Lógica y Computabilidad

Práctica 1: Funciones primitivas recursivas y clases PRC

2do cuatrimestre 2022

Ejercicio 1

Para construir una constante k, aplicamos la función s (sucesor) unas k veces, partiendo inicialmente de la función n que nos devuelve el 0.

$$f(x) = k = (\underbrace{s \circ \cdots \circ s}_{k \text{ veces}} \circ n)(x) = s^k(n(x))$$

Ejercicio 2

- $f_1(x,y) = suma(x,y) = x + y$ $suma(x,0) = u_1^1(x) = x$ suma(x,y+1) = g(suma(x,y),x,y) donde $g(x_1,x_2,x_3) = s(u_1^3(x_1,x_2,x_3))$ $\Rightarrow suma(x,y+1) = s(suma(x,y))$
- $f_2(x,y) = prod(x,y) = x \cdot y$ prod(x,0) = n(x) = 0 prod(x,y+1) = g(prod(x,y),x,y) donde $g(x_1,x_2,x_3) = suma(u_1^3(x_1,x_2,x_3), u_2^3(x_1,x_2,x_3))$ $\Rightarrow prod(x,y+1) = suma(prod(x,y),x)$
- $f_3(x,y) = pot(x,y) = x^y$ pot(x,0) = s(n(x)) = 1 pot(x,y+1) = g(pot(x,y), x, y) donde $g(x_1, x_2, x_3) = prod(u_1^3(x_1, x_2, x_3), u_2^3(x_1, x_2, x_3))$ $\Rightarrow pot(x,y+1) = prod(pot(x,y), x)$
- $g_1(x) = pred(x) = x \div 1$ pred(0) = n() = 0 Permitimos utilizar la función nula n sin parámetros. pred(x+1) = g(pred(x), x) donde $g(x_1, x_2) = u_2^2(x_1, x_2) = x_2$ $\Rightarrow pred(x+1) = x$
- $g_2(x,y) = resta(x,y) = x y$ $resta(x,0) = u_1^1(x) = x$ resta(x,y+1) = g(resta(x,y),x,y) donde $g(x_1,x_2,x_3) = pred(u_1^3(x_1,x_2,x_3))$ $\Rightarrow resta(x,y+1) = pred(resta(x,y))$

 $g_3(x,y) = \max\{x,y\}$

$$g_3(x,y) = suma(resta(x,y),y) = (x - y) + y$$

Si $x \ge y$, entonces g_3 simplemente resta y suma y a un x que es más grande, y en efecto terminamos con x que era el máximo. En el otro caso x < y, al hacer la resta en $\mathbb N$ obtenemos $x \dot{-} y = 0$, luego al sumar y obtenemos nuevamente y que era el máximo.

• $g_4(x,y) = \min\{x,y\}$

$$g_4(x,y) = resta(suma(x,y), \max\{x,y\}) = x + y - \max\{x,y\}$$

Ejercicio 3

a)

Para la ida (⇒) hacemos una demostración por inducción estructural. Primero probamos que todas las funciones iniciales cumplen la propiedad.

■ Función nula

$$f(x) = n(x) = 0$$
. La función nula cae en el caso $f(x) = k$ donde $k = 0$.

■ Función sucesor

$$f(x) = s(x) = x + 1$$
. La función sucesor cae en el caso $f(x) = x + k$ donde $k = 1$.

■ Función proyector

$$f(x_1,\ldots,x_n)=u_i^n(x_1,\ldots,x_n)=x_i$$
. La función proyector cae en el caso $f(x_1,\ldots,x_n)=x_i+k$ donde $k=0$.

Paso inductivo. Supongamos que existe $h_m \in \mathcal{C}_c$ generada a partir de m composiciones, tal que $h_m(x_1, \ldots, x_n) = k$ o bien $h_m(x_1, \ldots, x_n) = x_i + k$. Queremos ver si cualquier $h_{m+1} \in \mathcal{C}_c$ también cumple la propiedad. Para generar h_{m+1} componemos h_m con alguna función $f \in \mathcal{C}_c$.

 \blacksquare Caso f(x) = n(x)

$$h_{m+1} = f(h_m(x_1, \dots, x_n)) = n(h_m(x_1, \dots, x_n)) = 0.$$

No importa la forma de h_m pues n(x) = 0 para cualquier x.

- \blacksquare Caso f(x) = s(x)
 - Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = s(x_i + q) = x_i + q + 1 = x_i + k \text{ donde } k = q + 1.$
 - Caso $h_m(x_1, ..., x_n) = q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = s(q) = q + 1 = k \text{ donde } k = q + 1.$
- Caso $f(x) = u_i^n(x)$

Como $h_m: \mathbb{N}^n \to \mathbb{N}$, necesariamente $f(x) = u_1^1(x)$ para poder componer $f \circ h_m$.

- Caso $h_m(x_1, ..., x_n) = x_i + k$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = u_1^1(x_i + k) = x_i + k.$
- Caso $h_m(x_1, \dots, x_n) = k$

• Caso
$$h_m(x_1, ..., x_n) = k$$

 $h_{m+1} = f(h_m(x_1, ..., x_n)) = u_1^1(k) = k.$

- Caso f(x) = x + r
 - Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = x_i + q + r = x_i + k \text{ donde } k = q + r.$
 - Caso $h_m(x_1, ..., x_n) = q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = q + r = k \text{ donde } k = q + r.$
- \blacksquare Caso f(x) = k

• Caso $h_m(x_1, ..., x_n) = x_i + q$ $h_{m+1} = f(h_m(x_1, ..., x_n)) = f(x_i + q) = k.$

• Caso
$$h_m(x_1, ..., x_n) = q$$

 $h_{m+1} = f(h_m(x_1, ..., x_n)) = f(q) = k.$

Por lo tanto, partiendo de una función $h_m \in \mathcal{C}_c$, vemos que al realizar una composición con alguna función $f \in \mathcal{C}_c$ obtenemos una función $h_{m+1} \in \mathcal{C}_c$ (pues \mathcal{C}_c es cerrado por composición) que mantiene la propiedad enunciada.

Para la vuelta (\Leftarrow) mostramos que podemos construir cualquier $f(x_1, \ldots, x_n) = k$ o $f(x_1, \ldots, x_n) = x_i + k$ a partir de composición de las funciones iniciales, y por lo tanto $f \in \mathcal{C}_c$.

- $f(x_1,...,x_n) = k = s^k(n(x_1,...,x_n))$
- $f(x_1,...,x_n) = x_i + k = s^k(u_i^n(x_1,...,x_n))$

b)

En el ejercicio 2 vimos que la función suma(x,y) = x + y es P.R. pero $suma \notin \mathcal{C}_c$ pues no cumple con la propiedad.

Ejercicio 4

Pendiente

Ejercicio 5

Pendiente

Ejercicio 6

Pendiente

Ejercicio 7

Pendiente

Ejercicio 8

Pendiente

Ejercicio 9

Pendiente

Ejercicio 10

Pendiente

Ejercicio 11 Pendiente

Ejercicio 12

Pendiente

Ejercicio 13

Pendiente

Ejercicio 14

Pendiente

Ejercicio 15

Pendiente