Rohan Nyati

500075940

R177219148

Batch 5 (Ai & MI)

Assignment 2

1. Extracting data and cleaning:

```
In [1]:
import numpy as np
import pandas as pd
df = pd.read csv("CC GENERAL.csv")
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 18 columns):
                                     8950 non-null object
CUST_ID
                                     8950 non-null float64
BALANCE
                                     8950 non-null float64
BALANCE FREQUENCY
PURCHASES
                                     8950 non-null float64
ONEOFF_PURCHASES
                                    8950 non-null float64
                                    8950 non-null float64
INSTALLMENTS_PURCHASES
CASH_ADVANCE
                                    8950 non-null float64
PURCHASES_FREQUENCY
                                     8950 non-null float64
ONEOFF PURCHASES FREQUENCY
                                     8950 non-null float64
PURCHASES_INSTALLMENTS_FREQUENCY
                                     8950 non-null float64
                                     8950 non-null float64
CASH_ADVANCE_FREQUENCY
                                     8950 non-null int64
CASH_ADVANCE_TRX
PURCHASES_TRX
                                     8950 non-null int64
CREDIT LIMIT
                                     8949 non-null float64
PAYMENTS
                                     8950 non-null float64
MINIMUM PAYMENTS
                                     8637 non-null float64
                                    8950 non-null float64
PRC_FULL_PAYMENT
                                    8950 non-null int64
TENURE
dtypes: float64(14), int64(3), object(1)
memory usage: 1.2+ MB
```

In [2]:

df.isnull().sum()

Out[2]:

CUST_ID 0 **BALANCE** 0 0 BALANCE_FREQUENCY **PURCHASES** 0 0 ONEOFF_PURCHASES 0 INSTALLMENTS_PURCHASES 0 CASH_ADVANCE PURCHASES_FREQUENCY 0 ONEOFF_PURCHASES_FREQUENCY 0 PURCHASES_INSTALLMENTS_FREQUENCY 0 CASH_ADVANCE_FREQUENCY 0 CASH_ADVANCE_TRX 0 0 PURCHASES_TRX CREDIT_LIMIT 1 **PAYMENTS** 0 MINIMUM_PAYMENTS 313 PRC_FULL_PAYMENT 0 0 **TENURE** dtype: int64

In [3]:

df.describe()

Out[3]:

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALL
count	8950.000000	8950.000000	8950.000000	8950.000000	
mean	1564.474828	0.877271	1003.204834	592.437371	
std	2081.531879	0.236904	2136.634782	1659.887917	
min	0.000000	0.000000	0.000000	0.000000	
25%	128.281915	0.888889	39.635000	0.000000	
50%	873.385231	1.000000	361.280000	38.000000	
75%	2054.140036	1.000000	1110.130000	577.405000	
max	19043.138560	1.000000	49039.570000	40761.250000	
1					•

In [4]:

df.head(10)

Out[4]:

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INS
0	C10001	40.900749	0.818182	95.40	0.00	
1	C10002	3202.467416	0.909091	0.00	0.00	
2	C10003	2495.148862	1.000000	773.17	773.17	
3	C10004	1666.670542	0.636364	1499.00	1499.00	
4	C10005	817.714335	1.000000	16.00	16.00	
5	C10006	1809.828751	1.000000	1333.28	0.00	
6	C10007	627.260806	1.000000	7091.01	6402.63	
7	C10008	1823.652743	1.000000	436.20	0.00	
8	C10009	1014.926473	1.000000	861.49	661.49	
9	C10010	152.225975	0.545455	1281.60	1281.60	

In [5]:

```
df = df.drop(['CUST_ID'],axis = 1)
df.head(10)
```

Out[5]:

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMEN1
0	40.900749	0.818182	95.40	0.00	
1	3202.467416	0.909091	0.00	0.00	
2	2495.148862	1.000000	773.17	773.17	
3	1666.670542	0.636364	1499.00	1499.00	
4	817.714335	1.000000	16.00	16.00	
5	1809.828751	1.000000	1333.28	0.00	
6	627.260806	1.000000	7091.01	6402.63	
7	1823.652743	1.000000	436.20	0.00	
8	1014.926473	1.000000	861.49	661.49	
9	152.225975	0.545455	1281.60	1281.60	
4					•

2. Data Visualization:

```
In [6]:
```

```
import matplotlib.pyplot as plt
import seaborn as sns
```

2.1 Univariate Analysis:

In [9]:

```
sns.set_style("darkgrid")
fig = plt.figure(figsize = (20,30))

plot_feat = df.columns

for i, v in enumerate(plot_feat):
    axes = fig.add_subplot(7, 3, i+1)
    sns.distplot(df[v], kde = False, ax = axes)
```


In [10]:

```
fig = plt.figure(figsize = (20,30))

for i, v in enumerate(plot_feat):
    axes = fig.add_subplot(7, 3, i+1)
    sns.boxplot(x = df[v], ax = axes)
```


Imputing null values:

In [12]:

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='median')

X = df['MINIMUM_PAYMENTS'].values.reshape(-1,1)
X = imputer.fit_transform(X)

df['MINIMUM_PAYMENTS_NEW'] = X
```

In [13]:

```
X2 = df['CREDIT_LIMIT'].values.reshape(-1,1)
X2 = imputer.fit_transform(X2)
df['CREDIT_LIMIT_NEW'] = X2
```

```
In [14]:
df = df.drop(['CREDIT_LIMIT', 'MINIMUM_PAYMENTS'], axis = 1)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 17 columns):
                                     8950 non-null float64
BALANCE
BALANCE FREQUENCY
                                     8950 non-null float64
                                     8950 non-null float64
PURCHASES
                                     8950 non-null float64
ONEOFF_PURCHASES
                                     8950 non-null float64
INSTALLMENTS_PURCHASES
CASH ADVANCE
                                     8950 non-null float64
PURCHASES FREQUENCY
                                     8950 non-null float64
ONEOFF_PURCHASES_FREQUENCY
                                     8950 non-null float64
PURCHASES_INSTALLMENTS_FREQUENCY
                                     8950 non-null float64
                                     8950 non-null float64
CASH_ADVANCE_FREQUENCY
CASH_ADVANCE_TRX
                                     8950 non-null int64
PURCHASES TRX
                                     8950 non-null int64
PAYMENTS
                                     8950 non-null float64
PRC_FULL_PAYMENT
                                     8950 non-null float64
TENURE
                                     8950 non-null int64
                                     8950 non-null float64
MINIMUM_PAYMENTS_NEW
CREDIT_LIMIT_NEW
                                     8950 non-null float64
dtypes: float64(14), int64(3)
memory usage: 1.2 MB
In [15]:
df.isnull().sum().sum()
Out[15]:
```

2.2 Bivariate Analysis

0

In [16]:

sns.pairplot(df)
plt.show()

In [17]:

```
plt.figure(figsize=(20,20))
corr_df = df.corr()
sns.heatmap(corr_df,annot=True)
plt.show()
```


3. Model Building:

In [18]:

```
from sklearn.model_selection import train_test_split
train_df, test_df = train_test_split(df,test_size=0.2,random_state=42)
```

3.1 Normalizing the values:

In [19]:

```
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
train_df = mm.fit_transform(train_df)
test_df = mm.transform(test_df)
```

In [20]:

```
from sklearn.preprocessing import PowerTransformer
pt = PowerTransformer()
train_df = pt.fit_transform(train_df)
test_df = pt.transform(test_df)
```

3.2 K-MEANS:

In [21]:

```
from sklearn.cluster import KMeans
```

Finding optimum number of clusters for grouping:

In [22]:

```
interclusterdistance = []

for clusters in range(1,20):
    km = KMeans(n_clusters = clusters,init ='k-means++', max_iter=300,random_state=42)
    km.fit(train_df)
    interclusterdistance.append(km.inertia_)

#plotting the values
plt.figure(figsize=(30,10))
plt.plot(range(1, 20), interclusterdistance, marker='o', color='r')
plt.xlabel('Number of clusters')
plt.ylabel('Inter Cluster Distance')
plt.show()
```


In [23]:

```
km = KMeans(n_clusters = 6,init ='k-means++', max_iter=300,random_state=42)
km.fit(train_df)
y_pred = km.predict(train_df)
```

In [24]:

```
cluster_df = pd.DataFrame(train_df,columns = df.columns)
cluster_df['clusters'] = y_pred
cluster_df.head(10)
```

Out[24]:

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS.
0	-0.937132	-1.267216	-0.029433	0.338526	_
1	1.291880	0.630684	-1.038959	-0.770843	
2	-0.465038	0.630684	-1.038959	-0.770843	
3	-1.148135	-1.698717	1.370433	-0.659492	
4	1.388866	0.630684	-0.912679	-0.576602	
5	-0.978519	-1.972925	-0.513848	-0.770843	
6	-1.132653	0.630684	-0.284999	-0.770843	
7	0.784516	0.630684	1.955706	2.101295	
8	0.270674	0.630684	-1.002768	-0.714616	
9	-0.669240	-1.065671	0.219068	-0.005898	
4					•

In [25]:

```
cluster_df['clusters'].value_counts()
```

Out[25]:

- 2 1617
- 1 1509
- 5 1394
- 4 1002
- 0 911
- 3 727

Name: clusters, dtype: int64

In [26]:

```
X = cluster_df[['BALANCE', 'PURCHASES']].to_numpy()
```

In [27]:

```
interclusterdistance = []

for clusters in range(1,20):
    km = KMeans(n_clusters = clusters,init ='k-means++', max_iter=300,random_state=42)
    km.fit(X)
    interclusterdistance.append(km.inertia_)

#plotting the values
plt.figure(figsize=(30,10))
plt.plot(range(1, 20), interclusterdistance, marker='o', color='g')
plt.xlabel('Number of clusters')
plt.ylabel('Inter Cluster Distance')
plt.show()
```


Considering only BALANCE variable, we can choose k = 4

In [28]:

```
km = KMeans(n_clusters = 4,init ='k-means++', max_iter=300,random_state=42)
km.fit(X)
y_balance_pred = km.predict(X)
```

In [29]:

```
plt.scatter(X[y_balance_pred==0, 0], X[y_balance_pred==0, 1], s=100, c='red', label =
'Cluster 1')
plt.scatter(X[y_balance_pred==1, 0], X[y_balance_pred==1, 1], s=100, c='blue', label =
'Cluster 2')
plt.scatter(X[y_balance_pred==2, 0], X[y_balance_pred==2, 1], s=100, c='green', label
='Cluster 3')
plt.scatter(X[y_balance_pred==3, 0], X[y_balance_pred==3, 1], s=100, c='yellow', label
='Cluster 4')

plt.scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=300, c='cyan', label
= 'Centroids')
plt.show()
```


3.2 DBSCAN:

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density and expands clusters from them. Good for data which contains clusters of similar density. K-Means is not capable of creating clusters of arbitary shape. This is were DBSCAN is helpful.

In [30]:

from sklearn.cluster import DBSCAN

```
In [31]:
```

```
dbscan = DBSCAN(eps=2,min_samples=6)
dbscan.fit(train_df)
y_dbscan_pred = dbscan.labels_
y_dbscan_pred
```

Out[31]:

```
array([ 1, 0, 0, ..., 0, 0, -1], dtype=int64)
```

In [32]:

```
dbscan_df = pd.DataFrame(train_df,columns = df.columns)
dbscan_df['clusters'] = y_dbscan_pred
dbscan_df.head(10)
```

Out[32]:

BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES INSTALLMENTS

0	-0.937132	-1.267216	-0.029433	0.338526	
1	1.291880	0.630684	-1.038959	-0.770843	
2	-0.465038	0.630684	-1.038959	-0.770843	
3	-1.148135	-1.698717	1.370433	-0.659492	
4	1.388866	0.630684	-0.912679	-0.576602	
5	-0.978519	-1.972925	-0.513848	-0.770843	
6	-1.132653	0.630684	-0.284999	-0.770843	
7	0.784516	0.630684	1.955706	2.101295	
8	0.270674	0.630684	-1.002768	-0.714616	
9	-0.669240	-1.065671	0.219068	-0.005898	
4					•

In [33]:

```
dbscan_df['clusters'].value_counts()
```

Out[33]:

```
0 5904
1 876
-1 361
2 8
4 6
3 5
```

Name: clusters, dtype: int64

In [34]:

```
X = dbscan_df[['BALANCE', 'PURCHASES']].to_numpy()
```

In [35]:

```
dbscan = DBSCAN(eps=0.075,min_samples=2)
dbscan.fit(X)
y_dbscan_pred = dbscan.labels_
y_dbscan_pred
```

Out[35]:

```
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
```

In [36]:

```
dbscan_df['clusters'] = y_dbscan_pred
dbscan_df['clusters'].value_counts()
```

Out[36]:

```
7031
 0
-1
         24
 12
         12
          9
 5
 20
          7
          7
 13
 17
          6
 7
          6
 9
          6
 2
          5
 15
          4
 4
          4
          4
 14
          3
 8
 1
          3
          3
 23
 19
          3
          3
 6
 22
          3
          3
 25
          2
 21
 10
          2
          2
 24
          2
 18
 16
          2
          2
 3
11
          2
Name: clusters, dtype: int64
```

In [37]:

```
plt.figure(figsize=(10,10))
plt.scatter(dbscan_df['BALANCE'],dbscan_df['PURCHASES'],c=dbscan_df['clusters'])
plt.title('DBSCAN Clustering',fontsize=20)
plt.xlabel('Feature 1',fontsize=14)
plt.ylabel('Feature 2',fontsize=14)
plt.show()
```

DBSCAN Clustering

In [41]:

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x23bce88e5f8>

In [42]:

Out[42]:

	BALANCE	BALANCE_FREQUENCY	PURCHASES	UNEUFF_PURCHASES	INSTALLMENTS.
0	3.735304	0.818182	4.568506	0.000000	
1	8.071989	0.909091	0.000000	0.000000	
2	7.822504	1.000000	6.651791	6.651791	
3	7.419183	0.636364	7.313220	7.313220	
4	6.707735	1.000000	2.833213	2.833213	

In [43]:

```
scaler = StandardScaler()
scaled_df = scaler.fit_transform(df)
scaled_df = pd.DataFrame(scaled_df, index = df.index, columns = df.columns)
scaled_df.describe()
```

Out[43]:

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTAI
count	8.950000e+03	8.950000e+03	8.950000e+03	8.950000e+03	
mean	-2.666861e-17	1.209548e-14	1.379306e-15	1.040682e-14	
std	1.000056e+00	1.000056e+00	1.000056e+00	1.000056e+00	
min	-3.060633e+00	-3.703271e+00	-1.679855e+00	-9.870896e-01	
25%	-6.455634e-01	4.904486e-02	-4.097152e-01	-9.870896e-01	
50%	3.039373e-01	5.180838e-01	3.403734e-01	1.414854e-01	
75%	7.284269e-01	5.180838e-01	7.246132e-01	9.722184e-01	
max	1.834341e+00	5.180838e-01	2.023087e+00	2.283062e+00	
4					•

Agglomerative Clustering

```
In [44]:
```

```
cov = scaled_df.cov()
cov_inv = pd.DataFrame(np.linalg.inv(cov.values), cov.columns, cov.index)
dist = distance.pdist(scaled_df, 'mahalanobis', VI = cov_inv)
dist mat = distance.squareform(dist)
dist_mat.shape
Out[44]:
(8950, 8950)
In [45]:
def clustering_linkage(dist, link):
    hier = linkage(dist, link)
    hier = np.around(hier, decimals = 2)
    fig = plt.figure(figsize=(25, 10))
    dn = dendrogram(hier, p = 30, truncate_mode = 'lastp')
    plt.show()
    return hier
```

In [46]:

```
def get_distances(hier):
    distances = hier[-20:,2]
    num_clus = np.arange(20, 0, -1)
    d = {'Number of Clusters': num_clus, 'Distance between merged Clusters': distances
}
    df_dist = pd.DataFrame(d)
    plt.figure(figsize=(15, 8))
    sns.barplot(x = "Number of Clusters", y = "Distance between merged Clusters", data
= df_dist)
```

Complete linkage

In [47]:

```
hier_com = clustering_linkage(dist, 'complete')
print("This is what the linkage algorithm returns:")
hier_com
get_distances(hier_com)
```


This is what the linkage algorithm returns:

Single linkage

In [48]:

```
hier_sin = clustering_linkage(dist, 'single')
get_distances(hier_sin)
```


In []: