Espacio de muestras y sucesos

Se llama **espacio de muestras** el conjunto E de todos los resultados posibles de un experimento.

Cada uno de los resultados posibles es un **suceso elemental**.

Cualquier subconjunto de E se llama **suceso**. Es decir, un **suceso** es un conjunto de sucesos elementales.

E es el **suceso seguro** y \emptyset el **suceso imposible**.

Operaciones con sucesos

Sean A y B dos sucesos.

 $A \cup B$ es el suceso que se verifica si pasa A ó B (o los dos al mismo tiempo).

Es decir, $A \cup B$ es el suceso que contiene todos los sucesos elementales que pertenecen a A o a B (o a ambos).

 $A\cap B$ es el suceso que se verifica si pasan A y B al mismo tiempo. Es decir, $A\cap B$ contiene los sucesos elementales que están tanto en A como en B.

Se dice que dos sucesos A y B son **incompatibles** si $A \cap B = \emptyset$.

 A^c es el suceso complementario de A o negación de A, y es el conjunto complementario de A. Es decir, $A^c = E \backslash A$.

Ejemplo 1.1 Consideramos la experiencia de tirar un dado y observamos el resultado. El espacio de muestras es:

$$E = \{1, 2, 3, 4, 5, 6\}$$

Posibles sucesos serían:

$$A = \{\text{números pares}\} = \{2, 4, 6\}$$

$$B = \{1, 4, 5\}$$

$$A \cup B = \{1, 2, 4, 5, 6\}$$

 $A \cap B = \{4\}$
 $A^c = \{1, 3, 5\}$

Ejemplo 1.2 Consideramos la experiencia de tirar una moneda 3 veces seguidas y observamos la secuencia de caras (O) y cruces (+) resultante.

El espacio de muestras es:

$$E = \{OOO,OO+,O+O,+OO,O++,+O+,++O,+++\}$$

Posibles sucesos son:

$$C = \{\text{que salgan 2 caras}\} = \{\text{OO+,O+O,+OO}\}$$

$$D = \{\text{que salgan 2 caras o más}\} = \{\text{OO+,O+O,+OO,OOO}\}$$

$$C \cup D = D$$

$$C \cap D = C$$

$$C^c = \{O++,++O,+O+,+++,OOO\}$$

Ejemplo 1.3 Consideramos la experiencia de tirar dos dados y nos fijamos en la suma de los puntos obtenidos.

El espacio de muestras es:

$$E = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

Posibles sucesos son:

$$F = \{\text{que la suma sea par}\} = \{2,4,6,8,10,12\}$$

$$G = \{ \text{que la suma sea impar} \} = \{3, 5, 7, 9, 11 \}$$

$$F \cup G = E$$

$$F \cap G = \emptyset$$

$$F^c = G$$

Propiedades de las operaciones con sucesos

$$A \cup E = E \text{ y } A \cup \emptyset = A$$

$$A \cap E = A$$
 y $A \cap \emptyset = \emptyset$

Leyes asociativas

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Leyes distributivas

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Leyes de Morgan

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

Espacios de probabilidad finitos

Axiomas de Kolmogorov

Sea E un espacio de muestras finito.

Una **probabilidad** P sobre E es una aplicación que asigna a cada subconjunto $A \subset E$ un número real y que satisface los siguientes axiomas:

1.
$$0 \le P(A) \le 1$$

2.
$$P(E) = 1$$

3.
$$A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$$
.

El par (E, P) se dice **espacio de probabilidad**.

Propiedades de los espacios de probabilidad

1.
$$P(\emptyset) = 0$$

2.
$$A \subset B \Rightarrow P(A) \leq P(B)$$

3.
$$P(A^c) = 1 - P(A)$$

4. Si A_1, A_2, \dots, A_n son n success incompatibles 2 a 2, entonces

$$P(\cup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

Fórmula de inclusión-exclusión

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) -$$

$$-P(A \cap B) - P(A \cap C) - P(B \cap C) +$$

$$+P(A \cap B \cap C)$$

Demostración Usar diagramas de Venn

Espacios de probabilidad finitos equiprobables

Sea $E = \{a_1, \ldots, a_n\}$ un espacio de muestras finito de n elementos o sucesos elementales.

Si todos los sucesos elementales tienen la misma probabilidad, el espacio de probabilidad se dice **equiprobable**. En este caso,

$$1 = P(E) = P(\bigcup_{i=1}^{n} \{a_i\}) = \sum_{i=1}^{n} P(\{a_i\}) = nP(\{a_i\})$$

Luego $P(\{a_i\}) = \frac{1}{n}$ para todo i.

Y en general, si un suceso A consta de k elementos, $P(A) = \frac{k}{n}$.

Ejemplo 1.1

$$P(A) = \frac{3}{6} = \frac{1}{2}$$
$$P(B) = \frac{1}{2}$$

Ejemplo 1.2

$$P(C) = \frac{3}{8}$$

$$P(D) = \frac{4}{8} = \frac{1}{2}$$

Ejemplo 1.3

Los sucesos elementales de ${\cal E}$ no son equiprobables.

Pero podemos definir

$$E' = \{(1,1), (1,2), (1,3), \dots, (6,6)\}$$

y en E' sí que lo son.

Entonces,

$$P(F) = \frac{18}{36} = \frac{1}{2}$$

$$P(G) = \frac{18}{36} = \frac{1}{2}$$

Espacios de probabilidad infinitos

Ejemplo 1.4 Caso infinito numerable.

Consideramos la experiencia de tirar hasta que sale cara y contamos el número de tiradas.

$$E = \{1, 2, 3, 4, \ldots\} = \mathbb{N}$$

Ejemplo 1.5 Caso infinito no numerable.

Consideramos la experiencia de medir el voltaje de una señal.

$$E = [0, \infty)$$

Axiomas de Kolmogorov para espacios de probabilidad infinitos

Sea E un espacio de muestras infinito. Una **probabilidad** P sobre E es una aplicación

$$P:\mathcal{P}(E)\longrightarrow\mathbb{R}$$

que satisface los siguientes axiomas:

1.
$$0 \le P(A) \le 1$$

2.
$$P(E) = 1$$

3. 'Si A_1, A_2, \ldots es una familia numerable de sucesos incompatibles 2 a 2, entonces

$$P(\cup_{i\geq 1}A_i) = \sum_{i\geq 1} P(A_i)$$

Probabilidad condicional

Ejemplo Eva y Clara salen a cenar y se juegan quién paga la cena. Tiran una moneda tres veces y si salen más caras que cruces en la tirada paga Eva, y si salen más cruces que caras paga Clara.

El espacio de muestras es:

$$M = \{000,00+,0+0,+00,0++,+0+,++0,+++\}$$

Los sucesos "Eva paga" y "Clara paga" son:

$$E = \{\text{Eva paga}\} = \{\text{OO+,O+O,+OO,OOO}\}$$

 $C = \{\text{Clara paga}\} = \{++\text{O,+O+,O++,+++}\}$

Claramente cada una tiene un 50% de posibilidades de pagar. Tiramos la moneda por primera vez y el resultado es cara. ¿Cuáles son las posibilidades de Eva y Clara ahora?

Tenemos
$$M' = \{OOO,OO+,O+O,O++\}.$$

Los sucesos "Eva paga ahora" y "Clara paga ahora" son:

$$E' = E \cap M' = \{ \text{Eva paga ahora} \} = \{ \text{OOO,OO+,O+O} \}$$

$$C' = C \cap M' = \{ \text{Clara paga } \} = \{ \text{O++} \}$$

Luego

$$P(\text{Eva paga ahora}) = \frac{3}{4}$$

$$P(Clara paga ahora) = \frac{1}{4}$$

Probabilidad condicional

Sean A y B dos sucesos de un espacio de probabilidades (E,P).

Si $P(B) \neq 0$, se define **la probabilidad del** suceso A condicionada a B como:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Ejemplo anterior B es el suceso M' de que salga cara en la primera tirada. A es el suceso E de "Eva paga". Entonces,

P(Eva paga ahora) = P(E|M').

Ejemplo 1.1 La probabilidad de que tirando un dado haya salido un número par sabiendo que ha salido 1,4 ó 5 es

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$

Ejemplo 1.2 Se tira una moneda tres veces seguidas. La probabilidad de que hayan salido exactamente dos caras sabiendo que han salido dos o más es:

$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{\frac{3}{8}}{\frac{4}{8}} = \frac{3}{4}$$

Y la probabilidad de que hayan salido dos o tres caras, sabiendo que han salido dos es claramente 1:

$$P(D|C) = \frac{P(C \cap D)}{P(C)} = \frac{\frac{3}{8}}{\frac{3}{8}} = 1$$

Ejemplo 1.3 Tiramos dos dados y nos fijamos en la suma de los puntos obtenidos. Sea F el suceso que la suma sea par y G que la suma sea impar. Entonces,

$$P(F|G) = \frac{\frac{0}{36}}{\frac{18}{36}} = 0$$

En general, si dos sucesos A y B de probabilidades no nulas son incompatibles

$$P(A|B) = P(B|A) = 0$$

Independencia de sucesos

Sean A y B dos sucesos de un espacio de probabilidades (E,P).

Decimos que A y B son **independientes** si

$$P(A \cap B) = P(A)P(B)$$

NO asumir que dos sucesos son independientes a no ser que:

- Dependan de diferentes tiradas de un dado o una moneda
- Lo diga el enunciado

NO confundir independencia con incompatibilidad $(A \cap B = \emptyset)$.

Teorema Sean A y B dos sucesos de probabilidad no nula.

Entonces A y B son independientes si y sólo si la realización de uno de ellos no afecta a la probabilidad del otro.

$$\Rightarrow$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(B)P(A)}{P(A)} = P(B)$$

 \Leftarrow

Si
$$P(A|B) = P(A)$$
, entonces

$$P(A \cap B) = P(A|B)P(B) = P(A)P(B)$$

Ejemplo 1.1 A y B no son independientes porque

$$P(A) = \frac{1}{2} P(B) = \frac{1}{2} P(A \cap B) = \frac{1}{6}$$

Ejemplo 1.2 C y D tampoco son independientes pues

$$P(C) = \frac{3}{8} P(D) = \frac{1}{2} P(C \cap D) = \frac{3}{8}$$

Ejemplo 1.3 F y G tampoco son independientes pues

$$P(F) = \frac{1}{2} P(G) = \frac{1}{2} P(F \cap G) = 0$$

Nota Dos sucesos incompatibles A y B de probabilidades no nulas nunca son independientes.

Ejemplo 1.8 pág 38 Consideramos la experiencia de sacar al azar una carta de una baraja de 40 cartas.

Tenemos 40 sucesos elementales equiprobables.

Sea $A = \{\text{sacar oros}\}\ y\ B = \{\text{sacar una sota}\}.$

$$P(A) = \frac{10}{40} \ P(B) = \frac{4}{40}$$

 $A\cap B$ contiene un solo elemento, que es la sota de oros luego

$$P(A \cap B) = \frac{1}{40} = P(A)P(B)$$

y A y B son independientes.

Ejemplo Tengo dos bolis rojos, uno verde y uno azul en un cajón. Saco dos sin reemplazo.

Sea A el suceso de escoger exactamente un boli rojo y B exactamente uno azul.

Denotemos a los bolis por R_1, R_2, V, A .

$$E = \{R_1 R_2, R_1 V, R_1 A, R_2 V, R_2 A, V A\}$$

$$A = \{R_1 V, R_1 A, R_2 A, R_2 V\}$$

$$B = \{R_1 A, R_2 A, A V\}$$

$$A \cap B = \{R_1 A, R_2 A\}$$

$$P(A) = \frac{4}{6} P(B) = \frac{3}{6} P(A \cap B) = \frac{2}{6}$$

Luego A y B son independientes.

Supongamos que tenemos además un boli naranja N. Entonces,

$$E = \{R_1 R_2, \dots, R_1 N, R_2 N, A N, V N\}$$

$$A = \{R_1 V, R_1 A, R_2 A, R_2 V, R_1 N, R_2 N\}$$

$$B = \{R_1 A, R_2 A, A V, A N\}$$

$$A \cap B = \{R_1 A, R_2 A\}$$

$$P(A) = \frac{6}{10} P(B) = \frac{4}{10} P(A \cap B) = \frac{2}{10}$$

¡Y ahora A y B **NO** son independientes!!

Teorema de la probabilidad total

Sean A_1, A_2, \ldots, A_n sucesos de un espacio de probabilidad (E, P).

Decimos que A_1, A_2, \ldots, A_n son una **partición** del espacio de muestras E si

$$\bullet \cup_{i=1}^n A_i = E, y$$

son incompatibles 2 a 2

Sea B un suceso y A_1, A_2, \ldots, A_n una partición de E. Entonces

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_n)$$

y el **Teorema de la probabilidad total** afirma:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Ejemplo 1.9 pág 38 La probabilidad de un error en la transmisión de un mensaje por radio depende del nivel ρ de ionización de la atmósfera, que se mide en una escala determinada.

Si $0 \le \rho < 10$, la prob de error es de 0,1, si $10 \le \rho < 20$, es 0,2, y si $20 \le \rho$, es 0,3.

Sabemos que la probabilidad de estos niveles de ionización es:

$$P(0 \le \rho < 10) = 0.5 \ P(10 \le \rho < 20) = 0.4$$

$$P(20 \le \rho) = 0.1$$

¿Cuál es la probabilidad de error?

Denotemos por ϵ el suceso de "error en la transmisión", y A_1,A_2,A_3 los sucesos $0 \le \rho < 10,\ 10 \le \rho < 20,\ 20 \le \rho,$ respectivamente.

Entonces, por el Teorema de la probabilidad total:

$$P(\epsilon) = P(\epsilon|A_1)P(A_1) + P(\epsilon|A_2)P(A_2) + P(\epsilon|A_3)P(A_3)$$

$$P(\epsilon) = 0, 1 \cdot 0, 5 + 0, 2 \cdot 0, 4 + 0, 3 \cdot 0, 1 = 0, 16$$

Teorema de Bayes

La fórmula de Bayes nos proporciona una manera de relacionar P(A|B) y P(B|A).

Sea A_1, A_2, \ldots, A_n una partición del espacio de muestras E y B un suceso cualquiera.

De la def de probabilidad condicionada:

$$P(B \cap A_j) = P(B|A_j)P(A_j) = P(A_j|B)P(B)$$

Del tma de probabilidad total:

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Y combinando ambas igualdades, el **Teorema de Bayes** enuncia:

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

Ejemplo 1.10 pág 39 Una urna contiene dos bolas blancas y dos negras. Se extrae una bola y, sin saber el color ni devolverla a la urna, se extrae después otra bola.

Calcular la prob de que la primera bola haya sido blanca si la segunda es negra.

Denotamos

$$B_1 = \{ \text{la primera bola es blanca} \}$$

 $N_1 = \{ \text{la primera bola es negra} \}$
 $N_2 = \{ \text{la segunda bola es negra} \}$

Queremos calcular $P(B_1|N_2)$.

Notemos que B_1 y N_1 forman una partición del espacio.

$$P(B_1) = \frac{2}{4} = \frac{1}{2} \ P(N_1) = \frac{1}{2}$$
$$P(N_2|B_1) = \frac{2}{3} \ P(N_2|N_1) = \frac{1}{3}$$

Usando la fórmula de Bayes:

$$P(B_1|N_2) = \frac{P(N_2|B_1)P(B_1)}{P(N_2|B_1)P(B_1) + P(N_2|N_1)P(N_1)} = \frac{\frac{2}{3} \cdot \frac{1}{2}}{\frac{2}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}} = 0,666...$$

Ejemplo 1.11 Pág 40 Dos máquinas A y B producen 100 y 200 chips respectivamente. Se sabe que la máquina A produce un 5% de chips defectuosos y la B un 6%.

Se escoge un chip y se pide:

- a) Calcular la probabilidad de que sea defectuoso
- b) Sabiendo que el chip es defectuoso, calcular la probabilidad de que haya salido de la máquina $\cal A$.

Denotemos por A, B y D los siguientes sucesos:

 $A = \{ \text{el chip ha sido producido por la máquina A} \}$ $B = \{ \text{el chip ha sido producido por la máquina B} \}$ $D = \{ \text{el chip es defectuoso} \}$

a) Por la fórmula de la prob total

$$P(D) = P(D|A)P(A) + P(D|B)P(B) =$$

$$= \frac{5}{100} \cdot \frac{100}{300} + \frac{6}{100} \cdot \frac{200}{300} = 0,0566...$$

b) Por la fórmula de Bayes

$$P(A|D) = \frac{P(D|A)P(A)}{P(D)} = \frac{0,05 \cdot \frac{1}{3}}{0,0567} = 0,294$$