Úlohy k 1.kapitole

1. Určte platnosť nasledovných tvrdení.

$$a)\frac{1}{r^2} \sim 0$$

$$b)0 \sim \frac{1}{-2}$$

$$a)\frac{1}{x^2} \sim 0$$
 $b)0 \sim \frac{1}{x^2}$ $c)e^{1/x} = \theta(2).$

2. Rozhodnite, či medzi funkciami platí vzťah $f = \mathcal{O}, o, \theta, \Omega, \omega(q)$:

$$f = x \ln x$$

$$g = x^{1+\varepsilon}, \varepsilon > 0.$$

3. Zoraďte funkcie podľa asymptotického rastu.

a)
$$e^{\ln x}$$
, $x^2 + 10$, $3^{0.1x}$.

b)
$$2^{\sqrt{n}}$$
, $e^{\ln n^3}$, $n^{3.01}$, n^{n^2} .

c)
$$n^3 \ln n$$
, $(\ln \ln n)^3$, $n^{0.5}2^n$, $(n+4)^{12}$.

4. Vyjadrite asymptotické chovanie funkcie (prostredníctvom ekvivalencie \sim alebo vyjadrením cez symboly $\mathcal{O}, o, \Theta, \Omega$ s čo najjednoduchšou funkciou):

a)
$$(4x^{17} - 7x^3 + 100)^3$$
,

b)
$$\sqrt{\frac{125x^3 - x}{x - \ln x}}$$
.

- 5. Nech $f(n), g(n): \mathbb{R}^+ \to \mathbb{R}^+$. Dokažte, že platia nasledovné tvrdenia:
 - $f(n) = \theta(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n))$ a zároveň $f(n) = \Omega(g(n))$.

•
$$f(n) = \theta(g(n))$$
 a $g(n) = \theta(h(n)) \Rightarrow f(n) = \theta(h(n))$.

•
$$f(n) = \mathcal{O}(g(n))$$
 a $g(n) = \mathcal{O}(h(n)) \Rightarrow f(n) = \mathcal{O}(h(n))$.

•
$$f(n) = \Omega(g(n))$$
 a $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$.

•
$$f(n) = o(g(n))$$
 a $g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$.

•
$$f(n) = \omega(g(n))$$
 a $g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$.

•
$$f(n) = \theta(f(n))$$
.

•
$$f(n) = \mathcal{O}(f(n))$$
.

•
$$f(n) = \Omega(f(n))$$
.

•
$$f(n) = \theta(g(n)) \Leftrightarrow g(n) = \theta(f(n)).$$

•
$$f(n) = \mathcal{O}(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$$

•
$$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n)).$$