CMSC 475/675: Introduction to Neural Networks

Review for Exam 2 (Chapters 5, 6, 7)

1. Competitive Learning Networks (CLN)

- Purpose: self-organizing to form pattern clusters/classes based on similarities.
- Architecture: competitive output nodes (WTA, Mexican hat, Maxnet, Hamming nets)
 - external judge
 - lateral inhibition (explicit and implicit)
- Simple competitive learning (unsupervised)
 - both training examples (samples) and weight vectors are normalized.
 - two phase process (competition phase and reward phase)
 - learning rules (moving winner's weight vector toward input training vector)

 $\mathbf{D}w_j = \alpha(i_l - w_j)$ or $\mathbf{D}w_j = \alpha \cdot i_l$ where i_l is the current input vector and \mathbf{w}_j is the winner's weight vector

- learning algorithm
- w_i is trained to represent a class of patterns (close to the centroid of that class).
- Advantages and problems
 - unsupervised
 - simple (less time consuming)
 - number of output nodes and the initial values of weights affects the learning results (and thus the classification quality), over- and under-classification
 - stuck vectors and unstuck

2. Self-Organizing Map (SOM)

- Motivation: from random map to topographic map
 - what is topographic map
 - biological motivations
- SOM data processing
 - network architecture: two layers
 - output nodes have neighborhood relations
 - lateral interaction among neighbors (depending on radius/distance function D)
- SOM learning
 - weight update rule (differs from competitive learning when D > 0)
 - learning algorithm (winner and its neighbors move their weight vectors toward training input)
 - illustrating SOM on a two dimensional plane
 - plot output nodes (weights as the coordinates)
 - links connecting neighboring nodes
- Applications
 - TSP (how and why)

3. Counter Propagation Networks (CPN)

- Purpose: fast and coarse approximation of vector mapping $y = \phi(x)$
- Architecture (forward only CPN):
 - three layers (input, hidden, and output)
 - hidden layer is competitive (WTA) for classification/clustering
- CPN learning (two phases). For the winning hidden node z_i

- phase 1: weights from input to hidden (w_j) are trained by *competitive learning* to become the representative vector of a cluster of input vectors.
- phase 2: weights from hidden to output (v_j) are trained by *delta rule* to become an average output of $y = \phi(x)$ for all input x in cluster j.
- learning algorithm
- Works like table lookup (but for multi-dimensional input space)
- Full CPN (bi-directional) (only if an inverse mapping $x = \phi^{-1}(y)$ exists)

7. Adaptive Resonance Theory (ART)

- Motivation: varying number of classes, incremental learning
 - how to determine when a new class needs to be created
 - how to add a new class without damaging/destroying existing classes
- ART1 model (for binary vectors)
 - architecture:
 - bottom up weights b_{ij} and topdown weights t_{ji}
 - vigilance ρ for similarity comparison
 - operation: cycle of three phases
 - recognition (recall) phase: competitively determine the winner j^* (at output layer) using b_{ij} as its class representative.
 - comparison (verification) phase: determine if the input resonates with (sufficiently similar to) class j^* using t_{ji} .
 - weight update (adaptation) phase: based on similarity comparison, either add a new class node or update weights (both b_{ij} and t_{ji}) of the winning node
 - vigilance ρ
 - classification as search
- ART1 learning/adaptation
 - weight update rules:

$$b_{j*,l}(\text{new}) = \frac{s_l^*}{0.5 + \sum_{i=1}^n s_i^*} = \frac{t_{l,j*}(\text{old})x_l}{0.5 + \sum_{l=1}^n t_{l,j*}(\text{old})x_l} \qquad t_{j*,l}(\text{new}) = s_l^* = t_{j*,l}(\text{old}) \cdot x_l$$

- learning when search is successful: only winning node j^* updates its b_{j^*} and t_{j^*} .
- when search fails: treat x as an outlier (discard it) or create a new class (add a new output node) for x
- Properties of ART1 and comparison to competitive learning networks

7. Principle Component Analysis (PCA) Networks

- What is PCA: a statistical procedure that transform a given set of input vectors to reduce their dimensionality while minimizing the information loss
- Information loss: $\frac{1}{x-x'} = \frac{1}{x-w'} Wx/1$, where y = Wx, $x' = W^T y$
- Pseudo-inverse matrix as the transformation matrix for minimizing information loss
- PCA net to approximate PCA:
 - two layer architecture (x and y)
 - learning to find W to minimize $\sum_{l} ||x_{l} x_{l}|'| = \sum_{l} ||x_{l} W^{T}Wx_{l}|'| = \sum_{l} ||x_{l} W^{T}y_{l}|'|$
 - error-driven: for a given x, 1) compute y using W; 2) compute x' using W^T

3)
$$\mathbf{D}W = \eta_l(y_l x_l^T - y_l y_l^T W) = \eta_l y_l(x_l^T - y_l^T W) = \eta_l y_l(x_l^T - W^T y_l)$$

6. Associative Models

• Simple AM

Associative memory (AM) (content-addressable/associative recall; pattern correction/completion) Network architecture: single layer or two layers

Auto- and hetero-association

- Hebbian rule: $\mathbf{D}_{w_{i,k}} = i_{p,k} \cdot d_{p,j}$
 - Correlation matrix: $w_{j,k} = \sum_{p=1}^{p} i_{p,k} d_{p,j}$
- Principal and cross-talk term: $W \cdot i_l = d_l \cdot \|i_l\|^2 + \sum_{p \neq l} d_p \cdot i_p^T \cdot i_l$ Delta rule: $\mathbf{D} w_{jk} = \eta (d_{p,j} S(y_{p,j})) \cdot S'(y_{p,j}) \cdot i_{p,k}$, derived following gradient descent to minimize total error
- Storage capacity: up to n-1 mutually orthogonal patterns of dimension n
- Iterative autoassociative memory
 - Motives (comparing with non-iterative recall)
 - Using the output of the current iteration as input of the next iteration (stop when a state repeats)
 - Dynamic system (stable states, attractors, genuine and spurious memories)
- Discrete Hopfield model for auto-associative memory
 - Network architecture (single-layer, fully connected, recurrent)
 - Weight matrix for Hopfield model (symmetric with zero diagonal elements)

$$w_{jk} = \begin{cases} \sum_{p=1}^{p} i_{p,k} \cdot i_{p,j} & \text{if } k \neq j \\ 0 & \text{otherwise} \end{cases}$$

- Net input and node function: $net_k = \sum_i w_{ki} \cdot x_i + \theta_k$, $x_k = \operatorname{sgn}(net_k)$
- Recall procedure (iterative until stabilized)
- Stability of dynamic systems
 - Ideas of Lyapunov function/energy function (monotonically non-increasing and bounded

Convergence of Hopfield AM: its an energy function
$$E = -0.5 \sum_{i \neq j} \sum_{j} x_i x_j w_{ij} - \sum_{i} \theta_i y_i$$

- Storage capacity of Hopfield AM ($P \approx n/(2\log_2 n)$).
- Bidirectional AM (BAM)
 - Architecture: two layers of non-linear units
 - Weight matrix: $W_{n \times m} = \sum_{p=1}^{P} s^{T}(p) t(p)$
 - Recall: bi-directional (from x to y and y to x); recurrent

 - Energy function: $L = -XWY^T = -\sum_{i=1}^{m} \sum_{j=1}^{n} x_i w_{ij} y_j$
 - Storage capacity: $P = O(\max(n, m))$

7. Continuous Hopfield Models

- Architecture:
 - fully connected (thus recurrent) with $\mathbf{w}_{ij} = \mathbf{w}_{ji}$ and $\mathbf{w}_{ii} = 0$
 - net input to: same as in DHM internal activation u_i : $du_i(t)/dt = net_i(t)$ (approximated as $u_i(new) = u_i(old) + \delta \cdot net_i$)

output: $x_i = f(u_i)$ where f(.) is a sigmoid function

- Convergence
 - energy function $E = -0.5\sum_{ij} x_i w_{ij} x_j \sum_i \theta_i x_i$
 - $\dot{E} \le 0$ (why) so **E** is a Lyapunov function
 - during computation, all x_i 's change along the gradient descent of E.
- Hopfield model for optimization (TSP)
 - energy function (penalty for constraint violation)
 - weights (derived from the energy function)
 - local optima
- General approach for formulating combinatorial optimization problems in NN
 - Represent problem space as NN state space
 - Define an energy function for the state space: feasible solutions as local minimum energy space, optimal solutions as global minimum energy space
 - Find weights that let the system moves along the energy reduction trajectory

8. Simulated Annealing (SA)

- Why need SA (overcome local minima for gradient descent methods)
- Basic ideas of SA
 - Gradual cooling from a high T to a very low T
 - Adding noise
 - System reaches thermal equilibrium at each T
- Boltzmann-Gibbs distribution in statistical mechanics
 - States and its associated energy

$$P_{\alpha} = \frac{1}{z} e^{-\beta E_{\alpha}}$$
, where $z = \sum_{\alpha} e^{-\beta E_{\alpha}}$ is the normalization factor so $\sum_{r} P_{\alpha} = 1$
 $P_{\alpha}/P_{\beta} = e^{-E_{\alpha}/T}/e^{-E_{\beta}/T} = e^{-(E_{\alpha}-E_{\beta})/T} = e^{-\mathbf{D}E/T}$

- Change state in SA (stochastically)
 - probability of changing from S_{α} to S_{β} (Metropolis method):

$$P(s_{\alpha} \to s_{\beta}) = \begin{cases} 1 & \text{if } (E_{\beta} - E_{\alpha}) < 0 \\ e^{-(E_{\beta} - E_{\alpha})/T} & \text{otherwise} \end{cases}$$

- probability of setting x_i to 1 (another criterion commonly used in NN):

$$P_i = \frac{e^{-E_a/T}}{e^{-E_a/T} + e^{-E_b/T}} = \frac{1}{1 + e^{-(E_b - E_a)/T}}.$$

- Cooling schedule
 - $T(k) = T(0)/\log(1+k)$
 - $T(k+1) = T(k) \cdot \beta$
 - annealing schedule (cooling schedule plus number of iteration at each temperature)
- SA algorithm
- Advantages and problems
 - escape from local minimum
 - very general
 - slow

9. Boltzmann Machine (BM) = discrete HM + hidden nodes + SA

- BM architecture
 - visible and hidden units
 - energy function (similar to HM)
- BM computing algorithm (SA)
- BM learning
 - what is to be learned (probability distribution of visible vectors in the training set)
 - free run and clamped run
 - learning to maximize the similarity between two distributions $P^+(Va)$ and $P^-(Va)$
 - learning takes gradient descent approach to minimize

$$G = \sum_{a} P^{+}(V_{a}) \ln \frac{P^{+}(V_{a})}{P^{-}(V_{a})}$$

- the learning rule $\mathbf{D}w_{ij} = -\mu(p_{ij}^+ p_{ij}^-)$ (meaning of p_{ij}^+ and p_{ij}^- , and how to compute them)
- learning algorithm
- Advantages and problems
 - higher representational power
 - learning probability distribution
 - extremely slow

10. Evolutionary Computing

- Biological evolution:
 - Reproduction (cross-over, mutation)
 - Selection (survival of the fittest)
- Computational model (genetic algorithm)
 - Fitness function
 - Randomness (stochastic process)
 - termination
- Advantages and problems
 - General optimization method (can find global optimal solution in theory)
 - Very expensive (large population size, running for many iterations)

11. Reinforcement Learning

- Basic ideas of RL:
 - Definition
 - Differences from supervised and unsupervised learning
- Issues
 - Distribution of credit and blame
 - Random search

Note: neural network models and variations covered in the class but not listed in this document will not be tested in Exam 2.