Properties of Limits

One-Sided Limits:

Right Hand Limit

$$\overline{\lim_{x \to c^+} f(x) = K}$$
 is read

"The limit, as x approaches c from the right of f(x), is K."

Left Hand Limit

$$\underbrace{\lim_{x \to c^{-}} f(x) = L} \text{ is read}$$

"The limit, as x approaches c from the left of f(x), is L."

We say that $\lim_{x\to c^{\pm}} f(x)$ DNE (does not exist) if any of the following situations arise:

- I. If f(x) goes to $\pm \infty$ as $x \to c^{\pm}$.
- II. If f(x) does not *converge* to a single y-value as $x \rightarrow c^{\pm}$.

Two-Sided Limits:

 $\lim_{x \to c} f(x)$ is a two-sided limit. A two-sided limit is identified by the absence of a \pm near the c.

$$\overline{\lim_{x \to c} f(x) = L} \text{ if and only if } \overline{\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x)}$$

A two sided limit exists only if the left hand limit and the right hand limit both exist, and both are equal.

We say that $\lim_{x \to \infty} f(x)$ DNE (does not exist) if any of the following situations arise:

- I. If f(x) goes to $\pm \infty$ as $x \rightarrow c$.
- II. If f(x) does not *converge* to a single y-value as $x \rightarrow c$.
- III. If $\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x)$.

That is, if the limit approaching from the left does not match the limit approaching from the right.

A function f(x) has a <u>vertical asymptote</u> at x = c if $\lim_{x \to c^{\pm}} f(x) \to \pm \infty$

A function f(x) has a **horizontal asymptote** at y = k if $\lim_{x \to \pm \infty} f(x) = k$

Properties of Limits

Let b and c be real numbers, and n a positive integer. Let f and g be functions such that

$$\lim_{x \to c} f(x) = L \text{ and } \lim_{x \to c} g(x) = K$$

Then the following limit properties hold.

Scalar Multiple Property of Limits	$\lim_{x \to c} \left[b \cdot f(x) \right] = b \cdot \left[\lim_{x \to c} f(x) \right] = b \cdot L$	
Sum/Difference Property of Limits	$\lim_{x \to c} \left[f(x) \pm g(x) \right] = \left[\lim_{x \to c} f(x) \right] \pm \left[\lim_{x \to c} g(x) \right] = L \pm K$	
Product Property of Limits	$\lim_{x \to c} \left[f(x) \cdot g(x) \right] = \left[\lim_{x \to c} f(x) \right] \cdot \left[\lim_{x \to c} g(x) \right] = L \cdot K$	
Quotient Property of Limits	$\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{\left[\lim_{x \to c} f(x) \right]}{\left[\lim_{x \to c} g(x) \right]} = \frac{L}{K} \text{ provided } K \neq 0$	
Power Property of Limits	$\lim_{x \to c} \left(\left[f(x) \right]^n \right) = \left(\lim_{x \to c} f(x) \right)^n = L^n$	

These properties hold for one-sided limits as well.

If $\lim_{x\to c} f(x)$ DNE or $\lim_{x\to c} g(x)$ DNE, then the limit properties may not hold.

- I. Investigate $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^+} g(x)$ to see if $\lim_{x\to c^+} [\cdots]$ exists.
- II. Investigate $\lim_{x\to c^-} f(x)$ and $\lim_{x\to c^-} g(x)$ to see if $\lim_{x\to c^-} [\cdots]$ exists.
- III. If $\lim_{x\to c^{-}} [\cdots]$ or $\lim_{x\to c^{+}} [\cdots]$ DNE, then one can conclude that $\lim_{x\to c} [\cdots]$ DNE
- IV. If are both finite and $\lim_{x \to c^{-}} [\cdots] = \lim_{x \to c^{+}} [\cdots]$, then $\lim_{x \to c} [\cdots]$ exists.

Some Basic Limit Properties:

Let b and c be any real numbers, and n be any positive integer.

$$\lim_{x \to c} b = b \qquad \lim_{x \to c} x = c \qquad \lim_{x \to c} x^n = c^n$$

If $p(x)$ is a polynomial function and c is any	If $r(x)$ is a rational function given by $\frac{p(x)}{q(x)}$
real number, then $\lim_{x\to c} p(x) = p(c)$.	and c is any real number, then
$x \rightarrow c$	$\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)} \text{ provided } q(c) \neq 0$

If *n* is a positive odd integer, then $\lim_{x\to c} \sqrt[n]{x} = \sqrt[n]{c}$ for all real numbers *c*.

If *n* is a positive even integer, then $\lim_{x\to c} \sqrt[n]{x} = \sqrt[n]{c}$ provided that c > 0.

Limits of Trigonometric Functions			
Let c be a real number in the domain of the given trigonometric function			
$\lim_{x\to c} \left[\sin\left(x\right)\right] = \sin\left(c\right)$	$\lim_{x\to c} \left[\cos(x)\right] = \cos(c)$	$\lim_{x\to c} \Big[\tan\big(x\big)\Big] = \tan\big(c\big)$	
$\lim_{x \to c} \left[\csc(x) \right] = \csc(c)$	$\lim_{x \to c} \left[\sec(x) \right] = \sec(c)$	$\lim_{x\to c} \left[\cot\left(x\right)\right] = \cot\left(c\right)$	
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \text{ or } \lim_{x \to 0} \frac{x}{\sin(x)} = 1$		$\lim_{x\to 0} \frac{1-\cos(x)}{x} = 0$	