Performance Optimization of LSTM Training on GPU

Haibin Lin, Yiming Wu
Parallel Computer Architecture and Programming, 15-418

Speed Up LSTM Training on GPU

What is LSTM

Long Short Term Memory networks (LSTMs) – a special recurrent neural network capable of learning long-term dependencies.

LSTM can learn long-term dependencies by using previous output as the next input. Based on previous words, it can predict next word to be 'Fun'

LSTM training procedure

Padding data brings in unnecessary work

Padding data brings in unnecessary work

Ideal workload:

4 + 8 + 3 + 7 = 22 words

Padded workload:

8 + 8 + 7 + 7 = 30 words ~ 36% more works

Bucketing: Gathering sequences of similar length

Ideal workload:

$$4 + 8 + 3 + 7 = 22$$
 words

Bucketing workload:

$$8 + 8 + 4 + 4 = 24$$
 words ~ ideal

Auto-generate buckets greedily to ensure similar lengths based on input

Auto-generating buckets from data gets the best speed up

- * We trained 8-layer LSTM on PennTree Bank dataset with one GTX750
- * Static bucketing means a user specified fixed bucketing configuration
- * 3.3x faster with autogen bucketing compared to no bucketing

Speed Up LSTM Training on Multiple GPUs

LSTM training procedure

Speed Up LSTM Training on Multiple GPUs

"Data Parallel"

LSTM training procedure with DP

DP 101: Data is the primitive

Centralized Parameter Storage

DP 101: Data is the primitive

DP gains some speedup on multi-GPU...

^{*} Trained 8-layer LSTM with PennTree Bank dataset, with 1-4 GTX750 on single machine

DP gains some speedup on multi-GPU...

^{*} Experiment with no computation and only communication

Speed Up LSTM Training on Multiple GPUs

"Model Parallel"

LSTM training procedure with MP

MP 101: Using multi GPU as a pipeline

MP 101: Using multi GPU as a pipeline

* **2.3x** speedup with 4 GTX750 on single machine

Combining MP with Bucketing

* **5.3x** speedup with 4 GTX750 and bucketing on single machine

Conclusion: MP is better in training LSTM on multi GPU

	Data Parallelism	Model Parallelism
Communication Cost	High	Low
Workload Balance	Balanced	Requires insight of both ML and System
Converge Speed	Slower	Faster

Q&A

MP requires good knowledge of workload

Converge Time of MP and DP

DP does not scale well on multi-GPU

^{*} Experiment with no computation and only communication

Increasing computation intensity helps DP a little

