ECS 122A Sections **002** Midterm Exam Solution

- 1. (a) True, $H(n) = \ln n + O(1) \in \Theta(\lg n)$
 - (b) False. Because $e^{c\sqrt{n}} = e^{\sqrt{n}}e^{(c-1)\sqrt{n}}$ and $e^{(c-1)\sqrt{n}}$ is not O(1) for c > 1.
 - (c) False, it takes $\Theta(n^{\log 7})$.
 - (d) False. Dynamic programming (not greedy algorithm)
- 2. (a) $T(n) = 3 \cdot T(n-3) = 3^k T(n-3k) = \Theta(3^{n/3})$, where assumes that n = 2k.
 - (b) $T(n) = 4 \cdot T(\frac{n}{5}) + n + 1 = \Theta(n)$ by the case 3 of the master theorem.
 - (c) $T(n) = 9 \cdot T(\frac{n}{3}) + n^2 = \Theta(n^2 \log n)$ by the case 2 of the master theorem.
- 3. (a) $O(g(n)) = \{f(n) : \exists c, n_0 \text{ such that } 0 \le f(n) \le cg(n), \forall n \ge n_0\}$
 - (b) $(n \cdot 2^m)$, O(mn).
 - (c) Counting sort, O(n)
 - (d) The optimal solution to the problem contains optimal solutions to subproblems. For example, the matrix-chain multiplication.
- 4. (a) The codes are

char	frequency	code
h	21	1
g	13	01
f	8	001
e	5	0001
d	3	00001
\mathbf{c}	2	000001
b	1	0000001
\mathbf{a}	1	0000000

- (b) In general, the code for the *i*th character, in a sequence of *n* characters where the frequencies are the first *n* Fibonacci numbers, is n-1 0's when i=1, and $0^{(n-i)}1$ for $2 \le i \le n$.
- 5. (a) For example, for the change of N=55 cents,

		total
greedy:	$50 + 5 \cdot 1$	6 coins
optimal:	$25 + 3 \cdot 10$	4 coins

- (b) the smallest number of coins required $= \min\{\text{Change}(N), 1 + \text{Change}(N 50)\}$. This assumes that Change(N) returns ∞ for N < 0.
- (c) The optimal solution has to either have 0 or 1 half-dollars in it. The solution finds the best of options and returns the minimum of those.

Running time = $2 \cdot O(N) = O(N)$.