Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1		1. (Original) A magnetic read/write head having a protective coating
2	comprising:	
3		a highly tetrahedral amorphous carbon.
1		2. (Original) A magnetic recording media for use with a read/write head,
2	the media comprising:	
3		a substrate;
4		a magnetic layer disposed over the substrate; and
5		a protective layer over the magnetic layer, the protective layer comprising a
6	highly tetrahedral amorphous carbon;	
7		wherein the protective layer has a thickness of less than about 50 Å and a
8	hardness of over about 80 GPa;	
9		wherein the protective coating is adapted for use during continuous contact of the
10	media with the read/write head; and	
11		wherein the media has an areal density of over 1 gigabyte per square inch.
1		3. (Original) A method for depositing a protective coating comprising a
2	continuous hi	ghly tetrahedral amorphous carbon on a substrate, the method comprising:
3		ionizing a source material so as to form a plasma containing ions which comprise
4	carbon; and	
5		energizing the ions to form a stream from the plasma toward the substrate so that
6	carbon from the ions is deposited on the substrate, wherein the ions impact with an energy	
7	which promot	es formation of sp ³ carbon-carbon bonds.

1

2

1

2

3

11.

rotates with a frequency of less than 10,000 Hz.

1	4. (Original) A method as in claim 3, wherein the carbon is deposited on the
2	substrate at a rate higher than about 10 Å per second.
1	5. (Original) A method as in claim 3, wherein the source material comprises
	, , , , , , , , , , , , , , , , , , , ,
2	acetylene.
1	6. (Original) A method as in claim 3, wherein the substrate comprises at
2	least one of magnetic recording media, glass, optics, machine tools, and integrated circuits.
1	7. (New) A method for enhancing an ion beam, the ion beam produced by
2	inductively ionizing a plasma within a plasma volume and capacitatively coupling the plasma so
3	as to form a stream of ions from within the plasma volume, the method comprising:
4	moving a magnetic field through the plasma volume to promote even resonant
5	inductive ionization and homogenize the ion beam.
1	8. (New) A method as claimed in claim 7, wherein moving the magnetic
2	field comprises selectively energizing magnetic coils disposed about the plasma volume.
1	9. (New) A method as claimed in claim 7, wherein the magnetic field
2	rotates through the plasma volume with a frequency which is much less than the frequency of an
3	alternating induction potential.
1	10. (New) A method as claimed in claim 7, wherein the magnetic field is
2	transverse and rotates about an axis which is substantially normal to a capacitatively coupled
3	extraction grid.

(New) A method as claimed in claim 7, wherein the magnetic field

- 4 disposed over an opening of the plasma volume so that the extraction electrode is capable of
- 5 extracting a stream of ions of the plasma therethrough by capacitive coupling, the system
- 6 comprising at least one coil disposed adjacent the plasma volume, the at least one coil capable
- 7 of moving a transverse magnetic field through the plasma volume to homogenize the stream of
- 8 ions.
- 1 13. (New) A system as claimed in claim 12, further comprising a plurality of
- 2 coils disposed about the container so that the magnetic field can be moved within the plasma
- 3 volume by selectively energizing one or more coils.
- 1 14. (New) A system as claimed in claim 13, wherein the plurality of coils are
- 2 radially disposed about the axis.
- 1 15. (New) A system as claimed in claim 12, wherein the plasma volume
- 2 substantially defines a length and a diameter, wherein the opening is disposed at one end of
- 3 the length, and wherein the length is between about one third the diameter and three times the
- 4 diameter.