PrecalculusPolynomial inequalities

Todor Miley

2019

Outline

Polynomial inequalities

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0$$

Solve the inequality.

$$\begin{array}{ccc} 2x^2 + 3x - 5 & \geq & 0 \\ (? &)(? &) & \geq & 0 \end{array}$$

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0$$
$$(2x + 5)(x - 1) \ge 0$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1.

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1.

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$(-\infty, -\frac{5}{2}), (-\frac{5}{2}, 1), (1, \infty).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$			

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(?)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(?)		

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(+)		

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(+)	?	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$			
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),(1,\infty).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(?)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(+)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$	(+)(?)		
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

	Interval	Factor signs	Final sign	
ĺ	$\left(-\infty,-\frac{5}{2}\right)$			
ĺ	$(-\frac{5}{2},1)$	(+)(-)		
ĺ	$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$\left(-\frac{5}{2},1\right)$	(+)(-)	?	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$			
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(?)(?)		
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(?)		
$\left(-\frac{5}{2},1\right)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(?)		
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$2x^2 + 3x - 5 \ge 0 (2x + 5)(x - 1) \ge 0$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

	Interval	Factor signs	Final sign	
ĺ	$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)		
	$\left(-\frac{5}{2}, 1\right)$	(+)(-)	-	
	$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	?	
$(-\frac{5}{2},1)$	(+)(-)	_	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	
$\left(-\frac{5}{2}, 1 \right)$	(+)(-)	-	
$(1,\infty)$	(+)(+)	+	

Solve the inequality.

$$\begin{array}{rcl} 2x^2 + 3x - 5 & \geq & 0 \\ (2x + 5)(x - 1) & \geq & 0 \end{array}$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$2x^{2} + 3x - 5 \geq 0$$

$$(2x + 5)(x - 1) \geq 0$$
 $x \in ?$

	Interval	Factor signs	Final sign	Sample pt	Value at sample pt
ĺ	$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
Ī	$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
	$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Solve the inequality.

$$2x^2 + 3x - 5 \geq 0$$

$$(2x + 5)(x - 1) \geq 0$$

$$x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right)$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals: $(-\infty, -\frac{5}{2})$, $(-\frac{5}{2}, 1)$, $(1, \infty)$.

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

3/4

Solve the inequality.

$$\begin{array}{ccc} 2x^2+3x-5 & \geq & 0 \\ (2x+5)(x-1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right) \end{array}$$

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),\left(1,\infty\right).$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Plot the function
$$2x^3 - 5x^2 + x + 2$$
. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

Plot the function
$$2x^3 - 5x^2 + x + 2$$
. Solve the inequality.
 $2x^3 - 5x^2 + x + 2 > 0$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality.

$$2x^3 - 5x^2 + x + 2 > 0$$

$$2x^3 - 5x^2 + x + 2 > 0$$
? $(x -)(x -)(x -) > 0$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality.

$$2x^3 - 5x^2 + x + 2 > 0$$

$$2x^3 - 5x^2 + x + 2 > 0$$
? $(x - ?)(x - ?)(x - ?) > 0$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality.

$$2x^3 - 5x^2 + x + 2 > 0$$

$$? \left(x - \left(-\frac{1}{2}\right)\right) \left(x - 1\right) \left(x - 2\right) > 0$$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality.

$$2x^3 - 5x^2 + x + 2 > 0$$

?
$$(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$\frac{2}{2}(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2.

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2.

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x-(-\frac{1}{2}))(x-1)(x-2) > 0$$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2.

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$ \begin{pmatrix} (-\infty, -\frac{1}{2}) \\ (-\frac{1}{2}, 1) \end{pmatrix} $		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$ \begin{pmatrix} (-\infty, -\frac{1}{2}) \\ (-\frac{1}{2}, 1) \\ (1, 2) \end{pmatrix} $		

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Factor signs	Final sign from plot
	Factor signs

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Left hand side vanishes when
$$x = -\frac{1}{2}$$
, when $x = 1$ and when $x = 2$. The two roots split the real line into four

intervals: $(-\infty, -\frac{1}{2}), (-\frac{1}{2}, 1), (1, 2), (2, \infty)$.

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$?	?
$\left(-\frac{1}{2},1\right)^{-1}$?	?
(1,2)	?	?
$(2,\infty)$?	?

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$ $2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2. The two roots split the real line into four intervals: $(-\infty, -\frac{1}{2})$, $(-\frac{1}{2}, 1)$, (1, 2), $(2, \infty)$.

x ∈ ?

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)^{-1}$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

$$x \in (-\frac{1}{2}, 1) \cup (2, \infty)$$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)^{-1}$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

 $x \in (-\frac{1}{2}, 1) \cup (2, \infty)$

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+