

Jordan Birdsall University of Huddersfield School of Computing and Engineering

February 16, 2023

Table of Contents

ΑŢ	ppendices	1
A	Regression Problems Summary	1
В	Classification Problems Summary	4
С	CSEEM Regression Results	7
D	RMSProp Regression Summary Results	10
Ε	CSEEM Classification Results	14
F	RMSProp Classification Summary Results	17
G	CSEEM Regression All Results	23
Η	RMSProp Regression All Results	86
Ι	CSEEM Classification All Results	108
J	RMSProp Classification All Results	192

List of Figures

List of Tables

A.1	Regression Problems Summary	2
В.1	Classification Problems Summary	5
C.1	Summary CSEEM Results of regression problems (1/1)	8
D.1	RMSprop Results of regression problems (1/2)	11
D.2	RMSprop Results of regression problems $(2/2)$	12
E.1	Summary CSEEM Results of classification problems $(1/2)$	15
E.2	Summary CSEEM Results of classification problems (2/2)	16
F.1	RMSprop Results of classification problems $(1/5)$	18
F.2	RMSprop Results of classification problems $(2/5)$	19
F.3	RMSprop Results of classification problems (3/5)	20

F.4	RMSprop Results of classification problems $(4/5)$	21
F.5	RMSprop Results of classification problems $(5/5)$	22
G.1	All CSEEM Results of regression problems (1/61)	24
G.2	All CSEEM Results of regression problems (2/61)	25
G.3	All CSEEM Results of regression problems (3/61)	26
G.4	All CSEEM Results of regression problems (4/61)	27
G.5	All CSEEM Results of regression problems (5/61)	28
G.6	All CSEEM Results of regression problems (6/61)	29
G.7	All CSEEM Results of regression problems (7/61)	30
G.8	All CSEEM Results of regression problems (8/61)	31
G.9	All CSEEM Results of regression problems (9/61)	32
G.10	All CSEEM Results of regression problems (10/61)	33
G.11	All CSEEM Results of regression problems (11/61)	34
G.12	All CSEEM Results of regression problems (12/61)	35
G.13	All CSEEM Results of regression problems (13/61)	36
G.14	All CSEEM Results of regression problems (14/61)	37
G.15	All CSEEM Results of regression problems (15/61)	38
G.16	All CSEEM Results of regression problems (16/61)	39
G.17	All CSEEM Results of regression problems (17/61)	40
G.18	All CSEEM Results of regression problems (18/61)	41
G.19	All CSEEM Results of regression problems (19/61)	42
G.20	All CSEEM Results of regression problems (20/61)	43

G.21	All CSEEM	Results of regression	on problems $(21/61)$	1)	44
G.22	All CSEEM	Results of regression	on problems (22/61		45
G.23	All CSEEM	Results of regressi	on problems (23/61	.)	46
G.24	All CSEEM	Results of regressi	on problems (24/61	.)	47
G.25	All CSEEM	Results of regressi	on problems $(25/61)$.)	48
G.26	All CSEEM	Results of regressi	on problems (26/61	.)	49
G.27	All CSEEM	Results of regression	on problems (27/61	.)	50
G.28	All CSEEM	Results of regressi	on problems (28/61	.)	51
G.29	All CSEEM	Results of regressi	on problems (29/61	.)	52
G.30	All CSEEM	Results of regressi	on problems (30/61	.)	53
G.31	All CSEEM	Results of regressi	on problems (31/61	.)	54
G.32	All CSEEM	Results of regressi	on problems $(32/61)$.)	55
G.33	All CSEEM	Results of regression	on problems (33/61		56
G.34	All CSEEM	Results of regression	on problems (34/61		57
G.35	All CSEEM	Results of regression	on problems $(35/61)$		58
G.36	All CSEEM	Results of regressi	on problems (36/61	.)	59
G.37	All CSEEM	Results of regression	on problems (37/61		60
G.38	All CSEEM	Results of regressi	on problems (38/61	.)	61
G.39	All CSEEM	Results of regressi	on problems (39/61	.)	62
G.40	All CSEEM	Results of regressi	on problems (40/61	.)	63
G.41	All CSEEM	Results of regression	on problems (41/61		64
G.42	All CSEEM	Results of regression	on problems (42/61		65
G.43	All CSEEM	Results of regressi	on problems $(43/61)$	1)	66

G.44	All CSEEM Results of regression problems (44/61) 6	57
G.45	All CSEEM Results of regression problems (45/61) 6	58
G.46	All CSEEM Results of regression problems (46/61) 6	69
G.47	All CSEEM Results of regression problems (47/61)	70
G.48	All CSEEM Results of regression problems (48/61)	' 1
G.49	All CSEEM Results of regression problems (49/61)	2
G.50	All CSEEM Results of regression problems (50/61)	' 3
G.51	All CSEEM Results of regression problems (51/61)	74
G.52	All CSEEM Results of regression problems (52/61)	' 5
G.53	All CSEEM Results of regression problems (53/61)	76
G.54	All CSEEM Results of regression problems (54/61)	77
G.55	All CSEEM Results of regression problems (55/61)	78
G.56	All CSEEM Results of regression problems (56/61)	' 9
G.57	All CSEEM Results of regression problems (57/61) 8	80
G.58	All CSEEM Results of regression problems (58/61) 8	31
G.59	All CSEEM Results of regression problems (59/61) 8	32
G.60	All CSEEM Results of regression problems $(60/61)$ 8	33
G.61	All CSEEM Results of regression problems (61/61) 8	34
H.1	All RMSProp Results of regression problems (1/21) 8	37
H.2	All RMSProp Results of regression problems (2/21) 8	38
Н.3	All RMSProp Results of regression problems (3/21) 8	39
H.4	All RMSProp Results of regression problems (4/21) 9	00

H.5	All RMSProp Results of regression problems $(5/21)$.	91
H.6	All RMSProp Results of regression problems (6/21).	92
H.7	All RMSProp Results of regression problems $(7/21)$	93
H.8	All RMSProp Results of regression problems (8/21)	94
H.9	All RMSProp Results of regression problems (9/21)	95
H.10	All RMSProp Results of regression problems $(10/21)$.	96
H.11	All RMSProp Results of regression problems $(11/21)$.	97
H.12	All RMSProp Results of regression problems $(12/21)$.	98
H.13	All RMSProp Results of regression problems $(13/21)$.	99
H.14	All RMSProp Results of regression problems $(14/21)$.	100
H.15	All RMSProp Results of regression problems $(15/21)$.	101
H.16	All RMSProp Results of regression problems $(16/21)$.	102
H.17	All RMSProp Results of regression problems $(17/21)$.	103
H.18	All RMSProp Results of regression problems $(18/21)$.	104
H.19	All RMSProp Results of regression problems $(19/21)$.	105
H.20	All RMSProp Results of regression problems $(20/21)$.	106
H.21	All RMSProp Results of regression problems $(21/21)$.	107
I.1	All CSEEM Results of classification problems (1/83).	109
I.2	All CSEEM Results of classification problems (2/83).	110
I.3	All CSEEM Results of classification problems (3/83).	111
I.4	All CSEEM Results of classification problems (4/83).	112
I.5	All CSEEM Results of classification problems (5/83).	113

I.6	All CSEEM Results of classification problems $(6/83)$ 114
I.7	All CSEEM Results of classification problems $(7/83)$ 115
I.8	All CSEEM Results of classification problems (8/83) 116
I.9	All CSEEM Results of classification problems $(9/83)$ 117
I.10	All CSEEM Results of classification problems (10/83) 118
I.11	All CSEEM Results of classification problems (11/83) 119
I.12	All CSEEM Results of classification problems (12/83) 120
I.13	All CSEEM Results of classification problems (13/83) 121
I.14	All CSEEM Results of classification problems $(14/83)$ 122
I.15	All CSEEM Results of classification problems $(15/83)$ 123
I.16	All CSEEM Results of classification problems $(16/83)$ 124
I.17	All CSEEM Results of classification problems $(17/83)$ 125
I.18	All CSEEM Results of classification problems (18/83) 126
I.19	All CSEEM Results of classification problems (19/83) 127
I.20	All CSEEM Results of classification problems (20/83) 128
I.21	All CSEEM Results of classification problems (21/83) 129
I.22	All CSEEM Results of classification problems (22/83) 130
I.23	All CSEEM Results of classification problems (23/83) 131
I.24	All CSEEM Results of classification problems $(24/83)$ 132
I.25	All CSEEM Results of classification problems (25/83) 133
I.26	All CSEEM Results of classification problems (26/83) 134
I.27	All CSEEM Results of classification problems $(27/83)$ 135
I.28	All CSEEM Results of classification problems $(28/83)$ 136

I.29	All CSEEM Results of classification problems (29/83) 137
I.30	All CSEEM Results of classification problems $(30/83)$ 138
I.31	All CSEEM Results of classification problems $(31/83)$ 139
I.32	All CSEEM Results of classification problems $(32/83)$ 140
I.33	All CSEEM Results of classification problems (33/83) 141
I.34	All CSEEM Results of classification problems $(34/83)$ 142
I.35	All CSEEM Results of classification problems $(35/83)$ 143
I.36	All CSEEM Results of classification problems $(36/83)$ 144
I.37	All CSEEM Results of classification problems $(37/83)$ 145
I.38	All CSEEM Results of classification problems (38/83) 146
I.39	All CSEEM Results of classification problems $(39/83)$ 147
I.40	All CSEEM Results of classification problems $(40/83)$ 148
I.41	All CSEEM Results of classification problems $(41/83)$ 149
I.42	All CSEEM Results of classification problems $(42/83)$ 150
I.43	All CSEEM Results of classification problems (43/83) 151
I.44	All CSEEM Results of classification problems $(44/83)$ 152
I.45	All CSEEM Results of classification problems (45/83) 153
I.46	All CSEEM Results of classification problems $(46/83)$ 154
I.47	All CSEEM Results of classification problems $(47/83)$ 155
I.48	All CSEEM Results of classification problems (48/83) 156
I.49	All CSEEM Results of classification problems $(49/83)$ 157
I.50	All CSEEM Results of classification problems (50/83) 158
I.51	All CSEEM Results of classification problems $(51/83)$ 159

I.52	All CSEEM Results of classification problems $(52/83)$ 160
I.53	All CSEEM Results of classification problems (53/83) 161
I.54	All CSEEM Results of classification problems (54/83) 162
I.55	All CSEEM Results of classification problems (55/83) 163
I.56	All CSEEM Results of classification problems (56/83) 164
I.57	All CSEEM Results of classification problems (57/83) 165
I.58	All CSEEM Results of classification problems (58/83) 166
I.59	All CSEEM Results of classification problems (59/83) 167
I.60	All CSEEM Results of classification problems (60/83) 168
I.61	All CSEEM Results of classification problems (61/83) 169
I.62	All CSEEM Results of classification problems (62/83) 170
I.63	All CSEEM Results of classification problems (63/83) 171
I.64	All CSEEM Results of classification problems $(64/83)$ 172
I.65	All CSEEM Results of classification problems $(65/83)$ 173
I.66	All CSEEM Results of classification problems (66/83) 174
I.67	All CSEEM Results of classification problems (67/83) 175
I.68	All CSEEM Results of classification problems (68/83) 176
I.69	All CSEEM Results of classification problems (69/83) 177
I.70	All CSEEM Results of classification problems (70/83) 178
I.71	All CSEEM Results of classification problems $(71/83)$ 179
I.72	All CSEEM Results of classification problems $(72/83)$ 180
I.73	All CSEEM Results of classification problems $(73/83)$ 181
I.74	All CSEEM Results of classification problems $(74/83)$ 182

I.75	All CSEEM Results of classification problems $(75/83)$ 183
I.76	All CSEEM Results of classification problems $(76/83)$ 184
I.77	All CSEEM Results of classification problems $(77/83)$ 185
I.78	All CSEEM Results of classification problems (78/83) 186
I.79	All CSEEM Results of classification problems $(79/83)$ 187
I.80	All CSEEM Results of classification problems (80/83) 188
I.81	All CSEEM Results of classification problems (81/83) 189
I.82	All CSEEM Results of classification problems (82/83) 190
I.83	All CSEEM Results of classification problems (83/83) 191
T 1	All DMCD D 1/2 f 1 26 42 11 (1/20) 102
J.1	All RMSProp Results of classification problems $(1/28)$ 193
J.2	All RMSProp Results of classification problems $(2/28)$ 194
J.3	All RMSProp Results of classification problems (3/28) 195
J.4	All RMSProp Results of classification problems (4/28) 196
J.5	All RMSProp Results of classification problems $(5/28)$ 197
J.6	All RMSProp Results of classification problems (6/28) 198
J.7	All RMSProp Results of classification problems $(7/28)$ 199
J.8	All RMSProp Results of classification problems (8/28) 200
J.9	All RMSProp Results of classification problems (9/28) 201
J.10	All RMSProp Results of classification problems (10/28) 202
J.11	All RMSProp Results of classification problems (11/28) 203
J.12	All RMSProp Results of classification problems (12/28) 204
J.13	All RMSProp Results of classification problems (13/28) 205

J.14	All RMSProp Results of classification problems $(14/28)$ 206
J.15	All RMSProp Results of classification problems (15/28) 207
J.16	All RMSProp Results of classification problems (16/28) 208
J.17	All RMSProp Results of classification problems $(17/28)$ 209
J.18	All RMSProp Results of classification problems (18/28) 210
J.19	All RMSProp Results of classification problems (19/28) 211
J.20	All RMSProp Results of classification problems (20/28) 212
J.21	All RMSProp Results of classification problems (21/28) 213
J.22	All RMSProp Results of classification problems (22/28) 214
J.23	All RMSProp Results of classification problems (23/28) 215
J.24	All RMSProp Results of classification problems (24/28) 216
J.25	All RMSProp Results of classification problems $(25/28)$ 217
J.26	All RMSProp Results of classification problems $(26/28)$ 218
J.27	All RMSProp Results of classification problems $(27/28)$ 219
J.28	All RMSProp Results of classification problems (28/28) 220

Appendix A

Regression Problems Summary

Dataset Name	# Attributes (R/I/N)	# Samples
abalone	8 (7/1/0)	4177
ANACALT	7 (7/0/0)	4052
autoMPG6	5 (2/3/0)	392
autoMPG8	7 (2/5/0)	392
baseball	16 (2/14/0)	337
compactiv	21 (21/0/0)	8192
concrete	8 (7/1/0)	1030
dee	6 (6/0/0)	365
delta_ail	5 (5/0/0)	7129
delta_elv	6 (5/1/0)	9517
diabetes	2 (2/0/0)	43
ele1	2 (1/1/0)	495
ele2	4 (4/0/0)	1056
forestFires	12 (7/5/0)	517
friedman	5 (5/0/0)	1200
laser	4 (4/0/0)	993
machineCPU	6 (0/6/0)	209
mortgage	15 (15/0/0)	1049
plastic	2 (2/0/0)	1650
puma32h	32 (32/0/0)	8192
quake	3 (2/1/0)	2178
stock	9 (9/0/0)	950
tic	85 (0/85/0)	9822
treasury	15 (15/0/0)	1049
wankara	9 (9/0/0)	1609
wizmir	9 (9/0/0)	1461

Table A.1: Regression Problems Summary.

Appendix B

Classification Problems Summary

Dataset Name	# Attributes (R/I/N)	# Samples	# Classes
appendicitis	7 (7/0/0)	106	2
australian	14 (3/5/6)	690	2
automobile	25 (15/0/10)	150	6
balance	4 (4/0/0)	625	3
bands	19 (13/6/0)	365	2
breast	9 (0/0/9)	277	2
bupa	6 (1/5/0)	345	2
cleveland	13 (13/0/0)	297	5
crx	15 (3/3/9)	653	2
ecoli	7 (7/0/0)	336	8
flare	11 (0/0/11)	1066	6
german	20 (0/7/13)	1000	2
glass	9 (9/0/0)	214	7
haberman	3(0/3/0)	306	2
hayesroth	4 (0/4/0)	160	3
heart	13 (1/12/0)	270	2
hepatitis	19 (2/17/0)	80	2
housevotes	16 (0/0/16)	232	2
ionosphere	33 (32/1/0)	351	2
iris	4 (4/0/0)	150	3
led7digit	7 (7/0/0)	500	10
lymphography	18 (0/3/15)	148	4
mammographic	5 (0/5/0)	830	2
monk2	6 (0/6/0)	432	2
newthyroid	5 (4/1/0)	215	3
pima	8 (8/0/0)	768	2
postoperative	8 (0/0/8)	87	3
saheart	9 (5/3/1)	462	2
tae	5 (0/5/0)	151	3
tictactoe	9 (0/0/9)	958	2
vehicle	18 (0/18/0)	846	4
vowel	13 (10/3/0)	990	11
wine	13 (13/0/0)	178	3
wisconsin	9 (0/9/0)	683	2
ZOO	16 (0/0/16)	101	7

 ${\bf Table~B.1:~Classification~Problems~Summary.}$

Appendix C

CSEEM Regression Results

Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
CSEEM	abalone	661.388	0.0383	16	488	Tanh
CSEEM	ANACALT	704.827	0.00153	16	175	Tanh
CSEEM	autoMPG6	380.0	0.0281	16	38	Tanh
CSEEM	autoMPG8	344.992	0.0304	16	42	Tanh
CSEEM	baseball	164.992	0.126	16	76	Tanh
CSEEM	compactiv	206.421	0.00459	16	426	Tanh
CSEEM	concrete	832.078	0.029	16	128	Tanh
CSEEM	dee	212.0	0.0248	16	33	Tanh
CSEEM	delta_ail	708.057	0.00549	16	278	Tanh
CSEEM	delta_elv	878.838	0.00956	16	367	Tanh
CSEEM	diabetes	11.986	0.06	16	6	Tanh
CSEEM	ele-1	547.991	0.0627	16	61	Tanh
CSEEM	ele-2	409.999	0.00379	16	64	Tanh
CSEEM	forestFires	619.992	0.427	16	270	Tanh
CSEEM	friedman	524.001	0.00884	16	103	Tanh
CSEEM	laser	804.999	0.00478	16	61	Tanh
CSEEM	machineCPU	89.999	0.0513	16	48	Tanh
CSEEM	mortgage	41.0	0.00821	16	108	Tanh
CSEEM	plastic	61.063	0.0578	16	61	Tanh
CSEEM	puma32h	893.523	0.0687	16	1173	Tanh
CSEEM	quake	27.176	0.316	16	791	Tanh
CSEEM	stock	988.993	0.00804	16	73	Tanh
CSEEM	tic	551.734	0.375	16	5443	Tanh
CSEEM	treasury	836.138	0.012	16	87	Tanh
CSEEM	wankara	469.001	0.00393	16	78	Tanh
CSEEM	wizmir	333.001	0.00369	16	86	Tanh

Table C.1: Summary CSEEM Results of regression problems (1/1).

Appendix D

RMSProp Regression Summary

Results

Run	Method	Dataset	Time (s)	Norm Loss	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	abalone_regression	859.36	0.0455	1000	25	1	Tanh
Worst	RMSprop	abalone_regression	812.485	0.0481	1000	25	1	Tanh
Best	RMSprop	ailerons_regression	683.238	172	1000	20	1	Tanh
Worst	RMSprop	ailerons_regression	734.35	759	1000	20	1	Tanh
Best	RMSprop	ANACALT_regression	890.61	0.0681	1000	25	1	Tanh
Worst	RMSprop	ANACALT_regression	796.86	0.0681	1000	25	1	Tanh
Best	RMSprop	autoMPG6_regression	249.984	0.0993	1000	45	1	Tanh
Worst	RMSprop	autoMPG6_regression	171.862	0.0995	1000	45	1	Tanh
Best	RMSprop	autoMPG8_regression	265.612	0.0771	1000	40	1	Tanh
Worst	RMSprop	autoMPG8_regression	281.237	0.0995	1000	40	1	Tanh
Best	RMSprop	baseball_regression	234.353	0.937	1000	70	1	Tanh
Worst	RMSprop	baseball_regression	249.988	0.939	1000	70	1	Tanh
Best	RMSprop	california_regression	187.001	0.993	1000	1000	1	Tanh
Worst	RMSprop	california_regression	530.759	0.993	1000	1000	1	Tanh
Best	RMSprop	compactiv_regression	249.983	0.747	1000	10	1	Tanh
Worst	RMSprop	compactiv_regression	296.857	0.815	1000	10	1	Tanh
Best	RMSprop	concrete_regression	421.862	0.158	1000	30	1	Tanh
Worst	RMSprop	concrete_regression	312.487	0.185	1000	30	1	Tanh
Best	RMSprop	dee_regression	406.237	0.0159	1000	120	1	Tanh
Worst	RMSprop	dee_regression	390.612	0.02	1000	120	1	Tanh
Best	RMSprop	delta_ail_regression	15.448	0.388	1000	1000	1	Tanh
Worst	RMSprop	delta_ail_regression	952.943	28.2	1000	1000	1	Tanh
Best	RMSprop	delta_elv_regression	781.003	1.21e+04	1000	1000	1	Tanh
Worst	RMSprop	delta_elv_regression	327.869	1.98e + 04	1000	1000	1	Tanh
Best	RMSprop	diabetes_regression	171.862	0.00756	1000	10	1	Tanh
Worst	RMSprop	diabetes_regression	109.363	0.0102	1000	10	1	Tanh
Best	RMSprop	ele-1_regression	437.487	0.917	1000	100	1	Tanh
Worst	RMSprop	ele-1_regression	328.112	0.921	1000	100	1	Tanh
Best	RMSprop	ele-2_regression	203.113	0.996	1000	5	1	Tanh
Worst	RMSprop	ele-2_regression	218.749	0.997	1000	5	1	Tanh
Best	RMSprop	elevators_regression	93.363	314	1000	1000	1	Tanh
Worst	RMSprop	elevators_regression	452.736	419	1000	1000	1	Tanh

Table D.1: RMSprop Results of regression problems (1/2).

	3.5.1	.		37 7				
Run	Method	Dataset	Time (s)	Norm Loss	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	forestFires_regression	890.615	0.872	1000	400	1	Tanh
Worst	RMSprop	forestFires_regression	781.235	0.881	1000	400	1	Tanh
Best	RMSprop	friedman_regression	296.87	0.0283	1000	20	1	Tanh
Worst	RMSprop	friedman_regression	359.361	0.0376	1000	20	1	Tanh
Best	RMSprop	house_regression	280.722	0.981	1000	1000	1	Tanh
Worst	RMSprop	house_regression	296.337	0.981	1000	1000	1	Tanh
Best	RMSprop	laser_regression	281.238	0.724	1000	10	1	Tanh
Worst	RMSprop	laser_regression	281.237	0.777	1000	10	1	Tanh
Best	RMSprop	machineCPU_regression	343.736	0.684	1000	100	1	Tanh
Worst	RMSprop	machineCPU_regression	218.738	0.699	1000	100	1	Tanh
Best	RMSprop	mortgage_regression	328.113	0.074	1000	20	1	Tanh
Worst	RMSprop	mortgage_regression	374.987	0.145	1000	20	1	Tanh
Best	RMSprop	mv_regression	327.177	0.142	1000	1000	1	Tanh
Worst	RMSprop	mv_regression	436.551	0.169	1000	1000	1	Tanh
Best	RMSprop	plastic_regression	406.237	0.0643	1000	10	1	Tanh
Worst	RMSprop	plastic_regression	359.362	0.159	1000	10	1	Tanh
Best	RMSprop	pole_regression	671.513	0.02	1000	1000	1	Tanh
Worst	RMSprop	pole_regression	749.636	0.021	1000	1000	1	Tanh
Best	RMSprop	puma32h_regression	921.455	70.1	1000	2000	1	Tanh
Worst	RMSprop	puma32h_regression	952.708	271	1000	2000	1	Tank
Best	RMSprop	quake_regression	281.221	0.178	1000	1	1	Tanh
Worst	RMSprop	quake_regression	281.237	0.585	1000	1	1	Tank
Best	RMSprop	stock_regression	265.612	0.7	1000	5	1	Tanh
Worst	RMSprop	stock_regression	218.724	0.773	1000	5	1	Tank
Best	RMSprop	tic_regression	983.828	1.11	1000	2000	1	Tanh
Worst	RMSprop	tic_regression	655.705	14.4	1000	2000	1	Tank
Best	RMSprop	treasury_regression	296.861	0.155	1000	20	1	Tanh
Worst	RMSprop	treasury_regression	296.862	0.168	1000	20	1	Tanh
Best	RMSprop	wankara_regression	234.364	0.873	1000	1	1	Tanh
Worst	RMSprop	wankara_regression	312.478	0.954	1000	1	1	Tank
Best	RMSprop	wizmir_regression	296.849	0.889	1000	1	1	Tanh
Worst	RMSprop	wizmir_regression	328.116	0.956	1000	1	1	Tanh

Table D.2: RMS prop Results of regression problems (2/2).

Appendix E

CSEEM Classification Results

Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$
CSEEM	appendicitis	41.998	0.962	16	37	Tanh
CSEEM	australian	194.0	0.939	16	232	Tanh
CSEEM	automobile	110.999	0.925	16	73	Tanh
CSEEM	balance	34.99	0.915	16	116	Tanh
CSEEM	bands	350.999	0.888	16	173	Tanh
CSEEM	breast	383.999	0.921	16	123	Tanh
CSEEM	bupa	346.0	0.913	16	151	Tanh
CSEEM	cleveland	213.998	0.882	16	165	Tanh
CSEEM	crx	272.0	0.937	16	185	Tanh
CSEEM	ecoli	771.676	0.923	16	113	Tanh
CSEEM	flare	733.008	0.826	16	269	Tanh
CSEEM	german	813.001	0.904	16	425	Tanh
CSEEM	glass	121.998	0.874	16	93	Tanh
CSEEM	haberman	495.998	0.882	16	97	Tanh
CSEEM	hayes_roth	52.999	0.894	16	49	Tanh
CSEEM	heart	269.0	0.933	16	81	Tanh
CSEEM	hepatitis	19.007	0.988	16	23	Tanh
CSEEM	housevotes	176.006	0.987	16	43	Tanh
CSEEM	ionosphere	453.0	0.98	16	96	Tanh
CSEEM	iris	36.0	0.993	16	13	Tanh
CSEEM	led7digit	166.989	0.78	16	84	Tanh
CSEEM	lymphography	17.994	0.926	16	49	Tanh
CSEEM	mammographic	698.091	0.902	16	238	Tanh
CSEEM	monk_2	134.997	0.998	16	78	Tanh
CSEEM	newthyroid	177.0	0.986	16	41	Tanh
CSEEM	pima	947.0	0.905	16	263	Tanh
CSEEM	post_operative	22.0	0.874	16	42	Tanh
CSEEM	saheart	342.999	0.896	16	178	Tanh
CSEEM	tae	129.998	0.841	16	70	Tanh
CSEEM	tic_tac_toe	440.992	0.948	16	349	Tanh
CSEEM	vehicle	346.0	0.901	16	288	Tanh
CSEEM	vowel	545.001	0.978	16	280	Tanh

Table E.1: Summary CSEEM Results of classification problems (1/2).

Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$
CSEEM	wine	81.999	0.972	16	36	Tanh
CSEEM	wisconsin	767.0	0.99	16	123	Tanh
CSEEM	ZOO	24.992	0.98	16	24	Tanh

Table E.2: Summary CSEEM Results of classification problems (2/2).

Appendix F

RMSProp Classification Summary

Results

Run	Method	Dataset	Time (s)	Accuracy	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	abalone	660.707	nan	1000	2000	1	Tanh
Worst	RMSprop	abalone	660.707	nan	1000	2000	1	Tanh
Best	RMSprop	adult	378.325	0.935	1000	1000	1	Tanh
Worst	RMSprop	adult	91.244	0.937	1000	1000	1	Tanh
Best	RMSprop	appendicitis	749.996	0.937	1000	1000	1	Tanh
Worst	RMSprop	appendicitis	531.255	0.938	1000	1000	1	Tanh
Best	RMSprop	australian	953.118	0.902	1000	1000	1	Tanh
Worst	RMSprop	australian	775.292	0.919	1000	1000	1	Tanh
Best	RMSprop	automobile	281.225	0.901	1000	1000	1	Tanh
Worst	RMSprop	automobile	843.745	0.933	1000	1000	1	Tanh
Best	RMSprop	balance	466.839	0.915	1000	1000	1	Tanh
Worst	RMSprop	balance	687.466	0.915	1000	1000	1	Tanh
Best	RMSprop	banana	516.097	0.929	1000	1000	1	Tanh
Worst	RMSprop	banana	656.725	0.93	1000	1000	1	Tanh
Best	RMSprop	bands	859.369	0.917	1000	1000	1	Tanh
Worst	RMSprop	bands	609.37	0.921	1000	1000	1	Tanh
Best	RMSprop	breast	406.245	0.902	1000	1000	1	Tanh
Worst	RMSprop	breast	624.973	0.905	1000	1000	1	Tanh
Best	RMSprop	bupa	577.404	0.905	1000	1000	1	Tanh
Worst	RMSprop	bupa	624.996	0.916	1000	1000	1	Tanh
Best	RMSprop	car	124.941	0.935	1000	1000	1	Tanh
Worst	RMSprop	car	734.362	0.939	1000	1000	1	Tanh
Best	RMSprop	chess	937.987	0.939	1000	1000	1	Tanh
Worst	RMSprop	chess	437.382	0.949	1000	1000	1	Tanh
Best	RMSprop	cleveland	893.92	0.925	1000	1000	1	Tanh
Worst	RMSprop	cleveland	688.005	0.969	1000	1000	1	Tanh
Best	RMSprop	coil2000	79.097	0.967	1000	1000	1	Tanh
Worst	RMSprop	coil2000	925.906	0.972	1000	1000	1	Tanh
Best	RMSprop	connect_4	543.72	0.985	1000	1000	1	Tanh
Worst	RMSprop	connect_4	801.637	0.991	1000	1000	1	Tanh
Best	RMSprop	contraceptive	569.324	nan	1000	1000	1	Tanh
Worst	RMSprop	contraceptive	569.324	nan	1000	1000	1	Tanh

Table F.1: RMS prop Results of classification problems (1/5).

Run	Method	Dataset	Time (s)	Accuracy	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	crx	84.718	0.943	1000	1000	1	Tanh
Worst	RMSprop	crx	999.993	0.951	1000	1000	1	Tanh
Best	RMSprop	dermatology	124.993	0.703	1000	1000	1	Tanh
Worst	RMSprop	dermatology	125.509	0.705	1000	1000	1	Tanh
Best	RMSprop	ecoli	609.369	1.04	1000	1000	1	Tanh
Worst	RMSprop	ecoli	681.104	1.06	1000	1000	1	Tanh
Best	RMSprop	flare	797.375	0.914	1000	1000	1	Tanh
Worst	RMSprop	flare	69.323	0.925	1000	1000	1	Tanh
Best	RMSprop	german	944.758	0.929	1000	1000	1	Tanh
Worst	RMSprop	german	438.526	0.947	1000	1000	1	Tanh
Best	RMSprop	glass	871.055	0.977	1000	1000	1	Tanh
Worst	RMSprop	glass	945.977	0.987	1000	1000	1	Tanh
Best	RMSprop	haberman	187.496	0.916	1000	1000	1	Tanh
Worst	RMSprop	haberman	438.002	0.923	1000	1000	1	Tanh
Best	RMSprop	hayes_roth	792.018	nan	1000	1000	1	Tanh
Worst	RMSprop	hayes_roth	792.018	nan	1000	1000	1	Tanh
Best	RMSprop	heart	390.62	0.88	1000	1000	1	Tanh
Worst	RMSprop	heart	303.395	0.883	1000	1000	1	Tanh
Best	RMSprop	hepatitis	718.759	0.871	1000	1000	1	Tanh
Worst	RMSprop	hepatitis	624.996	0.896	1000	1000	1	Tanh
Best	RMSprop	housevotes	171.867	0.87	1000	1000	1	Tanh
Worst	RMSprop	housevotes	140.62	0.87	1000	1000	1	Tanh
Best	RMSprop	ionosphere	279.269	0.895	1000	1000	1	Tanh
Worst	RMSprop	ionosphere	140.619	0.902	1000	1000	1	Tanh
Best	RMSprop	iris	984.893	0.897	1000	50	1	Tanh
Worst	RMSprop	iris	743.55	0.899	1000	50	1	Tanh
Best	RMSprop	kr_vs_k	586.044	nan	1000	1000	1	Tanh
Worst	RMSprop	kr_vs_k	586.044	nan	1000	1000	1	Tanh
Best	RMSprop	led7digit	784.793	0.727	1000	1000	1	Tanh
Worst	RMSprop	led7digit	734.848	0.728	1000	1000	1	Tanh
Best	RMSprop	letter	78.93	0.874	1000	1000	1	Tanh
Worst	RMSprop	letter	180.78	0.898	1000	1000	1	Tanh

Table F.2: RMS prop Results of classification problems (2/5).

Run	Method	Dataset	Time (s)	Accuracy	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	lymphography	890.63	0.859	1000	1000	1	Tanh
Worst	RMSprop	lymphography	930.719	0.862	1000	1000	1	Tanh
Best	RMSprop	magic	373.845	0.977	1000	1000	1	Tanh
Worst	RMSprop	magic	548.29	0.981	1000	1000	1	Tanh
Best	RMSprop	mammographic	503.632	nan	1000	1000	1	Tanh
Worst	RMSprop	mammographic	503.632	nan	1000	1000	1	Tanh
Best	RMSprop	marketing	955.628	nan	1000	1000	1	Tanh
Worst	RMSprop	marketing	955.628	nan	1000	1000	1	Tanh
Best	RMSprop	monk_2	999.97	0.892	1000	1000	1	Tanh
Worst	RMSprop	monk_2	938.479	0.893	1000	1000	1	Tanh
Best	RMSprop	movement_libras	235.365	nan	1000	1000	1	Tanh
Worst	RMSprop	movement_libras	235.365	nan	1000	1000	1	Tanh
Best	RMSprop	mushroom	435.78	0.923	1000	1000	1	Tanh
Worst	RMSprop	mushroom	908.924	0.937	1000	1000	1	Tanh
Best	RMSprop	newthyroid	953.121	0.956	1000	1000	1	Tanh
Worst	RMSprop	newthyroid	968.745	0.957	1000	1000	1	Tanh
Best	RMSprop	nursery	818.062	0.948	1000	1000	1	Tanh
Worst	RMSprop	nursery	63.113	0.961	1000	1000	1	Tanh
Best	RMSprop	optdigits	528.178	0.535	1000	1000	1	Tanh
Worst	RMSprop	optdigits	562.97	0.537	1000	1000	1	Tanh
Best	RMSprop	page_blocks	828.444	0.939	1000	1000	1	Tanh
Worst	RMSprop	page_blocks	953.6	0.948	1000	1000	1	Tanh
Best	RMSprop	penbased	150.406	0.58	1000	1000	1	Tanh
Worst	RMSprop	penbased	641.58	0.602	1000	1000	1	Tanh
Best	RMSprop	phoneme	677.572	0.925	1000	1000	1	Tanh
Worst	RMSprop	phoneme	312.318	0.925	1000	1000	1	Tanh
Best	RMSprop	pima	468.744	0.941	1000	1000	1	Tanh
Worst	RMSprop	pima	437.493	0.951	1000	1000	1	Tanh
Best	RMSprop	post_operative	343.745	0.903	1000	1000	1	Tanh
Worst	RMSprop	post_operative	641.13	0.904	1000	1000	1	Tanh
Best	RMSprop	ring	250.993	0.895	1000	1000	1	Tanh
Worst	RMSprop	ring	625.264	0.897	1000	1000	1	Tanh

Table F.3: RMS prop Results of classification problems (3/5).

Run	Method	Dataset	Time (s)	Accuracy	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	saheart	203.117	0.913	1000	1000	1	Tanh
Worst	RMSprop	saheart	260.196	0.931	1000	1000	1	Tanh
Best	RMSprop	satimage	625.284	0.86	1000	1000	1	Tanh
Worst	RMSprop	satimage	375.996	0.878	1000	1000	1	Tanh
Best	RMSprop	segment	315.671	0.673	1000	1000	1	Tanh
Worst	RMSprop	segment	172.367	0.699	1000	1000	1	Tanh
Best	RMSprop	shuttle	600.548	0.918	1000	1000	1	Tanh
Worst	RMSprop	shuttle	836.804	0.927	1000	1000	1	Tanh
Best	RMSprop	sonar	390.619	0.94	1000	1000	1	Tanh
Worst	RMSprop	sonar	270.839	0.942	1000	1000	1	Tanh
Best	RMSprop	spambase	509.154	0.969	1000	1000	1	Tanh
Worst	RMSprop	spambase	797.353	0.973	1000	1000	1	Tanh
Best	RMSprop	spectfheart	35.686	0.93	1000	1000	1	Tanh
Worst	RMSprop	spectfheart	922.381	0.936	1000	1000	1	Tanh
Best	RMSprop	splice	372.614	0.972	1000	1000	1	Tanh
Worst	RMSprop	splice	91.413	0.975	1000	1000	1	Tanh
Best	RMSprop	tae	859.37	0.889	1000	1000	1	Tanh
Worst	RMSprop	tae	36.222	0.914	1000	1000	1	Tanh
Best	RMSprop	texture	734.842	1.02	1000	1000	1	Tanh
Worst	RMSprop	texture	632.186	1.03	1000	1000	1	Tanh
Best	RMSprop	thyroid	363.237	0.979	1000	1000	1	Tanh
Worst	RMSprop	thyroid	812.77	0.98	1000	1000	1	Tanh
Best	RMSprop	tic_tac_toe	580.77	0.963	1000	1000	1	Tanh
Worst	RMSprop	tic_tac_toe	296.866	0.971	1000	1000	1	Tanh
Best	RMSprop	titanic	242.777	0.916	1000	1000	1	Tanh
Worst	RMSprop	titanic	910.961	0.916	1000	1000	1	Tanh
Best	RMSprop	twonorm	477.25	0.887	1000	1000	1	Tanh
Worst	RMSprop	twonorm	612.826	0.888	1000	1000	1	Tanh
Best	RMSprop	vehicle	759.388	0.865	1000	1000	1	Tanh
Worst	RMSprop	vehicle	906.242	0.888	1000	1000	1	Tanh
Best	RMSprop	vowel	547.372	0.865	1000	1000	1	Tanh
Worst	RMSprop	vowel	155.875	0.898	1000	1000	1	Tanh

Table F.4: RMS prop Results of classification problems (4/5).

Run	Method	Dataset	Time (s)	Accuracy	Epochs	k	j	$\phi(\cdot)$
Best	RMSprop	wdbc	859.368	0.883	1000	1000	1	Tanh
Worst	RMSprop	wdbc	271.861	0.884	1000	1000	1	Tanh
Best	RMSprop	wine	48.442	0.915	1000	1000	1	Tanh
Worst	RMSprop	wine	875.004	0.921	1000	1000	1	Tanh
Best	RMSprop	winequality_red	318.077	nan	1000	1000	1	Tanh
Worst	RMSprop	winequality_red	318.077	nan	1000	1000	1	Tanh
Best	RMSprop	winequality_white	295.067	nan	1000	1000	1	Tanh
Worst	RMSprop	winequality_white	295.067	nan	1000	1000	1	Tanh
Best	RMSprop	wisconsin	41.345	0.88	1000	1000	1	Tanh
Worst	RMSprop	wisconsin	41.8	0.88	1000	1000	1	Tanh
Best	RMSprop	yeast	624.986	1.03	1000	1000	1	Tanh
Worst	RMSprop	yeast	766.121	1.05	1000	1000	1	Tanh
Best	RMSprop	ZOO	750.008	0.714	1000	1000	1	Tanh
Worst	RMSprop	ZOO	896.212	0.717	1000	1000	1	Tanh

Table F.5: RMS prop Results of classification problems (5/5).

Appendix G

CSEEM Regression All Results

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	ANACALT	2.744	0.00148	8	170	Tanh
1	CSEEM	ANACALT	26.011	0.00234	16	142	Tanh
1	CSEEM	ANACALT	346.251	0.00131	32	170	Tanh
1	CSEEM	ANACALT	163.274	0.00149	8	160	SoftRelu
1	CSEEM	ANACALT	787.991	0.00118	16	172	SoftRelu
1	CSEEM	ANACALT	302.342	0.00213	32	136	SoftRelu
1	CSEEM	ANACALT	544.13	0.00161	8	167	Relu
1	CSEEM	ANACALT	576.666	0.00149	16	200	Relu
1	CSEEM	ANACALT	881.936	0.00192	32	166	Relu
1	CSEEM	ANACALT	662.862	0.00269	8	140	Sigmoid
1	CSEEM	ANACALT	861.146	0.00125	16	155	Sigmoid
1	CSEEM	ANACALT	401.626	0.00175	32	142	Sigmoid
1	CSEEM	ANACALT	501.826	0.000858	8	211	Sin
1	CSEEM	ANACALT	916.029	0.00161	16	166	Sin
1	CSEEM	ANACALT	43.201	0.00115	32	178	Sin
2	CSEEM	ANACALT	980.461	0.00241	8	156	Tanh
2	CSEEM	ANACALT	581.309	0.00167	16	152	Tanh
2	CSEEM	ANACALT	170.745	0.00204	32	151	Tanh
2	CSEEM	ANACALT	290.331	0.00197	8	133	SoftRelu
2	CSEEM	ANACALT	769.881	0.00198	16	147	SoftRelu
2	CSEEM	ANACALT	106.292	0.00164	32	144	SoftRelu
2	CSEEM	ANACALT	139.351	0.00196	8	172	Relu
2	CSEEM	ANACALT	600.0	0.00207	16	155	Relu
2	CSEEM	ANACALT	151.272	0.00178	32	167	Relu
2	CSEEM	ANACALT	809.246	0.00101	8	187	Sigmoid
2	CSEEM	ANACALT	479.163	0.00199	16	137	Sigmoid
2	CSEEM	ANACALT	787.815	0.00106	32	175	Sigmoid
2	CSEEM	ANACALT	27.646	0.00154	8	159	Sin
2	CSEEM	ANACALT	174.913	0.00256	16	157	Sin
2	CSEEM	ANACALT	738.951	0.00125	32	179	Sin
3	CSEEM	ANACALT	87.094	0.00355	8	125	Tanh
3	CSEEM	ANACALT	992.902	0.00161	16	164	Tanh

Table G.1: All CSEEM Results of regression problems (1/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	ANACALT	124.672	0.00194	32	153	Tanh
3	CSEEM	ANACALT	504.338	0.00134	8	164	SoftRelu
3	CSEEM	ANACALT	704.283	0.00143	16	144	SoftRelu
3	CSEEM	ANACALT	261.779	0.00179	32	136	SoftRelu
3	CSEEM	ANACALT	468.388	0.00288	8	138	Relu
3	CSEEM	ANACALT	762.006	0.00167	16	173	Relu
3	CSEEM	ANACALT	160.218	0.00167	32	168	Relu
3	CSEEM	ANACALT	880.636	0.00131	8	150	Sigmoid
3	CSEEM	ANACALT	340.165	0.00162	16	150	Sigmoid
3	CSEEM	ANACALT	505.491	0.00123	32	160	Sigmoid
3	CSEEM	ANACALT	487.167	0.00156	8	166	Sin
3	CSEEM	ANACALT	633.01	0.00237	16	158	Sin
3	CSEEM	ANACALT	671.058	0.00166	32	164	Sin
4	CSEEM	ANACALT	819.001	0.00375	8	103	Tanh
4	CSEEM	ANACALT	704.827	0.00153	16	175	Tanh
4	CSEEM	ANACALT	942.503	0.00252	32	140	Tanh
4	CSEEM	ANACALT	298.828	0.00131	8	159	SoftRelu
4	CSEEM	ANACALT	884.587	0.00149	16	152	SoftRelu
4	CSEEM	ANACALT	663.577	0.00133	32	150	SoftRelu
4	CSEEM	ANACALT	528.948	0.00364	8	142	Relu
4	CSEEM	ANACALT	17.0	0.00223	16	150	Relu
4	CSEEM	ANACALT	83.534	0.00194	32	160	Relu
4	CSEEM	ANACALT	379.666	0.00151	8	156	Sigmoid
4	CSEEM	ANACALT	598.754	0.00155	16	151	Sigmoid
4	CSEEM	ANACALT	283.612	0.00125	32	165	Sigmoid
4	CSEEM	ANACALT	574.998	0.00143	8	177	Sin
4	CSEEM	ANACALT	112.036	0.00157	16	171	Sin
4	CSEEM	ANACALT	420.001	0.00153	32	167	Sin
5	CSEEM	ANACALT	818.511	0.00102	8	204	Tanh
5	CSEEM	ANACALT	478.746	0.00196	16	156	Tanh
5	CSEEM	ANACALT	967.737	0.00129	32	178	Tanh
5	CSEEM	ANACALT	90.425	0.00147	8	157	SoftRelu

Table G.2: All CSEEM Results of regression problems (2/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	ANACALT	149.124	0.00179	16	145	SoftRelu
5	CSEEM	ANACALT	277.374	0.00158	32	160	SoftRelu
5	CSEEM	ANACALT	55.0	0.00158	8	183	Relu
5	CSEEM	ANACALT	485.04	0.00182	16	172	Relu
5	CSEEM	ANACALT	47.091	0.00217	32	142	Relu
5	CSEEM	ANACALT	390.542	0.00134	8	158	Sigmoid
5	CSEEM	ANACALT	74.908	0.00169	16	156	Sigmoid
5	CSEEM	ANACALT	677.241	0.00151	32	153	Sigmoid
5	CSEEM	ANACALT	388.079	0.00153	8	174	Sin
5	CSEEM	ANACALT	429.994	0.00135	16	183	Sin
5	CSEEM	ANACALT	505.172	0.0011	32	183	Sin
1	CSEEM	abalone	747.116	0.0413	8	333	Tanh
1	CSEEM	abalone	493.441	0.0407	16	384	Tanh
1	CSEEM	abalone	488.342	0.0396	32	420	Tanh
1	CSEEM	abalone	793.895	0.0398	8	346	SoftRelu
1	CSEEM	abalone	294.555	0.0388	16	398	SoftRelu
1	CSEEM	abalone	232.411	0.038	32	432	SoftRelu
1	CSEEM	abalone	527.646	0.0395	8	380	Relu
1	CSEEM	abalone	633.348	0.04	16	356	Relu
1	CSEEM	abalone	819.874	0.0403	32	331	Relu
1	CSEEM	abalone	894.27	0.0384	8	421	Sigmoid
1	CSEEM	abalone	332.907	0.0388	16	408	Sigmoid
1	CSEEM	abalone	837.788	0.0389	32	424	Sigmoid
1	CSEEM	abalone	797.365	0.0394	8	543	Sin
1	CSEEM	abalone	780.028	0.0404	16	588	Sin
1	CSEEM	abalone	799.4	0.0413	32	525	Sin
2	CSEEM	abalone	183.571	0.0399	8	424	Tanh
2	CSEEM	abalone	955.981	0.0403	16	383	Tanh
2	CSEEM	abalone	700.456	0.0406	32	358	Tanh
2	CSEEM	abalone	244.371	0.0383	8	419	SoftRelu
2	CSEEM	abalone	368.003	0.0386	16	385	SoftRelu
2	CSEEM	abalone	962.749	0.0387	32	385	SoftRelu

Table G.3: All CSEEM Results of regression problems (3/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	abalone	582.761	0.0396	8	413	Relu
2	CSEEM	abalone	559.105	0.0408	16	320	Relu
2	CSEEM	abalone	303.115	0.0385	32	428	Relu
2	CSEEM	abalone	369.178	0.0404	8	333	Sigmoid
2	CSEEM	abalone	57.016	0.0399	16	376	Sigmoid
2	CSEEM	abalone	206.646	0.0399	32	329	Sigmoid
2	CSEEM	abalone	701.938	0.0466	8	421	Sin
2	CSEEM	abalone	975.778	0.0423	16	509	Sin
2	CSEEM	abalone	984.944	0.0426	32	477	Sin
3	CSEEM	abalone	226.688	0.042	8	337	Tanh
3	CSEEM	abalone	661.388	0.0383	16	488	Tanh
3	CSEEM	abalone	948.216	0.0389	32	465	Tanh
3	CSEEM	abalone	857.197	0.0379	8	471	SoftRelu
3	CSEEM	abalone	681.587	0.0405	16	324	SoftRelu
3	CSEEM	abalone	28.41	0.0382	32	417	SoftRelu
3	CSEEM	abalone	527.423	0.0392	8	433	Relu
3	CSEEM	abalone	165.891	0.0387	16	437	Relu
3	CSEEM	abalone	382.183	0.038	32	450	Relu
3	CSEEM	abalone	820.377	0.041	8	309	Sigmoid
3	CSEEM	abalone	415.008	0.0394	16	392	Sigmoid
3	CSEEM	abalone	683.912	0.0383	32	429	Sigmoid
3	CSEEM	abalone	85.295	0.0431	8	493	Sin
3	CSEEM	abalone	339.059	0.0434	16	477	Sin
3	CSEEM	abalone	849.931	0.0425	32	503	Sin
4	CSEEM	abalone	472.211	0.0403	8	381	Tanh
4	CSEEM	abalone	447.554	0.0393	16	421	Tanh
4	CSEEM	abalone	899.979	0.0393	32	424	Tanh
4	CSEEM	abalone	984.425	0.0382	8	423	SoftRelu
4	CSEEM	abalone	636.103	0.0386	16	396	SoftRelu
4	CSEEM	abalone	238.55	0.0378	32	438	SoftRelu
4	CSEEM	abalone	28.746	0.0451	8	108	Relu
4	CSEEM	abalone	909.334	0.0399	16	391	Relu

Table G.4: All CSEEM Results of regression problems (4/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	abalone	530.101	0.0398	32	370	Relu
4	CSEEM	abalone	117.099	0.0413	8	317	Sigmoid
4	CSEEM	abalone	282.139	0.0396	16	373	Sigmoid
4	CSEEM	abalone	399.593	0.0385	32	430	Sigmoid
4	CSEEM	abalone	657.999	0.041	8	563	Sin
4	CSEEM	abalone	939.47	0.0481	16	356	Sin
4	CSEEM	abalone	951.997	0.0453	32	392	Sin
5	CSEEM	abalone	393.272	0.0501	8	65	Tanh
5	CSEEM	abalone	558.392	0.0401	16	408	Tanh
5	CSEEM	abalone	420.663	0.04	32	410	Tanh
5	CSEEM	abalone	351.455	0.0401	8	322	SoftRelu
5	CSEEM	abalone	874.176	0.0392	16	367	SoftRelu
5	CSEEM	abalone	958.505	0.0386	32	388	SoftRelu
5	CSEEM	abalone	309.772	0.0398	8	365	Relu
5	CSEEM	abalone	334.61	0.0398	16	361	Relu
5	CSEEM	abalone	88.839	0.04	32	359	Relu
5	CSEEM	abalone	72.383	0.0392	8	381	Sigmoid
5	CSEEM	abalone	901.683	0.0404	16	342	Sigmoid
5	CSEEM	abalone	495.656	0.0388	32	402	Sigmoid
5	CSEEM	abalone	188.835	0.0408	8	542	Sin
5	CSEEM	abalone	410.471	0.0391	16	593	Sin
5	CSEEM	abalone	176.467	0.0439	32	422	Sin
1	CSEEM	autoMPG6	115.89	0.0274	8	36	Tanh
1	CSEEM	autoMPG6	172.0	0.0306	16	38	Tanh
1	CSEEM	autoMPG6	654.961	0.0282	32	17	Tanh
1	CSEEM	autoMPG6	116.896	0.0266	8	25	SoftRelu
1	CSEEM	autoMPG6	436.007	0.0259	16	33	SoftRelu
1	CSEEM	autoMPG6	532.572	0.0267	32	29	SoftRelu
1	CSEEM	autoMPG6	113.391	0.0238	8	45	Relu
1	CSEEM	autoMPG6	481.987	0.0253	16	39	Relu
1	CSEEM	autoMPG6	354.183	0.0288	32	34	Relu
1	CSEEM	autoMPG6	149.646	0.0288	8	31	Sigmoid

Table G.5: All CSEEM Results of regression problems (5/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	autoMPG6	126.0	0.0294	16	24	Sigmoid
1	CSEEM	autoMPG6	802.116	0.0269	32	32	Sigmoid
1	CSEEM	autoMPG6	96.787	0.0298	8	53	Sin
1	CSEEM	autoMPG6	118.993	0.0393	16	42	Sin
1	CSEEM	autoMPG6	563.502	0.034	32	37	Sin
2	CSEEM	autoMPG6	63.024	0.0365	8	18	Tanh
2	CSEEM	autoMPG6	380.0	0.0281	16	38	Tanh
2	CSEEM	autoMPG6	886.751	0.0288	32	21	Tanh
2	CSEEM	autoMPG6	208.53	0.0265	8	42	SoftRelu
2	CSEEM	autoMPG6	137.984	0.0248	16	38	SoftRelu
2	CSEEM	autoMPG6	432.314	0.0236	32	43	SoftRelu
2	CSEEM	autoMPG6	13.006	0.0301	8	28	Relu
2	CSEEM	autoMPG6	372.105	0.0279	16	36	Relu
2	CSEEM	autoMPG6	701.849	0.0256	32	37	Relu
2	CSEEM	autoMPG6	193.903	0.0265	8	35	Sigmoid
2	CSEEM	autoMPG6	193.999	0.0234	16	41	Sigmoid
2	CSEEM	autoMPG6	770.857	0.0265	32	34	Sigmoid
2	CSEEM	autoMPG6	58.399	0.0351	8	51	Sin
2	CSEEM	autoMPG6	199.999	0.0349	16	38	Sin
2	CSEEM	autoMPG6	733.092	0.0351	32	35	Sin
3	CSEEM	autoMPG6	118.904	0.0325	8	35	Tanh
3	CSEEM	autoMPG6	69.993	0.0297	16	38	Tanh
3	CSEEM	autoMPG6	178.388	0.0228	32	47	Tanh
3	CSEEM	autoMPG6	104.768	0.0274	8	27	SoftRelu
3	CSEEM	autoMPG6	200.001	0.0293	16	18	SoftRelu
3	CSEEM	autoMPG6	617.207	0.0245	32	37	SoftRelu
3	CSEEM	autoMPG6	161.774	0.0325	8	27	Relu
3	CSEEM	autoMPG6	165.992	0.0276	16	37	Relu
3	CSEEM	autoMPG6	770.866	0.0268	32	36	Relu
3	CSEEM	autoMPG6	188.408	0.0283	8	19	Sigmoid
3	CSEEM	autoMPG6	458.989	0.0276	16	30	Sigmoid
3	CSEEM	autoMPG6	470.07	0.0277	32	38	Sigmoid

Table G.6: All CSEEM Results of regression problems (6/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	autoMPG6	123.406	0.0265	8	59	Sin
3	CSEEM	autoMPG6	403.001	0.0319	16	47	Sin
3	CSEEM	autoMPG6	316.42	0.0351	32	43	Sin
4	CSEEM	autoMPG6	32.01	0.0296	8	42	Tanh
4	CSEEM	autoMPG6	280.993	0.0298	16	24	Tanh
4	CSEEM	autoMPG6	550.986	0.0274	32	40	Tanh
4	CSEEM	autoMPG6	104.043	0.026	8	37	SoftRelu
4	CSEEM	autoMPG6	159.992	0.0253	16	26	SoftRelu
4	CSEEM	autoMPG6	868.373	0.0263	32	29	SoftRelu
4	CSEEM	autoMPG6	238.291	0.029	8	24	Relu
4	CSEEM	autoMPG6	224.0	0.0263	16	39	Relu
4	CSEEM	autoMPG6	902.424	0.0257	32	38	Relu
4	CSEEM	autoMPG6	120.999	0.0285	8	30	Sigmoid
4	CSEEM	autoMPG6	307.996	0.0274	16	33	Sigmoid
4	CSEEM	autoMPG6	447.997	0.0252	32	32	Sigmoid
4	CSEEM	autoMPG6	41.998	0.0332	8	51	Sin
4	CSEEM	autoMPG6	391.991	0.0336	16	30	Sin
4	CSEEM	autoMPG6	780.0	0.0262	32	53	Sin
5	CSEEM	autoMPG6	177.255	0.0284	8	35	Tanh
5	CSEEM	autoMPG6	231.008	0.0287	16	36	Tanh
5	CSEEM	autoMPG6	601.729	0.0311	32	19	Tanh
5	CSEEM	autoMPG6	114.0	0.0276	8	27	SoftRelu
5	CSEEM	autoMPG6	287.005	0.0269	16	25	SoftRelu
5	CSEEM	autoMPG6	696.999	0.0255	32	29	SoftRelu
5	CSEEM	autoMPG6	98.301	0.0274	8	32	Relu
5	CSEEM	autoMPG6	360.99	0.0281	16	35	Relu
5	CSEEM	autoMPG6	372.998	0.0271	32	33	Relu
5	CSEEM	autoMPG6	105.839	0.0264	8	31	Sigmoid
5	CSEEM	autoMPG6	155.0	0.0237	16	44	Sigmoid
5	CSEEM	autoMPG6	553.997	0.0254	32	40	Sigmoid
5	CSEEM	autoMPG6	86.992	0.0389	8	38	Sin
5	CSEEM	autoMPG6	362.0	0.0347	16	24	Sin

Table G.7: All CSEEM Results of regression problems (7/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	autoMPG6	346.992	0.0245	32	56	Sin
1	CSEEM	autoMPG8	147.137	0.0359	8	34	Tanh
1	CSEEM	autoMPG8	156.0	0.0321	16	35	Tanh
1	CSEEM	autoMPG8	269.543	0.0343	32	36	Tanh
1	CSEEM	autoMPG8	30.142	0.0291	8	31	SoftRelu
1	CSEEM	autoMPG8	198.997	0.025	16	38	SoftRelu
1	CSEEM	autoMPG8	579.453	0.0262	32	35	SoftRelu
1	CSEEM	autoMPG8	138.522	0.03	8	39	Relu
1	CSEEM	autoMPG8	90.999	0.0335	16	36	Relu
1	CSEEM	autoMPG8	802.118	0.0276	32	44	Relu
1	CSEEM	autoMPG8	62.508	0.0301	8	35	Sigmoid
1	CSEEM	autoMPG8	190.991	0.0297	16	41	Sigmoid
1	CSEEM	autoMPG8	398.46	0.0294	32	30	Sigmoid
1	CSEEM	autoMPG8	129.022	0.0483	8	27	Sin
1	CSEEM	autoMPG8	726.993	0.0505	16	49	Sin
1	CSEEM	autoMPG8	211.795	0.0391	32	64	Sin
2	CSEEM	autoMPG8	168.788	0.031	8	51	Tanh
2	CSEEM	autoMPG8	384.999	0.032	16	38	Tanh
2	CSEEM	autoMPG8	701.843	0.0298	32	39	Tanh
2	CSEEM	autoMPG8	15.63	0.0259	8	39	SoftRelu
2	CSEEM	autoMPG8	430.991	0.026	16	43	SoftRelu
2	CSEEM	autoMPG8	371.308	0.029	32	28	SoftRelu
2	CSEEM	autoMPG8	130.021	0.0317	8	35	Relu
2	CSEEM	autoMPG8	111.998	0.0329	16	31	Relu
2	CSEEM	autoMPG8	454.444	0.0306	32	35	Relu
2	CSEEM	autoMPG8	93.653	0.0328	8	35	Sigmoid
2	CSEEM	autoMPG8	258.993	0.0259	16	46	Sigmoid
2	CSEEM	autoMPG8	300.796	0.03	32	34	Sigmoid
2	CSEEM	autoMPG8	259.533	0.0542	8	49	Sin
2	CSEEM	autoMPG8	302.998	0.0576	16	42	Sin
2	CSEEM	autoMPG8	686.222	0.033	32	67	Sin
3	CSEEM	autoMPG8	78.133	0.0332	8	41	Tanh

Table G.8: All CSEEM Results of regression problems (8/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	autoMPG8	344.992	0.0304	16	42	Tanh
3	CSEEM	autoMPG8	507.829	0.0326	32	19	Tanh
3	CSEEM	autoMPG8	182.912	0.0304	8	33	SoftRelu
3	CSEEM	autoMPG8	348.002	0.0306	16	21	SoftRelu
3	CSEEM	autoMPG8	949.244	0.0261	32	37	SoftRelu
3	CSEEM	autoMPG8	298.799	0.029	8	40	Relu
3	CSEEM	autoMPG8	608.991	0.0313	16	33	Relu
3	CSEEM	autoMPG8	538.588	0.0281	32	36	Relu
3	CSEEM	autoMPG8	111.392	0.0345	8	27	Sigmoid
3	CSEEM	autoMPG8	331.0	0.0329	16	28	Sigmoid
3	CSEEM	autoMPG8	470.073	0.0284	32	42	Sigmoid
3	CSEEM	autoMPG8	220.161	0.062	8	58	Sin
3	CSEEM	autoMPG8	349.992	0.0522	16	44	Sin
3	CSEEM	autoMPG8	218.262	0.0478	32	46	Sin
4	CSEEM	autoMPG8	203.087	0.0331	8	42	Tanh
4	CSEEM	autoMPG8	353.999	0.0351	16	32	Tanh
4	CSEEM	autoMPG8	764.877	0.0332	32	37	Tanh
4	CSEEM	autoMPG8	129.759	0.0245	8	48	SoftRelu
4	CSEEM	autoMPG8	110.992	0.0254	16	45	SoftRelu
4	CSEEM	autoMPG8	857.797	0.0242	32	45	SoftRelu
4	CSEEM	autoMPG8	110.422	0.0354	8	31	Relu
4	CSEEM	autoMPG8	104.0	0.0283	16	43	Relu
4	CSEEM	autoMPG8	134.242	0.0281	32	39	Relu
4	CSEEM	autoMPG8	189.992	0.0327	8	29	Sigmoid
4	CSEEM	autoMPG8	474.999	0.0303	16	36	Sigmoid
4	CSEEM	autoMPG8	437.006	0.0304	32	27	Sigmoid
4	CSEEM	autoMPG8	185.999	0.0577	8	57	Sin
4	CSEEM	autoMPG8	413.997	0.0478	16	52	Sin
4	CSEEM	autoMPG8	680.999	0.0547	32	35	Sin
5	CSEEM	autoMPG8	223.318	0.0376	8	33	Tanh
5	CSEEM	autoMPG8	70.999	0.0351	16	30	Tanh
5	CSEEM	autoMPG8	661.009	0.0344	32	34	Tanh

Table G.9: All CSEEM Results of regression problems (9/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	autoMPG8	314.998	0.0285	8	31	SoftRelu
5	CSEEM	autoMPG8	63.0	0.0284	16	38	SoftRelu
5	CSEEM	autoMPG8	573.001	0.0244	32	38	SoftRelu
5	CSEEM	autoMPG8	98.999	0.0272	8	52	Relu
5	CSEEM	autoMPG8	110.0	0.0319	16	32	Relu
5	CSEEM	autoMPG8	958.51	0.0294	32	36	Relu
5	CSEEM	autoMPG8	65.999	0.0297	8	34	Sigmoid
5	CSEEM	autoMPG8	348.998	0.0286	16	40	Sigmoid
5	CSEEM	autoMPG8	800.999	0.0298	32	36	Sigmoid
5	CSEEM	autoMPG8	117.993	0.0382	8	78	Sin
5	CSEEM	autoMPG8	522.999	0.0552	16	54	Sin
5	CSEEM	autoMPG8	744.999	0.0397	32	61	Sin
1	CSEEM	baseball	231.778	0.147	8	56	Tanh
1	CSEEM	baseball	231.993	0.131	16	81	Tanh
1	CSEEM	baseball	407.562	0.126	32	80	Tanh
1	CSEEM	baseball	228.281	0.118	8	52	SoftRelu
1	CSEEM	baseball	122.998	0.112	16	65	SoftRelu
1	CSEEM	baseball	555.275	0.0871	32	87	SoftRelu
1	CSEEM	baseball	288.669	0.107	8	73	Relu
1	CSEEM	baseball	404.998	0.113	16	68	Relu
1	CSEEM	baseball	619.289	0.0834	32	87	Relu
1	CSEEM	baseball	122.394	0.116	8	98	Sigmoid
1	CSEEM	baseball	98.993	0.127	16	72	Sigmoid
1	CSEEM	baseball	500.944	0.128	32	75	Sigmoid
1	CSEEM	baseball	176.271	0.283	8	127	Sin
1	CSEEM	baseball	613.993	0.244	16	130	Sin
1	CSEEM	baseball	789.106	0.275	32	110	Sin
2	CSEEM	baseball	130.519	0.152	8	61	Tanh
2	CSEEM	baseball	164.992	0.126	16	76	Tanh
2	CSEEM	baseball	55.547	0.139	32	79	Tanh
2	CSEEM	baseball	233.282	0.119	8	64	SoftRelu
2	CSEEM	baseball	542.001	0.0909	16	86	SoftRelu

Table G.10: All CSEEM Results of regression problems (10/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	baseball	595.074	0.109	32	61	SoftRelu
2	CSEEM	baseball	134.523	0.133	8	58	Relu
2	CSEEM	baseball	138.0	0.108	16	79	Relu
2	CSEEM	baseball	2.521	0.0931	32	76	Relu
2	CSEEM	baseball	177.29	0.133	8	72	Sigmoid
2	CSEEM	baseball	443.993	0.122	16	80	Sigmoid
2	CSEEM	baseball	654.842	0.123	32	84	Sigmoid
2	CSEEM	baseball	60.397	0.355	8	72	Sin
2	CSEEM	baseball	437.999	0.287	16	102	Sin
2	CSEEM	baseball	933.625	0.247	32	116	Sin
3	CSEEM	baseball	144.15	0.151	8	65	Tanh
3	CSEEM	baseball	218.001	0.134	16	81	Tanh
3	CSEEM	baseball	770.862	0.123	32	99	Tanh
3	CSEEM	baseball	188.52	0.115	8	72	SoftRelu
3	CSEEM	baseball	613.09	0.0859	16	90	SoftRelu
3	CSEEM	baseball	632.843	0.108	32	78	SoftRelu
3	CSEEM	baseball	149.148	0.152	8	46	Relu
3	CSEEM	baseball	309.993	0.123	16	58	Relu
3	CSEEM	baseball	516.95	0.098	32	83	Relu
3	CSEEM	baseball	149.644	0.119	8	86	Sigmoid
3	CSEEM	baseball	470.991	0.123	16	79	Sigmoid
3	CSEEM	baseball	794.965	0.131	32	69	Sigmoid
3	CSEEM	baseball	72.516	0.36	8	76	Sin
3	CSEEM	baseball	231.06	0.276	16	124	Sin
3	CSEEM	baseball	862.914	0.211	32	153	Sin
4	CSEEM	baseball	116.363	0.138	8	81	Tanh
4	CSEEM	baseball	697.993	0.138	16	77	Tanh
4	CSEEM	baseball	640.5	0.129	32	88	Tanh
4	CSEEM	baseball	283.024	0.0914	8	89	SoftRelu
4	CSEEM	baseball	464.998	0.103	16	70	SoftRelu
4	CSEEM	baseball	607.928	0.093	32	83	SoftRelu
4	CSEEM	baseball	454.466	0.096	8	81	Relu

Table G.11: All CSEEM Results of regression problems (11/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	baseball	461.999	0.103	16	73	Relu
4	CSEEM	baseball	833.383	0.103	32	70	Relu
4	CSEEM	baseball	244.99	0.127	8	81	Sigmoid
4	CSEEM	baseball	693.992	0.125	16	74	Sigmoid
4	CSEEM	baseball	209.537	0.105	32	79	Sigmoid
4	CSEEM	baseball	44.997	0.324	8	98	Sin
4	CSEEM	baseball	521.999	0.291	16	111	Sin
4	CSEEM	baseball	743.997	0.238	32	136	Sin
5	CSEEM	baseball	153.046	0.135	8	87	Tanh
5	CSEEM	baseball	148.993	0.132	16	92	Tanh
5	CSEEM	baseball	801.68	0.114	32	97	Tanh
5	CSEEM	baseball	127.999	0.129	8	52	SoftRelu
5	CSEEM	baseball	284.958	0.108	16	69	SoftRelu
5	CSEEM	baseball	724.548	0.1	32	73	SoftRelu
5	CSEEM	baseball	197.999	0.11	8	75	Relu
5	CSEEM	baseball	446.003	0.101	16	77	Relu
5	CSEEM	baseball	838.999	0.102	32	72	Relu
5	CSEEM	baseball	125.999	0.145	8	51	Sigmoid
5	CSEEM	baseball	354.99	0.119	16	101	Sigmoid
5	CSEEM	baseball	649.0	0.0958	32	99	Sigmoid
5	CSEEM	baseball	180.992	0.201	8	158	Sin
5	CSEEM	baseball	130.998	0.335	16	90	Sin
5	CSEEM	baseball	134.019	0.249	32	96	Sin
1	CSEEM	compactiv	692.548	0.00634	8	247	Tanh
1	CSEEM	compactiv	604.17	0.00549	16	304	Tanh
1	CSEEM	compactiv	613.636	0.00509	32	360	Tanh
1	CSEEM	compactiv	956.771	0.0019	8	324	SoftRelu
1	CSEEM	compactiv	505.635	0.00216	16	268	SoftRelu
1	CSEEM	compactiv	322.823	0.00229	32	206	SoftRelu
1	CSEEM	compactiv	177.399	0.00186	8	346	Relu
1	CSEEM	compactiv	706.825	0.00236	16	283	Relu
1	CSEEM	compactiv	761.084	0.00237	32	249	Relu

Table G.12: All CSEEM Results of regression problems (12/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	compactiv	191.762	0.00424	8	297	Sigmoid
1	CSEEM	compactiv	386.208	0.00383	16	408	Sigmoid
1	CSEEM	compactiv	971.533	0.0036	32	369	Sigmoid
1	CSEEM	compactiv	556.182	0.0228	8	938	Sin
1	CSEEM	compactiv	714.881	0.0242	16	869	Sin
1	CSEEM	compactiv	34.042	0.0247	32	836	Sin
2	CSEEM	compactiv	289.794	0.00436	8	475	Tanh
2	CSEEM	compactiv	790.112	0.00466	16	381	Tanh
2	CSEEM	compactiv	842.788	0.00471	32	370	Tanh
2	CSEEM	compactiv	736.558	0.00205	8	324	SoftRelu
2	CSEEM	compactiv	677.2	0.00208	16	294	SoftRelu
2	CSEEM	compactiv	436.562	0.00194	32	276	SoftRelu
2	CSEEM	compactiv	635.247	0.00211	8	305	Relu
2	CSEEM	compactiv	93.585	0.00228	16	274	Relu
2	CSEEM	compactiv	895.995	0.0022	32	282	Relu
2	CSEEM	compactiv	249.178	0.00514	8	215	Sigmoid
2	CSEEM	compactiv	215.29	0.0039	16	357	Sigmoid
2	CSEEM	compactiv	101.0	0.00408	32	300	Sigmoid
2	CSEEM	compactiv	320.604	0.0268	8	646	Sin
2	CSEEM	compactiv	829.737	0.0242	16	792	Sin
2	CSEEM	compactiv	598.466	0.0253	32	658	Sin
3	CSEEM	compactiv	661.192	0.00515	8	340	Tanh
3	CSEEM	compactiv	392.418	0.00498	16	290	Tanh
3	CSEEM	compactiv	146.178	0.00466	32	424	Tanh
3	CSEEM	compactiv	658.046	0.00156	8	390	SoftRelu
3	CSEEM	compactiv	531.448	0.00275	16	201	SoftRelu
3	CSEEM	compactiv	308.634	0.00216	32	261	SoftRelu
3	CSEEM	compactiv	668.119	0.00212	8	287	Relu
3	CSEEM	compactiv	704.876	0.00216	16	301	Relu
3	CSEEM	compactiv	347.041	0.00226	32	258	Relu
3	CSEEM	compactiv	236.336	0.00367	8	416	Sigmoid
3	CSEEM	compactiv	739.21	0.00355	16	397	Sigmoid

Table G.13: All CSEEM Results of regression problems (13/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	compactiv	150.119	0.00415	32	309	Sigmoid
3	CSEEM	compactiv	491.918	0.0288	8	454	Sin
3	CSEEM	compactiv	240.318	0.0228	16	894	Sin
3	CSEEM	compactiv	99.688	0.0237	32	796	Sin
4	CSEEM	compactiv	813.548	0.00434	8	477	Tanh
4	CSEEM	compactiv	206.421	0.00459	16	426	Tanh
4	CSEEM	compactiv	567.165	0.00514	32	318	Tanh
4	CSEEM	compactiv	433.958	0.00219	8	266	SoftRelu
4	CSEEM	compactiv	13.696	0.00327	16	218	SoftRelu
4	CSEEM	compactiv	694.938	0.00188	32	288	SoftRelu
4	CSEEM	compactiv	567.818	0.00228	8	286	Relu
4	CSEEM	compactiv	602.139	0.00227	16	281	Relu
4	CSEEM	compactiv	807.641	0.002	32	312	Relu
4	CSEEM	compactiv	560.329	0.00471	8	274	Sigmoid
4	CSEEM	compactiv	172.001	0.00405	16	344	Sigmoid
4	CSEEM	compactiv	275.863	0.00325	32	427	Sigmoid
4	CSEEM	compactiv	448.0	0.0233	8	912	Sin
4	CSEEM	compactiv	708.347	0.0248	16	743	Sin
4	CSEEM	compactiv	284.998	0.0245	32	754	Sin
5	CSEEM	compactiv	847.905	0.00552	8	300	Tanh
5	CSEEM	compactiv	646.007	0.00533	16	285	Tanh
5	CSEEM	compactiv	590.603	0.00453	32	397	Tanh
5	CSEEM	compactiv	527.688	0.00175	8	292	SoftRelu
5	CSEEM	compactiv	973.894	0.00183	16	302	SoftRelu
5	CSEEM	compactiv	791.841	0.00197	32	298	SoftRelu
5	CSEEM	compactiv	655.488	0.00242	8	240	Relu
5	CSEEM	compactiv	670.074	0.0029	16	239	Relu
5	CSEEM	compactiv	225.578	0.00203	32	302	Relu
5	CSEEM	compactiv	236.481	0.00384	8	369	Sigmoid
5	CSEEM	compactiv	622.381	0.00428	16	278	Sigmoid
5	CSEEM	compactiv	564.786	0.00439	32	284	Sigmoid
5	CSEEM	compactiv	830.66	0.0271	8	574	Sin

Table G.14: All CSEEM Results of regression problems (14/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	compactiv	797.066	0.0231	16	914	Sin
5	CSEEM	compactiv	125.14	0.0241	32	851	Sin
1	CSEEM	concrete	554.716	0.0304	8	132	Tanh
1	CSEEM	concrete	832.078	0.029	16	128	Tanh
1	CSEEM	concrete	225.957	0.0309	32	108	Tanh
1	CSEEM	concrete	707.098	0.0314	8	67	SoftRelu
1	CSEEM	concrete	456.999	0.0209	16	97	SoftRelu
1	CSEEM	concrete	617.513	0.0216	32	109	SoftRelu
1	CSEEM	concrete	500.322	0.0238	8	116	Relu
1	CSEEM	concrete	577.993	0.0241	16	108	Relu
1	CSEEM	concrete	58.54	0.025	32	96	Relu
1	CSEEM	concrete	445.329	0.0266	8	110	Sigmoid
1	CSEEM	concrete	523.0	0.0278	16	80	Sigmoid
1	CSEEM	concrete	681.311	0.0275	32	106	Sigmoid
1	CSEEM	concrete	494.704	0.0483	8	121	Sin
1	CSEEM	concrete	100.001	0.0405	16	154	Sin
1	CSEEM	concrete	944.862	0.0387	32	173	Sin
2	CSEEM	concrete	636.86	0.0365	8	113	Tanh
2	CSEEM	concrete	583.995	0.0319	16	111	Tanh
2	CSEEM	concrete	217.034	0.0322	32	112	Tanh
2	CSEEM	concrete	445.333	0.023	8	111	SoftRelu
2	CSEEM	concrete	642.999	0.0269	16	89	SoftRelu
2	CSEEM	concrete	365.627	0.0245	32	83	SoftRelu
2	CSEEM	concrete	408.566	0.0262	8	103	Relu
2	CSEEM	concrete	317.037	0.0264	16	98	Relu
2	CSEEM	concrete	840.424	0.0226	32	120	Relu
2	CSEEM	concrete	840.02	0.0291	8	94	Sigmoid
2	CSEEM	concrete	515.989	0.023	16	125	Sigmoid
2	CSEEM	concrete	345.021	0.0251	32	118	Sigmoid
2	CSEEM	concrete	323.457	0.0461	8	145	Sin
2	CSEEM	concrete	614.996	0.0411	16	158	Sin
2	CSEEM	concrete	520.474	0.0428	32	163	Sin

Table G.15: All CSEEM Results of regression problems (15/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	concrete	711.49	0.0328	8	114	Tanh
3	CSEEM	concrete	519.99	0.0336	16	105	Tanh
3	CSEEM	concrete	508.207	0.0304	32	108	Tanh
3	CSEEM	concrete	117.395	0.0244	8	108	SoftRelu
3	CSEEM	concrete	133.68	0.0215	16	125	SoftRelu
3	CSEEM	concrete	341.211	0.0247	32	87	SoftRelu
3	CSEEM	concrete	710.864	0.0241	8	103	Relu
3	CSEEM	concrete	1.0	0.0258	16	94	Relu
3	CSEEM	concrete	792.505	0.0253	32	101	Relu
3	CSEEM	concrete	638.652	0.0282	8	124	Sigmoid
3	CSEEM	concrete	118.999	0.0213	16	108	Sigmoid
3	CSEEM	concrete	254.504	0.0243	32	118	Sigmoid
3	CSEEM	concrete	273.696	0.0396	8	171	Sin
3	CSEEM	concrete	228.998	0.0466	16	141	Sin
3	CSEEM	concrete	160.5	0.0412	32	122	Sin
4	CSEEM	concrete	222.589	0.0299	8	138	Tanh
4	CSEEM	concrete	125.001	0.0314	16	87	Tanh
4	CSEEM	concrete	876.436	0.0334	32	111	Tanh
4	CSEEM	concrete	397.566	0.0272	8	98	SoftRelu
4	CSEEM	concrete	729.998	0.0246	16	97	SoftRelu
4	CSEEM	concrete	915.823	0.0246	32	93	SoftRelu
4	CSEEM	concrete	803.983	0.0251	8	113	Relu
4	CSEEM	concrete	159.999	0.0259	16	101	Relu
4	CSEEM	concrete	637.999	0.0274	32	106	Relu
4	CSEEM	concrete	574.713	0.0261	8	112	Sigmoid
4	CSEEM	concrete	786.009	0.0274	16	102	Sigmoid
4	CSEEM	concrete	837.998	0.0234	32	131	Sigmoid
4	CSEEM	concrete	681.999	0.0392	8	171	Sin
4	CSEEM	concrete	878.993	0.046	16	128	Sin
4	CSEEM	concrete	82.002	0.0498	32	137	Sin
5	CSEEM	concrete	981.998	0.0303	8	122	Tanh
5	CSEEM	concrete	617.001	0.0296	16	125	Tanh

Table G.16: All CSEEM Results of regression problems (16/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	concrete	253.226	0.0325	32	105	Tanh
5	CSEEM	concrete	527.861	0.0216	8	117	SoftRelu
5	CSEEM	concrete	686.0	0.0253	16	98	SoftRelu
5	CSEEM	concrete	134.209	0.0246	32	92	SoftRelu
5	CSEEM	concrete	416.994	0.0241	8	96	Relu
5	CSEEM	concrete	85.992	0.0259	16	106	Relu
5	CSEEM	concrete	159.064	0.0257	32	98	Relu
5	CSEEM	concrete	240.963	0.0269	8	107	Sigmoid
5	CSEEM	concrete	779.989	0.0336	16	88	Sigmoid
5	CSEEM	concrete	169.308	0.0277	32	97	Sigmoid
5	CSEEM	concrete	296.0	0.0432	8	161	Sin
5	CSEEM	concrete	736.991	0.031	16	190	Sin
5	CSEEM	concrete	314.993	0.046	32	121	Sin
1	CSEEM	dee	196.53	0.0269	8	13	Tanh
1	CSEEM	dee	100.991	0.0274	16	22	Tanh
1	CSEEM	dee	216.157	0.028	32	24	Tanh
1	CSEEM	dee	158.768	0.0238	8	23	SoftRelu
1	CSEEM	dee	159.999	0.0233	16	28	SoftRelu
1	CSEEM	dee	369.808	0.024	32	25	SoftRelu
1	CSEEM	dee	78.129	0.0227	8	43	Relu
1	CSEEM	dee	94.999	0.0243	16	31	Relu
1	CSEEM	dee	505.829	0.0251	32	19	Relu
1	CSEEM	dee	101.27	0.0254	8	29	Sigmoid
1	CSEEM	dee	233.993	0.0243	16	33	Sigmoid
1	CSEEM	dee	200.529	0.0234	32	23	Sigmoid
1	CSEEM	dee	149.643	0.0555	8	39	Sin
1	CSEEM	dee	430.999	0.0388	16	41	Sin
1	CSEEM	dee	539.082	0.0271	32	34	Sin
2	CSEEM	dee	60.898	0.0238	8	39	Tanh
2	CSEEM	dee	328.992	0.0263	16	20	Tanh
2	CSEEM	dee	585.957	0.0259	32	26	Tanh
2	CSEEM	dee	46.881	0.0261	8	17	SoftRelu

Table G.17: All CSEEM Results of regression problems (17/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	dee	150.999	0.0242	16	27	SoftRelu
2	CSEEM	dee	230.166	0.0232	32	28	SoftRelu
2	CSEEM	dee	138.523	0.0247	8	21	Relu
2	CSEEM	dee	208.999	0.0242	16	32	Relu
2	CSEEM	dee	416.682	0.0228	32	33	Relu
2	CSEEM	dee	31.258	0.0253	8	24	Sigmoid
2	CSEEM	dee	110.995	0.0237	16	23	Sigmoid
2	CSEEM	dee	438.014	0.024	32	27	Sigmoid
2	CSEEM	dee	148.144	0.0311	8	38	Sin
2	CSEEM	dee	176.024	0.0455	16	29	Sin
2	CSEEM	dee	438.823	0.0279	32	52	Sin
3	CSEEM	dee	204.534	0.024	8	32	Tanh
3	CSEEM	dee	309.989	0.0268	16	23	Tanh
3	CSEEM	dee	546.942	0.0266	32	23	Tanh
3	CSEEM	dee	115.893	0.0243	8	26	SoftRelu
3	CSEEM	dee	373.0	0.0238	16	26	SoftRelu
3	CSEEM	dee	416.698	0.0231	32	27	SoftRelu
3	CSEEM	dee	157.654	0.0226	8	34	Relu
3	CSEEM	dee	209.001	0.023	16	34	Relu
3	CSEEM	dee	516.954	0.0238	32	26	Relu
3	CSEEM	dee	62.507	0.0279	8	15	Sigmoid
3	CSEEM	dee	258.0	0.0232	16	26	Sigmoid
3	CSEEM	dee	430.699	0.0237	32	30	Sigmoid
3	CSEEM	dee	62.507	0.0295	8	62	Sin
3	CSEEM	dee	150.992	0.0399	16	40	Sin
3	CSEEM	dee	209.533	0.0471	32	19	Sin
4	CSEEM	dee	184.16	0.0315	8	33	Tanh
4	CSEEM	dee	485.003	0.0252	16	26	Tanh
4	CSEEM	dee	383.917	0.0239	32	36	Tanh
4	CSEEM	dee	57.837	0.0242	8	24	SoftRelu
4	CSEEM	dee	289.002	0.0241	16	26	SoftRelu
4	CSEEM	dee	543.447	0.0232	32	27	SoftRelu

Table G.18: All CSEEM Results of regression problems (18/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	dee	48.0	0.0272	8	13	Relu
4	CSEEM	dee	171.997	0.0272	16	23	Relu
4	CSEEM	dee	423.999	0.0227	32	34	Relu
4	CSEEM	dee	132.006	0.0254	8	29	Sigmoid
4	CSEEM	dee	416.0	0.0224	16	35	Sigmoid
4	CSEEM	dee	331.991	0.0237	32	31	Sigmoid
4	CSEEM	dee	225.995	0.0418	8	35	Sin
4	CSEEM	dee	216.993	0.0437	16	37	Sin
4	CSEEM	dee	331.999	0.0345	32	45	Sin
5	CSEEM	dee	80.722	0.0256	8	30	Tanh
5	CSEEM	dee	212.0	0.0248	16	33	Tanh
5	CSEEM	dee	285.293	0.0263	32	30	Tanh
5	CSEEM	dee	97.987	0.0264	8	18	SoftRelu
5	CSEEM	dee	158.003	0.024	16	27	SoftRelu
5	CSEEM	dee	304.562	0.0233	32	29	SoftRelu
5	CSEEM	dee	99.996	0.0231	8	30	Relu
5	CSEEM	dee	156.997	0.0253	16	22	Relu
5	CSEEM	dee	414.991	0.0243	32	24	Relu
5	CSEEM	dee	87.993	0.0256	8	25	Sigmoid
5	CSEEM	dee	550.403	0.0243	16	25	Sigmoid
5	CSEEM	dee	240.991	0.026	32	18	Sigmoid
5	CSEEM	dee	115.994	0.0348	8	39	Sin
5	CSEEM	dee	155.999	0.0397	16	37	Sin
5	CSEEM	dee	734.988	0.037	32	40	Sin
1	CSEEM	delta_ail	960.069	0.00568	8	223	Tanh
1	CSEEM	delta_ail	453.393	0.00571	16	239	Tanh
1	CSEEM	delta_ail	975.324	0.00567	32	241	Tanh
1	CSEEM	delta_ail	513.778	0.00573	8	113	SoftRelu
1	CSEEM	delta_ail	952.113	0.00554	16	178	SoftRelu
1	CSEEM	delta_ail	702.658	0.00548	32	202	SoftRelu
1	CSEEM	delta_ail	386.403	0.00563	8	199	Relu
1	CSEEM	delta_ail	297.154	0.00568	16	172	Relu

Table G.19: All CSEEM Results of regression problems (19/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	delta_ail	581.887	0.00552	32	224	Relu
1	CSEEM	delta_ail	698.323	0.00546	8	254	Sigmoid
1	CSEEM	delta_ail	461.81	0.00534	16	277	Sigmoid
1	CSEEM	delta_ail	906.808	0.00554	32	186	Sigmoid
1	CSEEM	delta_ail	200.739	0.00552	8	305	Sin
1	CSEEM	delta_ail	272.782	0.00597	16	231	Sin
1	CSEEM	delta_ail	775.829	0.00588	32	228	Sin
2	CSEEM	delta_ail	567.301	0.00569	8	239	Tanh
2	CSEEM	delta_ail	796.841	0.00566	16	258	Tanh
2	CSEEM	delta_ail	482.364	0.00576	32	217	Tanh
2	CSEEM	delta_ail	67.561	0.00542	8	230	SoftRelu
2	CSEEM	delta_ail	52.037	0.00551	16	172	SoftRelu
2	CSEEM	delta_ail	929.689	0.00547	32	225	SoftRelu
2	CSEEM	delta_ail	869.743	0.00575	8	135	Relu
2	CSEEM	delta_ail	336.965	0.00564	16	163	Relu
2	CSEEM	delta_ail	791.844	0.00557	32	202	Relu
2	CSEEM	delta_ail	316.144	0.00562	8	204	Sigmoid
2	CSEEM	delta_ail	371.124	0.00557	16	192	Sigmoid
2	CSEEM	delta_ail	782.862	0.00549	32	226	Sigmoid
2	CSEEM	delta_ail	101.797	0.00579	8	306	Sin
2	CSEEM	delta_ail	568.445	0.00579	16	270	Sin
2	CSEEM	delta_ail	397.812	0.00581	32	245	Sin
3	CSEEM	delta_ail	264.539	0.00577	8	183	Tanh
3	CSEEM	delta_ail	691.86	0.00565	16	202	Tanh
3	CSEEM	delta_ail	440.343	0.00574	32	214	Tanh
3	CSEEM	delta_ail	462.139	0.00561	8	151	SoftRelu
3	CSEEM	delta_ail	928.983	0.00561	16	142	SoftRelu
3	CSEEM	delta_ail	885.056	0.00542	32	228	SoftRelu
3	CSEEM	delta_ail	272.517	0.00563	8	202	Relu
3	CSEEM	delta_ail	11.835	0.00564	16	180	Relu
3	CSEEM	delta_ail	841.327	0.00553	32	192	Relu
3	CSEEM	delta_ail	226.096	0.00545	8	218	Sigmoid

Table G.20: All CSEEM Results of regression problems (20/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	delta_ail	215.063	0.0055	16	234	Sigmoid
3	CSEEM	delta_ail	202.799	0.00553	32	213	Sigmoid
3	CSEEM	delta_ail	32.362	0.00574	8	311	Sin
3	CSEEM	delta_ail	156.431	0.00591	16	298	Sin
3	CSEEM	delta_ail	682.582	0.00563	32	271	Sin
4	CSEEM	delta_ail	538.088	0.00566	8	283	Tanh
4	CSEEM	delta_ail	280.124	0.00577	16	247	Tanh
4	CSEEM	delta_ail	422.651	0.00568	32	215	Tanh
4	CSEEM	delta_ail	480.803	0.00554	8	203	SoftRelu
4	CSEEM	delta_ail	772.194	0.00554	16	185	SoftRelu
4	CSEEM	delta_ail	655.79	0.00549	32	202	SoftRelu
4	CSEEM	delta_ail	586.781	0.00596	8	84	Relu
4	CSEEM	delta_ail	296.042	0.00554	16	217	Relu
4	CSEEM	delta_ail	332.229	0.00571	32	142	Relu
4	CSEEM	delta_ail	590.504	0.00566	8	152	Sigmoid
4	CSEEM	delta_ail	247.432	0.00556	16	211	Sigmoid
4	CSEEM	delta_ail	977.446	0.00543	32	212	Sigmoid
4	CSEEM	delta_ail	537.998	0.00578	8	289	Sin
4	CSEEM	delta_ail	752.377	0.00537	16	344	Sin
4	CSEEM	delta_ail	383.563	0.00553	32	262	Sin
5	CSEEM	delta_ail	90.699	0.0059	8	227	Tanh
5	CSEEM	delta_ail	708.057	0.00549	16	278	Tanh
5	CSEEM	delta_ail	705.657	0.00563	32	262	Tanh
5	CSEEM	delta_ail	756.155	0.00558	8	186	SoftRelu
5	CSEEM	delta_ail	646.367	0.00549	16	211	SoftRelu
5	CSEEM	delta_ail	878.374	0.00554	32	197	SoftRelu
5	CSEEM	delta_ail	205.176	0.00567	8	162	Relu
5	CSEEM	delta_ail	254.515	0.00554	16	217	Relu
5	CSEEM	delta_ail	116.142	0.00554	32	202	Relu
5	CSEEM	delta_ail	58.961	0.00559	8	201	Sigmoid
5	CSEEM	delta_ail	312.775	0.00559	16	217	Sigmoid
5	CSEEM	delta_ail	739.035	0.00551	32	207	Sigmoid

Table G.21: All CSEEM Results of regression problems (21/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	delta_ail	538.179	0.00574	8	253	Sin
5	CSEEM	delta_ail	152.608	0.00592	16	267	Sin
5	CSEEM	delta_ail	366.588	0.00562	32	264	Sin
1	CSEEM	delta_elv	6.653	0.00965	8	340	Tanh
1	CSEEM	delta_elv	447.296	0.00961	16	354	Tanh
1	CSEEM	delta_elv	222.361	0.00964	32	329	Tanh
1	CSEEM	delta_elv	351.766	0.00972	8	346	SoftRelu
1	CSEEM	delta_elv	817.189	0.00964	16	288	SoftRelu
1	CSEEM	delta_elv	27.59	0.00956	32	341	SoftRelu
1	CSEEM	delta_elv	922.565	0.00972	8	310	Relu
1	CSEEM	delta_elv	509.962	0.0097	16	287	Relu
1	CSEEM	delta_elv	279.321	0.00962	32	348	Relu
1	CSEEM	delta_elv	506.115	0.00957	8	346	Sigmoid
1	CSEEM	delta_elv	718.99	0.00961	16	307	Sigmoid
1	CSEEM	delta_elv	36.469	0.00951	32	362	Sigmoid
1	CSEEM	delta_elv	187.012	0.0105	8	327	Sin
1	CSEEM	delta_elv	274.2	0.00956	16	540	Sin
1	CSEEM	delta_elv	963.345	0.00958	32	500	Sin
2	CSEEM	delta_elv	455.575	0.01	8	155	Tanh
2	CSEEM	delta_elv	955.658	0.00982	16	302	Tanh
2	CSEEM	delta_elv	911.881	0.00968	32	287	Tanh
2	CSEEM	delta_elv	206.131	0.00953	8	357	SoftRelu
2	CSEEM	delta_elv	836.404	0.00964	16	292	SoftRelu
2	CSEEM	delta_elv	139.073	0.00949	32	388	SoftRelu
2	CSEEM	delta_elv	718.044	0.00966	8	333	Relu
2	CSEEM	delta_elv	106.141	0.00976	16	281	Relu
2	CSEEM	delta_elv	309.082	0.00964	32	320	Relu
2	CSEEM	delta_elv	316.867	0.0094	8	405	Sigmoid
2	CSEEM	delta_elv	763.496	0.00947	16	392	Sigmoid
2	CSEEM	delta_elv	791.02	0.00961	32	320	Sigmoid
2	CSEEM	delta_elv	32.133	0.00935	8	752	Sin
2	CSEEM	delta_elv	613.156	0.0104	16	370	Sin

Table G.22: All CSEEM Results of regression problems (22/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	delta_elv	923.181	0.00974	32	474	Sin
3	CSEEM	delta_elv	738.261	0.00984	8	256	Tanh
3	CSEEM	delta_elv	878.838	0.00956	16	367	Tanh
3	CSEEM	delta_elv	169.875	0.00967	32	326	Tanh
3	CSEEM	delta_elv	482.445	0.00967	8	298	SoftRelu
3	CSEEM	delta_elv	779.457	0.00963	16	312	SoftRelu
3	CSEEM	delta_elv	10.936	0.00966	32	312	SoftRelu
3	CSEEM	delta_elv	927.272	0.00969	8	272	Relu
3	CSEEM	delta_elv	891.823	0.0097	16	311	Relu
3	CSEEM	delta_elv	186.203	0.00961	32	343	Relu
3	CSEEM	delta_elv	159.07	0.00963	8	288	Sigmoid
3	CSEEM	delta_elv	701.43	0.00942	16	401	Sigmoid
3	CSEEM	delta_elv	134.177	0.00959	32	331	Sigmoid
3	CSEEM	delta_elv	980.425	0.0101	8	400	Sin
3	CSEEM	delta_elv	411.321	0.0101	16	432	Sin
3	CSEEM	delta_elv	603.235	0.00987	32	404	Sin
4	CSEEM	delta_elv	315.967	0.0096	8	392	Tanh
4	CSEEM	delta_elv	287.744	0.00959	16	365	Tanh
4	CSEEM	delta_elv	465.767	0.00966	32	346	Tanh
4	CSEEM	delta_elv	436.782	0.00959	8	339	SoftRelu
4	CSEEM	delta_elv	879.579	0.00957	16	358	SoftRelu
4	CSEEM	delta_elv	9.135	0.00951	32	361	SoftRelu
4	CSEEM	delta_elv	886.625	0.00965	8	392	Relu
4	CSEEM	delta_elv	840.079	0.0097	16	331	Relu
4	CSEEM	delta_elv	265.686	0.00944	32	409	Relu
4	CSEEM	delta_elv	436.888	0.00956	8	356	Sigmoid
4	CSEEM	delta_elv	292.247	0.00955	16	344	Sigmoid
4	CSEEM	delta_elv	185.493	0.00957	32	324	Sigmoid
4	CSEEM	delta_elv	505.892	0.0106	8	313	Sin
4	CSEEM	delta_elv	116.073	0.0101	16	374	Sin
4	CSEEM	delta_elv	790.888	0.00966	32	455	Sin
5	CSEEM	delta_elv	501.449	0.00933	8	467	Tanh

Table G.23: All CSEEM Results of regression problems (23/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	delta_elv	373.103	0.00971	16	295	Tanh
5	CSEEM	delta_elv	578.84	0.00967	32	314	Tanh
5	CSEEM	delta_elv	981.915	0.00973	8	267	SoftRelu
5	CSEEM	delta_elv	304.573	0.00943	16	412	SoftRelu
5	CSEEM	delta_elv	385.353	0.00959	32	344	SoftRelu
5	CSEEM	delta_elv	751.642	0.00967	8	278	Relu
5	CSEEM	delta_elv	735.126	0.00972	16	319	Relu
5	CSEEM	delta_elv	697.419	0.00953	32	387	Relu
5	CSEEM	delta_elv	633.842	0.00964	8	304	Sigmoid
5	CSEEM	delta_elv	399.771	0.00961	16	316	Sigmoid
5	CSEEM	delta_elv	368.897	0.00945	32	379	Sigmoid
5	CSEEM	delta_elv	919.557	0.01	8	453	Sin
5	CSEEM	delta_elv	246.765	0.0109	16	305	Sin
5	CSEEM	delta_elv	675.308	0.00974	32	455	Sin
1	CSEEM	diabetes	0.0	0.0711	8	6	Tanh
1	CSEEM	diabetes	13.002	0.0653	16	6	Tanh
1	CSEEM	diabetes	31.26	0.0677	32	4	Tanh
1	CSEEM	diabetes	0.0	0.0684	8	5	SoftRelu
1	CSEEM	diabetes	15.021	0.0698	16	5	SoftRelu
1	CSEEM	diabetes	15.636	0.0685	32	4	SoftRelu
1	CSEEM	diabetes	0.0	0.0698	8	6	Relu
1	CSEEM	diabetes	7.995	0.078	16	4	Relu
1	CSEEM	diabetes	42.771	0.0742	32	3	Relu
1	CSEEM	diabetes	0.0	0.068	8	6	Sigmoid
1	CSEEM	diabetes	13.013	0.0644	16	6	Sigmoid
1	CSEEM	diabetes	15.637	0.0718	32	4	Sigmoid
1	CSEEM	diabetes	0.0	0.0648	8	6	Sin
1	CSEEM	diabetes	8.032	0.0676	16	4	Sin
1	CSEEM	diabetes	31.258	0.0647	32	5	Sin
2	CSEEM	diabetes	0.0	0.0806	8	4	Tanh
2	CSEEM	diabetes	11.986	0.06	16	6	Tanh
2	CSEEM	diabetes	31.259	0.0657	32	5	Tanh

Table G.24: All CSEEM Results of regression problems (24/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	diabetes	0.0	0.0729	8	5	SoftRelu
2	CSEEM	diabetes	7.027	0.0754	16	4	SoftRelu
2	CSEEM	diabetes	15.632	0.0742	32	3	SoftRelu
2	CSEEM	diabetes	0.0	0.08	8	3	Relu
2	CSEEM	diabetes	8.027	0.0719	16	4	Relu
2	CSEEM	diabetes	31.26	0.073	32	5	Relu
2	CSEEM	diabetes	0.0	0.0754	8	3	Sigmoid
2	CSEEM	diabetes	19.025	0.0672	16	4	Sigmoid
2	CSEEM	diabetes	47.907	0.0633	32	5	Sigmoid
2	CSEEM	diabetes	0.0	0.0689	8	4	Sin
2	CSEEM	diabetes	13.998	0.0689	16	4	Sin
2	CSEEM	diabetes	14.009	0.0704	32	4	Sin
3	CSEEM	diabetes	15.622	0.0683	8	5	Tanh
3	CSEEM	diabetes	7.028	0.0791	16	4	Tanh
3	CSEEM	diabetes	15.635	0.0702	32	5	Tanh
3	CSEEM	diabetes	0.0	0.0689	8	4	SoftRelu
3	CSEEM	diabetes	8.999	0.0701	16	4	SoftRelu
3	CSEEM	diabetes	15.633	0.0639	32	4	SoftRelu
3	CSEEM	diabetes	0.0	0.0815	8	4	Relu
3	CSEEM	diabetes	20.016	0.0626	16	6	Relu
3	CSEEM	diabetes	41.27	0.0621	32	4	Relu
3	CSEEM	diabetes	0.0	0.0659	8	5	Sigmoid
3	CSEEM	diabetes	17.022	0.0621	16	5	Sigmoid
3	CSEEM	diabetes	12.006	0.0628	32	6	Sigmoid
3	CSEEM	diabetes	0.0	0.069	8	5	Sin
3	CSEEM	diabetes	12.036	0.0672	16	6	Sin
3	CSEEM	diabetes	15.627	0.0645	32	4	Sin
4	CSEEM	diabetes	5.041	0.0765	8	4	Tanh
4	CSEEM	diabetes	7.996	0.0793	16	2	Tanh
4	CSEEM	diabetes	14.996	0.0703	32	4	Tanh
4	CSEEM	diabetes	0.0	0.0709	8	5	SoftRelu
4	CSEEM	diabetes	8.033	0.0738	16	2	SoftRelu

Table G.25: All CSEEM Results of regression problems (25/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	diabetes	46.915	0.0651	32	5	SoftRelu
4	CSEEM	diabetes	4.025	0.0808	8	3	Relu
4	CSEEM	diabetes	8.024	0.0584	16	5	Relu
4	CSEEM	diabetes	14.021	0.0688	32	4	Relu
4	CSEEM	diabetes	7.963	0.0714	8	5	Sigmoid
4	CSEEM	diabetes	10.999	0.0663	16	5	Sigmoid
4	CSEEM	diabetes	15.035	0.0624	32	5	Sigmoid
4	CSEEM	diabetes	8.031	0.0667	8	5	Sin
4	CSEEM	diabetes	20.0	0.0663	16	5	Sin
4	CSEEM	diabetes	22.618	0.0698	32	4	Sin
5	CSEEM	diabetes	6.031	0.0759	8	3	Tanh
5	CSEEM	diabetes	12.0	0.0686	16	3	Tanh
5	CSEEM	diabetes	14.979	0.0694	32	4	Tanh
5	CSEEM	diabetes	10.999	0.0639	8	6	SoftRelu
5	CSEEM	diabetes	11.028	0.0683	16	5	SoftRelu
5	CSEEM	diabetes	24.757	0.0648	32	3	SoftRelu
5	CSEEM	diabetes	5.999	0.063	8	7	Relu
5	CSEEM	diabetes	7.997	0.0656	16	5	Relu
5	CSEEM	diabetes	20.999	0.0691	32	5	Relu
5	CSEEM	diabetes	5.999	0.0724	8	5	Sigmoid
5	CSEEM	diabetes	7.997	0.0749	16	4	Sigmoid
5	CSEEM	diabetes	23.001	0.069	32	4	Sigmoid
5	CSEEM	diabetes	4.031	0.0674	8	5	Sin
5	CSEEM	diabetes	7.001	0.0665	16	6	Sin
5	CSEEM	diabetes	22.006	0.0635	32	4	Sin
1	CSEEM	ele-1	81.637	0.0656	8	50	Tanh
1	CSEEM	ele-1	209.992	0.0656	16	51	Tanh
1	CSEEM	ele-1	617.211	0.0618	32	58	Tanh
1	CSEEM	ele-1	147.138	0.0625	8	61	SoftRelu
1	CSEEM	ele-1	280.992	0.0613	16	65	SoftRelu
1	CSEEM	ele-1	432.307	0.0654	32	48	SoftRelu
1	CSEEM	ele-1	31.252	0.0678	8	57	Relu

Table G.26: All CSEEM Results of regression problems (26/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	ele-1	504.988	0.061	16	71	Relu
1	CSEEM	ele-1	554.566	0.0628	32	62	Relu
1	CSEEM	ele-1	131.51	0.0645	8	51	Sigmoid
1	CSEEM	ele-1	634.007	0.0627	16	55	Sigmoid
1	CSEEM	ele-1	416.688	0.0631	32	54	Sigmoid
1	CSEEM	ele-1	132.018	0.0623	8	54	Sin
1	CSEEM	ele-1	184.999	0.0639	16	47	Sin
1	CSEEM	ele-1	623.722	0.0647	32	45	Sin
2	CSEEM	ele-1	171.781	0.0673	8	45	Tanh
2	CSEEM	ele-1	263.992	0.0645	16	51	Tanh
2	CSEEM	ele-1	516.941	0.0645	32	59	Tanh
2	CSEEM	ele-1	115.894	0.0699	8	39	SoftRelu
2	CSEEM	ele-1	226.997	0.0657	16	49	SoftRelu
2	CSEEM	ele-1	617.207	0.0647	32	50	SoftRelu
2	CSEEM	ele-1	115.901	0.0729	8	47	Relu
2	CSEEM	ele-1	334.993	0.0657	16	51	Relu
2	CSEEM	ele-1	401.059	0.0657	32	54	Relu
2	CSEEM	ele-1	200.529	0.0636	8	56	Sigmoid
2	CSEEM	ele-1	463.0	0.0642	16	45	Sigmoid
2	CSEEM	ele-1	686.219	0.0611	32	62	Sigmoid
2	CSEEM	ele-1	178.398	0.0629	8	52	Sin
2	CSEEM	ele-1	469.994	0.064	16	45	Sin
2	CSEEM	ele-1	438.829	0.0638	32	48	Sin
3	CSEEM	ele-1	416.678	0.0635	8	61	Tanh
3	CSEEM	ele-1	531.988	0.0646	16	53	Tanh
3	CSEEM	ele-1	939.143	0.0645	32	56	Tanh
3	CSEEM	ele-1	243.789	0.0676	8	41	SoftRelu
3	CSEEM	ele-1	375.016	0.0701	16	38	SoftRelu
3	CSEEM	ele-1	359.299	0.0648	32	54	SoftRelu
3	CSEEM	ele-1	200.53	0.0709	8	36	Relu
3	CSEEM	ele-1	167.997	0.0693	16	48	Relu
3	CSEEM	ele-1	347.676	0.0681	32	59	Relu

Table G.27: All CSEEM Results of regression problems (27/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	ele-1	332.037	0.0634	8	52	Sigmoid
3	CSEEM	ele-1	463.992	0.0619	16	60	Sigmoid
3	CSEEM	ele-1	967.021	0.0637	32	52	Sigmoid
3	CSEEM	ele-1	162.655	0.0641	8	45	Sin
3	CSEEM	ele-1	490.008	0.0642	16	45	Sin
3	CSEEM	ele-1	695.341	0.0645	32	40	Sin
4	CSEEM	ele-1	117.821	0.0672	8	42	Tanh
4	CSEEM	ele-1	200.992	0.0691	16	43	Tanh
4	CSEEM	ele-1	375.378	0.0654	32	53	Tanh
4	CSEEM	ele-1	209.734	0.0659	8	49	SoftRelu
4	CSEEM	ele-1	306.993	0.0635	16	54	SoftRelu
4	CSEEM	ele-1	931.912	0.0636	32	55	SoftRelu
4	CSEEM	ele-1	221.964	0.0737	8	51	Relu
4	CSEEM	ele-1	225.999	0.0664	16	58	Relu
4	CSEEM	ele-1	698.985	0.0693	32	48	Relu
4	CSEEM	ele-1	195.975	0.0602	8	64	Sigmoid
4	CSEEM	ele-1	361.0	0.0647	16	46	Sigmoid
4	CSEEM	ele-1	521.993	0.0642	32	44	Sigmoid
4	CSEEM	ele-1	142.747	0.0622	8	54	Sin
4	CSEEM	ele-1	416.0	0.0627	16	53	Sin
4	CSEEM	ele-1	799.991	0.0638	32	45	Sin
5	CSEEM	ele-1	210.966	0.0648	8	54	Tanh
5	CSEEM	ele-1	547.991	0.0627	16	61	Tanh
5	CSEEM	ele-1	909.008	0.0595	32	66	Tanh
5	CSEEM	ele-1	285.604	0.0658	8	50	SoftRelu
5	CSEEM	ele-1	233.998	0.0678	16	47	SoftRelu
5	CSEEM	ele-1	981.564	0.0639	32	54	SoftRelu
5	CSEEM	ele-1	37.0	0.0697	8	49	Relu
5	CSEEM	ele-1	176.988	0.0668	16	66	Relu
5	CSEEM	ele-1	502.001	0.0665	32	64	Relu
5	CSEEM	ele-1	463.0	0.0676	8	36	Sigmoid
5	CSEEM	ele-1	334.999	0.0645	16	49	Sigmoid

Table G.28: All CSEEM Results of regression problems (28/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	ele-1	665.494	0.0633	32	52	Sigmoid
5	CSEEM	ele-1	222.997	0.0643	8	42	Sin
5	CSEEM	ele-1	340.992	0.062	16	56	Sin
5	CSEEM	ele-1	701.0	0.0646	32	42	Sin
1	CSEEM	ele-2	502.605	0.00301	8	59	Tanh
1	CSEEM	ele-2	971.993	0.0053	16	16	Tanh
1	CSEEM	ele-2	42.453	0.00311	32	61	Tanh
1	CSEEM	ele-2	208.043	0.00206	8	27	SoftRelu
1	CSEEM	ele-2	247.0	0.00221	16	23	SoftRelu
1	CSEEM	ele-2	286.549	0.00202	32	20	SoftRelu
1	CSEEM	ele-2	933.636	0.0048	8	16	Relu
1	CSEEM	ele-2	533.993	0.00199	16	42	Relu
1	CSEEM	ele-2	874.619	0.00179	32	38	Relu
1	CSEEM	ele-2	226.668	0.00251	8	53	Sigmoid
1	CSEEM	ele-2	119.999	0.00243	16	34	Sigmoid
1	CSEEM	ele-2	881.272	0.00301	32	37	Sigmoid
1	CSEEM	ele-2	395.573	0.00312	8	58	Sin
1	CSEEM	ele-2	190.003	0.00307	16	60	Sin
1	CSEEM	ele-2	813.107	0.00303	32	62	Sin
2	CSEEM	ele-2	421.539	0.00221	8	70	Tanh
2	CSEEM	ele-2	155.988	0.00399	16	54	Tanh
2	CSEEM	ele-2	719.295	0.00471	32	40	Tanh
2	CSEEM	ele-2	153.156	0.00146	8	48	SoftRelu
2	CSEEM	ele-2	831.999	0.00219	16	33	SoftRelu
2	CSEEM	ele-2	967.293	0.00201	32	32	SoftRelu
2	CSEEM	ele-2	699.855	0.00257	8	29	Relu
2	CSEEM	ele-2	764.002	0.00192	16	48	Relu
2	CSEEM	ele-2	373.616	0.00191	32	36	Relu
2	CSEEM	ele-2	384.437	0.00216	8	45	Sigmoid
2	CSEEM	ele-2	391.998	0.00282	16	46	Sigmoid
2	CSEEM	ele-2	945.557	0.00216	32	32	Sigmoid
2	CSEEM	ele-2	442.709	0.00156	8	84	Sin

Table G.29: All CSEEM Results of regression problems (29/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	ele-2	850.03	0.00326	16	58	Sin
2	CSEEM	ele-2	486.24	0.00372	32	55	Sin
3	CSEEM	ele-2	270.047	0.012	8	34	Tanh
3	CSEEM	ele-2	437.001	0.00539	16	40	Tanh
3	CSEEM	ele-2	154.324	0.00308	32	57	Tanh
3	CSEEM	ele-2	220.669	0.00251	8	33	SoftRelu
3	CSEEM	ele-2	133.0	0.0025	16	26	SoftRelu
3	CSEEM	ele-2	992.045	0.00216	32	28	SoftRelu
3	CSEEM	ele-2	545.59	0.00214	8	52	Relu
3	CSEEM	ele-2	759.997	0.0021	16	35	Relu
3	CSEEM	ele-2	37.818	0.00258	32	24	Relu
3	CSEEM	ele-2	123.399	0.00492	8	32	Sigmoid
3	CSEEM	ele-2	127.997	0.0019	16	47	Sigmoid
3	CSEEM	ele-2	474.9	0.00242	32	40	Sigmoid
3	CSEEM	ele-2	78.13	0.0107	8	50	Sin
3	CSEEM	ele-2	190.993	0.00518	16	61	Sin
3	CSEEM	ele-2	767.137	0.00591	32	52	Sin
4	CSEEM	ele-2	488.468	0.00429	8	46	Tanh
4	CSEEM	ele-2	669.0	0.00456	16	37	Tanh
4	CSEEM	ele-2	709.557	0.00251	32	50	Tanh
4	CSEEM	ele-2	352.822	0.00201	8	25	SoftRelu
4	CSEEM	ele-2	518.0	0.00234	16	33	SoftRelu
4	CSEEM	ele-2	294.989	0.00179	32	33	SoftRelu
4	CSEEM	ele-2	469.164	0.00178	8	51	Relu
4	CSEEM	ele-2	610.993	0.002	16	35	Relu
4	CSEEM	ele-2	539.623	0.00181	32	40	Relu
4	CSEEM	ele-2	777.993	0.00499	8	25	Sigmoid
4	CSEEM	ele-2	676.999	0.00365	16	32	Sigmoid
4	CSEEM	ele-2	591.992	0.00185	32	40	Sigmoid
4	CSEEM	ele-2	461.999	0.00196	8	62	Sin
4	CSEEM	ele-2	899.0	0.00241	16	66	Sin
4	CSEEM	ele-2	907.988	0.00355	32	49	Sin

Table G.30: All CSEEM Results of regression problems (30/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	ele-2	692.801	0.00284	8	50	Tanh
5	CSEEM	ele-2	409.999	0.00379	16	64	Tanh
5	CSEEM	ele-2	310.175	0.00208	32	61	Tanh
5	CSEEM	ele-2	328.537	0.00176	8	33	SoftRelu
5	CSEEM	ele-2	188.0	0.00224	16	34	SoftRelu
5	CSEEM	ele-2	781.164	0.00173	32	35	SoftRelu
5	CSEEM	ele-2	102.998	0.00298	8	24	Relu
5	CSEEM	ele-2	446.991	0.00246	16	24	Relu
5	CSEEM	ele-2	22.0	0.00265	32	25	Relu
5	CSEEM	ele-2	595.992	0.00313	8	34	Sigmoid
5	CSEEM	ele-2	507.396	0.00211	16	37	Sigmoid
5	CSEEM	ele-2	82.991	0.00193	32	49	Sigmoid
5	CSEEM	ele-2	269.997	0.00269	8	73	Sin
5	CSEEM	ele-2	904.999	0.00335	16	55	Sin
5	CSEEM	ele-2	68.461	0.00245	32	66	Sin
1	CSEEM	forestFires	437.177	0.46	8	283	Tanh
1	CSEEM	forestFires	977.998	0.468	16	238	Tanh
1	CSEEM	forestFires	817.481	0.516	32	259	Tanh
1	CSEEM	forestFires	548.188	0.509	8	260	SoftRelu
1	CSEEM	forestFires	904.15	0.432	16	307	SoftRelu
1	CSEEM	forestFires	795.832	0.485	32	292	SoftRelu
1	CSEEM	forestFires	417.389	0.552	8	240	Relu
1	CSEEM	forestFires	515.993	0.465	16	283	Relu
1	CSEEM	forestFires	239.29	0.481	32	267	Relu
1	CSEEM	forestFires	162.773	0.723	8	175	Sigmoid
1	CSEEM	forestFires	796.0	0.444	16	302	Sigmoid
1	CSEEM	forestFires	303.043	0.378	32	323	Sigmoid
1	CSEEM	forestFires	576.576	0.369	8	299	Sin
1	CSEEM	forestFires	727.993	0.506	16	225	Sin
1	CSEEM	forestFires	722.069	0.412	32	277	Sin
2	CSEEM	forestFires	184.907	0.692	8	151	Tanh
2	CSEEM	forestFires	684.017	0.475	16	284	Tanh

Table G.31: All CSEEM Results of regression problems (31/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	forestFires	528.177	0.449	32	269	Tanh
2	CSEEM	forestFires	202.035	0.763	8	135	SoftRelu
2	CSEEM	forestFires	414.0	0.641	16	223	SoftRelu
2	CSEEM	forestFires	955.756	0.408	32	314	SoftRelu
2	CSEEM	forestFires	427.312	0.441	8	294	Relu
2	CSEEM	forestFires	252.992	0.396	16	307	Relu
2	CSEEM	forestFires	261.47	0.446	32	289	Relu
2	CSEEM	forestFires	522.958	0.753	8	123	Sigmoid
2	CSEEM	forestFires	1.0	0.266	16	368	Sigmoid
2	CSEEM	forestFires	659.712	0.454	32	289	Sigmoid
2	CSEEM	forestFires	701.852	0.449	8	247	Sin
2	CSEEM	forestFires	87.001	0.46	16	256	Sin
2	CSEEM	forestFires	886.744	0.365	32	304	Sin
3	CSEEM	forestFires	133.522	0.604	8	173	Tanh
3	CSEEM	forestFires	615.992	0.511	16	231	Tanh
3	CSEEM	forestFires	942.343	0.496	32	256	Tanh
3	CSEEM	forestFires	184.905	0.372	8	382	SoftRelu
3	CSEEM	forestFires	226.528	0.477	16	284	SoftRelu
3	CSEEM	forestFires	434.778	0.445	32	304	SoftRelu
3	CSEEM	forestFires	332.04	0.638	8	196	Relu
3	CSEEM	forestFires	42.994	0.484	16	265	Relu
3	CSEEM	forestFires	10.415	0.496	32	251	Relu
3	CSEEM	forestFires	403.059	0.427	8	309	Sigmoid
3	CSEEM	forestFires	290.994	0.434	16	309	Sigmoid
3	CSEEM	forestFires	798.38	0.403	32	317	Sigmoid
3	CSEEM	forestFires	252.424	0.389	8	293	Sin
3	CSEEM	forestFires	940.992	0.375	16	293	Sin
3	CSEEM	forestFires	711.974	0.536	32	206	Sin
4	CSEEM	forestFires	906.179	0.48	8	256	Tanh
4	CSEEM	forestFires	619.992	0.427	16	270	Tanh
4	CSEEM	forestFires	792.312	0.417	32	292	Tanh
4	CSEEM	forestFires	794.303	0.514	8	295	SoftRelu

Table G.32: All CSEEM Results of regression problems (32/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	forestFires	167.0	0.44	16	316	SoftRelu
4	CSEEM	forestFires	353.131	0.529	32	258	SoftRelu
4	CSEEM	forestFires	768.957	0.53	8	263	Relu
4	CSEEM	forestFires	911.993	0.51	16	277	Relu
4	CSEEM	forestFires	31.104	0.497	32	272	Relu
4	CSEEM	forestFires	570.992	0.507	8	278	Sigmoid
4	CSEEM	forestFires	294.999	0.528	16	250	Sigmoid
4	CSEEM	forestFires	508.991	0.49	32	283	Sigmoid
4	CSEEM	forestFires	510.0	0.498	8	251	Sin
4	CSEEM	forestFires	189.999	0.379	16	307	Sin
4	CSEEM	forestFires	677.001	0.44	32	259	Sin
5	CSEEM	forestFires	460.999	0.483	8	263	Tanh
5	CSEEM	forestFires	463.0	0.515	16	236	Tanh
5	CSEEM	forestFires	717.849	0.409	32	284	Tanh
5	CSEEM	forestFires	493.543	0.418	8	331	SoftRelu
5	CSEEM	forestFires	826.996	0.642	16	210	SoftRelu
5	CSEEM	forestFires	294.135	0.502	32	276	SoftRelu
5	CSEEM	forestFires	537.999	0.404	8	311	Relu
5	CSEEM	forestFires	66.992	0.504	16	248	Relu
5	CSEEM	forestFires	553.001	0.486	32	272	Relu
5	CSEEM	forestFires	413.995	0.371	8	346	Sigmoid
5	CSEEM	forestFires	316.998	0.527	16	254	Sigmoid
5	CSEEM	forestFires	519.059	0.49	32	267	Sigmoid
5	CSEEM	forestFires	530.999	0.598	8	195	Sin
5	CSEEM	forestFires	880.004	0.38	16	299	Sin
5	CSEEM	forestFires	731.987	0.376	32	306	Sin
1	CSEEM	friedman	1.079	0.0106	8	97	Tanh
1	CSEEM	friedman	338.0	0.00975	16	88	Tanh
1	CSEEM	friedman	981.206	0.0152	32	66	Tanh
1	CSEEM	friedman	827.581	0.00768	8	58	SoftRelu
1	CSEEM	friedman	675.001	0.00902	16	57	SoftRelu
1	CSEEM	friedman	4.125	0.00766	32	61	SoftRelu

Table G.33: All CSEEM Results of regression problems (33/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	friedman	664.092	0.0087	8	60	Relu
1	CSEEM	friedman	383.0	0.0102	16	43	Relu
1	CSEEM	friedman	259.218	0.00848	32	68	Relu
1	CSEEM	friedman	187.545	0.00778	8	72	Sigmoid
1	CSEEM	friedman	860.0	0.00848	16	78	Sigmoid
1	CSEEM	friedman	850.63	0.00931	32	71	Sigmoid
1	CSEEM	friedman	356.6	0.0117	8	97	Sin
1	CSEEM	friedman	66.994	0.0105	16	92	Sin
1	CSEEM	friedman	954.259	0.00883	32	104	Sin
2	CSEEM	friedman	162.767	0.00822	8	88	Tanh
2	CSEEM	friedman	868.991	0.0105	16	88	Tanh
2	CSEEM	friedman	723.995	0.0122	32	43	Tanh
2	CSEEM	friedman	251.095	0.0101	8	56	SoftRelu
2	CSEEM	friedman	990.997	0.00795	16	72	SoftRelu
2	CSEEM	friedman	454.988	0.00775	32	54	SoftRelu
2	CSEEM	friedman	303.307	0.0107	8	49	Relu
2	CSEEM	friedman	410.997	0.0083	16	70	Relu
2	CSEEM	friedman	456.369	0.00894	32	42	Relu
2	CSEEM	friedman	914.209	0.01	8	62	Sigmoid
2	CSEEM	friedman	529.999	0.00879	16	84	Sigmoid
2	CSEEM	friedman	584.675	0.00778	32	62	Sigmoid
2	CSEEM	friedman	539.092	0.0134	8	84	Sin
2	CSEEM	friedman	740.993	0.0124	16	95	Sin
2	CSEEM	friedman	722.754	0.013	32	70	Sin
3	CSEEM	friedman	403.389	0.0116	8	100	Tanh
3	CSEEM	friedman	524.001	0.00884	16	103	Tanh
3	CSEEM	friedman	464.599	0.0106	32	91	Tanh
3	CSEEM	friedman	871.143	0.0073	8	61	SoftRelu
3	CSEEM	friedman	911.027	0.00844	16	55	SoftRelu
3	CSEEM	friedman	726.118	0.00839	32	61	SoftRelu
3	CSEEM	friedman	629.341	0.0108	8	66	Relu
3	CSEEM	friedman	997.0	0.00999	16	75	Relu

Table G.34: All CSEEM Results of regression problems (34/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	friedman	735.297	0.00842	32	55	Relu
3	CSEEM	friedman	939.147	0.00691	8	96	Sigmoid
3	CSEEM	friedman	346.028	0.00732	16	103	Sigmoid
3	CSEEM	friedman	294.97	0.00935	32	67	Sigmoid
3	CSEEM	friedman	845.54	0.0141	8	89	Sin
3	CSEEM	friedman	148.995	0.00968	16	93	Sin
3	CSEEM	friedman	40.228	0.00957	32	101	Sin
4	CSEEM	friedman	579.619	0.0109	8	74	Tanh
4	CSEEM	friedman	624.999	0.0107	16	113	Tanh
4	CSEEM	friedman	392.98	0.0115	32	60	Tanh
4	CSEEM	friedman	795.424	0.00884	8	44	SoftRelu
4	CSEEM	friedman	951.0	0.00821	16	78	SoftRelu
4	CSEEM	friedman	507.644	0.00879	32	45	SoftRelu
4	CSEEM	friedman	430.0	0.0103	8	45	Relu
4	CSEEM	friedman	253.003	0.00691	16	82	Relu
4	CSEEM	friedman	984.297	0.0086	32	64	Relu
4	CSEEM	friedman	76.998	0.00924	8	77	Sigmoid
4	CSEEM	friedman	631.0	0.00994	16	62	Sigmoid
4	CSEEM	friedman	565.996	0.00889	32	61	Sigmoid
4	CSEEM	friedman	755.0	0.0115	8	104	Sin
4	CSEEM	friedman	508.0	0.0118	16	110	Sin
4	CSEEM	friedman	283.999	0.00945	32	103	Sin
5	CSEEM	friedman	645.107	0.0085	8	117	Tanh
5	CSEEM	friedman	922.0	0.0109	16	87	Tanh
5	CSEEM	friedman	920.717	0.0124	32	54	Tanh
5	CSEEM	friedman	307.0	0.00835	8	59	SoftRelu
5	CSEEM	friedman	853.0	0.00933	16	46	SoftRelu
5	CSEEM	friedman	323.016	0.0062	32	82	SoftRelu
5	CSEEM	friedman	309.0	0.0104	8	72	Relu
5	CSEEM	friedman	970.0	0.011	16	59	Relu
5	CSEEM	friedman	187.525	0.00852	32	72	Relu
5	CSEEM	friedman	491.998	0.00916	8	64	Sigmoid

Table G.35: All CSEEM Results of regression problems (35/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	friedman	345.0	0.00929	16	64	Sigmoid
5	CSEEM	friedman	635.888	0.00778	32	75	Sigmoid
5	CSEEM	friedman	212.992	0.0159	8	120	Sin
5	CSEEM	friedman	434.998	0.0126	16	93	Sin
5	CSEEM	friedman	974.064	0.0126	32	83	Sin
1	CSEEM	laser	332.043	0.00525	8	68	Tanh
1	CSEEM	laser	804.999	0.00478	16	61	Tanh
1	CSEEM	laser	619.271	0.00714	32	52	Tanh
1	CSEEM	laser	114.394	0.00431	8	46	SoftRelu
1	CSEEM	laser	763.001	0.0049	16	37	SoftRelu
1	CSEEM	laser	541.31	0.00417	32	42	SoftRelu
1	CSEEM	laser	200.53	0.00696	8	44	Relu
1	CSEEM	laser	48.999	0.00575	16	68	Relu
1	CSEEM	laser	36.556	0.00471	32	53	Relu
1	CSEEM	laser	431.319	0.00548	8	40	Sigmoid
1	CSEEM	laser	694.999	0.00459	16	47	Sigmoid
1	CSEEM	laser	904.302	0.0041	32	45	Sigmoid
1	CSEEM	laser	187.904	0.0174	8	28	Sin
1	CSEEM	laser	746.991	0.00442	16	66	Sin
1	CSEEM	laser	474.546	0.00399	32	64	Sin
2	CSEEM	laser	425.503	0.00695	8	62	Tanh
2	CSEEM	laser	656.992	0.00536	16	60	Tanh
2	CSEEM	laser	234.238	0.00648	32	41	Tanh
2	CSEEM	laser	193.913	0.00453	8	40	SoftRelu
2	CSEEM	laser	356.0	0.00496	16	44	SoftRelu
2	CSEEM	laser	554.392	0.00413	32	44	SoftRelu
2	CSEEM	laser	100.263	0.00518	8	53	Relu
2	CSEEM	laser	20.078	0.00608	16	52	Relu
2	CSEEM	laser	685.841	0.0061	32	43	Relu
2	CSEEM	laser	91.139	0.00585	8	41	Sigmoid
2	CSEEM	laser	663.0	0.00399	16	53	Sigmoid
2	CSEEM	laser	991.121	0.00398	32	53	Sigmoid

Table G.36: All CSEEM Results of regression problems (36/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	laser	639.35	0.00458	8	65	Sin
2	CSEEM	laser	33.0	0.00577	16	55	Sin
2	CSEEM	laser	645.163	0.00555	32	48	Sin
3	CSEEM	laser	236.494	0.00884	8	37	Tanh
3	CSEEM	laser	16.993	0.00674	16	45	Tanh
3	CSEEM	laser	138.701	0.00503	32	67	Tanh
3	CSEEM	laser	415.689	0.00407	8	56	SoftRelu
3	CSEEM	laser	659.061	0.00373	16	56	SoftRelu
3	CSEEM	laser	726.744	0.0037	32	48	SoftRelu
3	CSEEM	laser	818.004	0.00672	8	48	Relu
3	CSEEM	laser	376.001	0.00789	16	30	Relu
3	CSEEM	laser	50.709	0.00625	32	46	Relu
3	CSEEM	laser	154.306	0.00266	8	58	Sigmoid
3	CSEEM	laser	760.0	0.00326	16	66	Sigmoid
3	CSEEM	laser	597.59	0.00464	32	52	Sigmoid
3	CSEEM	laser	181.4	0.00434	8	66	Sin
3	CSEEM	laser	573.993	0.00497	16	62	Sin
3	CSEEM	laser	755.241	0.00699	32	59	Sin
4	CSEEM	laser	643.479	0.00622	8	63	Tanh
4	CSEEM	laser	805.999	0.00705	16	59	Tanh
4	CSEEM	laser	69.535	0.00568	32	67	Tanh
4	CSEEM	laser	917.881	0.00415	8	39	SoftRelu
4	CSEEM	laser	551.035	0.00553	16	32	SoftRelu
4	CSEEM	laser	868.551	0.00376	32	52	SoftRelu
4	CSEEM	laser	90.992	0.0069	8	46	Relu
4	CSEEM	laser	911.992	0.00477	16	68	Relu
4	CSEEM	laser	750.555	0.00644	32	53	Relu
4	CSEEM	laser	380.993	0.00749	8	38	Sigmoid
4	CSEEM	laser	709.001	0.00637	16	41	Sigmoid
4	CSEEM	laser	197.047	0.00492	32	44	Sigmoid
4	CSEEM	laser	365.99	0.00312	8	79	Sin
4	CSEEM	laser	483.991	0.00427	16	70	Sin

Table G.37: All CSEEM Results of regression problems (37/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	laser	886.988	0.00543	32	59	Sin
5	CSEEM	laser	395.989	0.00486	8	55	Tanh
5	CSEEM	laser	802.99	0.00949	16	41	Tanh
5	CSEEM	laser	611.209	0.00509	32	64	Tanh
5	CSEEM	laser	397.993	0.00529	8	24	SoftRelu
5	CSEEM	laser	571.99	0.0045	16	34	SoftRelu
5	CSEEM	laser	301.0	0.00346	32	49	SoftRelu
5	CSEEM	laser	388.999	0.00548	8	57	Relu
5	CSEEM	laser	291.0	0.00703	16	34	Relu
5	CSEEM	laser	662.512	0.00478	32	58	Relu
5	CSEEM	laser	654.999	0.00282	8	77	Sigmoid
5	CSEEM	laser	178.999	0.00435	16	46	Sigmoid
5	CSEEM	laser	613.99	0.00585	32	40	Sigmoid
5	CSEEM	laser	388.993	0.00712	8	51	Sin
5	CSEEM	laser	7.005	0.008	16	61	Sin
5	CSEEM	laser	782.552	0.00468	32	58	Sin
1	CSEEM	machineCPU	77.523	0.048	8	45	Tanh
1	CSEEM	machineCPU	112.0	0.0622	16	35	Tanh
1	CSEEM	machineCPU	162.76	0.0713	32	41	Tanh
1	CSEEM	machineCPU	31.256	0.0318	8	26	SoftRelu
1	CSEEM	machineCPU	64.0	0.0311	16	29	SoftRelu
1	CSEEM	machineCPU	79.639	0.0318	32	25	SoftRelu
1	CSEEM	machineCPU	37.765	0.0356	8	25	Relu
1	CSEEM	machineCPU	65.99	0.0327	16	21	Relu
1	CSEEM	machineCPU	46.874	0.0307	32	25	Relu
1	CSEEM	machineCPU	42.766	0.0624	8	30	Sigmoid
1	CSEEM	machineCPU	86.999	0.039	16	36	Sigmoid
1	CSEEM	machineCPU	169.268	0.0392	32	37	Sigmoid
1	CSEEM	machineCPU	96.771	0.151	8	41	Sin
1	CSEEM	machineCPU	151.992	0.0717	16	56	Sin
1	CSEEM	machineCPU	454.443	0.061	32	56	Sin
2	CSEEM	machineCPU	20.136	0.103	8	28	Tanh

Table G.38: All CSEEM Results of regression problems (38/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	machineCPU	152.004	0.0645	16	46	Tanh
2	CSEEM	machineCPU	184.899	0.0673	32	34	Tanh
2	CSEEM	machineCPU	31.248	0.0319	8	28	SoftRelu
2	CSEEM	machineCPU	62.991	0.033	16	29	SoftRelu
2	CSEEM	machineCPU	138.026	0.0264	32	26	SoftRelu
2	CSEEM	machineCPU	15.633	0.0283	8	28	Relu
2	CSEEM	machineCPU	47.988	0.0432	16	19	Relu
2	CSEEM	machineCPU	151.139	0.0382	32	23	Relu
2	CSEEM	machineCPU	92.641	0.0647	8	32	Sigmoid
2	CSEEM	machineCPU	112.006	0.0462	16	35	Sigmoid
2	CSEEM	machineCPU	253.919	0.0323	32	34	Sigmoid
2	CSEEM	machineCPU	31.256	0.126	8	40	Sin
2	CSEEM	machineCPU	173.995	0.125	16	44	Sin
2	CSEEM	machineCPU	115.887	0.0485	32	58	Sin
3	CSEEM	machineCPU	18.64	0.0482	8	39	Tanh
3	CSEEM	machineCPU	89.999	0.0513	16	48	Tanh
3	CSEEM	machineCPU	247.412	0.0552	32	39	Tanh
3	CSEEM	machineCPU	62.501	0.0339	8	28	SoftRelu
3	CSEEM	machineCPU	97.51	0.0291	16	27	SoftRelu
3	CSEEM	machineCPU	222.671	0.0257	32	22	SoftRelu
3	CSEEM	machineCPU	20.641	0.0372	8	19	Relu
3	CSEEM	machineCPU	45.002	0.0402	16	21	Relu
3	CSEEM	machineCPU	131.516	0.0278	32	31	Relu
3	CSEEM	machineCPU	46.883	0.0323	8	47	Sigmoid
3	CSEEM	machineCPU	40.997	0.0297	16	39	Sigmoid
3	CSEEM	machineCPU	126.013	0.0448	32	37	Sigmoid
3	CSEEM	machineCPU	46.766	0.0788	8	55	Sin
3	CSEEM	machineCPU	158.999	0.112	16	41	Sin
3	CSEEM	machineCPU	263.032	0.0721	32	48	Sin
4	CSEEM	machineCPU	79.144	0.0525	8	53	Tanh
4	CSEEM	machineCPU	163.993	0.0699	16	37	Tanh
4	CSEEM	machineCPU	267.918	0.0655	32	44	Tanh

Table G.39: All CSEEM Results of regression problems (39/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	machineCPU	39.775	0.0246	8	31	SoftRelu
4	CSEEM	machineCPU	133.996	0.0284	16	24	SoftRelu
4	CSEEM	machineCPU	300.054	0.0292	32	23	SoftRelu
4	CSEEM	machineCPU	33.003	0.0459	8	24	Relu
4	CSEEM	machineCPU	123.996	0.0339	16	28	Relu
4	CSEEM	machineCPU	178.213	0.0411	32	13	Relu
4	CSEEM	machineCPU	13.998	0.0474	8	41	Sigmoid
4	CSEEM	machineCPU	77.004	0.0233	16	45	Sigmoid
4	CSEEM	machineCPU	117.991	0.0472	32	33	Sigmoid
4	CSEEM	machineCPU	32.996	0.0605	8	67	Sin
4	CSEEM	machineCPU	242.0	0.0475	16	59	Sin
4	CSEEM	machineCPU	231.998	0.081	32	46	Sin
5	CSEEM	machineCPU	124.999	0.0429	8	55	Tanh
5	CSEEM	machineCPU	85.992	0.0692	16	40	Tanh
5	CSEEM	machineCPU	159.539	0.0743	32	36	Tanh
5	CSEEM	machineCPU	80.999	0.0302	8	24	SoftRelu
5	CSEEM	machineCPU	63.992	0.0267	16	32	SoftRelu
5	CSEEM	machineCPU	233.985	0.0319	32	23	SoftRelu
5	CSEEM	machineCPU	37.664	0.0311	8	27	Relu
5	CSEEM	machineCPU	78.0	0.0297	16	26	Relu
5	CSEEM	machineCPU	329.998	0.0282	32	29	Relu
5	CSEEM	machineCPU	50.005	0.0588	8	34	Sigmoid
5	CSEEM	machineCPU	62.999	0.0451	16	33	Sigmoid
5	CSEEM	machineCPU	152.001	0.0269	32	32	Sigmoid
5	CSEEM	machineCPU	101.006	0.0986	8	60	Sin
5	CSEEM	machineCPU	48.993	0.0804	16	46	Sin
5	CSEEM	machineCPU	416.999	0.0681	32	43	Sin
1	CSEEM	mortgage	654.988	0.0124	8	76	Tanh
1	CSEEM	mortgage	41.0	0.00821	16	108	Tanh
1	CSEEM	mortgage	621.556	0.0123	32	83	Tanh
1	CSEEM	mortgage	385.439	0.0045	8	57	SoftRelu
1	CSEEM	mortgage	565.002	0.00698	16	46	SoftRelu

Table G.40: All CSEEM Results of regression problems (40/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	mortgage	292.156	0.00544	32	64	SoftRelu
1	CSEEM	mortgage	200.537	0.00327	8	85	Relu
1	CSEEM	mortgage	564.993	0.00525	16	60	Relu
1	CSEEM	mortgage	644.662	0.00407	32	62	Relu
1	CSEEM	mortgage	247.403	0.0103	8	60	Sigmoid
1	CSEEM	mortgage	550.0	0.00864	16	60	Sigmoid
1	CSEEM	mortgage	83.807	0.0077	32	70	Sigmoid
1	CSEEM	mortgage	643.696	0.0682	8	297	Sin
1	CSEEM	mortgage	668.999	0.0837	16	255	Sin
1	CSEEM	mortgage	143.233	0.0731	32	278	Sin
2	CSEEM	mortgage	432.312	0.00811	8	113	Tanh
2	CSEEM	mortgage	988.001	0.0101	16	98	Tanh
2	CSEEM	mortgage	322.246	0.013	32	94	Tanh
2	CSEEM	mortgage	917.593	0.00574	8	52	SoftRelu
2	CSEEM	mortgage	765.006	0.00314	16	61	SoftRelu
2	CSEEM	mortgage	364.235	0.00243	32	68	SoftRelu
2	CSEEM	mortgage	648.088	0.00196	8	102	Relu
2	CSEEM	mortgage	965.002	0.00288	16	61	Relu
2	CSEEM	mortgage	706.437	0.00461	32	54	Relu
2	CSEEM	mortgage	927.018	0.011	8	66	Sigmoid
2	CSEEM	mortgage	723.008	0.0109	16	58	Sigmoid
2	CSEEM	mortgage	913.677	0.00762	32	55	Sigmoid
2	CSEEM	mortgage	764.353	0.077	8	287	Sin
2	CSEEM	mortgage	805.001	0.0797	16	211	Sin
2	CSEEM	mortgage	933.832	0.0933	32	223	Sin
3	CSEEM	mortgage	641.854	0.0111	8	92	Tanh
3	CSEEM	mortgage	392.538	0.0097	16	102	Tanh
3	CSEEM	mortgage	591.284	0.011	32	92	Tanh
3	CSEEM	mortgage	471.579	0.00294	8	66	SoftRelu
3	CSEEM	mortgage	377.025	0.00236	16	67	SoftRelu
3	CSEEM	mortgage	69.857	0.0036	32	57	SoftRelu
3	CSEEM	mortgage	2.653	0.00407	8	68	Relu

Table G.41: All CSEEM Results of regression problems (41/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	mortgage	21.996	0.00478	16	62	Relu
3	CSEEM	mortgage	520.972	0.00432	32	64	Relu
3	CSEEM	mortgage	363.307	0.00894	8	62	Sigmoid
3	CSEEM	mortgage	576.01	0.00704	16	102	Sigmoid
3	CSEEM	mortgage	305.099	0.007	32	86	Sigmoid
3	CSEEM	mortgage	397.552	0.0821	8	279	Sin
3	CSEEM	mortgage	865.993	0.0942	16	225	Sin
3	CSEEM	mortgage	108.137	0.101	32	208	Sin
4	CSEEM	mortgage	812.622	0.00891	8	101	Tanh
4	CSEEM	mortgage	301.882	0.0131	16	70	Tanh
4	CSEEM	mortgage	312.214	0.00813	32	104	Tanh
4	CSEEM	mortgage	300.275	0.0157	8	29	SoftRelu
4	CSEEM	mortgage	892.0	0.0042	16	69	SoftRelu
4	CSEEM	mortgage	267.693	0.00342	32	63	SoftRelu
4	CSEEM	mortgage	305.817	0.00812	8	49	Relu
4	CSEEM	mortgage	628.957	0.0039	16	69	Relu
4	CSEEM	mortgage	205.961	0.00282	32	65	Relu
4	CSEEM	mortgage	190.993	0.00843	8	76	Sigmoid
4	CSEEM	mortgage	746.011	0.00652	16	89	Sigmoid
4	CSEEM	mortgage	850.216	0.00978	32	57	Sigmoid
4	CSEEM	mortgage	677.006	0.0992	8	226	Sin
4	CSEEM	mortgage	73.0	0.1	16	206	Sin
4	CSEEM	mortgage	825.99	0.0885	32	209	Sin
5	CSEEM	mortgage	906.591	0.0102	8	101	Tanh
5	CSEEM	mortgage	522.0	0.0114	16	77	Tanh
5	CSEEM	mortgage	926.782	0.0117	32	89	Tanh
5	CSEEM	mortgage	194.008	0.00438	8	60	SoftRelu
5	CSEEM	mortgage	476.002	0.00537	16	55	SoftRelu
5	CSEEM	mortgage	39.101	0.00562	32	51	SoftRelu
5	CSEEM	mortgage	396.999	0.00441	8	62	Relu
5	CSEEM	mortgage	868.0	0.00355	16	71	Relu
5	CSEEM	mortgage	349.002	0.00363	32	64	Relu

Table G.42: All CSEEM Results of regression problems (42/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	mortgage	644.01	0.00762	8	66	Sigmoid
5	CSEEM	mortgage	265.235	0.00983	16	68	Sigmoid
5	CSEEM	mortgage	27.009	0.00636	32	73	Sigmoid
5	CSEEM	mortgage	12.027	0.105	8	209	Sin
5	CSEEM	mortgage	178.01	0.0896	16	226	Sin
5	CSEEM	mortgage	776.255	0.0601	32	275	Sin
1	CSEEM	plastic	182.907	0.0578	8	51	Tanh
1	CSEEM	plastic	459.992	0.0578	16	40	Tanh
1	CSEEM	plastic	970.745	0.0578	32	43	Tanh
1	CSEEM	plastic	536.806	0.0578	8	54	SoftRelu
1	CSEEM	plastic	688.999	0.0578	16	51	SoftRelu
1	CSEEM	plastic	155.273	0.0578	32	48	SoftRelu
1	CSEEM	plastic	200.536	0.0579	8	29	Relu
1	CSEEM	plastic	571.007	0.0578	16	52	Relu
1	CSEEM	plastic	857.008	0.0577	32	82	Relu
1	CSEEM	plastic	354.175	0.0578	8	39	Sigmoid
1	CSEEM	plastic	799.0	0.0578	16	44	Sigmoid
1	CSEEM	plastic	668.408	0.0578	32	44	Sigmoid
1	CSEEM	plastic	862.185	0.0578	8	52	Sin
1	CSEEM	plastic	301.999	0.0578	16	40	Sin
1	CSEEM	plastic	364.575	0.0578	32	45	Sin
2	CSEEM	plastic	900.403	0.0578	8	37	Tanh
2	CSEEM	plastic	379.99	0.0578	16	61	Tanh
2	CSEEM	plastic	918.026	0.0577	32	65	Tanh
2	CSEEM	plastic	407.088	0.0578	8	58	SoftRelu
2	CSEEM	plastic	721.135	0.0578	16	39	SoftRelu
2	CSEEM	plastic	640.224	0.0577	32	60	SoftRelu
2	CSEEM	plastic	585.477	0.0578	8	59	Relu
2	CSEEM	plastic	810.0	0.0579	16	35	Relu
2	CSEEM	plastic	78.251	0.0579	32	21	Relu
2	CSEEM	plastic	275.666	0.0578	8	38	Sigmoid
2	CSEEM	plastic	859.989	0.0578	16	47	Sigmoid

Table G.43: All CSEEM Results of regression problems (43/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	plastic	288.359	0.0578	32	42	Sigmoid
2	CSEEM	plastic	139.518	0.0578	8	45	Sin
2	CSEEM	plastic	830.991	0.0578	16	52	Sin
2	CSEEM	plastic	711.637	0.0578	32	30	Sin
3	CSEEM	plastic	415.702	0.0578	8	49	Tanh
3	CSEEM	plastic	61.063	0.0578	16	61	Tanh
3	CSEEM	plastic	461.834	0.0578	32	54	Tanh
3	CSEEM	plastic	496.836	0.0578	8	61	SoftRelu
3	CSEEM	plastic	197.059	0.0578	16	53	SoftRelu
3	CSEEM	plastic	396.634	0.0578	32	36	SoftRelu
3	CSEEM	plastic	344.7	0.0576	8	63	Relu
3	CSEEM	plastic	760.999	0.0577	16	82	Relu
3	CSEEM	plastic	12.362	0.0578	32	45	Relu
3	CSEEM	plastic	153.661	0.0578	8	46	Sigmoid
3	CSEEM	plastic	22.999	0.0578	16	42	Sigmoid
3	CSEEM	plastic	45.244	0.0578	32	45	Sigmoid
3	CSEEM	plastic	451.458	0.0578	8	52	Sin
3	CSEEM	plastic	298.018	0.0578	16	50	Sin
3	CSEEM	plastic	373.304	0.0578	32	52	Sin
4	CSEEM	plastic	974.423	0.0578	8	55	Tanh
4	CSEEM	plastic	152.101	0.0578	16	51	Tanh
4	CSEEM	plastic	514.481	0.0578	32	48	Tanh
4	CSEEM	plastic	375.205	0.0578	8	61	SoftRelu
4	CSEEM	plastic	366.379	0.0578	16	61	SoftRelu
4	CSEEM	plastic	581.224	0.0577	32	57	SoftRelu
4	CSEEM	plastic	125.992	0.0578	8	62	Relu
4	CSEEM	plastic	790.075	0.0576	16	74	Relu
4	CSEEM	plastic	536.108	0.0578	32	60	Relu
4	CSEEM	plastic	222.002	0.0578	8	40	Sigmoid
4	CSEEM	plastic	719.007	0.0578	16	47	Sigmoid
4	CSEEM	plastic	487.025	0.0578	32	44	Sigmoid
4	CSEEM	plastic	953.984	0.0578	8	57	Sin

Table G.44: All CSEEM Results of regression problems (44/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	plastic	263.999	0.0578	16	43	Sin
4	CSEEM	plastic	673.991	0.0578	32	55	Sin
5	CSEEM	plastic	996.174	0.0578	8	48	Tanh
5	CSEEM	plastic	713.002	0.0578	16	35	Tanh
5	CSEEM	plastic	198.122	0.0578	32	58	Tanh
5	CSEEM	plastic	607.985	0.0578	8	77	SoftRelu
5	CSEEM	plastic	269.405	0.0578	16	52	SoftRelu
5	CSEEM	plastic	125.043	0.0578	32	40	SoftRelu
5	CSEEM	plastic	54.0	0.0581	8	23	Relu
5	CSEEM	plastic	41.005	0.0579	16	63	Relu
5	CSEEM	plastic	709.001	0.0578	32	70	Relu
5	CSEEM	plastic	894.0	0.0578	8	42	Sigmoid
5	CSEEM	plastic	766.033	0.0577	16	62	Sigmoid
5	CSEEM	plastic	552.004	0.0578	32	41	Sigmoid
5	CSEEM	plastic	468.992	0.0578	8	60	Sin
5	CSEEM	plastic	80.0	0.0578	16	47	Sin
5	CSEEM	plastic	156.991	0.0578	32	44	Sin
1	CSEEM	puma32h	661.805	0.0702	8	1023	Tanh
1	CSEEM	puma32h	720.688	0.0692	16	1089	Tanh
1	CSEEM	puma32h	518.541	0.066	32	1293	Tanh
1	CSEEM	puma32h	15.73	0.0729	8	1029	SoftRelu
1	CSEEM	puma32h	517.031	0.0686	16	1308	SoftRelu
1	CSEEM	puma32h	919.079	0.0697	32	1292	SoftRelu
1	CSEEM	puma32h	717.498	0.0809	8	337	Relu
1	CSEEM	puma32h	801.747	0.0697	16	1310	Relu
1	CSEEM	puma32h	757.061	0.0715	32	1104	Relu
1	CSEEM	puma32h	97.654	0.0696	8	1069	Sigmoid
1	CSEEM	puma32h	975.998	0.0681	16	1122	Sigmoid
1	CSEEM	puma32h	116.791	0.0678	32	1053	Sigmoid
1	CSEEM	puma32h	60.493	0.0893	8	1333	Sin
1	CSEEM	puma32h	390.223	0.0916	16	1248	Sin
1	CSEEM	puma32h	947.469	0.0886	32	1405	Sin

Table G.45: All CSEEM Results of regression problems (45/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	puma32h	346.53	0.066	8	1405	Tanh
2	CSEEM	puma32h	893.523	0.0687	16	1173	Tanh
2	CSEEM	puma32h	430.681	0.0674	32	1189	Tanh
2	CSEEM	puma32h	759.453	0.0739	8	925	SoftRelu
2	CSEEM	puma32h	830.952	0.073	16	1006	SoftRelu
2	CSEEM	puma32h	518.035	0.072	32	1076	SoftRelu
2	CSEEM	puma32h	216.37	0.0765	8	683	Relu
2	CSEEM	puma32h	977.581	0.0719	16	1071	Relu
2	CSEEM	puma32h	419.739	0.0714	32	1119	Relu
2	CSEEM	puma32h	110.978	0.0682	8	1041	Sigmoid
2	CSEEM	puma32h	949.111	0.0661	16	1257	Sigmoid
2	CSEEM	puma32h	958.888	0.065	32	1246	Sigmoid
2	CSEEM	puma32h	23.204	0.0858	8	1658	Sin
2	CSEEM	puma32h	455.49	0.0882	16	1459	Sin
2	CSEEM	puma32h	299.867	0.0888	32	1384	Sin
3	CSEEM	puma32h	869.571	0.0664	8	1365	Tanh
3	CSEEM	puma32h	402.931	0.0701	16	984	Tanh
3	CSEEM	puma32h	849.141	0.0669	32	1133	Tanh
3	CSEEM	puma32h	122.489	0.0705	8	1220	SoftRelu
3	CSEEM	puma32h	241.264	0.0724	16	1049	SoftRelu
3	CSEEM	puma32h	984.445	0.0708	32	1190	SoftRelu
3	CSEEM	puma32h	124.493	0.0715	8	1140	Relu
3	CSEEM	puma32h	129.52	0.0738	16	1011	Relu
3	CSEEM	puma32h	862.748	0.0697	32	1295	Relu
3	CSEEM	puma32h	926.653	0.0662	8	1213	Sigmoid
3	CSEEM	puma32h	918.815	0.0672	16	1328	Sigmoid
3	CSEEM	puma32h	532.924	0.0665	32	1200	Sigmoid
3	CSEEM	puma32h	814.207	0.0872	8	1523	Sin
3	CSEEM	puma32h	54.239	0.0928	16	1070	Sin
3	CSEEM	puma32h	838.532	0.0915	32	1196	Sin
4	CSEEM	puma32h	283.134	0.0685	8	1162	Tanh
4	CSEEM	puma32h	681.648	0.069	16	1062	Tanh

Table G.46: All CSEEM Results of regression problems (46/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	puma32h	945.247	0.0663	32	1279	Tanh
4	CSEEM	puma32h	446.323	0.0713	8	1179	SoftRelu
4	CSEEM	puma32h	242.692	0.0716	16	1135	SoftRelu
4	CSEEM	puma32h	841.917	0.0713	32	1152	SoftRelu
4	CSEEM	puma32h	862.162	0.0685	8	1394	Relu
4	CSEEM	puma32h	665.082	0.0722	16	1019	Relu
4	CSEEM	puma32h	737.64	0.0696	32	1335	Relu
4	CSEEM	puma32h	515.162	0.0714	8	831	Sigmoid
4	CSEEM	puma32h	836.755	0.0652	16	1395	Sigmoid
4	CSEEM	puma32h	538.68	0.0684	32	1043	Sigmoid
4	CSEEM	puma32h	534.626	0.0983	8	765	Sin
4	CSEEM	puma32h	572.677	0.0897	16	1347	Sin
4	CSEEM	puma32h	753.831	0.0927	32	1190	Sin
5	CSEEM	puma32h	61.507	0.0705	8	1000	Tanh
5	CSEEM	puma32h	67.472	0.0689	16	1110	Tanh
5	CSEEM	puma32h	959.337	0.0688	32	1061	Tanh
5	CSEEM	puma32h	298.041	0.076	8	781	SoftRelu
5	CSEEM	puma32h	548.1	0.0716	16	1109	SoftRelu
5	CSEEM	puma32h	54.14	0.0697	32	1218	SoftRelu
5	CSEEM	puma32h	210.812	0.0725	8	1093	Relu
5	CSEEM	puma32h	803.287	0.0743	16	865	Relu
5	CSEEM	puma32h	834.127	0.0717	32	1102	Relu
5	CSEEM	puma32h	640.315	0.0703	8	972	Sigmoid
5	CSEEM	puma32h	336.826	0.0654	16	1285	Sigmoid
5	CSEEM	puma32h	963.046	0.067	32	1135	Sigmoid
5	CSEEM	puma32h	797.683	0.0904	8	1293	Sin
5	CSEEM	puma32h	972.109	0.0904	16	1256	Sin
5	CSEEM	puma32h	517.414	0.0889	32	1366	Sin
1	CSEEM	quake	93.043	0.315	8	812	Tanh
1	CSEEM	quake	27.176	0.316	16	791	Tanh
1	CSEEM	quake	569.674	0.314	32	814	Tanh
1	CSEEM	quake	269.546	0.458	8	258	SoftRelu

Table G.47: All CSEEM Results of regression problems (47/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	quake	718.195	0.348	16	698	SoftRelu
1	CSEEM	quake	284.25	0.342	32	709	SoftRelu
1	CSEEM	quake	137.971	0.42	8	409	Relu
1	CSEEM	quake	213.142	0.342	16	748	Relu
1	CSEEM	quake	459.34	0.365	32	640	Relu
1	CSEEM	quake	610.618	0.409	8	473	Sigmoid
1	CSEEM	quake	932.003	0.339	16	729	Sigmoid
1	CSEEM	quake	943.273	0.352	32	670	Sigmoid
1	CSEEM	quake	755.519	0.381	8	659	Sin
1	CSEEM	quake	47.992	0.385	16	641	Sin
1	CSEEM	quake	974.221	0.386	32	600	Sin
2	CSEEM	quake	374.719	0.447	8	314	Tanh
2	CSEEM	quake	846.976	0.344	16	710	Tanh
2	CSEEM	quake	435.825	0.32	32	789	Tanh
2	CSEEM	quake	418.711	0.422	8	425	SoftRelu
2	CSEEM	quake	642.116	0.352	16	677	SoftRelu
2	CSEEM	quake	412.276	0.338	32	729	SoftRelu
2	CSEEM	quake	923.002	0.346	8	767	Relu
2	CSEEM	quake	102.992	0.397	16	496	Relu
2	CSEEM	quake	503.368	0.351	32	722	Relu
2	CSEEM	quake	297.957	0.308	8	885	Sigmoid
2	CSEEM	quake	116.084	0.403	16	497	Sigmoid
2	CSEEM	quake	622.993	0.339	32	733	Sigmoid
2	CSEEM	quake	291.244	0.379	8	657	Sin
2	CSEEM	quake	670.999	0.382	16	645	Sin
2	CSEEM	quake	689.821	0.387	32	580	Sin
3	CSEEM	quake	174.613	0.297	8	891	Tanh
3	CSEEM	quake	856.123	0.329	16	775	Tanh
3	CSEEM	quake	859.276	0.343	32	727	Tanh
3	CSEEM	quake	158.475	0.323	8	797	SoftRelu
3	CSEEM	quake	103.0	0.337	16	735	SoftRelu
3	CSEEM	quake	893.751	0.342	32	713	SoftRelu

Table G.48: All CSEEM Results of regression problems (48/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	quake	433.586	0.298	8	924	Relu
3	CSEEM	quake	682.001	0.341	16	713	Relu
3	CSEEM	quake	983.574	0.331	32	769	Relu
3	CSEEM	quake	426.339	0.373	8	614	Sigmoid
3	CSEEM	quake	450.921	0.393	16	538	Sigmoid
3	CSEEM	quake	972.947	0.348	32	691	Sigmoid
3	CSEEM	quake	574.558	0.393	8	561	Sin
3	CSEEM	quake	317.993	0.398	16	539	Sin
3	CSEEM	quake	536.336	0.384	32	619	Sin
4	CSEEM	quake	760.149	0.414	8	439	Tanh
4	CSEEM	quake	333.99	0.443	16	316	Tanh
4	CSEEM	quake	837.51	0.334	32	738	Tanh
4	CSEEM	quake	644.534	0.364	8	650	SoftRelu
4	CSEEM	quake	886.153	0.351	16	678	SoftRelu
4	CSEEM	quake	189.055	0.34	32	731	SoftRelu
4	CSEEM	quake	112.954	0.348	8	679	Relu
4	CSEEM	quake	981.995	0.324	16	787	Relu
4	CSEEM	quake	860.747	0.34	32	737	Relu
4	CSEEM	quake	641.0	0.411	8	456	Sigmoid
4	CSEEM	quake	115.006	0.355	16	673	Sigmoid
4	CSEEM	quake	987.948	0.342	32	713	Sigmoid
4	CSEEM	quake	662.189	0.391	8	582	Sin
4	CSEEM	quake	123.003	0.389	16	614	Sin
4	CSEEM	quake	794.946	0.388	32	588	Sin
5	CSEEM	quake	140.489	0.326	8	789	Tanh
5	CSEEM	quake	539.999	0.329	16	769	Tanh
5	CSEEM	quake	136.918	0.313	32	838	Tanh
5	CSEEM	quake	480.011	0.393	8	543	SoftRelu
5	CSEEM	quake	404.0	0.316	16	810	SoftRelu
5	CSEEM	quake	391.616	0.342	32	715	SoftRelu
5	CSEEM	quake	689.999	0.31	8	864	Relu
5	CSEEM	quake	959.065	0.369	16	596	Relu

Table G.49: All CSEEM Results of regression problems (49/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	quake	628.277	0.361	32	665	Relu
5	CSEEM	quake	92.001	0.392	8	537	Sigmoid
5	CSEEM	quake	903.733	0.338	16	754	Sigmoid
5	CSEEM	quake	396.524	0.344	32	722	Sigmoid
5	CSEEM	quake	611.142	0.379	8	653	Sin
5	CSEEM	quake	970.006	0.381	16	653	Sin
5	CSEEM	quake	389.328	0.387	32	611	Sin
1	CSEEM	stock	393.431	0.0134	8	49	Tanh
1	CSEEM	stock	735.992	0.00843	16	80	Tanh
1	CSEEM	stock	89.699	0.0076	32	71	Tanh
1	CSEEM	stock	544.21	0.00629	8	53	SoftRelu
1	CSEEM	stock	762.251	0.00582	16	49	SoftRelu
1	CSEEM	stock	30.018	0.00571	32	56	SoftRelu
1	CSEEM	stock	234.792	0.00637	8	71	Relu
1	CSEEM	stock	399.963	0.00722	16	51	Relu
1	CSEEM	stock	488.063	0.00653	32	56	Relu
1	CSEEM	stock	365.298	0.00803	8	57	Sigmoid
1	CSEEM	stock	906.994	0.00795	16	66	Sigmoid
1	CSEEM	stock	722.494	0.00862	32	51	Sigmoid
1	CSEEM	stock	790.512	0.0131	8	109	Sin
1	CSEEM	stock	916.987	0.0244	16	80	Sin
1	CSEEM	stock	933.199	0.0227	32	97	Sin
2	CSEEM	stock	349.687	0.00825	8	59	Tanh
2	CSEEM	stock	604.243	0.00897	16	52	Tanh
2	CSEEM	stock	800.62	0.0103	32	59	Tanh
2	CSEEM	stock	276.167	0.00648	8	60	SoftRelu
2	CSEEM	stock	808.719	0.00574	16	59	SoftRelu
2	CSEEM	stock	930.507	0.007	32	48	SoftRelu
2	CSEEM	stock	624.227	0.00799	8	44	Relu
2	CSEEM	stock	888.009	0.00551	16	67	Relu
2	CSEEM	stock	184.929	0.0052	32	62	Relu
2	CSEEM	stock	507.234	0.0087	8	63	Sigmoid

Table G.50: All CSEEM Results of regression problems (50/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	stock	161.998	0.0076	16	63	Sigmoid
2	CSEEM	stock	110.921	0.0076	32	71	Sigmoid
2	CSEEM	stock	833.368	0.0206	8	103	Sin
2	CSEEM	stock	780.0	0.0138	16	120	Sin
2	CSEEM	stock	173.003	0.0261	32	94	Sin
3	CSEEM	stock	427.702	0.0106	8	88	Tanh
3	CSEEM	stock	50.991	0.00864	16	79	Tanh
3	CSEEM	stock	462.699	0.00907	32	69	Tanh
3	CSEEM	stock	205.026	0.00895	8	50	SoftRelu
3	CSEEM	stock	407.146	0.00492	16	63	SoftRelu
3	CSEEM	stock	697.396	0.00481	32	69	SoftRelu
3	CSEEM	stock	263.545	0.0054	8	79	Relu
3	CSEEM	stock	941.0	0.00737	16	53	Relu
3	CSEEM	stock	253.575	0.00614	32	67	Relu
3	CSEEM	stock	216.678	0.0127	8	37	Sigmoid
3	CSEEM	stock	412.0	0.00814	16	62	Sigmoid
3	CSEEM	stock	68.439	0.00844	32	57	Sigmoid
3	CSEEM	stock	235.461	0.015	8	116	Sin
3	CSEEM	stock	24.96	0.0157	16	117	Sin
3	CSEEM	stock	659.365	0.0184	32	102	Sin
4	CSEEM	stock	282.846	0.01	8	46	Tanh
4	CSEEM	stock	749.993	0.00905	16	81	Tanh
4	CSEEM	stock	175.598	0.00747	32	73	Tanh
4	CSEEM	stock	285.856	0.00655	8	54	SoftRelu
4	CSEEM	stock	789.001	0.0063	16	53	SoftRelu
4	CSEEM	stock	353.987	0.00599	32	57	SoftRelu
4	CSEEM	stock	253.927	0.00706	8	55	Relu
4	CSEEM	stock	529.999	0.00617	16	60	Relu
4	CSEEM	stock	59.569	0.0069	32	60	Relu
4	CSEEM	stock	550.999	0.00857	8	52	Sigmoid
4	CSEEM	stock	215.995	0.00604	16	71	Sigmoid
4	CSEEM	stock	561.991	0.00646	32	66	Sigmoid

Table G.51: All CSEEM Results of regression problems (51/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	stock	740.999	0.0162	8	117	Sin
4	CSEEM	stock	95.525	0.0225	16	122	Sin
4	CSEEM	stock	983.999	0.0265	32	72	Sin
5	CSEEM	stock	641.001	0.00978	8	66	Tanh
5	CSEEM	stock	988.993	0.00804	16	73	Tanh
5	CSEEM	stock	2.0	0.00883	32	69	Tanh
5	CSEEM	stock	701.493	0.0081	8	45	SoftRelu
5	CSEEM	stock	887.999	0.00587	16	51	SoftRelu
5	CSEEM	stock	299.876	0.0056	32	58	SoftRelu
5	CSEEM	stock	469.998	0.00533	8	74	Relu
5	CSEEM	stock	391.993	0.00755	16	49	Relu
5	CSEEM	stock	247.996	0.00675	32	51	Relu
5	CSEEM	stock	475.0	0.0065	8	80	Sigmoid
5	CSEEM	stock	269.993	0.00629	16	57	Sigmoid
5	CSEEM	stock	180.061	0.00895	32	58	Sigmoid
5	CSEEM	stock	550.0	0.0297	8	102	Sin
5	CSEEM	stock	316.989	0.0235	16	114	Sin
5	CSEEM	stock	364.99	0.0209	32	110	Sin
1	CSEEM	tic	778.013	0.547	8	3637	Tanh
1	CSEEM	tic	535.471	0.397	16	5121	Tanh
1	CSEEM	tic	576.248	0.385	32	5332	Tanh
1	CSEEM	tic	917.98	0.447	8	4516	SoftRelu
1	CSEEM	tic	290.455	0.392	16	5205	SoftRelu
1	CSEEM	tic	235.13	0.384	32	5150	SoftRelu
1	CSEEM	tic	909.831	0.366	8	5390	Relu
1	CSEEM	tic	120.634	0.376	16	5252	Relu
1	CSEEM	tic	36.241	0.349	32	5574	Relu
1	CSEEM	tic	530.149	0.74	8	1587	Sigmoid
1	CSEEM	tic	432.506	0.428	16	4945	Sigmoid
1	CSEEM	tic	652.04	0.376	32	5305	Sigmoid
1	CSEEM	tic	867.764	0.345	8	5888	Sin
1	CSEEM	tic	122.701	0.467	16	4745	Sin

Table G.52: All CSEEM Results of regression problems (52/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	tic	465.835	0.379	32	5572	Sin
2	CSEEM	tic	700.776	0.305	8	6163	Tanh
2	CSEEM	tic	583.529	0.38	16	5378	Tanh
2	CSEEM	tic	496.996	0.392	32	5256	Tanh
2	CSEEM	tic	910.579	0.406	8	4921	SoftRelu
2	CSEEM	tic	88.621	0.401	16	5057	SoftRelu
2	CSEEM	tic	677.361	0.381	32	5222	SoftRelu
2	CSEEM	tic	905.977	0.37	8	5390	Relu
2	CSEEM	tic	895.092	0.425	16	4797	Relu
2	CSEEM	tic	801.966	0.36	32	5523	Relu
2	CSEEM	tic	906.584	0.523	8	3725	Sigmoid
2	CSEEM	tic	780.729	0.401	16	5138	Sigmoid
2	CSEEM	tic	165.435	0.367	32	5383	Sigmoid
2	CSEEM	tic	565.98	0.386	8	5519	Sin
2	CSEEM	tic	203.237	0.31	16	6264	Sin
2	CSEEM	tic	26.926	0.38	32	5556	Sin
3	CSEEM	tic	460.108	0.408	8	5067	Tanh
3	CSEEM	tic	823.482	0.433	16	4710	Tanh
3	CSEEM	tic	506.302	0.352	32	5563	Tanh
3	CSEEM	tic	148.875	0.687	8	1956	SoftRelu
3	CSEEM	tic	167.889	0.384	16	5136	SoftRelu
3	CSEEM	tic	374.807	0.413	32	4813	SoftRelu
3	CSEEM	tic	523.761	0.598	8	2934	Relu
3	CSEEM	tic	279.708	0.382	16	5240	Relu
3	CSEEM	tic	685.986	0.331	32	5719	Relu
3	CSEEM	tic	107.066	0.327	8	5916	Sigmoid
3	CSEEM	tic	737.912	0.457	16	4516	Sigmoid
3	CSEEM	tic	796.712	0.335	32	5751	Sigmoid
3	CSEEM	tic	374.642	0.814	8	1346	Sin
3	CSEEM	tic	706.776	0.356	16	5692	Sin
3	CSEEM	tic	272.176	0.372	32	5632	Sin
4	CSEEM	tic	722.44	0.545	8	3658	Tanh

Table G.53: All CSEEM Results of regression problems (53/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	tic	725.742	0.399	16	5185	Tanh
4	CSEEM	tic	879.862	0.394	32	5197	Tanh
4	CSEEM	tic	418.562	0.416	8	4842	SoftRelu
4	CSEEM	tic	40.171	0.46	16	4445	SoftRelu
4	CSEEM	tic	893.465	0.377	32	5304	SoftRelu
4	CSEEM	tic	499.092	0.313	8	6008	Relu
4	CSEEM	tic	837.648	0.357	16	5518	Relu
4	CSEEM	tic	348.521	0.377	32	5273	Relu
4	CSEEM	tic	738.274	0.454	8	4545	Sigmoid
4	CSEEM	tic	153.192	0.434	16	4740	Sigmoid
4	CSEEM	tic	538.384	0.36	32	5612	Sigmoid
4	CSEEM	tic	104.868	0.364	8	5750	Sin
4	CSEEM	tic	443.728	0.733	16	1991	Sin
4	CSEEM	tic	890.698	0.351	32	5849	Sin
5	CSEEM	tic	167.319	0.686	8	2153	Tanh
5	CSEEM	tic	551.734	0.375	16	5443	Tanh
5	CSEEM	tic	0.863	0.35	32	5677	Tanh
5	CSEEM	tic	339.854	0.583	8	2988	SoftRelu
5	CSEEM	tic	927.08	0.377	16	5259	SoftRelu
5	CSEEM	tic	874.457	0.366	32	5385	SoftRelu
5	CSEEM	tic	336.707	0.414	8	4854	Relu
5	CSEEM	tic	765.816	0.416	16	4808	Relu
5	CSEEM	tic	505.296	0.409	32	4832	Relu
5	CSEEM	tic	201.071	0.784	8	1171	Sigmoid
5	CSEEM	tic	969.094	0.394	16	5196	Sigmoid
5	CSEEM	tic	198.408	0.344	32	5668	Sigmoid
5	CSEEM	tic	392.873	0.32	8	6186	Sin
5	CSEEM	tic	254.876	0.373	16	5592	Sin
5	CSEEM	tic	919.413	0.41	32	5221	Sin
1	CSEEM	treasury	641.83	0.0173	8	79	Tanh
1	CSEEM	treasury	832.095	0.0172	16	79	Tanh
1	CSEEM	treasury	79.681	0.0147	32	86	Tanh

Table G.54: All CSEEM Results of regression problems (54/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	treasury	620.351	0.00478	8	72	SoftRelu
1	CSEEM	treasury	850.001	0.00491	16	63	SoftRelu
1	CSEEM	treasury	771.689	0.00497	32	62	SoftRelu
1	CSEEM	treasury	369.811	0.00745	8	54	Relu
1	CSEEM	treasury	29.017	0.00613	16	57	Relu
1	CSEEM	treasury	39.192	0.00555	32	66	Relu
1	CSEEM	treasury	140.022	0.008	8	106	Sigmoid
1	CSEEM	treasury	984.993	0.0134	16	73	Sigmoid
1	CSEEM	treasury	272.227	0.00725	32	95	Sigmoid
1	CSEEM	treasury	230.966	0.0755	8	279	Sin
1	CSEEM	treasury	323.0	0.0952	16	259	Sin
1	CSEEM	treasury	430.158	0.0757	32	273	Sin
2	CSEEM	treasury	125.902	0.018	8	56	Tanh
2	CSEEM	treasury	858.002	0.0156	16	81	Tanh
2	CSEEM	treasury	867.275	0.0117	32	89	Tanh
2	CSEEM	treasury	252.267	0.00372	8	61	SoftRelu
2	CSEEM	treasury	180.0	0.0052	16	66	SoftRelu
2	CSEEM	treasury	185.67	0.0059	32	40	SoftRelu
2	CSEEM	treasury	959.262	0.00398	8	73	Relu
2	CSEEM	treasury	370.002	0.00355	16	78	Relu
2	CSEEM	treasury	540.2	0.00655	32	52	Relu
2	CSEEM	treasury	231.775	0.00988	8	83	Sigmoid
2	CSEEM	treasury	415.091	0.00925	16	90	Sigmoid
2	CSEEM	treasury	221.171	0.00841	32	84	Sigmoid
2	CSEEM	treasury	372.464	0.104	8	245	Sin
2	CSEEM	treasury	62.165	0.106	16	223	Sin
2	CSEEM	treasury	727.268	0.0706	32	272	Sin
3	CSEEM	treasury	961.676	0.0129	8	106	Tanh
3	CSEEM	treasury	591.05	0.0121	16	77	Tanh
3	CSEEM	treasury	483.048	0.011	32	104	Tanh
3	CSEEM	treasury	278.659	0.00523	8	64	SoftRelu
3	CSEEM	treasury	645.999	0.00572	16	62	SoftRelu

Table G.55: All CSEEM Results of regression problems (55/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
3	CSEEM	treasury	691.843	0.00484	32	45	SoftRelu
3	CSEEM	treasury	401.064	0.00539	8	68	Relu
3	CSEEM	treasury	384.0	0.0033	16	79	Relu
3	CSEEM	treasury	764.369	0.00456	32	77	Relu
3	CSEEM	treasury	344.169	0.00937	8	84	Sigmoid
3	CSEEM	treasury	95.0	0.0124	16	80	Sigmoid
3	CSEEM	treasury	663.072	0.00816	32	102	Sigmoid
3	CSEEM	treasury	757.751	0.0947	8	239	Sin
3	CSEEM	treasury	905.0	0.088	16	284	Sin
3	CSEEM	treasury	439.902	0.0943	32	241	Sin
4	CSEEM	treasury	794.919	0.0168	8	92	Tanh
4	CSEEM	treasury	836.138	0.012	16	87	Tanh
4	CSEEM	treasury	272.176	0.0133	32	96	Tanh
4	CSEEM	treasury	444.11	0.00697	8	52	SoftRelu
4	CSEEM	treasury	960.0	0.0029	16	83	SoftRelu
4	CSEEM	treasury	387.459	0.00382	32	70	SoftRelu
4	CSEEM	treasury	61.255	0.00628	8	63	Relu
4	CSEEM	treasury	162.015	0.00488	16	74	Relu
4	CSEEM	treasury	481.815	0.00348	32	70	Relu
4	CSEEM	treasury	634.0	0.0113	8	73	Sigmoid
4	CSEEM	treasury	186.0	0.0075	16	80	Sigmoid
4	CSEEM	treasury	845.002	0.00835	32	99	Sigmoid
4	CSEEM	treasury	238.478	0.107	8	212	Sin
4	CSEEM	treasury	221.0	0.0741	16	290	Sin
4	CSEEM	treasury	679.891	0.103	32	197	Sin
5	CSEEM	treasury	807.121	0.0151	8	93	Tanh
5	CSEEM	treasury	620.999	0.017	16	85	Tanh
5	CSEEM	treasury	153.021	0.0135	32	100	Tanh
5	CSEEM	treasury	463.957	0.0063	8	61	SoftRelu
5	CSEEM	treasury	320.001	0.00501	16	75	SoftRelu
5	CSEEM	treasury	180.0	0.00317	32	67	SoftRelu
5	CSEEM	treasury	201.0	0.00418	8	83	Relu

Table G.56: All CSEEM Results of regression problems (56/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
5	CSEEM	treasury	202.999	0.00619	16	61	Relu
5	CSEEM	treasury	613.999	0.00521	32	61	Relu
5	CSEEM	treasury	623.119	0.011	8	90	Sigmoid
5	CSEEM	treasury	406.02	0.0085	16	76	Sigmoid
5	CSEEM	treasury	399.004	0.00713	32	88	Sigmoid
5	CSEEM	treasury	441.999	0.0914	8	275	Sin
5	CSEEM	treasury	229.347	0.0824	16	252	Sin
5	CSEEM	treasury	713.044	0.0822	32	286	Sin
1	CSEEM	wankara	26.552	0.00487	8	76	Tanh
1	CSEEM	wankara	178.002	0.00486	16	77	Tanh
1	CSEEM	wankara	654.514	0.00437	32	61	Tanh
1	CSEEM	wankara	833.121	0.00103	8	43	SoftRelu
1	CSEEM	wankara	471.011	0.00104	16	49	SoftRelu
1	CSEEM	wankara	799.99	0.00092	32	50	SoftRelu
1	CSEEM	wankara	230.992	0.00128	8	56	Relu
1	CSEEM	wankara	118.055	0.00133	16	53	Relu
1	CSEEM	wankara	91.207	0.00135	32	42	Relu
1	CSEEM	wankara	849.691	0.00259	8	61	Sigmoid
1	CSEEM	wankara	655.862	0.00289	16	59	Sigmoid
1	CSEEM	wankara	126.054	0.00294	32	43	Sigmoid
1	CSEEM	wankara	946.548	0.0189	8	110	Sin
1	CSEEM	wankara	970.992	0.0226	16	127	Sin
1	CSEEM	wankara	98.547	0.0142	32	183	Sin
2	CSEEM	wankara	146.039	0.00553	8	62	Tanh
2	CSEEM	wankara	469.001	0.00393	16	78	Tanh
2	CSEEM	wankara	163.007	0.00433	32	48	Tanh
2	CSEEM	wankara	829.399	0.00139	8	45	SoftRelu
2	CSEEM	wankara	504.0	0.00116	16	41	SoftRelu
2	CSEEM	wankara	714.372	0.00108	32	49	SoftRelu
2	CSEEM	wankara	386.432	0.00156	8	36	Relu
2	CSEEM	wankara	911.0	0.00141	16	50	Relu
2	CSEEM	wankara	715.799	0.00128	32	40	Relu

Table G.57: All CSEEM Results of regression problems (57/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
2	CSEEM	wankara	200.019	0.0025	8	68	Sigmoid
2	CSEEM	wankara	548.999	0.00301	16	48	Sigmoid
2	CSEEM	wankara	787.78	0.00219	32	61	Sigmoid
2	CSEEM	wankara	718.692	0.0178	8	212	Sin
2	CSEEM	wankara	976.008	0.0209	16	182	Sin
2	CSEEM	wankara	12.893	0.0211	32	170	Sin
3	CSEEM	wankara	542.718	0.0059	8	62	Tanh
3	CSEEM	wankara	613.999	0.00521	16	47	Tanh
3	CSEEM	wankara	198.709	0.00406	32	60	Tanh
3	CSEEM	wankara	213.081	0.00235	8	35	SoftRelu
3	CSEEM	wankara	923.007	0.00107	16	40	SoftRelu
3	CSEEM	wankara	707.138	0.00129	32	43	SoftRelu
3	CSEEM	wankara	493.858	0.00111	8	53	Relu
3	CSEEM	wankara	973.997	0.00134	16	49	Relu
3	CSEEM	wankara	242.734	0.00164	32	41	Relu
3	CSEEM	wankara	284.189	0.00211	8	56	Sigmoid
3	CSEEM	wankara	84.999	0.00287	16	47	Sigmoid
3	CSEEM	wankara	879.521	0.0023	32	53	Sigmoid
3	CSEEM	wankara	949.847	0.0196	8	187	Sin
3	CSEEM	wankara	606.999	0.00653	16	204	Sin
3	CSEEM	wankara	917.465	0.0206	32	188	Sin
4	CSEEM	wankara	778.329	0.00466	8	61	Tanh
4	CSEEM	wankara	286.51	0.00445	16	56	Tanh
4	CSEEM	wankara	285.917	0.00525	32	31	Tanh
4	CSEEM	wankara	900.178	0.001	8	47	SoftRelu
4	CSEEM	wankara	684.009	0.00111	16	49	SoftRelu
4	CSEEM	wankara	787.407	0.00128	32	46	SoftRelu
4	CSEEM	wankara	401.001	0.00226	8	31	Relu
4	CSEEM	wankara	526.001	0.00159	16	41	Relu
4	CSEEM	wankara	879.807	0.00154	32	39	Relu
4	CSEEM	wankara	899.003	0.00245	8	56	Sigmoid
4	CSEEM	wankara	952.998	0.00274	16	63	Sigmoid

Table G.58: All CSEEM Results of regression problems (58/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	wankara	780.997	0.00289	32	54	Sigmoid
4	CSEEM	wankara	845.508	0.0166	8	254	Sin
4	CSEEM	wankara	698.51	0.0245	16	143	Sin
4	CSEEM	wankara	702.138	0.0274	32	142	Sin
5	CSEEM	wankara	357.999	0.0044	8	73	Tanh
5	CSEEM	wankara	297.002	0.00448	16	53	Tanh
5	CSEEM	wankara	387.626	0.00383	32	92	Tanh
5	CSEEM	wankara	144.003	0.00219	8	32	SoftRelu
5	CSEEM	wankara	272.554	0.00143	16	29	SoftRelu
5	CSEEM	wankara	47.998	0.00103	32	44	SoftRelu
5	CSEEM	wankara	515.0	0.00109	8	57	Relu
5	CSEEM	wankara	610.0	0.00117	16	50	Relu
5	CSEEM	wankara	809.0	0.00131	32	40	Relu
5	CSEEM	wankara	296.99	0.00275	8	43	Sigmoid
5	CSEEM	wankara	951.007	0.00327	16	52	Sigmoid
5	CSEEM	wankara	391.283	0.00221	32	67	Sigmoid
5	CSEEM	wankara	9.593	0.0195	8	158	Sin
5	CSEEM	wankara	323.129	0.0343	16	74	Sin
5	CSEEM	wankara	517.517	0.0214	32	79	Sin
1	CSEEM	wizmir	897.604	0.0054	8	66	Tanh
1	CSEEM	wizmir	766.0	0.00589	16	41	Tanh
1	CSEEM	wizmir	491.232	0.00583	32	63	Tanh
1	CSEEM	wizmir	43.266	0.00141	8	48	SoftRelu
1	CSEEM	wizmir	462.0	0.00131	16	45	SoftRelu
1	CSEEM	wizmir	98.88	0.00134	32	39	SoftRelu
1	CSEEM	wizmir	752.414	0.00243	8	44	Relu
1	CSEEM	wizmir	858.232	0.00172	16	48	Relu
1	CSEEM	wizmir	732.425	0.00201	32	48	Relu
1	CSEEM	wizmir	380.939	0.00354	8	69	Sigmoid
1	CSEEM	wizmir	567.007	0.00263	16	44	Sigmoid
1	CSEEM	wizmir	380.607	0.00353	32	54	Sigmoid
1	CSEEM	wizmir	789.936	0.0194	8	156	Sin

Table G.59: All CSEEM Results of regression problems (59/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
1	CSEEM	wizmir	431.008	0.0245	16	109	Sin
1	CSEEM	wizmir	961.407	0.0217	32	153	Sin
2	CSEEM	wizmir	799.65	0.00511	8	70	Tanh
2	CSEEM	wizmir	507.997	0.0037	16	97	Tanh
2	CSEEM	wizmir	605.052	0.00488	32	56	Tanh
2	CSEEM	wizmir	789.002	0.00137	8	48	SoftRelu
2	CSEEM	wizmir	298.001	0.00118	16	43	SoftRelu
2	CSEEM	wizmir	76.141	0.00141	32	40	SoftRelu
2	CSEEM	wizmir	390.173	0.00182	8	47	Relu
2	CSEEM	wizmir	413.993	0.00185	16	50	Relu
2	CSEEM	wizmir	909.854	0.00151	32	47	Relu
2	CSEEM	wizmir	187.58	0.00365	8	53	Sigmoid
2	CSEEM	wizmir	22.971	0.00297	16	54	Sigmoid
2	CSEEM	wizmir	540.751	0.00255	32	53	Sigmoid
2	CSEEM	wizmir	777.8	0.0257	8	171	Sin
2	CSEEM	wizmir	847.827	0.0262	16	70	Sin
2	CSEEM	wizmir	171.1	0.0225	32	93	Sin
3	CSEEM	wizmir	709.897	0.00515	8	78	Tanh
3	CSEEM	wizmir	333.001	0.00369	16	86	Tanh
3	CSEEM	wizmir	471.914	0.00461	32	76	Tanh
3	CSEEM	wizmir	353.266	0.0019	8	39	SoftRelu
3	CSEEM	wizmir	2.593	0.00183	16	33	SoftRelu
3	CSEEM	wizmir	147.654	0.00149	32	45	SoftRelu
3	CSEEM	wizmir	795.237	0.00162	8	53	Relu
3	CSEEM	wizmir	329.0	0.00223	16	35	Relu
3	CSEEM	wizmir	8.811	0.00199	32	37	Relu
3	CSEEM	wizmir	651.118	0.00382	8	54	Sigmoid
3	CSEEM	wizmir	225.011	0.00351	16	61	Sigmoid
3	CSEEM	wizmir	889.447	0.00334	32	59	Sigmoid
3	CSEEM	wizmir	719.433	0.0219	8	214	Sin
3	CSEEM	wizmir	280.997	0.0221	16	176	Sin
3	CSEEM	wizmir	824.744	0.0242	32	163	Sin

Table G.60: All CSEEM Results of regression problems (60/61).

Run	Method	Dataset	Time (s)	Norm Loss	n_c	k	$\phi(\cdot)$
4	CSEEM	wizmir	784.521	0.00572	8	46	Tanh
4	CSEEM	wizmir	541.007	0.00665	16	47	Tanh
4	CSEEM	wizmir	797.703	0.00491	32	63	Tanh
4	CSEEM	wizmir	326.326	0.0015	8	47	SoftRelu
4	CSEEM	wizmir	161.0	0.00163	16	35	SoftRelu
4	CSEEM	wizmir	912.614	0.00138	32	41	SoftRelu
4	CSEEM	wizmir	287.007	0.00168	8	46	Relu
4	CSEEM	wizmir	811.993	0.00159	16	47	Relu
4	CSEEM	wizmir	467.297	0.0014	32	48	Relu
4	CSEEM	wizmir	646.999	0.0032	8	60	Sigmoid
4	CSEEM	wizmir	540.0	0.00279	16	69	Sigmoid
4	CSEEM	wizmir	407.997	0.00373	32	47	Sigmoid
4	CSEEM	wizmir	829.928	0.0192	8	125	Sin
4	CSEEM	wizmir	442.001	0.0218	16	155	Sin
4	CSEEM	wizmir	189.691	0.0232	32	107	Sin
5	CSEEM	wizmir	782.51	0.00687	8	48	Tanh
5	CSEEM	wizmir	268.001	0.00471	16	79	Tanh
5	CSEEM	wizmir	185.015	0.00689	32	57	Tanh
5	CSEEM	wizmir	397.002	0.00139	8	42	SoftRelu
5	CSEEM	wizmir	433.998	0.00133	16	49	SoftRelu
5	CSEEM	wizmir	227.0	0.00133	32	41	SoftRelu
5	CSEEM	wizmir	650.006	0.00193	8	55	Relu
5	CSEEM	wizmir	220.066	0.00144	16	53	Relu
5	CSEEM	wizmir	508.031	0.00182	32	47	Relu
5	CSEEM	wizmir	549.987	0.00375	8	49	Sigmoid
5	CSEEM	wizmir	627.079	0.0033	16	47	Sigmoid
5	CSEEM	wizmir	696.01	0.00347	32	63	Sigmoid
5	CSEEM	wizmir	186.679	0.022	8	157	Sin
5	CSEEM	wizmir	992.009	0.0198	16	187	Sin
5	CSEEM	wizmir	468.244	0.0238	32	120	Sin

Table G.61: All CSEEM Results of regression problems (61/61).

Appendix H

RMSProp Regression All Results

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
1	RMSProp	ANACALT	771.52	0.124	1000	1000	Tanh
1	RMSProp	ANACALT	747.001	104	1000	1000	SoftRelu
1	RMSProp	ANACALT	731.554	69.4	1000	1000	Relu
1	RMSProp	ANACALT	431.652	nan	1000	1000	Sigmoid
1	RMSProp	ANACALT	617.967	0.147	1000	1000	Sin
2	RMSProp	ANACALT	114.125	0.124	1000	1000	Tanh
2	RMSProp	ANACALT	148.113	85.8	1000	1000	SoftRelu
2	RMSProp	ANACALT	678.955	89.3	1000	1000	Relu
2	RMSProp	ANACALT	66.0	nan	1000	1000	Sigmoid
2	RMSProp	ANACALT	107.417	0.339	1000	1000	Sin
3	RMSProp	ANACALT	543.092	0.124	1000	1000	Tanh
3	RMSProp	ANACALT	53.822	81	1000	1000	SoftRelu
3	RMSProp	ANACALT	634.603	69.2	1000	1000	Relu
3	RMSProp	ANACALT	398.523	nan	1000	1000	Sigmoid
3	RMSProp	ANACALT	372.001	0.0991	1000	1000	Sin
4	RMSProp	ANACALT	313.226	0.124	1000	1000	Tanh
4	RMSProp	ANACALT	675.55	70	1000	1000	SoftRelu
4	RMSProp	ANACALT	806.087	72.6	1000	1000	Relu
4	RMSProp	ANACALT	397.0	nan	1000	1000	Sigmoid
4	RMSProp	ANACALT	78.897	0.159	1000	1000	Sin
5	RMSProp	ANACALT	538.64	0.124	1000	1000	Tanh
5	RMSProp	ANACALT	49.532	93.6	1000	1000	SoftRelu
5	RMSProp	ANACALT	751.527	86.6	1000	1000	Relu
5	RMSProp	ANACALT	854.55	nan	1000	1000	Sigmoid
5	RMSProp	ANACALT	581.556	2.37	1000	1000	Sin
1	RMSProp	abalone	700.127	0.0461	1000	1000	Tanh
1	RMSProp	abalone	769.721	0.0477	1000	1000	SoftRelu
1	RMSProp	abalone	607.625	0.0445	1000	1000	Relu
1	RMSProp	abalone	127.56	0.0517	1000	1000	Sigmoid
1	RMSProp	abalone	119.0	0.0461	1000	1000	Sin
2	RMSProp	abalone	604.22	0.0461	1000	1000	Tanh
2	RMSProp	abalone	982.048	0.0477	1000	1000	SoftRelu

Table H.1: All RMSProp Results of regression problems (1/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
2	RMSProp	abalone	418.022	0.0446	1000	1000	Relu
2	RMSProp	abalone	803.806	0.0518	1000	1000	Sigmoid
2	RMSProp	abalone	704.51	0.0462	1000	1000	Sin
3	RMSProp	abalone	806.006	0.0461	1000	1000	Tanh
3	RMSProp	abalone	882.641	0.0477	1000	1000	SoftRelu
3	RMSProp	abalone	145.266	0.0445	1000	1000	Relu
3	RMSProp	abalone	74.546	0.0517	1000	1000	Sigmoid
3	RMSProp	abalone	818.088	0.0461	1000	1000	Sin
4	RMSProp	abalone	797.892	0.0461	1000	1000	Tanh
4	RMSProp	abalone	748.589	0.0477	1000	1000	SoftRelu
4	RMSProp	abalone	268.91	0.0445	1000	1000	Relu
4	RMSProp	abalone	31.509	0.0517	1000	1000	Sigmoid
4	RMSProp	abalone	584.955	0.0461	1000	1000	Sin
5	RMSProp	abalone	778.999	0.0461	1000	1000	Tanh
5	RMSProp	abalone	98.038	0.0477	1000	1000	SoftRelu
5	RMSProp	abalone	157.437	0.0445	1000	1000	Relu
5	RMSProp	abalone	512.06	0.0518	1000	1000	Sigmoid
5	RMSProp	abalone	963.999	0.0462	1000	1000	Sin
1	RMSProp	autoMPG6	116.998	0.0257	1000	1000	Tanh
1	RMSProp	autoMPG6	798.0	1.72	1000	1000	SoftRelu
1	RMSProp	autoMPG6	599.222	1.9	1000	1000	Relu
1	RMSProp	autoMPG6	771.067	nan	1000	1000	Sigmoid
1	RMSProp	autoMPG6	407.17	0.591	1000	1000	Sin
2	RMSProp	autoMPG6	911.528	0.0266	1000	1000	Tanh
2	RMSProp	autoMPG6	709.678	1.51	1000	1000	SoftRelu
2	RMSProp	autoMPG6	216.418	1.65	1000	1000	Relu
2	RMSProp	autoMPG6	612.486	nan	1000	1000	Sigmoid
2	RMSProp	autoMPG6	401.997	0.67	1000	1000	Sin
3	RMSProp	autoMPG6	856.001	0.0231	1000	1000	Tanh
3	RMSProp	autoMPG6	983.118	1.43	1000	1000	SoftRelu
3	RMSProp	autoMPG6	667.435	1.58	1000	1000	Relu
3	RMSProp	autoMPG6	756.54	nan	1000	1000	Sigmoid

Table H.2: All RMSProp Results of regression problems (2/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
3	RMSProp	autoMPG6	269.887	0.571	1000	1000	Sin
4	RMSProp	autoMPG6	750.28	0.0363	1000	1000	Tanh
4	RMSProp	autoMPG6	868.686	1.97	1000	1000	SoftRelu
4	RMSProp	autoMPG6	626.999	1.5	1000	1000	Relu
4	RMSProp	autoMPG6	778.494	nan	1000	1000	Sigmoid
4	RMSProp	autoMPG6	50.053	0.639	1000	1000	Sin
5	RMSProp	autoMPG6	869.964	0.0282	1000	1000	Tanh
5	RMSProp	autoMPG6	756.96	1.48	1000	1000	SoftRelu
5	RMSProp	autoMPG6	600.948	1.56	1000	1000	Relu
5	RMSProp	autoMPG6	59.014	nan	1000	1000	Sigmoid
5	RMSProp	autoMPG6	356.039	0.722	1000	1000	Sin
1	RMSProp	autoMPG8	71.991	0.0232	1000	1000	Tanh
1	RMSProp	autoMPG8	792.001	1.6	1000	1000	SoftRelu
1	RMSProp	autoMPG8	622.018	1.48	1000	1000	Relu
1	RMSProp	autoMPG8	798.101	nan	1000	1000	Sigmoid
1	RMSProp	autoMPG8	577.011	0.686	1000	1000	Sin
2	RMSProp	autoMPG8	229.0	0.0241	1000	1000	Tanh
2	RMSProp	autoMPG8	886.037	1.64	1000	1000	SoftRelu
2	RMSProp	autoMPG8	338.996	1.67	1000	1000	Relu
2	RMSProp	autoMPG8	948.995	nan	1000	1000	Sigmoid
2	RMSProp	autoMPG8	845.988	0.598	1000	1000	Sin
3	RMSProp	autoMPG8	59.772	0.0245	1000	1000	Tanh
3	RMSProp	autoMPG8	70.916	1.76	1000	1000	SoftRelu
3	RMSProp	autoMPG8	756.974	1.52	1000	1000	Relu
3	RMSProp	autoMPG8	817.132	nan	1000	1000	Sigmoid
3	RMSProp	autoMPG8	250.069	0.655	1000	1000	Sin
4	RMSProp	autoMPG8	855.194	0.0286	1000	1000	Tanh
4	RMSProp	autoMPG8	744.735	1.63	1000	1000	SoftRelu
4	RMSProp	autoMPG8	751.978	1.7	1000	1000	Relu
4	RMSProp	autoMPG8	815.357	nan	1000	1000	Sigmoid
4	RMSProp	autoMPG8	134.009	0.742	1000	1000	Sin
5	RMSProp	autoMPG8	67.001	0.0268	1000	1000	Tanh

Table H.3: All RMSProp Results of regression problems (3/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
5	RMSProp	autoMPG8	673.494	1.67	1000	1000	SoftRelu
5	RMSProp	autoMPG8	626.913	1.79	1000	1000	Relu
5	RMSProp	autoMPG8	65.013	nan	1000	1000	Sigmoid
5	RMSProp	autoMPG8	375.001	0.851	1000	1000	Sin
1	RMSProp	baseball	695.434	0.446	1000	1000	Tanh
1	RMSProp	baseball	394.0	0.178	1000	1000	SoftRelu
1	RMSProp	baseball	470.0	0.186	1000	1000	Relu
1	RMSProp	baseball	548.989	0.468	1000	1000	Sigmoid
1	RMSProp	baseball	373.989	0.648	1000	1000	Sin
2	RMSProp	baseball	105.309	0.446	1000	1000	Tanh
2	RMSProp	baseball	612.082	0.179	1000	1000	SoftRelu
2	RMSProp	baseball	111.071	0.188	1000	1000	Relu
2	RMSProp	baseball	558.085	0.468	1000	1000	Sigmoid
2	RMSProp	baseball	696.999	0.644	1000	1000	Sin
3	RMSProp	baseball	968.268	0.446	1000	1000	Tanh
3	RMSProp	baseball	857.911	0.179	1000	1000	SoftRelu
3	RMSProp	baseball	543.437	0.186	1000	1000	Relu
3	RMSProp	baseball	492.087	0.469	1000	1000	Sigmoid
3	RMSProp	baseball	141.805	0.648	1000	1000	Sin
4	RMSProp	baseball	705.287	0.446	1000	1000	Tanh
4	RMSProp	baseball	411.0	0.178	1000	1000	SoftRelu
4	RMSProp	baseball	595.001	0.186	1000	1000	Relu
4	RMSProp	baseball	667.33	0.468	1000	1000	Sigmoid
4	RMSProp	baseball	904.005	0.65	1000	1000	Sin
5	RMSProp	baseball	813.009	0.446	1000	1000	Tanh
5	RMSProp	baseball	595.029	0.179	1000	1000	SoftRelu
5	RMSProp	baseball	499.789	0.186	1000	1000	Relu
5	RMSProp	baseball	915.001	0.468	1000	1000	Sigmoid
5	RMSProp	baseball	229.0	0.642	1000	1000	Sin
1	RMSProp	compactiv	194.543	0.0068	1000	1000	Tanh
1	RMSProp	compactiv	940.999	2.44e+04	1000	1000	SoftRelu
1	RMSProp	compactiv	901.549	2.31e+04	1000	1000	Relu

Table H.4: All RMSProp Results of regression problems (4/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
1	RMSProp	compactiv	794.66	nan	1000	1000	Sigmoid
1	RMSProp	compactiv	162.524	0.977	1000	1000	Sin
2	RMSProp	compactiv	960.0	0.00738	1000	1000	Tanh
2	RMSProp	compactiv	858.033	2.55e + 04	1000	1000	SoftRelu
2	RMSProp	compactiv	74.567	2.41e+04	1000	1000	Relu
2	RMSProp	compactiv	269.001	nan	1000	1000	Sigmoid
2	RMSProp	compactiv	362.117	0.977	1000	1000	Sin
3	RMSProp	compactiv	20.999	0.0068	1000	1000	Tanh
3	RMSProp	compactiv	295.697	2.74e + 04	1000	1000	SoftRelu
3	RMSProp	compactiv	873.041	1.97e + 04	1000	1000	Relu
3	RMSProp	compactiv	905.028	nan	1000	1000	Sigmoid
3	RMSProp	compactiv	638.6	0.977	1000	1000	Sin
4	RMSProp	compactiv	822.609	0.00698	1000	1000	Tanh
4	RMSProp	compactiv	495.129	2.33e+04	1000	1000	SoftRelu
4	RMSProp	compactiv	653.104	2.46e+04	1000	1000	Relu
4	RMSProp	compactiv	510.592	nan	1000	1000	Sigmoid
4	RMSProp	compactiv	691.644	0.977	1000	1000	Sin
5	RMSProp	compactiv	707.998	0.00658	1000	1000	Tanh
5	RMSProp	compactiv	531.003	2.4e+04	1000	1000	SoftRelu
5	RMSProp	compactiv	714.177	2.26e+04	1000	1000	Relu
5	RMSProp	compactiv	285.115	nan	1000	1000	Sigmoid
5	RMSProp	compactiv	861.999	0.977	1000	1000	Sin
1	RMSProp	concrete	73.051	0.0179	1000	1000	Tanh
1	RMSProp	concrete	195.002	0.103	1000	1000	SoftRelu
1	RMSProp	concrete	36.002	0.109	1000	1000	Relu
1	RMSProp	concrete	808.055	nan	1000	1000	Sigmoid
1	RMSProp	concrete	165.512	0.317	1000	1000	Sin
2	RMSProp	concrete	206.0	0.0239	1000	1000	Tanh
2	RMSProp	concrete	784.913	0.102	1000	1000	SoftRelu
2	RMSProp	concrete	557.177	0.129	1000	1000	Relu
2	RMSProp	concrete	225.211	nan	1000	1000	Sigmoid
2	RMSProp	concrete	880.825	0.0981	1000	1000	Sin

Table H.5: All RMSProp Results of regression problems (5/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
3	RMSProp	concrete	172.832	0.0239	1000	1000	Tanh
3	RMSProp	concrete	640.81	0.124	1000	1000	SoftRelu
3	RMSProp	concrete	698.515	0.106	1000	1000	Relu
3	RMSProp	concrete	73.001	nan	1000	1000	Sigmoid
3	RMSProp	concrete	954.087	0.104	1000	1000	Sin
4	RMSProp	concrete	744.312	0.0289	1000	1000	Tanh
4	RMSProp	concrete	308.044	0.102	1000	1000	SoftRelu
4	RMSProp	concrete	692.0	0.115	1000	1000	Relu
4	RMSProp	concrete	608.001	nan	1000	1000	Sigmoid
4	RMSProp	concrete	911.002	0.134	1000	1000	Sin
5	RMSProp	concrete	731.888	0.0215	1000	1000	Tanh
5	RMSProp	concrete	307.073	0.102	1000	1000	SoftRelu
5	RMSProp	concrete	538.206	0.114	1000	1000	Relu
5	RMSProp	concrete	891.125	nan	1000	1000	Sigmoid
5	RMSProp	concrete	696.045	0.119	1000	1000	Sin
1	RMSProp	dee	448.3	0.0298	1000	1000	Tanh
1	RMSProp	dee	563.007	4.07e + 05	1000	1000	SoftRelu
1	RMSProp	dee	474.083	3.39e + 05	1000	1000	Relu
1	RMSProp	dee	588.001	nan	1000	1000	Sigmoid
1	RMSProp	dee	282.0	0.499	1000	1000	Sin
2	RMSProp	dee	593.999	0.0294	1000	1000	Tanh
2	RMSProp	dee	848.998	3.78e + 05	1000	1000	SoftRelu
2	RMSProp	dee	674.327	3.32e + 05	1000	1000	Relu
2	RMSProp	dee	308.76	nan	1000	1000	Sigmoid
2	RMSProp	dee	392.041	0.496	1000	1000	Sin
3	RMSProp	dee	970.431	0.0287	1000	1000	Tanh
3	RMSProp	dee	767.993	3.4e + 05	1000	1000	SoftRelu
3	RMSProp	dee	43.0	3.38e + 05	1000	1000	Relu
3	RMSProp	dee	193.0	nan	1000	1000	Sigmoid
3	RMSProp	dee	843.328	0.495	1000	1000	Sin
4	RMSProp	dee	742.202	0.0303	1000	1000	Tanh
4	RMSProp	dee	724.999	3.47e + 05	1000	1000	SoftRelu

Table H.6: All RMSProp Results of regression problems (6/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
4	RMSProp	dee	787.519	2.73e + 05	1000	1000	Relu
4	RMSProp	dee	959.001	nan	1000	1000	Sigmoid
4	RMSProp	dee	164.0	0.501	1000	1000	Sin
5	RMSProp	dee	761.5	0.03	1000	1000	Tanh
5	RMSProp	dee	289.0	4.12e+05	1000	1000	SoftRelu
5	RMSProp	dee	513.215	3.76e + 05	1000	1000	Relu
5	RMSProp	dee	111.158	nan	1000	1000	Sigmoid
5	RMSProp	dee	244.006	0.499	1000	1000	Sin
1	RMSProp	delta_ail	82.153	3.81	1000	1000	Tanh
1	RMSProp	delta_ail	205.002	6.89e + 05	1000	1000	SoftRelu
1	RMSProp	delta_ail	171.0	3.5	1000	1000	Relu
1	RMSProp	delta_ail	894.999	6.86e + 05	1000	1000	Sigmoid
1	RMSProp	delta_ail	50.001	0.391	1000	1000	Sin
2	RMSProp	delta_ail	482.001	0.389	1000	1000	Tanh
2	RMSProp	delta_ail	382.556	6.84e + 05	1000	1000	SoftRelu
2	RMSProp	delta_ail	821.504	3.45	1000	1000	Relu
2	RMSProp	delta_ail	602.05	6.85e + 05	1000	1000	Sigmoid
2	RMSProp	delta_ail	576.525	0.405	1000	1000	Sin
3	RMSProp	delta_ail	614.563	0.589	1000	1000	Tanh
3	RMSProp	delta_ail	124.87	6.9e + 05	1000	1000	SoftRelu
3	RMSProp	delta_ail	931.518	3.49	1000	1000	Relu
3	RMSProp	delta_ail	102.999	6.87e + 05	1000	1000	Sigmoid
3	RMSProp	delta_ail	598.044	0.571	1000	1000	Sin
4	RMSProp	delta_ail	109.536	0.419	1000	1000	Tanh
4	RMSProp	delta_ail	842.564	6.89e + 05	1000	1000	SoftRelu
4	RMSProp	delta_ail	592.24	3.53	1000	1000	Relu
4	RMSProp	delta_ail	644.57	6.85e + 05	1000	1000	Sigmoid
4	RMSProp	delta_ail	611.002	1.08	1000	1000	Sin
5	RMSProp	delta_ail	190.615	0.937	1000	1000	Tanh
5	RMSProp	delta_ail	268.164	6.93e + 05	1000	1000	SoftRelu
5	RMSProp	delta_ail	156.0	3.5	1000	1000	Relu
5	RMSProp	delta_ail	741.1	6.85e + 05	1000	1000	Sigmoid

Table H.7: All RMSProp Results of regression problems (7/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
5	RMSProp	delta_ail	931.001	3.19	1000	1000	Sin
1	RMSProp	delta_elv	59.09	1.72e + 04	1000	1000	Tanh
1	RMSProp	delta_elv	13.0	4.57e + 04	1000	1000	SoftRelu
1	RMSProp	delta_elv	751.073	1.35e + 04	1000	1000	Relu
1	RMSProp	delta_elv	425.0	1.17e + 04	1000	1000	Sigmoid
1	RMSProp	delta_elv	604.541	1.07e + 04	1000	1000	Sin
2	RMSProp	delta_elv	934.526	2.05e+04	1000	1000	Tanh
2	RMSProp	delta_elv	528.037	3.76e + 04	1000	1000	SoftRelu
2	RMSProp	delta_elv	441.048	1.34e+04	1000	1000	Relu
2	RMSProp	delta_elv	630.529	1.19e+04	1000	1000	Sigmoid
2	RMSProp	delta_elv	109.0	9.7e + 03	1000	1000	Sin
3	RMSProp	delta_elv	13.157	1.24e+04	1000	1000	Tanh
3	RMSProp	delta_elv	874.822	2.52e + 04	1000	1000	SoftRelu
3	RMSProp	delta_elv	741.586	1.32e+04	1000	1000	Relu
3	RMSProp	delta_elv	834.056	1.23e+04	1000	1000	Sigmoid
3	RMSProp	delta_elv	127.623	9.28e + 03	1000	1000	Sin
4	RMSProp	delta_elv	623.058	1.17e + 04	1000	1000	Tanh
4	RMSProp	delta_elv	79.817	1.88e + 04	1000	1000	SoftRelu
4	RMSProp	delta_elv	889.514	1.5e + 04	1000	1000	Relu
4	RMSProp	delta_elv	680.066	1.17e + 04	1000	1000	Sigmoid
4	RMSProp	delta_elv	700.0	2.29e+04	1000	1000	Sin
5	RMSProp	delta_elv	661.511	1.56e + 04	1000	1000	Tanh
5	RMSProp	delta_elv	990.606	3.35e+04	1000	1000	SoftRelu
5	RMSProp	delta_elv	862.158	1.53e+04	1000	1000	Relu
5	RMSProp	delta_elv	692.632	1.18e + 04	1000	1000	Sigmoid
5	RMSProp	delta_elv	606.999	1.36e + 04	1000	1000	Sin
1	RMSProp	diabetes	422.958	0.0128	1000	1000	Tanh
1	RMSProp	diabetes	564.987	0.0143	1000	1000	SoftRelu
1	RMSProp	diabetes	571.997	0.0146	1000	1000	Relu
1	RMSProp	diabetes	504.697	0.0143	1000	1000	Sigmoid
1	RMSProp	diabetes	602.999	0.0113	1000	1000	Sin
2	RMSProp	diabetes	468.984	0.0127	1000	1000	Tanh

Table H.8: All RMSProp Results of regression problems (8/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
2	RMSProp	diabetes	741.011	0.0146	1000	1000	SoftRelu
2	RMSProp	diabetes	499.042	0.0143	1000	1000	Relu
2	RMSProp	diabetes	610.09	0.0145	1000	1000	Sigmoid
2	RMSProp	diabetes	733.333	0.0128	1000	1000	Sin
3	RMSProp	diabetes	510.068	0.0129	1000	1000	Tanh
3	RMSProp	diabetes	660.24	0.0148	1000	1000	SoftRelu
3	RMSProp	diabetes	540.423	0.0143	1000	1000	Relu
3	RMSProp	diabetes	673.195	0.0142	1000	1000	Sigmoid
3	RMSProp	diabetes	698.86	0.0129	1000	1000	Sin
4	RMSProp	diabetes	435.12	0.0126	1000	1000	Tanh
4	RMSProp	diabetes	901.356	0.0152	1000	1000	SoftRelu
4	RMSProp	diabetes	523.864	0.0148	1000	1000	Relu
4	RMSProp	diabetes	487.999	0.0142	1000	1000	Sigmoid
4	RMSProp	diabetes	542.0	0.0131	1000	1000	Sin
5	RMSProp	diabetes	394.081	0.013	1000	1000	Tanh
5	RMSProp	diabetes	682.129	0.0147	1000	1000	SoftRelu
5	RMSProp	diabetes	440.968	0.0146	1000	1000	Relu
5	RMSProp	diabetes	470.983	0.0145	1000	1000	Sigmoid
5	RMSProp	diabetes	583.994	0.0131	1000	1000	Sin
1	RMSProp	ele-1	660.001	0.416	1000	1000	Tanh
1	RMSProp	ele-1	268.256	0.0865	1000	1000	SoftRelu
1	RMSProp	ele-1	27.913	0.0888	1000	1000	Relu
1	RMSProp	ele-1	980.01	nan	1000	1000	Sigmoid
1	RMSProp	ele-1	375.017	0.889	1000	1000	Sin
2	RMSProp	ele-1	843.0	0.416	1000	1000	Tanh
2	RMSProp	ele-1	396.144	0.0865	1000	1000	SoftRelu
2	RMSProp	ele-1	234.904	0.0889	1000	1000	Relu
2	RMSProp	ele-1	875.799	nan	1000	1000	Sigmoid
2	RMSProp	ele-1	498.121	0.888	1000	1000	Sin
3	RMSProp	ele-1	935.763	0.417	1000	1000	Tanh
3	RMSProp	ele-1	817.956	0.0866	1000	1000	SoftRelu
3	RMSProp	ele-1	246.132	0.0888	1000	1000	Relu

Table H.9: All RMSProp Results of regression problems (9/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
3	RMSProp	ele-1	119.097	nan	1000	1000	Sigmoid
3	RMSProp	ele-1	941.008	0.887	1000	1000	Sin
4	RMSProp	ele-1	504.999	0.416	1000	1000	Tanh
4	RMSProp	ele-1	646.824	0.0867	1000	1000	SoftRelu
4	RMSProp	ele-1	398.977	0.0888	1000	1000	Relu
4	RMSProp	ele-1	582.001	nan	1000	1000	Sigmoid
4	RMSProp	ele-1	279.999	0.888	1000	1000	Sin
5	RMSProp	ele-1	687.072	0.417	1000	1000	Tanh
5	RMSProp	ele-1	810.341	0.0865	1000	1000	SoftRelu
5	RMSProp	ele-1	61.982	0.0889	1000	1000	Relu
5	RMSProp	ele-1	585.922	nan	1000	1000	Sigmoid
5	RMSProp	ele-1	544.37	0.881	1000	1000	Sin
1	RMSProp	ele-2	127.519	0.575	1000	1000	Tanh
1	RMSProp	ele-2	446.062	0.00421	1000	1000	SoftRelu
1	RMSProp	ele-2	495.46	0.00409	1000	1000	Relu
1	RMSProp	ele-2	976.03	0.586	1000	1000	Sigmoid
1	RMSProp	ele-2	170.312	0.64	1000	1000	Sin
2	RMSProp	ele-2	128.002	0.575	1000	1000	Tanh
2	RMSProp	ele-2	935.523	0.00421	1000	1000	SoftRelu
2	RMSProp	ele-2	522.761	0.00405	1000	1000	Relu
2	RMSProp	ele-2	2.517	0.586	1000	1000	Sigmoid
2	RMSProp	ele-2	440.01	0.647	1000	1000	Sin
3	RMSProp	ele-2	361.084	0.575	1000	1000	Tanh
3	RMSProp	ele-2	959.227	0.00421	1000	1000	SoftRelu
3	RMSProp	ele-2	593.238	0.00407	1000	1000	Relu
3	RMSProp	ele-2	487.398	0.586	1000	1000	Sigmoid
3	RMSProp	ele-2	406.999	0.636	1000	1000	Sin
4	RMSProp	ele-2	813.958	0.575	1000	1000	Tanh
4	RMSProp	ele-2	191.408	0.0042	1000	1000	SoftRelu
4	RMSProp	ele-2	120.025	0.00409	1000	1000	Relu
4	RMSProp	ele-2	771.0	0.587	1000	1000	Sigmoid
4	RMSProp	ele-2	981.033	0.642	1000	1000	Sin

Table H.10: All RMSProp Results of regression problems (10/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
5	RMSProp	ele-2	151.035	0.574	1000	1000	Tanh
5	RMSProp	ele-2	774.075	0.00421	1000	1000	SoftRelu
5	RMSProp	ele-2	584.522	0.00406	1000	1000	Relu
5	RMSProp	ele-2	236.579	0.587	1000	1000	Sigmoid
5	RMSProp	ele-2	815.209	0.643	1000	1000	Sin
1	RMSProp	forestFires	863.075	0.867	1000	1000	Tanh
1	RMSProp	forestFires	500.986	0.926	1000	1000	SoftRelu
1	RMSProp	forestFires	247.001	0.925	1000	1000	Relu
1	RMSProp	forestFires	212.0	nan	1000	1000	Sigmoid
1	RMSProp	forestFires	787.991	0.416	1000	1000	Sin
2	RMSProp	forestFires	129.364	0.865	1000	1000	Tanh
2	RMSProp	forestFires	659.001	0.924	1000	1000	SoftRelu
2	RMSProp	forestFires	588.435	0.922	1000	1000	Relu
2	RMSProp	forestFires	183.002	nan	1000	1000	Sigmoid
2	RMSProp	forestFires	914.131	0.461	1000	1000	Sin
3	RMSProp	forestFires	303.029	0.867	1000	1000	Tanh
3	RMSProp	forestFires	8.025	0.918	1000	1000	SoftRelu
3	RMSProp	forestFires	464.001	0.918	1000	1000	Relu
3	RMSProp	forestFires	756.878	nan	1000	1000	Sigmoid
3	RMSProp	forestFires	569.094	0.464	1000	1000	Sin
4	RMSProp	forestFires	346.547	0.864	1000	1000	Tanh
4	RMSProp	forestFires	87.0	0.924	1000	1000	SoftRelu
4	RMSProp	forestFires	853.995	0.926	1000	1000	Relu
4	RMSProp	forestFires	220.0	nan	1000	1000	Sigmoid
4	RMSProp	forestFires	522.0	0.47	1000	1000	Sin
5	RMSProp	forestFires	850.008	0.865	1000	1000	Tanh
5	RMSProp	forestFires	82.893	0.923	1000	1000	SoftRelu
5	RMSProp	forestFires	248.069	0.924	1000	1000	Relu
5	RMSProp	forestFires	801.338	nan	1000	1000	Sigmoid
5	RMSProp	forestFires	697.166	0.511	1000	1000	Sin
1	RMSProp	friedman	581.002	0.0303	1000	1000	Tanh
1	RMSProp	friedman	486.306	0.0307	1000	1000	SoftRelu

Table H.11: All RMSProp Results of regression problems (11/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
1	RMSProp	friedman	676.135	0.0126	1000	1000	Relu
1	RMSProp	friedman	648.521	0.0304	1000	1000	Sigmoid
1	RMSProp	friedman	600.356	0.0304	1000	1000	Sin
2	RMSProp	friedman	479.452	0.0303	1000	1000	Tanh
2	RMSProp	friedman	775.07	0.0307	1000	1000	SoftRelu
2	RMSProp	friedman	226.109	0.0115	1000	1000	Relu
2	RMSProp	friedman	556.516	0.0304	1000	1000	Sigmoid
2	RMSProp	friedman	484.085	0.0304	1000	1000	Sin
3	RMSProp	friedman	572.067	0.0303	1000	1000	Tanh
3	RMSProp	friedman	349.365	0.0307	1000	1000	SoftRelu
3	RMSProp	friedman	177.822	0.0127	1000	1000	Relu
3	RMSProp	friedman	59.0	0.0304	1000	1000	Sigmoid
3	RMSProp	friedman	627.979	0.0304	1000	1000	Sin
4	RMSProp	friedman	992.441	0.0303	1000	1000	Tanh
4	RMSProp	friedman	771.52	0.0307	1000	1000	SoftRelu
4	RMSProp	friedman	221.001	0.0122	1000	1000	Relu
4	RMSProp	friedman	710.001	0.0304	1000	1000	Sigmoid
4	RMSProp	friedman	370.028	0.0304	1000	1000	Sin
5	RMSProp	friedman	590.501	0.0303	1000	1000	Tanh
5	RMSProp	friedman	702.551	0.0307	1000	1000	SoftRelu
5	RMSProp	friedman	295.198	0.0155	1000	1000	Relu
5	RMSProp	friedman	509.934	0.0304	1000	1000	Sigmoid
5	RMSProp	friedman	552.103	0.0304	1000	1000	Sin
1	RMSProp	laser	55.0	0.005	1000	1000	Tanh
1	RMSProp	laser	736.21	0.0135	1000	1000	SoftRelu
1	RMSProp	laser	990.539	0.013	1000	1000	Relu
1	RMSProp	laser	551.057	0.00531	1000	1000	Sigmoid
1	RMSProp	laser	974.772	0.0117	1000	1000	Sin
2	RMSProp	laser	887.042	0.00503	1000	1000	Tanh
2	RMSProp	laser	253.002	0.0138	1000	1000	SoftRelu
2	RMSProp	laser	341.295	0.013	1000	1000	Relu
2	RMSProp	laser	481.005	0.00539	1000	1000	Sigmoid

Table H.12: All RMSProp Results of regression problems (12/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
2	RMSProp	laser	868.0	0.009	1000	1000	Sin
3	RMSProp	laser	931.003	0.00501	1000	1000	Tanh
3	RMSProp	laser	706.259	0.0139	1000	1000	SoftRelu
3	RMSProp	laser	321.406	0.0134	1000	1000	Relu
3	RMSProp	laser	177.815	0.00548	1000	1000	Sigmoid
3	RMSProp	laser	948.479	0.00824	1000	1000	Sin
4	RMSProp	laser	478.845	0.0051	1000	1000	Tanh
4	RMSProp	laser	464.325	0.0138	1000	1000	SoftRelu
4	RMSProp	laser	553.009	0.0131	1000	1000	Relu
4	RMSProp	laser	422.511	0.00541	1000	1000	Sigmoid
4	RMSProp	laser	196.736	0.00987	1000	1000	Sin
5	RMSProp	laser	985.011	0.00503	1000	1000	Tanh
5	RMSProp	laser	74.561	0.0134	1000	1000	SoftRelu
5	RMSProp	laser	330.552	0.0128	1000	1000	Relu
5	RMSProp	laser	476.56	0.00538	1000	1000	Sigmoid
5	RMSProp	laser	518.11	0.00917	1000	1000	Sin
1	RMSProp	machineCPU	692.984	0.573	1000	1000	Tanh
1	RMSProp	machineCPU	200.31	0.858	1000	1000	SoftRelu
1	RMSProp	machineCPU	851.675	0.886	1000	1000	Relu
1	RMSProp	machineCPU	925.004	nan	1000	1000	Sigmoid
1	RMSProp	machineCPU	868.305	0.995	1000	1000	Sin
2	RMSProp	machineCPU	730.506	0.579	1000	1000	Tanh
2	RMSProp	machineCPU	435.998	0.873	1000	1000	SoftRelu
2	RMSProp	machineCPU	902.316	0.679	1000	1000	Relu
2	RMSProp	machineCPU	993.275	nan	1000	1000	Sigmoid
2	RMSProp	machineCPU	823.966	0.994	1000	1000	Sin
3	RMSProp	machineCPU	702.0	0.575	1000	1000	Tanh
3	RMSProp	machineCPU	27.735	0.743	1000	1000	SoftRelu
3	RMSProp	machineCPU	980.794	0.705	1000	1000	Relu
3	RMSProp	machineCPU	211.224	nan	1000	1000	Sigmoid
3	RMSProp	machineCPU	977.31	0.993	1000	1000	Sin
4	RMSProp	machineCPU	825.245	0.557	1000	1000	Tanh

Table H.13: All RMSProp Results of regression problems (13/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
4	RMSProp	machineCPU	411.0	0.91	1000	1000	SoftRelu
4	RMSProp	machineCPU	346.962	0.882	1000	1000	Relu
4	RMSProp	machineCPU	254.031	nan	1000	1000	Sigmoid
4	RMSProp	machineCPU	59.999	0.995	1000	1000	Sin
5	RMSProp	machineCPU	727.998	0.58	1000	1000	Tanh
5	RMSProp	machineCPU	362.581	0.886	1000	1000	SoftRelu
5	RMSProp	machineCPU	940.0	0.894	1000	1000	Relu
5	RMSProp	machineCPU	922.11	nan	1000	1000	Sigmoid
5	RMSProp	machineCPU	781.007	0.993	1000	1000	Sin
1	RMSProp	mortgage	204.351	0.0392	1000	1000	Tanh
1	RMSProp	mortgage	426.001	10.5	1000	1000	SoftRelu
1	RMSProp	mortgage	413.526	10.5	1000	1000	Relu
1	RMSProp	mortgage	979.516	nan	1000	1000	Sigmoid
1	RMSProp	mortgage	176.051	0.775	1000	1000	Sin
2	RMSProp	mortgage	210.114	0.0198	1000	1000	Tanh
2	RMSProp	mortgage	875.054	11.7	1000	1000	SoftRelu
2	RMSProp	mortgage	699.085	13.8	1000	1000	Relu
2	RMSProp	mortgage	735.0	nan	1000	1000	Sigmoid
2	RMSProp	mortgage	984.002	0.795	1000	1000	Sin
3	RMSProp	mortgage	247.081	0.0267	1000	1000	Tanh
3	RMSProp	mortgage	427.406	10.4	1000	1000	SoftRelu
3	RMSProp	mortgage	688.184	8.17	1000	1000	Relu
3	RMSProp	mortgage	230.057	nan	1000	1000	Sigmoid
3	RMSProp	mortgage	915.107	0.779	1000	1000	Sin
4	RMSProp	mortgage	549.79	0.0121	1000	1000	Tanh
4	RMSProp	mortgage	532.066	13	1000	1000	SoftRelu
4	RMSProp	mortgage	919.818	11.6	1000	1000	Relu
4	RMSProp	mortgage	677.001	nan	1000	1000	Sigmoid
4	RMSProp	mortgage	90.394	0.786	1000	1000	Sin
5	RMSProp	mortgage	254.001	0.0236	1000	1000	Tanh
5	RMSProp	mortgage	633.353	9.08	1000	1000	SoftRelu
5	RMSProp	mortgage	472.951	8.74	1000	1000	Relu

Table H.14: All RMSProp Results of regression problems (14/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
5	RMSProp	mortgage	964.458	nan	1000	1000	Sigmoid
5	RMSProp	mortgage	774.17	0.794	1000	1000	Sin
1	RMSProp	plastic	683.623	0.022	1000	1000	Tanh
1	RMSProp	plastic	778.535	0.0452	1000	1000	SoftRelu
1	RMSProp	plastic	403.006	0.0419	1000	1000	Relu
1	RMSProp	plastic	339.041	0.018	1000	1000	Sigmoid
1	RMSProp	plastic	815.003	0.0134	1000	1000	Sin
2	RMSProp	plastic	770.536	0.0236	1000	1000	Tanh
2	RMSProp	plastic	497.042	0.0473	1000	1000	SoftRelu
2	RMSProp	plastic	18.45	0.0441	1000	1000	Relu
2	RMSProp	plastic	871.033	0.017	1000	1000	Sigmoid
2	RMSProp	plastic	102.003	0.0274	1000	1000	Sin
3	RMSProp	plastic	301.092	0.0219	1000	1000	Tanh
3	RMSProp	plastic	0.326	0.0481	1000	1000	SoftRelu
3	RMSProp	plastic	933.635	0.0453	1000	1000	Relu
3	RMSProp	plastic	319.001	0.0181	1000	1000	Sigmoid
3	RMSProp	plastic	814.015	0.0104	1000	1000	Sin
4	RMSProp	plastic	1.556	0.0234	1000	1000	Tanh
4	RMSProp	plastic	829.36	0.0472	1000	1000	SoftRelu
4	RMSProp	plastic	59.073	0.0457	1000	1000	Relu
4	RMSProp	plastic	664.0	0.0183	1000	1000	Sigmoid
4	RMSProp	plastic	766.001	0.0109	1000	1000	Sin
5	RMSProp	plastic	37.182	0.022	1000	1000	Tanh
5	RMSProp	plastic	750.616	0.0456	1000	1000	SoftRelu
5	RMSProp	plastic	646.624	0.0425	1000	1000	Relu
5	RMSProp	plastic	780.537	0.0181	1000	1000	Sigmoid
5	RMSProp	plastic	917.302	0.0144	1000	1000	Sin
1	RMSProp	puma32h	912.058	113	1000	1000	Tanh
1	RMSProp	puma32h	783.179	1.15e + 03	1000	1000	SoftRelu
1	RMSProp	puma32h	39.129	947	1000	1000	Relu
1	RMSProp	puma32h	135.415	67.7	1000	1000	Sigmoid
1	RMSProp	puma32h	144.098	0.262	1000	1000	Sin

Table H.15: All RMSProp Results of regression problems (15/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
2	RMSProp	puma32h	877.262	47.4	1000	1000	Tanh
2	RMSProp	puma32h	79.583	992	1000	1000	SoftRelu
2	RMSProp	puma32h	759.638	911	1000	1000	Relu
2	RMSProp	puma32h	763.051	70.6	1000	1000	Sigmoid
2	RMSProp	puma32h	41.575	0.25	1000	1000	Sin
3	RMSProp	puma32h	969.343	70	1000	1000	Tanh
3	RMSProp	puma32h	485.544	897	1000	1000	SoftRelu
3	RMSProp	puma32h	463.638	784	1000	1000	Relu
3	RMSProp	puma32h	768.101	77.9	1000	1000	Sigmoid
3	RMSProp	puma32h	0.066	0.24	1000	1000	Sin
4	RMSProp	puma32h	435.638	58.2	1000	1000	Tanh
4	RMSProp	puma32h	138.513	977	1000	1000	SoftRelu
4	RMSProp	puma32h	555.211	957	1000	1000	Relu
4	RMSProp	puma32h	946.56	80.2	1000	1000	Sigmoid
4	RMSProp	puma32h	298.046	0.285	1000	1000	Sin
5	RMSProp	puma32h	11.047	86.4	1000	1000	Tanh
5	RMSProp	puma32h	105.518	1.12e+03	1000	1000	SoftRelu
5	RMSProp	puma32h	887.163	990	1000	1000	Relu
5	RMSProp	puma32h	924.076	75.4	1000	1000	Sigmoid
5	RMSProp	puma32h	936.999	0.221	1000	1000	Sin
1	RMSProp	quake	41.023	0.00586	1000	1000	Tanh
1	RMSProp	quake	803.229	0.0777	1000	1000	SoftRelu
1	RMSProp	quake	275.002	0.108	1000	1000	Relu
1	RMSProp	quake	330.002	nan	1000	1000	Sigmoid
1	RMSProp	quake	854.157	0.01	1000	1000	Sin
2	RMSProp	quake	501.108	0.00539	1000	1000	Tanh
2	RMSProp	quake	135.679	0.108	1000	1000	SoftRelu
2	RMSProp	quake	831.875	0.162	1000	1000	Relu
2	RMSProp	quake	743.042	nan	1000	1000	Sigmoid
2	RMSProp	quake	959.001	0.0151	1000	1000	Sin
3	RMSProp	quake	304.972	0.00636	1000	1000	Tanh
3	RMSProp	quake	553.04	0.0792	1000	1000	SoftRelu

Table H.16: All RMSProp Results of regression problems (16/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
3	RMSProp	quake	860.001	0.136	1000	1000	Relu
3	RMSProp	quake	190.052	nan	1000	1000	Sigmoid
3	RMSProp	quake	907.96	0.0118	1000	1000	Sin
4	RMSProp	quake	362.904	0.00596	1000	1000	Tanh
4	RMSProp	quake	860.999	0.068	1000	1000	SoftRelu
4	RMSProp	quake	772.907	0.104	1000	1000	Relu
4	RMSProp	quake	449.002	nan	1000	1000	Sigmoid
4	RMSProp	quake	359.075	0.0126	1000	1000	Sin
5	RMSProp	quake	503.361	0.00568	1000	1000	Tanh
5	RMSProp	quake	764.69	0.0873	1000	1000	SoftRelu
5	RMSProp	quake	920.0	0.108	1000	1000	Relu
5	RMSProp	quake	844.555	nan	1000	1000	Sigmoid
5	RMSProp	quake	519.243	0.00721	1000	1000	Sin
1	RMSProp	stock	816.009	0.00204	1000	1000	Tanh
1	RMSProp	stock	610.938	0.0041	1000	1000	SoftRelu
1	RMSProp	stock	904.063	0.00378	1000	1000	Relu
1	RMSProp	stock	481.002	0.00295	1000	1000	Sigmoid
1	RMSProp	stock	771.093	0.00145	1000	1000	Sin
2	RMSProp	stock	902.271	0.00212	1000	1000	Tanh
2	RMSProp	stock	779.346	0.00387	1000	1000	SoftRelu
2	RMSProp	stock	248.091	0.00377	1000	1000	Relu
2	RMSProp	stock	164.002	0.0029	1000	1000	Sigmoid
2	RMSProp	stock	687.0	0.000691	1000	1000	Sin
3	RMSProp	stock	357.353	0.00216	1000	1000	Tanh
3	RMSProp	stock	111.262	0.00408	1000	1000	SoftRelu
3	RMSProp	stock	162.0	0.004	1000	1000	Relu
3	RMSProp	stock	274.516	0.00293	1000	1000	Sigmoid
3	RMSProp	stock	241.763	0.00151	1000	1000	Sin
4	RMSProp	stock	810.01	0.00209	1000	1000	Tanh
4	RMSProp	stock	559.001	0.00429	1000	1000	SoftRelu
4	RMSProp	stock	849.529	0.00401	1000	1000	Relu
4	RMSProp	stock	773.07	0.00285	1000	1000	Sigmoid

Table H.17: All RMSProp Results of regression problems (17/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
4	RMSProp	stock	529.993	0.00124	1000	1000	Sin
5	RMSProp	stock	598.0	0.00212	1000	1000	Tanh
5	RMSProp	stock	662.045	0.00397	1000	1000	SoftRelu
5	RMSProp	stock	218.003	0.00377	1000	1000	Relu
5	RMSProp	stock	409.466	0.00286	1000	1000	Sigmoid
5	RMSProp	stock	311.976	0.00127	1000	1000	Sin
1	RMSProp	tic	266.567	2.5	1000	1000	Tanh
1	RMSProp	tic	336.622	0.944	1000	1000	SoftRelu
1	RMSProp	tic	991.001	0.701	1000	1000	Relu
1	RMSProp	tic	956.001	1.3	1000	1000	Sigmoid
1	RMSProp	tic	499.0	3.31	1000	1000	Sin
2	RMSProp	tic	62.612	1.54	1000	1000	Tanh
2	RMSProp	tic	895.845	0.928	1000	1000	SoftRelu
2	RMSProp	tic	56.518	0.72	1000	1000	Relu
2	RMSProp	tic	630.002	1.36	1000	1000	Sigmoid
2	RMSProp	tic	388.511	1.07	1000	1000	Sin
3	RMSProp	tic	186.001	2.73	1000	1000	Tanh
3	RMSProp	tic	14.815	0.955	1000	1000	SoftRelu
3	RMSProp	tic	73.094	0.667	1000	1000	Relu
3	RMSProp	tic	428.593	1.37	1000	1000	Sigmoid
3	RMSProp	tic	897.13	2.91	1000	1000	Sin
4	RMSProp	tic	786.655	5.64	1000	1000	Tanh
4	RMSProp	tic	536.075	0.975	1000	1000	SoftRelu
4	RMSProp	tic	44.115	0.69	1000	1000	Relu
4	RMSProp	tic	900.559	1.37	1000	1000	Sigmoid
4	RMSProp	tic	50.059	0.763	1000	1000	Sin
5	RMSProp	tic	843.0	1.95	1000	1000	Tanh
5	RMSProp	tic	688.0	0.936	1000	1000	SoftRelu
5	RMSProp	tic	346.848	0.639	1000	1000	Relu
5	RMSProp	tic	400.089	1.32	1000	1000	Sigmoid
5	RMSProp	tic	399.0	2.59	1000	1000	Sin
1	RMSProp	treasury	190.424	0.0236	1000	1000	Tanh

Table H.18: All RMSProp Results of regression problems (18/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
1	RMSProp	treasury	629.408	11	1000	1000	SoftRelu
1	RMSProp	treasury	881.363	8.05	1000	1000	Relu
1	RMSProp	treasury	827.063	nan	1000	1000	Sigmoid
1	RMSProp	treasury	982.101	0.789	1000	1000	Sin
2	RMSProp	treasury	272.207	0.0122	1000	1000	Tanh
2	RMSProp	treasury	877.519	8.42	1000	1000	SoftRelu
2	RMSProp	treasury	618.04	10.4	1000	1000	Relu
2	RMSProp	treasury	286.999	nan	1000	1000	Sigmoid
2	RMSProp	treasury	2.92	0.805	1000	1000	Sin
3	RMSProp	treasury	220.354	0.0437	1000	1000	Tanh
3	RMSProp	treasury	693.255	12.6	1000	1000	SoftRelu
3	RMSProp	treasury	725.443	10.5	1000	1000	Relu
3	RMSProp	treasury	879.926	nan	1000	1000	Sigmoid
3	RMSProp	treasury	655.001	0.804	1000	1000	Sin
4	RMSProp	treasury	282.306	0.0305	1000	1000	Tanh
4	RMSProp	treasury	536.199	13.2	1000	1000	SoftRelu
4	RMSProp	treasury	334.248	15.9	1000	1000	Relu
4	RMSProp	treasury	359.059	nan	1000	1000	Sigmoid
4	RMSProp	treasury	901.001	0.795	1000	1000	Sin
5	RMSProp	treasury	895.01	0.021	1000	1000	Tanh
5	RMSProp	treasury	606.001	14.1	1000	1000	SoftRelu
5	RMSProp	treasury	699.003	10.4	1000	1000	Relu
5	RMSProp	treasury	346.82	nan	1000	1000	Sigmoid
5	RMSProp	treasury	632.501	0.787	1000	1000	Sin
1	RMSProp	wankara	566.225	0.00171	1000	1000	Tanh
1	RMSProp	wankara	660.005	0.00182	1000	1000	SoftRelu
1	RMSProp	wankara	832.006	0.00189	1000	1000	Relu
1	RMSProp	wankara	437.223	0.00141	1000	1000	Sigmoid
1	RMSProp	wankara	573.598	0.000945	1000	1000	Sin
2	RMSProp	wankara	551.132	0.00169	1000	1000	Tanh
2	RMSProp	wankara	656.522	0.00178	1000	1000	SoftRelu
2	RMSProp	wankara	716.087	0.00178	1000	1000	Relu

Table H.19: All RMSProp Results of regression problems (19/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
2	RMSProp	wankara	27.611	0.00142	1000	1000	Sigmoid
2	RMSProp	wankara	99.467	0.00104	1000	1000	Sin
3	RMSProp	wankara	977.243	0.00169	1000	1000	Tanh
3	RMSProp	wankara	919.647	0.00183	1000	1000	SoftRelu
3	RMSProp	wankara	830.425	0.00184	1000	1000	Relu
3	RMSProp	wankara	793.516	0.00138	1000	1000	Sigmoid
3	RMSProp	wankara	32.0	0.00294	1000	1000	Sin
4	RMSProp	wankara	190.461	0.0017	1000	1000	Tanh
4	RMSProp	wankara	567.2	0.00179	1000	1000	SoftRelu
4	RMSProp	wankara	173.102	0.00177	1000	1000	Relu
4	RMSProp	wankara	790.58	0.00144	1000	1000	Sigmoid
4	RMSProp	wankara	462.001	0.00234	1000	1000	Sin
5	RMSProp	wankara	718.181	0.00172	1000	1000	Tanh
5	RMSProp	wankara	626.631	0.00189	1000	1000	SoftRelu
5	RMSProp	wankara	201.074	0.00195	1000	1000	Relu
5	RMSProp	wankara	41.161	0.0014	1000	1000	Sigmoid
5	RMSProp	wankara	675.201	0.00205	1000	1000	Sin
1	RMSProp	wizmir	207.009	0.00153	1000	1000	Tanh
1	RMSProp	wizmir	506.215	0.00135	1000	1000	SoftRelu
1	RMSProp	wizmir	662.242	0.00144	1000	1000	Relu
1	RMSProp	wizmir	273.0	0.00138	1000	1000	Sigmoid
1	RMSProp	wizmir	125.369	0.00173	1000	1000	Sin
2	RMSProp	wizmir	232.503	0.00157	1000	1000	Tanh
2	RMSProp	wizmir	571.636	0.00144	1000	1000	SoftRelu
2	RMSProp	wizmir	178.217	0.00143	1000	1000	Relu
2	RMSProp	wizmir	328.552	0.00142	1000	1000	Sigmoid
2	RMSProp	wizmir	469.097	0.00147	1000	1000	Sin
3	RMSProp	wizmir	432.191	0.00159	1000	1000	Tanh
3	RMSProp	wizmir	894.043	0.00143	1000	1000	SoftRelu
3	RMSProp	wizmir	307.12	0.00149	1000	1000	Relu
3	RMSProp	wizmir	4.002	0.00142	1000	1000	Sigmoid
3	RMSProp	wizmir	423.102	0.002	1000	1000	Sin

Table H.20: All RMSProp Results of regression problems (20/21).

Run	Method	Dataset	Time (s)	Norm Loss	n_e	k	$\phi(\cdot)$
4	RMSProp	wizmir	424.139	0.00164	1000	1000	Tanh
4	RMSProp	wizmir	427.61	0.00146	1000	1000	SoftRelu
4	RMSProp	wizmir	521.001	0.0015	1000	1000	Relu
4	RMSProp	wizmir	983.002	0.00138	1000	1000	Sigmoid
4	RMSProp	wizmir	312.0	0.0013	1000	1000	Sin
5	RMSProp	wizmir	182.598	0.00161	1000	1000	Tanh
5	RMSProp	wizmir	481.081	0.00146	1000	1000	SoftRelu
5	RMSProp	wizmir	392.288	0.00139	1000	1000	Relu
5	RMSProp	wizmir	289.219	0.00133	1000	1000	Sigmoid
5	RMSProp	wizmir	948.89	0.00129	1000	1000	Sin

Table H.21: All RMSProp Results of regression problems (21/21).

Appendix I

CSEEM Classification All Results

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	appendicitis	9.001	0.943	8	25	Tanh	ClipRound
1	CSEEM	appendicitis	18.999	0.934	16	30	Tanh	ClipRound
1	CSEEM	appendicitis	42.001	0.915	32	21	Tanh	ClipRound
1	CSEEM	appendicitis	7.0	0.915	8	15	SoftRelu	ClipRound
1	CSEEM	appendicitis	22.992	0.915	16	16	SoftRelu	ClipRound
1	CSEEM	appendicitis	53.998	0.925	32	23	SoftRelu	ClipRound
1	CSEEM	appendicitis	8.0	0.934	8	22	Relu	ClipRound
1	CSEEM	appendicitis	18.986	0.934	16	31	Relu	ClipRound
1	CSEEM	appendicitis	50.001	0.934	32	27	Relu	ClipRound
1	CSEEM	appendicitis	14.999	0.925	8	28	Sigmoid	ClipRound
1	CSEEM	appendicitis	18.987	0.915	16	24	Sigmoid	ClipRound
1	CSEEM	appendicitis	46.999	0.943	32	28	Sigmoid	ClipRound
1	CSEEM	appendicitis	14.001	0.925	8	22	Sin	ClipRound
1	CSEEM	appendicitis	14.995	0.925	16	28	Sin	ClipRound
1	CSEEM	appendicitis	74.0	0.925	32	31	Sin	ClipRound
2	CSEEM	appendicitis	7.0	0.906	8	30	Tanh	ClipRound
2	CSEEM	appendicitis	41.998	0.962	16	37	Tanh	ClipRound
2	CSEEM	appendicitis	48.0	0.915	32	18	Tanh	ClipRound
2	CSEEM	appendicitis	5.999	0.925	8	17	SoftRelu	ClipRound
2	CSEEM	appendicitis	12.998	0.915	16	26	SoftRelu	ClipRound
2	CSEEM	appendicitis	46.999	0.925	32	20	SoftRelu	ClipRound
2	CSEEM	appendicitis	7.999	0.906	8	24	Relu	ClipRound
2	CSEEM	appendicitis	22.007	0.934	16	25	Relu	ClipRound
2	CSEEM	appendicitis	80.0	0.925	32	15	Relu	ClipRound
2	CSEEM	appendicitis	12.997	0.906	8	18	Sigmoid	ClipRound
2	CSEEM	appendicitis	48.061	0.925	16	19	Sigmoid	ClipRound
2	CSEEM	appendicitis	67.999	0.925	32	26	Sigmoid	ClipRound
2	CSEEM	appendicitis	12.0	0.896	8	29	Sin	ClipRound
2	CSEEM	appendicitis	14.993	0.906	16	4	Sin	ClipRound
2	CSEEM	appendicitis	68.0	0.925	32	26	Sin	ClipRound
3	CSEEM	appendicitis	10.001	0.915	8	20	Tanh	ClipRound
3	CSEEM	appendicitis	22.996	0.934	16	30	Tanh	ClipRound

Table I.1: All CSEEM Results of classification problems (1/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	appendicitis	32.999	0.943	32	30	Tanh	ClipRound
3	CSEEM	appendicitis	18.001	0.925	8	17	SoftRelu	ClipRound
3	CSEEM	appendicitis	18.996	0.934	16	19	SoftRelu	ClipRound
3	CSEEM	appendicitis	49.999	0.934	32	29	SoftRelu	ClipRound
3	CSEEM	appendicitis	6.0	0.934	8	29	Relu	ClipRound
3	CSEEM	appendicitis	40.998	0.934	16	14	Relu	ClipRound
3	CSEEM	appendicitis	35.999	0.962	32	35	Relu	ClipRound
3	CSEEM	appendicitis	9.0	0.943	8	28	Sigmoid	ClipRound
3	CSEEM	appendicitis	32.999	0.934	16	24	Sigmoid	ClipRound
3	CSEEM	appendicitis	27.001	0.925	32	22	Sigmoid	ClipRound
3	CSEEM	appendicitis	7.0	0.906	8	20	Sin	ClipRound
3	CSEEM	appendicitis	41.004	0.906	16	20	Sin	ClipRound
3	CSEEM	appendicitis	53.0	0.925	32	30	Sin	ClipRound
4	CSEEM	appendicitis	17.998	0.915	8	25	Tanh	ClipRound
4	CSEEM	appendicitis	41.998	0.925	16	20	Tanh	ClipRound
4	CSEEM	appendicitis	62.999	0.934	32	30	Tanh	ClipRound
4	CSEEM	appendicitis	4.999	0.906	8	3	SoftRelu	ClipRound
4	CSEEM	appendicitis	21.001	0.915	16	13	SoftRelu	ClipRound
4	CSEEM	appendicitis	74.0	0.925	32	17	SoftRelu	ClipRound
4	CSEEM	appendicitis	20.999	0.915	8	18	Relu	ClipRound
4	CSEEM	appendicitis	23.001	0.925	16	27	Relu	ClipRound
4	CSEEM	appendicitis	38.999	0.925	32	16	Relu	ClipRound
4	CSEEM	appendicitis	11.998	0.925	8	21	Sigmoid	ClipRound
4	CSEEM	appendicitis	44.002	0.925	16	23	Sigmoid	ClipRound
4	CSEEM	appendicitis	73.999	0.943	32	21	Sigmoid	ClipRound
4	CSEEM	appendicitis	17.0	0.934	8	34	Sin	ClipRound
4	CSEEM	appendicitis	27.999	0.953	16	31	Sin	ClipRound
4	CSEEM	appendicitis	31.999	0.925	32	26	Sin	ClipRound
5	CSEEM	appendicitis	20.999	0.915	8	14	Tanh	ClipRound
5	CSEEM	appendicitis	14.0	0.906	16	13	Tanh	ClipRound
5	CSEEM	appendicitis	58.999	0.934	32	24	Tanh	ClipRound
5	CSEEM	appendicitis	4.0	0.906	8	10	SoftRelu	ClipRound

Table I.2: All CSEEM Results of classification problems (2/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	appendicitis	11.0	0.906	16	20	SoftRelu	ClipRound
5	CSEEM	appendicitis	40.999	0.925	32	21	SoftRelu	ClipRound
5	CSEEM	appendicitis	8.0	0.906	8	11	Relu	ClipRound
5	CSEEM	appendicitis	25.994	0.943	16	32	Relu	ClipRound
5	CSEEM	appendicitis	43.0	0.925	32	22	Relu	ClipRound
5	CSEEM	appendicitis	11.001	0.896	8	9	Sigmoid	ClipRound
5	CSEEM	appendicitis	22.988	0.925	16	23	Sigmoid	ClipRound
5	CSEEM	appendicitis	46.998	0.934	32	21	Sigmoid	ClipRound
5	CSEEM	appendicitis	14.0	0.915	8	24	Sin	ClipRound
5	CSEEM	appendicitis	36.999	0.934	16	30	Sin	ClipRound
5	CSEEM	appendicitis	28.999	0.915	32	17	Sin	ClipRound
1	CSEEM	australian	507.999	0.939	8	243	Tanh	ClipRound
1	CSEEM	australian	496.999	0.932	16	196	Tanh	ClipRound
1	CSEEM	australian	955.999	0.923	32	216	Tanh	ClipRound
1	CSEEM	australian	503.999	0.919	8	157	SoftRelu	ClipRound
1	CSEEM	australian	649.008	0.92	16	156	SoftRelu	ClipRound
1	CSEEM	australian	664.508	0.919	32	153	SoftRelu	ClipRound
1	CSEEM	australian	789.0	0.938	8	246	Relu	ClipRound
1	CSEEM	australian	75.001	0.92	16	141	Relu	ClipRound
1	CSEEM	australian	893.0	0.932	32	196	Relu	ClipRound
1	CSEEM	australian	573.0	0.929	8	216	Sigmoid	ClipRound
1	CSEEM	australian	272.003	0.925	16	192	Sigmoid	ClipRound
1	CSEEM	australian	925.001	0.913	32	139	Sigmoid	ClipRound
1	CSEEM	australian	567.0	0.858	8	235	Sin	ClipRound
1	CSEEM	australian	529.537	0.875	16	179	Sin	ClipRound
1	CSEEM	australian	372.999	0.909	32	275	Sin	ClipRound
2	CSEEM	australian	828.999	0.932	8	195	Tanh	ClipRound
2	CSEEM	australian	566.993	0.919	16	160	Tanh	ClipRound
2	CSEEM	australian	129.999	0.938	32	221	Tanh	ClipRound
2	CSEEM	australian	665.001	0.919	8	151	SoftRelu	ClipRound
2	CSEEM	australian	676.0	0.926	16	184	SoftRelu	ClipRound
2	CSEEM	australian	423.509	0.925	32	169	SoftRelu	ClipRound

Table I.3: All CSEEM Results of classification problems (3/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	australian	533.999	0.916	8	161	Relu	ClipRound
2	CSEEM	australian	532.995	0.943	16	237	Relu	ClipRound
2	CSEEM	australian	167.997	0.938	32	210	Relu	ClipRound
2	CSEEM	australian	487.001	0.929	8	214	Sigmoid	ClipRound
2	CSEEM	australian	818.0	0.925	16	201	Sigmoid	ClipRound
2	CSEEM	australian	723.508	0.929	32	182	Sigmoid	ClipRound
2	CSEEM	australian	411.999	0.906	8	322	Sin	ClipRound
2	CSEEM	australian	387.522	0.884	16	272	Sin	ClipRound
2	CSEEM	australian	317.0	0.909	32	265	Sin	ClipRound
3	CSEEM	australian	577.0	0.938	8	248	Tanh	ClipRound
3	CSEEM	australian	34.001	0.936	16	224	Tanh	ClipRound
3	CSEEM	australian	835.51	0.926	32	186	Tanh	ClipRound
3	CSEEM	australian	78.999	0.938	8	225	SoftRelu	ClipRound
3	CSEEM	australian	81.965	0.932	16	207	SoftRelu	ClipRound
3	CSEEM	australian	477.998	0.933	32	207	SoftRelu	ClipRound
3	CSEEM	australian	129.0	0.923	8	180	Relu	ClipRound
3	CSEEM	australian	870.991	0.939	16	233	Relu	ClipRound
3	CSEEM	australian	100.002	0.913	32	126	Relu	ClipRound
3	CSEEM	australian	268.999	0.9	8	94	Sigmoid	ClipRound
3	CSEEM	australian	369.004	0.928	16	188	Sigmoid	ClipRound
3	CSEEM	australian	915.998	0.926	32	162	Sigmoid	ClipRound
3	CSEEM	australian	349.0	0.838	8	236	Sin	ClipRound
3	CSEEM	australian	761.008	0.886	16	271	Sin	ClipRound
3	CSEEM	australian	673.508	0.877	32	246	Sin	ClipRound
4	CSEEM	australian	177.996	0.897	8	73	Tanh	ClipRound
4	CSEEM	australian	123.06	0.922	16	182	Tanh	ClipRound
4	CSEEM	australian	547.998	0.91	32	144	Tanh	ClipRound
4	CSEEM	australian	803.998	0.928	8	198	SoftRelu	ClipRound
4	CSEEM	australian	552.627	0.928	16	190	SoftRelu	ClipRound
4	CSEEM	australian	921.509	0.925	32	179	SoftRelu	ClipRound
4	CSEEM	australian	227.999	0.917	8	157	Relu	ClipRound
4	CSEEM	australian	872.003	0.928	16	187	Relu	ClipRound

Table I.4: All CSEEM Results of classification problems (4/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	australian	334.999	0.93	32	157	Relu	ClipRound
4	CSEEM	australian	969.999	0.925	8	190	Sigmoid	ClipRound
4	CSEEM	australian	359.0	0.93	16	174	Sigmoid	ClipRound
4	CSEEM	australian	797.001	0.928	32	157	Sigmoid	ClipRound
4	CSEEM	australian	720.0	0.883	8	304	Sin	ClipRound
4	CSEEM	australian	979.001	0.867	16	261	Sin	ClipRound
4	CSEEM	australian	388.999	0.903	32	284	Sin	ClipRound
5	CSEEM	australian	112.001	0.919	8	171	Tanh	ClipRound
5	CSEEM	australian	194.0	0.939	16	232	Tanh	ClipRound
5	CSEEM	australian	651.001	0.923	32	159	Tanh	ClipRound
5	CSEEM	australian	197.0	0.913	8	130	SoftRelu	ClipRound
5	CSEEM	australian	714.0	0.925	16	198	SoftRelu	ClipRound
5	CSEEM	australian	587.0	0.925	32	184	SoftRelu	ClipRound
5	CSEEM	australian	551.0	0.926	8	187	Relu	ClipRound
5	CSEEM	australian	495.001	0.919	16	185	Relu	ClipRound
5	CSEEM	australian	446.999	0.923	32	185	Relu	ClipRound
5	CSEEM	australian	489.0	0.89	8	95	Sigmoid	ClipRound
5	CSEEM	australian	752.999	0.92	16	173	Sigmoid	ClipRound
5	CSEEM	australian	204.509	0.932	32	152	Sigmoid	ClipRound
5	CSEEM	australian	299.0	0.893	8	279	Sin	ClipRound
5	CSEEM	australian	567.991	0.888	16	235	Sin	ClipRound
5	CSEEM	australian	140.0	0.888	32	240	Sin	ClipRound
1	CSEEM	automobile	34.998	0.931	8	82	Tanh	ClipRound
1	CSEEM	automobile	110.999	0.925	16	73	Tanh	ClipRound
1	CSEEM	automobile	420.0	0.906	32	66	Tanh	ClipRound
1	CSEEM	automobile	19.999	0.874	8	63	SoftRelu	ClipRound
1	CSEEM	automobile	109.006	0.868	16	60	SoftRelu	ClipRound
1	CSEEM	automobile	145.0	0.906	32	66	SoftRelu	ClipRound
1	CSEEM	automobile	55.0	0.881	8	65	Relu	ClipRound
1	CSEEM	automobile	120.998	0.943	16	71	Relu	ClipRound
1	CSEEM	automobile	126.0	0.855	32	57	Relu	ClipRound
1	CSEEM	automobile	24.998	0.868	8	64	Sigmoid	ClipRound

Table I.5: All CSEEM Results of classification problems (5/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	automobile	106.999	0.874	16	59	Sigmoid	ClipRound
1	CSEEM	automobile	216.508	0.912	32	65	Sigmoid	ClipRound
1	CSEEM	automobile	37.999	0.585	8	66	Sin	ClipRound
1	CSEEM	automobile	54.005	0.711	16	74	Sin	ClipRound
1	CSEEM	automobile	263.999	0.811	32	80	Sin	ClipRound
2	CSEEM	automobile	30.0	0.956	8	78	Tanh	ClipRound
2	CSEEM	automobile	57.0	0.805	16	57	Tanh	ClipRound
2	CSEEM	automobile	185.0	0.887	32	68	Tanh	ClipRound
2	CSEEM	automobile	39.0	0.855	8	59	SoftRelu	ClipRound
2	CSEEM	automobile	44.995	0.893	16	66	SoftRelu	ClipRound
2	CSEEM	automobile	244.0	0.912	32	65	SoftRelu	ClipRound
2	CSEEM	automobile	10.0	0.78	8	54	Relu	ClipRound
2	CSEEM	automobile	60.0	0.918	16	70	Relu	ClipRound
2	CSEEM	automobile	196.999	0.912	32	68	Relu	ClipRound
2	CSEEM	automobile	23.001	0.849	8	61	Sigmoid	ClipRound
2	CSEEM	automobile	89.993	0.862	16	64	Sigmoid	ClipRound
2	CSEEM	automobile	84.998	0.874	32	63	Sigmoid	ClipRound
2	CSEEM	automobile	119.0	0.818	8	81	Sin	ClipRound
2	CSEEM	automobile	51.99	0.786	16	85	Sin	ClipRound
2	CSEEM	automobile	178.0	0.792	32	75	Sin	ClipRound
3	CSEEM	automobile	76.999	0.811	8	56	Tanh	ClipRound
3	CSEEM	automobile	71.998	0.862	16	65	Tanh	ClipRound
3	CSEEM	automobile	129.998	0.925	32	72	Tanh	ClipRound
3	CSEEM	automobile	9.0	0.698	8	40	SoftRelu	ClipRound
3	CSEEM	automobile	50.991	0.818	16	54	SoftRelu	ClipRound
3	CSEEM	automobile	83.998	0.843	32	53	SoftRelu	ClipRound
3	CSEEM	automobile	39.0	0.824	8	62	Relu	ClipRound
3	CSEEM	automobile	41.994	0.881	16	60	Relu	ClipRound
3	CSEEM	automobile	102.998	0.836	32	55	Relu	ClipRound
3	CSEEM	automobile	23.0	0.843	8	55	Sigmoid	ClipRound
3	CSEEM	automobile	191.986	0.811	16	52	Sigmoid	ClipRound
3	CSEEM	automobile	186.0	0.862	32	62	Sigmoid	ClipRound

Table I.6: All CSEEM Results of classification problems (6/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	automobile	34.999	0.679	8	58	Sin	ClipRound
3	CSEEM	automobile	149.005	0.83	16	87	Sin	ClipRound
3	CSEEM	automobile	120.999	0.761	32	75	Sin	ClipRound
4	CSEEM	automobile	100.0	0.862	8	59	Tanh	ClipRound
4	CSEEM	automobile	94.999	0.874	16	63	Tanh	ClipRound
4	CSEEM	automobile	208.0	0.849	32	60	Tanh	ClipRound
4	CSEEM	automobile	63.999	0.868	8	67	SoftRelu	ClipRound
4	CSEEM	automobile	38.993	0.893	16	71	SoftRelu	ClipRound
4	CSEEM	automobile	249.999	0.912	32	62	SoftRelu	ClipRound
4	CSEEM	automobile	13.0	0.931	8	71	Relu	ClipRound
4	CSEEM	automobile	26.0	0.818	16	58	Relu	ClipRound
4	CSEEM	automobile	228.999	0.912	32	69	Relu	ClipRound
4	CSEEM	automobile	40.999	0.868	8	73	Sigmoid	ClipRound
4	CSEEM	automobile	158.999	0.918	16	69	Sigmoid	ClipRound
4	CSEEM	automobile	208.999	0.849	32	63	Sigmoid	ClipRound
4	CSEEM	automobile	78.0	0.849	8	83	Sin	ClipRound
4	CSEEM	automobile	50.999	0.792	16	77	Sin	ClipRound
4	CSEEM	automobile	266.999	0.786	32	79	Sin	ClipRound
5	CSEEM	automobile	27.999	0.843	8	67	Tanh	ClipRound
5	CSEEM	automobile	62.999	0.862	16	67	Tanh	ClipRound
5	CSEEM	automobile	268.999	0.874	32	67	Tanh	ClipRound
5	CSEEM	automobile	46.999	0.843	8	59	SoftRelu	ClipRound
5	CSEEM	automobile	54.999	0.843	16	58	SoftRelu	ClipRound
5	CSEEM	automobile	325.0	0.893	32	64	SoftRelu	ClipRound
5	CSEEM	automobile	37.999	0.937	8	76	Relu	ClipRound
5	CSEEM	automobile	84.995	0.836	16	57	Relu	ClipRound
5	CSEEM	automobile	185.0	0.849	32	67	Relu	ClipRound
5	CSEEM	automobile	31.0	0.849	8	64	Sigmoid	ClipRound
5	CSEEM	automobile	355.756	0.874	16	59	Sigmoid	ClipRound
5	CSEEM	automobile	326.0	0.912	32	70	Sigmoid	ClipRound
5	CSEEM	automobile	34.0	0.818	8	84	Sin	ClipRound
5	CSEEM	automobile	114.993	0.862	16	79	Sin	ClipRound

Table I.7: All CSEEM Results of classification problems (7/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	automobile	147.999	0.849	32	84	Sin	ClipRound
1	CSEEM	balance	237.0	0.906	8	88	Tanh	ClipRound
1	CSEEM	balance	887.999	0.915	16	111	Tanh	ClipRound
1	CSEEM	balance	60.999	0.915	32	123	Tanh	ClipRound
1	CSEEM	balance	656.0	0.904	8	90	SoftRelu	ClipRound
1	CSEEM	balance	148.999	0.907	16	80	SoftRelu	ClipRound
1	CSEEM	balance	902.0	0.915	32	113	SoftRelu	ClipRound
1	CSEEM	balance	952.0	0.912	8	102	Relu	ClipRound
1	CSEEM	balance	932.986	0.915	16	102	Relu	ClipRound
1	CSEEM	balance	548.999	0.906	32	92	Relu	ClipRound
1	CSEEM	balance	238.999	0.92	8	95	Sigmoid	ClipRound
1	CSEEM	balance	925.993	0.91	16	90	Sigmoid	ClipRound
1	CSEEM	balance	558.999	0.92	32	100	Sigmoid	ClipRound
1	CSEEM	balance	607.0	0.915	8	101	Sin	ClipRound
1	CSEEM	balance	701.999	0.922	16	106	Sin	ClipRound
1	CSEEM	balance	816.999	0.922	32	107	Sin	ClipRound
2	CSEEM	balance	534.997	0.918	8	137	Tanh	ClipRound
2	CSEEM	balance	0.992	0.907	16	110	Tanh	ClipRound
2	CSEEM	balance	765.999	0.912	32	113	Tanh	ClipRound
2	CSEEM	balance	260.999	0.93	8	140	SoftRelu	ClipRound
2	CSEEM	balance	716.012	0.92	16	148	SoftRelu	ClipRound
2	CSEEM	balance	187.001	0.925	32	132	SoftRelu	ClipRound
2	CSEEM	balance	496.999	0.918	8	136	Relu	ClipRound
2	CSEEM	balance	456.496	0.907	16	127	Relu	ClipRound
2	CSEEM	balance	139.0	0.914	32	93	Relu	ClipRound
2	CSEEM	balance	468.0	0.92	8	122	Sigmoid	ClipRound
2	CSEEM	balance	859.998	0.918	16	110	Sigmoid	ClipRound
2	CSEEM	balance	509.0	0.918	32	116	Sigmoid	ClipRound
2	CSEEM	balance	624.998	0.92	8	129	Sin	ClipRound
2	CSEEM	balance	328.993	0.922	16	127	Sin	ClipRound
2	CSEEM	balance	827.999	0.923	32	121	Sin	ClipRound
3	CSEEM	balance	562.998	0.904	8	101	Tanh	ClipRound

Table I.8: All CSEEM Results of classification problems (8/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	balance	659.007	0.915	16	103	Tanh	ClipRound
3	CSEEM	balance	201.999	0.914	32	111	Tanh	ClipRound
3	CSEEM	balance	236.0	0.904	8	107	SoftRelu	ClipRound
3	CSEEM	balance	652.246	0.925	16	132	SoftRelu	ClipRound
3	CSEEM	balance	719.999	0.904	32	73	SoftRelu	ClipRound
3	CSEEM	balance	401.0	0.915	8	141	Relu	ClipRound
3	CSEEM	balance	668.991	0.904	16	89	Relu	ClipRound
3	CSEEM	balance	75.999	0.923	32	118	Relu	ClipRound
3	CSEEM	balance	74.0	0.894	8	49	Sigmoid	ClipRound
3	CSEEM	balance	674.99	0.92	16	112	Sigmoid	ClipRound
3	CSEEM	balance	529.001	0.912	32	73	Sigmoid	ClipRound
3	CSEEM	balance	524.999	0.91	8	82	Sin	ClipRound
3	CSEEM	balance	922.993	0.917	16	99	Sin	ClipRound
3	CSEEM	balance	540.552	0.922	32	103	Sin	ClipRound
4	CSEEM	balance	508.999	0.906	8	114	Tanh	ClipRound
4	CSEEM	balance	34.99	0.915	16	116	Tanh	ClipRound
4	CSEEM	balance	870.998	0.92	32	131	Tanh	ClipRound
4	CSEEM	balance	199.999	0.92	8	123	SoftRelu	ClipRound
4	CSEEM	balance	539.27	0.915	16	102	SoftRelu	ClipRound
4	CSEEM	balance	778.998	0.918	32	102	SoftRelu	ClipRound
4	CSEEM	balance	547.0	0.91	8	102	Relu	ClipRound
4	CSEEM	balance	609.999	0.93	16	147	Relu	ClipRound
4	CSEEM	balance	496.999	0.914	32	100	Relu	ClipRound
4	CSEEM	balance	399.999	0.91	8	79	Sigmoid	ClipRound
4	CSEEM	balance	872.001	0.917	16	103	Sigmoid	ClipRound
4	CSEEM	balance	638.0	0.923	32	110	Sigmoid	ClipRound
4	CSEEM	balance	455.998	0.918	8	114	Sin	ClipRound
4	CSEEM	balance	70.002	0.92	16	103	Sin	ClipRound
4	CSEEM	balance	234.002	0.925	32	111	Sin	ClipRound
5	CSEEM	balance	415.999	0.92	8	143	Tanh	ClipRound
5	CSEEM	balance	358.998	0.914	16	129	Tanh	ClipRound
5	CSEEM	balance	327.0	0.906	32	87	Tanh	ClipRound

Table I.9: All CSEEM Results of classification problems (9/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	balance	199.999	0.904	8	91	SoftRelu	ClipRound
5	CSEEM	balance	692.002	0.918	16	96	SoftRelu	ClipRound
5	CSEEM	balance	795.998	0.914	32	114	SoftRelu	ClipRound
5	CSEEM	balance	485.999	0.89	8	84	Relu	ClipRound
5	CSEEM	balance	477.988	0.902	16	73	Relu	ClipRound
5	CSEEM	balance	535.0	0.936	32	140	Relu	ClipRound
5	CSEEM	balance	263.0	0.917	8	115	Sigmoid	ClipRound
5	CSEEM	balance	381.601	0.912	16	53	Sigmoid	ClipRound
5	CSEEM	balance	727.999	0.918	32	104	Sigmoid	ClipRound
5	CSEEM	balance	208.999	0.909	8	61	Sin	ClipRound
5	CSEEM	balance	500.0	0.915	16	96	Sin	ClipRound
5	CSEEM	balance	632.999	0.926	32	113	Sin	ClipRound
1	CSEEM	bands	311.999	0.921	8	183	Tanh	ClipRound
1	CSEEM	bands	350.999	0.888	16	173	Tanh	ClipRound
1	CSEEM	bands	778.999	0.866	32	127	Tanh	ClipRound
1	CSEEM	bands	233.0	0.899	8	157	SoftRelu	ClipRound
1	CSEEM	bands	399.0	0.879	16	136	SoftRelu	ClipRound
1	CSEEM	bands	775.998	0.882	32	148	SoftRelu	ClipRound
1	CSEEM	bands	106.999	0.816	8	84	Relu	ClipRound
1	CSEEM	bands	188.004	0.901	16	163	Relu	ClipRound
1	CSEEM	bands	801.0	0.882	32	145	Relu	ClipRound
1	CSEEM	bands	280.998	0.874	8	150	Sigmoid	ClipRound
1	CSEEM	bands	467.0	0.868	16	149	Sigmoid	ClipRound
1	CSEEM	bands	312.506	0.874	32	138	Sigmoid	ClipRound
1	CSEEM	bands	283.999	0.904	8	198	Sin	ClipRound
1	CSEEM	bands	501.996	0.811	16	98	Sin	ClipRound
1	CSEEM	bands	303.999	0.847	32	125	Sin	ClipRound
2	CSEEM	bands	362.0	0.904	8	172	Tanh	ClipRound
2	CSEEM	bands	363.997	0.877	16	137	Tanh	ClipRound
2	CSEEM	bands	453.997	0.888	32	160	Tanh	ClipRound
2	CSEEM	bands	260.999	0.888	8	151	SoftRelu	ClipRound
2	CSEEM	bands	155.001	0.86	16	127	SoftRelu	ClipRound

Table I.10: All CSEEM Results of classification problems (10/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	bands	811.999	0.929	32	148	SoftRelu	ClipRound
2	CSEEM	bands	363.998	0.926	8	173	Relu	ClipRound
2	CSEEM	bands	587.377	0.918	16	171	Relu	ClipRound
2	CSEEM	bands	329.0	0.879	32	113	Relu	ClipRound
2	CSEEM	bands	89.999	0.811	8	91	Sigmoid	ClipRound
2	CSEEM	bands	241.997	0.882	16	151	Sigmoid	ClipRound
2	CSEEM	bands	465.999	0.901	32	150	Sigmoid	ClipRound
2	CSEEM	bands	37.0	0.715	8	55	Sin	ClipRound
2	CSEEM	bands	369.408	0.874	16	182	Sin	ClipRound
2	CSEEM	bands	5.998	0.838	32	129	Sin	ClipRound
3	CSEEM	bands	56.999	0.833	8	94	Tanh	ClipRound
3	CSEEM	bands	756.039	0.871	16	145	Tanh	ClipRound
3	CSEEM	bands	439.998	0.868	32	141	Tanh	ClipRound
3	CSEEM	bands	415.999	0.904	8	163	SoftRelu	ClipRound
3	CSEEM	bands	971.037	0.904	16	147	SoftRelu	ClipRound
3	CSEEM	bands	435.0	0.866	32	110	SoftRelu	ClipRound
3	CSEEM	bands	355.001	0.899	8	168	Relu	ClipRound
3	CSEEM	bands	528.989	0.904	16	159	Relu	ClipRound
3	CSEEM	bands	770.0	0.893	32	155	Relu	ClipRound
3	CSEEM	bands	311.998	0.858	8	117	Sigmoid	ClipRound
3	CSEEM	bands	117.0	0.833	16	111	Sigmoid	ClipRound
3	CSEEM	bands	750.511	0.874	32	118	Sigmoid	ClipRound
3	CSEEM	bands	151.0	0.844	8	143	Sin	ClipRound
3	CSEEM	bands	676.993	0.858	16	163	Sin	ClipRound
3	CSEEM	bands	148.506	0.868	32	168	Sin	ClipRound
4	CSEEM	bands	312.999	0.912	8	186	Tanh	ClipRound
4	CSEEM	bands	520.997	0.882	16	157	Tanh	ClipRound
4	CSEEM	bands	63.999	0.907	32	172	Tanh	ClipRound
4	CSEEM	bands	310.998	0.89	8	156	SoftRelu	ClipRound
4	CSEEM	bands	413.593	0.888	16	138	SoftRelu	ClipRound
4	CSEEM	bands	900.999	0.915	32	166	SoftRelu	ClipRound
4	CSEEM	bands	113.0	0.89	8	141	Relu	ClipRound

Table I.11: All CSEEM Results of classification problems (11/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	bands	917.999	0.907	16	157	Relu	ClipRound
4	CSEEM	bands	104.998	0.89	32	138	Relu	ClipRound
4	CSEEM	bands	212.998	0.855	8	150	Sigmoid	ClipRound
4	CSEEM	bands	687.998	0.882	16	145	Sigmoid	ClipRound
4	CSEEM	bands	265.0	0.923	32	176	Sigmoid	ClipRound
4	CSEEM	bands	109.998	0.748	8	76	Sin	ClipRound
4	CSEEM	bands	757.999	0.827	16	158	Sin	ClipRound
4	CSEEM	bands	299.998	0.874	32	154	Sin	ClipRound
5	CSEEM	bands	210.999	0.888	8	149	Tanh	ClipRound
5	CSEEM	bands	525.507	0.871	16	133	Tanh	ClipRound
5	CSEEM	bands	908.999	0.896	32	152	Tanh	ClipRound
5	CSEEM	bands	213.0	0.901	8	164	SoftRelu	ClipRound
5	CSEEM	bands	600.0	0.868	16	124	SoftRelu	ClipRound
5	CSEEM	bands	916.999	0.882	32	128	SoftRelu	ClipRound
5	CSEEM	bands	267.998	0.901	8	147	Relu	ClipRound
5	CSEEM	bands	772.001	0.871	16	106	Relu	ClipRound
5	CSEEM	bands	827.002	0.874	32	115	Relu	ClipRound
5	CSEEM	bands	208.998	0.896	8	171	Sigmoid	ClipRound
5	CSEEM	bands	610.992	0.904	16	161	Sigmoid	ClipRound
5	CSEEM	bands	191.0	0.871	32	131	Sigmoid	ClipRound
5	CSEEM	bands	269.999	0.838	8	148	Sin	ClipRound
5	CSEEM	bands	593.001	0.86	16	161	Sin	ClipRound
5	CSEEM	bands	43.0	0.89	32	178	Sin	ClipRound
1	CSEEM	breast	146.999	0.877	8	95	Tanh	ClipRound
1	CSEEM	breast	153.0	0.863	16	92	Tanh	ClipRound
1	CSEEM	breast	431.998	0.866	32	79	Tanh	ClipRound
1	CSEEM	breast	107.999	0.863	8	80	SoftRelu	ClipRound
1	CSEEM	breast	400.007	0.91	16	111	SoftRelu	ClipRound
1	CSEEM	breast	627.999	0.895	32	102	SoftRelu	ClipRound
1	CSEEM	breast	89.0	0.877	8	88	Relu	ClipRound
1	CSEEM	breast	301.993	0.917	16	115	Relu	ClipRound
1	CSEEM	breast	540.0	0.877	32	84	Relu	ClipRound

Table I.12: All CSEEM Results of classification problems (12/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	breast	216.998	0.881	8	98	Sigmoid	ClipRound
1	CSEEM	breast	441.999	0.924	16	118	Sigmoid	ClipRound
1	CSEEM	breast	764.999	0.888	32	77	Sigmoid	ClipRound
1	CSEEM	breast	79.997	0.892	8	122	Sin	ClipRound
1	CSEEM	breast	253.999	0.903	16	113	Sin	ClipRound
1	CSEEM	breast	493.0	0.888	32	101	Sin	ClipRound
2	CSEEM	breast	69.999	0.848	8	57	Tanh	ClipRound
2	CSEEM	breast	383.999	0.921	16	123	Tanh	ClipRound
2	CSEEM	breast	605.999	0.874	32	87	Tanh	ClipRound
2	CSEEM	breast	205.999	0.892	8	98	SoftRelu	ClipRound
2	CSEEM	breast	285.989	0.884	16	99	SoftRelu	ClipRound
2	CSEEM	breast	461.0	0.895	32	103	SoftRelu	ClipRound
2	CSEEM	breast	84.999	0.888	8	106	Relu	ClipRound
2	CSEEM	breast	368.027	0.895	16	96	Relu	ClipRound
2	CSEEM	breast	930.999	0.903	32	100	Relu	ClipRound
2	CSEEM	breast	197.998	0.87	8	91	Sigmoid	ClipRound
2	CSEEM	breast	318.993	0.895	16	101	Sigmoid	ClipRound
2	CSEEM	breast	873.0	0.903	32	86	Sigmoid	ClipRound
2	CSEEM	breast	193.0	0.884	8	117	Sin	ClipRound
2	CSEEM	breast	251.0	0.877	16	108	Sin	ClipRound
2	CSEEM	breast	237.0	0.87	32	88	Sin	ClipRound
3	CSEEM	breast	411.998	0.888	8	105	Tanh	ClipRound
3	CSEEM	breast	324.994	0.881	16	92	Tanh	ClipRound
3	CSEEM	breast	542.999	0.895	32	107	Tanh	ClipRound
3	CSEEM	breast	113.999	0.866	8	70	SoftRelu	ClipRound
3	CSEEM	breast	149.0	0.856	16	74	SoftRelu	ClipRound
3	CSEEM	breast	379.999	0.874	32	76	SoftRelu	ClipRound
3	CSEEM	breast	103.0	0.866	8	93	Relu	ClipRound
3	CSEEM	breast	233.003	0.881	16	84	Relu	ClipRound
3	CSEEM	breast	313.0	0.877	32	81	Relu	ClipRound
3	CSEEM	breast	194.997	0.881	8	94	Sigmoid	ClipRound
3	CSEEM	breast	103.994	0.881	16	79	Sigmoid	ClipRound

Table I.13: All CSEEM Results of classification problems (13/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	breast	357.0	0.91	32	108	Sigmoid	ClipRound
3	CSEEM	breast	107.0	0.852	8	99	Sin	ClipRound
3	CSEEM	breast	264.998	0.884	16	118	Sin	ClipRound
3	CSEEM	breast	182.161	0.877	32	96	Sin	ClipRound
4	CSEEM	breast	149.002	0.874	8	73	Tanh	ClipRound
4	CSEEM	breast	557.993	0.903	16	104	Tanh	ClipRound
4	CSEEM	breast	536.999	0.888	32	90	Tanh	ClipRound
4	CSEEM	breast	141.0	0.881	8	87	SoftRelu	ClipRound
4	CSEEM	breast	155.007	0.863	16	72	SoftRelu	ClipRound
4	CSEEM	breast	418.0	0.884	32	90	SoftRelu	ClipRound
4	CSEEM	breast	86.0	0.852	8	83	Relu	ClipRound
4	CSEEM	breast	506.998	0.892	16	94	Relu	ClipRound
4	CSEEM	breast	593.999	0.903	32	108	Relu	ClipRound
4	CSEEM	breast	219.997	0.884	8	78	Sigmoid	ClipRound
4	CSEEM	breast	174.999	0.888	16	90	Sigmoid	ClipRound
4	CSEEM	breast	54.0	0.91	32	103	Sigmoid	ClipRound
4	CSEEM	breast	193.999	0.848	8	94	Sin	ClipRound
4	CSEEM	breast	405.0	0.856	16	88	Sin	ClipRound
4	CSEEM	breast	472.999	0.877	32	109	Sin	ClipRound
5	CSEEM	breast	39.998	0.848	8	47	Tanh	ClipRound
5	CSEEM	breast	79.999	0.892	16	91	Tanh	ClipRound
5	CSEEM	breast	641.999	0.87	32	70	Tanh	ClipRound
5	CSEEM	breast	283.0	0.899	8	115	SoftRelu	ClipRound
5	CSEEM	breast	356.0	0.917	16	120	SoftRelu	ClipRound
5	CSEEM	breast	310.998	0.874	32	83	SoftRelu	ClipRound
5	CSEEM	breast	138.999	0.877	8	94	Relu	ClipRound
5	CSEEM	breast	235.989	0.877	16	83	Relu	ClipRound
5	CSEEM	breast	726.999	0.892	32	97	Relu	ClipRound
5	CSEEM	breast	261.0	0.888	8	93	Sigmoid	ClipRound
5	CSEEM	breast	326.998	0.91	16	113	Sigmoid	ClipRound
5	CSEEM	breast	326.999	0.895	32	110	Sigmoid	ClipRound
5	CSEEM	breast	261.999	0.903	8	130	Sin	ClipRound

Table I.14: All CSEEM Results of classification problems (14/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	breast	284.999	0.87	16	93	Sin	ClipRound
5	CSEEM	breast	633.999	0.91	32	124	Sin	ClipRound
1	CSEEM	bupa	296.0	0.875	8	122	Tanh	ClipRound
1	CSEEM	bupa	340.0	0.887	16	117	Tanh	ClipRound
1	CSEEM	bupa	372.999	0.89	32	132	Tanh	ClipRound
1	CSEEM	bupa	123.999	0.872	8	108	SoftRelu	ClipRound
1	CSEEM	bupa	602.995	0.87	16	113	SoftRelu	ClipRound
1	CSEEM	bupa	69.999	0.887	32	131	SoftRelu	ClipRound
1	CSEEM	bupa	138.0	0.861	8	129	Relu	ClipRound
1	CSEEM	bupa	446.985	0.884	16	137	Relu	ClipRound
1	CSEEM	bupa	85.001	0.861	32	98	Relu	ClipRound
1	CSEEM	bupa	138.999	0.867	8	124	Sigmoid	ClipRound
1	CSEEM	bupa	450.992	0.87	16	105	Sigmoid	ClipRound
1	CSEEM	bupa	817.999	0.896	32	137	Sigmoid	ClipRound
1	CSEEM	bupa	336.998	0.87	8	123	Sin	ClipRound
1	CSEEM	bupa	402.501	0.887	16	144	Sin	ClipRound
1	CSEEM	bupa	844.999	0.881	32	133	Sin	ClipRound
2	CSEEM	bupa	129.0	0.884	8	137	Tanh	ClipRound
2	CSEEM	bupa	378.0	0.878	16	129	Tanh	ClipRound
2	CSEEM	bupa	456.999	0.881	32	120	Tanh	ClipRound
2	CSEEM	bupa	318.999	0.875	8	141	SoftRelu	ClipRound
2	CSEEM	bupa	383.012	0.872	16	112	SoftRelu	ClipRound
2	CSEEM	bupa	518.999	0.861	32	111	SoftRelu	ClipRound
2	CSEEM	bupa	430.506	0.875	8	123	Relu	ClipRound
2	CSEEM	bupa	772.03	0.881	16	122	Relu	ClipRound
2	CSEEM	bupa	255.0	0.864	32	96	Relu	ClipRound
2	CSEEM	bupa	122.998	0.809	8	82	Sigmoid	ClipRound
2	CSEEM	bupa	234.989	0.864	16	112	Sigmoid	ClipRound
2	CSEEM	bupa	885.0	0.904	32	151	Sigmoid	ClipRound
2	CSEEM	bupa	188.999	0.872	8	129	Sin	ClipRound
2	CSEEM	bupa	624.997	0.893	16	145	Sin	ClipRound
2	CSEEM	bupa	557.0	0.875	32	122	Sin	ClipRound

Table I.15: All CSEEM Results of classification problems (15/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	bupa	161.001	0.861	8	100	Tanh	ClipRound
3	CSEEM	bupa	433.0	0.87	16	120	Tanh	ClipRound
3	CSEEM	bupa	839.001	0.864	32	107	Tanh	ClipRound
3	CSEEM	bupa	311.999	0.881	8	135	SoftRelu	ClipRound
3	CSEEM	bupa	451.0	0.861	16	100	SoftRelu	ClipRound
3	CSEEM	bupa	564.0	0.87	32	126	SoftRelu	ClipRound
3	CSEEM	bupa	257.002	0.881	8	127	Relu	ClipRound
3	CSEEM	bupa	675.433	0.858	16	111	Relu	ClipRound
3	CSEEM	bupa	440.999	0.872	32	107	Relu	ClipRound
3	CSEEM	bupa	202.999	0.887	8	139	Sigmoid	ClipRound
3	CSEEM	bupa	593.138	0.881	16	119	Sigmoid	ClipRound
3	CSEEM	bupa	602.999	0.893	32	137	Sigmoid	ClipRound
3	CSEEM	bupa	256.999	0.875	8	138	Sin	ClipRound
3	CSEEM	bupa	401.995	0.829	16	112	Sin	ClipRound
3	CSEEM	bupa	561.0	0.872	32	117	Sin	ClipRound
4	CSEEM	bupa	227.0	0.843	8	87	Tanh	ClipRound
4	CSEEM	bupa	346.0	0.913	16	151	Tanh	ClipRound
4	CSEEM	bupa	909.998	0.881	32	122	Tanh	ClipRound
4	CSEEM	bupa	93.999	0.858	8	114	SoftRelu	ClipRound
4	CSEEM	bupa	108.007	0.803	16	75	SoftRelu	ClipRound
4	CSEEM	bupa	730.999	0.858	32	92	SoftRelu	ClipRound
4	CSEEM	bupa	424.997	0.887	8	126	Relu	ClipRound
4	CSEEM	bupa	687.0	0.878	16	117	Relu	ClipRound
4	CSEEM	bupa	703.999	0.89	32	145	Relu	ClipRound
4	CSEEM	bupa	489.999	0.849	8	101	Sigmoid	ClipRound
4	CSEEM	bupa	369.0	0.849	16	90	Sigmoid	ClipRound
4	CSEEM	bupa	829.999	0.887	32	135	Sigmoid	ClipRound
4	CSEEM	bupa	215.997	0.87	8	130	Sin	ClipRound
4	CSEEM	bupa	359.0	0.852	16	106	Sin	ClipRound
4	CSEEM	bupa	634.0	0.899	32	159	Sin	ClipRound
5	CSEEM	bupa	167.999	0.861	8	142	Tanh	ClipRound
5	CSEEM	bupa	784.0	0.896	16	132	Tanh	ClipRound

Table I.16: All CSEEM Results of classification problems (16/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	bupa	687.999	0.901	32	129	Tanh	ClipRound
5	CSEEM	bupa	334.997	0.875	8	131	SoftRelu	ClipRound
5	CSEEM	bupa	383.0	0.852	16	96	SoftRelu	ClipRound
5	CSEEM	bupa	354.998	0.838	32	95	SoftRelu	ClipRound
5	CSEEM	bupa	131.0	0.858	8	106	Relu	ClipRound
5	CSEEM	bupa	147.994	0.843	16	99	Relu	ClipRound
5	CSEEM	bupa	421.0	0.875	32	115	Relu	ClipRound
5	CSEEM	bupa	302.0	0.838	8	95	Sigmoid	ClipRound
5	CSEEM	bupa	238.991	0.867	16	110	Sigmoid	ClipRound
5	CSEEM	bupa	47.998	0.884	32	134	Sigmoid	ClipRound
5	CSEEM	bupa	54.0	0.809	8	71	Sin	ClipRound
5	CSEEM	bupa	264.001	0.913	16	169	Sin	ClipRound
5	CSEEM	bupa	581.0	0.884	32	133	Sin	ClipRound
1	CSEEM	cleveland	109.998	0.751	8	119	Tanh	ClipRound
1	CSEEM	cleveland	429.999	0.788	16	123	Tanh	ClipRound
1	CSEEM	cleveland	603.999	0.835	32	138	Tanh	ClipRound
1	CSEEM	cleveland	297.0	0.869	8	148	SoftRelu	ClipRound
1	CSEEM	cleveland	457.007	0.818	16	127	SoftRelu	ClipRound
1	CSEEM	cleveland	718.0	0.801	32	135	SoftRelu	ClipRound
1	CSEEM	cleveland	211.999	0.855	8	144	Relu	ClipRound
1	CSEEM	cleveland	283.001	0.815	16	139	Relu	ClipRound
1	CSEEM	cleveland	698.002	0.845	32	139	Relu	ClipRound
1	CSEEM	cleveland	172.0	0.899	8	164	Sigmoid	ClipRound
1	CSEEM	cleveland	163.005	0.778	16	112	Sigmoid	ClipRound
1	CSEEM	cleveland	575.0	0.822	32	132	Sigmoid	ClipRound
1	CSEEM	cleveland	64.0	0.63	8	118	Sin	ClipRound
1	CSEEM	cleveland	176.999	0.771	16	144	Sin	ClipRound
1	CSEEM	cleveland	674.999	0.838	32	163	Sin	ClipRound
2	CSEEM	cleveland	121.0	0.731	8	110	Tanh	ClipRound
2	CSEEM	cleveland	530.993	0.795	16	124	Tanh	ClipRound
2	CSEEM	cleveland	548.0	0.771	32	114	Tanh	ClipRound
2	CSEEM	cleveland	64.998	0.815	8	146	SoftRelu	ClipRound

Table I.17: All CSEEM Results of classification problems (17/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	cleveland	255.001	0.717	16	113	SoftRelu	ClipRound
2	CSEEM	cleveland	949.998	0.751	32	108	SoftRelu	ClipRound
2	CSEEM	cleveland	73.0	0.731	8	109	Relu	ClipRound
2	CSEEM	cleveland	397.205	0.852	16	147	Relu	ClipRound
2	CSEEM	cleveland	542.999	0.832	32	142	Relu	ClipRound
2	CSEEM	cleveland	136.999	0.71	8	92	Sigmoid	ClipRound
2	CSEEM	cleveland	246.998	0.825	16	134	Sigmoid	ClipRound
2	CSEEM	cleveland	17.999	0.875	32	147	Sigmoid	ClipRound
2	CSEEM	cleveland	318.002	0.811	8	153	Sin	ClipRound
2	CSEEM	cleveland	369.001	0.727	16	128	Sin	ClipRound
2	CSEEM	cleveland	996.0	0.815	32	152	Sin	ClipRound
3	CSEEM	cleveland	123.999	0.764	8	116	Tanh	ClipRound
3	CSEEM	cleveland	765.006	0.872	16	140	Tanh	ClipRound
3	CSEEM	cleveland	434.999	0.822	32	126	Tanh	ClipRound
3	CSEEM	cleveland	72.999	0.657	8	92	SoftRelu	ClipRound
3	CSEEM	cleveland	936.391	0.852	16	139	SoftRelu	ClipRound
3	CSEEM	cleveland	212.999	0.801	32	130	SoftRelu	ClipRound
3	CSEEM	cleveland	136.002	0.838	8	139	Relu	ClipRound
3	CSEEM	cleveland	136.003	0.778	16	118	Relu	ClipRound
3	CSEEM	cleveland	32.999	0.798	32	121	Relu	ClipRound
3	CSEEM	cleveland	219.999	0.754	8	114	Sigmoid	ClipRound
3	CSEEM	cleveland	569.007	0.781	16	114	Sigmoid	ClipRound
3	CSEEM	cleveland	178.999	0.848	32	141	Sigmoid	ClipRound
3	CSEEM	cleveland	64.002	0.498	8	71	Sin	ClipRound
3	CSEEM	cleveland	556.524	0.811	16	157	Sin	ClipRound
3	CSEEM	cleveland	468.998	0.805	32	150	Sin	ClipRound
4	CSEEM	cleveland	9.999	0.529	8	47	Tanh	ClipRound
4	CSEEM	cleveland	687.996	0.825	16	128	Tanh	ClipRound
4	CSEEM	cleveland	537.998	0.785	32	118	Tanh	ClipRound
4	CSEEM	cleveland	226.0	0.785	8	126	SoftRelu	ClipRound
4	CSEEM	cleveland	611.419	0.828	16	133	SoftRelu	ClipRound
4	CSEEM	cleveland	522.999	0.788	32	123	SoftRelu	ClipRound

Table I.18: All CSEEM Results of classification problems (18/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	cleveland	157.999	0.704	8	106	Relu	ClipRound
4	CSEEM	cleveland	216.998	0.855	16	154	Relu	ClipRound
4	CSEEM	cleveland	697.999	0.815	32	133	Relu	ClipRound
4	CSEEM	cleveland	251.999	0.855	8	143	Sigmoid	ClipRound
4	CSEEM	cleveland	497.999	0.798	16	134	Sigmoid	ClipRound
4	CSEEM	cleveland	4.0	0.781	32	103	Sigmoid	ClipRound
4	CSEEM	cleveland	94.0	0.842	8	177	Sin	ClipRound
4	CSEEM	cleveland	280.0	0.721	16	131	Sin	ClipRound
4	CSEEM	cleveland	526.999	0.764	32	147	Sin	ClipRound
5	CSEEM	cleveland	174.999	0.811	8	131	Tanh	ClipRound
5	CSEEM	cleveland	213.998	0.882	16	165	Tanh	ClipRound
5	CSEEM	cleveland	313.999	0.825	32	134	Tanh	ClipRound
5	CSEEM	cleveland	115.0	0.761	8	117	SoftRelu	ClipRound
5	CSEEM	cleveland	364.999	0.832	16	135	SoftRelu	ClipRound
5	CSEEM	cleveland	185.999	0.808	32	124	SoftRelu	ClipRound
5	CSEEM	cleveland	197.999	0.852	8	155	Relu	ClipRound
5	CSEEM	cleveland	310.989	0.771	16	114	Relu	ClipRound
5	CSEEM	cleveland	399.0	0.838	32	136	Relu	ClipRound
5	CSEEM	cleveland	92.998	0.835	8	128	Sigmoid	ClipRound
5	CSEEM	cleveland	293.005	0.791	16	128	Sigmoid	ClipRound
5	CSEEM	cleveland	998.998	0.855	32	145	Sigmoid	ClipRound
5	CSEEM	cleveland	21.0	0.421	8	38	Sin	ClipRound
5	CSEEM	cleveland	349.998	0.714	16	136	Sin	ClipRound
5	CSEEM	cleveland	904.998	0.731	32	136	Sin	ClipRound
1	CSEEM	crx	288.999	0.922	8	160	Tanh	ClipRound
1	CSEEM	crx	67.0	0.925	16	171	Tanh	ClipRound
1	CSEEM	crx	686.0	0.948	32	208	Tanh	ClipRound
1	CSEEM	crx	855.001	0.933	8	199	SoftRelu	ClipRound
1	CSEEM	crx	938.009	0.931	16	200	SoftRelu	ClipRound
1	CSEEM	crx	834.999	0.93	32	175	SoftRelu	ClipRound
1	CSEEM	crx	339.0	0.914	8	106	Relu	ClipRound
1	CSEEM	crx	88.999	0.922	16	141	Relu	ClipRound

Table I.19: All CSEEM Results of classification problems (19/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	crx	550.51	0.926	32	152	Relu	ClipRound
1	CSEEM	crx	417.997	0.92	8	165	Sigmoid	ClipRound
1	CSEEM	crx	145.999	0.933	16	193	Sigmoid	ClipRound
1	CSEEM	crx	649.0	0.926	32	149	Sigmoid	ClipRound
1	CSEEM	crx	510.999	0.871	8	201	Sin	ClipRound
1	CSEEM	crx	902.998	0.894	16	227	Sin	ClipRound
1	CSEEM	crx	14.999	0.911	32	277	Sin	ClipRound
2	CSEEM	crx	460.001	0.934	8	201	Tanh	ClipRound
2	CSEEM	crx	614.999	0.919	16	141	Tanh	ClipRound
2	CSEEM	crx	184.0	0.928	32	180	Tanh	ClipRound
2	CSEEM	crx	438.0	0.923	8	151	SoftRelu	ClipRound
2	CSEEM	crx	507.001	0.931	16	164	SoftRelu	ClipRound
2	CSEEM	crx	611.999	0.933	32	175	SoftRelu	ClipRound
2	CSEEM	crx	462.0	0.93	8	184	Relu	ClipRound
2	CSEEM	crx	884.994	0.936	16	176	Relu	ClipRound
2	CSEEM	crx	816.507	0.939	32	171	Relu	ClipRound
2	CSEEM	crx	303.001	0.913	8	158	Sigmoid	ClipRound
2	CSEEM	crx	411.003	0.93	16	173	Sigmoid	ClipRound
2	CSEEM	crx	764.999	0.931	32	157	Sigmoid	ClipRound
2	CSEEM	crx	462.508	0.894	8	243	Sin	ClipRound
2	CSEEM	crx	935.028	0.905	16	268	Sin	ClipRound
2	CSEEM	crx	188.001	0.908	32	273	Sin	ClipRound
3	CSEEM	crx	683.998	0.928	8	152	Tanh	ClipRound
3	CSEEM	crx	272.0	0.937	16	185	Tanh	ClipRound
3	CSEEM	crx	529.001	0.926	32	176	Tanh	ClipRound
3	CSEEM	crx	482.999	0.936	8	217	SoftRelu	ClipRound
3	CSEEM	crx	443.001	0.92	16	148	SoftRelu	ClipRound
3	CSEEM	crx	682.999	0.93	32	139	SoftRelu	ClipRound
3	CSEEM	crx	465.999	0.931	8	159	Relu	ClipRound
3	CSEEM	crx	517.002	0.942	16	190	Relu	ClipRound
3	CSEEM	crx	262.0	0.926	32	149	Relu	ClipRound
3	CSEEM	crx	213.0	0.893	8	84	Sigmoid	ClipRound

Table I.20: All CSEEM Results of classification problems (20/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	crx	571.005	0.923	16	170	Sigmoid	ClipRound
3	CSEEM	crx	700.001	0.939	32	187	Sigmoid	ClipRound
3	CSEEM	crx	262.0	0.9	8	302	Sin	ClipRound
3	CSEEM	crx	542.0	0.925	16	314	Sin	ClipRound
3	CSEEM	crx	207.016	0.882	32	228	Sin	ClipRound
4	CSEEM	crx	573.0	0.928	8	175	Tanh	ClipRound
4	CSEEM	crx	603.006	0.931	16	182	Tanh	ClipRound
4	CSEEM	crx	494.0	0.945	32	213	Tanh	ClipRound
4	CSEEM	crx	302.999	0.925	8	154	SoftRelu	ClipRound
4	CSEEM	crx	64.065	0.936	16	201	SoftRelu	ClipRound
4	CSEEM	crx	187.999	0.925	32	140	SoftRelu	ClipRound
4	CSEEM	crx	143.0	0.931	8	214	Relu	ClipRound
4	CSEEM	crx	249.001	0.942	16	211	Relu	ClipRound
4	CSEEM	crx	867.0	0.922	32	129	Relu	ClipRound
4	CSEEM	crx	286.002	0.908	8	116	Sigmoid	ClipRound
4	CSEEM	crx	913.002	0.925	16	135	Sigmoid	ClipRound
4	CSEEM	crx	395.999	0.94	32	173	Sigmoid	ClipRound
4	CSEEM	crx	372.0	0.931	8	317	Sin	ClipRound
4	CSEEM	crx	29.999	0.904	16	264	Sin	ClipRound
4	CSEEM	crx	941.0	0.905	32	233	Sin	ClipRound
5	CSEEM	crx	286.0	0.92	8	169	Tanh	ClipRound
5	CSEEM	crx	94.999	0.936	16	194	Tanh	ClipRound
5	CSEEM	crx	262.0	0.928	32	169	Tanh	ClipRound
5	CSEEM	crx	718.999	0.919	8	154	SoftRelu	ClipRound
5	CSEEM	crx	327.999	0.913	16	121	SoftRelu	ClipRound
5	CSEEM	crx	879.999	0.931	32	183	SoftRelu	ClipRound
5	CSEEM	crx	378.0	0.911	8	112	Relu	ClipRound
5	CSEEM	crx	791.002	0.93	16	144	Relu	ClipRound
5	CSEEM	crx	638.999	0.93	32	138	Relu	ClipRound
5	CSEEM	crx	228.0	0.923	8	195	Sigmoid	ClipRound
5	CSEEM	crx	107.0	0.925	16	159	Sigmoid	ClipRound
5	CSEEM	crx	676.999	0.92	32	141	Sigmoid	ClipRound

Table I.21: All CSEEM Results of classification problems (21/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	crx	125.999	0.9	8	251	Sin	ClipRound
5	CSEEM	crx	518.994	0.879	16	250	Sin	ClipRound
5	CSEEM	crx	266.998	0.905	32	248	Sin	ClipRound
1	CSEEM	ecoli	154.999	0.854	8	61	Tanh	ClipRound
1	CSEEM	ecoli	275.999	0.905	16	86	Tanh	ClipRound
1	CSEEM	ecoli	891.999	0.905	32	86	Tanh	ClipRound
1	CSEEM	ecoli	60.0	0.893	8	82	SoftRelu	ClipRound
1	CSEEM	ecoli	112.997	0.899	16	89	SoftRelu	ClipRound
1	CSEEM	ecoli	463.0	0.914	32	105	SoftRelu	ClipRound
1	CSEEM	ecoli	276.998	0.914	8	101	Relu	ClipRound
1	CSEEM	ecoli	634.99	0.905	16	93	Relu	ClipRound
1	CSEEM	ecoli	839.0	0.887	32	81	Relu	ClipRound
1	CSEEM	ecoli	245.0	0.902	8	91	Sigmoid	ClipRound
1	CSEEM	ecoli	280.993	0.911	16	100	Sigmoid	ClipRound
1	CSEEM	ecoli	434.999	0.911	32	96	Sigmoid	ClipRound
1	CSEEM	ecoli	218.998	0.92	8	108	Sin	ClipRound
1	CSEEM	ecoli	417.991	0.914	16	104	Sin	ClipRound
1	CSEEM	ecoli	896.0	0.893	32	83	Sin	ClipRound
2	CSEEM	ecoli	144.0	0.905	8	107	Tanh	ClipRound
2	CSEEM	ecoli	170.992	0.923	16	112	Tanh	ClipRound
2	CSEEM	ecoli	537.999	0.893	32	74	Tanh	ClipRound
2	CSEEM	ecoli	128.999	0.878	8	68	SoftRelu	ClipRound
2	CSEEM	ecoli	317.999	0.902	16	74	SoftRelu	ClipRound
2	CSEEM	ecoli	883.999	0.902	32	85	SoftRelu	ClipRound
2	CSEEM	ecoli	169.0	0.881	8	78	Relu	ClipRound
2	CSEEM	ecoli	254.989	0.878	16	62	Relu	ClipRound
2	CSEEM	ecoli	565.999	0.878	32	79	Relu	ClipRound
2	CSEEM	ecoli	60.999	0.842	8	57	Sigmoid	ClipRound
2	CSEEM	ecoli	299.992	0.92	16	109	Sigmoid	ClipRound
2	CSEEM	ecoli	820.999	0.917	32	99	Sigmoid	ClipRound
2	CSEEM	ecoli	420.998	0.893	8	79	Sin	ClipRound
2	CSEEM	ecoli	594.007	0.896	16	103	Sin	ClipRound

Table I.22: All CSEEM Results of classification problems (22/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	ecoli	481.0	0.911	32	95	Sin	ClipRound
3	CSEEM	ecoli	229.998	0.89	8	95	Tanh	ClipRound
3	CSEEM	ecoli	771.676	0.923	16	113	Tanh	ClipRound
3	CSEEM	ecoli	646.999	0.896	32	88	Tanh	ClipRound
3	CSEEM	ecoli	310.998	0.902	8	94	SoftRelu	ClipRound
3	CSEEM	ecoli	301.0	0.905	16	94	SoftRelu	ClipRound
3	CSEEM	ecoli	606.998	0.917	32	100	SoftRelu	ClipRound
3	CSEEM	ecoli	211.999	0.905	8	99	Relu	ClipRound
3	CSEEM	ecoli	433.993	0.914	16	88	Relu	ClipRound
3	CSEEM	ecoli	27.998	0.911	32	102	Relu	ClipRound
3	CSEEM	ecoli	235.999	0.869	8	69	Sigmoid	ClipRound
3	CSEEM	ecoli	241.994	0.905	16	91	Sigmoid	ClipRound
3	CSEEM	ecoli	472.999	0.893	32	67	Sigmoid	ClipRound
3	CSEEM	ecoli	213.0	0.92	8	109	Sin	ClipRound
3	CSEEM	ecoli	547.992	0.914	16	106	Sin	ClipRound
3	CSEEM	ecoli	392.0	0.893	32	92	Sin	ClipRound
4	CSEEM	ecoli	232.999	0.902	8	106	Tanh	ClipRound
4	CSEEM	ecoli	327.993	0.92	16	111	Tanh	ClipRound
4	CSEEM	ecoli	358.0	0.902	32	98	Tanh	ClipRound
4	CSEEM	ecoli	271.999	0.908	8	95	SoftRelu	ClipRound
4	CSEEM	ecoli	406.014	0.917	16	112	SoftRelu	ClipRound
4	CSEEM	ecoli	913.0	0.911	32	88	SoftRelu	ClipRound
4	CSEEM	ecoli	50.998	0.842	8	50	Relu	ClipRound
4	CSEEM	ecoli	262.999	0.869	16	73	Relu	ClipRound
4	CSEEM	ecoli	798.999	0.893	32	85	Relu	ClipRound
4	CSEEM	ecoli	175.999	0.911	8	100	Sigmoid	ClipRound
4	CSEEM	ecoli	221.513	0.911	16	99	Sigmoid	ClipRound
4	CSEEM	ecoli	669.002	0.905	32	96	Sigmoid	ClipRound
4	CSEEM	ecoli	271.998	0.914	8	117	Sin	ClipRound
4	CSEEM	ecoli	299.999	0.884	16	83	Sin	ClipRound
4	CSEEM	ecoli	860.999	0.908	32	95	Sin	ClipRound
5	CSEEM	ecoli	209.997	0.914	8	94	Tanh	ClipRound

Table I.23: All CSEEM Results of classification problems (23/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	ecoli	377.0	0.899	16	90	Tanh	ClipRound
5	CSEEM	ecoli	51.999	0.905	32	86	Tanh	ClipRound
5	CSEEM	ecoli	131.999	0.881	8	79	SoftRelu	ClipRound
5	CSEEM	ecoli	647.99	0.917	16	93	SoftRelu	ClipRound
5	CSEEM	ecoli	106.998	0.908	32	102	SoftRelu	ClipRound
5	CSEEM	ecoli	300.999	0.884	8	72	Relu	ClipRound
5	CSEEM	ecoli	664.999	0.911	16	107	Relu	ClipRound
5	CSEEM	ecoli	47.999	0.896	32	87	Relu	ClipRound
5	CSEEM	ecoli	203.999	0.917	8	110	Sigmoid	ClipRound
5	CSEEM	ecoli	413.989	0.917	16	104	Sigmoid	ClipRound
5	CSEEM	ecoli	798.0	0.914	32	98	Sigmoid	ClipRound
5	CSEEM	ecoli	562.999	0.935	8	120	Sin	ClipRound
5	CSEEM	ecoli	782.992	0.923	16	103	Sin	ClipRound
5	CSEEM	ecoli	655.999	0.899	32	98	Sin	ClipRound
1	CSEEM	flare	479.0	0.626	8	74	Tanh	ClipRound
1	CSEEM	flare	763.0	0.816	16	259	Tanh	ClipRound
1	CSEEM	flare	603.508	0.818	32	264	Tanh	ClipRound
1	CSEEM	flare	189.0	0.808	8	245	SoftRelu	ClipRound
1	CSEEM	flare	822.035	0.816	16	278	SoftRelu	ClipRound
1	CSEEM	flare	420.001	0.824	32	268	SoftRelu	ClipRound
1	CSEEM	flare	188.998	0.82	8	272	Relu	ClipRound
1	CSEEM	flare	503.999	0.823	16	290	Relu	ClipRound
1	CSEEM	flare	12.0	0.826	32	299	Relu	ClipRound
1	CSEEM	flare	976.0	0.804	8	227	Sigmoid	ClipRound
1	CSEEM	flare	368.991	0.826	16	291	Sigmoid	ClipRound
1	CSEEM	flare	536.0	0.821	32	276	Sigmoid	ClipRound
1	CSEEM	flare	274.998	0.827	8	268	Sin	ClipRound
1	CSEEM	flare	413.008	0.823	16	278	Sin	ClipRound
1	CSEEM	flare	669.0	0.822	32	256	Sin	ClipRound
2	CSEEM	flare	523.0	0.814	8	244	Tanh	ClipRound
2	CSEEM	flare	922.036	0.822	16	297	Tanh	ClipRound
2	CSEEM	flare	660.0	0.811	32	214	Tanh	ClipRound

Table I.24: All CSEEM Results of classification problems (24/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	flare	66.996	0.661	8	63	SoftRelu	ClipRound
2	CSEEM	flare	47.544	0.826	16	275	SoftRelu	ClipRound
2	CSEEM	flare	830.999	0.753	32	166	SoftRelu	ClipRound
2	CSEEM	flare	672.999	0.82	8	250	Relu	ClipRound
2	CSEEM	flare	367.0	0.826	16	252	Relu	ClipRound
2	CSEEM	flare	220.512	0.825	32	279	Relu	ClipRound
2	CSEEM	flare	702.999	0.814	8	249	Sigmoid	ClipRound
2	CSEEM	flare	810.509	0.819	16	286	Sigmoid	ClipRound
2	CSEEM	flare	664.504	0.826	32	279	Sigmoid	ClipRound
2	CSEEM	flare	973.001	0.822	8	298	Sin	ClipRound
2	CSEEM	flare	250.992	0.816	16	268	Sin	ClipRound
2	CSEEM	flare	63.0	0.83	32	272	Sin	ClipRound
3	CSEEM	flare	108.999	0.812	8	249	Tanh	ClipRound
3	CSEEM	flare	573.993	0.814	16	238	Tanh	ClipRound
3	CSEEM	flare	308.999	0.822	32	247	Tanh	ClipRound
3	CSEEM	flare	237.002	0.772	8	157	SoftRelu	ClipRound
3	CSEEM	flare	62.998	0.82	16	293	SoftRelu	ClipRound
3	CSEEM	flare	374.002	0.811	32	269	SoftRelu	ClipRound
3	CSEEM	flare	615.0	0.821	8	270	Relu	ClipRound
3	CSEEM	flare	659.007	0.825	16	266	Relu	ClipRound
3	CSEEM	flare	741.0	0.826	32	260	Relu	ClipRound
3	CSEEM	flare	294.0	0.819	8	354	Sigmoid	ClipRound
3	CSEEM	flare	487.999	0.817	16	273	Sigmoid	ClipRound
3	CSEEM	flare	593.999	0.816	32	269	Sigmoid	ClipRound
3	CSEEM	flare	172.0	0.817	8	248	Sin	ClipRound
3	CSEEM	flare	926.996	0.816	16	258	Sin	ClipRound
3	CSEEM	flare	653.999	0.82	32	279	Sin	ClipRound
4	CSEEM	flare	98.0	0.827	8	267	Tanh	ClipRound
4	CSEEM	flare	733.008	0.826	16	269	Tanh	ClipRound
4	CSEEM	flare	136.025	0.826	32	275	Tanh	ClipRound
4	CSEEM	flare	272.0	0.827	8	273	SoftRelu	ClipRound
4	CSEEM	flare	105.11	0.821	16	258	SoftRelu	ClipRound

Table I.25: All CSEEM Results of classification problems (25/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	flare	898.0	0.824	32	281	SoftRelu	ClipRound
4	CSEEM	flare	691.001	0.82	8	304	Relu	ClipRound
4	CSEEM	flare	253.999	0.808	16	237	Relu	ClipRound
4	CSEEM	flare	556.0	0.826	32	270	Relu	ClipRound
4	CSEEM	flare	816.999	0.811	8	243	Sigmoid	ClipRound
4	CSEEM	flare	133.0	0.825	16	322	Sigmoid	ClipRound
4	CSEEM	flare	899.0	0.826	32	272	Sigmoid	ClipRound
4	CSEEM	flare	704.998	0.828	8	270	Sin	ClipRound
4	CSEEM	flare	774.996	0.826	16	257	Sin	ClipRound
4	CSEEM	flare	303.0	0.823	32	268	Sin	ClipRound
5	CSEEM	flare	255.002	0.82	8	267	Tanh	ClipRound
5	CSEEM	flare	274.999	0.821	16	267	Tanh	ClipRound
5	CSEEM	flare	166.001	0.816	32	254	Tanh	ClipRound
5	CSEEM	flare	11.999	0.812	8	286	SoftRelu	ClipRound
5	CSEEM	flare	716.004	0.817	16	293	SoftRelu	ClipRound
5	CSEEM	flare	506.001	0.823	32	304	SoftRelu	ClipRound
5	CSEEM	flare	295.001	0.814	8	279	Relu	ClipRound
5	CSEEM	flare	634.993	0.818	16	280	Relu	ClipRound
5	CSEEM	flare	354.002	0.821	32	260	Relu	ClipRound
5	CSEEM	flare	603.999	0.811	8	264	Sigmoid	ClipRound
5	CSEEM	flare	557.986	0.828	16	282	Sigmoid	ClipRound
5	CSEEM	flare	974.999	0.818	32	275	Sigmoid	ClipRound
5	CSEEM	flare	210.016	0.826	8	294	Sin	ClipRound
5	CSEEM	flare	882.993	0.811	16	235	Sin	ClipRound
5	CSEEM	flare	772.0	0.815	32	259	Sin	ClipRound
1	CSEEM	german	266.0	0.869	8	312	Tanh	ClipRound
1	CSEEM	german	856.0	0.892	16	382	Tanh	ClipRound
1	CSEEM	german	275.0	0.876	32	347	Tanh	ClipRound
1	CSEEM	german	443.001	0.93	8	528	SoftRelu	ClipRound
1	CSEEM	german	858.009	0.885	16	342	SoftRelu	ClipRound
1	CSEEM	german	439.001	0.879	32	302	SoftRelu	ClipRound
1	CSEEM	german	933.0	0.898	8	389	Relu	ClipRound

Table I.26: All CSEEM Results of classification problems (26/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	german	286.0	0.903	16	390	Relu	ClipRound
1	CSEEM	german	204.001	0.897	32	348	Relu	ClipRound
1	CSEEM	german	114.999	0.881	8	315	Sigmoid	ClipRound
1	CSEEM	german	264.0	0.89	16	386	Sigmoid	ClipRound
1	CSEEM	german	943.0	0.906	32	405	Sigmoid	ClipRound
1	CSEEM	german	82.0	0.9	8	515	Sin	ClipRound
1	CSEEM	german	386.48	0.845	16	375	Sin	ClipRound
1	CSEEM	german	754.0	0.875	32	417	Sin	ClipRound
2	CSEEM	german	634.001	0.859	8	354	Tanh	ClipRound
2	CSEEM	german	195.999	0.884	16	315	Tanh	ClipRound
2	CSEEM	german	200.0	0.894	32	367	Tanh	ClipRound
2	CSEEM	german	474.999	0.903	8	413	SoftRelu	ClipRound
2	CSEEM	german	509.514	0.907	16	406	SoftRelu	ClipRound
2	CSEEM	german	44.001	0.864	32	282	SoftRelu	ClipRound
2	CSEEM	german	663.999	0.904	8	408	Relu	ClipRound
2	CSEEM	german	354.007	0.885	16	322	Relu	ClipRound
2	CSEEM	german	868.999	0.913	32	397	Relu	ClipRound
2	CSEEM	german	199.0	0.807	8	131	Sigmoid	ClipRound
2	CSEEM	german	867.237	0.902	16	395	Sigmoid	ClipRound
2	CSEEM	german	313.024	0.909	32	396	Sigmoid	ClipRound
2	CSEEM	german	148.0	0.784	8	244	Sin	ClipRound
2	CSEEM	german	454.993	0.863	16	435	Sin	ClipRound
2	CSEEM	german	25.51	0.855	32	391	Sin	ClipRound
3	CSEEM	german	923.0	0.89	8	358	Tanh	ClipRound
3	CSEEM	german	252.517	0.855	16	277	Tanh	ClipRound
3	CSEEM	german	869.0	0.904	32	417	Tanh	ClipRound
3	CSEEM	german	731.999	0.895	8	402	SoftRelu	ClipRound
3	CSEEM	german	985.008	0.894	16	338	SoftRelu	ClipRound
3	CSEEM	german	583.062	0.88	32	282	SoftRelu	ClipRound
3	CSEEM	german	292.0	0.935	8	469	Relu	ClipRound
3	CSEEM	german	322.142	0.885	16	305	Relu	ClipRound
3	CSEEM	german	474.0	0.897	32	341	Relu	ClipRound

Table I.27: All CSEEM Results of classification problems (27/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	german	660.001	0.85	8	251	Sigmoid	ClipRound
3	CSEEM	german	727.008	0.873	16	311	Sigmoid	ClipRound
3	CSEEM	german	375.999	0.914	32	459	Sigmoid	ClipRound
3	CSEEM	german	221.999	0.868	8	459	Sin	ClipRound
3	CSEEM	german	349.004	0.845	16	387	Sin	ClipRound
3	CSEEM	german	866.001	0.872	32	458	Sin	ClipRound
4	CSEEM	german	694.002	0.875	8	349	Tanh	ClipRound
4	CSEEM	german	65.001	0.892	16	369	Tanh	ClipRound
4	CSEEM	german	24.999	0.894	32	374	Tanh	ClipRound
4	CSEEM	german	311.001	0.842	8	208	SoftRelu	ClipRound
4	CSEEM	german	319.0	0.897	16	360	SoftRelu	ClipRound
4	CSEEM	german	595.004	0.917	32	406	SoftRelu	ClipRound
4	CSEEM	german	643.999	0.911	8	434	Relu	ClipRound
4	CSEEM	german	527.0	0.909	16	418	Relu	ClipRound
4	CSEEM	german	903.0	0.9	32	366	Relu	ClipRound
4	CSEEM	german	93.0	0.845	8	223	Sigmoid	ClipRound
4	CSEEM	german	638.001	0.879	16	291	Sigmoid	ClipRound
4	CSEEM	german	712.999	0.906	32	418	Sigmoid	ClipRound
4	CSEEM	german	413.002	0.903	8	516	Sin	ClipRound
4	CSEEM	german	366.001	0.898	16	473	Sin	ClipRound
4	CSEEM	german	127.0	0.87	32	426	Sin	ClipRound
5	CSEEM	german	461.0	0.843	8	270	Tanh	ClipRound
5	CSEEM	german	813.001	0.904	16	425	Tanh	ClipRound
5	CSEEM	german	431.999	0.9	32	394	Tanh	ClipRound
5	CSEEM	german	240.0	0.825	8	173	SoftRelu	ClipRound
5	CSEEM	german	243.355	0.87	16	294	SoftRelu	ClipRound
5	CSEEM	german	573.003	0.903	32	389	SoftRelu	ClipRound
5	CSEEM	german	736.0	0.887	8	370	Relu	ClipRound
5	CSEEM	german	317.994	0.897	16	350	Relu	ClipRound
5	CSEEM	german	245.001	0.914	32	377	Relu	ClipRound
5	CSEEM	german	734.0	0.876	8	394	Sigmoid	ClipRound
5	CSEEM	german	391.009	0.892	16	411	Sigmoid	ClipRound

Table I.28: All CSEEM Results of classification problems (28/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	german	28.0	0.886	32	312	Sigmoid	ClipRound
5	CSEEM	german	354.001	0.855	8	425	Sin	ClipRound
5	CSEEM	german	715.008	0.835	16	351	Sin	ClipRound
5	CSEEM	german	871.001	0.899	32	483	Sin	ClipRound
1	CSEEM	glass	92.999	0.79	8	65	Tanh	ClipRound
1	CSEEM	glass	121.998	0.874	16	93	Tanh	ClipRound
1	CSEEM	glass	732.001	0.86	32	84	Tanh	ClipRound
1	CSEEM	glass	66.999	0.86	8	89	SoftRelu	ClipRound
1	CSEEM	glass	297.001	0.864	16	86	SoftRelu	ClipRound
1	CSEEM	glass	582.999	0.869	32	87	SoftRelu	ClipRound
1	CSEEM	glass	82.0	0.864	8	97	Relu	ClipRound
1	CSEEM	glass	230.99	0.864	16	95	Relu	ClipRound
1	CSEEM	glass	675.0	0.836	32	77	Relu	ClipRound
1	CSEEM	glass	129.0	0.832	8	76	Sigmoid	ClipRound
1	CSEEM	glass	270.989	0.841	16	73	Sigmoid	ClipRound
1	CSEEM	glass	416.0	0.827	32	68	Sigmoid	ClipRound
1	CSEEM	glass	100.997	0.841	8	82	Sin	ClipRound
1	CSEEM	glass	188.989	0.855	16	95	Sin	ClipRound
1	CSEEM	glass	461.0	0.86	32	84	Sin	ClipRound
2	CSEEM	glass	6.0	0.631	8	33	Tanh	ClipRound
2	CSEEM	glass	96.996	0.827	16	70	Tanh	ClipRound
2	CSEEM	glass	426.999	0.864	32	93	Tanh	ClipRound
2	CSEEM	glass	8.0	0.678	8	45	SoftRelu	ClipRound
2	CSEEM	glass	155.001	0.874	16	83	SoftRelu	ClipRound
2	CSEEM	glass	284.999	0.827	32	74	SoftRelu	ClipRound
2	CSEEM	glass	63.0	0.794	8	65	Relu	ClipRound
2	CSEEM	glass	75.99	0.804	16	64	Relu	ClipRound
2	CSEEM	glass	321.001	0.836	32	84	Relu	ClipRound
2	CSEEM	glass	143.999	0.86	8	101	Sigmoid	ClipRound
2	CSEEM	glass	252.005	0.869	16	81	Sigmoid	ClipRound
2	CSEEM	glass	412.999	0.827	32	77	Sigmoid	ClipRound
2	CSEEM	glass	39.999	0.888	8	102	Sin	ClipRound

Table I.29: All CSEEM Results of classification problems (29/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	glass	417.998	0.846	16	88	Sin	ClipRound
2	CSEEM	glass	426.999	0.864	32	87	Sin	ClipRound
3	CSEEM	glass	141.999	0.832	8	79	Tanh	ClipRound
3	CSEEM	glass	232.991	0.846	16	81	Tanh	ClipRound
3	CSEEM	glass	256.999	0.841	32	88	Tanh	ClipRound
3	CSEEM	glass	88.999	0.836	8	76	SoftRelu	ClipRound
3	CSEEM	glass	66.997	0.855	16	85	SoftRelu	ClipRound
3	CSEEM	glass	365.002	0.883	32	94	SoftRelu	ClipRound
3	CSEEM	glass	41.999	0.785	8	67	Relu	ClipRound
3	CSEEM	glass	71.992	0.808	16	73	Relu	ClipRound
3	CSEEM	glass	428.996	0.864	32	79	Relu	ClipRound
3	CSEEM	glass	201.998	0.855	8	84	Sigmoid	ClipRound
3	CSEEM	glass	40.993	0.827	16	80	Sigmoid	ClipRound
3	CSEEM	glass	156.999	0.799	32	62	Sigmoid	ClipRound
3	CSEEM	glass	69.0	0.771	8	67	Sin	ClipRound
3	CSEEM	glass	97.993	0.85	16	87	Sin	ClipRound
3	CSEEM	glass	431.0	0.836	32	75	Sin	ClipRound
4	CSEEM	glass	89.999	0.864	8	98	Tanh	ClipRound
4	CSEEM	glass	379.993	0.855	16	89	Tanh	ClipRound
4	CSEEM	glass	156.998	0.841	32	79	Tanh	ClipRound
4	CSEEM	glass	174.0	0.864	8	91	SoftRelu	ClipRound
4	CSEEM	glass	215.001	0.85	16	83	SoftRelu	ClipRound
4	CSEEM	glass	460.999	0.822	32	72	SoftRelu	ClipRound
4	CSEEM	glass	53.0	0.832	8	86	Relu	ClipRound
4	CSEEM	glass	152.001	0.846	16	85	Relu	ClipRound
4	CSEEM	glass	400.999	0.822	32	77	Relu	ClipRound
4	CSEEM	glass	91.998	0.836	8	87	Sigmoid	ClipRound
4	CSEEM	glass	183.0	0.879	16	90	Sigmoid	ClipRound
4	CSEEM	glass	552.0	0.85	32	74	Sigmoid	ClipRound
4	CSEEM	glass	97.0	0.766	8	71	Sin	ClipRound
4	CSEEM	glass	191.999	0.846	16	77	Sin	ClipRound
4	CSEEM	glass	428.999	0.846	32	77	Sin	ClipRound

Table I.30: All CSEEM Results of classification problems (30/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	glass	49.999	0.85	8	96	Tanh	ClipRound
5	CSEEM	glass	229.999	0.841	16	76	Tanh	ClipRound
5	CSEEM	glass	192.998	0.827	32	68	Tanh	ClipRound
5	CSEEM	glass	109.999	0.864	8	82	SoftRelu	ClipRound
5	CSEEM	glass	156.001	0.874	16	94	SoftRelu	ClipRound
5	CSEEM	glass	358.0	0.822	32	81	SoftRelu	ClipRound
5	CSEEM	glass	74.0	0.879	8	81	Relu	ClipRound
5	CSEEM	glass	294.065	0.86	16	87	Relu	ClipRound
5	CSEEM	glass	292.998	0.855	32	76	Relu	ClipRound
5	CSEEM	glass	51.999	0.776	8	65	Sigmoid	ClipRound
5	CSEEM	glass	71.993	0.832	16	81	Sigmoid	ClipRound
5	CSEEM	glass	559.0	0.86	32	74	Sigmoid	ClipRound
5	CSEEM	glass	87.0	0.729	8	65	Sin	ClipRound
5	CSEEM	glass	235.992	0.836	16	85	Sin	ClipRound
5	CSEEM	glass	618.998	0.864	32	92	Sin	ClipRound
1	CSEEM	haberman	178.0	0.873	8	94	Tanh	ClipRound
1	CSEEM	haberman	331.0	0.876	16	95	Tanh	ClipRound
1	CSEEM	haberman	460.998	0.882	32	95	Tanh	ClipRound
1	CSEEM	haberman	172.999	0.886	8	105	SoftRelu	ClipRound
1	CSEEM	haberman	255.989	0.866	16	93	SoftRelu	ClipRound
1	CSEEM	haberman	19.998	0.892	32	102	SoftRelu	ClipRound
1	CSEEM	haberman	135.0	0.837	8	65	Relu	ClipRound
1	CSEEM	haberman	451.025	0.873	16	105	Relu	ClipRound
1	CSEEM	haberman	680.999	0.889	32	97	Relu	ClipRound
1	CSEEM	haberman	248.999	0.889	8	116	Sigmoid	ClipRound
1	CSEEM	haberman	433.997	0.869	16	89	Sigmoid	ClipRound
1	CSEEM	haberman	958.999	0.902	32	115	Sigmoid	ClipRound
1	CSEEM	haberman	17.0	0.814	8	54	Sin	ClipRound
1	CSEEM	haberman	208.999	0.84	16	71	Sin	ClipRound
1	CSEEM	haberman	843.0	0.882	32	104	Sin	ClipRound
2	CSEEM	haberman	381.999	0.863	8	92	Tanh	ClipRound
2	CSEEM	haberman	343.999	0.879	16	103	Tanh	ClipRound

Table I.31: All CSEEM Results of classification problems (31/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	haberman	617.0	0.899	32	109	Tanh	ClipRound
2	CSEEM	haberman	196.999	0.863	8	76	SoftRelu	ClipRound
2	CSEEM	haberman	298.008	0.886	16	123	SoftRelu	ClipRound
2	CSEEM	haberman	773.0	0.866	32	92	SoftRelu	ClipRound
2	CSEEM	haberman	131.999	0.892	8	108	Relu	ClipRound
2	CSEEM	haberman	363.014	0.895	16	117	Relu	ClipRound
2	CSEEM	haberman	593.999	0.889	32	114	Relu	ClipRound
2	CSEEM	haberman	26.0	0.814	8	57	Sigmoid	ClipRound
2	CSEEM	haberman	420.001	0.876	16	98	Sigmoid	ClipRound
2	CSEEM	haberman	580.999	0.879	32	99	Sigmoid	ClipRound
2	CSEEM	haberman	85.999	0.833	8	91	Sin	ClipRound
2	CSEEM	haberman	347.003	0.866	16	92	Sin	ClipRound
2	CSEEM	haberman	161.998	0.889	32	110	Sin	ClipRound
3	CSEEM	haberman	245.999	0.879	8	106	Tanh	ClipRound
3	CSEEM	haberman	87.002	0.853	16	86	Tanh	ClipRound
3	CSEEM	haberman	886.999	0.889	32	109	Tanh	ClipRound
3	CSEEM	haberman	214.0	0.876	8	91	SoftRelu	ClipRound
3	CSEEM	haberman	845.0	0.886	16	99	SoftRelu	ClipRound
3	CSEEM	haberman	320.998	0.866	32	93	SoftRelu	ClipRound
3	CSEEM	haberman	245.999	0.85	8	70	Relu	ClipRound
3	CSEEM	haberman	423.991	0.879	16	101	Relu	ClipRound
3	CSEEM	haberman	293.0	0.902	32	127	Relu	ClipRound
3	CSEEM	haberman	100.999	0.882	8	130	Sigmoid	ClipRound
3	CSEEM	haberman	483.0	0.866	16	96	Sigmoid	ClipRound
3	CSEEM	haberman	647.999	0.876	32	102	Sigmoid	ClipRound
3	CSEEM	haberman	64.999	0.843	8	96	Sin	ClipRound
3	CSEEM	haberman	257.998	0.846	16	72	Sin	ClipRound
3	CSEEM	haberman	306.001	0.85	32	71	Sin	ClipRound
4	CSEEM	haberman	122.002	0.817	8	64	Tanh	ClipRound
4	CSEEM	haberman	495.998	0.882	16	97	Tanh	ClipRound
4	CSEEM	haberman	610.0	0.886	32	106	Tanh	ClipRound
4	CSEEM	haberman	209.999	0.892	8	106	SoftRelu	ClipRound

Table I.32: All CSEEM Results of classification problems (32/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	haberman	348.004	0.886	16	106	SoftRelu	ClipRound
4	CSEEM	haberman	765.999	0.882	32	100	SoftRelu	ClipRound
4	CSEEM	haberman	152.999	0.846	8	89	Relu	ClipRound
4	CSEEM	haberman	293.998	0.892	16	106	Relu	ClipRound
4	CSEEM	haberman	569.999	0.892	32	106	Relu	ClipRound
4	CSEEM	haberman	347.001	0.869	8	104	Sigmoid	ClipRound
4	CSEEM	haberman	771.0	0.882	16	102	Sigmoid	ClipRound
4	CSEEM	haberman	792.999	0.899	32	117	Sigmoid	ClipRound
4	CSEEM	haberman	103.0	0.859	8	75	Sin	ClipRound
4	CSEEM	haberman	479.999	0.873	16	106	Sin	ClipRound
4	CSEEM	haberman	789.999	0.879	32	110	Sin	ClipRound
5	CSEEM	haberman	54.0	0.843	8	77	Tanh	ClipRound
5	CSEEM	haberman	275.0	0.873	16	95	Tanh	ClipRound
5	CSEEM	haberman	742.999	0.873	32	84	Tanh	ClipRound
5	CSEEM	haberman	136.997	0.869	8	93	SoftRelu	ClipRound
5	CSEEM	haberman	368.007	0.879	16	99	SoftRelu	ClipRound
5	CSEEM	haberman	606.0	0.863	32	85	SoftRelu	ClipRound
5	CSEEM	haberman	68.999	0.879	8	105	Relu	ClipRound
5	CSEEM	haberman	172.006	0.853	16	87	Relu	ClipRound
5	CSEEM	haberman	766.999	0.873	32	91	Relu	ClipRound
5	CSEEM	haberman	334.999	0.869	8	101	Sigmoid	ClipRound
5	CSEEM	haberman	425.005	0.866	16	89	Sigmoid	ClipRound
5	CSEEM	haberman	819.998	0.889	32	109	Sigmoid	ClipRound
5	CSEEM	haberman	298.999	0.85	8	76	Sin	ClipRound
5	CSEEM	haberman	152.992	0.84	16	69	Sin	ClipRound
5	CSEEM	haberman	631.0	0.882	32	110	Sin	ClipRound
1	CSEEM	hayes_roth	23.0	0.894	8	60	Tanh	ClipRound
1	CSEEM	hayes_roth	52.999	0.894	16	49	Tanh	ClipRound
1	CSEEM	hayes_roth	91.001	0.831	32	38	Tanh	ClipRound
1	CSEEM	hayes_roth	60.0	0.875	8	55	SoftRelu	ClipRound
1	CSEEM	hayes_roth	35.0	0.863	16	54	SoftRelu	ClipRound
1	CSEEM	hayes_roth	124.0	0.881	32	43	SoftRelu	ClipRound

Table I.33: All CSEEM Results of classification problems (33/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	hayes_roth	32.999	0.9	8	47	Relu	ClipRound
1	CSEEM	hayes_roth	23.998	0.869	16	39	Relu	ClipRound
1	CSEEM	hayes_roth	148.0	0.881	32	50	Relu	ClipRound
1	CSEEM	hayes_roth	53.999	0.85	8	34	Sigmoid	ClipRound
1	CSEEM	hayes_roth	48.004	0.844	16	40	Sigmoid	ClipRound
1	CSEEM	hayes_roth	138.999	0.881	32	48	Sigmoid	ClipRound
1	CSEEM	hayes_roth	39.0	0.838	8	44	Sin	ClipRound
1	CSEEM	hayes_roth	47.997	0.856	16	43	Sin	ClipRound
1	CSEEM	hayes_roth	146.0	0.819	32	47	Sin	ClipRound
2	CSEEM	hayes_roth	27.0	0.85	8	48	Tanh	ClipRound
2	CSEEM	hayes_roth	53.993	0.856	16	55	Tanh	ClipRound
2	CSEEM	hayes_roth	202.998	0.856	32	47	Tanh	ClipRound
2	CSEEM	hayes_roth	39.0	0.875	8	58	SoftRelu	ClipRound
2	CSEEM	hayes_roth	99.996	0.838	16	47	SoftRelu	ClipRound
2	CSEEM	hayes_roth	103.999	0.85	32	46	SoftRelu	ClipRound
2	CSEEM	hayes_roth	5.0	0.762	8	24	Relu	ClipRound
2	CSEEM	hayes_roth	27.005	0.863	16	45	Relu	ClipRound
2	CSEEM	hayes_roth	203.999	0.856	32	49	Relu	ClipRound
2	CSEEM	hayes_roth	27.998	0.85	8	40	Sigmoid	ClipRound
2	CSEEM	hayes_roth	95.001	0.9	16	49	Sigmoid	ClipRound
2	CSEEM	hayes_roth	202.999	0.875	32	50	Sigmoid	ClipRound
2	CSEEM	hayes_roth	24.999	0.894	8	49	Sin	ClipRound
2	CSEEM	hayes_roth	51.999	0.912	16	57	Sin	ClipRound
2	CSEEM	hayes_roth	139.001	0.881	32	54	Sin	ClipRound
3	CSEEM	hayes_roth	48.999	0.863	8	45	Tanh	ClipRound
3	CSEEM	hayes_roth	65.01	0.869	16	46	Tanh	ClipRound
3	CSEEM	hayes_roth	117.0	0.9	32	54	Tanh	ClipRound
3	CSEEM	hayes_roth	31.0	0.875	8	37	SoftRelu	ClipRound
3	CSEEM	hayes_roth	44.991	0.863	16	37	SoftRelu	ClipRound
3	CSEEM	hayes_roth	94.518	0.863	32	46	SoftRelu	ClipRound
3	CSEEM	hayes_roth	54.0	0.812	8	36	Relu	ClipRound
3	CSEEM	hayes_roth	64.005	0.838	16	40	Relu	ClipRound

Table I.34: All CSEEM Results of classification problems (34/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	hayes_roth	141.0	0.887	32	55	Relu	ClipRound
3	CSEEM	hayes roth	45.0	0.85	8	43	Sigmoid	ClipRound
3	CSEEM	hayes_roth	56.997	0.906	16	50	Sigmoid	ClipRound
3	CSEEM	hayes_roth	196.0	0.894	32	42	Sigmoid	ClipRound
3	CSEEM	hayes_roth	73.999	0.863	8	49	Sin	ClipRound
3	CSEEM	hayes_roth	121.998	0.906	16	55	Sin	ClipRound
3	CSEEM	hayes_roth	141.005	0.881	32	46	Sin	ClipRound
4	CSEEM	hayes_roth	20.997	0.806	8	50	Tanh	ClipRound
4	CSEEM	hayes_roth	36.0	0.869	16	54	Tanh	ClipRound
4	CSEEM	hayes_roth	69.999	0.887	32	50	Tanh	ClipRound
4	CSEEM	hayes_roth	32.999	0.881	8	43	SoftRelu	ClipRound
4	CSEEM	hayes_roth	64.993	0.869	16	46	SoftRelu	ClipRound
4	CSEEM	hayes_roth	69.999	0.863	32	43	SoftRelu	ClipRound
4	CSEEM	hayes_roth	15.999	0.819	8	41	Relu	ClipRound
4	CSEEM	hayes_roth	34.999	0.856	16	35	Relu	ClipRound
4	CSEEM	hayes_roth	241.998	0.881	32	47	Relu	ClipRound
4	CSEEM	hayes_roth	19.997	0.856	8	48	Sigmoid	ClipRound
4	CSEEM	hayes_roth	40.999	0.881	16	51	Sigmoid	ClipRound
4	CSEEM	hayes_roth	72.001	0.806	32	42	Sigmoid	ClipRound
4	CSEEM	hayes_roth	38.507	0.85	8	44	Sin	ClipRound
4	CSEEM	hayes_roth	43.51	0.894	16	56	Sin	ClipRound
4	CSEEM	hayes_roth	128.998	0.869	32	53	Sin	ClipRound
5	CSEEM	hayes_roth	13.998	0.825	8	45	Tanh	ClipRound
5	CSEEM	hayes_roth	68.0	0.881	16	58	Tanh	ClipRound
5	CSEEM	hayes_roth	114.998	0.875	32	44	Tanh	ClipRound
5	CSEEM	hayes_roth	13.0	0.906	8	50	SoftRelu	ClipRound
5	CSEEM	hayes_roth	102.998	0.881	16	48	SoftRelu	ClipRound
5	CSEEM	hayes_roth	182.0	0.894	32	48	SoftRelu	ClipRound
5	CSEEM	hayes_roth	9.998	0.838	8	27	Relu	ClipRound
5	CSEEM	hayes_roth	77.002	0.831	16	43	Relu	ClipRound
5	CSEEM	hayes_roth	79.998	0.863	32	43	Relu	ClipRound
5	CSEEM	hayes_roth	26.0	0.875	8	39	Sigmoid	ClipRound

Table I.35: All CSEEM Results of classification problems (35/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	hayes_roth	90.992	0.906	16	48	Sigmoid	ClipRound
5	CSEEM	hayes_roth	102.001	0.863	32	33	Sigmoid	ClipRound
5	CSEEM	hayes_roth	13.999	0.869	8	47	Sin	ClipRound
5	CSEEM	hayes_roth	70.993	0.856	16	44	Sin	ClipRound
5	CSEEM	hayes_roth	111.999	0.856	32	46	Sin	ClipRound
1	CSEEM	heart	155.999	0.915	8	82	Tanh	ClipRound
1	CSEEM	heart	170.0	0.907	16	56	Tanh	ClipRound
1	CSEEM	heart	648.999	0.915	32	64	Tanh	ClipRound
1	CSEEM	heart	148.998	0.933	8	109	SoftRelu	ClipRound
1	CSEEM	heart	156.008	0.926	16	85	SoftRelu	ClipRound
1	CSEEM	heart	861.999	0.926	32	82	SoftRelu	ClipRound
1	CSEEM	heart	104.999	0.937	8	98	Relu	ClipRound
1	CSEEM	heart	451.999	0.922	16	76	Relu	ClipRound
1	CSEEM	heart	176.0	0.911	32	79	Relu	ClipRound
1	CSEEM	heart	88.999	0.907	8	66	Sigmoid	ClipRound
1	CSEEM	heart	394.993	0.915	16	78	Sigmoid	ClipRound
1	CSEEM	heart	395.999	0.941	32	97	Sigmoid	ClipRound
1	CSEEM	heart	43.0	0.83	8	78	Sin	ClipRound
1	CSEEM	heart	93.0	0.863	16	129	Sin	ClipRound
1	CSEEM	heart	338.996	0.848	32	110	Sin	ClipRound
2	CSEEM	heart	207.999	0.933	8	92	Tanh	ClipRound
2	CSEEM	heart	322.985	0.922	16	72	Tanh	ClipRound
2	CSEEM	heart	692.999	0.915	32	59	Tanh	ClipRound
2	CSEEM	heart	81.999	0.911	8	76	SoftRelu	ClipRound
2	CSEEM	heart	225.007	0.937	16	92	SoftRelu	ClipRound
2	CSEEM	heart	250.0	0.911	32	58	SoftRelu	ClipRound
2	CSEEM	heart	13.001	0.87	8	44	Relu	ClipRound
2	CSEEM	heart	483.001	0.915	16	65	Relu	ClipRound
2	CSEEM	heart	211.001	0.915	32	65	Relu	ClipRound
2	CSEEM	heart	119.999	0.937	8	97	Sigmoid	ClipRound
2	CSEEM	heart	211.996	0.9	16	67	Sigmoid	ClipRound
2	CSEEM	heart	491.999	0.937	32	80	Sigmoid	ClipRound

Table I.36: All CSEEM Results of classification problems (36/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	heart	110.998	0.819	8	109	Sin	ClipRound
2	CSEEM	heart	319.996	0.907	16	129	Sin	ClipRound
2	CSEEM	heart	671.998	0.863	32	85	Sin	ClipRound
3	CSEEM	heart	76.999	0.893	8	70	Tanh	ClipRound
3	CSEEM	heart	79.995	0.893	16	62	Tanh	ClipRound
3	CSEEM	heart	276.0	0.915	32	76	Tanh	ClipRound
3	CSEEM	heart	261.998	0.948	8	94	SoftRelu	ClipRound
3	CSEEM	heart	259.993	0.904	16	70	SoftRelu	ClipRound
3	CSEEM	heart	531.509	0.944	32	92	SoftRelu	ClipRound
3	CSEEM	heart	81.999	0.904	8	59	Relu	ClipRound
3	CSEEM	heart	119.0	0.904	16	42	Relu	ClipRound
3	CSEEM	heart	656.999	0.915	32	63	Relu	ClipRound
3	CSEEM	heart	162.997	0.941	8	86	Sigmoid	ClipRound
3	CSEEM	heart	406.991	0.941	16	82	Sigmoid	ClipRound
3	CSEEM	heart	450.999	0.93	32	87	Sigmoid	ClipRound
3	CSEEM	heart	281.0	0.859	8	82	Sin	ClipRound
3	CSEEM	heart	286.992	0.859	16	112	Sin	ClipRound
3	CSEEM	heart	569.998	0.881	32	123	Sin	ClipRound
4	CSEEM	heart	53.999	0.915	8	85	Tanh	ClipRound
4	CSEEM	heart	387.001	0.933	16	85	Tanh	ClipRound
4	CSEEM	heart	188.999	0.919	32	80	Tanh	ClipRound
4	CSEEM	heart	204.999	0.915	8	76	SoftRelu	ClipRound
4	CSEEM	heart	363.998	0.948	16	103	SoftRelu	ClipRound
4	CSEEM	heart	516.002	0.933	32	83	SoftRelu	ClipRound
4	CSEEM	heart	129.999	0.907	8	60	Relu	ClipRound
4	CSEEM	heart	143.999	0.915	16	71	Relu	ClipRound
4	CSEEM	heart	287.998	0.926	32	75	Relu	ClipRound
4	CSEEM	heart	30.999	0.911	8	56	Sigmoid	ClipRound
4	CSEEM	heart	236.0	0.963	16	102	Sigmoid	ClipRound
4	CSEEM	heart	742.999	0.956	32	93	Sigmoid	ClipRound
4	CSEEM	heart	105.999	0.778	8	86	Sin	ClipRound
4	CSEEM	heart	439.999	0.915	16	129	Sin	ClipRound

Table I.37: All CSEEM Results of classification problems (37/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	heart	924.0	0.919	32	128	Sin	ClipRound
5	CSEEM	heart	169.999	0.922	8	77	Tanh	ClipRound
5	CSEEM	heart	269.0	0.933	16	81	Tanh	ClipRound
5	CSEEM	heart	788.999	0.922	32	63	Tanh	ClipRound
5	CSEEM	heart	48.0	0.867	8	32	SoftRelu	ClipRound
5	CSEEM	heart	176.998	0.944	16	101	SoftRelu	ClipRound
5	CSEEM	heart	798.998	0.93	32	80	SoftRelu	ClipRound
5	CSEEM	heart	24.998	0.9	8	56	Relu	ClipRound
5	CSEEM	heart	205.006	0.911	16	65	Relu	ClipRound
5	CSEEM	heart	267.0	0.915	32	48	Relu	ClipRound
5	CSEEM	heart	94.999	0.9	8	59	Sigmoid	ClipRound
5	CSEEM	heart	450.999	0.926	16	78	Sigmoid	ClipRound
5	CSEEM	heart	341.0	0.952	32	81	Sigmoid	ClipRound
5	CSEEM	heart	71.0	0.781	8	75	Sin	ClipRound
5	CSEEM	heart	131.992	0.87	16	113	Sin	ClipRound
5	CSEEM	heart	202.999	0.896	32	112	Sin	ClipRound
1	CSEEM	hepatitis	11.999	0.95	8	14	Tanh	ClipRound
1	CSEEM	hepatitis	24.999	0.95	16	13	Tanh	ClipRound
1	CSEEM	hepatitis	35.999	0.95	32	23	Tanh	ClipRound
1	CSEEM	hepatitis	9.002	0.912	8	17	SoftRelu	ClipRound
1	CSEEM	hepatitis	21.0	0.95	16	17	SoftRelu	ClipRound
1	CSEEM	hepatitis	36.999	0.963	32	20	SoftRelu	ClipRound
1	CSEEM	hepatitis	5.999	0.887	8	7	Relu	ClipRound
1	CSEEM	hepatitis	19.993	0.988	16	25	Relu	ClipRound
1	CSEEM	hepatitis	72.999	0.975	32	22	Relu	ClipRound
1	CSEEM	hepatitis	5.0	0.912	8	15	Sigmoid	ClipRound
1	CSEEM	hepatitis	22.0	0.963	16	19	Sigmoid	ClipRound
1	CSEEM	hepatitis	44.997	0.95	32	12	Sigmoid	ClipRound
1	CSEEM	hepatitis	11.0	0.938	8	18	Sin	ClipRound
1	CSEEM	hepatitis	24.999	0.938	16	26	Sin	ClipRound
1	CSEEM	hepatitis	45.0	0.925	32	13	Sin	ClipRound
2	CSEEM	hepatitis	10.999	0.938	8	13	Tanh	ClipRound

Table I.38: All CSEEM Results of classification problems (38/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	hepatitis	33.999	0.95	16	21	Tanh	ClipRound
2	CSEEM	hepatitis	39.0	0.963	32	21	Tanh	ClipRound
2	CSEEM	hepatitis	14.999	0.938	8	25	SoftRelu	ClipRound
2	CSEEM	hepatitis	26.006	0.963	16	24	SoftRelu	ClipRound
2	CSEEM	hepatitis	56.001	0.963	32	17	SoftRelu	ClipRound
2	CSEEM	hepatitis	8.0	0.912	8	20	Relu	ClipRound
2	CSEEM	hepatitis	11.997	0.95	16	19	Relu	ClipRound
2	CSEEM	hepatitis	50.001	0.963	32	23	Relu	ClipRound
2	CSEEM	hepatitis	5.001	0.912	8	16	Sigmoid	ClipRound
2	CSEEM	hepatitis	30.998	0.988	16	26	Sigmoid	ClipRound
2	CSEEM	hepatitis	43.996	0.95	32	15	Sigmoid	ClipRound
2	CSEEM	hepatitis	12.999	0.925	8	18	Sin	ClipRound
2	CSEEM	hepatitis	21.996	0.963	16	33	Sin	ClipRound
2	CSEEM	hepatitis	46.998	0.938	32	22	Sin	ClipRound
3	CSEEM	hepatitis	7.0	0.925	8	9	Tanh	ClipRound
3	CSEEM	hepatitis	19.007	0.988	16	23	Tanh	ClipRound
3	CSEEM	hepatitis	69.999	0.963	32	10	Tanh	ClipRound
3	CSEEM	hepatitis	17.0	0.925	8	17	SoftRelu	ClipRound
3	CSEEM	hepatitis	8.999	0.925	16	7	SoftRelu	ClipRound
3	CSEEM	hepatitis	43.996	0.975	32	27	SoftRelu	ClipRound
3	CSEEM	hepatitis	5.0	0.938	8	21	Relu	ClipRound
3	CSEEM	hepatitis	15.996	0.95	16	24	Relu	ClipRound
3	CSEEM	hepatitis	32.001	0.938	32	18	Relu	ClipRound
3	CSEEM	hepatitis	9.0	0.925	8	10	Sigmoid	ClipRound
3	CSEEM	hepatitis	14.004	0.95	16	15	Sigmoid	ClipRound
3	CSEEM	hepatitis	23.998	0.95	32	12	Sigmoid	ClipRound
3	CSEEM	hepatitis	7.999	0.85	8	11	Sin	ClipRound
3	CSEEM	hepatitis	30.006	0.887	16	20	Sin	ClipRound
3	CSEEM	hepatitis	42.0	0.938	32	22	Sin	ClipRound
4	CSEEM	hepatitis	10.999	0.963	8	23	Tanh	ClipRound
4	CSEEM	hepatitis	17.996	0.938	16	13	Tanh	ClipRound
4	CSEEM	hepatitis	50.998	0.975	32	21	Tanh	ClipRound

Table I.39: All CSEEM Results of classification problems (39/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	hepatitis	16.999	0.975	8	25	SoftRelu	ClipRound
4	CSEEM	hepatitis	23.003	0.95	16	18	SoftRelu	ClipRound
4	CSEEM	hepatitis	53.999	0.975	32	26	SoftRelu	ClipRound
4	CSEEM	hepatitis	7.0	0.912	8	15	Relu	ClipRound
4	CSEEM	hepatitis	20.998	0.975	16	26	Relu	ClipRound
4	CSEEM	hepatitis	39.998	0.938	32	15	Relu	ClipRound
4	CSEEM	hepatitis	6.0	0.938	8	19	Sigmoid	ClipRound
4	CSEEM	hepatitis	16.0	0.988	16	22	Sigmoid	ClipRound
4	CSEEM	hepatitis	56.001	0.95	32	19	Sigmoid	ClipRound
4	CSEEM	hepatitis	13.999	0.988	8	31	Sin	ClipRound
4	CSEEM	hepatitis	9.999	0.887	16	21	Sin	ClipRound
4	CSEEM	hepatitis	24.999	0.938	32	29	Sin	ClipRound
5	CSEEM	hepatitis	12.999	0.95	8	16	Tanh	ClipRound
5	CSEEM	hepatitis	21.998	0.975	16	24	Tanh	ClipRound
5	CSEEM	hepatitis	51.999	0.963	32	17	Tanh	ClipRound
5	CSEEM	hepatitis	12.0	0.938	8	23	SoftRelu	ClipRound
5	CSEEM	hepatitis	15.026	0.95	16	15	SoftRelu	ClipRound
5	CSEEM	hepatitis	41.999	0.95	32	16	SoftRelu	ClipRound
5	CSEEM	hepatitis	6.999	0.95	8	19	Relu	ClipRound
5	CSEEM	hepatitis	27.002	0.95	16	23	Relu	ClipRound
5	CSEEM	hepatitis	70.999	0.963	32	21	Relu	ClipRound
5	CSEEM	hepatitis	12.0	0.95	8	12	Sigmoid	ClipRound
5	CSEEM	hepatitis	12.0	0.988	16	25	Sigmoid	ClipRound
5	CSEEM	hepatitis	57.999	0.975	32	23	Sigmoid	ClipRound
5	CSEEM	hepatitis	13.999	0.9	8	20	Sin	ClipRound
5	CSEEM	hepatitis	23.0	0.938	16	27	Sin	ClipRound
5	CSEEM	hepatitis	27.0	0.9	32	13	Sin	ClipRound
1	CSEEM	housevotes	34.999	0.974	8	53	Tanh	ClipRound
1	CSEEM	housevotes	137.999	0.987	16	55	Tanh	ClipRound
1	CSEEM	housevotes	218.999	0.991	32	40	Tanh	ClipRound
1	CSEEM	housevotes	65.998	0.978	8	44	SoftRelu	ClipRound
1	CSEEM	housevotes	157.041	0.974	16	32	SoftRelu	ClipRound

Table I.40: All CSEEM Results of classification problems (40/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	housevotes	115.0	0.978	32	29	SoftRelu	ClipRound
1	CSEEM	housevotes	74.999	0.978	8	43	Relu	ClipRound
1	CSEEM	housevotes	201.999	0.978	16	29	Relu	ClipRound
1	CSEEM	housevotes	352.0	0.987	32	50	Relu	ClipRound
1	CSEEM	housevotes	106.999	0.983	8	39	Sigmoid	ClipRound
1	CSEEM	housevotes	139.999	0.978	16	36	Sigmoid	ClipRound
1	CSEEM	housevotes	286.999	0.978	32	23	Sigmoid	ClipRound
1	CSEEM	housevotes	181.999	0.944	8	102	Sin	ClipRound
1	CSEEM	housevotes	333.999	0.909	16	79	Sin	ClipRound
1	CSEEM	housevotes	510.0	0.957	32	96	Sin	ClipRound
2	CSEEM	housevotes	159.0	0.978	8	33	Tanh	ClipRound
2	CSEEM	housevotes	173.995	0.983	16	40	Tanh	ClipRound
2	CSEEM	housevotes	395.003	0.987	32	45	Tanh	ClipRound
2	CSEEM	housevotes	27.999	0.97	8	32	SoftRelu	ClipRound
2	CSEEM	housevotes	100.002	0.987	16	54	SoftRelu	ClipRound
2	CSEEM	housevotes	246.0	0.983	32	35	SoftRelu	ClipRound
2	CSEEM	housevotes	102.001	0.978	8	38	Relu	ClipRound
2	CSEEM	housevotes	96.994	0.978	16	35	Relu	ClipRound
2	CSEEM	housevotes	319.999	0.983	32	39	Relu	ClipRound
2	CSEEM	housevotes	101.999	0.974	8	32	Sigmoid	ClipRound
2	CSEEM	housevotes	97.0	0.978	16	41	Sigmoid	ClipRound
2	CSEEM	housevotes	222.001	0.987	32	47	Sigmoid	ClipRound
2	CSEEM	housevotes	48.998	0.922	8	76	Sin	ClipRound
2	CSEEM	housevotes	148.989	0.892	16	77	Sin	ClipRound
2	CSEEM	housevotes	652.507	0.914	32	85	Sin	ClipRound
3	CSEEM	housevotes	86.999	0.978	8	37	Tanh	ClipRound
3	CSEEM	housevotes	366.013	0.978	16	34	Tanh	ClipRound
3	CSEEM	housevotes	578.003	0.987	32	44	Tanh	ClipRound
3	CSEEM	housevotes	98.999	0.983	8	43	SoftRelu	ClipRound
3	CSEEM	housevotes	92.991	0.983	16	45	SoftRelu	ClipRound
3	CSEEM	housevotes	308.998	0.974	32	34	SoftRelu	ClipRound
3	CSEEM	housevotes	66.0	0.966	8	35	Relu	ClipRound

Table I.41: All CSEEM Results of classification problems (41/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	housevotes	79.009	0.978	16	40	Relu	ClipRound
3	CSEEM	housevotes	232.998	0.978	32	35	Relu	ClipRound
3	CSEEM	housevotes	84.999	0.974	8	43	Sigmoid	ClipRound
3	CSEEM	housevotes	74.998	0.983	16	36	Sigmoid	ClipRound
3	CSEEM	housevotes	118.999	0.983	32	37	Sigmoid	ClipRound
3	CSEEM	housevotes	124.0	0.905	8	73	Sin	ClipRound
3	CSEEM	housevotes	414.001	0.927	16	94	Sin	ClipRound
3	CSEEM	housevotes	579.0	0.94	32	93	Sin	ClipRound
4	CSEEM	housevotes	180.0	0.97	8	29	Tanh	ClipRound
4	CSEEM	housevotes	176.006	0.987	16	43	Tanh	ClipRound
4	CSEEM	housevotes	198.0	0.978	32	31	Tanh	ClipRound
4	CSEEM	housevotes	252.999	0.983	8	43	SoftRelu	ClipRound
4	CSEEM	housevotes	92.992	0.987	16	48	SoftRelu	ClipRound
4	CSEEM	housevotes	260.998	0.978	32	27	SoftRelu	ClipRound
4	CSEEM	housevotes	41.998	0.966	8	46	Relu	ClipRound
4	CSEEM	housevotes	142.0	0.978	16	41	Relu	ClipRound
4	CSEEM	housevotes	331.999	0.987	32	30	Relu	ClipRound
4	CSEEM	housevotes	74.998	0.983	8	50	Sigmoid	ClipRound
4	CSEEM	housevotes	91.0	0.983	16	42	Sigmoid	ClipRound
4	CSEEM	housevotes	125.0	0.978	32	31	Sigmoid	ClipRound
4	CSEEM	housevotes	65.999	0.953	8	107	Sin	ClipRound
4	CSEEM	housevotes	242.998	0.948	16	85	Sin	ClipRound
4	CSEEM	housevotes	237.998	0.914	32	88	Sin	ClipRound
5	CSEEM	housevotes	34.0	0.97	8	33	Tanh	ClipRound
5	CSEEM	housevotes	119.0	0.97	16	24	Tanh	ClipRound
5	CSEEM	housevotes	74.0	0.978	32	47	Tanh	ClipRound
5	CSEEM	housevotes	61.998	0.978	8	36	SoftRelu	ClipRound
5	CSEEM	housevotes	187.001	0.974	16	25	SoftRelu	ClipRound
5	CSEEM	housevotes	81.0	0.97	32	28	SoftRelu	ClipRound
5	CSEEM	housevotes	119.999	0.974	8	35	Relu	ClipRound
5	CSEEM	housevotes	135.995	0.983	16	39	Relu	ClipRound
5	CSEEM	housevotes	314.999	0.978	32	34	Relu	ClipRound

Table I.42: All CSEEM Results of classification problems (42/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	housevotes	105.999	0.974	8	42	Sigmoid	ClipRound
5	CSEEM	housevotes	285.002	0.983	16	41	Sigmoid	ClipRound
5	CSEEM	housevotes	404.0	0.978	32	41	Sigmoid	ClipRound
5	CSEEM	housevotes	39.999	0.884	8	66	Sin	ClipRound
5	CSEEM	housevotes	269.998	0.897	16	62	Sin	ClipRound
5	CSEEM	housevotes	196.0	0.927	32	89	Sin	ClipRound
1	CSEEM	ionosphere	104.001	0.969	8	81	Tanh	ClipRound
1	CSEEM	ionosphere	453.0	0.98	16	96	Tanh	ClipRound
1	CSEEM	ionosphere	161.0	0.969	32	87	Tanh	ClipRound
1	CSEEM	ionosphere	115.001	0.972	8	92	SoftRelu	ClipRound
1	CSEEM	ionosphere	574.001	0.972	16	90	SoftRelu	ClipRound
1	CSEEM	ionosphere	483.0	0.969	32	88	SoftRelu	ClipRound
1	CSEEM	ionosphere	182.001	0.972	8	67	Relu	ClipRound
1	CSEEM	ionosphere	300.002	0.966	16	74	Relu	ClipRound
1	CSEEM	ionosphere	715.506	0.977	32	87	Relu	ClipRound
1	CSEEM	ionosphere	91.0	0.974	8	93	Sigmoid	ClipRound
1	CSEEM	ionosphere	461.091	0.972	16	84	Sigmoid	ClipRound
1	CSEEM	ionosphere	565.0	0.98	32	96	Sigmoid	ClipRound
1	CSEEM	ionosphere	236.999	0.897	8	105	Sin	ClipRound
1	CSEEM	ionosphere	625.001	0.96	16	161	Sin	ClipRound
1	CSEEM	ionosphere	263.019	0.943	32	147	Sin	ClipRound
2	CSEEM	ionosphere	125.001	0.969	8	94	Tanh	ClipRound
2	CSEEM	ionosphere	208.0	0.957	16	66	Tanh	ClipRound
2	CSEEM	ionosphere	645.0	0.977	32	96	Tanh	ClipRound
2	CSEEM	ionosphere	71.001	0.966	8	80	SoftRelu	ClipRound
2	CSEEM	ionosphere	145.998	0.96	16	67	SoftRelu	ClipRound
2	CSEEM	ionosphere	893.001	0.98	32	85	SoftRelu	ClipRound
2	CSEEM	ionosphere	311.001	0.969	8	75	Relu	ClipRound
2	CSEEM	ionosphere	497.006	0.954	16	57	Relu	ClipRound
2	CSEEM	ionosphere	948.0	0.963	32	66	Relu	ClipRound
2	CSEEM	ionosphere	169.001	0.972	8	95	Sigmoid	ClipRound
2	CSEEM	ionosphere	389.996	0.983	16	94	Sigmoid	ClipRound

Table I.43: All CSEEM Results of classification problems (43/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	ionosphere	342.0	0.96	32	68	Sigmoid	ClipRound
2	CSEEM	ionosphere	88.51	0.84	8	66	Sin	ClipRound
2	CSEEM	ionosphere	648.0	0.937	16	152	Sin	ClipRound
2	CSEEM	ionosphere	913.0	0.926	32	117	Sin	ClipRound
3	CSEEM	ionosphere	94.999	0.96	8	90	Tanh	ClipRound
3	CSEEM	ionosphere	436.034	0.972	16	83	Tanh	ClipRound
3	CSEEM	ionosphere	552.001	0.957	32	57	Tanh	ClipRound
3	CSEEM	ionosphere	228.002	0.98	8	99	SoftRelu	ClipRound
3	CSEEM	ionosphere	179.01	0.969	16	77	SoftRelu	ClipRound
3	CSEEM	ionosphere	951.998	0.972	32	87	SoftRelu	ClipRound
3	CSEEM	ionosphere	210.999	0.98	8	103	Relu	ClipRound
3	CSEEM	ionosphere	270.001	0.977	16	83	Relu	ClipRound
3	CSEEM	ionosphere	320.002	0.966	32	59	Relu	ClipRound
3	CSEEM	ionosphere	247.001	0.974	8	89	Sigmoid	ClipRound
3	CSEEM	ionosphere	527.001	0.966	16	62	Sigmoid	ClipRound
3	CSEEM	ionosphere	301.999	0.972	32	78	Sigmoid	ClipRound
3	CSEEM	ionosphere	116.999	0.923	8	147	Sin	ClipRound
3	CSEEM	ionosphere	352.002	0.883	16	108	Sin	ClipRound
3	CSEEM	ionosphere	903.003	0.915	32	124	Sin	ClipRound
4	CSEEM	ionosphere	254.001	0.969	8	105	Tanh	ClipRound
4	CSEEM	ionosphere	414.0	0.963	16	74	Tanh	ClipRound
4	CSEEM	ionosphere	883.508	0.972	32	86	Tanh	ClipRound
4	CSEEM	ionosphere	312.999	0.977	8	91	SoftRelu	ClipRound
4	CSEEM	ionosphere	897.545	0.972	16	79	SoftRelu	ClipRound
4	CSEEM	ionosphere	762.0	0.969	32	79	SoftRelu	ClipRound
4	CSEEM	ionosphere	140.0	0.949	8	51	Relu	ClipRound
4	CSEEM	ionosphere	204.0	0.966	16	74	Relu	ClipRound
4	CSEEM	ionosphere	514.0	0.98	32	99	Relu	ClipRound
4	CSEEM	ionosphere	398.0	0.974	8	77	Sigmoid	ClipRound
4	CSEEM	ionosphere	555.0	0.974	16	74	Sigmoid	ClipRound
4	CSEEM	ionosphere	640.999	0.969	32	76	Sigmoid	ClipRound
4	CSEEM	ionosphere	268.0	0.94	8	139	Sin	ClipRound

Table I.44: All CSEEM Results of classification problems (44/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	ionosphere	562.999	0.943	16	145	Sin	ClipRound
4	CSEEM	ionosphere	274.0	0.923	32	134	Sin	ClipRound
5	CSEEM	ionosphere	335.0	0.954	8	50	Tanh	ClipRound
5	CSEEM	ionosphere	360.0	0.963	16	65	Tanh	ClipRound
5	CSEEM	ionosphere	339.999	0.974	32	66	Tanh	ClipRound
5	CSEEM	ionosphere	74.0	0.946	8	59	SoftRelu	ClipRound
5	CSEEM	ionosphere	338.0	0.949	16	56	SoftRelu	ClipRound
5	CSEEM	ionosphere	735.999	0.96	32	70	SoftRelu	ClipRound
5	CSEEM	ionosphere	229.002	0.972	8	93	Relu	ClipRound
5	CSEEM	ionosphere	607.002	0.96	16	64	Relu	ClipRound
5	CSEEM	ionosphere	381.999	0.966	32	76	Relu	ClipRound
5	CSEEM	ionosphere	374.0	0.98	8	73	Sigmoid	ClipRound
5	CSEEM	ionosphere	101.008	0.929	16	44	Sigmoid	ClipRound
5	CSEEM	ionosphere	889.997	0.972	32	83	Sigmoid	ClipRound
5	CSEEM	ionosphere	370.0	0.909	8	123	Sin	ClipRound
5	CSEEM	ionosphere	198.007	0.915	16	122	Sin	ClipRound
5	CSEEM	ionosphere	130.001	0.903	32	121	Sin	ClipRound
1	CSEEM	iris	19.999	0.98	8	16	Tanh	ClipRound
1	CSEEM	iris	30.998	0.987	16	19	Tanh	ClipRound
1	CSEEM	iris	71.999	0.993	32	18	Tanh	ClipRound
1	CSEEM	iris	15.0	0.993	8	19	SoftRelu	ClipRound
1	CSEEM	iris	32.0	0.987	16	21	SoftRelu	ClipRound
1	CSEEM	iris	43.999	0.993	32	25	SoftRelu	ClipRound
1	CSEEM	iris	5.0	0.953	8	10	Relu	ClipRound
1	CSEEM	iris	67.006	0.973	16	17	Relu	ClipRound
1	CSEEM	iris	48.998	0.993	32	20	Relu	ClipRound
1	CSEEM	iris	14.0	0.987	8	25	Sigmoid	ClipRound
1	CSEEM	iris	35.997	0.98	16	10	Sigmoid	ClipRound
1	CSEEM	iris	72.0	0.993	32	24	Sigmoid	ClipRound
1	CSEEM	iris	18.999	0.973	8	23	Sin	ClipRound
1	CSEEM	iris	26.999	0.96	16	12	Sin	ClipRound
1	CSEEM	iris	34.0	0.953	32	18	Sin	ClipRound

Table I.45: All CSEEM Results of classification problems (45/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	iris	28.0	0.98	8	29	Tanh	ClipRound
2	CSEEM	iris	44.991	0.98	16	28	Tanh	ClipRound
2	CSEEM	iris	77.0	0.987	32	20	Tanh	ClipRound
2	CSEEM	iris	16.999	0.987	8	31	SoftRelu	ClipRound
2	CSEEM	iris	47.993	0.987	16	23	SoftRelu	ClipRound
2	CSEEM	iris	34.001	0.98	32	13	SoftRelu	ClipRound
2	CSEEM	iris	12.0	0.98	8	23	Relu	ClipRound
2	CSEEM	iris	45.99	0.98	16	18	Relu	ClipRound
2	CSEEM	iris	146.001	0.987	32	18	Relu	ClipRound
2	CSEEM	iris	15.0	0.993	8	17	Sigmoid	ClipRound
2	CSEEM	iris	41.999	0.987	16	26	Sigmoid	ClipRound
2	CSEEM	iris	64.997	0.98	32	21	Sigmoid	ClipRound
2	CSEEM	iris	36.0	0.98	8	26	Sin	ClipRound
2	CSEEM	iris	42.998	0.98	16	21	Sin	ClipRound
2	CSEEM	iris	123.999	0.987	32	18	Sin	ClipRound
3	CSEEM	iris	12.999	0.96	8	22	Tanh	ClipRound
3	CSEEM	iris	18.001	0.973	16	13	Tanh	ClipRound
3	CSEEM	iris	110.0	0.993	32	27	Tanh	ClipRound
3	CSEEM	iris	5.001	0.987	8	22	SoftRelu	ClipRound
3	CSEEM	iris	24.003	0.987	16	20	SoftRelu	ClipRound
3	CSEEM	iris	52.0	0.987	32	19	SoftRelu	ClipRound
3	CSEEM	iris	12.999	0.98	8	15	Relu	ClipRound
3	CSEEM	iris	23.999	0.987	16	18	Relu	ClipRound
3	CSEEM	iris	59.003	0.98	32	18	Relu	ClipRound
3	CSEEM	iris	43.0	0.98	8	25	Sigmoid	ClipRound
3	CSEEM	iris	33.997	0.987	16	23	Sigmoid	ClipRound
3	CSEEM	iris	35.0	0.993	32	22	Sigmoid	ClipRound
3	CSEEM	iris	10.0	0.967	8	20	Sin	ClipRound
3	CSEEM	iris	22.998	0.96	16	16	Sin	ClipRound
3	CSEEM	iris	63.0	0.973	32	24	Sin	ClipRound
4	CSEEM	iris	12.0	0.987	8	31	Tanh	ClipRound
4	CSEEM	iris	59.995	0.967	16	26	Tanh	ClipRound

Table I.46: All CSEEM Results of classification problems (46/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	iris	102.001	0.993	32	28	Tanh	ClipRound
4	CSEEM	iris	32.0	0.987	8	17	SoftRelu	ClipRound
4	CSEEM	iris	30.998	0.987	16	12	SoftRelu	ClipRound
4	CSEEM	iris	37.999	0.987	32	19	SoftRelu	ClipRound
4	CSEEM	iris	34.0	0.98	8	18	Relu	ClipRound
4	CSEEM	iris	14.999	0.98	16	20	Relu	ClipRound
4	CSEEM	iris	56.001	0.98	32	15	Relu	ClipRound
4	CSEEM	iris	27.001	0.987	8	24	Sigmoid	ClipRound
4	CSEEM	iris	42.0	0.98	16	8	Sigmoid	ClipRound
4	CSEEM	iris	49.999	0.98	32	19	Sigmoid	ClipRound
4	CSEEM	iris	17.0	0.973	8	25	Sin	ClipRound
4	CSEEM	iris	56.001	0.993	16	29	Sin	ClipRound
4	CSEEM	iris	39.999	0.98	32	18	Sin	ClipRound
5	CSEEM	iris	5.999	0.98	8	14	Tanh	ClipRound
5	CSEEM	iris	36.0	0.993	16	13	Tanh	ClipRound
5	CSEEM	iris	54.0	0.973	32	18	Tanh	ClipRound
5	CSEEM	iris	25.003	0.98	8	17	SoftRelu	ClipRound
5	CSEEM	iris	77.006	0.987	16	18	SoftRelu	ClipRound
5	CSEEM	iris	69.0	0.993	32	11	SoftRelu	ClipRound
5	CSEEM	iris	15.0	0.96	8	12	Relu	ClipRound
5	CSEEM	iris	20.999	0.96	16	18	Relu	ClipRound
5	CSEEM	iris	44.999	0.987	32	9	Relu	ClipRound
5	CSEEM	iris	19.0	0.98	8	23	Sigmoid	ClipRound
5	CSEEM	iris	31.999	0.973	16	22	Sigmoid	ClipRound
5	CSEEM	iris	32.999	0.973	32	14	Sigmoid	ClipRound
5	CSEEM	iris	30.999	0.973	8	17	Sin	ClipRound
5	CSEEM	iris	69.996	0.973	16	21	Sin	ClipRound
5	CSEEM	iris	60.999	0.98	32	24	Sin	ClipRound
1	CSEEM	led7digit	207.0	0.746	8	69	Tanh	ClipRound
1	CSEEM	led7digit	130.999	0.77	16	69	Tanh	ClipRound
1	CSEEM	led7digit	257.998	0.766	32	75	Tanh	ClipRound
1	CSEEM	led7digit	593.999	0.76	8	80	SoftRelu	ClipRound

Table I.47: All CSEEM Results of classification problems (47/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	led7digit	457.0	0.762	16	87	SoftRelu	ClipRound
1	CSEEM	led7digit	533.0	0.766	32	71	SoftRelu	ClipRound
1	CSEEM	led7digit	357.0	0.77	8	88	Relu	ClipRound
1	CSEEM	led7digit	527.992	0.768	16	100	Relu	ClipRound
1	CSEEM	led7digit	397.0	0.764	32	69	Relu	ClipRound
1	CSEEM	led7digit	441.002	0.768	8	78	Sigmoid	ClipRound
1	CSEEM	led7digit	928.992	0.762	16	77	Sigmoid	ClipRound
1	CSEEM	led7digit	486.999	0.756	32	71	Sigmoid	ClipRound
1	CSEEM	led7digit	155.999	0.766	8	91	Sin	ClipRound
1	CSEEM	led7digit	540.993	0.77	16	82	Sin	ClipRound
1	CSEEM	led7digit	564.999	0.768	32	77	Sin	ClipRound
2	CSEEM	led7digit	508.999	0.766	8	89	Tanh	ClipRound
2	CSEEM	led7digit	561.994	0.764	16	65	Tanh	ClipRound
2	CSEEM	led7digit	716.999	0.754	32	69	Tanh	ClipRound
2	CSEEM	led7digit	407.999	0.768	8	101	SoftRelu	ClipRound
2	CSEEM	led7digit	711.007	0.762	16	75	SoftRelu	ClipRound
2	CSEEM	led7digit	193.999	0.762	32	64	SoftRelu	ClipRound
2	CSEEM	led7digit	72.0	0.75	8	53	Relu	ClipRound
2	CSEEM	led7digit	248.999	0.776	16	82	Relu	ClipRound
2	CSEEM	led7digit	955.998	0.766	32	68	Relu	ClipRound
2	CSEEM	led7digit	240.0	0.774	8	70	Sigmoid	ClipRound
2	CSEEM	led7digit	376.997	0.762	16	81	Sigmoid	ClipRound
2	CSEEM	led7digit	204.0	0.756	32	67	Sigmoid	ClipRound
2	CSEEM	led7digit	404.999	0.762	8	112	Sin	ClipRound
2	CSEEM	led7digit	725.005	0.76	16	74	Sin	ClipRound
2	CSEEM	led7digit	204.0	0.772	32	74	Sin	ClipRound
3	CSEEM	led7digit	283.0	0.762	8	69	Tanh	ClipRound
3	CSEEM	led7digit	166.989	0.78	16	84	Tanh	ClipRound
3	CSEEM	led7digit	535.999	0.764	32	76	Tanh	ClipRound
3	CSEEM	led7digit	210.0	0.76	8	81	SoftRelu	ClipRound
3	CSEEM	led7digit	362.002	0.774	16	77	SoftRelu	ClipRound
3	CSEEM	led7digit	790.0	0.768	32	65	SoftRelu	ClipRound

Table I.48: All CSEEM Results of classification problems (48/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	led7digit	287.999	0.768	8	88	Relu	ClipRound
3	CSEEM	led7digit	597.037	0.772	16	72	Relu	ClipRound
3	CSEEM	led7digit	15.999	0.762	32	70	Relu	ClipRound
3	CSEEM	led7digit	411.999	0.762	8	76	Sigmoid	ClipRound
3	CSEEM	led7digit	307.997	0.754	16	71	Sigmoid	ClipRound
3	CSEEM	led7digit	509.0	0.76	32	66	Sigmoid	ClipRound
3	CSEEM	led7digit	343.003	0.762	8	77	Sin	ClipRound
3	CSEEM	led7digit	198.998	0.758	16	81	Sin	ClipRound
3	CSEEM	led7digit	920.0	0.762	32	75	Sin	ClipRound
4	CSEEM	led7digit	433.999	0.746	8	65	Tanh	ClipRound
4	CSEEM	led7digit	559.996	0.764	16	70	Tanh	ClipRound
4	CSEEM	led7digit	345.002	0.766	32	77	Tanh	ClipRound
4	CSEEM	led7digit	128.999	0.764	8	80	SoftRelu	ClipRound
4	CSEEM	led7digit	579.912	0.768	16	74	SoftRelu	ClipRound
4	CSEEM	led7digit	149.999	0.764	32	67	SoftRelu	ClipRound
4	CSEEM	led7digit	307.999	0.774	8	82	Relu	ClipRound
4	CSEEM	led7digit	797.999	0.762	16	76	Relu	ClipRound
4	CSEEM	led7digit	105.001	0.76	32	72	Relu	ClipRound
4	CSEEM	led7digit	435.0	0.766	8	72	Sigmoid	ClipRound
4	CSEEM	led7digit	333.999	0.754	16	69	Sigmoid	ClipRound
4	CSEEM	led7digit	603.0	0.762	32	68	Sigmoid	ClipRound
4	CSEEM	led7digit	628.0	0.784	8	75	Sin	ClipRound
4	CSEEM	led7digit	336.002	0.77	16	101	Sin	ClipRound
4	CSEEM	led7digit	168.998	0.766	32	80	Sin	ClipRound
5	CSEEM	led7digit	378.999	0.776	8	86	Tanh	ClipRound
5	CSEEM	led7digit	418.999	0.772	16	76	Tanh	ClipRound
5	CSEEM	led7digit	275.999	0.766	32	74	Tanh	ClipRound
5	CSEEM	led7digit	306.0	0.768	8	100	SoftRelu	ClipRound
5	CSEEM	led7digit	460.0	0.75	16	70	SoftRelu	ClipRound
5	CSEEM	led7digit	321.001	0.764	32	67	SoftRelu	ClipRound
5	CSEEM	led7digit	362.998	0.766	8	87	Relu	ClipRound
5	CSEEM	led7digit	153.986	0.754	16	72	Relu	ClipRound

Table I.49: All CSEEM Results of classification problems (49/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	led7digit	954.001	0.756	32	74	Relu	ClipRound
5	CSEEM	led7digit	315.999	0.77	8	104	Sigmoid	ClipRound
5	CSEEM	led7digit	683.99	0.764	16	71	Sigmoid	ClipRound
5	CSEEM	led7digit	32.999	0.76	32	73	Sigmoid	ClipRound
5	CSEEM	led7digit	221.999	0.766	8	94	Sin	ClipRound
5	CSEEM	led7digit	573.992	0.76	16	74	Sin	ClipRound
5	CSEEM	led7digit	592.999	0.764	32	76	Sin	ClipRound
1	CSEEM	lymphography	17.0	0.912	8	42	Tanh	ClipRound
1	CSEEM	lymphography	41.001	0.885	16	35	Tanh	ClipRound
1	CSEEM	lymphography	93.999	0.899	32	53	Tanh	ClipRound
1	CSEEM	lymphography	26.0	0.885	8	29	SoftRelu	ClipRound
1	CSEEM	lymphography	39.0	0.892	16	38	SoftRelu	ClipRound
1	CSEEM	lymphography	167.0	0.953	32	50	SoftRelu	ClipRound
1	CSEEM	lymphography	42.999	0.953	8	53	Relu	ClipRound
1	CSEEM	lymphography	65.993	0.926	16	42	Relu	ClipRound
1	CSEEM	lymphography	91.999	0.905	32	30	Relu	ClipRound
1	CSEEM	lymphography	14.998	0.926	8	57	Sigmoid	ClipRound
1	CSEEM	lymphography	60.007	0.892	16	39	Sigmoid	ClipRound
1	CSEEM	lymphography	180.998	0.905	32	45	Sigmoid	ClipRound
1	CSEEM	lymphography	59.509	0.892	8	79	Sin	ClipRound
1	CSEEM	lymphography	72.993	0.791	16	67	Sin	ClipRound
1	CSEEM	lymphography	79.999	0.791	32	62	Sin	ClipRound
2	CSEEM	lymphography	16.001	0.926	8	70	Tanh	ClipRound
2	CSEEM	lymphography	43.999	0.865	16	46	Tanh	ClipRound
2	CSEEM	lymphography	120.999	0.899	32	31	Tanh	ClipRound
2	CSEEM	lymphography	20.999	0.939	8	50	SoftRelu	ClipRound
2	CSEEM	lymphography	45.996	0.926	16	33	SoftRelu	ClipRound
2	CSEEM	lymphography	148.998	0.919	32	41	SoftRelu	ClipRound
2	CSEEM	lymphography	41.999	0.932	8	43	Relu	ClipRound
2	CSEEM	lymphography	87.004	0.926	16	35	Relu	ClipRound
2	CSEEM	lymphography	65.0	0.919	32	40	Relu	ClipRound
2	CSEEM	lymphography	27.0	0.959	8	59	Sigmoid	ClipRound

Table I.50: All CSEEM Results of classification problems (50/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	lymphography	89.972	0.926	16	50	Sigmoid	ClipRound
2	CSEEM	lymphography	133.998	0.919	32	42	Sigmoid	ClipRound
2	CSEEM	lymphography	6.001	0.696	8	33	Sin	ClipRound
2	CSEEM	lymphography	79.993	0.777	16	59	Sin	ClipRound
2	CSEEM	lymphography	107.0	0.858	32	74	Sin	ClipRound
3	CSEEM	lymphography	35.0	0.919	8	46	Tanh	ClipRound
3	CSEEM	lymphography	25.999	0.865	16	31	Tanh	ClipRound
3	CSEEM	lymphography	106.999	0.946	32	52	Tanh	ClipRound
3	CSEEM	lymphography	26.999	0.919	8	43	SoftRelu	ClipRound
3	CSEEM	lymphography	149.001	0.912	16	44	SoftRelu	ClipRound
3	CSEEM	lymphography	184.999	0.905	32	37	SoftRelu	ClipRound
3	CSEEM	lymphography	21.0	0.905	8	46	Relu	ClipRound
3	CSEEM	lymphography	49.999	0.932	16	47	Relu	ClipRound
3	CSEEM	lymphography	65.0	0.926	32	46	Relu	ClipRound
3	CSEEM	lymphography	19.0	0.899	8	42	Sigmoid	ClipRound
3	CSEEM	lymphography	46.998	0.946	16	50	Sigmoid	ClipRound
3	CSEEM	lymphography	199.0	0.939	32	51	Sigmoid	ClipRound
3	CSEEM	lymphography	29.0	0.77	8	64	Sin	ClipRound
3	CSEEM	lymphography	52.992	0.791	16	63	Sin	ClipRound
3	CSEEM	lymphography	137.001	0.784	32	54	Sin	ClipRound
4	CSEEM	lymphography	31.0	0.912	8	50	Tanh	ClipRound
4	CSEEM	lymphography	17.994	0.926	16	49	Tanh	ClipRound
4	CSEEM	lymphography	100.998	0.946	32	60	Tanh	ClipRound
4	CSEEM	lymphography	43.0	0.912	8	52	SoftRelu	ClipRound
4	CSEEM	lymphography	73.999	0.912	16	43	SoftRelu	ClipRound
4	CSEEM	lymphography	58.999	0.912	32	40	SoftRelu	ClipRound
4	CSEEM	lymphography	19.0	0.905	8	36	Relu	ClipRound
4	CSEEM	lymphography	54.999	0.932	16	43	Relu	ClipRound
4	CSEEM	lymphography	131.999	0.912	32	37	Relu	ClipRound
4	CSEEM	lymphography	21.999	0.932	8	50	Sigmoid	ClipRound
4	CSEEM	lymphography	88.001	0.953	16	49	Sigmoid	ClipRound
4	CSEEM	lymphography	99.999	0.905	32	39	Sigmoid	ClipRound

Table I.51: All CSEEM Results of classification problems (51/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	lymphography	55.999	0.838	8	79	$\frac{\varphi(f)}{\sin}$	ClipRound
4	CSEEM	lymphography	31.999	0.872	16	71	Sin	ClipRound
4	CSEEM	lymphography	220.998	0.858	32	67	Sin	ClipRound
5	CSEEM	lymphography	46.0	0.926	8	45	Tanh	ClipRound
5	CSEEM	lymphography	21.998	0.905	16	39	Tanh	ClipRound
5	CSEEM	lymphography	50.0	0.905	32	38	Tanh	ClipRound
5	CSEEM	lymphography	24.999	0.892	8	33	SoftRelu	ClipRound
5	CSEEM	lymphography	38.999	0.939	16	39	SoftRelu	ClipRound
5	CSEEM	lymphography	98.999	0.939	32	52	SoftRelu	ClipRound
5	CSEEM	lymphography	57.998	0.926	8	48	Relu	ClipRound
5	CSEEM	lymphography	28.994	0.885	16	38	Relu	ClipRound
5	CSEEM	lymphography	169.001	0.919	32	36	Relu	ClipRound
5	CSEEM	lymphography	28.0	0.912	8	44	Sigmoid	ClipRound
5	CSEEM	lymphography	71.992	0.912	16	47	Sigmoid	ClipRound
5	CSEEM	lymphography	112.998	0.899	32	38	Sigmoid	ClipRound
5	CSEEM	lymphography	44.999	0.797	8	62	Sin	ClipRound
5	CSEEM	lymphography	108.999	0.838	16	76	Sin	ClipRound
5	CSEEM	lymphography	151.0	0.797	32	59	Sin	ClipRound
1	CSEEM	mammographic	686.999	0.889	8	180	Tanh	ClipRound
1	CSEEM	mammographic	294.999	0.894	16	218	Tanh	ClipRound
1	CSEEM	mammographic	399.0	0.896	32	229	Tanh	ClipRound
1	CSEEM	mammographic	428.999	0.875	8	165	SoftRelu	ClipRound
1	CSEEM	mammographic	243.999	0.887	16	189	SoftRelu	ClipRound
1	CSEEM	mammographic	24.998	0.886	32	187	SoftRelu	ClipRound
1	CSEEM	mammographic	904.998	0.899	8	257	Relu	ClipRound
1	CSEEM	mammographic	692.985	0.894	16	204	Relu	ClipRound
1	CSEEM	mammographic	794.999	0.896	32	223	Relu	ClipRound
1	CSEEM	mammographic	427.001	0.901	8	271	Sigmoid	ClipRound
1	CSEEM	mammographic	595.994	0.884	16	187	Sigmoid	ClipRound
1	CSEEM	mammographic	386.0	0.893	32	208	Sigmoid	ClipRound
1	CSEEM	mammographic	750.0	0.889	8	224	Sin	ClipRound
1	CSEEM	mammographic	434.99	0.892	16	209	Sin	ClipRound

Table I.52: All CSEEM Results of classification problems (52/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	mammographic	293.999	0.888	$\frac{n_c}{32}$	193	$\frac{\varphi(f)}{\sin}$	$\frac{\varphi_{\delta}(\cdot)}{\text{ClipRound}}$
2	CSEEM	mammographic	565.0	0.894	8	223	Tanh	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	883.988	0.898	16	241	Tanh	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	523.001	0.899	32	243	Tanh	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	753.0	0.887	8	159	SoftRelu	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	314.395	0.902	16	254	SoftRelu	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	533.999	0.89	32	199	SoftRelu	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	470.997	0.882	8	162	Relu	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	767.994	0.893	16	234	Relu	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	581.998	0.895	32	215	Relu	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	406.0	0.88	8	156	Sigmoid	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	245.035	0.00	16	256	Sigmoid	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	804.001	0.889	32	204	Sigmoid	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	448.999	0.876	8	159	Sin	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	321.007	0.88	16	168	Sin	ClipRound
$\frac{2}{2}$	CSEEM	mammographic	318.999	0.889	32	205	Sin	ClipRound
3	CSEEM	mammographic	325.002	0.901	8	276	Tanh	ClipRound
3	CSEEM	mammographic	698.091	0.901	16	238	Tanh	ClipRound
3	CSEEM	mammographic	274.998	0.902	32	190	Tanh	ClipRound
3	CSEEM	U 1	19.999	0.841	8	38	SoftRelu	ClipRound
3	CSEEM	mammographic mammographic	339.521	0.841	16	202	SoftRelu	ClipRound
3	CSEEM	0 1	491.999		32	239	SoftRelu	-
3	CSEEM	mammographic	502.997	0.898 0.895	8	239	Relu	ClipRound ClipRound
3	CSEEM	mammographic		0.895	16	$\frac{213}{172}$	Relu	ClipRound
		mammographic	26.263					1
3	CSEEM	mammographic	119.0	0.887	32	187	Relu	ClipRound
3	CSEEM	mammographic	295.998	0.886	8	192	Sigmoid	ClipRound
3	CSEEM	mammographic	558.017	0.886	16	208	Sigmoid	ClipRound
3	CSEEM	mammographic	3.0	0.89	32	211	Sigmoid	ClipRound
3	CSEEM	mammographic	14.513	0.896	8	238	Sin	ClipRound
3	CSEEM	mammographic	617.993	0.884	16	181	Sin	ClipRound
3	CSEEM	mammographic	523.0	0.893	32	241	Sin	ClipRound
4	CSEEM	mammographic	698.998	0.888	8	223	Tanh	ClipRound

Table I.53: All CSEEM Results of classification problems (53/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	mammographic	261.996	0.9	$\frac{\kappa_c}{16}$	262	Tanh	ClipRound
4	CSEEM	mammographic	167.999	0.902	32	268	Tanh	ClipRound
4	CSEEM	mammographic	295.998	0.893	8	227	SoftRelu	ClipRound
4	CSEEM	mammographic	653.0	0.884	16	195	SoftRelu	ClipRound
4	CSEEM	mammographic	727.997	0.883	32	187	SoftRelu	ClipRound
4	CSEEM	mammographic	575.0	0.896	8	240	Relu	ClipRound
4	CSEEM	mammographic	474.002	0.892	16	210	Relu	ClipRound
4	CSEEM	mammographic	501.997	0.9	32	240	Relu	ClipRound
4	CSEEM	mammographic	454.999	0.9	8	251	Sigmoid	ClipRound
4	CSEEM	mammographic	111.998	0.884	16	209	Sigmoid	ClipRound
4	CSEEM	mammographic	469.998	0.898	32	250	Sigmoid	ClipRound
4	CSEEM	mammographic	931.999	0.888	8	205	Sin	ClipRound
4	CSEEM	mammographic	394.001	0.898	16	259	Sin	ClipRound
4	CSEEM	mammographic	993.0	0.892	32	189	Sin	ClipRound
5	CSEEM	mammographic	859.996	0.899	8	259	Tanh	ClipRound
5	CSEEM	mammographic	749.999	0.893	16	236	Tanh	ClipRound
5	CSEEM	mammographic	6.999	0.9	32	247	Tanh	ClipRound
5	CSEEM	mammographic	290.0	0.898	8	264	SoftRelu	ClipRound
5	CSEEM	mammographic	516.0	0.892	16	214	SoftRelu	ClipRound
5	CSEEM	mammographic	127.998	0.893	32	209	SoftRelu	ClipRound
5	CSEEM	mammographic	958.0	0.888	8	226	Relu	ClipRound
5	CSEEM	mammographic	106.0	0.9	16	243	Relu	ClipRound
5	CSEEM	mammographic	234.999	0.894	32	200	Relu	ClipRound
5	CSEEM	mammographic	603.0	0.894	8	223	Sigmoid	ClipRound
5	CSEEM	mammographic	161.994	0.893	16	227	Sigmoid	ClipRound
5	CSEEM	mammographic	931.001	0.894	32	243	Sigmoid	ClipRound
5	CSEEM	mammographic	648.999	0.894	8	250	Sin	ClipRound
5	CSEEM	mammographic	970.003	0.888	16	192	Sin	ClipRound
5	CSEEM	mammographic	799.998	0.892	32	189	Sin	ClipRound
1	CSEEM	monk_2	152.999	0.981	8	97	Tanh	ClipRound
1	CSEEM	monk_2	358.999	0.975	16	79	Tanh	ClipRound
1	CSEEM	monk_2	627.998	0.984	32	67	Tanh	ClipRound

Table I.54: All CSEEM Results of classification problems (54/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	monk_2	44.999	0.977	8	56	SoftRelu	ClipRound
1	CSEEM	monk_2	463.001	0.988	16	69	SoftRelu	ClipRound
1	CSEEM	monk_2	175.0	0.991	32	64	SoftRelu	ClipRound
1	CSEEM	monk_2	75.997	0.979	8	52	Relu	ClipRound
1	CSEEM	monk_2	256.999	0.991	16	53	Relu	ClipRound
1	CSEEM	monk_2	988.998	0.995	32	66	Relu	ClipRound
1	CSEEM	monk_2	290.999	0.979	8	84	Sigmoid	ClipRound
1	CSEEM	monk_2	138.991	0.993	16	66	Sigmoid	ClipRound
1	CSEEM	monk_2	124.0	0.988	32	51	Sigmoid	ClipRound
1	CSEEM	monk_2	167.997	0.972	8	103	Sin	ClipRound
1	CSEEM	monk_2	442.988	0.988	16	112	Sin	ClipRound
1	CSEEM	monk_2	705.507	0.977	32	88	Sin	ClipRound
2	CSEEM	monk_2	250.001	0.977	8	87	Tanh	ClipRound
2	CSEEM	monk_2	416.992	0.972	16	36	Tanh	ClipRound
2	CSEEM	monk_2	402.999	0.981	32	58	Tanh	ClipRound
2	CSEEM	monk_2	466.999	0.995	8	67	SoftRelu	ClipRound
2	CSEEM	monk_2	344.999	0.988	16	58	SoftRelu	ClipRound
2	CSEEM	monk_2	292.0	0.984	32	63	SoftRelu	ClipRound
2	CSEEM	monk_2	328.0	0.988	8	52	Relu	ClipRound
2	CSEEM	monk_2	489.995	0.981	16	41	Relu	ClipRound
2	CSEEM	monk_2	835.999	0.986	32	55	Relu	ClipRound
2	CSEEM	monk_2	121.0	0.984	8	81	Sigmoid	ClipRound
2	CSEEM	monk_2	818.735	0.986	16	83	Sigmoid	ClipRound
2	CSEEM	monk_2	826.003	0.995	32	83	Sigmoid	ClipRound
2	CSEEM	monk_2	127.999	0.958	8	101	Sin	ClipRound
2	CSEEM	monk_2	303.988	0.963	16	65	Sin	ClipRound
2	CSEEM	monk_2	325.999	0.988	32	107	Sin	ClipRound
3	CSEEM	monk_2	385.999	0.956	8	33	Tanh	ClipRound
3	CSEEM	monk_2	134.997	0.998	16	78	Tanh	ClipRound
3	CSEEM	monk_2	512.51	0.979	32	59	Tanh	ClipRound
3	CSEEM	monk_2	294.999	0.991	8	64	SoftRelu	ClipRound
3	CSEEM	monk_2	380.001	0.984	16	40	SoftRelu	ClipRound

Table I.55: All CSEEM Results of classification problems (55/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	monk_2	838.999	1	32	40	SoftRelu	ClipRound
3	CSEEM	monk_2	148.0	0.984	8	42	Relu	ClipRound
3	CSEEM	monk_2	252.503	0.991	16	44	Relu	ClipRound
3	CSEEM	monk_2	692.999	0.998	32	66	Relu	ClipRound
3	CSEEM	monk_2	334.997	0.991	8	77	Sigmoid	ClipRound
3	CSEEM	monk_2	372.992	0.988	16	68	Sigmoid	ClipRound
3	CSEEM	monk_2	428.997	0.97	32	37	Sigmoid	ClipRound
3	CSEEM	monk_2	218.998	0.961	8	95	Sin	ClipRound
3	CSEEM	monk_2	815.998	0.986	16	110	Sin	ClipRound
3	CSEEM	monk_2	303.999	0.968	32	88	Sin	ClipRound
4	CSEEM	monk_2	265.0	0.993	8	110	Tanh	ClipRound
4	CSEEM	monk_2	454.988	0.986	16	83	Tanh	ClipRound
4	CSEEM	monk_2	54.999	0.984	32	89	Tanh	ClipRound
4	CSEEM	monk_2	192.998	0.984	8	47	SoftRelu	ClipRound
4	CSEEM	monk_2	381.007	0.984	16	45	SoftRelu	ClipRound
4	CSEEM	monk_2	737.999	0.986	32	45	SoftRelu	ClipRound
4	CSEEM	monk_2	287.0	0.993	8	66	Relu	ClipRound
4	CSEEM	monk_2	863.512	0.986	16	62	Relu	ClipRound
4	CSEEM	monk_2	439.997	0.991	32	56	Relu	ClipRound
4	CSEEM	monk_2	153.999	0.981	8	87	Sigmoid	ClipRound
4	CSEEM	monk_2	455.0	0.998	16	69	Sigmoid	ClipRound
4	CSEEM	monk_2	494.0	0.998	32	68	Sigmoid	ClipRound
4	CSEEM	monk_2	851.999	0.979	8	93	Sin	ClipRound
4	CSEEM	monk_2	157.0	0.993	16	118	Sin	ClipRound
4	CSEEM	monk_2	450.0	0.97	32	89	Sin	ClipRound
5	CSEEM	monk_2	125.0	0.979	8	95	Tanh	ClipRound
5	CSEEM	monk_2	11.0	0.991	16	60	Tanh	ClipRound
5	CSEEM	monk_2	810.999	0.972	32	65	Tanh	ClipRound
5	CSEEM	monk_2	186.997	0.981	8	36	SoftRelu	ClipRound
5	CSEEM	monk_2	595.0	0.988	16	60	SoftRelu	ClipRound
5	CSEEM	monk_2	582.0	0.984	32	56	SoftRelu	ClipRound
5	CSEEM	monk_2	73.0	0.975	8	20	Relu	ClipRound

Table I.56: All CSEEM Results of classification problems (56/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	monk_2	61.992	0.984	16	39	Relu	ClipRound
5	CSEEM	monk_2	457.999	0.979	32	20	Relu	ClipRound
5	CSEEM	monk_2	158.003	0.975	8	59	Sigmoid	ClipRound
5	CSEEM	monk_2	425.992	0.993	16	71	Sigmoid	ClipRound
5	CSEEM	monk_2	905.999	0.995	32	75	Sigmoid	ClipRound
5	CSEEM	monk_2	99.0	0.972	8	109	Sin	ClipRound
5	CSEEM	monk_2	641.992	0.977	16	113	Sin	ClipRound
5	CSEEM	monk_2	50.0	0.972	32	81	Sin	ClipRound
1	CSEEM	newthyroid	10.999	0.935	8	5	Tanh	ClipRound
1	CSEEM	newthyroid	78.999	0.967	16	28	Tanh	ClipRound
1	CSEEM	newthyroid	228.999	0.986	32	36	Tanh	ClipRound
1	CSEEM	newthyroid	56.0	0.977	8	34	SoftRelu	ClipRound
1	CSEEM	newthyroid	97.0	0.972	16	32	SoftRelu	ClipRound
1	CSEEM	newthyroid	159.999	0.981	32	36	SoftRelu	ClipRound
1	CSEEM	newthyroid	90.0	0.991	8	56	Relu	ClipRound
1	CSEEM	newthyroid	181.99	0.981	16	34	Relu	ClipRound
1	CSEEM	newthyroid	173.998	0.977	32	38	Relu	ClipRound
1	CSEEM	newthyroid	11.999	0.972	8	33	Sigmoid	ClipRound
1	CSEEM	newthyroid	130.004	0.977	16	31	Sigmoid	ClipRound
1	CSEEM	newthyroid	193.0	0.972	32	28	Sigmoid	ClipRound
1	CSEEM	newthyroid	37.999	0.958	8	35	Sin	ClipRound
1	CSEEM	newthyroid	95.997	0.963	16	43	Sin	ClipRound
1	CSEEM	newthyroid	155.0	0.963	32	32	Sin	ClipRound
2	CSEEM	newthyroid	56.999	0.972	8	29	Tanh	ClipRound
2	CSEEM	newthyroid	207.01	0.981	16	31	Tanh	ClipRound
2	CSEEM	newthyroid	71.0	0.977	32	34	Tanh	ClipRound
2	CSEEM	newthyroid	33.0	0.953	8	31	SoftRelu	ClipRound
2	CSEEM	newthyroid	171.009	0.986	16	41	SoftRelu	ClipRound
2	CSEEM	newthyroid	247.999	0.972	32	23	SoftRelu	ClipRound
2	CSEEM	newthyroid	46.999	0.977	8	43	Relu	ClipRound
2	CSEEM	newthyroid	95.997	0.972	16	30	Relu	ClipRound
2	CSEEM	newthyroid	231.001	0.977	32	36	Relu	ClipRound

Table I.57: All CSEEM Results of classification problems (57/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	newthyroid	68.002	0.967	8	28	Sigmoid	ClipRound
2	CSEEM	newthyroid	151.99	0.981	16	39	Sigmoid	ClipRound
2	CSEEM	newthyroid	232.999	0.977	32	25	Sigmoid	ClipRound
2	CSEEM	newthyroid	36.999	0.916	8	22	Sin	ClipRound
2	CSEEM	newthyroid	68.993	0.972	16	45	Sin	ClipRound
2	CSEEM	newthyroid	202.998	0.972	32	34	Sin	ClipRound
3	CSEEM	newthyroid	45.0	0.972	8	27	Tanh	ClipRound
3	CSEEM	newthyroid	184.01	0.972	16	29	Tanh	ClipRound
3	CSEEM	newthyroid	190.0	0.981	32	38	Tanh	ClipRound
3	CSEEM	newthyroid	29.0	0.977	8	29	SoftRelu	ClipRound
3	CSEEM	newthyroid	44.999	0.986	16	34	SoftRelu	ClipRound
3	CSEEM	newthyroid	100.999	0.986	32	35	SoftRelu	ClipRound
3	CSEEM	newthyroid	38.0	0.977	8	34	Relu	ClipRound
3	CSEEM	newthyroid	248.882	0.991	16	40	Relu	ClipRound
3	CSEEM	newthyroid	223.999	0.977	32	34	Relu	ClipRound
3	CSEEM	newthyroid	45.998	0.972	8	39	Sigmoid	ClipRound
3	CSEEM	newthyroid	60.998	0.977	16	39	Sigmoid	ClipRound
3	CSEEM	newthyroid	227.997	0.972	32	23	Sigmoid	ClipRound
3	CSEEM	newthyroid	31.001	0.953	8	33	Sin	ClipRound
3	CSEEM	newthyroid	235.003	0.963	16	42	Sin	ClipRound
3	CSEEM	newthyroid	514.998	0.981	32	42	Sin	ClipRound
4	CSEEM	newthyroid	116.998	0.967	8	35	Tanh	ClipRound
4	CSEEM	newthyroid	177.0	0.986	16	41	Tanh	ClipRound
4	CSEEM	newthyroid	173.998	0.981	32	35	Tanh	ClipRound
4	CSEEM	newthyroid	82.001	0.986	8	44	SoftRelu	ClipRound
4	CSEEM	newthyroid	66.006	0.972	16	40	SoftRelu	ClipRound
4	CSEEM	newthyroid	452.998	0.986	32	34	SoftRelu	ClipRound
4	CSEEM	newthyroid	60.998	0.977	8	38	Relu	ClipRound
4	CSEEM	newthyroid	131.997	0.977	16	30	Relu	ClipRound
4	CSEEM	newthyroid	175.0	0.981	32	40	Relu	ClipRound
4	CSEEM	newthyroid	55.999	0.972	8	41	Sigmoid	ClipRound
4	CSEEM	newthyroid	125.999	0.977	16	38	Sigmoid	ClipRound

Table I.58: All CSEEM Results of classification problems (58/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	newthyroid	200.001	0.986	32	34	Sigmoid	ClipRound
4	CSEEM	newthyroid	77.999	0.972	8	42	Sin	ClipRound
4	CSEEM	newthyroid	52.999	0.967	16	44	Sin	ClipRound
4	CSEEM	newthyroid	176.999	0.958	32	42	Sin	ClipRound
5	CSEEM	newthyroid	84.999	0.986	8	44	Tanh	ClipRound
5	CSEEM	newthyroid	160.001	0.977	16	36	Tanh	ClipRound
5	CSEEM	newthyroid	258.999	0.981	32	31	Tanh	ClipRound
5	CSEEM	newthyroid	69.999	0.981	8	39	SoftRelu	ClipRound
5	CSEEM	newthyroid	99.999	0.972	16	33	SoftRelu	ClipRound
5	CSEEM	newthyroid	182.0	0.977	32	23	SoftRelu	ClipRound
5	CSEEM	newthyroid	57.998	0.981	8	31	Relu	ClipRound
5	CSEEM	newthyroid	111.999	0.981	16	44	Relu	ClipRound
5	CSEEM	newthyroid	311.999	0.972	32	25	Relu	ClipRound
5	CSEEM	newthyroid	59.0	0.972	8	28	Sigmoid	ClipRound
5	CSEEM	newthyroid	125.992	0.963	16	23	Sigmoid	ClipRound
5	CSEEM	newthyroid	318.999	0.977	32	37	Sigmoid	ClipRound
5	CSEEM	newthyroid	51.999	0.967	8	41	Sin	ClipRound
5	CSEEM	newthyroid	110.994	0.972	16	41	Sin	ClipRound
5	CSEEM	newthyroid	270.999	0.981	32	40	Sin	ClipRound
1	CSEEM	pima	115.507	0.888	8	236	Tanh	ClipRound
1	CSEEM	pima	947.0	0.905	16	263	Tanh	ClipRound
1	CSEEM	pima	488.999	0.905	32	297	Tanh	ClipRound
1	CSEEM	pima	154.0	0.887	8	238	SoftRelu	ClipRound
1	CSEEM	pima	878.009	0.888	16	258	SoftRelu	ClipRound
1	CSEEM	pima	402.999	0.888	32	238	SoftRelu	ClipRound
1	CSEEM	pima	543.999	0.896	8	280	Relu	ClipRound
1	CSEEM	pima	156.993	0.883	16	213	Relu	ClipRound
1	CSEEM	pima	390.999	0.914	32	284	Relu	ClipRound
1	CSEEM	pima	580.0	0.893	8	262	Sigmoid	ClipRound
1	CSEEM	pima	616.992	0.889	16	247	Sigmoid	ClipRound
1	CSEEM	pima	592.0	0.879	32	216	Sigmoid	ClipRound
1	CSEEM	pima	737.0	0.887	8	274	Sin	ClipRound

Table I.59: All CSEEM Results of classification problems (59/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	pima	752.992	0.924	16	329	Sin	ClipRound
1	CSEEM	pima	491.999	0.896	32	299	Sin	ClipRound
2	CSEEM	pima	704.511	0.914	8	302	Tanh	ClipRound
2	CSEEM	pima	843.022	0.883	16	217	Tanh	ClipRound
2	CSEEM	pima	914.999	0.898	32	273	Tanh	ClipRound
2	CSEEM	pima	505.999	0.879	8	232	SoftRelu	ClipRound
2	CSEEM	pima	222.002	0.901	16	305	SoftRelu	ClipRound
2	CSEEM	pima	679.999	0.882	32	226	SoftRelu	ClipRound
2	CSEEM	pima	308.998	0.891	8	275	Relu	ClipRound
2	CSEEM	pima	547.2	0.888	16	251	Relu	ClipRound
2	CSEEM	pima	809.996	0.887	32	258	Relu	ClipRound
2	CSEEM	pima	460.001	0.878	8	230	Sigmoid	ClipRound
2	CSEEM	pima	586.02	0.888	16	255	Sigmoid	ClipRound
2	CSEEM	pima	279.001	0.88	32	216	Sigmoid	ClipRound
2	CSEEM	pima	863.998	0.895	8	313	Sin	ClipRound
2	CSEEM	pima	37.993	0.872	16	225	Sin	ClipRound
2	CSEEM	pima	685.0	0.879	32	245	Sin	ClipRound
3	CSEEM	pima	13.0	0.897	8	276	Tanh	ClipRound
3	CSEEM	pima	981.992	0.897	16	272	Tanh	ClipRound
3	CSEEM	pima	255.0	0.876	32	217	Tanh	ClipRound
3	CSEEM	pima	27.999	0.914	8	330	SoftRelu	ClipRound
3	CSEEM	pima	901.537	0.882	16	232	SoftRelu	ClipRound
3	CSEEM	pima	622.016	0.884	32	247	SoftRelu	ClipRound
3	CSEEM	pima	126.0	0.839	8	120	Relu	ClipRound
3	CSEEM	pima	110.348	0.892	16	227	Relu	ClipRound
3	CSEEM	pima	158.999	0.897	32	255	Relu	ClipRound
3	CSEEM	pima	637.998	0.908	8	283	Sigmoid	ClipRound
3	CSEEM	pima	913.103	0.885	16	243	Sigmoid	ClipRound
3	CSEEM	pima	81.509	0.893	32	246	Sigmoid	ClipRound
3	CSEEM	pima	874.998	0.895	8	291	Sin	ClipRound
3	CSEEM	pima	733.002	0.858	16	236	Sin	ClipRound
3	CSEEM	pima	585.0	0.88	32	275	Sin	ClipRound

Table I.60: All CSEEM Results of classification problems (60/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	pima	524.998	0.891	8	274	Tanh	ClipRound
4	CSEEM	pima	213.001	0.863	16	193	Tanh	ClipRound
4	CSEEM	pima	188.998	0.897	32	247	Tanh	ClipRound
4	CSEEM	pima	473.0	0.883	8	267	SoftRelu	ClipRound
4	CSEEM	pima	869.993	0.91	16	284	SoftRelu	ClipRound
4	CSEEM	pima	406.001	0.895	32	251	SoftRelu	ClipRound
4	CSEEM	pima	399.001	0.871	8	196	Relu	ClipRound
4	CSEEM	pima	560.998	0.888	16	232	Relu	ClipRound
4	CSEEM	pima	620.0	0.897	32	265	Relu	ClipRound
4	CSEEM	pima	570.999	0.875	8	204	Sigmoid	ClipRound
4	CSEEM	pima	391.0	0.889	16	261	Sigmoid	ClipRound
4	CSEEM	pima	319.999	0.897	32	249	Sigmoid	ClipRound
4	CSEEM	pima	412.998	0.865	8	252	Sin	ClipRound
4	CSEEM	pima	534.0	0.879	16	239	Sin	ClipRound
4	CSEEM	pima	245.0	0.898	32	303	Sin	ClipRound
5	CSEEM	pima	324.0	0.867	8	203	Tanh	ClipRound
5	CSEEM	pima	970.998	0.887	16	259	Tanh	ClipRound
5	CSEEM	pima	633.999	0.884	32	223	Tanh	ClipRound
5	CSEEM	pima	528.002	0.859	8	184	SoftRelu	ClipRound
5	CSEEM	pima	420.999	0.893	16	262	SoftRelu	ClipRound
5	CSEEM	pima	739.999	0.889	32	241	SoftRelu	ClipRound
5	CSEEM	pima	101.0	0.841	8	141	Relu	ClipRound
5	CSEEM	pima	544.993	0.883	16	236	Relu	ClipRound
5	CSEEM	pima	80.999	0.898	32	258	Relu	ClipRound
5	CSEEM	pima	779.999	0.909	8	290	Sigmoid	ClipRound
5	CSEEM	pima	239.99	0.892	16	264	Sigmoid	ClipRound
5	CSEEM	pima	335.999	0.902	32	270	Sigmoid	ClipRound
5	CSEEM	pima	777.998	0.883	8	300	Sin	ClipRound
5	CSEEM	pima	239.992	0.874	16	246	Sin	ClipRound
5	CSEEM	pima	473.998	0.904	32	293	Sin	ClipRound
1	CSEEM	post_operative	8.0	0.828	8	32	Tanh	ClipRound
1	CSEEM	post_operative	22.0	0.851	16	34	Tanh	ClipRound

Table I.61: All CSEEM Results of classification problems (61/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	post_operative	47.999	0.885	32	32	Tanh	ClipRound
1	CSEEM	post_operative	8.997	0.793	8	34	SoftRelu	ClipRound
1	CSEEM	post_operative	10.999	0.828	16	36	SoftRelu	ClipRound
1	CSEEM	post_operative	62.0	0.816	32	31	SoftRelu	ClipRound
1	CSEEM	post_operative	10.0	0.793	8	29	Relu	ClipRound
1	CSEEM	post_operative	42.999	0.885	16	44	Relu	ClipRound
1	CSEEM	post_operative	44.0	0.862	32	35	Relu	ClipRound
1	CSEEM	post_operative	13.999	0.874	8	40	Sigmoid	ClipRound
1	CSEEM	post_operative	33.994	0.874	16	29	Sigmoid	ClipRound
1	CSEEM	post_operative	30.0	0.828	32	32	Sigmoid	ClipRound
1	CSEEM	post_operative	8.0	0.782	8	29	Sin	ClipRound
1	CSEEM	post_operative	28.999	0.851	16	38	Sin	ClipRound
1	CSEEM	post_operative	84.998	0.92	32	40	Sin	ClipRound
2	CSEEM	post_operative	17.0	0.805	8	29	Tanh	ClipRound
2	CSEEM	post_operative	22.0	0.874	16	42	Tanh	ClipRound
2	CSEEM	post_operative	77.999	0.828	32	33	Tanh	ClipRound
2	CSEEM	post_operative	23.001	0.839	8	32	SoftRelu	ClipRound
2	CSEEM	post_operative	24.007	0.828	16	33	SoftRelu	ClipRound
2	CSEEM	post_operative	64.999	0.92	32	46	SoftRelu	ClipRound
2	CSEEM	post_operative	17.0	0.839	8	35	Relu	ClipRound
2	CSEEM	post_operative	26.006	0.839	16	39	Relu	ClipRound
2	CSEEM	post_operative	59.001	0.828	32	32	Relu	ClipRound
2	CSEEM	post_operative	12.0	0.874	8	38	Sigmoid	ClipRound
2	CSEEM	post_operative	18.998	0.805	16	27	Sigmoid	ClipRound
2	CSEEM	post_operative	59.001	0.793	32	29	Sigmoid	ClipRound
2	CSEEM	post_operative	5.001	0.77	8	15	Sin	ClipRound
2	CSEEM	post_operative	20.999	0.805	16	29	Sin	ClipRound
2	CSEEM	post_operative	44.001	0.839	32	31	Sin	ClipRound
3	CSEEM	post_operative	13.999	0.908	8	42	Tanh	ClipRound
3	CSEEM	post_operative	12.999	0.782	16	20	Tanh	ClipRound
3	CSEEM	post_operative	65.001	0.851	32	31	Tanh	ClipRound
3	CSEEM	post_operative	11.0	0.805	8	28	SoftRelu	ClipRound

Table I.62: All CSEEM Results of classification problems (62/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	post_operative	23.005	0.851	16	40	SoftRelu	ClipRound
3	CSEEM	post_operative	75.999	0.862	32	38	SoftRelu	ClipRound
3	CSEEM	post_operative	17.999	0.862	8	39	Relu	ClipRound
3	CSEEM	post_operative	21.0	0.793	16	16	Relu	ClipRound
3	CSEEM	post_operative	42.999	0.874	32	42	Relu	ClipRound
3	CSEEM	post_operative	15.999	0.805	8	26	Sigmoid	ClipRound
3	CSEEM	post_operative	13.993	0.862	16	31	Sigmoid	ClipRound
3	CSEEM	post_operative	35.0	0.874	32	33	Sigmoid	ClipRound
3	CSEEM	post_operative	7.997	0.747	8	15	Sin	ClipRound
3	CSEEM	post_operative	27.003	0.851	16	23	Sin	ClipRound
3	CSEEM	post_operative	43.0	0.805	32	27	Sin	ClipRound
4	CSEEM	post_operative	6.0	0.828	8	36	Tanh	ClipRound
4	CSEEM	post_operative	44.993	0.862	16	34	Tanh	ClipRound
4	CSEEM	post_operative	62.999	0.816	32	33	Tanh	ClipRound
4	CSEEM	post_operative	11.998	0.793	8	28	SoftRelu	ClipRound
4	CSEEM	post_operative	14.026	0.77	16	25	SoftRelu	ClipRound
4	CSEEM	post_operative	25.997	0.793	32	30	SoftRelu	ClipRound
4	CSEEM	post_operative	22.997	0.851	8	39	Relu	ClipRound
4	CSEEM	post_operative	12.0	0.805	16	25	Relu	ClipRound
4	CSEEM	post_operative	60.998	0.805	32	29	Relu	ClipRound
4	CSEEM	post_operative	19.0	0.862	8	32	Sigmoid	ClipRound
4	CSEEM	post_operative	10.0	0.805	16	31	Sigmoid	ClipRound
4	CSEEM	post_operative	26.0	0.851	32	37	Sigmoid	ClipRound
4	CSEEM	post_operative	4.999	0.736	8	6	Sin	ClipRound
4	CSEEM	post_operative	23.999	0.851	16	34	Sin	ClipRound
4	CSEEM	post_operative	44.0	0.816	32	25	Sin	ClipRound
5	CSEEM	post_operative	5.998	0.885	8	40	Tanh	ClipRound
5	CSEEM	post_operative	48.999	0.862	16	33	Tanh	ClipRound
5	CSEEM	post_operative	46.999	0.862	32	31	Tanh	ClipRound
5	CSEEM	post_operative	9.0	0.839	8	43	SoftRelu	ClipRound
5	CSEEM	post_operative	23.001	0.828	16	40	SoftRelu	ClipRound
5	CSEEM	post_operative	48.0	0.874	32	40	SoftRelu	ClipRound

Table I.63: All CSEEM Results of classification problems (63/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	post_operative	6.999	0.793	8	25	Relu	ClipRound
5	CSEEM	post_operative	19.987	0.805	16	33	Relu	ClipRound
5	CSEEM	post_operative	41.0	0.793	32	18	Relu	ClipRound
5	CSEEM	post_operative	20.0	0.851	8	25	Sigmoid	ClipRound
5	CSEEM	post operative	25.998	0.874	16	36	Sigmoid	ClipRound
5	CSEEM	post operative	43.0	0.885	32	38	Sigmoid	ClipRound
5	CSEEM	post_operative	13.0	0.885	8	40	Sin	ClipRound
5	CSEEM	post operative	14.999	0.816	16	25	Sin	ClipRound
5	CSEEM	post operative	80.999	0.897	32	36	Sin	ClipRound
1	CSEEM	saheart	320.0	0.87	8	162	Tanh	ClipRound
1	CSEEM	saheart	342.999	0.896	16	178	Tanh	ClipRound
1	CSEEM	saheart	186.508	0.887	32	186	Tanh	ClipRound
1	CSEEM	saheart	504.0	0.877	8	168	SoftRelu	ClipRound
1	CSEEM	saheart	397.999	0.87	16	185	SoftRelu	ClipRound
1	CSEEM	saheart	604.999	0.868	32	148	SoftRelu	ClipRound
1	CSEEM	saheart	307.999	0.851	8	124	Relu	ClipRound
1	CSEEM	saheart	198.993	0.877	16	158	Relu	ClipRound
1	CSEEM	saheart	149.999	0.868	32	149	Relu	ClipRound
1	CSEEM	saheart	149.998	0.883	8	173	Sigmoid	ClipRound
1	CSEEM	saheart	182.986	0.894	16	214	Sigmoid	ClipRound
1	CSEEM	saheart	506.999	0.89	32	188	Sigmoid	ClipRound
1	CSEEM	saheart	270.0	0.823	8	151	Sin	ClipRound
1	CSEEM	saheart	792.0	0.874	16	192	Sin	ClipRound
1	CSEEM	saheart	265.999	0.846	32	141	Sin	ClipRound
2	CSEEM	saheart	275.998	0.844	8	122	Tanh	ClipRound
2	CSEEM	saheart	357.998	0.872	16	173	Tanh	ClipRound
2	CSEEM	saheart	292.999	0.909	32	187	Tanh	ClipRound
2	CSEEM	saheart	440.999	0.9	8	193	SoftRelu	ClipRound
2	CSEEM	saheart	648.992	0.898	16	187	SoftRelu	ClipRound
2	CSEEM	saheart	301.999	0.892	32	185	SoftRelu	ClipRound
2	CSEEM	saheart	367.999	0.874	8	171	Relu	ClipRound
2	CSEEM	saheart	479.988	0.846	16	138	Relu	ClipRound

Table I.64: All CSEEM Results of classification problems (64/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	saheart	247.999	0.877	32	158	Relu	ClipRound
2	CSEEM	saheart	343.999	0.872	8	173	Sigmoid	ClipRound
2	CSEEM	saheart	180.493	0.818	16	112	Sigmoid	ClipRound
2	CSEEM	saheart	675.999	0.887	32	178	Sigmoid	ClipRound
2	CSEEM	saheart	113.0	0.814	8	148	Sin	ClipRound
2	CSEEM	saheart	564.563	0.892	16	222	Sin	ClipRound
2	CSEEM	saheart	494.0	0.87	32	193	Sin	ClipRound
3	CSEEM	saheart	364.999	0.903	8	192	Tanh	ClipRound
3	CSEEM	saheart	490.99	0.87	16	159	Tanh	ClipRound
3	CSEEM	saheart	494.0	0.879	32	154	Tanh	ClipRound
3	CSEEM	saheart	548.001	0.896	8	189	SoftRelu	ClipRound
3	CSEEM	saheart	273.998	0.846	16	155	SoftRelu	ClipRound
3	CSEEM	saheart	172.999	0.859	32	145	SoftRelu	ClipRound
3	CSEEM	saheart	254.999	0.846	8	97	Relu	ClipRound
3	CSEEM	saheart	666.994	0.879	16	176	Relu	ClipRound
3	CSEEM	saheart	644.0	0.874	32	167	Relu	ClipRound
3	CSEEM	saheart	319.999	0.859	8	157	Sigmoid	ClipRound
3	CSEEM	saheart	576.999	0.911	16	217	Sigmoid	ClipRound
3	CSEEM	saheart	195.999	0.861	32	146	Sigmoid	ClipRound
3	CSEEM	saheart	276.0	0.864	8	176	Sin	ClipRound
3	CSEEM	saheart	546.004	0.846	16	141	Sin	ClipRound
3	CSEEM	saheart	834.001	0.896	32	206	Sin	ClipRound
4	CSEEM	saheart	134.999	0.857	8	158	Tanh	ClipRound
4	CSEEM	saheart	821.992	0.877	16	175	Tanh	ClipRound
4	CSEEM	saheart	597.0	0.874	32	152	Tanh	ClipRound
4	CSEEM	saheart	279.0	0.866	8	181	SoftRelu	ClipRound
4	CSEEM	saheart	715.007	0.872	16	158	SoftRelu	ClipRound
4	CSEEM	saheart	233.999	0.9	32	185	SoftRelu	ClipRound
4	CSEEM	saheart	628.505	0.885	8	170	Relu	ClipRound
4	CSEEM	saheart	71.997	0.877	16	169	Relu	ClipRound
4	CSEEM	saheart	363.999	0.905	32	201	Relu	ClipRound
4	CSEEM	saheart	283.0	0.9	8	196	Sigmoid	ClipRound

Table I.65: All CSEEM Results of classification problems (65/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	saheart	620.999	0.859	16	146	Sigmoid	ClipRound
4	CSEEM	saheart	594.999	0.885	32	180	Sigmoid	ClipRound
4	CSEEM	saheart	210.0	0.879	8	214	Sin	ClipRound
4	CSEEM	saheart	355.999	0.898	16	221	Sin	ClipRound
4	CSEEM	saheart	6.998	0.866	32	186	Sin	ClipRound
5	CSEEM	saheart	87.998	0.883	8	161	Tanh	ClipRound
5	CSEEM	saheart	380.999	0.861	16	160	Tanh	ClipRound
5	CSEEM	saheart	698.999	0.857	32	153	Tanh	ClipRound
5	CSEEM	saheart	756.999	0.896	8	202	SoftRelu	ClipRound
5	CSEEM	saheart	892.0	0.872	16	155	SoftRelu	ClipRound
5	CSEEM	saheart	949.999	0.872	32	162	SoftRelu	ClipRound
5	CSEEM	saheart	502.0	0.885	8	169	Relu	ClipRound
5	CSEEM	saheart	215.988	0.838	16	151	Relu	ClipRound
5	CSEEM	saheart	901.998	0.861	32	135	Relu	ClipRound
5	CSEEM	saheart	111.999	0.84	8	132	Sigmoid	ClipRound
5	CSEEM	saheart	30.0	0.874	16	155	Sigmoid	ClipRound
5	CSEEM	saheart	541.999	0.866	32	131	Sigmoid	ClipRound
5	CSEEM	saheart	294.999	0.929	8	230	Sin	ClipRound
5	CSEEM	saheart	741.001	0.868	16	197	Sin	ClipRound
5	CSEEM	saheart	489.998	0.861	32	155	Sin	ClipRound
1	CSEEM	tae	28.999	0.801	8	66	Tanh	ClipRound
1	CSEEM	tae	52.001	0.834	16	65	Tanh	ClipRound
1	CSEEM	tae	107.0	0.775	32	63	Tanh	ClipRound
1	CSEEM	tae	30.999	0.795	8	76	SoftRelu	ClipRound
1	CSEEM	tae	41.999	0.702	16	53	SoftRelu	ClipRound
1	CSEEM	tae	65.0	0.861	32	73	SoftRelu	ClipRound
1	CSEEM	tae	78.999	0.854	8	79	Relu	ClipRound
1	CSEEM	tae	28.99	0.755	16	61	Relu	ClipRound
1	CSEEM	tae	179.0	0.788	32	58	Relu	ClipRound
1	CSEEM	tae	26.999	0.775	8	72	Sigmoid	ClipRound
1	CSEEM	tae	92.991	0.748	16	57	Sigmoid	ClipRound
1	CSEEM	tae	144.997	0.808	32	70	Sigmoid	ClipRound

Table I.66: All CSEEM Results of classification problems (66/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	tae	41.0	0.828	8	79	Sin	ClipRound
1	CSEEM	tae	166.992	0.755	16	60	Sin	ClipRound
1	CSEEM	tae	167.999	0.815	32	69	Sin	ClipRound
2	CSEEM	tae	18.997	0.834	8	69	Tanh	ClipRound
2	CSEEM	tae	111.992	0.828	16	73	Tanh	ClipRound
2	CSEEM	tae	155.999	0.781	32	65	Tanh	ClipRound
2	CSEEM	tae	19.999	0.709	8	59	SoftRelu	ClipRound
2	CSEEM	tae	57.988	0.788	16	69	SoftRelu	ClipRound
2	CSEEM	tae	197.0	0.841	32	72	SoftRelu	ClipRound
2	CSEEM	tae	64.0	0.801	8	68	Relu	ClipRound
2	CSEEM	tae	65.0	0.801	16	64	Relu	ClipRound
2	CSEEM	tae	184.999	0.854	32	74	Relu	ClipRound
2	CSEEM	tae	25.999	0.854	8	74	Sigmoid	ClipRound
2	CSEEM	tae	86.998	0.728	16	63	Sigmoid	ClipRound
2	CSEEM	tae	184.999	0.762	32	59	Sigmoid	ClipRound
2	CSEEM	tae	53.998	0.815	8	73	Sin	ClipRound
2	CSEEM	tae	138.999	0.861	16	75	Sin	ClipRound
2	CSEEM	tae	213.999	0.834	32	76	Sin	ClipRound
3	CSEEM	tae	25.999	0.894	8	92	Tanh	ClipRound
3	CSEEM	tae	15.996	0.775	16	63	Tanh	ClipRound
3	CSEEM	tae	149.0	0.781	32	61	Tanh	ClipRound
3	CSEEM	tae	34.0	0.815	8	71	SoftRelu	ClipRound
3	CSEEM	tae	119.999	0.795	16	63	SoftRelu	ClipRound
3	CSEEM	tae	121.999	0.788	32	63	SoftRelu	ClipRound
3	CSEEM	tae	46.999	0.795	8	58	Relu	ClipRound
3	CSEEM	tae	27.995	0.689	16	44	Relu	ClipRound
3	CSEEM	tae	115.0	0.861	32	71	Relu	ClipRound
3	CSEEM	tae	49.999	0.821	8	74	Sigmoid	ClipRound
3	CSEEM	tae	69.993	0.768	16	71	Sigmoid	ClipRound
3	CSEEM	tae	208.999	0.821	32	71	Sigmoid	ClipRound
3	CSEEM	tae	49.999	0.795	8	72	Sin	ClipRound
3	CSEEM	tae	94.991	0.828	16	72	Sin	ClipRound

Table I.67: All CSEEM Results of classification problems (67/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	tae	125.997	0.781	32	69	Sin	ClipRound
4	CSEEM	tae	25.0	0.762	8	63	Tanh	ClipRound
4	CSEEM	tae	99.993	0.762	16	62	Tanh	ClipRound
4	CSEEM	tae	92.0	0.834	32	71	Tanh	ClipRound
4	CSEEM	tae	4.998	0.517	8	23	SoftRelu	ClipRound
4	CSEEM	tae	73.992	0.775	16	70	SoftRelu	ClipRound
4	CSEEM	tae	137.999	0.861	32	75	SoftRelu	ClipRound
4	CSEEM	tae	60.999	0.748	8	63	Relu	ClipRound
4	CSEEM	tae	133.0	0.808	16	65	Relu	ClipRound
4	CSEEM	tae	167.999	0.821	32	70	Relu	ClipRound
4	CSEEM	tae	38.999	0.775	8	65	Sigmoid	ClipRound
4	CSEEM	tae	96.999	0.768	16	65	Sigmoid	ClipRound
4	CSEEM	tae	148.999	0.854	32	78	Sigmoid	ClipRound
4	CSEEM	tae	20.999	0.576	8	33	Sin	ClipRound
4	CSEEM	tae	88.999	0.874	16	77	Sin	ClipRound
4	CSEEM	tae	154.0	0.801	32	68	Sin	ClipRound
5	CSEEM	tae	40.999	0.755	8	61	Tanh	ClipRound
5	CSEEM	tae	129.998	0.841	16	70	Tanh	ClipRound
5	CSEEM	tae	255.0	0.841	32	72	Tanh	ClipRound
5	CSEEM	tae	15.0	0.795	8	73	SoftRelu	ClipRound
5	CSEEM	tae	32.0	0.755	16	67	SoftRelu	ClipRound
5	CSEEM	tae	75.0	0.755	32	58	SoftRelu	ClipRound
5	CSEEM	tae	28.0	0.828	8	74	Relu	ClipRound
5	CSEEM	tae	74.004	0.828	16	69	Relu	ClipRound
5	CSEEM	tae	140.998	0.788	32	59	Relu	ClipRound
5	CSEEM	tae	53.999	0.821	8	76	Sigmoid	ClipRound
5	CSEEM	tae	33.0	0.768	16	57	Sigmoid	ClipRound
5	CSEEM	tae	114.999	0.821	32	70	Sigmoid	ClipRound
5	CSEEM	tae	33.999	0.742	8	61	Sin	ClipRound
5	CSEEM	tae	65.993	0.728	16	64	Sin	ClipRound
5	CSEEM	tae	114.999	0.815	32	74	Sin	ClipRound
1	CSEEM	tic_tac_toe	913.0	0.92	8	328	Tanh	ClipRound

Table I.68: All CSEEM Results of classification problems (68/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	tic_tac_toe	453.0	0.944	16	361	Tanh	ClipRound
1	CSEEM	tic_tac_toe	867.0	0.944	32	326	Tanh	ClipRound
1	CSEEM	tic_tac_toe	367.0	0.955	8	218	SoftRelu	ClipRound
1	CSEEM	tic_tac_toe	944.999	0.962	16	187	SoftRelu	ClipRound
1	CSEEM	tic_tac_toe	775.999	0.961	32	189	SoftRelu	ClipRound
1	CSEEM	tic_tac_toe	954.002	0.953	8	243	Relu	ClipRound
1	CSEEM	tic_tac_toe	868.993	0.96	16	268	Relu	ClipRound
1	CSEEM	tic_tac_toe	563.018	0.957	32	218	Relu	ClipRound
1	CSEEM	tic_tac_toe	730.998	0.929	8	260	Sigmoid	ClipRound
1	CSEEM	tic_tac_toe	630.0	0.915	16	261	Sigmoid	ClipRound
1	CSEEM	tic_tac_toe	44.0	0.935	32	266	Sigmoid	ClipRound
1	CSEEM	tic_tac_toe	943.999	0.921	8	387	Sin	ClipRound
1	CSEEM	tic_tac_toe	795.992	0.912	16	394	Sin	ClipRound
1	CSEEM	tic_tac_toe	210.0	0.93	32	421	Sin	ClipRound
2	CSEEM	tic_tac_toe	629.999	0.894	8	253	Tanh	ClipRound
2	CSEEM	tic_tac_toe	783.575	0.939	16	354	Tanh	ClipRound
2	CSEEM	tic_tac_toe	442.999	0.928	32	275	Tanh	ClipRound
2	CSEEM	tic_tac_toe	398.0	0.978	8	263	SoftRelu	ClipRound
2	CSEEM	tic_tac_toe	938.0	0.974	16	240	SoftRelu	ClipRound
2	CSEEM	tic_tac_toe	389.999	0.954	32	193	SoftRelu	ClipRound
2	CSEEM	tic_tac_toe	308.001	0.852	8	117	Relu	ClipRound
2	CSEEM	tic_tac_toe	416.992	0.971	16	249	Relu	ClipRound
2	CSEEM	tic_tac_toe	557.999	0.971	32	270	Relu	ClipRound
2	CSEEM	tic_tac_toe	736.0	0.939	8	308	Sigmoid	ClipRound
2	CSEEM	tic_tac_toe	402.517	0.931	16	294	Sigmoid	ClipRound
2	CSEEM	tic_tac_toe	779.998	0.952	32	303	Sigmoid	ClipRound
2	CSEEM	tic_tac_toe	378.0	0.877	8	290	Sin	ClipRound
2	CSEEM	tic_tac_toe	176.99	0.941	16	391	Sin	ClipRound
2	CSEEM	tic_tac_toe	860.998	0.928	32	413	Sin	ClipRound
3	CSEEM	tic_tac_toe	933.997	0.922	8	310	Tanh	ClipRound
3	CSEEM	tic_tac_toe	440.992	0.948	16	349	Tanh	ClipRound
3	CSEEM	tic_tac_toe	128.999	0.939	32	306	Tanh	ClipRound

Table I.69: All CSEEM Results of classification problems (69/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	tic tac toe	519.0	0.972	8	228	SoftRelu	ClipRound
3	CSEEM	tic tac toe	243.006	0.977	16	248	SoftRelu	ClipRound
3	CSEEM	tic tac toe	109.522	0.97	32	214	SoftRelu	ClipRound
3	CSEEM	tic_tac_toe	860.0	0.962	8	232	Relu	ClipRound
3	CSEEM	tic_tac_toe	481.418	0.956	16	224	Relu	ClipRound
3	CSEEM	tic_tac_toe	600.0	0.971	32	255	Relu	ClipRound
3	CSEEM	tic_tac_toe	647.999	0.938	8	309	Sigmoid	ClipRound
3	CSEEM	tic_tac_toe	359.404	0.938	16	340	Sigmoid	ClipRound
3	CSEEM	tic_tac_toe	905.999	0.95	32	305	Sigmoid	ClipRound
3	CSEEM	tic_tac_toe	154.0	0.789	8	154	Sin	ClipRound
3	CSEEM	tic_tac_toe	935.992	0.935	16	429	Sin	ClipRound
3	CSEEM	tic_tac_toe	322.998	0.927	32	405	Sin	ClipRound
4	CSEEM	tic_tac_toe	539.998	0.936	8	355	Tanh	ClipRound
4	CSEEM	tic_tac_toe	553.998	0.916	16	273	Tanh	ClipRound
4	CSEEM	tic_tac_toe	58.998	0.93	32	326	Tanh	ClipRound
4	CSEEM	tic_tac_toe	962.999	0.972	8	225	SoftRelu	ClipRound
4	CSEEM	tic_tac_toe	755.999	0.958	16	192	SoftRelu	ClipRound
4	CSEEM	tic_tac_toe	885.0	0.967	32	212	SoftRelu	ClipRound
4	CSEEM	tic_tac_toe	491.0	0.99	8	308	Relu	ClipRound
4	CSEEM	tic_tac_toe	535.999	0.965	16	252	Relu	ClipRound
4	CSEEM	tic_tac_toe	362.0	0.957	32	253	Relu	ClipRound
4	CSEEM	tic_tac_toe	608.0	0.919	8	278	Sigmoid	ClipRound
4	CSEEM	tic_tac_toe	892.0	0.941	16	307	Sigmoid	ClipRound
4	CSEEM	tic_tac_toe	797.999	0.943	32	265	Sigmoid	ClipRound
4	CSEEM	tic_tac_toe	887.999	0.863	8	273	Sin	ClipRound
4	CSEEM	tic_tac_toe	420.0	0.922	16	410	Sin	ClipRound
4	CSEEM	tic_tac_toe	181.999	0.93	32	399	Sin	ClipRound
5	CSEEM	tic_tac_toe	822.997	0.931	8	343	Tanh	ClipRound
5	CSEEM	tic_tac_toe	575.001	0.918	16	321	Tanh	ClipRound
5	CSEEM	tic_tac_toe	352.512	0.932	32	311	Tanh	ClipRound
5	CSEEM	tic_tac_toe	932.0	0.965	8	191	SoftRelu	ClipRound
5	CSEEM	tic_tac_toe	294.001	0.985	16	294	SoftRelu	ClipRound

Table I.70: All CSEEM Results of classification problems (70/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	tic tac toe	184.999	0.973	32	205	SoftRelu	ClipRound
5	CSEEM	tic_tac_toe	429.999	0.967	8	273	Relu	ClipRound
5	CSEEM	tic_tac_toe	992.092	0.983	16	310	Relu	ClipRound
5	CSEEM	tic_tac_toe	524.999	0.96	32	227	Relu	ClipRound
5	CSEEM	tic_tac_toe	382.0	0.91	8	236	Sigmoid	ClipRound
5	CSEEM	tic_tac_toe	65.003	0.936	16	305	Sigmoid	ClipRound
5	CSEEM	tic_tac_toe	207.999	0.935	32	284	Sigmoid	ClipRound
5	CSEEM	tic_tac_toe	631.999	0.861	8	261	Sin	ClipRound
5	CSEEM	tic_tac_toe	338.032	0.903	16	336	Sin	ClipRound
5	CSEEM	tic_tac_toe	38.999	0.905	32	353	Sin	ClipRound
1	CSEEM	vehicle	984.526	0.875	8	267	Tanh	ClipRound
1	CSEEM	vehicle	230.997	0.892	16	278	Tanh	ClipRound
1	CSEEM	vehicle	828.533	0.885	32	274	Tanh	ClipRound
1	CSEEM	vehicle	815.0	0.874	8	183	SoftRelu	ClipRound
1	CSEEM	vehicle	638.0	0.887	16	208	SoftRelu	ClipRound
1	CSEEM	vehicle	89.0	0.918	32	272	SoftRelu	ClipRound
1	CSEEM	vehicle	395.001	0.864	8	166	Relu	ClipRound
1	CSEEM	vehicle	90.991	0.917	16	278	Relu	ClipRound
1	CSEEM	vehicle	993.001	0.933	32	280	Relu	ClipRound
1	CSEEM	vehicle	930.999	0.882	8	238	Sigmoid	ClipRound
1	CSEEM	vehicle	624.0	0.864	16	221	Sigmoid	ClipRound
1	CSEEM	vehicle	497.0	0.887	32	270	Sigmoid	ClipRound
1	CSEEM	vehicle	917.0	0.829	8	486	Sin	ClipRound
1	CSEEM	vehicle	274.002	0.785	16	450	Sin	ClipRound
1	CSEEM	vehicle	606.0	0.719	32	397	Sin	ClipRound
2	CSEEM	vehicle	554.999	0.927	8	351	Tanh	ClipRound
2	CSEEM	vehicle	783.287	0.891	16	278	Tanh	ClipRound
2	CSEEM	vehicle	858.0	0.887	32	273	Tanh	ClipRound
2	CSEEM	vehicle	896.999	0.85	8	153	SoftRelu	ClipRound
2	CSEEM	vehicle	409.999	0.927	16	281	SoftRelu	ClipRound
2	CSEEM	vehicle	374.001	0.916	32	277	SoftRelu	ClipRound
2	CSEEM	vehicle	648.001	0.883	8	206	Relu	ClipRound

Table I.71: All CSEEM Results of classification problems (71/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	vehicle	242.999	0.91	16	262	Relu	ClipRound
2	CSEEM	vehicle	767.0	0.936	32	290	Relu	ClipRound
2	CSEEM	vehicle	580.999	0.914	8	304	Sigmoid	ClipRound
2	CSEEM	vehicle	598.996	0.896	16	292	Sigmoid	ClipRound
2	CSEEM	vehicle	937.0	0.91	32	287	Sigmoid	ClipRound
2	CSEEM	vehicle	376.0	0.651	8	350	Sin	ClipRound
2	CSEEM	vehicle	345.461	0.818	16	463	Sin	ClipRound
2	CSEEM	vehicle	196.0	0.758	32	449	Sin	ClipRound
3	CSEEM	vehicle	71.0	0.91	8	306	Tanh	ClipRound
3	CSEEM	vehicle	369.647	0.883	16	268	Tanh	ClipRound
3	CSEEM	vehicle	871.023	0.915	32	309	Tanh	ClipRound
3	CSEEM	vehicle	721.001	0.887	8	194	SoftRelu	ClipRound
3	CSEEM	vehicle	41.134	0.908	16	259	SoftRelu	ClipRound
3	CSEEM	vehicle	509.999	0.916	32	258	SoftRelu	ClipRound
3	CSEEM	vehicle	782.0	0.91	8	258	Relu	ClipRound
3	CSEEM	vehicle	549.82	0.905	16	250	Relu	ClipRound
3	CSEEM	vehicle	327.001	0.903	32	239	Relu	ClipRound
3	CSEEM	vehicle	541.001	0.846	8	218	Sigmoid	ClipRound
3	CSEEM	vehicle	521.014	0.891	16	283	Sigmoid	ClipRound
3	CSEEM	vehicle	420.001	0.896	32	282	Sigmoid	ClipRound
3	CSEEM	vehicle	913.0	0.739	8	403	Sin	ClipRound
3	CSEEM	vehicle	674.989	0.634	16	364	Sin	ClipRound
3	CSEEM	vehicle	466.002	0.728	32	415	Sin	ClipRound
4	CSEEM	vehicle	401.0	0.881	8	240	Tanh	ClipRound
4	CSEEM	vehicle	349.999	0.9	16	295	Tanh	ClipRound
4	CSEEM	vehicle	34.0	0.895	32	295	Tanh	ClipRound
4	CSEEM	vehicle	340.001	0.924	8	274	SoftRelu	ClipRound
4	CSEEM	vehicle	735.999	0.917	16	274	SoftRelu	ClipRound
4	CSEEM	vehicle	405.002	0.911	32	254	SoftRelu	ClipRound
4	CSEEM	vehicle	655.001	0.87	8	212	Relu	ClipRound
4	CSEEM	vehicle	735.998	0.902	16	244	Relu	ClipRound
4	CSEEM	vehicle	124.999	0.908	32	242	Relu	ClipRound

Table I.72: All CSEEM Results of classification problems (72/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	vehicle	782.001	0.924	8	347	Sigmoid	ClipRound
4	CSEEM	vehicle	534.999	0.908	16	295	Sigmoid	ClipRound
4	CSEEM	vehicle	161.999	0.896	32	274	Sigmoid	ClipRound
4	CSEEM	vehicle	546.0	0.559	8	288	Sin	ClipRound
4	CSEEM	vehicle	32.997	0.758	16	425	Sin	ClipRound
4	CSEEM	vehicle	159.0	0.762	32	442	Sin	ClipRound
5	CSEEM	vehicle	634.999	0.826	8	204	Tanh	ClipRound
5	CSEEM	vehicle	346.0	0.901	16	288	Tanh	ClipRound
5	CSEEM	vehicle	350.0	0.898	32	299	Tanh	ClipRound
5	CSEEM	vehicle	78.0	0.935	8	297	SoftRelu	ClipRound
5	CSEEM	vehicle	25.999	0.903	16	239	SoftRelu	ClipRound
5	CSEEM	vehicle	784.999	0.931	32	289	SoftRelu	ClipRound
5	CSEEM	vehicle	237.998	0.918	8	263	Relu	ClipRound
5	CSEEM	vehicle	313.0	0.935	16	282	Relu	ClipRound
5	CSEEM	vehicle	145.998	0.934	32	286	Relu	ClipRound
5	CSEEM	vehicle	584.001	0.85	8	207	Sigmoid	ClipRound
5	CSEEM	vehicle	925.008	0.935	16	340	Sigmoid	ClipRound
5	CSEEM	vehicle	998.001	0.883	32	256	Sigmoid	ClipRound
5	CSEEM	vehicle	25.0	0.748	8	430	Sin	ClipRound
5	CSEEM	vehicle	482.994	0.809	16	467	Sin	ClipRound
5	CSEEM	vehicle	896.511	0.716	32	400	Sin	ClipRound
1	CSEEM	vowel	32.0	0.947	8	248	Tanh	ClipRound
1	CSEEM	vowel	545.001	0.978	16	280	Tanh	ClipRound
1	CSEEM	vowel	319.605	0.971	32	269	Tanh	ClipRound
1	CSEEM	vowel	812.001	0.959	8	239	SoftRelu	ClipRound
1	CSEEM	vowel	705.998	0.971	16	273	SoftRelu	ClipRound
1	CSEEM	vowel	848.001	0.96	32	221	SoftRelu	ClipRound
1	CSEEM	vowel	252.003	0.954	8	255	Relu	ClipRound
1	CSEEM	vowel	437.002	0.973	16	259	Relu	ClipRound
1	CSEEM	vowel	786.999	0.913	32	213	Relu	ClipRound
1	CSEEM	vowel	154.0	0.971	8	264	Sigmoid	ClipRound
1	CSEEM	vowel	427.0	0.941	16	227	Sigmoid	ClipRound

Table I.73: All CSEEM Results of classification problems (73/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	vowel	711.999	0.947	32	230	Sigmoid	ClipRound
1	CSEEM	vowel	295.001	0.965	8	329	Sin	ClipRound
1	CSEEM	vowel	73.997	0.946	16	312	Sin	ClipRound
1	CSEEM	vowel	929.001	0.943	32	292	Sin	ClipRound
2	CSEEM	vowel	177.001	0.902	8	203	Tanh	ClipRound
2	CSEEM	vowel	438.992	0.956	16	263	Tanh	ClipRound
2	CSEEM	vowel	480.0	0.961	32	252	Tanh	ClipRound
2	CSEEM	vowel	450.999	0.993	8	309	SoftRelu	ClipRound
2	CSEEM	vowel	151.134	0.962	16	248	SoftRelu	ClipRound
2	CSEEM	vowel	626.999	0.949	32	228	SoftRelu	ClipRound
2	CSEEM	vowel	939.509	0.907	8	206	Relu	ClipRound
2	CSEEM	vowel	342.001	0.923	16	215	Relu	ClipRound
2	CSEEM	vowel	595.001	0.967	32	248	Relu	ClipRound
2	CSEEM	vowel	548.999	0.957	8	254	Sigmoid	ClipRound
2	CSEEM	vowel	871.021	0.958	16	255	Sigmoid	ClipRound
2	CSEEM	vowel	535.0	0.965	32	246	Sigmoid	ClipRound
2	CSEEM	vowel	522.0	0.951	8	318	Sin	ClipRound
2	CSEEM	vowel	294.19	0.898	16	273	Sin	ClipRound
2	CSEEM	vowel	315.001	0.925	32	288	Sin	ClipRound
3	CSEEM	vowel	373.999	0.571	8	104	Tanh	ClipRound
3	CSEEM	vowel	386.664	0.942	16	246	Tanh	ClipRound
3	CSEEM	vowel	105.001	0.958	32	249	Tanh	ClipRound
3	CSEEM	vowel	339.999	0.964	8	250	SoftRelu	ClipRound
3	CSEEM	vowel	871.007	0.97	16	249	SoftRelu	ClipRound
3	CSEEM	vowel	459.0	0.958	32	233	SoftRelu	ClipRound
3	CSEEM	vowel	362.0	0.663	8	112	Relu	ClipRound
3	CSEEM	vowel	375.292	0.958	16	246	Relu	ClipRound
3	CSEEM	vowel	11.016	0.974	32	252	Relu	ClipRound
3	CSEEM	vowel	227.001	0.929	8	219	Sigmoid	ClipRound
3	CSEEM	vowel	573.0	0.965	16	271	Sigmoid	ClipRound
3	CSEEM	vowel	375.0	0.951	32	261	Sigmoid	ClipRound
3	CSEEM	vowel	374.0	0.985	8	402	Sin	ClipRound

Table I.74: All CSEEM Results of classification problems (74/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	vowel	466.323	0.952	16	321	Sin	ClipRound
3	CSEEM	vowel	340.997	0.987	32	379	Sin	ClipRound
4	CSEEM	vowel	492.996	0.68	8	134	Tanh	ClipRound
4	CSEEM	vowel	924.512	0.967	16	263	Tanh	ClipRound
4	CSEEM	vowel	166.51	0.962	32	264	Tanh	ClipRound
4	CSEEM	vowel	498.0	0.97	8	259	SoftRelu	ClipRound
4	CSEEM	vowel	342.513	0.976	16	278	SoftRelu	ClipRound
4	CSEEM	vowel	530.0	0.965	32	250	SoftRelu	ClipRound
4	CSEEM	vowel	433.999	0.952	8	231	Relu	ClipRound
4	CSEEM	vowel	980.0	0.962	16	240	Relu	ClipRound
4	CSEEM	vowel	610.001	0.947	32	223	Relu	ClipRound
4	CSEEM	vowel	405.998	0.889	8	197	Sigmoid	ClipRound
4	CSEEM	vowel	881.999	0.964	16	250	Sigmoid	ClipRound
4	CSEEM	vowel	638.0	0.976	32	262	Sigmoid	ClipRound
4	CSEEM	vowel	521.0	0.911	8	280	Sin	ClipRound
4	CSEEM	vowel	802.509	0.915	16	299	Sin	ClipRound
4	CSEEM	vowel	616.0	0.957	32	311	Sin	ClipRound
5	CSEEM	vowel	737.999	0.994	8	354	Tanh	ClipRound
5	CSEEM	vowel	276.0	0.946	16	233	Tanh	ClipRound
5	CSEEM	vowel	60.999	0.97	32	266	Tanh	ClipRound
5	CSEEM	vowel	110.0	0.634	8	106	SoftRelu	ClipRound
5	CSEEM	vowel	369.001	0.97	16	267	SoftRelu	ClipRound
5	CSEEM	vowel	68.001	0.951	32	218	SoftRelu	ClipRound
5	CSEEM	vowel	343.0	0.951	8	251	Relu	ClipRound
5	CSEEM	vowel	287.993	0.992	16	362	Relu	ClipRound
5	CSEEM	vowel	281.0	0.954	32	245	Relu	ClipRound
5	CSEEM	vowel	90.999	0.458	8	88	Sigmoid	ClipRound
5	CSEEM	vowel	737.007	0.966	16	260	Sigmoid	ClipRound
5	CSEEM	vowel	742.0	0.96	32	234	Sigmoid	ClipRound
5	CSEEM	vowel	364.0	0.9	8	273	Sin	ClipRound
5	CSEEM	vowel	981.054	0.926	16	304	Sin	ClipRound
5	CSEEM	vowel	636.999	0.935	32	308	Sin	ClipRound

Table I.75: All CSEEM Results of classification problems (75/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	wine	36.0	0.983	8	41	Tanh	ClipRound
1	CSEEM	wine	97.001	0.966	16	37	Tanh	ClipRound
1	CSEEM	wine	115.0	0.972	32	21	Tanh	ClipRound
1	CSEEM	wine	11.0	0.983	8	35	SoftRelu	ClipRound
1	CSEEM	wine	62.994	0.978	16	29	SoftRelu	ClipRound
1	CSEEM	wine	100.0	0.966	32	37	SoftRelu	ClipRound
1	CSEEM	wine	22.998	0.972	8	38	Relu	ClipRound
1	CSEEM	wine	41.997	0.955	16	25	Relu	ClipRound
1	CSEEM	wine	314.0	0.972	32	33	Relu	ClipRound
1	CSEEM	wine	6.999	0.972	8	44	Sigmoid	ClipRound
1	CSEEM	wine	91.0	0.978	16	27	Sigmoid	ClipRound
1	CSEEM	wine	99.0	0.978	32	28	Sigmoid	ClipRound
1	CSEEM	wine	59.998	0.764	8	92	Sin	ClipRound
1	CSEEM	wine	61.999	0.753	16	73	Sin	ClipRound
1	CSEEM	wine	228.999	0.787	32	73	Sin	ClipRound
2	CSEEM	wine	37.0	0.955	8	35	Tanh	ClipRound
2	CSEEM	wine	76.991	0.966	16	34	Tanh	ClipRound
2	CSEEM	wine	112.999	0.978	32	33	Tanh	ClipRound
2	CSEEM	wine	15.0	0.955	8	31	SoftRelu	ClipRound
2	CSEEM	wine	47.929	0.955	16	26	SoftRelu	ClipRound
2	CSEEM	wine	88.998	0.983	32	36	SoftRelu	ClipRound
2	CSEEM	wine	13.999	0.916	8	22	Relu	ClipRound
2	CSEEM	wine	86.987	0.978	16	30	Relu	ClipRound
2	CSEEM	wine	149.999	0.961	32	32	Relu	ClipRound
2	CSEEM	wine	24.0	0.983	8	32	Sigmoid	ClipRound
2	CSEEM	wine	126.03	0.978	16	31	Sigmoid	ClipRound
2	CSEEM	wine	282.997	0.978	32	29	Sigmoid	ClipRound
2	CSEEM	wine	57.999	0.82	8	84	Sin	ClipRound
2	CSEEM	wine	143.992	0.736	16	55	Sin	ClipRound
2	CSEEM	wine	213.999	0.77	32	75	Sin	ClipRound
3	CSEEM	wine	48.998	0.949	8	29	Tanh	ClipRound
3	CSEEM	wine	57.99	0.927	16	24	Tanh	ClipRound

Table I.76: All CSEEM Results of classification problems (76/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	wine	197.0	0.961	32	32	Tanh	ClipRound
3	CSEEM	wine	34.0	0.972	8	29	SoftRelu	ClipRound
3	CSEEM	wine	46.993	0.972	16	36	SoftRelu	ClipRound
3	CSEEM	wine	177.0	0.972	32	26	SoftRelu	ClipRound
3	CSEEM	wine	12.999	0.972	8	35	Relu	ClipRound
3	CSEEM	wine	40.992	0.983	16	40	Relu	ClipRound
3	CSEEM	wine	155.999	0.966	32	29	Relu	ClipRound
3	CSEEM	wine	31.999	0.955	8	30	Sigmoid	ClipRound
3	CSEEM	wine	116.993	0.978	16	32	Sigmoid	ClipRound
3	CSEEM	wine	115.0	0.972	32	27	Sigmoid	ClipRound
3	CSEEM	wine	84.999	0.73	8	75	Sin	ClipRound
3	CSEEM	wine	113.991	0.837	16	71	Sin	ClipRound
3	CSEEM	wine	234.999	0.82	32	85	Sin	ClipRound
4	CSEEM	wine	27.999	0.961	8	38	Tanh	ClipRound
4	CSEEM	wine	51.006	0.966	16	29	Tanh	ClipRound
4	CSEEM	wine	240.999	0.961	32	30	Tanh	ClipRound
4	CSEEM	wine	44.0	0.994	8	37	SoftRelu	ClipRound
4	CSEEM	wine	56.999	0.955	16	28	SoftRelu	ClipRound
4	CSEEM	wine	166.0	0.989	32	33	SoftRelu	ClipRound
4	CSEEM	wine	22.999	0.955	8	34	Relu	ClipRound
4	CSEEM	wine	92.0	0.955	16	29	Relu	ClipRound
4	CSEEM	wine	79.999	0.961	32	17	Relu	ClipRound
4	CSEEM	wine	67.999	0.978	8	29	Sigmoid	ClipRound
4	CSEEM	wine	77.001	0.978	16	32	Sigmoid	ClipRound
4	CSEEM	wine	113.999	0.972	32	24	Sigmoid	ClipRound
4	CSEEM	wine	60.999	0.843	8	92	Sin	ClipRound
4	CSEEM	wine	139.0	0.893	16	104	Sin	ClipRound
4	CSEEM	wine	280.999	0.815	32	74	Sin	ClipRound
5	CSEEM	wine	31.998	0.972	8	32	Tanh	ClipRound
5	CSEEM	wine	81.999	0.972	16	36	Tanh	ClipRound
5	CSEEM	wine	206.0	0.966	32	30	Tanh	ClipRound
5	CSEEM	wine	31.0	0.961	8	30	SoftRelu	ClipRound

Table I.77: All CSEEM Results of classification problems (77/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	wine	74.986	0.972	16	36	SoftRelu	ClipRound
5	CSEEM	wine	123.997	0.972	32	31	SoftRelu	ClipRound
5	CSEEM	wine	32.999	0.978	8	31	Relu	ClipRound
5	CSEEM	wine	58.988	0.983	16	39	Relu	ClipRound
5	CSEEM	wine	230.999	0.983	32	36	Relu	ClipRound
5	CSEEM	wine	23.999	0.949	8	30	Sigmoid	ClipRound
5	CSEEM	wine	58.997	0.983	16	34	Sigmoid	ClipRound
5	CSEEM	wine	180.999	0.972	32	26	Sigmoid	ClipRound
5	CSEEM	wine	52.999	0.831	8	86	Sin	ClipRound
5	CSEEM	wine	119.999	0.736	16	65	Sin	ClipRound
5	CSEEM	wine	233.999	0.798	32	81	Sin	ClipRound
1	CSEEM	wisconsin	464.999	0.982	8	102	Tanh	ClipRound
1	CSEEM	wisconsin	894.001	0.981	16	89	Tanh	ClipRound
1	CSEEM	wisconsin	764.51	0.985	32	94	Tanh	ClipRound
1	CSEEM	wisconsin	245.0	0.98	8	53	SoftRelu	ClipRound
1	CSEEM	wisconsin	691.999	0.982	16	88	SoftRelu	ClipRound
1	CSEEM	wisconsin	185.0	0.988	32	115	SoftRelu	ClipRound
1	CSEEM	wisconsin	408.0	0.98	8	81	Relu	ClipRound
1	CSEEM	wisconsin	324.0	0.981	16	68	Relu	ClipRound
1	CSEEM	wisconsin	619.999	0.984	32	85	Relu	ClipRound
1	CSEEM	wisconsin	140.999	0.974	8	39	Sigmoid	ClipRound
1	CSEEM	wisconsin	571.994	0.982	16	84	Sigmoid	ClipRound
1	CSEEM	wisconsin	26.999	0.985	32	109	Sigmoid	ClipRound
1	CSEEM	wisconsin	233.001	0.93	8	74	Sin	ClipRound
1	CSEEM	wisconsin	138.993	0.977	16	129	Sin	ClipRound
1	CSEEM	wisconsin	84.0	0.969	32	124	Sin	ClipRound
2	CSEEM	wisconsin	267.0	0.985	8	108	Tanh	ClipRound
2	CSEEM	wisconsin	426.0	0.984	16	90	Tanh	ClipRound
2	CSEEM	wisconsin	201.999	0.982	32	90	Tanh	ClipRound
2	CSEEM	wisconsin	383.0	0.978	8	63	SoftRelu	ClipRound
2	CSEEM	wisconsin	407.0	0.978	16	55	SoftRelu	ClipRound
2	CSEEM	wisconsin	385.998	0.981	32	75	SoftRelu	ClipRound

Table I.78: All CSEEM Results of classification problems (78/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	CSEEM	wisconsin	129.999	0.974	8	47	Relu	ClipRound
2	CSEEM	wisconsin	733.993	0.982	16	88	Relu	ClipRound
2	CSEEM	wisconsin	501.998	0.984	32	82	Relu	ClipRound
2	CSEEM	wisconsin	948.999	0.981	8	89	Sigmoid	ClipRound
2	CSEEM	wisconsin	804.042	0.984	16	92	Sigmoid	ClipRound
2	CSEEM	wisconsin	284.0	0.985	32	88	Sigmoid	ClipRound
2	CSEEM	wisconsin	494.999	0.969	8	148	Sin	ClipRound
2	CSEEM	wisconsin	547.999	0.978	16	127	Sin	ClipRound
2	CSEEM	wisconsin	588.0	0.977	32	129	Sin	ClipRound
3	CSEEM	wisconsin	94.999	0.987	8	62	Tanh	ClipRound
3	CSEEM	wisconsin	767.0	0.99	16	123	Tanh	ClipRound
3	CSEEM	wisconsin	952.508	0.981	32	78	Tanh	ClipRound
3	CSEEM	wisconsin	652.001	0.984	8	103	SoftRelu	ClipRound
3	CSEEM	wisconsin	130.988	0.981	16	77	SoftRelu	ClipRound
3	CSEEM	wisconsin	52.0	0.984	32	102	SoftRelu	ClipRound
3	CSEEM	wisconsin	545.012	0.98	8	61	Relu	ClipRound
3	CSEEM	wisconsin	783.001	0.981	16	84	Relu	ClipRound
3	CSEEM	wisconsin	843.999	0.981	32	83	Relu	ClipRound
3	CSEEM	wisconsin	840.999	0.981	8	93	Sigmoid	ClipRound
3	CSEEM	wisconsin	437.078	0.985	16	91	Sigmoid	ClipRound
3	CSEEM	wisconsin	279.0	0.982	32	88	Sigmoid	ClipRound
3	CSEEM	wisconsin	411.0	0.974	8	130	Sin	ClipRound
3	CSEEM	wisconsin	940.589	0.972	16	134	Sin	ClipRound
3	CSEEM	wisconsin	184.0	0.969	32	114	Sin	ClipRound
4	CSEEM	wisconsin	723.999	0.982	8	75	Tanh	ClipRound
4	CSEEM	wisconsin	509.009	0.981	16	72	Tanh	ClipRound
4	CSEEM	wisconsin	401.998	0.984	32	94	Tanh	ClipRound
4	CSEEM	wisconsin	133.0	0.982	8	102	SoftRelu	ClipRound
4	CSEEM	wisconsin	902.0	0.982	16	96	SoftRelu	ClipRound
4	CSEEM	wisconsin	39.999	0.981	32	67	SoftRelu	ClipRound
4	CSEEM	wisconsin	255.0	0.981	8	90	Relu	ClipRound
4	CSEEM	wisconsin	292.999	0.982	16	75	Relu	ClipRound

Table I.79: All CSEEM Results of classification problems (79/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	CSEEM	wisconsin	700.999	0.984	32	94	Relu	ClipRound
4	CSEEM	wisconsin	440.0	0.982	8	86	Sigmoid	ClipRound
4	CSEEM	wisconsin	766.999	0.981	16	40	Sigmoid	ClipRound
4	CSEEM	wisconsin	824.997	0.985	32	80	Sigmoid	ClipRound
4	CSEEM	wisconsin	487.998	0.981	8	144	Sin	ClipRound
4	CSEEM	wisconsin	973.999	0.974	16	115	Sin	ClipRound
4	CSEEM	wisconsin	879.999	0.972	32	107	Sin	ClipRound
5	CSEEM	wisconsin	400.995	0.977	8	48	Tanh	ClipRound
5	CSEEM	wisconsin	330.998	0.982	16	69	Tanh	ClipRound
5	CSEEM	wisconsin	892.999	0.984	32	107	Tanh	ClipRound
5	CSEEM	wisconsin	286.999	0.982	8	63	SoftRelu	ClipRound
5	CSEEM	wisconsin	666.994	0.984	16	93	SoftRelu	ClipRound
5	CSEEM	wisconsin	203.0	0.987	32	113	SoftRelu	ClipRound
5	CSEEM	wisconsin	313.0	0.985	8	114	Relu	ClipRound
5	CSEEM	wisconsin	457.001	0.98	16	92	Relu	ClipRound
5	CSEEM	wisconsin	855.001	0.981	32	89	Relu	ClipRound
5	CSEEM	wisconsin	218.999	0.98	8	66	Sigmoid	ClipRound
5	CSEEM	wisconsin	860.997	0.984	16	102	Sigmoid	ClipRound
5	CSEEM	wisconsin	607.999	0.987	32	86	Sigmoid	ClipRound
5	CSEEM	wisconsin	710.999	0.969	8	142	Sin	ClipRound
5	CSEEM	wisconsin	783.011	0.959	16	97	Sin	ClipRound
5	CSEEM	wisconsin	993.998	0.971	32	112	Sin	ClipRound
1	CSEEM	ZOO	13.0	0.98	8	24	Tanh	ClipRound
1	CSEEM	ZOO	14.0	0.98	16	26	Tanh	ClipRound
1	CSEEM	ZOO	59.0	0.96	32	21	Tanh	ClipRound
1	CSEEM	ZOO	10.0	0.97	8	21	SoftRelu	ClipRound
1	CSEEM	ZOO	26.999	0.941	16	22	SoftRelu	ClipRound
1	CSEEM	ZOO	38.0	0.98	32	22	SoftRelu	ClipRound
1	CSEEM	ZOO	20.998	0.99	8	24	Relu	ClipRound
1	CSEEM	ZOO	30.985	1	16	22	Relu	ClipRound
1	CSEEM	ZOO	43.999	0.95	32	20	Relu	ClipRound
1	CSEEM	ZOO	18.0	0.97	8	22	Sigmoid	ClipRound

Table I.80: All CSEEM Results of classification problems (80/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	CSEEM	ZOO	13.995	0.95	16	20	Sigmoid	ClipRound
1	CSEEM	ZOO	29.999	0.941	32	18	Sigmoid	ClipRound
1	CSEEM	ZOO	8.0	0.851	8	31	Sin	ClipRound
1	CSEEM	ZOO	26.993	0.861	16	39	Sin	ClipRound
1	CSEEM	ZOO	80.0	0.861	32	30	Sin	ClipRound
2	CSEEM	ZOO	12.999	0.891	8	16	Tanh	ClipRound
2	CSEEM	ZOO	24.992	0.98	16	24	Tanh	ClipRound
2	CSEEM	ZOO	85.0	0.98	32	23	Tanh	ClipRound
2	CSEEM	ZOO	7.0	0.98	8	24	SoftRelu	ClipRound
2	CSEEM	ZOO	26.001	0.98	16	20	SoftRelu	ClipRound
2	CSEEM	ZOO	53.001	0.96	32	22	SoftRelu	ClipRound
2	CSEEM	ZOO	15.999	0.98	8	24	Relu	ClipRound
2	CSEEM	ZOO	25.006	0.98	16	20	Relu	ClipRound
2	CSEEM	ZOO	56.999	0.96	32	18	Relu	ClipRound
2	CSEEM	ZOO	9.0	0.99	8	26	Sigmoid	ClipRound
2	CSEEM	ZOO	29.994	0.97	16	20	Sigmoid	ClipRound
2	CSEEM	ZOO	29.0	0.97	32	19	Sigmoid	ClipRound
2	CSEEM	ZOO	22.0	0.99	8	40	Sin	ClipRound
2	CSEEM	ZOO	40.008	0.941	16	34	Sin	ClipRound
2	CSEEM	ZOO	58.0	0.95	32	39	Sin	ClipRound
3	CSEEM	ZOO	12.997	0.96	8	26	Tanh	ClipRound
3	CSEEM	ZOO	17.0	0.941	16	20	Tanh	ClipRound
3	CSEEM	ZOO	109.0	0.99	32	20	Tanh	ClipRound
3	CSEEM	ZOO	16.999	0.96	8	19	SoftRelu	ClipRound
3	CSEEM	ZOO	22.999	0.97	16	26	SoftRelu	ClipRound
3	CSEEM	ZOO	67.999	1	32	22	SoftRelu	ClipRound
3	CSEEM	ZOO	10.0	0.95	8	22	Relu	ClipRound
3	CSEEM	ZOO	58.002	0.98	16	20	Relu	ClipRound
3	CSEEM	ZOO	61.999	0.96	32	15	Relu	ClipRound
3	CSEEM	ZOO	16.0	0.97	8	21	Sigmoid	ClipRound
3	CSEEM	ZOO	29.003	0.97	16	22	Sigmoid	ClipRound
3	CSEEM	ZOO	38.999	0.97	32	19	Sigmoid	ClipRound

Table I.81: All CSEEM Results of classification problems (81/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	CSEEM	ZOO	11.0	0.911	8	38	Sin	ClipRound
3	CSEEM	ZOO	29.999	0.95	16	39	Sin	ClipRound
3	CSEEM	ZOO	83.0	0.921	32	36	Sin	ClipRound
4	CSEEM	ZOO	6.0	0.941	8	20	Tanh	ClipRound
4	CSEEM	ZOO	20.995	0.97	16	23	Tanh	ClipRound
4	CSEEM	ZOO	58.0	0.96	32	20	Tanh	ClipRound
4	CSEEM	ZOO	17.001	0.96	8	22	SoftRelu	ClipRound
4	CSEEM	ZOO	24.998	0.96	16	20	SoftRelu	ClipRound
4	CSEEM	ZOO	46.999	0.99	32	18	SoftRelu	ClipRound
4	CSEEM	ZOO	11.999	0.96	8	23	Relu	ClipRound
4	CSEEM	ZOO	27.0	0.97	16	22	Relu	ClipRound
4	CSEEM	ZOO	44.999	0.96	32	18	Relu	ClipRound
4	CSEEM	ZOO	16.999	0.99	8	23	Sigmoid	ClipRound
4	CSEEM	ZOO	12.001	0.95	16	19	Sigmoid	ClipRound
4	CSEEM	ZOO	69.999	1	32	22	Sigmoid	ClipRound
4	CSEEM	ZOO	12.999	0.96	8	41	Sin	ClipRound
4	CSEEM	ZOO	41.0	0.891	16	36	Sin	ClipRound
4	CSEEM	ZOO	26.999	0.941	32	42	Sin	ClipRound
5	CSEEM	ZOO	7.0	0.95	8	19	Tanh	ClipRound
5	CSEEM	ZOO	26.0	0.96	16	25	Tanh	ClipRound
5	CSEEM	ZOO	28.999	0.98	32	25	Tanh	ClipRound
5	CSEEM	ZOO	20.999	0.95	8	25	SoftRelu	ClipRound
5	CSEEM	ZOO	26.999	0.97	16	22	SoftRelu	ClipRound
5	CSEEM	ZOO	74.999	0.99	32	22	SoftRelu	ClipRound
5	CSEEM	ZOO	18.0	0.99	8	23	Relu	ClipRound
5	CSEEM	ZOO	57.988	0.97	16	19	Relu	ClipRound
5	CSEEM	ZOO	47.999	0.99	32	24	Relu	ClipRound
5	CSEEM	ZOO	17.0	1	8	29	Sigmoid	ClipRound
5	CSEEM	ZOO	37.998	0.97	16	20	Sigmoid	ClipRound
5	CSEEM	ZOO	81.001	0.98	32	21	Sigmoid	ClipRound
5	CSEEM	ZOO	19.998	0.931	8	43	Sin	ClipRound
5	CSEEM	ZOO	28.999	0.861	16	29	Sin	ClipRound

Table I.82: All CSEEM Results of classification problems (82/83).

Run	Method	Dataset	Time (s)	Accuracy	n_c	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	CSEEM	ZOO	45.999	0.891	32	35	Sin	ClipRound

Table I.83: All CSEEM Results of classification problems (83/83).

Appendix J

RMSProp Classification All Results

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	RMSProp	appendicitis	675.062	0.896	1000	1000	Tanh	SoftMax
1	RMSProp	appendicitis	186.009	0.887	1000	1000	SoftRelu	SoftMax
1	RMSProp	appendicitis	789.009	0.868	1000	1000	Relu	SoftMax
1	RMSProp	appendicitis	184.0	0.877	1000	1000	Sigmoid	SoftMax
1	RMSProp	appendicitis	789.014	0.877	1000	1000	Sin	SoftMax
2	RMSProp	appendicitis	65.257	0.896	1000	1000	Tanh	SoftMax
2	RMSProp	appendicitis	62.341	0.887	1000	1000	SoftRelu	SoftMax
2	RMSProp	appendicitis	247.0	0.868	1000	1000	Relu	SoftMax
2	RMSProp	appendicitis	32.0	0.877	1000	1000	Sigmoid	SoftMax
2	RMSProp	appendicitis	220.999	0.877	1000	1000	Sin	SoftMax
3	RMSProp	appendicitis	761.177	0.896	1000	1000	Tanh	SoftMax
3	RMSProp	appendicitis	141.888	0.877	1000	1000	SoftRelu	SoftMax
3	RMSProp	appendicitis	134.597	0.877	1000	1000	Relu	SoftMax
3	RMSProp	appendicitis	938.046	0.877	1000	1000	Sigmoid	SoftMax
3	RMSProp	appendicitis	233.5	0.887	1000	1000	Sin	SoftMax
4	RMSProp	appendicitis	891.012	0.896	1000	1000	Tanh	SoftMax
4	RMSProp	appendicitis	304.965	0.887	1000	1000	SoftRelu	SoftMax
4	RMSProp	appendicitis	242.979	0.868	1000	1000	Relu	SoftMax
4	RMSProp	appendicitis	54.966	0.877	1000	1000	Sigmoid	SoftMax
4	RMSProp	appendicitis	784.965	0.887	1000	1000	Sin	SoftMax
5	RMSProp	appendicitis	205.796	0.896	1000	1000	Tanh	SoftMax
5	RMSProp	appendicitis	95.454	0.877	1000	1000	SoftRelu	SoftMax
5	RMSProp	appendicitis	835.0	0.868	1000	1000	Relu	SoftMax
5	RMSProp	appendicitis	568.69	0.877	1000	1000	Sigmoid	SoftMax
5	RMSProp	appendicitis	5.987	0.887	1000	1000	Sin	SoftMax
1	RMSProp	australian	441.002	0.659	1000	1000	Tanh	SoftMax
1	RMSProp	australian	793.004	0.555	1000	1000	SoftRelu	SoftMax
1	RMSProp	australian	448.965	0.555	1000	1000	Relu	SoftMax
1	RMSProp	australian	842.514	0.555	1000	1000	Sigmoid	SoftMax
1	RMSProp	australian	171.977	0.52	1000	1000	Sin	SoftMax
2	RMSProp	australian	92.826	0.645	1000	1000	Tanh	SoftMax
2	RMSProp	australian	709.891	0.555	1000	1000	SoftRelu	SoftMax

Table J.1: All RMSProp Results of classification problems (1/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	RMSProp	australian	268.0	0.555	1000	1000	Relu	SoftMax
2	RMSProp	australian	651.0	0.555	1000	1000	Sigmoid	SoftMax
2	RMSProp	australian	192.008	0.551	1000	1000	Sin	SoftMax
3	RMSProp	australian	826.794	0.662	1000	1000	Tanh	SoftMax
3	RMSProp	australian	313.122	0.555	1000	1000	SoftRelu	SoftMax
3	RMSProp	australian	515.003	0.555	1000	1000	Relu	SoftMax
3	RMSProp	australian	633.52	0.555	1000	1000	Sigmoid	SoftMax
3	RMSProp	australian	962.556	0.452	1000	1000	Sin	SoftMax
4	RMSProp	australian	529.417	0.659	1000	1000	Tanh	SoftMax
4	RMSProp	australian	746.028	0.555	1000	1000	SoftRelu	SoftMax
4	RMSProp	australian	937.977	0.555	1000	1000	Relu	SoftMax
4	RMSProp	australian	202.636	0.555	1000	1000	Sigmoid	SoftMax
4	RMSProp	australian	365.074	0.461	1000	1000	Sin	SoftMax
5	RMSProp	australian	496.0	0.642	1000	1000	Tanh	SoftMax
5	RMSProp	australian	202.002	0.555	1000	1000	SoftRelu	SoftMax
5	RMSProp	australian	199.08	0.555	1000	1000	Relu	SoftMax
5	RMSProp	australian	103.0	0.555	1000	1000	Sigmoid	SoftMax
5	RMSProp	australian	281.236	0.445	1000	1000	Sin	SoftMax
1	RMSProp	automobile	228.09	0.371	1000	1000	Tanh	SoftMax
1	RMSProp	automobile	740.405	0.0189	1000	1000	SoftRelu	SoftMax
1	RMSProp	automobile	61.239	0.0189	1000	1000	Relu	SoftMax
1	RMSProp	automobile	803.993	0.0189	1000	1000	Sigmoid	SoftMax
1	RMSProp	automobile	901.126	0.201	1000	1000	Sin	SoftMax
2	RMSProp	automobile	491.002	0.333	1000	1000	Tanh	SoftMax
2	RMSProp	automobile	336.003	0.0189	1000	1000	SoftRelu	SoftMax
2	RMSProp	automobile	315.003	0.0189	1000	1000	Relu	SoftMax
2	RMSProp	automobile	340.804	0.0189	1000	1000	Sigmoid	SoftMax
2	RMSProp	automobile	205.999	0.189	1000	1000	Sin	SoftMax
3	RMSProp	automobile	25.378	0.371	1000	1000	Tanh	SoftMax
3	RMSProp	automobile	615.089	0.0189	1000	1000	SoftRelu	SoftMax
3	RMSProp	automobile	796.999	0.0189	1000	1000	Relu	SoftMax
3	RMSProp	automobile	353.998	0.0189	1000	1000	Sigmoid	SoftMax

Table J.2: All RMSProp Results of classification problems (2/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	RMSProp	automobile	147.115	0.17	$\frac{n_e}{1000}$	1000	$\frac{\varphi(f)}{\sin}$	$\frac{\varphi_o(\cdot)}{\text{SoftMax}}$
4	RMSProp	automobile	787.0	0.327	1000	1000	Tanh	SoftMax
4	RMSProp	automobile	988.009	0.0189	1000	1000	SoftRelu	SoftMax
4	RMSProp	automobile	143.488	0.0189	1000	1000	Relu	SoftMax
4	RMSProp	automobile	607.97	0.0189	1000	1000	Sigmoid	SoftMax
4	RMSProp	automobile	184.029	0.0163	1000	1000	Sin	SoftMax
5	RMSProp	automobile	125.337	0.365	1000	1000	Tanh	SoftMax
5	RMSProp	automobile	599.001	0.0189	1000	1000	SoftRelu	SoftMax
5	RMSProp	automobile	294.999	0.0189	1000	1000	Relu	SoftMax
5	RMSProp	automobile	485.169	0.0189	1000	1000	Sigmoid	SoftMax
$\frac{5}{5}$	RMSProp	automobile	542.966	0.0189 0.17	1000	1000	Signoid	SoftMax
	_		497.001	0.17	1000	1000	Tanh	SoftMax
1	RMSProp	balance						
1	RMSProp	balance	499.513	0.91	1000	1000	SoftRelu	SoftMax
1	RMSProp	balance	211.168	0.891	1000	1000	Relu	SoftMax
1	RMSProp	balance	847.001	0.907	1000	1000	Sigmoid	SoftMax
1	RMSProp	balance	149.948	0.907	1000	1000	Sin	SoftMax
2	RMSProp	balance	143.079	0.91	1000	1000	Tanh	SoftMax
2	RMSProp	balance	132.095	0.91	1000	1000	SoftRelu	SoftMax
2	RMSProp	balance	194.297	0.89	1000	1000	Relu	SoftMax
2	RMSProp	balance	446.295	0.906	1000	1000	Sigmoid	SoftMax
2	RMSProp	balance	150.002	0.91	1000	1000	Sin	SoftMax
3	RMSProp	balance	533.695	0.91	1000	1000	Tanh	SoftMax
3	RMSProp	balance	613.021	0.91	1000	1000	SoftRelu	SoftMax
3	RMSProp	balance	684.026	0.89	1000	1000	Relu	SoftMax
3	RMSProp	balance	269.517	0.909	1000	1000	Sigmoid	SoftMax
3	RMSProp	balance	19.001	0.907	1000	1000	Sin	SoftMax
4	RMSProp	balance	4.035	0.91	1000	1000	Tanh	SoftMax
4	RMSProp	balance	190.036	0.91	1000	1000	SoftRelu	SoftMax
4	RMSProp	balance	524.081	0.888	1000	1000	Relu	SoftMax
4	RMSProp	balance	905.001	0.909	1000	1000	Sigmoid	SoftMax
4	RMSProp	balance	104.516	0.907	1000	1000	Sin	SoftMax
5	RMSProp	balance	685.0	0.91	1000	1000	Tanh	SoftMax

Table J.3: All RMSProp Results of classification problems (3/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	RMSProp	balance	500.518	0.91	1000	1000	SoftRelu	SoftMax
5	RMSProp	balance	668.029	0.888	1000	1000	Relu	SoftMax
5	RMSProp	balance	101.041	0.906	1000	1000	Sigmoid	SoftMax
5	RMSProp	balance	721.003	0.906	1000	1000	Sin	SoftMax
1	RMSProp	bands	55.844	0.674	1000	1000	Tanh	SoftMax
1	RMSProp	bands	58.917	0.37	1000	1000	SoftRelu	SoftMax
1	RMSProp	bands	599.164	0.37	1000	1000	Relu	SoftMax
1	RMSProp	bands	461.001	0.37	1000	1000	Sigmoid	SoftMax
1	RMSProp	bands	211.061	0.652	1000	1000	Sin	SoftMax
2	RMSProp	bands	402.437	0.677	1000	1000	Tanh	SoftMax
2	RMSProp	bands	582.0	0.636	1000	1000	SoftRelu	SoftMax
2	RMSProp	bands	519.999	0.633	1000	1000	Relu	SoftMax
2	RMSProp	bands	345.481	0.37	1000	1000	Sigmoid	SoftMax
2	RMSProp	bands	381.002	0.619	1000	1000	Sin	SoftMax
3	RMSProp	bands	85.591	0.655	1000	1000	Tanh	SoftMax
3	RMSProp	bands	114.976	0.37	1000	1000	SoftRelu	SoftMax
3	RMSProp	bands	275.002	0.37	1000	1000	Relu	SoftMax
3	RMSProp	bands	253.261	0.37	1000	1000	Sigmoid	SoftMax
3	RMSProp	bands	326.992	0.485	1000	1000	Sin	SoftMax
4	RMSProp	bands	355.7	0.641	1000	1000	Tanh	SoftMax
4	RMSProp	bands	603.956	0.37	1000	1000	SoftRelu	SoftMax
4	RMSProp	bands	579.044	0.364	1000	1000	Relu	SoftMax
4	RMSProp	bands	564.999	0.37	1000	1000	Sigmoid	SoftMax
4	RMSProp	bands	403.001	0.485	1000	1000	Sin	SoftMax
5	RMSProp	bands	200.949	0.677	1000	1000	Tanh	SoftMax
5	RMSProp	bands	187.001	0.37	1000	1000	SoftRelu	SoftMax
5	RMSProp	bands	888.06	0.37	1000	1000	Relu	SoftMax
5	RMSProp	bands	499.0	0.37	1000	1000	Sigmoid	SoftMax
5	RMSProp	bands	739.038	0.501	1000	1000	Sin	SoftMax
1	RMSProp	breast	742.738	0.704	1000	1000	Tanh	SoftMax
1	RMSProp	breast	408.401	0.686	1000	1000	SoftRelu	SoftMax
1	RMSProp	breast	241.236	0.661	1000	1000	Relu	SoftMax

Table J.4: All RMSProp Results of classification problems (4/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	RMSProp	breast	941.0	0.726	1000	1000	Sigmoid	SoftMax
1	RMSProp	breast	729.131	0.69	1000	1000	Sin	SoftMax
2	RMSProp	breast	44.229	0.704	1000	1000	Tanh	SoftMax
2	RMSProp	breast	812.847	0.693	1000	1000	SoftRelu	SoftMax
2	RMSProp	breast	212.007	0.664	1000	1000	Relu	SoftMax
2	RMSProp	breast	19.002	0.7	1000	1000	Sigmoid	SoftMax
2	RMSProp	breast	75.0	0.69	1000	1000	Sin	SoftMax
3	RMSProp	breast	812.826	0.715	1000	1000	Tanh	SoftMax
3	RMSProp	breast	618.088	0.69	1000	1000	SoftRelu	SoftMax
3	RMSProp	breast	67.035	0.657	1000	1000	Relu	SoftMax
3	RMSProp	breast	809.172	0.726	1000	1000	Sigmoid	SoftMax
3	RMSProp	breast	24.001	0.693	1000	1000	Sin	SoftMax
4	RMSProp	breast	925.616	0.718	1000	1000	Tanh	SoftMax
4	RMSProp	breast	164.144	0.693	1000	1000	SoftRelu	SoftMax
4	RMSProp	breast	210.005	0.657	1000	1000	Relu	SoftMax
4	RMSProp	breast	144.221	0.729	1000	1000	Sigmoid	SoftMax
4	RMSProp	breast	741.277	0.682	1000	1000	Sin	SoftMax
5	RMSProp	breast	811.005	0.708	1000	1000	Tanh	SoftMax
5	RMSProp	breast	671.0	0.697	1000	1000	SoftRelu	SoftMax
5	RMSProp	breast	558.0	0.671	1000	1000	Relu	SoftMax
5	RMSProp	breast	917.854	0.722	1000	1000	Sigmoid	SoftMax
5	RMSProp	breast	422.159	0.69	1000	1000	Sin	SoftMax
1	RMSProp	bupa	865.004	0.704	1000	1000	Tanh	SoftMax
1	RMSProp	bupa	593.167	0.649	1000	1000	SoftRelu	SoftMax
1	RMSProp	bupa	893.313	0.687	1000	1000	Relu	SoftMax
1	RMSProp	bupa	232.001	0.713	1000	1000	Sigmoid	SoftMax
1	RMSProp	bupa	724.11	0.687	1000	1000	Sin	SoftMax
2	RMSProp	bupa	222.953	0.707	1000	1000	Tanh	SoftMax
2	RMSProp	bupa	251.998	0.562	1000	1000	SoftRelu	SoftMax
2	RMSProp	bupa	215.009	0.701	1000	1000	Relu	SoftMax
2	RMSProp	bupa	299.036	0.701	1000	1000	Sigmoid	SoftMax
2	RMSProp	bupa	104.957	0.696	1000	1000	Sin	SoftMax

Table J.5: All RMSProp Results of classification problems (5/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	RMSProp	bupa	49.015	0.693	1000	1000	Tanh	SoftMax
3	RMSProp	bupa	845.991	0.525	1000	1000	SoftRelu	SoftMax
3	RMSProp	bupa	966.967	0.652	1000	1000	Relu	SoftMax
3	RMSProp	bupa	37.996	0.684	1000	1000	Sigmoid	SoftMax
3	RMSProp	bupa	999.001	0.725	1000	1000	Sin	SoftMax
4	RMSProp	bupa	161.416	0.699	1000	1000	Tanh	SoftMax
4	RMSProp	bupa	498.002	0.704	1000	1000	SoftRelu	SoftMax
4	RMSProp	bupa	224.313	0.67	1000	1000	Relu	SoftMax
4	RMSProp	bupa	321.511	0.699	1000	1000	Sigmoid	SoftMax
4	RMSProp	bupa	540.15	0.687	1000	1000	Sin	SoftMax
5	RMSProp	bupa	654.0	0.693	1000	1000	Tanh	SoftMax
5	RMSProp	bupa	833.018	0.632	1000	1000	SoftRelu	SoftMax
5	RMSProp	bupa	800.132	0.707	1000	1000	Relu	SoftMax
5	RMSProp	bupa	23.001	0.681	1000	1000	Sigmoid	SoftMax
5	RMSProp	bupa	428.834	0.69	1000	1000	Sin	SoftMax
1	RMSProp	cleveland	819.028	0.545	1000	1000	Tanh	SoftMax
1	RMSProp	cleveland	402.686	0.519	1000	1000	SoftRelu	SoftMax
1	RMSProp	cleveland	168.999	0.539	1000	1000	Relu	SoftMax
1	RMSProp	cleveland	739.001	0.549	1000	1000	Sigmoid	SoftMax
1	RMSProp	cleveland	304.0	0.572	1000	1000	Sin	SoftMax
2	RMSProp	cleveland	865.969	0.545	1000	1000	Tanh	SoftMax
2	RMSProp	cleveland	481.0	0.539	1000	1000	SoftRelu	SoftMax
2	RMSProp	cleveland	954.996	0.529	1000	1000	Relu	SoftMax
2	RMSProp	cleveland	931.999	0.542	1000	1000	Sigmoid	SoftMax
2	RMSProp	cleveland	583.997	0.502	1000	1000	Sin	SoftMax
3	RMSProp	cleveland	843.0	0.559	1000	1000	Tanh	SoftMax
3	RMSProp	cleveland	800.043	0.576	1000	1000	SoftRelu	SoftMax
3	RMSProp	cleveland	766.963	0.556	1000	1000	Relu	SoftMax
3	RMSProp	cleveland	812.907	0.566	1000	1000	Sigmoid	SoftMax
3	RMSProp	cleveland	682.059	0.569	1000	1000	Sin	SoftMax
4	RMSProp	cleveland	983.694	0.582	1000	1000	Tanh	SoftMax
4	RMSProp	cleveland	180.576	0.569	1000	1000	SoftRelu	SoftMax

Table J.6: All RMSProp Results of classification problems (6/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	RMSProp	cleveland	934.0	0.566	1000	1000	Relu	SoftMax
4	RMSProp	cleveland	23.01	0.539	1000	1000	Sigmoid	SoftMax
4	RMSProp	cleveland	251.421	0.576	1000	1000	Sin	SoftMax
5	RMSProp	cleveland	402.0	0.559	1000	1000	Tanh	SoftMax
5	RMSProp	cleveland	215.511	0.539	1000	1000	SoftRelu	SoftMax
5	RMSProp	cleveland	109.125	0.522	1000	1000	Relu	SoftMax
5	RMSProp	cleveland	614.001	0.535	1000	1000	Sigmoid	SoftMax
5	RMSProp	cleveland	329.086	0.532	1000	1000	Sin	SoftMax
1	RMSProp	crx	391.083	0.533	1000	1000	Tanh	SoftMax
1	RMSProp	crx	424.442	0.453	1000	1000	SoftRelu	SoftMax
1	RMSProp	crx	532.513	0.453	1000	1000	Relu	SoftMax
1	RMSProp	crx	502.999	0.453	1000	1000	Sigmoid	SoftMax
1	RMSProp	crx	603.765	0.469	1000	1000	Sin	SoftMax
2	RMSProp	crx	772.999	0.672	1000	1000	Tanh	SoftMax
2	RMSProp	crx	991.001	0.453	1000	1000	SoftRelu	SoftMax
2	RMSProp	crx	358.001	0.453	1000	1000	Relu	SoftMax
2	RMSProp	crx	933.063	0.453	1000	1000	Sigmoid	SoftMax
2	RMSProp	crx	56.024	0.462	1000	1000	Sin	SoftMax
3	RMSProp	crx	841.999	0.525	1000	1000	Tanh	SoftMax
3	RMSProp	crx	706.557	0.453	1000	1000	SoftRelu	SoftMax
3	RMSProp	crx	247.001	0.453	1000	1000	Relu	SoftMax
3	RMSProp	crx	823.999	0.453	1000	1000	Sigmoid	SoftMax
3	RMSProp	crx	202.007	0.645	1000	1000	Sin	SoftMax
4	RMSProp	crx	715.847	0.625	1000	1000	Tanh	SoftMax
4	RMSProp	crx	158.569	0.453	1000	1000	SoftRelu	SoftMax
4	RMSProp	crx	659.999	0.453	1000	1000	Relu	SoftMax
4	RMSProp	crx	573.999	0.453	1000	1000	Sigmoid	SoftMax
4	RMSProp	crx	936.944	0.515	1000	1000	Sin	SoftMax
5	RMSProp	crx	973.954	0.485	1000	1000	Tanh	SoftMax
5	RMSProp	crx	934.513	0.453	1000	1000	SoftRelu	SoftMax
5	RMSProp	crx	554.0	0.453	1000	1000	Relu	SoftMax
5	RMSProp	crx	67.001	0.453	1000	1000	Sigmoid	SoftMax

Table J.7: All RMSProp Results of classification problems (7/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	RMSProp	crx	377.272	0.472	1000	1000	Sin	SoftMax
1	RMSProp	ecoli	615.151	0.804	1000	1000	Tanh	SoftMax
1	RMSProp	ecoli	412.549	0.735	1000	1000	SoftRelu	SoftMax
1	RMSProp	ecoli	30.202	0.78	1000	1000	Relu	SoftMax
1	RMSProp	ecoli	890.0	0.801	1000	1000	Sigmoid	SoftMax
1	RMSProp	ecoli	107.968	0.792	1000	1000	Sin	SoftMax
2	RMSProp	ecoli	731.061	0.812	1000	1000	Tanh	SoftMax
2	RMSProp	ecoli	667.995	0.426	1000	1000	SoftRelu	SoftMax
2	RMSProp	ecoli	874.001	0.804	1000	1000	Relu	SoftMax
2	RMSProp	ecoli	311.191	0.798	1000	1000	Sigmoid	SoftMax
2	RMSProp	ecoli	331.964	0.783	1000	1000	Sin	SoftMax
3	RMSProp	ecoli	835.997	0.812	1000	1000	Tanh	SoftMax
3	RMSProp	ecoli	473.999	0.795	1000	1000	SoftRelu	SoftMax
3	RMSProp	ecoli	779.0	0.426	1000	1000	Relu	SoftMax
3	RMSProp	ecoli	155.01	0.804	1000	1000	Sigmoid	SoftMax
3	RMSProp	ecoli	486.988	0.762	1000	1000	Sin	SoftMax
4	RMSProp	ecoli	749.676	0.807	1000	1000	Tanh	SoftMax
4	RMSProp	ecoli	292.998	0.426	1000	1000	SoftRelu	SoftMax
4	RMSProp	ecoli	902.127	0.798	1000	1000	Relu	SoftMax
4	RMSProp	ecoli	974.03	0.81	1000	1000	Sigmoid	SoftMax
4	RMSProp	ecoli	452.021	0.768	1000	1000	Sin	SoftMax
5	RMSProp	ecoli	483.005	0.807	1000	1000	Tanh	SoftMax
5	RMSProp	ecoli	488.007	0.768	1000	1000	SoftRelu	SoftMax
5	RMSProp	ecoli	480.82	0.786	1000	1000	Relu	SoftMax
5	RMSProp	ecoli	835.001	0.821	1000	1000	Sigmoid	SoftMax
5	RMSProp	ecoli	209.868	0.747	1000	1000	Sin	SoftMax
1	RMSProp	flare	519.653	0.447	1000	1000	Tanh	SoftMax
1	RMSProp	flare	698.545	0.437	1000	1000	SoftRelu	SoftMax
1	RMSProp	flare	720.817	0.565	1000	1000	Relu	SoftMax
1	RMSProp	flare	450.039	0.43	1000	1000	Sigmoid	SoftMax
1	RMSProp	flare	450.888	0.447	1000	1000	Sin	SoftMax
2	RMSProp	flare	577.085	0.432	1000	1000	Tanh	SoftMax

Table J.8: All RMSProp Results of classification problems (8/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	RMSProp	flare	343.036	0.435	1000	1000	SoftRelu	SoftMax
2	RMSProp	flare	294.001	0.568	1000	1000	Relu	SoftMax
2	RMSProp	flare	594.369	0.429	1000	1000	Sigmoid	SoftMax
2	RMSProp	flare	543.372	0.439	1000	1000	Sin	SoftMax
3	RMSProp	flare	566.999	0.444	1000	1000	Tanh	SoftMax
3	RMSProp	flare	800.521	0.433	1000	1000	SoftRelu	SoftMax
3	RMSProp	flare	423.0	0.569	1000	1000	Relu	SoftMax
3	RMSProp	flare	131.011	0.423	1000	1000	Sigmoid	SoftMax
3	RMSProp	flare	681.001	0.466	1000	1000	Sin	SoftMax
4	RMSProp	flare	612.385	0.447	1000	1000	Tanh	SoftMax
4	RMSProp	flare	135.586	0.438	1000	1000	SoftRelu	SoftMax
4	RMSProp	flare	424.885	0.564	1000	1000	Relu	SoftMax
4	RMSProp	flare	788.033	0.423	1000	1000	Sigmoid	SoftMax
4	RMSProp	flare	413.004	0.447	1000	1000	Sin	SoftMax
5	RMSProp	flare	501.003	0.438	1000	1000	Tanh	SoftMax
5	RMSProp	flare	898.545	0.438	1000	1000	SoftRelu	SoftMax
5	RMSProp	flare	281.512	0.568	1000	1000	Relu	SoftMax
5	RMSProp	flare	747.009	0.423	1000	1000	Sigmoid	SoftMax
5	RMSProp	flare	417.001	0.442	1000	1000	Sin	SoftMax
1	RMSProp	german	300.001	0.516	1000	1000	Tanh	SoftMax
1	RMSProp	german	112.004	0.7	1000	1000	SoftRelu	SoftMax
1	RMSProp	german	613.92	0.7	1000	1000	Relu	SoftMax
1	RMSProp	german	188.513	0.7	1000	1000	Sigmoid	SoftMax
1	RMSProp	german	380.97	0.692	1000	1000	Sin	SoftMax
2	RMSProp	german	589.005	0.637	1000	1000	Tanh	SoftMax
2	RMSProp	german	477.728	0.7	1000	1000	SoftRelu	SoftMax
2	RMSProp	german	288.001	0.7	1000	1000	Relu	SoftMax
2	RMSProp	german	767.001	0.7	1000	1000	Sigmoid	SoftMax
2	RMSProp	german	404.291	0.702	1000	1000	Sin	SoftMax
3	RMSProp	german	371.7	0.698	1000	1000	Tanh	SoftMax
3	RMSProp	german	298.078	0.7	1000	1000	SoftRelu	SoftMax
3	RMSProp	german	252.534	0.7	1000	1000	Relu	SoftMax

Table J.9: All RMSProp Results of classification problems (9/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	RMSProp	german	899.074	0.7	1000	1000	Sigmoid	SoftMax
3	RMSProp	german	579.003	0.695	1000	1000	Sin	SoftMax
4	RMSProp	german	608.635	0.359	1000	1000	Tanh	SoftMax
4	RMSProp	german	493.999	0.7	1000	1000	SoftRelu	SoftMax
4	RMSProp	german	288.137	0.7	1000	1000	Relu	SoftMax
4	RMSProp	german	239.0	0.7	1000	1000	Sigmoid	SoftMax
4	RMSProp	german	106.071	0.687	1000	1000	Sin	SoftMax
5	RMSProp	german	495.004	0.362	1000	1000	Tanh	SoftMax
5	RMSProp	german	827.299	0.7	1000	1000	SoftRelu	SoftMax
5	RMSProp	german	754.342	0.7	1000	1000	Relu	SoftMax
5	RMSProp	german	476.548	0.7	1000	1000	Sigmoid	SoftMax
5	RMSProp	german	247.0	0.423	1000	1000	Sin	SoftMax
1	RMSProp	glass	25.716	0.224	1000	1000	Tanh	SoftMax
1	RMSProp	glass	519.954	0.327	1000	1000	SoftRelu	SoftMax
1	RMSProp	glass	527.521	0.327	1000	1000	Relu	SoftMax
1	RMSProp	glass	245.942	0.224	1000	1000	Sigmoid	SoftMax
1	RMSProp	glass	875.968	0.192	1000	1000	Sin	SoftMax
2	RMSProp	glass	186.142	0.224	1000	1000	Tanh	SoftMax
2	RMSProp	glass	895.0	0.327	1000	1000	SoftRelu	SoftMax
2	RMSProp	glass	396.223	0.327	1000	1000	Relu	SoftMax
2	RMSProp	glass	956.333	0.224	1000	1000	Sigmoid	SoftMax
2	RMSProp	glass	627.905	0.192	1000	1000	Sin	SoftMax
3	RMSProp	glass	24.0	0.224	1000	1000	Tanh	SoftMax
3	RMSProp	glass	510.013	0.327	1000	1000	SoftRelu	SoftMax
3	RMSProp	glass	336.675	0.327	1000	1000	Relu	SoftMax
3	RMSProp	glass	949.016	0.224	1000	1000	Sigmoid	SoftMax
3	RMSProp	glass	462.79	0.252	1000	1000	Sin	SoftMax
4	RMSProp	glass	299.086	0.224	1000	1000	Tanh	SoftMax
4	RMSProp	glass	389.0	0.327	1000	1000	SoftRelu	SoftMax
4	RMSProp	glass	487.626	0.327	1000	1000	Relu	SoftMax
4	RMSProp	glass	384.039	0.224	1000	1000	Sigmoid	SoftMax
4	RMSProp	glass	888.364	0.21	1000	1000	Sin	SoftMax

Table J.10: All RMSProp Results of classification problems (10/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	RMSProp	glass	412.999	0.224	1000	1000	Tanh	SoftMax
5	RMSProp	glass	941.909	0.327	1000	1000	SoftRelu	SoftMax
5	RMSProp	glass	467.681	0.327	1000	1000	Relu	SoftMax
5	RMSProp	glass	882.004	0.224	1000	1000	Sigmoid	SoftMax
5	RMSProp	glass	231.0	0.192	1000	1000	Sin	SoftMax
1	RMSProp	haberman	711.133	0.265	1000	1000	Tanh	SoftMax
1	RMSProp	haberman	207.022	0.265	1000	1000	SoftRelu	SoftMax
1	RMSProp	haberman	559.026	0.265	1000	1000	Relu	SoftMax
1	RMSProp	haberman	401.058	0.758	1000	1000	Sigmoid	SoftMax
1	RMSProp	haberman	387.027	0.265	1000	1000	Sin	SoftMax
2	RMSProp	haberman	679.153	0.461	1000	1000	Tanh	SoftMax
2	RMSProp	haberman	647.584	0.265	1000	1000	SoftRelu	SoftMax
2	RMSProp	haberman	599.204	0.265	1000	1000	Relu	SoftMax
2	RMSProp	haberman	560.008	0.605	1000	1000	Sigmoid	SoftMax
2	RMSProp	haberman	82.719	0.265	1000	1000	Sin	SoftMax
3	RMSProp	haberman	899.028	0.265	1000	1000	Tanh	SoftMax
3	RMSProp	haberman	516.998	0.265	1000	1000	SoftRelu	SoftMax
3	RMSProp	haberman	586.983	0.265	1000	1000	Relu	SoftMax
3	RMSProp	haberman	528.878	0.755	1000	1000	Sigmoid	SoftMax
3	RMSProp	haberman	257.013	0.265	1000	1000	Sin	SoftMax
4	RMSProp	haberman	781.84	0.265	1000	1000	Tanh	SoftMax
4	RMSProp	haberman	892.729	0.265	1000	1000	SoftRelu	SoftMax
4	RMSProp	haberman	569.296	0.265	1000	1000	Relu	SoftMax
4	RMSProp	haberman	639.0	0.605	1000	1000	Sigmoid	SoftMax
4	RMSProp	haberman	501.178	0.265	1000	1000	Sin	SoftMax
5	RMSProp	haberman	939.0	0.458	1000	1000	Tanh	SoftMax
5	RMSProp	haberman	969.516	0.265	1000	1000	SoftRelu	SoftMax
5	RMSProp	haberman	88.022	0.265	1000	1000	Relu	SoftMax
5	RMSProp	haberman	103.001	0.748	1000	1000	Sigmoid	SoftMax
5	RMSProp	haberman	131.022	0.265	1000	1000	Sin	SoftMax
1	RMSProp	hayes_roth	745.754	0.575	1000	1000	Tanh	SoftMax
1	RMSProp	hayes_roth	216.897	0.406	1000	1000	SoftRelu	SoftMax

Table J.11: All RMSProp Results of classification problems (11/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	RMSProp	hayes_roth	292.648	0.65	1000	1000	Relu	SoftMax
1	RMSProp	hayes_roth	741.027	0.581	1000	1000	Sigmoid	SoftMax
1	RMSProp	hayes_roth	136.007	0.619	1000	1000	Sin	SoftMax
2	RMSProp	hayes_roth	878.985	0.406	1000	1000	Tanh	SoftMax
2	RMSProp	hayes_roth	605.453	0.406	1000	1000	SoftRelu	SoftMax
2	RMSProp	hayes_roth	76.285	0.613	1000	1000	Relu	SoftMax
2	RMSProp	hayes_roth	867.004	0.637	1000	1000	Sigmoid	SoftMax
2	RMSProp	hayes_roth	929.978	0.637	1000	1000	Sin	SoftMax
3	RMSProp	hayes_roth	719.804	0.406	1000	1000	Tanh	SoftMax
3	RMSProp	hayes_roth	258.998	0.406	1000	1000	SoftRelu	SoftMax
3	RMSProp	hayes_roth	104.167	0.6	1000	1000	Relu	SoftMax
3	RMSProp	hayes_roth	922.599	0.619	1000	1000	Sigmoid	SoftMax
3	RMSProp	hayes_roth	63.12	0.619	1000	1000	Sin	SoftMax
4	RMSProp	hayes_roth	893.558	0.406	1000	1000	Tanh	SoftMax
4	RMSProp	hayes_roth	446.998	0.406	1000	1000	SoftRelu	SoftMax
4	RMSProp	hayes_roth	102.38	0.619	1000	1000	Relu	SoftMax
4	RMSProp	hayes_roth	886.646	0.613	1000	1000	Sigmoid	SoftMax
4	RMSProp	hayes_roth	242.423	0.663	1000	1000	Sin	SoftMax
5	RMSProp	hayes_roth	25.999	0.406	1000	1000	Tanh	SoftMax
5	RMSProp	hayes_roth	857.958	0.406	1000	1000	SoftRelu	SoftMax
5	RMSProp	hayes_roth	552.985	0.625	1000	1000	Relu	SoftMax
5	RMSProp	hayes_roth	327.999	0.613	1000	1000	Sigmoid	SoftMax
5	RMSProp	hayes_roth	956.407	0.606	1000	1000	Sin	SoftMax
1	RMSProp	heart	631.769	0.774	1000	1000	Tanh	SoftMax
1	RMSProp	heart	463.244	0.804	1000	1000	SoftRelu	SoftMax
1	RMSProp	heart	850.077	0.793	1000	1000	Relu	SoftMax
1	RMSProp	heart	987.0	0.77	1000	1000	Sigmoid	SoftMax
1	RMSProp	heart	445.066	0.793	1000	1000	Sin	SoftMax
2	RMSProp	heart	812.191	0.778	1000	1000	Tanh	SoftMax
2	RMSProp	heart	454.892	0.793	1000	1000	SoftRelu	SoftMax
2	RMSProp	heart	704.995	0.811	1000	1000	Relu	SoftMax
2	RMSProp	heart	924.054	0.759	1000	1000	Sigmoid	SoftMax

Table J.12: All RMSProp Results of classification problems (12/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	RMSProp	heart	179.991	0.819	1000	1000	Sin	SoftMax
3	RMSProp	heart	321.628	0.77	1000	1000	Tanh	SoftMax
3	RMSProp	heart	910.0	0.763	1000	1000	SoftRelu	SoftMax
3	RMSProp	heart	740.001	0.793	1000	1000	Relu	SoftMax
3	RMSProp	heart	788.473	0.77	1000	1000	Sigmoid	SoftMax
3	RMSProp	heart	404.058	0.807	1000	1000	Sin	SoftMax
4	RMSProp	heart	959.279	0.767	1000	1000	Tanh	SoftMax
4	RMSProp	heart	740.553	0.796	1000	1000	SoftRelu	SoftMax
4	RMSProp	heart	646.062	0.807	1000	1000	Relu	SoftMax
4	RMSProp	heart	247.108	0.781	1000	1000	Sigmoid	SoftMax
4	RMSProp	heart	645.433	0.822	1000	1000	Sin	SoftMax
5	RMSProp	heart	112.067	0.774	1000	1000	Tanh	SoftMax
5	RMSProp	heart	910.996	0.785	1000	1000	SoftRelu	SoftMax
5	RMSProp	heart	275.959	0.785	1000	1000	Relu	SoftMax
5	RMSProp	heart	183.002	0.77	1000	1000	Sigmoid	SoftMax
5	RMSProp	heart	243.837	0.819	1000	1000	Sin	SoftMax
1	RMSProp	hepatitis	631.008	0.8	1000	1000	Tanh	SoftMax
1	RMSProp	hepatitis	886.219	0.875	1000	1000	SoftRelu	SoftMax
1	RMSProp	hepatitis	774.028	0.837	1000	1000	Relu	SoftMax
1	RMSProp	hepatitis	945.254	0.825	1000	1000	Sigmoid	SoftMax
1	RMSProp	hepatitis	752.966	0.887	1000	1000	Sin	SoftMax
2	RMSProp	hepatitis	628.999	0.875	1000	1000	Tanh	SoftMax
2	RMSProp	hepatitis	72.915	0.85	1000	1000	SoftRelu	SoftMax
2	RMSProp	hepatitis	808.083	0.85	1000	1000	Relu	SoftMax
2	RMSProp	hepatitis	7.998	0.875	1000	1000	Sigmoid	SoftMax
2	RMSProp	hepatitis	701.014	0.863	1000	1000	Sin	SoftMax
3	RMSProp	hepatitis	27.42	0.863	1000	1000	Tanh	SoftMax
3	RMSProp	hepatitis	294.966	0.162	1000	1000	SoftRelu	SoftMax
3	RMSProp	hepatitis	959.999	0.162	1000	1000	Relu	SoftMax
3	RMSProp	hepatitis	20.625	0.812	1000	1000	Sigmoid	SoftMax
3	RMSProp	hepatitis	789.049	0.863	1000	1000	Sin	SoftMax
4	RMSProp	hepatitis	193.663	0.875	1000	1000	Tanh	SoftMax

Table J.13: All RMSProp Results of classification problems (13/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	RMSProp	hepatitis	170.687	0.875	1000	1000	SoftRelu	SoftMax
4	RMSProp	hepatitis	780.003	0.837	1000	1000	Relu	SoftMax
4	RMSProp	hepatitis	115.586	0.887	1000	1000	Sigmoid	SoftMax
4	RMSProp	hepatitis	806.078	0.863	1000	1000	Sin	SoftMax
5	RMSProp	hepatitis	717.999	0.887	1000	1000	Tanh	SoftMax
5	RMSProp	hepatitis	86.999	0.85	1000	1000	SoftRelu	SoftMax
5	RMSProp	hepatitis	922.248	0.85	1000	1000	Relu	SoftMax
5	RMSProp	hepatitis	886.011	0.825	1000	1000	Sigmoid	SoftMax
5	RMSProp	hepatitis	888.498	0.887	1000	1000	Sin	SoftMax
1	RMSProp	housevotes	964.0	0.961	1000	1000	Tanh	SoftMax
1	RMSProp	housevotes	691.512	0.974	1000	1000	SoftRelu	SoftMax
1	RMSProp	housevotes	648.017	0.966	1000	1000	Relu	SoftMax
1	RMSProp	housevotes	412.053	0.97	1000	1000	Sigmoid	SoftMax
1	RMSProp	housevotes	20.099	0.961	1000	1000	Sin	SoftMax
2	RMSProp	housevotes	73.27	0.961	1000	1000	Tanh	SoftMax
2	RMSProp	housevotes	17.601	0.974	1000	1000	SoftRelu	SoftMax
2	RMSProp	housevotes	432.613	0.966	1000	1000	Relu	SoftMax
2	RMSProp	housevotes	24.085	0.97	1000	1000	Sigmoid	SoftMax
2	RMSProp	housevotes	406.967	0.961	1000	1000	Sin	SoftMax
3	RMSProp	housevotes	550.549	0.961	1000	1000	Tanh	SoftMax
3	RMSProp	housevotes	905.006	0.961	1000	1000	SoftRelu	SoftMax
3	RMSProp	housevotes	563.046	0.97	1000	1000	Relu	SoftMax
3	RMSProp	housevotes	960.998	0.97	1000	1000	Sigmoid	SoftMax
3	RMSProp	housevotes	505.046	0.961	1000	1000	Sin	SoftMax
4	RMSProp	housevotes	943.236	0.961	1000	1000	Tanh	SoftMax
4	RMSProp	housevotes	42.976	0.961	1000	1000	SoftRelu	SoftMax
4	RMSProp	housevotes	558.087	0.966	1000	1000	Relu	SoftMax
4	RMSProp	housevotes	884.662	0.97	1000	1000	Sigmoid	SoftMax
4	RMSProp	housevotes	718.999	0.961	1000	1000	Sin	SoftMax
5	RMSProp	housevotes	412.011	0.961	1000	1000	Tanh	SoftMax
5	RMSProp	housevotes	105.97	0.961	1000	1000	SoftRelu	SoftMax
5	RMSProp	housevotes	192.49	0.97	1000	1000	Relu	SoftMax

Table J.14: All RMSProp Results of classification problems (14/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	RMSProp	housevotes	740.359	0.974	1000	1000	Sigmoid	SoftMax
5	RMSProp	housevotes	366.175	0.961	1000	1000	Sin	SoftMax
1	RMSProp	ionosphere	260.005	0.872	1000	1000	Tanh	SoftMax
1	RMSProp	ionosphere	999.515	0.883	1000	1000	SoftRelu	SoftMax
1	RMSProp	ionosphere	341.896	0.923	1000	1000	Relu	SoftMax
1	RMSProp	ionosphere	647.001	0.84	1000	1000	Sigmoid	SoftMax
1	RMSProp	ionosphere	210.006	0.88	1000	1000	Sin	SoftMax
2	RMSProp	ionosphere	408.063	0.872	1000	1000	Tanh	SoftMax
2	RMSProp	ionosphere	687.532	0.883	1000	1000	SoftRelu	SoftMax
2	RMSProp	ionosphere	365.992	0.909	1000	1000	Relu	SoftMax
2	RMSProp	ionosphere	216.017	0.823	1000	1000	Sigmoid	SoftMax
2	RMSProp	ionosphere	13.01	0.88	1000	1000	Sin	SoftMax
3	RMSProp	ionosphere	953.972	0.877	1000	1000	Tanh	SoftMax
3	RMSProp	ionosphere	653.001	0.886	1000	1000	SoftRelu	SoftMax
3	RMSProp	ionosphere	81.094	0.906	1000	1000	Relu	SoftMax
3	RMSProp	ionosphere	23.0	0.835	1000	1000	Sigmoid	SoftMax
3	RMSProp	ionosphere	108.96	0.843	1000	1000	Sin	SoftMax
4	RMSProp	ionosphere	944.702	0.877	1000	1000	Tanh	SoftMax
4	RMSProp	ionosphere	609.536	0.883	1000	1000	SoftRelu	SoftMax
4	RMSProp	ionosphere	212.989	0.906	1000	1000	Relu	SoftMax
4	RMSProp	ionosphere	133.317	0.829	1000	1000	Sigmoid	SoftMax
4	RMSProp	ionosphere	194.0	0.846	1000	1000	Sin	SoftMax
5	RMSProp	ionosphere	453.007	0.883	1000	1000	Tanh	SoftMax
5	RMSProp	ionosphere	468.989	0.886	1000	1000	SoftRelu	SoftMax
5	RMSProp	ionosphere	640.955	0.909	1000	1000	Relu	SoftMax
5	RMSProp	ionosphere	722.208	0.849	1000	1000	Sigmoid	SoftMax
5	RMSProp	ionosphere	810.001	0.846	1000	1000	Sin	SoftMax
1	RMSProp	iris	709.0	0.667	1000	1000	Tanh	SoftMax
1	RMSProp	iris	282.015	0.987	1000	1000	SoftRelu	SoftMax
1	RMSProp	iris	84.933	0.973	1000	1000	Relu	SoftMax
1	RMSProp	iris	230.081	0.987	1000	1000	Sigmoid	SoftMax
1	RMSProp	iris	23.998	0.967	1000	1000	Sin	SoftMax

Table J.15: All RMSProp Results of classification problems (15/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	RMSProp	iris	605.523	0.667	1000	1000	Tanh	SoftMax
2	RMSProp	iris	463.07	0.987	1000	1000	SoftRelu	SoftMax
2	RMSProp	iris	22.532	0.98	1000	1000	Relu	SoftMax
2	RMSProp	iris	382.025	0.987	1000	1000	Sigmoid	SoftMax
2	RMSProp	iris	969.996	0.967	1000	1000	Sin	SoftMax
3	RMSProp	iris	516.531	0.98	1000	1000	Tanh	SoftMax
3	RMSProp	iris	999.502	0.987	1000	1000	SoftRelu	SoftMax
3	RMSProp	iris	871.999	0.98	1000	1000	Relu	SoftMax
3	RMSProp	iris	493.998	0.98	1000	1000	Sigmoid	SoftMax
3	RMSProp	iris	975.935	0.967	1000	1000	Sin	SoftMax
4	RMSProp	iris	525.0	0.973	1000	1000	Tanh	SoftMax
4	RMSProp	iris	595.002	0.987	1000	1000	SoftRelu	SoftMax
4	RMSProp	iris	68.0	0.973	1000	1000	Relu	SoftMax
4	RMSProp	iris	681.913	0.987	1000	1000	Sigmoid	SoftMax
4	RMSProp	iris	102.986	0.967	1000	1000	Sin	SoftMax
5	RMSProp	iris	945.01	0.98	1000	1000	Tanh	SoftMax
5	RMSProp	iris	750.521	0.987	1000	1000	SoftRelu	SoftMax
5	RMSProp	iris	301.003	0.98	1000	1000	Relu	SoftMax
5	RMSProp	iris	154.009	0.987	1000	1000	Sigmoid	SoftMax
5	RMSProp	iris	954.961	0.967	1000	1000	Sin	SoftMax
1	RMSProp	led7digit	53.0	0.718	1000	1000	Tanh	SoftMax
1	RMSProp	led7digit	413.501	0.712	1000	1000	SoftRelu	SoftMax
1	RMSProp	led7digit	632.029	0.72	1000	1000	Relu	SoftMax
1	RMSProp	led7digit	803.104	0.726	1000	1000	Sigmoid	SoftMax
1	RMSProp	led7digit	196.179	0.718	1000	1000	Sin	SoftMax
2	RMSProp	led7digit	88.066	0.718	1000	1000	Tanh	SoftMax
2	RMSProp	led7digit	613.001	0.708	1000	1000	SoftRelu	SoftMax
2	RMSProp	led7digit	596.37	0.72	1000	1000	Relu	SoftMax
2	RMSProp	led7digit	797.517	0.728	1000	1000	Sigmoid	SoftMax
2	RMSProp	led7digit	879.155	0.716	1000	1000	Sin	SoftMax
3	RMSProp	led7digit	599.711	0.718	1000	1000	Tanh	SoftMax
3	RMSProp	led7digit	35.006	0.708	1000	1000	SoftRelu	SoftMax

Table J.16: All RMSProp Results of classification problems (16/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	RMSProp	led7digit	681.091	0.72	1000	1000	Relu	SoftMax
3	RMSProp	led7digit	12.971	0.726	1000	1000	Sigmoid	SoftMax
3	RMSProp	led7digit	887.999	0.716	1000	1000	Sin	SoftMax
4	RMSProp	led7digit	817.999	0.718	1000	1000	Tanh	SoftMax
4	RMSProp	led7digit	864.99	0.708	1000	1000	SoftRelu	SoftMax
4	RMSProp	led7digit	704.001	0.718	1000	1000	Relu	SoftMax
4	RMSProp	led7digit	71.041	0.728	1000	1000	Sigmoid	SoftMax
4	RMSProp	led7digit	305.0	0.718	1000	1000	Sin	SoftMax
5	RMSProp	led7digit	498.001	0.712	1000	1000	Tanh	SoftMax
5	RMSProp	led7digit	52.511	0.708	1000	1000	SoftRelu	SoftMax
5	RMSProp	led7digit	179.148	0.718	1000	1000	Relu	SoftMax
5	RMSProp	led7digit	893.354	0.728	1000	1000	Sigmoid	SoftMax
5	RMSProp	led7digit	692.024	0.716	1000	1000	Sin	SoftMax
1	RMSProp	lymphography	808.98	0.804	1000	1000	Tanh	SoftMax
1	RMSProp	lymphography	480.994	0.838	1000	1000	SoftRelu	SoftMax
1	RMSProp	lymphography	237.889	0.811	1000	1000	Relu	SoftMax
1	RMSProp	lymphography	204.977	0.818	1000	1000	Sigmoid	SoftMax
1	RMSProp	lymphography	222.946	0.824	1000	1000	Sin	SoftMax
2	RMSProp	lymphography	916.425	0.797	1000	1000	Tanh	SoftMax
2	RMSProp	lymphography	270.0	0.818	1000	1000	SoftRelu	SoftMax
2	RMSProp	lymphography	393.53	0.845	1000	1000	Relu	SoftMax
2	RMSProp	lymphography	610.024	0.818	1000	1000	Sigmoid	SoftMax
2	RMSProp	lymphography	79.179	0.824	1000	1000	Sin	SoftMax
3	RMSProp	lymphography	739.002	0.777	1000	1000	Tanh	SoftMax
3	RMSProp	lymphography	960.998	0.818	1000	1000	SoftRelu	SoftMax
3	RMSProp	lymphography	174.476	0.858	1000	1000	Relu	SoftMax
3	RMSProp	lymphography	593.014	0.797	1000	1000	Sigmoid	SoftMax
3	RMSProp	lymphography	43.071	0.791	1000	1000	Sin	SoftMax
4	RMSProp	lymphography	830.012	0.797	1000	1000	Tanh	SoftMax
4	RMSProp	lymphography	613.927	0.784	1000	1000	SoftRelu	SoftMax
4	RMSProp	lymphography	165.048	0.865	1000	1000	Relu	SoftMax
4	RMSProp	lymphography	910.544	0.797	1000	1000	Sigmoid	SoftMax

Table J.17: All RMSProp Results of classification problems (17/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	RMSProp	lymphography	137.996	0.824	1000	1000	Sin	SoftMax
5	RMSProp	lymphography	989.999	0.777	1000	1000	Tanh	SoftMax
5	RMSProp	lymphography	0.116	0.797	1000	1000	SoftRelu	SoftMax
5	RMSProp	lymphography	375.892	0.858	1000	1000	Relu	SoftMax
5	RMSProp	lymphography	135.984	0.804	1000	1000	Sigmoid	SoftMax
5	RMSProp	lymphography	967.044	0.818	1000	1000	Sin	SoftMax
1	RMSProp	mammographic	712.0	0.764	1000	1000	Tanh	SoftMax
1	RMSProp	mammographic	694.001	0.71	1000	1000	SoftRelu	SoftMax
1	RMSProp	mammographic	721.0	0.684	1000	1000	Relu	SoftMax
1	RMSProp	mammographic	271.0	0.742	1000	1000	Sigmoid	SoftMax
1	RMSProp	mammographic	7.829	0.731	1000	1000	Sin	SoftMax
2	RMSProp	mammographic	254.96	0.514	1000	1000	Tanh	SoftMax
2	RMSProp	mammographic	257.001	0.705	1000	1000	SoftRelu	SoftMax
2	RMSProp	mammographic	106.0	0.661	1000	1000	Relu	SoftMax
2	RMSProp	mammographic	22.518	0.739	1000	1000	Sigmoid	SoftMax
2	RMSProp	mammographic	794.27	0.733	1000	1000	Sin	SoftMax
3	RMSProp	mammographic	150.001	0.749	1000	1000	Tanh	SoftMax
3	RMSProp	mammographic	260.07	0.723	1000	1000	SoftRelu	SoftMax
3	RMSProp	mammographic	983.011	0.628	1000	1000	Relu	SoftMax
3	RMSProp	mammographic	713.0	0.742	1000	1000	Sigmoid	SoftMax
3	RMSProp	mammographic	558.96	0.74	1000	1000	Sin	SoftMax
4	RMSProp	mammographic	437.001	0.514	1000	1000	Tanh	SoftMax
4	RMSProp	mammographic	416.979	0.724	1000	1000	SoftRelu	SoftMax
4	RMSProp	mammographic	845.93	0.692	1000	1000	Relu	SoftMax
4	RMSProp	mammographic	220.512	0.751	1000	1000	Sigmoid	SoftMax
4	RMSProp	mammographic	894.001	0.739	1000	1000	Sin	SoftMax
5	RMSProp	mammographic	971.001	0.77	1000	1000	Tanh	SoftMax
5	RMSProp	mammographic	19.001	0.716	1000	1000	SoftRelu	SoftMax
5	RMSProp	mammographic	895.015	0.675	1000	1000	Relu	SoftMax
5	RMSProp	mammographic	208.516	0.736	1000	1000	Sigmoid	SoftMax
5	RMSProp	mammographic	117.003	0.734	1000	1000	Sin	SoftMax
1	RMSProp	monk_2	866.453	0.778	1000	1000	Tanh	SoftMax

Table J.18: All RMSProp Results of classification problems (18/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	RMSProp	monk_2	137.002	0.778	1000	1000	SoftRelu	SoftMax
1	RMSProp	monk_2	254.833	0.806	1000	1000	Relu	SoftMax
1	RMSProp	monk_2	259.0	0.806	1000	1000	Sigmoid	SoftMax
1	RMSProp	monk_2	707.966	0.778	1000	1000	Sin	SoftMax
2	RMSProp	monk_2	379.999	0.778	1000	1000	Tanh	SoftMax
2	RMSProp	monk_2	407.06	0.778	1000	1000	SoftRelu	SoftMax
2	RMSProp	monk_2	158.0	0.806	1000	1000	Relu	SoftMax
2	RMSProp	monk_2	695.513	0.806	1000	1000	Sigmoid	SoftMax
2	RMSProp	monk_2	54.999	0.778	1000	1000	Sin	SoftMax
3	RMSProp	monk_2	170.923	0.778	1000	1000	Tanh	SoftMax
3	RMSProp	monk_2	37.002	0.778	1000	1000	SoftRelu	SoftMax
3	RMSProp	monk_2	551.003	0.819	1000	1000	Relu	SoftMax
3	RMSProp	monk_2	563.0	0.806	1000	1000	Sigmoid	SoftMax
3	RMSProp	monk_2	384.212	0.778	1000	1000	Sin	SoftMax
4	RMSProp	monk_2	197.057	0.778	1000	1000	Tanh	SoftMax
4	RMSProp	monk_2	546.997	0.778	1000	1000	SoftRelu	SoftMax
4	RMSProp	monk_2	499.991	0.806	1000	1000	Relu	SoftMax
4	RMSProp	monk_2	487.514	0.808	1000	1000	Sigmoid	SoftMax
4	RMSProp	monk_2	417.0	0.778	1000	1000	Sin	SoftMax
5	RMSProp	monk_2	26.0	0.778	1000	1000	Tanh	SoftMax
5	RMSProp	monk_2	43.431	0.778	1000	1000	SoftRelu	SoftMax
5	RMSProp	monk_2	252.0	0.806	1000	1000	Relu	SoftMax
5	RMSProp	monk_2	218.585	0.806	1000	1000	Sigmoid	SoftMax
5	RMSProp	monk_2	101.959	0.778	1000	1000	Sin	SoftMax
1	RMSProp	newthyroid	875.258	0.991	1000	1000	Tanh	SoftMax
1	RMSProp	newthyroid	575.012	0.986	1000	1000	SoftRelu	SoftMax
1	RMSProp	newthyroid	205.092	0.981	1000	1000	Relu	SoftMax
1	RMSProp	newthyroid	893.0	0.986	1000	1000	Sigmoid	SoftMax
1	RMSProp	newthyroid	218.778	0.972	1000	1000	Sin	SoftMax
2	RMSProp	newthyroid	54.001	0.991	1000	1000	Tanh	SoftMax
2	RMSProp	newthyroid	691.002	0.977	1000	1000	SoftRelu	SoftMax
2	RMSProp	newthyroid	966.211	0.986	1000	1000	Relu	SoftMax

Table J.19: All RMSProp Results of classification problems (19/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	RMSProp	newthyroid	908.153	0.986	$\frac{n_e}{1000}$	1000	Sigmoid	SoftMax
$\frac{2}{2}$	RMSProp	newthyroid	421.924	0.977	1000	1000	Sin	SoftMax
$\frac{2}{3}$	RMSProp	newthyroid	618.215	0.986	1000	1000	Tanh	SoftMax
3	RMSProp	newthyroid	427.01	0.986	1000	1000	SoftRelu	SoftMax
3	RMSProp	newthyroid	368.467	0.977	1000	1000	Relu	SoftMax
3	RMSProp	newthyroid	506.586	0.986	1000	1000	Sigmoid	SoftMax
3	RMSProp	newthyroid	42.003	0.986	1000	1000	Sin	SoftMax
4	RMSProp	newthyroid	681.056	0.991	1000	1000	Tanh	SoftMax
4	RMSProp	newthyroid	439.974	0.986	1000	1000	SoftRelu	SoftMax
4	RMSProp	newthyroid	617.969	0.991	1000	1000	Relu	SoftMax
4	RMSProp	newthyroid	990.496	0.986	1000	1000	Sigmoid	SoftMax
4	RMSProp	newthyroid	261.001	0.980	1000	1000	Signord	SoftMax
5	RMSProp	newthyroid	0.0	0.912	1000	1000	Tanh	SoftMax
5	RMSProp	newthyroid	123.0	0.986	1000	1000	SoftRelu	SoftMax
5	RMSProp	newthyroid	445.999	0.980	1000	1000	Relu	SoftMax
5	RMSProp	newthyroid	272.999	0.972	1000	1000	Sigmoid	SoftMax
5	_	, and the second	37.235	0.986	1000	1000	Sin	SoftMax
	RMSProp	newthyroid					Tanh	SoftMax
1	RMSProp	pima ·	634.05	0.667	1000	1000		
1	RMSProp	pima	326.038	0.651	1000	1000	SoftRelu	SoftMax
1	RMSProp	pima	913.468	0.651	1000	1000	Relu	SoftMax
1	RMSProp	pima	986.531	0.651	1000	1000	Sigmoid	SoftMax
1	RMSProp	pima	562.309	0.75	1000	1000	Sin	SoftMax
2	RMSProp	pima	327.002	0.658	1000	1000	Tanh	SoftMax
2	RMSProp	pima	96.345	0.651	1000	1000	SoftRelu	SoftMax
2	RMSProp	pima	520.552	0.651	1000	1000	Relu	SoftMax
2	RMSProp	pima	302.156	0.651	1000	1000	Sigmoid	SoftMax
2	RMSProp	pima	474.117	0.749	1000	1000	Sin	SoftMax
3	RMSProp	pima	138.001	0.667	1000	1000	Tanh	SoftMax
3	RMSProp	pima	888.51	0.725	1000	1000	SoftRelu	SoftMax
3	RMSProp	pima	112.014	0.715	1000	1000	Relu	SoftMax
3	RMSProp	pima	322.515	0.651	1000	1000	Sigmoid	SoftMax
3	RMSProp	pima	954.952	0.74	1000	1000	Sin	SoftMax

Table J.20: All RMSProp Results of classification problems (20/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	RMSProp	pima	224.0	0.66	1000	1000	Tanh	SoftMax
4	RMSProp	pima	777.045	0.651	1000	1000	SoftRelu	SoftMax
4	RMSProp	pima	224.193	0.742	1000	1000	Relu	SoftMax
4	RMSProp	pima	164.651	0.651	1000	1000	Sigmoid	SoftMax
4	RMSProp	pima	599.999	0.742	1000	1000	Sin	SoftMax
5	RMSProp	pima	108.114	0.646	1000	1000	Tanh	SoftMax
5	RMSProp	pima	215.511	0.651	1000	1000	SoftRelu	SoftMax
5	RMSProp	pima	461.0	0.651	1000	1000	Relu	SoftMax
5	RMSProp	pima	958.055	0.651	1000	1000	Sigmoid	SoftMax
5	RMSProp	pima	746.0	0.69	1000	1000	Sin	SoftMax
1	RMSProp	post_operative	558.325	0.563	1000	1000	Tanh	SoftMax
1	RMSProp	post_operative	920.063	0.655	1000	1000	SoftRelu	SoftMax
1	RMSProp	post_operative	270.962	0.54	1000	1000	Relu	SoftMax
1	RMSProp	post_operative	762.847	0.632	1000	1000	Sigmoid	SoftMax
1	RMSProp	post_operative	688.999	0.609	1000	1000	Sin	SoftMax
2	RMSProp	post_operative	32.997	0.632	1000	1000	Tanh	SoftMax
2	RMSProp	post_operative	511.042	0.667	1000	1000	SoftRelu	SoftMax
2	RMSProp	post_operative	128.187	0.529	1000	1000	Relu	SoftMax
2	RMSProp	post_operative	814.443	0.632	1000	1000	Sigmoid	SoftMax
2	RMSProp	post_operative	111.991	0.632	1000	1000	Sin	SoftMax
3	RMSProp	post_operative	831.048	0.632	1000	1000	Tanh	SoftMax
3	RMSProp	post_operative	181.214	0.667	1000	1000	SoftRelu	SoftMax
3	RMSProp	post_operative	17.291	0.529	1000	1000	Relu	SoftMax
3	RMSProp	post_operative	889.044	0.632	1000	1000	Sigmoid	SoftMax
3	RMSProp	post_operative	197.039	0.621	1000	1000	Sin	SoftMax
4	RMSProp	post_operative	849.027	0.621	1000	1000	Tanh	SoftMax
4	RMSProp	post_operative	231.967	0.667	1000	1000	SoftRelu	SoftMax
4	RMSProp	post_operative	218.57	0.529	1000	1000	Relu	SoftMax
4	RMSProp	post_operative	950.37	0.632	1000	1000	Sigmoid	SoftMax
4	RMSProp	post_operative	733.991	0.609	1000	1000	Sin	SoftMax
5	RMSProp	post_operative	114.0	0.609	1000	1000	Tanh	SoftMax
5	RMSProp	post_operative	113.001	0.667	1000	1000	SoftRelu	SoftMax

Table J.21: All RMSProp Results of classification problems (21/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
5	RMSProp	post_operative	793.473	0.529	1000	1000	Relu	SoftMax
5	RMSProp	post_operative	755.0	0.632	1000	1000	Sigmoid	SoftMax
5	RMSProp	post_operative	12.478	0.632	1000	1000	Sin	SoftMax
1	RMSProp	saheart	860.135	0.632	1000	1000	Tanh	SoftMax
1	RMSProp	saheart	175.001	0.615	1000	1000	SoftRelu	SoftMax
1	RMSProp	saheart	942.131	0.619	1000	1000	Relu	SoftMax
1	RMSProp	saheart	459.506	0.652	1000	1000	Sigmoid	SoftMax
1	RMSProp	saheart	930.002	0.667	1000	1000	Sin	SoftMax
2	RMSProp	saheart	958.0	0.639	1000	1000	Tanh	SoftMax
2	RMSProp	saheart	40.5	0.649	1000	1000	SoftRelu	SoftMax
2	RMSProp	saheart	696.917	0.643	1000	1000	Relu	SoftMax
2	RMSProp	saheart	646.518	0.636	1000	1000	Sigmoid	SoftMax
2	RMSProp	saheart	663.978	0.671	1000	1000	Sin	SoftMax
3	RMSProp	saheart	813.169	0.634	1000	1000	Tanh	SoftMax
3	RMSProp	saheart	59.0	0.617	1000	1000	SoftRelu	SoftMax
3	RMSProp	saheart	160.997	0.623	1000	1000	Relu	SoftMax
3	RMSProp	saheart	657.035	0.652	1000	1000	Sigmoid	SoftMax
3	RMSProp	saheart	50.943	0.665	1000	1000	Sin	SoftMax
4	RMSProp	saheart	709.001	0.641	1000	1000	Tanh	SoftMax
4	RMSProp	saheart	852.184	0.641	1000	1000	SoftRelu	SoftMax
4	RMSProp	saheart	396.276	0.626	1000	1000	Relu	SoftMax
4	RMSProp	saheart	73.006	0.617	1000	1000	Sigmoid	SoftMax
4	RMSProp	saheart	636.042	0.63	1000	1000	Sin	SoftMax
5	RMSProp	saheart	544.0	0.658	1000	1000	Tanh	SoftMax
5	RMSProp	saheart	733.001	0.608	1000	1000	SoftRelu	SoftMax
5	RMSProp	saheart	383.039	0.654	1000	1000	Relu	SoftMax
5	RMSProp	saheart	940.489	0.63	1000	1000	Sigmoid	SoftMax
5	RMSProp	saheart	964.308	0.66	1000	1000	Sin	SoftMax
1	RMSProp	tae	997.999	0.397	1000	1000	Tanh	SoftMax
1	RMSProp	tae	294.534	0.43	1000	1000	SoftRelu	SoftMax
1	RMSProp	tae	882.999	0.444	1000	1000	Relu	SoftMax
1	RMSProp	tae	32.079	0.397	1000	1000	Sigmoid	SoftMax

Table J.22: All RMSProp Results of classification problems (22/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	RMSProp	tae	752.998	0.437	1000	1000	Sin	SoftMax
2	RMSProp	tae	315.015	0.43	1000	1000	Tanh	SoftMax
2	RMSProp	tae	187.943	0.444	1000	1000	SoftRelu	SoftMax
2	RMSProp	tae	648.73	0.43	1000	1000	Relu	SoftMax
2	RMSProp	tae	199.998	0.457	1000	1000	Sigmoid	SoftMax
2	RMSProp	tae	224.0	0.411	1000	1000	Sin	SoftMax
3	RMSProp	tae	61.016	0.397	1000	1000	Tanh	SoftMax
3	RMSProp	tae	698.322	0.444	1000	1000	SoftRelu	SoftMax
3	RMSProp	tae	330.848	0.424	1000	1000	Relu	SoftMax
3	RMSProp	tae	140.035	0.444	1000	1000	Sigmoid	SoftMax
3	RMSProp	tae	920.003	0.47	1000	1000	Sin	SoftMax
4	RMSProp	tae	73.402	0.344	1000	1000	Tanh	SoftMax
4	RMSProp	tae	633.548	0.424	1000	1000	SoftRelu	SoftMax
4	RMSProp	tae	762.88	0.417	1000	1000	Relu	SoftMax
4	RMSProp	tae	248.097	0.397	1000	1000	Sigmoid	SoftMax
4	RMSProp	tae	924.004	0.411	1000	1000	Sin	SoftMax
5	RMSProp	tae	531.038	0.417	1000	1000	Tanh	SoftMax
5	RMSProp	tae	539.001	0.444	1000	1000	SoftRelu	SoftMax
5	RMSProp	tae	87.0	0.444	1000	1000	Relu	SoftMax
5	RMSProp	tae	744.506	0.457	1000	1000	Sigmoid	SoftMax
5	RMSProp	tae	270.39	0.397	1000	1000	Sin	SoftMax
1	RMSProp	tic_tac_toe	284.001	0.683	1000	1000	Tanh	SoftMax
1	RMSProp	tic_tac_toe	7.592	0.687	1000	1000	SoftRelu	SoftMax
1	RMSProp	tic_tac_toe	872.001	0.63	1000	1000	Relu	SoftMax
1	RMSProp	tic_tac_toe	865.699	0.68	1000	1000	Sigmoid	SoftMax
1	RMSProp	tic_tac_toe	669.352	0.683	1000	1000	Sin	SoftMax
2	RMSProp	tic_tac_toe	130.002	0.684	1000	1000	Tanh	SoftMax
2	RMSProp	tic_tac_toe	898.641	0.68	1000	1000	SoftRelu	SoftMax
2	RMSProp	tic_tac_toe	144.168	0.534	1000	1000	Relu	SoftMax
2	RMSProp	tic_tac_toe	994.0	0.689	1000	1000	Sigmoid	SoftMax
2	RMSProp	tic_tac_toe	931.112	0.692	1000	1000	Sin	SoftMax
3	RMSProp	tic_tac_toe	264.074	0.684	1000	1000	Tanh	SoftMax

Table J.23: All RMSProp Results of classification problems (23/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	RMSProp	tic_tac_toe	300.58	0.69	1000	1000	SoftRelu	SoftMax
3	RMSProp	tic_tac_toe	703.0	0.573	1000	1000	Relu	SoftMax
3	RMSProp	tic_tac_toe	876.001	0.686	1000	1000	Sigmoid	SoftMax
3	RMSProp	tic_tac_toe	121.211	0.693	1000	1000	Sin	SoftMax
4	RMSProp	tic_tac_toe	691.738	0.67	1000	1000	Tanh	SoftMax
4	RMSProp	tic_tac_toe	793.156	0.693	1000	1000	SoftRelu	SoftMax
4	RMSProp	tic_tac_toe	346.0	0.654	1000	1000	Relu	SoftMax
4	RMSProp	tic_tac_toe	358.023	0.689	1000	1000	Sigmoid	SoftMax
4	RMSProp	tic_tac_toe	78.993	0.685	1000	1000	Sin	SoftMax
5	RMSProp	tic_tac_toe	539.314	0.688	1000	1000	Tanh	SoftMax
5	RMSProp	tic_tac_toe	85.612	0.688	1000	1000	SoftRelu	SoftMax
5	RMSProp	tic_tac_toe	900.459	0.54	1000	1000	Relu	SoftMax
5	RMSProp	tic_tac_toe	638.772	0.691	1000	1000	Sigmoid	SoftMax
5	RMSProp	tic_tac_toe	315.962	0.682	1000	1000	Sin	SoftMax
1	RMSProp	vehicle	29.001	0.447	1000	1000	Tanh	SoftMax
1	RMSProp	vehicle	961.519	0.235	1000	1000	SoftRelu	SoftMax
1	RMSProp	vehicle	954.0	0.235	1000	1000	Relu	SoftMax
1	RMSProp	vehicle	511.001	0.235	1000	1000	Sigmoid	SoftMax
1	RMSProp	vehicle	264.706	0.403	1000	1000	Sin	SoftMax
2	RMSProp	vehicle	694.002	0.469	1000	1000	Tanh	SoftMax
2	RMSProp	vehicle	696.0	0.235	1000	1000	SoftRelu	SoftMax
2	RMSProp	vehicle	46.201	0.235	1000	1000	Relu	SoftMax
2	RMSProp	vehicle	512.0	0.235	1000	1000	Sigmoid	SoftMax
2	RMSProp	vehicle	557.409	0.39	1000	1000	Sin	SoftMax
3	RMSProp	vehicle	852.003	0.446	1000	1000	Tanh	SoftMax
3	RMSProp	vehicle	842.141	0.235	1000	1000	SoftRelu	SoftMax
3	RMSProp	vehicle	388.001	0.235	1000	1000	Relu	SoftMax
3	RMSProp	vehicle	776.002	0.235	1000	1000	Sigmoid	SoftMax
3	RMSProp	vehicle	943.086	0.382	1000	1000	Sin	SoftMax
4	RMSProp	vehicle	496.036	0.474	1000	1000	Tanh	SoftMax
4	RMSProp	vehicle	40.555	0.235	1000	1000	SoftRelu	SoftMax
4	RMSProp	vehicle	422.008	0.235	1000	1000	Relu	SoftMax

Table J.24: All RMSProp Results of classification problems (24/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
4	RMSProp	vehicle	778.0	0.235	1000	1000	Sigmoid	SoftMax
4	RMSProp	vehicle	808.998	0.305	1000	1000	Sin	SoftMax
5	RMSProp	vehicle	127.403	0.418	1000	1000	Tanh	SoftMax
5	RMSProp	vehicle	598.965	0.235	1000	1000	SoftRelu	SoftMax
5	RMSProp	vehicle	587.08	0.235	1000	1000	Relu	SoftMax
5	RMSProp	vehicle	91.973	0.235	1000	1000	Sigmoid	SoftMax
5	RMSProp	vehicle	6.0	0.239	1000	1000	Sin	SoftMax
1	RMSProp	vowel	476.78	0.0909	1000	1000	Tanh	SoftMax
1	RMSProp	vowel	81.034	0.0909	1000	1000	SoftRelu	SoftMax
1	RMSProp	vowel	146.0	0.355	1000	1000	Relu	SoftMax
1	RMSProp	vowel	200.001	0.301	1000	1000	Sigmoid	SoftMax
1	RMSProp	vowel	292.001	0.0909	1000	1000	Sin	SoftMax
2	RMSProp	vowel	866.001	0.345	1000	1000	Tanh	SoftMax
2	RMSProp	vowel	656.038	0.0909	1000	1000	SoftRelu	SoftMax
2	RMSProp	vowel	944.0	0.359	1000	1000	Relu	SoftMax
2	RMSProp	vowel	823.0	0.0909	1000	1000	Sigmoid	SoftMax
2	RMSProp	vowel	697.331	0.0909	1000	1000	Sin	SoftMax
3	RMSProp	vowel	860.494	0.0909	1000	1000	Tanh	SoftMax
3	RMSProp	vowel	65.995	0.0909	1000	1000	SoftRelu	SoftMax
3	RMSProp	vowel	502.277	0.315	1000	1000	Relu	SoftMax
3	RMSProp	vowel	289.512	0.299	1000	1000	Sigmoid	SoftMax
3	RMSProp	vowel	59.003	0.345	1000	1000	Sin	SoftMax
4	RMSProp	vowel	643.407	0.358	1000	1000	Tanh	SoftMax
4	RMSProp	vowel	26.001	0.0909	1000	1000	SoftRelu	SoftMax
4	RMSProp	vowel	16.512	0.364	1000	1000	Relu	SoftMax
4	RMSProp	vowel	538.001	0.292	1000	1000	Sigmoid	SoftMax
4	RMSProp	vowel	207.096	0.0909	1000	1000	Sin	SoftMax
5	RMSProp	vowel	190.989	0.0909	1000	1000	Tanh	SoftMax
5	RMSProp	vowel	121.037	0.0909	1000	1000	SoftRelu	SoftMax
5	RMSProp	vowel	19.001	0.315	1000	1000	Relu	SoftMax
5	RMSProp	vowel	408.367	0.298	1000	1000	Sigmoid	SoftMax
5	RMSProp	vowel	231.514	0.0909	1000	1000	Sin	SoftMax

Table J.25: All RMSProp Results of classification problems (25/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
1	RMSProp	wine	862.893	0.933	1000	1000	Tanh	SoftMax
1	RMSProp	wine	390.009	0.331	1000	1000	SoftRelu	SoftMax
1	RMSProp	wine	678.051	0.331	1000	1000	Relu	SoftMax
1	RMSProp	wine	206.084	0.331	1000	1000	Sigmoid	SoftMax
1	RMSProp	wine	891.057	0.921	1000	1000	Sin	SoftMax
2	RMSProp	wine	911.999	0.893	1000	1000	Tanh	SoftMax
2	RMSProp	wine	620.189	0.331	1000	1000	SoftRelu	SoftMax
2	RMSProp	wine	517.325	0.331	1000	1000	Relu	SoftMax
2	RMSProp	wine	512.998	0.331	1000	1000	Sigmoid	SoftMax
2	RMSProp	wine	472.415	0.86	1000	1000	Sin	SoftMax
3	RMSProp	wine	101.999	0.91	1000	1000	Tanh	SoftMax
3	RMSProp	wine	696.999	0.331	1000	1000	SoftRelu	SoftMax
3	RMSProp	wine	273.0	0.331	1000	1000	Relu	SoftMax
3	RMSProp	wine	265.0	0.331	1000	1000	Sigmoid	SoftMax
3	RMSProp	wine	194.008	0.927	1000	1000	Sin	SoftMax
4	RMSProp	wine	26.999	0.933	1000	1000	Tanh	SoftMax
4	RMSProp	wine	767.0	0.331	1000	1000	SoftRelu	SoftMax
4	RMSProp	wine	860.292	0.331	1000	1000	Relu	SoftMax
4	RMSProp	wine	228.496	0.331	1000	1000	Sigmoid	SoftMax
4	RMSProp	wine	7.999	0.921	1000	1000	Sin	SoftMax
5	RMSProp	wine	616.165	0.944	1000	1000	Tanh	SoftMax
5	RMSProp	wine	965.007	0.331	1000	1000	SoftRelu	SoftMax
5	RMSProp	wine	158.021	0.331	1000	1000	Relu	SoftMax
5	RMSProp	wine	909.964	0.331	1000	1000	Sigmoid	SoftMax
5	RMSProp	wine	321.122	0.927	1000	1000	Sin	SoftMax
1	RMSProp	wisconsin	430.001	0.969	1000	1000	Tanh	SoftMax
1	RMSProp	wisconsin	885.074	0.978	1000	1000	SoftRelu	SoftMax
1	RMSProp	wisconsin	268.872	0.971	1000	1000	Relu	SoftMax
1	RMSProp	wisconsin	592.014	0.963	1000	1000	Sigmoid	SoftMax
1	RMSProp	wisconsin	725.007	0.966	1000	1000	Sin	SoftMax
2	RMSProp	wisconsin	161.001	0.969	1000	1000	Tanh	SoftMax
2	RMSProp	wisconsin	374.068	0.978	1000	1000	SoftRelu	SoftMax

Table J.26: All RMSProp Results of classification problems (26/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
2	RMSProp	wisconsin	522.001	0.968	1000	1000	Relu	SoftMax
2	RMSProp	wisconsin	146.058	0.963	1000	1000	Sigmoid	SoftMax
2	RMSProp	wisconsin	360.86	0.966	1000	1000	Sin	SoftMax
3	RMSProp	wisconsin	178.079	0.969	1000	1000	Tanh	SoftMax
3	RMSProp	wisconsin	80.195	0.972	1000	1000	SoftRelu	SoftMax
3	RMSProp	wisconsin	199.002	0.971	1000	1000	Relu	SoftMax
3	RMSProp	wisconsin	241.511	0.965	1000	1000	Sigmoid	SoftMax
3	RMSProp	wisconsin	273.004	0.966	1000	1000	Sin	SoftMax
4	RMSProp	wisconsin	777.0	0.971	1000	1000	Tanh	SoftMax
4	RMSProp	wisconsin	250.002	0.975	1000	1000	SoftRelu	SoftMax
4	RMSProp	wisconsin	665.999	0.931	1000	1000	Relu	SoftMax
4	RMSProp	wisconsin	661.001	0.963	1000	1000	Sigmoid	SoftMax
4	RMSProp	wisconsin	104.123	0.966	1000	1000	Sin	SoftMax
5	RMSProp	wisconsin	498.143	0.969	1000	1000	Tanh	SoftMax
5	RMSProp	wisconsin	204.0	0.977	1000	1000	SoftRelu	SoftMax
5	RMSProp	wisconsin	834.022	0.968	1000	1000	Relu	SoftMax
5	RMSProp	wisconsin	311.241	0.963	1000	1000	Sigmoid	SoftMax
5	RMSProp	wisconsin	880.845	0.966	1000	1000	Sin	SoftMax
1	RMSProp	ZOO	696.959	0.99	1000	1000	Tanh	SoftMax
1	RMSProp	ZOO	91.009	0.99	1000	1000	SoftRelu	SoftMax
1	RMSProp	ZOO	173.105	0.99	1000	1000	Relu	SoftMax
1	RMSProp	ZOO	974.0	0.99	1000	1000	Sigmoid	SoftMax
1	RMSProp	ZOO	387.034	0.99	1000	1000	Sin	SoftMax
2	RMSProp	ZOO	19.003	0.99	1000	1000	Tanh	SoftMax
2	RMSProp	ZOO	868.977	0.99	1000	1000	SoftRelu	SoftMax
2	RMSProp	ZOO	18.05	1	1000	1000	Relu	SoftMax
2	RMSProp	ZOO	614.085	0.98	1000	1000	Sigmoid	SoftMax
2	RMSProp	ZOO	930.814	1	1000	1000	Sin	SoftMax
3	RMSProp	ZOO	830.966	0.99	1000	1000	Tanh	SoftMax
3	RMSProp	ZOO	260.823	0.99	1000	1000	SoftRelu	SoftMax
3	RMSProp	ZOO	937.878	1	1000	1000	Relu	SoftMax
3	RMSProp	ZOO	658.445	0.99	1000	1000	Sigmoid	SoftMax

Table J.27: All RMSProp Results of classification problems (27/28).

Run	Method	Dataset	Time (s)	Accuracy	n_e	k	$\phi(\cdot)$	$\phi_o(\cdot)$
3	RMSProp	ZOO	169.764	0.99	1000	1000	Sin	SoftMax
4	RMSProp	ZOO	839.015	0.99	1000	1000	Tanh	SoftMax
4	RMSProp	ZOO	250.002	0.99	1000	1000	SoftRelu	SoftMax
4	RMSProp	ZOO	268.088	0.99	1000	1000	Relu	SoftMax
4	RMSProp	ZOO	962.966	0.99	1000	1000	Sigmoid	SoftMax
4	RMSProp	ZOO	507.523	0.99	1000	1000	Sin	SoftMax
5	RMSProp	ZOO	150.438	0.99	1000	1000	Tanh	SoftMax
5	RMSProp	ZOO	893.613	0.99	1000	1000	SoftRelu	SoftMax
5	RMSProp	ZOO	855.95	1	1000	1000	Relu	SoftMax
5	RMSProp	ZOO	305.999	0.98	1000	1000	Sigmoid	SoftMax
5	RMSProp	ZOO	24.966	0.99	1000	1000	Sin	SoftMax

Table J.28: All RMSProp Results of classification problems (28/28).