Topology in Condensed Matter Summary of Lectures

Dr Nicholas Sedlmayr Institute of Physics, UMCS

Contents

1	Useful Notation	
2	Some Mathematical Background in Topology	

1 Useful Notation

iff	if and only if
\Rightarrow	if then
	defined as
·:	therefore
• • •	because
	end of proof
\mathbb{R}	set of real numbers
\mathbb{C}	set of complex numbers
\mathbb{I}	identity matrix
\forall	the universal quantifier, for all
\exists	the existential quantifier, there exists
\in	is an element of
\subset	is a subset of
\cup	union of sets
\cap	intersection of sets

2 Some Mathematical Background in Topology

- Let X_1 and X_2 be topological spaces. A map $f: X_1 \to X_2$ is a homeomorphism if it is continuous and has an inverse $f^{-1}: X_2 \to X_1$ which is also continuous. If there exists a homeomorphism between X_1 and X_2 , X_1 is said to be homeomorphic to X_2 and vice versa. If two topological spaces have different topological spaces then they are not homeomorphic to each other..
- Let be any set and $\mathcal{T} = \{U_i | i \in I\}$ denote a specific collection of subsets of X. The pair (X, \mathcal{T}) is a topological space if \mathcal{T} satisfies the following requirements:
 - (i) $0, X \in \mathcal{T}$
 - (ii) If J is any subcollection of I the family $\{U_j|j\in J\}$ satisfies $\cup_{k\in K}U_k\in\mathcal{T}$
 - (iii) If K is any finite subcollection of I the family $\{U_k|k\in K\}$ satisfies $\cap_{k\in K}U_k\in \mathcal{T}$

X itself is often called a topological space. The U_i are the open sets and \mathcal{T} gives a topology to X.

• Let X and Y be topological spaces. A map $f: X \to Y$ is continuous if the inverse image of open set in Y is an open set in X.