Organizační úvod

TODO!!!

Úvod

TODO!!!

Definice 0.1

Zúplnění míry λ_B^n nazveme Lebesgueovou mírou v \mathbb{R}^n .

Poznámka 1. Lebesgueova míra je σ -konečná.

- 2. Množinu $\mathcal{B}_0(\mathbb{R}^n) := \sigma(\mathcal{B}(\mathbb{R}^n) \cup \mathcal{N})$ nazýváme σ -algebrou lebesgueovsky měřitelných množin. Platí $\mathcal{B}(\mathbb{R}^n) \subseteq \mathcal{B}_0(\mathbb{R}^n) \subseteq \mathcal{P}(\mathbb{R}^n)$.
- 3. Lebesgueova míra je regulární v následujícím smyslu:

 $\forall E \in \mathcal{B}_0\left(\mathbb{R}^n\right) \forall \varepsilon > 0 \; \exists \text{otevřená množina} \; G \; \exists \text{uzavřená množina} \; F : F \subset E \subset G \land \mu(G \backslash F) < \varepsilon.$

Definice 0.2 (Značení)

Nechť X, Y jsou množiny a $f: X \to Y$. Je-li $\mathcal{S} \subset \mathcal{P}(Y)$, pak $f^{-1}(\mathcal{S}) := \{f^{-1}(S) | S \in \mathcal{S}\}.$

Věta 0.1 (O zobrazení $f: X \to Y$)

Nechť X, Y jsou množiny a $f: X \to Y$.

- 1. Je-li $\mathcal M$ σ -algebra na Y, pak $f^{-1}(\mathcal M)$ je σ -algebra na X.
- 2. Je-li $S \subset \mathcal{P}(Y)$, pak $f^{-1}(\sigma(S)) = \sigma(f^{-1}(S))$.

Důkaz Později.

1 Měřitelná zobrazení

Definice 1.1 (Měřitelné zobrazení)

Necht (X, \mathcal{A}) , (Y, \mathcal{M}) jsou měřitelné prostory. Zobrazení $f: X \to Y$ nazveme měřitelným (vzhledem k \mathcal{A} a \mathcal{M}), jestliže $f^{-1}(\mathcal{M}) \subset \mathcal{A}$.

Jestliže některý z prostorů X, Y je metrický prostor, pak za příslušnou σ -algebru bereme σ -algebru borelovských podmnožin (pokud není řečeno jinak).

Měřitelné zobrazení mezi dvěma metrickými prostory se nazývá borelovsky měřitelné (krátce borelovské).

Poznámka 1. Snadno se ověří, e kompozice dvou měřitelných zobrazení je měřitelné zobrazení.

2. Z věty O zobrazení… plyne, že jsou-li $(X, \mathcal{A}), (Y, \mathcal{M})$ měřitelné prostory, pak zobrazení $f: X \to Y$ je měřitelné právě tehdy, když $f^{-1}(\mathcal{S}) \subset \mathcal{A}$, kde $\mathcal{S} \subset \mathcal{P}(Y)$ je generátor σ -algebry \mathcal{M} . Speciálně je-li (X, \mathcal{A}) a Y metrický prostor, pak zobrazení $f: X \to Y$ je měřitelné $\Leftrightarrow f^{-1}(G) \in \mathcal{A} \ \forall$ otevřenou množinu $G \subset Y$.

Důsledek

Každé spojité zobrazení mezi dvěma metrickými prostory je měřitelné (borelovské).

 $D\mathring{u}kaz$

Z věty O zobrazení… (vzory otevřených množin při spojitém zobrazení jsou otevřené množiny). $\hfill\Box$

Věta 1.1 (Generátory $\mathcal{B}^n := \mathcal{B}(\mathbb{R}^n)$)

Borelovská σ -algebra \mathcal{B}^n je generována

- 1. otevřenými intervaly $(a_1, b_1) \times \ldots \times (a_n, b_n)$, $kde -\infty < a_i < b_i < +\infty$,
- 2. systémem $S := \{(-\infty, a_1) \times \ldots \times (-\infty, a_n)\}, kde \ a_i \in \mathbb{R}.$

Věta 1.2 (O měřitelných zobrazeních)

Nechť (X, A) je měřitelný prostor.

- 1. Jsou-li $f:X\to\mathbb{R}^n$ a $g:X\to\mathbb{R}^n$ měřitelná zobrazení, pak zobrazení $(f,g):X\to\mathbb{R}^{n+m}$ je měřitelné.
- 2. Jsou-li $f, g: X \to \mathbb{R}^n$ měřitelná zobrazení, pak zobrazení $f \pm g$ jsou měřitelná zobrazení.
- 3. Jsou-li $f, g: X \to \mathbb{R}$ měřitelné funkce, pak také $f \cdot g, \max(f, g), \min(f, g)$ jsou měřitelné.

Poznámka

Prostor \mathbb{R}^* je metrický prostor s metrikou např. ϱ^* danou předpisem $\varrho^*(x,y) = |\varphi(x) - \varphi(y)|$, kde $\varphi(x) := \frac{x}{1+|x|}$ pro konečné x a $\varphi(\pm \infty) = \pm 1$ (tzv. redukovaná metrika).

Redukovaná metrika má následující vlastnosti (viz Jarník – Diferenciální počet 2, str. 245, 246):

- 1. V množině \mathbb{R} je ekvivalentní s eukleidovskou metrikou.
- 2. Konvergence v prostoru $(\mathbb{R}^*, \varrho^*)$ splývá s konvergencí zavedenou v \mathbb{R}^* pomocí okolí bodů.

Platí
$$\mathcal{B}^* := \mathcal{B}(\mathbb{R}^*) = \sigma(\{\langle -\infty, a \rangle | a \in \mathbb{R}\})$$
. Plyne z:

- 1. \forall otevřenou množinu $G \subset \mathbb{R}^*$ lze psát jako spočetné sjednocení intervalů typu $\langle -\infty, a \rangle, (a, b), (b, \infty \rangle$.
- 2. $\langle -\infty, a \rangle$ je stejný jako v \mathbb{R}^* .
- 3. $(a, +\infty)$ je $\mathbb{R}^* \setminus \langle -\infty, a \rangle$.
- 4. $(a, +\infty) = \bigcup_{n \in \mathbb{N}} \langle a + \frac{1}{n}, +\infty \rangle$.
- 5. $(a,b) = \langle -\infty, b \rangle \cap (a, +\infty \rangle$.

Věta 1.3 (O měřitelných funkcích)

Bud'(X, A) měřitelný prostor. Pak platí

- 1. $f:(X,\mathcal{A})\to\mathbb{R}$ je měřitelná funkce právě tehdy, když $f^{-1}\left((-\infty,a)\right)\in\mathcal{A}, \forall a\in\mathbb{R}.$
- 2. $f:(X,\mathcal{A})\to\mathbb{R}^*$ je měřitelná funkce právě tehdy, když $f^{-1}(\langle -\infty,a\rangle)\in\mathcal{A}, \forall a\in\mathbb{R}.$

Dusledek

Nechť $f, g: (X, \mathcal{A}) \to \mathbb{R}^*$ jsou měřitelné funkce. Pak

- 1. množiny $\{x \in X | f(x) < g(x)\}, \{f \leq g\}, \{f = g\}$ jsou měřitelné.
- 2. funkce $\max(f,g)$, $\min(f,g)$ jsou měřitelné funkce.

Věta 1.4 (O měřitelných funkcích podruhé)

Jsou-li funkce $(f_n)_{n=1}^{\infty}$ množiny (X, \mathcal{A}) do \mathbb{R}^* měřitelné funkce, pak funkce $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $\lim \sup_{n \in \mathbb{N}} f_n$ jsou měřitelné.

Definice 1.2 (Jednoduchá funkce)

Funkce $S: X \to [0, +\infty)$ se nazývá jednoduchá, jestliže množina S(X) je konečná.

Platí, že $s(x) = \sum_{\alpha \in S(X)} \alpha \cdot \chi_{S=\alpha}$. Součet na pravé straně této rovnosti nazveme kanonickým vyjádřením jednoduché funkce.

2 Abstraktní Lebesgueův integrál

Věta 2.1 (O nezáporné měřitelné funkci)

Nechť $f:(X,\mathcal{A})\to\langle 0,+\infty\rangle$ je měřitelná funkce. Pak existuje posloupnost jednoduchých (nezáporných) měřitelných funkcí $\{s_n\}_{n\in\mathbb{N}}$ tak, že $s_n\nearrow f$ (konverguje nahoru).

Jestliže navíc f je omezená, pak $s_n \Longrightarrow f$.

Definice 2.1

Nechť (X, \mathcal{A}, μ) je prostor s mírou.

1. Je-li $s:(X,\mathcal{A})\to [0,+\infty)$ jednoduchá měřitelná funkce, zapíšeme ji v kanonickém tvaru $s=\sum_{j=1}^k\alpha_j\chi_{E_j}$ a definujeme

$$\int_X s d\mu = \int_X s(x) d\mu(x) := \sum_{i=1}^k \alpha_i \mu(E_i).$$

2. Je-li $f:(X,\mathcal{A})\to [0,+\infty]$ měřitelná funkce, pak definujeme

$$\int_X f d\mu = \sup \left\{ \int_X s d\mu | 0 \le s \le f \wedge s \text{ je jednoduchá} \right\}.$$

3. Je-li $f:(X,\mathcal{A})\to\mathbb{R}*$, pak definujeme

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu, \text{ má li pravá strana smysl.}$$

Poznámka

Je-li (X, \mathcal{A}, μ) prostor s mírou a f, g jsou nezáporné měřitelné funkce na X splňující $0 \le f < g$ na X, pak $0 \le \int_X f d\mu \le \int_X g d\mu$.

Je-li (X, \mathcal{A}, μ) prostor s mírou a $E \in \mathcal{A}$, pak $\mathcal{A}_E := \{A \cap E, A \in \mathcal{A}\}$ je σ-algebra na E a (E, \mathcal{A}_E, μ) je prostor s mírou $(\Longrightarrow \int_E f d\mu$ je definován).

Je-li f měřitelná funkce na X a $E \in \mathcal{A}$, pak $\int_X (f\chi_E) d\mu = \int_E f d\mu$.

Věta 2.2 (Leviho)

Je-li (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, jsou nezáporné měřitelné funkce na X splňující $f_n \nearrow f$, pak $\int_X f_n d\mu \nearrow \int_X f d\mu$.

 $D\mathring{u}kaz$

Později.

Věta 2.3 (Fatouovo lemma)

Je-li (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, jsou nezáporné měřitelné funkce, pak

$$\int_{X} (\liminf_{n \to \infty} f_n) d\mu \le \liminf_{n \to \infty} \int_{X} f_n d\mu.$$

Důkaz

Později.

Definice 2.2 (Skoro všude)

Buď (X, \mathcal{A}, μ) prostor s mírou, $E \in \mathcal{A}$, $x \in X$. Nechť V(x) je nějaká vlastnost, kterou bod x může, ale nemusí mít. Řekneme, že V(x) platí μ -skoro všude na E, jestliže

$$\exists N \in \mathcal{A}, N \subset E, \mu(N) = 0 : V(x) \text{ platí } \forall x \in E \setminus N.$$

Je-li E=X, pak místo μ -skoro všude na E, píšeme pouze μ -skoro všude. Nehrozí li nedorozumění, o jakou míru se jedná, pak místo μ -skoro všude píšeme skoro všude.

Lemma 2.4

Buď (X, \mathcal{A}, μ) prostor s mírou a f, g měřitelné funkce na X takové, že f = g skoro všude, pak $\int_X f d\mu = \int_X g d\mu$, jakmile má jedna strana rovnosti smysl.

Definice 2.3 (Měřitelná funkce (skoro všude))

Buď (X, \mathcal{A}, μ) prostor s mírou, $D \in \mathcal{A}$, $\mu(D^c) = 0$ a $f : D \to \mathbb{R}^*$. Řekneme, že f je měřitelná, jestliže \forall otevřenou množinu $G \subset \mathbb{R}$ platí $f^{-1}(G) \cap D \in \mathcal{A}$.

Pro měřitelnou funkci f pak definujeme $\int_X f d\mu := \int_X \tilde{f} d\mu$, kde $\tilde{f} = \begin{cases} f \text{ na } D, \\ 0 \text{ na } D^c. \end{cases}$

Definice 2.4 (Prostory \mathcal{L})

Označíme $\mathcal{L}^*(\mu) := \{ f : X \to \mathbb{R}^* | f \text{ je měřitelná na } X \land \exists \int_X f d\mu \}.$

Dále
$$\mathcal{L}^1(\mu) := \{ f \in \mathcal{L}^*(\mu) | \int_X |f| d\mu \in \mathbb{R} \}.$$

Věta 2.5 (Linearita integrálů)

Bud (X, \mathcal{A}, μ) prostor s mírou, $f, g \in \mathcal{L}^*(\mu)$ a $\lambda \in \mathbb{R}$. Pak

$$\int_X (\lambda f) d\mu = \lambda \int_X f d\mu,$$

 $\int_X (f+g)d\mu = \int_X fd\mu + \int_X gd\mu, \ pokud \ m\'a \ prav\'a \ strana \ smysl.$

Důkaz

Později.

Poznámka

Má-li pravá strana druhého bodu smysl, pak nemůže nastat případ, kdy by jedna funkcí f,g je rovna $+\infty$ a druhá $-\infty$ na množině kladné míry. Odtud plyne, že součet f+g je definován skoro všude.

Důsledek

Buď (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, nezáporné měřitelné funkce. Pak

$$\int_X \left(\sum_{n=1}^\infty f_n\right) d\mu = \sum_{n=1}^\infty \int_X f_n d\mu.$$

Důkaz

Z minulé věty pro libovolné $k \in \mathbb{N}$ platí $\int_X \left(\sum_{n=1}^k f_n\right) d\mu = \sum_{n=1}^k \int_X f_n d\mu$. Použitím limitního přechodu pro $k \to \infty$ a Leviho věty dostaneme příslušnou rovnost.

Věta 2.6 (Zobecněná Leviho)

Buď (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, měřitelné funkce na X splňující $f_n \nearrow f$ a $\int_X f_1 > -\infty$. Pak

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

Důkaz

 $g_n = f_n - f_1 \ge 0$. Z Leviho věty pak snadno plyne tato.

Důsledek

Buď (X, \mathcal{A}, μ) prostor s mírou a $f_n, n \in \mathbb{N}$, měřitelné funkce splňující $f_n \searrow f$ a $\int_X f_1 < +\infty$. Pak též můžeme prohodit limitu a integrál.

Věta 2.7 (Lebesgue)

Je-li (X, \mathcal{A}, μ) prostor s mírou a f_n , $n \in \mathbb{N}$, jsou měřitelné funkce takové, že $\lim_{n\to\infty} f_n = f$ na X, a existuje $g \in \mathcal{L}^1(\mu) : |f_n| \leq g$ skoro všude $\forall n \in \mathbb{N}$. Pak

$$\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu.$$

Důkaz Později.

Důsledek

Nechť (X, \mathcal{A}, μ) je prostor s mírou a f_n , $n \in \mathbb{N}$, jsou měřitelné funkce na X takové, že $\sum_{n=1}^{\infty} f_n$ konverguje skoro všude. Jestliže existuje $g \in \mathcal{L}^1(\mu)$ tak, že $|\sum_{n=1}^k f_n| \leq g$ skoro všude $\forall k \in \mathbb{N}$, pak $\sum_{n=1}^{\infty} f_n \in \mathcal{L}^1(\mu)$ a platí:

$$\sum_{n=1}^{\infty} \int_{X} f_n d\mu = \int_{X} \left(\sum_{n=1}^{\infty} f_n \right) d\mu.$$

Důkaz

Aplikace předchozí věty na posloupnost částečných součtů řady $\sum_{n=1}^{\infty} f_n$.

Věta 2.8 (Další vlastnosti měřitelných funkcí a integrálu)

 $Bud(X, A, \mu)$ prostor s mírou.

- Je-li f nezáporná měřitelná funkce na X a $\int_X f d\mu = 0$, pak f = 0 skoro všude.
- Je-li $f \in \mathcal{L}^1(\mu)$ a $\int_E f d\mu = 0 \ \forall E \in \mathcal{A}$, pak f = 0 skoro všude.
- Je-li f měřitelná, pak $\int_X f d\mu \in \mathbb{R} \Leftrightarrow \int_X |f| d\mu$.
- Je-li $f \in \mathcal{L}^1(\mu)$, pak $|\int_X f d\mu| \le \int_X |f| d\mu$.
- Je-li $f \in \mathcal{L}^1(\mu)$, pak f je konečná skoro všude.

 $D\mathring{u}kaz$

Později.

2.1 Lebesqueův integrál v $\mathbb R$

Poznámka (Značení)

Restrikci míry λ^1 na interval $I\subset\mathbb{R}$ opět značíme $\lambda^1.$

Je-li $I = (a, b) \subset \mathbb{R}, \, a < b, \, \text{pak}$

$$\int_{a}^{b} f d\lambda^{1} := \int_{(a,b)} f d\lambda^{1}.$$

Věta 2.9 (Vztah Riemannova a Lebesgueova integrálu)

 $\int_{a}^{b} f d\lambda^{1} = (R) \int_{a}^{b} f.$

Věta 2.10 (Vztah Newtonova a Lebesgueova integrálu)

 $Necht -\infty \le a < b \le +\infty$ a $f: < a,b> \to \mathbb{R}$ je spojitá a nezáporná. Pak následující tvrzení jsou ekvivalentní:

- $(N) \int_a^b existuje$.
- $\int_a^b d\lambda^1 \in \mathbb{R}$.

Zároveň pokud je jedna (tj. obě) z těchto podmínek splněna, potom

$$\int_{a}^{b} f d\lambda^{1} = (N) \int_{a}^{b} f.$$

8

TODO!!!

Definice 2.5

Systém $\mathcal{D} \subset \mathcal{P}(X)$ nazveme d-systém (nebo Dynkinův systém) na X,jestliže

- $\emptyset \in \mathcal{D}$,
- $D \in \mathcal{D} \implies D^c \in \mathcal{D}$.
- $D_n \in \mathcal{D} \ \forall n \in \mathbb{N}, D_n \cap D_m \ \forall n \neq m \implies \bigcup_n D_n \in \mathcal{D}.$

Poznámka

Každá σ -algebra je d-systém.

D-systém je uzavřený na konečné sjednocení disjunktních množin (jelikož $\emptyset \in \mathcal{D}$).

Je-li $A, B \in \mathcal{D}, A \subset B$, pak $B \setminus A \in \mathcal{D}$, nebot $B \setminus A = X \setminus ((X \setminus B) \cup A)$.

Jsou-li μ a ν dvě míry na (X, \mathcal{A}) , pak $\mathcal{D} := \{A \in \mathcal{A} | \mu(A) = \nu(A)\}$ je d-systém.

Věta 2.11 (O průniku d-systémů)

Nechť \mathcal{D}_{α} , $\alpha \in I$, jsou d-systémy na X (I je libovolná množina indexů). Pak $\bigcap_{\alpha \in I}$ je d-systém.

Důkaz

Přenechán čtenáři.

Dusledek

Je-li $\mathcal{S} \subset \mathcal{P}(X)$, pak existuje nejmenší d-systém $d\mathcal{S}$ obsahující systém \mathcal{S} .

Poznámka

Je-li $\mathcal{S} \subset \mathcal{P}(X)$, pak $d\mathcal{S} \subset \sigma \mathcal{S}$.

Definice 2.6

Systém $\mathcal{S}\subset\mathcal{P}(X)$ nazveme π -systém, jestliže systém \mathcal{S} je uzavřen na konečné průniky množin z \mathcal{S} .

Věta 2.12 (O rovnosti $dS = \sigma S$)

Je-li $S \subset \mathcal{P}(X)$ zároveň π -systémem, pak $d\mathcal{S} = \sigma \mathcal{S}$.

Důkaz

Využijeme následující 2 tvrzení. $d\mathcal{S}$ je d-systém, tedy z druhého tvrzení $d\mathcal{S}$ je π -systém. Z prvního tvrzení pak $d\mathcal{S}$ je σ algebra, tedy $\sigma\mathcal{S} \subset d\mathcal{S}$. Opačná implikace plyne z poznámky výše, $d\mathcal{S} \subset \sigma\mathcal{S}$, tedy $d\mathcal{S} = \sigma\mathcal{S}$.

Tvrzení 2.13

Je-li d-systém \mathcal{D} na X zároveň π -systémem, pak \mathcal{D} je σ -algebra na X.

 $D\mathring{u}kaz$

Ověříme body σ -algebry.

Tvrzení 2.14

Je-li $S \subset \mathcal{P}(X)$ π -systém, pak dS je π -systém.

Důkaz

Ověříme, že $\mathcal{D}: \{D \in d\mathcal{S} | D \cap S \in d\mathcal{S} \forall S \in \mathcal{S}\}$ je d-systém. Zřejmě $\mathcal{D} = d\mathcal{D}$. Nyní buď $D \in d\mathcal{S}$ pevné a definujeme $\mathcal{D}_D := \{E \in \mathcal{P}(X) | E \cap D \in d\mathcal{S}\}$. O tom dokážeme, že je to d-systém. Následně dokážeme $\mathbb{S} \subset \mathcal{D}_D$, tedy $D = \mathcal{D}_D$. Vítězství!

TODO?

Věta 2.15 (O jednoznačnosti míry)

Nechť $S \subset \mathcal{P}(X)$ je π -systém a μ, γ jsou dvě míry na σS splňující $\mu(S) = \gamma(S), \forall S \in S$. Jestliže existují množiny $X_n \in S$, $X_n \nearrow X$, $\mu(X_n) < +\infty$, $\forall n \in \mathbb{N}$, pak $\mu = \gamma$ na σS .

 $D\mathring{u}kaz$

Nejprve předpokládejme, že $\mu(X) < +\infty$. Pak definujme systém $\mathcal{D} := \{A \in \sigma \mathcal{S} | \mu(A) = \gamma(A) \}$. Platí $\mathcal{S} \subset \mathcal{D}$, tedy $d\mathcal{S} \subset d\mathcal{D} = \mathcal{D} \subset \sigma \mathcal{S}$, tedy $\mathcal{D} = \sigma \mathcal{S}$.

Je-li $\mu(X) = +\infty$, pak definujeme $\mathcal{D}_n := \{A \in \sigma \mathcal{S} | \mu(A \cap X_n) = \gamma(A \cap X_n)\}, n \in \mathbb{N}$. Platí \mathcal{D}_n je d-systém $\forall n \in \mathbb{N}$ (ověř!). $\mathcal{S} \subset \mathcal{D}_n$, $\forall n \in \mathbb{N}$, nebot $S \in \mathcal{S} : \mu(S \cap X_n) = \gamma(S \cap X_n)$. $d\mathcal{S} \subset d\mathcal{D}_n = \mathcal{D}_n \subset \sigma \mathcal{S}$, tedy $\mathcal{D}_n = \sigma \mathcal{S}$, $\forall n \in \mathbb{N}$.

Necht $A \in \sigma S$. Pak $\mu(A) = \lim_{n \to \infty} \mu(A \cap X_n) = \lim_{n \to \infty} \gamma(A \cap X_n) = \gamma(A)$. Tedy $\mu = \gamma$ na σS .

3 Součin měr a Fubiniova věta

Poznámka (Předpoklady pro další 2 přednášky)

Necht (X, \mathcal{A}, μ) , resp. (Y, \mathcal{B}, γ) , je prostor se σ konečnou mírou μ , resp. γ .

Definice 3.1 (Měřitelný obdélník, \mathcal{O})

Množinu $A \times B \subset X \times Y$, kde $A \in \mathcal{A}$, $B \in \mathcal{B}$, nazveme měřitelným obdélníkem.

Symbolem \mathcal{O} označíme systém všech měřitelných obdélníků.

Definice 3.2 (Součinová σ -algebra)

Definujeme σ -algebru $\mathcal{A} \otimes \mathcal{B}$ předpisem $\mathcal{A} \otimes \mathcal{B} := \sigma \mathcal{O}$.

 $\forall E \in \mathcal{A} \otimes \mathcal{B} \ \forall x \in X \ \forall y \in Y \ definujeme \ \text{\'ezy} \ E_x, \ E^y \ \text{mno\'ziny} \ E \ \text{takto:}$

$$E_x := \{ y \in Y | [x, y] \in E \}, \qquad E^y := \{ x \in X | [x, y] \in E \}.$$

Věta 3.1 (O součinové σ -algebře $\mathcal{A} \otimes \mathcal{B}$)

Je-li $E \in \mathcal{A} \otimes \mathcal{B}$, tak

- 1. $\forall x \in X : E_x \in \mathcal{B}$,
- 2. $\forall y \in Y : E^y \in \mathcal{A}$,
- 3. funkce $x \mapsto \gamma(E_x)$ je měřitelná na (X, \mathbb{A}) ,
- 4. funkce $y \mapsto \mu(E^y)$ je měřitelná na (Y, B).

Je-li funkce $f: (X \times Y, \mathcal{A} \otimes \mathcal{B}) \to \mathbb{R}^*$ měřitelná, pak

- 1. $\forall x \in X \text{ je funkce } f_x : y \mapsto f(x,y) \text{ je měřitelná na } (Y,\mathcal{B}),$
- 2. $\forall y \in Y \text{ je funkce } f_y : x \mapsto f(x,y) \text{ je měřitelná na } (X, \mathcal{A}).$

 $D\mathring{u}kaz$ (Pouze lichá tvrzení, sudá jsou analogická) Definujeme $\mathcal{E} = \{E \in \mathcal{A} \otimes \mathcal{B} | E_x \in \mathcal{B}\}$. Ověříme, že \mathcal{E} je σ -algebra.

TODO!!!

Věta 3.2 (Existence a jednoznačnost součinové míry)

Existuje právě jedna míra $\mu \otimes \nu$ (tzv. součinová míra) na $\mathcal{A} \otimes \mathcal{B}$ splňující $(\mu \otimes \nu)(A \times B) = \mu(A) \cdot \nu(B), \ \forall A \in \mathcal{A}, \ \forall B \in \mathcal{B}.$

Pro tuto míru platí

$$E \in \mathcal{A} \otimes \mathcal{B} \implies (\mu \otimes \nu)(E) = \int_{\mathcal{X}} \nu(E_x) d\mu(x) \qquad \left(= \int_{\mathcal{Y}} \mu(E^y) d\nu(y) \right).$$

 $D\mathring{u}kaz$

- 1. Existence: Je-li $E \in \mathcal{A} \otimes \mathcal{B}$, pak definujeme $(\mu \otimes \nu)(E) = \int_X \nu(E_x) d\mu(x)$. O té dokážeme, že je mírou a že splňuje předpis v definici.
- 2. Jednoznačnost: Nechť τ je míra na $\mathcal{A} \otimes \mathcal{B}$, která splňuje $\tau(A \times B) = \mu(A)\nu(B)$, $\forall A \in \mathcal{A}, \forall B \in \mathcal{B}, \text{ tedy } \tau = \mu \otimes \nu \text{ na } \mathcal{O} \text{ to je } \pi\text{-systém. Prostory } (X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu) \text{ jsou prostory s } \sigma\text{-konečnými mírami. Tj.}$

$$\exists X_n \in \mathcal{A} \ \forall nin \mathbb{N}, X_n \nearrow X, \mu(X_n) < +\infty \ \forall n \in \mathbb{N} \land$$
$$\land \exists Y_n \in \mathcal{B} \ \forall nin \mathbb{N}, Y_n \nearrow Y, \nu(Y_n) < +\infty \ \forall n \in \mathbb{N} \Leftrightarrow$$
$$TODO.$$

Poznámka

Jsou-li (X, \mathcal{A}, μ) a (Y, \mathcal{B}, ν) prostory s úplnými σ -konečnými mírami, pak $\mu \otimes \nu$ nemusí být úplná.

Věta 3.3 (Fubiniova)

Pro $\forall f \in \mathcal{L}^*(\mu \otimes \nu) \ plati$

- 1. $x \mapsto \int_Y f(x,y) d\nu(y)$ je měřitelná na X,
- 2. $y \mapsto \int_X f(x,y) d\nu(x)$ je měřitelná na Y,
- 3. $\int_{X\times Y} f d(\mu \otimes \nu) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y).$

 \Box $D\mathring{u}kaz$

1) $f = \chi_E, E \in \mathcal{A} \otimes \mathcal{B}$: $\nu(E_x) = \int_Y \text{TODO!!!}(\text{Dokáže se nejprve pro charakteristickou funkci, pak pro jednoduché nezáporné, nakonec pro všechny.})$

Poznámka (Značení)

Místo $(\mathcal{A} \otimes \mathcal{B})_0$ značíme $\mathcal{A} \overset{0}{\otimes} \mathcal{B}$ (budu značit $\mathcal{A} \otimes_0 \mathcal{B}$). A místo $(\mu \otimes \nu)_0$ píšeme ...(já píšu $\mathcal{A} \otimes_0 \nu$).

Věta 3.4 (Fubiniova věta pro zúplnění součinové míry)

Nechť (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) jsou prostory s úplnými σ -konečnými mírami. Je-li $f \in \mathcal{L}^*(\mu \otimes_0 \nu)$, pak

- funkce $x \mapsto f(x,y)$ je měřitelná na X pro μ -skoro všechna $y \in Y$,
- funkce $y\mapsto f(x,y)$ je měřitelná na Y pro μ -skoro všechna $x\in X$,

- $funkce \ x \mapsto \int_{Y} f(x,y) d\nu(y) \ je \ měřitelná \ na \ X,$
- $funkce \ y \mapsto \int_X f(x,y) d\nu(x) \ je \ měřitelná \ na \ Y$,
- $\int_{X\times Y} f d(\mu \otimes_0 \nu) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y).$

 $D\mathring{u}kaz$

Z 2 následujících tvrzení a Fubiniovy věty se věta snadno dokáže.

Tvrzení 3.5

Buď $(Z, \mathcal{C}, \varrho)$ prostor s mírou a $(Z, \mathcal{C}_0, \varrho_0)$ jeho zúplnění. Je-li $f: (Z, \mathcal{C}_0) \to \mathbb{R}^*$ ϱ_0 měřitelná funkce, pak existuje ϱ měřitelná funkce $g: (Z, \mathcal{C}) \to \mathbb{R}^*$ tak, že f = g ϱ -skoro všude na Z.

Důkaz

Vynechán.

Tvrzení 3.6

Nechť $(X < \mathcal{A}, \mu)$ a (Y, \mathcal{B}, ν) jsou prostory s úplnými σ -konečnými mírami. Nechť $h: (X \times Y, \mathcal{A} \otimes_0 \mathcal{B}) \to \mathbb{R}^*$ je $(\mu \otimes_0 \nu)$ -měřitelná funkce a h(x, y) = 0 $\mu \otimes_0 \nu$ -skoro všude na $X \times Y$. Pak pro μ -skoro všechna $x \in X$ je h(x, y) rovno 0 pro ν -skoro všechna $y \in Y$.

(Tzn, že pro μ -skoro všechna $x \in X$ je funkce h_x rovna 0 ν -skoro všude na Y.)

Speciálně, funkce h_x je měřitelná na X pro ν -skoro všechna $y \in Y$.

 $D\mathring{u}kaz$

Vynechán.

Definice 3.3

 $\lambda^n = (\lambda_B^*)_0$

Věta 3.7 (O míře $\lambda^p \otimes \lambda^q$)

Necht $p, q \in \mathbb{N}$. Pak

- $\mathcal{B}(\mathbb{R}^{p+q}) = \mathcal{B}(\mathbb{R}^p) \otimes \mathcal{B}(\mathbb{R}^q),$
- $\lambda^{p+q} = \lambda^p \otimes \lambda^q$.

 $D\mathring{u}kaz$

Neuveden.

Věta 3.8 (Fubiniova věta pro λ^{p+q})

Necht $f \in \mathcal{L}^*(\lambda^{p+q}), p, q \in \mathbb{N}$. Pak

$$\int_{\mathbb{R}^{p+q}} f d\lambda^{p+q} = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} f(x,y) d\lambda^q(y) \right) \lambda^p(x) = \int_{\mathbb{R}^q} \left(\int_{\mathbb{R}^p} f(x,y) d\lambda^p(x) \right) \lambda^q(y).$$

Definice 3.4 (Značení)

 $p,q\in\mathbb{N},\,x\in\mathbb{R}^p,\,y\in\mathbb{R}^q.$ Definujeme projekce

$$\pi_1(x, y) = x, \qquad \pi_2(x, y) = y.$$

Důsledek

Nechť $p,q\in\mathbb{N},\ A\in\mathcal{B}_0^{p+q}:=\mathcal{B}(\mathbb{R}^{p+q})_0$. Je-li $f\in\mathcal{L}^*(\lambda^{p+q})$ a projekce π_1A,π_2A jsou měřitelné, pak

$$\int_A f d\lambda^{p+q} \int_{\pi_1 A} \left(f(x,y) d\lambda^q(y) \right) \lambda^p(x) = \int_{\pi_2 A} \left(f(x,y) d\lambda^p(x) \right) \lambda^q(y).$$

Poznámka (Značení)

Místo $d\lambda^p(x)$ píšeme dx a místo $d\lambda^q(y)$ píšeme dy.

Lemma 3.9

Lebesgueova míra λ^n je translačně invariantní (tzn. $\lambda^n(B+r)=\lambda^n(B)$).

 $D\mathring{u}kaz$

 λ^n a $\mu(B) := \lambda^n(B+r)$, $\forall B \in \mathcal{B}_0^n$, $r \in \mathbb{R}^n$, jsou míry, které se shodují na systémech otevřených intervalů v \mathbb{R}^n . Ty spolu s prázdnou množinou tvoří π -systém, takže se míry shodují i na Borelovských množinách \implies jsou shodné.

Věta 3.10 (O obrazu míry)

Nechť (X, \mathcal{A}, μ) je prostor s mírou a (Y, \mathcal{B}) je měřitelný prostor. Buď $\varphi : (X, \mathcal{A}) \to (Y, \mathcal{B})$ měřitelné zobrazení. Pak množinová funkce $\varphi(\mu)$ daná předpisem

$$\varphi(\mu)(B) = \mu(\varphi^{-1}(B)), \forall B \in \mathcal{B}$$

je míra na Y (nazýváme ji obraz míry μ při zobrazení φ) a platí (má-li alespoň jedna strana smysl):

$$\int_Y f d\varphi(\mu) = \int_X f(\varphi(x)) d\mu(x).$$

Důkaz

Ověří se, že je to míra (bod po bodu). Rovnost integrálů pak postupně ověříme na charakteristické funkce, pro jednoduché funkce, pro "jednoznaménkové" (jako monotónní limity jednoduchých) a potom pro všechny (jako součty kladných a záporných funkcí).

Pro charakteristické funkce:

$$\int_X f(\varphi(x))d\mu(x) = \int X_{XB}(phi(x))d\mu = \int_X \chi_{\varphi^{-1}(B)}(x) = d\mu(x) = \mu(\varphi^{-1}(B)) = \varphi(\mu)(B) = \int_Y \chi_B d\varphi(\mu) = \int_Y f d\varphi(\mu).$$

Věta 3.11

Nechť $L: \mathbb{R}^n \to \mathbb{R}^n$ je invertibilní lineární zobrazení.

1. Je-li
$$\nu(A) := \lambda^n(L(A)), \ \forall A \in \mathcal{B}^n := \mathcal{B}(\mathbb{R}^n), \ pak \ \nu \ je \ mira \ a \ plati \ \nu = |\det L|\lambda_{\mathcal{B}}^n.$$

2. Je-li
$$\mu := |\det L| \lambda_{\mathcal{B}}^n$$
, pak $L\mu = \lambda_{\mathcal{B}}^n$ a $\forall f \in \mathcal{L}^*(\lambda_{\mathcal{B}}^n)$ platí

$$\int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}^n} (f \circ L) |\det L| d\lambda_{\mathcal{B}}^n.$$

 $D\mathring{u}kaz$

1. L je lineární zobrazení z \mathbb{R}^n do \mathbb{R}^n , a tedy L je spojité. L je invertibilní \Longrightarrow \exists inverzní zobrazení L^{-1} , které je opět lineární a spojité. Tedy L je měřitelné.

$$(L^{-1}\lambda^n)(A) = \lambda^n(L(A)) = \nu(A), \forall A \in \mathcal{B}^n$$

 $\implies nu$ je míra dle předchozí věty.

Z lineární algebry je známo, že L lze vyjádřit jako kompozici konečně mnoha "elementárních" lineárních zobrazení jednoho z následujících typů: $L_1(x_1, \ldots, x_n) = (\alpha x_1, x_2, \ldots, x_n)$, $\forall (x_1, \ldots, x_n) \in \mathbb{R}^n$, kde $\alpha \in \mathbb{R} \setminus \{0\}$, $L_2(x_1, \ldots, x_n) = (x_1, \ldots, x_j, \ldots, x_i, \ldots, x_n)$, $\forall (x_1, \ldots, x_n) \in \mathbb{R}^n$, $j > i \in \mathbb{N}$, $L_3(x_1, \ldots, x_n) = (x_1 + x_2, x_2, \ldots, x_n)$, $\forall (x_1, \ldots, x_n) \in \mathbb{R}^n$, $i, j \in \mathbb{N}$.

Protože determinant součinu matic se rovná součinu determinantů, stačí tvrzení ověřit pro "elementární" zobrazení. Ověříme na intervalech, L_1 ho jen natáhne o α , tedy na determinant násobek, L_2 "otočí" interval, ale λ^n se otočením nezmění, L_3 posune a zdeformuje interval, ale tím se λ^n nezmění (dokážeme přes Fubiniovu větu). Všechny 3 zobrazení stejně operují na prázdné množině, takže i na π systému $I \cup \{\emptyset\}$, tedy míry se rovnají všude.

2.

$$(L(\mu))(A) \stackrel{1}{=} \mu(L^{-1}(A)) = |\det L|\lambda_{\mathcal{B}}^n(L^{-1}(A)) = |\det L|\cdot|\det L^{-1}|\lambda_{\mathcal{B}}^n(A) = \lambda_{\mathcal{B}}^n(A) \forall A \in \mathcal{B}^n,$$

tedy
$$L(\mu) = \lambda_{\mathcal{B}}^n$$
. Z předchozí věty pak plyne rovnost integrálů.

Lemma 3.12

Buď $T: \mathbb{R}^n \to \mathbb{R}^n$ zobrazení splňující Li. podmínku (tzn. $\exists C \in <0, +\infty$) : $||T(x) - T(y)|| \leq C||x-y||, \forall x,y \in \mathbb{R}^n$). Je-li A λ^n -měřitelná, pak také T(A) je λ^n -měřitelná množina.

 $D\mathring{u}kaz$

Bez důkazu (není čas a důkaz je jednoduchý).

Věta 3.13

Je-li L invertibilní zobrazení \mathbb{R}^n do \mathbb{R}^n , pak

$$\int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}^n} (f \circ L) |\det L| d\lambda^n,$$

má-li alespoň jedna strana smysl.

Tvrzení 3.14 (Opakování)

Je-li $G \subset \mathbb{R}^n$ otevřená množina a $T: G \to \mathbb{R}^n$ je zobrazení třídy C^1 na G, pak $Tx - Tx_0$,

kde $x_0 \in G$, lze lokálně aproximovat lineárním zobrazením, jehož matice je $(\frac{\partial T_i}{\partial x_j}(x_0))_{i,j=1}^n$ a jehož determinant je $\operatorname{Jac}(T)(x_0)$.

Lemma 3.15

$$\lambda^n(\mathbb{R}^{n-1}) = 0.$$

 $D\mathring{u}kaz$

 \mathbb{R}^{n-1} je uzavřená v $\mathbb{R}^n,$ tedy je $\lambda\text{-měřitelná}.$

$$\mathbb{R}^{n-1} \subset \bigcup_{k=1}^{\infty} I_{k,\varepsilon}, I_{k,\varepsilon} = (-k,k)^{n-1} \times \left(\frac{-\varepsilon}{(2k)^{n-1}} \frac{1}{2^k}, \frac{\varepsilon}{(2k)^{n-1}} \frac{1}{2^k} \right),$$

$$0 \le \lambda^n(\mathbb{R}^{n-1}) \le \sum_{k=1}^{\infty} \lambda^n(I_{k,\varepsilon}) = \sum_{k=1}^{\infty} (2k)^{n-1} \frac{2\varepsilon}{(2k)^{n-1}} \frac{1}{2^k} = 2\varepsilon \implies \lambda^n(\mathbb{R}^{n-1}) = 0.$$

Věta 3.16 (O substituci)

Bud $G \subset \mathbb{R}^n$ otevřená množina a $\varphi : G \to \mathbb{R}^n$ difeomorfimsus. Je-li $f : \varphi(G) \to \mathbb{R}$ λ^n -měřitelná funkce, pak

$$\int_G f(\varphi(x)) |\operatorname{Jac} \varphi(x)| dx = \int_{\varphi(G)} f(y) dy,$$

má li alespoň jedna strana smysl.

 $D\mathring{u}kaz$

Bez důkazu.

4 Důkazy

Důkaz (Věta 1.4?)

Označme $\tilde{\mathcal{A}}_0 = \{E \subset X | \exists A, B \in \mathcal{A} : A \subset E \subset B, \mu(B \setminus A) = 0\}$. Ověříme, že $\tilde{\mathcal{A}}_0$ je σ -algebra.

TODO!!!

Lemma 4.1

 $Bud(X, \mathcal{A}, \mu)$ prostor s mírou a s jednoduchá nezáporná měřitelná funkce na X. Definujemeli

$$\varphi(A) = \int_{A} s d\mu, \forall A \in \mathcal{A},$$

 $pak \varphi je míra na A.$

 $D\mathring{u}kaz$ $s = \sum_{j=1}^{k} \alpha_j \cdot \chi_{E_j} \text{ kanonický tvar funkce } s.$

$$A \in \mathcal{A} \implies \varphi(A) = \int_{A} s d\mu = \int_{X} \chi_{A} \cdot s d\mu = \int_{X} \tilde{s} d\mu = \sum_{j=1}^{k} \alpha_{j} \mu(A \cap E_{j}), \forall A \in \mathcal{A}.$$

Následně ověříme body definice míry: $\varphi(\emptyset) = 0$.

$$A \in \mathcal{A} \ \forall i \in \mathbb{N}, i \neq j \implies A_i \cap A_j = \emptyset.$$

$$\varphi(\bigcup_{l} A_{l}) = \sum_{j=1}^{k} \alpha_{j} \mu((\bigcup_{l} A_{l}) \cap E_{j}) = \sum_{j=1}^{k} \alpha_{l} \sum_{i \in \mathbb{N}} \mu(A_{l} \cup E_{j}) =$$

$$\lim_{l \to \infty} \sum_{i=1}^{k} \alpha_{i} \mu(A_{i} \cap E_{i}) = \lim_{l \to \infty} \sum_{i=1}^{k} \alpha_{i} \mu(A_{l} \cap E_{i}) = \sum_{i=1}^{\infty} \varphi(A_{i} \cap E_{i}) = \sum_{i=1}$$

$$= \lim_{n \to \infty} \sum_{j=1}^k \sum_{i=1}^n \alpha_j \mu(A_i \cap E_j) = \lim_{n \to \infty} \sum_{l=1}^n \sum_{j=1}^k \alpha_l \mu(A_l \cap E_j) = \sum_{l=1}^\infty \varphi(A_i).$$

Důkaz (Leviho věty)

$$f_n \leq f_{n+1} \implies \int_X f_n d\mu \leq \int_X f_{n+1} d\mu \implies \exists \alpha \in \langle 0, +\infty \rangle : \int_X f_n d\mu \to \alpha.$$
$$\int_X f_n d\mu \leq \int_X f d\mu, \forall n \in \mathbb{N}.$$

Obrácená nerovnost (pro s jednoduché měřitelné funkce):

$$\int_{\lambda} f d\mu = \sup_{0 \le s \le f} \int_{X} s d\mu.$$

$$\forall c : c \in (0,1) \implies f > cs.$$

 $E_n = \{x \in X | f_n(x) \ge c \cdot s(x)\}, n \in \mathbb{N}:$

$$E_1 \subset E_2 \subset \ldots \subset X, X = \bigcup_{n \in \mathbb{N}} E_n,$$

TODO.

Lemma 4.2 (O míře s hustotou f)

Buď f nezáporná měřitelná funkce na (X, \mathcal{A}, μ) a definujme $\nu(A) := \int_A f d\mu, \, \forall A \in \mathcal{A}.$ Pak ν je míra na \mathbb{A} a

$$\int_X g d\nu = \int_X g \cdot f d\mu.$$

Pro každou nezápornou měřitelnou funkci a na X.

Důkaz

Je jasné, že
$$\nu \geq 0$$
 a $\nu(\emptyset) = \int_{\emptyset} f d\mu = \int_{X} \chi_{\emptyset} f d\mu = \int_{X} 0 d\mu = 0.$

Buď
$$A = \bigcup_{j=1}^{\infty} A_j, A_j \in \mathcal{A}, \forall j \in \mathbb{N}, A_i \cap A_j = \emptyset \ (i \neq j).$$

$$\begin{split} \nu(A) &= \nu(\bigcup_j A_j) = \int_{\bigcup_j A_j} f d\mu = \int_X \chi_{\bigcup_j A_j} f d\mu = \int_X (\sum_j \chi_{A_j}) f d\mu \overset{\text{Levi}}{=} \sum_j \int_X \chi_{A_j} f d\mu = \\ &= \sum_{i=1}^\infty \nu(A_j). \end{split}$$

Rovnost ověříme postupně pro: $g = \chi_E, E \in \mathcal{A}$:

$$\int_X g d\nu = \int_X \chi_E d\nu = \int_E d\nu = \nu(E) = \int_E f d\mu = \int_X \chi_E f d\mu = \int_X g f d\mu.$$

Obdobně pokračujeme i pro další "typy" funkcí.

Definice 4.1 (Hustota míry)

Funkci f z předchozího lemmatu se říká hustota míry ν vzhledem k míře μ .

Definice 4.2 (Absolutně spojitá míra)

Nechť μ , ν jsou míry na (X, \mathcal{A}) . Řekneme, že míra ν je absolutně spojitá vzhledem k míře μ (značíme $\nu \ll \mu$), jestliže platí

$$\forall A \in \mathcal{A}: \mu(A) = 0 \implies \nu(A) = 0.$$

Věta 4.3

TODO?

Věta 4.4 (Charakterizace faktu $\nu \ll \mu$ pro konečné míry)

Nechť ν , μ jsou konečné míry na (X, \mathcal{A}) . Pak $\nu \ll \mu$ právě tehdy, $k dy \check{z}$

$$\forall \varepsilon > 0 \ \exists \delta \ \forall A \in \mathcal{A}, \mu(A) < \delta : \nu(A) < \varepsilon.$$

 $D\mathring{u}kaz$

" \Leftarrow ": Buď $A \in \mathcal{A}$, $\mu(A) = 0$. Pro $\varepsilon = \frac{1}{k}$ nám podmínka dává $\exists \delta_k > 0$, $\mu(A) < \delta_k \implies \nu(A) = \frac{1}{k}$, tedy $\nu(A) = 0$ (jelikož levá strana předchozí implikace je splněna vždy).

" \Longrightarrow ": Sporem. Nechť $\nu \ll \mu$ a předpokládejme, že podmínka neplatí, tj.

$$\exists \varepsilon > 0 \ \forall \delta > 0 \exists A \in \mathcal{A}, \mu(A) < \delta : \nu(A) \ge \varepsilon.$$

Volíme $\delta = \frac{1}{2^n}$, $n \in \mathbb{N}$. Tedy $\exists A_n \in \mathcal{A}$, $\mu(A_n) < \frac{1}{2^n}$ a $\nu(A_n) \geq \varepsilon$. Necht $B_k := \bigcup_{n=k+1}^{\infty} A_n$, $k \in \mathbb{N}$. Tedy $B_1 \supset B_2 \supset \dots$ Z nějaké věty výše plyne $\mu\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \mu(B_k)$ a obdobně $\nu\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \nu(B_k)$.

$$\mu(B_k) \to 0, \ \nu(B_k) \to L \ge \varepsilon. \$$

Lemma 4.5

Jestliže μ, ν jsou konečné míry na (X, \mathcal{A}) takové, že $\forall A \in \mathcal{A} : \nu(A) \leq \mu(A)$. Pak existuje měřitelná funkce f splňující $0 \leq f \leq 1$ μ -skoro všude a platí

$$\forall A \in \mathcal{A} : \nu(A) = \int_A f d\mu.$$

Důkaz

Definujeme funkcionál

$$Jg := \int_X g^2 d\mu - 2 \int_X g d\nu, \quad \forall g \in \mathcal{L}^2(\mu).$$

Definice J je korektní, protože konvergence v L^2 je silnější než konvergence v L^1 (nebo z Hölderovy nerovnosti), tedy oba integrály jsou pro $g \in L^2$ konečné. Dále definujeme $c := \inf_{g \in L^2(\mu)} Jg$.

$$Jg = \int_X g^2 d\mu - 2 \int_X g d\nu \ge \int_X g^2 d\mu - 2 \int_X |g| d\mu = \int_X (|g| - 1)^2 d\mu - \mu(X) \ge -\mu(X) > -\infty, \forall g \in L^2(\mu).$$

Předpokládejme, že $\exists f \ c = Jf$. Buď $A \in \mathcal{A}$ pevná množina, definujeme $g(t) := J(f + t\chi_A)$, $\forall t \in \mathbb{R}$. Tedy g má minimum v bodě 0. Tudíž g'(0) = 0, pokud g' existuje. Ověříme výpočtem z definice existenci a dosadíme 0:

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{J(f + t\chi_A) - J(f)}{t} = \lim_{t \to 0} \frac{1}{t} \left[\int_X (f + t\chi_A)^2 d\mu - 2 \int_X (f + t\chi_A) d\nu - \int_X f^2 d\mu \right]$$

$$\lim_{t \to 0} \left[\int_X 2f \chi_A d\mu + t \int_X \chi_A d\mu - 2 \int_X \chi_A d\nu \right] = 2 \left[\int_X f \chi_A d\mu - \int_X \chi_A d\nu \right] = 0$$

Tedy $\forall A \in \mathcal{A} : \nu(A) = \int_A f d\mu$.

$$0 \le \int_{\{f>1\}} (f-1)^+ d\mu = \int_{\{f>1\}} (f-1) d\mu = \int_{\{f>1\}} d\mu - \int_{\{f>1\}} 1 d\mu = \nu(\{f>1\}) - \mu(\{f>1\}) \le 0 \implies f$$
$$0 \le \int_{\{f<0\}} f^- d\mu = -\int_{\{f<0\}} f d\mu = -nu(\{f<0\}) \le 0 \implies f \ge 0 \mu\text{-skoro všude}$$

$$J(g) + J(h) - J\left(\frac{g+h}{2}\right) = \int_{\mathbb{R}} \frac{g^2 - 2gh + h^2}{2} d\mu = \frac{1}{2} \int_{\mathbb{R}} (g-h)^2 d\mu = \frac{1}{2} ||g-h||_{L^2(\mu)}^2.$$

 $\exists \{f_n\} \subset L^2(\mu). \ J(f_n) \to c \text{ pro } n \to \infty. \ g = f_n, \ h = f_m$:

$$J(f_n) + J(f_m) - 2J\left(\frac{f_n + f_m}{2}\right) = \frac{1}{2}||f_n - f_m||_{L^2(\mu)}^2, \forall n, m \in \mathbb{N}$$

$$\leq J(f_n) + J(f_n) - 2c \to 0 \implies \exists f \in L^2(\mu) : f_n \to f \in L^2(\mu).$$

$$\int_{X} |f_n - f| d\nu \le \int_{X} |f_n - f| d\mu \le \left(\int_{X} |f_n - f|^2 \right)^{\frac{1}{2}} \cdot (\mu(X))^{\frac{1}{2}} \to 0 \implies ||f_n - f||_{L^2(M)} \to 0 \implies J(f_n) \to J(f).$$

21

Věta 4.6 (Radonova-Nikodymova věta)

Nechť μ , ν jsou σ -konečné míry na (X, \mathcal{A}) splňující $\nu \ll \mu$. Pak existuje nezáporná měřitelná funkce f na X tak, že

$$\nu(A) = \int_A f d\mu, \forall A \in \mathcal{A}.$$

Této funkci se říká derivace míry ν vzhledem k mu, nebo také Radonova-Nikodymova hustota...

 $D\mathring{u}kaz$

1. krok: Nejprve předpokládejme, že μ, ν jsou konečné míry. Platí $\nu \leq \mu + \nu$. (Z lemmatu někde výše $\exists h, 0 \leq h \leq 1 \ (\mu + \nu)$ -skoro všude, že $\nu(A) = \int_A h d(\mu + \nu) \ \forall A \in \mathcal{A}, = \int_A h d\mu + \int_A h d\nu = \int_X \xi_A h d\mu + \int_X \xi_A h d\nu$).

$$\int_X \xi_A(1-h)d\nu = \int_X \xi_A h d\mu$$
. Z linearity $\int + (h < 1, \text{skoro v})$ všude)

$$\int_X g(1-h)d\nu = \int_X ghd\mu, \qquad \forall g \text{ jednoduchou, nezápornou, měřitelnou funkci na } X.$$

Volbou
$$g = \frac{1}{1-h}\xi_A, A \in \mathcal{A}, \nu(A) = \int \dots = \int \xi_A d\mu$$
?

2. krok Nechť ν , μ jsou σ -konečné

$$X = \bigcup_{i=1}^{\infty} E_i, \mu(E_i) < \infty, E_i \cap E_j = \emptyset, i \neq j,$$

$$X = \bigcup_{i=1}^{\infty} F_i, \nu(F_i), F_i \cap F_j = \emptyset, i \neq j,$$

$$D_{ij} = E_i \cap F_j, X = \bigcup_{i,j=1}^{\infty} D_{ij}, \nu(D_{ij}) < +\infty, \mu(D_{ij}) < +\infty, \forall i, j \in \mathbb{N}$$

tedy jako v první části důkazu zvolíme f_{ij} měřitelné nezáporné na D_{ij} , aby $\nu|_{D_{ij}}(A) = \int_{D_{ij}} f_{ij} d\mu|_{D_{ij}}$. Nyní již $\forall x \in X \exists ! i \in \mathbb{N} \exists ! j \in \mathbb{N} : x \in D_{ij} \implies f(x) = f_{ij}(x)$.

Definice 4.3 (Singulární míra)

Nechť ν, μ jsou míry na měřitelném prostoru (X, \mathcal{A}) . Řekneme, že míra ν je singulární vzhledem k míře μ (značení $\nu \perp \mu$), jestliže

$$\exists S \in \mathcal{A}L\mu(S) = 0 \land \nu(X \setminus S) = 0.$$

Věta 4.7 (Lebesgueova dekompozice)

Buď (X, \mathcal{A}) měřitelný prostor, μ míra na X, ν σ -konečná míra na X. Pak existují jednoznačně určené míry ν_a , ν_s na X tak, že $\nu_a \ll \mu$, $\nu_s \perp \mu$ a $\nu_a + \nu_s = \nu$.

Důkaz

1. krok: Nechť ν je konečná míra. Pak existence plyne z:

$$\mathcal{N}_{\mu} := \{B \in \mathcal{A} | \ \mu(B) = 0\} \,,$$

$$c := \sup \{\nu(B) | V \in \mathcal{N}_{\mu}\} \le \nu(X) < \infty$$

$$\exists \{B_j\} \subset \mathcal{A}, \lim_{j \to \infty} \nu(B_j) = e$$

$$N := \bigcup_{j=1}^{\infty} B_j \implies \mu(N) \le \sum_{j=1}^{\infty} \mu(B_j) = 0.$$

$$\nu_s(A) := \nu(A \cap N) \forall A \in \mathcal{A},$$

$$\nu(X \setminus N) - \nu(X \setminus N \cap N) = 0.$$

$$\nu_a(A) = \nu(A) - \nu_s(A) = \nu(A) - \nu(A \cap N) = \nu(A \setminus N) = \nu(A \cap N)$$

 $\nu_a \ll \mu$: Buď $A \in \mathcal{A}, \, \mu(A) = 0.$

$$N \cup (A \cap N^c) \implies \mu(N \cup (A \cap N^c)) \le \mu(N) + \mu(A \cap N^c) = 0.$$

Platí $\nu(A \cap N^c) = 0$, neboť (sporem) kdyby $\nu(A \cap N^c) > 0$, pak by

$$\nu(N\cup(A\cup N^c))=\nu(N)+\nu(A\cap N^c)=c+(>0).4.$$

$$\nu(A\cup N^c)=\nu_a(A)$$

Jednoznačnost: Nechť $\nu = \nu_a + \nu_s$ a $\nu = \tilde{\nu}_a + \tilde{\nu}_s$, $\nu_a \ll \mu$, $\tilde{\nu}_a \ll \mu$, $\nu_s \perp \mu$, $\tilde{\nu}_s \perp \mu$.

$$\Rightarrow \exists N \in \mathcal{A} : \mu(N) = 0 \land \nu_s(N^c) = 0 \land$$

$$\land \exists \tilde{N} \in \mathcal{A} : \mu(\tilde{N}) = 0 \land \tilde{\nu}_s(\tilde{N}^c) = 0$$

$$\Rightarrow \nu_a(N) = 0, \tilde{\nu}_a(N) = 0, N_0 := N \cup \tilde{N} \implies \mu(N_0) = 0$$

$$\nu_s(C_0^c) = \nu_s(X \setminus N_0) \le \nu_s(X \setminus N) = \nu_s(N^c) = 0 \implies \nu_s(N_0^c).$$

$$\nu_s(A) = \nu_s(A \cap N_0) = \nu(A \cap N_0) - \nu_a(A \cap N_0) = \nu(A \cap N_0).$$

Analogicky

$$\tilde{\nu}_s(A) = \tilde{\nu}_s(A \cap N_0) = \nu(A \cap N_0) - \tilde{\nu}_a(A \cap N_0) = \nu(A \cap N_0).$$

$$\implies \nu_s = \tilde{\nu}_s, \nu_a = \tilde{\nu}_a.$$

2. krok: Předpokládejme, že ν je σ -konečná. $X = \bigcup_{k=1}^{\infty} D_k, D_k \in \mathcal{A}, D_k \cap D_l, k \neq l,$ $\nu(D_k) < \infty$. Provedeme první krok na každé množině zvlášť a pak je dáme dohromady.

TODO

Definice 4.4 (Distribuční funkce)

Buď μ konečná borelovská míra na $\mathbb R.$ Pak funkci

$$F_{\mu} := \mu((-\infty, x)), \forall x \in \mathbb{R},$$

nazýváme distribuční funkcí míry $\mu.$

Lemma 4.8 (O distribuční funkci)

Funkce F_{μ} splňuje:

- F_μ je neklesající.
- $F_{\mu}(-\infty) = 0, F_{\mu}(+\infty) = \mu(\mathbb{R}) < +\infty.$
- F_{μ} je zprava spojitá.

 $D\mathring{u}kaz$

První bod: $x < y, x, y \in \mathbb{R}$. $F_{\mu}(x) = \mu((-\infty, x)) \le \mu((-\infty, y)) = F_{\mu}(y)$.

Druhý bod:

$$F_{\mu}(-\infty) = \lim_{n \to \infty} F_{\mu}(-n) = \lim_{n \to \infty} \mu((-\infty, -n)) = \mu\left(\bigcup_{n \in \mathbb{N}} (-\infty, n)\right) = \mu(\emptyset) = 0.$$

$$F_{\mu}(+\infty) = \lim_{n \to \infty} F_{\mu}(n) = \lim_{n \to \infty} \mu((-\infty, n)) = \mu\left(\bigcup_{n \in \mathbb{N}} (-\infty, n)\right) = \mu(\mathbb{R}) < +\infty.$$

Třetí bod: $x \in \mathbb{R}$

$$\lim_{y \to x_+} F_{\mu}(y) = \lim_{n \to +\infty} F_{\mu}\left(x + \frac{1}{n}\right) = \lim_{n \to \infty} \mu\left(\left(-\infty, x + \frac{1}{n}\right)\right) = \mu\left(\bigcap_{n \in \mathbb{N}} \left(-\infty, x + \frac{1}{n}\right)\right) = \mu\left((-\infty, x)\right) = \mu\left(\left(-\infty, x + \frac{1}{n}\right)\right) = \mu\left(\left(-\infty, x + \frac{1}{n}\right)\right)$$

Věta 4.9 (O Lebesgueově-Stieltjesově míře)

Nechť $F: \mathbb{R} \to \mathbb{R}$ je funkce splňující

- F je neklesající,
- $F_{\mu}(-\infty) = 0$, $F_{\mu}(+\infty) < +\infty$,
- F je zprava spojitá.

Pak existuje právě jedna konečná borelovská míra na prostoru \mathbb{R} , že $F = F_{\mu}$.

Důkaz

Nedokazovali jsme.

Definice 4.5 (Lebesgueův-Stieltjesův integrál)

Je-li F distribuční funkce (konečné borelovské míry μ) na \mathbb{R} a $A \in \mathcal{B}(\mathbb{R})$, pak

$$\int_A f dF := \int_A f d\mu, \qquad \text{pokud má pravá strana smysl.}$$

Věta 4.10 (Per partes pro L-S integrál)

Je-li F_{μ} distribuční funkce míry μ a G_{ν} distribuční funkce míry ν , pak platí

$$\forall -\infty < a < b < +\infty \in \mathbb{R} : F(b)G(b) - F(a)G(a) = \int_{\langle a,b \rangle} F(x)dG(x) + \int_{\langle a,b \rangle} G(x)dF(x).$$

Důkaz

 $\Omega = \{[x,y] \in \mathbb{R}^2 | a < x \le y \le b\}$. Z Fubiniovy věty si spočteme dvěma způsoby:

$$(\mu \otimes \nu)(\Omega) = \int_{(a,b)} \left(\int_{\langle x,b \rangle} dG(y) \right) dF(x) =$$

$$= \int_{(a,b)} (G(b) - G(x)) dF(x) = G(b)(F(b) - F(a)) - \int_{\langle a,b \rangle} G(x) dF(x).$$

$$(\mu \otimes \nu)(\Omega) = \int_{(a,b)} \left(\int_{\langle a,y \rangle} dF(x) \right) dG(y) =$$

$$= \int_{(a,b)} (F(y) - F(a)) dG(y) = F(a)(G(b) - G(a)) - \int_{\langle a,b \rangle} F(y) dG(y)$$

 $_{\parallel}$ Odečtením dostáváme dokazovanou rovnost.

Lemma 4.11 (O míře absolutně spojité k $\lambda^1)$

Nechť μ je konečná borelovská míra na \mathbb{R} . Jestliže $F_{\mu} \in C^{1}(\mathbb{R})$ a $\mu \ll \lambda^{1}$, pak platí

$$\frac{d\mu}{d\lambda^1} = F'_{\mu}.$$

Důkaz

 $\mathcal S$ systém množin, který se skládá z \emptyset a všech intervalů typu (a,b), kde $-\infty < a < b < +\infty$. Pak $\mathcal S$ je π -systém.

Buď
$$\nu$$
 mír daná předpisem $\nu(A) := \int_A F'_\mu d\lambda^1$, $\forall A \in \mathcal{B}(\mathbb{R})$. Pak $\nu = \mu$ na \mathcal{S} , neboť $\nu(\emptyset) = 0 = \mu(\emptyset)$, $\mu((a,b)) = F_\mu(b) - F_\mu(a) = \int_a^b F'_\mu(x) dx - \int_{(a,b)} F'_\mu d\lambda^1 = \mu(\langle -u,u\rangle)$.

Z nějaké věty dříve plyne
$$\mu = \nu$$
 na $\sigma S = \mathcal{B}(\mathbb{R}) \implies \mu(A) = \int_A F'_{\mu} d\lambda^1, \forall A \in \mathcal{B}(\mathbb{R}).$

TODO Důkaz Lebesgueovy věty.