Edgeworth Box Phre Exchange Economy

l=1,2 and i=1,2

X: = 1R+

goods agent i

Zi strongly monotone, strictly convex, continuous

$$\begin{pmatrix} \chi_{+}^{*} = \chi_{+}^{*} \\ \chi_{-}^{*} = (\overline{\omega} - \chi_{+}^{*}) \end{pmatrix}$$

Today: Connection blw competitive ex. and paloto optimality.

First nelface theorem; Competitive Equilibrium => Pareto optimal

- Immediate
- Any competitive equilibrium allocation is Pares optimal

- * Indifference curves are tamgent at 1x*

 => then. 9x* is Pareto Optimal (PO).
- * If the indifference curves are not tangent ont x* and x* is in the interior of Edgeworth Box, then x* is not PO.

=> NOT PO.

O2=(0,0)

Contract
Co

(Pet) An allocation $(X^{*}, X^{*}) = (X^{*}, \overline{W} - X^{*})$ is supportable as an equilibrium with themsfers if $\exists P^{*} = (P^{*}, P^{*})$ and thursfers T_{1}, T_{2} s.t for each i = 1, 2

- (1) p*. α* ≤ p*. ω; + T;
- (1) NEX Mi for each Nie Xi = IR+ with pt xi ≤ pt. with Ti
- (3) TI+T2=0

Second Welfare Theorem

Under some conditions, PO => Competitive Equilibrium.

- Any Pareto Optimal allocation is supportable as an equilibrium with thansfers
- Assuming Strong monotonicity, convexity and continuity

. Strictly preferred to as for agent 2

- W is a Pereto optimal allocation

(In this case, W is a PO, but not comp. eg.)

Example 1: 3 a NOT convex util. Acn.

(01*, \overline{w} -91*) is Pareto optimal allocation

But, i=2: could deviate and choose

some $\mathcal{R}_i \in B_{\lambda}(p)$ with $\mathcal{R}_i \geq \mathcal{R}_i^*$ (In this picture, $\mathcal{R}' > \mathcal{R}''$ for agent 1

Budget line but $p\mathcal{R}' < p\mathcal{R}''$)

Remark) In a pure exchange economy, we can instead alter endowments, instead of giving transfers

Edgeworth Box: I Producer + I consumer

* l=1,2: l=1 leisure l=2 consumption good

* One consumer I

XD (= = only one consumer)

 $-X=1R^{\frac{1}{2}}$ $(N_1,N_2) \leftarrow l=1$

- preference: Strongly monotonic, convex and continuous

utility function: U(MLMs)

- endowment : (L, 0)

* one firm: J

- uses labor to produce l=1

- input Z is labor output q is commodity 2

- production function: f: IR+ -> IR+

· increasing and strictly concave

· f(z): Z units of labor gives f(z) units of qz

- production set of J

T = {(-2, 9) & IR - x IR+ : 9 = f(2)}

- Consumer owns firm : $\theta_{zj} = 1$ (consumer 1, firm 1)

* price vector: (W, P)

wage price of l=1

Competitive Equilibrium; (x*, x*, z*, g*) and (w*, p*)

Competitive Equilibrium; (X, X, Z*, Z*, g*) and (W*, P*)

Tirm J max profit at (W^*, P^*) $\star (Z^*, g^*) \quad \text{Solve} \quad \max \left[p^*, f(z^*) - W^* z^* \right] \quad \text{S.t.} \quad f(z^*) = g^*$

 $TT(W^*, p^*) = p^*q^* - W^*Z^*$; optimal profits at (W^*, p^*) (TT(W, p) : optimal profits given <math>(W, p))

② Consumer I max. utility at (X^{+}, X^{+}) \underline{max} $U(X_{1}, X_{2})$ s.t $p^{*}X_{1} \leq \omega^{*}(T-X_{1}) + T(\omega^{+}, p^{*})$

 $(\alpha_1, \alpha_2) \in \mathbb{R}^{\frac{1}{+}}$ wage profit he gains

① Market clearing Conditions $-\overline{L} - \chi |^{+} = \overline{Z}|^{+}$ $\chi_{\perp}^{+} = g^{+}$

X. Inducing Competitive Equilibrium

* key: Iso-profite line is also consumer I's budget line $B_{\pm}(w,p) = \{(x_1,x_2); w(\pm -x_1) + \pi(w,p) \ge p x_2 \}$

Iso-public line: $\{(-2,q): K=pq-wz \text{ for some } k\}$

. When firm J chooses (Z,Z) optimally chooses it so that an isophofic line is tangent to production function at (Z,Z) $X=f(\bar{L}-X_1)$

• If Consumer I chooses x_2 , input = $I-x_2$

* . (x*, x*, z*, g*) are a competitive equilibrium iff it solves max u(xi, x) s.t.