Module 6 - Energy Methods

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 2 - Deriving EOMS from Energy

Topic 2 - Deriving EOMS from Energy

- System Model
- Collect Kinetic and Potential
- Change in Total Energy
- Example: Falling Mass

System Model

The modeling process begins with a description of the system and the modeling assumptions that will be used. Typically a diagram of the system is included.

Question: Why is the vector analysis not required for this method?

Collect Kinetic and Potential

Afte	r the mo	odel h	as been	established	l, all kine	tic energies	s associated
with	motion	and a	all store	d potential	energies	must be id	dentified.

Kinetic Energy

Potential Energy

reference is required to properly define the potential energy function, V(x).

Change in Total Energy

(EOM: using I	s) for ma Newton's	•	s. In some nowever b	e situatior	ns this is s	ie dynamics impler that oduce
	·					

We will use equation (3) to derive the equations of motion.

Example: Falling Mass

You may recognize this problem from dynamics or physics class.

However, today we will use the Conservation of Energy to derive the equations of motion which contain the dynamic relationships between the system variables as functions of time.

Images: T.Hill

Example: Falling Mass

This a simple problem, but it shows the method clearly. To ensure correctness, validate the result with Newton's Approach

Images: T.Hill