Write proofs in two-column form.

14. Given: $\angle R \cong \angle T$; $\overline{RS} \parallel \overline{QT}$

Prove: $\overline{RS} \cong \overline{TQ}$

(Hint: What auxiliary line can you draw

to form congruent triangles?)

15. Given:
$$\angle 1 \cong \angle 2 \cong \angle 3$$
;

$$\overline{EN} \cong \overline{DG}$$

Prove: $\angle 4 \cong \angle 5$

For Exercises 16-19 draw and label a diagram. List, in terms of the diagram, what is given and what is to be proved. Then write a two-column proof.

- **16.** In two congruent triangles, if segments are drawn from two corresponding vertices perpendicular to the opposite sides, then those segments are congruent.
- 17. If segments are drawn from the endpoints of the base of an isosceles triangle perpendicular to the opposite legs, then those segments are congruent.
- **18.** If $\angle A$ and $\angle B$ are the base angles of isosceles $\triangle ABC$, and the bisector of $\angle A$ meets \overline{BC} at X and the bisector of $\angle B$ meets \overline{AC} at Y, then $\overline{AX} \cong \overline{BY}$.
- 19. If segments are drawn from the midpoints of the legs of an isosceles triangle perpendicular to the base, then those segments are congruent.
- 20. Write a detailed plan for proof.

Given:
$$\overline{FL} \cong \overline{AK}$$
; $\overline{SF} \cong \overline{SK}$;

M is the midpoint of \overline{SF} ; N is the midpoint of \overline{SK} .

Prove: $\overline{AM} \cong \overline{LN}$

Write proofs in two-column form. Use the facts that the sides of a square are all congruent and that the angles of a square are all right angles.

C 21. The diagram shows three squares and an equilateral triangle.

Prove: $\overline{AE} \cong \overline{FC} \cong \overline{ND}$

22. Use the results of Exercise 21 to prove that $\triangle FAN$ is equilateral.

