(6) This happens because Mean Absolute Error (MAE) applies a different penalty to deviations of expected from actual than does test set R^2 . In particular, MAE is the 1-norm, and R^2 incorporates the 2-norm. For example, when $|y_i-\hat{y}_i| > 1$, the 2-norm in R^2 will penalize that error more heavily than will the 1-norm=MAE.

Below, I show a numerical example where (given actual values) predictions \hat{y}_1 from Model I have higher MAE but also higher test R^2 than predictions \hat{y}_2 from model 2. Thus, MAE would prefer model 2, but test set R^2 would prefer Model 1.

	Test		^ \ \\\/2 \	y-ŷ	14-32	$(y-\hat{y_1})^2$	(y-Ŷ2) ²
-	Actual -2	-3	-3.5	1	1.5	1	2.25
	-1	-2	-1	1	0	1	0
		2			0	1	0
	2	3	3.5		1.5	1	2.25
Avg	0	10	10	$MAE = \frac{4}{4} = 1.0$	MAE2=3/4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z= 4.5

SST=
$$2^{2}+1^{2}+1^{2}+2^{2}=10$$

 $R_{1}^{2}=\frac{10-4}{10}=0.6$
 $R_{2}^{2}=\frac{10-4.5}{10}=0.55$

Thus MAE would prefer Model 2, but test R2 walk prefer Madel 1.