Initial models for optimisation

R. Kuipers

May 14, 2020

Initial model for installation

$$\max_{\substack{O_p,N_p\in\mathbb{Z}^*\\s_R,\,f_R\in\{0,1\}}} \sum_{p\in P} [DIS^p(O_p\cdot v_p - \sum_{r\in R} N_{rp}\cdot C_{rp})] \tag{1}$$

subject to:

$$1 = \sum_{t \in T} s_{it} = \sum_{t \in T} f_{it}$$
 $\forall i \in I$ (2)

$$1 \ge s_{jt_1} + f_{it_2} \qquad \qquad \forall (i,j) \in IP, \\ \forall t_1, t_2 \in T | t_1 < t_2$$
 (3)

$$(s_{it_1} + f_{it_2} - 1) \cdot d_i \leq \frac{s_{it_1} + f_{it_2}}{2} \cdot \sum_{t_3 = t_1}^{t_2} \omega_{it_3} \qquad \forall i \in I, \forall t_1, t_2 \in T$$
 (4)

$$N_{rp} \geq \sum_{i \in I} \sum_{t_1 = t_0}^{t} (\rho_{ir} \cdot (s_{it_1} - f_{it_1})) \qquad \forall r \in R, \forall p \in P, \forall t \in T_p \quad (5)$$

$$O_p = \sum_{t=t_0}^{t_p} \sum_{i \in F} f_{it} \qquad \forall p \in P \quad (6)$$

Installation Model Explanation

- (1) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (2) Forces every task to be starded and finished at some point
- (3) For every precedence relation (i,j) it ensures that if task i finishes at time t_2 there is no $t_1 < t_2$ at which task j starts
- (4) Ensures that between the starting and finish times of each task are enough timesteps with acceptable weather
- (5) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (6) Counts the number of turbines which finished installing by the end of a period

Notation overview

Sets:

- P: All time periods (large scale)
- T: All time intervals $[t_0, \ldots, t_N]$
- T_p ∈ T: All time intervals (small scale) in period p
- R: All resources
- I: All tasks
- F ⊂ I: All final tasks that complete a turbine
- IP: All precedency pairs (i, j)

Decision variables:

- O_p: Number of online turbines after period p
- N_{rp}: Number of resources r used in period p
- s_{it}: Binary variable, 1 if task i starts at time t
- f_{it} : Binary variable, 1 if task i ends at time t

Parameters:

- DIS: The discount factor per period
- v_p: The value of energy a single turbine produces in period p
- C_{rp}: The cost of chartering resource r in period p
- d_i: The duration of task i
- ω_{it} : Binary parameter representing weather, 1 if task i can be completed at time t, 0 otherwise
- ρ_{ir} : The amount of resource r used by task i
- t_p : The final time interval (from T) in period p

Initial model for maintenance

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{act}, b_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p(\sum_{t \in T_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(7)

subject to (1):

$$1 = \sum_{t \in T} s_{act} = \sum_{t \in T} f_{act} \qquad \forall a \in A, \forall c \in C^M$$
 (8)

$$1 \ge \sum_{t \in T} s_{act} \qquad \forall a \in A, \forall c \in C^O$$
 (9)

$$\sum_{t \in T} s_{act} = \sum_{t \in T} f_{act} \qquad \forall a \in A, \forall c \in C^{O}$$
 (10)

Initial model for maintenance

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{act}, f_{act}, b_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p (\sum_{t \in T_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(7)

subject to (2):

$$(s_{act_1} + f_{act_2} - 1) \cdot d_c \leq \frac{s_{act_1} + f_{act_2}}{2} \cdot \sum_{t_3 = t_1}^{t_2} \omega_{ct_3} \qquad \forall a \in A, \forall c \in C, \\ \forall t_1, t_2 \in T$$

$$N_{rp} \geq \sum_{a \in A} \sum_{c \in C} \sum_{t_1 = t_0}^{t} (\rho_{ir} \cdot (s_{act_1} - f_{act_1})) \quad \forall r \in R, \forall p \in P, \forall t \in T_p$$
 (12)

$$b_{at} > \sum_{c \in C} \sum_{t_1 = t - \lambda_a}^{t} -f_{act_1} \qquad \forall a \in A, \forall t \in T \quad (13)$$

$$O_t = |A| - \sum_{a \in A} b_{at} \qquad \forall t \in T \quad (14)$$

Maintenance Model Explanation

- (7) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (8) Forces every mandatory maintenance cycle to be done at some point
- (9) Ensures each optional maintenance cycle to be started at most once
- (10) Ensures that every maintenance cycle for a particular asset that is started is also finished
- (11) Ensures that between the starting and finish times of each cycle are enough timesteps with acceptable weather
- (12) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (13) If no maintenance tasks have finished in the past λ_a timesteps this asset is broken
- (14) The number of active (online) turbines is equal to everything that isn't broken

Notation overview

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale) $[t_0, \ldots, t_N]$
- T_p ∈ T: All time intervals (small scale) in period p
- R: All resources
- A: All assets
- $C = C^M \cup C^O$: All (mandatory and optional) maintenance cycles

Decision variables:

- O_t: Number of active turbines at timestep t
- N_{rp}: Number of resources r used in period p
- s_{act}: Binary variable, 1 if maintenance cycle c for asset a starts at time t
- f_{act}: Binary variable, 1 if maintenance cycle c for asset a finishes at time t
- b_{at}: Binary variable, 1 if asset a is broken at timestep t

Parameters:

- DIS: The discount factor per time period
- v_t: The value of energy a single turbine produces at timestep t
- C_{rp}: The cost of chartering resource r in period p
- d_c: The duration per task during maintenance cycle
 c
- λ_a: The number of timesteps after the last maintenance before asset a fails
- ω_{ct}: Binary parameter representing weather, 1 if maintenance cycle c can be completed at time t, 0 otherwise
- $m{\Phi}$ $ho_{\it Cr}$: The amount of resource r used per task for maintenance cycle c

Initial mixed model

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{ait}, f_{ait}, o_{at} \in \{0,1\}}} \sum_{p \in P} [DIS^p(\sum_{t \in \mathcal{T}_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$

$$\tag{15}$$

subject to:

$$1 = \sum_{t \in T} s_{ait} = \sum_{t \in T} f_{ait} \qquad \forall i \in I \cup M^M, \forall a \in A$$
 (16)

$$1 \ge s_{ajt_1} + f_{ait_2} \qquad \qquad \forall (i,j) \in IP, \forall a \in A, \\ \forall t_1, t_2 \in T | t_1 < t_2$$
 (17)

$$1 \ge \sum_{t \in T} s_{ait} \qquad \forall a \in A, \forall i \in M^O$$
 (18)

$$\sum_{t \in T} s_{ait} = \sum_{t \in T} f_{ait} \qquad \forall a \in A, \forall i \in M^O$$
 (19)

$$0 = \sum_{t_1 = t_0}^{t} s_{ajt_1} + \sum_{t_2 = t}^{t_N} f_{ait_2} \qquad \forall a \in A, \forall t \in T, \\ \forall i \in I, \forall j \in M$$
 (20)

Initial mixed model

$$\max_{\substack{O_t, N_{rp} \in \mathbb{Z}^* \\ s_{ait}, s_{ait}, s_{oat} \in \{0, 1\}}} \sum_{p \in P} [DIS^p(\sum_{t \in T_p} (O_t \cdot v_t) - \sum_{r \in R} (N_{rp} \cdot C_{rp}))]$$
(15)

subject to (2):

$$(s_{ait_1} + f_{ait_2} - 1) \cdot d_i \leq \frac{s_{ait_1} + f_{ait_2}}{2} \cdot \sum_{t_3 = t_1}^{t_2} \omega_{it_3} \qquad \forall i \in \mathcal{I}, \forall a \in \mathcal{A}, \\ \forall t_1, t_2 \in \mathcal{T}$$

$$N_{rp} \geq \sum_{a \in \mathcal{A}} \sum_{i \in \mathcal{I}} \sum_{t_1 = t_0}^{t} (\rho_{ir} \cdot (s_{ait_1} - f_{ait_1})) \qquad \forall r \in \mathcal{R}, \forall p \in \mathcal{P}, \forall t \in \mathcal{T}_p$$

$$o_{at} \leq \frac{1}{2} \cdot (\sum_{t_1 = t_0}^{t} f_{ai_N t_1} + \sum_{i \in \mathcal{M} \cup \{i_N\}} \sum_{t_2 = t - \lambda_a}^{t} f_{ait_2}) \qquad \forall a \in \mathcal{A}, \forall t \in \mathcal{T}$$

$$(21)$$

 $O_t = \sum o_{at}$

 $\forall t \in T$ (24)

Mixed Model Explanation

- (15) Objective function, sums up profits from energy made, subtracts money used on resources (vessels), and multiplies it all with a discount factor
- (16) Forces every mandatory task to be starded and finished at some point
- (17) For every precedence relation (i,j) it ensures that if task i finishes at time t_2 there is no $t_1 < t_2$ at which task j starts
- (18) Ensures each optional maintenance task to be started at most once
- (19) Ensures that every maintenance task for a particular asset that is started is also finished
- (20) Ensures an asset is fully installed before maintenance starts
- (21) Ensures that between the starting and finish times of each task are enough timesteps with acceptable weather
- (22) Counts up the resources needed in a time period by adding the resources needed by all tasks started, and subtracting the resources needed by all tasks finished
- (23) Sets an asset to be online if it installed and had work done on it recently
- (24) Counts how many assets are online

Notation overview

Sets:

- P: All time periods (large scale)
- T: All time intervals (small scale) [t₀, . . . , t_N]
- $T_p \in T$: All time intervals (small scale) in period p
- R: All resources
- I: All installation tasks per asset [1, ..., i_N]
- $M = M^M \cup M^O$: all mandatory and optional maintenance tasks
- $\mathcal{I} = I \cup M$: All tasks
- IP: All precedency pairs (i, j)
- A: All assets

Decision variables:

- O_t: Number of online turbines at timestep t
- o_{at}: Binary variable, 1 if asset a is online at timestep
- N_{rp}: Number of resources r used in period p
- s_{ait} : Binary variable, 1 if task $i \in \mathcal{I}$ for asset a starts at time t
- f_{ait}: Binary variable, 1 if task i ∈ I for asset a finishes at time t

Parameters:

- DIS: The discount factor per time period
- v_t: The value of energy a single turbine produces at timestep t
- C_{rp}: The cost of chartering resource r in period p
- d_i : The duration of task $i \in \mathcal{I}$
- λ_a: The number of timesteps after the last maintenance before asset a fails
- ω_{it} : Binary parameter representing weather, 1 if task $i \in \mathcal{I}$ can be completed at time t, 0 otherwise
- $lackbox{}{f
 ho}_{ir}$: The amount of resource r used for task $i\in\mathcal{I}$