

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|
| U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE<br>(REV 10-95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | ATTORNEY'S DOCKET NUMBER<br><b>10648-0001-0 PCT</b>            |
| TRANSMITTAL LETTER TO THE UNITED STATES<br>DESIGNATED/ELECTED OFFICE (DO/EO/US)<br>CONCERNING A FILING UNDER 35 U.S.C. 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR<br><b>09/446109</b> |
| INTERNATIONAL APPLICATION NO.<br><b>PCT/AU98/00490</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INTERNATIONAL FILING DATE<br><b>25 JUNE 1998</b> | PRIORITY DATE CLAIMED<br><b>25 JUNE 1997</b>                   |
| TITLE OF INVENTION<br><b>CYCLIC AGONISTS AND ANTAGONISTS OF C5a RECEPTORS AND G PROTEIN-COUPLED RECEPTORS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                                |
| APPLICANT(S) FOR DO/EO/US<br><b>David FAIRLIE, et al</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                |
| Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                                |
| <ol style="list-style-type: none"> <li><input checked="" type="checkbox"/> This is a <b>FIRST</b> submission of items concerning a filing under 35 U.S.C. 371.</li> <li><input type="checkbox"/> This is a <b>SECOND</b> or <b>SUBSEQUENT</b> submission of items concerning a filing under 35 U.S.C. 371.</li> <li><input checked="" type="checkbox"/> This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).</li> <li><input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.</li> <li><input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371 (c) (2))             <ol style="list-style-type: none"> <li><input type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau).</li> <li><input checked="" type="checkbox"/> has been transmitted by the International Bureau.</li> <li><input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US).</li> </ol> </li> <li><input type="checkbox"/> A translation of the International Application into English (35 U.S.C. 371(c)(2)).</li> <li><input checked="" type="checkbox"/> A copy of the International Search Report (PCT/ISA/210).</li> <li><input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))             <ol style="list-style-type: none"> <li><input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau).</li> <li><input type="checkbox"/> have been transmitted by the International Bureau.</li> <li><input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired.</li> <li><input checked="" type="checkbox"/> have not been made and will not be made.</li> </ol> </li> <li><input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).</li> <li><input type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).</li> <li><input checked="" type="checkbox"/> A copy of the International Preliminary Examination Report (PCT/IPEA/409).</li> <li><input type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).</li> </ol> |                                                  |                                                                |
| <b>Items 13 to 18 below concern document(s) or information included:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                |
| <ol style="list-style-type: none"> <li><input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98.</li> <li><input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.</li> <li><input checked="" type="checkbox"/> A <b>FIRST</b> preliminary amendment.<br/>A <b>SECOND</b> or <b>SUBSEQUENT</b> preliminary amendment.</li> <li><input type="checkbox"/> A substitute specification.</li> <li><input type="checkbox"/> A change of power of attorney and/or address letter.</li> <li><input type="checkbox"/> Certificate of Mailing by Express Mail</li> <li><input checked="" type="checkbox"/> Other items or information:</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                |
| <b>Notice of Priority</b><br><b>PCT/IB/304</b><br><b>Written Opinon (2)</b><br><b>Request For Consideration of Documents Cited in International Search Report</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                                |

|                                                                 |                                                 |                                              |
|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR)<br><b>09/446109</b> | INTERNATIONAL APPLICATION NO.<br>PCT/AU98/00490 | ATTORNEY'S DOCKET NUMBER<br>10648-0001-0 PCT |
|-----------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|

20. The following fees are submitted:

**BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :**

|                                                                                                                                                                            |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <input type="checkbox"/> Search Report has been prepared by the EPO or JPO .....                                                                                           | \$840.00 |
| <input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) .....                                                                      | \$670.00 |
| <input type="checkbox"/> No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) .....   | \$760.00 |
| <input checked="" type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO ..... | \$970.00 |
| <input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4) .....         | \$96.00  |

**CALCULATIONS PTO USE ONLY**

**ENTER APPROPRIATE BASIC FEE AMOUNT =**

**\$970.00**

Surcharge of **\$130.00** for furnishing the oath or declaration later than  
months from the earliest claimed priority date (37 CFR 1.492 (e)).

20  30

**\$130.00**

| CLAIMS                                           | NUMBER FILED | NUMBER EXTRA | RATE                     |                |
|--------------------------------------------------|--------------|--------------|--------------------------|----------------|
| Total claims                                     | 23 - 20 =    | 3            | x \$18.00                | <b>\$54.00</b> |
| Independent claims                               | 2 - 3 =      | 0            | x \$78.00                | <b>\$0.00</b>  |
| Multiple Dependent Claims (check if applicable). |              |              | <input type="checkbox"/> | <b>\$0.00</b>  |

**TOTAL OF ABOVE CALCULATIONS =**

**\$1,154.00**

|                                                                                                                                                                     |                          |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|
| Reduction of 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (check if applicable). | <input type="checkbox"/> | <b>\$0.00</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|

**SUBTOTAL =**

**\$1,154.00**

|                                                                                                                                                        |                                                         |                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|---------------|
| Processing fee of <b>\$130.00</b> for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492 (f)). | <input type="checkbox"/> 20 <input type="checkbox"/> 30 | <input type="checkbox"/> | <b>\$0.00</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|---------------|

**TOTAL NATIONAL FEE =**

**\$1,154.00**

|                                                                                                                                                                         |                          |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|
| Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable). | <input type="checkbox"/> | <b>\$0.00</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|

**TOTAL FEES ENCLOSED =**

**\$1,154.00**

|                           |    |
|---------------------------|----|
| Amount to be:<br>refunded | \$ |
| charged                   | \$ |

A check in the amount of **\$1,154.00** to cover the above fees is enclosed.

Please charge my Deposit Account No. in the amount of to cover the above fees.  
A duplicate copy of this sheet is enclosed.

The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. **15-0030** A duplicate copy of this sheet is enclosed.

**NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.**

SEND ALL CORRESPONDENCE TO:

WILLIAM E. BEAUMONT  
REGISTRATION NUMBER 30,996

  
SIGNATURE

NAME

24,618

REGISTRATION NUMBER

  
DATE

09/446109  
514 Rec'd PCT/PTO 23 DEC 1999

Docket No.: 10648-0001-0 PCT

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

IN RE APPLICATION OF : :

DAVID FAIRLIE ET AL : ATTN: APPLICATION DIVISION

SERIAL NO: NEW APPLICATION :  
(BASED ON PCT/AU98/00490)

FILED: HEREWITH : :

FOR: CYCLIC AGONISTS AND  
ANTAGONISTS OF C5A  
RECEPTORS AND G PROTEIN-  
COUPLED RECEPTORS

PRELIMINARY AMENDMENT

ASSISTANT COMMISSIONER FOR PATENTS  
WASHINGTON, D.C. 20231

SIR:

Prior to examination on the merits, please amend the above-identified application as follows.

IN THE CLAIMS

Please delete Claims 24-32.

Please amend the claims as follows.

Claim 3, line 1, delete "or Claim 2".

Claim 4, line 1, replace "3" with --1--.

Claim 5, lines 1-2, replace "any one of Claims 1 to 4" with --Claim 1--.

Claim 7, lines 1-2, replace "any one of claims 1 to 4" with --Claim 1--.

Claim 8, lines 1-2, replace "any one of Claims 1 to 4" with --Claim 1--.

Claim 9, lines 1-2, replace "any one of Claims 1 to 7" with --Claim 1--.

Claim 13, line 1, replace "any one of Claims 10 to 12" with --Claim 10--.

Claim 14, lines 1-2, replace "any one of Claims 3 and 10 to 13" with --Claim 13--.

Claim 17, line 1, delete "or Claim 16".

Claim 18, lines 1-2, replace "any one of Claims 15 to 17" with --Claim 15--.

Claim 20, line 2, replace "any one of Claims 1 to 19" with --Claim 1--.

Claim 21, line 4, replace "any one of Claims 1 to 19" with --Claim 1--.

#### REMARKS

Claims 1-23 are active in this application.

The claims have been amended to remove multiple dependencies. No new matter is believed to have been added to this application by these amendments.

Applicants submit that the present application is ready for examination on the merits.

Early notice to this effect is earnestly solicited.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,  
MAIER & NEUSTADT, P.C.

Norman F. Oblon  
Attorney of Record  
Registration No. 24,618

James J. Kelly, Ph.D.  
Registration No. 41,504

Crystal Square Five - Fourth Floor  
1755 Jefferson Davis Highway  
Arlington, VA 22202  
(703) 413-3000  
Fax #: (703) 413-2220  
NFO/JK

I:\atty\JK\106480001.PR

23 DEC 1998

CYCLIC AGONISTS AND ANTAGONISTS OF C5a RECEPTORS  
AND G PROTEIN-COUPLED RECEPTORS

This invention relates to novel cyclic compounds  
5 which have the ability to modulate the activity of G  
protein-coupled receptors. The invention provides both  
agonists and antagonists. In preferred embodiments, the  
invention provides cyclic peptidic and cyclic or non-cyclic  
non-peptidic antagonists or agonists of C5a. The compounds  
10 of the invention are both potent and selective, and are  
useful in the treatment of a variety of inflammatory  
conditions.

BACKGROUND OF THE INVENTION

15 Activation of human complement, a system of  
plasma proteins involved in immunological defence against  
infection and injury, contributes significantly to the  
pathogenesis of numerous acute and chronic diseases. In  
particular, the complement protein C5a has been extensively  
20 investigated. For general reviews, see Whaley (1987), and  
Sim (1993). Table 1 provides a summary of known roles of  
C5a in disease.

During host defence, the complement system of  
plasma proteins initiates inflammatory and cellular immune  
25 responses to stimuli such as infectious organisms  
(bacteria, viruses, parasites), chemical or physical  
injury, radiation or neoplasia. Complement is activated  
through a complex cascade of interrelated proteolytic  
events that produce multiple bioactive peptides, some of  
30 which (eg. anaphylatoxins C3a and C5a) interact with  
cellular components to propagate inflammatory processes.  
Complement activation, either by the classical pathway,  
after antigen-antibody (Ag/Ab) binding, or by the antibody-  
independent alternate pathway, ends with a terminal  
35 sequence in which protein C5 is proteolytically cleaved by  
C5 convertase to C5a and C5b. The latter facilitates  
assembly of a "membrane attack complex" that punches holes

- 2 -

in membranes of target cells such as bacteria, leading to leakage, lysis and cell death. Steps in the cascade are tightly regulated to avoid stepwise amplification of proteolysis by sequentially formed proteases. If these 5 regulatory mechanisms become inefficient, protracted activation of complement can result, causing enhanced inflammatory responses as in autoimmune diseases.

Although the broad features of the complement system and its activation are known, mechanistic details 10 remain poorly understood. A principal and very potent mediator of inflammatory responses is the plasma glycoprotein C5a, which interacts with specific surface receptors (C5aR) on mast cells, neutrophils, monocytes, macrophages, non-myeloid cells, and vascular endothelial 15 cells (Gerard and Gerard, 1994). C5aR is a G protein-coupled receptor with seven transmembrane helices (Gerard and Gerard, 1991). This receptor is one of the rhodopsin superfamily of GTP-linked binding proteins, but differs from rhodopsin receptors in that the receptor and G protein 20 are linked prior to activation.

G protein-coupled receptors are prevalent throughout the human body, comprising approximately 80% of known cellular receptor types, and mediate signal transduction across the cell membrane for a very wide range 25 of endogenous ligands. They participate in a diverse array of physiological and pathophysiological processes, including, but not limited to those associated with cardiovascular, central and peripheral nervous system, reproductive, metabolic, digestive, immunoinflammatory, and 30 growth disorders, as well as other cell-regulatory and proliferative disorders. Agents, both agonists and antagonists, which selectively modulate functions of G protein-coupled receptors have important therapeutic applications.

35 C5a is one of the most potent chemotactic agents known, and recruits neutrophils and macrophages to sites of injury, alters their morphology; induces degranulation;

- 3 -

increases calcium mobilisation, vascular permeability (oedema) and neutrophil adhesiveness; contracts smooth muscle; stimulates release of inflammatory mediators (including histamine, TNF- $\alpha$ , IL-1, IL-6, IL-8, 5 prostaglandins, leukotrienes) and lysosomal enzymes; promotes formation of oxygen radicals; and enhances antibody production (Gerard and Gerard, 1994). Overexpression or underregulation of C5a is implicated in the pathogenesis of immunoinflammatory conditions such as 10 rheumatoid arthritis, adult respiratory distress syndrome (ARDS), systemic lupus erythematosus, tissue graft rejection, ischaemic heart disease, reperfusion injury, septic shock, psoriasis, gingivitis, atherosclerosis, Alzheimer's disease, lung injury and extracorporeal post-15 dialysis syndrome, and in a variety of other conditions, as summarised in Table 1.

Table 1  
The Role of C5a in Disease

| Condition/disease         | C5a<br>levels | C5aR<br>expression | Details                                                                                                                                           |
|---------------------------|---------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| allergy                   | ++            |                    | allergen challenge leads to nasal symptoms and increased C5a levels                                                                               |
| Alzheimer's disease       | ++            | ++                 | up-regulation of the receptor in reactive astrocytes, microglia and endothelial cells in the CNS, complement system activated by $\beta$ -amyloid |
| ARDS/respiratory distress |               | ++                 |                                                                                                                                                   |
| Behcet's disease          | ++            |                    | levels highest just prior to ocular attack                                                                                                        |
| bronchial asthma          |               | ++                 |                                                                                                                                                   |
| capillary leak syndrome   |               | ++                 |                                                                                                                                                   |

| Condition/disease                             | C5a<br>levels | C5aR<br>expression | Details                                                                                                         |
|-----------------------------------------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| chronic lung disease                          | ++            |                    | Increased C5a levels in pulmonary effluent fluid from mechanically ventilated infants with chronic lung disease |
| Churg-Strauss                                 |               |                    | hypersensitivity of granulocytes to C5a                                                                         |
| cystic fibrosis                               |               |                    | generation of C5a/effects on PMNs                                                                               |
| decompression stress                          | ++            |                    | increased C5a levels during saturation diving                                                                   |
| diabetes type I                               | ++            |                    | C5a generated during onset; circulating monocytes in newly diagnosed type 1 diabetes patients are activated     |
| Familial                                      |               |                    | lack of C5a inactivator                                                                                         |
| Mediterranean fever                           |               |                    |                                                                                                                 |
| Guillain-Barre                                | ++            |                    | CSF levels elevated                                                                                             |
| ischaemic disease states / myocardial infarct |               |                    | migration of monocytes into myocardium after reperfusion. Damage prevented with SCR1                            |

| Condition/disease      | C5a<br>levels | C5aR<br>expression | Details                                                                                                                |
|------------------------|---------------|--------------------|------------------------------------------------------------------------------------------------------------------------|
| Kimura's disease       |               |                    | humoral factor up-regulates the response of PMNs to C5a                                                                |
| Multiple Sclerosis     | ++            |                    | increased expression of the receptor on foamy macrophages in acute and chronic MS and fibrous astrocytes in chronic MS |
| Meningitis             |               |                    | C5a induces experimental meningitis; PMN accumulation seen in the CSF                                                  |
| pancreatitis           | ++            | ++                 | C5a generated via complement activation by tubing material, C5aR levels decreased on PMNs & monocytes in chronic state |
| post-dialysis syndrome | ++            | -                  | C5a levels elevated at delivery                                                                                        |
| preeclampsia/ HELLP    | ++            |                    | C5a levels high in scales                                                                                              |
| psoriasis              | ++            |                    | C5a inhibited by C5 antibody                                                                                           |
| reperfusion injury     | ++            |                    | C5a detected in vitreous humor                                                                                         |
| retinitis              | ++            |                    |                                                                                                                        |

| Condition/disease             | C5a<br>levels | C5aR<br>expression | Details                                                                                                                                                            |
|-------------------------------|---------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rheumatoid arthritis          | ++            | -                  | elevated concentration of C5a found in synovial fluid (5-fold) and plasma (3-fold)                                                                                 |
| Severe congenital neutropenia | -             | -                  |                                                                                                                                                                    |
| transplant/graft rejection    | ++            | -                  | monoclonal antibodies block the damage seen with xenogenic transplant; increased levels of C5a seen in the plasma and urine of patients with renal graft rejection |

- 8 -

New agents which limit the pro-inflammatory actions of C5a have potential for inhibiting chronic inflammation, and its accompanying pain and tissue damage. For these reasons, molecules which prevent C5a binding to 5 its receptors are useful for treating chronic inflammatory disorders driven by complement activation. Importantly, such compounds provide valuable new insights to mechanisms of complement-mediated immunity.

In another context, agonists of C5a receptors or 10 other G protein-coupled receptors may also be found to have therapeutic properties in conditions either where the G protein-coupled receptor can be used as a recognition site for drug delivery, or where triggering of such receptors can be used to stimulate some aspect of the human immune 15 system, for example in the treatment of cancers, viral or parasitic infections.

One approach to the development of agonists or antagonists of C5a is through receptor-based design, using knowledge of the three-dimensional structures of C5a, its 20 receptor C5aR, and the interactions between them. The structure of the receptor is unknown. The solution structure of human C5a, a 74 amino acid peptide that is highly cationic and N-glycosylated with a 3 kDa carbohydrate at Asn64, has been determined and is 25 essentially a 4-helix bundle. The C-terminal end (residues 65-74, C5a65-74) was found to be unstructured (Zuiderweg *et al*, 1989) and this conformational flexibility in the C-terminus has made structure-function studies extremely difficult to interpret.

30 C5a has a highly ordered N-terminal core domain (residues 1-64; C5a<sub>1</sub>-64), consisting of a compact antiparallel 4-helix bundle (residues 4-12, 18-26, 32-39, 46-63) connected by loops (13-17, 27-31, 40-45), and further stabilised by 3 disulphide bonds (C21-Cys47, Cys22-35 Cys54, Cys34-Cys55).

Although the structure of the C5a receptor, C5aR, is unknown, the C5a-binding subunit of human monocyte-

derived C5aR has been cloned and identified as a G protein-coupled receptor with transmembrane helices (Gerard and Gerard, 1991). Interactions between C5a and C5aR have been the subject of many investigations which, in summary, 5 suggest that C5a binds via a two-site mechanism in which the N-terminal core domain of C5a is involved in receptor-recognition and binding, while the C-terminus is responsible for receptor activation. This mechanism is illustrated schematically in Figure 1. The C-terminal 10 "effector" region alone possesses all the information necessary for signal transduction, and is thought to bind in the receptor's interhelical region (Siciliano *et al*, 1994; deMartino *et al*, 1995).

An N-terminal interhelical positively-charged 15 region of C5a is responsible for receptor recognition and binding, and binds to a negatively-charged extracellular domain of C5aR (site 1), while the C-terminal "effector" region of C5a is thought to bind with the interhelical region of the receptor (site 2), and is responsible for 20 receptor activation leading to signal transduction (Siciliano *et al*, 1994).

Numerous short peptide derivatives of the C-terminus of C5a have been found to be agonists of C5a 25 (Kawai *et al*, 1991; Kawai *et al*, 1992; Kohl *et al*, 1993; Drapeau *et al*, 1993; Ember *et al*, 1992; Sanderson *et al*, 1994; Sanderson *et al*, 1995; Finch *et al*, 1997; Tempero *et al*, 1997; Konteatis *et al*, 1994; DeMartino *et al*, 1995). The structures of some of these agonists are shown in Table 30 2 below (compounds **1-6**). High molecular weight polypeptide inhibitors of the action of C5a at its receptor, such as monoclonal antibodies to the C5a receptor, are also known (Morgan *et al*, 1992).

A small molecule, N-methylphenylalanine-lysine-proline-D-cyclohexylalanine-tryptophan-D-arginine (**7**, MeF-35 K-P-dCha-W-R), is a full antagonist of the C5a receptor, with no agonist activity when tested on isolated cellular membranes (Konteatis *et al*, 1994) or intact whole cells.

- 10 -

This hexapeptide was developed by modifications of the agonist NMe-F-K-P-dCha-L-r, in which the molecule was progressively substituted at leucine residues with substituents of increasing size (Cha, F, Nph and W). This  
5 had the effect of reducing agonist activity. Receptor-binding assays, performed on isolated human neutrophil membranes, showed that the antagonist had only 0.04% relative affinity of C5a for the receptor (Konteatis et al., 1994). A key feature of these reports is the definition of  
10 the binding of 7 to the C5a receptor. These authors state that the C-terminal arginine is essential for receptor binding and antagonist activity. This is also the case in all the reports of agonist activity by small peptide analogues of the C-terminus of C5a. However, for the  
15 antagonist 7, the authors go further and state that

*"the C-terminal carboxylate is an essential requirement for antagonist activity and receptor binding."*

They proposed that the requirement of the  
20 carboxylate is probably the result of its specific interaction with an arginine (Arg 206) in the receptor (De Martino et al, 1995). This idea was supported by a great reduction in receptor-affinity for an analogue of 7 in which the D-arginine ( $\text{NH}_2\text{-CH}(\text{CO}_2\text{H})\text{-}(\text{CH}_2)_3\text{NHC}(:\text{NH})\text{NH}_2$ ) was  
25 replaced by agmatine ( $\text{NH}_2\text{-CH}_2\text{-}(\text{CH}_2)_3\text{NHC}(:\text{NH})\text{NH}_2$ ). In summary, De Martino et al claim that the D-arginine interacts via its guanidinium side chain with a negatively-charged amino acid side chain in the receptor. A second interaction between the negatively-charged C-terminal  
30 carboxylate of 7 and a positively-charged side chain residue in the receptor is also thought to occur.

We have now determined the solution structure of this hexapeptide 7 and several analogues, and have surprisingly found that in fact a terminal carboxylate group is not required for binding to C5aR or for antagonist activity, and that instead an unusual hitherto unrecognised structural feature, a turn conformation, is responsible for

- 11 -

C5a antagonist or agonist binding and activity. The hexapeptide and several new structurally related antagonists have been examined for both their receptor-binding affinities and antagonist activity, using intact polymorphonuclear (PMN) cells. Our results show the hitherto unknown specific structural requirement for the binding of C5a antagonists or agonists to the C5a receptor, which we believe to be common to ligands for the G protein-coupled receptor family. Our establishment of this specific structural requirement has enabled us to design and develop improved molecular probes of the complement system and of C5a-based drugs, and to design small molecules that target other G protein-coupled receptors, which are becoming increasingly recognised as important drug targets due to their crucial roles in signal transduction (G protein-coupled Receptors, IBC Biomedical Library Series, 1996).

Thus our results have enabled us to design constrained structural templates which enable hydrophobic groups to be assembled into a hydrophobic array for interaction with a G protein-coupled receptor, for example at Site 2 of the C5a receptor illustrated in Figure 1. Such templates or scaffolds, which may be cyclic or acyclic, have not heretofore been suggested for modulators of the activity of C5a receptors or other G protein-coupled receptors.

#### SUMMARY OF THE INVENTION

The invention provides cyclic and non-cyclic modulators of the activity of G-protein-coupled receptors.

According to a first aspect, the invention provides a compound which is an antagonist, of a G protein-coupled receptor, which has no agonist activity, and which has a cyclic or constrained acyclic structure adapted to provide a framework of approximate dimensions as follows:

- 12 -

Structure I



5

where the numerals refer to distances between  $C_{\alpha}$  carbons of amino acids or their analogues or derivatives, and A, B, C and D are not necessarily on adjacent amino acids, or analogues or derivatives thereof; and

where the critical amino acid side chains are designated by A, B, C and D, or are as defined below;

A is any common or uncommon, basic, charged amino acid side chain which serves to position a positively charged group in this position, including, but not limited to the following side chains and other mimetics of arginine side chains:



- 14 -

where

X is NCN, NNO<sub>2</sub>, CHNO<sub>2</sub> or NSO<sub>2</sub>NH<sub>2</sub>;

n is an integer from 1 to 4, and

R is H or an alkyl, aryl, CN, NH<sub>2</sub> or OH group .

5 B is any common or uncommon aromatic amino acid side chain which serves to position an aromatic side-chain group in this position, including but not limited to the indole, indole methyl, benzyl, phenyl, naphthyl, naphthyl methyl, cinnamyl group, or any other derivatives of these 10 aromatic groups;

C is any common or uncommon hydrophobic amino acid side chain which serves to position any alkyl, aromatic or other group in this position, including, but not limited to D- or L-cyclohexyl alanine (Cha), leucine, 15 valine, isoleucine, phenylalanine, tryptophan, or methionin

D is any common or uncommon aromatic amino acid which serves to position an aromatic side-chain in this position, and has the structure:



20

where Z includes but is not limited to indole, indole methyl, benzyl, benzene, naphthyl, naphthyl methyl, or any other derivatives of these aromatic groups, and

25 R¹ is H or any alkyl, aromatic, acyl or aromatic-acyl group including, but not limited to methyl, ethyl, propyl, butyl, -CO-CH<sub>2</sub>CH<sub>3</sub>, -CO-CH<sub>3</sub>, -CO-CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CO-CH<sub>2</sub>Ph, or -CO-Ph.

30 Preferably the G protein-coupled receptor is a C5a receptor.

Other cyclic or constrained acyclic molecules, which may be peptidic or non-peptide in nature, can similarly be envisaged to support groups such as A, B, C

- 15 -

and D for interaction with a C5a receptor or other G protein-coupled receptor.

In one preferred embodiment, the compound has antagonist activity against C5aR, has no C5a agonist

5 activity, and has the general formula:

Structure II



10

where A is H, alkyl, aryl, NH<sub>2</sub>, NHalkyl, N(alkyl)<sub>2</sub>, NHaryl or NHacyl; OH, Oalkyl, Oaryl.

15 B is an alkyl, aryl, phenyl, benzyl, naphthyl or indole group, or the side chain of a D- or L-amino acid selected from phenylalanine, homophenylalanine, tryptophan, homotryptophan, tyrosine, and homotyrosine;

20 C is the side chain of a D-, L- or homo-amino acid selected from the group consisting of proline, alanine, leucine, valine, isoleucine, arginine, histidine, aspartate, glutamate, glutamine, asparagine, lysine, tyrosine, phenylalanine, cyclohexylalanine, norleucine, tryptophan, cysteine and methionine;

25 D is the side chain of a D- or L-amino acid selected from the group consisting of cyclohexylalanine, homocyclohexylalanine, leucine, norleucine, homoleucine, homonorleucine and tryptophan;

- 16 -

E is the side chain of a D- or L-amino acid selected from the group consisting of tryptophan and homotryptophan;

F is the side chain of a D- or L-amino acid selected from the group consisting of arginine, homoarginine, lysine and homolysine; and

X<sup>1</sup> is -(CH<sub>2</sub>)<sub>n</sub>NH- or (CH<sub>2</sub>)<sub>n</sub>-S-, where n is an integer of from 1 to 4, preferably 2 or 3, -(CH<sub>2</sub>)<sub>2</sub>O-, -(CH<sub>2</sub>)<sub>3</sub>O-, -(CH<sub>2</sub>)<sub>3</sub>-, -(CH<sub>2</sub>)<sub>4</sub>-, or -CH<sub>2</sub>COCHR<sub>n</sub>NH-, where R is the side chain of any common or uncommon amino acid.

For the purposes of this specification, the term "alkyl" is to be taken to mean a straight, branched, or cyclic, substituted or unsubstituted alkyl chain of 1 to 6, preferably 1 to 4 carbons. Most preferably the alkyl group is a methyl group. The term "acyl" is to be taken to mean a substituted or unsubstituted acyl of 1 to 6, preferably 1 to 4 carbon atoms. Most preferably the acyl group is acetyl. The term "aryl" is to be understood to mean a substituted or unsubstituted homocyclic or heterocyclic aryl group, in which the ring preferably has 5 or 6 members.

A "common" amino acid is a L-amino acid selected from the group consisting of glycine, leucine, isoleucine, valine, alanine, phenylalanine, tyrosine, tryptophan, aspartate, asparagine, glutamate, glutamine, cysteine, methionine, arginine, lysine, proline, serine, threonine and histidine.

An "uncommon" amino acid includes, but is not restricted to, D-amino acids, homo-amino acids, N-alkyl amino acids, dehydroamino acids, aromatic amino acids (other than phenylalanine, tyrosine and tryptophan), ortho-, meta- or para-aminobenzoic acid, ornithine, citrulline, norleucine,  $\gamma$ -glutamic acid, aminobutyric acid and  $\alpha,\alpha$ -disubstituted amino acids.

For the purposes of this specification it will be clearly understood that the word "comprising" means

- 17 -

"including but not limited to", and that the word "comprises" has a corresponding meaning.

According to a second aspect, of the invention provides a compound which is an agonist of G protein-coupled receptors, and which has structure III

Structure III



10

where the numerals refer to distances between  $C_{\alpha}$  carbons of amino acids or their analogues or derivatives, and A, B, C and D are not necessarily on adjacent amino acids, or analogues or derivatives thereof; and

15

where B is a non-aromatic amino acid, and is preferably the D- or L-form of alanine, leucine, valine, norleucine, glutamic acid, aspartic acid, methionine, cysteine, isoleucine, serine or threonine, and A, C and D are as defined above.

20

Preferably the compound is of structure IV,

Structure IV



5 where E is any amino acid other than tryptophan and homotryptophan, for example D- or L- forms of alanine, leucine, valine, norleucine, phenylalanine, glutamic acid, aspartic acid, methionine, cysteine, isoleucine, serine, threonine, and F and X<sup>1</sup> are as defined in Structure II.

10 Preferably the compound is an agonist of C5a.

According to a third aspect, the invention provides a composition, comprising a compound according to the invention together with a pharmaceutically-acceptable carrier or excipient.

15 The compositions of the invention may be formulated for oral or parenteral use, but oral formulations are preferred. It is expected that most if not all compounds of the invention will be stable in the presence of digestive enzymes. Such stability can readily 20 be tested by routine methods known to those skilled in the art.

Suitable formulations for administration by any desired route may be prepared by standard methods, for example by reference to well-known textbooks such as

25 Remington; The Science and Practice of Pharmacy, Vol. II, 1995 (19<sup>th</sup> edition), A.R. Gennaro (ed), Mack Publishing Company, Easton, Pennsylvania, or Australian Prescription Products Guide, Vol. 1, 1995 (24<sup>th</sup> edition) J. Thomas (ed),

- 19 -

Australian Pharmaceutical Publishing Company Ltd, Victoria,  
Australia.

In a fourth aspect, the invention provides a  
method of treatment of a pathological condition mediated by  
5 a G protein-coupled receptor, comprising the step of  
administering an effective amount of a compound of the  
invention to a mammal in need of such treatment.

Preferably the condition mediated by a G protein-  
coupled receptor is a condition mediated by a C5a receptor,  
10 and more preferably involves overexpression or  
underregulation of C5a. Such conditions include but are  
not limited to rheumatoid arthritis, adult respiratory  
distress syndrome (ARDS), systemic lupus erythematosus,  
tissue graft rejection, ischaemic heart disease,  
15 reperfusion injury, septic shock, psoriasis, gingivitis,  
atherosclerosis, Alzheimer's disease, lung injury and  
extracorporeal post-dialysis syndrome.

While the invention is not in any way restricted  
to the treatment of any particular animal or species, it is  
20 particularly contemplated that the compounds of the  
invention will be useful in medical treatment of humans,  
and will also be useful in veterinary treatment,  
particularly of companion animals such as cats and dogs,  
livestock such as cattle, horses and sheep, and zoo  
25 animals, including large bovids, felids, ungulates and  
canids.

The compounds may be administered at any suitable  
dose and by any suitable route. Oral administration is  
preferred because of its greater convenience and  
30 acceptability. The effective dose will depend on the  
nature of the condition to be treated, and the age, weight,  
and underlying state of health of the individual treatment.  
This will be at the discretion of the attending physician  
or veterinarian. Suitable dosage levels may readily be  
35 determined by trial and error experimentation, using  
methods which are well-known in the art.

- 20 -

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows a diagrammatic representation of the two-site model for binding of C5a to its G protein-coupled receptor, C5aR. The black rods represent  $\alpha$ -helical regions, and the open cylinders represent the transmembrane helices. Sites 1 and 2 are indicated on the figure.

Figure 2 shows stacked plots of  $^1\text{H}$ -NMR spectra, showing time-dependent decay of amide NH resonances for Trp (8.10 ppm) and D-Cha (7.90 ppm) residues of **7** in  $d_6$ -DMSO containing  $D_2\text{O}$  after 10 minutes (bottom plot) and then 25, 40, 55, 70, 130, 190, 250, 385 and 520 minutes.

Figure 3 shows backbone C, N, O atoms of twenty lowest energy minimized NMR structures of **7** in  $d_6$ -DMSO at 24°C .

Figure 4 shows a schematic representation of H-bonding in the structure of **7** from proton NMR spectra in  $d_6$ -DMSO.

Figure 5a shows (a) receptor binding, as indicated by inhibition of binding of  $^{125}\text{I}$ -C5a to human PMNs by **7** (●); **8** ( $\Delta$ ); **9** ( $\blacktriangle$ ); **12** (○).

Figure 5b shows C5a antagonist potency as inhibition of myeloperoxidase (MPO) release from human PMNs by : **7** (■, n= 9) and **12** ( $\blacktriangle$ , n=4). Figure 5c shows C5aR binding and antagonist potencies of **7**, **15** and **17**.

A-C show the effect of increasing concentrations (top to bottom) of C5a antagonists inhibiting myeloperoxidase release in human PMNs (n=3 in A-C).

A: **7** at 0, 0.1, 0.3, 1.0  $\mu\text{M}$  (top to bottom)

B: **15** at 0, 0.1, 0.03, 0.1  $\mu\text{M}$  (top to bottom)

C: **17** at 0, 0.01, 0.03, 0.1  $\mu\text{M}$  (top to bottom)

D: Comparative affinities for PMN C5qR receptor.

Inhibition of binding of  $^{125}\text{I}$ -C5a to human PMNs by **7** (top), **15** (middle), **17** (bottom). All data are means  $\pm$  SEM.

Figure 6 shows receptor binding of cyclic C5a antagonists, as shown by inhibition of binding of  $^{125}\text{I}$ -C5a to human PMNs (n=5).

- 21 -

Figure 7 shows superimposed structures of **7** (light, NMR structure) and **12** (dark, computer modelled structure). Phe and Trp side chains are omitted from **12** for clarity.

5       Figure 8 shows inhibition of C5a-induced neutropenia in Wistar rats by the cyclic antagonist F-[OPdChaWR] given i.v. at 1mg/kg. Results shown from n=3 in each group, \*P<0.05 compared to C5a-treated group only. Results are expressed as mean  $\pm$  SEM.

10      Figure 9 shows inhibition of LPS-induced neutropenia and changes in haematocrit induced by the cyclic antagonist F-[OPdChaWR] (0.03-10mg/kg, i.v., 10 min prior to lipopolysaccharide [LPS]) in Wistar rats. Abscissa: time after LPS (1 mg/kg i.v. injection).

15      Ordinate: per cent change in haematocrit (A) value or level of circulating polymorphonuclear (PMN) leukocytes (B) compared to time zero.

20      Figure 10 shows inhibition of carrageenan-induced (Wistar) rat paw oedema by cyclic antagonist (3D35) AcF-[OPdChaWr] (1 mg/kg single dose i.p. given 30 min prior to carrageenan). Results shown from 4 rats /group, mean  $\pm$  SEM. Ordinate: percent change in paw volume. Abscissa: time (mins) after carrageenan injection

25      DETAILED DESCRIPTION OF THE INVENTION

The invention will now be described by way of reference only to the following general methods and experimental examples, and to the figures. Abbreviations used herein are as follows:

|    |       |                                                                             |
|----|-------|-----------------------------------------------------------------------------|
| 30 | BOP   | benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate |
|    | D-Cha | D-cyclohexylamine                                                           |
|    | DIPEA | diisopropylethylamine                                                       |
|    | DMF   | dimethylformamide                                                           |
| 35 | DMSO  | dimethylsulphoxide                                                          |
|    | HBTU  | O-benzotriazole N',N',N',N'-tetramethyluronium hexafluorophosphate;         |

- 22 -

|         |                                                      |
|---------|------------------------------------------------------|
| LPS     | lipopolysaccharide                                   |
| PMN     | polymorphonuclear granulocyte                        |
| RMSD    | root mean square deviation                           |
| RP-HPLC | reverse phase-high performance liquid chromatography |
| TFA     | trifluoroacetic acid;                                |

Throughout the specification conventional single-letter and three-letter codes are used to represent amino acids.

#### General Methods

Protected amino acids and resins were obtained from Novabiochem. TFA, DIPEA and DMF (peptide synthesis grade) were purchased from Auspep. All other materials were reagent grade unless otherwise stated. Preparative scale reverse-phase HPLC separations were performed on a Vydac C18 reverse-phase column (2.2 x 25 cm), and analytical reverse-phase HPLC separations were performed on a Waters Delta-Pak PrepPak C18 reverse-phase column (0.8 x 10 cm), using gradient mixtures of solvent A = water/0.1% TFA and solvent B = water 10%/acetonitrile 90%, 0.09% TFA. The molecular weight of the peptides was determined by electrospray mass spectrometry recorded on a triple quadrupole mass spectrometer (PE SCIEX API III), as described elsewhere (Haviland et al, 1995).  $^1\text{H}$ -NMR spectra were recorded on either a Bruker ARX 500 MHz or a Varian Unity 400 spectrometer. Proton assignments were determined by 2D NMR experiments (DFCOSY, TOCSY, NOESY).

Non-peptidic compounds were synthesized using conventional organic chemical methods. Compounds were analysed by  $^1\text{H}$ -NMR spectroscopy and by mass spectrometry.

#### **Peptide synthesis**

Some representative peptide syntheses are now given. Linear peptide sequences were assembled by manual step-wise solid-phase peptide synthesis with HBTU

- 23 -

activation and DIEA *in situ* neutralisation. Boc chemistry was employed for temporary N<sup>α</sup>-protection of amino acids with two 1 min treatments with TFA for Boc group removal. The peptides were fully deprotected and cleaved by treatment with liquid HF (10 ml; p-cresol (1 ml); -5°C; 1-2 hr). Analytical HPLC (gradient; 0% B to 50% B over 40 min): **7**, Rt = 32.0 min, [M+H]<sup>+</sup>(calc.) = 900.5, [M+H]<sup>+</sup>(exper.) = 900.7; **8**, Rt = 32.2 min, [M+H]<sup>+</sup>(calc.) = 899.6, [M+H]<sup>+</sup>(exper.) = 899.7; **9**, Rt = 30.0 min, [M+H]<sup>+</sup>(calc.) = 900.5, [M+H]<sup>+</sup>(exper.) = 900.7; **10**, Rt = 23.8 min, [M+H]<sup>+</sup>(calc.) = 860.5, [M+H]<sup>+</sup>(exper.) = 860.5.

Structures for the peptides are shown in Table 4 below.

- 24 -

a) *Synthesis of cycle 11*

This is a general method used for the synthesis of a wide range of cyclic antagonists covered by this patent. For example, in the case of cycle 11, its linear precursor peptide was synthesised by Fmoc chemistry using HBTU/DIEA activation on an Fmoc-D-Arg(Mtr)-Wang resin. Fmoc group removal was effected using two 1 min treatments with 50% piperidine/DMF. Cleavage and deprotection using 95% TFA/2.5% TIPS/2.5% H<sub>2</sub>O gave the Mtr-protected peptide, which was purified by RP-HPLC. Cyclization of the protected, purified peptide using 3eq BOP and 10eq DIEA at a 1 mM concentration in DMF stirring for 15 hr gave the cyclised product, which was fully deprotected using 1M TMSBr in TFA. A final RP-HPLC purification gave the desired peptide in yields of 50% for the cyclisation. R<sub>t</sub> = 37.7 min, [M+H]<sup>+</sup>(calc.) = 910.5, [M+H]<sup>+</sup>(exper.) = 910.7.

b) *Synthesis of cycle 12*

Cyclization of the cleaved and fully deprotected peptide was achieved by stirring a 1mM solution in DMF with 3eq BOP and 10 eq pyridine as base for 15hr. A final RP-HPLC purification gave the desired peptide in yields of 22% for the cyclization. R<sub>t</sub> = 37.3 min, [M+H]<sup>+</sup>(calc.) = 896.5, [M+H]<sup>+</sup>(exper.) = 896.5.

25

**NMR Structure Determination**

<sup>1</sup>H-NMR spectra were recorded for compound 7 (3 mg in 750  $\mu$ l d<sub>6</sub>-DMSO,  $\delta$  2.50) referenced to solvent on a Varian Unity 400 spectrometer at 24°C. Two dimensional <sup>1</sup>H-NMR NOESY (relaxation delay 2.0s, mix time 50-300 ms), DFQ- COSY and TOCSY (mixing time 75ms) experiments were acquired and recorded in phase sensitive mode. Acquisition times = 0.186 s, spectral width = 5500Hz, number of complex points ( $t_1$  dimension) = 1024 for all experiments. Data was zero-filled and Fourier transformed to 1024 real points in both dimensions.

- 25 -

NMR data was processed using TRIAD software (Tripos Assoc.) on a Silicon Graphics Indy work station. 2D NOE cross peaks were integrated and characterised into strong (1.8-2.5Å), medium (2.3-3.5Å) and weak (3.3-5.0Å).

5 Preliminary three-dimensional structures were calculated from upper and lower distance limit files using Diana 2.8 (69 distance constraints, including 27 for adjacent residues and 6 further away) with the redundant dihedral angle constraints (REDAC) strategy. Upper and lower

10 distance constraints were accurately calculated using MARDIGRAS. At this stage the peptide was examined for possible hydrogen bonds, and these were added as distance constraints. The 50 lowest energy Diana structures were subjected to restrained molecular dynamics (RMD) and energy

15 minimisation (REM). Initially, REM consisted of a 50 step steepest descent followed by 100 step conjugate gradient minimisation. RMD was performed by simulated heating of the structures to 300K for 1ps, followed by 500K for 1ps. The temperature was gradually lowered to 300K over 2ps and

20 finally for 2ps at 200K. REM was performed again with a 50 step steepest descent, 200 step conjugate gradient followed by a 300 step Powell minimisation. The final structures were examined to obtain a mean pairwise rms difference over the backbone heavy atoms (N, C $\alpha$  and C). Twenty of the 50

25 structures had a mean rmsd < 0.5 Å for all backbone atoms (O, N, C).

#### Molecular Modelling

A model of cycle 12, shown in Figure 7, was

30 created from the NMR structure of 7 by deleting all NMR constraints, fusing the ornithine side chain amine to the C-terminal carboxylate of d-Arg to form an amide, and minimising using Powell forcefield (1000 iterations). The modelled structure was then superimposed on the NMR

35 structure with an rmsd 0.224Å.

- 26 -

#### Receptor-Binding Assay

Assays were performed with fresh human PMNs, isolated as previously described (Sanderson et al, 1995), using a buffer of 50 mM HEPES, 1 mM CaCl<sub>2</sub>, 5 mM MgCl<sub>2</sub>, 0.5% bovine serum albumin, 0.1% bacitracin and 100 µM phenylmethylsulfonyl fluoride (PMSF). In assays performed at 4°C, buffer, unlabelled human recombinant C5a (Sigma) or peptide, Hunter/Bolton labelled <sup>125</sup>I-C5a (~ 20 pM) (New England Nuclear, MA) and PMNs (0.2 x 10<sup>6</sup>) were added sequentially to a Millipore Multiscreen assay plate (HV 0.45) having a final volume of 200 µL/well. After incubation for 60 min at 4°C, the samples were filtered and the plate washed once with buffer. Filters were dried, punched and counted in an LKB gamma counter. Non-specific binding was assessed by the inclusion of 1 mM peptide or 100 nM C5a which typically resulted in 10-15% total binding.

Data was analysed using non-linear regression and statistics with Dunnett post test.

20

#### Myeloperoxidase Release

Cells were isolated as previously described (Sanderson et al, 1995) and incubated with cytochalasin B (5µg/mL, 15 min, 37°C). Hank's Balanced Salt solution containing 0.15% gelatin and peptide was added on to a 96 well plate (total volume 100 µL/well), followed by 25 µL cells (4x10<sup>6</sup>/mL). To assess the capacity of each peptide to antagonise C5a, cells were incubated for 5 min at 37°C with each peptide, followed by addition of C5a (100 nM) and further incubation for 5 min. Then 50 µL of sodium phosphate (0.1M, pH 6.8) was added to each well, the plate was cooled to room temperature, and 25 µL of a fresh mixture of equal volumes of dimethoxybenzidine (5.7 mg/mL) and H<sub>2</sub>O<sub>2</sub> (0.51%) was added to each well. The reaction was stopped at 10 min by addition of 2% sodium azide. Absorbances were measured at 450 nm in a Bioscan 450 plate

- 27 -

reader, corrected for control values (no peptide), and analysed by non-linear regression.

#### ***In Vivo Assays of Anti-Inflammatory Activity***

5           The following well-known *in vivo* assay systems may be used to assess the anti-inflammatory activity of compounds of the invention. All assay data are analysed using non-linear regression analysis and Student's t-test, analysis of variance, with  $p<0.05$  as the threshold level of  
10 significance.

##### **(a) Carrageenan Paw Oedema**

15           Anaesthetised (i.p. ketamine & xylazine) Wistar rats (150-200g) or mice were injected with sterilised air (20ml day 1, 10ml day 4) into the subcutaneous tissue of the back. The cavity can be used after 6 days, whereupon carrageenan (2ml, 1% w/w in 0.9% saline) was injected into the air pouch and exudate was collected after 10 hr. Test compounds are administered daily after Day 6 and their  
20          anti-inflammatory effects assayed by differential counting of cells in the air-pouch exudate. Animals were killed at appropriate times after injection and 2ml 0.9% saline was used to lavage the cavity, lavage fluids were transferred to heparinised tube and cells were counted with a  
25          haemocytometer and Diff-Quik stained cytocentrifuged preparation.

30           Alternatively, a routine carrageenan paw oedema was developed in Wistar rats by administering a pedal injection of carrageenan to elicit oedema which is visible in 2h and maximised in 4h. Test compounds are given 40 min before inflammagen and evaluated by microcaliper measurements of paws after 2 & 4 hr. See Fairlie,D.P. et al (1987). Also see Walker and Whitehouse (1978).

##### **35          (b) Adjuvant Arthritis.**

Adjuvant arthritis was induced in rats (3 strains) either microbially (injection of heat-killed

5 *Mycobacterium tuberculosis*) or chemically (with avridine) by inoculation with the arthritogenic adjuvant co-administered with oily vehicles (Freund's adjuvants) in the tail base. (See Whitehouse, M. W., Handbook of Animal Models for the Rheumatic Diseases, Eds. Greenwald, R. A.; Diamond, H. S.; Vol. 1, pp. 3-16, CRC Press)

10 Within 13 days the adjuvant arthritis is manifested by local inflammation and ulceration in the tail, gross swelling of all four paws, inflammatory lesions in paws and ears, weight loss and fever. These symptoms, which are similar to those of inflammatory disease in humans (Winter and Nuss, 1966), can be alleviated by agents such as indomethacin or cyclosporin which also show beneficial effects in man (eg. Ward and Cloud, 1966).

15 Without drug treatment at Day 14, arthritic rats had hypertrophy of the paws, reduced albumin but raised acute phase reaction proteins in serum, and depressed hepatic metabolism of xenobiotics as indicated by prolonged barbiturate-induced sleeping times.

20 To assess activity, compounds were administered for 4 days orally ( $\leq 10\text{mg/kg/day}$ ) or i.p. from Days 10-13 following inoculation with arthritogen (Day 0). The inflammation was either not visible or very significantly reduced in rear or front paws as assessed by microcaliper measurements of paw thickness and tail volume, as well as by gross inspection of inflammatory lesions. Animals are sacrificed by cervical dislocation on Day 18 unless arthritis signs are absent, whereupon duration of observations is continued with special permission from the Ethics committees. Experiments are staggered to maximise throughput and allow early comparisons between compounds. This routine assay is well-accepted as identifying anti-inflammatory agents for use in humans.

- 29 -

Example 1      Structure-Activity Relationship of C5a  
                  Agonists

We have focussed on the C-terminal residues of C5a, in order to explore structure-activity relationships in the search for peptide sequences with potent agonist activity. Many of these peptides are full agonists relative to C5a, but have markedly lower potency (Sanderson et al, 1994, 1995; Finch et al, 1997). Our initial structure-activity investigations have been particularly informative. Mutating the decapeptide C-terminus of C5a (1, C5a65-74, ISHKDMQLGR) twice with I65Y and H67F (eg. 2) led to enhancement of agonist potency by about 2 orders of magnitude. These results are summarised in Table 2. Analyses of Ramachandran plots and 2D NMR spectra for compound 2 suggested that certain structural features, namely a twisted "helix-like" backbone conformation for residues 65-69 and a  $\beta$ -turn for residues 71-74, might be responsible for activity. These preliminary results provided some insight to structural requirements for tight binding to a C5a receptor.

**Table 2**  
Pharmacological Activity of C5a Agonist Analogues\*

| Peptide No. | Peptide                             | Fetal Artery<br>EC <sub>50</sub> (μM) | PMN Enzyme<br>Release EC <sub>50</sub><br>(μM) | Binding<br>IC <sub>50</sub> (μM) |
|-------------|-------------------------------------|---------------------------------------|------------------------------------------------|----------------------------------|
| <b>1</b>    | C5a <sub>65-74</sub> (I SHKDMDQLGR) | >1000                                 | >1000                                          | >1000                            |
| <b>2</b>    | YSFKDMQLGR                          | 9.6                                   | 92                                             | 1.3                              |
| <b>3</b>    | YSFKDMDPLaR                         | 0.5                                   | 72                                             | 3.7                              |
| <b>4</b>    | YSFKPMLaR                           | 0.2                                   | 4.1                                            | 6.0                              |
| <b>5</b>    | C5a <sub>37-46</sub> -ahXYSFKPMLaR  | 0.06                                  | 5.9                                            | 0.7                              |
| <b>6</b>    | C5a <sub>12-20</sub> -ahXYSFKPMLaR  | 0.08                                  | 0.7                                            | 0.07                             |
|             | C5a                                 | 0.02                                  | 0.03                                           | 0.0006                           |

\* Finch et al, 1997

- 31 -

Compounds 4, 5 and 6 in Table 2 are the highest affinity small C5a agonists so far known, with up to 25% C5a potency in human fetal artery, 5% C5a potency in human PMN enzyme release assays and 1% C5a affinity for PMN C5aR (Finch et al., 1997). For the PMN receptor, these compounds have up to 100-fold higher apparent affinity than any small molecule previously described in the literature.

The "high" affinities (70nM-6 $\mu$ M) of these agonist analogues for C5aR in intact PMN cells have enabled us to identify a common topographical feature in peptide agonists that correlates with expression of spasmogenic activities and enzyme-release assays in human PMNs. This preferred backbone conformation is a type II  $\beta$ -turn.

The small size of these agonist peptides makes them amenable to synthetic modification to optimise their affinities, activities, and bioavailabilities, and hence useful as mechanistic probes of receptor activation.

Example 2      NMR Structure of C5a Antagonist

We used two dimensional nuclear magnetic resonance spectroscopy to determine the three dimensional structure of 7 and found that while there is no discernible structure in water, there is evidence of a stable gamma-turn structure in dimethylsulfoxide.

The 1D  $^1$ H-NMR spectrum of peptide 7 in d<sub>6</sub>-DMSO at 24°C shows 4 distinct resonances for amide-NH protons, as summarized in Table 3. To establish their possible involvement in intramolecular hydrogen bonds, a deuterium exchange experiment was performed by adding a 10-fold excess of D<sub>2</sub>O to the solution. Two of the amide-NH doublets disappeared immediately, along with resonances attributable to the N-terminal methylamine protons. However, the other two amide NH resonances, as well as a broad resonance at approximately 8.05 ppm, persisted for up to 6.5 hours (Figure 2). These three slowly-exchanging protons are assigned to the amide NHs of Trp and d-Cha and the side chain amine of Lys, the slow exchange behaviour

- 32 -

being characteristic of hydrogen-bonding. The amine assignment was established from the TOCSY spectrum where cross peaks were observed between the protonated amine and the  $\varepsilon$ ,  $\delta$  and  $\gamma$   $\text{CH}_2$  protons. A temperature dependence study 5 (20-60°C) of the amide-NH chemical shifts ( $\Delta\delta/T = 2.5$  ppb/deg, dCha-NH; 6 ppb/deg, Trp-NH; 6.5 ppb, Lys-NH; 8.7 ppb, Arg-NH) unambiguously confirmed the involvement of the dCha-NH only in intramolecular hydrogen bonding.

Table 3  
<sup>1</sup>H-NMR Assignments<sup>a</sup> for 7 in d<sub>6</sub>-DMSO

| Residue | <sup>b</sup> HN | H $\alpha$ | H $\beta$   | HY         | Others                                    |
|---------|-----------------|------------|-------------|------------|-------------------------------------------|
| MePhe   | -               | 4.06       | 3.09, 3.06  | -          | c 7.17, 7.29; d 2.46; f 8.98              |
| Lys     | 8.83            | 4.54       | 1.74, 1.55  | 1.32       | e 1.51; f 2.74, g 7.76 (NH <sub>2</sub> ) |
| Pro     | -               | 4.30       | 2.084, 1.74 | 1.88, 1.78 | e 3.61, f 3.48                            |
| d-Cha   | 7.91            | 4.35       | 1.19, 1.06  | 0.76       | e 1.43, 1.08; f 1.61, 1.58; 0.73          |
| Trp     | 8.01            | 4.65       | 3.11, 2.94  | -          | c 6.97, 7.06, 7.13, 7.32, 7.65; g 10.80   |
| d-Arg   | 8.44            | 4.20       | 1.73, 1.58  | 1.42       | e 3.08; g 7.60                            |

<sup>a</sup> Referenced to residual d<sub>5</sub>-DMSO at 2.50 ppm.

<sup>b</sup> Amide NHS, <sup>3</sup>J<sub>NH-CaH</sub> values (Hz) : 7.91 (Lys), 7.77 (d-Arg), 8.34 (Trp), 8.53 (d-Cha).

c Aromatics

d N-Me.

e H $\delta$ .

f H $\epsilon$

g NH/NH<sub>2</sub> amine.

- 34 -

A series of 2D  $^1\text{H}$ -NMR spectra were measured for 7 at 24°C in  $d_6$ -DMSO to determine the three-dimensional structure. TOCSY and DFQ-COSY experiments were used to identify residue types, while sequential assignments were 5 made from analysis of NOESY data. From a series of 100 structures generated from NOESY data, fifty of the lowest energy structures were subjected to restrained molecular dynamics (200K-500K) and energy minimised. A set of 20 calculated structures with a root mean square deviation 10 (rmsd) < 0.5 Å (backbone atoms) are superimposed in Figure 3, and clearly depict a turn conformation.

In combination, the NMR constraint data,  $^3\text{J}_{\text{NH}-\text{C}\alpha\text{H}}$  values, deuterium exchange and temperature dependence data establish an unusual turn structure for hexapeptide 7 which 15 is constrained by up to three hydrogen bonds, as shown in Figure 4. The evidence is very strong for one *intramolecular hydrogen bond* from dCha-NH....OC-Lys (2.72 Å, N-H...O angle 157°, C=O...H angle 84°), forming a 7-membered ring that defines an inverse  $\gamma$ -turn. The 20 dChaNH-O-TrpNH angle is 56.4°. The deuterium exchange data and NMR constraint data together point to a second *intramolecular hydrogen bond* Trp-NH....OC-Lys (3.31 Å, N-H...O angle 159°, CO...H angle 137.3°) forming a 10-membered ring characteristic of a  $\beta$ -turn. The  $\phi$  and  $\psi$  angles 25 ( $\phi_2=-58.4^\circ$ ,  $\psi_2=62.0^\circ$ ;  $\phi=96.6^\circ$ ,  $\psi_3=16.6^\circ$ ) most closely match a type II  $\beta$ -turn (Bandekar, 1993; Hutchinson and Thornton, 1994) which is distorted by the presence of the  $\gamma$ -turn wholly within the  $\beta$ -turn.

To our knowledge this is the first example of an 30 intramolecular hydrogen bond between residues within a  $\beta$ -turn, although there are many examples of hydrogen bonds between a residue within the "10 membered ring" of a  $\beta$ -turn and a residue outside of it (Bandekar, 1993). A *third hydrogen bond* (2.76 Å, N-H...O angle 160.3°), between the 35 side-chain amine of Lys and the C-terminal carboxylate, is suggested by the NMR constraint data, by slow NH/ND exchange and by detection of a weak NOE between Lys-

- 35 -

NH...Trp- $\alpha$ CH<sub>2</sub>. This may further constrain the molecule into the observed turn conformation. Such ion-pairing is common in dipolar aprotic solvents such as dimethylsulphoxide and may also be relevant in a hydrophobic protein environment.

NMR solution structures have also been determined for several of the cyclic antagonists described in the following examples, and show that in each case the type II  $\beta$ -turn is preserved and stabilized by the cyclic structure.

The constraining  $\beta$  and  $\gamma$  turns proposed in the linear peptide **7** have parallels in cyclic peptides. We have previously detected overlapping  $\beta$  and  $\gamma$  turns in a cyclic octapeptide from ascidiacyclamide (Abbenante *et al*, 1996). Combinations of a  $\beta$ - and  $\gamma$ -turn have also been found in the backbones of cyclic penta- and hexapeptides, particularly those containing alternating D- and L-amino acids (Marraud and Aubry 1996; Fairlie *et al*, 1995; Kessler *et al*, 1995; Stradley *et al*, 1990). For example a type II  $\beta$ -turn and an inverse  $\gamma$ -turn have been identified in cyclic antagonists c-(D- Glu-Ala-D-allo-Ile-Leu-D-Trp) (Ihara *et al*, 1991; Coles *et al*, 1993; Ihara *et al*, 1992; Bean *et al*, 1994) and c-(D-Asp-Pro-D-Val-Leu-D-Trp) (Bean *et al*, 1994) for endothelin receptors, and in members of the rhodopsin family of G protein-coupled receptors with seven transmembrane domains (X.-M.Cheng *et al*, 1994). In the latter case, as in **7**, an inverse  $\gamma$ -turn forms between residues (Asp-CO.....Val-NH, Lys-CO.....dCha-NH) that flank the proline.

**30      Example 3      Structure-Activity Relationships *In Vitro***

We also examined the receptor-binding and antagonist activity of the hexapeptide **7** for comparison with our new compounds. The previous report by Konteatis *et al* (1994) concerned the ability of **7** to compete with C5a binding to receptors on isolated PMN membranes ( $IC_{50}$  70 nM), which is not necessarily physiologically relevant. We examined competition between **7** and C5a using intact PMN

- 36 -

cells, and found that, under these conditions, **7** binds with much lower receptor affinity of  $IC_{50}$  1.8  $\mu M$ . We confirmed that **7** is a full antagonist with no agonist properties.

These results are summarized in Figure 5a and Table 4. The 5 relative affinity (ratio) of **7** for the C5aR in intact PMNs in our assays was similar to that previously reported for isolated PMN membranes.

We have also found that **7** shows antagonist activity against both C5a (Figure 5b) and a C-terminal 10 agonist decapeptide analogue **4** (YSFKPMPLaR) (Finch et al, 1997) of the C-terminus C5a65-74, suggesting that it acts on site 2 of the receptor. Compounds **7** and **4** have similar  $\mu M$  affinity for the receptor C5aR on intact polymorphonuclear leukocytes, as shown in Table 4.

A new discovery from the data in Table 4 is the 15 linear correlation between the log of binding affinities and the log of antagonist potencies for these Site 2 antagonists (compounds **7-12**, Table 4). The importance of this linear relationship is that since receptor affinity and antagonist activity are directly proportional, the 20 experimentally simpler approach of measuring receptor binding may be used to estimate the antagonist activity for such small compounds, provided that there is no evidence of agonist activity.

**Table 4**  
**Receptor-Binding Affinities<sup>a</sup> and Antagonist Activities<sup>b</sup> in Human PMNs**

| Compound                                    | Receptor Affinity <sup>a</sup> | Antagonist Potency <sup>b</sup> | Agonist Activity <sup>c</sup> |
|---------------------------------------------|--------------------------------|---------------------------------|-------------------------------|
|                                             | IC <sub>50</sub> (μM)          | IC <sub>50</sub> (μM)           |                               |
| <b>7</b> MeFKP (dChA) Wr                    | 1.8 (15)                       | 0.085 (9)                       | No                            |
| <b>8</b> MeFKP (dChA) Wr-CO NH <sub>2</sub> | 14 (5)                         | 0.5 (3)                         | No                            |
| <b>9</b> MeFKP (dChA) WR                    | 11 (5)                         | 0.7 (3)                         | No                            |
| <b>10</b> MeFKPLMR                          | 144 (1)                        | >1000 (3)                       | nd                            |
| <b>11</b> Ac-F-[KP(dChA)Wr]                 | 3.2 (40)                       | 0.090 (5)                       | No                            |
| <b>12</b> Ac-F-[OP(dChA)Wr]                 | 0.28 (6)                       | 0.012 (4)                       | No                            |
| <b>4</b> YSFKPMLaR                          | 6.0 <sup>d</sup>               | -                               | Yes                           |
| <b>1</b> C5a65-74, ISHKDMQLGR               | >1000 <sup>e</sup>             | -                               | -                             |
| C5a                                         | 0.0008 (9)                     | -                               | Yes                           |

5 Number of experiments in parenthesis. Corrected for amino acid content.

Square brackets indicate cyclic portion.

nd = not determined

<sup>a</sup> 50% reduction in binding of <sup>125</sup>I-C5a to intact human PMNs

<sup>b</sup> 50% reduction in myeloperoxidase secretion from human PMNs mediated by 100 nM C5a

<sup>c</sup> Agonist activity in dose range 0.1 nM-1 mM

<sup>d</sup> Finch et al, 1997; <sup>e</sup> Kawai et al, 1991

- 38 -

It has previously been proposed that the C-terminus of C5a and of agonist peptides is essential for activity, due to its interaction with a positively-charged Arg206 of the receptor (DeMartino et al, 1995). We confirm here that the C-terminal carboxylate is indeed important for activity (**8** vs. **7**), but wondered whether the origin of this effect might be due to hydrogen bonding between the carboxylate anion and the positively charged amine side chain of Lys. Conversion to the amide (**8**) certainly reduces both receptor-affinity and antagonist activity approximately 5-fold. Changing chirality of the Arg-C $\alpha$  (**9** vs. **7**) causes a similar reduction in activity, and replacing dCha with the less bulky Leu residue (**10**) is also detrimental to receptor binding. However, potency is recovered for cyclic compounds **11** and **12**, in which an amide bond is tolerated at the C-terminus, consistent with the structural interpretation above that the advantage of the carboxylate in **7** may be associated with intramolecular hydrogen bonding. The replacement of this hydrogen bond in **7** with a covalent amide bond in **11** and **12** more effectively stabilizes the turn conformation.

Figure 5C compares C5aR binding and antagonist potency *in vitro* on human PMNs for compounds **15** and **17** with those for compound **7**. Both **15** and **17** are potent inhibitors at nM concentrations of the action of C5a and the binding of  $^{125}\text{I}$ -C5a to its receptor (e.g. 4,  $K_b = 1.4\text{nM}$ ). Their cyclic nature and the acetylation at the N-terminal phenylalanine both protect against the proteolytic degradation typically encountered by peptides, making such cyclic compounds more suitable than acyclic peptides as drug candidates. The results are shown in Table 5.

- 39 -

Table 5  
 Receptor Binding and Antagonist Activity  
 of Cyclic Molecules



5

| Compound | n | R  | Isomer | Receptor Affinity<br>μM | Agonist Activity |
|----------|---|----|--------|-------------------------|------------------|
| 13       | 1 | H  | S-     | 9                       | No               |
| 14       |   |    | R-     | 34                      | No               |
| 15       | 2 | H  | S-     | 0.3                     | No               |
| 16       |   |    | R-     | 3.7                     | No               |
| 17       | 3 | Ac | S-     | 0.3                     | No               |
| 11       |   | Ac | R-     | 38                      | No               |
| 18       | 4 | Ac | S-     | 3.2                     | No               |
| 12       |   | Ac | R-     | 51                      | No               |

Refers to stereochemistry of Arg side chain.

- 40 -

Example 4 Cyclic Antagonists of C5a

Some examples of these cyclic antagonists and their apparent receptor-binding affinities and antagonist potencies are given in Tables 4, 5 and 6 as well as in Figures 5 and 6. In the tables the single letter code for amino acids is used.

**Table 6**  
Effect of Cyclisation on Antagonist Binding Affinity and Antagonist Potency

| PEPTIDE                                                                                   | pD2 ± SE <sup>a</sup> | IC50<br>(μM) <sup>a</sup> | (n) | pD2 ± SE <sup>b</sup> | IC50<br>(μM) <sup>b</sup> | (n) |
|-------------------------------------------------------------------------------------------|-----------------------|---------------------------|-----|-----------------------|---------------------------|-----|
| <b>11</b> ACF- [KPDChawR]                                                                 | 5.49 ± 0.22           | 3.2                       | 4   | 7.07 ± 0.29           | 0.09                      | 5   |
| <b>18</b> ACF- [OPdChawR]                                                                 | 6.44 ± 0.14*          | 0.4                       | 9   | 7.30 ± 0.09           | 0.05                      | 9   |
| <b>19</b> [FWPdChawR]                                                                     | 4.37 ± 0.36*          | 43                        | 3   | nd                    |                           |     |
| <b>20</b> ACF- [KMdChawR]                                                                 | 4.81 ± 0.06           | 15                        | 2   | nd                    |                           |     |
| <b>21</b> ACF- [KKdChawR]                                                                 | 3.94 ± 0.4            | 116                       | 3   | 4.88                  | 13                        | 1   |
| Effect of length of linker in cycle on antagonist binding affinity and antagonist potency |                       |                           |     |                       |                           |     |
| <b>22</b> ACF- [XPdChawR]                                                                 | 5.02 ± 0.07           | 9.5                       | 3   | 4.71 ± 0.23           | 20                        | 3   |
| <b>23</b> ACF- [X <sup>2</sup> PdChawR]                                                   | 4.77 ± 0.14*          | 17                        | 3   | 6.09 ± 0.08*          | 0.8                       | 4   |
| <b>11</b> ACF- [OPdChawR]                                                                 | 4.60±0.06*            | 16                        | 4   | 6.42 ± 0.10           | 0.4                       | 4   |
| <b>24</b> ACKF- [OPdChawR]                                                                | 4.96 ± 0.03           | 11                        | 3   | 6.73                  | 0.2                       | 1   |

Table 6 (cont..)

| PEPTIDE                                                               | pD <sub>2</sub> ± SE <sup>a</sup> | IC50<br>(μM) <sup>a</sup> | (n) | pD <sub>2</sub> ± SE <sup>b</sup> | IC50<br>(μM) <sup>b</sup> | (n) |
|-----------------------------------------------------------------------|-----------------------------------|---------------------------|-----|-----------------------------------|---------------------------|-----|
| <b>14</b> F- [XPdChawR]                                               | 4.39 ± 0.10*                      | 41                        | 3   | nd                                |                           |     |
| <b>16</b> F- [X <sup>2</sup> PdChawR]                                 | 5.42 ± 0.05                       | 3.8                       | 3   | 6.70 ± 0.04                       | 0.4                       | 3   |
| <b>25</b> F- [OPdChawR]                                               | 5.51 ± 0.07                       | 3.1                       | 3   | 5.79 ± 0.34*                      | 1.6                       | 3   |
| <b>26</b> F- [KPdChawR]                                               | 5.09 ± 0.08                       | 8.1                       | 3   | 5.55 ± 0.57*                      | 2.8                       | 3   |
| Effect of L-Arg on antagonist binding affinity and antagonist potency |                                   |                           |     |                                   |                           |     |
| <b>17</b> ACF- [OPdChawR]                                             | 6.57 ± 0.05*                      | 0.3                       | 3   | 7.91 ± 0.17*                      | 0.01                      | 3   |
| <b>13</b> F- [XPdChawR]                                               | 4.98 ± 0.05                       | 10                        | 3   | 5.63 ± 0.13*                      | 2.4                       | 3   |
| <b>15</b> F- [X <sup>2</sup> PdChawR]                                 | 6.50 ± 0.04*                      | 0.3                       | 5   | 7.36 ± 0.13                       | 0.04                      | 3   |
| <b>27</b> F- [OPdChawR]                                               | 7.21 ± 0.01*                      | 0.06                      | 3   | 7.41 ± 0.14                       | 0.04                      | 3   |
| <b>28</b> F- [KPdChawR]                                               | 6.50 ± 0.12*                      | 0.3                       | 4   | 6.69 ± 0.04                       | 0.2                       | 3   |

a pD<sub>2</sub>/IC<sub>50</sub>; concentration of peptide resulting in 50% inhibition in the binding of [<sup>125</sup>I]C5a to intact PMNs.

The IC<sub>50</sub> is the antilog of the mean pD<sub>2</sub> value

b pD<sub>2</sub>/IC<sub>50</sub>; concentration of peptide resulting in 50% inhibition in the ability of C5a (100 nM) to cause the release of MPO from PMNs

X = (CH<sub>2</sub>)<sub>n</sub>-NH<sub>2</sub>

X<sup>2</sup> = (CH<sub>2</sub>)<sub>2</sub>-NH<sub>2</sub>

pD<sub>2</sub> values are expressed as mean ± SE

10 n represents the number of experiments performed

\* Significant change in affinity/potency compared to NMeFKPdChaWR (p<0.05)

# indicates isomer number

15 These results demonstrate:

(1) that the cyclic molecules have higher apparent receptor affinity and may be more potent antagonists than acyclic (linear) peptides,

20 (2) that one of the two possible cyclic diastereomers is consistently favoured for binding to the C5a receptor, and it is surprisingly the opposite stereochemistry (L-arginine) to that favoured in the linear compounds (D-arginine)

(3) that the cycles have an optimum ring size 25 for receptor-binding,

(4) that there is a pseudo-linear relationship between log (antagonist potency) and log (receptor affinity).

Tables 5 and 6 list the C5a receptor affinities 30 of some examples of cyclic antagonists of C5a, and their ability to bind to, and inhibit, binding of C5a to human PMNs is illustrated in Figure 6. Surprisingly these data show that the L-arginine is preferred over the D-arginine, in contrast to the linear compound 7 in which the D-35 arginine confers higher affinity for the receptor than does L-arginine. The data also show that the size of the macrocycle is optimal when n = 2 or 3, the smaller cycle

- 44 -

where n = 1 and the larger cycle when n = 4 being clearly less active. This requirement for a tightly constrained cycle is probably due to the need to correctly position the attached side chain residues of, for example, Trp, dCha,  
5 Arg and Phe for interaction with the receptor.

Example 5 Computer Modelling of Antagonist Structures

Figure 7 compares the computer-modelled structure of the cyclic antagonist **12** with the NMR solution structure  
10 for the acyclic antagonist **7**. These backbone structures are strikingly similar, and strongly suggest that the receptor-binding conformations of these molecules involve the same turn structure. Compound **12**, a more potent antagonist than **11**, also has a shorter linker, which  
15 tightens the turn and slightly alters the conformational space accessible to the key side chains of Phe, dCha, Trp and Arg. The conformational limitations placed on the hexapeptide derivative **12** by the cycle are responsible for a  $\geq 10^4$  increase in receptor-binding affinity over the  
20 conformationally flexible decapeptide C-terminus of C5a (**1**, Table 2).

There is a correlation between binding affinities and antagonist potency for the site 2 antagonists (compounds **7-12**, Table 2). It thus appears that antagonist  
25 potency is dependent upon changes that occur at site 2 alone. Without wishing to be bound by any proposed mechanism, we believe that this may be because the mechanism of antagonism is related to conformational change to a turn conformation induced by **7** at site 2 of the  
30 receptor.

Example 6 Characterisation of C5aRs on Different Cells

Currently there is no information about different types of C5aRs. We have previously shown marked  
35 differences in the responsiveness of different cells containing functional C5aRs to agonists (Sanderson et al, 1994, 1995; Finch et al, 1997) and we can now provide more

- 45 -

information by examining potency and efficacy of selective agonists and antagonists relative to human recombinant C5a. For agonists, the tissue or cell selectivity may reveal functionally different receptors. Binding assays using 5 human PMNs, U937 cells, or circulating monocytes are used to determine affinities for C5aRs. Selectivity for different C5aRs is ascertained by differential antagonism. This combined approach allows pharmacological characterisation of new agonists or antagonists, and may 10 lead to a potential functional classification of C5aRson different cells.

Example 7(a) Neutropenia and C5a Antagonism In Vivo

Compounds were evaluated in an acute model of 15 C5a-induced neutropenia. Transient neutropenia maximises 5 min after i.v. C5a and is profound, with >90% of circulating neutrophils disappearing from circulation at effective doses of C5a, as shown in Figure 8. The neutropenia is due to transient adherence of circulating 20 neutrophils to the vascular endothelium. Preliminary data show that neutropenia caused by i.v. C5a is blocked by a C5a antagonist. For example, F-[OPdChaWR], (1 mg/kg), given prior to 2 $\mu$ g C5a i.v., inhibits C5a-induced neutropenia in vivo (Figure 8).

25

Example 7(b) Inhibition of Lipopolysaccharide-induced Effects by C5a Antagonists

LPS causes rapid neutropenia in rats. If this effect of LPS is blocked by C5a antagonists, then C5a may 30 be of major importance in the acute effects of LPS, and the results shown in Figure 9 were in agreement with this hypothesis. C5a antagonists were injected (bolus i.v.) 10 min prior to challenge with LPS. Rats were anaesthetised, and blood samples (0.3ml) were taken for measurements of 35 PMNs. PMNs are isolated and quantified. Preliminary results show that F-[OPdChaWR], (1 mg/kg), given prior to i.v.LPS, inhibits neutropenia..

- 46 -

The results also indicate that the C5a antagonist inhibits the increase in haematocrit caused by LPS, showing that vascular leakage of serum caused by LPS is also inhibited.

5 These results demonstrate that C5a receptor antagonists, such as those described in this invention, may have therapeutic utility in septicemic individuals. The ability to inhibit the adherence of PMNs to vascular endothelium, and to inhibit the vascular leakage to LPS as  
10 shown by the reduction of haematocrit values, indicates powerful anti-inflammatory effects of these compounds against proinflammatory stimuli activating the complement system, such as endotoxin or LPS.

15 Example 8      *In Vivo* Activity of Cyclic C5a Antagonists

Preliminary experiments in rats have revealed that the cyclic antagonists summarized in Table 5 are active at less than 20 mg/kg as anti-inflammatory agents in suppressing the onset of either carrageenan-induced paw oedema or adjuvant-induced polyarthritis. The maximally effective dosages for even moderately-effective antagonists are 10 mg/kg or less, given i.p. or p.o. Many anti-inflammatory drugs currently used in humans were initially evaluated in such assays, and also showed activity in these 25 rat models of inflammation. These preliminary indications of efficacy *in vivo* indicate that C5a antagonists have therapeutic potential in human inflammatory conditions.

Using the rat carageenan paw oedema assay, we found that a compound, AcF-[O-P-dCha-W-r], which is  
30 100 times less active than **17** *in vitro* as a C5a antagonist in PMNs, has some *in vivo* activity in rats given 1 mg/kg of the compound I.P., 30 min prior to the carageenan injection. Paw swelling was measured for up to 4.5 hr. The results, shown in Figure 10, suggest that even this weak C5a  
35 antagonist significantly inhibits development of the oedema after 180 and 270 min. This anti-inflammatory activity suggests that C5a receptor antagonists, such as those

- 47 -

described in this invention, may have therapeutic activity in diseases involving vascular leakage following inflammatory stimuli.

In recent years there have been many attempts to  
5 mimic  $\beta$ - and  $\gamma$ - turn peptides that represent bioactive protein surfaces, resulting in notable mimetics for RGD (arginine-glycine-aspartate) peptides, somatostatin and opioid peptides, to name a few derived through structure-activity relationships (see for example Marraud and Aubry,  
10 1996; Fairlie et al, 1995). Most of these examples preserve a turn structure through cyclisation of the peptide. On the other hand, there are comparatively few short acyclic peptides that have been found to have substantial turn structure in solution (Dyson et al, 1988;  
15 Rizo and Giersch, 1992; Prâcheur et al, 1994). It is usually argued that short acyclic peptides adopt a myriad of solution structures that may include small populations of turn structures that are responsible for bioactivity.

This invention describes a series of  
20 conformationally-constrained turn-containing molecules that are preorganized for binding to the same G protein-coupled receptor(s) of human cells that are targeted by human C5a. The invention is applicable to other G protein-coupled receptors.

The principal feature of the compounds of the invention is the preorganized arrangement, which brings at least three hydrophobic groups and a charged group into neighbouring space, creating a hydrophobic surface 'patch'. These results enable the design and development of even  
30 more potent conformationally-constrained, small molecule antagonists of C5a.

In the light of the aforementioned prior art, it was surprising to find that a C-terminal carboxylate was not necessary in our compounds in order to obtain good  
35 receptor-binding or antagonist activity. The cyclic antagonists have an amide bond at the 'C-terminal' arginine position. The replacement of the carboxylate in 7 with a

covalent amide bond effectively stabilises the required turn conformation.

Cyclic and non-peptidic antagonists have several important advantages over peptides as drugs. The cycles described in this invention are stable to proteolytic degradation for at least several hours at 37°C in human blood or plasma, or in human or rat gastric juices or in the presence of digestive enzymes such as pepsin, trypsin and chymotrypsin. In contrast, short peptides composed of L-amino acids are rapidly degraded to their component amino acids within a few minutes under these conditions. A second advantage lies in the constrained single conformations adopted by the cyclic and non-peptidic molecules, whereas acyclic or linear peptides are flexible enough to adopt several structures in solution other than the required receptor-binding structure. Thirdly, cyclic and non-peptidic compounds such as those described in this invention are usually more lipid-soluble and more pharmacologically bioavailable as drugs than peptides, which can rarely be administered orally. Fourthly, the plasma half-lives of cyclic and non-peptidic molecules are usually longer than those of peptides.

It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.

References cited herein are listed on the following pages, and are incorporated herein by this reference.

- 49 -

REFERENCES

- Abbenante, G., Fairlie, D.P., Gahan, L.R., Hanson, G.R.,  
Pierens, G.K. and van den Brenk, A.L.  
5 J. Am. Chem. Soc., 1996 118 10384-10388
- Bandekar, J.  
Vib. Spectros., 1993 5 143-173
- 10 Bean, J.W., Peishoff, C.E. and Kopple, K.D.  
Int. J. Protein Res., 1994 44 223
- Cheng, X. M., Doherty, A. M., Nikam, S. S.  
Curr. Med. Chem. 1994 1 271-312
- 15 Coles, M., Sowemimo, V., Scanlon, D., Munro, S.L.A.,  
Craik, D.J.  
J. Med. Chem., 1993 36 2658
- 20 DeMartino, J.A., Konteatis, Z.D., Siciliano, S.J.,  
Van Riper, G., Underwood, D.J., Fischer, P.A.,  
Springer, M.S.  
J. Biol. Chem., 1995 270 15966-15969
- 25 DeMartino, J.A., Van Riper, G., Siciliano, S.J.,  
Molineaux, C.J., Konteatis, Z.D., Rosen, H. Springer, M.S.  
J. Biol. Chem., 1994 269 14446-14450.
- Drapeau, G., Brochu, S., Godin, D., Levesque, L., Rioux, F.  
30 and Marceau, F.  
Biochem. Pharm., 1993 45 1289- 1299
- Dyson, H.J., Rance, M., Hougten, R.A., Lerner, R.A. and  
Wright, P.E.  
35 J. Mol. Biol., 1988 201 161-200

- 50 -

Ember, J.A., Sanderson, S.D., Taylor, S.M., Kawahara, M.  
and Hugli, T.E.

J. Immunol., 1992 148 3165-3173

- 5 Fairlie, D.P., Abbenante, G. and March, D.  
Curr. Med. Chem., 1995 2 672-705

Fairlie, D.P., Whitehouse, M. and Broomhead, J.  
Chem. Biol. Interact., 1987 61 277-291

10

Finch, A.M., Vogen, S.M., Sherman, S.A., Kirnarsky, L.,  
Taylor, S.M., and Sanderson, S.D.J. Med Chem., 1997 40 877

Gerard, N and Gerard, C.

- 15 Nature, 1991 349 614-617

Gerard, C and Gerard, N.P.

Ann. Rev. Immunol., 1994 12 775-808

- 20 Haviland, D.L., McCoy, R.L., Whitehead, W.T., Akama, H.,  
Molmenti, E.P., Brown, A., Haviland, J.C., Parks, W.C.,  
Perlmutter, D.H. and Wetsel, R.A.  
J. Immunol., 1995 154 1861-1869

- 25 Hutchinson, E.G. and Thornton, J.M.  
Protein Sci., 1994 3 2207-2216

Ihara, M., Fukuroda, T., Saeki, T., Nishikibe, M., Kojiri,  
K., Suda, H. and Yano, M.

- 30 Biochem. Biophys. Res. Comm., 1991 178 132-137

Ihara, M., Noguchi, K., Saeki, T., Fukuroda, T.,  
Tsuchida, S., Kimura, S., Fukami, T., Ishikawa, K.,  
Nishikibe, M., and Yano, M.

- 35 Life Sciences, 1992 50 247

- 51 -

Kawai, M., Quincy, D.A., Lane, B., Mollison, K.W.,  
Luly, J.R., Carter, G.W.  
J. Med. Chem., 1991 34 2068-71

5 Kawai, M., Quincy, D.A., Lane, B., Mollison, K.W.,  
Or, Y.-S., Luly, J.R., and Carter, G.W.  
J. Med. Chem., 1992 35 220-223

10 Kessler, H., Diefenbach, B., Finsinger, D., Geyer, A.,  
Gurrath, M., Goodman, S.L., Hoelzemann, G., Haubner, R.,  
Jonczyk, A. et al  
Lett. Pept. Sci., 1995 2 155-160

15 Kohl, J., Lubbers, B., Klos, A., et al.  
Eur. J. Immunol., 1993 23 646-652

20 Konteatis, Z.D., Siciliano, S.J., Van Riper, G.,  
Molineaux, C.J., Pandya, S., Fischer, P., Rosen, H.,  
Mumford, R.A., and Springer, M.S.  
J. Immunol., 1994 153 4200- 4204

Marraud, M. and Aubry, A.  
Biopolymers, 1996 40 45-83

25 Morgan, E.L., Sanderson, S.D., Scholz, W., Noonan, D.J.,  
Weigle, W.O. and Hugli, T.E.  
J. Immunol., 1992 48 3937-3942

30 Prâcheur, Bossus, M., Gras-Masse, H., Quiniou, E.,  
Tartar, A. and Craescu, C.T.  
J. Biochem., 1994 220 415-425

Rizo, J. and Giersch, L.M.  
Ann. Rev. Biochem., 1992 61 387

35 Sanderson, S.D., Ember, J.A., Kirnarsky, L., Sherman, S.A.,  
Finch, A.M., Taylor, S.M.

- 52 -

J. Med. Chem., 1994 37 3171-3180

Sanderson, S.D., Kirnarsky, L., Sherman, S.A., Vogen, S.M.,  
Prakesh, O., Ember, J.A., Finch, A.M. and Taylor, S.M.

5 J. Med. Chem., 1995 38 3669-3675

Siciliano, S.J., Rollins, T.E., DeMartino, J.,  
Konteatis, Z., Malkowitz, L., VanRiper, G., Bondy, S.,  
Rosen, H. and Springer, M.S.

10 Proc. Nat. Acad. Sci. USA, 1994 91 1214-1218.

Sim, E.

The Natural Immune System. Humoral Factors., 1993,  
IRL Press, Oxford University Press, Oxford.

15

Tempero, R.M., Hollingsworth, M.A., Burdick, M.D.,  
Finch, A.M., Taylor S.M., Vogen, S.M., Morgan, E.L., and  
Sanderson, S.D.

J. Immunol., 1997 158 1377-1382

20

Stradley, S., Rizo, J., Bruch, M., Stroup, A. and  
Gierasch, L.

Biopolymers, 1990 29 263-287.

25 Walker W.R. and Whitehouse, M.W.

Agents & Actions, 1978 8 85

Ward, J.R. and Cloud, R.S.

J. Pharmacol. Exp. Ther., 1966 152 116

30

Whaley, K.

Complement in Health and Disease. Immunology and Medicine  
Series, Ed. Reeves, W. G., 1987, MTP Press Ltd, Lancaster

35 Whitehouse, M.W.

Handbook of Animal Models for the Rheumatic Diseases, Eds.  
Greenwald, R.A., Diamond, H.S., Vol. 1, pp 3-16 CRC Press

- 53 -

Winter, C.A. and Nuss, G.W.

Arth. & Rheumatism, 1966 9 394

5 Zhang, X., Boyar, W., Galakatos, N. and Gonella, N.C.  
Protein Sci., 1997 6 65-72

Zuiderweg, E.R.P., Nettesheim, D.G., Molison, K.W., Carter,  
G.W.

10 Biochemistry, 1989 28 172-185; 29 2895-2905.

CLAIMS:

1. A compound which is an antagonist of a G protein-coupled receptor, which has no agonist activity, and which has a cyclic or constrained acyclic structure adapted to provide a framework of approximate dimensions as set out in Structure I:
- 5

Structure I



10

where the numerals refer to distances between  $C_{\alpha}$  carbons of amino acids or their analogues or derivatives, and A, B, C and D are not necessarily on adjacent amino acids, or analogues or derivatives thereof; and

15 where the critical amino acid side chains are designated by A, B, C and D, where .

20 A is any common or uncommon, basic, charged amino acid side chain which serves to position a positively charged group in this position;

B is any common or uncommon, aromatic amino acid side chain which serves to position an aromatic side-chain in this position;

- 55 -

C is any common or uncommon, hydrophobic amino acid side chain which serves to position any alkyl, aromatic or other group in this position;

D is any common or uncommon, aromatic amino acid 5 which serves to position an aromatic side-chain in this position, and has the structure:



10

where Z is indole, indole methyl, benzyl, benzene, naphthyl, naphthyl methyl, or a derivative thereof; and R<sup>1</sup> is H or an alkyl, aromatic, acyl or aromatic-15 acyl group.

2. An antagonist according to Claim 1, in which the G protein-coupled receptor is the C5a receptor.

3. An antagonist according to Claim 1 or Claim 2, in which

20

A is one of the following side-chains



or another mimetic of an arginine side chain;  
where

X is NCN, NNO<sub>2</sub>, CHNO<sub>2</sub> or NSO<sub>2</sub>NH<sub>2</sub>;

n is an integer from 1 to 4, and

5 R<sup>1</sup> is H or an alkyl, aryl, CN, NH<sub>2</sub>, OH, -CO-CH<sub>2</sub>CH<sub>3</sub>,  
-CO-CH<sub>3</sub>, -CO-CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>, -CO-CH<sub>2</sub>Ph, or -CO-Ph;

B is an indole, indole methyl, benzyl, phenyl, naphthyl,  
naphthyl methyl, cinnamyl group, or any other derivative of  
10 the aromatic group; and

C is D- or L-cyclohexylalanine (Cha), leucine,  
valine, isoleucine, phenylalanine, tryptophan or  
methionine.

4. An antagonist according to Claim 3, in which  
15 R<sup>1</sup> is methyl, ethyl, propyl, or butyl.

5. An antagonist according to any one of Claims 1 to  
4, which is a constrained acyclic compound, and comprises a  
type II  $\beta$ -turn.

6. An antagonist according to Claim 5, in which the  
20 type II  $\beta$ -turn comprises a  $\gamma$ -turn within the type II  $\beta$ -  
turn.

7. An antagonist according to any one of claims 1 to  
4, which is a cyclic peptide or peptide derivative.

8. An antagonist according to any one of Claims 1 to  
25 4, of formula

Ac-phe-[lys-pro-(dCha)-trp-arg] or  
Ac-phe-[orn-pro-(dCha)-trp-arg]

9. An antagonist according to any one of Claims 1 to  
7 in which A is L-arginine.

30 10. An antagonist according to Claim 1, which has  
antagonist activity against C5aR, has no agonist activity  
against C5a, and has the general formula:



where A is H, alkyl, aryl, NH<sub>2</sub>, NHalkyl, N(alkyl)<sub>2</sub>,

5 NHaryl or NHacyl;

B is an alkyl, aryl, phenyl, benzyl, naphthyl or indole group, or the side chain of a D- or L-amino acid selected from the group consisting of phenylalanine, homophenylalanine, tryptophan, homotryptophan, tyrosine, 10 and homotyrosine;

C is the side chain of a D-, L- or homo-amino acid selected from the group consisting of proline, alanine, leucine, valine, isoleucine, arginine, histidine, aspartate, glutamate, glutamine, asparagine, lysine, 15 tyrosine, phenylalanine, cyclohexylalanine, norleucine, tryptophan, cysteine and methionine;

D is the side chain of a D- or L-amino acid selected from the group consisting of cyclohexylalanine, homocyclohexylalanine, leucine, norleucine, homoleucine, 20 homonorleucine and tryptophan;

E is the side chain of a D- or L-amino acid selected from the group consisting of tryptophan and homotryptophan;

F is the side chain of a D- or L-amino acid 25 selected from the group consisting of arginine, homoarginine, lysine and homolysine; and

- 59 -

X<sup>1</sup> is -(CH<sub>2</sub>)<sub>n</sub>NH- or (CH<sub>2</sub>)<sub>n</sub>-S-, -(CH<sub>2</sub>)<sub>2</sub>O-, -(CH<sub>2</sub>)<sub>3</sub>O-, -(CH<sub>2</sub>)<sub>3</sub>-, -(CH<sub>2</sub>)<sub>4</sub>-, or -CH<sub>2</sub>COCHRNH-, where R is the side chain of any common or uncommon amino acid, and where n is an integer of from 1 to 4,

- 5 11. An antagonist according to Claim 10, in which F is a L-amino acid.
12. An antagonist according to Claim 11, in which F is L-arginine.
13. An antagonist according to any one of Claims 10 to 12, 10 selected from the group consisting of compounds **11**, **12**, **13**, **14**, **15**, **16**, **17**, **18**, **19**, **20**, **21**, **22**, **23**, **24**, **25**, **26**, **27** and **28**.
14. An antagonist according to any one of Claims 3 and 10 to 13, in which n is 2 or 3.
15. 15. A compound which is an agonist of a G protein-coupled receptor, and which has structure III

Structure III



20

where the numerals refer to distances between C<sub>α</sub> carbons of amino acids or their analogues or derivatives,

- 60 -

and A, B, C and D are not necessarily on adjacent amino acids, or analogues or derivatives thereof; and where B is a non-aromatic amino acid, and

5 A is any common or uncommon, basic, charged amino acid side chain which serves to position a positively charged group in this position;

C is any common or uncommon, hydrophobic amino acid side chain which serves to position any alkyl, aromatic or other group in this position; and

10 D is any common or uncommon, aromatic amino acid which serve to position an aromatic side-chain in this position, and has the structure:



15

where Z is indole, indole methyl, benzyl, benzene, naphthyl, naphthyl methyl, or a derivative thereof; and

20 R is H or an alkyl, aromatic, acyl or aromatic-acyl group.

16. A compound according to Claim 15, where B is the D- or L-form of alanine, leucine, valine, norleucine, glutamic acid, aspartic acid, methionine, cysteine, 25 isoleucine, serine or threonine.

17. A compound according to Claim 15 or Claim 16, in which the compound is of structure IV,

- 61 -

Structure IV



5

where E is any amino acid other than tryptophan and homotryptophan, and

F is the side chain of a D- or L-amino acid selected from the group consisting of arginine, homoarginine, lysine and homolysine.  
10

18. A compound according to any one of Claims 15 to 17, wherein the compound is an agonist of C5a.

19. A compound according to Claim 10, of structure



20. A composition comprising a compound according to any one of Claims 1 to 19, together with a pharmaceutically-acceptable carrier or excipient.
21. A method of treatment of a pathological condition mediated by a G protein-coupled receptor, comprising the step of administering an effective amount of a compound according to any one of Claims 1 to 19, to a mammal in need of such treatment.
22. A method according to Claim 21, wherein the condition mediated by a G protein-coupled receptor involves overexpression or underregulation of C5a.
23. A method according to Claim 21, wherein the condition is selected from the group consisting of rheumatoid arthritis, adult respiratory distress syndrome (ARDS), systemic lupus erythematosus, tissue graft rejection, ischaemic heart disease, reperfusion injury, septic shock, psoriasis, gingivitis, atherosclerosis, Alzheimer's disease, multiple sclerosis, lung injury and extracorporeal post-dialysis syndrome.
24. Use of a compound according to any one of Claims 1 to 19 in treatment of a pathological condition mediated by a G protein-coupled receptor.
25. Use according to Claim 24, in which the condition is mediated by C5a.
26. Use according to Claim 25, in which the condition mediated by G protein-coupled receptors involves overexpression or underregulation of C5a.
27. Use according to any one of Claims 24 to 26, in which the condition is selected from the group consisting of rheumatoid arthritis, adult respiratory distress syndrome (ARDS), systemic lupus erythematosus, tissue graft rejection, ischaemic heart disease, reperfusion injury, septic shock, psoriasis, gingivitis, atherosclerosis, Alzheimer's disease, multiple sclerosis, lung injury and extracorporeal post-dialysis syndrome.
28. Use of a compound according to any one of Claims 1 to 19 in the manufacture of a medicament for the

- 63 -

treatment of a condition mediated by a G protein-coupled receptor.

29. Use according to Claim 28, in which the condition is mediated by C5a.

5 30. Use according to Claim 29, in which the condition mediated by G protein-coupled receptors involves overexpression or underregulation of C5a.

31. A compound according to Claim 1, substantially as hereinbefore described with reference to the examples and drawings.

10 32. A method according to Claim 21, substantially as hereinbefore defined with reference to the examples and drawings.



Fig. 1

2/12



Fig. 2



Fig. 3



Fig. 4



Fig. 5a



Fig. 5-6





Fig. 6



Fig. 7

10/12



Fig. 8

11/12



Fig. 9

12/12



Fig. 10

# Declaration, Power Of Attorney and Petition

Page 1 of 3

WE (I) the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

CYCLIC AGONISTS AND ANTAGONISTS OF C5a RECEPTORS AND G PROTEIN-COUPLED RECEPTORS

---

the specification of which

is attached hereto.

was filed on December 23, 1999 as  
Application Serial No. 09/446,109  
and amended on \_\_\_\_\_.

was filed as PCT international application

Number PCT/AU98/00490  
on 25 June 1998,  
and was amended under PCT Article 19  
on \_\_\_\_\_ (if applicable).

We (I) hereby state that we (I) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

| Application No. | Country   | Day/Month/Year | Priority Claimed                                                    |
|-----------------|-----------|----------------|---------------------------------------------------------------------|
| PO 7550         | AUSTRALIA | 25 June 1997   | <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No |
| _____           | _____     | _____          | <input type="checkbox"/> Yes <input type="checkbox"/> No            |
| _____           | _____     | _____          | <input type="checkbox"/> Yes <input type="checkbox"/> No            |
| _____           | _____     | _____          | <input type="checkbox"/> Yes <input type="checkbox"/> No            |

We (I) hereby claim the benefit under Title 35, United States Code, § 119(e) of any United States provisional application(s) listed below.

|                      |               |
|----------------------|---------------|
| (Application Number) | (Filing Date) |
| (Application Number) | (Filing Date) |

We (I) hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

| Application Serial No. | Filing Date  | Status (pending, patented, abandoned) |
|------------------------|--------------|---------------------------------------|
| PCT/AU98/00490         | 25 June 1998 |                                       |
|                        |              |                                       |
|                        |              |                                       |
|                        |              |                                       |

And we (I) hereby appoint: Norman F. Oblon, Reg. No. 24,618; Marvin J. Spivak, Reg. No. 24,913; C. Irvin McClelland, Reg. No. 21,124; Gregory J. Maier, Reg. No. 25,599; Arthur I. Neustadt, Reg. No. 24,854; Richard D. Kelly, Reg. No. 27,757; James D. Hamilton, Reg. No. 28,421; Eckhard H. Kuesters, Reg. No. 28,870; Robert T. Pous, Reg. No. 29,099; Charles L. Gholz, Reg. No. 26,395; Vincent J. Sunderdick, Reg. No. 29,004; William E. Beaumont, Reg. No. 30,996; Robert F. Gnuse, Reg. No. 27,295; Jean-Paul Lavallee, Reg. No. 31,451; Stephen G. Baxter, Reg. No. 32,884; Robert W. Hahl, Reg. No. 33,893; Richard L. Treanor, Reg. No. 36,379; Steven P. Weihrouch, Reg. No. 32,829; John T. Goolkasian, Reg. No. 26,142; Richard L. Chinn, Reg. No. 34,305; Steven E. Lipman, Reg. No. 30,011; Carl E. Schlier, Reg. No. 34,426; James J. Kulbaski, Reg. No. 34,648; Richard A. Neifeld, Reg. No. 35,299; J. Derek Mason, Reg. No. 35,270; Surinder Sachar, Reg. No. 34,423; Christina M. Gadiano, Reg. No. 37,628; Jeffrey B. McIntyre, Reg. No. 36,867; Paul E. Rauch, Reg. No. 38,591; William T. Enos, Reg. No. 33,128; and Michael E. McCabe, Jr., Reg. No. 37,182; our (my) attorneys, with full powers of substitution and revocation, to prosecute this application and to transact all business in the Patent Office connected therewith; and we (I) hereby request that all correspondence regarding this application be sent to the firm of OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C., whose Post Office Address is: Fourth Floor, 1755 Jefferson Davis Highway, Arlington, Virginia 22202. (S)

We (I) declare that all statements made herein of our (my) own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

✓ David FAIRLIE  
NAME OF FIRST ~~SOLE~~ INVENTOR  
  
Signature of Inventor

✓ 16th February, 2000  
Date

Residence: 73 Trevallyan Drive  
Springwood, QLD 4127  
AUSTRALIA AUX  
Citizen of: AUSTRALIA  
Post Office Address: same as above

Stephen Maxwell TAYLOR  
NAME OF SECOND JOINT INVENTOR

✓   
Signature of Inventor

✓ 19/2/2000  
Date

Angela Monique FINCH  
NAME OF THIRD JOINT INVENTOR

✓   
Signature of Inventor

✓ 20/3/2000  
Date

Allan WONG  
NAME OF FOURTH JOINT INVENTOR

✓   
Signature of Inventor

✓ 8 March, 2000  
Date

NAME OF FIFTH JOINT INVENTOR

Signature of Inventor

Date

✓   
Residence: 8 Perdita Street  
Bellbird Park, QLD 4300

AUSTRALIA 

Citizen of: AUSTRALIA

Post Office Address: same as above

Residence: Pioneer Drive, Narangba, QLD  
4502, AUSTRALIA 

Citizen of: AUSTRALIA

Post Office Address: same as above

Residence: 19 Gray Avenue

Bundaberg, QLD 4670, AUSTRALIA



Citizen of: AUSTRALIA

Post Office Address: same as above

Residence:

Citizen of:

Post Office Address: