

Red Wine Quality Analysis

Multivariate Data Analysis Prof. David Belanger

Siddhesh Powar Shreyas Sawant Neel Nath

Contents

- 1)Overview
- 2) Project Summary
- 3) Data Understanding
- 4) Data Quality Check & Cleaning
- 5) Correlation Matrix
- 6) Classification
- 7) Plot and Plot analysis of factors
- 8) Linear Discriminant Analysis
- 9) Naïve Bayes
- 10) Random Forest
- 11) Conclusion
- 12) References

Overview

- Analyze the quality of the wine.
- The overall scope of this analysis is to comprehend the relationship of various parameters that impact the quality ratings for the wine.
- In this analysis we are trying to understand and perform the following:
- Determining the factors responsible for the change in the quality of the wine.
- Correlation of all the factors.
- Creating, training and testing different classification models which can predict the quality of the wine if a new dataset is added based on our current dataset.

<u>Project Summary</u>

> Data Source:

- The dataset contains information of the factors which determine the quality of the Red Wine.
- Dataset available on Kaggle.com

Project Objective:

- The objective of this project is to determine how the quality of the red wine gets affected by the different parameters.
- Finding correlation between different parameters which affect the wine quality.
- Classification of our dataset to categorize the quality of wine between good, average and bad.
- Building, training, testing and comparing different classification models to better predict the quality of the wine.

Data understanding

- The dataset has 1599 observations and 12 variables.
- Quality is the Dependent variable.
- All other 11 variables are independent variables based on which wine quality is tested.
- Following is a list of variables in the dataset:

Variables Numbers	Variable Type / Description	Variable names
1-3	Red wine acid composition and concentration	fixed_acidity, volatile_acidity and citric_acid
4-10	Other components of Red Wine.	residual_sugar, chlorides, free_sulfur_dioxide, total_sulfur_dioxide, density, pH and sulphates.
11	The alcohol content of the red wine	alcohol
12	Quality of the wine	quality

Data Quality Check and Cleaning

Data Cleaning

- We removed the null values in the dataset.
- Tried locating the inaccurate data or an outlier.
- Removed the redundancies and considered only the unique rows.

Data Splitting

- We randomly split the dataset into training and testing datasets.
- Training dataset contains <u>1120</u> observations(70%)
- Testing dataset contains <u>479</u> observations (30%)

Correlation Matrix

^	fixed_acidity	volatile_acidity	citric_acid =	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide	density	pH ÷	sulphates	alcohol	quality
fixed_acidity	1.00000000	-0.256130895	0.67170343	0.114776724	0.093705186	-0.153794193	-0.11318144	0.66804729	-0.68297819	0.183005664	-0.06166827	0.12405169
volatile_acidity	-0.25613089	1.000000000	-0.55249568	0.001917882	0.061297772	-0.010503827	0.07647000	0.02202623	0.23493729	-0.260986685	-0.20228803	-0.39055778
citric_acid	0.67170343	-0.552495685	1.00000000	0.143577162	0.203822914	-0.060978129	0.03553302	0.36494718	-0.54190414	0.312770044	0.10990325	0.2263725
residual_sugar	0.11477672	0.001917882	0.14357716	1.000000000	0.055609535	0.187048995	0.20302788	0.35528337	-0.08565242	0.005527121	0.04207544	0.01373164
chlorides	0.09370519	0.061297772	0.20382291	0.055609535	1.000000000	0.005562147	0.04740047	0.20063233	-0.26502613	0.371260481	-0.22114054	-0.12890656
free_sulfur_dioxide	-0.15379419	-0.010503827	-0.06097813	0.187048995	0.005562147	1,000000000	0.66766645	-0.02194583	0.07037750	0.051657572	-0.06940835	-0.05065606
total_sulfur_dioxide	-0.11318144	0.076470005	0.03553302	0.203027882	0.047400468	0.667666450	1.00000000	0.07126948	-0.06649456	0.042946836	-0.20565394	-0.18510029
density	0.66804729	0.022026232	0.36494718	0.355283371	0.200632327	-0.021945831	0.07126948	1.00000000	-0.34169933	0.148506412	-0.49617977	-0.17491923
pH	-0.68297819	0.234937294	-0.54190414	-0.085652422	-0.265026131	0.070377499	-0.06649456	-0.34169933	1.00000000	-0.196647602	0.20563251	-0.05773139
sulphates	0.18300566	-0.260986685	0.31277004	0.005527121	0.371260481	0.051657572	0.04294684	0.14850641	-0.19664760	1.000000000	0.09359475	0.25139708
alcohol	-0.06166827	-0.202288027	0.10990325	0.042075437	-0.221140545	-0.069408354	-0.20565394	-0.49617977	0.20563251	0.093594750	1.00000000	0.47616632
quality	0.12405165	-0.390557780	0.22637251	0.013731637	-0.128906560	-0.050656057	-0.18510029	-0.17491923	-0.05773139	0.251397079	0.47616632	1.00000000

- This is the correlation matrix for the factors of the dataset.
- Certain factors such as density and fixed acidity were strongly correlated while few others were not.

Directly Proportional

Citric Acid

Inversely Proportional

Chlorides

Volatile Acidity

Plot Analysis (OBSERVATIONS)

- Comparison of Fixed Acidity, Residual Sugar and Free Sulphur Oxide with Quality did not give us any clear view.
- Volatile Acidity and Chloride levels depreciate as Quality increases.
- Alcohol and Citric Acid show an Upwards trend (Directly proportional) when compared to the quality.

Classification of the wine dataset based on the quality

- Quality ranges from 1 to 8
- Thus, we classified the data into three categories based on the quality which are good, bad and average.
- The wines with quality lesser than 5
 are classified as bad, lesser than 7
 but greater than 5 are classified as
 average and quality 8 is classified
 as a good wine.
- We have created a bar plot to observe the number of good, bad and average quality of wines.
- We can observe that average quality of wines is significantly more than the good and the bad ones.

Linear Discriminant Analysis

- Linear Discriminant Analysis is used to classify individual objects into two or more groups on the basis of measurements.
- We built a model on our Training dataset to classify the quality of wine as bad, average and good.
- Considering our comparatively small dataset we got a higher accuracy as we predicted using the test dataset.
- The accuracy of predicting the quality of wine if new data is added 97.70355%.

```
Coefficients of linear discriminants:
                                   LD1
                                                  LD2
fixed_acidity
                         -0.143519549
                                        -0.245075790
volatile_acidity
                         -0.166581224
                                        -2.427814428
citric_acid
                         -0.625620820
                                        -0.949498064
residual_sugar
                         -0.104637659
                                        -0.073851997
chlorides.
                          0.381468801
                                        -1.267066073
free_sulfur_dioxide
                          0.004161471
                                        -0.010871988
total_sulfur_dioxide
                          0.000504987
                                         0.008917571
density
                        132.035440231 239.379394495
pH
                         -0.920553112
                                        -1.930447044
sulphates
                         -0.511502461
                                        -0.788526435
alcohol
                         -0.103215002
                                         0.037711194
quality.L
                         -9.040389409
                                         6.455084465
quality.Q
                          5.994491749
                                         3.087005867
quality.C
                         -4.015783824
                                         1.867160312
quality^4
                          5.191382138
                                         2.673425502
quality^5
                         -0.701102324
                                         0.652550737
Proportion of trace:
    LD1
           LD2
0.8866 0.1134
> lda_table <- table(lda_classValues, test$rating)</pre>
> lda_table
lda_classValues bad average good
       bad
               19
       average
       good
> accur <- sum(diag(lda_table)/sum(lda_table))*100
> accur
[1] 97,70355
> plot(lda_dataset)
```

<u>Naïve Bayes</u>

- Naive Bayes is a simple technique for constructing classifiers: models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set.
- According to our analysis, the error rate for Naïve Bayes is 0.02087% and accuracy rate is 97.91232%.
- An advantage of Naive Bayes is that it only requires a small number of training data to estimate the parameters necessary for classification.
- We can also see the confusion matrix.

```
[1] "Error rate is"
> NB_error_rate
[1] 0.02087683
> accuracy <- 1- NB_error_rate
> print("Accuracy is")
[1] "Accuracy is"
> accuracy*100
[1] 97.91232
```

```
bad 23 5 0
average 1 398 0
good 2 2 48
```

Random Forest

- Random forests or random decision forests are an ensemble learning method for classification, regression, and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees.
- Accuracy = 99.79 %
- So far Random Forest is the best model for prediction of wine quality depending on the factors.

```
> summary(prediction)
              Length Class
                           Mode
call
                    -none-
                           call
type
                    -none-
                           character
predicted
              1120
                    factor
                           numeric
err.rate
              4000
                    -none-
                           numeric
confusion
               12
                    -none-
                           numeric
              3360
                    matrix numeric
votes
oob.times
              1120
                    -none- numeric
classes
                    -none-
                           character
                    -none-
importance
                           numeric
importanceSD
                48
                    -none-
                           numeric
localImportance
                    -none-
                           NULL
proximity
                    -none-
                           NULL
                    -none-
                           numeric
ntree
                    -none- numeric
mtry
forest
                    -none-
                           list
              1120
                    ordered numeric
test
                           NULL
inbag
                           NULL
                          call
> RF_error_rate*100
      0.2087683
> accur<- 1- RF_error_rate
> print("Accuracy is")
[1] "Accuracy is"
> accur*100
[1] 99.79123
```

Conclusion

- We performed several different analysis to predict the quality of wine if a new dataset is added using different classification models.
- After classifying our Dataset based on the quality we observed that majority of the wines fall in the average category.
- Based on our observations we could observe that Alcohol and citric acid are directly proportional to the wine quality, whereas factors like Volatile acidity and Chlorides are inversely proportional.
- To which we can conclude that comparatively increasing the alcohol and citric acid content in the wine can give us a better quality of the wine. Also, this works inversely for the factors like Volatile acidity and Chlorides.
- After comparing different classifiers to predict the accuracy if a new data is added, we could conclude that Random Forest works best for predicting the wine quality based on our dataset.

<u>References</u>

- https://www.kaggle.com/
- http://www.rdatamining.com/docs/regression-and-classification-with-r

Thank You