Absolute Potential Energy: e by gravitational force in displacing an object at point to infinity where force of gravity equal to zero is called absolute potential It means gravitational force varies as we move upward

 $r^2 = r_1^2 + \Delta r^2 + 2r_1 \Delta r$ △r² ≈0 (because it is very small value) $NT = N + N + \dots + N$ $1 \rightarrow 2 \qquad 2 \rightarrow 3 \qquad N-1 \rightarrow N$ $W1\rightarrow 2=Fy. \Delta r$ $=F\Delta r\cos\theta$ $=F\Delta r\cos(180)$ = - GIMm (r2-r1) $= -GIMm \left[\begin{array}{c} r_2 - r_1 \\ r_1 \cdot r_2 \end{array} \right] .$ N1->2 = -61Mm (12 - 11) = -GMm (1. N3->4 = -GIMm [1 - 1] @ ...

Date:		oMan O	Tue O	Wed O	Thu O	Gui O	Sat O	S _k
	1							
	1					*****************		
WN-1-N = GA	1m2 [1	_ 1	7					
	[N-1	rn	1)					
Now the total week	dorce will	be					-	
$N_T = N + N_+$	+ 1/			-				
$W_7 = W + W_{\pm}$	N-	1->	N					-
$=-G_{1}M_{m} \qquad \qquad \boxed{1}$	-1/+1	1/_	1/	+1	/			1
		2-	13	N.	3	MA	MA	1-1
+1	$\left(\begin{array}{cc} -1 \\ V-1 \end{array}\right)$							
=-G/Mm [1 -	17							
$I_N = \propto 9n linit$	rN)							
$N = \propto gn \ln t$	4							
NT = -67Mm [1	17		1		^			
17	\propto	1	$\frac{1}{\alpha}$	=(-		
$W_T = -GMm$								
r ₁ .								
AL I to a Late O		1. /	,	NA	1 5	,		
· Absolute potential en	orgy is deni	rled	by	L	g	So		
Ug = -	- GIMm							
	19							
			-		-			
Note that when y	in creases,	Ub	con	205 1	less.	nedo	ativ	5
Note that wher y ie., Il increases. It	means	who	n 4	ve.	rise	de	body	
				-			<u>ବ</u> /	

The cheice of zero point is arbitrary and difference of P.E.

From the one point to another is significant, wether we consider the surface or the Earth or the point at infinity as zero P.E. reference; the change in P.E. as we move a body above the surface of the Earth, we always be positive.

Now the absolute potential energy on the surface of the Earth is found by putting r= R V (Radius of the Earth)

Absolute potential energy=Ug=_ GMm

The negative sign shows that the Earth's gravitational field for mans m is attractive.

The above expression gives the wark or the energy required to take the body out of the Earth's gravitational field, where its potential energy with respect to Earth is zero.

<u>@</u>____

Date: $V_{\rm esc} = 2G_{\rm T}M$ $V_{\rm esc} = 2G_{\rm I}M$ By replacing r= R (consider it the infinity point) $V_{\rm esc} = \sqrt{2gR}$ As we know that g = 9.8 ms-1the escape relocity will be V= R+k $V_{esc} = \sqrt{\frac{2GM}{D+b}}$

<u>a</u>

	Mar	Ger.	Other	Sha	Sui	Sul	Neg
Date:	0	0	OMW O	0	0	O	0
Law Of Conservation	ne.	<i>r</i>		IU.			The state of the
LUW OF Conservation	11	11	erg	1.	and the second	on other dealers	-
(1)	, ,		Y	γ,	1	-	and the state of
Statement: Energy can be pro but it can be change from one	duced	no	te	des	hoy	0/	To Athone
but it can be change from one	form 1	to c	inoth	or to	it V	total	direction and the
energy remains constant.							
Interconversions Of Energy:				are an incomplete factors		(4+)44/101000000000000000000000000000000000	
			n to the				
Consider a body of mass placed from surface of earth os sh	/ /	1 0	./1 *	,	1	. 1	'//
Consider a body of mass placed	at	heig	the	e a	1	Point	/
Trom surface of earth as sh	dyn:	γ	-				
P.E. = mg! A :	-1-1-1			-			
K.C.= U A						name and the second	
P.E. = mg(h-x) K.E. = - mg/x		- 4-	1				
	1-1		A to making the same				
P.E. = O $K.E. = mgh$							
	eting.		,				
By ignoring air friction we obse	erve t	hat	the	body	is	fallis	201
ganninard.			-	ν			V
So we have to calculate the e	nergy	at j	Point	И,	bar	rd L	
total energy as well.	•	/					
At point A:			147		1		
Now we observe at point	nt !	4'			-		
P.E. = mgh (M K.E. = 0	larin	m)				**	
K.E. = 0							
Non	1						**************************************
•					(3	

Date:	Mon O	Tue O	Wed O	Thu O	Gri O	Sal	Sun
T.E.= P.E. + K.E		40 4				434	
7. E. = mgh.							
AL OF P	1	•				1	
Now we have to calc The body is falling downward.	culate t	he e	ner gle	ies a	etpe	int	B.
$S_0 \qquad \qquad V_{\tilde{\mathbf{z}}} = 0$							
Vf = Vb (Velo	city at	por	nt B)			
$S = n \left(Distan \right)$	ee covered	from	n po	int i	A to	B)	
Now 3rd equation of motion. 2as= V_f^2 -	16º2	re-wy					
$ \begin{aligned} 2dn &= (V_B)^2 - \\ 2dn &= V_B^2 \end{aligned} $	$(0)^{2}$						
Now at point B the K.E m. K.E. = 1 m VB	ill be						
$\frac{2}{2}$ K. E. = 1 m (2q)							•
	<i>n.)</i>				\		
K.E.= mgn				7		7	
Now at point B' the P.E. = mg (h-n)		7	- 11		7		-
Non to calculate	Vi	-					
= mg(h-n)	+ mg					@	RAZA SSSSS

Sat

Sun

Date: Mon Tue West Thu 94 from height he to he we can write. Decrease P. E. 14 1/2 h_1 h2 **@**.....

Med Thu Tu OMm Tw Date:_ Gain in K.E mV2 loss In P.E. = Grain in K.E. + Work against Air friction 9999 @

Problem # 9: Loss In P.E. = Gain In K.E.

mgh = 1 m/2 Now conservational energy service Page 92-95 (S/Q + MCQs)

<u>@</u>