Упражнение 1

I. $\alpha \gg 1$

Пусть \tilde{x} — корень уравнения $x - 1 = e^{-\alpha x}$, тогда,

$$\forall x \hookrightarrow e^{-\alpha x} > 0 \Rightarrow \tilde{x} > 1 \Rightarrow e^{-\alpha \tilde{x}} < e^{-\alpha} \ll 1,$$

следовательно, $0 < \tilde{x} - 1 \ll 1$, и \tilde{x} можно представить в виде

$$\tilde{x} = 1 + \varepsilon, \quad 0 < \varepsilon \ll 1.$$
 (V1.1)

От полученного данной подстановкой уравнения $\varepsilon=e^{-\alpha(1+\varepsilon)}$ отбросим малый член:

$$e^{-\alpha(1+\varepsilon)} \approx e - \alpha, \quad -\alpha \approx \ln \varepsilon,$$

откуда получаем $\varepsilon \approx e^{-\alpha}$, и, подставляя ε в (**У1**.1), получаем ответ:

$$\tilde{x} \approx 1 + e^{-\alpha}$$

II. $\alpha \ll 1$

Пусть \tilde{x} — корень уравнения $x-1=e^{-\alpha x}$, тогда,

$$\forall x \hookrightarrow e^{-\alpha x} \ge 0 \Rightarrow \tilde{x} > 1 \Rightarrow |-\alpha \tilde{x}| \ll 1,$$

следовательно, $0 < 1 - e^{-\alpha \tilde{x}} \ll 1$, и $e^{-\alpha \tilde{x}}$ можно представить в виде

$$e^{-\alpha \tilde{x}} = 1 - \varepsilon, \quad 0 < \varepsilon \ll 1,$$
 (V1.2)

откуда $\tilde{x} = \frac{1}{\alpha} \ln \frac{1}{1-\varepsilon}$, и, подстановкой (**У1**.2) в исходное уравнение,

$$\tilde{x} = 2 - \varepsilon, \tag{Y1.3}$$

$$\alpha(2-\varepsilon) = \ln \frac{1}{1-\varepsilon}.$$

Пренебрегая малой величиной, получаем

$$(2-\varepsilon)\alpha \approx 2\alpha$$
, $2\alpha \approx \ln \frac{1}{1-\varepsilon}$, $\varepsilon \approx 1 - e^{-2\alpha} \approx 2\alpha$,

откуда подстановкой в (У1.3) получаем ответ:

$$\tilde{x} \approx 2 - 2\alpha$$