

Symposium on Visualization in High Performance Computing

High Performance Heterogeneous Computing for Collaborative Visual Analysis

Jianping Li, Jia-Kai Chou, and Kwan-Liu Ma

Collaborative Visual Analysis

- Multiple users analyze data using shared visualizations
- Synchronous and distributed (same time, different places)
- Solve complex problems with diverse expertise

HPC and Collaborative Visual Analysis

- Transform and visualize large, complex data
- Minimize wait time of user interactions
- Improve system performance and usability

Collaborative Visualization Systems

- Web-based, current and future trends [Mouton et al. 2013]
- Distributed computing, multiple servers [i.e. Chan et al. 2008]
- Cloud services and grid systems [i.e. Sherif et al. 2014]

Opportunity for Heterogeneous Computing

- Client side devices can be used to share the computation workload
- Relentless advancement in personal computing
- Heterogeneous computing using the server and multiple client devices

Our Contribution

- Web-based heterogeneous computing framework
- Prototype implementation for collaborative visual analysis of massive time series
- Experiment tests for evaluating the performance and applicability

Leveraging Modern Web Technologies

- WebSocket fast server-client communications
- WebRTC real-time communications between browsers
- WebWorker parallel processing
- SVG hardware accelerated rendering

Distribution of Computations

- Load balancing, equal completion time for each client node
- Algorithm based on [Beaumont et al. 2001]
- Challenges for web applications:
 - limited access to hardware and OS info.
 - unknown processor speeds and network bandwidth

Relative Computing Speeds

Visual Analysis of Massive Time Series

Test Results

Node	Type	Processor	Speed	cores / threads
S	server	AMD FX-8320	3.2 GHz	8/8
C1	laptop	Intel Core i5	1.4 GHz	2/4
C2	desktop	Intel Core i7	3.6 GHz	4/8
C3	desktop	Intel Core i7	2.4 GHz	4/8
C4	phone	Qualcomm Snapdragon	2.5 GHz	4/4
C5	desktop	Intel Core i7	3.5 GHz	4/8
C6	desktop	Intel Core i7	4.0 GHz	4/8

Completion Time of Each Computing Node

300K records

750K records

Scaling

- Flexibility in scaling
- Multiple groups and services
- Server-side scaling

Conclusion and Future Work

- A web-based heterogeneous computing framework
 - Parallel and distributed data transformations and visualizations
 - Effective utilization of client side devices for improving system performance
- Future Work:
 - Many user groups, multiple datasets and services
 - GPU computing

We look forward to delivering high performance systems for supporting collaborative visual analysis.

Acknowledgement

This research is supported in part by:

- U.S. National Science Foundation via grants NSF IIS-132022
- U.S Department of Energy via grant DE-FC02-12ER26072

Symposium on Visualization in High Performance Computing

Thank You!

Contacts:

Jianping Li: lij@cs.ucdavis.edu

Jia-Kai Chou: jkchou@ucdavis.edu

Kwan-Liu Ma: ma@cs.ucdavis.edu

