Линейная алгебра ИИИ, 2025

Университет ИТМО Лектор: Москаленко М.А.

Содержание

1	Фев	враль	2
	1.1	Повторение	2
		1.1.1 Линейное пространство	2
		1.1.2 Пространство линейных форм	4
	1.2	Линейный оператор	5

1 Февраль

1.1 Повторение

1.1.1 Линейное пространство

Линейным пространством V будем называть Модуль над полем F, такой что:

$$\varphi: V \times F \to V$$

1.
$$\varphi(x+y) = \varphi(x) + \varphi(y)$$

2.
$$\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$$

$$\forall x, y \in V, \forall \alpha \in F$$

Является абелевой группой по сложению, а так же все вытекающие стандартные свойства операций сложения и умножения.

Базис векторного пространства

Элементы линейного пространства называют векторами.

Базисом называют такой линейно независимый набор векторов, с помощью линейной комбинации которых можно выразить любой вектор из пространства.

$$\{e_1 \dots e_i\} \in V$$

$$\forall v \in V \ \exists \{\alpha_1 \dots \alpha_i\} : \ v = \alpha_1 e_1 + \dots + \alpha_i e_i$$

Где e_i — элементы базиса, $\alpha_i \in F$

Смена базиса

Смена базиса — это процесс, при котором один базис векторного пространства заменяется другим.

Пусть $\{e_1, e_2, \ldots, e_n\}$ — базис векторного пространства V. Пусть также $\{f_1, f_2, \ldots, f_n\}$ — новый базис векторного пространства V, который состоит из линейно независимых векторов. Каждый вектор f_i можно выразить как линейную комбинацию векторов старого базиса:

$$f_j = \sum_{i=1}^{n} a_{ij} e_i, \quad j = 1, 2, \dots, n$$

где $a_{ij} \in F$ — коэффициенты, определяющие, как векторы нового базиса f_j связаны с векторами старого базиса e_i .

Для перехода от координат, выраженных в старом базисе, к координатам в новом базисе, можно воспользоваться матрицей перехода P, где строки соответствуют векторам нового базиса, выраженным в старом:

Author: Vadim Tiganov

$$P = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Если вектор v в старых координатах записывается как $\mathbf{v}_{old} = (x_1, x_2, \dots, x_n)^T$, то его представление в новом базисе будет:

$$\mathbf{v}_{new} = P^{-1}\mathbf{v}_{old}$$

где P^{-1} — обратная матрица к матрице перехода.

NB

Любой вектор в векторном пространстве может быть записан с помощью своих координат в заданном базисе.

Пусть V — векторное пространство, и $\{e_1,e_2,\ldots,e_n\}$ — его базис. Тогда любой вектор $v\in V$ может быть представлен в виде линейной комбинации векторов базиса:

$$v = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n$$

где α_i — координаты вектора v в базисе $\{e_1, e_2, \dots, e_n\}$. Обычно можно записать эти координаты вектором:

$$\mathbf{v} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Таким образом, вектор v может быть представлен в виде:

$$v = \sum_{i=1}^{n} \alpha_i e_i$$

NB

Размерностью пространства называют количество векторов в его базисе. Записывают как $\dim V$

Линейная оболочка

Линейная оболочка множества векторов — это множество всех линейных комбинаций этих векторов. Если дано множество векторов $S = \{v_1, v_2, \dots, v_k\}$ в векторном пространстве V, то линейная оболочка этого множества обозначается как $\mathrm{span}(S)$ и определяется следующим образом:

Author: Vadim Tiganov

$$span(S) = \{ v \in V : v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k, \ \alpha_i \in F \}$$

где F — поле. Линейная оболочка является подпространством векторного пространства V. Это означает, что она содержит нулевой вектор, замкнута относительно сложения и умножения на скаляр, что сделает её подпространством V.

Если множество S является линейно независимым, то $\mathrm{span}(S)$ является максимальным по размерности подпространством, порождаемым векторами из S.

Изоморфизм векторных пространств

Изоморфизм между двумя векторными пространствами V и W — это взаимнооднозначное соответствие (биекция) между их элементами, которое сохраняет операции сложения и умножения на скаляр.

Пусть $T:V\to W$ — линейное отображение. Тогда T называется изоморфизмом, если выполняются следующие условия:

1. **Линейность: ** Для любых векторов $u,v\in V$ и любого скаляра $c\in F$ выполняются следующие равенства:

$$T(u+v) = T(u) + T(v)$$
$$T(cu) = cT(u)$$

2. **Взаимно-однозначное соответствие:** Отображение T является инъективным (различные векторы из V отображаются в различные векторы из W) и сюръективным (каждому вектору из W соответствует хотя бы один вектор из V).

Если существует изоморфизм между двумя векторными пространствами V и W, то говорят, что эти пространства изоморфны и обозначают это как $V\cong W$.

1.1.2 Пространство линейных форм

Пространство линейных форм (или пространство линейных функционалов) — это множество всех линейных отображений от векторного пространства V в поле F.

Обозначим пространство линейных форм как V^* . Формально, если V является векторным пространством над полем F, то пространство линейных форм V^* определяется как:

$$V^* = \{f : V \to F \mid f \text{ удовлетворяет линейности: для всех } u, v \in V, c \in F\}$$

Каждая линейная форма $f \in V^*$ принимает вектор $v \in V$ и возвращает элемент из поля F. Например, линейные формы могут быть выражены с помощью скалярного произведения:

Author: Vadim Tiganov

$$f(v) = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n$$

где $a_i \in F$ — коэффициенты, а $v = (v_1, v_2, \dots, v_n) \in V$ — вектор с координатами.

Структура пространства линейных форм Пространство линейных форм V^* является векторным пространством над полем F. Оно состоит из всех линейных комбинаций линейных функций. Если $f_1, f_2 \in V^*$, то для любых скалярных коэффициентов $\alpha_1, \alpha_2 \in F$, линейная комбинация $\alpha_1 f_1 + \alpha_2 f_2$ также является линейной формой.

Базис и размерность Если векторное пространство V имеет базис $\{e_1, e_2, \ldots, e_n\}$, то соответствующее пространство линейных форм V^* имеет размерность n. Базис для пространства линейных форм можно выбрать следующим образом:

$$\{f^1, f^2, \dots, f^n\}$$

где f^i — это линейная форма, такая что $f^i(e_j) = \delta_{ij}$, где δ_{ij} обозначает символ Кронекера.

NB

Символ Кронекера — это специальная функция, которая принимает два целых числа и служит для определения их равенства. Символ обозначается как δ_{ij} , где i и j — целые числа. Он определяется следующим образом:

$$\delta_{ij} = \begin{cases} 1, & \text{если } i = j \\ 0, & \text{если } i \neq j \end{cases}$$

1.2 Линейный оператор

Пусть F — поле, V, W — линейные пространства над полем. Тогда γ :

$$\gamma: V \to W$$
1. $\gamma(v_1 + v_2) = \gamma(v_1) + \gamma(v_2)$
2. $\gamma(\lambda v_i) = \lambda \gamma(v_i)$

Называют линейным оператором.