

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Abstracta y Computacional

Fracciones Continuas y Sucesiones de Farey

Taller (II-2021)

Douglas Leonardo Velasquez Rodriguez. dovelasquezr@unal.edu.co Matematicas Beimar Jose Naranjo Morales. bnaranjom@unal.edu.co Matematicas Carlos Enrique Nosa Guzman. cnosa@unal.edu.co Matematicas

.....

Los problemas que aparecen señalados con los símbolos \square y \blacksquare deben ser resueltos en Mathematica. No olvide que debe justificar cada una de sus respuestas.

1. Encuentre la representación en fracción continua para $\sqrt{2022}$. Pista: tiene periodo 4. **Solución.** Para usar el algoritmo PQa, verificamos antes que 2022 es libre de cuadrados en $Mathematica^{\mathbb{R}}$, $2022 = 2 \times 3 \times 337$, posteriormente se hace uso del algoritmo, mostrado en el informe. Si bien el procedimiento se puede hacer a mano, mediante una implementación con funciones básicas en $Mathematica^{\mathbb{R}}$ (ver .nb) se llega a que

$$\sqrt{2022} = [44; \overline{1, 28, 1, 88}]$$

2. Pruebe que $e^{1/n}$ es irracional para todo entero $n \ge 1$. Concluya que e es irracional. **Solución.** Primeramente buscamos la fracción continua para $\tanh(1/n)/n$. Usando el teorema de Euler-Lambert

$$\tanh\left(\frac{1}{n}\right) = [0; n, 3n, 5n, 7n, \dots]$$

Luego

$$\frac{\tanh\left(\frac{1}{n}\right)}{n} = \frac{e^{2/n} - 1}{n(e^{2/n} + 1)} = [0; n^2, 3, 5n^2, 7, \dots]$$

Observe que por un teorema mencionado en el informe, dicha expresión es infinita, por tanto, debe representar a un número irracional. Ahora, si suponemos que $e^{2/n}$ es racional, $\tanh(1/n)/n$ sería también racional, pues el conjunto de los racionales es cerrado para la suma y el producto, pero de ser así su representación en fracción continua debería ser finita, cosa que no ocurre, por tanto $e^{2/n}$ es irracional, para todo entero $n \ge 1$, en particular si n = 2 concluimos que e es, en efecto, irracional. Razonando

nuevamente por contradicción, si suponemos que $e^{1/n}$ es racional, como el producto de racionales es racional, $e^{1/n} \times e^{1/n} = e^{2/n}$ sería racional.

3. (\blacksquare) Realice una función en $Mathematica^{\circledR}$ llamada ArbolFarey[n] que muestre en pantalla la representación en forma del árbol de Stern-Brocot del conjunto Υ_n . Imprima ArbolFarey[11].

- ¿Cuántos elementos tiene por nivel el árbol de Stern-Brocot?
 Solución. Para el nivel n ≥ 2, el número de elementos es de Φ(n), la función Φ de Euler.
- 4. (\square) Implemente en $Mathematica^{\circledR}$ el algoritmo "Descenso por el árbol de Stern-Brocot" de manera que haga lo siguiente para un número n ingresado por el usuario:
 - Imprima la lista de las primeras n convergentes de la fracción continua
 - Imprima la fracción continua correspondiente a la última convergente en la lista.

- 5. (Otra visualización de la sucesiones de Farey)
 - a) Sean $\frac{a}{b}$ y $\frac{c}{d}$ fracciones en el intervalo [0, 1]. Considere el cuadrilátero formado por los vértices

$$\left(\frac{a}{b},\frac{1}{b}\right) \quad \left(\frac{c}{d},\frac{1}{d}\right) \quad \left(\frac{a}{b},\frac{0}{1}\right) \quad \left(\frac{c}{d},\frac{0}{1}\right)$$

¿Cúal es el punto de corte de las diagonales del cuadrilátero?

En base a este resultado, ¿cómo puede construir una representación de la sucesión de Farey?

Solución.

Figura 1: Cuadrilátero. Ref[1]

■ Probemos que el punto de intersección de las diagonales del cuadrilátero determinado por esos vértices es $(\frac{a+c}{b+d}, \frac{1}{b+d})$. En efecto, para verificar que $(\frac{a+c}{b+d}, \frac{1}{b+d})$ está en la línea entre $(\frac{a}{b}, 0)$ y $(\frac{c}{d}, \frac{1}{d})$ es suficiente demostrar que los segmentos desde $(\frac{a}{b}, 0)$ hasta $(\frac{a+c}{b+d}, \frac{1}{b+d})$ y desde $(\frac{a+c}{b+d}, \frac{1}{b+d})$ hasta $(\frac{c}{d}, \frac{1}{d})$ tienen la misma pendiente, estas son

$$\frac{\frac{1}{b+d} - 0}{\frac{(a+c)}{b+d} - \frac{a}{b}} \frac{b(b+d)}{b(b+d)} = \frac{b}{b(a+c) - a(b+d)} = \frac{b}{bc - ad}$$

У

$$\frac{\frac{1}{d} - \frac{1}{b+d}}{\frac{c}{d} - \frac{(a+c)}{b+d}} \frac{d(b+d)}{d(b+d)} = \frac{b+d-d}{c(b+d) - d(a+c)} = \frac{b}{bc - ad}$$

así, son iguales. De la misma manera funciona para la otra diagonal. Como $(\frac{a+c}{b+d}, \frac{1}{b+d})$ está en las dos diagonales y las diagonales solo se cruzan en un punto, entonces éste es el punto de intersección.

- Podemos representar las sucesiones de Farey de la siguiente manera: Construimos un cuadrado con longitud de lado igual a 1, en los extremos inferiores del cuadrado colocamos en orden los elementos de Υ₁. Por lo visto en el ítem a) si hallamos el punto de intersección de las diagonales entonces vamos a obtener la mediana como primera coordenada, este punto, lo proyectamos sobre el ejeX. Ahora tenemos el conjunto Υ₂; tomamos dos fracciones adyacentes y repetimos el proceso.
- b) (\square) Implemente un algoritmo en $Mathematica^{\circledR}$ que construya las sucesiones de Farey teniendo en cuenta el ítem a). Muestre la gráfica de Υ_{10} .

6. (Teorema de Dirichlet) Demuestre el siguiente teorema

Sea
$$\alpha \in \mathbb{R}$$
 y $n \in \mathbb{N}$. Entonces existe $p \in \mathbb{Z}$ y $q \in \{1, 2, ..., n\}$ tal que $\left|\alpha - \frac{p}{q}\right| < \frac{1}{qn}$.

(Ayuda: Tome en Υ_n las fracciones adyacentes más cercanas a α)

Solución. Es suficiente probar el teorema para $\alpha \in [0,1)$. Considere las sucesión de Farey de orden n. En Υ_n tomamos fracciones adyacentes $\frac{a}{b}$ y $\frac{c}{d}$ tal que $\frac{a}{b} \leq \alpha < \frac{c}{d}$. Entonces

$$\frac{a}{b} \leq \alpha < \frac{a+c}{b+d} \quad \text{ \'o } \quad \frac{a+c}{b+d} \leq \alpha < \frac{c}{d}$$

Una propiedad de la sucesión de Farey permite afirmar que

$$\left|\alpha - \frac{a}{b}\right| < \frac{a+c}{b+d} - \frac{a}{b} = \frac{bc - ad}{b(b+d)} = \frac{1}{b(b+d)}$$

en el primer caso, y

$$\left|\alpha - \frac{c}{d}\right| < \frac{c}{d} - \frac{a+c}{b+d} = \frac{bc - ad}{d(b+d)} = \frac{1}{d(b+d)}$$

en el segundo. Pero $b+d \ge n+1$, por lo tanto

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{b(n+1)} < \frac{1}{bn}$$

ó

$$\left|\alpha - \frac{c}{d}\right| < \frac{1}{d(n+1)} < \frac{1}{dn}$$

Si fijamos $\frac{p}{q} = \frac{a}{b}$ en el primer caso o $\frac{p}{q} = \frac{c}{d}$ en el segundo, obtenemos lo deseado.

7. Usando transformaciones fraccionarias lineales, encuentre el número al cuál converge la fracción $[\overline{1,2,3}]$. (Verifique su respuesta en $Mathematica^{\circledR}$)

Solución. Tomando $T(z) = \frac{2z+7}{3z+10}$ se puede verificar que esta transformación se ajusta al periodo de la fracción en la "triangle strip" correspondiente y por tanto basta solucionar la ecuación $\frac{2z+7}{3z+10} = z$ para hallar el número que estamos buscando.

Las soluciones de esta ecuación son $\frac{-4\pm\sqrt{37}}{3}$, y como se habia aclarado antes, la solución positiva es la correspondiente al número que estamos buscando, esto es, $z=\frac{-4+\sqrt{37}}{3}$.

▲

8. (Convergentes con sucesiones de Farey)

- a) Para los siguientes números construya las *convergentes* haciendo uso de las sucesiones de Farey y de la fracción continua del número
 - **24/67**

Solución. Podemos verificar con ayuda de $Mathematica^{\circledR}$ que 24/67 = [0, 2, 1, 3, 1, 4], de esta forma, comenzamos con las fracciones $b = \frac{1}{0}$ y $a = \frac{0}{1}$, inicializamos el conjunto de convergentes $\mathcal{C}_{24/67} = \{a\} = \{0\}$; iteramos dos veces el proceso $piv = a, a = a \oplus b, b = piv$ (donde $a \oplus b$ significa calcular la mediana de a y b) obteniendo $a = \frac{1}{1}$ y $a = \frac{1}{2}$, de esta manera, añadimos $\frac{1}{2}$ al conjunto de fracciones convergentes $\mathcal{C}_{24/67}$ quedando $\mathcal{C}_{24/67} = \{0, \frac{1}{2}\}$. Ahora, tomamos $a = \frac{1}{2}$ y $b = \frac{0}{1}$ e iteramos una vez el proceso $piv = a, a = a \oplus b, b = piv$ obteniendo $a = \frac{1}{3}$, este número lo añadimos a las convergentes así $\mathcal{C}_{24/67} = \{0, \frac{1}{2}, \frac{1}{3}\}$. Fijamos, $a = \frac{1}{3}$ y b = 1/2, si repetimos tres veces el proceso obtenemos que $a = \frac{2}{5}, \frac{3}{8}, \frac{4}{11}$, luego $\mathcal{C}_{24/67} = \{0, \frac{1}{2}, \frac{1}{3}, \frac{4}{11}\}$. Por el quinto número de la fracción continua de 24/67 iteramos el proceso $piv = a, a = a \oplus b, b = piv$ una vez derivando que $a = \frac{5}{14}$, así, $\mathcal{C}_{24/67} = \{0, \frac{1}{2}, \frac{1}{3}, \frac{4}{11}, \frac{5}{14}\}$. Finalmente,

¹Use la función ContinuedFraction[].

719/1001

Solución. La solución es análoga al primer ítem.

b) (②) Cree una función en $Mathematica^{\textcircled{\$}}$ la cuál dé como resultado la sucesión de convergentes haciendo uso de las sucesiones de Farey y pruebe su función con los números del ítem a). Compare con la función Convergents [].

Solución. Ver .nb

c) Pruebe que $\bigcup_{n=1}^{\infty} \Upsilon_n = \mathbb{Q}$.

Solución. Dado que todo número en $r \in \mathbb{Q}$ tiene una fracción continua finita, entonces el último término de la sucesión de convergentes asociada a este número es el mismo r, así, usando el algoritmo para encontrar la sucesión de convergentes de r por medio de la sucesión de Farey obtenemos que r pertenece a $\bigcup_{n=1}^{\infty} \Upsilon_n$.

9. (**Bonus opcional**) (**X**) Cree una función que muestre el camino en forma de zigzag de la sucesión de *convergentes* y, de nuevo, pruebe su función con los números del ítem a) del punto 8.

Solución. Ver .nb

10. ((Manipulate) (Pinball path approximation) Construya un programa que muestre en pantalla la aproximación a un número cualquiera por medio de sus convergentes en el diagrama de la sucesión de Farey construido con semicírculos (Ayuda: Use el teorema de la página 15 de [1]). Verifique que las convergentes de un número r son alternativamente menores y mayores que r. Muestre la aproximación de la ruta de pinball del número de Euler con un 6 grados de aproximación.

Solución. Ver .nb

[1] Hatcher, A. (n.d.). The Farey Diagram. In Topology of Numbers (1st ed., Vol. 1,

- [1] Hatcher, A. (n.d.). The Farey Diagram. In Topology of Numbers (1st ed., Vol. 1, p. 44). Cornell University. https://pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
- [2] Borwein, J., van der Poorten, A., Shallit, J., & Zudilin, W. (2014). Neverending fractions: An introduction to continued fractions. Cambridge University Press. https://doi.org/10.1017/CBO9780511902659