

Unit 02

CAPM

210.95

149.16

1 /110

Capital Asset Pricing Model

- CAPM is the equilibrium model that underlies all modern financial theory
- Derived using principles of diversification with simplified assumptions
- Markowitz, Sharpe, Lintner, and Mossin contributed to its development

Assumptions of the CAP

Individuals

- Mean-Variance optimizers
- Homogeneous expectations
- All assets are publicly traded

Markets

- All assets are publicly held
- All information is available
- No taxes
- No transaction cost

Assumptions of the CAP

- Implications of the assumptions
 - Investors optimize portfolios a la Markowitz
 - Investors use identical input list for efficient frontier
 - Same risk-free rate, tangent CAL and risky portfolio are used
 - Market portfolio is aggregation of all risky portfolios and has same weights

- Resulting Equilibrium Conditions
 - All investors will hold the same portfolio for risky assets
 - market portfolio
 - Market portfolio contains all the securities and the proportion of each security is its market value as a percentage of total market value

Resulting Equilibrium Conditions

Market Risk Premium

 The risk premium on the market portfolio will be proportional to its risk and the degree of risk aversion of the investor

$$E(R_M) = \bar{A}\sigma_M^2$$

- where σ_M^2 is the variance of the market portfolio and \bar{A} is the average degree of risk aversion across investors

- Return and Risk for Individual Securities
 - The risk premium on individual securities is a function of the individual security's contribution to the risk of the market portfolio

 An individual security's risk premium is a function of the covariance of returns with the assets that make up the market portfolio

Example

Covariance of GE return with the market portfolio

$$Cov(R_M, R_{GE}) = Cov(\sum_{i=1}^n w_i R_i, R_{GE}) = \sum_{i=1}^n Cov(w_i R_i, R_{GE})$$

Therefore, the reward-to-risk ratio for investment in GE would be

$$\frac{\text{GE's contribution to risk premium}}{\text{GE's contribution to variance}} = \frac{w_{GE}E(R_{GE})}{w_{GE}Cov(R_{GE},R_M)} = \frac{E(R_{GE})}{Cov(R_{GE},R_M)}$$

- Risk Premium

$$E(R_M) = E(\sum_{i=1}^n w_i R_i) = E(\sum_{i \neq GE} w_i R_i) + w_{GE} R_{GE}$$

Example

Reward-to-Risk ratio for investment in market portfolio

$$\frac{\text{Market Risk Premium}}{\text{Market Variance}} = \frac{E(R_M)}{\sigma_M^2}$$

 Reward-to-Risk ratios of GE and the market portfolio should be equal

$$\frac{E(R_{GE})}{Cov(R_{GE},R_M)} = \frac{E(R_M)}{\sigma_M^2}$$

Example

The risk premium for GE

$$E(R_{GE}) = Cov(R_{GE}, R_M) \times \frac{E(R_M)}{\sigma_M^2}$$

Restating, we obtain

$$\Rightarrow E(r_{GE}) - r_f = \beta_{GE} \times (E(r_M) - r_f)$$

$$\Rightarrow E(r_{GE}) = r_f + \beta_{GE} \times (E(r_M) - r_f)$$

- Expected Return-β Relationship
 - CAPM holds for the overall portfolio because

$$E(r_p) = \sum_k w_k E(r_k)$$
 and $\beta_p = \sum_k w_k \beta_k$

This also holds for the market portfolio

$$E(r_M) = r_f + \beta_M [E(r_M) - r_f]$$

The Security Market Line

◆ The SML and a (+) Alpha Stock

CAPM and the World

Academic World

- Cannot observe all tradable assets
- Impossible to pin down market portfolio
- Attempts to validate using regression analysis

Investment Industry

- Relies on the single-index CAPM model
- Most investors don't beat the index portfolio

Exercise Problem 1

Using 10 past years of annual data, the market model has been estimated for stocks A and B with the following results:

$$R_A = 0.01 + 0.8 R_M + e_A$$
, $R_B = 0.02 + 1.2 + e_B$, $\sigma_M = 0.20$, $\sigma(e_A) = 0.2$, $\sigma(e_B) = 0.10$, where R is the excess return.

- 1) What does the market model predict for the values of σ_A , σ_B , $\sigma_{A,B}$, $\rho_{A,B}$?
- 2) Suppose we construct a portfolio that has weights: $w_A = \frac{1}{2}$, $w_B = \frac{1}{4}$, $w_f = \frac{1}{4}$. What is the risk of this portfolio?

Exercise Problem 1

Suppose that the current risk-free rate is 5% and that as an estimate for the expected market risk premium $R_M = r_M - r_f$, we use a long-run historical average of 8%.

- 3) Using the market model's estimate of β_A , what does the capital asset pricing model predict $E(r_A)$ should be?
- 4) According to the market model, what is the implied value of E(TA)?
- 5) If you find that the two values of $E(r_A)$ agree, comment on the reasons for this agreement. If you find that the two values of $E(r_A)$ disagree, comment on the reasons for this disagreement.