Sets

Power sets, Cartesian Product, Subsets, Empty sets

```
Let A=\{\emptyset, \{\emptyset\}, \{0,1\}\}. Let B=\{2, \{0\}\}.
```

- Find |A|, the cardinality of A: the elements of A are \emptyset , $\{\emptyset\}$, $\{0,1\}$, thus |A|=3.
- Similarly, |B|=2
- Find P(A), the set of all subsets of A. Note that the empty set \emptyset is a subset of any set A, consequently $\emptyset \in P(A)$ for any set A. The formal definition of subset is: $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$. If A is the empty set, hypothesis $x \in A$ is false for all x, thus the conditional $\forall x (x \in A \rightarrow x \in B)$ is true.
- Also, if |A|=n then $|P(A)|=2^n$.

$$P(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\{0,1\}\}, \{\emptyset,\{\emptyset\}\}, \{\emptyset,\{0,1\}\}, \{\{\emptyset\},\{0,1\}\}\}, \{\emptyset,\{\emptyset\},\{0,1\}\}\}\}$$

• Find $A \times B$ and $|A \times B|$

$$A \times B = \{(\emptyset,2), (\emptyset,\{0\}), (\{\emptyset\},2), (\{\emptyset\},\{0\}), (\{0,1\},2), (\{0,1\},\{0\})\}$$

$$|A \times B| = |A| \cdot |B| = 3 \cdot 2 = 6.$$

TRUE or FALSE? Let $A=\{\emptyset, \{\emptyset\}, \{0,1\}\}\$ and $B=\{2, \{0\}\}\$.

- $\emptyset \in P(A)$? TRUE, since the empty set is always element of the power set of any sets.
- $\emptyset \subseteq P(A)$? TRUE, since the empty set is a subset of any set.
- $\{\emptyset\}\subseteq P(A)$? TRUE, since $\emptyset\in P(A)$.
- {∅}∈ P(A)? TRUE.
- Ø∈ A? TRUE.
- $\{0,1\} \subseteq A$? FALSE, since $0 \notin A$ and $1 \notin A$.
- $\{\{0,1\}\}\subseteq A$? TRUE, since $\{0,1\}\in A$.
- $(\emptyset,\emptyset) \in A \times A$? TRUE.
- $(\{0,1\},2) \in A \times B$? TRUE.
- $\{(\emptyset,2)\}\subseteq A\times B$? TRUE, since $(\emptyset,2)\in A\times B$.
- $\{\emptyset, \{0\}\}\subseteq P(A)$? FALSE, since $\{0\}\notin P(A)$.