1. Cours : Compléments sur la dérivation

1 Rappels sur la dérivation

1.1 Fonction dérivée

Définition 1 : Soit f une fonction définie sur un intervalle I, $a \in I$ et h un réel non nul tel que $a + h \in I$.

• On dit que f est dérivable en a si le taux de variation $\frac{f(a+h)-f(a)}{h}$ admet une limite finie lorsque h tend vers 0. Cette limite est appelée *nombre dérivé de f en a* et est notée f'(a).

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• On dit que f est dérivable sur I si f est dérivable en tout $a \in I$. On appelle alors fonction dérivée de f sur I la fonction

$$f': \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f'(x). \end{array} \right.$$

■ Exemple 1 : On considère la fonction $f: x \mapsto x^2$, définie sur \mathbb{R} . Soit x un réel et h un réel non nul.

$$\frac{f(x+h) - f(x)}{h} =$$

Lorsque h se rapproche de 0, cette quantité tend vers Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x, f'(x) =

1.2 Dérivées usuelles

$f: x \mapsto$	Définie sur	Dérivable sur	$f': x \mapsto$
$k\in\mathbb{R}$	\mathbb{R}	\mathbb{R}	
mx + p, m et p réels	\mathbb{R}	\mathbb{R}	
x^2	\mathbb{R}	\mathbb{R}	
x^n pour $n \in \mathbb{N}^*$	\mathbb{R}	\mathbb{R}	
$\left \begin{array}{c} \frac{1}{x} \end{array} \right $	$\bigg \]-\infty;0[\ \text{et} \]0;+\infty[$] $-\infty$;0[et]0; $+\infty$ [
$\frac{1}{x^n}$ pour $n \in \mathbb{N}^*$	$]-\infty;0[\text{ et }]0;+\infty[$] $-\infty$; 0[et]0; $+\infty$ [
\sqrt{x}	$0; +\infty[$]0;+∞[
$\exp(ax+b)$, a et b réels	\mathbb{R}	R	

Jason LAPEYRONNIE http://mathoutils.fr

1.3 Opérations sur les dérivées

Théorème 1 : Soit I un intervalle, u et v deux fonctions dérivables sur I, k un réel. Alors les fonctions ku, u+v et uv sont dérivables sur I. Si de plus, v ne s'annule pas sur I, alors la fonction $\frac{u}{v}$ est également dérivable sur I. On a alors

$$(ku)' = (u+v)' =$$

$$(uv)' = \left(\frac{u}{v}\right)' =$$

- Exemple 2 : On considère la fonction $f: x \mapsto (x^2 3x + 1) \exp(3x + 1)$, définie sur \mathbb{R} . Pour tout réel x, on pose alors $u(x) = x^2 3x + 1$ et $v(x) = \exp(3x + 1)$.
 - u est dérivable sur \mathbb{R} et pour tout réel x, u'(x) =
 - v est dérivable sur \mathbb{R} et pour tout réel x, v'(x) =

On a f = uv. Ainsi, f est un produit de fonctions dérivables sur \mathbb{R} et est donc dérivable sur \mathbb{R} . De plus, on a f' = u'v + uv'. Ainsi, pour tout réel x,

$$f'(x) =$$

1.4 Tangente à la courbe

Définition 2 — Tangente à la courbe : Soit f une fonction dérivable en a. On note \mathscr{C}_f la courbe de f dans un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

La tangente à \mathscr{C}_f au point d'abscisse a est la droite de coefficient directeur f'(a) et passant par le point de coordonnée (a; f(a)).

Propriété 1 : Soit f une fonction dérivable en a. La tangente à \mathscr{C}_f au point d'abscisse a a pour équation

$$y =$$

■ Exemple 3 : Pour tout réel x, posons $f(x) = \frac{x^2}{2} - 2x - 1$. Déterminons l'équation de la tangente à \mathscr{C}_f au point d'abscisse 4

2 Dérivée seconde 3

1.5 Variations d'une fonction

Propriété 2 : Soit f une fonction dérivable sur un intervalle I.

- Si, pour tout $x \in I$, $f'(x) \ge 0$, alors f est croissante sur I.
- Si, pour tout $x \in I$, $f'(x) \le 0$, alors f est décroissante sur I.
- Si, pour tout $x \in I$, f'(x) = 0, alors f est constante sur I.
- Exemple 4 : On considère la fonction $f: x \mapsto (x^2 3x + 1) \exp(3x + 1)$ étudiée précédemment.

On a vu que pour tout réel x, on a $f'(x) = (3x^2 - 7x) \exp(3x + 1) = x(3x - 7) \exp(3x + 1)$.

f'(x) étant écrite sous forme factorisée, on peut alors construire le tableau de signes de f' et en déduire les variations de f.

2 Dérivée seconde

Définition 3 — Dérivée seconde : Soit f une fonction dérivable sur un intervalle I telle que sa fonction dérivée f' est également dérivable sur I (on dit également que f est deux fois dérivable sur I).

On appelle fonction dérivée seconde de f la fonction dérivée de f'. Cette fonction est notée f''.

Pour tout $x \in I$, f''(x) = (f')'(x).

- Exemple 5 : Pour tout réel x, on pose $f(x) = (2x+1)e^{3x-2}$. Posons, pour tout réel x, $u_1(x) = 2x+1$ et $v_1(x) = e^{3x-2}$.
 - u_1 est dérivable sur \mathbb{R} et pour tout réel x, $u_1'(x) =$
 - v_1 est dérivable sur \mathbb{R} et pour tout réel x, $v_1'(x) =$

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) =$$

Jason LAPEYRONNIE http://mathoutils.fr

Posons alors, pour tout réel x, $u_2(x) = 6x + 5$ et $v_2(x) = e^{3x-2}$.

- u_2 est dérivable sur \mathbb{R} et pour tout réel x, $u_2'(x) =$
- v_2 est dérivable sur \mathbb{R} et pour tout réel x, $v_2'(x) =$

Ainsi, f' est dérivable sur \mathbb{R} et pour tout réel x,

$$f''(x) =$$

3 Composition de fonctions

Définition 4 — Fonction composée : Soit I et J deux parties de \mathbb{R} .

Soit f une fonction définie sur J et g une fonction définie sur I telle que pour tout réel x, $g(x) \in J$.

On définit la fonction composée de f et g notée $f \circ g$ par

Pour tout
$$x \in I$$
, $f \circ g(x) = f(g(x))$.

L'idée derrière la composition de fonctions est simplement d'appliquer successivement plusieurs fonctions.

$$f \circ g : x \stackrel{g}{\longmapsto} g(x) \stackrel{f}{\longmapsto} f[g(x)]$$

- **Exemple 6 :** Pour tout réel x, on note $f(x) = x^2$ et g(x) = x + 3. Alors, pour tout réel x,
 - $f \circ g(x) =$
 - $g \circ f(x) =$

Attention! En général, on n'a pas $f \circ g = g \circ f$! Ces deux fonctions ne sont d'ailleurs pas forcément définies sur le même ensemble.

Propriété 3 : Soit I et J deux intervalles, f une fonction définie et dérivable sur J et g une fonction définie et dérivable sur I telle que pour tout $x \in I$, $g(x) \in J$. Alors $f \circ g$ est dérivable et pour tout réel x dans I,

$$(f \circ g)'(x) = g'(x) \times (f' \circ g)(x).$$

- Exemple 7 : On considère la fonction f définie pour tout réel x par $f(x) = e^{x^2 + 3x 2}$. Pour tout réel x, on pose alors $u(x) = e^x$ et $v(x) = x^2 + 3x 2$. Pour tout réel x, on a alors $f(x) = u(v(x)) = u \circ v(x)$.
 - v est dérivable sur \mathbb{R} et pour tout réel x, v'(x) =
 - u est dérivable sur \mathbb{R} et pour tout réel x, u'(x) =

Ainsi, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) =$$

3 Composition de fonctions

Propriété 4 — Cas particuliers : Soit u une fonction définie et dérivable sur un intervalle I

- Pour tout entier naturel n, u^n est dérivable sur I et $(u^n)' =$
- e^u est dérivable sur I et $(e^u)' =$
- Si pour tout réel $x \in I$, u(x) > 0, alors \sqrt{u} est dérivable sur I et $(\sqrt{u})' =$
- Si pour tout réel x, $u(x) \neq 0$, $\frac{1}{u}$ est dérivable sur I et $\left(\frac{1}{u}\right) =$
- **Exemple 8 :** Pour tout réel x, posons $f(x) = (4x+1)^9$.

Pour tout réel x, on pose u(x) = 4x + 1. u est dérivable sur \mathbb{R} . Or, $f = u^9$.

Ainsi, f est dérivable sur \mathbb{R} et f' =

, c'est-à-dire que pour tout réel x, on a

$$f'(x) =$$

■ Exemple 9 : Pour tout réel x, posons $f(x) = \frac{1}{x^2 + 1}$.

Pour tout réel x, on pose alors $u(x) = x^2 + 1$. u est dérivable sur \mathbb{R} et ne s'annule pas. Or, $f = \frac{1}{u}$.

Ainsi, f est dérivable sur \mathbb{R} et f' =

, c'est-à-dire que pour tout $x \in \mathbb{R}$, on a

$$f'(x) =$$

Exemple 10 : On considère la fonction f définie pour tout réel $x \in [-2; 2]$ par $f(x) = \sqrt{4 - x^2}$.

Bien que la fonction f soit définie sur l'intervalle fermé [-2;2], elle n'est en revanche dérivable que sur l'intervalle ouvert]-2;2[. Pour tout réel $x\in]-2;2[$, on a

$$f'(x) =$$

•