# Data Analysis Overview

In this analysis file, we will leverage Python libraries such as pandas, numpy, matplotlib, and seaborn to derive insights from the processed data obtained in the data-cleansing file. The analysis will encompass:

#### 1. Basic Statistics:

 Compute descriptive statistics to gain an overview of the dataset's central tendencies and distributions.

### 2. Time Series Analyses and Trends:

 Explore temporal patterns, trends, and seasonality in the data using time series analysis techniques.

### 3. Operational Insights:

 Extract operational insights, such as peak activity periods, common routes, and other operational trends.

### 4. Visualization and Reporting:

 Create visualizations using matplotlib and seaborn to effectively communicate findings. Generate reports summarizing key insights.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
# Suppress all warnings
warnings.filterwarnings('ignore')
from os import listdir
year = 2023
all dfs = []
folder path = f'../../assets/data/processed/{year}/'
# load all file from folder path
for file name in listdir(folder path):
    all dfs.append(pd.read excel(f'{folder path}{file name}'))
logistics df = pd.concat(all dfs, ignore index=True)
logistics df
        load id time span in hours destination city destination state
       10711141
                                0.04
                                             Ft Worth
                                                                      TX
       10711143
                                0.06
                                             Ft Worth
                                                                      TX
```

| 2          | 10711145              | (            | 9.29     | F      | t Wor  | th   |         | TX |
|------------|-----------------------|--------------|----------|--------|--------|------|---------|----|
| 3          | 10711151              | 0.14         |          |        | t Wor  | TX   |         |    |
| 4          | 10711155              | (            | 9.96     |        | 0R     | LA   |         | TX |
|            |                       |              |          |        |        |      |         |    |
| 11378      | 10724771              | (            | 9.08     | S      | ARASO  | TA   |         | FL |
| 11379      | 10726991              | 20           | 9.82     | MARY   | LAND   | HE   |         | МО |
| 11380      | 30316024              |              | 1.11     | L      | A VAL  | LE   |         | WI |
| 11381      | 30320680              | 2.24         |          |        | COLFAX |      |         | WI |
| 11382      | 30320994              | (            | 9.68     |        | PEK    | IN   |         | IL |
|            |                       |              |          |        |        |      |         |    |
|            | origin_city<br>type \ | origin_state | comme    | ent m  | iles   |      | shipper |    |
| 0          | ABEILENE              | TX           | NO COMMI | ENT    | Θ      | NO   | SHIPPER |    |
| F          | ABEILENE              | TX           | NO COMMI | ENT    | 0      | NO   | SHIPPER |    |
| F          | ABEILENE              | TX           | NO COMMI | ENT    | 0      | NO   | SHIPPER |    |
| F<br>3     | ABEILENE              | TX           | NO COMMI | ENT    | 0      | NO   | SHIPPER |    |
| F<br>4     | ABEILENE              | TX           | NO COMMI | ENT    | 0      | NO   | SHIPPER |    |
| F          |                       |              |          |        |        |      |         |    |
| 11378      | ZWOLLE                | LA           | NO COMMI | =NT    | 0      | NΟ   | SHIPPER |    |
| F          |                       |              |          |        |        |      |         |    |
| 11379<br>F | ZWOLLE                | LA           |          |        |        | NO   |         |    |
| 11380<br>F | ZWOLLE                | LA           | MUST TA  | ARP    | 1055   |      | VFP     |    |
| 11381<br>F | ZWOLLE                | LA           | MUST TA  | ARP    | 1151   |      | VFP     |    |
| 11382<br>F | ZWOLLE                | LA           | MUST TA  | ARP    | 798    |      | VFP     |    |
|            | added bour            | addad minuta | addod (  | cocond | 244    | od v | rook    |    |
|            | d_month \             | added_minute | auueu_s  |        |        | eu_v |         |    |
| 0<br>11    | 12                    | 7            |          | 52     |        |      | 48      |    |
| 1<br>11    | 11                    | 50           |          | 31     |        |      | 48      |    |
|            |                       |              |          |        |        |      |         |    |

| 2           | 12                | 10       | 26             | 48             |
|-------------|-------------------|----------|----------------|----------------|
| 11          |                   |          |                |                |
| 3           | 11                | 53       | 48             | 48             |
| 11<br>4     | 10                | 40       | 12             | 48             |
| 4<br>11     | 10                | 40       | 12             | 40             |
|             |                   |          |                |                |
|             | •••               |          |                |                |
| 11378       | 8                 | 9        | 6              | 50             |
| 12          |                   |          | _              |                |
| 11379       | 12                | 48       | 7              | 50             |
| 12          | 16                | 21       | 11             | F 1            |
| 11380<br>12 | 16                | 31       | 11             | 51             |
| 11381       | 9                 | 49       | 55             | 52             |
| 12          | J                 | 73       | 33             | 32             |
| 11382       | 11                | 24       | 32             | 52             |
| 12          |                   |          |                |                |
|             |                   |          |                |                |
|             | _deleted_day dele | ted_hour | deleted_minute | deleted_second |
| delete      | d_week            | 10       | 10             | 27             |
| 0           | 28                | 12       | 10             | 27             |
| 48<br>1     | 28                | 11       | 53             | 49             |
| 48          | 20                | 11       | 55             | 73             |
| 2           | 28                | 12       | 27             | 53             |
| 48          |                   |          |                |                |
| 3           | 28                | 12       | 2              | 9              |
| 48          |                   |          |                |                |
| 4           | 29                | 11       | 37             | 34             |
| 48          |                   |          |                |                |
| • • •       | • • • •           |          |                |                |
| 11378       | 12                | 8        | 13             | 45             |
| 50          | 12                | J        | 15             | 73             |
| 11379       | 14                | 9        | 37             | 28             |
| 50          |                   |          |                |                |
| 11380       | 18                | 17       | 37             | 42             |
| 51          |                   |          |                |                |
| 11381       | 27                | 12       | 4              | 35             |
| 52          | 27                | 10       | -              | F              |
| 11382       | 27                | 12       | 5              | 5              |
| 52          |                   |          |                |                |
| [11383      | rows x 25 columns | 1        |                |                |
| [ ==505     |                   | -        |                |                |

## Basic Statistics and Time Series Trend Analysis

In this analysis, we will explore the average time a load stays in the system overall. Additionally, we will delve into time series trends, examining load duration patterns at a more granular level,

such as weekly or monthly intervals. Visualization techniques will be employed to provide a clear representation of these insights. This combined approach aims to offer both a holistic understanding of load durations and nuanced insights into temporal trends.

```
overall_load_stays_average = logistics_df.time_span_in_hours.mean()
sns.set(style="whitegrid")
plt.figure(figsize=(8, 4))
sns.barplot(x=['Average Value'], y=[overall_load_stays_average],
color='skyblue')
plt.title('Overall Load Stays Average')
plt.ylabel('Value')
plt.show()
```





Average Value

```
sns.set(style="whitegrid")

plt.figure(figsize=(12, 6))
sns.lineplot(x='added_month',
y=logistics_df.groupby('added_month').size(
), data=logistics_df, color='skyblue', label='Load
Addition',legend=True)
sns.lineplot(x='deleted_month',
y=logistics_df.groupby('deleted_month').size(
), data=logistics_df, color='salmon', label='Load
Deletion',legend=True)

plt.title('Load Addition and Deletion Over Month')
```

```
plt.xlabel('Month')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



```
sns.set(style="whitegrid")

plt.figure(figsize=(12, 6))
sns.lineplot(x='added_week',
y=logistics_df.groupby('added_week').size(
), data=logistics_df, color='skyblue', label='Load
Addition',legend=True)
sns.lineplot(x='deleted_week',
y=logistics_df.groupby('deleted_week').size(
), data=logistics_df, color='salmon', label='Load
Deletion',legend=True)

plt.title('Load Addition and Deletion Over Weeks')
plt.xlabel('Week')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



```
sns.set(style="whitegrid")

plt.figure(figsize=(12, 6))
sns.lineplot(x='added_day', y=logistics_df.groupby('added_day').size(
), data=logistics_df, color='skyblue', label='Load
Addition',legend=True)
sns.lineplot(x='deleted_day',
y=logistics_df.groupby('deleted_day').size(
), data=logistics_df, color='salmon', label='Load
Deletion',legend=True)

plt.title('Load Addition and Deletion Over Days')
plt.xlabel('Day')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



```
sns.set(style="whitegrid")
plt.figure(figsize=(12, 6))
sns.lineplot(x='added_hour',
y=logistics_df.groupby('added_hour').size(
), data=logistics_df, color='skyblue', label='Load
Addition',legend=True)
sns.lineplot(x='deleted_hour',
y=logistics_df.groupby('deleted_hour').size(
), data=logistics_df, color='salmon', label='Load
Deletion',legend=True)

plt.title('Load Addition and Deletion Over Hours')
plt.xlabel('Hour')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



### Operational Insights

In this analysis, we focus on two key operational insights:

### Peak Periods Identification:

 Utilizing time-based analysis, we identify peak periods for both load additions and deletions. Visualization through bar plots highlights the hours of the day with the highest load activity.

### 2. Average Turnaround Time Assessment:

 Calculating the average turnaround time for loads provides insights into the typical duration a load stays in the system. This metric aids in understanding operational efficiency and performance.

```
sns.set(style="whitegrid")

plt.figure(figsize=(12, 6))
sns.countplot(x='added_hour', data=logistics_df, color='skyblue',
label='Load Addition')
sns.countplot(x='deleted_hour', data=logistics_df, color='salmon',
label='Load Deletion')

plt.title('Peak Hours for Load Additions and Deletions')
plt.xlabel('Hour of the Day')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



```
sns.set(style="whitegrid")

plt.figure(figsize=(12, 6))
sns.countplot(x='added_day', data=logistics_df, color='skyblue',
label='Load Addition')
sns.countplot(x='deleted_day', data=logistics_df, color='salmon',
label='Load Deletion')

plt.title('Peak Days for Load Additions and Deletions')
plt.xlabel('Day')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



```
sns.set(style="whitegrid")
plt.figure(figsize=(12, 6))
sns.countplot(x='added_week', data=logistics_df, color='skyblue',
label='Load Addition')
sns.countplot(x='deleted_week', data=logistics_df, color='salmon',
label='Load Deletion')

plt.title('Peak Week for Load Additions and Deletions')
plt.xlabel('Week')
plt.ylabel('Load Count')
plt.legend()
plt.show()
```



## Visualization and Reporting

In this analysis, we leverage visualizations to succinctly convey key findings. Utilizing graphs and charts, we provide a clear and intuitive representation of the dataset's patterns and insights. This visual approach enhances the accessibility and interpretation of the data, facilitating effective communication of our analytical results.

```
plt.figure(figsize=(10, 6))
plt.hist(logistics_df['time_span_in_hours'], bins=20, color='skyblue',
edgecolor='black')
plt.title('Distribution of Load Turnaround Times')
plt.xlabel('Turnaround Time (hours)')
plt.ylabel('Frequency')
plt.show()
```



```
plt.figure(figsize=(12, 6))
logistics_df['shipper'].value_counts().plot(kind='bar',
color='skyblue')
plt.title('Load Counts by Shipper')
plt.xlabel('Shipper')
plt.ylabel('Load Count')
plt.show()
```



```
plt.figure(figsize=(10, 6))
plt.scatter(logistics_df['miles'],
logistics_df['average_rate_per_mile'], color='green')
plt.title('Scatter Plot: Miles vs Average Rate per Mile')
plt.xlabel('Miles')
plt.ylabel('Average Rate per Mile')
plt.show()
```

