Fusion de données : Vision crédibiliste de la fusion

Approche crédibiliste

« Ce que les hommes veulent en fait, ce n'est pas la connaissance, c'est la certitude. » Bertrand Russel

Quelques repères

- Théorie de de l'évidence introduite par Shafer (1976) suite aux travaux de Dempster.
- Extension de la théorie des probabilités subjectives
- Ne concerne que les ensembles de définition discrets*.
- Deux niveaux : crédal et pignistique (Smets)

Approche crédibliste

*: Avancées récentes avec le cTBM (Smets, 2005)

Quelques repères

- Upper and Lower Probabilities (Dempster, 67)
- « A mathematical theory of Evidence » (Shafer, 76)
- Hint theory (Kholas & Monney, 90)
- The Transferable Belief Model Modèle des Croyances Transférables (Smets, 94)

Approche crédibliste

Shafer, 76 Appriou, 91 Denœux, 95... Dempster, 67
Zadeh, 79
Yager, 87
Dubois & Prade, 88
Lefevre, Colot et al., 01,02

Smets, 94 Strat, 84 Denœux, 97...

Introduction

4

De l'information à la décision

Modélisation de l'incertitude

- Basée sur une distribution de masse d'évidence m
 (Basic Belief Assignment : bba)
- Définie sur l'ensemble des propositions de Ω
- Associée à la croyance (bel) et à la plausibilité (pl)

Distribution de masses de croyance

$$m: 2^{\Omega} \rightarrow [0,1]$$

 $A \mapsto m(A)$

m(A): confiance portée strictement dans A sans que celle-ci puisse être répartie sur les hypothèses qui la composent

<u>Eléments focaux</u>: propositions qui ont une masse non nulle

Masse de croyance

• *Masse de croyance* Cadre de discernement: $\Omega = \{H_1, H_2, H_3, ..., H_n\}$

$$m: 2^{\Omega} \rightarrow [0,1]$$

$$i)m(\emptyset) = 0$$

$$i)m(\emptyset) = 0$$
 $2^{\Omega} = \{\emptyset, H_1, H_2, ..., H_n, H_{1 \cup 2}, ..., \Omega\}$

Exclusives

$$ii)\sum_{A\subset\Omega}m(A)=1$$

 $m(\Omega)$ quantifie l'ignorance ou l'incertitude

Noyau : ensemble des éléments focaux: $N = \{A \in 2^{\Omega} / m \ (A) > 0\}$

Approche crédibliste

Exemples:

Appartenance d'un pixel à une région, d'un vecteur forme à une classe,...

Exemple

Un meurtre a été commis.

Trois suspects: Pierre, Paul et Marie.

- Ω={Pierre, Paul, Marie}
- Un témoin croit avoir vu que le meurtrier est un homme, fiabilité = 0.7

m({Pierre,Paul})=0.7
m(
$$\Omega$$
)=0.3

 La masse de 0.7 reste attachée à l'ensemble {Pierre,Paul}, elle ne peut être distribuée à ses éléments en l'absence d'informations complémentaires.

Signification de $m(\emptyset)$

- Ω =ensemble d'états possibles, de réponses possibles à une certaine question.
- Dans certains cas, Ω n'est pas exhaustif (certaines réponses ont été oubliées, étaient inconcevables au moment de la modélisation du problème)
 - hypothèse du monde ouvert (open-world)
 - $\mathsf{m}(\varnothing)$ = part de croyance allouée à l'hypothèse selon laquelle y $\not\in \Omega$.
- Si Ω exhaustif (hypothèse du monde clos/closed-world assumption):

$$m(\varnothing)=0$$

Modélisation de la méconnaissance, ignorance

Méconnaissance = explicite

masse attribuée à l'ensemble de définition

$$\Omega = \{ H_1, H_2, H_3 \}$$

$$m(H_1)=m(H_2)=m(H_3)=0$$

$$m(H_1 \cup H_2 \cup H_3) = m(\Omega) = 1$$

Fonctions de base

Crédibilité

$$bel: 2^{\Omega} \to [0,1]$$
$$bel(A) = \sum_{B \subset A} m(B)$$

Toute la masse de croyance placée exactement sur *A*.

$$bel(A) = 1 - pl(\overline{A})$$

Plausibilité

$$pl: \mathbf{2}^{\Omega} \to [0,1]$$

 $pl(A) = \sum_{A \cap B \neq \emptyset} m(B)$

Force avec laquelle on ne doute pas de la proposition A. $pl(\emptyset) = 0$; $pl(\Omega) = 1$

$$bel(A) \le P(A) \le pl(A)$$

Probabilité pignistique (Pignistic level)

$$BetP(H_n) = \sum_{H_n \in A} \frac{m(A)}{|A|}$$

Fonctions de base

Croyance (belief)

bel: $2^{\Omega} \rightarrow [0,1]$ $A \mapsto bel(A)$ bel(A): croyance que la vérité est dans A

$$bel(A) = \sum_{B \subseteq A} m(B)$$

Croyance de A = somme des masses des propositions incluses dans A

Fonctions de base

Plausibilité (plausibility)

$$PI: 2^{\Omega} \rightarrow [0,1]$$

 $A \mapsto PI(A)$

Pl(A): plausibilité que la vérité est dans A

$$Pl(A) = \sum_{A \cap B \neq \emptyset} m(B)$$

Plausibilité de A = somme des masses des propositions dont l'intersection avec A n'est pas nulle

Propriétés

• Propriétés de la distribution de masse

$$\sum_{A \subset \Omega} m(A) = 1 \qquad m(\emptyset) = 0$$

Relation Croyance-Plausibilité

$$pl(A) = 1 - bel(\overline{A})$$

• Relation Masse-Croyance (formule de Moebiüs)

$$m(A) = \sum_{B \subset A} (-1)^{\left(|A| - |B|\right)} bel(B)$$

Propriétés

$$\forall A, B \in 2^{\Omega}, \ P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A) + P(\neg A) = 1$

Croyance (bel) - Crédibilité

• bel: mesure sur-additive

$$bel(A \cup B) \ge bel(A) + bel(B) - bel(A \cap B)$$

 $bel(A) + bel(\overline{A}) \le bel(\Omega) \le 1$

Plus généralement :

$$\forall n \geq 1, \forall A_1, ..., A_n \subseteq \Omega,$$

$$bel(A_1 \cup A_2 \cup ... \cup A_n) \ge \sum_i bel(A_i) - \sum_{i>j} bel(A_i \cap A_j)... - (-1)^n bel(A_1 \cap ... \cap A_n)$$

Approche crédibliste

UST!

(capacité de Choquet complètement monotone)

16

Propriétés

Plausibilité (pl)

pl : mesure sous-additive

$$pl(A \cup B) \le pl(A) + pl(B) - pl(A \cap B)$$
$$pl(A) + pl(\overline{A}) \ge pl(\Omega) = 1 - m(\emptyset)$$

Plus généralement :

$$\forall n \geq 1, \forall A_1, \dots, A_n \subseteq \Omega,$$

$$pl(A_1 \cup A_2 \cup \dots \cup A_n) \leq \sum_i pl(A_i) - \sum_{i>j} pl(A_i \cap A_j) \dots - (-1)^n pl(A_1 \cap \dots \cap A_n)$$

Propriétés

Relations masse-croyance

Soit bel: $2^{\Omega} \rightarrow [0,1]$ telle que bel(\emptyset)=0 et

$$\forall n \geq 1, \forall A_1, ..., A_n \subseteq \Omega,$$

$$bel(A_1 \cup A_2 \cup ... \cup A_n) \ge \sum_i bel(A_i) - \sum_{i>j} bel(A_i \cap A_j)... - (-1)^n bel(A_1 \cap ... \cap A_n)$$

Alors la fonction *m* définie par

$$m(A) = \sum_{\{B/B \subseteq A, B \neq \emptyset\}} (-1)^{|A|-|B|} bel(B) \quad \forall A \in 2^{\Omega} - \emptyset$$

$$m(\emptyset) = 1 - bel(\Omega)$$

est une fonction de masse.

Structure de croyance

Jeux de masses bayésiens

■ Éléments focaux singletons : fonction de masse *bayésienne*

$$\forall A \subseteq \Omega, \quad m(A) \neq 0 \Longrightarrow |A| = 1$$

On a alors bel=pl=mesure de probabilité

Rappel:
$$bel(A) \le P(A) \le pl(A)$$

Éléments focaux disjoints et non vides : fonction de masse quasi-bayésienne

$$\forall A, B \subseteq \Omega, \quad m(A) \neq 0 \text{ et } m(B) \neq 0 \Longrightarrow A \cap B \neq \emptyset$$

Eléments focaux emboîtés

Éléments focaux emboîtés :

$$\mathcal{F}(m) = \left\{ A_1, \cdots, A_n \right\}$$

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n$$

Alors

$$bel(A \cap B) = \min(bel(A), bel(B))$$

$$pl(A \cup B) = \max(pl(A), pl(B))$$

pl est une mesure de possibilité, bel est la mesure de nécessité duale.

Eléments focaux emboîtés (suite)

- Réciproquement : Soit \(\Pi\) une mesure de possibilité, et \(N\) la mesure de nécessité duale. \(N\) est une fonction de croyance, et \(\Pi\) la fonction de plausibilité duale.
- Soient $\pi_{(1)}$ >...> $\pi_{(c)}$ les valeurs ordonnées de possibilité.

Et donc...

- Liens avec la théorie des probabilités
- Liens avec la théorie des possibilités
- Théorie de l'évidence 🕝 plus générale

« Qui a tué le docteur Lenoir? »

Un meurtre a été commis. Trois suspects: Pierre, Paul et Marie.

- Ω={Pierre, Paul, Marie}
- Un témoin croit avoir vu que le meurtrier est un homme,
- Confiance dans le témoignage = 0.7

$$m(\{Pierre,Paul\})=0.7$$

 $m(\Omega)=0.3$

 La masse de 0.7 reste attachée à l'ensemble {Pierre,Paul}, elle ne peut être distribuée à ses éléments.

Petit exemple

Masse, croyance, plausibilité

Α	m(A)	bel(A)	pl(A)
Ø	0	0	0
{Pierre}		0	1
{Paul}	0	0	1
{Marie}	0	Q	0.3
{Pierre,Paul}	0.7	0.7	1
{Pierre,Marie}	0	0	1
{Paul,Marie}	0	0	1
Ω	0.3	1	1

Modélisation – jeux de masses initiaux

Modélisation des sources

Deux types de modèle principalement :

- Modèles fondés sur des vraisemblances Shafer 76, Smets 78, Appriou 91,...
- Modèles fondés sur des distances Denœux 95,...

 Modélisation de l'imprécision impossible utilisation des distributions de probabilités ou des sous-ensembles flous

Modèle fondé sur des distances

Modélisation (obtention bba) Modèle fondé sur des vraisemblances

Denœux:

$$m(H_i) \neq \alpha_0 \exp[-(\gamma(d-d_i))]$$

 $m(\Omega) = 1 - \alpha_0 \exp[-(\gamma(d-d_i))]$

Smets (GBT)- Appriou : $m(\bar{H}_i) = \alpha_0 \{1 - R \ p(d/H_i)\}$ $m(\Omega) = 1 - \alpha_0 \{1 - R \ p(d/H_i)\}$

 d_i : prototype de mesure quand H_i est vérifiée

On modélise H_i et l'ignorance

On modélise ¬H_i et l'ignorance

Denœux:

$$m(H_i) = \alpha_0 \exp[-(\gamma(d-d_i))]$$

$$m(\Omega) = 1 - \alpha_0 \exp[-(\gamma(d-d_i))]$$

Approche crédibliste

 d_i : prototype de mesure quand H_i est vérifiée

Conversion

Conversion flou-évidence

Basée sur l'utilisation des sous-ensembles flous Evidence d'appartenance à une classe ou un sous-ensemble de classes

Somme orthogonale de Dempster

$$m = m_{1} \oplus m_{2}$$

$$m(A) = \sum_{B \cap C = A} m_{1}(B) . m_{2}(C)$$

• Modélisation du conflit

$$K = \sum_{B \cap C = \emptyset} m_1(B).m_2(C)$$

Combinaison de sources d'information

$$(M_{\oplus}(H)) = m^{S_1}(H) \oplus m^{S_2}(H) \oplus ... \oplus m^{S_Q}(H)$$

Jeu de masses combiné -> synthèse des croyances

Cas à 2 sources:

$$m_{\oplus}(H) = \frac{1}{1 - (m(\varnothing))} \sum_{H_i \cap H_j = H} m^{S_1}(H_i) \cdot m^{S_2}(H_j) = \frac{1}{1 - m(\varnothing)} m_{\cap}(H)$$

Masse conflictuelle

Propriétés: commutativité, associativité

Combinaisor conjonctive

Approche crédibliste

La masse conflictuelle est proportionnellement réallouée

Intersections

$$\Omega = \{H_1, H_2\}$$

\mathbf{m}_1	\mathbf{H}_{1}	H_2	$\Omega = H_{12}$
m_2			
H_1	H	9	H_1
H_2	(h)	H_2	H_2
$\Omega = H_{12}$	H_1	H_2	H_{12}

$$\begin{split} m_{1,2} &(H_1) = m_1(H_1).m_2(H_1) + m_1(H_1).m_2(H_{12}) + m_1(H_{12}).m_2(H_1) \\ m_{1,2} &(H_2) = m_1(H_2).m_2(H_2) + m_1(H_2).m_2(H_{12}) + m_1(H_{12}).m_2(H_2) \\ m_{1,2} &(H_{12}) = m_1(H_{12}).m_2(H_{12}) \\ K &= m_1(H_1).m_2(H_2) + m_1(H_2).m_2(H_1) \end{split}$$

Hypothèses

Sources

H₁: Je mesure 1m80

H₂: Je mesure 1m85

S₁: Etudiant 1

S₂: Etudiant 2

Cadre de discernement:

$$2^{\Omega} = \{ \emptyset, H_1, H_2, H_1 \cup H_2 \} \qquad (Rq: H_1 \cup H_2 = \Omega)$$

$$\Omega = \{H_1, H_2\}$$

$$(Rq: H_1 \cup H_2 = \Omega)$$

$$S_{1}:\begin{cases} m^{S_{1}}(H_{1})=0.9\\ m^{S_{1}}(H_{2})=0.1\\ m^{S_{1}}(\Omega)=0 \end{cases}$$

$$S_{2}:\begin{cases} m^{S_{2}}(H_{1}) = 0,8\\ m^{S_{2}}(H_{2}) = 0,2\\ m^{S_{2}}(\Omega) = 0 \end{cases}$$

 $\Omega = \{H_1, H_2\}$; 2 sources S_1 et S_2

$$\begin{cases} m^{S_1}(H_1) = 0.9 \\ m^{S_1}(H_2) = 0.1 \\ m^{S_2}(H_2) = 0.2 \end{cases} \qquad \begin{cases} m \oplus (H_1) = 0.97 \\ m \oplus (H_2) = 0.03 \\ m \oplus (\Omega) = 0 \end{cases}$$

$$\begin{cases} m^{S_2}(H_2) = 0.2 \\ m^{S_2}(\Omega) = 0 \end{cases} \qquad \begin{cases} m \oplus (H_1) = 0.97 \\ m \oplus (H_2) = 0.03 \\ m \oplus (\Omega) = 0 \end{cases}$$

$$\begin{cases} m^{S_1}(H_1) = 0.9 \\ m^{S_1}(H_2) = 0.1 \end{cases} \begin{cases} m^{S_2}(H_1) = 0.2 \\ m^{S_2}(H_2) = 0.8 \end{cases} \begin{cases} m_{\oplus}(H_1) = 0.69 \\ m_{\oplus}(H_2) = 0.31 \\ m^{S_2}(\Omega) = 0 \end{cases} \begin{cases} m^{S_2}(\Omega) = 0 \end{cases} \begin{cases} m^{S_2}(\Omega) = 0 \end{cases} \begin{cases} m_{\oplus}(H_1) = 0.69 \\ m_{\oplus}(\Omega) = 0.31 \\ m_{\oplus}(\Omega) = 0 \end{cases} \end{cases}$$

Approche crédibliste

Attention au conflit!

Origines du conflit

- Données aberrantes
- Dysfonctionnement d'un capteur
- Mauvaise estimation de la gamme de fonctionnement d'un capteur
- Modélisation des sources d'information
- Modélisation imprécise des fonctions de croyance
- Nombre de sources d'information à fusionner
 - Conflit augmente avec le nombre de sources à fusionner

Masse conflictuelle vs. Nombre de sources à agréger

Approche crédibliste

Nombre de sources

Solutions « classiques » pour résoudre le conflit

□ Sources fiables

Opérateur de Dempster

Conflit → Cadre de discernement non exhaustif (Smets)

Problème mal posé (open-world)

: hypothèse(s) non prise(s) en compte dans le cadre de discernement

☐ Sources non fiables

- Règles de combinaison: Dubois & Prade, Yager, Lefevre Cadre de discernement exhaustif (closed-world)
- Affaiblissement: $m(A)=\lambda m(A)$ avec $0<\lambda<1$

degré de confiance dans la source

Is there some one to tell me what to do?

Quelle(s) stratégie(s) pour résoudre le conflit?
Affaiblissement? Distribution? Quelle distribution?

Ou... > m(Ø)=1 ! > Encore une p'tite partie?

Approche crédibliste

...Devons-nous jouer aux dés?

Combinaison d'informations

Le meutre du Docteur Lenoir: deuxième acte.

- Ω={Pierre, Paul, Marie}
- Témoignage : « Le meurtrier est un homme » (confiance=0.7)
 m₁({Pierre,Paul})=0.7 m₁(Ω)=0.3
- Indice: mégot \rightarrow « Le meurtrier est fumeur », confiance=0.6 $m_2(\{Pierre,Marie\})=0.6$ $m_2(\Omega)=0.4$
- Problème : combinaison des ces deux sources d'information ?

Combinaison

Somme conjonctive

 Les deux sources d'information sont fiables : combinaison conjonctive :

$$(m_1 \bigcirc m_2)(C) = \sum_{A \cap B = C} m_1(A)m_2(B)$$

- Pour l'affaire relative au meurtre du Docteur Lenoir :
 - $m_1(\{Pierre,Paul\})=0.7$ $m_1(\Omega)=0.3$
 - $m_2(\{Pierre,Marie\})=0.6$ $m_2(\Omega)=0.4$
 - $m_1 \cap m_2(\{Pierre, Paul\}) = 0.28$ $m_1 \cap m_2(\{Pierre, Marie\}) = 0.18$ $m_1 \cap m_2(\{Pierre\}) = 0.42$ $m_1 \cap m_2(\Omega) = 0.12$

Somme conjonctive

- Propriétés :
 - commutativité, associativité
 - $m(\Omega)=1$ élément neutre
 - m(∅)=1 élément absorbant
- Degré de conflit :

$$K = (m_1 \cap m_2)(\varnothing) = \sum_{A \cap B = \varnothing} m_1(A) \cdot m_2(B)$$

Règle de Dempster : somme conjonctive + normalisation

$$(m_1 \oplus m_2)(C) = \frac{\sum_{A \cap B = C} m_1(A) \cdot m_2(B)}{1 - K}$$

Combinaison

Somme disjonctive

 L'une au moins des deux sources d'information est fiable : combinaison disjonctive :

$$(m_1 \bigcirc m_2)(C) = \sum_{A \cup B = C} m_1(A) m_2(B)$$

- Pour l'affaire relative au meurtre du Docteur Lenoir :
 - $m_1({Pierre,Paul})=0.7$ $m_1(Ω)=0.3$
 - m₂({Pierre, Marie})=0.6 m₂(Ω)=0.4
 - m_1 ∪ m_2 (Ω)=0.42+0.28+0.18+0.12=1 Finalement, l'ignorance règne!
- Propriétés :
 - commutativité, associativité
 - m(Ω)=1 élément absorbant
 - m(∅)=1 élément neutre

Opérateurs de Combinaison

somme conjonctive

Approche crédibliste

L'une au moins des sources est fiable, mais on ignore laquelle

Combinaison

Cadre générique

Yager:

 $w(m,A)=1si A=\Omega et 0 ailleurs$

Dempster:

 $\forall A \subseteq \Omega w(m,A) = m_{\Omega}(A) / (1 - m(\emptyset))$

Smets:

 $\forall A \subseteq \Omega w(m,A)=0 \text{ et } w(m,\emptyset)=1$

Dubois&Prade

w(m,A)=f(m(B),m(C)) si $A=B\cup C$

et 0 ailleurs

Apprentissage:

 $0 \le w(m,A) \le 1$

Différentes redistributions:

 $0 \le w(m,A) \le 1$

Approche crédibliste

"Belief function combination and conflict management ", E. Lefevre, O. Colot and P. Vannoorenberghe, *Information Fusion*, 3(2), 2002, pp. 149-162.

"Informations et combinaisons : les liaisons conflictuelles », E. Lefevre, O. Colot, P. Vannoorenberghe, *Traitement du Signal*, 18(3), 2002, pp. 161-177.

Combinaison

Approche crédibliste

Redistribution: Dempster

Redistribution: W(m,H)=1/3

Faible Elevé

Affaiblissement (discounting)

- m induite par une source S
- $P(S \text{ non fiable}) = \alpha$
- Affaiblissement de *m* :

$${}^{\alpha}m(A) = (1 - \alpha)m(A) \quad \forall A \in 2^{\Omega} \setminus \Omega$$

$${}^{\alpha}m(\Omega) = m(\Omega) + \alpha(1 - m(\Omega))$$

- Si $\alpha = 1 \ \text{@} \ \alpha \ m(\Omega) = 1$
- Si $\alpha = 0$ m = m

Règles de décision

- Maximum de croyance
- Maximum de plausibilité
- Maximum de probabilité pignistique

Probabilité pignistique

Transformation pignistique : m → BetP t.q.

$$BetP(\omega) = \sum_{\{A \subseteq \Omega/\omega \in A\}} \frac{m^*(A)}{|A|} \qquad m^*(A) = \frac{m(A)}{1 - m(\emptyset)} \qquad A \neq \emptyset$$
$$m^*(\emptyset) = 0$$

Modèle des croyances transférables (MCT; TBM in english)

$$BetP(\omega_{i}) = \sum_{A \subseteq \Omega, A \neq \emptyset} m_{\oplus}(A) \frac{|\omega_{i} \cap A|}{|A|}$$

| A | : cardinal de l'ensemble A

Des jeux de masses, on passe à des probabilités (probabilités pignistiques) pour prendre une décision

Décision:

Hypothèse singleton

ω_i décidée si BetP(ω_i) maximum

(Coûts {0,1})

ω_i décidée si Pl(ω_i) maximum

Approche crédibliste

Remarque: on peut aussi faire du rejet

Décision

Principe

- Soit m une fonction de masse sur Ω traduisant un certain état de connaissance
- $\mathcal{A}=\{a_1,...,a_N\}$ ensemble d'actions
- $C(a_i/\omega_i)$ =coût si choix de l'action a_i alors que $y=\omega_i$ (e.g. coûts {0,1}).
- Principes de rationalité (théorie bayésienne de la décision) : choix de l'action de risque (espérance du coût) minimum pour une certaine distribution de probabilité P.
- Choix de P?
- En MCT (TBM) : $BetP(\omega) = \sum\limits_{B \subseteq \Omega, \omega \in B} \frac{m(B)}{(1-m(\emptyset))|B|}$
- ullet Choix de l'action $a_i \in \mathcal{A}$ qui minimise le risque

$$R_{BetP}(a_i) = \sum_{\omega \in \Omega} C(a_i, \omega) BetP(\omega)$$

• Si $\mathcal{A}=\Omega$ alors $C(\omega_i,\omega_j)=1-\delta_{ij}$ (coût {0,1})

*Règle du maximum de probabilité pignistique

Règles de décision

- Maximum de croyance
- Maximum de plausibilité
- Maximum de probabilité pignistique

Décision

Règle du maximum de plausibilité

Choisir l'action qui minimise l'espérance inférieure du coût :

$$R_*(a_i) = \sum_{\omega \in \Omega} \min_{\omega \in B} m(B) C(a_i, \omega) = \min_{bel \le P \le pl} R_P(a_i)$$

les deux règles peuvent conduire à des résultats différents

$$\Omega = \{\omega_1, \dots, \omega_{70}\}$$
 $m(\omega_1) = 0.3 \ m(\omega_2) = 0.01 \ m(\{\omega_2, \dots, \omega_{70}\}) = 0.69$

$$pl(\omega_1) = 0.3$$

$$pl(\omega_2) = 0.7$$

 $pl(\omega_i) = 0.69$

$$\forall i \in \{3, \dots, 70\}$$

Bet
$$P(\omega_1) = 0.3$$

$$BetP(\omega_2) = 0.02$$

$$BetP(\omega_i) = 0.01$$

$$\forall i \in \{3, \dots, 70\}$$

Si l'on a une information quant à la fiabilité de la source, alors:

P(source non fiable)= α et P(source fiable)= $1-\alpha$ \longrightarrow Indice de fiabilité : $1-\alpha=\beta$

$${}^{\alpha}m(A) = (1 - \alpha)m(A) \quad \forall A \in 2^{\Omega} \setminus \Omega$$

$${}^{\alpha}m(\Omega) = m(\Omega) + \alpha(1 - m(\Omega))$$

Exemple: P(source non fiable)=0,2

^α m(«Proche »)=0,8 x m(«Proche »)= 0,8 x 0,7= 0,56

 $^{\alpha}$ m(«non Proche »)=0,8 x m(«non Proche »)= 0,8 x 0,3 = 0,24

 $\alpha m(\Omega)=m(\Omega)+0.2(1-m(\Omega))=0.2$

Petite histoire féline

Un dimanche matin, Paul se préparait à prendre son petit déjeuner en compagnie de sa femme et de sa fille. Il commença par dresser la table en plaçant en son centre un appétissant gâteau au chocolat cuisiné la veille par sa tendre épouse. Ceci fait, il détourna son attention de la table quelques secondes, le temps d'aller chercher le café fumant qui accompagnerait parfaitement la généreuse portion de gâteau qu'il n'allait pas manquer de se servir.

Lorsqu'il se retourna, quelle ne fut pas sa stupeur de constater que la merveille chocolatée avait été sauvagement agressée et entamée sans aucun respect des règles de l'art selon toute vraisemblance. Il se retourna vers sa femme et sa fille pour leur signifier son indignation et demander des informations quant à l'auteur d'un tel méfait!

L'une et l'autre, également stupéfaites par ce qui allait devenir « l'affaire du gâteau », lui dirent avoir entr'aperçu une forme féline s'enfuir prestement. Ainsi donc, le suspect devait être l'un des trois chats qui partageaient la vie de la famille: Kikirikiki (K), Bradpiteux (B) et Roberouanekeynobi (R).

Cependant, selon les informations fournies par les deux témoins, aucun des trois suspects ne pouvait être identifié avec certitude. Paul décida alors de résoudre l'énigme du « chat voleur » en utilisant la théorie des fonctions de croyance.

A partir des dires des deux témoins, voici ce que Paul put établir.

$$\Omega = \{K, B, R\}$$

$$2^{\Omega} = \{\emptyset, K, B, R, K \cup B, K \cup R, B \cup R, K \cup B \cup R\}$$

$$A: \{K\} \{B\} \{R\} \{KB\} \{KR\} \{KR\} \{BR\} \{KBR\} \}$$

 $m_1(A) 0,2 0,1 0,2 0,1 0,1 0,2 0,1$
 $m_2(A) 0,05 0,1 0,3 0,05 0,1 0,2 0,2$

Approche crédibliste

Paul va-t-il pouvoir résoudre cette fâcheuse « affaire du gâteau » et découvrir l'identité du malfaiteur?

Vous êtes Paul et comme lui vous devez:

- 1) Calculer $m = m_1 \oplus m_2$
- 2) Calculer bel (A), pl(A) et BetP(A)
- 3) En déduire l'identité de l'odieux malfaiteur

Rappel:

A: $\{K\}$ $\{B\}$ $\{R\}$ $\{KB\}$ $\{KR\}$ $\{BR\}$ $\{KBR\}$ $\{MBR\}$ $\{MBR\}$ $\{MBR\}$ $\{MBR\}$ $\{MBR\}$ $\{MBR\}$ $\{MBB\}$ $\{M$

Cadres de discernement compatibles/différents

Discrimination d'objets

B

sources conjonctives

Capteur
$$S_1$$

 m_1 (bleu) = 0,6
 m_1 (bleu \cup rouge) = 0,4

Capteur
$$S_2$$
 $m_2 (bleu) = 0.2$
 $m_2 (bleu \cup rouge) = 0.8$

sources disjonctives

Capteur
$$S_1$$

 m_1 (bleu) = 0,6
 m_1 (bleu \cup rouge) = 0,4

Capteur
$$S_2$$

 $m_2 (rouge) = 0.2$
 $m_2 (bleu \cup rouge) = 0.8$

Approche crédibliste

 $\Omega = \{ bleu, rouge \}$ $2^{\Omega} = \{ bleu, rouge, bleu \cup rouge \}$

Cadres de discernement compatibles/différents

Discrimination d'objets

Approche crédibliste

Capteur S_1 m_1 (bleu) = 0,6 m_1 (bleu \cup rouge) = 0,4

Capteur S_2 $m_2 (rond) = 0.2$ $m_2 (rond \cup carr\acute{e}) = 0.8$

$$\Omega_1 = \{ bleu, rouge \}$$

$$\Omega_2 = \{ rond, carré \}$$

Fusion de sources définies sur des référentiels différents

Référentiels non exhaustifs différents

- S_1 définie sur $\Omega_{S_1} = \{H_1, H_2, H_3\}$
- S_2 définie sur $\Omega_{S_2} = \{H_2, H_3, H_4\}$
- Référentiel non exhaustif * « open-world »
- Ici, référentiels différents mais compatibles
- Problème : processus de fusion ?

Fusion de sources définies sur des référentiels différents

Approches possibles

- Déconditionnement
- Correction des plausibilités

Fusion de sources définies sur des référentiels différents

Correction des plausibilités

- S_1 définie sur $\Omega_{S_1} = \{H_1, H_2, H_3\}$
- S_2 définie sur $\Omega_{S_2} = \{H_2, H_3, H_4\}$

$$\omega_c = \{H_2, H_3\}$$
 (partie commune)

$$\Omega = \{H_1, H_2, H_3, H_4\}$$

$$pl_{\Omega}(H_2) = pl_{\Omega_{S_1}}(H_2).pl_{\Omega_{S_2}}(H_2)$$

$$pl_{\Omega}(H_3) = pl_{\Omega_{S_1}}(H_3).pl_{\Omega_{S_2}}(H_3)$$

$$pl_{\Omega}(H_1) = pl_{\Omega_{S_1}}(H_1).pl_{\Omega_{S_2}}(\omega_c)$$

$$pl_{\Omega}(H_4) = pl_{\Omega_{S_1}}(\omega_c).pl_{\Omega_{S_2}}(H_4)$$

Conditionnement

Règle de conditionnement de Dempster

Cas particulier de la somme conjonctive

$$m[A] = m \bigcirc m_A$$

avec
$$m_A(A) = 1$$
 $A \subseteq \Omega$

Approche crédibliste

Chaque masse m(B) est transférée à B∩A

Remarque : cas particulier de la règle de combinaison de Dempster

Déconditionnement

Principe

<u>Hypothèse</u>: on connaît $m^{\Omega}[A]$ pour $A \subseteq \Omega$ Etat de connaissance sur $\omega \in \Omega$ et sachant que $\omega \in A$

Problème : Comment en déduire une masse non conditionnelle sur Ω ?

Solution: Rechercher la fonction de masse la moins informative dont le conditionnement par rapport à A redonne $m^{\Omega}[A]$

$$m^{\Omega}(B \cup \neg A) = m^{\Omega}[A](B) \quad \forall B \subseteq A$$

Raffinement/Grossissement

Principe

Problème : comment traduire un état de connaissance exprimé sur le référentiel Ω dans un référentiel Θ plus fin?

Solution la moins informative :

$$m^{\Theta}(f(A)) = m^{\Omega}(A) \quad \forall A \subseteq \Omega$$

Fonctions de croyance et mesures floues

Intervalle d'évidence d'un ensemble A

Quelques exemples d'utilisation de la théorie de l'évidence

Jeu de données « Iris » de Fisher

3 classes : Ω={Setosa, Versicolor, Virginica} 4 caractéristiques : longueur sépal, largeur sépal, longueur pétal, largeur pétal

30

bel et pl

Approche crédibliste

Elevé **Faible**

7

5

Masse d'ignorance et BetP

Approche crédibliste

Sans rejet

Avec rejet

Classification crédibiliste

4 classes gaussiennes dans un espace à 3 dimensions

Big Brother is watching you!

Plan 1958

Image optique 1992

Image radar1992

ONERA

Fusion probabiliste (Bayes + MAP)

Fusion évidentielle

Vérité terrain 1992

Segmentation d'images couleur

Partition Espace Image Jeux de masses (Modélisation de la connaissance) Modélisation de la connaissance) Module de

décision

Approche crédibliste

Combinaison des masses

Jeu de masses combiné → synthèse des croyances

Approche crédibliste

Masse affaiblie par un coefficient dépendant de la distance entre le pixel considéré et un de ses voisins

$$BetP(H_n) = \sum_{A \subseteq \Omega, A \neq \emptyset} m_{\oplus}(A) \frac{|H_n \cap A|}{|A|}$$

| A | : cardinal de l'ensemble A

<u>Décision:</u> H_n décidée si BetP(H_n) maximum

Remarque: on peut aussi faire du rejet

Risque pignistique

Risque inférieur (plausibilité)

Image originale

Masses lésion Masses peau

 $\mathsf{Masses}\ \Omega$

Masses Ø

USTL

m(A)=0

m(A)=1

Image originale

Masses lésion

Masses peau

Masses Ω

Masses ∅ Image segmentée

USTL

m(A)=0

Masse Theta

Masse Emptyset avec information spatiale

Segmentation couleur

Principe

- Convolution de l'image *I* par un filtre
- Tenir compte du voisinage du pixel P
- Pixels P_i de couleur C_k dans le voisinage du pixel P
- $\Omega = \{\omega_1, \ldots, \omega_k, \ldots, \omega_K\}$
- Appartenance de P dans Ω
- Quantifier le degré de croyance
- A chaque P_i une fonction m_i : $m_i(\{\omega_k\}) = \alpha$ et $m_i(\Omega) = 1-\alpha$
- *m*=⊕ *m*_i

Quantification d'images couleur

Segmentation de coupes IRM et reconstruction 3D

Contexte de l'étude

- Imagerie médicale
- Aide au diagnostic

• Suivi de patients atteints de cancers

Thèse de doctorat (A.-S. Capelle, décembre 2003)

T1Gado

Segmentation par différents modèles

T2

TDM thoracique

Thèse de doctorat (P. Zhang, novembre 2006)

Détection d'obstacles (INRETS - LIVIC)

Objectif

- Aide à la conduite
- Détection d'obstacles à l'avant d'un véhicule instrumenté

Véhicule instrumenté

- Système multi-capteur (caméra, télémètre, lidar,...)
- Système de traitement

Système de traitement de l'information

- Données images et signal
- Fusion de données

Remarque: http://www.inrets.fr/ur/livic/

Détection d'obstacles (INRETS - LIVIC)

Thèse de doctorat (N. Megherbi, décembre 2006)

Clean trajectories, o: video trajectory
+: audio trajectory

o: video trajectory

People tracking in transport environments

Multi-sensor, Multi-object tracking problem

(a) Trajectoires réelles

(b) Positions estimées par les deux capteurs logiques audio "* et vidéo "o"

(c) Trajectoires estimées par notre méthode

(a) Trajectoires réelles

(c) Trajectoires estimées par notre méthode, mesure de performance d'association audio-cible

(b) Positions estimées par les deux capteurs loques audio "*" et vidéo "o"

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target emergence

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

Target disappearance

Clean trajectories

Noisy trajectories

Estimated trajectories

- Formalisme récent de plus en plus utilisé
- Extension au continu récente
- Méconnaissance bien modélisée
- Conflit modélisé
- Quelques opérateurs de fusion (conjonctif, disjonctif; autres)
- Séparation des niveaux crédal et pignistique (MCT)

This is the end of this part!

