

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2015

PUNTE: 150

TYD: 3 uur

Hierdie vraestel bestaan uit 15 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- 2. Hierdie vraestel bestaan uit TIEN vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- Laat EEN reël oop tussen twee subvrae, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 9. Toon ALLE formules en substitusies in ALLE berekeninge.
- 10. Rond jou finale numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 11. Gee kort (bondige) motiverings, besprekings ensovoorts waar nodig.
- 12. Skryf netjies en leesbaar.

(2)

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Vier opsies word as moontlike antwoorde op die volgende vrae gegee. Elke vraag het slegs EEN korrekte antwoord. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommer (1.1–1.10) in die ANTWOORDEBOEK neer, byvoorbeeld 1.11 E.

- 1.1 Watter EEN van die volgende pare reaktanse word in 'n reaksie gedurende die kontakproses gebruik?
 - A $N_2(g)$ en $H_2(g)$
 - B $SO_2(g)$ en $O_2(g)$
 - C $NH_3(g)$ en $O_2(g)$
 - D $H_2SO_4(\ell)$ en $NH_3(g)$
- 1.2 Die mees korrekte definisie van die tempo van 'n chemiese reaksie is die ...
 - A tyd wat dit 'n reaksie neem om plaas te vind.
 - B spoed waarteen 'n reaksie plaasvind.
 - C verandering in die hoeveelheid reaktanse of produkte.
 - D verandering in die konsentrasie van reaktanse of produkte per tydseenheid. (2)
- 1.3 Beskou die reaksie wat deur die gebalanseerde vergelyking hieronder voorgestel word.

$$H_3PO_4(aq) + H_2O(\ell) \Rightarrow H_3O^+(aq) + H_2PO_4^-(aq)$$

Watter EEN van die volgende is 'n gekonjugeerde suur-basis-paar?

- A $H_3O^{\dagger}(aq)$ en $H_2O(\ell)$
- B $H_3PO_4(aq)$ en $H_2O(\ell)$
- C $H_3PO_4(aq)$ en $H_3O^+(aq)$
- D $H_3O^+(aq) \text{ en } H_2PO_4^-(aq)$ (2)
- 1.4 Watter EEN van die volgende verbindings het dipool-dipool-kragte tussen sy molekule?
 - A Etanaal
 - B Etaan
 - C Eteen
 - D Etyn (2)

1.5 Die energieveranderinge wat deur **P**, **Q** en **R** op die potensiële-energiegrafiek hieronder voorgestel word, vind gedurende 'n omkeerbare chemiese reaksie plaas.

Watter EEN van die volgende veranderinge sal beide **P** en **R** laat afneem, maar **Q** onveranderd laat?

- A 'n Afname in volume
- B Die byvoeging van 'n katalisator
- C 'n Afname in temperatuur
- D 'n Afname in konsentrasie

(2)

- 1.6 Watter EEN van die volgende is 'n produk wat gedurende die hidrolise van bromoetaan vorm?
 - A Water
 - B Eteen
 - C Etanol

D Broom (2)

- 1.7 Watter EEN van die volgende is die EMPIRIESE FORMULE van 1,2-dichloroetaan?
 - A CHCl
 - B CH₂Cl
 - C CHC₁
 - $D C_2H_4C\ell_2$ (2)

1.8 Die reaksie wat deur die gebalanseerde vergelyking hieronder voorgestel word, bereik ewewig in 'n geslote houer.

$$C\ell_2(g) + H_2O(\ell) \Rightarrow C\ell^-(aq) + C\ell^-(aq) + 2H^+(aq)$$

Watter EEN van die volgende reagense sal die voorwaartse reaksie bevoordeel wanneer dit bygevoeg word?

- A Waterstof
- B Natriumchloried
- C Waterstofchloried
- D Natriumhidroksied (2)
- 1.9 Die volgende halfreaksies vind in 'n galvaniese sel plaas:

$$Co^{3+} + e^{-} \rightleftharpoons Co^{2+}$$

 $A\ell^{3+} + 3e^{-} \rightleftharpoons A\ell$

Watter EEN van die volgende is die selnotasie vir hierdie sel?

- A A $\ell \mid A\ell^{3+} \parallel Co^{3+}, Co^{2+}$
- B A ℓ | A ℓ^{3+} || Co³⁺, Co²⁺ | Pt
- C A ℓ | A ℓ ³⁺ || Co²⁺, Co³⁺ | Pt

D Pt
$$| \text{Co}^{2+}, \text{Co}^{3+} | | \text{A}\ell^{3+} | \text{A}\ell$$
 (2)

- 1.10 Chloorgas (Cl_2) word deur 'n kaliumjodiedoplossing (KI) geborrel. Die reduseermiddel in hierdie reaksie is:
 - A Kaliumione
 - B Chloorgas
 - C Jodiedione
 - D Chloriedione (2) [20]

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die letters A tot D in die tabel hieronder stel vier organiese verbindings voor.

Gebruik die inligting in die tabel om die vrae wat volg te beantwoord.

- 2.1 Skryf neer die:
 - 2.1.1 Letter wat 'n ketoon voorstel (1)
 - 2.1.2 Struktuurformule van die funksionele groep van verbinding **C** (1)
 - 2.1.3 Algemene formule van die homoloë reeks waaraan verbinding **A** behoort (1)
 - 2.1.4 IUPAC-naam van verbinding **A** (3)
 - 2.1.5 IUPAC-naam van verbinding **B** (2)
- 2.2 Verbinding **D** is 'n gas wat in sigaretaanstekers gebruik word.
 - 2.2.1 Aan watter homoloë reeks behoort verbinding **D**? (1)
 - 2.2.2 Skryf die STRUKTUURFORMULE en IUPAC-NAAM van 'n struktuurisomeer van verbinding **D** neer. (4)
 - 2.2.3 Is die isomeer in VRAAG 2.2.2 'n KETTING-, POSISIE- of FUNKSIONELE isomeer? (1)
- 2.3 Verbinding **D** reageer met broom (Br₂) om 2-bromobutaan te vorm.

Skryf neer die naam van die:

- 2.3.1 Homoloë reeks waaraan 2-bromobutaan behoort (1)
- 2.3.2 Tipe reaksie wat plaasvind (1) [16]

VRAAG 3 (Begin op 'n nuwe bladsy.)

3.1 Die vloeidiagram hieronder toon twee organiese reaksies. Die letter **P** stel 'n organiese verbinding voor.

Gebruik die inligting in die vloeidiagram om die vrae wat volg te beantwoord.

Skryf neer die:

Reaksie 2 vind in die teenwoordigheid van 'n suurkatalisator en hitte plaas.

Skryf neer die:

3.2 Die gekondenseerde formule van 'n polimeer word hieronder aangetoon.

Skryf neer die:

3.2.1 STRUKTUURFORMULE van die monomeer wat gebruik word om die polimeer hierbo te berei (2)

VRAAG 4 (Begin op 'n nuwe bladsy.)

Vier verbindings van vergelykbare molekulêre massa word gebruik om die effek van funksionele groepe op dampdruk te ondersoek. Die resultate wat verkry is, word in die tabel hieronder getoon.

\	/ERBINDING	DAMPDRUK (kPa by 20 °C)				
Α	Butaan	204				
В	Propan-2-oon	24,6				
С	Propan-1-ol	2				
D	Etanoësuur	1,6				

- 4.1 Definieer die term *funksionele groep* van 'n organiese verbinding. (2)
- 4.2 Watter EEN van die verbindings (A, B, C of D) in die tabel het die:
 - 4.2.1 Hoogste kookpunt (Verwys na die dampdrukke in die tabel om 'n rede vir die antwoord te gee.)
 - 4.2.2 Swakste intermolekulêre kragte (1)
- 4.3 Verwys na die tipe intermolekulêre kragte om die verskil in die dampdruk van verbinding **A** en verbinding **B** te verduidelik. (3)
- 4.4 Die dampdruk van verbinding **C** en **D** is baie laer as dié van verbinding **A** en **B**. Noem die tipe intermolekulêre krag in **A** en **B** wat vir hierdie verskil verantwoordelik is. (1)
- 4.5 Verduidelik kortliks die verskil in dampdruk tussen verbinding **C** en verbinding **D**. (2)
- 4.6 Gedurende 'n verbrandingsreaksie in 'n geslote houer met 'n veranderbare volume, reageer 8 cm³ van verbinding **A** (butaan) in oormaat suurstof volgens die volgende gebalanseerde vergelyking:

$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$$

Indien die aanvanklike volume suurstof in die houer 60 cm³ was, bereken die TOTALE volume van die gasse wat na afloop van die reaksie in die houer teenwoordig is. Al die gasse in die houer is by dieselfde temperatuur en druk.

Kopiereg voorbehou Blaai om asseblief

(5) **[16]**

(2)

VRAAG 5 (Begin op 'n nuwe bladsy.)

Verdunde sure, aangedui in die tabel hieronder, reageer met OORMAAT sink in elk van drie eksperimente om waterstofgas te vorm. Die sink is heeltemal bedek met die suur in elke eksperiment.

EKSPERIMENT	VERDUNDE SUUR
1	100 cm ³ van 0,1 mol·dm ⁻³ H ₂ SO ₄
2	50 cm³ van 0,2 mol·dm⁻³ H₂SO₄
3	100 cm³ van 0,1 mol·dm⁻³ HCℓ

Die volume waterstofgas wat vorm, word in elke eksperiment gemeet.

5.1 Noem TWEE noodsaaklike apparate wat benodig word om die tempo van waterstofproduksie te bepaal. (2)

Die grafiek hieronder is vir **Eksperiment 1** verkry.

Gebruik hierdie grafiek en beantwoord die vrae wat volg.

5.2 By watter tyd $(\mathbf{t_1}, \mathbf{t_2} \text{ of } \mathbf{t_3})$ is die:

5.2.1 Reaksietempo die hoogste (1)

5.2.2 Massa sink wat in die fles teenwoordig is, die kleinste (1)

In watter tydinterval, **tussen** t_1 **en** t_2 OF **tussen** t_2 **en** t_3 , vorm die grootste volume waterstofgas per sekonde? (1)

5.4 Teken die grafiek vir **Eksperiment 1** in die ANTWOORDEBOEK oor.

Op dieselfde assestelsel, skets die grafieke wat vir **Eksperimente 2** en **3** verkry sal word. Benoem die drie grafieke duidelik as **EKSPERIMENT 1**, **EKSPERIMENT 2** en **EKSPERIMENT 3**. (4)

5.5 Die aanvanklike massa sink wat in elke eksperiment gebruik word, is 0,8 g. Die gebalanseerde vergelyking vir die reaksie in **Eksperiment 3** is:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

- 5.5.1 Bereken die massa sink wat na voltooiing van die reaksie in **Eksperiment 3** in die fles teenwoordig is. (5)
- 5.5.2 Hoe sal die massa sink wat na voltooiing van die reaksie in **Eksperiment 2** in die fles teenwoordig is, met die antwoord op VRAAG 5.5.1 vergelyk? Skryf slegs GROTER AS, KLEINER AS of GELYK AAN neer.

(1) **[15]**

VRAAG 6 (Begin op 'n nuwe bladsy.)

'n Onbekende gas, $X_2(g)$, word in 'n houer verseël en toegelaat om $X_3(g)$ by 300 °C te vorm. Die reaksie bereik ewewig volgens die volgende gebalanseerde vergelyking:

$$3X_2(g) \Rightarrow 2X_3(g)$$

Hoe sal die tempo waarteen $X_3(g)$ vorm met die tempo waarteen $X_2(g)$ vorm by ewewig vergelyk? Skryf slegs HOËR AS, LAER AS of GELYK AAN neer. (1)

Die reaksiemengsel word met gereelde tydintervalle ontleed. Die resultate wat verkry is, word in die tabel hieronder aangetoon.

TYD (s)	[X ₂] (mol·dm ⁻³)	[X ₃] (mol·dm ⁻³)
0	0,4	0
2	0,22	0,120
4	0,08	0,213
6	0,06	0,226
8	0,06	0,226
10	0,06	0,226

- 6.2 Bereken die ewewigskonstante, K_c, vir hierdie reaksie by 300 °C. (4)
- 6.3 Meer $X_3(g)$ word nou by die houer gevoeg.
 - 6.3.1 Hoe sal hierdie verandering die hoeveelheid $X_2(g)$ beïnvloed? Skryf VERMEERDER, VERMINDER of BLY DIESELFDE neer. (1)
 - 6.3.2 Gebruik Le Chatelier se beginsel om die antwoord op VRAAG 6.3.1 te verduidelik. (2)

Die kurwes op die assestelsel hieronder (nie volgens skaal geteken nie) is uit die resultate in die tabel op bladsy 10 verkry.

6.4 Hoe vergelyk die tempo van die voorwaartse reaksie met dié van die terugwaartse reaksie by t₁? Skryf slegs HOËR AS, LAER AS of GELYK AAN neer.

Die reaksie word nou by 'n temperatuur van 400 °C herhaal. Die kurwes wat deur die stippellyne hieronder aangedui word, is by hierdie temperatuur verkry.

Is die voorwaartse reaksie EKSOTERMIES of ENDOTERMIES? Verduidelik 6.5 volledig hoe jy by die antwoord uitgekom het. (4)

Die Maxwell-Boltzmann-verspreidingskurwe hieronder stel die getal deeltjies teenoor kinetiese energie by 300 °C voor.

6.6 Teken hierdie kurwe in die ANTWOORDEBOEK oor. Op dieselfde assestelsel, skets die kurwe wat by 400 °C verkry sal word. Benoem die kurwes duidelik as 300 °C en 400 °C onderskeidelik.

(2) [15]

(1)

VRAAG 7 (Begin op 'n nuwe bladsy.)

7.1 Ammoniumchloriedkristalle, NH₄Cl(s), los in water op om ammonium- en chloriedione te vorm. Die <u>ammoniumione reageer met water</u> volgens die gebalanseerde vergelyking hieronder:

$$NH_4^+(aq) + H_2O(l) \Rightarrow NH_3(aq) + H_3O^+(aq)$$

- 7.1.1 Skryf die naam neer van die proses wat deur die onderstreepte woorde beskryf word. (1)
- 7.1.2 Is ammoniumchloried SUUR of BASIES in waterige oplossing?

 Gee 'n rede vir die antwoord. (2)
- 7.2 'n Sekere kunsmis bestaan uit 92% ammoniumchloried. 'n Monster met 'n massa van x g van hierdie kunsmis word in 100 cm³ van 'n 0,10 mol·dm⁻³-natriumhidroksied-oplossing, NaOH(aq), opgelos. Die NaOH is in oormaat.

Die gebalanseerde vergelyking vir die reaksie is:

$$NH_4C\ell(s) + NaOH(aq) \rightarrow NH_3(g) + H_2O(\ell) + NaC\ell(aq)$$

7.2.1 Bereken die getal mol natriumhidroksied waarin die monster opgelos word. (3)

Gedurende 'n titrasie word 25 cm³ van die oormaat natriumhidroksiedoplossing met 'n 0,11 mol·dm⁻³-soutsuuroplossing, HCℓ(aq), getitreer. By die eindpunt word gevind dat 14,55 cm³ van die soutsuur gebruik is om die natriumhidroksiedoplossing te neutraliseer volgens die volgende gebalanseerde vergelyking:

$$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$$

- 7.2.2 Bereken die massa x (in gram) van die kunsmismonster gebruik. (8)
- 7.3 Bereken die pH van 'n 0,5 mol·dm⁻³-natriumhidroksiedoplossing by 25 °C. (4) [18]

(4) **[16]**

VRAAG 8 (Begin op 'n nuwe bladsy.)

Die volgende twee onbekende halfselle word aan leerders gegee:

Halfsel 1: $Q^{2+}(aq) | Q(s)$

Halfsel 2: Pt $| R_2(g) | R^{-}(aq)$

Tydens 'n ondersoek om die twee halfselle te identifiseer, verbind die leerders elke halfsel om die beurt aan 'n $Cd^{2+}(aq) \mid Cd(s)$ -halfsel onder standaardtoestande. Vir elke kombinasie van twee halfselle skryf hulle die netto selreaksie neer en meet die selpotensiaal.

Die resultate wat vir die twee halfselkombinasies verkry is, word in die tabel hieronder gegee.

KOMBINASIE	NETTO SELREAKSIE	SELPOTENSIAAL
I	$\mathbf{Q}^{2+}(aq) + Cd(s) \rightarrow Cd^{2+}(aq) + \mathbf{Q}(s)$	0,13 V
II	$\mathbf{R}_2(g) + \mathrm{Cd}(s) \rightarrow \mathrm{Cd}^{2+}(aq) + 2\mathbf{R}^{-}(aq)$	1,76 V

- 8.1 Skryf DRIE toestande neer wat nodig is sodat hierdie selle as standaardselle kan funksioneer. (3)
- 8.2 Vir **Kombinasie I**, identifiseer:
 - 8.2.1 Die anode van die sel (1)
 - 8.2.2 **Q** deur 'n berekening te gebruik (5)
- 8.3 Vir **Kombinasie II**, skryf neer die:
 - 8.3.1 Oksidasiehalfreaksie (2)
 - 8.3.2 NAAM of FORMULE van die metaal wat in die katodekompartement gebruik word (1)
- 8.4 Rangskik die volgende spesies in volgorde van TOENEMENDE oksiderende vermoë:

$$Q^{2+}$$
; R_2 ; Cd^{2+}

Verduidelik volledig hoe jy by die antwoord uitgekom het. 'n Berekening word NIE verlang NIE.

(3)

(4) [12]

VRAAG 9 (Begin op 'n nuwe bladsy.)

Die vereenvoudigde diagram hieronder stel 'n elektrochemiese sel voor wat vir die suiwering van koper gebruik word.

- 9.1 Definieer die term *elektrolise*. (2)
- 9.2 Gee 'n rede waarom 'n gelykstroom (GS)-bron in hierdie eksperiment gebruik word. (1)
- 9.3 Skryf die halfreaksie neer wat by elektrode **A** plaasvind. (2)
- 9.4 As gevolg van klein hoeveelhede sinkonsuiwerhede in die onsuiwer koper, word die elektroliet met Zn²⁺-ione gekontamineer.
 - Verwys na die aangehegte Tabel van Standaard-reduksiepotensiale om te verduidelik waarom die Zn²⁺-ione nie die suiwerheid van die koper wat tydens hierdie proses verkry word, sal beïnvloed nie.
- 9.5 Na afloop van die suiwering van die onsuiwer koper, is gevind dat 2,85 x 10⁻² mol koper gevorm het.
 - Die aanvanklike massa van elektrode **B** was 2,0 g. Bereken die persentasie koper wat aanvanklik in elektrode **B** teenwoordig was.

VRAAG 10 (Begin op 'n nuwe bladsy.)

Ammoniak is 'n belangrike kunsmisstof. Groot hoeveelhede word in die nywerheid uit waterstof en stikstof berei.

- 10.1 Vir die nywerheidsbereiding van ammoniak, skryf neer:
 - 10.1.1 Die naam van die proses wat gebruik word (1)
 - 10.1.2 'n Gebalanseerde vergelyking vir die reaksie wat plaasvind (3)
 - 10.1.3 Die bron van stikstof (1)
- 10.2 Die opbrengs van ammoniak verander met temperatuur en druk tydens die nywerheidsbereiding daarvan. Die grafieke hieronder toon hoe die persentasie ammoniak in die reaksiemengsel wat die reaksiehouer verlaat, onder verskillende toestande varieer.

- 10.2.1 Gebruik die toepaslike grafiek om die persentasie ammoniak wat by 240 atmosfeer en 400 °C in die reaksiemengsel teenwoordig is, te skat.
- 10.2.2 Noem TWEE voordele van die gebruik van hoë druk wanneer ammoniak berei word. (2)
- 10.2.3 Die voordeel van die gebruik van 'n lae temperatuur is die hoë persentasie ammoniak wat vorm. Wat is die nadeel van die gebruik van 'n lae temperatuur? (1)
- 10.3 Ammoniak word ook in die bereiding van ander kunsmisstowwe soos ammoniumnitraat gebruik. Bereken die massa stikstof in 'n 50 kg-sak suiwer ammoniumnitraatkunsmis.

[12]

(3)

(1)

TOTAAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Т	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{\mathbf{C_a V_a}}{\mathbf{C_b V_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	$pH = -log[H_3O^+]$

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}_{\mathsf{cell}}^\theta = \mathsf{E}_{\mathsf{cathode}}^\theta - \mathsf{E}_{\mathsf{anode}}^\theta \ / \mathsf{E}_{\mathsf{sel}}^\theta = \mathsf{E}_{\mathsf{katode}}^\theta - \mathsf{E}_{\mathsf{anode}}^\theta$$

or/of

$$\mathsf{E}_{\mathsf{cell}}^\theta = \mathsf{E}_{\mathsf{reduction}}^\theta - \mathsf{E}_{\mathsf{oxidation}}^\theta / \mathsf{E}_{\mathsf{sel}}^\theta = \mathsf{E}_{\mathsf{reduksie}}^\theta - \mathsf{E}_{\mathsf{oksidasie}}^\theta$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{oksideermiddel}}^{\theta} - E_{\text{reduseermiddel}}^{\theta}$$

Fisiese Wetenskappe/V2 DBE/November 2015

NSS TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 H]	(II)							7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
	-									Α	tomic n	umber				()	()	(-)	(/	(/	
2,1	H							KEY/SL	EUTEL		Atoom										2
	4										1										He
	1										29										4
	3		4					Electr	onegati	vitv		Sv	mbol			5	6	7	8	9	10
1,0 I	Li	3,2	Be						onegativ		_{6,} Cn	Sir	nbool			5,0 B	2,5 C	ဗို N	3,5	°, F	Ne
	 7		9						J		63,5	5				11	12	14	16	19	20
	 11		12								1					13	14	15	16	17	18
_		1,2							Annr	oximate	relativ	atomi	mass			ο, Αξ	² Si	2,2 P	S,5	င့် Cf	Ar
_		—	Mg							derde r						_	_	1 ' '			l I
	23		24									•	•			27	28	31	32	35,5	40
	19		20	_	21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
0,8	K	1,0	Ca	1,3	Sc	1,5	Ti	6. A	ç Cr	તું Mu	% Fe	_	² Ni	_		ç Ga	ç. Ge	% As	² , Se	⁸ , Br	Kr
	39		40		45		48	51	52	55	56	59	59	63,5		70	73	75	79	80	84
(37		38		39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
% F	₹b	1,0	Sr	1,2	Υ	4,	Zr	Nb	² Mo	್ಲ್ Tc	₹ Ru	₹ Rh	² Pd	್ಲ್ Ag	∵ Cd	۲. In	[∞] Sn	್ಲ್ Sb	F. Te	2,5	Xe
	86	`	88	`	89	,	91	92	96	,	101	103	106	108	112	115	119	122	128	127	131
	55		56		57		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
		6,0	Ba		La	9,1	Hf	Ta	W	Re	Os	lr	Pt	Au		% T €					Rn
	J3	0	137		139	_	179	181	184	186	190	192	195	197	201	204	207	209	8 1 0	2 At	1211
	87		88		89		1/9	101	104	100	190	192	190	191	201	204	207	209			
	_	6																			
0,7	Fr	6,0	Ra		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			226					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
											00										
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238											

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAARD-REDUKSIEPOTENSIA									
Half-reactions	/Hal	freaksies	E [⊕] (V)						
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87						
Co ³⁺ + e ⁻	\Rightarrow	Co ²⁺	+ 1,81						
$H_2O_2 + 2H^+ + 2e^-$	\Rightarrow	2H ₂ O	+1,77						
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51						
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36						
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33						
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23						
$MnO_2 + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	+ 1,23						
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20						
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07						
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	=	$NO(g) + 2H_2O$	+ 0,96						
Hg ²⁺ + 2e ⁻	\Rightarrow	Hg(ℓ)	+ 0,85						
$Ag^+ + e^-$	=	Ag	+ 0,80						
$NO_{3}^{-} + 2H^{+} + e^{-}$	=	$NO_2(g) + H_2O$	+ 0,80						
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77						
$O_2(g) + 2H^+ + 2e^-$	\Rightarrow	H_2O_2	+ 0,68						
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54						
Cu ⁺ + e⁻	=	Cu	+ 0,52						
$SO_2 + 4H^+ + 4e^-$	\Rightarrow	S + 2H2O	+ 0,45						
$2H_2O + O_2 + 4e^-$	=	40H ⁻	+ 0,40						
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34						
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + e ⁻	\Rightarrow	Cu ⁺	+ 0,16						
Sn ⁴⁺ + 2e ⁻	\Rightarrow	Sn ²⁺	+ 0,15						
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14						
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00						
Fe ³⁺ + 3e ⁻	\Rightarrow	Fe	- 0,06						
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13						
Sn ²⁺ + 2e ⁻	\Rightarrow	Sn	- 0,14						
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27						
Co ²⁺ + 2e ⁻	\rightleftharpoons	Со	- 0,28						
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40						
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41						
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44						
Cr ³⁺ + 3e ⁻ Zn ²⁺ + 2e ⁻	=	Cr Zn	- 0,74 - 0,76						
2H ₂ O + 2e ⁻	=	Zn	- 0,76 - 0,83						
2H ₂ O + 2e Cr ²⁺ + 2e ⁻	=	H ₂ (g) + 2OH⁻ Cr	- 0,83 - 0,91						
Mn ²⁺ + 2e ⁻	=	Mn	– 0,91 – 1,18						
$A\ell^{3+} + 3e^{-}$	#	Al	- 1,16 - 1,66						
Mg ²⁺ + 2e ⁻	#	Mg	- 1,00 - 2,36						
Mg + 2e Na ⁺ + e⁻	=	Na	- 2,30 - 2,71						
Ca ²⁺ + 2e ⁻	=	Са	- 2,7 T - 2,87						
Sr ²⁺ + 2e ⁻	=	Sr	- 2,87 - 2,89						
Ba ²⁺ + 2e ⁻	=	Ва	- 2,99 - 2,90						
Cs ⁺ + e ⁻	=	Cs	- 2,90 - 2,92						
K ⁺ + e ⁻	=	K	- 2,93						
Li ⁺ + e⁻	=	Li	- 3,05						
=: 0			-,00						

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

 $E^{\alpha}(V)$ Half-reactions/Halfreaksies Li⁺ + e⁻ Li -3,05K⁺ + e⁻ Κ -2,93Cs $Cs^+ + e^-$ -2,92Ba²⁺ + 2e⁻ Ва -2,90Sr²⁺ + 2e⁻ Sr -2,89 $Ca^{2+} + 2e^{-}$ Ca -2,87Na⁺ + e⁻ -2,71Na $Mg^{2+} + 2e^{-}$ -2,36Mg $Al^{3+} + 3e^{-}$ Αł -1,66 $Mn^{2+} + 2e^{-}$ Mn -1,18Cr2+ + 2e-Cr -0,912H₂O + 2e⁻ -0,83 $H_2(g) + 2OH^-$ Zn²⁺ + 2e⁻ Zn -0,76 $Cr^{3+} + 3e^{-}$ Cr -0,74 $Fe^{2+} + 2e^{-}$ Fe -0,44 $Cr^{3+} + e^{-}$ Cr²⁺ -0,41 $Cd^{2+} + 2e^{-}$ Cd -0,40Co²⁺ + 2e⁻ Co -0,28Ni²⁺ + 2e⁻ Ni -0,27Sn²⁺ + 2e⁻ Sn -0,14 $Pb^{2+} + 2e^{-}$ Pb -0,13 $Fe^{3+} + 3e^{-}$ Fe -0.062H⁺ + 2e⁻ 0,00 H₂(g) S + 2H⁺ + 2e⁻ + 0,14 $H_2S(g)$ Sn²⁺ Sn⁴⁺ + 2e⁻ + 0,15 $Cu^{2+} + e^{-}$ Cu⁺ + 0,16 $SO_4^{2-} + 4H^+ + 2e^ SO_2(g) + 2H_2O$ + 0,17 $Cu^{2+} + 2e^{-}$ Cu +0.34 $2H_2O + O_2 + 4e^-$ 40H⁻ +0,40 $SO_2 + 4H^+ + 4e^-$ S + 2H₂O+ 0,45 Cu⁺ + e⁻ Cu + 0,52 + 0,54 $I_2 + 2e^-$ 2I⁻ $O_2(g) + 2H^+ + 2e^ H_2O_2$ + 0,68 Fe³⁺ + e⁻ Fe²⁺ + 0,77 $NO_{3}^{-} + 2H^{+} + e^{-}$ $NO_2(g) + H_2O$ + 0,80 + 0,80 $Ag^{+} + e^{-}$ Ag $Hg^{2+} + 2e^{-}$ + 0,85 Hg(ℓ) $NO_{3}^{-} + 4H^{+} + 3e^{-}$ $NO(g) + 2H_2O$ +0,96 $Br_2(\ell) + 2e^-$ 2Br + 1,07Pt²⁺ + 2 e⁻ +1,20 $Mn^{2+} + 2H_2O$ $MnO_2 + 4H^+ + 2e^-$ + 1,23 $O_2(g) + 4H^+ + 4e^ 2H_2O$ + 1,23 $Cr_2O_7^{2-} + 14H^+ + 6e^-$ 2Cr³⁺ + 7H₂O + 1,33 $C\ell_2(g) + 2e^-$ 2Cl-+ 1,36 $Mn^{2+} + 4H_2O$ $MnO_{4}^{-} + 8H^{+} + 5e^{-}$ + 1,51 $H_2O_2 + 2H^+ + 2e^ 2H_2O$ +1,77 Co²⁺ $Co^{3+} + e^{-}$ + 1,81 + 2,87 $F_2(g) + 2e^-$ 2F⁻

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë