Isolation Heuristic Analysis

Introduction

A game playing agent was developed to search the Isolation game tree and find the best possible move using minimax algorithm, iterative deepening, alpha-beta pruning, and various evaluation functions/heuristics.

The **Minimax algorithm** is the primary algorithm to figure out what is the best move at every turn. This implementation is based on <u>MINIMAX-DECISION</u> from AIMA.

Iterative deepening is a depth limited version of depth first search and is run repeatedly with increasing depth limits until a goal is found. Iterative deepending allows a player to always have an answer ready in case it runs out of time and it can search as far as possible within its time constraints.

Alpha-beta pruning is a technique that allows us to ignore whole sections of the game tree but still get the same answer as the Minimax algorithm. This implementation is based on <u>ALPHA-BETA-SEARCH</u> from AIMA.

Heuristics

Limit Opponents Moves

This evaluation function prioritizes limiting the opponent's future moves. The evaluation function assigns a higher weight when the number of future moves for the opponent is low and assigns a lower weight otherwise.

Match #	Opponent	AB_Improved (W:L)	AB_Heuristic (W:L)	MM_Improved (W:L)	MM_Heuristic (W:L)
1	Random	9:1	9:1	8:2	6:4
2	MM_Open	9:1	6:4	7:3	5:5
3	MM_Center	6:4	8:2	5:5	6:4
4	MM_Improved	8:2	6:4	6:4	7:3
5	AB_Open	5:5	5:5	4:6	4:6
6	AB_Center	6:4	7:3	4:6	2:8
7	AB_Improved	5:5	6:4	2:8	4:6
	Win Rate	68.8%	67.1%	51.4%	48.6%

Table 1. Limit Opponents Move Heuristic Win Rate

Figure 1. Limit Opponents Move Heuristic Win Rate Comparison

Overall, the heuristic performed slightly worse compared to the improved for both Alpha-Beta and MiniMax algorithms.

Defensive

This tactic focuses on running away by maximizing the distance from the opponent. The heuristic assigns a larger score for larger differences.

Match #	Opponent	AB_Improved (W:L)	AB_Heuristic (W:L)	MM_Improved (W:L)	MM_Heuristic (W:L)
1	Random	9:1	8:2	10:0	8:2
2	MM_Open	7:3	5:5	6:4	2:8
3	MM_Center	7:3	8:2	8:2	5:5
4	MM_Improved	8:2	8:2	5:5	3:7
5	AB_Open	3:7	3:7	3:7	3:7
6	AB_Center	5:5	5:5	5:5	2:8
7	AB_Improved	5:5	7:3	2:8	2:8
	Win Rate	62.9%	62.9%	55.7%	35.7%

Table 2. Defensive Heuristic Win Rate

Figure 2. Defensive Heuristic Win Rate Comparison

On average, the heuristic and improved players performed the same for the Alpha-Beta algorithm. The heuristic player, however, performed much worse than the improved player for the MiniMax algorithm.

Offensive

This tactic focuses on moving towards opponent by minimizing the distance. The heuristic assigns a larger score for smaller differences.

Match #	Opponent	AB_Improved (W:L)	AB_Heuristic (W:L)	MM_Improved (W:L)	MM_Heuristic (W:L)
1	Random	8:2	10:0	10:0	8:2
2	MM_Open	7:3	6:4	7:3	3:7
3	MM_Center	7:3	6:4	6:4	3:7
4	MM_Improved	7:3	6:4	4:6	2:8
5	AB_Open	5:5	4:6	3:7	1:9
6	AB_Center	8:2	6:4	5:5	3:7
7	AB_Improved	6:4	5:5	5:5	1:9
	Win Rate	68.6%	61.4%	57.1%	30.0%

Table 3. Offensive Heuristic Win Rate

Figure 3. Offensive Heuristic Win Rate Comparison

The heuristic player performed worse than the improved player for both the Alpha-Beta and MiniMax algorithm. The difference between the players' win rate for the Alpha-Beta (7.2) was much closer, however, compared to the MiniMax (27.1).

Manhattan Distance

This heuristic focuses on the difference between the number of moves between the players normalized by their manhattan distance.

The heuristic assigns a lower score when:

- the number of future moves for the opponent is high
- the distance between the players is large because it's harder to block the opponent's moves when they're far apart.

Match #	Opponent	AB_Improved (W:L)	AB_Heuristic (W:L)	MM_Improved (W:L)	MM_Heuristic (W:L)
1	Random	9:1	10:0	8:2	9:1
2	MM_Open	9:1	7:3	6:4	6:4
3	MM_Center	8:2	9:1	6:4	7:3
4	MM_Improved	8:2	5:5	4:6	5:5
5	AB_Open	5:5	4:6	3:7	3:7
6	AB_Center	6:4	5:5	4:6	3:7
7	AB_Improved	4:6	6:4	3:7	2:8
	Win Rate	70.0%	65.7%	48.6%	50.0%

Table 4. Manhattan Distance Heuristic Win Rate

Figure 4. Manhattan Distance Heuristic Win Rate Comparison

The heuristic player performed slighly worse than the improved player for the Alpha-Beta algorithm, but had a slighly higher win rate for the MiniMax algorithm.

Euclidean Distance

This heuristic focuses on the difference between the number of moves between the players normalized by their euclidean distance.

The heuristic assigns a lower score when:

- the number of future moves for the opponent is high
- the distance between the players is large because it's harder to block the opponent's moves when they're
 far apart.

Match #	Opponent	AB_Improved (W:L)	AB_Heuristic (W:L)	MM_Improved (W:L)	MM_Heuristic (W:L)
1	Random	10:0	10:0	10:0	10:0
2	MM_Open	8:2	9:1	4:6	6:4
3	MM_Center	8:2	9:1	8:2	7:3
4	MM_Improved	6:4	9:1	7:3	3:7
5	AB_Open	8:2	5:5	4:6	3:7
6	AB_Center	5:5	5:5	4:6	3:7
7	AB_Improved	5:5	4:6	2:8	3:7
	Win Rate	71.4%	72.9%	55.7%	50.0%

Table 5. Euclidean Distance Heuristic Win Rate

Figure 5. Euclidean Distance Heuristic Win Rate Comparison

Overall, the heuristic gained a higher win rate than the improved player for the Alpha-Beta algorithm, but not for the MiniMax algorithm.

Recommendation

	ID Improved	Heuristic Player	Difference
Limit Moves	68.8%	67.1%	-1.7
Defensive	62.9%	62.9%	0
Offensive	68.6%	61.4%	-7.2
Mahattan Distance	70.0%	65.7%	-4.3
Euclidean Distance	71.4%	72.9%	1.5

Table 6. Heuristic Win Rate By Player

Figure 6.

Heuristic Win Rate By Player

Based on the tournament results, I would recommend using the **Euclidean Distance** heuristic because it:

- consistently performed better than the ID Improved player against all opponents except for the "AB_Open" and "AB_Improved" opponents
- had the highest win rate among all heuristics
- is one of the easier heuristics to implement