In [1]: import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split

Load the dataset
data = pd.read_csv('Downloads/anime_rating.csv')

In [2]: data.head()

Out[2]:

	title	mediaType	eps	duration	startYr	finishYr	description	contentWarn	wat
0	Dragon Ball Z Movie 15: Resurrection 'F'	Movie	1	67.0	2015	2015	Even the complete obliteration of his physical	No	
1	Kuripuri*Kuripura	Movie	1	5.0	2008	2008	NaN	No	
2	GJ-bu@	TV Special	1	46.0	2014	2014	The story is set during the spring vacation im	No	
3	Nausicaa of the Valley of the Wind	Movie	1	67.0	1984	1984	One thousand years after the Giant Warriors ca	No	
4	Miru Tights Special	DVD Special	1	4.0	2019	2019	Yua is asked to model an illustrator's designs	No	

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6523 entries, 0 to 6522
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype				
0	title	6523 non-null	object				
1	mediaType	6496 non-null	object				
2	eps	6523 non-null	int64				
3	duration	6248 non-null	float64				
4	startYr	6523 non-null	int64				
5	finishYr	6523 non-null	int64				
6	description	4114 non-null	object				
7	contentWarn	6523 non-null	object				
8	watched	6523 non-null	int64				
9	watching	6523 non-null	int64				
10	rating	6523 non-null	float64				
11	votes	6496 non-null	float64				
12	studio_primary	6523 non-null	object				
13	studios_colab	6523 non-null	object				
14	genre	6523 non-null	object				
<pre>dtypes: float64(3), int64(5), object(7)</pre>							
memory usage: 764.5+ KB							

memory usage: /64.5+ Kb

In [4]: data.describe()

Out [4]:

	eps	duration	startYr	finishYr	watched	watching	ri
count	6523.000000	6248.000000	6523.000000	6523.000000	6523.000000	6523.000000	6523.00
mean	8.716235	18.396287	2005.241147	2005.575349	1347.948643	57.445654	2.96
std	11.002479	20.949350	12.911035	12.568169	1737.138112	76.527405	0.76
min	1.000000	1.000000	1967.000000	1970.000000	5.000000	0.000000	1.11
25%	1.000000	5.000000	2000.000000	2000.000000	56.000000	2.000000	2.37
50%	1.000000	7.000000	2010.000000	2010.000000	349.000000	13.000000	2.94
75%	12.000000	25.000000	2015.000000	2015.000000	2252.500000	98.000000	3.56
max	34.000000	67.000000	2020.000000	2020.000000	4649.000000	199.000000	4.70

In [5]:

```
# Step 1: Data Cleaning
# Handle missing values
```

data['duration'] = data['duration'].fillna(data['duration'].median())
data['mediaType'] = data['mediaType'].fillna('Unknown') # Fill missin
data['votes'] = data['votes'].fillna(data['votes'].median()) # Fill n
data.drop(columns=['description'], inplace=True) # Drop 'description'

```
In [6]: # Step 2: Encoding categorical variables
le = LabelEncoder()
categorical_features = ['mediaType', 'contentWarn', 'studio_primary',
for feature in categorical_features:
    data[feature] = le.fit_transform(data[feature])
```

```
In [7]: # Step 3: Feature Scaling
    scaler = StandardScaler()
    numerical_features = ['eps', 'duration', 'watched', 'watching', 'votes
    data[numerical_features] = scaler.fit_transform(data[numerical_features])
```

```
In [8]: # Step 4: Prepare data for OLS modeling
X = data.drop(columns=['title', 'rating']) # Exclude 'title' and targ
y = data['rating']
```

```
In [9]:
# Add a constant term to the predictors for OLS
X = sm.add_constant(X)

# Step 5: Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
```

```
In [10]:
    # Step 6: Fit OLS model
    ols_model = sm.OLS(y_train, X_train).fit()

# Step 7: Evaluate the OLS model
    print(ols_model.summary())
```

OLS Regression Results

==========	========	_	=========		======	
======= Dep. Variable:			R-squared:			
0.696 Model:		0LS	·			
0.695 Method:	Le	east Squares	F-statisti	ic:		
993.5 Date: 0.00	Tue,	19 Nov 2024	Prob (F-st	catistic):		
Time: -2847.2		16:49:11	Log-Likeli	ihood:		
No. Observations 5720.	:	5218	AIC:			
Df Residuals: 5806.		5205	BIC:			
Df Model: Covariance Type:						
==========		std err				
25 0. 975]						
const 93 -10.952	-13.1223	1.107	-11.854	0.000	-15.2	
mediaType 40 -0.028	-0.0342	0.003	-11.293	0.000	-0.0	
eps 62 0.193	0.1778	0.008	22.740	0.000	0.1	
duration 64 0.291	0.2775	0.007	39.885	0.000	0.2	
startYr 12	0.0270	0.008	3.585	0.000	0.0	
finishYr 34	-0.0189	0.008	-2.450	0.014	-0.0	
contentWarn 93 –0.116	-0.1544	0.020	-7 . 866	0.000	-0.1	
watched 25 0.908	0.8168	0.047	17.533	0.000	0.7	
watching 96 0.246	0.2208	0.013	17.360	0.000	0.1	
votes 90 -0.392	-0.4910	0.051	-9 . 695	0.000	-0 . 5	
studio_primary 14 0.026	0.0197	0.003	6.598	0.000	0.0	
studios_colab 64 0.045	-0.0096	0.028	-0.348	0.728	-0.0	
genre 10 0.007	-0.0017 	0.004	-0.380 	0.704 	-0.0	
 ======== Omnibus:		121.485	 Durbin-Wat	:son:		
2.033 Prob(Omnibus):		0.000	Jarque-Ber	ra (JB):		
63.091 Skew:		0.022	Prob(JB):			
2.00e-14 Kurtosis: 5.42e+05		2.463	Cond. No.			

========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.42e+05. This might indicate that there are

strong multicollinearity or other numerical problems.

```
In [11]: # Step 8: Predictions on the test set
y_pred = ols_model.predict(X_test)
```

```
In [12]: # Calculate evaluation metrics
from sklearn.metrics import mean_squared_error, mean_absolute_error, rmse = np.sqrt(mean_squared_error(y_test, y_pred))
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"OLS Regression - RMSE: {rmse}, MAE: {mae}, R²: {r2}")
```

OLS Regression - RMSE: 0.42742004031158903, MAE: 0.3506061630699016 7, R^2 : 0.6932291747504539