IN THE CLAIMS

What is claimed is:

1	1.	A semiconductor device including an insulated gate field effect transistor (IGFET),
2	comp	prising:
3		a gate electrode of the IGFET having a lower layer electrode formed
4		on a gate insulating film and an upper layer electrode formed on the lower
5		layer electrode;
6		a cap film formed on the upper layer electrode;
7		a first nitride film on a side surface of the upper layer electrode;
8		an oxide film on a side surface of the lower layer electrode; and
9		an etching stopper film including a second nitride film formed on the
10		outside of the first nitride film and oxide film.
1	2.	The semiconductor device according to claim 1, wherein:
2		first nitride film is a thermal nitride film.
1	3.	The semiconductor device of claim 2, wherein:
2		first nitride film is a rapidly heated thermal nitride film.
1	4.	The semiconductor device of claim 2, wherein:
2		the first nitride film has a film thickness of approximately 2 to 5 nm.

1	5.	The semiconductor device of claim 2, further including:
2		an interlayer insulating film formed to cover the gate electrode of the
3		IGFET;
4		a contact hole opened in the interlayer insulating film to expose a
5		source/drain region of the IGFET; and
6		a conductor filling the contact hole and electrically connected with the
7	,	source/drain region.
1	6.	The semiconductor device of claim 2, wherein:
2		the oxide film is a thermal oxide film.
1	7.	The semiconductor device of claim 2, wherein:
2		the second nitride film is formed with chemical vapor deposition
3		(CVD).
1	8.	A method for manufacturing a semiconductor device including an insulated gate field
2	effect	transistor (IGFET), comprising the steps of:
3		forming a gate insulating film on a semiconductor substrate;
4		forming a laminate film on the gate insulating film, the laminate film
5		including an insulating film formed on a second conductive film formed on a
6		first conductive film;
7		etching the insulating film and second conductive film into a
8		predetermined pattern to form a cap film and an upper layer gate electrode:

9		forming a first nitride film on the side surface of the upper layer gate
10		electrode;
11		etching the first conductive film using the cap layer, upper layer gate
12		electrode, and the nitride film as a mask to form a lower layer gate electrode;
13		forming a first oxide film on the side surface of the lower layer
14		electrode; and
15		forming an etching stopper film including a second nitride film over
16		the entire surface.
1	9.	The method for manufacturing a semiconductor device of claim 8, wherein:
2		the first conductive film includes a polysilicon film; and
3		the second conductive film includes a metal film.
1	10.	The method for manufacturing a semiconductor device of claim 8, wherein:
2		the first conductive film includes a polysilicon film; and
3		the second conductive film includes a metal silicide film having a high
4		melting point.
1	11.	The method for manufacturing a semiconductor device of claim 8, wherein
2		the first nitride film is a thermal nitride film; and
3		the first oxide film is a thermal oxide film.
1	12.	The method for manufacturing a semiconductor device of claim 8, wherein:

2		forming the etching stopper film includes forming the second nitride
3		film with a chemical vapor deposition.
1	13.	The method for manufacturing a semiconductor device of claim 8, wherein:
2		the first nitride film is a thermal nitride film formed with a rapid
3		thermal nitridation step using a lamp as a heat source.
1	14.	The method for manufacturing a semiconductor device of claim 8, further including
2	the steps of:	
3		forming a source/drain region by doping an impurity into the
4		semiconductor substrate after the step of forming the first oxide film; and
5		forming an interlayer insulating film over the entire surface and
6		selectively etching the interlayer insulating film with a selective etching ratio
7		for the etching stopper film to open a contact hole after the step of forming the
8		etching stopper film.
1	15.	The method for manufacturing a semiconductor device of claim 8, further including
2	the ste	eps of:
3		forming a LDD (lightly doped drain) region by doping a first impurity
4		concentration into the semiconductor substrate after the step of forming the
5		first oxide film;
6		anisotropic etching the etching stopper film to form a side wall etching
7		stopper film on side surfaces of the lower layer gate electrode, upper layer

8		gate electrode and cap layer; and
9		forming a source/drain region by doping a second impurity
10		concentration into the semiconductor substrate using the side wall etching
11		stopper film as a mask wherein the first impurity concentration is lower than
12		the second impurity concentration.
1	16.	The method for manufacturing a semiconductor device of claim 15, further including
2	the st	eps of:
3		forming a second oxide film over the entire surface of the substrate
4		with a chemical vapor deposition method;
5		anisotropic etching the second oxide film to form a side oxide film on
6		the side surface of the etching stopper film; and
7		forming the source/drain region after the step of forming the side wall.
1	17.	A semiconductor device including a first region and a second region, comprising:
2		a first gate electrode of a first IGFET in the first region having a first
3		lower layer electrode formed on a first gate insulating film and a first upper
4		layer electrode formed on the first lower layer electrode;
5		a first cap film formed on the first upper layer electrode;
6		a first nitride film on a side surface of the first upper layer electrode;
7		a first oxide film on a side surface of the first lower layer electrode;
8		a first etching stopper film including a second nitride film formed on
9		the outside of the first nitride film and first oxide film;

10		a second gate electrode of a second IGFE1 in the second region having
11		a second lower layer electrode formed on a second gate insulating film and a
12		second upper layer electrode formed on the second lower layer electrode;
13		a second cap film formed on the second upper layer electrode;
14		a third nitride film on a side surface of the second upper layer
15		electrode;
16		a second oxide film on a side surface of the second lower layer
17		electrode;
18		a second etching stopper film including a fourth nitride film formed on
19		the outside of the third nitride film and second oxide film; and
20		wherein the first IGFET includes a lightly doped drain.
1	18.	The semiconductor device of claim 17, wherein:
2		the semiconductor device is a semiconductor memory device.
1	19.	The semiconductor device of claim 18, wherein:
2		the first region is a memory cell region and the second region is a
3		peripheral circuit region.
1	20.	The semiconductor device of claim 19, further including:
2		a first contact providing an electrical connection to a first source/drain
3		region of the first IGFET;
4		a second contact providing an electrical connection to a second

source/drain region of the second IGFET; and

a first spacing from the first contact to the first gate electrode is greater

than a second spacing from the second contact to the second gate electrode.