Intervals, Transformations, and Slope Solution (version 79)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-4,3) \cup (7,10)$
Negative	$(-8, -4) \cup (3, 7)$
Increasing	$(-7,2) \cup (4,10)$
Decreasing	$(-8, -7) \cup (2, 4)$
Domain	(-8, 10)
Range	(-6,6)

Intervals, Transformations, and Slope Solution (version 79)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=47$ and $x_2=65$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 7 & 47 \\ 28 & 65 \\ 47 & 28 \\ 65 & 7 \\ \end{array}$$

$$\frac{g(65) - g(47)}{65 - 47} = \frac{7 - 28}{65 - 47} = \frac{-21}{18}$$

The greatest common factor of -21 and 18 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{6}$$

2