Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Soldadura - Técnicas

- Por Fusión o Refusión (REFLOW)
 - Se funde el material de aporte y se deja enfriar
- Sin Fusión
 - Se aplica calor y presión
- Mediante adhesivos
 - Se usan colas epoxídicas o resinadas

Soldadura - Fusión - Reflow

Soldadura Blanda

- Aporte de Calor
 - Conducción
 - Convección
 - Radiación
- Temperatura menor a 450°C
- Se emplean aleaciones

Soldadura Dura

- Se emplean materiales puros
- Alto punto de fusión
- Uso en microelectrónica

Soldadura Eutéctica

- Oro silicio, oro estaño
- más usada en microelectrónica

Soldadura - Sin Fusión

- Sin Fusión
 - Usada en microelectrónica
 - Ultrasonido
 - Se emplean frecuencias entre 20KHz y 50KHz
 - Termosónica
 - Se sueldan hilos de oro en donde no se puede superar los 130°C
 - Termocompresión
 - Se aplica calor (310°C) y presión
- Mediante el aporte de Adhesivos
 - Colas Epoxis
 - Colas de Silicona

Soldadura - Fusión - Reflow

- Soldadura Blanda Por Conducción
 - Soldador Manual
 - Por Ola Simple
 - Por doble Ola
 - Por Ola Selectiva
 - Por Inmersión
 - Por placa caliente fija o móvil
 - Electrodos
 - Túnel continuo

Soldadura - Ola

Simple Ola

Doble Ola

Soldadura - Ola

Ola Selectiva

Soldadura - Ola

Procedimiento

- 1 Se montan los componentes
- 2 Se Introduce en la máquina a través de una cinta transportadora
- 3 Se aplica FLUX
- 4 Precalentado.
 - Activar el FLUX
 - Evitar el choque térmico
- 5 Se pasa la placa por la ola
- 6 Se retira el FLUX remanente.

Soldadura - FLUX

USO

- Reducir el oxido que pueda existir en el PCB y/o componentes a soldar.
- · Reducir tensión superficial de la soldadura.
- Sirve para prevenir la re oxidación de la superficie durante la soldadura
- Humecta la superficie.

Tipos

- R Resina (colofonia)
- RMA Resina Media Activada
- RA Resina Activada
- RSA Resina Súper Activada
- OA Orgánico Activado
- NO CLEAN (No requiere ser removido)
 - Resina Natural Sintética
 - VOC − FREE

 El dimensionado de PADS es primordial para el éxito del proceso de soldadura.

Un dimensionado incorrecto

Soldadura - Reflow Doble Faz

 Una correcta distribución de componentes SMD (peso) ahorrara costos al momento del montaje y posterior soldadura

Componentes THT

- Dejar separación entre componentes para futuro re trabajo.
- Se debe usar ola selectiva para soldar los componentes de la segunda cara.

Componentes THT – Defectos y Soluciones

Componentes SMD

- Tratar de poner los componentes activos en una sola capa. En la otra los pasivos.
- Si colocamos componentes tipo BGA, tratar de no poner en la misma posición en la otra cara componentes similar. No se podrá hacer chequeo con RX.
- Verificar la distancia mínima entre componentes de ser posible.

 Componentes SMD - Distancias recomendadas

Distancias sugeridas entre encapsulados para prevenir cortos y facilitar procesos de reparación

Tipo de encapsulado	Componentes Pasivos	Condensadores tantalio	SOT23 y similares	SOIC SOP/ SSOP	QFP/ TQFP QFN	PLCC	BGA	CSP	DIP
Componentes Pasivos	1 mm	1.3 mm	1.3 mm	1 mm	3 mm	1.3 mm	4 mm	4 mm	1.6 mm
Condensadores de tantalio	1.3 mm	1.3 mm	2 mm	1.5 mm	3 mm	3 mm	4 mm	3 mm	1.6 mm
SOT23 y similares	1.3 mm	2 mm	1 mm	1.3 mm	3 mm	3 mm	4 mm	4 mm	1.6 mm
SOIC SOP/ SSOP	1 mm	1.5 mm	1.3 mm	1.3 mm	3 mm	3 mm	4 mm	4 mm	1.6 mm
QFP/ TQFP QFN	3 mm	3 mm	3 mm	3 mm	3 mm	3 mm	7 mm	7 mm	3 mm
PLCC	1.3 mm	3 mm	3 mm	3 mm	3 mm	3 mm	4 mm	4 mm	1.6 mm
BGA	4 mm	4 mm	4 mm	4 mm	7 mm	4 mm	7 mm	7 mm	4 mm
CSP	4 mm	3 mm	4 mm	4 mm	7 mm	4 mm	7 mm	3 mm	4 mm
DIP	1.6 mm	1.6 mm	1.6 mm	1.6 mm	3 mm	1.6 mm	4 mm	4 mm	3 mm

 Componentes SMD - Distancias recomendadas

 Componentes SMD - Distancias recomendadas

- Componentes SMD
 - Altura de componentes SMD en la primer cara 2,4mm. Optimo (1,7mm)
 - Componentes más altos deben ir en la segunda cara a procesar.
 - De ser necesario aplicar pegamento

- Componentes SMD
 - Verificar en las hojas de datos que los componentes SMD soporten mas de un proceso de REFLOW. (leds por ejemplo no lo hacen)
 - Distribución de Polaridad Recomendada

Posición de componentes polarizados no recomendada

Posición de componentes polarizados sugerida

- Componentes SMD
 - Si se emplea proceso por ola, se recomienda la siguiente distribución de componentes.

Orientación de componentes no recomendada Orientación preferida: Perpendicular a la ola

Dirección del proceso de soldadura por ola

- Componentes SMD + THT
 - Dejar separación mínima para evitar que los componentes se desuelden

- Componentes SMD + THT
 - Si aplica el uso de marco protector para soldadura por ola. Diseñar para que sea lo mas sencillo posible.

Perfil Térmico en proceso de Reflow

- Defectos en Perfil Térmico
 - Posible Fractura del encapsulado
 - No se active el Flux
 - Mayor temperatura en t3 → puede provocar delaminación del PCB, quemadura en el PCB, daño en los componentes
 - Menor temperatura en t3→Soldaura fría
 - Velocidad de enfriamiento elevada > soldadura frágil, fractura de encapsulados.

Perfilado del Horno

