Generator liczb losowych

Rachunek Prawdopodobieństa i Statystyka

Paweł Pyciński Uniwersytet Jagielloński

TABLE OF CONTENTS

- Wprowadzenie
- 2 Sposoby generowania liczb pseudolosowych
- **3** Własny generator
- Własny generator kod źródłowy
- 5 Modyfikacje generatora dla uzyskania zadanych rozkładów
- 6 Test poprawności generatora
- Sources

Cel Projektu

Celem projektu jest stworzenie generatora całkowitych liczb pseudolosowych o rozkładzie równomiernym. Na podstawie stworzonego generatora należy stworzyć generatory o rozkładzie jednostajnym (na przedziale [0,1]), Bernoulliego, dwumianowego, Poissona, wykładniczego i normalnego. Następnie należy przetestować powstałe generatory.

Wprowadzenie, opis problemu

Definicja

Generator liczb pseudolosowych – program lub podprogram, który na podstawie niewielkiej ilości informacji generuje deterministycznie ciąg bitów, który pod pewnymi względami jest nieodróżnialny od ciągu uzyskanego z prawdziwie losowego źródła.

Generator liczb pseudolosowych nie bez powodu jest **pseudolosowy**, problem z otrzymaniem liczb losowych wynika z deterministycznego charakteru komputera i wykonywanych przez niego operacji. Gdy człowiek dokonuje rzutu kością, nie wie co wypadnie. Taka sama operacja na komputerze wymaga działania, którego wynik jest nieprzewidywalny – żadna z operacji wykonywanych przez procesor nie posiada takiej cechy.

Problem starano się rozwiązać wykorzystując zewnętrzne źródła sygnałów losowych (np. generatory białego szumu), jednakże w tego typu urządzenia nie są standardowo wyposażano komputery osobiste. Próbowano także wykorzystać szumy kart dźwiękowych, jednakże system ten nie rozpowszechnił się z prostej przyczyny – różne karty dźwiękowe szumią różnie, a te z górnej półki nie szumią prawie wcale.

Sposoby generowania liczb pseudolosowych

Jest wiele sposobów generowania liczb pseudolosowych. Jedną z grup generatorów są generatory liniowe. tworzą ciąg liczb według schematu:

$$X_{n+1} = (a_1X_n + a_2X_{n-1} + \ldots + a_kX_{n-k+1} + c) mod(m)$$

gdzie a_1, \ldots, a_k, c, m -parametry generatora (ustalone liczby)

Generatory używające operacji modulo nazywamy **kongruencyjnymi**. Każdy kolejny wyraz (liczba pseudolosowa) w generatorze liniowym to suma pewnych poprzednich wyrazów pomnożonych każdy z każdą o jakiś skalar i brane z nich jest modulo.

Generator mulitplikatywny tworzy liczby według schmatu:

$$X_{i+1} = (aX_i + c) mod(m) \iff c = 0$$

Kolejny wyraz tworzymy po przez pomnożenie poprzedniego przez jakiś skalar. Gdy $c \neq 0$ to generator jest kongurentnie mieszany.

Własny generator

Swój generator postanowiłem zbudować na bazie generatora mulitplikatywnego. Jest to jeden z łatwiejszych generatorów, prosty do implementacji.

Posiada on niestety dwie poważne wady:

- 1. Gererator generuje liczby ciągu w sposób deterministyczny przez co łatwo jest wyliczyć kolejną liczbę.
- Wybierając złe czynniki możemy spowodować, że okres generatora będzie mały przez co będzie działał niepoprawnie lub będzie generował bardzo mało liczb losowych.
- 3. Generowane liczby lokalizują się na hiperpłaszczyznach, których położenie uzależnione jest od parametrów generatora.

Przez wyżej wymienione czynniki nie może być on stosowany w kryptografii.

Własny generator

Przed zaimplementowaniem pozostał jeszcze wybór m oraz a dla naszego generatora.

Niech $m=2^{32}$, jest to liczba o 1 większa od zakresu unsigned int'a, dzięki czemu nasza kongruencja potencjalnie będzie mogła zwracać wszyskie liczby które jesteśmy w stanie zapisać na 4 bajtach float'a w większości języków programowania. Ponadto niech a=747796405.

Table 5. LCGs with Good Figures of Merit, for $m=2^e$ and c=0

m	a, a^*	$M_8(m, a)$	$M_{16}(m, a)$	$M_{32}(m, a)$
2^{30}	177911525, 17372909	0.74878 *	0.53850	0.53850
	156051869, 52274357	0.69501	0.67940 *	0.64413
	143133861, 233896749	0.69305	0.66791	0.66791 *
2^{31}	594156893, 452271861	0.75913 *	0.50244	0.50244
	558177141, 413965533	0.68978	0.68749 *	0.59450
	602169653, 448899357	0.67295	0.67116	0.67116 *
2^{32}	741103597, 887987685	0.75652 *	0.53707	0.53707
	1597334677, 851723965	0.70068	0.67686 *	0.64694
	747796405, 204209821	0.66893	0.66001	0.66001 *

Własny generator - kod źródłowy


```
class generator:

def __init__(self, seed):
    self.value = seed
    self.a = 747796405
    self.m = 4294967296

def generateRandom(self):
    self.value = (self.a*self.value) % self.m
    return self.value
```

Listing 1: Klasa generatora

Klasa generatora posiada konstruktor który jako argument przyjmuje ziarno czyli dowoloną liczbę początkową która rozpocznie budowanie pseudolosowy ciąg. Jest także metoda która zwaraca kolejną wygenerowaną liczbę.

Rozkład jednostajny

Aby uzyskać liczby z rozkładu jednostajnego na przedziale [0,1] wystarczy podzielić przez ustalone wcześniej m=4294967296, zauważmy że po takiej operacji liczby będą należały to przedziału [0,1].

```
def uniformDistribution(self):
    return self.generateRandom()/self.m
```

Listing 2: Metoda rozkładu jednostajnego

Rozkład Bernoulliego

Rozkład Bernoulliego, jest rozkładem dwupunktowym, aby uzyskać ten rozkład skorzystam z metody którą przygotowałem dla rozkładu jednostajnego. Ustalmy dowolne $P \in [0,1]$. Jeśli wylosowana liczba przez metodę rozkładu jednostajnego będzie większa od p to zwrócimy 0, w przeciwnym razie 1.

```
def bernoulliDistribution(self, probability):
    rand = self.uniformDistribution()
    if ( rand>= probability):
        return 0
    else:
        return 1
```

Listing 3: Metoda rozkładu Bernoulliego

Rozkład Dwumianowy

Rozkład dwumianowy jest to liczba sukcesów w *n* próbach Bernoulliego. W implementacji wykorzystałem wcześniej przygotowaną metodę generowania próby Bernoulliego, wywołanie jej *samples* razy daje nam rozkład Dwumianowy

```
def binomialDistribution(self,probablity, n):
    counter = 0
    for i in range(n):
        counter += self.bernoulliDistribution(probablity)
    return counter
6
```

Listing 4: Metoda rozkładu Dwumianowego

Rozkład Poissona

Rozkład Poissona modeluje zdarzenia rzadkie. Jest on parameryzowany zmienną λ która jest równa oczekiwanej liczbie zdarzeń w danym przedziale czasu. Jest wiele algorytmów generujących ten rozkład na potrzeby naszego generatora wystaczy zastosować najprostszy z nich czyli **Algorytm Knutha**

```
def poissonDistribution(self, lambdapoiss):
    limit = math.exp(-lambdapoiss)
    n = 0

p = self.uniformDistribution()

while(p>=limit):
    n+=1
    p*=self.uniformDistribution()

return n
```

Listing 5: Metoda rozkładu Poissona

Rozkład Wykładniczy, wprowadzenie

Rozkład wykładniczy modeluje czas między kolejnymi zdarzeniami, jeśli w jednostce czasu zachodzi średnio λ niezależnych zdarzeń.

Metodę generującą rozkład wykładniczy możemy uzyskać stosując metodę odwórconej dystrybuanty. Dystrybuanta określonego rozkładu prawdopodobieństwa jest funkcją $F:\mathbb{R}\to\mathbb{R}$ niemalejąca i prawostronnie ciągła Dystrybuanta jednoznacznie definiuje rozkład prawdopodobieństwa i ma następujący związek z gęstością prawdopodobieństwa: $F(x)=\int_x^{-\infty}f(y)\,dy$. Jeśli uda się znaleźć F^{-1} to $U=F(x)\to x=F^{-1}(U)$ zmienna losowa x ma rozkład o dystrybuancie $F,\ U$ jest zmienną losową o rozkładzie jednostajnym. Krótki dowód dlaczego tak jest:

Niech $X = F^{-1}(U)$ zmienna losowa

$$P\{X \le x\} = P\{F^{-1}(U) \le x\}$$
$$= P\{U \le F(x)\}$$
$$= F(x)$$

Rozkład Wykładniczy

Przejdźmy teraz do rozkładu wykładniczego. Jego gęstość prawdopodobieństwa dana jest wzorem:

$$f(x) = e^{-x}, x \in [0, \infty)$$

Natomiast dystrybuanta jest całką z funkcji gęstości.

$$F(x) = \int_{x}^{0} e^{-x} dx = 1 - e^{-x}$$

$$F(x) = 1 - e^{-x} = U$$

$$e^{-x} = 1 - U$$

$$F^{-1}(x) = x = -\ln(1 - U)$$

$$U \in (0, 1) \to x \in (0, \infty)$$

```
def exponentialDistribution(self):
    return -math.log(1-self.uniformDistribution())
```

Listing 6: Metoda rozkładu Poissona

Rozkład normalny

Rozkład normalny jest jednym z najważniejszych rozkładów prawdopodobieństwa, odgrywający ważną rolę w statystyce. Przyczyną jego znaczenia jest częstość występowania w naturze. Jeśli jakaś wielkość jest sumą lub średnią bardzo wielu drobnych losowych czynników, to niezależnie od rozkładu każdego z tych czynników jej rozkład będzie zbliżony do normalnego (na podstawie CTG).

Jest wiele algorytmów aby uzyskać rozkład normalny. Ja w swojej implementacji zastosowałem polarny algorytm Boxa-Mullera nazwywany inaczej sposobem polarnym. Polega on na wylosowaniu dwóch zmiennych (x,y) z przedziału (-1,1) tak aby $0 < x^2 + y^2 < 1$ a następnie należy podstawić do wzoru:

$$x\sqrt{\frac{-2\ln s}{s}}$$
 lub $y\sqrt{\frac{-2\ln s}{s}}$

wzory te stosujemy na zmianę dlatego przyda się drobna modyfikacja obecnego genereatora o dodanie nowej zmiennej którą będziemy zmieniać w zależności o zastosowanego wzoru.

Rozkład normalny - kod źródłowy


```
def normalDistribution(self):
       if (self.whichOne == 1):
            self.whichOne = 0
            return self.prevValue
 5
       else:
            x = self.uniformDistribution()*2-1
            y=self.uniformDistribution()*2-1
            S = X * X + V * V
 8
            while (s>=1 \text{ or } s==0):
                x = self.uniformDistribution()*2-1
10
                v=self.uniformDistribution()*2-1
11
                s = x * x + y * y
12
            s=math.sqrt((math.log(s)*(-2))/s)
13
14
            self.prevValue=v*s
            self.whichOne=1
15
       return x*s
16
17
```

Listing 7: Metoda rozkładu normalnego

Test poprawności generatora - wprowadzenie

Kolejnym etapem jest przetestowanie napisanego wcześniej generatora oraz sprawdzenie czy otrzymane wyniki są zgodne z oczekiwanymi. Do tego celu wykorzystam test χ^2

Definicja

Test chi-kwadrat – każdy test statystyczny, w którym statystyka testowa ma rozkład chi kwadrat, jeśli teoretyczna zależność jest prawdziwa. Test chi-kwadrat służy sprawdzaniu hipotez. Innymi słowy wartość testu oceniana jest za pomocą rozkładu chi kwadrat. Test najczęściej wykorzystywany w praktyce. Można go wykorzystywać do badania zgodności zarówno cech mierzalnych, jak i niemierzalnych.

Test poprawności generatora - omówienie warunków

Teza zerowa: Otrzymany rozkład jest pożądanym rozkładem **Teza alternatywna**: Otrzymany rozkład nie jest oczekiwanym rozkładem. Należy ukształtować dane w taki sposób aby każda próbka miała co najmniej 5 elementów, przyjmijmy także powszechnie stosowany 5% stopień akceptacji.

df∖p	0,99	0,95	0,90	0,80	0,50	0,30	0,20	0,10	0,05	0,02	0,01
1	0,000	0,004	0,016	0,064	0,455	1,074	1,642	2,706	3,841	5,412	6,635
2	0,020	0,103	0,211	0,446	1,386	2,408	3,219	4,605	5,991	7,824	9,210
3	0,115	0,352	0,584	1,005	2,366	3,665	4,642	6,251	7,815	9,837	11,34
4	0,297	0,711	1,064	1,649	3,357	4,878	5,989	7,779	9,488	11,67	13,28
5	0,554	1,145	1,610	2,343	4,351	6,064	7,289	9,236	11,07	13,39	15,09
6	0,872	1,635	2,204	3,070	5,348	7,231	8,558	10,64	12,59	15,03	16,81
7	1,239	2,167	2,833	3,822	6,346	8,383	9,803	12,02	14,07	16,62	18,47
8	1,646	2,733	3,490	4,594	7,344	9,524	11,03	13,36	15,51	18,17	20,09
9	2,088	3,325	4,168	5,380	8,343	10,66	12,24	14,68	16,92	19,68	21,67
10	2,558	3,940	4,865	6,179	9,342	11,78	13,44	15,99	18,31	21,16	23,21

Figure: tabela rozkładu chi kwadrat

Rezultaty testu dla rozkładu jednostajnego

expected	quantity	chi kwadarat
142	146	0.11267605633802817
142	146	0.11267605633802817
142	127	1.5845070422535212
142	156	1.380281690140845
142	132	0.704225352112676
142	141	0.007042253521126761
142	152	0.704225352112676
suma testu	chi kwadrat =	4.605633802816902

Figure: Rezultaty przeprowadzonego testu przy 6 stopniach swobody

nasza suma testu $\chi^2=4.605633802816902$ z tabelki możemy odczytać, że znajdujemy się w przedziałe [0.8,0.5] zatem przy 5% stopniu akceptacji nie możemy odrzucić tezy zerowej. Nie jest to być może wynik bardzo zadawalający lecz wciąż odcinamy dość duże pole pod wykresem funkcji testu.


```
expected quantity
600 606
400 394
suma testu chi kwadrat= 0.15
```

Figure: Rezultaty przeprowadzonego testu przy 1 stopniu swobody

nasza suma testu $\chi^2=0.15$ z tabelki możemy odczytać, że znajdujemy się w przedziale [0.8,0.5] zatem przy 5% stopniu akceptacji nie możemy odrzucić tezy zerowej.

Rezultaty testu dla rozkładu Dwumianowego

expected	quantity	
9765	9903	
97656	97152	
439453	438760	
1171875	1170964	
2050781	2049968	
2460937	2461908	
2050781	2050934	
1171875	1171843	
439453	440917	
97656	97878	
9765	9773	
suma testu	Chi kwadrat=	12.458520109015799

Figure: Rezultaty przeprowadzonego testu przy 10 stopniach swobody

nasza suma testu $\chi^2=12.458520109015799$ z tabelki możemy odczytać, że znajdujemy się w przedziale [0.2,0.3] zatem przy 5% stopniu akceptacji nie możemy odrzucić tezy zerowej.

Rezultaty testu dla rozkładu Poissona


```
7.37946999085467
                            334
 36.89734995427335
842.2433748856834
                            824
1403.7389581428056
                            1407
 754.673697678507
 754.673697678507
                           1706
462.2280813987559
1044 44862957054
652.7803934815875
                           679
362.6557741564375
                           183
181.3278870782187
82.42176685373579
                            78
34.34240285572325
13.208616482970477
 717363029632314
suma testu Chi kwadrat= 13.759110251832714
```

Figure: Rezultaty przeprowadzonego testu przy 14 stopniach swobody

nasza suma testu $\chi^2=13.759110251832714$ z tabelki możemy odczytać, że znajdujemy się w przedziale [0.8,0.5] zatem przy 5% stopniu akceptacji nie możemy odrzucić tezy zerowej.

Rezultaty testu dla rozkładu Wykładniczego

24

```
105
```

Figure: Rezultaty przeprowadzonego testu przy 29 stopniach swobody

nasza suma testu $\chi^2=40.03574762305712$ z tabelki możemy odczytać, że znajdujemy się w przedziale [0.1,0.05) zatem przy 5% stopniu akceptacji nie możemy odrzucić tezy zerowej.

Rezultaty testu dla rozkładu Normalnego


```
2574
                7548
                 3544
testu chi kwadrat wynosi 31.44101220198305
```

Figure: Rezultaty przeprowadzonego testu przy 29 stopniach swobody

nasza suma testu $\chi^2=31.44101220198305$ z tabelki możemy odczytać, że znajdujemy się w przedziałe [0.5,0.3] zatem przy 5% stopniu akceptacji nie możemy odrzucić tezy zerowej.

Sources

- http://home.agh.edu.pl/~chwiej/mn/generatory_16.pdf
- https://pl.wikipedia.org/wiki/Generator_liczb_pseudolosowych
- https://eduinf.waw.pl/inf/alg/001_search/0022.php
- https://www.ams.org/journals/mcom/1999-68-225/ S0025-5718-99-00996-5/S0025-5718-99-00996-5.pdf
- http://staff.iiar.pwr.wroc.pl/grzegorz.mzyk/kmi/kmi03.pdf
- https://math.stackexchange.com/questions/785188/ simple-algorithm-for-generating-poisson-distribution/785200
- $\bullet \ \, \texttt{https://pl.wikipedia.org/wiki/Rozk\T1\lad_wyk\T1\ladniczy}$
- https://pl.xcv.wiki/wiki/Marsaglia_polar_method
- https://www.naukowiec.org/tablice/statystyka/ rozklad-chi-kwadrat_247.html
- wykład Rachunek Prawdopodobieństa i Statystyka Prof. Adam Roman