Assignment 5 - Bridge DC-DC converters

Forjanic Rémy (511448)

 ${\bf Question\,1-Control\,of\,DC-DC\,converters:\,Single\,PWM}$

Question 2 - Control of DC-DC converters: Dual PWM

Question 3 - Control of DC-DC converters: Dual PWM with dead time $\,$

Calculate the dead time (the time between the turn off of PWM1 and turn on of PWM2).

Since $R_4=R_3$ and $C_1=C_2$: $t_{\Delta}=R_3 imes C_1=1k imes 1n=1\mu s$

Verify the calculated dead time with the simulation results.

Question 4 - Half bridge: Unipolar switching

Show in a simulation the voltage across and current through the RL load.

Question 5 - Unipolar switching of a RL load with bleeding resistor across the load

I don't understand why it's saying the duty cycle is 0.55 and not 0.5 even thought the period, the rise time, the on time and the fall time hasn't been changed.

D = 0.5

D=0.75

Show in a simulation the voltage across and current through the RL load.

D = 0.55

D=0.75

Show in a simulation the source currents.

D=0.55

D=0.75

What is the average voltage across the RL load?.

D = 0.55

D=0.75

Question 6 - Bipolar switching RL load

 $R1 = \frac{511448}{10000} = 51.1448\Omega$

 $Simulation done \ with \ L=10m \ instead \ of \ L=5m, \ i \ compared \ my \ results \ with \ other people \ and \ there \ is \ not \ a \ big \ difference, \ the \ peaks \ are \ just \ more \ sharp.$

D=0.55

D=0.25

D=0.75

Show in a simulation the voltage across and current through the RL load.

D = 0.55

D=0.25

D=0.75

Show in a simulation the source currents.

D=0.55

D=0.25

D = 0.75

What is the average voltage across the RL load?

D=0.55

D=0.25

D=0.75

Question 7 - PWM for half bridge

$R1 = \frac{511448}{10000} = 51.1448\Omega$

Show in a simulation the voltage across and current through the RL load.

Show in a simulation the source currents.

For which duty cycle D there is the maximum ripple in the current?.

The ripple current is the biggest at t=2.9 ms.

Since the duty cycle changes linearly and at t=2ms, D=0.8 and at t=4ms, D=0: $D=\frac{0.8}{(4-2)}\times(2.9-2)=0.36$

The ripple current is the biggest when D pprox 0.36