

珠海市睿控科技有限公司

EIO-0808 网络型 IO 卡

使用手册

Version 1.0

第1章 硬件接口电路

1.1 硬件简介

EIO-0808 网络型 IO 卡是睿控推出的基于优化的网络通讯协议,可实现实时控制的全新 IO 控制卡,可完全替代传统的 PCI 型 IO 板卡,方便客户选择工控机及降低设备接线复杂度等。

EIO-0808 硬件接口电路有: 1路 100M 网络接口、1路 CAN 总线扩展接口、8路通用输入、8路通用输出。具体硬件系统框图如图 1.1 所示。

图1.1 IO卡硬件系统框图

EIO-0808 系列运动卡硬件布置及尺寸如图 1.2 所示。

图1.2 EIO-0808系列卡硬件布置及尺寸图

1.2 IO 卡与配件的连接

1.2.1 EIO-0808 与配件的连接

EIO-0808 卡无须额外的必选配件,可单独与带网卡的电脑进行实时连接,连接示意图如图 1.3 所示。

图1.3 EIO-0808与PC连接示意图

注意:建议使用带屏蔽的超5类网线(直通交叉自适应)进行连接通讯,并做好系统接地(屏蔽地)处理,以减少外部干扰对通讯的影响。

1.3 通用 I/O 接口电路

EIO-0808 卡总共提供了 16 路通用数字 I/O 接口。最多可扩展 256 个 IO 点。

1.3.1 通用数字输入信号接口

EI0-0808 系列卡有 8 路通用数字输入信号。所有输入接口均加有光电隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。通用数字输入信号接口原理图如图 1.4 所示。

图 1.4 通用输入信号接口原理图

1.3.2 通用数字输出信号接口

EIO-0808 卡有 8 路通用数字输出信号,最大工作电流为 400 mA (5~24Vdc, 吸入),可用于控制继电器、电磁阀、信号灯或其它设备。

下面给出了通用数字输出信号接口控制3种常用元器件的接线图。

1、发光二极管

通用数字输出端口控制发光二极管时,需要接一限流电阻 R,限制电流在 10mA 左右,电阻需根据使用的电源来选择,电压越高,使用的电阻值越大。接 线图如图 3.21 所示。

图 1.5 EIO-0808 卡输出口接发光二极管

2、灯丝型指示灯

通用数字输出端口控制灯丝型指示灯时,为提高指示灯的寿命,需要接预热电阻 R,电阻值的大小,以电阻接上后,输出口为 1 时,灯不亮为原则。接线图如图 1.6 所示。

图 1.6 EIO-0808 灯丝型指示灯接线图

3、小型继电器

继电器为感性负载,必须并联一个续流二极管。当继电器突然关断时,继电器中的电感线圈产生的感应电动势可由续流二极管消耗,以免 MOS 管被感应电动势击穿。其接线图如图 1.7 所示。

图 1.7 EIO-0808 接小型继电器的接线图

注意: 在使用通用数字输出端口时,切勿把外部电源直接连接至通用数字输出端口上, 否则,会损坏输出口。

1.7 CAN-IO 扩展模块接口电路

EIO-0808 卡有一路 CAN 总线接口,可外接 CAN 扩展模块,其连接电路如下:

信号名称	信号说明	备注
CAN_GND	CAN 电源地信号	IO 卡和扩展模块的地必须相连
CANH	CAN 差分数据+	
CANL	CAN 差分数据-	

EARTH	CAN 屏蔽地/安规地	建议使用屏蔽线,	并将屏蔽层接入
		到 EARTH	

注意:连接多个 CAN 模块的时候需要在最后一个 CAN 模块上接入 120 欧的终端电阻,此终端电阻可通过 CAN 模块的跳线帽选择是否接入,具体详见 CAN 模块手册说明!

第二章快速使用

2.1 开箱检查

打开包装后,请确认与所订型号是否一致,再检查IO卡的表面是否有损坏,然后按照 装箱清单或订购合同仔细核对配件是否齐备。如果IO卡表面有损坏,或产品型号不符合, 请不要使用,立即与睿控科技联系。

为了防止静电损害控制卡,请在接触IO卡电路之前触摸有效接地金属物

体以释放身体所携带的静电荷。

2.2 安装步骤

请按照以下安装步骤建立控制系统:

步骤1:将IO卡通过网线与PC连接

步骤2: 为IO卡供电(24V)

步骤3: 接线板连接输入输出负载

步骤4: 使用demo软件或编写软件来控制IO卡

2.2.1 步骤 1: 将 IO 卡通过网线与 PC 连接

使用光盘里附带的DEMO程序,测试主机是否和IO卡建立了联系。如果DEMO程序能工作开启,没有提示找不到卡,证明IO卡通讯正常。否则会提示错误信息"打开板卡失败",证明IO卡通讯失败。在通讯成功的前提下,用户可进行相关功能的测试。

第三章运动控制器函数库的使用

3.1 Windows 系统下动态链接库的使用

在Windows系统下使用运动控制器,只需要设置好IP地址,将接口文件添加到工程中即可。相关文件如下:

PLT.dll, PLT.lib, PLT.h (C#语言使用PLT.cs)

3.1.1 Visual C++ 6.0 中的使用

- 1. 启动Visual C++ 6.0, 新建一个工程;
- 2. 将产品配套光盘Windows\VC6文件夹中的动态链接库、头文件和lib文件复制到工程文件夹中;
 - 3. 选择 "Project" 菜单下的 "Settings…" 菜单项;
 - 4. 切换到 "Link"标签页,在"Object/library modules"栏中输入lib文件名,例如PLT.lib;
 - 5. 在应用程序文件中加入函数库头文件的声明,例如: #include "PLT.h" 至此,用户就可以在Visual C++中调用函数库中的任何函数,开始编写应用程序。

第四章系统配置及使用

在使用IO卡进行各种操作之前,需要对IO卡进行配置,使IO卡的状态和各种工作模式能够满足客户的要求。

4.1 初始化

使用IO卡之前需要先初始化,使其为后续的指令做好相关准备;使用结束之后需要关闭IO卡。

指令 说明
Plt_CardOpen 初始化控制卡
Plt_CardClose 关闭控制卡
Plt_CardGetVerson 获取版本号

表4.1 初始化指令列表

表4.2 运动状态检测指令参数说明

Plt_CardOpen(uint16 TotalCards,uint16 *CardIdArray,uint16					
Section,uint16 I	*Section,uint16* Host_id)				
TotalCards	卡的数量				
CardIdArray	返回卡的 ID 列表				
Section	固定为 167				
Host_id	根据拨码设置				
Plt_CardClose(void)					
Plt_CardGetVerson(uint16 cardid,DWORD *verson1,DWORD *verson2)					
cardid	卡号 (0-3)				
verson1	固件版本号				
verson2	库版本号				

重点说明:

初始化函数Plt_CardOpen的功能有两个:一是为IO卡分配资源,进行初始化;二是返回相关IO卡的信息,包括初始化成功的IO卡的数量,每个卡的卡号。

关闭IO卡函数Plt_CardClose的作用是在退出时释放资源,在应用程序关闭时应该先调用此函数

例子(C#): 初始化IO卡的操作

PC机IP地址设置为192.168.167.18,如下图:

PC机IP地址可设置范围192.168.167.1 --- 192.168.167.119


```
● 使用下面的 IP 地址(S):IP 地址(I):192 .168 .167 .18子网掩码(V):255 .255 .255 .0
```

图4.1 PC机IP地址设置

主要代码:

4.2 IO 基本操作

表4.3 IO基本操作指令列表

	指令	
	Plt_IoReadInputByBit	读取输入口的状态
	Plt_IoWriteOutputByB	设置输出口的状态
it		
	Plt_IoReadOutputByB	读取输出口的状态
it		
	Plt_IoReadAllInput	读取所有输入口的值
	Plt_IoReadAllOutput	读取所有输出端口的值
	Plt_IoWriteAllOutput	设置所有输出端口的值
	Plt_IoReverseOutputB	翻转输出口并保持设定时间
it		

表4.4 运动状态检测指令参数说明

农4.4 运动状态恒侧指文多数优势					
Plt_IoReadIn	nputByBit (uint16 cardid,uint16 bitno,uint16 *active_level)				
cardid	卡号 (0-3)				
bitno	IO 号(0-31)				
active_level	IO 状态(1:高电平,0:低电平)				
Plt_IoWriteC	OutputByBit (uint16 cardid,uint16 bitno,uint16 active_level)				
cardid	卡号 (0-3)				
bitno	IO 号 (0-31)				
active_level	IO 状态(1:高电平,0:低电平)				
Plt_IoReadO	utputByBit (uint16 cardid,uint16 bitno,uint16 *active_level)				
cardid	卡号 (0-3)				
bitno	IO 号 (0-31)				
active_level	IO 状态(1: 高电平,0: 低电平)				
Plt_IoReadA	llInput (uint16 cardid,DWORD *active_level_1)				
cardid	卡号 (0-3)				
active_level	所有输入口的状态(bit0 对应 IN0,bit31 对应 IN31)				
_1					
Plt_IoReadA	llOutput (uint16 cardid,DWORD *active_level)				
cardid	卡号 (0-3)				
active_level	所有输出口的状态(bit0 对应 OUT0,bit31 对应 OUT31)				
Plt_IoWriteA	allOutput (uint16 cardid,DWORD active_level)				
cardid	卡号				
active_level	所有输出口的状态(bit0 对应 OUT0,bit31 对应 OUT31)				
Plt_IoRevers	eOutputBit(uint16 cardid,uint16 bitno,double hold_time)				
cardid	卡号 (0-3)				
bitno	IO 号 (0-31)				
Hold_time	翻转保持时间(单位: s)				

重点说明:

输入输出口可以逐个口进行操作。

Plt_IoReadInputByBit: 逐个读取输入口状态 Plt_IoWriteOutputByBit: 逐个写入输出口状态 Plt_IoReadOutputByBit: 逐个读取输出口状态

输入输出口也可以同时操作所有的输入或输出口

Plt_IoReadAllInput: 同时读取所有输入口状态 Plt_IoWriteAllOutput: 同时写入所有输出口状态 Plt_IoReadAllOutput: 同时读取所有输出口状态

附 录

附录 1 EIO-0808 卡接口说明

一、外观尺寸布局说明

EIO-0808 卡外观如图 F1.1 所示,接口位置示意图如图 F1.2 所示。

图 F1.1 EIO-0808 卡外观照片

图 F1.2 EIO-0808 卡接口位置示意图

二、接口定义说明

EIO-0808 卡总共有如下接口, 具体见表 F2. 1:

 名称
 功能介绍

 J0
 百兆网接口 (ETHERNET)

 P0
 DC24V 电源输入接口

 P1-P2
 通用输入端口 INO-IN7

 P4-P5
 通用输出端口 OUTO-OUT7

 P3
 CAN 总线接口

 注意: 当输出口接入感性负载时需要外接续流二极管

表 F2.1 EIO-0808 卡接口功能简述

2.1、P0 电源定义

接口P0是I0卡的电源输入接口,板上及外壳标有24V的端子接+24V,标有24VGND的端子接外部电源地。

表 F2.2	P0 接口引脚号和信号关系表	

序	名称	I/0	说明
1	+24V	Ι	DC24V 电源输入
2	24VGND	Ι	DC24V 电源地
3	EARTH	Ι	安规地

2.2、 P1-P2 通用输入信号(IN0-IN7)接口定义

P1-P2 为 8 路通用输入(IN0-IN7)接口,其引脚号和信号对应关系见表 F2.3、表 F2.4 所示。

表 F2.3 P1 引脚号和信号关系表

序	名称	I/0	说明
1	INO	Ι	通用输入0
2	IN1	Ι	通用输入1
3	IN2	Ι	通用输入2
4	IN3	Ι	通用输入3
5	24VGND	Ι	24V 电源地

表 F2.4 P2 引脚号和信号关系表

序	名称	I/0	说明
1	IN4	Ι	通用输入4
2	IN5	Ι	通用输入5
3	IN6	Ι	通用输入6
4	IN7	Ι	通用输入7
5	24VGND	Ι	24V 电源地

2.3、P4-P5 通用输出信号(OUT0-OUT7)接口定义

P4-P5 为 8 路通用输出 (OUT0-OUT7) 接口,其引脚号和信号对应关系见表 F2.5 表 F2.6 示。

表 F2.5 P4 脚号和信号关系表

序	名称	I/0	说明
1	OUTO	0	通用输出 0
2	OUT1	0	通用输出1
3	OUT2	0	通用输出 2
4	OUT3	0	通用输出3

序	名称	I/0	说明
5	E24V	0	DC24V 电源输出

表 F2.6 P5 脚号和信号关系表

序	名称	I/0	说明
1	OUT4	0	通用输出4
2	OUT5	0	通用输出 5
3	OUT6	0	通用输出 6
4	OUT7	0	通用输出7
5	E24V	0	DC24V 电源输出

2.4、P3 CAN 总线接口定义

EIO-0808 卡有 1 路 CAN 总线接口 P3,可以连接睿控 CAN 总线从站扩展模块,实现更多的 I0 扩展功能,具体端口定义如下表 F2.7

表 F2.7 P3 脚号和信号关系表

序	信号名称	信号说明	备注
1	CANH	CAN 差分数据+	
2	CANL	CAN 差分数据-	
3	CAN_GND	CAN 电源地信号	IO 卡和扩展模块的地必须相连

11、 指示灯定义

EIO-0808 模块表面有 3 个指示灯,分别为:

POW (绿色): 外部电源指示灯,系统正常上电运作状态下常亮;如果接入DC24V电源不亮灯,请仔细查看是否DC24V正常供电及接入顺序是否正确。

RUN (绿色): 10 卡运行状态指示灯,正常连接状态下此绿色指示灯闪烁,其中运行状态根据闪烁频率来区分:

- a. 600ms 闪动频率,代表只有以太网上下位机通讯正常;
- b. 100ms 闪动频率,以太网上下位和 CAN 扩展通讯都正常
- c. 200ms 闪动频率,只有 can 扩展通讯正常。

ERR (红色): I0 卡网络物理连接指示灯。I0 卡与 PC 网络物理连接状态下 此灯常灭,如果连接失败此灯常亮。