Constraint Logic Programming (CLP)

CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Constraints

- Constraint: conjunction of atomic constraints
 - E.g., $4X + 3Y = 10 \land 2X Y = 0$
 - Constraint Solution: A valuation for the variables in a given constraint problem that satisfies all constraints of the problem. E.g., $X = 1 \ \Lambda Y = 2$
- Why constraints?
 - Many examples of modelling can be partitioned into two parts:
 - a general description of the object or process, and
 - specific information about the situation at hand (constraints)
 - The programmer should be able to define their own problem specific constraints

Constraint Logic Programming

- Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction
 - A constraint logic program is a logic program that contains *constraints* in the body of clauses
 - For example:

$$A(X,Y):-X+Y>0, B(X), C(Y).$$

- X+Y>0 is a constraint,
- A(X,Y), B(X) and C(Y) are literals as in regular logic programming

Constraint Logic Programming

- Why CLP?
 - "Generate-and-test" approach is a common methodology for logic programming.
 - Generate possible solutions
 - Test and eliminate non-solutions
 - Disadvantages of "generate-and-test" approach:
 - Passive use of constraints to test potential values
 - Inefficient for combinatorial search problems
 - CLP languages use the global search paradigm.
 - Actively pruning the search space
 - Recursively dividing a problem into sub-problems until its subproblems are simple enough to be solved

Constraint Logic Programming

- Prolog is inefficient in dealing with numerical values, due to "generate-and-test" paradigm
 - Goal of CLP is to pick numerical values from pre-defined domains for certain variables so that the given constraints on the variables are all satisfied.
 - Idea: use CLP to define and reason with numerical constraints and assignments
- Defines a family of programming languages
 - A language CLP(X) is defined by:
 - a constraint domain X,
 - a solver for the constraint domain X
 - a simplifier for the constraint domain X
 - For example: CLP(FD) (finite domains), CLP(R) (reals), ...

- Constraint Logic Programming over Finite Domains
 - SWI Prolog: library(clpfd)
 - XSB Prolog: library bounds
- SWI:
 - :- use_module(library(clpfd)).
 - Two major use cases of this library:
 - Provide *declarative integer arithmetic*: they implement *pure relations* between integer expressions and can be used in all directions, also if parts of expressions are variables.
 - ?- X #> 3, X #= 5+2. X=7.

In contrast, when using low-level integer arithmetic, we get:

?-X > 3, X is 5+2.

Error: >/2: Arguments are not sufficiently instantiated.

- In connection with enumeration predicates and more complex constraints, CLP(FD) is often used to model and solve combinatorial problems such as planning, scheduling and allocation tasks.
- Arithmetic constraints are relations between arithmetic expressions

integer	Given value
variable	Unknown integer
?(variable)	Unknown integer
-Expr	Unary minus
Expr + Expr	Addition
Expr * Expr	Multiplication
Expr - Expr	Subtraction
Expr ^ Expr	Exponentiation
min(Expr,Expr)	Minimum of two expressions
max(Expr,Expr)	Maximum of two expressions
Expr mod Expr	Modulo induced by floored division
Expr rem Expr	Modulo induced by truncated division
abs(Expr)	Absolute value
Expr // Expr	Truncated integer division

```
Expr1 #>= Expr2 Expr1 is greater than or equal to Expr2
Expr1 #=< Expr2 Expr1 is less than or equal to Expr2
Expr1 #= Expr2 Expr1 equals Expr2
Expr1 #\= Expr2 Expr1 is not equal to Expr2
Expr1 #> Expr2 Expr1 is greater than Expr2
Expr1 #< Expr2 Expr1 is less than Expr2
Expr1 #< Expr2 Expr1 is less than Expr2
```

• We can write factorial with CLP(FD):

```
n_factorial(0, 1).

n_factorial (N,F):-

N #> 0,

N1 #= N-1,

F #= N*F1,

n_factorial(N1, F1).

?- factorial(12, Fact).

Fact = 479001600.
```

• We can also use it in reverse:

```
?- factorial(N, 479001600). N = 12.
```

• We can find out all the possible outputs:

```
?- factorial(N, F).

N = 0,

F = 1;

N = F,

F = 1;...
```

- Domains:
 - Each CLP(FD) variable has an associated set of admissible integers which we call the variable's domain.
 - Initially, the domain of each CLP(FD) variable is the set of all integers.
 - The constraints in/2 and ins/2 are the primary means to specify tighter domains of variables.

```
?- X #>3.
```

X in 4...sup.

?- [X,Y,Z] ins 0..3.

X in 0..3,

Y in 0..3,

Z in 0..3.

Example: Send More Money

- Crypto-arithmetic Puzzle
 - Replace distinct letters by distinct digits, numbers have no leading zeros.

Example: Send More Money

- Crypto-arithmetic Puzzle
 - The variables are the letters S, E, N, D, M, O, R and Y.
 - Each letter represents a digit between 0 and 9.
 - Assign a value to each digit, such that SEND + MORE equals MONEY.

Example: Send More Money

```
:- use module(library(clpfd)).
send([S,E,N,D,M,O,R,Y]) :-
     gen domains([S,E,N,D,M,O,R,Y],0..9),
     S \# = 0
     \mathbf{M} \ \# \backslash = \ \mathbf{0} \ ,
     all distinct([S,E,N,D,M,O,R,Y]),
     1000*S + 100*E + 10*N + D+ 1000*M
           + 100*O + 10*R + E #= 10000*M
           + 1000*O + 100*N + 10*E + Y,
     labeling([],[S,E,N,D,M,O,R,Y]).
gen domains([],_).
gen domains([H|T],D) :-
     H in D,
     gen domains (T,D).
```

Labeling

- Labeling procedure or enumeration procedure: try possible values for a variable $X=v_1 \ V \dots V \ X=v_n$
- labeling(+Options, +Vars): assign a value to each variable in Vars.
 - labeling procedure will use heuristics to choose the next variable and value for labeling
 - variable ordering: chosen sequence of variables
 - first-fail principle: choose the most constrained variable first; will often lead to failure quickly, thus pruning the search tree early
 - value ordering: next value for labeling a variable must be chosen

Labeling

- labeling(+Options, +Vars): *Options* is a list of options that let you exhibit some control over the search process.
 - leftmost = Label the variables in the order they occur in Vars. This is the default.
 - ff = First fail. Label the leftmost variable with smallest domain next, in order to detect infeasibility early. This is often a good strategy.
 - ffc = Of the variables with smallest domains, the leftmost one participating in most constraints is labeled next.
 - min = Label the leftmost variable whose lower bound is the lowest next.
 - max = Label the leftmost variable whose upper bound is the highest next. ?- [X,Y] ins 10..20, $[\max(X),\min(Y)]$, [X,Y]).
 - generates solutions in descending order of X, and for each binding of X, solutions are generated in ascending order of Y.
 - To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)" and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars))

Example: n-Queens

• Place n queens q1, . . . , qn on an n x n chess board, such that they do not attack each other.

$$q_1, \ldots, q_n \in \{1, \ldots, n\}$$

$$\forall i \neq j. \ q_i \neq q_j \land |q_i - q_j| \neq |i - j|$$

- No two queens are in the same row, column and diagonal
 - each row and each column has exactly one queen
 - each diagonal has at most one queen
- qi: row position of the queen i in the i-th column

Example: n-Queens

```
:- use module(library(clpfd)).
n queens(N, Qs) :-
        length (Qs, N),
        Qs ins 1..N,
        safe queens(Qs).
safe queens([]).
safe queens([Q|Qs]) :-
      safe queens (Qs, Q, 1),
      safe queens (Qs).
safe_queens([], _, _).
safe queens([Q|Qs], Q0, D0) :-
        Q0 \# = Q
        abs(Q0 - Q) \#= D0
        D1 #= D0 + 1,
        safe queens(Qs, Q0, D1).
?-N = 8, n queens(N, Qs), labeling([ff], Qs).
      Qs = [1, 5, 8, 6, 3, 7, 2, 4].
```

CLP(R)

- This library provides Constraint Logic Programming over real numbers.
 - Elements are trees containing real constants with operator in $\{=, \neq, <, \leq, >, \geq\}$.
 - SWI Prolog::- use_module(library(clpr))
 - Example:

```
:- use_module(library(clpr)).

p(X,Y):-
{X = Y * 3},
q(X,Y).
q(X,Y):-
{X - 2 = Y}.
```

ullet constraints are marked with $\{\ldots\}$.

CLP(R)

• Example:

CLP(R)

• Example:

```
:- use_module(library(clpr))
river(W, S, R, P):-
{T = W/R},
{P= S*T}.
```

- Suppose she rows at 1.5m/s, river speed is 1m/s and width is 24m.
 - ?- river(24, 1, 1.5, P).
 - Has unique answer P = 16.

More Constraint Handling

- Constraint Simplification
- Optimization
- Implication and Equivalence

More Constraint Handling

- Constraint Simplification
 - Two equivalent constraints represent the same information, but one may be simpler than the other

$$X \ge 1 \land X \ge 3 \land 2 = Y + X$$

$$\leftrightarrow X \ge 3 \land 2 = Y + X$$

$$\leftrightarrow 3 \le X \land X = 2 - Y$$

$$\leftrightarrow X = 2 - Y \land 3 \le X$$

$$\leftrightarrow X = 2 - Y \land 3 \le 2 - Y$$

$$\leftrightarrow X = 2 - Y \land Y \le -1$$

Removing redundant constraints, rewriting a primitive constraint, changing order, substituting using an equation all preserve equivalence

Redundant Constraints

- One constraint C1 implies another C2 if the solutions of C1 are a subset of those of C2
 - •C2 is said to be redundant wrt C1
 - It is written C1 \rightarrow C2
 - For example:

$$X \ge 3 \to X \ge 1$$

$$Y \le X + 2 \land Y \ge 4 \to X \ge 1$$

$$cons(X, X) = cons(Z, nil) \to Z = nil$$

Solved Form Solvers

• Since a solved form solver creates equivalent constraints it can be a simplifier

$$cons(X, X) = cons(Z, nil) \land Y = succ(X) \land succ(Z) = Y \land Z = nil$$

 $\longleftrightarrow X = nil \land Z = nil \land Y = succ(nil)$

• Gaussian elimination:

$$X = 2 + Y \land 2Y + X - T = Z \land X + Y = 4 \land Z + T = 5$$

$$\longleftrightarrow X = 3 \land Y = 1 \land Z = 5 - T$$

Optimization

- Often given some problem which is modelled by constraints we don't want just any solution, but a "best" solution
 - This is an optimization problem
 - We need an *objective function* so that we can *rank* solutions, that is a mapping from solutions to a real value
 - An *optimization problem* (C,f) consists of a constraint C and objective function f
 - A valuation v1 is *preferred* to valuation v2 if $f(v1) \le f(v2)$
 - An *optimal solution* is a solution of C such that no other solution of C is preferred to it.

Optimization Example

$$(C \equiv X + Y \ge 4, \quad f \equiv X^2 + Y^2)$$

- Find the closest point to the origin satisfying the *C*.
- Some solutions and *f* value

$$\{X \mapsto 0, Y \mapsto 4\}$$
 16
$$\{X \mapsto 3, Y \mapsto 3\}$$
 18
$$\{X \mapsto 2, Y \mapsto 2\}$$
 8

Optimal solution:

$$\{X \mapsto 2, Y \mapsto 2\}$$

Implication and Equivalence

- Other important operations involving constraints are:
 - implication: test if C1 implies C2
 - impl(C1, C2) answers true, false or unknown
 - equivalence: test if C1 and C2 are equivalent
 - equiv(C1, C2) answers true, false or unknown

Implication Example

• For the house constraints *CH*, will stage B have to be reached after stage C?

$$CH \rightarrow T_B \geq T_C$$

• For this question the answer if *false*, but if we require the house to be finished in 15 days the answer is *true*

$$CH \wedge T_E = 15 \rightarrow T_B \geq T_C$$

Application Domains

- Modeling
- Executable Specifications
- Solving combinatorial problems
 - Scheduling, Planning, Timetabling
 - Configuration, Layout, Placement, Design
 - Analysis: Simulation, Verification, Diagnosis of software, hardware and industrial processes.
- Artificial Intelligence
 - Machine Vision
 - Natural Language Understanding
 - Qualitative Reasoning, etc.

Applications in Research

- Computer Science: Program Analysis, Robotics, Agents
- Molecular Biology, Biochemistry, Bio-informatics:
 Protein Folding, Genomic Sequencing
- Economics: Scheduling
- Linguistics: Parsing
- Medicine: Diagnosis Support
- Physics: System Modeling
- Geography: Geo-Information-Systems