

Advanced Deep Learning 2022 FCNs + U-Nets

Stefan Sommer, Department of Computer Science, UCPH May 4, 2022

Literature

U-Net: Convolutional Networks for Biomedical Image Segmentation https://arxiv.org/abs/1505.04597

Fully Convolutional Networks for Semantic Segmentation https://arxiv.org/abs/1411.4038

d2l 13.9-13.11:

https://d2l.ai/chapter_computer-vision/semantic-segmentation-a nd-dataset.html

Interactive transpose conv:

https://distill.pub/2016/deconv-checkerboard/

A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Segmentation

Fully convolutional network (FCN)

ADL 2022 5

Fully connected layer -> conv layer

ADL 2022

6

Fully connected layer -> conv layer

What does 'fully convolutional' mean?

$$\mathbf{y}_{ij} = f_{ks} \left(\{ \mathbf{x}_{si+\delta i, sj+\delta j} \}_{0 \le \delta i, \delta j \le k} \right)$$

$$f_{ks} \circ g_{k's'} = (f \circ g)_{k'+(k-1)s',ss'}.$$

While a general deep net computes a general nonlinear function, a net with only layers of this form computes a nonlinear *filter*, which we call a *deep filter* or *fully convolutional network*.

Skip connections in FCNs (addition)

U-Nets

ADL 2022 11

ADL 2022 12