Multi-Dimensional Domain Splitting for Neural Network Verification

Msc Project Presentation

James Dorricott

11 September 2020

What I will cover

Explosion in deep learning...

Figures: M. Bronstein

Neural network errors

- It's well-known that neural networks are vulnerable to adversarial images
- These are images that look the same to a human but lead to an incorrect classification
- These need to be identified before networks are deployed in safety-paramount applications

Neural network verification

- The field of neural network verification deals with this mathematically
- To make it meaningful requires pre- and post-conditions on the network
- Showing that these hold is the "open-loop verification problem"
- Solving this problem on high-dimensional inputs is the core focus of this project

'Preconditions' = Input assumptions 'Postconditions' = Output properties

Neural Network = Trained weights/biases

Terminology: the verification problem

- We can define this more formally...
- We use the infinity-norm the capture all possible input perturbations up to some ε-bound
- This problem allows for an exact representation as a MILP program¹

Definition 1 Verification problem. Let $\mathcal{X}_0 \subseteq \mathbb{R}^m$ and $\mathcal{Y} \subseteq \mathbb{R}^n$ be input and output constraints, respectively, imposed on a neural network network $f: \mathbb{R}^m \to \mathbb{R}^n$. Then, the verification problem is to establish whether for all $\mathbf{x} \in \mathcal{X}_0$, $\mathbf{y} \in \mathcal{Y}$.

Definition 2 Local robustness. Local robustness is a pair (\mathcal{X}_0, K) , where $\mathcal{X}_0 \subseteq \mathbb{R}^m$ defines a bounded input region and $1 \leq K \leq n$ represents the index of the desired class for all inputs in \mathcal{X}_0 . A neural network is said to be locally robust if for all $\mathbf{x} \in \mathcal{X}_0$, we have that $(f(\mathbf{x}))_K > (f(\mathbf{x}))_j$ for all $j \neq K$.

Terminology: MILP encodings

- To do so requires a way to linearly encode the non-linearity of the network
- The use of a Big-M encoding¹ can precisely capture the possible phases of the ReLU when the pre-activation pattern is unknown
- The encoding we use leverages the pre-activation bounds and modifies slightly the original formulation of Lomuscio & Maganti (2017)

$$z_{i,j} \ge \hat{z}_{i,j}$$

$$z_{i,j} \ge 0$$

$$z_{i,j} \le \hat{u}_{i,j} \delta_{i,j}$$

$$z_{i,j} \le \hat{z}_{i,j} - \hat{l}_{i,j} (1 - \delta_{i,j})$$

Figure: C. Liu

Verification pipeline: template

- Define the input constraints
- Define the output constraints
- Starting from the input, propagate the bounds³ throughout the network
- 4. Encode unstable nodes as MILP constraints
- Dispatch all constraints to a MILP solver
- If the answer to the satisfiability problem is NO, the network is proven to be robust within the given input region

Domain splitting: bisection

- Tighter bounds still can be found by bisecting the input domain
- Bisection proceeds by dividing the input in half **one dimension** at a time
- Bisection has been shown to be effective for low-dimensional inputs^{4,5}
- Different methods exist for how to optimise to dimension to split at each step

Multi-dimensional splitting: motivation

- The success of efficiently reaching an answer⁶ to the verification problem when formulated with MILP constraints is related to:
 - The number of binary variables ≡ the number of unstable ReLUs
 - The strength of the relaxations ≡ the tightness of the pre-activation bounds.
- This means that networks with high-dimensional inputs (often with many hidden nodes as well) can be very challenging to verify
- And bisection is not well-suited to high-dimensional inputs:
 - One split will be unlikely to reduce the overall problem complexity
 - Exponential blow-up of subregions if the splitting depth is not limited
 - Forced to randomly select which dimension to split

Summary of contributions

- In this project, we...
- Present a new algorithm⁷ for splitting the input domain along multiple
 dimensions which fixes a given ReLU node into the inactive or active state
- Perform extensive investigations to identify the best splitting strategies
- Engineer a distributed verification system for sharing jobs over a network
- Investigate the use of hybrid MILP formulations for checking a combination of the original verification problem and our new splitting procedure

7: Proposed by E. Botoeva (2020)

The splitting algorithm

- Assume the input region is the multi-dimensional interval [I, u] and that the equation e(x) = wx + b estimates the upper bound of a given node y with input x ∈ R^m
- Finding split locations s_{i1},...,s_{ik} in dimensions i,...,k that fix y into the inactive state can be solved by means of a MILP

Definition 3 Splitting algorithm encoded as a MILP.

- Take m binary variables $\delta_i, \ldots, \delta_m$, with the meaning that $\delta_i = 1$ iff we split dimension i.
- Take m real variables s_i, \ldots, s_m , such that when $\delta_i = 1$, the value of $s_i \in [l_i, u_i]$ is the location of the split of input dimension i.
- Take m real variables u_i^*, \ldots, u_m^* , such that when $\delta_i = 1$, $u_i^* = s_i$, and when $\delta_i = 0$, u_i^* is equal to u_i or l_i depending on $sgn(w_i)$.

The following constraints are added to the program:

- $e(\mathbf{u}^*) = 0$, where $\mathbf{u}^* = [u_1^*, \dots, u_m^*]^T$.
- $\delta_i + \cdots + \delta_m \geq 1$.

We also add the following objective function:

• Minimise the sum $\delta_i + \cdots + \delta_m$.

Splitting heuristics

- To decide which node to fix in the network, we make use of the triangle relaxation⁸ as a measure of a node's instability:
 - The smaller the value of the area induced by the relaxation, the closer the node is to being stable

Example: Picking the node with the 2nd smallest over-approximation area

	Node	Area _{relax}	
	(1,2)	0.8	
—	(2,3)	1.6	
	(2,1)	3.4	
	÷	÷	

Distributed verification

- Because a splitting step creates a number of independent problems on each of the resulting subregions, we can check these in *parallel*
- A core contribution of this project: building on the existing parallelization scheme⁹ by allowing verification jobs to be shared over a network of machines
- To achieve this, we:
 - Leveraged the server/client manager framework available in the Python std. library and the concept of *proxy* objects
 - Designed the system to allow for fully automatic connections

Hybrid MILP formulations

- Infeasible instances (solver returns NO) can often be verified more quickly using the standard MILP encoding
 - ...whereas (see next slide) our splitting procedure is good at speeding up the detection of counter-examples (solver returns YES)
- We have therefore investigated the use of hybrid/combined formulations that enter into a parallel race against each other to produce the answer

Example: checking the original problem ('spec 1') in parallel to our splitting procedure ('spec 2')

Headline result

- We performed extensive experiments¹⁰ on a five-layer CIFAR10 classifier with 3,072 inputs / 2,048 ReLUs
- Key finding: our splitting procedure is able to speed up (x2) counter-example detection on networks with high-dimensional inputs

Splitter	Queries solved	Total time (s)	Avg time (solved) (s)
None	84	44,309.51	184.62
Bisection	90	32,695.49	163.28
Multi-dim	93	23,733.63	119.71

Table 1: The best verification result of our multi-dimensional splitter applied to 100 mixed-difficulty, non-robust CIFAR instances at ε = 0.03. The timeout was set to 1,800 seconds. We compare it against the original problem (no domain splitting) and a bisection splitter.

Additional insights

- Fixing unstable nodes via domain splitting serves to (a) reduce to search space for the MILP solver and (b) improve the strength of the LP relaxations
- Rather than waiting until a pre-specified stability ratio, e.g., 70%, has been reached (which may require many splitting steps), we found our most effective splitting strategy was to:
 - Perform one splitting step that can immediately produce subproblems for verification
 - Fix the nth almost-stable node as a heuristic for fixing all nodes with smaller Area_{relax}
 - Ensure the method for choosing *n* is such that *n* remains **small**
 - ...which suggests that it is only necessary to fix a few unstable nodes to significantly improve upon the original formulation ("dependency effect")

Demo: distributed system

Example: the server/client connections and readout from the remote workers are shown in real-time

Hybrid investigation: results

- In the report, we demonstrate the correctness of our distributed system
- We also used it to investigate our hypothesis that if robustness is not known a priori, it's logical to check the original problem and our splitting procedure

Approach	Queries solved	Total time (s)
Baseline	83	54,249.04
Combination	88	37,766.93

Table 2: The result of our combined approach applied to 100 mixed-difficulty, robust AND non-robust CIFAR instances at ε = 0.03. The timeout was set to 1,800 seconds. The combined approach was performed on our distributed system with 2 client verifiers. We compare it against the original problem (no domain splitting).

Conclusions

- We have introduced a new, multi-dimensional splitting algorithm that is able to more quickly detect counter-examples and brings some key advantages:
 - Based on exploiting information readily available, namely, ReLU stability
 - Aimed directly at reducing the number of binary variables to consider
 - Unlike bisection (which can't be optimised when the dimensionality is high), minimal overhead means it should be able to scale up to larger networks than tested in this project
- We have built a first prototype of a distributed verification system that is able to share jobs over a network, with positive initial demonstrations
- We have investigated the use of combined MILP formulations as an interesting solution to verification in the wild

Future work

- Scaling verification algorithms, particularly complete methods, to real-world networks remains a key challenge. Does our approach hold promise here?
 - ...or do more hidden nodes simply imply more nodes need to be fixed in a splitting step, thus increasing the overhead from our splitting procedure?
 - This is a key trade-off to be considered
- How can we build a more scalable distributed system with less memory cost?
 - May require workarounds, or more production-grade tools than the Python std. library
- Are they other ways of approaching combined formulations?
 - A different approach¹¹ is to first check the original problem and then only split the input domain when a pre-specified timeout has been reached

Thank you!