

BIOL 432

Metabarcoding

What is a microbiome?

Identifying fungi and bacteria

Microbial cultures

Less than 2% of bacteria can be cultured in the laboratory

What is a species?

"Species are groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups."

-Ernst Mayr

The phylogenetic species concept

The phylogenetic species concept

Fungal genetics:

Bacterial genetics:

Transformation

Permission pending from Sinaur Associates, Inc.

Two methods for microbiome sequencing

Whole Shotgun Metagenome Sequencing

- DNA extracted and sequenced directly
- Attempt to reconstruct (partial) individual genomes
- Computational demanding
- Higher taxonomic resolution
- More expensive
- Metabarcoding
 - PCR DNA to sequence one or a few genes
 - Computationally simple
 - Lower taxonomic resolution
 - Less expensive

Metabarcoding

Microbiome analysis of high-throughput sequencing data

Step 1: collect the sample

Step 2: Extract DNA

Step 3: PCR (add a barcode? An Illumina attachment?)

Polymerase chain reaction - PCR

- Denaturation at 94-96°C
- 2 Annealing at ~68°C
- Elongation at ca. 72 °C

Step 4: Pooling & Quality check

Size (time)

Sequencing (e.g. Illumina MiSeq)

ii.

How do we compare samples?

Analysis 'pipeline' overview

Steps 1 & 2:

- Find sequences from the NCBI SRA (sequence read archive)
- Download to your own computer

Step 3:

- Cut adapter sequences (sequencing primers)
- Cut low-quality reads (i.e. sequences)
 OR
- Cut all reads to a specified length
- Remove low-quality reads

Step 4:

 Assign Operational Taxonomic Units (OTUs) based on sequence similarity

OR

 Assign a "species" by comparing the sequence to a database (e.g. NCBI BLAST)

Step 5:

Assign a "function" to the OTU

Step 6:

Analyze the species communities!

Questions:

How similar/different are the samples?

What are the main taxa that are shared or different?

To answer these questions, use R!