MELANGEUR DE PEINTURE BI-AXIAL

Partie I : Partie préliminaire notée : 4 points sur 20.

Q1. A partir de la description ci-dessus, du diagramme de contexte (**figure 1**), et du diagramme BDD (**figure 3**), Compléter, sur le document réponses **DR1**, le diagramme correspondant à la chaîne d'énergie de l'unité de serrage.

Q2. Ecrire au point O_2 le torseur cinématique $\{\mathcal{G}(12/0)\}_{O_2}$, puis au point N_1 les torseurs cinématiques suivants : $\{\mathcal{G}(12/0)\}_{N_1}$ et $\{\mathcal{G}(Ei/0)\}_{N_1}$.

La liaison
$$L_{12-0}$$
: pivot d'axe (O_2, \vec{y}_0) $\Rightarrow \{9(12/0)\}_{O_2} = \{\vec{\Omega}(12/0)\}_{O_2} = \{\vec{v}(O_2 \in 12/0)\}_{O_2} = \{\vec{0}_{12}, \vec{y}_0\}_{O_2} = \{\vec{0}_{12}, \vec{y}_0\}_{O$

$$\vec{V}(N_1 \in 12/0) = \vec{V}(O_2 \in 12/0) + \underbrace{\vec{\Omega}(12/0) \wedge \overrightarrow{O_2 N_1}}_{=\vec{0}} \quad \Rightarrow \quad \left\{ \mathcal{G}(12/0) \right\}_{N_1} = \left\{ \vec{\Omega}(12/0) \right\}_{N_1} = \left\{ \vec{O}(12/0) \right$$

La liaison L_{Ei-0} : Glissière d'axe (\vec{y}_0) .

$$\vec{V}(N_1 \in E_i / 0) = \left[\frac{d\vec{O_0N_1}}{dt}\right]_{R_0} = -\dot{y}.\vec{y}_0 \qquad \Rightarrow \left\{\mathcal{G}(E_i / 0)\right\}_{N_1} = \left\{\vec{O}(E_i / 0)\right\}_{N_1} =$$

Q3. En déduire, au point N_1 , le torseur cinématique $\{g(Ei/12)\}_{N_1}$ en fonction de ω_{12} et p puis en fonction de ω_{ms} , r et p.

$$\left\{ \mathcal{G}(E_{i}/12) \right\}_{N_{1}} = \left\{ \vec{\Omega}(E_{i}/12) \right\}_{N_{1}}, \text{ avec } \vec{\Omega}(E_{i}/12) = \vec{\Omega}(E_{i}/0) - \vec{\Omega}(12/0) = -\omega_{12}, \vec{y}_{0}.$$

La liaison L_{12-Ei} : hélicoïdale à gauche d'axe (N_1, \vec{y}_0)

$$\Rightarrow \vec{V}(N_1 \in E_i/12) = -\frac{p}{2\pi}\vec{\Omega}(E_i/12) = -\frac{p}{2\pi}\left[\underbrace{\vec{\Omega}(E_i/0)}_{=\vec{0}} - \vec{\Omega}(12/0)\right] = \frac{p}{2\pi}\vec{\Omega}(12/0) = \frac{p}{2\pi}\omega_{12}\vec{y}_0$$

On a: $\omega_{12} = k \mathbf{r} \cdot \omega_{ms} = -\mathbf{r} \cdot \omega_{ms} \implies \vec{\mathbf{v}}(N_1 \in E_i/12) = -\frac{p}{2\pi} \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{n} \cdot \mathbf{v} \cdot$

$$\Rightarrow \left\{ \mathcal{G}(E_i/12) \right\}_{N_1} = \left\{ \begin{matrix} r.\omega_{ms}.\vec{y}_0 \\ -\frac{p}{2\pi}.r.\omega_{ms}.\vec{y}_0 \end{matrix} \right\}_{N_1}$$

Q4. En déduire, au point N_2 , le torseur cinématique $\{g(Es/12)\}_{N_2}$ en fonction de ω_{ms} , r et p.

$$\left\{ \mathcal{G}(E_{S}/12) \right\}_{N_{1}} = \left\{ \begin{array}{c} r.\omega_{ms}.\vec{y}_{0} \\ \frac{p}{2\pi}.r.\omega_{ms}.\vec{y}_{0} \end{array} \right\}_{N_{2}}$$

Q5. En déduire les expressions algébriques des vitesses de translation v_{Es} et v_{Ei} des ensemble Es et Ei en fonction de ω_{ms} , r et p.

$$v_{Es} = -v_{Ei} = \frac{p}{2\pi} . r. \omega_{ms}$$

Q6. Donner la forme des torseurs des actions mécaniques des liaisons indiquées dans le tableau du document réponses **DR2**.

Liaisons	Torseurs des actions mécaniques transmissibles dans la base $(\vec{x}_0,\vec{y}_0,\vec{z}_0)$	Liaisons	Torseurs des actions mécaniques transmissibles dans la base $(\vec{x}_0,\vec{y}_0,\vec{z}_0)$
L ₀₋₁₂	$\left\{\tau(0 \to 12)\right\} = \begin{cases} X_{0-12} & L_{0-12} \\ Y_{0-12} & 0 \\ Z_{0-12} & N_{0-12} \end{cases}_{O_2}$	L ₀₋₇	$ \left\{ \tau(0 \to 7) \right\} = \left\{ \begin{aligned} X_{0-7} & L_{0-7} \\ 0 & M_{0-7} \\ Z_{0-7} & N_{0-7} \end{aligned} \right\}_{O_0} $
L ₁₂₋₈	$\left\{\tau_{(12\rightarrow 8)}\right\} = \begin{cases} X_{12-8} & L_{12-8} \\ Y_{12-8} & \frac{p}{2\pi}Y_{12-8} \\ Z_{12-8} & N_{12-8} \end{cases}_{N_{1}}$	L ₇₋₆	$ \left\{ \tau(7 \to 6) \right\} = \left\{ \begin{aligned} X_{7-6} & L_{7-6} \\ Y_{7-6} & 0 \\ Z_{7-6} & N_{7-6} \end{aligned} \right\}_{H} $
L ₁₂₋₇	$\left\{\tau(12 \to 7)\right\} = \begin{cases} X_{12-7} & L_{12-7} \\ Y_{12-7} & \frac{-p}{2\pi} Y_{12-7} \\ Z_{12-7} & N_{12-7} \end{cases}_{N_2}$	L _{Ps-6}	$ \left\{ \tau_{(6 \to Ps)} \right\} = \begin{cases} X_{6-P_s} & 0 \\ Y_{6-P_s} & M_{6-P_s} \\ Z_{6-P_s} & 0 \end{cases}_{C} $

- **Q7.** Déterminer l'équation scalaire issue de l'application du théorème de la résultante statique à l'ensemble Es (7+6+Ps) en projection sur \vec{y}_0 . Déduire l'équation scalaire issue de l'application du théorème de la résultante statique à l'ensemble Ei (8+Pi) en projection sur \vec{y}_0 .
- \blacksquare Théorème de la résultante statique appliqué à (Es) en projection sur $ec{y}_0$:

$$\vec{y}_0.\vec{R}(\vec{E}_s \to E_s) = \vec{y}_0.\vec{R}(2 \to P_s) + \vec{y}_0.\vec{R}(12 \to 7) + \underbrace{\vec{y}_0.\vec{R}(0 \to 7)}_{=0} = 0 \implies N_s + Y_{12-7} = 0$$
 (1)

 $led {f L}$ Théorème de la résultante statique appliqué à (Ei) en projection sur $ec y_0$:

$$\vec{y}_0.\vec{R}(\vec{E}_i \to E) = \vec{y}_0.\vec{R}(2 \to P_i) + \vec{y}_0.\vec{R}(12 \to 8) + \underbrace{\vec{y}_0.\vec{R}(0 \to 8)}_{=0} = 0 \qquad \Rightarrow -N_i + Y_{12-8} = 0$$
 (2)

- **Q8.** Isoler le pot (2), puis déterminer l'expression de l'effort N_i en fonction de M, g et N_s .
- lacktriangle Théorème de la résultante statique appliqué à (2) en projection sur $ec{y}_0$:

$$-N_S + N_i - Mg = 0 \Rightarrow \boxed{N_i = N_S + Mg}$$
 (3)

Q9. En appliquant le théorème du moment statique à la vis (12) en O_2 en projection $\sup_{i \in \mathcal{V}_0} f_i$, déterminer l'expression du couple de freinage C_f en fonction de p, M, g et N_s .

 $led {\mathbb L}$ Théorème du moment statique appliqué à la vis (12) en ${
m O}_2$ en projection sur $ec y_0$:

$$\vec{y}_{0}.\vec{M}_{O2}\left(\overline{12}\rightarrow12\right) = \underbrace{\vec{y}_{0}.\vec{M}_{O2}\left(\textit{frein}\rightarrow12\right)}_{-\vec{C}_{f}} + \vec{y}_{0}.\vec{M}_{O2}\left(7\rightarrow12\right) + \vec{y}_{0}.\vec{M}_{O2}\left(8\rightarrow12\right) + \underbrace{\vec{y}_{0}.\vec{M}_{O2}\left(0\rightarrow12\right)}_{=0} = 0 \text{ .}$$

On a:
$$\vec{y}_0 \cdot \vec{M}_{O2} (7 \to 12) = \vec{y}_0 \cdot \vec{M}_{N2} (7 \to 12) + \left[\underbrace{\vec{o}_2 \vec{N}_2}_{0} \wedge \vec{R} (7 \to 12) \right] \cdot \vec{y}_0 = p \frac{Y_{12-7}}{2\pi}$$
;

De même :
$$\vec{y}_0 \cdot \vec{M}_{O2} (8 \to 12) = -p \frac{Y_{12-8}}{2\pi}$$
 \Rightarrow $-C_f + p \frac{Y_{12-7}}{2\pi} - p \frac{Y_{12-8}}{2\pi} = 0$;

(1) et (2)
$$\Rightarrow C_f = -p\frac{Ns}{2\pi} - p\frac{Ni}{2\pi}$$
 ; (3) $\Rightarrow C_f = -\frac{p}{2\pi}(2Ns + Mg)$

Q10. Faire l'application numérique. Le maintien du freinage est-il assuré?

Au niveau du réducteur : $C_f = -\frac{5}{2\pi}(2 \times 450 + 40 \times 10) = -1034,5 \text{(Nmm)}$

Au niveau du moteur : $C_{fmot} = k.r.C_f = -r.C_f = (-0,2).(-1034,5)$ \Rightarrow $C_{fmot} = 206,9(Nmm)$

 C_{fmot} < 300Nmm, donc le maintien de freinage est assuré.

Q11. A partir du diagramme de contexte (**figure 1**) et du diagramme BDD (**figure 3**); Compléter, sur document réponses **DR2**, le diagramme correspondant à la chaîne d'énergie de l'unité de rotation.

Partie II: Etude cinématique et dynamique de l'unité de rotation

Q12. Ecrire au point O les torseurs cinématiques suivants $\{9(2/4)\}_O$, $\{9(4/0)\}_O$ et $\{9(2/0)\}_O$.

$$\left\{ \mathcal{G}(2/4) \right\}_{o} = \left\{ \vec{\Omega}(2/4) \right\}_{o} = \left\{ \vec{\theta}_{2} \cdot \vec{y}_{4} \right\}_{o} ; \qquad \left\{ \mathcal{G}(4/0) \right\}_{o} = \left\{ \vec{\Omega}(4/0) \right\}_{o} = \left\{ \vec{\Omega}(4/0) \right\}_{o} = \left\{ \vec{\theta}_{4} \cdot \vec{x}_{4} \right\}_{o}$$

$$\left\{ \mathcal{G}(2/0) \right\}_{o} = \left\{ \vec{\Omega}(2/4) \right\}_{o} + \left\{ \vec{\Omega}(4/0) \right\}_{o} = \left\{ \vec{\theta}_{4} \cdot \vec{x}_{4} + \dot{\theta}_{2} \cdot \vec{y}_{4} \right\}_{o}$$

$$\left\{ \vec{\theta}(2/0) \right\}_{o} = \left\{ \vec{\Omega}(2/4) \right\}_{o} + \left\{ \vec{\Omega}(4/0) \right\}_{o} = \left\{ \vec{\theta}_{4} \cdot \vec{x}_{4} + \dot{\theta}_{2} \cdot \vec{y}_{4} \right\}_{o}$$

Q13. Déterminer la matrice d'inertie du pot 2 en O dans la base $(\vec{x}_2, \vec{y}_2, \vec{z}_2)$.

$$\overline{\overline{I}}_{O}(2) = \overline{\overline{I}}_{O_{1}}(2) + \overline{\overline{I}}_{O_{2}}(2) + \overline{\overline{I}}_{O_{1}}(G_{2},M) \text{ et on a } : \overline{OG_{2}} = \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} (\vec{x}_{2},\vec{y}_{2},\vec{z}_{2}) \\ \Rightarrow \overline{\overline{I}}_{O}(2) = \begin{pmatrix} A_{2} & 0 & 0 \\ 0 & B_{2} + Ma^{2} & 0 \\ 0 & 0 & A_{2} + Ma^{2} \end{pmatrix} (\vec{x}_{2},\vec{y}_{2},\vec{z}_{2})$$

Q14. Déterminer le moment cinétique, au point O, du pot (2) dans son mouvement par rapport au repère $R_o: \vec{\sigma}(0,2/R_0)$.

$$\vec{\sigma}(O,2/0) = \vec{\bar{I}}(O,2) \cdot \vec{\Omega}(2/0) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} = \begin{pmatrix} A\dot{\theta}_4 \cos \theta_2 \\ B\dot{\theta}_2 \\ C\dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} = \begin{pmatrix} A\dot{\theta}_4 \cos \theta_2 \\ B\dot{\theta}_2 \\ C\dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} = \begin{pmatrix} A\dot{\theta}_4 \cos \theta_2 \\ B\dot{\theta}_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2,\vec{z}_2)} \cdot \begin{pmatrix} \dot{\theta}_4 \cos \theta_2 \\ \dot{\theta}_4 \sin \theta_2 \end{pmatrix}_{(\vec{x}_2,\vec{y}_2$$

Q15. Déterminer la projection sur \vec{x}_0 du moment dynamique, au point O, du pot (2) dans son mouvement par rapport au repère R_0 : $\vec{x}_0 \cdot \vec{\delta}(O, 2/R_0)$.

$$\begin{split} \vec{x}_0.\vec{\delta}(O,2/R_0) &= \left[\frac{d(\vec{x}_0.\vec{\sigma}\left(O,2/0\right))}{dt}\right]_{R_0} = \left[\frac{d(A\dot{\theta}_4\cos^2\theta_2 + C\dot{\theta}_4\sin^2\theta_2)}{dt}\right]_{R_0} \\ &\Rightarrow \qquad \left[\vec{x}_0.\vec{\delta}(O,2/R_0) = \ddot{\theta}_4(A\cos^2\theta_2 + C\sin^2\theta_2) + \dot{\theta}_4\dot{\theta}_2(C-A)\sin(2\theta_2)\right] \end{split}$$

Q16. Donner la projection sur \vec{X}_0 du moment dynamique, au point O, du moyeu (4) dans son mouvement par rapport au repère R_0 : $\vec{X}_0 \cdot \vec{\mathcal{S}}(O, 4/R_0)$.

$$\vec{x}_{0}.\vec{\sigma}(O,4/0) = \vec{x}_{0}.\left\{\vec{\bar{I}}(O,4).\vec{\Omega}(4/0)\right\} = \vec{x}_{0}.\left\{\begin{pmatrix} A_{4} & 0 & 0 \\ 0 & B_{4} & 0 \\ 0 & 0 & C_{4} \end{pmatrix}_{\left(\vec{x}_{0},\vec{y}_{4},\vec{z}_{4}\right)}.\begin{pmatrix} \dot{\theta}_{4} \\ 0 \\ 0 \end{pmatrix}_{\left(\vec{x}_{0},\vec{y}_{4},\vec{z}_{4}\right)}\right\} = A_{4}.\dot{\theta}_{4}$$

$$\vec{x}_{0}.\vec{\delta}(O,4/R_{0}) = \begin{bmatrix} d(\vec{x}_{0}.\vec{\sigma}(O,4/0) \\ dt \end{bmatrix}_{R_{0}} \implies \begin{bmatrix} \vec{x}_{0}.\vec{\delta}(O,4/R_{0}) = A_{4}\ddot{\theta}_{4} \end{bmatrix}$$

Filière: MP

Q17. Déterminer, par application du théorème du moment dynamique à l'ensemble ${\bf E}$ au point O en projection sur \vec{x}_0 , l'expression du couple C_{m4} en fonction de θ_2 , θ_4 , leurs dérivées et des données.

Théorème du moment dynamique appliqué à l'ensemble E au point O en projection/ \vec{x}_0 :

$$\vec{x}_{0}.\vec{M}_{O}(\vec{E} \to E) = \vec{x}_{0}.\vec{\delta}(O, E/R_{0})$$

$$\vec{x}_{0}.\vec{M}_{O}(0 \to 4) + \vec{x}_{0}.\vec{M}_{O}(mot \to 4) + \vec{x}_{0}.\vec{M}_{O}(pes \to E) = \vec{x}_{0}.\vec{\delta}(O, E/R_{0})$$

$$C_{m4} + \vec{x}_{0}.(a.\vec{x}_{2} \land -Mg.\vec{y}_{0}) = \vec{x}_{0}.(\vec{\delta}(O, 4/R_{0}) + \vec{\delta}(O, 2/R_{0}))$$

$$C_{m4} - Mg.a \sin\theta_{2} \cos\theta_{4} = \ddot{\theta}_{4}(A\cos^{2}\theta_{2} + C\sin^{2}\theta_{2}) + \dot{\theta}_{4}\dot{\theta}_{2}(C - A)\sin(2\theta_{2}) + A_{4}\ddot{\theta}_{4}$$

$$C_{m4} = Mg.a.\sin\theta_{2}.\cos\theta_{4} + \ddot{\theta}_{4}(A_{4} + A.\cos^{2}\theta_{2} + C.\sin^{2}\theta_{2}) + \dot{\theta}_{4}.\dot{\theta}_{2}.(C - A).\sin(2\theta_{2})$$

Q18. Donner les rapports de réduction $r_1 = \frac{\omega_{31/0}}{\omega_{1/0}}$ et $r_2 = \frac{\omega_{4/0}}{\omega_{32/0}}$ en fonction des diamètres.

$$r_1 = \frac{\omega_{31/0}}{\omega_{1/0}} = \frac{D_1}{D_{31}}, r_2 = \frac{\omega_{4/0}}{\omega_{32/0}} = \frac{D_{32}}{D_4}$$

Q19. Déterminer l'énergie cinétique par rapport à R_0 de l'ensemble $\Sigma = \{1,3,4\}$. En déduire le moment d'inertie équivalent $\mathbf{J_{\acute{e}q}}$ ramené sur l'arbre moteur en fonction de J_1 , J_3 , J_4 , r_1 et r_2 .

$$T(\Sigma/R_0) = T(1/R_0) + T(3/R_0) + T(4/R_0) \qquad T(\Sigma/R_0) = \frac{1}{2} \cdot (J_1 \cdot \omega_1^2 + J_3 \cdot \omega_3^2 + J_4 \cdot \omega_4^2)$$

$$T(\Sigma/R_0) = \frac{1}{2} \cdot (J_1 \cdot + J_3 \cdot r_1^2 + J_4 r_1^2 r_2^2) \cdot \omega_1^2 = \frac{1}{2} J_{\acute{e}q} \cdot \omega_1^2 \qquad \Rightarrow \qquad \boxed{J_{\acute{e}q} = J_1 + J_3 \cdot r_1^2 + J_4 \cdot r_1^2 \cdot r_2^2}$$

Q20. Appliquer le théorème de l'énergie cinétique et déterminer une expression littérale du couple moteur C_m en fonction de C_{m4} , $J_{éq}$, $\dot{\boldsymbol{\omega}}_{m}$, r_1 et r_2 . En déduire l'expression du couple résistant ramené sur l'arbre moteur: \boldsymbol{Cr} , tel que: $Cm(t) - Cr(t) = J_{\acute{eq}} \cdot \frac{d\omega_m(t)}{dt}$ (1).

On applique le théorème de l'énergie cinétique à l'ensemble $\Sigma = \big\{1,3,4\big\}$:

$$P(\overline{\Sigma} \to \Sigma / R_0) + \underbrace{P_{\text{int}}(\Sigma)}_{=0 \to \text{ liaisons parfaites}} = \frac{d}{dt} T(\Sigma / R_0)$$

$$\begin{split} P\left(\overline{\Sigma} \to \Sigma/R_{0}\right) &= \underbrace{P\left(0 \xrightarrow{L} \Sigma/R_{0}\right)}_{0} + \underbrace{P\left(\operatorname{pes} \to \Sigma/R_{0}\right)}_{0} + P\left(\operatorname{moteur} \to 1/R_{0}\right) + P\left(\operatorname{r\'{e}cepteur} \to 4/R_{0}\right) \\ &= C_{m}.\omega_{m} - C_{m4}.\omega_{4} \\ C_{m}.\omega_{m} - C_{m4}.\omega_{4} &= J_{\acute{e}q}.(\frac{d\omega_{m}(t)}{dt}).\omega_{m} \qquad \Rightarrow \qquad C_{m} - C_{m4}.r_{1}.r_{2} = J_{\acute{e}q}.\frac{d\omega_{m}(t)}{dt} \\ &\Rightarrow \qquad \boxed{Cr = C_{m4}.r_{1}.r_{2}} \end{split}$$

Q21. Donner l'expression du torseur cinématique au point O_0 du mouvement de (2) par rapport à (0) : $\{9(2/0)\}_{0}$.

$$\left\{ \mathcal{G}(2/0) \right\}_{O_0} = \left\{ \vec{\mathcal{O}}(2/0) \atop \vec{\mathcal{V}}(O_0 \in 2/0) \right\}_{O_0} = \left\{ \vec{\partial}_4 . \vec{x}_4 + \vec{\partial}_2 . \vec{y}_4 \right\}_{O_0}.$$

Q22. Déterminer, en utilisant la condition de roulement sans glissement en M, $\dot{\theta}_2$ en fonction de $\dot{\theta}_4$.

Roulement sans glissement en M:

$$\vec{V}(O_0, 2/0) = \vec{V}(M, 2/0) + \vec{\Omega}(2/0) \wedge \overrightarrow{MO_0} \qquad \Rightarrow \qquad \vec{0} = \vec{0} + (\dot{\theta}_4 \cdot \vec{x}_4 + \dot{\theta}_2 \cdot \vec{y}_4) \wedge (R_2 \cdot \vec{x}_4 + 2R_2 \cdot \vec{y}_4)$$

$$\Rightarrow \quad 2R_2 \dot{\theta}_4 \cdot \vec{z}_4 - R_2 \dot{\theta}_2 \cdot \vec{z}_4 = \vec{0} \quad \Rightarrow \quad \boxed{\dot{\theta}_2 = 2\dot{\theta}_4}$$

Q23. Justifier, en exploitant les schémas cinématiques de la **figure 11** et de **l'annexe 1**, l'intérêt de la liaison glissière entre (5) et (2). En déduire la vitesse de rotation $\bar{\Omega}_{5/0}$.

La liaison glissière entre 5 et 2 permet la transmission du mouvement de rotation de l'arbre (2) au pignon (5) tout en gardant la translation du plateau supérieur par rapport à l'axe d'entrée du mouvement longitudinal (4).

$$\vec{\Omega}(5/0) = \underbrace{\vec{\Omega}(5/2)}_{=\vec{0}} + \vec{\Omega}(2/0) = \vec{\Omega}(2/0) \qquad \Rightarrow \qquad \vec{\Omega}(5/0) = \vec{\Omega}(2/0) = \dot{\theta}_4 \cdot \vec{x}_4 + \dot{\theta}_2 \cdot \vec{y}_4$$

Q24. Donner le rapport des vitesses $\frac{\omega_{6/0}}{\omega_{2/0}}$, puis déduire la relation entre la vitesse de rotation autour de l'axe longitudinal $\omega_{6/0}$ et celle autour de l'axe transversal $\omega_{4/0}$. Conclure vis-à-vis de l'exigence « Id :1.3.2.2 ».

$$\frac{\omega_{6/0}}{\omega_{2/0}} = \frac{\omega_{6/0}}{\omega_{5/0}} = \frac{R_5}{R_6} = 1 \Longrightarrow \omega_{6/0} = \omega_{2/0}$$

D'après la question 22: $\dot{\theta}_2=2\dot{\theta}_4\Rightarrow\omega_{2/0}=2\omega_{4/0}\Rightarrow$ $\overline{\omega_{6/0}=2\omega_{4/0}}$

l'exigence « Id :1.3.2.2 » est vérifiée

<u>Partie III</u>: Etude de l'asservissement en vitesse du mouvement autour de l'axe transversal

Q25. En considérant que toutes les conditions initiales sont nulles, donner les quatre équations précédentes dans le domaine de Laplace, puis compléter le schéma bloc du document réponses **DR3.**

$$Cm(p) - Cr(p) = J_{\acute{e}a}.p\Omega_m(p)$$
 (1)

$$U(p) = (R + Lp)I(p) + E(p)$$
 (2)

$$Cm(p) = k_i I(p) \tag{3}$$

$$E(p) = k_e \Omega_m(p) \tag{4}$$

Q26. Déterminer les fonctions de transfert $A_1(p)$ et $A_2(p)$. En déduire les expressions des gains statiques K_1 et K_2 , de la constante du temps T, du facteur d'amortissement ξ et de la pulsation propre ω_n .

$$U(p) = 0: \qquad \frac{\Omega_m(p)}{-Cr(p)} = \frac{\frac{1}{J_{eq} \cdot p}}{1 + \frac{k_i \cdot k_e}{(R + Lp) \cdot J_{eq} \cdot p}} = A_2(p)$$

$$\Rightarrow A_2(p) = \frac{(R + Lp)}{(R + Lp) \cdot J_{eq} \cdot p + k_i \cdot k_e} = \frac{\frac{R}{k_i \cdot k_e} (1 + \frac{L}{R}p)}{1 + \frac{RJ_{eq}}{k_i \cdot k_e}} p + \frac{LJ_{eq}}{k_i \cdot k_e} p^2$$
On a:
$$A_2(p) = \frac{K_2(1 + \tau \cdot p)}{1 + \frac{2 \cdot \xi}{\omega_n} p + \frac{1}{\omega_n^2} p^2} \qquad \Rightarrow \qquad \frac{K_2 = \frac{R}{k_i \cdot k_e}}{1 + \frac{RJ_{eq}}{k_i \cdot k_e}} ||\tau| = \frac{L}{R}||\tau|$$

$$\frac{2\xi}{\omega_n} = \frac{RJ_{eq}}{k_i \cdot k_e} \qquad \Rightarrow \frac{\xi}{2} = \frac{R}{2} \sqrt{\frac{J_{eq}}{L \cdot k_i \cdot k_e}}$$

$$Cr(p) = 0:$$
 $\frac{\Omega_m(p)}{U(p)} = \frac{\frac{k_i}{(R+Lp).J_{eq}.p}}{1+\frac{k_i.k_e}{(R+Lp).J_{eq}.p}} = A_1(p).A_2(p)$

$$\Rightarrow A_1(p).A_2(p) = \frac{k_i}{(R+Lp).J_{eq}.p+k_i.k_e} = \frac{\frac{1}{k_e}}{1+\frac{RJ_{eq}}{k_i.k_e}} p + \frac{LJ_{eq}}{k_i.k_e} p^2$$

$$A_{1}(p).A_{2}(p) = \frac{K_{1}.K_{2}}{1 + \frac{2.\xi}{\omega_{n}} p + \frac{1}{\omega_{n}^{2}} p^{2}} \Rightarrow K_{1}.K_{2} = \frac{1}{k_{e}} \Rightarrow K_{1}. = \frac{1}{k_{e}K_{2}} \Rightarrow K_{1} = \frac{1}{k_{e}K_{2}}$$

Q27. Quelle doit être la fonction de transfert K_{conv} du convertisseur de consigne si l'on veut que l'écart \mathcal{E} soit nul, quand la vitesse ω_r est égale à la vitesse de consigne ω_c , en régime permanent?

$$\varepsilon(p) = \Omega c(p) K_{conv} - \Omega r(p) \frac{K_g}{K_r}$$
; Système précis $\Rightarrow \varepsilon = 0$ et $w_c = w_r \Rightarrow K_{conv} = \frac{K_g}{K_r}$

Q28. Déterminer les expressions des fonctions de transferts : $H_1(p)$ et $H_2(p)$.

Le schéma bloc de l'asservissement peut se mettre sous la forme suivante :

$$\begin{array}{c}
C_{r}(p) \\
\hline
C(p) \\
\hline
C(p) \\
\hline
C(p) \\
\hline
K_{A} \\
\hline
A_{1}(p).K_{conv} \\
\hline
A_{2}(p) Kr \\
\hline
A_{2}(p) Kr \\
\hline
A_{2}(p) Kr \\
\hline
H_{1}(p) = A_{1}(p).K_{conv} ; H_{2}(p) = A_{2}(p).K_{r}
\end{array}$$

Q29. Tracer les asymptotes, puis identifier les paramètres de la FTBO non corrigée ; Justifier votre réponse.

Le diagramme de Bode de la FTBO du système non corrigé : $H_{RONC}(p)$

On a:
$$\varphi(w_n) = -90^\circ$$
, courbe de phase $\Rightarrow w_n = \frac{50 rad}{s}$

$$20\log(K_{BONC}) = 2$$
 $\Rightarrow K_{BONC} = 10^{\frac{2}{20}}$ $\Rightarrow K_{BONC} = 1,26$

$$G_{dB}(w_n) = 20\log(\frac{K_{BONC}}{2.\xi})$$
; Courbe de gain $\Rightarrow 20\log(K_{BONC}) - G_{dB}(w_n) = 3dB = 20\log(\sqrt{2})$

$$\Rightarrow 20\log(2.\xi) = 20\log(\sqrt{2}) \Rightarrow 2.\xi = \sqrt{2} \Rightarrow \boxed{\xi = \frac{\sqrt{2}}{2}}$$

Q30. Représenter graphiquement les marges de stabilité, puis donner leurs valeurs. Conclure sur l'exigence de stabilité.

Marges de stabilité :
$$MP = 100^{\circ}$$
 Conclusion : MP>40° et MG>12dB, donc l'exigence de stabilité est respectée.

Q31. Déterminer les valeurs numériques des paramètres canoniques de la fonction de transfert en boucle fermée.

$$H_{BF}(p) = \frac{\Omega_{r}(p)}{\Omega_{C}(p)} = \frac{K_{A}.H_{1}(p).H_{2}(p)}{1+K_{A}.H_{1}(p).H_{2}(p)} = \frac{\frac{K_{A}.0,254}{(1+0,02\sqrt{2}.p+4.10^{-4}~p^{2})}}{1+\frac{K_{A}.0,254}{(1+0,02\sqrt{2}.p+4.10^{-4}~p^{2})}}, avec~K_{A} = 5$$

$$\Rightarrow H_{BF}(p) = \frac{1,27}{1+0,02\sqrt{2}.p+4.10^{-4}~p^{2}+1,27} = \frac{\frac{1,27}{2,27}}{1+\frac{0,02\sqrt{2}}{2,27}.p+\frac{4.10^{-4}~p^{2}}{2,27}} \Rightarrow K_{BF} = 0,56$$

$$\frac{1}{w_{nBF}^{2}} = \frac{4.10^{-4}~}{2,27} \Rightarrow w_{nBF} = \sqrt{\frac{2,27}{4.10^{-4}}} \Rightarrow w_{nBF} = 75,33 \text{ rad/s};$$

$$\frac{2\xi}{w_{nBF}} = \frac{0,02\sqrt{2}}{2,27} \Rightarrow \xi = \frac{0,02\sqrt{2}}{2,2,27} \sqrt{\frac{2,27}{4.10^{-4}}} = 50\sqrt{2,27} \Rightarrow \xi = 0,47.$$

Q32. Déterminer le temps de réponse à 5%.

$$\Rightarrow t_{r5\%} = \frac{5.2}{w_{nBF}} = \frac{5.2}{75.33}$$

$$\Rightarrow t_{r5\%} = 0.069 \text{ (s)}.$$

 $t_{r5\%} w_{nBF} = 5,2$

NB: On acceptera les valeurs suivantes : $5 \le t_{r5\%} w_{nBF} \le 5,3$

$$\Rightarrow 0,066 \le t_{r5\%} \le 0,07 \text{ (s)}$$

Q33. Tracer sur le document réponse **DR4**, l'allure de la réponse temporelle $\omega_r(t)$ de ce système en faisant apparaître :

- Le signal de consigne pour une commande en échelon ω_c de 30 rad/s.
- L'amplitude du premier dépassement D1
- La pseudo période TP

Conclure sur les exigences de précision, de rapidité.

On a un système de second ordre, avec une entrée échelon : $\omega_r(t) = \omega_{c.u(t)}$; $\omega_c = 30 \text{ rad/s}$.

$$w_r(0) = 0$$
 ; $\dot{w}_r(0) = 0$; $w_r(\infty) = K_{BF}.w_c \Rightarrow w_r(\infty) = 0.56.30 \Rightarrow w_r(\infty) = 16.8 \text{rad/s}.$

- L'amplitude du premier dépassement **D**1:

$$D_{1} = K_{BF}.\omega_{c} \exp\left(\frac{-\pi.\xi_{BF}}{\sqrt{1-\xi_{BF}^{2}}}\right) = 16.8 \exp\left(\frac{-\pi.0,47}{\sqrt{1-0,47^{2}}}\right) \Rightarrow \boxed{D_{1} = 3,15}.$$

- La pseudo période
$$T_P$$
: $T_p = \frac{2\pi}{w_{nBF}\sqrt{1-\xi_{BF}^2}} = \frac{2\pi}{75,33\sqrt{1-0,47^2}}$ $\Rightarrow T_p = 0,094 \text{ (s)}$

Allure de la réponse : wr(t)

Conclusion:

- Exigence de rapidité respectée : $t_{r5\%} = 0,069$ < 0,6(s).
- Exigence de précision non respectée : Ecart vis-à-vis la consigne ε_{sc} =13,2 rad/s>0.

Q34. Si l'on considère dans un premier temps que le correcteur est proportionnel de fonction de transfert : $C(p)=K_c$. Justifier, sans calcul, que l'écart vis-à-vis de la perturbation $C_r(p)$ est non nul. Conclure sur l'exigence de précision.

Absence d'intégrateur en amont du point d'application de la perturbation $C_r(p) \Rightarrow \mathcal{E}_{sp} \neq 0$

Q35. Tracer, sur votre copie, le diagramme de Bode (asymptotique et allure du diagramme réel) du correcteur. Indiquer les pentes et points caractéristiques en fonction de K et T.

Q36. Quel est l'influence d'un tel correcteur sur la précision et la stabilité.

A stabilité égale, le correcteur proportionnelintégral améliore la précision

Q37. Déterminer l'expression numérique de la fonction de transfert en boucle ouverte corrigée, sous la forme canonique suivante $H_{BO}(p) = \frac{K_{BO}(1+T.p)}{p(1+\frac{2.\xi_{BO}}{\omega_{nBO}}p+\frac{1}{\omega_{nBO}^2}p^2)}$.

Indiquer son gain, son ordre et sa classe. Justifier la valeur de T=0,2 s.

$$H_{BO}(p) = C(p).K_{A}.H_{1}(p).H_{2}(p) = \frac{\frac{1,27.K}{T}(1+T.p)}{p(1+0,02\sqrt{2}.p+4.10^{-4}~p^{2})}$$

$$Gain = \frac{1,27.K}{T}$$
 ; $Ordre:3$; $classe=1$;

$$\frac{1}{T} = \frac{\omega_n}{10} \quad \Rightarrow \quad T = \frac{10}{\omega_n} \quad \Rightarrow \quad T = \frac{10}{50} \quad \Rightarrow \quad T = 0, 2 \ (s) \quad .$$

Q38. Tracer dans le plan de Bode du document réponse **DR5**, les asymptotes et la courbe réelle de gain de la FTBO corrigée avec K = 1. Indiquer les pentes et points caractéristiques.

$$H_{BO}(p) = \frac{K_{BO}(1+T.p)}{p(1+\frac{2.\xi_{BO}}{\omega_{nBO}}p+\frac{1}{\omega_{nBO}^2}p^2)} ; \text{avec : } K_{BO}=6,35 \ ; \ \frac{1}{T} = 5rad/s \ ; \ w_{nBO}=50rad/s \ \text{et } \ \xi = \frac{\sqrt{2}}{2.} \ .$$

 $Pour \ w \to 0: \ H_{BO}(p) = \frac{K_{BO}}{p} \to G_{dB}(w) = 20log K_{BO} - 20log w. \quad Pour \ w = 1: G_{dB} = 20log K_{BO} = 16dB.$

Q39. Déterminer la plus grande valeur de K (notée K_{stab}) permettant de satisfaire les critères de stabilité (répondre sur DR 6). Porter sur les courbes les tracés nécessaires.

- Critères de stabilité : MG=+∞ (respectée)
- Pour une phase de -140°, on mesure un gain de -10dB.

Pour avoir une marge de phase MP≥40°, il faut donc remonter la courbe de gain de 10dB. Ce qui correspond à : 20log(K)≤10dB

$$\Rightarrow K \le 10^{\frac{10}{20}} \Rightarrow K \le 3,16 \Rightarrow K_{stab} = 3,16$$

Q40. Choisir la valeur de K permettant de respecter à la fois les critères de stabilité, amortissement, rapidité et précision. Justifier vos réponses et porter sur les courbes les tracés nécessaires.

Dans les trois cas, K < 3.16, le critère de stabilité est donc respecté.

- Pour K=3, il y a dépassement de la consigne, donc le critère de l'amortissement n'est pas respecté.
- Pour K=1, il n'y a pas dépassement de la consigne, mais le temps de réponse à **5%** est supérieur à 0,6 (s), donc le critère de la rapidité n'est pas respecté.
- Pour K=2, il n'y a pas dépassement de la consigne, l'écart statique vis-à-vis la consigne est nul et le temps de réponse à 5% est inférieur à 0,6 (s), donc **K=2 permet de respecter à la fois les critères de stabilité, amortissement, rapidité et précision.**

Q41. Déterminer la valeur de l'erreur de trainage en régime permanent ε_{tp} à un couple perturbateur en rampe $C_r(t)=C_0.t.u(t)$, avec $C_0=40Nmm$. L'exigence identifiée 1.3.2.1.1.1.3 est-elle respectée ? Justifier.

$$\Omega_{c}(p) = 0$$
; On aura donc : $\mathcal{E}(p) = -\Omega_{r}(p) = -F(p) \left[\mathcal{E}(p) \cdot G(p) - C_{r}(p) \right] \implies \mathcal{E}(p) = \frac{F(p) \cdot C_{r}(p)}{1 + F(p) \cdot G(p)}$
On a : $G(p) = \frac{12,7(1+0,2p)}{p(1+2.10^{-3}p)}$; $F(p) = \frac{(1+2.10^{-3}p)}{(1+0,02\sqrt{2}\cdot p+4.10^{-4}p^{2})}$ et $C_{r}(p) = \frac{C_{0}}{p^{2}}$

$$\varepsilon_{tp} = \lim_{p \to 0} p.\varepsilon(p) = \lim_{p \to 0} C_0 \frac{1 + 2.10^{-3} p}{p.(1 + 0.02\sqrt{2}.p + 4.10^{-4} p^2) + 12.7(1 + 0.2p)} \Rightarrow \varepsilon_{tp} = \frac{C_0}{12.7}$$

AN:
$$\varepsilon_{tp} = \frac{40.10^{-3}}{12.7} \cdot \frac{60}{2\pi} \implies \varepsilon_{tp} = 0.03 \ tr / min$$

Conclusion:

- -Erreur statique nulle vis-à-vis la consigne (voir courbe précédente) :ε_{sc}=0 ;
- -Erreur statique nulle vis-à-vis la perturbation (Présence d'intégrateur en amont du point d'application de la perturbation $C_r(p)$) : $\varepsilon_{sp}=0$;
- Erreur de trainage à un couple perturbateur en rampe : ε_{tp} < 0,5 tr / min

L'exigence **1.3.2.1.1.1.3** est finalement respectée.

Partie IV: Etude du risque de glissement du pot

On considère les vitesses de rotations $\dot{\theta}_4$ et $\dot{\theta}_2$ constantes.

Q42. Déterminer l'expression du vecteur vitesse $\vec{V}(G_2 \in 2/R_0)$.

$$\vec{V}(G_2 \in 2/R_0) = \left[\frac{d\vec{OG_2}}{dt}\right]_{R_0} = a \left[\frac{d\vec{x}_2}{dt}\right]_{R_0}$$
On a:
$$\left[\frac{d\vec{x}_2}{dt}\right]_{R_0} = -\dot{\theta}_2 \vec{z}_2 + \dot{\theta}_4 \vec{x}_4 \wedge \vec{x}_2 = -\dot{\theta}_2 \vec{z}_2 + \dot{\theta}_4 \sin \theta_2 \vec{y}_2$$

$$\Rightarrow \left[\vec{V}(G_2 \in 2/R_0) = a.\dot{\theta}_4 \sin \theta_2 \vec{y}_2 - a.\dot{\theta}_2 \vec{z}_2\right]$$

Q43. Déterminer l'expression du vecteur accélération $\vec{\Gamma}(G_2 \in 2/R_0)$.

$$\vec{\Gamma}(G_{2} \in 2/R_{0}) = \left[\frac{d\vec{V}(G_{2} \in 2/R_{0})}{dt}\right]_{R_{0}}; \left[\frac{d\vec{y}_{2}}{dt}\right]_{R_{0}} = \dot{\theta}_{4}\vec{z}_{4}; \left[\frac{d\vec{z}_{2}}{dt}\right]_{R_{0}} = \dot{\theta}_{2}\vec{x}_{2} + \dot{\theta}_{4}\vec{x}_{4} \wedge \vec{z}_{2} = \dot{\theta}_{2}\vec{x}_{2} - \dot{\theta}_{4}\cos\theta_{2}\vec{y}_{2}$$

$$\Rightarrow \quad \left[\vec{\Gamma}(G_{2} \in 2/R_{0}) = -a.\dot{\theta}_{2}^{2}\vec{x}_{2} + 2a.\dot{\theta}_{2}.\dot{\theta}_{4}\cos\theta_{2}\vec{y}_{2} + a.\dot{\theta}_{4}^{2}\sin\theta_{2}\vec{z}_{4}\right]$$

Q44. Déterminer le moment dynamique, au point O, du pot (2) dans son mouvement par rapport au repère $R_o: \vec{\delta}(O,2/R_0)$.

On a: $\vec{\sigma}(O, 2/R_0) = A.\dot{\theta}_4.\cos\theta_2.\vec{x}_2 + B.\dot{\theta}_2.\vec{y}_2 + C.\dot{\theta}_4.\sin\theta_2.\vec{z}_2$.

$$\vec{\delta}(O, 2/R_0) = \left[\frac{d\vec{\sigma}(O, 2/R_0)}{dt}\right]_{R_0}$$

$$\Rightarrow \qquad \vec{\delta}(O, 2/R_0) = \dot{\theta}_2 \dot{\theta}_4 (C - A) \sin \theta_2 \vec{x}_2 + \dot{\theta}_4^2 (A - C) \sin \theta_2 \cos \theta_2 \vec{y}_2 + \dot{\theta}_2 \dot{\theta}_4 (C - A) \cos \theta_2 \vec{z}_2 + B \dot{\theta}_2 \dot{\theta}_4 \vec{z}_4$$

$$\Rightarrow \qquad \vec{\delta}(O, 2/R_0) = \dot{\theta}_2 \dot{\theta}_4 (C - A - B) \sin \theta_2 \vec{x}_2 + \dot{\theta}_4^2 (A - C) \sin \theta_2 \cos \theta_2 \vec{y}_2 + \dot{\theta}_2 \dot{\theta}_4 (B + C - A) \cos \theta_2 \vec{z}_2$$

Filière: MP

Q45. Déterminer les équations scalaires issues de l'application du théorème de la résultante dynamique au pot de peinture (2) en projection dans la base $(\vec{x}_2, \vec{y}_2, \vec{z}_2)$.

TRD appliqué à 2 :
$$\begin{cases} \vec{R}(\bar{2} \to 2) = M.\vec{\Gamma}(G_2 \in 2/R_0) \\ \vec{R}(6s \to 2) + \vec{R}(6i \to 2) + \vec{R}(pes \to 2) = M.(\Gamma_x.\vec{x}_2 + \Gamma_y.\vec{y}_2 + \Gamma_z.\vec{z}_2) \end{cases}$$

- $Txs + Txi Mg \sin \theta_4 \sin \theta_2 = M.\Gamma_x$ (1)
- $Tys + Tyi Mg\cos\theta_4 = M.\Gamma_y$ (2)
- $Tzs + Tzi + Mg \sin \theta_4 \cos \theta_2 = M.\Gamma_7$ (3)

Q46. Déterminer les équations scalaires issues de l'application du théorème du moment dynamique en O, au pot de peinture (2) en projection sur les axes : (O, \vec{x}_2) $et(O, \vec{z}_2)$.

I TMD en O, appliqué à 2 en projection sur l'axe (O, \vec{x}_2) :

$$\overrightarrow{M_o}\left(\overline{2} \rightarrow 2\right).\overrightarrow{x}_2 = \overrightarrow{\delta}(O, 2/R_0).\overrightarrow{x}_2 \qquad \Longrightarrow \qquad \overrightarrow{M_o}\left(6s \rightarrow 2\right).\overrightarrow{x}_2 + \overrightarrow{M_o}\left(6i \rightarrow 2\right).\overrightarrow{x}_2 + \overrightarrow{M_o}\left(pes \rightarrow 2\right).\overrightarrow{x}_2 = \delta_x$$

On a:

$$\overrightarrow{M_o} \left(6s \to 2 \right) . \overrightarrow{x_2} = \overrightarrow{M_A} \left(6s \to 2 \right) . \overrightarrow{x_2} + \left\{ \overrightarrow{OA} \wedge \overrightarrow{R} \left(6s \to 2 \right) \right\} . \overrightarrow{x_2} = \left\{ \left(\underbrace{a \overrightarrow{X_2}} + \frac{H}{2} \overrightarrow{y_2} \right) \wedge \left(\underbrace{T_{XS} . \overrightarrow{X_2}} + T_{YS} . \overrightarrow{y_2} + T_{ZS} . \overrightarrow{z_2} \right) \right\} . \overrightarrow{x_2}$$

$$= \frac{H}{2} T_{ZS}$$

$$\overrightarrow{M_{O}}\left(6i \rightarrow 2\right).\overrightarrow{x_{2}} = \overrightarrow{M_{B}}\left(6i \rightarrow 2\right).\overrightarrow{x_{2}} + \left\{\overrightarrow{OB} \wedge \overrightarrow{R}\left(6i \rightarrow 2\right)\right\}.\overrightarrow{x_{2}} = \left\{\left(\underbrace{a.\overrightarrow{x_{2}} - \frac{H}{2}\overrightarrow{y_{2}}}\right) \wedge \left(\underbrace{T_{XI}.\overrightarrow{x_{2}} + T_{XI}.\overrightarrow{y_{2}}} + T_{ZI}.\overrightarrow{z_{2}}\right)\right\}.\overrightarrow{x_{2}} = -\frac{H}{2}T_{ZI}$$

$$\overrightarrow{M_o}(pes \to 2).\overrightarrow{x}_2 = \left\{\overrightarrow{OG_2} \land -Mg\overrightarrow{y}_0\right\}.\overrightarrow{x}_2 = \left\{a.\overrightarrow{x}_2 \land -Mg\overrightarrow{y}_0\right\}.\overrightarrow{x}_2 = 0. \quad D'où: \quad \boxed{\frac{H}{2}(T_{zs} - T_{zi}) = \delta_x}$$
(4)

Implie TMD en O, appliqué à 2 en projection sur l'axe (O, \vec{z}_2) :

$$\overrightarrow{M_o}\left(\overline{2} \to 2\right).\overrightarrow{z}_2 = \overrightarrow{\delta}(O, 2/R_0).\overrightarrow{z}_2 \qquad \Longrightarrow \qquad \overrightarrow{M_o}\left(6s \to 2\right).\overrightarrow{z}_2 + \overrightarrow{M_o}\left(6i \to 2\right).\overrightarrow{z}_2 + \overrightarrow{M_o}\left(pes \to 2\right).\overrightarrow{z}_2 = \delta_z.$$

$$\overrightarrow{M_o}\left(6s \to 2\right).\overrightarrow{z}_2 = \overrightarrow{M_A}\left(6s \to 2\right).\overrightarrow{z}_2 + \left\{\overrightarrow{OA} \wedge \overrightarrow{R}\left(6s \to 2\right)\right\}.\overrightarrow{z}_2 = \left\{(a.\overrightarrow{x}_2 + \frac{H}{2}\overrightarrow{y}_2) \wedge (T_{xs}.\overrightarrow{x}_2 + T_{ys}.\overrightarrow{y}_2 + T_{xs}.\overrightarrow{z}_2)\right\}.\overrightarrow{z}_2 = aT_{ys} - \frac{H}{2}T_{xs}$$

$$\overrightarrow{M_o} \left(6i \to 2 \right) . \overrightarrow{z_2} = \overrightarrow{M_B} \left(6i \to 2 \right) . \overrightarrow{z_2} + \left\{ \overrightarrow{OB} \wedge \overrightarrow{R} \left(6i \to 2 \right) \right\} . \overrightarrow{z_2} = \left\{ \left(a . \overrightarrow{x_2} - \frac{H}{2} \overrightarrow{y_2} \right) \wedge \left(T_{\chi i} . \overrightarrow{x_2} + T_{\chi i} . \overrightarrow{y_2} + T_{\chi i} . \overrightarrow{z_2} \right) \right\} . \overrightarrow{z_2}$$

$$= aT_{\chi i} + \frac{H}{2} T_{\chi i}$$

$$\overrightarrow{M_O} \left(pes \to 2 \right) . \overrightarrow{z}_2 = \left\{ \overrightarrow{OG_2} \land -Mg\overrightarrow{y}_0 \right\} . \overrightarrow{z}_2 = \left\{ a . \overrightarrow{x}_2 \land -Mg\overrightarrow{y}_0 \right\} . \overrightarrow{z}_2 = -Mg \ a \underbrace{\left\{ \overrightarrow{z}_2 \land \overrightarrow{x}_2 \right\}}_{\overrightarrow{y}_{24}} \overrightarrow{y}_0 = -Mg \ a \cos \theta_4 \cdot \overrightarrow{y}_0$$

D'où:
$$a.(T_{ys} + T_{yi}) + \frac{H}{2}(T_{xi} - T_{xs}) - Mg \, a \cos \theta_4 = \delta_z$$
 (5)

Q47. En déduire les expressions des efforts tangentiels T_{xs} , T_{zs} , T_{xi} et T_{zi} , en fonction des données du problème.

$$(5)-a.(2) \Rightarrow \frac{H}{2}(T_{xi}-T_{xs}) = \delta_z - M \, a \, \Gamma_y \qquad (6).$$

$$\frac{H}{2}.(1)+(6) \Rightarrow T_{xi} = \frac{M}{2}(g \sin \theta_4 \sin \theta_2 + \Gamma_x - \frac{2a}{H}\Gamma_y) + \frac{\delta_z}{H}.$$

$$\frac{H}{2}.(1)-(6) \Rightarrow T_{xs} = \frac{M}{2}(g \sin \theta_4 \sin \theta_2 + \Gamma_x + \frac{2a}{H}\Gamma_y) - \frac{\delta_z}{H}.$$

$$(4) + \frac{H}{2}.(3) \Rightarrow T_{zs} = \frac{M}{2}(\Gamma_z - g \sin \theta_4 \cos \theta_2) + \frac{\delta_x}{H}$$

$$\frac{H}{2}.(3)-(4) \Rightarrow T_{zi} = \frac{M}{2}(\Gamma_z - g \sin \theta_4 \cos \theta_2) - \frac{\delta_x}{H}.$$

Q48. Commenter les courbes et déduire le module des efforts normaux N_S et N_i à la limite de glissement.

t< Ta : Régime transitoire → risque du glissement du pot (efforts tangentiels maximaux).

t> Ta: Régime permanent

A la limite du glissement, l'effort normal maxi est de l'ordre de :

$$Ns(\max) \approx Ni(\max) = \frac{Ts}{f} = \frac{Ti}{f}.$$
 ; $AN: Ns(\max) \approx Ni(\max) = \frac{350}{0.8} = 437,5N$

Conclusion:

L'effort de serrage appliqué au pot est N_s =450 N (voir étude statique – partie I)

Ns(max)<450 N, donc l'exigence identifiée 1.3.1.2.3 est validée.

FIN