CL 22=CSCI 160

REVIEW CLASS

HW 21 J-K Flip-Flop - Describe its behavior

Solution

a) J = K = 1, the circuit becomes a T- Flip-Flop in which output Q oscillates 2x slower than CL.

b) Otherwise, for CL =1:

Otherwise, for CL =1:	•	-	•
	0	0	PS
$J = 0 \longrightarrow S$ fixed at $S = 0$	0	1	O (= value of J)
$K = 0 \longrightarrow R$ fixed at $R = 0$	1	0	1 (= value of J)

K I O

Put together, the answer is:

For
$$CL = 1$$
 (F-F enabled)

For oscillating CL

PS J J T flip-flop

2 x slower than CL

If CL = 0, then Q = PS, for all values of J and Q

REVIEW 2 - TOPICS

- 1) & 2) Minimization of functions K-map
 - Tabulation
 - d's
 - Circuit design

Always use this K-map:

and no other!

- 3) Adders, subtractors
- 4) Controlled circuits
- 5) Flip-Flops

For topic #5 we worked out the J-K F-F HW.

Let's review the topics in decreasing order.

4) Controlled circuits - Example

* 2 inputs (external): A, B

* 2 outputs: Y_1 , Y_2 , such that we have

 y_1 : y_2 :

* at times A B

* at other times B A

* yet at other times 0 0

* yet at other times 1 1

Solution

4 possible outcomes \implies 2 control lines

$$Y_1 = \alpha'\beta'A + \alpha'\beta B + \alpha\beta$$
$$Y_2 = \alpha'\beta'B + \alpha'\beta A + \alpha\beta$$

α	β	У1	У2
0	0	A	В
0	1	В	Α
1	0	0	0
1	1	1	1

If you finished everything draw diagram:

3) Adders, subtractors - Example

HW (older): Construct FS using HS's and one other gate.

<u>Important to Note</u> (solution not finished otherwise):

$$\beta_1$$
 and β_2 may not be both = 1. Why? β_1 = 1 ---> $\begin{cases} A=0 \\ and \\ B=1 \end{cases}$

We can use an OR gate for β_1 , β_2 .

Remember:

2) Minimization of functions - Design - Example

Design a circuit with 3 binary (external) inputs, x, y, z and two outputs, A, B, which satisfies both specifications (a) and (b) below. Minimize A and B.

- (a) A = 1 exactly when xyz, the value of the input (in decimal), is less than 3.
- (b) B = 1 exactly when xyz, the value of the input, is odd.

Solution					
	×	у	z	A	В
0	0	0	0	1	0
1	0	0	1	1	1
2	0	1	0	1	0
3	0	1	1	0	1
4	1	0	0	0	0
5	1	0	1	0	1
6	1	1	0	0	0

If you finished everything draw diagram:

1) Minimization of functions - Example

$$F = \sum (1, 6, 10, 13) + d \sum (0, 3, 4, 7, 8, 11, 12, 15)$$
 Find all minimal forms.

Essentials: None

Each 1 can be covered by 2 size-2 implicants independently from each other.

We have four such 1s ---> # min forms is: 2x2x2x2 = 16:

$$\left\{ F_{1-16} = \left\{ \begin{array}{c} A \\ B \end{array} \right\} + \left\{ \begin{array}{c} C \\ D \end{array} \right\} + \left\{ \begin{array}{c} E \\ F \end{array} \right\} + \left\{ \begin{array}{c} G \\ H \end{array} \right\} = \dots \text{ (express using variables)}$$

What if $d_0 = 1$?

Think about it and the fact that we want a minimized F.

Complete the Evaluations ASAP in one of two ways:

Visit <u>www.hunter.cuny.edu/te</u> OR <u>www.hunter.cuny.edu/</u> <u>mobilete</u> (for smartphones)

Sign in with your net ID and net ID password (forgot your password? Use: https://netid.hunter.cuny.edu/verify-identity)