Introdução à Recuperação de Informações https://github.com/fccoelho/curso-IRI

IRI 3: Dicionários e Recuperação Tolerante

Flávio Codeço Coelho

Escola de Matemática Aplicada, Fundação Getúlio Vargas

Sumário

- Recapitulação
- 2 Dicionários
- 3 Consultas Coringa
- 4 Distância de Edição
- 6 Correção ortográfica
- 6 Soundex

Distinguindo entre Tipo e token

- Token Uma instância de uma palavra ou termo ocorrendo em um documento
- Tipo Uma classe de equivalência de tokens
- In June, the dog likes to chase the cat in the barn.
- 12 tokens, 9 tipos de palavras

Problemas na tokenização

- Quais são os delimitadores? Espaços? Apóstrofes? Hífen?
- Para cada um destes: às vezes eles delimitam, às vezes não.
- Muitas línguas não possuem espaços! (P.ex., Chinês)
- Não Há espaços em palavras compostas em Holandês, Alemão e Sueco (Lebensversicherungsgesellschaftsangestellter)

Problemas com classes de equivalência

- Um termo é uma classe de equivalência de tokens.
- Como definir Classes de equivalência?
- Números: (3/20/91 vs. 20/3/91)
- Capitalização
- Truncagem, Truncador de Porter
- Análise Morfológica : infleccional vs. derivacional
- Problemas de classes de equivalências em outras línguas
 - Morfologias mais complexas do que o inglês
 - Finlandês: Um único verbo pode ter 12000 formas diferentes
 - Acentos, tremas, etc.

 Recuperação Tolerante: O que fazer se não há correspondência exata entre o termo de consulta e os termos do documento.

- Recuperação Tolerante: O que fazer se não há correspondência exata entre o termo de consulta e os termos do documento.
- Consultas coringas

- Recuperação Tolerante: O que fazer se não há correspondência exata entre o termo de consulta e os termos do documento.
- Consultas coringas
- Correção ortográficas

Índice invertido

Para cada termo t, armazenamos uma lista de documentos que contém t.

:

dicionário

postings

Índice invertido

Para cada termo t, armazenamos uma lista de documentos que contém t.

•

dicionário

postings

Dicionários

• O dicionário é a estrutura de dados que é usada para armazenar o vocabulário de termos.

Dicionários

- O dicionário é a estrutura de dados que é usada para armazenar o vocabulário de termos.
- vocabulário de termos: os dados

Dicionários

- O dicionário é a estrutura de dados que é usada para armazenar o vocabulário de termos.
- vocabulário de termos: os dados
- Dicionário: A estrutura de dados para armazenamento do vocabulário

• Para cada termo, precisamos armazenar um par de ítens:

- Para cada termo, precisamos armazenar um par de ítens:
 - Frequência de documentos

- Para cada termo, precisamos armazenar um par de ítens:
 - Frequência de documentos
 - Ponteiro para a lista de postings

- Para cada termo, precisamos armazenar um par de ítens:
 - Frequência de documentos
 - Ponteiro para a lista de postings
 - ...

- Para cada termo, precisamos armazenar um par de ítens:
 - Frequência de documentos
 - Ponteiro para a lista de postings
 - ...
- Assuma por ora que podemos armazenar esta informação em uma entrada de tamanho fixo.

- Para cada termo, precisamos armazenar um par de ítens:
 - Frequência de documentos
 - Ponteiro para a lista de postings
 - ...
- Assuma por ora que podemos armazenar esta informação em uma entrada de tamanho fixo.
- Assuma que armazenamos estas entradas em uma matriz.

termo	documento	ponteiro
	frequência	para lista de
	-	postings
		, 0
	656.265	
а	030.203	
aachen	65	\longrightarrow
	221	
zulu	221	\longrightarrow
20 hytes	1 hytes	4 hytes

espaço necessário: 20 bytes 4 bytes 4 bytes

como acessamos um termo de consulta q_i nesta matriz em tempo de consulta? Ou seja: Que estrutura de dados usamos para localizar a entrada (linha) na matriz onde q_i está armazenado?

 Duas Classes principais de estruturas de dados: hashes e árvores

- Duas Classes principais de estruturas de dados: hashes e árvores
- Alguns sistemas de RI usam hashes, outros usam árvores.

- Duas Classes principais de estruturas de dados: hashes e árvores
- Alguns sistemas de RI usam hashes, outros usam árvores.
- Critérios de escolha:

- Duas Classes principais de estruturas de dados: hashes e árvores
- Alguns sistemas de RI usam hashes, outros usam árvores.
- Critérios de escolha:
 - Existe um número fixo de termos ou ele crescerá indefinidamente?

- Duas Classes principais de estruturas de dados: hashes e árvores
- Alguns sistemas de RI usam hashes, outros usam árvores.
- Critérios de escolha:
 - Existe um número fixo de termos ou ele crescerá indefinidamente?
 - Quais as frequências relativas com que as várias chaves serão acessadas?

- Duas Classes principais de estruturas de dados: hashes e árvores
- Alguns sistemas de RI usam hashes, outros usam árvores.
- Critérios de escolha:
 - Existe um número fixo de termos ou ele crescerá indefinidamente?
 - Quais as frequências relativas com que as várias chaves serão acessadas?
 - Quantos termos teremos?

• Cada termo do vocabulário é "hasheado" para um inteiro.

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante
- Prós: Busca em um hash é mais rápida do que em uma árvore.

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante
- Prós: Busca em um hash é mais rápida do que em uma árvore.
 - Tempo de consulta é constante.

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante
- Prós: Busca em um hash é mais rápida do que em uma árvore.
 - Tempo de consulta é constante.
- Contras

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante
- Prós: Busca em um hash é mais rápida do que em uma árvore.
 - Tempo de consulta é constante.
- Contras
 - Não há forma de encontrar pequenas variações (resume vs. résumé)

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante
- Prós: Busca em um hash é mais rápida do que em uma árvore.
 - Tempo de consulta é constante.
- Contras
 - Não há forma de encontrar pequenas variações (resume vs. résumé)
 - Não permite busca de prefixos (Todos os termos que começam com automat)

- Cada termo do vocabulário é "hasheado" para um inteiro.
- Busca-se evitar colisões
- No momento da consulta, faz-se o seguinte: Hasheia o termo de consulta, resolve as colisões, Localiza entrada em uma matriz de elementos com tamanho constante
- Prós: Busca em um hash é mais rápida do que em uma árvore.
 - Tempo de consulta é constante.
- Contras
 - Não há forma de encontrar pequenas variações (resume vs. résumé)
 - Não permite busca de prefixos (Todos os termos que começam com automat)
 - é necessário "rehashear" tudo periodicamente se o vocabulário continua crescendo.

• Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).

- Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).
- Árvore mais simples: árvore binária

- Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).
- Árvore mais simples: árvore binária
- Busca é ligeiramente mais lenta que em hashes: $O(\log M)$, onde M é o tamanho do vocabulário.

- Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).
- Árvore mais simples: árvore binária
- Busca é ligeiramente mais lenta que em hashes: $O(\log M)$, onde M é o tamanho do vocabulário.
- O(log M) vale apenas para árvores balanceadas.

- Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).
- Árvore mais simples: árvore binária
- Busca é ligeiramente mais lenta que em hashes: $O(\log M)$, onde M é o tamanho do vocabulário.
- O(log M) vale apenas para árvores balanceadas.
- Rebalancear árvores binárias é caro.

- Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).
- Árvore mais simples: árvore binária
- Busca é ligeiramente mais lenta que em hashes: $O(\log M)$, onde M é o tamanho do vocabulário.
- O(log M) vale apenas para árvores balanceadas.
- Rebalancear árvores binárias é caro.
- Arvores-B resolvem o problema do balanceamento.

- Árvores resolvem o problema do prefixo (Encontrar todos os termos começando com *automat*).
- Árvore mais simples: árvore binária
- Busca é ligeiramente mais lenta que em hashes: $O(\log M)$, onde M é o tamanho do vocabulário.
- O(log M) vale apenas para árvores balanceadas.
- Rebalancear árvores binárias é caro.
- Arvores-B resolvem o problema do balanceamento.
- Definição de árvore-B: cada nó interno tem um número de filhos no intervalo [a, b] onde a, b são inteiros positivos apropriados, p.ex., [2, 4].

Árvore Binária

Árvore B

 mon*: Encontre todos os documentos contendo termos começados por mon

- mon*: Encontre todos os documentos contendo termos começados por mon
- Fácil com dicionários baseados em árvore B: recupera todos os termos t no intervalo: mon $\leq t <$ moo

- mon*: Encontre todos os documentos contendo termos começados por mon
- Fácil com dicionários baseados em árvore B: recupera todos os termos t no intervalo: mon $\leq t <$ moo
- *mon: Encontre todos os documentos contendo termos que terminam com mon

- mon*: Encontre todos os documentos contendo termos começados por mon
- Fácil com dicionários baseados em árvore B: recupera todos os termos t no intervalo: mon $\leq t <$ moo
- *mon: Encontre todos os documentos contendo termos que terminam com *mon*
 - Mantém uma árvore adicional para termos ao contrário

- mon*: Encontre todos os documentos contendo termos começados por mon
- Fácil com dicionários baseados em árvore B: recupera todos os termos t no intervalo: mon $\leq t <$ moo
- *mon: Encontre todos os documentos contendo termos que terminam com *mon*
 - Mantém uma árvore adicional para termos ao contrário
 - Então recupera todos os termos t no intervalo: nom $\leq t <$ non

- mon*: Encontre todos os documentos contendo termos começados por mon
- Fácil com dicionários baseados em árvore B: recupera todos os termos t no intervalo: mon $\leq t <$ moo
- *mon: Encontre todos os documentos contendo termos que terminam com *mon*
 - Mantém uma árvore adicional para termos ao contrário
 - ullet Então recupera todos os termos t no intervalo: nom $\leq t <$ non
- Resultado: Um conjunto de termos que correspondem à consulta coringa

- mon*: Encontre todos os documentos contendo termos começados por mon
- Fácil com dicionários baseados em árvore B: recupera todos os termos t no intervalo: mon $\leq t <$ moo
- *mon: Encontre todos os documentos contendo termos que terminam com *mon*
 - Mantém uma árvore adicional para termos ao contrário
 - ullet Então recupera todos os termos t no intervalo: nom $\leq t <$ non
- Resultado: Um conjunto de termos que correspondem à consulta coringa
- Então recupera todos os documentos que contenham estes termos

• Exemplo: m*nchen

- Exemplo: m*nchen
- Poderíamos buscar todos os termos que satisfazem m* e
 *nchen Na árvore B e reter a interseção dos dois conjuntos.

- Exemplo: m*nchen
- Poderíamos buscar todos os termos que satisfazem m* e
 *nchen Na árvore B e reter a interseção dos dois conjuntos.
- Mas sai caro

- Exemplo: m*nchen
- Poderíamos buscar todos os termos que satisfazem m* e
 *nchen Na árvore B e reter a interseção dos dois conjuntos.
- Mas sai caro
- Alternativa: índice permuterm

- Exemplo: m*nchen
- Poderíamos buscar todos os termos que satisfazem m* e
 *nchen Na árvore B e reter a interseção dos dois conjuntos.
- Mas sai caro
- Alternativa: índice permuterm
- Idéia básica: Rotaciona cada consulta coringa, de forma que o
 * ocorra no final.

- Exemplo: m*nchen
- Poderíamos buscar todos os termos que satisfazem m* e
 *nchen Na árvore B e reter a interseção dos dois conjuntos.
- Mas sai caro
- Alternativa: índice permuterm
- Idéia básica: Rotaciona cada consulta coringa, de forma que o
 * ocorra no final.
- Armazena cada uma destas rotações no dicionário, por exemplo, em uma árvore B

 Para o termo HELLO: adicione hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, e \$hello à árvore B onde \$ é um símbolo especial

Permuterm → mapeamento de termos

 Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e o\$hell

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e o\$hell
- Consultas

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*, acesse \$X*

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*, acesse \$X*
 - Para *X, acesse X\$*

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*, acesse \$X*
 - Para *X, acesse X\$*
 - Para *X*, acesse X*

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*, acesse \$X*
 - Para *X, acesse X\$*
 - Para *X*, acesse X*
 - Para X*Y, acesse Y\$X*

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*. acesse \$X*
 - Para *X, acesse X\$*
 - Para *X*, acesse X*
 - Para X*Y, acesse Y\$X*
 - Example: Para hel*o, acesse o\$hel*

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*. acesse \$X*
 - Para *X, acesse X\$*
 - Para *X*, acesse X*
 - Para X*Y, acesse Y\$X*
 - Example: Para hel*o, acesse o\$hel*
- Um nome mais adequado para um índice Permuterm seria uma árvore permuterm tree.

- Para HELLO, adicionamos: hello\$, ello\$h, llo\$he, lo\$hel, e
 o\$hell
- Consultas
 - Para X, acesse X\$
 - Para X*, acesse \$X*
 - Para *X, acesse X\$*
 - Para *X*, acesse X*
 - Para X*Y, acesse Y\$X*
 - Example: Para hel*o, acesse o\$hel*
- Um nome mais adequado para um índice Permuterm seria uma árvore permuterm tree.
- Mas índice permuterm é o nome mais comum.

Processando um acesso ao índice permuterm

• Rotacione a consulta coringa para a direita

Processando um acesso ao índice permuterm

- Rotacione a consulta coringa para a direita
- Use o acesso à árvore B como descrito anteriormente

Processando um acesso ao índice permuterm

- Rotacione a consulta coringa para a direita
- Use o acesso à árvore B como descrito anteriormente
- Problema: O Permuterm mais do que quadruplica o tamanho do dicionário quando comparado a uma árvore B regular. (observação empírica)

• Dois usos principais

- Dois usos principais
 - Correção de documentos a serem indexados

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica
- Correção de Palavra isolada

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica
- Correção de Palavra isolada
 - Verifica cada palavra isoladamente quanto à correção ortográfica

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica
- Correção de Palavra isolada
 - Verifica cada palavra isoladamente quanto à correção ortográfica
 - Não "pega" erros que resultam em palavras corretas, p.ex., an asteroid that fell form the sky

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica
- Correção de Palavra isolada
 - Verifica cada palavra isoladamente quanto à correção ortográfica
 - Não "pega" erros que resultam em palavras corretas, p.ex., an asteroid that fell form the sky
- Correção ortográfica contextual

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica
- Correção de Palavra isolada
 - Verifica cada palavra isoladamente quanto à correção ortográfica
 - Não "pega" erros que resultam em palavras corretas, p.ex., an asteroid that fell form the sky
- Correção ortográfica contextual
 - Olha para as palavras vizinhas

- Dois usos principais
 - Correção de documentos a serem indexados
 - Correção de consultas
- Dois métodos diferentes para correção ortográfica
- Correção de Palavra isolada
 - Verifica cada palavra isoladamente quanto à correção ortográfica
 - Não "pega" erros que resultam em palavras corretas, p.ex., an asteroid that fell form the sky
- Correção ortográfica contextual
 - Olha para as palavras vizinhas
 - Pode corrigir o erro form/from acima

 Não estamos interessados em correção interativa de documentos (p.ex., MS Word) neste curso.

- Não estamos interessados em correção interativa de documentos (p.ex., MS Word) neste curso.
- Em RI, Usamos a correção de documentos primariamente para documentos OCR-izados. (OCR = optical character recognition)

- Não estamos interessados em correção interativa de documentos (p.ex., MS Word) neste curso.
- Em RI, Usamos a correção de documentos primariamente para documentos OCR-izados. (OCR = optical character recognition)
- A filosofia geral em RI é: Não altere os documentos.

• Primeiro: correção ortográfica de palavras isoladas

- Primeiro: correção ortográfica de palavras isoladas
- Premissa 1: Há uma lista de palavas "corretas" a partir da qual as correções podem ser obtidas.

- Primeiro: correção ortográfica de palavras isoladas
- Premissa 1: Há uma lista de palavas "corretas" a partir da qual as correções podem ser obtidas.
- Premissa 2: Há uma maneira de calcular a distância entre uma palavra errada e uma correta.

- Primeiro: correção ortográfica de palavras isoladas
- Premissa 1: Há uma lista de palavas "corretas" a partir da qual as correções podem ser obtidas.
- Premissa 2: Há uma maneira de calcular a distância entre uma palavra errada e uma correta.
- Algoritmo simplificado: retorne a palavra "correta" com a menor distância da palavra errada.

- Primeiro: correção ortográfica de palavras isoladas
- Premissa 1: Há uma lista de palavas "corretas" a partir da qual as correções podem ser obtidas.
- Premissa 2: Há uma maneira de calcular a distância entre uma palavra errada e uma correta.
- Algoritmo simplificado: retorne a palavra "correta" com a menor distância da palavra errada.
- Exemplo: *information* → *information*

- Primeiro: correção ortográfica de palavras isoladas
- Premissa 1: Há uma lista de palavas "corretas" a partir da qual as correções podem ser obtidas.
- Premissa 2: Há uma maneira de calcular a distância entre uma palavra errada e uma correta.
- Algoritmo simplificado: retorne a palavra "correta" com a menor distância da palavra errada.
- ullet Exemplo: information o information
- Como lista de palavras corretas, podemos usar o vocabulário de todas as palavras que ocorrem em nossa coleção.

- Primeiro: correção ortográfica de palavras isoladas
- Premissa 1: Há uma lista de palavas "corretas" a partir da qual as correções podem ser obtidas.
- Premissa 2: Há uma maneira de calcular a distância entre uma palavra errada e uma correta.
- Algoritmo simplificado: retorne a palavra "correta" com a menor distância da palavra errada.
- Exemplo: *information* → *information*
- Como lista de palavras corretas, podemos usar o vocabulário de todas as palavras que ocorrem em nossa coleção.
- Porque isto é problemático?

• Um dicionário padrão (Webster's, Aurélio etc.)

- Um dicionário padrão (Webster's, Aurélio etc.)
- Um dicionário de um domínio específico (Para sistemas de RI especializados)

- Um dicionário padrão (Webster's, Aurélio etc.)
- Um dicionário de um domínio específico (Para sistemas de RI especializados)
- O vocabulário de termos ponderado, ponderado de forma adequada

Estudaremos várias alternativas.

- Estudaremos várias alternativas.
- Distância de edição e a distância de Levenshtein

- Estudaremos várias alternativas.
- Distância de edição e a distância de Levenshtein
- Distância de edição ponderada

- Estudaremos várias alternativas.
- Distância de edição e a distância de Levenshtein
- Distância de edição ponderada
- sobreposição de *k*-grams

Distância de edição

Distância de edição

• A distância de edição entre a string s_1 e a string s_2 é o número mínimo de operações básicas que converte s_1 em s_2 .

Distância de edição

- A distância de edição entre a string s₁ e a string s₂ é o número mínimo de operações básicas que converte s₁ em s₂.
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição

- A distância de edição entre a string s₁ e a string s₂ é o número mínimo de operações básicas que converte s₁ em s₂.
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição
- Distância de Levenshtein dog-do: 1

- A distância de edição entre a string s₁ e a string s₂ é o número mínimo de operações básicas que converte s₁ em s₂.
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição
- Distância de Levenshtein dog-do: 1
- Distância de Levenshtein cat-cart: 1

- A distância de edição entre a string s_1 e a string s_2 é o número mínimo de operações básicas que converte s_1 em s_2 .
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição
- Distância de Levenshtein dog-do: 1
- Distância de Levenshtein cat-cart: 1
- Distância de Levenshtein cat-cut: 1

- A distância de edição entre a string s₁ e a string s₂ é o número mínimo de operações básicas que converte s₁ em s₂.
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição
- Distância de Levenshtein dog-do: 1
- Distância de Levenshtein cat-cart: 1
- Distância de Levenshtein cat-cut: 1
- Distância de Levenshtein *cat-act*: 2

- A distância de edição entre a string s₁ e a string s₂ é o número mínimo de operações básicas que converte s₁ em s₂.
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição
- Distância de Levenshtein *dog-do*: 1
- Distância de Levenshtein cat-cart: 1
- Distância de Levenshtein cat-cut: 1
- Distância de Levenshtein *cat-act*: 2
- Distância de Damerau-Levenshtein cat-act: 1

- A distância de edição entre a string s₁ e a string s₂ é o número mínimo de operações básicas que converte s₁ em s₂.
- Distância de Levenshtein: Operações válidas: inserção, deleção, e substituição
- Distância de Levenshtein *dog-do*: 1
- Distância de Levenshtein cat-cart: 1
- Distância de Levenshtein cat-cut: 1
- Distância de Levenshtein *cat-act*: 2
- Distância de Damerau-Levenshtein cat-act: 1
- Distância de Damerau-Levenshtein inclui a transposição como uma quarta operação possivel.

Distância de Levenshtein: Computação

		f	а	S	t
	0	1	2	3	4
С	1	1	2	3	4
a	2	2	1	2	3
t	3	3	2	2	2
S	4	4	3	2	3

Distância de Levenshtein: Algoritmo

```
LEVENSHTEIN DISTANCE (s_1, s_2)
    for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for i \leftarrow 0 to |s_2|
    do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
      do for i \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                 then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
                 else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
  9
      return m[|s_1|, |s_2|]
 10
```

(custo 1), cópia (custo 0)

Distância de Levenshtein: Algoritmo

```
LEVENSHTEIN DISTANCE (s_1, s_2)
    for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for i \leftarrow 0 to |s_2|
    do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
      do for i \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                 then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
                 else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
  9
      return m[|s_1|, |s_2|]
 10
```

Operações: inserção (custo 1), deleção (custo 1), substituição

Distância de Levenshtein: Algoritmo

```
LEVENSHTEIN DISTANCE (s_1, s_2)
    for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for i \leftarrow 0 to |s_2|
    do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
      do for i \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                 then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
                 else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
  9
      return m[|s_1|, |s_2|]
 10
```

Distância de Levenshtein: Algorithm

```
LEVENSHTEIN DISTANCE (s_1, s_2)
    for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for i \leftarrow 0 to |s_2|
    do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
      do for i \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                 then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
                 else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
  9
      return m[|s_1|, |s_2|]
 10
```

Distância de Levenshtein: Algoritmo

```
LEVENSHTEIN DISTANCE (s_1, s_2)
    for i \leftarrow 0 to |s_1|
  2 do m[i, 0] = i
  3 for i \leftarrow 0 to |s_2|
    do m[0, j] = j
  5 for i \leftarrow 1 to |s_1|
      do for i \leftarrow 1 to |s_2|
          do if s_1[i] = s_2[i]
  8
                 then m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]\}
                 else m[i,j] = \min\{m[i-1,j]+1, m[i,j-1]+1, m[i-1,j-1]+1\}
  9
      return m[|s_1|, |s_2|]
 10
```

Distância de Levenshtein: Exemplo

			1	f	a	a	9	5	1	
		0	1	1	2	2	3	3	4	4
		1	1	2	2	3	3	4	4	5
C		1	2	1	2	2	3	3	4	4
		2	2	2	1	3	3	4	4	5
a		2	3	2	3	1	2	2	3	3
+		3	3	3	3	2	2	3	2	4
L		3	4	3	4	2	3	2	3	2
		4	4	4	4	3	2	3	3	3
S		4	5	4	5	3	4	2	3	3

Cada célula da matriz de Levenshtein

Custo de chegar aqui a partir do meu vizinho su- perior esquerdo (cópia or substituição)	Custo de chegar aqui a partir do meu vizinho su- perior (deleção)
Custo de chegar aqui a partir do meu vizinho es- querdo (inserção)	mínimo dos três "mo- vimentos" possíveis; a forma mais barata de chegar aqui

Distância de Levenshtein: Exemplo

			1	f	a	a	9	5	1	
		0	1	1	2	2	3	3	4	4
		1	1	2	2	3	3	4	4	5
C		1	2	1	2	2	3	3	4	4
		2	2	2	1	3	3	4	4	5
a		2	3	2	3	1	2	2	3	3
+		3	3	3	3	2	2	3	2	4
L		3	4	3	4	2	3	2	3	2
		4	4	4	4	3	2	3	3	3
S		4	5	4	5	3	4	2	3	3

 Sub-estrutura ótima: A solução ótima para o problema, contém em si, sub-soluções, i.e., soluções ótimas para os sub-problemas.

- Sub-estrutura ótima: A solução ótima para o problema, contém em si, sub-soluções, i.e., soluções ótimas para os sub-problemas.
- Sobreposição de sub-soluções: As subsoluções se sobrepõem.
 Estas subsoluções são computadas repetidamente quando se computa a solução ótima global em um algoritmo de força bruta.

- Sub-estrutura ótima: A solução ótima para o problema, contém em si, sub-soluções, i.e., soluções ótimas para os sub-problemas.
- Sobreposição de sub-soluções: As subsoluções se sobrepõem.
 Estas subsoluções são computadas repetidamente quando se computa a solução ótima global em um algoritmo de força bruta.
- Subproblema no caso da distância de edição: Qual a distância de edição de dois prefixos

- Sub-estrutura ótima: A solução ótima para o problema, contém em si, sub-soluções, i.e., soluções ótimas para os sub-problemas.
- Sobreposição de sub-soluções: As subsoluções se sobrepõem.
 Estas subsoluções são computadas repetidamente quando se computa a solução ótima global em um algoritmo de força bruta.
- Subproblema no caso da distância de edição: Qual a distância de edição de dois prefixos
- Subsoluções sobrepostas: precisamos da maioria das distâncias entre prefixos 3 vezes – Isto corresponde a mover para a direita, diagonalmente, e para baixo.

 Como anteriormente, mas o peso de uma operação depende dos caracteres envolvidos.

- Como anteriormente, mas o peso de uma operação depende dos caracteres envolvidos.
- Pensado para capturar erros de digitação, p.ex., a letra m é mais provável de ser trocada por n do que por q.

- Como anteriormente, mas o peso de uma operação depende dos caracteres envolvidos.
- Pensado para capturar erros de digitação, p.ex., a letra m é mais provável de ser trocada por n do que por q.
- Logo, trocar m por n é uma distância de edição menor do que por q.

- Como anteriormente, mas o peso de uma operação depende dos caracteres envolvidos.
- Pensado para capturar erros de digitação, p.ex., a letra m é mais provável de ser trocada por n do que por q.
- Logo, trocar m por n é uma distância de edição menor do que por q.
- Agora precisamos de uma matriz de pesos como entrada.

- Como anteriormente, mas o peso de uma operação depende dos caracteres envolvidos.
- Pensado para capturar erros de digitação, p.ex., a letra m é mais provável de ser trocada por n do que por q.
- Logo, trocar m por n é uma distância de edição menor do que por q.
- Agora precisamos de uma matriz de pesos como entrada.
- E modificar a programação dinâmica para lidar com os pesos

 Dada uma consulta, primeiro enumera-se todas as sequências de caracteres dentro de uma distância (possivelmente ponderada) de edição prédefinida.

- Dada uma consulta, primeiro enumera-se todas as sequências de caracteres dentro de uma distância (possivelmente ponderada) de edição prédefinida.
- Toma-se a interseção deste conjunto com a nossa lista de palavras "corretas".

- Dada uma consulta, primeiro enumera-se todas as sequências de caracteres dentro de uma distância (possivelmente ponderada) de edição prédefinida.
- Toma-se a interseção deste conjunto com a nossa lista de palavras "corretas".
- Então sugere-se termos na interseção ao usuário.

- Dada uma consulta, primeiro enumera-se todas as sequências de caracteres dentro de uma distância (possivelmente ponderada) de edição prédefinida.
- Toma-se a interseção deste conjunto com a nossa lista de palavras "corretas".
- Então sugere-se termos na interseção ao usuário.
- → exercício em poucos slides

Exercício

- Compute a matriz de distância de Levenshtein para as palavras OSLO - SNOW
- Quais são as operações de Levenshtein que transformam cat em catcat?

		S	n	0	W
	0	1 1	2 2	3 3	4 4
О	1 1				
S	2 2				
I	3 3				
О	4 4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 ?			
S	2 2				
I	3 3				
О	4 4				

		S	n	0	w
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 2 1			
S	2 2				
I	3 3				
О	4 4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1	1 2	2 3		
	1	2 1	2 ?		
s	2				
	2				
	3				
'	3				
	4				
0	4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
О	1 1	1 2 2 1	2 3 2 2		
S	2 2				
I	3 3				
О	4 4				

		S		r	ı	()	V	V
	0	1	1		2	3	3	4	4
О	1 1		2 1	2 2	3 2	$\frac{2}{3}$?		
S	2 2								
I	3 3								
О	4 4								

		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1 1	1 2 2 1	2 3 2	2 4 3 2	
S	2 2				
Ι	3 3				
0	4 4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
o	1	1 2	2 3	2 4	4 5
	1	2 1	2 2	3 2	3 ?
S	2 2				
I	3 3				
0	4 4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
s	2				
5	2				
	3				
'	3				
	4				
0	4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
0	1	1 2	2 3	2 4	4 5
	1	2 1	2 2	3 2	3 3
s	2	1 2			
3	2	3 ?			
I	3 3				
О	4 4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2			
S	2	3 1			
I	3 3				
О	4 4				

			S		r	ı	()	V	V
		0	1	1		2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3				
S		2	3	1	2	?				
I		3								
О		4								

			9	5	ı	ı	()	V	V
	0	_	1	1		2	3	3	4	4
	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
	2		1	2	2	3				
S	2	1	3	1	2	2				
I	3									
О	4									

		S	S		ı	()	V	v
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3		
S	2	3	1	2	2	3	?		
I	3 3								
О	4 4								

		S		r	n)	v	٧
	0	1 1	_ [2	3	3	4	4
	1	1 2	2	2	3	2	4	4	5
0	1	2 1		2	2	3	2	3	3
	2	1 2	2	2	3	3	3		
S	2	3 1		2	2	3	3		
I	3 3								
О	4 4								

		S	n	О	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 ?
I	3 3				
О	4 4				

		S	n	О	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
I	3 3				
О	4 4				

			S		n	()	ν	٧
	0	1	1	2	2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2						
	3	4	?						
	4								
0	4								

		S	n	О	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2			
	3	4 2			
	4				
0	4				

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3		
'	3	4 2	3 ?		
	4				
0	4				

			S	5	r	1	()	V	V
	0	-	1	1	2	2	3	3	4	4
	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
	2		1	2	2	3	3	3	3	4
S	2		3	1	2	2	3	3	4	3
	3		3	2	2	3				
'	3		4	2	3	2				
	4									
0	4									

		9	5	r	ı	()	V	V
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4		
	3	4	2	3	2	3	?		
	4						·		
0	4								

			9	5	r	1	()	v	٧
	0	_	1	1		2	3	3	4	4
	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
	2		1	2	2	3	3	3	3	4
S	2		3	1	2	2	3	3	4	3
	3		3	2	2	3	3	4		
	3		4	2	3	2	3	3		
	4									
0	4	_								

		9	6	r	ı	()	V	V
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
ı	3	4	2	3	2	3	3	4	?
	4								
0	4								

		9	5	r	ı	()	v	V
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
ı	3	4	2	3	2	3	3	4	4
	4						·		
0	4								

		9	5	r	ı	()	v	V
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
ı	3	4	2	3	2	3	3	4	4
	4	4	3				·		
0	4	5	?						

			9	5	ı	า	()	V	v
	0	-	1	1	2	2	3	3	4	4
	1		1	2	2	3	2	4	4	5
0	1		2	1	2	2	3	2	3	3
	2		1	2	2	3	3	3	3	4
S	2		3	1	2	2	3	3	4	3
	3		3	2	2	3	3	4	4	4
ı	3	_	4	2	3	2	3	3	4	4
	4		4	3		·		·		
0	4	-	5	3						

			5	r	ı	()	v	V
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
	3	4	2	3	2	3	3	4	4
	4	4	3	3	3		·		
0	4	5	3	4	?				

				5	ı	1	()	V	v
	_	0	1	1	2	2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
		3	4	2	3	2	3	3	4	4
		4	4	3	3	3				
0		4	5	3	4	3				

				5	ı	ı	()	V	v
	_	0	1	1		2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
ı		3	4	2	3	2	3	3	4	4
		4	4	3	3	3	2	4		
0		4	5	3	4	3	4	?		

				5	r	1	()	V	V
	_	0	1	1		2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
l		3	4	2	3	2	3	3	4	4
		4	4	3	3	3	2	4		
0		4	5	3	4	3	4	2		

			S		n		0		v
	0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
ı	3	4	2	3	2	3	3	4	4
	4	4	3	3	3	2	4	4	5
0	4	5	3	4	3	4	2	3	?

			5	ı	n)	V	v	
	_	0	1	1		2	3	3	4	4
		1	1	2	2	3	2	4	4	5
0		1	2	1	2	2	3	2	3	3
		2	1	2	2	3	3	3	3	4
S		2	3	1	2	2	3	3	4	3
		3	3	2	2	3	3	4	4	4
ı		3	4	2	3	2	3	3	4	4
		4	4	3	3	3	2	4	4	5
0		4	5	3	4	3	4	2	3	3

		S	n	0	w
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
I	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

		S		n	()	V	v
	0	1 1		2	3	3	4	4
	1	1 2	2	3	2	4	4	5
0	1	2 1	_ _2	2	3	2	3	3
	2	1 2	2	3	3	3	3	4
S	2	3 1	_ _2	2	3	3	4	3
	3	3 2	2	3	3	4	4	4
ı	3	4 2	_ _3	2	3	3	4	4
	4	4 3	3	3	2	4	4	5
0	4	5 3	4	3	4	2	3	3

Como eu leio as operações de edição que transformam OSLO into SNOW?

Recapitulação Dicionários Cons	ultas Coringa Distância de Edi
--------------------------------	--------------------------------

		S		r	1	()	V	v
	0	1	1	2	2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
ı	3	4	2	3	2	3	3	4	4
	4	4	3	3	3	2	4	4	5
0	4	5	3	4	3	4	2	3	3

custo	operação	entrada	saída
1	inserção	*	w

Recapitulação Dicionários Cons	ultas Coringa Distância de Edi
--------------------------------	--------------------------------

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
ı	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

custo	operação	entrada	saída
0	(cópia)	0	0
1	inserção	*	W

Recapitulação Dicion	nários Consultas Coringa	Distância de Edi
----------------------	--------------------------	------------------

		9	5	r	1	()	V	v
	 0	1	1		2	3	3	4	4
	1	1	2	2	3	2	4	4	5
0	1	2	1	2	2	3	2	3	3
	2	1	2	2	3	3	3	3	4
S	2	3	1	2	2	3	3	4	3
	3	3	2	2	3	3	4	4	4
ı	3	4	2	3	2	3	3	4	4
o	4	4	3	3	3	2	4	4	5
	4	5	3	4	3	4	2	3	3

custo	operação	entrada	saída
1	substituição	I	n
0	(cópia)	0	0
1	inserção	*	W

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
	3	4 2	3 2	3 3	4 4
0	4	4 3	3 3	2 4	4 5
	4	5 3	4 3	4 2	3 3

custo	operação	entrada	saída
0	(cópia)	S	S
1	substituição	I	n
0	(cópia)	0	0
1	inserção	*	w

		S	n	0	W
	0	1 1	2 2	3 3	4 4
	1	1 2	2 3	2 4	4 5
0	1	2 1	2 2	3 2	3 3
	2	1 2	2 3	3 3	3 4
S	2	3 1	2 2	3 3	4 3
	3	3 2	2 3	3 4	4 4
ı	3	4 2	3 2	3 3	4 4
	4	4 3	3 3	2 4	4 5
0	4	5 3	4 3	4 2	3 3

custo	operação	entrada	saída
1	deleção	0	*
0	(cópia)	S	s
1	substituição	I	n
0	(cópia)	0	0
1	inserção	*	w

			(С	í	a	1	t	(2	a	a	1	t
	_	0	1	1		2	3	3	4	4	5	5	6	6
С		1 1	0 2	2 0	2 1	3 1	3 2	2	3	5 3	5 4	6 4	6 5	7 5
а		2 2	3	1	0 2	2 0	2 1	3 1	3 2	4 2	3	5 3	5 4	6 4
t	_	3	$\frac{3}{4}$	2 2	$\frac{2}{3}$	1	$\frac{0}{2}$	2 0	$\frac{2}{1}$	3 1	3 2	2	3	5 3

			С		a		1	t		С		а		t	
		0	1	1	2	2	3	3	4	4	5	5	6	6	
		1	0	2	2	3	3	4	3	5	5	6	6	7	
С		1	2	0	1	1	2	2	3	3	4	4	5	5	
		2	2	1	0	2	2	3	3	4	3	5	5	6	
а		2	3	1	2	0	1	1	2	2	3	3	4	4	
_		3	3	2	2	1	0	2	2	3	3	4	3	5	
t		3	4	2	3	1	2	0	1	1	2	2	3	3	

custo	operação	entrada	saída
1	inserção	*	С
1	inserção	*	а
1	inserção	*	t
0	(cópia)	С	С
0	(cópia)	а	а
0	(cópia)	t	t

			С		a		t		С		a		t	
		0	1	1	2	2	3	3	4	4	5	5	6	6
		1	0	2	2	3	3	4	3	5	5	6	6	7
		1	2	0	1	1	2	2	3	3	4	4	5	5
		2	2	1	0	2	2	3	3	4	3	5	5	6
a		2	3	1	2	0	1	1	2	2	3	3	4	4
		3	3	2	2	1	0	2	2	3	3	4	3	5
'		3	4	2	3	1	2	0	1	1	2	2	3	3

custo	operação	entrada	saída
0	(cópia)	С	С
1	inserção	*	а
1	inserção	*	t
1	inserção	*	С
0	(cópia)	а	а
0	(cópia)	t	t

			(С	á	a	1	t	(С	ä	3		t
		0	1	1	2	2	3	3	4	4	5	5	6	6
		1	0	2	2	3	3	4	3	5	5	6	6	7
С		1	2	0	1	1	2	2	3	3	4	4	5	5
		2	2	1	0	2	2	3	3	4	3	5	5	6
а		2	3	1	2	0	1	1	2	2	3	3	4	4
_		3	3	2	2	1	0	2	2	3	3	4	3	5
'		3	4	2	3	1	2	0	1	1	2	2	3	3

custo	operação	entrada	saída
0	(cópia)	С	С
0	(cópia)	а	а
1	inserção	*	t
1	inserção	*	С
1	inserção	*	а
0	(cópia)	t	t

				С	á	a	1	t	(2	ā	a		t
		0	1	1	2	2	3	3	4	4	5	5	6	6
		1	0	2	2	3	3	4	3	5	5	6	6	7
		1	2	0	1	1	2	2	3	3	4	4	5	5
		2	2	1	0	2	2	3	3	4	3	5	5	6
a		2	3	1	2	0	1	1	2	2	3	3	4	4
t		3	3	2	2	1	0	2	2	3	3	4	3	5
		3	4	2	3	1	2	0	1	1	2	2	3	3

custo	operação	entrada	saída
0	(cópia)	С	С
0	(cópia)	а	а
0	(cópia)	t	t
1	inserção	*	С
1	inserção	*	а
1	inserção	*	t

 Agora que podemos computar a distância de edição, como podemos usá-la para correção de palavras isoladas?

- Agora que podemos computar a distância de edição, como podemos usá-la para correção de palavras isoladas?
- Índices de *k*-gramas para correção ortográfica de palavras isoladas.

- Agora que podemos computar a distância de edição, como podemos usá-la para correção de palavras isoladas?
- Índices de k-gramas para correção ortográfica de palavras isoladas.
- Correção sensível ao contexto

- Agora que podemos computar a distância de edição, como podemos usá-la para correção de palavras isoladas?
- Índices de k-gramas para correção ortográfica de palavras isoladas.
- Correção sensível ao contexto
- Questões gerais

• Enumera-se todos os k-gramas no termo de consulta

- Enumera-se todos os k-gramas no termo de consulta
- Exemplo: Indice de bigramas, Palavras errada: bordroom

- Enumera-se todos os k-gramas no termo de consulta
- Exemplo: Indice de bigramas, Palavras errada: bordroom
- Bigramas: bo, or, rd, dr, ro, oo, om

- Enumera-se todos os k-gramas no termo de consulta
- Exemplo: Indice de bigramas, Palavras errada: bordroom
- Bigramas: bo, or, rd, dr, ro, oo, om
- Usa-se o índice de k-gramas para recuperar palavras "corretas"
 que correspondem aos k-gramas do termo de consulta

- Enumera-se todos os k-gramas no termo de consulta
- Exemplo: Indice de bigramas, Palavras errada: bordroom
- Bigramas: bo, or, rd, dr, ro, oo, om
- Usa-se o índice de k-gramas para recuperar palavras "corretas"
 que correspondem aos k-gramas do termo de consulta
- Define-se um limiar para o número de k-gramas correspondentes

- Enumera-se todos os k-gramas no termo de consulta
- Exemplo: Indice de bigramas, Palavras errada: bordroom
- Bigramas: bo, or, rd, dr, ro, oo, om
- Usa-se o índice de k-gramas para recuperar palavras "corretas"
 que correspondem aos k-gramas do termo de consulta
- Define-se um limiar para o número de k-gramas correspondentes
- P. ex., apenas termos de vocabulário que diferem por, no máximo 3 k-gramas

Índices de k-gramas para correção ortográfica: bordroom

• Nosso exemplo era: an asteroid that fell form the sky

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich
 - Agora tente todas as frases resultantes como consultas com uma palavra "fixa" de cada vez.

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich
 - Agora tente todas as frases resultantes como consultas com uma palavra "fixa" de cada vez.
 - Tente a consulta "flea form munich"

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich
 - Agora tente todas as frases resultantes como consultas com uma palavra "fixa" de cada vez.
 - Tente a consulta "flea form munich"
 - Tente a consulta "flew from munich"

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich
 - Agora tente todas as frases resultantes como consultas com uma palavra "fixa" de cada vez.
 - Tente a consulta "flea form munich"
 - Tente a consulta "flew from munich"
 - Tente a consulta "flew form munch"

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich
 - Agora tente todas as frases resultantes como consultas com uma palavra "fixa" de cada vez.
 - Tente a consulta "flea form munich"
 - Tente a consulta "flew from munich"
 - Tente a consulta "flew form munch"
 - A consulta correta "flew from munich" apresenta a maior frequencia.

- Nosso exemplo era: an asteroid that fell form the sky
- Como podemos corrigir form aqui?
- Uma idéia: correção ortográfica baseada em frequência
 - Recupere termos "corretos" próximos a cada termo de consulta
 - para flew form munich: flea para flew, from para form, munch para munich
 - Agora tente todas as frases resultantes como consultas com uma palavra "fixa" de cada vez.
 - Tente a consulta "flea form munich"
 - Tente a consulta "flew from munich"
 - Tente a consulta "flew form munch"
 - A consulta correta "flew from munich" apresenta a maior freqûencia.
- Suponha que temos 7 alternativas para *flew*, 20 para *form* e 3 para *munich*, quantas frases "corrigidas" iremos enumerar?

 O algoritmo "baseado em frequência" que delineamos não é muito eficiente.

- O algoritmo "baseado em frequência" que delineamos n\u00e3o \u00e9 muito eficiente.
- Alternativa mais eficiente: Olhe para a "coleção" de consultas e não de documentos

Problemas comuns em correção ortográfica

Problemas comuns em correção ortográfica

Interface com o usuário

Problemas comuns em correção ortográfica

- Interface com o usuário
 - correção automática vs. sugerida

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer. . . só funciona para uma sugestão.

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer. . . só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer. . . só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?
 - Toma lá da cá: Ul simples vs. poderosa

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer. . . só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?
 - Toma lá da cá: UI simples vs. poderosa
- Custo

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer. . . só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?
 - Toma lá da cá: UI simples vs. poderosa
- Custo
 - Correção ortográfica é potencialmente cara.

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer... só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?
 - Toma lá da cá: UI simples vs. poderosa
- Custo
 - Correção ortográfica é potencialmente cara.
 - Devemos evitar rodar a cada consulta?

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer... só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?
 - Toma lá da cá: UI simples vs. poderosa
- Custo
 - Correção ortográfica é potencialmente cara.
 - Devemos evitar rodar a cada consulta?
 - Talvez apenas em consultas que retornam poucos documentos.

- Interface com o usuário
 - correção automática vs. sugerida
 - Você quis dizer. . . só funciona para uma sugestão.
 - E quando temos mais de uma correção possível?
 - Toma lá da cá: UI simples vs. poderosa
- Custo
 - Correção ortográfica é potencialmente cara.
 - Devemos evitar rodar a cada consulta?
 - Talvez apenas em consultas que retornam poucos documentos.
 - Mais provável: A correção ortográfica na maioria dos principais engines de busca é suficientemente eficiente para ser executada em todas as consultas.

Exercício: Entender corretor ortográfico do Peter Norvig's

```
import re, collections
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):
   model = collections.defaultdict(lambda: 1)
   for f in features:
       model[f] += 1
   return model
NWORDS = train(words(file('big.txt').read()))
alphabet = 'abcdefghijklmnopgrstuvwxyz'
def edits1(word):
   splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
  deletes = [a + b[1:] for a, b in splits if b]
  transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b) gt 1]
  replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]
   inserts = [a + c + b for a, b in splits for c in alphabet]
  return set(deletes + transposes + replaces + inserts)
def known_edits2(word):
   return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word):
   candidates = known([word]) or known(edits1(word)) or known_edits2(word) or
[word]
   return max(candidates, key=NWORDS.get)
```

• Soundex é a base para encontrar alternativas fonéticas (ao invés de ortográficas).

- Soundex é a base para encontrar alternativas fonéticas (ao invés de ortográficas).
- Exemplo: chebyshev / tchebyscheff

- Soundex é a base para encontrar alternativas fonéticas (ao invés de ortográficas).
- Exemplo: chebyshev / tchebyscheff
- Algoritmo:

- Soundex é a base para encontrar alternativas fonéticas (ao invés de ortográficas).
- Exemplo: chebyshev / tchebyscheff
- Algoritmo:
 - Converte-se cada token a ser indexado em uma forma reduzida de 4 caracteres

- Soundex é a base para encontrar alternativas fonéticas (ao invés de ortográficas).
- Exemplo: chebyshev / tchebyscheff
- Algoritmo:
 - Converte-se cada token a ser indexado em uma forma reduzida de 4 caracteres
 - Faz-se o mesmo com o termos de consultas

- Soundex é a base para encontrar alternativas fonéticas (ao invés de ortográficas).
- Exemplo: chebyshev / tchebyscheff
- Algoritmo:
 - Converte-se cada token a ser indexado em uma forma reduzida de 4 caracteres
 - Faz-se o mesmo com o termos de consultas
 - Constroi-se um índices e busca-se as formas reduzidas

Algoritmo Soundex

- Retém-se o primeiro caracter do termo.
- Troca-se todas as ocorrências das seguintes letras por '0' (zero): A, E, I, O, U, H, W, Y
- Troca-se letras por dígitos da seguinte forma:
 - B, F, P, V por 1
 - C, G, J, K, Q, S, X, Z por 2
 - D,T por 3
 - L por 4
 - M, N por 5
 - R por 6
- Remove-se repetidamente um de cada par de digitos identicos consecutivos.
- Remove-se todos os zeros da string resultante; completa-se a string resultante com zeros e retorna-se as primeiras 4 posições, que devem consistir de uma letra seguida por três dígitos.

• Retém-se o H

- Retém-se o H
- ERMAN → ORMON

- Retém-se o H
- ERMAN → ORMON
- ORMON → 06505

- Retém-se o H
- ERMAN → ORMON
- $0RM0N \rightarrow 06505$
- $06505 \rightarrow 06505$

- Retém-se o H
- ERMAN → ORMON
- 0RM0N → 06505
- $06505 \rightarrow 06505$
- $06505 \rightarrow 655$

- Retém-se o H
- ERMAN → ORMON
- ORMON → 06505
- $06505 \rightarrow 06505$
- $06505 \rightarrow 655$
- Retorna-se H655

- Retém-se o H
- ERMAN → ORMON
- ORMON → 06505
- $06505 \rightarrow 06505$
- $06505 \rightarrow 655$
- Retorna-se H655
- Note: HERMANN irá gerar o mesmo código

• Não muito - Para recuperação de informação

- Não muito Para recuperação de informação
- Ok para tarefas que requerem "alta revocação" em outros tipos de aplicação (p. ex., Interpol)

- Não muito Para recuperação de informação
- Ok para tarefas que requerem "alta revocação" em outros tipos de aplicação (p. ex., Interpol)
- Zobel e Dart (1996) sugerem alternativas melhores para correspondência onética em RI.

Exercício

• Compute o código Soundex do seu último nome