

Appunti

Gabr1313

November 29, 2023

Contents

1	Matrice Hessiana																				
	1.1	Strategie																			
		1.1.1	Ind	lagine	diret	ta															
		1.1.2	Co	nvessit	tà/Co	onc	avit	à.													
	1.2	Riassunto																			
								_													
2	OTTIMIZZAZIONE VINCOLATA																				

Chapter 1

Matrice Hessiana

Proof. Criterio matrice Hessiana

1.1 Strategie

Strategie da adottare in caso di forma quadratica indotta da $H_f(\underline{x}_0)$ sia semidifenita:

- 1. Indagine diretta
- 2. Convessità/concavità

1.1.1 Indagine diretta

La startegia consiste nel trovare due curve passanti per il punto critico in cui le restirzioni di f hanno in un caso un massimo e nell'altro un minimo. Si conclude quindi che il punto critico è **punto di sella**.

1.1.2 Convessità/Concavità

Definizione 1 (Funzione convessa/concava). Sia $f: \mathbb{R}^2 \to \mathbb{R} \in \mathscr{C}^2(\mathbb{R}^2)$, diciamo che f è covessa (risp. concava) se $\forall (x,y) \in \mathbb{R}^2$ la matrice Hessiana $H_f(x,y)$ è definita positiva o semi-definita positiva (risp. definita negativa o semi-definita negativa)

Osservazioni

• Esiste anche la definizione per funzioni non regolari come generalizzazione del caso n=1.

Teorema 1. Sia $f \in \mathcal{C}^2(\mathbb{R}^2)$ e $(x_0, y_0) \in \mathbb{R}^2$ un punto critico di f, allora:

- se f è convessa su \mathbb{R}^2 , (x_0, y_0) è punto di **minimo assoluto**
- se f è concava su \mathbb{R}^2 , (x_0, y_0) è punto di **massimo assoluto**

1.2 Riassunto

- Se A è chiuso e limitato in \mathbb{R}^2 e $f: \mathbb{R}^2 \to \mathbb{R} \in \mathscr{C}^1(\mathbb{R}^2)$, allora i massimi e minimi sono raggiunti da f in A per il teo. di Weierstrass
- se A è aperto, allora i punti estermali:
 - potrebbero non essere raggiunti in A
 - se f è deriviabile, condizione necessaria è che siano punti critici per il teormea di Fermat
 - se $f \in \mathscr{C}^2(A)$, possiamo applicare i criteri della matrice Hessiana per classificare i punti critici, che però non sono conclusivi nel caso $|H_f(\underline{x}_0)| = 0$ (dove \underline{x}_0 è punto critico). In tali si può provare a procedere con:
 - $\ast\,$ strategia diretta per verificare se \underline{x}_0 è un punto di sella
 - * verificare se f è convessa o concava su \mathbb{R}^2 per concludere che \underline{x}_0 è punto di minimo o massimo assoluto.

Chapter 2

OTTIMIZZAZIONE VINCOLATA

Definizione 2. Sia $A \subseteq \mathbb{R}^2$ aperto e f, $F \in \mathscr{C}^1(A)$. Sia Z l'insieme di livello di 0 di F, cioè $z = l_0^F$ o esplicitamente $Z := \{\underline{x} \in A : F(\underline{x}) = 0\}$ che viene chiamato vincolo dell'ottimizzazione.

Dato $\underline{x}_0 = (x_0, y_0) \in Z$ abbiamo che:

- 1. \underline{x}_0 è punto di massimo (risp. minimo) locale o relativo di f vincolato a Z se $\exists \delta > 0 : f(x_0, y_0) \geq f(x, y)$ (risp. $f(x_0, y_0) \leq f(x, y)$) $\forall (x, y) \in B_{\delta}(\underline{x}_0) \cap Z$)
- 2. \underline{x}_0 è punto di massimo (risp. minimo) assoluto o globale di f vincolato a Z se $f(x_0, y_0) \ge f(x, y)$ (risp. $f(x_0, y_0) \le f(x, y)$) $\forall (x, y) \in A \cap Z$
- 3. \underline{x}_0 è punto estremale o di estremo vincolato a Z se e' punto di massimo o minimo locale vincolato a Z

Si parla di ottimizzazione vincolata di f con vincolo Z per indicare la ricerca dei punti estremali di f vincolati a Z.