Tema 1

Introducción a los Sistemas Operativos

Índice

- 1. ¿Qué es un sistema operativo?
- 2. Historia de los SS.OO.
- 3. Componentes del sistema operativo
- 4. Estructura de los SS.OO.
- 5. Tipos de SS.OO.

Índice

1. ¿Qué es un sistema operativo?

- 2. Historia de los SS.OO.
- 3. Componentes del sistema operativo
- 4. Estructura de los SS.OO.
- 5. Tipos de SS.OO.

Software que se coloca sobre el Hardware

Banking system	Airline reservation	Web browser	Application	
Compilers	Editors	Command interpreter	Syster	
O	progra			
Ma				
М	Hardw			
Р				

ation programs

m ıms

are

- Varias definiciones de SO:
 - Es el software que controla al hardware.
 - Son los programas que hacen utilizable el hardware.
 - Se trata del software que hace funcionar un computador y proporciona un entorno para la ejecución de los programas.
 - El hardware proporciona la capacidad de cómputo. Los SS.OO. ponen dicha capacidad al alcance de los usuarios y administradores de recursos. El principal recurso que administran es el hardware del computador: procesadores, memoria, archivos y dispositivos de E/S.
 - Una capa de software sobre el hardware puro, que se va a encargar de gestionar todos los elementos del sistema y que presenta al usuario una interfaz o máquina virtual (también denominada extendida) más fácil de entender y programar.

Funciones del S.O.

- Administración de los recursos
- Ejecución de servicios para los programas
- Ejecución de las órdenes de los usuarios

Administración de los recursos

- Asignar y planificar recursos
 Proteger recursos
 Mantener estadísticas

Servicios para los programas (System Calls)

- Ejecución de programas Órdenes de Entrada/Salida Operaciones sobre archivos Manejo de errores

Ejecución de las órdenes de los usuarios

- Intérprete de Comandos (I.C. o Shell)G.U.I (Graphic User Interface)

 Aumentar la productividad del hardware

Objetivos del S.O.

 Aumentar la productividad del usuario

Índice

- 1. ¿Qué es un sistema operativo?
- 2. Historia de los SS.OO.
- 3. Componentes del sistema operativo
- 4. Estructura de los SS.OO.
- 5. Tipos de SS.OO.

Siglo XIX, Máquina Analítica de Charles Babbage

- 1º Generación. Tubos de Vacío (1945-1955)
- 2º Generación. Transistores (1955-1965)
- 3º Generación. Circuitos Integrados (1965-1980)
- 4º Generación. Ordenadores Personales (1980)
- ¿5º Generación?. Grandes redes, gestión electrónica, PDA's, Mobiles

1ª Generación. Tubos de Vacío y conexiones (1945-1955)

- Segunda Guerra Mundial para tablas de senos y cálculos de tiro
- Muy grandes y poco potentes, ocupan grandes salas
- No existe Sistema Operativo
- Constructores = Operadores = Programadores

Procesamiento en serie: -

- Reservar la máquina
- Introducir programa (puenteo de conexiones)
- Resultados o consulta de errores (registros)

1ª Generación. Tubos de Vacío y conexiones (1945-1955)

Mark 1, 1939 IBM's Automatic Sequence Controlled Calculator (ASCC).

1ª Generación. Tubos de Vacío y conexiones (1945-1955)

ENIAC - El primer ordenador de válvulas (1946)

(Electronic Numerical Integrator And Computer)

El ENIAC solamente podía almacenar 20 números de 10 dígitos y todo el programa tenía que hacerse reordenando las conexiones.

En 1952 tuvieron que sustituirse más de 19000 válvulas, debido a que la máquina sólamente podía funcionar unos dos minutos antes de que las válvulas empezaran a fundirse

1ª Generación. Tubos de Vacío y conexiones (1945-1955)

- Problemas

 Baja productividad y fiabilidad

 Imposible ejecutar programas grandes

- Mejoras

 Tarjetas perforadas (finales de los 50)
 Rutinas: cargador, editor, traductor

	SET	TING-II	LRN -								200 1)[0]
	STEPS	OPERATION	REMARKS	STEPS	OPERATION	REMARKS		PERATION	REMARKS		OPERTION	REMARKS
	1			9	-7.0000000		17	Haracon de la		25		
	2			10			18			26 27		
	3			11			19		_	28		
	4			12			20		-	29		
	5			13			22			30		
	7			15			23			31		
	8			116			24			32		_/
	-			-							-	-
表景景	18 1	2 8 5	그 보 상 삼	2 3	경우전	8 2 8 2	6.0.5	5 2 1	1023	G 19	~ (D (D)	h 50 51
	\Box			-	1					T		111
										II		
			1									
			!									
			8									
			8 8									

2ª Generación. Transistores y procesamiento batch (1955-1965)

- Ordenadores Fiables → Se pueden fabricar y vender
- Diseñador <> Fabricante <> Programador
- Muy caros (Gobiernos, Universidades, Empresas)
- Necesitan habitaciones acondicionadas

2ª Generación. Transistores y procesamiento batch (1955-1965)

Ejecución de trabajos:

Escribir programa → Tarjeta

Reservar la máquina (30 min.)

Lectura Programa

Ejecución (carga compilador)

Recoger resultados o errores

PROBLEMA: Baja productividad, excesiva pérdida de tiempo

SOLUCIÓN: Sistema de procesamiento por lotes. BATCH

2ª Generación. Transistores y procesamiento batch (1955-1965)

Procesamiento por lotes: Juntar varios trabajos del mismo tipo para ejecutarlos consecutivamente sin demoras intermedias.

2ª Generación. Transistores y procesamiento batch (1955-1965)

IBM 1401

IBM 7094

2ª Generación. Transistores y procesamiento batch (1955-1965)

Necesidad en BATCH: Leer trabajo, iniciar ejecución y almacenar resultado

Fortran Monitor System (Monitor) → Sistema Operativo

2ª Generación. Transistores y procesamiento batch (1955-1965)

Necesidades del S.O → {
• Memoria
• Tiempo de ejecución

- Inconvenientes del proceso BATCH

 •Aumento del tiempo de retorno

 •Depuración Indirecta

 •Cuello de botella de la Entrada/Salida

- Soluciones para la E/S Buffering
 Spooling (Simultaneous Peripheral Operations On-Line)

Sistemas Operativos de la 2º Generación: ESYS (IBM 7094)
CTSS (IBM 7090)

3ª Generación. Circuitos integrados y multiprogramación (1965-80)

Serie IBM 360. OS/360, SO de propósito general

MAINFRAME

3ª Generación. Circuitos integrados y multiprogramación (1965-80)

- Grado de Multiprogramación: Nº de procesos que hacen multiprogramación
- Concurrencia
- Paralelismo

AS ON A PROPERTY OF THE PROPER

2. Historia de los SS.00.

3ª Generación. Circuitos integrados y multiprogramación (1965-80)

- Soporta múltiples usuarios interactivos
- Los usuarios tienen la apariencia de estar solos en la máquina
- Comienzan a incorporarse los intérpretes de comandos

3ª Generación. Circuitos integrados y multiprogramación(1965-80)

Aparecen los minicomputadores:

Amstrad CPC 464

4ª Generación. Ordenadores Personales (1980-)

- Tecnología LSI y VLSI
- Explosión del software
- Conexión a redes

Desarrollo de los Sistemas Operativos Actuales

4ª Generación. Ordenadores Personales (1980-)

<u>UNIX</u>

1960: M.I.T, Laboratorios Bell de AT&T y General Electric crean **MULTICS** (Multiplexed Information and Computing Service)

AT&T se separa del proyecto

1969: En AT&T Ken Thompson crea UNICS (2 usuarios interactivos)

1970: Surge UNIX

1973: Ken Thompson y Dennis Ritchie reescriben UNIX en C → Más portable y fácil de modificar

UNIX SYSTEM V → AT&T y Sun Microsistems

Berkeley Software Distribution (BSD). Ken Thompson

4ª Generación. Ordenadores Personales (1980-)

Producto	Fabricante	Basado en	Arquitecturas
Solaris	Sun Microsystems	AT&T	Sparcy x86
SunOS (Solaris 1)	Sun Microsystems	BSD	Sparc
DEC OSF/1	Digital Research	BSD	Alpha
AIX	IBM	Diferente de AT&T y BSD	RS6000
IRIX	Silicon Graphics	AT&T	Silicon Graphics
sco	The Santa Cruz Operation	AT&T con muchos agregados	Intel x86
HP-UX	Hewlett-Packard	AT&T	Hewlett-Packard
Linux	(Público)	BSD y AT&T	Intel x86, Sparc, Alpha, PowerPC, PowerMac
FreeBSD	(Público)	BSD	Intel x86
OpenBSD	(Público)	BSD	Intel x86, Alpha, Sparc, HP, Amiga

4ª Generación. Ordenadores Personales (1980-)

LINUX

1987: MINIX, clon de UNIX con fines didácticos

Andrew S. Tanenbaum (para x86 y 68xxx)

1991: Linus Torvalds (21 años), Finlandés, crea LINUX para arquitectura i386, basado en MINIX

Evoluciona con el apoyo de múltiples desarrolladores desinteresados

1992: Se combina con GNU para formar GNU/LINUX

Distribución	Características
Caldera OpenLinux	Viene acompañado por multitud de aplicaciones y utilidades.
Debian GNU/Linux	Mucho esfuerzo invertido en fiabilidad. Es mantenido por muchos voluntarios de todo el mundo. Contiene muchas facilidades para la instalación.
RedHat	Disponible para <i>Intel, Alpha</i> y <i>Sparc</i> , pretendiendo mantener la total compatibilidad entre las versiones de esta arquitecturas.
Slackware Linux	Pretende dar soporte a todo el hardware disponible para procesadores Intel: discos, tarjetas, placas multiprocesador y optimización de código.
SuSE Linux	Incluye la herramienta <i>YaST</i> para facilitar la instalación y configuración del sistema, que incluye gran cantidad de programas y utilidades.
Linux Mandrake	Incorpora gran cantidad de aplicaciones. Funciona en procesadores de la familia Intel.
LinuxPPC	Portado a <i>PowerPC</i>
Linux Pro	Proporciona una gran cantidad de documentación adicional.
LinuxWare	Muchas facilidades de instalación, orientada a usuarios de DOS/Windows.
MkLinux	Portado a <i>PowerMac</i>
TurboLinux	Incluye aplicaciones fáciles de manejar, con documentación y soporte técnico. Disponible en <i>Intel, Alpha</i> y <i>PowerPC</i> .
Yggdrasil Linux	Facilidades de instalación <i>Plug&Play</i> .
DLX Linux	Pensado para funcionar desde un disquete de 3,5".
DOS Linux	Diseñado para ser instalado en un sistema DOS/Windows.
tomsrtbt Linux	Cabe en un único disquete de 3,5" y contiene varias herramientas para verificación y reparación de sistemas de ficheros.

4ª Generación. Ordenadores Personales (1980-)

<u>GNU</u>

1983: Richard Stallman crea el manifiesto GNU (S.O. Gratuito compatible con UNIX)

G.P.L.: Licencia Pública General (copyleft)

1985: Se crea La Free Software Fundation

1990 GNU posee EMACS, GCC y librerías de UNIX

1991: Se fusiona con LINUX → GNU/LINUX

Software no propietario

- Libre (GNU)
- Grátis (freeware)
- Dominio público
- Evaluación (shareware)

4ª Generación. Ordenadores Personales (1980-)

Windows

1981: Nace MS-DOS para IBM-PC y compatibles

1983: Versión 2 de MS-DOS

1985. Windows 1. (G.U.I. que imita a MacOS de Apple). Necesita MS-DOS

4ª Generación. Ordenadores Personales (1980-)

Windows

1987: Windows 2. Incorpora Microsoft Excel y Microsoft Word

4ª Generación. Ordenadores Personales (1980-)

Windows

1990: Windows 3. Explota la capacidad de multitarea del i386

1991: Windows 3.1 y Windows 3.11. Mejoras y comunicaciones en red

4ª Generación. Ordenadores Personales (1980-)

Windows

1992: Windows NT 3.1 (G.U.I basada en 3.1). Problemas con HW y SW

4ª Generación. Ordenadores Personales (1980-)

Windows

1995: Windows 95

- No necesita MS-DOS
- Modo protegido
- Plug & Play

1998: Windows 98

- Unifica controladores NT
- AGP, USB,
- FAT32

1999: Windows 98 Second Edition (Mejora errores, versión más estable de todas)

4ª Generación. Ordenadores Personales (1980-)

Windows

2000: Windows ME (Millenium). Como '98, con más aplicaciones

2000: Windows 2000. Nueva versión de NT. Admite Plug & Play

- Professional. Estaciones de Trabajo
- Server, Advanced server, Datacenter. Varios servidores

2001: Windows XP. Unifica NT y 9.x

- Home
- Porfessional

2003: Windows 2003 Server. Versión para servidores

2007. Windows Vista

4ª Generación. Ordenadores Personales (1980-)

Windows

2009. Windows 7. Actualización incremental de Windows XP Soporte multi-touch, Shell rediseñada

2012. Windows 8. Cambio menú Inicio. Enfocado para dispositivos táctiles

2013. Windows 8.1. Actualización de rendimiento y vuelta al menú clásico

2015. Windows 10. Enfoque móvil y aplicaciones nuevas

4ª Generación. Ordenadores Personales (1980-)

APPLE Y MAC

Década de los 70: Steve Wozniak y Steve Jobs crean el Apple I.

Los hacen a mano y venden 200.

4ª Generación. Ordenadores Personales (1980-)

APPLE Y MAC

1976: Se crea Apple Computer.

1980: Apple II

4ª Generación. Ordenadores Personales (1980-)

APPLE Y MAC

1983: Apple LISA, con teclado, ratón e interfaz gráfico

1984: Apple Macintosh. Mala acogida. Caro y supera la mentalidad de la época.

1986: Despegan las ventas gracias a la autoedición

Grandes diseños: iMac, iPod, iPhone

- Nuevas tendencias
 - Palm OS
 - Windows Mobile
 - Android

Índice

- 1. ¿Qué es un sistema operativo?
- 2. Historia de los SS.OO.
- 3. Componentes del sistema operativo
- 4. Estructura de los SS.OO.
- 5. Tipos de SS.OO.

3. Componentes del sistema operativo

Los componentes que forman parte de un SO son:

- Administrador de procesos.
- Gestión de memoria.
- Sistema de ficheros.
- Administración de E/S.

Índice

- 1. ¿Qué es un sistema operativo?
- 2. Historia de los SS.OO.
- 3. Componentes del sistema operativo
- 4. Estructura de los SS.00.
- 5. Tipos de SS.OO.

Los distintos enfoques que se han considerado para hacer SO han dado lugar a diferentes arquitecturas o estructuras que se pueden englobar en:

Estructura monolítica.

- Estructura jerárquica.
- Estructura cliente-servidor.

Estructura orientada a objetos.

Estructura monolítica

- Consisten en un único programa
- Muchas rutinas enlazadas de tal forma que cualquier rutina puede llamar a otra
- Cada rutina debe tener muy buena definición en el interfaz con otras rutinas (paso de parámetros y devolución de los resultados).
- Su falta de estructura hace que se pueda diseñar de forma que se ajuste escrupulosamente a los fines deseados.

Estructura monolítica

- Los módulos son partes de código que se enlazan o descargan del núcleo bajo demanda
- Las ventajas que proporciona el uso de módulos son:
 - Modularización
 - Independencia de la plataforma
 - Mejor uso de la memoria
 - No hay penalización una vez enlazado el módulo
- A los sistemas operativos con estructura monolítica también se les conoce como macrokernel.

Estructura jerárquica

- Se divide el SO en capas, perfectamente definidos y con un interfaz claro
- Se consigue así un diseño modular, que permite el mantenimiento del SO durante todo su ciclo de vida
- Cada capa lleva a cabo unas funciones muy concretas y específicas
- Cada capa puede invocar funciones de las capas inferiores, pero nunca de las superiores
- Cada capa tiene una función de entrada conocida como puerta (trap) por donde se pueden hacer llamadas a capas inferiores

Estructura jerárquica

- Las capas en las que se estructuran normalmente este tipo de SS.OO son las siguientes:
 - Planificación del procesador: Gestión del procesador y como acceden a él los programas
 - 2. Gestión de memoria: Gestión de memoria y su distribución.
 - 3. **Gestión de la E/S**: Conjunto de rutinas que gestionan los dispositivos conectados al ordenador.
 - 4. Subsistema de ficheros: Gestionan la información de los usuarios y garantizan su confidencialidad.
 - Programas de usuario.

Estructura cliente-servidor

- También se le denomina microkernel.
- El principal objetivo de diseño es crear un núcleo lo más pequeño posible, creando sólo aquellas funciones que:
 - Son críticas en tiempo (respuesta rápida a eventos externos)
 - Son indispensables para la correcta administración del procesador
 - Son de uso común y general de todas las aplicaciones
- El núcleo sólo ofrece los mecanismos para:
 - Gestión de procesos
 - Gestión de memoria
 - Comunicación entre programas

Estructura cliente-servidor

- Cualquier proceso podría ser Cliente o Servidor.
- La principal misión del núcleo es establecer la comunicación entre los clientes y los servidores mediante mensajes:

Estructura cliente-servidor

- Ventajas:
 - Mayor modularidad
 - Sistema más rápido
 - Sistema más manejable
 - Si falla una parte, el resto puede seguir funcionando
 - Es fácil usarlo para diseñar Sistemas Distribuidos

Estructura orientada a objetos

- El SO se ve como una colección de objetos con interfaz y propiedades bien definidas.
- El núcleo del SO será el responsable:
 - Del mantenimiento de las definiciones de los tipos de objetos
 - Controlar los privilegios de acceso
- La interacción entre ellos viene definida por la capacidad de interactuar que tengan los unos con los otros.
- Se puede representar como una red de objetos interconectados entre si por medio de capacidades de acceso a si mismos.
- Hay una gran abstracción.

Índice

- 1. ¿Qué es un sistema operativo?
- 2. Historia de los SS.OO.
- 3. Componentes del sistema operativo
- 4. Estructura de los SS.OO.
- 5. Tipos de SS.OO.

Según la utilización de recursos

Monoprogramados

Multiprogramados o multitarea

Multiprocesamiento

Apropiativa

No Apropiativa

Según su Interactividad Tiempo compartido (sesiones)
Tiempo real

5. Tipos de SS.OO.

Según las aplicaciones

De propósito General

De propósito especial

Trataremos con Sistemas Operativos

MULTIUSUARIO Y MULTITAREA

Dudas

CONSEJO:

No dejar para
el final la realización
del test del tema
publicado en Moodle