Klasszikus fizika laboratórium

3. mérés

Hangfrekvenciás mechanikai rezgések

Bakó Bence Kedd délelőtti csoport Mérés dátuma: -.

Leadás dátuma: 2020.05.06.

1. A mérés célja:

Hangfrekvenciás mechanikai rezgések, különböző, rezgésbe hozott minták rugalmas tulajdonságainak vizsgálata.

2. Mérőeszközök:

- Próbtestek
- Befogó
- Pick-up
- Mágnes+Tekercs
- Oszcilloszkóp
- Generátor
- Frekvenciamérő
- Csavarmikrométer (felbontás: 0,01 mm)
- Tolómérő (felbontás: 0,05 mm)
- Mohr-Westphal mérleg (felbontás: 0,5 %)
- Digitális mérleg (felbontás: 0,0001 g)

3. A mérés menete:

Elsőként csavarmikrométerrel megmérjük a próbatestek paramétereit, majd tömegét és a kalapács alakú minta térfogatát Mohr-Westphal mérleggel (a hibák a mérőeszközök pontosságából származnak).

Ez után az éppen aktuális mintát rögzítjük és az alája helyezett elektromágnes segítségével rezgésbe hozzuk. Megkeressük az alapharmonikus frekvenciát és ennek 3 felharmonikusát. Ezeknek és a minta paramétereinek ismeretében meghatározhatjuk a Young-moduluszt.

A következő lépésben az alapharmonikusnak megfelelő frekvencia környékén mérjük a rezonanciagörbét. Mindkét irányba az amplitúdót csökkentve mértjük a frekvenciákat.

A mérés harmadik felében a téglatest alakú mintára megmérjük az alapharmonikus frekvenciának a rezgő hossztól való függését. A 8-3 cm-es tartományon 1 cm-enként változtatjuk a minta hosszát és megkeressük a alapharmonikust minden esetben.

4. A mérés elmélete:

Sajátfrekvenciák vizsgálata esetén az alapharmonikus és bármely felharmonikusára a következő összefüggés áll fenn:

$$\frac{f_i}{f_0} = \left(\frac{k_i}{k_0}\right)^2 \tag{1}$$

Ahol az f_i , f_0 illetve a k_i , k_0 az i-edik és nulladik (vagyis alapharmonikus) módushoz tartozó frekvencia illetve módusállandó.

Ha a módusállandók négyzete függvényében ábrázoljuk a mért frekvenciaértékeket és a pontokra egyenest illesztünk, akkor az egyenes meredekségéből kiszámolható a minta Young-modulusza:

$$E = 4\pi^2 m^2 l^4 \frac{\rho q}{I} \tag{2}$$

Ahol m az egyenes meredeksége, l a minta rezgő hossza, q a minta keresztmetszetének területe, ρ a sűrűsége és I a másodrendű felületi nyomaték, amely (a, b oldalhosszúságú) téglalap keresztmetszetre:

$$I = \frac{ab^3}{12} \tag{3}$$

Az alapharmonikus körüli frekvenciákra egy Lorenz görbe illeszthető, melynek egyenlete:

$$A = \frac{A_0}{\sqrt{(\nu_0^2 - \nu^2)^2 + 4\kappa\nu}}\tag{4}$$

Tehát az illesztésből megkapható a κ csillapítás és a ν_0 alapharmonikus frekvencia, az előbbiből pedig kiszámolható a félértékszélesség:

$$\Delta \nu = \frac{\kappa}{\pi} \tag{5}$$

Végül pedig meg tudjuk határozni a belső súrlódást:

$$Q^{-1} = \frac{\Delta\nu}{\nu_0} \tag{6}$$

Az alapharmonikus hosszfüggésére a következő összefüggést írhatjuk fel:

$$\nu = \frac{1}{l^2} \frac{k_i^2}{2\pi} \sqrt{\frac{EI}{\rho q}} \tag{7}$$

Tehát ha a frekvenciát ábrázoljuk a mintahossz reciproknégyzetének függvényében és a pontokra egyenest illesztünk, akkor ebből kifejezhető a Young-modulusz:

$$E = m^2 \frac{4\pi^2}{k_i^4} \frac{\rho q}{I} \tag{8}$$

5. Mérési adatok:

A próbatestek paraméterei a mérési bizonytalanságukkal együtt:

- 1. 16A téglatest alakú minta
 - $a = (15, 08 \pm 0, 005) \ mm$
 - $b = (3,04 \pm 0,005) \ mm$
 - $l = (100, 21 \pm 0, 025) \ mm$
 - $m = (12,2401 \pm 0,00005) g$
- 2. A2 kalapács alakú minta
 - $a = (15, 07 \pm 0, 005) \ mm$
 - $b = (1,98 \pm 0,005) \ mm$
 - $l = (80, 01 \pm 0, 025) \ mm$
 - $m = (14,6510 \pm 0,00005) g$
 - $V = 5,545 \text{ cm}^3 \pm 0,5\%$

5.1. Minták reguláris sajátfrekvenciái

Minta	A2			
Módus	k_i	$f_{gerj.}(Hz)$	$f_{elm.}(Hz)$	
0	1,87510	253,5996	253,5996	
1	4,69409	1610,8066	1589,2876	
2	7,86476	4517,603	4461,3946	
3	10,9955	88639167	8720,2645	

5.2. Alapharmonikus körüli rezonanciagörbe

Minta:	6	
f (Hz)	U (mV)	
255,25	68,04536	
255,46	63,97889	
255,54	60,03811	
255,61	55,04693	
255,66	50,00349	
255,74	45,59575	
255,96	39,73845	
256,07	35,09246	
256,30	30,01081	
256,48	25,06047	
256,91	19,90354	
257,58	15,03878	
259,01	10,02655	
260,91	6,98864	
255,26	68,09095	
254,95	65,3425	
254,85	59,95975	
254,89	54,92078	
254,72	50,0982	
254,62	44,54569	
254,56	40,22513	
254,24	35,02252	
254,08	29,98721	
253,87	24,98657	
253,41	19,92163	
252,91	15,0036	
251,6	9,9138	
249,84	6,99285	

5.3. Alapharmonikus frekvenciájának hosszfüggése

Minta	16A
$l_{rezgo}(cm)$	f(Hz)
8	351,267
7	465,387
6	602,167
5	836,551
4	1244,499
3	2026,529

6. <u>Kiértékelés:</u>

6.1. Minták reguláris sajátfrekvenciái

Az első táblázatba már be is vezettem a módusokhoz tartozó k_i módusállandókat, illetve az (1)-es összefüggés alapján, az alapharmonikus frekvenciájából számolt elméleti frekvenciaértékeket, így összehasonlíthatjuk a mért értékekkel. A módusállandók négyzetének függvényében ábrázoltam a mért gerjesztési frekvenciákat¹:

Az illesztett egyenes meredeksége:

$$m = (73, 253 \pm 0, 068) \ Hz$$

A téglalap keresztmetszet területe, illetve a (3)-mas összefüggés alapján a másodrendű felületi nyomatéka:

$$q = a \cdot b = 29,8386 \text{ mm}^2$$

 $I = 9,7483 \cdot \text{mm}^4$

A minta sűrűsége pedig:

$$\rho = \frac{m}{V} = 2,6422 \frac{g}{cm^3}$$

 $^{^1\}mathrm{Minden}$ ábrázolást Python-ban végeztem, a matplotlib könyvtár segítségével, az illesztésekhez a scipy curve_fit függvényét használtam.

Tehát az A2-es minta Young-modulusza:

$$E = 70, 21 \; GPa$$

6.2. Alapharmonikus körüli rezonanciagörbe

Az U amplitúdót ábrázoltam a frekvencia függvényében és a pontokra a (4)-es összefüggés alapján Lorenz-görbét illesztettem:

Az illesztésből adódó paraméterek a hibáikkal együtt:

- A gerjesztéstől függő konstans: $A_0 = (18191, 80 \pm 373, 10) \ mV$
- Az alapharmonikus frekvenciája: $\nu_0 = (255, 21 \pm 0, 01) \; Hz$
- A csillapítás: $\kappa = (0, 5142 \pm 0, 0154) \; Hz$

Tehát az (5)-ös alapján a félértékszélesség:

$$\Delta \nu = 0.1637 Hz$$

A (6)-os alapján a belső súrlódás pedig:

$$Q^{-1} = 6,41 \cdot 10^{-4}$$

6.3. Alapharmonikus frekvenciájának hosszfüggése

A (7)-es összefüggés alapján a mintahossz reciproknégyzetének függvényében ábrázoltam a mért frekvenciákat és egyenest illesztettem:

Az illesztett egyenes meredeksége:

$$m = (1,91 \pm 0,055)Hzm^2$$

A 16A minta keresztmetszetének területe és másodrendű felületi nyomatéka:

$$q = 45,8432 \ mm^2$$

$$I = 35,3054 \ mm^4$$

A minta sűrűsége kiszámolható a minta paramétereiből:

$$\rho = \frac{m_t}{a \cdot b \cdot l} = 2,6644 \frac{g}{cm^3}$$

Mivel itt az alaphamonikussal számolunk, ezért $k_0=1,87510$. Tehát a (8)-es összefüggés alapján a minta Young-modulusza:

$$E = 128,296 \; GPa$$

7. Hibaszámítás:

7.1. Minták reguláris sajátfrekvenciái

A Young-modulusz bizonytalanságát a hibaterjedés módszerével határozzuk meg. Először kiszámoljuk a felhasznált mennyiségek relatív hibáit (minden mért mennyiség hibája megtalálható fennebb).

Az illesztésből származó meredekség bizonytalansága:

$$\frac{\Delta m}{m} = 9,28 \cdot 10^{-4}$$

A rezgő minta hosszának hibája:

$$\frac{\Delta l}{l} = 3,12 \cdot 10^{-4}$$

A sűrűség hibája a tömeg és térfogatmérés hibájából származik:

$$\frac{\Delta \rho}{\rho} = \frac{\Delta m_t}{m_t} + \frac{\Delta V}{V} = 50,03 \cdot 10^{-4}$$

A téglalap keresztmetszet bizonytalansága az oldalak méréséből származik:

$$\frac{\Delta q}{q} = \frac{\Delta a}{a} + \frac{\Delta b}{b} = 28,57 \cdot 10^{-4}$$

A másodrendű felületi nyomaték hibáját az előzőhöz hasonlóan számoljuk:

$$\frac{\Delta I}{I} = \frac{\Delta a}{a} + 3\frac{\Delta b}{b} = 79,08 \cdot 10^{-4}$$

Tehát a Young-modulusz hibája:

$$\frac{\Delta E}{E} = 2\frac{\Delta m}{m} + 4\frac{\Delta l}{l} + \frac{\Delta \rho}{\rho} + \frac{\Delta q}{q} + \frac{\Delta I}{I}$$
$$\frac{\Delta E}{E} = 188, 9 \cdot 10^{-4}$$
$$\Delta E = 1, 33 \ GPa$$

7.2. Alapharmonikus körüli rezonanciagörbe

Itt is a hibaterjedés módszerét alkalmaztam:

•
$$\frac{\Delta(\Delta\nu)}{\Delta\nu} = \frac{\Delta\kappa}{\kappa} = 2,9949 \cdot 10^{-2}$$

$$\bullet \ \frac{\Delta \nu_0}{\nu_0} = 3,92 \cdot 10^{-5}$$

Tehát a beső súrlódás hibája:

$$\frac{\Delta Q^{-1}}{Q^{-1}} = \frac{\Delta(\Delta \nu)}{\Delta \nu} + \frac{\Delta \nu_0}{\nu_0} = 2,9988 \cdot 10^{-2}$$
$$\Delta Q^{-1} = 0,1922 \cdot 10^{-4}$$

7.3. Alapharmonikus frekvenciájának hosszfüggése

A (7)-es összefüggésben felhasznált mennyiségek relatív hibái:

•
$$\frac{\Delta m}{m} = 28,80 \cdot 10^{-3}$$

•
$$\frac{\Delta \rho}{\rho} = \frac{\Delta m_t}{m_t} + \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta l}{l} = 2,23 \cdot 10^{-3}$$

$$\bullet \ \frac{\Delta q}{a} = \frac{\Delta a}{a} + \frac{\Delta b}{b} = 1,98 \cdot 10^{-3}$$

•
$$\frac{\Delta I}{I} = \frac{\Delta a}{a} + 3\frac{\Delta b}{b} = 5,27 \cdot 10^{-3}$$

Tehát a Young-modulusz hibája:

$$\begin{split} \frac{\Delta E}{E} &= 2\frac{\Delta m}{m} + \frac{\Delta \rho}{\rho} + \frac{\Delta q}{q} + \frac{\Delta I}{I} \\ \frac{\Delta E}{E} &= 67,08 \cdot 10^{-3} \\ \Delta E &= 8,61 \; GPa \end{split}$$

8. <u>Diszkusszió:</u>

Az eredmények összegezve:

Minta	Módszer	Young-modulusz [GPa]	Hiba %-ban
A2	sajátfrekvenciák	$70,21 \pm 1,33$	1,89
16A	alapharmonikus hosszüggése	$128,296 \pm 8,61$	6,71
Minta		Belső súrlódás	Hiba %-ban
6		$(6,41\pm0,19)\cdot10^{-4}$	2,96

Hivatkozások

• Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.