

Synchronous generator dynamics

Source: O. Elgerd

Olof Samuelsson

Outline

- Synchronous generator at steady state
- Synchronization
- Swing equation
- Transient angle stability
- The Equal Area Criterion
- Small-signal stability
- Frequency control

Synchronous machine

- Rotor
 - One <u>field</u> winding fed with <u>DC</u> current
- Stator
 - Three windings 120° apart in <u>space</u>

Loaded synchronous generator

- "Armature reaction" flux from load current in stator
- Adds to field flux to form air gap flux
- Stator flux also includes leakage flux

Equivalent circuit 1

Indices:		g	generator
а	armature	I	leakage
d	d-axis	q	q-axis
f	field	r	resulting

Equivalent circuit 2

E_q(I_f) internal voltage (also E_f)
 I stator current
 V terminal voltage

$$X_d = X_a + X_l \approx X_a$$

 $E_q = V + (R_a + jX_d)I$

I lags V by angle $\phi_{(g)}$ E_q leads V by angle $\delta_{(g)}$

Indices:			
a	armature		
d	d-axis		
f	field		
	leakage		
q	q-axis		

Load angle δ

 δ is a <u>spatial</u> angle between field and air gap flux

and

a phase angle between E_q and $V+(R_a+jX_l)I$

Note

- 1. δ is given relative to rotating reference (rotor)
- 2. δ is a spatial coordinate for a mass the rotor

Steady state operation

Components of VI:

Vertical $E_qV/X_d\sin\delta=VI\cos\phi=P_e$

Horizontal $E_qV/X_d\cos\delta-V^2/X_d=VI\sin\phi=Q_e$

Two control inputs

Synchronous generator rotor types

- Round rotor = "Turbo" rotor
 - Two poles
 - High speed 3000 rpm @ 50Hz
 - Used with steam turbines (e.g. nuclear)

- Lower speed e.g. 150 rpm @ 50 Hz
- Used with hydro turbines
- Gear ratio with more poles: $\omega_{\text{mechanical}} = \omega_{\text{electrical}} \cdot (2/p)$
- IEA lab generators have four-pole salient pole rotors

L5

Salient pole rotor

- d- and q-axis different
- Geometry
- •Flux
- Inductance
- Currents and voltages

$$E_q = V + jX_dI_d + jX_qI_q$$

P and Q for salient pole rotor

$$P_e+j Q_e=(V_d+jV_q)(I_d+jI_q)^*$$

$$V_d+jV_q=V(\sin\delta+j\cos\delta)$$

$$I_d = (E_q - V_q)/X_d$$

$$I_q = V_d / X_q$$

$$P_e = \frac{E_q V}{X_d} \sin \delta + \frac{V^2}{2} \left(\frac{1}{X_q} - \frac{1}{X_d} \right) \sin 2\delta = P_{\text{field}} + P_{\text{reluctance}}$$

$$Q_e = \frac{E_q V}{X_d} \cos \delta - V^2 \left(\frac{\sin^2 \delta}{X_q} + \frac{\cos^2 \delta}{X_d} \right)$$
 Try $X_d = X_q!$

Try
$$X_d = X_q!$$

Synchronization

- Connect to an energized network (think Thévenin equiv.)
 - 1. Control prime mover to reach correct speed \rightarrow right ω_{el}
 - 2. Magnetize field (and armature) winding
 - 3. Make V close to V_{system} (magnitude and angle!)
 - 4. Connect!
- Aim
 - Steady-state no-load situation
- Careless synchronization
 - High currents and high mechanical stress

Synchronization conditions

- V close to V_{system} if the voltages have
 - Same phase order (= wiring correct)
 - Same frequency (= speed correct)
 - Same magnitude (= right magnetization)
 - Same phase (= right timing of connection)
- Think generator Eq and network V as rotating three-phase phasors:

The swing equation

Torque balance for rotor

$$J\frac{d\omega_m}{dt} = T_m - T_e$$

p magnetic rotor poles

$$\omega_m$$
 (mech. rad/s) = $\frac{2}{p}\omega_e$ (elec. rad/s)

Multiply torque balance by ω_{m}

Use ω_e as state and ω_e≈ω_{s,e}

Divide by S_{base} to get p.u.

$$\frac{2H}{\omega_{s,e}} \frac{d\omega_e}{dt} = P_m(p.u.) - P_e(p.u.)$$

The inertia constant H

H=
$$\frac{\text{Kinetic energy of rotating masses}}{\text{Generator MVA rating}} = \frac{\frac{1}{2}J\omega_m^2}{S_{base}}$$

Unit: Ws/VA=s

H on different MVA bases

- Machine base
 - Steam turbines
 - Gas turbines
 - Hydro turbines
 - Synchronous compensator
- Common base
 - H ~ generator size (kW-GW)
 - Infinite bus has infinite H

Single Machine Infinite Bus

"Classical model":

- •Fixed E'_q behind X'_d
- •Constant P_m
- No damping
- No saliency

- Infinite H
- Zero impedance
- Fixed voltage V∠0

"Classical" dynamic generator model

Synchronous generator connected to infinite bus:

- δ in rad, ω_e in rad/s, $\omega_{s,e}$ typically 100π rad/s
- •E'_q and X'_d in P_e (δ) for slow transients
- Second order system with poor damping
- •Electro-mechanical or "swing" dynamics

Two equilibrium points

$$P_{m} = P_{e}(\delta) = \frac{E'_{q}V}{X_{eq}}\sin\delta$$

Two solutions for δ :

$$\delta = \begin{cases} \delta_0 = \arcsin\left(\frac{P_m X_{eq}}{E'_q V}\right) \\ 180^\circ - \delta_0 \end{cases}$$

- Synchronizing torque $dP_e/d\delta$
 - •dPe/d δ >0 for δ <90° stable equilibrium
 - •dP_e/d δ <0 for δ >90° unstable equilibrium

Dynamic response

* Temporary short-circuit near generator, P_e zero during fault

Response?

- 1. Second order system
- 2. No damping
- 3. Oscillator! δ and ω oscillate (roughly sinusoidally)
- 4. $\delta(t)$ will lag $\omega(t)$

Demo sm.mdl tcl=0.05

Second order response

P_e zero at short-circuit near gen

Step in P_m-P_e

Mechanical states slow

Start at δ_0 and $P_e(\delta_0)$

Acceleration during fault

Fault removed at $\delta = \delta_1$

Overshoot to δ_2 and $P_e(\delta_2)$

Oscillate around equilibrium δ_0 so $P_e(\delta_0)=P_m$

Simulation tcl=0.05, 0.1 PW Example 11.5

 δ_1

Angle stability

 δ_0 must be less than steady state limit 90°

 δ_2 also has limit – transient angle stability limit

Questions:

How large can δ_2 be?

What happens when it becomes too large?

What is the largest disturbance that is OK?

Simulation tcl=0.15, 0.1505, 0.151

The Equal Area Criterion

Short-circuit: Pe=zero

Mark areas between $P_e(\delta)$ and P_m in interval δ_0 to δ_2

Accelerating Area: Below P_m

Decelerating Area: Above P_m

For stable system AA=DA

Transient stability limit

More severe disturbance:

AA larger

Greater δ_2 makes DA larger

Maximum DA at δ_2 =180°- δ_0

For larger δ_2 only AA grows...

Beyond stability limit

- dω/dt never becomes zero
- Rotor accelerates even more
- Machine <u>transiently unstable</u> = <u>loses synchronism</u>
- Must disconnect and resynchronise

Equal Area Criterion

- Stability check for **known disturbance** Use EAC for δ_2 and check $\delta_2 < \delta_{UEP}$
- Max disturbance from stability limit Determine disturbance for $\delta_2 = \delta_{UEP}$
- Typical disturbances
 Loss of line, generator or load
 Short-circuit

Stability analysis tools

Analytical – the **Equal Area Criterion**

- Simple, can be done by hand, but approximate
- Formulated before 1930 by Ivar Herlitz, KTH (First Swedish PhD in engineering)

Time simulation

- Computer application since the beginning
- Voltages and currents as phasors or waveforms
- Multi-machine model with Differential Algebraic Equations
 - Set of **Differential** equations for each generator
 - Power flow for Algebraic network equations

L5

Small-signal angle stability

- Linearize at steady state $(\delta_0, \omega_0, P_{m0})$
- State space: dx/dt=Ax+Bu
- Compute eigenvalues λ_i of A
- Compute right eigenvectors Φ_i of A
- Applies also to multi-machine models
- Popular application of control theory

Eigenvalues and eigenvectors

Eigenvalue λ_i:

 $Im(\lambda_i)$ =resonance oscillation frequency (e.g. 0.35 Hz)

 $Re(\lambda_i)$ =resonance oscillation damping

 ≤ 0 for all λ_i system is small-signal stable

>0 for any λ_i system is small-signal unstable

Right eigenvector Φ_i:

Which generators participate in mode (resonance) i

E.g. Generators in FI against those in NO and DK

Small-signal damping

- Low >0 for uncontrolled system
- Negative damping from controllers
 - Automatic Voltage Regulators
 - HVDC controllers
- Damping added by dedicated controls
 - Power System Stabilizers (PSS) on generator
 - Power Oscillation Damper (POD) on HVDC or FACTS

FACTS=MW size power electronic devices

System frequency

One eigenvector shows all generator speeds vary together

The *rigid body* mode – the dynamics of system frequency

All generators synchronize to same ω , but which one?

$$\omega_{system} = \frac{\sum_{i} H_{i} \omega_{i}}{\sum_{i} H_{i}}$$

Large generators dominate

Infinite bus is extreme case

H=
$$\infty$$
 so that ω_{system} = ω_{infbus}

Also center of inertia frequency, like center or gravity!

System frequency dynamics

All generators modeled as one with:

This is single machine, but no infinite bus (to relate δ to)

Electrical load is frequency dependent

Frequency event without control

Generator is suddenly disconnected...

- Step reduction of P_m
- Unbalance: P_m<P_e
- ω decreases

- Decrease stops when P_e is reduced to P_m
- Error in ω

Turbine governor

Proportional frequency control law:

$$P_m = P_{ref} + \Delta f/R$$

$$\Delta f = f_{nom} - f_{system}$$

R is speed droop, Hz/MW or p.u./p.u.

R on machine base

All generators usually have the <u>same R</u> given in p.u. on <u>machine</u> <u>base</u>

A disturbance gives same ∆f everywhere

All generators do same p.u. contribution

Typical R value is 5%

 $\Delta f=0.05$ p.u. gives $\Delta P_m=1$ p.u.

PW Example 12.4

R on common base

R for entire system on common base:

$$\frac{1}{R_{total}} = \sum_{i} \frac{1}{R_{i}}$$

More generators give greater 1/R_{total}
In Nordel 1/R_{total}≈6000 MW/Hz

Frequency error tolerance

Instantaneous value of Δf :

± 0.01 Hz in US

± 0.1 Hz in Nordel

± 0.2 Hz in Ireland

Time integral of:

Time error on clocks <10s in Nordel

600 MW step excites f and angle dynamics

13:39 13/11: 600 MW generator in Denmark disconnected

Frequency dip and North-South angle oscillations

Conclusions

- Steady state
 - P and Q for round and salient pole rotor
- Transient angle stability
 - Equal Area Criterion and simulations
- Small-signal stability
 - Eigenvalues and eigenvectors
- Frequency dynamics
 - All generators like one
 - Fair sharing: All generators respond equally in p.u. on machine base if same p.u. R