Chapter 7: linur operators (generalization of linear functional)

1) definition and properties

Def: let E, F vector sences. A linear operator is a mapping T: E→F such that T(xx+μy) = λT(x) + μT(y). For any λ,μ ∈ C(or R), x,y ∈ E.

Def: A linear operator on E means T:E -E.

Def: If E,F are normed spaces, then a linear operator T: E -> F is bounded if 3 M > 0 s.t. | | T × 11 F < M | | × 11 | F | × x & E.

Thm: let E, I normed space, T: [-> [linear. The followy are equivalent

- O T is continuous at DEE
- @ T is continuous
- 3) Tir bombul

Post: Same or for linear functionals

Def: If T:E-> F bounded linear operator. Define operator norm

In particular, ITXII; \$ 11711. 11xII; VXEE.

-Notions: We define $\ker T = \{ x \in E : Tx = 0 \} \subset E$ $\operatorname{ran} T = \{ Tx : x \in E \} \subset E$

Ex. Integral operator: $k: \lfloor 2(\lfloor a_1b_1 \rfloor) \rightarrow \lfloor 2(\lfloor c_1a_1 \rfloor), \text{ First}, \text{ let } A: \lfloor c_1a_1 \rfloor \times \lfloor a_1b_1 \rfloor \rightarrow \mathbb{C}.$ Let A be a continuour function. Let A (s) A (a_1b_1).

Define $(k \times) (f) = \int_{\rho}^{\sigma} d\xi (f'z) \times (t) qz^{-1} c < f < q$

Show Kir linear, bounded.

Note that
$$\| k x \|_{L^{2}}^{2} = \int_{0}^{d} |k x (t)|^{2} dt$$
. First compare

$$\left[|k x (t)|^{2} = \left| \int_{0}^{t} |k (t,s) x (s) ds \right|^{2} \right]$$

$$\leq \left(\int_{a}^{b} |k (t,s) x (s) dr \right)^{2} \leq \int_{a}^{b} |k (t,s)|^{2} ds \int_{a}^{b} |k (t,s)|^{2} ds$$

$$\leq \int_{0}^{b} |k (t,s)|^{2} ds \cdot \| x \|_{L^{2}(Ca,b)}$$

$$\leq \int_{0}^{b} |k (t,s)|^{2} ds \cdot \| x \|_{L^{2}(Ca,b)}$$

$$\leq \int_{0}^{b} |k (t,s)|^{2} ds \cdot \| x \|_{L^{2}(Ca,b)}$$

$$\|k_{\chi}\|_{L^{2}(\mathbb{C}_{c},k)}^{2} = \left(\int_{c}^{d} \int_{a}^{b} |k(t,s)|^{2} ds dt\right) \cdot \|x\|_{L^{2}(\mathbb{C}_{a},k)}$$

$$|et there is M$$

So k ir bounder and || k || s M

E x2) Differential operator (valuabled)

Let
$$\mathcal{J}$$
 be the space of differentiable functions of $\mathcal{L}^{1}([-\infty,\infty])$.
Such that $\mathcal{J}^{1}([-\infty,\infty])$. Namely, this implies $\mathcal{J}^{1}([-\infty,\infty])$.

Then consider
$$\frac{d}{dx}: \int \rightarrow \lfloor^2([-\infty,\infty])$$
. Here f is a subspace of \lfloor^2 .

$$f_{n}'(x) = -\partial_{n}\pi x e^{-nx^{2}} \quad ||f_{n}'||_{L^{2}}^{2} = \int_{-\infty}^{\infty} 2n^{3} e^{-2nx^{2}} dx^{2} = n^{2} \sqrt{\pi} \longrightarrow \infty$$
(unborded! how can we fix this so we can solve diff. typis).

Note if you are a different norm
$$\|f\| = \left(\int_{-\infty}^{\infty} |f|^2 + |f'|^2 dx \right)^{\frac{1}{2}} = \left(\|f\|_{L^2}^2 + \|f'\|_{L^2}^2 \right)^{\frac{1}{2}}$$
 then $\frac{1}{N \times N}$ or bounded. But with a new norm, then are disadrantages.

I) Banuch space of operators

- <u>Def</u> let d(E,F) be the set of all bounded linear operators from E to F, where E,F normed vector space.

Note Ex = (E, C). Had to ate completeres of C.

Thm: L(E,F) is a Banach space if Fis Banach. Errany hormod vector space. The past is the same for $E^*=L(E,\mathbb{C})$.

- Define compusition of operators, let $A: E \to F$, $B: F \to G$. Then $BA: E \to G$. This is defined by $(BA)(x) = B(A(x)) \in G$, $\forall x \in E$.

Thm let E.F.G normed rector space. As L(E.F), B& L(F.G), then BA&L(E.G)

(ie. BA it still bunded and linear). And ||BAH < ||BH. WALL

 - Crossiter L(E) = L(E,E) bunded linear operator on E.

Then for any $T \in L(E)$, then $T^n \in L(E)$, n = 1, 2, ... and $T^n = I$ identity operator.

If E bunder, then L(E) benach. Next time, we show that is an algebra.

as in proof for linear functionals