

Neural Global Shutter

Learn to Restore Video from a Rolling Shutter Camera with Global Reset Feature

Zhixiang Wang

Xiang Ji

Jia-Bin Huang

Shin'ichi Satoh

Xiao Zhou

Yinqiang Zheng

How do image sensors record photon?

How do image sensors record photon?

How do image sensors record photon?

pixels

Advantages: *low cost, low* noise, *high* sensitivity **and** *high* frame rate

The problem of rolling shutter

Geometry distortion

global shutter

rolling shutter

The problem of rolling shutter

Example: automatic car

Correcting rolling shutter distortion

Correcting rolling shutter distortion

Limitations

- 1. Rely on prior assumptions on scene/motion
- 2. Motion compensation steps are either oversimplified or computationally inefficient

Our finding – a widely ignored feature

Our finding – a widely ignored feature

rolling shutter with global reset

Our finding – a widely ignored feature

rolling shutter with global reset

Our idea – alleviating RSGR distortion

Our method – model

Our method - model

Exposure encoding

Spatial attention

Our method - model

Long-term temporal aggregator

Our method – model

Our method – model

Short-term temporal aggregator

Our method – data acquisition

Our method – data acquisition

Our method – data acquisition

Results – video

input output ground-truth

Results – sample frame

input

output

ground-truth

Results – zoom in

Results – qualitative comparisons

Results – quantitative comparisons

	Set-I					Set-II			
Method	Full	Тор	Middle	Bottom	Full	Тор	Middle	Bottom	
Input	18.95 / 0.75	25.32 / 0.82	21.56 / 0.81	16.36 / 0.63	17.82 / 0.73	23.64 / 0.77	21.45 / 0.77	15.54 / 0.66	
deblurGANv2	19.97 / 0.73	21.54 / 0.75	23.73 / 0.77	18.17 / 0.69	18.34 / 0.69	20.14 / 0.69	22.14 / 0.71	17.28 / 0.66	
SRN	26.87 / 0.86	26.12 / 0.83	27.08 / 0.85	29.59 / 0.89	25.05 / 0.81	24.32 / 0.79	25.65 / 0.81	27.02 / 0.83	
STRCNN	24.88 / 0.85	24.27 / 0.83	25.33 / 0.85	27.54 / 0.88	22.59 / 0.81	22.99 / 0.79	23.46 / 0.81	23.66 / 0.83	
DBN	26.49 / 0.87	26.50 / 0.85	26.66 / 0.87	28.47 / 0.89	22.57 / 0.81	23.24 / 0.80	23.81 / 0.81	23.24 / 0.82	
IFIRNN	28.01 / 0.89	27.20 / 0.88	28.35 / 0.89	29.21 / 0.90	25.17 / 0.82	24.77 / 0.80	25.62 / 0.81	26.94 / 0.84	
ESTRNN	25.85 / 0.89	26.67 / 0.88	30.16 / 0.90	25.19 / 0.89	22.72 / 0.83	23.42 / 0.81	26.03 / 0.83	22.86 / 0.83	
DSUR	24.72 / 0.84	24.30 / 0.81	25.65 / 0.85	26.63 / 0.86	22.50 / 0.80	22.49 / 0.78	23.87 / 0.81	23.38 / 0.83	
JCD	28.15 / 0.85	27.50 / 0.84	28.73 / 0.85	30.44 / 0.87	25.33 / 0.80	24.77 / 0.78	25.71 / 0.80	27.43 / 0.83	
Ours-noT	27.56 / 0.85	26.23 / 0.83	27.55 / 0.85	31.55 / 0.88	25.37 / 0.80	24.74 / 0.77	25.65 / 0.79	27.29 / 0.82	
Ours	32.72 / 0.92	31.83 / 0.92	33.01 / 0.92	34.65 / 0.92	27.29 / 0.85	26.96 / 0.84	27.57 / 0.85	28.35 / 0.86	

Results – comparison with RS solution

Results – comparison with RS solution

Method	Time/frame
Zhuang+	400.00 sec
DSUR	0.43 sec
JCD	0.83 sec
Ours	0.04 sec

Thank you!

https://lightchaserx.github.io/

HOME PAGE

code and data

https://github.com/lightChaserX/neural-global-shutter