Revision (Part II)

Ke Chen

Revision slides are going to summarise all you have learnt from Part II, which should be helpful for you to prepare your exam in January along with those non-assessed exercises.

Naïve Bayes Classifier

- Probabilistic Classifiers
 - discriminative vs. generative classifiers
 - Bayesian rule used to convert generative to discriminative
- Naïve Bayesian Assumption
 - Conditionally independent assumption on input attributes
- Naïve Bayes classification algorithm
 - Estimate conditional probabilities for each attribute given a class label and prior probabilities for each class label
 - MAP decision rule
- Relevant issues
 - Zero conditional probability due to short of training examples
 - Applicability to problems violating the naïve Bayes assumption

The University of Manchester

Clustering Analysis Basics

- Clustering Analysis Task
 - discover the "natural" clustering number
 - properly grouping objects into sensible clusters
- Data type and representation
 - Data type: continuous vs. discrete (binary, ranking, ...)
 - Data matrix and distance matrix
- Distance Measure
 - Minkowski distance (Manhattan, Euclidean ...) for continuous
 - Cosine measure for nonmetric
 - Distance for binary: contingency table, symmetric vs. asymmetric
- Major Clustering Approach
 - Partitioning, hierarchical, density-based, graph-based, ensemble

K-Means Clustering

Principle

 A typical partitioning clustering approach with an iterative process to minimise the square distance in each cluster

K-means algorithm

- 1) Initialisation: choose K centroids (seed points)
- 2) Assign each data object to the cluster whose centroid is nearest
- 3) Re-calculate the mean for each cluster to get a updated centroid
- 4) Repeat 2) and 3) until no new assignment

Relevant issues

- Efficiency: O(tkn) where t, k << n
- Sensitive to initialisation and converge to local optimum
- Other weakness and limitations
- Clustering validation

The University of Manchester

Hierarchical Clustering

- Hierarchical clustering
 - Principle: partitioning data set sequentially
 - Strategy: divisive (top-down) vs. agglomerative (bottom-up)
- Cluster Distance
 - Single-link, complete-link and averaging-link
- Agglomerative algorithm
 - 1) Convert object attributes to distance matrix
 - 2) Repeat until number of cluster is one
 - Merge two closest clusters
 - Update distance matrix with cluster distance
- Relevant concepts and techniques
 - Construct a dendrogram tree
 - Life-time of clusters achieved from a dendrogram tree
 - Determine the number of clusters with maximum k life-time

Cluster Validation

- Cluster Validation
 - Evaluate the results of clustering in a quantitative and objective fashion
 - Performance evaluation, clustering comparison, find cluster num.
- Two different types of cluster validation methods
 - Internal indexes
 - No ground truth available and sometimes named "relative index"
 - Defined based on "common sense" or "a priori knowledge"
 - Variance-based validity indexes
 - Application: finding the "proper" number of clusters, ...
 - External indexes
 - ground truth known or reference given
 - Rand Index
 - Application: performance evaluation of clustering, clustering comparison...
 - There are many validity indexes, still an active research area in unsupervised learning

The University of Manchester

Examination Information

- Three Sections (total 50 marks)
 - Section 1 (20 marks)
 - 20 multiple choice questions totally
 - Questions 11-20 relevant to Part II
 - Section 2 (15 marks)
 - One compulsory question relevant to Part I
 - Section 3 (15 marks)
 - One compulsory question relevant to Part II
- Length: two hours
- Calculator (without memory) allowed