ENGINEERING MATHEMATICS -II

SUBJECT CODE: 71102002002

UNIT-IV LAPLACE TRANSFORM

UNIT-V

LAPLACE TRANSFORM

5.1 INTRODUCTION

A transformation is an operation which converts a mathematical expression to a different but equivalent form. The well known transformation logarithms reduce multiplication and division to a simpler process of addition subtraction.

The Laplace transform is a powerful mathematical technique which solves linear equations with given initial conditions by using algebra methods. The Laplace transform can also be used to solve systems of differential equations, Partial differential equations and integral equations. In this chapter, we will discuss about the definition, properties of Laplace transform and derive the transforms of some functions which usually occur in the solution of linear differential equations.

5.2 LAPLACE TRANSFORM

Let f(t) be a function of t defined for all $t \ge 0$ then the Laplace transform of f(t), denoted by L[f(t)] is defined by

$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

Provided that the integral exists, "s" is a parameter which may be real or complex. Clearly L[f(t)] is a function of s and is briefly written as F(s) (i. e.) L[f(t)] = F(s)

Piecewise continuous function

A function f(t) is said to be piecewise continuous is an interval $a \le t \le b$, if the interval can be sub divided into a finite number of intervals in each of which the function is continuous and has finite right and left hand limits.

Exponential order

A function f(t) is said to be exponential order if $\lim_{t\to\infty} e^{-st} f(t)$ is a finite quantity, where s>0 (exists).

Example: 5. 1 Show that the function $f(t) = e^{t^3}$ is not of exponential order.

Solution:

$$\lim_{t \to \infty} e^{-st} e^{t^3} = \lim_{t \to \infty} e^{-st + t^3} = \lim_{t \to \infty} e^{t^3 - st}$$
$$= e^{\infty} = \infty, \text{ not a finite quantity.}$$

Hence $f(t) = e^{t^3}$ is not of exponential order.

Sufficient conditions for the existence of the Laplace transform

The Laplace transform of f(t) exists if

- i) f(t) is piecewise continuous in the interval $a \le t \le b$
- ii) f(t) is of exponential order.

Note: The above conditions are only sufficient conditions and not a necessary condition.

Example: 5.2 Prove that Laplace transform of e^{t^2} does not exist.

Solution:

$$\lim_{t \to \infty} e^{-st} e^{t^2} = \lim_{t \to \infty} e^{-st+t^2} = \lim_{t \to \infty} e^{t^2-st}$$
$$= e^{\infty} = \infty \text{ ,not a finite quantity.}$$

 e^{t^2} is not of exponential order.

Hence Laplace transform of e^{t^2} does not exist.

5.3 PROPERTIES OF LAPLACE TRANSFORM

Property: 1 Linear property

$$L[af(t) \pm bg(t)] = aL[f(t)] \pm bL[g(t)]$$
, where a and b are constants.

Proof:

$$L[af(t) \pm bg(t)] = \int_0^\infty [af(t) \pm bg(t)] e^{-st} dt$$

$$= a \int_0^\infty f(t) e^{-st} dt \pm b \int_0^\infty g(t) e^{-st} dt$$

$$L[af(t) \pm bg(t)] = a L[f(t)] \pm b L[g(t)]$$

Property: 2 Change of scale property.

If
$$L[f(t)] = F(s)$$
, then $L[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right)$; $a > 0$

Proof:

Given
$$L[f(t)] = F(s)$$

$$\therefore \int_0^\infty e^{-st} f(t) dt = F(s) \cdots \cdots (1)$$

By the definition of Laplace transform, we have

$$L[f(at)] = \int_0^\infty e^{-st} f(at) dt \cdots (2)$$

Put at=
$$x$$
 ie., $t = \frac{x}{a} \Rightarrow dt = \frac{dx}{a}$

$$(2) \Rightarrow L[f(at)] = \int_0^\infty e^{\frac{-sx}{a}} f(x) \frac{dx}{a}$$
$$= \frac{1}{a} \int_0^\infty e^{\frac{-sx}{a}} f(x) dx$$

Replace x by t, $L[f(at)] = \frac{1}{a} \int_0^\infty e^{\frac{-st}{a}} f(t)dt$

$$L[f(at)] = \frac{1}{a}F\left(\frac{s}{a}\right); a > 0$$

Property: 3 First shifting property.

If
$$L[f(t)] = F(s)$$
, then i) $L[e^{-at}f(t)] = F(s+a)$
ii) $L[e^{at}f(t)] = F(s-a)$

Proof:

(i)
$$L[e^{-at}f(t)] = F(s+a)$$

Given L[f(t)] = F(s)

$$\therefore \int_0^\infty e^{-st} f(t) dt = F(s) \cdots (1)$$

By the definition of Laplace transform, we have

$$L[e^{-at}f(at)] = \int_0^\infty e^{-st} e^{-at}f(t) dt$$
$$= \int_0^\infty e^{-(s+a)t} f(t) dt$$
$$= F(s+a) \quad \text{by (1)}$$

(ii)
$$L[e^{at}f(at)] = \int_0^\infty e^{-st} e^{at}f(t) dt$$

$$= \int_0^\infty e^{-(s-a)t} f(t) dt$$

$$= F(s-a) \quad \text{by (1)}$$

Property: 4 Laplace transforms of derivatives L[f'(t)] = sL[f(t)] - f(0)

Proof:

$$L[f'(t)] = \int_0^\infty e^{-st} f'(t) dt = \int_0^\infty u dv$$

$$= [uv]_0^\infty - \int u dv$$

$$= [e^{-st} f(t)]_0^\infty - \int_0^\infty f(t) (-s)e^{-st} dt$$

$$= 0 - f(0) + sL[f(t)]$$

$$= sL[f(t)] - f(0)$$

$$L[f'(t)] = sL[f(t)] - f(0)$$

$$u = e^{-st}$$

$$du = -se^{-st}dt$$

$$dv = f'(t)dt$$

$$v = \int f'(t)dt$$

$$= f(t)$$

Property: 5 Laplace transform of derivative of order n

$$L[f^n(t)] = s^n L[f(t)] - s^{n-1} f(0) - s^{n-2} f'(0) \cdots - s^{n-3} f''(0) - \cdots f^{n-1} (0)$$

Proof:

We know that
$$L[f'(t)] = sL[f(t)] - f(0) \cdots (1)$$

$$L[f^n(t)] = L[[f'(t)]']$$

$$= sL[f'(t)] - f'(0)$$

$$= s[sL[f(t)] - f(0)] - f'(0)$$

$$= s^2 L[f(t)] - sf(0) - f'(0)$$
Similarly, $L[f'''(t)] = s^3 L[f(t)] - s^2 f(0) - sf'(0) - f''(0)$

In general, $L[f^n(t)] = s^n L[f(t)] - s^{n-1} f(0) - s^{n-2} f'(0) \cdots - s^{n-3} f''(0) - \cdots f^{n-1} (0)$

Laplace transform of integrals

Theorem: 1 If
$$L[f(t)] = F(s)$$
, then $L\left[\int_0^t f(t)dt\right] = \frac{F(s)}{s}$

Proof:

Let
$$g(t) = \int_0^t f(t)dt$$

$$\therefore g'(t) = f(t)$$
And $g(0) = \int_0^0 f(t)dt = 0$

Now
$$L[g'(t)] = L[f(t)]$$

$$sL[g(t)] - g(0) = L[f(t)]$$

$$sL[g(t)] = L[f(t)] \quad \therefore g(0) = 0$$

$$L[g(t)] = \frac{L[f(t)]}{s}$$

$$\therefore L\left[\int_0^t f(t)dt\right] = \frac{F(s)}{s}$$

Theorem: 2 If L[f(t)] = F(s), then $L[tf(t)] = -\frac{d}{ds}F(s)$

Proof:

Given
$$L[f(t)] = F(s)$$

$$\therefore \int_0^\infty e^{-st} f(t) dt = F(s) \cdots \cdots (1)$$

Differentiating (1) with respect to s, we get

$$\frac{d}{ds} \int_0^\infty e^{-st} f(t) dt = \frac{d}{ds} F(s)$$

$$\int_0^\infty \frac{\partial}{\partial s} (e^{-st}) f(t) dt = \frac{d}{ds} F(s)$$

$$\int_0^\infty (-t) e^{-st} f(t) dt = \frac{d}{ds} F(s)$$

$$- \int_0^\infty e^{-st} f(t) dt = \frac{d}{ds} F(s)$$

$$- L[tf(t)] = \frac{d}{ds} F(s)$$

$$\therefore L[tf(t)] = -\frac{d}{ds} F(s)$$

Note: In general $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s)$

Example: 5.3 If $L[f(t)] = \frac{s^2 - s + 1}{(2s+1)^2(s-1)}$ then find L[f(2t)].

Solution:

Given
$$L[f(t)] = \frac{s^2 - s + 1}{(2s + 1)^2 (s - 1)} = F(s)$$

 $L[f(2t)] = \frac{1}{2} F\left(\frac{s}{2}\right)$
 $= \frac{1}{2} \frac{\left(\frac{s}{2}\right)^2 - \frac{s}{2} + 1}{\left(2\frac{s}{2} + 1\right)^2 \left(\frac{s}{2} - 1\right)}$
 $= \frac{1}{2} \frac{\left[\frac{s^2}{4} - \frac{s}{2} + 4\right]}{(s + 1)^2 \left(\frac{s - 2}{2}\right)}$
 $= \frac{s^2 - 2s + 1}{4(s + 1)^2 (s - 2)}$

Laplace transform of some Standard functions

Result: 1 Prove that $L[t^n] = \frac{\Gamma(n+1)}{s^{n+1}}$

Proof:

We know that
$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$L[t^n] = \int_0^\infty e^{-st} t^n dt$$

$$L[t^n] = \int_0^\infty e^{-u} \left(\frac{u}{s}\right)^n \frac{du}{s}$$

$$= \int_0^\infty e^{-u} \frac{u^n}{s^{n+1}} du$$

$$= \frac{1}{s^{n+1}} \int_0^\infty e^{-u} u^n du$$

$$\therefore L[t^n] = \frac{\Gamma(n+1)}{s^{n+1}} \qquad \qquad \because \int_0^\infty e^{-u} u^n du$$

Let
$$st = u \cdots (1)$$

$$t = \frac{u}{s}$$

$$dt = \frac{du}{s}$$
When $t \to 0(1) => u \to 0$

$$t \to \infty, (1) => u \to \infty$$

Note: If n is an integer, then $\Gamma(n+1) = n!$

$$\therefore L[t^n] = \frac{n!}{s^{n+1}} \quad \text{if n is an integer}$$
If $n = 0$, then $L[1] = \frac{1}{s}$
If $n = 1$, then $L[t] = \frac{1}{s^2}$
Similarly $L[t^2] = \frac{2!}{s^3}$

$$L[t^3] = \frac{3!}{s^4}$$

Result: 2 Prove that $L(e^{at}) = \frac{1}{s-a}$, s > a

Proof:

Result: 3 Prove that $L(e^{-at}) = \frac{1}{s+a}$, s > a

Proof:

We know that
$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$\therefore L(e^{-at}) = \int_0^\infty e^{-st} e^{-at} dt$$

$$= \int_0^\infty e^{-t(s+a)} f(t) dt$$

$$= \left[\frac{e^{-t(s+a)}}{-(s+a)} \right]_0^\infty$$

$$= -\left[0 - \left(\frac{1}{s+a} \right) \right]$$

$$\therefore L(e^{at}) = \frac{1}{s+a}$$

Result: 4 Prove that $L[sinat] = \frac{a}{s^2 + a^2}$

Proof:

We know that
$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$L[sinat] = \int_0^\infty e^{-st} sinat dt$$

$$\therefore L[sinat] = \frac{a}{s^2 + a^2}, s > |a|$$

$$\therefore L[sinat] = \frac{a}{s^2 + a^2}, s > |a| \qquad \left[\because \int_0^\infty e^{-at} sinbt \ dt = \frac{b}{a^2 + b^2}\right]$$

Result: 5 Prove that $L[cosat] = \frac{s}{s^2 + a^2}$

Proof:

We know that
$$L[f(t)] = \int_0^\infty e^{-st} f(t) dt$$

$$L[cosat] = \int_0^\infty e^{-st} \cos at \ dt$$

$$\therefore L[cosat] = \frac{s}{s^2 + a^2}, s > |a| \qquad \qquad \therefore \int_0^\infty e^{-at} \cosh t \, dt = \frac{a}{a^2 + b^2}$$

$$\int_0^\infty e^{-at} \cosh t \, dt = \frac{a}{a^2 + b^2}$$

Result: 6 Prove that $L[sinhat] = \frac{a}{s^2 - a^2}$, s > |a|

Proof:

We have
$$L[sinhat] = L\left[\frac{e^{at}-e^{-at}}{2}\right]$$

$$= \frac{1}{2}[L(e^{at}) - L(e^{-at})]$$

$$= \frac{1}{2}\left[\frac{1}{s-a} - \frac{1}{s+a}\right]$$

$$= \frac{1}{2}\left[\frac{s+a-s+a}{s^2-a^2}\right]$$

$$= \frac{1}{2}\left[\frac{2a}{s^2-a^2}\right]$$

$$\therefore L[sinhat] = \frac{a}{s^2 - a^2} , s > |a|$$

Result: 7 Prove that $L[coshat] = \frac{s}{s^2 - a^2}$, s > |a|

Proof:

We have
$$L[coshat] = L\left[\frac{e^{at} + e^{-at}}{2}\right]$$

$$= \frac{1}{2}[L(e^{at}) + L(e^{-at})]$$

$$= \frac{1}{2}\left[\frac{1}{s-a} + \frac{1}{s+a}\right]$$

$$= \frac{1}{2}\left[\frac{s+a+s-a}{s^2-a^2}\right]$$

$$= \frac{1}{2}\left[\frac{2s}{s^2-a^2}\right]$$

$$\therefore L[coshat] = \frac{s}{s^2 - a^2} \ , s > |a|$$

Example: 5.4 Find $L\left[t^{\frac{1}{2}}\right]$

Solution:

We have
$$L[t^n] = \frac{\Gamma(n+1)}{s^{n+1}}$$

Laplace Transform

Put
$$n = \frac{1}{2}$$

$$: \Gamma(n+1) = n\Gamma n$$

$$: \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\therefore L\left[t^{\frac{1}{2}}\right] = \frac{\sqrt{\pi}}{2s\sqrt{s}}$$

Example: 5.5 Find the Laplace transform of $t^{-\frac{1}{2}}$ or $\frac{1}{\sqrt{t}}$

Solution:

We have
$$L[t^n] = \frac{\Gamma(n+1)}{s^{n+1}}$$

Put
$$n = -\frac{1}{2}$$

$$\therefore L\left[t^{-\frac{1}{2}}\right] = \frac{\Gamma\left(-\frac{1}{2}+1\right)}{s^{-\frac{1}{2}+1}}$$
$$= \frac{\Gamma\left(\frac{1}{2}\right)}{\frac{1}{s^{\frac{1}{2}}}}$$
$$= \frac{\sqrt{\pi}}{\sqrt{s}}$$

$$: \Gamma(n+1) = n\Gamma n$$

$$\because \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\therefore L\left[\frac{1}{\sqrt{t}}\right] = \sqrt{\frac{\pi}{s}}$$

FORMULA

L[f(t)] = F(s)	L[f(t)] = F(s)
$L[1] = \frac{1}{s}$	$L[sinat] = \frac{a}{s^2 + a^2}$
$L[t] = \frac{1}{s^2}$ $L[t^n] = \frac{\Gamma(n+1)}{s^{n+1}} \text{ if n is not an integer}$ $L[t^n] = \frac{n!}{s^{n+1}} \text{if n is an integer}$ $L(e^{at}) = \frac{1}{s-a}$ $L(e^{at}) = \frac{1}{s+a}$	$L[cosat] = rac{s}{s^2 + a^2}$ $L[coshat] = rac{s}{s^2 - a^2}$ $L[sinhat] = rac{a}{s^2 - a^2}$

Problems using Linear property

Example: 5.6 Find the Laplace transform for the following

i.	$3t^2+2t+1$	v.	$\sin\sqrt{2} t$	ix.	sin^2t
ii.	$(t+2)^3$	vi.	sin(at + b)	х.	$cos^2 2t$
iii.	a^t	vii.	$cos^3 2t$	xi.	cos5tcos4t

Laplace Transform

iv. e^{2t+3} viii. sin^3t

Solution:

(i) Given
$$f(t) = 3t^2 + 2t + 1$$

$$L[f(t)] = L[3t^2 + 2t + 1]$$

$$= L[3t^2] + L[2t] + L[1]$$

$$= L[3t^2] + L[2t] + L[1]$$

$$= 3L[t^2] + 2L[t] + L[1]$$

$$= 3\frac{2}{s^3} + 2\frac{1}{s^2} + \frac{1}{s}$$

$$\therefore L[3t^2 + 2t + 1] = \frac{6}{s^3} + \frac{2}{s^2} + \frac{1}{s}$$

(ii) Given
$$f(t) = (t+2)^3 = t^3 + 3t^2(2) + 3t2^2 + 2^3$$

$$L[f(t)] = L[t^3 + 3t^2(2) + 3t2^2 + 2^3]$$

$$= L[t^3] + L[6t^2] + L[12t] + L[8]$$

$$= L[t^3] + 6L[t^2] + 12L[t] + 8L[1]$$

$$= \frac{6}{5^4} + \frac{12}{5^3} + \frac{12}{5^2} + \frac{12}{5}$$

(iii) Given
$$f(t) = a^t$$

$$L[f(t)] = L[a^t] = L[e^{t \log a}]$$

$$L[a^t] = \frac{1}{s - \log a}$$

(iv) Given
$$f(t) = e^{2t+3}$$

 $L[f(t)] = L[e^{2t+3}] = L[e^{2t}.e^3]$
 $= e^3 L[e^{2t}]$
 $= e^3 \left[\frac{1}{s-2}\right]$
 $\therefore L[e^{2t+3}] = e^3 \left[\frac{1}{s-2}\right]$

(v)
$$L[\sin\sqrt{2}t] = \frac{\sqrt{2}}{s^2+2}$$

(vi)Given
$$f(t) = \sin(at + b) = \sin at \cos b + \cos at \sin b$$

$$L[f(t)] = L[\sin(at + b)]$$

$$= L[\sin at \cos b + \cos at \sin b]$$

$$= \cos b L[\sin at] + \sin b L[\cos at]$$

$$L[\sin(at + b)] = \cos b \frac{s}{s^2 + a^2} + \sin b \frac{s}{s^2 + a^2}$$

(vii) Given
$$f(t) = \cos^3 2t = \frac{1}{4} [3\cos 2t + \cos 6t]$$

$$L[f(t)] = \frac{1}{4} L[3\cos 2t + \cos 6t]$$

$$= \frac{1}{4} [3L(\cos 2t) + L(\cos 6t)]$$

$$= \frac{1}{4} [3\frac{s}{s^2+4} + \frac{s}{s^2+36}]$$

$$\because \cos^3 \theta = \frac{3\cos\theta + \cos 3\theta}{4}$$

$$L[\cos^3 2t] = \frac{1}{4} \left[3 \frac{s}{s^2 + 4} + \frac{s}{s^2 + 36} \right]$$
(viii) Given $f(t) = \sin^3 t = \frac{1}{4} [3 sint - sin3t]$

$$L[f(t)] = \frac{1}{4}L[3sint - sin3t]$$

$$= \frac{1}{4}[3L(sint) - L(sin3t)]$$

$$= \frac{1}{4}\left[3\frac{1}{s^2+1} - \frac{3}{s^2+9}\right]$$

$$L[\sin^3 t] = \frac{3}{4}\left[\frac{1}{s^2+1} - \frac{1}{s^2+9}\right]$$

(ix) Given
$$f(t) = \sin^2 t = \frac{1 - \cos 2t}{2}$$

$$L[f(t)] = L\left[\frac{1-\cos 2t}{2}\right]$$

$$= \frac{1}{2}[L(1) - L(\cos 2t)]$$

$$= \frac{1}{2}\left[\frac{1}{s} - \frac{s}{s^2 + 4}\right]$$

$$L[\cos^2 2t] = \frac{1}{2} \left[\frac{1}{s} - \frac{s}{s^2 + 4} \right]$$

(x) Given
$$f(t) = \cos^2 2t = \frac{1 + \cos 4t}{2}$$

$$L[f(t)] = L\left[\frac{1+\cos 4t}{2}\right]$$

$$= \frac{1}{2}[L(1) + L(\cos 4t)]$$

$$= \frac{1}{2}\left[\frac{1}{s} + \frac{s}{s^2 + 16}\right]$$

$$L[\cos^2 2t] = \frac{1}{2} \left[\frac{1}{s} + \frac{s}{s^2 + 16} \right]$$

(xi) Given
$$f(t) = cos5tcos4t$$

$$L[f(t)] = L[\cos 5t \cos 4t]$$

$$= \frac{1}{2}[L(\cos 9t) + L(\cos t)]$$

$$= \frac{1}{2} \left[\frac{s}{s^2 + 81} + \frac{s}{s^2 + 1} \right]$$

Problems using First Shifting theorem

$$L[e^{-at}f(t)] = L[f(t)]_{s \to s+a}$$
$$L[e^{at}f(t)] = L[f(t)]_{s \to s-a}$$

Example: 5.7 Find the Laplace transform for the following:

i. te^{-3t}	vii. $t^2 2^t$
ii. t^3e^{2t}	viii. $t^3 2^{-t}$
iii. e ^{4t} sin2t	ix. e^{-2t} sin3tcos2t
iv. $e^{-5t}\cos 3t$	$x. e^{-3t}cos4tcos2t$
v. sinh2tcos3t	xi. $e^{4t}\cos 3t\sin 2t$

vi. cosh3tsin2t

 $\overline{\text{(i) } te^{-3t}}$

$$L[te^{-3t}] = L[t]_{s \to s+3}$$

$$= \left(\frac{1}{s^2}\right)_{s \to s+3} \qquad \therefore L(t) = \frac{1}{s^2}$$

$$\therefore L[te^{-3t}] = \frac{1}{(s+3)^2}$$

(ii) $t^3 e^{2t}$

$$L[t^{3}e^{2t}] = L[t^{3}]_{s \to s-2}$$

$$= \left(\frac{3!}{s^{4}}\right)_{s \to s-2} \qquad \because L(t) = \frac{3!}{s^{3+1}}$$

$$\therefore L[t^{3}e^{2t}] = \frac{6}{(s-2)^{4}}$$

(iii) e^{4t} sin2t

$$L[e^{4t}sin2t] = L[sin2t]_{s \to s-4}$$

$$= \left(\frac{2}{s^2 + 2^2}\right)_{s \to s-4}$$

$$= \frac{2}{(s-4)^2 + 4}$$

$$= \frac{2}{s^2 - 8s + 16 + 4}$$

$$\therefore L[e^{4t}sin2t] = \frac{2}{s^2 - 8s + 20}$$

(iv) $L[e^{-5t}cos3t]$

$$L[e^{-5t}cos3t] = L[cos3t]_{s \to s+5}$$

$$= \left(\frac{s}{s^2 + 3^2}\right)_{s \to s+5}$$

$$= \frac{s+5}{(s+5)^2 + 9}$$

$$= \frac{s+5}{s^2 + 10s + 25 + 9}$$

$$\therefore L[e^{-5t}cos3t] = \frac{s+5}{s^2 + 10s + 34}$$

(v) L[sinh2tcos3t]

$$\begin{split} L[sinh2tcos3t] &= L\left[\left(\frac{e^{2t}-e^{-2t}}{2}\right)cos3t\right] \\ &= \frac{1}{2}[L(e^{2t}cos3t) - L(e^{-2t}cos3t)] \\ &= \frac{1}{2}[L(cos3t)_{s\to s-2} - L(cos3t)_{s\to s+2}] \\ &= \frac{1}{2}\left[\left(\frac{s}{s^2+3^2}\right)_{s\to s-2} - \left(\frac{s}{s^2+3^2}\right)_{s\to s+2}\right] \\ & \therefore L[sinh2tcos3t] &= \frac{1}{2}\left[\frac{s-2}{(s-2)^2+9} - \frac{s+2}{(s+2)^2+9}\right] \end{split}$$

(vi) L[cosh3tsin2t]

$$L[cosh3tsin2t] = L\left[\left(\frac{e^{3t} + e^{-3t}}{2}\right)sin2t\right]$$

$$= \frac{1}{2} [L(e^{3t}sin2t) + L(e^{-3t}sin2t)]$$

$$= \frac{1}{2} [L(sin2t)_{s \to s-3} + L(sin2t)_{s \to s+3}]$$

$$= \frac{1}{2} \left[\left(\frac{2}{s^2 + 2^2} \right)_{s \to s-3} + \left(\frac{2}{s^2 + 2^2} \right)_{s \to s+3} \right]$$

$$\therefore L[cosh3tsin2t] = \frac{1}{2} \left[\frac{2}{(s-3)^2 + 4} + \frac{2}{(s+3)^2 + 4} \right]$$

(vii) $t^2 2^t$

$$L[t^{2}2^{t}] = L[t^{2}e^{\log 2^{t}}]$$

$$= L[t^{2}e^{t\log 2}] = L[t^{2}]_{s \to s - \log 2}$$

$$= \left(\frac{2!}{s^{3}}\right)_{s \to s - \log 2}$$

$$= \frac{2}{(s - \log 2)^{3}}$$

$$\therefore L[t^{2}2^{t}] = \frac{2}{(s - \log 2)^{3}}$$

(viii) $t^3 2^{-t}$

$$\begin{split} L[t^3 2^{-t}] &= L[t^3 e^{\log 2^{-t}}] \\ &= L[t^3 e^{-t \log 2}] = L[t^3]_{s \to s + \log 2} \\ &= \left(\frac{3!}{s^4}\right)_{s \to s + \log 2} \\ &= \frac{6}{(s + \log 2)^4} \\ \therefore L[t^3 2^{-t}] &= \frac{6}{(s + \log 2)^4} \end{split}$$

(ix) $L[e^{-2t}sin3tcos2t]$

$$L[e^{-2t}sin3tcos2t] = L[sin3tcos2t]_{s\to s+2}$$

$$= \frac{1}{2}L[sin(3t+2t) + sin(3t-2t)]_{s\to s+2}$$

$$= \frac{1}{2}L[sin5t + sint]_{s\to s+2}$$

$$= \frac{1}{2}[L(sin5t) + L(sint)]_{s\to s+2}$$

$$= \frac{1}{2}\left[\frac{5}{s^2+5^2} + \frac{1}{s^2+1^2}\right]_{s\to s+2}$$

$$= \frac{1}{2}\left[\frac{5}{(s+2)^2+25} + \frac{1}{(s+2)^2+1}\right]$$

$$\therefore L[e^{-2t}sin3tcos2t] = \frac{1}{2}\left[\frac{5}{(s+2)^2+25} + \frac{1}{(s+2)^2+1}\right]$$

(x) $L[e^{-3t}cos4tcos2t]$

$$\begin{split} L[e^{-3t}cos4tcos2t] &= L[cos4tcos2t]_{s \to s+3} \\ &= \frac{1}{2}L[cos(4t+2t) + cos(4t-2t)]_{s \to s+3} \\ &= \frac{1}{2}L[cos6t + cos2t]_{s \to s+3} \end{split}$$

$$= \frac{1}{2} [L(\cos 6t) + L(\cos 2t)]_{s \to s+3}$$

$$= \frac{1}{2} \left[\frac{s}{s^2 + 6^2} + \frac{s}{s^2 + 2^2} \right]_{s \to s+3}$$

$$= \frac{1}{2} \left[\frac{s+3}{(s+3)^2 + 36} + \frac{s+3}{(s+3)^2 + 4} \right]$$

$$\therefore L[e^{-3t} \cos 4t \cos 2t] = \frac{1}{2} \left[\frac{s+3}{(s+3)^2 + 36} + \frac{s+3}{(s+3)^2 + 4} \right]$$

(xi) $L[e^{4t}cos3tsin2t]$

$$L[e^{4t}cos3tsin2t] = L[cos3tsin2t]_{s\to s-4}$$

$$= \frac{1}{2}L[\sin(3t+2t) - \sin(3t-2t)]_{s\to s-4}$$

$$= \frac{1}{2}L[\sin 5t - \sin t]_{s\to s-4}$$

$$= \frac{1}{2}[L(\sin 5t) - L(\sin t)]_{s\to s-4}$$

$$= \frac{1}{2}\left[\frac{5}{s^2+5^2} - \frac{1}{s^2+1^2}\right]_{s\to s-4}$$

$$= \frac{1}{2}\left[\frac{5}{(s-4)^2+25} + \frac{1}{(s-4)^2+1}\right]$$

$$\therefore L[e^{4t}cos3tsin2t] - \frac{1}{2}\left[\frac{5}{(s-4)^2+1} + \frac{1}{(s-4)^2+1}\right]$$

$\therefore L[e^{4t}\cos 3t\sin 2t] = \frac{1}{2} \left[\frac{5}{(s-4)^2 + 25} + \frac{1}{(s-4)^2 + 1} \right]$

Exercise: 5.1

Find the Laplace transform for the following

$1.\cos^2 3t$	Ans: $\frac{1}{4} \left[\frac{3s}{s^2+9} + \frac{s}{s^2+81} \right]$
2. sin3tcos4t	Ans: $\frac{1}{4} \left[\frac{7}{s^2 + 49} - \frac{1}{s^2 + 1} \right]$
3. te ^{2t}	Ans: $\frac{1}{(s-2)^2}$
4. t^4e^{-3t}	Ans: $\frac{4!}{(s-3)^5}$
$5. e^{4t} sin2t$	Ans: $\frac{2}{(s-4)^2+4}$
$6. e^{-5t} cos 3t$	Ans: $\frac{s+5}{(s+5)^2+9}$
7. $t^3 3^t$	Ans: $\frac{3!}{(s-log3)^4}$
8. t^54^{-t}	$\mathbf{Ans:} \frac{5!}{(s+log4)^6}$
9. $e^{-2t}sin3tcos2t$	Ans: $\frac{5}{(s+2)^2+25} + \frac{1}{(s+2)^2+1}$
$10.\ e^{-3t}cos4tcos2t$	Ans: $\frac{s+3}{(s+3)^2+36} + \frac{s+3}{(s+3)^2+4}$
11. sinhtsin4t	Ans: $\frac{4}{(s-1)^2+16} - \frac{4}{(s+1)^2+16}$
12. cosh2tcos2t	Ans: $\frac{1}{2} \left[\frac{s-2}{(s-2)^2+4} - \frac{s+2}{(s+2)^2+4} \right]$

5.4 LAPLACE TRANSFORM OF DERIVATIVES AND INTEGRALS

Problems using the formula

$$L[tf(t)] = \frac{-d}{ds}L[f(t)]$$

Example: 5.8 Find the Laplace transform for tsin4t

Solution:

$$L[tsin4t] = \frac{-d}{ds} L[tsin4t]$$

$$= \frac{-d}{ds} \left[\frac{4}{s^2 + 4} \right]$$

$$= \frac{-[(s^2 + 16)0 - 4(2s)]}{(s^2 + 16)^2}$$

$$\therefore L[tsin4t] = \frac{8s}{(s^2+16)^2}$$

Example: 5.9 Find $L[tsin^2t]$

Solution:

$$L[tsin^{2}t] = \frac{-d}{ds}L[sin^{2}t] = \frac{-d}{ds}L\left[\frac{(1-cos2t)}{2}\right]$$

$$= -\frac{1}{2}\frac{d}{ds}[L(1) - L(cos2t)]$$

$$= -\frac{1}{2}\frac{d}{ds}\left[\frac{1}{s} - \frac{s}{s^{2}+4}\right]$$

$$= -\frac{1}{2}\frac{d}{ds}\left[\frac{s^{2}+4-s^{2}}{s(s^{2}+4)}\right]$$

$$= -\frac{1}{2}\frac{d}{ds}\left[\frac{4}{s(s^{2}+4)}\right]$$

$$= -\frac{4}{2}\frac{d}{ds}\left[\frac{1}{s(s^{2}+4)}\right]$$

$$= -2\left[\frac{0-(3s^{2}+4)}{(s^{3}+4s)^{2}}\right]$$

$$\therefore L[tsin^{2}t] = \frac{2(3s^{2}+4)}{(s^{3}+4s)^{2}}$$

Example: 5.10 Find $L[tcos^22t]$

Solution:

$$L[\cos^{2}2t] = \frac{-d}{ds}L[\cos^{2}2t] = \frac{-d}{ds}L\left[\frac{(1+\cos 4t)}{2}\right]$$

$$= -\frac{1}{2}\frac{d}{ds}[L(1) + L(\cos 4t)]$$

$$= -\frac{1}{2}\frac{d}{ds}\left[\frac{1}{s} + \frac{s}{s^{2}+16}\right]$$

$$= -\frac{1}{2}\left[-\frac{1}{s^{2}} + \frac{(s^{2}+16)1-s\cdot2s}{(s^{2}+16)^{2}}\right]$$

$$= -\frac{1}{2}\left[-\frac{1}{s^{2}} + \frac{s^{2}+16-2s^{2}}{(s^{2}+16)^{2}}\right]$$

$$\therefore L[\cos^{2}2t] = \frac{1}{2}\left[\frac{1}{s^{2}} - \frac{16-s^{2}}{(s^{2}+16)^{2}}\right]$$

Laplace Transform

Page 14

Example: 5.11 Find the Laplace transform for tsinh2t

Solution:

$$L[sinh2t] = \frac{-d}{ds} L[sinh2t]$$

$$= \frac{-d}{ds} \left[\frac{2}{s^2 - 4} \right]$$

$$= \frac{-[(s^2 - 4)^0 - 2(2s)]}{(s^2 - 4)^2}$$

$$\therefore L[tsinh2t] = \frac{4s}{(s^2-4)^2}$$

Example: 5.12 Find the Laplace transform for f(t) = sinat - atcosat Solution:

$$L[sinat - atcosat] = L(sin at) - a L(tcosat)$$

$$= \frac{a}{s^2 + a^2} - a \left(\frac{-d}{ds} L[cosat]\right)$$

$$= \frac{a}{s^2 + a^2} + a \frac{d}{ds} \left[\frac{s}{s^2 + a^2}\right]$$

$$= \frac{a}{s^2 + a^2} + a \left[\frac{(s^2 + a^2)1 - s(2s)}{(s^2 + a^2)^2}\right]$$

$$= \frac{a}{s^2 + a^2} + a \left[\frac{s^2 + a^2 - s^2}{(s^2 + a^2)^2}\right]$$

$$= \frac{a}{s^2 + a^2} + a \left[\frac{a^2 - s^2}{(s^2 + a^2)^2}\right]$$

$$= \frac{a(s^2 + a^2) + a(a^2 - s^2)}{(s^2 + a^2)^2}$$

$$= \frac{as^2 + a^3 + a^3 - as^2}{(s^2 + a^2)^2}$$

$$\therefore L[sinat - atcosat] = \frac{2a^3}{(s^2 + a^2)^2}$$

Example: 5.13 Find the Laplace transform for the following

(i)
$$te^{-3t}sin2t$$

(ii) $te^{-t}cosat$ 9iii) tsinhtcos2t

Solution:

(i)
$$L[te^{-3t}sin2t] = L[tsin2t]_{s \to s+3} = \frac{-d}{ds}L[sin2t]_{s \to s+3}$$

$$= \frac{-d}{ds} \left(\frac{2}{s^2+2^2}\right)_{s \to s+3}$$

$$= \left[\frac{(s^2+4)0-2(2s)}{(s^2+4)^2}\right]_{s \to s+3}$$

$$= \left[\frac{4s}{(s^2+4)^2}\right]_{s \to s+3}$$

$$\therefore L[te^{-3t}sin2t] = \frac{4(s+3)}{((s+3)^2+4)^2}$$
(ii) $L[te^{-t}cosat] = L[tcosat]_{s \to s+1} = \frac{-d}{ds}L[cosat]_{s \to s+1}$

$$= \frac{-d}{ds} \left(\frac{s}{s^2+a^2}\right)_{s \to s+1}$$

$$\begin{split} &= - \left[\frac{(s^2 + a^2)^{1 - s}(2s)}{(s^2 + a^2)^2} \right]_{s \to s + 1} \\ &= - \left[\frac{a^2 - s^2}{(s^2 + a^2)^2} \right]_{s \to s + 1} \\ &= \left[\frac{s^2 - a^2}{(s^2 + a^2)^2} \right]_{s \to s + 1} \\ & \therefore \quad L[te^{-t} cosat] = \frac{(s + 1)^2 - a^2}{((s + 1)^2 + a^2)^2} \end{split}$$

(iii) *L*[tsinhtcos2t]

$$\begin{split} L[tsinhtcos2t] &= L\left[t\left(\frac{e^t - e^{-t}}{2}\right)cos2t\right] \\ &= \frac{1}{2}\left[L(te^tcos2t) - L(te^{-t}cos2t)\right] \\ &= \frac{1}{2}\left[\frac{-d}{ds}L[cos2t]_{S\to s-1} + \frac{d}{ds}L[cos2t]_{S\to s+1}\right] \\ &= \frac{1}{2}\left[\frac{-d}{ds}\left(\frac{s}{s^2+4}\right)_{S\to s-1} + \frac{d}{ds}\left(\frac{s}{s^2+4}\right)_{S\to s+1}\right] \\ &= \frac{1}{2}\left[-\left[\frac{(s^2+4)1-s(2s)}{(s^2+4)^2}\right]_{S\to s-1} + \left[\frac{(s^2+4)1-s(2s)}{(s^2+4)^2}\right]_{S\to s+1}\right] \\ &= \frac{1}{2}\left[-\left[\frac{4-s^2}{(s^2+4)^2}\right]_{S\to s-1} + \left[\frac{4-s^2}{(s^2+4)^2}\right]_{S\to s+1}\right] \\ & \therefore L[tsinhtcos2t] = \frac{1}{2}\left[\frac{(s-1)^2-4}{((s-1)^2+4)^2} + \frac{4-(s+1)^2}{((s+1)^2+4)^2}\right] \end{split}$$

Problems using the formula

$$L[t^2f(t)] = \frac{d^2}{ds^2}L[f(t)]$$

Example: 5.14 Find the Laplace transform for (i) $t^2 sint$ (ii) $t^2 cos2t$ Solution:

(i)
$$L[t^2sint] = \frac{d^2}{ds^2}L[sint]$$

$$= \frac{d^2}{ds^2} \left[\frac{1}{s^2+1}\right]$$

$$= \frac{d}{ds} \left(\frac{\left[(s^2+1)0-1(2s)\right]}{(s^2+1)^2}\right)$$

$$= \frac{d}{ds} \left(\frac{-2s}{(s^2+1)^2}\right)$$

$$= -2\frac{d}{ds} \left(\frac{s}{(s^2+1)^2}\right)$$

$$= \frac{-2\left[(s^2+1)^2(1)-s(2)(s^2+1)(2s)\right]}{(s^2+1)^4}$$

$$= \frac{-2(s^2+1)\left[(s^2+1)-4s^2\right]}{(s^2+1)^4}$$

$$= \frac{-2\left[1-3s^2\right]}{(s^2+1)^3}$$

$$\therefore L[t^2sint] = \frac{6s^2-2}{(s^2+1)^3}$$

(ii)
$$L[t^2 cos 2t] = \frac{d^2}{ds^2} L[cos 2t]$$

$$= \frac{d^2}{ds^2} \left[\frac{s}{s^2 + 4} \right]$$

$$= \frac{d}{ds} \left(\frac{[(s^2 + 4)1 - s(2s)]}{(s^2 + 4)^2} \right)$$

$$= \frac{d}{ds} \left(\frac{4 - s^2}{(s^2 + 4)^2} \right)$$

$$= \frac{[(s^2 + 4)^2 (-2s) - (4 - s^2)2(s^2 + 4)(2s)]}{(s^2 + 4)^4}$$

$$= \frac{2s(s^2 + 4)[(s^2 + 4)(-1) - (4 - s^2)2]}{(s^2 + 4)^4}$$

$$= \frac{2s[s^2 - 12]}{(s^2 + 4)^3}$$

$$\therefore L[t^2 \cos 2t] = \frac{2s[s^2 - 12]}{(s^2 + 4)^3}$$

Example: 5.15 Find the Laplace transform for (i) $t^2e^{-2t}cost$ (ii) $t^2e^{4t}sin3t$ Solution:

$$\begin{split} (\mathrm{i}) \, L[t^2 e^{-2t} cost] &= L[t^2 cost]_{s \to s+2} = \frac{d^2}{ds^2} L[cost]_{s \to s+2} \\ &= \frac{d^2}{ds^2} \Big(\frac{s}{s^2+1}\Big)_{s \to s+2} \\ &= \frac{d}{ds} \left[\frac{(s^2+1)1-s(2s)}{(s^2+1)^2}\right]_{s \to s+2} \\ &= \frac{d}{ds} \left[\frac{1-s^2}{(s^2+1)^2}\right]_{s \to s+2} \\ &= \left[\frac{\left[(s^2+1)^2(-2s)-(1-s^2)2(s^2+1)(2s)\right]}{(s^2+1)^4}\right]_{s \to s+2} \\ &= (s^2+1) \left[\frac{\left[(s^2+1)(-2s)-4s(1-s^2)\right]}{(s^2+1)^4}\right]_{s \to s+2} \\ &= \left[\frac{-2s^3-2s-4s+4s^3}{(s^2+1)^3}\right]_{s \to s+2} \\ &= \left[\frac{2s^3-6s}{(s^2+1)^3}\right]_{s \to s+2} \\ &= \left[\frac{2s^3-6s}{(s^2+1)^3}\right]_{s \to s+2} \\ &\stackrel{\perp}{=} \frac{1}{(s^2+1)^2} \left[\frac{1}{(s^2+1)^2} \left(\frac{1}{(s^2+1)^2}\right)_{s \to s+2} \right]_{s \to s+2} \\ &= \frac{1}{(s^2+1)^2} \left[\frac{1}{(s^2+1)^2} \left(\frac{1}{(s^2+1)^2}\right)_{s \to s+2} \right]_{s \to s+2} \\ &= \frac{d^2}{ds^2} \left(\frac{3}{s^2+9}\right)_{s \to s-4} \\ &= \frac{d^2}{ds^2} \left(\frac{3}{(s^2+9)^2}\right)_{s \to s-4} \\ &= \frac{d}{ds} \left[\frac{(s^2+9)0-3(2s)}{(s^2+9)^2}\right]_{s \to s-4} \\ &= -6\left[\frac{\left[(s^2+9)^2(1)-(s)2(s^2+9)(2s)\right]}{(s^2+9)^4}\right]_{s \to s-4} \end{split}$$

$$= -6(s^{2} + 9) \left[\frac{[(s^{2} + 9) - 4s^{2}]}{(s^{2} + 9)^{4}} \right]_{s \to s - 4}$$

$$= -6 \left[\frac{9 - 3s^{2}}{(s^{2} + 9)^{3}} \right]_{s \to s - 4}$$

$$= \left[\frac{18s^{2} - 54}{(s^{2} + 9)^{3}} \right]_{s \to s - 4}$$

$$\therefore L[t^{2}e^{4t}sin3t] = \frac{18(s - 4)^{2} - 54}{((s - 4)^{2} + 9)^{3}}$$

Exercise: 5.2

Find the Laplace transform for the following

1. tsinat	Ans: $\frac{2as}{(s^2+a^2)^2}$
2. tcosat	Ans : $\frac{s^2 - a^2}{(s^2 + a^2)^2}$
$3. te^{-4t}sin3t$	Ans: $\frac{6(s+4)}{(s+4)^2+9}$
4. tcos2tsin6t	Ans: $\frac{8s}{(s^2+64)^2} - \frac{4s}{(s^2+16)^2}$
$5. te^{-2t}cos2t$	Ans: $\frac{(s-2)^2-4}{((s+4)^2+4)^2}$

Problems using the formula

$$L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} L[f(t)]ds$$

This formula is valid if $\lim_{t\to 0} \frac{f(t)}{t}$ is finite.

The following formula is very useful in this section

$$\int \frac{ds}{s} = \log s$$

$$\int \frac{ds}{s+a} = \log(s+a)$$

$$\int \frac{s \, ds}{s^2 + a^2} = \frac{1}{2} \log(s^2 + a^2)$$

$$\int \frac{a \, ds}{s^2 + a^2} = \tan^{-1} \frac{s}{a}$$

Example: 5.16 Find $L\left[\frac{cosat}{t}\right]$

Solution:

$$\lim_{t\to 0} \frac{\cos at}{t} = \frac{\cos a(0)}{0} = \frac{1}{0} = \infty$$

: Laplace transform does not exists.

Example: 5.17 Find $L\left[\frac{sinat}{t}\right]$

Solution:

$$\lim_{t\to 0} \frac{\sin at}{t} = \frac{\sin a(0)}{0} = \frac{0}{0}$$

$$= \lim_{t\to 0} a\cos at$$
 (by applying L-Hospital rule)

 $\lim_{t\to 0} acosat = acos0 = a, \text{ finite quantity.}$

Hence Laplace transform exists

$$L\left[\frac{\sin at}{t}\right] = \int_{s}^{\infty} L[(\sin at)]ds$$

$$= \int_{s}^{\infty} \frac{a}{s^{2} + a^{2}} ds$$

$$= \left[\tan^{-1} \frac{s}{a}\right]_{s}^{\infty}$$

$$= \left[\tan^{-1} \infty - \tan^{-1} \frac{s}{a}\right]$$

$$= \left[\frac{\pi}{2} - \tan^{-1} \frac{s}{a}\right]$$

$$\therefore L\left[\frac{\sin at}{t}\right] = \cot^{-1} \frac{s}{a}$$

Example: 5.18 Find $L\left[\frac{\sin^3 t}{t}\right]$

Solution:

$$\frac{\sin^3 t}{t} = \frac{3\sin t - \sin 3t}{4t}$$

$$\lim_{t \to 0} \frac{\sin^3 t}{t} = \lim_{t \to 0} \frac{3\sin t - \sin 3t}{4t}$$

$$= \frac{0 - 0}{0} = \frac{0}{0}$$
 (by applying L-Hospital rule)
$$= \lim_{t \to 0} \frac{3\sin t - \sin 3t}{4t} = 0$$

Hence Laplace transform exists

$$\begin{split} L\left[\frac{\sin^3 t}{t}\right] &= L\left[\frac{3\sin t - \sin 3t}{4t}\right] \\ &= \frac{1}{4} \int_s^{\infty} L\left[(3\sin t - \sin 3t)\right] ds \\ &= \frac{1}{4} \int_s^{\infty} \left(3\frac{1}{s^2 + 1} - \frac{3}{s^2 + 9}\right) ds \\ &= \frac{1}{4} \left[3\tan^{-1} s - \tan^{-1} \frac{s}{3}\right]_s^{\infty} \\ &= \frac{1}{4} \left[3(\tan^{-1} \infty - \tan^{-1} s) - \left(\tan^{-1} \infty - \tan^{-1} \frac{s}{3}\right)\right] \\ &= \frac{1}{4} \left[\left(\frac{\pi}{2} - \tan^{-1} s\right) - \left(\frac{\pi}{2} - \tan^{-1} \frac{s}{3}\right)\right] \\ &= \frac{1}{4} \left[\cot^{-1} s - \cot^{-1} \frac{s}{3}\right] \end{split}$$

Example: 5.19 Find $L\left[e^{-2t}\frac{sin2tcos3t}{t}\right]$

Solution:

$$L\left[e^{-2t}\frac{\sin 2t\cos 3t}{t}\right] = L\left[\frac{\sin 2t\cos 3t}{t}\right]_{s\to s+2}$$

$$= \frac{1}{2}\left[\int_{s}^{\infty} L(\sin(3t+2t) - \sin(3t-2t))ds\right]_{s\to s+2}$$

$$= \frac{1}{2}\left[\int_{s}^{\infty} L((\sin 5t) - L(\sin t))ds\right]_{s\to s+2}$$

$$\begin{split} &= \frac{1}{2} \left[\int_{s}^{\infty} \left[\frac{5}{s^{2}+5^{2}} - \frac{1}{s^{2}+1^{2}} \right] \right]_{s \to s+2} \\ &= \frac{1}{2} \left[\left[\tan^{-1} \frac{s}{5} - \tan^{-1} s \right]_{s}^{\infty} \right]_{s \to s+2} \\ &= \frac{1}{2} \left[\left[\left(\tan^{-1} \infty - \tan^{-1} \frac{s}{5} \right) - \left(\tan^{-1} \infty - \tan^{-1} s \right) \right] \right]_{s \to s+2} \\ &= \frac{1}{2} \left[\left(\frac{\pi}{2} - \tan^{-1} \frac{s}{5} \right) - \left(\frac{\pi}{2} - \tan^{-1} s \right) \right]_{s \to s+2} \\ &= \frac{1}{2} \left[\cot^{-1} \frac{s}{5} - \cot^{-1} s \right]_{s \to s+2} \\ &= \frac{1}{2} \left[\cot^{-1} \frac{(s+2)}{5} - \cot^{-1} (s+2) \right] \end{split}$$

Example: 5.20 Find the Laplace transform for $\frac{e^{-at}-e^{-bt}}{t}$

Solution:

$$\lim_{t \to 0} \frac{e^{-at} - e^{-bt}}{t} = \lim_{t \to 0} \frac{e^0 - e^0}{0} = \frac{1 - 1}{0} = \frac{0}{0}$$
 (use L- Hospital rule)
$$= \lim_{t \to 0} \frac{-ae^{-at} + be^{-bt}}{1}$$

$$= -a + b = b - a = a \text{ finite quantity}$$

Hence Laplace transform exists.

$$L\left[\frac{e^{-at}-e^{-bt}}{t}\right] = \int_{s}^{\infty} L[e^{-at} - e^{-bt}]ds$$

$$= \int_{s}^{\infty} [L(e^{-at}) - L(e^{-bt})]ds$$

$$= \int_{s}^{\infty} \left(\frac{1}{s+a} - \frac{1}{s+b}\right) ds$$

$$= [\log(s+a) - \log(s+b)]_{s}^{\infty}$$

$$= \left[\log\frac{s+a}{s+b}\right]_{s}^{\infty}$$

$$= \left[\log\frac{s(1+\frac{a}{s})}{s(1+\frac{b}{s})}\right]_{s}^{\infty}$$

$$= \log 1 - \log\frac{s+a}{s+b} = 0 - \log\frac{s+a}{s+b} \qquad \because \log 1 = 0$$

$$= \log\frac{s+a}{s+b}$$

Example: 5.21 Find the Laplace transform of $\frac{1-\cos t}{t}$

Solution:

$$\lim_{t \to 0} \frac{1 - \cos t}{t} = \frac{0}{0} \qquad \lim_{t \to 0} \frac{\sin t}{1} = \frac{0}{1} = 0 \qquad \text{(use L- Hospital rule)}$$

$$L\left[\frac{1 - \cos t}{t}\right] \text{ exists.}$$

$$L\left[\frac{1 - \cos t}{t}\right] = \int_{s}^{\infty} L\left[(1 - \cos t)\right] ds$$

$$= \int_{s}^{\infty} \left(\frac{1}{s} - \frac{s}{s^{2} + 1}\right) ds$$

$$= \left[\log s - \frac{1}{2}\log(s^2 + 1)\right]_s^{\infty}$$

$$= \left[\log s - \log\sqrt{s^2 + 1}\right]_s^{\infty}$$

$$= \left[\log \frac{s}{\sqrt{s^2 + 1}}\right]_s^{\infty}$$

$$= 0 - \log \frac{s}{\sqrt{s^2 + 1}}$$

$$= \log \frac{\sqrt{s^2 + 1}}{s}$$

Example: 5.22 Find the Laplace transform for $\frac{cosat-cosbt}{t}$

Solution:

$$\lim_{t \to 0} \frac{\cos at - \cos bt}{t} = \frac{1 - 1}{0} = \frac{0}{0}$$
 (use L- Hospital rule)
$$= \lim_{t \to 0} \frac{-a \sin at + b \sin bt}{1} = 0 = \text{a finite quantity}$$

Hence Laplace transform exists.

$$\begin{split} L\left[\frac{cosat-cosbt}{t}\right] &= \int_{s}^{\infty} L[cosat-cosbt]ds \\ &= \int_{s}^{\infty} [L(cosat) - L(cosbt)]ds \\ &= \int_{s}^{\infty} \left(\frac{s}{s^{2}+a^{2}} - \frac{s}{s^{2}+b^{2}}\right) ds \\ &= \left[\frac{1}{2}\log(s^{2}+a^{2}) - \frac{1}{2}\log(s^{2}+b^{2})\right]_{s}^{\infty} \\ &= \frac{1}{2}\left[log\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right]_{s}^{\infty} \\ &= \frac{1}{2}\left[log\frac{s^{2}(1+\frac{a^{2}}{s^{2}})}{s^{2}(1+\frac{b^{2}}{s^{2}})}\right]_{s}^{\infty} \\ &= \frac{1}{2}\left[log\frac{\left(1+\frac{a^{2}}{s^{2}}\right)}{\left(1+\frac{b^{2}}{s^{2}}\right)}\right]_{s}^{\infty} \\ &= \frac{1}{2}\left[log1 - log\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right] = -\frac{1}{2}\left[log\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right] \quad [\because log1 = 0] \\ &= \frac{1}{2}\left[log\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right] \end{split}$$

Example: 5.23 Find the Laplace transform of $\frac{\sin^2 t}{t}$

Solution:

$$\frac{\sin^2 t}{t} = \frac{1 - \cos 2t}{2t}$$

$$\lim_{t \to 0} \frac{1 - \cos 2t}{2t} = \frac{0}{0}$$

$$\lim_{t \to 0} \frac{2\sin 2t}{2} = \frac{0}{1} = 0 \quad \text{(use L- Hospital rule)}$$

Laplace transform exists.

$$L\left[\frac{\sin^2 t}{t}\right] = L\left[\frac{1-\cos 2t}{2t}\right] = \frac{1}{2}\int_s^\infty L[(1-\cos 2t)]ds$$

$$= \frac{1}{2}\int_s^\infty [L(1) - L(\cos 2t)]ds$$

$$= \frac{1}{2}\int_s^\infty \left(\frac{1}{s} - \frac{s}{s^2 + 4}\right)ds$$

$$= \frac{1}{2}\left[\log s - \frac{1}{2}\log(s^2 + 4)\right]_s^\infty$$

$$= \frac{1}{2}\left[\log s - \log\sqrt{s^2 + 4}\right]_s^\infty$$

$$= \frac{1}{2}\left[\log \frac{s}{\sqrt{s^2 + 4}}\right]_s^\infty$$

$$= \frac{1}{2}\left[0 - \log\frac{s}{\sqrt{s^2 + 4}}\right]$$

$$= \frac{1}{2}\log\frac{\sqrt{s^2 + 4}}{s}$$

Example: 5.24 Find the Laplace transform for $\frac{sin2tsin5t}{t}$

Solution:

$$\begin{split} L\left[\frac{\sin 2t \sin 5t}{t}\right] &= \int_{s}^{\infty} L[\sin 2t \sin 5t] ds \\ &= \int_{s}^{\infty} \frac{1}{2} [L(\cos(-3t) - L(\cos 7t)] ds \\ &= \frac{1}{2} \int_{s}^{\infty} [L(\cos(3t) - L(\cos 7t)] ds \qquad [\because \cos(-\theta) = \cos \theta] \\ &= \frac{1}{2} \int_{s}^{\infty} \left(\frac{s}{s^{2} + 9} - \frac{s}{s^{2} + 49}\right) ds \\ &= \frac{1}{2} \left[\frac{1}{2} \log(s^{2} + 9) - \frac{1}{2} \log(s^{2} + 49)\right]_{s}^{\infty} \\ &= \frac{1}{4} \left[log \frac{s^{2} + 9}{s^{2} + 49}\right]_{s}^{\infty} \\ &= \frac{1}{4} \left[log \frac{s^{2} (1 + \frac{9}{s^{2}})}{s^{2} (1 + \frac{49}{s^{2}})}\right]_{s}^{\infty} \\ &= \frac{1}{4} \left[log \frac{(1 + \frac{9}{s^{2}})}{(1 + \frac{49}{s^{2}})}\right]_{s}^{\infty} \\ &= \frac{1}{4} \left[log 1 - log \frac{s^{2} + 9}{s^{2} + 49}\right] \qquad [\because log 1 = 0] \\ &= \frac{1}{4} \left[log \frac{s^{2} + 49}{s^{2} + 9}\right] \end{split}$$

Problems using $L\left[\int_0^t f(t)dt\right] = \frac{1}{s}L[f(t)]$

Example: 5.25 Find the Laplace transform for (i) $\int_0^t e^{-2t} dt$ (ii) $\int_0^t \cos 2t dt$

(iii) $\int_0^t t \sin 3t dt$ (iv) $t \int_0^t cost dt$

Solution:

(i)
$$L\left[\int_0^t e^{-2t} dt\right] = \frac{1}{s} L[e^{-2t}] = \frac{1}{s} \left(\frac{1}{s+2}\right)$$

Example: 5.26 Find the Laplace transform for $e^{-t} \int_0^t t \cos 4t dt$

Solution:

$$\begin{split} L\left[e^{-t}\int_{0}^{t}t\cos 4tdt\right] &= L\left[\int_{0}^{t}t\cos 4tdt\right]_{s\to s+1} = \left[\frac{-1}{s}\frac{d}{ds}L(\cos 4t)\right]_{s\to s+1} \\ &= -\left(\frac{1}{s}\frac{d}{ds}\frac{s}{s^{2}+16}\right)_{s\to s+1} \\ &= \left[\frac{-1}{s}\frac{(s^{2}+16)1-s(2s)}{(s^{2}+16)^{2}}\right]_{s\to s+1} \\ &= \left[\frac{-1}{s}\frac{(s^{2}+16-2s^{2})}{(s^{2}+16)^{2}}\right]_{s\to s+1} \\ &= \left[\frac{-1}{s}\frac{(-s^{2}+16)}{(s^{2}+16)^{2}}\right]_{s\to s+1} \\ &= \left[\frac{1}{s}\frac{(s^{2}-16)}{(s^{2}+16)^{2}}\right]_{s\to s+1} \\ & \therefore L\left[e^{-t}\int_{0}^{t}t\cos 4tdt\right] = \frac{1}{s+1}\left[\frac{(s+1)^{2}-16}{((s+1)^{2}+16)^{2}}\right] \end{split}$$

Example: 5.27 Find the Laplace transform of $e^{-t} \int_0^t \frac{\sin t}{t} dt$

Solution:

$$L\left[e^{-t}\int_0^t \frac{\sin t}{t} dt\right] = L\left[\int_0^t \frac{\sin t}{t} dt\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}L\left(\frac{sint}{t}\right)\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}\int_{s}^{\infty}L(sint)ds\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}\int_{s}^{\infty}\frac{1}{s^{2}+1}\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}\left[\tan^{-1}s\right]_{s}^{\infty}\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}\left(\tan^{-1}\infty - \tan^{-1}s\right)\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}\left(\frac{\pi}{2} - \tan^{-1}s\right)\right]_{s \to s+1}$$

$$= \left[\frac{1}{s}\cot^{-1}s\right]_{s \to s+1}$$

$$\therefore L\left[e^{-t}\int_0^t \frac{\sin t}{t} dt\right] = \frac{1}{s+1} \cot^{-1}(s+1)$$

Exercise: 5.3

Find the Laplace transform of

$1.\frac{sint}{t}$	Ans: $\cot^{-1} \frac{s}{2}$
$2. e^{-2t} \frac{\sin t}{t}$	Ans: $cot^{-1}(s+2)$
3. $\frac{sinat-sinbt}{t}$	Ans: $\cot^{-1} \frac{s}{a} - \cot^{-1} \frac{s}{b}$
$4. \frac{e^{-at} - cosbt}{t}$	Ans: $log \frac{\sqrt{s^2+b^2}}{s+a}$
$5. \frac{1-e^{-t}}{t}$	Ans: $log \frac{s+1}{s}$
$6. e^{-t} \int_0^t \frac{\sin t}{t} dt$	Ans: $\frac{1}{s+1}$ cot ⁻¹ (s + 1)
7. $e^{-t} \int_0^t t cost dt$	Ans: $\frac{1}{s+1} \left[\frac{s^2 + 2s}{(s^2 + 2s + 2)^2} \right]$
8. $e^{-t} \int_0^t t e^{-t} sint dt$	Ans: $\frac{1}{s} \left[\frac{2(s+1)}{s^2 + 2s + 2} \right]$

Evaluation of integrals using Laplace transform

Note: (i)
$$\int_0^\infty f(t)e^{-st}dt = L[f(t)]$$

(ii) $\int_0^\infty f(t)e^{-at}dt = [L[f(t)]]_{s=a}$
(iii) $\int_0^\infty f(t)dt = [L[f(t)]]_{s=0}$

Example: 5.28 If $L[f(t)] = \frac{s+2}{s^2+4}$, then find the value of $\int_0^\infty f(t)dt$

Solution:

Given
$$L[f(t)] = \frac{s+2}{s^2+4}$$

We know that $\int_0^\infty f(t)dt = \left[L[f(t)]\right]_{s=0}$

$$= \left[\frac{s+2}{s^2+4}\right]_{s=0} = \frac{2}{4}$$

$$\int_0^\infty f(t)dt = \frac{1}{2}$$

Example: 5.29 If $L[f(t)] = \frac{5s+4}{s^2-9}$, then find the value of $\int_0^\infty e^{-2t} f(t) dt$

Solution:

Given
$$L[f(t)] = \frac{5s+4}{s^2-9}$$

We know that $\int_0^\infty e^{-2t} f(t) dt = \left[L[f(t)] \right]_{s=2}$

$$= \left[\frac{5s+4}{s^2-9} \right]_{s=2} = \frac{14}{-5}$$

$$\therefore \int_0^\infty e^{-2t} f(t) dt = \frac{-14}{5}$$

Example: 5.30 Find the values of the following integrals using Laplace transforms:

(i)
$$\int_{0}^{\infty} te^{-2t} \cos 2t dt$$

(ii)
$$\int_0^\infty t^2 e^{-t} sint dt$$

$$\int_0^\infty t e^{-2t} \cos 2t dt \qquad \text{(ii)} \qquad \int_0^\infty t^2 e^{-t} \sin t dt \qquad \text{(iii)} \qquad \int_0^\infty \left(\frac{e^{-t} - e^{-2t}}{t}\right) dt$$

(iv)
$$\int_0^\infty \left(\frac{1-\cos t}{t}\right) e^{-t} dt$$

$$\int_0^\infty \left(\frac{1-\cos t}{t}\right) e^{-t} dt \qquad (v) \qquad \int_0^\infty \left(\frac{e^{-at}-\cos bt}{t}\right) dt$$

Solution:

(i)
$$\int_0^\infty t e^{-2t} \cos 2t dt = L[t \cos 2t]_{s=2} = \left[\frac{-d}{ds} L(\cos 2t) \right]_{s=2}$$
$$= \frac{-d}{ds} \left(\frac{s}{s^2 + 4} \right)_{s=2}$$
$$= -\left[\frac{(s^2 + 4)1 - s(2s)}{(s^2 + 4)^2} \right]_{s=2}$$
$$= -\left[\frac{(4 - s^2)}{(s^2 + 4)^2} \right]_{s=2}$$
$$= -\frac{(4 - 4)}{(4 + 4)^2} = 0$$

$$(ii) \int_0^\infty t^2 e^{-t} sint dt = L[t^2 sint]_{s=1} = \frac{d^2}{ds^2} L[sint]_{s=1}$$

$$= \frac{d^2}{ds^2} \left(\frac{1}{s^2+1}\right)_{s=1}$$

$$= \frac{d}{ds} \left[\frac{-1(2s)}{(s^2+1)^2}\right]_{s=1}$$

$$= -2 \frac{d}{ds} \left[\frac{s}{(s^2+1)^2}\right]_{s=1}$$

$$= -2 \left[\frac{\left[(s^2+1)^2(1) - s \cdot 2(s^2+1)(2s)\right)\right]}{(s^2+1)^4}\right]_{s=1}$$

$$= -2 \left[\frac{\left[(s^2+1)[(s^2+1) - 4s^2)\right]}{(s^2+1)^4}\right]_{s=1}$$

$$= -2 \left[\frac{(1-3s^2)}{(s^2+1)^3}\right]_{s=1}$$

$$= \left[\frac{6s^3-2}{(s^2+1)^3}\right]_{s=1} = \frac{4}{8} = \frac{1}{2}$$

(iii)
$$\int_0^\infty \left(\frac{e^{-t} - e^{-2t}}{t}\right) dt = L\left[\frac{e^{-t} - e^{-2t}}{t}\right]_{s=0} = \int_s^\infty [L[e^{-t} - e^{-2t}]ds]_{s=0}$$

$$\begin{split} &= \int_{s}^{\infty} \left[[L(e^{-t}) - L(e^{-2t})] \, \Box s \right]_{s=0} \\ &= \int_{s}^{\infty} \left[\left(\frac{1}{s+1} - \frac{1}{s+2} \right) ds \right]_{s=0} \\ &= \left\{ [\log(s+1) - \log(s+2)]_{s}^{\infty} \right\}_{s=0} \\ &= \left\{ [\log \frac{s+1}{s+2}]_{s}^{\infty} \right\}_{s=0} \\ &= \left\{ [\log \frac{s+1}{s+2}]_{s}^{\infty} \right\}_{s=0} \\ &= \left\{ \log \frac{s(1+\frac{1}{s})}{s(1+\frac{1}{s})^{s}} \right\}_{s=0} \\ &= \left[0 - \log \frac{s+1}{s+2} \right]_{s=0} \quad \text{with } \log 1 = 0 \\ &= \left[\log \frac{s+2}{s+1} \right]_{s=0} = \log 2 \\ \end{aligned} \\ \text{(iv) } \int_{0}^{\infty} \left(\frac{1-\cos t}{t} \right) e^{-t} dt \\ &= \int_{s}^{\infty} \left[L(1) - L(\cos t) \right] ds \right]_{s=1} \\ &= \int_{s}^{\infty} \left[L(1) - L(\cos t) \right] ds \right]_{s=1} \\ &= \int_{s}^{\infty} \left[\left(\frac{1}{s} - \frac{s}{s^{2}+1} \right) ds \right]_{s=1} \\ &= \left\{ \left[\log s - \frac{1}{2} \log(s^{2}+1) \right]_{s}^{\infty} \right\}_{s=1} \\ &= \left\{ \left[\log \frac{s}{\sqrt{s^{2}+1}} \right]_{s=1}^{\infty} \right\}_{s=1} \\ &= \left[\log \frac{s}{\sqrt{s^{2}+1}} \right]_{s=1} \\ &= \log \sqrt{s} \\ \text{(v) } \int_{0}^{\infty} \left(\frac{e^{-at}-\cos bt}{t} \right) dt \\ &= \int_{s}^{\infty} \left[L(e^{-at}) - L(\cos bt) \right] ds \right]_{s=0} \\ &= \int_{s}^{\infty} \left[L(e^{-at}) - L(\cos bt) \right] ds \right]_{s=0} \\ &= \int_{s}^{\infty} \left[\left(\frac{1}{s+a} - \frac{s}{s^{2}+b^{2}} \right) ds \right]_{s=0} \\ &= \left\{ \left[\log(s+a) - \log \sqrt{s^{2}+b^{2}} \right]_{s}^{\infty} \right\}_{s=0} \\ &= \left\{ \left[\log(s+a) - \log \sqrt{s^{2}+b^{2}} \right]_{s}^{\infty} \right\}_{s=0} \\ &= \left\{ \left[\log(s+a) - \log \sqrt{s^{2}+b^{2}} \right]_{s}^{\infty} \right\}_{s=0} \end{aligned}$$

$$= \left[0 - \log \frac{s+a}{\sqrt{s^2+b^2}}\right]_{s=0}$$

$$= \left[\log \frac{\sqrt{s^2+b^2}}{s+a}\right]_{s=0}$$

$$= \log \frac{\sqrt{b^2}}{a}$$

$$= \log \frac{b}{a}$$

Exercise: 5.4

Find the values of the following integrals using Laplace transforms

1. $\int_0^\infty te^{-2t} cost dt$ Ans: $\frac{3}{25}$ 2. $\int_0^\infty te^{-3t} sint dt$ Ans: $\frac{13}{250}$ 3. $\int_0^\infty \left(\frac{e^{-at} - e^{-bt}}{t}\right) dt$ Ans: $\log \frac{b}{a}$ 4. $\int_0^\infty e^{-2t} \frac{\sin^2 t}{t} dt$ Ans: $\frac{1}{4} \log 2$ 5. $\int_0^\infty \left(\frac{cosat - cosbt}{t}\right) dt$ Ans: $\log \frac{a}{b}$

Laplace transform of Piecewise continuous functions

$$\int_0^\infty f(t)e^{-st}dt = L[f(t)]$$

Example: 5.31 Find the Laplace transform of $f(t) = \begin{cases} e^{-t}; & 0 < t < \pi \\ 0; & t > \pi \end{cases}$

Solution:

$$L[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

$$= \int_0^\pi e^{-st}e^{-t}dt + \int_\pi^\infty e^{-st}0dt$$

$$= \int_0^\pi e^{-(s+1)t}dt$$

$$= \left[\frac{e^{-(s+1)t}}{-(s+1)}\right]_0^\pi = \frac{e^{-(s+1)\pi - e^0}}{-(s+1)}$$

$$\therefore L[f(t)] = \frac{1 - e^{-(s+1)\pi}}{-(s+1)}$$

Example: 5.32 Find the Laplace transform of $f(t) = \begin{cases} sint; 0 < t < \pi \\ 0 : t > \pi \end{cases}$

Solution:

$$\begin{split} L[f(t)] &= \int_0^\infty f(t) e^{-st} dt \\ &= \int_0^\pi e^{-st} sint dt + \int_\pi^\infty e^{-st} 0 dt \\ &= \int_0^\pi e^{-st} sint dt \\ &= \left[\frac{e^{-st}}{(-s)^2 + 1} (-ssint - cost) \right]_0^\pi = \frac{e^{-s\pi}}{s^2 + 1} [-ssin\pi - cos\pi] - \frac{e^0}{s^2 + 1} [-ssin0 - cos0] \\ &= \frac{e^{-s\pi}}{s^2 + 1} (0 + 1) - \frac{1}{s^2 + 1} (-1) = \frac{e^{-s\pi} + 1}{s^2 + 1} \end{split}$$

$$\therefore L[f(t)] = \frac{e^{-s\pi} + 1}{s^2 + 1}$$

Example: 5.33 Find the Laplace transform of $f(t) = \begin{cases} t; 0 < t < 1 \\ 0: t > 1 \end{cases}$

Solution:

$$L[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

$$= \int_0^1 e^{-st}tdt + \int_1^\infty e^{-st}0dt$$

$$= \int_0^1 te^{-st}dt$$

$$= \left[t\frac{e^{-st}}{-s} - (1)\frac{e^{-st}}{(-s)^2}\right]_0^1 = \frac{e^{-s}}{-s} - \frac{e^{-s}}{s^2} - 0 + \frac{1}{s^2}$$

$$\therefore L[f(t)] = -\frac{e^{-s}}{s} - \frac{e^{-s}}{s^2} + \frac{1}{s^2}$$

Exercise: 5.5

1. Find the Laplace transform of
$$f(t) = \begin{cases} 0; 0 < t < 2 \\ 3; t > 2 \end{cases}$$
 Ans: $\frac{3e^{-2s}}{s}$

2. Find the Laplace transform of
$$f(t) = \begin{cases} e^t; 0 < t < 1 \\ 0; t > 1 \end{cases}$$
 Ans: $\frac{1 - e^{-(s-1)}}{s-1}$

3. Find the Laplace transform of
$$f(t) = \begin{cases} 1; 0 < t < 1 \\ 0; t > 1 \end{cases}$$
 Ans: $\frac{1 - e^{-s}}{s}$

Unit step function

The unit step function U(t-a) is defined as $U(t-a) = \begin{cases} 0; t < a \\ 0; t > a \end{cases}$

Example: 5.34 Find the Laplace transform of unit step functions.

Solution:

$$L[U(t-a)] = \int_0^\infty U(t-a)e^{-st}dt$$

$$= \int_0^a 0dt + \int_a^\infty (1)e^{-st}dt = \int_a^\infty e^{-st}dt$$

$$= \left[\frac{e^{-st}}{-s}\right]_a^\infty = 0 - \frac{e^{-sa}}{-s} = \frac{e^{-sa}}{s}$$

$$L[U(t-a)] = \frac{e^{-sa}}{s}$$

Second Shifting theorem

Statement: If L[f(t)] = F(s), then $L[f(t-a)U(t-a)] = e^{-as}F(s)$

Proof:

$$U(t-a)f(t-a) = \begin{cases} 0; t < a \\ f(t-a); t > a \end{cases}$$

By the definition of Laplace transform,

$$L[U(t-a)f(t-a)] = \int_0^\infty U(t-a)f(t-a)e^{-st}dt$$
$$= \int_0^a 0dt + \int_a^\infty f(t-a)e^{-st}dt$$
$$L[U(t-a)f(t-a)] = \int_0^\infty e^{-s(a+x)}f(x)dx$$

$$= \int_0^\infty e^{-sa} e^{-sx} f(x) dx$$
$$= e^{-sa} \int_0^\infty e^{-sx} f(x) dx$$

Replace x by t

$$L[U(t-a)f(t-a)] = e^{-sa} \int_0^\infty e^{-st} f(t)dt$$
$$= e^{-sa} L[f(t)] = e^{-sa} F(s)$$
$$L[U(t-a)f(t-a)] = e^{-sa} F(s)$$

Let
$$t - a = x \cdots (1)$$

 $t = a + x$
 $dt = dx$
When $t = a$, $(1) => x = 0$
When $t = \infty$, $(1) => x = \infty$

5.5 PERIODIC FUNCTIONS

Definition: A function f(t) is said to be periodic if f(t+T) = f(t) for all values of t and for certain values of T. The smallest value of T for which f(t+T) = f(t) for all t is called periodic function.

Example:

$$sint = \sin(t + 2\pi) = \sin(t + 4\pi) \cdots$$

 \therefore sint is periodic function with period 2π .

Let f(t) be a periodic function with period T. Then

$$L[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$$

Problems on Laplace transform of Periodic function

Example: 5.35 Find the Laplace transform of
$$f(t) = \begin{cases} sin\omega t; & 0 < t < \frac{\pi}{\omega} \\ 0; & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases} f\left(t + \frac{2\pi}{\omega}\right) = f(t)$$

Solution:

The given function is a periodic function with period $T = \frac{2\pi}{\omega}$

$$\begin{split} L[f(t)] &= \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt \\ &= \frac{1}{1 - e^{\frac{-2\pi s}{\omega}}} \left[\int_0^{\frac{\pi}{\omega}} \sin\omega t e^{-st} dt + \int_{\frac{\pi}{\omega}}^{\frac{2\pi}{\omega}} e^{-st} (0) dt \right] \\ &= \frac{1}{1 - e^{\frac{-2\pi s}{\omega}}} \int_0^{\frac{\pi}{\omega}} \sin\omega t e^{-st} dt \\ &= \frac{1}{1 - e^{\frac{-2\pi s}{\omega}}} \left[\frac{e^{-st}}{(-s)^2 + \omega^2} (-s\sin\omega t - \omega \cos\omega t) \right]_0^{\frac{\pi}{\omega}} \\ &= \frac{1}{1 - e^{\frac{-2\pi s}{\omega}}} \left\{ \frac{e^{\frac{-s\pi}{\omega}}}{s^2 + \omega^2} [-s\sin\pi - \omega \cos\pi] + \frac{\omega}{s^2 + \omega^2} \right\} \\ &= \frac{1}{1 - e^{\frac{-2\pi s}{\omega}}} \left[\frac{e^{\frac{-s\pi}{\omega}}}{s^2 + \omega^2} \right] \\ &= \frac{1}{1^2 - \left(e^{\frac{-\pi s}{\omega}}\right)^2} \left[\frac{\omega \left(e^{\frac{-s\pi}{\omega}} + 1\right)}{s^2 + \omega^2} \right] \end{split}$$

$$= \frac{1}{\left(1 - e^{\frac{-\pi s}{\omega}}\right)\left(1 + e^{\frac{-\pi s}{\omega}}\right)} \left[\frac{\omega\left(e^{\frac{-s\pi}{\omega}} + 1\right)}{s^2 + \omega^2}\right]$$
$$\therefore L[f(t)] = \frac{\omega}{\left(1 - e^{\frac{-\pi s}{\omega}}\right)(s^2 + \omega^2)}$$

Example: 5.36 Find the Laplace transform of $f(t) = \begin{cases} E; 0 \le t \le a \\ -E; a < t \le 2a \end{cases}$ given that f(t + 2a) = f(t).

Solution:

The given function is a periodic function with period T = 2a

$$L[f(t)] = \frac{1}{1 - e^{-ST}} \int_0^T e^{-st} f(t) dt$$

$$= \frac{1}{1 - e^{-2as}} \int_0^{2a} e^{-st} f(t) dt$$

$$= \frac{1}{1 - e^{-2as}} \left[\int_0^a E e^{-st} dt + \int_a^{2a} -E e^{-st} dt \right]$$

$$= \frac{1}{1 - e^{-2as}} \left[E \int_0^a e^{-st} dt - E \int_a^{2a} e^{-st} dt \right]$$

$$= \frac{E}{1 - e^{-2as}} \left[\left[\frac{e^{-st}}{-s} \right]_0^a - \left[\frac{e^{-st}}{-s} \right]_a^{2a} \right]$$

$$= \frac{E}{1 - e^{-2as}} \left[\frac{e^{-as}}{-s} + \frac{1}{s} - \frac{e^{-2as}}{s} - \frac{e^{-as}}{s} \right]$$

$$= \frac{E}{1 - e^{-2as}} \left[\frac{1 - 2e^{-as} + e^{-2as}}{s} \right]$$

$$= \frac{E}{1^2 - (e^{-as})^2} \left[\frac{(1 - e^{-as})^2}{s} \right]$$

$$= \frac{E}{(1 - e^{-as})(1 + e^{-as})} \left[\frac{(1 - e^{-as})^2}{s} \right]$$

$$= \frac{E}{s} \frac{(1 - e^{-as})}{(1 + e^{-as})}$$

$$\therefore L[f(t)] = \frac{E}{s} \tanh\left(\frac{as}{s}\right)$$

Example: 5.37 Find the Laplace transform of $f(t) = \begin{cases} 1; 0 \le t \le \frac{a}{2} \\ -1; \frac{a}{2} \le t \le a \end{cases}$ given that f(t+a) = f(t).

Solution:

The given function is a periodic function with period T = a

$$L[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$$

$$= \frac{1}{1 - e^{-as}} \int_0^a e^{-st} f(t) dt$$

$$= \frac{1}{1 - e^{-as}} \left[\int_0^{\frac{a}{2}} (1) e^{-st} dt + \int_{\frac{a}{2}}^a (-1) e^{-st} dt \right]$$

$$= \frac{1}{1 - e^{-as}} \left[\int_0^{\frac{a}{2}} e^{-st} dt - \int_{\frac{a}{2}}^a e^{-st} dt \right]$$

$$= \frac{1}{1 - e^{-as}} \left[\left[\frac{e^{-st}}{-s} \right]_0^{\frac{a}{2}} - \left[\frac{e^{-st}}{-s} \right]_{\frac{a}{2}}^{2a} \right]$$

$$= \frac{1}{1 - e^{-as}} \left[\frac{e^{\frac{-sa}{2}}}{-s} + \frac{1}{s} + \frac{e^{-as}}{s} - \frac{e^{\frac{-sa}{2}}}{s} \right]$$

$$= \frac{1}{1 - e^{-as}} \left[\frac{1 - 2e^{\frac{-sa}{2}} + e^{-as}}{s} \right]$$

$$= \frac{1}{1^2 - \left(e^{\frac{-sa}{2}}\right)^2} \left[\frac{\left(1 - e^{\frac{-sa}{2}}\right)^2}{s} \right]$$

$$= \frac{1}{\left(1 - e^{\frac{-sa}{2}}\right)\left(1 + e^{\frac{-sa}{2}}\right)} \left[\frac{\left(1 - e^{\frac{-sa}{2}}\right)^2}{s} \right]$$

$$= \frac{1}{s} \frac{\left(1 - e^{\frac{-sa}{2}}\right)}{\left(1 + e^{\frac{-sa}{2}}\right)}$$

$$= \frac{1}{s} \frac{\left(1 - e^{\frac{-sa}{2}}\right)}{\left(1 + e^{\frac{-sa}{2}}\right)}$$

$$\therefore L[f(t)] = \frac{1}{s} \tanh\left(\frac{as}{4}\right)$$

Example: 5.38 Find the Laplace transform of $f(t) = \begin{cases} t; 0 \le t \le a \\ 2a - t; a \le t \le 2a \end{cases}$ given that f(t + 2a) = f(t).

Solution:

The given function is a periodic function with period T = 2a

$$\begin{split} L[f(t)] &= \frac{1}{1 - e^{-ST}} \int_0^T e^{-St} f(t) dt \\ &= \frac{1}{1 - e^{-2as}} \int_0^{2a} e^{-St} f(t) dt \\ &= \frac{1}{1 - e^{-2as}} \left[\int_0^a t e^{-St} dt + \int_a^{2a} (2a - t) e^{-St} dt \right] \\ &= \frac{1}{1 - e^{-2as}} \left[\left[t \left(\frac{e^{-St}}{-s} \right) - \left(\frac{e^{-St}}{(-s)^2} \right) \right]_0^a - \left[(2a - t) \left(\frac{e^{-St}}{-s} \right) - (-1) \left(\frac{e^{-St}}{(-s)^2} \right) \right]_a^{2a} \right] \\ &= \frac{1}{1 - e^{-2as}} \left[\frac{-ae^{-as}}{s} - \frac{e^{-as}}{s^2} + \frac{1}{s^2} + \frac{e^{-2as}}{s^2} + \frac{ae^{-as}}{s} - \frac{e^{-as}}{s^2} \right] \\ &= \frac{1}{1 - e^{-2as}} \left[\frac{1 - 2e^{-as} + e^{-2as}}{s^2} \right] \\ &= \frac{1}{1^2 - (e^{-as})^2} \left[\frac{(1 - e^{-as})^2}{s^2} \right] \\ &= \frac{1}{(1 - e^{-as})(1 + e^{-as})} \left[\frac{(1 - e^{-as})^2}{s^2} \right] \\ &= \frac{1}{s^2} \tanh \left(\frac{as}{2} \right) \end{split}$$

Exercise: 5.6

1. Find the Laplace transform of

$$f(t) = \begin{cases} 1; 0 \le t \le \frac{a}{2} \\ -1; \frac{a}{2} \le t \le a \end{cases} \text{ given that } f(t+a) = f(t).$$
 Ans: $\frac{k}{s} \tanh\left(\frac{as}{2}\right)$

2. Find the Laplace transform of

$$f(t) = \begin{cases} t; 0 \le t \le a \\ 2a - t; a \le t \le 2a \end{cases}$$
 given that $f(t + 2a) = f(t)$. **Ans:** $\frac{1}{s^2} \tanh\left(\frac{s\pi}{2}\right)$

3. Find the Laplace transform of

$$f(t) = \begin{cases} \frac{t}{a}; 0 \le t \le a \\ \frac{2a-t}{a}; a \le t \le 2a \end{cases} \text{ given that } f(t+2a) = f(t).$$
 Ans: $\frac{1}{as^2} \tanh\left(\frac{sa}{2}\right)$

4. Find the Laplace transform of

$$f(t) = \begin{cases} sint; 0 < t < \pi \\ 0; \pi < t < 2\pi \end{cases} f(t + 2\pi) = f(t)$$
 Ans: $\frac{1}{(1 - e^{-\pi s})(s^2 + 1)}$

5.6 INVERSE LAPLACE TRANSFORM

Definition

If the Laplace transform of a function f(t) is F(s)ie., L[f(t)] = F(s), then f(t) is called an inverse Laplace transform of F(s) and we write symbolically $f(t) = L^{-1}[F(s)]$, where L^{-1} is called the inverse Laplace transform operator.

Inverse Laplace transform of elementary functions

L[f(t)] = F(s)	$L^{-1}[F(s)] = f(t)$
$L[1] = \frac{1}{s}$	$L^{-1}\left[\frac{1}{s}\right] = 1$
$L[t] = \frac{1}{s^2}$	$L^{-1}\left[\frac{1}{s^2}\right] = t$
$L[t^n] = \frac{n!}{s^{n+1}} \text{ if } n \text{ is an integer}$	$L^{-1}\left[\frac{n!}{s^{n+1}}\right] = t^n$
	$L^{-1}\left[\frac{1}{s^{n+1}}\right] = \frac{t^n}{n!}$
$L[e^{at}] = \frac{1}{s-a}$	$L^{-1}\left[\frac{1}{s-a}\right] = e^{at}$
$L[e^{-at}] = \frac{1}{s+a}$	$L^{-1}\left[\frac{1}{s+a}\right] = e^{-at}$
$L[sinat] = \frac{a}{s^2 + a^2}$	$L^{-1}\left[\frac{1}{s^2+a^2}\right] = \frac{sinat}{a}$
$L[cosat] = \frac{s}{s^2 + a^2}$	$L^{-1}\left[\frac{s}{s^2+a^2}\right] = cosat$

$L[sinhat] = \frac{a}{s^2 - a^2}$	$L^{-1}\left[\frac{1}{s^2-a^2}\right] = \frac{sinhat}{a}$
$L[cosat] = \frac{s}{s^2 - a^2}$	$L^{-1}\left[\frac{s}{s^2-a^2}\right] = coshat$

Result on inverse Laplace transform

Result: 1 Linear property

$$L[f(t)] = F(s)$$
 and $L[g(t)] = G(s)$, then $L^{-1}[aF(s) \pm bG(s)] = aL^{-1}[F(s)] \pm bL^{-1}[G(s)]$

Where a and b are constants.

Proof:

We know that
$$L[aF(s) \pm bG(s)] = aL[F(s)] \pm bL[G(s)]$$

= $aF(s) \pm bG(s)$

$$(i.e.)a F(s) \pm b G(s) = L[af(t) \pm bg(t)]$$

Operating L^{-1} on both sides, we get

$$L^{-1}[aF(s) \pm bG(s)] = af(t) \pm bg(t)$$

$$L^{-1}[aF(s) \pm bG(s)] = aL^{-1}[F(s)] \pm bL^{-1}[G(s)]$$

$$f(t) = L^{-1}[F(s)]$$

$$g(t) = L^{-1}[G(s)]$$

Result: 2 First shifting property

(i)
$$L^{-1}[F(s+a) = e^{-at}L^{-1}[F(s)]]$$

(ii)
$$L^{-1} [F(s-a) = e^{at}L^{-1}[F(s)]]$$

Proof:

Let
$$L[e^{-at}f(t)] = F[s+a]$$

Operating L^{-1} on both sides, we get

$$e^{-at}f(t) = L^{-1}\big[F[s+a]\big]$$

$$L^{-1}[F[s+a]] = e^{-at}L^{-1}[F(s)]$$

Result: 3 Multiplication by s.

If
$$L^{-1}[F(s)] = f(t)$$
 and $f(0) = 0$, then $L^{-1}[sF(s)] = \frac{d}{dt}L^{-1}[F(s)]$

Proof:

We know that
$$L[f'(t)] = sL[f(t)] - f(0) = sF(s)$$

Operating L^{-1} on both sides, we get

$$f'(t) = L^{-1}[sF(s)]$$

$$\frac{d}{dt}f(t) = L^{-1}[sF(s)]$$

$$\frac{d}{dt}L^{-1}[F(s)] = L^{-1}[sF(s)]$$

$$\therefore L^{-1}[sF(s)] = \frac{d}{dt}L^{-1}[F(s)]$$

Laplace Transform

Result: 4 Division by s.

$$L^{-1}\left[\frac{F(s)}{s}\right] = \int_0^t L^{-1}[F(s)]dt$$

Proof:

We know that
$$L\left[\int_0^t f(t)dt\right] = \frac{1}{s}L[f(t)] = \frac{1}{s}F(s)$$

Operating L^{-1} on both sides ,we get

$$\int_0^t f(t)dt = L^{-1} \left[\frac{1}{s} F(s) \right]$$

$$\int_0^t L^{-1}[F(s)] dt = L^{-1} \left[\frac{1}{s} F(s) \right]$$

$$\therefore L^{-1}\left[\frac{F(s)}{s}\right] = \int_0^t L^{-1}[F(s)] dt$$

Result: 5 Inverse Laplace transform of derivative

$$L^{-1}[F(s)] = \frac{-1}{t}L^{-1}\left[\frac{d}{ds}F(s)\right]$$

Proof:

We know that
$$L[tf(t)] = \frac{-d}{ds}L[f(t)] = \frac{-d}{ds}F(s)$$

Operating L^{-1} on both sides ,we get

$$tf(t) = -L^{-1} \left[\frac{d}{ds} F(s) \right]$$

$$L^{-1}[F(s)] = \frac{-1}{t}L^{-1}\left[\frac{d}{ds}F(s)\right]$$

$$f(t) = \frac{-1}{t} L^{-1} \left[\frac{d}{ds} F(s) \right]$$

$$L^{-1}[F(s)] = \frac{-1}{t}L^{-1}\left[\frac{d}{ds}F(s)\right]$$

Result: 6 Inverse Laplace transform of integral

$$L^{-1}[F(s)] = tL^{-1}\left[\int_{s}^{\infty} F(s)ds\right]$$

Proof:

We know that
$$L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} L(f(t)) ds$$

= $\int_{s}^{\infty} F(s) ds$

Operating L^{-1} on both sides, we get

$$\frac{f(t)}{t} = L^{-1} \Big[\int_s^\infty F(s) \, ds \Big]$$

$$f(t) = tL^{-1} \left[\int_{s}^{\infty} F(s) \, ds \right]$$

$$L^{-1}[F(s)] = tL^{-1}[\int_{s}^{\infty} F(s) \, ds]$$

Problems under inverse Laplace transform of elementary functions

Example: 5.39 Find the inverse Laplace for the following

(i)
$$\frac{1}{2s+3}$$
 (ii) $\frac{1}{4s^2+9}$ (iii) $\frac{s^3-3s^2+7}{s^4}$ (iv) $\frac{3s+5}{s^2+36}$

Solution:

(i)
$$L^{-1} \left[\frac{1}{2s+3} \right] = L^{-1} \left[\frac{1}{2\left[s+\frac{3}{2}\right]} \right]$$
$$= \frac{1}{2} e^{-\frac{-3t}{2}}$$

(ii)
$$L^{-1}\left[\frac{1}{4s^2+9}\right] = L^{-1}\left[\frac{1}{4\left[s^2+\frac{9}{4}\right]}\right]$$

$$= \frac{1}{4}L^{-1}\left[\frac{1}{\left[s^2+\frac{9}{4}\right]}\right]$$

$$= \frac{1}{4}\frac{1}{3/2}sin\frac{3}{2}t$$

$$= \frac{1}{6}sin\frac{3}{2}t$$

(iii)
$$L^{-1} \left[\frac{s^3 - 3s^2 + 7}{s^4} \right] = L^{-1} \left[\frac{s^3}{s^4} - \frac{3s^2}{s^4} + \frac{7}{s^4} \right]$$

$$= L^{-1} \left[\frac{1}{s} \right] - 3L^{-1} \left[\frac{1}{s^2} \right] + 7L^{-1} \left[\frac{1}{s^4} \right]$$

$$L^{-1} \left[\frac{s^3 - 3s^2 + 7}{s^4} \right] = 1 - 3t + \frac{7t^3}{3!}$$

(iv)
$$L^{-1} \left[\frac{3s+5}{s^2+36} \right] = 3L^{-1} \left[\frac{s}{s^2+36} \right] + 5L^{-1} \left[\frac{1}{s^2+36} \right]$$

$$L^{-1} \left[\frac{3s+5}{s^2+36} \right] = 3\cos 6t + \frac{5\sin 6t}{6}$$

Inverse Laplace transform using First shifting theorem

$$L^{-1}[F(s+a)] = e^{-at}L^{-1}[F(s)]$$

Example: 5.40 Find the inverse Laplace transform for the following:

(i)
$$\frac{1}{(s+2)^2}$$
 (ii) $\frac{1}{(s-3)^4}$ (iii) $\frac{1}{(s+3)^2+9}$ (iv) $\frac{1}{s^2-2s+2}$ (v) $\frac{1}{s^2-4s+13}$ (vi) $\frac{s+2}{(s+2)^2+25}$ (vii) $\frac{s+2}{s^2+4s+20}$ (viii) $\frac{s}{(s+3)^2}$

$$\frac{1}{(s+3)^2+9}$$

$$(iv) \qquad \frac{1}{s^2 - 2s + 2}$$

$$(\mathbf{v}) \qquad \frac{1}{s^2 - 4s + 13}$$

(vi)
$$\frac{s+2}{(s+2)^2+25}$$

(vii)
$$\frac{s+2}{s^2+4s+20}$$

(viii)
$$\frac{s}{(s+3)^2}$$

$$(ix) \qquad \frac{s}{(s-4)^3}$$

$$(\mathbf{x}) \frac{s}{s^2 - 2s + 2}$$

(xi)
$$\frac{2s+3}{s^2+6s+25}$$

$$\frac{s}{(s-4)^3}$$
 (x) $\frac{s}{s^2-2s+2}$ (xi) $\frac{2s+3}{s^2+6s+25}$ (xii) $\frac{s}{s^2+6s-7}$

Solution:

(i)
$$L^{-1}\left[\frac{1}{(s+2)^2}\right] = e^{-2t}L^{-1}\left[\frac{1}{s^2}\right] = e^{-2t}t$$

(ii)
$$L^{-1}\left[\frac{1}{(s-3)^4}\right] = e^{3t}L^{-1}\left[\frac{1}{s^4}\right] = e^{-2t}\frac{t^3}{3!}$$

(iii)
$$L^{-1}\left[\frac{1}{(s+3)^2+9}\right] = e^{-3t}L^{-1}\left[\frac{1}{s^2+9}\right] = e^{-3t}\frac{\sin 3t}{3}$$

(iv)
$$L^{-1}\left[\frac{1}{s^2-2s+2}\right] = L^{-1}\left[\frac{1}{(s-1)^2+1}\right] = e^t L^{-1}\left[\frac{1}{s^2+1}\right] = e^t sint$$

(v)
$$L^{-1}\left[\frac{1}{s^2-4s+13}\right] = L^{-1}\left[\frac{1}{(s-2)^2+9}\right] = e^{2t}L^{-1}\left[\frac{1}{s^2+9}\right] = e^{2t}\frac{\sin 3t}{3}$$

(vi)
$$L^{-1}\left[\frac{s+2}{(s+2)^2+25}\right] = e^{-2t}L^{-1}\left[\frac{s}{s^2+25}\right] = e^{-2t}\cos 5t$$

(vii)
$$L^{-1}\left[\frac{s+2}{s^2+4s+20}\right] = L^{-1}\left[\frac{s+2}{(s+2)^2+16}\right]$$

Laplace Transform

$$= e^{-2t}L^{-1}\left[\frac{s}{s^2+16}\right] = e^{-2t}cos4t$$

$$(viii) L^{-1}\left[\frac{s}{(s+3)^2}\right] = L^{-1}\left[\frac{s+3-3}{(s+3)^2}\right]$$

$$= L^{-1}\left[\frac{s+3}{(s+3)^2}\right] - L^{-1}\left[\frac{3}{(s+3)^2}\right]$$

$$= L^{-1}\left[\frac{1}{s+3}\right] - 3L^{-1}\left[\frac{1}{(s+3)^2}\right]$$

$$= e^{-3t} - 3e^{-3t}L^{-1}\left[\frac{1}{s^2}\right]$$

$$= e^{-3t} - 3e^{-3t}t$$

$$(ix) L^{-1}\left[\frac{s}{(s-4)^3}\right] = L^{-1}\left[\frac{s-4+4}{(s-4)^3}\right]$$

$$= L^{-1}\left[\frac{s-4}{(s-4)^3}\right] + L^{-1}\left[\frac{4}{(s-4)^3}\right]$$

$$= L^{-1}\left[\frac{1}{(s-4)^2}\right] + 4L^{-1}\left[\frac{1}{(s-4)^3}\right]$$

$$= e^{4t}L^{-1}\left[\frac{1}{s^2}\right] + 4e^{4t}L^{-1}\left[\frac{1}{s^3}\right]$$

$$= e^{4t}t + 2e^{4t}t^2$$

$$(x) L^{-1}\left[\frac{s}{s^2-2s+2}\right] = L^{-1}\left[\frac{s}{(s-1)^2+1}\right] + L^{-1}\left[\frac{1}{(s-1)^2+1}\right]$$

$$= e^{t}L^{-1}\left[\frac{s}{(s-1)^2+1}\right] + L^{-1}\left[\frac{1}{(s-1)^2+1}\right]$$

$$= e^{t}L^{-1}\left[\frac{s}{(s-1)^2+1}\right] + e^{t}L^{-1}\left[\frac{1}{(s-1)^2+1}\right]$$

$$= e^{t}L^{-1}\left[\frac{s}{(s+3)^2+16}\right] = L^{-1}\left[\frac{2(s+3-3)+3}{(s+3)^2+16}\right]$$

$$= L^{-1}\left[\frac{2(s+3)-6+3}{(s+3)^2+16}\right]$$

$$= e^{-3t}L^{-1}\left[\frac{s}{s^2+16}\right] - 3L^{-1}\left[\frac{1}{s^2+16}\right]$$

$$= e^{-3t}L^{-1}\left[\frac{s}{s^2+16}\right] - 3L^{-1}\left[\frac{1}{s^2+16}\right]$$

$$= e^{-3t}L^{-1}\left[\frac{s}{s^2-16}\right] - 3e^{-3t}L^{-1}\left[\frac{1}{s^2-16}\right]$$

Exercise: 5.7

Find the inverse Laplace transform for the following:

1.
$$\frac{2s-3}{s^2+5^2}$$
 Ans: $2\cos 5t - \frac{3\sin 5t}{5}$

2.
$$\frac{3s+5}{s^2+16}$$
 Ans: $3\cos 4t + \frac{5\sin 4t}{4}$

3.
$$\frac{1}{4s^2+9}$$
 Ans: $\frac{1}{6}\sin\frac{3}{2}t$

4.
$$\frac{1}{(s+4)^5}$$
 Ans: $e^{-4t} \frac{t^4}{4!}$

5.
$$\frac{1}{s^2-4s+13}$$
 Ans: $\frac{e^{2t}}{3}sin3t$

Inverse using the formula

$$L^{-1}[F(s)] = \frac{-1}{t}L^{-1}\left[\frac{d}{ds}F(s)\right]$$

Note: This formula is used when F(s) is $\cot^{-1} \emptyset(s)$ or $\tan^{-1} \emptyset(s)$ or $\log \emptyset(s)$

Example: 5.41 Find the inverse Laplace transform for the following

(i)
$$\cot^{-1}\left(\frac{s}{a}\right)$$
 (ii) $\tan^{-1}\left(\frac{a}{s}\right)$ (iii) $\cot^{-1}as$

(iv)
$$tan^{-1}(s+a)$$
 (v) $log\left(\frac{s+a}{s+b}\right)$ (vi) $cot^{-1}\left(\frac{2}{s+1}\right)$ (vii) $tan^{-1}\left(\frac{2}{s^2}\right)$

Solution:

(i)
$$L^{-1} \left[\cot^{-1} \left(\frac{s}{a} \right) \right] = \frac{-1}{t} L^{-1} \left[\frac{d}{ds} \left(\cot^{-1} \left(\frac{s}{a} \right) \right) \right]$$

$$= \frac{-1}{t} L^{-1} \left[\frac{-1}{1 + \frac{s^2}{a^2}} \left(\frac{1}{a} \right) \right] = \frac{1}{t} L^{-1} \left[\frac{-1}{\frac{a^2 + s^2}{a^2}} \left(\frac{1}{a} \right) \right]$$

$$= \frac{1}{t} L^{-1} \left[\frac{a}{s^2 + a^2} \right]$$

$$L^{-1}\left[\cot^{-1}\left(\frac{s}{a}\right)\right] = \frac{1}{t}sinat$$

(ii)
$$L^{-1} \left[tan^{-1} \left(\frac{a}{s} \right) \right] = \frac{-1}{t} L^{-1} \left[\frac{d}{ds} \left(tan^{-1} \left(\frac{a}{s} \right) \right) \right]$$

$$= \frac{-1}{t} L^{-1} \left[\frac{1}{1 + \left(\frac{a}{s} \right)^2} \left(\frac{-a}{s^2} \right) \right] = \frac{-1}{t} L^{-1} \left[\frac{1}{\frac{s^2 + a^2}{s^2}} \left(\frac{-a}{s^2} \right) \right]$$

$$= \frac{1}{t} L^{-1} \left[\frac{a}{s^2 + a^2} \right]$$

$$L^{-1}\left[tan^{-1}\left(\frac{a}{s}\right)\right] = \frac{1}{t}sinat$$

(iii)
$$L^{-1}[\cot^{-1}as] = \frac{-1}{t}L^{-1}\left[\frac{d}{ds}(\cot^{-1}(as))\right]$$

$$= \frac{-1}{t}L^{-1}\left[\frac{-1}{1+a^2s^2}(a)\right] = \frac{1}{t}L^{-1}\left[\frac{a}{a^2\left(s^2 + \frac{1}{a^2}\right)}\right]$$

$$= \frac{1}{at}L^{-1}\left[\frac{1}{s^2 + \frac{1}{a^2}}\right] = \frac{1}{at}\left[\frac{\sin\frac{1}{a}t}{\frac{1}{a}}\right]$$

$$L^{-1}[\cot^{-1}as] = \frac{1}{t}\sin\frac{t}{a}$$

(iv)
$$L^{-1}[tan^{-1}(s+a)] = e^{-at}L^{-1}[tan^{-1}s]$$

$$= e^{-at} \left[\frac{1}{t} L^{-1} \left[\frac{d}{ds} (tan^{-1}s) \right] \right]$$

$$= e^{-at} \left(\frac{-1}{t} \right) L^{-1} \left[\frac{1}{1+s^{2}} \right]$$

$$= \frac{1}{t} e^{-at} L^{-1} \left[\frac{1}{1+s^{2}} \right]$$

$$= \frac{1}{t} e^{-at} L^{-1} \left[\frac{1}{1+s^{2}} \right]$$

$$L^{-1} \left[cot^{-1} \left(\frac{s}{a} \right) \right] = \frac{-e^{-at}}{t} sint$$

$$(v) L^{-1} \left[log \left(\frac{s+a}{s+b} \right) \right] = \frac{1}{t} L^{-1} \left[\frac{d}{ds} (log \left(\frac{s+a}{s+b} \right) \right) \right]$$

$$= \frac{-1}{t} L^{-1} \left[\frac{d}{ds} (log (s+a) - log (s+b)) \right]$$

$$= \frac{-1}{t} L^{-1} \left[\frac{1}{s+a} - \frac{1}{s+b} \right]$$

$$= \frac{-1}{t} \left[e^{-at} - e^{-bt} \right]$$

$$L^{-1} \left[log \left(\frac{s+a}{s+b} \right) \right] = \frac{-1}{t} \left[e^{-at} - e^{-bt} \right]$$

$$(vi) L^{-1} \left[cot^{-1} \left(\frac{2}{s+1} \right) \right] = e^{-t} L^{-1} \left[cot^{-1} \left(\frac{2}{s} \right) \right]$$

$$= e^{-t} \left(\frac{-1}{t} \right) L^{-1} \left[\frac{1}{ds} \left(cot^{-1} \left(\frac{2}{s} \right) \right) \right]$$

$$= e^{-t} \left(\frac{-1}{t} \right) L^{-1} \left[\frac{1}{1+\frac{d}{s^{2}}} \left(\frac{-2}{s^{2}} \right) \right] = -\frac{e^{-t}}{t} L^{-1} \left[\frac{1}{\frac{2^{2}+4}} \left(\frac{2}{s^{2}} \right) \right]$$

$$= -\frac{e^{-t}}{t} L^{-1} \left[\frac{2}{s^{2}+4} \right]$$

$$L^{-1} \left[cot^{-1} \left(\frac{2}{s+1} \right) \right] = -\frac{e^{-t}}{t} sin2t$$

$$(vii) L^{-1} \left[tan^{-1} \left(\frac{2}{s^{2}} \right) \right] = \frac{-1}{t} L^{-1} \left[\frac{1}{ds} \left(tan^{-1} \left(\frac{2}{s^{2}} \right) \right) \right]$$

$$= \frac{4}{t} L^{-1} \left[\frac{s}{(s^{2}+4)} \left(\frac{s^{2}+4}{s^{2}} \right) \right] = \frac{4}{t} L^{-1} \left[\frac{s}{(s^{2}+4)^{2}+2^{2}-2s} \right]$$

$$= \frac{4}{t} L^{-1} \left[\frac{s}{(s^{2}+2)^{2}+2^{2}-2s} \right]$$

$$= \frac{4}{t} L^{-1} \left[\frac{s}{(s^{2}+2)^{2}+2^{2}-2s} \right]$$

$$= \frac{4}{t} L^{-1} \left[\frac{s}{(s^{2}+2)^{2}+2^{2}-2s} \right]$$

$$= \frac{1}{t} L^{-1} \left[\left(\frac{1}{(s+1)^{2}+1} - \frac{1}{(s+1)^{2}+1} \right) \right]$$

$$= \frac{-1}{t} L^{-1} \left[\frac{1}{(s+1)^{2}+1} - \frac{1}{(s+1)^{2}+1} \right]$$

$$= \frac{-1}{t} L^{-1} \left[\frac{1}{(s+1)^{2}+1} - \frac{1}{(s+1)^{2}+1} \right]$$

$$= \frac{-1}{t} \left(e^{-t} L^{-1} \left[\frac{1}{s^2 + 1} \right] - e^t L^{-1} \left[\frac{1}{s^2 + 1} \right] \right)$$

$$= \frac{-1}{t} \left(e^{-t} sint - e^t sint \right)$$

$$= \frac{sint}{t} \left(e^{-t} - e^t \right)$$

$$= \frac{sint}{t} 2 sinht$$

$$L^{-1}\left[tan^{-1}\left(\frac{2}{s^2}\right)\right] = \frac{2sintsinht}{t}$$

Inverse using the formula

$$L^{-1}[sF(s)] = \frac{d}{dt}L^{-1}[F(s)]$$

Example: 5.42 Find $L^{-1}\left[slog\left(\frac{s^2+a^2}{s^2+b^2}\right)\right]$

Solution:

$$\begin{split} L^{-1}\left[slog\left(\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right)\right] &= \frac{d}{dt}L^{-1}\left[slog\left(\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right)\right]\cdots(1) \\ L^{-1}\left[log\left(\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right)\right] &= L^{-1}\frac{d}{ds}\left[log\left(\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right)\right] \\ &= \frac{-1}{t}L^{-1}\left[\frac{d}{ds}\left(log(s^{2}+a^{2})-log(s^{2}+b^{2})\right)\right] \\ &= \frac{-1}{t}L^{-1}\left[\frac{1}{s^{2}+a^{2}}2s-\frac{1}{s^{2}+b^{2}}2s\right] \\ &= \frac{-2}{t}L^{-1}\left[\frac{s}{s^{2}+a^{2}}-\frac{s}{s^{2}+b^{2}}\right] \\ &= \frac{-2}{t}\left[cosat-cosbt\right] \\ &= \frac{2}{t}\left[cosbt-cosat\right] \end{split}$$

Substituting in (1), we get

$$\begin{split} L^{-1}\left[slog\left(\frac{s^2+a^2}{s^2+b^2}\right)\right] &= \frac{d}{dt}\left[\frac{2}{t}\left[cosbt-cosat\right]\right] \\ &= 2\left[\frac{t(-bsinbt+asinat)-(cosbt-cosat)}{t^2}\right] \\ L^{-1}\left[slog\left(\frac{s^2+a^2}{s^2+b^2}\right)\right] &= 2\left[\frac{t(-bsinbt+asinat)-(cosbt-cosat)}{t^2}\right] \end{split}$$

Inverse using the formula

$$L^{-1}\left[\frac{F(s)}{s}\right] = \int_0^t L^{-1}[F(s)]dt$$

This formula is used when $F(s) = \frac{one \ term}{s(another \ term)}$

Example: 5.43 Find $L^{-1}\left[\frac{1}{s(s^2+a^2)}\right]$

Solution:

$$L^{-1}\left[\frac{1}{s(s^2+a^2)}\right] = \int_0^t L^{-1}\left[\frac{1}{(s^2+a^2)}\right] dt$$
$$= \int_0^t \left[\frac{\sin at}{a}\right] dt$$

$$= \frac{1}{a} \left[\frac{-\cos at}{a} \right]_0^t$$

$$= \frac{-1}{a^2} [\cos at]_0^t$$

$$= \frac{-1}{a^2} (\cos at - \cos 0) = \frac{-1}{a^2} (\cos at - 1)$$

$$\therefore L^{-1} \left[\frac{1}{s(s^2 + a^2)} \right] = \frac{1 - \cos at}{a^2}$$

Example: 5.44 Find $L^{-1}\left[\frac{1}{s(s^2-a^2)}\right]$

Solution:

$$\begin{split} L^{-1}\left[\frac{1}{s(s^2+a^2)}\right] &= \int_0^t L^{-1}\left[\frac{1}{(s^2-a^2)}\right] dt \\ &= \int_0^t \left[\frac{\sinh at}{a}\right] dt \\ &= \frac{1}{a} \left[\frac{\cosh at}{a}\right]_0^t \\ &= \frac{1}{a^2} [\cosh at]_0^t \\ &= \frac{1}{a^2} (\cosh at - \cosh 0) = \frac{1}{a^2} (\cosh at - 1) \\ \therefore L^{-1}\left[\frac{1}{s(s^2-a^2)}\right] &= \frac{\cosh at-1}{a^2} \end{split}$$

Example: 5.45 Find $L^{-1}\left[\frac{1}{s(s+a)}\right]$

Solution:

$$L^{-1} \left[\frac{1}{s(s+a)} \right] = \int_0^t L^{-1} \left[\frac{1}{(s+a)} \right] dt$$
$$= \int_0^t e^{-at} dt$$
$$= \left[\frac{e^{-at}}{-a} \right]_0^t$$
$$= \frac{-1}{a} (e^{-at} - 1)$$
$$\therefore L^{-1} \left[\frac{1}{s(s+a)} \right] = \frac{1 - e^{-at}}{a}$$

Inverse using Partial Fraction

Example: 5.46 Find $L^{-1} \left[\frac{s-2}{s(s+2)(s-1)} \right]$

Solution:

$$\frac{s-2}{s(s+2)(s-1)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s-1}$$

$$= \frac{A(s+2)(s-1) + Bs(s-1) + Cs(s+2)}{s(s+2)(s-1)}$$

$$A(s+2)(s-1) + Bs(s-1) + Cs(s+2) = s-2 \cdots (1)$$
Put $s = 0$ in (1)

$$A(2)(-1) = -2$$
Put $s = -2$ in (1)

$$B(-2)(-3) = -4$$
Put $s = -1$

$$\Rightarrow A = 1$$

$$\Rightarrow B = \frac{-4}{6} = \frac{-2}{3}$$

$$\Rightarrow C = \frac{-1}{3}$$

Example: 5.47 Find $L^{-1}\left[\frac{2s-3}{(s-1)(s-2)^2}\right]$

Solution:

$$\frac{2s-3}{(s-1)(s-2)^2} = \frac{A}{s-1} + \frac{B}{s-2} + \frac{C}{(s-2)^2}$$

$$= \frac{A(s-2)^2 + B(s-1)(s-2) + C(s-1)}{(s-1)(s-2)^2}$$

$$A(s-2)^2 + B(s-1)(s-2) + C(s-1) = 2s - 3 \cdots (1)$$
Put $s = 1$ in (1)
$$A = -1$$
Put $s = 2$ in (1)
$$C = 1$$
Equating the coefficient of s^2

$$A + B = 0$$

$$B = -A \Rightarrow B = 1$$

$$\therefore \frac{2s-3}{(s-1)(s-2)^2} = \frac{-1}{s-1} + \frac{1}{s-2} + \frac{1}{(s-2)^2}$$

$$L^{-1} \left[\frac{2s-3}{(s-1)(s-2)^2} \right] = -L^{-1} \left[\frac{1}{s-1} \right] + L^{-1} \left[\frac{1}{s-2} \right] + \left[\frac{1}{(s-2)^2} \right]$$

$$= -e^t + e^{2t} + e^{2t} L^{-1} \left[\frac{1}{s^2} \right]$$

$$\therefore L^{-1} \left[\frac{2s-3}{(s-1)(s-2)^2} \right] = -e^t + e^{2t} + e^{2t} t$$

Example: 5.48 Find the inverse Laplace transform of $\frac{5s^2-15s-11}{(s+1)(s-2)^3}$

Solution:

Laplace Transform

$$\frac{8}{3} + \frac{4}{3} - 2C - 7 = -11$$

$$4 - 2C = 7 - 11$$

$$-2C = -8 \Rightarrow C = 4$$

$$\therefore \frac{5s^2 - 15s - 11}{(s+1)(s-2)^3} = \frac{-1}{3(s+1)} + \frac{1}{3(s-2)} + \frac{4}{(s-2)^2} - \frac{7}{(s-2)^3}$$

$$L^{-1} \left[\frac{5s^2 - 15s - 11}{(s+1)(s-2)^3} \right] = \frac{-1}{3} L^{-1} \left[\frac{1}{s+1} \right] + \frac{1}{3} L^{-1} \left[\frac{1}{s-2} \right] + 4L^{-1} \left[\frac{1}{(s-2)^2} \right] - 7L^{-1} \left[\frac{1}{(s-2)^3} \right]$$

$$= \frac{-1}{3} e^{-t} + \frac{1}{3} e^{2t} + 4e^{2t} L^{-1} \left[\frac{1}{s^2} \right] - 7e^{2t} L^{-1} \left[\frac{1}{s^3} \right]$$

$$L^{-1} \left[\frac{5s^2 - 15s - 11}{(s+1)(s-2)^3} \right] = \frac{-1}{3} e^{-t} + \frac{1}{3} e^{2t} + 4e^{2t} L^{-1} \left[\frac{1}{s^2} \right] - 7e^{2t} \frac{t^2}{2}$$

Example: 5.49 Find the inverse Laplace transform of $\frac{4s+5}{(s+1)(s^2+4)}$

Solution:

$$\frac{4s+5}{(s+1)(s^2+4)} = \frac{A}{s+1} + \frac{Bs+c}{s^2+4}$$
$$= \frac{A(s^2+4) + (Bs+c)(s+1)}{(s+1)(s^2+4)}$$

$$A(s^2 + 4) + (Bs + c)(s + 1) = 4s + 5 \cdots (1)$$

Put
$$s = -1$$
 in (1) Equating coefficients of s^2 term in (1) Put $s = 0$ in (1)
$$A(1+4) + 0 = 4(-1) + 5$$
$$A + B = 0$$
$$A(5) = 1 \Rightarrow A = \frac{1}{5}$$
$$B = -A \Rightarrow B = \frac{-1}{5}$$
$$C = 5 - 4A = 5 - \frac{4}{5}$$
$$= \frac{25-4}{5} = \frac{21}{5}$$

$$\therefore \frac{4s+5}{(s+1)(s^2+4)} = \frac{\frac{1}{5}}{s+1} + \frac{\frac{-1}{5}s + \frac{21}{5}}{s^2+4}
= \frac{1}{5(s+1)} - \frac{s}{5(s^2+4)} + \frac{21}{5} \frac{1}{(s^2+4)}
L^{-1} \left[\frac{4s+5}{(s+1)(s^2+4)} \right] = \frac{1}{5}L^{-1} \left[\frac{1}{s+1} \right] - \frac{1}{5}L^{-1} \left[\frac{s}{s^2+4} \right] + \frac{21}{5}L^{-1} \left[\frac{1}{s^2+4} \right]
= \frac{1}{5}e^{-t} - \frac{1}{5}cos2t + \frac{21}{5}\frac{sin2t}{2}
L^{-1} \left[\frac{4s+5}{(s+1)(s^2+4)} \right] = \frac{1}{5}e^{-t} - \frac{1}{5}cos2t + \frac{21}{10}sin2t$$

Exercise: 5.8

Find the Inverse Laplace transforms using partial fraction for the following

1.
$$\frac{1}{(s+1)(s+3)}$$
 Ans: $\frac{1}{2}(e^{-t} - e^{-3t})$
2. $\frac{1}{s(s+1)(s+2)}$ Ans: $\frac{1}{2}(e^{-2t} - 2e^{-t} + 1)$
3. $\frac{54-3s-5}{(s+1)(s^2-3s+2)}$ Ans: $2e^{-t} + 2e^{\frac{3t}{2}}cosh\frac{t}{2}2 + 8e^{\frac{3t}{2}}sinh\frac{t}{2}$

5. 7 INITIAL AND FINAL VALUE THEOREMS

Initial value theorem

Statement: If L[f(t)] = F(s), then $\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$

Proof:

We know that
$$L[f'(t)] = s L[f(t)] - f(0)$$

= $sF(s) - f(0)$

$$\therefore sF(s) = L[f'(t)] + f(0)$$
$$= \int_0^\infty e^{-st} f'(t) dt + f(0)$$

Taking limit as $s \to \infty$ on both sides, we have

$$\lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \left[\int_0^\infty e^{-st} f'(t) dt + f(0) \right]$$

$$= \lim_{s \to \infty} \left[\int_0^\infty e^{-st} f'(t) dt \right] + f(0)$$

$$= \int_0^\infty \lim_{s \to \infty} \left[e^{-st} f'(t) \right] dt + f(0)$$

$$= 0 + f(0) \qquad \because e^{-\infty} = 0$$

$$= f(0)$$

$$= \lim_{t \to 0} f(t)$$

$\lim_{s \to \infty} sF(s) = \lim_{t \to 0} f(t)$ **Final value theorem**

Statement: If the Laplace transforms of f(t) and f'(t) exist and L[f(t)] = F(s), then $\lim_{t \to \infty} f(t) = \lim_{s \to 0} F(s)$

Proof:

We know that
$$L[f'(t)] = s L[f(t)] - f(0)$$

$$= sF(s) - f(0)$$

$$\therefore sF(s) = L[f'(t)] + f(0)$$

$$\therefore sF(s) = L[f'(t)] + f(0)$$
$$= \int_0^\infty e^{-st} f'(t) dt + f(0)$$

Taking limit as $s \to 0$ on both sides, we have

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left[\int_0^\infty e^{-st} f'(t) dt + f(0) \right]$$

$$= \lim_{s \to 0} \left[\int_0^\infty e^{-st} f'(t) dt \right] + f(0)$$

$$= \int_0^\infty \lim_{s \to 0} \left[e^{-st} f'(t) \right] dt + f(0)$$

$$= \int_0^\infty f'(t) dt + f(0)$$

$$= \left[f(t) \right]_0^\infty + f(0)$$

$$= f(\infty) - f(0) + f(0)$$

$$= f(\infty)$$

$$= \lim_{t \to \infty} f(t)$$

$$\therefore \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

Example: 5.50 Verify the initial value theorem for the function $f(t) = ae^{-bt}$

Solution:

Given
$$f(t) = ae^{-bt}$$

 $F(s) = L[f(t)]$
 $= L[ae^{-bt}]$
 $= a \frac{1}{s+b}$
 $sF(s) = \frac{as}{s+b}$

Initial value theorem is $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} ae^{-bt}$$

$$= a \cdots \cdots (1)$$

$$\lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \left[\frac{as}{s+b} \right]$$

$$= \lim_{s \to \infty} \left[\frac{as}{s\left(1 + \frac{b}{s}\right)} \right] = \lim_{s \to \infty} \left[\frac{a}{\left(1 + \frac{b}{s}\right)} \right]$$

$$= a \cdots \cdots (2)$$

From (1) and (2), $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

∴ Initial value theorem is verified

Example: 5.51Verify the initial value theorem and Final value theorem for the function

$$f(t) = 1 + e^{-t}[sint + cost].$$

Solution:

Given
$$f(t) = 1 + e^{-t}[sint + cost]$$

$$F(s) = L[f(t)]$$

$$= L[1 + e^{-t}[sint + cost]]$$

$$= L[1] + L[e^{-t}[sint + cost]]$$

$$= L[1] + L[sint + cost]_{s \to s+1}$$

$$= \frac{1}{s} + \left[\frac{1}{s^2+1} + \frac{s}{s^2+1}\right]_{s \to s+1}$$

$$= \frac{1}{s} + \frac{1}{(s+1)^2+1} + \frac{s+1}{(s+1)^2+1}$$

$$F(s) = \frac{1}{s} + \frac{1}{s^2+2s+2} + \frac{s+1}{s^2+2s+2}$$

$$sF(s) = 1 + \frac{s}{s^2+2s+2} + \frac{s^2+s}{s^2+2s+2}$$

Initial value theorem is $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} \left[1 + e^{-t} [sint + cost] \right]$$
$$= 1 + 0 + 1 = 2 \cdot \dots \cdot (1)$$

$$\lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \left[1 + \frac{s}{s^2 + 2s + 2} + \frac{s^2 + s}{s^2 + 2s + 2} \right]$$

Laplace Transform

$$= 1 + \lim_{s \to \infty} \left[\frac{1}{s\left(1 + \frac{2}{s} + \frac{2}{s^2}\right)} + \frac{\left(1 + \frac{1}{s}\right)}{\left(1 + \frac{2}{s} + \frac{2}{s^2}\right)} \right]$$
$$= 1 + 0 + 1 = 2 \cdots (2)$$

From (1) and (2),
$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

: Initial value theorem is verified

Final value theorem is $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} (1 + e^{-t} [sint + cost])$$
$$= 1 + 0 = 1 \cdots (3)$$

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left[1 + \frac{s}{s^2 + 2s + 2} + \frac{s^2 + s}{s^2 + 2s + 2} \right]$$
$$= 1 + 0 + 0 = 1 \cdot \dots \cdot \dots \cdot (4)$$

From (3) and (4),
$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

: Final value theorem is verified.

Example: 5.52 Verify the initial value theorem and Final value theorem for the function

$$f(t) = L^{-1} \left[\frac{1}{s(s+2)^2} \right]$$

Solution:

Given
$$f(t) = L^{-1} \left[\frac{1}{s(s+2)^2} \right] \cdots (1)$$

$$= \int_0^t L^{-1} \left[\frac{1}{(s+2)^2} \right] dt = \int_0^t e^{-2t} L^{-1} \left[\frac{1}{s^2} \right] dt$$

$$= \int_0^t e^{-2t} t dt$$

$$= \int_0^t t e^{-2t} dt$$

$$= \left[t \left(\frac{e^{-2t}}{-2} \right) - \frac{(1)e^{-2t}}{(-2)^2} \right]_0^t$$

$$= -t \frac{e^{-2t}}{2} - \frac{e^{-2t}}{4} - 0 + \frac{1}{4}$$

$$\therefore f(t) = \frac{1}{4} - \frac{te^{-2t}}{2} - \frac{e^{-2t}}{4}$$
From (1), $F(s) = \frac{1}{s(s+2)^2}$

$$sF(s) = \frac{1}{(s+2)^2}$$

Initial value theorem is $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} \left[\frac{1}{4} - \frac{te^{-2t}}{2} - \frac{e^{-2t}}{4} \right]$$

$$= \frac{1}{4} - 0 - \frac{1}{4} = 0$$

$$\therefore \lim_{t \to 0} f(t) = 0 \cdots (2)$$

$$\lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \frac{1}{(s+2)^2} = 0$$

$$\lim_{s\to\infty} sF(s) = 0\cdots(3)$$

From (2) and (3),
$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

: Initial value theorem is verified

Final value theorem is $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} \left[\frac{1}{4} - \frac{te^{-2t}}{2} - \frac{e^{-2t}}{4} \right]$$
$$= \frac{1}{4} - 0 - 0 = \frac{1}{4} \cdots (4)$$

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left[\frac{1}{(s+2)^2} \right]$$
$$= \frac{1}{4} \cdots (5)$$

From (4) and (5),
$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

: Final value theorem is verified

Example: 5.53 Verify the initial value theorem and Final value theorem for the function

$$f(t) = e^{-t}(t+2)^2$$

Solution:

Given
$$f(t) = e^{-t}(t+2)^2$$

= $e^{-t}(t^2 + 4t + 4)$

$$F(s) = L[f(t)]$$

$$= L[e^{-t}(t^2 + 4t + 4)]$$

$$= L[t^2 + 4t + 4]_{s \to s+1}$$

$$= [L(t^2) + 4L(t) + 4L(1)]_{s \to s+1}$$

$$= \left[\frac{2!}{s^3} + 4\frac{1}{s^2} + 4\frac{1}{s}\right]_{s \to s+1}$$

$$= \frac{2}{(s+1)^3} + 4\frac{1}{(s+1)^2} + 4\frac{1}{s+1}$$

$$sF(s) = \frac{2s}{(s+1)^3} + \frac{4s}{(s+1)^2} + \frac{4s}{s+1}$$

Initial value theorem is $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

$$\lim_{t \to 0} f(t) = \lim_{t \to 0} [e^{-t}(t^2 + 4t + 4)]$$
$$= 4 \cdots (1)$$

$$\lim_{s \to \infty} sF(s) = \lim_{s \to \infty} \left[\frac{2s}{(s+1)^3} + \frac{4s}{(s+1)^2} + \frac{4s}{s+1} \right]$$

$$= \lim_{s \to \infty} \left[\frac{2s}{s^3 \left(1 + \frac{1}{s}\right)^3} + \frac{4s}{s^2 \left(1 + \frac{1}{s}\right)^2} + \frac{4s}{s \left(1 + \frac{1}{s}\right)} \right]$$

$$= \lim_{s \to \infty} \left[\frac{2}{s^2 \left(1 + \frac{1}{s}\right)^3} + \frac{4}{s \left(1 + \frac{1}{s}\right)^2} + \frac{4}{\left(1 + \frac{1}{s}\right)} \right]$$

$$= 0 + 0 + 4$$

$$=4\cdots(2)$$

From (1) and (2), $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

: Initial value theorem is verified

Final value theorem is $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} [e^{-t}(t^2 + 4t + 4)]$$

= 0 \cdots (3)

$$\lim_{s \to 0} sF(s) = \lim_{s \to 0} \left[\frac{2s}{(s+1)^3} + \frac{4s}{(s+1)^2} + \frac{4s}{s+1} \right]$$
$$= 0 \cdots (4)$$

From (3) and (4), $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

: Final value theorem is verified.

Example: 5.54 If $L[f(t)] = \frac{1}{s(s+1)}$, find the $\lim_{t\to 0} f(t)$ and $\lim_{t\to \infty} f(t)$ using initial and final value theorems.

Solution:

Given
$$L[f(t)] = \frac{1}{s(s+1)} \cdots (1)$$

ie.,
$$F(s) = \frac{1}{s(s+1)} = > sF(s) = \frac{1}{(s+1)}$$

Initial value theorem is $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$

$$=\lim_{s\to\infty}\frac{1}{(s+1)}=0$$

Final value theorem is $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$

$$= \lim_{s \to 0} \frac{1}{(s+1)} = 1$$

Exercise: 5.9

- 1. Verify the initial value theorem for the function $f(t) = e^{-t} sint$
- 2. Verify the initial value theorem for the function $f(t) = \sin^2 t$
- 3. Verify the initial value theorem for the function $f(t) = 1 + e^{-t} + t^2$
- 4. Verify the Final value theorem for the function $f(t) = 1 e^{-at}$
- 5. Verify the Final value theorem for the function $f(t) = t^2 e^{-3t}$

5.8 CONVOLUTION THEOREM

Definition: Convolution of two functions

The convolution of two functions f(t) and g(t) is denoted by f(t) * g(t) and defined by

$$f(t) * g(t) = \int_0^t f(u)g(t-u)du.$$

State and prove Convolution theorem

Statement: If L[f(t)] = F(s) and L[g(t)] = G(s), then L[f(t)] * L[g(t)] = F(s)G(s)

Proof:

We have
$$f(t) * g(t) = \int_0^t f(u)g(t-u)du$$

$$L[f(t) * g(t)] = \int_0^\infty [f(t) * g(t)] e^{-st} dt$$

$$= \int_0^\infty \int_0^t f(u)g(t-u)due^{-st} dt$$

$$= \int_0^\infty \int_0^t f(u)g(t-u)e^{-st} du dt \cdots (1)$$

Now we have no change the order of integration.

$$u = 0, u = t; t = 0, t = \infty$$

Change of order is . Draw horizontal strip PQ

At P,
$$t = u$$
, At A $u = \infty$

$$L[f(t) * g(t)] = \int_0^\infty \int_u^\infty f(u)g(t-u)e^{-st}dtdu$$
$$= \int_0^\infty f(u) \left[\int_u^\infty g(t-u)e^{-st}dt \right] du \cdots (2)$$

Put
$$t - u = x \cdots (3)$$

$$t = u + x \Rightarrow dt = dx$$

When
$$t = u$$
; (3) $\Rightarrow x = 0$

When
$$t = \infty$$
; (3) $\Rightarrow x = \infty$

$$(2) \Rightarrow L[f(t) * g(t)] = \int_0^\infty f(u) \left[\int_0^\infty g(x) e^{-s(u+x)} dx \right] du$$
$$= \int_0^\infty f(u) \left[\int_0^\infty g(x) e^{-su} e^{-sx} dx \right] du$$
$$= \int_0^\infty f(u) e^{-su} du \int_0^\infty g(x) e^{-sx} dx$$
$$= L[f(u)] L[g(x)]$$

$$\therefore L[f(t) * g(t)] = F(s)G(s)$$

Note: Convolution theorem is very useful to compute inverse Laplace transform of product of two terms

Convolution theorem is L[f(t) * g(t)] = F(s)G(s)

$$L^{-1}[F(s)G(s)] = f(t) * g(t)$$

$$L^{-1}[F(s)G(s)] = L^{-1}[F(s)] * L^{-1}[G(s)]$$

Problems under Convolution theorem

Example: 5.55 Find $L^{-1}\left[\frac{1}{(s+a)(s+b)}\right]$ using convolution theorem.

Solution:

$$L^{-1} \left[\frac{1}{(s+a)(s+b)} \right] = L^{-1} \left[\frac{1}{(s+a)} \right] * L^{-1} \left[\frac{1}{(s+b)} \right]$$

$$= e^{-at} * e^{-bt}$$

$$= \int_0^t e^{-au} e^{-b(t-u)} du$$

$$= e^{-bt} \int_0^t e^{-au} e^{bu} du$$

$$= e^{-bt} \int_0^t e^{(b-a)u} du$$

$$= e^{-bt} \left[\frac{e^{(b-a)u}}{b-a} \right]_0^t$$

$$= \frac{e^{-bt}}{b-a} \left[e^{(b-a)t} - 1 \right]$$

$$= \frac{e^{-bt}}{b-a} \left[e^{bt-at} - 1 \right]$$

$$= \frac{1}{b-a} \left[e^{-bt+bt-at} - e^{-bt} \right]$$

$$\therefore L^{-1} \left[\frac{1}{(s+a)(s+b)} \right] = \frac{1}{b-a} \left[e^{-at} - e^{-bt} \right]$$

Example: 5.56 Find the inverse Laplace transform $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$ by using convolution theorem.

Solution:

$$L^{-1} \left[\frac{s^2}{(s^2 + a^2)(s^2 + b^2)} \right] = L^{-1} \left[\frac{s}{(s^2 + a^2)} \frac{s}{(s^2 + b^2)} \right]$$

$$= L^{-1} \left[\frac{s}{(s^2 + a^2)} \right] * L^{-1} \left[\frac{s}{(s^2 + b^2)} \right]$$

$$= cosat * cosbt$$

$$= \int_0^t cos(au + bt - bu) + cos(au - bt + bu) du$$

$$= \frac{1}{2} \int_0^t (cos(au + bt - bu) + cos(au - bt + bu)) du$$

$$= \frac{1}{2} \int_0^t [cos(a - b) u + bt + cos(a + b) u - bt] du$$

$$= \frac{1}{2} \left[\frac{sin[(a - b)u + bt]}{a - b} + \frac{sin[(a + b)u + bt]}{a + b} \right]_0^t$$

$$= \frac{1}{2} \left[\frac{sin(at - bt + bt)}{a - b} + \frac{sin(at - bt + bt)}{a + b} - \frac{sinbt}{a - b} + \frac{sinbt}{a + b} \right]$$

$$= \frac{1}{2} \left[\frac{(a + b)sinat + (a - b)sinat - (a + b)sinbt + (a - b)sinbt}{a^2 - b^2} \right]$$

$$= \frac{1}{2} \left[\frac{2asinat - 2bsinbt}{a^2 - b^2} \right]$$

$$= \frac{1}{2} \left[\frac{2(asinat - bsinbt)}{a^2 - b^2} \right]$$

$$= \frac{1}{2} \left[\frac{2(asinat - bsinbt)}{a^2 - b^2} \right]$$

$$= \frac{1}{2} \left[\frac{2(asinat - bsinbt)}{a^2 - b^2} \right]$$

$$= \frac{1}{2} \left[\frac{2(asinat - bsinbt)}{a^2 - b^2} \right]$$

Example: 5.57 Find the inverse Laplace transform $\frac{1}{(s^2+a^2)(s^2+b^2)}$ by using convolution theorem.

Solution:

$$\begin{split} L^{-1} \left[\frac{1}{(s^2 + a^2)(s^2 + b^2)} \right] &= L^{-1} \left[\frac{1}{(s^2 + a^2)} \frac{1}{(s^2 + b^2)} \right] \\ &= L^{-1} \left[\frac{1}{(s^2 + a^2)} \right] * L^{-1} \left[\frac{1}{(s^2 + b^2)} \right] \\ &= \frac{1}{a} sinat * \frac{1}{b} sinbt \end{split}$$

$$= \frac{1}{ab} \int_0^t sinau \, sinb(t-u) du$$

$$= \frac{1}{ab} \int_0^t \frac{cos(au-bt+bu)-cos(au+bt-bu)}{2} du$$

$$= \frac{1}{2ab} \int_0^t (cos(au-bt+bu)-cos(au+bt-bu)) du$$

$$= \frac{1}{2} \int_0^t [cos[(a+b)u-bt] - cos[(a-b)u+bt]] du$$

$$= \frac{1}{2ab} \left[\frac{sin[(a+b)u-bt]}{a+b} - \frac{sin[(a-b)u+bt]}{a-b} \right]_0^t$$

$$= \frac{1}{2ab} \left[\frac{sin(at+bt-bt)}{a+b} - \frac{sin(at-bt+bt)}{a-b} + \frac{sinbt}{a+b} + \frac{sinbt}{a-b} \right]$$

$$= \frac{1}{2ab} \left[\frac{sin \, at}{a+b} - \frac{sin \, at}{a-b} - \frac{sinbt}{a+b} + \frac{sinbt}{a-b} \right]$$

$$= \frac{1}{2ab} \left[\frac{(a-b)sinat-(a+b)sinat+(a-b)sinbt+(a+b)sinbt}{a^2-b^2} \right]$$

$$= \frac{1}{2ab} \left[\frac{-2bsinat+2asinbt}{a^2-b^2} \right]$$

$$= \frac{1}{2ab} \left[\frac{2(asinbt-bsinat)}{a^2-b^2} \right]$$

$$\therefore L^{-1} \left[\frac{1}{(s^2+a^2)(s^2+b^2)} \right] = \frac{asinbt-bsinat}{ab(a^2-b^2)}$$

Example: 5.58 Find the inverse Laplace transform $\frac{s}{(s^2+4)(s^2+9)}$ by using convolution theorem.

Solution:

$$L^{-1}\left[\frac{s}{(s^{2}+4)(s^{2}+9)}\right] = L^{-1}\left[\frac{1}{(s^{2}+4)}\frac{s}{(s^{2}+9)}\right]$$

$$= L^{-1}\left[\frac{1}{(s^{2}+4)}\right]*L^{-1}\left[\frac{s}{(s^{2}+9)}\right]$$

$$= \frac{1}{2}sin2t*cos3t$$

$$= \frac{1}{2}\int_{0}^{t}sin2u cos3(t-u)du$$

$$= \frac{1}{2}\int_{0}^{t}\frac{\sin(2u+3t-3u)+\sin(2u-3t+3u)}{2}du$$

$$= \frac{1}{4}\int_{0}^{t}\left[\sin(3t-u)+\sin(5u-3t)\right]du$$

$$= \frac{1}{4}\left[\frac{-\cos(3t-u)}{-1}-\frac{\cos(5u-3t)}{5}\right]_{0}^{t}$$

$$= \frac{1}{4}\left[\frac{\cos(3t-t)}{1}-\frac{\cos(5t-3t)}{5}-\frac{\cos3t}{1}+\frac{\cos3t}{5}\right]$$

$$= \frac{1}{4}\left[\cos2t-\frac{\cos2t}{5}-\cos3t+\frac{\cos3t}{5}\right]$$

$$= \frac{1}{4}\left[\frac{5\cos2t-\cos2t-5\cos3t+\cos3t}{5}\right]$$

$$= \frac{1}{20}\left[4\cos2t-4\cos3t\right]$$

$$\therefore L^{-1}\left[\frac{s}{(s^{2}+4)(s^{2}+9)}\right] = \frac{\cos2t-\cos3t}{5}$$

Example: 5.59 Find $L^{-1}\left[\frac{s}{\left(s^2+a^2\right)^2}\right]$ by using convolution theorem.

Solution:

$$L^{-1} \left[\frac{s}{(s^2 + a^2)^2} \right] = L^{-1} \left[\frac{1}{(s^2 + a^2)} \frac{s}{(s^2 + a^2)} \right]$$

$$= L^{-1} \left[\frac{1}{(s^2 + a^2)} \right] * L^{-1} \left[\frac{s}{(s^2 + a^2)} \right]$$

$$= \frac{1}{a} sinat * cosat$$

$$= \frac{1}{a} \int_0^t sinau cosa(t - u) du$$

$$= \frac{1}{a} \int_0^t \frac{sin(au + at - au) + sin(au - at + au)}{2} du$$

$$= \frac{1}{2a} \int_0^t [sinat + sin(2au - at)] du$$

$$= \frac{1}{2a} \left[\int_0^t sinat du + \int_0^t sin(2au - at) du \right]$$

$$= \frac{1}{2a} \left[sinat \int_0^t du + \int_0^t sin(2au - at) du \right]$$

$$= \frac{1}{2a} \left[sinat(u) \int_0^t - \left(\frac{cos(2au - at)}{2a} \right) \int_0^t \right]$$

$$= \frac{1}{2a} \left[tsinat - \frac{cos(2at - at)}{2a} + \frac{cosat}{2a} \right]$$

$$= \frac{1}{2a} tsinat$$

$$\therefore L^{-1} \left[\frac{s}{(s^2 + a^2)^2} \right] = \frac{tsinat}{2a}$$

Example: 5.60 Find $L^{-1}\left[\frac{1}{(s^2+a^2)^2}\right]$ by using convolution theorem.

Solution:

$$\begin{split} L^{-1} \left[\frac{1}{(s^2 + a^2)^2} \right] &= L^{-1} \left[\frac{1}{(s^2 + a^2)} \frac{1}{(s^2 + a^2)} \right] \\ &= L^{-1} \left[\frac{1}{(s^2 + a^2)} \right] * L^{-1} \left[\frac{1}{(s^2 + a^2)} \right] \\ &= \frac{1}{a} sinat * \frac{1}{a} sinat \\ &= \frac{1}{a^2} \int_0^t sinau sina(t - u) du \\ &= \frac{1}{a^2} \int_0^t \frac{\cos(au - at + au) - \cos(au + at - au)}{2} du \\ &= \frac{1}{a^2} \int_0^t [\cos(2au - at) - \cos at] du \\ &= \frac{1}{2a^2} \left[\int_0^t \cos(2au - at) du - \int_0^t \cos at du \right] \\ &= \frac{1}{2a^2} \left[\int_0^t \cos(2au - at) du - \cos at \int_0^t du \right] \\ &= \frac{1}{2a^2} \left[\left(\frac{\sin(2au - at)}{2a} \right)_0^t - \cos at(u)_0^t \right] \\ &= \frac{1}{2a^2} \left[\frac{\sin(2at - at)}{2a} - \frac{\sin(-at)}{2a} - t\cos at \right] \end{split}$$

$$\begin{split} &=\frac{1}{2a^2}\Big[\frac{\sin at}{2a}+\frac{\sin at}{2a}-t\cos at\Big]\\ &=\frac{1}{2a^2}\Big[\frac{2\sin at}{2a}-t\cos at\Big]\\ &\therefore L^{-1}\left[\frac{1}{(s^2+a^2)^2}\right]=\frac{1}{2a^2}\Big[\frac{\sin at}{a}-t\cos at\Big] \end{split}$$

Example: 5.61 Find $L^{-1}\left[\frac{s^2}{\left(s^2+a^2\right)^2}\right]$ by using convolution theorem.

Solution:

$$L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right] = L^{-1}\left[\frac{s}{(s^2+a^2)}\frac{s}{(s^2+a^2)}\right]$$

$$= L^{-1}\left[\frac{s}{(s^2+a^2)}\right] * L^{-1}\left[\frac{s}{(s^2+a^2)}\right]$$

$$= cosat * cosat$$

$$= \int_0^t cosau cosa(t-u)du$$

$$= \int_0^t \frac{cos(au+at-au)+cos(au-at+au)}{2}du$$

$$= \frac{1}{2}\int_0^t [cosat + cos(2au-at)]du$$

$$= \frac{1}{2}\left[\int_0^t cosatdu + \int_0^t cos(2au-at)du\right]$$

$$= \frac{1}{2}\left[cosat\int_0^t du + \int_0^t cos(2au-at)du\right]$$

$$= \frac{1}{2}\left[cosat(u)_0^t + \left(\frac{\sin(2au-at)}{2a}\right)_0^t\right]$$

$$= \frac{1}{2}\left[tcosat + \frac{\sin(2at-at)}{2a} + \frac{\sin at}{2a}\right]$$

$$= \frac{1}{2}\left[tcosat + \frac{2\sin at}{2a}\right]$$

$$= \frac{1}{2}\left[tcosat + \frac{2\sin at}{2a}\right]$$

$$\therefore L^{-1}\left[\frac{s^2}{(s^2+a^2)^2}\right] = \frac{1}{2}\left[tcosat + \frac{\sin at}{2a}\right]$$

Example: 5.62 Find $L^{-1}\left[\frac{s^2}{\left(s^2+4\right)^2}\right]$ by using convolution theorem.

Solution:

$$L^{-1} \left[\frac{s^2}{(s^2 + 2^2)^2} \right] = L^{-1} \left[\frac{s}{(s^2 + 2^2)} \frac{s}{(s^2 + 2^2)} \right]$$

$$= L^{-1} \left[\frac{s}{(s^2 + 2^2)} \right] * L^{-1} \left[\frac{s}{(s^2 + 2^2)} \right]$$

$$= \cos 2t * \cos 2t$$

$$= \int_0^t \cos 2u \cos 2(t - u) du$$

$$= \int_0^t \frac{\cos(2u + 2t - 2u) + \cos(2u - 2t + 2u)}{2} du$$

$$= \frac{1}{2} \int_0^t [\cos 2t + \cos(4u - 2t)] du$$

$$= \frac{1}{2} \left[\int_0^t \cos 2t du + \int_0^t \cos(4u - 2t) du \right]$$

$$\begin{split} &= \frac{1}{2} \Big[cos2t \int_0^t du + \int_0^t cos(4u - 2t) \, du \Big] \\ &= \frac{1}{2} \Big[cos2t(u)_0^t + \Big(\frac{\sin(4u - 2t)}{4} \Big)_0^t \Big] \\ &= \frac{1}{2} \Big[tcos2t + \frac{\sin(4t - 2t)}{4} - \frac{\sin(-2t)}{4} \Big] \\ &= \frac{1}{2} \Big[tcos2t + \frac{\sin 2t}{4} + \frac{\sin 2t}{4} \Big] \\ &= \frac{1}{2} \Big[tcos2t + \frac{2\sin 2t}{4} \Big] \\ & \therefore L^{-1} \Big[\frac{s^2}{(s^2 + a^2)^2} \Big] = \frac{1}{2} \Big[tcos2t + \frac{\sin 2t}{2} \Big] \end{split}$$

Example: 5.63 Find $L^{-1}\left[\frac{1}{s(s^2+4)}\right]$ by using convolution theorem.

Solution:

$$\begin{split} L^{-1} \left[\frac{1}{s(s^2 + 4)} \right] &= L^{-1} \left[\frac{1}{s} \frac{1}{s^2 + 4} \right] \\ &= L^{-1} \left[\frac{1}{s} \right] * L^{-1} \left[\frac{1}{s^2 + 4} \right] \\ &= 1 * \frac{\sin 2t}{2} \\ &= \frac{\sin 2t}{2} * 1 \\ &= \int_0^t \frac{\sin 2u \ (1)}{2} du \\ &= \left[\frac{-\cos 2u}{4} \right]_0^t = \frac{1}{4} (-\cos 2t + 1) \\ &= \frac{1}{4} (1 - \cos 2t) \end{split}$$

Example: 5.64 Find the inverse Laplace transform $\frac{s+2}{(s^2+4s+13)^2}$ by using convolution theorem.

Solution:

$$L^{-1} \left[\frac{s+2}{(s^2+4s+13)^2} \right] = L^{-1} \left[\frac{s+2}{s^2+4s+13} \frac{1}{s^2+4s+13} \right]$$

$$= L^{-1} \left[\frac{s+2}{s^2+4s+13} \right] * L^{-1} \left[\frac{1}{s^2+4s+13} \right]$$

$$= L^{-1} \left[\frac{s+2}{(s+2)^2+9} \right] * L^{-1} \left[\frac{1}{(s+2)^2+9} \right]$$

$$= e^{-2t} L^{-1} \left[\frac{s}{s^2+9} \right] * e^{-2t} L^{-1} \left[\frac{1}{s^2+9} \right]$$

$$= e^{-2t} cos3t * \frac{e^{-2t} sin3t}{3}$$

$$= \int_0^t e^{-2u} cos3u e^{-2(t-u)} \frac{sin3(t-u)}{3} du$$

$$= \int_0^t e^{-2u} cos3u e^{-2t+2u} \frac{sin(3t-3u)}{3} du$$

$$= \frac{1}{3} \int_0^t e^{-2u-2t+2u} cos3u \sin(3t-3u) du$$

$$= \frac{e^{-2t}}{3} \int_0^t \frac{\sin(3u+3t-3u)-\sin(3u-3t+3u)}{2} du$$

$$= \frac{e^{-2t}}{6} \int_0^t [\sin 3t - \sin(6u - 3t)] du$$

$$= \frac{e^{-2t}}{6} \left[\int_0^t \sin 3t du - \int_0^t \sin(6u - 3t) du \right]$$

$$= \frac{e^{-2t}}{6} \left[\sin 3t \int_0^t du - \int_0^t \sin(6u - 3t) du \right]$$

$$= \frac{e^{-2t}}{6} \left[\sin 3t (u) \int_0^t + \left(\frac{\cos(6u - 3t)}{6} \right) \int_0^t \right]$$

$$= \frac{e^{-2t}}{6} \left[t \sin 3t + \frac{\cos(6t - 3t)}{6} - \frac{\cos(-3t)}{6} \right]$$

$$= \frac{e^{-2t}}{6} \left[t \sin 3t + \frac{\cos 3t}{6} - \frac{\cos 3t}{6} \right]$$

$$= \frac{e^{-2t}}{6} t \sin 3t$$

$$\therefore L^{-1} \left[\frac{s + 2}{(s^2 + 4s + 13)^2} \right] = \frac{e^{-2t}}{6} t \sin 3t$$

Example: 5.65 Find the inverse Laplace transform $\frac{1}{(s+1)(s^2+4)}$ by using convolution theorem.

Solution:

$$\begin{split} L^{-1}\left[\frac{1}{(s^2+4)(s+1)}\right] &= L^{-1}\left[\frac{1}{s+1}\,\frac{1}{s^2+4}\right] \\ &= L^{-1}\left[\frac{1}{s+1}\right]*L^{-1}\left[\frac{1}{s^2+4}\right] \\ &= e^{-t}*\cos 2t \\ &= \int_0^t e^{-(t-u)}\cos 2u\,du \\ &= e^{-t}\int_0^t e^{u}\cos 2u\,du \\ &= e^{-t}\left[\frac{e^u}{1^2+2^2}(\cos 2u+2\sin 2u)\right]_0^t \\ &= \frac{e^{-t}}{5}\left[e^t(\cos 2t+2\sin 2t)-e^0(\cos 0-0)\right] \\ &= \frac{e^{-t}}{5}\left[e^t(\cos 2t+2\sin 2t)-1\right] \\ \therefore L^{-1}\left[\frac{1}{(s^2+4)(s+1)}\right] &= \frac{e^{-t}}{5}\left[e^t(\cos 2t+2\sin 2t)-1\right] \end{split}$$

Exercise: 5.10

Find the inverse Laplace transforms using convolution theorem for the following

$1.\frac{1}{s(s^2+1)}$	Ans: $1 - cost$
2. $\frac{s}{(s^2+4)^2}$	Ans: $\frac{1}{8} \left[\frac{\sin 2t}{2} - t \cos 2t \right]$
$3. \frac{s^2}{(s^2+4)^2}$	Ans: $\frac{1}{2}\left[t\cos 2t + \frac{\sin 2t}{2}\right]$
4. $\frac{1}{(s+1)(s^2+1)}$	Ans: $\frac{1}{2}[e^{-t} + sint - cost]$
$5. \frac{1}{(s+1)(s^2+4)}$	Ans: $-\frac{1}{5}e^{-t} + \frac{1}{5}\cos 2t - \frac{1}{10}\sin 2t$

5.9 SOLUTION OF DIFFERENTIAL EQUATION BY LAPLACE TRANSFORM TECHNIQUE

There are so many methods to solve a linear differential equation. If the initial conditions are known, then Laplace transform technique is easier to solve the differential equation. The Laplace transform transforms the differential equation into an algebraic equation.

$$L[y'(t)] = sL[y(t)] - y(0)$$

$$L[y''(t)] = s^2L[y(t)] - sy(0) - y'(0)$$

Problems using Partial Fraction

Example: 5.66 Solve $\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 2$, given x = 0 and $\frac{dx}{dt} = 5$ for t = 0 using Laplace transform method.

Solution:

Given
$$x'' - 3x' + 2x = 2$$
; $x(0) = 0$; $x'(0) = 5$

Taking Laplace transform on both sides, we get,

$$L[x''(t)] - 3L[x'(t)] + 2L[x(t)] = 2L(1)$$

$$[s^{2}L[x(t)] - sx(0) - x'(0)] - 3[sL[x(t)] - x(0)] + 2L[x(t)] = \frac{2}{s}$$

Substituting
$$x(0) = 0$$
; $x'(0) = 5$

$$[s^{2}L[x(t)] - 0 - 5] - 3[sL[x(t)] - 0] + 2L[x(t)] = \frac{2}{s}$$

$$s^{2}L[x(t)] - 3sL[x(t)] + 2L[x(t)] = \frac{2}{s} + 5$$

$$s^{2}L[x(t)] - 3sL[x(t)] + 2L[x(t)] = \frac{2}{s} + 5$$

Put
$$L[x(t)] = \bar{x}$$

$$s^2 \bar{x} - 3s\bar{x} + 2\bar{x} = \frac{2}{s} + 5$$

$$[s^2 - 3s + 2]\bar{x} = \frac{2}{s} + 5$$

$$(s-1)(s-2)\bar{x} = \frac{2}{s} + 5$$

$$\bar{\chi} = \frac{2+5s}{s(s-1)(s-2)}$$

Consider
$$\frac{2+5s}{s(s-1)(s-2)} = \frac{A}{s} + \frac{B}{s-1} + \frac{C}{s-2}$$

$$\frac{2+5s}{s(s-1)(s-2)} = \frac{A(s-1)(s-2) + Bs(s-2) + Cs(s-1)}{s(s-1)(s-2)}$$

$$A(s-1)(s-2) + Bs(s-2) + Cs(s-1) = 2 + 5s \cdots (1)$$

Put
$$s = 0$$
 in (1) Put $s = 1$ in (1) Put $s = 2$ in (1)
$$A(-1)(-2) = 2$$

$$A = 1$$

$$B(1)(-1) = 7$$

$$C(2)(1) = 2 + 10$$

$$C = 6$$

$$\frac{2+5s}{s(s-1)(s-2)} = \frac{1}{s} - \frac{1}{s-1} + \frac{6}{s-2}$$

Example: 5.67 Using Laplace transform solve the differential equation $y'' - 3y' - 4y = 2e^{-t}$, with y(0) = 1 = y'(0).

Solution:

Given
$$y'' - 3y' - 4y = 2e^{-t}$$
; with $y(0) = 1 = y'(0)$.

Taking Laplace transform on both sides, we get,

$$L[y''(t)] - 3L[y'(t)] - 4L[y(t)] = 2L(e^{-t})$$

$$[s^{2}L[y(t)] - sy(0) - y'(0)] - 3[sL[y(t)] - y(0)] - 4L[y(t)] = 2\frac{1}{s+1}$$

Substituting y(0) = 1 = y'(0).

$$[s^{2}L[y(t)] - s - 1] - 3[sL[y(t)] - 1] - 4L[y(t)] = \frac{2}{s+1}$$
$$s^{2}L[y(t)] - s - 1 - 3sL[y(t)] + 3 - 4L[y(t)] = \frac{2}{s+1}$$

$$s^{2}L[y(t)] - 3sL[y(t)] - 4L[y(t)] = \frac{2}{s+1} + s - 2$$

$$PutL[y(t)] = \bar{y}$$

$$s^2 \bar{y} - 3s\bar{y} - 4\bar{y} = \frac{2}{s+1} + s - 2$$

$$[s^2 - 3s - 4]\bar{y} = \frac{2}{s+1} + s - 2$$

$$[s^2 - 3s - 4]\bar{y} = \frac{2 + s(s+1) - 2(s+1)}{s+1}$$

$$=\frac{2+s^2+s-2s-2}{s+1}$$

$$(s+1)(s-4)\bar{y} = \frac{s^2-s}{s+1}$$

$$\bar{y} = \frac{s^2 - s}{(s+1)(s+1)(s-4)}$$

$$\bar{y} = \frac{s^2 - s}{(s+1)^2(s-4)}$$

Consider
$$\frac{s^2 - s}{(s+1)^2(s-4)} = \frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{s-4}$$

$$\frac{s^2 - s}{(s+1)^2(s-4)} = \frac{A(s+1)(s-4) + B(s-4) + C(s+1)^2}{(s+1)^2(s-4)}$$

$$A(s+1)(s-4) + B(s-4) + C(s+1)^2 = s^2 - s \cdots (1)$$

Puts =
$$-1$$
 in (1) Puts = 4 in (1)

$$-5B = 1 + 1$$

$$25C = 16 - 4$$

$$-5B = 1 + 1$$
 $25C = 16 - 4$ $A + C = 1 \Rightarrow A = 1 - C \Rightarrow 1 - \frac{12}{25}$

equating the coefficients of s^2 , we get

$$B = \frac{-2}{5}$$

$$B = \frac{-2}{5}$$
 $C = \frac{12}{25}$ $A = \frac{13}{25}$

$$A = \frac{1}{2}$$

$$\frac{s^2 - s}{(s+1)^2(s-4)} = \frac{25}{25(s+1)} - \frac{2}{5(s+1)^2} + \frac{12}{25(s-4)}$$

Example: 5.68 Solve the differential equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{-t}$, with y(0) = 1 and y'(0) = 0 using Laplace transform.

Solution:

Given
$$y'' - 3y' + 2y = e^{-t}$$
; with $y(0) = 1$ and $y'(0) = 1$.

Taking Laplace transform on both sides, we get,

$$L[y''(t)] - 3L[y'(t)] + 2L[y(t)] = L(e^{-t})$$

$$[s^{2}L[y(t)] - sy(0) - y'(0)] - 3[sL[y(t)] - y(0)] + 2L[y(t)] = \frac{1}{s+1}$$

Substituting y(0) = 1 and y'(0) = 0.

$$[s^{2}L[y(t)] - s - 0] - 3[sL[y(t)] - 1] + 2L[y(t)] = \frac{1}{s+1}$$
$$s^{2}L[y(t)] - s - 3sL[y(t)] + 3 + 2L[y(t)] = \frac{1}{s+1}$$

$$s^{2}L[y(t)] - 3sL[y(t)] + 2L[y(t)] = \frac{1}{s+1} + s - 3$$

$$PutL[y(t)] = \bar{y}$$

$$s^2\bar{y} - 3s\bar{y} + 2\bar{y} = \frac{1}{s+1} + s - 3$$

$$[s^2 - 3s + 2]\bar{y} = \frac{1}{s+1} + s - 3$$

$$[s^2 - 3s + 2]\overline{y} = \frac{{}^{1+s(s+1)-3(s+1)}}{{}^{s+1}}$$

$$=\frac{1+s^2+s-3s-3}{s+1}$$

$$(s-1)(s-2)\bar{y} = \frac{s^2 - 2s - 2}{s+1}$$

$$\bar{y} = \frac{s^2 - 2s - 2}{(s+1)(s-1)(s-2)}$$

Consider
$$\frac{s^2 - 2s - 2}{(s+1)(s-1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-1} + \frac{C}{s-2}$$

$$\frac{s^2 - 2s - 2}{(s+1)(s-1)(s-2)} = \frac{A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1)}{(s+1)(s-1)(s-2)}$$

$$A(s-1)(s-2) + B(s+1)(s-2) + C(s+1)(s-1) = s^2 - 2s - 2 \cdots (1)$$

Puts =
$$-1$$
 in (1) puts = 1 in (1) puts = 2 in (1)
 $6A = 1 + 2 - 2$ $-2B = 1 - 4$ $3C = 4 - 4 - 2$

$$6A = 1 + 2 - 2$$
 $-2B = 1 - 4$ $3C = 4 - 4 - 2$
 $A = \frac{1}{6}$ $B = \frac{3}{2}$ $C = \frac{-2}{3}$

$$\therefore \frac{s^2 - 2s - 2}{(s+1)(s-1)(s-2)} = \frac{1}{6(s+1)} + \frac{3}{2(s-1)} - \frac{2}{3(s-2)}$$

$$\bar{y} = \frac{1}{6(s+1)} + \frac{3}{2(s-1)} - \frac{2}{3(s-2)}$$

$$y(t) = \frac{1}{6}L^{-1} \left[\frac{1}{(s+1)} \right] + \frac{3}{2}L^{-1} \left[\frac{1}{s-1} \right] - \frac{2}{3}L^{-1} \left[\frac{1}{s-2} \right]$$
$$y(t) = \frac{1}{6}e^{-t} + \frac{3}{2}e^{t} - \frac{2}{3}e^{2t}$$

Example: 5.69 Using Laplace transform solve the differential equation y'' + 2y' - 3y = sint, with y(0) = y'(0) = 0.

Solution:

Given
$$y'' + 2y' - 3y = sint$$
 with $y(0) = 0 = y'(0)$.

Taking Laplace transform on both sides, we get,

$$L[y''(t)] + 2L[y'(t)] - 3L[y(t)] = L(sint)$$

$$[s^{2}L[y(t)] - sy(0) - y'(0)] + 2[sL[y(t)] - y(0)] - 3L[y(t)] = \frac{1}{s^{2}+1}$$

Substituting y(0) = 0 = y'(0).

$$[s^{2}L[y(t)] - 0 - 0] + 2[sL[y(t)] - 0] - 3L[y(t)] = \frac{1}{s^{2} + 1}$$

$$s^{2}L[y(t)] + 2sL[y(t)] - 3L[y(t)] = \frac{1}{s^{2}+1}$$

$$s^{2}L[y(t)] + 2sL[y(t)] - 3L[y(t)] = \frac{1}{s^{2}+1}$$

$$PutL[y(t)] = \bar{y}$$

$$s^2 \bar{y} + 2s \bar{y} - 3\bar{y} = \frac{1}{s^2 + 1}$$

$$[s^2 + 2s - 3]\bar{y} = \frac{1}{s^2 + 1}$$

$$(s-1)(s+3)\bar{y} = \frac{1}{s^2+1}$$

$$\bar{y} = \frac{1}{(s-1)(s+3)(s^2+1)}$$

Consider
$$\frac{1}{(s-1)(s+3)(s^2+1)} = \frac{A}{s-1} + \frac{B}{s+3} + \frac{Cs+D}{s^2+1}$$

$$\frac{1}{(s-1)(s+3)(s^2+1)} = \frac{A(s^2+1)(s+3) + B(s-1)(s^2+1) + (Cs+D)(s-1)(s+3)}{(s-1)(s+3)(s^2+1)}$$

$$A(s^2+1)(s+3) + B(s-1)(s^2+1) + (Cs+D)(s-1)(s+3) = 1 \cdots (1)$$

Put
$$s = 1$$
 in (1) Put $s = -3$ in (1) equating the coefficients of s^2 , we get

$$8A = 0 + 1$$
 $B(-4)(10) = 1$ $A + B + C = 0 \Rightarrow C = -A - B = \frac{-1}{8} + \frac{1}{40}$

$$A = \frac{1}{8} \qquad B = \frac{-1}{40} \qquad C = \frac{-1}{10}$$

Puts = 0in (1), we get

$$3A - B - 3D = 1 \Rightarrow \frac{3}{8} + \frac{1}{40} - 3D = 1$$

$$3D = \frac{3}{8} + \frac{1}{40} - 1$$

$$3D = \frac{15+1-40}{40} \Rightarrow D = \frac{-24}{40\times3} \Rightarrow D = \frac{-1}{5}$$

$$\frac{1}{(s-1)(s+3)(s^2+1)} = \frac{1}{8(s-1)} - \frac{1}{40(s+3)} + \frac{\binom{-1}{10}s - \frac{1}{5}}{s^2+1}$$

Example: 5.70 Using Laplace transform solve the differential equation $y'' - 3y' + 2y = 4e^{2t}$, with y(0) = -3 and y'(0) = 5.

Solution:

Given
$$y'' - 3y' + 2y = 4e^{2t}$$
; with $y(0) = -3$ and $y'(0) = 5$.

Taking Laplace transform on both sides, we get,

$$L[y''(t)] - 3L[y'(t)] + 2L[y(t)] = 4L(e^{2t})$$

$$[s^{2}L[y(t)] - sy(0) - y'(0)] - 3[sL[y(t)] - y(0)] + 2L[y(t)] = 4\frac{1}{s-2}$$

Substituting y(0) = -3 and y'(0) = 5.

$$[s^2L[y(t)] + 3s - 5] - 3[sL[y(t)] + 3] + 2L[y(t)] = \frac{4}{s-2}$$

$$s^{2}L[y(t)] + 3s - 5 - 3sL[y(t)] - 9 + 2L[y(t)] = \frac{4}{s-2}$$

$$s^{2}L[y(t)] - 3sL[y(t)] + 2L[y(t)] = \frac{4}{s-2} - 3s + 14$$

$$PutL[y(t)] = \bar{y}$$

$$s^2\bar{y} - 3s\bar{y} + 2\bar{y} = \frac{4}{s-2} - 3s + 14$$

$$[s^2 - 3s + 2]\bar{y} = \frac{4}{s-2} + 14 - 3s$$

$$[s^2 - 3s + 2]\bar{y} = \frac{4 + (14 - 3s)(s - 2)}{s - 2}$$

$$(s-1)(s-2)\bar{y} = \frac{4+(14-3s)(s-2)}{s-2}$$

$$\bar{y} = \frac{4 + (14 - 3s)(s - 2)}{(s - 1)(s - 2)^2}$$

Consider
$$\frac{4+(14-3s)(s-2)}{(s-1)(s-2)^2} = \frac{A}{s-1} + \frac{B}{s-2} + \frac{C}{(s-2)^2}$$

$$\frac{4+(14-3s)(s-2)}{(s-1)(s-2)^2} = \frac{A(s-2)^2 + B(s-1)(s-2) + C(s-1)}{(s-1)(s-2)^2}$$

$$A(s-2)^2 + B(s-1)(s-2) + C(s-1) = 4 + (14-3s)(s-2)\cdots(1)$$

Put
$$s = 1$$
 in (1)
$$A = 4 - 11$$

$$A = -7$$
Put $s = 2$ in (1)
$$C = 4 + 0$$

$$C = 4$$
equating the coefficients of s^2 , we get
$$A + B = -3 \Rightarrow -7 + B = -3$$

$$B = 4$$

$$\frac{4 + (14 - 3s)(s - 2)}{(s - 1)(s - 2)^2} = \frac{1}{s - 1} + \frac{4}{s - 2} + \frac{4}{(s - 2)^2}$$

$$\therefore \bar{y} = \frac{-7}{s-1} + \frac{4}{s-2} + \frac{4}{(s-2)^2}$$

$$y(t) = -7L^{-1} \left[\frac{1}{(s-1)} \right] + 4L^{-1} \left[\frac{1}{s-2} \right] + 4L^{-1} \left[\frac{1}{(s-2)^2} \right]$$

$$= -7e^{t} + 4e^{2t} + 4e^{2t}L^{-1}\left[\frac{1}{s^{2}}\right]$$
$$y(t) = -7e^{t} + 4e^{2t} + 4e^{2t}t$$

Example: 5.71 Using Laplace transform solve the differential equation $y'' - 4y' + 8y = e^{2t}$,

with
$$y(0) = 2$$
 and $y'(0) = -2$.

Solution:

Given
$$y'' - 4y' + 8y = e^{2t}$$
; with $y(0) = 2$ and $y'(0) = -2$.

Taking Laplace transform on both sides, we get,

$$L[y''(t)] - 4L[y'(t)] + 8L[y(t)] = L(e^{2t})$$

$$[s^{2}L[y(t)] - sy(0) - y'(0)] - 4[sL[y(t)] - y(0)] + 8L[y(t)] = \frac{1}{s-2}$$

Substituting v(0) = 2 and v'(0) = -2.

$$[s^{2}L[y(t)] - 2s + 2] - 4[sL[y(t)] - 2] + 8L[y(t)] = \frac{1}{s-2}$$

$$s^{2}L[y(t)] - 2s + 2 - 4sL[y(t)] + 8 + 8L[y(t)] = \frac{1}{s-2}$$

$$s^{2}L[y(t)] - 4sL[y(t)] + 8L[y(t)] = \frac{1}{s-2} + 2s - 10$$

$$PutL[y(t)] = \bar{y}$$

$$s^2\bar{y} - 4s\bar{y} + 8\bar{y} = \frac{1}{s-2} + 2s - 10$$

$$[s^2 - 4s + 8]\bar{y} = \frac{1}{s-2} + 2s - 10$$

$$[s^2 - 4s + 8]\bar{y} = \frac{1 + (2s - 10)(s - 2)}{s - 2}$$

$$\bar{y} = \frac{1 + (2s - 10)(s - 2)}{(s - 2)(s^2 - 4s + 8)}$$

$$=\frac{1+(2s-10)(s-2)}{(s-2)[(s-2)^2+4]}$$

Consider
$$\frac{1+(2s-10)(s-2)}{(s-2)[(s-2)^2+4]} = \frac{A}{s-2} + \frac{B(s-2)+C}{(s-2)^2+4}$$

$$=\frac{A[(s-2)^2+4]+B[(s-2)+C](s-2)}{[s-2][(s-2)^2+4]}$$

$$A[(s-2)^2+4]+B[(s-2)+C](s-2)=1+(2s-10)(s-2)\cdots(1)$$

Put
$$s = 2$$
 in (1) Put $s = 0$ in (1) equating the coefficients of s^2 , we get

$$4A = 1 + 0$$
 $8A + 4B - 2C = 21$ $A + B = 2 \Rightarrow \frac{1}{4} + B = 2$

$$A = \frac{1}{4} \qquad \qquad C = -6 \qquad \qquad B = \frac{7}{4}$$

$$\frac{1 + (2s - 10)(s - 2)}{(s - 2)[(s - 2)^2 + 4]} = \frac{\frac{1}{4}}{s - 2} + \frac{\frac{7}{4}(s - 2) - 6}{(s - 2)^2 + 4}$$

$$\therefore \bar{y} = \frac{1}{4(s-2)} + \frac{7}{4} \frac{(s-2)}{(s-2)^2 + 4} - 6 \frac{1}{(s-2)^2 + 4}$$

$$y(t) = \frac{1}{4}L^{-1} \left[\frac{1}{(s-2)} \right] + \frac{7}{4}L^{-1} \left[\frac{(s-2)}{(s-2)^2 + 4} \right] - 6L^{-1} \left[\frac{1}{(s-2)^2 + 4} \right]$$
$$= \frac{1}{4}e^{2t} + \frac{7}{4}e^{2t}L^{-1} \left[\frac{s}{s^2 + 4} \right] - 6e^{2t}L^{-1} \left[\frac{1}{s^2 + 4} \right]$$

$$= \frac{1}{4}e^{2t} + \frac{7}{4}e^{2t}\cos 2t - 6e^{2t}\frac{\sin 2t}{2}$$
$$y(t) = \frac{1}{4}e^{2t} + \frac{7}{4}e^{2t}\cos 2t - 3e^{2t}\sin 2t$$

Problems without using Partial Fraction

Example: 5.72 Solve using Laplace transform $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$, with $x = 2, \frac{dx}{dt} = -1$ at t = 0

Solution:

Given
$$x'' - 2x' + x = e^t$$
; $x(0) = 2$; $x'(0) = -1$

Taking Laplace transform on both sides, we get,

$$L[x''(t)] - 2L[x'(t)] + L[x(t)] = L(e^t)$$

$$[s^{2}L[x(t)] - sx(0) - x'(0)] - 2[sL[x(t)] - x(0)] + L[x(t)] = \frac{1}{s-1}$$

Substituting x(0) = 2; x'(0) = -1

$$[s^{2}L[x(t)] - 2s + 1] - 2[sL[x(t)] - 2] + L[x(t)] = \frac{1}{s-1}$$

$$s^{2}L[x(t)] - 2sL[x(t)] + L[x(t)] = \frac{1}{s-1} + 2s - 5$$

$$s^{2}L[x(t)] - 2sL[x(t)] + L[x(t)] = \frac{1}{s-1} + 2s - 5$$

Put
$$L[x(t)] = \bar{x}$$

$$s^2 \bar{x} - 2s\bar{x} + \bar{x} = \frac{1}{s-1} + 2s - 5$$

$$[s^2 - 2s + 1]\bar{x} = \frac{1}{s-1} + 2s - 5$$

$$(s-1)^2 \bar{x} = \frac{1}{s-1} + 2s - 5$$

$$\bar{x} = \frac{1}{(s-1)(s-1)^2} + \frac{2s}{(s-1)^2} - \frac{5}{(s-1)^2}$$

$$x(t) = L^{-1} \left[\frac{1}{(s-1)^3} \right] + 2L^{-1} \left[\frac{s}{(s-1)^2} \right] - 5L^{-1} \left[\frac{1}{(s-1)^2} \right]$$

$$= e^t L^{-1} \left[\frac{1}{s^3} \right] + 2L^{-1} \left[\frac{s-1+1}{(s-1)^2} \right] - 5e^t L^{-1} \left[\frac{1}{s^2} \right]$$

$$= e^t \frac{t^2}{2!} + 2L^{-1} \left[\frac{s-1}{(s-1)^2} + \frac{1}{(s-1)^2} \right] - 5e^t t$$

$$= e^t \frac{t^2}{2!} + 2L^{-1} \left[\frac{1}{s-1} \right] + 2L^{-1} \left[\frac{1}{(s-1)^2} \right] - 5e^t t$$

$$= e^t \frac{t^2}{2!} + 2e^t + 2e^t L^{-1} \left[\frac{1}{s^2} \right] - 5e^t t$$

$$= e^t \frac{t^2}{2!} + 2e^t + 2e^t L^{-1} \left[\frac{1}{s^2} \right] - 5e^t t$$

$$\therefore x = \frac{t^2 e^t}{2} + 2e^t - 3e^t t$$

Example: 5.73 Solve the following differential equation using Laplace transform

$$(D^2 - 2D + 1)y = t^2e^t$$
 Given $y(0) = 2$ and $Dy(0) = 3$

Solution:

Given
$$(D^2 - 2D + 1)y = t^2e^t$$
 with $y(0) = 2$ and $Dy(0) = 3$

ie.,
$$D^2y - 2Dy + y = t^2e^t$$

 $y'' - 2y' + y = t^2e^t$ With $y(0) = 2$ and $y'(0) = 3$
Apply Laplace transform on both sides, we get

 $L[v''(t)] - 2L[v'(t)] + L[v(t)] = L(t^2e^t)$

$$[s^{2}L[y(t)] - sy(0) - y'(0)] - 2[sL[y(t)] - y(0)] + L[y(t)] = L[t^{2}]_{s \to s-1}$$

Substituting y(0) = 2 and y'(0) = 3.

uting
$$y(0) = 2$$
 and $y'(0) = 3$.

$$[s^{2}L[y(t)] - 2s - 3] - 2[sL[y(t)] - 2] + L[y(t)] = \left[\frac{2!}{s^{3}}\right]_{s \to s - 1}$$

$$s^{2}L[y(t)] - 2s - 3 - 2sL[y(t)] + 4 + L[y(t)] = \frac{2}{(s - 1)^{3}}$$

$$s^{2}L[y(t)] - 2sL[y(t)] + L[y(t)] = \frac{2}{(s - 1)^{3}} + 2s - 1$$

$$PutL[y(t)] = \overline{y}$$

$$s^{2}\overline{y} - 2s\overline{y} + \overline{y} = \frac{2}{(s - 1)^{3}} + 2s - 1$$

$$[s^{2} - 2s + 1]\overline{y} = \frac{2}{(s - 1)^{3}} + 2s - 1$$

$$(s - 1)^{2}\overline{y} = \frac{2}{(s - 1)^{5}} + 2s - 1$$

$$y(t) = L^{-1}\left[\frac{2}{(s - 1)^{5}}\right] + 2L^{-1}\left[\frac{s}{(s - 1)^{2}}\right] - L^{-1}\left[\frac{1}{(s - 1)^{2}}\right]$$

$$= 2e^{t}L^{-1}\left[\frac{1}{s^{5}}\right] + 2L^{-1}\left[\frac{s - 1 + 1}{(s - 1)^{2}}\right] - e^{t}L^{-1}\left[\frac{1}{s^{2}}\right]$$

$$= 2e^{t}\frac{t^{4}}{4!} + 2L^{-1}\left[\frac{s - 1}{(s - 1)^{2}} + \frac{1}{(s - 1)^{2}}\right] - e^{t}t$$

$$= 2e^{t}\frac{t^{4}}{2^{4}} + 2L^{-1}\left[\frac{1}{s - 1}\right] + 2L^{-1}\left[\frac{1}{(s - 1)^{2}}\right] - e^{t}t$$

$$= e^{t}\frac{t^{4}}{12} + 2e^{t} + 2e^{t}L^{-1}\left[\frac{1}{s^{2}}\right] - e^{t}t$$

$$= e^{t}\frac{t^{4}}{12} + 2e^{t}L^{-1}\left[\frac{1}{s^{2}}\right] - e^{t}L^{-1}\left[\frac{1}{s^{2}}\right]$$

Example: 5.74 Solve using Laplace transform $\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 9y = 6t^2e^{-3t}$, given that y(0) = 0 and y'(0) = 0

Solution:

Given
$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 9y = 6t^2e^{-3t}$$
 with $y(0) = 0$ and $y'(0) = 0$
 $y'' + 6y' + 9y = 6t^2e^{-3t}$ With $y(0) = 0$ and $y'(0) = 0$

Apply Laplace transform on both sides, we get

$$L[y''(t)] + 6L[y'(t)] + 9L[y(t)] = 6L(t^2e^{-3t})$$
$$[s^2L[y(t)] - sy(0) - y'(0)] + 6[sL[y(t)] - y(0)] + 9L[y(t)] = 6L[t^2]_{s \to s+3}$$

Substituting
$$y(0) = 0$$
 and $y'(0) = 0$.

$$[s^{2}L[y(t)] - 0 - 0] + 6[sL[y(t)] - 0] + 9L[y(t)] = 6\left[\frac{2!}{s^{3}}\right]_{s \to s+3}$$

$$s^{2}L[y(t)] + 6sL[y(t)] + 9L[y(t)] = \frac{12}{(s+3)^{3}}$$

$$s^{2}L[y(t)] + 6sL[y(t)] + 9L[y(t)] = \frac{12}{(s+3)^{3}}$$

$$PutL[y(t)] = \bar{y}$$

$$s^{2}\bar{y} + 6s\bar{y} + 9\bar{y} = \frac{12}{(s+3)^{3}}$$

$$[s^{2} + 6s + 9]\bar{y} = \frac{12}{(s+3)^{3}}$$

$$(s+3)^{2}\bar{y} = \frac{12}{(s+3)^{5}}$$

$$y(t) = L^{-1}\left[\frac{12}{(s+3)^{5}}\right] = 12e^{-3t}L^{-1}\left[\frac{1}{s^{5}}\right]$$

$$= 12e^{-3t}\frac{t^{4}}{4!}$$

Example: 5.75 Solve
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t}sint$$
; $x(0) = 0$ and $x'(0) = 1$

Solution:

Given
$$x'' + 2x' + 5x = e^{-t}sint$$
; $x(0) = 0$; $x'(0) = 1$

Taking Laplace transform on both sides, we get,

 $\therefore y = \frac{t^4 e^{-3t}}{2}$

$$L[x''(t)] + 2L[x'(t)] + 5L[x(t)] = L(e^{-t}sint)$$

$$[s^{2}L[x(t)] - sx(0) - x'(0)] + 2[sL[x(t)] - x(0)] + 5L[x(t)] = L[sint]_{s \to s+1}$$

Substituting x(0) = 0; x'(0) = 1

$$[s^{2}L[x(t)] - 0 - 1] + 2[sL[x(t)] - 0] + 5L[x(t)] = \left[\frac{1}{s^{2} + 1}\right]_{s \to s + 1}$$

$$s^{2}L[x(t)] + 2sL[x(t)] + 5L[x(t)] - 1 = \frac{1}{(s + 1)^{2} + 1}$$

$$s^{2}L[x(t)] + 2sL[x(t)] + 5L[x(t)] = \frac{1}{(s + 1)^{2} + 1} + 1$$

Put
$$L[x(t)] = \bar{x}$$

$$[s^{2} + 2s + 5]\bar{x} = \frac{1}{(s+1)^{2}+1} + 1$$

$$[s^{2} + 2s + 5]\bar{x} = \frac{1}{s^{2}+2s+2} + 1$$

$$\bar{x} = \frac{1}{(s^{2}+2s+2)(s^{2}+2s+5)} + \frac{1}{s^{2}+2s+5}$$

$$= \frac{1}{5-2} \left[\frac{1}{s^{2}+2s+2} - \frac{1}{s^{2}+2s+5} \right] + \frac{1}{s^{2}+2s+5}$$

 $s^2\bar{x} + 2s\bar{x} + 5\bar{x} = \frac{1}{(s+1)^2+1} + 1$

$$\frac{1}{(s^2 + ax + b)(s^2 + ax + c)}$$

$$= \frac{1}{c - b} \left[\frac{1}{s^2 + ax + b} - \frac{1}{s^2 + ax + c} \right]$$

$$= \frac{1}{3} \left[\frac{1}{s^2 + 2s + 2} - \frac{1}{s^2 + 2s + 5} \right] + \frac{1}{s^2 + 2s + 5}$$

$$= \frac{1}{3(s^2 + 2s + 2)} - \frac{1}{3(s^2 + 2s + 5)} + \frac{1}{s^2 + 2s + 5}$$

$$\bar{x} = \frac{1}{3(s^2 + 2s + 2)} + \frac{2}{3(s^2 + 2s + 5)}$$

$$x(t) = \frac{1}{3} L^{-1} \left[\frac{1}{(s^2 + 2s + 2)} \right] + \frac{2}{3} L^{-1} \left[\frac{1}{(s^2 + 2s + 5)} \right]$$

$$= \frac{1}{3} L^{-1} \left[\frac{1}{(s + 1)^2 + 1} \right] + \frac{2}{3} L^{-1} \left[\frac{1}{(s + 1)^2 + 4} \right]$$

$$= \frac{1}{3} e^{-t} L^{-1} \left[\frac{1}{s^2 + 1} \right] + \frac{2}{3} e^{-t} L^{-1} \left[\frac{1}{s^2 + 4} \right]$$

$$= \frac{1}{3} e^{-t} sint + \frac{2}{3} e^{-t} \frac{sin2t}{2}$$

$$\therefore x = \frac{1}{3} e^{-t} [sint + sin2t]$$

Example: 5.76 Solve using Laplace transform $\frac{d^2y}{dt^2} + \frac{dy}{dt} = t^2 + 2t$, given that = 4, y' = -2 when t = 0 Solution:

Given
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} = t^2 + 2t$$
 with $y(0) = 4$ and $y'(0) = -2$
 $y'' + y' = t^2 + 2t$ with $y(0) = 4$ and $y'(0) = -2$

Apply Laplace transform on both sides, we get

$$L[y''(t)] + L[y'(t)] = L(t^2) + L(2t)$$
$$[s^2 L[y(t)] - sy(0) - y'(0)] + [sL[y(t)] - y(0)] = \frac{2}{s^3} + 2\frac{1}{s^2}$$

Substituting
$$y(0) = 4$$
 and $y'(0) = -2$.

$$[s^{2}L[y(t)] - 4s + 2] + [sL[y(t)] - 4] = \frac{2}{s^{3}} + \frac{2}{s^{2}}$$

$$s^{2}L[y(t)] + sL[y(t)] - 4s + 2 - 4 = \frac{2+2s}{s^{3}}$$

$$s^{2}L[y(t)] + sL[y(t)] = \frac{2(1+s)}{s^{3}} + 4s + 2$$

$$PutL[y(t)] = \bar{y}$$

$$s^{2}\bar{y} + s\bar{y} = \frac{2(1+s)}{s^{3}} + 2(2s+1)$$

$$s(s^{2} + s)\bar{y} = \frac{2(s+1)}{s^{3}} + 2(2s+1)$$

$$\bar{y} = \frac{2(s+1)}{s^{3}} + 2(2s+1)$$

$$\bar{y} = \frac{2(s+1)}{s^{4}(s+1)} + \frac{2(2s+1)}{s(s+1)}$$

$$= \frac{2}{s^{4}} + 2\left[\frac{s+(s+1)}{s(s+1)}\right]$$

$$= \frac{2}{s^{4}} + 2\left[\frac{s}{s(s+1)} + \frac{s+1}{s(s+1)}\right]$$

$$= \frac{2}{s^{4}} + 2\left[\frac{1}{s+1} + \frac{1}{s}\right]$$

$$\bar{y} = \frac{2}{s^{4}} + \frac{2}{s+1} + \frac{2}{s}$$

$$y(t) = 2L^{-1} \left[\frac{2}{s^4} \right] + 2L^{-1} \left[\frac{1}{s+1} \right] + 2L^{-1} \left[\frac{1}{s} \right]$$
$$= 2\frac{t^3}{3!} + 2e^{-t} + 2(1)$$
$$\therefore y = \frac{t^3}{3!} + 2e^{-t} + 2$$

Example: 5.77 Solve using Laplace transform $\frac{d^2x}{dt^2} + 9x = \cos 2t$, if (0) = 1; $x(\frac{\pi}{2}) = -1$

Solution:

Given
$$x'' + 9x = \cos 2t$$
; $x(0) = 1$; $x(\frac{\pi}{2}) = -1$

Since x'(0) is not given assume x'(0) = k

Taking Laplace transform on both sides, we get,

$$L[x''(t)] + L[x(t)] = L(\cos 2t)$$
$$[s^{2}L[x(t)] - sx(0) - x'(0)] + 9L[x(t)] = L(\cos 2t)$$

Substituting
$$x(0) = 1$$
; $x\left(\frac{\pi}{2}\right) = -1$

$$[s^{2}L[x(t)] - s - k] + 9L[x(t)] = \frac{s}{s^{2} + 4}$$

$$s^{2}L[x(t)] + 9L[x(t)] = \frac{s}{s^{2}+4} + s + k$$

$$[s^{2} + 9]L[x(t)] = \frac{s}{s^{2} + 4} + s + k$$

Put
$$L[x(t)] = \bar{x}$$

$$[s^2 + 9]\bar{x} = \frac{s}{s^2 + 4} + s + k$$

$$\bar{x} = \frac{s}{(s^2+9)(s^2+4)} + \frac{s}{s^2+9} + \frac{k}{s^2+9}$$

$$= \frac{s}{9-4} \left[\frac{1}{s^2+4} - \frac{1}{s^2+9} \right] + \frac{s}{s^2+9} + \frac{k}{s^2+9}$$

$$= \frac{s}{5} \left[\frac{1}{s^2+4} - \frac{1}{s^2+9} \right] + \frac{s}{s^2+9} + \frac{k}{s^2+9}$$

$$= \frac{s}{5(s^2+4)} - \frac{s}{5(s^2+9)} + \frac{s}{s^2+9} + \frac{k}{s^2+9}$$

$$\bar{x} = \frac{s}{5(s^2+4)} + \frac{(5s-s)}{5(s^2+9)} + \frac{k}{s^2+9}$$

$$= \frac{1}{5} \frac{s}{s^2+4} + \frac{4}{5} \frac{s}{s^2+9} + \frac{k}{s^2+9}$$

$$x(t) = \frac{1}{5} L^{-1} \left[\frac{s}{s^2+4} \right] + \frac{4}{5} L^{-1} \left[\frac{s}{s^2+9} \right] + kL^{-1} \left[\frac{1}{s^2+9} \right]$$

$$= \frac{1}{5} \cos 2t + \frac{4}{5} \cos 3t + k \frac{\sin 3t}{3} \cdots (1)$$

Given
$$x\left(\frac{\pi}{2}\right) = -1$$

Put
$$t = \frac{\pi}{2} in$$
 (1)

$$(1) \Rightarrow x\left(\frac{\pi}{2}\right) = \frac{1}{5}\cos\frac{2\pi}{2} + \frac{4}{5}\cos\frac{3\pi}{2} + k\frac{\sin\frac{3\pi}{2}}{3}$$
$$-1 = \frac{1}{5}(-1) + 0 + \frac{k}{3}(-1)$$

$$-\frac{k}{3} = \frac{1}{5} - 1 \Rightarrow -\frac{k}{3} = \frac{-4}{5} \Rightarrow k = \frac{12}{5}$$
$$= \frac{1}{5}\cos 2t + \frac{4}{5}\cos 3t + \frac{12}{5}\frac{\sin 3t}{3}$$
$$\therefore x(t) = \frac{1}{5}[\cos 2t + 4\cos 3t + 4\sin 3t]$$

Exercise: 5.11

1. Solve using Laplace transform $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} - 5y = 5$, given that = 0, $\frac{dy}{dt} = 2$ when t = 0

Ans:
$$-1 - \frac{1}{6}e^{-5t} + \frac{5}{6}e^{t}$$

2. Using Laplace transform solve the differential equation y'' + 5y' + 6y = 2, with

$$y(0) = 0 = y'(0)$$
. Where $y' = \frac{dy}{dt}$

Ans:
$$y(t) = \frac{1}{3} - e^{-2t} + \frac{2}{3}e^{-3t}$$

3. Using Laplace transform solve the differential equation $y'' + 4y' + 3y = e^{-t}$, with

$$y(0) = 1; y'(0) = 0.$$

Ans:
$$y(t) = \frac{-1}{4}e^{-3t} - \frac{5}{4}e^{-t} + \frac{1}{2}te^{-t}$$

4. Solve using Laplace transform $\frac{d^2y}{dt^2} + y = sint$ given = 1, $\frac{dy}{dt} = 0$ when t = 0

$$\mathbf{Ans:}y(t) = sint - tcost$$

5. Solve using Laplace transform $\frac{d^2y}{dt^2} + 9y = \cos 2t$, if y(0) = 1; $y(\frac{\pi}{2}) = -1$

$$\mathbf{Ans:}y(t) = \frac{1}{5}[\cos 2t + 4\cos 3t + 4\sin 3t]$$