

Electrical Formulae

Electrical Quantities

Quantity	Symbol	Unit Name	Unit Symbol
Electromotive force	E, e*	Volt	V
Potential difference	V, v*	Volt	V
Current	l, i*	Ampere	А
Magnetic flux	Φ	Weber	Weber
Frequency	f	Hertz	Hz
Flux linkage	λ	Weber-turns	-
Resistance	R	Ohm	Ω
Inductance	L	Henry	Н
Capacitance	С	Farad	F
Impedance	Z	Ohm	Ω
Reactance	Χ	Ohm	Ω
Power,dc,or active	Р	Watt	W
Power, reactive	Q	Volt-ampere reactive	VAr, var
Power, total or apparent	S	Volt-ampere	VA
Power factor angle	φ	-	°, deg.
Angular velocity	ω	Radians per second	rads ⁻¹
Rotational velocity	n	Revolutions per second	s ⁻¹ ,rev s ⁻¹
		Revolutions per minute	min ⁻¹ , rpm
Efficiency	η	-	
Number of pairs of poles	р	-	

^{*} Capital and small letters designate rms and instantaneous value respectively.

AC Single-Phase

All quantities r.m.s. values:

V = I Z

Total or apparent power in $VA = V_1 = l^2Z = V^2/Z$ Active power in watts, $W = V_1 \cos \varphi$ Reactive power in $VAr = V_1 \sin \varphi$

AC Three-Phase

(Assuming Balanced Symmetrical Waveform)

All quantities r.m.s values:

 V_{l} = Line-to-line voltage

 V_p = Phase voltage (line-to-neutral)

 I_i = line current (wye)

 I_p = Phase current (delta)

In a WYE connected circuit, $V_p = V_I/\sqrt{3}$, $V_I = \sqrt{3}V_p$, $I_I = I_p$

In a DELTA connected circuit: $I_p = I_I/\sqrt{3}$, $I_I = \sqrt{3} I_p V_I = \sqrt{3} I_p V$

Total of apparent power in VA = $\sqrt{3} V_{I}I_{I}$

Active power in watts, W = $\sqrt{3} V_1 I_1 \cos \varphi$

Reactive power in VAr = $\sqrt{3} V_I I_I \sin \varphi$

Power factor (pf) = $\cos \varphi$

= Active power / Apparent power

= W / VAr

Three-Phase Induction Motors

All quantities rms values:

 $kW_{mech} = horsepower \times 0.746$

 $kW_{elec} = \sqrt{3} V_I I_I \cos φ$ at rated speed and load where $V_I = \text{supply voltage} I_I = \text{rated full load current}$ $\cos φ = \text{rated full load power factor}$

Efficiency, $\eta = (kW_{mech} / kW_{elec}) \times 100$ per cent Phase current $I_p = I_I$ for wye connection $I_p = I_I / \sqrt{3}$ for delta connection

Loads (phase values)

Resistance R, measured in Ohms (no energy storage) Inductive reactance, $X_L = \omega L = 2\pi \ fL$ Ohms (stores energy)

Where f = frequency (Hz), L = Inductance (H) Capacitative reactance, X_C = $1/(\omega C)$ = $1/(2\pi f C)$ Where f = frequency (Hz), C = Capacitance (F)

Impedance

Impedance is the algebraic sum of the separate load values thus:

$$Z = \sqrt{(R^2 + X_1^2)} \text{ or } \sqrt{(R^2 + X_2^2)}$$

If R, X_L and X_C are present in series in the same circuit then X_L and X_C may be summated, treating X_C as negative, thus

$$Z = \sqrt{(R^2 + (X_1 - X_2)^2)}$$

Electrical Formulae

Ohms Law

Amperes =
$$\frac{\text{Volts}}{\text{Ohms}}$$
 or $\frac{\text{Ohms}}{\text{Ohms}} = \frac{\text{Volts}}{\text{Amperes}}$
or $\frac{\text{Volts}}{\text{Ohms}} = \frac{\text{Volts}}{\text{Ohms}}$

Power in DC Circuits

$$Horsepower = \frac{Volts \times Amperes}{746}$$

$$Watts = Volts \times Amperes$$

$$Kilowatts = \frac{Volts \times Amperes}{1,000}$$

$$Kilowatts-Hours = \frac{Volts \times Amperes \times Hours}{1,000}$$

Power in AC Circuits

Kilovolt-Amperes (KVA):

kVA (1Ø) =
$$\frac{\text{Volts x Amperes}}{1,000}$$

kVA (3Ø) = $\frac{\text{Volts x Amperes x 1.73}}{1,000}$

Kilowatts (Kw)

$$kW (1\emptyset) = \frac{\text{Volts x Amperes x Power Factor}}{1,000}$$

$$kW (3\emptyset) = \frac{\text{Volts x Amperes x Power Factor x 1.73}}{1,000}$$

$$Power Factor = \frac{\text{Kilowatts}}{\text{Kilovolts x Amperes}}$$

Other Useful Formulae

Three-Phase (3Ø) Circuits

$$HP = \frac{E \times I \times \sqrt{3} \times Eff \times PF}{746}$$

$$Motor Amps = \frac{HP \times 746}{E \times \sqrt{3} \times Eff \times PF}$$

$$Motor Amps = \frac{kVA \times 1000}{\sqrt{3} \times E}$$

$$Motor Amps = \frac{kW \times 1000}{\sqrt{3} \times E \times PF}$$

$$Power Factor = \frac{kW \times 1000}{E \times I \times \sqrt{3}}$$

$$Kilowatt Hours = \frac{E \times I \times Hours \times \sqrt{3} \times PF}{1000}$$

Power (Watts) = $E \times I \times \sqrt{3} \times PF$

Mechanical Variables

Material Densities		
Materials	lb/in ³	gm/cm ³
Aluminum	0.096	2.66
Brass	0.299	8.3
Bronze	0.295	8.17
Copper	0.322	8.91
Hard Wood	0.029	0.8
Soft Wood	0.018	0.48
Plastic	0.04	1.11
Glass	0.079-0.090	2.2-2.5
Titanium	0.163	4.51
Paper	0.025-0.043	0.7-1.2
Polyvinyl chloride	0.047-0.050	1.3-1.4
Rubber	0.033-0.036	0.92-0.99
Silicone Rubber, without filler	0.043	1.2
Cast Iron, gray	0.274	7.6
Steel	0.28	7.75

Friction Coefficients	Ffr=µWL
Materials	μ
Steel on Steel (greased)	~0.15
Plastic on Steel	~0.15-0.25
Copper on Steel	~0.30
Brass on Steel	~0.35
Aluminum on Steel	~0.45
Steel on Steel	~0.58
Mechanism	μ
Ball Bushings	<0.001
Linear Bearings	<0.001
Dove-tail Slides	~0.2++
Gibb Ways	~0.5++

Mechanism Efficiencies	
Acme screw with brass nut	~0.35-0.65
Acme screw with plastic nut	~0.50-0.85
Ballscrew	~0.85-0.95
Chain and Sprocket	~0.95-0.98
Preloaded Ballscrew	~0.75-0.85
Spur or Bevel gears	~0.90
Timing Belts	~0.96-0.98
Worm Gears	~0.45-0.85
Helical Gear (1 reduction)	~0.92