ECE 470 Recap and Review Trajectory Generation and Motion Planning

Prof. Katie Driggs-Campbell

Contact: krdc@Illinois.edu

Notes from Modern Robotics Chapter 9 and 10

Administrivia

- Extra credit (up to 1% of grade) will be given for participating in the zoom quizzes
- Exercises associated with lectures on PrairieLearn
- Online Office Hours on **Wednesday 10:30am China Time** (Tuesday 9:30pm Illinois Time)

Lecture Goals

- Learned the basics of trajectory generation and motion planning
- For trajectory generation, supposing we are given a geometric path, we learned about how time scaling can help us meet requirements
- Motion planning provides us with tools to find a trajectory that can reach a goal without collisions

Trajectory Generation

Summary of Trajectory Generation Lecture

- A trajectory is a geometric path (set of points) and a specification of timing (time scaling)
 - Discussed the notion of a "straight line" path in different spaces
- We introduce the idea of normalized paths $(\theta: [0,1] \to \Theta)$ and use a time-scaling function to define the timing of the trajectory $(s: [0,T] \to [0,1])$

Steps for Trajectory Generation

- Step 1: Identify requirements and limits of your system
- Step 2: Determine the geometric path
- Step 3: Pick parameterization for time-scaling
- Step 4: Solve for s(t) to meet requirements

Time-Scaling Parameterization

Time-Scaling Parameterization

1.
$$\theta(t) = \theta_0 + \left(\frac{3t^2}{T^2} - \frac{2t^3}{T^3}\right)(\theta_1 - \theta_0)$$

2.
$$\dot{\theta}(t) = \left(\frac{6t}{T^2} - \frac{6t^2}{T^3}\right)(\theta_1 - \theta_0)$$

3.
$$\ddot{\theta}(t) = \left(\frac{6}{T^2} - \frac{12t}{T^3}\right)(\theta_1 - \theta_0)$$

Time-Scaling Parameterization

1.
$$\theta(t) = \theta_0 + \left(\frac{3t^2}{T^2} - \frac{2t^3}{T^3}\right)(\theta_1 - \theta_0)$$

2.
$$\dot{\theta}(t) = \left(\frac{6t}{T^2} - \frac{6t^2}{T^3}\right)(\theta_1 - \theta_0)$$

3.
$$\ddot{\theta}(t) = \left(\frac{6}{T^2} - \frac{12t}{T^3}\right)(\theta_1 - \theta_0)$$

Find max velocity and tune to meet requirements

$$\rightarrow \dot{\theta}_{max} = \frac{3}{2T}(\theta_1 - \theta_0)$$

Find max acceleration and tune to meet requirements

$$\Rightarrow \ddot{\theta}_{max} = \pm \frac{6}{T^2} (\theta_1 - \theta_0)$$

Double check your answers!

Trajectory generation

We want a robot to move from one location to another location in a straight line with time T=2. Let's parameterize the path as follows:

$$s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

where time $t \in [0, T]$. We need the robot to start with zero velocity, and reach the destination with zero velocity. Find a_0, a_1, a_2, a_3 .

$a_0 =$	number (rtol=0.01, atol=1e-08)	0
$a_1 =$	number (rtol=0.01, atol=1e-08)	0
$a_2 =$	number (rtol=0.01, atol=1e-08)	0
$a_3 =$	number (rtol=0.01, atol=1e-08)	0

Quick Recap

- We choose a **parametrization** s(t), and computed the resulting velocity and acceleration profiles of the trajectory
 - \bullet Using a third-order polynomial, we tuned their maximal values to meet requirements with one parameter T

Quick Recap

- We choose a **parametrization** s(t), and computed the resulting velocity and acceleration profiles of the trajectory
 - Using a third-order polynomial, we tuned their maximal values to meet requirements with one parameter ${\cal T}$
- We can follow the same procedure with different parametrizations for s(t) (e.g., polynomials of order 5, trapezoidal functions, splines, etc.)
 - Having more parameters allows us to meet more constraints. For example, using a fifth order polynomial, we can ensure that $\ddot{\theta}(0) = \ddot{\theta}(T) = 0$, meaning no jerk at beginning and end of the motion

Motion Planning

Summary of Motion Planning

Given an initial state $x(0) = x_{start}$ and a desired final state x_{goal} , find a time T and a set of controls $u: [0, T] \to \mathcal{U}$ such that the motion satisfies $x(T) = x_{goal}$ and $q(x(t)) \in \mathcal{C}_{free}$ for all $t \in [0, T]$

Assumptions:

- 1. A feedback controller can ensure that the planned motion is followed closely
- 2. An accurate model of the robot and environment will evaluate $\mathcal{C}_{\mathrm{free}}$ during motion planning

Finding Free Configuration Space

Finding Free Configuration Space

Configuration Space: 2R Planar Arm

A simple roadmap: visibility graph

A simple roadmap: visibility graph

Probabilistic Roadmaps (PRMs)

Validity Check: Collision Detection

Given a C_{obs} (denoted \mathcal{B}) and configuration q, let $d(q,\mathcal{B})$ be a distance function between the robot configuration and obstacle

- $d(q,\mathcal{B}) > 0$ means no contact
- $d(q, \mathcal{B}) = 0$ means contact
- $d(q,\mathcal{B}) < 0$ means penetration

Spherical Approximation

- One simple method is to approximate the robot and obstacles as unions of overlapping spheres
- Approximations must be conservative

Collision Detection for Spherical Approximation

Given a robot at q represented by k spheres of radius R_i centered at $r_i(q)$, and an obstacle \mathcal{B} represented by l spheres of radius B_j centered at b_i , the distance can be calculated as:

$$d(q,\mathcal{B}) = \min_{i,j} ||r_i(q) - b_j|| - R_i - \mathcal{B}_j$$

Example of collision detection (1)

Two spheres of radius r_1 and r_2 have centers at p_1 and p_2 (both in the same frame), respectively. Are these spheres in collision?

$$p_1 = (-1,1,0), r_1 = 1$$
 $p_2 = (1,0,0), r_2 = 2$

Example of collision detection (2)

Motion Planning Summary

- Given an initial state and a desired final state, motion planning provides us with tools to find a time horizon and a sequence of actions to find a trajectory that reaches the goal without collisions
 - Need collision detection
- A roadmap path planner uses a graph representation of free space, which can then provide a trajectory using search algorithms
 - Example planners include Visibility and Probabilistic Roadmaps
 - Use your favorite graph search algorithm to determine the trajectory

Lecture Recap

- **Trajectory Generation** is often used for automation, when the path is easy to define
- Motion Planning allows us to find collision-free paths (trajectories) in high-dimensional spaces
- PrairieLearn assignment due next week!
- Office hours on Wednesday