Chapitre 4 : Nombre dérivé

1 Nombre dérivé

1.1 Taux de variation

Définition 4.1

Soit f une fonction définie sur un intervalle I et soit $a \in I$. Soit h un réel non nul tel que $a + h \in I$.

Le taux de variation de f entre a et a+h est le réel $\frac{f(a+h)-f(a)}{h}$.

Remarque

Avec les notations et le contexte précédents, le taux de variation de f entre a et a+h est le coefficient directeur de la sécante (AM) avec A(a; f(a)) et M(a+h; f(a+h)). Vous pouvez le visualiser sur la figure dynamique géogébra.

Interprétation graphique du taux de variation

Mathématiques, seconde 2020-2021

1.2 Nombre dérivé

Définition 4.2

Avec les mêmes notations. Si, lorsque h tend vers 0, $\frac{f(a+h)-f(a)}{h}$ tend vers un réel l, on dit que la fonction f est dérivable en a.

Le réel l est appelé nombre dérivé de la fonction f en a, et on note f'(a) = l.

Remarque

Graphiquement, si la fonction f est dérivable en a, cela signifie que le coefficient directeur de la sécante (AM) tend vers un réel lorsque M se rapproche de A. En d'autres termes, cela signifie que la droite (AM) se "rapproche" d'une droite imaginaire, d'une "position limite". Dans l'activité géogébra, la sécante (AM) va se rapprocher de la droite bleue.

Interprétation graphique du nombre dérivé

Savoir-Faire 4.1

SAVOIR DÉTERMINER SI UNE FONCTION EST DÉRIVABLE ET SAVOIR CALCULER LE CAS ÉCHÉANT SON NOMBRE DÉRIVÉ

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2$. Soit $a \in \mathbb{R}$.

Déterminer si la fonction f est dérivable en a. Si oui, déterminer son nombre dérivé f'(a)

Exercice 4.1

Pour chacune des fonctions f, déterminer si la fonction f est dérivable en a. Si oui, déterminer son nombre dérivé f'(a)

1.
$$f(x) = 2x^2 + 3x - 1, D_f = \mathbb{R}, a \in \mathbb{R}$$

2.
$$f(x) = x^3$$
, $D_f = \mathbb{R}$, $a \in \mathbb{R}$

Mathématiques, seconde 2020-2021

- 3. $f(x) = 2x + 5, D_f = \mathbb{R}, a \in \mathbb{R}$
- 4. $f(x) = 2x^2 4x + 3$, $D_f = \mathbb{R}$, $a \in \mathbb{R}$
- 5. $f(x) = \frac{1}{x}, D_f = \mathbb{R}^*, a \in \mathbb{R}^*$
- 6. $f(x) = x^4, D_f = \mathbb{R}^*, a \in \mathbb{R}^*$

2 Tangente à une courbe

2.1 Définition d'une tangente

Définition 4.3

Soit f une fonction définie sur un intervalle I et soit $a \in \mathbb{R}$ On suppose de plus que la fonction f est dérivable en a. La tangente à la courbe C_f est la droite passant par A(a; f(a)) et de coefficient directeur

Savoir-Faire 4.2

SAVOIR CONSTRUIRE DES TANGENTES À UNE COURBE

Savoir-Faire 4.3

SAVOIR DÉTERMINER GRAPHIQUEMENT UN NOMBRE DÉRIVÉ

2.2 Equation d'une tangente à une courbe

Propriété 4.1

Soit f une fonction définie sur un ensemble D_f et soit C_f sa courbe représentative dans un repère (O, \vec{i}, \vec{j}) .

Soit $a \in D_f$. On suppose que f est dérivable en a.

Une équation de la tangente à C_f en a est :

$$y - f(a) = f'(a)(x - a)$$

Savoir-Faire 4.4

SAVOIR DÉTERMINER UNE ÉQUATION DE TANGENTE À UNE COURBE Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3$. Déterminer les équations des tangentes T_2, T_{-2} et T_1 .

• Exercice 4.2

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$. Donner une équation de la tangente à C_f en 4, notée T_4 .

3 Nombre dérivé de fonctions usuelles

Mathématiques, seconde 2020-2021

${\mathcal P}$ Démonstration 4.1

Soit a un nombre réel. Montrer que la fonction carré est dérivable en a. Donner son nombre dérivé.

✓ Démonstration 4.2

Soit a un nombre réel non nul. Montrer que la fonction inverse est dérivable en a.Donner son nombre dérivé.

Montrer que la fonction racine carrée n'est pas dérivable en 0.

Propriété 4.2

Fonction usuelle	Ensemble de dé-	$a \in \dots$	nombre dérivé
	finition		
f(x) = mx + p	\mathbb{R}	$a \in \mathbb{R}$	f'(a) = m
$f(x) = x^2$	\mathbb{R}	$a \in \mathbb{R}$	f'(a) = 2a
$f(x) = x^3$	\mathbb{R}	$a \in \mathbb{R}$	$f'(a) = 3a^2$
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$a \in \mathbb{R}^*$	$f'(a) = -\frac{1}{a^2}$
$f(x) = x^4$	\mathbb{R}	$a \in \mathbb{R}$	$f'(a) = 4a^3$
$f(x) = \sqrt{x}$	$[0;+\infty[$	$a \in]0; +\infty[$	$f'(a) = \frac{1}{2\sqrt{a}}$

Exercice 4.3

Soit f la fonction définie sur [-2; 2] par $f(x) = x^3$.

- 1. Rappeler f'(a) et en déduire f'(-1).
- 2. Tracer la tangente à C_f en -1, notée T_{-1} .
- 3. Existe-t-il une autre tangente à C_f parallèle à T_{-1} ? Si oui, la tracer ensuite.
- 4. Existe-t-il une tangente à C_f parallèle à la droite d'équation y = 12x + 1? Si oui, la tracer. Dérterminer ensuite le point d'intersection entre cette tangente et la courbe C_f .
- 5. Existe-t-il une tangente parallèle à l'axe des abscisses?

Exercice 4.4

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

Mathématiques, seconde 2020-2021

- 1. Lire le nombre dérivé f'(1).
- 2. Retrouver ce résultat par le calcul
- 3. Donner une équation de T_1 , tangente à C_f en 1.
- 4. La courbe C_f admet-elle une tangente à C_f parallèle à la droite d'équation y=2x-5? Si oui, déterminer les coordonnées du point de contact entre la courbe et la tangente.