系统工程作业 7

张博睿 自75 2017011537

1.

解:

如图,根据题目信息,绘制决策树如下

其中,公司利润计算公式为

 $revenue = sell \times years - cost$

每一种方案的计算方式为

 $E(large\ factory) = 0.5 \times 720 + 0.3 \times 320 - 0.2 \times 480 = 360$ $E(small\ factory) = 0.5 \times 110 + 0.3 \times 60 - 0.2 \times 40 = 81$

综上,应该选择建立大工厂的方案。

解:

该问题既可以建模成**多级决策树**的问题,也可以建模成**情报信息价值**的问题。下面以**情报信息价值**的方式进行建模。

(1) 在没有引进检测技术时,通过决策树的方法建模如下

可以看到,应该选择 A2 策略进行生产,这个时候的益损值为 880。

(2)引进检测技术后,由于不知道确切状态,因此通过状态的概率分布来计算期望益损值。 题目描述为"既保证化学溶剂质量,又使得益损值期望值较大",我把这个描述建模为在提 升化学溶剂质量的同时,主要是使得**益损值期望值最大化**。从而选择策略为

> 如果状态为S1、S2、S3,采用A2 如果状态为S4、S5,采用A1

从而益损值期望值为

 $E_2 = 2200 \times 0.2 + 1600 \times 0.2 + 1000 \times 0.1 + 500 \times 0.2 + 500 \times 0.3 = 1110$ 得到的期望值提升为

$$\Delta E = E_2 - E_1 = 1110 - 880 = 230 > 150$$

因此,应该增加该检验工序。

解:

(1)

记进货量为*input*,卖出量为*output*,对应收益为*sell_{input}*,其期望值为*E*(*sell*)已知该经营者为中立决策者,因此

$$U = u(p) = k \left(\sum_{i \in \omega} p_i sell_i \right) + b$$

其中, p_i 为出现i情况的概率, $sell_i$ 为对应收益。首先计算期望收益值如下

	1,\$[7]出为此诗为出为城中,多时[7]为为至汉血。 自为时 开州至汉血由州							
概率	0.1	0.3	0.2	0.2	0.1	0.1		
销售量 进货量	50	100	150	200	250	300	期望值	单位成本
50	2000	2000	2000	2000	2000	2000	2000	100
100	1000	5000	5000	5000	5000	5000	4600	90
150	1000	5000	9000	9000	9000	9000	7000	80
200	2000	6000	10000	14000	14000	14000	9600	70
250	1500	5500	9500	13500	17500	17500	9900	70
300	1000	5000	9000	13000	17000	21000	9800	70
350	500	4500	8500	12500	16500	20500	9300	70

对于中立型决策者,期望效用与期望收益呈线性关系,从而调整计算对应期望效用如下

进货量	50	100	150	200	250	300	350
期望收益	2000	4600	7000	9600	9900	9800	9300
期望效用	0.00	0.33	0.63	0.96	1.00	0.99	0.92

根据效用理论,选择期望效用值最大的进货方案,则应该进货的数量为250箱。

对于中立性决策者,由于期望效用与期望收益呈线性。为了计算的简便,不妨在计算过程中 不对效用值进行归一化,

极小化最大后悔值准则数学描述为

$$r(s|a) = \max_{\hat{a} \in A} v(g(s|\hat{a}) - v(g(s|a))$$

$$R(a) = \max_{s \in S} r(s|a)$$

(1) 中已经计算了g(s|a)的表格,即

销售量进货量	50	100	150	200	250	300
50	2000	2000	2000	2000	2000	2000
100	1000	5000	5000	5000	5000	5000
150	1000	5000	9000	9000	9000	9000
200	2000	6000	10000	14000	14000	14000
250	1500	5500	9500	13500	17500	17500
300	1000	5000	9000	13000	17000	21000
350	500	4500	8500	12500	16500	20500

1.当a = 50时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	2000	2000	2000	2000	2000	2000
r(s a)	0	4000	8000	12000	15500	19000

从而R(50) = 19000

2.当a = 100时,

- • •						
销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	1000	5000	5000	5000	5000	5000
r(s a)	1000	1000	5000	9000	12500	16000

从而R(100) = 16000

3.当a = 150时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	1000	5000	9000	9000	9000	9000
r(s a)	1000	1000	1000	5000	8500	12000

从而R(150) = 12000

4.当a = 200时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	2000	6000	10000	14000	14000	14000
r(s a)	0	0	0	0	3500	7000

从而R(200) = 7000

5.当a = 250时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	1500	5500	9500	13500	17500	17500
r(s a)	500	500	500	500	0	3500

从而R(250) = 3500

6.当a = 300时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	1000	5000	9000	13000	17000	21000
r(s a)	1000	1000	1000	1000	500	0

从而R(300) = 1000

7.当a = 350时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	500	4500	8500	12500	16500	20500
r(s a)	1500	1500	1500	1500	1000	500

从而R(350) = 1500

8.当a = 400时,

销售量	50	100	150	200	250	300
$\max_{\hat{a} \in A} v(g(s \hat{a}))$	2000	6000	10000	14000	17500	21000
v(g(s a))	0	4000	8000	12000	16000	20000
r(s a)	2000	2000	2000	2000	1500	1000

从而R(400) = 2000

综上,得到最大后悔值和进货量的关系如下

进货量	50	100	150	200	250	300	350	400
最大后悔值	19000	16000	12000	7000	3500	1000	1500	2000

从而,极小化最大后悔值的决策为a=300。