PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-333596

(43)Date of publication of application: 02.12.1994

(51)Int.CI.

H01M 10/40

(21)Application number: 05-146879

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

25.05.1993

(72)Inventor: YAMAZAKI MIKIYA

YOSHIMURA SEIJI NISHIO KOJI

SAITO TOSHIHIKO

(54) NONAQUEOUS ELECTROLYTE BATTERY

(57) Abstract:

PURPOSE: To provide excellent battery

characteristics such as storing characteristic and cycle characteristic by adding a specified azo compound to an nonaqueous electrolyte.

CONSTITUTION: An nonaqueous electrolyte battery has a negative electrode using a material capable of storing and releasing metal lithium or lithium as the negative electrode material, a positive electrode, and an nonaqueous electrolyte. In the nonaqueous electrolyte battery, an azo compound represented by the formula is added to the nonaqueous electrolyte. In the formula, R1, R2, R3, R4 each represents a hydrogen atom or hydrocarbon group independently. Examples of the azo compound include 4,4'-

Examples of the azo compound include 4,4 tetramethyldiamino azobenzene, 4,4'-tetraethyldiamino azobenzene, 4,4'-tetrapropyldiamino azobenzene, 4,4'-tetrabutyldiamino azobenzene, and 4,4'-

R¹ N=N-N-N-R²

LEGAL STATUS

[Date of request for examination]

tetraphenyldiamino azobenzene.

13.10.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(12) 公開特許公報(A)

庁内整理番号

(11)特許出顧公開番号

特開平6-333596

(43)公開日 平成6年(1994)12月2日

(51) Int.Cl.5

識別記号

FΙ

技術表示箇所

H 0 1 M 10/40

Α

審査請求 未請求 請求項の数2 FD (全 6 頁)

(21)出願番号	特顧平5-146879	(71)出願人	000001889 三洋電機株式会社
(22)出願日	平成5年(1993)5月25日	(72)発明者	大阪府守口市京阪本通2丁目5番5号 山崎 幹也 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内
		(72)発明者	吉村 精司 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内
		(72)発明者	西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内
		(74)代理人	弁理士 松尾 智弘 最終頁に続く

(54)【発明の名称】 非水系電解質電池

(57)【要約】

【構成】金属リチウム又はリチウムを吸蔵放出可能な物質を負極材料とする負極と、正極と、非水系電解質とを備えた非水系電解質電池において、前記非水系電解質に下記化1で表されるアゾ化合物が添加されてなる。

【化1】

(但し、 R^1 、 R^2 、 R^3 、 R^4 は各独立して、水素原子又は炭化水素基である。)

【効果】非水系電解質にアゾ化合物が添加されているので、非水系電解質の分解劣化が起こりにくく、このため保存特性、サイクル特性等の電池特性に優れる。

【特許請求の範囲】

【請求項1】 金属リチウム又はリチウムを吸蔵放出可能 な物質を負極材料とする負極と、正極と、非水系電解質 とを備えた非水系電解質電池において、前記非水系電解 質に下記化1で表されるアゾ化合物が添加されているこ とを特徴とする非水系電解質電池。

[化1]

(但し、R¹ 、R² 、R³ 、R⁴ は各独立して、水素原 子又は炭化水素基である。)

【請求項2】前記アゾ化合物が、4,4'ーテトラメチ ルジアミノアゾベンゼン、4,4'-テトラエチルジア ミノアゾベンゼン、4、4'ーテトラプロピルジアミノ アゾベンゼン、4、4'ーテトラブチルジアミノアゾベ ンゼン及び4, 4'ーテトラフェニルジアミノアゾベン ゼンよりなる群から選ばれた少なくとも一種のアゾベン ゼン誘導体である請求項1記載の非水系電解質電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は非水系電解質電池に係わ り、詳しくは正極側における非水系電解質中の溶媒の分 解劣化に起因する、保存特性、サイクル特性などの低下 を防止することを目的とした当該非水系電解質の改良に 関する。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 リチウム電池等の非水系電解質電池が、ニッケル・カド 30 ミウム電池の如き含水電解液を使用した電池と異なり、 水の分解電圧を考慮する必要がないため通常3 V以上の 高電圧設計が可能であるなどの理由から、脚光を浴びつ つある.

【0003】而して、かかる高電圧型の非水系電解質電 池の正極活物質としては、一般にマンガン、コパルト、 ニッケル、パナジウム、ニオブなどの金属の酸化物又は これらの金属を二種以上含有する複合酸化物が使用され ている。

【0004】しかしながら、上記金属酸化物又は複合酸 40 化物は、非水系電解質と反応し易く、このため電池を保 存している間に非水系電解質中の溶媒が分解し、その分 解生成物 (重合物など) が電極上に付着し、その結果保 存後の電池の内部抵抗(内部インピーダンス)が上昇し て放電特性が低下したり、二次電池の場合には、さらに サイクル特性が低下したりするという問題があった。因 みに、このような溶媒の分解反応は、正極が高電位とあ る充電時に顕著に起こる。

【0005】ところで、上述の溶媒の分解反応を抑制し て保存特性やサイクル特性の向上を図る試みは従来にお 50 は、電池内の非水系電解質の総量によっても若干異なる

いても行われており、例えばテトラヒドロフラン(TH F)、1,3-ジオキソラン(DOXL)等の環状エー テルの水素原子の一部をアルキル基などで置換して安定 化させ、分解劣化し難くする試みが提案されている(J. L. Goldman, R. M. Mank, J. H. Young and V. R. Koc h: J. Electrochem. Soc., 127, 1461 (1980)) .

2

【0006】しかしながら、このような環状エーテルの アルキル化による改質によっても、非水系電解質を充分 に安定化させることは難しく、高電位の正極側における 10 非水系電解質の分解反応を有効に抑制するには至ってい ないのが実情である。特に、二次電池の場合、過充電時 に、正極上で炭酸ガスなどの発生を伴った溶媒の分解反 応が急激に進行し、電池特性が著しく低下するという問 題が指摘されていた。

【0007】本発明は、上述の問題を解決するべくなさ れたものであって、その目的とするところは、保存特 性、サイクル特性等の電池特性に優れた非水系電解質電 池を提供するにある。

[8000]

【課題を解決するための手段】上記目的を達成するため 20 の本発明に係る非水系電解質電池(以下、「本発明電 池」と称する。) は、金属リチウム又はリチウムを吸蔵 放出可能な物質を負極材料とする負極と、正極と、非水 系電解質とを備えた非水系電解質電池において、前記非 水系電解質に下記化2で表されるアゾ化合物が添加され てなる。

[0009]

【化2】

$$R^{1}$$
 $N=N-N-N$

【0010】但し、R¹、R²、R³、R⁴ は各独立し て、水素原子又は炭化水素基である。

【0011】本発明におけるアゾ化合物の具体例として は、4、4'ーテトラメチルジアミノアゾベンゼン、 4, 4'-テトラエチルジアミノアゾベンゼン、4, 4'-テトラプロピルジアミノアゾベンゼン、4,4' ーテトラプチルジアミノアゾベンゼン及び4, 4'ーテ トラフェニルジアミノアソベンゼンが挙げられる。これ らのアゾ化合物は、一種単独を添加してもよく、必要に 応じて二種以上を併用して添加してもよい。

【0012】本発明におけるアゾ化合物は、その酸化電 位が電池の充電電圧よりも貴であり、且つ、非水系電解 質の分解電圧よりも卑である物質でなければならない。 酸化電位が充電電圧より低いと充電不能となり、また非 水系電解質の分解電圧よりも貴であると非水系電解質の 分解を抑制することができなくなるからである。

【0013】アゾ化合物の非水系電解質中への添加割合

3

が、有意な添加効果を挙げる上で通常 1 × 1 0 - 3 モル/ リットル以上添加する必要がある。 0. 0 1 ~ 1 モル/ リットルの範囲で添加することが好ましい。添加割合が 0. 0 1 モル/リットル未満の場合は添加効果が充分に 発現されず、また 1 モル/リットルを越えた場合は電解 質の量が相対的に減少することに起因して電導度が低下 したり、過剰のアゾ化合物が正極又は負極と徐々に反応 することに起因して保存特性やサイクル特性が低下した りする傾向があるからである。

【0014】本発明においては、負極材料として金属リチウム又はリチウムを吸蔵放出可能な物質が使用される。リチウムを吸蔵放出可能な物質としては、リチウム合金や、黒鉛、コークス等の炭素材料が例示されるが、リチウムの吸蔵放出量(容量)が多い点で黒鉛が特に好ましい。

【0015】本発明における正極材料(括物質)としては、例えば、3 V以上の電池電圧を有する非水系電解質電池において従来使用されている、マンガン、コバルト、ニッケル、パナジウム、ニオブなどの金属の酸化物(LiMn2O4、LiCoO2、LiNiO2など)又はこれらの金属を二種以上含有する複合酸化物(LiNiCO1-1O2 (但し、0 < x < 1) など)が挙げられる。

【0016】本発明の効果は、電位が高く非水系電解質の分解劣化を誘起し易い高電位型の正板材料を使用した場合に顕著に発現されるが、正極活物質への添加剤として使用されるアゾ化合物は、過充電時の非水系電解質の分解劣化を抑制する機能も有するので、本発明における正極材料は常態時(保存時又は通常の充電時)において3V以上の高電位を示す上述した材料に必ずしも限定さ30れない。

【0017】本発明は、保存特性、サイクル特性等の電池特性に優れた非水系電解質電池を得るために非水系電解質にアゾ化合物を添加して分解劣化し難くした点に特徴を有する。それゆえ、非水系電解質などの電池を構成する他の部材については特に制限されず、非水系電解質電池用として従来使用され、或いは提案されている種々の材料を特に制限無く使用することが可能である。

*【0018】例えば、非水系電解液の溶媒としては、エ チレンカーポネート、ピニレンカーポネート、プロピレ ンカーポネートなどの有機溶媒や、これらとジメチルカ ーポネート、ジエチルカーボネート、1,2ージメトキ シエタン、1,2ージエトキシエタン、エトキシメトキ シエタンなどの低沸点溶媒との混合溶媒が挙げられる。

【0019】また、非水系電解液の溶質としては、過塩 素酸リチウム($LiCIO_4$)、トリフルオロメタンス ルホン酸リチウム($LiCF_8SO_8$)、ヘキサフルオ ロリン酸リチウム($LiPF_6$)、テトラフルオロホウ 酸リチウム($LiBF_4$)、ヘキサフルオロと酸リチウ ム($LiAsF_6$)、ヘキサフルオロアンチモン酸リチ ウム($LiSbF_6$)が例示される。

【0020】なお、本発明における非水系電解質として、上述の液体電解質に代えて固体電解質を使用することも可能である。

[0021]

【作用】本発明電池においては、非水系電解質に少なくとも一種のアゾ化合物が添加されているので、長期間保 20 存したり過充電したりしても、正極活物質と非水系電解質との反応が起こり難く、非水系電解質が分解劣化し難い。この理由は、次のように推察される。

【0022】すなわち、アゾ化合物は分子中に共役二重結合を有するため分子の共鳴安定効果が高く、このため充電などにより正極電位が高くなると正極側で酸化されて、下配の化3に示すようにカチオン(陽イオン)を生成する。そして、このアゾ化合物の酸化電位が非水系電解質の酸化反応に優先して起こる。換言すれば、アゾ化合物が犠牲(ダミー)となって酸化され非水系電解質中の溶媒の分解を抑制するのである。なお、アゾ化合物は酸化還元反応の可逆性に優れるため、生成したカチオンは非水系電解質中を拡散し、下記の化4に示すように負極側で還元されて、再びもとのアゾ化合物に戻り、正極側における酸化反応のダミーとして繰り返し利用される。

[0023]

【化3】

$$N-N=N-N-N$$

$$-2e^{-}$$

$$N=N-N=0$$

$$=N-N=0$$

$$=N-N=0$$

$$=N-N=0$$

[0024]

$$\begin{array}{c}
5 \\
N = \\$$

[0025]

【実施例】以下、本発明を実施例に基づいてさらに詳細 に説明するが、本発明は下記実施例により何ら限定され るものではなく、その要旨を変更しない範囲において適 10 宜変更して実施することが可能なものである。

【0026】 (実施例1) 扁平型の非水系電解質二次電 池を作製した。

【0027】〔正極〕正極活物質として、二酸化マンガ ンを375°Cで加熱処理したものを使用し、これと、 導電剤としてのカーボン粉末と、結着剤としてのフッ素 樹脂粉末とを重量比85:10:5で混合し、次いでこ の混合物を加圧成形した後、250°Cで加熱処理して 円板状の正極を作製した。

抜いて円板状の負極を作製した。

【0029】〔電解液〕エチレンカーポネート(EC) とプロピレンカーボネート (PC) と1, 2-ジメトキ シエタン (DME) との体積比5:3:2の混合溶媒 に、トリフルオロメタンスルホン酸リチウム(LICF 3 SO3) を1 Mの割合で溶かした溶液に、さらに4, 4'-テトラメチルジアミノアゾベンゼンを0.01モ ル/リットルの割合で添加して電解液を調製した。

【0030】 [電池の作製] 以上の正負両極及び電解液 を用いて扁平型の本発明電池BA1 (外径:20mm、 厚み: 2. 5 mm) を作製した。なお、セパレータとし ては、ポリプロピレン製の微多孔膜(セラニーズ社製、 商品名「セルガード」)を使用し、これに先の電解液を 含浸させた。

【0031】図1は作製した本発明電池BA1を模式的 に示す断面図であり、同図に示す本発明電池BA1は、 正極1、負極2、これら両電極1,2を互いに離間する セパレータ3、正極缶4、負極缶5、正極集電体6、負 極集電体7及びポリプロピレン製の絶縁パッキング8な どからなる。

【0032】正極1及び負極2は、電解液を含浸したセ パレータ3を介して対向して正負両極缶4、5が形成す る電池ケース内に収納されており、正極1は正極集電体 6を介して正極缶4に、また負極2は負極集電体7を介 して負極缶5に接続され、電池内部で生じた化学エネル ギーを正極缶4及び負極缶5の両端子から電気エネルギ 一として外部へ取り出し得るようになっている。

【0033】(実施例2)電解液の溶質として、トリフ ルオロメタンスルホン酸リチウムに代えてヘキサフルオ ロリン酸リチウムを使用したこと以外は実施例1と同様 50 1に示す。

にして、本発明電池BA2を作製した。

【0034】 (実施例3) 電解液の溶媒として、エチレ ンカーポネートとプロピレンカーポネートと1, 2-ジ メトキシエタンとの体積比5:3:2の混合溶媒に代え て、エチレンカーポネートとプロピレンカーポネートと エトキシメトキシエタン(EME)との体積比5:3: 2の混合溶媒を使用したこと以外は実施例2と同様にし て、本発明電池BA3を作製した。

【0035】 (比較例1) 電解液の調製において、4, 4'ーテトラメチルジアミノアゾベンゼンを添加しなか ったこと以外は実施例1と同様にして、比較電池BC1 を作製した。

【0036】 (比較例2) 電解液の溶質として、トリフ 【0028】〔負極〕リチウム圧延板を所定寸法に打ち 20 ルオロメタンスルホン酸リチウムに代えてヘキサフルオ ロリン酸リチウムを使用したこと以外は比較例1と同様 にして、比較電池BC2を作製した。

> 【0037】(比較例3)電解液の溶媒として、エチレ ンカーポネートとプロピレンカーポネートと1.2-ジ メトキシエタンとの体積比5:3:2の混合溶媒に代え て、エチレンカーポネートとプロピレンカーポネートと エトキシメトキシエタン (EME) との体積比5:3: 2の混合溶媒を使用したこと以外は比較例2と同様にし て、比較電池BC3を作製した。

【0038】 [サイクル特性] 常温 (25°C) 下、2 mAで充電終止電圧3.5Vまで充電した後、2mAで 4時間放電する工程を1サイクルとする充放電サイクル 試験を行い、各電池のサイクル特性を調べた。なお、放 電時間内に放電電圧が2. 4 Vに達した時点を各電池の 寿命と決め、その時点で充放電サイクル試験を終了し た。結果を図2、図3及び図4に示す。

【0039】図2~図4は、各電池のサイクル特性を、 縦軸に各サイクルにおける放電終止電圧(V)を、また 横軸にサイクル数(回)をとって示したグラフであり、 40 これらの図より、電解液に4、4 ーテトラメチルジア ミノアゾペンゼンを添加した本発明電池BA1~BA3 は、それを添加しなかった比較電池BC1~BC3に比 し、電解液の分解劣化が小さいためサイクル寿命が長 く、サイクル特性に優れていることが分かる。

【0040】 [過充電特性] 本発明電池BA1及び比較 電池BC2をそれぞれ10個づつ作製し、各電池の電池 電圧を通常の充電終止電圧よりも高電圧である4Vに2 0日間保持し(過充電状態)、そのときの各電池の内部 インピーダンス及び電池厚みの変化を調べた。結果を表 7

*【表1】

[0041]

電池	内部インピーダンス(Ω)		厚み (mm)		
	初期	20日後	初期	20日後	
BAI	5~7	11~15	2.96~2.99	2.99~3.03	
вс2	5~7	18~25	2.95~2.99	3.02~3.11	

【0042】表1に示すように、本発明電池BA1は、 比較電池BC2に比し、電解液の分解劣化が小さいため 過充電状態での内部インビーダンスの上昇や電池厚みの 10 るものである。 増加が総じて小さく、信頼性が高いことが分かる。

【0043】 (実施例4~7) 4, 4'ーテトラメチル ジアミノアゾベンゼン0.01モル/リットルに代え て、4,4'ーテトラエチルジアミノアゾベンゼン、 4、4'ーテトラプロビルジアミノアゾベンゼン、4、 4'-テトラプチルジアミノアソベンゼン又は4,4' ーテトラフェニルジアミノアゾベンゼンを同割合で使用 したこと以外は実施例1と同様にして、順に本発明電池 BA4~BA7を作製した。

【0044】 [サイクル特性] 先と同じ条件で充放電サ イクル試験を行い、各電池のサイクル特性を調べた。結 果を図2~図4と同じ座標系のグラフである図5に示 す。図中には、比較のために、先の比較電池BC1のサ イクル特性も示してある。同図より、電解液にアゾ化合 物が添加されている本発明電池BA4~BA7は、何も 添加されていない比較電池BC1に比し、サイクル寿命 が長く、サイクル特性に優れていることが分かる。

【0045】叙上の実施例では、本発明を扁平角型の非 水系電解質電池に適用する場合を例に挙げて説明した が、電池の形状は特に限定されず、円筒型、角型など種 30 々の形状の非水系電解質電池に適用し得るものである。

【0046】また、上記実施例では、本発明を二次電池 に適用する場合について説明したが、本発明電池は過充 電状態での内部インピーダンスの上昇や電池厚みの増加 が小さいことから、本発明は過充電状態で保存されるメ モリーバクアップ用の一次電池などにも好適に適用し得

8

[0047]

【発明の効果】本発明電池は、非水系電解質にアゾ化合 物が添加されているので、非水系電解質の分解劣化が起 こりにくく、このため保存特性、サイクル特性等の電池 特性に優れるなど、本発明は優れた特有の効果を奏す

【図面の簡単な説明】

【図1】扁平型の非水系電解質電池(本発明電池BA 1) の断面図である。

【図2】実施例で作製した本発明電池BA1及び比較電 他BC1のサイクル特性を示したグラフである。

【図3】 実施例で作製した本発明電池 BA2及び比較電 池BC2のサイクル特性を示したグラフである。

【図4】実施例で作製した本発明電池BA3及び比較電 池BC3のサイクル特性を示したグラフである。

【図5】実施例で作製した本発明電池BA4~BA7及 び比較電池BC1のサイクル特性を示したグラフであ る。

【符号の説明】

- BA1 非水系電解質電池 (本発明電池)
 - 1 正極
 - 2 負極
 - 3 セパレータ

【図1】

[図2]

フロントページの続き

(72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内