Limits and Open Sets Ch.12

econMath.namun+2016su@gmail.com

July 26, 2016

Table of Contents

- Sequences of Real Numbers
- **2** Sequences in \mathbb{R}^m
- Open Sets
- 4 Closed Sets
- 6 Compact Sets

(Sub)Sequences of Real Number: Definition

Definition (Sequence of Real Number)

 $\{x_n\}_{n=1}^{\infty}$ is a sequence of real number if:

$$x: \mathbb{N} \to \mathbb{R}, \quad x(i) = x_i$$

I.e., sequence of real number is just a real function whose domain is \mathbb{N} (the set of (all) natural numbers, or the set of (all) positive integers)

Definition (Subsequence)

Let $M=\{n_i\}_{i=1}^\infty$ be any infinite subset of $\mathbb N$ and $n_i>n_j \forall i>j$. (I.e., increasing sequence of natural numbers). A sequence $\{y_n\}_{n=1}^\infty$ is a subsequence of $\{x_n\}_{n=1}^\infty$ if:

$$y_j = x_{n_j}, \quad j \in \mathbb{N}$$

Limit and Convergence: Definition

Definition (Limit of a Sequence, Convergence)

 $ar{r} \in \mathbb{R}$ is the <u>limit</u> of a sequence of $\{x_n\}_{n=1}^{\infty}$ if:

$$\forall \epsilon > 0, \quad \exists \bar{N} \in \mathbb{N} \quad s.t. \quad \forall n \ge \bar{N} \quad |x_n - \bar{r}| < \epsilon$$

Then, $\lim x_n = \bar{r}$ or $\lim_{n \to \infty} x_n = \bar{r}$ or $x_n \to \bar{r}$ ($x_n \text{ converges}$ to \bar{r})

Note 1: Sometimes, $\epsilon \in (0, \bar{\alpha})$ is used (for all small positive real numbers)

Note 2: $|x_n - \bar{r}| < \epsilon$ has alternative notation: ϵ -interval: $x_n \in I_{\epsilon}(\bar{r})$

Definition (Limit of a Real Function ($\lim_{x\to \bar{x}_0} f(x) = \bar{r}$))

 $\forall \epsilon > 0, \exists \delta > 0 \quad s.t. \quad x \in D \land 0 < |x - \bar{x}_0| < \delta \Rightarrow |f(x) - \bar{r}| < \epsilon$

Algebraic Properties of Limits

Theorem (12.1)

A sequence can have at most one limit.

Theorem (12.2)

If
$$x_n \to \bar{x} \quad \land \quad y_n \to \bar{y}$$
,

- **1** $x_n \pm y_n \to \bar{x} \pm \bar{y}$ (Th 12.2)
- 2 $x_n y_n \to \bar{x} \bar{y}$ (Th 12.3)
- $x_n/y_n \to \bar{x}/\bar{y}$

Theorem (12.4)

$$x_n \to \bar{x} \quad \land \quad x_n \le [\ge] \bar{b} \quad \forall n \Rightarrow \bar{x} \le [\ge] \bar{b}$$

Convergence in \mathbb{R}^m Space

Definition (Sequence of Vector)

 $\{\mathbf{x_n}\}_{n=1}^{\infty}$ is a sequence of vector if:

$$\mathbf{x}: \mathbb{N} \to \mathbb{R}^m, \quad \mathbf{x}(i) = \mathbf{x_i}$$

Definition (ϵ -ball about \bar{r})

 $B_{\epsilon}(\mathbf{r})$, ϵ -ball about \mathbf{r} is defined as:

$$B_{\epsilon}(\mathbf{r}) := \{ \mathbf{x} \in \mathbb{R}^m : ||\mathbf{x} - \mathbf{r}|| < \epsilon \}$$

Note: Geometrically, ϵ -ball is hyperball in m dimensions, or bounded by an m-1 sphere

Definition (Limit of a Sequence of Vector)

$$\mathbf{x_n} \to \mathbf{x}$$
 if $\forall \epsilon > 0$, $\exists \bar{N}$ s.t. $\forall n \geq \bar{N}$, $\mathbf{x_n} \in B_{\epsilon}(\mathbf{x})$

Convergence of Vectors

Theorem (12.5)

Let
$$\mathbf{x_n} = (x_{1n}, \cdots, x_{mn})$$
. $\mathbf{x_n}$ converges iff:

$$x_{in} \to \bar{x}_{in} \quad \forall i$$

Theorem (12.6)

If
$$\mathbf{x_n} o \mathbf{x}^*$$
, $\mathbf{y_n} o \mathbf{y}^*$, and $c_n o c^*$, then

$$c_n \mathbf{x_n} + \mathbf{y_n} \to c^* \mathbf{x^*} + \mathbf{y^*}$$

Open: Definition

Definition (Open)

A set $S \in \mathbb{R}^m$ is <u>open</u> if

$$\forall \mathbf{x} \in S \quad \Rightarrow \quad \exists \epsilon > 0 \quad s.t. \quad B_{\epsilon}(\mathbf{x}) \subset S$$

Geometrically, open set has no boundary.

Theorem (12.7)

Open balls are open sets

Theorem (12.8)

- Any union of open set is open
- 2 The finite intersection of open sets is open

Interior

Definition (Interior)

intS, or $\underline{\mathit{Interior}}$ of S is union of all open sets contained in S

Note: Interior is the largest open subset of ${\cal S}$

Open and Closed

	Open	Not Open
Closed		
Not Closed		

Closed: Definition

Definition (Closed)

A set $S \in \mathbb{R}^m$ is <u>closed</u> if, the limits of all convergent sequence $\{\mathbf{x}_n\}_{n=1}^{\infty} \in S$ are contained in S

Note: Closed set must contain all its boundary points.

Theorem (12.9)

 $S \in \mathbb{R}^m$ is closed iff $S^c = \mathbb{R}^m - S$ is open

Theorem (12.10)

- Any intersection of closed sets is closed
- 2 The finite union of closed sets is closed

Closure, Boundary

Definition (Closure)

clS or $ar{S}$ is <u>closure</u> of S if It is the intersection of all closed sets containing S

Intuitively, closure is the smallest closed set contains ${\cal S}$

Definition (Bounadry)

 ${f x}$ is in the boundary of a set S if

$$\forall \epsilon > 0, \quad B_{\epsilon}(\mathbf{x}) \cap S \neq \emptyset \quad \land \quad B_{\epsilon}(\mathbf{x}) \cap S^c \neq \emptyset$$

Theorem (12.12)

Boundary of $S = clS \cap clS^c$

Bounded, Compact

Definition (bounded)

 $S \in \mathbb{R}^n$ is bounded if:

$$\exists b \in \mathbb{R} \quad s.t. \quad ||\mathbf{x}|| \le b \quad \forall \mathbf{x} \in S$$

Definition (Compact)

 $S \in \mathbb{R}^n$ is <u>compact</u> iff S is closed and bounded

Theorem (12.13-14)

- Any sequence contained in the compact set [0,1] has a convergent subsequence (Th 12.13)
- Any sequence contained in the compact set $C \in \mathbb{R}^n$ has a convergent subsequence whose limit lies in C (Bolzano-Weierstrass Theorem)