

Table of contents

O1 Introduction
What is the game?

O2 Methodology

How to design the game?

O3 Application

Where can this game be applied?

O4 Q&A

Okey dokey!

Ask if you want!

01 Introduction 02 Methodology 03 Application 04 Q&A

What's the game?

Lee, Chih-Sheng. 2012. "Multi-Objective Game-Theory Models for Conflict Analysis in Reservoir Watershed Management." Chemosphere 87 (6): 608–13. doi:10.1016/j.chemosphere.2012.01.014.

Game Environment

Game Payoff Matrix

- Crop economic payoff > Tree economic payoff
- Crop environmental payoff
 Tree environmental payoff

Economic Payoff Environmental Payoff		
$\overline{\text{Crop}}$	$\frac{104}{365} \times int(t)$	-1.5
Tree	0.5	0.8546t - 4.7097

Table 1. Strategies and payoff in the Tree vs. Crop game

Introduction

Psychological Factors

Risk Aversion

2 Environmental Concerns

? Time Preference

4 Altruism

Social Factors:

Education and Awareness 5

Social Norms

Competitive Pressure

Collaboration and Cooperation

Multi-objective optimization (pulp)

```
RA = np.random.rand(1)

EC = -np.random.rand(1)

TP = np.random.rand(1)

A = np.random.rand(1)

SN = -np.random.rand(1)

CP = np.random.rand(1)

CC = -np.random.rand(1)

EA = -np.random.rand(1)

0.587980

0.659693

1.000000

0.714184
```

```
# Create the LP problem
problem_emotional = LpProblem("Multi-Objective Problem", LpMaximize)

# Decision variables
x = LpVariable.dicts("x", range(N), lowBound=0, upBound=1, cat=LpInteger)

# # Objective functions
objective = LpAffineExpression()
```


Optimal Solution:

$$x_0 = 0.0$$

$$x_1 = 1.0$$

$$x_2 = 1.0$$

$$x_3 = 0.0$$

$$x_4 = 1.0$$

$$x_6 = 1.0$$

$$x_7 = 0.0$$

$$x_8 = 0.0$$

$$x_9 = 0.0$$

objective for each player = maximum (alpha*own_economic_profit + (1-alpha)*all_environment_profit/10)

Results and Limitations

What's the potential application?

Rural Development

Help rural areas find a balance between economic development and environmental protection

Policy Development and Decision-Making

Policymakers can gain insights into the trade-offs and synergies between economic and environmental outcomes

Sustainable Resource Management

Help inform resource management strategies that optimize both economic and environmental objectives.

Environmental Education and Awareness

Fostering greater environmental awareness and responsible decision-making.

Q&A

If you have any question, feel free to ask me!

Thanks

yq74@duke.edu Duke Kunshan University