Assignment #7 Nitin Gaonkar

Introduction:

The purpose of this assignment is use factor analysis to identify the sector in the stock market. I will be using factor analysis and factor rotation in this assignment.

Results:

Below is the output of the proc print:

Obs	Date	BAC	ВНІ	CVX	DD	DOW	HAL	HES	HUN	JPM	SLB	WFC	XOM	VV
1	03JAN2012	5.8	51.02	110.37	46.51	29.79	34.15	58.4	9.95	34.98	70.09	28.43	86	58.18
2	04JAN2012	5.81	51.53	110.18	47.02	29.95	35.12	59	9.87	34.95	69.56	28.56	86.02	58.25
3	05JAN2012	6.31	50.82	109.1	46.7	30.14	34.56	57.6	9.82	35.68	68.07	29.02	85.76	58.44
4	06JAN2012	6.18	51.26	108.31	46.04	30.32	34.98	56.42	9.9	35.36	67.78	28.94	85.12	58.32
5	09JAN2012	6.27	51.58	109.49	46.43	30.31	35.38	56.9	9.84	35.3	68.82	29.3	85.5	58.45
6	10JAN2012	6.63	51.95	109.06	47.14	30.98	36.33	58.56	10.2	36.05	70.75	29.41	85.72	58.99
7	11JAN2012	6.87	50.21	107.77	47.3	31.43	35.38	57.94	10.59	36.66	70.16	29.62	85.08	59.06
8	12JAN2012	6.79	48.29	104.97	48.1	32.56	34.73	57.01	11.03	36.85	69.7	29.61	84.74	59.2
9	13JAN2012	6.61	48.02	106.09	48.4	32.02	33.94	56.55	11.21	35.92	67.99	29.61	84.88	58.95
10	17JAN2012	6.48	47.7	106.72	48.54	32.64	33.86	57.39	10.85	34.91	67.64	29.82	85.69	59.1

Below is the out put for all the returns after using the keep option:

return_BAC	return_BHI	return_CVX	return_DD	return_DOW	return_HAL	return_HES	return_HUN	return_JPM	return_SLB	return_WFC	return_XOM	response_VV
0.001723	0.009946	-0.001723	0.010906	0.005357	0.028008	0.010222	-0.008073	-0.000858	-0.007590	0.004562	0.000232531	0.001202439
0.082555	-0.013874	-0.009850	-0.006829	0.006324	-0.016074	-0.024015	-0.005079	0.020672	-0.021653	0.015978	003027130	0.003256494
-0.020817	0.008621	-0.007267	-0.014234	0.005954	0.012080	-0.020699	0.008114	-0.009009	-0.004269	-0.002761	007490672	002055499
0.014458	0.006223	0.010836	0.008435	-0.000330	0.011370	0.008472	-0.006079	-0.001698	0.015227	0.012363	0.004454350	0.002226600
0.055828	0.007148	-0.003935	0.015176	0.021864	0.026497	0.028757	0.035932	0.021024	0.027658	0.003747	0.002569795	0.009196250
0.035559	-0.034068	-0.011899	0.003388	0.014421	-0.026497	-0.010644	0.037522	0.016779	-0.008374	0.007115	007494180	0.001185938
-0.011713	-0.038990	-0.026325	0.016772	0.035322	-0.018543	-0.016181	0.040709	0.005169	-0.006578	-0.000338	004004245	0.002367666
-0.026867	-0.005607	0.010613	0.006218	-0.016724	-0.023010	-0.008101	0.016187	-0.025561	-0.024840	0.000000	0.001650749	004231915
-0.019863	-0.006686	0.005921	0.002888	0.019178	-0.002360	0.014745	-0.032641	-0.028521	-0.005161	0.007067	0.009497638	0.002541297

Here we are doing the factor analysis without the rotation:

- Two factors have been retained by SAS.
- SAS used proportion criterion to select the number of factors to retain.
- In the scree plot we can see that the variance is explained and from the output we can see that the factor 1 is greater than the factor 2.
- Our initial hypothesis was about 3 to 4 factors, but the result that we got is 2 factors.
 Below are the two groups based on the sign of the second factor, but the factor 1 are more highly related to the variables.

The first appears to combination of both the Banking and industrial sectors (BAC, DD, DOW, HUN, JPM, WFC), and the second appears to be related to Oil refining and field services sectors (BHI, CVX, HAL, HES, SLB, XOM).

Below are the eigenvalues of the reduced correlation matrix:

Fact	Factor Pattern					
	Factor1	Factor2				
return_BAC	0.68475	0.36021				
return_BHI	0.69984	-0.39498				
return_CVX	0.77402	-0.10833				
return_DD	0.71605	0.16703				
return_DOW	0.64548	0.19801				
return_HAL	0.72630	-0.38221				
return_HES	0.70361	-0.15709				
return_HUN	0.58030	0.18186				
return_JPM	0.67874	0.34813				
return_SLB	0.79382	-0.30815				
return_WFC	0.72445	0.30517				
return_XOM	0.76500	-0.08361				

Variance Explained by Each Factor				
Factor1	Factor2			
6.0473258	0.8847081			

Below we can see factor 1 and factor 2 plot:

We can see that the points are grouped into two parts, as we can see from the below graph the factor 1 has variables all above the loading threshold whereas the factor 2 do not have the all the variables above the threshold. Below graph does give us enough interpretability.

3.

Now we perform factor analysis with rotation, the rotation is meant to improve the interpretability of the model. By default, the unrotated output maximizes the variance accounted for by the first and subsequent factors, and forces the factors to be orthogonal. [WIKI]

- Yes SAS retained same no of factors.
- from the below out put we can see that the factor loadings for both factor one and factor two have changed for the variables after rotation.
- Yes we did obtain a simple structure and the interpretability has increased after the rotation, we can see the below pattern:

Factor 1 is comprised of BAC, DD, DOW, HUN, JPM, WFC.

Factor 2 is comprised of BHI, CVX, HAL, HES, SLB, XOM.

Factor 1 is comprised of Banking and industrial sectors, where as Factor 2 is comprised of Oil refining and field services sectors.

-And in the rotated factor pattern we can see that all the values are positive and fall under one quadrant.

4.

In this part we will be performing a maximum likelihood estimation to the estimate the common factors with a varimax rotation.

Two factors are retained by the ML process.

We observe that the method computes an initial set of eigenvalues to assess the convergence criterion. Below output displays the results of the analysis with 2 factor. The solution is so close to the optimum that PROC FACTOR cannot find a better solution, hence we receive this message:

Convergence criterion satisfied.

Below we observe that we see that there is two separate statistical hypothesis test with the null hypothesis stated as 'no common factors' and '2 factors are sufficient' respectively and both test allow us to accept the null hypothesis.

ML produces more generalizable and reproducible results, as it does not inflate the variance estimates when compared to PCA, also in maximum likelihood factor analysis is the goodness-of-fit criteria

The FACTOR Procedure Initial Factor Method: Maximum Likelihood

	Prior Communality Estimates: SMC										
return_BAC	return_BAC return_BHI return_CVX return_DD return_DOW return_HAL return_HES return_HUN return_JPM return_SLB return_WFC return_XOM										
0.58577906	0.61046627	0.64179539	0.54681402	0.47197670	0.64986770	0.49976057	0.39225125	0.58034671	0.68269067	0.57372531	0.62696933

Preli	Preliminary Eigenvalues: Total = 16.9350893 Average = 1.41125745						
	Eigenvalue	Difference	Proportion	Cumulative			
1	14.9446192	12.7338755	0.8825	0.8825			
2	2.2107436	1.3691513	0.1305	1.0130			
3	0.8415924	0.1303533	0.0497	1.0627			
4	0.7112391	0.6898126	0.0420	1.1047			
5	0.0214265	0.1469738	0.0013	1.1060			
6	-0.1255473	0.0709849	-0.0074	1.0986			
7	-0.1965322	0.0239638	-0.0116	1.0869			
8	-0.2204960	0.0345938	-0.0130	1.0739			
9	-0.2550898	0.0286557	-0.0151	1.0589			
10	-0.2837455	0.0587253	-0.0168	1.0421			
11	-0.3424708	0.0281790	-0.0202	1.0219			
12	-0.3706498		-0.0219	1.0000			

2 factors will be retained by the PROPORTION criterion.

Iteration	Criterion	Ridge	Change		Communalities										
1	0.6510876	0.0000	0.0766	0.61329	0.67722	0.59574	0.52016	0.43403	0.68819	0.52149	0.34962	0.59394	0.74783	0.65036	0.58326
2	0.6468795	0.0000	0.0233	0.62141	0.68257	0.58380	0.50908	0.42409	0.71149	0.51403	0.34494	0.60820	0.75240	0.65204	0.57178
3	0.6466363	0.0000	0.0044	0.62579	0.68570	0.57998	0.50612	0.42109	0.71292	0.51264	0.34336	0.61064	0.75401	0.65312	0.56870
4	0.6466159	0.0000	0.0017	0.62697	0.68582	0.57927	0.50513	0.42017	0.71351	0.51229	0.34293	0.61230	0.75408	0.65322	0.56796
5	0.6466133	0.0000	0.0006	0.62759	0.68586	0.57907	0.50478	0.41980	0.71345	0.51224	0.34275	0.61278	0.75412	0.65329	0.56779

Convergence criterion satisfied.

Significance Tests Based on 501 Observations					
Test	DF	Chi-Square	Pr > ChiSq		
H0: No common factors	66	3656.2617	<.0001		
HA: At least one common factor					
H0: 2 Factors are sufficient	43	319.3192	<.0001		
HA: More factors are needed					

Chi-Square without Bartlett's Correction	323.30664
Akaike's Information Criterion	237.30664
Schwarz's Bayesian Criterion	55.99257
Tucker and Lewis's Reliability Coefficient	0.88187

Squared Canonical Correlations			
Factor1	Factor2		
0.94176593	0.73146692		

Below we can see that the factor 1 loading are more related to the variables.

Rotated	Factor Pat	tern
	Factor1	Factor2
return_BAC	0.76122	0.21969
return_BHI	0.21664	0.79932
return_CVX	0.49806	0.57530
return_DD	0.59542	0.38748
return_DOW	0.56395	0.31884
return_HAL	0.24256	0.80907
return_HES	0.40289	0.59153
return_HUN	0.50588	0.29457
return_JPM	0.75054	0.22277
return_SLB	0.35223	0.79376
return_WFC	0.75994	0.27534
return_XOM	0.51113	0.55362

Variance Explained by Each Factor					
Factor	Weighted	Unweighted			
Factor1	8.7156851	3.55022275			
Factor2	10.1803287	3.42320994			

5. Maximum Likelihood Factor Analysis, with Rotation and Max Priors

5 factor have been suggested by ML factor analysis

Rotated Factor Pattern					
	Factor1	Factor2	Factor3	Factor4	Factor5
return_BAC	0.19300	0.75425	0.26803	0.17215	0.09285
return_BHI	0.75597	0.14970	0.18684	0.24628	-0.01722
return_CVX	0.37688	0.25354	0.26440	0.70383	0.02658
return_DD	0.24372	0.27524	0.66859	0.31138	-0.13337
return_DOW	0.19396	0.25931	0.64481	0.23505	-0.00701
return_HAL	0.82071	0.18978	0.20801	0.16916	-0.00609
return_HES	0.47834	0.23976	0.25785	0.40900	0.24903
return_HUN	0.22592	0.26677	0.60996	0.06709	0.16770
return_JPM	0.20547	0.77151	0.22874	0.17842	-0.03102
return_SLB	0.72537	0.25575	0.24707	0.30301	0.05701
return_WFC	0.20847	0.61032	0.35934	0.29285	-0.00631
return_XOM	0.37166	0.29603	0.24083	0.66560	-0.02404

Variance Explained by Each Factor				
Factor	Weighted	Unweighted		
Factor1	9.48177257	2.55119512		
Factor2	6.95572063	2.08400430		
Factor3	5.26449075	1.82173920		
Factor4	5.80237050	1.59069819		
Factor5	0.31984016	0.12246466		

The above output suggests that the factor selection is highly dependent on the prior estimates of communalities. By looking at the out put of the factor loading we can group the factor loadings into below groups.

Factor 1: BHI, HAL, SLB Factor 2: BAC, JPM, WFC Factor 3: DD, DOW, HUN

Factor 4: CVX, XOM

Factor 5: No selections based on loading criterion

From the above analysis we can say that the Factor 1 strongly indicates Oil Field services, Factor 2 strongly indicates Banking, Factor 3 strongly indicates Industrial - Chemical, Factor 4 strongly indicates Oil Refining and HES which tends to lean heavily on oil field services factor than factor 4 and for factor 5 we don't have any single variable.

We can conclude that the method chosen for prior calculation and communalities is significant over the chosen factors from the model.

Code:

Paste your code in at the end.

```
libname mydata "/scs/wtm926/" access=readonly;
proc datasets library=mydata;
run;
quit;
data temp;
set mydata.stock portfolio data;
run;
data temp;
set mydata.stock portfolio data;
* Let's drop some variables to get better factor analysis results;
drop AA HON MMM DPS KO PEP MPC GS;
run;
proc sort data=temp; by date; run; quit;
proc print data=temp (obs=10);
run;
data temp;
set temp;
* Compute the log-returs;
* Note that the data needs to be sorted in the correct
direction in order for us to compute the correct return;
return BAC = log(BAC/lag1(BAC));
return BHI = log(BHI/lag1(BHI));
return CVX = log(CVX/lag1(CVX));
return DD = log(DD/lag1(DD));
return DOW = log(DOW/lag1(DOW));
return HAL = log(HAL/lag1(HAL));
return HES = log(HES/lag1(HES));
return HUN = log(HUN/lag1(HUN));
return JPM = log(JPM/lag1(JPM));
return SLB = log(SLB/lag1(SLB));
return WFC = log(WFC/lag1(WFC));
return XOM = log(XOM/lag1(XOM));
* Compute the remainder of the log-returs;
response VV = log(VV/lag1(VV));
proc print data=temp(obs=10); run; quit;
```

```
Assignment #7: Factor Analysis
PREDICT 410
data return data;
set temp (keep= return :);
* What happens when I put this keep statement in the set statement?;
* Look it up in The Little SAS Book;
run;
proc print data=return data(obs=10); run;
ods graphics on;
proc factor data=return data method=principal priors=smc rotate=none
plots=(all); run; quit;
ods graphics off;
ods graphics on;
proc factor data=return data method=principal priors=smc rotate=varimax
plots=(all); run; quit;
ods graphics off;
ods graphics on;
proc factor data=return data method=ML priors=smc rotate=varimax
plots=(loadings); run; quit;
ods graphics off;
ods graphics on; proc factor data=return data method=ML priors=max rotate=varimax
 plots=(loadings); run; quit;
ods graphics off;
```