6th Assignment

Zhengjun Zhang STAT 349 - Spring 2020

March 26, 2020

Problem 1. From a series of length 100, we have computed $r_1 = 0.8$, $r_2 = 0.5$, $r_3 = 0.4$, $\bar{Y} = 2$, and a sample variance of 5. If we assume that an $\mathbf{AR}(2)$ model with a constant term is appropriate, how can we get (simple) estimates of ϕ_1 , ϕ_2 , β_0 , and σ_e^2 ?

Problem 2. Consider an $\mathbf{ARMA}(1,1)$ model with $\phi = 0.5$ and $\theta = 0.45$. Recall that for maimum likelihood estimators of $\mathbf{ARMA}(1,1)$

$$Var(\hat{\phi}) \approx \left[\frac{1-\phi^2}{n}\right] \left[\frac{1-\phi\theta}{\phi-\theta}\right]^2,$$

$$Var(\hat{\theta}) \approx \left[\frac{1-\theta^2}{n}\right] \left[\frac{1-\phi\theta}{\phi-\theta}\right]^2,$$

$$Corr(\hat{\phi}, \hat{\theta}) \approx \frac{\sqrt{(1-\phi^2)(1-\theta^2)}}{1-\phi\theta}.$$

- (a) For n = 48, evaluate the variances and correlation of the maximum likelihood estimators of ϕ and θ using the above equations and comment on the results.
- (b) Repeat part (a) but now with n = 120. Comment on the new results

Problem 3. Simulate an AR(1) model with n = 30 and $\phi = 0.5$.

- (a) Fit the correctly specified AR(1) model and look at a time series plot of the residuals. Does the plot support the AR(1) specification?
- (b) Display a normal quantile-quantile plot of the standardized residuals. Does the plot support the $\mathbf{AR}(1)$ specification?
- (c) Display the sample ACF of the residuals. Does the plot support the $\mathbf{AR}(1)$ specification?
- (d) Calculate the Ljung-Box statistic summing to K = 8. Does this statistic support the $\mathbf{AR}(1)$ specification?

Problem 4. Fit an AR(3) model by maximum likelihood to the square root of the hare abundance series (filename *hare*).

- (a) Plot the sample ACF of the residuals. Comment on the size of the correlations.
- (b) Calculate the Ljung-Box statistic summing to K=9. Does this statistic support the $\mathbf{AR}(3)$ specification?
- (c) Perform a runs test on the residuals and comment on the results.
- (d) Display the quantile-quantile normal plot of the residuals. Comment on the plot.
- (e) Perform the Shapiro-Wilk test of normality on the residuals.