Chapter 5

RECTIFICATION OF UTILITY INPUT USING DIODE RECTIFIERS

5-1	Introduction
5-2	Distortion and Power Factor
5-3	Classifying the "Front-End" of Power Electronic Systems
5-4	Diode-Rectifier Bridge "Front-Ends"
5-5	Means to Avoid Transient Inrush Currents at Starting
5-6	Front-Ends with Bi-Directional Power Flow
	References
	Problems

Figure 5-1 Block diagram of power electronic systems.

Linear and Nonlinear Loads

Linear Load

Figure 5-2 Voltage and current phasors in simple *R-L* circuit.

$$P = V_s I_s \cos \phi$$

$$PF = \frac{P}{V_s I_s} = \cos \phi$$

$$I_s = \frac{P}{V_s \cdot PF}$$

Nonlinear Loads

Non-linear Loads

Figure 5-3 Current drawn by power electronics equipment with diode-bridge front-end.

Total Harmonic Distortion:
$$\%THD = 100 x \frac{I_{distortion}}{I_{s1}}$$

Displacement Power Factor: $DPF = \cos \phi_1$

$$PF = \frac{I_{s1}}{I_s}(DPF) = \frac{DPF}{\sqrt{1 + THD^2}}$$

☐ Nonlinear loads reduce power factor

Figure 5-4 Example 5-1.

Harmonic Currents Lower Power Factor

☐ Ratio of actual power factor to displacement power factor decreases with increasing THD

Harmonic Guidelines

	Total Harmonic					
I_{SC} / I_I	h < 11	$11 \le h \le 17$	$17 \le h \le 23$	$23 \le h \le 35$	<i>35</i> ≤ <i>h</i>	Distortion(%)
< 20	4.0	2.0	1.5	0.6	0.3	5.0
20-50	7.0	3.5	2.5	1.0	0.5	8.0
50-100	10.0	4.5	4.0	1.5	0.7	12.0
100-1000	12.0	5.5	5.0	2.0	1.0	15.0
> 1000	15.0	7.0	6.0	2.5	1.4	20.0

□ IEEE – 519

Limits on allowable harmonic currents drawn by loads of various relative magnitudes

Relative magnitude of load surrents is based on Short Circuit Ratio (SCR)

☐ Relative magnitude of load currents is based on Short Circuit Ratio (SCR)

$$SCR = \frac{I_{sc}}{I_{s1}}$$
 Where I_{sc} is the short circuit current and I_{s1} is the fundamental current of the load

Short-Circuit Current: I_{sc}

Figure 5-6 (a) Utility supply; (b) short circuit current.

Types of Electric Drive Front-Ends

Figure 5-7 Front-end of power electronics equipment.

- ☐ Diode-bridge rectifiers
- ☐ Switch-mode converters
- ☐ Thyristor converter

Single-Phase, Diode-Bridge Rectifier

Figure 5-8 Full-bridge diode rectifier.

- ☐ Power levels up to several kW
- ☐ Current drawn from utility in short pulses

Peak-Charging Circuit

Figure 5-9 Current and voltage waveforms for the full-bridge diode rectifier.

 \Box Current pulses widen as L_s is increased

PSpice Modeling: C:\FirstCourse_PE_Book03\DBrect1ph.sch

Simulation Results

Three-Phase, Diode-Bridge Rectifier

Figure 5-11 Three-phase diode bridge rectifier.

Voltage and Current Without C_d

Figure 5-12 Waveforms in a three-phase rectifier (a constant i_{dr}).

- \square v_P follows whichever phase voltage is most positive at any moment
- \square v_N follows whichever phase voltage is most negative at any moment
- \square Without C_d , phase currents flow for a full 120° duration

PSpice Modeling: C:\FirstCourse_PE_Book03\DBrect3_ph.sch

Simulation Results

Avoiding Large Inrush Currents

Figure 5-14 Means to avoid inrush current.

- ☐ Resistor limits inrush current at startup
- ☐ Resistor switched out during operation