Universidade Federal do Ceará

Departamento de Computação

Disciplina: Métodos Numéricos

Prof. João Paulo do Vale Madeiro

Aula Prática 03 – Raízes de Equações (Métodos da Falsa Posição e Ponto Fixo)

1- Encontre a menor raiz positiva da função $x^2|cos\sqrt{x}|=5$ (x está em radianos) usando o método da falsa posição. Para localizar a região na qual estão as raízes, inicialmente trace a função para valores de x entre 0 e 5. Faça os cálculos até que ϵ_a fique abaixo de $\epsilon_s=1\%$. Verifique sua resposta final substituindo-a na função original.

2 - Água está escoando em um canal trapezoidal a uma vazão de Q=20m³/s. A profundidade crítica y para tal canal deve satisfazer a equação $0=1-\frac{Q^2}{gA_c^2}B$

em que $g=9.81 \, m/s^2$, A_c é a área da seção transversal (m^2), e B é a largura do canal na superfície (m). Para esse caso, a largura e a área transversal podem ser relacionadas à profundidade y por

$$B=3+y$$

$$A_c = 3y + \frac{y^2}{2}$$

Encontre a profundidade crítica usando a falsa-posição. Use aproximações iniciais de x_i =0,5 e x_u =2,5. Itere até que o erro aproximado fique abaixo de 1% ou que o número de iterações ultrapasse 10.

3 – Considere o problema de encontrar o zero da função $f(x) = x \cdot e^x - 10$. Uma maneira geral de construir um problema de ponto fixo equivalente é o seguinte:

$$f(x) = 0 \Rightarrow \alpha f(x) = 0 \Rightarrow x - \alpha f(x) = x$$
, para qualquer parâmetro $\alpha \neq 0$.

Consideremos, então, as seguintes duas funções:

$$g_1(x) = x - 0.5$$
. $f(x)$ e $g_2(x) = x - 0.05$. $f(x)$

Utilizando código em Python, construa as iterações de ponto fixo $x_1^{(n+1)}=g_1\Big(x_1^{(n)}\Big)$ e $x_2^{(n+1)}=g_2\Big(x_2^{(n)}\Big)$, tomando $x_1^{(1)}=x_2^{(1)}=1$, 7. Itere as respectivas funções e verifique a convergência.

4) Mostre que a equação $x.e^x = 10$ é equivalente às seguintes equações:

$$x = \ln\left(\frac{10}{x}\right) e x = 10.e^{-x}.$$

Destas, considere as seguintes iterações de ponto fixo:

$$a) x^{(n+1)} = ln\left(\frac{10}{x^{(n)}}\right)$$

b)
$$x^{(n+1)} = 10.e^{-x^{(n)}}$$

Tomando $x^{(1)} = 1$, verifique se estas sequências são convergentes.