Dynamics - Practice

Click on a question number to see how your answers were marked and, where available, full solutions.

Question Number		Sc	ore
Question 1	8	/	20
Total	8	/	20 (40%)

Performance Summary

Exam Name:	Dynamics - Practice
Session ID:	12220225747
Exam Start:	Mon Jan 03 2022 11:37:47
Exam Stop:	Mon Jan 03 2022 13:09:10
Time Spent:	1:31:22

Question 1

In the system shown in Figure 1, a generator is connected to the infinite bus through two lines. The system information is shown in **Table 1**.

Figure 1: A generator connected to the infinite bus

Generator reactance	X_G	0.2	p.u.
Transformer reactance	X_T	0.2	p.u.
Reactance of each line	X_L	0.15	p.u.
Generated voltage	E	1.05	p.u.

Table 1: System information

The generator is protected with an overcurrent relay with an inverse-time relationship given by:

$$t=rac{K}{\left(rac{I}{I_0}
ight)^p-1}$$

The relay parameters are shown in Table 2.

K	3.01
p	2
I_P	0.98

Table 2: Relay parameters

Maximum Load Current I_L

If the load angle at maximum load is $\delta=29^o$ calculate the maximum load current.

$$I_L = 2.21$$
 Expected answer: 1.0853823305 $p.u.$

Your answer is incorrect.

You scored **0** marks for this part.

Score: 0/5 **X**

Critical Current I_{CC}

A fault occurs halfway along line L2, with a critical clearing angle of $\delta_{CC}=79^o$. Calculate the current flow at this critical point.

$$I_{CC}$$
 = 0.65 **x** Expected answer: 2.3094489903 $p.u.$

Your answer is incorrect.

You scored 0 marks for this part.

Score: 0/7 🗶

Relay Suitability

The critical clearing time for this fault is $t_{CC}=0.55s$. Sketch the time-inverse curve and determine whether the relay's protection settings are adequate.

- Yes, this relay is suitable
- No, the relay trips for normal current flow
- No, the system goes unstable before the relay trips

Expected answer:

- Yes, this relay is suitable
- No, the relay trips for normal current flow
- No, the system goes unstable before the relay trips
 - ✓ You chose a correct answer. You were awarded 8 marks.You scored 8 marks for this part.

Score: 8/8 ✔