CS727: Convex Analysis Scribe: Tien-Lung Fu

Title: hw1

0.1 Exercise 1.1.24

Let S be $\{(x,y)|y \ge \frac{1}{1+x^2}\}$ which is a close set. S has its convex hull convS: $\{(x,y)|y > 0\}$. Let $(x,y) \in \text{convS}$ be given. We want to show that the open ball B((x,y),y) is contained entirely within convS.

Given
$$(a,b) \in B((x,y),y)$$
, we have $(x-a)^2 + (y-b)^2 < y^2$
 $=> (y-b)^2 < y^2$
 $=> b(b-2y) < 0$
 $=> 0 < b < 2y$
 $=> (a,b) \in convS$

So convS is open in \mathbb{R}^2

0.2 Exercise 1.1.25

Part1:

Let w, $x \in C$ and y, $z \in D$. Given $a = \mu w + vx$, $b = \mu y + vz$, and $0 \le t \le 1$. We can derive:

$$ta + (1 - t)b = t(\mu w + vx) + (1 - t)(\mu y + vz)$$

= $(t(\mu w) + (1 - t)(\mu y)) + (t(vx) + (1 - t)(vz))$
 $\in \mu C + vD$

So $\mu C + vD$ is convex.

Part2:

First, when $\mu=v=0$, the equality holds.

Second, when at least one of $\mu, \nu \neq 0$, we want to show $(\mu + \nu)C \subset \mu C + \nu C$

$$\forall x \in (\mu + v)C, we have \frac{x}{\mu + v} \in C$$

$$=> x = \frac{\mu x}{\mu + v} + \frac{vx}{\mu + v} \in \mu C + vC$$

$$=> (\mu + v)C \subset \mu C + vC$$

Third,

$$\forall x \in \mu C + vC, \exists c_1, c_2 \in C \text{ s.t. } x = \mu c_1 + vc_2.$$
Since C is convex and μ, v are nonnegative $(\mu + v \ge 0)$

$$= > \frac{\mu c_1}{\mu + v} + \frac{vc_2}{\mu + v} \in C$$

$$= > x = \mu c_1 + vc_2 \in (\mu + v)C$$

$$= > \mu C + vC \subset (\mu + v)C$$

Hence, we complete the proof.

Part3:

Let
$$C = \{0, 1\} \subset R^1$$
 and a, b are constant
We have $aC = \{0, a\}$ and $bC = \{0, b\}$
 $=> (a+b)C = \{0, a+b\}$ and $aC + bC = \{0, a, b, a+b\}$
 $=> (a+b)C \neq aC + bC$

0.3 Exercise 1.1.27

First, we want to show $E(ConvU) \subset ConvE(U)$

$$\forall u \in ConvU$$
, we have $u = \sum t_j u_j$ where $u_j \in U$, $t_j \ge 0$, and $\sum_j t_j = 1$

Since E is an affine transformation, we have

$$E(\sum_{j} t_{j} u_{j}) = \sum_{j} t_{j} E(u_{j}) \in ConvE(U)$$

Second, we want to show $ConvE(U) \subset E(ConvU)$

An affine transformation is a map of the form E(u) = b + A(u)where b is some fixed vector and A is an invertible linear transformation. a point in ConvE(U) has the form $\sum_i t_j E(u_j)$

$$\sum_{j} t_{j} E(u_{j}) = \sum_{j} t_{j} (Au_{j} + b) = A(\sum_{j} t_{j} u_{j}) + \sum_{j} t_{j} b = A(\sum_{j} t_{j} u_{j}) + b$$

$$= E(\sum_{j} t_{j} u_{j})$$

Hence, we complete the proof.