α -Hölder smoothness

Chanwoo Lee, August 12, 2021

For one variate function, many papers follow definition of α -Hölder class in [1].

Definition 1 (Univariate case [1]). A function $f: \mathcal{D} \to \mathbb{R}$ is in Hölder class if

1.
$$\sup_{x \in \mathcal{D}} |f^{(j)}(x)| \leq \infty$$
, for all $j = 0, 1, \dots, \lfloor \alpha \rfloor$.

2.
$$\sup_{x \neq x' \in \mathcal{D}} \frac{|f^{(\lfloor \alpha \rfloor)}(x) - f^{(\lfloor \alpha \rfloor)}(x')|}{|x - x'|^{\alpha - \lfloor \alpha \rfloor}} \le \infty.$$

Define α -Hölder norm

$$||f||_{\mathcal{H}_{\alpha}} = \max_{j \leq \lfloor \alpha \rfloor} \sup_{x \in \mathcal{D}} |f^{(j)}(x)| + \sup_{x \neq x' \in \mathcal{D}} \frac{|f^{(\lfloor \alpha \rfloor)}(x) - f^{(\lfloor \alpha \rfloor)}(x')|}{|x - x'|^{\alpha - \lfloor \alpha \rfloor}}.$$

Notice we have equivalent definition of Hölder class with Definition 1 using α -Hölder norm.

Definition 1* (Variation for univariate case). A function $f: \mathcal{D} \to \mathbb{R}$ is in Hölder class if

$$||f||_{\mathcal{H}_{\alpha}} \leq M,$$

for some M > 0.

Now consider multivariate function $f: \mathcal{X} \to \mathbb{R}$, where $\mathcal{X} = \mathcal{D}^d$. For multi-index κ , we denote partial derivatives,

$$\nabla_{\kappa} f(x) = \frac{\partial^{|\kappa|} f(x)}{(\partial x)^{\kappa}}.$$

Then we define multivariate version of α -Hölder class as in [2],

Definition 2 (Multivariate case [2]). Define α -Hölder norm with respect to norm $\|\cdot\|$,

$$||f||_{\mathcal{H}_{\alpha}} = \max_{\boldsymbol{j} \colon |\boldsymbol{j}| \leq \lfloor \alpha \rfloor} \sup_{\boldsymbol{x} \in \mathcal{X}} |\nabla_{\boldsymbol{j}} f(\boldsymbol{x})| + \max_{\kappa = \lfloor \alpha \rfloor} \sup_{\boldsymbol{x} \neq \boldsymbol{x}' \in \mathcal{D}} \frac{|\nabla_{\kappa} f(\boldsymbol{x}) - \nabla_{\kappa} f(\boldsymbol{x}')|}{||\boldsymbol{x} - \boldsymbol{x}'||^{\alpha - \lfloor \alpha \rfloor}}.$$

Then f is in α -Hölder class if $||f||_{\mathcal{H}_{\alpha}} \leq M$, for some M > 0.

Remark 1. In [2], they choose to use $\|\cdot\|$ as zero norm when they define α -Hölder norm.

Remark 2. In a relation to α -Hölder class, we define α -Hölder smooth function. We will show that α -Hölder class is included in a collection of α -Hölder smooth functions in Lemma 1.

Definition 3 (α -Hölder smooth). A function $f: \mathcal{X} \to \mathbb{R}$ is α -Hölder smooth with respect to $\|\cdot\|$ if there exists a polynomial $P_k(\cdot - \boldsymbol{x}_0)$ of degree $k = \lfloor \alpha \rfloor$, such that

$$|f(x) - P_k(x - x_0)| \le c||x - x_0||^{\alpha}$$
, for all $x, x_0 \in \mathcal{X}$.

Lemma 1. If a function f is in α -Hölder class, then f is a α -Hölder smooth.

Proof. Let $P_k(\cdot - \boldsymbol{x}_0)$ be the Taylor polynomial of degree $\lfloor \alpha \rfloor$,

$$P_k(\cdot - oldsymbol{x}_0) = \sum_{\kappa \colon |\kappa| \le |lpha|} rac{
abla_\kappa f(oldsymbol{x}_0)}{\kappa} (oldsymbol{x} - oldsymbol{x}_0)^\kappa.$$

Then, $P_k(\cdot - \boldsymbol{x}_0)$ satisfies,

$$\begin{split} |f(\boldsymbol{x}) - P_k(\boldsymbol{x} - \boldsymbol{x}_0)| &= \sum_{\kappa \colon |\kappa| = \lfloor \alpha \rfloor} \frac{|\nabla_{\kappa} f(\boldsymbol{z}) - \nabla_{\kappa} f(\boldsymbol{x}_0)|}{\kappa!} (\boldsymbol{x} - \boldsymbol{x}_0)^{\kappa}, \text{ where } \boldsymbol{z} = \boldsymbol{x}_0 + c(\boldsymbol{x} - \boldsymbol{x}_0), c \in (0, 1), \\ &\lesssim \sum_{\kappa \colon |\kappa| = \lfloor \alpha \rfloor} \frac{|\nabla_{\kappa} f(\boldsymbol{z}) - \nabla_{\kappa} f(\boldsymbol{x}_0)|}{\kappa!} \|\boldsymbol{x} - \boldsymbol{x}_0\|^{\lfloor \alpha \rfloor} \\ &\leq \sum_{\kappa \colon |\kappa| = \lfloor \alpha \rfloor} \frac{\|\boldsymbol{x} - \boldsymbol{x}_0\|^{\alpha - \lfloor \alpha \rfloor}}{\kappa!} \|\boldsymbol{x} - \boldsymbol{x}_0\|^{\lfloor \alpha \rfloor} \\ &\leq M_{\alpha} \|\boldsymbol{x} - \boldsymbol{x}_0\|^{\alpha}. \end{split}$$

References

- [1] Lawrence C Evans. Partial differential equations and monge-kantorovich mass transfer. Current developments in mathematics, 1997(1):65–126, 1997.
- [2] Chao Gao, Yu Lu, and Harrison H Zhou. Rate-optimal graphon estimation. *The Annals of Statistics*, 43(6):2624–2652, 2015.