Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo (semana 15)

FAMILIAS NORMALES

- 1. Considere una familia de funciones analticas $f: U \to \mathbb{C}$. Si la parte real de cada elemento de la familia es positiva, probar que tal familia es normal.
- 2. En la región U considere $U_n = \{z : |z| \le n\} \cap U \cap \{z : dist(z, \mathbb{C} U) \ge \frac{1}{n}\}$. En el espacio de las funciones continuas $f : U \to \mathbb{C}$, escribir $|f|_n = \sup\{|f(z)| : z \in U_n\}$ y muestre que

$$|f|_s = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|f|_n}{1 + |f|_n}$$

es una norma, con la cual la familia de las funciones continuas $f:U\to\mathbb{C}$ es un espacio métrico completo.

- 3. Sea f_k una sucesión en el espacio presentado en la pregunta 2. Probar que f_k converge uniformemente en los compactos de U si y solo si cada $a \in D$ induce un disco compacto $D(a, \delta) \subset U$ donde f_k converge uniformemente.
- 4. Sea $\mathcal{F} \subset C(U,\mathbb{C})$ una familia en el espacio definido en la pregunta 2. Probar la equivalencia de las siguientes afirmaciones.
 - a) \mathcal{F} es una familia normal.
 - b) La clausura $\overline{\mathcal{F}}$ es compacto.
 - c) Si $K \subset U$ es compacto y $\epsilon > 0$ existe un conjunto finito f_1, \ldots, f_n en \mathcal{F} de modo que por cada $f \in \mathcal{F}$ induce algun f_j tal que $|f f_j|_s < \epsilon$
- 5. Sea f_k una sucesión de funciones analíticas del espacio presentado en la pregunta 2. Si f_k converge uniformemente en compactos de U a f, pruebe que f es análitica en U de dos maneras: Por medio del teorema de Morera y por la formula integral de Cauchy.
- 6. Sea f_k una sucesión de funciones analíticas que converge uniformemente en compactos de U a f. Si las funciones f_k son injectivas en la región U, pruebe que la función límite f es inyectiva o bien constante en U.
- 7. Usar el teorema de Ascoli-Arzelá para probar le equivalencia de las siguientes afirmaciones sobre la familia \mathcal{F} de funciones analíticas y definidas en una region U.
 - a) \mathcal{F} es normal
 - b) Por cada compacto $K \subset U$ existe $M_k > 0$ tal que $\sup\{|f(z)| : z \in K\} < M_k$ para todo $f \in \mathcal{F}$.
- 8. Sea \mathcal{F} una familia normal como en el problema 7. Probar que las derivadas $\{f': f \in \mathcal{F}\}$ también es normal.
- 9. Sea f_k una sucesión de funciones analíticas que converge uniformemente en compactos de U a f. Suponer que $f \not\equiv 0$ tiene m distintos ceros en U, pruebe que para n suficientemente grande la función f_n tiene al menos m ceros en U.
- 10. Sea c_n un sucesión limitada de números complejos. Pruebe que la serie de funciones

$$(1) \qquad \sum_{n=1}^{\infty} \frac{c_n z^n}{1 - z^n}$$

converge uniformemente en compactos de $\mathbb{D}=\{|z|\leq 1\}$. Si la serie $\sum c_n$ es convergente, demuestre que la serie (1) converge uniformemente en compactos de $|z|\neq 1$ a una función analítica g(z). Concluir que en este último caso $f(z)=\sum_{n=1}^{\infty}c_nz^n$ satisface las desigualdades

$$g(z) = \sum_{n=1}^{\infty} f(z^n), \quad |z| < 1 \quad \text{y} \quad g(z) = -\sum_{n=1}^{\infty} f(z^{-n}), \quad |z| > 1.$$

San Miguel, 2020.