Theorem 1 (Folland Theorem 2.28). Suppose that f is a bounded real-valued function on [a, b].

1. If f is Riemann integrable, then f is Lebesgue measurable (and therefore integrable). Furthermore

$$\mathcal{R} \int_{a}^{b} f = \int_{[a,b]} f(x) \, dm(x). \tag{1}$$

(Henceforth, we will dispense with the notations in (1) and write simply $\int_a^b f(x)dx$.)

2. Also, f is Riemann integrable if and only if the set of discontinuities of f has measure zero.

Proof. Let $\mathcal{P} = \{a = t_0 < t_1 < \dots < t_n = b\}$ be a partition of [a, b] and define

$$l_{\mathcal{P}} := \sum_{i=1}^{n} m_i \mathbb{I}_{(t_{i-1}, t_i]}$$
 and $u_{\mathcal{P}} := \sum_{i=1}^{n} M_i \mathbb{I}_{(t_{i-1}, t_i]}$,

where

$$m_i := \inf\{f(x) : x \in [t_{i-1}, t_i]\}$$
 and $M_i := \sup\{f(x) : x \in [t_{i-1}, t_i]\}.$

Notice that

$$\int l_{\mathcal{P}} = L(f, \mathcal{P})$$
 and $\int u_{\mathcal{P}} = U(f, \mathcal{P}).$

We can choose sequences of partitions $\{Q_k\}$ and $\{R_k\}$ such that

$$\lim_{k} L(f, \mathcal{Q}_{k}) = \mathcal{R} \underbrace{\int_{a}^{b} f} \quad \text{and} \quad \lim_{k} U(f, \mathcal{R}_{k}) = \mathcal{R} \overline{\int_{a}^{b} f}.$$
 (2)

Let $\mathcal{P}_k = \{ a = t_0 < \cdots < t_n = b \}$ be a partition which is refinement of the partitions \mathcal{Q}_k and \mathcal{R}_k as well as \mathcal{P}_{k-1} , and which also has the property that $\|\mathcal{P}_k\| := \max(t_i - t_{i-1}) < \frac{1}{k}$. Since \mathcal{P}_k is a refinement of both \mathcal{Q}_k and \mathcal{R}_k , (2) holds with \mathcal{Q}_k and \mathcal{R}_k each replaced by \mathcal{P}_k . Since \mathcal{P}_{k+1} is a refinement of \mathcal{P}_k , it follows that

$$l_{\mathcal{P}_{k+1}} \ge l_{\mathcal{P}_k}$$
 and $u_{\mathcal{P}_{k+1}} \le u_{\mathcal{P}_k}$.

Therefore we obtain bounded measurable functions l and u on [a, b] by

$$l := \sup_{k} l_{\mathcal{P}_k} = \lim_{k} l_{\mathcal{P}_k}$$
 and $u := \inf_{k} u_{\mathcal{P}_k} = \lim_{k} u_{\mathcal{P}_k}$.

Clearly

$$l \leq f \leq u$$
.

Since bounded functions are Lebesque integrable on [a, b] and since $u = \lim_k u_{\mathcal{P}_k}$ and $l = \lim_k l_{\mathcal{P}_k}$, the Lebesgue Dominated Convergence Theorem implies that

$$\int l = \mathcal{R} \underbrace{\int}_{a}^{b} f$$
 and $\int u = \mathcal{R} \overline{\int}_{a}^{b} f$.

Now if f is Riemann integrable, the upper and lower integrals coincide and we have

$$\int (u-l) = 0.$$

Since $u - l \ge 0$, this implies that l = f = u a.e. Since Lebesque measure is complete, f is measurable, and

$$\mathcal{R} \int_a^b f = \int f.$$

This proves the first part.

To prove the second assertion, first observe that if $x \in [a, b]$ and if $0 < \delta < \delta'$, then

$$\sup\{f(y) : |y - x| \le \delta\} \le \sup\{f(y) : |y - x| \le \delta'\}.$$

It follows that

$$\lim_{\delta \to 0} \sup \{ f(y) : |y - x| \le \delta \} = \inf_{\delta > 0} \sup \{ f(y) : |y - x| \le \delta \}.$$
 (3)

Thus we get a well defined function H on [a, b] by setting H(x) equal to (3). Similarly, we can define h on [a, b] by

$$h(x) := \lim_{\delta \to 0} \inf\{ f(y) : |y - x| \le \delta \} = \sup_{\delta > 0} \inf\{ f(y) : |y - x| \le \delta \}.$$
 (4)

We clearly have $h(x) \le f(x) \le H(x)$ for all $x \in [a, b]$.

Suppose that f is continuous at x. Then given $\epsilon > 0$ there is a $\delta > 0$ such that whenever $|y - x| \le \delta$ we have $|f(y) - f(x)| < \epsilon$. This is the same as

$$f(x) - \epsilon < f(y) < f(x) + \epsilon. \tag{5}$$

It follows from (3) and (5) that $H(x) < f(x) + \epsilon$. Since ϵ is arbitrary, we must have $H(x) \le f(x)$. Thus H(x) = f(x) in the event that f is continuous at x. Similarly, combining (3) and (4) shows that $h(x) > f(x) - \epsilon$ for any $\epsilon > 0$. Thus forces h(x) = f(x) when f is continuous at x. In particular, H(x) = h(x) if f is continuous at x.

Now suppose that H(x) = h(x). Note that the common value must be f(x). Thus given $\epsilon > 0$, there is — in view of (3) and (4) — a $\delta > 0$ such that

$$f(x) + \epsilon = H(x) + \epsilon > \sup\{f(y) : |y - x| \le \delta\} \quad \text{and}$$
 (6)

$$f(x) - \epsilon = h(x) - \epsilon < \inf\{f(y) : |y - x| \le \delta\}. \tag{7}$$

Thus if $|y-x| < \delta$, then we have

$$f(x) - \epsilon < f(y) < f(x) + \epsilon$$
 or $|f(y) - f(x)| < \epsilon$.

This shows that f is continuous at x if and only if H(x) = h(x).

If $\mathcal{P} = \{ a = t_0 < \dots < t_n = b \}$ is any partition of [a, b] and if $x \notin \mathcal{P}$, then there is a $\delta > 0$ such that $\{ y : |y - x| \leq \delta \} \cap \mathcal{P} = \emptyset$. In particular, $\{ y : |y - x| \leq \delta \} \subset (t_{i-1}, t_i)$ for some i, and

$$M_i \ge \sup\{f(y) : |y - x| \le \delta\}.$$

It follows that $u_{\mathcal{P}}(x) \geq H(x)$ for all $x \notin \mathcal{P}$. Now let

$$N:=\bigcup_k \mathcal{P}_k.$$

Then N is countable, and therefore has Lebesque measure 0. Furthermore if $x \notin N$, then

$$u(x) := \inf u_{\mathcal{P}_k}(x) \ge H(x).$$

On the other hand, given $x \notin N$ and $\epsilon > 0$, there is a $\delta > 0$ such that

$$H(x) + \epsilon > \sup\{f(y) : |y - x| \le \delta\}.$$

¹This is the first of Folland's suggested "Lemmas".

Pick k such that $\frac{1}{k} < \delta$. Since $x \notin \mathcal{P}_k$, $x \in (t_{i-1}, t_i)$ for some subinterval in \mathcal{P}_k . Since $\|\mathcal{P}_k\| < \frac{1}{k}$, $M_i \leq \sup\{f(y) : |y - x| \leq \delta\}$ and

$$H(x) + \epsilon > u_{\mathcal{P}_k}(x) \ge u(x).$$

Since ϵ was arbitrary, we conclude that H(x) = u(x) for all $x \notin N$. In particular, H is measurable and

$$\int H = \mathcal{R} \overline{\int}_{a}^{b} f.$$

A similar argument implies that h(x) = l(x) for all $x \notin N$. Thus h is measurable and²

$$\int h = \mathcal{R} \underbrace{\int}_{a}^{b} f.$$

Now if f is continuous almost everywhere, it follows that H=h a.e. Thus the upper and lower Riemann integrals must be equal and f is Riemann integrable. On the other hand, if f is Riemann integrable, the upper and lower integrals are equal and

$$\int (H - h) = 0.$$

Since $H - h \ge 0$, we must have H = h a.e. It follows that f is continuous almost everywhere.

²This is essentially Folland's Lemma (b).