

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 1 124 724 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
09.07.2003 Bulletin 2003/28

(21) Application number: **99969896.2**

(22) Date of filing: **27.10.1999**

(51) Int Cl.7: **B65B 31/02**

(86) International application number:
PCT/EP99/08131

(87) International publication number:
WO 00/027706 (18.05.2000 Gazette 2000/20)

(54) VACUUM PACKAGING MACHINE

VAKUUMVERPACKUNGSMASCHINE
MACHINE A EMBALLER SOUS VIDE

(84) Designated Contracting States:
**AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE**

(30) Priority: **28.10.1998 EP 98308823**

(43) Date of publication of application:
22.08.2001 Bulletin 2001/34

(73) Proprietor: **Cryovac, Inc.**
Duncan, S.C. 29334-0464 (US)

(72) Inventors:
• **EVANGELISTI, Riccardo**
I-20151 Milano (IT)

• **CAILLIER, Joel**
F-69210 Lentilly (FR)

(74) Representative: **De Carli, Elda**
Sealed Air S.r.l.,
Via Trento 7
20017 Passirana di Rho (MI) (IT)

(56) References cited:
EP-A- 0 380 812 **EP-A- 0 836 996**
WO-A-98/12111 **US-A- 3 816 969**

BEST AVAILABLE COPY

EP 1 124 724 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to a vacuum packaging machine for performing a vacuum sealing operation on product packages.

[0002] Vacuum packaging machines of a known type comprise a vacuum chamber arranged to receive at least one unsealed product package and operable to perform a vacuum sealing operation on the at least one product package. Typically the product packages are products such as food stuff arranged in a bag formed by a heat-shrinkable film. After loading and closing the vacuum chamber, the vacuum sealing operation normally comprises vacuumisation, sealing the mouth of the vacuumised bags, and reintroducing air into the chamber. Then the chamber is opened and the vacuum chamber is unloaded. The product packages may then be conveyed to a heat-shrinking unit, typically a hot water tunnel or a dip tank.

[0003] The vacuumisation step typically takes at least 20-30 seconds which is mostly wasted time in the overall packaging process. During this time, the only step which can be taken is to prepare the next product packages for loading into the vacuum chamber, for example by conveying them onto an in-feed conveyor. Accordingly, the vacuum packing machine causes a bottle-neck in the overall packaging process.

[0004] EP 0 380 812 A discloses a vacuum packing machine comprising the features of the preamble of claim 1.

[0005] According to the present invention, there is provided a vacuum packaging machine for performing a vacuum sealing operation on product packages, comprising a vertical stack of vacuum chambers each arranged to receive at least one unsealed product package and operable to perform an independent vacuum sealing operation on the at least one product package.

[0006] The provision of more than one vacuum chamber in the vacuum packaging machine allows respective vacuum chambers to perform a vacuum sealing operation while another vacuum chamber is being loaded and/or unloaded. Therefore, the machine may minimise the wasted time in the vacuum packaging process. Consequently, the present invention can increase through-put and increase productivity of a packaging line including the machine. Furthermore, by arranging the vacuum chambers in a vertical stack, this increase in productivity may be achieved without significantly increasing the floor area of the vacuum packaging machine. The extra vacuum chambers only increase the height of the machine. This is a significant advantage in manufacturing plants where increasing the footprint of the vacuum packaging machine would create real problems but where there is normally space to increase the height of the machine.

[0007] Preferably, the vacuum packaging machine further comprises a conveyor arrangement operable to load and unload a selective vacuum chamber with the

at least one product package, the machine being operable to operate the respective vacuum chambers to perform the vacuum sealing operation while the conveyor arrangement is operated to load and unload another vacuum chamber.

[0008] The conveyor arrangement can automatically load and unload selected vacuum chambers. Operation of one or more of the vacuum chambers while the conveyor arrangement is loading and unloading another vacuum chamber reduces the amount of time wasted, thereby increasing through-put and increasing productivity of a packaging line including the machine.

[0009] Preferably, the machine is operable to operate the conveyor arrangement to load and unload the vacuum chambers in a cyclical sequence and synchronously to operate the respective vacuum chambers to perform the vacuum sealing operation on the at least one product packages after loading.

[0010] Such a cyclical operation allows the machine to be utilised in an automatic continuous packaging line. It is desirable that the number of vacuum chambers is sufficient relative to the duration of the vacuum sealing operation to allow the conveyor arrangement to operate continuously because this minimises the amount of wasted time. Time wastage can be reduced further by designing the conveyor arrangement to load and unload the vacuum chambers more rapidly. The described embodiments include particularly suitable conveyor arrangements as follows.

[0011] Preferably, the conveyor arrangement includes at least one in-feed conveyor operable to load a selected vacuum chamber with the at least one product package.

[0012] Preferably, the conveyor arrangement includes at least one out-feed conveyor operable to unload a selected vacuum chamber with the at least one product package, although as an alternative the in-feed conveyor may be operable in reverse to unload a selected vacuum chamber.

[0013] Provision of separate in-feed and out-feed conveyors allows the loading and unloading to occur simultaneously, preferably with the in-feed and out-feed conveyors being linked by an internal conveyor in each vacuum chamber.

[0014] Preferably, the at least one in-feed conveyor and/or the at least one out-feed conveyor are vertically movable to select the vacuum chamber to be loaded. Additionally or alternatively, the plurality of vacuum chambers are movable together relative to the conveyor arrangement to select the vacuum chamber to be loaded and unloaded.

[0015] The conveyor arrangement may include a plurality of in-feed conveyors and/or out-feed conveyors which are movable together. In this case, the vacuum chambers preferably have a regular spacing and the in-feed conveyors and/or out-feed conveyors have a relative spacing equal to the spacing between the vacuum chambers. This allows more than one vacuum chamber

to be loaded and/or unloaded simultaneously.

[0016] Desirably, the vacuum chambers each have a sealing bar arranged along a side of the respective vacuum chamber for sealing the at least one product packages, preferably extending along the internal conveyor. This prevents the sealing bar from hindering loading and unloading improves the automatic operation of the machine because the product packages always have the same orientation.

[0017] Advantageously, the vacuum chambers and/or the in-feed conveyors and/or the out-feed conveyors have a modular construction. This allows the modular parts to be added and removed in order to assemble the machine with a variable number of the parts in order to provide a productivity and cost appropriate to the particular packaging line in which the machine is used. Thus, this modular construction increases the flexibility of the machine and allows it to be used in different packaging lines. This flexibility is particularly advantageous with the vacuum chambers being arranged in a vertical stack because the productivity of the machine may be altered whilst covering the same floor space within the manufacturing plant because only the height of the machine is altered.

[0018] Advantageously, each vacuum chamber comprises at least two parts which are relatively vertically movable to open and close the vacuum chamber. This construction for the vacuum chambers is advantageous because it allows for a simple machine design, lower manufacturing costs and simple servicing and maintenance operations as compared to a vacuum chambers which are open and closed by the provision of doors.

[0019] In order that the present invention may be better understood, the following description of preferred embodiments is given by way of non-limitative example with reference to the accompanying drawings in which:

Fig. 1 is a top plan view of a packaging line including a vacuum packaging machine which is a first embodiment of the present invention;

Fig. 2 is a schematic sectional side view of a first arrangement for a vacuum packaging machine according to the present invention;

Fig. 3 is a schematic sectional side view of a second arrangement for a vacuum packaging machine according to the present invention;

Fig. 4 is a schematic sectional side view of a third arrangement for a vacuum packaging machine according to the present invention;

Fig. 5 is a schematic sectional side view of a fourth arrangement for a vacuum packaging machine according to the present invention;

Fig. 6 is a detailed side view of a vacuum packaging machine according to the present invention;

Fig. 7 is a partial enlarged view of the vacuum packaging machine shown in Fig. 6 and showing a vacuum chamber and a drive mechanism for opening and closing a vacuum chamber in an overlapping

view;

Fig. 8 is a side view of the drive mechanism of Fig. 7 in isolation in a first position;

Fig. 9 is a cross-sectional view taken along line IX-IX of the drive mechanism in the first position of Fig. 8;

Fig. 10 is a cross-sectional view taken along line X-X of the drive mechanism in the second position of Fig. 11;

Fig. 11 is a side view of the drive mechanism in the second position.

[0020] Fig. 1 is a top plan view of a vacuum packaging machine 1 which is an embodiment of the present invention arranged in a packaging line 13 constituted by a series of conveyors. At a bagging section 14, products

15 are bagged in heat-shrinkable film bags, or alternatively in small pouches made from thin films, and arranged on line 13 as product packages 2. A vacuum packaging machine 1 performs a vacuum sealing operation on the product packages 2 which are then output back onto the packaging lines 13 which conveys them through a shrink tunnel 15 to perform a heat-shrinking operation. The product packages 2 move continuously through the

20 shrink tunnel 15 which is advantageous over heat-shrinking of products in batches where it is difficult to obtain uniform shrinking of the packaging around each product as a result of contact or proximity between the various product packages 2.

[0021] Figs. 2 to 5 are sectional side views of various arrangements for the vacuum packaging machine 1. Figs. 2 to 5 are schematic for ease of understanding of the overall arrangement and operation. Details of the structure of the vacuum packaging machine are given subsequently.

[0022] The vacuum packaging machine 1 has a body 3 supporting a plurality of vertically stacked vacuum chambers 4. As can be seen in Fig. 1, since the vacuum chambers 4 are stacked vertically, they only occupy the

35 same floor space as a single vacuum chamber. Except as described below, each vacuum chamber 4 is in itself of conventional construction and performs a vacuum sealing operation in a conventional manner.

[0023] Each vacuum chamber 4 has a modular construction allowing vacuum chambers to be added or removed from the vacuum packaging machine 1. For example, in the arrangement illustrated in Fig. 2, there are two vacuum chambers 4a, 4b. In the arrangements illustrated in Figs. 3 and 4, an additional vacuum chamber

45 4c has been added so that there are three vacuum chambers 4a, 4b, 4c. In the arrangement illustrated in Fig. 5, there are four vacuum chambers, 4a, 4b, 4c, 4d.

[0024] Each vacuum chamber 4 has an internal chamber conveyor 5 to convey product packages 2 therethrough, and a respective sealing bar 12 arranged along one side of the chamber extending along the corresponding chamber conveyor 5. Provision of a sealing bar 12 on the side of the chamber conveyor 5 facilitates

automatic feeding and loading is made easier by the bags being orientated in the same direction.

[0025] Each chamber has a respective entrance 6 and exit 7. Opening and closing of the vacuum chambers is described in more detail subsequently.

[0026] At least one in-feed conveyor 8 and at least one out-feed conveyor 9 are provided on opposite sides of the vacuum chambers 4 facing entrances 6 and exits 7. The in-feed and out-feed conveyors 8, 9 are independently vertically moveable, for example between a lower position shown in bold outline in Fig. 2 for loading and unloading the lower vacuum chamber 4a and a higher position shown in dotted outline in Fig. 2 for loading and unloading the upper vacuum chamber 4b.

[0027] The in-feed conveyors 8 and the out-feed conveyors 9 have a modular construction allowing additional conveyors to be added or removed. In the arrangements illustrated in Figs. 2 and 3 only a single in-feed conveyor 8 and an out-feed conveyor 9 are used. In the arrangements illustrated in Figs. 4 and 5, conveyors have been added so that there are a pair of in-feed conveyors 8a, 8b and a pair of out-feed conveyors 9a, 9b. Where plural in-feed or out-feed conveyors 8, 9 are provided, these are arranged in a vertical stack with the in-feed conveyors 8 being moveable together as a unit and the out-feed conveyors being moveable together as a unit.

[0028] A fixed input conveyor 10 is provided to receive unsealed product packages 2 into the machine 1 from station 14 along packaging line 13 and supply them to the in-feed conveyor 8. Another fixed output conveyor 11 receives sealed packages from the out-feed conveyor 9 and outputs them along line 13.

[0029] In an alternative construction, the at least one in-feed and out-feed conveyors 8, 9 are fixed in the position shown in bold in Fig. 2 and the vacuum chambers 4 are movable together vertically between upper position, as shown in Fig. 2, for loading and unloading the lower vacuum chamber 4a and a lower position in which the vacuum chamber 4b is aligned with in-feed and out-feed conveyors 8, 9 for loading and unloading.

[0030] All the conveyors 5, 8, 9, 10, 11 are indexed, that is they are driven to execute an indexing motion.

[0031] The vacuum chambers 4 are illustrated as accommodating two product packages 2, but they may be dimensioned to accommodate any number of product packages 2.

[0032] The vacuum packaging machine 1 is operated in a continuous cycle controlled by an electronic control unit (not shown), although manual control is an alternative possibility. Loading and unloading of the vacuum chambers 4 is performed in a cyclical sequence and the vacuum chambers are synchronously operated to perform a vacuum sealing operation on the loaded product packages 2, including vacuumisation and sealing of the product packages 2 using the sealing bar 12. In general the provision of plural vacuum chambers 4 allows the vacuum sealing operation to be performed in one vac-

uum chamber 4 whilst another vacuum chamber 4 is being loaded and unloaded.

[0033] Normally, the at least one in-feed conveyor 8 and out-feed conveyor 9 are synchronously moved vertically. An opposed in-feed conveyor 8 and out-feed conveyor 9 adjacent the fixed conveyors 10, 11 are operated synchronously to receive product packages 2 from the fixed input conveyor 10 and to supply sealed product packages to the fixed output conveyor 11, and are then moved adjacent one of the vacuum chambers 4. Similarly, an opposed in-feed conveyor 8 and out-feed conveyor 9 adjacent a given vacuum chamber 4 are operated synchronously to load the given vacuum chamber 4 with unsealed product packages 2 and simultaneously 15 to unload the same vacuum chamber 4 with the sealed product packages 2.

[0034] The advantage of providing plural in-feed and out-feed conveyors 8, 9 (as in the arrangements illustrated in Figs. 4 and 5) is that a given vacuum chamber 20 may be loaded and unloaded using a first in-feed conveyor 8 and out-feed conveyor 9 simultaneously with supply to and from a second in-feed conveyor 8 and out-feed conveyor 9 from and to the fixed conveyors 10 and 11.

[0035] The precise order of operation of the elements of the vacuum packaging machine 1 in a cycle depends on the number of vacuum chambers 4, in-feed conveyors 8 and out-feed conveyors 9 arranged in the vacuum packaging machine 1. A possible cycle for the arrangement of the vacuum packaging machine 1 illustrated in Fig 2 is as follows and is illustrative of the cycle for other arrangements.

[0036] As an arbitrary starting point within the cycle, we can take the point at which the vacuum sealing operation in the lower vacuum chamber 4a has just finished. At this time, the vacuum sealing operation in the upper vacuum chamber 4b is underway. The lower vacuum chamber 4a is opened. Next, the fixed conveyors 10, 11, the in-feed and out-feed conveyors 8, 9 and the lower chamber conveyor 5a are simultaneously operated (i) to load lower vacuum chamber 4a with new unsealed product packages from the in-feed conveyor 8, (ii) to unload the lower vacuum chamber 4a onto the out-feed conveyor 9, and (iii) to supply new unsealed product packages 2 onto the in-feed conveyor 8. Exact synchronisation is preferable but some degree of overlap may be desirable. The lower vacuum chamber 4a is then closed for commencement of the vacuum sealing operation, that is vacuumisation of the chamber 4a and sealing of the product packages 2 by sealing bar 12.

[0037] During the vacuum sealing operation in the lower vacuum chamber 4a, loading and unloading of the upper vacuum chamber 4b is performed. The out-feed conveyor 9 is operated briefly to clear sealed products off it. Then the in-feed and out-feed conveyors 8, 9 are raised to the upper vacuum chamber 4b and when the vacuum sealing operation in the upper vacuum chamber 4b has finished, the upper vacuum chamber 4b is

opened. Simultaneous operation of the in-feed and out-feed conveyors 8, 9 and the upper chamber conveyor 5b loads and unloads the upper vacuum chamber 4b.

[0038] Subsequently, the upper vacuum chamber 4b is closed and the vacuum sealing operation in the upper vacuum chamber 4b is commenced. At the same time, the in-feed and out-feed conveyors 8, 9 are operated to load and unload the lower vacuum chamber 4a. That is to say, the in-feed and out-feed conveyors 8, 9 are lowered and then the in-feed conveyor 8 is operated simultaneously with the fixed conveyor 10 to fill the in-feed conveyor with new product packages 2 from in-feed conveyor 8 while the sealed packages move onto the out-feed conveyor 9.

[0039] The cycle then repeats.

[0040] Various modifications to the cycle are possible. For example, instead of simultaneously loading and unloading a vacuum chamber 4 by operating the in-feed and out-feed conveyor 8, a chamber conveyor 5 and out-feed conveyor 9 together, it is possible to operate in-feed conveyor 8 and out-feed conveyor 9 independently to perform loading and unloading separately.

[0041] In the second arrangement shown in Fig. 3 employing three vertically stacked vacuum chambers 4a, 4b, 4c, a possible cyclical sequence of operation is: to load and unload vacuum chamber 4a; to commence vacuum sealing operation in the lower vacuum chamber 4a and simultaneously to load and unload the middle vacuum chamber 4b; to commence the vacuum sealing operation in the middle vacuum chamber 4b and simultaneously to load and unload the vacuum chamber 4c; to commence the vacuum sealing operation in the upper vacuum chamber 4c and simultaneously to load and unload the lower vacuum chamber 4a once its own vacuum sealing operation has finished.

[0042] In the third arrangement shown in Fig. 4, by employing three vacuum chambers 4a, 4b, 4c with a pair of in-feed conveyors 8a, 8b and a pair of out-feed conveyors 9a, 9b it is possible to simultaneously (i) operate one in-feed conveyor and out-feed conveyor (ii) load and unload product packages 2 from one vacuum chamber 4 and (iii) operate the other in-feed conveyor to fill it with new unsealed product packages 2 and the other out-feed conveyor to empty it of sealed product packages 2. This saves time in the operation cycle as compared to arrangements having a single in-feed conveyor 8 and a single out-feed conveyor 9.

[0043] The fourth arrangement illustrated in Fig. 5 has two separated pairs of vacuum chambers 4a, 4b and 4c, 4d and a pair of in-feed conveyors 8a, 8b and a pair of out-feed conveyors 9a, 9b having a relative vertical spacing equal to the vertical spacing between the vacuum chambers of each pair 4a, 4b and 4c, 4d.

[0044] In each arrangement, at least some of the vacuum chambers 4 have a regular spacing and the in-feed and out-feed conveyors 8, 9 have a relative spacing equal to the spacing between the vacuum chambers 4, this allowing loading and unloading of respective vacu-

um chambers 4 simultaneously.

[0045] Any arrangement of the vacuum packaging machine 1 with a different number of vacuum chambers may be selected to suit the particular packaging line 13 in which it is employed. Preferably the number of vacuum chambers is sufficient relative to the length of the vacuum sealing operation to allow the machine to handle the maximum rate of product package through-put on the packaging line. Therefore the preferred number and configuration of vacuum chambers depends both on the speed of the line and on the size of the vacuum chambers which is governed by the size of the product packaging.

[0046] Fig. 6 illustrates the detailed structure of the vacuum packaging machine 1 illustrated schematically in Figs. 2 to 5, in particular with the arrangement shown in Fig. 4 of three vacuum chambers 4, two in-feed conveyors 8 and two out-feed conveyors 9.

[0047] The in-feed conveyors 8a, 8b are mounted on respective supports 16a, 16b which are together shuttled vertically by linkage to an endless belt arrangement 17 driven by a motor 18. Similarly the out-feed conveyors 9a, 9b are also mounted on respective supports 51a, 51b and shuttled vertically together by linkage to an endless belt arrangement 19 driven by a motor 20.

[0048] The vacuum chambers 4 each comprise a base 21 which supports the internal chamber conveyor 5 and a cover 22 having circumferential hanging walls 23 which in use form the side walls of the closed vacuum chamber 4. Various elements (not shown) are attached to the cover 22 including vacuum pipes, electrical cables and pneumatic pipes. The cover 22 is fixed to the body 3, whereas the base 21 is arranged to reciprocate vertically to open and close the vacuum chamber 4. This means it is unnecessary to move the elements attached to the cover 22 which enables a simpler design and also speeds up opening and closing. When closed, the base 21 seals against the hanging walls 23 of the cover 22 to maintain the vacuum during vacuumisation. Respective pairs of guiding frames 52 are fixed to the body 3 to guide the vertical movement of each base 21.

[0049] As an alternative, it would be possible to open and close the vacuum chamber 4 by providing doors which may be hinged or which may slide perpendicularly to the movement of the product packages 2, for example on opposed rails. However, it is preferable to open and close the vacuum chamber 4 by forming it from at least two parts which are relatively movable vertically, because this allows a simpler machine design, lowers manufacturing costs and simplifies servicing and maintenance operations. This is particularly the case if one part is fixed, such as the cover 22, to which elements such as the vacuum pipes may be fixed, so that the movable part, such as the base 21, has only mechanical elements which are easily moved.

[0050] Respective identical drive mechanisms 24 are provided for moving the base 21 of each vacuum chamber 4 to open and close the vacuum chamber 4. The

drive mechanisms 24 are provided on the rear side of the body 3. The drive mechanisms 24 for one of the vacuum chambers 4 is illustrated in Fig. 7 in an overlapping view with a vacuum chamber 4 to illustrate the location of the drive mechanism 24 and the linkage to the other parts of the vacuum packaging machine 1. In Figs. 8 to 11, a drive mechanism 24 is shown in isolation for clarity.

[0051] The drive mechanism 24 is driven by a pneumatic cylinder 25 between the position shown in Figs. 8 and 9 where the base 21 is lowered and the position shown in Figs. 10 and 11 where the base 21 is raised.

[0052] The drive mechanism 24 is supported on a first and second mounting blocks 26, 27 fixed to the body 3 of the vacuum packaging machine 1. The pneumatic cylinder 25 reciprocally drives a rod 28 in and out of the pneumatic cylinder 25. A cap 29 on the end of the rod 28 and the end 30 of the pneumatic cylinder 25 opposite to the rod 28 are both pivotally connected to respective angular levers 31, 32. The angular levers 31, 32 are themselves fixed on an axle 33, 34 rotatably mounted by a bearing to a respective mounting block 26, 27. A respective sector 35, 36 is fixed to each axle 33, 34 so as to rotate with the respective angular lever 31, 32. The sectors 35, 36 engage and drive respective cogs 37, 38 rotatable mounted on a bearing within the respective mounting blocks 26, 27. The cogs 37, 38 are fixed on respective drive axles 39, 40 which protrude from the mounting blocks 26, 27 and mount a respective support lever 41, 42.

[0053] Respective tracks 43, 44 are supported by studs 45, 46 fixed by a screw to the end of the respective support levers 41, 42 and positioned to slide along the tracks 43, 44. The tracks 43, 44 are fixed to the underside of the base 21 of the vacuum chamber 4 and together support the base 21.

[0054] The operation of the drive mechanism 24 is as follows.

[0055] When the base 21 is in its lowered position as illustrated in Figs. 8 and 9, actuation of the pneumatic cylinder 25 causes the pneumatic cylinder 25 and rod 28 to be driven apart. This forces the angular levers 31, 32 to rotate away from each other, towards the position illustrated in Fig. 10. This movement of the angular levers 31, 32 drives the sectors 35, 36 away from each other which in turn drives the drive cogs 37, 38 to rotate in opposite directions. Thus the support levers 41, 42 connected to the cogs 37, 38 by the support axles 39, 40 are rotated in opposite directions towards one another. This causes the studs 45, 46 to move in an arc towards one another and thereby to reciprocate within the tracks 43, 44 and to raise the tracks 43, 44 which raises the base 21 to the position illustrated in Figs. 10 and 11.

[0056] Similarly, actuation of the pneumatic cylinder 25 to retract the rod 28 drives motion of the drive mechanism 24 in the opposite direction to lower the base 21.

[0057] In addition, the mounting blocks 26, 27 are provided with respective rotatably mounted arms 48, 49 thereon. The arm 49 of the first mounting block 26 has

a reverse gear 50 which engages the axle 33 of the first mounting block 26. The arm 48 of the second mounting block 27 is fixed to and rotates with the angular lever 32 supported by the first mounted block 27. Thus the second arm 49 is rotated in the opposite direction to the axle 33, that is in the same direction as the first arm 48. The arms 48, 49 are linked together by a rod 47 which acts as a linkage to synchronise rotation of the elements of the drive mechanism 24 mounted to the first and second

mounting blocks 26, 27. The rod 47 also provides structural rigidity between the mounting blocks 25, 26 to avoid mechanical distortion of the guiding frames 52 provided at the sides of the vacuum chamber 4.

15 Claims

1. A vacuum packaging machine (1) for performing a vacuum sealing operation on product packages (2), comprising vacuum chambers (4) each arranged to receive at least one unsealed product package (2) and operable to perform an independent vacuum sealing operation on the at least one product package (2), characterized in that the vacuum chambers (4) are arranged in a vertical stack.
2. A vacuum packaging machine according to claim 1, further comprising a conveyor arrangement (8, 9) operable to load and unload a selective vacuum chamber (4) with the at least one product package (2), the machine (1) being operable to operate respective vacuum chambers (4) to perform the vacuum sealing operation while the conveyor arrangement (8, 9) is operated to load and unload another vacuum chamber (4).
3. A vacuum packaging machine according to claim 2, wherein the machine (1) is operable to operate the conveyor arrangement (8, 9) to load and unload the vacuum chambers (4) in a cyclical sequence and synchronously to operate the respective vacuum chambers (4) to perform the vacuum sealing operation on the at least one product package (2) after loading.
4. A vacuum packaging machine according to claim 3, wherein the number of vacuum chambers (4) is sufficient relative to the duration of the vacuum sealing operation to allow the conveyor arrangement (8, 9) to operate continuously.
5. A vacuum packaging machine according to any one of claims 2 to 4, wherein the conveyor arrangement includes at least one in-feed conveyor (8) operable to load a selected vacuum chamber with the at least one product package (2).
6. A vacuum packaging machine according to claim 5,

- wherein the at least one in-feed conveyor (8) is vertically movable to select the vacuum chamber (4) to be loaded.
7. A vacuum packaging machine according to claim 6, wherein the conveyor arrangement (8) includes a plurality of in-feed conveyors (8a, 8b) which are vertically movable together to select the vacuum chamber (4a-4d) to be loaded.
8. A vacuum packaging machine according to claim 7, wherein the vacuum chambers (4a-4d) have a regular spacing and the in-feed conveyors (8a, 8b) have a relative spacing equal to a the spacing between the vacuum chambers (4a-4d).
9. A vacuum packaging machine according to any one of claims 5 to 8, further comprising an internal conveyor (5) in each vacuum chamber (4) extending from the at least one in-feed conveyor (8).
10. A vacuum packaging machine according to claim 9, wherein the vacuum chambers (4) each have a sealing bar for sealing the at least one product package (2) extending along the internal conveyor (5).
11. A vacuum packaging machine according to any one of claims 5 to 10, wherein the conveyor arrangement (8, 9) includes at least one out-feed conveyor (9) operable to unload a selected vacuum chamber (4) with the at least one product package (2).
12. A vacuum packaging machine according to claim 11 wherein separate in-feed conveyors (8) and out-feed conveyors (9) are provided to allow loading and unloading to occur simultaneously.
13. A vacuum packaging machine according to claims 11 or 12, wherein the at least one out-feed conveyor (9) is vertically movable to select the vacuum chamber (4) to be unloaded.
14. A vacuum packaging machine according to claims 11 to 13, wherein the conveyor arrangement (8, 9) includes a plurality of out-feed conveyors (9a, 9b) which are vertically movable together to select the vacuum chamber (4a-4d) to be unloaded.
15. A vacuum packaging machine according to claim 14, wherein the vacuum chambers (4a-4d) have a regular spacing and the out-feed conveyors (9a, 9b) have a relative spacing equal to the spacing between the vacuum chambers (4a-4d).
16. A vacuum packaging machine according to claim 14 or 15, wherein the out-feed conveyors (9a, 9b) have a modular construction allowing out-feed conveyors (9a, 9b) to be added and removed.
- 5 17. A vacuum packaging machine according to claim 7 or any claim appendant to claim 7, wherein the in-feed conveyors (8a, 8b) have a modular construction allowing in-feed conveyors (8a, 8b) to be added and removed.
- 10 18. A vacuum packaging machine according to any one of the preceding claims, wherein the vacuum chambers (4a, 4d) have a modular construction allowing vacuum chambers (4a, 4d) to be added to and removed from the vertical stack.
- 15 19. A vacuum packaging machine according to any one of claims 2 to 18, wherein the plurality of vacuum chambers (4a, 4d) are movable together relative to the conveyor arrangement (8, 9) to select the vacuum chamber to be loaded and unloaded.
- 20 20. The vacuum packaging machine of claim 19 wherein the conveyor arrangement includes at least one in-feed conveyor (8) operable to load a selected, vertically movable, vacuum chamber (4) with at least one product package (2).
- 25 21. A vacuum packaging machine according to any one of the preceding claims, wherein the vacuum chambers (4a-4d) each have a sealing bar (12) arranged along a side of the respective vacuum chamber (4a-4d) for sealing the at least one product packages (2).
- 30 22. A vacuum packaging machine according to any one of the preceding claims, wherein each vacuum chamber (4) comprises at least two parts (21, 22) which are relatively vertically movable to open and close the vacuum chamber (4).
- 35 23. A vacuum packaging machine according to claim 22, wherein each vacuum chamber (4) comprises a base (21) and a cover (22) disposed vertically above the base (21), wherein the cover (22) is fixed and the base (21) is vertically movable to open and close the vacuum chamber (4).
- 40 45 Patentansprüche
1. Vakuumverpackungsmaschine (1) zur Durchführung einer Vakuumsiegeloperation an Produktverpackungen (2), mit Vakuumkammern (4), die jeweils dazu ausgestaltet sind, wenigstens eine unversiegelte Produktverpackung (2) aufzunehmen, und die dazu betreibbar sind, eine unabhängige Vakuumsiegeloperation an der wenigstens einen Produktverpackung (2) durchzuführen, dadurch gekennzeichnet, daß die Vakuumkammern (4) als vertikaler Stapel angeordnet sind.

2. Vakuumverpackungsmaschine nach Anspruch 1, die weiter Fördereinrichtungen (8, 9) aufweist, die dazu betreibbar sind, eine ausgewählte Vakuumkammer (4) mit der wenigstens einen Produktverpackung (2) zu beladen und diese zu entladen, wobei die Maschine (1) so betreibbar ist, bestimmte Vakuumkammern (4) dazu zu betreiben, die Vakumsiegeloperation durchzuführen, während die Fördereinrichtungen (8, 9) dazu betrieben werden, eine andere Vakuumkammer (4) zu beladen und zu entladen.
3. Vakuumverpackungsmaschine nach Anspruch 2, wobei die Maschine (1) dazu betreibbar ist, die Fördereinrichtungen (8, 9) dazu zu betreiben, um die Vakuumkammern (4) in einer zyklischen Sequenz zu beladen und zu entladen, und synchron die jeweiligen Vakuumkammern (4) dazu zu betreiben, um die Vakumsiegeloperation an der wenigstens einen Produktverpackung (2) nach der Beladung durchzuführen.
4. Vakuumverpackungsmaschine nach Anspruch 3, wobei die Anzahl der Vakuumkammern (4) ausreichend relativ zu der Dauer der Vakumsiegeloperation ist, um den Fördereinrichtungen (8, 9) einen kontinuierlichen Betrieb zu ermöglichen.
5. Vakuumverpackungsmaschine nach einem der Ansprüche 2 bis 4, wobei die Fördereinrichtungen wenigstens einen Zufuhr-Förderer (8) aufweisen, der dazu betreibbar ist, eine ausgewählte Vakuumkammer mit der wenigstens einen Produktverpackung (2) zu beladen.
6. Vakuumverpackungsmaschine nach Anspruch 5, wobei der wenigstens eine Zufuhr-Förderer (8) vertikal beweglich ist, um die zu beladende Vakuumkammer (4) auszuwählen.
7. Vakuumverpackungsmaschine nach Anspruch 6, wobei die Fördereinrichtungen (8) eine Mehrzahl von Zufuhr-Förderern (8a, 8b) aufweisen, die zusammen vertikal beweglich sind, um die zu beladende Vakuumkammer (4a-4d) auszuwählen.
8. Vakuumverpackungsmaschine nach Anspruch 7, wobei die Vakuumkammern (4a-4d) regelmäßige Abstände haben und die Zufuhr-Förderer (8a, 8b) einen relativen Abstand zueinander haben, der dem Abstand zwischen den Vakuumkammern (4a-4d) entspricht.
9. Vakuumverpackungsmaschine nach einem der Ansprüche 5 bis 8, weiter mit einem internen Förderer (5) in jeder Vakuumkammer (4), der von dem wenigstens einen Zufuhr-Förderer (8) ausgeht.
10. Vakuumverpackungsmaschine nach Anspruch 9, wobei die Vakuumkammern (4) jeweils eine Siegelstange haben, um die wenigstens eine Produktverpackung (2), die sich entlang des internen Förderers (5) erstreckt, zu siegeln.
11. Vakuumverpackungsmaschine nach einem der Ansprüche 5 bis 10, wobei die Fördereinrichtungen (8, 9) wenigstens einen Ausgabe-Förderer (9) umfassen, der dazu betreibbar ist, die wenigstens eine Produktverpackung (2) aus einer ausgewählten Vakuumkammer (4) zu entladen.
12. Vakuumverpackungsmaschine nach Anspruch 11, wobei getrennte Zufuhr-Förderer (8) und Ausgabe-Förderer (9) vorgesehen sind, um es zu ermöglichen, daß das Beladen und Entladen gleichzeitig stattfindet.
13. Vakuumverpackungsmaschine nach Anspruch 11, wobei der wenigstens eine Ausgabe-Förderer (9) vertikal beweglich ist, um die zu entladende Vakuumkammer (4) auszuwählen.
14. Vakuumverpackungsmaschine nach einem der Ansprüche 11 bis 13, wobei die Fördereinrichtungen (8, 9) eine Mehrzahl von Ausgabe-Förderern (9a, 9b) umfassen, die zusammen vertikal beweglich sind, um die zu entladende Vakuumkammer (4a-4d) auszuwählen.
15. Vakuumverpackungsmaschine nach Anspruch 14, wobei die Vakuumkammern (4a-4d) regelmäßige Abstände haben und die Ausgabe-Förderer (9a, 9b) einen relativen Abstand zueinander haben, der den Abständen zwischen den Vakuumkammern (4a-4d) gleich ist.
16. Vakuumverpackungsmaschine nach Anspruch 14 oder 15, wobei die Ausgabe-Förderer (9a, 9b) einen modularen Aufbau haben, was es ermöglicht, daß Ausgabe-Förderer (9a, 9b) hinzugefügt und entfernt werden.
17. Vakuumverpackungsmaschine nach Anspruch 7 oder einem von Anspruch 7 abhängigen Anspruch, wobei die Zufuhr-Förderer (8a, 8b) einen modularen Aufbau haben, was es ermöglicht, daß Zufuhr-Förderer (8a, 8b) hinzugefügt und entfernt werden.
18. Vakuumverpackungsmaschine nach einem der vorhergehenden Ansprüche, wobei die Vakuumkammern (4a-4d) einen modularen Aufbau haben, was es ermöglicht, daß Vakuumkammern (4a-4d) hinzugefügt und von dem vertikalen Stapel entfernt werden.
19. Vakuumverpackungsmaschine nach einem der An-

- sprüche 2 bis 18, wobei die Mehrzahl von Vakuumkammern (4a-4d) zusammen beweglich relativ zu den Fördereinrichtungen (8, 9) sind, um die zu beladende und zu entladende Vakuumkammer auszuwählen.
20. Vakuumverpackungsmaschine nach Anspruch 19, wobei die Fördereinrichtungen wenigstens einen Zufahr-Förderer (8) umfassen, der dazu betreibbar ist, eine ausgewählte, vertikal bewegliche Vakuumkammer (4) mit der wenigstens einen Produktverpackung (2) zu beladen.
21. Vakuumverpackungsmaschine nach einem der vorhergehenden Ansprüche, wobei die Vakuumkammern (4a-4d) jeweils eine Siegelstange (12) haben, die entlang einer Seite der jeweiligen Vakuumkammer (4a-4d) angeordnet sind, um die wenigstens eine Produktverpackung (2) zu siegeln.
22. Vakuumverpackungsmaschine nach einem der vorhergehenden Ansprüche, wobei jede Vakuumkammer (4) wenigstens zwei Teile (21, 22) aufweist, die relativ vertikal beweglich sind, um die Vakuumkammer (4) zu öffnen und zu schließen.
23. Vakuumverpackungsmaschine nach Anspruch 22, wobei jede Vakuumkammer (4) ein Unterteil (21) und einen Deckel (22) aufweist, der vertikal über dem Unterteil (21) angeordnet ist, wobei der Deckel (22) feststehend ist, und das Unterteil (21) vertikal beweglich ist, um die Vakuumkammer (4) zu öffnen und zu schließen.
3. Machine à emballer sous vide selon la revendication 2, où la machine (1) est actionnable pour amener l'agencement de convoyeurs (8, 9) à charger et à décharger les chambres sous vide (4) selon une séquence cyclique et d'une manière synchrone pour amener les chambres sous vide respectives (4) à exécuter l'opération de scellement sous vide sur au moins un emballage de produit précité (2) après le chargement.
10. Machine à emballer sous vide selon la revendication 3, où le nombre de chambres sous vide (4) est suffisant relativement à la durée de l'opération de scellement sous vide pour permettre à l'agencement de convoyeurs (8, 9) de fonctionner en continu.
15. Machine à emballer sous vide selon l'une des revendications 2 à 4, où l'agencement de convoyeurs comporte au moins un convoyeur d'aménée (8) actionnable pour charger une chambre sous vide sélectionnée avec au moins un emballage de produit précité (2).
20. Machine à emballer sous vide selon la revendication 5, où au moins un convoyeur d'aménée précité (8) est déplaçable verticalement pour sélectionner la chambre sous vide (4) à charger.
25. Machine à emballer sous vide selon la revendication 6, où l'agencement de convoyeurs (8) comporte plusieurs convoyeurs d'aménée (8a, 8b) qui sont déplaçables verticalement ensemble pour sélectionner la chambre sous vide (4a-4d) à charger.
30. Machine à emballer sous vide selon la revendication 7, où les chambres sous vide (4a-4d) ont un espacement régulier, et les convoyeurs d'aménée (8a, 8b) ont un espacement relatif égal à un espacement entre les chambres sous vide (4a-4d).
35. Machine à emballer sous vide selon l'une des revendications 5 à 8, comprenant en outre un convoyeur interne (5) dans chaque chambre sous vide (4) s'étendant depuis au moins un convoyeur d'aménée précité (8).
40. Machine à emballer sous vide selon la revendication 9, où les chambres sous vide (4) présentent chacune une barre de scellement pour sceller au moins un emballage de produit précité (2) s'étendant le long du convoyeur interne (8).
45. Machine à emballer sous vide selon l'une des revendications 5 à 10, où l'agencement de convoyeurs (8, 9) comporte au moins un convoyeur d'évacuation (9) actionnable pour décharger une chambre sous vide sélectionnée (4) d'au moins un
- Revendications**
1. Machine à emballer sous vide (1) pour exécuter une opération de scellement sous vide sur des emballages de produit (2), comprenant des chambres sous vide (4) chacune agencée pour recevoir au moins un emballage de produit non scellé (2) et actionnable pour exécuter une opération de scellement sous vide indépendante sur au moins un emballage de produit précité (2), **caractérisée en ce que** les chambres sous vide (4) sont agencées en une pile verticale.
 2. Machine à emballer sous vide selon la revendication 1, comprenant en outre un agencement de convoyeurs (8, 9) actionnable pour charger et décharger une chambre sous vide sélective (4) avec au moins un emballage de produit précité (2), la machine (1) étant actionnable pour amener les chambres sous vide respectives à exécuter l'opération de scellement sous vide pendant que l'agencement de convoyeurs (8, 9) est actionné pour charger et décharger une autre chambre sous vide (4).

- emballage de produit précité (2).
12. Machine à emballer sous vide selon la revendication 11, où des convoyeurs d'amenée (8) et des convoyeurs d'évacuation (9) séparés sont prévus pour permettre que le chargement et le déchargement aient lieu simultanément.
13. Machine à emballer sous vide selon la revendication 11 ou 12, où au moins un convoyeur d'évacuation précité (9) est déplaçable verticalement pour sélectionner la chambre sous vide (4) à décharger.
14. Machine à emballer sous vide selon les revendications 11 à 13, où l'agencement de convoyeurs (8, 9) comporte plusieurs convoyeurs d'évacuation (9a, 9b) qui sont déplaçables verticalement ensemble pour sélectionner une chambre sous vide (4a-4d) à décharger.
15. Machine à emballer sous vide selon la revendication 14, où les chambres sous vide (4a-4d) ont un espace-
ment régulier, et les convoyeurs d'évacuation (9a, 9b) ont un espace-
ment relatif égal à l'espace-
ment entre les chambres sous vide (4a-4d).
16. Machine à emballer sous vide selon la revendication 14 ou 15, où les convoyeurs d'évacuation (9a, 9b)
ont une construction modulaire permettant aux con-
voyeurs d'évacuation (9a, 9b) d'être ajoutés et re-
tirés.
17. Machine à emballer sous vide selon la revendication 7, où l'une des revendications dépendant de la re-
vendication 7, où les convoyeurs d'amenée (8a, 8b)
sont d'une construction modulaire permettant que
les convoyeurs d'amenée (8a, 8b) soient ajoutée et
retirées.
18. Machine à emballer sous vide selon l'une des re-
vendications précédentes, où les chambres sous
vide (4a-4d) sont d'une construction modulaire per-
mettant que les chambres sous vide (4a-4d) soient
ajoutées à et retirées de la pile verticale.
19. Machine à emballer sous vide selon l'une des re-
vendications 2 à 18, où plusieurs chambres sous
vide (4a-4d) sont déplaçables ensemble relative-
ment à l'agencement de convoyeurs (8, 9) pour sé-
lectionner la chambre sous vide à charger et à dé-
charger.
20. Machine à emballer sous vide selon la revendica-
tion 19, où l'agencement de convoyeurs comporte
au moins un convoyeur d'amenée (8) actionnable
pour charger une chambre sous vide sélectionnée
(4), déplaçable verticalement, avec au moins un
emballage de produit précité (2).
21. Machine à emballer sous vide selon l'une des re-
vendications précédentes, où les chambres sous
vide (4a-4d) possèdent chacune une barre de scel-
lement (12) agencée le long d'un côté de la cham-
bre sous vide respective (4a-4d) pour sceller au
moins un emballage de produit précité (2).
22. Machine à emballer sous vide selon l'une des re-
vendications précédentes, où chaque chambre
sous vide (4) comprend au moins deux parties (21,
22) qui sont déplaçables relativement verticalement
pour ouvrir et fermer la chambre sous vide (4).
23. Machine à emballer sous vide selon la revendica-
tion 22, où chaque chambre sous vide (4) comprend
une base (21) et un couvercle (22) disposée verti-
calement au-dessus de la base (21), où le couver-
cle (22) est fixe et la base (21) est déplaçable verti-
calement pour ouvrir et fermer la chambre sous vide
(4).

Fig. 1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig. 6.

Fig.7.

Fig.8.

Fig.9.

Fig.10.

Fig.11.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.