

CS 211 - Digital Logic Design الرقمي 211 عال ـ تصميم المنطق الرقمي

First Term - 1439/1440 Lecture #6

Dr. Hazem Ibrahim Shehata

Assistant Professor

College of Computing and Information Technology

Administrivia

- >Assignment #1:
 - Due: Today.
 - Solution to be posted tomorrow.
- >Midterm #1:
 - Date: Wednesday, October 24, 2018.
 - Time: 8:30am 9:30am
 - Scope: Chapters 2 and 3 (Lectures 1,2,3,4,5, and half-of-6).

Website: http://hshehata.github.io/courses/su/cs211

Chapter 3: Logic Gates (... Continuing ...)

DR. HAZEM SHEHATA CS 211 - DIGITAL LOGIC DESIGN 3

Exclusive-OR (XOR) Gate

- ➤ Performs operation called modulo-2 addition, which is the same as binary addition with no carry.
 - Takes 2⁺ inputs, and produces 1 output.
 - Output is High (1) if and only if number of High (1) inputs is odd.
 - Output is Low (0) if and only if number of High (1) inputs is even.

>Symbols:

XOR Gate Truth Table

For a 2-input XOR Gate:

Inp	Output X	
A	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Example: Truth Table for 3-input XOR Gate

$$n = 3 \rightarrow N = 2^3 = 8$$

	Output		
A	B	С	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Timing Diagram of XOR Gate

Example: 2-input XOR Gate

Application of XOR Gate

Example: 1-bit Modulo-2 adder

Exclusive-NOR (XNOR) Gate

- >XOR with an inverted output.
 - Takes 2⁺ inputs, and produces 1 output.
 - Output is Low (0) if and only if number of High (1) inputs is odd.
 - Output is High (1) if and only if number of High (1) inputs is even.
- >Symbols:

 $\begin{array}{c|c}
A & & \\
B & & \\
\end{array} = 1$

> Equivalent to:

$$A \rightarrow X$$

XNOR Gate Truth Table

For a 2-input XNOR Gate:

Inp	Output	
A	В	X
0	0	1
0	1	0
1	0	0
1	1	1

Example: Truth Table for 3-input XNOR Gate

$$n = 3 \rightarrow N = 2^3 = 8$$

	Output		
A	B	C	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Timing Diagram of XNOR Gate

Example: 2-input XNOR Gate

Application of XNOR Gate

Example: 1-bit Binary Comparator

Chapter 4: Boolean Algebra and Logic Simplification

Basic Boolean Terms

- ➤ Boolean Algebra (BA): the mathematics of digital logic.
- > Basic terms in BA: Variable, Complement, Literal.
 - 1. Variable: symbol (usually an italic uppercase letter or word) to represent an action, a condition, or data. Any single variable can have only a 1 or a 0 value. Example: A or X.
 - 2. Complement: the inverse of a variable and is indicated by a bar over the variable (overbar). Example: \bar{A} or \bar{X} .
 - 3. Literal: variable or complement of a variable. Example: A or \bar{X} .

Boolean Addition

➤ Boolean addition (+) is equivalent to OR operation.

- >Sum term: sum of literals.
 - Produced in logic circuits by OR operation with no AND's involved.
 - Equals 1 if 1⁺ literals equals 1. Equals 0 if all literals equal 0.
 - Examples: $A + \overline{B}$, $\overline{A} + B + C + \overline{D}$

Boolean Multiplication

 \triangleright Boolean multiplication (·) is equivalent to AND operation.

- Product term: product of literals.
 - Produced in logic circuits by AND operation with no OR's involved.
 - Equals 1 if all literals equal 1. Equals 0 if 1⁺ literals equals 0.
 - Examples: $\bar{A} \cdot \bar{B}$, $A\bar{B}\bar{C}D$

DR. HAZEM SHEHATA

Laws and Rules of Boolean Algebra

- \triangleright Commutative Laws $(+, \cdot)$
- \triangleright Associative Laws $(+, \cdot)$
- ➤ Distributive Law
- ➤ Rules of Boolean Algebra (12 rules)

Commutative Laws

 \triangleright Commutative law of addition: A + B = B + A

 \triangleright Commutative law of multiplication: AB = BA

Associative Laws

 \triangleright Associative law of addition: A + (B + C) = (A + B) + C

$$A = A + (B + C)$$

$$B = B$$

$$C = A + B$$

$$C$$

 \triangleright Associative law of multiplication: A(BC) = (AB)C

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$= \begin{array}{c}
AB \\
C
\end{array}$$

$$(AB)C$$

Distributive Law

 \triangleright Distributive Law: A(B + C) = AB + AC

DR. HAZEM SHEHATA

ightharpoonupRule 1: A + 0 = A

$$A = 1$$

$$0$$

$$X = 1$$

$$0$$

$$X = 0$$

$$0$$

ightharpoonupRule 2: A + 1 = 1

DR. HAZEM SHEHATA

$$A = 1$$

$$1$$

$$X = 1$$

$$1$$

$$X = 1$$

> Rule 3: $A \cdot 0 = 0$

$$A = 1$$

$$0$$

$$X = 0$$

$$0$$

$$X = 0$$

ightharpoonup Rule 4: *A* ⋅ 1 = *A*

$$A = 0$$

$$1$$

$$X = 0$$

$$1$$

$$X = 1$$

> Rule 5: A + A = A

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$A = 1$$

> Rule 6: $A + \bar{A} = 1$

$$A = 0$$

$$\overline{A} = 1$$

$$X = 1$$

$$\overline{A} = 0$$

$$X = 1$$

ightharpoonupRule 7: $A \cdot A = A$

$$A = 0$$

$$A = 0$$

$$A = 1$$

$$A = 1$$

$$A = 1$$

ightharpoonupRule 8: $A \cdot \bar{A} = 0$

$$A = 1$$

$$\overline{A} = 0$$

$$X = 0$$

$$\overline{A} = 1$$

$$X = 0$$

ightharpoonupRule 9: $\bar{\bar{A}} = A$

$$A = 0$$

$$\overline{A} = 1$$

$$\overline{A} = 0$$

$$A = 1$$

$$\overline{A} = 0$$

$$\overline{A} = 0$$

- > Rule 10: A + AB = A
 - Proof:

• L.H.S. =
$$A \cdot 1 + AB$$

$$B \qquad [R4]$$

$$= A(1+B)$$
 [Dist. Law]

$$= A \cdot 1$$

$$=A$$

\boldsymbol{A}	В	AB	A + AB	_
0	0	0	0	$A \longrightarrow$
0	1	0	0	
1	0	0	1	$B \longrightarrow$
1	1	1	1	→
<u> </u>	equ	ual ———		A straight connection

> Rule 11: $A + \bar{A}B = A + B$

• Proof:

• L.H.S. =
$$A + AB + \overline{A}B$$

$$[R10] = A + (A + \overline{A})B$$

$$\bullet$$
 = $A + 1 \cdot B$

$$[R6] = A + B$$

$$=A+B$$

$$[R4] = R.H.S.$$

A	В	$\overline{A}B$	$A + \overline{A}B$	A + B	
0	0	0	0	0	$A \rightarrow A$
0	1	1	1	1	
1	0	0	1	1	$B \longrightarrow A$
1	1	0	1	1	$A \longrightarrow$
			equ	ual 👤	$B \longrightarrow$

ightharpoonupRule 12: (A + B)(A + C) = A + BC

• Proof:

DR. HAZEM SHEHATA

= R.H.S.

• L.H.S. =
$$AA + AC + AB + BC$$
 [Dist. Law]
• $= A + AC + AB + BC$ [R7]
• $= A(1 + C) + AB + BC$ [Dist. Law]
• $= A \cdot 1 + AB + BC$ [R2]
• $= A + AB + BC$ [R4]
• $= A(1 + B) + BC$ [Dist. Law]
• $= A \cdot 1 + BC$ [R2]
• $= A + BC$ [R4]

> Rule 12: (A + B)(A + C) = A + BC (... Continuing...)

• Proof:

A	В	С	A + B	A + C	(A+B)(A+C)	ВС	A + BC	
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	$A \rightarrow A$
0	1	0	1	0	0	0	0	
0	1	1	1	1	1	1	1	c
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	_
1	1	0	1	1	1	0	1	A B
1	1	1	1	1	1 1	1	1	$C \longrightarrow C$
					<u>†</u>	— equal ——		

Rules of Boolean Algebra - Summary

Basic rules of Boolean algebra.

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

A, B, or C can represent a single variable or a combination of variables.

Reading Material

- Floyd, Chapter 3:
 - Pages 130 134
- Floyd, Chapter 4:
 - Pages 172 179

