

## Datenbanken

Informatik, ICS und als Wahlfach

5. Normalformen/ Normalisierung

Prof. Dr. Markus Goldstein

SoSe 2022

## Inhalt



- 5.1 Überblick Normalisierung
- 5.2 Erste Normalform
- **5.3 Zweite Normalform**
- **5.4 Dritte Normalform**
- 5.5 Weitere Normalformen

## Modellqualität



- Erstellung eines konzeptionellen Schemas
- Überführung in ein relationales (logisches) Modell

- Manchmal mehrere Möglichkeiten zur Modellierung
- Wir haben schon Regeln für komplexe Eigenschaften kennengelernt → Kapitel 2.65
  - Subeigenschaft
  - Mehrere Ausstattungsmerkmale
  - Für ein "besseres Modell"

Was ist ein gutes Modell?

## Normalisierung



- Gesucht: Objektive Qualitätskriterien
- Lösung: Normalisierung
  - Eigentlich für relationales Modell entwickelt
  - Aber auch für konzeptionelle Modelle anwendbar
- Überführung des Modells in Normalformen

## Normalisierung



Erste, Zweite, und 3. Normalform (1NF, 2NF, 3NF)



## **Inhalt**



- 5.1 Überblick Normalisierung
- 5.2 Erste Normalform
- **5.3 Zweite Normalform**
- **5.4 Dritte Normalform**
- 5.5 Weitere Normalformen

## Komplexe Eigenschaften



- Wir haben bereits komplexe Eigenschaften kennengelernt
  - Mehrere Werte gleichzeitig für ein Attribut einer Entität ("Ausstattungsmerkmale") → Problem der 1NF
  - [ Subeigenschaften; später 3NF) ]

- Weitere Varianten
  - Mehrwertiges Attribut (z.B. Telefonnummer: CC, Vorwahl, Nummer)
  - Zusammengesetzes Attribut (z.B. Adresse)

## Komplexe Eigenschaften - Beispiel



- Bestelldaten: 2 Artikel pro Kunde mehrere Werte gleichzeitig
- Hier z.B. 4, 02.05.03, ... {L03,K201}, {Tee 125g, T-Shirt}
- Verletzt die erste Normalform

|    | Keine Relation! |     |             |                        |      |             |       |       |  |
|----|-----------------|-----|-------------|------------------------|------|-------------|-------|-------|--|
| В  | Bestell-        |     | Ku          | Kunden-                |      | Artikel-    |       |       |  |
| Nr | Datum           | Nr  | Name        | Adresse                | Nr   | Bezeichnung | Preis | Menge |  |
| 4  | 02.05.03        | 121 | Klein, Sara | Sara-Klein-Str. 1,     | L03  | Tee 125g    | 4.20  | 3     |  |
|    |                 |     |             | Berlin                 | K201 | T-Shirt     | 5.00  | 3     |  |
| 5  | 03.05.03        | 12  | Groß, Rolf  | Siegfried-Groß-Alee 3, | K27  | Schuhe      | 80.00 | 1     |  |
|    |                 |     |             | Berlin                 | K201 | T-Shirt     | 5.00  | 7     |  |

# Komplexe Eigenschaften - Beispiel



Auflösung durch Wiederholung der Attribute

| В  | estell-  |     |             | Kunden-                       | Artikel- |             |       |       |
|----|----------|-----|-------------|-------------------------------|----------|-------------|-------|-------|
| Nr | Datum    | Nr  | Name        | Adresse                       | Nr       | Bezeichnung | Preis | Menge |
| 4  | 02.05.03 | 121 | Klein, Sara | Sara-Klein-Str. 1, Berlin     | L03      | Tee 125g    | 4.20  | 3     |
| 4  | 02.05.03 | 121 | Klein, Sara | Sara-Klein-Str. 1, Berlin     | K201     | T-Shirt     | 5.00  | 3     |
| 5  | 03.05.03 | 12  | Groß, Rolf  | Siegfried-Groß-Alee 3, Berlin | K27      | Schuhe      | 80.00 | 1     |
| 5  | 03.05.03 | 12  | Groß, Rolf  | Siegfried-Groß-Alee 3, Berlin | K201     | T-Shirt     | 5.00  | 7     |

. . .

Zusammengesetzte Attribute

- Weiteres Problem: Zusammengesetzte Attribute
  - Auflösung durch Aufspaltung in eigene Attribute

| Nachname | Vorname |
|----------|---------|
| Klein    | Sara    |
| Groß     | Rolf    |

## 1. Normalform (1NF)



- Überführen der Unnormalisierten Form (UNF) in die 1NF
  - nur atomare Attributwerte
- Bei mehrwertigen Attribut
  - Einführung von eigenen Attributen (Spalten)
- Bei multiplen Eigenschaften
  - Einführung von "stark redundanten" Tupeln (Zeilen)

# 1. Normalform (1NF)



### Weiteres Beispiel für multiple Eigenschaften

### UNF

| <u>ArtNr</u> | Bezeichnung       | LNr    | Lieferant                  |  |
|--------------|-------------------|--------|----------------------------|--|
| 2000         | Server Xpert      | L1     | H. Schulze                 |  |
| 3000         | Trinitron 17" LCD | L1, L2 | H. Schulze,<br>Koch & Krug |  |
| 5000         | USB-Kabel         | L1, L2 | H. Schulze,<br>Koch & Krug |  |

## 1NF mit Erweiterung des Primärschlüssels

| <u>ArtNr</u> | Bezeichnung       | <u>LNr</u> | Lieferant   |  |
|--------------|-------------------|------------|-------------|--|
| 2000         | Server Xpert      | L1         | H. Schulze  |  |
| 3000         | Trinitron 17" LCD | L1         | H. Schulze  |  |
| 3000         | Trinitron 17" LCD | L2         | Koch & Krug |  |
| 5000         | USB-Kabel         | L1         | H. Schulze  |  |
| 5000         | USB-Kabel         | L2         | Koch & Krug |  |

# 1. Normalform (1NF) mit Redundanz



1NF nicht perfekt, da Redundanzen in der Tabelle

| <u>ArtNr</u> | Bezeichnung       | <u>LNr</u> | Lieferant   |  |
|--------------|-------------------|------------|-------------|--|
| 2000         | Server Xpert      | L1         | H. Schulze  |  |
| 3000         | Trinitron 17" LCD | L1         | H. Schulze  |  |
| 3000         | Trinitron 17" LCD | L2         | Koch & Krug |  |
| 5000         | USB-Kabel         | L1         | H. Schulze  |  |
| 5000         | USB-Kabel         | L2         | Koch & Krug |  |

- Redundanzen aber unerwünscht, da
  - Speicherplatzverschwendung (früher wichtig, heute nicht mehr essentiell)
  - Inkonsistenzen (Anomalien) möglich (wichtiger Grund)
    Beispiel: Umbenennen von "USB-Kabel"
  - → Vermeiden der Redundanzen in der 2NF und 3NF

## Anomalien durch Redundanz



Änderungsanomalien in dieser Tabelle ...

| <u>ArtNr</u> | Bezeichnung       | <u>LNr</u> | Lieferant   |  |
|--------------|-------------------|------------|-------------|--|
| 2000         | Server Xpert      | L1         | H. Schulze  |  |
| 3000         | Trinitron 17" LCD | L1         | H. Schulze  |  |
| 3000         | Trinitron 17" LCD | L2         | Koch & Krug |  |
| 5000         | USB-Kabel         | L1         | H. Schulze  |  |
| 5000         | USB-Kabel         | L2         | Koch & Krug |  |

- Einfügeanomalie: Neuer Lieferant (L3) nicht ohne mindestens einen Artikel einfügbar
- Modifikationsanomalie: Änderung der Artikelbezeichnung an mehreren Stellen (aka Update-Anomalie)
- Löschanomalie: Löschen von Artikeln führt ggf. zum Löschen der Lieferanten

## **Inhalt**



- 5.1 Überblick Normalisierung
- 5.2 Erste Normalform
- **5.3 Zweite Normalform**
- **5.4 Dritte Normalform**
- 5.5 Weitere Normalformen



Definition Funktionale Abhängigkeit (engl. functional dependency):

Gegeben sind zwei Attribute A und B einer Relation R.

### **Umgangssprachlich:**

"Wenn ich den Wert von A kenne, dann weiß ich auch eindeutig, welchen Wert B hat."

Notation:  $(A \rightarrow B)$ 

- B ist funktional abhängig von A
- A bestimmt/ impliziert B

### Formal:

Seien A, B ∈ Attr(R) (die Menge der Attribute von R). Das Attribut B ist funktional abhängig von A, wenn gilt:

Für alle Tupel  $t_1$ ,  $t_2 \in R$  gilt:  $t_1[A] = t_2[A] \Rightarrow t_1[B] = t_2[B]$ 

(t₁[A] bedeutet: Der Wert des Attributs a im Tupel t₁)



## Überprüfen auf funktionale Abhängigkeit

• Gibt es mindestens ein Paar von Tupeln, bei dem die Werte von A gleich sind, die von B aber unterschiedlich?

Ja: a → b gilt nicht

Nein: a → b gilt\*

\* Vorsicht: nicht unbedingt basierend auf den aktuellen Daten.
 Betrachten sich auch mögliche zukünftige Daten!



Beispiel: Überprüfen auf funktionale Abhängigkeit

| Kunden-Nr | Nachname | Vorname | Bestell-Nr |
|-----------|----------|---------|------------|
| 1         | Klein    | Sara    | 11         |
| 2         | Groß     | Rolf    | 22         |
| 1         | Klein    | Sara    | 33         |
| 3         | Klein    | Michael | 44         |

- Es gilt nicht: Nachname → Vorname (2 Vornamen für Klein)
- Es gilt: Vorname → Nachname
  (aber nur nach den vorliegenden Daten)
- Allgemein gilt aber Vorname → Nachname nicht (offensichtlich, da es Menschen mit gleichen Vornamen, aber unterschiedlichen Nachnamen geben kann)
- Offensichtlich: KundenNr → Nachname gilt



Funktionale Abhängigkeit ist nicht auf einzelne Attribute beschränkt

### **Erweiterte Definition:**

Für jede Wertekombination von A gibt es genau eine Wertekombination von B. Dann gilt funktionale Abhängigkeit

### Beispiele:

- KuNr → Vorname, Nachname
- MatrNr, VLNr, Prüfungsdatum → Note

Triviale funktionale Abhängigkeit

- $\bullet A \to A$
- $(A, B) \rightarrow A \text{ bzw. } (A, B) \rightarrow B$



### Beispiele erweiterte Definition

(Nummer, gehört zu) → Fläche



(ArtNr, LNR) → (Bezeichnung, Lieferant)

| <u>ArtNr</u> | Bezeichnung       | <u>LNr</u> | Lieferant   |
|--------------|-------------------|------------|-------------|
| 2000         | Server Xpert      | L1         | H. Schulze  |
| 3000         | Trinitron 17" LCD | L1         | H. Schulze  |
| 3000         | Trinitron 17" LCD | L2         | Koch & Krug |
| 5000         | USB-Kabel         | L1         | H. Schulze  |
| 5000         | USB-Kabel         | L2         | Koch & Krug |

| Artikel                                         |
|-------------------------------------------------|
| ArtNr<br>Bezeichnung<br><u>LNR</u><br>Lieferant |

# Volle Funktionale Abhängigkeit



### Volle funktionale Abhängigkeit ist:

Gegeben: Kombination A=(A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>)
 A<sub>i</sub>, i=1, ..., n sind Attribute oder Beziehungstyprichtungen

### B voll funktional abhängig von A, wenn

- Werte von A<sub>i</sub>, i=1, ..., n bekannt
- Wert von B daraus erschließbar
- jedes A<sub>i</sub> , i=1, ..., n dafür notwendig

- Beispiel: (A₁, A₂) → B ist voll funktional abhängig, wenn weder
  A₁ → B noch A₂ → B schon "einzeln" gilt.
- Gegenteil: partielle funktionale Abhängigkeit



### Eine Relation ist in zweiter Normalform (2NF),

- wenn sie in 1NF ist, und
- wenn jedes nicht-Schlüsselattribut vom Schlüssel voll funktional abhängig ist.
  - D.h. es gibt kein Attribut, das von einem Teil des Schlüssels funktional abhängig ist.

### Daraus folgt (Merkregel):

 Hat ein Entitätstyp einen nicht-zusammengesetzten Schlüssel (nur ein Attribut als PK), liegt die 2NF automatisch vor.



## Beispiel

Liegt hier die 2NF vor?



- Nein, da
  - (BestellNr, ArtikelNr) → ArtikelBezeichnung keine volle funktionale Abhängigkeit (Bez. hängt nur von ArtNr ab), u.s.w.
- Überführung in die 2NF durch Auslagern der nicht voll funktional abhängigen Attribute in eigene Entitätstypen





### Allgemeine Regel für die 2NF:





## Folge: Weniger Redundanz

| Be        | estell-  |     | K     | Kunden- Artikel-      |           | Kunden- Artikel- |       |       |
|-----------|----------|-----|-------|-----------------------|-----------|------------------|-------|-------|
| <u>Nr</u> | Datum    | Nr  | Name  | Adresse               | <u>Nr</u> | Bezeichnung      | Preis | Menge |
| 4         | 02.05.03 | 121 | Klein | Sara-Klein-Str. 1     | L03       | Tee 125 g        | 4.20  | 3     |
| 4         | 02.05.03 | 121 | Klein | Sara-Klein-Str. 1     | K201      | T-Shirt          | 5.00  | 3     |
| 5         | 03.05.03 | 12  | Groß  | Siegfried-Groß-Alee 3 | K27       | Schuhe           | 80.00 | 1     |
| 5         | 03.05.03 | 12  | Groß  | Siegfried-Groß-Alee 3 | K201      | T-Shirt          | 5.00  | 7     |
| 6         | 04.05.03 | 121 | Klein | Sara-Klein-Str. 1     | L04       | Tee 250 g        | 7.90  | 1     |

Redundante Informationen

## ... wird zu (2NF):

#### Position:

| Bestell-Nr | Artikel-Nr | Menge |
|------------|------------|-------|
| 4          | L03        | 3     |
| 4          | K201       | 3     |
| 5          | K27        | 1     |
| 5          | K201       | 7     |
| 6          | L04        | 1     |

#### Bestelldaten:

| Bestell-Nr | Bestell-Datum | Kunden-Nr | Kunden-Name | Kunden-Adresse        |
|------------|---------------|-----------|-------------|-----------------------|
| 4          | 02.05.03      | 121       | Klein       | Sara-Klein-Str. 1     |
| 5          | 03.05.03      | 12        | Groß        | Siegfried-Groß-Alee 3 |
| 6          | 04.05.03      | 121       | Klein       | Sara-Klein-Str. 1     |

#### Artikel:

| Artikel-Nr | Artikel-Bezeichnung | Artikel-Preis |
|------------|---------------------|---------------|
| L03        | Tee 125 g           | 4.20          |
| K27        | Schuhe              | 80.00         |
| K201       | T-Shirt             | 5.00          |
| L04        | Tee 250 g           | 7.90          |

## **Inhalt**



- 5.1 Überblick Normalisierung
- 5.2 Erste Normalform
- **5.3 Zweite Normalform**
- **5.4 Dritte Normalform**
- **5.5 Weitere Normalformen**

## Transitive Abhängigkeit



### Definition Transitive Abhängigkeit

- Gegeben: Attribut A, B und C.
- C ist **transitiv abhängig** von A (über B:  $A \rightarrow B$ ,  $B \rightarrow C$ ), wenn
  - Wert von A ist bekannt
  - Daraus lässt sich Wert von B bestimmen.
  - Aus dem Wert von B lässt sich C bestimmen

### **Erweiterte Definition:**

- A kann auch eine Menge an Attributen A=(A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>) sein A<sub>i</sub>, i=1, ..., n Attribute oder Beziehungstyprichtungen
- B kann auch eine Menge an Attributen sein



Eine Relation ist in dritter Normalform (3NF),

- wenn sie in 2NF ist, und
- kein Nebenattribut (=nicht-Schlüsselattribut) transitiv funktional vom Schlüssel abhängig ist.
  - D.h. es gibt kein Nebenattribut, das von einem anderen Nebenattribut funktional abhängig ist.
- Beispiel Bestelldaten verletzt 3NF



 Attribute KundenName und KundenAdresse sind nicht-Schlüsselattribute und jedes hängt funktional vom nicht-Schlüsselattribut Kundennummer ab



- Auflösung: Auslagern der Attribute, die die 3NF verletzen in neue Entitätstyp(en)
- Beispiel

### Vorher:



### Nachher:

Bestellung:

| Bestell<br>Nr | Bestell<br>Datum | KundenNr |  |  |  |
|---------------|------------------|----------|--|--|--|
|               |                  |          |  |  |  |

Kunde:

| 0000         |                |                   |  |  |  |
|--------------|----------------|-------------------|--|--|--|
| Kunden<br>Nr | Kunden<br>Name | Kunden<br>Adresse |  |  |  |
|              |                |                   |  |  |  |



## Folge: Keine Redundanz mehr

| Bestell-Nr | Bestell-Datum | Kunden-Nr | Kunden-Name | Kunden-Adresse        |
|------------|---------------|-----------|-------------|-----------------------|
| 4          | 02.05.03      | 121       | Klein       | Sara-Klein-Str. 1     |
| 5          | 03.05.03      | 12        | Groß        | Siegfried-Groß-Alee 3 |
| 6          | 04.05.03      | 121       | Klein       | Sara-Klein-Str. 1     |

Redundante Informationen

## ... wird zu (3NF):

| Bestell-Nr | Bestell-Datum | Kunden-Nr |
|------------|---------------|-----------|
| 4          | 02.05.03      | 121       |
| 5          | 03.05.03      | 12        |
| 6          | 04.05.03      | 121       |

| Kunden-Nr | Kunden-Name | Kunden-Adresse        |
|-----------|-------------|-----------------------|
| 121       | Klein       | Sara-Klein-Str. 1     |
| 12        | Groß        | Siegfried-Groß-Alee 3 |



### Allgemeine Regel für die 3NF:





## Zurück zum anderen Beispiel ...

| <u>ArtNr</u> | Bezeichnung       | <u>LNr</u> | Lieferant   |     |
|--------------|-------------------|------------|-------------|-----|
| 2000         | Server Xpert      | L1         | H. Schulze  |     |
| 3000         | Trinitron 17" LCD | L1         | H. Schulze  | ••• |
| 3000         | Trinitron 17" LCD | L2         | Koch & Krug |     |
| 5000         | USB-Kabel         | L1         | H. Schulze  | ••• |
| 5000         | USB-Kabel         | L2         | Koch & Krug |     |

- In welcher NF ist diese Tabelle?
- Was tun?



## Zurück zum anderen Beispiel ...

### **Artikel**

| <u>ArtNr</u> | Bezeichnung       | Kategorie |
|--------------|-------------------|-----------|
| 2000         | Server Xpert      | Server    |
| 3000         | Trinitron 17" LCD | Monitor   |
| 5000         | USB-Kabel         | Zubehör   |
| 4000         | USB-Maus          | Zubehör   |

### Lieferant

| <u>LNr</u> | Lieferant  | LTKrz | LТур       |
|------------|------------|-------|------------|
| L1         | H. Schulze | HD    | Händler    |
| L2         | Koch&Krug  | HR    | Hersteller |
| L3         | Reisch     | HR    | Hersteller |

### Artikellieferant

| <u>ArtNr</u> | <u>LNr</u> | Preis   | Menge |
|--------------|------------|---------|-------|
| 2000         | L1         | 9250,00 | 100   |
| 3000         | L1         | 199,00  | 100   |
| 3000         | L2         | 180,00  | 120   |
| 5000         | L1         | 9,95    | 20    |
| 5000         | L2         | 6,50    | 5     |

### Und nun?



## Zurück zum anderen Beispiel ... jetzt in 3NF

### **Artikel**

| <u>ArtNr</u> | Bezeichnung       | KNr |
|--------------|-------------------|-----|
| 2000         | Server Xpert      | 1   |
| 3000         | Trinitron 17" LCD | 2   |
| 5000         | USB-Kabel         | 3   |
| 4000         | USB-Maus          | 3   |

#### Artikellieferant

| <u>ArtNr</u> | <u>LNr</u> | Preis   | Menge |
|--------------|------------|---------|-------|
| 2000         | L1         | 9250,00 | 100   |
| 3000         | L1         | 199,00  | 100   |
| 3000         | L2         | 180,00  | 120   |
| 5000         | L1         | 9,95    | 20    |
| 5000         | L2         | 6,50    | 5     |

### Kategorie

| <u>KNr</u> | Kategorie |
|------------|-----------|
| 1          | Server    |
| 2          | Monitor   |
| 3          | Zubehör   |

### LieferantenTyp

| <u>LTKrz</u> | LTyp       |
|--------------|------------|
| HD           | Händler    |
| HR           | Hersteller |

### Lieferant

| <u>LNr</u> | Lieferant  | LTKrz |
|------------|------------|-------|
| L1         | H. Schulze | HD    |
| L2         | Koch&Krug  | HR    |
| L3         | Reisch     | HR    |

# Normalformen (1NF-2NF-3NF)



### Zusammenfassung

Die 3NF ist zwangsweise nötig, um die Datenintegrität im relationalen Modell zu gewährleisten

- 1NF: Alle Attributwerte sind atomar
- 2NF: Nur bei zusammengesetzten Primärschlüsseln nicht-Schlüsselattribute sind vom gesamten PK funktional abhängig
- 3NF: Kein nicht-Schlüsselattribut ist von einem anderen nicht-Schlüsselattribut funktional abhängig

## Inhalt



- 5.1 Überblick Normalisierung
- 5.2 Erste Normalform
- **5.3 Zweite Normalform**
- **5.4 Dritte Normalform**
- 5.5 Weitere Normalformen

## Weitere Normalformen (ohne Details)



### **Boyce-Codd Normalform (BCNF)**

- Relation in 3NF und Jeder Determinant ist ein Schlüsselkandidat. Ein Determinant ist eine Attributmenge, von der ein anderes Attribut vollständig funktional abhängig ist.
- Verletzung BCNF selten; setzt ebenso compound PK voraus
- "strenger" als 3NF

### 4. Normalform

- In BCNF und
- Keine "mehrwertigen" nicht-trivialen Abhängigkeiten im PK

### 5. Normalform

In 4NF und gar keine "mehrwertigen" Abhängigkeiten

## Aufgaben



Bitte bearbeiten Sie jetzt die Aufgaben in Moodle zum Kapitel 5.

Teil A