8. e^x -Tra-Ordinary differential Equations

Example 2. Consider the **system** of linear differential equations²:

$$f'_1 = a_{1,1}f_1 + \dots + a_{1,n}f_n$$

$$f'_2 = a_{2,1}f_1 + \dots + a_{2,n}f_n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f'_n = a_{n,1}f_1 + \dots + a_{n,n}f_n$$

AKA $\frac{d}{dx}\vec{f} = A\vec{f}$, where $A = (a_{ij})_{ij}$ is a matrix of constants and $\vec{f} = (f_1, \dots, f_n)$ is a vector of functions of a single variable.

Let $\vec{f}(0) = v \in \mathbb{R}^n$ be the initial condition. Then:

$$\frac{d}{dx}e^{Ax}v = \left(\frac{d}{dx}e^{Ax}\right)v + e^{Ax}\frac{d}{dx}v = Ae^{Ax}v$$

Meaning that $\vec{f} = e^{Ax}v$ solves the system, and meets the initial condition $\vec{f}(0) = e^0v = I_nv = v$.

Remark. This also works when replacing a matrix with any linear operator. This is how physicists solve Schr@dinger's equation.

Have no fear, and let me be your guide. I will teach you about

 $^{^2}$ Whoa what's this? We only learned what e was a few pages ago and now we're doing differential equations?

1. How can our e's be real if our numbers aren't real?

If real numbers were an ocean, e would be the tropical island where there's nothing to eat but coconuts.

Definition. For any $\mathfrak{Z} \in \mathbb{R}$, we define:

$$e^{2\kappa} = \sum_{\infty=0}^{\infty} \frac{2\kappa}{2^{\infty}}$$

This definition sucks, let's try again:

Definition. We define:

$$e = \lim_{\mathbf{Z} \to \infty} \left(1 + \frac{1}{\mathbf{Z}} \right)^{\mathbf{Z}}$$

and its side-kick:

$$e^{3\mathscr{K}} = \lim_{{\mathscr{O}} \to \infty} \left(1 + \frac{3\mathscr{K}}{{\mathscr{O}}} \right)^{3\mathscr{K}}$$

Shit, we accidentally defined the same thing.

Proof. Expand for finite **&**.

7. e is **\mathbb{\mathbb{H}}** for more than $\mathbb R$

Nothing prevents x from being another kind of number. Another number? Different numbers? Other numbers? Complex numbers.

Theorem. Let $a + bi = z \in \mathbb{C}$. Then

$$e^z = e^a e^{bi} = e^a (\cos(b) + i\sin(b))$$

Proof. To prove $e^z = e^a e^{bi}$, we have to use multinomial theorem on the first definition, like in the real case. To prove $e^{bi} = \cos(b) + i\sin(b)$, exponentiate and and use Taylor's formulas for \sin and \cos .

Example 1. We can take the exponent of a square matrix to get another matrix. It turns out that if $A \in \text{Mat}(n)$, then $e^A e^{-A} = I_n$, so e^A is always invertible.

However, some of the exponent rules don't work. If $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, then:

$$e^A e^B \neq e^B e^A$$

well, some things, like being able to take powers sums, division over \mathbb{Q} , convergence...

" $\log(x)$, being the inverse function of e^x , has always been controversial. Some say that log makes them feel \bigcirc " \bigcirc "

Captain's log day 1: e-log-ical musings

>How does a number theorist drown?

>loglogloglog

>What do you get when you integrate one over cabin with respect to cabin?

>log cabin

>No, it's a houseboat, you forgot to add the c!

>No, it's a priceless yacht, you disregarded the absolute value

FIGURE 1. log for scale. Scale pictured on previous page

639193200305992182.4PROPERTIES OF @ 3342952605956307

Ok, so we have this number, but what is it good for? Well, it's a good approximation for 2.7, which is a good approximation for π for sufficiently is a good approximation for π for sufficiently bad approximations of good. Succinctly:

 ${f Res}_{6981}{f Eheorem.}$ e is irrational ${f 598888519345807273866738}$

 $Proof. \ \ \text{If } e = \frac{a}{b}, \ \text{then};$

$$x := b! \left(\frac{a}{b} - \sum_{n=0}^{b} \frac{1}{n!} \right) = a(b-1)! - \sum_{n=0}^{b} \frac{b!}{n!} \in \mathbb{Z}$$

But then by definition of $e = \sum_{n} \frac{1}{n!}$: 474501585300473

$$(x = b) \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \sum_{n=0}^{b} \frac{1}{n!} \right) = \sum_{n=b+1}^{\infty} \frac{b!}{n!} > 0$$

Next, note that if n > b, then $\frac{b!}{n!} < \frac{1}{(b+1)^{n-b}}$, so:

$$0 < x < \sum_{n=b+1}^{\infty} \frac{1}{(b+1)^{n-b}} = \sum_{k=1}^{\infty} \frac{1}{(b+1)^k} = \frac{1}{b} \le 1$$

so 0 < x < 1, a contradiction to $x \in \mathbb{Z}$.

3. A Baker's story

A baker wants to bake the perfect cookie: a cookie of 100% chocolate. She bakes it, and sets her cookie to cool. In the \mathfrak{C} , the \mathfrak{W} of fairies sends a mischevious fairy upon the cookie, to \mathfrak{f} it with her \mathfrak{T}^* that turns chocolate into cookie. The next \mathfrak{T}^* , the baker finds that her perfect cookie is now $1-1=\square$ chocolate! She decides to outsmart the \mathfrak{W} by splitting her \mathfrak{T}^* chocolate cookie into two pieces. The \mathfrak{W} decides to send two fairies to \mathfrak{f} the halves with their \mathfrak{T}^* the however, being simple creatures of \mathfrak{T}^* che neither fairy knows which half the other \mathfrak{f} and each \mathfrak{f} the halves randomly. The next day, the baker wakes up to find that her \mathfrak{T} cookie is now $(1-\frac{1}{2})^2=\mathfrak{T}$ chocolate! She decides outsmart the \mathfrak{W} by splitting her \mathfrak{T} chocolate cookie into three

4. The function of the function e^x

Yes, we defined $e^{\Delta \mathbb{P}}$ as a series, or as some limit of a sequence, but that's ok. It's still a function, with some nice properties.

- (1) e^x is a monotonically increasing positive function from \mathbb{R} to \mathbb{R} .
- (2) $e^{x+y} = e^x e^y$, $e^0 = 1$ (homomorphism!)
- (3) If you made a slide in the shape of the plot of $y = e^x$, you will never stop slidin' leftward.

But most importantly:

Theorem. $\frac{d}{dx}e^x = e^x \iff \frac{d}{dx}e^{cx} = ce^{cx} \ by$ **%**rule).Proof. Use the first definition, and differentiate term by term.