

PLANO DE CURSO

IDENTIFICAÇÃO

DISCIPLINA: ESTRUTURAS DE DADOS CÓDIGO: COMP0405 C.H. TOTAL: 60 C.H. TEÓRICA: 30 C.H.

PRÁTICA: 30 Nº DE CRÉDITOS: 4 P.E.L.: 2.01.1 PRÉ-REQUISITO(S): MAT0152 COMP0334 COMP0393

TURMA: - HORÁRIO: 36N12 PERÍODO: 2023.2 DOCENTE: JOÃO PAULO DIAS DE ALMEIDA

EMENTA

O modelo de computação RAM (Random Access Machine). Eficiência de algoritmos: notação O, Θ, e Ω. Cálculo de complexidade de tempo e de espaço em algoritmos iterativos. Representação e manipulação de estruturas lineares de dados: listas, pilhas, filas. Busca binária. Hashing: funções, métodos e aplicações. Árvores: binárias, binárias de busca, balanceadas AVL. Heaps e Filas de Prioridade. Estrutura de dados para Conjuntos Disjuntos. Árvores B e B+. Estruturas de busca em texto. Complexidade das estruturas estudadas. Aplicações.

OBJETIVOS

- **1. Geral:** Capacitar o aluno a analisar algoritmos assintoticamente e capacitá-lo a utilizar diferentes estruturas de dados eficientemente.
- **2. Específicos:** (a) Familiarizar o educando com a análise assintótica de algoritmos. **(b)** Familiarizar o aluno com diferentes estruturas de dados **(c)** Habilitar o aluno a avaliar a eficiência de algoritmos e também modelar algoritmos eficientes para solucionar problemas reais.

CONTEÚDO PROGRAMADO		
AULA	DATA	
AULA 01: Apresentação da disciplina (ementa, metodologia e avaliação). O modelo RAM	23/01	
AULA 02: Análise de Algoritmos	26/01	
AULA 03: Análise de Algoritmos	30/01	
AULA 04: Análise de Algoritmos	02/02	
AULA 05: Resolução de Exercícios	06/02	
AULA 06: Propriedades matemáticas	09/02	
AULA 07: Resolução de Exercícios	16/02	
AULA 08: Ordenação	20/02	
AULA 09: Insertion Sort. Merge Sort	23/02	
AULAS 10 e 11: Resolução de Exercícios	24/02	
AULA 12: Quick Sort. Counting Sort	27/02	
AULA 13: Busca Binária	01/03	
AULA 14 e 15: Resolução de Exercícios	02/03	
AULA 16: Resolução de Exercícios	05/03	

	1
AULA 17: Avaliação - 1ª Unidade	08/03
AULAS 18 e 19: Estruturas de Dados. Tipo Abstrato de Dado	09/03
AULA 20: Arranjos. Dicionários, Listas	12/03
AULA 21: Lista. Pilha e Fila	15/03
AULAS 22 e 23: Resolução de Exercícios	16/03
AULA 24: Fila de Prioridade e Tabela Hash	19/03
AULA 25: Grafos. Árvores e suas operações	22/03
AULAS 26 e 27: Resolução de Exercícios	23/03
AULA 28: Árvores B e B+	26/03
AULAS 29 e 30: Resolução de Exercícios	30/03
AULA 31: Balanceamento de árvores	02/04
AULA 32: Avaliação - 2ª Unidade	05/04
AULAS 33 e 34: Resolução de Exercícios	06/04
AULA 35: 2ª chamada (NÃO SERVIRÁ PARA SUBSTITUIR NOTA)	09/04
AULAS 36: Entrega das provas e resoluções de questões em sala. Encerramento	12/04

METODOLOGIA

Interação Docente e Educandos: aulas com espaço para participação do aluno, troca de e-mails, espaço web, reuniões extraclasses previamente agendadas pelo aluno.

Aulas Expositivas e Práticas: possuem a finalidade de (a) apresentar a análise assintótica de algoritmos, e (b) explorar diferentes estruturas de dados e suas características.

Desenvolvimento de Programas: usados como exemplos ilustrativos e como exercícios práticos, com aplicação gradativa dos recursos estudados.

Resoluções de Exercícios: em sala de aula, pelo docente e pelos estudantes, coletiva e individualmente. Inclui oportunidades, e estímulo, à execução de ajustes das resoluções a partir das orientações/correções efetuadas pelo professor. Assim oportunizando o aprendizado por meio de avaliação reflexiva, e construção incremental de soluções. Estudos de casos são utilizados para exercitar, de forma contextualizada, a solução de problemas utilizando algoritmos. Os estudos de casos podem ser resolvidos individualmente ou coletivamente, com mediação do docente.

Jogos educativos: ao final da aula, um quiz relacionado ao conteúdo aprendido é apresentado aos alunos. O quiz é gamificado, sendo assim, os alunos ganham pontos ao responder as questões em menor tempo. A ferramenta auxilia na retenção do conhecimento apresentado.

FORMA DE AVALIAÇÃO

A disciplina foi dividida em **2 unidades** para acompanhar o desempenho discente nesta disciplina. À cada unidade é atribuída uma nota de 0 a 10 que é composta por nota de exercícios (4 pontos) e nota de prova (6 pontos). **Exercícios** serão iniciados em sala e entregues pelo SIGAA, valendo 4 pontos. As **provas** deverão ser resolvidas individualmente; sem uso de computadores; e em data previamente combinada com a turma, valendo 6 pontos. Os exercícios podem envolver desenvolvimento de programas completos, identificação de erros em código fonte, ou compreensão de uso adequado das instruções. A resolução correta do conjunto

de exercícios da unidade garantirá ao aluno a pontuação total de 4 pontos. Haverá ainda **jogos educativos** que possibilitaram aos alunos obterem pontuações extras na nota da unidade. Os jogos serão conduzidos pela plataforma Kahoot, sempre que possível. Estes servirão de preparação para as avaliações e retenção do conhecimento. Dúvidas podem ser enviadas por e-mail, para professor, com identificação clara da respectiva questão e aluno. O **assunto abordado nas avaliações será cumulativo**, ou seja, cada avaliação explorará todas os assuntos vistos no decurso da disciplina até o momento da aplicação desta. Para desenvolvimento das habilidades almejadas como objetivos da disciplina **faz-se indispensável o desenvolvimento de programas computacionais**. Na implementação destes na UFS, bem como para correção, será usado o ambiente de desenvolvimento livre Eclipse (https://www.eclipse.org/).

Observação: Haverá uma avaliação de reposição apenas para os alunos com falta justificada, com atestado médico, conforme previsto nas normas acadêmicas.

RECURSOS DIDÁTICOS

Sala de Aula em Didática, para desenvolvimento das aulas expositivas e aulas de desenvolvimento de soluções algorítmicas.

Computador e Projetor de Imagens, para desenvolvimento das aulas. Úteis à exposição de conteúdo organizados em slides, apresentação de exemplos ilustrativos e discussão das resoluções de exercícios.

Software de Apresentação, para apresentação dos objetos de ensino. Úteis à exposição de conteúdo, apresentação de exemplos ilustrativos e discussão das resoluções de exercícios.

Eclipse, para desenvolvimento dos programas computacionais (com exploração da linguagem de programação Java), livre. Ver https://www.eclipse.org/downloads/

Espaço Web da disciplina no SIGAA-UFS, com material de apoio (slides, exercícios, plano de ensino) para download, avisos, e contatos docentes.

BIBLIOGRAFIA

1. Básica: *Recomendado como livro texto.

CORMEN, T. Desmistificando Algoritmos*. Editora Campus, 2013.

ASCENCIO, A., ARAÚJO, G. Estruturas de dados. Editora Pearson, 2015.

PEREIRA, S. Estruturas de Dados Fundamentais: conceitos e aplicações. Editora Érica, 1998.

SKIENA, S. The Algorithm Design Manual. Springer, 2020.

2. Complementar:

DEITEL, P. Java - Como Programar. Rio de Janeiro: Makron Books, 1997.

SZWARCFITER, J., MARKENZOR, L. Estruturas de Dados e seus Algoritmos. Editora LTC, 2010.

PUGA, S; RISSETTII, G. Lógica de Programação e Estrutura de Dados. Pearson, 2016.

Cidade Universitária "Prof. José Aloísio de Campos", 22 de janeiro de 2024.

João Paulo Dias de Almeida Professor Substituto do DCOMP

Professor da Disciplina