	GCC	AAA Lys	ATG Met 895	Met	GCC Ala	Lev	GAC Asp	CGG Arg	Glu	GTG Val	Gln	TAT	Lev 905	CTC Leu	2920
4 5	TAA neA	Lys Lys	GCC Ala	Lys 910	Phe	ACT Thr	Lys	CCC Pro	CGG Arg	Pro	CGG Arg	CCC Pro	Lys	GA0 Asi 920	Lys	TAA E	2968
50	GGC Gly	ACC Thr	925	Thr	GAG	CCT Pro	CCC Pro	CTC Lev 930	ı Ası	GCC Ala	AGT a Ser	GC1	GG1 Gly 935	/ Asj	CAA	A GAG	3016
	GA# Glu	AA0 1 Lys 940	val	ATT	CCA Pro	CCT Pro	This	r Gl	CAC y Gli	AC.	r GAJ r Glu	A GAG 1 Glv 950	ı Ala	AAG A Ly:	G GC	ATC a Ile	3064

				GAC Asp														3112
5				TTA Leu														3160
10				CAG Gln 990										TGA	cccc	3CG		3209
	CCTC	CGC1	rcc 1	ACTTO	CCTC	C AC	CCC	TTC	CCI	TACCA	ACCT	CTA						3252
15	(2)		SEC	ATION QUENC A) LE	CE CH	IARAC	TER	tstic	cs:	2								
20			(I (C	B) TY C) ST O) TY	(PE : TRANE OPOLO	amir EDNE XGY:	o ac SSS: line	cid sing										
25		(ii)	MOI	LECUI	E TY	TPE:	pept	ide										٠.
				QUENC									ı Ser	. Met	: Lys	s Val 15	Ala	
30			e Val	l Lys	20		/ Val	l Pro	Met	: Glu 25		val	Leu	ı Ası	Lys 30	Glu		
	(2)	INFO	ORMA?	rion	FOR	SEQ	ID E	10: é	5:									
35		(i)	() ()	QUENC A) LE B) TY C) ST O) TO	ength PE: Prant	i: 20 nucl	bas leic ESS:	e pa ació sing	irs i									
40		(ii)		LECUI A) DE								tic	nucl	eic.	ació	1•		
45		(xi)	SEC	QUENC	CE DE	SCRI	PTIC	ON: S	SEQ I	ID NO	D: 6:							
	AATA	CGAC	CTC A	ACTAI	PAGGG	SA.												20
	(2)			rion														
50		(i)	() (I	QUENC A) LI B) T? C) S?	engti CPE :	I: 7 amir	amin no ac	no ac	abis									

43

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
10	Lys Pro Gly Val Pro Met Glu	
	1 5	
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic nucleic acid"</pre>	
	(R) Dabekiritov. / debe = Dynamotic metrological	
	(ix) FEATURE:	
25	(A) NAME/KEY: - (B) LOCATION:6	
	(D) OTHER INFORMATION:/note= "N at position 6 is an inosine residue."	
	(ix) FEATURE:	
30	(A) NAME/KEY: -	
	(B) LOCATION:9(D) OTHER INFORMATION:/note= "N at position 9 is an	
	inosine residue."	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	AARCCNGGNG TNCCNATGGA	20
	(2) INFORMATION FOR SEQ ID NO: 9:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 13 amino acids (B) TYPE: amino acid	
	(C) STRANDEDNESS: single	
45	(D) TOPOLOGY: Tinear	
45	(ii) MOLECULE TYPE: peptide	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
-	Lys Pro Gly Val Pro Met Glu Ile Val Leu Asn Lys Glu	
	1 5 10	
55		

•	(2) INFORMATION FOR SEQ ID NO: 10:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic nucleic acid"</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: GCACCCTTGA GGAAAATGCT	20
	(2) INFORMATION FOR SEQ ID NO: 11:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
<i>25</i>	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "synthetic nucleic acid"	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: CCCAGAAGCC CAATGAGAAG (2) INFORMATION FOR SEQ ID NO: 12:	20
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2861 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
45	GAAAGAAGTA GACATGGGAG ACTTCATTTT GTTCTGTACT AAGAAAAATT CTTCTGCCTT	60
	GGGATGCTGT TGATCTATGA CCTTACCCCC AACCCTGTGC TCTCTGAAAC ATGTGCTGTG	120
	TCCACTCAGG GTTAAATGGA TTAAGGGCGG TGCAAGATGT GCTTTGTTAA ACAGATGCTT	180
50	GAAGGCAGCA TGCTCGTTAG GAGTCATCAC CACTCCCTAA TCTCAAGTAC CCAGGGACAC	240
	AAACACTGCG GAAGGCCACA GGGTCCTCTG CCTAGGAAAG CCAGAGACCT TTGTTCACTT	300

	GTTTATCTGC	TGACCTTCCC	TCCACTATTG	TCCTATGACC	CTGCCAAATC	CCCCTCTGCC	. 360
	AGAAACACCC	AAGAATGATC	AAAAAAAA	ааааааааа	AAAAAGGAAG	AATAGACTCT	420
	CTCTGGGACT	GCCAATAATT	TTTCCTTCTA	AGCATAGACA	CCGGACCACT	CTCCACCTAA	480
	GCATCACGAA	AAATGTAGAG	AAAGGAAGAG	CTAAGAGCTC	CTTAAACAAG	TTCAGGCTTG	540
	ACACAACCCT	GGCCCTGACA	GCCAGGGTCT	TCAAGCGGGC	CTTTCTGTGA	AGGGTGGCCA	600
0	GGCATCAACT	TAGTAGGAGA	GAAAACAGAT	GACTTATTTC	CATCCACACT	TAAGGAAAAT	660
	GCAGTCTCCA	AGGACTGCGT	ACATTTCTTT	TTCGAGAAGG	AGTCTCGCTG	TTGTCGCCCA	720
_	GGCTGGAGTG	CAGTGGCGCA	GTCTGGGCTC	ACAGCAACCT	CTGCCTCCCG	GATTCAAGCA	780
5	ATTCTCCTGC	CTCAGCCTCG	TGAGTAGCTG	GGATTACAGG	CACCCGCCAC	CACGCCTGGC	840
	TAATTTTTGT	AGTTTTGGTA	GAGACGGGGT	TTCACCATGT	TGGCCAGGCT	GGTCTCGAAC	900
0	TCCTGACCTC	CAGTGATTCG	CCCGCCTTGG	CCTCCCAAAA	TGCTGGGATT	ACAGGCGTGA	960
	GCCACCGCGC	CCGGGCGACT	GCGCACATTT	CTATGGAGCT	GTAAGTTAAA	AGAGAAGGCA	1020
	GTGAGGTGCT	TCTGTCATTC	TATGACAGAA	ACAGCTAAAG	AGTAGAGAAA	TGTTCACAAG	1080
5	ATTTAATAGA	ACAGAAATAG	GAGAAGGTGC	ACACAAGCTC	AACCAACTAT	AGCCTCACAA	1140
	ATAAAAGTGT	CTTTTGTGTG	TAGTACTTAA	GTTTGGAATA	TTCTTTCTTA	TACAAATGAG	1200
•	TGGGGCTTAA	CCTAAGAAAT	CCTGGCCAGA	TTCTGCGACG	AATGCATCGG	TTATCTCTGA	1260
o	CCCATCAGCA	AACATCTTTT	TCTGTGGCTT	CAGTTTCCTC	AGTAAAACAG	AGGGGGTTGC	1320
	GACGGACTCA	GTCCGAGGCA	CAGCCATTCT	CCAACGTCTA	TCCAAAGCCT	AGGGCACCTC	1380
	AATACTAACC	GGCAGGCCAG	CGCCCCCTCC	GCGGGGCTGC	GGACAGGACG	CCTGTTATTC	1440
5	CATTCCTCGG	CCGGGCTCTA	CAGGTGACCG	GAAGAAGAGC	CCCGAGTGCG	GGACTGCAGT	1500
	GCGCCCGACC	TGCTCTAGGC	GCAGGTCACT	CCCGAACCCC	GGCAGCAAAG	CATCCAGCGC	1560
	CGGAAAAGGT	CCCGCGGTCG	CCCCGGGGCC	GGCGCTGGGG	AGGAAGGAGT	GGAGCGCGCT	1620
0	GGCCCCGTGA	CGTGGTCCAA	TCCCAGGCCG	ACGCCGGCTG	CTTCTGCCCA	ACCGGTGGCT	1680
	GGTCCCCTCC	GCCGCCCCCA	TTACAAGGCT	GGCAAAGGGA	GGGGCGGGG	CCTGGGACGT	1740
_	GGTCCAATGA	GTACGCGCGC	CGGGCGCG	GGGGGGGC	CGGGCGCGCA	GCGCAGGGCC	1800
5	GGGCGGCCGA	GGCTCCAATG	AGCGCCCGCC	GCGTCCGGGG	CCGGCTGGTG	CGCGAGACGC	1860
	CGCCGAGAGG	TTGGTGGCTA	ATGTAACAGT	TTGCAAACCG	AGAGGAGTTG	TGAAGGCGC	1920
0	GGGTGGGGG	CGCTGCCGGC	CTCGTGGGTA	CGTTCGTGCC	GCGTCTGTCC	CAGAGCTGGG	1986
-	GCCGCAGGAG	CGGAGGCAAG	AGGTAGCGGG	GGTGGATGGA	GGTGCGGGCC	GGCCACCCCT	2040
	CCTAGGGGAG	ACAGCGTGCG	AGCTCCGGGG	GCGGGTCGGG	AGCGCAAGGG	AGGGCCGCGC	2100

	GGACGCCGGG	CGCTCGGCCT	CGCACCGGGG	GGCACGCAGC	TCGGCCCCCG	GTCTGTCCCC	2160
5	ACTTGCTGGG	GCGGGCCGGG	ATCCGTTTCC	GGGAGTGGGA	GCCGCCGCCT	TCGTCAGGTG	2220
	GGGTTTAGGT	GAACACCGGG	TAACGGCTAC	ccgccgggcg	GGGAACCTTA	CCGCCCCTGG	2280
	CACTGCGTCT	GTGGGCACAG	CGGGGCCGGG	GAGTGAGCTG	GGAAAGGGGA	GGGGCGGGA	2340
10	CAACCCGCAG	GGATGCCGAG	GAGGAGATAG	GCCTTTCCTT	CATCCTAGCT	ACCCCCAACG	2400
	TCATTACCTT	TCTCTTCCCG	TCCAGGCCCA	GCTGGCTTTC	CCCGTCAGCG	GGGGAGCTCC	2460
15	AGGTGTGGGG	AGGTGGTTGA	GCCCTGGGCG	GGGATCCCTG	GCCGCACCCC	AGGTGTCTGA	2520
	CAACAGGCAC	AGTGCTGCGG	TGCGCCACTC	ACTGCCTGTG	TGGTGGACAA	AAGGCTCGGG	2580
	TCTCCTTTCT	CTTGTCCTGT	TAGCTTCTCT	GTTTAGGGAT	GTGGCAAAGC	CGAGGACCCA	2640
20	TGCTCTTTCA	CTTGGGCCTT	TGTGTGGGCG	CTGCTGGGAT	GATTAGAGAA	TGGTTTGTAC	2700
	CCATCAGGAG	GGAGAAGGGG	AGAAGTAGGC	TGATCTGCCC	TGGGTAAGAA	TGAAGTAGAT	2760
25	ATGAATCTTA	CAGCCTCTCC	GTTCTGGGAT	GTGATTCTGT	CTCCTTCACT	CCGGGTATCC	2820
	AGTTTTAAGT	GTTTTCTTTC	TTCGCCTCCC	CCAGGGGCAC	T		2863

30

35

40

45

Claims

- 1. A polynucleotide encoding an ORP150 polypeptide selected from the group consisting of:
 - (a) polynucleotides encoding the polypeptide having the amino acid sequence as depicted in SEQ ID NO:1 or a fragment of the polypeptide;
 - (b) polynucleotides comprising the coding region of the nucleotide sequence as shown in SEQ ID NO:2 or a fragment thereof;
 - (c) polynucleotides encoding the polypeptide having the amino acid sequence as depicted in SEQ ID NO:3 or a fragment of the polypeptide;
 - (d) polynucleotides comprising the coding region of the nucleotide sequence as depicted in SEQ ID NO:4 or a fragment thereof;
 - (e) polynucleotides encoding an ORP150 polypeptide which differs from the polypeptide encoded by the polynucleotide of (a) or (c) due to deletion(s), addition(s), insertion(s) and/or substitutions(s) of one or more amino acid residues; and
 - (f) polynucleotides the complementary strand of which hybridizes to a polynucleotide of any one of (a) to (e) and which encode an ORP150 polypeptide;
- 50 and the complementary strand of such a polynucleotide.
 - The polynucleotide of claim 1 which is DNA.
 - The polynucleotide of claim 2 which is genomic DNA.
 - The polynucleotide of claim 1 which is RNA.
 - A vector comprising the polynucleotide of any one of claims 1 to 4.

- 6. The vector of claim 5, in which the polynucleotide is operatively linked to regulatory elements which allow for expression in prokaryotic or eukaryotic host cells.
- 7. A host cell transformed and genetically engineered with a polynucleotide of any one of claims 1 to 4 or with a vector of claim 5 or 6.
 - 8. A process for the preparation of an ORP150 polypeptide comprising culturing the host cell of claim 7 and recovering the polypeptide from the cells and/or the culture medium.
- 10 9. A polypeptide encoded by the polynucleotide of any one of claims 1 to 4 or obtainable by the process of claim 8.
 - 10. An antibody or fragment thereof which specifically recognizes the polypeptide of claim 9.
 - 11. A nucleic acid molecule which specifically hybridizes to a polynucleotide of any one of claims 1 to 4.
 - 12. A pharmaceutical composition comprising a polynucleotide of any one of claims 1 to 4, the polypeptide of claim 9, the antibody of claim 10 and/or the nucleic acid molecule of claim 11 and optionally a pharmaceutically acceptable carrier.
- 20 13. A diagnostic composition comprising a polynucleotide of any one of claims 1 to 4, the polypeptide of claim 9, the antibody of claim 10 and/or the nucleic acid molecule of claim 11.
 - 14. Use of the polynucleotide of any one of claims 1 to 4, the polypeptide of claim 9, the antibody of claim 10 or the nucleic acid molecule of claim 11 for the preparation of a pharmaceutical composition for the treatment of ischemic diseases.
 - 15. A nucleic acid molecule having promoter activity and being able to promote transcription in cells when exposed to hypoxia selected from the group consisting of:
 - (a) polynucleotides comprising the nucleotide sequence as depicted in SEQ ID NO:12 or a fragment thereof;
 - (b) polynucleotides hybridizing with the polynucleotide of (a).

15

25

30

35

40

45

50

Collegia to the the Collegia C

FIGURE 2

FIGURE 3

THIS PAGE BLANK (USPTO)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 780 472 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 20.05.1998 Bulletin 1998/21
- (43) Date of publication A2: 25.06.1997 Bulletin 1997/26
- (21) Application number: 96120662.0
- (22) Date of filing: 20.12.1996

- (51) Int. Cl.⁶: **C12N 15/12**, C07K 14/435, C12N 1/21, C12N 15/70, C07K 16/18, A61K 31/70, C12Q 1/68, A61K 39/00, G01N 33/577, C12N 15/79
- (84) Designated Contracting States:

 AT BE CH DE ES FR GB IT LI NL SE
- (30) Priority: 20.12.1995 JP 349661/95 23.07.1996 JP 213181/96
- (71) Applicant:
 Hsp Research Institute, Inc.
 Chuo-ku, Osaka-shi, Osaka (JP)
- (72) Inventors:
 - Ikeda, Jun Tokyo (JP)

- Kaneda, Sumiko Kyoto-shi, Kyoto (JP)
- Yanagi, Hideki
 Takarazuka-shi, Hyogo-ken (JP)
- Matsumoto, Masayasu Mino-shi, Osaka (JP)
- Yura, Takashi
 Kyoto-shi, Kyoto (JP)
- (74) Representative: VOSSIUS & PARTNER Postfach 86 07 67 81634 München (DE)

(54) Stress proteins

(57) Described is a stress protein named ORP150, polynucleotides encoding said protein as well as antibodies against the ORP150 protein. Furthermore, pharmaceutical compositions comprising these proteins, polynucleotides or antibodies are described and their use for the treatment of ischemic diseases.

EUROPEAN SEARCH REPORT

Application Number

ategory	Citation of document with in of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL6)
к Р,Х	September 1995 CHEN, X. ET AL.: "C kDa glucose regulate mRNA, complete cds. XP002060254 * the whole documen	t * "The 170 kDa glucose otein is a large protein of the um." 12 February 1996,	1-11	C12N15/12 C07K14/435 C12N1/21 C12N15/70 C07K16/18 A61K31/70 C12Q1/68 A61K39/00 G01N33/577 C12N15/79
x x	NAVED, A.F. ET AL.: "CBP-140, a novel endoplasmic reticulum resident Ca(2+)-binding protein with a carboxy-terminal NDEL sequence showed partial homology with 70-kDa heat shock protein (Hsp70)." CELL STRUCTURE AND FUNCTION, vol. 20, April 1995, pages 133-141, XP002060250 * the whole document * EP 0 683 230 A (CALIFORNIA INST OF TECHN the whole document *		1-11	TECHNICAL FIELDS SEARCHED (Int.CI.6) C12N C07K A61K G01N C12Q
<u> </u>	The present search report has	-/ been drawn up for all claims		·
	Place of search	Date of completion of the search	1	Examiner
	THE HAGUE	26 March 1998	Sm	alt, R
X:pa Y:pa doo A:teo O:no	CATEGORY OF CITED DOCUMENTS ricularly relevant if taken alone ricularly relevant if combined with and sument of the same category shnological background on-written disolosure ermediate document	T: theory or princip E: earlier patent do after the filing da ther D: document cited i L: document cited i &: member of the a document	le underlying the current, but pub te in the application or other reasons	invention lished on, or

EUROPEAN SEARCH REPORT

Application Number EP 96 12 0662

		RED TO BE RELEVANT		
Category	Citation of document with ind of relevant passag	lication, where appropriate, jes	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IntCL6)
P,X	DATABASE EMROD EMBL Entry RNU41853, Gent 10 August 1996 KUWABARA, K. ET AL.: 150 kDa oxygen regul mRNA, complete cds." XP002060255 * the whole document -& KUWABARA, K. ET A characterization of protein, the 150-kDa protein (ORP150), fr	pank Acc. No. U41853, "Rattus norvegicus lated protein (ORP150) " "AL.: "Purification and a novel stress a oxygen-regulated rom cultured rat expression in ischemic AL CHEMISTRY, March 1996,	1-11	
P,X	DATABASE EMEST10 EMBL Entry HSW18185, Genl May 1996 LIEUALLEN, K. ET AL	bank Acc. No. W18185, 8 .: "IMAGE:20073 Soares omo sapiens cDNA clone	1-11	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
		-/		
	The present search report has t	peen drawn up for all claims		
	Place of search	Date of completion of the search	.L	Examiner
	THE HAGUE	26 March 1998	Sm	alt, R
X:pa Y:pa do A:te	CATEGORY OF CITED DOCUMENTS rticularly relevant if taken alone rticularly relevant if combined with another comment of the same astegory chinological background in-written disclosure armediate document	T : theory or principl E : earlier patent do after the filing da' her D : document cited i L : document oited f	le underlying the cument, but pub te in the application or other reasons	invention lished on, or 1

EUROPEAN SEARCH REPORT

Application Number EP 96 12 0662

		RED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	
ategory	Citation of document with in of relevant passa	dication, where appropriate, ges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
P,X	human artherosclero mononuclear phagocy	otein is expressed in tic plaques and allow tes to withstand exposure to hypoxia a y lipoprotein" INVESTIGATIONS, ctober 1996,	s	
A		CANCER, ust 1990, 2060253	is 9	
				TECHNICAL FIELDS SEARCHED (Int.CI.6)
	The present search report has t	peen drawn up for all claims		
-	Place of search	Date of completion of the search	, 	Examiner
	THE HAGUE	26 March 1998	Sma	ilt, R
X : part Y : part door A : tech	ATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with another to the same category innological background in-written disclosure	E ; earlier pater after the filin ner - D : document c L : document	ited in the application ted for other reasons	shed on, or

Application Number

EP 96 12 0662

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
SEE SHEET B (in case of Lack of Unity)
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

LACK OF UNITY OF INVENTION SHEET B

Application Number EP 96 12 0662

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims: 1-14 partially, and 15.

A human hypoxia-inducible protein of approx. 150 kDa, DNA encoding it, vector comprising said DNA, host cell transformed with said vector, process for preparation of the peptide by expression in said host, an antibody or fragment thereof against the peptide, a nucleic acid hybridizing to said DNA, and pharmaceutical or diagnostic preparations comprizing the DNA, peptide, antibody or hybridizing nucleic acid. Also an hypoxia-inducible promoter sequence.

2. Claims: 1-14 partially

A rat hypoxia-inducible protein of approx. 150 kDa, DNA encoding it, vector comprising said DNA, host cell transformed with said vector, process for preparation of the peptide by expression in said host, an antibody or fragment thereof against the peptide, a nucleic acid hybridizing to said DNA, and pharmaceutical or diagnostic preparations comprizing the DNA, peptide, antibody or hybridizing nucleic acid.