2109, 7101	Reg. No.												
------------	----------	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. / M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

First Semester

21MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted during the academic year 2021-2022, 2022-2023 & 2023-2024)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- (ii) Part – B and Part - C should be answered in answer booklet.

Time: 3 Hours

Max. Marks: 75

 $PART - A (20 \times 1 = 20 Marks)$

CO PO

Answer ALL Questions

- The inverse of the eigen values of the matrix $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is
 - (A) 1, 1/2

(C) 1, 1/3

- (D) 1, 3
- 2. The index of the canonical form $-x^2 + y^2 + 4z^2$ is

(A) 3

(C) 1

- (D) 0
- The sum of eigen values of $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is

(A) 2

(C) -3

- (D) 0
- The eigen values of A-3I, where $A = \begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix}$ are

(A) -1, 6

(B) 1, -6 (D) -4, 3

(C) 0, -3

- 5. If $u = x^2, v = y^2$ then $\frac{\partial(u, v)}{\partial(x, y)} =$

(A) 4xy

(B) 2xy

(C) 6xy

- (D) xy
- 6. If u and v are functionally dependent, then their Jacobian value is

(A) Zero

(B) One

(C) Two

- (D) Three
- 7. If $f(x,y) = e^{x+2y}$ then the value of $f_{xy}(0,0)$ is

(A) 0

(B) 1

(C) 2

(D) 3

8.	If $rt - s^2 > 0$ and $r < 0$ at (a,b) then (a,b) is	1	2	2	1,2
	(A) A maximum point(C) A saddle point					
	(C) A saudic point	(D) It point of discontinuity			_	
9.	Particular integral of the differential	,	1	2	3	1,2
	(A) $\frac{x}{2a}\sin ax$	(B) $-\frac{x}{2a}\sin ax$				
	(A) $\frac{x}{2a}\sin ax$ (C) $\frac{x}{2a}\cos ax$	(B) $-\frac{x}{2a}\sin ax$ (D) $-\frac{x}{2a}\cos ax$				
10.	The general solution of an ordinary d		1	1	3	1,2
	(A) A single curve(C) A straight line passing through (0,0)	(B) A family of curves(D) A family of circles				
11.	The number of arbitrary constants	s present in the general solution of	1	1	3	1,2
	$3\frac{d^{3}y}{dx^{3}} - 4\frac{d^{2}y}{dx^{2}} + 6\frac{dy}{dx} - 3y = 0 \text{ are}$					
	(A) 1 (C) 3	(B) 2				
	(C) 3	(D) 4				
12.	The roots of the auxiliary equation or	$f\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0 \text{ are}$	1	2	3	1,2
	(A) 1,2	(B) 2,3				
	(C) 1±i =	(D) 1±2i				
13.	A curve which touches each member (A) Evolute		1	1	4	2
	(C) Circle of curvature	(D) Radius of curvature				
14.		~	1	2	4	1,2
	(A) $\left(r^2 + r'^2\right)^{3/2} / r^2 - rr'' + 2r'^2$	(B) $\left(r^2 - r'^2\right)^{3/2} / r^2 - rr'' + 2r'^2$				
	(C) $\left(r^2 - r'^2\right)^{2/3} / r^2 + rr'' + 2r'^2$	(D) $\left(r^2 + r'^2\right)^{2/3} / r^2 - rr'' + 2r'^2$				
15.	The value of $\Gamma(1/2)$ is		1	1	4	1,2
	(A) π (C) π/2	(B) 2π (D) $\sqrt{\pi}$				
16.	The relation between the Gamma function $\beta(m,n) = \Gamma(m)\Gamma(n)$		1	1	4	1,2
	$(12) \rho(m,n)=1 (m)1 (n)$	$\beta(m,n) = \frac{\Gamma(m-n)}{\Gamma(m-n)}$				
	(C) $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$	(D) $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(mn)}$				

	1			
In D'Alembert's ratio test if $\lim_{n\to\infty} \left(\frac{u_{n+1}}{u_n}\right) = l$, then the test fails if		2	5	1,2
(A) $l > l$ (B) $l < l$ (C) $l \ne l$ (D) $l = l$				
The sequence $\{x_n\}$ where $x_n = 1 + \frac{1}{n}, \forall n \in \mathbb{N}$ is	1	1	5	1
 (A) Convergent and converges to 1 (B) Convergent and converges to 0 (C) Oscillates (D) Divergent 				
20. By Cauchy's root test $\lim_{n\to\infty} u_n^{1/n} = l$ is convergent if	1	2	5	1,2
(A) $l < l$ (B) $l > l$ (C) $l = l$ (D) $l \le l$				
PART – B (5 \times 8 = 40 Marks) Answer ALL Questions	Marks	BL	CO	PO
21. a. Find the eigen values and eigen vectors of $A = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$.	8	3	1	1,2
b. Verify Cayley-Hamilton theorem and hence find A^{-1} where $A = \begin{pmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{pmatrix}.$	8	3	1	1,2
22. a. If $u = x^2 - y^2, v = 2xy, f(x, y) = \varphi(u, v)$ then prove that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 4\left(x^2 + y^2\right) \left(\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial v^2}\right).$	8	3	2	1,2
b. Expand $e^x \cos y$ in powers of x and y as far as the terms of the third degree.	8	2	2	1,2
23. a. Solve the differential equation $(D^2 + 2D + 1)y = e^{-x} + 3$ where $D = \frac{d}{dx}$.	8	4	3	1,2
(OR)				

24MA1-21MAB101T

17. A sequence of real numbers $\{x_n\}$ is monotonically increasing if

Page 3 of 4

b. Solve the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 12\log x$.

- 8 4 3 1,2
- 24. a. Find the radius of curvature at the point (1/4, 1/4) on the curve $\sqrt{x} + \sqrt{y} = 1$.
 - b. Using gamma function, prove that $\int_{0}^{\infty} e^{-4x} x^{3/2} dx = \frac{3}{128} \sqrt{\pi}$
- 25. a. Examine the convergence of the series $\left(\frac{2^2}{1^2} \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} \frac{4}{3}\right)^{-3} + \dots \infty.$
 - b. Examine the convergence of the series $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots \infty$
 - Answer **ANY ONE** Questions

 26. Find the volume of the largest rectangular parallelopiped that can be 15 3 2 2 inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

 $PART - C (1 \times 15 = 15 Marks)$

27. Diagonalize the matrix $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ using orthogonal transformation.
