Devoir à la maison n°12

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

On a $\chi(1) = \chi(1 \times 1) = \chi(1) \times \chi(1)$ donc $\chi(1) \in \{0, 1\}$. Comme χ n'est pas identiquement nul, il existe $a \in \mathbb{Z}$ tel que $\chi(a) \neq 0$. Alors $\chi(1)\chi(a) = \chi(a) \neq 0$ donc $\chi(1) \neq 0$. Ainsi $\chi(1) = 1$.

2 Comme χ est 2-périodique, $\chi(2n) = \chi(0) = 0$ pour tout $n \in \mathbb{Z}$ et $\chi(2n+1) = \chi(1) = 1$ pour tout $n \in \mathbb{Z}$.

3 Par 4-périodicité,

$$\chi(3)^2 = \chi(3^2) = \chi(9) = \chi(1) = 1$$

donc $\chi(3) \in \{-1, 1\}$.

A Remarquons également que $\chi(2) = 0$ car 2 n'est pas premier avec N = 4. Ainsi, pour tout $n \in \mathbb{Z}$,

$$\chi(4n) = \chi(0) = 0$$
 $\chi(4n+1) = \chi(1) = 1$ $\chi(4n+2) = \chi(2) = 0$ $\chi(4n+3) = \chi(3) = -1$

ou encore, pour tout $n \in \mathbb{Z}$,

$$\chi(2n) = 0 \qquad \qquad \chi(2n+1) = (-1)^n$$

$$\forall x \in]-1,1[, \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{2n+1} = \arctan x$$

donc en vertu du théorème de convergence radiale d'Abel

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \lim_{n \to \infty} \arctan = \frac{\pi}{4}$$

En conclusion, $\sum_{n \in \mathbb{N}^*} \frac{\chi(n)}{n}$ est une série convergente de somme $\frac{\pi}{4}$.

6 Comme $a \wedge N = 1$, on a $a^{\varphi(n)} \equiv 1[N]$. Donc par N-périodicité,

$$\chi(a)^{\varphi(N)} = \chi(a^{\varphi(N)}) = \chi(1) = 1$$

Ainsi $|\chi(a)| = 1$.

7 Par N-périodicité, $\chi(k)$ ne dépend que de la classe de a modulo N. On écrira donc abusivement $\chi(\overline{k})$ au lieu de $\chi(k)$. Comme $a \wedge N = 1$, \overline{a} est inversible dans $\mathbb{Z}/N\mathbb{Z}$. L'application $x \in \mathbb{Z}/N\mathbb{Z} \setminus \{\overline{0}\} \mapsto \overline{a} \cdot x$ est donc une permutation de $\mathbb{Z}/N\mathbb{Z} \setminus \{0\}$. Ainsi

$$\sum_{k=1}^{N-1} \chi(ak) = \sum_{k=1}^{N-1} \chi(\overline{a} \cdot \overline{k}) = \sum_{k=1}^{N-1} \chi(\overline{k}) = \sum_{k=1}^{N-1} \chi(k)$$

1

8 D'après la question précédente,

$$\chi(a) \sum_{k=1}^{N-1} \chi(k) = \sum_{k=1}^{N-1} \chi(ak) = \sum_{k=1}^{N-1} \chi(k)$$

Comme $\chi(a) \neq 1$, $\sum_{k=1}^{N-1} \chi(k) = 0$. Par N-périodicité de χ ,

$$\forall n \in \mathbb{N}, \ \sum_{k=n}^{n+N-1} \chi(k) = \sum_{k=0}^{N-1} \chi(k) = 0$$

9 Supposons d'abord, $m \le N - 1$. Par inégalité triangulaire,

$$\left| \sum_{k=1}^{m} \chi(k) \right| \le \sum_{k=1}^{m} |\chi(k)|$$

Si $k \wedge N \neq 1$, $\chi(k) = 0$ et si $k \wedge N = 1$, $|\chi(k)| = 1$ donc

$$\left|\sum_{k=1}^{m} \chi(k)\right| \le \sum_{k=1}^{m} |\chi(k)| = \operatorname{card} P \cap [[1, m]] \le \operatorname{card} P = \varphi(N)$$

Supposons maintenant m quelconque. On écrit la division euclidienne de m par N: m = Nq + r où $r \in [0, N-1]$. Ainsi

$$\sum_{k=1}^{m} \chi(k) = \sum_{k=0}^{m} \chi(k) = \sum_{j=0}^{q-1} \sum_{k=jN}^{jN+N-1} \chi(k) + \sum_{k=qN}^{qN+r} \chi(k)$$

Or pout tout $j \in [0, q-1]$, $\sum_{k=jN}^{jN+N-1} \chi(k) = 0$ d'après la question précédente et $\sum_{k=qN}^{qN+r} \chi(k) = \sum_{k=0}^{r} \chi(k)$ par périodicité de χ . Ainsi, d'après le cas initialement traité,

$$\left| \sum_{k=1}^{m} \chi(k) \right| = \left| \sum_{k=1}^{r} \chi(k) \right| \le \varphi(N)$$

10 On utilise la transformation d'Abel admise dans l'énoncé. En clair, on pose $\alpha_k = \chi(k)$ et $u_k = \frac{1}{k}$. Ainsi

$$\sum_{k=1}^{n} \frac{\chi(k)}{k} = -T_0 + \sum_{k=1}^{n-1} T_k \left(\frac{1}{k} - \frac{1}{k+1} \right) + \frac{T_n}{n}$$

D'après la question précédente, (T_n) est bornée donc $\lim_{n\to+\infty} \frac{T_n}{n} = 0$. De plus, $\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$ donc

$$T_k \left(\frac{1}{k} - \frac{1}{k+1}\right) \underset{k \to +\infty}{=} \mathcal{O}\left(\frac{1}{k^2}\right)$$

On en déduit que la série $\sum T_k \left(\frac{1}{k} - \frac{1}{k+1}\right)$ converge. La suite de terme général $\sum_{k=1}^{n-1} T_k \left(\frac{1}{k} - \frac{1}{k+1}\right)$ converge donc. Par opérations, la suite de terme général $\sum_{k=1}^{n} \frac{\chi(k)}{k}$ converge.

11 Notons \mathcal{D}_n l'ensemble des diviseurs de n. Montrons que l'application $\Phi: (d_1,d_2) \in \mathcal{D}_n \times \mathcal{D}_m \mapsto d_1d_2$ réalise une bijection de $\mathcal{D}_n \times \mathcal{D}_m$ sur \mathbb{D}_{nm} .

Cette application Φ est bien à valeurs dans \mathcal{D}_{nm} . En effet, si $(d_1, d_2) \in \mathcal{D}_n \times \mathcal{D}_m$, alors $d_1 \mid n$ et $d_2 \mid m$. Or $n \land m = 1$ donc $d_1 \land d_2 = 1$ également. On peut alors affirmer que $d_1d_2 \mid nm$ i.e. $d_1d_2 \in \mathcal{D}_{nm}$.

Cette application Φ est bien injective. En effet, soient (d_1,d_2) et (d_1',d_2') deux couples de $\mathcal{D}_n \times \mathcal{D}_m$ tels que $\Phi(d_1,d_2) = \Phi(d_1',d_2')$ i.e. $d_1d_2 = d_1'd_2'$. Alors d_1 est premier avec d_2' et divise $d_1'd_2'$ donc d_1 divise d_1' . De la même manière, d_1' divise d_1 . Ainsi $d_1 = d_1'$ puis $d_2 = d_2'$.

Enfin, cette application Φ est surjective. Soit en effet $k \in \mathcal{D}_{nm}$. Posons $d_1 = k \wedge n$ et $d_2 = k \wedge m$. On a bien $(d_1, d_2) \in \mathcal{D}_n \times \mathcal{D}_m$. De plus, d_1 et d_2 divisent k et sont premiers entre eux donc d_1d_2 divise k. On sait que d_1 divise n et k et que k divise n donc n donc n divise n donc n divise n donc n divise n

 d_2 divise k et m donc on peut écrire que $\frac{k}{d_2}$ divise $d_1 \cdot \frac{m}{d_2}$. Or $\frac{k}{d_2}$ et $\frac{m}{d_2}$ sont premiers entre eux donc $\frac{k}{d_2}$ divise d_1 i.e. k divise d_1d_2 . Comme on a vu que d_1d_2 divisait k, $k = d_1d_2 = \Phi(d_1, d_2)$. Par bijectivité de Φ ,

$$f_{nm} = \sum_{d|nm} \chi(d) = \sum_{d_1|n,d_2|n} \chi(d_1d_2) = \sum_{d_1|n,d_2|n} \chi(d_1)\chi(d_2) = \left(\sum_{d_1|n} \chi(d_1)\right) \left(\sum_{d_2|m} \chi(d_2)\right) = f_n f_m$$

12 Les diviseurs de p^{α} sont les p^k où $0 \le k \le \alpha$. Ainsi

$$f_{p^{\alpha}} = \sum_{k=0}^{\alpha} \chi(p^k) = \sum_{k=0}^{\alpha} \chi(p)^k$$

D'après les questions précédentes, $\chi(p) \in \{-1, 1, 0\}$. Ainsi

$$f_{p^{\alpha}} = \begin{cases} \alpha + 1 & \text{si } \chi(p) = 1\\ 1 & \text{si } \chi(0) = 0\\ 0 & \text{si } \chi(p) = -1 \text{ et } \alpha \text{ impair}\\ 1 & \text{si } \chi(p) = -1 \text{ et } \alpha \text{ pair} \end{cases}$$

13 D'après la question précédente, $0 \le f_{p^{\alpha}} \le \alpha + 1$ pour tout nombre premier p et tout entier $\alpha \ge 1$. Notons $n = \prod_{i \in I} p_i^{\alpha_i}$ la décomposition en facteurs premiers de $n \in \mathbb{N}^*$ (I éventuellement vide si n = 1). Comme les $p_i^{\alpha_i}$ sont premiers entre eux deux à deux,

$$f_n = \prod_{i \in I} f_{p_i^{\alpha_i}}$$

puis

$$0 \le f_n \le \prod_{i \in \mathcal{I}} (\alpha_i + 1)$$

Les diviseurs de n sont les $\prod_{i \in I} p_i^{k_i}$ où $0 \le k_i \le \alpha_i$ pour tout $i \in I$ et tous ces produits sont distincts par unicité de la décomposition en facteurs premiers. Le nombre de diviseurs de n est donc $\prod_{i \in I} (\alpha_i + 1)$. On en déduit en particulier que $\prod_{i \in I} (\alpha_i + 1) \le n$. Ainsi $0 \le f_n \le n$.

14 A nouveau, écrivons $n=\prod_{i\in I}p_i^{\alpha_i}$ la décomposition en facteurs premiers de $n\in \mathbb{N}^*$. Alors $n^2=\prod_{i\in I}p_i^{2\alpha_i}$ puis $f_{n^2}\prod_{i\in I}f_{p_i^{2\alpha_i}}$. Mais comme $2\alpha_i$ est pair, $f_{p_i^{2\alpha_i}}\geq 1$ pour tout $i\in I$ d'après la question 12. Ainsi $f_{n^2}\geq 1$.

Notons R le rayon de convergence de la série entière $\sum f_n x^n$. On sait que $0 \le f_n \le n$ pour tout $n \in \mathbb{N}^*$. Or le rayon de convergence de la série entière $\sum n x^n$ vaut 1 donc R ≥ 1 . Mais d'après la question précédente, (f_n) ne converge pas vers 0. Ainsi R ≤ 1 . Finalement, R = 1.

16 Soit $x \in [1/2, 1[$. Puisque les f_n sont positifs,

$$f(x) = \sum_{n=1}^{+\infty} f_n x^n \ge \sum_{n=1}^{+\infty} f_{n^2} x^{n^2}$$

Mais $f_{n^2} \ge 1$ pour tout $n \in \mathbb{N}^*$ donc

$$f(x) \ge \sum_{n=1}^{+\infty} x^{n^2} = \sum_{n=1}^{+\infty} e^{n^2 \ln x}$$

La fonction $t \mapsto e^{t^2 \ln x}$ est décroissante puisque $\ln x < 0$ donc

$$\forall n \in \mathbb{N}^*, \ e^{n^2 \ln x} \ge \int_n^{n+1} e^{t^2 \ln x} \ \mathrm{d}t$$

puis

$$\sum_{n=1}^{+\infty} e^{n^2 \ln x} \ge \int_1^{+\infty} e^{t^2 \ln x} \, \mathrm{d}t$$

On effectue ensuite le changement de variable $u = t\sqrt{-\ln x}$ de sorte que

$$\int_{1}^{+\infty} e^{t^{2} \ln x} dt = \frac{1}{\sqrt{-\ln x}} \int_{\sqrt{-\ln x}}^{+\infty} e^{-u^{2}} du$$

Enfin, $x \ge 1/2$ donc $\sqrt{-\ln x} \le \sqrt{\ln 2}$ et comme $u \mapsto e^{-u^2}$ est positive,

$$\int_{\sqrt{-\ln x}}^{+\infty} e^{-u^2} du \ge \int_{\sqrt{\ln 2}}^{+\infty} e^{-u^2} du$$

Finalement,

$$f(x) \ge \frac{1}{\sqrt{-\ln x}} \int_{\sqrt{\ln 2}}^{+\infty} e^{-u^2} du$$