SCS 2112 : Automata Theory

Dinuni Fernando, PhD

3. NFA

Classification of FSMs

- Moore machines : output depends only on the state.
- Mealy machines : output depends on input and state.

Transducers

Definition : A transducer is defined by the tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, \omega)$ where

- -Q: is a finite set of **internal states**
- $-\Sigma$: is a finite set of symbols called the **input alphabet**
- Γ : is the output alphabet
- $-\delta: Q \times \Sigma \longrightarrow Q$ is a function called the **transition function**
- $-q_0 \in Q$ is the **initial state**

 ω : output function

Transducers

Mealy Machine

- Is a finite state machine whose output depends on the present state and the present input
- Described using a 6 tuple $(Q, \sum, \Gamma, \delta, q_0, \omega)$, where
 - -Q: is a finite set of **internal states**
 - $-\Sigma$: is a finite set of symbols called the **input alphabet**
 - Γ : is the output alphabet
 - $-\delta: Q \times \Sigma \longrightarrow Q$ is a function called the **input transition function**
 - $-q_0 \in Q$ is the **initial state**
 - $-\omega: Q \times \Sigma \longrightarrow \Gamma$ is a output transition function

State transition table of Mealy machine

Present state	Next State					
	Inp	out = 0	Input = 1			
	State	Output	State	Output		
→a	b	X_1	С	X_1		
b	b	X ₂	d	X_3		
С	d	X_3	С	X ₁		
d	d	X_3	d	X_2		

State transition diagram for Mealy machine

Moore Machine

- Is a finite state machine whose output only depends on the present state
- Described using a 6 tuple $(Q, \sum, \Gamma, \delta, q_0, \omega)$, where
 - -Q: is a finite set of **internal states**
 - $-\Sigma$: is a finite set of symbols called the **input alphabet**
 - Γ : is the output alphabet
 - $-\delta: Q \times \Sigma \longrightarrow Q$ is a function called the **input transition function**
 - $-q_0 \in Q$ is the **initial state**
 - $-\omega:Q\longrightarrow\Gamma$ is a **output transition function**

State transition table of Moore machine

Present state	ent state Next State (Output
	Input = 0	Input = 1	
→a	b	С	X_2
b	b	d	X_1
С	С	d	X_2
d	d	d	X_3

State transition diagram for Moore

Input/output

Input: 11

Transition: $\delta(q0,11) = \delta(\delta(q0,1),1) = \delta(q2,1) = q2$

Output: 00

UCSC

(q0 to q2 transition has Output 0 and q2 to q2

transition also has Output 0)

0/0

Mealy Machine

Input – Mealy Machine

Output – Moor Machine

Step 1: First consider, transition table of mealy machine

Present state	Next State			0/0	
	Input = 0		Input = 0 Input = 1		q0 $0/0$ $q1$
	State	Output	State	Output	1/1
→q0	q1	0	q2	0	1/0 0/1
q1	q1	0	q2	1	q^2
q2	q1	1	q2	0	1/0

Step 2: First find out states which have more than 1 output associated with them. Such states are q1 and q2.

							0/0
Present state			Next	State			0.0
	Inpi	ıt = 0		Inp	out = 1	1	q_0 $0/0$ q_1
	State		Output	State		Output	1/1
				_			1/0
→ q0	q1	0		q2	0		0/1
q1	q1	0		q2	1		q^2
q2	q1	1		q2	0		1/0

UCSC

Step 3: Create 2 states for these states. For q1, two states will be q10 (with output 0) and q11 (with output 1). Similarly, q2's new states are q20, q21.

Step 4: Create an empty Moore machine with new generated states. For Moore machine, output will be associated to each state irrespective of its

Present state	Next	Output	
	Input = 0	Input = 1	
→q0			
q10			
q11			
q20			
q21			

input.

Step 5: Fill the entries of next state using mealy machine transition table.

For q0 on input 0 next state is q10 (q1 with output 0). For q1 (for both q10 and q11) on input 0, next state is q10. for q10 and q11 on input 1, next state is q21. Similarly you will fill the entire table.

Present state	Next	Output	
	Input = 0	Input = 1	
→ q0	q10	q20	0
q10	q10	q21	0
q11	q10	q21	1
q20	q11	q20	0
q21	q11	q20	1

Consider the Moore machine transition table.

Present state	Next	Output	
	Input = 0	Input = 1	
→q0	q10	q20	0
q10	q10	q21	0
q11	q10	q21	1
q20	q11	q20	0
q21	q11	q20	1

Step1: Construct an empty mealy machine using all states of Moore machine.

Present state		Next State		
	Inp	Input = 0		t = 1
	State	State Output		Output
→ q0				
q10				
q11				
q20				
q21				

Step2: Next state of each state can be directly found from Moore machine transition

table.

Present state	Next State				
	Input = 0		Inpu	ıt = 1	
	State Output		State	Output	
→ q0	q10		q20		
q10	q10		q21		
q11	q10		q21		
q20	q11		q20		
q21	q11		q20		

Step3: As we can see output corresponding to each input in Moore machine transition table. By using this, we can fill output entries, as follows, q10,q11,q20 and q21 are

0,1,0,1 respectively.

Present state	Next State				
	Input = 0		Input = 1		
	State Output		State	Output	
→ q0	q10	0	q20	0	
q10	q10	0	q21	1	
q11	q10	0	q21	1	
q20	q11	1	q20	0	
q21	q11	1	q20	0	

Step4: According to the table q10 and q11 are similar to each other (same value of next state and output for different inputs). Similarly q20 and q21 are similar. So, we

can eliminate q11 and q21 ent state

Tresent state	Next State			
	Input = 0		Input = 1	
	State	Output	State	Output
→ q0	q10	0	q20	0
q10	q10	0	q21	1
q11	q10	0	q21	1
q20	q11	1	q20	0
q21	q11	1	q20	0

Next State

Step5: After eliminating q11 and q21.

Present state	Next State				
	Input = 0		Input = 1		
	State	Output	State	Output	
→ q0	q10	0	q20	0	
q10	q10	0	q21	1	
q20	q11	1	q20	0	

Non-deterministic Finite Automata (NFA)

Definition : A non-deterministic finite automata (**NFA**) is defined by the tuple $M = (Q, \sum, \delta, q_0, F)$ where Q, \sum, q_0, F are defined as for dfa, but δ is defined as below

$$\delta: Q \times (\sum \bigcup \{\in\}) \longrightarrow 2^Q$$

UCSC

Where 2^Q is the powerset of Q

 δ is a relation (not a function)

Differences between DFA and NFA

- •The range of δ is a set (i.e, powerset).
 - •There may be multiple transitions defined on the same state on the same input.
 - State is not a single element of Q but a subset of it.
- • \in is allowed as the second argument of δ
 - •NFA can make a transition without consuming an input symbol.
 - Input mechanism is stationary on some moves
 - $\in 2^{\mathbb{Q}}$ transitions may not have been defined for some inputs

Examples of a NFA

- Several edges with the same label originate from one vertex.
- Has ∈ transitions

UCSC

•Some transitions are unspecified eg. $\delta(q_2,a)$

Transition table for the NFA

State	Input symbol		
	a	b	€
q_0	$\{q_{1,}q_{2}\}$		
q_1		$\{q_0\}$	{q ₂ }
$ \mathbf{q}_2 $			

Example 1

UCSC

•Is the string 1010 is accepted by this NFA?

Example 1

•Is the string 1010 is accepted by this NFA?

