

1 CLAIMS

2 What is claimed is:

4 1. A stand-alone device for determining communication parameters and channel
5 configuration of an asynchronous serial device comprising:

6 a. at least one microprocessor having at least one connector means; at least
7 one DTE Driver and or at least one DCE Driver receiving inputs from the said at least
8 one connector means and providing outputs to said at least one connector means; the
9 said at least one DTE Driver and or at least one DCE Driver having outputs to at least
10 one UART and or at least one pulse width detector; the said at least one DTE Driver
11 and or at least one DCE Driver receiving inputs from the said at least one UART and
12 or the said at least one pulse width detector; the said at least one UART and or the
13 said at least one pulse width detector providing outputs to and receiving inputs from
14 the at least one microprocessor;

15
16 b. the at least one microprocessor having memory; the memory receiving from
17 the at least one connector means at least one computer program script; at least one
18 display means receiving input from the at least one microprocessor; power means for
19 operation of the microprocessor;

20
21 c. the at least one microprocessor communicating with or interrogating with
22 the at least one computer program script, by the at least one connector means, at least
23 one asynchronous serial device;

24
25 d. the at least one microprocessor receiving or not receiving, by the at least
26 one connector means, a signal from the at least one asynchronous serial device; the
27 signal or no signal from the at least one asynchronous serial device is detected by
28 either the at least one DTE Driver or the at least one DCE Driver; the output from
29 either the at least one DTE Driver or the at least one DCE Driver is communicated to
30 the at least one UART and the at least one pulse width detector; the output from the
 at least one UART and the at least one pulse width detector is communicated by
 electronic means to the at lease one microprocessor; if a signal exists (270) then the at

1 lease one microprocessor displays the at the at least one display; if there is not a
2 signal or the signal is non-standard then the at least one microprocessor displays that
3 a signal is not found (260) at the at least one display (110);
4 e. if a signal exists (270) the computer program script operates the
5 microprocessor to set the baud rate of the test to the lowest value (280) and begins the
6 selected script (290) for all combinations of parity and data bits at the test baud rate
7 based on the user configuration of the script; if the script is successful (300) it is an
8 indication that the communication parameters were correct for the tested parameters
9 and the results are displayed (110); if the appropriate response is detected then at least
10 one microprocessor displays the current baud rate, data bits, and parity and the baud
11 rate, data bits and parity are considered correct
12
13 f. as communication (i.e. an ASCII character prompt) is received from the
14 connected device (700) the pulse width detector (100) reports the widths of each
15 pulse; if the minimum pulse width detected is less than half of what is indicated by
16 the maximum baud rate of 230,400 the pulse is considered noise and ignored; if the
17 script fails (310) and the pulse width detector (100) indicates that the data is being
18 transmitted at a higher rate (320, 325) than the present test, the computer program
19 script operates on the microprocessor to shift the baud rate to the higher baud rate
20 (330) and operate the script again (290); if the script fails (310) and the at least one
21 pulse width detector (100) does not indicate that the data is being transmitted at a
22 higher rate (320, 327) than the present test, the computer program script operates the
23 microprocessor to shift the baud rate to the next higher baud rate (340) that is
24 available and runs the script again (290); this process is repeated until the script is
25 successful (300) or there are no more baud rates to try (350);
26
27 g. when the script is successful (300) and the baud rate is determined the at
28 least one microprocessor operates the at least one display to display the baud rate and
29
30 or associated communication parameters.

1 CERTIFICATE OF EXPRESS MAILING - C.F.R. 1.10
2 "Express Mail" mailing label number: ER394286206US
2 Date of Deposit: March 17, 2004.

3 I hereby certify that this paper or fee is
4 being deposited with the United States
Postal Service "Express Mail Post Office to
5 Addressee" service under 37 CFR 1.10 on the
date indicated above and is addressed to
6 Box PATENT APPLICATION, Commissioner
for Patents, P.O. Box 1450, Alexandria, VA
22313-1450.

7 Gina Swift
8 (Printed Name)

9 _____
10 (Signature).

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30