Contents

- Problem definition
- Applications
 - Scene clustering / Segmentation
- Major & Trends clustering algorithms
 - Kmeans clustering
 - Hierarchical clustering
 - Ensemble clustering
 - Large scale clustering (→ accelerated clustering)
 - Tree indexed kmeans
 - Elkan kmeans
 - Kmeans++

Clustering

• Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) - from Wikipedia-

The result of a cluster analysis shown as the coloring of the squares into three clusters

Applications

Video 1 : scene clustering

Major approaches to clustering

- K-means and its variants
- Hierarchical clustering
- Density-based clustering
- Clustering ensembles
- Large scale clustering
- Multi-way clustering

K-means

$$J_{1} = \sum_{i}^{N} \sum_{j}^{K} ||x_{i} - c_{j}||^{2}$$

Issues and Limitations for K-means

How to choose initial centers? How to choose K?

Two different K-means Clustering

Original Points

Sub-optimal Clustering

Importance of Choosing Initial Centroids

Good initial centroids

Importance of Choosing Initial Centroids

Bad initial centroids

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering
- Select most widely separated

Limitation of kmeans: structured data

Original Points

K-means (2 Clusters)

Hierarchical Clustering

Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

• Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)

Agglomerative Clustering Algorithm

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. **Merge** the two closest clusters
- 5. **Update** the **proximity matrix**
- **6. Until** only a single cluster remains

Proximity matrix

Proximity matrix (5x5)

d(i,j)=difference/dissimilarity between i and j

Different Proximity measures

Distance metric

Example) Euclidean distance, Manhattan distance, etc

Input/ Initial setting

Intermediate State

Distance/Proximity Matrix

Intermediate State

After Merging

$$d(C_i, C_j) = \min_{x \in C_i, y \in C_j} \left\{ d(x, y) \right\}$$

$$d(C_i, C_j) = \max_{x \in C_i, y \in C_j} \left\{ d(x, y) \right\}$$

$$d(C_i, C_j) = \frac{1}{|C_i| |C_j|} \sum_{x \in C_i} \sum_{y \in C_j} d(x, y)$$

$$d(C_i, C_j) = d(c_i, c_j)$$

$$c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x \qquad c_j = \frac{1}{|C_j|} \sum_{x \in C_j} x$$

Strength/Limitations of MIN

Two Clusters

• Can handle non-elliptical shapes

Original Points

Two Clusters

Sensitive to noise and outliers

Strength/Limitations of MAX

Two Clusters

•Less susceptible to noise and outliers

Two Clusters

- •Tends to break large clusters
- •Biased towards globular clusters

(Cannot handle non-elliptical shapes)

Strength/Limitations of average

Compromise between Single and Complete Link

Strengths

Less susceptible to noise and outliers

Limitations

Biased towards globular clusters

Hierarchical clustering: comparison

Hierarchical Clustering: Problems and Limitations

Advantages

- No objective function is directly minimized

Limitations

- O(N²) space since it uses the proximity matrix.
- O(N³) time in many cases
- Sensitivity to noise and outliers
- Difficulty handling different sized clusters
- Difficulty handling different convex shapes
- Breaking large clusters

Single clustering

Ensemble clustering

Fred and Jain(2002)

Ensembles

Different K Different initialization

Combination

Co-occurrence matrix + Single Link method

Similarity measure

$$co_assoc(i, j) = \frac{votes_{ij}}{N},$$

Where N is the number of clustering and $votes_{ij}$ is the number of times the pattern pair(i,j) is assigned to the same cluster among the N clustering.

Combining: Single Linkage

Example

Large scale clustering

What is a large scale data?

Table 1 Example applications of large-scale data clustering.

Application	Description	# Objects	# Features
Document clustering	Group documents of similar topics (Andrews et al., 2007)	10 ⁶	10 ⁴
Gene clustering	Group genes with similar expression levels (Lukashin et al., 2003)	10 ⁵	10 ²
Content-based image retrieval	Quantize low-level image features (Philbin et al., 2007)	10 ⁹	10 ²
Clustering of earth science data	Derive climate indices (Steinbach et al., 2003)	10 ⁵	10 ²

Algorithm

- efficient nearest neighbor(NN) search
- Data summarization
- Distributed computing
- Incremental clustering
- Sampling based methods
- **Removing redundant calculations**

- ② Elkan kmeans
- Hamerlay kmeans
- Kmeans++

뒤에서 자세히 설명

Various algorithms are studied.

But...

K-means clustering is the most popular algorithm.

Clustering ensembles Large scale clustering Multi-way clustering

Accelerated algorithms

Good Geometry initialization information Elkan kmeans kmeans++ **Fast kmeans** Search

Search

KD-TREE BASED FAST KMEANS

Inner-most loop in kmeans

$$J_{1} = \sum_{i}^{N} \sum_{j}^{K} r_{ij} \|x_{i} - c_{j}\|^{2}$$

Repeat points-centers distance calculations

This is most time consuming part

How can we reduce these calculations?

Naïve Nearest Neighbor

For finding the closest cluster

33 Distance Computations

$$J_{1} = \sum_{i}^{N} \sum_{j}^{K} r_{ij} ||x_{i} - c_{j}||^{2}$$

Speeding up Nearest Neighbor

Using KD-tree

- Examine nearby points first
- Ignore any points that are father than the nearest point

ELKAN KMEANS

Elkan kmeans

kmeans

Update clusters of all points

kmeans using Elkan distance bound

Update clusters of some points which are out of bound

Assumption, $c_2 = c_{2_old}$

Lemma #1 If $d(c_2,c_1) >= 2d(x,c_2)$, Then $d(x,c_1) >= d(x,c_2)$

Elkan kmeans

d(x,c₂) needs update. And gets new lower bound

Assumption, $c_2 = c_{2_old}$

Lemma #2 $d(x,c_2) >= max[0, d(x,c_1)-d(c_{1,}c_{2_{old}})]$ = $max[0, d(x,c_{2_{old}})-d(c_{1,}c_{2_{old}})]$ Good initialization

KMEANS++

Bad initialization

Trapped local minima

Kmeans++

- The *k*-means++ way:
 - Choose starting centers iteratively
 - Let D(x) be distance from x to nearest existing center
 - Take x as new center with prob. proportional to $D(x)^2$
- Run standard Lloyd's method with these centers

Evaluating *k*-means++

• Speed:

- Initialization similar to 1 iteration of Lloyd's method
- In practice:
 - Uses fewer iterations than Lloyd's method
 - Runs faster than Lloyd's method
- Simplicity

Evaluating *k*-means++

Speed

• Simplicity:

- Only marginally harder to implement than Lloyd's method
- Easy to understand intuitively

Take home message

- Structured data clustering
 - Ensemble clustering can handle non-convex data.
- Unstructured data clustering
 - KD-tree based method is the fastest algorithm in low dimensional data. (up to 10 dimensions)
 - Elkan kmeans is the state of the art in high dimensional large data.
 - Kmeans++ is almost used in the initial procedure of kmeans variations.