

Advanced Multimodal Machine Learning

Lecture 9.1: Multimodal Optimization

Louis-Philippe Morency

Lecturer: Amir Zadeh

Lecture Objectives

Practical Deep Model Optimization

- Background
- Optimization and Iterative approaches
- Learning rate and Momentum
- Regularization
- Co-adaptation
- Multimodal Optimization
- Variational Methods
 - Variational AE

Lecture Objectives

Practical Deep Model Optimization

- Background
- Optimization and Iterative approaches
- Learning rate and Momentum
- Regularization
- Co-adaptation
- Multimodal Optimization
- Variational Methods
 - Variational AE

Hard attention

Hard attention

- Soft attention requires computing a representation for the whole image or sentence
- Hard attention on the other hand forces looking only at one part
- Main motivation was reduced computational cost rather than improved accuracy (although that happens a bit as well)
- Saccade followed by a glimpse how human visual system works

[Recurrent Models of Visual Attention, Mnih, 2014] [Multiple Object Recognition with Visual Attention, Ba, 2015]

Hard attention examples

Glimpse

Looking at a part of an image at different scales

- At a number of different scales combined to a single multichannel image (human retina like representation)
- Given a location l_t output an image summary at that location

[Recurrent Models of Visual Attention, Mnih, 2014]

Glimpse network

Combining the Glimpse and the location of the glimpse into a joint network

- The glimpse is followed by a feedforward network (CNN or a DNN)
- The exact formulation of how the location and appearance are combined varies, the important thing is combining what and where
- Differentiable with respect to glimpse parameters but not the location

Emission network

- Given an image a glimpse location l_t , and optionally an action a_t
- Action can be:
 - Some action in a dynamic system – press a button etc.
 - Classification of an object
 - Word output
- This is an RNN with two output gates and a slightly more complex input gate!

Other Example of Hard Attention

http://proceedings.mlr.press/v37/xuc15.pdf

Variational Autoencoders

Auto-encoder

 A combination of an Encoder and a Decoder encoding x and decoding x

• The loss reconstruction error of x.

Variational Inference

- When inference is not possible
 - Either relax the problem
 - Or use variational methods
- Variational inference:
 - Unroll through time (MCMC, Gibbs) RBM
 - Mean-field Approximation (Fully Connected CRF)
- Both cases we have an approximation of the variables.

Variational Auto-encoder

 We assume exact inference is not possible but approximation is possible.

Variational Auto-encoder

- A probability controls the encoder space
 - More meaningful representations
- Space is split in euclidean-meaningful representations.
- The normal distributions have nice properties.

Background-MLP

- Multilayer Perceptron
 - Superset of CNNs, LSTMs, GRUs.
 - Reminder: A recursive application of affine transformations and nonlinearities
 - Can solve everything but often a headache to optimize

24

Stochastic Gradient Descent

- Loss functions:
 - Mean Squared Error: $L = ||f(x) f^*(x)||$
 - Categorical Cross-Entropy (surrogate)

$$L_{i} = -\log\left(\frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{y_{j}}}}\right)$$

Softmax function

Minimizing the negative log likelihood.

Stochastic Gradient Descent

Stochastic since updates are done based on a random subset of training data:

For i=1,2,3, ..., N:

$$w_{t+1} = w_t - \propto_t \nabla f(w_t)$$

Lecture Objectives

- Practical Deep Model Optimization
 - Background
 - Optimization and Iterative approaches
 - Learning rate and Momentum
 - Regularization
 - Co-adaptation
 - Multimodal Optimization
- Variational Methods
 - Variational AE

Optimization

- g(x) is an unknown distribution in the nature
 - Probability of shark given fin length
 - You can sample—go get sharks and size the fins. Good luck!
 - You can approximate it with many different functions
 - Let's assume f(x) is the loss associated with the fitting.

Optimization

- Assume that approximation function is $\bar{g}(x; \theta)$
- Goal is to minimize f(x): $\bar{g}(x; \theta) \simeq g(x)$
- One easy way: $\frac{\partial f}{\partial \theta} = 0$ solve for θ .
 - Can't do that for neural networks.

- Start from a point on f(x) namely x_1 .
- Test which direction gives you a better value on f(x).
- Go to the new position.

Let's mathematically formulate this

- Any differentiable loss function f(x)
- Taylor's expansion: $f(x) = \sum_{0}^{\infty} \frac{f^{(n)}(x_1)}{n!} (x x_1)^n$
- First order: $f(\mathbf{x}) = f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1) \cdot (\mathbf{x} \mathbf{x}_1) + O(||\mathbf{x} \mathbf{x}_1||^2)$ $f(\mathbf{x}_1 + h\mathbf{u}) f(\mathbf{x}_1) = h\nabla f(\mathbf{x}_1) \cdot \mathbf{u} + h^2O(1)$ Best unit solution go in the direction of gradient
- Big step size h is unrealistic in most cases
- So, GD is: For $t = 1, 2, \dots, N_{max}$:

Step size is a simple function! Bad!

$$\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \alpha_t \nabla f(\mathbf{x}_t)$$

- Taylor's expansion: $f(x) = \sum_{0}^{\infty} \frac{f^{(n)}(x_1)}{n!} (x x_1)^n$
- Higher order: Second order Taylor expansion (Newton methods)
- Learning rate can be approximated
 - Bigger steps can be taken as order goes higher.
 - Step size now a function of higher order derivatives
- However, we don't have enough resources
- Maybe Quasi-Newton approaches?
- So let's stick to first order ...

Gradient Descent

- Most practical optimization method so far for deep learning:
 - Linear in space and time complexity per number of parameters
 - Applicable to SIMD Parallelization Paradigm
 - Nice attributes for deep learning
- This is all good but how should the updates happen on the model?

SGD vs GD

			(GD			
Γ16	11	10	16	24	40	51	61 7
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99
Update							

SGD vs GD - Tradeoff

- GD takes a global decision for updating the gradient
- SGD takes a local decision for updating the gradient

* Or even no results

SGD vs GD - Tradeoff

Let's go speed! Going one sample at a time! How bad can it be?

```
      16
      11
      10
      16
      24
      40
      51
      61

      12
      12
      14
      19
      26
      58
      60
      55

      14
      13
      16
      24
      40
      57
      69
      56

      14
      17
      22
      29
      51
      87
      80
      62

      18
      22
      37
      56
      68
      109
      103
      77

      24
      35
      55
      64
      81
      104
      113
      92

      49
      64
      78
      87
      103
      121
      120
      101

      72
      92
      95
      98
      112
      100
      103
      99
```

- But it's just one sample point!
- It really only takes one sample point to send Sigmoids to no man's land!

SGD vs GD - Tradeoff

Ok let's not do that, how bad is my approximation of global gradient if I use a batch instead?

- Law of averages helps a lot.
 - Gradient of 32 points is already extremely close to that of all the dataset.

Learning rate decay

- Jumping over good solutions:
 - Decay learning rate
 - We won't let model jump around too much after some time

Example

Game over zone! Plateau

Example

Momentum

- Both situations avoidable if we had higher order derivatives. Which we don't!
- Let's jump over/speed through them.

Momentum

SGD:
$$w_{t+1} = w_t - \propto_t \nabla f(w_t)$$

SGD+M:
$$w_{t+1} = w_t - (\propto_t \nabla f(w_t) + m \nabla w(t))$$

Momentum can backfire!

Adaptive Learning Rate

- General Idea: Let neurons who just started learning have huge learning rate.
- Adaptive Learning Rate is an active area of research:
 - Adadelta
 - RMSProp

```
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + eps)
```

Adam

```
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += - learning_rate * m / (np.sqrt(v) + eps)
```

Comparison

Critical Points

Saddle Points

- Deep Learning Optimization:
 - Deep Learning problems in general have many local minimas

- Many (not all) of them are actually almost as good as global minima due to parameter permutation
- However it is NP-hard to even find a local minima

Lots and lots of saddles in many deep learning problems.

Why Saddles are Bad

Detecting Saddles

- One way to detect saddles:
 - Calculate Hessian at point x
 - If Hessian is indefinite you have a saddle for sure.
 - If Hessian is not indefinite you really can't tell.
- My loss isn't changing:
 - You are definitely close to a critical point
 - You may be in a saddle point
 - You may be in the local minima/maxima
 - One trick: quickly check the sorrounding
 - Best practical trick if Hessian is not indefinite.

Bad Saddle Points

https://arxiv.org/pdf/1602.05908.pdf

Example

Not the fault of learning rate or momentum

Example

Bias-Variance

- Problem of bias and variance
 - Simple models are unlikely to find the solution to a hard problem, thus probability of finding the right model is low.

Bias-Variance

- Problem of bias and variance
 - Simple models are unlikely to find the solution to a hard problem, thus probability of finding the right model is low.
 - Complex models find many solutions to a problem, thus probability of finding the right model is again low.

Lecture Objectives

Practical Deep Model Optimization

- Background
- Optimization and Iterative approaches
- Learning rate and Momentum
- Regularization
- Co-adaptation
- Multimodal Optimization
- Variational Methods
 - Variational AE

Regularization

- Parameter Regularization:
 - Adding prior to the network parameters
 - L^p Norms

Minimize: $Loss(x; \theta) + \propto ||\theta||$

Parameter Regularization

- Parameter Regularization:
 - L^1 (Lasso) and L^2 (Ridge) are the most famous norms used. Sometimes combined (Elastic)
 - Other norms are computationally ineffective.
- Maximum a posteriori (MAP) estimation:
 - Having priors one the model parameters
 - L^2 can be seen as a Gaussian prior on model parameters θ
 - A generalization of L^2 is called Tikhonov Regularization with Multivariate Gaussian prior on model parameters.
 - Assuming Correlation between parameters one can build a Mahalanobis variation of Tikhonov Regularization.

Structural Regularization

- Lots of models can learn everything.
- Occam's razor

- Go for simpler ones.
- Use task specific models:
 - CNNs
 - RecNNs
 - LSTMs
 - GRUs

Lecture Objectives

Practical Deep Model Optimization

- Background
- Optimization and Iterative approaches
- Learning rate and Momentum
- Regularization
- Co-adaptation
- Multimodal Optimization
- Variational Methods
 - Variational AE

Example

- A neuron learns something that is not useful:
 - 1. Learn something useful
 - 2. Other neurons learn to mitigate it.

Dropout

 Simply multiply the output of a hidden layer with a mask of 0s and 1s (Bernoulli)

Dropout

Forward step: multiply with a Bernoulli distribution per epoch, batch or sample point. Question: which one works better?

Backward step: just calculate the gradients same as before. Question: some neurons are out of the network, so how does this work?

All good? Nope

Multiply the weights by $1 - p_i$

Dropout

Stop co-adaptation + learn ensemble

Other variations

- Gaussian dropout: instead of multiplying with a Bernoulli random variable, multiply with a Gaussian with mean 1.
- Swapout: Allow skip-connections to happen

Lecture Objectives

Practical Deep Model Optimization

- Background
- Optimization and Iterative approaches
- Learning rate and Momentum
- Regularization
- Co-adaptation
- Multimodal Optimization
- Variational Methods
 - Variational AE

Multimodal Optimization

- Biggest Challenge:
 - Data from different sources
 - Different networks
- Example:
 - Question Answering: LSTM(s) connected to a CNN
 - Multimodal Sentiment: LSTM(s) fused with MLPs and 3D-CNNs
- CNNs work well with high decaying learning rate
- LSTMs work well with adaptive methods and normal SGD
- MLPs are very good with adaptive methods

Multimodal Optimization

- How to work with all of them?
- Pre-training is the most straight forward way:
 - Train each individual component of the model separately
 - Put together and fine tune
- Example: Multimodal Sentiment Analysis

Pre-training

Pre-training

Pre-training Tricks

- In the final stage (5), it is better to not use adaptive methods such as Adam.
 - Adam starts with huge momentum on all the networks parameters and can destroy the effects of pretraining.
 - Simple SGD mostly helpful.
- Initialization from other pre-trained models:
 - VGG for CNNs
 - Language models for RNNs
 - Layer by layer training for MLPs

Questions?