

嵌入式智慧影像分析與實境界面 Fall 2021

Instructor: Yen-Lin Chen(陳彥霖), Ph.D.

Professor

Dept. Computer Science and Information Engineering

National Taipei University of Technology

Lecture 8

CNN神經網路

CNN神經網路發展

CNN網路歷史沿革

增加網路深度 使用3*3kernel

VGGNet

TAIPEI TECH

VGGNet 介紹

- VGGNet在2014年 ILSVRC 的分類比賽中拿到了第二名
- VGGNet改良了AlexNet,將網路結構加深,進而得到更好的結果。

VGGNet 特點

- 架構全部使用3x3的kernel當作捲積神經層和2x2的kernel當作池化層,架構簡單統一
- 證明較深的層數能提高效能
- 通過多個3x3不斷地加深網路,也增加了許多參數,運算速度較其他框架慢。

VGGNet 架構

- Input image size: 224*224*3
- 每一個卷積層皆使用3*3的kernel,根據不同深度決定卷積層層數
- 池化層使用2*2的kernel進行Maxpooling
- 全連接層,加上ReLU,4096個神經元
- 右下圖為VGG16架構

ConvNet Configuration											
A	A-LRN	В	С	D	Е						
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight						
layers	layers	layers	layers	layers	layers						
input (224 × 224 RGB image)											
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64						
	LRN	conv3-64	conv3-64	conv3-64	conv3-64						
maxpool											
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128						
		conv3-128	conv3-128	conv3-128	conv3-128						
maxpool											
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
			conv1-256	conv3-256	conv3-256						
					conv3-256						
maxpool											
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
		max	pool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
			pool								
			4096								
FC-4096											
FC-1000											
soft-max											

Convolution Layer

GoogLeNet

GoogLeNet 介紹

- GoogLeNet 最早是發表在 Google 的 Paper: Going deeper with convolutions,裡面介紹了 Inception V1/GoogLenet 架構,並在ILSVRC-2014 比賽中在分辨項目第一名(Top-5 Error=6.67%)
- GoogLeNet只有<mark>約 680萬個參數</mark>,比 AlexNet 少九倍,更比 VGG-16 少二十倍,也就是說 GoogleNet 的模型更為輕巧。

GoogLeNet 特點

- 透過多個Inception module串聯成大網路。
- 使用Bottleneck架構,在降低深度,但不降低原輸入二維的維度情況下,降低計算量。
- 使用Auxiliary Classifiers解決梯度消失問題

Inception module 架構

- Inception module 一開始採用下圖 (a),透過三種不同大小的卷積以及 3x3 Maxpooling 萃取出不同的特徵,再將這四個結果以通道軸串接在一起。這樣增加網路寬度的方式,能夠擷取更多圖片的特徵與細節。
- 但若是這四個結果的尺寸不同,則卷積層與池化層皆使用 padding="same"、stride=1,以確保輸入特徵圖的尺寸
- 後來為了降低訓練參數量,Inception module 在原先的架構中加入一些 1x1 卷積層 (圖b)。改良後的 Inception module 會先透過 1x1 卷積層降低輸出通道數後,再接上原本的卷積層。此外,由於池化層 沒辦法降低通道為數,因此輸入特徵圖在通過 3x3 Maxpooling 後,會再使用 1x1 卷積層來降低輸出 通道數。

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Bottleneck 架構

- 在一般 convolution layer,在輸入維度相當高的情況下,做 convolution 其計算量是相當大的,尤其在希望不遺失局部的細節,仍使用較小的長度的 filter 的情況下。
- 如左上圖,在 28x28x192 的輸入中使用 5x5 的 filter, 會達到約120M的運算量(28 × 28 × 32 × 5 × 5 × 192)。
- 但若透過 1x1 convolution layer 引進 bottleneck 結構而 達到降維的效果後,再執行 5x5 convolution operation,將會有效地減少所需的計算數目。
- 可見右下圖,透過 1x1 convolution layer 減少了原輸入的 channel 大小,從 192 到 16,再執行 5x5 convolution operation 可發現總共的計算次數約12.4 M(28×28×16×192+28×28×32×5×5×16),比起在原輸入直接執行 5x5 convolution 減少了將近 10 倍。

Auxiliary Classifiers 架構

- 在兩個不同層的 Inception module 輸出結果並計算 loss,最後在將這兩個 loss 跟真實 loss 加權總和,計算出總 loss,其中 Inception module 的 loss 權重值為 0.3
- 公式:
 - total_loss = real_loss + 0.3 * aux_loss_1 + 0.3 * aux_loss_2

GoogLeNet 架構

- 使用9個Inception Module組成
- 使用分類輔助器(Auxiliary Classifiers)避免梯度消失問題

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

- Day 02 VGGNet (CNN延伸應用) (coderbridge.com)
- Neutrino's Blog: GoogLeNet 簡介與小實驗 (tigercosmos.xyz)
- 巻積神經網絡 CNN 經典模型 GoogleLeNet、ResNet、DenseNet with Pytorch code | by 李警伊 | 警伊的閱讀筆記 | Medium
- 10. 深度學習甜點系列:全面啟動 iT 邦幫忙::一起幫忙解決 難題,拯救 IT 人的一天 (ithome.com.tw)