Metody Probabilistyczne i Statystyka Wykład 10.

Rozkłady funkcji dwuwymiarowych zmiennych losowych

11 maja 2025

Rozkłady funkcji dwuwymiarowych zmiennych losowych

Założenie

Niech $g: \mathbb{R}^2 \to \mathbb{R}^m$, m=1,2, będzie funkcją taką, że g(X,Y) jest zmienną losową m - wymiarową.

Twierdzenie

Jeśli (X, Y) ma rozkład dyskretny, to g(X, Y) ma rozkład dyskretny.

Twierdzenie

Jeśli (X, Y) ma rozkład dyskretny, to g(X, Y) ma rozkład dyskretny.

Przykład 1.

Dwuwymiarowa zmienna losowa (X,Y) ma rozkład dyskretny dany tabelą

$X \setminus Y$	-1	0	2
0	0.15	0.3	0
1	0.3	0.2	0.05

Wyznaczyć rozkład zmiennej losowej $Z = \sin\left((X+Y) \cdot \frac{\pi}{2}\right)$ oraz wektora losowego $(W,T) = (X \cdot Y, |X-Y|)$.

Przykład 2.

 X_1 i X_2 są niezależnymi zmiennymi losowymi takimi, że $X_1 \sim P(\lambda_1), \ X_2 \sim P(\lambda_2)$. Wyznaczyć rozkład zmiennej losowej $Z = X_1 + X_2$.

Uwaga

Jeśli (X, Y) ma rozkład ciągły, to zmienna losowa g(X, Y) nie musi mieć rozkładu ciągłego.

Uwaga

Jeśli (X,Y) ma rozkład ciągły, to zmienna losowa g(X,Y) nie musi mieć rozkładu ciągłego.

Przykład 3.

Wektor (X, Y) ma rozkład U(D), gdzie

 $D = \{(x, y) : |x| + |y| \le 2\}$. Wyznaczyć rozkład zmiennej losowej Z = g(X, Y), jeśli

$$g(x,y) = \begin{cases} -1 & x < 0 & \forall y < 0 \\ 0 & x = 0 & \land y = 0 \\ 1 & x > 0 & \land y > 0 \end{cases}.$$

Twierdzenie

Jeśli (X,Y) ma rozkład ciągły oraz g(X,Y) jest zmienną losową jednowymiarową, to

Twierdzenie

Twierdzenie

$$F_Z(z) = P(Z \leqslant z) =$$

Twierdzenie

$$F_Z(z) = P(Z \leqslant z) = P(g(X, Y) \leqslant z) =$$

Twierdzenie

$$F_{Z}(z) = P(Z \leqslant z) = P(g(X, Y) \leqslant z) =$$

$$= \iint_{\{(x,y):g(x,y)\leqslant z\}} f_{XY}(x,y) dxdy$$

Twierdzenie

Jeśli (X,Y) ma rozkład ciągły oraz g(X,Y) jest zmienną losową jednowymiarową, to dystrybuantę zmienne losowej Z=g(X,Y) można wyznaczyć korzystając z zależności:

$$F_{Z}(z) = P(Z \leq z) = P(g(X, Y) \leq z) =$$

$$= \iint_{\{(x,y):g(x,y)\leq z\}} f_{XY}(x,y) dxdy$$

Przykład 4.

Dwuwymiarowa zmienna losowa (X,Y) ma rozkład jednostajny w zbiorze $D = \{(x,y): 0 \le x \le 3, 0 \le y \le x\}$. Wyznaczyć rozkład zmiennej losowej Z = Y - X.

Twierdzenie

Jeśli $(X, Y) \sim N(m, C)$,

Twierdzenie

Jeśli $(X,Y) \sim N(m,C)$, A jest macierzą $k \times 2$, (k=1,2) taką, że r(A) = k

Twierdzenie

Jeśli $(X,Y) \sim N(m,C)$, A jest macierzą $k \times 2$, (k=1,2) taką, że r(A) = k oraz $b \in \mathbb{R}^k$,

Twierdzenie

Jeśli $(X,Y) \sim N(m,C)$, A jest macierzą $k \times 2$, (k=1,2) taką, że r(A) = k oraz $b \in \mathbb{R}^k$, to k-wymiarowa zmienna losowa $A \cdot (X,Y)^T + b$ ma rozkład normalny z parametrami

Twierdzenie

Jeśli $(X,Y) \sim N(m,C)$, A jest macierzą $k \times 2$, (k=1,2) taką, że r(A) = k oraz $b \in \mathbb{R}^k$, to k-wymiarowa zmienna losowa $A \cdot (X,Y)^T + b$ ma rozkład normalny z parametrami

$$m^* = Am + b$$

Twierdzenie

Jeśli $(X,Y) \sim N(m,C)$, A jest macierzą $k \times 2$, (k=1,2) taką, że r(A) = k oraz $b \in \mathbb{R}^k$, to k-wymiarowa zmienna losowa $A \cdot (X,Y)^T + b$ ma rozkład normalny z parametrami

$$m^* = Am + b \text{ oraz } C^* = ACA^T.$$

Twierdzenie

Jeśli $(X,Y) \sim N(m,C)$, A jest macierzą $k \times 2$, (k=1,2) taką, że r(A) = k oraz $b \in \mathbb{R}^k$, to k-wymiarowa zmienna losowa $A \cdot (X,Y)^T + b$ ma rozkład normalny z parametrami

$$m^* = Am + b \text{ oraz } C^* = ACA^T.$$

Przykład 5.

Zmienna losowa (X, Y) ma rozkład normalny taki, że

$$EX = 2$$
, $EY = -1$, $VX = 4$, $VY = 8$, $cov(X, Y) = -4$.

Wyznaczyć rozkład zmiennej losowej Z = 2X - 3Y oraz wektora losowego (W, T) = (X + Y + 1, 2X - 3Y).