

Analysis

Complex Analysis

(First Edition)

Sherr1

$$i\hbar\partial_t\psi(\boldsymbol{r},t)=H\psi(\boldsymbol{r},t)$$

$$=\left[-rac{\hbar^2}{2m}
abla^2+U(oldsymbol{r})
ight]\psi(oldsymbol{r},t)$$

Nankai University

1 First Class(24.10.19)

1.1 全纯函数列

逐点收敛、一致收敛、紧一致收敛

Definition 1.1 一致收敛

在 D 上一致收敛: $\forall \epsilon > 0$, $\exists N, \forall n > N$, $\forall z \in D$, $|f_n(z) - f(z)| < \delta$, 记作 $f_n(z) \Rightarrow f(z)$.

Definition 1.2 紧一致收敛

在 D 上**紧一致收敛**: $\forall F \in D$, F' 紧集,都有 $\{f_n(z)\}_{n=1}^{\infty}$ 在 D 上一致收敛.

Example 1.1 紧一致收敛但非一致收敛

考虑: $f_n(z) = z^n$, $D = \{z | |z| < 1\}$ 为开集, $\{f_n(z)\}$ 在 D 上不一致收敛. $\epsilon_0 = \frac{1}{2}$, $\forall N \in \mathbb{Z}^+$, 取一个 |z| < 1, $|z^n| \ge \epsilon_0$ 不一致收敛.

考虑任一紧集 $F \subseteq D$, $\exists r \in (0,1)$ 使 $\overline{B(0,r)} \supseteq F$

事实上 $f_n(z)$ 在 F 上一致收敛, $|z| \le r < 1$, $\forall \epsilon > 0$, $\exists N \in \mathbb{Z}^+$,使 $r^n < \epsilon$, $|f_n(z)| = |z|^n \le r^n < \epsilon$ $\Rightarrow \{f_n(z)\}$ 在 F 上一致收敛 $\Rightarrow \{f_n(z)\}$ 在 D 上紧一致收敛.

Theorem 1.1

 $\{f_n(z)\}_{n=1}^{\infty} \in H(\Omega), \{f_n(z)\}$ 紧一致收敛于 f,则 $f \in H(\Omega)$.

Proof 由 *Morera* 定理,我们只需证明对任意闭路径 $\Gamma \in \Omega^o$ 都有

$$\int_{\Gamma} f(z)dz = 0$$

而

$$\{f_n(z)\}\in H(\Omega)\Rightarrow \int_{\Gamma}f_k(z)dz=0\,(\forall k\in\mathbb{Z}^+)$$

又 $\{f_n(z)\}$ 在 Γ 上紧一致收敛于 f

$$\Rightarrow 0 = \lim_{n \to \infty} \int_{\Gamma} f_n(z) dz = \int_{\Gamma} f(z) dz \left(\int_{\Gamma} |f_n(z) - f(z)| dz \to 0 \right) \Rightarrow f(z) \in H(\Omega)$$

故: $f(z) \in H(\Omega)$.

Theorem 1.2

在 Theorem 1.1 条件下, $\left\{f_n^{(k)}(z)\right\}$ 也在 Ω 上紧一致收敛于 $f^{(k)}(z)$. $(k \in \mathbb{N})$

Analysis
$$\left| f_n^{(k)}(z) - f^{(k)}(z) \right| \leftrightarrow |f_n(z) - f(z)|$$

 $F(z) = f_n(z) - f(z)$, 在紧集上估计 $F^{(k)}(z)$, 建立 $\sup_{z \in C} \left| f^{(k)}(z) \right|$ 与 $\sup_{z \in C} |f(z)|$ 之间的关系.
取 $C : \{z_0 | |z_0 - z| \le \delta\}$ (C:Compact subset of Ω) C 紧集,每个元素都离 $\partial \Omega$ 有距离.

Proof \diamondsuit $F(z) = f_n(z) - f(z) \in H(\Omega)$

$$\left| F^{(k)}(z) \right| = \left| \frac{k!}{2\pi i} \int_C \frac{F(\xi)}{(\xi - z)^{n+1}} d\xi \right| \le \frac{k!}{2\pi i} \frac{\sup_{z \in C} |F(z)|}{\delta^{k+1}} \cdot 2\pi \delta = \frac{k!}{\delta^k} \sup_{z \in C} |F(z)|$$

由 $f_n(z) \Rightarrow f(z)$ 知: $n \to \infty$ 时

$$\sup_{z \in C} |F(z)| \to 0$$

$$\Rightarrow f_n^{(k)}(z)$$
 在 Ω 上紧一致收敛于 $f^{(k)}(z)$.

Theorem 1.3 (按照积分定义全纯函数)

$$f(z) = \int_0^1 F(z,s) ds \quad ①固定 \ s, \ F(z,s) \ 关于 \ z \ 全纯 \quad ②F(z,s) \in C(\Omega \times [0,1]) \quad 则有 \ f \in H(\Omega).$$

Proof 法 1: 由 Morera 定理,只需证明对 Ω 中的闭路径 Γ 有: $\int_{\Gamma} f(z)dz = 0$

$$0 = \int_{\Gamma} \int_{0}^{1} F(z,s) ds dz = \int_{0}^{1} \left(\int_{\Gamma} F(z,s) dz \right) ds \xrightarrow{\text{Equation}} 0$$

故由 Morera 定理, 我们可知: $f \in H(\Omega)$.

Proof 法 2: 令 $f_n(z) = \frac{1}{n} \sum_{k=1}^n F(z, \frac{k}{n}) \in H(\Omega)$ (Riemann 逼近) 我们只需证明 $f_n(z)$ 在 Ω 上紧一致收敛于 f(z),进而由 Theorem1.1 可知 $f \in H(\Omega)$ 对于 $\forall \Omega$ 上的紧集 C

$$|f_n(z) - f(z)| = \left| \frac{1}{n} \sum_{k=1}^n F(z, \frac{k}{n}) - \int_0^1 F(z, s) ds \right|$$

$$= \left| \sum_{k=1}^n \int_{k=1}^n \int_{\frac{k-1}{n}}^n (F(z, \frac{k}{n}) - F(z, s)) ds \right| \le \sum_{k=1}^n \int_{k=1}^n \int_{\frac{k-1}{n}}^k \left| F(z, \frac{k}{n}) - F(z, s) \right| ds(\clubsuit)$$

F(z,s) 在紧集 C 上一致收敛, $\forall \epsilon > 0$, $\exists N \in \mathbb{Z}^+$, $\forall n > N$ 都有

$$d((z_1, s_1), (z_2, s_2)) < \frac{1}{n}$$
 \tau: $|F(z_1, s_1) - F(z_2, s_2)| < \epsilon$

代入 (\clubsuit),则 n > N 时

$$|f_n(z) - f(z)| \le \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \epsilon ds = \epsilon$$

 $\Rightarrow f_n(z)$ 紧一致收敛于 f(z), 进而由 Theorem $1.1 \Rightarrow f \in H(\Omega)$.

1.2 幂级数 (初初步)

Theorem 1.4

任意幂级数 $\sum_{n=1}^{\infty} a_n z^n$, $\exists 0 < R < +\infty$ 使

$$(i) |z| < R$$
时 $\sum_{n=1}^{\infty} a_n z^n$ 绝对收敛 $(ii) |z| > R$ 时 $\sum_{n=1}^{\infty} a_n z^n$ 发散

其中

$$\frac{1}{R} = \lim_{n \to +\infty} \sup \sqrt[n]{a_n}$$

Theorem 1.5

 $f \in H(\Omega)$, $D: z_0$ 为中心的一个圆盘 $\bar{D} \in \Omega$,则 f 在 z_0 上展成幂级数 $f(z) = \sum_{n=1}^{\infty} a_n (z-z_0)^n (z \in D)$ 对 $\forall n \geq 0$ 有

$$a_n = \frac{f^{(n)}(z_0)}{n!}(C = \partial D)$$

Proof 由柯西积分公式:

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{\xi - z} d\xi$$

$$\frac{1}{\xi - z} = \frac{1}{(\xi - z_0) - (z - z_0)} = \frac{1}{\xi - z_0} \frac{\xi - z_0}{(\xi - z_0) - (z - z_0)} = \frac{1}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}}$$

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{\xi - z_0} \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} d\xi = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{\xi - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\xi - z_0}\right)^n d\xi$$

$$= \sum_{n=0}^{\infty} \left(\left(\frac{1}{2\pi i}\right) \int_C \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi\right) (z - z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

故

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

Theorem 1.6 零点孤立性

f 在连通开集 Ω 上全纯, $z_0 \in \Omega$ 为 f 的零点,f 在 Ω 上不恒为 0, $\exists z_0$ 邻域 $U \subset \Omega$ 、U 上非零函数 g 及唯一 $n \in \mathbb{Z}^+$ 使对 $\forall z \in U$

$$f(z) = (z - z_0)^n g(z)(n :$$
零点的阶数)

 $(\spadesuit)nkuSherr1@qmail.com$

Proof Ω 连通, $\forall z_0$, $\exists z_0$ 的某个邻域 U,f 在 z_0 的邻域 U 上恒不为 0; 对于 $z \in U$,我们有

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = \frac{\mathbb{I}_n \cdot \oplus a_n \neq 0 \oplus n}{\mathbb{I}_n \cdot \oplus a_n \neq 0 \oplus n} (z - z_0)^n (a_n + a_{n-1}(z - z_0) + \dots) := (z - z_0)^n g(z)$$

其中,z 离 z_0 充分近时, $g(z) \neq 0$,换言之,z 在 z_0 的一个小邻域内有 $g(z) \neq 0$ 若不唯一,则有

$$f(z) = (z - z_0)^n g(z) = (z - z_0)^m h(z)$$

不妨设 m > n,则

$$g(z) = (z - z_0)^{m-n}h(z)$$

当 $z \rightarrow z_0$ 时

$$g(z) \to 0$$

矛盾!

Exercise 1.1

设 $f \in H(\mathbb{C})$, $\forall z_0 \in \mathbb{C}$, $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$,系数 c_n 至少由一个为 0. 证明: f 为多项式.

Solution 若 $\exists n, \ f^{(n)}(z) \equiv 0 \ \text{则} \ f \ \text{为多项式}. \ (c_n = \frac{f^{(n)}(z_0)}{n!})$ 对 $\forall n, \ f^{(n)}(z) = 0 \ \text{的根至多可数} \ (否则与零点孤立性矛盾!)$ $S = \bigcup_{k=0}^{\infty} \left\{ z \in C | f^{(k)}(z) = 0 \right\} \ \text{至多可数};$ 由题意知, $\forall z \in \mathbb{C}, \ \exists n \ \text{使} \ f^{(n)}(z) = 0$

$$\Rightarrow C \subseteq \bigcup_{k=0}^{\infty} \left\{ z \in C | f^{(k)}(z) = 0 \right\}$$

这与 S 的至多可数性矛盾! 故 f 为多项式.

1.3 奇点

Definition 1.3 奇点

可去奇点:可以全纯延拓 **极点**:如 $f(z) = \frac{1}{z}$ 在 z = 0 处附近无界 **本性奇点**:有界,不能全纯延拓(振荡)

1.3.1 可去奇点

Theorem 1.7 可去奇点的 Riemann 定理

f 在开集 Ω 上除 z_0 无定义以外都全纯,若 f 在 $\Omega\setminus\{z_0\}$ 有界,则 z_0 为 f 的可去奇点.

取 $D: z_0$ 为圆心的圆盘, $C: \partial D$ 取正方向

由 Theorem1.3 只需证明

$$\forall z \neq z_0, f(z) = \frac{1}{2\pi i} \int_C \frac{\xi}{\xi - z} dz (z \in D)(\clubsuit)$$

由多联通域上的柯西积分定理有

$$\int_C \frac{f(\xi)}{\xi - z} d\xi + \int_{\gamma_{\epsilon}} \frac{f(\xi)}{\xi - z} d\xi + \int_{\gamma_{-\epsilon}} \frac{f(\xi)}{\xi - z} d\xi = 0$$

由 Cauchy 积分公式

$$f(z) = -\frac{1}{2\pi i} \int_{\gamma_{\epsilon'}} \frac{f(\xi)}{\xi - z} d\xi()$$

估计

$$\int_{\gamma_{\epsilon}} \frac{f(\xi)}{\xi - z} d\xi \le \frac{\sup_{\xi \in \gamma_{\epsilon}} |f(\xi)|}{\inf_{\xi \in \gamma_{\epsilon}} |\xi - z|} \cdot 2\pi\epsilon \to 0 (\epsilon \to 0^{+})$$

 \Rightarrow (♣) 成立,由 Theorem1.3 知 z_0 为可去极点.

其中 γ_{ϵ} 和 γ_{ϵ}' 分别表示以 z 和 z_0 为中心, ϵ 为半径的两个小圆周,方向取负方向. Remark

1.3.2 极点 (看成 $\frac{1}{f}$ 的零点)

Corollary 1.1

$$z_0$$
为 f 极点 $\iff z \to z_0$ 时: $|f(z)| \to \infty$

"⇒": z_0 为 $\frac{1}{f}$ 的零点, $z \to z_0$ 时, $|f(z)| \to +\infty$ Proof

"
$$\leftarrow$$
": 若 $z \to z_0$ 时 $|f(z)| \to +\infty$
$$\frac{1}{f} \to 0 (z \to z_0), \ \frac{1}{f} \ \text{在 0 附近有界} \ \frac{Theorem 1.7}{} z_0 \ \text{为} \ \frac{1}{f} \ \text{的可去奇点} \Rightarrow z_0 \ \text{为极点}.$$

Theorem 1.8

 z_0 为 f 的极点,在 Theorem 1.6 条件下

$$\frac{1}{f} = (z - z_0)^n g(z) \Rightarrow f(z) = (z - z_0)^{-n} G(z)$$

其中 G(z) 全纯

Theorem 1.9

Theorem1.8 中

$$f(z) = (z - z_0)^{-n} (b_0 + b_1(z - z_0) + \dots + b_{n-1}(z - z_0)^{n-1} + H(z)(z - z_0)^n)$$

$$= \frac{b_0}{(z - z_0)^n} + \frac{b_1}{(z - z_0)^{n-1}} + \dots + \frac{b_n}{z - z_0} + H(z)$$

$$:= \frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-(n-1)}}{(z - z_0)^{n-1}} + \dots + \frac{a_1}{z - z_0} + H(z)$$

Theorem 1.10

包含 z_0 的闭路径 Γ

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} \left(\frac{a_{-n}}{(z - z_0)^n} + \frac{a_{-(n-1)}}{(z - z_0)^{n-1}} + \dots + \frac{a_1}{z - z_0} + H(z) \right) dz$$
$$= \int_{\Gamma} \frac{a_{-1}}{z - z_0} dz = 2\pi i a_{-1}$$

其中 a_{-1} 称为 f 在该极点的**留数**,记作 $Res(f, z_0)$.

Example 1.2 怎么求留数

n = 1

$$f(z) = \frac{a_{-1}}{z - z_0} + H(z), \ a_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$$

对于普遍的 n

$$(z - z_0)^n f(z) = a_{-n} + a_{-(n-1)}(z - z_0) + \dots + a_{-1}(z - z_0)^{n-1} + (z - z_0)^n H(z)$$

$$a_{-1} = \lim_{z \to z_0} \frac{1}{(n-1)!} \left(\frac{d}{dz}\right)^{n-1} ((z - z_0)^n f(z))$$

$$f(z) = (z - z_0)^{-n} G(z) \Rightarrow (z - z_0)^n f(z) = \underbrace{g(z)}_{holomophic}$$

Exercise 1.2 利用留数算积分

证明

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Solution (围道积分法))

令 $f(z) = \frac{e^{iz}}{z}$, 考虑如下的围道:

由柯西积分定理

$$\begin{split} \int_{-R}^{-r} + \int_{r}^{R} + \int_{C_{r}} + \int_{C_{R}} &= 0(\clubsuit) \\ \int_{C_{r}} &= -\int_{0}^{\pi} \frac{e^{ire^{i\theta}}}{re^{i\theta}} ire^{i\theta} d\theta = -i \int_{0}^{\pi} e^{ir\theta} d\theta \xrightarrow{r \to 0^{+}} -\pi i \\ \left| \int_{C_{R}} \left| = \left| \int_{0}^{2\pi} \frac{e^{iRe^{i\theta}}}{Re^{i\theta}} iRe^{i\theta} d\theta \right| = \left| i \int_{0}^{2\pi} e^{iR\theta} d\theta \right| = \left| i \int_{0}^{2\pi} e^{R(\cos\theta + i\sin\theta)} d\theta \right| \\ &\leq \int_{0}^{2\pi} e^{-R\sin\theta} \left| e^{iR\cos\theta} \right| d\theta = \int_{0}^{2\pi} e^{-R\sin\theta} d\theta \to 0 \\ (R \to +\infty) \end{split}$$

另一面

$$\int_{-R}^{-r} \frac{e^{iz}}{z} + \int_{r}^{R} \frac{e^{iz}}{z} = \int_{-R}^{-r} \frac{\cos z + \sin z}{z} dz + \int_{r}^{R} \frac{\cos z + \sin z}{z} dz = 2i \int_{r}^{R} \frac{\sin z}{z} dz$$

令 $R \to +\infty$, $r \to 0+$, 结合 (\clubsuit) 可知

$$\int_0^{+\infty} \frac{\sin x}{x} = \frac{-(-\pi i)}{2i} = \frac{\pi}{2}$$

故

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Remark 选择合适的周线 (圆 [挖孔]、矩形)!

П

Exercise 1.3 利用留数算积分

证明

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dx = \frac{1}{\cosh \pi \xi}$$

其中

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Solution $\diamondsuit f(z) = \frac{e^{-2\pi i z \xi}}{\cosh \pi z}, \quad \cosh \pi x = 0$

$$\Rightarrow e^{\pi x} + e^{-\pi x} = 0 \Rightarrow x = \frac{i}{2} \text{ or } \frac{3i}{2}$$

我们取分母周期为 $2i > \max\left\{\frac{i}{2}, \frac{3i}{2}\right\}$,考虑如下的围道:

$$\lim_{z \to \frac{i}{2}} (z - \frac{i}{2}) f(z) = \lim_{z \to \frac{i}{2}} (z - \frac{i}{2}) \frac{2e^{-2\pi iz\xi}}{e^{\pi z} + e^{-\pi z}} = e^{2\pi iz\xi} \frac{2(z - \frac{i}{2})}{e^{\pi z} + e^{-\pi z}} = \frac{e^{\pi \xi}}{\pi i}$$

同理

$$\lim_{z \to \frac{3i}{2}} (z - \frac{3i}{2})f(z) = -\frac{e^{3\pi\xi}}{\pi i}$$

由留数定理可知

$$\left(\int_{\Gamma_1} + \int_{\Gamma_2} + \int_{\Gamma_2} + \int_{\Gamma_4} f(z)dz = 2(e^{\pi\xi} - e^{3\pi\xi}) \quad (\clubsuit)$$

其中记我们想要的 $\int_{\Gamma_1} = I$

$$\int_{\Gamma_1} = \int_{-R}^R \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dx \to I(R \to +\infty)$$

$$\int_{\Gamma_3} = -\int_{-R}^R \frac{e^{-2\pi i (x+2i)\xi}}{\cosh \pi x} dx = e^{4\pi \xi} \int_{-R}^R \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dx \to e^{4\pi \xi} I(R \to +\infty)$$

$$\left| \int_{\Gamma_2} \right| = \left| \int_0^2 i \frac{e^{-2\pi (ix+R)\xi}}{\cosh \pi (ix+R)} dx \right| \le \int_0^2 \left| \frac{2e^{-2\pi x \xi}}{e^{\pi ix} + e^{-\pi ix}} \right| dx$$

$$\begin{aligned} |cosh\pi x| &= \frac{e^{\pi x} + e^{-\pi x}}{2} \ge \frac{1}{2} \left| e^{\pi x} - e^{-\pi x} \right| \ge \frac{1}{2} (e^{\pi R} - e^{-\pi R}) \to +\infty \\ &\Rightarrow \left| \int_{\Gamma_2} \right| \to 0 (R \to = \infty) \end{aligned}$$

同理

$$\left| \int_{\Gamma 4} \right| \to 0 \, (R \to = \infty)$$

令 $R \to +\infty$ 并结合 (♣) 可得

$$(1 - e^{4\pi\xi})I = -2e^{2\pi\xi}(e^{\pi\xi} - e^{-\pi\xi}) \Rightarrow I = \frac{2(e^{\pi\xi} - e^{-\pi\xi})}{e^{\pi\xi} - e^{-\pi\xi}e^{\pi\xi} + e^{-\pi\xi}} = \frac{2}{e^{\pi\xi} + e^{-\pi\xi}} = \frac{1}{\cosh \pi\xi}$$

故

$$\int_{-\infty}^{+\infty} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dx = \frac{1}{\cosh \pi \xi}$$

2 Second Class(24.10.26)

2.1 本性奇点

Theorem 2.1 Casorati Weierstrass 定理

 $f \in H(D_r(z_0) \setminus \{z_0\}, z_0$ 为本性奇点,则 f 在 $D_r(z_0) \setminus \{z_0\}$ 的像在复平面稠密.

Remark 在本性奇点附近震荡——Picard 定理.

Proof 反证 若不稠密,则 $\exists \omega, \exists \delta > 0$ 使

$$\forall 0 < |z - z_0| < \delta, |f(z) - \omega| \ge \epsilon_0$$

$$g(z) = \frac{1}{f(z) - \omega}, |g(z)| \le \frac{1}{\epsilon_0} (\forall z \in D_{\delta}(z_0) \setminus \{z_0\})$$

下面我们来讨论 $f(z) - \omega$ 在 z_0 的极点情况:

- ① $f(z) \omega$ 在 z_0 全纯 $\Rightarrow z_0$ 为可去奇点,矛盾!
- ②否则必有 $f(z) \omega \to +\infty (z \to z_0) z_0$ 为极点,矛盾!

故 f 在 $D_r(z_0)\setminus\{z_0\}$ 的像在复平面稠密.

Example 2.1

任何单射整函数都为线性函数 (可表示为 f(z) = az + b $a, b \in \mathbb{C}, a \neq 0$)

Proof 考虑 $f(\frac{1}{z})$ 的奇点 $(\frac{1}{\infty}=0)$,假设 $f(\frac{1}{z})$ 在 0 处为极点令

$$G(z) = f(\frac{1}{z}) = \frac{a_{-k}}{z^k} + \dots + \frac{a_{-1}}{z} + G_0(z)$$

其中 $G_0(z)$ 全纯,

$$f(z) = a_k z^k + \dots + a_1 z + C \xrightarrow{\text{单射}}$$
 多项式

故只需考虑是可去奇点还是本性奇点的情形:

① $f(\frac{1}{z})$ 在 0 处为可去奇点:

f 在 ∞ 处补充定义为 c, f 在有界区域有界 M, 此时

$$f < \max\{c, M \to\}$$

故 f 有界 $\xrightarrow{Liouville}$ f 恒为常数,与 f 单射矛盾! $(2)f(\frac{1}{z})$ 在 0 处为本性奇点:

取一个圆盘 $D_{\delta}(0)$, 取圆盘外点 z_0

由开映射定理可知

$$\exists \delta_0 > 0 \, s.t. \, B_{\delta_0} \left(f(\frac{1}{z_0}) \right) \in f(\mathbb{C})$$

令 $B_{\delta_1}(z_0) \cap D_{\delta}(0) = \phi$ 根据 Casorati - Weierstrass 定理,我们可知 f 在 $D_{\delta}(z_0) \setminus \{z_0\}$ 也能取 到 $B_{\delta_1}\left(f(\frac{1}{z_0})\right)$ 中的点与 f 单射矛盾!

Definition 2.1 亚纯函数

f 在 Ω 上亚纯 \iff $\exists \{z_0, z_1...\}$ 在 Ω 上没有极限点使得

$$(i) f \in H(\Omega \setminus \{z_0, z_1...\})$$
 $(ii) \{z_0, z_1...\}$ 为 f 的极点.

延拓的复平面上讨论亚纯函数

Definition 2.2 延拓复平面上的全纯函数

定义在复平面上的亚纯函数 $f, F(z) = f(\frac{1}{z}), F$ 在 0 处有可去奇点/极点,称 f 是延拓复平面上的**全纯函数**.

Theorem 2.2

延拓复平面上的全纯函数是有理函数.

Proof

Claim f 有限部分极点至多有限个,若不然由 Casorati-Weierstrass 定理可知存在极点列的收敛子列,且极限点 $\in \mathbb{C}$,与零点的孤立性矛盾!

 z_k 附近

$$f(z) = \frac{a_{-m}}{(z - z_k)^m} + \dots + \frac{a_{-1}}{z - z_k} + G_k(z) = f_k(z) + G_k(z)$$

其中 $f_k(z)$ 为有理函数 (主部), $G_k(z)$ 为全纯函数, $f - \sum_{k=1}^n f_k$ 在每个 z_k 附近有界 \to 整函数 ①考虑 $1 \le k \le n$, $f(z) = f_k(z) + g_k(z) \to z_k$ 附近全纯 $(f_k(z)$ 主部,有理函数)

(2)

$$G(z) = f(\frac{1}{z}) = \frac{a_l}{z_l} + \dots + \frac{a_{-1}}{z} + G_{\infty}(z) = \widetilde{f_{\infty}}(z) + \widetilde{g_{\infty}}(z)$$

$$f(z) = a_l z^l + \dots + a_{-1} z + G_{\infty}(\frac{1}{z}), \ f_{\infty}(z) = \widetilde{f_{\infty}}(\frac{1}{z})$$

$$h = f - \sum_{k=1}^{n} f_k - f_{\infty} \to$$
整函数 $\xrightarrow{Liouville} h$ 为常数 $\Rightarrow f = c + \sum_{k=1}^{n} f_k + f_{\infty}$ 为有理函数.

Remark (★) 重要思想:把无穷远看成一个点去考虑证明.

Exercise 2.1 留数计算级数求和

假设 u 不为整数,证明:

$$\sum_{n=-\infty}^{+\infty} \frac{1}{(u+n)^2} = \frac{\pi^2}{(\sin \pi u)^2} \quad (u \in \mathbb{C})$$

Solution 考虑构造 $f(z) = \frac{\pi \cot \pi z}{(u+z)^2}$ (这样构造能使 f(z) 的所有极点为所有整数和 u)

$$res_n f = \pi \lim_{z \to n} (z - n) \frac{\cot \pi z}{(u + n)^2} = \frac{\pi}{(u + n)^2} \cdot \lim_{z \to n} (z - n) \cot \pi z = \frac{1}{(u + n)^2}$$

$$res_{-u}f = \lim_{z \to n} \frac{d}{dz} (\pi \cot \pi z) = -\frac{\pi^2}{(\sin \pi u)^2}$$

取一个圆心为原点的圆

$$|z| = N + \frac{1}{2}, N > |u|$$

其中 $[-N,N] \in \left\{z \mid |z| \le N + \frac{1}{2}\right\}$,所有极点 $\{-N,...,N,-u\}$,故有

$$2\pi i \left(\sum_{n=-N}^{N} \frac{1}{(u+n)^2} - \frac{\pi^2}{\sin^2(\pi u)} \right) = \int_{D_N} \frac{\pi \cot \pi z}{(u+z)^2}$$

只需

$$\lim_{N \to +\infty} \int_{D_N} \frac{\pi \cot \pi z}{(u+z)^2} dz = 0$$

而

$$\left| \int_{D_N} \frac{\pi \cot \pi z}{(u+z)^2} dz \right| = \left| \int_0^{2\pi} \frac{\pi \cot \pi (N + \frac{1}{2}) e^{i\theta}}{\left(u + (N + \frac{1}{2}) e^{i\theta} \right)^2} (N + \frac{1}{2}) e^{i\theta} i d\theta \right|$$

$$\leq \int_0^{2\pi} \frac{N + \frac{1}{2}}{(N + \frac{1}{2} - u)^2} \pi \cot \pi (N + \frac{1}{2}) e^{i\theta} d\theta \to 0 \ (N \to +\infty)$$

故

$$\lim_{N \to +\infty} \int_{D_N} \frac{\pi \cot \pi z}{(u+z)^2} dz = 0$$

进而有原命题成立,即

$$\sum_{n=-\infty}^{+\infty} \frac{1}{(u+n)^2} = \frac{\pi^2}{(\sin \pi u)^2} \quad (u \in \mathbb{C})$$

2.2 辐角原理

Theorem 2.3 辐角原理

f 在包含圆周 C 及内部的开机上亚纯,f 在圆周 C 上没有极点/零点,那么:

Proof 由辐角函数的定义,我们有:

$$\log f(z) = |\log f(z)| + i \arg f(z)$$

$$f(z) = (z - z_0)^n g(z), \frac{f'(z)}{f(z)} = \frac{n(z - z_0)^{n-1} g(z) + (z - z_0)^n g'(z)}{(z - z_0)^n g(z)} = \frac{n}{z - z_0} + \frac{g(z)}{g'(z)}$$
$$\Rightarrow \int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \cdot n$$

n 阶极点在曲线内部:

$$f(z) = (z - z_0)^n g(z) \quad \frac{f'(z)}{f(z)} = \frac{-n}{z - z_0} + H(z) \quad \int_{\gamma} \frac{f'(z)}{f(z)} = -2\pi i \cdot n$$

$$f(z) = (z - z_1)^{m_1} ... (z - z_k)^{m_k} \cdot (z - \omega_1)^{-n_1} ... (z - \omega_s)^{-n_s} g(z) \quad (m_1, ..., m_k, n_1, ... n_s \in \mathbb{N}^+)$$
其中 $(z - \omega_1)^{-n_1} ... (z - \omega_s)^{-n_s}$ 全纯, $g(z)$ 全纯且局部非 0
下面我们考虑:
$$\int_{z} \frac{f'(z)}{f(z)} dz$$

$$\frac{(f_1 f_2)'}{f_1 f_2} = \frac{f_1' f_2 + f_1 f_2'}{f_1 f_2} = \frac{f_1'}{f_1} + \frac{f_2'}{f_2}$$

由归纳法我们有:

$$\frac{(f_1...f_n)'}{f_1...f_n} = \sum_{k=1}^{n} \frac{f'_k}{f_k}$$

故

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=1}^{k} \frac{[(z-z_{i})^{m_{i}}]'}{(z-z_{i})^{m_{i}}} dz + \sum_{j=1}^{s} \frac{[(z-z_{j})^{n_{j}}]'}{(z-z_{j})^{n_{j}}} dz$$

$$\Rightarrow 2\pi i \left[\text{零点个数}(含重数) - 极点个数 \right] = 2\pi i \sum_{i=1}^{k} m_{i} - 2\pi i \sum_{j=1}^{s} n_{j} = \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

2.3 Rouche 定理

Theorem 2.4 Rouche 定理

f,g 定义在包含圆周 C 及其内部开集上的全纯函数, $\forall z \in C$ 有 |f(z)| > |g(z)|则 f 和 f+g 在圆周内部有相同的零点数.

Proof 对于 $t \in (0,1)$, 我们定义:

$$f_t(z) = f(z) + tg(z) \Rightarrow f_t(z) \neq 0 (\forall z \in \mathbb{C})$$
 s.t. $f_0 = f, f_1 = f + g$

记 n_t 为 f_t 在 C 内部的零点个数,而由 $f_t(z) \neq 0 (\forall z \in \mathbb{C})$ 可知 f(z) 在 C 上无零点,故由辐角原理我们可知:

$$n_t = \frac{1}{2\pi i} \int_{\gamma} \frac{f_t'(z)}{f_t(z)} dz$$
(只取自然数)

故 n_t 关于 t 连续,但只取自然数,故 n_t 恒为常数,故 $n_0 = n_1$,即: f 和 f + g 在 C 内部有相同的零点数.

Exercise 2.2

 $f: u \to v$ 全纯单射, 证

$$\forall z \in u, f'(z) \neq 0$$

Solution 假设 $f'(z_0) = 0$, z_0 附近点 z:

$$f(z) = f(z_0) + c(z - z_0)^k + G(z) \quad (k > 2)$$

其中 G(z) 为高阶无穷小

$$\underbrace{f(z) - f(z_0) - \omega}_{\mathfrak{F} \mathfrak{L} - \Lambda \mathfrak{F} \mathfrak{L}} = F(z) + G(z)$$

其中

$$F(z) = \underbrace{c(z - z_0)^k - \omega}_{\text{\pi} \psi_k \uparrow > 1 \uparrow}$$

取 z_0 的小邻域 D 使得

进而由 *Rouche* 定理,可知 F 与 F+G 在这个小邻域 D 内的零点个数相同由于 f 单射,故 D 上 $F+G=f(z)-f(z_0)-\omega$ 的零点至多一个而 $F=c(z-z_0)^k-\omega$ 的零点至少有 k 个且 $k\geq 2$ 矛盾!综上: $f'(z)\neq 0$.

Exercise 2.3 代数基本定理

n 次多项式一定有 n 个复数根.

Solution 最大模原理/Liouville 定理 \Rightarrow 至少有一个根.

令 $f(z) = a_n z^n + ... + a_1 z + a_0$, 将圆盘取足够大时 (即 |z| 足够大时), 有:

$$|a_n z^n| > |a_{n-1} z^{n-1 + \dots + a_1 z + a_0}|$$

故由 Rouche 定理我们可知: 对于足够大的圆盘 C,f 在 C 内部的零点个数 = a_nz^n 在 C 内部的零点个数即为 n

2.4 开映射定理

Theorem 2.5 开映射定理

 $f \in \Omega$ 上的全纯函数,且它不是常数,那么它是一个开映射.

Proof $i \exists f(z_0) = \omega_0$

 $\exists \omega_0$ 的一个邻域 $B_{\delta}(\omega_0)$ 使 $\forall \omega \in B_{\delta}(\omega_0)$, $\exists \delta_1$ 使在 $B_{\delta_1}(z_0)$ 上 $f(z) - \omega$ 有零点. 考虑

$$f(z) - \omega = \underbrace{f(z) - \omega}_{F(z)} + \underbrace{\omega - \omega_0}_{G(z)}$$

选取 $\delta > 0, \{z | |z - z_0| \le \delta\} \subseteq \Omega$,并且在 $|z - z_0| = \delta, f(z) \ne \omega_0$

然后选取 $\epsilon > 0$ 使得在圆周 $|z - z_0| = \delta$ 上, $|f(z) - \omega_0| \ge \epsilon$

现在如果 $|\omega - \omega_0| < \epsilon$,在圆周 $|z - z_0| = \delta$ 上 |F(z)| > |G(z)|,由 Rouche 定理可知 F 和 F + G 在 $|z - z_0| < \delta$ 上有相同的零点数,而 F 在 $|z - z_0| < \delta$ 有且仅有一零点 z_0 ,故 F + G 在 $|z - z_0| < \delta$ 也只有一个零点,这说明 f 是开的.

3 APPENDIX 17

3 Appendix	
Theorem .1 Theorem.	
Definition .1 Definition.	
Example .1 Example.	
Lemma .1 Lemma	
Proposition .1 Proposition	
Corollary .1 Corollary.	
Exercise .1 Exercise.	
Proof Proof.	
Solution Solution.	
Remark Remark.	

Analysis

Claim

Analysis.

Claim.