PadhAl: 6 Jars of Sigmoid Neuron

One Fourth Labs

Dealing with more than 2 parameters

What happens when we have more than 2 parameters

1. Consider the following dataset

ER_visits	Narcotics	Pain	TotalVisits
0	2	6	11
1	1	4	25
0	0	5	10
1	3	5	7

- 2. Then.
 - a. $z = \sum_{i=1}^{n} w_i x_i$

b. Or
$$z = (w_1 * ER_visits) + (w_2 * Narcotics) + (w_3 * Pain) + (w_4 * TotalVisits) + b$$

c.
$$\hat{y} = \frac{1}{1 + e^{-z}}$$

- 3. So the algorithm is as follows
 - a. Initialise: w_1 , w_2 , w_3 , w_4 and b randomly
 - b. Iterate over data
 - i. Compute ŷ
 - ii. Compute L(w,b)
 - iii. $W_1 = W_1 \eta \Delta W_1$
 - iv. $W_2 = W_2 \eta \Delta W_2$
 - $v. \qquad w_3 = w_3 \eta \Delta w_3$
 - vi. $W_4 = W_4 \eta \Delta W_4$
 - vii. $b = b + \eta \Delta b$
 - viii. Where $\Delta w_j = \sum_{i=1}^{m} (\hat{y} y) * (\hat{y}) * (1 \hat{y}) * x_{ij}$
 - c. Till satisfied
 - i. Number of epochs is reached (ie 1000 passes/epochs)
 - ii. Continue till Loss $< \varepsilon$ (some defined value)
 - iii. Continue till Loss(w,b)_{t+1} \approx Loss(w,b)_t
 - d. A few of the functions from the code also change, namely

```
def f(w, b, x):
    #Sigmoid with parameters w and b
    #Here we do a dot product between vector w and x
    return 1.0 / (1.0 + np.exp(-(np.dot(w, x) + b)))

def grad_w_i(w, b, x, y, i):
    #Here we add i to denote the i-th feature of
    fx = f(w, b, x)
    return (fx - y) * fx * (1 - fx) * x[i]
```

e. The function do_grad_descent also changes, but we will figure it out in the practical implementation