| CET 323     | Van Nguyen | LAB_05_ Differential Amplifiers  |  |
|-------------|------------|----------------------------------|--|
| CET 323 LAB | Name       | Van Nguyen                       |  |
| Dr. Park    | Date       | October 20 <sup>th</sup> , 2020. |  |
|             | Class      | CET 323_01                       |  |

## LAB\_05

# **Differential Amplifiers**

### Reading

Floyd, Electronic Devices, Ninth Edition, Chapter 10.

### **Key Objectives**

<u>Part 1</u>: Construct and test a discrete differential Amplifiers with current-source biasing → Multisim Simulation.

## **Components needed**

### Part 1: The differential Amplifiers.

**Resistor** : Two 100  $\Omega$  , one 4.7  $k\Omega$  , three 10  $k\Omega$  , one 33  $k\Omega$  , two 100  $k\Omega$  .

Transistors: three 2N3904

**Capacitors**: Two 10  $\mu$ F.

| CET 323 | Van Nguyen | LAB_05_ Differential Amplifiers |
|---------|------------|---------------------------------|
|         |            |                                 |

Part 1: The differential Amplifiers.

1. Measure and record the values of the resistors listed in the Table 12-2. Best result can be obtained if R<sub>B1</sub> and R<sub>B2</sub> are matched.

**Table 12\_1** 

| Resistors       | Listed Value | Measured Value |
|-----------------|--------------|----------------|
| R <sub>B1</sub> | 100 kΩ       |                |
| R <sub>B2</sub> | 100 kΩ       |                |
| R <sub>E1</sub> | 100 Ω        |                |
| R <sub>E2</sub> | 100 Ω        |                |
| RT              | 10 kΩ        |                |
| R <sub>C2</sub> | 10 kΩ        |                |

**Table 12\_2** 

| DC Parameter       | Computed Value | Measured Value |
|--------------------|----------------|----------------|
| $V_{A}$            | - 1 V          | - 0.92 V       |
| $ m I_T$           |                | -1.4 mA        |
| $I_{E1} = I_{E2}$  |                | - 708 μΑ       |
| V <sub>C(Q1)</sub> |                | 15 V           |
| V <sub>C(Q2)</sub> |                | 8.148          |



1)- The value measured to obtain from the LTSpice simulation of Figure 12\_1

Since both collector currents have  $V_{\textbf{C}(\textbf{Q1})}$  and  $V_{\textbf{C}(\textbf{Q2})}$  as output and

IF both collector resistances are equal (when the input voltage  $(V_{S(off)})$  is 0) then  $V_{C(Q1)} = V_{C(Q2)}$ 

**BUT** at the output of Q<sub>1</sub> there is no resistor R<sub>C1</sub>, so  $V_{C(Q1)} = V_{CC} = 15 \text{ V}$  and  $V_{C(Q2)} = V_{out}$ 



| CET 323 Van Nguyen LAB_05_ Differential Amplifiers |
|----------------------------------------------------|
|----------------------------------------------------|

# II/- Compute and record the ac parameters given in Table 12\_3

**Table 12\_3** 

| AC Parameter                              | Computed Value           | Measured Value |
|-------------------------------------------|--------------------------|----------------|
| $V_{b(Q1)}$                               | $100 \mathrm{\ mV_{pp}}$ | 99.49 mV       |
| $V_{\mathbf{A}}$                          |                          | 50.15 mV       |
| $R_{e(\mathbf{Q1})} = r_{e(\mathbf{Q2})}$ |                          |                |
| AV(d)                                     |                          | 35.2           |
| V <sub>cQ2</sub> (output)                 |                          | 3.5 V          |
| R <sub>in(tot)</sub>                      |                          |                |
| Ac(cm)                                    |                          | 0.487          |
| CMRR'                                     |                          | 37.18 dB       |



CET 323 Van Nguyen LAB\_05\_ Differential Amplifiers

### 1) Measured Value $V_{b(Q1)} = 99.49 \text{ mV}$



### 2) Measured Value $V_A = 50.15 \text{ mV}$



**CET 323** 

Van Nguyen

LAB\_05\_ Differential Amplifiers

જે×જ

3) Computed Value 
$$A_{V(d)} = \frac{V_{out}}{V_{in}} = \frac{V_{out}}{V_{b(Q1)}} = \frac{3500 \text{ mV}}{99.49 \text{ mV}} = 35.2$$

 $\diamond$  Measured Value  $V_{out} = 3.5 V$ 



CET 323 Van Nguyen LAB\_05\_ Differential Amplifiers

4) Computed Value 
$$A_{V(d)} = \frac{V_{out}}{V_{in}} = \frac{V_{out}}{V_{b(Q_1)}} = \frac{48.5 \text{ mV}}{99.4 \text{ mV}} = 0.487$$

• Measured Value  $V_{out} = 48.5 \text{ mV}$ 



| CET 323 | Van Nguyen | LAB_05_ Differential Amplifiers |
|---------|------------|---------------------------------|
|---------|------------|---------------------------------|

&×€

• Measured Value  $V_{b(Q1)} = 99.4 \text{ mV}$ 



1. CMRR' is the decibel common-mode rejection ratio (indicated with the prime symbol). It is 20 times the Logarithmic ratio of absolute value of the ratio of  $A_{v(d)}$  to  $A_{v(em)}$ , expressed in dB. In equation, this is

$$\textit{CMRR}' = 20log \; \frac{\mid A_{v(d)} \mid}{\mid A_{v(cm)} \mid}$$

$$CMRR' = 20 log \frac{|A_{v(d)}|}{|A_{v(cm)}|} = 20 log \frac{35.2}{0.487} = 37.18 dB$$

 $\Rightarrow$ 

CMRR = 37.18 dB

& **H**≪

9. Measure the common-mode gain with the constant- current source. Observation

5) Computed Value 
$$A_{V(d)} = \frac{V_{out}}{V_{in}} = \frac{V_{out}}{V_{b(Q1)}} = \frac{1.9 \,\mu\text{V}}{99.5 \,\mu\text{V}} = 0.019$$

• Measured Value  $V_{out} = 1.9 \mu V$ 



| CET 323 | Van Nguyen | LAB_05_ Differential Amplifiers |
|---------|------------|---------------------------------|
|---------|------------|---------------------------------|

#### **∂**

• Measured Value  $V_{b(Q1)} = 99.5 \mu V$ 



### ✓ Observation and Compare



