

DEC 2023

UPSCALING OF POROELASTIC PARAMETERS FRACTURED MEDIA USING FINITE ELEMENTS

RENATO POLI (REP2656)

Outline

Literature Brief

Methodology

Validation

Bulk modulus (K)

Biot coefficient (α)

Conclusions

Equivalent Biot and Skempton Poroelastic Coefficients for a Fractured Rock Mass from a DFN Approach

Silvia De Simone^{1,2} ○ · Caroline Darcel³ · Hossein A. Kasani⁴ · Diego Mas Ivars^{5,6} · Philippe Davy¹

Received: 15 May 2023 / Accepted: 14 August 2023 © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Literature Brief (De Simone, 2023)

Mechanical Properties of Rocks: Pore Pressure and Scale Effects

M. Boutéca¹ and Y. Guéguen²

Institut français du pétrole, 1 et 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France
ENS, Laboratoire de géologie, département TAO, 24, rue Lhomond, 75231 Paris Cedex 5 - France e-mail: maurice.bouteca@IFP.fr - gueguen@geologie.ens.fr

Literature Brief (Bouteca, 1999), (Simone, 2023)

Effective stress translates MICROscale phenomena to the MACROscale, in different problems:

- 1) Constitutive equations: $\sigma_{ij}^{eff} = C_{ijkl} \, \epsilon_{kl}$
- 2) Failure: shear failure, plasticity crireria
- 3) Rock properties: $K_{eq} = f(\sigma_{eff})$

$$\sigma_{ij}^{eff} = \sigma_{ij} - \alpha p \delta_{ij}$$

Each problem uses different α for the same rock

One "effective stress" has nothing to do with the other ones...

The poromec simulator

Started in 2016 2D version published in 2020 3D version unfinished

Tech:

C++, Python, gmsh, libmesh, petsc, MPI

For this project:

- 3D validation and bug fixing
- mesh generation with many fractures
- integration to a computer cluster
- monte carlo simulation
- post processing
- data fitting and plotting

Methodology

Poroelasticiy (Wang, 2000)

$$\zeta = \frac{\delta V_p - \delta V_f}{V} = \alpha \epsilon + \frac{1}{M} p$$

$$\epsilon = \frac{1}{K}\sigma + \frac{1}{H}p = \frac{\delta V}{V}$$

$$\alpha = \frac{\delta \zeta}{\delta \epsilon} \Big|_{p=0}$$
 $K = \frac{\delta \sigma}{\delta \epsilon} \Big|_{p=0}$

Methodology - fracture

Tensor rotation

$$T_{ij} = R_{ki} \ R_{lj} \ \overline{T}_{kl}$$

$$\overline{E}_{kl} = \overline{E}_{kl}(d, \overline{\delta}_l) = \begin{bmatrix} \overline{E_n} & - & - \\ - & \overline{E_s} & - \\ - & - & \overline{E_t} \end{bmatrix}$$

$$t_i = R_{ki} R_{lj} \overline{E}_{kl} (u_j^+ - u_j^-)$$

Mandel's analytical solution

Shear/normal fracture control

Shear – multiple fractures

Validation - Intact rock - Bulk modulus (K) and Biot coefficient (α)

Testcase 40

Testcase 42 – Horizontal fractures

Side-by-side comparison

TC40 vs TC42 - Bulk modulus (K) and Biot coefficient (α)

Conclusions

Bulk modulus (K) and Biot coefficient (α) were investigated

Fractures have high impact on their macroscale equivalents

Upscaling is highly uncertain and depends on many parameters ... BUT ...

... it is not random! ...

Next ...

Extensive validation

Fracture density

Temperature

Broader range of parameters

• • •