Ejercicios Tema 1

Laura Gómez, Javier Sáez, Daniel Pozo, Luis Ortega

14 de marzo de 2018

1. Ejercicio 7

Enunciado: Se considera la ecuación:

$$x + log x = 0$$

- Prueba que dicha ecuación posee una única solución
- Sea $a \in (0,1/2)$. Prueba que si $x_0 \in [a,1]$, el método de Newton-Raphson es convergente.

Resolución:

■ Si $f(x) = x + \log x$, entonces $f'(x) = 1 + \frac{1}{x}$. Veremos cuándo esta derivada es igual a 0.

$$1 + \frac{1}{x} = 0 \iff x = -1.$$

Ahora, la función f(x) está definida únicamente en el intervalo $(0, +\infty)$, y es una ufición creciente en todo su dominio, luego en caso de existir la solución será única. Además, sabemos que existe pues f(0,1) < 0 y f(1) > 0.

- Sabemos que $f'(x) > 0 \quad \forall x \in \mathbb{R}^+$. Además, $f \in \mathcal{C}^2(\mathbb{R}^+)$, luego $f \in \mathcal{C}^2([a,1]) \quad \forall a \in (0,1/2)$. Nótese que $f(a) < 0 \quad \forall a \in (0,1/2)$ y que f(1) > 0. Tenemos así lo siguiente:
 - 1. $f \in \mathcal{C}^2(\mathbb{R}^+)$
 - $2. \ f(a)f(b) < 0 \ \forall a \in \mathbb{R}^+$
 - 3. $\forall x \in \mathbb{R}^+ \ f'(x) \neq 0$

4. f'' es siempre positiva en \mathbb{R}^2

Luego tenemos las condiciones para aplicar la proposición de la convergencia global del método de Newton.

2. Ejercicio 10

Enunciado: Se considera la función: $g(x) = \lambda x(1-x)$, con $\lambda \in [0,4]$.

- Demuestra que $g([0,1]) \subset [0,1]$.
- Calcula los puntos fijos de la función en [0,1] en función de λ .
- Considera la suceción de iteraciones $x_{n+1} = g(x_n)$, n = 0, 1, ... y analiza la convergencia de dicha sucesión a los puntos fijos de g, en función de λ .

Solución:

■ Sabemos que g es una funcion continua, y que [0,1] es un compacto, por tanto g([0,1]) tendrá un máximo y un mínimo. Vemos que:

$$g'(x) = \lambda(1-x) - \lambda x = \lambda(1-2x)$$

Ahora, $g'(x) = 0 \iff x = \frac{1}{2}$, y $g''(x) = -2\lambda < 0$, luego tiene un máximo en x = 1/2. $g(1/2) = \frac{\lambda}{4}$. Este máximo es menor o igual que 1, para todo λ que esté entre 0 y 4.

Además, g(0) = g(1) = 0, por tanto concluimos que $g([0,1]) \subset [0,1]$

• Vamos a buscar los puntos fijos. Para ello, se tiene que dar:

$$q(x) = x \implies x = \lambda x(1-x)$$

De esta expresión, obtenemos fácilmente que x=0 es un punto fijo. Supongamos $x\neq 0$. Entonces,

$$1 = \lambda(1-x) \implies x = 1 - \frac{1}{\lambda}$$

• Sea $x_{n+1} = g_{\lambda}(x) = \lambda x(1-x) = \lambda x - \lambda x^2$ con $\lambda \in [0,4]$ y $x \in [0,1]$. Como sbemos que $g([0,1]) \subset [0,1]$, y sabiendo que los puntos fijos son de la forma $x_{\lambda} = 1 - \frac{1}{\lambda}$, analizaremos la convergencia de dicha sucesión a los puntos fijos.

Si $\lambda = 0$, entonces $g_0(x) = 0$ para todo x, luego tendremos una función constante con punto fijo $x_0 = 0$.

Vamos a usar el siguiente resultado:

Sea $[a, b] \subseteq \mathbb{R}$ un intervalo cerrado y $g : [a, b] \to \mathbb{R}$ tal que:

- 1. $g_{\lambda}(x) \in [a, b] \quad \forall x \in [a, b]$
- 2. g_{λ} es lipschitziana con constante de Lipschitz L < 1, entonces $\exists ! x_{\lambda} \in [a, b]$ tal que $g(x_{\lambda}) = x_{\lambda}$ y $x_{\lambda}^* = \lim_{n \to \infty} \{x_{n+1}\} \quad \forall x_0 \in [a, b]$

Sabemos que la primera condición se verifica $\forall \lambda \in [0,4]$ por el primer apartado. La segunda condición se verifica si $|g'_{\lambda}(x)| \leq L < 1 \quad \forall x \in [a,b]$.

Observamos que: $g'_{\lambda} = \lambda - 2\lambda x$ y miramos cuándo esto, en valor absoluto, es menor o igual que 1:

$$g'_{\lambda} = 1 \implies \lambda - 2\lambda x = 1 \implies x = \frac{1}{2} - \frac{1}{2\lambda}$$

De forma análoga, $g_\lambda' = -1$ se da cuando $x = \frac{1}{2} + 12\lambda$. En estos dos punto,s tenemos que el valor absoluto de la derivada es 1. Ahora, esutdiemos el crecimiento y decrecimiento de esta derivada. Para ello, vemos que $g\lambda''(x) = -2\lambda$, luego g_λ' es decreciente para todo $\lambda \in [0,4]$. Por tanto, $\forall x \in (\frac{1}{2} - \frac{1}{2\lambda}, \frac{1}{2} + \frac{1}{2\lambda})$, se tiene que |g'(x)| < 1, por lo que no podemos aplicar el resultado que hemos dado pues el interalo es abierto.

De otro modeo, si comprobamos para qué valores λ , $x\lambda = 1 - \frac{1}{\lambda}$ pertenece a dicho intervalo o vemos cuándo $|h(\lambda)| = |g_{\lambda}(x_{\lambda})| = 1$, tendremos que:

- Si $\lambda \in (1,3)$, entonces $|h(\lambda)| < 1 \implies x_{\lambda}$ es un punto fijo atractivo
- Si $\lambda \in [0,1) \cup (3,4] \implies |h(\lambda)| > 1 \implies x_{\lambda}$ es un punto fijo repulsivo
- Si $\lambda = 1$ ó $\lambda = 3 \implies |h(\lambda)| = 1 \implies$ no podemos afirmar nada

3. Ejercicio 18

Enunciado: Se considera el sistema de ecuaciones:

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0\\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0\\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0 \end{cases}$$

- Escribe el sistema anterior en la forma x = g(x) depejando en la ecuación i la variable x_i , i = 1, 2, 3.
- Demuestra utilizando el resultado del ejercicio anterior que el sistema de ecuaciones tiene una única solución en

$$D = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : 1 \le x_i \le 1, \ i = 1, 2, 3\}.$$

■ Calcula una aproximación de la solución con el método de iteración funcional tomando $x^{(0)} = (0,1,0,1,-0,1)$ con una tolerancia fijada de 10^{-5} , donde la tolerancia viene fijada por la norma infinito de la diferencia de dos aproximaciones sucesivas.

Solución:

Despejando en nuestro sistema, obtejemos:

$$\begin{cases} x_1 = \frac{\cos(x_2 x_3) + 1/2}{3} \\ x_2 = \sqrt{\frac{x_1^2 - 0.81 + 1.06 - 16.2x_2 + \sin x_3}{81}} \\ x_3 = \frac{-e^{-x_1 x_2} - \frac{10\pi - 3}{3}}{20} \end{cases}$$

queda así despejado nuestro sistema. Ahora, vamos a usar el resultado del ejercicio 17 para probar que tiene una única solución. El resultado del ejercicio anterior es:

Si $g: D \subset \mathbb{R}^n \to \mathbb{R}^n$ de clase 1 e D, si existe $L \in (0,1)$ tal que:

$$\left|\frac{\partial g_i(x)}{\partial x_i}\right| \le \frac{L}{n}, \quad \forall x \in D$$

entonces g es contractiva.

Ahora, usaremos que D es un dominio y que $g(x) = (x_1, x_2, x_3)$ es contractiva (lo probaremos ahora) para ver que tiene un único punto x^* atal que $g(x^*) = x^*$.

Vamos por ello a realizar la jacobiana de g.

$$\begin{pmatrix} 0 & \frac{-x3sin(x_2x_3)}{3} & \frac{-x2sin(x_2x_3)}{3} \\ \frac{x_1}{3\sqrt{x_1^2 + sin(x_3) + 0.25 - 16.2x_2}} & \frac{3}{3\sqrt{x_1^2 + sin(x_3) - 16.2x_2 + 0.25}} & \frac{-x2sin(x_2x_3)}{3\sqrt{x_1^2 + sin(x_3) + 0.25}} \\ \frac{-x_2e^{-x_1x_2}}{20} & \frac{-x_1e^{-x_1x_2}}{20} & 0 \end{pmatrix}$$

que podemos observar que , como x_1, x_2, x_3 está siempre entre 0 y 1, entonces se cumple la condición que necesitamos para aplicar la proposición anunciada con anterioridad y afirmar así que g es contractiva. Además, D es claramente un dominio, por lo que concluimos que $\exists!x^*:g(x^*)=x^*$.

4. Ejercicio 21

Enunciado: Obtén aproximaciones de la solución de los sistemas de los ejercicios 18 y 20 mediante el método de Newton. Compara la convergencia de los resultados obtenidos con los diferentes métodos.