UNIVERSIDAD TECNOLÓGICA DE BOLÍVAR MAESTRÍA EN ESTADÍSTICA APLICADA Y CIENCIA DE DATOS FACULTAD DE CIENCIAS BÁSICAS PROCESAMIENTO DE IMÁGENES Y DEEP LEARNING 2023

MARCO PÉREZ BENÍTEZ & EDGAR RAMOS RAMÍREZ

INTRODUCCIÓN

- El arroz es uno de los cereales que más se producen a nivel mundial y presentan una gran variedad genética. Estas distintas variedades se distinguen entre sí por una serie de características, tales como su textura, forma y color., las cuales permiten la clasificar la evaluar la calidad del grano.
- En este estudio se analizaron 5 tipos de arroz diferentes que suelen ser cultivados en su gran mayoría en Turquía; el conjunto de datos consta de 5000 imágenes en total, 1000 para cada tipo (Arborio, Basmati, Ipsala, Jasmine y Karacadag).
- En primera instancia se aplicaron técnicas de procesamiento de imágenes como operaciones morfológicas, realce de imágenes, binarización, entre otras, para mejorar la calidad de las imágenes.

INTRODUCCIÓN

- En segundo plano se utilizó un conjunto de datos con 250 imágenes, que contenía 50 imágenes diferentes por cada tipo de arroz, esto con el fin de extraer características particulares y aplicar técnicas de Machine Learning para clasificar los granos.
- Para todo el procesamiento de las imágenes y entrenamientos de modelos de clasificación se utilizó el software Matlab online, y los modelos de clasificación utilizados fueron el de Redes Neuronales y Arboles de decisión

VARIEDADES DE ARROZ:

- 1. ARBORIO
- 2. BASTAMI
- 3. JASMINE
- 4. IPSALA
- 5. KARACADAG

CARACTERÍSTICAS FUNDAMENTALES PARA PODER CLASIFICAR EL ARROZ.

Inicialmente se propone obtener estas características de los grados de arroz para poder aplicar algoritmos de machine Learning para la clasificación de las variedades del grano.

- Área convexa (forma): se refiere a la región de un plano que está delimitada por un contorno o conjunto de puntos de tal manera que cualquier línea que conecta dos puntos dentro de esa región está completamente contenida dentro de esa región.
- *Perímetro*: la longitud total de la frontera o el contorno de una figura geométrica.
- Longitud del grano (Longitud del eje mayor)
- Espesor del grano (Longitud del eje menor)

- *Relación de aspecto*: La relación de aspecto se refiere a la proporción entre la longitud y el ancho de un objeto o una figura.
- *Excentricidad* (Eccentricity): La excentricidad mide cuán "desviada" o "alejada" está una figura geométrica de ser perfectamente circular.
- *Extent* (extensión): se refiere a la extensión o área de un objeto o región dentro de una imagen. Es una medida que describe cuánto espacio ocupa un objeto dentro de una imagen digital. La extensión se suele expresar en términos de píxeles o unidades de área en la imagen.

Inicialmente analizamos los perfiles línea de dos tipos de arroz en las partes donde se puede observar la deformación del grano

Perfil línea para arroz tipo Arborio en dos instancias diferentes (110 y 140)

Perfil línea para arroz tipo Jasmine en dos instancias diferentes (110 y 140) Convulución 1D para lin=140

Convolución para los granos de arroz Arborio y Jasmine

Imagen Original: Arborio

Convolución 2D: Jasmine

Convolución 2D: Arborio

La convolución en 2D en los dos tipos de arroz no es notable a simple vista, sin embargo se logra aprecia un realce en las imágenes en cuanto al brillo.

Despliegue de los planos RGB

Plano original

Plano verde

Plano azul

Podemos observar de forma notable que los canales RGB no presentan una diferencia significativa en cuanto a su visualización, debido a que imágenes de nuestro conjunto de son presentada con fondo negro y el grano en blanco. Sin embargo, se observan pequeñas diferencias en cada plano en cuanto al brillo de la misma imagen

Los histogramas para los planos RGB del grano de arroz Arborio, nos brindan información de la distribución de colores y se evidencia que no existe un dominio en especifico de ninguno de los colores del plano RGN

Historgrama de los Planos RGB

Perfiles líneas de los granos de arroz para analizar la deformación en cada uno

Perfiles lineas en el plano Verde

En este caso los perfiles líneas se tomaron de forma teniendo en cuenta las columnas para analizar el perfil que generaba la parte de la deformación en cada grano de arroz.

Nuevamente se toma como referencia el grano tipo Jasmine y Arborio

Se aplico una normalización de puntos sobre la imagen para analizar los histogramas de perfiles y la forma en como afectaban y/o ayudaban al realce de la imagen.

Visualización: Puntos Normalizados Imagen original Imagen procesada

Se aplico un filtro espacial los granos tipo Arborio y Jasmine

Frecuencia Espacial: Arborio

Imagen Original

Mínimo

Filtro de Altas frecuencias

Operaciones morfológicas:

A continuación, se muestran las imágenes con diferentes filtros aplicados para cada tipo de arroz

Procesamiento de Imagenes Arborio

LLenado de Huecos

Procesamiento de Imagenes Ipsala

Original

Blanco y Negro

LLenado de Huecos

Procesamiento de Imagenes: Jasmine

Original

Binarizada

Blanco y Negro

LLenado de Huecos

Se aplicaron 3 operaciones (escalas de grises, binarización y llenado de huecos) morfológicas diferentes a los 5 tipos de arroces, con el fin de evidenciar en que forma cambiaban las estructuras de las imágenes

Operaciones morfológicas:

A continuación, se muestran las imágenes con diferentes filtros aplicados para cada tipo de arroz

Operaciones Morfológicas para Arborio

Dilatación

Apertura

Erosión

Gerre

Operaciones Morfológicas para Bastamí

Dilatación

Apertura

Erosión

Gerre

Operaciones Morfológicas para Ipsala

Operaciones Morfológicas para Karacadag

Dilatación

Las operaciones morfológicas de dilatación, erosión, apertura y cierre sirven para manipular y analizar la forma y la estructura de objetos en una imagen binaria o en escala de grises; en este caso observamos los cambios de tamaño que se presentan en cada grano de arroz en especifico.

Operaciones morfológicas:

A continuación, se muestran las imágenes aplicando la esqueletización aplicados para cada tipo de arroz

Esqueletización de tipos de arroz Karacadag

Observamos claramente que la esqueletización de cada tipo de arroz e es diferente, esto nos puede ayudar a entender la topología del objeto en la imagen y lograr clasificar de forma eficiente cada tipo de grano.

Operaciones morfológicas:

En esta sección contamos las esquinas que pueden estar presente en cada grano de arroz

No de Esquinas detectadas para Karacadag: 42

En cada tipo de arroz observamos diferente conteo de esquinas, lo que nos puede brindar apoyo a la hora de escoger características para la clasificación del grano de arroz.

Extracción de características.

extracción de las características es un proceso importante y de mucho cuidado, debido a que se deben escoger las características particulares de la imagen para generar una base de datos con suficiente información para aplicar algoritmos de clasificación.

	5		ng_Arroz - Excel									
Ar	chivo	Inicio II	nsertar Disposición de	página Fórmulas Da	atos Revisar V	ista Ayuda Ç	¿Qué desea hacer?					
K7	,	▼ : [× ✓ f _x									
4	Α	В	С	D	E	F	G H					
1	Area	Perimeter	MajorAxisLength	MinorAxisLength	Eccentricity	Extent	AspectRatio	FileName				
2	7204	336	133,203519	69,84655046	0,851496893	0,757199916	1,887323944	Arb1				
3	7020	335,607	142,3776723	63,43767051	0,895252517	0,617142857	0,728	Arb2				
4	7085	330,47	135,0842712	67,42226582	0,866537121	0,653839055	0,651162791	Arb3				
5	8384	366,559	150,4244492	71,94534757	0,878206164	0,695536751	1,792682927	Arb4				
6	7621	340,683	139,7072653	69,97309497	0,865531154	0,648595745	1,329787234	Arb5				
7	8306	358,611	148,097531	71,92022858	0,874165868	0,763559478	1,986486486	Arb6				
8	7433	345,685	145,8768723	65,26450917	0,89433672	0,675850155	1,807692308	Arb7				
9	6844	322,556	129,2126406	68,00820406	0,85028175	0,657066052	0,830357143	Arb8				
10	7696	347,475	140,2139313	71,11943775	0,861816076	0,623258827	1,285714286	Arb9				
11	5122	276,596	109,9034311	59,98492917	0,83791764	0,739105339	1,746031746	Arb10				
12	7928	355,387	144,7938107	70,56342199	0,87321382	0,650155814	1,472527473	Arb11				
13	6804	313,192	122,860213	71,05013155	0,815823784	0,711864407	0,686440678	Arb12				
14	7451	334,819	133,2775256	72,11609524	0,840960062	0,679711731	1,448275862	Arb13				
15	8229	354,997	140,8598738	75,76129057	0,843041427	0,773402256	1,842105263	Arb14				
16	7730	339,659	138,2963565	71,90690863	0,854197938	0,641280903	1,255102041	Arb15				
17	6738	320,411	132,7476412	65,30535132	0,870622818	0,816430389	2,079365079	Arb16				
18	6989	333,133	134,0309088	67,74375992	0,862865349	0,609541252	0,72222222	Arb17				
19	7508	337,489	138,9983766	69,5253005	0,865916916	0,794245213	1,985507246	Arb18				
20	8088	358,545	149,0374276	69,86549959	0,883315902	0,693415638	0,5625	Arb19				

Clasificación por Random Forest

Se aplica un modelo Random Forest clasificador al conjunto de datos, del cual se toman muestras del 20% aproximadamente para entrenar y validar el modelo configurado con:

• disp('Configuring Random Forest. . . '); nArboles = 10 (número de Árboles)

Del cual se obtuvo una precisión del 98,18%

En conclusión, el modelo logra clasificar eficientemente los tipos de arroz, considerando las limitaciones o los tamaños del conjunto de prueba para entrenamiento y prueba.

Matriz de confusión para algoritmo Random Forest

Comparación entre predicciones y valores reales.

Configuring Ran	dom Fo	rest																													
outputs =																															
Columns 1 thr	ough 3																								-						
1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3	1	1	1	1	4	4	1	1	2	2	2
Columns 34 th	rough	66																													
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	5	3	3	3
Columns 67 th	rough	99																					\sim								
3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		4	4	4	4	4	4	4	4
Columns 100 t	hrough	132																													
4 1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5
Columns 133 t	hrough	150																													
5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5															
ans =																															
Columns 1 thr	ough 3	3																													
1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2
Columns 34 th	rough	66																													
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Columns 67 th	rough	99																													
3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4
Columns 100 t	hrough	132																													
4 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5
Columns 133 t	hrough	150																													
5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5		,					0					()			

Training Results

Training finished: Met validation criterion 🕝

Training Progress

Unit	Initial Value	Stopped Value	Target Value					
Epoch	0	23	1000					
Elapsed Time	-	00:00:01	-					
Performance	2.77	0.0344	0					
Gradient	12.4	0.0629	1e-07					
Mu	0.001	0.01	1e+10					
Validation Checks	0	6	6	Ŧ				

Training Algorithms

Data Division: Random dividerand

Training: Levenberg-Marquardt trainim

Performance: Mean Squared Error mse

Calculations: MEX

Training Plots

Clasificación por redes neuronales

Resultados de la redes neuronal en configuración:

hiddenLayerSize=[3 15 5] Se obtuvo una precisión de Eval=96,36%

Validación del modelo de redes neuronales

Análisis del modelo y su evolución en el entrenamiento

Matriz de confusión red neuronal

Comparación entre predicciones y valores reales

	0																																
	outputs	=																															
	Column	s 1 t	throu	gh 32	2																												
						1	1	1	1	1	1	1	1	4	1	1	1	2) 1	1	1	1	1	1	1	1	1	1	2	1	1	2	2
	Column	s 33	thro	ugh 6	54														_														
	2	2	:	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	<u>(1)</u>	D	2	2	2	2	2	2	2	2	2	3	3	3	3
	Column			_																								_					
	3	3	:	3	3	2	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	1	4	4	4	4	4
	Column																																
	4	4	4	1	4	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	5	(3)	5	5	5	5	5	5
	Column	129	9 thro	ough	150																												
	5	5	!	5	5	5	5	5	5	5	5	3	5	5	5	5	5	5	5	5	5	5	5										
ans =																																	
	Column	s 1 t	throu	zh 32	2																												
	1					1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2
						1	1	-	-	-	-	-	-	-	-	-	1	1	1	-	-	-	-	1	-	-	-	-	1	-	1	2	2
	Column																																
	2	2	:	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3
	Column	s 65	thro	ugh 9	96																												
	3	3	:	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4
	Column	97	thro	ugh 1	128																												
	4	4	4	1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5
	Column	s 12 9	9 thro	ough	150																												
	5	5	!	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5										
																															Barrier Control		100

Conclusiones

Los modelos fueron entrenados teniendo en cuenta un considerable bajo números de observaciones por tipo de grano de arroz, sin embargo, al realizar otra prueba con más datos se pudo comprar que la eficiencia del modelo Random Forest mantiene la eficiencia al 98%, por el contrario, la red neuronal desciende al 90,4% de eficiencia, lo cual es considerablemente alto.