Pol Sci 630: Problem Set 4 - Regression Model Estimation

Prepared by: Anh Le (anh.le@duke.edu)

Due Date: Tuesday, September 22nd, 2015, 10 AM (Beginning of Class)

Note 1: It is absolutely essential that you show all your work, including intermediary steps, and comment on your R code to earn full credit.

Note 2: Please use a *single* PDF file created through knitr to submit your answers. knitr allows you to combine R code and LATEX code in one document, meaning that you can include both the answers to R programming and math problems. Also submit the source code that generates the PDF file (i.e. .Rnw file)

Note 3: Make sure that the PDF files you submit do not include any references to your identity. The grading will happen anonymously. You can submit your answer at the following website: http://ps630-f15.herokuapp.com/

1. Create a data frame (4 points)

a)

First, set.seed(2). Then, create a data frame with 1000 rows and 3 variables as follows:

- 1. var_norm : a normal variable with mean = 5, sd = 10
- 2. var_binom : a binomial variable with number of trial = 10, probability of success = 0.5
- 3. var_poisson: a Poisson variable with $\lambda = 4$

(Recall how to generate random sample from various distributions from previous labs.)

b)

Plot the histograms of the three variables, arranging them nicely (with fig.width(), fig.height(), par(mfrow) as you see fit). Brownie point if you plot using a for loop instead of writing hist three times.

Solution

```
# Plot the histogram (nicely)
par(mfrow = c(1, 3))
for (i in 1:3) {
   hist(my_dataframe[ , i],
        xlab = colnames(my_dataframe)[i], main = NULL)
}
```


2. Subset data frame (4 points)

a)

Download the following data from WDI and clean it as follows. Briefly comment on what each command does.

infant_mortality: number of mortality per 1000 live births
number_of_physician: number of physician per 1000 people

b)

Use subsetting techniques to do the following:

- 1. Show the GDP per capita of Brazil across years
- 2. Show the country-years where infant mortality > 100 per 1000 live birth
- 3. Show the country-years where GDP per capita is above average
- 4. Show the country-years where GDP per capita is above average, but number of physician is below average

Solution

```
library(WDI)
# Download data from WDI, specifying the indicators and start / end year
d_wdi <- WDI(indicator = c("NY.GDP.PCAP.CD", "SP.DYN.IMRT.IN", "SH.MED.PHYS.ZS"),</pre>
             start = 2008, end = 2010, extra = TRUE)
# Remove aggregates rows, selecting wanted columns by name
d_wdi <- d_wdi[d_wdi$region != "Aggregates",</pre>
       c("country", "year", "NY.GDP.PCAP.CD", "SP.DYN.IMRT.IN", "SH.MED.PHYS.ZS")]
# Rename some of the columns
colnames(d_wdi)[3:5] <- c('gdppc', 'infant_mortality', 'number_of_physician')</pre>
# Remove all rows that have missing data
d_wdi <- na.omit(d_wdi)</pre>
# 1. Show the GDP per capita of Brazil across years
d_wdi[d_wdi$country == "Brazil", c("country", "year", "gdppc")]
      country year
                       gdppc
## 94 Brazil 2008 8700.613
## 95 Brazil 2010 11124.077
# 2. Show the country-years where infant mortality > 100 per 1000 live birth
d_wdi[d_wdi$infant_mortality > 100, c("country", "year", "infant_mortality")]
##
                        country year infant_mortality
## 34
                         Angola 2009
                                                112.2
                                                 103.6
## 120 Central African Republic 2009
## 562
             Sierra Leone 2010
                                                 107.0
## 563
                Sierra Leone 2008
                                                 116.2
```

```
# 3. Show the country-years where GDP per capita is above average
d_wdi[d_wdi$gdppc > mean(d_wdi$gdppc), c("country", "year", "gdppc")]
                     country year
                                      gdppc
## 16
                     Andorra 2010
                                   39639.39
## 17
                     Andorra 2009
                                   42701.45
       United Arab Emirates 2010
                                   34341.91
## 20
                     Austria 2010
                                   46593.39
## 43
## 48
                  Australia 2010
                                   51801.05
## 62
                   Barbados 2010
                                   15901.43
## 67
                     Belgium 2010
                                   44360.90
## 69
                    Belgium 2008
                                   48561.36
## 76
                     Bahrain 2008
                                   23043.03
## 77
                     Bahrain 2010
                                   20386.02
## 88
          Brunei Darussalam 2008
                                   37799.28
## 89
          Brunei Darussalam 2010
                                   31453.01
## 99
               Bahamas, The 2008
                                   23657.37
                      Canada 2008
## 113
                                   46400.44
## 114
                      Canada 2010
                                   47463.63
## 124
                Switzerland 2010
                                   74277.12
## 154
                      Cyprus 2010
                                   30438.90
## 155
                      Cyprus 2008
                                   34950.35
## 157
             Czech Republic 2008
                                   22649.38
## 158
             Czech Republic 2010
                                   19763.96
                     Germany 2008
## 160
                                   45632.84
## 162
                     Germany 2010
                                   41725.85
## 167
                    Denmark 2009
                                   57895.50
## 168
                    Denmark 2010
                                   57647.67
## 182
                    Estonia 2008
                                   18087.68
                       Spain 2010
## 190
                                   30737.83
## 202
                    Finland 2009
                                   47107.16
## 203
                     Finland 2010
                                   46205.17
## 204
                     Finland 2008
                                   53401.31
## 214
                      France 2008
                                   45413.07
## 215
                      France 2010
                                   40705.77
## 222
             United Kingdom 2010
                                   38362.22
## 245
                      Greece 2010
                                   26863.01
## 246
                      Greece 2008
                                   31700.49
## 267
                     Croatia 2008
                                   15887.42
## 273
                     Hungary 2008
                                   15598.32
## 278
                     Ireland 2008
                                   60968.84
## 279
                     Ireland 2010
                                   47903.68
## 280
                     Israel 2010
                                   30551.12
                    Iceland 2008
## 295
                                   55446.76
## 297
                     Iceland 2010
                                   41695.89
## 298
                       Italy 2009
                                  36995.11
```

```
## 299
                       Italy 2010
                                   35877.87
                       Italy 2008
## 300
                                   40659.67
## 310
                       Japan 2010
                                   42909.23
## 312
                       Japan 2008
                                   37865.62
## 334
                Korea, Rep. 2008
                                   20474.89
## 336
                Korea, Rep. 2010
                                   22151.21
## 337
                     Kuwait 2010
                                   37724.27
## 338
                     Kuwait 2008
                                   54478.55
## 339
                     Kuwait 2009
                                   36756.81
## 367
                  Lithuania 2008
                                   14961.72
## 371
                 Luxembourg 2010 102863.10
## 423
                      Malta 2010
                                   19694.08
## 458
                Netherlands 2010
                                   50341.25
## 459
                Netherlands 2008
                                   56628.75
## 460
                     Norway 2009
                                   80017.78
## 461
                     Norway 2010
                                   87646.27
## 462
                     Norway 2008
                                   96880.51
## 467
                New Zealand 2010
                                   33394.07
## 472
                        Oman 2010
                                   19920.65
## 474
                        Oman 2008
                                   22963.38
## 504
                    Portugal 2010
                                   22539.99
## 512
                       Qatar 2010
                                   70870.23
## 538
               Saudi Arabia 2008
                                   19436.86
## 539
               Saudi Arabia 2010
                                   18753.98
## 540
               Saudi Arabia 2009
                                   15655.08
## 550
                      Sweden 2008
                                   55746.84
## 551
                      Sweden 2010
                                   52076.43
## 552
                      Sweden 2009
                                   46207.06
## 553
                  Singapore 2010
                                   46569.69
## 556
                   Slovenia 2008
                                   27501.82
## 558
                   Slovenia 2010
                                   23417.64
## 560
            Slovak Republic 2010
                                   16509.90
## 626
        Trinidad and Tobago 2010
                                   15494.70
## 643
              United States 2010
                                   48374.06
## 644
              United States 2009 47001.56
# 4. Show the country-years where GDP per capita is above average,
# but number of physician is below average
d_wdi[d_wdi$gdppc > mean(d_wdi$gdppc) &
        d_wdi$number_of_physician < mean(d_wdi$number_of_physician),</pre>
      c("country", "year", "gdppc")]
##
                    country year
                                    gdppc
## 76
                    Bahrain 2008 23043.03
## 77
                    Bahrain 2010 20386.02
## 88
         Brunei Darussalam 2008 37799.28
```

```
## 89 Brunei Darussalam 2010 31453.01

## 538 Saudi Arabia 2008 19436.86

## 539 Saudi Arabia 2010 18753.98

## 540 Saudi Arabia 2009 15655.08

## 626 Trinidad and Tobago 2010 15494.70
```

3. Build linear model (4 points)

a)

Download 2 variables of interest and build a linear model of their relationship using lm(). Show the summary() of results

b)

Show the result with stargazer, customizing:

- The labels of the independent variables (i.e. the covariate)
- The label of the dependent variable
- Make the model name (i.e. OLS) show up

Hint: The options to do those things are in help(stargazer). I have worded the task in a way that should help you find the relevant options.

Solution

```
m1 <- lm(infant_mortality ~ gdppc, data = d_wdi)
summary(m1)
##
## Call:
## lm(formula = infant_mortality ~ gdppc, data = d_wdi)
##
## Residuals:
      Min
##
               1Q Median
                               3Q
                                      Max
  -28.721 -17.361 -5.818 11.914 78.797
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.774e+01 1.712e+00
                                      22.05
                                             <2e-16 ***
                                              <2e-16 ***
## gdppc
          -7.423e-04 6.924e-05 -10.72
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.68 on 249 degrees of freedom
```

```
## Multiple R-squared: 0.3158, Adjusted R-squared: 0.3131
## F-statistic: 114.9 on 1 and 249 DF, p-value: < 2.2e-16
```

Table 1:

	10010 1.
	Dependent variable:
	Infant Mortality (per 1000 births)
	OLS
GDP per capita	-0.001***
	(0.0001)
Constant	37.740***
	(1.712)
Observations	251
\mathbb{R}^2	0.316
Adjusted R ²	0.313
Residual Std. Error	21.679 (df = 249)
F Statistic	$114.931^{***} (df = 1; 249)$
Note:	*p<0.1; **p<0.05; ***p<0.01

4. Calculate sum of squares and RMSE (4 points)

- 1. Extract the residuals and predicted values (fitted values) from the model object (from Question 3) $\,$
- 2. Calculate three "sum of squares" (TSS, RegSS, RSS)

3. Calculate the root mean square error and compare with R. (In R and stargazer, RMSE is called "Residual standard error".)

Note: the data you feed to lm() may have missing data, so R has to modify the data a little before using it. To extract the data that are actually used by lm(), use $my_model\mbox{model}$. Use this data to calculate \bar{y} in the sum of squares. Solution

```
res <- m1$residuals # Residuals
pred <- m1$fitted.values # Predicted values
y <- m1$model$infant_mortality # Data of Y that is used by lm()

# Calculate 3 sum of squares
TSS <- sum( (y - mean(y)) ** 2)
RegSS <- sum( (pred - mean(y)) ** 2)
RSS <- sum( res ** 2 )

# Calculate root mean square error
N <- nrow(d_wdi)
k <- 1 # We only have 1 predictor, which is log_gdppc
rmse <- sqrt(RSS / (N - k - 1))</pre>
```

The calculated root mean square error is 21.6789142, the same as reported by R in summary(m1).