ESTIMATES FOR THE CONCENTRATION FUNCTIONS IN THE LITTLEWOOD-OFFORD PROBLEM

YULIA S. ELISEEVA¹, FRIEDRICH GÖTZE², AND ANDREI YU. ZAITSEV^{1,2,3}

ABSTRACT. Let X, X_1, \ldots, X_n be independent identically distributed random variables. In this paper we study the behavior of the concentration functions of the weighted sums $\sum_{k=1}^{n} a_k X_k$ with respect to the arithmetic structure of coefficients a_k . Such concentration results recently became important in connection with investigations about singular values of random matrices. In this paper we formulate and prove some refinements of a result of Vershynin (2011).

1. Introduction

Let X, X_1, \ldots, X_n be independent identically distributed (i.i.d.) random variables with common distribution $F = \mathcal{L}(X)$. The Lévy concentration function of a random variable X is defined by the equality

$$Q(F,\lambda) = \sup_{x \in \mathbf{R}} F\{[x, x + \lambda]\}, \quad \lambda > 0.$$

Let $a = (a_1, \ldots, a_n) \in \mathbf{R}^n$. In this paper we study the behavior of the concentration functions of the weighted sums $S_a = \sum_{k=1}^n a_k X_k$ with respect to the arithmetic structure of coefficients a_k . Refined concentration results for these weighted sums play an important role in the study of singular values of random matrices (see, for instance, Nguyen and Vu [14], Rudelson and Vershynin [17], [18], Tao and Vu [19], [20], Vershynin [21]). In this context the problem is referred to as the Littlewood–Offord problem.

In the sequel, let F_a denote the distribution of the sum S_a , and let G be the distribution of the symmetrized random variable $\widetilde{X} = X_1 - X_2$. Let

$$M(\tau) = \tau^{-2} \int_{|x| \le \tau} x^2 G\{dx\} + \int_{|x| > \tau} G\{dx\} = \mathbf{E} \min\{\widetilde{X}^2/\tau^2, 1\}, \quad \tau > 0.$$
 (1)

The symbol c will be used for absolute positive constants. Note that c can be different in different (or even in the same) formulas. We will write $A \ll B$ if $A \leq cB$. Also we will write

¹⁹⁹¹ Mathematics Subject Classification. Primary 60F05; secondary 60E15, 60G50.

Key words and phrases. concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.

¹Research supported by grant RFBR 10-01-00242.

²Research supported by the SFB 701 in Bielefeld.

³Research supported by grant RFBR 11-01-12104 and by the Program of Fundamental Researches of Russian Academy of Sciences "Modern Problems of Fundamental Mathematics".

 $A \simeq B$ if $A \ll B$ and $B \ll A$. For $x = (x_1, \dots, x_n) \in \mathbf{R}^n$ we will denote $||x||^2 = x_1^2 + \dots + x_n^2$ and $||x||_{\infty} = \max_i |x_i|$.

The elementary properties of concentration functions are well studied (see, for instance, [2], [10], [15]). In particular, it is obvious that $Q(F, \mu) \leq (1 + \lceil \mu/\lambda \rceil) Q(F, \lambda)$, for any $\mu, \lambda > 0$, where $\lceil x \rceil$ is the integer part of a number x. Hence,

$$Q(F, c\lambda) \simeq Q(F, \lambda)$$
 (2)

and

if
$$Q(F,\lambda) \ll B$$
, then $Q(F,\mu) \ll B(1+\mu/\lambda)$. (3)

The problem of estimating the concentration function of weighted sums S_a under different conditions on the vector $a \in \mathbb{R}^n$ and distributions of summands has been studied in [9], [14], [17], [18], [19], [20]. Eliseeva and Zaitsev [4] have obtained some improvements of the results [9] and [18]. In this paper we formulate and prove similar refinements of a result of Vershynin [21].

The result of Vershynin [21], related to the Littlewood–Offord problem, is formulated as follows. Let $\log_+(x) = \max\{0, \log x\}$.

Proposition 1. Let X, X_1, \ldots, X_n be i.i.d. random variables and $a = (a_1, \ldots, a_n) \in \mathbf{R}^n$ with ||a|| = 1. Assume that there exist positive numbers τ, p, K, L, D such that $Q(\mathcal{L}(X), \tau) \leq 1 - p$, $\mathbf{E} |X| \leq K$, and

$$||ta - m|| \ge L\sqrt{\log_+(t/L)} \quad \text{for all } m \in \mathbf{Z}^n \text{ and } t \in (0, D].$$
 (4)

If $L^2 \geq 1/p$, then

$$Q\left(F_a, \frac{1}{D}\right) \le \frac{CL}{D},\tag{5}$$

where the quantity C depends on τ, p, K only.

Corollary 1. Let the conditions of Proposition 1 be satisfied. Then, for any $\varepsilon \geq 0$,

$$Q(F_a, \varepsilon) \ll C L \left(\varepsilon + \frac{1}{D}\right).$$
 (6)

It is clear that if

$$0 < D \le D(a) = D_L(a) = \inf \left\{ t > 0 : \operatorname{dist}(ta, \mathbf{Z}^n) < L\sqrt{\log_+(t/L)} \right\}, \tag{7}$$

where

$$dist(ta, \mathbf{Z}^n) = \min_{m \in \mathbf{Z}^n} || ta - m || = \sum_{k=1}^n \min_{m_k \in \mathbf{Z}} |ta_k - m_k|^2,$$

then condition (4) holds. In Vershynin [21] the quantity D(a) is called the least common denominator of the vector $a \in \mathbf{R}^n$ (see also Rudelson and Vershynin [17] and [18] for similar definitions).

Note that for $|t| \leq 1/2 ||a||_{\infty}$ we have

$$\left(\operatorname{dist}(ta, \mathbf{Z}^n)\right)^2 = \sum_{k=1}^n |ta_k|^2 = ||a||^2 t^2 = t^2.$$
 (8)

By definition, D(a) > L. Moreover, equality (8) implies that $D(a) \ge 1/2 ||a||_{\infty}$ (see Vershynin [21], Lemma 6.2).

Note that the statement of Corollary 1 with D = D(a) is the version of the concentration result for the Littlewood–Offord problem as formulated in [21]. Proposition 1 seems to be more natural formulation which implies Corollary 1 using relations (3) and (7).

In the formulation of Proposition 1, w.l.o.g. we can replace assumption (4) by the following:

$$||ta - m|| \ge f_L(t)$$
 for all $m \in \mathbf{Z}^n$ and $t \in \left[\frac{1}{2||a||_{\infty}}, D\right]$, (9)

where

$$f_L(t) = \begin{cases} t/6, & \text{for } 0 < t < eL, \\ L\sqrt{\log(t/L)}, & \text{for } t \ge eL. \end{cases}$$
 (10)

Indeed, if $t \ge eL$, this follows from assumption (4). If 0 < t < eL and there exists an $m \in \mathbb{Z}^n$ such that ||ta-m|| < t/6, then, denoting $k = \lceil eL/t \rceil + 1$, we have $tk \ge eL$ and $||tka-km|| < tk/6 \le 2eL/6 < L \le L\sqrt{\log_+(tk/L)}$. Since $km \in \mathbb{Z}^n$, we have $D \le D(a) \le tk \ll L$ and the required inequality (5) is a trivial consequence of $Q(F_a, 1/D) \le 1$.

Note that equality (8) justifies why the assumption $t \ge 1/2 \|a\|_{\infty}$ in condition (9) is natural. For $0 < t < 1/2 \|a\|_{\infty}$, inequality (9) is satisfied automatically.

It seems that the least common denominator $D^*(a)$ should be defined as

$$D^*(a) = \inf \Big\{ t > 0 : \operatorname{dist}(ta, \mathbf{Z}^n) < f_L(t||a||) \Big\}.$$
 (11)

This definition will be also used below in the case when $||a|| \neq 1$. Obviously,

$$D^*(\lambda a) = D^*(a)/\lambda, \quad \text{for any } \lambda > 0,$$
 (12)

and equality (8) implies also that $D^*(a) \ge 1/2 ||a||_{\infty}$.

Now we formulate the main result of this paper.

Theorem 1. Let X, X_1, \ldots, X_n be i.i.d. random variables. Let $a = (a_1, \ldots, a_n) \in \mathbf{R}^n$ with ||a|| = 1. Assume that condition (9) is satisfied. If $L^2 \geq 1/M(1)$, where the quantity M(1) is defined by formula (1), then

$$Q\left(F_a, \frac{1}{D}\right) \ll \frac{1}{D\sqrt{M(1)}}. (13)$$

Let us reformulate Theorem 1 for arbitrary a, without assuming that ||a|| = 1.

Corollary 2. Let the conditions of Theorem 1 be satisfied with condition (9) replaced by the condition

$$||ta - m|| \ge f_L(t||a||)$$
 for all $m \in \mathbf{Z}^n$ and $t \in \left[\frac{1}{2||a||_{\infty}}, D\right]$, (14)

and without the assumption ||a|| = 1. If $L^2 \ge 1/M(1)$, then

$$Q\left(F_a, \frac{1}{D}\right) \ll \frac{1}{\|a\|D\sqrt{M(1)}}$$

The proofs of our Theorem 1 and Corollary 2 are similar to the proof of the main results of Eliseeva and Zaitsev [4]. They are in some sense more natural than the proofs in Vershynin [21], since they do not use unnecessary assumptions like $\mathbf{E} |X| \leq K$. This is achieved by an application of relation (42). Our proof differs from the arguments used in [9], [18] and [21] since we rely on methods introduced by Esséen [6] (see the proof of Lemma 4 of Chapter II in [15]).

Now we reformulate Corollary 2 for the random variables X_k/τ , $\tau > 0$.

Corollary 3. Let $V_{a,\tau} = \mathcal{L}(\sum_{k=1}^n a_k X_k/\tau)$, $\tau > 0$. Then, under the conditions of Corollary 2 with the condition $L^2 \geq 1/M(1)$ replaced by the condition $L^2 \geq 1/M(\tau)$, we have

$$Q\left(V_{a,\tau}, \frac{1}{D}\right) = Q\left(F_a, \frac{\tau}{D}\right) \ll \frac{1}{\|a\|D\sqrt{M(\tau)}}.$$
 (15)

In particular, if ||a|| = 1, then

$$Q\left(F_a, \frac{\tau}{D}\right) \ll \frac{1}{D\sqrt{M(\tau)}}.$$
 (16)

For the proof of Corollary 3, it suffices to use relation (1).

It is evident that $M(\tau) \gg 1 - Q(G,\tau) \geq 1 - Q(F,\tau) \geq p$, where p is introduced in Proposition 1. Note that $M(\tau)$ can be essentially larger than p. For example, p may be equal to 0, while $M(\tau) > 0$ for any non-degenerate distribution $F = \mathcal{L}(X)$. Comparing the bounds (5) and (16), we see that the factor L is replaced by the factor $1/\sqrt{M(\tau)}$ which can be essentially smaller than L under the conditions of Corollary 3. Moreover, there is an unnecessary assumption $\mathbf{E}|X| \leq K$ in the formulation of Proposition 1. Finally, the dependence of constants on the distribution $\mathcal{L}(X)$ is stated explicitly, with absolute contants in the formulation. An improvement of Corollary 1 is given below in Theorem 2.

We recall now the well-known Kolmogorov-Rogozin inequality [16] (see [2], [10] and [15]).

Proposition 2. Let Y_1, \ldots, Y_n be independent random variables with the distributions $W_k = \mathcal{L}(Y_k)$. Let $\lambda_1, \ldots, \lambda_n$ be positive numbers such that $\lambda_k \leq \lambda$, for $k = 1, \ldots, n$. Then

$$Q\left(\mathcal{L}\left(\sum_{k=1}^{n} Y_{k}\right), \lambda\right) \ll \lambda \left(\sum_{k=1}^{n} \lambda_{k}^{2} \left(1 - Q(W_{k}, \lambda_{k})\right)\right)^{-1/2}.$$
(17)

Esséen [6] (see [15], Theorem 3 of Chapter III) has improved this result. He has shown that the following statement is true.

Proposition 3. Under the conditions of Proposition 2 we have

$$Q\left(\mathcal{L}\left(\sum_{k=1}^{n} Y_{k}\right), \lambda\right) \ll \lambda\left(\sum_{k=1}^{n} \lambda_{k}^{2} M_{k}(\lambda_{k})\right)^{-1/2},\tag{18}$$

where $M_k(\tau) = \mathbf{E} \min \{\widetilde{Y_k}^2/\tau^2, 1\}.$

Furthermore, improvements of (17) and (18) may be found in [1], [2], [3], [7], [8], [11], [12] and [13].

It is clear that Theorem 1 is related to Proposition 1 in a similar way as Esséen's inequality (18) is related to the Kolmogorov–Rogozin inequality (17).

If we consider the special case, where $D = 1/2 ||a||_{\infty}$, then no assumptions on the arithmetic structure of the vector a are made, and Corollary 3 implies the bound

$$Q(F_a, \tau \|a\|_{\infty}) \ll \frac{\|a\|_{\infty}}{\|a\|\sqrt{M(\tau)}}.$$
 (19)

This result follows from Esséen's inequality (18) applied to the sum of non-identically distributed random variables $Y_k = a_k X_k$ with $\lambda_k = a_k \tau$, $\lambda = ||a||_{\infty} \tau$. For $a_1 = a_2 = \cdots = a_n = n^{-1/2}$, inequality (19) turns into the well-known particular case of Proposition 3:

$$Q(F^{*n}, \tau) \ll \frac{1}{\sqrt{n M(\tau)}}.$$
 (20)

Inequality (20) implies as well the Kolmogorov–Rogozin inequality for i.i.d. random variables:

$$Q(F^{*n}, \tau) \ll \frac{1}{\sqrt{n(1 - Q(F, \tau))}}.$$

Inequality (19) can not yield bound of better order than $O(n^{-1/2})$, since the right-hand side of (19) is at least $n^{-1/2}$. The results stated above are more interesting if D is essentially larger than $1/2 ||a||_{\infty}$. In this case one can expect the estimates of smaller order than $O(n^{-1/2})$. Such estimates of $Q(F_a, \lambda)$ are required to study the distributions of eigenvalues of random matrices.

For $0 < D < 1/2 ||a||_{\infty}$, the inequality

$$Q\left(F_a, \frac{\tau}{D}\right) \ll \frac{1}{\|a\|D\sqrt{M(\tau)}} \tag{21}$$

holds assuming the conditions of Corollary 3 too. In this case it follows from (3) and (19).

Under the conditions of Corollary 3, there exist many possibilities to represent a fixed ε as $\varepsilon = \tau/D$ for an application of inequality (15). Therefore, for a fixed $\varepsilon = \tau/D$ we can try to minimize the right-hand side of inequality (15) choosing an optimal D. This is possible, and the optimal bound is given in the following Theorem 2.

Theorem 2. Let the conditions of Corollary 2 be satisfied except the condition $L^2 \geq 1/M(1)$. Let $L^2 > 1/P$, where $P = \mathbf{P}(\widetilde{X} \neq 0) = \lim_{\tau \to 0} M(\tau)$. Then there exists a τ_0 such that $L^2 = 1/M(\tau_0)$. Moreover, the bound

$$Q(F_a, \varepsilon) \ll \frac{1}{\|a\|D^*(a)\sqrt{M(\varepsilon D^*(a))}}$$
 (22)

is valid for $0 < \varepsilon \le \varepsilon_0 = \tau_0/D^*(a)$. Furthermore, for $\varepsilon \ge \varepsilon_0$, the bound

$$Q(F_a, \varepsilon) \ll \frac{\varepsilon L}{\varepsilon_0 \|a\| D^*(a)}$$
 (23)

holds.

In the statement of Theorem 2, the quantity ε can be arbitrarily small. If ε tends to zero, we obtain

$$Q(F_a, 0) \ll \frac{1}{\|a\|D^*(a)\sqrt{P}},$$

if $L^2 > 1/P$.

Theorem 2 follows easily from Corollary 3. Indeed, denoting $\varepsilon = \tau/D$, we can rewrite inequality (15) as

$$Q(F_a, \varepsilon) \ll \frac{1}{\|a\|D\sqrt{M(\varepsilon D)}}$$
 (24)

Inequality (24) holds if $L^2 \ge 1/M(\varepsilon D)$ and $0 < D \le D^*(a)$. If $L^2 \ge 1/M(\varepsilon D^*(a))$, then the choice $D = D^*(a)$ is optimal in inequality (24) since

$$D^2M(\varepsilon D) = \mathbf{E}\min\left\{\widetilde{X}^2/\varepsilon^2, D^2\right\}$$

is increasing when D increases. For the same reason, if $L^2 < 1/M(\varepsilon D^*(a))$, the optimal choice of D in inequality (24) is given by the solution $D_0(\varepsilon)$ of the equation $L^2 = 1/M(\varepsilon D)$. This solution exists and is unique if $L^2 > 1/P$, since the function $M(\tau)$ is continuous and strictly decreasing if $M(\tau) < P$. Moreover, $M(\tau) \to 0$ as $\tau \to \infty$. In this case inequality (24) turns into

$$Q(F_a, \varepsilon) \ll \frac{L}{\|a\|D_0(\varepsilon)}.$$
 (25)

Moreover, choosing τ_0 to be the solution of the equation $L^2 = 1/M(\tau)$, we see that inequality (22) is valid for $0 < \varepsilon \le \varepsilon_0 = \tau_0/D^*(a)$. It is clear that $D_0(\varepsilon_0) = D^*(a)$. Furthermore, for $\varepsilon \ge \varepsilon_0$, we have

$$M(\varepsilon D_0(\varepsilon)) = M(\varepsilon_0 D_0(\varepsilon_0)) = L^{-2}$$

and, hence, $\varepsilon D_0(\varepsilon) = \varepsilon_0 D_0(\varepsilon_0)$. Therefore, for $\varepsilon \ge \varepsilon_0$, inequality (23) holds. Obviously, inequality (23) could be derived from (24) with $\varepsilon = \varepsilon_0$ by an application of inequality (3). On the other hand, for $0 < \varepsilon_1 < \varepsilon \le \varepsilon_0$, we could apply inequality (3) to inequality (22) and obtain the bound

$$Q(F_a, \varepsilon) \ll \frac{\varepsilon}{\varepsilon_1} Q(F_a, \varepsilon_1) \ll \frac{\varepsilon}{\varepsilon_1 \|a\| D^*(a) \sqrt{M(\varepsilon_1 D^*(a))}}.$$
 (26)

However, inequality (26) is weaker than inequality (22) since, evidently,

$$\varepsilon^{2}M(\varepsilon\,\mu) = \mathbf{E}\min\left\{\widetilde{X}^{2}/\mu^{2}, \varepsilon^{2}\right\} \ge \mathbf{E}\min\left\{\widetilde{X}^{2}/\mu^{2}, \varepsilon_{1}^{2}\right\} = \varepsilon_{1}^{2}M(\varepsilon_{1}\,\mu),\tag{27}$$

for any $\mu > 0$.

It is clear that Theorem 2 is an essential improvement of Corollary 1. In particular, in contrast with inequality (6) of Corollary 1, for small ε , the right-hand side of inequality (22) of Theorem 2 may be decreasing as ε decreases. Moreover, we have just shown that the application of inequality (3) would lead to a loss of precision. However, Corollary 1 could be derived from Proposition 1 with the help of inequality (3).

Consider a simple example. Let X be the random variable taking values 0 and 1 with probabilities

$$\mathbf{P}\{X=1\} = 1 - \mathbf{P}\{X=0\} = p > 0. \tag{28}$$

Then

$$\mathbf{P}\{\widetilde{X} = \pm 1\} = p(1-p), \quad \mathbf{P}\{\widetilde{X} = 0\} = 1 - 2p(1-p), \tag{29}$$

and the function $M(\tau)$ has the form

$$M(\tau) = \begin{cases} 2p(1-p), & \text{for } 0 < \tau < 1, \\ 2p(1-p)/\tau^2, & \text{for } \tau \ge 1. \end{cases}$$
 (30)

Assume for simplicity that ||a|| = 1. If $L^2 > 1/2 p(1-p)$, then $\tau_0 = L\sqrt{2 p(1-p)}$ and, for $\varepsilon \ge \varepsilon_0 = L\sqrt{2 p(1-p)}/D^*(a)$, we have the bound

$$Q(F_a, \varepsilon) \ll \frac{\varepsilon}{\sqrt{p(1-p)}}$$
 (31)

The same bound (31) follows from inequality (22) of Theorem 2 for $1/D^*(a) \le \varepsilon \le \varepsilon_0$. For $0 < \varepsilon \le 1/D^*(a)$, inequality (22) implies the bound

$$Q(F_a, \varepsilon) \ll \frac{1}{D^*(a)\sqrt{p(1-p)}}.$$
(32)

Thus,

$$Q(F_a, \varepsilon) \ll \min\left\{\frac{1}{\sqrt{p(1-p)}}\left(\varepsilon + \frac{1}{D^*(a)}\right), 1\right\}, \text{ for all } \varepsilon \ge 0.$$
 (33)

Inequality (33) is stronger than (6) since the factor L disappears completely. Moreover, this inequality cannot be improved. Consider, for instance, $a=(s^{-1/2},\ldots,s^{-1/2},0,\ldots,0)$ with the first $s \leq n$ coordinates equal to $s^{-1/2}$ and the last n-s coordinates equal to zero. In this case $D^*(a) \approx s^{1/2}$, the random variable $s^{1/2}S_a$ has binomial distribution with parameters s and p, and it is well-known that

$$Q(F_a, \varepsilon) \gg \min\left\{\frac{1}{\sqrt{p(1-p)}}\left(\varepsilon + \frac{1}{\sqrt{s}}\right), 1\right\}, \text{ for all } \varepsilon \ge 0.$$
 (34)

Comparing the bounds (33) and (34), we see that Theorem 2 provides the optimal order of $Q(F_a, \varepsilon)$ for all possible values of ε . Moreover, the involved constants are absolute.

For the sake of completeness, we give below a short proof of inequality (34). It is easy to see that $Var(S_a) = p(1-p)$. Therefore, by Chebyshev's inequality,

$$\mathbf{P}\{|S_a - \mathbf{E} S_a| < 2\sqrt{p(1-p)}\} \ge 3/4. \tag{35}$$

The random variable S_a takes values which are multiples of $s^{-1/2}$. Therefore, if $s p(1-p) \le 1$, then inequality (35) implies that $Q(F_a, 0) \approx 1$ and inequality (34) is trivially valid.

Assume now s p(1-p) > 1. If $0 < \varepsilon \le 4\sqrt{p(1-p)}$, then, using (3) and (35), we obtain

$$3/4 \le Q(F_a, 4\sqrt{p(1-p)}) \ll \varepsilon^{-1} \sqrt{p(1-p)} Q(F_a, \varepsilon), \tag{36}$$

and, hence,

$$Q(F_a, \varepsilon) \gg \frac{\varepsilon}{\sqrt{p(1-p)}}.$$
 (37)

It is clear that (2), (3) and (37) imply that $Q(F_a, \varepsilon) \approx 1$, for $\varepsilon \geq 4\sqrt{p(1-p)}$. Applying inequality (37) for $\varepsilon = s^{-1/2}$ and using the lattice structure of the support of distribution F_a , we conclude that, for $0 \leq \varepsilon < s^{-1/2}$,

$$Q(F_a, \varepsilon) \ge Q(F_a, 0) \gg \frac{1}{\sqrt{s \, p(1-p)}}.$$
 (38)

Thus, inequalities (2), (3), (37) and (38) imply (34).

The quantity $\tau_0 = \varepsilon_0 D^*(a)$ (which is the solution of the equation $L^2 = 1/M(\tau)$) may be interpreted as a quantity depending on L and on the distribution $\mathcal{L}(X)$. Moreover, comparing the bounds (6) and (23) for relatively large values of ε , we see that $\tau_0 \to \infty$ as $L \to \infty$. Therefore, the factor L/τ_0 is much smaller than L for large values of L. In particular, in the example above we have $\tau_0 = L\sqrt{2 p(1-p)}$.

Another example would be a symmetric stable distribution with parameter α , $0 < \alpha < 2$. In this case the characteristic function $\widehat{F}(t) = \mathbf{E} \exp(itX)$ has the form $\widehat{F}(t) = \exp(-|t|^{\alpha})$. It could be shown that then τ_0 behaves as $L^{2/\alpha}$ as $L \to \infty$.

Inequality (31) can be rewritten in the form

$$Q(F_a, \varepsilon) \ll \frac{\varepsilon}{\sigma}, \quad \text{for } \varepsilon \ge \varepsilon_0,$$
 (39)

where $\sigma^2 = \text{Var}(X)$. It is clear that a similar situation occurs for any random variable X with finite variance. In particular, inequality (31) is obviously satisfied for all $\varepsilon \geq 0$, if ||a|| = 1 and X has a Gaussian distribution with $\text{Var}(X) = \sigma^2$.

2. Proofs

We will use the classical Esséen inequalities ([5], see also [10] and [15]):

$$Q(F,\lambda) \ll \lambda \int_0^{\lambda^{-1}} |\widehat{F}(t)| dt, \quad \lambda > 0, \tag{40}$$

where $\widehat{F}(t)$ is the characteristic function of the corresponding random variable. In the general case $Q(F,\lambda)$ cannot be estimated from below by the right hand side of inequality (40). However, if we assume additionally that the distribution F is symmetric and its characteristic function is non-negative for all $t \in \mathbf{R}$, then we have the lower bound:

$$Q(F,\lambda) \gg \lambda \int_0^{\lambda^{-1}} \widehat{F}(t) dt \tag{41}$$

and, therefore,

$$Q(F,\lambda) \simeq \lambda \int_0^{\lambda^{-1}} \widehat{F}(t) dt$$
 (42)

(see [2], Lemma 1.5 of Chapter II). The use of relation (42) allowed us to simplify the arguments of Friedland and Sodin [9], Rudelson and Vershynin [18] and Vershynin [21] which were applied to the Littlewood–Offord problem (see also Eliseeva and Zaitsev [4]).

Proof of Theorem 1. Let r be a fixed number satisfying $1 < r \le \sqrt{2}$. Represent the distribution $G = \mathcal{L}(\widetilde{X})$ as a mixture $G = qE + \sum_{j=0}^{\infty} p_j G_j$, where $q = \mathbf{P}(\widetilde{X} = 0)$, $p_j = \mathbf{P}(\widetilde{X} \in A_j)$, $j = 0, 1, 2, \ldots, A_0 = \{x : |x| > 1\}$, $A_j = \{x : r^{-j} < |x| \le r^{-j+1}\}$, E is probability measure concentrated in zero, G_j are probability measures defined for $p_j > 0$ by the formula $G_j\{X\} = \frac{1}{p_j}G\{X \cap A_j\}$, for any Borel set X. In fact, G_j is the conditional distribution of \widetilde{X} provided that $\widetilde{X} \in A_j$. If $p_j = 0$, then we can take as G_j arbitrary measures.

For $z \in \mathbf{R}$, $\gamma > 0$, introduce the distribution $H_{z,\gamma}$, with the characteristic function

$$\widehat{H}_{z,\gamma}(t) = \exp\left(-\frac{\gamma}{2} \sum_{k=1}^{n} \left(1 - \cos(2a_k z t)\right)\right). \tag{43}$$

It is clear that $H_{z,\gamma}$ is a symmetric infinitely divisible distribution. Therefore, its characteristic function is positive for all $t \in \mathbf{R}$.

For the characteristic function $\hat{F}(t) = \mathbf{E} \exp(itX)$, we have

$$|\widehat{F}(t)|^2 = \mathbf{E} \exp(it\widetilde{X}) = \mathbf{E} \cos(t\widetilde{X}),$$

where $\widetilde{X} = X_1 - X_2$ is the corresponding symmetrized random variable. Hence,

$$|\widehat{F}(t)| \le \exp\left(-\frac{1}{2}\left(1 - |\widehat{F}(t)|^2\right)\right) = \exp\left(-\frac{1}{2}\mathbf{E}\left(1 - \cos(t\widetilde{X})\right)\right). \tag{44}$$

According to (40) and (44), we have

$$Q(F_a, 1/D) \ll \frac{1}{D} \int_0^D |\widehat{F}_a(t)| dt$$

$$\ll \frac{1}{D} \int_0^D \exp\left(-\frac{1}{2} \sum_{k=1}^n \mathbf{E}\left(1 - \cos(2a_k t \widetilde{X})\right)\right) dt = I. \tag{45}$$

It is evident that

$$\sum_{k=1}^{n} \mathbf{E} (1 - \cos(2a_k t \widetilde{X})) = \sum_{k=1}^{n} \int_{-\infty}^{\infty} (1 - \cos(2a_k t x)) G\{dx\}$$

$$= \sum_{k=1}^{n} \sum_{j=0}^{\infty} \int_{-\infty}^{\infty} (1 - \cos(2a_k t x)) p_j G_j \{dx\}$$

$$= \sum_{j=0}^{\infty} \sum_{k=1}^{n} \int_{-\infty}^{\infty} (1 - \cos(2a_k t x)) p_j G_j \{dx\}.$$

We denote $\beta_j = r^{-2j} p_j$, $\beta = \sum_{j=0}^{\infty} \beta_j$, $\mu_j = \beta_j / \beta$, $j = 0, 1, 2, \dots$ It is clear that $\sum_{j=0}^{\infty} \mu_j = 1$ and $p_j / \mu_j = r^{2j} \beta$ (for $p_j > 0$).

Let us estimate the quantity β :

$$\beta = \sum_{j=0}^{\infty} \beta_j = \sum_{j=0}^{\infty} r^{-2j} p_j = \mathbf{P} \{ |\widetilde{X}| > 1 \} + \sum_{j=1}^{\infty} r^{-2j} \mathbf{P} \{ r^{-j} < |\widetilde{X}| \le r^{-j+1} \}$$

$$\geq \int_{|x|>1} G\{dx\} + \sum_{j=1}^{\infty} \int_{r^{-j} < |x| \le r^{-j+1}} \frac{x^2}{r^2} G\{dx\}$$

$$\geq \frac{1}{r^2} \int_{|x|>1} G\{dx\} + \frac{1}{r^2} \int_{|x| \le 1} x^2 G\{dx\} = \frac{1}{r^2} M(1).$$

Since $1 < r \le \sqrt{2}$, this implies

$$\beta \ge \frac{1}{2}M(1). \tag{46}$$

Condition $L^2 \geq 1/M(1)$ gives the bound

$$L^2\beta \ge \frac{1}{2}.\tag{47}$$

We now proceed similarly to the proof of a result of Esséen [6] (see [15], Lemma 4 of Chapter II). Using the Hölder inequality, it is easy to see that

$$I \le \prod_{j=0}^{\infty} I_j^{\mu_j},\tag{48}$$

where

$$I_{j} = \frac{1}{D} \int_{0}^{D} \exp\left(-\frac{p_{j}}{2\mu_{j}} \sum_{k=1}^{n} \int_{-\infty}^{\infty} (1 - \cos(2a_{k}tx)) G_{j}\{dx\}\right) dt$$
$$= \frac{1}{D} \int_{0}^{D} \exp\left(-\frac{1}{2} r^{2j} \beta \sum_{k=1}^{n} \int_{A_{j}} (1 - \cos(2a_{k}tx)) G_{j}\{dx\}\right) dt$$

if $p_j > 0$, and $I_j = 1$ if $p_j = 0$.

Applying Jensen's inequality to the exponential in the integral (see [15], p. 49)), we obtain

$$I_{j} \leq \frac{1}{D} \int_{0}^{D} \int_{A_{j}} \exp\left(-\frac{1}{2} r^{2j} \beta \sum_{k=1}^{n} \left(1 - \cos(2a_{k} t x)\right)\right) G_{j} \{dx\} dt$$

$$= \frac{1}{D} \int_{A_{j}} \int_{0}^{D} \exp\left(-\frac{1}{2} r^{2j} \beta \sum_{k=1}^{n} \left(1 - \cos(2a_{k} t x)\right)\right) dt G_{j} \{dx\}$$

$$\leq \sup_{z \in A_{j}} \frac{1}{D} \int_{0}^{D} \widehat{H}_{z,1}^{r^{2j} \beta}(t) dt. \tag{49}$$

Let us estimate the characterictic function $\widehat{H}_{\pi,1}(t)$ for $|t| \leq D$. We can proceed in the same way as the authors of [9], [18] and [21]. It is evident that $1 - \cos x \geq 2x^2/\pi^2$, for $|x| \leq \pi$. For arbitrary x, this implies that $1 - \cos x \geq 2\pi^{-2} \min_{m \in \mathbb{Z}} |x - 2\pi m|^2$. Substituting this inequality into (43), we obtain

$$\widehat{H}_{\pi,1}(t) \leq \exp\left(-\frac{1}{\pi^2} \sum_{k=1}^n \min_{m_k \in \mathbf{Z}} \left| 2\pi t a_k - 2\pi m_k \right|^2\right)$$

$$= \exp\left(-4 \sum_{k=1}^n \min_{m_k \in \mathbf{Z}} \left| t a_k - m_k \right|^2\right)$$

$$= \exp\left(-4 \left(\operatorname{dist}(t a, \mathbf{Z}^n)\right)^2\right). \tag{50}$$

Using (8), wee see that, for $|t| \leq 1/2 ||a||_{\infty}$, inequality (50) turns into

$$\widehat{H}_{\pi,1}(t) \le \exp(-4t^2).$$
 (51)

Now we can use relations (9), (50) and (51) to estimate the integrals I_j . First we consider the case $j = 1, 2, \ldots$ Note that the characteristic functions $\widehat{H}_{z,\gamma}(t)$ satisfy the equalities

$$\widehat{H}_{z,\gamma}(t) = \widehat{H}_{y,\gamma}(zt/y)$$
 and $\widehat{H}_{z,\gamma}(t) = \widehat{H}_{z,1}^{\gamma}(t)$. (52)

The first equality (52) implies that

if
$$H_{z,\gamma} = \mathcal{L}(\xi)$$
, then $H_{y,\gamma} = \mathcal{L}(y\,\xi/z)$. (53)

For $z \in A_j$ we have $r^{-j} < |z| \le r^{-j+1} < \pi$. Hence, for $|t| \le D$, we have $|zt/\pi| < D$. Therefore, using the properties (52) with $y = \pi$ and aforementioned estimates (9), (50) and (51), we obtain, for $z \in A_j$ and for $z = \pi$,

$$\widehat{H}_{z,1}(t) \leq \exp\left(-4 f_L^2(zt/\pi)\right)$$

$$= \begin{cases} \exp\left(-(zt/\pi)^2/9\right), & \text{for } 0 < t \leq eL\pi/z, \\ \exp\left(-4 L^2 \log(zt/L\pi)\right), & \text{for } t > eL\pi/z. \end{cases}$$

and, hence,

$$\sup_{z \in A_j} \int_{0}^{D} \widehat{H}_{z,1}^{r^{2j}\beta}(t) dt \le \int_{0}^{D} \exp\left(-t^2\beta/9\pi^2\right) dt + \int_{r^{j-1}L\pi e}^{\infty} \left(\frac{r^{j}L\pi}{t}\right)^{4r^{2j}\beta L^2} dt \ll \frac{1}{\sqrt{\beta}}.$$
 (54)

In the last inequality we used inequality (47).

Consider now the case j=0. The relation (53) yields, for z>0, $\gamma>0$,

$$Q(H_{z,\gamma}, 1/D) = Q(H_{1,\gamma}, 1/Dz). \tag{55}$$

Thus, according to (2), (42), (52) and (55), we obtain

$$\sup_{z \in A_0} \frac{1}{D} \int_0^D \widehat{H}_{z,1}^{\beta}(t) dt = \sup_{z > 1} \frac{1}{D} \int_0^D \widehat{H}_{z,\beta}(t) dt \approx \sup_{z > 1} Q(H_{z,\beta}, 1/D)
= \sup_{z > 1} Q(H_{1,\beta}, 1/Dz) \le Q(H_{1,\beta}, 1/D)
\approx Q(H_{1,\beta}, 1/D\pi) = Q(H_{\pi,\beta}, 1/D)
\approx \frac{1}{D} \int_0^D \widehat{H}_{\pi,\beta}(t) dt = \frac{1}{D} \int_0^D \widehat{H}_{\pi,1}^{\beta}(t) dt.$$
(56)

Using the bounds (9), (50) and (51) for the characteristic function $\widehat{H}_{\pi,1}(t)$ and taking into account inequality (47), we have:

$$\int_{0}^{D} \widehat{H}_{\pi,1}^{\beta}(t) dt \le \int_{0}^{D} \exp(-t^{2}\beta/9) dt + \int_{Le}^{\infty} \left(\frac{L}{t}\right)^{4\beta L^{2}} dt \ll \frac{1}{\sqrt{\beta}}.$$
 (57)

According to (49), (54), (56) and (57), we obtained the same estimate

$$I_j \ll \frac{1}{D\sqrt{\beta}} \tag{58}$$

for all integrals I_j with $p_j \neq 0$. In view of $\sum_{j=0}^{\infty} \mu_j = 1$, from (48) and (58) it follows that

$$I \le \prod_{j=0}^{\infty} I_j^{\mu_j} \ll \frac{1}{D\sqrt{\beta}}.$$
 (59)

Using (45), (46) and (59), we complete the proof. \square

Now we will deduce Corollary 2 from Theorem 1.

Proof of Corollary 2. We denote $b = a/\|a\| \in \mathbf{R}^n$. Then the equality $Q(F_a, \lambda) = Q(F_b, \lambda/\|a\|)$, for all $\lambda \geq 0$, holds. The vector b satisfies the conditions of Theorem 1 which hold for the vector a when replacing D by $D\|a\|$. Indeed, $\|ub - m\| \geq f_L(u)$ for $u \in \left[\frac{1}{2\|b\|_{\infty}}, D\|a\|\right]$ and for all $m \in \mathbf{Z}^n$. This follows from condition (9) of Theorem 1, if we denote $u = t\|a\|$. It remains to apply Theorem 1 to the vector b. \square

References

- [1] Arak T.V. On the convergence rate in Kolmogorov's uniform limit theorem. I. Theory Probab. Appl., 1981, v. 26, no. 2, 225–245.
- [2] Arak T.V., Zaitsev A.Yu. Uniform limit theorems for sums of independent random variavles. Proc. Steklov Inst. Math., 1988, v. 174.
- [3] Bretagnolle J. Sur l'inégalité de concentration de Doeblin-Lévy, Rogozin-Kesten. In: Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life, Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2004, pp. 533–551.
- [4] Eliseeva Yu.S., Zaitsev A.Yu. Estimates for the concentration functions of weighted sums of independent random variables. arXiv:1203.5520, 2012 (submitted to Theory Probab. Appl.).
- [5] Esseen C.G. On the Kolmogorov–Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1966, v. 5, 210–216.
- [6] Esseen C.G. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1968, v. 9, 290–308.
- [7] Götze F., Zaitsev A.Yu. Estimates for the rapid decay of concentration functions of *n*-fold convolutions. J. Theoret. Probab., 1998, v. 11, no. 3, 715–731.
- [8] Götze F., Zaitsev A.Yu. A multiplicative inequality for concentration functions of n-fold convolutions. In: High dimensional probability, II (Seattle, WA, 1999), Progr. Probab., v. 47, Birkhäuser Boston, Boston, MA, 2000, pp. 39–47.
- [9] Friedland O., Sodin S. Bounds on the concentration function in terms of Diophantine approximation. C. R. Math. Acad. Sci. Paris, 2007, v. 345, no. 9, 513–518.
- [10] Hengartner W., Theodorescu R. Concentration function. Academic Press, New York, 1973.
- [11] Kesten H. A sharper form of the Doeblin–Levy–Kolmogorov–Rogozin inequality for concentration functions. Math. Scand., 1969, v. 25, 133–144.
- [12] Miroshnikov A.L., Rogozin B.A. Inequalities for the concentration functions. Theory Probab. Appl., 1980, v. 25, no. 4, 178–183.
- [13] Nagaev S.V., Hodzhabagyan S.S. On the estimate for the concentration function of sums of independent random variables. Theory Probab. Appl., 1996, v. 41, no. 3, 655–665.
- [14] Nguyen Hoi, Vu Van. Optimal inverse Littlewood-Offord theorems. Adv. Math., 2011, v. 226, no. 6. 5298–5319.
- [15] Petrov V.V. Sums of independent random variables. Moscow, Nauka, 1972.

- [16] Rogozin B.A. On the increase of dispersion of sums of independent random variables. Theory Probab. Appl., 1961, v. 6, no. 1, 106108.
- [17] Rudelson M., Vershynin R. The Littlewood–Offord problem and invertibility of random matrices. Adv. Math., 2008, v. 218, no. 2, 600–633.
- [18] Rudelson M., Vershynin R. Smallest singular value of a random rectangular matrix. Comm. Pure Appl. Math., 2009, v. 62, no. 12, 1707–1739.
- [19] Tao T., Vu Van. Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Ann. of Math. (2), 2009. v. 169, no. 2, 595–632.
- [20] Tao T., Vu Van. From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. (N.S.), 2009, v. 46, no. 3, 377–396.
- [21] Vershynin R. Invertibility of symmetric random matrices. arXiv:1102.0300, 2011.

E-mail address: pochta106@yandex.ru

St. Petersburg State University

E-mail address: goetze@math.uni-bielefeld.de

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT BIELEFELD, POSTFACH 100131, D-33501 BIELEFELD, GERMANY

E-mail address: zaitsev@pdmi.ras.ru

St. Petersburg Department of Steklov Mathematical Institute Fontanka 27, St. Petersburg 191023, Russia and St. Petersburg State University