Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

MIT 6.036 Spring 2022 1

NLLM

One loose end left to tie up: our **loss function**. We need to evaluate our hypothesis, and be able to improve it.

For binary classification, we did NLL:

$$\mathcal{L}_{nll}(\mathbf{g}, \mathbf{y}) = -\left(\mathbf{y}\log\mathbf{g} + (1 - \mathbf{y})\log(1 - \mathbf{g})\right)$$

How do we make this work in **general**? Well, we want to make our two terms have a **similar** form, so we can generalize to more classes.

- g and 1 g are both probabilities: we can think of them as g_1 and g_2 , respectively.
- If $g = g_1$, then we would expect $y = y_1$. And indeed: it gives a 1 if we're in the first class (+1).
 - Similarly, $1 y = y_2$.

$$\mathcal{L}_{nll}(\mathbf{g}, \mathbf{y}) = -\left(\mathbf{y}_1 \log \mathbf{g}_1 + (\mathbf{y}_2) \log (\mathbf{g}_2)\right)$$

They have the **same** format now! Much tidier. And it tracks: when one **label** is correct, the other term is $y_j = 0$, and **vanishes**.

Does this **generalize** well? It turns out it does: with **one-hot encoding**, the correct label is **always** $y_i = 1$, and the incorrect labels are **all** $y_i = 0$.

So, we'll write it out:

Key Equation 1

The loss function for multi-class classification, Negative Log Likelihood Multiclass (NLLM), is written as:

$$\mathcal{L}_{NLLM}(\mathbf{g}, \mathbf{y}) = -\sum_{j=1}^{k} y_j \log(g_j)$$

Because of one-hot encoding, all terms except one have $y_j = 0$, and thus vanish.

Using all of these functions, we can finally do gradient descent on our multi-class classifier. However, we won't go through that work in these notes.