Estruturas de Dados: Lista 01

Marcelo Hashimoto

Última Atualização: 19 de fevereiro de 2015

Dizemos que f(n) = O(g(n)) se existem constantes c, n_0 tais que $f(n) \le cg(n)$ para todo $n \ge n_0$. Verifique se cada uma das afirmações a seguir é verdadeira ou falsa. Justifique detalhadamente cada uma das respostas.

1. n = O(2n);

A afirmação é verdadeira, pois $n \le c \cdot 2n$ para todo $n \ge n_0$ se c = 1 e $n_0 = 0$.

2. 2n = O(n);

A afirmação é verdadeira, pois $2n \le c \cdot n$ para todo $n \ge n_0$ se c = 2 e $n_0 = 0$.

3. $n = O(n^2)$;

A afirmação é verdadeira, pois $n \le c \cdot n^2$ para todo $n \ge n_0$ se c = 1 e $n_0 = 1$.

4. $n^2 = O(n)$;

A afirmação é falsa. Se ela fosse verdadeira, existiriam constantes c, n_0 tais que $n \cdot n \le c \cdot n$ para todo $n \ge n_0$. Isso é absurdo, pois para n suficientemente grande temos n > c e portanto $n \cdot n > c \cdot n$.

5. $n = O(n^2 + n)$;

A afirmação é verdadeira, pois $n \le c \cdot n \le c \cdot (n^2 + n)$ para todo $n \ge n_0$ se c = 1 e $n_0 = 0$.

6. $n^2 = O(n^2 + n)$;

A afirmação é verdadeira, pois $n^2 \le c \cdot n^2 \le c \cdot (n^2 + n)$ para todo $n \ge n_0$ se c = 1 e $n_0 = 0$.

7. $n^2 + n = O(n)$;

A afirmação é falsa. Se ela fosse verdadeira, existiriam constantes c, n_0 tais que $n \cdot n + n \le c \cdot n$ para todo $n \ge n_0$. Isso é absurdo, pois para n suficientemente grande temos n > c e portanto $n \cdot n + n > c \cdot n$.

8. $n^2 + n = O(n^2)$;

A afirmação é verdadeira, pois $n^2 + n \le n^2 + n^2 = 2 \cdot n^2 \le c \cdot n^2$ para todo $n \ge n_0$ se c = 2 e $n_0 = 1$.

9. $\log_3 n = O(\log_2 n);$

A afirmação é verdadeira, pois $\log_3 n = \frac{1}{\log_2 3} \cdot \log_2 n \le c \cdot \log_2 n$ para todo $n \ge n_0$ se $c = \frac{1}{\log_2 3}$ e $n_0 = 1$.

10. $3^n = O(2^n)$.

A afirmação é falsa. Se ela fosse verdadeira, existiriam constantes c, n_0 tais que $\left(\frac{3}{2}\right)^n \cdot 2^n \le c \cdot 2^n$ para todo $n \ge n_0$. Isso é absurdo, pois para n suficientemente grande temos $\left(\frac{3}{2}\right)^n > c$ e portanto $\left(\frac{3}{2}\right)^n \cdot 2^n > c \cdot 2^n$.