TEST REPORT

Reference No	:	WTS16S0551689-1E
FCC ID	:	UC7B60
Applicant	:	Audix Corporation
Address	:	9400 SW Barber Street, Wilsonville, Oregon 97070, United States
Manufacturer	:	Relacart Electronics Co., Ltd.
Address	:	No. 10 Fuxing Road, Pingshi Industrial District, Enping City, Guangdong, China-529400
Product Name	:	Wireless microphone Bodypack Transmitter
Model No	:	B60
Standards	:	FCC CFR47 Part 74
Date of Receipt sample	:	May 27, 2016
Date of Test	:	May 28 – Jul. 10, 2016
Date of Issue	:	Jul. 15, 2016

Remarks:

Test Result..... : Pass

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:	Approved by:
(Da 24	Tarlo zhous
Zero Zhou / Project Engineer	Philo Zhong / Manager

Reference No.: WTS16S0551689-1E Page 2 of 62

2 Test Summary

Test Items	Test Requirement	Test Method	Result
RF Output Power	74.861(e)(1)(ii)	ANSI/TIA-603-D:2010	PASS
Modulation Characteristics	74.861 (e) (3)	ANSI/TIA-603-D:2010	PASS
Occupied Bandwidth	2.1049(c)(1)	ANSI/TIA-603-D:2010	PASS
Radiated Emissions	2.1053 & 74.861(e)(6)	ANSI/TIA-603-D:2010	PASS
Spurious emissions at antenna terminals	2.1051	ANSI/TIA-603-D:2010	PASS
Frequencies Stability	2.1055(a)(1)	ANSI/TIA-603-D:2010	PASS
RF Exposure	1.1307(b)(1)	KDB 447498 D01	PASS

Remark:

PASS means that the test results complies with related requirements.

N/A means that the test is not applicable for the EUT.

3 Contents

	Page
1 COVER PAGE	1
2 TEST SUMMARY	2
3 CONTENTS	3
4 GENERAL INFORMATION	4
4.1 GENERAL DESCRIPTION OF E.U.T	4
4.4 TEST FACILITY	
5 EQUIPMENT USED DURING TEST	
5.1 EQUIPMENTS LIST	7
6 RF OUTPUT POWER	8
6.1 TEST PROCEDURE	
7 MODULATION CHARACTERISTICS	12
7.1 TEST PROCEDURE	
8 OCCUPIED BANDWIDTH OF EMISSION	19
8.1 TEST PROCEDURE	
9 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	23
9.1 TEST PROCEDURE9.2 TEST DATA	
10 RADIATED EMISSION TEST	36
10.1 EUT SETUP	
11 FREQUENCY STABILITY	42
11.1 Test Configuration	42
12 RF EXPOSURE	46
13 PHOTOGRAPHS -MODEL B60 TEST SETUP	47
13.1 PHOTOGRAPH - RADIATION SPURIOUS EMISSION TEST SETUP	47
14 PHOTOGRAPHS – CONSTRUCTIONAL DETAILS	50
14.1 EUT -MODEL B60 EXTERNAL PHOTOS	

Reference No.: WTS16S0551689-1E Page 4 of 62

4 General Information

4.1 General Description of E.U.T.

Product Name : Wireless microphone Bodypack Transmitter

Model No. : B60
Differences describe : N/A

Operation Frequency: 522.100MHz-585.575MHz, 207channels

The Lowest Oscillator : 16MHz

Antenna installation : wire antenna
Antenna Gain :1dBi (Max.)

Modulation : FM

Rated System Deviation : \pm 30KHz **Maximum System Deviation** : \pm 75KHz

4.2 Details of E.U.T.

Technical Data: : DC 3V by 2*1.5V(size "AA") batteries

4.3 Channel Plan & List

Band A Channel List(522.100MHz-554.125MHz)

			Balla / t	Citatiliei L		00.00	· · · 上 ○ · · · · · · · · · · · · · · ·	,		
Group Channel	1	2	3	4	5	6	7	8	9	10
1	545.625	541.475	547.475	554.125	553.300	553.625	553.600	553.450	550.500	551.725
2	544.500	541.075	547.075	549.675	551.625	547.350	552.975	549.700	547.875	550.500
3	543.575	540.450	546.450	548.650	544.925	543.475	552.150	548.775	546.425	549.575
4	542.350	539.625	542.850	548.125	541.600	542.400	551.750	547.325	545.500	548.125
5	535.075	538.500	535.475	529.475	540.450	538.350	551.025	544.700	541.750	545.500
6	533.625	537.575	534.450	529.075	527.325	535.500	527.625	543.475	538.925	544.275
7	531.575	536.850	532.500	528.450	526.075	533.950	526.500	534.625	537.475	535.425
8	530.850	536.350	530.350	524.850	525.525	528.075	525.575	532.750	534.150	533.550
9				524.350	524.525	526.375	523.475	530.675	532.600	531.475
10					522.100	525.800	523.075	530.250	530.500	531.050
11							522.450	525.150	528.100	525.950
12								522.350	523.750	523.150
13										522.525

Band B Channel List(554.250MHz-585.575MHz)

	Band B Channel List(354.250MHz-385.575MHz)									
Group	1	2	3	4	5	6	7	8	9	10
Channel										
1	583.475	585.575	584.500	584.675	584.400	584.825	583.350	584.675	585.375	584.400
2	583.075	584.850	578.125	582.600	582.350	579.125	581.600	582.600	584.500	582.350
3	582.450	559.600	571.450	579.400	581.475	578.625	573.825	581.750	581.150	581.475
4	581.625	558.975	565.600	571.600	579.125	574.475	572.800	579.400	580.600	579.125
5	580.500	557.750	564.975	570.975	577.600	567.550	571.550	578.375	579.200	578.100
6	579.575	557.025	564.150	570.150	576.975	566.000	570.775	577.150	578.125	577.100
7	578.350	555.675	563.025	569.750	576.150	561.100	569.050	576.650	577.450	576.375
8		554.650	561.675	569.025	575.025	557.075	565.700	575.300	576.100	575.850
9			560.125	567.675	573.675	555.300	561.075	574.450	575.250	574.825
10				566.125	572.125			571.450	572.250	573.475
11								564.700	565.500	572.850
12								562.600	563.400	570.050
13								561.050	561.850	564.525
14								556.275	557.075	562.450
15									554.250	560.575

4.4 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#– Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

3m Sei	Bm Semi-anechoic Chamber for Radiation Emissions Test site 1#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2015	Sep.14,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2016	Apr.18,2017
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2015	Sep.14,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2016	Apr.18,2017
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2016	Apr.18,2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2016	Mar.16,2017
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2016	Apr.09,2017
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.15,2015	Sep.14,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2015	Sep.14,2016
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2015	Sep.14,2016
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2015	Sep.14,2016
RF Co	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2015	Sep.14,2016
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2015	Sep.14,2016

Reference No.: WTS16S0551689-1E Page 7 of 62

5.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
Radiated Spurious	± 5.03 dB (Bilog antenna 30M~1000MHz)	
Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)	

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0551689-1E Page 8 of 62

6 RF Output Power

Test requirement: FCC CFR47 Part 74 Section 74.861(e)(1)(ii)

Test method: Based on ANSI/TIA-603-D:2010

Limit: According to Part 74.861(e)(1)(ii), the output power shall not exceed

250mW (23.98 dBm).

6.1 Test Procedure

The maximum peak output power was measured with a spectrum analyzer connected to the antenna terminal (conducted measurement) while EUT was operating in normal situation.

6.2 Test result

power	Frequency (MHz)	RF Output Power (dBm)	Limit (dBm)	Result
	522.100	11.15	23.98	PASS
Low	554.125	11.06	23.98	PASS
	585.575	11.81	23.98	PASS
	522.100	15.82	23.98	PASS
High	554.125	16.12	23.98	PASS
	585.575	15.74	23.98	PASS

Low Power Please refer to following plot: Low channel

Middle channel

High channel

High Power Please refer to following plot: Low channel

Middle channel

Reference No.: WTS16S0551689-1E Page 11 of 62

High channel

Reference No.: WTS16S0551689-1E Page 12 of 62

7 Modulation Characteristics

Test requirement: FCC CFR47 §74.861 (e) (3)

Test method: Based on ANSI/TIA-603-D:2010

Requirement: Any form of modulation may be used.

A maximum deviation of ±75kHz is permitted when frequency

modulation is employed..

7.1 Test Procedure

Modulation Limiting (TIA-603D:2010 Section 2.2.3)

Modulation limiting is the transmitter circuit's ability to limit the transmitter from producing deviations in excess of a rated system deviation.

Method of Measurement

- a) Connect the equipment as illustrated.
- b) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- c) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 0.25 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- d) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation.
- e) Increase the level from the audio frequency generator by 20 dB in one step (rise time between the 10% and 90% points shall be 0.1 second maximum).
- f) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level.
- g) With the level from the audio frequency generator held constant at the level obtained in step e), slowly vary the audio frequency from 300 Hz to 3000 Hz and observe the steady-state deviation. Record the maximum deviation.
- h) Set the test receiver to measure peak negative deviation and repeat steps d) through g).
- i) The values recorded in steps g) and h) are the modulation limiting.

Reference No.: WTS16S0551689-1E Page 13 of 62

Audio Low Pass Filter Response (TIA-603D:2010 Section 2.2.15)

The audio low pass filter response is the frequency response of the post limiter low pass filter circuit above 3000 Hz.

Method of Measurement

- a) Connect the equipment as illustrated.
- b) Connect the audio frequency generator as close as possible the input of the post limiter low pass filter within the transmitter under test.
- c) Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.
- d) Apply a 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
- e) Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as $\it LEV_{\it REF.}$
- f) Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
- g) Record audio spectrum analyzer levels, at the test frequency in step f).
- h) Record the dB level on the audio spectrum analyzer as LEV_{FREQ} .
- i) Calculate the audio frequency response at the test frequency as: $low\ pass\ frequency\ response = LEV_{FREQ} LEV_{REF}$
- j) Repeat steps f) through i) for all the desired test frequencies.

Audio Frequency Response (TIA-603D:2010 Section 2.2.6)

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

Method of Measurement

Constant deviation test method (300 Hz to 3000 Hz)

- a) Connect the equipment as illustrated.
- b) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 50 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- c) Set the DMM to measure rms voltage.
- d) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- e) Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- f) Set the test receiver to measure rms deviation and record the deviation reading.
- g) Record the DMM reading as VREF.
- h) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- i) Vary the audio frequency generator output level until the deviation reading that was recorded in step f) is obtained.
- j) Record the DMM reading as VFREQ .
- k) Calculate the audio frequency response at the present frequency as:

audio frequency response = 20
$$\log_{10} \left(\frac{V_{FREQ}}{V_{REF}} \right)$$

I) Repeat steps h) through k) for all the desired test frequencies.

Reference No.: WTS16S0551689-1E Page 15 of 62

Constant Input Test Method (300 Hz to 3000 Hz)

- a) Connect the equipment as illustrated.
- b) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for \leq 50 Hz to \geq 15,000 Hz. Turn the de-emphasis function off.
- c) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- d) Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- e) Set the test receiver to measure rms deviation and record the deviation reading as DEVREF .
- f) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- g) Record the test receiver deviation reading as DEVFREQ.
- h) Calculate the audio frequency response at the present frequency as:

audio frequency response = 20
$$\log_{10} \left(\frac{DEV_{FREQ}}{DEV_{REF}} \right)$$

i) Repeat steps f) through h) for all the desired test frequencies.

7.2 Test Result

Modulation Limiting Test Result
Middle Channel

		madio Chamio	•					
0/ Daviation		Input Signal (mVP)						
% Deviation	500 Hz	1000 Hz	2000 Hz	3000 Hz				
10%	43	20	13	5				
20%	89	44	24	14				
30%	132	67	37	22				
40%	177	90	47	31				
50%	214	113	59	38				
60%	231	137	71	46				
70%	256	161	84	56				
80%	341	191	96	68				
90%	363	249	126	107				
100%	369	348	303	177				

Audio Frequency Response Test Result

Middle channel

Frequency(Hz)	Audio Frequency Response(Hz)	Audio Frequency Response(dB)
100	29	-29.5
300	188	-13.1
400	319	-9.5
500	389	-6.9
600	458	-5.1
700	528	-4.5
800	599	-2.8
900	659	-1.9
1000	738	-2.1
1500	1119	1.4
2000	1479	4.1
2500	1839	6.5
3000	1979	2.9
4000	638	-2.4
5000	108	-19.4

Audio Low Pass Filter Response Test Result

Middle channel

Frequency(Hz)	Audio Frequency Response(Hz)	Audio Frequency Response(dB)
300	1041	-4.0
400	1410	-1.7
500	1473	-1.7
600	1473	-1.7
700	1473	-1.7
800	1473	-1.7
900	1473	-1.7
1000	1481	-1.1
1500	1481	-1.1
2000	1481	-1.1
2500	1532	-1.3
3000	1424	-1.5
4000	371	-13.6
5000	51	-25.0

Reference No.: WTS16S0551689-1E Page 19 of 62

8 Occupied Bandwidth of Emission

Test requirement: FCC CFR47 Part 2 Section 2.1049©(1)

Test method: Based on ANSI/TIA-603-D:2010

Limit: According to FCC 74.861 (e)(5), the frequency emission

bandwidth shall not exceed 200 kHz.

8.1 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Turn on the EUT and set it to any one convenient frequency within its operating range.

8.2 Test Result

Power	Frequency (MHz)	99% Bandwidth (kHz)	Limit (kHz)	Result
Low	522.10	59.880	200	PASS
	554.125	59.880	200	PASS
	585.575	59.880	200	PASS
High	522.1	59.880	200	PASS
	554.125	59.880	200	PASS
	585.575	59.880	200	PASS

Low power Test Plot:

Low channel

Middle channel

High channel

Page 21 of 62

High power Test Plot: Low channel

Middle channel

High channel

Reference No.: WTS16S0551689-1E Page 23 of 62

9 Spurious Emissions at Antenna Terminals

Test requirement: FCC CFR47 Part 2 Section 2.1053
Test method: Based on ANSI/TIA-603-D:2010

Limit: According to Part 74.861 (e)(6), the mean power of emissions shall be

attenuated below the mean output power of the transmitter in

accordance with the following schedule:

(i) on any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized

bandwidth: at least 25 dB.

(ii) on any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized

bandwidth: at least 35 dB.

(iii) on any frequency removed from the operating frequency by more

than 250 percent up to and the authorized bandwidth shall be

attenuated below the un-modulated carrier by at least 43 + 10 Log

(output power in watts)dB.

9.1 Test Procedure

- Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
 Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 2. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 3. Set the SA on View mode and then plot the result on SA screen.
- 4. Repeat above procedures until all frequencies measured were complete.

9.2 Test Data

Low Power Emission Mask
Low Channel

30MHz-1GHz

1GHz-6GHz

Low Power Emission Mask

Middle Channel

30MHz-1GHz

1GHz-6GHz

Low Power Emission Mask High Channel

30MHz-1GHz

1GHz-6GHz

High Power Emission Mask
Low Channel

30MHz-1GHz

1GHz-6GHz

High Power Emission Mask
Middle Channel

30MHz-1GHz

1GHz-6GHz

High Power Emission Mask High Channel

30MHz-1GHz

1GHz-6GHz

Reference No.: WTS16S0551689-1E Page 36 of 62

10 Radiated Emission Test

Test requirement: FCC CFR47 Part 2 Section 2.1053
Test method: Based on ANSI/TIA-603-D:2010

Limit: According to Part 74.861 (e)(6), the mean power of emissions shall be

attenuated below the mean output power of the transmitter in

accordance with the following schedule:

(i) on any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized

bandwidth: at least 25 dB.

(ii) on any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized

bandwidth: at least 35 dB.

(iii) on any frequency removed from the operating frequency by more than 250 percent up to and the authorized bandwidth shall be attenuated below the un-modulated carrier by at least 43 + 10 Log

(output power in watts)dB.

10.1 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 KHz to 30 MHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz Emissions.

Reference No.: WTS16S0551689-1E Page 38 of 62

10.2 Spectrum Analyzer Setup

According to FCC Part 2 Section 2.1053 Rules, the system was tested 4MHz to 7000MHz.

10.3 Test Procedure

- 1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Reference No.: WTS16S0551689-1E Page 39 of 62

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

10.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Class B Limit

Reference No.: WTS16S0551689-1E Page 40 of 62

10.5 Test Result

Low Power

Low Power							
			Antenna	Turntable	Emission		
Frequency		Ant.	Height	Angle	Level	Limit	Margin
(MHz)	Detector	Pol	(m)	(°)	(dBm)	(dBm)	(dB)
	Low Channel:522.1MHz						
1044.20	Peak	Н	1.4	77	-42.37	-13	-29.37
1044.20	Peak	V	1.2	195	-43.35	-13	-30.35
1566.30	Peak	Н	1.1	199	-41.39	-13	-28.39
1566.30	Peak	V	1.5	84	-46.31	-13	-33.31
2088.40	Peak	Н	1.1	216	-46.94	-13	-33.94
2088.40	Peak	V	1.1	90	-49.36	-13	-36.36
	Middle Channel:554.125MHz						
1108.25	Peak	Н	1.3	345	-46.32	-13	-33.32
1108.25	Peak	V	1.5	251	-46.39	-13	-33.39
1662.38	Peak	Н	1.6	92	-47.31	-13	-34.31
1662.38	Peak	V	1.4	69	-44.35	-13	-31.35
2216.50	Peak	Н	1.9	200	-46.31	-13	-33.31
2216.50	Peak	V	1.2	13	-48.36	-13	-35.36
			High Chai	nnel:585.575N	lHz		
1171.15	Peak	Н	1.6	250	-42.67	-13	-29.67
1171.15	Peak	V	1.7	355	-44.93	-13	-31.93
1756.73	Peak	Н	1.4	239	-45.36	-13	-32.36
1756.73	Peak	V	1.9	61	-46.33	-13	-33.33
2342.30	Peak	Н	1.0	207	-42.39	-13	-29.39
2342.30	Peak	V	1.8	258	-45.36	-13	-32.36

High Power

High Power								
			Antenna	Turntable	Emission			
Frequency		Ant.	Height	Angle	Level	Limit	Margin	
(MHz)	Detector	Pol	(m)	(°)	(dBm)	(dBm)	(dB)	
	Low Channel:522.1MHz							
1044.20	Peak	Н	1.3	111	-43.37	-13	-30.37	
1044.20	Peak	V	1.7	189	-43.18	-13	-30.18	
1566.30	Peak	Н	2.0	299	-41.29	-13	-28.29	
1566.30	Peak	V	1.4	64	-46.16	-13	-33.16	
2088.40	Peak	Н	1.7	323	-46.9	-13	-33.9	
2088.40	Peak	V	1.6	236	-43.62	-13	-30.62	
	Middle Channel:554.125MHz							
1108.25	Peak	Н	1.7	116	-44.51	-13	-31.51	
1108.25	Peak	V	1.5	325	-47.33	-13	-34.33	
1662.38	Peak	Н	1.1	179	-46.21	-13	-33.21	
1662.38	Peak	V	2.0	4	-46.15	-13	-33.15	
2216.50	Peak	Н	1.1	103	-45.96	-13	-32.96	
2216.50	Peak	V	1.7	130	-47.63	-13	-34.63	
			High Cha	nnel:585.575N	lHz			
1171.15	Peak	Н	1.2	251	-43.69	-13	-30.69	
1171.15	Peak	V	1.8	53	-45.34	-13	-32.34	
1756.73	Peak	Н	1.3	332	-45.53	-13	-32.53	
1756.73	Peak	V	1.5	159	-46.37	-13	-33.37	
2342.30	Peak	Н	2.0	338	-42.36	-13	-29.36	
2342.30	Peak	V	1.5	79	-44.92	-13	-31.92	

The measurements below 1G were more than 20 dB below the limit and not reported.

Reference No.: WTS16S0551689-1E Page 42 of 62

11 Frequency Stability

Test requirement: FCC CFR47 Part 2 Section 2.1055(a)(a)

Test method: Based on ANSI/TIA-603-D:2010

Limit: According to FCC 74.86(e)(4), the frequency tolerance of the

transmitter shall be 0.005 percent.

11.1 Test Configuration

Figure 1

11.2 Test Procedure

A) Frequency stability versus input voltage

- 1. Setup the configuration per figure 1 for frequencies measured at an environmental chamber whose temperature is set to 20 °C. Install new batteries in the EUT.
- 2. Set SA center frequency to the EUT operation frequency. Then set SA RBW to 30 kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

B) Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measured at an environmental chamber, Install new batteries in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT operation frequency, then set SA RBW to 30kHz, VBW to 100kHz and frequency span to 500 kHz. Record this frequency to be a reference.
- 3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, record all measurement frequencies.

Reference No.: WTS16S0551689-1E Page 43 of 62

11.3 Test Result

- a) Frequency stability versus input voltage
- b) The EUT is power by two 5# Non-rechargeable AA batteries. The nominal voltage is DC 3V .so we select the extreme condition \pm 10% according with TIA-C603D section 1.4.4.3. low voltage is 2.7V DC and high voltage is 3.3V DC.

Low channel

Power Supply	Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured	Frequency Tolerance (%)
2.7V, DC	522.100	20	522.095	0.00092
3.3V, DC	522.100	20	522.098	0.00042

Middle channel

Power Supply	Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured	Frequency Tolerance (%)
2.7V, DC	554.125	20	554.128	0.00055
3.3V, DC	554.125	20	554.126	0.00016

High channel

Power Supply	Reference Frequency (MHz)	Environment Temperature (°C)	Frequency Measured	Frequency Tolerance (%)
2.7V, DC	585.575	20	585.570	0.00082
3.3V, DC	585.575	20	585.579	0.00072

Reference No.: WTS16S0551689-1E Page 44 of 62

c) Frequency stability versus environmental temperature

Low Frequency: 522.100MHz, Limit: 0.005%						
Environment Temperature(°C)	Power Supply	Frequency Deviation measured with time Elapse(30 minutes)				
		MHz	%			
50	3V, DC	522.104	0.00082			
40	3V, DC	522.104	0.00068			
30	3V, DC	522.100	0.00000			
20	3V, DC	522.096	0.00083			
10	3V, DC	522.099	0.00024			
0	3V, DC	522.101	0.00012			
-10	3V, DC	522.102	0.00046			
-20	3V, DC	522.101	0.00016			
-30	3V, DC	522.095	0.00098			

Middle Frequency: 554.125MHz, Limit: 0.005%					
Environment	Power Supply	Frequency Deviation measured with time Elapse(30 minutes)			
Temperature(°C)		MHz	%		
50	3V, DC	554.124	0.00012		
40	3V, DC	554.122	0.00054		
30	3V, DC	554.121	0.00076		
20	3V, DC	554.128	0.00054		
10	3V, DC	554.122	0.00060		
0	3V, DC	554.128	0.00061		
-10	3V, DC	554.128	0.00060		
-20	3V, DC	554.123	0.00032		
-30	3V, DC	554.128	0.00053		

Reference No.: WTS16S0551689-1E Page 45 of 62

High Frequency: 585.575MHz, Limit: 0.005%					
Environment	Power Supply	Frequency Deviation measured with time Elapse(30 minutes)			
Temperature(°C)		MHz	%		
50	3V, DC	585.570	0.00083		
40	3V, DC	585.577	0.00037		
30	3V, DC	585.576	0.00018		
20	3V, DC	585.572	0.00050		
10	3V, DC	585.578	0.00051		
0	3V, DC	585.572	0.00056		
-10	3V, DC	585.578	0.00056		
-20	3V, DC	585.570	0.00082		
-30	3V, DC	585.570	0.00082		

Test Result: The max frequency tolerance rating is 0.00098% < 0.005%. Passed.

Reference No.: WTS16S0551689-1E Page 46 of 62

12 RF Exposure

Remark: refer to WTS16S0551689-2E SAR Test Report

13 Photographs – Model B60 Test Setup

13.1 Photograph – Radiation Spurious Emission Test Setup

16MHz ~30MHz at test site 2#

30MHz-1GHz at test site 2#

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

1GHz-6GHz at test site 1#

Reference No.: WTS16S0551689-1E Page 49 of 62

14 Photographs – Constructional Details

14.1 EUT -Model B60 External Photos

Reference No.: WTS16S0551689-1E Page 52 of 62

Reference No.: WTS16S0551689-1E Page 53 of 62

Reference No.: WTS16S0551689-1E Page 54 of 62

Reference No.: WTS16S0551689-1E Page 55 of 62

14.2 EUT -Model B60 Internal Photos

Reference No.: WTS16S0551689-1E Page 57 of 62

Reference No.: WTS16S0551689-1E Page 58 of 62

Reference No.: WTS16S0551689-1E Page 60 of 62

Reference No.: WTS16S0551689-1E Page 62 of 62

=====End of Report=====