Inhaltsverzeichnis

1	Auf	gabenstellung	2
2		ndlagen	2
	2.1	Radioaktivität	2
	2.2	Zählrohr	4
	2.3	Magnetspektrometer	5
	2.4	Szintilationszähler	6
3	Vers	suchsanordnung	7
	3.1	Digitalzähler	7
	3.2	Magnetfeldspektrometer	8
	3.3	Szintilationszähler	9
4	Ger	äteliste	9
5	Vers	suchsdurchführung & Messergebnisse	10
	5.1	Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken	
		Abschirmungen	10
	5.2	Aufnahme der Zählrohrcharakteristik	11
	5.3	Aufnahme der Zählstatistik	13
	5.4	Bestätigung des Abstandsgesetzes	15
	5.5	Bestimmung der Endpunktsenergie über Absorption in Aluminium 1	15
	5.6	Aufnahme des Energiespektrums von β Strahlung mit Magnetspek-	
		trometer	17
	5.7	Aufnahme und Kalibrierung des γ Spektrums	18
	5.8	Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten	19
6	Aus		20
	6.1	Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken	
			20
	6.2	Aufnahme der Zählrohrcharakteristik	20
	6.3	Aufnahme der Zählstatistik	21
	6.4	Bestätigung des Abstandsgesetzes	23
	6.5	Bestimmung der Endpunktsenergie über Absorption in Aluminium 2	24
	6.6	Aufnahme des Energiespektrums von β Strahlung mit Magnetspek-	
		trometer	26
	6.7	Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten	28
7	Zusa	ammenfassung	31

1 Aufgabenstellung

- Messung der α , β und γ Strahlung ohne und mit verschieden dicken Abschirmungen
- Aufnahme der Zählrohrcharakteristik
- Aufnahme der Zählstatistik
- Bestätigung des Abstandsgesetzes
- Bestimmung der Endpunktenergie über Absorption in Aluminium
- Aufnahme des Energiespektrums von β Strahlung mit Magnetspektrometer
- Aufnahme und Kalibrierung des γ Spektrums
- Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten

2 Grundlagen

2.1 Radioaktivität

Nicht alle, in der Natur vorkommenden, Isotope sind stabil und zerfallen so mit einer gewissen Halbwertszeit τ . Bei diesen Zerfällen kann grundsätzlich zwischen verschiedenen Arten der Zerfällen unterschieden werden.

Bei α - Zerfall wird ein Heliumkern ausgestoßen, was sich schließlich auf die Massen und Ordnungszahl auswirkt.

Bei β - Zerfall muss zwischen β^+ und β^- unterschieden werden. β^- - Zerfall wird durch die Umwandlung eines Neutrons in ein Proton hervorgerufen, wodurch ein Elektron und ein Elektron-Antineutrino ausgestoßen werden, um die Erhaltungssätze nicht zu verletzen. β^+ - Zerfall kommt in der Natur seltener vor, funktioniert aber nach dem gleichen Prinzip, mit dem Unterschied, dass hier die Ordnungszahl erhöht wird.

Bei γ - Zerfall werden keine Teilchen sondern hochfrequente Wellen abgestrahlt. Diese kommen zustande, wenn das Isotop nach α oder β - Zerfall noch in einem angeregten Zustand ist, wodurch durch die γ - Strahlung - Spektren entstehen, die signifikant für bestimmte Elemente sind, was im Laufe des Versuchs genutzt wird.

Weil diese Zerfälle immer nach einem bestimmen Schema ablaufen, können sogenannte Zerfallsreihen angeschrieben werden, wie beispielsweise die Zerfallsreihe von ²²⁶₈₈Ra in Abbildung 1. Daraus kann abgelesen werden, welche Zerfälle vorliegen und auch welche Halbwertszeiten diese haben, wie häufig die Zerfälle also auftreten.

Abbildung 1: Zerfallsreihe $^{226}_{88}$ Ra empty citation

Die Intensität I radioaktiver Strahlung folgt dabei dem Abstandsgesetz, welches folgendermaßen definiert werden kann:

$$I \propto \frac{1}{l^2} \tag{1}$$

l entspricht dabei dem Abstand zur radioaktiven Quelle.

Für die Absorption von radioaktiver Strahlung gilt das Beer-Lambertsche Absorptionsgesetz:

$$I = I_0 \exp(-\mu d) \tag{2}$$

I beschreibt dabei die Intensität der Strahlung nach der Barriere, I_0 die Anfangsintensität, μ den Absorptionskoeffizienten der Barriere und d die Dicke der Barriere.

Aus den Absorptionskoeffizienten kann die Ruheenergie E_0 nach folgender Formel berechnet werden:

$$\frac{\mu}{\rho} = 17.6 \ E_0^{-1.39} \tag{3}$$

 ρ beschreibt dabei die Dichte der Barriere, dessen Absorptionskoeffizient bestimmt wurde. **empty citation**

Hier wird die für dieses Experiment verwendete Gleichung für Lorentzkraft in natürlichen Einheiten angeführt.

$$\frac{p}{[\text{MeV}]} = \frac{Br}{[\text{T}][\text{m}]} \tag{4}$$

Wobei B die Magnetische Flussdichte im Magnetospektrometer, p der Impuls des Teilchens und r der aufbau-spezifische approximierter Lorentzradius ist.

Weiters wurde die Energieimpulsbeziehung in natürlichen Einheiten angeführt:

$$E = m_0 c^2 \left(\sqrt{\frac{B^2 r^2}{m_0 c^2} + 1} - 1 \right) \tag{5}$$

Wobei E die Energie und m_0c^2 die Ruheenergie des Elektrons ist.

2.2 Zählrohr

Im Versuch wird ein sogenanntes Geiger-Müller-Zählrohr verwendet, dessen schematischer Aufbau in Abbildung 2 ersichtlich ist. Es besteht im wesentlichen aus einem mit Zählgas gefüllten Metallrohr, durch dessen Mitte ein dünner Draht, der als Anode fungiert, läuft. Auf diesen Draht wird eine Spannung angelegt. Trifft nun ein zu detektierendes Teilchen auf das Fenster des Zählrohrs, können Atome im Zählgas angeregt werden, welches durch die angelegte Spannung zur Anode hin beschleunigt wird. Durch Stöße im Gas wird ein Lawineneffekt ausgelöst, der schlussendlich als Peak von der Anode verzeichnet werden kann.

Abbildung 2: schematischer Aufbau des Zählrohrs empty citation

Der charakteristische Verlauf der Kurve des Zählrohrs ist in Abbildung 3 ersichtlich. Dabei sind die einzelnen Bereiche zu unterscheiden **empty citation**

- I. Hier werden die Elektronen aufgrund der angelegten Spannung zur Anode hin Beschleunigt.
- II. In diesem Bereich ist eine Sättigung erreicht. Es bewegen sich also nicht alle Atome direkt zur Anode.

- III. Hier ist die Spannung so hoch, dass die Atome auf den Weg zur Anode mit anderen Atomen zusammenstoßen, wodurch der Lawineneffekt ausgelöst wird.
- IV. In diesem Bereich befindet sich das sogenannte Geiger-Müller-Plateau. Hier ist der Betrieb quasi nicht spannungsabhängig, weshalb dies auch der gewünschte Messbereich ist.
- V. Eine weitere Erhöhung in diesen Bereich erhöht zwar auch die Zählrate, zerstört aber auf Dauer den Zähler, weshalb dieser Bereich zu meiden ist.

Abbildung 3: charakteristische Kurve des Zählrohrs für verschiedene Arten von Strahlung für die Bereits erklärten Spannungsbereiche **empty citation**

2.3 Magnetspektrometer

Die Funktionsweise eines Magnetfeldspektrometer basiert auf der Lorentzkraft. So wird β - Strahlung, die im Grunde aus Elektronen besteht, in einer Kreisbahn abgelenkt und so von der γ - Strahlung getrennt. Der schematische Aufbau eines Magnetfeldspektrometers ist in Abbildung 4 ersichtlich. In der Abbildung ist klar die Kreisförmige 'Flugbahn' der β - Strahlung vom Präparat zum Zählrohr sichtbar.empty citation

Abbildung 4: schematischer Aufbau des Magnetfeldspektrometers empty citation

2.4 Szintilationszähler

Der schematische Aufbau eines Szintilationszählers ist ist in Abbildung 5 sichtbar. Grundsätzlich besteht er aus einem Szintilartor, bei dem durch die Anregung der Strahlen Photonen ausgesendet werden, die von der Photokathode erfasst werden. Dahinter befindet sich ein Photomultiplier, an dessen Ende schlussendlich die vielen Elektronen von der Anode abgegriffen werden, was das erhaltene Signal darstellt.empty citation

Abbildung 5: schematischer Aufbau und Strahlengang im Szintilationszähler empty citation

3 Versuchsanordnung

Im Laufe des Versuchs wurden 3 verschiedene Aufbauten verwendet die im Verlauf modifiziert wurden.

3.1 Digitalzähler

Für den ersten Teil des Versuchs wird folgender Versuchsaufbau aus Abbildung 6 realisiert. Dabei wird das Präparat in die dafür vorgesehene Halterung geschoben, hinter der sich das Zählrohr befindet, welches mit dem Digitalzähler verbunden ist, wodurch ein einfaches Ablesen der Counts ermöglicht wird. Auf der optischen Bank kann der Abstand zwischen Präparat und Zählrohr variiert und abgelesen werden. Dabei ist zu beachten, dass die abgelesene Distanz auf der optischen Bank nicht dem tatsächlichen Abstand zwischen Probe und Zählrohr entspricht, da sich diese nicht direkt über den Sockel befinden. Um im späteren Verlauf des Versuchs die Aluminiumbleche zu befestigen, wird die entsprechende Halterung auf die optische Bank gesteckt.

Abbildung 6: Aufbau des Digitalzähler

- 1 ... Halterung für radioaktive Quelle
- 2 ... Zählrohr
- 3... Halterung um später das Aluminium zu Befestigen
- 4 ... Digitalzähler
- 5... optische Bank um den Abstand zu variieren

3.2 Magnetfeldspektrometer

Um β Strahlung messbar zu machen, wird folgender Aufbau aus Abbildung 7 verwendet. Dabei wird das radioaktive Präparat in das dafür vorgesehene Loch gesteckt. Durch die Spule wird ein Magnetfelds erzeugt, wodurch die Betastrahlung aufgrund von Lorentzkraft abgelenkt wird, weshalb die Hallsonde auch schräg zur Quelle angeordnet ist. Dies stellt sicher, dass keine Gammastrahlung gemessen wird. Die Stärke des Magnetfelds wird durch das Netzgerät bestimmt.

Abbildung 7: Aufbau des Magnetfeldspektrometers

- 1 ... Radioaktive Quelle
- 2 ... Hallsonde (nicht sichtbar im Foto)
- 3 ... Empfänger des Geiger-Müller-Zählers
- 4 . . . Anzeige des Geiger-Müller-Zählers
- 5 . . . Spule um das Magnetfeld zu erzeugen
- 6 . . . Netzgerät für das Magnetfeld (Stecker um die Polung des Magnetfelds zu Ändern)
- 7 ... Teslameter um die Stärke des Magnetfelds zu bestimmen

3.3 Szintilationszähler

Der Aufbau des Szintilationszählers ist in folgender Abbildung 8 sichtbar. Die radioaktive Quelle wird in die, dafür vorgesehene, Halterung ober den Szintilationszähler gesteckt. Um eine Auswertung am PC zu ermöglichen, wird ein Cassy-Lab als Schnittstelle verwendet.

Abbildung 8: Aufbau des Szintilationszählers

- 1... Radioaktive Quelle
- 2 ... Szintilationszähler
- 3 ... Spannungsgenerator
- 4 ... Cassy-Lab um Auswertung am PC zu ermöglichen

4 Geräteliste

Die Geräteliste wurde uns freundlicherweise zur Verfügung gestellt und nur um die verwendeten Strahlungsquellen ergänzt. **empty citation**

 $^{90}_{38}{\rm Sr}$

²²⁶₈₈Ra

AG-3676

559435

Gerätetyp Hersteller Typ Inventar-Nr Digitalzähler Leybold 57548 161462 Geiger-Müller-Zählrohr Leybold 5240331 β Spektrometer Phywe Netzgerät Universal Phywe Set Betaspektr. Geiger-Müller Zähler Phywe P2523200 79179 Spule mit Eisenkern Phywe Teslameter Phywe Hochspannungsnetzgerät Leybold 52188 161458 Szintilationszähler Leybold 559901 161460 Sensor-Cassy 2 Leybold 161474 VKA Box Leybold 524058 161465 $^{22}_{11}Na$ AG-3518

Tabelle 1: verwendete Geräte

5 Versuchsdurchführung & Messergebnisse

Da in diesen Versuchen oftmals Zählraten oder Counts gemessen werden, gibt es für diese Werte keine Unsicherheit da sie exakt sind. Aus diesem Grund wurden mehrere Messungen aufgezeichnet und diese Messungen als normalverteilt Angenommen, um diesen Werten eine Unsicherheit zuordenen zu können.

5.1 Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken Abschirmungen

Um die Abschirmung Strahlungen zu Messen, wir der Versuchsaufbau, wie in Unterabschnitt 3.1 beschrieben, vorgenommen. Die Torzeit am Digitalzähler wird dabei auf 10 s gestellt. Als radioaktive Quelle wird ²²₁₁Na verwendet, welche, wie bereits beim Aufbau erklärt, in die dafür vorgesehene Halterung gesteckt wird. Der Abstand zwischen der Quelle und dem Zählrohr wird dabei so gering gewählt, dass die dickste Abschirmungsprobe problemlos dazwischen gehalten werden kann, ohne gegen die Probe oder das Zählrohr zu stoßen. Diese Distanz zwischen der radioaktiven

Quelle und dem Zählrohr wird mit einem Lineal vermessen und beträgt (15 ± 2) mm. Die unterschiedlichen Abschirmungen werden der Reihe nach in den Aufbau gehalten und die entsprechenden Zählraten notiert, was in folgender Tabelle 2 sichtbar ist. Dabei ist zu Beachten, dass die jeweilige Abschirmung die gesamte Torzeit im Aufbau ist und man damit nicht gegen die Probe oder das Zählrohr stößt.

Tabelle 2: Erhaltene Zählraten bei verschiedenen Abschirmungsmaterialien bei einer Torzeit von 10s und einem Abstand der radioaktiven Quelle von (15 ± 2) mm. Zählraten sind exakt.

 z_{Luft} ... erhaltene Zählrate ohne Abschirmung

 $z_{\text{Papier}}\dots$ erhaltene Zählrate mit einem Blatt Papier als Abschirmung

 z_{Lineal} ... erhaltene Zählrate mit einem Lineal als Abschirmung (Dicke = $(2.10 \pm 0.05) \text{ mm}$)

 $z_{\text{CD}}\dots$ erhaltene Zählrate mit einer CD und zugehörigen Soulcase als Abschirmung

 $z_{\text{Alu0,4}}$... erhaltene Zählrate mit mit einem Aluminiumblech als Abschirmung, Dicke = (0.40 ± 0.05) mm

 $z_{\text{Alu0,8}}$... erhaltene Zählrate mit mit einem Aluminiumblech als Abschirmung, Dicke = (0.80 ± 0.05) mm

 $z_{\rm Alu4}\dots$ erhaltene Zählrate mit mit einem Aluminiumblech als Abschirmung, Dicke = $(4.0\pm0.5)\,\rm mm$

$z_{ m Luft}$ / cps	$z_{ m Papier}$ / cps	$z_{\rm CD}$ / cps	$z_{ m Lineal}$ / cps	$z_{\mathrm{Alu}0,4}$ / cps	$z_{\rm Alu0,8}$ / cps	$z_{ m Alu4}$ / cps
241,6	167,3	9,6	19,4	55,1	15,5	2,3
250,3	158,7	9,8	21,7	56,6	16,3	2,7
253,0	148,6	9,4	21,4	52,9	14,4	2,9
248,5	166,5	9,6	22,8	61,7	14,5	2,5
248,3	164,3	9,5	21,3	54,2	15,4	2,4

5.2 Aufnahme der Zählrohrcharakteristik

Um die Zählrohrcharakteristik zu bestimmen wird der Aufbau aus Unterabschnitt 3.1 realisiert. Als radioaktive Quelle wird erneut $^{22}_{11}$ Na in die dafür vorgesehene Halterung gesteckt. Nun wird die Betriebsspannung des Netzgerätes so lange gesenkt, bis durch den Digitalzähler kein Geräusch hörbar ist, was anzeigt, dass keine Strahlung auf das Zählrohr gelangt, was bei $316\,\mathrm{V}$ der Fall war. Nun wird die Spannung in

kontinuierlich erhöht, bis ein Wert von $600\,\mathrm{V}$ erreicht ist und die entsprechenden Counts notiert, was in folgender Tabelle 3 sichtbar ist.

Tabelle 3: Erhaltene Zählraten für die Zählrohrcharakteristik bei einer Torzeit von $10\,\mathrm{s}$ und einem Abstand der radioaktiven Quelle von $(15\pm2)\,\mathrm{mm}$. Zählraten sind exakt.

 $U\dots$ eingestellte Betriebsspannung in V

 $z_i \dots$ erhaltene Zählrate bei der entsprechenden Betriebsspannung

U / V	z_1 / cps	z_2 / cps	z_3 / cps
316,0	0,0	0,3	0,0
320,0	6,4	5,6	7,4
324,0	152,5	149,5	150,3
328,0	178,1	180,5	188,5
332,0	187,2	178,2	187,7
336,0	187,7	190,3	189,4
340,0	191,6	188,7	189,7
360,0	192,9	184,7	190,5
380,0	191,9	191,6	186,6
400,0	201,4	197,1	191,2
420,0	196,9	195,0	186,2
440,0	194,6	194,5	193,5
460,0	199,3	201,3	196,3
480,0	186,2	203,3	197,5
500,0	197,1	195,2	193,7
520,0	193,4	201,4	195,3
540,0	197,1	191,5	201,6
560,0	188,4	196,7	198,5
580,0	201,4	207,0	199,3
600,0	195,9	193,8	199,0

FLAB 1 Zählrohr

5.3 Aufnahme der Zählstatistik

Um die Zählstatistik durchzuführen wird erneut der Versuchsaufbau aus Unterabschnitt 3.1 verwirklicht. Auch wird erneut $^{22}_{11}$ Na als radioaktive Quelle verwendet. Die Torzeit beträgt für diesen Teil des Versuchs 1s. Wegen der großen Datenmenge werden die erhaltenen Counts über den Memory Speicher des Digitalzählers direkt auf den Computer übertragen. Die erhaltenen Ergebnisse sind in folgender Tabelle 4 aufgelistet.

Tabelle 4: Tabelle in der, der Besseren Übersicht halber, ein Ausschnitt der erhaltenen Counts für die Zählstatistik für eine Torzeit von 1s aufgelistet sind. Dabei sind die Counts sind exakt.

 $t\dots$ entsprechende Zeit, die den Memory Speicher übergeben wird, in s $n\dots$ verzeichnete Anzahl an Counts (einheitenlos)

t / s	n / 1
1,0	483,0
2,0	493,0
3,0	488,0
4,1	519,0
5,0	469,0
6,0	521,0
7,0	508,0
8,1	488,0
9,0	502,0
10,0	482,0
:	:
438,0	503,0
439,0	541,0
440,0	480,0
441,1	478,0
442,0	521,0
443,0	506,0
444,0	482,0
445,1	527,0
446,0	524,0
447,0	532,0
448,0	510,0
449,1	507,0
450,0	482,0

5.4 Bestätigung des Abstandsgesetzes

Um das Abstandsgesetz zu Bestätigen wird erneut der Versuchsaufbau aus Unterabschnitt 3.1 verwendet. Um die verschiedenen Abstände zu ermöglichen, wird die radioaktive Quelle, $^{90}_{38}$ Sr, vom Zählrohr entfernt und die entsprechenden Counts bei einer Torzeit von 10 s in Tabelle 5 vermerkt. Bei der Abstandsbestimmung ist zu beachten, dass der tatsächliche Abstand zwischen Quelle und Zählrohr vermerkt wird und nicht jener auf der optischen Bank. Um allerdings den Abstand zu erhöhen kann auf die Skala der optischen Bank geachtet werden, da es sich um eine Differenzmessung handelt und so ausgeschlossen werden kann, dass sich die entstehenden Unsicherheiten durch die Messung mittels Lineal gegenläufig auswirken.

Tabelle 5: Erhaltene Zählraten bei unterschiedlichen Abständen der Quelle bei einer Torzeit von 10 s.Dabei sind die Zählraten exakt

 $l_{\rm Quelle}\dots$ Abstand der radioaktiven Quelle in c
m mit einer Unsicherheit von $0.2\,{\rm cm}$

$z_i \dots$ erhaltene	Zählrate	bei	entsprechendem	Abstand
-----------------------	----------	-----	----------------	---------

l_{Quelle} / cm	z_1 / cps	z_2 / cps	z_3 / cps
2,0	360,9	357,7	363,8
3,0	196,4	185,7	185,0
4,0	119,5	123,4	108,1
6,0	51,7	56,7	58,8
8,0	33,1	33,8	32,7
10,0	21,8	22,3	22,2

5.5 Bestimmung der Endpunktsenergie über Absorption in Aluminium

Um die Endpunktsenergie zu Bestimmen, wird erneut der Versuchsaufbau aus Unterabschnitt 3.1 verwendet. Um die unterschiedlichen Aluminiumdicken zu realisieren, werden verschieden Dias mit unterschiedlicher Anzahl an Aluminiumfolien in die dafür vorgesehene Halterung geschoben. Als radioaktive Quelle wird erneut $^{22}_{11}$ Na, sowie eine Torzeit von 10s verwendet. Die abgelesenen Werte sind in folgender Tabelle 6 festgehalten.

Tabelle 6: Tabelle der Zählraten bei β -Strahlung bei verschiedenen Dicken einer Aluminiumplatte bei einer Torzeit von 10 s. Dabei sind die Zählraten exakte Werte.

 $D\dots$ Dicke der Aluminiumabschirmung in $\mu\mathrm{m}$ mit einer Unsicherheit von

 $z_i \dots$ erhaltene Zählrate bei entsprechendem Abstand

<i>D</i> / μm	z_1 / cps	z_2 / cps	z_3 / cps
7,0	715,7	721,6	710,8
14,0	703,9	700,7	713,2
21,0	616,6	614,2	605,2
22,0	601,0	603,5	604,8
28,0	577,3	584,6	574,1
42,0	577,6	582,8	560,3
50,0	528,1	527,0	521,9
55,0	529,5	525,0	524,9
85,0	457,2	456,2	448,9
100,0	402,7	415,1	415,0
110,0	393,7	401,7	405,4
165,0	327,1	336,1	326,5
200,0	274,3	290,1	282,8
220,0	272,2	267,7	269,6
345,0	185,5	193,9	196,7
400,0	172,6	163,3	167,9
600,0	118,7	116,7	115,6
800,0	90,2	93,9	90,3
1000,0	63,1	61,6	68,5
1200,0	52,5	50,8	47,8
1400,0	45,5	45,9	46,8
1600,0	42,7	39,9	43,5
2000,0	30,1	29,3	30,4
4000,0	16,6	17,9	15,3
5600,0	15,8	16,7	15,4

5.6 Aufnahme des Energiespektrums von β Strahlung mit Magnetspektrometer

Um das Energiespektrum der β Strahlung zu bestimmen wird der Aufbau aus Unterabschnitt 3.2 realisiert. Als radioaktive Quelle wird erneut $^{22}_{11}$ Na in die dafür vorgesehene Halterung gesteckt. Nun wird die Betriebsspannung des Netzgerätes so lange gesenkt, bis das erzeugte Magnetfeld in etwa 5 mT entspricht. Bei den Anschlüssen der Spule ist dabei zu beachten, dass das Magnetfeld richtig gepolt ist, um die Strahlung in die richtige Richtung abzulenken. Nun wird die Spannung durch betätigen des entsprechenden Rades kontinuierlich erhöht und die jeweiligen Zerfälle bei einer Torzeit von 100 s gemeinsam mit dem jeweiligen Wert des Magnetfelds in folgender Tabelle 7 aufgelistet. Dabei ist auch wichtig, dass die Hintergrundstrahlung im entsprechenden Gebäude gemessen wird, indem die selbe Messung auch einmal ohne eingelegte radioaktive Quelle durchgeführt wird, wodurch eine Hintergrundstrahlung von 23 Zerfällen in der entsprechenden Torzeit vermerkt wird. Der dabei erhaltenen Wert muss dann von den vorherigen Werten abgezogen werden.

Tabelle 7: Verzeichnete Zerfälle bei entsprechendem Magnetfeld bei einer Torzeit von 100 s. Dabei sind die Counts exakte Werte.

 $B\dots$ Stärke des Magnetfelds in mT mit einer Unsicherheit von $0.2\,\mathrm{mT}$ $n\dots$ erhaltene bei erhaltene Anzahl an Zerfällen bei entsprechendem Magnetfeld

B / mT	n / 1
4,5	130,0
10,1	175,0
14,9	214,0
20,2	260,0
24,9	300,0
30,0	342,0
35,0	347,0
40,1	380,0
45,1	360,0
50,0	316,0
55,0	260,0
60,0	212,0
65,0	176,0

5.7 Aufnahme und Kalibrierung des γ Spektrums

Um das γ Spektrum zu kalibrieren wird der Versuch wie in Unterabschnitt 3.3 erklärt aufgebaut. Um das Referenzspektum aufzunehmen wird eine $^{137}_{55}$ Cs Quelle in die Halterung eingesetzt. Für die Hochspannung wird dabei ein Wert von 0,73 kV eingestellt.

Mithilfe des Chassy-Labs werden die erhaltenen Daten direkt an den Computer gesendet, wodurch die entsprechenden Spektren geplottet werden können. Da hier die Werte für die Peaks bekannt sind, kann so eine Kalibrierungskurve erzeugt werden, was in folgender Abbildung 9 sichtbar ist.

Abbildung 9: Diese Graphik beinhaltet, das zur Kalibrierung verwendete Referenzspektrum einer ¹³⁷₅₅Cs Probe. Zudem wurden die charakteristischen Energiepeaks dieser Probe markiert.

5.8 Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten

Der Versuch wird, wie zuvor beschrieben, wie in Unterabschnitt 3.3 aufgebaut, auch wird erneut eine Spannung von $0.73\,\mathrm{kV}$ verwendet. Als radioaktive Quelle wird für diesen Teil des Versuchs das zu vermessende $^{226}_{88}\mathrm{Ra}$ verwendet. Auch diese Werte werden auf den Computer übertragen und den zuvor erzeugten Plot bei einer Laufzeit von 2400 s beigefügt. Anhand des zuvor bestimmten Referenzspektrums können nun die Peaks des $^{226}_{88}\mathrm{Ra}$ Spektrums vermessen werden.

6 Auswertung

Um zu sehen wie sich die Unsicherheit der Messungen bis in die Ergebnisse fortplanzt, ist erweiterte Gauss-Methode verwendet worden. Die Grundlagen dieser Methode stammen von den Powerpointfolien von GUM Wolfgang Kessel, 2004. Für die Auswertung ist die Progammiersprache Python im speziellen die Pakete labtoolex2, pandas, sympy, zur Hilfe genommen worden. Um höchstmögliche Genauigkeit zu garantieren wird erst bei der Darstellung der Wert in Tabellen gerundet.

6.1 Messung der α , β und γ Strahlung ohne und mit verschiedenen dicken Abschirmungen

Da es sich bei diesem Teil des Versuchs um eine rein qualitative Aussage handelt, wird keine explizite Auswertung durchgeführt und die erhaltenen Messwerte in Abschnitt 6.7 analysiert.

6.2 Aufnahme der Zählrohrcharakteristik

Die Daten der Zählraten z_i aus Tabelle 3 werden zunächst gemittelt und dessen Standarderror berechnet. Die durch diese Operation erhaltenen Zählraten werden über den Spannungen aus derselben Tabelle 3 aufgetragen, das Resultat ist in Abbildung 10 ersichtlich. Zudem wird ein Linearer Fit, bei dem, für das Zählrohr charakteristische Plateau, gemacht. Dafür wurden alle Datenpunkte unter der 1601 Zählratengrenze ignoriert, da diese nicht Teil des Plateaus sind.

Abbildung 10: In dieser Graphik ist die Zählrohrcharakteristik dargestellt worden, indem die Zählrate z (einheitenlos) über die Spannung U in Volt aufgetragen wurde. Die Daten wurden Tabelle 3 entnommen. Weiters wurde das charakteristische Plateau des Zählrohr linear gefittet. Hier ist m die Steigung der Geraden in V^{-1} und b entspricht dem Schnitt der Ordinate (einheitenlos)

6.3 Aufnahme der Zählstatistik

Die gesamte aufgenommene Messreihe der Zählraten aus Tabelle 4 wurde nun in Klassen mit einer konstanten 5er und 10er Breite h unterteilt und dann als Histogramme dargestellt. Das Histogramm mit der konstanten 5er Breite ist in Abbildung 11 ersichtlich, jenes mit der 10er Breite ist in Abbildung 12 zu finden.

Des Weiteren wurden mittels der Standardabweichung und dem Mittelwert der Klassen eine Normalverteilung aufgestellt und diese über den Verteilungsraum der Messwerte geplottet.

Damit der Vergleich zwischen der Normalverteilung und dem Histogrammen klar ersichtlich ist, werden die Histogramme auf 1 normiert. Um auf die Absolute Häufigkeit zu kommen muss die Relative Häufigkeit p mit dem Stichprobenumfang N und der Breite der h multipliziert werden. Alle relevanten Größen für diese Umrechnung sind in den jeweiligen Bildern ersichtlich.

Abbildung 11: Diese Graphik beinhaltet das normierte Histogramm der Messreihe aus Tabelle 4. Hier entspricht N dem Stichprobenumfang und h der Breite der Klassen des Histogramms. Darüber hinaus wurde eine Normalverteilung angelegt unter Verwendung des Mittelwert μ & der Standardabweichung σ vom Messreihensatz. Alle hier in der Box angeführten Variablen haben Einheit 1

Abbildung 12: Diese Graphik beinhaltet das normierte Histogramm der Messreihe aus Tabelle 4. Hier entspricht N dem Stichprobenumfang und h der Breite der Klassen des Histogramms. Darüber hinaus wurde eine Normalverteilung angelegt unter Verwendung des Mittelwert μ & der Standardabweichung σ vom Messreihensatz. Alle hier in der Box angeführten Variablen haben Einheit 1

6.4 Bestätigung des Abstandsgesetzes

Um die Daten aus Tabelle 5 mit dem Abstandsgesetz, siehe Gleichung 1, vergleichen zu können werden zunächst die Zählraten z_i gemittelt und dessen Standarderror berechnet. Nun wird die gemittelte Zählrate z gegen den Abstand der Quelle $l_{\rm Quelle}$ aufgetragen. Damit das Verhalten der Daten einfacher Analysiert werden kann wird auch ein Fit des Abstandsgesetz gemacht, wobei k der Proportionalitätskonstanten des Abstandsgesetz entspricht.

Abbildung 13: In dieser Graphik ist das Abstandsgesetz bei einer $^{90}_{38}$ Sr Probe graphisch dargestellt, durch das Auftragen der Zählrate z über dem Quellenabstand l_{Quelle} . Dabei wurden die Daten aus Tabelle 5 entnommen. Zudem wurde das Abstandsgesetz, siehe Gleichung 1, mit diesen Datenpunkten gefittet (blaue Kurve), dabei ist k die Proportionalitätskonstante.

6.5 Bestimmung der Endpunktsenergie über Absorption in Aluminium

Um mit Gleichung 3 die Endpunktsenergien bestimmen zu können müssen aus den Daten die Absorptionskoeffizienten der verschiedenen β -Emittern durch eine Überlagerung mehrerer Exponentialfunktionen, nach dem Beer-Lambertschen Gesetzt, siehe Gleichung 2, durch einen Fit bestimmt werden.

Da jedoch diese Gleichung exponentiell von der Eingangsgröße der Dicke D abhängt bietet es sich an, bei dieser Gleichung den Logarithmus zu verwenden und diese Gleichungen zu linearisieren.

Abbildung 14: Diese Kurve beinhaltet die Absorptionskurve von Al bei β -Strahlung in einfach logarithmischer Darstellung. In diesem Diagramm ist D der Aluminiumplatte und z ist die Zählrate der durchdrungenen Teilchen.

Abbildung 15: Diese Kurve ist doppelt-logarithmische Darstellung der Absorptionskurve von Al bei β -Strahlung. In diesem Diagramm ist D der Aluminiumplatte und z ist die Zählrate der durchdrungenen Teilchen.

6.6 Aufnahme des Energiespektrums von β Strahlung mit Magnetspektrometer

Um eine Energiespektrum darstellen zu können müssen die Werte aus Tabelle 7 mittels Gleichung 4 zu Impulsen p oder mittels Gleichung 5 zur Energien E transformiert werden. Die erhaltenen Werte für p und E sind in Tabelle 8 zu finden.

Tabelle 8: Errechneten Energien E und Impulse p der β -Strahlung einer $^{22}_{11}$ Na Probe vom Magnetspektrometer, mit Daten aus Tabelle 7 und der Anwendung der Energieimpulsbeziehung sowie Lorentzkraft

 $E\dots$ Energie der β-Strahlung einer $^{22}_{11}$ Na Probe $p\dots$ Impuls der β-Strahlung einer $^{22}_{11}$ Na Probe

$E_{\rm kin} / { m MeV}$	p / MeV
$0,004 \pm 0,001$	$0,067 \pm 0,008$
0.022 ± 0.004	0.151 ± 0.013
0.047 ± 0.007	$0,223 \pm 0,017$
0.083 ± 0.011	$0,30 \pm 0,03$
$0,122 \pm 0,015$	0.37 ± 0.03
0.17 ± 0.02	0.45 ± 0.03
$0,22 \pm 0,03$	$0,52 \pm 0,04$
0.28 ± 0.03	$0,60 \pm 0,04$
0.34 ± 0.04	$0,68 \pm 0,05$
$0,40 \pm 0,04$	0.75 ± 0.05
0.46 ± 0.05	0.82 ± 0.06
0.52 ± 0.05	$0,90 \pm 0,06$
0.59 ± 0.06	0.97 ± 0.07

Mit den Werten aus Tabelle 8 und Tabelle 7 lässt sich durch Auftragen der Anzahl an Zerfällen n über den Impulsen p und Energien E ein Energiespektrum erstellen. Um den Peak numerisch zu bestimmen wurden die Daten mit einer Gaussverteilung, welche einen zusätzlichen Amplitudenparameter A hat, gefittet, wie in folgender Abbildung 16 ersichtlich.

Abbildung 16: Erhaltenes Energiespektrum (violette) und Impulsspektrum (braun) der β -Strahlung einer $^{22}_{11}$ Na Probe. Mithilfe der Energien E, den Impulsen p, aus Tabelle 8, und der Anzahl der Zerfälle n, aus Tabelle 7, wurden Spektren erstellt und mit einer Gaussverteilung, welche einen zusätzlichen Amplitudenparameter A hat, gefittet

6.7 Aufnahme des komplexen γ Spektrums und seinen Zerfallsprodukten

Nach der Kalibrierung in Unterabschnitt 5.8 und der Aufnahme des γ -Spektrum der $^{226}_{88}$ Ra Zerfallsreihe Unterabschnitt 3.2, wurden die erhaltenen Daten in Abbildung 17 dargestellt. Zudem wurde die Peaks per Hand ausgewertet und in der Graphik eingezeichnet, daher wurden die Unsicherheiten großzügig angenommen. Für diese Operationen wurde die "Leybold Cassy-Lab 2" Software genutzt.

Abbildung 17: Aufgezeichnetes Gammaspektrum der ²²⁶₈₈Ra Quelle und dessen Zerfallsprodukten, mit ausgemessen und markierten Energiepeaks.

Die eingezeichneten Spitzenwerte werden nun übersichtlich in Tabelle 9 nochmals angeführt.

Tabelle 9: erhaltene Peaks bei $^{226}_{88}$ Ra Energiespektrum $E\dots$ ist die Energie der Peaks im Gammaspektrum einer $^{226}_{88}$ Ra Probe mit einer Unsicherheit von $5\,\mathrm{keV}$

E / keV
20
50
83
191
248
302
360
609

Diskussion

Die qualitative Analyse der Zählraten bei unterschiedlichen Abschirmungsmaterialien entspricht den Erwartungen. Es wird klar ersichtlich, dass eine dickere Probe des selben Materials die Abschirmung erhöht. Auch wird deutlich, dass Aluminium, als dichteres Medium eine bessere Abschirmung bietet, als eine Probe mit vergleichbarer Dicke aus Plastik.

Laut Bedienungsanleitung beträgt die Einsatzspannung des Zählrohrs 350 V bis 380 V und die maximale Betriebsspannung 600 V **empty citation** Der Vergleich mit Abbildung 10 zeigt, dass das erhaltene Spektrum in diesem Bereich annähernd konstant ist.

Die Betrachtung der erhaltenen Histogramme der Zählstatistik zeigt, dass diese, wie erwartet, normalverteilt sind.

Abbildung 13 zeigt, dass die erhaltenen Messwerte für das Abstandsgesetz nur leicht über dem gefitteten quadratischen Verlauf liegen.

Der theoretische Wert für den Peak des β - Spektrums beträgt 511 keV **leifi**. Der erhaltene Wert des Impulsspektrums, von (567 ± 6) keV, liegt also in der richtigen Größenordnung.

Ein Vergleich in nachfolgender Tabelle 10 der erhaltenen Werte des γ - Spektrums mit den entsprechenden Literaturwerten zeigt, dass die meisten Literaturwerte im

Fehlerintervall enthalten sind. Es ist auch sichtbar, dass die größeren Abweichungen besonders im mittleren Bereich verzeichnet werden, was durch die Kalibrierung erklärt werden kann.

Tabelle 10: Vergleich der erhaltenen Peaks beim $^{226}_{88}$ Ra mit den entsprechenden Literaturwerten **empty citation**

 $E\dots$ sind die Energien der gemessen Peaks im Gammaspektrum einer $^{226}_{88}\mathrm{Ra}$ Probe

mit einer Unsicherheit von 5 keV

 $E_{\rm lit}\dots$ sind die Literaturwerte der Energien der Peaks im Gammaspektrum einer $^{226}_{88}{\rm Ra}$ Probe

001001 001001 1 0 0 0						
E / keV	Substanz	$E_{\rm lit}$ / keV				
20	²¹² ₈₂ Pb	19,6				
50	²¹⁴ ₈₃ Bi	53				
83	$^{214}_{84}$ Po $ ^{214}_{83}$ Bi	79,3 und 77,1				
191	²²² ₈₆ Rn	186				
248	²¹⁴ ₈₃ Bi	242				
302	²¹⁴ ₈₃ Bi	295				
360	²¹⁴ ₈₃ Bi	352				
609	²¹⁴ ₈₄ Po	609				

7 Zusammenfassung

WS22 11.11.2022

Literaturverzeichnis

Wolfgang Kessel, B. Die ISO/BIPM-GUM Sicht:Schätzwert & Messunsicherheit. 2004

Abbildungsverzeichnis

1	Zerfallsreihe $^{28}_{88}$ Ra empty citation	
2	schematischer Aufbau des Zählrohrs empty citation 4	
3	charakteristische Kurve des Zählrohrs für verschiedene Arten von	
	Strahlung für die Bereits erklärten Spannungsbereiche empty citation 5	
4	schematischer Aufbau des Magnetfeldspektrometers empty citation 6	
5	schematischer Aufbau und Strahlengang im Szintilationszähler empty citatio	on 6
6	Aufbau des Digitalzähler	
7	Aufbau des Magnetfeldspektrometers	
8	Aufbau des Szintilationszählers	
9	Kalibrierungsmessung einer $^{137}_{55}$ Cs	
10	Aufnahme der Zählrohrcharakteristik bei $^{22}_{11}$ Na Probe mit linearem Fit 21	
11	Histogramm der Zählstatistik mit Klassen der Größe 5	
12	Histogramm der Zählstatistik mit Klassen der Größe 10	
13	Abstandsgesetz einer $^{90}_{38}$ Sr Probe	
14	Absorptionskurve von Al bei β -Strahlung	
15	Doppelt-logarithmsche Darstellung der Absorptionskurve von Al bei	
	beta-Strahlung	
16	Energie- und Impulsspektogram der β -Strahlung einer $^{22}_{11}$ Na Probe 28	
17	Energiespektrum der γ -Strahlung einer $^{226}_{88}$ Ra Probe	
Tabe	ellenverzeichnis	
1	verwendete Geräte	
2	Erhaltene Zählraten bei verschiedenen Abschirmungsmaterialien 11	
3	Erhaltene Zählraten für die Zählrohrcharakteristik	
4	Tabelle in der, der Besseren Übersicht halber, ein Ausschnitt der er-	
	haltenen Counts für die Zählstatistik für eine Torzeit von 1 s aufgelis-	
	tet sind. Dabei sind die Counts sind exakt. t entsprechende Zeit,	
	die den Memory Speicher übergeben wird, in s $n\ldots$ verzeichnete An-	
-	zahl an Counts (einheitenlos)	
5	Erhaltene Zählraten bei unterschiedlichen Abständen der Quelle 15	

6	Tabelle der Zählraten bei β -Strahlung bei verschiedenen Dicken einer	
	Aluminiumplatte bei einer Torzeit von 10 s. Dabei sind die Zählra-	
	ten exakte Werte. $D\dots$ Dicke der Aluminiumabschirmung in μ m mit	
	einer Unsicherheit von z_i erhaltene Zählrate bei entsprechendem	
	Abstand	16
7	Verzeichnete Zerfälle bei entsprechendem Magnetfeld	18
8	Energie- und Impulswerte der β -Strahlung einer $^{22}_{11}$ Na Probe	27
9	erhaltene Peaks bei $^{226}_{88}$ Ra Energiespektrum $E \dots$ ist die Energie der	
	Peaks im Gammaspektrum einer ²²⁶ ₈₈ Ra Probe mit einer Unsicherheit	
	von 5 keV	30
10	Vergleich der erhaltenen Peaks beim ²²⁶ ₈₈ Ra mit den entsprechenden Li-	
	teraturwerten empty citation $E \dots$ sind die Energien der gemessen	
	Peaks im Gammaspektrum einer ²²⁶ ₈₈ Ra Probe mit einer Unsicherheit	
	von 5 keV $E_{\rm lit}$ sind die Literaturwerte der Energien der Peaks im	
	Gammaspektrum einer ²²⁶ Ra Probe	31