Docente: Marina Murillo

Inst. de Investigación en Señales, Sistemas e Inteligencia Computacional Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

- Representar números en diferentes bases:
 - Decimal
 - Binario
 - Octal
 - Hexadecimal
- Convertir números a diferentes bases
- Representar números con signo

- Sistema de numeración → conjunto de símbolos empleados para representar información numérica
- El conjunto de símbolos constituye el alfabeto y depende la base del sistema de numeración
- La base indica la cantidad de símbolos distintos que usa un sistema de numeración

Sistema de numeración decimal

- Sistema numeración posicional → valor dígito depende de su posición dentro del número
- 10 símbolos (dígitos) \rightarrow $\{0,1,2,3,4,5,6,7,8,9\} \rightarrow$ base 10
- Posición dígito indica la magnitud de cantidad representada y se asignan pesos:
 - N^{Ω} enteros: $\cdots 10^5 10^4 10^3 10^2 10^1 10^0$
 - N^{Ω} fraccionarios: $10^2 \, 10^1 \, 10^0, \, 10^{-1} \, 10^{-2} \, 10^{-3} \cdots$
- Valor número decimal → suma de los dígitos luego de haber multiplicado cada dígito por su peso

Polinomio característico

$$N = \sum_{i=-k}^{n} d_i \cdot 10^i$$

Ejemplos

- $47 = 4 \cdot 10^1 + 7 \cdot 10^0 = 40 + 7$
- $568, 23 = 5 \cdot 10^2 + 6 \cdot 10^1 + 8 \cdot 10^0 + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}$
- $67,924 = \cdots$
- $157, 1 = \cdots$

Sistema de numeración binario

- Posicional
- 2 símbolos (bits) $\rightarrow \{0,1\} \rightarrow$ base 2
- Bit más a la derecha \rightarrow bit menos significativo (LSB)
 - LSB en entero binario \rightarrow peso $2^0 = 1$
- Bit más a la izquierda \to bit más significativo (MSB) \to peso depende del tamaño del número binario
 - Estructura de pesos $\rightarrow 2^{n-1} \cdots 2^3 2^2 2^1 2^0$
- Números fraccionarios → representación binaria
 - Estructura de pesos $\rightarrow 2^{n-1} \cdots 2^1 2^0 \cdot 2^{-1} 2^{-2} \cdots 2^{-n}$
- En general, con n bits se puede contar hasta $2^n 1$

Contar de 0 hasta 15 en binario

Número decimal	Número binario			
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Sistema de numeración hexadecimal

- Posicional
- 16 símbolos $\rightarrow \{0, 1, \dots, 9, A, B, \dots, F\} \rightarrow \mathsf{base}\ 16$
- Estructura de pesos $\to 16^{n-1} \cdots 16^1 16^0, 16^{-1} \cdots 16^{-m}$

Hexadecimal

Contar de 0 a 15 en hexadecimal

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Conversión de binario a decimal

El valor decimal de cualquier número binario puede hallarse sumando los pesos de todos los bits con valor 1 y descartando aquellos con valor 0

Ejemplo: convertir el nro. 1101101_2 a decimal

- Primero se determina el peso de cada bit que está en 1 y luego se obtiene la suma de los pesos para obtener el número decimal
- $1101101_2 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0 = 64 + 32 + 8 + 4 + 1 = 109_{10}$

Ejemplo: convertir el nro. $0,1011_2$ a decimal

- Primero se determina el peso de cada bit que está en 1 y luego se suman los pesos para obtener la fracción decimal
- $0,1011_2 = 2^{-1} + 2^{-3} + 2^{-4} = 0,5 + 0,125 + 0,0625 = 0,6875_{10}$

Conversión de decimal a binario - Números enteros

Método de la división sucesiva por 2

Se divide la cantidad decimal por 2, anotando los residuos, hasta obtener un cociente cero. El último residuo obtenido es el MSB y el primero es el bit menos significativo LSB.

Ejemplo: convertir el número 157_{10} a binario

 $157_{10} = 10011101_2$

Conversión de decimal a binario - Números fraccionarios

Método de la multiplicación sucesiva por 2

Se multiplica la fracción decimal por 2 y del resultado se extrae su parte entera (MSB). Se multiplica sucesivamente por 2 la parte fraccional restante hasta que la misma sea cero o alcance el número deseado de posiciones decimales. El último residuo o parte entera es el LSB.

Ejemplo: convertir el número $0,875_{10}$ a binario

$$0,875_{10} = 0,111_2$$

Conversión de hexadecimal a decimal

El valor decimal de cualquier número hexadecimal puede hallarse multiplicando el valor decimal de cada dígito hexadecimal por su peso, y sumando luego estos productos.

Ejemplo: convertir el número $3AB, 1_{16}$ a decimal

$$3AB, 1_{16} = 3 \cdot 16^2 + 10 \cdot 16^1 + 11 \cdot 16^0 + 1 \cdot 16^{-1} = 939,0625_{10}$$

Conversión de decimal a hexadecimal

- Parte entera \rightarrow método división sucesiva por 16
- Parte fraccionaria \rightarrow método multiplicación sucesiva por 16

Ejemplo: convertir el número $1243, 5_{10}$ a hexadecimal

Parte fraccionaria

x 0,5
16
8,0

Entonces, $1243, 5_{10} = 4DB, 8_{16}$

Conversión de hexadecimal a binario

Para convertir un número hexadecimal en un número binario se reemplaza cada símbolo hexadecimal por el grupo de cuatro bits que representan a dicho símbolo.

Ejemplo: convertir el número $4DB, 8_{16}$ a binario

- $4_{16} = 0100_2$
- $D_{16} = 1101_2$
- $B_{16} = 1011_2$
- $8_{16} = 1000_2$

Entonces, 4DB, $8_{16} = 010011011011$, 1000_2

Conversión de binario a hexadecimal

- Dividir número binario en grupos de 4 bits → símbolo hexadecimal equivalente.
- Parte entera \rightarrow agrupar bits desde LSB hacia MSB (completar con ceros a la izquierda del MSB de ser necesario).
- Parte fraccionaria → agrupar desde MSB hacia el LSB (completar con ceros a la derecha del LSB de ser necesario).

Ejemplo: convertir el número $111101010, 11_2$ a hexadecimal

$$\underbrace{0001}_{1}\underbrace{1110}_{E}\underbrace{1010}_{A},\underbrace{11002}_{C}=1EA,C_{16}$$

Conversión a base arbitraria

- Decimal \rightarrow Base b
 - Parte entera \rightarrow dividir número decimal por base ${\bf b}$
 - Parte fraccionaria \rightarrow multiplicar número decimal por base b
- Base $b \to Decimal$
 - Evaluar polinomio característico en base b:

$$N_{10} = a_n \cdot \mathbf{b}^n + \dots + a_0 \cdot \mathbf{b}^0 + a_{-1} \cdot \mathbf{b}^{-1} + \dots + a_{-m} \cdot \mathbf{b}^{-m}$$

- Formato magnitud y signo
- Formato complemento a uno (o a la base reducida)
- Formato complemento a dos (o a la base)

Formato magnitud y signo

```
Nº bin |Nº dec
0000
       0
0001
0010
0011
       3
0100
       4
       5
0101
0110
       6
0111
1000
      -0
1001
      -1
1010
      -2
1011
      -3
1100
      -4
1101
      -5
1110
      -6
      -7
1111
```

- MSB bit signo (BS) (0 o positivo, 1 o negativo)
- ullet n-1 bits restantes o magnitud
- **n** bits \to rango $[-2^{n-1}+1, 2^{n-1}-1]$
- 4 bits $\rightarrow [-2^3 + 1, 2^3 1]$
- Doble representación del 0 (+0 y -0)
- Más complejo para operar aritmética binaria

```
Nº bin |Nº dec
0000
0001
0010
0011
       3
0100
       5
0101
0110
       6
0111
       7
1000
      -7
1001
      -6
1010
      -5
1011
      -4
1100
      -3
1101
      -2
1110
      -1
1111
      -0
```

- Se cambian 1s por 0s y 0s por 1s, incluido el BS
- EI MSB \rightarrow BS (0 \rightarrow pos, 1 \rightarrow neg)
- $n \text{ bits} \to \text{núm en } [-2^{n-1}+1, 2^{n-1}-1]$
- 4 bits $\rightarrow [-2^3 + 1, 2^3 1]$
- Doble representación del 0 (+0 y -0)

Complemento a Dos

- Se obtiene adicionando un 1 al complemento a uno (C2 = C1 + 1)
- EI MSB \rightarrow BS $(0 \rightarrow \mathsf{pos}, 1 \rightarrow \mathsf{neg})$
- $n \text{ bits} \rightarrow \text{núm en } [-2^{n-1},\, 2^{n-1}-1]$
- Con 4 bits $\to [-2^3, 2^3 1]$
- Única representación del 0

Referencias

- Capítulo 2 del libro Fundamentos de Sistemas Digitales 9na. Ed., Thomas Floyd.
- Sección 1.5 y 1.6 (págs 9 14) del libro Diseño Digital 3ra. Ed., Morris Mano.