

시계열 분석 기법과 응용

Week 5. ARCH/GARCH 모형 5-1. ARCH 모형

* ARCH, GARCH 그 않시계일에서 변당성분석에 널리 사용당

전치혁 교수 (포항공과대학교 산업경영공학과)

ARCH모형의 필요성

- 지금까지의 시계열모형에서 오차항은 일정한 분산을 갖는 독립적인 백색잡음으로 가정
- 대부분 금융관련 시계열에서 <u>간차는 백색잡음 처럼</u> 보이지만 <u>간차의 절대값 또는 간차 제곱항은 자기상관관</u> 계를 갖음 ¾ white which 독한 학생
- 또한, 오차항 분산이 <u>시간에 따라 일정하지 않고 변한</u> 다는 관측이 있음
- 오차항의 조건부 분산 (conditional variance)에 대한 모형을 고려했
- <u>재무상품의 수익률 분산을 변동성 (volatility)이라</u>하 며 이의 분석이 중요
- Engle (1982)이 ARCH (autoregressive conditional heteroskedasticity) 모형을 제시
- GARCH모형은 ARCH모형의 일반화 형태

* 조건부분산이 heteroskedastic >이분선정

모형의 표현

• 시계열이 예를 들어 AR(1) 모형을 따른다 하자

$$Z_t = \phi Z_{t-1} + u_t$$

이 때, 오차항의 기대치와 분산은 다음과 같다.

$$E[u_t] = 0$$
, $Var[u_t] = \sigma_u^2$

• 오차항이 서로 독립이 아니고 다음 관계를 갖는다 가정 $u_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \cdots + \alpha_q u_{t-q}^2 + w_t$ $(w_t$ 는 백색잡음)

(즉, 제곱오차항이 AR(q)모형을 따른다고 가정)/

• 오차항의 조건부 분산

$$\sigma_t^2 = Var[u_t | u_{t-1}, \dots] = E[u_t^2 | u_{t-1}, \dots] = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 \rightarrow \text{ARCH(c)}$$

이 형태 모형을 ARCH(q) 모형이라 함. *^{£(५)=0}*

みきなうの

ARCH모형의 정상성 조건(판)

오차항의 조건없는 분산 (unconditional variance)은 시간에 따라 일정 (상수)

$$Var[u_t] = E[u_t^2] = \sigma_u^2$$

• 오차항의 조건부 분산
$$\sigma_t^2$$
은 확률변수이며 시간에 따라 변화 σ_t^2 는 σ_t^2

• 오차항의 조건부 분산 과 조건없는 분산의 관계

$$Var[u_t] = \sigma_u^2 = E[\sigma_t^2] = E[\alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2]$$
 is equality in the state of the s

• ARCH모형이 정상적일 때 다음이 성립/

$$\sigma_u^2=rac{lpha_0}{1-lpha_1-\cdots-lpha_a}$$
্রপুর হয় $rac{lpha_0}{2}$ ্র সময় হয় মহ কেন এর শ্রম শ্রম প্রক

• ARCH(q)모형의 정상적 조건

$$lpha_1+\cdots+lpha_q<1$$
 *46.70 of other 2.

평균 방정식과 분산 방정식

- ARCH모형은 오차항의 분산에 대한 것이므로 분산 방정식이라 함.
- 시계열 모형에서는 오차항이 포함된 평균방정식이 함께 사용되어야 함 TAR, MA , ...
- (예 1) AR(1)-ARCH(1) 모형

 - 평균방정식: $Z_t = \phi Z_{t-1} + u_t$: ARCI) 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2$: ARCIO 2004년 ~ARCIO
- (예 2) MA(1)-ARCH(<mark>2</mark>) 모형
 - 평균방정식: $Z_t = u_t \theta u_{t-1}$
 - 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_1 u_{t-2}^2$
- (예 3) 회귀모형-ARCH(3) 모형
 - 평균방정식: $Y_t = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u_t$
 - 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 u_{t-2}^2 + \alpha_3 u_{t-3}^2$

ARCH-M (ARCH in mean)모형

- 평균방정식에 조건부 분산을 포함시킨 모형
- 평균방정식이 회귀모형인 경우 ARCH-M 형태

- 분산방정식:
$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2$$
 $+ \cdots + \alpha_q u_{t-q}^2$ \rightarrow ARCH(8) 여기서 $g(\sigma_t^2)$ 는 다음 함수 사용
$$g(\sigma_t^2) = \sigma_t^2; g(\sigma_t^2) = \sigma_t; g(\sigma_t^2) = \ln(\sigma_t^2)$$

시계열 분석 기법과 응용

Week 5. ARCH/GARCH 모형 5-2. GARCH 모형

> 전치혁 교수 (포항공과대학교 산업경영공학과)

- GARCH (<u>Generalized</u> autoregressive conditional heteroskedasticity) 모형은 Bollerslev (1986)이 ARCH모형을 확장한 것임.

조건부 분산항에 과거 시차의 조건부 분산항들이 추가된 것으로 다음의 형태를 가짐 -
$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \cdots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \cdots + \beta_p \sigma_{t-p}^2$$

- 오차항이 GARCH(p,q) 모형을 따른다고 함

- L olx13건부보산함
- alpha들을 ARCH 항, beta들을 GARCH 항이라 함.
- ARCH모형은 제곱오차항이 AR모형을 따르는 반면 ,GARCH모형은 제곱오차항이 ARMA모형을 따르게 됨.

```
> ARTE = SULLY → ARMASE
```

GARCH모형의 정상성 조건

• 오차항의 조건없는 분산 (unconditional variance)은 시간에 따라 일정 (상수)

$$Var[u_t] = E[u_t^2] = \sigma_u^2$$

• GARCH모형이 정상적일 때 다음이 성립

$$\sigma_u^2 = \frac{\alpha_0}{1 - \alpha_1 - \dots - \alpha_q - \beta_1 - \dots - \beta_p}$$

• ARCH(q)모형의 정상적 조건

$$\sum_{i=1}^{q} \alpha_i + \sum_{i=1}^{p} \beta_i < 1$$

```
~ ARCH 오현 포함된 꽃
GARCH 모형의 예측 (ARCH도 해제하다) 요...

• 평균방정식: Y_t = c + u_t (수평적 모형)

• 분산방정식: \sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta_1 \sigma_{t-1}^2 GARCH (1,1)
       시계열 (반응치) 예측 f_{T,k} = E[Y_{T+k}|Y_T,...] = c, k = 1,2,... 기계열 (반응치) 예측 f_{T,k} = E[Y_{T+k}|Y_T,...] = c, k = 1,2,...
    • 시계열 예측오차 분산
                       v_{T,1} = Var[Y_{T+1}|Y_T, ...] = Var[u_{T+1}|Y_T, ...] = E[\sigma_{T+1}^2|Y_T, ...]
                    v_{T,k} = Var[Y_{T+k}|Y_T,...] = Var[u_{T+k}|Y_T,...] = E[\sigma_{T+k}^2|Y_T,...], k = 1,2,...
     - 한단계이후 예측: h_{T,1} = \overline{E[\sigma_{T+1}^2|Y_T,...]} = E[\alpha_0 + \alpha_1 u_T^2 + \beta_1 \sigma_T^2|Y_T,...] = \alpha_0 + \alpha_1 u_T^2 + \beta_1^{\lambda} \sigma_T^2
        - 2단계이후 예측: h_{T,2} = E[\sigma_{T+2}^2 | Y_T, \dots] = E[\alpha_0 + \alpha_1 u_{T+1}^2 + \beta_1 \sigma_{T+1}^2 | Y_T, \dots] = \alpha_0 + (\alpha_1 + \beta_1) h_{T,1}
```

GARCH 모형의 변형

GARCH-M 모형

ARCH-M 모형과 같이 평균방정식에 조건부 분산을 포함시킨 모형

- 평균방정식:
$$Y_t = \beta_0 + \beta_1 X_1 + \gamma g'(\sigma_t^2) + u_t$$

- 분산방정식:
$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \cdots + \alpha_q u_{t-Q}^2 + \beta_1 \sigma_{t-1}^2 + \cdots + \beta_p \sigma_{t-Q}^2$$
 : Garch (p. %) — 여기서 $g(\sigma_t^2)$ 는 다음 함수 사용

$$-g(\sigma_t^2) = \underline{\sigma_t^2}; g(\sigma_t^2) = \underline{\sigma_t}; g(\sigma_t^2) = \underline{\ln(\sigma_t^2)}$$

• E-GARCH 모형

Nelson (1991)이 제안한 것으로 로그 변동성을 모형화

$$- 분산방정식: log(\sigma_t^2) = \alpha_0 + \sum_{i=1}^q \frac{\alpha_i |u_{t-i}| + \gamma_i u_{t-i}}{\sigma_{t-i}} + \sum_{j=1}^p \beta_j \log(\sigma_{t-j}^2)$$

- 나쁜 뉴스가 좋은 뉴스보다 변동성에 더 큰 충격을 준다고 가정

: 내내는 변형 더 왜 변하다 만든 맛

GARCH 모형의 변형

y 이대장 2현

• T-GARCH 모형

- Glosten 등 (1993)제안
- $\ \ \, \pm \text{산방정식:} \ \, \sigma_t^2 = \alpha_0 + \sum_{i=1}^q (\alpha_i + \gamma_i I_{t-i}) \underbrace{u_{t-i}^2}_{\text{Tapped Supply}} + \sum_{j=1}^p \beta_j \underbrace{\sigma_{t-j}^2}_{\text{Tapped Supply}}$

- 여기서
$$I_{t-i} = egin{cases} 1 & u_{t-i} < 0 & \text{내 모 나 } \\ 0 & u_{t-i} \geq 0 & \text{ } \end{pmatrix}$$
 가 되었다.

- 오차항의 부호에 따라 변동성에 미치는 영향을 다르게 평가하는 모형
- 즉, 오차항이 양일 때 (좋은 소식) 조건부 분산에 미치는 영향보다 <u>오차항이 음일 때</u> (나쁜 소식) 미치는 영향이 크도록 고안
- 이와 유사한 비대칭 모형이 다수 있음

시계열 분석 기법과 응용

Week 5. ARCH/GARCH 모형 5-3. ARCH/GARCH 모형의 추정

> 전치혁 교수 (포항공과대학교 산업경영공학과)

ARCH 모형의 추정

• 최우추정법사용

• 로그우도함수 (평균방정식이 회귀모형인 경우)

$$\ln L(\theta|y_1,\ldots,y_n) = -\frac{1}{2}\sum_{t=1}^n \left[\log(2\pi) + \log(\sigma_t^2) + \frac{u_t^2}{\sigma_t^2}\right]$$
 Arch parameters with order than
$$u_t = y_t - x_t \beta : \text{Toleyoff the simple substitute} \quad (y = x_t \beta + u_t \approx x_t)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \cdots + \alpha_q u_{t-q}^2 \rightarrow \text{Alst get energy substitute} \quad (y = x_t \beta + u_t \approx x_t)$$

• ARCH 시차 q는 여<u>러가지를 시도한 후 정보기준 (information criteria)으로 ¹</u>결정

ARCH 모형의 추정

\$가 각막 1, 2, 3, 4일 때 AIS → 가장 혹는 것을 선택

: कृत्र्वंभ०६३६ parameter

예: AR(1)-ARCH(q)모형의 추정

- 평균방정식: $Y_t = c + \phi Y_{t-1} + u_t$ ARU)
- 분산방정식: $\sigma_t^2=lpha_0+lpha_1u_{t-1}^2+\cdots+lpha_qu_{t-q}^2$

(분석 결과)

- SC 및 HQ 정보기준은 시차 3에서 최소가 되고 AIC 는 시차 4에서 최소이므로, <mark>시차 3 또는 4인 모형이</mark> 적절하다고 볼 수 있다.
- 다음에서 언급할 LM 검정을 통한 간차 진단을 사용하는 것이 바람직할 것이다.

		ARCH(1)	ARCH(2)	ARCH(3)	ARCH(4)
	С	1.121 (4.9)	1.181 (5.9)	1.196 (6.1)	1.198 (6.1)
	ϕ	0.113 (2.8)	0.115 (3.1)	0.110 (3.0) ^{ርቂ} ያል	ື) 0.102 (2.8)
	α_0	36.84 (12.2)	30.73(10.5)	27.26 (9.4)	24.84 (7.8)
	$egin{array}{c} lpha_1 \ lpha_2 \end{array}$	0.175 (3.4)	0.156 (2.8)	0.155 (3.0)	0.134 (2.6)
	α_3		0.157 (2.3)	0.123 (1.9)	0.112 (1.5)
	α_4			0.118 (2.4)	0.100 (2.1)
					0.060 (1.3)
CH F有	Log L	-2929.19			
啪	SC	6.635	-2916.92	-2912.09	-2909.10
	HQ	6.622	6.615	6.612	6.621
	AIC	6.614	6.599	6.592	6.594
	ı	0.014	6.588	6.580	6.577
	정보기관				

*ඓ호안 숫자는 t값임

₩ 사라 작은 것은 연택

ARCH 효과 검정

LM (Lagrange multiplier) 검정

- Breusch-Pagan (1979) 제안
- 잔차 진단에 사용토록 Engle (1982) 추천
- 가설: H_0 : $\alpha_1 = \cdots = \alpha_q = 0$
- 검정 절차
 - 1. 모형 추정으로 부터 ${}^{}$ 간차 u_t 를 얻는다.

$$u_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \varepsilon_t - ARCH(Q) 290) : R^2 295$$

- 3. 검정통계량 $LM = nR^2$ 산출
- 4. LM > χ²(q,α) 이면 가설 기각, ARCH 強動器

ARCH 효과 검정

(예) 다음은 어떤 평균 방정식 추정후의 잔차에 대한 ARCH 효과를 검정한 결과 (Eviews)이다.

Prob. F(4,155)

Prob. Chi-Square (4)

Heteroscedasticity Test: ARCH

F-statistic 122.992

Obs*R-squared (LM) 121.667

Test Equation:

Dependent Variable: RESID^2

Included observation: 160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	6.23E-24	2.91E-24	2.1416	0.0338
RESID^2(-1)	0.99761	0.08049	12.3949	0.0000
RESID^2(-2)	-0.24527	0.11185	-2.1929	0.0298
RESID^2(-3)	0.22998	0.11181	2.0570	0.0414
RESID^2(-4)	-0.12037	0.08092	-1.4875	0.1389

0.0000 0.0000→ reject H.o , 즉, AKCH B와 제어반된 생대

분석결과: 잔차에 ARCH효과가 남아 있으므로 <mark>잔차에 대한 ARCH모형을</mark> 추가하여 다시 분석해야 함.

GARCH 모형의 추정

• 최우추정법사용

$$u_t | u_{t-1}, ... \sim Nor(0, \sigma_t^2)$$

• 로그우도함수 (평균방정식이 회귀모형인 경우)

$$\ln L(\theta | y_1, \dots, y_n) = -\frac{1}{2} \sum_{t=1}^n \left[\log(2\pi) + \log(\sigma_t^2) + \frac{u_t^2}{\sigma_t^2} \right] \rightarrow \text{Archiel Solition}$$

$$u_t = y_t - x_t \beta$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$
 Carchinal First Granch term ... Be shall a

GARCH 모형의 추정

(예) 다음은 2017.7 ~ 2018.6 간의 kospi200의 수익률에 대한 (생물 how) GARCH(1,1) 모형의 추정결과이다.

- ARCH항은 유의하지 않으나 GARCH항은 유의하다.

$$\alpha_1+\beta_1=0.9654$$
 বা ্ম প্রধার ক্রম প্রশ্নী

Dependent Variable: RETURN : বুগুরু পুলান্ত Method: ML ARCH-Normal distribution (BFGS / Marguardt steps) Date: 07/24/19 Time: 15:59 Sample (adjusted): 7/04/2017 6/29/2018 Included observations: 238 after adjustments Convergence achieved after 37 iterations Coefficient covariance computed using outer product of gradients Presample variance: backcast (parameter = 0.7) ~ CTARCH tenn $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$ ARCH term Variable Coefficient Std. Error z-Statistic Prob. C → 평균방생성 -9.63E-05 0.000551 -0.1748350.8612 Variance Equation 2.26E-06 1.12E-06 2.010652 0.0444 RESID(-1)^2 ARCH #NEN 0.023914= a. 0.020650 0.2468 → #4× 1.158062 GARCH(-1) GARCH " 0.941468 = \$, 0.030706 30.66095 0.0000 → %4 R-squared -0.000011 Mean dependent var -0.000122 -0.000011 S.D. dependent var 0.007719 Adjusted R-squared

GARCH 모형의 추정

(예) 다음은 어떤 자산의 수익률 (RET)을 모 형화하는데 GARCH(3,3)을 사용하고 Eviews로 추정한 결과이다.

- 시차 3에서 ARCH 항이 유의하며 시차 3 에서 GARCH 항 역시 5%에서 유의함을 알수있다.
- $-\alpha_1 + \alpha_2 + \alpha_3 + \beta_1 + \beta_2 + \beta_3 = 0.4553 \rightarrow \text{Note and } 2^{1/2}$

	Coefficient	Std. Error	z-Statistic	Prob.			
С	1.99E-05	1.43E-05	1.3908	0.1643			
Variance Equation							
C 1/5+	2.94E-08	7.73E-09	3.81	0.0001			
RESID(-1)^2 «	0.0491	0.0460	1.07	0.2862			
RESID(-2)^2 %	-0.0567	0.0518	-1.10	0.2729			
RESID(-3)^2 %	0.1778	0.0564	3.15	0.0016			
GARCH(-1) (0.5208	0.2745	1.90	0.0578 →નાગ્યક			
GARCH(-2) №	0.1133	0.3179	0.36	0.7216			
GARCH(-3) h	-0.3490	0.1595	-2.19	0.0286			
R-squared -0.00163							
Adjusted R-squared -0.02849							