Homework 6

Due time: 10 p.m. Dec. 12th, 2024

Turn in your hard-copy hand-writing homework at the entrance of

Room 3-324 SIST #3 Building.

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- All final answers must be rounded to **two decimal places**, and include the **appropriate units**.

- 1. For the given circuit where $V_{in} = 18 \angle 45^{\circ} V rms$, determine the following:
- a. Complex power, Average power, Reactive power, Apparent power delivered by the source;
- b. Complex power, Average power, Reactive power, Apparent power absorbed by the series-connected impedance $(8+6j \Omega)$ in the dotted box.

Please specify the units for the calculated power values (choose from VA, W and VAR).

2. For the circuit shown below, $V_{in} = 24 \angle 30^{\circ} V \, rms$. Use Thevenin method to simplify the circuit and then determine the average power, reactive power and complex power delivered by the voltage source.

3. For the circuit below, $V=120\angle60^{\circ} V \ rms$, $I=4\angle120^{\circ} A \ rms$. Find the reactive power absorbed by the capacitor and inductor.

- 4. For the circuit shown below, $I_s = 3\angle 90^{\circ} A \text{ rms}$. Determine the following:
 - (a) The expression of \mathbf{Z}_L that could maximize the average power delivered to \mathbf{Z}_L .
 - (b) The maximum average power absorbed by \mathbf{Z}_L .

5. In the circuit below, $V_{an} = 440 \angle 0^{\circ} V \, rms$, $V_{bn} = 440 \angle -120^{\circ} V \, rms$, $V_{cn} = 440 \angle 120^{\circ} V \, rms$, $Z_{\Delta} = (12 + j6) \, \Omega$. Find the line currents $I_a(A)$, $I_b(A)$, $I_c(A)$ and the total complex power absorbed by the whole load.

6. In the circuit below with positive sequence, $V_{ab} = 120 \angle 20^{\circ} V \, rms$. Try to find line currents $I_a(A)$, $I_b(A)$, $I_c(A)$ and the average power delivered by each voltage source.

7. For the circuit below with positive sequence,

 $V_{ab}(expressed\ by\ magnitude)=100 \angle -30^{\circ}\ V$, $Z_{\Delta}=21+24j\ \Omega$ Find the total complex power absorbed by the whole load in delta-connection.

