IoT Platform Design Methodology

Introduction

- IoT system comprises of multiple components and deployment tires
- IoT consists of 6 levels and each level is suited for different applications and has different component and deployment configurations.
- Designing of IoT systems can be a **complex** and **challenging task** as these systems involve interactions between various components such as
 - IoT devices and network resources
 - Web services
 - Analytics components
 - Application and
 - Database servers

Outline

- IoT Design Methodology that includes:
 - Purpose & Requirements Specification
 - Process Specification
 - Domain Model Specification
 - Information Model Specification
 - Service Specifications
 - IoT Level Specification
 - Functional View Specification
 - Operational View Specification
 - Device & Component Integration
- Application Development

Steps involved in IoT System design methodology

Purpose & Requirements

Define Purpose & Requirements of IoT system

Process Model Specification

Define the use cases

Domain Model Specification

Define Physical Entities, Virtual Entities, Devices, Resources and Services in the IoT system

Information Model Specification

Define the structure (e.g. relations, attributes) of all the information in the IoT system

Service Specifications

Map Process and Information Model to services and define service specifications

IoT Level Specification

Define the IoT level for the system

Functional View Specification

Map IoT Level to functional groups

Operational View Specification

Define communication options, service hosting options, storage options, device options

Device & Component Integration

Integrate devices, develop and integrate the components

Application Development

Develop Applications

Step 1: Purpose & Requirement Specification

- The first step in IoT system design methodology is to define the purpose and requirements of the system.
- In this step, the system **purpose**, **behavior** and **requirements** are captured.
- Requirements are such as
 - Data collection requirements
 - Data analysis requirements
 - System management requirements
 - Data privacy and security requirements
 - User interface requirements

Step 2: Process Specification

- The second step in the IoT design methodology is to define the **process specification**.
- In this step, the use cases of the IoT system are formally described based on and derived from the purpose and requirement specifications.

Step 3: Domain Model Specification

- The third step in the IoT design methodology is to define the **Domain Model**.
- The domain model describes the main concepts, entities and objects in the domain of IoT system to be designed.
- Domain model defines the attributes of the objects and relationships between objects.
- Domain model provides an **abstract representation** of the concepts, objects and entities in the IoT domain, independent of any specific technology or platform.
- With the domain model, the IoT system designers can get an understanding of the IoT domain for which the system is to be designed.

Step 4: Information Model Specification

- The fourth step in the IoT design methodology is to define the **Information Model**.
- Information Model defines the structure of all the information in the IoT system, for example, attributes of Virtual Entities, relations, etc.
- Information model does not describe the specifics of how the information is represented or stored.
- To define the information model, we first list the Virtual Entities defined in the Domain Model.
- Information model adds more details to the Virtual Entities by defining their attributes and relations.

Step 5: Service Specifications

- The fifth step in the IoT design methodology is to define the service specifications.
- Service specifications define the
 - Services in the IoT system
 - Service types
 - Service inputs/output
 - Service endpoints
 - Service schedules
 - Service preconditions and
 - Service effects.

Step 6: IoT Level Specification

- The sixth step in the IoT design methodology is to define the IoT level for the system.
- In Unit-1, we defined six IoT deployment levels.

Step 7: Functional View Specification

- The seventh step in the IoT design methodology is to define the **Functional View**.
- The Functional View (FV) defines the functions of the IoT systems grouped into various Functional Groups (FGs).
- Each Functional Group either provides functionalities for interacting with instances of concepts defined in the Domain Model or provides information related to these concepts.

Step 8: Operational View Specification

- The eighth step in the IoT design methodology is to define the Operational View Specifications.
- In this step, various **options** pertaining to the IoT system deployment and **operation** are defined, such as,
 - Service hosting options
 - Storage options
 - Device options
 - Application hosting options, etc

Step 9: Device & Component Integration

• The ninth step in the IoT design methodology is the integration of the devices and components.

Step 10: Application Development

• The final step in the IoT design methodology is to develop the IoT application.