

Unsupervised learning final Project

By: Fatma Alzahraa Marzouk Gaber

• Evaluate the difference between data transformation techniques(<u>notebook</u>):

At this part using different Data Transformation techniques

- Feature Scaling:
 - 1. MinMax Scaler.
 - 2. Standard Scaler.
 - 3. MaxAbsScaler.
 - 4. Robust Scaler.
 - 5. Quantile Transformer Scaler.
- Feature Transformation:
 - 1. Log Transform.
 - 2. Power Transformer Scaler.

The Best Case for our problem is Log Transform. It separates Data as seen below:

Is PCA better than Kernel PCA? (notebook)
At This part working on Stander scaler data, Log Transformed data using n_components = 11 for stander scaler and 7 for Log Transformed data. for kernel PCA using Radial Basis Function Kernel.
The results for stander scaler data almost same.

For log Data Kernel PCA adds boundaries for data compared to PCA.

T-SNE visualization for log tranform and PCA

- Try all unsupervised algorithms that you studied:
 - 1. Kmeans and Hierarchical Clustering (<u>notebook</u>). At this part using Stander scaler data and Log transformed Data. Results Kmeans on Log Data:

T-SNE visualization for Log Transform Data using Kmeans

T-SNE visualization for Log Transform Data with KPCA using Kmeans

Results Hierarchical on Log Data:

Kernel PCA is best visualization in Hierarchical Clustring.

2. DBSCA (<u>notebook</u>) Results:

T-SNE visualization for transformed (Log) Data using DBSC

T-SNE visualization for transformed (Log+PCA) Data using DBSC

T-SNE visualization for transformed (Log + Kernal PCA) Data using DBSC

3. EM (<u>notebook</u>):

Results:

T-SNE visualization for transformed (log) Data using EM

T-SNE visualization for transformed (log + pca) Data using EM

T-SNE visualization for transformed (log + kpca) Data using EM

anomaly detection algorithm (notebook).

Results:

T-SNE visualization for Anomaly Detection Using EM

T-SNE visualization for Anomaly Detection Using DBSC

T-SNE visualization for Anomaly Detection Using Isolated random forest

