Curve Criterion a Function t of several variables sortisfies lim f(x)=L iff for all continuous space curves F(t) with I'm if (t) = a and int) & a for all t t-200 we have lim f (T(+S) = L 4-700 I dea's Find two curves T(t) and r(t) with the r(t)=a and Im f(Fo(+)) / Im f(r, (+)) +700

How can we show limits do exist? Attack: Try polar coordicates Ex! Does lim Sin(x2+1,12) exist? (xy) >010 X2+42 Sol! Convert junt to polar coordinates: (x=100500) (y=rsm(0) Sin (x2+y2) - Im Sin (((coo)2+(15n0)2) 1-70" ((con6)2 + (15n0)2 (x, g)-70,0 x2+142 if It exist in 50 (12 (10320 + 51020) M2(cos'd +shee) 15 = Jim, Sin (r2) -> Otype [LH] Im 2r cos(r2) = Im cos(r2) = (05/02)=1 Ex Does Im x2-y2 exist? Sol lin x2-62 = lim ((000)2+((000)2 = |m 1. (2(cps20 - sn20) = |m (0s20 = (os(20) - f-70t (2(cps26 + sn20) = 20t) [-70+ +5h20) [-70+ Depends ono It we approach along agle 0= 1/2, we expect $\lim_{x\to 0} f(x) = \cos(f(\frac{\pi}{2})) = -1$ $\lim_{x\to 0} \frac{x^2 - y^2}{x^2 + y^2}$ DNE

of it is Dafco = in f(atha)-f(a) Ex Compute the direction it= \(\(\sigma \) Sol: Da fas = Im fathal - fas - 1m + (1+ 1/2h, 3+ 1/2h) - f(1/3) (1+ 5h) (3+ 5h) - 1.3 = lim h70+ := lim 3+h(302+JZ)+h2-3 h-70+ = 1m h (252 +h) = 1m (252+h) = 252+0=252 hard hard Exercise: Report exocise with a= LXIY) Notes The directional derivative is very general Der, Let F be a function of n-variable and let ex be the standard K-th basis rector in Ryier Ex= <0,0,...,1,...,0>

£ K-4h position The K-th partial derivative of f