Sam Grayson's Notebook (with LATEX) January 14, 2015

- 1.1 ma = b Definition of 'divides' na = c Definition of 'divides' na + ma = b + c Algebra (n + m)a = b + c Algebra a|(b + c) Definition of 'divides'
- 1.2 Let d = -c a|(b+d) Theorem 1.1 a|(b-c) substitution
- 1.3 ma = b Definition of 'divides' na = c Definition of 'divides' mana = bc Algebra a|bc Definition of 'divides' \blacksquare
- 1.4 mana = bc see last proof $a^2|bc$ Definition of 'divides' \blacksquare
- 1.5 If a|b then $a|b^n$ b = ka $b^n = (ka)^n = kk^{(n-1)}a^n$ $k|b^n$ Definition of 'divides' Definition of 'divides'
- 1.6 ka = b Definition of 'divides' ack = bc Algebra a|bc Definition of 'divides'
- 1.7 1. $45 9 = 36 = 9 \cdot 4$. True 2. $37 - 2 = 35 = 7 \cdot 5$. True 3. 37 - 3 = 34. False 4. $37 - (-3) = 40 = 8 \cdot 5$. True
- 1.8 let k be all the numbers where $k \equiv b \pmod{3}$
 - 3|(k-b) Definition of 'mod' Definition of 'divides'
 - 3n + k = n Algebra
 - 1. 3n
 - 2. 3n + 1
 - 3. 3n + 2
 - 4. 3n
 - 5. 3n + 1
- 1.9 a-a=0=0n Arithmetic n|(a-a) Definition of 'divides' $a\equiv 0\pmod n$ Definition of 'mod'

- 1.10 n|(a-b) Definition of 'mod' kn = a b Definition of 'divides' -kn = b a Algebra Definition of 'divides' $b \equiv a \pmod{n}$
- 1.11 n|(a-b) Definition of 'mod' n|(b-c) Definition of 'mod' n|(a-b+b-c) Theorem 1.1 n|(a-c) Algebra $a \equiv c \pmod{n}$ Definition of 'mod' \blacksquare
- 1.12 n|(a-b) Definition of 'mod' n|(c-d) Definition of 'mod' n|(a+c-b-d)) Theorem 1.1 n|((a+c)-(b+d)) Algebra $a+c\equiv b+d\pmod{n}$ definion 'mod'
- 1.13 let e = -c and f = -d $a + e \equiv b + f$ Theorem 1.12 $a - c \equiv b - d$ substitution
- 1.14 n|(a-b) Definition of 'mod' n|(c-d) Definition of 'mod' n|(a-b)(c-d) Theorem 1.3
- 1.15 $a \equiv b \pmod{n}$ Premise $a^2 \equiv b^2 \pmod{n}$ Theorem 1.14
- 1.16 $a \equiv b \pmod{n}$ Premise $a^2 \equiv b^2 \pmod{n}$ Theorem 1.15 $a^2 a \equiv b^2 b \pmod{n}$ Theorem 1.14 $a^3 \equiv b^3 \pmod{n}$ Algebra
- 1.17 $a \equiv b \pmod{n}$ Premise $a^{k-1} \equiv b^{k-1} \pmod{n}$ Premise $a^{k-1}a \equiv b^{k-1}b \pmod{n}$ Theorem 1.14 $a^k \equiv b^k \pmod{n}$ Algebra
- 1.18 Base case: $a \equiv b \pmod{n}$ Premise Inductive Hypothesis: $a^{k-1} \equiv b^{k-1} \pmod{n}$ (assumption) Inductive step: $a^{k-1}a \equiv b^{k-1}b \pmod{n}$ Theorem 1.14 $a^k \equiv b^k \pmod{n}$ Algebra Conclusion: $a^k \equiv b^k \pmod{n}$ inductively \blacksquare
- 1.19 12. $6 \equiv 2 \pmod{4}$ $5 \equiv 1 \pmod{4}$

$$6 + 5 \equiv 2 + 1 \pmod{4}$$

13.
$$6 - 5 \equiv 2 - 1 \pmod{4}$$

14.
$$6 \cdot 5 \equiv 2 \cdot 1$$

15.
$$6^2 \equiv 2^2 \pmod{4}$$

16.
$$6^3 \equiv 2^3 \pmod{4}$$

17.
$$6^4 \equiv 2^4 \pmod{4}$$

18.
$$6^k \equiv 2^k \pmod{4}$$

1.20 No

Consider the case wehre $n=4,\,c=0,\,a=1,$ and b=2. $ac\equiv bc\pmod n$ $a\neq b$

- 1.21 See 1.22 and 1.23
- 1.22 3|a Premise (Base Case) 3|b Let b be an integer where...(Inductive Hypothesis) 3|9 Arithmetic
 - $3|(9b_k10^{k-1})$ Theorem 1.3 $3|(b-9b_k10^{k-1})$ Theorem 1.2
 - $3|(b-9b_k10^{k-1})$ Theorem 1.2 $3|(b_{k-1}+b_k)b_{k-2}...b_0$ Algebra* (Inductive Step)
 - $3|(a_k + a_{k-1} + a_{k-2} + \dots a_1 + a_0)$ Inductive axiom

Here is the algebra I used in the step labeled 'Algebra*':

1.23
$$3|a$$
 Premise (Base Case) $3|(b_k+b_{k-1}+\ldots+b_0)$ Assumption (Inductive Hypothesis) $3|9$ Arithmetic $3|(b_k9c)$ where c is k ones in a row Theorem 1.3 $3|(b_k+b_{k-1}+\ldots+b_0+b_k9c)$ Theorem 1.2 $3|(b_k10^k+b_{k-1}+\ldots+b_0)$ Algebra* $3|(a_k10^k+a_{k-1}10^{k-1}+\ldots+a_010^0)$ Inductive Axiom $3|(a_ka_{k-1}\ldots a_0)$ Definition of digits \blacksquare

Here is the algebra I used in the step labeled 'Algebra*':

$$\begin{array}{rcl} b_k + b_{k-1} + \ldots + b_0 + b_k 9c & = \\ b_k + b_{k-1} + \ldots + b_0 + b_k d & = & \text{where d is a number with } k \text{ nines} \\ b_k + b_{k-1} + \ldots + b_0 + b_k (10^k - 1) & = \\ b_k + b_{k-1} + \ldots + b_0 + b_k 10^k - b_k & = \\ b_{k-1} + \ldots + b_0 + b_k 10^k & \end{array}$$

- 1.24 4|a if and only if $4|(a_1 + a_3 + ...)(a_0 + a_2 + a_4 + ...)$
- 1.25 1. m = nq + r where m = 25, n = 7, q = 3, and r = 4
 - 2. m = 277, n = 4, q = 66, and r = 1
 - 3. m = 33, n = 11, q = 3, r = 0
 - 4. m = 33, n = 45, q = 0, r = 33

1.26 Setup:

(Make a list of multiples of n that are greater than m and choose the smallest one to define n(q + 1).)

$$A := \{k | k \in \mathbb{N} \land kn > m\}$$

$$\exists a \ni (a \in A \land an > m \land \forall k \in A(a \le k))$$

Well-ordering Principle

q := a - 1r := m - nq

Proving r satisfies upper bound: (If it didn't, then a wouldn't be an element of A, but we know that a is in A.)

r > n - 1 $r \ge n$ $\exists j \ni (r - n = j \land j \ge 0)$ nq + r = m nq + (n + j) = m n(q + 1) + j = m $n(q + 1) \le m$ n(q + 1) > m $\therefore r \le n - 1$ Assume for contradiction Inequality over integers Property of inequalities Algebra (from definition of r)

Algebra
Algebra
Property of in

Property of inequalities Algebra (from definition of a) Contradiction

Proving r satisfies lower bound:

(If it didn't, then there would be another element smaller than a in A, but a is the least element in A.) r < 0

nq + r = m nq > m $q \in A$ $\forall k(k \in A \rightarrow q + 1 \le k)$ $q \le q + 1$ $\therefore r \ge 0$

Assume for contradiction

Algebra (from definition of r) Property of inequalities $q \in \mathbb{N} \land nq > m$ is the condition for ADefinition of a (smallest element in A) Universal instantiation

Proving q and r are integers:

(They all came from sets that are only integers.) $A \subset \text{Stuff I learned}$ $\mathbb{N} \subset \mathbb{Z}$

 $a \in A$ $a \in \mathbb{Z}$ $q \in \mathbb{Z}$ $r \in \mathbb{Z}$

Definition of aProperty of sets Closure (Definition of q)

Contradiction

Closure (definition of r)