Régime sinusoïdal

Grandeurs sinusoïdales

Cas d'une tension

Une tension sinusoïdale est un cas particulier d'une tension périodique telle que :

$$u(t) = \hat{U} \cdot \sin(\boldsymbol{\omega} \cdot t + \boldsymbol{\theta}_u)$$

- Amplitude (valeur maximale):
- (V)

• Fréquence :

$$f = \frac{1}{T}$$
 (Hz)

• Pulsation :

 $(rad \cdot s^{-1})$ $\omega = 2\pi f$

• Phase à l'origine :

$$\frac{\theta_u = \omega \cdot \tau_u}{\theta_u = \omega \cdot \tau_u}$$
 (rad) avec
$$\begin{cases} \theta_u > 0 & \text{si la tension est en avance.} \\ \theta_u < 0 & \text{si la tension est en retard.} \end{cases}$$

Pour un courant sinusoïdal, l'expression sera de la forme suivante :

$$i(t) = \hat{I} \cdot \sin(\boldsymbol{\omega} \cdot t + \boldsymbol{\theta}_i)$$

Valeur moyenne

Pour une tension sinusoïdale, on montre que :

 $\langle u \rangle = 0$

Une grandeur sinusoïdale est donc alternative!

Valeur efficace

Pour une tension sinusoïdale, on montre que :

$$U = \frac{\hat{U}}{\sqrt{2}}$$

Cette formule est un cas particulier du régime sinusoïdal!

Il est donc possible d'écrire les équations précédentes avec la valeur efficace :

$$u(t) = U\sqrt{2} \cdot \sin(\boldsymbol{\omega} \cdot t + \boldsymbol{\theta}_u)$$

et

$$i(t) = I\sqrt{2} \cdot \sin(\boldsymbol{\omega} \cdot t + \theta_i)$$

Nombre complexe associé

Un nombre complexe peut-être associé à une grandeur sinusoïdale tel que :

$$u(t) = U\sqrt{2} \cdot \sin(\omega \cdot t + \theta_u) \longrightarrow \boxed{\underline{U} = [U, \theta_u]}$$
 ou $\boxed{\underline{U} = a + j \cdot b}$

avec

$$a = U \cdot \cos \theta_u$$

$$b = U \cdot \sin \theta_u$$

Dans le plan complexe :

Inversement, pour retrouver la valeur efficace et la phase à partir de la forme algébrique du nombre complexe associé à une grandeur périodique :

$$U = |\underline{U}| = \sqrt{a^2 + b^2}$$

$$\theta_u = \arg(\underline{U}) = \arctan(\frac{b}{a})$$
 $(+\pi \text{ si } a < 0)$

Exemple: $\underline{U} = 3 + \mathbf{j} \cdot 2$

Déphasage

Le déphasage de la tension u(t) par rapport à la tension v(t) est l'angle :

$$\varphi = \theta_u - \theta_v$$
 (rad ou °)

Dans le plan complexe :

- La tension u(t) est en avance sur la tension v(t) si $\varphi > 0$.
- La tension u(t) est en retard sur la tension v(t) si $\varphi < 0$.
- La tension u(t) est en phase avec la tension v(t) si $\varphi = 0$.

II - Dipôles passifs linéaires

Impédance réelle et déphasage

La figure suivante donne les chronogrammes de la tension et de l'intensité du courant pour un dipôle passif linéaire.

On définit pour tout dipôle passif linéaire :

$$Z = \frac{U}{I}$$

(impédance en Ω)

(déphasage en rad ou °)

Impédance complexe

On peut associer à tout dipôle passif linéaire une impédance complexe telle que :

$$\underline{Z} = [Z; \varphi]$$
 avec $\underline{Z} = \overline{Z \cos \varphi} + j \cdot \overline{Z \sin \varphi}$

Inversement, on peut également retrouver son impédance et son déphasage comme suit :

$$\underline{Z} = a + j \cdot b \qquad \Rightarrow \begin{cases} Z = |\underline{Z}| = \sqrt{a^2 + b^2} \\ \varphi = \arg(\underline{Z}) = \arctan(\frac{b}{a}) & (+\pi \quad \text{si} \quad a < 0) \end{cases}$$

Exemple: $\underline{Z} = 100 + j \cdot 56$

Cas des dipôles élémentaires parfaits R,L ou C

	$Z(\Omega)$	$\varphi(\text{rad})$	<u>Z</u>
Résistance parfaite	R	0	R
Inductance parfaite	Lω	$+\frac{\pi}{2}$ rad	jLω
Condensateur parfait	$\frac{1}{C\omega}$	$-\frac{\pi}{2}$ rad	$\frac{1}{jC\omega} = \frac{-j}{C\omega}$

Associations de dipôles élémentaires

Exemple : impédance équivalente d'un circuit RL série.

Résonance d'un dipôle RLC

Pour une fréquence particulière, appelée **fréquence de résonance** f_0 , un dipôle RLC série ou parallèle agit comme une résistance parfaite.

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

A cette fréquence, l'impédance est minimale et l'intensité efficace du courant dans le dipôle est maximale!

D. THERINCOURT 9/10 Lycée Roland Garros

III - Dipôles actifs linéaires

modèle équivalent de Thévenin

A tout dipôle actif linéaire peut être associé un **modèle série** plus simple, appelé **modèle équivalent de Thévenin**, composé d'une source de tension \underline{E}_{TH} et d'une impédance \underline{Z}_{TH} .

IV - Lois des circuits linéaires

Généralité

En régime sinusoïdal, toutes les **lois de l'électricité en continu** s'appliquent à condition d'utiliser la **notation complexe**.

Diviseur de tension

$$\underbrace{\underline{U}_2 = \underline{\underline{Z}_2}}_{\underline{Z}_1 + \underline{Z}_2} \times \underline{E}$$