Q1.

Let V be an inner product space with inner product $\langle -, - \rangle : V \times V \to \mathbb{R}$.

(a) For any arbitrary $\mathbf{v} \in V$, show that the function $\varphi_{\mathbf{v}} : V \to \mathbb{R}$ given by

$$\varphi_{\mathbf{v}}(\mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle$$

is a linear transformation.

For linearity we must prove:

$$\varphi_{\mathbf{v}}(\mathbf{w} + \mathbf{a}) = \langle \mathbf{v}, \mathbf{w} + \mathbf{a} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{a} \rangle = \varphi_{\mathbf{v}}(\mathbf{w}) + \varphi_{\mathbf{v}}(\mathbf{a})$$

And

$$\varphi_{\mathbf{v}}(\alpha \cdot \mathbf{w}) = \langle \mathbf{v}, \alpha \cdot \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle = \alpha \varphi_{\mathbf{v}}(\mathbf{w})$$

Therefore the inner product is a linear transformation.

(b) When $V = \mathbb{R}^3$, where the inner product is the usual dot product, and $\mathbf{v} = (1, 2, 3)$, find the matrix for the linear transformation $\varphi_{\mathbf{v}}$ with respect to the standard bases for \mathbb{R}^3 and \mathbb{R} .

A matrix of dimension 1×3 could be constructed as a transformation matrix for $\varphi_{\mathbf{v}}$ and vectors in \mathbb{R}^3 .

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \mathbf{w}_3 \end{bmatrix}$$

(c) What can you notice about the matrix for $\varphi_{\mathbf{v}}$? For arbitrary vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^n , how can we write down the dot product of $\mathbf{x} \cdot \mathbf{y}$ in terms of matrix multiplication?

The matrix for $\varphi_{\mathbf{v}}$ is a $1 \times n$ matrix where \mathbf{v} is a vector in \mathbb{R}^n .

The dot product can be written as:

$$\mathbf{x}^T \cdot \mathbf{y}$$

$$egin{bmatrix} \left[\mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \cdots & \mathbf{x}_n
ight] \cdot egin{bmatrix} \mathbf{y}_1 \ \mathbf{y}_2 \ \mathbf{y}_3 \ dots \ \mathbf{y}_n \end{bmatrix}$$

Where x is a row vector of dimension $1 \times n$ and y is a column vector of $n \times 1$.

Q2.

Consider the matrix

$$A = \begin{bmatrix} 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix}$$

Find the eigenvalues, and associated eigenspaces of the matrix A. State the dimensions of the eigenspaces. To find the eigenvalues we must evaluate $\text{Det}(\lambda \cdot I_4 - A) = 0$

$$\begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{bmatrix} - \begin{bmatrix} 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \end{bmatrix} = \begin{bmatrix} \lambda & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & \lambda & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \lambda & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & \lambda \end{bmatrix}$$

$$\begin{vmatrix} \lambda & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & \lambda & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \lambda & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & \lambda \end{bmatrix} = -\frac{1}{2} \begin{vmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ \lambda & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 0 & \lambda \end{vmatrix} + \frac{1}{2} \begin{vmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \lambda & 0 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} \lambda & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \lambda & 0 \end{vmatrix} - \lambda \begin{vmatrix} \lambda & 0 & \frac{1}{2} \\ 0 & \lambda & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \lambda \end{vmatrix}$$

$$= -\frac{1}{2} \left(\frac{1}{2} \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ \lambda & -\frac{1}{2} \end{vmatrix} - \lambda \begin{vmatrix} 0 & -\frac{1}{2} \\ \lambda & -\frac{1}{2} \end{vmatrix} \right) + \frac{1}{2} \left(\frac{1}{2} \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} - \lambda \begin{vmatrix} \lambda & -\frac{1}{2} \\ 0 & -\frac{1}{2} \end{vmatrix} \right) - \lambda \left(\frac{1}{2} \begin{vmatrix} 0 & \frac{1}{2} \\ \lambda & \frac{1}{2} \end{vmatrix} - \frac{1}{2} \begin{vmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} \right)$$

$$= -\frac{1}{2} \left(\frac{1}{2} (0) - \lambda \left(\frac{\lambda}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} (0) - \lambda \left(-\frac{\lambda}{2} \right) \right) - \lambda \left(\frac{1}{2} \left(-\frac{\lambda}{2} \right) - \frac{1}{2} \left(\frac{\lambda}{2} \right) + \lambda (\lambda^{2}) \right)$$

$$= -\frac{1}{2} \left(\frac{\lambda^{2}}{2} \right) + \frac{1}{2} \left(-\frac{\lambda^{2}}{2} \right) - \lambda \left(-\frac{\lambda}{4} - \frac{\lambda}{4} + \lambda^{3} \right)$$

$$= -\frac{\lambda^{2}}{4} - \frac{\lambda^{2}}{2} - \lambda^{4}$$
Then
$$0 = \lambda^{4} - \lambda^{2}$$

 $\lambda = 1, -1, 0$

Now, to find the eigenvectors we must find the nullspace of lambda matrix thing.

When $\lambda = 1$:

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & 1 & 0 \end{bmatrix} \xrightarrow{2R_3, 2R_4} \begin{bmatrix} 1 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & 1 & 2 & 0 & 0 \\ -1 & -1 & 0 & 2 & 0 \end{bmatrix} \xrightarrow{R_4 + R_3} \begin{bmatrix} 1 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 2 & 2 & 0 \\ -1 & -1 & 0 & 2 & 0 \end{bmatrix}$$

$$R_4 + (R_1 + R_2) \xrightarrow{R_4 + (R_1 + R_2)} \begin{bmatrix} 1 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{R_1 - (\frac{1}{2}R_4)} \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

So:

$$x_1 = x_4, \qquad x_2 = x_4, \qquad x_3 = -x_4$$

Let $x_4 = \alpha$:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \alpha \in \mathbb{R}$$
 Forming a one dimensional eigenspace.

When
$$\lambda = 1$$
, the eigenvector is: $\begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$

When $\lambda = 0$:

$$\begin{bmatrix} 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \end{bmatrix} \xrightarrow{2R_1, 2R_2, 2R_3, 2R_4} \begin{bmatrix} 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \end{bmatrix}$$

So:

$$x_1 = -x_2, \qquad x_3 = x_4$$

Let $x_1 = \alpha$ and $x_2 = \beta$:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \alpha, \beta \in \mathbb{R}, \quad \text{Forming a two dimensional eigenspace}.$$

When
$$\lambda=0$$
, the eigenvectors are: $\begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$

When $\lambda = -1$:

$$\begin{bmatrix} -1 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -1 & \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & -1 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 & -1 & 0 \end{bmatrix} \xrightarrow{2R_1, 2R_2, 2R_3, 2R_4} \begin{bmatrix} -2 & 0 & 1 & -1 & 0 \\ 0 & -2 & 1 & -1 & 0 \\ 1 & 1 & -2 & 0 & 0 \\ -1 & -1 & 0 & -2 & 0 \end{bmatrix} \xrightarrow{R_3 + R_4, 2R_4} \begin{bmatrix} -2 & 0 & 1 & -1 & 0 \\ 0 & -2 & 1 & -1 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ -2 & -2 & 0 & -4 & 0 \end{bmatrix}$$

Then let $x_4 = \alpha$:

$$-2x_1 + x_3 - x_4 = 0$$
, $-2x_2 + x_3 - x_4 = 0$, $x_3 = x_4$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \alpha \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \alpha \in \mathbb{R} \quad \text{Forming a one dimensional eigenspace}.$$

When
$$\lambda = -1$$
, the eigenvector is: $\begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$

The eigenvectors for A are:

$$\begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Q3.

Recall that \mathcal{P}_3 is the vector space of polynomials of degree less than or equal to three with real coefficients, and $M^{2,2}$ is the vector space of 2×2 matrices with real entries. Consider the function $T: \mathcal{P}_3 \to M^{2,2}$ given by

$$T(p) = p(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + p(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

(a) Prove that T is a linear transformation.

Let there be two polynomials in $\mathcal{P}_3:p,q$.

$$T(p+q) = (p+q)(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + (p+q)(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$T(p+q) = p(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + q(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + p(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + q(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$= p(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + p(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + q(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + q(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$= T(p) + T(q)$$

And, let $\alpha \in \mathbb{R}$.

$$T(\alpha \cdot p) = (\alpha \cdot p)(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + (\alpha \cdot p)(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$= \alpha \cdot p(1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \alpha \cdot p(-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$= \alpha \cdot T(p)$$

Therefore, T is a linear transformation.

(b) Find the matrix for the linear transformation T with respect to the basis

$$\mathcal{B} = \{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$$

For \mathcal{P}_{\ni} and the standard basis

$$\mathcal{S} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

for $M^{2,2}$.

The transformation matrix for T can be found by squashing together the basis vectors from \mathcal{B} to \mathcal{S} .

$$[T]_{BS} = [[T(1)]_{S} [T(1+x)]_{S} [T(1+x+x^{2})]_{S} [T(1+x+x^{2}+x^{3})]_{S}]$$

Then:

$$T(1) = 1 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + 1 \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$T(1+x) = (1+1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + (1-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

$$T(1+x+x^2) = (1+1+1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + (1-1+1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -1 & -3 \end{bmatrix}$$

$$T(1+x+x^2+x^3) = (1+1+1+1) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + (1-1+1-1) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & -4 \end{bmatrix}$$

Therefore, when column vectorify these matrices and squash them together:

$$[T]_{\mathcal{B},\mathcal{S}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 0 \\ -1 & -2 & -3 & -4 \end{bmatrix}$$

(c) What is the kernel for the linear transformation T? You only need to provide a brief explaination for this.

The kernel for the linear transformation of T, is the nullspace of the transformation matrix, all the things which T transforms to 0.

So:

Let $x_4 = \alpha$ and $x_3 = \beta$.

$$x_1 = -x_3$$
, $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \alpha \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \quad \alpha, \beta \in \mathbb{R}$$

$$Ker(T) = span\left(\left\{\begin{bmatrix} 0\\ -2\\ 0\\ 1\end{bmatrix}, \begin{bmatrix} -1\\ -1\\ 1\\ 0\end{bmatrix}\right\}\right)$$

Q4.

(a) use the Gram Schmidt procedure to turn $\{1, x, x^2\}$ into an orthonormal basis for \mathcal{P}_2 , with respect to the inner product $\langle p, q \rangle = \int_0^1 p(x)q(x)dx$.

We want to transform our original basis, the standard basis \mathcal{S} to a new basis \mathcal{B} . Let the original polynomial W.R.T standard basis be a.

$$\therefore b_1 = \frac{a_1}{\sqrt{\langle a_1, a_1 \rangle}}$$

$$b_{1} = \frac{1}{\sqrt{\int_{0}^{1} 1 \cdot 1 dx}} = 1$$

$$a'_{2} = a_{2} - \langle a_{2}, b_{1} \rangle b_{1}$$

$$\therefore a'_{2} = x - \langle x, 1 \rangle 1 = x - \int_{0}^{1} x \cdot dx = x - \frac{1}{2}$$

$$b_{2} = \frac{a'_{2}}{\sqrt{\langle a'_{2}, a'_{2} \rangle}} = \frac{x - \frac{1}{2}}{\sqrt{\langle x - \frac{1}{2}, x - \frac{1}{2} \rangle}} = \frac{x - \frac{1}{2}}{\sqrt{\int_{0}^{1} x^{2} - x + \frac{1}{4} dx}} = \frac{x - \frac{1}{2}}{\sqrt{\frac{1}{12}}} = \sqrt{3}(2x - 1)$$

$$a'_{3} = a_{3} - \langle a_{2}, b_{1} \rangle b_{1} - \langle a_{3}, b_{2} \rangle b_{2}$$

$$\therefore a'_{3} = x^{2} - \langle x^{2}, 1 \rangle 1 - \langle x^{2}, \sqrt{3}(2x - 1) \rangle \sqrt{3}(2x - 1)$$

$$= x^{2} - \int_{0}^{1} x^{2} dx \cdot 1 - \int_{0}^{1} x^{2} \cdot \sqrt{3}(2x - 1) dx \cdot \sqrt{3}(2x - 1)$$

$$= x^{2} - x + \frac{1}{2} - \frac{1}{3}$$

$$= x^{2} - x + \frac{1}{6}$$

$$b_{3} = \frac{a'_{3}}{\sqrt{\langle a'_{3}, a'_{3} \rangle}} = \frac{x^{2} - x + \frac{1}{6}}{\sqrt{\langle x^{2} - x + \frac{1}{6}, x^{2} - x + \frac{1}{6} \rangle}} = \frac{x^{2} - x + \frac{1}{6}}{\sqrt{\int_{0}^{1} x^{4} - 2x^{3} + \frac{4x^{2}}{3} - \frac{x}{3} + \frac{1}{36} dx}}$$

$$= \sqrt{5}(6x^{2} - 6x + 1)$$

Our new orthonormal basis \mathcal{B} is now:

$$\left\{1, \sqrt{3}(2x-1), \sqrt{5}(6x^2-6x+1)\right\}$$

(b) Prove that if $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis for \mathbb{R}^n , with respect to the usual dot product, then the matrix formed by putting the columns of \mathcal{B} together is orthogonal. That is, show that the matrix

$$M = [\mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_n]$$

satisfies

$$M^T M = I$$

where I is the $n \times n$ identity matrix.

Since the basis is orthonormal, the dot product of columns $\mathbf{v}_n \cdot \mathbf{v}_m = 1$ if m = n. If $n \neq m$ then $\mathbf{v}_n \cdot \mathbf{v}_m = 0$. We know from $\mathbf{Q}\mathbf{1}$ that $x^T \cdot y = x \cdot y$ so:

$$M \cdot M = I_n$$

$$M^T \cdot M = I_n$$