

# The **OpenVX™** Specification

Version 1.0.1

Document Revision: r31169 Generated on Wed May 13 2015 08:41:43

Khronos Vision Working Group

Editor: Susheel Gautam Editor: Erik Rainey

Copyright ©2014 The Khronos Group Inc.



Copyright ©2014 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be re-formatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group web-site should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding this specification, including, without limitation, any implied warranties of merchantability or fitness for a particular purpose or non-infringement of any intellectual property. Khronos Group makes no, and expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification. Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Members or their respective partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with these materials.

Khronos, DevU, StreamInput, gITF, WebGL, WebCL, COLLADA, OpenKODE, OpenVG, OpenVX, OpenSL ES and OpenMAX are trademarks of the Khronos Group Inc. ASTC is a trademark of ARM Holdings PLC, OpenCL is a trademark of Apple Inc. and OpenGL is a registered trademark and the OpenGL ES and OpenGL SC logos are trademarks of Silicon Graphics International used under license by Khronos. All other product names, trademarks, and/or company names are used solely for identification and belong to their respective owners.

# **Contents**

| 1 | Intro | duction       |                                 | 2  |
|---|-------|---------------|---------------------------------|----|
|   | 1.1   | Abstrac       |                                 | 2  |
|   | 1.2   | Purpos        |                                 | 2  |
|   | 1.3   | Scope         | of Specification                | 2  |
|   | 1.4   | Normat        | ve References                   | 2  |
|   | 1.5   | Version       | Change History                  | 3  |
|   | 1.6   |               | ments Language                  | 3  |
|   | 1.7   |               | phical Conventions              | 3  |
|   |       | 1.7.1         | Naming Conventions              | 3  |
|   | 1.8   | Glossa        | y and Acronyms                  | 4  |
|   | 1.9   |               | ledgements                      | 4  |
|   |       | 7 101 11 10 1 |                                 | -  |
| 2 | Desi  | gn Over       | view                            | 6  |
|   | 2.1   | Softwar       | e Landscape                     | 6  |
|   | 2.2   | Design        | Objectives                      | 6  |
|   |       | 2.2.1         | Hardware Optimizations          | 7  |
|   |       | 2.2.2         | Hardware Limitations            | 7  |
|   | 2.3   | Assum         | tions                           | 7  |
|   |       | 2.3.1         | Portability                     | 7  |
|   |       | 2.3.2         | Opaqueness                      | 7  |
|   | 2.4   | Object-       | Oriented Behaviors              | 7  |
|   | 2.5   | •             | ( Framework Objects             | 7  |
|   | 2.6   |               | C Data Objects                  | 8  |
|   | 2.7   |               | pjects                          | 9  |
|   | 2.8   |               | Concepts                        | 9  |
|   |       | 2.8.1         | Linking Nodes                   | 9  |
|   |       | 2.8.2         | Virtual Data Objects            | 9  |
|   |       | 2.8.3         | Node Parameters                 | 10 |
|   |       | 2.8.4         | Graph Parameters                | 10 |
|   |       | 2.8.5         | Execution Model                 | 10 |
|   |       | 2.0.5         | Asynchronous Mode               | 10 |
|   |       | 2.8.6         | Graph Formalisms                | 10 |
|   |       |               | ·                               | 11 |
|   |       | 2.8.7         | Node Execution Independence     | 13 |
|   | 0.0   |               | Verification                    |    |
|   | 2.9   |               | (S                              | 13 |
|   | 2.10  |               | rnels                           | 13 |
|   |       | 2.10.1        | Parameter Validation            | 14 |
|   |       |               | The Meta Format Object          | 14 |
|   |       |               | Delta Rectangles                | 15 |
|   |       |               | User Kernels Naming Conventions | 15 |
|   |       |               | ate Mode Functions              | 15 |
|   | 2.12  |               | sion Functions                  | 15 |
|   |       |               | Inputs                          | 16 |
|   |       |               | Outputs                         | 18 |
|   | 2.13  | •             | 98                              | 19 |
|   |       |               | OpenVX Context Lifecycle        | 19 |
|   |       | 2 12 2        | Graph Lifecycle                 | 20 |

*CONTENTS* iii

|   |      | 2 1 2 2  | Data Object Lifecycle             | 20 |
|---|------|----------|-----------------------------------|----|
|   |      | 2.10.0   |                                   |    |
|   |      |          | OpenVX Image Lifecycle            | 21 |
|   | 2.14 |          | emory Data Object Access Patterns | 21 |
|   |      | 2.14.1   | Matrix Access Example             | 21 |
|   |      |          | Image Access Example              | 22 |
|   |      |          | Array Access Example              | 23 |
|   | 0.15 |          | ing OpenVX                        | 23 |
|   | 2.15 |          |                                   |    |
|   |      |          | Extending Attributes              | 23 |
|   |      | 2.15.2   | Vendor Custom Kernels             | 23 |
|   |      | 2.15.3   | Vendor Custom Extensions          | 24 |
|   |      | 2.15.4   | Hinting                           | 24 |
|   |      |          | Directives                        | 24 |
|   | 2 16 |          | Extensions to OpenVX              | 24 |
|   | 2.10 |          | ·                                 |    |
|   |      | 2.16.1   | User Kernel Tiling                | 24 |
| _ | NA1- | de Dee   |                                   | ٥- |
| 3 |      |          | umentation                        | 25 |
|   | 3.1  | Vision I | Functions                         | 25 |
|   |      | 3.1.1    | Detailed Description              | 25 |
|   | 3.2  | Absolut  | te Difference                     | 28 |
|   |      | 3.2.1    | Detailed Description              | 28 |
|   |      | 3.2.2    | Function Documentation            | 28 |
|   |      | 0.2.2    |                                   |    |
|   |      |          | vxAbsDiffNode                     | 28 |
|   |      |          | vxuAbsDiff                        | 28 |
|   | 3.3  | Accumi   | ulate                             | 29 |
|   |      | 3.3.1    | Detailed Description              | 29 |
|   |      | 3.3.2    | Function Documentation            | 29 |
|   |      |          | vxAccumulateImageNode             | 29 |
|   |      |          | vxuAccumulateImage                | 29 |
|   | 0.4  | Λ        |                                   |    |
|   | 3.4  |          | ulate Squared                     | 30 |
|   |      | 3.4.1    | Detailed Description              | 30 |
|   |      | 3.4.2    | Function Documentation            | 30 |
|   |      |          | vxAccumulateSquareImageNode       | 30 |
|   |      |          | vxuAccumulateSquareImage          | 30 |
|   | 3.5  | Accumi   | ulate Weighted                    | 32 |
|   | 0.0  | 3.5.1    | Detailed Description              | 32 |
|   |      |          | ·                                 |    |
|   |      | 3.5.2    | Function Documentation            | 32 |
|   |      |          | vxAccumulateWeightedImageNode     | 32 |
|   |      |          | vxuAccumulateWeightedImage        | 32 |
|   | 3.6  | Arithme  | etic Addition                     | 34 |
|   |      | 3.6.1    | Detailed Description              | 34 |
|   |      | 3.6.2    | Function Documentation            | 34 |
|   |      | 0.0.2    | vxAddNode                         | 34 |
|   |      |          |                                   |    |
|   |      |          | vxuAdd                            | 34 |
|   | 3.7  | Arithme  | etic Subtraction                  | 36 |
|   |      | 3.7.1    | Detailed Description              | 36 |
|   |      | 3.7.2    | Function Documentation            | 36 |
|   |      |          | vxSubtractNode                    | 36 |
|   |      |          | vxuSubtract                       | 36 |
|   | 3.8  | Ditwice  | AND                               | 38 |
|   | 3.0  |          |                                   |    |
|   |      | 3.8.1    | Detailed Description              | 38 |
|   |      | 3.8.2    | Function Documentation            | 38 |
|   |      |          | vxAndNode                         | 38 |
|   |      |          | vxuAnd                            | 38 |
|   | 3.9  | Ritwise  | EXCLUSIVE OR                      | 40 |
|   | 0.0  | 3.9.1    |                                   | 40 |
|   |      |          | Detailed Description              |    |
|   |      | 3.9.2    | Function Documentation            | 40 |
|   |      |          | vxXorNode                         | 40 |
|   |      |          | vxuXor                            | 40 |

*CONTENTS* iv

| 2 10                                    | Ditwice  | INCLUSIVE OR                   | 42 |
|-----------------------------------------|----------|--------------------------------|----|
| 3.10                                    |          |                                |    |
|                                         |          | Detailed Description           | 42 |
|                                         | 3.10.2   | Function Documentation         | 42 |
|                                         |          | vxOrNode                       | 42 |
|                                         |          | vxuOr                          | 42 |
| 0.11                                    | Diturios |                                | 44 |
| 3.11                                    |          | NOT                            |    |
|                                         |          | Detailed Description           | 44 |
|                                         | 3.11.2   | Function Documentation         | 44 |
|                                         |          | vxNotNode                      | 44 |
|                                         |          | vxuNot                         | 44 |
| 3 12                                    | Boy Filt | ter                            | 45 |
| 0.12                                    |          |                                | 45 |
|                                         |          | Detailed Description           |    |
|                                         | 3.12.2   | Function Documentation         | 45 |
|                                         |          | vxBox3x3Node                   | 45 |
|                                         |          | vxuBox3x3                      | 45 |
| 3.13                                    | Canny    | Edge Detector                  | 46 |
|                                         | -        | Detailed Description           | 46 |
|                                         |          |                                | 47 |
|                                         | 3.13.2   | Enumeration Type Documentation |    |
|                                         |          | vx_norm_type_e                 | 47 |
|                                         | 3.13.3   | Function Documentation         | 47 |
|                                         |          | vxCannyEdgeDetectorNode        | 47 |
|                                         |          | vxuCannyEdgeDetector           | 48 |
| 3 14                                    | Channe   | el Combine                     | 49 |
| • • • • • • • • • • • • • • • • • • • • |          | Detailed Description           | 49 |
|                                         |          | •                              | 49 |
|                                         | 3.14.2   | Function Documentation         |    |
|                                         |          | vxChannelCombineNode           | 49 |
|                                         |          | vxuChannelCombine              | 49 |
| 3.15                                    | Channe   | el Extract                     | 51 |
|                                         | 3.15.1   | Detailed Description           | 51 |
|                                         |          | Function Documentation         | 51 |
|                                         | 01.0.2   | vxChannelExtractNode           | 51 |
|                                         |          | vxuChannelExtract              | 51 |
| 0.40                                    | 0 1 0    |                                |    |
| 3.16                                    |          | Convert                        | 53 |
|                                         |          | Detailed Description           | 53 |
|                                         | 3.16.2   | Function Documentation         | 55 |
|                                         |          | vxColorConvertNode             | 55 |
|                                         |          | vxuColorConvert                | 55 |
| 2 17                                    | Conver   | t Bit depth                    | 57 |
| 3.17                                    |          | ·                              |    |
|                                         |          | Detailed Description           | 57 |
|                                         | 3.17.2   | Function Documentation         | 57 |
|                                         |          | vxConvertDepthNode             | 57 |
|                                         |          | vxuConvertDepth                | 58 |
| 3.18                                    | Custon   | n Convolution                  | 59 |
|                                         | 3.18.1   | Detailed Description           | 59 |
|                                         |          | Function Documentation         | 59 |
|                                         | 0.10.2   | vxConvolveNode                 |    |
|                                         |          |                                | 59 |
|                                         |          | vxuConvolve                    | 60 |
| 3.19                                    |          | mage                           | 61 |
|                                         | 3.19.1   | Detailed Description           | 61 |
|                                         |          | Function Documentation         | 61 |
|                                         |          | vxDilate3x3Node                | 61 |
|                                         |          | vxuDilate3x3                   | 61 |
| 2 00                                    | Equali-  |                                |    |
| 3.20                                    | •        | re Histogram                   | 62 |
|                                         |          | Detailed Description           | 62 |
|                                         | 3.20.2   | Function Documentation         | 62 |
|                                         |          | vxEqualizeHistNode             | 62 |
|                                         |          | vxuEqualizeHist                | 62 |
| 3.21                                    | Erode I  | lmage                          |    |
| U I                                     |          |                                | 50 |

CONTENTS

|      |          | Detailed Description   |    |
|------|----------|------------------------|----|
|      | 3.21.2   | Function Documentation | 63 |
|      |          | vxErode3x3Node         | 63 |
|      |          | vxuErode3x3            | 63 |
| 3.22 | Fast Co  | orners                 | 64 |
|      | 3.22.1   | Detailed Description   | 64 |
|      | 3.22.2   | Segment Test Detector  | 64 |
|      | 3.22.3   | Function Documentation | 65 |
|      |          | vxFastCornersNode      |    |
|      |          | vxuFastCorners         |    |
| 3.23 | Gaussi   | an Filter              |    |
|      |          | Detailed Description   |    |
|      |          | Function Documentation |    |
|      |          | vxGaussian3x3Node      |    |
|      |          | vxuGaussian3x3         |    |
| 3.24 | Harris ( | Corners                |    |
|      |          | Detailed Description   |    |
|      |          | Function Documentation |    |
|      | 0.2 1.2  | vxHarrisCornersNode    |    |
|      |          | vxuHarrisCorners       |    |
| 3 25 | Hietoar  | ram                    |    |
| 5.25 |          | Detailed Description   |    |
|      |          | Function Documentation |    |
|      | 3.23.2   | vxHistogramNode        |    |
|      |          |                        |    |
| 0.00 | Coupoi   | vxuHistogram           |    |
| 3.20 |          |                        |    |
|      |          | Detailed Description   |    |
|      | 3.26.2   | Function Documentation |    |
|      |          | vxGaussianPyramidNode  |    |
| 0.07 |          | vxuGaussianPyramid     |    |
| 3.27 |          | I Image                |    |
|      |          | Detailed Description   |    |
|      | 3.27.2   | Function Documentation |    |
|      |          | vxIntegralImageNode    |    |
|      |          | vxuIntegralImage       |    |
| 3.28 | •        | ude                    |    |
|      |          | Detailed Description   |    |
|      | 3.28.2   | Function Documentation |    |
|      |          | vxMagnitudeNode        |    |
|      |          | vxuMagnitude           |    |
| 3.29 | Mean a   | and Standard Deviation |    |
|      | 3.29.1   | Detailed Description   | 78 |
|      | 3.29.2   | Function Documentation | 78 |
|      |          | vxMeanStdDevNode       | 78 |
|      |          | vxuMeanStdDev          | 78 |
| 3.30 | Median   | n Filter               | 80 |
|      | 3.30.1   | Detailed Description   | 80 |
|      | 3.30.2   | Function Documentation | 80 |
|      |          | vxMedian3x3Node        | 80 |
|      |          | vxuMedian3x3           | 80 |
| 3.31 | Min, Ma  | ax Location            | 81 |
|      |          | Detailed Description   |    |
|      |          | Function Documentation |    |
|      |          | vxMinMaxLocNode        |    |
|      |          | vxuMinMaxLoc           |    |
| 3.32 | Optical  | Flow Pyramid (LK)      |    |
|      |          | Detailed Description   |    |
|      |          | Function Documentation | 84 |

*CONTENTS* vi

|      |          | vxOpticalFlowPyrLKNode         |
|------|----------|--------------------------------|
|      |          | vxuOpticalFlowPyrLK            |
| 3.33 | Phase    | 87                             |
|      | 3.33.1   | Detailed Description           |
|      | 3.33.2   | Function Documentation         |
|      |          | vxPhaseNode                    |
|      |          | vxuPhase                       |
| 2 24 | Divol w  | ise Multiplication             |
| 3.34 |          |                                |
|      | 3.34.1   | Detailed Description           |
|      | 3.34.2   | Function Documentation         |
|      |          | vxMultiplyNode                 |
|      |          | vxuMultiply                    |
| 3.35 | Remap    | 91                             |
|      | 3.35.1   | Detailed Description           |
|      | 3.35.2   | Function Documentation         |
|      |          | vxRemapNode                    |
|      |          | vxuRemap                       |
| 3 36 | Scale II | mage                           |
| 0.00 | 3.36.1   | Detailed Description           |
|      |          | ·                              |
|      | 3.36.2   | Function Documentation         |
|      |          | vxScaleImageNode               |
|      |          | vxHalfScaleGaussianNode        |
|      |          | vxuScaleImage                  |
|      |          | vxuHalfScaleGaussian           |
| 3.37 | Sobel 3  | x3                             |
|      | 3.37.1   | Detailed Description           |
|      | 3.37.2   | Function Documentation         |
|      | 0.07.12  | vxSobel3x3Node                 |
|      |          | vxuSobel3x3                    |
| 2 20 | Tablal   |                                |
| 3.30 |          | •                              |
|      | 3.38.1   | Detailed Description           |
|      | 3.38.2   | Function Documentation         |
|      |          | vxTableLookupNode              |
|      |          | vxuTableLookup                 |
| 3.39 | Thresh   | olding                         |
|      | 3.39.1   | Detailed Description           |
|      | 3.39.2   | Function Documentation         |
|      |          | vxThresholdNode                |
|      |          | vxuThreshold                   |
| 3 40 | Warp A   |                                |
| 0.40 |          | Detailed Description           |
|      |          | Function Documentation         |
|      | 3.40.2   |                                |
|      |          | vxWarpAffineNode               |
|      |          | vxuWarpAffine                  |
| 3.41 | Warp P   | erspective                     |
|      | 3.41.1   | Detailed Description           |
|      | 3.41.2   | Function Documentation         |
|      |          | vxWarpPerspectiveNode          |
|      |          | vxuWarpPerspective             |
| 3.42 | Basic F  | eatures                        |
| J    | 3.42.1   | Detailed Description           |
|      | 3.42.2   | Data Structure Documentation   |
|      | 3.42.2   |                                |
|      |          | struct vx_coordinates2d_t      |
|      |          | struct vx_coordinates3d_t      |
|      |          | struct vx_delta_rectangle_t    |
|      |          | struct vx_keypoint_t           |
|      |          | struct vx_rectangle_t          |
|      | 3.42.3   | Macro Definition Documentation |

*CONTENTS* vii

|      |         | VX_VERSION_MAJOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      |         | VX_VERSION_MINOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 |
|      |         | VX_VERSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13 |
|      |         | VX_TYPE_MASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _  |
|      | 0.40.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      | 3.42.4  | Alternative and a service of the ser | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |
|      | 3.42.5  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 |
|      |         | vx_bool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14 |
|      |         | vx_type_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 |
|      |         | vx_status_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|      | 0.40.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 |
|      | 3.42.6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |
| 3.43 | Objects |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 |
|      |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 |
| 3.44 | Object: | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22 |
|      | 3.44.1  | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 |
|      | 3.44.2  | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 |
|      |         | vx_reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 |
|      | 3.44.3  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|      |         | vx_reference_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|      | 3 44 4  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|      | 0.44.4  | vxQueryReference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 0 4E | Objects | Context                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| 3.45 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|      |         | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|      |         | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|      |         | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 |
|      | 3.45.3  | Z1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25 |
|      |         | vx_context_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 |
|      |         | vx_import_type_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 |
|      |         | vx_termination_criteria_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26 |
|      |         | vx accessor e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 |
|      |         | vx round policy e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 |
|      | 3.45.4  | <i>-</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29 |
|      |         | <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _  |
| 0.40 | Olete   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |
| 3.46 | -       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 |
|      |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 |
|      | 3.46.2  | - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32 |
|      |         | =0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 |
|      | 3.46.3  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 |
|      |         | vx_graph_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 |
|      | 3.46.4  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 |
|      |         | vxCreateGraph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32 |

*CONTENTS* viii

|      |         | vxReleaseGraph                        |
|------|---------|---------------------------------------|
|      |         | vxVerifyGraph                         |
|      |         | vxProcessGraph                        |
|      |         | vxScheduleGraph                       |
|      |         | vxWaitGraph                           |
|      |         | vxQueryGraph                          |
|      |         | vxSetGraphAttribute                   |
|      |         | vxlsGraphVerified                     |
| 2 47 | Object: | Node                                  |
| 3.47 | 3.47.1  |                                       |
|      |         | · · · · · · · · · · · · · · · · · · · |
|      | 3.47.2  | Typedef Documentation                 |
|      |         | vx_node                               |
|      | 3.47.3  | Enumeration Type Documentation        |
|      |         | vx_node_attribute_e                   |
|      | 3.47.4  | Function Documentation                |
|      |         | vxQueryNode                           |
|      |         | vxSetNodeAttribute                    |
|      |         | vxReleaseNode                         |
|      |         | vxRemoveNode                          |
| 3.48 | Object: | Array                                 |
| 0    | 3.48.1  | •                                     |
|      |         | Macro Definition Documentation        |
|      | 0.40.2  | vxFormatArrayPointer                  |
|      |         |                                       |
|      | 0.40.0  |                                       |
|      | 3.48.3  | Enumeration Type Documentation        |
|      |         | vx_array_attribute_e                  |
|      | 3.48.4  | Function Documentation                |
|      |         | vxCreateArray                         |
|      |         | vxCreateVirtualArray                  |
|      |         | vxReleaseArray                        |
|      |         | vxQueryArray                          |
|      |         | vxAddArrayItems                       |
|      |         | vxTruncateArray                       |
|      |         | vxAccessArrayRange                    |
|      |         | vxCommitArrayRange                    |
| 3 49 | Object: | Convolution                           |
| 0.40 | •       | Detailed Description                  |
|      |         | Enumeration Type Documentation        |
|      | 3.43.2  | •                                     |
|      | 0.40.0  | vx_convolution_attribute_e            |
|      | 3.49.3  | Function Documentation                |
|      |         | vxCreateConvolution                   |
|      |         | vxReleaseConvolution                  |
|      |         | vxQueryConvolution                    |
|      |         | vxSetConvolutionAttribute             |
|      |         | vxReadConvolutionCoefficients         |
|      |         | vxWriteConvolutionCoefficients        |
| 3.50 | Object: | Distribution                          |
|      | 3.50.1  | Detailed Description                  |
|      | 3.50.2  | Enumeration Type Documentation        |
|      |         | vx_distribution_attribute_e           |
|      | 3.50.3  | Function Documentation                |
|      | 5.55.0  | vxCreateDistribution                  |
|      |         |                                       |
|      |         |                                       |
|      |         | vxQueryDistribution                   |
|      |         | vxAccessDistribution                  |
|      |         | vxCommitDistribution                  |
| 3.51 |         | Image                                 |
|      | 3.51.1  | Detailed Description                  |

*CONTENTS* ix

|      | 3.51.2  | Data Structure Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54       |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      |         | struct vx imagepatch addressing t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 3.51.3  | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      |         | vx_image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|      | 3 51 4  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|      | 0.01.1  | vx_image_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      |         | vx_color_space_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 0.54.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 3.51.5  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      |         | vxCreateImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|      |         | vxCreateImageFromROI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      |         | vxCreateUniformImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      |         | vxCreateVirtualImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      |         | vxCreateImageFromHandle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59       |
|      |         | vxQueryImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59       |
|      |         | vxSetImageAttribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60       |
|      |         | vxReleaseImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60       |
|      |         | vxComputeImagePatchSize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61       |
|      |         | vxAccessImagePatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61       |
|      |         | vxCommitImagePatch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      |         | vxFormatlmagePatchAddress1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        |
|      |         | vxFormatImagePatchAddress2d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      |         | vxGetValidRegionImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 0.50 | Objects | LUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 3.52 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |         | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | 3.52.2  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|      |         | vx_lut_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      | 3.52.3  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      |         | vxCreateLUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      |         | vxReleaseLUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      |         | vxQueryLUT 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72       |
|      |         | vxAccessLUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72       |
|      |         | vxCommitLUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74       |
| 3.53 | Object: | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75       |
|      |         | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75       |
|      |         | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _        |
|      | 0.00.2  | vx_matrix_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      | 3 53 3  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      | 0.00.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76<br>76 |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77       |
| 3.54 | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78       |
|      |         | The state of the s | 78       |
|      | 3.54.2  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79       |
|      |         | vx_pyramid_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79       |
|      | 3.54.3  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79       |
|      |         | vxCreatePyramid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81       |
| 3 55 | Object  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82       |
| 0.00 | -       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o∠<br>82 |
|      |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 3.55.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82       |
|      |         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82       |
|      | 3.55.3  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ძპ       |

*CONTENTS* x

|      |                            | WCreatePemen 199                                                                                                                                                                                                                                                                                                                                                                                          |
|------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                            | vxCreateRemap                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                            | vxReleaseRemap                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                            | vxSetRemapPoint                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | vxGetRemapPoint                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | vxQueryRemap                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.56 | Ohiooti                    |                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.56 |                            |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 3.56.2                     | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                            | vx_scalar                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 3.56.3                     | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                            |
|      | 0.00.0                     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 0.50.4                     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 3.56.4                     | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                            | vxCreateScalar                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                            | vxReleaseScalar                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | vxQueryScalar                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                            | vxReadScalarValue                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                            |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | vxWriteScalarValue                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.57 | •                          | Threshold                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | 3.57.1                     | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 3.57.2                     | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                            |
|      |                            | vx_threshold_type_e                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                            | vx_threshold_attribute_e                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 0.57.0                     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 3.57.3                     | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                            | vxCreateThreshold                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                            | vxReleaseThreshold                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                            | vxSetThresholdAttribute                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                            | vxQueryThreshold                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 58 | Admini                     | strative Features                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.00 |                            | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.50 |                            | ·                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.59 |                            | eed Objects                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                            | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.60 | Object:                    | Array (Advanced)                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 3.60.1                     | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                            | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                            | vxRegisterUserStruct                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.61 | Ohiooti                    | Node (Advanced)                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.61 | •                          |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 3.61.2                     | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                            | vxCreateGenericNode                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.62 | Node: I                    | Border Modes                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                            | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                            | Data Structure Documentation                                                                                                                                                                                                                                                                                                                                                                              |
|      | 3.02.2                     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                            | struct vx_border_mode_t                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 3.62.3                     | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                            |
|      |                            | vx_border_mode_e                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.63 | Object                     |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | Object:                    | Delay                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                            |                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 3.63.1                     | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 3.63.1                     | Detailed Description       197         Typedef Documentation       197                                                                                                                                                                                                                                                                                                                                    |
|      | 3.63.1<br>3.63.2           | Detailed Description197Typedef Documentation197vx_delay197                                                                                                                                                                                                                                                                                                                                                |
|      | 3.63.1<br>3.63.2           | Detailed Description197Typedef Documentation197vx_delay197Enumeration Type Documentation197                                                                                                                                                                                                                                                                                                               |
|      | 3.63.1<br>3.63.2           | Detailed Description197Typedef Documentation197vx_delay197                                                                                                                                                                                                                                                                                                                                                |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description197Typedef Documentation197vx_delay197Enumeration Type Documentation197                                                                                                                                                                                                                                                                                                               |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description197Typedef Documentation197vx_delay197Enumeration Type Documentation197vx_delay_attribute_e197Function Documentation198                                                                                                                                                                                                                                                               |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description       197         Typedef Documentation       197         vx_delay       197         Enumeration Type Documentation       197         vx_delay_attribute_e       197         Function Documentation       198         vxQueryDelay       198                                                                                                                                         |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description       197         Typedef Documentation       197         vx_delay       197         Enumeration Type Documentation       197         vx_delay_attribute_e       197         Function Documentation       198         vxQueryDelay       198         vxReleaseDelay       199                                                                                                        |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description       197         Typedef Documentation       197         vx_delay       197         Enumeration Type Documentation       197         vx_delay_attribute_e       197         Function Documentation       198         vxQueryDelay       198         vxReleaseDelay       199         vxCreateDelay       199                                                                        |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description       197         Typedef Documentation       197         vx_delay       197         Enumeration Type Documentation       197         vx_delay_attribute_e       197         Function Documentation       198         vxQueryDelay       198         vxReleaseDelay       199         vxCreateDelay       199         vxGetReferenceFromDelay       199                              |
|      | 3.63.1<br>3.63.2<br>3.63.3 | Detailed Description       197         Typedef Documentation       197         vx_delay       197         Enumeration Type Documentation       197         vx_delay_attribute_e       197         Function Documentation       198         vxQueryDelay       198         vxReleaseDelay       199         vxCreateDelay       199         vxGetReferenceFromDelay       199         vxAgeDelay       200 |

*CONTENTS* xi

|      | 3.64.1  | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01       |
|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | 3.64.2  | Data Structure Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03       |
|      |         | struct vx_kernel_info_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03       |
|      | 3.64.3  | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03       |
|      |         | vx_kernel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03       |
|      | 3.64.4  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03       |
|      |         | vx_kernel_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      |         | vx_kernel_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      | 3.64.5  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      |         | vxGetKernelByName                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      |         | vxGetKernelByEnum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      |         | vxQueryKernel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
|      |         | vxReleaseKernel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 3 65 | Object: | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 5.05 | -       | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      |         | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      | 3.03.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 0.05.0  | vx_parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|      | 3.65.3  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|      |         | vx_direction_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|      |         | vx_parameter_attribute_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|      |         | vx_parameter_state_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | 3.65.4  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|      |         | vxGetKernelParameterByIndex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      |         | vxGetParameterByIndex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      |         | vxReleaseParameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|      |         | vxSetParameterByIndex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      |         | vxSetParameterByReference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15       |
|      |         | vxQueryParameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16       |
| 3.66 | Advanc  | ed Framework API                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17       |
|      | 3.66.1  | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17       |
| 3.67 | Framew  | vork: Node Callbacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18       |
|      |         | Detailed Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      |         | Typedef Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|      |         | vx_action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|      |         | vx_nodecomplete_f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 3 67 3  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|      | 0.07.0  | vx_action_e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      | 3 67 4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>20 |
|      | 3.07.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>20 |
|      |         | <b>3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _        |
| 0.60 | Framou  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>22 |
| 3.00 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       |
|      | 3.68.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       |
|      | 3.68.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       |
|      | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       |
| 3.69 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23       |
|      | 3.69.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23       |
|      | 3.69.2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23       |
|      |         | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23       |
| 3.70 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25       |
|      |         | The second secon | 25       |
|      | 3.70.2  | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25       |
|      | 3.70.3  | Function Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25       |
|      |         | vxHint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25       |
| 3.71 | Framew  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27       |
|      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27       |
|      |         | Enumeration Type Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |

CONTENTS 1

|      |        | vx_directive_e                 | :7 |
|------|--------|--------------------------------|----|
|      | 3.71.3 | Function Documentation         | :7 |
|      |        | vxDirective                    | 7  |
| 3.72 | Framev | vork: User Kernels             | 9  |
|      | 3.72.1 | Detailed Description           | 9  |
|      | 3.72.2 | Typedef Documentation          | 1  |
|      |        | vx_meta_format                 | 1  |
|      |        | vx_publish_kernels_f           | 1  |
|      |        | vx_kernel_f                    | 1  |
|      |        | vx_kernel_initialize_f         | 1  |
|      |        | vx_kernel_deinitialize_f       | 2  |
|      |        | vx_kernel_input_validate_f     | 2  |
|      |        | vx_kernel_output_validate_f    | 2  |
|      | 3.72.3 | Enumeration Type Documentation |    |
|      |        | vx_meta_format_attribute_e     | 3  |
|      | 3.72.4 | Function Documentation         | 3  |
|      |        | vxLoadKernels                  | 3  |
|      |        | vxAddKernel                    |    |
|      |        | vxFinalizeKernel               | 4  |
|      |        | vxAddParameterToKernel         | 4  |
|      |        | vxRemoveKernel                 | 5  |
|      |        | vxSetKernelAttribute           |    |
|      |        | vxSetMetaFormatAttribute       | 6  |
| 3.73 | Framev | vork: Graph Parameters         | 8  |
|      | 3.73.1 | Detailed Description           |    |
|      | 3.73.2 | Function Documentation         | 9  |
|      |        | vxAddParameterToGraph          | 9  |
|      |        | vxSetGraphParameterByIndex     |    |
|      |        | vxGetGraphParameterByIndex     |    |

## **Chapter 1**

## Introduction

#### 1.1 Abstract

OpenVX is a low-level programming framework domain to enable software developers to efficiently access computer vision hardware acceleration with both functional and performance portability. OpenVX has been designed to support modern hardware architectures, such as mobile and embedded SoCs as well as desktop systems. Many of these systems are parallel and heterogeneous: containing multiple processor types including multi-core CPUs, DSP subsystems, GPUs, dedicated vision computing fabrics as well as hardwired functionality. Additionally, vision system memory hierarchies can often be complex, distributed, and not fully coherent. OpenVX is designed to maximize functional and performance portability across these diverse hardware platforms, providing a computer vision framework that efficiently addresses current and future hardware architectures with minimal impact on applications.

OpenVX contains:

- · a library of predefined and customizable vision functions,
- a graph-based execution model to combine function enabling both task and data-independent execution, and;
- · a set of memory objects that abstract the physical memory.

OpenVX defines a C Application Programming Interface (API) for building, verifying, and coordinating graph execution, as well as for accessing memory objects. The graph abstraction enables OpenVX implementers to optimize the execution of the graph for the underlying acceleration architecture.

OpenVX also defines the vxu utility library, which exposes each OpenVX predefined function as a directly callable C function, without the need for first creating a graph. Applications built using the vxu library do not benefit from the optimizations enabled by graphs; however, the vxu library can be useful as the simplest way to use OpenVX and as first step in porting existing vision applications.

As the computer vision domain is still rapidly evolving, OpenVX provides an extensibility mechanism to enable developer-defined functions to be added to the application graph.

## 1.2 Purpose

The purpose of this document is to detail the Application Programming Interface (API) for OpenVX.

### 1.3 Scope of Specification

The document contains the definition of the OpenVX API. The conformance tests that are used to determine whether an implementation is consistent to this specification are defined separately.

#### 1.4 Normative References

The section "Module Documentation" forms the normative part of the specification. Each API definition provided in that chapter has certain preconditions and post conditions specified that are normative. If these normative conditions are not met, the behavior of the function is undefined.

### 1.5 Version/Change History

- · OpenVX 1.0 Provisional November, 2013
- · OpenVX 1.0 Provisional V2 June, 2014
- OpenVX 1.0 September 2014
- OpenVX 1.0.1 April 2015

### 1.6 Requirements Language

In this specification, the words *shall* or *must* express a requirement that is binding, *should* expresses design goals or recommended actions, and *may* expresses an allowed behavior.

## 1.7 Typographical Conventions

The following typographical conventions are used in this specification.

- Bold words indicate warnings or strongly communicated concepts that are intended to draw attention to the text.
- Monospace words signify an API element (i.e., class, function, structure) or a filename.
- Italics denote an emphasis on a particular concept, an abstraction of a concept, or signify an argument, parameter, or member.
- Throughout this specification, code examples given to highlight a particular issue use the format as shown below:

```
• /* Example Code Section */
int main(int argc, char *argv[])
{
   return 0;
}
```

• Some "mscgen" message diagrams are included in this specification. The graphical conventions for this tool can be found on its website.

See also

```
http://www.mcternan.me.uk/mscgen/
```

#### 1.7.1 Naming Conventions

The following naming conventions are used in this specification.

- Opaque objects and atomics are named as vx\_object, e.g., vx\_image or vx\_uint8, with an underscore separating the object name from the "vx" prefix.
- Defined Structures are named as vx\_struct\_t, e.g., vx\_imagepatch\_addressing\_t, with underscores separating the structure from the "vx" prefix and a "t" to denote that it is a structure.
- Defined Enumerations are named as vx\_enum\_e, e.g., vx\_type\_e, with underscores separating the enumeration from the "vx" prefix and an "e" to denote that it is an enumerated value.
- Application Programming Interfaces are named vxsomeFunction() using camel case, starting with lower-case, and no underscores, e.g., vxCreateContext().
- Vision functions also have a naming convention that follows a lower-case, inverse dotted hierarchy similar to Java Packages, e.g.,

```
"org.khronos.openvx.color_convert".
```

This minimizes the possibility of name collisions and promotes sorting and readability when querying the namespace of available vision functions. Each vision function should have a unique dotted name of the style: *tld.vendor.library.function*. The hierarchy of such vision function namespaces is undefined outside the subdomain "org.khronos", but they do follow existing international standards. For OpenVX-specified vision functions, the "function" section of the unique name does not use camel case and uses underscores to separate words.

## 1.8 Glossary and Acronyms

- Atomic: The specification mentions *atomics*, which means a C primitive data type. Usages that have additional wording, such as *atomic operations* do not carry this meaning.
- · API: Application Programming Interface that specifies how a software component interacts with another.
- Framework: A generic software abstraction in which users can override behaviors to produce applicationspecific functionality.
- Engine: A purpose-specific software abstraction that is tunable by users.
- · Run-time: The execution phase of a program.
- Kernel: OpenVX uses the term kernel to mean an abstract computer vision function, not an Operating System kernel. Kernel may also refer to a set of convolution coefficients in some computer vision literature (e.g., the Sobel "kernel"). OpenVX does not use this meaning. OpenCL uses kernel (specifically cl\_kernel) to qualify a function written in "CL" which the OpenCL may invoke directly. This is close to the meaning OpenVX uses; however, OpenVX does not define a language.

## 1.9 Acknowledgements

This specification would not be possible without the contributions from this partial list of the following individuals from the Khronos Working Group and the companies that they represented at the time:

- · Erik Rainey Amazon
- Susheel Gautam QUALCOMM
- · Victor Erukhimov Itseez
- Doug Knisely QUALCOMM
- · Frank Brill Samsung
- · Kari Pulli NVIDIA
- Thierry Lepley NVIDIA
- Neil Trevett NVIDIA
- Tomer Schwartz Broadcom Corporation
- Shervin Emami NVIDIA
- · Olivier Pothier STMicroelectronics International NV
- Andy Kuzma Intel
- Mostafa Hagog Intel
- · Shorin Kyo Huawei
- · Renato Grottesi ARM Limited
- · Dave Schreiner ARM Limited
- Chris Tseng Texas Instruments, Inc.

- Daniel Laroche CogniVue Corporation
- Andrew Garrard Samsung Electronics
- Tomer Yanir Samsung Electronics
- Erez Natan Samsung Electronics
- Chang-Hyo Yu Samsung Electronics
- · Hans-Peter Nilsson Axis Communications
- Stephen Neuendorffer Xilinx, Inc.
- · Amit Shoham BDTi
- Paul Buxton Imagination Technologies
- Yuki Kobayashi Renesas Electronics
- · Cormac Brick Movidius Ltd
- Mikael Bourges-Sevenier Aptina Imaging Corporation
- Tao Zhang QUALCOMM
- Jesse Villareal Texas Instruments, Inc.
- · Vadim Pisarevsky Itseez
- Andrey Kamaev Itseez
- Vlad Vinogradov Itseez
- · Roman Donchenko Itseez
- · Alexander Alekhin Itseez
- Radha Giduthuri AMD
- Xin Wang Vivante Corporation
- · Anshu Arya MulticoreWare

## **Chapter 2**

# **Design Overview**

## 2.1 Software Landscape

OpenVX is intended to be used either directly by applications or as the acceleration layer for higher-level vision frameworks, engines or platform APIs.



Figure 2.1: OpenVX Usage Overview

## 2.2 Design Objectives

OpenVX is designed as a framework of standardized computer vision functions able to run on a wide variety of platforms and potentially to be accelerated by a vendor's implementation on that platform. OpenVX can improve the

performance and efficiency of vision applications by providing an abstraction for commonly-used vision functions and an abstraction for aggregations of functions (a "graph"), thereby providing the implementer the opportunity to minimize the run-time overhead.

The functions in OpenVX 1.0 are intended to cover common functionality required by many vision applications.

#### 2.2.1 Hardware Optimizations

This specification makes no statements as to which acceleration methodology or techniques may be used in its implementation. Vendors may choose any number of implementation methods such as parallelism and/or specialized hardware offload techniques.

This specification also makes no statement or requirements on a "level of performance" as this may vary significantly across platforms and use cases.

#### 2.2.2 Hardware Limitations

The OpenVX 1.0 focuses on vision functions that can be significantly accelerated by diverse hardware. Future versions of this specification may adopt additional vision functions into the core standard when hardware acceleration for those functions becomes practical.

### 2.3 Assumptions

#### 2.3.1 Portability

OpenVX 1.0 has been designed to maximize functional and performance portability wherever possible, while recognizing that the API is intended to be used on a wide diversity of devices with specific constraints and properties. Tradeoffs are made for portability where possible: for example, portable Graphs constructed using this API should work on any OpenVX implementation and return similar results within the precision bounds defined by the OpenVX conformance tests.

#### 2.3.2 Opaqueness

To avoid forcing hardware-specific requirements onto any particular implementation, the API is designed to be opaque.

OpenVX is intended to address a very broad range of devices and platforms - from deeply embedded systems to desktop machines, and even distributed computing architectures.

The range of implementations is quite discreet, and as such, the API shall only address all these spaces through opaqueness.

All data, except client-facing structures, are opaque and hidden behind a reference that may be as thin or thick as an implementation needs. Each implementation provides the standardized interfaces for accessing data that takes care of specialized hardware, platform, or allocation requirements. Memory that is *imported* or *shared* from other APIs is not subsumed by OpenVX and is still maintained and accessible by the originator.

OpenVX does not dictate any requirements on memory allocation methods or the layout of opaque memory objects and it does not dictate byte packing or alignment for structures on architectures.

## 2.4 Object-Oriented Behaviors

OpenVX objects are both strongly typed at compile-time for safety critical applications and are strongly typed at run-time for dynamic applications. Each object has its typedef'd type and its associated enumerated value in the vx\_type\_e list. Any object may be down-cast to a vx\_reference safely to be used in functions that require this, specifically vxQueryReference, which can be used to get the vx\_type\_e value using an vx\_enum.

### 2.5 OpenVX Framework Objects

This specification defines the following OpenVX framework objects.

- Object: Context The OpenVX context is the object domain for all OpenVX objects. All data objects live in the
  context as well as all framework objects. The OpenVX context keeps reference counts on all objects and must
  do garbage collection during its deconstruction to free lost references. While multiple clients may connect to
  the OpenVX context, all data are private in that the references that refer to data objects are given only to the
  creating party. The results of calling an OpenVX function on data objects created in different contexts are
  undefined.
- Object: Kernel A Kernel in OpenVX is the abstract representation of a computer vision function, such as
  a "Sobel Gradient" or "Lucas Kanade Feature Tracking". A vision function may implement many similar or
  identical features from other functions, but it is still considered a single, unique kernel as long as it is named
  by the same string and enumeration and conforms to the results specified by OpenVX. Kernels are similar to
  function signatures in this regard.
- Object: Parameter An abstract input, output, or bidirectional data object passed to a computer vision function. This object contains the signature of that parameter's usage from the kernel description. This information includes:
  - Signature Index The numbered index of the parameter in the signature.
  - Object Type e.g. VX\_TYPE\_IMAGE, or VX\_TYPE\_ARRAY, or some other object type from vx\_← type\_e.
  - Usage Model e.g. VX\_INPUT, VX\_OUTPUT, or VX\_BIDIRECTIONAL.
  - Presence State e.g. VX\_PARAMETER\_STATE\_REQUIRED, or VX\_PARAMETER\_STATE\_OPT

    IONAL.
- Object: Node A node is an instance of a kernel that will be paired with a specific set of references (the parameters). Nodes are created from and associated with a single graph only. When a vx\_parameter is extracted from a Node, an additional attribute can be accessed:
  - Reference The vx\_reference assigned to this parameter index from the Node creation function (e.g., vxSobel3x3Node).
- Object: Graph A set of nodes connected in a directed (only goes one-way) acyclic (does not loop back) fashion. A Graph may have sets of Nodes that are unconnected to other sets of Nodes within the same Graph. See Graph Formalisms.

#### 2.6 OpenVX Data Objects

Data objects are object that are processed by graphs in nodes.

- Object: Array An opaque array object that could be an array of primitive data types or an array of structures.
- Object: Convolution An opaque object that contains MxN matrix of vx\_int16 values. Also contains a scaling factor for normalization. Used specifically with vxuConvolve and vxConvolveNode.
- Object: Delay An opaque object that contains a manually controlled, temporally-delayed list of objects.
- · Object: Distribution An opaque object that contains a frequency distribution (e.g., a histogram).
- Object: Image An opaque image object that may be some format in vx\_df\_image\_e.
- Object: LUT An opaque lookup table object used with vxTableLookupNode and vxuTableLookup.
- Object: Matrix An opaque object that contains MxN matrix of some scalar values.
- Object: Pyramid An opaque object that contains multiple levels of scaled vx\_image objects.
- Object: Remap An opaque object that contains the map of source points to destination points used to transform images.
- Object: Scalar An opaque object that contains a single primitive data type.
- Object: Threshold An opaque object that contains the thresholding configuration.

### 2.7 Error Objects

Error objects are specialized objects that may be returned from other object creator functions when serious platform issue occur (i.e., out of memory or out of handles). These can be checked at the time of creation of these objects, but checking also may be put-off until usage in other APIs or verification time, in which case, the implementation must return appropriate errors to indicate that an invalid object type was used.

```
vx_<object> obj = vxCreate<Object>(context, ...);
vx_status status = vxGetStatus((vx_reference)obj);
if (status == VX_SUCCESS) {
    // object is good
}
```

## 2.8 Graphs Concepts

The *graph* is the central computation concept of OpenVX. The purpose of using graphs to express the Computer Vision problem is to allow for the possibility of any implementation to maximize its optimization potential because all the operations of the graph and its dependencies are known ahead of time, before the graph is processed.

Graphs are composed of one or more *nodes* that are added to the graph through node creation functions. Graphs in OpenVX must be created ahead of processing time and verified by the implementation, after which they can be processed as many times as needed.

#### 2.8.1 Linking Nodes

Graph Nodes are linked together via data dependencies with *no explicitly-stated ordering*. The same reference may be linked to other nodes. Linking has a limitation, however, in that only one node in a graph may output to any specific data object reference. That is, only a single writer of an object may exist in a given graph. This prevents indeterminate ordering from data dependencies. All writers in a graph shall produce output data before any reader of that data accesses it.

#### 2.8.2 Virtual Data Objects

Graphs in OpenVX depend on data objects to link together nodes. When clients of OpenVX know that they do not need access to these *intermediate* data objects, they may be created as virtual. Virtual data objects can be used in the same manner as non-virtual data objects to link nodes of a graph together; however, virtual data objects are different in the following respects.

- Inaccessible No calls to an Access/Commit API shall succeed given a reference to an object created through
  a virtual create function from a Graph external perspective. Calls to Access/Commit from within clientdefined functions may succeed as they are Graph internal.
- Dimensionless or Formatless Virtual data objects may be declared to have no dimensions or format and they may return zeros or generic values for formats when queried.
- Scoped Virtual data objects are scoped within the Graph in which they are created; they cannot be shared outside their scope.
- Intermediates Virtual data objects should be used only for intermediate operations within Graphs, because
  they are fundamentally inaccessible to clients of the API.
- Optimizations Virtual data objects do not have to be created during Graph validation and execution and therefore may be of zero *size*.

These restrictions enable vendors the ability to optimize some aspects of the data object or its usage. Some vendors may not allocate such objects, some may create intermediate sub-objects of the object, and some may allocate the object on remote, inaccessible memories. OpenVX does not proscribe *which* optimization the vendor does, merely that it *may* happen.

#### 2.8.3 Node Parameters

Parameters to node creation functions are defined as either atomic types, such as  $vx\_int32$ ,  $vx\_enum$ , or as objects, such as  $vx\_scalar$ ,  $vx\_image$ . The atomic variables of the Node creation functions shall be converted by the framework into  $vx\_scalar$  references for use by the Nodes. A node parameter of type  $vx\_scalar$  can be changed during the graph execution; whereas, a node parameter of an atomic type ( $vx\_int32$  etc.) require at least a graph revalidation if changed. All node parameter objects may be modified by retrieving the reference to the  $vx\_parameter$  via vxGetParameterByIndex, and then passing that to vxQueryParameter to retrieve the reference to the object.

```
vx_parameter param = vxGetParameterByIndex(node, p);
vx_reference ref;
vxQueryParameter(param, VX_PARAMETER_ATTRIBUTE_REF, &ref,
sizeof(ref));
```

If the type of the parameter is unknown, it may be retrieved with the same function.

```
vx_enum type;
vxQueryParameter(param, VX_PARAMETER_ATTRIBUTE_TYPE,
&type, sizeof(type));
/* cast the ref to the correct vx_<type>. Atomics are now vx_scalar */
```

#### 2.8.4 Graph Parameters

Parameters may exist on Graphs, as well. These parameters are defined by the author of the Graph and each Graph parameter is defined as a specific parameter from a Node within the Graph using vxAddParameter ToGraph. Graph parameters communicate to the implementation that there are specific Node parameters that may be modified by the client between Graph executions. Additionally, they are parameters that the client may set without the reference to the Node but with the reference to the Graph using vxSetGraphParameterByIndex. This allows for the Graph authors to construct *Graph Factories*. How these factories work falls outside the scope of this document.

See also

Framework: Graph Parameters

#### 2.8.5 Execution Model

Graphs must execute in both:

- Synchronous blocking mode (in that vxProcessGraph will block until the graph has completed), and in
- Asynchronous single-issue-per-reference mode (via vxScheduleGraph and vxWaitGraph).

#### **Asynchronous Mode**

In asynchronous mode, Graphs must be single-issue-per-reference. This means that given a constructed graph reference G, it may be scheduled multiple times but only executes sequentially with respect to itself. Multiple graphs references given to the asynchronous graph interface do not have a defined behavior and may execute in parallel or in series based on the behavior or the vendor's implementation.

#### 2.8.6 Graph Formalisms

To use graphs several rules must be put in place to allow deterministic execution of Graphs. The behavior of a processGraph(G) call is determined by the structure of the Processing Graph G. The Processing Graph is a bipartite graph consisting of a set of Nodes  $N_1 \dots N_n$  and a set of data objects  $d_1 \dots d_i$ . Each edge  $(N_x, D_y)$  in the graph represents a data object  $D_y$  that is written by Node  $N_x$  and each edge  $(D_x, N_y)$  represents a data object  $D_x$  that is read by Node  $N_y$ . Each edge e has a name Name(e), which gives the parameter name of the node that references the corresponding data object. Each Node Parameter also as a type Type(node, name) in  $\{INe PUT, OUTPUT, INOUT\}$ . Some data objects are Virtual, and some data objects are Delay. Delay data objects are just collections of data objects with indexing (like an image list) and known linking points in a graph. A node may be classified as a Parameter Node, which has no backward dependency. Alternatively, a node may be a Parameter Node, which has a backward dependency to the head node. In addition, the Processing Graph has several restrictions:

- 1. Output typing Every output edge ( $N_x$ ,  $D_y$ ) requires Type ( $N_x$ , Name ( $N_x$ ,  $N_y$ ) in {OUTPUT, I  $\leftarrow$  NOUT}
- 2. Input typing Every input edge ( $N_x$ ,  $D_y$ ) requires Type ( $N_y$ , Name ( $D_x$ ,  $N_y$ )) in {INPUT} or {IN} OUT}
- 3. Single Writer Every data object is the target of at most one output edge.
- 4. Broken Cycles Every cycle in G must contain at least input edge  $(D_x, N_y)$  where  $D_x$  is Delay.
- 5. Virtual images must have a source If  $D_y$  is Virtual, then there is at least one output edge that writes  $D_y$  (  $N_x$ ,  $D_y$ )
- 6. Bidirectional data objects shall not be virtual If Type ( $N_x$ , Name ( $N_x$ ,  $D_y$ )) is INOUT implies  $D_y$  is non-Virtual.
- 7. Delay data objects shall not be virtual If  $D_x$  is Delay then it shall not be Virtual.
- 8. A uniform image cannot be output or bidirectional.

The execution of each node in a graph consists of an atomic operation (sometimes referred to as firing) that consumes data representing each input data object, processes it, and produces data representing each output data object. A node may execute when all of its input edges are marked present. Before the graph executes, the following initial marking is used:

- All input edges  $(D_x, N_y)$  from non-Virtual objects Dx are marked (parameters must be set).
- All input edges  $(D_x, N_y)$  with an output edge  $(N_z, D_x)$  are unmarked.
- All input edges  $(D_x, N_y)$  where  $D_x$  is a Delay data object are marked.

Processing a node results in unmarking all the corresponding input edges and marking all its output edges; marking an output edge  $(N_x, D_y)$  where  $D_y$  is not a Delay results in marking all of the input edges  $(D_y, N_z)$ . Following these rules, it is possible to statically schedule the nodes in a graph as follows: Construct a precedence graph P, including all the nodes  $N_1 \dots N_x$ , and an edge  $(N_x, N_z)$  for every pair of edges  $(N_x, D_y)$  and  $(D_y, N_z)$  where  $D_y$  is not a Delay. Then unconditionally fire each node according to any topological sort of P.

The following assertions should be verified:

- P is a Directed Acyclic Graph (DAG), implied by 4 and the way it is constructed.
- Every data object has a value when it is executed, implied by 5, 6, 7, and the marking.
- Execution is deterministic if the nodes are deterministic, implied by 3, 4, and the marking.
- Every node completes its execution exactly once.

The execution model described here just acts as a formalism. For example, independent processing is allowed across multiple depended and depending nodes and edges, provided that the result is invariant with the execution model described here.

#### 2.8.7 Node Execution Independence

In the following example a client computes the gradient magnitude and gradient phase from a blurred input image. The vxMagnitudeNode and vxPhaseNode are independently computed, in that each does not depend on the output of the other. OpenVX does not mandate that they are run simultaneously or in parallel, but it could be implemented this way by the OpenVX vendor.



Figure 2.2: A simple graph with some independent nodes.

#### The code to construct such a graph can be seen below.

```
vx_context context = vxCreateContext();
vx_image images[] = {
         vxCreateImage(context, 640, 480, VX_DF_IMAGE_UYVY),
         vxCreateImage(context, 640, 480, VX_DF_IMAGE_U8), vxCreateImage(context, 640, 480, VX_DF_IMAGE_U8),
};
vx_graph graph = vxCreateGraph(context);
vx_image virts[] = {
         vxCreateVirtualImage(graph, 0, 0,
  VX_DF_IMAGE_VIRT),
         vxCreateVirtualImage(graph, 0, 0,
  VX_DF_IMAGE_VIRT),
         vxCreateVirtualImage(graph, 0, 0,
  VX_DF_IMAGE_VIRT),
vxChannelExtractNode(graph, images[0], VX_CHANNEL_Y, virts[0]),
vxGaussian3x3Node(graph, virts[0], virts[1]),
vxSobel3x3Node(graph, virts[1], virts[2], virts[3]),
vxMagnitudeNode(graph, virts[2], virts[3], images[1]),
vxPhaseNode(graph, virts[2], virts[3], images[2]),
status = vxVerifyGraph(graph);
if (status == VX_SUCCESS)
    status = vxProcessGraph(graph);
vxReleaseContext(&context); /* this will release everything */
```

#### 2.8.8 Verification

Graphs within OpenVX must go through a rigorous validation process before execution to satisfy the design concept of eliminating run-time overhead (parameter checking) that guarantees safe execution of the graph. OpenVX must check for (but is not limited to) these conditions:

- · Parameters To Nodes:
  - Each required parameter is given to the node (vx\_parameter\_state\_e). Optional parameters may not be
    present and therefore are not checked when absent. If present, they are checked.
  - Each parameter given to a node must be of the right direction (a value from vx\_direction\_e).
  - Each parameter given to a node must be of the right object type (from the object range of vx\_type\_e).
  - Each parameter attribute or value must be verified. In the case of a scalar value, it may need to be range checked (e.g., 0.5 <= k <= 1.0). The implementation is not required to do run-time range checking of scalar values. If the value of the scalar changes at run time to go outside the range, the results are undefined. The rationale is that the potential performance hit for run-time range checking is too large to be enforced. It will still be checked at graph verification time as a time-zero sanity check. If the scalar is an output parameter of another node, it must be initialized to a legal value. In the case of vxScale← ImageNode, the relation of the input image dimensions to the output image dimensions determines the scaling factor. These values or attributes of data objects must be checked for compatibility on each platform.</p>
  - Graph Connectivity the vx\_graph must be a Directed Acyclic Graph (DAG). No cycles or feedback
    is allowed. The vx\_delay object has been designed to explicitly address feedback between Graph
    executions.
  - Resolution of Virtual Data Objects Any changes to Virtual data objects from unspecified to specific format or dimensions, as well as the related creation of objects of specific type that are observable at processing time, takes place at Verification time.

#### 2.9 Callbacks

Callbacks are a method to control graph flow and to make decisions based on completed work. The vxAssigne-NodeCallback call takes as a parameter a callback function. This function will be called after the execution of the particular node, but prior to the completion of the graph. If nodes are arranged into independent sets, the order of the callbacks is unspecified. Nodes that are arranged in a serial fashion due to data dependencies perform callbacks in order. The callback function may use the node reference first to extract parameters from the node, and then extract the data references. Data outputs of Nodes with callbacks shall be available (via Access/Commit methods) when the callback is called.

#### 2.10 User Kernels

OpenVX supports the concept of client-defined functions that shall be executed as Nodes from inside the Graph or are Graph internal. The purpose of this paradigm is to:

- Further exploit independent operation of nodes within the OpenVX platform.
- Allow componentized functions to be reused elsewhere in OpenVX.
- Formalize strict verification requirements (i.e., Contract Programming).



Figure 2.3: A graph with User Kernel nodes which are independent of the "base" nodes.

In this example, to execute client-supplied functions, the graph does not have to be halted and then resumed. These nodes shall be executed in an independent fashion with respect to independent base nodes within OpenVX. This allows implementations to further minimize execution time if hardware to exploit this property exists.

#### 2.10.1 Parameter Validation

User Kernels must aid in the Graph Verification effort by providing explicit validation functions for each vision function they implement. Each parameter passed to the instanced Node of a User Kernel is validated using the client-supplied validation functions. The client must check these attributes and/or values of each parameter:

- Each attribute or value of the parameter must be checked. For example, the size of array, or the value of a scalar to be within a range, or a dimensionality constraint of an image such as width divisibility. (Some implementations may have restrictions, such as an image width be evenly divisible by some fixed number).
- If the output parameters depend on attributes or values from input parameters, those relationships must be checked (within the output validator).

Input validators execute before output validators. This allows any or all inputs to be used as dependents of output parameter validation.

#### The Meta Format Object

The Meta Format Object is an opaque object used to collect requirements about the output parameter, which then the OpenVX implementation will check. The Client must manually set relevant object attributes to be checked against output parameters, such as dimensionality, format, scaling, etc.

#### **Delta Rectangles**

There is a special case with vx\_image output parameters where the User Kernel output validation function can specify a positional and/or size-related change of the valid region of the output image relative to the input image during verification time. This is intended to give the optimizer more information about memory usage, and could lead to better outcomes or different strategies. Delta rectangles (specified using the vx\_delta\_rectangle\_t parameter) are used to update a valid region for the user kernels with a call to vxSetMetaFormatAttribute from the output validator.

For example, for a 5x5 box filter where 2 border pixels of the output are lost (invalid), and with no center shift, use:

```
vx_delta_rectangle_t delta = {2, 2, -2, -2};
```

For the same 5x5 box filter, except with a center-shift into the upper-left corner:

```
vx_delta_rectangle_t delta = {0, 0, -4, -4};
```

If this attribute has not been set prior to graph verification, the graph manager must determine the new valid region based on vxCommitImagePatch calls during the execution time.

#### 2.10.2 User Kernels Naming Conventions

User Kernels must be exported with a unique name (see Naming Conventions for information on OpenVX conventions) and a unique enumeration. Clients of OpenVX may use either the name or enumeration to retrieve a kernel, so collisions due to non-unique names will cause problems. The kernel enumerations may be extended by following this example:

```
#define VX_KERNEL_NAME_KHR_XYZ "org.khronos.example.xyz"

#define VX_LIBRARY_XYZ (0x3) // assigned from Khronos, vendors control their own
enum vx_kernel_xyz_ext_e {
    VX_KERNEL_KHR_XYZ = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_XYZ) + 0x0,
    // up to 0xFFF kernel enums can be created.
};
```

Each vendor of a vision function or an implementation must apply to Khronos to get a unique identifier (up to a limit of  $2^{12} - 1$  vendors). Until they obtain a unique ID vendors must use  $VX\_ID\_DEFAULT$ .

To construct a kernel enumeration, a vendor must have both their ID and a library ID. The library ID's are completely vendor defined (however when using the VX\_ID\_DEFAULT ID, many libraries may collide in namespace).

Once both are defined, a kernel enumeration may be constructed using the VX\_KERNEL\_BASE macro and an offset. (The offset is optional, but very helpful for long enumerations.)

#### 2.11 Immediate Mode Functions

OpenVX also contains an interface defined within <VX/vxu.h> that allows for immediate execution of vision functions. These interfaces are prefixed with vxu to distinguish them from the Node interfaces, which are of the form vx<Name>Node. Each of these interfaces replicates a Node interface with some exceptions. Immediate mode functions are defined to behave as Single Node Graphs, which have no leaking side-effects (e.g., no Log entries) within the Graph Framework after the function returns. The following tables refer to both the Immediate Mode and Graph Mode vision functions. The Module documentation for each vision function draws a distinction on each API by noting that it is either an immediate mode function with the tag [Immediate] or it is a Graph mode function by the tag [Graph].

#### 2.12 Base Vision Functions

OpenVX comes with a standard or base set of vision functions. The following table lists the supported set of vision functions, their input types (first table) and output types (second table), and the version of OpenVX in which they are supported.

## 2.12.1 Inputs

| Vision<br>Function | U8  | U16 | S16 | S32 | U32 | F32 | color |
|--------------------|-----|-----|-----|-----|-----|-----|-------|
| AbsDiff            | 1.0 |     | 1.0 |     |     |     |       |
| Accumu-<br>late    | 1.0 |     |     |     |     |     |       |
| late               | 1.0 |     |     |     |     |     |       |
| Accumulate↔        | 1.0 |     |     |     |     |     |       |
| Squared            |     |     |     |     |     |     |       |
| Oquarca            | 1.0 |     |     |     |     |     |       |
| <i>Accumulate</i>  | 7.0 |     |     |     |     |     |       |
| Weighted           |     |     |     |     |     |     |       |
| Add                | 1.0 |     | 1.0 |     |     |     |       |
| And                | 1.0 |     |     |     |     |     |       |
| Box3x3             | 1.0 |     |     |     |     |     |       |
| Canny⇔             | 1.0 |     |     |     |     |     |       |
| Edge⊷              | _   |     |     |     |     |     |       |
| Detector           |     |     |     |     |     |     |       |
| Channel⇔           | 1.0 |     |     |     |     |     |       |
| Combine            |     |     |     |     |     |     |       |
| Channel←           |     |     |     |     |     |     | 1.0   |
| Extract            |     |     |     |     |     |     |       |
| Color←             |     |     |     |     |     |     | 1.0   |
| Convert            |     |     |     |     |     |     |       |
| Convert←           | 1.0 |     | 1.0 |     |     |     |       |
| Depth              |     |     |     |     |     |     |       |
| Convolve           | 1.0 |     |     |     |     |     |       |
| Dilate3x3          | 1.0 |     |     |     |     |     |       |
| Equalize←          | 1.0 |     |     |     |     |     |       |
| Histogram          |     |     |     |     |     |     |       |
| Erode3x3           | 1.0 |     |     |     |     |     |       |
| Fast⇔              | 1.0 |     |     |     |     |     |       |
| Corners            |     |     |     |     |     |     |       |
| Gaus-              | 1.0 |     |     |     |     |     |       |
| sian3x3            |     |     |     |     |     |     |       |
| Harris↔            | 1.0 |     |     |     |     |     |       |
| Corners            |     |     |     |     |     |     |       |
| Half⇔              | 1.0 |     |     |     |     |     |       |
| Scale⇔             |     |     |     |     |     |     |       |
| Gaussian           | 1.0 |     |     |     |     |     |       |
| Histogram          | 1.0 |     |     |     |     |     |       |
| Integral⊷<br>Image | 1.0 |     |     |     |     |     |       |
| Image<br>Table⇔    | 1.0 |     | -   |     | -   |     |       |
| Table⇔<br>Lookup   | 1.0 |     |     |     |     |     |       |
| Magnitude          |     |     | 1.0 |     | -   |     |       |
| MeanStd⊷           | 1.0 |     | 1.0 |     |     |     |       |
| Dev Dev            | 1.0 |     |     |     |     |     |       |
| Median3x3          | 1.0 |     | +   |     | -   |     |       |
| MinMax⇔            | 1.0 |     | 1.0 |     | -   |     |       |
| Loc                | 7.0 |     |     |     |     |     |       |
| Multiply           | 1.0 |     | 1.0 |     | -   |     |       |
| Not                | 1.0 |     | 1.0 |     |     |     |       |

| Optical⇔    | 1.0 |     |  |  |
|-------------|-----|-----|--|--|
| FlowLK      |     |     |  |  |
| Or          | 1.0 |     |  |  |
| Phase       |     | 1.0 |  |  |
|             | 1.0 |     |  |  |
| Gaussian⇔   |     |     |  |  |
| Pyramid     |     |     |  |  |
| Remap       | 1.0 |     |  |  |
| Scale       | 1.0 |     |  |  |
| Image       |     |     |  |  |
| Sobel3x3    | 1.0 |     |  |  |
| Subtract    | 1.0 | 1.0 |  |  |
| Threshold   | 1.0 |     |  |  |
| WarpAffine  | 1.0 |     |  |  |
| Warp⇔       | 1.0 |     |  |  |
| Perspective |     |     |  |  |
| Xor         | 1.0 |     |  |  |

## **2.12.2 Outputs**

| Vision              | U8  | U16 | S16 | U32 | S32 | F32 | color |
|---------------------|-----|-----|-----|-----|-----|-----|-------|
| Function            |     |     |     |     |     |     |       |
| AbsDiff             | 1.0 |     | 1.0 |     |     |     |       |
| Accumu-             |     |     | 1.0 |     |     |     |       |
| late                |     |     |     |     |     |     |       |
|                     |     |     | 1.0 |     |     |     |       |
| <i>Accumulate</i>   |     |     |     |     |     |     |       |
| Squared             |     |     |     |     |     |     |       |
|                     | 1.0 |     |     |     |     |     |       |
| <i>Accumulate</i> → |     |     |     |     |     |     |       |
| Weighted            |     |     |     |     |     |     |       |
| Add                 | 1.0 |     | 1.0 |     |     |     |       |
| And                 | 1.0 |     |     |     |     |     |       |
| Вох3х3              | 1.0 |     |     |     |     |     |       |
| Canny⇔              | 1.0 |     |     |     |     |     |       |
| Edge⊷               |     |     |     |     |     |     |       |
| Detector            |     |     |     |     |     |     |       |
| Channel←            |     |     |     |     |     |     | 1.0   |
| Combine             |     |     |     |     |     |     |       |
| Channel←            | 1.0 |     |     |     |     |     |       |
| Extract             |     |     |     |     |     |     |       |
| Color←              |     |     |     |     |     |     | 1.0   |
| Convert             |     |     |     |     |     |     |       |
| Convert←            | 1.0 |     | 1.0 |     |     |     |       |
| Depth               |     |     |     |     |     |     |       |
| Convolve            | 1.0 |     | 1.0 |     |     |     |       |
| Dilate3x3           | 1.0 |     |     |     |     |     |       |
| Equalize←           | 1.0 |     |     |     |     |     |       |
| Histogram           |     |     |     |     |     |     |       |
| Erode3x3            | 1.0 |     |     |     |     |     |       |
| Fast⊷               | 1.0 |     |     |     |     |     |       |
| Corners             |     |     |     |     |     |     |       |

| Gaus-            | 1.0 |     |     |     |     |  |
|------------------|-----|-----|-----|-----|-----|--|
| sian3x3          | 7.0 |     |     |     |     |  |
| Harris⇔          | 1.0 |     |     |     |     |  |
| Corners          | 7.0 |     |     |     |     |  |
| Half⇔            | 1.0 |     |     |     |     |  |
| Scale↔           | 1.0 |     |     |     |     |  |
| Gaussian         |     |     |     |     |     |  |
| Histogram        |     |     |     | 1.0 |     |  |
| Integral←        |     |     | 1.0 | 1.0 |     |  |
|                  |     |     | 1.0 |     |     |  |
| Image<br>Table←  | 1.0 |     |     |     |     |  |
| Table←<br>Lookup | 1.0 |     |     |     |     |  |
|                  |     | 1.0 |     |     |     |  |
| Magnitude        |     | 1.0 |     |     | 1.0 |  |
| MeanStd⇔         |     |     |     |     | 1.0 |  |
| Dev              |     |     |     |     |     |  |
| Median3x3        | 1.0 | 1.0 |     |     |     |  |
| <i>MinMax</i> ↔  | 1.0 | 1.0 |     | 1.0 |     |  |
| Loc              |     |     |     |     |     |  |
| Multiply         | 1.0 | 1.0 |     |     |     |  |
| Not              | 1.0 |     |     |     |     |  |
| Optical⇔         |     |     | 1.0 |     |     |  |
| FlowLK           |     |     |     |     |     |  |
| Or               | 1.0 |     |     |     |     |  |
| Phase            | 1.0 |     |     |     |     |  |
|                  | 1.0 |     |     |     |     |  |
| Gaussian⊷        |     |     |     |     |     |  |
| Pyramid          |     |     |     |     |     |  |
| Remap            | 1.0 |     |     |     |     |  |
| Scale            | 1.0 |     |     |     |     |  |
| Image            |     |     |     |     |     |  |
| Sobel3x3         |     | 1.0 |     |     |     |  |
| Subtract         | 1.0 | 1.0 |     |     |     |  |
| Threshold        | 1.0 |     |     |     |     |  |
| WarpAffine       | 1.0 |     |     |     |     |  |
| Warp⇔            | 1.0 |     |     |     |     |  |
| Perspective      |     |     |     |     |     |  |
| Xor              | 1.0 |     |     |     |     |  |

## 2.13 Lifecycles

## 2.13.1 OpenVX Context Lifecycle

The lifecycle of the context is very simple.



Figure 2.4: The lifecycle model for an OpenVX Context.

#### 2.13.2 Graph Lifecycle

OpenVX has four main phases of graph lifecycle:

- Construction Graphs are created via vxCreateGraph, and Nodes are connected together by data objects.
- Verification The graphs are checked for consistency, correctness, and other conditions. Memory allocation may occur.
- Execution The graphs are executed via vxProcessGraph or vxScheduleGraph. Between executions data may be updated by the client or some other external mechanism. The client of OpenVX may change reference of input data to a graph, but this may require the graph to be validated again by checking vxIscorraphVerified.
- Deconstruction Graphs are released via vxReleaseGraph. All Nodes in the Graph are released.



Figure 2.5: Graph Lifecycle

#### 2.13.3 Data Object Lifecycle

All objects in OpenVX follow a similar lifecycle model. All objects are

- Created via vxCreate<Object><Method> or retreived via vxGet<Object><Method> from the parent object if they are internally created.
- Used within Graphs or immediate functions as needed.
- Then objects must be released via vxRelease<Object> or via vxReleaseContext when all objects are released.

#### **OpenVX Image Lifecycle**

This is an example of the Image Lifecycle using the OpenVX Framework API. This would also apply to other data types with changes to the types and function names.



Figure 2.6: Image Object Lifecycle

## 2.14 Host Memory Data Object Access Patterns

For objects retrieved from OpenVX that are 2D in nature, such as vx\_image, vx\_matrix, and vx\_convolution, the manner in which the host-side has access to these memory regions is well-defined. Opency VX uses a row-major storage (that is each unit in a column is memory-adjacent to its row adjacent unit). Two-dimensional objects are always created (using vxCreateImage or vxCreateMatrix) in width (columns) by height (rows) notation, with the arguments in that order. When accessing these structures in "C" with two-dimensional arrays of declared size, the user must therefore provide the array dimensions in the reverse of the order of the arguments to the Create function. This layout ensures row-wise storage in C on the host. A pointer could also be allocated for the matrix data and would have to be indexed in this row-major method.

#### 2.14.1 Matrix Access Example

```
#else
        vx_float32 *mat = (vx_float32 *)malloc(rows*columns*sizeof(
      vx_float32));
#endif
        if (vxReadMatrix(matrix, mat) == VX SUCCESS) {
            for (j = 0; j < rows; j++)
    for (i = 0; i < columns; i++)</pre>
#if defined(OPENVX_USE_C99)
                     mat[j][i] = (vx_float32)rand()/(vx_float32)RAND_MAX;
#else
                     mat[j*columns + i] = (vx_float32)rand()/(
      vx_float32) RAND_MAX;
#endif
            vxWriteMatrix(matrix, mat);
#if !defined(OPENVX_USE_C99)
        free (mat);
#endif
```

#### 2.14.2 Image Access Example

Images and Array differ slightly in how they are accessed due to more complex memory layout requirements.

```
vx_status status = VX_SUCCESS;
void *base_ptr = NULL;
vx_uint32 width = 640, height = 480, plane = 0;
vx_image image = vxCreateImage(context, width, height,
  VX_DF_IMAGE_U8);
vx_rectangle_t rect;
vx_imagepatch_addressing_t addr;
rect.start_x = rect.start_y = 0;
rect.end_x = rect.end_y = PATCH_DIM;
status = vxAccessImagePatch(image, &rect, plane,
                                 &addr, &base_ptr,
                                 VX_READ_AND_WRITE);
if (status == VX SUCCESS)
    vx_uint32 x,y,i,j;
vx_uint8 pixel = 0;
    /* a couple addressing options */
     /* use linear addressing function/macro */
    for (i = 0; i < addr.dim_x*addr.dim_y; i++) {</pre>
         vx_uint8 *ptr2 = vxFormatImagePatchAddress1d(base_ptr,
         *ptr2 = pixel;
    }
     /* 2d addressing option */
     for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
         for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
              vx_uint8 *ptr2 = vxFormatImagePatchAddress2d(base_ptr,
                                                                   x, y, &addr);
              *ptr2 = pixel;
         }
    }
     /\star direct addressing by client
     \star for subsampled planes, scale will change
    for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
         for (x = 0; x < addr.dim_x; x+=addr.step_x) {
   vx_uint8 *tmp = (vx_uint8 *)base_ptr;</pre>
              i = ((addr.stride_y*y*addr.scale_y) /
                     VX_SCALE_UNITY) +
                   ((addr.stride_x*x*addr.scale_x) /
    VX_SCALE_UNITY);
              tmp[i] = pixel;
         }
    }
     /\star more efficient direct addressing by client.
     \star for subsampled planes, scale will change.
     for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
         j = (addr.stride_y*y*addr.scale_y)/VX_SCALE_UNITY;
         for (x = 0; x < addr.dim_x; x+=addr.step_x) {
             vx_uint8 *tmp = (vx_uint8 *)base_ptr;
i = j + (addr.stride_x*x*addr.scale_x) /
VX_SCALE_UNITY;
              tmp[i] = pixel;
```

```
}
}
/* this commits the data back to the image. If rect were 0 or empty, it
  * would just decrement the reference (used when reading an image only)
  */
  status = vxCommitImagePatch(image, &rect, plane, &addr, base_ptr);
}
vxReleaseImage(&image);
```

#### 2.14.3 Array Access Example

Arrays only require a single value, the stride, instead of the entire addressing structure that images need.

```
vx_size i, stride = sizeof(vx_size);
void *base = NULL;
/* access entire array at once */
vxAccessArrayRange(array, 0, num_items, &stride, &base,
VX_READ_AND_WRITE);
for (i = 0; i < num_items; i++)
{
    vxArrayItem(mystruct, base, i, stride).some_uint += i;
    vxArrayItem(mystruct, base, i, stride).some_double = 3.14f;
}
vxCommitArrayRange(array, 0, num_items, base);</pre>
```

Access/Commit pairs can also be called on individual elements of array using a method similar to this:

```
/* access each array item individually */
for (i = 0; i < num_items; i++)
{
    mystruct *myptr = NULL;
    vxAccessArrayRange(array, i, i+1, &stride, (void **)&myptr,

VX_READ_AND_WRITE);
    myptr->some_uint += 1;
    myptr->some_double = 3.14f;
    vxCommitArrayRange(array, i, i+1, (void *)myptr);
}
```

## 2.15 Extending OpenVX

Beyond User Kernels there are other mechanisms for vendors to extend features in OpenVX. These mechanisms are not available to User Kernels.

#### 2.15.1 Extending Attributes

When extending attributes, vendors must use their assigned ID from  $vx\_vendor\_id\_e$  in conjunction with the appropriate macros for creating new attributes with  $VX\_ATTRIBUTE\_BASE$ . The typical mechanism to extend a new attribute for some object type (for example a  $vx\_node$  attribute from  $VX\_ID\_TI$ ) would look like this:

#### 2.15.2 Vendor Custom Kernels

Vendors wanting to add more kernels to the base set supplied to OpenVX should provide a header of the form

```
#include <VX/vx_ext_<vendor>.h>
```

that contains definitions of each of the following.

New Node Creation Function Prototype per function.

• A new Kernel Enumeration(s) and Kernel String per function.

```
#define VX_KERNEL_NAME_KHR_XYZ "org.khronos.example.xyz"

#define VX_LIBRARY_XYZ (0x3) // assigned from Khronos, vendors control their own
enum vx_kernel_xyz_ext_e {
    VX_KERNEL_KHR_XYZ = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_XYZ) + 0x0,
    // up to 0xFFF kernel enums can be created.
};
```

A new VXU Function per function.

This should come with good documentation for each new part of the extension. Ideally, these sorts of extensions should not require linking to new objects to facilitate usage.

#### 2.15.3 Vendor Custom Extensions

Some extensions affect base vision functions and thus may be invisible to most users. In these circumstances, the vendor must report the supported extensions to the base nodes through the VX\_CONTEXT\_ATTRIBUTE\_EXT ENSIONS attribute on the context.

Extensions in this list are dependent on the extension itself; they may or may not have a header and new kernels or framework feature or data objects. The common feature is that they are implemented and supported by the implementation vendor.

#### 2.15.4 **Hinting**

The specification defines a Hinting API that allows Clients to feed information to the implementation for optional behavior changes. See Framework: Hints. It is assumed that most of the hints will be vendor- or implementation-specific. Check with the OpenVX implementation vendor for information on vendor-specific extensions.

#### 2.15.5 Directives

The specification defines a Directive API to control implementation behavior. See Framework: Directives. This may allow things like disabling parallelism for debugging, enabling cache writing-through for some buffers, or any implementation-specific optimization.

## 2.16 Known Extensions to OpenVX

#### 2.16.1 User Kernel Tiling

The User Kernel Tiling facility enables optimizations of the user kernels (e.g., locality of execution or parallelism) when performing computation on the image data. Modern processors have a diverse memory hierarchy that varies from relatively small but fast and expensive memory to relatively large but slow and inexpensive memory. Image data are typically too large to fit into the fast but small memory. The ability to break the image data into smaller sized units allows for optimized computation on these smaller units with fast memory access or parallel execution of a user kernel on multiple image tiles simultaneously. The OpenVX Graph Manager possesses the knowledge about the memory hierarchy of the platform and is hence in a position to break the image data into smaller units for memory optimization. Knowledge of the memory access pattern of an algorithm is key for the graph manager to enable optimizations.

The Khronos OpenVX Working Group will include this extension as part of the OpenVX 1.1 specification, contingent on community feedback.

# **Chapter 3**

# **Module Documentation**

# 3.1 Vision Functions

# 3.1.1 Detailed Description

These are the base vision functions supported in OpenVX 1.0.

These functions were chosen as a subset of a larger pool of possible functions that fall under the following criteria:

- · Applicable to Acceleration Hardware
- · Very Common Usage
- · Encumbrance Free

#### **Modules**

· Absolute Difference

Computes the absolute difference between two images.

Accumulate

Accumulates an input image into output image.

· Accumulate Squared

Accumulates a squared value from an input image to an output image.

· Accumulate Weighted

Accumulates a weighted value from an input image to an output image.

· Arithmetic Addition

Performs addition between two images.

Arithmetic Subtraction

Performs subtraction between two images.

· Bitwise AND

Performs a bitwise AND operation between two VX\_DF\_IMAGE\_U8 images.

• Bitwise EXCLUSIVE OR

Performs a bitwise EXCLUSIVE OR (XOR) operation between two VX\_DF\_IMAGE\_U8 images.

• Bitwise INCLUSIVE OR

Performs a bitwise INCLUSIVE OR operation between two  $VX\_DF\_IMAGE\_U8$  images.

Bitwise NOT

Performs a bitwise NOT operation on a VX\_DF\_IMAGE\_U8 input image.

Box Filter

Computes a Box filter over a window of the input image.

· Canny Edge Detector

Provides a Canny edge detector kernel.

Channel Combine

Implements the Channel Combine Kernel.

Channel Extract

Implements the Channel Extraction Kernel.

Color Convert

Implementes the Color Conversion Kernel.

· Convert Bit depth

Converts image bit depth.

· Custom Convolution

Convolves the input with the client supplied convolution matrix.

· Dilate Image

Implements Dilation, which grows the white space in a VX\_DF\_IMAGE\_U8 Boolean image.

· Equalize Histogram

Equalizes the histogram of a grayscale image.

Erode Image

Implements Erosion, which shrinks the white space in a VX\_DF\_IMAGE\_U8 Boolean image.

Fast Corners

Computes the corners in an image using a method based upon FAST9 algorithm suggested in [3] and with some updates from [4] with modifications described below.

· Gaussian Filter

Computes a Gaussian filter over a window of the input image.

· Harris Corners

Computes the Harris Corners of an image.

· Histogram

Generates a distribution from an image.

· Gaussian Image Pyramid

Computes a Gaussian Image Pyramid from an input image.

· Integral Image

Computes the integral image of the input.

Magnitude

Implements the Gradient Magnitude Computation Kernel.

· Mean and Standard Deviation

Computes the mean pixel value and the standard deviation of the pixels in the input image (which has a dimension width and height).

· Median Filter

Computes a median pixel value over a window of the input image.

· Min, Max Location

Finds the minimum and maximum values in an image and a location for each.

Optical Flow Pyramid (LK)

Computes the optical flow using the Lucas-Kanade method between two pyramid images.

Phase

Implements the Gradient Phase Computation Kernel.

Pixel-wise Multiplication

Performs element-wise multiplication between two images and a scalar value.

Remap

Maps output pixels in an image from input pixels in an image.

Scale Image

Implements the Image Resizing Kernel.

Sobel 3x3

Implements the Sobel Image Filter Kernel.

TableLookup

Implements the Table Lookup Image Kernel.

• Thresholding

Thresholds an input image and produces an output Boolean image.

• Warp Affine

Performs an affine transform on an image.

Warp Perspective

Performs a perspective transform on an image.

# 3.2 Absolute Difference

# 3.2.1 Detailed Description

Computes the absolute difference between two images.

Absolute Difference is computed by:

$$out(x, y) = |in_1(x, y) - in_2(x, y)|$$

When the two input parameters have type s16, the conceptual definition describing the overflow is: uint16 uresult = (uint16) abs((int32) (a) - (int32) (b)); int16 result = uresult > 32767 ? 32767 : (int16) uresult;

# **Functions**

- vx\_node VX\_API\_CALL vxAbsDiffNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out)
   [Graph] Creates an AbsDiff node.
- vx\_status VX\_API\_CALL vxuAbsDiff (vx\_context context, vx\_image in1, vx\_image in2, vx\_image out) [Immediate] Computes the absolute difference between two images.

## 3.2.2 Function Documentation

# vx\_node VX\_API\_CALL vxAbsDiffNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out )

[Graph] Creates an AbsDiff node.

#### **Parameters**

| in  | graph | The reference to the graph.                                   |
|-----|-------|---------------------------------------------------------------|
| in  | in1   | An input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.   |
| in  | in2   | An input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.   |
| out | out   | The output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format. |

### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuAbsDiff ( vx\_context context, vx\_image in1, vx\_image in2, vx\_image out )

[Immediate] Computes the absolute difference between two images.

## **Parameters**

| in  | context | The reference to the overall context.                         |
|-----|---------|---------------------------------------------------------------|
| in  | in1     | An input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.   |
| in  | in2     | An input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.   |
| out | out     | The output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format. |

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.3 Accumulate

# 3.3.1 Detailed Description

Accumulates an input image into output image.

Accumulation is computed by:

$$accum(x, y) = accum(x, y) + input(x, y)$$

The overflow policy used is VX\_CONVERT\_POLICY\_SATURATE.

#### **Functions**

- vx\_node VX\_API\_CALL vxAccumulateImageNode (vx\_graph graph, vx\_image input, vx\_image accum) [Graph] Creates an accumulate node.
- vx\_status VX\_API\_CALL vxuAccumulateImage (vx\_context context, vx\_image input, vx\_image accum) [Immediate] Computes an accumulation.

# 3.3.2 Function Documentation

## vx\_node VX\_API\_CALL vxAccumulateImageNode ( vx\_graph graph, vx\_image input, vx\_image accum )

[Graph] Creates an accumulate node.

#### **Parameters**

| in     | graph | The reference to the graph.                |
|--------|-------|--------------------------------------------|
| in     | input | The input VX_DF_IMAGE_U8 image.            |
| in,out | accum | The accumulation image in VX_DF_IMAGE_S16. |

### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuAccumulateImage ( vx\_context context, vx\_image input, vx\_image accum )

[Immediate] Computes an accumulation.

#### **Parameters**

| in     | context | The reference to the overall context.     |
|--------|---------|-------------------------------------------|
| in     | input   | The input VX_DF_IMAGE_U8 image.           |
| in,out | accum   | The accumulation image in VX_DF_IMAGE_S16 |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.4 Accumulate Squared

# 3.4.1 Detailed Description

Accumulates a squared value from an input image to an output image.

Accumulate squares is computed by:

$$accum(x,y) = saturate_{int16}((uint16)accum(x,y) + (((uint16)input(x,y)^2) >> (shift)))$$

Where  $0 \le shift \le 15$ 

The overflow policy used is VX\_CONVERT\_POLICY\_SATURATE.

## **Functions**

vx\_node VX\_API\_CALL vxAccumulateSquareImageNode (vx\_graph graph, vx\_image input, vx\_scalar shift, vx\_image accum)

[Graph] Creates an accumulate square node.

vx\_status VX\_API\_CALL vxuAccumulateSquareImage (vx\_context context, vx\_image input, vx\_scalar shift, vx\_image accum)

[Immediate] Computes a squared accumulation.

## 3.4.2 Function Documentation

# vx\_node VX\_API\_CALL vxAccumulateSquareImageNode ( vx\_graph graph, vx\_image input, vx\_scalar shift, vx\_image accum )

[Graph] Creates an accumulate square node.

#### **Parameters**

| in     | graph | The reference to the graph.                                                  |
|--------|-------|------------------------------------------------------------------------------|
| in     | input | The input VX_DF_IMAGE_U8 image.                                              |
| in     | shift | The input VX_TYPE_UINT32 with a value in the range of $0 \le shift \le 15$ . |
| in,out | accum | The accumulation image in VX_DF_IMAGE_S16.                                   |

# Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuAccumulateSquareImage ( vx\_context context, vx\_image input, vx\_scalar shift, vx\_image accum )

[Immediate] Computes a squared accumulation.

#### **Parameters**

| in     | context | The reference to the overall context.                                        |
|--------|---------|------------------------------------------------------------------------------|
| in     | input   | The input VX_DF_IMAGE_U8 image.                                              |
| in     | shift   | A VX_TYPE_UINT32 type, the input value with the range $0 \le shift \le 15$ . |
| in,out | accum   | The accumulation image in VX_DF_IMAGE_S16                                    |

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.5 Accumulate Weighted

# 3.5.1 Detailed Description

Accumulates a weighted value from an input image to an output image.

Weighted accumulation is computed by:

$$accum(x, y) = (1 - \alpha) * accum(x, y) + \alpha * input(x, y)$$

Where  $0 \le \alpha \le 1$  Conceptually, the rounding for this is defined as:

$$output(x, y) = uint8((1 - \alpha) * float32(int32(output(x, y))) + \alpha * float32(int32(input(x, y))))$$

#### **Functions**

vx\_node VX\_API\_CALL vxAccumulateWeightedImageNode (vx\_graph graph, vx\_image input, vx\_scalar alpha, vx\_image accum)

[Graph] Creates a weighted accumulate node.

vx\_status VX\_API\_CALL vxuAccumulateWeightedImage (vx\_context context, vx\_image input, vx\_scalar scale, vx\_image accum)

[Immediate] Computes a weighted accumulation.

#### 3.5.2 Function Documentation

vx\_node VX\_API\_CALL vxAccumulateWeightedImageNode ( vx\_graph graph, vx\_image input, vx\_scalar alpha, vx\_image accum )

[Graph] Creates a weighted accumulate node.

**Parameters** 

| in     | graph | The reference to the graph.                                                   |
|--------|-------|-------------------------------------------------------------------------------|
| in     | input | The input VX_DF_IMAGE_U8 image.                                               |
| in     | alpha | The input VX_TYPE_FLOAT32 scalar value with a value in the range of $0.0 \le$ |
|        |       | $\alpha \leq 1.0$ .                                                           |
| in,out | accum | The VX_DF_IMAGE_U8 accumulation image.                                        |

## Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuAccumulateWeightedImage ( vx\_context context, vx\_image input, vx\_scalar scale, vx\_image accum )

[Immediate] Computes a weighted accumulation.

# **Parameters**

| in     | context | The reference to the overall context.                                             |
|--------|---------|-----------------------------------------------------------------------------------|
| in     | input   | The input VX_DF_IMAGE_U8 image.                                                   |
| in     | scale   | A VX_TYPE_FLOAT32 type, the input value with the range $0.0 \le \alpha \le 1.0$ . |
| in,out | accum   | The VX_DF_IMAGE_U8 accumulation image.                                            |

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.6 Arithmetic Addition

# 3.6.1 Detailed Description

Performs addition between two images.

Arithmetic addition is performed between the pixel values in two VX\_DF\_IMAGE\_U8 or VX\_DF\_IMAGE\_S16 images. The output image can be VX\_DF\_IMAGE\_U8 only if both source images are VX\_DF\_IMAGE\_U8 and the output image is explicitly set to VX\_DF\_IMAGE\_U8. It is otherwise VX\_DF\_IMAGE\_S16. If one of the input images is of type VX\_DF\_IMAGE\_S16, all values are converted to VX\_DF\_IMAGE\_S16. The overflow handling is controlled by an overflow-policy parameter. For each pixel value in the two input images:

$$out(x,y) = in_1(x,y) + in_2(x,y)$$

#### **Functions**

vx\_node VX\_API\_CALL vxAddNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_enum policy, vx\_image out)

[Graph] Creates an arithmetic addition node.

vx\_status VX\_API\_CALL vxuAdd (vx\_context context, vx\_image in1, vx\_image in2, vx\_enum policy, vx\_image out)

[Immediate] Performs arithmetic addition on pixel values in the input images.

#### 3.6.2 Function Documentation

vx\_node VX\_API\_CALL vxAddNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_enum policy, vx\_image out )

[Graph] Creates an arithmetic addition node.

#### **Parameters**

| in  | graph  | The reference to the graph.                                  |  |  |
|-----|--------|--------------------------------------------------------------|--|--|
| in  | in1    | An input image, VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.           |  |  |
| in  | in2    | An input image, VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.           |  |  |
| in  | policy | A VX_TYPE_ENUM of the vx_convert_policy_e enumeration.       |  |  |
| out | out    | The output image, a VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 image. |  |  |

## Returns

vx\_node.

## Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuAdd ( vx\_context context, vx\_image in1, vx\_image in2, vx\_enum policy, vx image out )

[Immediate] Performs arithmetic addition on pixel values in the input images. Parameters

| in | context | The reference to the overall context.            |  |  |
|----|---------|--------------------------------------------------|--|--|
| in | in1     | A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image. |  |  |
| in | in2     | A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image. |  |  |
| in | policy  | A vx_convert_policy_e enumeration.               |  |  |

| 01 | ıt | out | The | output image | in VX | _DF_ | _IMAGE_ | _U8 or | VX_ | _DF_ | _IMAGE_ | _S16 format. |  |
|----|----|-----|-----|--------------|-------|------|---------|--------|-----|------|---------|--------------|--|
|----|----|-----|-----|--------------|-------|------|---------|--------|-----|------|---------|--------------|--|

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.7 Arithmetic Subtraction

# 3.7.1 Detailed Description

Performs subtraction between two images.

Arithmetic subtraction is performed between the pixel values in two VX\_DF\_IMAGE\_U8 or two VX\_DF\_IMAGE
GE\_S16 images. The output image can be VX\_DF\_IMAGE\_U8 only if both source images are VX\_DF\_IMAGE
\_U8 and the output image is explicitly set to VX\_DF\_IMAGE\_U8. It is otherwise VX\_DF\_IMAGE\_S16. If one of the input images is of type VX\_DF\_IMAGE\_S16, all values are converted to VX\_DF\_IMAGE\_S16. The overflow handling is controlled by an overflow-policy parameter. For each pixel value in the two input images:

$$out(x, y) = in_1(x, y) - in_2(x, y)$$

#### **Functions**

vx\_node VX\_API\_CALL vxSubtractNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_enum policy, vx← image out)

[Graph] Creates an arithmetic subtraction node.

vx\_status VX\_API\_CALL vxuSubtract (vx\_context context, vx\_image in1, vx\_image in2, vx\_enum policy, vx
image out)

[Immediate] Performs arithmetic subtraction on pixel values in the input images.

## 3.7.2 Function Documentation

vx\_node VX\_API\_CALL vxSubtractNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_enum policy, vx\_image out )

[Graph] Creates an arithmetic subtraction node.

#### **Parameters**

| in  | graph  | he reference to the graph.                                      |  |  |
|-----|--------|-----------------------------------------------------------------|--|--|
| in  | in1    | An input image, VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16, the minuend. |  |  |
| in  | in2    | An input image, VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16, the subtra-  |  |  |
|     |        | hend.                                                           |  |  |
| in  | policy | A VX_TYPE_ENUM of the vx_convert_policy_e enumeration.          |  |  |
| out | out    | The output image, a VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 image.    |  |  |

#### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuSubtract ( vx\_context context, vx\_image in1, vx\_image in2, vx\_enum policy, vx\_image out )

[Immediate] Performs arithmetic subtraction on pixel values in the input images. Parameters

| in | context | The reference to the overall context.                            |
|----|---------|------------------------------------------------------------------|
| in | in1     | A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image, the minuend.    |
| in | in2     | A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image, the subtrahend. |

| in  | policy | A vx_convert_policy_e enumeration.                            |
|-----|--------|---------------------------------------------------------------|
| out | out    | The output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format. |

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

## 3.8 Bitwise AND

# 3.8.1 Detailed Description

Performs a *bitwise AND* operation between two VX\_DF\_IMAGE\_U8 images.

Bitwise AND is computed by the following, for each bit in each pixel in the input images:

$$out(x,y) = in_1(x,y) \wedge in_2(x,y)$$

Or expressed as C code:

 $out(x,y) = in_1(x,y) & in_2(x,y)$ 

# **Functions**

- vx\_node VX\_API\_CALL vxAndNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out) [Graph] Creates a bitwise AND node.
- vx\_status VX\_API\_CALL vxuAnd (vx\_context context, vx\_image in1, vx\_image in2, vx\_image out) [Immediate] Computes the bitwise and between two images.

## 3.8.2 Function Documentation

vx\_node VX\_API\_CALL vxAndNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out )

[Graph] Creates a bitwise AND node.

#### **Parameters**

| in  | graph | The reference to the graph.      |
|-----|-------|----------------------------------|
| in  | in1   | A VX_DF_IMAGE_U8 input image.    |
| in  | in2   | A VX_DF_IMAGE_U8 input image.    |
| out | out   | The VX_DF_IMAGE_U8 output image. |

## Returns

vx\_node.

### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

## vx\_status VX\_API\_CALL vxuAnd ( vx\_context context, vx\_image in1, vx\_image in2, vx\_image out )

[Immediate] Computes the bitwise and between two images.

#### **Parameters**

| in  | context | The reference to the overall context. |
|-----|---------|---------------------------------------|
| in  | in1     | A VX_DF_IMAGE_U8 input image          |
| in  | in2     | A VX_DF_IMAGE_U8 input image          |
| out | out     | The VX_DF_IMAGE_U8 output image.      |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.9 Bitwise EXCLUSIVE OR

# 3.9.1 Detailed Description

Performs a *bitwise EXCLUSIVE OR* (XOR) operation between two VX\_DF\_IMAGE\_U8 images. Bitwise XOR is computed by the following, for each bit in each pixel in the input images:

$$out(x,y) = in_1(x,y) \oplus in_2(x,y)$$

Or expressed as C code:

 $out(x,y) = in_1(x,y) ^ in_2(x,y)$ 

# **Functions**

- vx\_status VX\_API\_CALL vxuXor (vx\_context context, vx\_image in1, vx\_image in2, vx\_image out)
   [Immediate] Computes the bitwise exclusive-or between two images.
- vx\_node VX\_API\_CALL vxXorNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out)
   [Graph] Creates a bitwise EXCLUSIVE OR node.

## 3.9.2 Function Documentation

vx\_node VX\_API\_CALL vxXorNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out )

[Graph] Creates a bitwise EXCLUSIVE OR node.

#### **Parameters**

| in  | graph | The reference to the graph.      |
|-----|-------|----------------------------------|
| in  | in1   | A VX_DF_IMAGE_U8 input image.    |
| in  | in2   | A VX_DF_IMAGE_U8 input image.    |
| out | out   | The VX_DF_IMAGE_U8 output image. |

## Returns

vx\_node.

### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

#### vx status VX API CALL vxuXor ( vx context context, vx image in1, vx image in2, vx image out )

[Immediate] Computes the bitwise exclusive-or between two images.

#### **Parameters**

| in  | context | The reference to the overall context. |
|-----|---------|---------------------------------------|
| in  | in1     | A VX_DF_IMAGE_U8 input image          |
| in  | in2     | A VX_DF_IMAGE_U8 input image          |
| out | out     | The VX_DF_IMAGE_U8 output image.      |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.10 Bitwise INCLUSIVE OR

# 3.10.1 Detailed Description

Performs a *bitwise INCLUSIVE OR* operation between two VX\_DF\_IMAGE\_U8 images.

Bitwise INCLUSIVE OR is computed by the following, for each bit in each pixel in the input images:

$$out(x,y) = in_1(x,y) \lor in_2(x,y)$$

Or expressed as C code:

 $out(x,y) = in_1(x,y) \mid in_2(x,y)$ 

# **Functions**

- vx\_node VX\_API\_CALL vxOrNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out) [Graph] Creates a bitwise INCLUSIVE OR node.
- vx\_status VX\_API\_CALL vxuOr (vx\_context context, vx\_image in1, vx\_image in2, vx\_image out) [Immediate] Computes the bitwise inclusive-or between two images.

## 3.10.2 Function Documentation

vx\_node VX\_API\_CALL vxOrNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_image out )

[Graph] Creates a bitwise INCLUSIVE OR node.

#### **Parameters**

| in  | graph | The reference to the graph.      |
|-----|-------|----------------------------------|
| in  | in1   | A VX_DF_IMAGE_U8 input image.    |
| in  | in2   | A VX_DF_IMAGE_U8 input image.    |
| out | out   | The VX_DF_IMAGE_U8 output image. |

## Returns

vx\_node.

### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

#### vx status VX API CALL vxuOr ( vx context context, vx image in1, vx image in2, vx image out )

 $[Immediate] \ Computes \ the \ bitwise \ inclusive-or \ between \ two \ images.$ 

#### **Parameters**

| in  | context | The reference to the overall context. |
|-----|---------|---------------------------------------|
| in  | in1     | A VX_DF_IMAGE_U8 input image          |
| in  | in2     | A VX_DF_IMAGE_U8 input image          |
| out | out     | The VX_DF_IMAGE_U8 output image.      |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.11 Bitwise NOT

# 3.11.1 Detailed Description

Performs a *bitwise NOT* operation on a VX\_DF\_IMAGE\_U8 input image.

Bitwise NOT is computed by the following, for each bit in each pixel in the input image:

$$out(x,y) = \overline{in(x,y)}$$

Or expressed as C code:

 $out(x,y) = \sim in_1(x,y)$ 

# **Functions**

- vx\_node VX\_API\_CALL vxNotNode (vx\_graph graph, vx\_image input, vx\_image output) [Graph] Creates a bitwise NOT node.
- vx\_status VX\_API\_CALL vxuNot (vx\_context context, vx\_image input, vx\_image output) [Immediate] Computes the bitwise not of an image.

## 3.11.2 Function Documentation

## vx\_node VX\_API\_CALL vxNotNode ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a bitwise NOT node.

**Parameters** 

| in  | graph  | The reference to the graph.      |
|-----|--------|----------------------------------|
| in  | input  | A VX_DF_IMAGE_U8 input image.    |
| out | output | The VX_DF_IMAGE_U8 output image. |

## Returns

vx\_node.

## Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuNot ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Computes the bitwise not of an image.

### **Parameters**

| in  | context | The reference to the overall context. |
|-----|---------|---------------------------------------|
| in  | input   | The VX_DF_IMAGE_U8 input image        |
| out | output  | The VX_DF_IMAGE_U8 output image.      |

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.12 Box Filter

# 3.12.1 Detailed Description

Computes a Box filter over a window of the input image.

This filter uses the following convolution matrix:

$$\mathbf{K}_{box} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} * \frac{1}{9}$$

#### **Functions**

- vx\_node VX\_API\_CALL vxBox3x3Node (vx\_graph graph, vx\_image input, vx\_image output) [Graph] Creates a Box Filter Node.
- vx\_status VX\_API\_CALL vxuBox3x3 (vx\_context context, vx\_image input, vx\_image output) [Immediate] Computes a box filter on the image by a 3x3 window.

## 3.12.2 Function Documentation

## vx\_node VX\_API\_CALL vxBox3x3Node ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a Box Filter Node.

### **Parameters**

| in  | graph  | The reference to the graph.                |
|-----|--------|--------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.  |
| out | output | The output image in VX_DF_IMAGE_U8 format. |

### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

## vx\_status VX\_API\_CALL vxuBox3x3 ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Computes a box filter on the image by a 3x3 window.

#### **Parameters**

| in  | context | The reference to the overall context.      |
|-----|---------|--------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.  |
| out | output  | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.13 Canny Edge Detector

## 3.13.1 Detailed Description

Provides a Canny edge detector kernel.

This function implements an edge detection algorithm similar to that described in [2]. The main components of the algorithm are:

- · Gradient magnitude and orientation computation using a noise resistant operator (Sobel).
- · Non-maximum suppression of the gradient magnitude, using the gradient orientation information.
- · Tracing edges in the modified gradient image using hysteresis thresholding to produce a binary result.

The details of each of these steps are described below.

- **Gradient Computation:** Conceptually, the input image is convolved with vertical and horizontal Sobel kernels of the size indicated by the  $gradient\_size$  parameter. The Sobel kernels used for the gradient computation shall be as shown below. The two resulting directional gradient images (dx and dy) are then used to compute a gradient magnitude image and a gradient orientation image. The norm used to compute the gradient magnitude is indicated by the  $norm\_type$  parameter, so the magnitude may be |dx| + |dy| for VX\_NORM\_L1 or  $\sqrt{dx^2 + dy^2}$  for VX\_NORM\_L2. The gradient orientation image is quantized into 4 values: 0, 45, 90, and 135 degrees.
- · For gradient size 3:

$$\mathbf{sobel}_{x} = \begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$$

$$\mathbf{sobel}_{y} = transpose(sobel_{x}) = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix}$$

• For gradient size 5:

$$\mathbf{sobel}_{x} = \begin{vmatrix} -1 & -2 & 0 & 2 & 1 \\ -4 & -8 & 0 & 8 & 4 \\ -6 & -12 & 0 & 12 & 6 \\ -4 & -8 & 0 & 8 & 4 \\ -1 & -2 & 0 & 2 & 1 \end{vmatrix}$$

 $\mathbf{sobel}_{v} = transpose(sobel_{x})$ 

· For gradient size 7:

$$\mathbf{sobel}_{x} = \begin{vmatrix} -1 & -4 & -5 & 0 & 5 & 4 & 1 \\ -6 & -24 & -30 & 0 & 30 & 24 & 6 \\ -15 & -60 & -75 & 0 & 75 & 60 & 15 \\ -20 & -80 & -100 & 0 & 100 & 80 & 20 \\ -15 & -60 & -75 & 0 & 75 & 60 & 15 \\ -6 & -24 & -30 & 0 & 30 & 24 & 6 \\ -1 & -4 & -5 & 0 & 5 & 4 & 1 \end{vmatrix}$$

 $sobel_y = transpose(sobel_x)$ 

- Non-Maximum Suppression: This is then applied such that a pixel is retained as a potential edge pixel if and only if its magnitude is greater than or equal to the pixels in the direction perpendicular to its edge orientation. For example, if the pixel's orientation is 0 degrees, it is only retained if its gradient magnitude is larger than that of the pixels at 90 and 270 degrees to it. If a pixel is suppressed via this condition, it must not appear as an edge pixel in the final output, i.e., its value must be 0 in the final output.
- Edge Tracing: The final edge pixels in the output are identified via a double thresholded hysteresis procedure. All retained pixels with magnitude above the *high* threshold are marked as known edge pixels (valued 255) in the final output image. All pixels with magnitudes less than or equal to the *low* threshold must not be marked as edge pixels in the final output. For the pixels in between the thresholds, edges are traced and marked as edges (255) in the output. This can be done by starting at the known edge pixels and moving in all eight directions recursively until the gradient magnitude is less than or equal to the low threshold.

Caveats: The intermediate results described above are conceptual only; so for example, the implementation
may not actually construct the gradient images and non-maximum-suppressed images. Only the final binary
(0 or 255 valued) output image must be computed so that it matches the result of a final image constructed
as described above.

## **Enumerations**

```
    enum vx_norm_type_e {
    VX_NORM_L1 = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_NORM_TYPE << 12)) + 0x0,</li>
    VX_NORM_L2 = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_NORM_TYPE << 12)) + 0x1 }</li>
    A normalization type.
```

## **Functions**

vx\_node VX\_API\_CALL vxCannyEdgeDetectorNode (vx\_graph graph, vx\_image input, vx\_threshold hyst, vx\_int32 gradient\_size, vx\_enum norm\_type, vx\_image output)

[Graph] Creates a Canny Edge Detection Node.

vx\_status VX\_API\_CALL vxuCannyEdgeDetector (vx\_context context, vx\_image input, vx\_threshold hyst, vx\_int32 gradient\_size, vx\_enum norm\_type, vx\_image output)

[Immediate] Computes Canny Edges on the input image into the output image.

## 3.13.2 Enumeration Type Documentation

enum vx\_norm\_type\_e

A normalization type.

See also

Canny Edge Detector

Enumerator

VX\_NORM\_L1 The L1 normalization.VX\_NORM\_L2 The L2 normalization.

Definition at line 1136 of file vx\_types.h.

#### 3.13.3 Function Documentation

vx\_node VX\_API\_CALL vxCannyEdgeDetectorNode ( vx\_graph graph, vx\_image input, vx\_threshold hyst, vx\_int32 gradient\_size, vx\_enum norm\_type, vx\_image output )

[Graph] Creates a Canny Edge Detection Node.

#### **Parameters**

| in  | graph         | The reference to the graph.                                             |
|-----|---------------|-------------------------------------------------------------------------|
| in  | input         | The input VX_DF_IMAGE_U8 image.                                         |
| in  | hyst          | The double threshold for hysteresis.                                    |
| in  | gradient_size | The size of the Sobel filter window, must support at least 3, 5, and 7. |
| in  | norm_type     | A flag indicating the norm used to compute the gradient, VX_NORM_L1 or  |
|     |               | VX_NORM_L2.                                                             |
| out | output        | The output image in VX_DF_IMAGE_U8 format with values either 0 or 255.  |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuCannyEdgeDetector ( vx\_context context, vx\_image input, vx\_threshold hyst, vx\_int32 gradient\_size, vx\_enum norm\_type, vx\_image output )

[Immediate] Computes Canny Edges on the input image into the output image. Parameters

| in  | context       | The reference to the overall context.                                  |  |  |  |
|-----|---------------|------------------------------------------------------------------------|--|--|--|
| in  | input         | The input VX_DF_IMAGE_U8 image.                                        |  |  |  |
| in  | hyst          | The double threshold for hysteresis.                                   |  |  |  |
| in  | gradient_size | The size of the Sobel filter window, must support at least 3, 5 and 7. |  |  |  |
| in  | norm_type     | A flag indicating the norm used to compute the gradient, VX_NORM_L1 or |  |  |  |
|     |               | VX_NORM_L2.                                                            |  |  |  |
| out | output        | The output image in VX_DF_IMAGE_U8 format.                             |  |  |  |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |  |  |
|------------|-------------------------------------|--|--|
| *          | An error occurred. See vx_status_e. |  |  |

# 3.14 Channel Combine

# 3.14.1 Detailed Description

Implements the Channel Combine Kernel.

This kernel takes multiple VX\_DF\_IMAGE\_U8 planes to recombine them into a multi-planar or interleaved format from vx\_df\_image\_e. The user must specify only the number of channels that are appropriate for the combining operation. If a user specifies more channels than necessary, the operation results in an error. For the case where the destination image is a format with subsampling, the input channels are expected to have been subsampled before combining (by stretching and resizing).

#### **Functions**

vx\_node VX\_API\_CALL vxChannelCombineNode (vx\_graph graph, vx\_image plane0, vx\_image plane1, vx-image plane2, vx\_image plane3, vx\_image output)

[Graph] Creates a channel combine node.

vx\_status VX\_API\_CALL vxuChannelCombine (vx\_context context, vx\_image plane0, vx\_image plane1, vx
image plane2, vx\_image plane3, vx\_image output)

[Immediate] Invokes an immediate Channel Combine.

# 3.14.2 Function Documentation

vx\_node VX\_API\_CALL vxChannelCombineNode ( vx\_graph graph, vx\_image plane0, vx\_image plane1, vx\_image plane2, vx\_image plane3, vx\_image output )

[Graph] Creates a channel combine node.

#### **Parameters**

| in  | graph  | The graph reference.                                                         |  |  |
|-----|--------|------------------------------------------------------------------------------|--|--|
| in  | plane0 | The plane that forms channel 0. Must be VX_DF_IMAGE_U8.                      |  |  |
| in  | plane1 | The plane that forms channel 1. Must be VX_DF_IMAGE_U8.                      |  |  |
| in  | plane2 | [optional] The plane that forms channel 2. Must be VX_DF_IMAGE_U8.           |  |  |
| in  | plane3 | [optional] The plane that forms channel 3. Must be VX_DF_IMAGE_U8.           |  |  |
| out | output | The output image. The format of the image must be defined, even if the image |  |  |
|     |        | is virtual.                                                                  |  |  |

## See also

VX\_KERNEL\_CHANNEL\_COMBINE

# Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuChannelCombine ( vx\_context context, vx\_image plane0, vx\_image plane1, vx\_image plane2, vx\_image plane3, vx\_image output )

[Immediate] Invokes an immediate Channel Combine.

Parameters

| in  | context | The reference to the overall context.                              |  |  |
|-----|---------|--------------------------------------------------------------------|--|--|
| in  | plane0  | The plane that forms channel 0. Must be VX_DF_IMAGE_U8.            |  |  |
| in  | plane1  | The plane that forms channel 1. Must be VX_DF_IMAGE_U8.            |  |  |
| in  | plane2  | [optional] The plane that forms channel 2. Must be VX_DF_IMAGE_U8. |  |  |
| in  | plane3  | [optional] The plane that forms channel 3. Must be VX_DF_IMAGE_U8. |  |  |
| out | output  | The output image.                                                  |  |  |

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS                            | Success |
|---------------------------------------|---------|
| * An error occurred. See vx_status_e. |         |

# 3.15 Channel Extract

# 3.15.1 Detailed Description

Implements the Channel Extraction Kernel.

This kernel removes a single  $VX_DF_IMAGE_U8$  channel (plane) from a multi-planar or interleaved image format from  $vx_df_image_e$ .

### **Functions**

vx\_node VX\_API\_CALL vxChannelExtractNode (vx\_graph graph, vx\_image input, vx\_enum channel, vx\_image output)

[Graph] Creates a channel extract node.

vx\_status VX\_API\_CALL vxuChannelExtract (vx\_context context, vx\_image input, vx\_enum channel, vx\_image output)

[Immediate] Invokes an immediate Channel Extract.

#### 3.15.2 Function Documentation

# vx\_node VX\_API\_CALL vxChannelExtractNode ( vx\_graph graph, vx\_image input, vx\_enum channel, vx\_image output )

[Graph] Creates a channel extract node.

#### **Parameters**

| in  | graph   | The reference to the graph.                                                 |  |  |  |
|-----|---------|-----------------------------------------------------------------------------|--|--|--|
| in  | input   | The input image. Must be one of the defined vx_df_image_e multi-planar for- |  |  |  |
|     |         | mats.                                                                       |  |  |  |
| in  | channel | The vx_channel_e channel to extract.                                        |  |  |  |
| out | output  | The output image. Must be VX_DF_IMAGE_U8.                                   |  |  |  |

### See also

VX\_KERNEL\_CHANNEL\_EXTRACT

#### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuChannelExtract ( vx\_context context, vx\_image input, vx\_enum channel, vx\_image output )

[Immediate] Invokes an immediate Channel Extract.

## Parameters

| in  | context | The reference to the overall context.                                 |  |  |  |
|-----|---------|-----------------------------------------------------------------------|--|--|--|
| in  | input   | The input image. Must be one of the defined vx_df_image_e multiplanar |  |  |  |
|     |         | formats.                                                              |  |  |  |
| in  | channel | The vx_channel_e enumeration to extract.                              |  |  |  |
| out | output  | The output image. Must be VX_DF_IMAGE_U8.                             |  |  |  |

### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |  |  |
|------------|-------------------------------------|--|--|
| *          | An error occurred. See vx_status_e. |  |  |

## 3.16 Color Convert

## 3.16.1 Detailed Description

Implementes the Color Conversion Kernel.

This kernel converts an image of a designated vx\_df\_image\_e format to another vx\_df\_image\_e format for those combinations listed in the below table, where the columns are output types and the rows are input types. The API version first supporting the conversion is also listed.

| I/O  | RGB | RGBX | NV12 | NV21 | UYVY | YUYV | IYUV | YUV4 |
|------|-----|------|------|------|------|------|------|------|
| RGB  |     | 1.0  | 1.0  |      |      |      | 1.0  | 1.0  |
| RGBX | 1.0 |      | 1.0  |      |      |      | 1.0  | 1.0  |
| NV12 | 1.0 | 1.0  |      |      |      |      | 1.0  | 1.0  |
| NV21 | 1.0 | 1.0  |      |      |      |      | 1.0  | 1.0  |
| UYVY | 1.0 | 1.0  | 1.0  |      |      |      | 1.0  |      |
| YUYV | 1.0 | 1.0  | 1.0  |      |      |      | 1.0  |      |
| IYUV | 1.0 | 1.0  | 1.0  |      |      |      |      | 1.0  |
| YUV4 |     |      |      |      |      |      |      |      |

The vx\_df\_image\_e encoding, held in the VX\_IMAGE\_ATTRIBUTE\_FORMAT attribute, describes the data layout. The interpretation of the colors is determined by the VX\_IMAGE\_ATTRIBUTE\_SPACE (see vx — \_color\_space\_e) and VX\_IMAGE\_ATTRIBUTE\_RANGE (see vx\_channel\_range\_e) attributes of the image. OpenVX 1.0 implementations are required only to support images of VX\_COLOR\_SPACE\_BT709 and VX\_CHANNEL\_RANGE\_FULL.

If the channel range is defined as VX\_CHANNEL\_RANGE\_FULL, the conversion between the real number and integer quantizations of color channels is defined for red, green, blue, and Y as:

$$value_{real} = \frac{value_{integer}}{256.0}$$

$$value_{integer} = max(0, min(255, floor(value_{real} * 256.0)))$$

For the U and V channels, the conversion between real number and integer quantizations is:

$$value_{real} = \frac{(value_{integer} - 128.0)}{256.0}$$

$$value_{integer} = max(0, min(255, floor((value_{real} * 256.0) + 128)))$$

If the channel range is defined as VX\_CHANNEL\_RANGE\_RESTRICTED, the conversion between the integer quantizations of color channels and the continuous representations is defined for red, green, blue, and Y as:

$$value_{real} = \frac{(value_{integer} - 16.0)}{219.0}$$

$$value_{integer} = max(0, min(255, floor((value_{real} * 219.0) + 16.5)))$$

For the U and V channels, the conversion between real number and integer quantizations is:

$$value_{real} = \frac{(value_{integer} - 128.0)}{224.0}$$
 
$$value_{integer} = max(0, min(255, floor((value_{real} * 224.0) + 128.5)))$$

The conversions between nonlinear-intensity Y'PbPr and R'G'B' real numbers are:

$$R' = Y' + 2(1 - K_r)Pr$$

$$B' = Y' + 2(1 - K_b)Pb$$

$$G' = Y' - \frac{2(K_r(1 - K_r)Pr + K_b(1 - K_b)Pb)}{1 - K_r - K_b}$$

$$Y' = (K_r * R') + (K_b * B') + (1 - K_r - K_b)G'$$

$$Pb = \frac{B'}{2} - \frac{(R' * K_r) + G'(1 - K_r - K_b)}{2(1 - K_b)}$$

$$Pr = \frac{R'}{2} - \frac{(B' * K_b) + G'(1 - K_r - K_b)}{2(1 - K_r)}$$

The means of reconstructing Pb and Pr values from chroma-downsampled formats is implementation-defined. In VX\_COLOR\_SPACE\_BT601\_525 or VX\_COLOR\_SPACE\_BT601\_625:

$$K_r = 0.299$$

$$K_b = 0.114$$

In VX\_COLOR\_SPACE\_BT709:

$$K_r = 0.2126$$

$$K_b = 0.0722$$

In all cases, for the purposes of conversion, these colour representations are interpreted as nonlinear in intensity, as defined by the BT.601, BT.709, and sRGB specifications. That is, the encoded colour channels are nonlinear R', G' and B', Y', Pb, and Pr.

Each channel of the R'G'B' representation can be converted to and from a linear-intensity RGB channel by these formulae:

$$value_{nonlinear} = 1.099 * value_{linear}^{0.45} - 0.099$$
 for  $1 \ge value_{linear} \ge 0.018$   
 $value_{nonlinear} = 4.500 * value_{linear}$  for  $0.018 > value_{linear} \ge 0$ 

$$\label{eq:value_linear} \begin{split} value_{linear} &= \left(\frac{value_{nonlinear} + 0.099}{1.099}\right)^{\frac{1}{0.45}} \ for \ 1 \geq value_{nonlinear} > 0.081 \\ value_{linear} &= \frac{value_{nonlinear}}{4.5} \ for \ 0.081 \geq value_{nonlinear} \geq 0 \end{split}$$

As the different color spaces have different RGB primaries, a conversion between them must transform the color coordinates into the new RGB space. Working with linear RGB values, the conversion formulae are:

$$\begin{split} R_{BT601\_525} &= R_{BT601\_625} * 1.112302 + G_{BT601\_625} * -0.102441 + B_{BT601\_625} * -0.009860 \\ G_{BT601\_525} &= R_{BT601\_625} * -0.020497 + G_{BT601\_625} * 1.037030 + B_{BT601\_625} * -0.016533 \\ B_{BT601\_525} &= R_{BT601\_625} * 0.001704 + G_{BT601\_625} * 0.016063 + B_{BT601\_625} * 0.982233 \end{split}$$

$$\begin{split} R_{BT601\_525} &= R_{BT709} * 1.065379 + G_{BT709} * -0.055401 + B_{BT709} * -0.009978 \\ G_{BT601\_525} &= R_{BT709} * -0.019633 + G_{BT709} * 1.036363 + B_{BT709} * -0.016731 \\ B_{BT601\_525} &= R_{BT709} * 0.001632 + G_{BT709} * 0.004412 + B_{BT709} * 0.993956 \end{split}$$

$$R_{BT601\_625} = R_{BT601\_525} * 0.900657 + G_{BT601\_525} * 0.088807 + B_{BT601\_525} * 0.010536$$

$$G_{BT601\_625} = R_{BT601\_525} * 0.017772 + G_{BT601\_525} * 0.965793 + B_{BT601\_525} * 0.016435$$

$$B_{BT601\_625} = R_{BT601\_525} * -0.001853 + G_{BT601\_525} * -0.015948 + B_{BT601\_525} * 1.017801$$

$$R_{BT601\_625} = R_{BT709} * 0.957815 + G_{BT709} * 0.042185$$

$$G_{BT601\_625} = G_{BT709}$$

$$B_{BT601\_625} = G_{BT709} * -0.011934 + B_{BT709} * 1.011934$$

$$R_{BT709} = R_{BT601\_525} * 0.939542 + G_{BT601\_525} * 0.050181 + B_{BT601\_525} * 0.010277$$

$$G_{BT709} = R_{BT601\_525} * 0.017772 + G_{BT601\_525} * 0.965793 + B_{BT601\_525} * 0.016435$$

$$B_{BT709} = R_{BT601\_525} * -0.001622 + G_{BT601\_525} * -0.004370 + B_{BT601\_525} * 1.005991$$

$$R_{BT709} = R_{BT601\_625} * 1.044043 + G_{BT601\_625} * -0.044043$$
  
 $G_{BT709} = G_{BT601\_625}$   
 $B_{BT709} = G_{BT601\_625} * 0.011793 + B_{BT601\_625} * 0.988207$ 

A conversion between one YUV color space and another may therefore consist of the following transformations:

- 1. Convert quantized Y'CbCr ("YUV") to continuous, nonlinear Y'PbPr.
- 2. Convert continuous Y'PbPr to continuous, nonlinear R'G'B'.
- 3. Convert nonlinear R'G'B' to linear-intensity RGB (gamma-correction).
- 4. Convert linear RGB from the first color space to linear RGB in the second color space.
- 5. Convert linear RGB to nonlinear R'G'B' (gamma-conversion).
- 6. Convert nonlinear R'G'B' to Y'PbPr.
- 7. Convert continuous Y'PbPr to quantized Y'CbCr ("YUV").

The above formulae and constants are defined in the ITU BT. 601 and BT. 709 specifications. The formulae for converting between RGB primaries can be derived from the specified primary chromaticity values and the specified white point by solving for the relative intensity of the primaries.

#### **Functions**

- vx\_node VX\_API\_CALL vxColorConvertNode (vx\_graph graph, vx\_image input, vx\_image output)
   [Graph] Creates a color conversion node.
- vx\_status VX\_API\_CALL vxuColorConvert (vx\_context context, vx\_image input, vx\_image output)
   [Immediate] Invokes an immediate Color Conversion.

#### 3.16.2 Function Documentation

## vx\_node VX\_API\_CALL vxColorConvertNode ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a color conversion node.

#### **Parameters**

| in  | graph  | The reference to the graph.            |  |  |
|-----|--------|----------------------------------------|--|--|
| in  | input  | The input image from which to convert. |  |  |
| out | output | The output image to which to convert.  |  |  |

# See also

VX\_KERNEL\_COLOR\_CONVERT

## Returns

vx\_node.

## Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

## vx status VX API CALL vxuColorConvert ( vx context context, vx image input, vx image output )

[Immediate] Invokes an immediate Color Conversion.

#### **Parameters**

| in  | context | The reference to the overall context. |
|-----|---------|---------------------------------------|
| in  | input   | The input image.                      |
| out | output  | The output image.                     |

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.17 Convert Bit depth

# 3.17.1 Detailed Description

Converts image bit depth.

This kernel converts an image from some source bit-depth to another bit-depth as described by the table below. If the input value is unsigned the shift must be in zeros. If the input value is signed, the shift used must be an arithmetic shift. The columns in the table below are the output types and the rows are the input types. The API version on which conversion is supported is also listed. (An *X* denotes an invalid operation.)

| I/O | U8  | U16 | S16 | U32 | S32 |
|-----|-----|-----|-----|-----|-----|
| U8  | X   |     | 1.0 |     |     |
| U16 |     | Х   | X   |     |     |
| S16 | 1.0 | X   | X   |     |     |
| U32 |     |     |     | Х   | Х   |
| S32 |     |     |     | Х   | Х   |

**Conversion Type** The table below identifies the conversion types for the allowed bith depth conversions.

| From | То  | Conversion Type |
|------|-----|-----------------|
| U8   | S16 | Up-conversion   |
| S16  | U8  | Down-conversion |

**Convert Policy** Down-conversions with VX\_CONVERT\_POLICY\_WRAP follow this equation:

```
output(x,y) = ((uint8)(input(x,y) >> shift));
```

Down-conversions with VX\_CONVERT\_POLICY\_SATURATE follow this equation:

```
int16 value = input(x,y) >> shift;
value = value < 0 ? 0 : value;
value = value > 255 ? 255 : value;
output(x,y) = (uint8)value;
```

Up-conversions ignore the policy and perform this operation:

```
output(x,y) = ((int16)input(x,y)) << shift;
```

The valid values for 'shift' are as specified below, all other values produce undefined behavior.

```
0 <= shift < 8;
```

### **Functions**

vx\_node VX\_API\_CALL vxConvertDepthNode (vx\_graph graph, vx\_image input, vx\_image output, vx\_enum policy, vx\_scalar shift)

[Graph] Creates a bit-depth conversion node.

vx\_status VX\_API\_CALL vxuConvertDepth (vx\_context context, vx\_image input, vx\_image output, vx\_enum policy, vx\_int32 shift)

[Immediate] Converts the input images bit-depth into the output image.

## 3.17.2 Function Documentation

vx\_node VX\_API\_CALL vxConvertDepthNode ( vx\_graph graph, vx\_image input, vx\_image output, vx\_enum policy, vx\_scalar shift )

[Graph] Creates a bit-depth conversion node. Parameters

| in  | graph  | The reference to the graph.                                            |
|-----|--------|------------------------------------------------------------------------|
| in  | input  | The input image.                                                       |
| out | output | The output image.                                                      |
| in  | policy | A scalar containing a VX_TYPE_ENUM of the vx_convert_policy_e enumera- |
|     |        | tion.                                                                  |
| in  | shift  | A scalar containing a VX_TYPE_INT32 of the shift value.                |

## Returns

vx\_node.

## Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuConvertDepth ( vx\_context context, vx\_image input, vx\_image output, vx\_enum policy, vx\_int32 shift )

[Immediate] Converts the input images bit-depth into the output image. Parameters

| in  | context | The reference to the overall context. |
|-----|---------|---------------------------------------|
| in  | input   | The input image.                      |
| out | output  | The output image.                     |
| in  | policy  | A vx_convert_policy_e enumeration.    |
| in  | shift   | The shift value.                      |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                            |
|------------|------------------------------------|
| *          | An error occurred. See vx_status_e |

# 3.18 Custom Convolution

## 3.18.1 Detailed Description

Convolves the input with the client supplied convolution matrix.

The client can supply a vx\_int16 typed convolution matrix  $C_{m,n}$ . Outputs will be in the VX\_DF\_IMAGE\_S16 format unless a VX\_DF\_IMAGE\_U8 image is explicitly provided. If values would have been out of range of U8 for VX\_DF\_IMAGE\_U8, the values are clamped to 0 or 255.

$$k_0 = \frac{m}{2} \tag{3.1}$$

$$l_0 = \frac{n}{2} \tag{3.2}$$

$$k_{0} = \frac{m}{2}$$

$$l_{0} = \frac{n}{2}$$

$$sum = \sum_{k=0,l=0}^{k=m-1,l=n-1} input(x+k_{0}-k,y+l_{0}-l)C_{k,l}$$
(3.1)
(3.2)

Note

The above equation for this function is different than an equivalent operation suggested by the OpenC ← V Filter2D function.

This translates into the C declaration:

```
// A horizontal Scharr gradient operator with different scale.
vx_{int16} gx[3][3] = {
    { 3, 0, -3}, 
{ 10, 0, -10},
    \{3, 0, -3\},
vx_convolution scharr_x = vxCreateConvolution(context, 3, 3);
vxReadConvolutionCoefficients(scharr_x, NULL);
vxWriteConvolutionCoefficients(scharr_x, (
  vx int16*)qx);
vxSetConvolutionAttribute(scharr_x,
  VX_CONVOLUTION_ATTRIBUTE_SCALE, &scale, sizeof(scale));
```

For VX DF IMAGE U8 output, an additional step is taken:

$$output(x,y) = \begin{cases} 0 & \text{if } sum < 0\\ 255 & \text{if } sum/scale > 255\\ sum/scale & \text{otherwise} \end{cases}$$

For VX DF IMAGE \$16 output, the summation is simply set to the output

$$out put(x, y) = sum/scale$$

The overflow policy used is VX\_CONVERT\_POLICY\_SATURATE.

#### **Functions**

 vx\_node VX\_API\_CALL vxConvolveNode (vx\_graph graph, vx\_image input, vx\_convolution conv, vx\_image output)

[Graph] Creates a custom convolution node.

 vx\_status VX\_API\_CALL vxuConvolve (vx\_context context, vx\_image input, vx\_convolution matrix, vx\_image output)

[Immediate] Computes a convolution on the input image with the supplied matrix.

## 3.18.2 Function Documentation

vx node VX API CALL vxConvolveNode (vx graph graph, vx image input, vx convolution conv, vx\_image output )

[Graph] Creates a custom convolution node.

#### **Parameters**

| in  | graph  | The reference to the graph.                                   |
|-----|--------|---------------------------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.                     |
| in  | conv   | The vx_int16 convolution matrix.                              |
| out | output | The output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format. |

# Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuConvolve ( vx\_context context, vx\_image input, vx\_convolution matrix, vx\_image output )

[Immediate] Computes a convolution on the input image with the supplied matrix.

#### **Parameters**

| in  | context | The reference to the overall context.                         |
|-----|---------|---------------------------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.                     |
| in  | matrix  | The convolution matrix.                                       |
| out | output  | The output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format. |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.19 Dilate Image

# 3.19.1 Detailed Description

Implements Dilation, which grows the white space in a VX\_DF\_IMAGE\_U8 Boolean image.

This kernel uses a 3x3 box around the output pixel used to determine value.

$$dst(x,y) = \max_{\begin{subarray}{c} x-1 \le x' \le x+1 \\ y-1 \le y' \le y+1 \end{subarray}} src(x',y')$$

#### **Functions**

- vx\_node VX\_API\_CALL vxDilate3x3Node (vx\_graph graph, vx\_image input, vx\_image output) [Graph] Creates a Dilation Image Node.
- vx\_status VX\_API\_CALL vxuDilate3x3 (vx\_context context, vx\_image input, vx\_image output) [Immediate] Dilates an image by a 3x3 window.

#### 3.19.2 Function Documentation

## vx\_node VX\_API\_CALL vxDilate3x3Node ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a Dilation Image Node.

#### **Parameters**

| in  | graph  | The reference to the graph.                |
|-----|--------|--------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.  |
| out | output | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuDilate3x3 ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Dilates an image by a 3x3 window.

#### **Parameters**

| in  | context | The reference to the overall context.      |
|-----|---------|--------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.  |
| out | output  | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.20 Equalize Histogram

# 3.20.1 Detailed Description

Equalizes the histogram of a grayscale image.

This kernel uses Histogram Equalization to modify the values of a grayscale image so that it will automatically have a standardized brightness and contrast.

#### **Functions**

- vx\_node VX\_API\_CALL vxEqualizeHistNode (vx\_graph graph, vx\_image input, vx\_image output)
   [Graph] Creates a Histogram Equalization node.
- vx\_status VX\_API\_CALL vxuEqualizeHist (vx\_context context, vx\_image input, vx\_image output)

  [Immediate] Equalizes the Histogram of a grayscale image.

# 3.20.2 Function Documentation

# vx\_node VX\_API\_CALL vxEqualizeHistNode ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a Histogram Equalization node.

# **Parameters**

| in  | graph  | The reference to the graph.                                      |
|-----|--------|------------------------------------------------------------------|
| in  | input  | The grayscale input image in VX_DF_IMAGE_U8.                     |
| out | output | The grayscale output image of type VX_DF_IMAGE_U8 with equalized |
|     |        | brightness and contrast.                                         |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuEqualizeHist ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Equalizes the Histogram of a grayscale image.

# Parameters

| in  | context | The reference to the overall context.                            |
|-----|---------|------------------------------------------------------------------|
| in  | input   | The grayscale input image in VX_DF_IMAGE_U8                      |
| out | output  | The grayscale output image of type VX_DF_IMAGE_U8 with equalized |
|     |         | brightness and contrast.                                         |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.21 Erode Image

# 3.21.1 Detailed Description

Implements Erosion, which *shrinks* the white space in a VX\_DF\_IMAGE\_U8 Boolean image. This kernel uses a 3x3 box around the output pixel used to determine value.

#### **Functions**

- vx\_node VX\_API\_CALL vxErode3x3Node (vx\_graph graph, vx\_image input, vx\_image output) [Graph] Creates an Erosion Image Node.
- vx\_status VX\_API\_CALL vxuErode3x3 (vx\_context context, vx\_image input, vx\_image output) [Immediate] Erodes an image by a 3x3 window.

## 3.21.2 Function Documentation

# vx\_node VX\_API\_CALL vxErode3x3Node ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates an Erosion Image Node.

#### **Parameters**

| in  | graph  | The reference to the graph.                |
|-----|--------|--------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.  |
| out | output | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuErode3x3 ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Erodes an image by a 3x3 window.

#### **Parameters**

| in  | context | The reference to the overall context.      |
|-----|---------|--------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.  |
| out | output  | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.22 Fast Corners

# 3.22.1 Detailed Description

Computes the corners in an image using a method based upon FAST9 algorithm suggested in [3] and with some updates from [4] with modifications described below.

It extracts corners by evaluating pixels on the Bresenham circle around a candidate point. If N contiguous pixels are brighter than the candidate point by at least a threshold value t or darker by at least t, then the candidate point is considered to be a corner. For each detected corner, its strength is computed. Optionally, a non-maxima suppression step is applied on all detected corners to remove multiple or spurious responses.

# 3.22.2 Segment Test Detector

The FAST corner detector uses the pixels on a Bresenham circle of radius 3 (16 pixels) to classify whether a candidate point p is actually a corner, given the following variables.

| Ι       | = | input image                                                                | (3.4)  |
|---------|---|----------------------------------------------------------------------------|--------|
| p       | = | candidate point position for a corner                                      | (3.5)  |
| $I_p$   | = | image intensity of the candidate point in image ${\it I}$                  | (3.6)  |
| x       | = | pixel on the Bresenham circle around the candidate point $\boldsymbol{p}$  | (3.7)  |
| $I_{x}$ | = | image intensity of the candidate point                                     | (3.8)  |
| t       | = | intensity difference threshold for a corner                                | (3.9)  |
| N       | = | minimum number of contiguous pixel to detect a corner                      | (3.10) |
| S       | = | set of contiguous pixel on the Bresenham circle around the candidate point | (3.11) |
| $C_p$   | = | corner response at corner location $p$                                     | (3.12) |
|         |   |                                                                            | (3.13) |

The two conditions for FAST corner detection can be expressed as:

- C1: A set of N contiguous pixels S,  $\forall x$  in S,  $I_x > I_p + t$
- C2: A set of N contiguous pixels S,  $\forall x$  in S,  $I_x < I_p t$

So when either of these two conditions is met, the candidate p is classified as a corner.

In this version of the FAST algorithm, the minimum number of contiguous pixels N is 9 (FAST9).

The value of the intensity difference threshold *strength thresh*. of type VX\_TYPE\_FLOAT32 must be within:

$$UINT8_{MIN} < t < UINT8_{MAX}$$

These limits are established due to the input data type VX\_DF\_IMAGE\_U8.

**Corner Strength Computation** Once a corner has been detected, its strength (response, saliency, or score) shall be computed if nonmax\_suppression is set to true, otherwise the value of strength is undefined. The corner response  $C_p$  function is defined as the largest threshold t for which the pixel p remains a corner.

**Non-maximum suppression** If the nonmax\_suppression flag is true, a non-maxima suppression step is applied on the detected corners. The corner with coordinates (x, y) is kept if and only if

$$C_p(x,y) \ge C_p(x-1,y-1)$$
 and  $C_p(x,y) \ge C_p(x,y-1)$  and  $C_p(x,y) \ge C_p(x+1,y-1)$  and  $C_p(x,y) \ge C_p(x-1,y)$  and  $C_p(x,y) > C_p(x+1,y)$  and  $C_p(x,y) > C_p(x-1,y+1)$  and  $C_p(x,y) > C_p(x+1,y+1)$  and  $C_p(x,y) > C_p(x+1,y+1)$ 

See also

```
http://www.edwardrosten.com/work/fast.html
http://en.wikipedia.org/wiki/Features_from_accelerated_segment_test
```

## **Functions**

• vx\_node VX\_API\_CALL vxFastCornersNode (vx\_graph graph, vx\_image input, vx\_scalar strength\_thresh, vx\_bool nonmax\_suppression, vx\_array corners, vx\_scalar num\_corners)

[Graph] Creates a FAST Corners Node.

• vx\_status VX\_API\_CALL vxuFastCorners (vx\_context context, vx\_image input, vx\_scalar strength\_thresh, vx\_bool nonmax\_suppression, vx\_array corners, vx\_scalar num\_corners)

[Immediate] Computes corners on an image using FAST algorithm and produces the array of feature points.

# 3.22.3 Function Documentation

vx\_node VX\_API\_CALL vxFastCornersNode ( vx\_graph graph, vx\_image input, vx\_scalar strength\_thresh, vx\_bool nonmax\_suppression, vx\_array corners, vx\_scalar num\_corners)

[Graph] Creates a FAST Corners Node.

#### **Parameters**

| in  | graph           | The reference to the graph.                                                  |
|-----|-----------------|------------------------------------------------------------------------------|
| in  | input           | The input VX_DF_IMAGE_U8 image.                                              |
| in  | strength_thresh | Threshold on difference between intensity of the central pixel and pixels on |
|     |                 | Bresenham's circle of radius 3 (VX_TYPE_FLOAT32 scalar).                     |
| in  | nonmax_←        | If true, non-maximum suppression is applied to detected corners before being |
|     | suppression     | placed in the vx_array of VX_TYPE_KEYPOINT objects.                          |
| out | corners         | Output corner vx_array of VX_TYPE_KEYPOINT.                                  |
| out | num_corners     | The total number of detected corners in image (optional). Use a VX_TYPE_     |
|     |                 | SIZE scalar.                                                                 |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuFastCorners ( vx\_context context, vx\_image input, vx\_scalar strength\_thresh, vx\_bool nonmax\_suppression, vx\_array corners, vx\_scalar num\_corners)

[Immediate] Computes corners on an image using FAST algorithm and produces the array of feature points. Parameters

| in  | context         | The reference to the overall context.                                        |
|-----|-----------------|------------------------------------------------------------------------------|
| in  | input           | The input VX_DF_IMAGE_U8 image.                                              |
| in  | strength_thresh | Threshold on difference between intensity of the central pixel and pixels on |
|     |                 | Bresenham's circle of radius 3 (VX_TYPE_FLOAT32 scalar)                      |
| in  | nonmax_←        | If true, non-maximum suppression is applied to detected corners before being |
|     | suppression     | places in the vx_array of VX_TYPE_KEYPOINT structs.                          |
| out | corners         | Output corner vx_array of VX_TYPE_KEYPOINT.                                  |
| out | num_corners     | The total number of detected corners in image (optional). Use a VX_TYPE_     |
|     |                 | SIZE scalar.                                                                 |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.23 Gaussian Filter

# 3.23.1 Detailed Description

Computes a Gaussian filter over a window of the input image.

This filter uses the following convolution matrix:

$$\mathbf{K}_{gaussian} = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix} * \frac{1}{16}$$

#### **Functions**

- vx\_node VX\_API\_CALL vxGaussian3x3Node (vx\_graph graph, vx\_image input, vx\_image output) [Graph] Creates a Gaussian Filter Node.
- vx\_status VX\_API\_CALL vxuGaussian3x3 (vx\_context context, vx\_image input, vx\_image output) [Immediate] Computes a gaussian filter on the image by a 3x3 window.

## 3.23.2 Function Documentation

## vx\_node VX\_API\_CALL vxGaussian3x3Node ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a Gaussian Filter Node.

#### **Parameters**

| in  | graph  | The reference to the graph.                |
|-----|--------|--------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.  |
| out | output | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuGaussian3x3 ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Computes a gaussian filter on the image by a 3x3 window. Parameters

| in  | context | The reference to the overall context.      |
|-----|---------|--------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.  |
| out | output  | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

#### 3.24 **Harris Corners**

#### 3.24.1 **Detailed Description**

Computes the Harris Corners of an image.

The Harris Corners are computed with several parameters

$$I = \text{input image}$$
 (3.14)

$$T_c = \text{corner strength threshold}$$
 (3.15)

$$r = \text{euclidean radius}$$
 (3.16)

$$k = \text{sensitivity threshold}$$
 (3.17)

$$w = \text{window size}$$
 (3.18)

$$b = \operatorname{block} \operatorname{size}$$
 (3.19)

(3.20)

The computation to find the corner values or scores can be summarized as:

$$G_{x} = Sobel_{x}(w, I) (3.21)$$

$$G_{y} = Sobel_{y}(w, I) \tag{3.22}$$

$$G_y = Sobel_y(w, I)$$
 (3.22)  
 $A = window_{G_{x,y}}(x - b/2, y - b/2, x + b/2, y + b/2)$  (3.23)

$$trace(A) = \sum_{x}^{A} G_{x}^{2} + \sum_{y}^{A} G_{y}^{2}$$
 (3.24)

$$det(A) = \sum_{x}^{A} G_{x}^{2} \sum_{y}^{A} G_{y}^{2} - \left(\sum_{x}^{A} (G_{x}G_{y})\right)^{2}$$
(3.25)

$$M_c(x,y) = det(A) - k * trace(A)^2$$
(3.26)

$$V_c(x,y) = \begin{cases} M_c(x,y) & \text{if } M_c(x,y) > T_c \\ 0 & \text{otherwise} \end{cases}$$
 (3.27)

where  $V_c$  is the thresholded corner value.

The normalized Sobel kernels used for the gradient computation shall be as shown below:

· For gradient size 3:

**Sobel**<sub>x</sub>(Normalized) = 
$$\frac{1}{4*255*b}*\begin{vmatrix} -1 & 0 & 1\\ -2 & 0 & 2\\ -1 & 0 & 1 \end{vmatrix}$$

**Sobel**<sub>y</sub>(Normalized) = 
$$\frac{1}{4*255*b}*transpose(sobel_x) = \frac{1}{4*255*b}*\begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix}$$

· For gradient size 5:

$$\mathbf{Sobel}_{x}(Normalized) = \frac{1}{16 * 255 * b} * \begin{vmatrix} -1 & -2 & 0 & 2 & 1 \\ -4 & -8 & 0 & 8 & 4 \\ -6 & -12 & 0 & 12 & 6 \\ -4 & -8 & 0 & 8 & 4 \\ -1 & -2 & 0 & 2 & 1 \end{vmatrix}$$

$$\mathbf{Sobel}_{y}(Normalized) = \frac{1}{16 * 255 * b} * transpose(sobel_{x})$$

· For gradient size 7:

$$\mathbf{Sobel}_{x}(Normalized) = \frac{1}{64 * 255 * b} * \begin{vmatrix} -1 & -4 & -5 & 0 & 5 & 4 & 1 \\ -6 & -24 & -30 & 0 & 30 & 24 & 6 \\ -15 & -60 & -75 & 0 & 75 & 60 & 15 \\ -20 & -80 & -100 & 0 & 100 & 80 & 20 \\ -15 & -60 & -75 & 0 & 75 & 60 & 15 \\ -6 & -24 & -30 & 0 & 30 & 24 & 6 \\ -1 & -4 & -5 & 0 & 5 & 4 & 1 \end{vmatrix}$$

$$\textbf{Sobel}_y(Normalized) = \frac{1}{64*255*b}*transpose(sobel_x)$$

 $V_c$  is then non-maximally suppressed using the following algorithm:

- Filter the features using the non-maximum suppression algorithm defined for vxFastCornersNode.
- Create an array of features sorted by  $V_c$  in descending order:  $V_c(j) > V_c(j+1)$ .
- Initialize an empty feature set  $F = \{\}$
- For each feature j in the sorted array, while  $V_c(j) > T_c$ :
  - If there is no feature i in F such that the Euclidean distance between pixels i and j is less than r, add the feature j to the feature set F.

An implementation shall support all values of Euclidean distance r that satisfy:

The feature set F is returned as a vx\_array of vx\_keypoint\_t structs.

#### **Functions**

vx\_node VX\_API\_CALL vxHarrisCornersNode (vx\_graph graph, vx\_image input, vx\_scalar strength\_thresh, vx\_scalar min\_distance, vx\_scalar sensitivity, vx\_int32 gradient\_size, vx\_int32 block\_size, vx\_array corners, vx\_scalar num\_corners)

[Graph] Creates a Harris Corners Node.

vx\_status VX\_API\_CALL vxuHarrisCorners (vx\_context context, vx\_image input, vx\_scalar strength\_thresh, vx\_scalar min\_distance, vx\_scalar sensitivity, vx\_int32 gradient\_size, vx\_int32 block\_size, vx\_array corners, vx\_scalar num\_corners)

[Immediate] Computes the Harris Corners over an image and produces the array of scored points.

#### 3.24.2 Function Documentation

vx\_node VX\_API\_CALL vxHarrisCornersNode ( vx\_graph graph, vx\_image input, vx\_scalar strength\_thresh, vx\_scalar min\_distance, vx\_scalar sensitivity, vx\_int32 gradient\_size, vx\_int32 block\_size, vx\_array corners, vx\_scalar num\_corners)

[Graph] Creates a Harris Corners Node.

#### **Parameters**

| in  | graph           | The reference to the graph.                                                        |
|-----|-----------------|------------------------------------------------------------------------------------|
| in  | input           | The input VX_DF_IMAGE_U8 image.                                                    |
| in  | strength_thresh | The VX_TYPE_FLOAT32 minimum threshold with which to eliminate Harris               |
|     |                 | Corner scores (computed using the normalized Sobel kernel).                        |
| in  | min_distance    | The VX_TYPE_FLOAT32 radial Euclidean distance for non-maximum sup-                 |
|     |                 | pression.                                                                          |
| in  | sensitivity     | The VX_TYPE_FLOAT32 scalar sensitivity threshold $k$ from the Harris- $\leftarrow$ |
|     |                 | Stephens equation.                                                                 |
| in  | gradient_size   | The gradient window size to use on the input. The implementation must sup-         |
|     |                 | port at least 3, 5, and 7.                                                         |
| in  | block_size      | The block window size used to compute the Harris Corner score. The imple-          |
|     |                 | mentation must support at least 3, 5, and 7.                                       |
| out | corners         | The array of VX_TYPE_KEYPOINT objects.                                             |
| out | num_corners     | The total number of detected corners in image (optional). Use a VX_TYPE_←          |
|     |                 | SIZE scalar.                                                                       |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuHarrisCorners ( vx\_context context, vx\_image input, vx\_scalar strength\_thresh, vx\_scalar min\_distance, vx\_scalar sensitivity, vx\_int32 gradient\_size, vx\_int32 block\_size, vx\_array corners, vx\_scalar num\_corners )

[Immediate] Computes the Harris Corners over an image and produces the array of scored points. Parameters

| in  | context         | The reference to the overall context.                                              |
|-----|-----------------|------------------------------------------------------------------------------------|
| in  | input           | The input VX_DF_IMAGE_U8 image.                                                    |
| in  | strength_thresh | The VX_TYPE_FLOAT32 minimum threshold which to eliminate Harris Cor-               |
|     |                 | ner scores (computed using the normalized Sobel kernel).                           |
| in  | min_distance    | The VX_TYPE_FLOAT32 radial Euclidean distance for non-maximum sup-                 |
|     |                 | pression.                                                                          |
| in  | sensitivity     | The VX_TYPE_FLOAT32 scalar sensitivity threshold $k$ from the Harris- $\leftarrow$ |
|     |                 | Stephens equation.                                                                 |
| in  | gradient_size   | The gradient window size to use on the input. The implementation must sup-         |
|     |                 | port at least 3, 5, and 7.                                                         |
| in  | block_size      | The block window size used to compute the harris corner score. The imple-          |
|     |                 | mentation must support at least 3, 5, and 7.                                       |
| out | corners         | The array of VX_TYPE_KEYPOINT structs.                                             |
| out | num_corners     | The total number of detected corners in image (optional). Use a VX_TYPE_           |
|     |                 | SIZE scalar                                                                        |

#### Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.25 Histogram

# 3.25.1 Detailed Description

Generates a distribution from an image.

This kernel counts the number of occurrences of each pixel value within the window size of a pre-calculated number of bins.

#### **Functions**

- vx\_node VX\_API\_CALL vxHistogramNode (vx\_graph graph, vx\_image input, vx\_distribution distribution)
   [Graph] Creates a Histogram node.
- vx\_status VX\_API\_CALL vxuHistogram (vx\_context context, vx\_image input, vx\_distribution distribution) [Immediate] Generates a distribution from an image.

# 3.25.2 Function Documentation

vx\_node VX\_API\_CALL vxHistogramNode ( vx\_graph graph, vx\_image input, vx\_distribution distribution )

[Graph] Creates a Histogram node.

#### **Parameters**

| in  | graph        | The reference to the graph.        |
|-----|--------------|------------------------------------|
| in  | input        | The input image in VX_DF_IMAGE_U8. |
| out | distribution | The output distribution.           |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuHistogram ( vx\_context context, vx\_image input, vx\_distribution distribution )

[Immediate] Generates a distribution from an image.

#### Parameters

| in  | context      | The reference to the overall context. |
|-----|--------------|---------------------------------------|
| in  | input        | The input image in VX_DF_IMAGE_U8     |
| out | distribution | The output distribution.              |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.26 Gaussian Image Pyramid

# 3.26.1 Detailed Description

Computes a Gaussian Image Pyramid from an input image.

This vision function creates the Gaussian image pyramid from the input image using the particular 5x5 Gaussian Kernel:

$$\mathbf{G} = \frac{1}{256} * \begin{vmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{vmatrix}$$

on each level of the pyramid then scales the image to the next level using VX\_INTERPOLATION\_TYPE\_NEAGEST\_NEIGHBOR. Level 0 shall always have the same resolution as the input image. For the Gaussian pyramid, level 0 shall be the same as the input image. The pyramids must be configured with one of the following level scaling:

- VX\_SCALE\_PYRAMID\_HALF
- VX\_SCALE\_PYRAMID\_ORB

## **Functions**

- vx\_node VX\_API\_CALL vxGaussianPyramidNode (vx\_graph graph, vx\_image input, vx\_pyramid gaussian) [Graph] Creates a node for a Gaussian Image Pyramid.
- vx\_status VX\_API\_CALL vxuGaussianPyramid (vx\_context context, vx\_image input, vx\_pyramid gaussian) [Immediate] Computes a Gaussian pyramid from an input image.

# 3.26.2 Function Documentation

# vx\_node VX\_API\_CALL vxGaussianPyramidNode ( vx\_graph graph, vx\_image input, vx\_pyramid gaussian )

[Graph] Creates a node for a Gaussian Image Pyramid. Parameters

| in  | graph    | The reference to the graph.                            |
|-----|----------|--------------------------------------------------------|
| in  | input    | The input image in VX_DF_IMAGE_U8 format.              |
| out | gaussian | The Gaussian pyramid with VX_DF_IMAGE_U8 to construct. |

#### See also

Object: Pyramid

# Returns

vx node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuGaussianPyramid ( vx\_context context, vx\_image input, vx\_pyramid gaussian )

[Immediate] Computes a Gaussian pyramid from an input image.

## **Parameters**

| in  | context  | The reference to the overall context.                  |
|-----|----------|--------------------------------------------------------|
| in  | input    | The input image in VX_DF_IMAGE_U8                      |
| out | gaussian | The Gaussian pyramid with VX_DF_IMAGE_U8 to construct. |

## Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.27 Integral Image

# 3.27.1 Detailed Description

Computes the integral image of the input.

Each output pixel is the sum of the corresponding input pixel and all other pixels above and to the left of it.

$$dst(x, y) = sum(x, y)$$

where, for x>=0 and y>=0

$$sum(x,y) = src(x,y) + sum(x-1,y) + sum(x,y-1) - sum(x-1,y-1)$$

otherwise,

$$sum(x, y) = 0$$

The overflow policy used is VX\_CONVERT\_POLICY\_WRAP.

# **Functions**

- vx\_node VX\_API\_CALL vxIntegralImageNode (vx\_graph graph, vx\_image input, vx\_image output) [Graph] Creates an Integral Image Node.
- vx\_status VX\_API\_CALL vxuIntegralImage (vx\_context context, vx\_image input, vx\_image output) [Immediate] Computes the integral image of the input.

#### 3.27.2 Function Documentation

## vx\_node VX\_API\_CALL vxIntegralImageNode ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates an Integral Image Node.

#### **Parameters**

| in  | graph  | The reference to the graph.                 |
|-----|--------|---------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.   |
| out | output | The output image in VX_DF_IMAGE_U32 format. |

# Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuIntegralImage ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Computes the integral image of the input.

#### **Parameters**

| in  | context | The reference to the overall context.       |
|-----|---------|---------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.   |
| out | output  | The output image in VX_DF_IMAGE_U32 format. |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.28 Magnitude

# 3.28.1 Detailed Description

Implements the Gradient Magnitude Computation Kernel.

This kernel takes two gradients in VX\_DF\_IMAGE\_S16 format and computes the VX\_DF\_IMAGE\_S16 normalized magnitude. Magnitude is computed as:

$$mag(x,y) = \sqrt{grad_x(x,y)^2 + grad_y(x,y)^2}$$

The conceptual definition describing the overflow is given as:

uint16 z = uint16( sqrt( double( uint32( int32(x) \* int32(x) ) + uint32( int32(y) \* int32(y) ) ) + 0.5); int16 mag = z > 32767? 32767 : z;

## **Functions**

vx\_node VX\_API\_CALL vxMagnitudeNode (vx\_graph graph, vx\_image grad\_x, vx\_image grad\_y, vx\_image mag)

[Graph] Create a Magnitude node.

vx\_status VX\_API\_CALL vxuMagnitude (vx\_context context, vx\_image grad\_x, vx\_image grad\_y, vx\_image output)

[Immediate] Invokes an immediate Magnitude.

#### 3.28.2 Function Documentation

vx\_node VX\_API\_CALL vxMagnitudeNode ( vx\_graph graph, vx\_image grad\_x, vx\_image grad\_y, vx\_image mag )

[Graph] Create a Magnitude node.

Parameters

| in  | graph  | The reference to the graph.                                |
|-----|--------|------------------------------------------------------------|
| in  | grad_x | The input x image. This must be in VX_DF_IMAGE_S16 format. |
| in  | grad_y | The input y image. This must be in VX_DF_IMAGE_S16 format. |
| out | mag    | The magnitude image. This is in VX_DF_IMAGE_S16 format.    |

## See also

VX\_KERNEL\_MAGNITUDE

# Returns

vx\_node.

### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuMagnitude ( vx\_context context, vx\_image grad\_x, vx\_image grad\_y, vx\_image output )

[Immediate] Invokes an immediate Magnitude.

**Parameters** 

| in  | context | The reference to the overall context.                        |
|-----|---------|--------------------------------------------------------------|
| in  | grad_x  | The input x image. This must be in VX_DF_IMAGE_S16 format.   |
| in  | grad_y  | The input y image. This must be in VX_DF_IMAGE_S16 format.   |
| out | output  | The magnitude image. This will be in VX_DF_IMAGE_S16 format. |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.29 Mean and Standard Deviation

# 3.29.1 Detailed Description

Computes the mean pixel value and the standard deviation of the pixels in the input image (which has a dimension width and height).

The mean value is computed as:

$$\mu = \frac{\left(\sum_{y=0}^{h} \sum_{x=0}^{w} src(x,y)\right)}{(width*height)}$$

The standard deviation is computed as:

$$\sigma = \sqrt{\frac{\left(\sum_{y=0}^{h} \sum_{x=0}^{w} (\mu - src(x, y))^{2}\right)}{\left(width * height\right)}}$$

## **Functions**

vx\_node VX\_API\_CALL vxMeanStdDevNode (vx\_graph graph, vx\_image input, vx\_scalar mean, vx\_scalar stddev)

[Graph] Creates a mean value and standard deviation node.

vx\_status VX\_API\_CALL vxuMeanStdDev (vx\_context context, vx\_image input, vx\_float32 \*mean, vx\_float32 \*stddev)

[Immediate] Computes the mean value and standard deviation.

## 3.29.2 Function Documentation

vx\_node VX\_API\_CALL vxMeanStdDevNode ( vx\_graph graph, vx\_image input, vx\_scalar mean, vx\_scalar stddev )

[Graph] Creates a mean value and standard deviation node.

**Parameters** 

| in  | graph  | The reference to the graph.                                 |
|-----|--------|-------------------------------------------------------------|
| in  | input  | The input image. VX_DF_IMAGE_U8 is supported.               |
| out | mean   | The VX_TYPE_FLOAT32 average pixel value.                    |
| out | stddev | The VX_TYPE_FLOAT32 standard deviation of the pixel values. |

#### Returns

vx\_node.

#### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuMeanStdDev ( vx\_context context, vx\_image input, vx\_float32 \* mean, vx\_float32 \* stddev )

[Immediate] Computes the mean value and standard deviation.

**Parameters** 

| in | context | The reference to the overall context.         |
|----|---------|-----------------------------------------------|
| in | input   | The input image. VX_DF_IMAGE_U8 is supported. |

| out | mean   | The average pixel value.                    |
|-----|--------|---------------------------------------------|
| out | stddev | The standard deviation of the pixel values. |

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.30 Median Filter

# 3.30.1 Detailed Description

Computes a median pixel value over a window of the input image.

The median is the middle value over an odd-numbered, sorted range of values.

## **Functions**

- vx\_node VX\_API\_CALL vxMedian3x3Node (vx\_graph graph, vx\_image input, vx\_image output)
   [Graph] Creates a Median Image Node.
- vx\_status VX\_API\_CALL vxuMedian3x3 (vx\_context context, vx\_image input, vx\_image output) [Immediate] Computes a median filter on the image by a 3x3 window.

#### 3.30.2 Function Documentation

# vx\_node VX\_API\_CALL vxMedian3x3Node ( vx\_graph graph, vx\_image input, vx\_image output )

[Graph] Creates a Median Image Node.

#### **Parameters**

| in  | graph  | The reference to the graph.                |
|-----|--------|--------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8 format.  |
| out | output | The output image in VX_DF_IMAGE_U8 format. |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuMedian3x3 ( vx\_context context, vx\_image input, vx\_image output )

[Immediate] Computes a median filter on the image by a 3x3 window. Parameters

| in  | context | The reference to the overall context.      |
|-----|---------|--------------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8 format.  |
| out | output  | The output image in VX_DF_IMAGE_U8 format. |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.31 Min, Max Location

# 3.31.1 Detailed Description

Finds the minimum and maximum values in an image and a location for each.

If the input image has several minimums/maximums, the kernel returns all of them.

$$\begin{aligned} \mathit{minVal} &= & & & & \\ & & 0 \leq x' \leq \mathit{width} \\ & 0 \leq y' \leq \mathit{height} \end{aligned} \\ \mathit{maxVal} &= & & & & \\ & & & \\ & & 0 \leq x' \leq \mathit{width} \\ & & 0 \leq y' \leq \mathit{height} \end{aligned}$$

## **Functions**

- vx\_node VX\_API\_CALL vxMinMaxLocNode (vx\_graph graph, vx\_image input, vx\_scalar minVal, vx\_scalar maxVal, vx\_array minLoc, vx\_array maxLoc, vx\_scalar minCount, vx\_scalar maxCount)
  - [Graph] Creates a min, max, loc node.
- vx\_status VX\_API\_CALL vxuMinMaxLoc (vx\_context context, vx\_image input, vx\_scalar minVal, vx\_scalar maxVal, vx\_array minLoc, vx\_array maxLoc, vx\_scalar minCount, vx\_scalar maxCount)

[Immediate] Computes the minimum and maximum values of the image.

## 3.31.2 Function Documentation

vx\_node VX\_API\_CALL vxMinMaxLocNode ( vx\_graph graph, vx\_image input, vx\_scalar minVal, vx\_scalar maxVal, vx\_array minLoc, vx\_array maxLoc, vx\_scalar minCount, vx\_scalar maxCount )

[Graph] Creates a min,max,loc node.

## **Parameters**

| in  | graph    | The reference to create the graph.                                           |
|-----|----------|------------------------------------------------------------------------------|
| in  | input    | The input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.                 |
| out | minVal   | The minimum value in the image, which corresponds to the type of the input.  |
| out | maxVal   | The maximum value in the image, which corresponds to the type of the input.  |
| out | minLoc   | The minimum VX_TYPE_COORDINATES2D locations (optional). If the input         |
|     |          | image has several minimums, the kernel will return up to the capacity of the |
|     |          | array.                                                                       |
| out | maxLoc   | The maximum VX_TYPE_COORDINATES2D locations (optional). If the input         |
|     |          | image has several maximums, the kernel will return up to the capacity of the |
|     |          | array.                                                                       |
| out | minCount | The total number of detected minimums in image (optional). Use a VX_TY←      |
|     |          | PE_UINT32 scalar.                                                            |
| out | maxCount | The total number of detected maximums in image (optional). Use a VX_TY-      |
|     |          | PE_UINT32 scalar.                                                            |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuMinMaxLoc ( vx\_context context, vx\_image input, vx\_scalar minVal, vx\_scalar maxVal, vx\_array minLoc, vx\_array maxLoc, vx\_scalar minCount, vx\_scalar maxCount )

[Immediate] Computes the minimum and maximum values of the image.

## **Parameters**

| in  | context  | The reference to the overall context.                                      |
|-----|----------|----------------------------------------------------------------------------|
| in  | input    | The input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.               |
| out | minVal   | The minimum value in the image.                                            |
| out | maxVal   | The maximum value in the image.                                            |
| out | minLoc   | The minimum locations (optional). If the input image has several minimums, |
|     |          | the kernel will return all of them).                                       |
| out | maxLoc   | The maximum locations (optional). If the input image has several maximums, |
|     |          | the kernel will return all of them).                                       |
| out | minCount | The total number of detected minimums in image (optional).                 |
| out | maxCount | The total number of detected maximums in image (optional).                 |

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.32 Optical Flow Pyramid (LK)

# 3.32.1 Detailed Description

Computes the optical flow using the Lucas-Kanade method between two pyramid images.

The function is an implementation of the algorithm described in [1]. The function inputs are two vx\_pyramid objects, old and new, along with a vx\_array of vx\_keypoint\_t structs to track from the old vx\_pyramid. The function outputs a vx\_array of vx\_keypoint\_t structs that were tracked from the old vx\_pyramid to the new vx\_pyramid. Each element in the vx\_array of vx\_keypoint\_t structs in the new array may be valid or not. The implementation shall return the same number of vx\_keypoint\_t structs in the new vx\_array that were in the older vx\_array.

In more detail: The Lucas-Kanade method finds the affine motion vector V for each point in the old image tracking points array, using the following equation:

$$\begin{bmatrix} V_x \\ V_y \end{bmatrix} = \begin{bmatrix} \sum_i I_x^2 & \sum_i I_x * I_y \\ \sum_i I_x * I_y & \sum_i I_y^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum_i I_x * I_t \\ -\sum_i I_y * I_t \end{bmatrix}$$

Where  $I_x$  and  $I_y$  are obtained using the Scharr gradients on the input image:

$$G_x = \begin{bmatrix} +3 & 0 & -3 \\ +10 & 0 & -10 \\ +3 & 0 & -3 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} +3 & +10 & +3 \\ 0 & 0 & 0 \\ -3 & -10 & -3 \end{bmatrix}$$

 $I_t$  is obtained by a simple difference between the same pixel in both images. i is defined as the adjacent pixels to the point p(x,y) under consideration. With a given window size of M, i is  $M^2$  points. The pixel p(x,y) is centered in the window. In practice, to get an accurate solution, it is necessary to iterate multiple times on this scheme (in a Newton-Raphson fashion) until:

- · the residual of the affine motion vector is smaller than a threshold
- And/or maximum number of iteration achieved. Each iteration, the estimation of the previous iteration is used by changing  $I_t$  to be the difference between the old image and the pixel with the estimated coordinates in the new image. Each iteration the function checks if the pixel to track was lost. The criteria for lost tracking is that the matrix above is invertible. (The determinant of the matrix is less than a threshold:  $10^{-7}$ .) Or the minimum eigenvalue of the matrix is smaller then a threshold ( $10^{-4}$ ). Also lost tracking happens when the point tracked coordinate is outside the image coordinates. When  $vx\_true\_e$  is given as the input to  $use initial\_estimates$ , the algorithm starts by calculating  $I_t$  as the difference between the old image and the pixel with the initial estimated coordinates in the new image. The input  $vx\_array$  of  $vx\_keypoint\_t$  structs with  $tracking\_status$  set to zero (lost) are copied to the new  $vx\_array$ .

Clients are responsible for editing the output  $vx\_array$  of  $vx\_keypoint\_t$  structs array before applying it as the input  $vx\_array$  of  $vx\_keypoint\_t$  structs for the next frame. For example,  $vx\_keypoint\_t$  structs with  $tracking\_status$  set to zero may be removed by a client for efficiency.

This function changes just the x, y, and  $tracking\_status$  members of the  $vx\_keypoint\_t$  structure and behaves as if it copied the rest from the old tracking  $vx\_keypoint\_t$  to new image  $vx\_keypoint\_t$ .

#### **Functions**

- vx\_node VX\_API\_CALL vxOpticalFlowPyrLKNode (vx\_graph graph, vx\_pyramid old\_images, vx\_pyramid new\_images, vx\_array old\_points, vx\_array new\_points\_estimates, vx\_array new\_points, vx\_enum termination, vx\_scalar epsilon, vx\_scalar num\_iterations, vx\_scalar use\_initial\_estimate, vx\_size window\_dimension)
   [Graph] Creates a Lucas Kanade Tracking Node.
- vx\_status VX\_API\_CALL vxuOpticalFlowPyrLK (vx\_context context, vx\_pyramid old\_images, vx\_pyramid new\_images, vx\_array old\_points, vx\_array new\_points\_estimates, vx\_array new\_points, vx\_enum termination, vx\_scalar epsilon, vx\_scalar num\_iterations, vx\_scalar use\_initial\_estimate, vx\_size window\_dimension)

[Immediate] Computes an optical flow on two images.

# 3.32.2 Function Documentation

vx\_node VX\_API\_CALL vxOpticalFlowPyrLKNode ( vx\_graph graph, vx\_pyramid old\_images, vx\_pyramid new\_images, vx\_array old\_points, vx\_array new\_points\_estimates, vx\_array new\_points, vx\_enum termination, vx\_scalar epsilon, vx\_scalar num\_iterations, vx\_scalar use\_initial\_estimate, vx\_size window\_dimension )

[Graph] Creates a Lucas Kanade Tracking Node.

#### **Parameters**

| in  | graph          | The reference to the graph.                                                    |
|-----|----------------|--------------------------------------------------------------------------------|
| in  | old_images     | Input of first (old) image pyramid in VX_DF_IMAGE_U8.                          |
| in  | new_images     | Input of destination (new) image pyramid VX_DF_IMAGE_U8.                       |
| in  | old_points     | An array of key points in a vx_array of VX_TYPE_KEYPOINT; those key            |
|     |                | points are defined at the <i>old_images</i> high resolution pyramid.           |
| in  | new_points_←   | An array of estimation on what is the output key points in a vx_array of       |
|     | estimates      | VX_TYPE_KEYPOINT; those keypoints are defined at the <i>new_images</i> high    |
|     |                | resolution pyramid.                                                            |
| out | new_points     | An output array of key points in a vx_array of VX_TYPE_KEYPOINT;               |
|     |                | those key points are defined at the <i>new_images</i> high resolution pyramid. |
| in  | termination    | The termination can be VX_TERM_CRITERIA_ITERATIONS or VX_TE↔                   |
|     |                | RM_CRITERIA_EPSILON or VX_TERM_CRITERIA_BOTH.                                  |
| in  | epsilon        | The vx_float32 error for terminating the algorithm.                            |
| in  | num_iterations | The number of iterations. Use a VX_TYPE_UINT32 scalar.                         |
| in  | use_initial_←  | Use a VX_TYPE_BOOL scalar.                                                     |
|     | estimate       |                                                                                |
| in  | window_←       | The size of the window on which to perform the algorithm. See VX_CONTE↔        |
|     | dimension      | XT_ATTRIBUTE_OPTICAL_FLOW_WINDOW_MAXIMUM_DIMENSION                             |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuOpticalFlowPyrLK ( vx\_context context, vx\_pyramid old\_images, vx\_pyramid new\_images, vx\_array old\_points, vx\_array new\_points\_estimates, vx\_array new\_points, vx\_enum termination, vx\_scalar epsilon, vx\_scalar num\_iterations, vx\_scalar use\_initial\_estimate, vx\_size window\_dimension )

[Immediate] Computes an optical flow on two images. Parameters

| in  | context        | The reference to the overall context.                                     |
|-----|----------------|---------------------------------------------------------------------------|
| in  | old_images     | Input of first (old) image pyramid                                        |
| in  | new_images     | Input of destination (new) image pyramid                                  |
| in  | old_points     | an array of key points in a vx_array of VX_TYPE_KEYPOINT those key points |
|     |                | are defined at the old_images high resolution pyramid                     |
| in  | new_points_←   | an array of estimation on what is the output key points in a vx_array of  |
|     | estimates      | VX_TYPE_KEYPOINT those keypoints are defined at the new_images high       |
|     |                | resolution pyramid                                                        |
| out | new_points     | an output array of key points in a vx_array of VX_TYPE_KEYPOINT those     |
|     |                | key points are defined at the new_images high resolution pyramid          |
| in  | termination    | termination can be VX_TERM_CRITERIA_ITERATIONS or VX_TERM_←               |
|     |                | CRITERIA_EPSILON or VX_TERM_CRITERIA_BOTH                                 |
| in  | epsilon        | is the vx_float32 error for terminating the algorithm                     |
| in  | num_iterations | is the number of iterations. Use a VX_TYPE_UINT32 scalar.                 |
| in  | use_initial_←  | Can be set to either vx_false_e or vx_true_e.                             |
|     | estimate       |                                                                           |

| in | window_←  | The size of the window on which to perform the algorithm. See $VX\_CONTE \leftarrow$ |
|----|-----------|--------------------------------------------------------------------------------------|
|    | dimension | XT_ATTRIBUTE_OPTICAL_FLOW_WINDOW_MAXIMUM_DIMENSION                                   |

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

## **3.33** Phase

# 3.33.1 Detailed Description

Implements the Gradient Phase Computation Kernel.

This kernel takes two gradients in  $VX_DF_IMAGE_S16$  format and computes the angles for each pixel and stores this in a  $VX_DF_IMAGE_U8$  image.

$$\phi = \tan^{-1} \frac{grad_y(x, y)}{grad_x(x, y)}$$

Where  $\phi$  is then translated to  $0 \le \phi < 2\pi$ . Each  $\phi$  value is then mapped to the range 0 to 255 inclusive.

# **Functions**

vx\_node VX\_API\_CALL vxPhaseNode (vx\_graph graph, vx\_image grad\_x, vx\_image grad\_y, vx\_image orientation)

[Graph] Creates a Phase node.

vx\_status VX\_API\_CALL vxuPhase (vx\_context context, vx\_image grad\_x, vx\_image grad\_y, vx\_image output)

[Immediate] Invokes an immediate Phase.

#### 3.33.2 Function Documentation

# vx\_node VX\_API\_CALL vxPhaseNode ( vx\_graph graph, vx\_image grad\_x, vx\_image grad\_y, vx\_image orientation )

[Graph] Creates a Phase node.

**Parameters** 

| in  | graph       | The reference to the graph.                                |
|-----|-------------|------------------------------------------------------------|
| in  | grad_x      | The input x image. This must be in VX_DF_IMAGE_S16 format. |
| in  | grad_y      | The input y image. This must be in VX_DF_IMAGE_S16 format. |
| out | orientation | The phase image. This is in VX_DF_IMAGE_U8 format.         |

#### See also

VX\_KERNEL\_PHASE

#### Returns

vx\_node.

# Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuPhase ( vx\_context context, vx\_image grad\_x, vx\_image grad\_y, vx\_image output )

[Immediate] Invokes an immediate Phase.

**Parameters** 

| in | context | The reference to the overall context. |
|----|---------|---------------------------------------|

| in  | grad_x | The input x image. This must be in VX_DF_IMAGE_S16 format. |
|-----|--------|------------------------------------------------------------|
| in  | grad_y | The input y image. This must be in VX_DF_IMAGE_S16 format. |
| out | output | The phase image. This will be in VX_DF_IMAGE_U8 format.    |

# Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.34 Pixel-wise Multiplication

# 3.34.1 Detailed Description

Performs element-wise multiplication between two images and a scalar value.

Pixel-wise multiplication is performed between the pixel values in two VX\_DF\_IMAGE\_U8 or VX\_DF\_IMAGE
GE\_S16 images and a scalar floating-point number *scale*. The output image can be VX\_DF\_IMAGE\_U8 only if both source images are VX\_DF\_IMAGE\_U8 and the output image is explicitly set to VX\_DF\_IMAGE\_U8. It is otherwise VX\_DF\_IMAGE\_S16. If one of the input images is of type VX\_DF\_IMAGE\_S16, all values are converted to VX\_DF\_IMAGE\_S16.

The scale with a value of  $1/2^n$ , where n is an integer and  $0 \le n \le 15$ , and 1/255 (0x1.010102p-8 C99 float hex) must be supported. The support for other values of scale is not prohibited. Furthermore, for scale with a value of 1/255 the rounding policy of VX\_ROUND\_POLICY\_TO\_NEAREST\_EVEN must be supported whereas for the scale with value of  $1/2^n$  the rounding policy of VX\_ROUND\_POLICY\_TO\_ZERO must be supported. The support of other rounding modes for any values of scale is not prohibited.

The rounding policy VX\_ROUND\_POLICY\_TO\_ZERO for this function is defined as:

$$reference(x, y, scale) = truncate(((int32_t)in1(x, y)) * ((int32_t)in2(x, y)) * (double)scale)$$

The rounding policy VX\_ROUND\_POLICY\_TO\_NEAREST\_EVEN for this function is defined as:

$$reference(x, y, scale) = round_to_nearest_even(((int32_t)in1(x, y)) * ((int32_t)in2(x, y)) * (double)scale)$$

The overflow handling is controlled by an overflow-policy parameter. For each pixel value in the two input images:

$$out(x,y) = in_1(x,y)in_2(x,y)scale$$

#### **Functions**

vx\_node VX\_API\_CALL vxMultiplyNode (vx\_graph graph, vx\_image in1, vx\_image in2, vx\_scalar scale, vx
 —enum overflow\_policy, vx\_enum rounding\_policy, vx\_image out)

[Graph] Creates an pixelwise-multiplication node.

[Immediate] Performs elementwise multiplications on pixel values in the input images and a scale.

#### 3.34.2 Function Documentation

vx\_node VX\_API\_CALL vxMultiplyNode ( vx\_graph graph, vx\_image in1, vx\_image in2, vx\_scalar scale, vx\_enum overflow\_policy, vx\_enum rounding\_policy, vx\_image out )

[Graph] Creates an pixelwise-multiplication node. Parameters

| in  | graph           | The reference to the graph.                                            |
|-----|-----------------|------------------------------------------------------------------------|
| in  | in1             | An input image, VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.                     |
| in  | in2             | An input image, VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.                     |
| in  | scale           | A non-negative VX_TYPE_FLOAT32 multiplied to each product before over- |
|     |                 | flow handling.                                                         |
| in  | overflow_policy | A VX_TYPE_ENUM of the vx_convert_policy_e enumeration.                 |
| in  | rounding_policy | A VX_TYPE_ENUM of the vx_round_policy_e enumeration.                   |
| out | out             | The output image, a VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 image.           |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

# vx\_status VX\_API\_CALL vxuMultiply ( vx\_context context, vx\_image in1, vx\_image in2, vx\_float32 scale, vx\_enum overflow\_policy, vx\_enum rounding\_policy, vx\_image out )

[Immediate] Performs elementwise multiplications on pixel values in the input images and a scale. Parameters

| in  | context         | The reference to the overall context.                         |
|-----|-----------------|---------------------------------------------------------------|
| in  | in1             | A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image.              |
| in  | in2             | A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image.              |
| in  | scale           | The scale value.                                              |
| in  | overflow_policy | A vx_convert_policy_e enumeration.                            |
| in  | rounding_policy | A vx_round_policy_e enumeration.                              |
| out | out             | The output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format. |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# **3.35** Remap

# 3.35.1 Detailed Description

Maps output pixels in an image from input pixels in an image.

Remap takes a remap table object vx\_remap to map a set of output pixels back to source input pixels. A remap is typically defined as:

$$output(x,y) = input(mapx(x,y), mapy(x,y));$$

for every (x,y) in the destination image

However, the mapping functions are contained in the vx\_remap object.

#### **Functions**

vx\_node VX\_API\_CALL vxRemapNode (vx\_graph graph, vx\_image input, vx\_remap table, vx\_enum policy, vx\_image output)

[Graph] Creates a Remap Node.

vx\_status VX\_API\_CALL vxuRemap (vx\_context context, vx\_image input, vx\_remap table, vx\_enum policy, vx\_image output)

[Immediate] Remaps an output image from an input image.

### 3.35.2 Function Documentation

vx\_node VX\_API\_CALL vxRemapNode ( vx\_graph graph, vx\_image input, vx\_remap table, vx\_enum policy, vx\_image output )

[Graph] Creates a Remap Node.

#### **Parameters**

| in  | graph  | The reference to the graph that will contain the node.        |
|-----|--------|---------------------------------------------------------------|
| in  | input  | The input VX_DF_IMAGE_U8 image.                               |
| in  | table  | The remap table object.                                       |
| in  | policy | An interpolation type from vx_interpolation_type_e. VX_INTER↔ |
|     |        | POLATION_TYPE_AREA is not supported.                          |
| out | output | The output VX_DF_IMAGE_U8 image.                              |

#### Note

Only VX\_NODE\_ATTRIBUTE\_BORDER\_MODE value VX\_BORDER\_MODE\_UNDEFINED or VX\_BORDE ← R\_MODE\_CONSTANT is supported.

#### Returns

Avx node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | <pre>checked using vxGetStatus</pre>                                             |

vx\_status VX\_API\_CALL vxuRemap ( vx\_context context, vx\_image input, vx\_remap table, vx\_enum policy, vx\_image output )

[Immediate] Remaps an output image from an input image.

**Parameters** 

| in  | context | The reference to the overall context.                                   |
|-----|---------|-------------------------------------------------------------------------|
| in  | input   | The input VX_DF_IMAGE_U8 image.                                         |
| in  | table   | The remap table object.                                                 |
| in  | policy  | The interpolation policy from vx_interpolation_type_e. VX_INTERPOLATIO← |
|     |         | N_TYPE_AREA is not supported.                                           |
| out | output  | The output VX_DF_IMAGE_U8 image.                                        |

## Returns

A  $vx\_status\_e$  enumeration.

# 3.36 Scale Image

# 3.36.1 Detailed Description

Implements the Image Resizing Kernel.

Performs a Gaussian Blur on an image then half-scales it.

This kernel resizes an image from the source to the destination dimensions. The supported interpolation types are currently:

- VX\_INTERPOLATION\_TYPE\_NEAREST\_NEIGHBOR
- VX\_INTERPOLATION\_TYPE\_AREA
- VX\_INTERPOLATION\_TYPE\_BILINEAR

The sample positions used to determine output pixel values are generated by scaling the outside edges of the source image pixels to the outside edges of the destination image pixels. As described in the documentation for vx\_interpolation\_type\_e, samples are taken at pixel centers. This means that, unless the scale is 1:1, the sample position for the top left destination pixel typically does not fall exactly on the top left source pixel but will be generated by interpolation.

That is, the sample positions corresponding in source and destination are defined by the following equations:

$$x_{input} = \left( (x_{output} + 0.5) * \frac{width_{input}}{width_{output}} \right) - 0.5$$

$$y_{input} = \left( (y_{output} + 0.5) * \frac{height_{input}}{height_{output}} \right) - 0.5$$

$$x_{output} = \left( (x_{input} + 0.5) * \frac{width_{output}}{width_{input}} \right) - 0.5$$

$$y_{output} = \left( (y_{input} + 0.5) * \frac{height_{output}}{height_{input}} \right) - 0.5$$

- For VX\_INTERPOLATION\_TYPE\_NEAREST\_NEIGHBOR, the output value is that of the pixel whose centre is closest to the sample point.
- For VX\_INTERPOLATION\_TYPE\_BILINEAR, the output value is formed by a weighted average of the nearest source pixels to the sample point. That is:

$$x_{lower} = \lfloor x_{input} \rfloor$$

$$y_{lower} = \lfloor y_{input} \rfloor$$

$$s = x_{input} - x_{lower}$$

$$t = y_{input} - y_{lower}$$

$$out put(x_{input}, y_{input}) = (1 - s)(1 - t) * input(x_{lower}, y_{lower}) + s(1 - t) * input(x_{lower} + 1, y_{lower})$$

$$+ (1 - s)t * input(x_{lower}, y_{lower} + 1) + s * t * input(x_{lower} + 1, y_{lower} + 1)$$

• For VX\_INTERPOLATION\_TYPE\_AREA, the implementation is expected to generate each output pixel by sampling all the source pixels that are at least partly covered by the area bounded by:

$$\left(x_{output} * \frac{width_{input}}{width_{output}}\right) - 0.5, \left(y_{output} * \frac{height_{input}}{height_{output}}\right) - 0.5$$

and

$$\left( (x_{output} + 1) * \frac{width_{input}}{width_{output}} \right) - 0.5, \left( (y_{output} + 1) * \frac{height_{input}}{height_{output}} \right) - 0.5$$

The details of this sampling method are implementation-defined. The implementation should perform enough sampling to avoid aliasing, but there is no requirement that the sample areas for adjacent output pixels be disjoint, nor that the pixels be weighted evenly.



The above diagram shows three sampling methods used to shrink a 7x3 image to 3x1.

The topmost image pair shows nearest-neighbor sampling, with crosses on the left image marking the sample positions in the source that are used to generate the output image on the right. As the pixel centre closest to the sample position is white in all cases, the resulting 3x1 image is white.

The middle image pair shows bilinear sampling, with black squares on the left image showing the region in the source being sampled to generate each pixel on the destination image on the right. This sample area is always the size of an input pixel. The outer destination pixels partly sample from the outermost green pixels, so their resulting value is a weighted average of white and green.

The bottom image pair shows area sampling. The black rectangles in the source image on the left show the bounds of the projection of the destination pixels onto the source. The destination pixels on the right are formed by averaging at least those source pixels whose areas are wholly or partly contained within those rectangles. The manner of this averaging is implementation-defined; the example shown here weights the contribution of each source pixel by the amount of that pixel's area contained within the black rectangle.

# **Functions**

vx\_node VX\_API\_CALL vxHalfScaleGaussianNode (vx\_graph graph, vx\_image input, vx\_image output, vx
int32 kernel\_size)

[Graph] Performs a Gaussian Blur on an image then half-scales it.

• vx\_node VX\_API\_CALL vxScaleImageNode (vx\_graph graph, vx\_image src, vx\_image dst, vx\_enum type) [Graph] Creates a Scale Image Node. vx\_status VX\_API\_CALL vxuHalfScaleGaussian (vx\_context context, vx\_image input, vx\_image output, vx
 \_\_int32 kernel\_size)

[Immediate] Performs a Gaussian Blur on an image then half-scales it.

• vx\_status VX\_API\_CALL vxuScaleImage (vx\_context context, vx\_image src, vx\_image dst, vx\_enum type) [Immediate] Scales an input image to an output image.

#### 3.36.2 Function Documentation

# vx\_node VX\_API\_CALL vxScaleImageNode ( vx\_graph graph, vx\_image src, vx\_image dst, vx\_enum type )

[Graph] Creates a Scale Image Node.

#### **Parameters**

| in  | graph | The reference to the graph.                   |
|-----|-------|-----------------------------------------------|
| in  | src   | The source image of type VX_DF_IMAGE_U8.      |
| out | dst   | The destination image of type VX_DF_IMAGE_U8. |
| in  | type  | The interpolation type to use.                |

#### See also

vx\_interpolation\_type\_e.

#### Note

The destination image must have a defined size and format. Only VX\_NODE\_ATTRIBUTE\_BORDER\_MODE value VX\_BORDER\_MODE\_UNDEFINED, VX\_BORDER\_MODE\_REPLICATE or VX\_BORDER\_MODE\_C ONSTANT is supported.

#### Returns

vx\_node.

## Return values

| vx_nc | de A node reference. Any possible errors preventing a successful creation should be |
|-------|-------------------------------------------------------------------------------------|
|       | checked using vxGetStatus                                                           |

# vx\_node VX\_API\_CALL vxHalfScaleGaussianNode ( vx\_graph graph, vx\_image input, vx\_image output, vx\_int32 kernel\_size )

[Graph] Performs a Gaussian Blur on an image then half-scales it.

The output image size is determined by:

$$W_{output} = \frac{W_{input} + 1}{2}, H_{output} = \frac{H_{input} + 1}{2}$$

#### **Parameters**

| in  | graph       | The reference to the graph.                                          |
|-----|-------------|----------------------------------------------------------------------|
| in  | input       | The input VX_DF_IMAGE_U8 image.                                      |
| out | output      | The output VX_DF_IMAGE_U8 image.                                     |
| in  | kernel_size | The input size of the Gaussian filter. Supported values are 3 and 5. |

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuScaleImage ( vx\_context context, vx\_image src, vx\_image dst, vx\_enum type )

[Immediate] Scales an input image to an output image.

#### **Parameters**

| in  | context | The reference to the overall context.          |
|-----|---------|------------------------------------------------|
| in  | src     | The source image of type VX_DF_IMAGE_U8.       |
| out | dst     | The destintation image of type VX_DF_IMAGE_U8. |
| in  | type    | The interpolation type.                        |

# See also

vx\_interpolation\_type\_e.

## Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 

[Immediate] Performs a Gaussian Blur on an image then half-scales it.

## **Parameters**

| in  | context     | The reference to the overall context.                                |
|-----|-------------|----------------------------------------------------------------------|
| in  | input       | The input VX_DF_IMAGE_U8 image.                                      |
| out | output      | The output VX_DF_IMAGE_U8 image.                                     |
| in  | kernel_size | The input size of the Gaussian filter. Supported values are 3 and 5. |

# Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

## 3.37 Sobel 3x3

## 3.37.1 Detailed Description

Implements the Sobel Image Filter Kernel.

This kernel produces two output planes (one can be omitted) in the x and y plane. The Sobel Operators  $G_x$ ,  $G_y$  are defined as:

$$\mathbf{G}_{x} = \begin{vmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{vmatrix}, \mathbf{G}_{y} = \begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{vmatrix}$$

## **Functions**

vx\_node VX\_API\_CALL vxSobel3x3Node (vx\_graph graph, vx\_image input, vx\_image output\_x, vx\_image output\_y)

[Graph] Creates a Sobel3x3 node.

vx\_status VX\_API\_CALL vxuSobel3x3 (vx\_context context, vx\_image input, vx\_image output\_x, vx\_image output\_y)

[Immediate] Invokes an immediate Sobel 3x3.

#### 3.37.2 Function Documentation

vx\_node VX\_API\_CALL vxSobel3x3Node ( vx\_graph graph, vx\_image input, vx\_image output\_x, vx\_image output\_y )

[Graph] Creates a Sobel3x3 node.

**Parameters** 

| in  | graph    | The reference to the graph.                                           |
|-----|----------|-----------------------------------------------------------------------|
| in  | input    | The input image in VX_DF_IMAGE_U8 format.                             |
| out | output_x | [optional] The output gradient in the x direction in VX_DF_IMAGE_S16. |
| out | output_y | [optional] The output gradient in the y direction in VX_DF_IMAGE_S16. |

#### See also

VX\_KERNEL\_SOBEL\_3x3

#### Returns

vx\_node.

#### Return values

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuSobel3x3 ( vx\_context context, vx\_image input, vx\_image output\_x, vx\_image output\_y )

[Immediate] Invokes an immediate Sobel 3x3.

Parameters

| in  | context  | The reference to the overall context.                                 |
|-----|----------|-----------------------------------------------------------------------|
| in  | input    | The input image in VX_DF_IMAGE_U8 format.                             |
| out | output_x | [optional] The output gradient in the x direction in VX_DF_IMAGE_S16. |

## Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.38 TableLookup

## 3.38.1 Detailed Description

Implements the Table Lookup Image Kernel.

This kernel uses each pixel in an image to index into a LUT and put the indexed LUT value into the output image. The format supported is  $VX_DF_IMAGE_U8$ .

#### **Functions**

- vx\_node VX\_API\_CALL vxTableLookupNode (vx\_graph graph, vx\_image input, vx\_lut lut, vx\_image output)
   [Graph] Creates a Table Lookup node.
- vx\_status VX\_API\_CALL vxuTableLookup (vx\_context context, vx\_image input, vx\_lut lut, vx\_image output) [Immediate] Processes the image through the LUT.

## 3.38.2 Function Documentation

# vx\_node VX\_API\_CALL vxTableLookupNode ( vx\_graph graph, vx\_image input, vx\_lut lut, vx\_image output )

[Graph] Creates a Table Lookup node.

#### **Parameters**

| in  | graph  | The reference to the graph.              |
|-----|--------|------------------------------------------|
| in  | input  | The input image in VX_DF_IMAGE_U8.       |
| in  | lut    | The LUT which is of type VX_TYPE_UINT8.  |
| out | output | The output image of type VX_DF_IMAGE_U8. |

#### Returns

vx\_node.

### **Return values**

| vx_node | A node reference. Any possible errors preventing a successful creation should be |  |
|---------|----------------------------------------------------------------------------------|--|
|         | <pre>checked using vxGetStatus</pre>                                             |  |

# vx\_status VX\_API\_CALL vxuTableLookup ( vx\_context context, vx\_image input, vx\_lut lut, vx\_image output )

[Immediate] Processes the image through the LUT.

#### **Parameters**

| in  | context | The reference to the overall context.   |
|-----|---------|-----------------------------------------|
| in  | input   | The input image in VX_DF_IMAGE_U8       |
| in  | lut     | The LUT which is of type VX_TYPE_UINT8  |
| out | output  | The output image of type VX_DF_IMAGE_U8 |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | Success                             |
|------------|-------------------------------------|
| *          | An error occurred. See vx_status_e. |

# 3.39 Thresholding

## 3.39.1 Detailed Description

Thresholds an input image and produces an output Boolean image.

In VX\_THRESHOLD\_TYPE\_BINARY, the output is determined by:

$$dst(x,y) = \begin{cases} 255 & \text{if } src(x,y) > threshold \\ 0 & \text{otherwise} \end{cases}$$

In VX\_THRESHOLD\_TYPE\_RANGE, the output is determined by:

$$dst(x,y) = \begin{cases} 0 & \text{if } src(x,y) > upper \\ 0 & \text{if } src(x,y) < lower \\ 255 & \text{otherwise} \end{cases}$$

### **Functions**

vx\_node VX\_API\_CALL vxThresholdNode (vx\_graph graph, vx\_image input, vx\_threshold thresh, vx\_image output)

[Graph] Creates a Threshold node.

vx\_status VX\_API\_CALL vxuThreshold (vx\_context context, vx\_image input, vx\_threshold thresh, vx\_image output)

[Immediate] Threshold's an input image and produces a VX\_DF\_IMAGE\_U8 \* boolean image.

#### 3.39.2 Function Documentation

vx\_node VX\_API\_CALL vxThresholdNode ( vx\_graph graph, vx\_image input, vx\_threshold thresh, vx\_image output )

[Graph] Creates a Threshold node.

Parameters

| in  | graph  | The reference to the graph.                                           |
|-----|--------|-----------------------------------------------------------------------|
| in  | input  | The input image. VX_DF_IMAGE_U8 is supported.                         |
| in  | thresh | The thresholding object that defines the parameters of the operation. |
| out | output | The output Boolean image. Values are either 0 or 255.                 |

## Returns

vx\_node.

**Return values** 

| vx_node | A node reference. Any possible errors preventing a successful creation should be |
|---------|----------------------------------------------------------------------------------|
|         | checked using vxGetStatus                                                        |

# vx\_status VX\_API\_CALL vxuThreshold ( vx\_context context, vx\_image input, vx\_threshold thresh, vx\_image output )

[Immediate] Threshold's an input image and produces a  $VX_DF_IMAGE_U8 * boolean image$ . Parameters

| in | context | The reference to the overall context.         |
|----|---------|-----------------------------------------------|
| in | input   | The input image. VX_DF_IMAGE_U8 is supported. |

| in  | thresh | The thresholding object that defines the parameters of the operation. |
|-----|--------|-----------------------------------------------------------------------|
| out | output | The output Boolean image. Values are either 0 or 255.                 |

## Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS                            | Success |  |
|---------------------------------------|---------|--|
| * An error occurred. See vx_status_e. |         |  |

# 3.40 Warp Affine

## 3.40.1 Detailed Description

Performs an affine transform on an image.

This kernel performs an affine transform with a 2x3 Matrix M with this method of pixel coordinate translation:

$$x0 = M_{1,1} * x + M_{1,2} * y + M_{1,3} (3.28)$$

$$y0 = M_{2,1} * x + M_{2,2} * y + M_{2,3} (3.29)$$

$$out put(x,y) = input(x0,y0)$$
 (3.30)

This translates into the C declaration:

## **Functions**

vx\_status VX\_API\_CALL vxuWarpAffine (vx\_context context, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output)

[Immediate] Performs an Affine warp on an image.

vx\_node VX\_API\_CALL vxWarpAffineNode (vx\_graph graph, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output)

[Graph] Creates an Affine Warp Node.

#### 3.40.2 Function Documentation

vx\_node VX\_API\_CALL vxWarpAffineNode ( vx\_graph graph, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output )

[Graph] Creates an Affine Warp Node.

**Parameters** 

| in  | graph  | The reference to the graph.                                    |  |
|-----|--------|----------------------------------------------------------------|--|
| in  | input  | The input VX_DF_IMAGE_U8 image.                                |  |
| in  | matrix | The affine matrix. Must be 2x3 of type VX_TYPE_FLOAT32.        |  |
| in  | type   | The interpolation type from vx_interpolation_type_e. VX_INTER↔ |  |
|     |        | POLATION_TYPE_AREA is not supported.                           |  |
| out | output | The output VX_DF_IMAGE_U8 image.                               |  |

## Note

Only VX\_NODE\_ATTRIBUTE\_BORDER\_MODE value VX\_BORDER\_MODE\_UNDEFINED or VX\_BORDE ← R\_MODE\_CONSTANT is supported.

Returns

vx\_node.

| vx_node  A node reference. Any possible errors preventing a successful cre |                                      |  |
|----------------------------------------------------------------------------|--------------------------------------|--|
|                                                                            | <pre>checked using vxGetStatus</pre> |  |

# vx\_status VX\_API\_CALL vxuWarpAffine ( vx\_context context, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output )

[Immediate] Performs an Affine warp on an image. Parameters

| in  | context | context The reference to the overall context.                               |  |
|-----|---------|-----------------------------------------------------------------------------|--|
| in  | input   | input The input VX_DF_IMAGE_U8 image.                                       |  |
| in  | matrix  | The affine matrix. Must be 2x3 of type VX_TYPE_FLOAT32.                     |  |
| in  | type    | type The interpolation type from vx_interpolation_type_e. VX_INTERPOLATION← |  |
|     |         | _TYPE_AREA is not supported.                                                |  |
| out | output  | The output VX_DF_IMAGE_U8 image.                                            |  |

## Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS Success |                                     |
|--------------------|-------------------------------------|
| *                  | An error occurred. See vx_status_e. |

# 3.41 Warp Perspective

## 3.41.1 Detailed Description

Performs a perspective transform on an image.

This kernel performs an perspective transform with a 3x3 Matrix M with this method of pixel coordinate translation:

$$x0 = M_{1,1} * x + M_{1,2} * y + M_{1,3} (3.31)$$

$$y0 = M_{2,1} * x + M_{2,2} * y + M_{2,3} (3.32)$$

$$z0 = M_{3,1} * x + M_{3,2} * y + M_{3,3} (3.33)$$

$$output(x,y) = input(\frac{x0}{z0}, \frac{y0}{z0})$$
 (3.34)

This translates into the C declaration:

## **Functions**

vx\_status VX\_API\_CALL vxuWarpPerspective (vx\_context context, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output)

[Immediate] Performs an Perspective warp on an image.

• vx\_node VX\_API\_CALL vxWarpPerspectiveNode (vx\_graph graph, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output)

[Graph] Creates a Perspective Warp Node.

#### 3.41.2 Function Documentation

vx\_node VX\_API\_CALL vxWarpPerspectiveNode ( vx\_graph graph, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output )

[Graph] Creates a Perspective Warp Node.

**Parameters** 

| in  | graph  | The reference to the graph.                                    |  |
|-----|--------|----------------------------------------------------------------|--|
| in  | input  | The input VX_DF_IMAGE_U8 image.                                |  |
| in  | matrix | The perspective matrix. Must be 3x3 of type VX_TYPE_FLOAT32.   |  |
| in  | type   | The interpolation type from vx_interpolation_type_e. VX_INTER↔ |  |
|     |        | POLATION_TYPE_AREA is not supported.                           |  |
| out | output | The output VX_DF_IMAGE_U8 image.                               |  |

#### Note

Only VX\_NODE\_ATTRIBUTE\_BORDER\_MODE value VX\_BORDER\_MODE\_UNDEFINED or VX\_BORDE 

R\_MODE\_CONSTANT is supported.

#### Returns

vx\_node.

#### Return values

| vx_node A node reference. Any possible errors preventing a successful creati |                                      |
|------------------------------------------------------------------------------|--------------------------------------|
|                                                                              | <pre>checked using vxGetStatus</pre> |

# vx\_status VX\_API\_CALL vxuWarpPerspective ( vx\_context context, vx\_image input, vx\_matrix matrix, vx\_enum type, vx\_image output )

[Immediate] Performs an Perspective warp on an image.

## **Parameters**

| in  | context | context The reference to the overall context.                |  |
|-----|---------|--------------------------------------------------------------|--|
| in  | input   | input   The input VX_DF_IMAGE_U8 image.                      |  |
| in  | matrix  | The perspective matrix. Must be 3x3 of type VX_TYPE_FLOAT32. |  |
| in  | type    | 21.                                                          |  |
|     |         | _TYPE_AREA is not supported.                                 |  |
| out | output  | The output VX_DF_IMAGE_U8 image.                             |  |

#### Returns

A vx\_status\_e enumeration.

| VX_SUCCESS                            | Success |  |
|---------------------------------------|---------|--|
| * An error occurred. See vx_status_e. |         |  |

## 3.42 Basic Features

## 3.42.1 Detailed Description

The basic parts of OpenVX needed for computation.

Types in OpenVX intended to be derived from the C99 Section 7.18 standard definition of fixed width types.

#### **Modules**

Objects

Defines the basic objects within OpenVX.

#### **Data Structures**

• struct vx\_coordinates2d\_t

The 2D Coordinates structure. More...

· struct vx coordinates3d t

The 3D Coordinates structure. More...

• struct vx\_delta\_rectangle\_t

The changes in dimensions of the rectangle between input and output images in an output parameter validator. Used in conjunction with VX\_META\_FORMAT\_ATTRIBUTE\_DELTA\_RECTANGLE and vxSetMetaFormat← Attribute. More...

struct vx\_keypoint\_t

The keypoint data structure. More ...

struct vx\_rectangle\_t

The rectangle data structure that is shared with the users. More...

#### **Macros**

#define VX\_ATTRIBUTE\_BASE(vendor, object) (((vendor) << 20) | (object << 8))</li>

Defines the manner in which to combine the Vendor and Object IDs to get the base value of the enumeration.

#define VX ATTRIBUTE ID MASK (0x000000FF)

An object's attribute ID is within the range of  $[0, 2^8 - 1]$  (inclusive).

• #define VX\_DF\_IMAGE(a, b, c, d) ((a) | (b << 8) | (c << 16) | (d << 24))

Converts a set of four chars into a uint32\_t container of a VX\_DF\_IMAGE code.

#define VX\_ENUM\_BASE(vendor, id) (((vendor) << 20) | (id << 12))</li>

Defines the manner in which to combine the Vendor and Object IDs to get the base value of the enumeration.

#define VX\_ENUM\_MASK (0x00000FFF)

A generic enumeration list can have values between  $[0,2^{12}-1]$  (inclusive).

#define VX\_ENUM\_TYPE(e) (((vx\_uint32)e & VX\_ENUM\_TYPE\_MASK) >> 12)

A macro to extract the enum type from an enumerated value.

#define VX\_ENUM\_TYPE\_MASK (0x000FF000)

A type of enumeration. The valid range is between  $[0,2^8-1]$  (inclusive).

- #define VX\_FMT\_REF "%p"
- #define VX\_FMT\_SIZE "%zu"
- #define VX\_KERNEL\_BASE(vendor, lib) (((vendor) << 20) | (lib << 12))</li>

Defines the manner in which to combine the Vendor and Library IDs to get the base value of the enumeration.

#define VX\_KERNEL\_MASK (0x00000FFF)

An individual kernel in a library has its own unique ID within  $[0, 2^{12} - 1]$  (inclusive).

#define VX\_LIBRARY(e) (((vx\_uint32)e & VX\_LIBRARY\_MASK) >> 12)

A macro to extract the kernel library enumeration from a enumerated kernel value.

• #define VX\_LIBRARY\_MASK (0x000FF000)

A library is a set of vision kernels with its own ID supplied by a vendor. The vendor defines the library ID. The range is  $[0, 2^8 - 1]$  inclusive.

• #define VX\_MAX\_LOG\_MESSAGE\_LEN (1024)

Defines the maximum length of a message buffer to copy from the log.

- #define VX SCALE UNITY (1024u)
- #define VX\_TYPE(e) (((vx\_uint32)e & VX\_TYPE\_MASK) >> 8)

A macro to extract the type from an enumerated attribute value.

#define VX\_TYPE\_MASK (0x000FFF00)

A type mask removes the scalar/object type from the attribute. It is 3 nibbles in size and is contained between the third and second byte.

#define VX VENDOR(e) (((vx uint32)e & VX VENDOR MASK) >> 20)

A macro to extract the vendor ID from the enumerated value.

• #define VX\_VENDOR\_MASK (0xFFF00000)

Vendor IDs are 2 nibbles in size and are located in the upper byte of the 4 bytes of an enumeration.

- #define VX VERSION VX VERSION 1 0
- #define VX\_VERSION\_1\_0 (VX\_VERSION\_MAJOR(1) | VX\_VERSION\_MINOR(0))

Defines the predefined version number for 1.0.

- #define VX\_VERSION\_MAJOR(x) ((x & 0xFF) << 8)</li>
- #define VX VERSION MINOR(x) ((x & 0xFF) << 0)</li>

## **Typedefs**

typedef char vx\_char

An 8 bit ASCII character.

typedef uint32\_t vx\_df\_image

Used to hold a VX\_DF\_IMAGE code to describe the pixel format and color space.

typedef int32\_t vx\_enum

Sets the standard enumeration type size to be a fixed quantity.

typedef float vx\_float32

A 32-bit float value.

typedef double vx float64

A 64-bit float value (aka double).

typedef int16\_t vx\_int16

A 16-bit signed value.

typedef int32 t vx int32

A 32-bit signed value.

typedef int64\_t vx\_int64

A 64-bit signed value.

• typedef int8 t vx int8

An 8-bit signed value.

typedef size\_t vx\_size

A wrapper of size\_t to keep the naming convention uniform.

• typedef vx\_enum vx\_status

A formal status type with known fixed size.

typedef uint16\_t vx\_uint16

A 16-bit unsigned value.

typedef uint32\_t vx\_uint32

A 32-bit unsigned value.

• typedef uint64 t vx uint64

A 64-bit unsigned value.

typedef uint8\_t vx\_uint8

An 8-bit unsigned value.

#### **Enumerations**

enum vx\_enum\_e {

```
enum vx_bool {
 vx false e = 0,
 vx true e }
    A Boolean value. This allows 0 to be FALSE, as it is in C, and any non-zero to be TRUE.
• enum vx channel e {
 VX CHANNEL 0 = (((VX ID KHRONOS) << 20) | (VX ENUM CHANNEL << 12)) + 0x0,
 VX_CHANNEL_1 = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x1,
 VX_CHANNEL_2 = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x2,
 VX CHANNEL 3 = ((( VX ID KHRONOS ) << 20) | ( VX ENUM CHANNEL << 12)) + 0x3,
 VX_CHANNEL_R = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x10,
 VX_CHANNEL_G = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x11,
 VX_CHANNEL_B = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x12,
 VX CHANNEL A = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x13,
 VX_CHANNEL_Y = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CHANNEL << 12)) + 0x14,
 VX\_CHANNEL\_U = (((VX\_ID\_KHRONOS) << 20) | (VX\_ENUM\_CHANNEL << 12)) + 0x15,
 VX CHANNEL V = ((( VX ID KHRONOS ) << 20) | ( VX ENUM CHANNEL << 12)) + 0x16 }
     The channel enumerations for channel extractions.
enum vx_convert_policy_e {
 VX_CONVERT_POLICY_WRAP = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CONVERT_POLICY <<
 12)) + 0x0,
 VX_CONVERT_POLICY_SATURATE = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_CONVERT_POLICY
 << 12)) + 0x1 }
     The Conversion Policy Enumeration.
enum vx df image e {
 VX_DF_IMAGE_VIRT = (('V') | ('I' << 8) | ('R' << 16) | ('T' << 24)),
 VX_DF_IMAGE_RGB = (('R') | ('G' << 8) | ('B' << 16) | ('2' << 24)),
 VX_DF_IMAGE_RGBX = (('R') | ('G' << 8) | ('B' << 16) | ('A' << 24)),
 VX_DF_IMAGE_NV12 = (('N') | ('V' << 8) | ('1' << 16) | ('2' << 24)),
 VX DF IMAGE NV21 = (('N')) | ('V' << 8) | ('2' << 16) | ('1' << 24)),
 VX_DF_IMAGE_UYVY = (('U') | ('Y' << 8) | ('V' << 16) | ('Y' << 24)),
 VX DF IMAGE YUYV = (('Y') | ('U' << 8) | ('Y' << 16) | ('V' << 24))
 VX DF IMAGE IYUV = (('i') | ('Y' << 8) | ('U' << 16) | ('V' << 24)),
 VX DF IMAGE YUV4 = (('Y') | ('U' << 8) | ('V' << 16) | ('4' << 24))
 VX_DF_IMAGE_U8 = (('U') | ('0' << 8) | ('0' << 16) | ('8' << 24)),
 VX_DF_IMAGE_U16 = (('U') | ('0' << 8) | ('1' << 16) | ('6' << 24)),
 VX_DF_IMAGE_S16 = (('S') | ('0' << 8) | ('1' << 16) | ('6' << 24)),
 VX_DF_IMAGE_U32 = (('U') | ('0' << 8) | ('3' << 16) | ('2' << 24)),
 VX_DF_IMAGE_S32 = (( 'S' ) | ( '0' << 8) | ( '3' << 16) | ( '2' << 24)) }
    Based on the VX DF IMAGE definition.
```

```
VX_ENUM_DIRECTION = 0x00,
 VX ENUM ACTION = 0x01,
 VX_ENUM_HINT = 0x02,
 VX_ENUM_DIRECTIVE = 0x03,
 VX ENUM INTERPOLATION = 0x04,
 VX ENUM OVERFLOW = 0x05,
 VX ENUM COLOR SPACE = 0x06,
 VX ENUM COLOR RANGE = 0x07,
 VX ENUM PARAMETER STATE = 0x08,
 VX ENUM CHANNEL = 0x09,
 VX_ENUM_CONVERT_POLICY = 0x0A,
 VX_ENUM_THRESHOLD_TYPE = 0x0B,
 VX_ENUM_BORDER_MODE = 0x0C,
 VX ENUM COMPARISON = 0x0D,
 VX_ENUM_IMPORT_MEM = 0x0E,
 VX_ENUM_TERM_CRITERIA = 0x0F,
 VX ENUM NORM TYPE = 0x10,
 VX ENUM ACCESSOR = 0x11,
 VX ENUM ROUND POLICY = 0x12 }
    The set of supported enumerations in OpenVX.
enum vx_interpolation_type_e {
 VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_I↔
 NTERPOLATION << 12)) + 0x0,
 VX INTERPOLATION TYPE BILINEAR = ((( VX ID KHRONOS ) << 20) | ( VX ENUM INTERPOLATI⊷
 ON << 12)) + 0x1,
 VX_INTERPOLATION_TYPE_AREA = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_INTERPOLATION
 << 12)) + 0x2
    The image reconstruction filters supported by image resampling operations.
enum vx_status_e {
 VX_STATUS_MIN = -25,
 VX_ERROR_REFERENCE_NONZERO = -24,
 VX ERROR MULTIPLE WRITERS = -23,
 VX ERROR GRAPH ABANDONED = -22,
 VX ERROR GRAPH SCHEDULED = -21,
 VX_ERROR_INVALID_SCOPE = -20,
 VX ERROR INVALID NODE = -19,
 VX ERROR INVALID GRAPH = -18,
 VX ERROR INVALID TYPE = -17,
 VX_ERROR_INVALID_VALUE = -16,
 VX_ERROR_INVALID_DIMENSION = -15,
 VX ERROR INVALID FORMAT = -14,
 VX ERROR INVALID LINK = -13,
 VX_ERROR_INVALID_REFERENCE = -12,
 VX_ERROR_INVALID_MODULE = -11,
 VX ERROR INVALID PARAMETERS = -10,
 VX_ERROR_OPTIMIZED_AWAY = -9,
 VX_ERROR_NO_MEMORY = -8,
 VX_ERROR_NO_RESOURCES = -7,
 VX ERROR NOT COMPATIBLE = -6,
 VX_ERROR_NOT_ALLOCATED = -5,
 VX_ERROR_NOT_SUFFICIENT = -4,
 VX ERROR NOT SUPPORTED = -3,
 VX ERROR NOT IMPLEMENTED = -2,
 VX FAILURE = -1.
 VX SUCCESS = 0 }
    The enumeration of all status codes.
```

enum vx\_type\_e {

```
VX_TYPE_INVALID = 0x000,
VX TYPE CHAR = 0x001,
VX_TYPE_INT8 = 0x002,
VX_TYPE_UINT8 = 0x003,
VX TYPE INT16 = 0x004,
VX TYPE UINT16 = 0x005,
VX TYPE INT32 = 0x006,
VX TYPE UINT32 = 0x007,
VX TYPE INT64 = 0x008,
VX TYPE UINT64 = 0x009,
VX_TYPE_FLOAT32 = 0x00A,
VX_TYPE_FLOAT64 = 0x00B,
VX_TYPE_ENUM = 0x00C,
VX TYPE SIZE = 0x00D,
VX_TYPE_DF_IMAGE = 0x00E,
VX_TYPE_BOOL = 0x010,
VX TYPE SCALAR MAX,
VX TYPE RECTANGLE = 0x020,
VX_TYPE_KEYPOINT = 0x021,
VX_TYPE_COORDINATES2D = 0x022,
VX TYPE COORDINATES3D = 0x023,
VX TYPE USER STRUCT START = 0x100,
VX_TYPE_STRUCT_MAX = VX_TYPE_USER_STRUCT_START - 1,
VX_TYPE_VENDOR_STRUCT_START = 0x400,
VX TYPE USER STRUCT END = VX TYPE VENDOR STRUCT START - 1,
VX_TYPE_VENDOR_STRUCT_END = 0x7FF,
VX_TYPE_REFERENCE = 0x800,
VX TYPE CONTEXT = 0x801,
VX TYPE GRAPH = 0x802,
VX TYPE NODE = 0x803,
VX_TYPE_KERNEL = 0x804,
VX_TYPE_PARAMETER = 0x805,
VX TYPE DELAY = 0x806,
VX_TYPE_LUT = 0x807,
VX_TYPE_DISTRIBUTION = 0x808,
VX_TYPE_PYRAMID = 0x809,
VX TYPE THRESHOLD = 0x80A,
VX_TYPE_MATRIX = 0x80B,
VX TYPE CONVOLUTION = 0x80C,
VX TYPE SCALAR = 0x80D,
VX TYPE ARRAY = 0x80E,
VX_TYPE_IMAGE = 0x80F,
VX TYPE REMAP = 0x810,
VX TYPE ERROR = 0x811,
VX TYPE META FORMAT = 0x812,
VX_TYPE_VENDOR_OBJECT_START = 0xC00,
VX_TYPE_OBJECT_MAX = VX_TYPE_VENDOR_OBJECT_START - 1,
VX TYPE VENDOR OBJECT END = 0xFFF }
  The type enumeration lists all the known types in OpenVX.
```

• enum vx vendor id e {

```
VX_{ID}_{KHRONOS} = 0x000,
VX_ID_TI = 0x001,
VX_{ID}_{QUALCOMM} = 0x002,
VX_ID_NVIDIA = 0x003,
VX_{ID}_{ARM} = 0x004,
VX ID BDTI = 0x005,
VX_{ID}_{RENESAS} = 0x006,
VX_{ID}_{VIVANTE} = 0x007,
VX ID XILINX = 0x008,
VX ID AXIS = 0x009,
VX_ID_MOVIDIUS = 0x00A,
VX_{ID}_{SAMSUNG} = 0x00B,
VX_{ID}_{FREESCALE} = 0x00C,
VX_ID_AMD = 0x00D,
VX_ID_BROADCOM = 0x00E,
VX_ID_INTEL = 0x00F,
VX ID MARVELL = 0x010,
VX_ID_MEDIATEK = 0x011,
VX_ID_ST = 0x012,
VX_ID_CEVA = 0x013,
VX ID ITSEEZ = 0x014,
VX ID IMAGINATION =0x015,
VX_ID_COGNIVUE = 0x016,
VX_ID_VIDEANTIS = 0x017,
VX ID SYNOPSYS = 0x018,
VX_ID_MAX = 0xFFF,
VX_ID_DEFAULT = VX_ID_MAX }
```

The Vendor ID of the Implementation. As new vendors submit their implementations, this enumeration will grow.

## **Functions**

• vx\_status VX\_API\_CALL vxGetStatus (vx\_reference reference)

Provides a generic API to return status values from Object constructors if they fail.

## 3.42.2 Data Structure Documentation

## struct vx\_coordinates2d\_t

The 2D Coordinates structure.

Definition at line 1427 of file vx\_types.h.

**Data Fields** 

| vx_uint32 | Х | The X coordinate. |
|-----------|---|-------------------|
| vx_uint32 | у | The Y coordinate. |

#### struct vx\_coordinates3d\_t

The 3D Coordinates structure.

Definition at line 1435 of file vx\_types.h.

**Data Fields** 

| vx_uint32 | Х | The X coordinate. |
|-----------|---|-------------------|
| vx_uint32 | У | The Y coordinate. |

| vx_uint32 z | The Z coordinate. |  |
|-------------|-------------------|--|
|-------------|-------------------|--|

## struct vx\_delta\_rectangle\_t

The changes in dimensions of the rectangle between input and output images in an output parameter validator. Used in conjunction with VX\_META\_FORMAT\_ATTRIBUTE\_DELTA\_RECTANGLE and vxSetMetaFormat Attribute.

#### See also

```
vx_kernel_output_validate_f
vx_meta_format
```

Definition at line 1417 of file vx\_types.h.

#### **Data Fields**

| vx_int32 | delta_start_x | The change in the start x. |
|----------|---------------|----------------------------|
| vx_int32 | delta_start_y | The change in the start y. |
| vx_int32 | delta_end_x   | The change in the end x.   |
| vx_int32 | delta_end_y   | The change in the end y.   |

## struct vx\_keypoint\_t

The keypoint data structure.

Definition at line 1389 of file vx\_types.h.

#### **Data Fields**

| vx_int32   | х               | The x coordinate.                                                             |
|------------|-----------------|-------------------------------------------------------------------------------|
| vx_int32   | у               | The y coordinate.                                                             |
| vx_float32 | strength        | The strength of the keypoint. Its definition is specific to the corner detec- |
|            |                 | tor.                                                                          |
| vx_float32 | scale           | Initialized to 0 by corner detectors.                                         |
| vx_float32 | orientation     | Initialized to 0 by corner detectors.                                         |
| vx_int32   | tracking_status | A zero indicates a lost point. Initialized to 1 by corner detectors.          |
| vx_float32 | error           | A tracking method specific error. Initialized to 0 by corner detectors.       |

## struct vx\_rectangle\_t

The rectangle data structure that is shared with the users.

Definition at line 1402 of file vx\_types.h.

### **Data Fields**

| vx_uint32 | start_x | The Start X coordinate. |
|-----------|---------|-------------------------|
| vx_uint32 | start_y | The Start Y coordinate. |
| vx_uint32 | end_x   | The End X coordinate.   |
| vx_uint32 | end_y   | The End Y coordinate.   |

## 3.42.3 Macro Definition Documentation

#define VX\_VERSION\_MAJOR( x ) ((x & 0xFF) << 8)

Defines the major version number macro.

Definition at line 56 of file vx.h.

## #define VX\_VERSION\_MINOR( x ) ((x & 0xFF) << 0)

Defines the minor version number macro.

Definition at line 61 of file vx.h.

#### #define VX\_VERSION VX\_VERSION\_1\_0

Defines the OpenVX Version Number.

Definition at line 71 of file vx.h.

## #define VX\_TYPE\_MASK (0x000FFF00)

A type mask removes the scalar/object type from the attribute. It is 3 nibbles in size and is contained between the third and second byte.

See also

vx\_type\_e

Definition at line 429 of file vx types.h.

```
#define VX_DF_IMAGE( a, b, c, d) ((a) | (b << 8) | (c << 16) | (d << 24))
```

Converts a set of four chars into a uint32\_t container of a VX\_DF\_IMAGE code.

Note

Use a vx\_df\_image variable to hold the value.

```
#define VX_ENUM_BASE( vendor, id ) (((vendor) << 20) | (id << 12))
```

Defines the manner in which to combine the Vendor and Object IDs to get the base value of the enumeration.

From any enumerated value (with exceptions), the vendor, and enumeration type should be extractable. Those types that are exceptions are vx\_vendor\_id\_e, vx\_type\_e, vx\_enum\_e, vx\_df\_image\_e, and vx\_\top bool.

```
#define VX_FMT_REF "%p"
```

Use to aid in debugging values in OpenVX.

Definition at line 1278 of file vx\_types.h.

```
#define VX_FMT_SIZE "%zu"
```

Use to aid in debugging values in OpenVX.

Definition at line 1282 of file vx\_types.h.

## #define VX\_SCALE\_UNITY (1024u)

Use to indicate the 1:1 ratio in Q22.10 format. Definition at line 1287 of file vx\_types.h.

## 3.42.4 Typedef Documentation

## typedef int32\_t vx\_enum

Sets the standard enumeration type size to be a fixed quantity.

All enumerable fields must use this type as the container to enforce enumeration ranges and sizeof() operations. Definition at line 141 of file vx\_types.h.

#### typedef vx\_enum vx\_status

A formal status type with known fixed size.

See also

```
vx_status_e
```

Definition at line 401 of file vx\_types.h.

## 3.42.5 Enumeration Type Documentation

#### enum vx\_bool

A Boolean value. This allows 0 to be FALSE, as it is in C, and any non-zero to be TRUE.

```
vx_bool ret = vx_true_e;
if (ret) printf("true!\n");
ret = vx_false_e;
if (!ret) printf("false!\n");
```

This would print both strings.

#### Enumerator

```
vx_false_e The "false" value.
```

vx\_true\_e The "true" value.

Definition at line 272 of file vx types.h.

#### enum vx\_type\_e

The type enumeration lists all the known types in OpenVX.

#### Enumerator

```
VX_TYPE_INVALID An invalid type value. When passed an error must be returned.
```

```
VX_TYPE_CHAR A vx_char.
```

```
VX_TYPE_INT8 A vx_int8.
```

$$\emph{VX\_TYPE\_INT32}$$
 A vx\_int32.

VX\_TYPE\_ENUM A vx\_enum. Equivalent in size to a vx\_int32.

```
VX_TYPE_SIZE A vx_size.
```

VX\_TYPE\_DF\_IMAGE A vx\_df\_image.

```
VX_TYPE_BOOL A vx_bool.
```

VX\_TYPE\_SCALAR\_MAX A floating value for comparison between OpenVX scalars and OpenVX structs.

```
VX_TYPE_RECTANGLE Avx_rectangle_t.
```

VX\_TYPE\_KEYPOINT A vx\_keypoint\_t.

VX\_TYPE\_COORDINATES2D A vx\_coordinates2d\_t.

VX\_TYPE\_COORDINATES3D A vx\_coordinates3d\_t.

VX\_TYPE\_USER\_STRUCT\_START A floating value for user-defined struct base index.

VX\_TYPE\_STRUCT\_MAX A floating value for comparison between OpenVX structs and user structs.

VX\_TYPE\_VENDOR\_STRUCT\_START A floating value for vendor-defined struct base index.

VX\_TYPE\_USER\_STRUCT\_END A floating value for comparison between user structs and vendor structs.

VX\_TYPE\_VENDOR\_STRUCT\_END A floating value for comparison between vendor structs and OpenVX objects.

```
VX_TYPE_REFERENCE A vx_reference.
```

VX\_TYPE\_CONTEXT A vx\_context.

```
VX_TYPE_GRAPH A vx_graph.
```

VX\_TYPE\_NODE A vx\_node.

VX\_TYPE\_KERNEL A vx\_kernel.

VX\_TYPE\_PARAMETER A vx\_parameter.

VX\_TYPE\_DELAY A vx\_delay.

VX\_TYPE\_LUT A vx\_lut.

VX\_TYPE\_DISTRIBUTION A vx\_distribution.

VX\_TYPE\_PYRAMID A vx\_pyramid.

VX\_TYPE\_THRESHOLD Avx threshold.

VX\_TYPE\_MATRIX A vx\_matrix.

VX\_TYPE\_CONVOLUTION A vx\_convolution.

VX\_TYPE\_SCALAR A vx\_scalar. when needed to be completely generic for kernel validation.

VX\_TYPE\_ARRAY A vx array.

VX\_TYPE\_IMAGE A vx\_image.

VX\_TYPE\_REMAP A vx\_remap.

VX\_TYPE\_ERROR An error object which has no type.

VX\_TYPE\_META\_FORMAT A vx\_meta\_format.

VX\_TYPE\_VENDOR\_OBJECT\_START A floating value for vendor defined object base index.

VX\_TYPE\_OBJECT\_MAX A value used for bound checking the OpenVX object types.

VX\_TYPE\_VENDOR\_OBJECT\_END A value used for bound checking of vendor objects.

Definition at line 294 of file vx\_types.h.

### enum vx\_status\_e

The enumeration of all status codes.

See also

vx status.

## Enumerator

- VX STATUS MIN Indicates the lower bound of status codes in VX. Used for bounds checks only.
- **VX\_ERROR\_REFERENCE\_NONZERO** Indicates that an operation did not complete due to a reference count being non-zero.
- **VX\_ERROR\_MULTIPLE\_WRITERS** Indicates that the graph has more than one node outputting to the same data object. This is an invalid graph structure.
- **VX\_ERROR\_GRAPH\_ABANDONED** Indicates that the graph is stopped due to an error or a callback that abandoned execution.
- **VX\_ERROR\_GRAPH\_SCHEDULED** Indicates that the supplied graph already has been scheduled and may be currently executing.
- **VX\_ERROR\_INVALID\_SCOPE** Indicates that the supplied parameter is from another scope and cannot be used in the current scope.
- VX\_ERROR\_INVALID\_NODE Indicates that the supplied node could not be created.
- VX\_ERROR\_INVALID\_GRAPH Indicates that the supplied graph has invalid connections (cycles).
- VX\_ERROR\_INVALID\_TYPE Indicates that the supplied type parameter is incorrect.
- VX\_ERROR\_INVALID\_VALUE Indicates that the supplied parameter has an incorrect value.
- VX\_ERROR\_INVALID\_DIMENSION Indicates that the supplied parameter is too big or too small in dimension.
- VX\_ERROR\_INVALID\_FORMAT Indicates that the supplied parameter is in an invalid format.

- **VX\_ERROR\_INVALID\_LINK** Indicates that the link is not possible as specified. The parameters are incompatible.
- VX\_ERROR\_INVALID\_REFERENCE Indicates that the reference provided is not valid.
- **VX\_ERROR\_INVALID\_MODULE** This is returned from vxLoadKernels when the module does not contain the entry point.
- VX\_ERROR\_INVALID\_PARAMETERS Indicates that the supplied parameter information does not match the kernel contract.
- VX\_ERROR\_OPTIMIZED\_AWAY Indicates that the object refered to has been optimized out of existence.
- **VX\_ERROR\_NO\_MEMORY** Indicates that an internal or implicit allocation failed. Typically catastrophic. After detection, deconstruct the context.

See also

vxVerifyGraph.

VX\_ERROR\_NO\_RESOURCES Indicates that an internal or implicit resource can not be acquired (not memory). This is typically catastrophic. After detection, deconstruct the context.
See also

vxVerifyGraph.

- **VX\_ERROR\_NOT\_COMPATIBLE** Indicates that the attempt to link two parameters together failed due to type incompatibilty.
- VX\_ERROR\_NOT\_ALLOCATED Indicates to the system that the parameter must be allocated by the system.
- **VX\_ERROR\_NOT\_SUFFICIENT** Indicates that the given graph has failed verification due to an insufficient number of required parameters, which cannot be automatically created. Typically this indicates required atomic parameters.

See also

vxVerifyGraph.

**VX\_ERROR\_NOT\_SUPPORTED** Indicates that the requested set of parameters produce a configuration that cannot be supported. Refer to the supplied documentation on the configured kernels.

See also

vx kernel e.

VX\_ERROR\_NOT\_IMPLEMENTED Indicates that the requested kernel is missing.

See also

vx\_kernel\_e vxGetKernelByName.

VX\_FAILURE Indicates a generic error code, used when no other describes the error.

VX\_SUCCESS No error.

Definition at line 367 of file vx\_types.h.

## enum vx\_enum\_e

The set of supported enumerations in OpenVX.

These can be extracted from enumerated values using VX\_ENUM\_TYPE.

Enumerator

VX\_ENUM\_DIRECTION Parameter Direction.

VX\_ENUM\_ACTION Action Codes.

VX\_ENUM\_HINT Hint Values.

VX\_ENUM\_DIRECTIVE Directive Values.

VX\_ENUM\_INTERPOLATION Interpolation Types.

VX\_ENUM\_OVERFLOW Overflow Policies.

- VX\_ENUM\_COLOR\_SPACE Color Space.
- VX\_ENUM\_COLOR\_RANGE Color Space Range.
- VX\_ENUM\_PARAMETER\_STATE Parameter State.
- VX\_ENUM\_CHANNEL Channel Name.
- VX\_ENUM\_CONVERT\_POLICY Convert Policy.
- VX\_ENUM\_THRESHOLD\_TYPE Threshold Type List.
- VX\_ENUM\_BORDER\_MODE Border Mode List.
- VX\_ENUM\_COMPARISON Comparison Values.
- VX ENUM IMPORT MEM The memory import enumeration.
- VX\_ENUM\_TERM\_CRITERIA A termination criteria.
- VX\_ENUM\_NORM\_TYPE A norm type.
- VX\_ENUM\_ACCESSOR An accessor flag type.
- VX\_ENUM\_ROUND\_POLICY Rounding Policy.

Definition at line 522 of file vx\_types.h.

#### enum vx\_convert\_policy\_e

The Conversion Policy Enumeration.

#### Enumerator

- **VX\_CONVERT\_POLICY\_WRAP** Results are the least significant bits of the output operand, as if stored in two's complement binary format in the size of its bit-depth.
- VX CONVERT POLICY SATURATE Results are saturated to the bit depth of the output operand.

Definition at line 597 of file vx types.h.

## enum vx df image e

Based on the VX DF IMAGE definition.

Note

Use vx\_df\_image to contain these values.

#### Enumerator

- VX\_DF\_IMAGE\_VIRT A virtual image of no defined type.
- *VX\_DF\_IMAGE\_RGB* A single plane of 24-bit pixel as 3 interleaved 8-bit units of R then G then B data. This uses the BT709 full range by default.
- VX\_DF\_IMAGE\_RGBX A single plane of 32-bit pixel as 4 interleaved 8-bit units of R then G then B data, then a don't care byte. This uses the BT709 full range by default.
- VX\_DF\_IMAGE\_NV12 A 2-plane YUV format of Luma (Y) and interleaved UV data at 4:2:0 sampling. This uses the BT709 full range by default.
- **VX\_DF\_IMAGE\_NV21** A 2-lane YUV format of Luma (Y) and interleaved VU data at 4:2:0 sampling. This uses the BT709 full range by default.
- **VX\_DF\_IMAGE\_UYVY** A single plane of 32-bit macro pixel of U0, Y0, V0, Y1 bytes. This uses the BT709 full range by default.
- **VX\_DF\_IMAGE\_YUYV** A single plane of 32-bit macro pixel of Y0, U0, Y1, V0 bytes. This uses the BT709 full range by default.
- VX\_DF\_IMAGE\_IYUV A 3 plane of 8-bit 4:2:0 sampled Y, U, V planes. This uses the BT709 full range by default.
- VX\_DF\_IMAGE\_YUV4 A 3 plane of 8 bit 4:4:4 sampled Y, U, V planes. This uses the BT709 full range by default.

- VX\_DF\_IMAGE\_U8 A single plane of unsigned 8-bit data. The range of data is not specified, as it may be extracted from a YUV or generated.
- **VX\_DF\_IMAGE\_U16** A single plane of unsigned 16-bit data. The range of data is not specified, as it may be extracted from a YUV or generated.
- VX\_DF\_IMAGE\_S16 A single plane of signed 16-bit data. The range of data is not specified, as it may be extracted from a YUV or generated.
- VX\_DF\_IMAGE\_U32 A single plane of unsigned 32-bit data. The range of data is not specified, as it may be extracted from a YUV or generated.
- VX\_DF\_IMAGE\_S32 A single plane of unsigned 32-bit data. The range of data is not specified, as it may be extracted from a YUV or generated.

Definition at line 610 of file vx\_types.h.

#### enum vx channel e

The channel enumerations for channel extractions.

#### See also

```
vxChannelExtractNode
vxuChannelExtract
VX_KERNEL_CHANNEL_EXTRACT
```

#### Enumerator

- VX\_CHANNEL\_0 Used by formats with unknown channel types.
- VX\_CHANNEL\_1 Used by formats with unknown channel types.
- VX\_CHANNEL\_2 Used by formats with unknown channel types.
- VX\_CHANNEL\_3 Used by formats with unknown channel types.
- VX\_CHANNEL\_R Use to extract the RED channel, no matter the byte or packing order.
- VX\_CHANNEL\_G Use to extract the GREEN channel, no matter the byte or packing order.
- VX\_CHANNEL\_B Use to extract the BLUE channel, no matter the byte or packing order.
- VX\_CHANNEL\_A Use to extract the ALPHA channel, no matter the byte or packing order.
- VX\_CHANNEL\_Y Use to extract the LUMA channel, no matter the byte or packing order.
- VX\_CHANNEL\_U Use to extract the Cb/U channel, no matter the byte or packing order.
- *VX\_CHANNEL\_V* Use to extract the Cr/V/Value channel, no matter the byte or packing order.

Definition at line 989 of file vx types.h.

## enum vx\_interpolation\_type\_e

The image reconstruction filters supported by image resampling operations.

The edge of a pixel is interpreted as being aligned to the edge of the image. The value for an output pixel is evaluated at the center of that pixel.

This means, for example, that an even enlargement of a factor of two in nearest-neighbor interpolation will replicate every source pixel into a 2x2 quad in the destination, and that an even shrink by a factor of two in bilinear interpolation will create each destination pixel by average a 2x2 quad of source pixels.

Samples that cross the boundary of the source image have values determined by the border mode - see vx border mode e and VX NODE ATTRIBUTE BORDER MODE.

#### See also

vxuScaleImage
vxScaleImageNode
VX\_KERNEL\_SCALE\_IMAGE
vxuWarpAffine
vxWarpAffineNode
VX\_KERNEL\_WARP\_AFFINE
vxuWarpPerspective
vxWarpPerspectiveNode
VX\_KERNEL\_WARP\_PERSPECTIVE

#### Enumerator

- **VX\_INTERPOLATION\_TYPE\_NEAREST\_NEIGHBOR** Output values are defined to match the source pixel whose center is nearest to the sample position.
- **VX\_INTERPOLATION\_TYPE\_BILINEAR** Output values are defined by bilinear interpolation between the pixels whose centers are closest to the sample position, weighted linearly by the distance of the sample from the pixel centers.
- **VX\_INTERPOLATION\_TYPE\_AREA** Output values are determined by averaging the source pixels whose areas fall under the area of the destination pixel, projected onto the source image.

Definition at line 1049 of file vx\_types.h.

#### enum vx\_vendor\_id\_e

The Vendor ID of the Implementation. As new vendors submit their implementations, this enumeration will grow. Enumerator

VX\_ID\_KHRONOS The Khronos Group.

VX\_ID\_TI Texas Instruments, Inc.

VX\_ID\_QUALCOMM Qualcomm, Inc.

VX\_ID\_NVIDIA NVIDIA Corporation.

VX\_ID\_ARM ARM Ltd.

 $\emph{VX\_ID\_BDTI}$  Berkley Design Technology, Inc.

VX\_ID\_RENESAS Renasas Electronics.

VX\_ID\_VIVANTE Vivante Corporation.

VX ID XILINX Xilinx Inc.

VX\_ID\_AXIS Axis Communications.

VX\_ID\_MOVIDIUS Movidius Ltd.

VX\_ID\_SAMSUNG Samsung Electronics.

VX ID FREESCALE Freescale Semiconductor.

VX\_ID\_AMD Advanced Micro Devices.

VX\_ID\_BROADCOM Broadcom Corporation.

VX\_ID\_INTEL Intel Corporation.

VX\_ID\_MARVELL Marvell Technology Group Ltd.

VX\_ID\_MEDIATEK MediaTek, Inc.

VX\_ID\_ST STMicroelectronics.

VX\_ID\_CEVA CEVA DSP.

VX\_ID\_ITSEEZ Itseez, Inc.

VX\_ID\_IMAGINATION Imagination Technologies.

VX\_ID\_COGNIVUE CogniVue Corporation.

VX ID VIDEANTIS Videantis.

VX\_ID\_SYNOPSYS Synopsys.

VX\_ID\_DEFAULT For use by all Kernel authors until they can obtain an assigned ID.

Definition at line 36 of file vx\_vendors.h.

## 3.42.6 Function Documentation

## vx\_status VX\_API\_CALL vxGetStatus ( vx\_reference reference )

Provides a generic API to return status values from Object constructors if they fail.

#### Note

Users do not need to strictly check every object creator as the errors should properly propogate and be detected during verification time or run-time.

## Precondition

Appropriate Object Creator function.

## Postcondition

Appropriate Object Release function.

#### **Parameters**

| in | reference | The reference to check for construction errors. |
|----|-----------|-------------------------------------------------|
|----|-----------|-------------------------------------------------|

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS | No error.                                                           |
|------------|---------------------------------------------------------------------|
| *          | Some error occurred, please check enumeration list and constructor. |

# 3.43 Objects

## 3.43.1 Detailed Description

Defines the basic objects within OpenVX.

All objects in OpenVX derive from a  $vx\_reference$  and contain a reference to the  $vx\_context$  from which they were made, except the  $vx\_context$  itself.

## **Modules**

· Object: Reference

Defines the Reference Object interface.

Object: Context

Defines the Context Object Interface.

· Object: Graph

Defines the Graph Object interface.

· Object: Node

Defines the Node Object interface.

· Object: Array

Defines the Array Object Interface.

• Object: Convolution

Defines the Image Convolution Object interface.

· Object: Distribution

Defines the Distribution Object Interface.

· Object: Image

Defines the Image Object interface.

· Object: LUT

Defines the Look-Up Table Interface.

· Object: Matrix

Defines the Matrix Object Interface.

· Object: Pyramid

Defines the Image Pyramid Object Interface.

· Object: Remap

Defines the Remap Object Interface.

· Object: Scalar

Defines the Scalar Object interface.

· Object: Threshold

Defines the Threshold Object Interface.

# 3.44 Object: Reference

## 3.44.1 Detailed Description

Defines the Reference Object interface.

All objects in OpenVX are derived (in the object-oriented sense) from vx\_reference. All objects shall be able to be cast back to this type safely.

## **Typedefs**

typedef struct \_vx\_reference \* vx\_reference

A generic opaque reference to any object within OpenVX.

#### **Enumerations**

```
    enum vx_reference_attribute_e {
        VX_REF_ATTRIBUTE_COUNT = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_REFERENCE << 8)) + 0x0,
        VX_REF_ATTRIBUTE_TYPE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_REFERENCE << 8)) + 0x1 }
        The reference attributes list.</li>
```

#### **Functions**

• vx\_status VX\_API\_CALL vxQueryReference (vx\_reference ref, vx\_enum attribute, void \*ptr, vx\_size size)

Queries any reference type for some basic information (count, type).

## 3.44.2 Typedef Documentation

#### typedef struct \_vx\_reference\* vx\_reference

A generic opaque reference to any object within OpenVX.

A user of OpenVX should not assume that this can be cast directly to anything; however, any object in OpenVX can be cast back to this for the purposes of querying attributes of the object or for passing the object as a parameter to functions that take a vx\_reference type. If the API does not take that specific type but may take others, an error may be returned from the API.

Definition at line 134 of file vx\_types.h.

## 3.44.3 Enumeration Type Documentation

```
enum vx_reference_attribute_e
```

The reference attributes list.

Enumerator

```
VX_REF_ATTRIBUTE_COUNT Returns the reference count of the object. Use a vx_uint32 parameter.
VX_REF_ATTRIBUTE_TYPE Returns the vx_type_e of the reference. Use a vx_enum parameter.
```

Definition at line 676 of file vx\_types.h.

## 3.44.4 Function Documentation

vx\_status VX\_API\_CALL vxQueryReference ( vx\_reference ref, vx\_enum attribute, void \* ptr, vx\_size size )

Queries any reference type for some basic information (count, type).

## **Parameters**

| in  | ref       | The reference to query.                                        |
|-----|-----------|----------------------------------------------------------------|
| in  | attribute | The value for which to query. Use vx_reference_attribute_e.    |
| out | ptr       | The location at which to store the resulting value.            |
| in  | size      | The size in bytes of the container to which <i>ptr</i> points. |

## Returns

A vx\_status\_e enumeration.

# 3.45 Object: Context

## 3.45.1 Detailed Description

Defines the Context Object Interface.

The OpenVX context is the object domain for all OpenVX objects. All data objects *live* in the context as well as all framework objects. The OpenVX context keeps reference counts on all objects and must do garbage collection during its deconstruction to free lost references. While multiple clients may connect to the OpenVX context, all data are private in that the references referring to data objects are given only to the creating party.

 $VX_READ_ONLY = (((VX_ID_KHRONOS) << 20) | (VX_ENUM_ACCESSOR << 12)) + 0x1,$ 

#### **Macros**

• #define VX\_MAX\_IMPLEMENTATION\_NAME (64)

Defines the maximum number of characters in a implementation string.

## **Typedefs**

typedef struct vx context \* vx context

An opaque reference to the implementation context.

## **Enumerations**

enum vx\_accessor\_e {

```
VX WRITE ONLY = ((( VX ID KHRONOS ) << 20) | ( VX ENUM ACCESSOR << 12)) + 0x2.
 VX READ AND WRITE = ((( VX ID KHRONOS ) << 20) | ( VX ENUM ACCESSOR << 12)) + 0x3 }
    The memory accessor hint flags. These enumeration values are used to indicate desired system behavior, not the
    User intent. For example: these can be interpretted as hints to the system about cache operations or marshalling
    operations.

    enum vx context attribute e {

 VX_CONTEXT_ATTRIBUTE_VENDOR_ID = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_CONTEXT <<
 VX_CONTEXT_ATTRIBUTE_VERSION = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_CONTEXT << 8))
 VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNELS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_CONT↔
 EXT << 8)) + 0x2,
 VX CONTEXT ATTRIBUTE MODULES = ((( VX ID KHRONOS ) << 20) | ( VX TYPE CONTEXT <<
 8)) + 0x3.
 VX_CONTEXT_ATTRIBUTE_REFERENCES = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_CONTEXT
 << 8)) + 0x4,
 VX CONTEXT ATTRIBUTE IMPLEMENTATION = ((( VX ID KHRONOS ) << 20) | ( VX TYPE CONT↔
 EXT << 8)) + 0x5,
 VX_CONTEXT_ATTRIBUTE_EXTENSIONS_SIZE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_CON⊷
 TEXT << 8)) + 0x6,
 VX CONTEXT ATTRIBUTE EXTENSIONS = (((VX ID KHRONOS) << 20) | (VX TYPE CONTEXT <<
 8)) + 0x7.
 VX_CONTEXT_ATTRIBUTE_CONVOLUTION_MAXIMUM_DIMENSION = ((( VX_ID_KHRONOS ) << 20)
 | (VX_TYPE_CONTEXT << 8)) + 0x8,
 VX CONTEXT ATTRIBUTE OPTICAL FLOW WINDOW MAXIMUM DIMENSION = ((( VX ID KHRON ←
 OS) << 20 | ( VX_TYPE_CONTEXT << 8)) + 0x9,
 VX_CONTEXT_ATTRIBUTE_IMMEDIATE_BORDER_MODE = ((( VX_ID_KHRONOS ) << 20) | ( VX_T↔
 YPE CONTEXT << 8)) + 0xA,
 VX CONTEXT ATTRIBUTE UNIQUE KERNEL TABLE = ((( VX ID KHRONOS ) << 20) | ( VX TYPE↔
 CONTEXT << 8)) + 0xB
    A list of context attributes.
```

```
enum vx_import_type_e {
    VX_IMPORT_TYPE_NONE = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_IMPORT_MEM << 12)) + 0x0,
    VX_IMPORT_TYPE_HOST = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_IMPORT_MEM << 12)) + 0x1
    }

    An enumeration of memory import types.</li>
enum vx_round_policy_e {
        VX_ROUND_POLICY_TO_ZERO = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_ROUND_POLICY << 12)) + 0x1,
        VX_ROUND_POLICY_TO_NEAREST_EVEN = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_ROUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_COUND_
```

VX\_TERM\_CRITERIA\_BOTH = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_ENUM\_TERM\_CRITERIA << 12))

The termination criteria list.

### **Functions**

+ 0x2 }

vx\_context VX\_API\_CALL vxCreateContext ()

Creates a vx\_context.

vx\_context VX\_API\_CALL vxGetContext (vx\_reference reference)

Retrieves the context from any reference from within a context.

- vx\_status VX\_API\_CALL vxQueryContext (vx\_context context, vx\_enum attribute, void \*ptr, vx\_size size)

  Queries the context for some specific information.
- vx\_status VX\_API\_CALL vxReleaseContext (vx\_context \*context)

Releases the OpenVX object context.

vx\_status VX\_API\_CALL vxSetContextAttribute (vx\_context context, vx\_enum attribute, const void \*ptr, vx
 \_size size)

Sets an attribute on the context.

## 3.45.2 Typedef Documentation

```
typedef struct _vx_context* vx_context
```

An opaque reference to the implementation context.

See also

vxCreateContext

Definition at line 202 of file vx\_types.h.

## 3.45.3 Enumeration Type Documentation

```
enum vx context attribute e
```

A list of context attributes.

Enumerator

```
VX_CONTEXT_ATTRIBUTE_VENDOR_ID Queries the unique vendor ID. Use a vx_uint16.
```

VX\_CONTEXT\_ATTRIBUTE\_VERSION Queries the OpenVX Version Number. Use a vx\_uint16

**VX\_CONTEXT\_ATTRIBUTE\_UNIQUE\_KERNELS** Queries the context for the number of *unique* kernels. Use a vx\_uint32 parameter.

- VX\_CONTEXT\_ATTRIBUTE\_MODULES Queries the context for the number of active modules. Use a vx← \_uint32 parameter.
- **VX\_CONTEXT\_ATTRIBUTE\_REFERENCES** Queries the context for the number of active references. Use a vx uint32 parameter.
- **VX\_CONTEXT\_ATTRIBUTE\_IMPLEMENTATION** Queries the context for it's implementation name. Use a vx\_char[VX\_MAX\_IMPLEMENTATION\_NAME] array.
- **VX\_CONTEXT\_ATTRIBUTE\_EXTENSIONS\_SIZE** Queries the number of bytes in the extensions string. Use a vx\_size parameter.
- **VX\_CONTEXT\_ATTRIBUTE\_EXTENSIONS** Retrieves the extensions string. This is a space-separated string of extension names. Use a vx\_char pointer allocated to the size returned from VX\_CONTE← XT\_ATTRIBUTE\_EXTENSIONS\_SIZE.
- VX\_CONTEXT\_ATTRIBUTE\_CONVOLUTION\_MAXIMUM\_DIMENSION
  The maximum width or height of a convolution matrix. Use a vx\_size parameter. Each vendor must support centered kernels of size w X h, where both w and h are odd numbers, 3 <= w <= n and 3 <= h <= n, where n is the value of the VX\_CONTEXT\_ATTRIBUTE\_CONVOLUTION\_MAXIMUM\_DIMENSION attribute. n is an odd number that should not be smaller than 9. w and h may or may not be equal to each other. All combinations of w and h meeting the conditions above must be supported. The behavior of vxCreateConvolution is undefined for values larger than the value returned by this attribute.</p>
- **VX\_CONTEXT\_ATTRIBUTE\_OPTICAL\_FLOW\_WINDOW\_MAXIMUM\_DIMENSION** The maximum window dimension of the OpticalFlowPyrLK kernel.

See also

VX\_KERNEL\_OPTICAL\_FLOW\_PYR\_LK. Use a vx\_size parameter.

**VX\_CONTEXT\_ATTRIBUTE\_IMMEDIATE\_BORDER\_MODE** The border mode for immediate mode functions. Graph mode functions are unaffected by this attribute. Use a pointer to a vx\_border\_mode\_t structure as parameter.

Note

The assumed default value for immediate mode functions is VX\_BORDER\_MODE\_UNDEFINED.

**VX\_CONTEXT\_ATTRIBUTE\_UNIQUE\_KERNEL\_TABLE** Returns the table of all unique the kernels that exist in the context. Use a vx\_kernel\_info\_t array.

Precondition

You must call vxQueryContext with  $VX\_CONTEXT\_ATTRIBUTE\_UNIQUE\_KERNELS$  to compute the necessary size of the array.

Definition at line 686 of file vx types.h.

## enum vx\_import\_type\_e

An enumeration of memory import types.

Enumerator

VX\_IMPORT\_TYPE\_NONE For memory allocated through OpenVX, this is the import type.

VX\_IMPORT\_TYPE\_HOST The default memory type to import from the Host.

Definition at line 1018 of file vx types.h.

## enum vx\_termination\_criteria\_e

The termination criteria list.

See also

Optical Flow Pyramid (LK)

#### Enumerator

- VX TERM CRITERIA ITERATIONS Indicates a termination after a set number of iterations.
- **VX\_TERM\_CRITERIA\_EPSILON** Indicates a termination after matching against the value of eplison provided to the function.
- VX\_TERM\_CRITERIA\_BOTH Indicates that both an iterations and eplison method are employed. Whichever one matches first causes the termination.

Definition at line 1121 of file vx types.h.

#### enum vx\_accessor\_e

The memory accessor hint flags. These enumeration values are used to indicate desired *system* behavior, not the **User** intent. For example: these can be interpretted as hints to the system about cache operations or marshalling operations.

#### Enumerator

- VX\_READ\_ONLY The memory shall be treated by the system as if it were read-only. If the User writes to this memory, the results are implementation defined.
- VX\_WRITE\_ONLY The memory shall be treated by the system as if it were write-only. If the User reads from this memory, the results are implementation defined.
- VX\_READ\_AND\_WRITE The memory shall be treated by the system as if it were readable and writeable.

Definition at line 1159 of file vx types.h.

## enum vx\_round\_policy\_e

The Round Policy Enumeration.

#### Enumerator

- VX\_ROUND\_POLICY\_TO\_ZERO When scaling, this truncates the least significant values that are lost in operations.
- VX\_ROUND\_POLICY\_TO\_NEAREST\_EVEN When scaling, this rounds to nearest even output value.

Definition at line 1176 of file vx\_types.h.

## 3.45.4 Function Documentation

## vx\_context VX\_API\_CALL vxCreateContext ( )

Creates a vx\_context.

This creates a top-level object context for OpenVX.

Note

This is required to do anything else.

#### Returns

The reference to the implementation context vx\_context. Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### Postcondition

vxReleaseContext

## vx\_status VX\_API\_CALL vxReleaseContext ( vx\_context \* context )

Releases the OpenVX object context.

All reference counted objects are garbage-collected by the return of this call. No calls are possible using the parameter context after the context has been released until a new reference from vxCreateContext is returned.
All outstanding references to OpenVX objects from this context are invalid after this call.

#### **Parameters**

| in | context | The pointer to the reference to the context. |
|----|---------|----------------------------------------------|

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A  $vx\_status\_e$  enumeration.

#### Return values

| VX_SUCCESS              | No errors.                      |
|-------------------------|---------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If context is not a vx_context. |
| EFERENCE                |                                 |

#### Precondition

vxCreateContext

## vx\_context VX\_API\_CALL vxGetContext ( vx\_reference reference )

Retrieves the context from any reference from within a context.

#### **Parameters**

| in | reference | The reference from which to extract the context. |
|----|-----------|--------------------------------------------------|
|----|-----------|--------------------------------------------------|

#### Returns

The overall context that created the particular reference.

# vx\_status VX\_API\_CALL vxQueryContext ( vx\_context context, vx\_enum attribute, void \* ptr, vx\_size size )

Queries the context for some specific information.

#### **Parameters**

| in  | context   | The reference to the context.                                  |
|-----|-----------|----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_context_attribute_e.          |
| out | ptr       | The location at which to store the resulting value.            |
| in  | size      | The size in bytes of the container to which <i>ptr</i> points. |

## Returns

A vx\_status\_e enumeration.

| VX_SUCCESS              | No errors.                                    |
|-------------------------|-----------------------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If the context is not a vx_context.           |
| EFERENCE                |                                               |
| VX_ERROR_INVALID_P↔     | If any of the other parameters are incorrect. |
| ARAMETERS               |                                               |

| VX_ERROR_NOT_SUPP↔ | If the attribute is not supported on this implementation. |
|--------------------|-----------------------------------------------------------|
| ORTED              |                                                           |

# $vx\_status\ VX\_API\_CALL\ vxSetContextAttribute\ (\ vx\_context\ context,\ vx\_enum\ attribute,\ const\ void\ *\ ptr,\ vx\_size\ size\ )$

Sets an attribute on the context.

## **Parameters**

| in | context   | The handle to the overall context.                     |
|----|-----------|--------------------------------------------------------|
| in | attribute | The attribute to set from vx_context_attribute_e.      |
| in | ptr       | The pointer to the data to which to set the attribute. |
| in | size      | The size in bytes of the data to which ptr points.     |

#### Returns

A  $vx\_status\_e$  enumeration.

| VX_SUCCESS              | No errors.                                    |
|-------------------------|-----------------------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If the context is not a vx_context.           |
| EFERENCE                |                                               |
| VX_ERROR_INVALID_P↔     | If any of the other parameters are incorrect. |
| ARAMETERS               |                                               |
| VX_ERROR_NOT_SUPP↔      | If the attribute is not settable.             |
| ORTED                   |                                               |

# 3.46 Object: Graph

## 3.46.1 Detailed Description

Defines the Graph Object interface.

A set of nodes connected in a directed (only goes one-way) acyclic (does not loop back) fashion. A Graph may have sets of Nodes that are unconnected to other sets of Nodes within the same Graph. See Graph Formalisms.

## **Typedefs**

typedef struct \_vx\_graph \* vx\_graph
 An opaque reference to a graph.

## **Enumerations**

```
    enum vx_graph_attribute_e {
    VX_GRAPH_ATTRIBUTE_NUMNODES = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_GRAPH << 8)) + 0x0,</li>
    VX_GRAPH_ATTRIBUTE_STATUS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_GRAPH << 8)) + 0x1,</li>
    VX_GRAPH_ATTRIBUTE_PERFORMANCE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_GRAPH << 8)) + 0x2,</li>
    VX_GRAPH_ATTRIBUTE_NUMPARAMETERS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_GRAPH << 8)) + 0x3 }</li>
```

The graph attributes list.

#### **Functions**

- vx\_graph VX\_API\_CALL vxCreateGraph (vx\_context context)
   Creates an empty graph.
- vx\_bool VX\_API\_CALL vxIsGraphVerified (vx\_graph graph)

Returns a Boolean to indicate the state of graph verification.

vx status VX API CALL vxProcessGraph (vx graph graph)

This function causes the synchronous processing of a graph. If the graph has not been verified, then the implementation verifies the graph immediately. If verification fails this function returns a status identical to what  $vxVerify \leftarrow Graph$  would return. After the graph verifies successfully then processing occurs. If the graph was previously verified via vxVerifyGraph or vxProcessGraph then the graph is processed. This function blocks until the graph is completed.

- vx\_status VX\_API\_CALL vxQueryGraph (vx\_graph graph, vx\_enum attribute, void \*ptr, vx\_size size)
   Allows the user to query attributes of the Graph.
- vx\_status VX\_API\_CALL vxReleaseGraph (vx\_graph \*graph)

Releases a reference to a graph. The object may not be garbage collected until its total reference count is zero. Once the reference count is zero, all node references in the graph are automatically released as well. Data referenced by those nodes may not be released as the user may have external references to the data.

vx status VX API CALL vxScheduleGraph (vx graph graph)

Schedules a graph for future execution.

vx\_status VX\_API\_CALL vxSetGraphAttribute (vx\_graph graph, vx\_enum attribute, const void \*ptr, vx\_size size)

Allows the set to attributes on the Graph.

vx\_status VX\_API\_CALL vxVerifyGraph (vx\_graph graph)

Verifies the state of the graph before it is executed. This is useful to catch programmer errors and contract errors. If not verified, the graph verifies before being processed.

vx\_status VX\_API\_CALL vxWaitGraph (vx\_graph graph)

Waits for a specific graph to complete. If the graph has been scheduled multiple times since the last call to vxWait← Graph, then vxWaitGraph returns only when the last scheduled execution completes.

## 3.46.2 Typedef Documentation

#### typedef struct \_vx\_graph\* vx\_graph

An opaque reference to a graph.

See also

vxCreateGraph

Definition at line 195 of file vx\_types.h.

## 3.46.3 Enumeration Type Documentation

enum vx\_graph\_attribute\_e

The graph attributes list.

Enumerator

**VX\_GRAPH\_ATTRIBUTE\_NUMNODES** Returns the number of nodes in a graph. Use a vx\_uint32 parameter.

VX\_GRAPH\_ATTRIBUTE\_STATUS Returns the overall status of the graph. Use a vx\_status parameter.

**VX\_GRAPH\_ATTRIBUTE\_PERFORMANCE** Returns the overall performance of the graph. Use a vx\_← perf\_t parameter.

**VX\_GRAPH\_ATTRIBUTE\_NUMPARAMETERS** Returns the number of explicitly declared parameters on the graph. Use a vx\_uint32 parameter.

Definition at line 828 of file vx\_types.h.

#### 3.46.4 Function Documentation

## vx graph VX API CALL vxCreateGraph (vx context context)

Creates an empty graph.

**Parameters** 

| in | context | The reference to the implementation context. |
|----|---------|----------------------------------------------|
|----|---------|----------------------------------------------|

## Returns

A graph reference  $vx\_graph$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

## vx\_status VX\_API\_CALL vxReleaseGraph ( vx\_graph \* graph )

Releases a reference to a graph. The object may not be garbage collected until its total reference count is zero. Once the reference count is zero, all node references in the graph are automatically released as well. Data referenced by those nodes may not be released as the user may have external references to the data.

Parameters

| in | graph | The pointer to the graph to release. |
|----|-------|--------------------------------------|

## Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS              | No errors.                  |
|-------------------------|-----------------------------|
| $VX\_ERROR\_INVALID\_R$ | If graph is not a vx_graph. |
| EFERENCE                |                             |

### vx\_status VX\_API\_CALL vxVerifyGraph ( vx\_graph graph )

Verifies the state of the graph before it is executed. This is useful to catch programmer errors and contract errors. If not verified, the graph verifies before being processed.

#### Precondition

Memory for data objects is not guarenteed to exist before this call.

#### Postcondition

After this call data objects exist unless the implementation optimized them out.

#### **Parameters**

| in | graph | The reference to the graph to verify. |
|----|-------|---------------------------------------|

#### Returns

A status code for graphs with more than one error; it is undefined which error will be returned. Register a log callback using vxRegisterLogCallback to receive each specific error in the graph.

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS                          | No errors.                                                       |
|-------------------------------------|------------------------------------------------------------------|
| VX_ERROR_INVALID_R↔                 | If graph is not a vx_graph.                                      |
| EFERENCE                            |                                                                  |
| $VX\_ERROR\_MULTIPLE\_{\leftarrow}$ | If the graph contains more than one writer to any data object.   |
| WRITERS                             |                                                                  |
| VX_ERROR_INVALID_N↔                 | If a node in the graph is invalid or failed be created.          |
| ODE                                 |                                                                  |
| $VX\_ERROR\_INVALID\_G \leftarrow$  | If the graph contains cycles or some other invalid topology.     |
| RAPH                                |                                                                  |
| VX_ERROR_INVALID_TY↔                | If any parameter on a node is given the wrong type.              |
| PE                                  |                                                                  |
| $VX\_ERROR\_INVALID\_V \leftarrow$  | If any value of any parameter is out of bounds of specification. |
| ALUE                                |                                                                  |
| $VX\_ERROR\_INVALID\_F \leftarrow$  | If the image format is not compatible.                           |
| ORMAT                               |                                                                  |

#### See also

vxProcessGraph

# vx\_status VX\_API\_CALL vxProcessGraph ( vx\_graph graph )

This function causes the synchronous processing of a graph. If the graph has not been verified, then the implementation verifies the graph immediately. If verification fails this function returns a status identical to what  $vxVerify \leftarrow Graph$  would return. After the graph verifies successfully then processing occurs. If the graph was previously verified via vxVerifyGraph or vxProcessGraph then the graph is processed. This function blocks until the graph is completed.

| in | graph | The graph to execute. |
|----|-------|-----------------------|

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS | Graph has been processed.                        |
|------------|--------------------------------------------------|
| VX_FAILURE | A catastrophic error occurred during processing. |
| *          | See vxVerifyGraph.                               |

# Precondition

vxVerifyGraph must return VX\_SUCCESS before this function will pass.

#### See also

vxVerifyGraph

# vx\_status VX\_API\_CALL vxScheduleGraph ( vx\_graph graph )

Schedules a graph for future execution.

#### **Parameters**

| in | graph | The graph to schedule. |
|----|-------|------------------------|
|----|-------|------------------------|

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_ERROR_NO_RESOU↔  | The graph cannot be scheduled now.                            |
|---------------------|---------------------------------------------------------------|
| RCES                |                                                               |
| VX_ERROR_NOT_SUFFI↔ | The graph is not verified and has failed forced verification. |
| CIENT               |                                                               |
| VX_SUCCESS          | The graph has been scheduled.                                 |

### Precondition

vxVerifyGraph must return VX\_SUCCESS before this function will pass.

# vx\_status VX\_API\_CALL vxWaitGraph ( vx\_graph graph )

Waits for a specific graph to complete. If the graph has been scheduled multiple times since the last call to vxWait← Graph, then vxWaitGraph returns only when the last scheduled execution completes. Parameters

| in | graph The graph to wait on. |
|----|-----------------------------|

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS | The graph has successfully completed execution and its outputs are the valid |
|------------|------------------------------------------------------------------------------|
|            | results of the most recent execution.                                        |
| VX_FAILURE | An error occurred or the graph was never scheduled. Use vxQueryGraph for     |
|            | the VX_GRAPH_ATTRIBUTE_STATUS attribute to determine the details. Output     |
|            | data of the graph is undefined.                                              |

# Precondition

vxScheduleGraph

# vx\_status VX\_API\_CALL vxQueryGraph ( vx\_graph graph, vx\_enum attribute, void \* ptr, vx\_size size )

Allows the user to query attributes of the Graph.

#### **Parameters**

| in  | graph     | The reference to the created graph.                     |
|-----|-----------|---------------------------------------------------------|
| in  | attribute | The vx_graph_attribute_e type needed.                   |
| out | ptr       | The location at which to store the resulting value.     |
| in  | size      | The size in bytes of the container to which ptr points. |

#### Returns

A vx\_status\_e enumeration.

# vx\_status VX\_API\_CALL vxSetGraphAttribute ( vx\_graph graph, vx\_enum attribute, const void \* ptr, vx\_size size )

Allows the set to attributes on the Graph.

# **Parameters**

| in | graph     | The reference to the graph.                                    |
|----|-----------|----------------------------------------------------------------|
| in | attribute | The vx_graph_attribute_e type needed.                          |
| in | ptr       | The location from which to read the value.                     |
| in | size      | The size in bytes of the container to which <i>ptr</i> points. |

# Returns

A vx\_status\_e enumeration.

# vx\_bool VX\_API\_CALL vxlsGraphVerified ( vx\_graph graph )

Returns a Boolean to indicate the state of graph verification.

# **Parameters**

| in | graph | The reference to the graph to check. |
|----|-------|--------------------------------------|
|----|-------|--------------------------------------|

#### Returns

A vx\_bool value.

### Return values

| vx_true_e | The graph is verified. |
|-----------|------------------------|
|           |                        |

| vx_false_e | The graph is not verified. It must be verified before execution either through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | $\verb vxVerifyGraph    \textbf{or}   \textbf{automatically}   \textbf{through}   \verb vxProcessGraph    \textbf{or}   \verb vx$ \\   \textbf{vxProcessGraph}   \textbf{or}   \textbf{vx} \\   \textbf{vxProcessGraph}   \textbf$ |
|            | ScheduleGraph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# 3.47 Object: Node

# 3.47.1 Detailed Description

Defines the Node Object interface.

A node is an instance of a kernel that will be paired with a specific set of references (the parameters). Nodes are created from and associated with a single graph only. When a vx\_parameter is extracted from a Node, an additional attribute can be accessed:

Reference - The vx\_reference assigned to this parameter index from the Node creation function (e.g., vxSobel3x3Node).

# **Typedefs**

typedef struct \_vx\_node \* vx\_node
 An opaque reference to a kernel node.

#### **Enumerations**

```
    enum vx_node_attribute_e {
    VX_NODE_ATTRIBUTE_STATUS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_NODE << 8)) + 0x0,</li>
    VX_NODE_ATTRIBUTE_PERFORMANCE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_NODE << 8)) + 0x1,</li>
    VX_NODE_ATTRIBUTE_BORDER_MODE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_NODE << 8)) + 0x2,</li>
    VX_NODE_ATTRIBUTE_LOCAL_DATA_SIZE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_NODE << 8)) + 0x3,</li>
    VX_NODE_ATTRIBUTE_LOCAL_DATA_PTR = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_NODE << 8)) + 0x4 }</li>
```

The node attributes list.

#### **Functions**

- vx\_status VX\_API\_CALL vxQueryNode (vx\_node node, vx\_enum attribute, void \*ptr, vx\_size size)

  Allows a user to query information out of a node.
- vx status VX API CALL vxReleaseNode (vx node \*node)

Releases a reference to a Node object. The object may not be garbage collected until its total reference count is zero.

vx\_status VX\_API\_CALL vxRemoveNode (vx\_node \*node)

Removes a Node from its parent Graph and releases it.

vx\_status VX\_API\_CALL vxSetNodeAttribute (vx\_node node, vx\_enum attribute, const void \*ptr, vx\_size size)

Allows a user to set attribute of a node before Graph Validation.

# 3.47.2 Typedef Documentation

```
typedef struct vx node* vx node
```

An opaque reference to a kernel node.

See also

vxCreateGenericNode

Definition at line 188 of file vx\_types.h.

# 3.47.3 Enumeration Type Documentation

# enum vx\_node\_attribute\_e

The node attributes list.

Enumerator

VX NODE ATTRIBUTE STATUS Queries the status of node execution. Use a vx status parameter.

**VX\_NODE\_ATTRIBUTE\_PERFORMANCE** Queries the performance of the node execution. Use a vx\_← perf\_t parameter.

**VX\_NODE\_ATTRIBUTE\_BORDER\_MODE** Gets or sets the border mode of the node. Use a vx\_border

\_mode\_t structure.

**VX\_NODE\_ATTRIBUTE\_LOCAL\_DATA\_SIZE** Indicates the size of the kernel local memory area. Use a vx\_size parameter.

**VX\_NODE\_ATTRIBUTE\_LOCAL\_DATA\_PTR** Indicates the pointer kernel local memory area. Use a void \* parameter.

Definition at line 762 of file vx\_types.h.

#### 3.47.4 Function Documentation

vx status VX API CALL vxQueryNode ( vx node node, vx enum attribute, void \* ptr, vx size size )

Allows a user to query information out of a node.

#### **Parameters**

| in  | node      | The reference to the node to query.                                    |
|-----|-----------|------------------------------------------------------------------------|
| in  | attribute | Use vx_node_attribute_e value to query for information.                |
| out | ptr       | The location at which to store the resulting value.                    |
| in  | size      | The size in bytesin bytes of the container to which <i>ptr</i> points. |

#### Returns

A vx\_status\_e enumeration.

### Return values

| VX_SUCCESS | Successful                     |
|------------|--------------------------------|
|            | The type or size is incorrect. |
| ARAMETERS  |                                |

# vx\_status VX\_API\_CALL vxSetNodeAttribute ( vx\_node *node*, vx\_enum *attribute*, const void \* *ptr*, vx\_size *size* )

Allows a user to set attribute of a node before Graph Validation.

# **Parameters**

|   | in  | node      | The reference to the node to set.                            |
|---|-----|-----------|--------------------------------------------------------------|
|   | in  | attribute | Use vx_node_attribute_e value to query for information.      |
|   | out | ptr       | The output pointer to where to send the value.               |
| Ī | in  | size      | The size in bytes of the objects to which <i>ptr</i> points. |

#### Note

Some attributes are inherited from the  $vx\_kernel$ , which was used to create the node. Some of these can be overridden using this API, notably VX\_NODE\_ATTRIBUTE\_LOCAL\_DATA\_SIZE and VX\_NODE\_ATTR $\leftarrow$  IBUTE\_LOCAL\_DATA\_PTR.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS                         | The attribute was set.                   |
|------------------------------------|------------------------------------------|
| $VX\_ERROR\_INVALID\_R$            | node is not a vx_node.                   |
| EFERENCE                           |                                          |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | size is not correct for the type needed. |
| ARAMETER                           |                                          |

# vx\_status VX\_API\_CALL vxReleaseNode ( vx\_node \* node )

Releases a reference to a Node object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | node | The pointer to the reference of the node to release. |
|----|------|------------------------------------------------------|

# Postcondition

After returning from this function the reference is zeroed.

# Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS              | No errors.                |
|-------------------------|---------------------------|
| $VX\_ERROR\_INVALID\_R$ | If node is not a vx_node. |
| EFERENCE                |                           |

# $vx\_status\ VX\_API\_CALL\ vxRemoveNode\ (\ vx\_node*node\ )$

Removes a Node from its parent Graph and releases it.

# **Parameters**

| in | node | The pointer to the node to remove and release. |
|----|------|------------------------------------------------|
|----|------|------------------------------------------------|

# Postcondition

After returning from this function the reference is zeroed.

# Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS          | No errors.                |
|---------------------|---------------------------|
| VX_ERROR_INVALID_R↔ | If node is not a vx_node. |
| EFERENCE            |                           |

# 3.48 Object: Array

# 3.48.1 Detailed Description

Defines the Array Object Interface.

Array is a strongly-typed container, which provides random access by index to its elements in constant time. It uses value semantics for its own elements and holds copies of data. This is an example for loop over an Array:

```
vx_size i, stride = sizeof(vx_size);
void *base = NULL;
/* access entire array at once */
vxAccessArrayRange(array, 0, num_items, &stride, &base,
VX_READ_AND_WRITE);
for (i = 0; i < num_items; i++)
{
    vxArrayItem(mystruct, base, i, stride).some_uint += i;
    vxArrayItem(mystruct, base, i, stride).some_double = 3.14f;
}
vxCommitArrayRange(array, 0, num_items, base);</pre>
```

#### **Macros**

- #define vxArrayItem(type, ptr, index, stride) (\*(type \*)(vxFormatArrayPointer((ptr), (index), (stride))))
   Allows access to an array item as a typecast pointer deference.
- #define vxFormatArrayPointer(ptr, index, stride) (&(((vx\_uint8\*)(ptr))[(index) \* (stride)]))
   Accesses a specific indexed element in an array.

# **Typedefs**

typedef struct \_vx\_array \* vx\_array

The Array Object. Array is a strongly-typed container for other data structures.

# **Enumerations**

```
    enum vx_array_attribute_e {
        VX_ARRAY_ATTRIBUTE_ITEMTYPE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_ARRAY << 8)) +
        0x0,
        VX_ARRAY_ATTRIBUTE_NUMITEMS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_ARRAY << 8)) +
        0x1,
        VX_ARRAY_ATTRIBUTE_CAPACITY = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_ARRAY << 8)) +
        0x2,
        VX_ARRAY_ATTRIBUTE_ITEMSIZE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_ARRAY << 8)) + 0x3
    }</li>
```

The array object attributes.

### **Functions**

vx\_status VX\_API\_CALL vxAccessArrayRange (vx\_array arr, vx\_size start, vx\_size end, vx\_size \*stride, void \*\*ptr, vx\_enum usage)

Grants access to a sub-range of an Array. The number of elements in the sub-range is given by (end - start).

- vx\_status VX\_API\_CALL vxAddArrayItems (vx\_array arr, vx\_size count, const void \*ptr, vx\_size stride)
   Adds items to the Array.
- vx\_status VX\_API\_CALL vxCommitArrayRange (vx\_array arr, vx\_size start, vx\_size end, const void \*ptr)

  Commits data back to the Array object.
- vx\_array VX\_API\_CALL vxCreateArray (vx\_context context, vx\_enum item\_type, vx\_size capacity)
   Creates a reference to an Array object.
- vx\_array VX\_API\_CALL vxCreateVirtualArray (vx\_graph graph, vx\_enum item\_type, vx\_size capacity)
   Creates an opaque reference to a virtual Array with no direct user access.
- vx\_status VX\_API\_CALL vxQueryArray (vx\_array arr, vx\_enum attribute, void \*ptr, vx\_size size)

  Queries the Array for some specific information.

vx\_status VX\_API\_CALL vxReleaseArray (vx\_array \*arr)

Releases a reference of an Array object. The object may not be garbage collected until its total reference count is zero. After returning from this function the reference is zeroed.

vx status VX API CALL vxTruncateArray (vx array arr, vx size new num items)

Truncates an Array (remove items from the end).

#### 3.48.2 Macro Definition Documentation

# #define vxFormatArrayPointer( ptr, index, stride ) (&(((vx\_uint8\*)(ptr))[(index) \* (stride)]))

Accesses a specific indexed element in an array.

#### **Parameters**

| in | ptr    | The base pointer for the array range.                                    |
|----|--------|--------------------------------------------------------------------------|
| in | index  | The index of the element, not byte, to access.                           |
| in | stride | The 'number of bytes' between the beginning of two consecutive elements. |

Definition at line 1846 of file vx api.h.

#### #define vxArrayltem( type, ptr, index, stride ) (\*(type \*)(vxFormatArrayPointer((ptr), (index), (stride))))

Allows access to an array item as a typecast pointer deference.

#### **Parameters**

| in | type   | The type of the item to access.                                          |
|----|--------|--------------------------------------------------------------------------|
| in | ptr    | The base pointer for the array range.                                    |
| in | index  | The index of the element, not byte, to access.                           |
| in | stride | The 'number of bytes' between the beginning of two consecutive elements. |

Definition at line 1857 of file vx\_api.h.

# 3.48.3 Enumeration Type Documentation

#### enum vx\_array\_attribute\_e

The array object attributes.

# Enumerator

VX\_ARRAY\_ATTRIBUTE\_ITEMTYPE The type of the Array items. Use a vx\_enum parameter.

VX\_ARRAY\_ATTRIBUTE\_NUMITEMS The number of items in the Array. Use a vx\_size parameter.

**VX\_ARRAY\_ATTRIBUTE\_CAPACITY** The maximal number of items that the Array can hold. Use a vx\_\cong size parameter.

VX\_ARRAY\_ATTRIBUTE\_ITEMSIZE Queries an array item size. Use a vx\_size parameter.

Definition at line 964 of file vx\_types.h.

# 3.48.4 Function Documentation

vx\_array VX\_API\_CALL vxCreateArray ( vx\_context context, vx\_enum item\_type, vx\_size capacity )

Creates a reference to an Array object.

User must specify the Array capacity (i.e., the maximal number of items that the array can hold).

| in | context   | The reference to the overall Context.                |
|----|-----------|------------------------------------------------------|
| in | item_type | The type of objects to hold. Use:                    |
|    |           | • VX_TYPE_RECTANGLE for vx_rectangle_t.              |
|    |           | • VX_TYPE_KEYPOINT for vx_keypoint_t.                |
|    |           | • VX_TYPE_COORDINATES2D for vx_coordinates2d_t.      |
|    |           | • VX_TYPE_COORDINATES3D for vx_coordinates3d_t.      |
|    |           | • vx_enum Returned from vxRegisterUserStruct.        |
| in | capacity  | The maximal number of items that the array can hold. |

#### Returns

An array reference  $vx\_array$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

# vx\_array VX\_API\_CALL vxCreateVirtualArray ( vx\_graph graph, vx\_enum item\_type, vx\_size capacity )

Creates an opaque reference to a virtual Array with no direct user access.

Virtual Arrays are useful when item type or capacity are unknown ahead of time and the Array is used as internal graph edge. Virtual arrays are scoped within the parent graph only.

All of the following constructions are allowed.

```
vx_context context = vxCreateContext();
vx_graph graph = vxCreateGraph(context);
vx_array virt[] = {
    vxCreateVirtualArray(graph, 0, 0), // totally unspecified
    vxCreateVirtualArray(graph, VX_TYPE_KEYPOINT, 0), // unspecified
    capacity
    vxCreateVirtualArray(graph, VX_TYPE_KEYPOINT, 1000), // no access
};
```

### Parameters

| in | graph     | The reference to the parent graph.                                              |
|----|-----------|---------------------------------------------------------------------------------|
| in | item_type | The type of objects to hold. This may to set to zero to indicate an unspecified |
|    |           | item type.                                                                      |
| in | capacity  | The maximal number of items that the array can hold. This may be to set to      |
|    |           | zero to indicate an unspecified capacity.                                       |

#### See also

vxCreateArray for a type list.

# Returns

A array reference  $vx\_array$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### vx\_status VX\_API\_CALL vxReleaseArray ( vx\_array \* arr )

Releases a reference of an Array object. The object may not be garbage collected until its total reference count is zero. After returning from this function the reference is zeroed.

| in | arr | The pointer to the Array to release. |
|----|-----|--------------------------------------|
|----|-----|--------------------------------------|

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS              | No errors.                |
|-------------------------|---------------------------|
| $VX\_ERROR\_INVALID\_R$ | If arr is not a vx_array. |
| EFERENCE                |                           |

# vx\_status VX\_API\_CALL vxQueryArray ( vx\_array arr, vx\_enum attribute, void \* ptr, vx\_size size )

Queries the Array for some specific information.

#### **Parameters**

| in  | arr       | The reference to the Array.                             |
|-----|-----------|---------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_array_attribute_e.     |
| out | ptr       | The location at which to store the resulting value.     |
| in  | size      | The size in bytes of the container to which ptr points. |

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS                         | No errors.                                                               |
|------------------------------------|--------------------------------------------------------------------------|
| $VX\_ERROR\_INVALID\_R$            | If the arr is not a vx_array.                                            |
| EFERENCE                           |                                                                          |
| VX_ERROR_NOT_SUPP↔                 | If the <i>attribute</i> is not a value supported on this implementation. |
| ORTED                              |                                                                          |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | If any of the other parameters are incorrect.                            |
| ARAMETERS                          |                                                                          |

# vx\_status VX\_API\_CALL vxAddArrayItems ( vx\_array arr, vx\_size count, const void \* ptr, vx\_size stride )

Adds items to the Array.

This function increases the container size.

By default, the function does not reallocate memory, so if the container is already full (number of elements is equal to capacity) or it doesn't have enough space, the function returns VX\_FAILURE error code.

# **Parameters**

| in | arr    | The reference to the Array.                                            |
|----|--------|------------------------------------------------------------------------|
| in | count  | The total number of elements to insert.                                |
| in | ptr    | The location at which to store the input values.                       |
| in | stride | The number of bytes between the beginning of two consecutive elements. |

# Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS                         | No errors.                                    |
|------------------------------------|-----------------------------------------------|
| VX_ERROR_INVALID_R↔                | If the arr is not a vx_array.                 |
| EFERENCE                           |                                               |
| VX_FAILURE                         | If the Array is full.                         |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | If any of the other parameters are incorrect. |
| ARAMETERS                          |                                               |

# vx\_status VX\_API\_CALL vxTruncateArray ( vx\_array arr, vx\_size new\_num\_items )

Truncates an Array (remove items from the end).

# **Parameters**

| in,out | arr           | The reference to the Array.            |
|--------|---------------|----------------------------------------|
| in     | new_num_items | The new number of items for the Array. |

#### Returns

A  $vx\_status\_e$  enumeration.

#### Return values

| VX_SUCCESS                         | No errors.                                     |
|------------------------------------|------------------------------------------------|
| $VX\_ERROR\_INVALID\_R$            | If the arr is not a vx_array.                  |
| EFERENCE                           |                                                |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | The new_size is greater than the current size. |
| ARAMETERS                          |                                                |

# vx\_status VX\_API\_CALL vxAccessArrayRange ( vx\_array arr, vx\_size start, vx\_size end, vx\_size \* stride, void \*\* ptr, vx\_enum usage )

Grants access to a sub-range of an Array. The number of elements in the sub-range is given by (end - start). Parameters

| in     | arr    | The reference to the Array.                                                                                                                                                                                                                         |
|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in     | start  | The start index.                                                                                                                                                                                                                                    |
| in     | end    | The end index. (end - start) elements are accessed from start.                                                                                                                                                                                      |
| in,out | stride | A pointer to 'number of bytes' between the beginning of two consequent elements.                                                                                                                                                                    |
|        |        | <ul> <li>Input case: ptr is a pointer to a non-NULL pointer. The stride parameter must be the address of a vx_size scalar that describes how the user will access the requested array data at address (*ptr).</li> </ul>                            |
|        |        | <ul> <li>Output Case: ptr is a pointer to a NULL pointer. The function fills the<br/>vx_size scalar pointed by stride with the element stride information that<br/>the user must consult to access the array elements at address (*ptr).</li> </ul> |

| out | ptr   | A pointer to a pointer to a location to store the requested data.     Input Case: ptr is a pointer to a non-NULL pointer to a valid buffer. This buffer will be used in one of two ways, depending on the value of the usage parameter. If usage is VX_WRITE_ONLY, then the buffer must                                                                                               |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       | contain element data that the user wants to replace the array's element data with. Otherwise (i.e., usage is not VX_WRITE_ONLY), the array's current element data will be written to the memory starting at address (*ptr) as storage memory for the access request. The caller must ensure enough memory has been allocated for the requested array range with the requested stride. |
|     |       | Output Case: ptr is a pointer to a NULL pointer. This NULL pointer will be overwritten with a pointer to the address where the requested data can be accessed. (*ptr) must eventually be provided as the ptr parameter of a call to vxCommitArrayRange.                                                                                                                               |
| in  | usage | This declares the intended usage of the pointer using the vx_accessor_e enumeration.                                                                                                                                                                                                                                                                                                  |

#### Note

The stride and ptr parameters must both be input, or both be output, otherwise the behavior is undefined.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS                         | No errors.                                                               |
|------------------------------------|--------------------------------------------------------------------------|
| VX_ERROR_OPTIMIZED↔                | If the reference is a virtual array and cannot be accessed or committed. |
| _AWAY                              |                                                                          |
| $VX\_ERROR\_INVALID\_R$            | If the arr is not a vx_array.                                            |
| EFERENCE                           |                                                                          |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | If any of the other parameters are incorrect.                            |
| ARAMETERS                          |                                                                          |

# Postcondition

vxCommitArrayRange

# vx\_status VX\_API\_CALL vxCommitArrayRange ( vx\_array arr, vx\_size start, vx\_size end, const void \* ptr )

Commits data back to the Array object.

This allows a user to commit data to a sub-range of an Array. The number of elements in the sub-range is given by (end - start).

# **Parameters**

| in | arr   | The reference to the Array.                                    |
|----|-------|----------------------------------------------------------------|
| in | start | The start index.                                               |
| in | end   | The end index. (end - start) elements are accessed from start. |
| in | ptr   | The user supplied pointer.                                     |

#### Returns

A vx\_status\_e enumeration.

# Return values

| VX_SUCCESS                         | No errors.                                                               |
|------------------------------------|--------------------------------------------------------------------------|
| VX_ERROR_OPTIMIZED↔                | If the reference is a virtual array and cannot be accessed or committed. |
| _AWAY                              |                                                                          |
| $VX\_ERROR\_INVALID\_R$            | If the arr is not a vx_array.                                            |
| EFERENCE                           |                                                                          |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | If any of the other parameters are incorrect.                            |
| ARAMETERS                          |                                                                          |

# 3.49 Object: Convolution

# 3.49.1 Detailed Description

Defines the Image Convolution Object interface.

# **Typedefs**

• typedef struct \_vx\_convolution \* vx\_convolution

The Convolution Object. A user-defined convolution kernel of MxM elements.

# **Enumerations**

The convolution attributes.

### **Functions**

- vx\_convolution VX\_API\_CALL vxCreateConvolution (vx\_context context, vx\_size columns, vx\_size rows)
   Creates a reference to a convolution matrix object.
- vx\_status VX\_API\_CALL vxQueryConvolution (vx\_convolution conv, vx\_enum attribute, void \*ptr, vx\_size size)

Queries an attribute on the convolution matrix object.

- vx\_status VX\_API\_CALL vxReadConvolutionCoefficients (vx\_convolution conv, vx\_int16 \*array)
   Gets the convolution data (copy).
- vx\_status VX\_API\_CALL vxReleaseConvolution (vx\_convolution \*conv)

Releases the reference to a convolution matrix. The object may not be garbage collected until its total reference count is zero.

vx\_status VX\_API\_CALL vxSetConvolutionAttribute (vx\_convolution conv, vx\_enum attribute, const void \*ptr, vx\_size size)

Sets attributes on the convolution object.

vx\_status VX\_API\_CALL vxWriteConvolutionCoefficients (vx\_convolution conv, const vx\_int16 \*array)
 Sets the convolution data (copy)

# 3.49.2 Enumeration Type Documentation

```
enum vx_convolution_attribute_e
```

The convolution attributes.

Enumerator

- $\it VX\_CONVOLUTION\_ATTRIBUTE\_ROWS$  The number of rows of the convolution matrix. Use a  $\it vx\_size$  parameter.
- **VX\_CONVOLUTION\_ATTRIBUTE\_COLUMNS** The number of columns of the convolution matrix. Use a vx← \_size parameter.
- **VX\_CONVOLUTION\_ATTRIBUTE\_SCALE** The scale of the convolution matrix. Use a vx\_uint32 parameter.

Note

For 1.0, only powers of 2 are supported up to  $2^{\wedge}31$ .

**VX\_CONVOLUTION\_ATTRIBUTE\_SIZE** The total size of the convolution matrix in bytes. Use a vx\_size parameter.

Definition at line 916 of file vx\_types.h.

# 3.49.3 Function Documentation

vx\_convolution VX\_API\_CALL vxCreateConvolution ( vx\_context context, vx\_size columns, vx\_size rows )

Creates a reference to a convolution matrix object.

#### **Parameters**

| in | context | The reference to the overall context.                                        |
|----|---------|------------------------------------------------------------------------------|
| in | columns | The columns dimension of the convolution. Must be odd and greater than or    |
|    |         | equal to 3 and less than the value returned from VX_CONTEXT_ATTRIBU↔         |
|    |         | TE_CONVOLUTION_MAXIMUM_DIMENSION.                                            |
| in | rows    | The rows dimension of the convolution. Must be odd and greater than or equal |
|    |         | to 3 and less than the value returned from VX_CONTEXT_ATTRIBUTE_C            |
|    |         | ONVOLUTION_MAXIMUM_DIMENSION.                                                |

#### Returns

A convolution reference  $vx\_convolution$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

# vx\_status VX\_API\_CALL vxReleaseConvolution ( vx\_convolution \* conv )

Releases the reference to a convolution matrix. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | conv | The pointer to the convolution matrix to release. |
|----|------|---------------------------------------------------|

## Postcondition

After returning from this function the reference is zeroed.

# Returns

A vx\_status\_e enumeration.

### Return values

| VX_SUCCESS              | No errors.                       |
|-------------------------|----------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If conv is not a vx_convolution. |
| EFERENCE                |                                  |

vx\_status VX\_API\_CALL vxQueryConvolution ( vx\_convolution conv, vx\_enum attribute, void \* ptr, vx\_size size )

Queries an attribute on the convolution matrix object.

| in  | conv      | The convolution matrix object to set.                            |
|-----|-----------|------------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_convolution_attribute_e enumer- |
|     |           | ation.                                                           |
| out | ptr       | The location at which to store the resulting value.              |
| in  | size      | The size in bytes of the container to which ptr points.          |

#### Returns

A vx\_status\_e enumeration.

# $vx\_status\ VX\_API\_CALL\ vxSetConvolutionAttribute\ (\ vx\_convolution\ conv,\ vx\_enum\ attribute,\ const\ void\ *\ ptr,\ vx\_size\ size\ )$

Sets attributes on the convolution object.

#### **Parameters**

| in | conv      | The coordinates object to set.                                 |
|----|-----------|----------------------------------------------------------------|
| in | attribute | The attribute to modify. Use a vx_convolution_attribute_e enu- |
|    |           | meration.                                                      |
| in | ptr       | The pointer to the value to which to set the attribute.        |
| in | size      | The size in bytes of the data pointed to by ptr.               |

#### Returns

A vx\_status\_e enumeration.

#### vx\_status VX\_API\_CALL vxReadConvolutionCoefficients ( vx\_convolution conv, vx\_int16 \* array )

Gets the convolution data (copy).

#### **Parameters**

| in  | conv  | The reference to the convolution.   |
|-----|-------|-------------------------------------|
| out | array | The array to place the convolution. |

# See also

vxQueryConvolution and VX\_CONVOLUTION\_ATTRIBUTE\_SIZE to get the needed number of bytes of the array.

#### Returns

A vx\_status\_e enumeration.

# vx\_status VX\_API\_CALL vxWriteConvolutionCoefficients ( vx\_convolution conv, const vx\_int16 \* array )

Sets the convolution data (copy)

#### Parameters

| in | conv  | The reference to the convolution.                   |
|----|-------|-----------------------------------------------------|
| in | array | The array containing the convolution to be written. |

#### See also

#### Returns

A vx\_status\_e enumeration.

# 3.50 Object: Distribution

# 3.50.1 Detailed Description

Defines the Distribution Object Interface.

# **Typedefs**

• typedef struct \_vx\_distribution \* vx\_distribution

The Distribution object. This has a user-defined number of bins over a user-defined range (within a uint32 t range).

#### **Enumerations**

enum vx\_distribution\_attribute\_e {
 VX\_DISTRIBUTION\_ATTRIBUTE\_DIMENSIONS = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_DISTRI
 BUTION << 8)) + 0x0,
 VX\_DISTRIBUTION\_ATTRIBUTE\_OFFSET = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_DISTRIBUTI
 ON << 8)) + 0x1,
 VX\_DISTRIBUTION\_ATTRIBUTE\_RANGE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_DISTRIBUTION << 8)) + 0x2,
 VX\_DISTRIBUTION\_ATTRIBUTE\_BINS = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_DISTRIBUTION << 8)) + 0x3,
 VX\_DISTRIBUTION\_ATTRIBUTE\_WINDOW = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_DISTRIBUTION << 8)) + 0x4,
 VX\_DISTRIBUTION\_ATTRIBUTE\_SIZE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_DISTRIBUTION << 8)) + 0x5 }</li>

The distribution attribute list.

#### **Functions**

- vx\_status VX\_API\_CALL vxAccessDistribution (vx\_distribution distribution, void \*\*ptr, vx\_enum usage)

  Grants access to a distribution object and increments the object reference count in case of success.
- vx status VX API CALL vxCommitDistribution (vx distribution distribution, const void \*ptr)

Commits the distribution objec> and decrements the object reference count in case of success. The memory must be a vx\_uint32 array of a value at least as big as the value returned via VX\_DISTRIBUTION\_ATTRIBUTE\_BINS.

vx\_distribution VX\_API\_CALL vxCreateDistribution (vx\_context context, vx\_size numBins, vx\_int32 offset, vx\_uint32 range)

Creates a reference to a 1D Distribution of a consecutive interval [offset, offset + range - 1] defined by a start offset and valid range, divided equally into numBins parts.

vx\_status VX\_API\_CALL vxQueryDistribution (vx\_distribution distribution, vx\_enum attribute, void \*ptr, vx\_
 size size)

Queries a Distribution object.

vx\_status VX\_API\_CALL vxReleaseDistribution (vx\_distribution \*distribution)

Releases a reference to a distribution object. The object may not be garbage collected until its total reference count is zero.

# 3.50.2 Enumeration Type Documentation

enum vx\_distribution\_attribute\_e

The distribution attribute list.

Enumerator

- **VX\_DISTRIBUTION\_ATTRIBUTE\_DIMENSIONS** Indicates the number of dimensions in the distribution. Use a vx\_size parameter.
- **VX\_DISTRIBUTION\_ATTRIBUTE\_OFFSET** Indicates the start of the values to use (inclusive). Use a vx\_\(\chi\) int32 parameter.

- **VX\_DISTRIBUTION\_ATTRIBUTE\_RANGE** Indicates end value to use as the range. Use a vx\_uint32 parameter.
- *VX\_DISTRIBUTION\_ATTRIBUTE\_BINS* Indicates the number of bins. Use a vx\_size parameter.
- VX\_DISTRIBUTION\_ATTRIBUTE\_WINDOW Indicates the range of a bin. Use a vx\_uint32 parameter.
- **VX\_DISTRIBUTION\_ATTRIBUTE\_SIZE** Indicates the total size of the distribution in bytes. Use a vx\_size parameter.

Definition at line 854 of file vx types.h.

#### 3.50.3 Function Documentation

# vx\_distribution VX\_API\_CALL vxCreateDistribution ( vx\_context context, vx\_size numBins, vx\_int32 offset, vx\_uint32 range )

Creates a reference to a 1D Distribution of a consecutive interval [offset, offset + range - 1] defined by a start offset and valid range, divided equally into numBins parts.

#### **Parameters**

| in | context | The reference to the overall context.                                           |
|----|---------|---------------------------------------------------------------------------------|
| in | numBins | The number of bins in the distribution.                                         |
| in | offset  | The start offset into the range value that marks the begining of the 1D Distri- |
|    |         | bution.                                                                         |
| in | range   | The total number of the values.                                                 |

#### Returns

A distribution reference  $vx\_distribution$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### vx status VX API CALL vxReleaseDistribution ( vx distribution \* distribution )

Releases a reference to a distribution object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | distribution | The reference to the distribution to release. |
|----|--------------|-----------------------------------------------|
|----|--------------|-----------------------------------------------|

# Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS              | No errors.                                |
|-------------------------|-------------------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If distribution is not a vx_distribution. |
| EFERENCE                |                                           |

vx\_status VX\_API\_CALL vxQueryDistribution ( vx\_distribution distribution, vx\_enum attribute, void \* ptr, vx\_size size )

Queries a Distribution object.

| in  | distribution | The reference to the distribution to query.                    |
|-----|--------------|----------------------------------------------------------------|
| in  | attribute    | The attribute to query. Use a vx_distribution_attribute_e enu- |
|     |              | meration.                                                      |
| out | ptr          | The location at which to store the resulting value.            |
| in  | size         | The size in bytes of the container to which ptr points.        |

# Returns

A vx\_status\_e enumeration.

# vx\_status VX\_API\_CALL vxAccessDistribution ( vx\_distribution distribution, void \*\* ptr, vx\_enum usage )

Grants access to a distribution object and increments the object reference count in case of success. Parameters

| in     | distribution | The reference to the distribution to access.                                                                                                                                                                                                                                                                                                                                                                      |
|--------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in,out | ptr          | The user-supplied address to a pointer, via which the requested contents are returned.  • If ptr is NULL, an error occurs.  • If ptr is not NULL and (*ptr) is NULL, (*ptr) will be set to the address of a memory area managed by the OpenVX framework containing the requested data.  • If both ptr and (*ptr) are not NULL, requested data will be copied to (*ptr) (optionally in case of write-only access). |
| in     | usage        | The vx_accessor_e value to describe the access of the object.                                                                                                                                                                                                                                                                                                                                                     |

# Returns

A vx\_status\_e enumeration.

# Postcondition

vxCommitDistribution

# vx\_status VX\_API\_CALL vxCommitDistribution ( vx\_distribution distribution, const void \* ptr )

Commits the distribution objec> and decrements the object reference count in case of success. The memory must be a vx\_uint32 array of a value at least as big as the value returned via VX\_DISTRIBUTION\_ATTRIBUTE\_B INS.

# Parameters

| in | distribution | The Distribution to modify.                                       |
|----|--------------|-------------------------------------------------------------------|
| in | ptr          | The pointer provided or returned by vxAccessDistribution. The ptr |
|    |              | cannot be NULL.                                                   |

### Returns

A vx\_status\_e enumeration.

# Precondition

vxAccessDistribution.

# 3.51 Object: Image

# 3.51.1 Detailed Description

Defines the Image Object interface.

#### **Data Structures**

struct vx\_imagepatch\_addressing\_t

The addressing image patch structure is used by the Host only to address pixels in an image patch. The fields of the structure are defined as: More...

### **Macros**

#define VX\_IMAGEPATCH\_ADDR\_INIT {0u, 0u, 0, 0, 0u, 0u, 0u, 0u}

Use to initialize a vx\_imagepatch\_addressing\_t structure on the stack.

# **Typedefs**

• typedef struct \_vx\_image \* vx\_image

An opaque reference to an image.

#### **Enumerations**

```
    enum vx_channel_range_e {
    VX_CHANNEL_RANGE_FULL = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_COLOR_RANGE << 12)) + 0x0,</li>
    VX_CHANNEL_RANGE_RESTRICTED = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_COLOR_RANGE << 12)) + 0x1 }</li>
```

The image channel range list used by the VX\_IMAGE\_ATTRIBUTE\_RANGE attribute of a vx\_image.

```
    enum vx_color_space_e {
```

```
VX_COLOR_SPACE_NONE = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_COLOR_SPACE << 12)) + 0x0,
```

```
VX\_COLOR\_SPACE\_BT601\_525 = (((VX\_ID\_KHRONOS) << 20) | (VX\_ENUM\_COLOR\_SPACE << 12)) + 0x1,
```

```
VX\_COLOR\_SPACE\_BT601\_625 = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_ENUM\_COLOR\_SPACE << 12)) + 0x2,
```

```
VX COLOR SPACE DEFAULT = VX COLOR SPACE BT709 }
```

The image color space list used by the VX\_IMAGE\_ATTRIBUTE\_SPACE attribute of a vx\_image.

```
• enum vx image attribute e {
```

```
 \begin{array}{l} \mathsf{VX\_IMAGE\_ATTRIBUTE\_WIDTH} = (((\ \mathsf{VX\_ID\_KHRONOS}\ ) << 20) \mid (\ \mathsf{VX\_TYPE\_IMAGE} << 8)) + 0 \mathsf{x0}, \\ \\ \mathsf{VX\_IMAGE} = ((\ \mathsf{VX\_ID\_NOS}\ ) << 20) \mid (\ \mathsf{VX\_TYPE\_IMAGE}\ << 8)) + 0 \mathsf{x0}, \\ \\ \mathsf{VX\_IMAGE} = (\ \mathsf{VX\_ID\_NOS}\ ) << 20) \mid (\ \mathsf{VX\_TYPE\_IMAGE}\ << 8)) + 0 \mathsf{x0}, \\ \\ \mathsf{VX\_ID\_NOS} = (\ \mathsf{VX\_ID\_NOS}\ ) << 20) \mid (\ \mathsf{VX\_TYPE\_IMAGE}\ << 8)) + 0 \mathsf{x0}, \\ \\ \mathsf{VX\_ID\_NOS} = (\ \mathsf{VX\_ID\_NOS}\ ) << 20) \mid (\ \mathsf{VX\_
```

```
VX_IMAGE_ATTRIBUTE_PLANES = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_IMAGE << 8)) + 0x3,
```

- VX\_IMAGE\_ATTRIBUTE\_SPACE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_IMAGE << 8)) + 0x4,
- VX\_IMAGE\_ATTRIBUTE\_RANGE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_TYPE\_IMAGE << 8)) + 0x5,
- VX IMAGE ATTRIBUTE SIZE = ((( VX ID KHRONOS ) << 20) | ( VX TYPE IMAGE << 8)) + 0x6 }

The image attributes list.

#### **Functions**

vx\_status VX\_API\_CALL vxAccessImagePatch (vx\_image image, const vx\_rectangle\_t \*rect, vx\_uint32 plane\_index, vx\_imagepatch\_addressing\_t \*addr, void \*\*ptr, vx\_enum usage)

Allows the User to extract a rectangular patch (subset) of an image from a single plane.

vx\_status VX\_API\_CALL vxCommitImagePatch (vx\_image image, vx\_rectangle\_t \*rect, vx\_uint32 plane\_
index, vx\_imagepatch\_addressing\_t \*addr, const void \*ptr)

This allows the User to commit a rectangular patch (subset) of an image from a single plane.

vx\_size VX\_API\_CALL vxComputeImagePatchSize (vx\_image image, const vx\_rectangle\_t \*rect, vx\_uint32 plane index)

This computes the size needed to retrieve an image patch from an image.

vx\_image VX\_API\_CALL vxCreateImage (vx\_context context, vx\_uint32 width, vx\_uint32 height, vx\_df
 image color)

Creates an opaque reference to an image buffer.

vx\_image VX\_API\_CALL vxCreateImageFromHandle (vx\_context context, vx\_df\_image color, vx\_imagepatch\_addressing\_t addrs[], void \*ptrs[], vx\_enum import\_type)

Creates a reference to an image object that was externally allocated.

vx image VX API CALL vxCreateImageFromROI (vx image img, const vx rectangle t \*rect)

Creates an image from another image given a rectangle. This second reference refers to the data in the original image. Updates to this image updates the parent image. The rectangle must be defined within the pixel space of the parent image.

vx\_image VX\_API\_CALL vxCreateUniformImage (vx\_context context, vx\_uint32 width, vx\_uint32 height, vx
 \_df\_image color, const void \*value)

Creates a reference to an image object that has a singular, uniform value in all pixels.

vx\_image VX\_API\_CALL vxCreateVirtualImage (vx\_graph graph, vx\_uint32 width, vx\_uint32 height, vx\_df
 image color)

Creates an opaque reference to an image buffer with no direct user access. This function allows setting the image width, height, or format.

void \*VX\_API\_CALL vxFormatImagePatchAddress1d (void \*ptr, vx\_uint32 index, const vx\_imagepatch\_
 addressing t \*addr)

Accesses a specific indexed pixel in an image patch.

void \*VX\_API\_CALL vxFormatlmagePatchAddress2d (void \*ptr, vx\_uint32 x, vx\_uint32 y, const vx\_
imagepatch\_addressing\_t \*addr)

Accesses a specific pixel at a 2d coordinate in an image patch.

vx status VX API CALL vxGetValidRegionImage (vx image image, vx rectangle t \*rect)

Retrieves the valid region of the image as a rectangle.

• vx\_status VX\_API\_CALL vxQueryImage (vx\_image image, vx\_enum attribute, void \*ptr, vx\_size size)

vx status VX API CALL vxReleaseImage (vx image \*image)

Releases a reference to an image object. The object may not be garbage collected until its total reference count is zero.

vx\_status VX\_API\_CALL vxSetImageAttribute (vx\_image image, vx\_enum attribute, const void \*ptr, vx\_size size)

Allows setting attributes on the image.

Retrieves various attributes of an image.

## 3.51.2 Data Structure Documentation

## struct vx\_imagepatch\_addressing\_t

The addressing image patch structure is used by the Host only to address pixels in an image patch. The fields of the structure are defined as:

- dim The dimensions of the image in logical pixel units in the x & y direction.
- stride The physical byte distance from a logical pixel to the next logically adjacent pixel in the positive x or y
  direction.
- scale The relationship of scaling from the primary plane (typically the zero indexed plane) to this plane. An integer down-scaling factor of f shall be set to a value equal to  $scale = \frac{unity}{f}$  and an integer up-scaling factor of f shall be set to a value of scale = unity \* f. unity is defined as VX\_SCALE\_UNITY.

step - The step is the number of logical pixel units to skip to arrive at the next physically unique pixel. For
example, on a plane that is half-scaled in a dimension, the step in that dimension is 2 to indicate that every
other pixel in that dimension is an alias. This is useful in situations where iteration over unique pixels is
required, such as in serializing or de-serializing the image patch information.

#### See also

#### vxAccessImagePatch

```
* Copyright (c) 2013-2014 The Khronos Group Inc.
 \star Permission is hereby granted, free of charge, to any person obtaining a
 \star copy of this software and/or associated documentation files (the
 * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Materials, and to
 \star permit persons to whom the Materials are furnished to do so, subject to
 \star the following conditions:
 * The above copyright notice and this permission notice shall be included
 \star in all copies or substantial portions of the Materials.
\star THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, \star EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 \star MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <VX/vx.h>
#define PATCH_DIM 16
vx_status example_imagepatch(vx_context context)
    vx status status = VX SUCCESS:
    void *base_ptr = NULL;
    vx_uint32 width = 640, height = 480, plane = 0;
    vx_image image = vxCreateImage(context, width, height,
      VX_DF_IMAGE_U8);
    vx_rectangle_t rect;
    vx_imagepatch_addressing_t addr;
    rect.start_x = rect.start_y = 0;
    rect.end_x = rect.end_y = PATCH_DIM;
    status = vxAccessImagePatch(image, &rect, plane,
                                    &addr, &base_ptr,
VX_READ_AND_WRITE);
    if (status == VX_SUCCESS)
         vx_uint32 x,y,i,j;
        vx_uint8 pixel = 0;
         /* a couple addressing options */
         /* use linear addressing function/macro */
         for (i = 0; i < addr.dim_x*addr.dim_y; i++) {</pre>
             vx_uint8 *ptr2 = vxFormatImagePatchAddress1d(base_ptr,
                                                                i, &addr);
             *ptr2 = pixel;
         /* 2d addressing option */
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {
    for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                 vx_uint8 *ptr2 = vxFormatImagePatchAddress2d(base_ptr,
                                                                     x, y, &addr);
                  *ptr2 = pixel;
             }
         /\star direct addressing by client
         \star for subsampled planes, scale will change
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
             for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                  vx_uint8 *tmp = (vx_uint8 *)base_ptr;
                 i = ((addr.stride_y*y*addr.scale_y) /
                         VX SCALE UNITY) +
                      ((addr.stride x*x*addr.scale x) /
                        VX_SCALE_UNITY);
                  tmp[i] = pixel;
```

Definition at line 1309 of file vx types.h.

#### Data Fields

| vx_uint32 | dim_x    | Width of patch in X dimension in pixels.                                             |
|-----------|----------|--------------------------------------------------------------------------------------|
| vx_uint32 | dim_y    | Height of patch in Y dimension in pixels.                                            |
| vx_int32  | stride_x | Stride in X dimension in bytes.                                                      |
| vx_int32  | stride_y | Stride in Y dimension in bytes.                                                      |
| vx_uint32 | scale_x  | Scale of X dimension. For sub-sampled planes this is the scaling factor              |
|           |          | of the dimension of the plane in relation to the zero plane. Use $VX\_SC \leftarrow$ |
|           |          | ALE_UNITY in the numerator.                                                          |
| vx_uint32 | scale_y  | Scale of Y dimension. For sub-sampled planes this is the scaling factor              |
|           |          | of the dimension of the plane in relation to the zero plane. Use VX_SC←              |
|           |          | ALE_UNITY in the numerator.                                                          |
| vx_uint32 | step_x   | Step of X dimension in pixels.                                                       |
| vx_uint32 | step_y   | Step of Y dimension in pixels.                                                       |

# 3.51.3 Typedef Documentation

typedef struct vx image\* vx image

An opaque reference to an image.

See also

vxCreateImage

Definition at line 166 of file vx types.h.

# 3.51.4 Enumeration Type Documentation

enum vx\_image\_attribute\_e

The image attributes list.

Enumerator

VX\_IMAGE\_ATTRIBUTE\_WIDTH Queries an image for its height. Use a vx\_uint32 parameter.

VX\_IMAGE\_ATTRIBUTE\_HEIGHT Queries an image for its width. Use a vx\_uint32 parameter.

VX\_IMAGE\_ATTRIBUTE\_FORMAT Queries an image for its format. Use a vx\_df\_image parameter.

VX\_IMAGE\_ATTRIBUTE\_PLANES Queries an image for its number of planes. Use a vx\_size parameter.

**VX\_IMAGE\_ATTRIBUTE\_SPACE** Queries an image for its color space (see vx\_color\_space\_e). Use a vx\_enum parameter.

**VX\_IMAGE\_ATTRIBUTE\_RANGE** Queries an image for its channel range (see vx\_channel\_range\_e). Use a vx\_enum parameter.

VX\_IMAGE\_ATTRIBUTE\_SIZE Queries an image for its total number of bytes. Use a vx\_size parameter.

Definition at line 800 of file vx\_types.h.

#### enum vx color space e

The image color space list used by the VX\_IMAGE\_ATTRIBUTE\_SPACE attribute of a vx\_image. Enumerator

VX\_COLOR\_SPACE\_NONE Use to indicate that no color space is used.

VX\_COLOR\_SPACE\_BT601\_525 Use to indicate that the BT.601 coefficients and SMPTE C primaries are used for conversions.

VX\_COLOR\_SPACE\_BT601\_625 Use to indicate that the BT.601 coefficients and BTU primaries are used for conversions.

VX COLOR SPACE BT709 Use to indicate that the BT.709 coefficients are used for conversions.

VX\_COLOR\_SPACE\_DEFAULT All images in VX are by default BT.709.

Definition at line 1063 of file vx\_types.h.

#### enum vx\_channel\_range\_e

The image channel range list used by the VX\_IMAGE\_ATTRIBUTE\_RANGE attribute of a vx\_image. Enumerator

VX\_CHANNEL\_RANGE\_FULL Full range of the unit of the channel.

VX\_CHANNEL\_RANGE\_RESTRICTED Restricted range of the unit of the channel based on the space given.

Definition at line 1080 of file vx types.h.

# 3.51.5 Function Documentation

# vx\_image VX\_API\_CALL vxCreateImage ( vx\_context context, vx\_uint32 width, vx\_uint32 height, vx\_df\_image color )

Creates an opaque reference to an image buffer.

Not guaranteed to exist until the vx\_graph containing it has been verified.

#### **Parameters**

| in | context | The reference to the implementation context.                       |
|----|---------|--------------------------------------------------------------------|
| in | width   | The image width in pixels.                                         |
| in | height  | The image height in pixels.                                        |
| in | color   | The VX_DF_IMAGE (vx_df_image_e) code that represents the format of |
|    |         | the image and the color space.                                     |

#### Returns

An image reference  $vx\_image$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

# See also

vxAccessImagePatch to obtain direct memory access to the image data.

# 

Creates an image from another image given a rectangle. This second reference refers to the data in the original image. Updates to this image updates the parent image. The rectangle must be defined within the pixel space of the parent image.

| in | img  | The reference to the parent image.                                            |  |
|----|------|-------------------------------------------------------------------------------|--|
| in | rect | The region of interest rectangle. Must contain points within the parent image |  |
|    |      | pixel space.                                                                  |  |

#### Returns

An image reference  $vx\_image$  to the sub-image. Any possible errors preventing a successful creation should be checked using vxGetStatus.

# vx\_image VX\_API\_CALL vxCreateUniformImage ( vx\_context context, vx\_uint32 width, vx\_uint32 height, vx\_df\_image color, const void \* value )

Creates a reference to an image object that has a singular, uniform value in all pixels.

The value pointer must reflect the specific format of the desired image. For example:

| Color            | Value Ptr                          |
|------------------|------------------------------------|
| VX_DF_IMAGE_U8   | vx_uint8 *                         |
| VX_DF_IMAGE_S16  | vx_int16 *                         |
| VX_DF_IMAGE_U16  | vx_uint16 *                        |
| VX_DF_IMAGE_S32  | vx_int32 *                         |
| VX_DF_IMAGE_U32  | vx_uint32 *                        |
| VX_DF_IMAGE_RGB  | vx_uint8 pixel[3] in R, G, B order |
| VX_DF_IMAGE_RGBX | vx_uint8 pixels[4]                 |
| Any YUV          | vx_uint8 pixel[3] in Y, U, V order |

#### **Parameters**

| in | context | The reference to the implementation context.                           |
|----|---------|------------------------------------------------------------------------|
| in | width   | The image width in pixels.                                             |
| in | height  | The image height in pixels.                                            |
| in | color   | The VX_DF_IMAGE (vx_df_image_e) code that represents the format of the |
|    |         | image and the color space.                                             |
| in | value   | The pointer to the pixel value to which to set all pixels.             |

### Returns

An image reference  $vx\_image$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

# See also

vxAccessImagePatch to obtain direct memory access to the image data.

#### Note

vxAccessImagePatch and vxCommitImagePatch may be called with a uniform image reference.

# vx\_image VX\_API\_CALL vxCreateVirtualImage ( vx\_graph graph, vx\_uint32 width, vx\_uint32 height, vx\_df\_image color )

Creates an opaque reference to an image buffer with no direct user access. This function allows setting the image width, height, or format.

Virtual data objects allow users to connect various nodes within a graph via data references without access to that data, but they also permit the implementation to take maximum advantage of possible optimizations. Use this API to create a data reference to link two or more nodes together when the intermediate data are not required to be accessed by outside entities. This API in particular allows the user to define the image format of the data without requiring the exact dimensions. Virtual objects are scoped within the graph they are declared a part of, and can't be shared outside of this scope. All of the following constructions of virtual images are valid.

```
vx_context context = vxCreateContext();
vx_graph graph = vxCreateGraph(context);
vx_image virt[] = {
   vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_U8), // no specified dimension
   vxCreateVirtualImage(graph, 320, 240, VX_DF_IMAGE_VIRT), // no specified format
   vxCreateVirtualImage(graph, 640, 480, VX_DF_IMAGE_U8), // no user access
};
```

| in | graph  | The reference to the parent graph.                                                |
|----|--------|-----------------------------------------------------------------------------------|
| in | width  | The width of the image in pixels. A value of zero informs the interface that the  |
|    |        | value is unspecified.                                                             |
| in | height | The height of the image in pixels. A value of zero informs the interface that the |
|    |        | value is unspecified.                                                             |
| in | color  | The VX_DF_IMAGE (vx_df_image_e) code that represents the format of                |
|    |        | the image and the color space. A value of VX_DF_IMAGE_VIRT informs the            |
|    |        | interface that the format is unspecified.                                         |

#### Returns

An image reference  $vx\_image$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### Note

Passing this reference to vxAccessImagePatch will return an error.

# vx\_image VX\_API\_CALL vxCreateImageFromHandle ( vx\_context context, vx\_df\_image color, vx\_imagepatch\_addressing\_t addrs[], void \* ptrs[], vx\_enum import\_type )

Creates a reference to an image object that was externally allocated.

#### **Parameters**

| in | context     | The reference to the implementation context.                                 |
|----|-------------|------------------------------------------------------------------------------|
| in | color       | See the vx_df_image_e codes. This mandates the number of planes              |
|    |             | needed to be valid in the addrs and ptrs arrays based on the format given.   |
| in | addrs[]     | The array of image patch addressing structures that define the dimension and |
|    |             | stride of the array of pointers.                                             |
| in | ptrs[]      | The array of platform-defined references to each plane.                      |
| in | import_type | vx_import_type_e. When giving VX_IMPORT_TYPE_HOST the ptrs                   |
|    |             | array is assumed to be HOST accessible pointers to memory.                   |

#### Returns

An image reference  $vx\_image$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### Note

The user must call vxAccessImagePatch prior to accessing the pixels of an image, even if the image was created via vxCreateImageFromHandle. Reads or writes to memory referenced by ptrs[] after calling vxCreateImageFromHandle without first calling vxAccessImagePatch will result in undefined behavior.

vx\_status VX\_API\_CALL vxQueryImage ( vx\_image image, vx\_enum attribute, void \* ptr, vx\_size size )

Retrieves various attributes of an image.

| in  | image     | The reference to the image to query.                           |
|-----|-----------|----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_image_attribute_e.            |
| out | ptr       | The location at which to store the resulting value.            |
| in  | size      | The size in bytes of the container to which <i>ptr</i> points. |

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS              | No errors.                                                |
|-------------------------|-----------------------------------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If the image is not a vx_image.                           |
| EFERENCE                |                                                           |
| VX_ERROR_INVALID_P↔     | If any of the other parameters are incorrect.             |
| ARAMETERS               |                                                           |
| VX_ERROR_NOT_SUPP↔      | If the attribute is not supported on this implementation. |
| ORTED                   |                                                           |

# $vx\_status\ VX\_API\_CALL\ vxSetImageAttribute\ (\ vx\_image\ image,\ vx\_enum\ attribute,\ const\ void\ *\ ptr,\ vx\_size\ size\ )$

Allows setting attributes on the image.

#### **Parameters**

| in | image     | The reference to the image on which to set the attribute.     |
|----|-----------|---------------------------------------------------------------|
| in | attribute | The attribute to set. Use a vx_image_attribute_e enumeration. |
| in | ptr       | The pointer to the location from which to read the value.     |
| in | size      | The size in bytes of the object pointed to by ptr.            |

# Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS          | No errors.                                    |
|---------------------|-----------------------------------------------|
| VX_ERROR_INVALID_R↔ | If the image is not a vx_image.               |
| EFERENCE            |                                               |
| VX_ERROR_INVALID_P↔ | If any of the other parameters are incorrect. |
| ARAMETERS           |                                               |

# vx\_status VX\_API\_CALL vxReleaseImage ( vx\_image \* image )

Releases a reference to an image object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | image | The pointer to the image to release. |
|----|-------|--------------------------------------|

# Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS          | No errors.                  |
|---------------------|-----------------------------|
| VX_ERROR_INVALID_R↔ | If image is not a vx_image. |
| EFERENCE            |                             |

# 

This computes the size needed to retrieve an image patch from an image. Parameters

| in | image       | The reference to the image from which to extract the patch.                                     |
|----|-------------|-------------------------------------------------------------------------------------------------|
| in | rect        | The coordinates. Must be $0 \le \text{start} < \text{end} \le \text{dimension}$ where dimension |
|    |             | is width for x and height for y.                                                                |
| in | plane_index | The plane index from which to get the data.                                                     |

# Returns

vx\_size

# vx\_status VX\_API\_CALL vxAccessImagePatch ( vx\_image image, const vx\_rectangle\_t \* rect, vx\_uint32 plane\_index, vx\_imagepatch\_addressing\_t \* addr, void \*\* ptr, vx\_enum usage )

Allows the User to extract a rectangular patch (subset) of an image from a single plane. Parameters

| image       | The reference to the image from which to extract the patch.                                                                                                                                                                                                                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rect        | The coordinates from which to get the patch. Must be $0 \le $ start $\le $ end.                                                                                                                                                                                                                                                                            |
| plane_index | The plane index from which to get the data.                                                                                                                                                                                                                                                                                                                |
| addr        | A pointer to a structure describing the addressing information of the image patch to accessed.                                                                                                                                                                                                                                                             |
|             | <ul> <li>Input case: ptr is a pointer to a non-NULL pointer. The addr parameter must be the address of an addressing structure that describes how the user will access the requested image data at address (*ptr).</li> <li>Output case: ptr is a pointer to a NULL pointer. The function fills the</li> </ul>                                             |
|             | structure pointed by addr with the addressing information that the user must consult to access the pixel data at address (*ptr). If the image being accessed was created via vxCreateImageFromHandle, then the returned addressing information will be the identical to that of the addressing structure provided when vxCreateImageFromHandle was called. |
|             | rect plane_index                                                                                                                                                                                                                                                                                                                                           |

| in,out | ptr   | A pointer to a pointer to a location to store the requested data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |       | <ul> <li>Input case: ptr is a pointer to a non-NULL pointer to a valid pixel buffer. This buffer will be used in one of two ways, depending on the value of the usage parameter. If usage is VX_WRITE_ONLY, then the buffer must contain pixel data that the user wants to replace the image's pixel data with. Otherwise (i.e., usage is not VX_WRITE_ONLY), the image's current pixel data will be written to the memory starting at address (*ptr) as storage memory for the access request. The caller must ensure enough memory has been allocated for the requested patch with the requested addressing. If image was created via vxCreateImage FromHandle, and the pixel buffer pointed to by (*ptr) overlaps the original pixel buffer provided when image was created, then the results of such a call to vxAccessImagePatch are undefined.</li> <li>Output case: ptr is a pointer to a NULL pointer. This NULL pointer will be overwritten with a pointer to the address where the requested data can be accessed. If image was created via vxCreateImageFrom Handle then the overwriting pointer must be within the original pixel buffer provided when image was created.</li> <li>(*ptr) must eventually be provided as the ptr parameter of a call to vx CommitImagePatch.</li> </ul> |
| in     | usage | This declares the intended usage of the pointer using the vx_accessor_e enumeration. For uniform images Only VX_READ_ONLY is supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Note

The addr and ptr parameters must both be input, or both be output, otherwise the behavior is undefined.

# Returns

A vx\_status\_e enumeration.

#### Return values

| VX_ERROR_OPTIMIZED↔                     | The reference is a virtual image and cannot be accessed or committed.    |
|-----------------------------------------|--------------------------------------------------------------------------|
| _AWAY                                   | -                                                                        |
| $VX\_ERROR\_INVALID\_P \leftrightarrow$ | The start, end, plane_index, stride_x, or stride_y pointer is incorrect. |
| ARAMETERS                               |                                                                          |
| VX_ERROR_INVALID_R↔                     | The image reference is not actually an image reference.                  |
| EFERENCE                                |                                                                          |

#### Note

The user may ask for data outside the bounds of the valid region, but such data has an undefined value. Users must be cautious to prevent passing in *uninitialized* pointers or addresses of uninitialized pointers to this function.

# Precondition

vxComputeImagePatchSize if users wish to allocate their own memory.

# Postcondition

vxCommitImagePatch with same (\*ptr) value.

```
/*
 * Copyright (c) 2013-2014 The Khronos Group Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the
 * "Materials"), to deal in the Materials without restriction, including
```

```
* without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Materials, and to 
* permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Materials.
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <VX/vx.h>
#define PATCH_DIM 16
vx_status example_imagepatch(vx_context context)
    vx_status status = VX_SUCCESS;
    void *base_ptr = NULL;
vx_uint32 width = 640, height = 480, plane = 0;
    vx_image image = vxCreateImage(context, width, height,
      VX_DF_IMAGE_U8);
    vx_rectangle_t rect;
    vx_imagepatch_addressing_t addr;
    rect.start_x = rect.start_y = 0;
    rect.end_x = rect.end_y = PATCH_DIM;
    status = vxAccessImagePatch(image, &rect, plane,
                                   &addr, &base_ptr,
VX_READ_AND_WRITE);
    if (status == VX_SUCCESS)
         vx_uint32 x,y,i,j;
        vx_uint8 pixel = 0;
        /* a couple addressing options */
         /* use linear addressing function/macro */
         for (i = 0; i < addr.dim_x*addr.dim_y; i++) {</pre>
             vx_uint8 *ptr2 = vxFormatImagePatchAddress1d(base_ptr,
                                                               i, &addr);
             *ptr2 = pixel;
         /* 2d addressing option */
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
             for (x = 0; x < addr.dim_x; x+=addr.step_x) {
                 vx_uint8 *ptr2 = vxFormatImagePatchAddress2d(base_ptr,
                                                                    x, y, &addr);
                 *ptr2 = pixel;
         /\star direct addressing by client
         \star for subsampled planes, scale will change
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
             for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                 vx_uint8 *tmp = (vx_uint8 *)base_ptr;
                 i = ((addr.stride_y*y*addr.scale_y) /
                        VX_SCALE_UNITY) +
                      ((addr.stride x*x*addr.scale x) /
                        VX_SCALE_UNITY);
                 tmp[i] = pixel;
         /* more efficient direct addressing by client.
         \star for subsampled planes, scale will change.
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
             j = (addr.stride_y*y*addr.scale_y)/VX_SCALE_UNITY;
             tmp[i] = pixel;
        }
         /* this commits the data back to the image. If rect were 0 or empty, it
```

```
* would just decrement the reference (used when reading an image only)
   */
   status = vxCommitImagePatch(image, &rect, plane, &addr, base_ptr);
}
vxReleaseImage(&image);
return status;
```

# vx\_status VX\_API\_CALL vxCommitImagePatch ( vx\_image image, vx\_rectangle\_t \* rect, vx\_uint32 plane\_index, vx\_imagepatch\_addressing\_t \* addr, const void \* ptr )

This allows the User to commit a rectangular patch (subset) of an image from a single plane. Parameters

| in | image       | The reference to the image from which to extract the patch.                    |
|----|-------------|--------------------------------------------------------------------------------|
| in | rect        | The coordinates to which to set the patch. Must be 0 <= start <= end. This     |
|    |             | may be 0 or a rectangle of zero area in order to indicate that the commit must |
|    |             | only decrement the reference count.                                            |
| in | plane_index | The plane index to which to set the data.                                      |
| in | addr        | The addressing information for the image patch.                                |
| in | ptr         | A pointer to a pixel buffer to be committed. If the user previously provided   |
|    |             | a pointer to this buffer to vxAccessImagePatch, the buffer can be freed        |
|    |             | or re-used after vxCommitImagePatch completes. If the pointer was re-          |
|    |             | turned by vxAccessImagePatch, reads or writes to the location pointed          |
|    |             | by ptr after vxCommitImagePatch completes will result in undefined be-         |
|    |             | havior.                                                                        |

#### Returns

A vx\_status\_e enumeration.

### Return values

| VX_ERROR_OPTIMIZED↔                | The reference is a virtual image and cannot be accessed or committed.    |
|------------------------------------|--------------------------------------------------------------------------|
| _AWAY                              |                                                                          |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | The start, end, plane_index, stride_x, or stride_y pointer is incorrect. |
| ARAMETERS                          |                                                                          |
| VX_ERROR_INVALID_R↔                | The image reference is not actually an image reference.                  |
| EFERENCE                           |                                                                          |

```
* Copyright (c) 2013-2014 The Khronos Group Inc.
 \star Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Materials, and to * permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 \star The above copyright notice and this permission notice shall be included
 \star in all copies or substantial portions of the Materials.
 * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 \star MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 \star CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, \star TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <VX/vx.h>
#define PATCH DIM 16
vx_status example_imagepatch(vx_context context)
     vx_status status = VX_SUCCESS;
     void *base_ptr = NULL;
```

```
vx_uint32 width = 640, height = 480, plane = 0;
vx_image image = vxCreateImage(context, width, height,
 VX_DF_IMAGE_U8);
vx_rectangle_t rect;
vx_imagepatch_addressing_t addr;
rect.start_x = rect.start_y = 0;
rect.end_x = rect.end_y = PATCH_DIM;
status = vxAccessImagePatch(image, &rect, plane,
                           &addr, &base_ptr,
VX_READ_AND_WRITE);
if (status == VX_SUCCESS)
   vx_uint32 x,y,i,j;
   vx_uint8 pixel = 0;
   /* a couple addressing options */
    /* use linear addressing function/macro */
   for (i = 0; i < addr.dim_x*addr.dim_y; i++) {</pre>
       vx_uint8 *ptr2 = vxFormatImagePatchAddress1d(base_ptr,
                                                   i, &addr);
       *ptr2 = pixel;
    /* 2d addressing option */
    for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
       for (x = 0; x < addr.dim_x; x+=addr.step_x) {
           vx_uint8 *ptr2 = vxFormatImagePatchAddress2d(base_ptr,
                                                       x, y, &addr);
           *ptr2 = pixel;
   }
    /* direct addressing by client
    * for subsampled planes, scale will change
    for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
       ((addr.stride_x*x*addr.scale_x) /
                 VX_SCALE_UNITY);
           tmp[i] = pixel;
       }
   }
    /* more efficient direct addressing by client.
    * for subsampled planes, scale will change.
    for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
       tmp[i] = pixel;
   }
   /\star this commits the data back to the image. If rect were 0 or empty, it
    * would just decrement the reference (used when reading an image only)
   status = vxCommitImagePatch(image, &rect, plane, &addr, base_ptr);
vxReleaseImage(&image);
return status;
```

Note

If the implementation gives the client a pointer from vxAccessImagePatch then implementation-specific behavior may occur. If not, then a copy occurs from the users pointer to the internal data of the object. If the rectangle intersects bounds of the current valid region, the valid region grows to the union of the two rectangles as long as they occur within the bounds of the original image dimensions.

 $\label{eq:const} $$ \text{void} * \text{VX\_API\_CALL vxFormatlmagePatchAddress1d ( void} * \textit{ptr, } \text{vx\_uint32 } \textit{index, } \text{const } \text{vx\_imagepatch\_addressing\_t} * \textit{addr )} $$$ 

Accesses a specific indexed pixel in an image patch.

| in | ptr   | The base pointer of the patch as returned from vxAccessImagePatch.               |
|----|-------|----------------------------------------------------------------------------------|
| in | index | The 0 based index of the pixel count in the patch. Indexes increase horizontally |
|    |       | by 1 then wrap around to the next row.                                           |
| in | addr  | The pointer to the addressing mode information returned from vxAccess←           |
|    |       | ImagePatch.                                                                      |

#### Returns

void \* Returns the pointer to the specified pixel.

#### Precondition

#### vxAccessImagePatch

```
* Copyright (c) 2013-2014 The Khronos Group Inc.
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and/or associated documentation files (the * "Materials"), to deal in the Materials without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Materials, and to
* permit persons to whom the Materials are furnished to do so, subject to
 * the following conditions:
 \star The above copyright notice and this permission notice shall be included \star in all copies or substantial portions of the Materials.
 \star THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, \star EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 \star IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY \star CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, \star TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <VX/vx.h>
#define PATCH_DIM 16
vx_status example_imagepatch(vx_context context)
     vx_status status = VX_SUCCESS;
     void *base_ptr = NULL;
     vx_uint32 width = 640, height = 480, plane = 0;
     vx_image image = vxCreateImage(context, width, height,
       VX_DF_IMAGE_U8);
     vx_rectangle_t rect;
     vx_imagepatch_addressing_t addr;
     rect.start_x = rect.start_y = 0;
     rect.end_x = rect.end_y = PATCH_DIM;
     status = vxAccessImagePatch(image, &rect, plane,
                                            &addr, &base_ptr,
                                             VX_READ_AND_WRITE);
     if (status == VX_SUCCESS)
          vx_uint32 x,y,i,j;
          vx_uint8 pixel = 0;
           /* a couple addressing options */
           /* use linear addressing function/macro */
for (i = 0; i < addr.dim_x*addr.dim_y; i++) {</pre>
                vx_uint8 *ptr2 = vxFormatImagePatchAddress1d(base_ptr,
                                                                                i, &addr);
                *ptr2 = pixel;
           }
           /\star 2d addressing option \star/
           for (y = 0; y < addr.dim_y; y+=addr.step_y) {
    for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                      vx_uint8 *ptr2 = vxFormatImagePatchAddress2d(base_ptr,
                      *ptr2 = pixel;
                }
           /* direct addressing by client
```

```
* for subsampled planes, scale will change
    for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
         for (x = 0; x < addr.dim_x; x+=addr.step_x) {
   vx_uint8 *tmp = (vx_uint8 *)base_ptr;</pre>
             i = ((addr.stride_y*y*addr.scale_y) /
                    VX_SCALE_UNITY) +
                  ((addr.stride_x*x*addr.scale_x) /
                    VX_SCALE_UNITY);
             tmp[i] = pixel;
         }
    }
    /* more efficient direct addressing by client.
     * for subsampled planes, scale will change.
    for (y = 0; y < addr.dim_y; y+=addr.step_y) {</pre>
         j = (addr.stride_y*y*addr.scale_y)/VX_SCALE_UNITY;
         for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
             vx_uint8 *tmp = (vx_uint8 *)base_ptr;
             i = j + (addr.stride_x*x*addr.scale_x) /
VX_SCALE_UNITY;
             tmp[i] = pixel;
    /\star this commits the data back to the image. If rect were 0 or empty, it
     \star would just decrement the reference (used when reading an image only)
    status = vxCommitImagePatch(image, &rect, plane, &addr, base_ptr);
vxReleaseImage(&image);
return status;
```

# void\* VX\_API\_CALL vxFormatlmagePatchAddress2d ( void \* ptr, vx\_uint32 x, vx\_uint32 y, const vx\_imagepatch\_addressing\_t \* addr )

Accesses a specific pixel at a 2d coordinate in an image patch.

#### **Parameters**

| in | ptr  | The base pointer of the patch as returned from vxAccessImagePatch.     |
|----|------|------------------------------------------------------------------------|
| in | X    | The x dimension within the patch.                                      |
| in | У    | The y dimension within the patch.                                      |
| in | addr | The pointer to the addressing mode information returned from vxAccess← |
|    |      | ImagePatch.                                                            |

## Returns

void \* Returns the pointer to the specified pixel.

#### Precondition

# vxAccessImagePatch

```
/*

* Copyright (c) 2013-2014 The Khronos Group Inc.

*

* Permission is hereby granted, free of charge, to any person obtaining a copy of this software and/or associated documentation files (the 
* "Materials"), to deal in the Materials without restriction, including 
* without limitation the rights to use, copy, modify, merge, publish, 
* distribute, sublicense, and/or sell copies of the Materials, and to 
* permit persons to whom the Materials are furnished to do so, subject to 
* the following conditions:

* *

* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Materials.

* *

* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 
* MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
```

```
#include <VX/vx.h>
#define PATCH DIM 16
vx_status example_imagepatch(vx_context context)
    vx_status status = VX_SUCCESS;
    void *base_ptr = NULL;
    vx_uint32 width = 640, height = 480, plane = 0;
    vx_image image = vxCreateImage(context, width, height,
      VX_DF_IMAGE_U8);
    vx_rectangle_t rect;
    vx_imagepatch_addressing_t addr;
    rect.start_x = rect.start_y = 0;
rect.end_x = rect.end_y = PATCH_DIM;
    status = vxAccessImagePatch(image, &rect, plane,
                                     &addr, &base_ptr,
                                     VX_READ_AND_WRITE);
    if (status == VX_SUCCESS)
         vx_uint32 x,y,i,j;
         vx_uint8 pixel = 0;
         /\star a couple addressing options \star/
         /\star use linear addressing function/macro \star/
         for (i = 0; i < addr.dim_x*addr.dim_y; i++) {</pre>
             vx_uint8 *ptr2 = vxFormatImagePatchAddress1d(base_ptr,
                                                                   i, &addr);
              *ptr2 = pixel;
         }
         /\star 2d addressing option \star/
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {
    for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                  vx_uint8 *ptr2 = vxFormatImagePatchAddress2d(base_ptr,
                                                                       x, y, &addr);
                  *ptr2 = pixel;
             }
         }
         /\star direct addressing by client
          \star for subsampled planes, scale will change
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {
    for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                  vx_uint8 *tmp = (vx_uint8 *)base_ptr;
                  i = ((addr.stride_y*y*addr.scale_y) /
                         VX_SCALE_UNITY) +
                       ((addr.stride_x*x*addr.scale_x) /
                         VX_SCALE_UNITY);
                  tmp[i] = pixel;
              }
         }
         /\star more efficient direct addressing by client.
          \star for subsampled planes, scale will change.
          */
         for (y = 0; y < addr.dim_y; y+=addr.step_y) {
    j = (addr.stride_y*y*addr.scale_y)/VX_SCALE_UNITY;</pre>
              for (x = 0; x < addr.dim_x; x+=addr.step_x) {</pre>
                  vx_uint8 *tmp = (vx_uint8 *)base_ptr;
                  i = j + (addr.stride_x*x*addr.scale_x) /
    VX_SCALE_UNITY;
tmp[i] = pixel;
         /\star this commits the data back to the image. If rect were 0 or empty, it
          \star would just decrement the reference (used when reading an image only)
         status = vxCommitImagePatch(image, &rect, plane, &addr, base_ptr);
    vxReleaseImage(&image);
    return status;
```

## 

Retrieves the valid region of the image as a rectangle.

After the image is allocated but has not been written to this returns the full rectangle of the image so that functions do not have to manage a case for uninitialized data. The image still retains an uninitialized value, but once the image is written to via any means such as vxCommitImagePatch, the valid region is altered to contain the maximum bounds of the written area.

#### **Parameters**

| in  | image | The image from which to retrieve the valid region. |
|-----|-------|----------------------------------------------------|
| out | rect  | The destination rectangle.                         |

#### Returns

vx\_status

#### Return values

| VX_ERROR_INVALID_R↔                | Invalid image. |
|------------------------------------|----------------|
| EFERENCE                           |                |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | Invalid rect.  |
| ARAMETERS                          |                |
| VX_SUCCESS                         | Valid image.   |

#### Note

This rectangle can be passed directly to vxAccessImagePatch to get the full valid region of the image. Modifications from vxCommitImagePatch grows the valid region.

# 3.52 Object: LUT

### 3.52.1 Detailed Description

Defines the Look-Up Table Interface.

A lookup table is an array that simplifies run-time computation by replacing computation with a simpler array indexing operation.

## **Typedefs**

typedef struct \_vx\_lut \* vx\_lut
 The Look-Up Table (LUT) Object.

#### **Enumerations**

```
    enum vx_lut_attribute_e {
    VX_LUT_ATTRIBUTE_TYPE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_LUT << 8)) + 0x0,</li>
    VX_LUT_ATTRIBUTE_COUNT = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_LUT << 8)) + 0x1,</li>
    VX_LUT_ATTRIBUTE_SIZE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_LUT << 8)) + 0x2 }</li>
    The Look-Up Table (LUT) attribute list.
```

#### **Functions**

vx\_status VX\_API\_CALL vxAccessLUT (vx\_lut lut, void \*\*ptr, vx\_enum usage)

Grants access to a LUT table and increments the object reference count in case of success.

vx\_status VX\_API\_CALL vxCommitLUT (vx\_lut lut, const void \*ptr)

Commits the Lookup Table and decrements the object reference count in case of success.

vx\_lut VX\_API\_CALL vxCreateLUT (vx\_context context, vx\_enum data\_type, vx\_size count)
 Creates LUT object of a given type.

vx\_status VX\_API\_CALL vxQueryLUT (vx\_lut lut, vx\_enum attribute, void \*ptr, vx\_size size)
 Queries attributes from a LUT.

vx status VX API CALL vxReleaseLUT (vx lut \*lut)

Releases a reference to a LUT object. The object may not be garbage collected until its total reference count is zero.

#### 3.52.2 Enumeration Type Documentation

```
enum vx_lut_attribute_e
```

The Look-Up Table (LUT) attribute list.

Enumerator

```
VX_LUT_ATTRIBUTE_TYPE Indicates the value type of the LUT. Use a vx_enum.
VX_LUT_ATTRIBUTE_COUNT Indicates the number of elements in the LUT. Use a vx_size.
VX_LUT_ATTRIBUTE_SIZE Indicates the total size of the LUT in bytes. Uses a vx_size.
```

Definition at line 842 of file vx\_types.h.

#### 3.52.3 Function Documentation

```
vx_lut VX_API_CALL vxCreateLUT ( vx_context context, vx_enum data_type, vx_size count )
```

Creates LUT object of a given type.

| in | context   | The reference to the context.       |
|----|-----------|-------------------------------------|
| in | data_type | The type of data stored in the LUT. |
| in | count     | The number of entries desired.      |

#### Note

For OpenVX 1.0, count must be equal to 256 and data type can only be VX TYPE UINT8.

#### Returns

An LUT reference  $vx\_lut$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

### vx\_status VX\_API\_CALL vxReleaseLUT ( vx\_lut \* lut )

Releases a reference to a LUT object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | lut | The pointer to the LUT to release. |
|----|-----|------------------------------------|
|----|-----|------------------------------------|

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS              | No errors.              |
|-------------------------|-------------------------|
| $VX\_ERROR\_INVALID\_R$ | If lut is not a vx_lut. |
| EFERENCE                |                         |

#### vx\_status VX\_API\_CALL vxQueryLUT ( vx\_lut lut, vx\_enum attribute, void \* ptr, vx\_size size )

Queries attributes from a LUT.

#### **Parameters**

| in  | lut       | The LUT to query.                                              |
|-----|-----------|----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_lut_attribute_e enumeration.  |
| out | ptr       | The location at which to store the resulting value.            |
| in  | size      | The size in bytes of the container to which <i>ptr</i> points. |

#### Returns

A vx\_status\_e enumeration.

## vx\_status VX\_API\_CALL vxAccessLUT ( vx\_lut lut, void \*\* ptr, vx\_enum usage )

Grants access to a LUT table and increments the object reference count in case of success.

There are several variations of call methodology:

- If ptr is NULL (which means the current data of the LUT is not desired), the LUT reference count is incremented.
- If ptr is not NULL but (\*ptr) is NULL, (\*ptr) will contain the address of the LUT data when the function returns and the reference count will be incremented. Whether the (\*ptr) address is mapped or allocated is undefined. (\*ptr) must be returned to vxcommitLUT.

• If *ptr* is not NULL and (\*ptr) is not NULL, the user is signalling the implementation to copy the LUT data into the location specified by (\*ptr). Users must use vxQueryLUT with VX\_LUT\_ATTRIBUTE\_SIZE to determine how much memory to allocate for the LUT data.

In any case, vxCommitLUT must be called after LUT access is complete.

| in     | lut   | The LUT from which to get the data.                                                                                                                                                                                                                                                        |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in,out | ptr   | ptr The user-supplied address to a pointer, via which the requested contents are returned.  • If ptr is NULL, an error occurs.  • If ptr is not NULL and (*ptr) is NULL, (*ptr) will be set to the address of a memory area managed by the OpenVX framework containing the requested data. |
|        |       | <ul> <li>If both ptr and (*ptr) are not NULL, requested data will be copied to<br/>(*ptr) (optionally in case of write-only access).</li> </ul>                                                                                                                                            |
| in     | usage | This declares the intended usage of the pointer using the * vx_accessor← e enumeration.                                                                                                                                                                                                    |

## Returns

A vx\_status\_e enumeration.

#### Postcondition

vxCommitLUT

## vx\_status VX\_API\_CALL vxCommitLUT ( vx\_lut lut, const void \* ptr )

Commits the Lookup Table and decrements the object reference count in case of success.

Commits the data back to the LUT object and decrements the reference count. There are several variations of call methodology:

- If a user should allocated their own memory for the LUT data copy, the user is obligated to free this memory.
- If *ptr* is not NULL and the (\*ptr) for vxAccessLUT was NULL, it is undefined whether the implementation will unmap or copy and free the memory.

#### **Parameters**

| in | lut | The LUT to modify.                                                    |
|----|-----|-----------------------------------------------------------------------|
| in | ptr | The pointer provided or returned by vxAccessLUT. This cannot be NULL. |

### Returns

A  $vx\_status\_e$  enumeration.

#### Precondition

vxAccessLUT.

# 3.53 Object: Matrix

### 3.53.1 Detailed Description

Defines the Matrix Object Interface.

### **Typedefs**

typedef struct \_vx\_matrix \* vx\_matrix

The Matrix Object. An MxN matrix of some unit type.

## **Enumerations**

```
    enum vx_matrix_attribute_e {
    VX_MATRIX_ATTRIBUTE_TYPE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_MATRIX << 8)) + 0x0,</li>
    VX_MATRIX_ATTRIBUTE_ROWS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_MATRIX << 8)) + 0x1,</li>
    VX_MATRIX_ATTRIBUTE_COLUMNS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_MATRIX << 8)) + 0x2,</li>
    VX_MATRIX_ATTRIBUTE_SIZE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_MATRIX << 8)) + 0x3 }</li>
```

# The matrix attributes.

#### **Functions**

- vx\_matrix VX\_API\_CALL vxCreateMatrix (vx\_context c, vx\_enum data\_type, vx\_size columns, vx\_size rows)

  Creates a reference to a matrix object.
- vx\_status VX\_API\_CALL vxQueryMatrix (vx\_matrix mat, vx\_enum attribute, void \*ptr, vx\_size size)
   Queries an attribute on the matrix object.
- vx\_status VX\_API\_CALL vxReadMatrix (vx\_matrix mat, void \*array)

Gets the matrix data (copy).

vx\_status VX\_API\_CALL vxReleaseMatrix (vx\_matrix \*mat)

Releases a reference to a matrix object. The object may not be garbage collected until its total reference count is

• vx\_status VX\_API\_CALL vxWriteMatrix (vx\_matrix mat, const void \*array)

Sets the matrix data (copy)

## 3.53.2 Enumeration Type Documentation

```
enum vx_matrix_attribute_e
```

The matrix attributes.

Enumerator

```
VX_MATRIX_ATTRIBUTE_TYPE The value type of the matrix. Use a vx_enum parameter.
```

VX\_MATRIX\_ATTRIBUTE\_ROWS The M dimension of the matrix. Use a vx\_size parameter.

VX\_MATRIX\_ATTRIBUTE\_COLUMNS The N dimension of the matrix. Use a vx\_size parameter.

VX\_MATRIX\_ATTRIBUTE\_SIZE The total size of the matrix in bytes. Use a vx\_size parameter.

Definition at line 902 of file vx\_types.h.

## 3.53.3 Function Documentation

vx\_matrix VX\_API\_CALL vxCreateMatrix ( vx\_context c, vx\_enum data\_type, vx\_size columns, vx\_size rows )

Creates a reference to a matrix object.

| in | С         | The reference to the overall context.                            |
|----|-----------|------------------------------------------------------------------|
| in | data_type | The unit format of the matrix. VX_TYPE_INT32 or VX_TYPE_FLOAT32. |
| in | columns   | The first dimensionality.                                        |
| in | rows      | The second dimensionality.                                       |

#### Returns

An matrix reference  $vx_{matrix}$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

## vx\_status VX\_API\_CALL vxReleaseMatrix ( vx\_matrix \* mat )

Releases a reference to a matrix object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | mat | The matrix reference to release. |
|----|-----|----------------------------------|
|    |     |                                  |

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS              | No errors.                 |
|-------------------------|----------------------------|
| $VX\_ERROR\_INVALID\_R$ | If mat is not a vx_matrix. |
| EFERENCE                |                            |

#### vx\_status VX\_API\_CALL vxQueryMatrix ( vx\_matrix mat, vx\_enum attribute, void \* ptr, vx\_size size )

Queries an attribute on the matrix object.

### **Parameters**

| in  | mat       | The matrix object to set.                                        |
|-----|-----------|------------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_matrix_attribute_e enumeration. |
| out | ptr       | The location at which to store the resulting value.              |
| in  | size      | The size in bytes of the container to which ptr points.          |

## Returns

A vx\_status\_e enumeration.

## $vx\_status\ VX\_API\_CALL\ vxReadMatrix\ (\ vx\_matrix\ mat,\ void* array\ )$

Gets the matrix data (copy).

#### **Parameters**

| Г | 2   | mat   | The reference to the matrix             |
|---|-----|-------|-----------------------------------------|
|   | TII | mat   | The reference to the matrix.            |
|   | out | array | The array in which to place the matrix. |

## See also

vxQueryMatrix and VX\_MATRIX\_ATTRIBUTE\_COLUMNS and VX\_MATRIX\_ATTRIBUTE\_ROWS to get the needed number of elements of the array.

#### Returns

A  $vx\_status\_e$  enumeration.

## vx\_status VX\_API\_CALL vxWriteMatrix ( vx\_matrix mat, const void \* array )

Sets the matrix data (copy)

**Parameters** 

| in | mat   | The reference to the matrix.                   |
|----|-------|------------------------------------------------|
| in | array | The array containing the matrix to be written. |

#### See also

vxQueryMatrix and VX\_MATRIX\_ATTRIBUTE\_COLUMNS and VX\_MATRIX\_ATTRIBUTE\_ROWS to get the needed number of elements of the array.'

## Returns

A vx\_status\_e enumeration.

# 3.54 Object: Pyramid

### 3.54.1 Detailed Description

Defines the Image Pyramid Object Interface.

A Pyramid object in OpenVX represents a collection of related images. Typically, these images are created by either downscaling or upscaling a *base image*, contained in level zero of the pyramid. Successive levels of the pyramid increase or decrease in size by a factor given by the VX\_PYRAMID\_ATTRIBUTE\_SCALE attribute. For instance, in a pyramid with 3 levels and VX\_SCALE\_PYRAMID\_HALF, the level one image is one-half the width and one-half the height of the level zero image, and the level two image is one-quarter the width and one quarter the height of the level zero image. When downscaling or upscaling results in a non-integral number of pixels at any level, fractional pixels always get rounded up to the nearest integer. (E.g., a 3-level image pyramid beginning with level zero having a width of 9 and a scaling of VX\_SCALE\_PYRAMID\_HALF results in the level one image with a width of  $5 = \mathbf{ceil}(9*0.5)$  and a level two image with a width of  $3 = \mathbf{ceil}(5*0.5)$ . Position  $(r_N, c_N)$  at level N corresponds to position  $(r_{N-1}/\mathbf{scale}, c_{N-1}/\mathbf{scale})$  at level N-1.

#### **Macros**

• #define VX\_SCALE\_PYRAMID\_HALF (0.5f)

Use to indicate a half-scale pyramid.

#define VX SCALE PYRAMID ORB ((vx float32)0.8408964f)

Use to indicate a ORB scaled pyramid whose scaling factor is  $\frac{1}{\sqrt[4]{2}}$ .

## **Typedefs**

typedef struct \_vx\_pyramid \* vx\_pyramid
 The Image Pyramid object. A set of scaled images.

#### **Enumerations**

```
    enum vx_pyramid_attribute_e {
        VX_PYRAMID_ATTRIBUTE_LEVELS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_PYRAMID << 8)) +
        0x0,
        VX_PYRAMID_ATTRIBUTE_SCALE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_PYRAMID << 8)) +
        0x1,
        VX_PYRAMID_ATTRIBUTE_WIDTH = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_PYRAMID << 8)) +
        0x2,
        VX_PYRAMID_ATTRIBUTE_HEIGHT = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_PYRAMID << 8)) +
        0x3,
        VX_PYRAMID_ATTRIBUTE_FORMAT = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_PYRAMID << 8)) +
        0x4 }</li>
```

The pyramid object attributes.

#### **Functions**

vx\_pyramid VX\_API\_CALL vxCreatePyramid (vx\_context context, vx\_size levels, vx\_float32 scale, vx\_uint32 width, vx\_uint32 height, vx\_df\_image format)

Creates a reference to a pyramid object of the supplied number of levels.

• vx\_pyramid VX\_API\_CALL vxCreateVirtualPyramid (vx\_graph graph, vx\_size levels, vx\_float32 scale, vx\_ uint32 width, vx\_uint32 height, vx\_df\_image format)

Creates a reference to a virtual pyramid object of the supplied number of levels.

• vx image VX API CALL vxGetPyramidLevel (vx pyramid pyr, vx uint32 index)

Retrieves a level of the pyramid as a vx\_image, which can be used elsewhere in OpenVX. A call to vxReleaseImage is necessary to release an image for each call of vxGetPyramidLevel.

vx\_status VX\_API\_CALL vxQueryPyramid (vx\_pyramid pyr, vx\_enum attribute, void \*ptr, vx\_size size)
 Queries an attribute from an image pyramid.

vx\_status VX\_API\_CALL vxReleasePyramid (vx\_pyramid \*pyr)

Releases a reference to a pyramid object. The object may not be garbage collected until its total reference count is zero.

## 3.54.2 Enumeration Type Documentation

## enum vx\_pyramid\_attribute\_e

The pyramid object attributes.

#### Enumerator

VX\_PYRAMID\_ATTRIBUTE\_LEVELS The number of levels of the pyramid. Use a vx\_size parameter.

**VX\_PYRAMID\_ATTRIBUTE\_SCALE** The scale factor between each level of the pyramid. Use a vx\_← float32 parameter.

VX\_PYRAMID\_ATTRIBUTE\_WIDTH The width of the 0th image in pixels. Use a vx\_uint32 parameter.

VX\_PYRAMID\_ATTRIBUTE\_HEIGHT The height of the 0th image in pixels. Use a vx\_uint32 parameter.

**VX\_PYRAMID\_ATTRIBUTE\_FORMAT** The vx\_df\_image\_e format of the image. Use a vx\_df\_image parameter.

Definition at line 934 of file vx\_types.h.

#### 3.54.3 Function Documentation

vx\_pyramid VX\_API\_CALL vxCreatePyramid ( vx\_context context, vx\_size levels, vx\_float32 scale, vx\_uint32 width, vx\_uint32 height, vx\_df\_image format )

Creates a reference to a pyramid object of the supplied number of levels. Parameters

| in | context | The reference to the overall context.                                       |
|----|---------|-----------------------------------------------------------------------------|
| in | levels  | The number of levels desired. This is required to be a non-zero value.      |
| in | scale   | Used to indicate the scale between pyramid levels. This is required to be a |
|    |         | non-zero positive value. In OpenVX 1.0, the only permissible values are VX← |
|    |         | _SCALE_PYRAMID_HALF or VX_SCALE_PYRAMID_ORB.                                |
| in | width   | The width of the 0th level image in pixels.                                 |
| in | height  | The height of the 0th level image in pixels.                                |
| in | format  | The format of all images in the pyramid. NV12, NV21, IYUV, UYVY and YUYV    |
|    |         | formats are not supported.                                                  |

#### Returns

A pyramid reference  $vx\_pyramid$  to the sub-image. Any possible errors preventing a successful creation should be checked using vxGetStatus.

vx\_pyramid VX\_API\_CALL vxCreateVirtualPyramid ( vx\_graph graph, vx\_size levels, vx\_float32 scale, vx\_uint32 width, vx\_uint32 height, vx\_df\_image format )

Creates a reference to a virtual pyramid object of the supplied number of levels.

Virtual Pyramids can be used to connect Nodes together when the contents of the pyramids will not be accessed by the user of the API. All of the following constructions are valid:

```
vx_context context = vxCreateContext();
vx_graph graph = vxCreateGraph(context);
vx_pyramid virt[] = {
    vxCreateVirtualPyramid(graph, 4, VX_SCALE_PYRAMID_HALF, 0, 0
    , VX_DF_IMAGE_VIRT), // no dimension and format specified for level 0
    vxCreateVirtualPyramid(graph, 4, VX_SCALE_PYRAMID_HALF, 640,
        480, VX_DF_IMAGE_VIRT), // no format specified.
    vxCreateVirtualPyramid(graph, 4, VX_SCALE_PYRAMID_HALF, 640,
        480, VX_DF_IMAGE_U8), // no access
};
```

| in | graph  | The reference to the parent graph.                                               |
|----|--------|----------------------------------------------------------------------------------|
| in | levels | The number of levels desired. This is required to be a non-zero value.           |
| in | scale  | Used to indicate the scale between pyramid levels. This is required to be a      |
|    |        | non-zero positive value. In OpenVX 1.0, the only permissible values are VX←      |
|    |        | _SCALE_PYRAMID_HALF or VX_SCALE_PYRAMID_ORB.                                     |
| in | width  | The width of the 0th level image in pixels. This may be set to zero to indicate  |
|    |        | to the interface that the value is unspecified.                                  |
| in | height | The height of the 0th level image in pixels. This may be set to zero to indicate |
|    |        | to the interface that the value is unspecified.                                  |
| in | format | The format of all images in the pyramid. This may be set to VX_DF_IMAGE←         |
|    |        | _VIRT to indicate that the format is unspecified.                                |

#### Returns

A pyramid reference  $vx\_pyramid$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### Note

Images extracted with vxGetPyramidLevel behave as Virtual Images and cause  $vxAccessImage \leftarrow Patch$  to return errors.

## vx\_status VX\_API\_CALL vxReleasePyramid ( vx\_pyramid \* pyr )

Releases a reference to a pyramid object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | pyr | The pointer to the pyramid to release. |
|----|-----|----------------------------------------|
|----|-----|----------------------------------------|

#### Returns

A vx\_status\_e enumeration.

## Return values

| VX_SUCCESS              | No errors.                  |
|-------------------------|-----------------------------|
| $VX\_ERROR\_INVALID\_R$ | If pyr is not a vx_pyramid. |
| EFERENCE                |                             |

## Postcondition

After returning from this function the reference is zeroed.

## vx\_status VX\_API\_CALL vxQueryPyramid ( vx\_pyramid pyr, vx\_enum attribute, void \* ptr, vx\_size size )

Queries an attribute from an image pyramid.

### **Parameters**

| in | pyr       | The pyramid to query.                                               |
|----|-----------|---------------------------------------------------------------------|
| in | attribute | The attribute for which to query. Use a vx_pyramid_attribute_e enu- |
|    |           | meration.                                                           |

| out | ptr  | The location at which to store the resulting value.            |
|-----|------|----------------------------------------------------------------|
| in  | size | The size in bytes of the container to which <i>ptr</i> points. |

#### Returns

A vx\_status\_e enumeration.

## vx\_image VX\_API\_CALL vxGetPyramidLevel ( vx\_pyramid pyr, vx\_uint32 index )

Retrieves a level of the pyramid as a vx\_image, which can be used elsewhere in OpenVX. A call to vxRelease Image is necessary to release an image for each call of vxGetPyramidLevel.

Parameters

| in | pyr   | The pyramid object.                                          |
|----|-------|--------------------------------------------------------------|
| in | index | The index of the level, such that index is less than levels. |

#### Returns

A vx\_image reference.

#### Return values

| 0 | Indicates that the index or the object is invalid. |
|---|----------------------------------------------------|
|---|----------------------------------------------------|

# 3.55 Object: Remap

### 3.55.1 Detailed Description

Defines the Remap Object Interface.

## **Typedefs**

typedef struct \_vx\_remap \* vx\_remap

The remap table Object. A remap table contains per-pixel mapping of output pixels to input pixels.

#### **Enumerations**

```
    enum vx_remap_attribute_e {
    VX_REMAP_ATTRIBUTE_SOURCE_WIDTH = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_REMAP << 8)) + 0x0,</li>
    VX_REMAP_ATTRIBUTE_SOURCE_HEIGHT = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_REMAP << 8)) + 0x1,</li>
    VX_REMAP_ATTRIBUTE_DESTINATION_WIDTH = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_REMAP << 8)) + 0x2,</li>
    VX_REMAP_ATTRIBUTE_DESTINATION_HEIGHT = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_RE ADMAP << 8)) + 0x3 }</li>
```

The remap object attributes.

#### **Functions**

vx\_remap VX\_API\_CALL vxCreateRemap (vx\_context context, vx\_uint32 src\_width, vx\_uint32 src\_height, vx\_uint32 dst\_width, vx\_uint32 dst\_height)

Creates a remap table object.

vx\_status VX\_API\_CALL vxGetRemapPoint (vx\_remap table, vx\_uint32 dst\_x, vx\_uint32 dst\_y, vx\_float32 \*src\_x, vx\_float32 \*src\_y)

Retrieves the source pixel point from a destination pixel.

vx\_status VX\_API\_CALL vxQueryRemap (vx\_remap r, vx\_enum attribute, void \*ptr, vx\_size size)

Queries attributes from a Remap table.

vx\_status VX\_API\_CALL vxReleaseRemap (vx\_remap \*table)

Releases a reference to a remap table object. The object may not be garbage collected until its total reference count is zero.

vx\_status VX\_API\_CALL vxSetRemapPoint (vx\_remap table, vx\_uint32 dst\_x, vx\_uint32 dst\_y, vx\_float32 src\_x, vx\_float32 src\_y)

Assigns a destination pixel mapping to the source pixel.

## 3.55.2 Enumeration Type Documentation

```
enum vx_remap_attribute_e
```

The remap object attributes.

#### Enumerator

```
VX_REMAP_ATTRIBUTE_SOURCE_WIDTH The source width. Use a vx_uint32 parameter.
```

VX REMAP ATTRIBUTE SOURCE HEIGHT The source height. Use a vx uint32 parameter.

VX\_REMAP\_ATTRIBUTE\_DESTINATION\_WIDTH The destination width. Use a vx\_uint32 parameter.

VX\_REMAP\_ATTRIBUTE\_DESTINATION\_HEIGHT The destination height. Use a vx\_uint 32 parameter.

Definition at line 950 of file vx\_types.h.

## 3.55.3 Function Documentation

vx\_remap VX\_API\_CALL vxCreateRemap ( vx\_context context, vx\_uint32 src\_width, vx\_uint32 src\_height, vx\_uint32 dst\_width, vx\_uint32 dst\_height )

Creates a remap table object.

| in | context    | The reference to the overall context.      |
|----|------------|--------------------------------------------|
| in | src_width  | Width of the source image in pixel.        |
| in | src_height | Height of the source image in pixels.      |
| in | dst_width  | Width of the destination image in pixels.  |
| in | dst_height | Height of the destination image in pixels. |

#### Returns

A remap reference  $vx\_remap$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### vx\_status VX\_API\_CALL vxReleaseRemap ( vx\_remap \* table )

Releases a reference to a remap table object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | table | The pointer to the remap table to release. |
|----|-------|--------------------------------------------|

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS          | No errors.                  |
|---------------------|-----------------------------|
| VX_ERROR_INVALID_R↔ | If table is not a vx_remap. |
| EFERENCE            |                             |

# vx\_status VX\_API\_CALL vxSetRemapPoint ( vx\_remap table, vx\_uint32 dst\_x, vx\_uint32 dst\_y, vx\_float32 src\_x, vx\_float32 src\_y )

Assigns a destination pixel mapping to the source pixel.

#### **Parameters**

| in | table | The remap table reference.                                              |
|----|-------|-------------------------------------------------------------------------|
| in | dst_x | The destination x coordinate.                                           |
| in | dst_y | The destination y coordinate.                                           |
| in | src_x | The source x coordinate in float representation to allow interpolation. |
| in | src_y | The source y coordinate in float representation to allow interpolation. |

#### Returns

A vx\_status\_e enumeration.

vx\_status VX\_API\_CALL vxGetRemapPoint ( vx\_remap table, vx\_uint32  $dst\_x$ , vx\_uint32  $dst\_y$ , vx\_float32 \*  $src\_x$ , vx\_float32 \*  $src\_y$  )

Retrieves the source pixel point from a destination pixel.

| in  | table | The remap table reference.                                                        |
|-----|-------|-----------------------------------------------------------------------------------|
| in  | dst_x | The destination x coordinate.                                                     |
| in  | dst_y | The destination y coordinate.                                                     |
| out | src_x | The pointer to the location to store the source x coordinate in float representa- |
|     |       | tion to allow interpolation.                                                      |
| out | src_y | The pointer to the location to store the source y coordinate in float representa- |
|     |       | tion to allow interpolation.                                                      |

#### Returns

A  $vx\_status\_e$  enumeration.

## $vx\_status\ VX\_API\_CALL\ vxQueryRemap\ (\ vx\_remap\ r,\ vx\_enum\ attribute,\ void*ptr,\ vx\_size\ size\ )$

Queries attributes from a Remap table.

## **Parameters**

| in  | r         | The remap to query.                                             |
|-----|-----------|-----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_remap_attribute_e enumeration. |
| out | ptr       | The location at which to store the resulting value.             |
| in  | size      | The size in bytes of the container to which <i>ptr</i> points.  |

#### Returns

A  $vx\_status\_e$  enumeration.

# 3.56 Object: Scalar

### 3.56.1 Detailed Description

Defines the Scalar Object interface.

## **Typedefs**

typedef struct \_vx\_scalar \* vx\_scalar
 An opaque reference to a scalar.

#### **Enumerations**

• enum vx\_scalar\_attribute\_e { VX\_SCALAR\_ATTRIBUTE\_TYPE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_ $\hookleftarrow$  TYPE\_SCALAR << 8)) + 0x0 }

The scalar attributes list.

#### **Functions**

- vx\_scalar VX\_API\_CALL vxCreateScalar (vx\_context context, vx\_enum data\_type, const void \*ptr)
   Creates a reference to a scalar object. Also see Node Parameters.
- vx\_status VX\_API\_CALL vxQueryScalar (vx\_scalar scalar, vx\_enum attribute, void \*ptr, vx\_size size)

  \*\*Queries attributes from a scalar.\*\*
- vx\_status VX\_API\_CALL vxReadScalarValue (vx\_scalar ref, void \*ptr)

Gets the scalar value out of a reference.

vx\_status VX\_API\_CALL vxReleaseScalar (vx\_scalar \*scalar)

Releases a reference to a scalar object. The object may not be garbage collected until its total reference count is zero.

vx\_status VX\_API\_CALL vxWriteScalarValue (vx\_scalar ref, const void \*ptr)

Sets the scalar value in a reference.

## 3.56.2 Typedef Documentation

### typedef struct \_vx\_scalar\* vx\_scalar

An opaque reference to a scalar.

A scalar can be up to 64 bits wide.

See also

vxCreateScalar

Definition at line 159 of file vx types.h.

## 3.56.3 Enumeration Type Documentation

enum vx\_scalar\_attribute\_e

The scalar attributes list.

Enumerator

**VX\_SCALAR\_ATTRIBUTE\_TYPE** Queries the type of atomic that is contained in the scalar. Use a vx\_enum parameter.

Definition at line 820 of file vx\_types.h.

#### 3.56.4 Function Documentation

vx\_scalar VX\_API\_CALL vxCreateScalar ( vx\_context, vx\_enum data\_type, const void \* ptr )

Creates a reference to a scalar object. Also see Node Parameters.

| in | context   | The reference to the system context.                              |
|----|-----------|-------------------------------------------------------------------|
| in | data_type | The vx_type_e of the scalar. Must be greater than VX_TYPE_INVALID |
|    |           | and less than VX_TYPE_SCALAR_MAX.                                 |
| in | ptr       | The pointer to the initial value of the scalar.                   |

#### Returns

A scaler reference  $vx\_scalar$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### vx\_status VX\_API\_CALL vxReleaseScalar ( vx\_scalar \* scalar )

Releases a reference to a scalar object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | scalar | The pointer to the scalar to release. |
|----|--------|---------------------------------------|

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### **Return values**

| VX_SUCCESS              | No errors.                    |
|-------------------------|-------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If scalar is not a vx_scalar. |
| EFERENCE                |                               |

## vx\_status VX\_API\_CALL vxQueryScalar ( vx\_scalar scalar, vx\_enum attribute, void \* ptr, vx\_size size )

Queries attributes from a scalar.

#### **Parameters**

| in  | scalar    | The scalar object.                                             |
|-----|-----------|----------------------------------------------------------------|
| in  | attribute | The enumeration to query. Use a vx_scalar_attribute_e enumera- |
|     |           | tion.                                                          |
| out | ptr       | The location at which to store the resulting value.            |
| in  | size      | The size of the container to which <i>ptr</i> points.          |

#### Returns

A vx\_status\_e enumeration.

## vx\_status VX\_API\_CALL vxReadScalarValue ( vx\_scalar ref, void \* ptr )

Gets the scalar value out of a reference.

#### Note

Use this in conjunction with Query APIs that return references which should be converted into values.

| in  | ref | The reference from which to get the scalar value.                           |
|-----|-----|-----------------------------------------------------------------------------|
| out | ptr | An appropriate typed pointer that points to a location to which to copy the |
|     |     | scalar value.                                                               |

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_ERROR_INVALID_R↔  | If the ref is not a valid reference.                                    |
|----------------------|-------------------------------------------------------------------------|
| EFERENCE             |                                                                         |
| VX_ERROR_INVALID_P↔  | If ptr is NULL.                                                         |
| ARAMETERS            |                                                                         |
| VX_ERROR_INVALID_TY↔ | If the type does not match the type in the reference or is a bad value. |
| PE                   |                                                                         |

## $vx\_status\ VX\_API\_CALL\ vxWriteScalarValue\ (\ vx\_scalar\ ref,\ const\ void\ *\ ptr\ )$

Sets the scalar value in a reference.

#### Note

Use this in conjunction with Parameter APIs that return references to parameters that need to be altered.

#### **Parameters**

| in | ref | The reference from which to get the scalar value.                             |
|----|-----|-------------------------------------------------------------------------------|
| in | ptr | An appropriately typed pointer that points to a location to which to copy the |
|    |     | scalar value.                                                                 |

#### Returns

A vx\_status\_e enumeration.

#### Return values

|   | VX_ERROR_INVALID_R↔  | If the ref is not a valid reference.                                    |
|---|----------------------|-------------------------------------------------------------------------|
|   | EFERENCE             |                                                                         |
| Ì | VX_ERROR_INVALID_P⇔  | If ptr is NULL.                                                         |
|   | ARAMETERS            |                                                                         |
| İ | VX_ERROR_INVALID_TY⇔ | If the type does not match the type in the reference or is a bad value. |
|   | PE                   |                                                                         |

## 3.57 Object: Threshold

## 3.57.1 Detailed Description

Defines the Threshold Object Interface.

### **Typedefs**

typedef struct \_vx\_threshold \* vx\_threshold

The Threshold Object. A thresholding object contains the types and limit values of the thresholding required.

#### **Enumerations**

```
    enum vx threshold attribute e {

      VX_THRESHOLD_ATTRIBUTE_TYPE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_THRESHOLD <<
      8)) + 0x0,
      VX THRESHOLD ATTRIBUTE THRESHOLD VALUE = ((( VX ID KHRONOS ) << 20) | ( VX TYPE ↔
      THRESHOLD << 8)) + 0x1,
      VX_THRESHOLD_ATTRIBUTE_THRESHOLD_LOWER = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_←
      THRESHOLD << 8)) + 0x2,
      VX_THRESHOLD_ATTRIBUTE_THRESHOLD_UPPER = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_←
      THRESHOLD << 8)) + 0x3,
      VX_THRESHOLD_ATTRIBUTE_TRUE_VALUE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_THRES↔
      HOLD << 8)) + 0x4,
      VX_THRESHOLD_ATTRIBUTE_FALSE_VALUE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_THRES↔
      HOLD << 8)) + 0x5,
       \verb|VX_THRESHOLD_ATTRIBUTE_DATA_TYPE = ((( VX_ID_KHRONOS ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ } ) << 20) \mid ( VX_TYPE_THRESH \leftrightarrow 100 \text{ }
      OLD << 8)) + 0x6
                  The threshold attributes.
enum vx_threshold_type_e {
      VX_THRESHOLD_TYPE_BINARY = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_THRESHOLD_TYPE
       << 12)) + 0x0,
      VX_THRESHOLD_TYPE_RANGE = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_THRESHOLD_TYPE
       << 12)) + 0x1 }
                 The Threshold types.
```

## **Functions**

- vx\_threshold VX\_API\_CALL vxCreateThreshold (vx\_context c, vx\_enum thresh\_type, vx\_enum data\_type)

  Creates a reference to a threshold object of a given type.
- vx\_status VX\_API\_CALL vxQueryThreshold (vx\_threshold thresh, vx\_enum attribute, void \*ptr, vx\_size size)

  Queries an attribute on the threshold object.
- vx\_status VX\_API\_CALL vxReleaseThreshold (vx\_threshold \*thresh)

Releases a reference to a threshold object. The object may not be garbage collected until its total reference count is zero.

vx\_status VX\_API\_CALL vxSetThresholdAttribute (vx\_threshold thresh, vx\_enum attribute, const void \*ptr, vx\_size size)

Sets attributes on the threshold object.

## 3.57.2 Enumeration Type Documentation

```
enum vx_threshold_type_e
```

The Threshold types.

Enumerator

VX\_THRESHOLD\_TYPE\_BINARY A threshold with only 1 value.

VX\_THRESHOLD\_TYPE\_RANGE A threshold with 2 values (upper/lower). Use with Canny Edge Detection.

Definition at line 872 of file vx\_types.h.

#### enum vx threshold attribute e

The threshold attributes.

#### Enumerator

- **VX\_THRESHOLD\_ATTRIBUTE\_TYPE** The value type of the threshold. Use a vx\_enum parameter. Will contain a vx\_threshold\_type\_e.
- VX\_THRESHOLD\_ATTRIBUTE\_THRESHOLD\_VALUE The value of the single threshold. Use a vx\_← int32 parameter.
- **VX\_THRESHOLD\_ATTRIBUTE\_THRESHOLD\_LOWER** The value of the lower threshold. Use a vx\_← int32 parameter.
- **VX\_THRESHOLD\_ATTRIBUTE\_THRESHOLD\_UPPER** The value of the higher threshold. Use a vx\_← int32 parameter.
- VX\_THRESHOLD\_ATTRIBUTE\_TRUE\_VALUE The value of the TRUE threshold. Use a vx\_int32 parameter.
- VX\_THRESHOLD\_ATTRIBUTE\_FALSE\_VALUE The value of the FALSE threshold. Use a vx\_int32 parameter.
- **VX\_THRESHOLD\_ATTRIBUTE\_DATA\_TYPE** The data type of the threshold's value. Use a vx\_enum parameter. Will contain a vx\_type\_e.

Definition at line 882 of file vx\_types.h.

#### 3.57.3 Function Documentation

# vx\_threshold VX\_API\_CALL vxCreateThreshold ( vx\_context c, vx\_enum thresh\_type, vx\_enum data\_type )

Creates a reference to a threshold object of a given type.

## Parameters

| in | С           | The reference to the overall context.      |
|----|-------------|--------------------------------------------|
| in | thresh_type | The type of threshold to create.           |
| in | data type   | The data type of the threshold's value(s). |

## Note

For OpenVX 1.0, data\_type can only be VX\_TYPE\_UINT8.

#### Returns

An threshold reference  $vx\_threshold$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

## vx\_status VX\_API\_CALL vxReleaseThreshold ( vx\_threshold \* thresh )

Releases a reference to a threshold object. The object may not be garbage collected until its total reference count is zero.

**Parameters** 

| in | thresh | The pointer to the threshold to release. |
|----|--------|------------------------------------------|

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS          | No errors.                       |
|---------------------|----------------------------------|
| VX_ERROR_INVALID_R↔ | If thresh is not a vx_threshold. |
| EFERENCE            |                                  |

# vx\_status VX\_API\_CALL vxSetThresholdAttribute ( vx\_threshold *thresh*, vx\_enum *attribute*, const void \* *ptr*, vx\_size *size* )

Sets attributes on the threshold object.

#### **Parameters**

| in | thresh    | The threshold object to set.                                     |
|----|-----------|------------------------------------------------------------------|
| in | attribute | The attribute to modify. Use a vx_threshold_attribute_e enumera- |
|    |           | tion.                                                            |
| in | ptr       | The pointer to the value to which to set the attribute.          |
| in | size      | The size of the data pointed to by ptr.                          |

#### Returns

A vx\_status\_e enumeration.

## 

Queries an attribute on the threshold object.

#### **Parameters**

| in  | thresh    | The threshold object to set.                                    |
|-----|-----------|-----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_threshold_attribute_e enumera- |
|     |           | tion.                                                           |
| out | ptr       | The location at which to store the resulting value.             |
| in  | size      | The size of the container to which <i>ptr</i> points.           |

## Returns

A  $vx\_status\_e$  enumeration.

# 3.58 Administrative Features

# 3.58.1 Detailed Description

Defines the Administrative Features of OpenVX.

These features are administrative in nature and require more understanding and are more complex to use.

## **Modules**

- Advanced Objects
- Advanced Framework API

Describes components that are considered to be advanced.

# 3.59 Advanced Objects

## 3.59.1 Detailed Description

## **Modules**

• Object: Array (Advanced)

Defines the advanced features of the Array Interface.

• Object: Node (Advanced)

Defines the advanced features of the Node Interface.

· Object: Delay

Defines the Delay Object interface.

· Object: Kernel

Defines the Kernel Object and Interface.

• Object: Parameter

Defines the Parameter Object interface.

# 3.60 Object: Array (Advanced)

## 3.60.1 Detailed Description

Defines the advanced features of the Array Interface.

## **Functions**

vx\_enum VX\_API\_CALL vxRegisterUserStruct (vx\_context context, vx\_size size)
 Registers user-defined structures to the context.

## 3.60.2 Function Documentation

#### vx\_enum VX\_API\_CALL vxRegisterUserStruct ( vx\_context context, vx\_size size )

Registers user-defined structures to the context.

#### **Parameters**

| in | context | The reference to the implementation context. |
|----|---------|----------------------------------------------|
| in | size    | The size of user struct in bytes.            |

#### Returns

A vx\_enum value that is a type given to the User to refer to their custom structure when declaring a vx\_ $\leftrightarrow$  array of that structure.

#### Return values

| VX_TYPE_INVALID | If the namespace of types has been exhausted. |
|-----------------|-----------------------------------------------|

#### Note

This call should only be used once within the lifetime of a context for a specific structure.

```
typedef struct _mystruct {
    vx_uint32 some_uint;
    vx_float64 some_double;
} mystruct;

#define MY_NUM_ITEMS (10)
   vx_enum mytype = vxRegisterUserStruct(context, sizeof(mystruct));
   vx_array array = vxCreateArray(context, mytype, MY_NUM_ITEMS);
```

# 3.61 Object: Node (Advanced)

## 3.61.1 Detailed Description

Defines the advanced features of the Node Interface.

#### **Modules**

• Node: Border Modes

Defines the border mode behaviors.

#### **Functions**

vx\_node VX\_API\_CALL vxCreateGenericNode (vx\_graph graph, vx\_kernel kernel)

Creates a reference to a node object for a given kernel.

#### 3.61.2 Function Documentation

## vx\_node VX\_API\_CALL vxCreateGenericNode ( vx\_graph graph, vx\_kernel kernel )

Creates a reference to a node object for a given kernel.

This node has no references assigned as parameters after completion. The client is then required to set these parameters manually by vxSetParameterByIndex. When clients supply their own node creation functions (for use with User Kernels), this is the API to use along with the parameter setting API.

Parameters

| in | graph  | The reference to the graph in which this node exists. |
|----|--------|-------------------------------------------------------|
| in | kernel | The kernel reference to associate with this new node. |

#### Returns

A node reference vx\_node. Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### Postcondition

Call vxSetParameterByIndex for as many parameters as needed to be set.

### 3.62 Node: Border Modes

### 3.62.1 Detailed Description

Defines the border mode behaviors.

Border Mode behavior is set as an attribute of the node, not as a direct parameter to the kernel. This allows clients to *set-and-forget* the modes of any particular node that supports border modes. All nodes shall support VX\_BORDER\_MODE\_UNDEFINED.

#### **Data Structures**

• struct vx\_border\_mode\_t

Use with the enumeration VX\_NODE\_ATTRIBUTE\_BORDER\_MODE to set the border mode behavior of a node that supports borders. More...

#### **Enumerations**

```
    enum vx_border_mode_e {
        VX_BORDER_MODE_UNDEFINED = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_BORDER_MODE << 12)) + 0x0,
        VX_BORDER_MODE_CONSTANT = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_BORDER_MODE << 12)) + 0x1,
        VX_BORDER_MODE_REPLICATE = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_BORDER_MODE << 12)) + 0x2 }</li>
```

The border mode list.

#### 3.62.2 Data Structure Documentation

#### struct vx\_border\_mode\_t

Use with the enumeration  $VX\_NODE\_ATTRIBUTE\_BORDER\_MODE$  to set the border mode behavior of a node that supports borders.

Definition at line 1376 of file vx types.h.

**Data Fields** 

| vx_enum   | mode           | See vx_border_mode_e.                                                         |
|-----------|----------------|-------------------------------------------------------------------------------|
| vx_uint32 | constant_value | For the mode VX_BORDER_MODE_CONSTANT, this value is filled into               |
|           |                | each pixel. If there are sub-channels in the pixel then this value is divided |
|           |                | up accordingly.                                                               |

#### 3.62.3 Enumeration Type Documentation

enum vx\_border\_mode\_e

The border mode list.

Enumerator

- VX\_BORDER\_MODE\_UNDEFINED No defined border mode behavior is given.
- **VX\_BORDER\_MODE\_CONSTANT** For nodes that support this behavior, a constant value is *filled-in* when accessing out-of-bounds pixels.
- **VX\_BORDER\_MODE\_REPLICATE** For nodes that support this behavior, a replication of the nearest edge pixels value is given for out-of-bounds pixels.

Definition at line 1104 of file vx types.h.

## 3.63 Object: Delay

## 3.63.1 Detailed Description

Defines the Delay Object interface.

A Delay is an opaque object that contains a manually-controlled, temporally-delayed list of objects.

### **Typedefs**

typedef struct vx delay \* vx delay

The delay object. This is like a ring buffer of objects that is maintained by the OpenVX implementation.

#### **Enumerations**

```
    enum vx_delay_attribute_e {
    VX_DELAY_ATTRIBUTE_TYPE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_DELAY << 8)) + 0x0,</li>
    VX_DELAY_ATTRIBUTE_SLOTS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_DELAY << 8)) + 0x1 }</li>
    The delay attribute list.
```

#### **Functions**

vx\_status VX\_API\_CALL vxAgeDelay (vx\_delay delay)

Ages the internal delay ring by one. This means that once this API is called the reference from index 0 will go to index -1 and so forth until -count + 1 is reached. This last object will become 0. Once the delay has been aged, it updates the reference in any associated nodes.

- vx\_delay VX\_API\_CALL vxCreateDelay (vx\_context context, vx\_reference exemplar, vx\_size slots)
   Creates a Delay object.
- vx\_reference VX\_API\_CALL vxGetReferenceFromDelay (vx\_delay delay, vx\_int32 index)
   Retrieves a reference from a delay object.
- vx\_status VX\_API\_CALL vxQueryDelay (vx\_delay delay, vx\_enum attribute, void \*ptr, vx\_size size)

  Queries a vx\_delay object attribute.
- vx\_status VX\_API\_CALL vxReleaseDelay (vx\_delay \*delay)

Releases a reference to a delay object. The object may not be garbage collected until its total reference count is zero.

## 3.63.2 Typedef Documentation

```
typedef struct _vx_delay* vx_delay
```

The delay object. This is like a ring buffer of objects that is maintained by the OpenVX implementation.

See also

vxCreateDelay

Definition at line 210 of file vx\_types.h.

## 3.63.3 Enumeration Type Documentation

```
enum vx_delay_attribute_e
```

The delay attribute list.

Enumerator

VX\_DELAY\_ATTRIBUTE\_TYPE The type of reference contained in the delay. Use a vx\_enum parameter.VX\_DELAY\_ATTRIBUTE\_SLOTS The number of items in the delay. Use a vx\_size parameter.

Definition at line 1146 of file vx\_types.h.

## 3.63.4 Function Documentation

vx\_status VX\_API\_CALL vxQueryDelay ( vx\_delay delay, vx\_enum attribute, void \* ptr, vx\_size size )

Queries a vx\_delay object attribute.

| in  | delay     | A pointer to a delay object.                                    |
|-----|-----------|-----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_delay_attribute_e enumeration. |
| out | ptr       | The location at which to store the resulting value.             |
| in  | size      | The size of the container to which <i>ptr</i> points.           |

#### Returns

A vx\_status\_e enumeration.

### vx\_status VX\_API\_CALL vxReleaseDelay ( vx\_delay \* delay )

Releases a reference to a delay object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

| in | delay | The pointer to the delay to release. |
|----|-------|--------------------------------------|

#### Postcondition

After returning from this function the reference is zeroed.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS          | No errors.                  |
|---------------------|-----------------------------|
| VX_ERROR_INVALID_R↔ | If delay is not a vx_delay. |
| EFERENCE            |                             |

## vx\_delay VX\_API\_CALL vxCreateDelay ( vx\_context context, vx\_reference exemplar, vx\_size slots )

Creates a Delay object.

This function uses a subset of the attributes defining the metadata of the exemplar, ignoring the object. It does not alter the exemplar or keep or release the reference to the exemplar. For the definition of supported attributes see vxSetMetaFormatAttribute.

## **Parameters**

| in | context  | The reference to the system context.  |
|----|----------|---------------------------------------|
| in | exemplar | The exemplar object.                  |
| in | slots    | The number of reference in the delay. |

## Returns

A delay reference  $vx\_delay$ . Any possible errors preventing a successful creation should be checked using vxGetStatus.

#### vx\_reference VX\_API\_CALL vxGetReferenceFromDelay ( vx\_delay delay, vx\_int32 index )

Retrieves a reference from a delay object.

**Parameters** 

| in | delay | The reference to the delay object.                           |
|----|-------|--------------------------------------------------------------|
| in | index | An index into the delay from which to extract the reference. |

#### Returns

vx\_reference

#### Note

The delay index is in the range [-count + 1, 0]. 0 is always the *current* object.

A reference from a delay object must not be given to its associated release API (e.g. vxReleaseImage). Use the vxReleaseDelay only.

## vx\_status VX\_API\_CALL vxAgeDelay ( vx\_delay delay )

Ages the internal delay ring by one. This means that once this API is called the reference from index 0 will go to index -1 and so forth until -count + 1 is reached. This last object will become 0. Once the delay has been aged, it updates the reference in any associated nodes.

#### **Parameters**

| in | delay |  |
|----|-------|--|

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS              | Delay was aged.                               |
|-------------------------|-----------------------------------------------|
| $VX\_ERROR\_INVALID\_R$ | The value passed as delay was not a vx_delay. |
| EFERENCE                |                                               |

# 3.64 Object: Kernel

## 3.64.1 Detailed Description

Defines the Kernel Object and Interface.

A Kernel in OpenVX is the abstract representation of an computer vision function, such as a "Sobel Gradient" or "Lucas Kanade Feature Tracking". A vision function may implement many similar or identical features from other functions, but it is still considered a single unique kernel as long as it is named by the same string and enumeration and conforms to the results specified by OpenVX. Kernels are similar to function signatures in this regard.

In each of the cases, a client of OpenVX could request the kernels in nearly the same manner. There are two main approaches, which depend on the method a client calls to get the kernel reference. The first uses enumerations.

```
vx_kernel kernel = vxGetKernelByEnum(context,
VX_KERNEL_SOBEL_3x3);
vx_node node = vxCreateGenericNode(graph, kernel);
```

The second method depends on using strings to get the kernel reference.

```
vx_kernel kernel = vxGetKernelByName(context, "
org.khronos.openvx.sobel3x3");
vx_node node = vxCreateGenericNode(graph, kernel);
```

## **Data Structures**

• struct vx\_kernel\_info\_t

The Kernel Information Structure. This is returned by the Context to indicate which kernels are available in the OpenVX implementation. More...

#### **Macros**

• #define VX MAX KERNEL NAME (256)

Defines the maximum string length of a kernel name to be added to OpenVX.

#### **Typedefs**

typedef struct vx kernel \* vx kernel

An opaque reference to the descriptor of a kernel.

#### **Enumerations**

```
    enum vx_kernel_attribute_e {
    VX_KERNEL_ATTRIBUTE_PARAMETERS = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_KERNEL << 8)) + 0x0,</li>
    VX_KERNEL_ATTRIBUTE_NAME = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_KERNEL << 8)) + 0x1,</li>
    VX_KERNEL_ATTRIBUTE_ENUM = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_KERNEL << 8)) + 0x2,</li>
    VX_KERNEL_ATTRIBUTE_LOCAL_DATA_SIZE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_KERNEL << 8)) + 0x3,</li>
    VX_KERNEL_ATTRIBUTE_LOCAL_DATA_PTR = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_KERNEL << 8)) + 0x4 }</li>
```

The kernel attributes list.

enum vx\_kernel\_e {

SE) + 0x2,

```
VX_KERNEL_INVALID = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_BASE) + 0x0, VX_KERNEL_COLOR_CONVERT = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_BASE) + 0x1, VX_KERNEL_CHANNEL_EXTRACT = VX_KERNEL_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_BA ASSECTION ASSECTIO
```

VX KERNEL CHANNEL COMBINE = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BA

- SE) + 0x3,
- VX KERNEL SOBEL 3x3 = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x4,
- VX KERNEL MAGNITUDE = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x5,
- VX\_KERNEL\_PHASE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x6,
- VX\_KERNEL\_SCALE\_IMAGE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) +
  0x7.
- VX\_KERNEL\_TABLE\_LOOKUP = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x8.
- VX\_KERNEL\_HISTOGRAM = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x9, VX\_KERNEL\_EQUALIZE\_HISTOGRAM = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR↔ BASE) + 0xA,
- VX\_KERNEL\_ABSDIFF = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0xB,
- VX\_KERNEL\_MEAN\_STDDEV = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0xC.
- VX\_KERNEL\_THRESHOLD = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0xD, VX\_KERNEL\_INTEGRAL\_IMAGE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0xF
- VX\_KERNEL\_DILATE\_3x3 = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0xF,
- VX\_KERNEL\_ERODE\_3x3 = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x10,
- VX\_KERNEL\_MEDIAN\_3x3 = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x11,
- VX KERNEL BOX 3x3 = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x12,
- VX\_KERNEL\_GAUSSIAN\_3x3 = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x13,
- VX\_KERNEL\_CUSTOM\_CONVOLUTION = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KH↔ R BASE) + 0x14,
- $VX_KERNEL\_GAUSSIAN\_PYRAMID = VX_KERNEL\_BASE(VX_ID_KHRONOS, VX_LIBRARY_KHR_B \leftrightarrow ASE) + 0x15,$
- VX\_KERNEL\_ACCUMULATE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x16.
- VX\_KERNEL\_ACCUMULATE\_WEIGHTED = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_K↔ HR\_BASE) + 0x17,
- VX\_KERNEL\_ACCUMULATE\_SQUARE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR → BASE) + 0x18,
- VX\_KERNEL\_MINMAXLOC = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x19, VX\_KERNEL\_CONVERTDEPTH = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) +
- VX\_KERNEL\_CANNY\_EDGE\_DETECTOR = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_K↔ HR\_BASE) + 0x1B,
- VX KERNEL AND = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x1C,
- VX KERNEL OR = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x1D,
- VX KERNEL XOR = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x1E,
- VX KERNEL NOT = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x1F,
- VX KERNEL MULTIPLY = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x20,
- VX KERNEL ADD = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x21,
- VX\_KERNEL\_SUBTRACT = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x22,
- VX\_KERNEL\_WARP\_AFFINE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) +
  0x23,
- VX\_KERNEL\_WARP\_PERSPECTIVE = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_B → ASE) + 0x24.
- VX\_KERNEL\_HARRIS\_CORNERS = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0x25.
- VX\_KERNEL\_FAST\_CORNERS = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR\_BASE) + 0×26
- VX\_KERNEL\_OPTICAL\_FLOW\_PYR\_LK = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KH↔ R\_BASE) + 0x27,
- VX KERNEL REMAP = VX KERNEL BASE(VX ID KHRONOS, VX LIBRARY KHR BASE) + 0x28,
- VX\_KERNEL\_HALFSCALE\_GAUSSIAN = VX\_KERNEL\_BASE(VX\_ID\_KHRONOS, VX\_LIBRARY\_KHR ← BASE) + 0x29,

#### VX\_KERNEL\_MAX\_1\_0 }

The standard list of available vision kernels.

#### **Functions**

vx\_kernel VX\_API\_CALL vxGetKernelByEnum (vx\_context context, vx\_enum kernel)

Obtains a reference to the kernel using the vx\_kernel\_e enumeration.

• vx\_kernel VX\_API\_CALL vxGetKernelByName (vx\_context context, const vx\_char \*name)

Obtains a reference to a kernel using a string to specify the name.

vx\_status VX\_API\_CALL vxQueryKernel (vx\_kernel kernel, vx\_enum attribute, void \*ptr, vx\_size size)

This allows the client to query the kernel to get information about the number of parameters, enum values, etc.

vx\_status VX\_API\_CALL vxReleaseKernel (vx\_kernel \*kernel)

Release the reference to the kernel. The object may not be garbage collected until its total reference count is zero.

#### 3.64.2 Data Structure Documentation

#### struct vx\_kernel\_info\_t

The Kernel Information Structure. This is returned by the Context to indicate which kernels are available in the OpenVX implementation.

Definition at line 1348 of file vx\_types.h.

**Data Fields** 

| vx_enum | enumeration                        | The kernel enumeration value from vx_kernel_e (or an extension thereof).                                          |
|---------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|         |                                    | See also vxGetKernelByEnum                                                                                        |
| vx_char | name[VX_MA↔<br>X_KERNEL_N↔<br>AME] | The kernel name in dotted hierarchical format. e.g. "org.khronos.⇔ openvx.sobel3x3".  See also  vxGetKernelByName |

## 3.64.3 Typedef Documentation

## typedef struct \_vx\_kernel\* vx\_kernel

An opaque reference to the descriptor of a kernel.

See also

vxGetKernelByName vxGetKernelByEnum

Definition at line 174 of file vx\_types.h.

## 3.64.4 Enumeration Type Documentation

#### enum vx kernel e

The standard list of available vision kernels.

Each kernel listed here can be used with the vxGetKernelByEnum call. When programming the parameters, use

- VX\_INPUT for [in]
- VX\_OUTPUT for [out]

• VX\_BIDIRECTIONAL for [in,out]

When programming the parameters, use

- VX\_TYPE\_IMAGE for a vx\_image in the size field of vxGetParameterByIndex or vxSet↔ ParameterByIndex \*
- VX\_TYPE\_ARRAY for a vx\_array in the size field of vxGetParameterByIndex or vxSet↔ ParameterByIndex \*
- or other appropriate types in vx type e.

#### Enumerator

- VX\_KERNEL\_INVALID The invalid kernel is used to for conformance failure in relation to some kernel operation (Get/Release). If the kernel is executed it shall always return an error. The kernel has no parameters. To address by name use "org.khronos.openvx.invalid".
- **VX\_KERNEL\_COLOR\_CONVERT** The Color Space conversion kernel. The conversions are based on the vx\_df\_image\_e code in the images.

See also

Color Convert

VX\_KERNEL\_CHANNEL\_EXTRACT The Generic Channel Extraction Kernel. This kernel can remove individual color channels from an interleaved or semi-planar, planar, sub-sampled planar image. A client could extract a red channel from an interleaved RGB image or do a Luma extract from a YUV format.
See also

**Channel Extract** 

**VX\_KERNEL\_CHANNEL\_COMBINE** The Generic Channel Combine Kernel. This kernel combine multiple individual planes into a single multiplanar image of the type specified in the output image.

See also

**Channel Combine** 

VX\_KERNEL\_SOBEL\_3x3 The Sobel 3x3 Filter Kernel.

See also

Sobel 3x3

**VX\_KERNEL\_MAGNITUDE** The Magnitude Kernel. This kernel produces a magnitude plane from two input gradients.

See also

Magnitude

VX\_KERNEL\_PHASE The Phase Kernel. This kernel produces a phase plane from two input gradients.

See also

Phase

VX\_KERNEL\_SCALE\_IMAGE The Scale Image Kernel. This kernel provides resizing of an input image to an output image. The scaling factor is determined but the relative sizes of the input and output.

See also

Scale Image

VX\_KERNEL\_TABLE\_LOOKUP The Table Lookup kernel.

See also

**TableLookup** 

VX\_KERNEL\_HISTOGRAM The Histogram Kernel.

See also

Histogram

VX\_KERNEL\_EQUALIZE\_HISTOGRAM The Histogram Equalization Kernel.

See also

Equalize Histogram

VX\_KERNEL\_ABSDIFF The Absolute Difference Kernel.

See also

**Absolute Difference** 

VX\_KERNEL\_MEAN\_STDDEV The Mean and Standard Deviation Kernel.

See also

Mean and Standard Deviation

VX KERNEL THRESHOLD The Threshold Kernel.

See also

Thresholding

VX\_KERNEL\_INTEGRAL\_IMAGE The Integral Image Kernel.

See also

Integral Image

VX\_KERNEL\_DILATE\_3x3 The dilate kernel.

See also

Dilate Image

VX KERNEL ERODE 3x3 The erode kernel.

See also

**Erode Image** 

VX\_KERNEL\_MEDIAN\_3x3 The median image filter.

See also

Median Filter

VX\_KERNEL\_BOX\_3x3 The box filter kernel.

See also

**Box Filter** 

VX\_KERNEL\_GAUSSIAN\_3x3 The gaussian filter kernel.

See also

Gaussian Filter

VX\_KERNEL\_CUSTOM\_CONVOLUTION The custom convolution kernel.

See also

**Custom Convolution** 

VX\_KERNEL\_GAUSSIAN\_PYRAMID The gaussian image pyramid kernel.

See also

Gaussian Image Pyramid

VX\_KERNEL\_ACCUMULATE The accumulation kernel.

See also

Accumulate

VX\_KERNEL\_ACCUMULATE\_WEIGHTED The weighhed accumulation kernel.

See also

Accumulate Weighted

VX\_KERNEL\_ACCUMULATE\_SQUARE The squared accumulation kernel.

See also

Accumulate Squared

VX\_KERNEL\_MINMAXLOC The min and max location kernel.

See also

Min, Max Location

VX\_KERNEL\_CONVERTDEPTH The bit-depth conversion kernel.

See also

Convert Bit depth

VX\_KERNEL\_CANNY\_EDGE\_DETECTOR The Canny Edge Detector.

See also

Canny Edge Detector

VX\_KERNEL\_AND The Bitwise And Kernel.

See also

Bitwise AND

VX\_KERNEL\_OR The Bitwise Inclusive Or Kernel.

See also

Bitwise INCLUSIVE OR

VX\_KERNEL\_XOR The Bitwise Exclusive Or Kernel.

See also

Bitwise EXCLUSIVE OR

VX\_KERNEL\_NOT The Bitwise Not Kernel.

See also

Bitwise NOT

 $\emph{VX\_KERNEL\_MULTIPLY}$  The Pixelwise Multiplication Kernel.

See also

Pixel-wise Multiplication

VX\_KERNEL\_ADD The Addition Kernel.

See also

**Arithmetic Addition** 

VX\_KERNEL\_SUBTRACT The Subtraction Kernel.

See also

Arithmetic Subtraction

VX\_KERNEL\_WARP\_AFFINE The Warp Affine Kernel.

See also

Warp Affine

VX\_KERNEL\_WARP\_PERSPECTIVE The Warp Perspective Kernel.

See also

Warp Perspective

VX\_KERNEL\_HARRIS\_CORNERS The Harris Corners Kernel.

See also

Harris Corners

VX\_KERNEL\_FAST\_CORNERS The FAST Corners Kernel.

See also

**Fast Corners** 

VX\_KERNEL\_OPTICAL\_FLOW\_PYR\_LK The Optical Flow Pyramid (LK) Kernel.

See also

Optical Flow Pyramid (LK)

VX\_KERNEL\_REMAP The Remap Kernel.

See also

Remap

VX\_KERNEL\_HALFSCALE\_GAUSSIAN The Half Scale Gaussian Kernel.

See also

Scale Image

Definition at line 55 of file vx\_kernels.h.

#### enum vx kernel attribute e

The kernel attributes list.

Enumerator

- **VX\_KERNEL\_ATTRIBUTE\_PARAMETERS** Queries a kernel for the number of parameters the kernel supports. Use a vx\_uint32 parameter.
- **VX\_KERNEL\_ATTRIBUTE\_NAME** Queries the name of the kernel. Not settable. Use a vx\_char[VX\_M ← AX\_KERNEL\_NAME] array (not a vx\_array).
- VX\_KERNEL\_ATTRIBUTE\_ENUM Queries the enum of the kernel. Not settable. Use a vx\_enum parameter
- VX\_KERNEL\_ATTRIBUTE\_LOCAL\_DATA\_SIZE The local data area allocated with each kernel when it becomes a node. Use a vx\_size parameter.

Note

If not set it will default to zero.

**VX\_KERNEL\_ATTRIBUTE\_LOCAL\_DATA\_PTR** The local data pointer allocated with each kernel when it becomes a node. Use a void pointer parameter. Use a vx\_size parameter.

Definition at line 734 of file vx\_types.h.

#### 3.64.5 Function Documentation

#### vx kernel VX API CALL vxGetKernelByName ( vx context, const vx char \* name )

Obtains a reference to a kernel using a string to specify the name.

User Kernels follow a "dotted" heirarchical syntax. For example: "com.company.example.xyz". The following are strings specifying the kernel names:

org.khronos.openvx.color convert

org.khronos.openvx.channel\_extract

org.khronos.openvx.channel combine

org.khronos.openvx.sobel\_3x3

org.khronos.openvx.magnitude

org.khronos.openvx.phase

org.khronos.openvx.scale\_image

org.khronos.openvx.table\_lookup

org.khronos.openvx.histogram

org.khronos.openvx.equalize\_histogram

org.khronos.openvx.absdiff

org.khronos.openvx.mean\_stddev

org.khronos.openvx.threshold

org.khronos.openvx.integral image

org.khronos.openvx.dilate 3x3

org.khronos.openvx.erode 3x3

org.khronos.openvx.median 3x3

org.khronos.openvx.box 3x3

org.khronos.openvx.gaussian\_3x3

org.khronos.openvx.custom\_convolution

org.khronos.openvx.gaussian\_pyramid

org.khronos.openvx.accumulate

org.khronos.openvx.accumulate\_weighted

org.khronos.openvx.accumulate\_square

org.khronos.openvx.minmaxloc

org.khronos.openvx.convertdepth

org.khronos.openvx.canny\_edge\_detector

org.khronos.openvx.and

org.khronos.openvx.or

org.khronos.openvx.xor

org.khronos.openvx.not

org.khronos.openvx.multiply

org.khronos.openvx.add

org.khronos.openvx.subtract

org.khronos.openvx.warp\_affine

org.khronos.openvx.warp\_perspective

org.khronos.openvx.harris\_corners

org.khronos.openvx.fast\_corners

org.khronos.openvx.optical\_flow\_pyr\_lk

org.khronos.openvx.remap

org.khronos.openvx.halfscale\_gaussian

#### **Parameters**

|   | in | context | The reference to the implementation context. |
|---|----|---------|----------------------------------------------|
| ĺ | in | name    | The string of the name of the kernel to get. |

## Returns

A kernel reference or zero if an error occurred.

#### Return values

| 0 | The kernel name is not found in the context. |
|---|----------------------------------------------|

## Precondition

vxLoadKernels if the kernel is not provided by the OpenVX implementation.

#### Note

User Kernels should follow a "dotted" heirarchical syntax. For example: "com.company.example.xyz".

## vx\_kernel VX\_API\_CALL vxGetKernelByEnum ( vx\_context context, vx\_enum kernel )

Obtains a reference to the kernel using the  $vx\_kernel\_e$  enumeration.

Enum values above the standard set are assumed to apply to loaded libraries.

#### **Parameters**

| in | context | The reference to the implementation context.                  |
|----|---------|---------------------------------------------------------------|
| in | kernel  | A value from vx_kernel_e or a vendor or client-defined value. |

#### Returns

Avx\_kernel.

#### Return values

| 0 | The kernel enumeration is not found in the context. |
|---|-----------------------------------------------------|

#### Precondition

vxLoadKernels if the kernel is not provided by the OpenVX implementation.

## vx\_status VX\_API\_CALL vxQueryKernel ( vx\_kernel kernel, vx\_enum attribute, void \* ptr, vx\_size size )

This allows the client to query the kernel to get information about the number of parameters, enum values, etc. Parameters

| in  | kernel    | The kernel reference to query.                                     |
|-----|-----------|--------------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_kernel_attribute_e.               |
| out | ptr       | The pointer to the location at which to store the resulting value. |
| in  | size      | The size of the container to which <i>ptr</i> points.              |

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS                         | No errors.                                                      |
|------------------------------------|-----------------------------------------------------------------|
| $VX\_ERROR\_INVALID\_R$            | If the kernel is not a vx_kernel.                               |
| EFERENCE                           |                                                                 |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | If any of the other parameters are incorrect.                   |
| ARAMETERS                          |                                                                 |
| VX_ERROR_NOT_SUPP↔                 | If the attribute value is not supported in this implementation. |
| ORTED                              |                                                                 |

# vx\_status VX\_API\_CALL vxReleaseKernel ( vx\_kernel \* kernel )

Release the reference to the kernel. The object may not be garbage collected until its total reference count is zero. Parameters

| in | kernel | The pointer to the kernel reference to release. |
|----|--------|-------------------------------------------------|
|    |        |                                                 |

### Postcondition

After returning from this function the reference is zeroed.

## Returns

A vx\_status\_e enumeration.

## Return values

| VX_SUCCESS              | No errors.                    |
|-------------------------|-------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If kernel is not a vx_kernel. |
| EFERENCE                |                               |

# 3.65 Object: Parameter

## 3.65.1 Detailed Description

Defines the Parameter Object interface.

An abstract input, output, or bidirectional data object passed to a computer vision function. This object contains the signature of that parameter's usage from the kernel description. This information includes:

- Signature Index The numbered index of the parameter in the signature.
- Object Type e.g., VX\_TYPE\_IMAGE or VX\_TYPE\_ARRAY or some other object type from vx\_type\_e.
- Usage Model e.g., VX INPUT, VX OUTPUT, or VX BIDIRECTIONAL.
- Presence State e.g., VX\_PARAMETER\_STATE\_REQUIRED or VX\_PARAMETER\_STATE\_OPTIONAL.

### **Typedefs**

• typedef struct \_vx\_parameter \* vx\_parameter

An opaque reference to a single parameter.

#### **Enumerations**

```
• enum vx direction e {
 VX INPUT = ((( VX ID KHRONOS ) << 20) | ( VX ENUM DIRECTION << 12)) + 0x0,
 VX\_OUTPUT = (((VX\_ID\_KHRONOS) << 20) | (VX\_ENUM\_DIRECTION << 12)) + 0x1,
 VX_BIDIRECTIONAL = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_DIRECTION << 12)) + 0x2 }
    An indication of how a kernel will treat the given parameter.
• enum vx parameter attribute e {
 VX PARAMETER ATTRIBUTE INDEX = ((( VX ID KHRONOS ) << 20) | ( VX TYPE PARAMETER <<
 8)) + 0x0.
 VX PARAMETER ATTRIBUTE DIRECTION = ((( VX ID KHRONOS ) << 20) | ( VX TYPE PARAMET↔
 ER << 8)) + 0x1,
 VX PARAMETER ATTRIBUTE TYPE = ((( VX ID KHRONOS ) << 20) | ( VX TYPE PARAMETER <<
 8)) + 0x2.
 VX_PARAMETER_ATTRIBUTE_STATE = ((( VX_ID_KHRONOS ) << 20) | ( VX_TYPE_PARAMETER <<
 VX PARAMETER ATTRIBUTE REF = ((( VX ID KHRONOS ) << 20) | ( VX TYPE PARAMETER <<
 8)) + 0x4
    The parameter attributes list.
• enum vx parameter state e {
 VX_PARAMETER_STATE_REQUIRED = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_PARAMETER_↔
 STATE << 12)) + 0x0,
 VX PARAMETER STATE OPTIONAL = ((( VX ID KHRONOS ) << 20) | ( VX ENUM PARAMETER S↔
 TATE << 12)) + 0x1 }
    The parameter state type.
```

## **Functions**

- vx\_parameter VX\_API\_CALL vxGetKernelParameterByIndex (vx\_kernel kernel, vx\_uint32 index)
  - Retrieves a vx\_parameter from a vx\_kernel.
- vx\_parameter VX\_API\_CALL vxGetParameterByIndex (vx\_node node, vx\_uint32 index)

Retrieves a vx\_parameter from a vx\_node.

vx\_status VX\_API\_CALL vxQueryParameter (vx\_parameter param, vx\_enum attribute, void \*ptr, vx\_size size)

Allows the client to guery a parameter to determine its meta-information.

vx\_status VX\_API\_CALL vxReleaseParameter (vx\_parameter \*param)

Releases a reference to a parameter object. The object may not be garbage collected until its total reference count is zero.

- vx\_status VX\_API\_CALL vxSetParameterByIndex (vx\_node node, vx\_uint32 index, vx\_reference value)
   Sets the specified parameter data for a kernel on the node.
- vx\_status VX\_API\_CALL vxSetParameterByReference (vx\_parameter parameter, vx\_reference value)

  Associates a parameter reference and a data reference with a kernel on a node.

## 3.65.2 Typedef Documentation

#### typedef struct \_vx\_parameter\* vx\_parameter

An opaque reference to a single parameter.

See also

vxGetParameterByIndex

Definition at line 181 of file vx types.h.

## 3.65.3 Enumeration Type Documentation

#### enum vx\_direction\_e

An indication of how a kernel will treat the given parameter.

Enumerator

VX\_INPUT The parameter is an input only.

VX\_OUTPUT The parameter is an output only.

VX\_BIDIRECTIONAL The parameter is both an input and output.

Definition at line 558 of file vx types.h.

## enum vx\_parameter\_attribute\_e

The parameter attributes list.

Enumerator

- **VX\_PARAMETER\_ATTRIBUTE\_INDEX** Queries a parameter for its index value on the kernel with which it is associated. Use a vx\_uint32 parameter.
- **VX\_PARAMETER\_ATTRIBUTE\_DIRECTION** Queries a parameter for its direction value on the kernel with which it is associated. Use a vx\_enum parameter.
- VX\_PARAMETER\_ATTRIBUTE\_TYPE Queries a parameter for its type, vx\_type\_e is returned. The size of the parameter is implied for plain data objects. For opaque data objects like images and arrays a query to their attributes has to be called to determine the size.
- **VX\_PARAMETER\_ATTRIBUTE\_STATE** Queries a parameter for its state. A value in vx\_parameter\_ 

  state\_e is returned. Use a vx\_enum parameter.
- **VX\_PARAMETER\_ATTRIBUTE\_REF** Use to extract the reference contained in the parameter. Use a vx\_\to reference parameter.

Definition at line 784 of file vx\_types.h.

## enum vx\_parameter\_state\_e

The parameter state type.

Enumerator

- VX\_PARAMETER\_STATE\_REQUIRED Default. The parameter must be supplied. If not set, during Verify, an error is returned.
- **VX\_PARAMETER\_STATE\_OPTIONAL** The parameter may be unspecified. The kernel takes care not to deference optional parameters until it is certain they are valid.

Definition at line 1090 of file vx\_types.h.

# 3.65.4 Function Documentation

vx\_parameter VX\_API\_CALL vxGetKernelParameterByIndex ( vx\_kernel kernel, vx\_uint32 index )

Retrieves a vx\_parameter from a vx\_kernel.

#### **Parameters**

| in | kernel | The reference to the kernel. |
|----|--------|------------------------------|
| in | index  | The index of the parameter.  |

#### Returns

Avx\_parameter.

#### Return values

| 0 | Either the kernel or index is invalid. |
|---|----------------------------------------|
| * | The parameter reference.               |

## vx\_parameter VX\_API\_CALL vxGetParameterByIndex ( vx\_node node, vx\_uint32 index )

Retrieves a vx\_parameter from a vx\_node.

#### **Parameters**

| in | node  | The node from which to extract the parameter.           |
|----|-------|---------------------------------------------------------|
| in | index | The index of the parameter to which to get a reference. |

#### Returns

vx\_parameter

## vx\_status VX\_API\_CALL vxReleaseParameter ( vx\_parameter \* param )

Releases a reference to a parameter object. The object may not be garbage collected until its total reference count is zero.

#### **Parameters**

|     | naram | The pointer to the parameter to release  |
|-----|-------|------------------------------------------|
| 111 | param | The pointer to the parameter to release. |

## Postcondition

After returning from this function the reference is zeroed.

### Returns

A vx\_status\_e enumeration.

### Return values

| VX_SUCCESS          | No errors.                      |
|---------------------|---------------------------------|
| VX_ERROR_INVALID_R↔ | If param is not a vx_parameter. |
| EFERENCE            |                                 |

## vx\_status VX\_API\_CALL vxSetParameterByIndex ( vx\_node node, vx\_uint32 index, vx\_reference value )

Sets the specified parameter data for a kernel on the node.

### **Parameters**

| in | node  | The node that contains the kernel.  |
|----|-------|-------------------------------------|
| in | index | The index of the parameter desired. |
| in | value | The reference to the parameter.     |

#### Returns

A vx\_status\_e enumeration.

#### See also

vxSetParameterByReference

vx\_status VX\_API\_CALL vxSetParameterByReference ( vx\_parameter parameter, vx\_reference value )

Associates a parameter reference and a data reference with a kernel on a node.

#### **Parameters**

| in | parameter | The reference to the kernel parameter.            |
|----|-----------|---------------------------------------------------|
| in | value     | The value to associate with the kernel parameter. |

## Returns

A vx\_status\_e enumeration.

## See also

vxGetParameterByIndex

# $vx\_status\ VX\_API\_CALL\ vxQueryParameter\ (\ vx\_parameter\ param,\ vx\_enum\ attribute,\ void\ *\ ptr,\ vx\_size\ size\ )$

Allows the client to query a parameter to determine its meta-information.

#### **Parameters**

| in  | param     | The reference to the parameter.                                |
|-----|-----------|----------------------------------------------------------------|
| in  | attribute | The attribute to query. Use a vx_parameter_attribute_e.        |
| out | ptr       | The location at which to store the resulting value.            |
| in  | size      | The size in bytes of the container to which <i>ptr</i> points. |

#### Returns

A vx\_status\_e enumeration.

## 3.66 Advanced Framework API

## 3.66.1 Detailed Description

Describes components that are considered to be advanced.

Advanced topics include: extensions through User Kernels; Reflection and Introspection; Performace Tweaking through Hinting and Directives; and Debugging Callbacks.

#### **Modules**

· Framework: Node Callbacks

Allows Clients to receive a callback after a specific node has completed execution.

· Framework: Performance Measurement

Defines Performance measurement and reporting interfaces.

· Framework: Log

Defines the debug logging interface.

· Framework: Hints

Defines the Hints Interface.

Framework: Directives

Defines the Directives Interface.

• Framework: User Kernels

Defines the User Kernels, which are a method to extend OpenVX with new vision functions.

· Framework: Graph Parameters

Defines the Graph Parameter API.

## 3.67 Framework: Node Callbacks

## 3.67.1 Detailed Description

Allows Clients to receive a callback after a specific node has completed execution.

Callbacks are not guaranteed to be called *immediately* after the Node completes. Callbacks are intended to be used to create simple *early exit* conditions for Vision graphs using vx\_action\_e return values. An example of setting up a callback can be seen below:

```
vx_graph graph = vxCreateGraph(context);
status = vxGetStatus((vx_reference)graph);
if (status == VX_SUCCESS) {
    vx_uint8 lmin = 0, lmax = 0;
    vx_uint32 minCount = 0, maxCount = 0;
    vx_scalar scalars[] = {
         vxCreateScalar(context, VX_TYPE_UINT8, &lmin),
         vxCreateScalar(context, VX_TYPE_UINT8, &lmax), vxCreateScalar(context, VX_TYPE_UINT32, &minCount),
         vxCreateScalar(context, VX_TYPE_UINT32, &maxCount),
    };
    vx_array arrays[] = {
         vxCreateArray(context, VX_TYPE_COORDINATES2D, 1), vxCreateArray(context, VX_TYPE_COORDINATES2D, 1)
    vx_node nodes[] = {
         vxMinMaxLocNode(graph, input, scalars[0], scalars[1], arrays[0], arrays[1],
  scalars[2], scalars[3]),
    status = vxAssignNodeCallback(nodes[0], &analyze_brightness);
    // do other
```

Once the graph has been initialized and the callback has been installed then the callback itself will be called during graph execution.

```
#define MY_DESIRED_THRESHOLD (10)
vx_action VX_CALLBACK analyze_brightness(vx_node node) {
    // extract the max value
    vx_action action = VX_ACTION_ABANDON;
    vx_parameter pmax = vxGetParameterByIndex(node, 2); // Max Value
    if (pmax) {
        vx_scalar smax = 0;
        vxQueryParameter(pmax, VX_PARAMETER_ATTRIBUTE_REF, &smax,
        sizeof(smax));
        if (smax) {
            vx_uint8 value = 0u;
            vxReadScalarValue(smax, &value);
            if (value >= MY_DESIRED_THRESHOLD) {
                  action = VX_ACTION_CONTINUE;
            }
            vxReleaseScalar(&smax);
        }
        vxReleaseParameter(&pmax);
    }
    return action;
}
```

#### Warning

This should be used with *extreme* caution as it can *ruin* optimizations in the power/performance efficiency of a graph.

The callback must return a vx\_action code indicating how the graph processing should proceed.

- If VX\_ACTION\_CONTINUE is returned, the graph will continue execution with no changes.
- If VX\_ACTION\_ABANDON is returned, execution is unspecified for all nodes for which this node is a dominator. Nodes that are dominators of this node will have executed. Execution of any other node is unspecified.



Figure 3.1: Node Callback Sequence

## **Typedefs**

• typedef vx enum vx action

The formal typedef of the response from the callback.

• typedef vx\_action(\* vx\_nodecomplete\_f)(vx\_node node)

A callback to the client after a particular node has completed.

## **Enumerations**

enum vx\_action\_e {
 VX\_ACTION\_CONTINUE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_ENUM\_ACTION << 12)) + 0x0,</li>
 VX\_ACTION\_ABANDON = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_ENUM\_ACTION << 12)) + 0x1 }</li>
 A return code enumeration from a vx\_nodecomplete\_f during execution.

## **Functions**

vx\_status VX\_API\_CALL vxAssignNodeCallback (vx\_node node, vx\_nodecomplete\_f callback)

Assigns a callback to a node. If a callback already exists in this node, this function must return an error and the user may clear the callback by passing a NULL pointer as the callback.

vx nodecomplete f VX API CALL vxRetrieveNodeCallback (vx node node)

Retrieves the current node callback function pointer set on the node.

## 3.67.2 Typedef Documentation

## typedef vx\_enum vx\_action

The formal typedef of the response from the callback.

See also

vx action e

Definition at line 407 of file vx types.h.

## typedef vx\_action( \* vx\_nodecomplete\_f)(vx\_node node)

A callback to the client after a particular node has completed.

See also

vx\_action vxAssignNodeCallback

#### **Parameters**

| in | node | The node to which the callback was attached. |
|----|------|----------------------------------------------|
|----|------|----------------------------------------------|

#### Returns

An action code from vx\_action\_e.

Definition at line 416 of file vx\_types.h.

## 3.67.3 Enumeration Type Documentation

#### enum vx\_action\_e

A return code enumeration from a vx\_nodecomplete\_f during execution.

See also

vxAssignNodeCallback

Enumerator

VX\_ACTION\_CONTINUE Continue executing the graph with no changes.

VX\_ACTION\_ABANDON Stop executing the graph.

Definition at line 548 of file vx\_types.h.

### 3.67.4 Function Documentation

#### vx status VX API CALL vxAssignNodeCallback ( vx node node, vx nodecomplete f callback )

Assigns a callback to a node. If a callback already exists in this node, this function must return an error and the user may clear the callback by passing a NULL pointer as the callback.

#### **Parameters**

| in | node     | The reference to the node.                                       |
|----|----------|------------------------------------------------------------------|
| in | callback | The callback to associate with completion of this specific node. |

## Warning

This must be used with *extreme* caution as it can *ruin* optimizations in the power/performance efficiency of a graph.

#### Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS                         | Callback assigned.                          |
|------------------------------------|---------------------------------------------|
| $VX\_ERROR\_INVALID\_R \leftarrow$ | The value passed as node was not a vx_node. |
| EFERENCE                           |                                             |

## vx\_nodecomplete\_f VX\_API\_CALL vxRetrieveNodeCallback ( vx\_node node )

Retrieves the current node callback function pointer set on the node.

## **Parameters**

| in | node | The reference to the vx_node object. |
|----|------|--------------------------------------|

## Returns

vx\_nodecomplete\_f The pointer to the callback function.

## Return values

| NULL | No callback is set.         |
|------|-----------------------------|
| *    | The node callback function. |

# 3.68 Framework: Performance Measurement

## 3.68.1 Detailed Description

Defines Performance measurement and reporting interfaces.

In OpenVX, both  $vx\_graph$  objects and  $vx\_node$  objects track performance information. A client can query either object type using their respective vxQuery<0bject> function with their attribute enumeration  $VX\_<0\leftarrow$  BJECT>\_ATTRIBUTE\_PERFORMANCE along with a  $vx\_perf\_t$  structure to obtain the performance information.

```
vx_perf_t perf;
vxQueryNode(node, VX_NODE_ATTRIBUTE_PERFORMANCE, &perf, sizeof(perf
)):
```

## **Data Structures**

struct vx\_perf\_t

The performance measurement structure. More...

### 3.68.2 Data Structure Documentation

## struct vx\_perf\_t

The performance measurement structure.

Definition at line 1328 of file vx\_types.h.

Data Fields

| vx_uint64 | tmp | Holds the last measurement.           |
|-----------|-----|---------------------------------------|
| vx_uint64 | beg | Holds the first measurement in a set. |
| vx_uint64 | end | Holds the last measurement in a set.  |
| vx_uint64 | sum | Holds the summation of durations.     |
| vx_uint64 | avg | Holds the average of the durations.   |
| vx_uint64 | min | Holds the minimum of the durations.   |
| vx_uint64 | num | Holds the number of measurements.     |
| vx_uint64 | max | Holds the maximum of the durations.   |

# 3.69 Framework: Log

## 3.69.1 Detailed Description

Defines the debug logging interface.

The functions of the debugging interface allow clients to receive important debugging information about Open 

∨X.

#### See also

vx status e for the list of possible errors.

Figure 3.2: Log messages only can be received after the callback is installed.

## **Typedefs**

typedef void(\* vx\_log\_callback\_f )(vx\_context context, vx\_reference ref, vx\_status status, const vx\_char string[])

The log callback function.

#### **Functions**

- void VX\_API\_CALL vxAddLogEntry (vx\_reference ref, vx\_status status, const char \*message,...)

  Adds a line to the log.
- void VX\_API\_CALL vxRegisterLogCallback (vx\_context context, vx\_log\_callback\_f callback, vx\_bool reentrant)

Registers a callback facility to the OpenVX implementation to receive error logs.

#### 3.69.2 Function Documentation

## void VX\_API\_CALL vxAddLogEntry ( vx\_reference ref, vx\_status status, const char \* message, ... )

Adds a line to the log.

#### **Parameters**

| in | ref     | The reference to add the log entry against. Some valid value must be provided. |
|----|---------|--------------------------------------------------------------------------------|
| in | status  | The status code. VX_SUCCESS status entries are ignored and not added.          |
| in | message | The human readable message to add to the log.                                  |
| in |         | a list of variable arguments to the message.                                   |

#### Note

Messages may not exceed VX\_MAX\_LOG\_MESSAGE\_LEN bytes and will be truncated in the log if they exceed this limit.

# void VX\_API\_CALL vxRegisterLogCallback ( vx\_context context, vx\_log\_callback\_f callback, vx\_bool reentrant )

Registers a callback facility to the OpenVX implementation to receive error logs. Parameters

| in | context | The overall context to OpenVX. |
|----|---------|--------------------------------|
|----|---------|--------------------------------|

| in | callback  | The callback function. If NULL, the previous callback is removed.           |
|----|-----------|-----------------------------------------------------------------------------|
| in | reentrant | If reentrancy flag is vx_true_e, then the callback may be entered from mul- |
|    |           | tiple simultaneous tasks or threads (if the host OS supports this).         |

## 3.70 Framework: Hints

## 3.70.1 Detailed Description

Defines the Hints Interface.

Hints are messages given to the OpenVX implementation that it may support. (These are optional.)

#### **Enumerations**

enum vx\_hint\_e { VX\_HINT\_SERIALIZE = ((( VX\_ID\_KHRONOS ) << 20) | ( VX\_ENUM\_HINT << 12)) + 0x0 }</li>

These enumerations are given to the vxHint API to enable/disable platform optimizations and/or features. Hints are optional and usually are vendor-specific.

#### **Functions**

• vx\_status VX\_API\_CALL vxHint (vx\_reference reference, vx\_enum hint)

Provides a generic API to give platform-specific hints to the implementation.

## 3.70.2 Enumeration Type Documentation

#### enum vx hint e

These enumerations are given to the vxHint API to enable/disable platform optimizations and/or features. Hints are optional and usually are vendor-specific.

See also

vxHint

#### Enumerator

**VX\_HINT\_SERIALIZE** Indicates to the implementation that the user wants to disable any parallelization techniques. Implementations may not be parallelized, so this is a hint only.

Definition at line 572 of file vx\_types.h.

#### 3.70.3 Function Documentation

## vx\_status VX\_API\_CALL vxHint ( vx\_reference reference, vx\_enum hint )

Provides a generic API to give platform-specific hints to the implementation. Parameters

| in | reference | The reference to the object to hint at. This could be vx_context, vx_←   |
|----|-----------|--------------------------------------------------------------------------|
|    |           | graph, vx_node, vx_image, vx_array, or any other reference.              |
| in | hint      | A vx_hint_e hint to give the OpenVX context. This is a platform-specific |
|    |           | optimization or implementation mechanism.                                |

#### Returns

A vx\_status\_e enumeration.

## Return values

| VX SUCCESS              | No error.                           |
|-------------------------|-------------------------------------|
|                         |                                     |
| $VX\_ERROR\_INVALID\_R$ | If context or reference is invalid. |
| EFERENCE                |                                     |

| VX_ERROR_NOT_SUPP↔ | If the hint is not supported. |
|--------------------|-------------------------------|
| ORTED              |                               |

## 3.71 Framework: Directives

## 3.71.1 Detailed Description

Defines the Directives Interface.

*Directives* are messages given the OpenVX implementation that it must support. (These are required, i.e., non-optional.)

#### **Enumerations**

```
    enum vx_directive_e {
    VX_DIRECTIVE_DISABLE_LOGGING = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_DIRECTIVE << 12)) + 0x0,</li>
    VX_DIRECTIVE_ENABLE_LOGGING = ((( VX_ID_KHRONOS ) << 20) | ( VX_ENUM_DIRECTIVE << 12)) + 0x1 }</li>
```

These enumerations are given to the <code>vxDirective</code> API to enable/disable platform optimizations and/or features. Directives are not optional and usually are vendor-specific, by defining a vendor range of directives and starting their enumeration from there.

#### **Functions**

vx\_status VX\_API\_CALL vxDirective (vx\_reference reference, vx\_enum directive)

Provides a generic API to give platform-specific directives to the implementations.

## 3.71.2 Enumeration Type Documentation

### enum vx\_directive\_e

These enumerations are given to the vxDirective API to enable/disable platform optimizations and/or features. Directives are not optional and usually are vendor-specific, by defining a vendor range of directives and starting their enumeration from there.

See also

vxDirective

## Enumerator

VX\_DIRECTIVE\_DISABLE\_LOGGING Disables recording information for graph debugging.VX\_DIRECTIVE\_ENABLE\_LOGGING Enables recording information for graph debugging.

Definition at line 587 of file vx\_types.h.

#### 3.71.3 Function Documentation

vx\_status VX\_API\_CALL vxDirective ( vx\_reference reference, vx\_enum directive )

Provides a generic API to give platform-specific directives to the implementations. Parameters

| in | reference | The reference to the object to set the directive on. This could be vx |
|----|-----------|-----------------------------------------------------------------------|
|    |           | context, vx_graph, vx_node, vx_image, vx_array, or any other          |
|    |           | reference.                                                            |
| in | directive | The directive to set.                                                 |

#### Returns

A vx\_status\_e enumeration.

## Return values

| VX_SUCCESS                         | No error.                           |
|------------------------------------|-------------------------------------|
| $VX\_ERROR\_INVALID\_R \leftarrow$ | If context or reference is invalid. |
| EFERENCE                           |                                     |
| VX_ERROR_NOT_SUPP↔                 | If the directive is not supported.  |
| ORTED                              |                                     |

## 3.72 Framework: User Kernels

## 3.72.1 Detailed Description

Defines the User Kernels, which are a method to extend OpenVX with new vision functions.

User Kernels can be loaded by OpenVX and included as nodes in the graph or as immediate functions (if the Client supplies the interface). User Kernels will typically be loaded and executed on HLOS/CPU compatible targets, not on remote processors or other accelerators. This specification does not mandate what constitutes compatible platforms.

Figure 3.3: Call sequence of User Kernels Installation



Figure 3.4: Call sequence of a Graph Verify and Release with User Kernels.



Figure 3.5: Call sequence of a Graph Execution with User Kernels

# **Typedefs**

typedef vx\_status(\* vx\_kernel\_deinitialize\_f )(vx\_node node, const vx\_reference \*parameters, vx\_uint32 num)

The pointer to the kernel deinitializer. If the host code requires a call to deinitialize data during a node garbage collection, this function is called if not NULL.

- typedef vx\_status(\* vx\_kernel\_f )(vx\_node node, const vx\_reference \*parameters, vx\_uint32 num)

  The pointer to the Host side kernel.
- typedef vx\_status(\* vx\_kernel\_initialize\_f )(vx\_node node, const vx\_reference \*parameters, vx\_uint32 num)

  The pointer to the kernel initializer. If the host code requires a call to initialize data once all the parameters have been validated, this function is called if not NULL.
- typedef vx\_status(\* vx\_kernel\_input\_validate\_f)(vx\_node node, vx\_uint32 index)

The user-defined kernel node input parameter validation function.

- typedef vx\_status(\* vx\_kernel\_output\_validate\_f)(vx\_node node, vx\_uint32 index, vx\_meta\_format meta)

  The user-defined kernel node output parameter validation function. The function only needs to fill in the meta data structure.
- typedef struct \_vx\_meta\_format \* vx\_meta\_format

This object is used by output validation functions to specify the meta data of the expected output data object. If the output object is an image, the vx\_meta\_format object can additionally store the valid region delta rectangle.

typedef vx\_status(\* vx\_publish\_kernels\_f)(vx\_context context)

The entry point into modules loaded by vxLoadKernels.

#### **Enumerations**

enum vx\_meta\_format\_attribute\_e { VX\_META\_FORMAT\_ATTRIBUTE\_DELTA\_RECTANGLE = ((( VX\_I ← D KHRONOS ) << 20) | ( VX TYPE META FORMAT << 8)) + 0x0 }</li>

The meta format object attributes.

## **Functions**

Allows users to add custom kernels to the known kernel database in OpenVX at run-time. This would primarily be used by the module function vxPublishKernels.

vx\_status VX\_API\_CALL vxAddParameterToKernel (vx\_kernel kernel, vx\_uint32 index, vx\_enum dir, vx\_enum data\_type, vx\_enum state)

Allows users to set the signatures of the custom kernel.

vx\_status VX\_API\_CALL vxFinalizeKernel (vx\_kernel kernel)

This API is called after all parameters have been added to the kernel and the kernel is ready to be used. Notice that the reference to the kernel created by vxAddKernel is still valid after the call to vxFinalizeKernel.

vx status VX API CALL vxLoadKernels (vx context context, const vx char \*module)

Loads one or more kernels into the OpenVX context. This is the interface by which OpenVX is extensible. Once the set of kernels is loaded new kernels and their parameters can be queried.

vx status VX API CALL vxRemoveKernel (vx kernel kernel)

Removes a non-finalized  $vx\_kernel$  from the  $vx\_context$  and releases it. Once a  $vx\_kernel$  has been finalized it cannot be removed.

vx\_status VX\_API\_CALL vxSetKernelAttribute (vx\_kernel kernel, vx\_enum attribute, const void \*ptr, vx\_size size)

Sets kernel attributes.

 vx\_status VX\_API\_CALL vxSetMetaFormatAttribute (vx\_meta\_format meta, vx\_enum attribute, const void \*ptr, vx\_size size)

This function allows a user to set the attributes of a vx\_meta\_format object in a kernel output validator.

## 3.72.2 Typedef Documentation

#### typedef struct \_vx\_meta\_format\* vx\_meta\_format

This object is used by output validation functions to specify the meta data of the expected output data object. If the output object is an image, the vx\_meta\_format object can additionally store the valid region delta rectangle.

#### Note

when the actual output object of the user node is virtual, the information given through the vx\_meta\_format object allows the OpenVX framework to automatically create the data object when meta data were not specified by the application at object creation time.

Definition at line 289 of file vx\_types.h.

## typedef vx\_status( \* vx\_publish\_kernels\_f)(vx\_context context)

The entry point into modules loaded by vxLoadKernels.

#### **Parameters**

| in | context | The handle to the implementation context. |
|----|---------|-------------------------------------------|

#### Note

The symbol exported from the user module must be vxPublishKernels in extern C format.

Definition at line 1189 of file vx\_types.h.

#### typedef vx\_status( \* vx\_kernel\_f)(vx\_node node, const vx\_reference \*parameters, vx\_uint32 num)

The pointer to the Host side kernel.

#### **Parameters**

| in | node       | The handle to the node that contains this kernel. |
|----|------------|---------------------------------------------------|
| in | parameters | The array of parameter references.                |
| in | num        | The number of parameters.                         |

Definition at line 1198 of file vx\_types.h.

# typedef vx\_status( \* vx\_kernel\_initialize\_f)(vx\_node node, const vx\_reference \*parameters, vx\_uint32 num)

The pointer to the kernel initializer. If the host code requires a call to initialize data once all the parameters have been validated, this function is called if not NULL.

#### **Parameters**

| in | node       | The handle to the node that contains this kernel. |
|----|------------|---------------------------------------------------|
| in | parameters | The array of parameter references.                |
| in | num        | The number of parameters.                         |

Definition at line 1209 of file vx\_types.h.

# typedef vx\_status( \* vx\_kernel\_deinitialize\_f)(vx\_node node, const vx\_reference \*parameters, vx\_uint32 num)

The pointer to the kernel deinitializer. If the host code requires a call to deinitialize data during a node garbage collection, this function is called if not NULL.

#### **Parameters**

| in | 1 | node       | The handle to the node that contains this kernel. |
|----|---|------------|---------------------------------------------------|
| in | 1 | parameters | The array of parameter references.                |
| in | 1 | num        | The number of parameters.                         |

Definition at line 1220 of file vx\_types.h.

## typedef vx\_status( \* vx\_kernel\_input\_validate\_f)(vx\_node node, vx\_uint32 index)

The user-defined kernel node input parameter validation function.

#### Note

This function is called once for each VX\_INPUT or VX\_BIDIRECTIONAL parameter index.

#### **Parameters**

| in | node  | The handle to the node that is being validated. |
|----|-------|-------------------------------------------------|
| in | index | The index of the parameter being validated.     |

#### Returns

An error code describing the validation status on this parameter.

#### Return values

| VX_ERROR_INVALID_F↔     | The parameter format was incorrect.                |
|-------------------------|----------------------------------------------------|
| ORMAT                   |                                                    |
| VX_ERROR_INVALID_V↔     | The value of the parameter was incorrect.          |
| ALUE                    |                                                    |
| VX_ERROR_INVALID_DI↔    | The dimensionality of the parameter was incorrect. |
| MENSION                 |                                                    |
| $VX\_ERROR\_INVALID\_P$ | The index was out of bounds.                       |
| ARAMETERS               |                                                    |

Definition at line 1236 of file vx\_types.h.

# typedef vx\_status( \* vx\_kernel\_output\_validate\_f)(vx\_node node, vx\_uint32 index, vx\_meta\_format meta)

The user-defined kernel node output parameter validation function. The function only needs to fill in the meta data structure.

## Note

This function is called once for each VX\_OUTPUT parameter index.

#### **Parameters**

| in | node  | The handle to the node that is being validated.                                  |
|----|-------|----------------------------------------------------------------------------------|
| in | index | The index of the parameter being validated.                                      |
| in | ptr   | A pointer to a pre-allocated structure that the system holds. The validation     |
|    |       | function fills in the correct type, format, and dimensionality for the system to |
|    |       | use either to create memory or to check against existing memory.                 |

#### Returns

An error code describing the validation status on this parameter.

#### Return values

| VX_ERROR_INVALID_P↔ | The index is out of bounds. |
|---------------------|-----------------------------|
| ARAMETERS           |                             |

Definition at line 1252 of file vx\_types.h.

## 3.72.3 Enumeration Type Documentation

## enum vx\_meta\_format\_attribute\_e

The meta format object attributes.

#### Enumerator

**VX\_META\_FORMAT\_ATTRIBUTE\_DELTA\_RECTANGLE** Configures a delta rectangle during kernel output parameter validation. Use a vx\_delta\_rectangle\_t.

Definition at line 978 of file vx\_types.h.

## 3.72.4 Function Documentation

## vx\_status VX\_API\_CALL vxLoadKernels ( vx\_context context, const vx\_char \* module )

Loads one or more kernels into the OpenVX context. This is the interface by which OpenVX is extensible. Once the set of kernels is loaded new kernels and their parameters can be queried.

## Note

When all references to loaded kernels are released, the module may be automatically unloaded.

## **Parameters**

| in | context | The reference to the implementation context.                              |
|----|---------|---------------------------------------------------------------------------|
| in | module  | The short name of the module to load. On systems where there are specific |
|    |         | naming conventions for modules, the name passed should ignore such con-   |
|    |         | ventions. For example: libxyz.so should be passed as just xyz and the     |
|    |         | implementation will do the right thing that the platform requires.        |

## Note

This API uses the system pre-defined paths for modules.

## Returns

A vx\_status\_e enumeration.

#### Return values

| VX_SUCCESS              | No errors.                                    |
|-------------------------|-----------------------------------------------|
| $VX\_ERROR\_INVALID\_R$ | If the context is not a vx_context.           |
| EFERENCE                |                                               |
| $VX\_ERROR\_INVALID\_P$ | If any of the other parameters are incorrect. |
| ARAMETERS               |                                               |

#### See also

## vxGetKernelByName

vx\_kernel VX\_API\_CALL vxAddKernel ( vx\_context context, const vx\_char name[VX\_MAX\_KERNEL\_N AME], vx\_enum enumeration, vx\_kernel\_f func\_ptr, vx\_uint32 numParams, vx\_kernel\_input\_validate\_f input, vx\_kernel\_output\_validate\_f output, vx\_kernel\_initialize\_f init, vx\_kernel\_deinitialize\_f deinit )

Allows users to add custom kernels to the known kernel database in OpenVX at run-time. This would primarily be used by the module function vxPublishKernels.

Parameters

| in | context     | The reference to the implementation context.                       |
|----|-------------|--------------------------------------------------------------------|
| in | name        | The string to use to match the kernel.                             |
| in | enumeration | The enumerated value of the kernel to be used by clients.          |
| in | func_ptr    | The process-local function pointer to be invoked.                  |
| in | numParams   | The number of parameters for this kernel.                          |
| in | input       | The pointer to vx_kernel_input_validate_f, which validates the in- |
|    |             | put parameters to this kernel.                                     |
| in | output      | The pointer to vx_kernel_output_validate_f , which validates the   |
|    |             | output parameters to this kernel.                                  |
| in | init        | The kernel initialization function.                                |
| in | deinit      | The kernel de-initialization function.                             |

## Returns

#### vx\_kernel

### **Return values**

| 0 | Indicates that an error occurred when adding the kernel. |
|---|----------------------------------------------------------|
| * | Kernel added to OpenVX.                                  |

#### vx\_status VX\_API\_CALL vxFinalizeKernel ( vx\_kernel kernel )

This API is called after all parameters have been added to the kernel and the kernel is *ready* to be used. Notice that the reference to the kernel created by vxAddKernel is still valid after the call to vxFinalizeKernel.

Parameters

| in | kernel | The reference to the loaded kernel from vxAddKernel. |
|----|--------|------------------------------------------------------|
|----|--------|------------------------------------------------------|

#### Returns

A vx\_status\_e enumeration. If an error occurs, the kernel is not available for usage by the clients of OpenVX. Typically this is due to a mismatch between the number of parameters requested and given.

## Precondition

vxAddKernel and vxAddParameterToKernel

vx\_status VX\_API\_CALL vxAddParameterToKernel ( vx\_kernel kernel, vx\_uint32 index, vx\_enum dir, vx\_enum data\_type, vx\_enum state )

Allows users to set the signatures of the custom kernel.

#### **Parameters**

| in | kernel    | The reference to the kernel added with vxAddKernel.                                         |
|----|-----------|---------------------------------------------------------------------------------------------|
| in | index     | The index of the parameter to add.                                                          |
| in | dir       | The direction of the parameter. This must be either $VX\_INPUT$ or $VX\_OUT \leftarrow$     |
|    |           | PUT. VX_BIDIRECTIONAL is not supported for this function.                                   |
| in | data_type | The type of parameter. This must be a value from vx_type_e.                                 |
| in | state     | The state of the parameter (required or not). This must be a value from $vx$ _ $\leftarrow$ |
|    |           | parameter_state_e.                                                                          |

#### Returns

A vx\_status\_e enumerated value.

#### Return values

| VX_SUCCESS                         | Parameter is successfully set on kernel.        |
|------------------------------------|-------------------------------------------------|
| $VX\_ERROR\_INVALID\_R \leftarrow$ | The value passed as kernel was not a vx_kernel. |
| EFERENCE                           |                                                 |

## Precondition

vxAddKernel

## vx\_status VX\_API\_CALL vxRemoveKernel ( vx\_kernel kernel )

Removes a non-finalized  $vx\_kernel$  from the  $vx\_context$  and releases it. Once a  $vx\_kernel$  has been finalized it cannot be removed. Parameters

| in | kernel | The reference to the kernel to remove. Returned from vxAddKernel. |
|----|--------|-------------------------------------------------------------------|

## Note

Any kernel enumerated in the base standard cannot be removed; only kernels added through vxAddKernel can be removed.

## Returns

A vx\_status\_e enumeration.

#### Return values

| $VX\_ERROR\_INVALID\_R$ | If an invalid kernel is passed in. |
|-------------------------|------------------------------------|
| EFERENCE                |                                    |
| VX_ERROR_INVALID_P↔     | If a base kernel is passed in.     |
| ARAMETER                |                                    |

# 

Sets kernel attributes.

**Parameters** 

| in | kernel    | The reference to the kernel.                                  |
|----|-----------|---------------------------------------------------------------|
| in | attribute | The enumeration of the attributes. See vx_kernel_attribute_e. |

| in | ptr  | The pointer to the location from which to read the attribute.        |  |
|----|------|----------------------------------------------------------------------|--|
| in | size | The size in bytes of the data area indicated by <i>ptr</i> in bytes. |  |

#### Note

After a kernel has been passed to vxFinalizeKernel, no attributes can be altered.

#### Returns

A vx\_status\_e enumeration.

# vx\_status VX\_API\_CALL vxSetMetaFormatAttribute ( vx\_meta\_format meta, vx\_enum attribute, const void \* ptr, vx\_size size )

This function allows a user to set the attributes of a vx\_meta\_format object in a kernel output validator.

The vx\_meta\_format object contains two types of information : data object meta data and some specific information that defines how the valid region of an image changes

The meta data attributes that can be set are identified by this list:

- vx\_image: VX\_IMAGE\_ATTRIBUTE\_FORMAT, VX\_IMAGE\_ATTRIBUTE\_HEIGHT, VX\_IMAGE\_ATTRIB
   UTE\_WIDTH
- vx\_array : VX\_ARRAY\_ATTRIBUTE\_CAPACITY, VX\_ARRAY\_ATTRIBUTE\_ITEMTYPE
- vx\_pyramid : VX\_PYRAMID\_ATTRIBUTE\_FORMAT, VX\_PYRAMID\_ATTRIBUTE\_HEIGHT, VX\_PYRAM

  ID\_ATTRIBUTE\_WIDTH, VX\_PYRAMID\_ATTRIBUTE\_LEVELS, VX\_PYRAMID\_ATTRIBUTE\_SCALE
- vx\_scalar : VX\_SCALAR\_ATTRIBUTE\_TYPE
- vx\_matrix : VX\_MATRIX\_ATTRIBUTE\_TYPE, VX\_MATRIX\_ATTRIBUTE\_ROWS, VX\_MATRIX\_ATTRIB

  UTE\_COLUMNS
- vx\_remap: VX\_REMAP\_ATTRIBUTE\_SOURCE\_WIDTH, VX\_REMAP\_ATTRIBUTE\_SOURCE\_HEIGHT, VX\_REMAP\_ATTRIBUTE\_DESTINATION\_WIDTH, VX\_REMAP\_ATTRIBUTE\_DESTINATION\_HEIGHT
- vx\_lut: VX\_LUT\_ATTRIBUTE\_TYPE, VX\_LUT\_ATTRIBUTE\_COUNT
- vx\_threshold : VX\_THRESHOLD\_ATTRIBUTE\_TYPE
- VX\_META\_FORMAT\_ATTRIBUTE\_DELTA\_RECTANGLE

#### Note

For vx\_image, a specific attribute can be used to specify the valid region evolution. This information is not a meta data.

#### **Parameters**

| in | meta      | The reference to the vx_meta_format struct to set                                 |  |
|----|-----------|-----------------------------------------------------------------------------------|--|
| in | attribute | Use the subset of data object attributes that define the meta data of this object |  |
|    |           | or attributes from vx_meta_format_attribute_e.                                    |  |
| in | ptr       | The input pointer of the value to set on the meta format object.                  |  |
| in | size      | The size in bytes of the object to which ptr points.                              |  |

## Returns

A vx\_status\_e enumeration.

## **Return values**

| VX_SUCCESS                         | The attribute was set.                                            |
|------------------------------------|-------------------------------------------------------------------|
| VX_ERROR_INVALID_R↔                | meta was not a vx_meta_format.                                    |
| EFERENCE                           |                                                                   |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | size was not correct for the type needed.                         |
| ARAMETER                           |                                                                   |
| VX_ERROR_NOT_SUPP↔                 | the object attribute was not supported on the meta format object. |
| ORTED                              |                                                                   |
| VX_ERROR_INVALID_TY↔               | attribute type did not match known meta format type.              |
| PE                                 |                                                                   |

# 3.73 Framework: Graph Parameters

## 3.73.1 Detailed Description

Defines the Graph Parameter API.

Graph parameters allow Clients to create graphs with Client settable parameters. Clients can then create Graph creation methods (a.k.a. *Graph Factories*). When creating these factories, the client will typically not be able to use the standard Node creator functions such as vxSobel3x3Node but instead will use the *manual* method via vxCreateGenericNode.

```
vx_graph vxCornersGraphFactory(vx_context context)
    vx_status status = VX_SUCCESS;
    vx_uint32
    vx_float32 strength_thresh = 10000.0f;
    vx_float32 r = 1.5f;
    vx_float32 sensitivity = 0.14f;
    vx int32 window size = 3;
    vx_int32 block_size = 3;
    vx_enum channel = VX_CHANNEL_Y;
    vx_graph graph = vxCreateGraph(context);
    if (vxGetStatus((vx_reference)graph) == VX_SUCCESS)
        vx_image virts[] = {
            vxCreateVirtualImage(graph, 0, 0,
      VX_DF_IMAGE_VIRT),
             vxCreateVirtualImage(graph, 0, 0,
      VX_DF_IMAGE_VIRT),
        vx_kernel kernels[] = {
            vxGetKernelByEnum(context,
      VX_KERNEL_CHANNEL_EXTRACT),
             vxGetKernelByEnum(context, VX_KERNEL_MEDIAN_3x3),
             vxGetKernelByEnum(context, VX_KERNEL_HARRIS_CORNERS),
        vx_node nodes[dimof(kernels)] = {
             {\tt vxCreateGenericNode}\,({\tt graph},\ {\tt kernels[0]})\,,
             vxCreateGenericNode(graph, kernels[1]),
             vxCreateGenericNode(graph, kernels[2]),
         vx_scalar scalars[] = {
            vxCreateScalar(context, VX_TYPE_ENUM, &channel),
vxCreateScalar(context, VX_TYPE_FLOAT32, &strength_thresh),
vxCreateScalar(context, VX_TYPE_FLOAT32, &r),
             vxCreateScalar(context, VX_TYPE_FLOAT32, &sensitivity),
             vxCreateScalar(context, VX_TYPE_INT32, &window_size),
             vxCreateScalar(context, VX_TYPE_INT32, &block_size),
        vx_parameter parameters[] = {
            vxGetParameterByIndex(nodes[0], 0),
vxGetParameterByIndex(nodes[2], 6)
         // Channel Extract
        status |= vxAddParameterToGraph(graph, parameters[0]);
        status \mid= vxSetParameterByIndex(nodes[0], 1, (
      vx_reference) scalars[0]);
        status |= vxSetParameterByIndex(nodes[0], 2, (
      vx_reference) virts[0]);
        // Median Filter
        status |= vxSetParameterByIndex(nodes[1], 0, (
      vx_reference)virts[0]);
status |= vxSetParameterByIndex(nodes[1], 1, (
      vx reference)virts[1]);
        // Harris Corners
        status |= vxSetParameterByIndex(nodes[2], 0, (
      vx_reference) virts[1]);
        status |= vxSetParameterByIndex(nodes[2], 1, (
      vx_reference)scalars[1]);
        status |= vxSetParameterByIndex(nodes[2], 2, (
      vx reference)scalars[2]);
        status |= vxSetParameterByIndex(nodes[2], 3, (
      vx_reference) scalars[3]);
        status |= vxSetParameterByIndex(nodes[2], 4, (
      vx_reference) scalars[4]);
        status |= vxSetParameterByIndex(nodes[2], 5, (
      vx_reference) scalars[5]);
        status |= vxAddParameterToGraph(graph, parameters[1]);
        for (i = 0; i < dimof(scalars); i++)
            vxReleaseScalar(&scalars[i]);
         for (i = 0; i < dimof(virts); i++)</pre>
```

```
{
    vxReleaseImage(&virts[i]);
}
for (i = 0; i < dimof(kernels); i++)
{
    vxReleaseKernel(&kernels[i]);
}
for (i = 0; i < dimof(nodes); i++)
{
    vxReleaseNode(&nodes[i]);
}
for (i = 0; i < dimof(parameters); i++)
{
    vxReleaseParameter(&parameters[i]);
}
}
return graph;
}</pre>
```

Some data are contained in these Graphs and do not become exposed to Clients of the factory. This allows ISVs or Vendors to create custom IP or IP-sensitive factories that Clients can use but may not be able to determine what is inside the factory. As the graph contains internal references to the data, the objects will not be freed until the graph itself is released.

#### **Functions**

- vx\_status VX\_API\_CALL vxAddParameterToGraph (vx\_graph graph, vx\_parameter parameter)
   Adds the given parameter extracted from a vx\_node to the graph.
- vx\_parameter VX\_API\_CALL vxGetGraphParameterByIndex (vx\_graph graph, vx\_uint32 index)

  \*Retrieves a vx\_parameter from a vx\_graph.
- vx\_status VX\_API\_CALL vxSetGraphParameterByIndex (vx\_graph graph, vx\_uint32 index, vx\_reference value)

Sets a reference to the parameter on the graph. The implementation must set this parameter on the originating node as well.

#### 3.73.2 Function Documentation

## vx\_status VX\_API\_CALL vxAddParameterToGraph ( vx\_graph graph, vx\_parameter parameter )

Adds the given parameter extracted from a  $vx\_node$  to the graph. Parameters

| in | graph     | The graph reference that contains the node.                |  |
|----|-----------|------------------------------------------------------------|--|
| in | parameter | The parameter reference to add to the graph from the node. |  |

### Returns

A vx status e enumeration.

#### Return values

| VX_SUCCE           | SS Parameter added to Graph.                                   |
|--------------------|----------------------------------------------------------------|
| VX_ERROR_INVALID_I | R← The parameter is not a valid vx_parameter.                  |
| EFEREN             | CE                                                             |
| VX_ERROR_INVALID_I | $P_{\leftarrow}$ The parameter is of a node not in this graph. |
| ARAMET             | ER                                                             |

# vx\_status VX\_API\_CALL vxSetGraphParameterByIndex ( vx\_graph graph, vx\_uint32 index, vx\_reference value )

Sets a reference to the parameter on the graph. The implementation must set this parameter on the originating node as well.

#### **Parameters**

| in | graph | graph The graph reference.             |  |
|----|-------|----------------------------------------|--|
| in | index | The parameter index.                   |  |
| in | value | The reference to set to the parameter. |  |

## Returns

A  $vx\_status\_e$  enumeration.

## Return values

| VX_SUCCESS                         | Parameter set to Graph.                                                 |
|------------------------------------|-------------------------------------------------------------------------|
| $VX\_ERROR\_INVALID\_R$            | The value is not a valid vx_reference.                                  |
| EFERENCE                           |                                                                         |
| $VX\_ERROR\_INVALID\_P \leftarrow$ | The parameter index is out of bounds or the dir parameter is incorrect. |
| ARAMETER                           |                                                                         |

# vx\_parameter VX\_API\_CALL vxGetGraphParameterByIndex ( vx\_graph graph, vx\_uint32 index )

Retrieves a  $vx\_parameter$  from a  $vx\_graph$ . Parameters

| in | graph | The graph.                  |  |
|----|-------|-----------------------------|--|
| in | index | The index of the parameter. |  |

#### Returns

vx\_parameter reference.

## Return values

| 0 | if the index is out of bounds. |
|---|--------------------------------|
| * | The parameter reference.       |

# **Bibliography**

- [1] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker description of the algorithm, 2000. 83
- [2] J Canny. A computational approach to edge detection. *IEEE Trans. Pattern Anal. Mach. Intell.*, 8(6):679–698, June 1986. 46
- [3] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection. In *European Conference on Computer Vision*, volume 1, pages 430–443, May 2006. 26, 64
- [4] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine learning approach to corner detection. *IEEE Trans. Pattern Analysis and Machine Intelligence*, 32:105–119, October 2010. 26, 64

# Index

| Abaduta Difference 00                         | VV ENUM NODM TVDE 447                       |
|-----------------------------------------------|---------------------------------------------|
| Absolute Difference, 28                       | VX_ENUM_NORM_TYPE, 117                      |
| Accumulate, 29                                | VX_ENUM_OVERFLOW, 116                       |
| Accumulate Squared, 30                        | VX_ENUM_PARAMETER_STATE, 117                |
| Accumulate Weighted, 32                       | VX_ENUM_ROUND_POLICY, 117                   |
| Administrative Features, 192                  | VX_ENUM_TERM_CRITERIA, 117                  |
| Advanced Objects, 193                         | VX_ENUM_THRESHOLD_TYPE, 117                 |
| Arithmetic Addition, 34                       | VX_ERROR_GRAPH_ABANDONED, 115               |
| Arithmetic Subtraction, 36                    | VX_ERROR_GRAPH_SCHEDULED, 115               |
| D 1 5 1 100                                   | VX_ERROR_INVALID_DIMENSION, 115             |
| Basic Features, 106                           | VX_ERROR_INVALID_FORMAT, 115                |
| VX_CHANNEL_0, 118                             | VX_ERROR_INVALID_GRAPH, 115                 |
| VX_CHANNEL_1, 118                             | VX_ERROR_INVALID_LINK, 115                  |
| VX_CHANNEL_2, 118                             | VX_ERROR_INVALID_MODULE, 116                |
| VX_CHANNEL_3, 118                             | VX_ERROR_INVALID_NODE, 115                  |
| VX_CHANNEL_A, 118                             | VX_ERROR_INVALID_PARAMETERS, 116            |
| VX_CHANNEL_B, 118                             | VX_ERROR_INVALID_REFERENCE, 116             |
| VX_CHANNEL_G, 118                             | VX_ERROR_INVALID_SCOPE, 115                 |
| VX_CHANNEL_R, 118                             | VX_ERROR_INVALID_TYPE, 115                  |
| VX_CHANNEL_U, 118                             | VX_ERROR_INVALID_VALUE, 115                 |
| VX_CHANNEL_V, 118                             | VX ERROR MULTIPLE WRITERS, 115              |
| VX_CHANNEL_Y, 118                             | VX_ERROR_NO_MEMORY, 116                     |
| VX_CONVERT_POLICY_SATURATE, 117               | VX_ERROR_NO_RESOURCES, 116                  |
| VX_CONVERT_POLICY_WRAP, 117                   | VX_ERROR_NOT_ALLOCATED, 116                 |
| VX_DF_IMAGE_IYUV, 117                         | VX ERROR NOT COMPATIBLE, 116                |
| VX_DF_IMAGE_NV12, 117                         | VX_ERROR_NOT_IMPLEMENTED, 116               |
| VX_DF_IMAGE_NV21, 117                         | VX_ERROR_NOT_SUFFICIENT, 116                |
| VX_DF_IMAGE_RGB, 117                          | VX_ERROR_NOT_SUPPORTED, 116                 |
| VX_DF_IMAGE_RGBX, 117                         | VX_ERROR_OPTIMIZED_AWAY, 116                |
| VX_DF_IMAGE_S16, 118                          | VX_ERROR_REFERENCE_NONZERO, 115             |
| VX_DF_IMAGE_S32, 118                          | VX FAILURE, 116                             |
| VX_DF_IMAGE_U16, 118                          | VX ID AMD, 119                              |
| VX_DF_IMAGE_U32, 118                          | VX_ID_ARM, 119                              |
| VX_DF_IMAGE_U8, 117                           | VX_ID_AXIS, 119                             |
| VX DF IMAGE UYVY, 117                         | VX_ID_BDTI, 119                             |
| VX DF IMAGE VIRT, 117                         | VX_ID_BROADCOM, 119                         |
| VX_DF_IMAGE_YUV4, 117                         | VX_ID_BHOADGOM, 113 VX ID CEVA, 119         |
| VX_DF_IMAGE_YUYV, 117                         | VX_ID_COGNIVUE, 119                         |
| VX ENUM ACCESSOR, 117                         | VX_ID_COCKIVGE, 119 VX_ID_DEFAULT, 119      |
| VX ENUM ACTION, 116                           | VX_ID_BELLACET, 119 VX_ID_FREESCALE, 119    |
| VX ENUM BORDER MODE, 117                      | VX_ID_FREESOALE, 119 VX_ID_IMAGINATION, 119 |
| VX ENUM CHANNEL, 117                          | VX_ID_IMAGINATION, 119 VX ID INTEL, 119     |
| VX ENUM COLOR RANGE, 117                      | — — ·                                       |
| VX ENUM COLOR SPACE, 116                      | VX_ID_KHRONOS_110                           |
| VX ENUM COMPARISON, 117                       | VX_ID_KHRONOS, 119                          |
| VX_ENUM_CONVERT_POLICY, 117                   | VX_ID_MARVELL, 119                          |
| VX_ENUM_DIRECTION, 116                        | VX_ID_MEDIATEK, 119                         |
| VX_ENUM_DIRECTION, 116 VX ENUM_DIRECTIVE, 116 | VX_ID_MOVIDIUS, 119                         |
| VX_ENUM_HINT, 116                             | VX_ID_NVIDIA, 119                           |
| VX_ENUM_HINT, TT6  VX ENUM_IMPORT_MEM, 117    | VX_ID_QUALCOMM, 119                         |
|                                               | VX_ID_RENESAS, 119                          |
| VX_ENUM_INTERPOLATION, 116                    |                                             |

| VX_ID_SAMSUNG, 119                    | VX_TYPE_VENDOR_OBJECT_START, 115   |
|---------------------------------------|------------------------------------|
| VX_ID_ST, 119                         | VX_TYPE_VENDOR_STRUCT_END, 114     |
| VX_ID_SYNOPSYS, 119                   | VX_TYPE_VENDOR_STRUCT_START, 114   |
| VX_ID_TI, 119                         | vx_false_e, 114                    |
| VX_ID_VIDEANTIS, 119                  | vx_true_e, 114                     |
| VX_ID_VIVANTE, 119                    | Box Filter, 45                     |
| VX ID XILINX, 119                     | ,                                  |
| VX_INTERPOLATION_TYPE_AREA, 119       | Canny Edge Detector, 46            |
| VX INTERPOLATION TYPE BILINEAR, 119   | VX_NORM_L1, 47                     |
| VX_INTERPOLATION_TYPE_NEAREST_NEIG↔   | VX NORM L2, 47                     |
| HBOR, 119                             | Channel Combine, 49                |
|                                       | Channel Extract, 51                |
| VX_STATUS_MIN, 115                    | Color Convert, 53                  |
| VX_SUCCESS, 116                       | Convert Bit depth, 57              |
| VX_TYPE_ARRAY, 115                    | Custom Convolution, 59             |
| VX_TYPE_BOOL, 114                     | Gustom Gonvoiution, 59             |
| VX_TYPE_CHAR, 114                     | Dilate Image, 61                   |
| VX_TYPE_CONTEXT, 114                  | Dilate inage, or                   |
| VX_TYPE_CONVOLUTION, 115              | Equalize Histogram, 62             |
| VX_TYPE_COORDINATES2D, 114            | Erode Image, 63                    |
| VX_TYPE_COORDINATES3D, 114            | Liode image, 03                    |
| VX_TYPE_DELAY, 115                    | Fast Corners, 64                   |
| VX_TYPE_DF_IMAGE, 114                 | Framework: Directives              |
| VX_TYPE_DISTRIBUTION, 115             | VX_DIRECTIVE_DISABLE_LOGGING, 227  |
| VX TYPE ENUM, 114                     |                                    |
| VX TYPE ERROR, 115                    | VX_DIRECTIVE_ENABLE_LOGGING, 227   |
| VX TYPE FLOAT32, 114                  | Framework: Hints                   |
| VX TYPE FLOAT64, 114                  | VX_HINT_SERIALIZE, 225             |
| VX_TYPE_GRAPH, 114                    | Framework: Node Callbacks          |
| VX_TYPE_IMAGE, 115                    | VX_ACTION_ABANDON, 220             |
| VX_TYPE_IMAGE, 113 VX TYPE INT16, 114 | VX_ACTION_CONTINUE, 220            |
|                                       | Framework: User Kernels            |
| VX_TYPE_INT32, 114                    | VX_META_FORMAT_ATTRIBUTE_DELTA_RE↔ |
| VX_TYPE_INT64, 114                    | CTANGLE, 233                       |
| VX_TYPE_INT8, 114                     |                                    |
| VX_TYPE_INVALID, 114                  | Gaussian Filter, 67                |
| VX_TYPE_KERNEL, 115                   | Gaussian Image Pyramid, 72         |
| VX_TYPE_KEYPOINT, 114                 |                                    |
| VX_TYPE_LUT, 115                      | Harris Corners, 68                 |
| VX_TYPE_MATRIX, 115                   | Histogram, 71                      |
| VX_TYPE_META_FORMAT, 115              |                                    |
| VX_TYPE_NODE, 115                     | Integral Image, 74                 |
| VX_TYPE_OBJECT_MAX, 115               |                                    |
| VX_TYPE_PARAMETER, 115                | Magnitude, 76                      |
| VX_TYPE_PYRAMID, 115                  | Mean and Standard Deviation, 78    |
| VX_TYPE_RECTANGLE, 114                | Median Filter, 80                  |
| VX_TYPE_REFERENCE, 114                | Min, Max Location, 81              |
| VX TYPE REMAP, 115                    |                                    |
| VX TYPE SCALAR, 115                   | Node: Border Modes                 |
| VX TYPE SCALAR MAX, 114               | VX_BORDER_MODE_CONSTANT, 196       |
| VX_TYPE_SIZE, 114                     | VX_BORDER_MODE_REPLICATE, 196      |
| VX_TYPE_STRUCT_MAX, 114               | VX_BORDER_MODE_UNDEFINED, 196      |
| VX_TYPE_THRESHOLD, 115                |                                    |
|                                       | Object: Array                      |
| VX_TYPE_UINT16, 114                   | VX_ARRAY_ATTRIBUTE_CAPACITY, 141   |
| VX_TYPE_UINT32, 114                   | VX_ARRAY_ATTRIBUTE_ITEMSIZE, 141   |
| VX_TYPE_UINT64, 114                   | VX_ARRAY_ATTRIBUTE_ITEMTYPE, 141   |
| VX_TYPE_UINT8, 114                    | VX_ARRAY_ATTRIBUTE_NUMITEMS, 141   |
| VX_TYPE_USER_STRUCT_END, 114          | Object: Context                    |
| VX_TYPE_USER_STRUCT_START, 114        | VX_CONTEXT_ATTRIBUTE_CONVOLUTION_← |
| VX_TYPE_VENDOR_OBJECT_END, 115        | MAXIMUM_DIMENSION, 126             |
|                                       |                                    |

| VX_CONTEXT_ATTRIBUTE_EXTENSIONS, 126  | VX_IMAGE_ATTRIBUTE_FORMAT, 156      |
|---------------------------------------|-------------------------------------|
| VX_CONTEXT_ATTRIBUTE_EXTENSIONS_SI↔   | VX_IMAGE_ATTRIBUTE_HEIGHT, 156      |
| ZE, 126                               | VX_IMAGE_ATTRIBUTE_PLANES, 156      |
| VX_CONTEXT_ATTRIBUTE_IMMEDIATE_BOR←   | VX_IMAGE_ATTRIBUTE_RANGE, 157       |
| DER_MODE, 126                         | VX_IMAGE_ATTRIBUTE_SIZE, 157        |
| VX CONTEXT ATTRIBUTE IMPLEMENTATION,  | VX IMAGE ATTRIBUTE SPACE, 156       |
| 126                                   | VX IMAGE ATTRIBUTE WIDTH, 156       |
| VX_CONTEXT_ATTRIBUTE_MODULES, 125     | Object: Kernel                      |
| VX_CONTEXT_ATTRIBUTE_OPTICAL_FLOW_    | VX_KERNEL_ABSDIFF, 205              |
| WINDOW MAXIMUM DIMENSION, 126         | VX KERNEL ACCUMULATE, 205           |
| VX CONTEXT ATTRIBUTE REFERENCES, 126  | VX KERNEL ACCUMULATE SQUARE, 206    |
| VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNE↔    | VX_KERNEL_ACCUMULATE_WEIGHTED, 205  |
| L TABLE, 126                          | VX_KERNEL_ADD, 206                  |
| VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNE↔    | VX_KERNEL AND, 206                  |
|                                       |                                     |
| LS, 125                               | VX_KERNEL_ATTRIBUTE_ENUM, 207       |
| VX_CONTEXT_ATTRIBUTE_VENDOR_ID, 125   | VX_KERNEL_ATTRIBUTE_LOCAL_DATA_PTR, |
| VX_CONTEXT_ATTRIBUTE_VERSION, 125     | 207                                 |
| VX_IMPORT_TYPE_HOST, 126              | VX_KERNEL_ATTRIBUTE_LOCAL_DATA_SIZE |
| VX_IMPORT_TYPE_NONE, 126              | 207                                 |
| VX_READ_AND_WRITE, 127                | VX_KERNEL_ATTRIBUTE_NAME, 207       |
| VX_READ_ONLY, 127                     | VX_KERNEL_ATTRIBUTE_PARAMETERS, 207 |
| VX_ROUND_POLICY_TO_NEAREST_EVEN, 127  | VX_KERNEL_BOX_3x3, 205              |
| VX_ROUND_POLICY_TO_ZERO, 127          | VX_KERNEL_CANNY_EDGE_DETECTOR, 206  |
| VX_TERM_CRITERIA_BOTH, 127            | VX_KERNEL_CHANNEL_COMBINE, 204      |
| VX_TERM_CRITERIA_EPSILON, 127         | VX_KERNEL_CHANNEL_EXTRACT, 204      |
| VX_TERM_CRITERIA_ITERATIONS, 127      | VX_KERNEL_COLOR_CONVERT, 204        |
| VX_WRITE_ONLY, 127                    | VX_KERNEL_CONVERTDEPTH, 206         |
| Object: Convolution                   | VX_KERNEL_CUSTOM_CONVOLUTION, 205   |
| VX_CONVOLUTION_ATTRIBUTE_COLUMNS,     | VX_KERNEL_DILATE_3x3, 205           |
| 147                                   | VX_KERNEL_EQUALIZE_HISTOGRAM, 205   |
| VX_CONVOLUTION_ATTRIBUTE_ROWS, 147    | VX_KERNEL_ERODE_3x3, 205            |
| VX_CONVOLUTION_ATTRIBUTE_SCALE, 147   | VX_KERNEL_FAST_CORNERS, 207         |
| VX_CONVOLUTION_ATTRIBUTE_SIZE, 148    | VX_KERNEL_GAUSSIAN_3x3, 205         |
| Object: Delay                         | VX_KERNEL_GAUSSIAN_PYRAMID, 205     |
| VX_DELAY_ATTRIBUTE_SLOTS, 197         | VX_KERNEL_HALFSCALE_GAUSSIAN, 207   |
| VX_DELAY_ATTRIBUTE_TYPE, 197          | VX_KERNEL_HARRIS_CORNERS, 206       |
| Object: Distribution                  | VX_KERNEL_HISTOGRAM, 204            |
| VX_DISTRIBUTION_ATTRIBUTE_BINS, 151   | VX_KERNEL_INTEGRAL_IMAGE, 205       |
| VX_DISTRIBUTION_ATTRIBUTE_DIMENSIONS, | VX_KERNEL_INVALID, 204              |
| 150                                   | VX_KERNEL_MAGNITUDE, 204            |
| VX_DISTRIBUTION_ATTRIBUTE_OFFSET, 150 | VX_KERNEL_MEAN_STDDEV, 205          |
| VX_DISTRIBUTION_ATTRIBUTE_RANGE, 150  | VX_KERNEL_MEDIAN_3x3, 205           |
| VX_DISTRIBUTION_ATTRIBUTE_SIZE, 151   | VX_KERNEL_MINMAXLOC, 206            |
| VX_DISTRIBUTION_ATTRIBUTE_WINDOW, 151 | VX_KERNEL_MULTIPLY, 206             |
| Object: Graph                         | VX_KERNEL_NOT, 206                  |
| VX_GRAPH_ATTRIBUTE_NUMNODES, 132      | VX_KERNEL_OPTICAL_FLOW_PYR_LK, 207  |
| VX GRAPH ATTRIBUTE NUMPARAMETERS,     | VX_KERNEL_OR, 206                   |
| 132                                   | VX_KERNEL_PHASE, 204                |
| VX_GRAPH_ATTRIBUTE_PERFORMANCE, 132   | VX_KERNEL_REMAP, 207                |
| VX_GRAPH_ATTRIBUTE_STATUS, 132        | VX_KERNEL_SCALE_IMAGE, 204          |
| Object: Image                         | VX_KERNEL_SOBEL_3x3, 204            |
| VX_CHANNEL_RANGE_FULL, 157            | VX_KERNEL_SUBTRACT, 206             |
| VX_CHANNEL_RANGE_RESTRICTED, 157      | VX_KERNEL_TABLE_LOOKUP, 204         |
| VX_COLOR_SPACE_BT601_525, 157         | VX_KERNEL_THRESHOLD, 205            |
| VX_COLOR_SPACE_BT601_625, 157         | VX_KERNEL_WARP_AFFINE, 206          |
| VX_COLOR_SPACE_BT709, 157             | VX_KERNEL_WARP_PERSPECTIVE, 206     |
| VX_COLOR_SPACE_DEFAULT, 157           | VX_KERNEL_XOR, 206                  |
| VX_COLOR_SPACE_NONE, 157              | Object: LUT                         |
| , -                                   |                                     |

| VX_LUT_ATTRIBUTE_COUNT, 171                             | VX_THRESHOLD_ATTRIBUTE_TRUE_VALUE, |
|---------------------------------------------------------|------------------------------------|
| VX_LUT_ATTRIBUTE_SIZE, 171                              | 190                                |
| VX_LUT_ATTRIBUTE_TYPE, 171                              | VX_THRESHOLD_ATTRIBUTE_TYPE, 190   |
| Object: Matrix                                          | VX_THRESHOLD_TYPE_BINARY, 189      |
| VX_MATRIX_ATTRIBUTE_COLUMNS, 175                        | VX_THRESHOLD_TYPE_RANGE, 189       |
| VX_MATRIX_ATTRIBUTE_ROWS, 175                           | Objects, 121                       |
| VX_MATRIX_ATTRIBUTE_SIZE, 175                           |                                    |
| VX_MATRIX_ATTRIBUTE_TYPE, 175                           | Phase, 87                          |
| Object: Node                                            | Pixel-wise Multiplication, 89      |
| VX_NODE_ATTRIBUTE_BORDER_MODE, 138                      | Deman 04                           |
| VX_NODE_ATTRIBUTE_LOCAL_DATA_PTR,                       | Remap, 91                          |
| 138                                                     | Scale Image, 93                    |
| VX_NODE_ATTRIBUTE_LOCAL_DATA_SIZE,                      | Sobel 3x3, 97                      |
| 138                                                     | Cobel Oxo, S7                      |
| VX_NODE_ATTRIBUTE_PERFORMANCE, 138                      | Thresholding, 100                  |
| VX_NODE_ATTRIBUTE_STATUS, 138                           | ,                                  |
| Object: Parameter                                       | VX_ACTION_ABANDON                  |
| VX_BIDIRECTIONAL, 212                                   | Framework: Node Callbacks, 220     |
| VX_INPUT, 212                                           | VX_ACTION_CONTINUE                 |
| VX_OUTPUT, 212                                          | Framework: Node Callbacks, 220     |
| VX_PARAMETER_ATTRIBUTE_DIRECTION, 212                   | VX_ARRAY_ATTRIBUTE_CAPACITY        |
| VX_PARAMETER_ATTRIBUTE_INDEX, 212                       | Object: Array, 141                 |
| VX_PARAMETER_ATTRIBUTE_REF, 212                         | VX_ARRAY_ATTRIBUTE_ITEMSIZE        |
| VX_PARAMETER_ATTRIBUTE_STATE, 212                       | Object: Array, 141                 |
| VX_PARAMETER_ATTRIBUTE_TYPE, 212                        | VX_ARRAY_ATTRIBUTE_ITEMTYPE        |
| VX_PARAMETER_STATE_OPTIONAL, 212                        | Object: Array, 141                 |
| VX_PARAMETER_STATE_REQUIRED, 212                        | VX_ARRAY_ATTRIBUTE_NUMITEMS        |
| Object: Pyramid                                         | Object: Array, 141                 |
| VX_PYRAMID_ATTRIBUTE_FORMAT, 179                        | VX_BIDIRECTIONAL                   |
| VX_PYRAMID_ATTRIBUTE_HEIGHT, 179                        | Object: Parameter, 212             |
| VX_PYRAMID_ATTRIBUTE_LEVELS, 179                        | VX_BORDER_MODE_CONSTANT            |
| VX_PYRAMID_ATTRIBUTE_SCALE, 179                         | Node: Border Modes, 196            |
| VX_PYRAMID_ATTRIBUTE_WIDTH, 179                         | VX_BORDER_MODE_REPLICATE           |
| Object: Reference                                       | Node: Border Modes, 196            |
| VX_REF_ATTRIBUTE_COUNT, 122                             | VX_BORDER_MODE_UNDEFINED           |
| VX_REF_ATTRIBUTE_TYPE, 122                              | Node: Border Modes, 196            |
| Object: Remap                                           | VX_CHANNEL_0                       |
| VX_REMAP_ATTRIBUTE_DESTINATION_HEI↔                     | Basic Features, 118                |
| GHT, 182                                                | VX_CHANNEL_1                       |
| $VX\_REMAP\_ATTRIBUTE\_DESTINATION\_WID$                | Basic Features, 118                |
| TH, 182                                                 | VX_CHANNEL_2                       |
| VX_REMAP_ATTRIBUTE_SOURCE_HEIGHT,                       | Basic Features, 118                |
| 182                                                     | VX_CHANNEL_3                       |
| VX_REMAP_ATTRIBUTE_SOURCE_WIDTH, 182                    | Basic Features, 118                |
| Object: Scalar                                          | VX_CHANNEL_A                       |
| VX_SCALAR_ATTRIBUTE_TYPE, 186                           | Basic Features, 118                |
| Object: Threshold                                       | VX_CHANNEL_B                       |
| VX_THRESHOLD_ATTRIBUTE_DATA_TYPE,                       | Basic Features, 118                |
| 190                                                     | VX_CHANNEL_G                       |
| VX_THRESHOLD_ATTRIBUTE_FALSE_VALUE,                     | Basic Features, 118                |
| 190                                                     | VX_CHANNEL_R                       |
| $VX\_THRESHOLD\_ATTRIBUTE\_THRESHOLD\_{\leftarrow}$     | Basic Features, 118                |
| LOWER, 190                                              | VX_CHANNEL_RANGE_FULL              |
| $VX\_THRESHOLD\_ATTRIBUTE\_THRESHOLD\_{\leftarrow}$     | Object: Image, 157                 |
| UPPER, 190                                              | VX_CHANNEL_RANGE_RESTRICTED        |
| $VX\_THRESHOLD\_ATTRIBUTE\_THRESHOLD\_{\hookleftarrow}$ | Object: Image, 157                 |
| VALUE, 190                                              | VX_CHANNEL_U                       |
|                                                         | Basic Features, 118                |

| VX_CHANNEL_V                           | VX_DF_IMAGE_IYUV                     |
|----------------------------------------|--------------------------------------|
| Basic Features, 118                    | Basic Features, 117                  |
| VX_CHANNEL_Y                           | VX_DF_IMAGE_NV12                     |
| Basic Features, 118                    | Basic Features, 117                  |
| VX_COLOR_SPACE_BT601_525               | VX_DF_IMAGE_NV21                     |
| Object: Image, 157                     | Basic Features, 117                  |
| VX_COLOR_SPACE_BT601_625               | VX_DF_IMAGE_RGB                      |
| Object: Image, 157                     | Basic Features, 117                  |
| VX COLOR SPACE BT709                   | VX DF IMAGE RGBX                     |
| Object: Image, 157                     | Basic Features, 117                  |
| VX_COLOR_SPACE_DEFAULT                 | VX_DF_IMAGE_S16                      |
| Object: Image, 157                     | Basic Features, 118                  |
| VX_COLOR_SPACE_NONE                    | VX_DF_IMAGE_S32                      |
| Object: Image, 157                     | Basic Features, 118                  |
| VX_CONTEXT_ATTRIBUTE_CONVOLUTION_MAXI⊷ | VX_DF_IMAGE_U16                      |
| MUM_DIMENSION                          | Basic Features, 118                  |
| Object: Context, 126                   | VX_DF_IMAGE_U32                      |
| VX_CONTEXT_ATTRIBUTE_EXTENSIONS        | Basic Features, 118                  |
| Object: Context, 126                   | VX_DF_IMAGE_U8                       |
| VX_CONTEXT_ATTRIBUTE_EXTENSIONS_SIZE   | Basic Features, 117                  |
| Object: Context, 126                   | VX DF IMAGE UYVY                     |
| VX_CONTEXT_ATTRIBUTE_IMMEDIATE_BORDER← | Basic Features, 117                  |
| MODE MODE                              | VX_DF_IMAGE_VIRT                     |
| Object: Context, 126                   | Basic Features, 117                  |
| VX_CONTEXT_ATTRIBUTE_IMPLEMENTATION    | VX_DF_IMAGE_YUV4                     |
| Object: Context, 126                   | Basic Features, 117                  |
| VX_CONTEXT_ATTRIBUTE_MODULES           | VX_DF_IMAGE_YUYV                     |
| Object: Context, 125                   | Basic Features, 117                  |
| VX_CONTEXT_ATTRIBUTE_OPTICAL_FLOW_WIN↔ | VX_DIRECTIVE_DISABLE_LOGGING         |
|                                        |                                      |
| DOW_MAXIMUM_DIMENSION                  | Framework: Directives, 227           |
| Object: Context, 126                   | VX_DIRECTIVE_ENABLE_LOGGING          |
| VX_CONTEXT_ATTRIBUTE_REFERENCES        | Framework: Directives, 227           |
| Object: Context, 126                   | VX_DISTRIBUTION_ATTRIBUTE_BINS       |
| VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNEL_TA↔ | Object: Distribution, 151            |
| BLE<br>Objects Contact 100             | VX_DISTRIBUTION_ATTRIBUTE_DIMENSIONS |
| Object: Context, 126                   | Object: Distribution, 150            |
| VX_CONTEXT_ATTRIBUTE_UNIQUE_KERNELS    | VX_DISTRIBUTION_ATTRIBUTE_OFFSET     |
| Object: Context, 125                   | Object: Distribution, 150            |
| VX_CONTEXT_ATTRIBUTE_VENDOR_ID         | VX_DISTRIBUTION_ATTRIBUTE_RANGE      |
| Object: Context, 125                   | Object: Distribution, 150            |
| VX_CONTEXT_ATTRIBUTE_VERSION           | VX_DISTRIBUTION_ATTRIBUTE_SIZE       |
| Object: Context, 125                   | Object: Distribution, 151            |
| VX_CONVERT_POLICY_SATURATE             | VX_DISTRIBUTION_ATTRIBUTE_WINDOW     |
| Basic Features, 117                    | Object: Distribution, 151            |
| VX_CONVERT_POLICY_WRAP                 | VX_ENUM_ACCESSOR                     |
| Basic Features, 117                    | Basic Features, 117                  |
| VX_CONVOLUTION_ATTRIBUTE_COLUMNS       | VX_ENUM_ACTION                       |
| Object: Convolution, 147               | Basic Features, 116                  |
| VX_CONVOLUTION_ATTRIBUTE_ROWS          | VX_ENUM_BORDER_MODE                  |
| Object: Convolution, 147               | Basic Features, 117                  |
| VX_CONVOLUTION_ATTRIBUTE_SCALE         | VX_ENUM_CHANNEL                      |
| Object: Convolution, 147               | Basic Features, 117                  |
| VX_CONVOLUTION_ATTRIBUTE_SIZE          | VX_ENUM_COLOR_RANGE                  |
| Object: Convolution, 148               | Basic Features, 117                  |
| VX_DELAY_ATTRIBUTE_SLOTS               | VX_ENUM_COLOR_SPACE                  |
| Object: Delay, 197                     | Basic Features, 116                  |
| VX_DELAY_ATTRIBUTE_TYPE                | VX_ENUM_COMPARISON                   |
| Object: Delay, 197                     | Basic Features, 117                  |

| VX_ENUM_CONVERT_POLICY      | VX_ERROR_NOT_COMPATIBLE          |
|-----------------------------|----------------------------------|
| Basic Features, 117         | Basic Features, 116              |
| VX_ENUM_DIRECTION           | VX_ERROR_NOT_IMPLEMENTED         |
| Basic Features, 116         | Basic Features, 116              |
| VX_ENUM_DIRECTIVE           | VX ERROR NOT SUFFICIENT          |
| Basic Features, 116         | Basic Features, 116              |
| VX_ENUM_HINT                | VX_ERROR_NOT_SUPPORTED           |
| Basic Features, 116         | Basic Features, 116              |
| VX_ENUM_IMPORT_MEM          | VX ERROR OPTIMIZED AWAY          |
| Basic Features, 117         | Basic Features, 116              |
| VX ENUM INTERPOLATION       | VX_ERROR_REFERENCE_NONZERO       |
| Basic Features, 116         | Basic Features, 115              |
| VX_ENUM_NORM_TYPE           | VX_FAILURE                       |
| Basic Features, 117         | Basic Features, 116              |
|                             |                                  |
| VX_ENUM_OVERFLOW            | VX_GRAPH_ATTRIBUTE_NUMNODES      |
| Basic Features, 116         | Object: Graph, 132               |
| VX_ENUM_PARAMETER_STATE     | VX_GRAPH_ATTRIBUTE_NUMPARAMETERS |
| Basic Features, 117         | Object: Graph, 132               |
| VX_ENUM_ROUND_POLICY        | VX_GRAPH_ATTRIBUTE_PERFORMANCE   |
| Basic Features, 117         | Object: Graph, 132               |
| VX_ENUM_TERM_CRITERIA       | VX_GRAPH_ATTRIBUTE_STATUS        |
| Basic Features, 117         | Object: Graph, 132               |
| VX_ENUM_THRESHOLD_TYPE      | VX_HINT_SERIALIZE                |
| Basic Features, 117         | Framework: Hints, 225            |
| VX_ERROR_GRAPH_ABANDONED    | VX_ID_AMD                        |
| Basic Features, 115         | Basic Features, 119              |
| VX_ERROR_GRAPH_SCHEDULED    | VX_ID_ARM                        |
| Basic Features, 115         | Basic Features, 119              |
| VX_ERROR_INVALID_DIMENSION  | VX_ID_AXIS                       |
| Basic Features, 115         | Basic Features, 119              |
| VX_ERROR_INVALID_FORMAT     | VX_ID_BDTI                       |
| Basic Features, 115         | Basic Features, 119              |
| VX ERROR INVALID GRAPH      | VX ID BROADCOM                   |
| Basic Features, 115         | Basic Features, 119              |
| VX ERROR INVALID LINK       | VX_ID_CEVA                       |
| Basic Features, 115         | Basic Features, 119              |
| VX_ERROR_INVALID_MODULE     | VX_ID_COGNIVUE                   |
| Basic Features, 116         | Basic Features, 119              |
| VX_ERROR_INVALID_NODE       | VX_ID_DEFAULT                    |
| Basic Features, 115         | Basic Features, 119              |
| VX ERROR INVALID PARAMETERS | VX_ID_FREESCALE                  |
| Basic Features, 116         | Basic Features, 119              |
| VX ERROR INVALID REFERENCE  | VX ID IMAGINATION                |
| Basic Features, 116         | Basic Features, 119              |
| VX_ERROR_INVALID_SCOPE      | VX_ID_INTEL                      |
| Basic Features, 115         | Basic Features, 119              |
| VX ERROR INVALID TYPE       | VX_ID_ITSEEZ                     |
| Basic Features, 115         | Basic Features, 119              |
| VX ERROR INVALID VALUE      | VX ID KHRONOS                    |
| Basic Features, 115         | Basic Features, 119              |
|                             |                                  |
| VX_ERROR_MULTIPLE_WRITERS   | VX_ID_MARVELL                    |
| Basic Features, 115         | Basic Features, 119              |
| VX_ERROR_NO_MEMORY          | VX_ID_MEDIATEK                   |
| Basic Features, 116         | Basic Features, 119              |
| VX_ERROR_NO_RESOURCES       | VX_ID_MOVIDIUS                   |
| Basic Features, 116         | Basic Features, 119              |
| VX_ERROR_NOT_ALLOCATED      | VX_ID_NVIDIA                     |
| Basic Features, 116         | Basic Features, 119              |

| VX_ID_QUALCOMM                         | VX_KERNEL_ATTRIBUTE_LOCAL_DATA_PTR  |
|----------------------------------------|-------------------------------------|
| Basic Features, 119                    | Object: Kernel, 207                 |
| VX_ID_RENESAS                          | VX_KERNEL_ATTRIBUTE_LOCAL_DATA_SIZE |
| Basic Features, 119                    | Object: Kernel, 207                 |
| VX_ID_SAMSUNG                          | VX_KERNEL_ATTRIBUTE_NAME            |
| Basic Features, 119                    | Object: Kernel, 207                 |
| VX_ID_ST                               | VX_KERNEL_ATTRIBUTE_PARAMETERS      |
| Basic Features, 119                    | Object: Kernel, 207                 |
| VX ID SYNOPSYS                         | VX KERNEL BOX 3x3                   |
| Basic Features, 119                    | Object: Kernel, 205                 |
| VX ID TI                               | VX_KERNEL_CANNY_EDGE_DETECTOR       |
| Basic Features, 119                    | Object: Kernel, 206                 |
| VX_ID_VIDEANTIS                        | VX_KERNEL_CHANNEL_COMBINE           |
| Basic Features, 119                    | Object: Kernel, 204                 |
| VX_ID_VIVANTE                          | VX_KERNEL_CHANNEL_EXTRACT           |
| Basic Features, 119                    | Object: Kernel, 204                 |
| VX_ID_XILINX                           | VX KERNEL COLOR CONVERT             |
| Basic Features, 119                    | Object: Kernel, 204                 |
| VX IMAGE ATTRIBUTE FORMAT              | VX KERNEL CONVERTDEPTH              |
| Object: Image, 156                     | Object: Kernel, 206                 |
| VX_IMAGE_ATTRIBUTE_HEIGHT              | VX_KERNEL_CUSTOM_CONVOLUTION        |
| Object: Image, 156                     | Object: Kernel, 205                 |
| VX_IMAGE_ATTRIBUTE_PLANES              | VX_KERNEL_DILATE_3x3                |
|                                        | Object: Kernel, 205                 |
| Object: Image, 156                     |                                     |
| VX_IMAGE_ATTRIBUTE_RANGE               | VX_KERNEL_EQUALIZE_HISTOGRAM        |
| Object: Image, 157                     | Object: Kernel, 205                 |
| VX_IMAGE_ATTRIBUTE_SIZE                | VX_KERNEL_ERODE_3x3                 |
| Object: Image, 157                     | Object: Kernel, 205                 |
| VX_IMAGE_ATTRIBUTE_SPACE               | VX_KERNEL_FAST_CORNERS              |
| Object: Image, 156                     | Object: Kernel, 207                 |
| VX_IMAGE_ATTRIBUTE_WIDTH               | VX_KERNEL_GAUSSIAN_3x3              |
| Object: Image, 156                     | Object: Kernel, 205                 |
| VX_IMPORT_TYPE_HOST                    | VX_KERNEL_GAUSSIAN_PYRAMID          |
| Object: Context, 126                   | Object: Kernel, 205                 |
| VX_IMPORT_TYPE_NONE                    | VX_KERNEL_HALFSCALE_GAUSSIAN        |
| Object: Context, 126                   | Object: Kernel, 207                 |
| VX_INPUT                               | VX_KERNEL_HARRIS_CORNERS            |
| Object: Parameter, 212                 | Object: Kernel, 206                 |
| VX_INTERPOLATION_TYPE_AREA             | VX_KERNEL_HISTOGRAM                 |
| Basic Features, 119                    | Object: Kernel, 204                 |
| VX_INTERPOLATION_TYPE_BILINEAR         | VX_KERNEL_INTEGRAL_IMAGE            |
| Basic Features, 119                    | Object: Kernel, 205                 |
| VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR | VX_KERNEL_INVALID                   |
| Basic Features, 119                    | Object: Kernel, 204                 |
| VX_KERNEL_ABSDIFF                      | VX_KERNEL_MAGNITUDE                 |
| Object: Kernel, 205                    | Object: Kernel, 204                 |
| VX_KERNEL_ACCUMULATE                   | VX_KERNEL_MEAN_STDDEV               |
| Object: Kernel, 205                    | Object: Kernel, 205                 |
| VX_KERNEL_ACCUMULATE_SQUARE            | VX_KERNEL_MEDIAN_3x3                |
| Object: Kernel, 206                    | Object: Kernel, 205                 |
| VX_KERNEL_ACCUMULATE_WEIGHTED          | VX_KERNEL_MINMAXLOC                 |
| Object: Kernel, 205                    | Object: Kernel, 206                 |
| •                                      |                                     |
| VX_KERNEL_ADD                          | VX_KERNEL_MULTIPLY                  |
| Object: Kernel, 206                    | Object: Kernel, 206                 |
| VX_KERNEL_AND                          | VX_KERNEL_NOT                       |
| Object: Kernel, 206                    | Object: Kernel, 206                 |
| VX_KERNEL_ATTRIBUTE_ENUM               | VX_KERNEL_OPTICAL_FLOW_PYR_LK       |
| Object: Kernel, 207                    | Object: Kernel, 207                 |

| VX_KERNEL_OR                                               | Object: Parameter, 212                       |
|------------------------------------------------------------|----------------------------------------------|
| Object: Kernel, 206                                        | VX_PARAMETER_ATTRIBUTE_REF                   |
| VX_KERNEL_PHASE                                            | Object: Parameter, 212                       |
| Object: Kernel, 204                                        | VX_PARAMETER_ATTRIBUTE_STATE                 |
| VX_KERNEL_REMAP                                            | Object: Parameter, 212                       |
| Object: Kernel, 207                                        | VX_PARAMETER_ATTRIBUTE_TYPE                  |
| VX_KERNEL_SCALE_IMAGE                                      | Object: Parameter, 212                       |
| Object: Kernel, 204                                        | VX_PARAMETER_STATE_OPTIONAL                  |
| VX KERNEL SOBEL 3x3                                        | Object: Parameter, 212                       |
| Object: Kernel, 204                                        | VX_PARAMETER_STATE_REQUIRED                  |
| VX KERNEL SUBTRACT                                         | Object: Parameter, 212                       |
| Object: Kernel, 206                                        | VX_PYRAMID_ATTRIBUTE_FORMAT                  |
| VX_KERNEL_TABLE_LOOKUP                                     | Object: Pyramid, 179                         |
| Object: Kernel, 204                                        | VX_PYRAMID_ATTRIBUTE_HEIGHT                  |
| VX_KERNEL_THRESHOLD                                        | Object: Pyramid, 179                         |
| Object: Kernel, 205                                        | VX_PYRAMID_ATTRIBUTE_LEVELS                  |
| VX_KERNEL_WARP_AFFINE                                      | Object: Pyramid, 179                         |
| Object: Kernel, 206                                        | VX_PYRAMID_ATTRIBUTE_SCALE                   |
| VX_KERNEL_WARP_PERSPECTIVE                                 | Object: Pyramid, 179                         |
| Object: Kernel, 206                                        | VX_PYRAMID_ATTRIBUTE_WIDTH                   |
| VX KERNEL XOR                                              | Object: Pyramid, 179                         |
| Object: Kernel, 206                                        | VX_READ_AND_WRITE                            |
| VX_LUT_ATTRIBUTE_COUNT                                     | Object: Context, 127                         |
| Object: LUT, 171                                           | VX READ ONLY                                 |
| VX_LUT_ATTRIBUTE_SIZE                                      | Object: Context, 127                         |
| Object: LUT, 171                                           | VX_REF_ATTRIBUTE_COUNT                       |
| VX_LUT_ATTRIBUTE_TYPE                                      | Object: Reference, 122                       |
| Object: LUT, 171                                           | VX_REF_ATTRIBUTE_TYPE                        |
| VX_MATRIX_ATTRIBUTE_COLUMNS                                | Object: Reference, 122                       |
| Object: Matrix, 175                                        | VX_REMAP_ATTRIBUTE_DESTINATION_HEIGHT        |
| VX_MATRIX_ATTRIBUTE_ROWS                                   | Object: Remap, 182                           |
| Object: Matrix, 175                                        | VX_REMAP_ATTRIBUTE_DESTINATION_WIDTH         |
| VX_MATRIX_ATTRIBUTE_SIZE                                   | Object: Remap, 182                           |
| Object: Matrix, 175                                        | VX_REMAP_ATTRIBUTE_SOURCE_HEIGHT             |
| VX_MATRIX_ATTRIBUTE_TYPE                                   | Object: Remap, 182                           |
| Object: Matrix, 175                                        | VX_REMAP_ATTRIBUTE_SOURCE_WIDTH              |
| VX_META_FORMAT_ATTRIBUTE_DELTA_RECTA↔                      | Object: Remap, 182                           |
| NGLE                                                       | VX_ROUND_POLICY_TO_NEAREST_EVEN              |
|                                                            | Object: Context, 127                         |
| Framework: User Kernels, 233 VX_NODE_ATTRIBUTE_BORDER_MODE |                                              |
| Object: Node, 138                                          | VX_ROUND_POLICY_TO_ZERO Object: Context, 127 |
| -                                                          | VX SCALAR ATTRIBUTE TYPE                     |
| VX_NODE_ATTRIBUTE_LOCAL_DATA_PTR                           |                                              |
| Object: Node, 138                                          | Object: Scalar, 186<br>VX STATUS MIN         |
| VX_NODE_ATTRIBUTE_LOCAL_DATA_SIZE                          |                                              |
| Object: Node, 138                                          | Basic Features, 115                          |
| VX_NODE_ATTRIBUTE_PERFORMANCE                              | VX_SUCCESS                                   |
| Object: Node, 138                                          | Basic Features, 116                          |
| VX_NODE_ATTRIBUTE_STATUS                                   | VX_TERM_CRITERIA_BOTH                        |
| Object: Node, 138                                          | Object: Context, 127                         |
| VX_NORM_L1                                                 | VX_TERM_CRITERIA_EPSILON                     |
| Canny Edge Detector, 47                                    | Object: Context, 127                         |
| VX_NORM_L2                                                 | VX_TERM_CRITERIA_ITERATIONS                  |
| Canny Edge Detector, 47                                    | Object: Context, 127                         |
| VX_OUTPUT                                                  | VX_THRESHOLD_ATTRIBUTE_DATA_TYPE             |
| Object: Parameter, 212                                     | Object: Threshold, 190                       |
| VX_PARAMETER_ATTRIBUTE_DIRECTION                           | VX_THRESHOLD_ATTRIBUTE_FALSE_VALUE           |
| Object: Parameter, 212                                     | Object: Threshold, 190                       |
| VX_PARAMETER_ATTRIBUTE_INDEX                               |                                              |

| VX_THRESHOLD_ATTRIBUTE_THRESHOLD_LOW← | Basic Features, 114         |
|---------------------------------------|-----------------------------|
| ER                                    | VX_TYPE_KERNEL              |
| Object: Threshold, 190                | Basic Features, 115         |
| VX_THRESHOLD_ATTRIBUTE_THRESHOLD_UPP↔ | VX_TYPE_KEYPOINT            |
| ER                                    | Basic Features, 114         |
| Object: Threshold, 190                | VX_TYPE_LUT                 |
|                                       |                             |
| VX_THRESHOLD_ATTRIBUTE_THRESHOLD_VAL↔ | Basic Features, 115         |
| UE                                    | VX_TYPE_MATRIX              |
| Object: Threshold, 190                | Basic Features, 115         |
| VX_THRESHOLD_ATTRIBUTE_TRUE_VALUE     | VX_TYPE_META_FORMAT         |
| Object: Threshold, 190                | Basic Features, 115         |
| VX_THRESHOLD_ATTRIBUTE_TYPE           | VX_TYPE_NODE                |
| Object: Threshold, 190                | Basic Features, 115         |
| VX_THRESHOLD_TYPE_BINARY              | VX_TYPE_OBJECT_MAX          |
| Object: Threshold, 189                | Basic Features, 115         |
| VX THRESHOLD TYPE RANGE               | VX TYPE PARAMETER           |
| Object: Threshold, 189                | Basic Features, 115         |
| VX TYPE ARRAY                         | VX TYPE PYRAMID             |
| Basic Features, 115                   | Basic Features, 115         |
| VX TYPE BOOL                          | VX TYPE RECTANGLE           |
|                                       |                             |
| Basic Features, 114                   | Basic Features, 114         |
| VX_TYPE_CHAR                          | VX_TYPE_REFERENCE           |
| Basic Features, 114                   | Basic Features, 114         |
| VX_TYPE_CONTEXT                       | VX_TYPE_REMAP               |
| Basic Features, 114                   | Basic Features, 115         |
| VX_TYPE_CONVOLUTION                   | VX_TYPE_SCALAR              |
| Basic Features, 115                   | Basic Features, 115         |
| VX_TYPE_COORDINATES2D                 | VX_TYPE_SCALAR_MAX          |
| Basic Features, 114                   | Basic Features, 114         |
| VX TYPE COORDINATES3D                 | VX_TYPE_SIZE                |
| Basic Features, 114                   | Basic Features, 114         |
| VX_TYPE_DELAY                         | VX_TYPE_STRUCT_MAX          |
| Basic Features, 115                   | Basic Features, 114         |
| VX_TYPE_DF_IMAGE                      | VX_TYPE_THRESHOLD           |
|                                       | Basic Features, 115         |
| Basic Features, 114                   |                             |
| VX_TYPE_DISTRIBUTION                  | VX_TYPE_UINT16              |
| Basic Features, 115                   | Basic Features, 114         |
| VX_TYPE_ENUM                          | VX_TYPE_UINT32              |
| Basic Features, 114                   | Basic Features, 114         |
| VX_TYPE_ERROR                         | VX_TYPE_UINT64              |
| Basic Features, 115                   | Basic Features, 114         |
| VX_TYPE_FLOAT32                       | VX_TYPE_UINT8               |
| Basic Features, 114                   | Basic Features, 114         |
| VX TYPE FLOAT64                       | VX_TYPE_USER_STRUCT_END     |
| Basic Features, 114                   | Basic Features, 114         |
| VX TYPE GRAPH                         | VX_TYPE_USER_STRUCT_START   |
| Basic Features, 114                   | Basic Features, 114         |
| VX TYPE IMAGE                         | VX_TYPE_VENDOR_OBJECT_END   |
|                                       |                             |
| Basic Features, 115                   | Basic Features, 115         |
| VX_TYPE_INT16                         | VX_TYPE_VENDOR_OBJECT_START |
| Basic Features, 114                   | Basic Features, 115         |
| VX_TYPE_INT32                         | VX_TYPE_VENDOR_STRUCT_END   |
| Basic Features, 114                   | Basic Features, 114         |
| VX_TYPE_INT64                         | VX_TYPE_VENDOR_STRUCT_START |
| Basic Features, 114                   | Basic Features, 114         |
| VX_TYPE_INT8                          | VX_WRITE_ONLY               |
| Basic Features, 114                   | Object: Context, 127        |
| VX_TYPE_INVALID                       | Vision Functions, 25        |
| _ <del>_</del>                        | •                           |

```
vx_border_mode_t, 196
vx_coordinates2d_t, 111
vx_coordinates3d_t, 111
vx_delta_rectangle_t, 112
vx_false_e
Basic Features, 114
vx_imagepatch_addressing_t, 154
vx_kernel_info_t, 203
vx_keypoint_t, 112
vx_perf_t, 222
vx_rectangle_t, 112
vx_true_e
Basic Features, 114

Warp Affine, 102
Warp Perspective, 104
```