COMPLEMENTOS DE CÁLCULO: 521234

Guía de Ejercicios No 5-I

1. ¿Cuál es su interpretación del problema:

$$\begin{array}{lcl} u_t & = & k^2 u_{xx} & (x,t) \in]0,1[\times]0,\infty[\\ u(0,t) & = & 0 & t>0 \\ u_x(1,t) & = & 1 & t>0 \\ u(x,0) & = & \mathrm{sen}(\pi x) & 0 \leq x \leq 1? \end{array}$$

¿Puede llegar la solución a un estado estacionario?. Construya la solución.

- 2. Suponga que una barra metálica aislada lateralmente tiene temperatura inicial de $25^{\circ}C$, pero con un extremo mantenido a una temperatura fija de $50^{\circ}C$. El resto de la barra se sumerge en un líquido con temperatura de $30^{\circ}C$. ¿ Cuál es la descripción formal de problema?.
- 3. Determine la solución del estado estacionario y la forma de la solución transiente del problema de difusión:

$$\begin{array}{rcl} u_t & = & u_{xx} & (x,t) \in]0,1[\times]0,\infty[\\ u(0,t) & = & 0 & t>0 \\ u(1,t) & = & 1 & t>0 \\ u(x,0) & = & x^2 & 0 \leq x \leq 1 \end{array}$$

4. Resuelva el problema de difusión:

$$\begin{array}{rcl} u_t & = & k^2 u_{xx} & 0 < x < L, & t > 0 \\ u(0,t) & = & 0 & t > 0 \\ u(1,t) & = & 0 & t > 0 \\ u(x,0) & = & f(x) & 0 \le x \le L \end{array}$$

si (a)
$$f(x) = \sin^2(\frac{\pi}{2L}x)$$
 (b) $f(x) = \frac{x}{L} - \frac{1}{2\pi}\sin^2(\frac{\pi}{2L}x)$

5. Si a es una constante real, resuelva el problema de difusión:

$$u_t = k^2 u_{xx} - au \quad 0 < x < 1, \quad t > 0$$

 $u(0,t) = 0 \quad t > 0$
 $u(1,t) = 1 \quad t > 0$
 $u(x,0) = \operatorname{sen}(\pi x) \quad 0 \le x \le 1$

1

6. Asuma que una barra no es aislada a largo de su superficie lateral y que la pérdida de calor a través de ella en una razón por unidad de longitud proporcional a la diferencia u(x,t)-T, donde T es la temperatura del medio ambiente. La ecuación del calor en tal caso es:

$$u_t = k^2 u_{xx} - h(u - T)$$

donde h es una constante de proporcionalidad positiva. Si los bordes de la barra son mantenidos a T^oC para $t \geq 0$ y la distribución inicial de temperatura es u(x,0) = f(x), use la sustitución $v(x,t) = e^{ht}(u(x,t) - T)$ para reducir a un problema de valores de contorno e inicial conocido.

7. Si h > 0 y T son constantes resolver el problema de diferencial:

$$u_t = k^2 u_{xx} - h(u - T)$$
 $0 < x < 1, t > 0$
 $u(0,t) = T$ $t > 0$
 $u_x(1,t) = 0$ $t > 0$
 $u(x,0) = \operatorname{sen}(\pi x)$ $0 \le x \le 1$

8. Una barra de longitud L, inicialmente a una temperatura $T_0 > 0$, es sumergida en un medio líquido cuya temperatura es $T < T_0$: Mientras que los bordes de la barra son mantenidos a la temperatura T_0 para $t \ge 0$, existe una pérdida de calor por convección a lo largo de la superficie lateral, tal que la ecuación del calor es:

$$u_t = k^2 u_{xx} - h(u - T)$$

donde h es una constante positiva. Establecer y resolver el problema de difusión que modela la situación descrita.

9. Resolver el problema de valores de contorno e inicial anterior si L = 10, h = k = 1, T = 300 y las condiciones de bordes e inicial son modificadas como sigue:

$$u(0,t) = 310$$
 $t \ge 0$
 $u(10,t) = 320$ $t \ge 0$
 $u(x,0) = x + 310$ $0 \le x \le 10$

10. Resolver el problema de valores de contorno e inicial:

$$\begin{array}{lcl} u_t & = & u_{xx} + e^{-t} \left(x - 1 + \mathrm{sen}(\pi x) \right) & 0 < x < 1, & t > 0 \\ u(0,t) & = & e^{-t} & & t \geq 0 \\ u(1,t) & = & 3 & & t \geq 0 \\ u(x,0) & = & x + 2 & & 0 \leq x \leq 1 \end{array}$$

Concepción, 13 de Septiembre de 2005. ${\rm HMM/FPV/fpv}$.