Non-Computability in Graphs

Oscar Levin

University of Northern Colorado

UW Colloquium October 24, 2013

- Interested in the nature of computable functions
- Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.
- The meat: how can we talk about non-computable functions?
- Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.

- Interested in the nature of computable functions
- Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.
- The meat: how can we talk about non-computable functions?
- Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.

- Interested in the nature of computable functions
- Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.
- The meat: how can we talk about non-computable functions?
- Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.

- Interested in the nature of computable functions
- Alternatively: recursive functions, lambda calculus, Turing machines, algorithms, etc.
- The meat: how can we talk about non-computable functions?
- Connection to logic: the more non-computable a function is, the more quantifiers we need to define it.

Computability and Graph Theory

Gain insight into computability theory using graphs as a canvas. Example: computable dimension.

Gain insight into graph theory using computability as a tool. Example: the Four Color Theorem.

Computability and Graph Theory

Gain insight into computability theory using graphs as a canvas. Example: computable dimension.

Gain insight into graph theory using computability as a tool. Example: the Four Color Theorem.

Computable Dimension

Given two computable copies \mathcal{A} , \mathcal{B} of the same structure, there might or might not be a *computable* isomorphism between \mathcal{A} and \mathcal{B} .

The number of copies of a structure up to computable isomorphism is the *computable dimension* of the structure.

Computable Dimension

Given two computable copies \mathcal{A} , \mathcal{B} of the same structure, there might or might not be a *computable* isomorphism between \mathcal{A} and \mathcal{B} .

The number of copies of a structure up to computable isomorphism is the *computable dimension* of the structure.

1 or ω

A graph with computable dimension 1:

Question: Are there structures which have finite computable dimension greater than 1?

1 or ω

A graph with computable dimension 1:

A graph with computable dimension ω :

Question: Are there structures which have finite computable dimension greater than 1?

1 or ω

A graph with computable dimension 1:

A graph with computable dimension ω :

Question: Are there structures which have finite computable dimension greater than 1?

Computable chromatic number

Any planar graph has a 4-coloring

There are computable planar graphs with no computable k-coloring for any k.

Computable chromatic number

Any planar graph has a 4-coloring

There are computable planar graphs with no computable k-coloring for any k.

Computable chromatic number

Any planar graph has a 4-coloring

There are computable planar graphs with no computable k-coloring for any k.

Dominating Sets in Graphs

Given a graph, we look for sets of vertices close to everything.

A set is $\underline{\text{dominating}}$ if every vertex of G is in, or adjacent to a vertex in, the set.

Dominating Sets in Graphs

Given a graph, we look for sets of vertices close to everything.

A set is <u>dominating</u> if every vertex of G is in, or adjacent to a vertex in, the set.

Dominating Sets in Graphs

Given a graph, we look for sets of vertices close to everything.

A set is $\underline{\text{dominating}}$ if every vertex of G is in, or adjacent to a vertex in, the set.

Definition

A <u>domatic k-partition</u> of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

Definition

A <u>domatic k-partition</u> of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

Definition

A <u>domatic k-partition</u> of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

Definition

A <u>domatic k-partition</u> of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

Definition

A <u>domatic k-partition</u> of a graph G is a partition of (all) the vertices of G into k (disjoint) dominating sets.

Main Question

Question

Given a computable graph G with domatic number n, what is the size of the largest <u>computable</u> domatic partition of G? In other words, what is $d^c(G)$, the computable domatic number?

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Suppose G has a domatic 2-partition (so no isolated vertices).

There is an algorithm which produces a domatic 2-partition.

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \notin A$ then . . .

B is a dominating set: if $v_n \notin B$ then . . .

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \not\in A$ then . . .

B is a dominating set: if $v_n \notin B$ then . . .

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Vertices: $\{v_0, v_1, v_2, \ldots\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \not\in A$ then . . .

B is a dominating set: if $v_n \notin B$ then . .

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \not\in A$ then . . .

B is a dominating set: if $v_n \notin B$ then . . .

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \not\in A$ then ... B is a dominating set: if $v_n \not\in B$ then ...

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \notin A$ then . . .

B is a dominating set: if $v_n \notin B$ then . . .

If
$$d(G) = 2$$
 then $d^{c}(G) = 2$.

Vertices: $\{v_0, v_1, v_2, ...\}$

Put $v_0 \in A$.

Put $v_n \in B$ iff there is an adjacent vertex $v_k \in A$ (with k < n)

A is a dominating set: if $v_n \notin A$ then . . .

B is a dominating set: if $v_n \notin B$ then . . .

What if d(G) = 3?

Proposition

There is a computable graph with domatic number 3 but computable domatic number 2.

To prove this, we diagonalize against all computable functions.

What if d(G) = 3?

Proposition

There is a computable graph with domatic number 3 but computable domatic number 2.

To prove this, we diagonalize against all computable functions.

Some More Computability Theory

There is an effective list of all (partial) computable functions:

$$\varphi_0, \varphi_1, \varphi_2, \dots$$

These can be simulated by a universal computable function

We can run these programs "simultaneously" to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some φ_e tries to compute a 3-partition, we thwart it.

Some More Computability Theory

There is an effective list of all (partial) computable functions:

$$\varphi_0, \varphi_1, \varphi_2, \dots$$

These can be simulated by a <u>universal</u> computable function

We can run these programs "simultaneously" to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some φ_e tries to compute a 3-partition, we thwart it.

Some More Computability Theory

There is an effective list of all (partial) computable functions:

$$\varphi_0, \varphi_1, \varphi_2, \dots$$

These can be simulated by a <u>universal</u> computable function

We can run these programs "simultaneously" to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some φ_e tries to compute a 3-partition, we thwart it.

Some More Computability Theory

There is an effective list of all (partial) computable functions:

$$\varphi_0, \varphi_1, \varphi_2, \dots$$

These can be simulated by a <u>universal</u> computable function

We can run these programs "simultaneously" to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some φ_e tries to compute a 3-partition, we thwart it.

Some More Computability Theory

There is an effective list of all (partial) computable functions:

$$\varphi_0, \varphi_1, \varphi_2, \dots$$

These can be simulated by a <u>universal</u> computable function

We can run these programs "simultaneously" to see if any look like they compute a domatic 3-partition.

Meanwhile, we build a computable graph with a 3-partition

When some φ_e tries to compute a 3-partition, we thwart it.

The Construction

G will start with copies of K_4 , one for each φ_e .

Build G in stages. At each stage, build a new K_4 and check whether φ_e has halted on its copy of K_4 .

If φ_e looks like it computes a 3-partition on its K_4 , spring the trap!

The Construction

G will start with copies of K_4 , one for each φ_e .

Build G in stages. At each stage, build a new K_4 and check whether φ_e has halted on its copy of K_4 .

If φ_e looks like it computes a 3-partition on its K_4 , spring the trap!

The Construction

G will start with copies of K_4 , one for each φ_e .

Build G in stages. At each stage, build a new K_4 and check whether φ_e has halted on its copy of K_4 .

If φ_e looks like it computes a 3-partition on its K_4 , spring the trap!

The sprung trap still has a 3-partition, but not the one φ_e claims.

The sprung trap still has a 3-partition, but not the one φ_e claims.

Worse Better than that...

Proposition

For any n, there is a computable graph with domatic number n but computable domatic number 2.

Use $K_{3(n-2)+1}$ as the trap to diagonalize against all possible computable domatic 3-partitions.

Worse Better than that...

Proposition

For any n, there is a computable graph with domatic number n but computable domatic number 2.

Use $K_{3(n-2)+1}$ as the trap to diagonalize against all possible computable domatic 3-partitions.

Stupid φ_e

Why does φ_e partition its trap so soon?

Just because G is computable, doesn't mean we can compute the degree of a given vertex!

But what if we could?

Stupid φ_e

Why does φ_e partition its trap so soon?

Just because G is computable, doesn't mean we can compute the degree of a given vertex!

But what if we could?

Stupid φ_e

Why does φ_e partition its trap so soon?

Just because G is computable, doesn't mean we can compute the degree of a given vertex!

But what if we could?

Highly computable graphs

Definition

A graph is $\underline{\text{highly computable}}$ if it is computable and degree function is computable.

Does this extra information help φ_e compute a domatic partition?

Proposition

There is a highly computable graph with domatic number 3 but computable domatic number 2.

Highly computable graphs

Definition

A graph is <u>highly computable</u> if it is computable and degree function is computable.

Does this extra information help φ_e compute a domatic partition?

Proposition

There is a highly computable graph with domatic number 3 but computable domatic number 2.

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 $arphi_e$ might never partition its vertices, but we don't know that at any finite stage.

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 $arphi_e$ might never partition its vertices, but we don't know that at any finite stage.

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 φ_e might never partition its vertices, but we don't know that at any finite stage.

Wait for φ_e to partition some fixed vertices. Then act.

Our action cannot change the degree of any vertex in the graph.

 φ_e might never partition its vertices, but we don't know that at any finite stage.

Highly intricate trap

A path:

Every third vertex must be colored the same.

If
$$d(G) = 4$$
 then...

Proposition

There is a highly computable graph with domatic number 4 but computable domatic number 3.

If
$$d(G) = 4$$
 then...

Proposition

There is a highly computable graph with domatic number 4 but computable domatic number 3.

Can we do better?

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least f(n).

Maybe
$$f(n) = n - 1$$
. Or $f(n) = (n + 1)/2$

Can we do better?

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least f(n).

Maybe
$$f(n) = n - 1$$
. Or $f(n) = (n + 1)/2$

Can we do better?

Is it easier to find smaller domatic partitions in highly computable graphs?

Conjecture

Any highly computable graph with domatic number n has computable domatic number at least f(n).

Maybe
$$f(n) = n - 1$$
. Or $f(n) = (n + 1)/2$

Thanks for listening

Partial results towards and away from the conjecture

Proposition

Let $k \geq 3$. For any non-computable c.e. set A, there is an A-computable graph G = (V, E) such that G has a domatic k-partition, but no computable domatic 3-partition.

Proposition

There is a highly computable graph with domatic number n, but no computable splittable domatic (n-1)-partition.

Partial results towards and away from the conjecture

Proposition

Let $k \geq 3$. For any non-computable c.e. set A, there is an A-computable graph G = (V, E) such that G has a domatic k-partition, but no computable domatic 3-partition.

Proposition

There is a highly computable graph with domatic number n, but no computable splittable domatic (n-1)-partition.