Sistemi Elettronici, Tecnologie e Misure Appello del 12/9/2022

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. Un amplificatore differenziale fornisce in uscita una tensione $v_{\rm out}=101v^+-99v^-$, detta $A_{\rm d}$ l'amplificazione differenziale, $A_{\rm cm}$ l'amplificazione di modo comune e CMRR il rapporto di reiezione del modo comune:
 - (a) $A_{\rm d} = 40 \, \text{dB}, A_{\rm cm} = 0 \, \text{dB}, \text{CMRR} = 40 \, \text{dB}$
 - (b) $A_{\rm d} = 40 \, {\rm dB}, A_{\rm cm} = 6 \, {\rm dB}, {\rm CMRR} = 34 \, {\rm dB}$
 - (c) $A_{\rm d} = 100 \, \text{dB}, A_{\rm cm} = 0 \, \text{dB}, \text{CMRR} = 100 \, \text{dB}$
 - (d) $A_{\rm d} = 0 \, {\rm dB}, A_{\rm cm} = 40 \, {\rm dB}, {\rm CMRR} = 40 \, {\rm dB}$
- 2. In un circuito contenente un diodo semi-ideale D con $V_{\gamma}=0.6\mathrm{V}$ si è fatta l'ipotesi che il diodo sia ON. L'ipotesi è verificata se e solo se:
 - (a) $v_{\rm D} < 0.6 \rm V$
 - (b) $v_{\rm D} > 0.6 \rm V$
 - (c) $i_{\rm D} > 0$
 - (d) $v_{\rm D} < -0.6 \rm V$
- 3. In uno stadio amplificatore MOS a singolo transistore di tipo $drain\ comune$, detta $A_{\rm v}$ l'amplificazione di tensione di piccolo segnale si ha che:
 - (a) $A_{\rm v} > 0$ (stadio non-invertente) e $A_{\rm v} < 1$
 - (b) $A_{\rm v} < 0$ (stadio invertente) e $|A_{\rm v}| < 1$
 - (c) $A_{\rm v} < 0$ (stadio invertente) e $|A_{\rm v}| > 1$
 - (d) $A_{\rm v} > 0$ (stadio non-invertente) e $A_{\rm v} > 1$
- 4. In un derivatore invertente basato su operazionale ideale (indicare quale delle seguenti affermazioni è errata):
 - (a) è presente un condensatore C collegato tra ingresso invertente ed uscita
 - (b) l'impedenza d'ingresso del circuito è capacitiva ed è pari all'impedenza del condensatore C
 - (c) la resistenza d'uscita in continua è nulla
 - (d) la resistenza d'ingresso vista dalla sorgente in continua è infinita
- 5. In un circuito contenente due amplificatori operazionali, la tensione d'uscita per ingresso nullo risulta pari a $V_{\rm OUT,0}=3\cdot V_{\rm OFF,1}-V_{\rm OFF,2}$, dove $V_{\rm OFF,1}$ e $V_{\rm OFF,2}$ sono le tensioni di offset in ingresso dei due operazionali utilizzati. Se sui datasheet degli operazionali è indicato $|V_{\rm OFF,max}|=5$ mV, si ha:
 - (a) $-10 \text{mV} < V_{\text{OUT.0}} < 10 \text{mV}$
 - (b) $-20 \text{mV} < V_{\text{OUT},0} < 10 \text{mV}$
 - (c) $-20 \text{mV} < V_{\text{OUT},0} < 20 \text{mV}$
 - (d) $-10 \text{mV} < V_{\text{OUT},0} < 20 \text{mV}$
- 6. In un amplificatore di transresistenza, per evitare effetti di carico per qualsiasi possibile sorgente o carico deve essere:
 - (a) $R_{\rm in} = 0, R_{\rm out} \to \infty$
 - (b) $R_{\rm in} \to \infty, R_{\rm out} \to \infty$
 - (c) $R_{\rm in} \to \infty$, $R_{\rm out} = 0$
 - (d) $R_{\rm in} = 0, R_{\rm out} = 0$

Esercizio n. 1

Con riferimento al circuito in figura:

- 1. verificare il funzionamento del transistore MP in regione di saturazione e determinarne i parametri di piccolo segnale nel punto di lavoro;
- 2. assumendo che i condensatori C_1 e C_2 si comportino entrambi come cortocircuiti nella banda del segnale, determinare in condizioni di piccolo segnale e in banda l'amplificazione di tensione $A_{\rm v0} = v_{\rm out}/v_{\rm in}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ indicate in figura;
- 3. determinare l'amplificazione di tensione di piccolo segnale nel dominio della frequenza $A_{\rm v}(s) = V_{\rm out}(s)/V_{\rm in}(s)$;
- 4. tracciare i diagrammi di Bode del modulo e della fase di $A_{\rm v}(s)$ determinata al punto precedente.

Esercizio n. 2.

Con riferiemento al circuito in figura, assumendo $R_1=R_2=R_3=R_4=1\,\mathrm{k}\Omega$ e $R_5=10\,\mathrm{k}\Omega$, determinare:

- 1. l'espressione delle tensioni $v_{\rm OUT,1}$ e $v_{\rm OUT}$;
- 2. l'espressione delle correnti $i_{\text{OUT},1}$ e i_{OUT} ;
- 3. la massima dinamica della tensione di ingresso v_1 compatibile con il funzionamente in linearità di entrambi gli operazionali, assumendo che $i_1=0$ e che i due operazionali presentino entrambi dinamica della tensione d'uscita $\Delta V_{\rm OUT,max}=(0,5)\,{\rm V}$ e dinamica della corrente d'uscita $\Delta I_{\rm OUT,max}=(-0.25,+0.25)\,{\rm mA}.$