Linear Classifiers

Agnes M Nielsen

DTU
Based on slides by Lars Arvastson and Line Clemmensen

02582 Computational Data Analysis, 2019

Today's Lecture

- Recap
- Linear Discriminant Analysis
- Logistic Regression
- Splines

Last week: Dimensionality

- Curse of Dimensionality
 - Number of regions grows exponentially with dimension
- Blessings of Dimensionality
 - Correlated features
 - Low-dimensional manifold
 - Underlying Structure

Last week: Regularization

- Methods
 - ▶ Ridge: $||\beta||_2$ shrinks parameters
 - ▶ Lasso: $||\beta||_1$ sets some parameters to zero
 - ► Elastic Net: Combines the other two
- Shrinkage and sparsity

Last week: Multiple Testing

- Testing many hypothesis
- Bonferroni Correction: Re-scale threshold with number of tests
- False Discovery Rate: Control the number of false discoveries

Linear Discriminant Analysis

Classification method

- Based on probability of class belonging
- Linear decision boundary

Linear Discriminant Analysis

- Classification from a probabilistic viewpoint
 - P(G=k|X=x)
 - ▶ Probability of class *k*, given observation *x*

Example:

$$P(G = \frac{\text{red}}{X} = [0, -1])$$
 and $P(G = \frac{\text{blue}}{X} = [0, -1])$

Predict that observation X = [0, -1] belongs to the class with the **highest probability**

- We need a stochastic model for data to calculate probabilities
- Assume that data come from different Gaussian distributions
 - ▶ Different mean
 - Same correlation structure (just for simplicity)
- ► Data from different classes will overlap
- ► A straight line will be our decision boundary

Calculating Class Probabilities

G(x) predicts class belonging for x,

$$G(x) = \arg\max_{k} \mathbf{P}(G = k | X = x).$$

Probablity given by Bayes theorem

$$\mathbf{P}(G=k|X=x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^k f_\ell(x)\pi_\ell}$$

 $f_\ell=$ distribution for class ℓ $\pi_\ell=$ a priori probability for class ℓ (estimate or best guess) Total probability, $\sum \pi_\ell=$ 1.

Odds-Ratios

Look at log-**odds-ratio** for the two classes k and ℓ

$$\log \frac{\mathbf{P}(G = k|X = x)}{\mathbf{P}(G = \ell|X = x)} = \log \frac{f_k(x)\pi_k/\sum_i f_i\pi_i}{f_{\ell(x)}\pi_\ell/\sum_i f_i\pi_i}$$
$$= \log \frac{f_k(x)}{f_{\ell}(x)} + \log \frac{\pi_k}{\pi_\ell}$$

We must make an assumption about f.

Assume that data in each class follows a multivariate normal distribution,

$$f(x) = (2\pi)^{-p/2} |\Sigma_k|^{-1/2} e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1} (x-u_k)}$$

with a common covariance matrix $\Sigma_k = \Sigma$.

The Decision Boundary is Linear

$$\log \frac{\mathbf{P}(G = k | X = x)}{\mathbf{P}(G = \ell | X = x)}$$

$$= ...$$

$$= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \Sigma^{-1} (\mu_k - \mu_\ell) + x^T \Sigma^{-1} (\mu_k - \mu_\ell)$$

Along the decision boundary we have $f_k \pi_k = f_\ell \pi_\ell$ (equal probability for both classes) and a log-odds-ratio = log 1 = 0.

The decision boundary becomes

$$\log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \Sigma^{-1} (\mu_k - \mu_\ell) + x^T \Sigma^{-1} (\mu_k - \mu_\ell) = 0$$

which is linear in x - in p dimensions a **hyper plane** like,

$$a + x^T b = 0$$

Example: Result From LDA

LDA in Practice

The decision rule G(x) assigns class with highest probability

$$G(x) = \arg\max_{k} \delta_k(x).$$

using discriminant functions (P(G = k | X = x)) with constants removed)

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k; \quad k = 1, ..., K$$

Use plug-in estimates for unknown parameters,

 $\hat{\pi}_k = N_k/N$, where N_k is number of class-k observations

$$\hat{\mu}_k = \sum_{\alpha := k} x_i / N_k$$

$$\hat{\Sigma} = \sum_{k=1}^K \sum_{\alpha_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T / (N - K)$$

More Than Two Classes

- One decision line for each pair of classes
- One discriminant function for each class
 - Assign class to highest probability.

Variations of LDA

- Quadratic Discriminant Analysis
- Regularized Discriminant Analysis
- Reduced Rank Discriminant Analysis
- Sparse Discriminant Analysis

Quadratic Discriminant Analysis

LDA assumes that the covariance structures are equal.

When we drop this restriction we get **quadratic discriminant analysis**, QDA, and the decision boundaries becomes non-linear.

Regularized Discriminant Analysis

- In LDA when p >> n the covariance matrix has rank at most n and needs to be inverted.
- The idea to solve this is similar to ridge regression. There are three ways.

Regularized Discriminant Analysis

It takes a lot of observations to estimate a large covariance matrix with precision. Three increasingly harsh regularizations are available

1. Make a compromise between LDA and QDA,

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1 - \alpha)\hat{\Sigma}$$

2. Shrink the covariance towards its diagonal

$$\hat{\Sigma}_k(\gamma) = \gamma \hat{\Sigma} + (1 - \gamma) \operatorname{diag}(\hat{\Sigma})$$

3. Shrink the covariance towards a scalar covariance structure

$$\hat{\Sigma}_k(\gamma) = \gamma \hat{\Sigma} + (1 - \gamma)\hat{\sigma}^2 I$$

Reduced Rank Discriminant Analysis

- The centroids lie in an affine subspace of dimension $\leq K 1$
- Can we find a smaller space such that we can optimally view the LDA? i.e find the linear combination of the X such that the between-class variance is maximized relative to the within-class variance.

Reduced Rank Discriminant Analysis

Classification in a reduced subspace. In higher dimensional subspace, the decision boundaries are hyper-planes and can not be represented as lines. Hence, this technique is very **useful for illustrating class separation**.

Sparse Discriminant Analysis

It can be shown that optimal scoring and LDA are equivalent [ESL section 12.5]

$$\underset{\theta_k,\beta_k}{\mathsf{minimize}} ||Y\theta_k - X\beta_k||_2^2$$

s.t.
$$\frac{1}{n} \theta_k^T Y^T Y \theta_k = 1$$
, $\theta_k^T Y^T T \theta_l = 0$ $\forall l < k$

where θ_k is a K-vector of scores, β_k p-vector of parameters and Y is a matrix of dummy variables for the classes.

Sparse Discriminant Analysis

SDA comes from adding the ridge and lasso penalties

$$\underset{\theta_k,\beta_k}{\mathsf{minimize}} ||Y\theta_k - X\beta_k||_2^2 + \lambda_2||\beta_k||_2^2 + \lambda_1||\beta_k||_1$$

s.t.
$$\frac{1}{n}\theta_k^T Y^T Y \theta_k = 1$$
, $\theta_k^T Y^T T \theta_l = 0$ $\forall l < k$

This gives sparsity in features (good interpretation).

Logistic Regression

Classification method

- Fewer assumptions than LDA
- Linear decision boundary

Recall the LDA Assumptions

What made LDA linear?

- Equal covariance matrices
 - Unequal covariances lead to QDA
- Classes have Gaussian distributions

Logistic Regressions Throws Away These Assumptions

- Never mind about covariances and distributions!
- Optimize linear log-odds function directly

► log
$$\frac{P(G=red|X)}{P(G=blue|X)} = \beta_0 + X\beta$$

- This is logistic regression
- ▶ What is a good choice of $\{\beta_0, \beta\}$?

Exercise: Two Class Problem

Derive expressions for the two class problem

$$P(G = red | X = x) = ?$$

$$P(G = blue|X = x) = ?$$

when
$$\log \frac{P_r}{P_b} = \beta_0 + x\beta$$

Likelihood Function

Combine this for all data points x_i

$$L(\beta_0,\beta)=\prod_{i=1}^n P(G=g_{x_i}|X=x_i)$$

Assuming independence, this is the joint probability

Fitting Logistic Regression

- ▶ Maximize the likelihood, L, wrt β_0 and β
 - arg max $_{\beta_0,\beta} L(\beta_0,\beta)$
 - ▶ Easier to maximize the log of $L(\beta_0, \beta)$
 - $I(\beta_0,\beta) = \log(L(\beta_0,\beta)) = \sum_i \mathbb{1}(x_i = \text{red})(\beta_0 + x_i\beta) \log(1 + e^{\beta_0 + x_i\beta})$
- The approach is known as maximum likelihood
- The result is called logistic regression
- The maximization can be carried out using any method for numerical optimization
 - ▶ One algorithm uses an iteratively reweighted least squares solution

The Logistic Function

- $P(G = red | X = x) = \frac{e^{\beta_0 + x\beta}}{1 + e^{\beta_0 + x\beta}}$
- ▶ Decision boundary: $P = 1/2 \rightarrow \beta_0 + x\beta = 0$
- ▶ Well inside $P \approx 1$, well outside $P \approx 0$
 - Outliers are handled gracefully
 - ▶ Logistic regression focuses on observations close to the boundary

And In 2D

Logistic Regression vs. LDA

Multiple Logistic Regression

$$\begin{split} & \textit{K} \text{ classes, } \textit{K} = 1, 2, ..., \textit{K} \\ & \log \frac{P(G=1|X=x)}{P(G=K|X=x)} = \beta_{10} + x\beta_1 \\ & \log \frac{P(G=2|X=x)}{P(G=K|X=x)} = \beta_{20} + x\beta_2 \\ & \vdots \\ & \log \frac{P(G=K-1|X=x)}{P(G=K|X=x)} = \beta_{(K-1)0} + x\beta_{K-1} \end{split}$$

Arbitrary which class we put in the denominator

Multiple Logistic Regression

Since
$$P(G = K) = 1 - \sum_{i=1}^{K-1} P(G = i)$$
, we can show that

$$P(G = K|X = x) = \frac{1}{1 + \sum_{i=1}^{K-1} \exp(\beta_{i0} + x\beta_i)}$$

and then

$$P(G = k | X = x) = \frac{\exp(\beta_{k0} + x\beta_k)}{1 + \sum_{i=1}^{K-1} \exp(\beta_{i0} + x\beta_i)}$$

Hence, the class probabilities does not depend on the choice of denominator in the odds-ratios.

Interpretation of Coefficients

- ▶ We have estimated β_0 and β
- What do they mean?

 - ▶ They denote the log-odds contribution of each variable

Example: Model lung cancer (yes/no) as a function of smoking (number of cigarettes per day)

- ▶ $\beta = 0.02$
- ▶ A unit increase in smoking (one extra cigarette) means an increase in lung cancer risk (odds) of $exp(0.02) \approx 1.02 = 2\%$

Regularized Logistic Regression

Few observations (low n) and high dimension (high p) data is a problem also for logistic regression.

One solution is an elastic net regularization of the likelihood,

$$\begin{split} [\beta,\beta_0] &= \arg\max_{\beta_0,\beta} \left\{ \log L(\beta,\beta_0) - P_{\lambda,\alpha}(\beta) \right\} \\ &= \arg\max_{\beta_0,\beta} \left\{ \sum_{i=1}^n \left[y_i (\beta_0 + \beta^T x_i) - \log(1 + e^{1 + \beta_0 + \beta^T x_i}) \right] - P_{\lambda,\alpha}(\beta) \right\} \end{split}$$

with

$$P_{\lambda,\alpha}(\beta) = \lambda \left(\frac{1}{2} (1 - \alpha) ||\beta||_2^2 + \alpha ||\beta||_1 \right)$$

Use cross-validation for λ and α .

Why Logistic Regression?

- Statistics
 - Identify variables important for separating the classes
 - ► For example in biostatistics and epidemiology
- Classification
 - Predict class belonging of new observations
 - ► For example spam/email or diseased/healthy
- Risk prediction
 - Estimate probability (risk) of each class
 - For example fraud detection in insurance claims

Some Properties of Logistic Regression

- Logistic regression is more robust than LDA
 - It relies on fewer assumptions
 - ▶ When is this a bad thing when compared to LDA?
- ▶ Logistic regression handles categorical variables better than LDA
- Observations far away from the boundary are down-weighted
- ▶ Breaks down when classes are perfectly separable
- Easy to interpret and explain
- Surprisingly often hard to beat
- Can be combined with regularization of parameters (n < p)
- ► Can be generalized to multi-class problems

Supervised Classification Overview

Overview of classification methods - so far.

		Dimension	Variable	Weights on	Assuming	Distributional	Equal	Non-linear Decision
Method	p > n	Reduction	Selection	Observations	Independence	Assumptions	Covariances	Boundary
Linear DA (LDA)						х	х	
Reduced-rank LDA		х				х	х	
Quadratic DA (QDA)						х		Х
Logistic Regression				X				
K-Nearest Neighbor (KNN)				х				Х
Regularized DA	х	х	х		(x)	х	х	
Sparse DA	х	х	х			х	х	

Basis Expansions and Splines

- Non-linear transformations
- Cubic splines

For a Second Return to Regression..

Observed Data Would look Something Like This

Ordinary Least Squares

Transform to Be Able to Use Linear Model

Idea: replace variables (columns) of the data matrix, X, with transformations h(X)

The linear model

$$y = X\beta = \sum_{i=1}^{p} \beta_i x_i \to \sum_{i=1}^{M} \beta_i' h_i(X)$$

In this way we handle non-linear problems with our well known linear models

Basis Expansion

- We are not limited to use our data as they are
- Linear models
 - Easy to interpret
 - First order Taylor expansion of non-linearities
 - Might be ok even for non-linear data if we have few observations
- Non-linear problem transform data and use linear model
 - $h_m(X) = X_i^2$ and $h_m(X) = X_i X_k$
 - $h_m(X) = \log(X_i)$ or $h_m(X) = sqrt(X_i)$
 - $h_m(X) = \frac{X m_X}{s_X}$ (always used when using regularization)
 - ► $h_m(X_{(i)}) = i$, sort data $X_{(1)} \le X_{(2)} \le ...$ and use the rank
 - ▶ Either replacing X with $h_m(X)$ or expanding $\{X, h_m(X)\}$

Example: Let's Try With Up to X^2

$$X = [ones(n,1) \times x.^2];$$

y = X*(X\y)

Example: Or With Up to X^3

Example: Or With Up to X^8

More advanced Transformations

- Splines
 - ► We'll talk about that next
- Fourier/Wavelet transforms
 - ► Time series data/images
- Principal components
 - Projection along eigenvectors
- Moving averages
 - ► Possibly also delayed averages capturing time dynamics
 - ► Time series data

Piece-Wise

- To introduce flexibility while keeping the variance under control, we define different basis functions for different intervals of x.
- Example, divide the range of x in three parts

This Can Be Achieved Using The Hinge Function

- ▶ Introducing the "hinge" function $y = (f(x))_+$
- \triangleright Zero when f(x) is less than zeros, otherwise f(x)

Example: Try with Piece-Wise Linear Functions

$$X = [ones(n,1) \times max(0,x-5) max(0,x-10)];$$

Cubic Splines

Splines are piece-wise polynomials

The basis functions are

$$X = [ones(n,1) \times x.^2 \times .^3 \max(0,x-5).^3 \max(0,x-10).^3];$$

Or in the proper way

$$h_0(x) = 1$$

 $h_1(x) = x$
 $h_2(x) = x^2$
 $h_3(x) = x^3$
 $h_4(x) = (x - 5)^3_+$
 $h_5(x) = (x - 10)^3_+$

- Cubic splines have continuous first and second derivatives at the knots.
 - ▶ Le a smooth function

Example: Try With Cubic Splines

Spline approximation is

$$f(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + b_4 (t - 5)_+^3 + b_5 (t - 10)_+^3$$

Notice that this non-linear function was obtained with a linear model

Return to Linear Discriminant Analysis

Recall this gives linear decision boundary but we can apply our new knowledge!

LDA with Basis Expansion

The decision boundary became non-linear in x, despite a linear classifier

Contour plot, $x\beta^T + \beta_0 = 0$

$$Xe = [XX(:,1).^2X(:,1).*X(:,2)X(:,2).^2];$$

Can Also Be Applied to Logistic Regression

The linear log-odds model is replaced with a flexible spline function

$$\log \frac{P(G=0|X=x)}{P(G=1|X=x)} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x-2)_+^3 + \beta_5 (x-5)_+^3$$

- Non-linear in x, linear in β
 - Standard logistic regression problem after basis expansion
- Easy to interpret
- Gives probability for class belongings

Summary: Linear Classifiers

- Linear Discriminant Analysis (LDA)
 - Linear decision boundary
 - Relies on Gaussian and equal covariances assumptions
 - Non-equal gave QDA and non-linear boundary
 - Regularized versions
- Logistic Regression
 - Linear decision boundary
 - Fewer assumptions than LDA
 - Coefficients can be interpreted
 - Regularized versions
- Basis Expansions
 - Gives linear methods non-linear decision boundaries
 - Cubic splines gave flexibility with variance under control