

Иван Кочкожаров, студент группы М8О-108Б-22

4 июня 2023 г.

1. Определить для орграфа, заданного матрицей смежности
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- а) матрицу односторонней связности;
- б) матрицу сильной связности;
- в) компоненты сильной связности;
- г) матрицу контуров.

Решение.

Изображение графа:

Рис. 1: Граф *G*

Матрица односторнней связности:

$$A = A(D) = \begin{vmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & 0 & 0 & 0 & 1 \\ v_3 & 1 & 1 & 0 & 1 \\ v_4 & 0 & 0 & 0 & 0 \end{vmatrix}$$

Матрица двусторонней связности:

$$S(D) = T(D) \& [T(D)]^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

 $S(D) = E \Rightarrow$ в графе D нет контуров.

Компонентны сильной связности:

$$S_2(D) = S(D) = \begin{vmatrix} & v_1 & v_2 & v_3 & v_4 \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 1 & 0 & 0 \\ v_3 & 0 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$D_1 = (V_1, X_1), V_1 = \{v_1\}$$

$$A(D_1) = \begin{array}{|c|c|c|c|c|} \hline v_1 \\ \hline v_1 & 0 \\ \hline \end{array} \qquad D_1:$$

$$U_1:$$
 $\begin{pmatrix} 1 \\ \end{pmatrix}$

$$S_{2}(D) = \begin{bmatrix} & v_{2} & v_{3} & v_{4} \\ v_{2} & 1 & 0 & 0 \\ v_{3} & 0 & 1 & 0 \\ v_{4} & 0 & 0 & 1 \end{bmatrix}$$

$$D_2 = (V_2, X_2), V_2 = \{v_2\}$$

$$S_3(D) = \begin{bmatrix} v_3 & v_4 \\ v_3 & 1 & 0 \\ v_4 & 0 & 1 \end{bmatrix}$$

$$D_3 = (V_3, X_3), V_3 = \{v_3\}$$

$$S_4(D) = \begin{array}{|c|c|c|} \hline v_4 \\ \hline \end{array}$$

$$D_4 = (V_4, X_4), V_4 = \{v_4\}$$

$$A(D_4) = egin{bmatrix} v_4 & v_4 \\ \hline v_4 & 0 \end{bmatrix} \qquad D_4:$$

$$\bigcirc$$
4

Матрица контуров:

2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

Рис. 2: Граф *G*

Решение.

Для решения этой задачи действуем в соответствии с алгоритмом Тэрри. Для реализации алгоритма помечаем первые заходящие в вершины ребра крестиками, которые наносим на ребрах ближе к той вершине в которую в первый раз заходим, а также указываем направления прохождения ребер и последовательность прохождения ребер. Алгоритм дает следующий возможный маршрут:

 $v_1v_2v_3v_5v_4v_3v_4v_2v_4v_1v_4v_5v_3v_2v_1$

Рис. 3: Визуализация алгоритма Терри

3. Орграф D=(V,X), где $V=\{v_1,\ldots,v_{10}\}$ задан матрицей смежности A(D). Найти все минимальные пути v_1 в v_8 .

		v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
A = A(D) =	v_1	0	0	1	0	0	1	0	0
	v_2	1	0	1	1	1	1	0	0
	v_3	1	0	0	0	0	1	0	0
	v_4	1	1	1	0	0	1	0	0.
	v_5	1	1	1	1	0	0	1	1
	v_6	0	0	1	1	0	0	0	0
	v_7	1	0	1	1	1	1	1	0
	v_8	1	0	1	1	0	0	1	0

Решение.

Действуя согласно алгоритму фронта волны, последовательно определяем:

$$FW_{0}(v_{1}) = \{v_{1}\}, FW_{1}(v_{1}) = D(v_{1}) = \{v_{3}, v_{6}\},$$

$$FW_{2}(v_{1}) = D(FW_{1}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1})) = D(\{v_{3}, v_{6}\}) \setminus \{v_{1}, v_{3}, v_{6}\} =$$

$$= \{v_{1}, v_{3}, v_{4}, v_{6}\} \setminus \{v_{1}, v_{3}, v_{6}\} = \{v_{4}\}$$

$$FW_{3}(v_{1}) = D(FW_{2}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1})) = \{v_{1}, v_{2}, v_{3}, v_{6}\} \setminus$$

$$\{v_{1}, v_{3}, v_{4}, v_{6}\} = \{v_{2}\}$$

$$FW_{4}(v_{1}) = D(FW_{3}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1})) =$$

$$= \{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\} \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\} = \{v_{5}\}$$

$$FW_{5}(v_{1}) = D(FW_{4}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1}) \cup FW_{4}(v_{1})) =$$

$$\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}, v_{8}\} \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\} = \{v_{7}, v_{8}\}$$

Таким образом, $v_8 \in FW_5(v_1)$, а следовательно, согласно алгоритму фронта волны существует минимальный путь в орграфе D из v_1 в v_8 длины 5. Найдём все эти пути.

Рис. 4: Граф D'

На рисунке 4 изображен подграф D' орграфа D, на котором последовательно изображены множества $FW_k(v_1), k=1,2,3,4,5$, а так же дуги вида (v,v'), где для некоторого $k \in \{0,1,2,3,4\}, v \in FW_k(v_1), v' \in FW_{k+1}(v_1)$, т.е. исходящие из вершин некоторого k-го фронта волны и заходящие в вершины следующего (k+1)-го фронта волны.

Используя изображение D' нетрудно выделить все минимальные пути из v_1 в v_8 в орграфе D. При этом, следуя алгоритму фронта волны, находим эти минимальные пути, используя орграф D' но двигаясь в D' в обратной последовательности (т.е. не из v_1 в v_8 а наоборот, из v_8 в v_1). Используя рисунок 4, получаем, что в любом минимальном пути из v_1 в v_8 соблюдается следующая последовательность вершин. Вершиной, предшествующей вершине v_8 может быть v_5 . Вершиной, предшествующей вершине v_4 — любая из вершине v_2 — вершина v_4 . Вершиной, предшествующей вершине v_4 — любая из вершин v_3 , v_6 . Вершиной, предшествующей вершинам v_3 и v_6 может быть только v_1 . Этими условиями однозначно определяется множество минимальных путей из v_1 в v_8 которое компактно изображено на рисунке v_4 В том рисунке изображены все вершины, входящие в минимальные пути v_1 в v_8 Для каждой из промежуточных вершин v_4 показано множество вершин, которые могут ей предшествовать, а также соответствующие дуги (исходящие из вершин, предшествующих v_4 и заходящие в v_4 . Из рисунка v_4 видно, что всего существует два минимальных пути из v_4 в v_8 : v_4 v_4 v_4 v_5 v_8 , v_4 v_4 v_4 v_5 v_8 .

Рис. 5: Граф минимальных путей

4. Нагруженный орграф D задан матрицей длин дуг C(D). Найти минимальные пути из v_1 во все достижимые вершины.

$$C(D) = \begin{pmatrix} \infty & 4 & \infty & \infty & 5 & \infty & \infty & \infty \\ 5 & \infty & 7 & 10 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & 2 & \infty & 2 & \infty & \infty \\ 6 & \infty & \infty & \infty & \infty & \infty & 3 & 5 \\ 3 & 2 & \infty & \infty & \infty & 3 & 11 & \infty \\ 4 & \infty & 2 & \infty & \infty & \infty & 7 & \infty \\ 8 & \infty & \infty & 3 & \infty & \infty & \infty & 3 \\ \infty & \infty & \infty & \infty & 17 & \infty & \infty & \infty \end{pmatrix}$$

Решение.

Воспользуемся алгоритмом Форда. Сначала определим таблицу величин $\lambda_i^{(i)}, i = 1, 2, \ldots, n-1$, где n=8

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	$\lambda^{(0)}$	$\lambda^{(1)}$	$\lambda^{(2)}$	$\lambda^{(3)}$	$\lambda^{(4)}$	$\lambda^{(5)}$	$\lambda^{(6)}$	$\lambda^{(7)}$
v_1	∞	4	∞	∞	5	∞	∞	∞	0	0	0	0	0	0	0	0
v_2	5	∞	7	10	2	∞	∞	∞	∞	4	4	4	4	4	4	4
v_3	∞	∞	∞	2	∞	2	∞	∞	∞	∞	11	10	10	10	10	10
v_4	6	∞	∞	∞	∞	∞	3	5	∞	∞	14	13	12	12	12	12
v_5	3	2	∞	∞	∞	3	11	∞	∞	5	5	5	5	5	5	5
v_6	4	∞	2	∞	∞	∞	7	∞	∞	∞	8	8	8	8	8	8
v_7	8	∞	∞	3	∞	∞	∞	3	∞	∞	16	15	15	15	15	15
v_8	∞	∞	∞	∞	17	∞	∞	∞	∞	∞	∞	19	18	17	17	17

C(D) Таблица величин

Обозначим $\lambda^{(k)} = (\lambda_1^{(k)}, \dots, \lambda_8^{(k)})^{\mathrm{T}}$, где $k = 0, 1, \dots, 7$. Это столбцы в таблице величин. Первая строка по таблицы величин состоит из нулевых элементов $(\lambda_1^{(k)} = 0, k = 0, 1, \dots, 7)$, а первый столбец заполняем следующим образом: $\lambda_i^{(0)} = \infty, i = 2, \dots, 8$. Далее, используя формулу $\lambda_j^{(k+1)} = \min_{1 \leq i \leq 8} \{\lambda_i^{(k)} + c_{ij}\}$ последовательно определяем элементы столбца $\lambda^{(1)}$, используя элементы столбца $\lambda^{(0)}$ (а так же элементы матрицы C(D)), затем находим элементы столбца $\lambda^{(2)}$, используя элементы столбца $\lambda^{(1)}$ и т.д.

Длина минимального пути из v_1 в v_8 равна 17. Вершине v_8 предшествует v_4 , потому что $\lambda_8^{(5)}=17=\lambda_4^{(4)}+c_{48}=12+5$. Вершине v_4 предшествует v_3 и т.д. В итоге получаем минимальный путь: $v_1v_5v_6v_3v_4v_8$ (в таблице выделен жирным шрифтом). Соответственно, $v_1v_5v_6v_3v_4$, $v_1v_5v_6v_3$, $v_1v_5v_6$, v_1v_5 - минимальные пути из v_1 в соответствующие вершины. Минимальный путь из v_1 в v_7 находится аналогично. Получаем такой минимальный путь: $v_1v_5v_6v_7$. Минимальный путь из v_1 в v_2 , очевидно, v_1v_2 .

5. Найти остовное дерево графа G с минимальной суммой длин входящих в него ребер.

Рис. 6: Граф *G*

Решение. Согласно алгоритму Краскала выбираем ребро $\{v_5, v_6\}$ минимальной длины 1. Выделяем его жирной линией (см. рис. 7). Далее выбираем ребро минимальной длины, соединяющее либо v_5 либо v_6 с какой-нибудь новой (т.е. отличной от v_1, v_5) вершиной графа G (т.е. выбираем среди ребер $\{v_5, v_1\}, \{v_5, v_9\}, \{v_6, v_2\}, \{v_6, v_7\}, \{v_6, v_{10}\})$. Минимальную длину имеет ребро $\{v_5, v_9\}$. Выделяем его жирной линией (см. рис. 7). Далее выбираем ребро минимальной длины, соединяющее либо v_5 , либо v_6 , либо v_9 с какой-нибудь новой вершиной графа (выбираем между $\{v_9, v_{10}\}, \{v_6, v_{10}\}, \{v_6, v_7\}, \{v_6, v_2\}, \{v_5, v_1\})$. Минимальную длину имеет ребро $\{v_5, v_1\}$ Выделяем его жирной линией (см. рис. 7). Следующим ребром минимальной длины (если таких несколько, можно выбрать любое) среди всех возможных является $\{v_1, v_2\}$, затем $\{v_2, v_3\}$, далее $\{v_3, v_4\}$, далее $\{v_4, v_8\}$, далее $\{v_8, v_{12}\}$, далее $\{v_7, v_8\}$, далее $\{v_7, v_{11}\}$ и, наконец, $\{v_6, v_{10}\}$. Выделено 11 = 12 - 1 = n(G) - 1 ребер, алгоритм окончен, выделяем минимальное остовное дерево графа (см. на рис. 7 подграф графа G, ребра которого выделены жирными линиями).

Рис. 7: Граф G с выделенным подграфом - минимальным остовным деревом

6. Пусть каждому ребру неориентированного графа изображенного на рис. 8 соответствует некоторый элемент электрической цепи. Составить линейно незави-

симые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить общую систему уравнений для токов.

Рис. 8: Граф *G*

Решение. Выделим произвольным образом остовное дерево графа. Для графа изображенного на рис. 8, одним из возможных остовных деревьев является дерево, изображенное на рис. 9 (пунктирными линиями изображены удаленные из ребра).

Рис. 9: Остовное дерево графа G

Добавляя любое из ребер, не вошедших в остовное дерево графа G (изображенных на рис. 9 пунктирными линиями), мы получим граф с некоторым простым циклом. Всего в остовное дерево не вошли v(G) = m(G) - n(G) + 1 ребер (для графа, изображенного на рис. 8, v(G) = 10 - 6 + 1 = 5), а поэтому можем получить таким образом v(G) = 5 простых циклов. Эти циклы различны в том смысле что каждый из них проходит через ребро (то самое, которое мы добавляли для выделения

данного цикла), через которое не проходит ни один другой цикл. Они образуют иикловой базис графа G.

Для графа, изображенного на рис. 8 в цикловой базис войдут циклы:

$$\mu_1 = \mu_1(x_1) = x_1 x_6 x_9 x_{10}, \mu_2 = \mu_2(x_2) = x_2 x_3 x_4, \mu_3 = \mu_3(x_5) = x_5 x_6 x_4$$

 $\mu_4 = \mu_4(x_7) = x_7 x_9 x_6 x_4, \mu_5 = \mu_5(x_8) = x_8 x_6 x_9$

Введем произвольную ориентацию на ребрах графа G. В результате каждое ребро x_j превратится в дугу $\tilde{x_j}$ и, соответственно, множество ребер X в множество дуг \widetilde{X} , а сам граф G=(V,X) в орграф $D=(V,\widetilde{X})$. Для графа G, изображенного на рис. 8, в результате введения ориентации на его ребрах получаем, например, орграф $D=(V,\widetilde{X})$, изображенный на рис. 10.

Рис. 10: Орграф *D*

Для графа G с выделенным ранее цикловым базисом $\mu 1, \mu 2, \mu 3, \mu 4, \mu 5$ и выбранной ориентацией ребер, соответствующей орграфу D, изображенному на рис. 10, цикломатическая матрица имеет вид:

		*	*			*		*	*		
		x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
	μ_1	1	0	0	0	0	1	0	0	-1	-1
C(G) =	μ_2	0	1	-1	-1	0	0	0	0	0	0
	μ_3	0	0	0	1	-1	-1	0	0	0	0
	μ_4	0	0	0	1	0	-1	-1	0	1	0
	μ_5	0	0	0	0	0	1	0	1	-1	0

При построении циклового базиса графа G мы поочередно добавляли к остовному дереву графа G ребра x_1, x_2, x_5, x_7, x_8 . Выделяем соответствующие этим ребрам столбцы в матрице C(G). Из выделенных столбцов составим матрицу и найдем ее определитель.

$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{vmatrix} \neq 0$$

Ранг матрицы C(G) равен числу строк, т.е. $\nu(G)$.

Пусть теперь граф G соответсвует электрической цепи, где первому и пятому ребру соответствуют E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями.

Выберем произвольным образом направления токов в элементах цепи (условные направления; после решения соответствующей системы уравнений знаки при величинах токов покажут истинные направления токов). Пусть эти направления соответствуют выбранной ранее ориентации ребер графа G. Ввпишем систему уравнений Кирхгофа для напряжений:

$$\mu_1: -u_1 + u_6 - u_9 - u_{10} = 0$$
 $\mu_2: u_2 - u_3 - u_4 = 0$

$$\mu_3: u_4 - u_5 - u_6 = 0$$

$$\mu_4: u_4 - u_6 - u_7 + u_9 = 0$$

$$\mu_5: u_6 + u_8 - u_9 = 0$$

или, с учетом закона Ома, а также того, что $u_1 = E_1, u_5 = E_2$, а номера сопротивлений соответсвуют номерам ребер, имеем:

$$\begin{cases}
-E_1 + i_6 r_6 - i_9 r_9 - i_{10} r_{10} = 0 \\
i_2 r_2 - i_3 r_3 - i_4 r_4 = 0 \\
i_4 r_4 - E_2 - i_6 r_6 = 0 \\
i_4 r_4 - i_6 r_6 - i_7 r_7 + i_9 r_9 = 0 \\
i_6 r_6 + i - 8 r_8 - i_9 r_9 = 0
\end{cases}$$

Система уравнений Кирхгофа для токов имеет вид, где

		\widetilde{x}_1	\widetilde{x}_2	\widetilde{x}_3	\widetilde{x}_4	\widetilde{x}_5	\widetilde{x}_6	\widetilde{x}_7	\widetilde{x}_8	\widetilde{x}_9	\widetilde{x}_{10}
	v_1	0	1	1	0	0	0	0	0	0	0
	v_2	1	-1	0	-1	0	-1	0	1	0	0
C(G) =	v_3	0	0	-1	1	1	0	1	0	0	0
	v_4	-1	0	0	0	0	0	0	0	0	-1
	v_5	0	0	0	0	0	0	-1	-1	-1	1
	v_6	0	0	0	0	-1	1	0	0	1	0

При этом для достижения линейной независимости системы уравнений Кирхгофа для токов необходимо исключить из системы любое уравнение, например, второе. В результате система линейно независимых уравнений Кирхгофа для токов имеет вид:

$$\begin{cases} i_2 + i_3 = 0 \\ -i_3 + i_4 + i_5 + i_7 = 0 \\ -i_1 - i_{10} = 0 \\ -i_7 - i_8 - i_9 + i_{10} = 0 \\ -i_5 + i_6 + i_9 = 0 \end{cases}$$

Таким образом, общей системой уравнений для токов является объединение систем. Заметим, что полученная объединенная система уравнений состоит из девяти уравнений относительно девяти неизвестных i_1, i_2, \ldots, i_{10} : после нахождения которых нетрудно определить u_1, u_2, \ldots, u_{10} .

7. Построить максимальный поток по транспортной сети.

Рис. 11: Граф транспортной сети D

Решение. Начинаем с нулевого потока ϕ_0 . Каждой новой цепи из v_1 в $v_n = v_5$ будем ставить в соответствие ее очередной номер, т.е. будем обозначать эти цепи через η_1 , η_2 и т.д. Соответственно, после нахождения цепи η_1 поток ϕ_0 изменится на поток ϕ_1 . После нахождения цепи η_2 поток ϕ_1 изменится на ϕ_2 и т.д. Числа, на которые увеличиваем потоки по дугам из η_i обозначаем через α_i . Насыщенные дуги при изображении транспортной сети D с очередным потоком ϕ_i помечаем символом \times . На рис. 12 приведены изображения орграфа D с потоком ϕ_0 , а так же вспомогательного орграфа D', который на этом этапе совпадает с D.

Рис. 12

Выделяем в D' простую цепь $\eta_1 = v_1v_2v_4v_7v_9$ из v_1 в v_9 . Увеличиваем поток $\phi(x)$ по каждой дуге x из η_1 на одинаковую величину $\alpha_1 = 6$ до насыщения дуг (v_1v_2) и (v_2v_4) . На рис. 13 приведены изображения орграфа D с потоком ϕ_1 , а также соответсвующего этому потоку вспомогательного орграфа D'.

Рис. 13

Продолжаем выделять произвольные простые цепи и максимально увеличивать поток на них, а затем удалять насыщенные дуги, пока сток перестанет быть доступным из истока.

Рис. 14

Рис. 15

Рис. 16

Рис. 17: Орграф приращений $I(D,\phi)$ и модифицированный орграф

Мы видим, что для орграфа D', соотвествующего потоку ϕ_2 не существует пути из источника в сток, а следовательно, ϕ_3 – полный поток. Для увеличения полного потока до максимального нужно построить орграф приращений.

Рис. 18

Для построения максимального потока воспользуемся алгоритмом Форда-Фалкерсона. Начинаем с ранее построенного потока ϕ_5 . Выделяем в $I(D,\phi)$ простую цепь $\eta_6=$

 $v_1v_6v_3v_5v_9$. Увеличиваем потоки по дугам из η_4 на одинаковую величину, равную 3, до насыщения (v_1, v_6) , при этом поток по дугам (v_3, v_5) , (v_5, v_9) не превышает пропускной способности, а по дуге (v_3, v_6) уменьшается на 3. В результате поток ϕ_5 меняется на поток ϕ_6 . Далее строим модифицированный орграф приращений.

Рис. 19

Выполняем те же самые действия для цепи $v_1v_4v_2v_5v_8v_9$ (увеличиваем поток по ней на 4, получаем ϕ_7)

Рис. 20

Выполняем те же самые действия для цепи $v_1v_4v_7v_5v_9$ (увеличиваем поток на 1 по ней на 1, получаем ϕ_8)

Рис. 21

Поскольку в $I(D,\phi_8)$ вешина v_9 не достижима из v_1 , то согласно алгоритму - ϕ_8 - искомый максимальный поток, при этом $\overline{\phi}_8=31$.

8. Построение функции Гранди графа. Изучить возможность построения функции Гранди для графа, содержащего контуры

1 Алгоритм

1.1 Определение функции Гранди

Рассмотрим орграфа D=(V,X). Функция g(v), ставящая в соответствие каждой вершине $v\in V$ целое число $g(v)\geq 0$, называется функцией Гранди для орграфа D, если в каждой вершине $v\in V$ число g(v) является миинмальным из всех целых неотрицательных чисел, не принадлежащих множеству $\{g(w)|w\in D(v)\}$, и g(v)=0 при $D(v)=\varnothing$. Если для оргафа D существует функция Гранди, то говорят, что орграф donyckaem (в противном случае - donyckaem) функцию Гранди. Не всякий орграф D допускает функцию Гранди, а если допускает, то она не обязательно единственная.

1.2 Описание алгоритма

Алгоритм находит все возможные функции Гранди для орграфа D=(V,X), или определять, что она для него недопустима. Граф вводится в виде матрицы смежности $n \times n$.

- 1. Разбить граф на уровни $V_0, V_1 \dots V_n$, используя алгоритм разбиения орграфа на уровни. Если разбиение удалось, перейти к пункту 2. Иначе, перейти к пункту 3 (т.к. заданный орграф имеет контуры).
- 2. Определяем функцию Гранди для первых двух уровней: $\forall v \in V_0, g(v) = 0; \forall v \in V_1, g(v) = 1$. Далее находим значения функции на каждом уровне $V_i, i \geq 2$, используя значения функции на предыдущих уровнях. Функция Гранди будет однозначно определена для этого графа.
- 3. Находим ядра графа N ($\forall v \in N, N \cap D(v) = \varnothing; \forall v \in V \setminus N, n \cap D(v) \neq \varnothing$). Для этого можно воспользоваться методом Магу. Значения функции Гранди в вершинах, входящих в ядро равны 0. Это позволяет рекурсивно определить значения функции Гранди в остальных вершинах. Повторив эти действия для всех ядер, получаем все возможные функции Гранди, допустимые для этого графа. Если ядер нет функция Гранди недопустима.

1.3 Обоснование алгоритма

Если у орграфа D=(V,X) нет контуров, то разбиение на уровни $V_0,V_1\dots V_r$:

$$V_{0} = \{v \in v | | D(v) = \varnothing\};$$

$$V_{1} = \{v \in V \setminus V_{0} | D(v) \subseteq V_{0}\};$$

$$V_{2} = \{v \in V \setminus (V_{0} \cup V_{1}) | D(v) \subseteq V_{0} \cup V_{1}\};$$

$$\dots$$

$$V_{r} = \{v \in V \setminus \bigcup_{k=0}^{r-1} V_{k} | D(v) \subseteq \bigcup_{k=0}^{r-1} V_{k}\},$$

$$r = \min\{n \in \mathbb{N} | V \setminus \bigcup_{k=0}^{r} = \varnothing\}$$

являются непустыми множествами, образующими разбиение множества вершин V (теорема 4.8 и утвержедение 4.53 из "Курса дискретной математики").

Для нахождения этих уровней можно воспользоваться специальным алгоритмом, который так же может показать, что орграф имеет контуры и разбиение невозможно. Для начала надо выписать матрицу смежности графа A(D). Под матрицей образуем строку Λ_0 , в i-м месте которой укажем число единиц в i-ой строке матрицы A(D). Уровень образуют вершины, которым в строке Λ_0 соответсвует число 0. Если $V = V_0$, то V_0 - единственный уровень орграфа. Иначе, под Λ_0 образуем Λ_i , ставя под нулям из Λ_{i-1} символы \times (и под символами \times тоже ставим \times) и при подсчете единиц, не учитывать те, которые находятся над \times до тех пор, пока вся Λ_i не будет состоять из 0 и \times . Тогда Λ_i будет соответсвовать V_i состоящий из вершин, которым в Λ_i соответсвуют 0. Если в течение алгоритма появится строка без 0, то значит орграф содержит контуры.

Напомним, что для орграфа D(V,X) функция Гранди определяется рекурсивно: $g(v) = \min(\{n \in \mathbb{Z} | n \geq 0\} \setminus \{g(w) | w \in D(v)\}); g(v) = 0, D(v) = \emptyset.$

Рассмотрим $\partial 6a$ случая: орграф, для которого необходимо определить функцию Гранди не имеет контуры или имеет их.

Докажем следующее: Если орграф допускает функцию Гранди, то найдется вершина $v \in V$ такая, что g(v) = 0.

Пусть в орграфе D $\forall v \in V, g(v) > 0$. Рассмотрим произвольную вершину $w \in V$. Тогда, с одной стороны, в силу нашего утверждения имеем g(w) > 0, а с другой стороны, используя это же утверждение получаем, что либо $D(w) = \varnothing$, либо $\forall v \in D(w), g(v) > 0$, а следовательно, по определению функции Гранди, g(w) = 0, т.е. противоречие.

В первом случае орграф допускает и притом единственную функцию Гранди. Множество вершин разбито на уровни V_0, \ldots, V_r . По определению функции Гранди, если она допустима для D, то $\forall v \in V_0, g(v) = 0; \forall v \in V_1, g(v) = 1$. Заметим, что значения функции Гранди на каждом уровне V_i , где $i \geq 2$, однозначно находятся по ее значениям на предыдущих уровнях V_0, \ldots, V_{i-1} (поскольку $\forall v \in V_i D(v) \subseteq \bigcup_{k=0}^{i-1} V_k$), а следовательно, исходя из определенных значений функции для вершин

нулевого и первого уровней, ее можно однозначно определить на всех последующих уровнях.

Для рассмотрения второго случая докажем следующую теорему: Если орграф D = (V, X) допускает функцию Гранди g(v), то множество вершин $N = \{v \in V | g(v) = 0\}$ является ядром этого орграфа.

Покажем, что множество N удовлетворяет условиям (см. определение ядра):

- 1. $\forall v \in N, N \cap D(v) = \emptyset$;
- 2. $\forall v \in V \setminus N, N \cap D(v) \neq \emptyset$.

Докажем сначала, что выполняется первое условие. Пусть $v \in N$. Тогда g(v) = 0. Если предположить, что $N \cap D(v) \neq \emptyset$, то существует вершина $w \in N \cap D(v)$. Но тогда из $w \in N$ имеем g(w) = 0, а из $w \in D(w)$ получаем, что не может выполнятся равенство g(v) = 0. Данное противречие подтверждает справедливость первого условия.

Докажем теперь, что выполняется второе условие. Пусть $v \in V \setminus N$. Тогда $g(v) \neq 0$. Если предположить, что $N \cap D(v) = \emptyset$, то по определению функции Гранди должно выполнятся равенство g(v) = 0, т.е. пришли к противоречию, а значит $N \cap D(v) \neq \emptyset$.

Из этой теоремы следует то, что количество ядер графа равно количеству различных функций Гранди, которые он допускает. Поэтому, если найти ядра N_i графа с помощью метода Магу, можно рекурсивно определить i функций Гранди для остальных, учитывая, что она равна 0 в вершинах принадлежащих N_i . А если ядер нет, то нарушается ранее доказанное утверждение сушествования функции Гранди.

На ЭВМ проще всего реализовать метод Магу следующим образом. КН Φ , получаемые из матрицы A(D) смежности по специальным формулам.

$$D = (V,X), X \neq \varnothing, U \subseteq V$$

$$\varepsilon = \begin{cases} 1, & \text{если } v_i \in U \\ 0, & \text{если } v_i \in U \end{cases}$$

$$\bigwedge_{i=1}^n \bigwedge_{j=1}^n (\bar{a}_{ij} \vee \bar{\varepsilon}_i \vee \bar{\varepsilon}_j) = 1 \Rightarrow \text{ U - внтуренне устойчивое множество}$$

$$\bigwedge_{i=1}^n (\varepsilon_i \vee \bigvee_{a_{ij}=1} \varepsilon_j) = 1 \Rightarrow \text{ U - внешне устойчивое множество}$$

$$\bigwedge_{i=1}^n \bigwedge_{j=1}^n (\bar{a}_{ij} \vee \bar{\varepsilon}_i \vee \bar{\varepsilon}_j) \wedge \bigwedge_{i=1}^n (\varepsilon_i \vee \bigvee_{a_{ij}=1} \varepsilon_j) = 1 \Rightarrow \text{ U - ядро}$$

$$\sum_{i=1}^n \bigcap_{j=1}^n (\bar{a}_{ij} \vee \bar{\varepsilon}_i \vee \bar{\varepsilon}_j) \wedge \bigwedge_{i=1}^n (\varepsilon_i \vee \bigvee_{a_{ij}=1} \varepsilon_j) = 1 \Rightarrow \text{ U - ядро}$$

Эту КН Φ нужно привести к СДН Φ с помощью построения таблиц истинности. Получаем СДН Φ , которая будет соответсвовать всем ядрам графа.

- 2 Программа алгоритма
- 3 Примеры
- 4 Оценка сложности