Dimension Reduction in Polynomial Chaos Surrogates using Adaptive DGSM

Manav Vohra[†], Sankaran Mahadevan[†] Collaborator: Alen Alexanderian[§]

> †Vanderbilt University §North Carolina State University

December 13, 2017

POLYNOMIAL CHAOS EXPANSION

$$\mathcal{M}(\mathbf{x}) pprox \mathcal{M}^{PC}(\mathbf{x}) = \sum_{\alpha \in \mathcal{A}} c_{\alpha} \Psi_{\alpha}(\mathbf{x})$$

Projection-based

PCE

$$c_{\alpha} = \mathbb{E}[\Psi_{\alpha}(\mathbf{x})\mathcal{M}(\mathbf{x})]$$

- ▶ Gaussian Quadrature
- Smolyak Sparse
 Quadrature
- ▶ Nested Quadrature

Regression-based

$$\hat{oldsymbol{c}} = \operatorname{argmin} \mathbb{E} \left[\left(oldsymbol{c}^T \Psi(oldsymbol{x}) - \mathcal{M}(oldsymbol{x})
ight)^2
ight]$$

- ► Ordinary Least-Squares
- ► Least Angle Regression
- Orthogonal Matching Pursuit

MOTIVATION: DIMENSION REDUCTION

MOTIVATION: DGSM

PCE

- Sensitivity analysis based on Sobol indices is commonly used to determine relative importance of the parameters.
- Sobol sensitivity indices are compute intensive:

$$\mathcal{T}(heta_i) = rac{\mathbb{E}_{oldsymbol{ heta} \sim i}[\mathbb{V}_{ heta_i}(\mathcal{G}|oldsymbol{ heta}_{\sim i})]}{\mathbb{V}(\mathcal{G})}$$

 Bounds on Sobol indices can be computed easily using DGSM and are shown to converge at a much faster rate.

DGSM

PCE

 DGSM for Randomly distributed parameters [Sobol and Kucherenko, 2009]:

$$\mu_i = \mathbb{E}\left[\left(\frac{\partial G(\mathbf{x})}{\partial x_i}\right)^2\right]$$

where,

$$\frac{\partial G(\mathbf{x}^*)}{\partial x_i} = \lim_{\delta \to 0} \frac{[G(x_1^*, \dots, x_{i-1}^*, x_i^* + \delta, x_{i+1}^*, \dots, x_d^*) - G(\mathbf{x}^*)]}{\delta}$$

■ Total number of model realizations required to compute μ_i using N samples is N(d+1).

BOUNDS ON SOBOL INDICES

PCE

■ Upper bound (*UB_i*) on Sobol Total Effect index (*ST_i*) [Sobol and Kucherenko, 2009]:

$$ST_i \leq \frac{\mathcal{C}_i \mu_i}{V} \; (\propto \hat{\mathcal{C}_i \mu_i})$$

$$\hat{\mathcal{C}_i \mu_i} = \frac{\mathcal{C}_i \mu_i}{\sum_i \mathcal{C}_i \mu_i}$$

C: Poincaré Constant V:

V: Variance

The Poincaré Constant is specific to a given probability distribution:

$\mathcal{U}[a,b]$	$(b-a)^2/\pi^2$
$\mathcal{N}(\mu, \sigma^2)$	σ^2

REDUCED MORRIS FUNCTION

$$f(x) = \sum_{i=1}^{4} b_i x_i + \sum_{i \le j}^{4} b_{ij} x_i x_j + \sum_{i \le j \le k=4}^{4} b_{ijk} x_i x_j x_k$$
$$x_i \sim \mathcal{U}[0, 1]$$

$$b_i = \begin{bmatrix} 0.05 \\ 0.59 \\ 10 \\ 0.21 \end{bmatrix}, \ b_{ij} = \begin{bmatrix} 0 & 80 & 60 & 40 \\ 0 & 30 & 0.73 & 0.18 \\ 0 & 0 & 0.64 & 0.93 \\ 0 & 0 & 0 & 0.06 \end{bmatrix}, \ b_{ij4} = \begin{bmatrix} 0 & 10 & 0.98 & 0.19 \\ 0 & 0 & 0.49 & 50 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 ST_i : 10⁵ Samples x_1 : 0.4323 x_2 : 0.4051 x_4 : 0.1300 x_3 : 0.0928

PCE Convergence

PCE

$$\epsilon_{LOO} = \frac{\sum_{i=1}^{N} \left(\mathcal{M}(\mathbf{x}^{(i)}) - \mathcal{M}^{PCE \setminus i}(\mathbf{x}^{(i)}) \right)^{2}}{\sum_{i=1}^{N} \left(\mathcal{M}(\mathbf{x}^{(i)}) - \hat{\mu}_{Y} \right)^{2}} \underbrace{\begin{bmatrix} 0 \\ y \\ y \end{bmatrix}}_{50}^{-10} - 15$$

$$\hat{\mu}_{Y} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{M}(\mathbf{x}^{(i)})$$

$$-20$$

$$-25$$

$$-30$$

$$-20$$

$$-25$$

$$-30$$
Number of Samples

The PCE is constructed using Least Angle Regression with Latin Hypercube Sampling.

PCE VERIFICATION

PCE

- Generate an independent set of validation points in the 4D input parameter space.
- Compute the following error:

$$\epsilon_{val} = rac{\left[\sum_{i=1}^{N}\left(\mathcal{M}(oldsymbol{x}^{(i)}) - \mathcal{M}^{PCE}(oldsymbol{x}^{(i)})
ight)^{2}
ight]^{rac{1}{2}}}{\left[\sum_{i=1}^{N}\left(\mathcal{M}(oldsymbol{x}^{(i)})
ight)^{2}
ight]^{rac{1}{2}}}$$

• ϵ_{val} was found to be $\mathcal{O}(10^{-1})$ in the case of 4D PCE and 2D PCE constructed using 15 and 5 training points respectively.

THE BOREHOLE FUNCTION

PCE

$$Q = \frac{2\pi T_u(H_u - H_l)}{\ln\left(\frac{r}{r_w}\right)\left(1 + \frac{2LT_u}{\ln\left(\frac{r}{r_w}\right)r_w^2K_w} + \frac{T_u}{T_l}\right)}$$

Q: Discharge of water through a borehole

r_w	N(0.1,0.016)	Radius of the borehole (m)
r	$\log \mathcal{N}(7.71, 1.006)$	Radius of influence (m)
T_u	<i>U</i> [63070,115600]	Transmissivity of upper aquifer (m^2/yr)
H_u	び[990,1110]	Potentiometric head of upper aquifer (m)
T_l	U[63.1,116]	Transmissivity of lower aquifer (m²/yr)
H_l	U[700,820]	Potentiometric head of lower aquifer (m)
L	U[1120,1680]	Length of borehole (m)
K_w	U[9855,12045]	Hydraulic conductivity of borehole (m/yr)

ST_i: 10⁵ Samples x₁: 0.6942 x₃: 0.1062 x₅: 0.1059 *x*₆: 0.1026 x₇: 0.0250 x₂: 0.0000 x_4 : 0.0000

	_
I IID - E Complea	- 1
UB _i : 5 Samples □	- 1

x₁: 0.2124

PCE

*x*₆: 0.0406

x₃: 0.0393

x₇: 0.0089

x₂: 0.0000

x₄: 0.0000

x₁: 0.6942

x₃: 0.1062

*x*₅: 0.1059

x₆: 0.1026

x₇: 0.0250

x₂: 0.0000

x₄: 0.0000

UB _i : 5 Samples	<i>UB_i</i> : 10 Samples	ST_i : 10 ⁵ Samples
x ₁ : 0.2124	x ₁ : 0.8671	x ₁ : 0.6942
<i>x</i> ₆ : 0.0406	x ₃ : 0.1505	x ₃ : 0.1062
x ₃ : 0.0393	x ₅ : 0.1505	<i>x</i> ₅ : 0.1059
x ₅ : 0.0393	x ₆ : 0.1466	<i>x</i> ₆ : 0.1026
x ₇ : 0.0089	x ₇ : 0.0337	x ₇ : 0.0250
<i>x</i> ₂ : 0.0000	x ₂ : 0.0000	x ₂ : 0.0000
x ₄ : 0.0000	x ₄ : 0.0000	x ₄ : 0.0000

UB _i : 5 Samples	UB _i : 10 Samples	UB _i : 15 Samples	ST _i : 10 ⁵ Samples
x ₁ : 0.2124	x ₁ : 0.8671	x ₁ : 0.8384	x ₁ : 0.6942
<i>x</i> ₆ : 0.0406	x ₃ : 0.1505	x ₃ : 0.1472	x ₃ : 0.1062
x ₃ : 0.0393	<i>x</i> ₅ : 0.1505	x ₅ : 0.1472	<i>x</i> ₅ : 0.1059
x ₅ : 0.0393	<i>x</i> ₆ : 0.1466	x ₆ : 0.1437	<i>x</i> ₆ : 0.1026
x ₇ : 0.0089	x ₇ : 0.0337	x ₇ : 0.0360	x ₇ : 0.0250
x ₂ : 0.0000	x ₂ : 0.0000	x ₂ : 0.0000	x ₂ : 0.0000
x ₄ : 0.0000	x ₄ : 0.0000	x ₄ : 0.0000	<i>x</i> ₄ : 0.0000

MOTIVATION DGSM MORRIS BOREHOLE OSCILLATOR ELLIPTIC PDE ALGORITHM MD

OO OOO OOO OO OOO

PCE Convergence and Verification

• ϵ_{val} was found to be $\mathcal{O}(10^{-2})$ in the case of 7D PCE and 4D PCE constructed using 60 and 30 training points respectively.

NON-LINEAR OSCILLATOR

PCE

Limit State Function:

$$g(X) = 3r - \left| \frac{2F}{m\omega_0^2} \sin\left(\frac{\omega_0 t_1}{2}\right) \right|$$

$$X = \{m, k_1, k_2, r, F, t_1\}$$
 $\omega_0 = \sqrt{\frac{c_1 + c_2}{m}}$

PARAMETER RANK METRIC

PCE

0

$$\hat{\mathcal{C}_i \mu_i} = \frac{\mathcal{C}_i \mu_i}{\sum_i \mathcal{C}_i \mu_i}$$

C: Poincaré Constant μ_i : DGSM

MOTIVATION DGSM MORRIS BOREHOLE OSCILLATOR ELLIPTIC PDE ALGORITHM MD

OO 00 000 000 00 00 0 0 0

PCE Convergence

PCE VERIFICATION

PCE

Relative L-2 norm of the error is computed:

$$\epsilon_{val} = \frac{\left[\sum_{i=1}^{N} \left(\mathcal{M}(x^{(i)}) - \mathcal{M}^{PCE}(x^{(i)})\right)^{2}\right]^{\frac{1}{2}}}{\left[\sum_{i=1}^{N} \left(\mathcal{M}(x^{(i)})\right)^{2}\right]^{\frac{1}{2}}} = 8.35 \times 10^{-2}$$

Comparison of PDFs:

ELLIPTIC PDE

$$-\kappa \Delta u + cu^3 = q$$

$$q = (-2\pi^2)(a\cos(2\pi x)\sin^2(\pi y) + b\cos(2\pi y)\sin^2(\pi x))$$

κ	$\mathcal{U}[0.09, 0.11]$
c	<i>U</i> [0.9, 1.1]
a	<i>U</i> [0.9, 1.1]
b	<i>U</i> [0.9, 1.1]

Motivation DGSM Morris Borehole Oscillator **Elliptic PDE** Algorithm MD 00 00 000 000 0 0 0 0 0

ANALYSIS

PCE

0

Convergence

Number of Training Points

PCE

MD

ALGORITHM: PARAMETER SCREENING

```
1 Generate n_1 points in \mathbb{R}^d;
 2 Compute UB_i for parameters \theta_i using n_1 points;
   % NF = n_1(d+1), NF: Number of model realizations;
 3 Rank Parameters (\theta_i) based on UB_i estimates (\mathcal{R}^{old});
4 set k = 1 \% k: Iteration counter;
 5 repeat
         Generate \beta n_1 new points in \mathbb{R}^d (\beta n_1 \in \mathbb{Z});
 6
        Compute UB_i^{new} using (1+\beta k)n_1 points;
 7
        \% NF = (1 + \beta k)n_1(d+1);
        Rank Parameters based on UB_i^{new} estimates (\mathcal{R}^{new});
8
        if (\mathcal{R}^{new} = \mathcal{R}^{old}) then
 9
              Compute: r_i = \frac{UB_i^{new}}{max(IJB^{new})};
10
             Construct a set s = \{\theta_i \ni r_i < \alpha\};
11
              Exit the loop;
12
13
        end
        set k = k + 1;
15 until \mathcal{R}^{new} \neq \mathcal{R}^{old};
16 Construct a validation set: (\theta_i, \mathcal{M}(\theta_i)), j=1,2,...,NF;
```

APPLICATION: NON-EQUILIBRIUM MD

Lattice Constant (Å)	5.43
W, H (Å)	117.94, 117.94
Temperature (K)	300
Δt (ps)	0.0005
BC	Periodic
Structure	Diamond
Potential, Φ	Stillinger-Weber

$$\Phi = f(A, B, p, q, a, \lambda, \gamma)$$

