1. Do the following series converge or diverge?

$$(a) \sum_{n=0}^{\infty} \frac{1}{n^2+6}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2-6}$$

(c)
$$\sum_{n=1}^{\infty} \frac{3}{n-\frac{2}{3}}$$

$$(d) \sum_{n=1}^{\infty} \frac{1}{6n+27}$$

(e)
$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n^2}$$

$$(f) \sum_{n=1}^{\infty} \frac{n+1}{n^3+n+1}$$

- 2. If \(\sum_{n=1}^{\infty} \) an is convergent with an 70 for all n,

 - (a) Must $\sum_{n=1}^{\infty} a_n^2$ converge? (b) Must $\sum_{n=1}^{\infty} \sqrt{a_n}$ converge?

Comparison test Suppose Σ an and Σ bn are series with positive terms, OS an S bn for all n.

If Σ an diverges, then Σ bn diverges.

If Σ bn converges, then Σ an converges.

Limit comparison test Suppose \(\tan \) and \(\tan \) and series with positive terms. If \(\text{lim} \) \(\text{and not } \infty \) \(\text{lim} \) \(\text{lim} \) \(\text{bn} \) \(\text{exists} \) \(\text{and } \text{converges} \) \(\text{then} \) \(\text{Zan converges} \) \(\text{f} \) \(\text{and only if } \(\text{Zbn converges} \) \(\text{then} \) \(\text{Zan converges} \) \(\text{f} \) \(\text{and only if } \(\text{Zbn converges} \) \(\text{f} \)