Mobile Computing Media Access

Motivation

- Can we apply media access methods from fixed networks?
- Example CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - send when medium is free, listen to medium if collision occurs (IEEE 802.3)
- Problems in wireless networks
 - signal strength decreases with distance
 - sender applies CS and CD, but collisions happen at receiver
 - sender may not "hear" collision, i.e., CD does not work
 - Hidden terminal: CS might not work

Motivation: Hidden Terminals

- A sends to B, C cannot hear A
- C wants to send to B, C senses a "free" medium (CS fails)
- Collision at B, A cannot receive the collision (CD fails)
- C is "hidden" from A

Motivation: Exposed Terminals

- B sends to A, C wants to send to another terminal (not A, B)
- C has to wait, CS signals a medium in use
- but A is outside radio range of C, waiting is not necessary
- C is "exposed" to B

Motivation: Near & Far Terminals

- Terminals A and B send, C receives
 - signal strength decreases proportional to the square of the distance
 - B's signal drowns out A's signal
 - C cannot receive A

MACA: Collision Avoidance

- MACA (Multiple Access with Collision Avoidance) uses short signaling packets for collision avoidance
 - RTS (request to send): a sender uses RTS packet to request right to send before it sends a data packet
 - CTS (clear to send): the receiver grants the right to send as soon as it is ready to receive
- Signaling packets contain
 - sender address
 - receiver address
 - packet size
- Variants of this method can be found in IEEE802.11 as DFWMAC (Distributed Foundation Wireless MAC)

MACA: Hidden terminal

- MACA avoids the problem of hidden terminals
 - A and C want to send to B
 - A sends RTS first
 - C waits after receiving CTS from B

MACA: Exposed Terminal

- MACA avoids the problem of exposed terminals
 - B wants to send to A, C to another terminal
 - now C does not have to wait: it cannot receive CTS from A

Introduction: WLAN

- A wireless LAN (WLAN) is a:
 - flexible data communication system implemented as
 - an alternative for a wired LAN within a building or campus.
- WLANs:
 - combine data connectivity with user mobility.
 - a network client can migrate between different physical locations within the LAN environment without losing connectivity.
- Flexible:
 - reconfigure /add more nodes to the network
 - without much planning effort and cost of re-cabling.

WLANs: Topologies

- Two types of network topologies:
 - ad hoc and infrastructure.
- An adhoc topology supports p2p connectivity :
 - mobile nodes communicate directly with each other using wireless adapters.
 - ideal for meetings or setting up of temporary workgroups.
 - However, it has disadvantage of limited coverage area

WLAN: Ad-hoc

Ad hoc wireless LAN

Infrastructure wireless LANs

- Use an access point that controls:
 - transmission and assigns priority levels
 - monitors network load and
 - allows mobile stations to roam from cell to cell.
- Also:
 - to handle traffic from a mobile station to another mobile station
 - within the coverage area or to the wired backbone.

WLAN: Infrastructure

Infrastructure wireless LAN

IEEE 802.11

 Wireless LAN standard defined in the unlicensed spectrum (2.4 GHz and 5 GHz U-NII bands)

Region	Allocated Spectrum
US	2.4000 – 2.4835 GHz
Europe	2.4000 – 2.4835 GHz
Japan	2.471 - 2.497 GHz
France	2.4465 - 2.4835 GHz
Spain	2.445 - 2.475 GHz

Table 1 Global Spectrum Allocation at 2.4 GHz

802.11 (contd.)

- Standards covers the MAC sublayer and PHY layers
- Three different physical layers in the 2.4 GHz band
 - FHSS, DSSS and IR
- OFDM based PHY layer in the 5 GHz band

802.11 architecture

 The basic service set (BSS) is the basic building block of an IEEE 802.11 LAN

802.11 architecture (contd.)

- The ovals can be thought of as the coverage area within which member stations can directly communicate
- The Independent BSS (IBSS) is the simplest LAN. It may consist of as few as two stations
- IBSS is also called the ad hoc mode or DCF mode in 802.11

802.11 - ad-hoc network

- Direct communication within a limited range
 - Station (STA):
 terminal with access
 mechanisms to the wireless
 medium
 - Basic Service Set (BSS):
 group of stations using the
 same radio frequency

802.11 - infrastructure

19

Infrastructure 802.11 components

- Station (STA): terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS): group of stations using the same radio frequency
- Access Point: station integrated into the wireless LAN and the distribution system
- Portal: bridge to other (wired) networks
- Distribution System: interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

Distribution System (DS)

- The Distribution system interconnects multiple BSSs
- 802.11 standard logically separates the wireless medium from the distribution system
 - it does not preclude, nor demand, that the multiple media be same or different

DS (contd.)

- An Access Point (AP) is a STA that provides access to the DS by providing DS services in addition to acting as a STA.
- Data moves between BSS and the DS via an AP
- The DS and BSSs allow 802.11 to create a wireless network of arbitrary size and complexity called the Extended Service Set network (ESS)

802.11- in the TCP/IP stack

802.11 - Layers and functions

- MAC
 - access mechanisms, fragmentation, encryption
- MAC Management
 - synchronization, roaming,
 MIB, power management

			ت
DLC	LLC		lemel
	MAC	MAC Management	Managemen
ЬН∀	PLCP	PHY Management	
	PMD		Station

- PLCP Physical Layer Convergence
 Protocol
 - clear channel assessment signal (carrier sense)
- PMD Physical Medium Dependent
 - modulation, coding
- PHY Management
 - channel selection, MIB
- Station Management
 - coordination of all management functions

802.11 - MAC layer

Traffic services

- Asynchronous Data Service (mandatory) DCF
- Time-Bounded Service (optional) PCF

Access methods

- DCF CSMA/CA (mandatory)
 - collision avoidance via randomized back-off mechanism
 - ACK packet for acknowledgements (not for broadcasts)

802.11 access methods

- DCF CSMA/CA (mandatory)
- DCF with RTS/CTS (optional)
 - avoids hidden terminal problem
- PCF (optional)
 - access point polls terminals according to a list

802.11 - Carrier Sensing

- In IEEE 802.11, carrier sensing is performed
 - at the air interface (physical carrier sensing),
 and
 - at the MAC layer (virtual carrier sensing)
- Physical carrier sensing
 - detects presence of other users by analyzing all detected packets
 - Detects activity in the channel via relative signal strength from other sources

802.11 virtual carrier sensing

- Virtual carrier sensing is done by sending MPDU duration information in the header of RTS/CTS and data frames
- Channel is busy if either mechanisms indicate it to be
 - Duration field indicates the amount of time (in microseconds) required to complete frame transmission
 - Stations in the BSS use the information in the duration field to adjust their network allocation vector (NAV)

802.11 – Reliability: ACKs

- When B receives DATA from A, B sends an ACK
- If A fails to receive an ACK, A retransmits the DATA
- Both C and D remain quiet until ACK (to prevent collision of ACK)
- Expected duration of transmission+ACK is included in RTS/CTS packets

802.11 - CSMA/CA

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)

802.11 - CSMA/CA

- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

802.11 –CSMA/CA example

busy medium not idle (frame, ack etc.)

bo_e elapsed backoff time

packet arrival at MAC

bo_r residual backoff time

802.11 - Collision Avoidance

- Collision avoidance: Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit
 - When transmitting a packet, choose a backoff interval in the range [0,cw]; cw is contention window
 - Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
 - When backoff interval reaches 0, transmit RTS

DCF Example

$$cw = 31$$

B1 and B2 are backoff intervals at nodes 1 and 2

802.11 - Congestion Control

 Contention window (cw) in DCF: Congestion control achieved by dynamically choosing cw

- large cw leads to larger backoff intervals
- small cw leads to larger number of collisions

Congestion control (contd.)

- Binary Exponential Backoff in DCF:
 - When a node fails to receive CTS in response to its RTS, it increases the contention window
 - cw is doubled (up to a bound CWmax)

 Upon successful completion data transfer, restore cw to CWmin

802.11 - Priorities

- Defined through different inter frame spaces
 - mandatory idle time intervals between the transmission of frames
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
 - SIFSTime and SlotTime are fixed per PHY layer
 - (10 μ s and 20 μ s respectively in DSSS)

802.11 – Priorities (contd.)

- PIFS (PCF IFS)
 - medium priority, for time-bounded service using
 PCF
 - PIFSTime = SIFSTime + SlotTime
- DIFS (DCF IFS)
 - lowest priority, for asynchronous data service
 - DCF-IFS (DIFS): DIFSTime = SIFSTime + 2xSlotTime

802.11 - CSMA/CA II

- station has to wait for DIFS before sending data
- receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors

802.11 -RTS/CTS

802.11 -RTS/CTS

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver (if ready to receive)
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations (NAV) distributed via RTS and CTS

Fragmentation

Done when the packet is very large->
Fragmentation is being performed
Sender will keep sending each frag after every
sifs of receiver

802.11 - PCF

t0 = time when the superframe should have started

t1 = time when it actually started due to contention in the prev period

802.11 - PCF

t2 = time when CFP actually finished

t3 = initial planned CFP (but PCF finished polling earlier than expected)

CFP

- The length of CFP is controlled by PC
 - CFPMaxDuration field is used for this
- When CFP is more than beacon interval
 - CFP_Dur_Remaining is included in beacons
 - CFP_Dur_Remaining is set to 0 for beacons in CP

Polling Mechanisms

- With DCF, there is no mechanism to guarantee minimum delay for time-bound services
- PCF wastes bandwidth (control overhead) when network load is light, but delays are bounded
- Implicit signaling mechanism for STAs to indicate when they have data to send improves performance

Coexistence of PCF and DCF

- PC controls frame transfers during a Contention Free Period (CFP).
 - CF-Poll control frame is used by the PC to invite a station to send data
 - CF-End is used to signal the end of the CFP
- CFPs are generated at the CFP repetition rate and each CFP begins with a beacon frame

PCF and DCF (contd.)

- The CFP alternates with a CP, when DCF controls frame transfers
 - The CP must be large enough to send at least one maximum-sized MPDU including RTS/CTS/ACK
- Superframe: One CFP + One CP. It repeats
 according to the CFP repetition rate and each
 CFP begins with a beacon frame

802.11 - Frame format

Field Name

Bytes

FC	D/I	Address	Address	Address	sc	Address	Frame body	CRC
2	2	6	6	6	2	6	0-2312	4

FC = Frame Control

D/I = Duration/Connection ID

SC = Sequence Control

CRC = Cyclic Redundancy Check

(a) MAC frame

FC Subfield

Bits

Protocol Version	Туре	Subtype	To DS	From DS	MF	RT	PM	MD	WEP	0
2	2	4	1	1	1	1	1	1	1	1

DS = Distribution System

MF = More Fragments

RT = Retry

PM = Power Management

MD = More Data

WEP = Wired Equivalent Privacy

O = Order

802.11 - Frame format

- Types
 - control frames, management frames, data frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs
- Addresses
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - sending time, checksum, frame control, data

Types of Frames

- Control Frames
 - RTS/CTS/ACK
 - CF-Poll/CF-End

Data Frames

- Management Frames
 - Beacons
 - Probe Request
 - Probe Response
 - Association Request
 - Association Response
 - Dis/Reassociation
 - Authentication
 - Deauthentication
 - ATIM (Announcement TIM)

MAC address format

scenario	to DS	from	address 1	address 2	address 3	address 4
		DS				
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure	0	1	DA	BSSID	SA	-
network, from AP						
infrastructure	1	0	BSSID	SA	DA	-
network, to AP						
infrastructure	1	1	RA	TA	DA	SA
network, within DS						

DS: Distribution System

AP: Access Point

DA: Destination Address

SA: Source Address

BSSID: Basic Service Set Identifier

RA: Receiver Address

TA: Transmitter Address

802.11 - MAC management

- Synchronization
 - try to find a LAN, try to stay within a LAN; timer etc.
- Power management
 - sleep-mode without missing a message
- Association/Reassociation
 - scanning, i.e. active search for a network
 - roaming, i.e. change networks by changing APs
- MIB Management Information Base
 - managing, read, write

Synchronization using Beacon (infrastructure)

- Synchronized clocks are needed for PCF, Power saving and for frequency hopping
- Within a BSS timing is conveyed by a periodic beacon
- STAs use the timestamp in beacon to adjust its internal local clock
- AP always tries to send beacon at scheduled period (even if the prev beacon was delayed)

Synchronization using Beacon (infrastructure)

Synchronization using Beacon (ad-hoc)

- Synchronization in ad hoc mode is more difficult, since there is no AP for beacon transmission
- Each STA maintains its synchronization timer and starts transmission of a beacon periodically
- Standard random back off is applied to beacon frames so that only one STA wins transmitting beacon

Synchronization using Beacon (ad-hoc)

Power saving in 802.11

- Basic idea is to switch off transceiver when there is no communication
- Easy for sender since they know when to send data
- Receivers should wakeup periodically to check if it has to receive anything

Power saving :wake-up patterns (infra)

- All stations (one station shown) wake up prior to TIM or DTIM
 - With every beacon the AP sends TIM (Traffic Indication Map)
 - TIM contains a list of stations for which unicast data frames are waiting
 - DTIM (Delivery TIM) is for sending broadcast frames
 - PS (Power Saving) poll is sent by STA in response to TIM destined to the STA

Power saving: wake-up patterns (infra)

Power saving:wakeup patterns (ad-hoc)

- PS in ad hoc mode is more complex (no central AP)
- All stations announce a list of buffered frames during a period when all of them are awake
 - Destinations are announced using ATIM (Adhoc TIM)

Power saving :wake-up patterns (ad-hoc)

802.11 - Roaming

- Scanning
 - scan the environment, i.e.,
 - passive scanning
 - listen into the medium for beacon signals (to detect other network)
 - active scanning
 - send probes into the medium on each channel and wait for an answer
- Station then selects the best AP (e.g. based on signal strength)
 - sends association Request to the AP
- association Response
 - success: AP has answered, station is now associated with the new AP
 - failure: continue scanning

Roaming (contd.)

- AP accepts Association Request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

802.11 status

IEEE 802.11 Summary

- Infrastructure (PCF) and adhoc (DCF) modes
- Signaling packets for collision avoidance
 - Medium is reserved for the duration of the transmission
 - Beacons in PCF
 - RTS-CTS in DCF
- Acknowledgements for reliability
- Binary exponential backoff for congestion control
- Power save mode for energy conservation