Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

(& discussion on the GPLVM tech. report by Prof. N. Lawrence, '06)

Andreas Damianou

Department of Neuro- and Computer Science, University of Sheffield, UK

University of Surrey, 13/06/2012

Outline

Part 1: Gaussian processes

Parametric models: ML and Bayesian regression Nonparametric models: Gaussian process regression Covariance functions

Part 2: Gaussian Process Latent Variable Model Dimensionality Reduction: Motivation From probabilistic PCA to Dual PPCA From Dual PPCA to GP-LVM

Part3: Applications of GP-LVM in vision

Introducing Gaussian Processes: Outline

			Bayesian	Non-parametric
From:	ML / MAP	Regression, to	Х	X
	Bayesian	Regression, to	✓	Х
	GP	Regression	✓	✓

$$\begin{array}{ccc} \mathsf{Data} \colon & X & \to & Y \\ & \downarrow & & \downarrow \\ & \mathsf{inputs} & \mathsf{targets} \end{array}$$

- ullet Regression: Assume a parametric model with parameters heta
- Likelihood $\mathcal{L}(\theta) = p(Y|X,\theta)$ is obtained from the PDF of the assumed distribution

$$\begin{array}{cccc} \mathsf{Data} \colon & X & \to & Y \\ & \downarrow & & \downarrow \\ & \mathsf{inputs} & \mathsf{targets} \end{array}$$

- Regression: Assume a *parametric* model with parameters θ
- Likelihood $\mathcal{L}(\theta) = p(Y|X,\theta)$ is obtained from the PDF of the assumed distribution
- Example: Linear Regression
 - $\blacktriangleright \ Y = f(X,W) + \epsilon, \ \ f(X,W) = WX, \ \ \epsilon \sim \mathcal{N}(0,\beta^{-1})$

$$\begin{array}{cccc} \mathsf{Data} \colon & X & \to & Y \\ & \downarrow & & \downarrow \\ & \mathsf{inputs} & \mathsf{targets} \end{array}$$

- Regression: Assume a *parametric* model with parameters θ
- Likelihood $\mathcal{L}(\theta) = p(Y|X,\theta)$ is obtained from the PDF of the assumed distribution
- Example: Linear Regression

$$\qquad Y = f(X,W) + \epsilon, \quad f(X,W) = WX, \quad \epsilon \sim \mathcal{N}(0,\beta^{-1})$$

$$\blacktriangleright \ \mathcal{L}(\theta) = p(Y|X,\theta) = \mathcal{N}(Y|WX,\beta^{-1}), \ \theta = \{W,\beta^{-1}\}$$

$$\begin{array}{ccc} \mathsf{Data} \colon & X & \to & Y \\ & \downarrow & & \downarrow \\ & \mathsf{inputs} & \mathsf{targets} \end{array}$$

- ullet Regression: Assume a parametric model with parameters heta
- Likelihood $\mathcal{L}(\theta) = p(Y|X,\theta)$ is obtained from the PDF of the assumed distribution
- Example: Linear Regression
 - $Y = f(X, W) + \epsilon$, f(X, W) = WX, $\epsilon \sim \mathcal{N}(0, \beta^{-1})$
 - $\blacktriangleright \ \mathcal{L}(\theta) = p(Y|X,\theta) = \mathcal{N}(Y|WX,\beta^{-1}), \ \theta = \{W,\beta^{-1}\}$
 - ▶ Optimise: $\hat{\theta} = \arg \max_{\theta} \mathcal{L}(\theta)$. Predictions based on $p(y^*|x^*, \hat{\theta})$

Bayesian parametric model

$$\bullet \ \, \text{Bayes rule:} \ \, \underbrace{p(\theta|X,Y)}_{\text{posterior}} = \underbrace{\frac{\text{likelihood prior}}{p(Y|X,\theta)}}_{\text{evidence}} \underbrace{p(Y|X,\theta)}_{\text{evidence}} \underbrace{p(Y|X,\theta)}_{\text{evidence}}$$

Bayesian parametric model

$$\bullet \ \, \text{Bayes rule:} \ \, \underbrace{posterior}_{\substack{p(\theta|X,Y)}} = \underbrace{\frac{\text{likelihood prior}}{p(Y|X,\theta)}}_{\substack{p(Y|X) \\ \text{evidence}}}$$

• Predictions via marginalisation:

$$p(y^*|x^*,X,Y) = \int \underbrace{p(y^*|x^*,X,Y,\theta)}_{\text{likelihood}} \underbrace{p(\theta|X,Y)}_{\text{posterior}} \mathrm{d}\theta$$

Bayesian parametric model

$$\bullet \ \, \text{Bayes rule:} \ \, \underbrace{p(\theta|X,Y)}_{\text{posterior}} = \underbrace{\frac{\text{likelihood prior}}{p(Y|X,\theta)}}_{\text{evidence}} \underbrace{\frac{p(Y|X,\theta)}{p(\theta)}}_{\text{evidence}}$$

• Predictions via marginalisation:

$$p(y^*|x^*,X,Y) = \int \underbrace{p(y^*|x^*,X,Y,\theta)}_{\mbox{likelihood}} \underbrace{p(\theta|X,Y)}_{\mbox{posterior}} \mbox{d}\theta$$

- θ is integrated out, but we still assume a parametric model (i.e. $f(X, \theta = WX, \theta = \{W, \beta\})$
- ullet The integral (and sometimes p(Y|X)) are often intractable

Manning

	<u> </u>		11101
Parametric		$(X, \theta) = WX$	on the function parameters $(p(\theta) = p(W))$
Nonparametric (GP)		$f \sim \mathcal{GP}$	on the function itself

_		Mapping	Prior
	Parametric	$ f(X, \theta) = WX $	on the function parameters $\left(p(\theta)=p(W)\right)$
N	onparametric (GP)	$f \sim \mathcal{GP}$	on the function itself

- A GP is a prior over functions. It depends on a mean and a covariance function (NOT matrix!)
- Prior: $f_n=f(x_n)\sim \mathcal{GP}\left(m(x_n),k(x_n,x_n')
 ight)
 ightarrow infinite$ Joint: $f^*,F\sim \mathcal{N}\left(\mu^*,K^*
 ight)
 ightarrow finite$ $(F=\{f_n\}_{n=1}^N)$
 - ullet Posterior/predictive process/distribution $f^*|{f f}$ is also Gaussian!

(modified from C. E. Rasmussen's tutorial, "Learning with Gaussian Processes")

- Gaussian Likelihood: $Y|X, f(x) = \mathcal{N}(Y|F, \beta^{-1}I)$
- (Zero mean) GP prior: $f(x) \sim \mathcal{GP}(\mathbf{0}, k(x, x'))$

(modified from C. E. Rasmussen's tutorial, "Learning with Gaussian Processes")

- Gaussian Likelihood: $Y|X, f(x) = \mathcal{N}(Y|F, \beta^{-1}I)$
- (Zero mean) GP prior: $f(x) \sim \mathcal{GP}(\mathbf{0}, k(x, x'))$
- Leads to a GP posterior:

$$f(x)|X,Y \sim \mathcal{GP}\Big(m_{post} = k(x,X)K^{-1}(X,X)F,$$
$$k_{post}(x,x') = k(x,x') - k(x,X)K^{-1}(X,X)k(X,x)\Big)$$

(modified from C. E. Rasmussen's tutorial, "Learning with Gaussian Processes")

- Gaussian Likelihood: $Y|X, f(x) = \mathcal{N}(Y|F, \beta^{-1}I)$
- (Zero mean) GP prior: $f(x) \sim \mathcal{GP}(\mathbf{0}, k(x, x'))$
 - Leads to a GP posterior:

$$f(x)|X,Y \sim \mathcal{GP}\Big(m_{post} = k(x,X)K^{-1}(X,X)F,$$
$$k_{post}(x,x') = k(x,x') - k(x,X)K^{-1}(X,X)k(X,x)\Big)$$

• ... and a Gaussian predictive distribution:

$$y^*|x^*, X, Y \sim \mathcal{N}\left(k(x^*, X) \left[K(X, X) + \beta^{-1}I\right]^{-1}Y, k(x^*, x^*) + \beta^{-1} - k(x^*, X) \left[K(X, X) + \beta^{-1}I\right]^{-1}k(X, x^*)\right)$$

Covariance functions

- But where did k(x, x') (and $K(\mathbf{x}, \mathbf{x})$ etc.) come from?
- Assumptions about *properties* of $f \Rightarrow$ define a parametric form for k, e.g.

$$k(x, x') = \alpha \exp\left(-\frac{\gamma}{2}(x - x')^{\mathrm{T}}(x - x')\right)$$

- However, a prior with this cov. function defines a whole family of functions
- The parameters $\{\alpha, \gamma\}$ are hyperparameters.

Covariance samples and hyperparameters

 The hyperparameters of the cov. function define the properties (and NOT an explicit form) of the sampled functions

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

(source: N. Lawrence's talk, "Learning and Inference with Gaussian Processes" (2005))

Dimensionality Reduction: Motivation

- Each data-point is $64 \times 57 = 3,648$ -dimensional (pixel space)
- However, intrinsic dimensionality is lower

Dimensionality Reduction: Motivation

- Consider digit rotations
- Create a new dataset, where a prototype is repeated under one of 360 different angles
- Project into principal components 2 and 3
- Low-dimensional embedding (3, $648 \rightarrow 2$ dimensions) captures all necessary information

Probabilistic, generative methods

- Observed (high-dimensional) data: $Y \in \mathbb{R}^{N \times D}$ These contain redundant information
- Actual (low-dimensional) data: $X \in \mathbb{R}^{N \times Q}, \ Q \ll D$ These are <u>unobserved</u> and (ideally) contain only the minimum amount of information needed to correctly describe the phenomenon
- Work "backwards": learn $f: X \mapsto Y$

Probabilistic, generative methods

• Model (compare with regression):

$$y_{nd} = \underbrace{f_d(\mathbf{x}_n, W)}_{W\mathbf{x}_n} + \epsilon_n , \quad \epsilon_n \sim \mathcal{N}(0, \beta^{-1})$$

- $p(Y|W, \overline{X}, \beta) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n | \overline{W}\mathbf{x}_n, \beta^{-1}\mathbf{I})$
- $W, X \in \mathbb{R}^{N \times Q}$, $Q \ll D$
- X are unobserved

From dual PPCA to GP-LVM

- ullet PPCA places a prior on and marginalises the latent space X and optimises the *linear* mapping's parameters W
- Dual PPCA does the opposite: the prior is placed on the mapping parameters.

$$p(Y|W,\beta) = \int p(Y|X,W,\beta)p(X)dX$$

$$\begin{split} p(Y|X,\beta) &= \\ \int p(Y|X,W,\beta) p(W) \mathrm{d}W \end{split}$$

Gaussian process latent variable model (GP-LVM)

- PPCA and Dual PPCA are equivalent (equivalent eigenvalue problems for ML solution)
- ullet GP-LVM: Instead of placing a prior p(W) on the parametric mapping's parameters, we can place a prior directly on the mapping function \Rightarrow GP prior
- A GP prior $f \sim \mathcal{GP}(\mathbf{0}, k(x, x'))$ allows for non-linear mappings if the kernel k is non-linear. For example:

$$k(x, x') = \alpha \exp\left(-\frac{\gamma}{2}(x - x')^{\mathrm{T}}(x - x')\right)$$

Gaussian process latent variable model (GP-LVM)

Dimensionality reduction: Linear vs non-linear

Image from: "Dimensionality Reduction the Probabilistic Way", N. Lawrence, ICML tutorial 2008

Applications of the GP-LVM in vision

- Modelling human motion (inverse kinematics [1], body parts decomposition [4], ...) (Show video...)
- Animation [2] (Show video...)
- Tracking [3]
- Reconstruction & probabilistic generation of HD video/high res. images [5,6]
- ...
 - [1] Grochow et al. (2004), Style-based Inverse Kinematics (SIGGRAPH)
 - [2] Baxter and Anjyo (2006), Latent Doodle Space (Eurographics)
 - [3] Urtasun et al. (2005), Priors for People Tracking from Small Training Sets
 - [4] Lawrence and Moore. (2007), Hierarchical Gaussian process latent variable models (ICML)
 - [5] Damianou et al. (2011), Variational Gaussian process dynamical systems (NIPS)
 - [6] Damianou et al. (2012), Manifold Relevance Determination (ICML)

Main sources:

- N. D. Lawrence (2006) "The Gaussian process latent variable model" Technical Report no CS-06-03, The University of Sheffield, Department of Computer Science
- N. D. Lawrence (2006) "Learning and inference with Gaussian processes: an overview of Gaussian processes and the GP-LVM". Presented at University of Manchester, Machine Learning Course Guest Lecture on 3/11/2006
- N. D. Lawrence (2006) "Probabilistic dimensional reduction with the Gaussian process latent variable model" (talk)
- C. E. Rasmussen(2008), "Learning with Gaussian Processes", Max Planck Institute for Biological Cybernetics, Published: Feb. 5, 2008 (Videolectures.net)
- Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. ISBN 026218253X.
- N. D. Lawrence, lecture notes for "Machine Learning and Adaptive Intelligence" (2012)