```
In [1]:
```

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.feature_selection import chi2
from sklearn.feature_selection import SelectKBest
import plotly.express as px
import plotly.graph_objects as go

In [5]:

Out[5]:

	ld	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	 SQBescolari	SQBage	SQBhogar_total	S
0	ID_279628684	190000.0	0	3	0	1	1	0	NaN	0	 100	1849	1	
1	ID_f29eb3ddd	135000.0	0	4	0	1	1	1	1.0	0	 144	4489	1	
2	ID_68de51c94	NaN	0	8	0	1	1	0	NaN	0	 121	8464	1	
3	ID_d671db89c	180000.0	0	5	0	1	1	1	1.0	0	 81	289	16	
4	ID_d56d6f5f5	180000.0	0	5	0	1	1	1	1.0	0	 121	1369	16	
9552	ID_d45ae367d	80000.0	0	6	0	1	1	0	NaN	0	 81	2116	25	
9553	ID_c94744e07	80000.0	0	6	0	1	1	0	NaN	0	 0	4	25	
9554	ID_85fc658f8	80000.0	0	6	0	1	1	0	NaN	0	 25	2500	25	
9555	ID_ced540c61	80000.0	0	6	0	1	1	0	NaN	0	 121	676	25	
9556	ID_a38c64491	80000.0	0	6	0	1	1	0	NaN	0	 64	441	25	

9557 rows × 143 columns

4

In [6]:

data.describe()

Out[6]:

	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	
count	2.697000e+03	9557.000000	9557.000000	9557.000000	9557.000000	9557.000000	9557.000000	2215.000000	9557.000000	9557.00
mean	1.652316e+05	0.038087	4.955530	0.023648	0.994768	0.957623	0.231767	1.404063	0.385895	1.55
std	1.504571e+05	0.191417	1.468381	0.151957	0.072145	0.201459	0.421983	0.763131	0.680779	1.03
min	0.000000e+00	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	0.00
25%	8.000000e+04	0.000000	4.000000	0.000000	1.000000	1.000000	0.000000	1.000000	0.000000	1.00
50%	1.300000e+05	0.000000	5.000000	0.000000	1.000000	1.000000	0.000000	1.000000	0.000000	1.00
75%	2.000000e+05	0.000000	6.000000	0.000000	1.000000	1.000000	0.000000	2.000000	1.000000	2.00
max	2.353477e+06	1.000000	11.000000	1.000000	1.000000	1.000000	1.000000	6.000000	5.000000	8.00

8 rows × 138 columns

In [7]:

data.info()

```
Manyermaen. Jour emerres, o co jour
Columns: 143 entries, Id to Target
dtypes: float64(8), int64(130), object(5)
memory usage: 10.4+ MB
In [8]:
data.columns[1:100]
Out[8]:
Index(['v2a1', 'hacdor', 'rooms', 'hacapo', 'v14a', 'refrig', 'v18q', 'v18q1',
                  'r4h1', 'r4h2', 'r4h3', 'r4m1', 'r4m2', 'r4m3', 'r4t1', 'r4t2', 'r4t3', 'tamhog', 'tamviv', 'escolari', 'rez_esc', 'hhsize', 'paredblolad',
                  'paredzocalo', 'paredpreb', 'pareddes', 'paredmad', 'paredzinc',
                 'paredfibras', 'paredother', 'pisomoscer', 'pisocemento', 'pisoother', 'pisonatur', 'pisonotiene', 'pisomadera', 'techozinc', 'techoentrepiso',
                  'techocane', 'techootro', 'cielorazo', 'abastaguadentro',
                  'abastaguafuera', 'abastaguano', 'public', 'planpri', 'noelec',
                  'coopele', 'sanitario1', 'sanitario2', 'sanitario3', 'sanitario5',
                 'sanitario6', 'energcocinar1', 'energcocinar2', 'energcocinar3', 'energcocinar4', 'elimbasu1', 'elimbasu2', 'elimbasu3', 'elimbasu4',
                 'elimbasu5', 'elimbasu6', 'epared1', 'epared2', 'epared3', 'etecho1', 'etecho2', 'etecho3', 'eviv1', 'eviv2', 'eviv3', 'dis', 'male',
                  'female', 'estadocivil1', 'estadocivil2', 'estadocivil3'
                  'estadocivil4', 'estadocivil5', 'estadocivil6', 'estadocivil7',
                 'parentesco1', 'parentesco2', 'parentesco3', 'parentesco4', 'parentesco5', 'parentesco6', 'parentesco7', 'parentesco8',
                  'parentesco9', 'parentesco10', 'parentesco11', 'parentesco12',
                  'idhogar', 'hogar nin', 'hogar adul', 'hogar mayor', 'hogar total'],
               dtype='object')
In [9]:
data.columns[100:143]
Out [9]:
Index(['dependency', 'edjefe', 'edjefa', 'meaneduc', 'instlevel1',
                  'instlevel2', 'instlevel3', 'instlevel4', 'instlevel5', 'instlevel6',
                 'instlevel2', 'instlevel3', 'instlevel9', 'bedrooms', 'overcrowding', 'tipovivi1', 'tipovivi2', 'tipovivi3', 'tipovivi4', 'tipovivi5', 'computer', 'television', 'mobilephone', 'qmobilephone', 'lugar1', 'lugar2', 'lugar3', 'lugar4', 'lugar5', 'lugar6', 'area2', 'lugar6', 'area6', 'a
                  'age', 'SQBescolari', 'SQBage', 'SQBhogar_total', 'SQBedjefe',
                  'SQBhogar_nin', 'SQBovercrowding', 'SQBdependency', 'SQBmeaned',
                  'agesq', 'Target'],
               dtype='object')
In [10]:
 sns.countplot(x='Target', data=data)
Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x24db45c0308>
      6000
      5000
      4000
      3000
```

4

2000

1000

2

Target

3

```
In [11]:
```

```
sns.countplot(x='parentescol', data=data)
```

Out[11]:

<matplotlib.axes. subplots.AxesSubplot at 0x24db51e7348>

In [12]:

```
data.isnull().sum()
```

Out[12]:

0 v2a1 6860 hacdor 0 rooms 0 0 hacapo SQBovercrowding 0 SQBdependency 0 SQBmeaned agesq 0 0 Target Length: 143, dtype: int64

In [13]:

```
data=data.dropna(axis=1)
```

In [14]:

```
data.columns
```

Out[14]:

In [15]:

```
data.corr()
```

Out[15]:

	hacdor	rooms	hacapo	v14a	refrig	v18q	r4h1	r4h2	r4h3	r4m1	 age \$	SC
hacdor	1.000000	U 533380	0.652594	- 0 175011	n 101965	- 0 084680	0.232508	0.059313	0.184857	0.268978	 - 0 118168	

	hacdor	rooms		v14a	refrig	v18q	r4h1	r4h2	r4h3	r4m1		age	SC
rooms	0.233369	1.000000	0.213368	0.129183	0.130531	0.254256	0.066578	0.267627	0.195222	0.032558	•••	0.077046	
hacapo	0.652594	0.213368	1.000000	0.150986	0.124506	0.067529	0.226378	0.126645	0.240056	0.241452		0.087773	
v14a	0.175011	0.129183	0.150986	1.000000	0.143143	0.036396	0.054769	0.018133	0.015552	0.006370		0.027193	
refrig	0.101965	0.130531	0.124506	0.143143	1.000000	0.086002	0.047087	0.022819	0.046860	0.023502		0.029801	
SQBhogar_nin	0.388043	0.007952	0.367025	0.015193	0.108718	0.050562	0.565494	0.124701	0.432550	0.550488		0.316034	
SQBovercrowding	0.794699	0.355526	0.640096	0.174969	0.123054	0.125936	0.355660	0.144478	0.329636	0.348197		0.240636	
SQBdependency	0.005278	0.027575	0.014411	0.005712	0.034080	0.071504	0.036977	0.157357	0.158375	0.012610		0.303847	
agesq	0.102725	0.068288	0.075528	0.023831	0.025846	0.054670	0.272690	0.054712	0.203856	0.281166		0.958090	
Target	0.191714	0.226208	0.138008	0.063382	0.126792	0.238864	0.229889	0.101253	0.043359	0.253163		0.117620	

133 rows × 133 columns

In [18]:

dat_1=data[data['parentesco1']==1]
dat_1

Out[18]:

	ld	hacdor	rooms	hacapo	v14a	refrig	v18q	r4h1	r4h2	r4h3	 age	SQBescolari	SQBage	SQBhogar_total	S
0	ID_279628684	0	3	0	1	1	0	0	1	1	 43	100	1849	1	
1	ID_f29eb3ddd	0	4	0	1	1	1	0	1	1	 67	144	4489	1	
2	ID_68de51c94	0	8	0	1	1	0	0	0	0	 92	121	8464	1	
5	ID_ec05b1a7b	0	5	0	1	1	1	0	2	2	 38	121	1444	16	
8	ID_1284f8aad	1	2	0	1	1	0	0	1	1	 30	81	900	16	
9535	ID_18b0a845b	0	4	0	1	0	0	1	1	2	 26	25	676	25	
9541	ID_a31274054	0	3	0	0	0	0	2	2	4	 40	4	1600	25	
9545	ID_32a00a8bf	0	5	0	1	1	0	1	2	3	 45	4	2025	25	
9551	ID_79d39dddc	0	3	0	1	1	0	0	1	1	 67	0	4489	4	
9552	ID_d45ae367d	0	6	0	1	1	0	0	2	2	 46	81	2116	25	

2973 rows × 138 columns

ın [19]:

In [19]:

4

sns.countplot(x='Target', data=dat_1)

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x21444c6b808>


```
Target
```

In [20]:

```
data=data.dropna(axis=1)
```

In [21]:

```
data.columns
```

Out[21]:

```
Index(['Id', 'hacdor', 'rooms', 'hacapo', 'v14a', 'refrig', 'v18q', 'r4h1',
       'r4h2', 'r4h3',
       'age', 'SQBescolari', 'SQBage', 'SQBhogar total', 'SQBedjefe',
       'SQBhogar_nin', 'SQBovercrowding', 'SQBdependency', 'agesq', 'Target'],
      dtype='object', length=138)
```

Predict the accuracy using random forest classifier

In [19]:

```
#taining model
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, roc auc score, roc curve, auc, classification report
from sklearn.preprocessing import StandardScaler
y=data['Target']
x=data.corr().columns
x=data[x]
x=x.drop(['Target'],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y)
scl=StandardScaler()
x_train = scl.fit_transform(x_train)
x_test =scl.fit_transform(x_test)
rf = RandomForestClassifier(n estimators=100, oob score=True, random state=123456)
rf.fit(x_train, y_train)
```

Out[19]:

```
RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
                       max depth=None, max features='auto', max leaf nodes=None,
                       min impurity_decrease=0.0, min_impurity_split=None,
                       min samples leaf=1, min samples split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=100,
                       n_jobs=None, oob_score=True, random_state=123456,
                       verbose=0, warm start=False)
```

In [26]:

```
predicted = rf.predict(x test)
accuracy = accuracy_score(y_test, predicted)
print(f'Mean accuracy score: {accuracy:.3}')
print(classification report(y test,predicted))
```

Mean accuracy score: 0.881

	precision	recall	f1-score	support
1 2 3	0.91 0.93 0.95	0.69 0.74 0.62	0.79 0.82 0.75	187 409 307
4	0.86	1.00	0.92	1487
accuracy macro avg	0.91	0.76	0.88	2390 2390

weighted avg 0.89 0.88 0.87 2390

Check the accuracy using random forest with cross validation

```
In [28]:

from sklearn.model_selection import cross_val_score
k=cross_val_score(rf,x_train,y_train,cv=10,scoring='accuracy')
print(k)
print('the accuracy using random forest with cross validation',k.mean())

[0.86629526 0.87325905 0.87447699 0.89121339 0.87587169 0.87308229
    0.87726639 0.86610879 0.88391608 0.88935574]
the accuracy using random forest with cross validation 0.8770845669563702

In []:

In []:
```