SOLUTIONS DE L'INTERROGATION

10 octobre 2017

[durée : 1 heure]

Exercice 1 (Géométrie du plan complexe)

On se place dans le plan complexe \mathbb{C} . Soit ABC un triangle équilatéral positivement orienté dont les sommets ont pour affixes respectifs a, b et c.

- a) Exprimer les nombres complexes c b et a c en fonction de b a.
- b) En utilisant la question précédente, montrer l'identité

$$\frac{1}{b-a} + \frac{1}{c-b} + \frac{1}{a-c} = 0.$$

On considère un point arbitraire M d'affixe $m \in \mathbb{C}$.

c) Montrer que l'expression

$$\frac{m-a}{b-a} + \frac{m-b}{c-b} + \frac{m-c}{a-c}$$

ne dépend pas du choix de M.

d) En déduire que pour tout M on a

$$\left| \frac{m-a}{b-a} + \frac{m-b}{c-b} + \frac{m-c}{a-c} \right| = \sqrt{3}.$$

 $Indication: Choisissez\ judicieusement\ un\ point\ M\ particulier.$

Solution:

- a) Comme le vecteur \overrightarrow{BC} est l'image par rotation à $+\frac{2\pi}{3}$ de \overrightarrow{AB} , on a $(c-b)=e^{i\frac{2\pi}{3}}(b-a)$. De même $(a-c)=e^{-i\frac{2\pi}{3}}(b-a)$.
- **b)** Soit $\xi = e^{i\frac{2\pi}{3}} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i^*$, alors $\overline{\xi} = e^{-i\frac{2\pi}{3}} = \frac{1}{\xi}$ et $\xi + \overline{\xi} = -1$. Ainsi

$$\frac{1}{b-a} + \frac{1}{c-b} + \frac{1}{a-c} = \frac{1}{b-a} \left(1 + \frac{1}{\xi} + \frac{1}{\overline{\xi}} \right) = \frac{1}{b-a} \left(1 + \overline{\xi} + \xi \right) = 0.$$

^{*.} ξ est une racine troisième de l'unité.

c) En utilisant la question précédente nous avons

$$\frac{m-a}{b-a} + \frac{m-b}{c-b} + \frac{m-c}{a-c} = m \underbrace{\left(\frac{1}{b-a} + \frac{1}{c-b} + \frac{1}{a-c}\right)}_{=0} - \left(\frac{a}{b-a} + \frac{b}{c-b} + \frac{c}{a-c}\right)$$

qui ne dépend pas de m.

d) En choisissant m = a on trouve

$$\frac{m-a}{b-a} + \frac{m-b}{c-b} + \frac{m-c}{a-c} = \frac{a-b}{c-b} + \frac{a-c}{a-c} = e^{i\frac{\pi}{3}} + 1 = \frac{3}{2} + \frac{\sqrt{3}}{2}i.$$

et donc, en utilisant la question précédente, on trouve que pour tout $m \in \mathbb{C}$ on a

$$\left| \frac{m-a}{b-a} + \frac{m-b}{c-b} + \frac{m-c}{a-c} \right| = \sqrt{\frac{9}{4} + \frac{3}{4}} = \sqrt{3}.$$

Exercice 2 (Sous-espaces affines)

a) Montrer que l'ensemble $F \subset \mathbb{R}_2[X]$ des polynômes de degré au plus 2 et vérifiant

$$\int_0^1 P(x) \, dx = 1, \quad \text{pour} \quad P \in F,$$

est un sous-espace affine de l'espace vectoriel $\mathbb{R}_2[X]$.

- b) Donner un repère cartésien, puis un repère affine de F.
- c) [bonus] Donner un exemple d'application affine de \mathbb{R} dans F.

Solution:

- a) Soit $\phi : \mathbb{R}_2[X] \longrightarrow \mathbb{R}$ avec $\phi(P) = \int_0^1 P(x) dx$ pour $P \in \mathbb{R}_2[X]$. Comme ϕ est une application linéaire (car l'intégrale est linéaire), d'après le cours, on déduit que $F = \phi^{-1}(1)$ est un sous-espace affine de $\mathbb{R}_2[X]$ de direction $\overrightarrow{F} = \text{Ker } \phi$.
- b) D'après la question précédente, pour donner un repère affine de F, il suffit de donner un point de F (par exemple $\Omega=1$, le polynôme constant, convient), et une base de \overrightarrow{F} qui est un hyperplan (noyau d'une forme linéaire non nulle) dans $\mathbb{R}_2[X]$, donc de dimension 2. Ainsi les polynômes $\overrightarrow{E_1}(X)=2X-1$ et $\overrightarrow{E_2}(X)=3X^2-1$ conviennent car ils forment une famille libre (ils n'ont pas le même degré) de deux vecteurs de $\overrightarrow{F}=\operatorname{Ker}\phi$ (en effet $\phi(\overrightarrow{E_1})=\int_0^1 2X-1\,dx=0$ et $\phi(\overrightarrow{E_2})=\int_0^1 3X^2-1\,dx=0$). Pour conclure, $\left\{\Omega, \overrightarrow{E_1}, \overrightarrow{E_2}\right\}=\left\{1, 2X, 3X^2\right\}$ est un repère affine.
- c) Par exemple $\psi: \alpha \mapsto \Omega + \alpha \overrightarrow{E_1} = 1 + \alpha(2X 1)$ convient[†], avec $\psi(0) = 1 \in F$ et $\overrightarrow{\psi} \in \mathcal{L}(\mathbb{R}, \overrightarrow{F})$ étant donné par $\overrightarrow{\psi}(\alpha) = \alpha(2X 1)$.

^{†.} C'est une paramétrisation de la droite affine $\langle 1, 2X \rangle$.