CSCE 4603 Fundamentals of Computer Vision

Dr. Mahmoud Khalil Fall 2019

Course Team

• Instructor: Dr. Mahmoud Khalil

khalil m@aucegypt.edu

• TA Eng. Mohamed Magdy

mohamed.magdy.ahmed@aucegypt.edu

Text Books

- Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 4th Edition, Pearson Education, Inc. 2018., ISBN: 978-9353062989
- Richard Sceliski, Computer Vision Algorithms and Applications, Springer, 2011 (available online for free at: http://szeliski.org/Book/), ISBN: 978-1848829343
- Rafael C. Gonzalez, Richard E. Woods and Steven L. Eddins, Digital Image Processing Using Matlab, Second edition,, Pearson Education, Inc. 2009., ISBN: 978-0070702622
- OpenCV: https://opencv.org/

Grading Scheme

- Assignments: 20%
- Midterm Exams (2): 40%
- Final Exam: 20%
- Project: 20%

General Policies

- More than 6 absence days without an official excuse will result you an "F" in this course.
- Any plagiarism case will result you 0 in the corresponding component and possibly an "F" in this course.
- Late Assignments will NOT be accepted.
- An assignment is an individual effort while the project can be done individually or in groups of up to 3 students (with individual tasks validation).

Course Contents

Image acquisition, image transformations, gray level operations, histogram equalization, spatial filtering, edge detection, line and circle detection, generalized Hough transform, connected components labelling. Haar features, object detection with Adaboost, applications: face detection, open CV programming.

Visual Sciences

Image Processing - Computer Vision

Low Level

Image Processing

Acquisition, representation, compression, transmission

image enhancement

edge/feature extraction

Pattern matching

image "understanding" (Recognition, 3D)

Computer Vision

High Level

Course Outlines

FIGURE 1.23 Fundamental steps in digital

image processing.

Outputs of these processes generally are images Outputs of these processes generally are image attributes CHAPTER 7 CHAPTER 9 CHAPTER 6 CHAPTER 8 Wavelets and Morphological Color image Compression multi resolution processing processing processing ₹ CHAPTER 5 CHAPTER 10 Image Segmentation restoration CHAPTER 11 CHAPTERS 3 & 4 Knowledge base Representation Image & description enhancement CHAPTER 12 CHAPTER 2 Image Object Problem ⇒ recognition acquisition domain

Image Enhancement

Image Denoising

Image Enhancement - Frequency Domain

Original Noisy image

Fourier Spectrum

Edge Detection

Image Segmentation

Goal: identify groups of pixels that go together

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

4YCH428 4YCH428 4YCH428

Digit recognition, AT&T labs http://www.research.att.com/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face detection

- Many new digital cameras now detect faces
 - Canon, Sony, Fuji, ...

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Biometrics

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns"

Read the story

wikipedia

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely

http://www.sensiblevision.com/

Object recognition (in mobile phones)

Point & Find, Google Goggles

Building a Panorama

Feature descriptors

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time

Interactive Games: Kinect

- Object Recognition: <u>http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o</u>
- Mario: http://www.youtube.com/watch?v=8CTJL5|UjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Medical imaging

3D imaging MRI, CT

Image guided surgery Grimson et al., MIT

Smart cars

- https://www.mobileye.com/
- Vision systems currently in high-end BMW, GM, Volvo models

Google cars

http://www.nytimes.com/2010/10/10/science/10google.html?ref=artificialintelligence

AutoCars - Uber bought CMU's lab

Car Detection and Depth Estimation

Vision as a Source of Semantic Information

Sports video analysis

Tennis review system

Why is vision so hard?

posed problem

[Sinha and Adelson 1993]

Challenges 1: view point variation

Michelangelo 1475-1564

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

Challenges 2: illumination

Challenges 3: occlusion

Magritte, 1957

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

Challenges 4: scale

Challenges 5: deformation

Xu, Beihong 1943

Challenges 6: background clutter

Challenges 7: intra-class variation

Adapted from L. Fei-Fei, R. Fergus, A. Torralba

What do computers see?

Stages of computer vision

• Low-level image → image

• Mid-level image → features / attributes

High-level
 features → "making sense", recognition

Low-level

Low-level

Mid-level

Mid-level

Low-level to high-level

