

Facultad de Ingeniería y Ciencias Agropecuarias Carrera de Ingeniería Ambiental EIA530 / Hidrología y Limnología Período 2017-2

1. Identificación

Número de sesiones: 48

Número total de horas de aprendizaje: 120 h = 48 h presenciales + 72 h de trabajo

autónomo.

Créditos – malla actual: 4,5

Profesor: Ing. Santiago Piedra, MBA, MSc.

Correo electrónico del docente (Udlanet): s.piedra@udlanet.ec

Coordinador: Ing. Paola Posligua MSc.

Campus: Queri

Pre-requisito: EIA440

Co-requisito:
Paralelo: 1 y 2
Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

	Campo de formación							
Fundamentos	Praxis	Epistemología y	Integración de	Comunicación y				
teóricos	profesional	metodología de la	saberes, contextos	lenguajes				
		investigación	y cultura					
	X							

2. Descripción del curso

Esta asignatura provee los fundamentos de los procesos básicos en la atmósfera e hidrosfera como también el balance y el almacenamiento de masa. La hidrología y climatología son materias complementarias. Por esto, a partir del estudio de los procesos de energía se analiza información hidrológica considerando a una cuenca hidrográfica como un sistema con entradas y salidas. Se consideran dos entradas al sistema que son: precipitación e ingreso de aguas subterráneas. Las salidas son: la evapotranspiración, el caudal del río y el egreso de aguas subterráneas. Varios conceptos de hidrogeología son también materia de estudio.

3. Objetivo del curso

Analizar críticamente información hidrológica y aplicar su conocimiento para el manejo estratégico del agua incluyendo tareas específicas como el dimensionamiento de obras de ingeniería, análisis de riesgos por inundaciones, sequías, etc. El análisis se lo realizará mediante el estudio de ecuaciones para que el estudiante comprenda el funcionamiento del sistema del ciclo hidrológico para que tome decisiones efectivas con respecto al uso y construcción de nueva infraestructura para el desarrollo de país.

4. Resultados de aprendizaje deseados al finalizar el curso.

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Identifica soluciones ingenieriles, técnicamente y económicamente factibles y viables para prevención y remediación la contaminación del agua. Ordena métodos y técnicas de ingeniería, análisis, interpretación y solución de problemas del agua.	Diseña, proactivamente y optimiza e innova tecnologías y procesos de prevención y remediación, enfocado en el control ambiental mediante la investigación e implementación de principios de producción más limpia, eficiencia de los recursos energéticos, estudios de ordenamiento territorial, evaluaciones de impacto ambiental y auditorías ambientales basados en el cumplimiento de la normativa ambiental vigente generando soluciones técnicamente factibles y económicamente viables en el diseño de tratamiento de residuos y efluentes.	Inicial () Medio (X) Final ()
Examina procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento del agua.	Aplica su conocimiento en forma de consultoría en la búsqueda innovadora de soluciones económicamente viables y atractivas para realizar remediación de sistemas, con responsabilidad social y ambiental.	
Asocia la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental-estadístico, resultados, rechazo de hipótesis del ciclo hidrológico	Aplica metodologías de investigación en la búsqueda, fundamentación y elaboración de soluciones que garanticen la conservación, sustentabilidad, sostenibilidad y gestión integral de los recursos.	

5. Sistema de evaluación.

Progreso 1					
Examen	20%				
Ejercicios y problemas aplicados.	10%	35%			
Cálculo de la precipitación media	5%				
Progreso 2					
Examen	20%				
Ejercicios y problemas aplicados	10%	35%			
Resolución de ecuaciones	5%				
Evaluación final					
Examen final	30%	30%			
Total (Progreso 1, progreso 2 y evaluación final)		100%			

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

La metodología consistirá en presentaciones del facilitador utilizando fórmulas, gráficos y figuras que muestren objetivamente el contenido de la materia. Es relevante la deducción de fórmulas para el entendimiento de la materia como también para procedimientos lógicos para la obtención de resultados. La estrategia consiste en proporcionar conceptos y criterios fundamentales para que luego el mismo estudiante a través de gráficos y figuras interprete el comportamiento de una cuenca y el impacto que produce el cambio de las propiedades físicas de la misma.

El uso del idioma inglés es fundamental para el desarrollo del curso pues la información relevante encontrada en la bibliografía se encuentra escrita y desarrollada en inglés. La lectura de artículos científicos será en inglés.

6.1. Escenario de aprendizaje presencial.

Talleres en clase.

Durante el curso se realizará talleres en clase. El estudiante deberá resolver problemas propuestos en los talleres que con la ayuda de las diapositivas y mediante preguntas al facilitador asimilará la magnitud de las variables analizadas.

6.2. Escenario de aprendizaje virtual

Lecturas de artículos científicos.

Durante el curso el estudiante deberá leer artículos en inglés y manuales de procedimientos estandarizados para el procesamiento espacial y temporal de datos.

6.3. Escenario de aprendizaje autónomo.

Análisis de material bibliográfico.

Como complemento del aprendizaje, el estudiante deberá revisar mapas para evidenciar las magnitudes de las variables de estudio del curso.

7. Temas y subtemas del curso

RDAS	Temas	Sub temas
Ordena métodos y técnicas	1 Conceptos básicos de	1.1 Introducción
de ingeniería, análisis, interpretación y solución de	hidrología	1.2 Ecuaciones de
problemas del agua.		conservación
		2.1 Cuencas
	2 Ciala hidralágias	2.2 Ecuaciones de balance de
	2 Ciclo hidrológico	agua
		2.3 Ciclo hidrológico.
		2.4 Relación clima, suelos y
Identifica soluciones		vegetación
ingenieriles, técnicamente y		3.1 Origen
económicamente factibles y		2.2 M. 45.77
viables para prevención y	2 Due simite side	3.2 Medición
remediación la	3 Precipitación	2.2 5-4
contaminación del agua.		3.3 Estimación de área
		3.4 Tormentas
		4.1 Evaporación
		4.2 Clasificación de procesos
		de evapotranspiración
		4.3 Transpiración
	4 Evapotranspiración	4.4 Conductancia
		4.5 Evapotranspiración potencial
		4.6 Evapotranspiración actual
Examina procesos naturales		5.1 Acuíferos confinados
y antropogénicos:		
transporte, monitoreo,		
control y tratamiento del agua.	5 Acuíferos	
agua.		
		5.2 Acuíferos no confinados
		6.1 Movimiento del agua
		6.2 Ley de Darcy
		6.3 Conductividad hidráulica
		olo donadedyrada maradica
	6 Ley de Darcy	
		6.4 Permeabilidad intrínseca

		6.5 Velocidades
	7 Pozos	7.1 Fundamentos de pozos 7.3 Dimensionamiento de pozos
Asocia la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental-estadístico, resultados, rechazo de hipótesis del ciclo hidrológico	8 Hidrogramas	8.1 Caudales 8.2 Reservas de agua

8. Planificación secuencial del curso

RDAS	Temas	Sub temas		vidad/ odología/clase	Tarea / trabajo autonomo	Mde
Ordena métodos y técnicas de	1 Conceptos básicos de hidrología	1.1 Introducción	(1)	Presentación del sílabo	Resolución de ejercicios (Isoyetas,	Entrega de ejercici
ingeniería, análisis,		1.2 Ecuaciones de conservación	(1)	Presentación de flujos	delimitación de una cuenca,	os. (fecha
interpretació n y solución de problemas del agua.		2.1 Cuencas	(1)	Presentación de modelos "black box", "grey box" y "white box"	obtención del coeficiente de forma de una cuenca, análisis de	de entreg a 16 de abril del
	2 Ciclo hidrológico	2.2 Ecuaciones de balance de agua	(1)	Presentación de una cuenca. Línea de cumbre	precipitaciones) Lectura: Estimation of wind-induced	Resulta dos de
		2.3 Ciclo hidrológico.	(1)	Presentación de propiedades inherentes a cada cuenca	error of rainfall gauge measurements using a numerial simulation	examen
		2.4 Relación clima, suelos y vegetación	(1)	Presentación del ciclo hidrológico	(Nespor. 1998) (3)	
Identifica soluciones ingenieriles,	3 Precipitación	3.1 Origen	(1)	Presentación de esperanza matemática		
técnicament e y económicam			(1)	Presentación de pluviómetros		
ente factibles y viables para		3.2 Medición	(1)	Presentación de variables de precipitación		

.,	1	1	(4)	D		1
prevención y			(1)	Presentación		
remediación				de		
la				estimaciones I		
contaminaci		3.3 Estimación	(1)	Presentación		
ón del agua.		de área		de		
			(4)	estimaciones II		
			(1)	Presentación		
				de lluvias de		
		0.45	(1)	diseño I		
		3.4 Tormentas	(1)	Presentación		
				de lluvias de		
	_			diseño II		
	4	4.1 Evaporación	(1)	Presentación		
	Evapotranspi			de conceptos		
	ración			de evaporación		
		4.2 Clasificación	(1)	Presentación		
		de procesos de		de equipos		
		evapotranspirac		para		
		ión	(4)	mediciones		
		4.3	(1)	Examen hasta		
		Transpiración		subtema 3.4		
		4.4	(1)	Examen hasta		
		Conductancia		subtema 3.4		
			(1)	1		
			(1)	Ejemplos de		
				cálculos de		
				evapotranspira		
			(4)	ción		
		4.5	(1)	Retroalimenta		
		Evapotranspira		ción		
		ción potencial	(1)	F:l J-		
			(1)	Ejemplos de		
				cálculos de		
				evapotranspira		
		1.6	(1)	ción		
		4.6	(1)	Ejemplos de		
		Evapotranspira		cálculos de		
		ción actual		evapotranspira		
Examina	5 Acuíferos	5.1 Acuíferos	(1)	ción Presentación	Deducción de	Entrogo
procesos	5 Acuileros	confinados	(1)	de	fórmulas.	Entrega de
naturales y		commauos		fundamentos	Hydrology and	ejercici
antropogéni				de	the Management	os,
cos:				hidrogeología	of Watersheds	(fecha
transporte,				(geotecnia)	(4th Edition).	de
monitoreo,			(1)	Taller en clase	Lectura capítulo	entreg
control y					de hidrogeología	a 28 de
tratamiento			(1)	Presentación	(3)	mayo
del agua.				de medios	(-)	del
			(4)	porosos		2017)
			(1)	Presentación		
				de medios		Resulta
				porosos -		dos de
				presión		talleres
			(1)	hidrostática		
			(1)	Presentación de acuíferons		
		1		confinados		

	ı	T = 0 + 12		· ·		1
		5.2 Acuíferos no	(1)	Presentación		
		confinados		de acuíferos no		
			6.15	confinados		
			(1)	Presentación		
				de		
				carácterísticas		
		6436	6.15	de acuíferos I		
	6 Ley de	6.1 Movimiento	(1)	Presentación		
	Darcy	del agua		de		
				carácterísticas		
			4.15	de acuíferos II		
		6.2 Ley de	(1)	Presentación		
		Darcy		de la ley de		
				Darcy		
		6.3	(1)	Presentación		
		Conductividad		de		
		hidráulica		conductividad		
				hidráulica		
			(1)	Deducción de		
				fórmulas -		
				Taller en clase		
		6.4	(1)	Presentación		
		Permeabilidad		de flujos		
		intrínseca		paralelos y		
				perpendiculare		
				s en un medio		
				poroso I		
			(1)	Presentación		
				de flujos		
				paralelos y		
				perpendiculare		
				s en un medio		
				poroso II		
		6.5 Velocidades	(1)	Presentación		
				de flujos		
				paralelos y		
				perpendiculare		
				s en un medio		
				poroso III		
	7 Pozos	7.1	(1)	Presentación	Resolución de	Examen
		Fundamentos		de isolíneas de	ejercicios	Seman
		de pozos		carga	entregados por	a 26 -
		7.3	(1)	Presentación	el facilitador (3)	08
		Dimensionamie	` ´	de isocronas		junio -
		nto de pozos				julio
		•	(1)	Deducción de		
				fórmulas -		
				Taller en clase		
Asocia la	8	8.1 Caudales	(1)	Examen hasta		
cadena de	Hidrogramas			subtema 6.4		
investigació						
n científica:			(1)	Retroalimenta		
problemátic				ción		
a, motivo,			(1)	Proceso de		
objetivo,				transporte en		
hipótesis,				acuíferos		
diseño			(1)	Presentación		
experimenta				de número de		
	I	1	Ì	İ	İ	1

l-estadístico, resultados, rechazo de hipótesis del ciclo	8.2 Reservas de agua	(1)	Peclet Presentación de modelos I	
hidrológico		(1)	Presentación de modelos II (elementos finitos)	
		(1)	Presentación de Caudales de salida de una cuenca	
		(1)	Presentación hidrogramas y "streamflow routing"	
		(1)	Presentación de Ecuación de Saint - Venant	
		(1)	Examen Final	

9. Normas y procedimientos para el aula

El uso de celulares está permitido en el aula. No existe ninguna restricción de la hora de llegada del estudiante. Sin embargo, si el estudiante no asiste a clases no habrá ninguna justificación para ponerlo en lista.

A pesar del libre uso de tecnologías de comunicación en clases, el facilitador recordará las personas que alteren el ambiente en el aula y se tomará en cuenta al momento de la exigencia en la calificación de los progresos.

Cualquier persona que haga caso omiso de dos llamadas de atención del facilitador tendrá que abandonar el aula previo aviso del facilitador.

10. Referencias bibliográficas

Brooks, Kenneth N. (2013), *Hydrology and the Management of Watersheds (4th Edition*), WILEY-BLACKWELL

11. Perfil del docente

Experiencia con estándares nacionales e internacionales en calidad, medio ambiente y seguridad industrial. El conocimiento ganado en el MBA en calidad y operaciones generó un criterio sobre la importancia de manejar procedimientos estandarizados para planificar y ejecutar proyectos efectivos y eficientes con el uso de normas como el PMbok, ISO, etc. El MSc en ciencias del agua e ingeniería sirvió para mejorar el conocimiento en procesos relacionados con el recurso agua con el estudio de Hidrogeología, Climatología, Hidrodinámica, Gestión de Inundaciones, etc.

- MSc en ciencias del agua e ingeniería Alemania / Oct 2011 Sep 2013
 UNIVERSIDAD TÉCNICA DE DRESDEN
- MBA en operaciones y calidad Ecuador / Feb 2008 Feb 2014
 ESCUELA POLITÉCNICA NACIONAL
 - Ingeniería civil Ecuador / Oct 2001 Nov 2007

ESCUELA POLITÉCNICA DEL EJÉRCITO

• Secundaria - Ecuador / Oct 1998 - Jul 2001

COLEGIO INTISANA

Primaria – Estados Unidos de América / Nov 1996 - Jun 1998
 SHORELESS LAKE SCHOOL