灰度直方图变换

灰度直方图(Gray Histogram)

cardinality in a set

$$h(r_k) = n_k$$
 cardinality in a set $n_k = card \left\{ I(x,y) = r_k \right\}$ (灰度等于 r_k 的像素总数) $r_k = [0, K-1]$ (图像灰度范围)

$$r_k = [0, K-1]$$
 (图像灰度范围)

$$\sum_{k} h(r_k) = \sum_{k} n_k = n$$
 (图像面积)

归化直方图(normalized histogram):

$$p(r_k) = \frac{h(r_k)}{n} = \frac{n_k}{n}$$

$$0 \le p(r_k) \le 1$$

$$\sum_{k} p(r_k) = 1$$

理解灰度直方图

视觉特性: 有效灰度级与视觉质量

视觉特性: 灰度范围与视觉质量

视觉特性: 灰度分布与视觉质量

灰度映射 Gray Mapping

灰度分段线性映射

目标图像灰度s

原始图像灰度r

$$s = T(r)$$

伽玛校正(Gamma Correction)

$$s = r^{\gamma}$$

累积直方图(Cumulative Histogram)

$$H(k) = \sum_{i=1}^{k} h(i)$$

$$H(k) = \begin{cases} h(1) & (k=1) \\ H(k-1) + h(k) & otherwise \end{cases}$$

直方图均衡算法原理

因为理想累积直方图 $H(s) = s \rightarrow s = H(r)$

灰度	0	1	2	3	4	5	6	7
k	1	2	3	4	5	6	7	8
h(k)	0.05	0.10	0.35	0.30	0.10	0.05	0.05	0.00
H(k)	0.05	0.15	0.50	0.80	0.90	0.95	1.00	1.00
S	0.05	0.15	0.50	0.80	0.90	0.95	1.00	1.00
S	0.4	1.2	4.0	6.4	7.2	7.6	8.0	8.0
	0	1	4	6	7	8	8	8
灰度	0	0	3	5	6	7	7	7

[0,7]

[1,8]

[1,8]

[0,7]

