Statistical Inference and Multivariate Analysis (MA324)

Lecture SLIDES
Lecture 20

Likelihood Ratio Test

Indian Institute of Technology Guwahati

Jan-May 2023

Likelihood Ratio Tests

- We have seen that the UMP level α test **does not exist** for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ for all values of $\alpha \in (0, 1)$. Nontheless, these hypotheses are quite meaningful in practice.
- Here, we will discuss an alternative method to find a meaningful test.
- This test is called likelihood ratio test (LRT). Note that LRT may not be best, but they are quite intuitive and useful.

Likelihood Ratio Tests

The general procedure to obtain a LRT can be described as follows. Suppose that we want to test $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ at level $\alpha \in (0, 1)$. Consider the ratio

$$\Lambda(\boldsymbol{x}) = \frac{\sup\limits_{\boldsymbol{\theta} \in \Theta_0} L(\boldsymbol{\theta},\, \boldsymbol{x})}{\sup\limits_{\boldsymbol{\theta} \in \Theta_0 \cup \Theta_1} L(\boldsymbol{\theta},\, \boldsymbol{x})}.$$

This ratio $\Lambda(x)$ is called **likelihood ratio test statistic**. The test function of a LRT is given by

$$\psi(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \Lambda(\boldsymbol{x}) < k \\ \gamma & \text{if } \Lambda(\boldsymbol{x}) = k \\ 0 & \text{if } \Lambda(\boldsymbol{x}) > k, \end{cases}$$

where $\gamma \in (0, 1)$ and k > 0 are such that $\sup_{\boldsymbol{\theta} \in \Theta_0} E_{\boldsymbol{\theta}} \left(\psi(\boldsymbol{X}) \right) = \alpha$.

Likelihood Ratio Tests: Interpretation

- Note that $\sup_{m{\theta} \in \Theta_0} L(m{\theta}, \, m{x})$ can be interpreted as the **best evidence** for observing $m{X} = m{x}$, when the parameter $m{\theta}$ is restricted in Θ_0 . Similarly, $\sup_{m{\theta} \in \Theta_0 \cup \Theta_1} L(m{\theta}, \, m{x})$ can be interpreted as the **overall best evidence** for observing $m{X} = m{x}$.
- LRT rejects the null hypothesis if the value of $\Lambda(x)$ is "small". The rationale is that if the best evidence of observing X=x under the null hypothesis is weak compared with overall evidence, then H_0 ought to be rejected.
- It is clear from the definition of LRT statistic $\Lambda(x)$ that $0 \le \Lambda(x) \le 1$. To see it, notice that the supremum in the **numerator** is over a **smaller** set than that in the **denominator**.
- Therefore, we need to find the cutoff point $k \in (0, 1)$ and $\gamma \in (0, 1)$ such that the test **satisfies level condition**, *i.e.*,

$$\sup_{\boldsymbol{\theta} \in \Theta_0} E_{\boldsymbol{\theta}} \left(\psi \left(\boldsymbol{X} \right) \right) = \alpha.$$

Example 1: Let $X_1, X_2, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, where σ is known. Let μ_0 be a real number. We are interested to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. Here,

 $\Theta_0 = \{\mu_0\}, \, \Theta_1 = \mathbb{R} \setminus \{\mu_0\}, \, \text{and } \Theta_0 \cup \Theta_1 = \mathbb{R}.$

Remark: $\frac{\sqrt{n}|\bar{x}-\mu_0|}{\sigma}$ can be considered as standardized distance between \bar{x} and μ_0 . Hence, this test rejects H_0 if the distance is large, which is quite intuitive.

Example 2: Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Let μ_0 be a real number. We are interested to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. Here, $\Theta_0 = \{\mu_0\} \times \mathbb{R}^+$, $\Theta_1 = \mathbb{R} \setminus \{\mu_0\} \times \mathbb{R}^+$, and hence, $\Theta_0 \cup \Theta_1 = \mathbb{R} \times \mathbb{R}^+$. Now,

Example 3: Let $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2)$. Let σ_0 be a positive real number. We are interested to test $H_0 : \sigma^2 = \sigma_0^2$ against $H_1 : \sigma^2 \neq \sigma_0^2$. Here, $\Theta_0 = \mathbb{R} \times \{\sigma_0^2\}, \Theta_1 = \mathbb{R} \times \mathbb{R}^+ \setminus \{\sigma_0^2\}, \text{ and hence } \Theta_0 \cup \Theta_1 = \mathbb{R} \times \mathbb{R}^+.$