The data HW07.RData contains 4 objects, Rt, RM and syb:

RM: Weekly returns of S&P 500, Jan 1, 2014 to Sep 31, 2024.

Rf: Weekly data of US 3 month Treasure Bill for the same period of RM.

Rt: Weekly returns of 8 stocks, Ambev S.A. (ABEV), Broadcom Inc. (AVGO), IBM Co. (IBM), Johnson & Johnson (JNJ), McDonald's Co. (MCD), Micron Technology, Inc. (MU), Koninklijke Philips N.V. (PHG) and Polaris Industries Inc. (PII).

syb: the ticker symbols of Rt.

Important: Both RM and Rf are matrices of dimension $n \times 1$. When apply R's var(), the return values is a 1×1 matrix. You can remove the matrix with as.vector() or as.numeric(). Eg. YM = RM-Rf; as.vector(var(YM)).

- 1. Let Y_{jt} be the excess return of stock j and $Y_t = (Y_{1t} \dots, Y_{Nt})^T$, where N = 8. Fit the excess return model of (7.9) on page 165 of Handout 7.
 - (a) Give the estimates of betas for all 8 assets. Which two assets have the highest betas?
 - (b) Give the proportion of the square risk that is due to the systematic risk for each asset.
 - (c) Suppose each Y_{it} , i=1,...,8 follows the CAPM, give the estimates for the excess return based on the model.
 - (d) Test if the CAPM holds for each individual asset. What are the hypotheses of the tests? State your conclusion.
- 2. In Question 1, we consider the CAPM for each individual asset. In this question, we will consider $\mathbf{Y}_t = (Y_{1t}, \dots, Y_{Nt})^T$ as a whole.
 - (a) Test if the CAPM holds for the 8 assets as a whole using both the Wald and likelihood ratio tests. Are the test results the same as what you expected?
 - (b) What are the estimated systematic component and unique component of the risk of Y_t ? (Please note: both are matrices).
 - (c) For a CAPM, the systematic component is unavoidable risk and the unique component can be diversified out. Find the portfolio that minimizes the unique risk of Y_t allowing short selling. (this was a midterm question in Spring 2020).
 - (d) Consider 2 portfolios, one is from part(c) and the other is an equal weight portfolio (i.e., $w_i = 1/8, i = 1,...,8$, in R: rep(1/8, 8)). Give a Wald test to check if the CAPM holds for the both portfolios.
- 3. The Midterm22.RData is the data set used in the Midterm Fall, 2022. The question file is attached.