# Chapter 5 Synchronous Sequential Logic

#### **Outline**

- Sequential Circuits
- Storage Elements: Latches
- Storage Elements: Flip-Flops
- Analysis of Clocked Sequential Circuits
- Synthesizable HDL Model of Sequential Circuits
- State Reduction and Assignment
- Design Procedure

#### **Sequential Circuits**

- Combinational circuits contain no memory elements and the outputs depends on the current inputs.
- Sequential circuits:



- Memory to store the state of the sequential circuit
- Combinational circuit computes (inputs, current state) ⇒ (outputs, next state)
- synchronous: the transition happens at discrete instants of time
- asynchronous: depends on the input signals at any instant of time and the order in which the inputs change. (instable)

# **Synchronous Sequential Circuits**

- A master-clock generator generates a periodic train of clock pulses and distributes it throughout the system.
- The clocked sequential circuit has no instability problems
- the memory elements: Flip-Flops
  - Binary cells capable of storing one bit of information
  - Two outputs: one for the normal value and one for the complement value
  - Maintain a stable binary state indefinitely until directed by an input signal to switch states

#### Synchronous Clocked Sequential Circuit



- 1. The stored value in a flip-flop is updated when a pulse of the clock signal occurs.
- 2. The output of the combinational circuit (CC) must reach a stable state before the next clock pulse.  $\Rightarrow$  speed limited by CC.
- 3. If clock pulse is not active  $\Rightarrow$  feedback loop is broken  $\Rightarrow$  value of flip-flop is not updating.

#### **SR Latch with NOR Gates**

- Latch can be formed by two cross-coupled NOR gates
  - -(S, R) = (0, 0): no operation (Q and Q' state unchanged)

$$(S, R) = (0, 1)$$
: reset state  $(Q = 0 \text{ and } Q' = 1)$ 

$$(S, R) = (1, 0)$$
: set state  $(Q = 1 \text{ and } Q' = 0)$ 

$$(S, R) = (1, 1)$$
: undefined state  $(Q = Q' = 0)$ 

- Latch is an asynchronous sequential circuit. (state changes whenever inputs change).
- The (S, R) must go back to (0, 0) before any other change to avoid the occurrence of the undefined state.



| S | R | Q | Q' | _                                  |
|---|---|---|----|------------------------------------|
| 1 | 0 | 1 | 0  |                                    |
| 0 | 0 | 1 | 0  | (after $S = 1, R =$                |
|   | 1 | 0 | 1  |                                    |
| 0 | 0 | 0 | 1  | (after $S = 0$ , $R =$ (forbidden) |
| 1 | 1 | 0 | 0  | (forbidden)                        |

(b) Function table

6

#### SR Latch with NAND Gates

- Latch can be formed by two cross-coupled NAND gates
  - -(S, R) = (1, 1): no operation (Q and Q' state unchanged)
    - (S, R) = (1, 0): reset state (Q = 0 and Q' = 1)
    - (S, R) = (0, 1): set state (Q = 1 and Q' = 0)
    - (S, R) = (0, 0): undefined state (Q = Q' = 1)
  - The (S, R) must go back to (1, 1) before any other change to avoid the occurrence of the undefined state.



| S | R | Q | Q' | _                                                                       |
|---|---|---|----|-------------------------------------------------------------------------|
| 1 | 0 | 0 | 1  |                                                                         |
| 1 | 1 | 0 | 1  | (after $S = 1$ , $R = 0$ )<br>(after $S = 0$ , $R = 1$ )<br>(forbidden) |
| 0 | 1 | 1 | 0  | ,                                                                       |
| 1 | 1 | 1 | 0  | (after $S = 0, R = 1$ )                                                 |
| 0 | 0 | 1 | 1  | (forbidden)                                                             |
|   |   |   |    |                                                                         |

(b) Function table

7

#### **SR Latch with Control**

- SR latch with control input
  - -En = 0, no change
  - -En = 1, operate as normal SR latch



#### **D** Latch

#### ■ D Latch

- D latch can eliminate the undesirable conditions of the indeterminate state in the SR latch
- D: data
- $-D \Rightarrow Q$  when En = 1; no change when En = 0
- A transparent latch when En = 1



**Graphic Symbols for Latches** 



#### **Trigger**

#### A trigger

 The state of a latch or flip-flop is switched by a change of the control input. This momentary change is called trigger.

#### ■ Level triggered – latches

- The state transition starts as soon as clock is during logic 1 or logic 0 level.
- The change of input makes the combination logic keep changing with the input latch at logic 1 or logic 0.

#### ■ Edge triggered – Flip-Flops

- The state transition starts only at positive or negative edge of the clock signal.
- The edge trigger flip-flops will isolate the input changes (current state) and output driving logic (previous state).

# **Edged-Triggered Flip-Flops**

- If level-triggered latches are used,
  - The output result will affect the inputs through the feedback path and cause instability problem.
- If edge-triggered latches are used,
  - the output of flip-flop is isolated from being affected by the input signals, and
  - the state transition happens only at the clock edge.



#### **Edge-Triggered D Flip-Flop**

- Master-slave D flip-flop is formed by two separate latches and one inverter.
  - A master D latch (positive-level triggered)
  - A slave D latch (negative-level triggered)



**Edge-Triggered D Flip-Flop** 

Two stage operations

- CP = 1:

■ Master D latch active:  $(S, R) \Rightarrow (Y, Y')$ ;

■ Slave D latch inactive: (Q, Q') holds

- CP = 0:

■ Master D latch inactive: (Y, Y') holds;

■ Slave D latch active:  $(Y, Y') \Rightarrow (Q, Q')$ 

■ (S, R) could not affect (Q, Q') directly.

■ The state changes at the negative edge transition of CP.



#### **Edge-Triggered Flip-Flops**

- Edge-triggered flip-flops
  - the state changes during a clock-pulse transition
- A D-type positive-edge-triggered flip-flop with three SR latches.



15

#### **Edge-Triggered Flip-Flops with Three Latches**

- Output Latches (5)(6)
  - Clk = 0: (S, R) = (1, 1), no operation
  - -Clk = 1: operates as a normal latch
    - $\blacksquare$  (S, R) = (0, 1): Q = 1 (set state)
    - $\bullet$  (S, R) = (1, 0): Q = 0 (reset state)
    - (S, R) = (1, 1): (no operation) 1  $\blacksquare$  (S, R) = (0, 0): should be avoided 2 Clk3 4



# Edge-Triggered Flip-Flops with Three Latches

- Input latches (1)(2)(3)(4)
  - Clk = 0: (S, R) = (1, 1)
    - D = 0 output of (1) = 0, output of (4) = 1
    - D = 1 output of (1) = 1, output of (4) = 0
  - Clk = 1:
    - D = 0 output of (1) = 0, output of (4) = 1 ⇒ (S, R) = (1, 0)⇒ Q = 0
    - D = 1 output of (1) = 1, output of (4) = 0 ⇒ (S, R) = (0, 1)⇒ Q = 1
- Positive transition of clock (Clk) transfers the input data D to output Q.
- A negative transition of clock (*Clk*) does not affect the output

#### **Setup Time/Hold Time**

- The setup time
  - D input must be maintained at a constant value prior to the application of the positive Clk pulse.
  - Equals the propagation delay through gates 4 and 1
  - data to the internal latches
- The hold time
  - D input must not change after the application of the positive Clk pulse
  - Equals the propagation delay of gate 3
  - clock to the internal latch



# Edge-Triggered Flip-Flops with Three Latches

- Summary
  - Clk = 0: (S, R) = (1, 1), no state change
  - -Clk = ↑: state change once
  - -Clk = 1: state holds
  - To eliminate the feedback problems in sequential circuits
- All flip-flops must make their transition at the same time.

#### **Other Flip-Flops**

- The edge-triggered D flip-flops is the most economical and efficient because it requires the smallest number of gates.
- Other two flip-flops widely used in the design of digital systems are *JK-flip-flops* and *T flip-flops*.



# JK Flip-Flop

■ JK Flip-Flop



■ 
$$D = JQ' + K'Q$$
  
 $-J = 0$ ,  $K = 0$ :  $D = Q$ , no change (no operation)  
 $-J = 0$ ,  $K = 1$ :  $D = 0 \Rightarrow Q = 0$  (reset state)  
 $-J = 1$ ,  $K = 0$ :  $D = 1 \Rightarrow Q = 1$  (set state)  
 $-J = 1$ ,  $K = 1$ :  $D = Q' \Rightarrow Q = Q'$  (complement state)

# T Flip-Flop

#### ■ T flip-flop

- T flip-flop is a complementing flip-flop controlled by input

Τ.





(b) From D flip-flop

$$D = T \oplus Q = TQ' + T'Q$$

- T = 0: D = Q, no change (no operation)
- T = 1:  $D = Q' \Rightarrow Q = Q'$  (complement state)



23

#### **Characteristic Tables**

| <i>JK</i> Flip-Flop |   |          |            |  |  |  |  |  |
|---------------------|---|----------|------------|--|--|--|--|--|
| J                   | K | Q(t + 1) |            |  |  |  |  |  |
| 0                   | 0 | Q(t)     | No change  |  |  |  |  |  |
| 0                   | 1 | 0        | Reset      |  |  |  |  |  |
| 1                   | 0 | 1        | Set        |  |  |  |  |  |
| 1                   | 1 | Q'(t)    | Complement |  |  |  |  |  |

- D Flip-Flop
- Q(t + 1) = D
- JK Flip-Flop
- Q(t + 1) = JQ' + K'Q
- T Flip-Flop
- $Q(t + 1) = T \oplus Q$

| D Flip-Flop |          |              |  |  |  |  |  |
|-------------|----------|--------------|--|--|--|--|--|
| D           | Q(t + 1) |              |  |  |  |  |  |
| 0<br>1      | 0        | Reset<br>Set |  |  |  |  |  |

|   | Flip-Flop    |                         |
|---|--------------|-------------------------|
| T | Q(t + 1)     |                         |
| 0 | Q(t) $Q'(t)$ | No change<br>Complement |

#### **Direct Inputs**

- When power is on, the state of flip-flop is unknown. The direct input will force the flip-flops in the system to a know starting state before the system starts.
- Preset or (Direct Set) sets the flip-flop to 1
- Clear or (Direct Reset) sets the flip-flop to 0

25

# Asynchronous Set/Reset

■ D Flip-Flop with asynchronous reset





| R             | Clk    | D           | Q                                           | Q'          |  |  |
|---------------|--------|-------------|---------------------------------------------|-------------|--|--|
| 0<br>1<br>1   | X<br>↑ | X<br>0<br>1 | $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ | 1<br>1<br>0 |  |  |
| (1) E 4' 4 11 |        |             |                                             |             |  |  |

(b) Function table

# Analysis of Clocked Sequential Circuit

- A sequential circuit
  - (inputs, current state) ⇒ (output, next state)
  - a state transition table or state transition diagram
- An example :



27

#### **State Equations**

- A state equation (transition equation) specifies the next state as a function of the present state and input.
- State equation of an example in the previous slide.
  - A(t + 1) = A(t)x(t) + B(t)x(t)
  - B(t+1) = A'(t)x(t)
- A compact form
  - -A(t+1) = Ax + Bx
  - -B(t+1) = A'x
- The output equation
  - y(t) = (A(t) + B(t))x'(t)
  - -y = (A + B)x'

#### **State Table**

- A *state table* (*transition table*) enumerates the time sequence of inputs, outputs, and flip-flop state.
- State table consists of four sections labeled
  - present state
  - input
  - next state
  - output

**Table 5.2** *State Table for the Circuit of Fig. 5.15* 

| Present<br>State |   |   |   | ext<br>ate | Output |  |
|------------------|---|---|---|------------|--------|--|
| Α                | В | x | Α | В          | у      |  |
| 0                | 0 | 0 | 0 | 0          | 0      |  |
| 0                | 0 | 1 | 0 | 1          | 0      |  |
| 0                | 1 | 0 | 0 | 0          | 1      |  |
| 0                | 1 | 1 | 1 | 1          | 0      |  |
| 1                | 0 | 0 | 0 | 0          | 1      |  |
| 1                | 0 | 1 | 1 | 0          | 0      |  |
| 1                | 1 | 0 | 0 | 0          | 1      |  |
| 1                | 1 | 1 | 1 | 0          | 0      |  |

29

# **State Diagram**

- State transition diagram
  - a circle: a state
  - a directed lines connecting the circles: the transition between the states
- Each directed line is labeled 'inputs/outputs'
  - a logic diagram  $\Leftrightarrow$  a state table  $\Leftrightarrow$  a state diagram
- Derive the state diagram from state table

| Present<br>State |   | N     | <b>Next State</b> |       |   |       | Output |  |
|------------------|---|-------|-------------------|-------|---|-------|--------|--|
|                  |   | x = 0 |                   | x = 1 |   | x = 0 | x = 1  |  |
| Α                | В | A     | В                 | Α     | В | У     | у      |  |
| 0                | 0 | 0     | 0                 | 0     | 1 | 0     | 0      |  |
| 0                | 1 | 0     | 0                 | 1     | 1 | 1     | 0      |  |
| 1                | 0 | 0     | 0                 | 1     | 0 | 1     | 0      |  |
| 1                | 1 | 0     | 0                 | 1     | 0 | 1     | 0      |  |



#### Flip-Flop Input Equations

- Flip-flop *input equations* (*excitation equations*) describes the part of circuit that generates the inputs to flip-flops
  - $-D_A = Ax + Bx$  (1) -  $D_B = A'x$  (2)
- The *output equations*

$$-y=(A+B)x'$$
 (3)

- Input equations and output equations provide the necessary information for drawing the logic diagram of the sequential circuit.
- The input equations are identical to the corresponding state equations only for D Flip-flop.



31

00, 11

# **Analysis with D flip-flops**

01.10

00, 11

■ The input equation

$$-D_A=A\oplus x\oplus y$$

■ The state equation

$$-A(t+1)=A\oplus x\oplus y$$



| Present state | Inp | outs | Next<br>state  |
|---------------|-----|------|----------------|
| A             | х   | у    | $\overline{A}$ |
| 0             | 0   | 0    | 0              |
| 0             | 0   | 1    | 1              |
| 0             | 1   | 0    | 1              |
| 0             | 1   | 1    | 0              |
| 1             | 0   | 0    | 1              |
| 1             | 0   | 1    | 0              |
| 1             | 1   | 0    | 0              |
| 1             | 1   | 1    | 1              |

01, 10

#### Analysis with JK/T flip-flops

- For JK flip-flop and T flip-flop, the input equations and state equations are not the same.
  - 1. Determine the flip-flop input function in terms of the present states and input variables.
  - 2. List the binary values of each input equations.
  - 3. Use the corresponding flip-flop characteristic table to determine the next state.
  - 4. Compute output signals.
  - 5. Draw State Diagram.
- An example: JK Flip-Flop circuit

Note:

$$Q(t+1) = JQ' + K'Q$$



33

# **Analysis with JK flip-flops**

Input equations of the circuit

$$-J_A = B, K_A = Bx'$$
 (1)  
 $-J_B = x', K_B = A'x + Ax'$  (2)

- State table
- equations using characteristic equations of the flip-flop.

  Table 5.4

  State Table State Table State Table State

  Present State

  A B

  0 0
  0 0
  0 0

 JK Flip-Flop

 J
 K
 Q(t + 1) 

 0
 0
 Q(t) No change

 0
 1
 0
 Reset

 1
 0
 1
 Set

 1
 1
 Q'(t) Complement

State Table for Sequential Circuit with JK Flip-Flops

| Present<br>State |   |   |   | ext<br>ate | Flip-Flop<br>Inputs |                |    |                |
|------------------|---|---|---|------------|---------------------|----------------|----|----------------|
| Α                | В | x | A | В          | JA                  | K <sub>A</sub> | JΒ | K <sub>B</sub> |
| 0                | 0 | 0 | 0 | 1          | 0                   | 0              | 1  | 0              |
| 0                | 0 | 1 | 0 | 0          | 0                   | 0              | 0  | 1              |
| 0                | 1 | 0 | 1 | 1          | 1                   | 1              | 1  | 0              |
| 0                | 1 | 1 | 1 | 0          | 1                   | 0              | 0  | 1              |
| 1                | 0 | 0 | 1 | 1          | 0                   | 0              | 1  | 1              |
| 1                | 0 | 1 | 1 | 0          | 0                   | 0              | 0  | 0              |
| 1                | 1 | 0 | 0 | 0          | 1                   | 1              | 1  | 1              |
| 1                | 1 | 1 | 1 | 1          | 1                   | 0              | 0  | 0              |

# Analysis with JK flip-flops

Characteristic equation of JK flip-flops

$$-Q(t+1) = JQ' + K'Q$$
 (3)

- Evaluation of the state equations from the characteristic equations
  - JK flip-flop A :  $A(t + 1) = J_A A' + K_A' A$  (4)
  - JK flip-flop B :  $B(t + 1) = J_B B' + K_B' B$  (5)
- Substituting the values of  $J_A$ ,  $K_A$ ,  $J_B$ , and  $K_B$  from the input equations (1)(2) to get the state equations of the circuit
  - -A(t+1) = BA' + (Bx')'A = A'B + AB' + Ax (6)
  - $-B(t+1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$  (7)

35

# Analysis with JK flip-flops

■ Using the state equation or state table (preferred) of the circuit to draw the state transition diagram.



# **Analysis with T flip-flops**

■ The characteristic equation of the T flip-flops

$$-Q(t+1)=T\oplus Q=TQ'+T'Q$$





37

# **Analysis with T flip-flops**

■ The input and output functions

$$-T_A = Bx$$

$$-T_B = x$$

$$-y = AB$$

■ The state equations

$$-A(t + 1) = (Bx)'A + (Bx)A'$$
  
=  $AB' + Ax' + A'Bx$ 

$$-B(t+1)=x\oplus B$$

| Present<br>State |   | Input |       |       | Ne<br>Sta |   | Output |
|------------------|---|-------|-------|-------|-----------|---|--------|
| A                | В | x     | $T_A$ | $T_B$ | A         | В | У      |
| 0                | 0 | 0     | 0     | 0     | 0         | 0 | 0      |
| 0                | 0 | 1     | 0     | 1     | 0         | 1 | 0      |
| 0                | 1 | 0     | 0     | 0     | 0         | 1 | 0      |
| 0                | 1 | 1     | 1     | 1     | 1         | O | 0      |
| 1                | 0 | 0     | 0     | 0     | 1         | O | 0      |
| 1                | 0 | 1     | 0     | 1     | 1         | 1 | 0      |
| 1                | 1 | 0     | 0     | 0     | 1         | 1 | 1      |
| 1                | 1 | 1     | 1     | 1     | 0         | 0 | 1      |

# **Mealy Model**

- Mealy model: the outputs are functions of both the present states and inputs
  - the outputs may change if the inputs change during the clock pulse period
    - the outputs may have momentary false values unless the inputs are synchronized with the clocks
- An example:



#### **Moore Model**

- *Moore model*: the outputs are functions of the present states only. The outputs are synchronous with the clock.
- An example:





#### Moore Model v.s Mealy Model

Mealy machine



Moore machine



#### Synthesizable HDL Models of Sequential Circuits

- Behavioral Modeling
- Example: Two ways to provide free-running clock

```
        initial
        initial

        begin
        begin

        clock = 1'b0;
        clock = 1'b0;

        repeat (30)
        end

        #10 clock = ~clock;
        initial 300 $finish;

        end
        always #10 clock = ~clock;
```

■ Example: Another way to describe free-running clock

initial begin clock = 0; forever #10 clock = ~clock; end

# **Behavioral Modeling**

#### ■ always statement

```
always @ (event control expression) begin
// Procedural assignment statements that execute when the condition is met
end
```

#### Examples:

Two procedural blocking assignments:

Two nonblocking assignments:

43

# **Procedural Assignment**

- Procedural assignments update the values of registers under the control of two kinds of procedure assignment.
- Blocking procedure assignments are executed sequentially in the order they are listed.
- Non-Blocking procedure assignments evaluate the expressions on the right-hand side, but do not make the assignment to the left-hand side until all expressions are evaluated.

```
initial begin
                    always @(posedge c)
                                            always @(posedge c)
 A=1;
                    begin
                                            begin
 B=2;
                     B=A;
                             // B=1
                                             B<=A;
                                                        // B=1
                     C=B+1; // C=2
 C=0;
                                             C <= B+1; // C=3
                   end
                                           end
                            Blocking
                                                  Non-Blocking
always c = #5 \sim c;
```

#### Flip-Flops and Latches

#### ■ HDL Example 5.1

```
// Description of D latch (transparent latch)
// See Fig. 5-6
module D_latch (Q, D, enable);
 output
                 Q:
                 D, enable;
 input
                 O:
 reg
 always @ (enable or D)
  if (enable) Q <= D;</pre>
                        // Alternative: if (enable == 1) Q <= D;
endmodule
// Alternative syntax (Verilog 2001, 2005)
module D_latch (output reg Q, input enable, D);
 always @ (enable, D)
  if (enable) Q \ll D;
                          // No action if enable is not asserted
endmodule
```

45

#### Flip-Flops and Latches

#### ■ HDL Example 5.2

```
// Description of D flip-flop without reset (See Fig. 5-11)
module D_FF (Q, D, Clk);
 output
                 Q;
 input
                 D, Clk;
                 O:
 reg
 always @ (posedge Clk)
  Q \leq D:
endmodule
// Description of D flip-flop with asynchronous reset, Verilog 2001, 2005
module DFF (output reg Q, input D, Clk, rst);
 always @ (posedge Clk, negedge rst)
   if (\simrst) Q <= 1'b0;
                                  // same as: if (rst == 0) Q <= 1'b0;
   else Q \le D;
endmodule
```

#### **Characteristic Equation**

$$Q(t + 1) = Q \oplus T$$
 For a  $\mathcal{T}$  flip-flop  $Q(t + 1) = JQ' + K'Q$  For a  $JK$  flip-flop

■ HDL Example 5.3

```
// T flip-flop from D flip-flop and gates
module TFF (output Q, input T, Clk,
rst);
wire DT;
assign DT = Q ^ T;
// Instantiate the D flip-flop
DFF TF1 (Q, DT, Clk, rst);
endmodule

// JK flip-flop from D flip-flop and gates
module JKFF (output reg Q, input J,
K, Clk, rst);
```

```
wire JK;
assign JK = (J & ~Q) I (~K & Q);
// Instantiate D flip-flop
DFF JK1 (Q, JK, Clk, rst);
endmodule

// D flip-flop (V2001, V2005)
module DFF (output reg Q, input D, Clk, rst);
always @ (posedge Clk, negedge rst)
if (~rst) Q <= 1'b0;
else Q <= D;
endmodule</pre>
```

#### HDL Example 5-4

#### HDL Example 5.5: Mealy HDL model

```
// Mealy FSM zero detector
module Mealy_Zero_Detector (
 output reg
                 y_out,
                 x in, clock, reset
 input
);
 reg [1: 0]
                 state, next_state;
                 S0 = 2'b00, S1 =
 parameter
2'b01, S2 = 2'b10, S3 = 2'b11;
 always @ (posedge clock, negedge
        // state transition
reset)
  if (reset == 0) state <= S0;
  else state <= next_state;
 always @ (state, x_in) // Form the
next state
  case (state)
    S0: if (x_in) next_state = S1;
        else next_state = S0;
```

```
S1: if (x_in) next_state = S3;
else next_state = S0;
S2: if (~x_in) next_state = S0;
else next_state = S2;
S3: if (x_in) next_state = S2;
else next_state = S0;
endcase

always @ (state, x_in) // Form the output
case (state)
S0: y_out = 0;
S1, S2, S3: y_out = ~x_in;
endcase
endmodule
```

49

# HDL Example 5.5 (Cont'd)

```
module t_Mealy_Zero_Detector;
 wire t_y_out;
        t_x_in, t_clock, t_reset;
Mealy_Zero_Detector M0 (t_y_out,
t_x_in, t_clock, t_reset);
initial #200 $finish;
initial begin t_clock = 0; forever #5
t_clock = ~t_clock; end
initial fork
    t_reset = 0;
 #2 t_reset = 1;
 #87 t reset = 0:
 #89 t reset = 1;
 #10 t_x_i = 1;
 #30 t x in = 0;
 #40 t x in = 1;
```

```
#50 t_x_in = 0;

#52 t_x_in = 1;

#54 t_x_in = 0;

#80 t_x_in = 1;

#100 t_x_in = 0;

#120 t_x_in = 1;

#160 t_x_in = 0;

#170 t_x_in = 1;

join

endmodule
```

#### Mealy\_Zero\_Detector



51

#### HDL Example 5-6: Moore Model FSM

```
// Moore FSM (See state diagram in Fig. 5-19)
module Moore_Model_Fig_5_19 (
 output [1: 0] y_out,
 input x_in, clock, reset
);
 reg [1: 0]
 parameter
                 S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
 always @ (posedge clock, negedge reset)
  if (reset == 0) state <= S0; // Initialize to state S0
  else case (state)
    S0: if (\sim x_in) state <= S1; else state <= S0;
                    state <= S2; else state <= S3;
    S1: if (x_in)
                                                                      > Clk
    S2: if (-x_in) state <= S3; else state <= S2;
    S3: if (\sim x_in) state \leq S0; else state \leq S3;
  endcase
                                                                      > Clk
 assign y_out = state; // Output of flip-flops
endmodule
                                                                                 52
```

# Simulation Output of HDL Example 5-6



53

# Structural Description of Clocked Sequential Circuits

```
module Moore_Model_Fig_5_20 (
 output
                 y_out,
 input
                 x_in, clock, reset
);
 reg [1: 0]
                 state;
                 S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
 parameter
 always @ (posedge clock, negedge reset)
  if (reset == 0) state <= S0; // Initialize to state S0
   else case (state)
    S0: if (x_in) state \le S1; else state \le S0;
    S1: if (x in) state <= S2; else state <= S1;
    S2: if (x_in) state \le S3; else state \le S2;
    S3: if (x_in) state <= S0; else state <= S3;
   endcase
 assign y_out = (state == S3); // Output of flip-flops
endmodule
```

# HDL Example 5-7 (Cont'd)

```
module Moore_Model_STR_Fig_5_20 (
 output
                 y_out, A, B,
                 x_in, clock, reset
 input
);
                 TA, TB;
 wire
// Flip-flop input equations
 assign TA = x_in \& B;
 assign TB = x_in;
//output equation
 assign y_out = A & B;
// Instantiate Toggle flip-flops
                                                 Clock reset
 Toggle_flip_flop_3 M_A (A, TA, clock, reset);
 Toggle_flip_flop_3 M_B (B, TB, clock, reset);
endmodule
module t_Moore_Fig_5_20;
 wire t_y_out_2, t_y_out_1;
        t_x_in, t_clock, t_reset;
 req
                                                                                55
```

# HDL Example 5-7 (Cont'd)

```
Moore_Model_Fig_5_20 M1(t_y_out_1, t_x_in, t_clock, t_reset);
Moore_Model_STR_Fig_5_20 M2 (t_y_out_2, A, B, t_x_in, t_clock, t_reset);
```

```
initial #200 $finish;
initial begin
    t_reset = 0;
    t_clock = 0;
    #5 t_reset = 1;
    repeat (16)
    #5 t_clock = ~t_clock;
end
```

#### **State Reduction and Assignment**

- m flip-flops produce  $2^m$  states.
- State Reduction
  - may result in a reduction in the number of flip-flops and the number of gates
- An example of state diagram:
- Note: different input sequence results in different output sequence.



57

#### **State Reduction**

- Input/Output sequences are the most important!
  - Each input of 0 or 1 produces an output of 0 or 1 and causes the circuit goes to the next state.
  - state a a b c d e f f g f g a input 0 1 0 1 0 1 1 0 1 0 0 output 0 0 0 0 0 1 1 0 1 0 0
  - Only the input-output sequences are important.
  - So, two circuits are equivalent if they have identical outputs for all input sequences.
  - Note: the number of states is not important.



# **Equivalent States**

- Two states are said to be equivalent:
  - For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
  - When two states are equivalent, one of them can be removed.

|               | Next  | State | Output |       |  |
|---------------|-------|-------|--------|-------|--|
| Present State | x = 0 | x = 1 | x = 0  | x = 1 |  |
| а             | а     | b     | 0      | 0     |  |
| b             | C     | d     | 0      | 0     |  |
| C             | a     | d     | 0      | 0     |  |
| d             | e     | f     | 0      | 1     |  |
| e             | a     | f     | 0      | 1     |  |
| f             | g     | f     | 0      | 1     |  |
| <i>g</i>      | а     | f     | 0      | 1     |  |

59

#### The Reduced Finite State Machine

|               | Next S | State        | Output |       |  |
|---------------|--------|--------------|--------|-------|--|
| Present State | x = 0  | <i>x</i> = 1 | x = 0  | x = 1 |  |
| а             | а      | b            | 0      | 0     |  |
| b             | c      | d            | 0      | 0     |  |
| c             | a      | d            | 0      | 0     |  |
| d             | e      | d            | 0      | 1     |  |
| e             | а      | d            | 0      | 1     |  |

 state
 a a b c d e f f g f g a

 input
 0 1 0 1 0 1 1 0 1 0 0

 output
 0 0 0 0 0 1 1 0 1 0 0

 state
 a a b c d e d d e d e a

 input
 0 1 0 1 0 1 1 0 1 0 0

 output
 0 0 0 0 0 1 1 0 1 0 0

#### The Reduced Finite State Machine

- The checking of each pair of states for possible equivalence can be done systematically (in Chap. 9-5)
- The unused states are treated as don't-care conditions.
- The more unused states
   ⇒ the more don't care conditions
   ⇒ the fewer combinational gates are required.



61

#### **State Assignment**

- For a circuit with m states, we need at least n-bit, where  $2^n \ge m$ , to encode the states.
- Three possible binary state assignments for the previous example:

Three Possible Binary State Assignments

| State | Assignment 1,<br>Binary | Assignment 2,<br>Gray Code | Assignment 3,<br>One-Hot |
|-------|-------------------------|----------------------------|--------------------------|
| a     | 000                     | 000                        | 00001                    |
| b     | 001                     | 001                        | 00010                    |
| c     | 010                     | 011                        | 00100                    |
| d     | 011                     | 010                        | 01000                    |
| e     | 100                     | 110                        | 10000                    |

# **State Assignment**

- Any binary number assignment is satisfactory as long as each state is assigned a unique number
- The state table uses binary assignment 1:

|               | Next S | State | Output |       |  |
|---------------|--------|-------|--------|-------|--|
| Present State | x = 0  | x = 1 | x = 0  | x = 1 |  |
| а             | а      | b     | 0      | 0     |  |
| b             | c      | d     | 0      | 0     |  |
| c             | а      | d     | 0      | 0     |  |
| d             | e      | d     | 0      | 1     |  |
| e             | a      | d     | 0      | 1     |  |

63

#### **Design Procedure**

- The design of synchronous sequential circuit consists of
  - Choosing flip-flops
    - Depending on the number of states
  - Finding the combinational logic
    - Evaluation of input equations and output equations
- Recommended steps of the design procedures for synchronous sequential circuits
  - the word description of the circuit behavior (a state diagram)
  - state reduction if necessary
  - assign binary values to the states
  - obtain the binary-coded state table
  - choose the type of flip-flops
  - derive the simplified flip-flop input equations and output equations
  - draw the logic diagram

# **Synthesis Using D Flip-Flops**

■ An example: state diagram and state table



**Table 5.11**State Table for Sequence Detector

| Present<br>State |   | Input |   | ext<br>ate | Output |
|------------------|---|-------|---|------------|--------|
| Α                | В | x     | A | В          | у      |
| 0                | 0 | 0     | 0 | 0          | 0      |
| 0                | 0 | 1     | 0 | 1          | 0      |
| 0                | 1 | 0     | 0 | 0          | 0      |
| 0                | 1 | 1     | 1 | 0          | 0      |
| 1                | 0 | 0     | 0 | 0          | 0      |
| 1                | 0 | 1     | 1 | 1          | 0      |
| 1                | 1 | 0     | 0 | 0          | 1      |
| 1                | 1 | 1     | 1 | 1          | 1      |

65

# **Synthesis Using D Flip-Flops**

■ The flip-flop's input equations

$$-A(t+1) = D_A(A, B, x) = \Sigma(3, 5, 7)$$

$$-B(t+1) = D_{R}(A, B, x) = \Sigma(1, 5, 7)$$

■ The output equation

$$-y(A, B, x) = \Sigma(6, 7)$$

■ Logic minimization using

the K map

$$-D_A = Ax + Bx$$

$$-D_B = Ax + B'x$$

$$-y = AB$$

#### **Sequence Detector**

■ The logic diagram:



**Excitation Tables** 

- A state diagram ⇒ flip-flop input functions
  - straightforward for D flip-flops
  - we need excitation tables for JK and T flip-flops

**Table 5.12** Flip-Flop Excitation Tables

| Q(t) | Q(t + 1)      | J | К | Q(t) | Q(t + 1)     | <b>T</b> |
|------|---------------|---|---|------|--------------|----------|
| 0    | 0             | 0 | X | 0    | 0            | 0        |
| 0    | 1             | 1 | X | 0    | 1            | 1        |
| 1    | 0             | X | 1 | 1    | 0            | 1        |
| 1    | 1             | X | 0 | 1    | 1            | 0        |
|      | (a) <i>JK</i> |   |   |      | (b) <i>T</i> |          |

# **Synthesis Using JK Flip-Flops**

- The synthesis procedure is the same as DFF.
- The state table and JK flip-flop inputs

**Table 5.13**State Table and JK Flip-Flop Inputs

| Present<br>State |   |   |   | Next<br>Input State |    | p-Flop         | p Inputs       |                |
|------------------|---|---|---|---------------------|----|----------------|----------------|----------------|
| Α                | В | x | A | В                   | JA | K <sub>A</sub> | J <sub>B</sub> | K <sub>B</sub> |
| 0                | 0 | 0 | 0 | 0                   | 0  | X              | 0              | X              |
| 0                | 0 | 1 | 0 | 1                   | 0  | X              | 1              | X              |
| 0                | 1 | 0 | 1 | 0                   | 1  | X              | X              | 1              |
| 0                | 1 | 1 | 0 | 1                   | 0  | X              | X              | 0              |
| 1                | 0 | 0 | 1 | 0                   | X  | 0              | 0              | X              |
| 1                | 0 | 1 | 1 | 1                   | X  | 0              | 1              | X              |
| 1                | 1 | 0 | 1 | 1                   | X  | 0              | X              | 0              |
| 1                | 1 | 1 | 0 | 0                   | X  | 1              | X              | 1              |

69

# **Maps for JK Input Equations**

$$-J_A = Bx'$$
;  $K_A = Bx$   $-J_B = x$ ;  $K_B = (A \oplus x)'$ 



# Logic Diagram for Sequential Circuit with JK Flip-Flops



# Synthesis Using T flip-flops

- An *n*-bit binary counter
  - the state diagram
  - no inputs (except for the clock input)

State diagram of three-bit binary counter

0001

1111

1101

*/* I

# The State Table and The Flip-Flop Inputs

**Table 5.14** *State Table for Three-Bit Counter* 

| <b>Present State</b> |                       | N                     | <b>Next State</b> |                       |                       | Flip-Flop Inputs |                 |                 |  |
|----------------------|-----------------------|-----------------------|-------------------|-----------------------|-----------------------|------------------|-----------------|-----------------|--|
| A <sub>2</sub>       | <b>A</b> <sub>1</sub> | <b>A</b> <sub>0</sub> | A <sub>2</sub>    | <b>A</b> <sub>1</sub> | <i>A</i> <sub>0</sub> | T <sub>A2</sub>  | T <sub>A1</sub> | T <sub>A0</sub> |  |
| 0                    | 0                     | 0                     | 0                 | 0                     | 1                     | 0                | 0               | 1               |  |
| 0                    | 0                     | 1                     | 0                 | 1                     | 0                     | 0                | 1               | 1               |  |
| 0                    | 1                     | 0                     | 0                 | 1                     | 1                     | 0                | 0               | 1               |  |
| 0                    | 1                     | 1                     | 1                 | 0                     | 0                     | 1                | 1               | 1               |  |
| 1                    | 0                     | 0                     | 1                 | 0                     | 1                     | 0                | 0               | 1               |  |
| 1                    | 0                     | 1                     | 1                 | 1                     | 0                     | 0                | 1               | 1               |  |
| 1                    | 1                     | 0                     | 1                 | 1                     | 1                     | 0                | 1               | 1               |  |
| 1                    | 1                     | 1                     | 0                 | 0                     | 0                     | 1                | 1               | 1               |  |

#### **Maps of Three-Bit Binary Counter**





74

#### Logic Simplification Using The K Map

$$- T_{A2} = A_1 A_2$$
  
 $- T_{AI} = A_0$   
 $- T_{A0} = 1$ 

#### ■ The logic diagram

