Introduction to Unsupervised Clustering

k-means, DBSCAN, and spectral

Alyssa W. Zhang DRP Symposium Spring 2024

Unsupervised Learning

- Supervised learning refers to learning from labeled data.
 - The objective is prediction or inference.
 - Regression and classification are forms of supervised learning.
- Unsupervised learning refers to learning from unlabeled data.
 - The objective is to "create" labels by grouping data based on similarity.
 - Clustering is a form of unsupervised learning.

Data as High-Dimensional Vectors

• The typical idea of a data point is (x, y), which can be represented as a 2-dimensional vector with elements x and y.

What if we have more than 2 dimensions?

Data as High-Dimensional Vectors (cont.)

 Suppose we have a large dataset on UT Austin students with names, majors, classifications, emails, and 100 other features.

Name	Major	Classification	Email	•••
Zhang, Alyssa	Mathematics	Senior	***@utexas.edu	
Duncan, Addie	Mathematics	Graduate	***@gmail.com	
•••	•••		•••	

• We can represent each data point as a *high-dimensional vector*, where each vector element represents a feature.

Major Classification Email

Measures of Similarity

- Distance metrics are used to measure similarity between high-dimensional vectors (data points).
- Because there are various ways of measuring distance, there are various methods of clustering—each with their own benefits and drawbacks.

Euclidean Distance

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

Manhattan Distance

$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{n} |q_i - p_i|$$

k-means Clustering Algorithm

- 1. Choose the number of clusters (k).
- 2. Select random centroids.
- 3. Assign points to the closest centroid.
- 4. Recompute centroids of newly formed clusters.
- 5. Repeats steps 3 and 4 until stopping criterion is met.
 - Stopping criterion: When centroids do not change, points remain in the same cluster, or we reach a predetermined maximum number of iterations.

k-means Clustering Pros and Cons

• Pros

- Relatively simple to implement.
- Good for linearly separable, convex data.

Cons

- k value must be chosen manually, which can lead to over/under clustering.
- Sensitive to clustering data of varying sizes and density.
- Sensitive to outliers.

DBSCAN Clustering Algorithm

- 1. Count the number of points close to each point within a radius ε .
- 2. Identify core points (points with at least *m* close neighbors).
- 3. Start with a core point and assign it to a cluster.
- 4. Expand the cluster by adding neighboring core points and their neighbors.
- 5. Repeat until no more core points can be added to the cluster.
- 6. Assign remaining core points to new clusters or noise.

DBSCAN Pros and Cons

Pros

- Does not require specifying the number of clusters.
- Capable of identifying clusters of any shape (incl. non-convex).
- Effectively handles noise and outliers.

Cons

- Affected by choice of m and ε .
- Limited by the curse of dimensionality.

epsilon = 1.00 minPoints = 4

Concepts for Spectral Clustering

- Curse of dimensionality refers to various phenomena that occur with data in high-dimensional spaces that does not occur in low-dimensional spaces.
 - For sufficiently large dimensions, the distances between all pairs of data points will be essentially the same.
- When distances between all pairs of data points are the same, DBSCAN may merge all points into the same cluster.
 - Situation would benefit from projecting data to a lower-dimensional subspace.

Concepts for Spectral Clustering

- Singular Value Decomposition (SVD)
 is a way to find the best-fitting kdimensional subspace for a data
 matrix A.
 - Like a k-dimensional line of best fit
- SVD says that any A can decompose into three matrices with special characteristics.
 - The columns of *V* are right singular vectors, which represent the directions *A* must transform to best fit its subspace.

Singular Value Decomposition (SVD)

$$A = UDV^T$$

U contains left singular vectors.

D is diagonal and contains singular values.

V contains right singular vectors.

Spectral Clustering Algorithm

- 1. Find space V spanned by the top k right singular vectors of A.
- 2. Project data points to *V* (lower dimensional subspace of *A*).
- 3. Cluster the projected points (various methods).
- Spectral clustering is often a preprocessing step that refines other methods of clustering.
 - Ex. k-means

Spectral Clustering Pros and Cons

- Pros
 - No assumptions about cluster shape; good for irregularly shaped data.
 - Introduces linear separability.
- Cons
 - Sensitive to the choice of rank (k).
 - Project may result in loss of interpretability.

$$\begin{pmatrix}
Name \\
Major \\
Classification \\
Email
\\
...
\end{pmatrix}
\xrightarrow{project} (?Feature 1 \\
?Feature 2 \\
?Feature 3)$$

Visual Comparison Spectral

Visual Comparison (cont.)

Summary

- Clustering is a form of unsupervised learning.
- There are many different methods of clustering, including k-means, DBSCAN, and spectral.
- Deciding on which clustering method to use depends on data.
 - The images throughout this presentation are 2D and 3D, but in reality...