

#### S. Laplace

(LPNHE - IN2P3/CNRS/Univ. P6 & P7) on behalf of the ATLAS collaboration ICHEP conference, Valencia (Spain), July 3rd, 2014



#### New results with the H->yy channel





arxiv: 1406.3827 submitted to PRD

supersedes previously published result

(poster A. Gabrielli, talk R. Harrington)

#### Fiducial and Differential cross-sections



submit soon to JHEP

supersedes previously preliminary result

(poster Y. Huang)

#### Resonant and non-resonant $hh \rightarrow \gamma\gamma + bb$



arxiv: 1406.5053 submitted to PRL

# New resonance search CONF-HIGG-2013-13, submit soon to PRL ATLAS Preliminary Observed Expected Expected Solution Soluti

(poster Z. Barnovska)

#### Higgs Boson mass: a new photon calibration



- Improved simulation of detector geometry
- New MVA calibration: 10% improvement on m<sub>YY</sub> resolution
- I-2% precision on E<sub>1/2</sub>, 5% on E<sub>PS</sub>
- 0.2-0.5% energy scale uncertainty for photons (checked on IIγ events)





#### Higgs Boson mass measurement

- 7+8 TeV data, two isolated photons with  $p_{T1,2}/m_{YY} > 0.35,0.25 + \eta_Y$  acceptance
- Dedicated analysis with categories based on conversions,  $\eta_{\gamma}$  and  $p_{Tt}$ , to minimize expected  $\sigma(m_H)$
- Dominant systematic uncertainty: energy scale

 $m_H = 125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (syst)} \text{ GeV}$  ( $\mu = 1.29 \pm 0.30$ )

to be compared with:

The previous measurement:  $126.8 \pm 0.2 \pm 0.7$  GeV

- observed shift (0.8 GeV) consistent with expected shift -0.45 ± 0.35 GeV
- syst. error decreased by factor 2.5
- stat. error:

|          | μ    | Ехр. σ   | Obs. σ   |  |
|----------|------|----------|----------|--|
| Previous | 1.55 | 0.33 GeV | 0.24 GeV |  |
| Current  | 1.29 | 0.35 GeV | 0.42 GeV |  |



#### Fiducial and Differential cross-sections

- Probe theoretical modeling of Higgs Boson production mechanisms and BSM
- Two kinds of cross-section measurements:
  - 7 fiducial regions: inclusive, I,2,3 jets; VBF enhanced; I lepton, E<sub>Tmiss</sub>>80 GeV
  - 12 differential distributions: Higgs kinematics, jet activity, spin/CP,VBF
- 8 TeV data only, isolated photons with  $p_{T1,2}/m_{\gamma\gamma} > 0.35, 0.25 + \eta_{\gamma}$  acceptance
- In each region/bin, obtain signal yield through  $m_{YY}$  fit, add correction factor  $c_i$  to unfold from detector to particle level ( $c_i$  =66% in inclusive case)
- $\sigma_i = rac{
  u_i^{
  m sig}}{c_i \int L \, {
  m d}t}$

- Systematics << statistical uncertainties in all cases</li>
  - Dominated by signal extraction (energy scale, resolution, ...)
  - Jet energy scale becomes important for large jet multiplicities





## Theoretical predictions

| Name            | Parton<br>Shower | fiducial<br>region  | diff. XS                       | QCD Precision                | Quark mass in loop                                    | EW<br>Prec. |
|-----------------|------------------|---------------------|--------------------------------|------------------------------|-------------------------------------------------------|-------------|
| Powheg+Py8      | Pythia 8         | inclusive           | all                            | NLO(0j) + PS                 | m <sub>t</sub> =∞, m <sub>b</sub> =0                  | -           |
| MINLO HJ        | Pythia 8         | inclusive<br>1 jet  | all                            | NLO(0,1j) + PS               | m <sub>t</sub> =∞, m <sub>b</sub> =0                  | -           |
| MINLO HJJ       | Pythia 8         | inclusive<br>2 jets | all                            | NLO(2j) + PS                 | m <sub>t</sub> =∞, m <sub>b</sub> =0                  | -           |
| LHC XS          | -                | inclusive           |                                | NNLO+NNLL                    | finite m <sub>t</sub> ,m <sub>b</sub> ,m <sub>c</sub> | NLO         |
| STWZ<br>(SCET)  | -                | inclusive           |                                | NNLO+NNLL'                   | m <sub>t</sub> =∞, m <sub>b</sub> =0                  | -           |
| HRes            | -                | inclusive           | kinematics of<br>Higgs + decay | NNLO+NNLL                    | finite m <sub>t</sub> ,m <sub>b</sub>                 | -           |
| BLPTW<br>(SCET) | -                | 1 jet<br>2 jets     |                                | NLO + NNLL'<br>approx. NLO + | m <sub>t</sub> =∞, m <sub>b</sub> =0                  | -           |
| JetVHeto        | -                | 1 jet               |                                | (N)NLO + NNLL                | finite m <sub>t</sub> ,m <sub>b</sub>                 | -           |

#### Fiducial cross-sections



#### Differential cross-sections





Ratio of 1st moment relative to data

## hh ラック + bb

- 8 Tev data only; baseline selection:
  - two isolated photons with  $p_{T1,2}/m_{yy} > 0.35,0.25 + \eta_y$  acceptance
  - two b-tagged jets with  $|\eta| < 2.5$ ,  $p_{T1,2} > 55,35$  GeV and  $95 < m_{jj} < 135$  GeV  $(\sigma(m_{jj}) = 13$  GeV)

#### Non resonant

SM hh, enhanced tthh (composite models), ...



Resonant

X = (SM h,) H, G, radion,
stoponium, ...

m<sub>X</sub>=260 to 500 GeV

Simultaneous fit of  $m_{\gamma\gamma}$  in signal region (2 b-jets) + control region CR (<2 b-jets)

- signal modeled as in mass analysis (Crystal Ball + Gaussian)
- background modeled by exponential

Counting experiment; additional cuts:

- $m_{YY}(=125.5 \text{ GeV}) \pm 2\sigma(m_{YY})$ with  $\sigma(m_{YY})=1.6 \text{ GeV}$ (bkg acceptance  $\varepsilon_{mYY}=13\%$ )
- $m_{YYbb}(=m_X) \pm \Delta$ with  $\Delta = 17/60$  GeV at  $m_X = 260/500$  GeV (bkg acceptance  $\epsilon_{mbbyy} = 8-18\%$ )

both analyses are largely statistically limited

#### hh->vy-t-bb



| N <sub>exp</sub><br>(bkg+single h) | N <sub>obs</sub> | Sig.  | 95% CL limit on σ(hh) [pb] |
|------------------------------------|------------------|-------|----------------------------|
| 1.5                                | 5                | 2.4 σ | 1.0(exp)/2.2(obs)          |
| (in 125.5 :                        | ± 2σ)            |       |                            |



# search for a narrow resonance decaying into γγ

- 8 TeV data only; two isolated photons with  $p_{T1,2}$  >22 GeV +  $\eta_{Y}$  acceptance
- Low mass: challenging Drell-Yan background
- High mass (+p<sub>T1,2</sub>/m<sub>YY</sub> >0.4,0.3): continuum bkg extracted using analytical fit in a sliding window





No excess seen: model-independent limit on fiducial cross-section

#### Conclusions

- This talk:
  - Updated mass and differential cross-section results supersede earlier results:
    - impressive improvement of m<sub>H</sub> systematic uncertainty!
  - New results on fiducial cross-sections, double higgs production and new resonance search
    - $H \rightarrow \gamma \gamma$  also used as a new physics search channel
- See also talk on ttH including new ttH( $\gamma\gamma$ ) result by E. Shabalina
- Several other updated and new  $H \rightarrow \gamma \gamma$  results in the coming weeks!



#### Higgs Boson mass: a new photon calibration

See talk of JB Blanchard



# Higgs Boson mass: selection of vertex

- Neural network with:
  - pointing from calorimeter + track of converted photons
  - average beam spot position
    - these two yield a 15mm resolution in the z direction: photon direction impact on mgg resolution already negligible
  - three additional variables to better fight pile up:
    - sum(p<sub>T</sub>)
    - $sum(p_T^2)$
    - deltaPhi(γγ-tracks)
      - this selects true PV with 93% efficiency

#### Higgs Boson mass



#### Higgs Bosonmass



## Higgs Boson mass

Table 2: Summary of the relative systematic uncertainties (in %) on the  $H \to \gamma \gamma$  mass measurement for the different categories described in the text. The first seven rows give the impact of the photon energy scale systematic uncertainties, grouped into seven classes.

|                                    | Unconverted         |                      |                     |                      |        | Converted           |                      |                     |                      |      |
|------------------------------------|---------------------|----------------------|---------------------|----------------------|--------|---------------------|----------------------|---------------------|----------------------|------|
|                                    | Cei                 | ntral                | Rest                |                      | Trans. | Cer                 | Central              |                     | Rest                 |      |
| Class                              | low p <sub>Tt</sub> | high p <sub>Tt</sub> | low p <sub>Tt</sub> | high p <sub>Tt</sub> |        | low p <sub>Tt</sub> | high p <sub>Tt</sub> | low p <sub>Tt</sub> | high p <sub>Tt</sub> |      |
| $Z \rightarrow e^+e^-$ calibration | 0.02                | 0.03                 | 0.04                | 0.04                 | 0.11   | 0.02                | 0.02                 | 0.05                | 0.05                 | 0.11 |
| LAr cell non-linearity             | 0.12                | 0.19                 | 0.09                | 0.16                 | 0.39   | 0.09                | 0.19                 | 0.06                | 0.14                 | 0.29 |
| Layer calibration                  | 0.13                | 0.16                 | 0.11                | 0.13                 | 0.13   | 0.07                | 0.10                 | 0.05                | 0.07                 | 0.07 |
| ID material                        | 0.06                | 0.06                 | 0.08                | 0.08                 | 0.10   | 0.05                | 0.05                 | 0.06                | 0.06                 | 0.06 |
| Other material                     | 0.07                | 0.08                 | 0.14                | 0.15                 | 0.35   | 0.04                | 0.04                 | 0.07                | 0.08                 | 0.20 |
| Conversion reconstruction          | 0.02                | 0.02                 | 0.03                | 0.03                 | 0.05   | 0.03                | 0.02                 | 0.05                | 0.04                 | 0.06 |
| Lateral shower shape               | 0.04                | 0.04                 | 0.07                | 0.07                 | 0.06   | 0.09                | 0.09                 | 0.18                | 0.19                 | 0.16 |
| Background modeling                | 0.10                | 0.06                 | 0.05                | 0.11                 | 0.16   | 0.13                | 0.06                 | 0.14                | 0.18                 | 0.20 |
| Vertex measurement                 | 0.03                |                      |                     |                      |        |                     |                      |                     |                      |      |
| Total                              | 0.23                | 0.28                 | 0.24                | 0.30                 | 0.59   | 0.21                | 0.25                 | 0.27                | 0.33                 | 0.47 |























## hh->yy-+bb

- Very small SM rate, possible enhancements:
  - Non resonant production:
    - Higgs Boson self-coupling altered (turned off, flipped sign)
    - direct tthh coupling in composite models
    - addition of light colored scalars in the SM
  - Resonant production:
    - gravitons, radians
    - hidden Higgs sector mixing with the observed Higgs
    - 2HDM H→ hh
- Two benchmark models generated using MADGRAPH5:
  - Non resonant: SM di-higgs production (including interference between trilinear Higgs boson couplings and box diagrams)
    - NLO cross-section: 9.2 fb
  - Resonant: gluon initiated narrow width resonance
- Backgrounds:
  - Non resonant: diphoton, photon+jet, ttbar (di-electron faking di-photon)