合肥工业大学 2017 年硕士研究生初试专业课笔试试题

考试科目名称: 计算机科学与技术学科专业基础综合(850)

【数据结构】

ENAME I VI
一. 选择题: (每小题 2 分, 共 10 分)
在下列备选答案中选出一个正确的,将其号码填在""上。
1. 在分别以下列序列构造平衡二叉树的过程中,用到四种类型的调整操作。
A. 2,4,3,8,9,5,1 B. 1,5,2,9,8,4,3 C. 2,8,9,4,3,5,1 D. 1,3,5,9,8,2,4
2. 下列排序算法中,能保证在每趟排序中将第一个元素放到其最终的位置
上。
A. 希尔排序 B. 快速排序 C. 归并排序 D. 直接插入排序
3. 在图采用邻接表存储时,深度遍历算法的时间复杂度为。
A. O(n) B. O(n+e) C. O(n ²) D. O(n ³)
4. 已知一棵完全二叉树的第七层有8个叶子结点,则二叉树中的叶子结点数
是。
 A. 37 B. 117 C. 118 D. 不确定
5. 一棵左右子树均不为空的二叉树在后序线索化后,其中空的右链域的个数
是。
A. O B. 1 C. 2 D. 不确定
二. 填空(每空3分,共15分)
1.判断单链表中由指针仅 P 所指结点为尾结点的条件是。
2.删除双循环链表中的由指针 P 所指示的结点的操作序列是
{ <u> </u>
3.在数组元素 A[0]为最大元素时,冒泡排序算法所需要的比较元素的次数是。
4.对有序表 A[22]按二分查找方法查找 A[9]时,依次比较的元素下标是。
5.以数据集{3,6,8,9,10,12}作为叶子结点权值构造的哈夫曼树的带权路径长度
是。
三. 解答下列各题(每小题 5 分, 共 20 分)
1. 已知一棵二叉树的先序、中序如下,请构造出该二叉树。
先序: ABCDEFGHIJ
中序: BDCEAGIJHF

2.算法阅读:

算法 Print 及所引用的数组 T 的值如右所	序号	data	S	В
示,写出调用 Print(1)的运行结果。	1	Α	2	7
Void Print(int i);	2	В	3	5
	3	С	0	4
{	4	D	0	0
If (i!=0)	5	Е	6	0
{ Cout< <t[i].data; td="" 输出<=""><td>6</td><td>F</td><td>0</td><td>0</td></t[i].data;>	6	F	0	0
Print(T[i].S);	7	G	8	0
Print(T[i].B);	8	Н	0	9
}	9	I	10	0
}	10	J	0	0

3.设散列表长度为 11, 散列函数 H(K)=K % 11, 采用线性探查法处理冲突, 若输入序列为(10,80,12,60,78,35,42,31,15), 要求构造出散列表,并求出在等概率情况下查找成功的平均查找长度。

0	1	2	3	4	5	6	7	8	9	10

4.对下面数据表执行快速排序,写出每一趟的结果,并标出第一趟排序过程中的 元素移动情况。

(75, 20, 50, 30, 18, 35, 70, 150, 60, 80, 12, 23, 65, 45)

四. 算法设计:分别写出求解下列问题的算法,并简要写出算法设计思路。(每小题 10 分,共 30 分)

1.设计算法将单链表 L 倒置(也就是将每个结点的后继指针改为指向前驱,并让 头指针改为指向原来的尾结点)。

2.设计算法以递增有序数组 int[A]中元素为输入数据,构造一颗平衡的二叉排序树。

3.设计算法以判断有向图 G 中是否存在一条从顶点 v0 到 vi 路径,若存在,返回 true,否则,返回 false。

(注:本算法中可以调用以下几个函数:

firstadj(G,V)——返回图 G 中顶点 V 的第一个邻接点的号码,若不存在,则返回 0; nextadj(G,V,W)——返回图 G 中顶点 V 的邻接点中处于 W 之后的邻接点的号码,若不存在,则返回 0;

另外,若用到栈或队列之类的结构,可直接调用有关函数实现运算,不必考虑底层结构和运算的实现。)

【计算机组成原理】	
一. 单项选择题(每小题 2 分, 共 20 分)	
在每个小题的四个备选答案中选择一个正确的答案。	
1.以下关于"神威•太湖之光"超级计算机的描述中,错误的是。	
A. 它在 2016 年 6 月 TOP500 超级计算机系统排名中位于榜首	
B. 是世界上首台运算速度超过十亿次的超级计算机	
C. 它全部采用国产处理器构建	
D. 其峰值性能位于世界第一,性能功耗比位于世界第二	
2.如果某个基准测试程序在计算机 A 上运行需要 9s, 而在计算机 B 上运行需要	要
6s,那么下列结论中正确的是。	
A. 计算机 B 的时钟频率是计算机 A 的 2 倍	
B. 计算机 B 的时钟频率是计算机 A 的 1.5 倍	
C. 该程序在计算机 B 上的执行速度是计算机 A 的 1.5 倍	
D. 在计算机 A 中执行一条指令所需的时钟周期数是计算机 B 的 1.5 倍	
3.以下有关计算机性能指标 MIPS 的描述中,错误的是。	
A. MIPS 是指平均每秒执行的百万条指令数	
B. MIPS 越大说明机器性能一定越好	
C. 用 MIPS 对不同机器进行性能比较不太客观	
D. MIPS 反映的是机器执行定点指令的速度	
4.采用计数器定时查询的总线判优方式,如果每次计数器都从"0"开始计数	,
那么。	
A. 设备号小的设备优先级高	
B. 设备号小的设备优先级低	
C. 每个设备的优先级轮流最高	
D. 每个设备的优先级相等	
5.以下对于存储器刷新操作的描述中,正确的是。	
A. 动态和静态 RAM 都需要刷新	
B. 刷新是按行进行的	
C. 刷新是按一个芯片接着一个芯片的顺序进行的	
D. 所有的刷新方式都存在"死区"	
6.以下由磁性材料构成的存储器中,不属于辅助存储器。	
A. 磁盘 B. 磁带 C. 磁芯 D. 磁光盘	
7.如果 cache 与竹村之间采用的是组相联映射方式,那么以下说法正确的是	
A. 如果替换策略采用 LRU 算法,那么 cache 组内的行数越多则命中率越高	
B. 如果替换策略采用 FIFO 算法,那么 cache 组内的行数越多则命中率越高	
C. cache 组的大小与命中率没有关系	
D. 无论采用哪种算法,cache 的组越大则命中率越高	
8.中断向量给出的是。	
A. 程序断点 B. 中断码 C. 中断屏蔽码 D. 中断服务程序的入口地	乜
9.不符合 RISC 的主要特征的有。	

A. CPU 中配置了大量通用寄存器

C. 控制器采用微程序设计 D. 采用流水线方式执行指令

E. 指令长度一致

10.假设指令流经某五级流水线的五个功能短的时间一次是 80ns, 80ns, 70ns, 90ns 和 50ns, 那么流水线的时钟周期至少是。 A. 90ns B. 80ns C. 70ns D. 50ns
二. 填空题(每题 2 分, 共 14 分) 1. 已知字符 "A"的 ASCII 编码为 100 0001, 那么在字符 "F"的 ASCII 码最前面添加一位奇校检位后的 8 位编码为。 2. 采用循环冗余校检码(CRC)进行译码和纠错的依据是。
3. 常用的两种指令寻址方式是。 4. 如果把数值-128 以移码形式存放在某个 8 位寄存器中,那么该寄存器中实际 存放的内容是。
5. 常见的两种微指令格式是。 6. 假设某计算机的主存容量为 64KB。按照字节编址,并且 0000H~7FFFH 为系统程序区,剩余地址空间为用户程序区,那么如果采用 4KX8 位的 RAM 芯片来构建用户程序区,那么需要片这样的 RAM 芯片。 7. 请写出取址周期的全部微操作:。
三.判断题(每题 1 分, 共 10 分) 判断下列每个叙述是否正确。如果正确,用"√"表示,否则用"×"表示。 1. ()固件是具有软件特点的硬件。 2. ()在计算机中,数值数据只能以二进制形式表示,并且只能运行二进制运算,不能以十进制表示数据进行十进制运算。 3. ()在异步通信中,由于采用了应答方式,因而允许参与通信的模块速度
不一致。 4. () 采用 Flash 进行读和写的速度一样快,与 DRAM 读写速度接近。 5. () CPU 对 DMA 请求和中断请求的响应时间是不一样的。 6. () 通常机器字长越长,数的表示范围越大,精度也越高。 7. () 当一个磁道存满后,新的信息会在同一个柱面的下一个盘面存放。 8. () cache 与主存采用统一编址,根据地址不同判断访问 cache 还是主存。 9. () 在中断方式下,外设任何时候都可以发出中断请求,而且能得到 CPU 的立即响应,因此对于硬件故障可以采取强迫中断的方式。 10. () 采用流水线方式不能缩短某一条指令的执行时间,只可能会延长。
四. 请简要回答以下问题(10 分) 1. 单周期处理器的 CPI 是多少? (2 分)

2. 对于单周期处理器,其时钟周期在设计中如何确定的? (2分)

- 3. 单周期处理器中的部件在一个指令周期内能否被重复使用?请解释原因。(3 分)
- 4. 多周期 CPU 的设计思想是什么? (3分)

五. (10 分) 某一个 8 位的计算机,数据以补码形式表示,并且机器数含 1 位符号位,现有整数 x、y、z,其中 $[x]_{*}$ =36H, $[y]_{*}$ =54H, $[z]_{*}$ =D5H,请分别求 x-2y 的机器数和 x/4+2z 的机器数,并指明计算结束后溢出标志 OF 的值。

六. (11 分) 假定在一个程序中定义了变量 a 和 b,其中 a 是 float 型变量(用 32 位的 IEEE754 单精度浮点数表示),b 是 16 位 short 型变量(用补码表示)。程序执行的某一时刻,如果 a = - 19,b = 120,并且 a 和 b 都被写到了主存中(按 字节编址),其地址分别是 100 和 110。请分别画出在大端机器和小端机器上变量 a 和 b 在内存中是如何存放的。