Mathematik und Physik für B_TI – 1. Semester

Dozentin: Dr. Barbara Sandow

2. MECHANIK

Schwingungen

Schwingung ist eine periodische Veränderung einer physikalischen Größe an einem Ort.

Wellen

Eine Welle ist eine periodische Änderung einer physikalischen Größe mit der Zeit und am Ort (eine Schwingung, die sich auf den Weg gemacht hat).

Wellenarten:

Die klassischen Wellenarten sind Longitudinal- und Transversalwellen.

Longitudinalwellen schwingen *parallel* zur Ausbreitungsrichtung.

Transversalwellen schwingen senkrecht zur Ausbreitungsrichtung.

Eigenschaften

- **Amplitude**: Die Amplitude y_0 beschreibt die maximale Auslenkung der Schwingungen der Welle, also dort wo der Wellenberg am höchsten ist.
- Wellenlänge: Die Wellenlänge λ(Lambda) ist der Abstand zweier Punkte mit gleicher Phase - zum Beispiel der Abstand zwischen zwei benachbarten Wellenbergen oder Wellentälern.
- **Ausbreitungsgeschwindigkeit**: Die Ausbreitungsgeschwindigkeit ν einer Welle ist die Geschwindigkeit mit der sich eine bestimmte Phase, z.B. ein Wellenberg oder ein Wellental fortbewegt.

Außerdem wird eine Welle durch die von ihr erzeugten Schwingungen charakterisiert:

• **Periodendauer** (**Schwingungsdauer**): Die Periodendauer ist die Zeit, die verstreicht, während ein schwingungsfähiges System genau eine Schwingungsperiode durchläuft, d.h. nach der es sich wieder im selben Schwingungszustand befindet. Der Kehrwert der Periodendauer T ist die Frequenz $f \rightarrow f = 1/T$

Zwischen der Wellenlänge der Welle und der Frequenz der Schwingungen besteht ein direkter physikalischer Zusammenhang über die Ausbreitungsgeschwindigkeit der Welle cw:

$$\lambda * f = c_w$$

Damit ergibt sich auch eine Beziehung zwischen der Wellenlänge und der Periodendauer:

$$\lambda = c_w * T$$

Tabelle: Schwingungen und Wellen

	<u>Schwingungen</u>	<u>Wellen</u>
Definition	periodische Änderung einer physikalischen Größe mit der Zeit	1
charakteristische Größen	- zeitabhängige Größen Frequenz: f Schwingungsdauer: T Kreisfrequenz: ω	 zeitabhängige Größen Frequenz: f Schwingungsdauer: Τ Kreisfrequenz: ω ortsabhängig Größe Wellenlänge: λ
harmonisch	werden mit sin- und cos- Funktion beschrieben	werden mit sin- und cos-Funktion beschrieben
Lösung der Bewegungsgleichung	$y(t) = y_0 + A\cos(\omega t + \varphi_0)$	$y(t,x) = y_0 + A\cos(\omega t + \frac{2\pi x}{\lambda} + \varphi_0)$