Understanding the CPU (Central Processing Unit)

1 What is a CPU?

The CPU (Central Processing Unit) is considered the **brain** of the computer. It is responsible for executing instructions from programs and coordinating the activities of all hardware components.

2 Main Components of a CPU

1. Control Unit (CU)

- Directs the operation of the processor.
- Fetches instructions from memory.
- Decodes instructions and coordinates their execution.
- Manages data flow between CPU and other components.

2. Arithmetic Logic Unit (ALU)

- Performs arithmetic operations (add, subtract, multiply, divide).
- Executes logical operations (AND, OR, NOT, comparisons).

3. Registers

- Small, fast memory units inside the CPU.
- Temporarily store instructions, data, and addresses.
- Types include:
 - Accumulator (ACC): Stores intermediate results.
 - Program Counter (PC): Holds the address of the next instruction.
 - Instruction Register (IR): Holds the current instruction.
 - General Purpose Registers (R0, R1, ...): Store operands or results.

3 Basic CPU Operations: The Instruction Cycle

- 1. **Fetch** Retrieve the instruction from memory.
- 2. **Decode** Understand the instruction.
- 3. **Execute** Carry out the operation.
- 4. Store (Write-back) Save the result if required.

4 CPU Performance Factors

- Clock Speed (GHz): Determines how many cycles are executed per second.
- Instruction Set Architecture (ISA): Defines the structure of CPU instructions.
- Pipelining: Splits execution into stages to enhance performance.
- Cache Memory: Small, high-speed memory near CPU for frequently accessed data.
- Number of Cores: More cores enable better parallel task execution.

5 Fun Fact

Modern CPUs can contain **billions of transistors** and multiple cores (e.g., dual-core, quad-core, octa-core), allowing them to process many tasks in parallel.

6 Instruction Cycle: Step-by-Step

1. Fetch

- The Program Counter (PC) holds the address of the next instruction.
- This address is sent to memory; the instruction is retrieved and stored in the Instruction Register (IR).
- The PC is incremented to point to the next instruction.

2. Decode

- The Control Unit decodes the instruction in the IR.
- It identifies:
 - **Opcode:** Operation to perform.
 - Operands: Data or memory addresses involved.

3. Execute

• ALU or another unit performs the operation (e.g., ADD, SUB).

4. Memory Access (if needed)

• If instruction involves memory (e.g., LOAD/STORE), the appropriate data is accessed.

5. Write-back (optional)

• Results are stored in a register or memory location.

7 The Continuous Cycle

The CPU returns to the **Fetch** step after each instruction is executed, creating a continuous loop called the **Instruction Cycle**.

8 Instruction Cycle Example: ADD R1, R2, R3

Assuming a RISC-style format where R1 = R2 + R3:

Step	Action
Fetch	CPU fetches the instruction ADD R1, R2, R3 from memory using
	the PC.
Decode	CU decodes the instruction: opcode = ADD, operands = $R2$, $R3$,
	R1.
Execute	ALU adds the contents of R2 and R3.
Write-back	Result is stored in R1.
PC Update	PC is incremented to point to the next instruction.

Table 1: Instruction Cycle Example: ADD Operation