(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53455 A2

(51) International Patent Classification⁷: C12N

(21) International Application Number: PCT/US00/35017

(22) International Filing Date:

22 December 2000 (22.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/471,275 23 December 1999 (23.12.1999) US 09/488,725 21 January 2000 (21.01.2000) US 09/552,317 25 April 2000 (25.04.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 09/488,725 (CIP)
Filed on 21 January 2000 (21.01.2000)
US 09/596,196 (CIP)
Filed on 17 June 2000 (17.06.2000)
US 09/653,274 (CIP)
Filed on 31 August 2000 (31.08.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom

[US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). **LIU, Chenghua** [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). **DRMANAC, Radoje, T.** [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/53455 A2

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

5

10

15

20

25

30

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA

molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

5

10

15

20

25

30

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-739. The polypeptides sequences are designated SEQ ID NO: 740-1478. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO:1-739 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO:1-739. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO:1-739 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of SEQ ID NO:1-739.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

5

10

15

20

25

30

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-739; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1 - 739; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-739. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO:1-739; (b) a nucleotide sequence encoding any one of the

amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

5

10

15

20

25

30

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-739; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein,

and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, *e.g.*, *in situ* hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

5

10

15

20

25

30

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The

invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

5

10

15

20

25

30

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products. Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

5

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

5

10

15

20

25

30

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid

which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

5

10

15

20

25

30

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-20.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-739. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-

mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

5

10

15

20

25

30

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to

naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

5

10

15

20

25

30

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, *e.g.*, polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134

-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

5

10

15

20

25

30

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences.

Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (*i.e.*, the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, *e.g.*, mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by

by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

5

10

15

20

25

30

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

Nucleotide sequences of the invention are set forth in the Sequence Listing. The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-739; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:740-1478; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:740-1478. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO:1-739; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 740-1478. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptorlike polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification

and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO:1-739 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-739 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-739 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

5

10

15

20

25

30

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, *e.g.*, at least about 65%, at least about 70%, at least about 75%, at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-739, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-739, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO:1-739 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

5

10

15

20

25

30

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-739, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the

nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, *e.g.*, by substituting first with conservative choices (*e.g.*, hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (*e.g.*, hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

5

10

15

20

25

30

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

5

10

15

20

25

30

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-739, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide.

In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., *Nucleic Acids Res.* 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, *Methods in Enzymology* 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

5

10

15

20

25

30

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example,

pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (*e.g.*, temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE

5

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-739, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO:740-1478 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-739 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding

region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

5

10

15

20

25

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO:1-739, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 30

2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine,

pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a

2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res* 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue *et al.* (1987) *FEBS Lett* 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

5

10

15

20

25

30

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO:1-739). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to

allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup *et al.* (1996) above; Perry-O'Keefe *et al.* (1996) *PNAS* 93: 14670-675.

5

10

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, *e.g.*, inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, *e.g.*, in the analysis of single base pair mutations in a gene by, *e.g.*, PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, *e.g.*, S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup *et al.* (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by 15 the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms 20 of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 25 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. 30

See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (*e.g.*, for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane (see, *e.g.*, Letsinger *et al.*, 1989, *Proc. Natl. Acad. Sci. U.S.A.* 86:6553-6556; Lemaitre *et al.*, 1987, Proc. *Natl. Acad. Sci.* 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, *e.g.*, PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, *e.g.*, Krol *et al.*, 1988, *BioTechniques* 6:958-976) or intercalating agents. (See, *e.g.*, Zon, 1988, *Pharm. Res.* 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, *e.g.*, a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

5

10

15

20

25

30

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If

linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

5

10

15

20

25

30

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a

suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations

of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

30

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

5

10

15

20

25

30

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO:740-1478 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NO:1-739 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO:1-739 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO:740-1478 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:740-1478 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, typically at least about 95%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:740-1478.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the

disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

5

10

15

20

25

30

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, *e.g.*, pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein

which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

5

10

15

20

25

30

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models

that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:740-1478.

5

10

1.5

20

25

30

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other

immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

30 Conn.).

5

10

15

20

25

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, *e.g.*, silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

5

10

15

20

25

30

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST

(Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

15

20

30

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprises one or more domains are fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into

pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

5

10

15

20

25

30

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states

involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

5

10

15

20

25

30

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression

by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences.

Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a

tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

20

25

30

5

10

15

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in

disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

5

10

15

20

25

30

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

5

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

5

10

15

20

25

30

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of

course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or ago of the binding interaction.

Any or all of these research utilities are capable of being developed into reager grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

. 5

10

15

20

25

30

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic

compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

15

20

25

30

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John

Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells *in vivo* or *ex vivo* is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for reengineering damaged or diseased tissues, transplantation, manufacture of biopharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

5

10

15

20

25

30

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune

disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

5

10

15

20

25

30

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds.* Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; 5 Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, 10 Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994. 15

4.10.6 TISSUE GROWTH ACTIVITY

20

25

30

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative

disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

15

20

25

30

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager

syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon);

International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J.

30 Invest. Dermatol 71:382-84 (1978).

5

10

15

20

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the

polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastbom et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a

subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

5

10

15

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or

eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

5

10

15

20

25

30

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β_2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991;

5

10

15

20

25

30

Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond. J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology

154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may

also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

10

15

20

25

30

5

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or
prevent chemotaxis) consist of assays that measure the ability of a protein to induce the

migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

10

15

20

25

30

5

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al.,

Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991);

Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a

polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of

tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

5

10

15

20

25

30

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These *in vitro* models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in

Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

15

20

25

30

10

5.

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3)

combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

5

10

15

20

25

30

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves.

Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see *Science 282*:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., *Mol. Biotechnol.* 9(3):205-23 (1998); Hruby et al., *Curr Opin Chem Biol.*, 1(1):114-19 (1997); Dorner et al., *Bioorg Med Chem*, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity

of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

5

10

15

20

25

30

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins

involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

5

10

15

20

25

30

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not

limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B.

5 Lippincott Co., Philadelphia).

10

15

20

25

30

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;

(v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;

(vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;

5

15

20

25

30

- (vii) lesions caused by toxic substances including alcohol, lead, or particularneurotoxins; and
 - (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody

binding, Northern blot assay, *etc.*, depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, *e.g.*, weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

5

10

15

20

25

30

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related

diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

5

10

15

20

25

30

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences

of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

25

30

herein.

5

10

15

20

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

20

25

30

15

5

10

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity

of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers

to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

5

10

15

20

25

30

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When co-administered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factors, thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or

cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

5

10

15

20

25

30

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, *e.g.*, by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the

pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

5

10

15

20

25

30

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.

Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

5

10

15

20

25

30

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, *e.g.*, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon

dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

5

10

15

20

25

30

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological

effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

5

10

15

20

25

30

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each

5

10

15

20

25

30

individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure

proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

5

10

15

20

25

30

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose,

ethylcellulose, hydroxyethylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients

of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, *e.g.*, amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (*e.g.*, bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

5

10

15

20

25

30

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating

concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

5

10

15

20

25

30

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD_{50} and ED_{50} . Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.

In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 μ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

20

25

30

5

10

15

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} , and $F_{(ab')2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain.

Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

5

10

15

20

25

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NO: 4, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, *e.g.*, a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, *e.g.*, Hopp and Woods, 1981, *Proc. Nat. Acad. Sci. USA* 78: 3824-3828; Kyte and Doolittle 1982, *J. Mol. Biol.* 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

10

15

20

25

30

5

5.13.1 Polyclonal Antibodies

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide

primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

5.13.2 Monoclonal Antibodies

5

10

15

20

25

30

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or

survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

5

10

15

20

25

30

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, <u>J. Immunol.</u>, <u>133</u>:3001 (1984); Brodeur et al., <u>Monoclonal Antibody Production Techniques and Applications</u>, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures

such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a nonimmunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

20

25

30

5

10

15

5.13.2 Humanized Antibodies

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536

(1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

5.13.3 Human Antibodies

5

10

15

20

25

30

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, <u>J. Mol. Biol., 227</u>:381 (1991); Marks et al., <u>J. Mol. Biol., 222</u>:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely

inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al.(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

5

10

15

20

25

30

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to

prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 F_{ab} Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

5.13.5 Bispecific Antibodies

5

10

15

20

25

30

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

5

10

15

20

25

30

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).

Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

5

10

15

20

25

30

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., <u>Science</u> 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., <u>J. Immunol.</u> 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody

homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u> 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., <u>J. Immunol.</u> 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

25

30

5

10

15

20

5.13.6 Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in

vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

20

25

30

5

10

15

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin,

crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

5 Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

20

25

30

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to

create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

5

10

15

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO:1-739 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

5

10

15

20

25

30

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for

commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

10

15

20

25

30

5

4.15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

5

10

15

20

25

30

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein

extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

25

30

5

10

15

20

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of

the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

5

10

15

20

25

30

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-739, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
- (b) determining whether the agent binds to said protein or said nucleic acid.

 In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds

identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

5

10

15

20

25

30

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or

can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

5

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-739. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-739 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection

of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

5

10

15

20

25

30

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent *in situ* hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers.

Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

5

10

15

20

25

30

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M

1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

5

10

15

20

25

30

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6,

incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be in one 96-well plate

(all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8×12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm^2 and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5.0 EXAMPLES

5

10

15

20

25

30

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were

spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

10

15

20

25

30

5

5.2 EXAMPLE 2

Novel Contigs

The novel contigs of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. Chromatograms were base called and assembled using a software suite from University of Washington, Seattle containing three applications designated PHRED, PHRAP, and CONSED. The sequences for the resulting nucleic acid contigs are designated as SEQ ID NO: 1-739 and are provided in the attached Sequence Listing. The contigs were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 120, gb pri 120, UniGene version 120, and Genpept 120) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

The nearest neighbor result for the assembled contig was obtained by a FASTA version 3 search against Genpept release 120, using FASTXY algorithm. FASTXY is an improved version of FASTA alignment which allows in-codon frame shifts. The nearest neighbor result showed the closest homologue for each assemblage from Genpept (and

contains the translated amino acid sequences for which the assemblage encodes). The nearest neighbor results for SEQ ID NO: 1-739 are shown in Table 2.

5

10

Tables 1, 2, and 3 follow. Table 1 shows the various tissue sources of SEQ ID NO: 1-739. Table 2 shows the nearest neighbor result for the assembled contig. The nearest neighbor result shows the closest homologue for each assemblage and contains the translated amino acid sequences for which the assemblage encodes. Table 2 also shows homologues with identifiable functions for SEQ ID NO: 1-739. The polypeptides were predicted using a software program called FASTY (available from http://fasta.bioch.virginia.edu) which selects a polypeptide based on a comparison of translated novel polynucleotides to known polynucleotides (W.R. Pearson, Methods in Enzymology, Vol. 183: pp. 63-98, (1990), herein incorporated by reference). Table 3 shows the predicted amino acid sequence corresponding to the novel nucleic acid contig sequences.

Table 1 - Tissue Sources

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
adult brain	GIBCO	AB3001	28 46 54 62 95 117 134 175 188-189
			324 330 337 356 369 371 378 386
			389 396 432 435-436 468 472-473
			476-477 483 486 518 538-539 543
			545 557 565 571 573 578 582 598
			613-614 619 627 632 634 639 687
			709
adult brain	GIBCO	ABD003	5 12 46 52 57 66 79 91 97 134 144
			148 150 162 164 172 175-176 181
			186 193 250 323 325-327 330 334
			338 362 367 369 371 378-379 386
			388-389 392 396-397 399-401 403
			416 422 435 444 449 451 454 461
			463-464 468 472-473 483 486 494
			506 511 513 516 520 523-524 526
			529 533 536-537 539 545 548 552
			556 558-559 562-563 565 567 569
			573-574 576 579-580 582-584 590
			593-594 598 602 606 613-614 619-
			621 623-624 627 634 637 641 646
			648 659 675 688-689 694 696-698
			703 714 729
adult brain	Clontech	ABR001	57 162 164 227 266 316 334 356 367
			385 438 468 512 524 528 557 582
			590 621 627 631 634 689 714
adult brain	Clontech	ABR006	189 228 385 438 571 584 632 650
			677
adult brain	Clontech	ABR008	1 3 5 11-25 31-32 46-47 55-57 59

Tissue RNA Source Hyseq SEQ ID NOS Origin Library Name 61 65-67 69 75 79 91	
Name 61 65-67 69 75 79 91	
61 65-67 69 75 79 91	
	102 100 111
1 113-114 126 132 150 10	1
171-172 186 188-189 1	į
206 210-212 220 222-23	
233 235-236 243-247 2	51-252 257
264-266 268 275 313 3	24 328-331
334-335 338-339 343 3	46-347 351
355 357 359-361 365 3	67 370-371
378 380 382 386-389 3	91 396 399-
400 402 406 413 419-4	
432 434 437-438 442 4	
459-460 465 468 470 4	· .
481-483 487 489-490 4	
501 503-504 507-509 5	
526 528 532-533 536 5	
546 551-552 556-557 5	
569 572-573 576-577 5	79-580 582
584 586 590-591 593 5	595-597 599-
602 604 610-616 620-6	
627-628 632 634 637-6	
644 646-647 650 653-6	
668 672 675 677-678 6	
689 691 693 695-696 6	
709 711 713-727 729 7	731 733-734
736 738-739	•
adult brain Clontech ABR011 334 476 634 677	
adult brain BioChain ABR012 379 587	
adult brain Invitrogen ABR013 334 634	
adult brain Invitrogen ABT004 3 19 57 62 66 75 110	122 150 160
162 167 171 176 186 1	L97 203 211
230 232 259 328-331 3	
389 394 400 406 417 4	
457 472 483-484 492 5	
531 534 537 540 553 5	
580 582-584 590 604 6	
622 637 639 643-644 6	48 688-689
692 695	
cultured Strategene ADP001 16 37-39 66 109 120 1	L41 144 193
preadipo- 273 316 331 333 338 3	389 415 429
cytes 442 444 464-465 475 4	
513 531 534 539-540 5	
583-584 590 596 602 6	
619 622 629 632 634 6	
gland 188 192 196 203 207 2	
330-331 333 339 354 3	
383 385 388 392 395 4	102 406 411
415 434 454-455 465 4	168 473 475
477 491 498 501 509 5	
529 532 537-539 542 5	
565 567 576-577 586 6	
621 624 627 632 634 6	
	טטט בכט ובינ
667 683 689 696 714	

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
0119111	:	Name	
adult heart	GIBCO	AHR001	28 39 57 64-65 75 79 89 97-98 108
dadio mail	02200	1211002	117 134 144 157 159-160 164-166
			169 171 174 184 192-193 203 207
			220 243 256 258 266-267 281 314
			316 318 328-329 331 338-339 341
			346 348 354 356-357 366-367 369
			371 377-379 382 385-386 388 393
		*	395-396 399-401 403 415 420 422
·			425 431-432 435-436 445 451 459
			465 472-473 477 483 486 488 490
[ı	496 501 503 508 515 519-520 526
			528 531 533-534 537-538 540-541
			544 546 552 556-557 562-563 566-
			571 573 576-581 583-584 586-587
		,	594 602 606 608 611 613-615 618
ļ			620-621 626-628 632 634 641 643
			646 648 653 659 667 676 678 687
			689 696 703-704 708 711 714 729-
			730
adult	GIBCO	AKD001	3 28-29 48 56-57 67 79 84 93 106
kidney	32233		117 134 138 140 144 156 160-164
Reducy			168-170 172 177 183 188-189 192-
			193 199 203 207 235 251 257 275
			319 321-323 328-330 337 346-347
			349 354-356 360 367-369 371 375
	İ		l i
,			378-381 383-386 388-389 392 396-
			397 399 401 404 407 409 411-412
		1	415-416 420-422 427 432 436-437
			439-440 444 451-456 458-459 464-
			465 468 470 472-473 477 481 483
			486-487 492 496 501 503 505-506
			508 511 513-516 518 524 526 529
			533 535 537-541 543 545-546 548
			552 557 559-560 562-563 565-569
			572-574 576-577 579-587 589-591
		•	593~594 602 604-607 613-614 617-
			618 620-624 627-628 630 632-635
			637-638 640-642 644-645 652 662
-			664 667-668 677 682 685 687 689
1		1	694-696 698 703 716 723 728-729
			732 734
adult	Invitrogen	AKT002 ·	1 1 2 2 2
kidney			353 360 367 376 378-379 386 391
		l	402 409 423 432 449 451 477 490
			494 503 526 528 531 534 538-539
	1	1	541 545-546 559 566 579 584 588
			594 602 613 621 624 632 647 652
			689
adult lung	GIBCO	ALG001	56-57 67 69 98 113 134 144 164 172
		1	191-192 270 321 328 338 369 371
			374 378 380 388-389 396 405 411
		1	416 424 443-444 456 473-474 482-
			483 497 508 518 529 531 534 536
L		<u> </u>	

	222		GEO TO NOG
Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
	-		540 552 556 559 563 568 573 579-
	ľ		580 585-586 588-589 593 601-602
			606 612-613 618 634 662 667 685
			696 702 726 729-730
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Clontech	ALN001	28 57 79 113 164 172 179 193 240
lymph node	Clourecu	ALMOOT	
			325 332 367 378-379 386 388 402
			485 526 580 586 603 613-614 621-
			622 628 634 662 667 686 734
young liver	GIBCO	ALV001	3 24 28 54 60 117 134 137 154 160
-			193 196 242 273 316 328-329 334
			351 354 370-371 388 392 395-396
			401 406 411 415 432 435 439 448
			454-455 477 483 486-487 495 506
			509 514 518 523-524 526 529 531
			534 537-538 540 544 548 566 568
			571 573 579 587-588 591 594 602
			621 641 645 686 713 723
adult liver	Invitrogen	ALV002	3 24 27 56-57 65-66 71 79 92 97
			106 134 140 164 192 200 214 220
			232 240 242 271-272 291 313 316
			328 347 349-350 353 355 357 368-
			369 371-372 378-379 381-382 385
		·	397 430 435 448 457 459 471-472
			475 485 487 502 505-506 511 520
			530-531 533-534 537 540-541 543
			548 566 574-575 579 582 588 590
·			612 623 640 648-649 681 687 689
		,	710 714
- 3 1	Tarritrogon	AOVOOl	3 10 14 28 54 56-58 62 65-66 68 73
adult ovary	Invitrogen	ACVUUI	75 79 98 127 144 154 162 164-165
			1
			172-174 182 186 188-189 192-196
			206 213 224 234-235 241 243 248
		İ	253 261 273 275 289 314 316 321-
	1		322 325-327 329-331 333-334 336-
			338 340 343 345-348 354-357 367
			369 371-372 378 382 386 388 395-
			397 399-402 404 407 411 415-416
		1	419-420 425 427 429 431 435-437
			1
			441 444 451 453-459 465 468-470
			472-475 481 485 490 494 496 501
		1	503 509-510 513 517-518 522-524
			526 528-529 531-534 537-542 545-
			546 548 552 554 556-557 559-560
			562-563 565 567-569 572-579 581-
			582 584-588 590-591 593-598 602-
	1		604 606 611-615 618 620-623 627
	i		629 631-632 635-638 643 647 652-
	1	†	654 657 659 661-662 667 674-675
			677-678 682 684 689 693 695-698
			703 705-707 714 717-718 723 729
•			731 738
adult	Clontech	APL001	172 224 239 363 371 392 437 531
			534 622 690 696
placenta	I	1	337 324 070 070

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	~
05		Name	
placenta	Invitrogen	APL002	57 66 122 161 172 241 326 329 334
F			369 388 407 427 429 436 459 464
			506 508 511 539 541 545 566 573
			575 590 597 637 648 690
adult	GIBCO	ASP001	28 57 65 78 93 95 117 134 156-157
spleen	GIDCO	1701001	172 186 188 194 214 273 314 319
spreen		1	331 334 338 344 354 371 374 392
			436 457 471-473 478-479 481 483
		•	515 526 528-529 541 548 557 559
		1	563 565 569 573 585-587 603 606
			613 615 618 621-622 627 632 634
			637 643 654 671 689 696-698 701
			712 739
testis	GIBCO	ATS001	3 67 134 160 192 235 327 329 337
			342 371 375 378 380-381 396 399
			415 431 436 441 451 472 477-478
			483 486 494 496 503 522 524 526
			531 533-534 538 541-542 546 548
ĺ			557 568 573 577 579 581 584 594
			596 618 641 658 662 689 700 714
			729-730
adult	Invitrogen	BLD001	28 57 112 161 164 172 192 194 250
bladder		ļ	334 354 370 397 404 487 513 526
			531 534 545 572 599 602 620 634
			651 659 672 689 713 725
bone marrow	Clontech	BMD001	10-11 28 31 54 57 62 75 78-83 88
		ł	131-133 135-137 141-143 157 159
			164 171-173 176-177 187-189 192
	ĺ	[195 200 202 205 207 218 225 282
		ļ	314-318 325 330 334-335 337 346-
		1	348 367 369 372 378 383 386 388
			395 401 405 412-413 416 422 436
		1	442-443 447 449 455 465 472 475
	ļ	Į.	477 503 516 523 528-529 533-534
			539 545 551 556 559 563 565-567
			571 573-574 576 579-586 594 601-
		}	602 606 613 620-623 628-629 634
	}	1	638 642-643 646 656 659 666 686
		1	1
			689 691 696 698-699 703 705 714
7-7	G1	DMD000	720 726 729 2 15 23 35 49 54 57 59 78 81 114
bone marrow	Clontech	BMD002	
		}	156-157 164 171-172 189-190 202
			223 240 325 334 346 357 367 379
		1	381-382 388 397 412 454 465 482
		1	490 509 516 526 535 537 563 566
	1	1	579 595 600 638 640-641 654-655
			676 689 714
adult colon	Invitrogen	CLN001	48. 79 94 138 162 167 189 333 368-
			369 375 386 404 409 414 435-436
	1	1	455 470 525 541 548 553 567 603
			634 656 659 689 694 721
adult	BioChain	CVX001	3 28 35 54 57 79 83 95 97 113 117
cervix	L	1	154 162 164 172 176 220 235 248-
		1	,

Tissue	RNA Source	Hygog	CITO TRANS
Origin	IMA DOUICE	Hyseq Library	SEQ ID NOS:
]		Name	
	-		249 321 327 329 333 338 346 348
			354 356 362 367-368 371 374-375
			378-379 386 388-389 395 401-402
	İ		404 407 420 429 431 437 443 451
1			459 468 475 477 479 483 485 490
			493-494 496 506 508 511 517 526
			528 531 534 544 550 552 559 566
			569 571-573 575-576 581-583 588
		l	590 593-594 604 606 614 622 628
			631-635 639 661-662 675 689 692
	-		695 715 718 738
endothelial	Strategene	EDT001	3 28 31 39 54 58 65-66 79 89 144
cells			160 173 187 189 191 193 197-199
			207 220 230 267 273 314 324 326
			329-331 336 347 354 369 372 378-
			379 384 386 388 391-394 396-397
1		1	399 401 407 420 422 429 431-432
			435-437 444 449 451 455 459 465
]			472 474-475 481-482 486 490 499-
			501 503 506 511 513 515-517 520
			522-524 528 531-534 538-539 541
			545-546 548 550 552 557 559-560
			563 565 567 569 571 573 577 579-
			580 583-584 587-590 593-594 596-
			597 599 602 611 614-615 618 620-
			621 624 630 632-634 637-638 642-
	[643 647-648 651 675 677 680 682
			694 696-698 703 708 714 719 724-
Genomic	Genomic	EDMO 0 1	725 728-730 734
clones from	DNA from	EPM001	38 41-45 118-121 164 198 292-312
the short	Genetic		
arm of	Research	}	
chromosome	Kesear CII		·
8			
Genomic	Genomic	EPM003	42 164 205
clones from	DNA from	EFM003	43 164 295
the short	Genetic		
arm of	Research		
chromosome		ļ]
8	ĺ		
Genomic	Genomic	EPM004	121 164 306 482
clones from	DNA from		101 300 404
the short	Genetic	Į	·
arm of	Research	į	
chromosome]	
8			
Genomic	Genomic	EPM006	293
clones from	DNA from		
the short	Genetic		
arm of	Research	1	
chromosome			
8			

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	-
		Name	
esophagus	BioChain	ESO002	513 526
fetal brain	Clontech	FBR001	57 468 563 634
fetal brain	Clontech	FBR004	162 186 254 265 491 582
fetal brain	Clontech	FBR006	1-2 5-6 11-12 22-23 49 57 62 73 94
			103 114 162 164 172 189 193 203
			218 240 244 251-252 259 279 330- 331 334-335 346-347 351 367 378
			386 388-389 399 413 420 422 424
			434 442 444 448 465 468 470 472-
			473 490 496 501 503-504 511 520
			524 528 532-533 539 544-546 548
			551 553 563 571 573 576 587 591
			601 613 615-616 620-621 628 634
			641 644 648 653 657 662 672-673
			689 691 698 706 714 718 725-728 733 735-739
fetal brain	Clontech	FBRs03	444 587
fetal brain	Invitrogen	FBT002	17 66 157 162 164 186 190 193 250
ICCCI DIGIN	Inviciogen	151002	270 324 331 334-335 338 346 354-
	·		355 374 382 389-390 426 429-430
			437 442 453 467 471 475 481 485
			491 507-508 513-514 526 528 532
			540 544 548 550 552-553 557-558
			563 565-566 590 593 602 612 615
			637 641 648 654 662 672 676 692 703
fetal heart	Invitrogen	FHR001	57 75 164 547
fetal	Clontech	FKD001	57 164 172 179 188 194 208 218 230
kidney			240 250 330 334 369 388 401 413
			439 454 465 529 546 550 573 576
			581 583 594-596 602 634 648 667
fetal	Clontech	FKD002	676 689 698 706 2 560
kidney	Crontech	FRD002	2 300
fetal	Invitrogen	FKD007	565 596-597
kidney			
fetal lung	Clontech	FLG001	75 164 355 386 428 455 513 524 528
			631 689
fetal lung	Invitrogen	FLG003	30 157 162 169 188 243 253 256 283
			330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531
			534 572 578 584 602 611 613 631
			654 658 662 676 689 701 716
fetal lung	Clontech	FLG004	371
fetal	Columbia	FLS001	2-3 5 26 29 31 35 48 54-58 60 62
liver-	University		65 67 70 74-77 79-80 84-87 89 92
spleen			96 98-100 104 117 122-130 138 140
			144-158 160 162 164 172-173 185-
-			186 188-189 192-194 196 199-200
			207 214 218-219 237-238 241 269
			273 280 282 314-316 318-322 324 327 329-331 334-335 337 340 345
			348-350 354-358 363-364 367-371
L	l	l	240 220 224-220 202-204 201-21T

Origin Library Name 373 375 377-380 382-383 385-386 388 394-396 399 402 409 411-412 418 420-422 424 427 431 435-437 440 442 448-451 453 455 459 461 464-465 470 472-473 475 477-478 480-485 488-490 501 503 505-506 509 511-513 515-518 520 522-524 526-534 538-539 541 543-547 549-550 552-553 556-557 559-564 566-567 569 571 573 576 578-880 582-587 589 591-594 596-597 399-600 602 611-615 618 620-625 627-628 631-636 638 641-642 646 648 651 659-660 662-664 667-668 675-678 680-681 684 689-690 696-698 709 714 723 738 140 144 146 152-153 157 161 164 172-173 182 188 194 196 199 220 241-242 246 249 253 255 266 273-275 280-281 288-291 314-316 318-319 321-322 324 329-331 336-339 343 347-350 353-354 357-359 399 405 407 409-410 412 421 424 432 435 439 448 480-451 635-457 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 586 686-668 675-676 681 684 686-668 675-676 681 680-681	Tissue	RNA Source	Hyseq	SEQ ID NOS:
Name		Idvia boulee		SEQ ID NOO.
## 173 375 377-380 382-383 385-386 ## 388 394-396 399 402 409 411-412 ## 418 420-422 424 427 431 435-437 ## 440 442 448-451 453 455 459 461 ## 464-465 470 472-473 475 477-478 ## 480-485 488-490 501 503 505-506 ## 550 551-513 515-518 520 522-524 ## 550 552-553 556-557 559-564 566- ## 569 571 573 576 578-580 582- ## 587 589 591-594 596-597 599-600 ## 662-664 667-668 675-678 ## 680-681 684 689-690 696-698 709 ## 714 723 738 ## 723 138 140 144 146 152-153 157 ## 161 164 172-173 182 188 194 196 ## 199 220 241-242 246 249 253 255 ## 266 273-275 280-281 288-291 314- ## 316 318-319 321-322 324 329-331 ## 336-339 343 347-350 353-354 357- ## 338 382-383 386 388-389 393-397 ## 339 382-383 386 388-389 393-397 ## 339 382-383 386 388-389 393-397 ## 349 448 450-451 453-457 ## 479-481 483 485 488 490 497 501 ## 503 506 509 511-513 516-518 520 ## 527-528 531-525 548 539 541- ## 546 556 559-560 565-566 569 571 ## 574 565 579 582-566 588 590 597- ## 599 602-604 606 615 618 620-621 ## 623 625 627 632-634 639 641 644 ## 648 666-668 675-676 681 684 689- ## 690 696-697 701 703 714 719 723 ## 734-735 ## 666-688 675-676 681 684 689- ## 690 696-697 701 703 714 719 723 ## 734-735 ## 747 545 579 582-586 586 590 597- ## 599 602-604 606 615 618 620-621 ## 623 625 627 632-634 639 641 644 ## 648 666-668 675-676 681 684 689- ## 690 696-697 701 703 714 719 723 ## 734-735 ## 748 748 748 748 748 748 748 748 748 748	Origin			
### Section			Name	272 275 277 200 202 202 205 206
### ### ### ### ### ### ### ### ### ##				i i
### ### ### ### ### ### ### ### ### ##				
## Accordance Ac				
## ## ## ## ## ## ## ## ## ## ## ## ##				· · · · · · · · · · · · · · · · · · ·
Soy 511-513 515-518 520 522-524 526-534 538-539 541 543-547 549-550 552-553 556-557 559-564 566-567 569 571 573 576 578-580 582-587 589 591-594 596-597 599-600 602 611-615 618 620-625 627-628 631-636 638 641-642 646 648 651 689-669 662-664 667-668 675-678 680-681 684 689-690 696-698 709 714 723 738				464-465 470 472-473 475 477-478
S26-534 538-539 541 543-547 549-550 552-553 556-557 559-564 566-567 569 571 573 576 578-580 582-867 569 571 573 576 578-580 582-867 569 571 573 576 578-580 582-867 569 571 573 576 578-580 582-867 589 591-594 596-597 599-600 602 611-615 618 620-625 627-628 631-636 638 641-642 646 648 651 659-660 662-664 667-668 675-678 680-681 684 689-690 696-698 709 714 723 738 COlumbia				480-485 488-490 501 503 505-506
S50 552-553 556-557 559-564 566- 567 569 571 573 576 578-580 582- 587 589 591-594 596-597 599-600 602 611-615 618 620-625 627-628 631-636 638 641-642 646 648 651 659-660 662-664 667-668 675-678 680-681 684 689-690 696-698 709 714 723 738 Fetal				509 511-513 515-518 520 522-524
Seff 569 571 573 576 578-580 582-587 589 591-594 596-597 599-600 602 611-615 618 620-625 627-628 631-636 638 641-642 646 648 651 659-660 662-664 667-668 675-678 680-681 684 689-690 696-698 709 714 723 738				526-534 538-539 541 543-547 549-
S87 589 591-594 596-597 599-600 602 611-615 618 620-625 627-628 631-636 638 641-642 646 648 651 659-660 662-664 667-668 675-678 660-681 684 689-690 696-698 709 714 723 738			·	550 552-553 556-557 559-564 566-
fetal Columbia University Spleen				567 569 571 573 576 578-580 582-
fetal Columbia University Spleen				587 589 591-594 596-597 599-600
G31-636 638 641-642 646 648 651 659-660 662-664 667-668 675-678 660-661 684 689-690 696-699 709 714 723 738				· · · · · · · · · · · · · · · · · · ·
fetal Columbia FLS002 15 31-32 39-40 47-49 52 56 60 65 69 72 75 78 84 97-98 100 104 115 123 138 140 144 146 152-153 157 161 164 172-173 182 188 194 196 199 220 241-242 246 249 253 255 266 273-275 280-281 288-291 314-316 318-319 321-322 324 329-331 336-339 343 347-350 353-354 357-358 363 367 369-370 372 374 378-389 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597-599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689-690 69-697 701 703 714 719 723 734-735				
fetal Columbia IIIVer- spleen				
fetal Columbia University Spleen				
Columbia Columbia FLS002 15 31-32 39-40 47-49 52 56 60 65 Columbia	į	h.		1
1iver-spleen	6-1-3	Ge 11-7		
Spleen			FLS002	l l
161 164 172-173 182 188 194 196 199 220 241-242 246 249 253 255 266 273-275 280-281 288-291 314-316 318-319 321-322 324 329-331 336-339 343 347-350 353-354 357-358 363 367 369-370 372 374 378-380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597-599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689-690 696-697 701 703 714 719 723 734-735	\$	University		i
199 220 241-242 246 249 253 255 266 273-275 280-281 288-291 314-316 318-319 321-322 324 329-331 336-339 343 347-350 353-354 357-358 363 367 369-370 372 374 378-388 380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597-599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689-690 696-697 701 703 714 719 723 734-735	spleen			1
266 273-275 280-281 288-291 314- 316 318-319 321-322 324 329-331 336-339 343 347-350 353-354 357- 358 363 367 369-370 372 374 378- 380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541- 546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597- 599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689- 690 696-697 701 703 714 719 723 734-735 fetal liver spleen fetal liver Invitrogen fetal liver FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369- 370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
316 318-319 321-322 324 329-331 336-339 343 347-350 353-354 357-358 363 367 369-370 372 374 378-380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597-599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689-690 696-697 701 703 714 719 723 734-735				199 220 241-242 246 249 253 255
336-339 343 347-350 353-354 357-358 363 367 369-370 372 374 378-380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597-599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689-690 696-697 701 703 714 719 723 734-735		,		266 273-275 280-281 288-291 314-
358 363 367 369-370 372 374 378-380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541-546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597-599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689-690 696-697 701 703 714 719 723 734-735 fetal				316 318-319 321-322 324 329-331
380 382-383 386 388-389 393-397 399 405 407 409-410 412 421 424 432 435 439 448 450-451 453-457 459 461 464-465 470 472-475 477 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541- 546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597- 599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689- 690 696-697 701 703 714 719 723 734-735 fetal liver- spleen fetal liver Invitrogen fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369- 370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 433 Fetal liver Clontech FLV002 51 79 97 108-110 166 194 196 266				336-339 343 347-350 353-354 357-
399 405 407 409-410 412 421 424		•		358 363 367 369-370 372 374 378-
399 405 407 409-410 412 421 424	,		}	380 382-383 386 388-389 393-397
## ## ## ## ## ## ## ## ## ## ## ## ##	•			1
# 459 461 464-465 470 472-475 477 # 479-481 483 485 488 490 497 501 # 503 506 509 511-513 516-518 520 # 524 527-528 531-532 534 539 541- # 546 556 559-560 565-566 569 571 # 574 576 579 582-586 588 590 597- # 599 602-604 606 615 618 620-621 # 623 625 627 632-634 639 641 644 # 648 666-668 675-676 681 684 689- # 690 696-697 701 703 714 719 723 # 734-735 # Columbia University # Spleen # FLV001			1 .	1
### 479-481 483 485 488 490 497 501 503 506 509 511-513 516-518 520 524 527-528 531-532 534 539 541- 546 556 559-560 565-566 569 571 574 576 579 582-586 588 590 597- 599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689- 690 696-697 701 703 714 719 723 734-735 ###################################				l ;
503 506 509 511-513 516-518 520				
fetal Columbia FLSO03 60 79 157 190 690 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 fetal liver Invitrogen FLV002 343 fetal liver Invitrogen FLV002 343 fetal liver Invitrogen FLV002 343 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94	,			i l
fetal Columbia FLS003 60 79 157 190 690 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal liver FLV002 343 fetal liver FLV002 51 79 97 108-110 166 194 196 266				
574 576 579 582-586 588 590 597- 599 602-604 606 615 618 620-621 623 625 627 632-634 639 641 644 648 666-668 675-676 681 684 689- 690 696-697 701 703 714 719 723 734-735 fetal		1		
fetal Columbia FLS003 60 79 157 190 690 liver-spleen Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 79 97 108-110 166 194 196 266	1			l i
fetal Columbia FLS003 60 79 157 190 690 liver-spleen University FLV001 3 27 35 48 50 56-57 66 75 92 94 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 fetal liver Clontech FLV002 343 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				i i
fetal Columbia FLS003 60 79 157 190 690 liver- University FLV001 3 27 35 48 50 56-57 66 75 92 94 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 fetal liver Clontech FLV002 343 fetal liver Clontech FMS001 51 79 97 108-110 166 194 196 266	ļ			1
fetal Columbia FLS003 60 79 157 190 690 liver- University FLS003 60 79 157 190 690 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
fetal Columbia University spleen fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
fetal Columbia liver- University FLS003 60 79 157 190 690 fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
liver- spleen fetal liver				
spleen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369-370 381 392 396 429-430 435 439-440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266	fetal	Columbia	FLS003	60 79 157 190 690
fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369- 370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266	liver-	University	1	
fetal liver Invitrogen FLV001 3 27 35 48 50 56-57 66 75 92 94 105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369- 370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266	spleen			
105 157 161 164 176 189 209 220 243 272 324 328 333 335 353 369- 370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266	-	Invitrogen	FLV001	3 27 35 48 50 56-57 66 75 92 94
243 272 324 328 333 335 353 369- 370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266	*			105 157 161 164 176 189 209 220
370 381 392 396 429-430 435 439- 440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266		1		
440 442 444 465 471 483 487 502 506 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266			1	
50.6 513-514 519 534-535 537 548 554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
554 566 568 576-577 580 582 590 613 621 645 648-649 689 fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				· ·
fetal liver Clontech FLV002 343 fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266				
fetal Invitrogen FMS001 51 79 97 108-110 166 194 196 266		G1 pr = -1	777.770.00	
		i i		
muscle 341 352 380 389 402 407 444 464		Invitrogen	FMS001	
	muscle			341 352 380 389 402 407 444 464

Tissue	RNA Source	Hyseq	SEQ ID NOS:
	RNA SOUICE		SEQ ID NOS.
Origin		Library	
	***	Name	
İ			475 501 513 524 546 552 554 560
			570 572 598 605 628 634 649 675
			703-704 714 737
fetal	Invitrogen	FMS002	524
muscle			
fetal skin	Invitrogen	FSK001	31 33 35 48 57 63 67 75 112-114
1			117 157 162 164 172 178 180 188
			196 220 243 254 319 324 328 330
		•	333-334 367 369 371 375 379-383
			386 388-389 400 404 407 412 419-
			420 429 444 455 472-473 491 499
			503 508 511 514 517 522-524 529
			531 534 537 540 542 547 552 554
			556-557 560 563 565 567 571-572
			574 576 579 590 596 599 616 621
			625 627 631-632 634 639-640 648
			653-654 662 689 708 714
fetal skin	Invitrogen	FSK002	501 537
fetal	BioChain	FSP001	465 729
1	Diocitatii	101001	100 /20
spleen	BioChain	FUC001	27-28 35 57 68 83 105 136 157 159-
umbilical	BIOCHAIN	FOCOOT	1
cord			160 164 188 191 225 279 315-316
			321 328 334 363 367 369 378-379
			383 386 388-389 392 397 406-407
		1	413 415-416 427 440 449 455 458
			461 464-465 468 473-475 479 485-
			486 488 490 496 514 517 522 524
			526 528-529 531 533-534 538 540
			546 550 552 556-558 572 582 584-
			585 587-588 594-597 602 606 613
			616 618-619 631 634 637 651 689
			696 698 706 729
fetal brain	GIBCO	HFB001	3 5 22 26 46 53 66 73 94 117 134
recar prain	GIPCO	HEBOOT	139 164 172-173 188-189 212 215
			1 111
			230-231 248 251 262 288-289 316
			325 329-331 334 337-338 348 352
			365-367 369 371 377-379 385-386
			388 392 394 396 400 403 420 422
			429 437 444-446 449 451 455 459
		1	461-463 466-468 472-473 475 477
}	1		481 483 485-486 488 490-491 496
			503-504 506 513 523-524 529 532-
		1	533 539-541 545 548 550 552 557-
		1	560 563 565-566 569 571 576-577
			579-580 583-584 586 590 593-594
			596-599 601-602 604 606 611 613
			615 618 621-623 627-628 634-635
		1	
			637 641 643 647 662 664-665 667
			675 677 680 689 695-697 703 726
macrophage	Invitrogen	HMP001	97 518 532 569
infant	Columbia	IB2002	28 46 56-57 59 67 75 78 109 117
brain	University		122 129 144 157 162 164-165 172
			176 180 190 193 212 220 226 236-
	<u> </u>	I	

Tissue	RNA Source	Hyseq	SEO ID NOS:
Origin		Library	
0119111		Name	
			237 251 261-262 316 318 324 328-
	[330 334-335 337 340 354-356 361
			364-365 367 369 371-373 377-380
			382 385-386 389 392 395 397 400
			411 416 421-422 429 432 436 438
			444 448 451 456 464-465 469 471-
			475 484 486 496 504-506 511 520
			524 526 529 531 533-534 537-540
		*	544-546 548 553 556 558 562 565
	}		567 576 579~580 582 584 586 589-
	1		590 593 597-598 602 613-614 618
			620-621 627-628 632 634 636 641
			650 654 659 662 667 683 689 721
			730
infant	Columbia	IB2003	46 54 75 109 156 164 220 244 251
brain	University	112003	314 324-325 331 335 340 361-362
Diain	Oniversity		367 369 377-379 400 408 438 442
1			456 460 464 469 472 496 506 523-
Į			524 526 529 538 540 544-545 547
			558 560-562 565 567 569 579 584
			598 602 613 615 621 627 632 634
	7 7 7 7 7 7	7711000	637 639 650 738
infant	Columbia	IBM002	262 340 432 436 438 472 531 534
brain	University		569 613 634
infant	Columbia	IBS001	162 231 283 331 369 385 438 444
brain	University		472 506 513 523 531 534 580 615
			636 689
lung,	Strategene	LFB001	28 54 57 65 172 188 233 321 331
fibroblast			340 347 367 369 378-379 388 401
		•	451 459 475 479 503 511 522 524
		į	532 534 559-560 573 580 583 587
	_	İ	597 615 632 634 638 686 689 708
lung tumor	Invitrogen	LGT002	3 7 21 24 26 28 31 54 56-57 62-63
	1		66 92-93 101 109 112 162 164 171-
			172 176 183 188-189 192-193 196
			201-202 223 230 235 259 273-274
		1	316 321 329-331 333-334 338 345
	İ	<u> </u>	347-348 356 367 369 371-372 378-
			379 381-382 386 388-390 396 399-
		1	404 406 409 416 424-425 427 429
	1		432 436-437 439 451 455-456 459
		1	464-465 467 473 475 484-486 490
		1	499 502-503 506 508 511 513-514
			517-518 522 524 526 528 531-532
			534-535 538-539 541 543-546 553
1			557-559 563 567-568 571 573 575-
			576 579-580 585-588 590-591 593-
			594 598 601-604 609 611-613 615
			621 627-628 631-632 636-637 645
			648 651-652 654 662 667 672 677
		Į	681 683 689 698 701-702 714 718
			724 726 729 734
lymphocytes	ATCC	LPC001	4 31-32 35 57 65-66 70 110 116 156
TAMPHOGACES	AICC	1 11 001	1 31 32 33 37 03 00 70 110 110 130

Origin Library Name 162 164 230 243 250 282 287 326 328-330 334 336 346-347 355 378 3386 388 397 407 414 416 419 472 497 520 525 539 545 549 551 582 590 606 615 618 621 631 634 686 692 698 701 714 160 162 163 163 1634 686 692 698 701 714 173 176 188 193 199 204 207 220 244 253 255 314 318 319 324 326 329-330 337-339 346-347 352 354 356 367 369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435 436 43-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-535 545 556-566 569 571-573 576 579 581 588-587 590 593-594 586 600-620 64 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-688 714 726 100 162 162 162 163 1648 665 714 730 100 162 163 1644 128 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-688 714 726 100 162 163 1648 665 714 730 100 162 163 1644 128 620-622 624 627 630 632-634 636 638 643 645 660-662 634 634 645 660-662 634 634 645 660-662 634 634 645 634 634 645 634 634 645 645 645 645 645 645 645 645 645 64	Tissue	RNA Source	Hyseq	SEO ID NOS:
Name				~
162 164 230 243 250 282 287 326 328-330 324 336 346-347 359 378 3386 388 397 407 414 416 419 472 497 520 525 539 545 549 551 582 590 606 615 618 621 613 634 686 689 698 698 701 714 79-11 23 28 31 35 39 54 65 75- 76 79 90 97 110 117 134 152 157 159 162 164-167 171 173 176 188 193 199 204 207 220 244 253 255 314 316 318 321 324 326 329-330 337-339 346-347 352 354 356 367 369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435-436 443-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571-573 576 579 581 585-587 590 593-594 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 951 693 696-698 714 726 100 100 100 100 100 100 100 100 100 1			_	
328-330 334 336 346-347 359 378 386 388 397 407 414 416 419 472 497 520 525 539 545 549 551 582 590 606 615 618 621 631 634 686 692 698 701 714			21041110	162 164 230 243 250 282 287 326
Section Sect				
A97 520 525 539 545 549 551 582 590 606 615 618 621 631 634 686 692 698 701 714 79-11 23 28 31 35 39 54 65 75-		-		
Sp0 606 615 618 621 631 634 686 692 698 701 714				, · · · · · · · · · · · · · · · · · · ·
GIBCO				
Teukocyte				
76 79 90 97 110 117 134 152 157 159 162 164-167 171 173 176 188 193 199 204 207 220 244 253 255 314 316 318 321 324 326 329-330 337-339 346-347 352 354 356 367 369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435-436 443-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571- 573 576 579 581 585-587 590 593- 594 598 600-602 604 606-609 613- 614 618 620-622 624 627 630 632- 634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696- 698 714 726 100 100 100 100 100 100 100 100 100 1				
159 162 164-167 171 173 176 188	leukocyte	GIBCO	LUC001	
193 199 204 207 220 244 253 255 314 316 318 321 324 326 329-330 337-339 346-347 352 534 356 367 369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435-436 443-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571- 573 576 579 581 585-587 590 593- 594 598 600-602 604 606-609 613- 614 618 620-622 624 627 630 632- 634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696- 698 714 726 104 618 620-622 624 627 630 632- 698 714 726 104 618 620-622 624 627 630 632- 698 714 726 105 682 684 686 689 691 693 696- 698 714 726 108 682 684 686 689 691 693 696- 698 714 726 109 12-13 137 341 346 367 379-380 388 407 427 454 472 477 482 501 520 539 545 552 556 579 588 593 598 611 621 631 648 665 714 730 mammary gland 109 112-13 117 122 125 138 141 154 160 162 164 172 176 186 189 192 204 214 220-221 232 238 251 255 257 273 276-278 324 326 328- 331 333 335 337 341-343 347 354- 355 357 367-371 374-375 379 382- 386 388-392 397 399-400 404 406- 408 410-411 425 431 435-436 444 451 455 457 459 461 664-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639-640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695			·	
314 316 318 321 324 326 329-330 337-339 346-347 352 354 356 367 369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435-436 443-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 669 571-573 576 579 581 585-587 590 593-594 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726				159 162 164-167 171 173 176 188
337-339 346-347 352 354 356 367 369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435-436 443-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571-573 576 579 581 585-587 590 593-594 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726				193 199 204 207 220 244 253 255
369 371 378-379 382 388-389 392 396-397 400-402 405 415-416 420 422 429 432 435-436-443-444 449 454-455 457-459 465 479 481-486 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571-573 576 579 581 585-587 590 593-594 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726 666 698 714 726 678 682 684 686 689 691 693 696-698 714 726 718 718 718 718 718 718 718 718 718 718				314 316 318 321 324 326 329-330
396-397 400-402 405 415-416 420				337-339 346-347 352 354 356 367
396-397 400-402 405 415-416 420				369 371 378-379 382 388-389 392
422 429 432 435-436 443-444 449 454-455 457-459 465 479 481-486		i		
### ### ### ### ### ### ### ### ### ##				
### 491 497 501 503-504 506 508 511 514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571-573 576 579 581 585-587 590 593-594 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726 Teukocyte				
S14 516 520 523-525 529 532-533 535 538-539 545 548 552-545 556 559-560 562-563 565-566 569 571- 573 576 579 581 585-587 590 593- 594 598 600-602 604 606-609 613- 614 618 620-622 624 627 630 632- 634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696- 698 714 726				
S35 538-539 545 548 552-554 556 S59-560 562-563 565-566 569 571-573 576 579 581 585-587 590 593-594 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726				
S59-560 562-563 565-566 569 571- 573 576 579 581 585-587 590 593- 594 598 600-602 604 606-609 613- 614 618 620-622 624 627 630 632- 634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696- 698 714 726				
S73 576 579 581 585-587 590 593- 594 598 600-602 604 606-609 613- 614 618 620-622 624 627 630 632- 634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696- 698 714 726				
S94 598 600-602 604 606-609 613-614 618 620-622 624 627 630 632-634 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726				
614 618 620-622 624 627 630 632-634 636 638 633 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726				
G34 636 638 643 645 660-662 667 678 682 684 686 689 691 693 696-698 714 726				i i
Clontech LUC003 11 54 97 152 164 330 479 546 564 565 593 613 627 634 646 696 729				614 618 620-622 624 627 630 632-
G98 714 726				634 636 638 643 645 660-662 667
Teukocyte				678 682 684 686 689 691 693 696-
melanoma from cell line ATCC #CRL 1424				698 714 726
melanoma from cell line ATCC #CRL 1424	leukocyte	Clontech	LUC003	11 54 97 152 164 330 479 546 564-
from cell line ATCC #CRL 1424			,	565 593 613 627 634 646 696 729
line ATCC #CRL 1424	melanoma	Clontech	MEL004	2 57 67 79 164 171-173 188 193 196
line ATCC #CRL 1424	from cell			232 321 337 341 346 367 379-380
#CRL 1424 520 539 545 552 556 579 588 593 598 611 621 631 648 665 714 730 mammary gland Tinvitrogen gland 3 20-21 29 31 54 56-57 63-66 79 94 109 112-113 117 122 125 138 141 154 160 162 164 172 176 186 189 192 204 214 220-221 232 238 251 255 257 273 276-278 324 326 328 331 333 335 337 341-343 347 354 355 357 367-371 374-375 379 382 386 388-392 397 399-400 404 406 408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695	line ATCC			
Sys 611 621 631 648 665 714 730				
mammary gland Invitrogen MMG001 3 20-21 29 31 54 56-57 63-66 79 94 109 112-113 117 122 125 138 141 154 160 162 164 172 176 186 189 192 204 214 220-221 232 238 251 255 257 273 276-278 324 326 328-331 333 335 337 341-343 347 354-355 357 367-371 374-375 379 382-386 388-392 397 399-400 404 406-408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470-471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539-540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639-640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695	,,			Į .
gland 109 112-113 117 122 125 138 141 154 160 162 164 172 176 186 189 192 204 214 220-221 232 238 251 255 257 273 276-278 324 326 328- 331 333 335 337 341-343 347 354- 355 357 367-371 374-375 379 382- 386 388-392 397 399-400 404 406- 408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695	mammary	Invitrogen	MMG001	l
154 160 162 164 172 176 186 189 192 204 214 220-221 232 238 251 255 257 273 276-278 324 326 328- 331 333 335 337 341-343 347 354- 355 357 367-371 374-375 379 382- 386 388-392 397 399-400 404 406- 408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695	_	invictogen	, ruidour	1
192 204 214 220-221 232 238 251 255 257 273 276-278 324 326 328- 331 333 335 337 341-343 347 354- 355 357 367-371 374-375 379 382- 386 388-392 397 399-400 404 406- 408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695	grand			
255 257 273 276-278 324 326 328- 331 333 335 337 341-343 347 354- 355 357 367-371 374-375 379 382- 386 388-392 397 399-400 404 406- 408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				t l
331 333 335 337 341-343 347 354-355 357 367-371 374-375 379 382-386 388-392 397 399-400 404 406-408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470-471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539-540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639-640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				!
355 357 367-371 374-375 379 382-386 388-392 397 399-400 404 406-408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470-471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539-540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639-640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				_
386 388-392 397 399-400 404 406- 408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				
408 410-411 425 431 435-436 444 451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				
451 455 457 459 461 464-465 470- 471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				1
471 475 479 483 485 487-488 491 501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695		1	}	1
501 506-508 511 513-519 523-524 526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				451 455 457 459 461 464-465 470-
526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695		1		1
526 529 531-532 534-535 537 539- 540 542-545 552-554 557-560 563 566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695			1	501 506-508 511 513-519 523-524
566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695		1		
566 569 572 577 580 584 587-588 590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				540 542-545 552-554 557-560 563
590 597-598 602 604-605 609 611 613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695]	;
613 615 624 627 631-634 637 639- 640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695				! '
640 643 648-649 654 664 669-670 672-673 676-679 681 689 691-695			1	1
672-673 676-679 681 689 691-695]	!
			1	1
[
L	I		1	097-698 706 714 731 734 737

Tissue	RNA Source	Hyseq	SEO ID NOS:
Origin	10.11	Library	~
		Name	
induced	Strategene	NTD001	36 57 164 284 388 397 420 481 485
neuron			501 524 528-529 539 542 545 560
cells			571 579 582 595 602 620 637 654
			667 689 730
retinoid	Strategene	NTR001	524 584 693
acid	_		
induced			
neuronal			
cells			
neuronal	Strategene	NTUOO1	36-38 120 204 331 351 354 357 386
cells			388 399 411 442 459 516 533 539
		•	545 565 586 606 615 621 637-638
			642 646 648 714 730
placenta	Clontech	PLA003	503 579 690
prostate	Clontech	PRT001	15 40 65 164 187 207 229 337 348
1	j		367 375 377-378 395 406 416 428
			458 468 476 511 524 526 531 534
			538 555 559 563 576 584 597 613
			622 624 631 642 667 672 677 684
			724 734
rectum	Invitrogen	REC001	57 67 164 260 331 343 370-371 380
		:	382 384 404 409 436 444 475 485
			498 513 524 526 540 542 552 554
			581 615 619 624 627 634 654 659
	G7	077.007	671 689 714
salivary	Clontech	SAL001	21 84 106-107 152 179 238 246 255 273 287 371 378 383 401 407 420
gland			455 475 477 509 512 515 521 541
			548 565 570-571 573-574 589 606
			628 634 636 652 689 703 738
skin	ATCC	SFB002	192
fibroblast	Aicc	BIBOOZ	1 - 2
skin	ATCC	SFB003	464
fibroblast	11100	515003	
small	Clontech	SIN001	57 66 71 98 116 150 164 172 327
intestine	0.20000	522.002	336 343 362 367 379 388 397 401-
			402 417 429 433 436 496 526 528
			533 590 602 620 631 634 667 678
			711
skeletal	Clontech	SKM001	3 57 66 101 164 172 256 266 325
muscle		1	379 385 449 468 485 487 518 552
			554 566-567 570 582 584 590 606
			611 628 631 738
spinal cord	Clontech	SPC001	10 54 57 66 75 100 102 114 144 164
		ļ	175 193 199 215-216 325 334 337
			367 370 380 385-386 406 411-413
		1	419 429 466 470 486 518 526 529
			531 534 574 579 585 587 590 604
			620-621 631-632 634 642 644 648
			659 688-689 691 693 695
adult	Clontech	SPLc01	478 572
spleen			
stomach	Clontech	ST0001	26 90 164 218 358 369 386 468 475

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
			485 526 532 569 576 579 581 586
			603 631 634 677 682 689
thalamus	Clontech	THA002	17 31 57 66 109 127 164 217-218
- Carazamas			262 315-316 324 330 357 369 386
			388 400 406 435 456 459 464 468-
			469 515-516 537 540-541 556 566
	1		574 590 611 622 631 634 644 648
			656 677-678 680
thymus	Clontech	THM001	6 15 26 54 79 164 172 187 193 201
Ciryillus	CTOHLECH	IMMOOT	
	•		264 291 315 329 331 351 356 367
			397-398 401 407 412 424 427 429
			435-436 443 451 474 478 482 549
	İ		563 565 567 569 576 578 581-582
	İ	'	610 615 621 631-632 634 648 662
			667 669 679 689 693 696
thymus	Clontech	THMc02	3-6 8 11 16 18 34 58-59 67 132 149
			162 164 167 172-173 186 188-189
	İ	,	193 200 203 216 223 232 239 255
	.		263 265 319-320 331 333-334 355
			359 370 373 377-380 382 387-390
			393 395 398-399 402 404 408 420
			427 434 436 467 475-476 503 508
			518 524 526 532 540 560 563 565
		<u> </u>	571-572 576-577 579 582 598 601
		ļ	603 612-613 615 621 627 632 634
} .		1	639 641 648 651 657 659 662 672
			677-678 684-686 689 696 699 706
			714-716 722 726-729 732
thyroid	Clontech	THR001	5 29-30 40 54 57 66 72 79 117 144
gland			160 164 166 170 172 176 183 188-
			189 208-209 219 230 285-286 314
i l			318 327 331 335 338 344 347 354
		-	363 367 375 377-380 382 384-386
}		}	388 393 397 399 401-403 419 422
			429 436 442 444 451 456 458-461
			464 467-468 470 472-473 476-477
			481 488 494 503 508-509 511 516
			519-521 524 528-529 533 537-538
			543 548 557 559-560 563 565-566
			571-574 576 582 585 587 590-591
			593-594 596-597 606 614-615 620-
			621 623-624 627 631-634 640 650-
			651 653 662 667 669-670 675 679
			689 708 712 714
traches	Clontock	TERCOOT	
trachea	Clontech	TRC001	156 164 171 240 375 378 390 400
			422 468 484 565 574 581 585 587
	~7		631 654 689 714
uterus	Clontech	UTR001	65. 77 79 101 164 220 367 369 451
	1	į.	468 526 530 533 548 554 559 562
1			568 573 582 594 637 648 689

Table 2 - Nearest Neighbor Results

SEQ ID	SEQ				Smith	%
	ID	Acces- sion	Species	Description	_	Identity
NO:	NO:	No.			Water	*
110.	in	1.0.			man	
	USSN	ļ			Score	
1	09/48	ľ			50010	
ŀ		ļ				
i	8,725 1000	gi70214	Mus musculus	secretory	567	85
	TOOO	84	Musculus	carrier	30,	03
	•	0.4		membrane		
				protein 4		
		705467	77	Derived	848	100
2	10017	R06463	Homo sapiens		040	100
				protein of	· ·	
				clone ICA13		
				(ATCC 40553).		
3	10020	gi10659	Caenorhab-	similar to	325	36
		67	ditis elegans	other protein	[
				phosphatases		
1				1, 2A and 2B		
4	10024	G03460	Homo sapiens	Human	439	98
				secreted		
1				protein,	1	
5	10032	Y12505	Homo sapiens	Human 5' EST	136	87
			_	secreted	1	
				protein		
6	10042	Y29511	Homo sapiens	Human lung	701	100
			_	tumour protein		
	j			SAL-25 1st	İ	
				predicted	ļ	
1 1		İ		amino acid	İ	
				sequence.		İ
7	1006	Y92324	Homo sapiens	Human alpha-	763	100
'	1000	172321	nomo bapieno	2-delta-D		
	ļ			polypeptide		
	1		,	from splice		
	ł			variant 1.	ł	
	10064		Home coniona	Gab2	425	58
8	10064	gi45893	Homo sapiens	GaD2	443	26
	100=	75	77222		151	75
9	1007	gi70183	Homo sapiens		1 727	/5
	1	98	77		1226	99
10	1008	gi89606	Homo sapiens	protein that	1226	99
]	5		is immuno-		
	1			reactive with		1
1				anti-PTH		
				polyclonal		
1		<u> </u>		antibodies		
11	10088	gi37792	Homo sapiens	Metallo-	1512	98
		44		protease 1		
12	10089	gi29472	Homo sapiens	membrane	523	100
		32		associated		
				guanylate		
				kinase 2		
13	10091	gi33478	Mus musculus	cAMP-specific	223	54
کــل ز		1 -	4	cyclic	1	1

SEQ	SEQ	Acces-	Species	Description	Smith	용
ID	ID	sion	ppccicb	Deborrage	-	Identity
NO:	NO:	No.			Water	lacinoto
140.	in	1,0.			man	
	USSN				Score	
	09/48	l .			BCCIC	
<u> </u>	8,725			nucleotide	ļ	
				phosphodi-		
				esterase PDE8;		
	1000		· · · · · · · · · · · · · · · · · · ·	MMPDE8	1068	100
14	10098	gi69793	Homo sapiens	cysteine-rich	1000	100
		11		repeat-		
ŀ				containing	\	
				protein S52]
				precursor		
15	10102	G01395	Homo sapiens	Human	297	88
		1		secreted		
		-		protein,		
16	10103	gi85473	Rattus	casein kinase	293	84
		3	norvegicus	1 gamma 1	1	ļ
	ļ			isoform		j ,
17	10104	Y60017	Homo sapiens	Human	154	100
				endometrium		
	l .			tumour EST		
				encoded		
	İ			protein 77.		
18	10108	G03290	Homo sapiens	Human	215	97
1				secreted		
				protein,	1	
19	10110	gi72922	Drosophila	CG1271 gene	208	46
1		99	melanogaster	product		
20	10111	gi45123	Rattus		822	89
1	}	34	norvegicus	Ca/calmodulin-	1	
ļ				dependent	ľ	
				protein kinase	ļ	•
				kinase alpha,	1	
				CaM-kinase		
	1			kinase alpha		
21	10113	Y41694	Homo sapiens	Human PRO382	633	97
				protein		
				sequence.		
22	10114	gi34907	Rattus	calmodulin-	531	99
		5	norvegicus	binding		
				protein		
23	10116	gi16298	Bos taurus	endozepine-	937	87
""		1		related		-
		-		protein		
				precursor		
24	10121	gi89797	Canis	Band4.1-like5	643	100
4	10121	43	familiaris	protein	013	100
25	10126	Y99420	Homo sapiens	Human PRO1486	607	100
25	10126	155440	aprens	(UNQ755) amino	007	100
-	1012		Homo ganian	l	614	73
26	1013	gi80475	Homo sapiens	protein	614	73
1		0		tyrosine	J	

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	SPCCICS	Deberrperen	-	Identity
NO:	NO:	No.			Water	
	in		,		man	
	USSN				Score	
	09/48					
	8,725					
				phosphatase		
27	10136	W02105	Homo sapiens	Human L-	1243	98
				asparaginase.		
28	10142	Y35924	Homo sapiens	Extended	862	89
				human secreted		
				protein		
	10140	gi33349	Homo sapiens	sequence, R27216 1	329	98
29	10148	82				
30	1015	G02485	Homo sapiens	Human	120	72
İ				secreted		
	70754	10700		protein,	0.605	
31	10154	gi10798 804	Homo sapiens	sperm antigen	2607	98
32	10175	Y96864	Homo sapiens	SEQ. ID. 37	536	100
				from		
		1 = = = = = =		WO0034474.		
33	10196	gi55362 1	Homo sapiens	profilaggrin	346	39
34	10198	gi14190	Mus musculus	odorant	281	53
		16		receptor		
35	10200	Y57903	Homo sapiens	Human	448	100
				transmembrane		
				protein HTMPN-		
2.6	10208	gi40624	Escherichia	27.	F05	100
36	10208	92	coli	:	505	100
37	10212	gi88252	Escherichia	ORF f141	625	96
] ,	10212	9	coli	0111111	023	
38	10213	gi40627	Escherichia	Hypothetical	773	98
		78	coli	protein HI0761		
39	10214	gi66938	Rattus	opioid growth	661	44
		32	norvegicus	factor		
				receptor		
40	10227	G01360	Homo sapiens	Human	384	100
				secreted		
				protein,		
41	10236	gi16512 57	Escherichia coli	-	373	100
42	10241	gi27692	Escherichia	catabolite	178	96
		62	coli	gene activator		
	-			protein		
43	10245	gi17895	Escherichia	orf,	679	98
		39	coli	hypothetical		
				protein		
44	10246	gi88249	Escherichia	ORF_0179	488	97
		2	coli			
45	10247	gi17421	Escherichia	Sn-glycerol-	323	100
		49	coli	3-phosphate		

ID	SEQ	SEQ	Acces-	Species	Description	Smith	ે
NO: NO:		ID	sion	-	-	_	Identity
USSN 09/48 8,725	NO:	NO:	No.			Water	Ī. Ì
10282 Y29817 Homo sapiens		in				man	
10282 Y29817 Homo sapiens		1				1	
8,725							l
Camport System Permease Protein UgpA Homo sapiens Human synapse 521 96 1088 gi45396 Homo sapiens Human synapse 521 96 1088 gi45396 Homo sapiens Human synapse 521 96 related glycoprotein 2.							
System Permease Protein UgpA					transport		
Permease Protein UgpA.	ŀ				_		
Protein UgpA. Human synapse Filter Filte							
Human synapse related glycoprotein Second Street Second	İ		ļ				
Related glycoprotein 2.	46	10282	Y29817	Homo sapiens		521	96
1031 gi64351 Mus musculus putative E1 990 86		1		_			
1031 gi64351 Mus musculus putative E1 990 86	1				glycoprotein		
30			1			\	
1040 gi85412 Homo sapiens Human giant larvae homologue	47	1031	gi64351	Mus musculus	putative E1-	990	86
4	1		, -		1 -		[
4	48	1040	gi85412	Homo sapiens	Human giant	471	63
1043 gi38822 Homo sapiens KIAA0782 protein			1 -				<u> </u>
1043 gi38822 Homo sapiens KIAA0782 protein					homologue		
S5	49	1043	gi38822	Homo sapiens	, –	154	61
Simple S		į	85	_	protein	ļ]
Description Description	50	1051	gi17821	Homo sapiens	anion	172	100
1053 Y76748 Homo sapiens Human protein kinase homologue, PKH-1.			6	_	exchange		
Kinase homologue, PKH-1.					protein 1		
Rinase Homologue, PKH-1 Rinase Homologue, PKH-1 Rinase	51	1053	Y76748	Homo sapiens		180	92
PKH-1.				_	_		
PKH-1.					homologue,	1	
4					1 -	ł	
precursor 53 1063 gi23938 Brosophila A-kinase anchor protein DAKAP550 54 1066 gi27467 Caenorhabditi s elegans similarity to transacylases 55 107 G00357 Homo sapiens Human secreted protein, 56 1071 gi91059 Xylella Acetylgluta- soff protein, 57 1085 R95913 Homo sapiens Neural thread protein. 58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 42 60 109 gi76343 Homo sapiens KIAA0999 360 85 85 1086 R95913 Homo sapiens KIAA0999 360 85 85 85 85 85 85 85 8	52	1062	gi96501	Mus musculus	ADAM 4	492	65
The following color of the following color			4		protein		
80 melanogaster anchor protein DAKAP550			ļ		precursor		
DAKAP550 S4 1066 gi27467 Caenorhabditi Contains Similarity to transacylases S5 107 G00357 Homo sapiens Human 183 77 Secreted protein, S6 1071 gi91059 Xylella Acetylgluta- 505 36 37 fastidiosa mate kinase S7 1085 R95913 Homo sapiens Neural thread 257 55 protein. S8 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. S9 1088 gi45896 Homo sapiens KIAA0999 873 99 Protein Good S5 S6 S6 S6 S6 S6 S6 S6	53	1063	gi23938	Drosophila	A-kinase	580	60
54 1066 gi27467 88 Caenorhabditi similarity to transacylases 607 35 55 107 G00357 Homo sapiens Human secreted protein, 183 77 56 1071 gi91059 Xylella fastidiosa Acetylgluta-mate kinase 505 36 57 1085 R95913 Homo sapiens Neural thread protein. 257 55 58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 387 58 59 1088 gi45896 Homo sapiens KIAA0999 kiAA0999 kiAA0999 kiAA0999 kiAA0999 kiAA0999 873 99 protein 60 109 gi76343 Homo sapiens KIAA0999 kiAA0999 kiAA0999 360 85			80	melanogaster	anchor protein	1	
88 S elegans Similarity to transacylases					DAKAP550	1	
transacylases 55 107 G00357 Homo sapiens Human 183 77 secreted protein,	54	1066	gi27467	Caenorhabditi	contains	607	35
107 G00357 Homo sapiens Human 183 77 secreted protein,			88	s elegans	similarity to		•
Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein, Secreted protein		Ì	1		transacylases		
protein, Acetylgluta- 505 36 37 fastidiosa mate kinase 57 1085 R95913 Homo sapiens Neural thread protein. 58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 42 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85	55	107	G00357	Homo sapiens	Human	183	77
56 1071 gi91059 Xylella fastidiosa Acetylgluta-mate kinase 505 36 57 1085 R95913 Homo sapiens Neural thread protein. 257 55 58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 387 58 59 1088 gi45896 Homo sapiens KIAA0999 873 99 42 protein KIAA0999 360 85							
37 fastidiosa mate kinase 57 1085 R95913 Homo sapiens Neural thread 257 55 protein. 58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85					protein,	<u> </u>	
57 1085 R95913 Homo sapiens Neural thread 257 55 protein. 58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85	. 56	1071	gi91059	, -		505	36
protein.				1			
58 1086 Y76332 Homo sapiens Fragment of human secreted protein encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85	57	1085	R95913	Homo sapiens	Neural thread	257	55
human secreted protein encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 42 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85		<u> </u>			, =		1
protein encoded by gene 38.	58	1086	Y76332	Homo sapiens	_	387	58
encoded by gene 38. 59 1088 gi45896 Homo sapiens KIAA0999 873 99 42 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85							1
gene 38.							
59 1088 gi45896 Homo sapiens :KIAA0999 873 99 42 protein 60 :109 gi76343 Homo sapiens KIAA0999 360 85							
42 protein 60 109 gi76343 Homo sapiens KIAA0999 360 85	<u></u>]				
60 109 gi76343 Homo sapiens KIAA0999 360 85	59	1088	_	Homo sapiens		873	99
	L		l		<u> </u>		<u></u>
1 protein	60	109	gi76343	Homo sapiens		360	85
		<u></u>					
61 1095 Y94907 Homo sapiens Human 701 97	61	1095	Y94907	Homo sapiens	i	701	97
secreted	1				secreted		

SEQ SEQ Accession NO: NO: NO: NO. NO. NO. NO. NO. NO. NO. NO. NO. NO.	100
NO: NO: NO. Water man Score 10	100
in USSN 09/48 8,725 protein clone cal06_19x protein sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
USSN 09/48 8,725 protein clone cal06_19x protein sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
09/48 8,725 protein clone cal06_19x protein sequence Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
8,725 protein clone cal06_19x protein sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
protein clone cal06_19x protein sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
Cal06_19x protein sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
protein sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human 983 proliferation and apoptosis related protein.	
sequence 62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
62 1102 Y07096 Homo sapiens Colon cancer associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
associated antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	
antigen precursor sequence. 63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	91
precursor sequence. 63 1105 Y84907 Homo sapiens A human 983 proliferation and apoptosis related protein.	91
sequence. 63 1105 Y84907 Homo sapiens A human 983 proliferation and apoptosis related protein.	91
63 1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.	91
proliferation and apoptosis related protein.	
and apoptosis related protein.]
related protein.	
protein.	
	89
03 dependent	
activator	
protein for	
secretion	
65 1109 Y91524 Homo sapiens Human 2400	99
secreted	
protein	
sequence	
encoded by	
gene 74	
66 1113 gil6574 Sus scrofa calcium/cal- 1348	94
62 modulin-	_
dependent	
protein kinase	
II isoform	
gamma-E	
67 1117 Y32169 Homo sapiens Human growth- 2831	97
associated	
protease ,	
inhibitor	
heavy chain	
precursor.	
68 1118 gi30635 Homo sapiens 1138	98
17	
69 1125 gi82482 Homo sapiens sphingosine 1290	98
85 kinase type 2	
isoform	
70 1132 Y94918 Homo sapiens Human 437	59
secreted	
protein clone	
dd504_18	
protein	
sequence	ļ
71 1143 gi45806 Homo sapiens prepro-major 209	40

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	opecies	Deportporon	-	Identity
NO:	NO:	No.			Water	
140.	in	NO.			man	İ
	USSN				Score	
	09/48				00010	
			,			
	8,725	77		basic protein		
		' '		homolog		
	1116		TT-ma gandana	focal	131	87
72	1146	gi18239	Homo sapiens	adhesion	131	87
	}	5	1		Ì	
				kinase		
73	1161	W90962	Homo sapiens	Human CSGP-2	931	100
				protein.	\ \	
74	117	W69428	Homo sapiens	Human	159	93
	ļ	1		secreted		
1	1			protein	1]
	ļ			bp537_4.		
75	1170	gi34339	Homo sapiens		586	87
76	1175	gi79602	Homo sapiens	SNARE protein	308	100
		43		kinase SNAK		
77	118	gi53600	Homo sapiens	NY-REN-18	178	96
		93	_	antigen	1	
78	1183	gi29203	Homo sapiens	helix-loop-	361	91
'		7	•	helix		
İ	İ			phosphoprotein		
79	1193	gi18991	Rattus	polysialyltran	171	76
1 ′ -	1111	86	norvegicus	sferase		
80	1195	gi13994	Homo sapiens	serine/threo-	208	71
"	1175	62	nome baptems	nine-protein		
		02		kinase PRP4h		
81	1198	gi18153	Homo sapiens	defensin	150	71
0.1	1136	5	Homo saprems	precursor	150	'-
82	1201	gi56689	Rattus	plasma	244	73
82	1201	1 -		membrane Ca2+	244	'3
1	1	35	norvegicus	ATPase isoform		
			İ	1kb		
	1005		77	1	716	26
83	1207	gi62248	Homo sapiens	TANK binding	,10	86
	1-1	68	 	kinase TBK1	242	<u></u>
84	1210	gi17964	Homo sapiens	complement	242	61
		6		component Cls	1	
. 85	1211	gi14831	Homo sapiens		296	65
		87				
86	1214	gi78006	Streptococcus	PspA	121	37
		38	pneumoniae			
87	123	Y44810	Homo sapiens	Human	218	93
				Aspartic		
				Protease-2		
				(NHAP-2).		
88	1259	gi21166	Homo sapiens	EAR-1r	128	70
		72	_] [
89	1266	gi72431	Homo sapiens	KIAA1372	403	53
		25		protein		
90	1270	gi12894	Homo sapiens	diacylglycerol	125	96
-		45		kinase epsilon		
				DGK		
L			<u></u>	1		I

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion	-	-	_	Identity
NO:	NO:	No.			Water	-
	in				man	
	USSN				Score	
	09/48					
	8,725					
91	1290	gi14293	Drosophila	ubiquitin-	470	41
		71	melanogaster	specific		
				protease		
92	1291	Y66755	Homo sapiens	Membrane-bound	993	100
				protein		i
				PRO1185.		
93	1296	gi96520	Homo sapiens	scavenger	1183	99
		87	;	receptor		
				cysteine-rich		
				type 1 protein		
		<u> </u>		M160		
				precursor		
94	1299	gi73003	Drosophila	CG7683 gene	397	40
		98	melanogaster	product		
95	1317	gi36951	Rattus	CL1AA	216	100
		15	norvegicus			
96	132	gi18717	Homo sapiens	12-	176	97
		1		lipoxygenase		
97	1330	Y12482	Homo sapiens	Human 5' EST	65	44
				secreted		
				protein		
98	1336	gi10798	Homo sapiens	MLTK-beta	2366	99
		814				
99	135	gi45609	Homo sapiens	effector cell	190	74
		0		protease		
				receptor 1		
100	1356	gi19305	Mus musculus	envelope	131	36
		7		polyprotein		
	2250	gi45865	77	precursor	596	89
101	1369	9145865	Homo sapiens	glucocorticoid	396	89
		1 '		receptor alpha-2		
100	1392	gi84935	Mus musculus	nuclear	145	59
102	1372	19	rius musculus	localization	143	59
}		1		signal binding	-	
				protein		
103	1408	gi31270	Rattus	potassium	176	84
103	7-400	51	norvegicus	channel	1,0	"
		"	1101 (091000	regulatory		
		1		protein KChAP		
104	141	gi64536	Mus musculus	putative	204	33
104	7.47	13		protein kinase	1 203	55
105	1424	gi29825	Homo sapiens	neuropathy	769	100
1 - 3 -		01		target		
		1		esterase	1 '	
106	143	W50033	Homo sapiens	Human immunity	1201	98
100	1		Dapterin	related		-
1				factor.		
107	1431	gi10644	Heterodera	hypothetical	133	36
		1 3		1 2 2 5		

ID	SEQ	SEQ	Acces-	Species	Description	Smith	8
No: in USSN O9/48 8,725 S65 Glycines esophageal gland cell secretory protein 10 1441 Gi30440 Myxococcus xanthus Mater man Score 168 1441 Gi30440 Myxococcus xanthus 109 1444 Gi72483 Homo sapiens Adaptor protein pl30Cas Human S: EST related polypeptide 111 1457 Wi9919 Homo sapiens Human S: EST related polypeptide 111 1457 Wi9919 Homo sapiens Human Ksr-1 227 77 (Kinase suppressor of Ras) 112 1471 G02532 Homo sapiens Human secreted protein, 113 1473 Gi60628 Homo sapiens Candidate 581 100 1	1 1	_	i .	- <u>r</u>		_	Identity
USSN 09/48 8,725 565 Glycines esophageal gland cell secretory protein 10 108 1441 gi30440 Myxococcus unknown 149 32 32 32 109 1444 gi72483 Homo sapiens adaptor protein pl30Cas 110 1447 Y65168 Homo sapiens Human 5' EST related polypeptide 111 1457 W19919 Homo sapiens Human Ksr-1 (Kinase suppressor of Ras). 112 1471 G02532 Homo sapiens Human First First Human First First First Homo Suppressor of Ras). 113 1473 gi60628 Homo sapiens Human First First First First Homo Suppressor First Fir		NO:	No.			Water	•
09/48 8,725 565 glycines esophageal gland cell secretory protein 10 108 1441 gi30440 Myxococcus unknown 149 32 32 32 32 32 32 32 3						man	
8,725 S65 Glycines esophageal gland cell secretory protein 10		USSN	1			Score	ł
Secretory Secr		09/48				:	
Gland cell Secretory Sec		8,725					
Secretory Protein 10 1441 gi30440 Myxococcus unknown 149 32 32 32 32 32 32 32 3			565	glycines	esophageal	-	
108	j				gland cell]
108					secretory		
109				:	protein 10		
109	108	1441	gi30440	Myxococcus	unknown	149	32
110			86	xanthus			
110	109	1444	gi72483	Homo sapiens	adaptor	1615	97
110			81	_	protein		
Telated Polypeptide Poly					p130Cas		
Dolypeptide	110	1447	Y65168	Homo sapiens	Human 5' EST	403	97
111	İ			_	related		
(kinase suppressor of Ras). 112 1471 G02532 Homo sapiens Human secreted protein, 113 1473 G160628 Homo sapiens candidate tumor suppressor protein DICE1 114 1474 Y64896 Homo sapiens Human 5' EST 197 100 related polypeptide 115 1483 G143621 Homo sapiens KIAA0037 295 76 8 116 1486 G158528 Homo sapiens bridging 133 64 integrator-2 117 149 G133271 Homo sapiens KIAA0674 2243 98 62 118 1503 G117367 Escherichia coli Sidenti Sid	-			·	polypeptide ·		[
(kinase suppressor of Ras) Ras) Ras	111	1457	W19919	Homo sapiens		227	77
Ras Ras		1		_	(kinase		
112		к			suppressor of		
Secreted Secreted	}	1	1		Ras).		1
113 1473 gi60628 Homo sapiens Candidate tumor suppressor protein DICE1 114 1474 Y64896 Homo sapiens Human 5' EST 197 100 115 1483 gi43621 Homo sapiens KIAA0037 295 76 116 1486 gi58528 Homo sapiens bridging 133 64 117 149 gi33271 Homo sapiens KIAA0674 2243 98 118 1503 gi17367 Escherichia coli 119 1506 gi40622 Escherichia coli 270 97 120 1513 gi40623 Escherichia coli 256 94 121 1514 gi21660 Escherichia PhoQ protein 661 90 122 1523 gi57127 Rattus calcium transporter Cari 123 1527 gi18539 Mus musculus gluccorticoid 171 84 100 receptor interacting protein 1	112	1471	G02532	Homo sapiens	Human	97	59
113					secreted		
tumor suppressor protein DICE1 114					protein,		
Suppressor protein DICE1 114	113	1473	gi60628	Homo sapiens	candidate	581	100
114			74		tumor		
114	} .	1		}	suppressor		
Telated polypeptide 115	,				protein DICE1		
Dolypeptide 115	114	1474	Y64896	Homo sapiens	Human 5' EST	197	100
115		ļ					
116		İ	,		polypeptide	1	
116	115	1483	gi43621	Homo sapiens	KIAA0037	295	76
34				,			
117	116	1486	gi58528	Homo sapiens		133	64
118			34				
118 1503 gil7367 Escherichia coli . 1270 97 119 1506 gi40622 Escherichia coli YhhI protein 612 90 120 1513 gi40623 Escherichia coli . 556 94 121 1514 gi21660 Escherichia coli PhoQ protein 661 90 122 1523 gi57127 Rattus calcium transporter CaTl 1178 90 123 1527 gi18539 Mus musculus glucocorticoid receptor interacting protein 1 171 84	117	149	gi33271	Homo sapiens		2243	98
85 coli	1		1		protein		
119	118	1503	, –	1		1270	97
98 coli				coli			
120	119	1506	gi40622	I .	YhhI protein	612	90
46 coli 121 1514 gi21660 gi21660 gooli Escherichia coli PhoQ protein 661 gool 90 gooli 122 1523 gi57127 gi57127 gits for convegicus for convegicus for convegicus gool calcium transporter carl 1178 gool 90 for coli 123 1527 gi18539 gits for convegicus gool glucocorticoid for convegicus gool 171 gits for convegicus for convegicus gool 171 gits for convegicus for conve							
121 1514 gi21660 Escherichia PhoQ protein 661 90 122 1523 gi57127 Rattus calcium 1178 90 56 norvegicus transporter CaT1 20 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1	120	1513	gi40623	1	•	556	94
9 coli 122 1523 gi57127 Rattus calcium 1178 90			1				
122 1523 gi57127 Rattus calcium 1178 90 56 norvegicus transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1	121	1514	gi21660		PhoQ protein	661	90
56 norvegicus transporter CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1			9	1			
CaT1 123 1527 gi18539 Mus musculus glucocorticoid 171 84 80 receptor interacting protein 1	122	1523	gi57127		l.	1178	90
123 1527 gi18539 Mus musculus glucocorticoid 171 84 receptor interacting protein 1			56	norvegicus	transporter		
80 receptor interacting protein 1						L	<u> </u>
interacting protein 1	123	1527	gi18539	Mus musculus	glucocorticoid	171	84
protein 1			80		receptor		
				1			
					protein 1		
	124	1536	Y17227	Homo sapiens	1	452	100
secreted					secreted		

SEO	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	5500100	000000000000000000000000000000000000000	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	1
	09/48					
	8,725					
				protein (clone		
				ya1-1).	,	
125	154	gi85150	Pinus taeda	putative	81	40
		90		arabinogalacta	1	
1				n protein		
126	1544	gi38799	Caenorhabditi	Similarity to	134	34
		33	s elegans	Xenopus F-	١,	
		1	_	spondin	\	
				precursor (PIR		
	}			Acc. No.		
				comes from		
				this gene		
127	1554	gi65238	Homo sapiens	S1R protein	255	84
<u> </u>		17				
128	1555	gi66352	Homo sapiens	beta-	210	90
		05		ureidopropiona		
				se		
129	1556	Y39286	Homo sapiens	Phosphodiester	161	61
				ase 10 (PDE10)		
				clone FB93a.		
130	1564	gi89779	Streptomyces	putative	231	45
1 .		45	coelicolor	secreted		
			A3 (2)	serine	1	
		120050		protease	100	0.7
131	1576	gi30258 28	Rattus	signal transducer and	183	97
	ļ	48	norvegicus	activator of		1
				transcription	1	
	-	1		4	ŀ	
132	1578	gi51065	Homo sapiens	transcriptiona	758	98
1,2	1370	72	liono bapieno	l activator	, , , ,]
		'		SRCAP		
133	1579	gi85755	Homo sapiens	toll-like	595	99
	13,3	27		receptor 8		
134	158	gi40605	Mus musculus	protein kinase	168	70
		8				
135	1580	gi63340	Gallus gallus	c-Rmil	231	90
136	1588	gi22179	Homo sapiens	PKU-alpha	127	92
		31	1	_	1	
137	1589	gi12724	Mus musculus	Phosphoinositi	720	99
		22		de 3-kinase		
138	159	gi22246	Homo sapiens	KIAA0344	215	43
		29	_		1	
139	1600	gi10160	Rattus	neural cell	543	93
		12	norvegicus	adhesion		
				protein BIG-2		
				precursor		
140	161	gi66495	Homo sapiens	kidney and	1651	98
		83		liver proline		
						

SEO	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	_	_	_	Identity
NO:	NO:	No.			Water	
	in				man	
ł	USSN				Score	
	09/48		-			
	8,725					*
				oxidase 1		
141	1612	gi40611	Rattus	protein kinase	125	89
		3	norvegicus	I		
142	1615	gi21999 2	Homo sapiens	phSR2	150	78
143	1620	gi57146	Homo sapiens	serine/threo-	126	71
		36		nine protein	\	
				kinase Kp78	,	
				splice variant	ļ	
	7544	177.20.50	· · · · · · · · · · · · · · · · · · ·	CTAK75a	0540	100
144	1644	Y13352	Homo sapiens	Amino acid sequence of	2542	100
		ļ		protein		
1				PRO228.	/	
145	1647	Y99444	Homo sapiens	Human PRO1575	704	100
	1047	133444	Hottle Bapicis	(UNQ781) amino	/0-	100
		1		acid sequence		
146	1650	gi37897	Homo sapiens	transmembrane	271	100
		65		receptor UNC5C		
147	1663	W75258	Homo sapiens	Fragment of	163	-96
				human secreted		
				protein		
				encoded by		
				gene 26.		
148	1665	gi10432	Homo sapiens	secreted	1428	99
		431		modular		
				calcium-		
]	ļ	binding protein		
149	1671	gi67081	Mus musculus	inositol	169	97
140	1071	69	mas mascaras	phosphatase	100	, ,
				eSHIPD183		
150	1672	Y68773	Homo sapiens	Amino acid	1030	99
				sequence of a		
		1		human		
1.		l		phosphorylatio	1	
				n effector		
				PHSP-5.		
151	1678	gi60630	Homo sapiens	tousled-like	132	86
		17		kinase 1		
152	1680	gi35106	Homo sapiens	nuclear	278	80
		03		receptor co-		
				repressor N-	,	
153	1692	gi15460	Homo sapiens	farnesol	165	100
153	1072	84	TOWO Saprens	receptor HRR-1	102	100
154	1698	gi52046	Oryctolagus	597 aa	177	94
	-0,0	9	cuniculus	protein		
		-		related to		
L	L	L	L		L	L

SEQ	SEQ	Acces-	Species	Description	Smith	왕
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725					
				Na/glucose		ĺ
				cotransporters		
155	1702	gi10432	Homo sapiens		519	95
		382		TT	214	7.
156	1704	Y91668	Homo sapiens	Human	214	75
				secreted protein		İ
]			*	sequence	\	
				encoded by		
				gene 73		
157	1708	gi30807	Mus musculus	growth factor	457	78
1 23,	1 2700	57		independence-		
		"		1B		
158	1716	gi29653	Homo sapiens	putative	220	92
]	_	oncogene	ļ	
159	173	gi34524	Rattus	serine/threo-	699	100
		73	norvegicus	nine protein	,	
İ		Ì		kinase TAO1		
160	1731	Y27581	Homo sapiens	Human	774	100
				secreted		
	İ			protein		
		İ		encoded by		1
				gene No. 15.		
161	1732	gi96520	Homo sapiens	scavenger	1025	98
		87		receptor		
				cysteine-rich type 1 protein		1
				M160		
				precursor		
162	174	Y35923	Homo sapiens	Extended	1691	100
102	1 -/-	133323	120.00 200220	human secreted		
				protein		
				sequence,		
163	1740	Y53014	Homo sapiens	Human	337	60
				secreted]
1				protein clone		[
				fn189_13		
				protein		ļ
				sequence		
164	1748	gi77702	Homo sapiens	PRO2822	218	93
	<u> </u>	37			1 200	
165	1751	gi89798 25	Homo sapiens		306	50
166	1755	R95332	Homo sapiens	Tumor	1184	62
1 700	1/33	L KJJJJZ	TOMO DAPICIES	necrosis		
				factor	}	1
1				receptor 1		
				death domain		
		1		ligand (clone	1	
Ь						

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in				man	İ
	USSN	Ì			Score	
	09/48					
	8,725					
				3TW).		
167	1762	gi73809	Homo sapiens	Gem-	1545	99
		47		interacting		
				protein		
168	1776	gi59122	Homo sapiens	hypothetical	224	100
		65		protein		
169	1777	Y70461	Homo sapiens	Human	413	95
1				membrane		
				channel		
1				protein-11		
1.50	1 701	Pacaca	Trans serious	(MECHP-11). Growth Factor	398	98
170	1781	R26060	Homo sapiens	Receptor Bound	396	98
		}		protein GRB-		
		[procein GRB-		
171	1796	gi10312	Homo sapiens	serine	1381	99
+ / +	1/96	169	nomo saptems	carboxypepti-	1201	55
		169		dase 1		
				precursor		
				protein		
172	180	gi30025	Homo sapiens	neuronal	477	61
1 - / 2		27	Lione Bapiens	thread protein		
				AD7c-NTP		
173	182	gi73851	Homo sapiens	HBV pX	2066	82
		31	_	associated		
		-		protein-8;		
	ĺ			XAP-8		
174	1820	G03249	Homo sapiens	Human	370	97
				secreted		
	ł			protein,		
175	1822	gi47396	Oryctolagus	one of the	1048	90
1	1	9	cuniculus	members of		
	[1	sodium-glucose	1	
				cotransporter		
	1.55		77	family	37.0	
176	1829	gi10440	Homo sapiens	FLJ00012	310	96 ·
1 7 7 7	1030	355	Omrata 1	protein	740	0.5
177	1832	gi16565	Oryctolagus	phosphorylase kinase beta-	146	96
		0	cuniculus	subunit		
170	1834	W75132	Homo sapiens	Human	423	47
178	1034	M/3T32	HOURS SAPTERE	secreted	423	"'
				protein	1	
1			}	encoded by	1	
				gene 11 clone		
			1	HCENJ40.		
179	1837	gi60369	Saimiriine	ORF	615	71
""			herpesvirus 2	48~EDLF5~sim.		
				to EBV BRRF2		
						1

SEQ	SEQ	Acces-	Species	Description	Smith	olo
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in				man	
İ	USSN	!			Score	
	09/48					
	8,725					
180	1859	gi99896 96	Homo sapiens	ROR2 protein	645	87
181	1880	gi73408	Mus musculus	chondroItin	275	40
ļ		47	,	4-		
		ļ		sulfotransfera		
				se	000	100
182	1881	gi75732 91	Homo sapiens		298	100
183	1890	gi31499	Homo sapiens	ST1C2	183	94
		50				
184	1899	gi21432	Homo sapiens	Phosphoino- sitide 3-	346	98
		60				
105	1 - 10		77	kinase	224	16
185	19	gi18085 82	Homo sapiens	U2AF1-RS2	224	46
186	192	G03192	Homo sapiens	Human	267	86
				secreted		
				protein,		
187	1922	gi48585	Mus musculus	IB3/5-	1206	78
		8		polypeptide	7.100	0.7
188	1945	gi37261	Homo sapiens		1402	97
189	195	W67863	Homo sapiens	Human secreted	551	98
				protein		
				encoded by		
	1	}		gene 57 clone	}	1
				HFEBF41.		
190	1957	gi40673	Homo sapiens	Shb	263	44
		8				
191	1969	Y41701	Homo sapiens	Human PRO708	975	98
ļ				protein	-	
			İ	sequence.		
192	1970	gi39798	Caenorhabditi	Weak	254	49
		17	s elegans	similarity to		
		1		Human		
				tyrosine-		
				protein kinase		
122	1073	000706	Ilone Good	CSK	366	
193	1973	G00796	Homo sapiens	Human	365	98
		1		secreted protein,		
194	1985	gi45586	Homo sapiens	Putative	1420	99
124	1 203	37	TOWO Sabrens	homolog of	1 = 20	
1		1 3,		hypoxia		
				inducible		
				factor three		
}				alpha		
195	1986	gi44550	Homo sapiens	host cell	367	50
		15	_	factor homolog		
	·		·			1

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-F	<u>.</u>	_	Identity
NO:	NO:	No.			Water	-
	in				man	
-	USSN				Score	
ĺ	09/48					
	8,725					
				LCP		
196	2	G02532	Homo sapiens	Human	106	85
				secreted		
1				protein,		
197	2004	gi10503	Homo sapiens	type A	961	100
		935		calpain-like		
				protease		
198	2023	gi16513	Escherichia	•	1075	97
		41	coli			
199	2025	Y71069	Homo sapiens	Human	540	100
				membrane]
		!		transport	ļ	}
				protein,	ļ	ļ
				MTRP-14.		
200	2038	gi85725	Homo sapiens	membrane-	686	98
		43		associated		
				lectin type-C		
201	2041	gi37400	Homo sapiens	trk-2h	228	89
				polypeptide		
202	2043	W75096	Homo sapiens	Human	290	38
1				secreted		·
				protein	ļ	
				encoded by gene 40 clone		
1				HNEDJ57.	ļ	į
202	2068	G03394	Homo sapiens	Human	595	97
203	2000	G03394	HOMO Sapiens	secreted] ,
	į	1		protein,	1	
204	2072	gi21165	Rattus	cationic	1025	85
204	2072	52	norvegicus	amino acid		
				transporter 3		
205	2076	gi15740	Drosophila	fat protein	369	39
-55		9	melanogaster			
206	2078	gi10549	Gallus gallus	cSH-PTP2	605	94
		40]			
207	2084	gi96631	Homo sapiens	hypothetical	874	99
		28		protein		
208	2088	gi10567	Homo sapiens	sodium	609	100
1		590	_	bicarbonate		,
ł	Ì		}	cotransporter-	1	
1				like protein		
209	2089	gi17890	Escherichia	putative ATP-	961	98
		01	coli	binding		1
1	1			component of a		1
				transport		
				system		
210	2097	Y70460	Homo sapiens	Human	258	96
				membrane		
t			i	channel	1	1

SEQ	SEQ	Acces-	Species	Description	Smith	ું જ
ID	ID	sion			_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725		i		-	
	0,723			protein-10	ļ	
				(MECHP-10).	•	
211	2108	qi32075	Rattus	hexokinase	767	74
		08	norvegicus			
212	2111	gi63302	Homo sapiens	KIAA1176	3710	99
		33	-	protein	ļ	
213	2118	W74797	Homo sapiens	Human	156	96
			-	secreted)	
		ļ		protein		
l				encoded by		
ļ				gene 68 clone	1	
j	,			HKIXR69.		
214	2134	gi17809	Homo sapiens	branched	209	97
		91		chain acyl-CoA		
				oxidase		
215	2146	gi76881	Homo sapiens	hypothetical	1038	100
		48		protein		
216	2149	gi22804	Homo sapiens	KIAA0376	917	100
]	85				,
217	2153	gi18424	Rattus	ankyrin	592	88
		29	norvegicus	binding cell		
				adhesion		
				molecule		
	1	l		neurofascin		
218	2155	gi65267	Homo sapiens	Eps15R	1126	100
		91				
219	2161	gi73004	Drosophila	CG7709 gene	200	33
		27	melanogaster	product		
220	2163	Y52296	Homo sapiens	Human	186	91
ł	}	1		isomerase		
				homologue-3		
				(HIH-3).		
221	2173	W34526	Homo sapiens	hTCP protein	164	93
1222	0170	~÷22605	Dotter	fragment.	200	
222	2178	gi33605	Rattus	Citron-K kinase	299	94
223	2180	12 Y74008	norvegicus Homo sapiens	Human	261	41
423	7180	1/4008	Homo saptens	prostate tumor	401	*±±
1				EST fragment		
1				derived		
				protein #195.		
224	2184	gi53041	Mus musculus	ביסטפבת אביס.	130	41
225	2184	gi40177	Homo sapiens	ribosomal	142	64
445	2100	91401//	TOWO Papters	protein S6	142	04
1				kinase 3		
226	2190	gi57729	Homo sapiens	The hal225	176	100
440	2130	915//29	TOWO Sabtems	gene product	1,0	1
				is related to		
[human alpha-		
	.l	<u> </u>	<u>i</u>			

SEO	SEQ	Acces-	Species	Description	Smith	상
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in				man -	
	USSN				Score	
1	09/48	}		(
	8,725				ŀ	
				glucosidase.		
227	2210	gi20553	Rattus	transmembrane	620	90
		92	norvegicus	receptor		
			- ,	UNC5H1		
228	2214	gi78617	Homo sapiens	low density	1360	98
		33		lipoprotein		
	1			receptor		
ļ				related	\	1
İ				protein-		
	1			deleted in		
ĺ	ĺ			tumor	1	1
229	2223	gi79591	Homo sapiens	KIAA1464	884	99
443	6663	89	TOWO DAPTOTIS	protein		
230	223	W88627	Homo sapiens	Secreted	300	77
230	443	W0002/	TOUR Papierra	protein	300	''
	1			encoded by	İ	1
				gene 94 clone	ŀ	
1				HPMBQ32.	Į.	
	2222	mi 70205	Home gamiens	organic anion	1092	99
231	2233	gi78395	Homo sapiens	transporting	1092	99
1		87		polypeptide 14	1	
		1.50440	**		1212	99
232	2237	gi10440	Homo sapiens	FLJ00033	1212	99
		400		protein	277	44
233	2251	gi59237	Homo sapiens	zinc metallo-	2//	44
		86		protease		
				ADAMTS6		100
234	2256	W63698	Homo sapiens	Human secreted	516	100
				protein 18.		
235	2259	gi46787	Homo sapiens	hypothetical	387	36
		22		protein		
236	2262	Y33741	Homo sapiens	Beta-	793	99
				secretase.		
237	2265	gi70185	Homo sapiens	hypothetical	608	94
ļ		45		protein		
.238	2271	gi41861	Homo sapiens	unknown	684	53
		83				
239	2273	gi72430	Homo sapiens	KIAA1327	1031	100
		35		protein		
240	2280	gi58096	Homo sapiens	sperm membrane	342	95
		78		protein BS-63		<u> </u>
241	2286	gi62246	Homo sapiens	Na+/sulfate	1221	99
		91	-	cotransporter		
				SUT-1		ļ
242	2291	gi20762	Rattus	úromodulin	345	50
		1	norvegicus			
243	2292	gi72963	Drosophila	CG5274 gene	272	35
		04	melanogaster	product		
244	2294	Y28503	Homo sapiens	HGFH3 Human	320	98
27.7		-25555		Growth Factor		1
L		<u> </u>	1			

SEQ	SEQ	Acces-	Species	Description	Smith	ું
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN	ļ			Score	
1	09/48					
	8,725		,			
				Homologue 3.		
245	2296	W88799	Homo sapiens	Polypeptide	223	86
				fragment		
	ļ		,	encoded by		1
				gene 45.		
246	2303	gi71101	Homo sapiens	guanine	1212	99
		60		nucleotide	\	
				exchange		
				factor		
247	2306	gi64348	Mus musculus	calcium/calmod	576	84
		74		ulin dependent	1	
1				protein kinase		1
				kinase alpha	1000	
248	2309	Y95433	Homo sapiens	Human calcium	1203	99
l	1			channel SOC-		
1	}	j		2/CRAC-1 C- terminal		
				1		
	0015		15.	polypeptide.	689	79
249	2313	gi73009	Drosophila melanogaster	CG4677 gene	009	/9
250	2318	W48351	Homo sapiens	Human breast	202	59
250	2318	W46351	HOMO Sapiens	cancer related	202	39
'				protein	1	
				BCRB2.		
251	2329	G01772	Homo sapiens	Human	311	84
				secreted		
1]	protein,]	
252	2330	Y41729	Homo sapiens	Human PRO1071	886	99
			1	protein		
}		}		sequence.		
253	2342	gi37864	Caenorhabditi		268	42
		30	s elegans			
254	2350	gi93010	Homo sapiens	protein-	571	79
		4		tyrosine		
<u>L</u>				phosphatase		
255	2359	gi93925	Homo sapiens	CC chemokine	679	99
		91		CCL28	 	<u> </u>
256	2361	gi16666	Mus musculus	alpha-NAC,	357	41
		89		muscle-		1
				specific form		
	ļ. <u></u>		· · · · · · · · · · · · · · · · · · ·	gp220	110	
257	2374	G03172	Homo sapiens	Human	112	78
				secreted		
1-255	0307	- 	Uomo ganiana	protein, pyruvate	201	85
258	2387	gi13991	Homo sapiens	dehydrogenase	201	05
1		97		kinase isoform		
				4		
259	2401	G01757	Homo sapiens	Human	612	99
	2 7 7 7	1 332.37				

SEQ :	SEO	Acces-	Species	Description	Smith	ે
	ID	sion	•	_	-	Identity
NO:	NO:	No.			Water	_
	in				man	
,	USSN				Score	
	09/48				Ì	
l i	8,725				ļ	
				secreted		
				protein,		
260	2409	gi18112	Homo sapiens	cleavage	194	86
		3	,	signal 1	1	
				protein		
261	2431	gi70185	Homo sapiens	hypothetical	473	50
		47		protein		
262	2432	gi48264	Homo sapiens		327	39
		96				
263	2467	G03667	Homo sapiens	Human	640	97
				secreted	1	
				protein,		
264	2471	gi76881	Homo sapiens	hypothetical	1284	91
		48		protein	<u> </u>	
265	2478	gi79081	Homo sapiens	polycystic	615	90
1		9		kidney	ľ	1
				disease-		
				associated		
				protein		
266	2484	gi33270	Homo sapiens	KIAA0633	1747	99
<u> </u>		80		protein		
267	249	G03793	Homo sapiens	Human	139	65
				secreted		
				protein,	757	
268	2490	gi64673	Homo sapiens	thyrotropin-	/5/	98
		71		releasing hormone		1
ļ ļ						
				degrading ectoenzyme		
269	25	G03203	Homo sapiens	Human	137	65
209	23	903203	110110 saprens	secreted	1.57	
]			·	protein,		
270	2504	gi40977	Homo sapiens	HBV	166	74
"	2201	12		associated		
] [factor		
271	2506	gi20727	Homo sapiens	Na+/nucleoside	201	95
		84		cotransporter		
272	2507	gi59240	Homo sapiens	-	335	38
		07	1		*	
273	2510	gi77173	Homo sapiens	beta-site	383	89
		85		APP-cleaving		
				enzyme 2, EC		
1				3.4.23.		
274	2523	gi33970	Homo sapiens		150	96
		9				
275	253	gi36615	Homo sapiens	serine/threo-	391	77
				nine protein		
				kinase	1 - 2	
276	2533	gi45896	Homo sapiens	KIAA0985	191	61

SEQ	SEQ	Acces-	Species'	Description	Smith	્
ID	ID	sion	phecres	Descripcion	-	Identity
NO:	NO:	No.			Water	raemercy
NO.	in	110.			man	
	USSN				Score	
		ļ			SCOLE	
	09/48	J				
	8,725	14		protein		
277	2536	gi20886	Caenorhabditi	strong	419	55
2//	2330	85	s elegans	similarity to	1 ***	33
		03	b cregains	the CDC2/CDX		
			•	subfamily of		
	1	Į.		ser/thr	l	
	ļ			protein		
				kinases		
0.70	2544		Margaret and a second	YSPL-1 form 2	200	
278	2544	gi10024 25	Mus musculus	YSPL-I FORM 2	280	80
279	2568	Y41738	Homo sapiens	Human PRO541	379	49
				protein	ļ'	
				sequence.	1	
280	2580	gi30044	Rattus	putative	382	49
		82	norvegicus	integral		<i>!</i>
				membrane		
				transport		
				protein		
281	2593	gi73000	Drosophila	CG4525 gene	582	50
		49	melanogaster	product		
282	2600	gi45304	Homo sapiens	thyroid	334	90
	ł	37		hormone	1	Ì
		1		receptor-		
1	ł			associated		1
	1			protein		
İ				complex		ļ
				component		
		1		TRAP240		
283	2625	gi80996	Homo sapiens	toll-like	761	96
		52		receptor 9		
1			·	form A		,
284	2641	gi14801	Escherichia	tolA	692	100
L	0.55=	9	coli		1	
285	2667	gi17503	Pseudomonas	Carbamoyl-	143	76
		87	aeruginosa	phosphate		
	1			synthetase		
		1	1	large subunit	100	
286	2670	gi48834	Mus musculus	RNA binding	139	92
	L	37	***	protein	7.050	
287	2673	Y66656	Homo sapiens	Membrane-	1869	98
				bound protein		
				PRO943.		
288	2676	gi38859	Mus musculus	mismatch-	123	88
į	1	78		specific		1
				thymine-DNA		
L	<u> </u>			glycosylate		
289	2680	gi64534	Homo sapiens	hypothetical	465	82
L		38		protein		
290	2682	gi18417	Mus musculus	GATA-5	527	77

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	I -	<u> </u>	_	Identity
NO:	NO:	No.			Water	- 1
	lin				man	
	USSN				Score	
,	09/48					
	8,725		ε			
		56	<u> </u>	cardiac		
Į	1	i		transcription		
İ				factor		
291	2684	gi98449	Homo sapiens	nicotinic	294	88
		20	_	acetylcholine	1	
İ				receptor	ļ	
	l .	1		subunit alpha	1	,
1				10	\	
292	2695	gi17897	Escherichia	putative	879	98
1		64	coli	transport		
293	2697	gi34922	Escherichia	peripheral	936	99
		9	coli	membrane		i
1				protein	ĺ	
294	2698	gi40621	Escherichia		737	100
		94	coli			
295	2700	gi52924	Escherichia	homoserine	578	100
		0	coli	kinase		
296	2704	gi15528	Escherichia	hypothetical	420	100
		31	coli]		}
297	2712	gi17896	Escherichia	putative ATP-	262	100
		72	coli	binding		
				component of a		
}	ł			transport		ł
				system		
298	2716	gi40624	Escherichia	Transmembrane	382	100
		09	coli	protein dppC		}
299	2719	gi30497	Escherichia	matches	921	95
	ļ	6	coli	PS00017:		
ĺ			,	ATP_GTP_A and		
	[,	PS00301:	[[
	1			EFACTOR GTP;	İ	
				similar		
300	2724	gi14585	Escherichia	nmpC	647	97
		6	coli	<u> </u>		
301	2725	gi17894	Escherichia	putative	312	100
,	1	73	coli	transport]	,
	'			protein		
302	2728	gi18055	Escherichia		222	97
		61	coli			
303	2729	gi43248	Escherichia		655	91
			coli	L		
304	2744	gi39629	Escherichia	similar to E.	675	100
1		9	coli	coli pyruvate		1
				formate-lyase		
				activating		!
j		1		enzyme]	1
305	2749	gi17426	Escherichia	•	592	100
1		48	coli		İ	
306	2752	gi40622	Escherichia	Sensor kinase	357	100
				· · · · · · · · · · · · · · · · · · ·		

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion	_		-	Identity
NO:	NO:	No.		•	Water	
	in	í í			man	
	USSN				Score	
	09/48		;			
	8,725					
		36	coli	CitA		
307	2762	gi17877	Escherichia	putative	342	100
}	}	95	coli	LACI-type		
ļ				transcriptiona		
		1.15005		l regulator	7 -7	
308	2764	gi17997	Escherichia coli	putative	151	84
Ĺ		43	COLT	LACI-type transcriptiona	\	
				1 regulator		
309	2768	gi40596	Escherichia	yohG	534	94
309	2/00	9140598	coli	Your	334]
310	2774	gi40623	Escherichia		387	97
310	2114	38	coli	•	30,	1 7,
311	2790	gi40623	Escherichia		420	86
311	2/90	38	coli	•	720	
312	2800	gi17898	Escherichia	putative	572	100
712	2000	05	coli	transport	0,2	
313	2811	gi53053	Mus musculus	protein	421	49
3 - 3	2011	33		kinase Myak-S		
314	2827	gi10047	Homo sapiens	KIAA1588	531	97
3		251		protein		
31.5	2830	G02872	Homo sapiens	Human	185	62
		1	_	secreted	1	
				protein,		
316	2836	gi19117	Cricetulus	cAMP-	1677	97
		5	sp.	dependent	1	1
				protein kinase	1	
				alpha-		
				catalytic	1	1
<u></u>				subunit		
317	2851	gi55884	Homo sapiens	BCL2/adeno-	220	61
		6		virus E1B]]
		1		19kD-		
				interacting		
330	2856	gi38822	Homo sapiens	protein 3 KIAA0745	232	93
318	2850	11	TOMO Saprens	protein	232	93
319	2866	gi63297	Homo sapiens	KIAA1119	1331	91
319	2000	08	TOWO Saptems	protein	1331	
320	2874	gi28530	Mus musculus	tousled-like	203	82
320	20/4	33	Las mascatas	kinase	405	
321	2882	gi10185	Schizosacchar	hypothetical	318	42
""	2002	134	omyces pombe	zinc-finger		
1				protein		
322	2886	G03797	Homo sapiens	Human	140	69
		1		secreted		
				protein,		
323	2899	gi42403	Homo sapiens	KIAA0918	170	53
		25	_	protein		
L		<u> </u>				1

SEQ	SEQ	Acces-	Species	Description	Smith	9
ID	ID	sion	ppecies	Description	-	Identity
NO:	NO:	No.			Water	1 doile to y
]	in				man	
	USSN				Score	
	09/48					
	8,725					
324	2906	Y94988	Homo sapiens	Human	1738	100
1		ĺ		secreted		
				protein vl1_1,		
325	2920	gi94537	Homo sapiens		1926	100
205	0005	35	77	CDTA 1-1-1	1010	100
326	2925	gi64348	Homo sapiens	CDK4-binding	1210	100
		76	a a	protein p34SEI1	\	
327	2930	gi39413	Schistosoma	myosin	208	28
32/	2930	20	japonicum	"MYOSIII	200	20
328	2934	Y31645	Homo sapiens	Human	642	63
				transport-		
				associated		
				protein-7		
				(TRANP-7).		
329	2955	G01165	Homo sapiens	Human	528	99
				secreted		
				protein,		
330	2967	gi72639	Homo sapiens		466	100
		60			1010	
331	2980	gi45895 30	Homo sapiens	KIAA0943 protein	1849	94
332	2994	G03812	Homo sapiens	Human	124	61
332	2334	903012	momo saprens	secreted	124	01
				protein,	ļ	
333	2996	gi98574	Homo sapiens	tumor	2666	98
		00	_	endothelial		
				marker 1		
				precursor		
334	2999	Y66697	Homo sapiens	Membrane-	2254	100
				bound protein	1	
				PRO1383.		
335	3	gi62890 72	Homo sapiens	JM24 protein	930	100
336	3008	Y45219	Homo sapiens	Human CASB47 protein.	557	92
337	3013	gi52626	Homo sapiens	hypothetical	1747	100
		78		protein		
338	3041	Y73335	Homo sapiens	HTRM clone	1315	99
	1			1850120		
			: 	protein		
339	306	gi48684	Mesocricetus	sequence.	1867	95
339	300	43	auratus	interacting	100/	25
		ļ ±3	auracus	protein kinase	1	
		1		PKM		
340	3061	gi43333	Homo sapiens	protein-	3934	94
		8		tyrosine		
				kinase		
			·	·		·

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	1		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725	i				
341	309	Y76145	Homo sapiens	Human	1313	99
:				secreted		
				protein		
ĺ		1		encoded by		(
				gene 22.		
342	3095	gi73001	Drosophila	CG14899 gene	190	57
		59	melanogaster	product		
343	3098	gi53205	Homo sapiens	protein-	2641	86
		6		tyrosine-		
344	3105	gi28598	Home geniens	phosphatase	100	7.
344	3102	g128598	Homo sapiens	mitochondrial outer membrane	192	71
		'		protein 19		
345	3118	gi99299	Macaca	hypothetical	180	61
3 - 3	7110	35	fascicularis	protein	1 200	"
346	3124	gi81319	Mus musculus	transient	226	100
310	3201	03	nabaaras	receptor	220	100
1				potential-		
				related		
				protein		
347	3126	Y02370	Homo sapiens	Polypeptide	261	100
			,	identified by		
				the signal		
	1			sequence trap	İ	
				method.		
348	3166	gi72908	Drosophila	CG1531 gene	534	42
		60	melanogaster	product		
349	3175	gi66495	Homo sapiens	kidney and	1752	95
		83	•	liver proline	,	
	3155	7000	777	oxidase 1		
350	3176	gi72084	Homo sapiens	long-chain 2-	1048	95
		38		hydroxy acid oxidase HAOX2		[
351	3188	Y02693	Homo ganions	Human	243	F ~
321	2198	102033	Homo sapiens	secreted	243	57
1.]	1		protein	1	j j
		1		encoded by		
1				gene 44 clone		
				HTDAD22.		
352	3191	gi71059	Homo sapiens	calcium	300	96
		26		channel		-
1	1			alpha2-delta3		
				subunit		
353	3208	gi10334	Homo sapiens	MUCDHL-FL	613	98
		774				
354	3226	Y87209	Homo sapiens	Human	3147	99
]		}		secreted		
				protein		
L	<u> </u>	L		sequence	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion	phecres	Descripcion	SILLEIL	Identity
NO:	NO:	No.			Water	TAGILLITY
NO:	in	NO.			man	
	USSN				Score	
	-				Score	
	09/48	Į.				
	8,725				1045	
355	3235	gi67151	Homo sapiens	Fanconi	1947	99
		35		anemia,	ĺ	
	ļ			complementatio		
				n group F		
356	3257	gi54416	Canis	zinc finger	326	42
		15	familiaris	protein	ļ	
357	3282	G03002	Homo sapiens	Human	211	61
]		•	secreted	`	
				protein,		
358	3289	gi32884	Homo sapiens	PI3-kinase	5832	97
}		5 7				
359	3296	gi77701	Homo sapiens	PRO1722	293	64
		39			-	
360	3298	gi21988	Ambystoma	electrogenic	1278	52
		15	tigrinum	Na+		
			_	bicarbonate		
	1			cotransporter;	1	
İ	Í			NBC		Ì
361	3303	gi40280	Homo sapiens	potassium	1881	92
	ļ	15	_	channel	•	
362	3305	gi59029	Homo sapiens	very large G-	1770	100
	1	66	_	protein	1	
	1			coupled		
				receptor-1	1	
363	3308	gi21994	Homo sapiens	The first in-	3967	86
	1	4		frame ATG		
1				codon is	1	
ŀ				located at		
ì	}			nucleotides	1	
	1			NPPase.	ļ	
364	3325	gi35102	Homo sapiens	R31237 1,	192	94
		34		partial CDS		
365	3341	W78899	Homo sapiens	Human UNC-5	1614	90
				homologue		
				UNC5H-1.		
366	3342	gi14782	Mus musculus	PNG protein	341	70
		05				
367	3350	gi27394	Bos taurus	regulator of	2263	98
""		60		G-protein		
			1	signaling 7]
368	3372	gi76716	Homo sapiens		375	79
300	33,2	63				'
369	338	Y84322	Homo sapiens	A human	2606	100
1 303	330	10 #322	20110 Dapteris	cardiovascular	1 2000	100
1			1	system		
				_		
		1		associated		
				protein		
1 255	1 3303		 TT	kinase-3.	1307	100
370	3383	gi10441	Homo sapiens	protein	1127	100

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	7,000	303012p0=0=	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48			ļ		
	8,725	l				1
		382		kinase		
371	3395	gi53082	Homo sapien		402	47
		3		growth factor		ļ
			•	receptor kinase		
	1			substrate		1
372	3405	Y29332	Homo sapiens	Human	122,0	94
372	3403	12333	Homo Baprons	secreted	122,0	
1	,			protein clone	ļ	
		ļ		pe584_2		
,				protein		<u> </u>
				sequence.		
373	3408	gi33347	Homo sapiens	shal-type	2888	90
ļ		41	-	potassium		
				channel		
374	345	gi45395	Homo sapiens	NAALADase L	600	72
375	346	27 Y95434	Home geniens	protein Human calcium	1000	
3/5	346	195454	Homo sapiens	channel SOC-	1802	99
				3/CRAC-2 C-		
	1			terminal		
		1		polypeptide.		}
376	3470	gi97984	Homo sapiens		277	100
		52	_	capacitative		
İ	1			calcium		
				channel		
377	3482	gi38185	Homo sapiens	cAMP-specific	2353	96
		72		phosphodiester		
				ase 8B;		
				PDE8B1; 3',5'-		
				nucleotide		
			İ	phosphodiester		
				ase		
378	3492	gi16658	Homo sapien	s	3878	99
		25				
379	3530	gi50510	Homo sapiens	KIAA0066	3637	100
380	3533	0 Y32169	Homo sapiens	Human growth-	2860	99
380	3533	132109	Trough sabrens	associated	2060	""
	[[protease		
				inhibitor]
				heavy chain		
L				precursor.		
381	3545	gi66241	Homo sapiens		449	98
		33				
382	3549	gi14691	Homo sapien		5374	99
		93		gene is		
L	<u> </u>	<u> </u>	<u> </u>	related to	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	proces	Description	-	Identity
NO:	NO:	No.			Water	lacinercy
110.	in	140.			man	
.	USSN				Score	
	09/48				DCOLC	
	8,725					
ļ	0,723			pim-1		
				oncogene.		
383	3595	gi63301	Homo sapiens	KIAA1169	1893	100
}		90		protein		
384	3601	gi80891	Homo sapiens	tumor	992	99
		5	-	necrosis		
	<u> </u>			factor		
	1			receptor type		
	i			1 associated		
			,	protein		
385	3612	gi53054	Mus musculus	SH2-B PH	1439	92
1		48		domain		1
İ				containing	ļ	[
				signaling]
ļ				mediator 1		
				gamma isoform		
386	3613	Y32194	Homo sapiens	Human	1438	100
				receptor		
				molecule (REC)		
				encoded by		1
				Incyte clone		
L				266775.		
387	3621	gi89784	Mus musculus	, , , , , , , , , , , , , , , , , , , ,	393	68
}		9		ubiquitinating		
				enzyme E2-230		
	2.55.	245050	77	kDa	2005	7.00
388	3624	R47858	Homo sapiens	Human LDL	2895	100
	İ			receptor Domains 1 and		
		1	<u>;</u>	2.		
389	3625	Y57949	Homo sapiens	Human	1868	100
309	3023	13/545	110110 Saprens	transmembrane	1000	
1	ĺ		1	protein HTMPN-		
				73.		
390	3626	W69342	Homo sapiens	Secreted	442	94
1			[protein of		
1		1	1	clone CJ424_9.	1	1
391	3627	gi65371	Homo sapiens	putative	982	92
		36		organic anion		
1				transporter		
392	3630	Y06886	Homo sapiens	HWHHJ20	1109	91.
]	polypeptide.		
393	3642	gi48864	Homo sapiens	hypothetical	570	52
	1	67		protein		
394	3645	gi95884	Homo sapiens		598	98
		02			 	
395	3647	Y12050	Homo sapiens	Human 5' EST	517	98
				secreted		
L	<u></u>			protein	<u> </u>	

SEQ	SEO	Acces-	Species	Description	Smith	8 7
ID	ID	sion	- L	_	-	Identity
NO:	NO:	No.			Water	-
	in				man	
	USSN]			Score	
	09/48					
ļ	8,725	1			l	
396	3653	Y70018	Homo sapiens	Human	2232	99
				Protease and		
				associated		
l		i		protein-12		1
				(PPRG-12).		
397	3676	W67818	Homo sapiens	Human	338	100
				secreted		
		1		protein	\	İ
				encoded by		
				gene 12 clone		
				HMSJJ74.		
398	3677	gi32093	Homo sapiens	HGMP07J	650	52
399	3681	Y48443	Homo sapiens	Human	803	93
				prostate		
ŀ				cancer-		
i i				associated		[1
				protein 140.		
400	3682	gi46917	Homo sapiens	ARF GTPase-	2435	91
		26		activating	-	
				protein GIT1		
401	3688	gi66938	Homo sapiens	ubiquitin-	1995	99
		24		specific protease		
402	3689	Y94927	Homo sapiens	Human	530	81
402	3689	194927	Homo sabrens	secreted	330	21
				protein clone		
				ck213 12		
•			į	protein		
				sequence		
403	3690	gi18716	Oryctolagus	ryanodine	594	95
200		12	cuniculus	receptor		
404	3706	q160027	Homo sapiens	membrane-type	2630	94
		14	-	serine	1	
				protease 1		
405	3714	gi26957	Homo sapiens	SPOP	553	81
	}	. 08	_		1	
406	3720	gi93092	Homo sapiens	asc-type	566	95
'		93	-	amino acid		
1				transporter 1		
407	3726	gi10440	Homo sapiens	FLJ00026	1023	69
		381		protein		
408	373	gi57146	Mus musculus	alpha 2 delta	243	95
		96		calcium		
		1		channel		1
				subunit		
409	3788	gi69112	Homo sapiens	type II	841	100
		19		membrane		
		1		serine	1	
l .	1	1		protease		

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	_	_	-	Identity
NO:	NO:	No.			Water	
}	in		}		man	
İ	USSN				Score	
	09/48					
Ì	8,725					
410	3789	Y45023	Homo sapiens	Human sensory	1084	95
			•	transduction		
	1			G-protein		
		1		coupled		1
				receptor-B3.		
411	3790	gi15240	Homo sapiens	Polio virus	1508	99
		88		receptor		
		1.5500.5	77	protein	2025	
412	3801	gi67236	Homo sapiens	mitotic	2035	99.
		75		kinase-like		
47.3	2002	-100007	Trans assists	protein-1 mitotic	332	86
413	3803	gi96897	Homo sapiens	kinase-like	334	86
	ļ	3		protein-1		
47.4	3820	gi17704	Homo sapiens	NK receptor	1988	99
414	3820	78	HOMO Saprens	NK receptor	1300	99
415	3831	gi27813	Homo sapiens		1493	99
415	2037	86	nomo saprens		1403	99
416	3837	gi93678	Homo sapiens	neuronal	2243	99
410	3037	40	nomo saprens	apoptosis	2243	99
		40		inhibitory		-
1				protein 2		
417	385	gi15269	Homo sapiens	ryanodine	149	96
		78		receptor 2		
418	3856	gi99565	Homo sapiens	interleukin-	147	100
		4	_	11 receptor		1
419	386	gi49600	Mus musculus	T2K protein	669	66
		38		kinase homolog		
420	3861	Y74129	Homo sapiens	Human	842	98
1		1		prostate tumor	1	1
				EST fragment		
1				derived		
				protein #316.		
421	3883	gi66352	Homo sapiens	beta-	1576	100
		05		ureidopropiona		
				se	1	
422	3898	gi37231	Homo sapiens	DNA	8436	99
				topoisomerase		
		1		II	<u> </u>	
423	3921	gi86488	Homo sapiens	putative	131	100
	1	81		organic anion	1	
	1.55	1.5===	ļ.,	transporter	1.55	
424	3932	gi85757	Homo sapiens	KRAB zinc	1935	99
	3034	75	I TT	finger protein	100	
425	3934	gi46891	Homo sapiens	SIH003	127	92
1.55	1 3063	28	Home gi		339	- 61
426	3963	gi32129 96	Homo sapiens		ودد	64
427	3974	G03790	Homo sapiens	Human	232	63
44/	1 3314	1 003730	TOMO BAPTELLE	11411411	222	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion		_] _	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725	ļ				
				secreted		
				protein,		
428	3983	gi18197	Homo sapiens	vascular	433	85
,		1		endothelial	1	
				growth factor		
429	3999	gi16574	Sus scrofa		484	75
		64		calcium/calmod		İ
				ulin-dependent	,	
ł	}	}		protein kinase		
				II isoform	İ	
				gamma-G		
430	4001	gi65722	Homo sapiens		329	100
		30			L	
431	4009	gi21432	Homo sapiens		521	99
		60		phosphoinositi		
433	107		77	de 3-kinase	1372	
432	401	gi65723 79	Homo sapiens		1372	56
422	4000	<u> </u>	Home ganiens	tumov	1252	100
433	4020	gi28156	Homo sapiens	tumor	1252	100
		24		necrosis factor		}
ļ		ļ		superfamily]
				member LIGHT		
434	4024	Y21166	Homo sapiens	Human bcl2	84	40
737	4024	121100	110mo bapiems	proto-oncogene	0.1	10
				mutant protein		
				fragment 14.		
435	4040	Y57285	Homo sapiens	Human GPCR	1726	99
100	1010	20,200		protein		
				(HGPRP)	ĺ	
				sequence		
				(clone ID		
				2214673).		
436	4057	W74873	Homo sapiens	Human	531	100
			_	secreted]
				protein		
				encoded by		
1				gene 145]
				clone HFXHL79.]
437	4066	G03714	Homo sapiens	Human	92	70
				secreted		1
				protein,		
438	4067	gi83317	Homo sapiens	LU1 protein	1077	92
		60		•		
439	4078	Y57900	Homo sapiens	Human	996	100
				transmembrane		
1				protein HTMPN-		
		<u> </u>		24.		
440	4120	gi18715	Homo sapiens	mitogen-	927	100

SEQ	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	ppccics	Deberrporen	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN		s.		Score	
	09/48	ĺ				
}	8,725					
		39	<u> </u>	activated		
	1			protein kinase		
}				phosphatase 4		
441	4123	gi53601	Homo sapiens	NY-REN-58	140	100
		25		antigen		
442	4130	gi62890	Homo sapiens	JM24 protein	604	100
		72				
443	4133	gi85755	Homo sapiens	toll-like	755`	100
		27		receptor 8		
444	4166	gi61185	Homo sapiens	DEAD-box	2512	100
		55		protein		
				abstrakt	62.5	0.7
445	4167	gi38008	Rattus	putative four	615	93
		30	norvegicus	repeat ion channel		
	11.50	1 70006	*****		369	100
446	4172	gi72096	Homo sapiens	potassium channel Kv8.1	369	100
115	4185	76 gi53054	Homo sapiens	Na+/H+	1769	100
447	4185	05	HOMO Saprems	exchanger	1/69	100
1	Ì	05		isoform 2		
448	4197	gi28111	Xenopus	NaDC-2	524	69
440	4197	22	laevis	Made 2	321	
449	4203	Q89840	Homo sapiens	Human death	198	97
		aa1	_	associated	1	
				protein DAP-		[
1				3.	1	ĺ
450	4262	gi59014	Marmota	olfactory	209	92
		78	marmota	receptor		
451	4276	gi32456	Homo sapiens	protein-	3270	99
)]		tyrosine	}	j l
				phosphatase		
452	4283	R41231	Homo sapiens	GAT-2	477	100
				transporter		
	 	 		gene.	1 12	
453	4331	gi31719	Homo sapiens	RAMP2	443	98
1=1	45.45	12	ITomo garantara	1	1220	100
454	4340	gi81182	Homo sapiens	unknown	1330	100
4==	4357	23	Dattus		2050	92
455	4351	gi17545	Rattus norvegicus	aminopeptidase	2050	34
		15	TOT VEGICUS	-B		
456	4354	Y57906	Homo sapiens	Human	1402	100
430	4334	13/308	TIONIC BAPTENS	transmembrane	1402	100
				protein HTMPN-		
	1	1	1	30.	1	1
457	4385	gi55964	Homo sapiens	candidate	509	97
]/	1303	33		tumor] - '
		1	1	suppressor		
1				protein NOC2		1
L				<u> </u>		

SEQ	SEQ	Acces-	Species	Description	Smith	96
ID	ID	sion	phecres	Description	-	Identity
NO:	NO:	No.			Water	
110.	in	1.0.			man	
	USSN	j j			Score	İ
	09/48				Deere	
	1					
458	8,725 4388	W78140	Homo sapiens	Human	100	94
456	4300	M/0740	nomo saprens	secreted	100	J =
[[[protein	[
				encoded by		*
ļ			•	gene 15 clone	ļ	
				HSDES04.		
					1046	0.0
459	4405	Y48226	Homo sapiens	Human	1246	99
				prostate		
1				cancer-		
ł	1			associated	}	
				protein 12.		
460	441	gi29153	Bovine	BICP4	106	35
}	1	6	herpesvirus 1		<u> </u>	
461	4417	gi65625	Homo sapiens	sialin	939	100
1		33				
462	4419	gi18415	Homo sapiens	NG5	146	33
1)	55				j l
463	4443	gi49613	Mus musculus	AMPA	262	94
		9		selective		
	Į.			glutamate		
				receptor		
464	4470	gi72483	Homo sapiens	adaptor	2592	100
		81	-	protein		1
				p130Cas	į.	
465	4482	gi73299	Homo sapiens	apoptosis	2071	100
		79	_	regulator		
466	4487	gi67066	Homo sapiens		405	100
		59				
467	4491	gi98373	Homo sapiens	CamKI-like	1044	100
1 . ,	1	41		protein kinase	ļ	
468	4492	Y42751	Homo sapiens	Human calcium	586	99
***	1 1152	112,32	IIOMO DAPEGILO	binding		
1	1		ļ	protein 2]]
				(CaBP-2).		
469	4497	gi61797	Homo sapiens	, / .	352	37
407	±=2/	40	TOWN BULLETIN	paraneoplastic		
] = 30		cancer-testis-		
				brain antigen]	
470	4502	gi63297	Homo sapiens	KIAA1124	327	100
4 /0	4504	g163297 42	TOWN SAPTEMS	protein] 34'	100
1	4570		ITomo ganiana	Human PRO1604	1563	100
471	4519	Y99426	Homo sapiens	1	1203	±00
		1		(UNQ785) amino		
				acid sequence	1555	
472	4526	Y08008	Homo sapiens	Human HLIG-1	4023	99
				protein.		
473	4547	gi45895	Homo sapiens	KIAA0959	4165	99
	<u> </u>	62		protein		
474	4554	gi13810	Mus musculus		1164	77
		29		L		<u> </u>
		<u> </u>	<u></u>		1	1

SEQ	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	Spools	20001220	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN	į			Score	
	09/48				Doore	ļ
	8,725	İ			,	
475	4555	gi27923	Homo sapiens	unknown	4461	99
1,5	1000	66	-iomo capitolio	protein IT12	1101	
476	457	Y70551	Homo sapiens	Human latent	1825	100
				transforming		
		i		growth	i	
]	}		factor-beta		
				binding		
i				protein 3 (I).	` `	
477	4571	gi53601	Homo sapiens	NY-REN-45	869	100
* ' '		15		antigen		
478	4613	Y05868	Homo sapiens	Human Toll	2413	100
		1		protein		
}				PRO358.		
479	4614	Y27129	Homo sapiens	Human bone	1815	100
1			-1-	marrow-derived		
]			polypeptide	İ	
l	į	Ì		(clone OAF038-		1
İ				Leu).		
480	4622	G03789	Homo sapiens	Human	173	53
				secreted		
				protein,		
481	4667	gi76736	Danio rerio	Dedd1	446	48
		38			,	
482	4670	gi40264	Homo sapiens	c-rel	2309	100
		9				[
483	4683	Y68773	Homo sapiens	Amino acid	2234	99
1				sequence of a		
				human		
				phosphorylatio		
1	1			n effector	[<u> </u>
				PHSP-5.	<u> </u>	
484	4698	Y73470	Homo sapiens	Human	746	100
				secreted		
				protein clone	1	ļ .
1		1		yd141_1	1	1
				protein		
		<u> </u>		sequence		
485	4724	gi64568	Homo sapiens	hypothetical	1101	99
		46		protein		
486	4734	gi33349	Homo sapiens	R27216_1	1151	80
		82				
487	4814	gi62744	Homo sapiens	pregnancy-	1348	100
1	1	73		induced growth	1	1
				inhibitor		
488	4819	Y07825	Homo sapiens	Human	117	67
				secreted		
				protein		
}		1		fragment #4	1]
	<u> </u>	<u> </u>		encoded from	L	

SEQ	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	-		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725					
				gene 28.		
489	4821	Y81498	Homo sapiens	Human foetal	1200	100
				bone-derived growth		
				factor-like		
				protein.		
490	4851	gi56894	Homo sapiens	KIAA1077	4364	99
150	1001	91	110.110	protein	1301	
491	4872	gi59119	Homo sapiens	hypothetical	3723	99
		53	_	protein		
492	4902	B08917	Homo sapiens	Human	717	100
				secreted		
				protein		
				sequence		
				encoded by		
				gene 27		
493	5006	gi43577	Homo sapiens	receptor	385	100
		4		tyrosine kinase isoform		
		t				
	ļ			FLT4 long, FLT41 {C-		
		}		terminal}		.
494	5007	Y93951	Homo sapiens	Amino acid	804	100
				sequence of a		
				Brainiac-5		
]				polypeptide.		
495	5027	gi35487	Homo sapiens	R33590_1	1606	100
		91				
496	5029	gi56895	Homo sapiens	KIAA1095	5722	99
405	5000	27	77	protein	7.55	
497	5033	Y14482	Homo sapiens	Fragment of human secreted	166	66
				protein		
				encoded by		
				gene 17.		
498	5040	Y95019	Homo sapiens	Human	258	92
				secreted		
		1		protein vq1_1,		1
499	5061	gi13044	Pseudorabies	EP0	85	38
<u></u>		34	virus			
500	5081	gi40380	Homo sapiens	vascular	134	100
1		81		endothelial		
				cell growth		
				inhibitor		
501	5129	gi31691	Homo sapiens	BC269730_2	2340	99
502	5139	58 gi40628	Homo sapiens	HEXIM1	293	47
302	52.59	56	TOWO Papters	protein	233	4'
503	5174	gi93685	Homo sapiens	140up gene	576	90
	1 2-11	13-23003	Tabrerro	1 - 10 - E 3 0110		

SEQ	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	2,000	1	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48	ļ	:		Į	
	8,725					
		40		product		
504	524	G00329	Homo sapiens	Human	565	100
				secreted		
				protein,	1.55	
505	5291	Y92515	Homo sapiens	Human OXRE-	1271	98
	5225	72061	Decombile	12. CG3862 gene	752	46
506	5335	gi72961	Drosophila	-	753	46
	5346	58 ¥94987	melanogaster Homo sapiens	product Human	849	100
507	5346	194987	HOMO Sapiens	secreted	849	100
]	1	1		protein vjl_1,		
508	5379	gi71445	Homo sapiens	cytokine-	1353	99
508	33/3	06	TOWO Papters	inducible SH2-	1333	99
				containing		
				protein		
509	5441	gi80965	Homo sapiens	similar to	1516	100
303	3111	51	110.110	mouse Ehm2		
510	549	Y22113	Homo sapiens	Human ZSMF-3	294	62
			-	protein		
1				sequence.		
511	5542	Y76267	Homo sapiens	Fragment of	1066	100
				human secreted		Ì
		i		protein		ļ
				encoded by		
				gene 11.		
512	5560	G03790	Homo sapiens	Human	103	36
				secreted		1
	5000	-: 70202	Homo sapiens	protein, PTOV1	1904	91
513	5696	gi79203 98	HOMO Sapiens	PIOVI	1904	91
514	5704	B08930	Homo sapiens	Human	987	100
1 72-	3.51	-33333		secreted		-55
1		1		protein	1	
				sequence		
}		1		encoded by		
'	1			gene 2		
515	5758	W18878	Homo sapiens	Human protein	368	100
]				kinase C]]
				inhibitor,		
				IPKC-1.		
516	5760	gi65621	Homo sapiens	hypothetical	425	100
		76		protein		
517	5763	Y41706	Homo sapiens	Human PRO381	441	100
1	1		ļ	protein	1	
	<u> </u>			sequence.	<u> </u>	
518	5787	Y57907	Homo sapiens	Human	952	100
				transmembrane		
			‡	protein HTMPN-		
		L	l	21.	L	

0550	SEQ	Acces-	Species	Description	Smith	90
SEQ	ID	sion	phecrep	Description	-	Identity
NO:	NO:	No.		ii.	Water	2001101
NO:	in	NO.			man	
	USSN		•		Score	
	09/48				DCOLC	
	8,725					
519	5823	gi98002	rat	pr5	153	36
273	2023	42	cytomegalovir	pro	133	30
		42	us Maastricht			
520	5886	gi17810	Mus musculus	neuronal	1135	52
520	5886	37	Mus muscurus	tyrosine	1133	, 52
	ļ	37		threonine		
		-				
	5004	*********	**	phosphatase 1	710	96
521	5924	W69221	Homo sapiens	Human parotid	710	, ,
1				secretory	ļ	
				protein.	1300	99
522	5960	Y91529	Homo sapiens	Human	1300	צכ
	i			secreted	[
1	ł	ł		protein	1	
				sequence		
ļ				encoded by		
				gene 79		1.00
523	5962	W69784	Homo sapiens	Protein	395	100
	l		l	Kinase C	ł	{
	Ì			Inhibitor-like		
				Protein		
				(IPKC-2).		
524	5969	Y79141	Homo sapiens	Human	1205	79
	ļ			haemopoietic		
1				stem cell		,
				regulatory		
				protein		
L	<u> </u>			SCM113.		
525	5976	gi78031	Homo sapiens	natural	1808	91
1		0		killer		
]				associated	Ì	ļ
				transcript 4	10.00	
526	6002	gi21045	Homo sapiens		4367	67
F05	6000	53 Y66765	Homo sapiens	Membrane-	822	100
527	6008	100/05	Homo sapiens	bound protein	044	100
		1		PRO1384.	1	
<u> </u>		0110115	Homo sapiens	cytochrome c-	322	50
528	6020	gi19115	HOURS Sabrens	like	344	30
	-	48		polypeptide		
	C03C	W71362	Homo caniana	Human	353	51
529	6036	W/1362	Homo sapiens	cytokine/stero	333	_ ـ ر
				id receptor	1	
				protein.	•	
- F36	6070	V40750	Home ganiana	Human calcium	626	100
530	6070	Y42750	Homo sapiens	binding	020	100
				protein 1		
				(CaBP-1).	1	
		- 1073C	Homo ganiana	•	2164	100
531	6075	gi10732	Homo sapiens	angiopoietin- like protein	2104	1 100
L	J	648	<u> </u>	Trve brocern	1	

SEO	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	-1		-	Identity
NO:	NO:	No.			Water	-
	in				man	
}	USSN				Score	
ļ	09/48				i	
	8,725					;
				PP1158		
532	6106	gi22179 70	Homo sapiens	p40	1349	96
533	6420	W82000	Homo sapiens	Human adult	929	100
İ				brain secreted		
<u> </u>	Ì			protein		
				dm26_2.		
534	6434	gi10732	Homo sapiens	angiopoietin-	2164	100
		648		like protein		
	6433			PP1158	256	100
535	6439	gi18970	Homo sapiens	endothelial	376	100
		1		cell growth		
536	6463	Y41720	Homo sapiens	Human PRO792	360	82
336	0403	141/20	HOMO Saprens	protein	300	62
				sequence.	ļ	
537	6466	gi48840	Homo sapiens	hypothetical	538	100
) 33,	0100	84	liomo bapions	protein	330	
538	6508	gi54420	Homo sapiens	P	2317	96
		30		aminopeptidase		
539	6570	gi59214	Homo sapiens		1591	99
		91				
540	6719	gi31847	Homo sapiens	glypican	1625	87
541	6772	Y65432	Homo sapiens	Human 5' EST	180	53
				related		
				polypeptide	1556	7.00
542	6789	gi53729 2	Homo sapiens	ICH-1L	1556	100
543	6805	gi44547 02	Homo sapiens	HSPC007	634	84
544	6833	gi18906	Homo sapiens	protein	5726	87
		60		tyrosine		
ľ	İ			phosphatase		Ì
1				receptor		
<u> </u>		1 - 1 - 1 - 1		omicron		
545	6834	gi59214 91	Homo sapiens		1746	88
546	6851	gi24076	Homo sapiens	neuropilin	3968	98
340	0031	41	nomo saprens	neuropitin	3500	30
547	6868	gi67146	Drosophila	MAP kinase	218	49
		41	melanogaster	phosphatase	<u>L</u>	
548	6876	Y13138	Homo sapiens	Human	414	76
				secreted		
		1		protein		
				encoded by 5'		
				EST		
549	688	Y73463	Homo sapiens	Human	701	98
		1		secreted		
	<u></u>	<u> </u>		protein clone	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
NO.	in	NO.			man	
	USSN			·	Score	
	055N 09/48				30016	,
]				
	8,725			-1-100 1		
}		Į		yk199_1	i	,
İ	Į	1		protein		
				sequence		
550	6897	gi58151	Homo sapiens	unknown	509	97
		80				
551	690	gi10645	Homo sapiens	meningioma-	522	100
		186		expressed	\	
1	ļ			antigen 5s	,	
	l			splice variant	}	
552	6909	W78149	Homo sapiens	Human	485	100
1				secreted		
	i			protein	i	
	1	ļ		encoded by	į	
		•		gene 24 clone		
}	Ì			HSVBF78.	ł	
553	6924	Y35923	Homo sapiens	Extended	514	99
333	0524	133323	1101110 Bapiciib	human secreted	321	
				protein		
				-		1
			7-	sequence,		
554	6937	G03798	Homo sapiens	Human	281	70
			İ	secreted	}	
<u></u>	<u> </u>			protein,		
555	6951	gi51185	Homo sapiens	prostate-	364	95
1		7		specific		
	Ì			antigen		
556	7008	G03200	Homo sapiens	Human	548	98
1	ļ			secreted	1	
	Ì			protein,		,
557	7009	Y22213	Homo sapiens	Human V201	856	100
				protein		
	1			sequence.		
558	7057	gi60036	Homo sapiens	brain	1814	100
		54	_	specific	1	:
1			[membrane-		[
				anchored		
1.				protein BSMAP		
559	7098	W27291	Homo sapiens	Human H1075-1	712	100
				secreted		
				protein 5'		ļ
	İ			end.		1
ECO	7174	gi32121	Homo sapiens	prefoldin	534	98
560	7114	_	Homo saprens	I =	934	90
		10	TT	subunit 1	470	7.4
561	712	gi45586	Homo sapiens	P85B_HUMAN;	470	74
		41		PTDINS-3-		
		1	-	KINASE P85-		
L				BETA		
562	7215	gi48683	Homo sapiens	delta-6 fatty	2437	100
		66	•	acid		
		1	1	desaturase		
L				1	1.	

SEQ	SEQ	Acces-	Species	Description	Smith	9
ID	ID	sion			_	Identity
NO:	NO:	No.			Water	1
	in				man	
	USSN				Score	
	09/48					
	8,725				}	
563	7244	Y12445	Homo sapiens	Human 5' EST	428	100
				secreted		
				protein		
564	7248	gi31137 6	Homo sapiens	Humig	633	100
565	7252	gi56895	Homo sapiens	KIAA1097	5240	100
1 303	/232	31	nome suprems	protein	3210	100
566	7292	gi51069	Homo sapiens	HSPC040	580	100
		98	_	protein		
567	7306	Y32201	Homo sapiens	Human	1974	95
				receptor		
				molecule (REC)]
				encoded by		
				Incyte clone		
				2057886.		
568	7338	Y73880	Homo sapiens	Human	1566	100
				prostate tumor		
l		1		EST fragment derived	1	1
				protein #67.		
569	736	gi10178	Homo sapiens	Process #07.	1468	100
	, , , ,	317				""
570	737	G00851	Homo sapiens	Human	522	98
}	ļ	}		secreted]
				protein,		
571	740	W85610	Homo sapiens	Secreted	1115	87
				protein clone eh80 1.		
572	7400	Y93948	Homo sapiens	Amino acid	1982	98
7/2	7400	122240	nome suprems	sequence of a	1702	
				lectin ss3939		[
				polypeptide.		
573	7415	gi30436	Homo sapiens	KIAA0573	2392	100
		70		protein		
.574	7429	Y40864	Homo sapiens	A human	1183	99
		}		glutathione-S-		
				transferase		
				(hGST) protein.		
575	7458	Y53643	Homo sapiens	A bone marrow	554	99
"	, 30	133043	Daprens	secreted	334	
				protein		
				designated		[
				BMS6.		
576	7516	gi44683	Homo sapiens		1146	99
		11			L	
577	7526	gi41389	Homo sapiens	promyelocytic	3571	99
		22		leukemia zinc finger		
L		<u> </u>	<u> </u>	ringer	L	L

SEQ	SEQ	Acces-	Species	Description	Smith	%
ID	ID	sion	bpecies	peperaperan	_	Identity
NO:	NO:	No.			Water	140320207
NO.	in	NO.	•		man	
					Score	
l	USSN		i		SCOLE	
	09/48	Ì				
	8,725					
]		protein;		
				kruppel-like		
		[zinc finger	<u> </u>	
			,	protein; PLZF		
578	7571	G02915	Homo sapiens	Human	209	100
]			secreted		}
				protein,	\	
579	7614	W74726	Homo sapiens	Human	1879	100
		<u> </u>		secreted		
				protein	1	ļ .
				fg949_3.		
580	7663	gi59125	Homo sapiens		1634	100
]	48	-			
581	7686	gi49297	Homo sapiens	CGI-121	870	100
		11		protein	ļ	
582	7714	gi38876	Homo sapiens	phospholipase	4428	99
362	//14	5	nome suprems	D	1110	"
583	7724	G03933	Homo sapiens	Human	570	100
303	1/24	903933	110110 Bapiciis	secreted	3,3	-50
				protein,	1	
- FO.4	7024	gi89191	Home geniens	mesenchymal	1133	100
584	7834	1 -	Homo sapiens	stem cell	1133	100
'		66		protein DSC92	1	
		7740505	77	Human breast	684	100
585	7855	Y48505	Homo sapiens		684	1 100
				tumour-	1	
1				associated		
				protein 50.		1
586	7870	Y13372	Homo sapiens	Amino acid	2559	100
				sequence of		1
				protein	1	
				PRO223.		
587	7871	Y91689	Homo sapiens	Human	768	100
				secreted		
	}	1	1	protein	}	
	1			sequence .		
ľ				encoded by		
	1			gene 93	1	
588	7892	gi34659	Homo sapiens	macrophage	532	100
1		-	_	inflammatory		
				protein-2alpha		
				precursor		
589	7927	gi32575	Homo sapiens	_	183	91
590	7944	gi16574	Sus scrofa		2744	100
330	1,513	58		calcium/calmod		
1			}	ulin-dependent		1
1				protein kinase		
				II isoform		
}				gamma-B		
	 	007727	77		+	
591	7947	G01131	Homo sapiens	Human	574	96

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	Special S		-	Identity
NO:	NO:	No.			Water	
1,0.	in				man	
1	USSN				Score	
	09/48					
	8,725	,				
	7			secreted		
				protein,		
592	800	gi30214	Homo sapiens	neutral	167	68
	ļ	28	_ !	sphingomyelina	ł	
	 			se	İ	
593	8055	gi49296	Homo sapiens	CGI-84	1038	100
		37		protein		
594	8082	gi46790	Homo sapiens	HSPC014	715	100
		14	_			
595	8127	gi99556	Homo sapiens	twisted	905	. 95
		93	_	gastrulation	1	
	1	1		protein	1	ļ
596	8174	qi55322	Homo sapiens	MUM2	767	100
		94	· -			
597	8178	gi45305	Homo sapiens	TADA1 protein	1132	100
}	1	87	_		1	1
598	8215	R66278	Homo sapiens	Therapeutic	830	100
			_	polypeptide		
	1			from	1	
			1	glioblastoma	1	1
				cell line.		
599	8263	Y48371	Homo sapiens	Human	713	98
				prostate		
				cancer-		
				associated	1	
į			,	protein 68.		
600	827	gi31723	Cavia	phospholipase	955	73
	İ	37	porcellus	B		
601	828	Y29517	Homo sapiens	Human lung	833	94
				tumour protein		
			1	SAL-82		
				predicted		
				amino acid		
				sequence.		
602	8294	gi49297	Homo sapiens	CGI-149	1085	100
		67		protein		100
603	8313	gi57714	Homo sapiens	group IID	852	100
		20		secretory		
				phospholipase		
				A2	1	
604	832	Y86260	Homo sapiens	Human	319	78
	1			secreted		
]				protein		
			1	HELHN47,	1.64	4
605	8357	gi41913	Mus musculus	claudin-7	164	47
	 	58	77		1-766	7.00
606	8373	gi19452	Homo sapiens	protein	1666	100
		71	ITomo con l	phosphatase 6	1226	100
607	8379	gi58529	Homo sapiens	1	1226	100

CEO	CEO	Aggog_	Species	Description	Smith	ક
SEQ ID	SEQ ID	Acces- sion	phactas	Describeron		Identity
NO:	NO:	No.			Water	
NO.	in	140.			man	
	USSN	ļ			Score	
	09/48	ļ	•			
	8,725				<u>'</u>	
		81		cardiotrophin-		
				like cytokine	ļ	
				CLC		
608	8380	gi34022	Homo sapiens	protein	974	100
		16				
609	8386	gi38698	Homo sapiens	oncostatin M	1297	99
		8				
610	8418	Y70210	Homo sapiens	Human TANGO	722	98
				130 protein.	400	
611	8442	G01895	Homo sapiens	Human	490	95
		ł i		secreted protein,	1	
610	8457	G04048	Home canions	Human	450	98
612	8457	G04048	Homo sapiens	secreted	450	
				protein,		
613	8458	W97119	Homo sapiens	S-adenosyl-L-	1484	100
0.7.3	0430	Waltra	nomo saprens	methyltransfer		====
				ase (SAM-MT)		
	*			protein.		
614	8469	gi71597	Homo sapiens	1 2	255	100
0		99	-			
615	8480	gi45895	Homo sapiens	KIAA0943	1998	100
		30		protein		
616	8521	gi57262	multiple	unknown	250	82
ļ		35	sclerosis	protein U5/2		
1			associated		1	
			retrovirus element			1
617	857	gi96639	Homo sapiens	cysteinyl	612	99
01/	057	58	HOMO Bapichs	leukotriene	0.22	
	1	30		CysLT2	1	Į į
		•		receptor		
618	8574	qi68412	Homo sapiens	HSPC305	1049	100
		60	_			
619	8606	gi33677	Homo sapiens	scrapie	544	100
	1	07		responsive		
				protein 1		
620	8632	G01158	Homo sapiens	Human	502	100
				secreted		
	1			protein,	-	1
621	8646	gi38822	Homo sapiens	KIAA0764	2175	100
		49		protein	<u> </u>	
622	8666	Y66196	Homo sapiens	Human bladder	1080	95
				tumour EST		
[encoded		
	 		IToma gassiass	protein 54.	432	96
623	8675	gi99639 08	Homo sapiens	NPD009	434	סכ
624	8683	G04018	Homo sapiens	Human	469	98
024	1 0003	304010	Troug Bapteria	Human	1 200	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-	_	-	Identity
NO:	NO:	No.			Water	
}	in				man	
	USSN				Score	
İ	09/48					
	8,725					
				secreted		
				protein,		
625	8708	gi16335	Homo sapiens	CB	364	98
		64			191	69
626	8720	gi82484	Homo sapiens	homotogollular	191	9
		65		hepatocellular carcinoma-	ļ	
1	Ì		,	associated	\	1
				antigen 56A		
627	8756	Y94984	Homo sapiens	Human	369	97
027	0,50	154501	nome bapiens	secreted		1
				protein		
		1		ve11 1,	1	
628	8765	Y00346	Homo sapiens	Fragment of	1068	97
			-	human secreted		
		ļ	<u> </u>	protein		
		1		encoded by		1
ļ		i		gene 2.		
629	8783	Y27918	Homo sapiens	Human	1051	95
ĺ				secreted		
				protein		1
				encoded by		
Ĺ				gene No. 123.		
630	8804	Y25426	Homo sapiens	Human SIGIRR	887	100
62.1	0020	Y99409	Homo sapiens	protein. Human PRO1343	1279	100
631	8838	199409	HOMO Sapiens	(UNQ698) amino	12/9	100
	1	ļ	ł	acid sequence		
632	8851	W74785	Homo sapiens	Human	454	100
032	0031	11,1,03	nomo bapieno	secreted		
				protein		
				encoded by		
	}	Į		gene 56 clone	İ	
				HSAXS65.		
633	8853	W75116	Homo sapiens	Human	245	95
1		1		secreted		
1				protein	1	
				encoded by		
1		1		gene 60 clone	-	
	1	1		HILCJ01.	150	ļ
634	8857	gi25651	Homo sapiens	non-	479	74
		96		functional		
1				folate binding protein		1
	0050	Y02690	Homo carians	Human	600	100
635	8859	102690	Homo sapiens	secreted	800	1 100
1	}	1		protein	1	
				encoded by		
				gene 41c lone		
L	ــــــــــــــــــــــــــــــــــــــ		J	13	J	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	- <u>-</u>		-	Identity
NO:	NO:	No.		•	Water	-
ļ	in.				man	
	USSN	1			Score	
	09/48			i		
	8,725]
				HSZAF47.		
636	8901	Y86491	Homo sapiens	Human gene	548	99
				59-encoded]	
l			•	protein	•	İ
637	8907	W88745	Nome ganiena	fragment, Secreted	2004	99
637	8907	W88745	Homo sapiens	protein	2004	
1				encoded by	\	
				gene 30 clone		
				HTSEV09.		[
638	8934	W75088	Homo sapiens	Human	421	98
				secreted]
ļ	1	ļ		protein		1
				encoded by		
		1		gene 32 clone		<u> </u>
				HAGBB70.	0.67	70
639	8960	Y02693	Homo sapiens	Human	267	72
}				secreted protein		
Į.				encoded by		
				gene 44 clone	İ	
]			HTDAD22.		
640	8979	Y76143	Homo sapiens	Human	1374	98
				secreted		1
ļ				protein	1	
			ĺ	encoded by		
L				gene 20.	<u> </u>	
641	8980	Y11433	Homo sapiens	Human 5' EST	466	100
1				secreted protein		
642	8986	G02626	Homo sapiens	Human	306	100
042	8380	902020	nomo sapiens	secreted	300	100
				protein,		
643	8987	G02093	Homo sapiens	Human	486	97
			1	secreted		
1				protein,		
644	8995	Y12908	Homo sapiens	Human 5' EST	181	100
1				secreted		
			<u> </u>	protein		
645	9035	Y71108	Homo sapiens	Human	800	100
				Hydrolase		
1				protein-6		
	00.55		Itomo caratara	(HYDRL-6).		100
646	9062	gi88860 05	Homo sapiens	lysophosphatid	523	100
		05		ic acid		
			ļ.	acyltransferas		
			1	e-delta		
647	9074	¥25761	Homo sapiens	Human	1366	99
	1		<u> </u>	<u> </u>	I	<u></u>

SEQ	SEO	Acces-	Species	Description	Smith	%
ID	ID	sion			_	Identity
NO:	NO:	No.			Water	
110.	in	1.0.			man	
Į	USSN				Score	}
	09/48				50010	
	8,725				•	
	0,723			secreted		
				protein		
				encoded from		
				gene 51.		
648	9075	Y73336	Homo sapiens	HTRM clone	1591	100
			_	1852290	1	
				protein		
				sequence.	١.	
649	9098	Y57878	Homo sapiens	Human	516	100
				transmembrane		
		,		protein HTMPN-	l	
				2.		
650	9109	gi23903	Homo sapiens	63kDa protein	1141	97
		3	}	kinase	1	
651	911	gi32456	Homo sapiens	protein-	2591	100
			_	tyrosine		
				phosphatase	1	
652	912	gi11367	Homo sapiens	human P5	212	46
		43	_			
653	9163	Y34129	Homo sapiens	Human	377	71
		,	_	potassium		
				channel		
				K+Hnov28.		
654	9164	Y41324	Homo sapiens	Human	1083	99
				secreted		
				protein		
				encoded by		
1				gene 17 clone		
				HNFIY77.		
655	9173	gi68512	Mus musculus	protein	631	93
İ		56		tyrosine		
				phosphatase-		
				like protein		
				PTPLB		
656	9187	Y66721	Homo sapiens	Membrane-	1173	95
				bound protein		
				PRO511.	ļ <u>.</u>	
657	9190	W40378	Homo sapiens	Human breast	792	81
				cancer protein		
		1		CH14-2a16-1		1
			1	from 2.0 kB		
			,	DNA fragment		
	0101	700000	Home as=i	#2.	4.50	70
658	9194	Y02781	Homo sapiens	Human	462	70
				secreted		
			TT	protein.	1	
659	9210	G02994	Homo sapiens	Human	166	80
1				secreted		
L			<u> </u>	protein,	<u> </u>	L

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-	_	-	Identity
NO:	NO:	No.			Water	
	in	,			man	
	USSN				Score	
l	09/48	{				
	8,725					
660	9222	G02520	Homo sapiens	Human	186	43
ļ	1			secreted		
L				protein,		
661	9230	gi67065	Homo sapiens	inositol	1315	95
		54		1,4,5-	1	
ļ				trisphosphate 3-kinase B		1
	2050		Heme geniena	B-cell growth	120	56
662	9258	gi52214 5	Homo sapiens	factor	120	36
663	9260	G04072	Homo sapiens	Human	138	51
663	9260	G04072	nomo saprems	secreted	138	
}		ł		protein,		
664	9271	gi66900	Homo sapiens	tetraspanin	317	67
004	92/1	95	nome saprens	protein	""	}
665	9272	gi16304	Bos taurus	factor	444	72
003	72.72	2	202 044242	activating		
1		_		exoenzyme S		}
666	9275	qi40177	Homo sapiens	ribosomal	424	81
	1	4	-	protein S6		
		•	ļ	kinase 3		
667	930	G02355	Homo sapiens	Human	167	41
				secreted		1
				protein,		
668	9304	gi89797	Canis	Band4.1-like5	1493	93
		43	familiaris	protein		
669	9346	gi27389	Mus musculus	high mobility	384	89
	,	89		group protein	-	
		1 2 2 2 2 2		homolog HMG4	199	
670	9347	gi36613	Homo sapiens		199	91
		,		serine/threoni ne protein		
				kinase		
671	935	gi55418	Homo sapiens	QA79 membrane	334	57
6/1	933	70	TOWN Papters	protein,	334	"
		, ,		allelic		
1				variant airm-		
				1b	1	
672	9350	gi33271	Homo sapiens	KIAA0655	757	87
		24		protein		
673	9351	W57260	Homo sapiens	Human	573	95
		1		semaphorin Y.		<u> </u>
674	9356	gi59977	Human	tripartite	127	59
			endogenous	fusion		j
1		1	retrovirus	transcript		1
L			<u></u>	PLA2L		
675	9363	Y17834	Homo sapiens	Human PRO361	968	92
1		1		protein		1
	1-2	 	177	sequence.	 	
676	9366	gi72431	Homo sapiens	KIAA1374	649	96

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion			_	Identity
NO:	NO:	No.			Water	
	in	!			man	
	USSN				Score	
İ	09/48	•			1	
	8,725					
677	9369	29 G03793	Homo sapiens	protein Human	222	69
8//	9309	G03793	nomo saprens	secreted	242	
				protein,		
678	9378	gi44683	Homo sapiens	process,	163	39
0,0] 33,0	11				
679	9393	gi27389	Mus musculus	high mobility	384	89
1		89	ı	group protein	\	
1				homolog HMG4		
680	9444	G01399	Homo sapiens	Human	157	93
ł				secreted		ļ
	1	Ì		protein,		Ì
681	9467	gi44547	Homo sapiens	HSPC007	230	71
		02				
682	9486	gi10047	Homo sapiens	KIAA1584	605	93
		243		protein		
683	949	Y30895	Homo sapiens	Human	704	99
				secreted		
				protein		i
			}	fragment		
				encoded from		
684	9499	W36002	Homo sapiens	gene 25. Human Fchd531	2173	96
004	9499	W36002	nomo sapiens	gene product.	21,3	
685	9510	gi16657	Homo sapiens		867	83
		99				
686	9523	Y53022	Homo sapiens	Human	1252	89
ļ				secreted		
		1		protein clone	ļ	
				qf116_2		
	}	1		protein sequence	j]
687	9534	Y66670	YTama and and	Membrane-	998	100
687	9534	100070	Homo sapiens	bound protein	750	100
				PRO1180.	ļ	
688	9539	Y76144	Homo sapiens	Human	633	100
				secreted]
				protein		
]		Į.	1	encoded by	1	ļ ļ
1		1		gene 21.]
689	954	G02490	Homo sapiens	Human	160	78
				secreted		}
	<u> </u>	<u> </u>		protein,		
690	9546	gi18112	Homo sapiens	chorionic	616	96
		1		somatomammotro		
		1		pin	1-00:00	
691	955	gi72431	Homo sapiens	KIAA1361	2042	100
600	QEE1	03 gi17723	Homo ganions	protein ras-related	341	57
692	9551	1911/23	Homo sapiens	Las-Letated	341	3/

OHO 7	CEO	7.55.5	<u>Gnoging</u>	Description	Smith	8
SEQ	SEQ	Acces-	Species	Description	- SHITCH	- 1
ID	ID	sion			Mohar	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN	1			Score	
	09/48			}		l l
	8,725					
		45		GTP-binding	_	
				protein		}
693	9558	W88403	Homo sapiens	Human adult	2252	100
		ļ		testis]	}
				secreted	1	
	ļ			protein		
	į	[,	ga63_6.	[[
694	9561	gi66900	Herpesvirus	NTR	100	30
0,7-4	1 3301	17	papio			
695	957	Y86260	Homo sapiens	Human	319	78
693	957	186260	11000 saprens	secreted	1 313	/0
	1	}		protein	1	
	 			1 =	1	i
		10000		HELHN47,	0.05	92
696	9572	gi97294 0	Mus musculus	Elf-1	806	92
697	9576	gi32490	Homo sapiens	geminin	448	98
	ł	05	-			1
698	9586	gi28872	Homo sapiens	mRNA cleavage	208	100
		88		factor I 25	ļ]
]			kDa subunit		
699	9587	G00995	Homo sapiens	Human	726	99
099)387	000000	nomo saprens	secreted	,20	
,				protein,		[
700	9592	gi49527	Rattus	ribosomal	202	78
/00	3532	3	norvegicus	protein S15a	202	, 0
	0505	gi77999	T	UBASH3A	453	47
701	9595	1 -	Homo sapiens	protein	453	4/
		12 Y07875	77	Human	574	100
702	9610	10/8/5	Homo sapiens		5/4	100
	1		j	secreted		
		1		protein		
j)	fragment]	
				encoded from	1	
				gene 24.		
703	9634	Y73325	Homo sapiens	HTRM clone	820	99
[.		1	1	001106 protein		
1		_		sequence.		
704	9639	G00805	Homo sapiens	Human	155	67
	1			secreted		
Į		1		protein,		
705	9647	G03786	Homo sapiens	Human	196	73
i			_	secreted		
1				protein,	}	
706	9653	gi38823	Homo sapiens	KIAA0810	523	100
1,04	3333	41		protein		
707	9654	G01924	Homo sapiens	Human	469	100
707	7034	G01924	TOUC Saptens	secreted	1 409	1 -700
}		1		1		}
	 	1,000,000	 	protein,	174	100
708	9678	Y99376	Homo sapiens	Human PRO1244	474	100
1	1	1		(UNQ628) amino	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	5F 55 7 55		_	Identity
NO:	NO:	No.			Water	-
21.4	in		'		man	
	USSN		:		Score	
	09/48					}
	8,725				·	
 	0,723			acid sequence		
709	9709	Y11825	Homo sapiens	Human 5' EST	657	100
	ļ		_	secreted	1	
ļ	ł	1	,	protein		i
710	9722	gi76774	Mus musculus	GTPase Rab37	189	75
İ		22				
711	9731	Y12424	Homo sapiens	Human 5' EST	207	100
Į.			-	secreted	'	
]	j]		protein	}]
712	9742	Y57954	Homo sapiens	Human	484	100
}	}		_	transmembrane	}	,
				protein HTMPN-		
				78.	•	
713	9749	gi36878	Homo sapiens	hT41	386	65
{		29				
714	9755	gi20552	Homo sapiens	Similar to a	2583	100
l		95		C.elegans		
1		<u> </u> '		protein in		
		_		cosmid C14H10		
715	9762	G03436	Homo sapiens	Human	176	61
1			υ	secreted		
· .				protein,		
716	9763	gi61800	Homo sapiens	anaphase-	1016	100
		11		promoting		
1				complex	1	
				subunit 4	<u></u>	
717	9784	G03570	Homo sapiens	Human	401	96
				secreted		
				protein,		
718	9794	G00803	Homo sapiens	Human	333	69
1				secreted		[
		10515	3	protein,		
719	9795	gi25162 42	Mus musculus	Rab33B	669	94
720	9798	gi55859	Homo sapiens	ZID, zinc	605	96
1.720	1 7/90	9133833	1101110 Baptella	finger protein		'
				with		
			}	interaction		
	1			domain		
721	9805	Y25881	Homo sapiens	Human	566	96
-22				secreted		
				protein		
		1		fragment		
			1	encoded from		
				gene 61.		
722	9816	gi53205	Homo sapiens	protein-	384	100
1 .22		6		tyrosine-		
				phosphatase		
723	9830	G00857	Homo sapiens	Human	539	96
					1	

SEQ	SEQ	Acces-	Species	Description	Smith	ે
ID	ID	sion		-	_	Identity
NO:	NO:	No.			Water	_
ļ	in				man	
Ì	USSN	1			Score	
	09/48					
[1	8,725	[
				secreted		
				protein,		
724	9836	G00914	Homo sapiens	Human	527	100
				secreted	}	
				protein,		
725	9837	gi26620	Homo sapiens	KIAA0409	230	67
		99				
726	984	Y29517	Homo sapiens	Human lung	833	94
				tumour protein		
1	ļ	<u> </u>		SAL-82		
				predicted		
				amino acid		
				sequence.		
727	9849	gi72293	Homo sapiens	ZNF264,	140	90
		05		partial cds	7.50	
728	9851	gi52625	Homo sapiens	hypothetical	369	64
		60		protein	7.55	0.7
729	9859	gi38819	Homo sapiens	hypothetical	167	93
	0060	76	D	protein	635	
730	9863	gi72957	Drosophila	CG15433 gene	837	78
		07	melanogaster	product	000	
731	9888	gi33196	Homo sapiens		209	72
732	989	gi45571	Rattus	zinc finger	604	92
/34	909	43	norvegicus	protein RIN ZF	004	32
733	9919	G01843	Homo sapiens	Human	586	100
/33	ر در	301043	nomo saprens	secreted	300	100
				protein,		ļ
734	9922	W67869	Homo sapiens	Human	551	93
,31]		1100	secreted		}
				protein		
				encoded by		}
			·	gene 63 clone		
				HHGDB72.		
735	9947	W78239	Homo sapiens	Fragment of	251	78
<u> </u>			_	human secreted		
				protein		
	,			encoded by		
				gene 3.		1
736	9956	Y36203	Homo sapiens	Human	273	77
			1	secreted		
				protein #75.		
737	9961	Y99357	Homo sapiens	Human PRO1190	650	99
				(UNQ604) amino		1
				acid sequence		
738	9972	Y12149	Homo sapiens	Human 5' EST	284	100
				secreted		1
				protein		
739	9977	gi10039	Homo sapiens	osteoblast	822	98

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion				Identity
NO:	NO:	No.			Water	
1	in				man	
	USSN)			Score	
	09/48				ĺ	
	8,725					
		439		differentiatio		
{				n promoting	[
		1		factor		

Table 3 - Amino Acids

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
1	740	2	557	FVGRLIRLGEALRLRPDPSGGCRLQPALVGETEMSEKENNFPP LPKFIPVKPCFYQNFSDEIPVEHQVLVKRIYRLWMFYCATLGV NLIACLAWWIGGGSGTNFGLAFVWLLLFTPCGYVCWFRPVYKA FRADSSFNFMAFFFIFRSPVCPDRHPGDWLLRLGRVRLAVGNW ILPVQPGRCRGHA
2	741	305	838	FLGAGADIFCAYLRMSSKQATSPFACAADGEDAMTQDLTSREK EEGSDQHVASHLPLHPIMHNKPHSEELPTLVSTIQQDADWDSV LSSQQRMESENNKLCSLYSFRNTSTSPHKPDEGSRDREIMTSV TFGTPERRKGSLADVVDTLKQKKLEEMTRTEQEDSSCMEKLLS KDWKE
3	742	12	1315	EGYLTGRPTRPVAVRGKSTADLRMMGRSPGFAMQHIVGVPHVL VRRGLLGRDLFMTRTLCSPGPSQPGEKRPEEVALGLHHRLPAL GRALGHSIQQRATSTAKTWWDRYEEFVGLNEVREAQGKVTEAE KVFMVARGLVREAREDLEVHQAKLKEVRDRLDRVSREDSQYLE LATLEHRMLQEEKRLRTAYLRAEDSEREKFSLFSAAVRESHEK ERTRAERTKNWSLIGSVLGALIGVAGSTYVNRVRLQELKALLL EAQKGPVSLQEAIREQASSYSRQQRDLHNLMVDLRGLVHAAGP GQDSGSQAGSPPTRDRDVDVLSAALKEQLSHSRQVHSCLEGLR EQLDGLEKTCSQMAGVVQLVKSAAHPGLVEPADGAMPSFLLEQ GSMILALSDTEQRLEAQVNRNTIYSTLVTCVTFVATLPVLYML FKAS
4	743	112	745	NLPPLTPQPGPRLAGSGPSHWFSPLSLPVASKAPGTMAQALGE DLVQPPELQDDSSSLGSDSELSGPGPYRQADRYGFIGGSSAEP GPGHPPADLIRQREMKWVEMTSHWEKTMSRRYKKVKMQCRKGI PSALRARCWPLLCGAHVCQKNSPGTYQELAEAPGDPQWMETIG RDLHRQFPLHEMFVSPQGHGQQGLLQVLKAYTLYRPEQG
5	744	99	265	LRGMAAAAAGPAASQRFFQSFSDALIDQDPQAALEVGEPFLLP PLPADPPPSSTA

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid residue	acid residue	\=possible nucleotide insertion)
ĺ		of amino	of amino	
Ì		acid	acid	
İ		sequence	sequence	
6	745	210	758	WACFRSAHCSRHLRNRIFMYLYWDKTRSPVCKGPALREERPQP
ľ	'			RLKLEDYKDRLKSGEHLNPDQLEAVEKYEEVLHNLEFAKELQK
ĺ				TFSGLSLDLLKAQKKAQRREHMLKLEAEKKKLRTILQVQYVLQ
1			İ	NLTOEHVOKDFKGGLNGAVYLPSKELDYLIKFSKLTCPERNES
				LROTLEGSTV
7	746	48	450	XAGVQMKLEFLQRKFWAATRQCSTVDGPCTQSCEDSDLDCFVI
1	,			DNNGFILISKRSRETGRFLGEVDGAVLTQLLSMGVFSQVTMYD
				YQAMCKPSSHHHSAAQPLVSPISAFLTATRWLLQELVLFLLEW
				SVWGSX*
8	747	1	469	CRGRLAQLEEAAVAATMSAGDAVCTGWLVKSPPERKLQRYAWR
		-		KRWFVLRRGRMSGNPDVLEYYRNKHSSKPIRVIDLSECAVWKH
				VGPSFVRKEFQNNFVFIVKTTSRTFYLVAKTEQEMQVWVHSIS
	1			OVCNLGHLEDGAADSMESLSYTRSYLQ
9	748	242	409	IPAVPLTSCVTVGSYSLSVRDYDPRQGDTVKHYKIRTL\DKRG
-				FYISP\RSTFSTLQ
10	749	1.	1146	KDSVLNIARGKKYGEKTKRVSSRKKPALKC/TSQKQPALKAIC
	1			DKEDSVPNTATEKKDEQISGTVSSQKQPALKATSDKKDSVSNI
			ļ	PTEIKDGQQSGTVSSQKQPAWKATSVKKDSVSNIATEIKDGQI
1				\RGTVSSQRQPALKA\TGDEKDSVSNIAREIKDGEKSGTVSPQ
		1	1	KQSAQKVIFKKKVSLLNIATRITGGWKSGTEYPENLPTLKATI
				ENKNSVLNTATKMKDVQTSTPEQDLEMASEGEQKRLEEYENNQ
]			PQVKNQIHSRDDLDDIIQSSQTVSEDGDSLCCNCKNVILLIDQ
1	Ì			HEMKCKDCVHLLKIKKTFCLCKRLTELKDNHCEQLRVKIRKLK
j	j		}	NKASVLQKRLSEKEEIKSQLKHETLELEKELCSLRFAIQQ
11	750	3	892	SPLRYRAGQSGSTISSSSCAMWRCGGRQGLCVLRRLSGGHAHH
1		[RAWRWNSNRACERALQYKLGDKIHGFTVNQVTSVPELFLTAVK
				LTHDDTGARYLHLAREDTNNLFSVQFRTTPMDSTGVPHILEHT
			Í	VLCGSQKYPCRDPFFKMLNRSLSTFMNAFTASDYTLYPFSTQN
	1			PKDFQNLLSVYLDATFFPCLRELDFWQEGWRLEHENPSDPQTP
	1		1	LVFKGVVFNEMKGAFTDNERIFSQHLQNRLLPDHTYSVVSGGD
	1			PLCIPELTWEQLKQFHATHYHPSNARFFTYGNFPLDQH
12	751	367	856	RGAKAKSAVLPPGPPCSSILILSPPAPLTPRSPGTEATRPTAM
	1			SKSLKKKSHWTSKVHESVIGRNPEGQLGFELKGGAENGQFPYL
1		1		GEVKPGKVAYESGSKLVSEELLLEVNETPVAGLTIRDVLAVIK
				HCKDPLRLKCVKQGESSGLLSVLPGGGTARGAGQ
13	752	144	442	SHRPQPDAWRQGNAFQCVQKEKMQVSSAEVRIGPMRLTQDPIQ
				VLLIFAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKH
1				HEIIVIDHRQTQN
14	753	1	581	FRLAGCGHLLVSLLGLLLLLARSGTRALVCLPCDESKCEEPRN
1	1			CPGSIVQGVCGCCYTCASQRNESCGGTFGIYGTCDRGLRCVIR
}	1]		PPLNGDSLTEYEAGVCEDENWTDDQLLGFKPCNENLIAGCNII
	1			NGKCECNTIRTCSNPFEFPSQDMCLSALKRIEEEKPDCSKARC
				EVQFSPRCPEDSVLIEGYAPP
				<u> </u>

SEQ SEQ Predicted Predicted Amino acid segment containing signal pept	
ID ID beginning end C=Cysteine, D=Aspartic Acid, E= Gluta	
NO: NO: nucleotide nucleotide E-Dhanylalanina G-Glycina H-Histidi	
of of location location V-I wine I I write M-Methionine	
Nucleic Amino Conte	
to first to first T=Threonine, V=Valine, W=Tryptophar	
amino amino X=Unknown, *=Stop Codon, /=possible	nucleotide deletion,
acid \=possible nucleotide insertion)	
residue residue of amino of amino	
acid acid	
sequence sequence 15 754 1 219 FRMAANVGSMFQYWKRFDLQQLQRELDAT	ATVIANRODESEOS
RKRLIEOSREFKKNTPEVRRVTIVFALKG	
16 755 313 562 ETLSCRIMDHPSREKDERQRTTKPMAQRS	
VLMVGPNFRVGKKIGCGNFGELRLGEGLP	
17 756 273 574 GCCKD*HSGVIGRSWAMLFASGGFQVKLY	
RWASRRSPEGMEVGLFLSVGLVCHILKAM	
ASELVKARPTVAGM	j
18 757 3 390 NSRVDDFVSARPKPRPLPRARGMVVVTGR	EPDSRRQDGAMSSS
DAEDDFLEPATPTATQAGHAL/PPAAT/G	SFLRLFPLTSEGLT
SLHACPHCGATKTPCWQPCSVGGTTSPRT	PRAGTSSTEMAHTL
EMC	
19 758 98 461 RALWVGGCSGEACGIGMSGLLTDPEQRAQ	EPRYPGFVLGLDVG
SSVIRCHVYDRAARVCGSSVQKVENLYPQ	IGWVEIDPDVLWIQ
FVAVIKEAVKAAGIQMNQIVGLGISTQRA	TFITWN
20 759 100 731 GLAAEQSMQFVKLWCGCSGEFPTRLRRRT	PLTEAMEGGPAVCC
QDPRAELVERVAAIDVTHLEEADGGPEPT	RNGVDPPPRARAAS
VIPGSTSRLLPARPSLSARKLSLQERPAG	SYLEAQAGPYATGP
ASHISPRAWRRPTIESHHVAISDAEDCVQ	LNQYKLQSEIGKGA
YGVVRLAYNESEDRHYAMKVLSKKKLLKQ	YGFPRRPPP
21 760 2 520 FVYGKPVTLWPTISSVVPSTFLGLGNYEV	EVEAEPDVRGPEIV
TMGENDPPAVEAPFSFRSLFGLDDLKISP	VAPDADAVAAQILS
LLPLKFFPIIVIGIIALILALAIGLGIHF	DCSGKYRCRSSFKC
IELIARCDGVSDCKDGEDEYRCVRVGGQN	
22 761 158 470 SLAMPFGCVTLGDKKNYNQPSEVTDRYDL	
AKDKTTGKLHTCKKFQKRDGRKVRKAAKN	EIGILKMVKHPNIL
QLVDVFVTRKEYFIFLEL	
23 762 1 749 QRRRFRAGLWGGHGLTDGLRRNGGCGCSA	
PDPLCLLLDMLFLSFHAGSWESWCCCCLI	L
EMADTRSVHETRFEAAVKVIQSLPKNGSF	QPTNEMMLKFYSFY
KQATEGPCKLSRPGFWDPIGRYKWDAWSS	LGDMTKEEAMIAYV
EEMKKIIETMPMTEKVEELLRVIGPFYEI	VEDKKSGRSSDITS
DLGNVLTSTPNAKTVNGKAESSDSGAESE	
24 763 3 558 SCFKGRTGGRSGSSGDSSRWARCGRHFSA	1
PRSGRRGCAVPSSVTKMLSFFRRTLGRRS	~
RAATHIPAAGDSKSIITCRVSLLDGTDVS	- 1
QIMYHLDLIESDYFGLRFMDSAQVAHWLD	GTKSIKKQVKIGSP
YCLHLRVKFYSS	
25 764 9 424 ESRERSGNRRGAEDRGTCGLQSPSAMLGA	
PLVLVLLALGAGWAQEGSEPVLLEGECLV	
AALGEAPPGRVAFAAVRSHHHEPAGETGN	igtsgalyfdqvlvn
EGGGFDRAS	

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids •	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 507	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) EDVKSYYTVHLPQLENINSGETRTISHFHYTTWPDFGVPQSPA SFLNFLFKVRESGSLNPDHGPVVIHRSAGTGRSSTFSVVHTCL
			į	VLMEKGDDINIKQVLLNIRKFQMGLI\QTPDQLRFSYMAITEG AKCVKGDSSIQKRWKELSKE/DLPPAFDHSPNKIMTEKYNR
27	766	84	852	LNRQRCGDQVLVPGTGLAAILRTLPMFHDEEHARARGLSEDTL VLPPASRNQRILYTVLECQPLFDSSDMTIAEWVCLAQTIKRHY EQYHGFVVIHGTDTMAFAASMLSFMLENLQKTVILTGAQVPIH ALWSDGRENLLGALLMAGQYVIPEVCLFFQNQLFRGNRATKVD ARRFAAFCSPNLLPLATVGADITINRELVRKVDGKAGLVVHSS MEQDVGLLRLYPGIPAALVRAFLQPPLKGVVMETFGSGNG
28	767	992	210	LFRLAPGFLRSLARQGYHQIWAFPFLPSGATATWPAASRSRSL AARSLPRSPARPGPNDALLGEHDFRGQGVRAQRFRFSEEPGPG ADGAVLEVHVPQIGAGVSLPGILAAKCGAEVILSDSSELPHCL EVCRQSCQMNNLPHLQVVGLTWGHISWDLLALPPQDIILASDV FFEPEDFEDILATIYFLMHKNPKVQLWSTYQVRSADWSLEALL YKWDMKCVHIPLESFDADKEDIAESTLPGRHTVEMLVISFAKD SL
29	768	23	624	SFIYKHTHRARFGPRAIVASPALTAGPHVSLTASCRVGMWVSC SPSPFLHPTNTLVAVLERDTLGIREVRLFNAVVRWSEAECQRQ QLQVTPENRRKVLGKALGLIRFPLMTIEEFAAGNRARAQGLVW EGSGTQVGIW/CTEDSAPEFTAESLADAWHIQIGRNLACEDAS T/WAIC*PRPGSVPTVHTARPRLSCLSSCF
30	769	100	2	MASTQDAELAVSRXRAIALXPGXQSXXPSQKKK
31	770	158	1957	LLKSCGVLLSGVCIPCEGKGPTVLVIQTAVPQDRPTKSSMRSA AKPWNPAIRAGGHGPDRVRPLPAASSGMKSSKSSTSLAFESRL SRLKRASSEDTLNKPGSTAASGVVRLKKTATAGAISELTESRL RSGTGAFTTTKRTGIPAPREFSVTVSRERSVPRGPSNPRKSVS SPTSSNTPTPTKHLRTPSTKPKQENEGGEK\VRLSPK/FRELL AEAKAKDSEINRLRSELKKYKEKRTLNAEGTDALGPNVDGTSV SPGDTEPMIRALEEKNKNFQKELSDLEEENRVLKEKLIYLEHS PNSEGAASHTGDSSCPTSITQESSFGSPTGNQLSSDIDEYKKN IHGNALRTSGSSSSDVTKASLSPDASDFEHITAETPSRPLSST SNPFKSSKCSTAGSSPNSVSELSLASLTEKIQKMEENHHSTAE ELQATLQELSDQQQMVQELTAENEKLVDEKTILETSFHQHRER AEQLSQENEKLMNLLQERVKNEEPTTQEGKIIELEQKCTGILE QGRFEREKLLNIQQQLTCSLRKVEEENQGALEMIKRLKEENEK LNEFLELERHNNNMMAKTLEECRVTLEGLKMENGSLKSHLQG
32	771	203	514	SQMHRLIFVYTLICANFCSCRDTSATPQSASIKALRNANLRRD ESNHLTDLYRRDETIQVKGNGYVQSPRFPNSYPRNLLLTWRLH SQENTRIQLVFDNQFGL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
33	772	59	713	PFKKMTDLLRSVVTVIDVFYKYTKQDGECGTLSKGELKELLEK ELHPVLKNPDDPDTVDVIMHMLDRDHDRRLDFTEFLLMIFKLT MACNKVLSKEYCKASGSKKHRRGHRHQEEESETEEDEEDTPGH KSGYRHSSWSEGEEHGYSSGHSRGTVKCRHGSNSRRLGRQGNL SSSGNQEGSQKRYHRSSCGHSWSGGKDRHGSSSVELRERINKS HIK
34	773	209	601	VPKISGPDHIDFIPWDQLFMASSSSVTEFLVLGFSSLGELQLV LFAVFLCLYLIILSGNIIIISVIHLDHSLHTPMYFFLGILSIS EIFYTTVILPKMLINLFSVFRTLSFVSCATQMFYEIVGPGTQE R
35	774	373	987	DHSTETPGIPAAEPVSHGTGKLERAPTLPAGAELPAPAAVPCP TL*VC/LYPQLLGLSVATMVTLTYFGAHFAVIRRASLEKNPYQ AVHQWGTQQRLIQHPESGSEGQSLLGPLRAFSAGLSLVGLLTL GAVLSAAATVREAQGLMAGGFLCFSLAFCAQVQVVFWRLHSPT QVEDAMLDTYDLVYEQAMKGTSHVRRQELAAIQ
36	775	102	466	QPGYSEYDKNRGQGMLLNMMCGRQLSAISLCLAVTFAPLFNAQ ADEPEVIPGDSPVAVSEQGEALPQAQATAIMAGIQPLPEGAAE KARTQIESQLPAGYKPVYLNQLQLLYAARGISCSV
37	776	2	430	RTRAADVYVFSLTGKSRNVSSSTVRRSAVGGMSALALFDLLKP NYALATQVEFTDPEIVAEYITYPSPNGHGEVRGYLVKPAKMSG KTPAVVVVHENRGLNPYIEDVARRVAKAGYIALAPDGLSSVGG YPGNDIKVVSAAA
38	777	106	556	VKQRHGNSLLTTETKCISCRLGVPLSPQRRFQAIRIEEVKLRW FAFLIVLLAGCSSKHDYTNPPWNAKVPVQRAMQWMPISQKAGA AWGVDPQLITAIIAIESGGNPNAVSKSNAIGLMQLKASTSGRD VYRRMGWSGEPTTSELKNSSR
39	778	3	892	HAAGIRHEAKPKRSFYAARDLYKYRHQYPNFKDIRYQNDLSNL RFYKNKIPFKPDGVYIEEVLSKWKGDYEKLEHNHTYIQWLFPL REQGLNFYAKELTTYEIEEFKKTKEAIRRFLLAYKMMLEFFGI KLTDKTGNVARAVNWQERFQHLNESQHNYLRITRILKSLGELG YESFKSPLVKFILHEALVENTIPNIKQSALEYFVYTIRDRRER RKLLRFAQKHYTPSENFIWGPPRKEQSEGSKAQKMSSPLASSH NSQTSMHKKAKDSKNSSSAVHLNSKTAEDKKVAPKEPV
40	779	123	395	ELQVFQPIGGMSDSGSQLGSMGSLTMKSQLQITVISAKLKENK KNWFGPSPYVEVTVDGQSKKTEKCNNTNSPKWKQPLTVIVTPV SKLH
41	780	173	438	IETLSFVIRNWNTHAMSKPIVMERGVKYRDADKMALIPVKNVA TEREALLRKPEWMKIKLPADSTRIQGIKAAMRKNGLHSVCEEA SC
42	781	287	393	PRMVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIPQ
43	782	119	556	GLRISVQERIKACFTESIQTQIAAAEALPDAISRAAMTLVQSL LNGNKILCCGNGTSAANAQHFAASMINRFETERPSLPAIALNT DNVVLTAIANDRLHDEVYAKQVRALGHAGDVLLAISTRGNSRD IVKAVEAAVTRDTTIV

OTC.	CEO.	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
[residue	residue	, , , , , , , , , , , , , , , , , , , ,
	ļ	of amino	of amino	
	}	acid	acid	,
}	1	sequence	sequence	
44	783	248	554	KQTQHAPGMMKKYLALALIAPLLISCSTTKKGDTYNEAWVKDT
[İ		NGFDILMGQFAHNIENIWGFKEVVIAGPKDYVKYTDQYQTRSH
		Ì	ļ.	INFDDGTITIEPIPGT
45	784	77	311	TDRTALNPGQESAMNRLFSGRSDMPFALLLLAPSLLLLGGLVA
			ļ	WPMVSNIEISFLRLPLNPNIESTFVGVSNYVRILS
46	785	184	627	KELVDEKSERGRAMDPVSQLASAGTFRVLKEPLAFLRALELLF
1	'33		1	AIFAFATCGGYSGGLRLSVDCVNKTESNLSIDIAFAYPFRLHQ
	1			VTFEVPTCEGKERQKLALIGDSSSSAEFFVTVAVFAFLYSLAA
}	ļ		ļ	TGRYTFFHNKNRENNRGPL
47	786	3	742	LGTVSYGADTMDEIQSHVRDSYSQMQSQAGGNNTGSTPLRKAQ
4/	/86	٦	/42	SSAPKVRKSVSSRIHEAVKAIVLCHNVTPVYESRAGVTEETEF
			}	AEADODFSDENRTYOASSPDEVALVOWTESVGLTLVSRDLTSM
	ļ		ļ	OLKTPSGOVLSFCILOLFPFTSESKRMGVIVRDESTAEITFYM
1	ŀ	4	ļ	KGADVAMSPIVQYNDWLEEECGNMAREGLRTLVVAKKALTEEQ
]	}	1	1	1
				YQDFEVSRLPGIPSSYDGAFLTLKLVLPVFV
48	787	864	335	EGPHR\RLFQMVKA/LQEAPEDPNQILIGYSRGLVVIWDLQGS
1 .	1	1	1	RVLYHFLSSQQLENIWWQRDGRLLVSCHSDGSYCQW\PVSSEA
	1		\$	QQPEPLRSLVPYGPFPCKAITRILWLTTRQGLPFTIFQGGMPR
			1	ASYGDRHCISVIHDGQQTAFDFTSRVIGFTVLTEADPAASRRA
		<u> </u>		SGVGAQG
49	788	410	951	KQGLEVRDLHFKEITSGRALLRVACKRPSMVPGGQLQRAGAGA
1		İ	(QARITGLSPALWGARVHGWIPELPAGLPPGACLWPLIPACPSR
1	1	1	1	HWGWVSAPVKG/WAQAILGLALCL/RGEHRGLGAGVSKVRSLK
	1	1	1	MDRKVWTETLIEVGMPLLATDTWGLPHSTAVWVSQPPPYLSDH
		1]	STLELERDPL
50	789	1	437	LSCNSEQALLSLVPVQRELLRRRYQSSPAKPDSSFYKGLGTCP
			İ	SQLRLSEPPPTPRHLSVASVSHHMFPSHRSLCPHLPDFFAAPF
1	}	1	1	PSDNLPYTLQSPFPSPPPATPSDHALILHH\DLNGGPDDPLQQ
	1			TGQLFGGLVRDIRRRYP
51	790	1	198	SPSSKLVGMWWAGRAGSSRTTSVSLLCLP/SAPFGASNLLVNP
	1			LEPQNADKIKIKIADLGNACWVV
52	791	3	435	RVDPRVRAPRCGDKIKNHMY\KCDCGSLKDCASDRCCETSCTL
		1		SLGSVCNTGLCCHKCKYAAPGVVCRDLGGICDLPEYCDGKKEE
1	}			CPNDIYIQDGTPCSAVSVCIRGNCSDRDMQCQALFGYQVKDGS
}	}			PACYRKLNRIGNRFGT
53	792	+1	728	PGRPTRPDASLAQ/DPRTTMFRIPEFKWSPMHQRLLTDLLFAL
33	134	1 -	, 20	ETDVHVWRS\HSTKSVMDFVNSNENIIFVHNTIHLISQMVDNI
1 .				IIACGGILPLLSAATSPTGSKTELENIEVTQGMSAETAVTFLS
1	1	}		RLMAMVDVLVFASSLNFSEIEAEKNMSSGGLMRQCLKLVCCVA
]	1		VRNCLECRORQRDRGNKSSHGSSKPQEVPQSVTATAASKTPLE
	1			NVPGNLSPIKDPDRLLODVDINRLRAVVF
	<u> </u>	<u> </u>	1	MAEQUIDSETUTE DE DITON DE TINETITA A LE

CEO	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ ID	beginning	end	
ID NO.		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1—possible indexediate insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
54	793	2230	990	NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGKGAA
] -	,]	AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFAANS
				DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILEYQA
		1	ĺ	GEEWGOLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFQPDL
				GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HLELG
]	}	1	\SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSASGPH
		1		SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRIHFHT
<u> </u>				
ĺ	Ì	1	1	LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTSRVS
Ì	1			LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTPVLV
				CKDPIRTVGLGDAISAEGLFYSEVHPHY
55	794	249	3	DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LGSSD
				SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLELL
56	795	2	1176	LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAPSGC
	1			LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRAAEP
1			ļ	APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRSVLL
				DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNLPAD
	1		[LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAASTLL
			ĺ	TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNASFGK
}	1			KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTPYLDK
1				FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPWYFK
			1	HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHKPAS
		ĺ	(•	DPGS
57	796	755	374	YHAPALQPGQQSKTLSQEKKNFFRPGAVAHTCNPSTLGGRGGR
	1	ł	}	ITRSGDRDHPG*HGETPSLLKIQKKLAGRDGGRL*SQLLGRLR
ļ]	}	ļ	QENGVNPGGGGCSEPRLRHCTPAW*QSETISRKKRKKERKY
58	797	2	476	FRPIGIIRQALCSADGHQRRILTLRLGLLVIPFLPASNLFFRV
		1		GFVVPSVGCCVMLLFGFG/ALRKHTEKKKLIAAVVLGILLS/N
Ì	1	-		DAERLRCAVRGGEWRSE/EAVFRGAVSVCPLSAEVRCNIGRNL
	1			AAKGNOTGAIRYHREAVSLNPKTKSSTREFRPC
59	798	3	711	KIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDGPKVD
"	'			IWSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPFFMST
1				ECEHLIRHMLVLDPNKRLSMEOICKHKWMKLGDADPNFDRLIA
-	1	1		ECOOLKEERQVDPLNEDVLLAMEDMGLDKEQTLQSLRSDAYDH
	i			YSAIYSLLCDRHKRHKTLRLGALPSMPRALGLSSTSQYP\AEQ
	İ		1	AGTAMNISVPOVQLINPENQIV
	700	 	244	AREFLGHRASITWS*ARVHHRFPKAEVA*P/SLLRTDLTEDRT
60	799	2	344	KCCHGDLLECADDRADLVEDIWENODSISTILIECCEKPLLEK
1	1			~
	1	<u> </u>	<u> </u>	SHCIAEVENDEMPADLPSLAADFVESKDV

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110123	, icias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
}	ļ	acid	acid	,
		sequence	sequence	
61	800	142	594	VPPKMKRGTSLHSRRGKPEAPKGSPQINRKSGQEMTAVMQSGR
]		ļ	PRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTAERIERL
			1	EVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAAIAHLQQ
]		ł	Ì	KILKLTEQIKIAQTARRNRRPGS*KDCTP*KCLRKSDEALNRV
]	1		j	LQQI\RVPPKMKRGTSLHSRRGKPEAPKGSPQINRKSGQEMTA
[1	VMQSGRPRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTA
		1	[ERIERLEVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAA
	1		(IAHLQQKILKLTEQIKIAQTARRNRRPG
62	801	232	1299	MQTIERLVKERDDLMSALVSVRSSLADTQQREASAYEQVKQVL
1				QISEEANFEKTKALIQCDQLRKELERQAERLEKELASQQEKRA
]	IEKDMMKKEITKEREYMGSKMLILSQNIAQLEAQVEKVTKEKI
	-		ĺ	SAINQLEEIQSQLASREMDVTKVCGEMRYQLNKTNMEKDEAEK
	1	1	1	EHREFRAKTNRDLEIKDQEIEKLRIELDESKQHLEQEQQKAAL
	1			AREECLRLTELLGESEHQLHLTRQEKDSIQQSFSKEAKAQALQ
	1		ļ	AQQREQELTQKIQQMEAQHDKTENEQYLLLTSQNTFLTKLKEE
		ł		CCTLAKKLEQISQKTRSEIAQLSQEKRYTYDKLGKLQRRNEEL
				EEQCVQHGRST*
63	802	3	334	SYPVWWNSPLTAEVPPELLAAAGFFHTGHQDKVRCFFCYGGLQ
63	802	3	334	SWKRGDDPWTEHAKWFPSCQFLLRSKGRDFVHSVQETHSQLLG
		l		SWRRGDDFW1EMARWFFSCQFMBRSRGRDFVMSVQEIMSQDDG SWDPWEEPEDAAPVAPSVPASGYPELPTPRREVQSESAQEPGG
1		j ·	ļ	- ~
ļ		İ		VSPAEAQRAWWVLEPPGARDVEAQLRRLQEERTCKVCLDRAVS
	L	ļ		IVFVPCGHLVC\AECAPGLQLCPI\CRSPCGPLRPCLWVP
64	803	70	456	MCSYREKKAEPQELLQLDGYTVDYTDPQPGLEGGRAFFNAVKE
1		1	Į	GDTVIFASDDEQDRILWVQAMYRATGQSHKPVPPTQVQKLNAK
1		1		GGNVPQLDAPISQFYADRAQKHGMDEFISSNPCNFDHASLFEM
				*
65	804	2	1376	KQLIVLGNKVDLLPQDAPGYRQRLRERLWEDCARAGLLLAPGH
ļ	1			QGPQRPVKDEPQDGENPNPPNWSRTVVRDVRLISAKTGYGVEE
	İ	1	ļ	LISALQRSWRYRGDVYLVGATNAGKSTLFNTLLESDYCTAKGS
Ì			i	EAIDRATISPWPGTTLNLLKFPICNPTPYRMFKRHQRLKKDST
İ		1		QAEEDLSEQEQNQLNVLKKHGYVVGRVGRTFLYSEEQKDNIPF
1	1			EFDADSLAFDMENDPVMGTHKSTKQVELTAQDVKDAHWFYDTP
ł	}			GITKENCILNLLTEKEVNIVLPTQSIVPRTFVLKPGMVLFLGA
ļ.	1	1		IGRIDFLQGNQSAWFTVVASNILPVHITSLDRADALYQKHAGH
ļ]			TLLQIPMGGKERMAGFPPLVAEDIMLKEGLGASEAVADIKFSS
1	ļ			AGWVSVTPNFKDRLHLRGYTPEGTVLTVRPPLLPYIVNIKGQR
				IKKSVAYKTKKPPSLMYNVRKKKGKINV
66	805	 - - - -	874	STVASMMHROETVECLRKFNARRKLKGAILTTMLVSRNFSAAK
"	555	1	0,1	SLLNKKSDGGVKPOSNNKNSLVSPAOEPAPLOTAMEPOTTVVH
]				NATDGIKGSTESCNTTTEDEDLKAAPLRTGNGSSVPEGRSSRD
1				
1	1	1		RTAPSAGMQPQPSLCSSAMRKQEIIKITEQLIEAINNGDFEAY
		1		TKICDPGLTSFEPEALGNLVEGMDFHKFYFENLLSKNSKPIHT
				TILNPHVHVIGEDAACIAYIRLTQYIDGQGRPSNPAKSEE\TR
1	1		1	VWH\RR\DGKWLNVHYHCSGAPCPHRCSELSHRGF

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
{		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	acid	acid residue	\=possible nucleotide insertion)
ļ	1	residue of amino	of amino	
		acid	acid	
	İ	sequence	sequence	'
67	806	3	1714	LPKNVVFVLDSSASMVGTKLRQTKDALFTILHDLRPQDRFSII
1		i ⁻		GFSNRIKVWKDHLISVTPDSIRDGKVYIHHMSPTGGTDINGAL
				ORAIRLLNKYVAHSGIGDRRVSLIVFLTDGKPTVGETHTLKIL
}				NNTREAARGOVCIFTIGIGNDVDFRLLEKLSLENCGLTRRVHE
}]	}	EEDAGSQLIGFYDEIRTPLLSDIRIDYPPSSVVQATKTLFPNY
	'			FNGSEIIIAGKLVDRKLDHLHVEVTASNSKKFIILKTDVPVRP
٠.		1		QKAGKDVTGSPRPGGDGEGDTNHIERLWSYLTTKELLSSWLQS
1		İ	ĺ	DDEPEKERLRQRAQALAVSYRFLTPFTSMKLRGPVPRMDGLEE
]		[AHGMSAAMGPEPVVQSVRGAGTQPGPLLKKPYQPRIKISKTSV
}			Ì	DGDPHFVVDFPLSRLTVCFNIDGQPGDILRLVSDHRDSGVTVN
Į				GELIGAPAPPNGHKKQRTYLRTITILINKPERSYLEITPSRVI
ļ				LDGGDRLVLPCNQSVVVGSWGLEVSVSANANVTVTIQGSIAFV
				ILIHLYKKPAPFQRHHLGFYIANSEGLSSNCRVFCESGILIQE
		1		LTQQSVAVAGR
68	807	2	841	FFLEQVSQYTFAMCSYREKKSEPQELMQLEGYTVDYTDPHPGL
1	1	1		QGGCMFFNAVKEGDTVIFASDDEQDRILWVQAMYRATGQSYKP
	l			VPAIQTQKLNPKGGTLHADAQLYADRFQKHGMDEFISANPCKL
1	ļ		1	DHAFLFRILQRQTLDHRLNDSYSCLGWFSPGQVFVLDEYCARY
				GVRGCHRHLCYLAELMEHSENGAVIDPTLLHYSFAFCAS\HVH
				GNRPDGIGTVSVEEKERFEEIKERLSSLLENQISHFRYCFPFG
		<u> </u>	L	RPEGALKATLSLLERVLMKDIA
69	808	2	757	DGLLHEVLNGLLDRPDWEEAVKMPVGILPCGSGNALAGAVNQH
				GGFEPALGLDLLLNCSLLLCRGGGHPLDLLSVTLASGSRCFSF
}	1	ļ		LSVAWGFVSDVDIQSERFRALGSARFTLGTVLGLATLHTYRGR
	ļ			LSYLPATVEPASPTPAHSLPRAKSELTLTPDPAPPMAHSPLHR
			1	SVSDLPLPLPQPALASPGSPEPLPILSLNGGGPELAGDWGGAG DAPLSPDPOLSSPPGSPKAALHSPV*KKAPVIPPDM
70	809	3	530	KGVPTLLMAAGSFYDILAITGFNTCLGIAFSTGSTVFNVLRGV
'	009	٦	930	LEVVIGVATGSVLGFFIQYFPSRDQDKLVCKRTFLVLGLSVLA
	1		[VFSSVHFGFPGSGGLCTLVMAFLAGMGWTSEKAEVEKIIAVAW
				DIFQPLLFGLIG\AEVSI\SSLRPETVGLCVATVGI\AVLIRI
			1	FDYIF
71	810	228	541	LLKEVVVQASPVCKTCCSQLVRTPVTFTEVQNV/CRCSAGYLI
'-	010	220		SVCSYTSSDHNQCYAGTASLALLWIGGILKGCLLWKOFRWTER
-				SHWNFGYWALWSPGNGCC
72	811	173	404	ICTSTYLQIFPGKPSCFMCKGRLMCIYFILWYLGHYTSLHWNW
'~				CRYISDPNVD/ACPDPRNAEVSMTHTVPALMELID
73	812	2	586	LESLPGFKEIVSRGVKVDYLTPDFPSLSYPNYYTLMTGRHCEV
1 .		_		HOMIGNYMWDPTTNKSFDIGVNKDSLMPLWWNGSEPLWVTLTK
			}	AKRKVYMYYWPGCEVEILGVRPTYCLEYKNVPTDINFANAVSD
ļ				ALDSFKSGRADLAAIYHERIDVEGHHYGPASPORKDALKA\VD
			1	TVLKYMTKWIQERGLQDRLNVII
L		ــــــــــــــــــــــــــــــــــــــ	L	1

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
į	}	to first	to first amino	
}		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
]]	acid	acid	,
ļ	ļ	sequence	sequence	
74	813	2	348	ARDFHPKQTLDFLRSDMANSKITEEVKRSIAQQYLDLTVA/LE
Ì	1			QVDPDAEVDAAPSTTSSCGH*DSHAGS*RVLSLLGD*GPA*TG
1	{			ANSMAGKLLLVAWLGFPDPFWGKELSDPAFK
75	814	2	366	KQSGDVTCNCTDGRLAPSCLTCVGHCIFGGYCTMNSKMMPECQ
	į			SPPHMTGPRCEEHVFSQHQPGHITSILIPML*LLLLVLVAGVI
1				FCHKRRVQGAKGFQHQRMTNGAMNAQIANPTYKMY
76	815	420	681	TVENAGRWL*EEAEIQAELERLERVRNLHIRELKRINNEDNSQ
	1			FKDHPTLNERYLLLHLLGRGGFSEVYKVMYGLFWFFYTNVARI
77	816	37	428	MCEEFLVMGKGCSCVF*ILLSNPQMWWLNDSNPETDNRQESPS
1		1		QENIDRVSD/MAFVPSAWTASGGVAWGNLGESGSRTGGVRAET
1	į			LAPRLQV*PAHLRGHPRSNRGQGRPPWKAGKLGKCQEVLFRFA
}	ļ			AF
78	817	1	358	FRAMFLAVQHDCRPMDKSAGSGHKSEEKREKMKRTLLKDWKTR
	ĺ	1		LSYFLQNSSTPGKPKTGKKSKQQAFIK*VENPELANINS*LLN
				*KGEL**A*ANIQNLSCRPSPEEAQLWSEAFDE
79	818	1	169	GFFNFSSPKLKGWKINSSLVLEIRKNILRFLDAERDVSVVKSS
			1	FPSKDARHSSVHR*FTQLHWGPPSHTPARP*RGFFNFSSPKLK
ļ				GWKINSSLVLEIRKNILRFLDAERDVSVVKSSFPSKDARHSSV
ļ				HR
80	819	55	310	RIDDQQELKRVT*YSQKEYTKKKLHKKCNIIQADIKPDNILDN
				ESITILKLSDFGSASHVADNDITPSSSQTTSAASSPPRTLRR
81	820	1	134	SSKPWD*SLAPKHSG*TKNMDCYCIIPTCIGRERCYGTCIGDT
	1		252	V
82	821	187	360	NSSKKLVMEHQWKKYLRRNYQRMLNRLITLIGSCGVL*LISTI
				PTSRLKFLKETGHGTPMEEIPEEELSEDVEQIDHADRELRRGQ
	1000		702	NLRCKGIHRLPTHIQVGQN
83	822	208	723	KWMLLHSFKIFCLSLYPQL*CPFEFFSHSATIFHELVYKQTKI
				ISSNQELIYEGRRLVLEPGRLAQHFPKTTEENPIFVVSREPLN TIGLIYEKISLPKVHPRYDLDGDASMAKAITGVVCYACRIAST
			}	LLLYOELMRKGIRWLIELIKDDYNETVHKKTEVVITLGFLVSR
0.1	823	1	314	GTRKMGPTVSPICLPGTWGDYNLMDGDLGLISGWGRTEKRDRA
84	043	1	374	DRLKAGRSPAAG*RKWEPGRGDPTWEESEEDVHKSKWTRCVDE
		1		KGA*C*TDNKRPLRCGVT
85	824	3	302	HELENLIKSAHSYSLY*G*YLHGA*TAEPEASFCPRRGWNROA
0.5	024		302	GAAGSRMNFRPGVLSSROLGLPGPPDGPDYTVYYPFHRLAMVT
				AASRLEREHLTHL
86	825	87	422	PVPLPHPILEVCPGQ*EPQSAISLTAFQVQAGASRASPGPPAP
00	025	,	122	SSSKPGRKAKVASPCPDRPAPPPT*PRPAAAPGSESSPRPPRP
1				RTGRROORAHARRAAARTAPWRPSC
87	826	3	289	HEGRRGWASASQRFLRNWAFLTPSKVRRLKGQKAFGKLPSHS
67	020		200	DTSLTSDLGFHHRFNPNASSSFKPSGTKFAIQYGTGRVDGILS
			1	EDKLTVSGL
88	827	1	101	GRNIMHYPNGHAICIANGHCIIL*NSHNIKVWV
	027			OTCHARTER MOTEUR CENTRALITY MOTHER TYCA AA A

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
89	828	1	535	INLGNTCYMNSVI*ALFMATDFRRQVLSLNLNGCNSLMKKLQH LFAFLAHTQREAYAPRIFFEASRPPWFTPRSQQDCSEYLRFLL DRLHEEEKILKVQASHKPSEILECSETSLQEVASKAAVLTETP RTSDGEKTLIEKMFGGKLRTHIRCLNCTSTSQKVEAFTDLSLA FWPSSS
90	829	1	434	ARDDPRVRLSLSPNFF*LASKLGKQWTPLIILANSLSGTNMGE
91	830	3	782	MHRIKLNDRMTFPEELDMSTFIDVEDEKSPQTESCTDSGAENE GSCHSDQMSNDFSNDDGVDEGICLETNSGTEKISKSGLEKNSL IYELFSVMVHSGSAAGGHYYACIKSFSDEQWYSFNDQHVSRIT QEDIKKTHGGSSGSRGYYSSAFASSTNAYMLIYRLKDPARNAK FLEVDEYPEHIKNLVQKERELEEQEKRQREIERNTCKIKLFCL HPTKQVMMED*IEVHKDKTLKEAVEMAYKMMDLEEVIPLDCCR L
92	831	2	604	SVMPVPALCLLWALAMVTRPASAAPMGGPELAQHEELTLLFHG TLQLGQALMGVYRTTEGRLTKARNSLGLYGRTIELLGQEVSRG RDAAQELRASLLETQMEEDILQLQAEATAEVLGEVAQAQKVLR DSVQRLEVQLRSAWLGPAYREFEVLKAHADKQSHILWALTGHV QRQRREMVAQQHRLRQIQERLHTAALPA
93	832	16	690	ITSVDPRVRGNASTGYGKIWLDDVSCDGDESDLWSCRNSGWGN NDCSHSEDVGVICSDASDMELRLVGGSSRCAGKVEVNVQGAVG ILCANGWGMNIAEVVCRQLECGSAIRVSREPHFTERTLHILMS NSGCAGGEASLWDCIRWEWKQTACHLNMEASLICSAHRQPRLV GADMPCSGRVEVKHAHTWRSVCDSDFSLHAANVLCRELNCGDA ISLSVGDHFG
94	833	108	727	SNYPSSRFRVAGITGVKLGMRSIPIATACTIYHKFFCETNLDA YDPYLIAMSSIYLAGKVEEQHLRTRDIINVSNRYFNPSGEPLE LDSRFWELRDSIVQCELLMLRVLRFQVSFQHPHKYLLHYLVSL QNWLNRHSWQRTPVAVTAWALLRDSYHGALCLRFQAQHIAVAV LYLALQVYGVEVPAEVEA/DEAVGWQIYAMDTEIP
95	834	118	376	RGSRHAVHGWAFGLLFINKESVVMAYLFTTFNAFQGVFIFVFH CALOKKVRSRRGPGSQPPLETFPGYPGEGGEGGGDSGAPSSPQ
96	835	3	333	ARKDDLPPNMRFHEEKRLDFEWTLKAG*EKG*PSK*NKGWEGQ E***TVRD*GIS**VKPQHLS*\ALQMALKRVYTLLSSWNCLE DFDQIFWGQKSALAGQWFPEVSIIP
97	836	740	951	GKQQRETLRRPSPTISVQRAGSPEHSSASH*HSPCPAPGQRVL PTALCTLMTSKHFHGCPLAGQGRAVTL

SEQ SEQ Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO: NO: nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of of location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Amino corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids Acids sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
to first	to first	
amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
acid residue	acid residue	\=possible nucleotide insertion)
of amino	of amino	
acid	acid	
sequence	sequence	
98 837 81	1503	GVCGLPRFCGSIILCHYEMSSLGASFVQIKFDDLQFFENCGGG
		SFGSVYRAKWISQDKEVAVKKLLKIEKEAEILSVLSHRNIIQF
		YGVILEPPNYGIVTEYASLGSLYDYINSNRSEEMDMDHIMTWA
		TDVAKGMHYLHMEAPVKVIHRDLKSRNVVIAADGVLKICDFGA
		SRFHNHTTHMSLVGTFPWMAPEVIQSLPVSETCDTYSYGVVLW
1 1 1		EMLTREVPFKGLEGLQVAWLVVEKNERLTIPSSCPRSFAELLH
1 1		QCWEADAKKRPSFKQIISILESMSNDTSLPDKCNSFLHNKAEW
		RCEIEATLERLKKLERDLSFKEQELKERERRLKMWEQKLTEQS
		NTPLLLPLAARMSEESYFESKTEESNSAEMSCQITATSNGEGH
		GMNPSLQAMMLMGFGDIFSMNKAGAVMHSGMQINMQAKQNSSK
		TTSKRRGKKVNMALGFSDFDLSEGDDDDDDDGEEEYNDMDNSE
99 838 185	328	MLWETGCSAACRVTVSPTVTFATFSTRGIDAMRPGPSFLWRQQ
		LSQG*
100 839 1	348	PTLGDQPDLHSITRASRPKLCTRKNCNPLTITVHDPNSTQ*YY
		GMSWELRFYIPGFDVGTMFTIQKILVSWSPPKPIGPLTDLGDP
		MFQKPPNKVDLTVPPPFLVIKDTLQKFEKI
1.01 840 1	416	SLNNVTLPQAKTEKDFIQLCTPGVIKQEKLGTVYCQASSPGAN
		MIGNKMSAISVHGVSTSGGQMYHYDMNTASLSQQ*DQKPIFNV
	İ	IPPIPVGSENWNRCQGSGDDNLTSLGTLNFPGRTVSFSFEMES
		RSVAQAGVQ
102 841 105	354	RHTQECRCPHTHIHTHTHSHTHSHTHSHSHSHTTPRCSHTQPP
1 1 _	·	HAQAPALC*S*EDRGQPTWKLCAHRPRLKVIKEGGWLGG
103 842 171	347	NYSLSVYLVRQLTAGTLLQKLRAKGIRNPDHSRALSE*HLSSL
	·	PHLIWIQVFLALQPS
104 843 2	690	ATYIVDFGFSTTFREGQMLTAFCGMYPYVAPERSLGQACQ*PA
		RDIQSLSVILYFRNTVGRRARTLPFYS/AEASKLQEKILTGRY
	ļ	HAPPLLALQLDSL/IKLLMLNARKCPSL*LMKNPWVKSSQKMP
		LIPYEEPL/RGPPQTIQLMVAMGFQAKNISVAIIERKFNYPMA
		TYLILEHTKQERKCSTIRELSLPPGVPTSPSPSTELSTFPLSL
		MRAHREPAFNVQPPEESQ
105 844 2	777	AKQELAKLMRIEDPSLLNSRVLLHHAKAGTIIARQGDQDVSLH
		FVLWGCLHVYQRMIDKAEDVCLFVAQPGELVGQLAVLTGEPLI
		FTLRAQRDCTFLRISKSDFYEIMRAQPSVVLSAAHTVAARMSP
		FVRQMDFAIDWTAVEAGRALYRCSSHRAAQARPRGGDLGVVRP
	1	C*PPRPLRQGDRSDCTYIVLNGRLRSVIQRGSGKKELVGEYGR
		GDLIGVVSATPTH*PLAFSRPVPRQLTRIIPGNPGSGEVFPGA
106 845 3	709	HASGWTPGTTQTLGQGTAWDTVASTPGTSETTASAEGRRTPGA
	1	TRPAAPGTGSWAEGSVKAPAPIPESPPSKSRSMSNTTEGVWEG
		TRSSVTNRARASKDRREMTTTKADRPREDIEGVRIALDAAKKV
		LGTIGPPALVSETLAWEILPQATPVSKQQSQGSIGETTPAAGM
		WTLGTPAADVWILGTPAADVWTSMEAASGEGSAAGDLDAATGD RGPQATLSQTPAV*PWGPPG
1 [}		

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 406	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) AGTSGTGDTGPGNTAVSGTPVVSPGATPGAPGSSTPGEADIGN
				TSFGKSGTPTVSAASTTSSPVSKHTDAASĄTAVTISGSKPGTP GTPGGATSGGKITPGIA*PTLDQKSPCFSGYGGYFPVNPHQNP CADSL
108	847	1	565	RAHRCCLPLPSLSCEIQIGFS*SSIFPGQ*ACPCSCCRSCRN WPQSPRCPHHPPAPCSLLLSSCLPPPLSCSWRGTSGKPPSQSP AASRSMRPRCSPRTSSLRGASCRGPGGSAPAAASGPRCRGCSR SPRRCSRSGCAAASPPRSQRRSPPLSPPPFPTSGTLLLKTSRF GSATRE*SSPRPRPR
109	848	2	987	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSQSASSLEVA GPGREPLELEVAVEALARLQQGVSATVAHLLDLAGSAGATGSW RSPSEPQEPLVQDLQAAVAAVQSAVHELLEFARSAVGNAAHTS DRALHAKLSRQLQKMEDVHQTLVAHGQALDAGRGGSGATLEDL DRLVACSRAVPEDAKQLASFLHGNASLLFRRTKATAPGPEGGG TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME DYDYVHLTGGRRSF*KTQKELLGKRAA
110	849	84	372	MATDEENVYGLEENAQSRQESTRRLILVGRTGAGKSATGNSIL GQRRFFSRLGATSVTRACTTGSRRWDKCHVEVVDTPDIFSSQV SKTDPGCEERX*
111	850	2	47	TLGLRSLTKEGGGGGDVAAFEVGTGAAASRALGQCGQLQKLIV IFIGSLCGLCTKCAVSNDLTQQEIQTPEIQQRNA*CDSRVTFT NEGGRWWG
112	851	1192	1040	FFFLVETRFHHIGQAGLELLTLSIK*SARLGLPKCWDDRREPP YLAGFMI
113	852	791	362	RRSPPPAPPPLPSPLSPPPRAPVSPASTMPILLFLIDTSASMN QRSHLGTTYLDTAKGAVETFMKLRARDPASRGDRYMLVTFEEP PYAIKAGWKENHATFMNELKNLQAEGLTTLGQSLRTAFDLLNL NRLVTGIDNYGQVG
114	853	812	348	NCRTYVFCFVLVFRLLFLHGSPLSPSLLSRAGLLCGSAENPTP FLCGITMAAGVSLLALVVRVILSTAILCPSGASRRQRSSEVEW GTDSGVYRLYCWRVGFLGPGGELRLGLSEARGGRVWGRGEKRC RVWAVRSLRKGFGSVAALRRGIWAG
115	854	93	170	VTPTPPQYYTCSCVLGFIACSIFLQMSLKPKVMLLTVALVACL VLFNLSQCWQRDCCSQGLGNLTEPSGTNR*GPAAVSWASLPAP SSCR
116	855	1	183	GKAGGAAGLFAKQVQKKFSRAQEK*TRRFGKTCQPEERAREER QEGPEIEFGFSFFSLSLY

D NO: of of Amino Nocicic Acids Nocicic Officerion October Oct	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
No: of Nucleic location of Corresponding to first amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence PFE/TERPORTER POPER PO		-	beginning		
of Nucleic Acids Anino Acids Corresponding to first amino acid residue of amino acid residue of amino acid acid residue of amino acid sequence	NO:	NO:			
Acids Acids sponding to first amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequ	of	of			
Actus to first amino acid residue of amino acid residue of amino acid solution acid residue of amino acid solution	Nucleic	Amino	1 '		
amino acid residue of amino acid residue of amino acid sequence se	Acids	Acids			
acid residue of amino acid residue of amino acid sequence	!		\$	ì	
residue of amino acid sequence 117 856 53 2400 PKRLPLFQDVNTLQGGGQPVVTPSVQPSLQPAHPALPQMTSQA PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSFQPYAGMQAY AYPQASAVTSQLQPVRPLYPAPLSQPPHTQGGGMASTLMTER RQHNTEI IRMAYSKVADAKDHLMTKVEELQKHASGNSMLIFSMS VTMETSMIMSNIQRIIQENERLKQEILEKSINRIEBEQNDKISEL IERNQRYVEQSNLMMERRNNSLQTATENTQARVLHAEQBKAK TEBLAAATAQVSHQLKMTAHQKKETELQMQITESLKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLEIKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQB ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQMEAKCEHLL ASAKDEHLQQYQEVQAQRDAYQKLVQLQEKSVCPA\CLALA\ QQITALTKQNEQHIKELEKNISQMSQVBAAASDSSEKVKKIMMQ VPGSLRREFELEESYNGRTILGTİMNTIKMVTLQLLNQQQEK EESSSEEEEEKAERPRRPSGOSASASSOQPQAPLINRERPS PMYPSGOVVERAVVLPPQALTTSQOPGHRKGOSBAFALSETIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMSECEESLAXS PMAAA\PDNPSGK\VCVQGK*APDGTYKE\STRLFFGFGDP E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALAGLE\SFG\PQPPQLQGKVDVH*VPPVPHKGAPQ E\BGDPLALGLE\SFG\PQPPQLQGKVDVH*VPPPTHLA 118 857 1 791 SETAQQIIDRLRVKLAKEPBANLFMAVQDIRVGGRQSNASYQV VMEVDPTYQDISALEKMFVINNEGKAIPLSYFAKWQPANAPLS VMEVDPTYQDISALEKMFVINNEGKAIPLSYFAKWQPANAPLS SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTVX RGSFAGPAQVPOETMNSQVILIIAALATVYLVILGIPYERVYNDQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILITAALATVYLVILGIPYERVYNDQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILITAALATVYLVILGIPYERVYNDGGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILITAALATVYLVILGIPYERVYNDGGLSAAL TISFNLPTGMCGKDIAKKICKQGGDVLFAVKGNQGCLNKAPEBEKF PLKELNNPHDHSYAISEKSHGREBIRHIVVCDVPDELIDFTEE WKGLKKLCVAVSFRSIIAAQKKEPEMTVYNIS*LGIAGGISV TALSGTDD 120 859 2 373 HYKKMLTQARREVITANAYFFPGVFFLHALRKAARRGVKIKLI LQGEPDMPIVVGGARLLLYNYLVKGGVQVPEYRRRPLHGKVAIM DDHWATVGSSNLHPUS*SGNLQGVFCAAAGHGSAAM*	[1	
of amino of amino acid sequence sequence property of acid sequence sequence sequence property of acid sequence property of					\=possible nucleotide insertion)
acid sequence sequenc	ļ				
Sequence Sequence			1		
117 856 53 2400 PERLEPLODUNTLOGGGODVUTPSUQPSLQPAHPALPOMTSQA PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSFQPYAGMQAY AYPQASAVTSQLQVRPLYPAPLSQPPHFQSGGMASFLMTEA RQHNTEIRMAVSKVADKNOHLMTKVBELQKHSAGNSMLIPSMS VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEEQNDKISEL IERNQRYVEQSNLMMEKRNNSLQTATENTQARVHARQEKAKV TEBLAAATAQVSHLQLKNTSHGKTELQMQLITESLKRSTLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDDIRKSYGE ELDKLRQULKKTRVSTDQAAARQLSLVQAELQTOMEAKCEHLL ASAKDEHLQVQSVCAQRDAYQQKLVQLQEESVSAGAGGQATACHALA ASAKDEHLQVQSVCAQRDAYQQKLVQLQEESVSAGAGGAPALNERPES PMYPSEQVVEEAVPLPPQALTTSQDGHRKKGDSEAEALSEIKD GSLPPELSCIBSHRVLGPPTSIPPBPLGPVSMDSECESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKG\STLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQGGRFPGFCRE 118 857 1 791 SETAQOIIDRIRKKLAKEPGANLFLMAVQDIRVGGRQSNASSQOYADHARPORD E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQGGRFPGFCRE 118 857 1 791 SETAQOIIDRIRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQVTLLSDLAALEWBEKIRKKLATLPELADVMSDQQDMGAEMN LVYDRDTMARIGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV WMEVPPRYTQDISALEKMFVINNEGKATPLSYFAKWQPANAPL SVNHGGLSAALTISRNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVIVLUGIPYERYVHP PTILL*RCAALTISRNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVIVLUGIPYERYVHP PTILL*RCAALTISRNLPTGGRQSNASYQYTLLSDLAAL RBWEPKIRKLATLPELADVNSDQQDMGAENNLVVDRDTMAAL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVUMEVPPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVHHQGLSAAL TISFNLPTGKSLSDASAATDRAMSQLGVPSTVRGSFAGPAQVFQETMNSQVILIIAAIATTVIVLGIPYERVVHPPTTILL*RSFALWFDYSTAGSFAGPAQVFQETMNSQVILIIAAIATTVIVLGIPYERVVHPPTTILL*RSFALWFDYSTAGGGRLNKAFEEKFPLKKLNPHDSYATSEKSHGREETRLHVCDVPDELDFTTE WKGLKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD	ļ		ì	1	
PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSFQPYAGMGAY AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGDMASFLMTEA RQHNTEIMMAVSKVADKMDHLMTKVEELQKHSAGNSMI. IPSMS VTMETSMIMSNIQRI. IQENERLKQE. ILEKSNR. IEEQNDKI. SEL IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHABQEKAKV TEELAAAATAQVSHLQLKMTAHQKKETELQMQLTESLEETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELDLI.RQLIKKRYNCSTQAAAAEQLSLVQABLQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEGHIKELEKKSQAGERSQAEEGIDEHKRSYQE EESSLEEEKABESTNGRTILGTIMTIKMVTLQLLNQQEGEV VFGSLRRFFELEESYNGRTILGTIMTIKMVTLQLLNQQEGE EESSSEEEEKABERPRRPSQEQSAASASGQPQAPLNRERPPS PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTS IPPELGBYSMMSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\GGPLPLALGE\SPQ\PQLQGKVDVH*VPPVPHKGAFQ EQGFFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAAAREWEFKIRKLATLPELADVNSQQDMGAEMN LVYDRDTMARLGIDVQAANSLLINNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHGGLSAALTISFKLIPTGKSLSDASAIDRAMSQLGVPSTV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHGGLSAALTISFKLIPTGKSLSDASAIDRAMSQLGVPSTV RGSFAGPAQVFGETMNSQVLILIAAIATVYIVLGIPYBRYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEFKIRKKLATLPELADVNSDQQDKGAEMNLVYDDITMARL GIDVQAANSLLINNAFGQRQISTIYQPMNYKVWEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVROSFAGPAQVF QETMNSQVILITAAIATVYTULGIPYBRYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELMNPEHDSYAISEKSGREEIRLHIVCDVVEDELDFTFE WGLKKLCVAVSFRSIIAEKSFKGVGGGYLFAVKGNQGRLNKAFEEKF PLKELMNPEHDSYAISEKSGREEIRLHIVCDVVEDELDFTFE WGLKKLCVAVSFRSIIAEGKFEPMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVITANAYFFPGYFFLALARKAARRQVRIKLI IQGEDPMPTVRYQARLLYNIJVKGGVQYFFYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFISKLATTCTVPVCAAGHCSAAW*SLRPIBALAKVAL DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 REGE TREATER TRALLEGERMYNKYPTT LTDLTHSLKTPLAVLQSTLERSEKMSVSDABPVMLEQISRI	117	856			PKRLFLFODVNTLQGGGQPVVTPSVQPSLQPAHPALPQMTSQA
AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGDMASFLMTEA RQHNTEIRMAVSKVADKMDHLMTKVBELQKHSAGNSKLIPSMS VTMTSTSMMSNIQTIQENERIKQEILEKSENTIEEQMDKISEL IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLEETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKGNRKQLELKYTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDESEKVKKINNQ VFQSLRREFELESYMGRTILGTIMNTIKMVTLQLLNQQEQKK EESSSEEEEKAEERPRRPSQEQSASASGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALITTSQDGHRRKGDEAEALSEIKD GSLPPELSCITSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFFGFQDP E\EGPPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGFPQFCRE 118 857 1 791 SETAQQIIDTERVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRTTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHGGLSAALTISFNLFTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLEDDLAAL REWEPKIRKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVWEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGGQKDIAEKIQKGGGPYLFAVKGNGGRLNKAPEEKF WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVITANAYFFPGYRFLHALKKAARRGVIKLI IQGEPDMPIVRVGARGLIYNILVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHGSAAW*SLRPLBALAKEV RELK*HTR*LLMPATTRELTSLGRNLRKLLKSERERYDKYKYPT LTDLTHSLKTPLLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI 120 CWSKSAAFHSKLATTCIVPVCAAGHGSAAW*SLRPLBALAKEV RELK*HTR*LLMPATTRELTSLGRNLRKLLKSERERYDKYKYPT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	, — ·				I ''
RQHNTEIRMAVSKVADKMDHLMTKVEELQKHSAGNSMLIPSMS VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEGDKISEL IERNQRYVEQSNIAMBEKRNNSLQTATENTQARVLHARQEKAKV TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLR GQLTKVQAKLEELQTTSEQAQSKFKSEKQMRKQLELKVTSLEE ELTDLRVEKSSLEKNISERKKKSAQDRSQABEBEDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA,CLALQA QITALTKONEGHIKBLEKKKKSOMSGVEAAASDPSEKVKKINNQ VFQSLRREFELEESYMGRTILGTIMNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNERPEPS PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDESAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\GGDPLALGLE\SPG\VEPQPPQLQGKVDVH*VPPVPHKGAFQ GSLPPELSCIPSHRVLAREGPANLFLMAVODIRVGGRSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDMGAEMN LVYDRDTMARLGIDVQAANSLLNNAFQGRQISTIYQPMNQVKV VMEVDPRTTQDISALEKMFYINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTVV RGSFAGPAQVFCETMNSQVILLIAAIATVYLVLGIPYERYVHP PTILL*RPGANLFLMAVODIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKLATLPELADVNSDQQDMGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVUMEVDPRYTYDD ISALEKMFYINNEGKAIPLSYFAKWQPANAPLSVHYQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILLIAAIATVYLVLGIPYERYVHPPTILL 119 658 3 417 11TPDAMGCQKDIABKIQKQGGDVLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVVPGLIDFTFER WKGLKKLCVAVSFRSIIAEQKKEFEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAFFPGYFFLAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVVPGLIDFTFIR WKGLKKLCVAVSFRSIIAEQKKEFEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAFFPGYFFLAKKAARRRGVIKLI IQGEDPMPIVRVGARLLYNLVKGGVQVFETRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIBALAKEV LTDHTHSLKTPLAUQSTLRSLRSEKMSVSDAEPVMLEQISRI LTDHTHSLKTPLAUQSTLRSLRSEKMSVSDAEPVMLEQISRI LTDHTHSLKTPLAUQSTLRSLRSEKMSVSDAEPVMLEQISRI	İ '				
IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV TEELAAATAQVSHLQLKMTHAEQKKRTELQMQITESEKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKINNQ VFQSLRREFELEESYNGRTILGTİMNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRPSOBQSASASSGQPQAPLNRERPES PMVPSEQVVEEZAVPLPPQALJTTSQDEHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\CVCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQKVDVH*VPPVPHKGAFQ EQGGFFQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALEEWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLINNAFGQRQISTIYQPMNQXKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHGGLSAALTISFNLPTGRSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYJULGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGGRQISTIYQPMNQYKVWBUPPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERVYHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNCHNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEDMPIVRVGARLLYNYLVKGGVQVFSYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPPTNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTREILTSLGRNLINRLKSSRERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI		1	ĺ		,
IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV TEELAAATAQVSHLQLKMTHAEQKKRTELQMQITESEKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKINNQ VFQSLRREFELEESYNGRTILGTİMNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRPSOBQSASASSGQPQAPLNRERPES PMVPSEQVVEEZAVPLPPQALJTTSQDEHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\CVCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQKVDVH*VPPVPHKGAFQ EQGGFFQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALEEWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLINNAFGQRQISTIYQPMNQXKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHGGLSAALTISFNLPTGRSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYJULGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGGRQISTIYQPMNQYKVWBUPPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERVYHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNCHNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEDMPIVRVGARLLYNYLVKGGVQVFSYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPPTNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTREILTSLGRNLINRLKSSRERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1	ſ	1		VTMETSMIMSNIORIIQENERLKQEILEKSNRIEEQNDKISEL
TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLR GQLTKVQAKLSSLQETSEQAQSKFKSEKQNRKQLEKVTSLEE ELTDLRVEKESLEKNIJSERKKKSAQERSCAEEBIDEITKSYQE ELDKLRQILKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTINNTIKMVTIQLLNQQEGEK EESSSEEEEKAEERPRPROSQQSASASSGOPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKO GSLPPELSCIPSHRVLGPPTSIPPBPLGPVSMDSECESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRTYDDISALEKMFVINNBCKAIPLSYPAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVPGETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQVTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMBVDPRYTQD ISALEKMFVINNBCKAIPLSYFAKWQPANAPLSVHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDVLFAVKGNGRAKKAFEEKF PLKELNNPEHDSVAISEKSHGREEIRHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEDMPIVRVGARLLYNYLVKGGVQVFSYRRPLEGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPPINP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTREILTSLGRNURRLLKSRRERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					
GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTİMNTIKMYTLQLLNQQEQEK EESSSEEEEKAEERPREPSQEGSASASGOPQAPLINERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYNDRIMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAALTATVYIVLGIPYERYVHPP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVMEVDPRYTQD ISALEKMFVINNBGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAALATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAKKIQCGGVYFSVRGNQGRLNKAFEEKF PLKELNNSPHDSVAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMTIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SCNLQANVILHVLRVPTLNP 121 860 286 495 CWSKASAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELX*HTR*LLNPATTRELTSLGRNLNRLLKSGRERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLEKMSVSDAEPVMLEQISRI			1	[, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ELTDLR'EKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAABEQLSLVQAELQTQWEBAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEBAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTIMNTIKMVTLQLLNQQEQEK EESSSEEEEKABERPRRPSQBGSASASSGOPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRKKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\BPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGFFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGGRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNNIQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RFGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGGRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLMKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHFVS*SGNLQANVILHVLRYPTLNP 121 860 286 495 CWSKASAFHSKLATTCIVPVCAAGHCSAAKSLRPIEALAKEV RELX*HTR*LLNPATTRELTSLGRNLNRLKSSERERYDKYRTY LTDLTHSLKTPLAVLQSTLRSLESEMSVSDAEPVMLEQISRI			1		
ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAAASDPSEKVKKIMNQ VFGSLRREFELEESYNGRTILGTINNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMYPSEQVVEEAVPLPPQALITTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPGFCRE 118 857 1 791 SETAQQIIDLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVVDRDTMRALGIDVQAANSLLNNAFGQRQISTIVQPMNQVKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTKKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIVQPMNQVKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIABKIQKQGGGDYFAVKGMFRENKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVITANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALKEV RELK*HTR*LLNPATTRELTSLGRINLNRLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI		[1
ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QTTALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTIMNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEDLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERVHPP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVXDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREETRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHMATVGSSNLHPVS*SGALQANVILHVLRVPTLMP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRILNRLKLSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	ļ	l	i .		ELDKLROLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL
QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFGSLRRFELEESYNGRTILGTIMNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASGQPQAPHNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRGDSEAEALSIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRTTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REMEPKIRKKLATLPELADVNSDQQDNGAEMNLVVDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALBKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIABKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGBPDMPIVRVGARLLYNYLVKGGYQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	ĺ	İ			
VFQSLRREFELESYNGRTILGTİMNTIKMVTLQLLNQQEQEK ESSSEEEEKAERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSITPPEPLGPVSMDSECESILAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPOFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWBPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTYQDISALEKMFVINNEGKAIPLSYPAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERVVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTYQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVITANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERRYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1				
PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDMPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVMSDQQDMGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGYPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVMSDQQDMGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDVLFAVKGNGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELISLGRNLNRLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1	1			
GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILLIAAIATVYLVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFFYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					EESSSEEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES
PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVMWEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERVYHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAPEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	i		1		PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD
E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVUMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 1QGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPTEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS
EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDVLFAVKGNQGRLMKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGYQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI			1		PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP
118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVYFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMBVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ
YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1				EQEGRFPQFCRE
LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	118	857	1	791	SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ
VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI			i	İ	YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN
SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI			1		LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV
RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVITANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI		1	1		VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL
PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI		1			SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV
REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1		1	•	RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP
GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL
ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	ł	Ì	}	}	REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL
TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD
QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI		1	1	ł	\frac{1}{2}
119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1				
PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	İ				
WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	119	858	3	417	IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF
TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE
120 859 2 373 HYLKMLTQARREVITANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1		-		WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV
IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI		L			
DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	120	859	2	373	HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI
121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI					IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM
RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	1		}		DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP
LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI	121	860	286	495	CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV
	1			1	RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT
	1				LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI
SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1				SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR
KGGNVTVFPFTAMYRDGH	1				KGGNVTVFPFTAMYRDGH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) GNTVMFQHLMQKRKHTQWTYGPLTSTLYDLTEIDSSGDEQSLL ELIITTKKREARQILDQTPVKELVSLKWKRYGRPYFCMLGAIY
				LLYIICFTMCCIYRPLKPRTNNRTSPRDNTLLQQKLLQEAYMT PKDDIRLVGELVTVIGAIIILLVEVPDIFRMGVTRFFGQTILG GPFHVLIITYAFMVLVTMVMRLISASGEVVPMSFALVLGWCNV MYFARGFQMLGPFTIMIQKMIFGDLM
123	862	1	135	EKAAAANIDEVQKSDVSSTGQGVIDKDALGPMMLEVAHLHFSA VF
124	863	2	364	LEVPSEVTPLGFAMQATKTLLLRTCCLQEFNIMEKNKGWALLG GKDGHLQGLFLLANALLERNQLLAQKVMYLLVPLLNRGNDKHK LTSAGFFVELLRSPVAKRLPSIYSVARFKDWLQD
125	864	1	374	RPAPAPSAAPEEAPSP\GVKGRGMAKRRVPAPVWGGAGGGTKS ARRAAAAPDTERSEEGGRAVKEAYPSSRQPPPPSP*PLRCARR CHPNLAPSMPISNREGKGKRREEKIRPLSPASTHTSARA
126	865	3	364	LQGVHGSSSTFCSSLSSDFDPLEYCSPKGDPQRVDMQPSVTSR PRSLDSEVPTGETQVSSHVHYHRHRHHHYKKRFQRHGRKPGPE TGVPQSRPPIPRTQPQPEPPSPDQQVTRSNSAAP
127	866	2	250	MADPDPRYPRSSIEDDFNYGSSEASDTVHIRMAFLRRVYSILS LQDLLATVTSTDNLAFEDGRTDWLQRPDCVSFKIHVLPM
128	867	194	375	AGMSVVVVPPIGSSYLGLISQEHFPNEFTSGDGKKAHQDFGYF YGSSYVAASDSSRTPGL
129	868	104	339	VAAALTLFPQQLSPPGAWGLGLSACFCCAEGFSRLNQQVLSSS LLLLSRTNCPCKYSFLDNLKKLTPRRDVPTYPKVR
130	869	2	360	RDDACLYSPASAPEVITVGATNAQDQPVTLGTLGTNFGRCVDL FAPGEDIIGASSDCSTCFVSQSGTSQAAAHVAGIAAMMLSAEP ELTLAELRQRLIHFSAKDVINEAWFPEDQRVLT
131	870	2	105	LEIKFLEQVDQFYDDNFPMEIRHLLAQWIENQDW
132	871	2	466	EAGDADEDEADANSSDCEPEGPVEAEEPPQEDSSSQSDSVEDR SEDEEDEHSEEEETSGSSASEESESEESEDAQSQSQADEEEED DDFGVEYLLARDEEQSEADAGSGPPTPGPTTLGPKKEITDIAA AAESLQPKGYTLATTQVKTPIPLLL
133	872	1	354	LKNLRELLLEDNQLPQIPSGLPESLTELSLIQTNIYNITKEGI SRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLS FNSLSHVPPKLPSSLRKLFLSNTQIKYISEED
134	873	59	184	MRSQALGQSAPSLTASLKELSLPRRGSFPVCPNAGRTSPLG*
135	874	1	210	LLCVCLPVGACPSLSLLTAPLNQLMRCLRKYQSRTPSPLLHSV PSEIVFDFEPGPVFRGSWALLSWSTRP
136	875	131	254	QTPDKKQNDQRNRKRKAEPYETSQGSNNFVSTKVLNSNVLR
137	876	84	504	YFIIKGMVELVPASDTLRKIQVEYGVTGSFKDKPLAEWLRKYN PSEEEYEKASENFIYSCAGCCVATYVLGICDRHNDNIMLRSTG HMFHIDFGKFLGHAQMFGSFKRDRAPFVLTSDMAYVINGGEKP TIRFQLFVDL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) PSPLPSLSLPPPVAPGGQESPSPHTAEVESEASPPPARPLPGE
				ARLAPISEEGKPQLVGRF\QVTSSK\NRLŞLFPCSQHPPLSLV LQNLQPLSSLQRAQIQRTV/PGGGPETREALAESDRAAEGLGA GVEEEGDDGKEPQVGGSPQPLSHPSPVWMNYSYSSLCLSSEES ESSGEDEEFWAELQSLRQKHLSEVETLQTLQKKEIEDLYSRLG KQPPPGIVAPAAMLSSRQRRLSKGSFPTSRRNSLQRSEPPGPG ETA/GHPASIFSLRPLSVDCFSPGPGGLPRGNRPPLPTSPFLT *CSPSPHTAEVESEASPPPARPLPGEARLAPISEEGKPQLVGR FPSDFIQGTG
139	878	1	337	RRFVSQETGNLYIAKVEKSDVGNYTCVVTNTVTNHKVLGPPTP LILRNDGVMGEYEPKIEVQFPETVPTAKGATVKLECFALGNPV PTIIWRRADGKPIARKARRHKSRVGK
140	879	72	917	MLRTCYVLCSQAGPRSRGWQSLSFDGGAFHLKGTGELTRALLV LRLCAWPPLVTHGLLLQAWSRRLLGSRLSGAFLRASVYGQFVA GETAEEVKGCVQQLRTLSLRPLLAVPTEEEPDSAAKSGEAWYE GNLGAMLRCVDLSRGLLEPPSLAEASLMQLKVTALTSTRLCKE LASWVRRPGASLELSPERLAEAMDSGQNLQVSCLNAEQNQHLR ASLSRLHRVAQYARAQHVRLLVDAEYTSLNPALSLLVAALAVR WNSPGEGGPWVWNTYQACLKDTF*
141	880	219	308	PHHRIAGDTAIDKNIHQSVSEQIKKNFAK
142	881	182	317	QMTNPFFLCFTTMISNCNFFKGPPGPPGEKGDRGPTGESGPRG FP
143	882	177	341	NGIIASFFLRTFIFCFIHIQGCQAGQTIKVQVSFDLLSLMFTF VSPCTNDLIIH
144	883	3	1441	KLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDTNSTDIA LKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAV AFLYYKSIGPLLSSSDNFLLKPQNYDNSEEEERVISSVISVSM SSNPPTLYELEKITFTLSHRKVTDRYRSLCAFWNYSPDTMNGS WSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNI LTRITQLGIIISLICLAICIFTFWFFSEIQSTRTTIHKNLCCS LFLAELVFLVGINTNTNKLFCSIIAGLLHYFFLAAFAWMCIEG IHLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAALGYRY YGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFR HTAGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLHVVHA SVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPC CFGCLR
145	884	1	429	GTREAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPT WLTDVPAAMEFIAATEVAVIGFFQDLEIPAVPILHSMVQKFPG VSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDIESI DATKLSRFIEINSL
146	885	1	156	DETSGLIVREVSIEISRQQVEELFGPEDYWCQCVAWSSAGTTK SRKAYVRIA
147	886	1.	121	GTRSIHVKLDVGKLHTQPKLAAQLRMVDDGSGKVEGLPGI

SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	ł	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	· .
		acid	acid	•
7.40	887	sequence	sequence 652	XCGEDGSFTQVQCHTYTGYCWCVTPDGKPISGSSVQNKTPVCS
148	887	128	652	GSVTDKPLSOGNSGRKDDGSKPTPTMETQPVFDGDEITAPTLW
				1
		1	ļ	IKHLVIKDSKLNNTNIRNSEKVYSCDQERQSALEEAQQNPREG
Į.				IVIPECAPGGLYKPVQCHQSTGYCWCVLVDTGRPLPGTSTRYV
				MPSX*
149	888	128	273	VLQLIKSQKFLNKLVILVETEKEKILRKEYVFADSKVSDSKLL KWAVR
150	889	1	948	RRLSLLDLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQ
	ļ	1		RRQNQRRFSMEDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKP
}]	1	ļ	LSRMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKLT
	1	1	ļ	ENLVALKEIRLEHEEGAPCTAIREVSLLKNLKHANIVTLHDLI
	1	1	ļ	HTDRSLTLVFEYLDSDLKQYLDHCGNLMSMHNVKVRPRGQGPP
	İ	i	1	ILAATCPEAQCGDPLSPPGIRLLRWLKPSHVGKRERAMPSTSP
]		ļ		GTGLSALPOEQTHTVCHCLAVGIKPTLNSEHQFPSLSNGSVSY
1		Ì	Í	LPKCREASGEARGYE
151	890	3	108	HERHEPSPTALAFGDHPIVQPKQLSFKIIQVNDN
152	891	2	208	ARGPSLLSEFHPGSDRPQERRTSYEPIHPGPSPVDHDSLESKR
				PRLEQASDSHYQGHITGESLPGRVH
153	892	1	116	GTRKEEFSAEENFLILTEMATNHVQVLVEFTKKLPGIF
154	893	74	661	HTHKLVAPRPGLPPTSQWPRDAGRQASGGLPSLSTGPPKGPRD
1		1		GLARGHPAEWLAGSPGNNSPTQGSLPPQLDLYAGALFVHICLG
		1		WNFYLSTILTLGITALYTIAGMVPAAGRSTQGTCKGVRRPPPP
1		j		TGPREQPRKWPQQEPQKFLPVSLLPGARAPSSNLASTGRGPGC
		1		CNLHGRPADAHHGGGGCHPDNQR
155	894	55	312	MVNHSLQETSEQNVILQHTLQQQQQMLQQETIRNGELEDTQTK
	İ			LEKQVSKLEQELQKQRESSAEKLRKMEEKCESAAHEADLKRQK
		ļ		*
156	895	38	185	VCPKWCRFLTMLGHCCYFWHVWPAS*ALSAGPTPTSRSFSPSP
				LRSIST
157	896	37	462	MRGPPVLLLQAAPMECPVPQGIPAGSSPEPAPDPPGPHFLRQE
	1			RSFECRMCGKAFKRSSTLSTHLLIHSDTRPYPCQFCGKRFHQK
	1			SDMKKHTYIHTGEKPHKCQTQREPTMVLSPADKTNVKAAWX*
158	897	3	175	HEOLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA
	"	-		TPQVISSRFINLDF
159	898	187	677	VSVFKNCPMY*ICIFLTKMFCVLII*NKF*VHKKPLOEVEIA
123	0,30	101	377	AITHGALOGLAYLHSHTMIHRDIKAGNILLTEPGQVKLADFGS
1		1	1	
1	1	1	1	A CMA CDANGER/CODVIMA DEVITE A MORCOVOCKVIDAMICE CETTO
				ASMASPANSFVGTPYWMAPEVILAMDEGQYDGKVDVWSLGITC IELAERKPPLFNMNAMSALYHIAQNESPTLQSNEW

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue	Predicted end nucleotide location corre- sponding to first amino acid residue	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, _possible nucleotide insertion)
		of amino acid sequence	of amino acid sequence	
160	899	2	1060	RHARPGGGGHSNQRKMSLEQEEETQPGRLLGRRDAVPAFIEPN VRFWITERQSFIRRFLQWTELLDPTNVFISVESIENSRQLLCT NEDVSSPASADQRIQEAWKRSLATVHPDSSNLIPKLFRPAAFL PFMAPTVFLSMTPLKGIKSVILPQVFLCAYMAAFNSINGNRSY TCKPLERSLLMAGAVASSTFLGVIPQFVQMKYGLTGPWIKRLL PVIFLVQASGMNVYMSRSLESIKGIAVMDKEGNVLGHSRIAGT KAVRETLASRIVLFGTSALIPEVFTYFFKRTQYFRKNPGSLWI LKLSCTVLAMGLMVPFSFSIFPQIGQIQYCSLEEKIQSPTEET EIFYHRGV
161	900	3	564	HASGRLEVFYNGTWGSVGRRNITTAIAGIVCRQLGCGENGVVS LAPLSKTGSGFMWVDDIQCPKTHISIWQCLSAPWERRISSPAE ETWITCEDRIRVRGGDTECSGRVEIWHAGSWGTVCDDSWDLAE AEVVCQQLGCGSALAALRDASFGQGTGTIWLDDMRCKGNESFL WDCHAKPWGQSDCG
162	901	1099	2	LGDFPQPQRQRRPGASDLPPHLAGARQWEVRFFRHLPARTLPP SLRMPEGPELHLASQFVNEACRALVFGGCVEKSSVSRNPEVPF ESSAYRISASARGKELRLILSPLPGAQPQQEPLALVFRFGMSG SFQLVPREELPRHAHLRFYTAPPGPRLALCFVDIRRFGRWDLG GKWQPGRGPCVLQEYQQFRENVLRNLADKAFDRPICEALLDQR FFNGIGNYLRAEILYRLKIPPFEKARSVLEALQQHRPSPELTL SQKIRTKLQNPDLLELCHSVPKEVVQLGGRGYGSESGEEDFAA FRAWLRCYGMPGMSSLQDRHGRTIWFQGDPGPLAPKGRKSRKK KSKATQLSPEDRVEDALPPSK
163	902	3	335	LTWSACYWRDILRIQLWIAADILLRMLEKALLYSEHQNISNTG LSSQGLLIFAELIPAIKRTLARLLVIIASLDYGIEKPHLGTGM HRVIGLMLLYLIFANAESVIRVIG
164	903	2	135	FFFEMESRSAAQAGVQWCNLGSLQALPPRFTPFSCLSLPSSWD Y
165	904	74	645	YECEELAKKLENSQRDGISRNKLALAELYEDEVKCKSSKSNRP KATVFKSPRTPPQRFYSSEHEYSGLNIVRPSTGKIVNELFKEA REHGAVPLNEATRASGDDKSKSFTGGGYRLGSSFCKRSEYIYG ENQLQDVQILLKLWSNGFSLDDGELRPYNEPTNAQFLESVKRG VTLIACMPEIQQLMLEIF
166	905	14	1257	WPCGAAPGLTHASERMFTLTTMIQALAPVMGWDRKPLKMFSSE EMRGHLHHHHKCLTKILKVEGQYPDLPSCLPLTDNTRMLASIL INMLYDDLRCDPERDHFRKICEEYITGKFDPQDMDKNLNAIQT VSGILQGPFDLGNQLLGLKGVMEMMVALCGSERETDQLVAVEA LIHASTKLSRATFIITNGVSLLKQIYKTTKNEKIKIRTLVGLC KLGSAGGTDYGLRQFAEGSTEKLAKQCRKWLCNMSIDTRTRRW AVEGLAYLTLDADVKDDFVQDVPALQAMFELAKTSDKTILYSV ATTLVNCTNSYDVKEVIPELVQLAKFSKQHVPEEHPKDKKDFI DMRVKRLLKAGVISALACMVKADSAILTDQTKELLARVFLALC DNPKDRGTIVAQGGGKALIPLALEGTD

CEC	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ	beginning	end	
NO:	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
ł		location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Į.	Í	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	- possible indefeorate insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
167	906	3	894	VDSVGGGSESRSLDSPTSSPGAGTRQLVKASSTGTESSDDFEE
/	"	"	-	RDPDLGDGLENGLGSPFGKWTLSSAAQTHQLRRLRGPAKCREC
}			ļ	EAFMVSGTECEECFLTCHKRCLETLLILCGHRRLPARTPLFGV
]	1		}	DFLOLPRDFPEEVPFVVTKCTAEIEHRALDVQGIYRVSGSRVR
	ļ]	VERLCQAFENGRALVELSGNSPHDVSSVLKRFLQELTEPVIPF
İ	ŀ		1	HLYDAFISLAKTLHADPGDDPGTPSPSPEVIRSLKTLLVQLPD
		[1	1
				SNYNTLRHLVAHLFRVAARFMENKMSANNLGIVFGPTL
168	907	1	394	GLHVISLHSADGRHWEDPLSELDSERVSAFLVTETLVFYLFCL
}]	}	}	LADETVVPPDVPSYLSSQGTLSDRQETVVRTEGGPQANGHIES
}	1	ļ	ł	NGKASVTVKQSSAVTVSLGAGGGLQVFTGQVPGIRWGKLGEAH
L		ļ		AS
169	908	179	551	KIKHRPEEEPRWAAAGAQSAGPGAAEVAPPRPGTVAPGANGMT
1		•	[DSATANGDDRDPEIELFVKAGIDGESIGNCPFSQRLFMILWLK
ŀ	1	-		GVVFNVTTVDLKRKPADLRNLAPGTHPPFLAFNWYVKT
170	909	1	335	LGFSDGQEARPEEIGWLNGYNETTGERGDFPGTYVEYIGRKKI
1		1	}	SPPTPKPRPPRPLPVAPGSSKTEADVEQQVLYKYRKKPSSSHR
١.		1	ļ	PQTPHNGKSKNFLHKQGLKKKKASL
171	910	1	895	RTRGVMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKE
				VWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMWLQGGPGGS
				STGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSY
		1		VNGSGAYAKDLAMVASDMMGLLKTFFSCHKEFQTVPFYIFSES
Ì				YGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVL
1	ļ		į	SWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELW
		1	1	GKAEMIIEQVKRGNTQRRACLAFSGGYRAHGWCCQTWSLH
172	911	553	194	PGWSRSPDLVIRLPRPPKVLGLQYYHFFFFLRWSL/DSVAQAE
- '-	7			VOWHDLRSLQAPPPGFTPFSCLSLPGSWDYRCPPPRPANFLYF
				**RRGFTVLARMVSIS*PRDPPASASQSAGITVLSLFFFFEME
	1		1	SCSVAOAGVOWRYLGSLOALPPGFTPFSCLSLPSSWDYRRPPP
ļ				RPANFFVFLVETGVSPC*PGWSRSPDLVIRLPQPPKVLGLQV
177	012	1761	 	PSMKTGELEKETAPLRKDADSSISVLEIHSQKAQIEEPDPPEM
173	912	1,01	1	ETSLDSSEMAKDLSSKTALSSTESCTMKGEEKSPKTKKDKRPP
j	j			
	1	į		ILECLEKLEKSKKTFLDKDAQRLSPIPEEVPKSTLESEKPGSP
				EAAETSPPSNIIDHCEKLASEKEVVECQSTSTVGGQSVKKVDL
1		ł	1	ETLKEDSEFTKVEMDNLDNAQTSGIEEPSETKGSMQKSKFKYK
	1	1		LVPEEETTASENTEITSERQKEGIKLTIRISSRKKKPDSPPKV
	1			LEPENKQEKTEKEEEKTNVGRTLRRSPRISRPTAKVAEIRDQK
1	}		}	ADKKRGEGEDEVEEESTALQKTDKKEILKKSEKDTNSKVSKVK
				PKGKVRWTGSRTRGRWKYSSNDESEGSGSEKSSAASEEEEEKE
				SEEAILADDDEPCKKCGLPNHPELILLCDSCDSGYHTALPFAP
				PLMIHPQMGGW\F\CPTFCPTLNLLLLEKLEDQF\QDL\DVAL
	1			KKERALPERRK\ERLVYVGI\SIENIIPPQ\EPDFSEDQEEKK
1	-			KDSKKSKANLL\ERRSTRTRKCISYRFDEFDEAIDEAIEDDIK
				EADGGGVGRGKDISTITGHRGKDISTILDEER
L				

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
}	}	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
-	{	acid residue	acid residue	\=possible nucleotide insertion)
1		of amino	of amino	,
1		acid	acid	
		sequence	sequence	
174	913	3	539	KRRGSFKMAELDOLPDESSSAKALVSLKEGSLSNTWNEKYSSL
	1 2 2 3			OKTPVWKGRNTSSAVEMPFRNSKRSRLFSDEDDRQINTRSPKR
				NORVAMVPOKETATMSTPDKKASOKIGFRLRNLLKLPKAHKWC
1				IYEWFYSNIDKPLFEGDNDFCVCLKESFPNLKTRKLTRVEWGK
		1	ł	IRRLMG
175	914	166	635	MPEYLRKRFGGIRIPIILAVLYLFIYIFTKISVDMYAGAIFIQ
1,3	7-3	1 200	555	OSLHLDLYLAIVGLLAITAVYTVAGGLAAVIYTDALOTLIMLI
	Ì		}	GALTLMGYSFAAVGGMEGLKEKYFLALASNRSENSSCGLPRED
			}	AFHIFROPLTSDLPWPGVLFGMSIPSLX*
176	915	673	1025	XSASATSLTLSHCVDVVKGLLDFKKRRGHSIGGAPEQRYQIIP
170	1 313	073	1023	VMCCSLLATGGADRLIHLWNVVGSRLEANQTLEGAGGSITSVD
	1	1	ł	FDPSGYOVLAATYNOVAOFWK*
177	916	3	139	OKRFPSNCGRDGKLFLWGOALHIIAKLLGKWRRLGMVFFSLLL
1''	910	3	139	SY
178	917	1	541	VHVCSSKMGALSTERLOYYTOELGVRERSGHSVSLIDLWGLLV
				EYLLYOEENPAKLSDQQEAVRQGQNPYPIYTSVNVRTNLSGED
]			FAEWCEFTPYEVGFPKYGAYVPTELFGSELFMGRLLQLQPEPR
				ICYLQGMWGSAFATSLDEIFLKTAGSGLSFLEWYRGSVNITDD
				COKPOLHN
179	918	1	628	EFLGRPTRPAKDEGNDEGKDEGKDEGKDEGKDEGKDERK
	1		1	DEGKDEGKDERKDEGKDEGKDEGKDEGKDEGKDEG
	-		İ	NDEGKDEGKDEGKDEGKDEGKDERKDEGKDEGKDERKDE
			1	GKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKD
}]	}	EGKDEGKDEGKDEGNDEGNDEGKDEGKDEGKDEGK
j			ļ	DEGKDEGKDERNDEGKDERKDEGKDEGKDEGKDEGKDEG
				NDEGKDERKDEGKDEGKDK
180	919	27	471	PSLRPAWHEGEDFSYGLQPYCGYSFQVVGEMIRNREVLPCPDD
				CPAWAYALMIEGWNEFPSRRARFKDIHSRLRAWGNLSNYNSSE
	1	1	1	QTSGGRNTTQTSSLSTSPLCNVSNAPYVGPKQKVPPFPQTQVI
{	1	1	1	PMKGQIRPMVPPPQLYVP
181	920	2	454	RNSGRHPRVRWILEERKRVMQEACAKYRASSSRRAVTPRHVSR
				IFVEDRHRVLYCEVPKAGCSNWKRVLMVLAGLASSTADIQHNT
1				VHYGSALKRLDTFDRQGILHRLSTYTKMLFVREPFERLVSAFR
1				DKFEHPNSYYHPVFCMAILAR
182	921	2	378	IMYSISPANSEEGQELYVCTVKDDVNLDTVLLLPFLKEIAVSQ
				LDQLSPEEQLLVKCAAIIGHSFHIDLLQHLLPGWDKNKLLQVL
1		1		RALVDIHVLCWSDKSQELPAEPILMPSSIDIIDGTKEKK
183	922	181	513	GPHVVLVLRRCFLLSYFKGVEKAKAMPSPRILKTHLSTQLLPP
				SFWENNCKVRYQQLPVTEGKVSQPKRVLQTPTQSIRDHLCLST
				VSDAYQQRENIKFYIQQDIHLNSFK
184	923	32	239	FYYICRLSKEDKAFLWEKRYYCFKHPNCLPKILASAPNWKWVN
				LAKTYSLLHQWPALYPLIALELLDSK

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
{	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	İ	anino	acid	
l	1	residue	residue	\=possible nucleotide insertion)
	1	of amino	of amino	
		acid	acid	
}		sequence	sequence	
185	924	3	361	KMMI*GLFEIQQCPIGKHCNFLQVLRN/PNRDL/WLVSSFGKS
				SKGRERMGHHDEYYRLRGR/HNPSPDHSYKRNGESERKRKKSH
				*HMSKSQERHNSPSRGRNSDRSGGRCSRSDNGRSRYR
186	925	443	1412	PLSLFARVAGSRVEMPEPPGLGDEGRPLLHPGRREAVGSWVSA
====				FAGDSTPCGPGDLSVPRREPFRLTAL*PHRSPVVRTSLIGLLL
				GFSVKEELRGVGWAARTPLGIR
187	926	2	917	FDKRQHEARIQQMENEIHYLQENLKSMEEIQGLTDLQLQEADE
/		-		EKERILAQLRELEKKKKLEDAKSQEQVFGLDKELKKLKKAVAT
			Ì	SDKLATAELTIAKDQLKSLHGTVMKINQERAEELQEAERFSRK
	ļ		ļ	AAQAARDLTRAEAEIELLQNLLRQKGEQFRLEMEKTGVGTGAN
	}			SOVLEIEKLNETMERORTEIARLONVLYLTGSDNKGGFENVLE
				EIAELRREGSYONDYISSMADPFKRRGYWYFMPPPPSSKVSSH
				SSOATKDSGVGLKYSASTPVRKPRPGQQDGKEGSQPPPASGYW
[VYSP
188	927	171	1082	SDASSFKTRVIVVPRPRVFPLGSAITENSLESDSQIGQFGVGF
				YSAFLVADKVIVTSKHNNDTQHIWESDSNEFSVIADPRGNTLG
		1	1	RGTTITLVLKEEASDYLELDTIKNLVKKYSQFINFPIYVWSSK
		1	l	TETVEEPMEEEEAAKEEKEESDDEAAVEEEEEEKKPKTKKVEK
			l	TVWDWELMNDIKPIWQRPSKEVEEDEYKAFYKSFSKESDDPMA
}		}		YIHFTAEGEVTFKSILFVPTSAPRGLFDEYGSKKSDYIKLYVR
-				RVFITDDFHDMMPKYLNFVKGVVDSDDLPLNVSRETLQQHKLL
				KV
189	928	718	275	CGSWMRRALIPPCRGGPSASDRCCSCSPSGFSAGRGRCPVQGC
				LRPHRVQLLRRWGPGSPAGQRLSKGFQLLRWWGPGSPAPEPRK
				GPFPPPDPPWPVTAVTVMAGSVPSAQSVDALESPGPLALEGPS
				SPRNLLWREMSIFLPGIF
190	929	1	550	PGPTPPPRHGSPPHRLIRVETPGPPAPPADERISGPPASSDRL
-				AILEDYADPFDVQETGEGSAGASGAPEKVPENDGYMEPYEAQK
	1			MMAEIRGSKETATQPLPLYDTPYEPEEDGATPEGEGAPWPRES
{	1			RLPEDDERPPEEYDQPWEWKKERISKAFAVDIKVIKDLPWPPP
				VGQLDSSPSLP
191	930	1	562	QFFSLFLRYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVG
1	1			YSTHMVGKWHLGFYRKECMPTRRGFDTFFGSLLGSGDYYTHYK
1				CDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQILASHN
				PTKPIFLYIAYQAVHSPLQAPGRYFEHYRSIININRRRYAAML
	}		L	SCLDEAINNVTLALK
192	931	3	580	RVRKGRGGERLQSPLRVPQKPERPPLPPKPQFLNSGAYPQKPL
				RNQGVVRTLSSSAQEDIIRWFKEEQLPLRAGYQKTSDTIAPWF
1				HGILTLKKANELLLSTGMPGSFLIRVSERIKGYALSYLSEDGC
	Į.			KHFLIDASADAYSFLGVDQLQHATLADLVEYHKEEPITSLGKE
				LLLYPCGQQDQLPDYLELFE

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
. 10100	Ticias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	(amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
ļ		residue	residue	
		of amino	of amino	
l		acid	acid	·
		sequence	sequence	
193	932	3	1641	GSLEKALFQLLKVWGQWAEQTRRLQRLDVSLSVARVRSAGPSC
			1	QNKGDLVMEALLEGIQNRGHGGGFLTSCEAELQELMKQIDIMV
	ł		1	AHKKSEWEGRTHALETCLKIREQELKSLRSQLDVTHKEVGMLH
İ				QQVEEHEKIKQEMTMEYKQELKKLHEELCILKRSYEKLQKKQM
				REFRGNTKNHREDRSEIERLTAKIEEFRQKSLDWEKQRLIYQQ
}				QVSSLEAQRKALAEQSEIIQAQLVNRKQKLESVELSSQSEIQH
	1			LSSKLERANDTICANELEIERLTMRVNDLVGTSMTVLQEQQQK
}	}	l	ļ	EEKLRESEKLLEALQEEKRELKAALQSQENLIHEARIQKEKLQ
}	1	ļ	l	EKVKATNTQHAVEAISLESVSATCKQLSQELMEKYEELKRMEA
	}	ł	ĺ	HNNEYKAEIKKLKEQILQGEQSYSSALEGMKMEISHLTQELHQ
1	1			RDITIASTKGSSSDMEKRLRAEMQKAEDKAVEHKEILDQLESL
		1	1	KLENRHLSEMVMKLELGLHECSLPVSPLGSIATRFLEEEELRS
}		1	ļ	HHILERLDAHIEELKRESEKTVRQFTALK
194	933	159	1053	TGFLGWSQGPSLTPTSLSALYPSQVEETGVVLSLEQTEQHSRR
	1	1	4	PIQRGAPSQKDTPNPGDSLDTPGPRILAFLHPPSLSEAALAAD
ł				PRRFCSPDLRRLLGPILDGASVAATPSTPLATRHPQSPLSADL
1.		į.		PDELPVGTENVHRLFTSGKDTEAVETDLDIAQDADALDLEMLA
ļ				PYISMDDDFQLNASEQLPRAYHRPLGAVPRPRARSFHGLSPPA
				LEPSLLPRWGSDPRLSCSSPSRGDPSASSPMAGARKRTLAQSS
i		1	1	KDEDEGVELLGVRPPKRSPSPEHENFLLFPLSLSFLLTG
195	934	3	425	ELQDCFDVHDASWEEQIFWGWHNDVHIFDTKTQTWFQPEIKGG
1	1	1		VPPQPRAAHTCAVLGNKGYIFGGRVLQTRMNDLHYLNLDTWTW
}	}	1		SGRITINGESPKHRSWHTLTPIADDKLFLCGGLNAYNMPLSDG
	1	1	1	WIHNVTTHCWK
196	935	2	295	FFFLRTRSHSVTPRWECSDDITAHWQPQPWGSSDPLTFS/RPQ
	1		ļ	VVVPPRHTTLCP\ANFFVFCIFCRNRISPCWPGWSRTPWAQLI
1	1	1		RLPRPPKVLGLOV
197	936	2	737	PREGOVKOGLLGDCWFLCACAALQKSRHLLDQVIPPGQPSWAD
~~ ′		-		QEYRGSFTCRIWQFGRWVEVTTDDRLPCLAGRLCFSRCQREDV
			}	FWLPLLEKVYAKVHGSYEHLWAGQVADALVDLTGGLAERWNLK
ţ				GVAGSGGQQDRPGRWEHRTCRQLLHLKDQCLISCCVLSPRAGE
				ARGOHGRAAASVPPTARPQAHCSFLCDWLHSPVRTKWEEVSLF
		}	}	SRVVSSVCDLPLLSSSRGTWPFSPLTSPFH
198	937	3	638	AECLEASIARYAHRVANSRYTFDGETVTLSPSQGVNQLHGGPE
1 200	1,3,			GFDKRRWOIVNONDRQVLFALSSDDGDQGFPGNLGATVQYRLT
				DDNRISITYRATVDKPCPVNMTNHVYFNLDGEQSDVRNHKLQI
1			1	LADEYLPVDEGGIPHDGLKSVAGTSFDFRSAKIIASEFLADDD
1	}			ORKVKGYDHAFLLOAKGDGKKVAAHVWSADEKLQLKVYT
190	920	69	425	PLSRFLSKESQEDWGMERQSRVMSEKDEYQFQHQGAVELLVFN
199	938	60	445	FLLILTILTIWLFKNHRFRFLHETGGAMVYDKPPKFAMSREQM
	1			SQSCSHTAHNASLLTDAGPLSCGESRASCLFL
L		<u> </u>		a Sacaut turkvannt nya taocarakwachi. a

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) DSKEPRLQQLGLLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVL QLLSFTLLAGLLVQVSKVPSSISQEQSRQDAIYQNLTQLKAAV
201	940	657	469	GELSEKSKLQEIYQELTQLKAAVGELPEKSKLQEIYQELTWLK AAVGELPEKSKMQE MQSIAWGHRRDRGESPLGWGQESEASPSALTEAPKAAHTTRLG
201	7=0	337	103	FLAANNPNGHSQPQDSFLL*
202	941	1	714	FETLSMRGIPHMLALGPQQLLAQDEEGDTLLHLFAARGLRWAA YAAAEVLQVYRRLDIREHKGKTPLLVAAAANQPLIVEDLLNLG AEPNAADHQGRSVLHVAATYGLPGVLLAVLNSGVQVDLEARDF EGLTPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVHMLLQ MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL
203	942	3	479	DAWADAWVGTKMADLDSPPKLSGVQQPSEGVGGGRCSEISAEL IRSLTELQELEAVYERLCGEEKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR
204	943	1	706	AVEFRYPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP
205	944	1	852	GFHPNTTHYRARAAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK
206	945	3	363	GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK
207	946	218	717	IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH
208	947	3	368	SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV
209	948	2	575	GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV ADNVLLENGGHLDINAYGS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	,	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
:		acid	acid	\=possible nucleotide insertion)
]		residue	residue	
		of amino	of amino	•
		acid		,
210	949	sequence	sequence 296	FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD
210	J4J	1 -	290	VPVKELLKTIPKYKVMNDLIPEIKATEMPRALFSQSSGFKLYF
				GAMFLLTTITAC
211	950	3	594	SCSGTGTNACYMEDMSNIDLVEGDEGRMCINTEWGAFGDDGAL
211	950	٦	334	EDIRTEFDRELDLGSLNPGKQLFEKMISGLYLGELVRLILLKM
				AKAGLLFGGEKSSALHTKGKIETRHVAAMEKYKEGLANTREIL
				VDLGLEPSEADCIAVQHVCTIVSFRSANLCAAALAAILTRLRE
ļ]			NKKVERLRTTVGMDGTLYKIHPQY
212	951	2	2167	FVAIATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG
212	951	2	2107	AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT
1		j	j	CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA
			ļ	FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF
İ				CSSRFLNATCDEYFTRNNVTEIOGIPGAASGLIKENLWSSYLT
			ì	KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY
				FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV
1		İ	ł	VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF
	1]	STCGAGLOSLTGAPRLLOAISRDGIVPFLQVFGHGKANGEPTW
				ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ
		İ		TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM
j				LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP
				HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG
				SVLEGTFLENHPOAORAEESIRRLMEAEKVKGFCQVVISSNLR
Į.			1	DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL
				VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM
Î		ł		LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM
213	952	1	128	FYLRLLSFFCFOEHEKRCWSVDFNLMDPKLLASGSDDAKGTV
214	953	3	244	RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM
213	333	-	214	HAFIVPIRSLODHTPLPGKPIMLPOGTLPGGEPRWPP
215	954	2	609	CGTLILOARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN
213	""	. .	""	FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA
				LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG
	}			GKLOLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP
				VGPLLRALATCHALSRLODTPVGDPMDLKM
216	955	292	855	OIEYFRSLLDEHHISYVIDEDVKSGRYMELEORYMDLAENARF
210	733	2.72	555	EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI
1				IESEOKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV
			1	AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT
İ				RNDANRLODAIAKGRG
217	956	2	400	ARYRFTLSARTOVGSGEAVTEESPAPPNEATPTAAPPTLPPTT
44 /	930	4	1 =00	VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT
				TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS
				KWA
L		<u> </u>	<u> </u>	ATIFA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 662	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) LKSTQDEINQARSKLSQLHESRQEAHRSLEQYDQVLDGAHGAS LTDLANLSEGVSLAERGSFGAMDDPFKNKALLFSNNTOELHPD
				PFQTEDPFKSDPFKGADPFKGDPFQNDPFAEQQTTSTDPFGGD PFKESDPFRGSATDDFFKKQTKNDPFTSDPFTKNPSLPSKLDP FESSDPFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSTI EGRRG
219	958	1	752	RTRGGSGNSSQPSLREGHDKPVFNGAGKPHSSTSSPSVPKTSA SRTQKSAVEHKAKKSLSHPSHSRPGPMVTPHNKAKSPGVRQPG SSSSSAPGQPSTGVARPTVSSGPVPRRQNGSSSSGPERSISGS KKPTNDSNPSRRTVSGTCGPGQPASSSGGPGRPISGSVSSARP LGSSRGPGRPVSSPHELRRPVSGLGPPGRSVSGPGRSISGSIP AGRTVSNSVPGRPVSSLGPGQTVSSSGPTIKPKCT
220	959	230	582 420	RGKGITPRYHLCISDPHNLKICCRVNGEVVQSSNTNQMVFKTE DLIAW VVAVTRWLCENGVSYLRKCVCSACRHGTRCAGEVAAAANNSHC
221				TVGIAFNAKIGGMGNQLTWM
222	961	311	490	GAPPPFVPTLKSDDDTSNFDEPKKNSWVSSSPCQLSPSGFSGE ELPFVGFSYSKALGIL
223	962	2	422	FVERLAHLHAACAPRRKVALLLEVCRDVYAGLARGENQDPLGA DAFLPALTEELIWSPDIGDTQLDVEFLMELLDPDELRGEAGYY LTTWFGALHHIAHYQPETDRAPRGLSSEARASLHQWHRRRTLH RKDHPRAQQLD
224	963	385	844	FWMDPYNPLNFKAPFQTSGENEKGCRDSKTPSESIVAISECHT LLSCKVQLLGSQESECPDSVQRDVLSGGRHTHVKRKKVTFLEE VTEYYISGDEDRKGPWEEFARDGCRFQKRIQETEDAIGYCLTF EHRERMFNRLQGTCFKGLNVLKQC
225	964	3	166	AASTAYSFFGTVENMAPKVVNRPGHTQSADWGSFGGLMGRFEF GIFLKGKEIVK
226	965	1	118	GFVFLPGPMSVGLDFSLPGMEHVYGIPEHADNLRLKVTE
227	966	1	390	GSECQGTDLDTRNCTSDLCVHTASGPEDVALYVGLIAVAVCLV LLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADN PHLLTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPL G
228	967	1	777	LIYNEDMICWIESRESSNQLKCIQITKAGGLTDEWTINILQSF HNVQQMAIDWLTRNLYFVDHVGDRIFVCNSNGSVCVTLIDLEL HNPKAIAVDPIAGKLFFTDYGNVAKVERCDMDGMNRTRIIDSK TEQPAALALDLVNKLVYWVDLYLDYVGVVDYQGKNRHAVIQGR QVRHLYGITVFEDYLYATNSDSYNIVRISRFNGTDIHSLIKIE NAWGIRIYQKRTQPTVRSHACEVDPYGMPGGCSHICLLSSSYT K
229	968	3	488	SSGNPQPGDSSGGGAGGGLPSPGEQELSRRLQRLYPAVNQQET PLPRSWSPKDKYNYIGLSQGNLRVHYKGHGKNHKDAASVRATH PIPAACGIYYFEVKIVSKGRDGYMGIGLSAQGVNMNRLPGWDK HSYGYHGDDGHSFCSSGTGQPYGPTFTTGDVI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino	Predicted end nucleotide location corre- sponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		acid	acid	,
		sequence	sequence	
230	969	1	228	FFFFKMGSRSVTQAGVQWCDVSSLQAPPPRFTLFCLSLPSSWD
	1			YRCVPPCPANFFVFLVETGFHRVSQYGLDLLTS
231	970	2	119	QLSLARGKVFLCALSFVYFAKALAEGYLKSTITQIERRVDIPS
-				SLVGVIDGSFEIGNLLVITFVSYFGAKLHRPKIIGAGCVIMGV
1				GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSSQLPV
1				SVMEKSKSKISNECEVDTSSSMWIYVFLGNLLRGIGETPIQPL
	ļ		}	GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY
	ł			VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE
		-	1000	EHHHSDREKG
232	971	221	1068	QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV
	1			RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV
				VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM
			,	AEIOTRLAYVCCVROLEVVKSSDYCEYLRPPIDSYSTLDFGKF
				NEICEVGYOHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL
	1	1		TCPNASFTDLAEIVSRIEPAKPAM
233	972	133	635	LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD
	1			KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI
				TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK
				RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF
234	973	1	420	ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE
				VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD
	1			LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD
1				YVQIDATINYG
235	974	2	860	PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR
				DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML
	1			QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF
				LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNOWLTGNKLSSVRPTNVLEMMKEWKNNPESVE
				ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI
}				IAAFLPSVKYPHHTWNIFLQICLFVVSL
236	975	1 1	467	LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI
230	9/3	-	130,	SGFSSPVMEGDLMOLTCKTSGSKPAADIRWFKNDKEIKDVKYL
1	1			KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ
1	1	1		VAMOVLEMHYTPSVKIIPSTPFPQEG
237	976	3	417	YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF
""	1 - 1 -			PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ
1		1		MEESELHEVLHHTLTNVDGKAYRTIDGPRSFRQRISPAIA\YT
				YD\SDILKGN
		1		

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 740	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
238				DGEGDWSLWSVCSVTCGNGNQKRTRSCGYACTATESRTCDRPN CPGIEDTFRTAATEVSLLAGSEEFNATKLFEVDTDSCERWMSC KSEFLKKYMHKVMNDLPSCPCSYPTEVAYSTADIFDRIKRKDF RWKDASGPKEKLEIYKPTARYCIRSMLSLESTTLAAQHCCYGD NMQLITRGKGAGTPNLISTEFSAELHYKVDV
239	978	79	361	ESEENGESAMDSTVAKEGTNVPLVAAGPCDDEGIVTSTGAKEE DEEGEDVVTSTGRGNEIGHASTCTGLGEESEGVLICESAEGDS QIGTVVEHVEAEAGAAIMNANENNVDSMSGTEKGSKDTDICSS AKGIVESSVTSAVSGKDEVTPVPGGCEGPMTSAASDQSDSQLE KVEDTTISTGLVGGSYDVLVSGEVPECEVAH VCIICLIFSYYSFDSALQSAKSSLGGNDELSATFLEMKGHFYM
240	979	/9	361	YAGSLLLKMGQHGNNVQWRALSELAALCYLIAFQVSLPLGAID ISRSLDVF
241	980	2	681	QHPSQEKPQVLTPSPRKQKLNRKYRSHHDQMICKCLSLSISYS ATIGGLTTIIGTSTSLIFLEHFNNQYPASEVVNFGTWFLFSFP ISLIMLVVSWFWMHWLFLGCNFKETCSLSKKKKTKREQLSEKR IQEEYEKLGDISYPEMVTGFFFILMTVLWFTREPGFVPGWDSF FEKKGYRTDATVSVFLGFLLFLIPAKKPCFGKKNDGENQEHSL GTEPIITWKDF
242	981	1	491	LEREGDKGTPVLRGFSSVSGSWSRRMPPFLLLTCLFITGTSVS PVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYH FTGMAGDAMPTFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQA CASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSV
243	982	1	983	CGRTMSDIRHSLLRRDALSAAKEVLYHLDIYFSSQLQSAPLPI VDKGPVELLEEFVFQVPKERSAQPKRLNSLQELQLLEIMCNYF QEQTKDSVRQIIFSSLFSPQGNKADDSRMSLLGKLVSMAVAVC RIPVLECAASWLQRTPVVYCVRLAKALVDDYCCLVPGSIQTLK QIFSASPRFCCQFITSVTALYDLSSDDLIPPMDLLEMIVTWIF EDPRLILITFLNTPIAANLPIGFLELTPLVGLIRWCVKAPLAY KRKKKPPLSNGHVSNKVTKDPGVGMDRDSHLLYSKLHLSVLQV LMTLQLHLTEKNLYGPPGADPLRPHG
244	983	32	362	SACSTGPELPGRATRSLTRPANQKGCDGDRLYYDGCAMIAMNG SVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAVSAP VDTCVGCSSKTWKVAPFVRAWWRP
245	984	158	398	APLSRLCFPQVLVNEGGGFDRASGSFVAPVRGVYSFRFHVVKV YNRQTVQVTSALAPIPGSGGWGGGRRGAQLTSGWTLH
246	985	2	707	PHIIGAEDDDFGTEHEQINGQCSCFQSIELLKSRPAHLAVFLR HVVSQFDPATLLCYLYSDLYKHTNSKETRRIFLEFHQFFLDRS AHLKVSVPDEMSADLEKRRPELIPEDLHRHYIQTMQERVHPEV QRHLEDFRQKRSMGLTLAESELTKLDAERDKDRLTLEKERTCA EQIVAKIEEVLMTAQAVEEDKSSTMQYVILMYMKHLGVKVKEP RNLEHKRGRIGFLPKIKQSM

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first	to first	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ļ	amino	amino	
	Ì	acid residue	acid residue	\=possible nucleotide insertion)
		of amino	of amino	
	1	acid	acid	
		sequence	sequence	
247	986	18	441	SPGTGRGPGPTSFVCLPTPQCPFIDDFILALHRKIKNEPVVFP
				EGPEISEELKDLILKMLDKNPETRIGVPDIKLHPWVTKNGEEP
ł		ł	ł	LPSEEEHCSVVEVTEEEVKNSVRLIPSWTTVILVKSMLRKRSF
				GNPFEPQARMA
248	987	3	732	HASGIKIDKTSDGPKLFLTEEDQKKLHDFEEQCVEMYFNEKDD
				KFHSGSEERIRVTFERVEQMCIQIKEVGDRVNYIKRSLQSLDS
				QIGHLQDLSALTVDTLKTLTAQKASEASKVHNEITRELSISKH
				LAQNLIDDGPVRPSVWKKHGVVNTLSSSLPQGDLESNNPFHCN
				ILMKDDKDPQCNIFGQDLPAVPQRKEFNFPEAGSSSGALFPSA
				VSPPELRQRLHGVELLKIFNKKQKKRA
249	988	3	468	CCRWIDCFALYDQQEELVRHIEKVHIDQRKGEDFTCFWAGCPR
	1			RYKPFNARYKLLIHMRVHSGEKPNKCTFEGCEKAFSRLENLKI
				HLRSHTGEKPYLCQHPGCQKAFSNSSDRAKHQRTHLDTKPYAC
	1		ļ	QIPGCTKRYTDPSSLRKHVKAHSSK
250	989	356	553	LPLLWTLSDFGGTMDQSGMEIPVTLIIKAPNQKYSDQTISCFL
				NWTVGKLKTHLSNVYPSKPVSV
251	990	1	895	AGTRMCVVAAAEELVCGA\RGLWMRRTRRPRFVLMNKMDDLNL
				HYRFLNWRRRIREIREVRAFRYQERFKHILVDGDTLSYHGNSG
				EVGCYVASRPLTKDSNYFEVSIVDSGVRGTIAVGLVPQYYSLD
				HQPGWLPDSVAYHADDGKLYNGRAKGRQFGSKCNSGDRIGCGI
				EPVSFDVQTAQIFFTKNGKRVGSTIMPMSPDGLFPAVGMHSLG
				EEVRLHLNAELGREDDSVMMVDSYEDEWGRLHDVRVCGTLLEY
				LGKGKSIVDVGLAQARHPLSTRSHYFEVEIVDPGEKCYIA OOAEEHLAAYSVSDSDSGKDPSMECCRRATPGTLLLFLAFLLL
252	991	51	674	SSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLSSK
				SCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYE
-			•	WLPVSNDPDNPCSLKCQAKGTTLVVELAPKVLDGTRCYTESLD
-	1			MCISGLCQVSADLFSFNLSRGFQCLCVNGLHSLTL
0.50	992	2	554	RLLRQELVVLCHLHHPSLISLLAAGIRPRMLVMELASKGSLDR
253	992	4	354	LLQQDKASLTRTLQHRIALHVADGLRYLHSAMIIYRDLKPHNV
				LLFTLYPNAAIIAKIADYGIAQYCCRMGIKTSEGTPGFRAPEV
1				ARGNVIYNQQADVYSFGLLLYDILTTGGRIVEGLKFPNEFDEL
				EIOGKLPDPVKE
254	993	3	437	KASNSTHEFRIGLPEGWESEKKAVIPLGIGPPLTLICLGVLGG
254	293		37'	ILIYGRKGFQTAHFYLKDSPSPKVISTPPPPIFPISKEVGPIP
				IKHFPKHVANLHASRGFTEKFETLKKFYQEGOSCTVDLGITAN
				SSNHPDNRHRNRSLI
255	994	3	445	SFPDRTASLVLLSVPVGQAGMQQRGLAIVALAVCAALHASPAI
رد ع	1			LPIASSCCTEVSHHISRRLLERVNMCRIQRADGDCDLAAVILH
	1			VKRRRICVSPHNHTVKQWMKVQAAKKNGKGNVCHRKKHHGKRN
				SNRAHQGKHETYGHKTPY
L			.1	

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	İ	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
	:	of amino	of amino acid	
		acid		
256	995	sequence 2	sequence 737	FEQPGNPGDPRVRTPPPWGPHFFALIPSSPKEVPATPSSRRDP
250	993		, , , ,	IAPTATLLSKKTPATLAPKEALIPPAMTVPSPKKTPAIPTPKE
			·	APATPSSKEASSPPAVTPSTYKGAPSPKELLIPPAVTSPSPKE
				APTPPAVTPPSPEKGPATPAPKGTPTSPPVTPSSLKDSPTSPA
			1	SVTCKMGATVPOASKGLPAKKGPTALKEVLVAPAPESTPIITA
				PTRKGPQTKKSSATSPPICPDPSAKNGSKG
257	996	79	3	FFLKIQGLGWARWLTPVIPVLWEAE
258	997	307	475 ·	AGFGYGLPISRLYAKYFOGDLNLYSLSGYGTDAIIYLKVSLEF
258	997	307	4/5	NSKILFLKPLLLL
259	998	26	622	WMRAPMLOKOOAPRMDTPPPEERLEKONEKLNNOEEETEFKEL
259	998	26	022	DGLREALANLRGLSEEERSEKAMLRSRIEEQSQLICILKRRSD
	1			EALERCOILELLNAELEEKMMOEAEKLKAQGEYSRKLEERFMT
				LAANHELMLRFKDEYKSENIKLREENEKLRLENNSLFSQALKD
				EEAKVLOLTVRCEALTGELETLKERC
260	999	2	241	DPGASHASVQVQVLKEQLFAGRMPSPFRSCALMGMCGSRSADN
200	999	4	241	LSCPSPLNVMEPVSFFPLKSLGKGMIQHFRHIVSLV
261	1000	1	620	VTTTTHSVGRGHELOLLNEELRNIELECQNIMQAHRLQKVTDQ
201	1000	-	020	YGDIWTLHDGGFRNYNTSIDMQRGKLDDIMEHPEKSDKDSSSA
			i	YNTAESCRSTPLTVDRSPDSSLPRVINLTNKKNLRSTMAATQS
				SSGOSSKESTSTKAKTTEOGCSAESKEKVLEGSKLPDOEKAVS
			1	EHIPYLSPYHSSSYRYANIPAHARHYQSYMQLIQ
262	1001	3	420	VWGCLATVSTHKKIQGLPFGNCLPVSDGPFNNSTGIPFFYMTA
				KDPVVADLMKNPMASLMLPESEGEFCRKNIVDPEDPRCVQLTL
	1	1		TGQMIAVSPEEVEFAKQAMFSRHPGMRKWPRQYEWFFMKMRIE
	ł	}		HIWLQKWYG
263	1002	43	441	QAANMAVARVDAALPPGEGSVVNWSGQGLQKLGPNLPCEADIH
				TLILDKNQIIKLENLEKCKRLIQLSVANNRLVRMMGVAKLTLL
		1		RVLNLPHNSIGCVEGLKELVHLEWLNLAGNNLIAMEQINSCTA
	1			LQHL
264	1003	3	834	FRAAVGAVPEGAWKDTAQLHKSEEAKRVLRYYLFQGQRYIWIE
Ī				TQQAFYQVSLLDHGRSCDDVHRSRHGLSLQDQMERKAIYGPNV
				ISIPVKSYPQLLVDEAFSIALWLADHYYWYALCIFLISSISIC
1	1			LSLYKTRKQSQTLRDMVKLSMRVCVCRPGGEEEWVDSSELVPG
		1		DCLVLSQEGGLMPCDAALVAGECMVNDSSLTGESIPVLKTALP
1				EGLGPYCAETHRRHTLFCGTLILHARAYVGPHVLAVVTRTGMS
				REAGLERDPGSAPLKRWS
265	1004	2	670	FVGGGLHLHLCLLLCFMLPEDAAMAVLTASNHVSNVTVNYNIT
				VERMNRMQGLRVSTVPAVLSPNATLALTAGVLVDSAVEVAFLW
				TFGDGEQALHQFQPPYNESFPVPDPSVAQVLVEHNVTHTYAAP
1				GEYVLTVLASNAFENRTQQVLIRSGRVPIVSLECVSCKAQAVY
				EVSRSSYVYLEGRCLNCSSGSKRGRWAARTFSNKTLVLDETTT
				STGSASM
1				<u> </u>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) PEFLGRLFRGKAATLHVHSDQKPLHDGALGSQQNLVRMKEALR
266				ASTMDVTVVLPSGLEKRSVLNGSHAMMDLLVELCLQNHLNPSH HALEIRSSETQQPLSFKPNTLIGTLNVHTVFLKEKVPEEKVKP GPPKVPEKSVRLVVNYLRTQKAVVRVSPEVPLQNILPVICAKC EVSPEHVVLLRDNIAGEELELSKSLNELGIKELYAWDNRRETF RKSSLGNDETDKEKKKFLGFFKVNKRSNSKGCLTTPNSPSMHS RSLTLGPSLSLGSISGVSVKSEMKKRRAPPPPGSGPPVQDKAS EKVSLGSQIDLQKKKRRAPAPPPPQPPPSPLIPNRTEDKEEN RKSTMVYCCASFPTQAKRF
267	1006	686	400	VQWHNLHSLQPLPAGFK*FLCFSLPSSWDYRCAPPLP/APFFF YFLFLVELGFHHIG*AGLELTSTDLPASAS/ESAGITGMSHRA RPMDFFLLKIL
268	1007	1	453	GRRFRPPSDEEREPWEPWTQLRLSGHLKPLHYNLMLTAFMENF TFSGEVNVEIACRNATRYVVLHASRVAVEKVQLAEDRAFGAVP VAGFFLYPQTQVLVVVLNRTLDAQRNYNLKIIYNALIENELLG FFRSSYVLHGERRFLGVTQFSP
269	1008	333	526	KELDPFYNS*RKIKYLRIYLTKEVKDLYKENYKTLLKEITDDT N/KKHIPSSWTGRINTVKMTIL
270	1009	699	882	VPHPLQAIHEQMNCKEYQEDLALRAQNDAAARRPSEMFKVRLA QGRGLASLSSGIQSGVG
271	1010	16	148	RWNSLTCVVLTFLGHRLLKRFLVPKLRRFLKPQGHPRLLLWFK R
272	1011	1	659	YGEFVTYQGVAVTRSRKEGIAHNYKNETEWRANIDTVMAWFTE EDLDLVTLYFGEPDSTGHRYGPESPERREMVRQVDRTVGYLRE SIARNHLTDRLNLIITSDHGMTTVDKRAGDLVEFHKFPNFTFR DIEFELLDYGPNGMLLPKEGRLEKVYDALKDAHPKLHVYKKEA FPEAFHYANNPRVTPLLMYSDLGYVIHGVSRLLEAPPPGAPSP GSGS
273	1012	146	413	RIPLLRLRSSTYRSKGFDVTVKHSHGSWTGFGGEDLATIPKGL NTYFLVNIATIFESKNFFLPGIKWNGILGLSYATLAKPSSSLE TFF
274	1013	3	251	IKSYSGPNGRSCQIWQRLRWGSRELLLGWKLSHSFSTCPFQFP DIVEFCEAMANAGKTVIVAALDGTFQRKVRRLIQVWSWD
275	1014	326	651	YCFCFDLLH*CIHRDVKPENILITKHSVIKLCDFGFARLLTGP SDYYTDYVATRWYRSPELPVGDTQY\GPPV\DVW\AIGCVSAE \LLSGKCLWWPGKS/DMLDQLYLIRK
276	1015	224	435	RGWALDWIGADLSLHLQEEVETEVAWEECGHVLLSLCYSSQQG GLLVGVLRCAHLAPMDANGYSDPFVRL
277	1016	2	429	GGILAMEYAPGGTLAEFIQKRCNSLLEEETILHFFVQILLALH HVHTHLILHRDLKTQNILLDKHRMVVKIGDFGISKILSSKSKA YTVVGTPCYISPELCEGKPYNQKSDIWALGCVLYELASLKRAF EAANLPALVLKIM

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 262	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) VQCGGIHQVSGAVVVSGLLQGMMGLLGSPGHVFPHCGPLVLAP SLVVAGLSAHREVAOFCFTHWGLALLYVSPERRGMVPSGGVWG
279	1018	1	480	D PRMTGSTHASAPSYGGSCRNNLFYREETYTPKAETDEMNEVET APIPEENHVWLQPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDR
				CIGSTCNRYQCPAGCLNHKAKIFGSLFYESFASICRAAIHYGI LDDKGGLVDITRNGKVPFFVKSERHGVQSLR
280	1019	271	792	VPQNIICAFFCVPCRFASTIPFWGLTLHLQHLGNNVFLLQTLF GAVTLLANCVAPWALNHMSRRLSQMLLMFLLATCLLAIIFVPQ EMQTLRVVLATLGVGAASLGITCSTAQENELIPSIIRGRATGI TGNFANIGGALASLVMILSIYSRPLPWIIYGVFAILSGLVVLL LP
281	1020	2	679	VLVSRDHMKSAQQFFQLVGGSASECDTIPGRQCMASCFFLLKQ FDDVLIYLNSFKSHFYNDDIFNFNYAQAKAATGNTSEGEEAFL LIQSEKMKNDYIYLSWLARGYIMNKKPRLAWELYLKMETSGES FSLLQLIANDCYKMGQFYYSAKAFDVLERLDPNPEYWEGKRGA CVGIFQMIIAGREPKETLREVLHLLRSTGNTQVEYMIRIMKKW AKENRVSILK
282	1021	3	359	LKVSDELVQQYQIKNQCLSAIASDAEQEPKIDPYAFVEGDEEF LFPDKKDRQNSEREAGKKHKVREITVHQRVTVDFVALHIVTLL LPQLSHFFCLRIERVIIYLEKPIFARLRWLMP
283	1022	3	538	GVPRNLPSSLEYLLLSYNRIVKLAPEDLANLTALRVLDVGGNC RRCDHAPNPCMECPRHFPQLHPDTFSHLSRLEGLVLKDSSLSW LNASWFRGLGNLRVLDLSENFLYKCITKTKAFQGLTQLRKLNL SFNYQKRVSFAHLVSGPPFLRGSLGRPLKGAGTWHGNLSFPLH FEWGKT
284	1023	3	442	ILFAALIWSSFDENTEASAGGGGGSSIDAVMVDSGAVVEQYKR MQSQESSAKRSDEQRKMKEQQAAEELREKQAAEQERLKQLEKE RLAAQEQKKQAEEAAKQAELKQKQAEEAAAKAAADAKAKAEAD AKAAEEAAKKAAADAKK
285	1024	1	119	AMEIVHEPROLERYMREAVKVSNDSPVLLDRFLNDAIEC
286	1025	67	227	MLSPGYDYGYVCVEFSLLEDAIGCMEANQVALYFGQMMLEGYI FLYMGREGFK
287	1026	2	1101	PRVRSSGGQEDPASQQWARPRFTQPSKMRRRVIARPVGSSVRL KCVASGHPRPDITWMKDDQALTRPEAAEPRKKKWTLSLKNLRP EDSGKYTCRVSNRAGAINATYKVDVIQRTRSKPVLTGTHPVNT TVDFGGTTSFQCKVRSDVKPVIQWLKRVEYGAEGRHNSTIDVG GQKFVVLPTGDVWSRPDGSYLNKLLITRARQDDAGMYICLGAN TMGYSFRSAFLTVLPDPKPPGPPVASSSSATSLPWPVVIGIPA GAVFILGTLLLWLCQAQKKPCTPAPAPPLPGHRPPGTARDRSG DKDLPSLAALSAGPGVGLCEEHGSPAAPQHLLGPGPVAGPKLY PKLYT\DIPHHTHTTPPPAN
288	1027	3	96	NFHFTGKCLFMSGLSEVQLTHMDDHTLPGY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) SPRKRKTRHSTNPPLECHVGWVMDSRDHGPGTSSVSTSNASPS
				EGAPLAGSYGCTPHSFPKFQHPSHELLKENGFTQQVYHKYRRR CLSERKRLGIGQSQEMNT
290	1029	1	359	PGSGGSAGGRDGSAYQGALLPREQFAAPLGRPVGTSYSATYPA YVSPDVAQSWTAGPFDGSVLHGLPGRRPTFVSDFLEEFPGEGR ECVNCGALSTPLWRRDGTGHYLCNACGLYHKMN
291	1030	2	513	PDHRHGALWWWYSCGVLPVTVSRNEGDERNQVLTLYLWIRQEW TDAYLRWDPNAYGGLDAIRIPSSLVWRPDIVLYNKYCLS/AAP PLSYPSLDLPLAVGV**SPLPTT*PGCHAALEAFPQDPSKLPS TQPLHGTPTLGYPRPAQAERLLGTYCVVQGRCLNHKGLSRAHF
292	1031	1	595	YALTGALVIVTGMVMGNIADYFNLPVSSMSNTFTFLNAGILIS IFLNAWLMEIVPLKTQLRFGFLLMVLAVAGLMFSHSLALFSAA MFILGVVSGITMSIGTFLVTQMYEGRQRGSRLLFTDSFFSMAG MIFPMIAAFLLARSIEWYWVYACIGLVYVAIFILTFGCEFPAL CSHATKLGTASSYPSLDVVQLRTLNA
293	1032	71	479	MAKVGLKTEHYDRYPHMFSGGQRQRIAIARGLMLDPDVVIADE PVSALDVSVRAQVLNLMMDLQQELGLSYVFISHDLSVVEHIAD EVMVMYLGRCVEKGTKDQIFNNPRHPYTQALLSATPRLNPDDR RERIKLSX*
294	1033	2	427	SATLERVLNHPDETQARRLMTLEDIVSGYSNVLISLADSQGKT VYHSPGAPDIREFTRDAIPDKDAQGGEVYLLSGPTMMMPGHGH GHMEHSNWRMINLPVGPLVDGKPIYTLYIALSIDFHLHYINDL MNKLIMTASVII
295	1034	3	342	VLAYPGIKVSTAEARAILPAQYRRQDCIAHGRHLAGFIHACYS RQPELAAKLMKDVIAEPYRERLLPGFRQARQAVAEIGAVASGI SGSGPTLFALCDKPETAQRVADWLGK
296	1035	2	279	GQQQRVALARALILKPKVLLFDEPLSNLDANLRRSMRDKIREL QKQFDITSLYVTHDQSEAFAVSDTVLVMNKGHIMQIGSPQDLR VRRLNW
297	1036	3	157	AVHYLERVRIAEHAHKFPGQISGGQQQRVAIARSLCMKPKIML FDEPTSAL
298	1037	1	217	APYDAENYFDYDNLNNGPSLQHWFGVDSLGRDIFSRVLVGAQI SLAAGVFAVFIGAAIGTLLGLLAGYYEGW
299	1038	3	570	VFCLIADLDPIDELVDFPIVYASALNGIAGLDHEDMAEDMTPL YQAIVDHVPAPDVDLDGPFQMQISQLDYNSYVGVIGIGRIKRG KVKPNQQVTIIDSEGKTRNAKVGKVLGHLGLERIETDLABAGD IVAITGLGELNISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKEGKFVTSRQI
300	1039	1	366	QGTRAESQGSSKDKTRLAFAGLKFGDYGSIDYGRNYGVAYDIG AWTDVLPEFGGDTWTQTDVFMTQRATGVATYRNNDFFGLVDGL NFAAQYQGKNDRSDFDNYTEGNGHGFGFSATYEYEG
301	1040	3	201	DTYSVSIPLGATINMAGAAITITVLTLAAVNTLGIPVDLPTAL LLSVVASLCACGASGVAGGSLL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	C=Cysteme, D=Aspartic Acid, E= Glutainic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	ricids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
}]	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1	<u> </u>	acid	acid	\=possible nucleotide insertion)
1		residue	residue	•
		of amino	of amino	
1	1	acid	acid	· i
		sequence	sequence	
302	1041	1	140	ANAQQGLPSGITLKLNNLVDKGLVDRLYAASSSGVPVNLLVRG
				TCS
303	1042	2	442	ARMTLIPGTHLLENIHNIWVNGVGTNSAPFWRMLLNSFVMAFS
1	}	1	1	ITLGKITVSMLSAFAIVWFRFPLRNLFFWMIFITLMLPVEVRI
		1	1	FPTVEVIANLQMLDSYAGLTLPLMASATATFLFRKLNMSGPDK
1	1		L	VVPAARISGYGPRVRKQ
304	1043	2	403	CAKCLRDADECPSGAFERIGRDISLDALEREVMKDDIFFRTSG
	1		[GGVTLSGGEVLMQAEFATRFLQRLRLWGVSCAIETAGDAPASK
		1	1	LLPLAKLCDEVLFDLKIMDATQARDVVKMNLPRVLENLRLLVS
		ŀ	}	EGVN
305	1044	1	346	YLLLFVCFLVMSLLVGLVYKFTAERAGKQSLDDLMNSSLYLMR
1				SELREIPPHDWGKTLKEMDLNLSFDLRVEPLSKYHLDDISMHR
1		{	{	LRGGEIVALDDQYTFLQRIPRSHYVLAVG
306	1045	1	207	VELFLSDEGDDVVIEVADQGCGVPESLRDKIFEQGVSTRADEP
} '	}	1	1	GEHGIGLYLIASYVTRCGGVITLEDN
307	1046	3	213	DAIIAPDANALPAAAQAAENLKNDKVAIVGFSTPNVMRPYVER
			ļ	GTVKEFGLWDVVQQGKISVYVADALQ
308	1047	1	129	YIVVTGKTHCGTPLTTVTGDATQSGYLTLNLPEMWEVSGYNRV
309	1048	271	46	XEGVEPDINASKTRQQLNDVAGKMKIIEARLSALTNNQTKSLK
}			1	LNPVALPKVASQLLDELGYSLLARRADLQSAHX*
310	1049	16	253	ENIAEEYATKRYRSNVINWGMLPLQMAEVPTFEVGDYIYIPGI
1		į	1	KAALDNPGTTFKGYVIHEDAPVTEITLYMESQEART
311	1050	2	299	LOTEIGSMVYAVKPGDGSAREQAASCQRVIGGLANIAEEYATK
				RYRSNVINWGMLPLQMAEVPTFEVGDYIYILGFKAAKYSPGTA
	1	ţ	1	FTVYAISGYGPRI
312	1051	1	344	TLEDLLMALDGEOHLOQOVSEKVLADNVLIAPGSVKPDATFWS
}		-		ALIQDRYNVMTCIEKDACVLVEQDLNSDGQAERILFAFNDDRV
				IVYGFDSDRKEWDALDMSLLPNEITKEK
313	1052	2	630	ESNSRCRKMPGERCRGGPARLSLLLDLPTRPLPHPRQVIDFGS
55		-		ASIFSEVRYVKEPYIQSRFYRAPEILLGLPFCEKVDVWSLGCV
			ļ	MDELHLGWPLYPGNNEYDOVRYICETOGLPKPHLLHAACKAHH
1			1	FFKRNPHPDAANPWQLKSSADYLAETKVRPLERRKYMLKSLDQ
1				IETVNGGSVASRLTFPDREALAEHADLKSMVEL/MKRLL
314	1053	1	302	RLVKKRVECROCGKAGRNOSTLKTHMRSHTGEKPYECDHCGKA
723	-000	1		FSIGSNLNVHRRIHTGEKPYECLVCGEAFSDHSSLRSHVKTHR
		}		GEKLFVSSVWKRLQ
315	1054	1318	730	CGPGFSLSFFFLRWSF\ALVAQAGVQWHDLGSLQPPAPGFKRF
312	1034	1210	130	SSLSLLSRWDYRHAHARLIFVFLVEMGFLHVGQAGLELPTSGD
1	1	}	1	PPTSASOSARITGVTTPLGTFFFFLRWSFALVAQAGGQCLDLG
1			1	SLQLPPPGFKRLVCHFQTPQKHRCSCQAPGDCLQESFVMTGCV
]			}	LRTVSESVORANAGAGAETVOGL
			J	TIVI ADER A XIVINAURURI A KATI

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids -	sponding	sponding	
	,	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
	1	of amino	of amino	
	}	acid	acid	'
	1055	sequence	sequence	MONTA A A RECOGNICACION DEL ARA CEDEL ERMECDA ONTRA LIL DO
316	1055	2486	1429	MGNAAAAKKGSEQESVKEFLAKAKEDFLKKWESPAQNTAHLDQ
		ł	ì	FERIKTLGTGSFGRVMLVKHKETGNHYAMKILD*QKVGKLKQI
	1	Į.	1	EHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEM
		1	} `	FSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPEN
}	}	}		LLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKG
ł		ł	}	YNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRF
	İ		1 -	PSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFATT
Ì	j	1	ļ	DWIAIYQRKVEAPFIPKFKGPGDTS\NFDDYEEEEIRV\SINE
}	}		1	KFG\KEFSEF
317	1056	867	461	SSSRSSHGDSPPHSQTPCDTNRGLDTKH*/DSQSIEEKDSSQS
	İ		1	E*NRIERRKEVERILQTNSDYM*HWSN*PENILPKKFFSKHQK
}	1	}		CTATLSMRNTSIM/KKEGLF*AQFPSLLLSHLPAVGLGIYTGT
}	}	j	}	HLTTSTSTF
318	1057	544	784	TFHSSLEKNILQPCR*RRA\ICLPLLL*PSVPLLAPQYFSDLR
	1	1	1	NSIVNSQPPEKQQAMHLCFENLMEGIERNLLTKNRDR
319	1058	1606	228	GTSGVQQEISRLTNENLDLKELVEKLEKNERKLKKQLKIYMKK
	1	}	ł	AQDLEAAQALAQSERKRHELNRQVTVQRKEKDFQGMLEYHKED
1		1		EALLIRNLVTDLKPQMLSGTVPCLPAYILYMCIRHA\DYTNDD
		1	1	LKVHSLLTSTINGIKKVLKKHNDDFEMTSFWLSNTC\RLLHCL
		1	İ	KQYSGDEGFMTQNTAKQN\EHCLKNFDLTEYRQV\L\SDLSIQ
	1	1	1	IYQQLIKIAEGVLQPMIVSAMLEN*SIQGLSGVKPTGSQKHSS
1		1	1	SMADEDNSYRLEAIIROMNAFHTVMCDQGLDPEIILQVFKQLF
1	İ			YMINAVTLNDLLLRKDVCSWSTGMOLRYNISOLEEWLRGRNLH
-	1	}		QSGAVQTMEPLIQAAQLLQLKKKTQEDAEAICSLCTSLSTQQI
	}		1	VKILNLYTPLNEFEERVTVAFIRTIQAQLQERNDPQQLLLDAK
		į	ł	HMFPVLFPFNPSSLTMDSIHIPACLNLEFLNEV
320	1059	3	250	HEENTILKAAEVQVPPK*VVTPEAKAFI*RCLAYQKEDCIDAQ
320	1009		230	QLACDP\YLLHYIQKLVFVSSPAGAAIASTFGVSNSCSSN
321	1060	1332	500	GTTDEIMTRWARVSTTYNKRPLPATSWEDMKKGSFEGTSQNLP
221	1000	1004	300	KRKQLEANRLSLKNDAPQAKHKKNKKKKEYLNEDVNGFMEYLR
				ONSOMVHNGOIIATDSEEVREEIAVALKKDSRREGRRLKRQAA
				KKNAMVCFHCRKPGHGIADCPAALENODMGTGICYRCGSTEHE
	1			ITKCKAKVDPALGEFPFAKCFVCGEMGHLSRSCPDNPKGLYAD
	}			· ·
	1		j	GGGCKLCGSVEHLKKDCPESQNSERMVTVGRWAKGMSADYEEI
	+	1 22:	1.00-	LDVPKPQKPKTKIPKVVNF
322	1061	384	102	DHVRKSLLKNRAENIVNIFKCNVVSLPNLPAFGQAQWLTPVIP
	}	1	1	articamizaco acompinati altaiti / compilizaci estructura e e e e e e e e e e e e e e e e e e e
				ALWEAEVGGS*GQEIETILANAVK/SPFLLKIQKKKISRAWWR AP/VSPRYSGG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
323	1062	1	777	SDAWADAWARSLSVSPSSYPELHTEVPLSVLILGLLVVFILSV CFGAGLFVFVLKRRKGVPSVPRNTNNLDVSSFQLQYGSYNTET HDKTDGHVYNYIPPPVVQMCQNPIYMAGREGRPSSLLPKPGKE FQLLGNLEEKKEEPATPAYTISATELLEKQATPREPELLYQNI AE/PSQGTS/TAQA*STITFVPYLKGQFAPSYESRRQNQDRIN KTVLYGTPRKCFVGQSKPNHPLLQAKPQSEPDYLEVLEKQTAI SQL
324	1063	1	1496	ALCHIAVGQQMNLHWLHKIGLVVILASTVVAMSAVAQLWEDEW EVLLISLQGTAPFLHVGAVAAVTMLSWIVAGQFARAERTSSQV TILCTFFTVVFALYLAPLTISSPCIMEKKDLGPKPALIGHRGA PMLAPEHTLMSFRKALEQKLYGLQADITISLDGVPFLMHDTTL RRTTNVEEEFPELARRPASMLNWTTLQRLNAGQWFLKTDPFWT ASSLSPSDHREAQNQSICSLAELLELAKGNATLLNLRDPPRE HPYRSSFINVTLEAVLHSGFPQHQVMWLPSRQRPLVRKVAPGF QQTSGSKEAVASLRRGHIQRLNLRYTQVSRQELRDYASWNLSV NLYTVNAPWLFSLLWCAGVPSVTSDNSHTLSQVPSPLWIMPPD EYCLMWVTADLVSFTLIVGIFVLQKWRLGGIRSYNPEQIMLSA AVRRTSRDVSIMKEKLIFSEISDGVEVSDVLSVCSDNSYDTYA NSTATPVGPRGGGSHTKTLIERSGR
325	1064	1899	776	NSADYGDGPDSSDADPDSGTEEGVLDFSDPFSTEVKPRILLMG LRRSGKSSIQKVVFHKMSPNETLFLESTNKICREDVSNSSFVN FQIWDFPGQIDFFDPTFDYEMIFRGTGALIFVIDSQDDYMEAL ARLHLTVTRAYKVNTDINFEVFIHKVDGLSDDHKIETQRDIHQ RANDDLADAGLEKIHLSFYLTSIYDHSIFEAFSKVVQKLIPQL PTLENLLNIFISNSGIEKAFLFDVVSKIYIATDSTPVDMQTYE LCCDMIDVVIDISCIYGLKEDGAGTPYDKESTAIIKLNNTTVL YLKEVTKFLALVCFVREESFERKGLIDYNFHCFRKAIHEVFEV RMKVVKSRKVQNRLQKKKRATPNGTPRVLL
326	1065	1181	346	RTRGRDPGAGFRRTANKRCCRRFLIGCGWLPLRSDWPLVSKM LSKGLKRKREEEEEKEPLAVDSWWLDPGHAAVAQAPPAVASSS LFDLSVLKLHHSLQQSEPDLRHLVLVVNTLRRIQASMAPAAAL PPVPSPPAAPSVADNLLASSDAALSASMASLLEDLSHIEGLSQ APQPLADEGPPGRSIGGAAPSLGALDLLGPATGCLLDDGLEGL FEDIDTSMYDNELWAPASEGLKPGPEDGPGKEEAPELDEAELD YLMDVLVGTQALERPPGPGR

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	C=Cystonic, D=Asparite Acid, E= Giulanne Acid,
	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
ACIUS	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	}	acid	acid	\=possible nucleotide insertion)
	1	residue	residue	,
	1	of amino	of amino	
	1	acid	acid	
	}	sequence	sequence	
327	1066	1844	337	LQEVKARRNTLHKEKDHLVNDYEQNMKLLQTKYDADINLLKQE
		1		HALSASKASSMIEELEQNVCQLKQQLQESELQRKQQLRDQENK
		1	ļ	FQMEKSHLKHIYEKKAHDLQSELDKGKEDTQKKIHKFEEALKW
	}	1	ļ	KKWRQI*LDPN/LLREKQSKEFLWQLEDIRQRYEQQIVELKLE
	}	1	ł	HEQEKTHLLQQHNAEKDSLVRDHEREIENLEKQLRAANMEHEN
l				QIQEFKKRDAQVIADMEAQVHKLREELINVNSQRKQQLVELGL
i	1		1	LREEEKQRATREHEIVVNKLKAESEKMKIELKKTHAAETEMTL
1	{			EKANSKLKOIEKEYTOKLAKSSQIIAELQTTISSLKEENSQQQ
1	}	1	1	LAAERRLQDVRQKFEDEKKQLIRDNDQAIKVLQDELENRSNQV
1			{	RCAEKKLQHKELESQEQITYIRQEYETKLKGLMPASLRQELED
1				TISSLKSQVNFLQKRASILQEE/RDYISRQKVQPISR*LHERM
			l l	ORMRISRLCCGTSSSRFEDLDIVNCEISGIF
355	1067	1149	238	VINLVYLISSPRPELKPVDKESEVVMKFPDGFEKFSPPILQLD
328	1067	1149	230	EVDFYYDPKHVIFSRLSVSADLESRICVVGENGAGKSTMLKLL
			ļ	LGDLAPVRGIRHAHRNLKIGYFSQHHV\EQL\DLNVQCLWELA
1	ļ	1	1	GHASFPG\RPEEEY\RHQLGFGMGISGEL\AMRPLCQPVLGAR
]			1	
} .	}	Ì	1	KKPKWPFAQMDYCPAPTFYIL\DEPTN\HLGHGRAIEALGPCL
1	1	1		QTISGVGVILVSHE*SALSRLVCRE\LWVC*G\GGVTRVERKD
	1	1	1	FDQYRALLQGTVSAREGFPLGPPRLKDSPRDMGLVSQTPWGHH
Ì	1			VGYPLPGRG
329	1068	26	674	CSAVEVKMAARTAFGAVCRRLWQGLGNFSVNTSKGNTAKNGGL
		1	1	LLSTNMKWVQFSNLHVDVPKDLTKPVVTISDEPDILYKRLSVL
}			1	VKGHDKAVLDSYEYFAVLAAKELGISIKVHEPPRKIERFTLLQ
Í		Ĭ	1	SVHIYKKHRVQYEMRTLYRCLELEHLTGSTADVYLEYIQRNLP
į		1	l	EGVAMEVTKFCFFIFL\TQLEQLPEHIKEPIWETLSEEKEESK
		1		S
330	1069	2105	1283	DFWDTAGQERFQSMHASYYHKTHACIMVFDVQRKVTHRNLSTW
		ł	1	YTELREFRPEIPCIVVANKIDGGAIPAPGC*QFTGDLPSYISS
				SIPRAGNLQ*LVLPPTIRYNPWLVACILPTL*RSQLSRPALFP
1	}			RHRSLLTELFLGPVSQSSLPIPLSGMKASSGPPLQTFFPSLDR
}	1			QTNVLPSLY\ADINVTQKSFNFAKKFSLPLYFVSAADGTNVVK
1	1			LFNDAIRLAVSYKONSODFMDEIFOELENFSLEQEEEDVPDQE
ļ	1			QSSSIETPSEEVASPHS
221	1070	1	1109	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL
331	1 10/0	-	1103	GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW
	1			GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF
1				IDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVF
}	1			
				DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR
}			1	HCNGFPAGAEVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK
1				HCFM\MPQSLGVIGGKPNSAH\YFIG*VG\EELIYLDPHTTQP
				AVEPTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLST
				QAFGAECCLGMTRKTFGFLRFFFSMLG
332	1071	39	284	ALCVVPFNTFHN\DFLLLDKEGTLDPVMDSFSTHWTTIGPADM
1				FFS\FRQHYKNFKSHGTNPSKSVWAHATCQSCAFPNLLGW
L				

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
333	1072	2	1484	TRLAEFGTRDPCAQAPCEQQCEPGGPQGYSCHCRLGFRPAEDD PHRCVDTDECQIAGVCQQMCVNYVGGFECYCSEGHELEADGIS CSPAGAMGAQASQDLGDELLDDGEDEEDEDEAWKAFNGGWTEM PGILWMEPTQPPDFALAYRPSFPEDREPQIPYPEPTWPPPLSA PRVPYHSSVLSVTRPVVVSATHPTLPSAHQPPVIPATHPALSR DHQIPVIAANYPDLPSAYQPGILSVSHSAQPPAHQPPMISTKY PELFPAHQSPMFPDTRVAGTQTTTHLPGIPPNHAPLVTTLGAQ LPPQAPDALVLRTQATQLPIIPTAQPSLTTTSRSPVSPAHQIS VPAATQPAALPTLLPSQSPTNQTSPISPTHPHSKAPQIPREDG PSPKLALWLPSPAPTAAPTALGEAGLAEHSQRDDRWLLVALLV PTCVFLVVLLALGIVYCTRCGPHAPNKRITDCYRWVIHAGSKS PTEPMPPRGSLTGVQTCRTSV
334	1073	1	1406	LRVRRPHLPAPPALRARRSDRRSSRAPAAFPPRPPHASPAPG PAMAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPA TTGAVVTISASLVAKDNGSLALPADAHLYRFHWIHTPLVLTGK MEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGFVVL PITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFL KTALFLYSWDFGDGTQMVTEDSVVYYNYSIIGTFTVKLKVVAE WEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVLGPTLIQTF QKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAY NLTHTFRDPGDYCFSIRAENIISKTHQYHKIQVWPSRIQPAVF AFPCATLITVMLAFIMYMTLRNATQQKDMVENPEPPSGVRCCC QMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV
335	1074	1	866	VVEFAFQLSSVSVCLTVSFGWQLGTVSSCLSRDWFLKGNLLII IVSVLIILPLALMKHLGYLGYTSGLSLTCMLFFLVSVIYKKFQ LGCAIGHNETAMESEALVGLPSQGLNSSCEAQMFTVDSQMSYT VPIMAFAFVCHPEVLPIYTELCRPSKRRMQAVANVSIGAMFCM YGLTATFGYLTFYSSVKAEMLHMYSQKDPLILCVRLAVLLA\V TLTVPVVLFPIRRALQQLLFPGKAFSWPRHVAIALILLVLVNV LVICVPTIRDIFGVIGSTSAPSLIFILPSCI
336	1075	3	825	GAGSKSSMMQLMHLESFYEK\PPPGLIKEDDTKPEDCIPDVPG NEHAREFLAHTPTKGLWMPLEKEVKVKH/CTFHWIAS*FLGDG KFIPKATRLKDVWVSN*FTCLFWDLTRFIHDCIFF*NWSLMNK NFNIIY*FFISLR*NTLILQKYFPFSLLLGWHCKWYGHRTGYK ECPFFIKDNQKLQQFRVAHEDFMYDIIRDNKQHEKNVRIQQLK QLLEDSTSGEDRSSSSSSEGKEKHKKKKKKEKHKKRKKEKKKK KKRKHKSSKSNEGSDSE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
337	1076	3	2451	EIAGAAAENMIGSLLCLPGSGSVLLDPCTGSTISETTSEAWSV EVLPSDSEAPDLKQEERLQELESCSGLGSTSDDTDVREVSSRP STPGLSVVSGISATSEDIPNKIEDLRSECSSDFGGKDSVTSPD MDEITHDFLYILQPKQHFQHIEAEADMRIQLSSSAHQLTSPPS QSESLLAMFDPLSSHEGASAVVRPKVHYARPSHPPPDPPILEG AVGGNEARLPNFGSPMF*LPAEMEAFKQRHS/YTPERLVRSRS S\DIVSSVRRPMSDPSWNRRP\GNEERELPPAAAIGATSLVAA PHSSSSSPSKDSSRGETEERKDSDDEKSDRNRPWWRKRFVSAM PKAPIPFRKKEKQEKDKDDLGPDRFSTLTDDPSPRLSAQAQVA EDILDKYRNAIKRTSPSDGAMANYESTEVMGDGESAHDSPRDE ALQNISADDLPDSASQAAHPQDSAFSYRDAKKKLRLALCSADS VAFPVLT\HSTRNGLPDHTDPEDNEIVCFLKVQIAEAINLQDK NLMAQLQETMRCVCRFDNRTCRKLLASIAEDYRKRAPYIAYLT RCRQGLQTTQAHLERLLQRVLRDKEVANRYFTTVCVRLLLESK EKKIREFIQDFQKLTAADDKTAQVEDFLQFLYGAMAQDVIWQN ASEEQLQDAQLAIERSVMNRIFKLAFYPNQDGDILRDQVLHEH IQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTISAYKTP RDKVQCILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKA NPPCLLSTVQYISSFYASCLSGEESYWWMQFTAAVEFIKTIDD RK
338	1077	536	1305	WPMSLARGHGDTAASTAAPLSEEGEVTSGLQALAVEDTGGPSA SAGKAEDEGEGGREETEREGSGGEEAQGEVPSAGGEEPAEEDS EDWCVPCSDEEVELPADGQPWMPPPSEIQRLYELLAAHGTLEL QAEILPRRPPTPEAQSEEERSDEEPEAKEEEEEKPHMPTEFDF DDEPVTPKDSLIDRRRTPGSSARSQKREARLDKVLSDMKRHKK LEEQILRTGRDLFSLDSEDPSPASPPLRSSGSSLFPRQRKY
339	1078	2	1771	LGRGTFGQVV*CWKRGTNEIVAIKILKNHPSYARQGQIEVSIL ARLSTESADDYNFVRAYECFQHKNHTCLVFEMLEQNLYDFLKQ NKFSPLPLKYIRPVLQQVATALMKLKSLGLIHADLKPENIMLV DPSRQPYRVKVIDFGSASHVSKAVCSTYLQSRYYRAPEIILGL PFCEAIDMWSLGCVIAELFLGWPLYPGASEYDQI/RYISQTQG LPAEYLLSAGTKTTRFFNRDTDSPYPLWRLKTPDDHEAETGIK SKEARKYIFNCLDDMAQVNMTTDLEGSDMLVEKAVRREFIDLL KKMLSIDSVKRFSPVGSLNHPFVTMSLFLDFPHSTHVKSCFQN MEICKRRVNMYDTVNQSKTPFITHVAPSTSTNLTMTFNNQLTT VHNQPSAASMAAVAQRSMPLQTGTAQICARPDPFQQALIVCPP GFQGLQASPSKHAGYSVRMENAVPIVTQAPGAQPLQIQPGLLA QQAWPSGTQQILLPPAWQQLTGVATHTSVQHAAVIPETMAGTQ QLADWRNTHAHGSHYNPIMQQPALLTGHVTLPAAQPLNVGVAH VMRQQPTSTTSSRKSKQHLYCGRARVSKIASR

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
340	1079	2	2721	EFAICRYPLGMSGGQIPDEDITASSQWSESTAAKYGRLDSEEG DGAWCPEIPVEPDDLKEFLQIDLHTLHFITLVGTQGRHAGGHG IEFAPMYKINYSRDGTRWISWRNRHGKQVLDGNSNFYDIFLKD LEPPIVARFVRFIPVTDHSMNVCMRVELYGCVWLDGLVSYNAP AGQQFVLPGGSIIYLNDSVYDGAVGYSMTEGLGQLTDGVSGLD DFTQTHEYHVWPGYDYVGWRNESATNGYIEIMFEFDRIRNFTT MKVHCNNMFAKGVKIFKEVQCYFRSEASEWEPNAISFPLVLDD VNPSARFVTVPLHHRMASAIKCQYHFADTWMMFSEITFQSDAA MYNNSEALPTSPMAPTTYDPMLKVDDSNTRILIGCLVAIIFIL LAIIVIILWRQFWQKMLEKASRRMLDDEMTVSLSLPSDSSMFN NNRSSSPSEQGSNSTYDRIFPLRPDYQEPSRLIRKLPEFAPGE EESGCSGVVKPVQPSGPEGVPHYAEADIVNLQGVTGGNTYSVP AVTMDLLSGKRCGCGREFPPGKLLTFKEKLGEGQFGEVHLCEV EGMEKFKDKDFALDVSANQPVLVAVKMLRADANKNARNDFLKE IKIMSRLKDPNIIHLLSVCITDDPLCMITEYMENGDLNQFLSR HEPPNSSSSDVRTVSYTNLKFMATQIASGMKYLSSLNFVHRDL ATRNCLVGKNYTIKIADFGMSRNLYSGDYYRIQGRAVLPIRWM SWESILLGKFTTASDVWAFG\VTLWE\TFTFCQRKGPYS\QLS \DETGY*RNTGEFFPRFKGGQTYLPSTSPFVPDSCVIKLMLSC WRRDTKNRPSFQEIHLLLLQQGDERCCQCLAMFLRLRSSLQDL PLTHAYATPSGHLMKLRDRGLFALPSFPGHPHSLPLTHIYFFF
341	1080	916	3	CSASPLRPGLLAPDLLYLPGAGQPRRPEAEPGQKPVVPTLYVT EAEAHSPALPGLSGPQPKWVEVEETIEVRVKKMGPQGVSPTTE VPRSSSGHLFTLPGATPGGDPNSNNSNNKLLAQEAWAQGTAMV GVREPLVFRVDARGSVDWAASGMGSLEEGTMEEAGEEEGEDG DAFVTEESQDTHSLGDRDPKILTHNGRMLTLADLEDYVPGEGE TFHCGGPGPGAPDDPPCEVSVIQREIGEPTVG\SLCCSAWGMH WVPEALSASLGLSPMGR\HHRDPRSVALRAPPSSCGRPRLGLW AVLPG
342	1081	862	444	QGLAAEFLQVPAVTRAYTAACVLTTAAVQLELLSPFQLYFNPH LVFRKFQAPFLPWALMGFSLLLGNSILVDLLGIAVGHIYYFLE DVFPNQPGGKRLLQTPGFLGLQSSKAPAGSSLTIWTQQSQGGP GTAGELAAPS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 3658	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) EKNALEPTVYFGMGV*APQVPRFQQRITGYQYYLQLRKDIWEE
		3058		GIPCTLEQPIHLAGLAVQAIFGDFDQYESQDFLQKFALFPVGW LQDEKVLEEATQKVALLHQKYRGLTAPDAEMLYMQEVERMDGY GEESYPAKDSQGSDISIGACLEGIFVKHKNGRHPVVFRWHDIA NMSHNKSFFALELANKEETIQFQTEDMETAKYIWRLCVARHKF YRLNQCNLQTQTVTVNPIRRRSSSRMSLPKPQPYVMPPPP\QL HYNGHYTEPYASSQDNLFVPNQEG\YYGQFQTSLNRAQIDFNG RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSNPSITGSDVMRP DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPYPAERRPVVGAVSVPELTNAQLQAQDYPSPNIM RTQVYRPPPPPPPRPANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA
344	1083	6	304	RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE
345	1084	1255	635	SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG
346	1085	116	415	EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS
347	1086	918	760	QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG KPDPDTVPDS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 750	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
348	1087	1		ASCLGLLPTFYQTEHPFISASCLDWPVPAFDIITHWCFEIKSF TERHAEQGKALLIQESKWKLPHLLQLPENYNTIFQYYHRKTCS VCTKVPKDPAVCLVCGTFVCLKGLCCKQQSYCECVLHSQNCGA GTGIFLLINASVIIIIRGHRFCLWGSVYLDAHGEEDRDLRRGK PLYICKERYKVLEQQWISHTFDHINKRWGPHYNGL
349	1088	3	1374	KGQLVNLLPPENFPWCGGSQGPRMLRTCYVLCSQAGPRSRGWQ SLSFDGGAFHLKGTGELTRALLVLRLCAWPPLVTHGLLLQAWS RRLLGSRLSGAFLRASVYGQFVAGETAEEVKGCVQQLRTLSLR PLLAVPTEEEPDSAAKSGEAWYEGNLGAMLRCVDLSRGLLEPP SLAEASLMQLKVTALTSTRLCKELASWVRRPGASLELSPERLA EAMDSGQNLQVSCLNAEQNQHLRASLSRLHRVAQYARAQHVRL LVDAEYTSLNPALSLLVAALAVRWNSPGEGGPWVWNTYQACLK DTFERLGRDAEAAHRAGLAFGVKLVRGAYLDKERAVAQL\HG\ MEDPPTQADYEATS\QSYS\RCLELMLTHVARHGPMCHLMVAS HNEESVRQATK\GQAGYVVYKSIPYGSLEEVIPYLIRRAQENR SVLQGARREQELLSQKLWRRLLPGCRRIPH
350	1089	1036	306	VVEFGEMSTARAPEGLRWFQLYVHPDLQLNKQLIQRVESLGFK ALVITLDTPVCGNRRHDIRNQLRRNLTLTDLQSPKKGNAIPYF QMTPISTSLCWNDLSWFQSITRLPIILKGILTKEDAELAVKHN VQGIIVSNHGGRQLDEVLASIDALTEVGAAE*GNMKYYLDAGV RTGNDVQKALALGAKCIFLGRPILWGLACKGEHGVKEVLNILT NEFHTSMA\LTGCRSVAEINRNLVQFSRL
351	1090	1229	957	FFLRWSFTL\LPRLE/CQWLNLGSLQPPPPGFK*SSCLRLLSS WGLQVPTSMLG*FFCIFSREGISPCWPGWSQTPKVIHLPRPPR VLRLQA
352	1091	1145	365	LLCFVHTALQSFQGELYEPHVVIAIVVFLVKLGICK*RASWRK KVTLVVK*S/LKICFTKYGSCYHPGEKSSSWLFN*RMVNDCLA TSCSNRSFVIQQIPSSNLFMVVVDSSCLCESVAPITMAPIEIR YILLCAGPLTTTETSKGYQW*GNLGEKY*RRKITSFPLLERES S*ESCHCQILTSEMQSRKKQSLETCLNYSQHNESLKCERLKAQ KIRRPESCHGFHPEENARECGGAPSLQAQTVLLLLPLLLMLF SR
353	1092	1140	790	VPSPTHDPKPAEAPMPA*PAPPGPASPGGALEPPAAARAGGSP TAVRSILTKERRPEGGYKAVWFGEDIGTEADVVVLNAPTLDVD GASDSGSGDEGEGAGRGGGPYDAPGGDDSYI

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	C=Cysteme, D=Aspartic Acid, E= Olutainic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110100	Ticlus	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	·	acid	acid	\=possible nucleotide insertion)
	i	residue	residue	•
		of amino	of amino	,
[[acid	acid	
		sequence	sequence	
354	1093	3	2293	LISLAGPTDDIQSTGPQVHALNILRALFRDTRLGENIIPYVAD
			1	GAKAAILGFTSPVWAVRNSSTLLFSALITRIFGVKRAKDEHSK
1	ļ	1	1	TNRMTGREFFSRFPELYPFLLKQLETVANTVDSDMGEPNRHPS
]		1	}	MFLLLLVLERLYASPMDGTSSALSMGPFVPFIMRCGHSPVYHS
				REMAARALVPFVMIDHIPNTIRTLLSTLPSCTDQCFRQNHIHG
ļ	1		į	TLLQVFHLVQAYSDSKHGTNSDFQHELTDITVCTKAKLWLAKR
	1	1		QNPCLVTRAVYIDILFLLTCCLNRSAKDNQPVLESLGFWEEVR
			}	GIISGSELITGFPWAFKVPGLPQYLQSLTRLAIAAVWAAAAKS
		į	1	GERETNVPISFSQLLESAFPEVRSLTLEALLEKFLAAASGLGE
		l]	KGVPPLLCNMGEKFLLLAMKENHPECFCKILKILHCMDPGEWL
1		ļ		PQTEHCVHLTPKEFLIWTMDIASNERSEIQSVALRLASKVISH
İ			ļ	HMQTCVENRELIAAELKQWVQLVILSCEDHLPTESRLAVVEVL
		1		TSTTPLFLTNPHPILELQDTLALWKCVLTLLQSEEQAVRDAAT
1		1	1	ETVTTAMSQENTCQSTEFAFCQVDASIALALALAVLCDLLQQW
				DQLAPGLPILLGWLLGESDDLVACVESMHQVEEDYLFEKAEVN
]	}	FWAETLIFVKYLCKHLFCLLSKSGWRPPSPEMLCHLQRMVSEQ
İ		1		C\HLLSQFFRELPPAAEFVKTVEFTRLRIQEERTLACLRLLAF
				LEGKEGEDTLVLSVWDSYAESRQLTLPRTEAAC
355	1094	25	1265	HAFRPIALQRGVSFRGCSNQYAESRRLQGESGSRAFAHLMESL
			•	LQHLDRFSELLAVSSTTYVSTWDPATVRRALQWARYLRHIHRR
	ļ		ł	FGRHGPIRTALERRLHNQWRQEGGFGRGPVPGLANFQALGHCD
			1	VLLSLRLLENRALGDAARYHLVQQLFPGPGVRDADEETLQESL
	ļ		i	ARLARRSAVHMLRFNGYRENPNLQEDSLMKTQAELLLERLQE
		İ		VGKAEAERPARFLSSLWERLPQNNFLKVIAVALLQPPLSRRPQ
		1	1	EELEPGIHKSPGEGSQVLVHWLLGNSEVFAAFCRALPAGLLTL
		1		VTSRHPALSPVYLGLLTDWGQRLHYDLQKGIWVGTESQDVPWE
}		}	†	ELHNRFOSLCOAPPPLKDKVLTALETCKAQDGDFEEPGLSIWT
			ļ	DLLLALRSGAFRKROVLGLSAGLSSV
356	1095	3 .	1027	SHLIQHQRIHT*E*AHECNECGKAFSQTSCLIQHHKMHRKEKS
1 330	-0,55	'		YECNEYEGSFSHSSDLILQQEVLTRQKAFDCDVWEKNSSQRAH
1				LVQHQSIHTKE/K/PHECNEDGKIF/NQIQA/LIQHLRVHTRE
				K\YVCTACGKAFSHSSAIAQHQIIHTREKPSECDE*RKGISVK
				LLIDSC/RIYTSEKSYKCIECGKFFMLLVFSYLSHIWRIHMGI
1		1	}	KFHCCNECEKAISQRNYLV*YQIHAMQKDYKCN/EACMCVRRF
]			SHNPTLIQHQRIYT*ENLFGCSK/C/GRSFNRSLTSLCHIRIS
				I/RRQEFDVTQMEKLDTTFQA/STQHRNNGEKIVDYLFMKLLI
				HSPNLFHCTKI
357	1096	2638	2867	AVTLTAKICSFTPEPSETMSPPAGTNNSRHAALRAVTLPVKVC
35/	1036	2030	2007	SFTPEPARSRTHOKEETPNTSEHOKEQTPEAPP
			1	OF IT BEAUDITHANDITENTOBING AND ALL DIVER

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 4747	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 4550	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) MAYSWQTDPNPNESHEKQYEHQEFLFVNQPHSSSQVSLGFDQI
				VDEISGKIPHYESEIDENTFFVPTAPKWDSTGHSLNEAHQISL NEFTSKSRELSWHQVSKAPAIGFSPSVLPKPQNTNKECSWGSP IGKHHGADDSRFSILAPSFTSLDKINLEKELENENHNYHIGFE SSIPPTNSSFSSDFMPKEENKRSGHVNIVEPSLMLLKGSLQPG MWESTWQKNIESIGCSIQLVEVPQSSNTSLASFCNKVKKIRER YHAADVNFNSGKIWSTTTAFPYQLFSKTKFNIHIFIDNSTQPL HFMPCANYLVKDLIAEILHFCTNDQLLPKDHILSVWGSEEFLQ NDHCLGSHKMFQKDKSVIQLHDKSREAPGKLSRKHEEDHSQF YLNQLLEFMHIWKVSRQCLLTLIRKYDFHLKYLLKTQENVYNI IEEVKKICSVLGCVETKQITDAVNBLSLILQRKGENFYQSSET SAKGLIEKVTTELSTSIYQLINVYCNSFYADFQPVNVPRCTSY LNPGLPSHLSFTVYAAHNIPETWVHRINFPLEIKSLPRESMLT VKLFGIACATNNANLLAWTCLPLFPKEKSILGSMLFSMTLQSE PPVEMITPGVWDVSQPSPVTLQIDFPATGWBYMKPDSEENRSN LEEPLKECIKHIARLSQKQTPLLLSEEKKRYLWFYRFYCNNEN CSLPLVLGSAPGWDERTVSEMHTILRRWTFSQPLEALGLLTSS FPDQEIRKVAVQQLDNLLNDELLEYPQLVQAVKFEWNLESPL VQLLLHRSLQSIQVAHRLYWLLKNAENEAYFKSWYQKLLAALQ FCAGKALNDEFSKEQKLIKILGDIGERVKSASDHQRQEVLKKE IGRLEEFFQDVNTCHLPLNPALCIKGIDHDACSYFTSNALPLK ITFINANLMGKNISIIFKAGDDLRQDMLVLQLIQVMDNIWLQE GLDMQMIIYRCLSTGKDQRLVQMVPDAVTLAKIHRHSGLIGPL KENTIKKWFSQHNHLKADYEKALRNFFYSCAGWCVVTFILGVC DRHNDNIMLTKSGHMFHIDFGKFLGHAQTFGGIKRDRAPFIFT SEM\EYFITEGG\KNPQHFQDFV\ELCCRAYNIIRKHSQLLL\ NLL\EMMLYAG\LPELSGI\QDLKYVYNNLRPQDTDLEATSHF TKKIKESLECFPVKLNNLIHTLAQMSAISPAKSTSQTFPQESC LLSTTRSIERATILGFSKKSSNLYLIQVTHSNNETSLTEKSFE QFSKLHSQLQKQFASLTLPEFPHWWHLPFTNSDHRFRDLNHY MEQILNVSHEVTNSDCVLSFFLSEAGQQTVEESSPVYLGEKFP DKKPKVQLVISYEDVKLTILVKHMKNIHLPDGSAPSAHVEFYL LPYPSSEVRRRKTKSVPKCTDPTYNEIVVYDEVTELQGHVLMLI VKSKTVFVGAINIRLCSVPLDKEKWYPLGNSII*PLLLFYTSN FMQSVLH
359	1098	679	346	FFLRWSLDSVTQAGVQSHDLSSLQPPPPGFKQSSLFGLPSSWE *RWVPPCPANFFVFLVETGFRHVGQAGLELLTSNDLPVSACQS AGITGVTTVPQRKSMILYEVTICYP

ID ID NO: NO of of Nucleic Aı	O: f	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
360 1	099	2	1601	FVREIRGPAVPRLTSAEDRHRHGPHAHSPELQRTGRDYSLDYL PFRLWVGIWVATFCLVLVATEASVLVRYFTRFTEEGFCALISL IFIYDAVGKMLNLTHTYPIQKPGSSAYGCLCQYPGPGGNESQW IRTRPKDRDDIVSMDLGLINASLLPPPECTRQGGHPRGPGCHT VPDIAFFSLLLFLTSFFFAMALKCVKTSRFFPSVVRKGLSDFS SVLAILLGCGLDAFLGLATPKLMVPREFKPTLPGRGWLVSPFG ANPWWWSVAAALPALLLSILIFMDQQITAVILNRMEYRLQKGA GFHLDLFWVAVLMLLTSALGLPWYVSATVISLAHMDSLRRESR ACAPGERPNFLGIREQRLTGLVVFILTGASIFLAPVLKFIPMP VLYGIFLYMGVAALSSIQFTNRVKLLL\MPAKHQPDLLLLRHV PLTRVHLFTAISFA\CLGLLW\IIKSTPAAIIFPLMLLGLVGV RKALERVFSPQELLWLDELMPEEERSIPEKGLEPEHSFSGSDS EDSELMYQPKAPEINISVN*LE*EFVREIRGPAVPRLTSAEDR HRHGPHAHSPELQRTGRDYSLDYLPFRLWVGIWVATFCLVLVA TEASVLVRYFTRFTEEGFCALISLIFIYDAVGKMLNLTHTYPI QKPGSSAYGCLCQYPGPGGNESQWIRTRPKDRDDIVSMDLGLI NASLLPPPECTRQGGHPRGPGCHTVPDIAFFSLLLFLTSFFFA MALKCVKTSRFFPSVVRKGLSDFSSVLAILLGCGLDAFLGLAT PKLMVPREFKPTLPGRGWLVSPFGANPWWSVAAALPALLLSI LIFMDQQITAVILNRMEYRLQKGAGFHLDLFCVAVLMLLTSAL GLPWYVSATVISLAHMDSLRRESRACAPGERPNFLGIREQRLT GLVVFILTGASIFLAPVLKFIPMPVLYGIFLYMGVAALSSIQF TNRVKLLLDASKTPARPATLAACASDQGPPLHSHQLCPVWGCF GIIKSTPAAIIFPLMLLGLVGVRKALERVFSPQELLWLDELMP EEERSIPEKGLEPEHSFSGSDSEDSELMYQPKAPEINISVN

SEQ ID ID NO: of Nucleic Acids Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
361 1100	1	2636	MGLKARRAAGAAGGGGDGGGGGGGAANPAGGDAAAAGDEERKV GLAPGDVEQVTLALGAGADKDGTLLLEGGGRDEGQRRTPQGIG LLAKTPLSRPVKRNNAKYRRIQTLIYDALERPRGWALLYH\AL VFLIVLG\CLILAVL\TTFKEYETVSGDWLLLLETFAIFIFGA EFALRIWAAGCCCRYKGWRGRLKFARKPLCMLDIFVLIASVPV VAVGNQGNVLATSLRSLRFLQILRMLRDGPGEGGTWKLLG\SA ICAH\$KELITAWYIGFLTLILSSFLVYLVEKDVPEVDAQGEEM KEEFETYADALWWGLITLATIGYGDKTPKTWEGRLIAATFSLI GVSFFALPAGILGSGLALKVQEQHRQKHFEKRRKPAAELIQAA WRYYATNPNRIDLVATWRFYESVVSFPFFRKEQLEAASSQKLG LLDRVRLSNPRGSNTKGKLFTPLNVDAIEESPSKEPKPVGLNN KERFRTAFRMKAYAFWQSSEDAGTGDPMAEDRGYGNDFPIEDM IPTLKAAIRAVRILQFRLYKKKFKETLRPYDVKDVIEQYSAGH LDMLSRIKYLQTRIDMIFTPGPPSTPKHKKSQKGSAFTFPSQQ SPRNEPYV\ARPST\SEI\EDQRH*WGKFVKSLKGQV\QGLGR KLDFLVDMHMQHMERLQVQVTEYYPTKGTSSPAEAEKKEDNRY SDLKTIICNYSETGPPEPPYSFHQVTIDKVSPYGFFAHDPVNL PRGGPSSGKVQATPPSSATTYVERPTVLPILTLLDSRVSCHSQ ADLQGPYSDRISPRQRRSITRDSDTPLSLMSVNHEELERSPSG FSISQDRDDYVFGPNGGSSWMREKRYLAEGETDTDTDPFTPSG SMP\LSSTGDGISDSVWTPSNKPI

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide(A=Alanine,
ID	ID `	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1	}	to first	to first	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1	Ì	amino	amino acid	
]	ļ	acid	residue	\=possible nucleotide insertion)
1	ļ	residue	of amino	
		of amino	acid	·
		acid	sequence	
362	1101	sequence	5433	RTRGIIEFDPKYTAFEVEEDVGLIMIPVVRLHGTYGYVTADFISQSSSASPGG
302	1 1101	{ -	1 220	VDYILHGSTVTFQHGQNLSFINISIIDDNESEFEEPIEILLTGATGGAVLGRH
}	}	1		LVSRIIIAKSDSPFGVIRFLNQSKISIANPNSTMILSLVLERTGGLLGEIQVN
1	}]	1	WETVGPNSQEALLPQNRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEIEVEE TFIIKLHLVKGEAKLDSRAKDVTLTIQEFGDPNGVVQFAPETLSKKTYSEPLA
]	[LEGPLLITFFVRRVKGTFGEIMVYWELSSEFDITEDFLSTSGFFTIADGESEA
1			ł	SFDVHLLPDEVPEIEEDYVIQLVSVEGGAELDLEKSITWFSVYANDDPHGVFA
1	1	į	1	LYSDRQSILIGQNLIRSIQINITRLAGTFGDVAVGLRISSDHKEQRIVTENAE
	1		{	RQLVVKDGATYKVDVVPIKNQVFLSLGSNFTLQLVTVMLVGGRFYGMPTILQE
				AKSAVLPVSEKAANSQVGFESTAFQLMNITAGTSHVMISRRGTYGALSVAWTT GYAPGLEIPEFIVVGNMTPTLGSLSFSHGEQRKGVFLWTFPSPGWPEAFVLHL
1				SGVQSSAPGGAQLRSGFIVAEIEPMGVFQFSTSSRNIIVSEDTQMIRLHVQRL
1	1			FGFHSDLIKVSYQTTAGSAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQL
1	1		j	SEIEEFFYINLTSVEIRGLQKFDVNWSPRLNLDFSVAVITILDNDDLAGMDIS
		•	1	FPETTVAVAVDTTLIPVETESTTYLSTSKTTTILQPTNVVAIVTEATGVSAIP EKLVTLHGTPAVSEKPDVATVTANVSIHGTFSLGPSIVYIEEEMKNGTFNTAE
1				VLIRRTGGFTGNVSITVKTFGERCAQMEPNALPFRGIYGISNLTWAVEEEDFE
{	1		{	EQTLTLIFLDGERERKVSVQILDDDEPEGQEFFYVFLTNPQGGAQIVEGKDDT
	İ		1	GFAAFAMVIITGSDLHNGIIGFSEESQSGLELREGAVMRRLHLIVTRQPNRAF
1	}	:	Į.	EDVKVFWRVTLNKTVVVLQKDGVNLMEELQSVSGTTTCTMGQTKCFISIELKP
		1	-	EKVPQVEVYFFVELYEATAGAAINNSARFAQIKILESDESQSLVYFSVGSRLA VAHKKATLISLQVARDSGTGLMMSVNFSTQELRSAETIGRTIISPAISGKDFV
1	ł		İ	ITEGTLVFEPGQRSTVLDVILTPETGSLNSFPKRFQIVLFDPKGGARIDKVYG
		,)	TANITLVSDADSQAIWGLADQLHQPVNDDILNRVLHTISMKVATENTDEQLSA
		1	1	MMHLIEKITTEGKIQAFSVASRTLFYEILCSLINPKRKDTRGFSHFAELTENF
ļ		1		AFSLLTNVTCGSPGEKSKTILDSCPYLSILALHWYPQQINGHKFEGKEGDYIR IPERLLDVQDAEIMAGKSTCKLVQFTEYSSQQWFISGNNLPTLKNKVLSLSVK
1 .		ļ	ł	GQSSQLLTNDNEVLYRIYAAEPRIIPQTSLCLLWNQAAASWLSDSQFCKVIEE
ł			İ	TADYVECACLHMSVYAVYARTDNLSSYNEAFFTSGFICISGLCLAVLSHIFCA
l		1	}	RYSMFAAKLLTHMMAASLGTQILFLASAYASPQLAEESCSAMAAVTHYLYLCQ
-	ŀ			FSWMLIQSVNFWYVLVMNDEHTERRYLLFFLLSWGLPAFVVILLIVILKGIYH
]	1	QSMSQIYGLIHGDLCFIPNVYAALFTAALVPLTCLVVVFVVFIHAYQVKPQWK AYDDVFRGRTNAAEIPLILYLFALISVTWLWGGLHMAYRHFWMLVLFVIFNSL
	1	}	1	QLL\YPLFYFLLL*DQSSSASPGGVDYILHGSTVTFQHGQNLSFINISIIDDN
}	}	}	1	ESEFEEPIEILLTGATGGAVLGRHLVSRIIIAKSDSPFGVIRFLNQSKISIAN
			}	PNSTMILSLVLERTGGLLGEIQVNWETVGPNSQEALLPQNRDIADPVSGLFYF
1	Ì		İ	GEGEGGVRTIILTIYPHEEIEVEETFIIKLHLVKGEAKLDSRAKDVTLTIQEF GDPNGVVQFAPETLSKKTYSEPLALEGPLLITFFVRRVKGTFGEIMVYWELSS
				EFDITEDFLSTSGFFTIADGESEASFDVHLLPDEVPEIEEDYVIQLVSVEGGA
	}	}	1	ELDLEKSITWFSVYANDDPHGVFALYSDRQSILIGQNLIRSIQINITRLAGTF
		1	Ì	GDVAVGLRISSDHKEQPIVTENAERQLVVKDGATYKVDVVPIKNQVFLSLGSN
ł	}	ļ	ļ	FTLQLVTVMLVGGRFYGMPTILQEAKSAVLPVSEKAANSQVGFESTAFQLMNI
				TAGTSHVMISRRGTYGALSVAWTTGYAPGLEIPEFIVVGNMTPTLGSLSFSHG EORKGVFLWTFPSPGWPEAFVLHLSGVQSSAPGGAQLRSGFIVAEIEPMGVFQ
)	`		FSTSSRNIIVSEDTQMIRLHVQRLFGFHSDLIKVSYQTTAGSAKPLEDFEPVQ
· ·	1			NGELFFQKFQTEVDFEITIINDQLSEIEEFFYINLTSVEIRGLQKFDVNWSPR
[-			INIDESVAVITILDNDDLAGMDISEPETTVAVAVDTTLIPVETESTTYLSTSK
				TTTILQPTNVVAIVTEATGVSAIPEKLVTLHGTPAVSEKPDVATVTANVSIHG TFSLGPSIVYIEEEMKNGTFNTAEVLIRRTGGFTGNVSITVKTFGERCAQMEP
				NALPFRGIYGISNLTWAVEEEDFEEQTLTLIFLDGERERKVSVQILDDDEPEG
				QEFFYVFLTNPQGGAQIVEGKDDTGFAAFAMVIITGSDLHNGIIGFSEESQSG
]	}	}	1	LELREGAVMRRLHLIVTRQPNRAFEDVKVFWRVTLNKTVVVLQKDGVNLMEEL
	1			QSVSGTTTCTMGQTKCF1S1ELKPEKVPQVEVYFFVELYEATAGAAINNSARF AQIKILESDESQSLVYFSVGSRLAVAHKKATL1SLQVARDSGTGLMMSVNFST
1		.		QELRSAETIGRTIISPAISGKDFVITEGTLVFEPGQRSTVLDVILTPETGSLN
l	- 1			SFPKRFQIVLFDPKGGARIDKVYGTANITLVSDADSQAIWGLADQLHQPVNDD
1	1	1		ILNRVLHTISMKVATENTDEQLSAMMHLIEKITTEGKIQAFSVASRTLFYEIL
				CSLINPKRKDTRGFSHFAELTENFAFSLLTNVTCGSPGEKSKTILDSCPYLSI
}	{			LALHWYPQQINGHKFEGKEGDYIRIPERLLDVQDAEIMAGKSTCKLVQFTEYS SQQWFISGNNLPTLKNKVLSLSVKGQSSQLLTNDNEVLYRIYAAEPRIIPQTS
1				SQQWFISGNNLPTLKNKVLSLSVKGQSSQLLTNDNEVLYXITAAEFRIIPQIS LCLLWNQAAASWLSDSQFCKVIEETADYVECACLHMSVYAVYARTDNLSSYNE
	1			AFFTSGFICISGLCLAVLSHIFCARYSMFAAKLLTHMMAASLGTQILFLASAY
	1	Ì		ASPQLAEESCSAMAAVTHYLYLCQFSWMLIQSVNFWYVLVMNDEHTERRYLLF
	-		Ì	FLLSWGLPAFVVILLIVILKGIYHQSMSQIYGLIHGDLCFIPNVYAALFTAAL
	Í		ĺ	VPLTCLVVVFVVFIHAYQVKPQWKAYDDVFRGRTNAAEIPLILYLFALISVTW LWGGLHMAYRHFWMLVLFVIFNSLQLLVPSVLLFTSMRSTFFSFHTGTLTSRE
	1		}	KKSTFVLTCLLSPDSKGLGVLCFLNTEWAFQVH
L				

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
,	710100	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Į į		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
<u> </u>		residue	residue	•
		of amino	of amino	
1		acid	acid	
	į	sequence	sequence	
363	1102	2	2855	AAGATMERDGCAGGGSRGGEGGRAPREGPAGNGRDRGRSHAAE
	Ì))	APGDPQAAASLLAPMDVGEEPLEKAARARŢAKDPNTYKVLSLV
	1	1	ł	LSVCVLTTILGCIFGLKPSCAKEVKSCKGRCFERTFG\NCRCD
				AACVELG\NCCLGLPGGTCI\EP\EHIW\TCNKFRCG\EKRLT
Í			Í	RSLCACSDDCKD\RGDCLPSNLQFLCVQGE\KSWGRKNPCESH
]			LMEP\QCP\AGFETPSLPLLIF/SLDGFRAEYLHTWGGLLPVI
		,		SKLKKCGTYTKNMRPVYPTKTFPNHYSIVTGLYPESHGIINNK
	1			MYDPKMNASFSLKSKEKFNPEWYKGEPIWVTAKYQGLKSGTFF
				WPGSDVEINGIFPDIYKMYNGSVPFEERILAVLQWLQLPKDER
		ł		PHFYTLYLEEPDSSGHSYGPVSSEVIKALQRVDGMVGMLMDGL
	ļ	l		KELNLHRCLNLILISDHGMEQGSCKKYIYLNKYLGDVKNIKVI
İ		i	1	YGPAARLRPSDVPDKYYSFNYEGIARNLSCREPNQHFKPYLKH
1				FLPKRLHFAKSDRIEPLTFYLDPQWQLALNPSERKYCGSGFHG
)		j		SDNVFSNMQALFVGYGPGFKHGIEADTFENIEVYNLMCDLLNL
Ì	1	1		TPAPNNGTHGSLNHLLKNPVYTPKHPKEVHPLVQCPFTRNPRD
	!		ļ	NLGCSCNPSILPIEDFQTQFNLTVAEEKIIKHETLPYGRPRVL
		1		QKENTICLLSQHQFMSGYSQDILMPLWTSYTVDRNDSFSTEDF
	}	1	}	SNCLYQDFRIPLSPVHKCSFYKNNTKVSYGFLSPPQLNKNSSG
				IYSEALLTTNIVPMYQSFQVIWRYFHDTLLRKYAEERNGVNVV
				SGPVFDFDYDG\RCDSL\ENLRQKRRVHPVTQENFWIPNSTSF
				Y/VVLTSC\KDTSQTPLHC\ENL\DTLGFPFCLHRDWINSETC
1				\VHG\KHDSSW\VEEFVKCLHRA\RITGC*GTSLGLSFYQQRK
				EPVSDILKLKTHLPTFSQED
364	1103	657	1	TVPPPPGGPSPAPLHPKRSPTSTGEAELKEERLPGRKASCSTA
304	1	00.	-	GSGSRGLPPL\SPMVSSAHNPNKAEIPERRKDSTSTPNNLPPS
				MMTRRNTYVCTERPGAERPSLLPNGKENSSGTPRVPPASPSSH
				SLAPPSGERSRLARGSTIRSTFHGGQVRDRRAGGWGWFFNKHA
		1		LORAPRNAGAPSLMPGHRTVLINYGGGQDLKNWETCLAAPPNK
1			İ	~
	1	 	1313	HRR
365	1104	1	1313	HTLHHSSPTSEAEEFVSRLSTQNYFRSLPRGTSNMTYGTFNFL
				GGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDVRLPLA
			1	GCQTLLSPIVSCGPPG\VLLTRPVILG\MDHCG\EPSPDSW\S
			İ	LRLKKQSCEGSWEDVLHLGEEAPSHLYYCQLEASACYVFTEQL
				SRYALVGEALSVAAAKRLKLLLFAPVACTSLEYNILVYCLHDT
1	1			HDALNVVVQLEKQLQGQLIQEPLVLHFKDSYHNLRLSIHDVPS
				SLWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDL
				ACKLWVWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPAL
1				VGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQKLHLDSHL
1				SFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGTGPAGRW
			1	LLSOCSEAEC
366	1105	1	343	GSAAGQVQQQQQRRHQQGKVTVKYDRKELRKRLVLEEWIVEQL
300	11103	1 -) = 3	GOLYGCEEEEMPEVEIDIDDLFDAYSDEQRASKLQEALVDCYK
			1	PTEEFIKELLSRIRGMRKLSP\PQKKSV
			<u> </u>	ETERTINEDIXTICALIZATION / FÓWDA

070	oro	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Ammo acid segment containing signal peptide (A – Alainine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ł	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
}	}	residue	residue	\=possible flucteofide filsertion)
		of amino	of amino	
		acid	acid	1
		1	sequence	· · · · · ·
367	1106	sequence 2	1398	IMLDGRVRWLTPVISALWEAEMEDVIARMQDEKNGIPIRTVKS
367	1100	4	1350	FLSKIPSVFSGSDIVQWLIKNLTIEDPVEALHLGTLMAAHGYF
				FPISDHVLTLKDDGTFYRFOTPYFWPSNCWEPENTDYAVYLCK
				RTMONKARLELADYEAESLARLQRAFARKWEFIFMQAEAQAKV
		İ	1	1 7
				DKKRDKIERKILDSQERAFWDVHRPVPGCVNTTEVDIKKSSRM
l		1	·	RNPHKTRKSVYGLQNDIRSHSPTHTPTPETKPPTEDELQQQIK
}			,	YWQIQLDRHRLKMSKVADSLLSYTEQYLEYDPFLLPPDPSNPW
	1	ļ		LSDDTTFWELEASKEPSQQRVKRWGFGMDEALKDPVGREQFLK
	1			FLESEFSSENLRFWLAVEDLKKRPIKEVPSRVQEIWQEFLAPG
1		Ì	ĺ	APSAINLDSKSYDKTTQNVKEPGRYTFEDAQEHIYKLMKSDSY
		1		PRFIRSSAYQELLQAKK\KGKSLTSKRLTSLAQSY
368	1107	1	461	GTRDYPRIVNHLDHTYVTAPQAFMMFQYFVKVVPTVYMKVDGE
		1		VLTTNQIYVTRHEKAAYVLMGDQGLPGVFILYELSPMMVNLTE
			[IHTFFSLFLTIVGA\TIGGMFFEHFVINYLTHKWGLGFYFKNE
	1		1	NSLQGGHRTLYGVNFFMYWSLRGGS
369	1108	2	1522	SVWWNSQRQFVVRAWGCAGPCGRAVFLAFGLGLGLIEEKQAES
		"		RRAVSACQEIQAIFTQKSKPGPDPLDTRRLQGFRLEEYLIGQS
1			1	IGKGCSAAVYEATMPTLPQNLEVTKSTGLLPGRGPGTSAPGEG
	1			OERAPGAPAFPLAIKMMWNISAGSSSEAILNTMSQELVPASRV
1	1			ALAGEYGAVTYRKSKRGPKQLAPHPNIIRVLRAFTSSVPLLPG
				ALVDYPDVLPSRLHPEGLGHGRTLFLVMKNYPCTLRQYLCVNT
				PSPRLAAMMLLQLLEGVDHLVQQGIAHRDLKSDNILVELDPDG
]	}			CPWLVIADFGCCLADESIGLQLPFSSWYVDRGGNGCLMAPEVS
1				TARPGPRAVIDYSKADAWAVGAIAYEIFGLVNPFYGQGKAHLE
		1		SRSYQEAQLPALPESVPPDVRQLVRALLQREASKRPSARVAAN
				VLHLSLWGEHILALKNLKLDKMVGWLLQQSAATLLANRLTEKC
				CVETKMKMLFLANLECETLCQAALLLCSWRAAL
370	1109	105	1252	RPLLRLAELPDHCYRMNSSPAGTPSPQPSRANGNINLGPSANP
	1			NAQPTDFDFLKVIGKGNYGKVLLAKRKSDGAFYAVKVLQKKSI
		1		LKKKEQSHIMAERSVLLKNVRHPFLVGLRYSFQTPEKLYFVLD
				YVNGGELFFHLQRERRFLEPRARFYAAEVASAIGYLHSLNIIY
1	1	1	1	RDLKPENILLDCQGHVVLTDFGLCKEGVEPEDTTSTFCGTPEY
	1			LAPEVL\RKEPYDRAVDWWCLGAVLYEMLHGLPPFYSQDVSQM
1				YENILHQPLQIPGGRTVAACDLLQSLLHKDQRQRLGSKADFLE
				IKNHVFFSPINWDDLYHKRLTPPFNPNVTGPADLKHFDPEFTQ
	1	1		EAVSKSIGCTPDTVASSSGASSAFLGFSYAPEDDDILDC
L		_1		1

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	}	residue	residue	- possible indeteotide insertiony
		of amino	of amino	
		acid	acid	
		sequence	sequence	
371	1110	3	1608	RPQTLKGHQEKIRQRQSILPPPQGPAPIPFQHRGGDSPEAKNR
		ļ		VGPQVPLSEPGFRRRESQEEPRAVLAQKIĘKETQILNCALDDI
				EWFVARLQKAAEAFKQLNQRKKGKKKGKKAPAEGVLTLRARPP
				\SEGEFIDCFQKIKLAINLLAKLQKHIQNPSAAELVHFLFGPL
		•		DLIVNTCSGPDIARSVSCPLLSRDAVDFLRGHLVPKEMSLWES
	1			LGESWMRPRSEWPREPQVPLYVPKFHSGWEPPVDVLQEAPWEV
				EGLASAPIEEVSPVSRQSIRNSQKHSPTSEPTPPGDALPPVSS
				PHTHRGYQPTPAMAKYVKILYDFTARNANELSVLKDEVLEVLE
1				DGRQWWKLRSRSGQAGYVPCNILGEARPEDAGAPFEQAGQKYW
	1			GPASPTHKLPPSFPGNKDELMQHMDEVNDELIRKISNIRAQPQ
				RHFRVERSQPVSQPLTYESGPDEVRAWLEAKAFSPRIVENLGI
		1		LTGPQLFSLNKEELKKVCGEEGVRVYSQLTMQKAFLEKQQSGS
	1	1		ELEELMNKFHSMNQRRGEDS
372	1111	3	1046	AWHEGLVSSPAIGAYLSASYGDSLVVLVATVVALLDICFILVA
				VPESLPEKMRPVSWGAQISWKQADPFASLKKVGKDSTVLL\IC
				ITVCLSYLPEAG\QYSSFF\LYLR\QVIGFG\SVKIAAFIAMV
1.		1	}	GILSIVAQTAFLSILMRSLGNKNTVLLGLGFQMLQLAWYGFGS
			1	QAWMMWAAGTVAAMSSITFPAISALVSRNAESDQQGVAQGIIT
				GIRGLCNGLGPALYGFIFYMFHVELTELGPKLNSNNVPLQGAV
	1			IPGPPFLFGACIVLMSFLAALFIPEYSKASGVQKHSNSSSGSL
1	1		1	TNTPERGSDEDIEPLLQDSSIWELSSFEEPGNQCTEL*TRQKV
				GFCIRHL
373	1112	1	1950	MAAGLATWLPFARAAAVGWLPLAQQPLPPAPGVKASRGDEVLV
1	1			VNVSGRRFETWKNTLDRYPDTLLGSSEKEFFYDADSGEYFFDR
			1	DPDMFRHVLNFYRTGRLHCPRQECIQAFDEELAFYGLVPELVG
	1			DCCLEEYRDRKKENAERLAEDEEAEQAGDGPALPAGSSLRQRL
1	1			WRAFENPHTSTAALVFYYVTGFFIAVSVIANVVETIPCRGSAR
1	1			RSSREQPCGERFPQAFFCMDTACVLIFTGEYLLRLFAAPSRCR
				FLRSVMSLIDVVAILPYYIGLLVPKNDDVSGAFVTLRVFRVFR IFKFSRHSQGLRILGYTLKSCASELGFLLFSLTMAIIIFATVM
	1			
	1			FYAEKGTNKTNFTSIPAAFWYTIVTMTTLGYGDMVPSTIAGKI
	1			FGSICSLSGVLVIALPVPVIVSNFSRIYHQNQRADKRRAQQKV
		1		RLARIRLAKSGTTNAFLQYKQNGGLEDSGSGEEQAVCVRNRSA FEOOHHLLHCLEKTTCHEFTDELTFSEALGAVSPGGRTSRST
				FEQQHHHLLHCLEKTTCHEFTDELTFSEALGAVSPGGRTSRST SVSSQPVGPGSLLSSCCPRRAKRRAIRLANSTASVSRG\SMQE
				SVSSQPVGPGSLLSSCCPRRAKRAIRLANSTASVSRG\SMQE LDMLAGL\RRSHAP\QSRSSL\NAKPHDSLDLNCDSG\DFVAA
				LDMLAGL\RRSHAP\QSRSSL\NAKPHDSLDLNCDSG\DFVAA IISIPTPPANTPDESOPSSPGGGGRAGSTLRNSSLGTPCLFPE
				TISIPTPPANTPDESQPSSPGGGGRAGSTLRNSSLGTPCLFFE TVKISSL
374	1113	4	664	GWGKPFKDWTTGGQDTGGEPALLVGAGEGRAPRLNCPSGQIRS
-, -				PGPGDLSIYDNWIRYFNRSSPVYGLVP/RSKTSARIYPTYHTA
				FDTFDYVDKFLDPGEEGDKGHPETRTGEAED*ALALSPCRR\F
				SSHQAVARTAGSVILRLSDSFFLPLKVSDYSETLRSFLQAAQQ
				DLGALLEQHSISLGPLVTAVEKFEAEAAALGQRISTLQKGSPD
1	1			PLQVRML
L			J	<u> </u>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
375	1114	1	1147	GIRGGGSLASGGPGPGHASLSQRLRLYLADSWNQCDLVALTCF LLGVGCRLTPGLYHLGRTVLCIDFMVFTVRLLHIFTVNKQLGP KIVIVSKMMKDVFFFLFFLGVWLVAYGVATEGLLRPRDSDFPS ILRRVFYRPYLQIFGQIPQEDMDVALMEHSNCSSEPGFWAHPP GAQAGTCVSQYANWLVVLLLVIFLLVANILLVNLLIAMFSYTF GKVQGNSDLYWKAQRYRLIREFHSRPALAPPFIVISHLRLLLR QLCRRPRSPQPSSPALEHFRVYLSKEAERKLLTWESVHKENFL LARARDKRESDSERLKRTSQKVDLALKQLGHIREYEQRLKVLE REVQQCSRVLGWVAEALSRSALLPPGGPPPPDLPGSKD
376	1115	3	329	LIKLCKSKAKSCENDLEMGMLNSKFKKTRYQAGMRNSENLTAN NTLSKPTRY/QGELKEIKQDISSLRYELLBEKSQATGELADLI QQLSEKFGKNLNKDHLRVNKGKDI
	1116	1	2043	LPLLHAGFNRFMENSSIIACYNELIQIEHGEVRSQFKLRACN SVFTALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGELLGK ELADLPKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSI QQHVKITPVIGQGGKIRHFVSLKKLCCTTDNNKQIHKIHRDSG DNSQTEPHSFRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSM ARIHSMTIEAPITKVINIINAAQENSPVTVABALDRVLEILRT TELYSPQLGTKDEDPHTSDLVGGLMTDGLRRLSGNEYVFTKNV HQSHSHLAMPITINDVPPCISQLLDNEESWDFNIFELEAITHK RPLVYLGLKVFSRFGVCEFLNCSETTLRAWFQVIEANYHSSNA YHNSTHAADVLHATAFFLGKERVKGSLDQLDEVAALIAATVHD VDHPGRTNSFL\CNAGSELAVLYNDT\AV\LESHHTALAFQ\L TVKDTK\CNIFKNID/RGNHYRTLRQAIIDMVLATEMTKHFEH VNKFVNSINKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIK CADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPV FDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALMQHLADN YKHWKTLDDLKCKSLRLPSDRLKPSHRGGLLTDKGHCESQ

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
378	1117	1	3585	AFLSKVEEDDYPSEELLEDENAINAKRSKEKNPGNQGRQFDVN LQVPDRAVLGTIHPDPEIEESKQETSMILDSEKTSETAAKGVN TGGREPNTMVEKERPLADKKAQRPFERSDFSDSIKIQTPELGE VFQNKDSDYLKNDNPEEHLKTSGLAGEPEGELSKEDHENTEKY MGTESQGSAAAEPEDDSFHWTPHTSVEPGHSDKREDLLIISSF FKEQQSLQRFQKYFNVHELEALLQEMSSKLKSAQQESLPYNME KVLDKVFRASESQILSIAEKMLDTRVAENRDLGMNENNIFEEA AVLDDIQDLIYFVRYKHSTAEETATLVMAPPLEEGLGGAMEEM QPLHEDNFSREKTAELNVQVPEEPTHLDQRVIGDTHASEVSQK PNTEKDLDPGPVTTEDTPMDAIDANKQPETAAEEPASVTPLEN AILLIYSFMFYLTKSLVATLPDDVQPGPDFYGLPWKPVFITAF LGIASFAIFLWRTVLVVKDRVYQVTEQQISEKLKTIMKENTEL VQKLSNYEQKIKESKKHVQETRKQNMILSDEAIKYKDKIKTLE KNQEILDDTAKNLRVMLESEREQNVKNQDLISENKKSIEKLKD VISMNASEFSEVQIALNEAKLSEEKVKSECHRVQEENARLKKK KEQLQQEIEDWSKLHAELSEQIKSFEKSQKDLEVALTHKDDNI NALTNCITQLNLLECESESEGQNKGGNDSDELANGEVGGDRNE KMKNQIKQMMDVSRTQTAISVVEEDLKLLQLKL\RASVSTKC\ NLEDQVKKLEDDRNSLQAAKAGLEDECKTLRQKVEILNELYQQ KEMALQKKLSQEEYERQEREHRLSAADEKAVSAAEEVKTYKRR IBEMEDELQKTERSFKNQIATHEKKAHENWLKARAAERAIAEE KREAANLRHKLLDLTQKMAMLQEEPVIVKPMPGKPNTQNPPRR GPLSQNGSFGPSPVSGGECSPPLTVEPPVRPLSATLNRRDMPR SEFGSLDGPLPHPRWSAEASGKPSPSDPGSGTATMMNSSSRGS SPTRVLDEGKVNMAPKGPPPFPGVPLMSTPMGGPVPPPIRYGP PPQLCGPFGPRPLPPPFGPGMRPPLGLREFAPGVPPGRRDLPL
				HPRGFLPGHAPFRPLGSLGPREYFIPGTRLPPPTHGPQEYPPP PAVRDLLPSGSRDEPPPASQSTSQDCSQALKQSP

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
379	1118	3	2946	MAADSEPESEVFEITDFTTASEWERFISKVEEVLNDWKLIGNS LGKPLEKGIFTSGTWEEKSDEISFADFKFSVTHHYLVQESTDK EGKDELLEDVVPQSMQDLLGMNNDFPPRAHCLVRWYGLREFVV IAPAAHSDAVLSESKCNLLLSSVSIALGNTGCQVPLFVQIHHK WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLLDIFKSK IGCPLTPLPPVSIAIRFTYVLQDWQQYFWPQQPPDIDALVGGE VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDVYS DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRRKESTDE ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMVHT AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGTTS TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFYHG GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLLHQ KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQLVP DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNGQE SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQEPA PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMESFK AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSARMK IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQKP ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISHSS KVLHFPNPEDKKLEEIHQITNVEALIARARSLKAKFGTEKCE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVNAQ RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRTTV
380	1119	2333	670	SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARGQV CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIGF YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIAGK LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTGSP RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQ RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMGPE PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVDFP LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAPPN GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVLPC NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKPAP FQRHHLGFYIANSEGLSSNCHGLLGQFLNQDARLTEDPAGPSQ NLTHPLLLQVGEGPEAVLTVKGHQVPVVWKQRKIYNGEEQIDC WFARNNAAKLIDGEYKDYLBSHIGDENTURGGGMSREL
381	1120	102	426	VPLESLSCSHADNWKQELTKFISPDQLPVEFGGTMTDPDGNPK CLTKINYGGEVPKSYYLCKQVRLQYEHTRSVGRGSSLQVENEI LFPGCVLRCPEVLQHLQPGSF

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	710103	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	,
		sequence	sequence	
382	1121	3	3726	PAAPEHTDPSEPRGSVSCCSLLRGLSSGWSSPLLPAPVCNPNK
				AIFTVDAKTTEILVANDKACGLLGYSSQDLIGQKLTQFFLRSD
				SDVVEALSEEHMEADGHAAVVFGTVVDIISRSGEKIPVSVWMK
				RMRQERRLCCVVVLEPVERVSTWVAFQSDGTVTSCDSLFAHLH
		}		GYVSGEDVAGQHITDLIPSVQLPPSGQHIPKNLKIQRSVGRAR
1				DGTTFPLSLKLKSQPSSEEATTGEAAPVSGYRASVWVFCTISG
		1		LITLLPDGTIHGINHSFALTLFGYGKTELLGKNITFLIPGFYS
	}	ļ	[YMDLAYNSSLQLPDLASCLDVGNESGCGERTLDPWQGQDPAEG
			Ì	GQDPRINVVLAGGHVVPRDEIRKLMESQDIFTGTQTELIAGGQ
1	1	ł	ł	LLSCLSPQPAPGVDNVPEGSLPVHGEQALPKDQQITALGREEP
	[Ì	VAIESPGQDLLGESRSEPVDVKPFASCEDSEAPVPAEDGGSDA
				GMCGLCQKAQLERMGVSGPSGSDLWAGAAVAKPQAKGQLAGGS
				LLMHCPCYGSEWGLWWRSQDLAPSPSGMAGLSFGTPTLDEPWL
1	[[GVENDREELQTCLIKEQLSQLSLAGALDVPHAELVPTECQAVT
				APVSSCDLGGRDLCGGCTGSSSACYALATDLPGGLEAVEAQEV
1		İ		DVNSFSWNLKELFFSDQTDQTSSNCSCATSELRETPSSLAVGS
1				DPDVGSLQEQGSCVLDDRELLLLTGTCVDLGQGRRFRESCVGH
				DPTEPLEVCLVSSEHYAASDRESPGHVPSTLDAGPEDTCPSAE
				EPRLNVQVTSTPVIVMRGAAGLQREIQEGAYSGSCYHRDGLRL
1				SIQFEVRRVELQGPTPLFCCWLVKDLLHSQRDSAARTRLFLAS
				LPGSTHSTAAELTGPSLVEVLRARPWFEEPPKAVELEGLAACE
				GEYSQKYSTMSPLGSGAFGFVWTAVDKEKNKEVVVKFIKKEKV
				LEDCWIEDPKLGKVTLEIAILSRVEHANIIKVLDIFENQGFFQ
				LVMEKHGSGLDLFAFIDRHPRLDEPLASYIFRQVRAG\QSRLV
		1		SAVGYLRLKDIIHRDIKDENIVIAEDFTIKLIDFGSAAYLERG
				KLFYTFCGTIEYCAPEVLMGNPYRGPELEMWSLGVTLYTLVFE
		1		ENPFCELEETVEAAIHPPYLVSKELMSLVSGLLQPVPERRTTL
				EKLVTDPWVTQPVNLADYTWEEVFRVNKPESGVLSAASLEMGN
				RSLSDVAQAQELCGGPVPGEAPNGQGCLHPGDPRLLTS
383	1122	177	1365	PGTSAATCRFLSPPVISLSFTGLCISDLVVAVNGVWILVETFM
				LKGGNFFSKHVPWSYLVFLTIYGVELFLKVAGLGPVEYLSSGW
1	1	1		NLFDFSVTVFAFLGLLALALNMEPFYFIVVLRPLOLLRLFKLK
				ERYRNVLDTMFELLPRMASLGLTLLIFYYSFAIVGMEFFCGIV
				FPNCCNTSTVADAYRWRNHTVGNRTVVEEGYYYLNNFDNILNS
				FVTLFELTVVNNWYIIMEGVTSOTSHWSRLYFMTFYIVTMVVM
				TIIVAFILEAFVFRMNYSRKNODSEVDGGITLEKEISKEELVA
1		1	ļ	VLELYREARGASSDVTRLLETLSQMERYQQHSMVFLGRRSRTK
				SDLSLKMYOEEIOEWYEEHAREOEOOROLSSSAAPAAOOPPGS
Ì				RORSOTVT
	ــــــــــــــــــــــــــــــــــــــ			XX

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
384	1123	1	986	LAGVGTQAPPRRPGGEMAAGQNGHEEWVGSAYLFVESSLDKVV LSDAYAHPQQKVAVYRALQAALAESGGSPDVLQMLKIHRSDPQ LIVQLRFCGRQPCGRFLRAYREGALRAALQRSLAAALAQHSVP LQL\DLRAGAERLEALLADEERCLSCILAQQPDRLRDEELAEL EDALRNLKCGSGARGGDGEVASAPLQPPVPSLSEVKPPPPPPP AQTFLFQGQPVVNRPLSLKDQQTFARSVGLKWRKVGRSLQRGC RALRDPALDSLAYEYEREGLYEQAFQLLRRFVQAEGRRATLQR LVEALEENELTSLAEDLLGLTDPNGGLA
385	1124	2409	399	SSKPKLKKRFSLRSVGRSVRGSVRGILQWRGTVDPPSSAGPLE TSSGPPVLGGNSNSNSSGGAGTVGRGLVSDGTSPGERWTHRFE RLRLSRGGGALKDGAGMVQREELLSFMGAEEAAPDPAGVGRGG GVAGPPSGGGQPQWQKCRLLLRSEGEGGGGSRLEFFVPPKAS RPRLSIPCSSITDVRTTTALEMPDRENTFVVKVEGPSEYIMET VDAQHVKAWVSDIQECLSPGPCPATSPRPMTLPLAPGTSFLTR ENTDSLELSCLNHSESLPSQDLLLGPSESNDRLSQGAYGGLSD RPSASISPSSASIAASHFDSMELLPPELPPRIPIEEGPPAGTV HPLSAPYPPLDTPETATGSFLFQG\EPEGGEGDQPLSGYPWFH GMLSRLKAAQLVLTGGTGSHGVFLVRQSETRRGEYVLTFNFQG KAKHLRLSLNEEGQCRVQHLWFQSIFDMLEHFRVHPIPLESGG SSDVVLVSYVPSSQRQQGEQSRSAGEEVPVHPRSEAGSRLGAM RGCAREMDATPNASCTLMPFGASDC\EPTTSHDPPQPPEPPSW TDPPQPGEE\EASR\APGSGGQQAAAAAKERQEKEKAGG\GGV PEE\LVPVV*LVPVGELGEGHRPQAQEAQGRLGPGGDAGVPP\ MVQLQQSPLGG\DGEEGGHPR\AI\NNQYSFV
386	1125	2204	1042	FRAPVGTAARSPQVVIRRLPPGLTKEQLEEQLRPLPAHDYFEF FAADLSLYPHLYSRAYINFRNPDDILLFRDRFDGYIFLDSKDP EYKKFLETYCVEEEKTSANPETLLGEMEAKTRELIARRTTPLL EYIKNRKLEKQRIREEKREERRRELEKKRLREEEKRRRREEE RCKKKETDKQKKIAEKEVRIKLLKKPEKGEEPTTEKPKERGEE IDTGGGKQESCAPGAVVKARPMEGSLEEPQETSHSGSDKEHRD VERSQEQESEAQRYHVDDGRRHRAHHEPERLSRRSEDEQRWGK GPGQDRGKKGSQDSGAPGEAMERLGRAQRCDDSPAPRKERLAN KDRPALQLYDPGARFRARECGGNRRICKAEGSGTGPEKREEAE
387	1126	176	800	GVWGVCVSGLLQVGSQRAQAWRAWSPMETPLTGTFLWPHIPQG LFFDDSYGFYPGQVLIGPAKIFSSVQWLSGVKPVLSTKSKFRV VVEEVQVVELKVTWITKSFCPGGTDSVSPP/PSVITQENLGRV KRLGCFDHAQR/HAWGALSVCLPSQGRASQDCLGMSRKKLRPG GGLYGQEGEAPVEEAGCADHVMLPRHPVFPGPFHGRPR

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
388	1127		2017	FRDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAV ATCRPDEFQCSDGNCIHGSRQCDREYDCKDMSDEVGCVNVTLC EGPNKFKCHSGECITLDKVCNMARDCRDWSDEPIKECGTNECL DNNGGCSHVCNDLKIGYECLCPDGFQLVAQRRCEDIDECQDPD TCSQLCVNLEGGYKCQCEEGFQLDPHTKACKAVGSIAYLFFTN RHEVRKMTLDRSEYTSLIPNLRNVVALDTEVASNRIYWSDLSQ RMICSTQLDRAHGVSSYDTVISRDIQAPDGLAVDWIHSNIYWT DSVLGTVSVADTKGVKRKTLFRENGSKPRAIVVDPVHGFMYWT DWGTPAKIKKGGLNGVDIYSLVTENIQWPNGITLDLLSGRLYW VDSKLHSISSIDVNGGNRKTILEDEKRLAHPFSLAVFEDKVFW TDIINEAIFSANRLTGSDVNLLAENLLSPEDMVLFHNLTQPRG VNWCERTTLSNGGCQYLCLPAPQINPHSPKFTCACPDGMLLAR DMRSCLTEG\EAAVATQETSTVRLKVSSTAVRTQHTTTRPVPD TSRLPGATPGLTTVEIVTMSHQALGDVAG\RGN\EKKPSSVRA LSIVLPIV\LLVFLCLGVFLLWKNWRLKNINSINFDNPVYQKT TEDEVHICHNQDGYSYPSRQMVSLEDDVA
389	1128	2299	1148	RIPGLGPPGSPPPPPHVRGMPGCPCPGCGMAGPRLLFLTALAL ELLGRAGGSQPALRSRGTATACRLDNKESESWGALLSGERLDT WICSLLGSLMVGLSGVFPLLVIPLEMGTMLRSEAGAWRLKQLL SFALGGLLGNVFLHLLPEAWAYTCSASPGGEGQSLQQQQQLGL WVIAGILTFLALEKMFLDSKEEGTSQAPNKDPTAAAAALNGGH CLAQPAAEPGLGAVVRSIKVSGYLNLLANTIDNFTHGLAVAAS FLVSKKIGLLTTMAILLHEIPHEVGDFAILLRAGFDRWSAAKL QLSTALGGLLGAGFAICTQSPKGVEETAAWVLPFTSGGFLYIA LVNVLPDLLEEEDPWRSLQQLLLLCAGIVVMVLFSLFVD
390	1129	1	523	GKVSAGQAGADRTLRRAPEPRFSQEPTGNSAYPQLRPFLDPQG RDLKPSALVPPTRSHTGRRPWLHTQPLPGPQGRAWGPTC/TPA CVDRVLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYM LHAEEGLCPDWKAEVEEFSFITQLSGLTDHLPVAMRLMVSSGE EEA
391	1130	1459	765	PCGGIRLSASEAATLFGYLVVPAGGGGTFLGGFFVNKLRLRGS AVIKFCLFCTVVSLLGILVFSLHCPSVPMAGVTASYGGSLLPE GHLNLTAPCNAACSCQPEHYSPVCGSDGLMYFSLCHAGCPAAT ETNVDGQKVSGAAAYRPCPPLDPGKGPPCLPLVIGAIVGLPRC TETVAVSLRIFPLVLAM\HCREMHFNLSEKAPPSGFHIRCNFL YIPQQHSCTNGNSTMCP
392	1131	1668	962	LLRKVGAPGGARGVIRLLDWFERPDGFLLVLERPEPA\QD\LF DFITERGALDEPLARRF\FAQVLAAVRHCHSCGVVHRDIKDEN LLVDLRSGELKLIDFGSGALLKDTVYTDFDGTRVYSPPEWIRY HRYHGRSATVWSLGVLLYDMVCGDIPFEQDEEILRGRLLFRRR VSPECQQLIRWCLSLRPSERPSLDQIAAHPWMLGADGGAPESC DLRLCTLDPDDVASTTSSSESL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid	Predicted end nucleotide location corre- sponding to first amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		residue of amino acid	residue of amino acid	
		sequence	sequence	
393	1132	3	817	GKNSQKASPVDDEQLSVCLSGFLDEVMKKYGSLVPLSEKEVLG RLKDVFNEDFSNRKPFINREITNYRARHQKCNFRIFYNKHMLD MDDLATLDGQNWLNDQVINMYGELIMDAVPDKVHFFNSFFHRQ LVTKGYNGVKRWTKKVDLFKKSLLLIPIHLEVHWSLITVTLSN RIISFYDSQGIHFKFCVENIRKYLLTEAREKNR\LNLQGWQTA VTKCIPQQKNDSDCGVFVLQYCKCLAL\KQPFQFSQEDMPRVR KRIYKELCECRLMD
394	1133	1252	628	PPGG*QGSAAKHR/FP/KGYRHPALEARLGRRRTVQEARALLR CRRAGISAPVVFFVDYASNCLYMEEIEGSVTVRDYIQSTMETE K\TPQGLSNLAKTIGQVLARMHDEDLIHGDLTTSNMLLKPPLE QLNIVLIDFGLSFISALPEDKGVDLYVLEKAFLSTHPNTETVF EAFLKSYSTSSKKARPVLKKLDEVRLRGKKRSMVG
395	1134	2	1595	RACVFRPEDMMQGEAHPSASLIDRTIKMRKETEARKVVLAWGL LNVSMAGMIYTEMTGKLISSYYNVTYWPLWYIELALASLFSLN ALFDFWRYFKYTVAPTSLVVSPGQQTLLGLKTAVVQTTPPHDL AATQIPPAPPSPSIQGQSVLSYSPSRSPSTSPKFTTSCMTGYS PQLQGLSSGGSGSYSPGVTYSPVSGYNKLASFSPSPPSPYPTT VGPVESSGLRSRYRSSPTVYNSPTDKEDYMTDLRTLDTFLRSE EEKQHRVKLGSPDSTSPSSSPTFWNYSRSMGDYAQTLKKFQYQ LACRSQAPCANKDEADLSSKQAAEEVWARVAMNRQLLDHMDSW TAKFRNWINETILVPLVQEIESVSTQMRRMGCPELQIGEASIT SLKQAALVKAPLIPTLNTIVQYLDLTPNQEYLFERIKELSQGG CMSSFRWNRGGDFKGRKWDTDLPTDSAIIMHVFCTYLDSRLPP HPKYPDGKTFTSQHFVQTPNKPDVTNENVFCIYQSAINPPHYE LIYQRHVYIPAKGQK
396	1135	16	1542	SSAVEFINRNNSVVQVLLAAGADPNLGDDFSSVYKTAKEQGIH SLEVLITREDDFNNRLNNRASFKGCTALHYAVLADDYRTVKEL LDGGANPLQRNEMGHTPLDYAREGEVMKLLRTSEAKYQEKQRK REAEERRFPLEQRLKEHIIGQESAIATVGAAIRRKENGWYDE EHPLVFLFLGSSGIGKTELAKQTAKYMHKDAKKGFIRLDMSEF QERHEVAKFIGSPPGYVGHEEGGQLTKKLKQCPNAVVLFDEVD KAHPDVLTIMLQLFDEGRLTDGKGKTIDCKDAIFIMTSNVASD EIAQHALQLRQEALEMSRNRIAENLGDVQISDKITISKNFKEN VIRPILKAHFRRDEFLGRINEIVYFLPFCHSELIQLVNKELNF WAKRAKQRHNITLLWDREVADVLVDGYNVHYGARSIKHEVERR VGNQLAAAYEQDLLP\GGCTLRITVEDSDKQLLKSPELPSPQA EKRLPKLRLEIIDKDSKTRRLDIRAPLHPEKVCNTI
397	1136	1848	1602	SSCDRERHGSLGMMSGSFILCLALVTRWSPQASSVPLAVYESK TRKSYRSQRDRDGKDRSQGMGLSLLVETRKLLLSANQG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
398	1137	1497	717	HTPMA/FFL/SFLSTSET/VYTFVILPKMLINLLSVARTISFN CCALQMFFFLGFAITNCLLLGVMGYDRYAĄICHPLHYPTLMSW QVCGKLAAACAIGGFLASLTVVNLVFSLPFCSTNKVNHYFCDI SAVILLACTNTDVNGFVIFICGVLVLVVPFLFICVSYFCILRT ILKIPSAEGRRKAFSTCASHLSVVIVHYGCASFIYLRPTANYV SNKDRLVTVTYTIVTPLLNPMVYSLRNKDVQLAIRKVLGKKGS LKLYN
399	1138	2	1185	RPPAATRYPREKLKSMTSRDNYKAGSREAA\AAAAAAVAAAAA AAAAAEPYPVSGAKRKYLEDSDPERSDYEEQQLQEEEEARKVK SGIRQMRLFSQDECAKIEARIDEVVSRAEKGLYNEHTVDRAPL RNKYFFGEGYTYGAQLQKRGPGQERLYPPGDVDEIPEWVHQLV IQKLVEHRVIPEGFVNSAVINDYQPGGCIVSHVDPIHIFERPI VSVSFFSDSALCFGCKFQFKPIRVSEPVLSLPVRRGSVTVLSG YAADEITHCIRPQDIKERRAVIILRKTRLDAPRLETKSLSSSV LPPSYASDRLSGNNRDPALKPKRSHRKADPDAAHRPRILEMDK EENRRSVLLPTHRRRGSFSSENYWRKSYESSEDCSEAAGSPAR KVKMRRH
400	1139	60	1699	VTWHFYFCSDHKNGHYIIPQMADRSRQKCMSQSLDLSELAKAA KKKLQALSNRLFEELAMDVYDEVDRRENDAVWLATQNHSTLVT ERSAVPFLPVNPEYSATRNQGRQKLARFNAREFATLIIDILSE AKRRQQGKSLSSPTDNLELSLRSQSDLDDQHDYDSVASDEDTD QEPLRSTGATRSNRARSMDSSDLSDGAVT\LQEYLELKKALAT SEAKVQQLMKVNSSLSDEL\RRLQREHFAPI\THKLQAENLQL RQPPGPVPTPPLPSERAEHTPMAPGGSTHRRDRQAFSMYEPGS ALKPFGGPPGDELTTRLQPFHSTELEDDAIYSVHVPAGLYRIR KGVSASAVPFTPSSPLLSCSQEGSRHTSKLSRHGSGADSDYEN TQSGDPLLGLEGKRFLELGKEEDFHPELESLDGDLDPGLPSTE DVILKTEQVTKNIQELLRAAQEFKHDSFVPCSEKIHLAVTEMA SLFPKRPALEPVRSSLRLLNASAYRLQSECRKTVPPEPGAPVD FQLLTQQVIQCAYDIAKAAKQLVTITTREKKQ

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Ì		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	
Ì	1	residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
	[acid	acid	
	ŀ	sequence	sequence	
401	1140	1	1863	RYLSYGSGPKRFPLVDVLQYALEFASSKPVCTSPVDDIDASSP
			1	PSGSIPSQTLPSTTEQQGALSSELPSTSPSSVAAISSRSVIHK
				PFTQSRIPPDLPMHPAPRHITEEELSVLESCLHRWRTEIENDT
				RDLQESISRIHRTIELMYSDKSMIQVPYRLHAVLVHEGQANAG
	ļ			HYWAYIFDHRESRWMKYNDIAVTKSSWEELVRDSFGGYRNASA
.				YCLMYINDKAQFLIQEEFN/K/ETGQPLVGIETLPPDLRDFVE
	Į			EDNQRFEKELEEWDAQLAQKALQEKLLASQKLRESETSVTTAQ
1	İ			AAGDPKYLEQPSRSDFSKHLKEETIQIITKASHEHEDKSPETV
				LQSAIKLEYARLVKLAQEDTPPETDYRLHHVVVYFIQNQAPKK
1				IIEKTLLEQFGDRNLSFDERCHNIMKVAQAKLEMIKPEEVNLE
}				EYEEWHQDYRKFRETTMYLIIGLENFQRESYIDSLLFLICAYQ
			ļ	NNKELLSKGLYRGHDEELISHYRRECLLKLNEQAAELFESGED
				REVNNGLIIMNEFIVPFLPLLLVDEMEEKDILAVEDMRNRWCS
1				YLGQEMEPHLQEKLTDFLPKLLDCSMEIKSFHEPPKLPSYSTH
				ELCERFARIMLSLSRTPADGR
402	1141	1	465	AQVYVRMDSFDEDLARPSGLLAQERKLCRDLVHSNKKEQEFRS
				IFQHIQSAQSQRSPSELFAQHM\VPIVHHVKEHHFGSSGMTLH
1				ERFT\KYLKRG\TEQEAAKNKKSPEIHRRIDISPSTFRKHGLA
				HDEMKSPREPGYKDGHNSKNELQRVNFY .
403	1142	2	369	TYTFCFSLMI\ILLTIIQGLILEAFGELRDQLDQVKEDMETKC
				FICGIGNDYFDTVPHGFETHTLQEHNLANYLFFLMYLINKDET
			<u> </u>	EHTGQESYVWKMYQERCWEFFPAGDCFRKQYEDQLN
404	1143	3115	557	FRRKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKV
				EKHGPGRWVVLAAVLIGLLLVLLGIGFLVWHLQYRDVRVQKVF
			İ	NGYMRITNENFVDAYENSNSTEFVSLASKVKDALKLLYSGVPF
]	į		1	LGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEE
				RVVMLPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLH ARGVELMRFTTPGFPDSPYPAHARCQWALRGDADSVLSLTFRS
			1	
	1			FDLASCDERGRHLV\TVYNT\LSPMEPHA\LVQLCGTYPPSYN LTFHS\S\QNVLLITLITNTERRHPG\FEATFFQLPRMSSCGG
				RLRKAOGTFNSPYYPGHYPPNIDCTWNIEVPNNOHVKVRFKFF
	İ			YLLEPGVPAGTCPKDYVEINGEKYCGERSOFVVTSNSNKITVR
				FHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRC
1				DGWADCTDHSDELNCSCDAGHQFTCKNKFCKPLFWVCDSLNDC
1				GDNSDEQGCSCP\AQTFRCSNGKCLSKSQQCNGKDDCGDGSDE
	-			ASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDE
				KDCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICG
	1			ASLISPNWLVSAAHCYIDDRGFRYSDPTQWTAFLGLHDQSQRS
	1			APGVQERRLKRIISHPFFNDFTFDYDIALLELEKPAEYSSMVR
				PICLPDASHVFPAGKAIWVTGWGHTOYGGTGALILOKGEIRVI
				NOTTCENLLPOOITPRMMCVGFLSGGVDSCOGDSGGPLSSVEA
				DGRIFOAGVVSWGDGCAQRNKPGVYTRLPLFRDWIKENTGV
· ·	1	1	1	DQYTEXHQAAQMQDQCHXWWEQAIIKDEDEKDMTVGWIQA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
405	1144	1	424	RHEEDLGNLWENTRFTDCSFFVRGQEFKAHKSVLAARSPVFNA MFEHEMEESKKNRVEINDLDPEVFKEMMRFIYTGRAPNLDKMA DNLLAAADKYALERLKVMCEKALCSNLSVENVADTLVLADLHS \AEQLKAQAIDFINRCSVLRQLGCKDGKNWNSNQATDIMETSG GKSMIQSHPHLVAEAFRALASAQGPQFGIPRKRLKQS*NLGNL WENTRFTDCSFFVRGQEFKAHKSVLAARSPVFNAMFEHEMEES KKNRVEINDLDPEVFKEMMRFIYTGRAPNLDKMADNLLAAADK YALERLKVMCEKALCSNLSVENVADTLVLADLHSGRTVESTSH RLY
406	1145	1	1021	QRGGTPGKFQEDSGSVDWALGPFWGIFQADFGCMRFYLSAQTS DPVLRM*WGPSPISHPTSLCPGGGGAGQTTGSLCLGQQCCPLS CPNIPSRHKRWRL*AALVAGSRGSCTLRS*R*RTPLPVTRNLP R/CHLHLHPTGDLRVHVHQHCLLHGHVPPGAALLQCGGCDLRG EAAGLLFLGHACLRGSVNLRRDQWLPV\PYSRLCFSGAREGHL PSLLAMIHVRHCTPIPALLVC\PIKVNLLIPVAYLVFWAFLLV FSFISEHMVCGVGVIIILTGVPIFFLGVFWRSKPKCVHRLTES MTHWGQELCFVVYPQDAPEEEENGPCPPSLLPATDKPSKPQ
407	1146	2	1280	AAALVAEYLALLEDHRHLPVGCVSFQNISSNVLEESAISDDIL SPDEEGFCSGKHFTELGLVGLLEQAAGYFTMGGLYEAVNEVYK NLIPILEAHRDYKKLAAVHGKLQEAFTKIMHQSSGWERVFGTY FRVGFYGAHFGDLDEQEFVYKEPSITKLAEISHRLEEFYTERF GDDVVEIIKDSNPVDKSKLDSQKAYIQITYVEPYFDTYELKDR VTYFDRNYGLRTFLFCTPFTPDGRAHGELPEQHKRKTLLSTDH AFPYIKTRIRVCHREETVLTP\VEVAIEDMQKKTRELAFATEQ DPPDAKMLQMVLQGSVGPTVNQGPLEVAQVFLAEIPEDPKLFR HHNKLRLCFKDF*KKCEDALRKNKALIGPDQKEYHRELERNY CRLREALQPLLTQRLPQLMAPTPPGLRNSLNRASFRKADL
408	1147	55	651	GEGQQWQSTPLSPLQPTVADFLNLAWWTSAAAW*VLSGRWVEK VLPGREGSEEK*GMASSSADHLHSAPRALQ\SLFQQLLYGLIY HSWFQAGR*GFGGASSSPGPQSELRRLHGEGGVYD*GRPETLP GSVGGAEALWALADPAEAEGSPETRESSCVMKQTQYYFGSVNA SYNAIIDCGNCSRCWQWGGTRGQGRNL
409	1148	1855	904	VAGIPACFDN/FTEALAETACRQMGYSSKPTFRAVEIGPDQDL DVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGESLKTPRV VGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFR KHTDVFNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDI ALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWGFTKQ NGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYT KVSAYLNWIYNVWKAEL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino	Predicted end nucleotide location corre- sponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
	1	acid sequence	acid sequence	
410	1149	3	964	TISTVRWNSRIGMVLGVAIQKRAV\PGLY\AFEEAYARADKEA PRPCHKGSWCSSNQLCRECQAFMAHTMPKLKAFSMSSAYNAYR AVYAVAHGLHQLLGCASGACSRGRVYPWQLLEQIHKVHFLLHK DTVAFNDNRDPLSSYNIIAWDWNGPKWTFTVLGSSTWSPVQLN INETKIQWHGKDNQVPKSVCSSDCLEGHQRVVTGFHHCCFECV PCGAGTFLNKS/SYLGKDLPENYNEAKCVTFSLLFNFVSWIAF FTTASVYDGKYLPAANMMAGLSSLSSGFGGYFLPKCYVILCRP DLNSTEHFQASIQDYTRCGST
411	1150	2	1378	VARGAFHPKMGPSFPSPKPGSERLSFVSAKQSTGQDTEAELQD ATLALHGLTVEDEGNYTCEFATFPKGSVRGMTWLRVIAKPKNQ AEAQKVTFSQDPTTVALCISKEGRPPARISWLSSLDWEAKETQ VSGTLAGTVTVTSRFTLVPSGRADGVTVTCKVEHESFEEPALI PVTLSVRYPPEVSISGYDDNWYLGRTDATLSCDVRSNPEPTGY DWSTTSGTFPTSAVAQGSQLVIHAVDSLFNTTFVCTVTNAVGM GRAEQVIFVRETPNTAGAGATGGIIGGIIAAIIATADA\TGIL ICRQQRKEQTLQGAEEDEDLEGPPSYKPPTPKAKLEAQEMPSQ LFTLGASEHSPLKTPYFDAGASCTEQEMPRYHELPTLEERSGP LHPGATSLGSPIPVPPGPPAVEDVSLDLEDEEGEEEEEYLDKI NPIYDALSYSSPSDSYQGKGFVMSRAMYV
412	1151	1	1828	GTRLREDKNHNMYVAGCTEVEVKSTEEAFEVFWRGQKKRRIAN THLNRESSRSHSVFNIKLVQAPLDADGDNVLQEKEQITISQLS LVDLAGSERTNRTRAEGNRLREAGNINQSLMTLRTCMDVLREN QMYGTNKMVPYRDSKLTHLFKNYFDGEGKVRMIVCVNPKAEDY EENLQVMRFAEVTQEVEVARPVDKAICGLTPGRRYRNQPRGP\ IGNEPLVTDVVLQSFPPLPSCEILDINDEQTLPRLIEALEKRH NLRQMMIDEFNKQSNAFKALLQEFDNAVLSKENHMQGKLNEKE KMISGQKLEIERLEKKNKTLEYKIEILEKTTTIYEEDKRNLQQ ELETQNQKLQRQFSDKRRLEARLQGMVTETTMKWEKECERRVA AKQLEMQNKLWVKDEKLKQLKAIVTEPKTEKPERPSRERDREK VTQRSVSPSPVPLLFQPDQNAPPIRLRHRRSRSAGDRWVDHKP ASNMQTETVMQPHVPHAITVSVANEKALAKCEKYMLTHQELAS DGEIETKLIKGDIYKTRGGGQSVQFTDIETLKQESPNGSRKRR SSTVAPAQPDGAESEWTDVETRCSVAVEMRAGSQLGPGYQHHA QPKRKKP
413	1152	1	336	PFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSQMS/KGK STPVSQLGSADFPEAPDPFQPLGADSGDPFQSKKGFGDPFSGK DPFVPSSAAKPSKASASGFADFTSVS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
414	1153	1	1334	MSLMVVSMACVGLFLVQRAGPHMGGQDKPFLSAWPSAVVPRGG HVTLRCHYRHRFNNFMLYKEDRIHIPIFHGRIFQESFNMSPVT TAHAGNYTCRGSHPHSPTGWSAPSNPVVIMVTGNHRKPSLLAH PGPLVKSGERVILQCWSDIMFEHFFLHKEGISKDPSRLVGQIH DGVSKANFSIGPMMQDLAGTYRCYGSVTHSPYQLSAPSDPLDI VITGLYEKPSLSAQPGPTVLAGESVTLSCSSRSSYDMYHLSRE GEAHERRFSAGPKVNGTFQADFPLGPATHGGTYRCFGSFRDSP YEWSNSSDPLLVSVTGNPSNSWPSPTEPSSETGNPRHLHVLIG TSVVIILFILLLFFLLHRWCSN\KKNAAVMDQESAGNRTANSE DSDEQDPQEVTYTQLNHCVFTQRKITRPSQRPKTPPTDIIVYT ELPNAESRSKVVSCP
415	1154	1	1570	ACICATDIVSCTNKNLSKVPGNLFRLIKRLDLSYNRIGLLDSE WIPVSFAKLNTLILRHNNITSISTGSFSTTPNLKCLDLSSNKL KT\VKNAVFQELKVLEVLLLYNNHISYLDPSAFGGLSQLQKLY LSGNFLTQFPMDLYVGRFKLAELMFLDVSYNRIPSMPMHHINL VPGKQLRGIYLHGNPFVCD\CSLVSLLVFWYRRHFSSVMDFKN DYTCRLWSDSRHSRQVLLLQDSFMNCSDSIINGSFRALGFIHE AQVGERLMVHCDSKTGNANTDFIWVGPDNRLLEPDKEMENFYV FHNGSLVIESPRFEDAGVYSCIAMNKQRLLNETVDVTINVSNF TVSRSHAHEAFNTAFTTLAACVASIVLVLLYLYLTPCPCKCKT KRQKNMLHQSNAHSSILSPGPASDASADERKAGAGKRVVFLEP LKDTAAGQNGKVRLFPSEAVIAEGILKSTRGKSDSDSVNSVFS DTPFVAST
416	1155	2	1928	ASDFIRSLDHCGYLSLEGVFSHKFDFELQDVSSVNEDVLLTTG LLCKYTAQRFKPKYKFFHKSFQEYTAGRRLSSLLTSHEPEEVT KGNGYLQKMVSISDITSTYSSLLRYTCGSSVEATRAVMKHLAA VYQHGCLLGLSIAKRPLWRQESLQSVKNTTEQEILKAININSF VECGIHLYQESTSKSALSQEFEAFFQGKSLYINSGNIPDYLFD FFEHLPNCASALDFIKLGFYGGAMASWEKAAEDTGGIHMEEAP ETYIPSRAVSLFFNWKQEFRTLEVTLRDFSKLNKQDIRYLGKI FSSATSLRLQIKRCAGVAGSLSLVLSTCKNIYSLMVEASPLTI EDERHITSVTNLKTLSIHDLQNQRLPGGLTDSLGNLKNLTKLI MDNIKMNEEDAIKLAEGLKNLKKMCLFHLTHLSDIGEGMDYIV KSLSSEPCDLEEIQLVSCCLSANAVKILAQNLHNLVKLSILDL SENYLEKDGNEALHELIDRMNVLEQLTALMLPWGCDVQGSLSS LLKHLEEVPQLVKLGLKNWRLTDTEIRILGAFFGKNPLKNFQQ LNLAGNRVSSDGWLAFMGVFENLKQLVFFDFSTKEFLPDPALV RKLSQVLSKLTFLQEARLVGWQFDDDDLSVITGAFKLVTA
417	1156	342	718	ASDRKVAMTCDCFWFRTMLDQHASCMEVGTERERQAG\GLVMF DPSGFPTGEKVLQDDEFTCDLFRFLQLLCEGHNSGL*VPGTSD DTKA*IMFSSQ**QEPVSSNYASF*RQQIILEHGSALGSG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
418	1157	1	135	EITHIVGETAAFLCPRLRLRRGGKDGSPKPGFLASVIPVDRRP GE*DITHIVGETAAFLCPRLRLRRGGKDGSPKPGFLASVIPVD RRPGE
419	1158	173	943	SKFIFYVDSQSMIFFFQTPTRHKVLIMEFCPCGSLYTVLEEPS NAYGLPESEFLIVLRDVVGGMNHLRENGIVHRDIKPGNIMRVI GEDGQSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPDMYERA VLRKDHQ\KKYGAT\VDLW\SIGVTFYQGKPTGS\LAI*HPFE GASVRNKASDGIKIITGKGLLGAIS\GVQKSKKNG\PI\DWEW EDMPVSCSPSSGVLRVPNLPPVLA\NILESRSRKKCWGF*PSF LQEN
420	1159	987	500	GSTISCERSLRSLWTAHWALPEMDSRIPYDDYPVVFLPAYENP PAWIPPHERVHHPDYNNELTQFLPRTITLKKPPGAQLGFNIRG GKASQLGIFISKVIPDSDAHRAGLQEGDQVLAVNDVDFQDIEH SKAVEILKTAREISMRVRFFPYNYHRQKERTVH
421	1160	3	890	HEQVSALHRRIKAIVEVAAMCGVNIICFQEAWTMPFAFCTREK LPWTEFAESAEDGPTTRFCQKLAKNHDMVVVSPILERDSEHGD VLWNTAVVISNSGAVLGKTRKNHIPRVGDFNESTYYMEGNLGH PVFQTQFGRIAVNICYGRHHPLNWLMYSINGAEIIFNPSATIG ALSESLWPIEARNAAIANHCFTCAINRVGTEHFPNEFTSGDGK KAHQDFGYFYGSSYVAAPDSSRTPGLSRSRDGLLVAKLDLNLC QQVNDVWNFKMTGRYEMYARELAEAVKSNYSPTIVKE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
422	1161	5214	352	MAKSGGCGAGAGVGGGGALTWVNNAAKKEESETANKNDSSKK LSVERVYQKKTQLEHILLRPDTYIGSVEPLTQFMWYDEDVGM NCREVTFVPGLYKIFDEILVNAADNKQDKNMTCIKVSIDPES NIISIWNGKGIPVVEHKVEKVYVPALIFGQLLTSSNYDDDEK KVTGGRNGYGAKLCNIFSTKFTVETACKEYKHSFKQTWMNNMM KTSEAKIKHFDGEDYTCITFQPDLSKFKMEKLDKDIVALMTRR AYDLAGSCRGVKVMFNGKKLPVNGFRSYVDLYVKDKLDETGVA LKVIHELANERWDVCLTLSEKGFQQISFVNSIATTKGGRHVDY VVDQVVGKLIEVVKKKNKAGVSVKPFQVKNHIWVFINCLIENP TFDSQTKEMMTLQPKSFGSKCQLSEKFFKAASNCGIVESILNW VKFKAQTQLNKKCSSVKYSKIKGIPKLDDANDAGGKHSLECTL ILTEGDSAKSLAVSGLGVIGRDRYGVFPLRGKILNVREASHKQ IMENAEINNIIKIVGLQYKKSYDDAQSLKTLRYGKIMIMTDQD QDGSHIKGLLINFIHHNWPSLLKHGFLEEFITPIVKASKNKQE LSFYSIPEFDEWKKHIENQKAWKIKYYKGLGTSTAKEAKEYFA DMERHRILFRYAGPEDDAAITLAFSKKKIDDRKEWLTNFMEDR RQRRLHGLPEQFLYGTATKHLTYNDFINKELILFSNSDNERSI PSLVDGFKFGQRKVLFTCFKRNDKREVKVAQLAGSVAEMSAYH HGEQALMMTIVNLAQNFVGSNNINLLQPIGQFGTRLHGGKDAA SPRYIFTMLSTLARLLFPAVDDNLLKFLYDDNQRVEPEWYIPI IPMVLINGABGIGTGWACKLPNYDAREIVNNVRRMLDGLDPHP MLPNYKNFKGTIQELGQNQYAVSGEIFVVDRNTVEITELPVRT WTQVYKEQVLEPMLNGTDKTPALISDYKEYHTDTTVKFVVKMT EEKLAQAEAAGLHKVFKLQTTLTCNSMVLFDHMGCLKKYETVQ DILKEFFDLRLSYYGLRKEWLVGMLGAEFTKLNNQAFFILEKI QGKITI*NRSKKDLIQMLVQRGYESDPVKAWKEAQEKAAEEDE TQNQHDDSSDSGTPSGPDFNYILNMSLWSLTKEKVEELIKQR DAKGREVNDLKRKSPSDLWKEDLAAFVEELDKVESQEREDVLA GMSGKAIKGKVVGKPKVKKLQLEETMPSPYGRRIIPEITAMKAD ASKKLLKKKGDLDTAAVKVEFDEEFSGAPVEGAGEEALTPSV PINKGPKPKREKEPGTRVRKTPTSSGKPSAKKVKKRNPWSDD ESKSESDLEETEPVVIPRDSLLRRAAAERPKYTFDFSEEEDDD ADDDDDNNDLEELKVKASPITNDGEDEFVPSDGLDKDEYTFS PGKSKATPEKSLHDKKSQDFGNLFSFPSYSQKSEDDSAKFDSN EEDSASVFSPSFGLKQTDKVPSKTVAAKKGKPSSDTVPKPKRA PKQKKVVEAVNSDSDSEFGIPKKTTTPKGKGRGAKKRKASGE NGGDYNPGRKTSKTTSKKPKKTSFDQDSVDIFPSDFPTEPPS LPRTGRARKEVKYPAESDEEEDDVDFAMFN
423	1162	1	219	KGCLAASFNCIFLYTGELYPTMIR*VEA*WENDSLFLGKDILL CTGQTPELNQVHPSPKAPPNTHHCKAHSSH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
424	1163	1454	446	ENSFECKDCGKAFSRGYQLSHHQKIHTGEKPYECKECKKAFRW GNQLTQHQKIHTGEKPYECKDCGKAFRWGSSLVIHKRIHTGEK PYECKDCGKAFRRGDELTQHQRFHTGEKDYECKDCGKTFSRVY KLIQHKRIHSGEKPYECKDCGKAFICGSSLIQHKRIHTGEKPY ECQECGKAFTRVNYLTQHQKIHTGEKPHECKECGKAFRWGSSL VKHERIHTGEKPYKCTECGKAFNCGYHLTQHERIHTGETPYKC KECGKAFIYGSSLVKHERIHTGVKPYGCTECGKSFSHGHQLTQ HQKTHSGAKSYECKECGKACNHLNHLREHQRIHNS
425	1164	826	407	HQYLDDLYPLHVMTILLKSHFFTMLKRPVGSSSFASLPFYHQS ILLRKNQMKRKKTQQDLTHINWTLQAVSIQTCIWLQKKPSSYF HQLPNQVL*PENSGPESCLYDLAAVVVHHGSG
426	1165	464	29	XLDPDTLPAVATLLMDVMFYSNGVKDPMATGDDCGHIRFFSFS LIEGYISLVMDVQTQQRFPSNLLFTSASGELWKMVRIGGQPLG FGPVWESGPTGPTSPLILPVTPSSSHRQAASQVTTTKQGQWLC LKRPSARSPDHTACLG*
427	1166	649	901	EAPLTSVCFSLERRFGSSSNTTSFGTLASQNAPTFGSLSQQTS GFGTQSSGFSGFGSGTGGFSFGSNNS*VSPFLSLTLIKSIK
428	1167	3	340	EEPQGSPIWVWLAGSLTSVSCFLPFQRMRIKPHQGQYIGEMSF LQHHKGECRPQKD*ARQENPCGPCSERRKHLLGQDPKTCKCSC KNTDSRCKARPLELNERTCRCDKPRR
429	1168	355	1312	TLWAGPGLCPQSHSSSSVPAPWEPHVERALRTDRNQGQRPLLS ASWAPAPARPLFLTSPVLLPKSRAIPAARDPS*AGIFCLLEMA GGQASVVIIGSAGVLGCRWGSSGKSHSLSPSRKGNLHLLSQEP QTTVVHNATDGIKGSTESCNTTTEDEDLKVRKQEIIKITEQLI EAINNGDFEAYTKICDPGLTSFEPEALGNLVEGMDFHKFYFEN REWVRAADILLPAPLPLCLCLLLTFSSQLPTFPLFDLRAALLL CMLVPLCPDGCRQAPLKALLLSSKCHSFCSCFVAVPVTTIKLT YFLPGAVAYACNPNTLGG
430	1169	439	728	ERAGAGGAAACRAGTRSGATSRTPWPLHRQLSMMLMLAQSNPQ LFALMGTRAGIARELERVEQQSRLEQLSAAELQSRNQGHWADW LQAYRARLGQ
431	1170	3	440	NGTLFIMVMHIKDLVSDYKE*WL*RKPLPW*EALLLRDCFFF* VTENGADPNPYVKTYLLPDNHKTSKRKTKISRKTRNPTFNEML VYSGYSKETLRQRELQLSVLSAESLRENFFLGGVTLPLKDFNL SKETVKWYQLTAATYL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID I	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
ĺ		acid	acid	•
430	1101	sequence	sequence	THE THAT ALTHURANT PARAGRAPTICAL PROPERTY OF THE ALTHURANT A
432	1171	433	1824	LHRIMQLAVVVSQVLENGSSVLVCLEEGWDITAQVTSLVQLLS
				DPFYRTLEGFQMLVEKEWLSFGHKFSQRSSLTLNCQGSGFAPV
			1	FLQFLDCVHQVHNQYPTEFEFNLYYLKFLAFHYVSNRFKTFLL
				DSDYERLEHGTLFDDKGEKHAKKGVCIWECIDRMHKRSPIFFN
				YLYSPLEIEALKPNVNVSSLKKWDYYIEETLSTGPSYDWMMLT
				PKHFPSEDSDLAGEAGPRSQRRTVWPCYDDVSCTQPDALTSLF
				SEIEKLEHKLNQAPEKWQQLWERVTVDLKEEPRTDRSQRHLSR
				SPGIVSTNLPSYQKRSLLHLPDSSMGEEQNSSISPSNGVERRA
				ATLYSQYTSKNDENRSFEGTLYKRGALLKGWKPRWFVLDVTKH
				QLRYYDSGEDTSCKGHIDLAEVEMVIPAGPSMGAPKHTSDKAF
				FDLKTSKRVYNFCAQDGQSAQQWMDKIQSCISDA
433	1172	1714	946	EVEGPRRVSPAPETLGMEESVVRPSVFVVDGQTDIPFTRLGRS
				HRRQSCSVARVGLGLLLLLMGAGLAVQGWFLLQLHWRLGEMVT
				RLPDGPAGSWEQLIQERRSHEVNPAAHLTGANSSLTGSGGPLL
				WETQLGLAFLRGLSYHDGALVVTKAGYYYIYSKVQLGGVGCPL
				GLASTITHGLYKRTPRYPEELELLVSQQSPCGRATSSSRVWWD
				SSFLGGVVHLEAGEEVVVRVLDERLVRLRDGTRSYFGAFMV
434	1173	16	367	QSAELGPRREGSRRPSCTKASKPWRRRPGGPTSGLG*GPLSP
	<u> </u>			GPYQCRPSLPAQLYPQSLMAAATLRTPTQVSAASSRPHTPSPT
				HVLKPSVRGACSSPRCPGSGTLRRSWVGPFF
435	1174	27	1139	LWWPPLSRHAAHRQWPGPTAPRGLGHKVKGRGASPAAMWSCSW
				FNGTGLVEELPACQDLQLGLSLLSLLGLVVGVPVGLCYNALLV
	ŀ	}	1	LANLHSKASMTMPDVYFVNMAVAGLVLSALAPVHLLGPPSSRW
				ALWSVGGEVHVALQIPFNVSSLVAMYSTALLSLDHYIERALPR
			,	TYMASVYNTRHVCGFVWGGALLTSFSSLLFYICSHVSTRALEC
]				AKMQNAEAADATLVFIGYVVPALATLYALVLLSRVRREDTPLD
				RDTGRLEPSAHRLLVATVCTQFGLWTPHYLILLGHTVIISRGK
				PVDAHYLGLLHFVKDFSKLLAFSSSFVTPLLYRYMNQSFPSKL
				QRLMKKLPCGDRHCSPDHMGVQQVLA
436	1175	322	756	SESELFTLMPSLPTTNCVHSLQMIPPLSPAPNQELVLGLCYMS
				YLAFLYMTFDFCCLYFSTVYAPSFKYICVHTDTHICVCVCIYL
				SSVVSKSSAEADGVLQPRRHPASLLIVFATSISESSLLIFSFQ
				KTEAKLIVFAVSLAAK
437	1176	2	153	FFFLRQSLTLSPRLECSGATSASPSAGITGMSHHSQPIVNFLR
				ACIPISK
438	1177	1	692	RQHAEERGRRNPKTGLTLERVGPESSPYLLRRHQRQGQEGEHY
1				HSCVQLAPTRGLEES/GHGPL/SLAGGPRVGGV/AAAATEAPR
]]]		MEWKVKVRSDGTRYVAKRPVRDRLLKARALKIREERSGMTTDD
				DAVSEMKMGRYWSKEERKQHLIRAREQRKRREFMMQSRLECLR
] .	EQQNGDSKPELNIIALSHRKTMKKRNKKILDNWITIQEMLAHG
1				ARSADGKRVYNPLLSVTTV
	<u> </u>			<u> </u>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence 616	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				TCVALAVVLSSVSICDGHWLLAEDRLFGLWHFCTTTNQSVPIC FRDLGQAHVPGLAVGMGLVRSVGALAVVAAIFGLEFLMVSQLC EDKHSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGF TLMFWCEFTASFLLFLNAISGLHINSITHPWE
440	1179	2	540	QILPNLYLGSARDSANLESLAKLGIRYILNVTPNLPNFFEKNG DFHYKQIPISDHWSQNLSRFFPEAIEFIDEALSQNCGVLVHCL AGVSRSVTVTVAYLMQKLHLSLNDAYDLVKRKKSNISPNFNFM GQLLDFERSLRLEERHSQEQGSGGQASAASNPPSFFTTPTSDG AFELAPT
441	1180	940	463	RKSLHENKLKRLQEKVEVLEAKKEELETENQVLNRQNVPFEDY TRLQKRLKDIQRRHNEFRSLILVPNMPPTASINPVSFQSSAMG SKHGTTISSSYAGGTTSKGTLSTSQKTRRTGNNTKKTTRGTWI FRRMMFLENRQIKRGEVGDSVKLDILTCGI
442	1181	1	986	GRPGAGASELFPSVTTDLSVSKQNACLTCVDFVTVHVCMGFWG IGPGALSTSCIPYPLSHGPGSVKAEMLHMYSQKDPLILCVRLA VLLAVTLTVPVVLFPIRRALQQLLFPGKAFSWPRHVAIALILL VLVNVLVICVPTIRDIFGVIGSTSAPSLIFILPSIFYLRIVPS EVEPFLSWPKIQALCFGVLGVLFMAVSLGFMFANWATGQSRMS GH*SGPAGPGPCAHAHGGVRAAP*GPSCPTCGGGWFP*TWLSE AGDSRGCRLAHFPPPQGCQAWIMALIPTPTPWEEEEEEEEEE EEEEEEEEEARSWWSLCPAQSSLPPPG
443	1182	460	27	INELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSK KTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPV LQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTEN DSRYNNMYVDSIKQY
444	1183	1682	230	DDPIKTSWTPPRYVLSMSEERHERVRKKYHILVEGDGIPPPIK SFKEMKFPAAILRGLKKKGIHHPTPIQIQGIPTILSGRDMIGI AFTGSGKTLVFTLPVIMFCLEQEKRLPFSKREGPYGLIICPSR ELARQTHGILEYYCRLLQEDSSPLLRCALCIGGMSVKEQMETI RHGVHMMVATPGRLMDLLQKKMVSLDICRYLALDEADRMIDMG FEGDIRTIFSYFKGQRQTLLFSATMPKKIQNFAKSALVKPVTI NVGRAGAASLDVIQEVEYVKEEAKMVYLLECLQKTPPPVLIFA EKKADVDAIHEYLLLKGVEAVAIHGGKDQEERTKAIEAFREGK KDVLVATDVASKGLDFPAIQHVINYDMPEEIENYVHRIGRTGR SGNTGIATTFINKACDESVLMDLKALLLEAKQKVPPVLQVLHC GDESMLDIGGERGCAFCGGLGHRITDCPKLEAMQTKQVSNIGR
445	1184	1	375	IETTQPSEDTNANSQDNSMQPETSSQQQLLSPTLSDRGGSRQD AADAGKPQRKFGQWRLPSAPKPISHSVSSVNLRFGGRTTMKSV VCKMNPMTDAASCGSEVKKWWTRQLTVESDESGDDLLDI
446	1185	2	223	NDRFSACYFTLKLKEAAVRQREALKKLTKNIATDSYISVNLRD VYARSIMEMLRLKGRERASTRSSGGDDFWF

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
447	1186	sequence 2	sequence 1031	FTVFILGITIRPLVEFLDVKRSNKKQQAVSEEIYCRLFDHVKT GIEDVCGHWGHNFWRDKFKKFDDKYLRKLLIRENQPKSSIVSL YKKLEIKHAIEMAETGMISTVPTFASLNDCREEKIRKVTSSET DEIRELLSRNLYQIRQRTLSYNRHSLTADTSERQAKEILIRRR
				HSLRESIRKDSSLNREHRASTSTSRYLSLPKNTKLPEKLQKRR TISIADGNSSDSDADAGTTVLNLQPRARRFLPEQFSKKSPQSY KMEWKNEVDVDSGRDMPSTPPTPHSREKGTQTSGLLQQPLLSK DQSGSEREDSLTEGIPPKPPPRLVWRASEPGSRKARFGSEKP
448	1187	3	444	HEEASGLSVWMGKQMEPLHAVPPAAITLILSLLVAVFTECTSN VATTTLFLPIFASMSRSIGLNPLYIMLPCTLSASFAFMLPVAT PPNAIVFTYGHLKVADMVKTGVIMNIIGVFCVFLAVNTWGRAI FDLDHFPDWANVTHIET
449	1188	3	125	HELENNWLQHEKAPTEEGKKELLALSNANPSLLERHCAYL
450	1189	1	188	GNIIYMYMQPGARSSQDQGKFLTLFYNIVTPLLNPLIYTLRNR EVKGALGRLLLGKRELGKE
451	1190	603	342	PLEQRSNCRVDPRVRTHTMASDTSSLVQSHTYKKREPADVPYQ TGQLHPAIRVADLLQHITQMKCAEGYGFKEEYESFFEGQSAPW DSAKKDENRMKNRYGNIIAYDHSRVRLQTIEGDTNSDYINGNY IDGYHRPNHYIATQGPMQETIYDFWRMVWHENTASIIMVTNLV EVGRVKCCKYWPDDTEIYKDIKVTLIETELLAEYVIRTFAVEK RGVHEIREIRQFHFTGWPDHGVPYHATGLLGFVRQVKSKSPPS AGPLVVHCSAGAGRTGCFIVIDIMLDMAEREGVVDIYNCVREL RSRRVNMVQTEEQYVFIHDAILEACLCGDTSVPASQVRSLYYD MNKLDPQTNSSQIKEEFRTLNMVTPTLRVEDCSIALLPRNHEK NRCMDILPPDRCLPFLITIDGESSNYINAALMDSYKQPSAFIV TQHPLPNTVKDFWRLVLDYHCTSVVMLNDVDPAQLCPQYWPEN GVHRHGPIQVEFVSADLEEDIISRIFRIYNAARPQDGYRMVQQ FQFLGWPMYRDTPVSKRSFLKLIRQVDKWQEEYNGGEGRTVVH CLNGGGRSGTFCAISIVCEMLRHQRTVDVFHAVKTLRNNKPNM VDLLDQYKFCYEVALEYLNSG
				FRERIRQLMCPAEDLPQRNPAGPSAPATPRTSLLRLTELESHC
453	1192	120	449	TLSESGALFSLGPPPLSLKSSSAPRPYSTLRDCLEHFAELFDL GFPNPLAERIIFETHQIHFANCSLGQPTFSDPPEDVLLAMIIA PICLIPFLITLVVWRSKDSEAQA
454	1193	1838	1066	CEEREQEKDDVDVALLPTIVEKVILPKLTVIAENMWDPFSTTQ TSRMVGITLKLINGYPSVVNAENKNTQVYLKALLLRMRRTLDD DVFMPLYPKNVLENKNSGPYLFFQRQFWSSVKLLGNFLQWYGI FSNKTLQELSIDGLLNRYILMAFQNSEYGDDSIKKAQNVINCF PKQWFMNLKGERTISQLENFCRYLVHLADTIYRNSIGCSDVEK RNARENIKQIVKLLASVRALDHAMSVASDHNVKEFKSLIEGK

SEQ ID NO:	SEQ ID NO:	Predicted beginning nucleotide	Predicted end nucleotide	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of Nucleic	of Amino	location corre-	location corre-	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	7.101.00	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid residue	acid residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
455	1194	112	1361	TPFCFLCSLVFRSRVWAEPCLIDAAKEEYNGVIEEFLATGEKL
Ì	l			FGPYVWGRYDLLFMPPSFPFGGMENPCLTFVTPCLLAGDRSLA
				DVIIHEISHSWFGNLVTNANWGEFWLNEGFTMYAQRRISTILF
				GAAYTCLEAATGRALLRQHMDITGEENPLNKLRVKIEPGVDPD
1				DTYNETPYEKGFCFVSYLAHLVGDQDQFDSFLKAYVHEFKFRS
1				ILADDFLDFYLEYFPELKKKRVDIIPGFEFDRWLNTPGWPPYL
1				PDLSPGDSLMKPAEELAQLWAAEELDMKAIEAVAISPWKTYQL
				VYFLDKILQKSPLPPGNVKKLGDTYPSISNARNAELRLRWGQI
	ĺ			VLKNDHQEDFWKVKEFLHNQGKQKYTLPLYHAMMGGSEVAQTL
	1.705		889	AKETFASTASQLHSNVVNYVQQIVAPKGS CASGSSGWRPVLWAGAFTMASAELDYTIEIPDQPCWSQKNSPS
456	1195	1	889	PGGKEAETRQPVVILLGWGGCKDKNLAKYSAIYHKRGCIVIRY
			į	TAPWHMVFFSESLGIPSLRVLAOKLLELLFDYEIEKEPLLFHV
				FSNGGVMLYRYVLELLQTRRFCRLRVVGTIFDSAPGDSNLVGA
,				LRALAAILERRAAMLRLLLLVAFALVVVLFHVLLAPITALFHT
				HFYDRLQDAGSRWPELYLYSRADEVVLARDIERMVEARLARRV
				LARSVDFVSSAHVSHLRDYPTYYTSLCVDFMR\NWVRC
457	1196	2	295	PRVRDRLPSTGVRDRKGDKPWKESGGSVEAPRMGFTHPPGHLS
				GCQSSLASGETGTGSADPPGGPRPGLTRRAPVKDTPGRAPAAD
				AAPAGPSSCLG
458	1197	1299	682	QGRTSCIGLYTYQRRICKYRDQYNWFFLARPTTFAIIENLKYF
		1		LLKKDPSQPFYLGHTIKSGDLEYVGMEGGIVLSVESMKRLNSL
				LNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGK
	1			DVFNTKSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQM
				HVMMYGVYRLRAFG\HIFNDALVFLPPNGSDND
459	1198	779	61	HEGKPTRGRGGGSLSTRGRGSEVPDSAHLAPTPLFSESGCCG
				LRSRFLTDCKMEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVS GFLLFRSLPRHTFGLVQSKLFPFYFHISMGCAFINLCILASQH
				AWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQT
			·	VEKERGLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHG
				LSSLCNLGCVLSNGLCLA\ALPWK
460	1199	517	815	KOLDKOLRADPSGSLPPLPPSPPPPLEAGGRPPEVP/PRGPSA
1 200				VPSFPSVSGDWGGPVEAG/EGGQQGRGRARARPCSLPPLLPPS
				PVCRLSGSRAPLGCDG
461	1200	1	583	RNQLSSQKSVPWVPILKSLPLWAIVVAHFSYNWTFYTLLTLLP
				TYMKEILRFNVQENGFLSSLPYLGSWLCMILSGQAADNLRAKW
				NFSTLCVRRIFSLIGMIGPAVFLVAAGFIGCDYSLAVAFLTIS
				TTLGGFCSSGFSINHLDIAPSYAGILLGITNTFATIPGMVGPV
				IAKSLTPDMGISLHRPGWSAVA -
462	1201	25	383	GPSGTTHASAHSGHPGSPRGSLSRHPSSQLAGPGVEGGEGTQK
				PRDYIILAILSCFCPMWPVNIVAFAYAVMSRNSLQQGDVDGAQ
				RLGRVAKLLSIVALVGGVLIIIASCVINLGVYK
463	1202	573	372	SLFLSFPPLSFKMTLNDAMRNKARLSITGSTGENGRVMTPEFP
				KAVHAVPYVSPGMGMNVSVTDLS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
120,00	7 XCICIS	to first	to first	T=Threonine, $V=Valine$, $W=Tryptophan$, $Y=Tyrosine$,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	,
	ĺ	of amino	of amino	
1	<u> </u>	acid	acid	,
	İ	sequence	sequence	
464	1203	2018	491	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV
				VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSQSASSLEVA
1		1		GPGREPLELEVAVEALARLQQGVSATVAHLLDLAGSAGATGSW
				RSPSEPQEPLVQDLQAAVAAVQSAVHELLEFARSAVGNAAHTS
	1			DRALHAKLSRQLQKMEDVHQTLVAHGQALDAGRGGSGATLEDL
			ļ	DRLVACSRAVPEDAKQLASFLHGNASLLFRRTKATAPGPEGGG
	1	,	1	TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME
		l	1	DYDYVHLQGKEEFEKTQKELLEKGSITRQGKSQLELQQLKQFE
		ļ	1	RLEQEVSRPIDHDLANWTPAQPLAPGRTGGLGPSDRQLLLFYL
			ł	EQCEANLTTLTNAVDAFFTAVATNQPPKIFVAHSKFVILSAHK
1				LVFIGDTLSRQAKAADVRSQVTHYSNLLCDLLRGIVATTKAAA
		1	ļ	LQYPSPSAAQDMVERVKELGHSTQQFRRVLGQLAAA
465	1204	299	189	EMBEPQKSYVNTMDLERDEPLKSTGPQISVSEFSCHCCYDILV
103		====		NPTTLNCGHSFCRHCLALWWASSKKTECPECREKWEGFPKVSI
				LLRDAIEKLFPDAIRLRFEDIQQNNDIVQSLAAFQKYGNDQIP
				LAPNTGRANQOMGGGFFSGVLTALTGVAVVLLVYHWSSRESEH
]	1	DLLVHKAVAKWTAEEVVLWLEOLGPWASLYRERFLSERVNGRL
				LLTLTEEEFSKTPYTIENSSHRRAILMELERVKALGVKPPONL
	ļ	1		WEYKAVNPGRSLFLLYALKSSPRLSLLYLYLFDYTDTFLPFIH
	1			TICPLOEDSSGEDIVTKLLDLKEPTWKQWREFLVKYSFLPYQL
			1	IAEFAWDWLEVHYWTSRFLIINAMLLSVLELFSFWRIWSRSEL
				K*VGFRFLRLGVAALGSVEVAGLRGVVKGERPLLYGHGAGARF
				PHSVLLLPVAKPLPLPLLPRGLC
466	1205	2	242	EKARMIYEDYISILSPKEVSLDSRVREVINRNLLDPNPHMYED
400	1205	4	242	AOLOIYTLMHRDSFPRFLNSOIYKSFVESTAGSSSES
	1005		610	~ ~
467	1206	2	619	LYYSQDEESKIMISDFGLSKMEGKGDVMSTACGTPGYVAPEVL
	İ			AQKPYSKAVDCWSIGVIAYILLCGYPPFYDENDSKLFEQILKA
		1		EYEFDSPYWDDISDSAKDFIRNLMEKDPNKRYTCEQAARHPWI
	1]	AGDTALNKNIHESVSAQIRKNFAKSKWRQAFNATAVVRHMRKL
				HLGSSLDSSNASVSSSLSLASQKDCASGTFHAL
468	1207	1	352	RTRGGAVSFEDFIKGLSILLRGTVQEKLNWAFNLYDINKDGYI
				TKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKN
	1			KDGVVTIDEFIESCQKDENIMRSMQLFENVI
469	1208	3	1015	PRSPEHHTPAWHEGRSLGPIMASMADRNMKLFSGRVVPAQGEE
				TFENWLTQVNGVLPDWNMSEEEKLKRLMKTLRGPAREVMRVLQ
1				ATNPNLSVADFLRAMKLVFGESESSVTAHGKFFNTLQAQGEKA
1		1		SLYVIRLEVQLQNAIQAGIIAEKDANRTRLQQLLLGGELSRDL
1				RLRLKDFLRMYANEQERLPNFLELIKMVREEEDWDDAFIKRKR
				PKRSESMVERAVSPVAFQGSPPIVIGSADCNVIEIDDTLDDSD
				EDVILVESQDPPLPSWGAPPLRDRARPQDEVLVIDSPHNSRAQ
				FPSTSGGSGYKNNGPGEMRRARKRKHTIRCSYCGEE
470	1209	1543	1351	SVACTVPLRSMSDPDQDFDKEPDSDSTKHSTPSNSSNPSGPPS
				PNSPHRSQLPLEGLEQPACDT
L				1x

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
471	1210	3	952	YSAVEFAERGSGGSSGDELREDDEPVKKRGRKGRGRGPPSSSD SEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRVRPEEKQQ AKPVKVERTRKRSEGFSMDRKVEKKKEPSVÈEKLQKLHSEIKF ALKVDSPDVKRCLNALEELGTLQVTSQILQKNTDVVATLKKIR RYKANKDVMEKAAEVYTRLKSRVLGPKIEAVQKVNKAGMEKEK AEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGES AEDKEHEEGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQE RERARGDSEALDEES
472	1211	5204	2901	LAELSSLSVLRLSHNSTSHIAEGAFKGLRSLRVLDLDHNEISG TIEDTSGAFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGLEHLN LGGNAIRSVQFDAFVKMKNLKELHISSDSFLCDCQLKWLPPWL IGRMLQAFVTATCAHPESLKGQSIFSVPPESFVCDDFLKPQII TQPETTMAMVGKDIRFTCSAASSSSSPMTFAWKKDNEVLTNAD MENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITNHFG STYSHKARLTVNVLPSFTKTPHDITIRTTTMARLECAATGHPN PQIAWQKDGGTDFPAARERRMHVMPDDDVFFITDVKIDDAGVY SCTAQNSAGSISANATLTVLETPSLVVPLEDRVVSVGETVALQ CKATGNPPPRITWFKGDRPLSLTERHHLTPDNQLLVVQNVVAE DAGRYTCEMSNTLGTERAHSQLSVLPAAGCRKDGTTVGIFTIA VVSSIVLTSLVWVCIIYQTRKKSEEYSVTNTDETVVPPDVPSY LSSQGTLSDRQETVVRTEGGPQANGHIESNGVCPRDASHFPEP DTHSVACRQPKLCAGSAYHKKPWKAMEKAEGTPGPHKMEHGGR VVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPSAPNGPEPGGSD QEHSPHHQCSRTAAGSCPECQGSLYPSNHDRMLTAVKKKPMAS LDGKGDSSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLV SNGHLPKACDASPESTPLTGQLPGKQRVPLLLAPKS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
473	1212	2	2466	AAAGAARRVSVRCGRSGPGPGRGAAGLSPADIALASEQGASCS
1			ļ	VRAPERKLRMKLLWQAKMSSIQDWGEEVEEGAVYHVTLKRVQI
	İ		į	QQAANKGARWLGVEGDQLPPGHTVSQYETCKIRTIKAGTLEKL
				VENLLTAFGDNDFTYISIFLSTYRGFASTKEVLELLLDRYGNL TSPNCEEDGSQSSSESKMVIRNAIASILRAWLDQCAEDFREPP
				HFPCLQKLLDYLTRMMPGSDPERRAQNLLEQFQKQEVETDNGL
		1		PNTISFSLEEEEELEGGESAEFTCFSEDLVAEQLTYMDAQLFK
				KVVPHHCLGCIWSRRDKKENKHLAPTIRATISQFNTLTKCVVS
	j			TILGGKELKTQQRAKIIEKWINIAHECRLLKNFSSLRAIVSAL
				OSNSIYRLKKTWAAVPRDRMLMFEELSDIFSDHNNHLTSRELL
			1	MKEGTSKFANLDSSVKENQKRTQRRLQLQKDMGVMQGTVPYLG
				TFLTDLTMLDTALQDYIEGGLINFEKRREFEVIAQIKLLQSA
	1			CNSYCMTPDQKFIQWFQRQQLLTEEESYALSCEIEAAADASTT
	1		1	SPKPWKSMVKRLNLLFLGADMITSPTPTKEQPKSTASGSSGES
				MDSVSVSSCESNHSEAEEGYITPMDTPDEPQKKLSESSSYCSS
			ļ	IHSMDTNFLQGMSSLINPLSSPPSCNNNPKIHKRSVSVTSITS
1.		}		TVLPPVYNQQNEDTCIIRISVEDNNGNMYKSIMLTSQDKTPAV
1			ļ	IQRAMLKHNLDSDPAEEYELVQVISEDKELVIPDSANVFYAMN
				SQVNFDFILRKKNSMEEQVKLRSRTSLTLPRTAKRGCWSNRHS
L				KITL
474	1213	1	867	AREKMDSCIEAFGTTKQKRALNTRRMNRVGNESLNRAVAKAAE
				TIIDTKGVTALVSDAIHNDLQDDSLYLPPCYDDAAKPEDVYKF
1				EDLLSPAEYEALQSPSEAFRNVTSEEILKMIEENSHCTFVIEA
[1			LKSLPSDVESRDRQARCIWFLDTLIKFRAHRVVKRKSALGPGV
				PHIINTKLLKHFTCLTYNNGRLRNLISDSMKAKITAYVIILAL HIHDFQIDLTVLQRDLKLSEKRMMEIAKAMRLKISKRRVSVAA
				GSEEDHKLGTLSLPLPPAQTSDRLAKRRKIT
L	1	<u> </u>		GOEDVILLIOTE DE EVÔTONICHUM

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
475	1214		2621	LSLFGSRALGRSGARAMAKAKKVGARRKASGAPAGARGGPAKA NSNPFEVKVNRQKFQILGRKTRHDVGLPGVSRARALRKRTQTL LKEYKERDKSNVFRDKRFGEYNSNMSPEEKMMKRFALEQQRHH EKKSIYNLNEDEELTHYGQSLADIEKHNDIVDSDSDAEDRGTL SGELTAAHFGGGGGLLHKKTQQEGEEREKPKSRKELIEELIAK SKQEKRERQAQREDALELTEKLDQDWKEIQTLLSHKTPKSENR DKKEKPKPDAYDMMVRELGFEMKAQPSNRMKTEAELAKEEQEH LRKLEAERLRRMLGKDEDENVKKPKHMSADDLNDGFVLDKDDR RLLSYKDGKMNVEEDVQEEQSKEASDPESNEEEGDSSGGEDTE ESDSPDSHLDLESNVESEEENEKPAKEQRQTPGKGLISGKERA GKATRDELPYTFAAPESYEELRSLLLGRSMEEQLLVVERIQKC NHPSLAEGNKAKLEKLFGFLLEYVGDLATDDPPDLTVIDKLVV HLYHLCQMFPESASDAIKFVLRDAMHEMEEMIETKGRAALPGL DVLIYLKITGLLFPTSDFWHPVVTPALVCLSQLLTKCPILSLQ DVVKGLFVCCLFLEYVALSQRFIPELINFLLGILYIATPNKAS QGSTLVHPFRALGKNSELLVVSAREDVATWQQSSLSLRWASRL RAPTSTEANHIRLSCLAVGLALLKRCVLMYGSLPSFHAIMGPL RALLTDHLADCSHPQELQELCQSTLTEMESQKQLCRPLTCEKS KPVPLKLFTPRLVKVLEFGRKQGSSKEEQERKRLIHKHKREFK GAVREIRKDNQFLARMQLSEIMERDAERKRKVKQLFNSLATQE GEWKALKRKKFKK
476	1215	3	961	LTKQEDCCGSIGTAWGQSKCHKCPQLQYTGVQKPGPVRGEVGA DCPQGYKRLNSTHCQDINECAMPGVCRHGDCLNNPGSYRCVCP PGHSLGPSRTQCIADKPEEKSLCFRLVSPEHQCQHPLTTRLTR QLCCCSVGKAWGARCQRCPTDGTAAFKEICPAGKGYHILTSHQ TLTIQGESDFSLFLHPDGPPKPQQLPESPSQAPPPEDTEEERG VTTDSPVSEERSVQQSHPTATTTPARPYPELISRPSPPTMRWF LPDLPPSRSAVEIAPTQVTETDECRLNQNICGHGECVPGPPDY SCHCNPGYRSHPQHRYCV

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue of amino	residue of amino	
;		acid	acid	
İ		sequence	sequence	•
477	1216	3652	1207	MAGGHCGSFPAAAAGSGEIVQLNVGGTRFSTSRQTLMWIPDSF
1 1 /	1210	3032	110,	FSSLLSGRISTLRDETGAIFIDRDPAAFAPILNFLRTKELDLR
	•			GVSINVLRHEAEFYGITPLVRRLLLCEELERSSCGSVLFHGYL
İ				PPPGIPSRKINNTVRSADSRNGLNSTEGEARGNGTQPVLSGTG
				EETVRLGFPVDPRKVLIVAGHHNWIVAAYAHFAVWYRIKESSG
			1	WOOVFTSPYLDWTIERVALNAKVVGGPHGDKDKMVAVASESSI
	1			ILWSVQDGGSGSEIGVFSLGVPVDALFFIGNQLVATSHTGKVG
				VWNAVTOHWOVODVVPITSYDTAGSFLLLGCNNGSIYYIDMQK
	1	ļ		FPLRMKDNDLLVTELYHDPSNDAITALSVYLTPKTSVSGNWIE
		1		IAYGTSSGAVRVIVQHPETVGSGPQLFQTFTVHRSPVTKIMLS
			1	EKHLVSVCADNNHVRTWTVTRFRGMISTQPGSTPLASFKILSL
ļ				EETESHGSYSSGNDIGPFGERDDQQVFIQKVVPITNKLFVRLS
		ļ		STGKRICEIOAVDCTTISSFTGRECEGSSRMGSRPRRYLFTGH
				TNGSIOMWDLTTAMDMVNKSEDKDVGGPTEEELLKLLDQCDLS
	1			TSRCATPNISPATSVVQHSHLRESNSSLQLQHHDTTHEAATYG
1	}	1		SMRPYRESPLLARARRTESFHSYRDFQTINLNRNVERAVPENG
	ļ	j		NLGPIOAEVKGATGECNISERKSPGVEIKSLRELDSGLEVHKI
		1	ŀ	AEGFSESKKRSSEDENENKIEFRKKGGFEGGGFLGRKKVPYLA
				SSPSTSDGGTDSPGTASPSPTKTTPSPRHKKSDSSGQEYSL
478	1217	1	1379	RRPTRPILTDELFKRTIQLPHLKTLILNGNKLETLSLVSCFAN
1 70	122.	-	1.5.5	NTPLEHLDLSONLLOHKNDENCSWPETVVNMNLSYNKLSDSVF
			1	RCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDL
				PGCSHFSRLSVLNIEMNFILSPSLDFVQSCQEVKTLNAGRNPF
				RCTCELKNFIQLETYSEVMMVGWSDSYTCEYPLNLRGTRLKDV
	İ			HLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRML
				GOCTOTWHRVRKTTOEOLKRNVRFHAFISYSEHDSLWVKNELI
				PNLEKEDGSILICLYESYFDPGKSISENIVSFIEKSYKSIFVL
1				SPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIP
1				TRYHKLKALLEKKAYLEWPKDRRKCGLFWANLRAAINVNVLAT
İ				REMYELQTFTELNEESRGSTISLMRTDCL
479	1218	1	1099	PTRPPTRPPTRPLLTPSWTSTGRMWSHLNRLLFWSIFSSVTCR
				KAVLDCEAMKTNEFPSPCLDSKTKVVMKGQNVSMFCSHKNKSL
				QITYSLFRRKTHLGTQDGKGEPAIFNLSITEAHESGPYKCKAQ
				VTSCSKYSRDFSFTIVDPVTSPVLNIMVIQTETDRHITLHCLS
1				VNGSLPINYTFFENHVAISPAISKYDREPAEFNLTKKNPGEEE
				EYRCEAKNRLPNYATYSHPVTMPSTGGDSCPFCLKLLLPGLLL
1				LLVVIILILAFWVLPKYKTRKAMRNNVPRDRGDTAMEVGIYAN
1	}	1		ILEKOAKEESVPEVGSRPCVSTAQDEAKHSQELQYATPVFQEV
				APREQEACDSYKSGYVYSELNF
480	1219	1	293	FFFFEERRTGSHSVGHPRMEYSGVSMAHCSLNLLGSSNSPSSA
100		-		SQDARTTGACQHAQLIGFFFF\VETASPQVTHAG/LKHLVSRN
	1	1	l .	1 12 12
		1		PSAVTSOSARIKT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
481	1220	1	727	NREGARKIQNKWLRPSPRSHRTPESVSPERYSYGTSSSSKRTE GSCRRRQSSSSANSQQGQWETGSPPTKRQRRSRGRPSGGAKR RRRGAPAAPQQQSEPARPSSEGKVTCDIRLRVRAEYCEHGPAL EQGVASRRPQALARQLDVFGQATAVLRSRDLGSVVCDIKFSEL SYLDAFWGDYLSGALLQALRGVFLTEALREAVGREAVRLLVSV DEADYEAGRRRLLLMEEEGGRRPTEAS
482	1221	1	1321	APNTAELRICRVNKNCGSVRGGDEIFLLCDKVQKDDIEVRFVL NDWEAKGIFSQADVHRQVAIVFKTPPYCKAITEPVTVKMQLRR PSDQEVSESMDFRYLPDEKDTYGNKAKKQKTTLLFQKLCQDHV ETGFRHVDQDGLELLTSGDPPTLASQSAGITVNFPERPRPGLL GSIGEGRYFKKEPNLFSHDAVVREMPTGVSSQAESYYPSPGPI SSGLSHHASMAPLPSSSWSSVAHPTPRSGNTNPLSSFSTRTLP SNSQGIPPFLRIPVGNDLNASNACIYNNADDIVGMEASSMPSA DLYGISDPNMLSNCSVNMMTTSSDSMGETDNPRLLSMNLENPS CNSVLDPRDLRQLHQMSSSSMSAGANSNTTVFVSQSDAFEGSD FSCADNSMINESGPSNSTNPNSHGFVQDSQYSGIGSMQNEQLS DSFPYEFFQV
483	1222	807	1311	RRLSLLDLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQ RRQNQRRFSMEDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKP LSRMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKLT ENLVALKEIRLEHEEGAPCTAIREVSLLKNLKHANIVTLHDLI HTDRSLTLVFEYLDSDLKQYLDHCGNLMSMHNVKIFMFQLLRG LAYCHHRKILHRDLKPQNLLINERGELKLADFGLARAKSVPTK TYSNEVVTLWYRPPDVLLGSTEYSTPIDMWGVGCIHYEMATGR PLFPGSTVKEELHKINRLLGTPTEETWPGVTAFSEFRTYSFPC YLPQPLINHAPRLDTDGIHLLSSLLLYESKSRMSAEAALSHSY FRSLGERVHQLEDTASIFSLKEIQLQKDPGYRGLAFQQPGRGK NRRQSIF CTPHGSSSSWKIPLWPRHMSPLHSCLPVGTSTSSGPLAVPRDC
484	1223	807	336	FHLCCLWGQLLLISCPLACGQGCRVAGGQQHVPGQALGTLSPL VSLLTWAGPSLDWPHPGSLVTPRCPILPAVPVLVKGLGGWPPT RPSRAAPVSGPWDQLPYFPGL
485	1224	1199	370	LISPVWGNIQRSRSVPLFPSGLVLGGIWARGPLLALLASFNII SVLNAECYLKQILHPTSHFTVSETPPLSGNDTDSLSCDSGSSA TSTPCVSRLVTGHHLWASKNGRHVLGLIEDYEALLKQISQGQR LLAEMDIQTQEAPSSTSQELGTKGPHPAPLSKFVSSVSTAKLT LEEAYRRLKLLWRVSLPEDGQCPLHCEQIGEMKAEVTKLHKKL FEQEKKLQNTMKLLQLSKRQEKVIFDQLVVTHKILRKARGNLE LRPGGAHPGTCSPSRPGS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
İ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue of amino	
Ì	}	of amino acid	acid	,
		sequence	sequence	'
486	1225	2469	1660	LGLFCILPIDTLCAVLERDTLSIRESRLFGAVVRWAEAECORO
1 200	1223	2105	1000	QLPVTFGNKQKVLGKALSLIRFPLMTIEEFAAGPAQSGILSDR
		-	1	EVVNLFLHFTVNPKPRVEYIDRPRCCLRGKECCINRFOQVESR
				WGYSGTSDRIRFTVNRRISIVGFGLYGSIHGPTDYQVNIQIIE
]	YEKKQTLGQNDTGFSCDGTANTFRVMFKEPIEILPNVCYTACA
		1		TLKGPDSHYGTKGLKKVVHETPAASKTVFFFFSSPGNNNGTSI
				EDGOIPEIIFYT
487	1226	1193	372	SVWWNSEVKDWMQKKRRGLRNSRATAGDIAHYYRDYVVKKGLG
1 40 /	1220	1133	3,2	HNFVSGAVVTAVEWGTPDPSSCGAQDSSPLFOVSGFLTRNQAO
				OPFSLWARNVVLATGTFDSPARLGIPGEALPFIHHELSALEAA
				TRVGAVTPASDPVLIIGAGLSAADAVLYARHYNIPVIHAFRRA
				VDDPGLVFNQLPKMLYPEYHKVHQMMREQSILSPSPYEGYRSL
		1		PRHQLLCFKEDCQAVFQDLEGVEKVFGVSLVLVLIGSHPDLSF
]		ļ	LPGAG\LTLQWILTSR
488	1227	756	1016	KLRPFIFSNOSLWLHSYEGAELEKTFIKGSWATFWVKVASCWA
100	1227	/33	1010	CVLLYLGLLLAPLCWPPTQKPQPLILRRRRHRIISPDNKYPPV
489	1228	1	747	QLIHLSHGYQIHWTDYYNVGTGRPEFGTRAAHKSLAGAELKTL
1400	1220	1	/ - /	KDFVTVLAKLFPGRPPVKKLLEMLQEWLASLPLDRIPYNAVLD
ļ	ĺ			LVNNKMRISGIFLTNHIKWVGCQGSRSELRGYPCSLWKLFHTL
		1	1	TVEASTHPDALVGTGFEDDPQAVLQTMRRYVHTFFGCKECGEH
				FEEMAKESMDSVKTPDQAILWLWKKHNMVNGRLAGEKPLGMGG
			İ	SARAEGGPGPGTARTARLPWGLSLSFAASCHPLC
490	1229	4797	2398	HGGATFINAFVTTPMCCPSRSSMLTGKYVHNHNVYTNNENCSS
		1	1	PSWOAMHEPRTFAVYLNNTGYRTAFFGKYLNEYNGSYIPPGWR
	1		1	EWLGLIKNSRFYNYTVCRNGIKEKHGFDYAKDYFTDLITNESI
		l.		NYFKMSKRMYPHRPVMMVISHAEPHGPEDSAPQFSKLYPNASQ
			1	HITPSYNYAPNMDKHWIMQYTGPMLPIHMEFTNILQRKRLQTL
				MSVDDSVERLYNMLVETGELENTYIIYTADHGYHIGQFGLVKG
		İ		KSMPYDFDIRVPFFIRGPSVEPGSIVPOIVLNIDLAPTILDIA
	1	ì		GLDTPPDVDGKSVLKLLDPEKPGNRFRTNKKAKIWRDTFLVER
	1			GKFLRKKEESSKNIQQSNHLPKYERVKELCQQARYQTACEQPG
İ			1	QKWQCIEDTSGKLRIHKCKGPSDLLTVRQSTRNLYARGFHDKD
				KECSCRESGYRASRSQRKSQRQFLRNQGTPKYKPRFVHTRQTR
1				SLSVEFEGEIYDINLEEEEELQVLQPRNIAKRHDEGHKGPRDL
	J	1.]	OASSGGNRGRMLADSSNAVGPPTTVRVTHKCFILPNDSIHCER
1				ELYOSARAWKDHKAYIDEEIEALQDKIKNLREVRGHLKRRKPE
				ECSCSKQSYYNKEKGVKKQEKLKSHLHPFKEAAQEVDSKLQLF
		1		KENNRRRKKERKEKRRQRKGEECSLPGLTCFTHDNNHWQTAPF
			1	WNLGSFCACTSSNNNTYWCLRTVNETHNFLFCEFATGFLEYFD
1.				MNTDPYOLTNTVHTVERGILNOLHVOLMELRSCOGYKOCNPRP
				KNLDVGNKDGGSYDLHRGQLWDGWEG
	<u> </u>			THE TOTAL PRINCE TO THE PRINCE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
491	1230	2480	385	HILLTAQELADRVGEGRACWSLGNAYVSMGRPAQALTFAKKHLQ ISQEIGDRHGELTARMNVAQLQLVLGRLTSPAASEKPDLAGYE AQGARPKRTQRLSAETWDLLRLPLEREQNGDSHHSGDWRGPSR DSLPLPVRSRKYQEGPDAERRPREGSHSPLDSADVRVHVPRTS IPRAPSSDEECFFDLLTKFQSSRMDDQRCPLDDGQAGAAEATA APTLEDRIAQPSMTASPQTEEFFDLIASSQSRRLDDQRASVGS LPGLRITHSNAGHLRGHGEPQEPGDDFFNMLIKYQSSRIDDQR CPPPDVLPRGPTMPDEDFFSLIQRVQAKRMDEQRVDLAGGPGA GGRRPARAPAAVPAWCELRPCAHRQAHPAPTPGRRSHSHSHVL PRPLPRTGTGHAAPRPPRPRATGSGQAARGGRACFHPGLAPMA LSFLPSAPAAGRTGPSACRPRPGAVRLPHPLPQALPVLPCPAK CETLLSPSPSPKVSLSRLLGPPRTGPCSVPPELVLGWPCDRHA PPLQLRPGAGLPPSLSPHSPARGQQPQKAPQTTHGRPGCSGSP EVPPAESQGPAGASTGAGPISKAEGMAGHELRHSKTPSQEKGQ GLVLGMLTGSKSSAQSGWEVAPGSVTLTQVGGWSVEAGEASLS STLQTPHMRTPLLPPAGGDDITALSMGRGLTGHQVRDPRTGRT CWSLRWAPGA
492	1231	3	398	NSAADLAIFALWGLKPVVYLLASSFLGLGLHPISGHFVAEHYM FLKGHETYSYYGPLNWITFNVGYHVEHHDFPSIPGYNLPLVRK IAPEYYDHLPQHHSWVKVLWDFVFEDSLGPYARVKRVYRLAKD GL
493	1232	1	214	QESGFSCKGPGQNVAVTRAHPDSQGRRRRPERGARGGQVFYNS EYGELSEPSEEDHCSPSARVTFFTDNSY
494	1233	3	443	VIVHARPIRTRASKYYIPEAVYGLPAYPAYAGGGGFVLSGATL HRLAGACAQVELFPIDDVFLGMCLQRLRLTPEPHPAFRTFGIP QPSAAPHLSTFDPCFYRELVVVHGLSAADIWLMWRLLHGPHGP ACAHPQPVAAGPFQWDS
495	1234	1	897	MASAACSMDPIDSFELLDLLFDRQDGILRHVELGEGWGHVKDQ VLPNPDSDDFLSSILGSGDSLPSSPLWSPEGSDSGISEDLPSD PQDTPPRSGPATSPAGCHPAQPGKGPCLSYHPGNSCSTTTPGP VIQQQHHLGASYLLRPGAGHCQELVLTEDEKKLLAKEGITLPT QLPLTKYEERVLKKIRRKIRNKQSAQESRKKKKEYIDGLETRS CCCPLPSSSSPPSALLAPTKPRALGTLRLYECSPELCTTMLPP AWLLMLCQAPRPQDPDPRLTQPEKSLQEAPGQTGASRTPRT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
496	1235	4235	940	ARGRRSRPVWAASWGGRGRPAARRRPRGLAATMGFELDRFDGD VDPDLKCALCHKVLEDPLTTPCGHVFCAGCVLPWVVQEGSCPA RCRGRLSAKELNHVLPLKRLILKLDIKCAYATRGCGRVVKLQQ LPEHLERCDFAPARCRHAGCGQVLLRRDVEAHMRDACDARPVG RCQEGCGLPLTHGEQRAGGHCCARALRAHNGALQARLGALHKA LKKEALRAGKREKSLVAQLAAAQLELQMTALRYQKKFTEYSAR LDSLSRCVAAPPGGKGEETKSLTLVLHRDSGSLGFNIIGGRPS VDNHDGSSSEGIFVSKIVDSGPAAKEGGLQIHDRIIEVNGRDL SRATHDQAVEAFKTAKEPIVVQVLRRTPRTKMFTPPSESQLVD TGTQTDITFEHIMALTKMSSPSPPVLDPYLLPEEHPSAHEYYD PNDYIGDIHQEMDREELELEEVDLYRMNSQDKLGLTVCYRTDD EDDIGIYISEIDPNSIAAKDGRIREGDRIIQINGIEVQNREEA VALLTSEENKNFSLLIARAELQLDEGWMDDDRNDFLDDLHMDM LEEQHHQAMQFTASVLQQKKHDEDGGTTDTATILSNQHEKDSG VGRTDESTRNDESSEQENNGDDATASSNPLAGQRKLTCSQDTL GSGDLPFSNKSFISPECTGAAYLGIPVDECERFRELLELKCQV KSATPYGLYYPSGPLDAGKSDPESVDKELELLNEELRSIELEC LSIVRAHKMQQLKEQYRESWMLHNSGFRNYNTSIDVRRHELSD ITELPEKSDKDSSSAYNTGESCRSTPLTLEISPDNSLRRAAEG ISCPSSEGAVGTTEAYGPASKNLLSITEDPEVGTPTYSPSLKE LDPNQPLESKERRASDGSRSPTPSQKLGSAYLPSYHHSPYKHA HIPAHAQHYQSYMQLIQQKSAVEYAQSQMSLVSMCKDLSSPTP SEPRMEWKVKIRSDGTRYITKRPVRDRILRERALKIREERSGM TTDDDAVSEMKMGRYWSKEERKQHLVKAKEQRRRREFMMQSRL DCLKEQQAADDRKEMNILELSHKKMMKKRNKKIFDNWMTIQEL LTHGTKSPDGTRVYNSFLSVTTV
497	1236	2	157	FFFLVEMGFCHVGQGGLTLIGSSNLPASASKSAGITGVSHCAR PDFKSCVE
498	1237	1	211	LAGRKVLLFVSGYVVGWGPITWLLMSEVLPLRARGVASGLCVL ASWLTAFVLTKSFLPGGVSVQPQAPGP
499	1238	2	345	FWAPGPPGVGAAVGDASTRSLRESCPSPSPGRLRRTTAPWSSQ ARAAAPAPSSSCRGPDGASSPRDLPWRPWKILRRTPLSGDVEL SQVHPDQRILRRFILSRTCGNTIPGMAE
500	1239	1	523	MRRFLSKVYSFPMRKLILFLVFPVVRQTPTQHFKNQFPALHWE HELGLAFTKNRMNYTNKFLLIPESGDYFIYSQVTFRGMTSECS EIRQAGRPNKPDSITVVITKVTDSYPEPTQLLMGTKSVCEVGS NWFQPIYLGAMFSLQEGDKLMVNVSDISLVDYTKEDKTFFGAF LL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1.0.00	Ticius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1
İ		of amino	of amino	
-		acid	acid	,
		sequence	sequence	
501	1240	2	1277	FVWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVISHY
	}	ļ	1	AGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKN
				KELTDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWL
		1		TLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHDFGHLSVFSTSK
				WNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINM
		1		HPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPL
			1	YFQWYIFYFVIQRKKWVDLAWMITFYVRFFLTYVPLLGLKAFL
1		1		GLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQLQAT
	1			CNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSL
	ļ			CAKHGIEYQSKPLLSAFADIIHSLKESGQLWLDAYLHQ
502	1241	999	540	QCGGIPYNTTQFLMNDRDPEEPNLDVPHGISHPGSSGESEAGD
1	Į			SDGRGRAHGEFQRKDFSETYERFHTESLQGRSKQELVRDYLEL
				EKRLSQAEEETRRLQQLQACTGQQSCRQVEELAAEVQRLRTEN
				QRLRQENQMWNREGCRCDEEPGT
503	1242	1448	875	SPERSSLSVGREKAMEVPPPAPRSFLCRALCLFPRVFAAEAVT
	1			ADSEVLEERQKRLPYVPEPYYPESGWDRLRELFGKD\VTGSLF
			1	RINVGLRGLVAGGIIGALLGTPVGGLLMAFOKYSGETVOERKO
1			Į	KDRKALHELKLEEWKGRLOVTEHLPEKIESSLOEDEPENDAKK
		1		IEALLNLPRNPSVIDKQDKD
504	1243	149	1293	RSLGLAVTEMVPWVRTMGQKLKQRLRLDVGREICRQYPLFCFL
	İ	1		LLCLSAASLLLNRYIHILMIFWSFVAGVVTFYCSLGPDSLLPN
				IFFTIKYKPKQLGLQELFPQGHSCAVCGKVKCKRHRPSLLLEN
				YQPWLDLKISSKVDASLSEVLELVLENFVYPWYRDVTDDESFV
		Ì		DELRITLRFFASVLIRRIHKVDIPSIITKKLLKAAMKHIEVIV
				KAROKVKNTEFLQQAALEEYGPELHVALRSRRDELHYLRKLTE
				LLFPYILPPKATDCRSLTLLIREILSGSVFLPSLDFLADPDTV
ļ		-		NHLLIIFIDDSPPEKATEPASPLVPFLOKFAEPRNKKPSVLKL
		1		ELKQIREQQDLLFRFMNFLKQEGAVHVLHVLFDCGGI
505	1244	2	1116	QSLAEVLQQLGASSELQAVLSYIFPTYGVTPNHSAFSMHALLV
		} _		NHYMKGGFYPRGVTSEIAFHTIPVIQRAGGAVLTKATVQSVLL
				DSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNA
				RCLPGVKOOLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVY
			Į.	YDTDMDQAMERYVSMPREEAAEHIPLLFFAFPSAKDPTWEDRF
				PGRSTMIMLIPTAYEWFEEWQAELKGK\RGSDYETFKNSFVEA
1				SMSVVLKLFPQLEGKVESVTAGSPLTNQFYL\AAPRGACYGAD
				HDLGRLHPCVMASLRAQSPIPNLYLTGQDIFTCGLVGALQGAL
	1			LCSSTILKRNLYSDLKNLDSRIRAQKKKN
506	1245	1759	873	RPOETRVLOVSCGRAHSLVLTDREGVFSMGNNSYGOCGRKVVE
300	145	1.75	0,3	NEIYSESHRVHRMQDFDGQVVQVACGQDHSLFLTDKGEVYSCG
]	1			WGADGQTGLGHYNITSSPTKLGGDLAGVNVIQVATYGDCCLAV
				SADGGLFGWGNSEYLQLASVTDSTQVNVPRCLHFSGVGKVRQA
	ļ			~ ~
1 .	1			ACGGTGCAVLNGEGHVFVWGYGILGKGPNLVESAVPEMIPPTL
				FGLTEFNPEIQVSRIRCGLSHFAALTNKGELFVWGKNIRGCLG
			<u></u>	IGRLEDQYFPWRVTMPGEPVDVACGVDHMVTLAKSFI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
507	1246	520		SRARIRSSFSRTSSRRAGALYSGMLAGWPFPCFCWVLSASSSL SSQVRSLRSICSRFSHADCSWVRACCSFSTFSTYACFSRNSSS SLMTLAWALLKAWSRISMCLRWSSLAVRTAANSISNFSFSFKN
508	1247	1	1083	MQAVRATASQSLSCARAPREPTQHALRAHWFPPAAAVQPSPHS GVAAAAGTWSSAFRGEHPLVSSGLLLGVREQSFRLLRSKAGTH MYLEHTSHCPHHDDDTAMDTPLPRPRPLLAVERTGQRPLWAPS LELPKPDMQPLPAGAFLEEVAEGTPAQTESEPKVLDPEEDLLC IAKTFSYLRESGWYWGSITASEARQHLQKMPEGTFLVRDSTHP SYLFTLSVKTTRGPTNVRIEYADSSFRLDSNCLSRPRILAFPD VVSLVQHYVASCTADTRSDSPDPAPTPALPMPKEDAPSDPALP APPPATAVHLKLVQPFVRRSSARSLQHLCRLVINRLVADVDCL PLPRRMADYLRQYPFQL
509	1248	2	841	FVDIFQRWKECRGKSPAQAELSYLNKAKWLEMYGVDMHVVRGR DGCEYSLGLTPTGILIFEGANKIGLFFWPKITKMDFKKSKLTL VVVEDDDQGREQEHTFVFRLDSARTCKHLWKCAVEHHAFFRLR TPGNSKSNRSDFIRLGSRFRFSGRTEYQATHGSRLRRTSTFER KPSKRYPSRRHSTFKASNPVIAAQLCSKTNPEVHNYQPQYHPN IHPSQPRWHPHSPNVRPSFQDDRSHWKASASGDDSHFDYVHDQ NQKNLGGMQSMMYRDKLMTAL
510	1249	2	763	GGIRLIQKLTWRSRQQDRENCAMKGKHKDECHNFIKVFVPRND EMVFVCGTNAFNPMCRYYRVSIFYVICFF*STFLPSLICC*S* NLSAFQ*FVLSLVQ*KNKDRILQMEF*YK*NSIAFKRAR*IDM TLAIYFSFV\LSTL*YDGEEISGLARCPFDARQTNGALFADGK LYSATVADFLASDAVIYRSMGDGSALRTIKYDSKWIKE/PHFL YAIK/Y/GNYVYFSFREIVAT**LG/KAVDS/RVARYEKQLVG PTV
511	1250	1555	629	ARALARERESESARADDVTLGVSAILAVDRGGNLGSA\DGWAY IDVEVRRPWAFVGPGCSRSSGNGSTAYGLVGSPRWLSPFHTGG AVSLPRRPRGPGPVLGVARPCLRCVLRPE\HYEPGSHYSGFAG RDASRAFVTGDCSEAGLVDDVSDLSAAEMLTLHNWLSFYEKNY VCVGRVTGRFYGEDGLPTPALTQVEAAITRGLEANKLQLQEKQ TFPPCNAEWSSARGSRLWCSQKSGGVSRDWIGVPRKLYKPGAK EPRCVCVRTTGPPSGQMPDNPPHRNRGDLDHPNLAEYTGCPPL AITCSFPL
512	1251	1100	798	YFIICRDGVLLFCPGWSQTPGAQAILLHWATQNAGMTDMSHSA QPIYLFIYLIRTRSHYVAQAGQLLDSNDSPNVASQNVGITGMS HHAWLKIVLYFCII

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
	ĺ	acid .	acid	'
513	1252	sequence	sequence 1395	PAARPPSLVRLSPSPPKPRARARAPQSVEPAAPLVARGSSPPA
213	1232	3	1333	
				RPAPAMVRPRRAPYRSGAGGPLGGRGRPPRPLVVRAVRSRSWP
,				ASPRGPQPPR\IRARSAPPMEGARVFGALGPIGPSSPGLTLGG
				LAVSEHRLSNKLLAWSGVLEWQEKRRPYSDSTAKLKRTLPCQA
-]		1	YVNQGENLETDQWPQKLIMQLIPQQLLTTLGPLFRNSQLAQFH
				FTNRDCDSLKGLCRIMGNGFAGCMLFPHISPCEVRVLMLLYSS
				KKKIFMGLIPYDQSGFVSAIRQVITTRKQAVGPGGVNSGPVQI
1		,	1	VNNKFLAWSGVMEWQEPRPEPNSRSKRWLPSHVYVNQGEILRT
				EQWPRKLYMQLIPQQLLTTLVPLFRNSRLVQFHFTKDLETLKS
]			LCRIMDNGFAGCVHFSYKASCEIRVLMLLYSSEKKIFIGLIPH
F1.4	1050	220	964	DQGNFVNGIRRVIANQQQVLQRNLEQEQQQRGMGG
514	1253	320	964	GRPALGREAPPQAGLSSTPPPCSETCTMGPHSILRTVHCRPTK
				TPPEPSAEPHPLSLLTSSNTSLAGTSLGRDLTPGGGKPPSGQT
				PRNPESPRHRLGSPRGRRWLASPTPTGSGRSGPASRGQRRLSC
				AAQDPTSEGASVGAMEAGLGPPTAAPRGVVSEAAESLGGTLSW
<u> </u>	1054	704	107	GAWGRPPAGPSGLAGRRSRREALRPDRKEASVMMAAVSAIQP
515	1254	704	107	PGVPTHGWPRSRVLTRVRGSRGSGKMAAAVVLAAGLRAARRAV
				AATGVRGGQVRGAAGVTDGNEVAKAQQATPGGAAPTIFSRILD
				KSLPADILYEDQQCLVFRDVAPQAPVHFLVIPKKPIPRISQAE
		1		EEDQQ/LTYVPPLSL*LLGHLLLVAKQTAKAEGLGDGYRLVIN DGKLGAQSVYHLHIHVLGGRQLQWPPG
516	1255	2299	924	VPNYLPSVSSAIGGEVPQRYVWRFCIGLHSAPRFLVAFAYWNH
270	1255	2299	924	
	1		ļ.	YLSCTSPCSCYRPLCRLNFGLNVVENLALLVLTYVSSSEDF/T
				WVPG*GRSGEVFPEGTGLPLPHSDLPTSWCGHSLQCGSQSSFP PAIHENAFIVFIASSLGHMLLTCILWRLTKKHTVSOE\DGLSL
				AGAPRQPRRKSRTSVLRIRVMVRWELSSNGNPGRGVLGLGLGL
	}	Į.	ļ	GNKLRVVGQNLGL*HCVWVVWETGE*KRWRLOMGIE*GVASRR
				Q*VRNSVRGLVCHNSSAPPMYMGFFSPTVFGGGVGG*LHVTFI
				LHPPEVEAAGIPLLLGPSLPQRQGREHIVVILAAPACAPFHDR
				*WEPREIRPSP*ELGLRGEPTLSYPASCRVIROPIP*DRKSYS
				WKQRLFIINFISFFSALAVYFRHNMYCEAGVYTIFAILEYTVV
				LTNMAFHMTAWWDFGNKELLITSQPEEKRF
517	1256	3	254	IDLLEIRNGPRSHESFOEMDLNDDWKLSKDEVKAYLKKEFEKH
1 34/	1236		234	GAVVNESHHDALVEDIFDKEDEDKDGFISAREFTYKHDEL
518	1257	2	611	PRVRGRVGKEGAAAKPRSLLRRFOLLSWSVCGGNKDPWVOELM
218	125/	4	0.7.7	SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP
l				AQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA
	1			1
1				AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS
E10	1250	1002	418	YVLCKRRRGQSPQSSPDLPVHYIPVAPDSNT
519	1258	1002	472	LIISNFLKAKQKPGSTPNLQQKKSQARLAPDIVSASQYRKFDE
	1			FQTGILIYELLHQPNPFEVRAQLRERDYRQEDLPPLPALSLYS
				PGLQQLAHLLLEADPIKRIRIGEAKRVLQCLLWGPRRELVQQP
1	1			GTSEEALCGTLHNWIDMKRALMMMKFAEKAVDRRRGVELEDWL
	1	1	L	CCQYLASAEPGALLQSLKLLQLL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
520	1259	2	2019	KRGLIVVMAHEMIGTQIVTERGVALLESGTEKVLLIDSRPFVE YNTSHILEAININCSKLMKRRLQQDKVLITELIQHSAKHKVDI DCSQKVVVYDQSSQDVASLSSDCFLTVLLGKLEKSFNSVHLLA GGFAEFSRCFPGLCEGKSTLVPTCISQPCLPVANIGPTRILPN LYLGCQRDVLNKELMQQNGIGYVLNASNTCPKPDFIPESHFLR VPVNDSFCEKILPWLDKSVDFIEKAKASNGCVLVHCLAGISRS ATIAIAYIMKRMDMSLDEAYRFVKEKRPTISPNFNFLGQLLDY EKKIKNQTGASGPKSKLKLLHLEKPNEPVPAVSEGGQKSETPL SPPCADSATSEAAGQRPVHPASVPSVPSVQPSLLEDSPLVQAL SGLHLSADRLEDSNKLKRSFSLDIKSVSYSASMAASLHGFSSS EDALEYYKPSTTLDGTNKLCQFSPVQEL/CGADSRNQS**GGS Q/PSPRSCRPPGLQTARASDCIRSEPAAVAPPRGPFYLHCIEV GAWRTITTPASFSAFPP\PAAPHEVCWPGP*GLA\PDILAPQT STPSLTSSWYFATESSHFYSASAIYGGSASYSAYSCSQLPTCG DQVYSVRRRQKPSDRADSRRSWHEESPFEKQFKRRSCQMEFGE SIMSENRSREELGKVGSQSSFSGSMEIIEVS
521	1260	20	803	ASSSKRVSRQKMLQLWKLVLLCGVLTGTSESLLDNLGNDLSNV VDKLEPVLHEGLETVDNTLKGILEKLKVDLGVLQKSSAWQLAK QKAQEAEKLLNNVISKLLPTNTDIFGLKISNSLILDVKAEPID DGKGLNLSFPVTANVTEAGPIIDQIIN\LRASLDLLTAVTIET DPQTHHPVAGLGECARDPTSISLCLLDKHSQIINKFVNSVINT LKSTVSSLLQKEICPLIRIFIHSLDVNVIQQVVDNPQHKTQLQ TLI
522	1261	1246	411	CSLRRPRSAAEPDADHVPLLGLLRLQLRAARQPGAMRPQGPAA SPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLY NGMCLQGPAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECL RESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTKMRSNSAL RVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQ GSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPK GDASTGWNSVSRIIIEELPK
523	1262	2009	921	MHSAMLGTRVNLSVSDFWRVMMRVCWLVRQDSRHQRIRLPHLE AVVIGRGPETKITDKKCSRQQVQLKAECNKGYVKVKQVGVNPT SIDSVVIGKDQEVKLQPGQVLHMVNELYPYIVEFEEEAKNPGL ETHRKRKRSGNSDSIERDAAQEAEAGTGLEPGSNSGQCSVPLK KGKDAPIKKESLGHWSQGLKISMQDPKMQVYKDEQVVVIKDKY PKARYHWLVLPWTSISSLKAVAR\EHLELLKHMHTVGEKVIVD FAGSSKLRFRLGYHAIPSMSHVHLHVISQDFDSPCLKNKKHWN SFNTEYFLESQAVIEMVQEAGRVTVRDGMPELLKLPLRCHECQ QLLPSIPQLKEHLRKHWTQ

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
524	1263	2067	198	DMSDTSESGAGLTRFQAEASEKDSSSMMQTLLTVTQNVEVPET PKASKALEVSEDVKVSKASGVSKATEVSKTPEAREAPATQASS TTQLTDTQVLAAENKSLAADTKKQNADPQAVTMPATETKKVSH VADTKVNTKAQETEAAPSQAPADEPEPESAAAQSQENQDTRPK VKAKKARKVKHLDGEEDGSSDQSQASGTTGGRRVSKALMASMA RRASRGPIAFWARRASRTRLACFGPGEPLLSPWRSP\KARRQR GFAVRVAKFQ\SSQEPEAPPPW\DVALLQGRAN\DLVKYLLAK DQTKIPIKRS\DMLKDIIKEYTDVYPEII\ERAGYSLE\KVFG IQLKEIDKNDHLYILLSTLEPTDAGILGTTKDSPKLGLLMVLL SIIF\MNGNRS\SEAVIWEVLR\RSLGLRLGIHHS\LLGDVK\ KLITDEV\VKQKYL\DYARVPHSNSP\EYEFFWG\LRSYYEDQ QR*KSFKFACK\VQK\KDPK\EWAAQSPPGKAR\ERMEAD\LK AAS*GSPWKPRLRAEIKARMGIGLGSENAAGPCNWDEADIGPW AKARIQAGAEAKAKAQESGSASTGASTSTNNSASASASTSGGF SAGASLTATLTFGLFAGLGGAGASTSGSSGACGFSYK
525	1264	1	1397	ARPPVCTGSTMSLTVVSMACVGFFLLQGAWPLMGGQDKPFLSA RPSTVVPRGGHVALQCHYRRGFNNFMLYKEDRSHVPIFHGRIF QESFIMGPVTPAHAGTYRCRGSRPHSLTGWSAPSNPLVIMVTG NHRKPSLLAHPGPLLKSGETVILQCWSDIMFEHFFLHKEGISK DPSRLVGQIHDGVSKANFSIGPMMLALAGTYRCYGSVTHTPYQ LSAPSDPLDIVVTGPYEKPSLSAQPGPKVQAGESVTLSCSSRS SYDMYHLSREGGAHERRLPAVRKVNRTFQADFPLGPATHGGTY RCFGSFRHSPYEWSDPSDPLLVSVTGNPSSSWPSPTEPSSKSG NLRHLHILIGTSVVKIPFTILLFFLLHRWCSNKK\NAAVMDQE PAGNR\VNSEDSDEQDHQEVSYP*LEHCVFTQRKITRPSQRPK TPPTDTSMYIELPNAEPRSKVVFCPRAPQSGLEGIF

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
	!	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ļ.	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
	1	acid	acid	
526	1265	sequence 6657	sequence 988	LHNLRERYFSGLIYTYSGLFCVVVNPYKHLPIYSEKIVDMYKG
526	1200	6657] 300	KKRHEMPPHIYAIADTAYRSMLQDREDQSILCTGESGAGKTEN
				TKKVIQYLAVVASSHKGKKDTSITGELEKQLLQANPILEAFGN
				AKTVKNDNSSRFGKFIRINFDVTGYIVGANIETYLLEKSRAIR
1				OARDERTFHIFYYMIAGAKEKMRSDLLLEGFNNYTFLSNGFVP
				~
				IPAAQDDEMFQETVEAMAIMGFSEEEQLSILKVVSSVLQLGNI
				VFKKERNTDQASMPDNTAAQKVCHLMGINVTDFTRSILTPRIK
	1	1	ļ	VGRDVVQKAQTKEQADFAVEALAKATYERLFRWILTRVNKALD
	1	1	[KTHRQGASFLGILDIAGFEIFEVNSFEQLCINYTNEKLQQLFN
		1	ĺ	HTMFIL\EQEEYQREGIEWNFIDFGLDLQPCIELIERPNNPPG
	1	1		VLALLDEECWFPKATDKSFVEKLCTEQGSHPKFQKPKQLKDKT
ļ				EFSIIHYAGKVDYNASAWLTKNMDPLNDNVTSLLNASSDKFVA
				DLWKDVDRIVGLDQMAKMTESSLPSASKTKKGMFRTVGQLYKE
				QLGKLMTTLRNTTPNFVRCIIPNHEKRSGKLDAFLVLEQLRCN
				GVLEGIRICRQGFPNRIVFQEFRQRYEILAANAIPKGFMDGKQ
				ACILMIKALELDPNLYRIGQSKIFFRTGVLAHLEEERDLKITD
1 .		İ		VIMAFQAMCRGYLARKAFAKRQQQLTAMKVIQRNCAAYIKLRN
				WQWCRLFTKV*PLLQVTRQE*EMQAKEDELQKTKERQQKAENE
	1			LKELEQKHSQLTEEKNLLQEQLQAETELYAEAEEMRVRLAAKK
				QELEEILHEMEARLEEEEDRGQQLQAERKKMAQQMLDLEEQLE
	1			EEEAARQKLQLEKVTAEAKIKKLEDEILVMDDQNNKLSKERKL
				LEERISDLTTNLAEEEEKAKNLTKLKNKHESMISELEVRLKKE
				EKSRQELEKLKRKLEGDASDFHEQIADLQAQIAELKMQLAKKE
1		1		EELQAALARLDDEIAQKNNALKKIRELEGHISDLQEDLDSERA
}			ł	ARNKAEKQKRDLGEELEALKTELEDTLDSTATQQELRAKREQE
				VTVLKR\ALNEETRSHEAQVQEMRQKHAQAVQSLTEQLEQ*K
Ì				RAKANLDKNKQTLEKENTD\LAGELRVLGQA\KQEVEHRMKKL
				QAQVQELQSKCSDGERARAELNDKVHK\LQNEVESVTG\MLNE
1			1	AEGKAIKLAKDVASLSSQL\QDTQELLQEESRQKLNVST\SLR
			1	\QLEEERNSLQDQLDEEMEAKQNLERHISTLNIQLSDSKKKLQ
		1		DFASTVEALEEGKKRFQKEIENLTQQYEEKAAAYDKLEKTKNR
				LQQELDDLVVDLDNQRQLVSNLEKKQRKFDQLLAEEKNISSKY
1	1		1	ADERDRVEAEAREKETKALSL\ARALEEALEAKEELERTNKML
	-		1.	KA\EMGRPGSASKD\DVGQELSHDL\EKSK\RALGDPRLEEMK
			1	T\QLEELGRTELASPRRDA\KLRLEVNMQAPSRASFER\DLQA
				RTEQNE\ESRR\HLQRQLHEYETELEDERKQRALAAAAKIKLG
				WDPVRTLDL*ADSAIKGRGGKAIKQLRKLQAQMKDFQRELEDA
	1			\RASRDEIF\ATA\KENEKKAKSLEA\DLMQLQE\DLAAAEEG
				RKQ\ADLE\KEELAEEL\ASSLSGRNALQDEKRRLEARIAQLE
				EELEEEQGNMEAMSDRVRKATQQAEQLSNELATERSTAQKNES
1				ARQQLERQNKELRSKLHEMEGAVKSKFKSTIAALEAKIAQLEE
				QVEQEAREKQAATKSLKQKDKKLKEILLQVEDERKMAEQYKEQ
				AEKGNARVKQLKRQLEEAEEESQRINANRRKLQRELDEATESN
				EAMGREVNALKSKLRRGNETSFVPSRRSGGRRVIENADGSEEE
				TDTRDADFNGTKASE
L				

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) KLHFAKSLNSELSCSTREAMQDEDGYITLNIKTRKPALVSVGP
				ASSSWWRVMALILLILCVGMVVGLVALGIWSVMQRNYLQDENE NRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYG DSCYGFFRHNLTWEESKQYCTDMNATLLKIDNRNIVEYIKAR\ THLIRWVGLSRQKSNEVWKWEDGSVISENMFEFLEDGKGNMNC AYFHNGKMHPTFCENKHYL\MCE\RKAGHDPRWTQLPLMPKRW TG
528	1267	1053	424	NQGLRDVGLCRTCLVNKIFASSILGKSHHHSLVSINQGHNAPW KAAGS\LPLKAAYC\QGFSPCDCLKYG\SWDEKDLMVPQPDTH KGSVLRWISKRGKPLAVEMEEGHCL\CLPLGTECLGVKP\IVH LFNSEMGEK\RPVAG\ARHVGSSAALLFFTPLRCLGGEKHKSG LRARPGIVPSLELNYDIDSFAHMFF/SVDLLLIITLLSYYIPF C
529	1268	1435	1560	MWWRLAPTQAIWRAAGCCMRFSRRRSTCCCLASCIFLLYKIVR GDQPAAKRRQRRRRAAPSAPPQAARLHPPPKLRRFDGVQDPAP YSWAINGKVFDVTQRPANFLRGPRGPETLSDWESQFTFKYHHV GKLLKEGEEPTVYSDEEEPKDESARKND*
530	1269	705	166	GPRMAKFLSQDQINEYKECFSLYDKQQRGKIKATDLMVAMRCL GASPTPGEVQRHLQTHGIDGNGELDFSTFLTIMHMQIKQEDPK KEILLAMLMVDKEKKGYVMASDLRSKLTSLGEKLTHKEV\DDL FRE\ADIEPNGKVKYDEFIHKI/TLLPGRDLLKEENGRASPGP ENLEQLIFL
531	1270	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI PAPRLPKRMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRF ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS ACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF WKTWRGRYYPLQATTMLIQPMAAEAAS
532	1271	1276	90	ALDFGDSCQWPRPQDTMKQLPVLEPGDKPRKATWYTLTVPGDS PCARVGHSCSYLPPVGNAKRGKVFIVGGANPNRSFSDVHTMDL GKHQWDLDTCKGLLPRYEHASFIPSCTPDRIWVFGGANQSGNR NCLQVLNPETRTWTTPEVTSPPPSPRTFHTSSAAIGNQLYVFG GGERGAQPVQDTKLHVFDANTLTWSQPETLGNPPSPRHGHVMV AAGTKLFIHGGLAGDRFYDDLHCIDISDMKWQKLNPTGAA\PA GCAS/HTPAVAMGK\HVYI\FGGMTPAGAPGTQCTQYHTEEQH WDPCLKF\DTPSYPPGTIGTHSHVVSFPW\PVTCASEKEDS\N SLTLNHEAEKEDSADKVMSHSGDSHEESQTATLLCLVFGGMNT EGEIYDDCIVTVVD

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
533	1272	1169	639	GFSIGKATDRMDAFRKAKNRAVHHLHYIERYEDHTIFHDISLR FKRTHIKMKKQPKGYGLRCHRAIITICRLIGIKDMYAKVSGSI NMLSLTQGLFRGLSRQETHQQLADKKGLHVVEIREECGPLPIV VASPRGPLRKDPEPEDEVPDVKLDWEDVKTAQGMKRSVWSNLK RAAT
534	1273	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI PAPRLPKRMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRF ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS ACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF WKTWRGRYYPLQATTMLIQPMAAEAAS
535	1274	23	1102	TLRSRPAGEAGYLGWDPEQAGEGSALSRPGAMAALMTPGTGAP PAPGDFSGEGSQGLPDPSPEPKQLPELIRMKRDGGRLSEADIR GFVAAVVNGSAQGAQIGAWGGLGVPDPDWEVSPRDFGSLGVRR CPTTSTGPRVPHRCGLPPSRVPPHTRG\MLMAIRLRGMDLEET SVLTQALAQSGQQLEWPEAWRQQLVDKHSTGGVGDKVSLVLAP ALAACGCKVINHLLSRREPIPHMQQPVHPQAAPNLKPGPKPPR PYQGFSPPCSPAQFSPPRSPAQRLGPLWLQTRPLGAGKRSTDG IQTPFPLGPQTAPPREELRTSLPLPQALFPQGQVPTSSPTDTS QPRKLPFHSLTSWAPL
536	1275	3	439	RALRELRERVTHGLAEAGRDREDVSTELYRALEAVRLQNSEGS CEPCPTSWLPFGGSCYYFSVPKTTWAEAQGHCADASAHLA/IV GGLGEQDFLSRDTSALEYWIGRRAVQHLRKVQGYSWVDGVPLS FR*/WEG/HPGETWGPQVRL
537	1276	1	564	RWPRSWPPRAGAARGAAEAAMVGALCGCWFRLGGARPLIPLGP TVVQTSMSRSQVALLGLSLLLMLLLYVGLPGPPEQTSCLWGDP NVTVLAGLTPGNSPIFYREVLPLNQAHRVEV\CCFMERPLTLT RGSSWAHCSYCHRGATGPWPLTFQVLGTRHLQRRQAQRQGGQR CWSGRCGTWRYRMPCW

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino	Predicted end nucleotide location corresponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		acid	acid	
		sequence	sequence	
538	1277	102	1549	QENQLEKKMKFLIFAFFGGVHLLSLCSGKAICKNGISKRTFEE IKEEIASCGDVAKAIINLAVYGKAQNRSYERLALLVDTVGPRL SGSKNLEKAIQIMYQNLQQDGLEKVHLEPVRIPHWERGEESAV MLEPRIHKIAILGLGSSIGTPPEGITAEVLVVTSFDELQRRAS EARGKIVVYNQPYINYSRTVQYRTQGAVEAAKVGALASLIRSV ASFSIYSPHTGIQEYQDGVPKIPTACITVEDAEMMSRMASHGI KIVIQLKMGAKTYPDTDSFNTVAEITGSKYPEQVVLVSGHLDS WDVGQGAMDDGGGAFISWEALSLIKDLGLRPKRTLRLVLWTAE EQGGVGAFQYYQLHKVNISNYSLVMESDAGTFLPTGLQFTGSE KARAIMEEVMSLLQPLNITQVLSHGEGTDINFWIQAGVPGASL LDDLYKYFFFHHSHGDTMTVHGIQTQMNV\AAAV\WAVVSYV\ VADMEEMLPRS
539	1278	2438	1148	TKPRKRRHQPASQRQRPWSSDSTGDLLARGKGRKEENKGSDRV SLAPPSLRRPMMCQSEARQGPELRAAKWLHFPQLALRRRLGQL SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL YKSVPTRLLSRAWGRLNQVELPHWLRRPVYSLYIWTFGVNMKE AAVEDLHHYRNLSEFFRRKLKPQARPVCGLHSVISPSDGRILN FGQVKNCEVEQVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF KNQLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT\ NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMRK GEHLGEFNLGSTIVLIFEAPKDFNFQLKTGQKI\RFGEALGSL
540	1279	3	1911	LPERAFGPRTPRAPRRRRRRLLLSPPPRPPPPPLDREPRAPGPW LCPSRAGTAQDPARIRERRGRVAGGAAGPAMELRARGWWLLCA AAALVACARGDPASKSRSCGEVRQIYGAKGFSSS\DVPQAEIS GEHLRICPQGYTCCTSEMEENLANRSHAELETALRDSSRVLQA MLATQLRSFDDHFQHLLNDSERTLQATFPGAFGELYTQNARAF RDLYSELRLYYRGANLHLEETLAEFWARLLERLFKQLHPQLLL PDDYLDCLGKQAEALRPF\GEAP\RELRLRAT\RA\FVAAR\S FVQGLGVAS\DVVRKVAQVPLG\PEC\SRAVIEAGSYC/ALHC VGVPGARPCPDYCRNVLKGCLANQADLDAEWRNLLDSMVLITD KFWGTSGVESVIGSVHTWLAEAINALQDNRDTLTAKVIQGCGN PKVNPQGPGPEEKRRRGKLAPRERPPSGTLEKLVSEAKAQLRD VQDFWISLPGTLCSEKMALSTASDDRCWNGMARGRYLPEVMGD GLANQINNPEVEVDITKPDMTIRQQIMQLKIMTNRLRSAYNGN DVDFQDASDDGSGSGSGDGCLDDLCGRKVSRKSSSSRTPLTHA LPGLSEQEGQKTSAASCPQPPTFLLPLLLFLALTVARPRWR
541	1280	590	189	ATELTRAGMEASALTKSA\VTSVAKVVR\VASGSAVVLPLARI ATSCD*RVGGP/VQAVPMVL\SAMGLQLRAGIASSSIAAKMMS AAAIA\NGGGVSPGQPLWLLLQSLGATGL\SGLTKFILGSIGS AIA\AVIARFY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1415	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) TNGRNLLHHWILGVCGMHPHHQETLKKNRVVLAKQLLLSELLE HLLEKDIITLEMRELIQAKVGSFSQNVELLNLLPKRGPQAFDA FCEALRETKQGHLEDMLLTTLSGLQHVLPPLSCDYDLSLPFPV CESCPLYKKLRLSTDTVEHSLDNKDGPVCLQVKPCTPEFYQTH FQLAYRLQSRPRGLALVLSNVHFTGEKELEFRSGGDVDHSTLV TLFKLLGYDVHVLCDQTAQEMQEKLQNFAQLPAHRVTDSCIVA LLSHGVEGAIYGVDGKLLQLQEVFQLFDNANCPSLQNKPKMFF IQACRGGAIGSLGHLLLFTAATASLAL\ETDRGVDQQDGKNHA GSPGCEESDAGKEKLPKMRLPTRSDMICGYACLKGTAAMRNTK RGSWYIEALAQVFSERACDMHVADMLVKVNALIKDREGYAPGT EFHRCKEMSEYCSTLCRHLYLFPGHPPT
543	1282	862	275	VRGKEVMAALCRTRAVAAESHFLRVFLFFRPFRGVGTESGSES GSSNAKEPKTRAGGFASALERHSELLQKVEPLQKGSPKNVESF ASMLRHSPLTQMGPAKDKLVIGRIFHIVENDL\YIDFGGKFHC VCRRPEVDGEKY\QKGTRVR\LRLLDLELTSRFLGATTD\TTV LEANAVLLGIQESKDSRSKEEHLEKYI

acid sequence 544 1283 2 1FGASPAPRRAAPLRLGLRLASGWARAPGGVSPVPGPGMGGD. 544 1283 2 FTMARAQALVLELTFQLCAPETETEVGCTFEEGSDPAVPCE \$QAQYDDFQWEQVRIHPGTRAPADLPHGSYLMVNTSQHAPGO] AHVIFQSLSENDTHCVQFSYFLYSRDGHSPGTLGVYVXVNGG LGSAVWMMTGSHGRQWHQAELAVSTFWPNEYQVLFEALISPD RGYMGLDDILLLSYPCAKAPHFSRLGDVEVNAGQNASFQCMA. GRAAEAERFLLQRQSGALVPAAGVRHISHRRFLATFPLAAVS: AEQDLYRCVSQAPRGRGTSLNFAEFNV/KEPPTPIAPPQLLR. GPTYLIIQLNTNSIIGDGPIVKKEIEYMARGPWAEVHAVSL TYKLWHLDPDTEVEISVLLTRPGDGGTGRPGPPLISRTKCAE MRAPKGLAFAEIQARQLTLQWEPLGYNVTRCHTYTVSLCYHY LGSSHNQTT\RECVKTEQGVSRYTMKNLLPYRNVHVRLVLTN EGRKEGKEVTFQTDEDVPSGIAAESLTFTPLEDMIFLKWEEP EPNGLITQYEISYQSIESSDPAVNVPGPRRTISKLRNETYHV SNLHPGTTYLFSVRARTGKGFGQAALTEITTNISAPSFDYAD PSPLGESENTITVLLRPAQGRGAPISVQVIVEEEQGSRLR EPGGQDCFPVPLTFEAALARGLVDYFGAELAASSLPEAMPFT GDNKTYRGFWNPPLEPRKAYLIYFQAASHLKGETRLNCIRIA KAACKESKRPLEVSQRSEEMGLILGICAGGLAVLILLLGAII IIRKGRDHYAYSYYPKPVNMTKATVNYRQEKTHMMSAVDRSF DQSTLQEDERLGLSFMDTHGYSTRGDQRSGGVTEASSLLGGS RRPCGRKGSPYHTGQLHPAVRVADLLQHINQMKTAEGYGFKQ YESFFEGMDATKKNDKVKGSRQEPMRAYDRHRVKLHPMLGDP ADYINANYIDIRINREGYHRSNHFIATQGPKPEMVYDFWRMV QEHCSSIVMITKLDEVGRVKCSRYWBDSDTYGDIKIMLVKT TLAEYVVRTFALERRGYSARHEVGGFHFTAWPEHGVPYHATG LAFIRRVKASTPPDAGPIVHCSAGTGRTGCYIVLDVMLDMA CEGVVDIYNCVKTLCSRRVNMIQTEEQYIFIHDAILEACLCG	SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino	Predicted end nucleotide location corre- sponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
1933 2 1933 1PGASPAPRRAAPLRIGLRLASGWARAPGGVSPVPGPGMGGD. PTMARAQALVLELTFQLCAPETETPEVGCTFEEGSDPAVPCE SQAQYDDFQWEQVRIHPGTRAPADLPHGSYLMVNTSQHAPGD. AHVIFQSLSENDTHCVQFSYFLYSRDGHSPGTLGVYVRVNGG. LGSAVWNMTGSHGRQWHQAELAVSTFWPNEYQVLFEALISPD. RGYMGLDDILLLSYPCAKAPHFSRLGDVEVNAGQNASFQCMA. GRAAEAERFLLQRQSGALVPAAGVRHISHRRFLATFPLAAVS. AEQDLYRCVSQAPRGRGTSLNFAEFMV/KEPPTPIAPPQLLR. GPTYLIIQLNTNSIIGDGPIVRKEIEYRMARGPWAEVHAVSL. TYKLWHLDPDTEYEISVLLTRPGDGGTGRPGPPLISRTKCAE MRAPKGLAFAEIQARQLTLQWEPLGYNVTRCHTYTVSLCYHY. LGSSHNQTI\RECVKTEQGVSRYTMKNLLPYRNVHVRLVLTN EGRKEGKEVTFQTDEDVPSGIAAESLTFTFLEDMIFIKWEEP. EPNGLITQYEISYQSIESSDPAVNVPGPRRTISKLRNETHYHV SNLHPGTTYLFSVRARTGKGFGQAALTEITTNISAPSFDYAD. PSPLGESENTITVLLRPAQGRGAPISVYQVIVEEEQGSRRLR EPGGQDCFPVPLTFEAALARGLVDYFGAELAASSLPEAMPFT GDNKTYRGFWNPPLEPRKAYLIYFQAASHLKGETRLNCIRIA KAACKESKRPLEVSORSEEMGLIGICAGGLAVLILLGAII IIRKGRDHYAYSYYPKPVNMTKATVYRQEKTHMMSAVDRSF DQSTLQEDERLGLSFMDTHGYSTRGDQRSGGVTEASSLLGGS RRPCGRKGSPYHTGQLHPAVRVADLLQHINQMKTAEGYGFKQ YESFFEGWDATKKKDKVKGSRQEPMPAYDRHRVKLHPMLGDP ADYINANYIDIRINREGYHRSNIFIATQGPKPEMVYDFWRMV QEHCSSIVMITKLVEVGRVKCSRYWPEDSDTYGDIKIMUKT TLABYVVRTFALERRGYSARHEVRQFHFTAWPEHGVPYHATG LAFIRRVKASTPPDAGPIVIHCSAGTGRTGCYIVLDVMLDMA CEGVVDIYNCVKTLCSRRVNMIQTEEQYIFIHDAILEACLCG					
ALTDSYTRSAAFIVTLHPLQSTTPDFWGLVYDYGCTSIVMLN LNQSNSAWPCLQYWPEPGRQQYGLMEVEFMSGTADEDLVARV RVQNISRLQEGHLLVRHFQFLRWSAYRDTPDSKKAFLHLLAE	544	1283			IPGASPAPRRAAPLRIGIRLASGWARAPGGVSPVPGPGMGGDA PTMARAQALVLELTFQLCAPETETPEVGCTFEEGSDPAVPCEY SQAQYDDFQWEQVRIHPGTRAPADLPHGSYLMVNTSQHAPGQR AHVIFQSLSENDTHCVQFSYFLYSRDGHSPGTLGVYVRVNGGP LGSAVWNMTGSHGRQWHQAELAVSTFWPNEYQVLFEALISPDR RGYMGLDDILLLSYPCAKAPHFSRLGDVEVNAGQNASFQCMAA GRAAEAERFLLQRQSGALVPAAGVRHISHRRFLATFPLAAVSR AEQDLYRCVSQAPRGRGTSLNFAEFMV/KEPPTPIAPPQLLRA GPTYLIIQLNTNSIIGDGPIVRKEIEYRMARGPWAEVHAVSLQ TYKLWHLDPDTEYEISVLLTRPGDGGTGRPGPPLISRTKCAEP MRAPKGLAFAEIQARQLTLQWEPLGYNVTRCHTYTVSLCYHYT LGSSHNQTI\RECVKTEQGVSRYTMKNLLPYRNVHVRLVLTNP EGRKEGKEVTFQTDEDVPSGIAAESLTFTPLEDMIFLKWEEPQ EPNGLITQYEISYQSIESSDPAVNVPGPRRTISKLRNETYHVF SNLHPGTTYLFSVRARTGKGFGQAALTEITTNISAPSFDYADM PSPLGESENTITVLLRPAQGRGAPISVYQVIVEEQGSRRLRR EPGGQDCFPVPLTFEAALARGLVDYFGAELAASSLPEAMPFTV GDNKTYRGFWNPPLEPRKAYLIYFQAASHLKGETRLNCIRIAR KAACKESKRPLEVSQRSEEMGLILGICAGGLAVLILLGAIIV IIRKGRDHYAYSYYPKPVNMTKATVNYRQBKTHMMSAVDRSFT DQSTLQEDERLGLSFMDTHGYSTRGDQRSGGVTEASSLLGGSP RRPCGRKGSPYHTGQLHPAVRVADLLQHINQMKTAEGYGFKQE YESFFEGWDATKKKDKVKGSRQEPMPAYDRHVKLHPMLGDPN ADYINANYIDIRINREGYHRSNHFIATQGPKPEMVYDFWRMVW QEHCSSIVMITKLVEVGRVKCSRYWPEDSDTYGDIKIMLVKTE TLAEYVVNTFALERRGYSARHEVRQFHFTAWPEHGVPYHATGL LAFIRRVKASTPPDAGPIVIHCSAGTGRTGCYIVLDVMLDMAE CEGVVDIYNCVKTLCSRRVNMIQTEEQYIFIHDAILEACLCGE TTIPVSEFKATYKEMIRIDPQSNSSQLREEFQTLNSVTPPLDV EECSIALLPRNRDKNRSMDVLPPDRCLPFLISTDGDSNNYINA ALTDSYTRSAAFIVTLHPLQSTTPDFWGLVYDYGCTSIVMLNQ LNQSNSAWPCLQYWPEPGRQQYGLMEVEFMSGTADEDLVARVF RVQNISRLQEGHLLVRHFQFLRWSAYRDTPDSKKAFLHLLAEG DKWQABSGDGRTIVHCLNGGRSGTFCA\CATVLEMIRCHNLV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
545	1284	2443	1152	TKPRKRRHQPÄSQRQRPWSSDSTGDLLARGKGRKEENKGSDRV SLAPPSLRRPMMCQSEARQGPELRAAKWLHFPQLALRRRLGQL SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL YKSVPTRLLSRAWGRLNQVELPHWLRRPVYSLYIWTFGVNMKE AAVEDLHHYRNLSEFFRRKLKPQARPVCGLHSVISPSDGRILN FGQVKNCEVEQVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF KNQLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT\ NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMAL RGEHLG/QSFNLGSTIVLIFEAPKDFNFQLKTGQKIRFGEALG SL
	1285	185	3057	AELGLFGSLRFSSLHFPPRPRSPASACGPGEGRMERGLPLLC AVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSE KCEWLIQAPDPYQRIMINFNPHFDLEDRDCKYDYVEVFDGENE NGHFRGKFCGKIAPPPVVSSGPFLFIKFVSDYETHGAGFSIRY EIFKRGPECSQNYTTPSGVIKSPGFPEKYPNSLECTYI\VFAP KMSEIIL\DFESFDLEPDSNPPGGMFCRYDRLEIWDGFPDVGP HIGRYCGQKTPGRIRSSSGILSMVFYTDSAIAKEGFSANYSVL QSSVSEDFKCMEALGMESGEIHSDQITASSQYSTNWSAERSRL NYPENGWTPGEDSYREWIQVDLGLLRFVTAVGTQGAISKETKK KYYVKTYKIDVSSNGEDWITIKEGNKPVLFQGNTNPTDVVVAV FPKPLITRFVRIKPATWETGISMRFEVYGCKITDYPCSGMLGM VSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSY INEWLQIDLGEEKIVRGIIIQGGKHRENKVFMRKFKIGYSNNG SDWKMIMDDSKRKAKSFEGNNNYDTPELRTFPALSTRFIRIYP ERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLVDECDDDQAN CHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEF GWGSHKTFCHWEHDNHVQLKWSVLTSKTGPIQDHTGDGNFIYS QADENQKGKVARLVSPVVYSQNSAHCMTFWYHMSGSHVGTLRV KLRYQKPEEYDQLVWMAIGHQGDHWKEGRVLLHKSLKLYQVIF EGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKI DETGSTPGYEGEGEGDKNISRKPGNVLKTLEPILITIIAMSAL GVLLGAVCGVVLYCACWHNGMSERNLSALENYNFELVDGVKLK
547	1286	3	521	HEGSALTWASHYQERLNSEQSCLNEWTAMADLESLRPPSAEPG GSVCGGEGLGGGEGRIMQWGAWWRGERAP*LRGSAPRSSEQEQ MEQAIRAELWKVLDVSDLESVTSKEIRQALELRLGLPLQ/PVP *LHRQPDAAAGGTAGPSLPHLPPPLPGLRVERSKPGGAAEEQV
548	1287	1742	1200	MAALDLRAELDSLVLQLLGDLEELEGKRTVLNARVEEGWLSLA KARYAMGAKSVGPLQYASHMEPQVCLHASEAQEGLQKFKVVRA GVHAPEEVGPREAGLRRRKGPTKTPEPESSEAPQDPLNWFGIL VPHSLRQAQASFRDGLQLAADIASLQNRIDWGRSQLRGLQEKL KQLEPGAA*

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \perpossible nucleotide insertion)
549	1288	1	649	HSDVGAATAVLPLLTAVLGVTVVTRRDTEGPGRAALVHLTGSP RQKVGTSGREGLPGLGASCAESELERETQEPRSRGRCIFGAAR WRQVPLASPQRPFLLSPGPRLHRMGLPVSWAPPALWVLGCCAL LLSLWALCTACRRPEDAVAPRKRARRQRARLQGSATAAEAVSA KLSRGPGWGPQGTDQPSSPPVPTEADPPLLPQQVGHQTARAAP G
550	1289	433	632	LTGPGQRLAGTTEGPRRCRGSSQAPTPTWKLVDTRLCAAAPWL ASRAPGHYSQMLLVN*PCRKDWLVSKWMRTPVCGQSPAMTDRP RSEAGRDHRRAKALPGLIPGSNPNLEACGHQALCSSSVASVQG PWPLLPNASSPPTPGQPQP
551	1290	102	612	KHRLCSLEQLMTLISAAREYEIEFIYAISPGLDITFSNPKEVS TLKRKLDQVSQFGCRSFALLFDDIDHNMCAADKEVFSSFAHAQ VSITNEIYQYLGEPETFLFCPT/EYCI*WLYI*LVFLEYITYK GPWAPFSLHFPPPLVCKSRNLFLEDIFQDPKLEKF*ELINDN
552	1291	269	565	TSALTQGLERIPDQLGYLVLSEGAVLASSGDLENDEQAASAIS ELVSTACGFRLHRGMNVPFKRLSVVFGEHTLLVTVSGQRVFVV KRQNRGREPIDV
553	1292	660	233	AKRAERTSRLQGLQHPSPPYPPATLGVTPGQDRTLQLQHQCPA GRKSRKKKSKATQLSPEDRVEDALPPSKAPSRTRRAKRDLPKR TATQRPEGTSLQQDPEAPTVPKKGRRKGRQAASGHCRPRKVKA DIPSLEPEGTSAS
554	1293	590	323	RKSSWLGAVAHACNPSSLGGPGRQITRSGVRDQPGQYGETPSL LKIQTLAGRGGACL*SHILRRLRQKNRLNLGGRGCSELRSRHC APA
555	1294	1	242	AWNSARGAVSPLWVPGCFLTLSVTWIGAAPLILSRIVGGWECE KHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRK
556	1295	1074	230	AEMADDLGDEWWENQPTGAGSSPEASDGEGEGDTEVMQQETVP VPVPSEKTKQPKECFLIQPKERKENTTKTRKRKKKITDVLAK SEPKPGLPEDLQKLMKDYYSSRRLVIELEELNLPDSCFLKAND LTHSLSSYLKEICPKWVKLRKNHSEKKSVLMLIICSSAVRALE LIRSMTAFRGDGKVIKLFAKHIKVQAQVKLLEKRVVHLGVGTP GRIKELVKQGGLNLSPLKFLVFDWNWRDQKLRRMMDIPEIRKE VFELLEMGVLSLCKSESLKLGLF
557	1296	929	289	RPGTAIWVVECEHGRPIAESEGQEGRGHSPPGPCSVAGFLRGR LGRNLEIMGSTWGSPGWVRLALCLTGLVLSLYALHVKAARARD RDYRALCDVGTAISCSRVFSSRWGRGFGLVEHVLGQDSILNQS NSIFGCIFYTLQLLLGCLRTRWASVLMLLSSLVSLAGSVYLAW ILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				APQLGDTQNCQLRCRDRDLGPQPSQAGLEGASESPYDRAVLIS ACERGCRLFSICRFVARSSKPNATQTECEAACVEAYVKEAEQQ ACSHGCWSQPAEPEPEQKRKVLEAPSGALSLLDLFSTLCNDLV NSAQGFVSSTWTYYLQTDNGKVVVFQTQPIVESLGFQGGRLQR VEVTWRGSHPEALEVHVDPVGPLDKVRKAKIRVKTSSKAKVES EEPQDNDFLSCMSRRSGLPRWILACCLFLSVLVMLWLSCSTLV TAPGQHLKFQPLTLEQHKGFMMEPDWPLYPPPSHACEDSLPPY KLKLDLTKL
559	1298	2	485	FPELGTSLSAMRFLAATFLLLALSTAAQAEPVQFKDCGSVDGV IKEVNVSPCPTQPCQLSKGQSYSVNVTFTSNIQSKSSKAVVHG ILMGVPVPFPIPEPDGCKSGINCPIQKDKTYSYLNKLPVKSEY PSIKLVVEWQLQDDKNQSLFCWEIPVQIVSHL
560	1299	1304	919	APETFRCVWRLQGLTFIAFTELQAKVIDTQQKVKLADIQIEQL NRTKKHAHLTDTEIMTLVDETNMYEGVGRMFILQSKEAIHSQL LEKQKIAEEKIKELEQKKSYLERSVKEAEDNIREMLMARRAQ
561	1300	3	799	HSLLLGTRVRDASSKIQGEYTLTLRKGGNNKLSRVFHRDGHYG FSEPLTFCSVVDLINHYRHESLAQYNAKLDTRLLYPVSKYQQV RAGLGAREGSTWLAPGLSFLGRPDQAMHLPSFRHVSP\DQIVK EDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKR TAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGN/QTKEMQ RILLNSERLKSRIA\EIHESPHRSWEQQLLVPRASDNKRD/ID KPH*TSLKPDL
562	1301	1772	301	AAAAAGRGRSSGRRRRRRPGALFASLGVLLGPRPPPGIPRTRA CSMGGVGEPGPREGPAQPGAPLPTFCWEQIRAHDQPGDKWLVI ERRVYDISRWAQRHPGGSRLIGHHGAEDATDAFRAFHQDLNFV RKFLQPLLIGELAPEEPSQDGPLNAQLVEDFRALHQAAEDMKL FDASPTFFAFLLGHTLAMEVLAWLLIYLLGPGWVPSALAAFIL AISQAQSWCLQHDLGHASIFKKSWWNHVAQKFVMGQLKGFSAH WWNFRHFQHHAKPNIFHKDPDVTVAPVFLLGESSVEYGKKKRR YLPYNQQHLYFFLIGPPLLTLVNFEVENLAYMLVCMQWADLLW AASFYARFFLSYLPFYGVPGVLLFFVAVRVLESHWFVWITQMN HIPKEIGHEKHRDWVSSQLAATCNVEPSLFTNWFSGHLNFQIE HHLFPRMPRHNYSRVAPLVKSLCAKHGLSYEVKPFLTALVDIV RSLKKSGDIWLDAYLHQ
563	1302	424	93	KSRATRLRESAEMTGFLLPPASRGTRRSCSRSRKRQTRRRRNP SSFVASCPTLLPFACVPGASPTTLAFPPVVLTGPSTDGIPFAL SLQRVPFVLPSPQVASLPLGHSRG
564	1303	1	414	IQYRSDLELHSITMKKSGVLFLLGIILLVLIGVQGTPVVRKGR CSCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQT CLNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKS QRSRQKKTT

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue of amino	residue of amino	
1		acid	acid	
		seguence	sequence	· ·
565	1304	7	3007	IPGSTISCRGCCGKWPVQEADPPRAALRGRFPALLTRHCPSPR
303	1304	′	3007	AEKEKRSLRRCGCRPLLVELAGPAGQAVEVLPHFESLGKQEKI
	1			PNKMSAFRNHCPHLDSVGEITKEDLIQKSLGTCQDCKVQGPNL
			ļ	WACLENRCSYVGCGESQVDHSTIHSQETKHYLTVNLTTLRVWC
				YACSKEVFLDRKLGTQPSLPHVRQPHQIQENSVQDFKIPSNTT
		Í	[LKTPLVAVFDDLDIEADEEDELRARGLTGLKNIGNTCYMNAAL
				QALSNCPPLTOFFLDCGGLARTDKKPAICKSYLKLMTELWYKS
				RPGSVVPTTLFQGIKTVNPTFRGYSQQDAQEFLRCLMDLLHEE
				LKEQVMEVEEDPOTITTEETMEEDKSQSDVDFOSCESCSNSDR
				AENENGSRCFSEDNNETTMLIQDDENNSEMSKDWQKEKMCNKI
	[NKVNSEGEFDKDRDSISETVDLNNQETVKVQIHSRASEYITDV
			1	HSNDLSTPQILPSNEGVNPRLSASPPKSGNLWPGLAPPHKKAO
	İ			SASPKRKKQHKKYRSVISDIFDGTIISSVOCLTCDRVSVTLET
	}	ŀ		FQDLSLPIPGKEDLAKLHSSSHPTSIVKAGSCGEAYAPOGWIA
				FFMEYVKRFVVSCVPSWFWGPVVTLODCLAAFFARDELKGDNM
				YSCEKCKKLRNGVKFCKVQNFPEILCIHLKRFRHELMFSTKIS
				THVSFPLEGLDLQPFLAKDSPAQIVTYDLLSVICHHGTASSGH
1				YIAYCRNNLNNLWYEFDDQSVTEVSESTVONAEAYVLFYRKSS
1			}	EEAQKERRRISNLLNIMEPSLLQFYISRQWLNKFKTFAEPGPI
1				SNNDFLCIHGGVPPRKAGYIEDLVLMLPQNIWDNLYSRYGGGP
			ļ	AVNHLYICHTCQIEAEKIEKRRKTELEIFIRLNRAFOKEDSPA
				TFYCISMQWFREWESFVKGKDGDPPGPIDNTKIAVTKCGNVML
				RQGADSGQISEETWNFLQSIYGGGPEVILRPPVVHVDPDILQA
			1	EEKIEVETRSL
566	1305	28	450	SPSAAGGLAWVSLALGSGSRGRDHSGSGVGTAMAGALVRKAAD
				YVRSKDFRDYLMSTHFWGPVANWGLPIAAINDMKKSPEIISGR
İ				MTFALCCYSLTFMRFAYKVOPRNWLLFACHATNEVAOLIOGGR
				LIKHEMTKTASA
567	1306	133	1292	LGSRQAAGTMRGQRSLLLGPARLCLRLLLLLGYRRRCPPLLRG
				LVQRWRYGKVCLRSLLYNSFGGSDTAVDAAFEPVYWLVDNVIR
				WFGVVFVVLVIVLTGSIVAIAYLCVLPLILRTYSVPRLCWHFF
1	1		}	YSHWNLILIVFHYYQAITTPPGYPPQGRNDIATVSICKKCIYP
				KPARTHHCSICNRCVLKMDHHCPWLNNCVGHYNHRYFFSFCFF
				MTLGCVYCSYGSWDLFREAYAAIEKMKOLDKNKLQAVANOTYH
				QTPPPTFSFRERMTHKSLVYLWFLCSSVALALGALTVWHAVLI
				SRGETSIERHINKKERRRLOAKGRVFRNPYNYGCLDNWKVFLG
[VDTGRHWLTRVLLPSSHLPHGNGMSWEPPPWVTAHSASVMAV
568	1307	66	962	ATRRRAAEAGMAAVLQRVERLSNRVVRVLGCNPGPMTLQGTNT
			[-	YLVGTGPRRILIDTGEPAIPEYISCLKQALTEFNTAIQEIVVT
				HWHRDHSGGIGDICKSINNDTTYCIKKLPRNPOREEIIGNGEO
1				QYVYLKDGDVIKTEGATLRVLYTPGHTDDHMALLLEEENAIFS
1	l	1	1	GDCILGEGTTVFEDLYDYMNSLKELLKIKADIIYPGHGPVIHN
,				AEAKIQQYISHRNIREQQILTLFRENFEKSFTVMELVKIIYKN
1				TPENLHEMAKHNLLLHLKKLEKEGKIFSNTDPDKKWKAHL
	<u> </u>	<u> </u>	<u> </u>	DIAMETER CONTINUE OF THE PROPERTY OF THE PR

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
569	1308	96	1017	ELHRAGQVAGGARRSRRESMELERIVSAALLAFVQTHLPEADL SGLDEVIFSYVLGVLEDLGPSGPSEENFDMEAFTEMMEAYVPG FAHIPRGTIGDMMQKLSGQLSDARNKENLQPQSSGVQGQVPIS PEPLQRPEMLKEETRSSAAAAADTQDEATGAEEELLPGVDVLL EVFPTCSVEQAQWVLAKARGDLEEAVQMLVEGKEEGPAAWEGP NQDLPRRLRGPQKDELKSFILQKYMMVDSAEDQKIHRPMAPKE APKKLIRYIDNQVVSTKGERFKDVRNPEAEEMKATYINLKPAR KYRFH
570	1309	3	526	FITGKGIVAILRCLQFNETLTELRFHNQRHMLGHHAEMEIARL LKANNTLLKMGYHFELPGPRMVVTNLLTRNQDKQRQKRQEEQK QQQLKEQKKLIAMLENGLGLPPGMWELLGGPKPDSRMQEFFQP PPPRPPNPQNVPFSQRSEMMKKPSQAPKYRTDPDSFRVVKLKR IQ
571	1310	3	1858	GGRAGTQCCWRAGARLRGISPSPALPEAPGLCRVRAGLGAGAL GRSPAGRRRGPRVSSSPAPHPRRVLCRCLLFLFFSCHDRRGD SQPYQALKYSSKSHPSSGDHRHEKMRDAGDPSPPNKMLRRSDS PENKYSDSTGHSKAKNVHTHRVRERDGGTSYSPQENSHNHSAL HSSNFTFFLIPSN*PQGKTFRIAPYDS\ADDW/SLEHISSSGE KYYYNCRTEVSQWGKTPKSGLERGQRQKEANKMAVNSFPKDRD YRREVMQATATSGFASGKSTSGDKPVSHSCTTPSTSSASGLNP TSAPPTSASA\VPVSP\VPQ\SPIPPLLQDPNLLRQLL\PALE ATLQLNNSNVDI\SIINEVLTGDVTQASLQTIIHKCLTAGPSV FKITSLISQAAQLSTQAQASNQSPMSLTSDASSPR\SYVSPRN KAHLKLNTVPIQTFGFSTPPVSSQPKVSTPVVKQGPVSQSATQ QPVTADKQQGHEPVSPRSLQRSSSQRSPSPGPNHTSNSSNASN ATVVPQNSSARSTCSLTPALAAHFSENLIKHVQGWPADHAEKQ ASRLREEAHNMGTIHMSEICTELKNLRSLVRVCEIQATLREQR ILFLRQQIKELEKLKNQNSFMV
572	1311	2	1165	VAPECRGAYPFRAMMPGTALKAVLLAVLLVGLQTATGRLLSGQ PVCRGGTQRPCYKVIYFHDTSRRLNFEEAKEACRRDGGQLVSI ESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPY MFQWNDDRCNMKNNFICKYSDEKPAVPSREAEGEETELTTPVL PEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLVVTTVV CWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIR KQSEADLAETRPDLKNISFRVCSGEATPDDMSCDYDNMAVNPS ESGFVTLVSVESGFVTNDIYEFSPDQMGRSKESGWVENEIYGY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
573	1312	3	1416	TEWGLSGSCPGCSPLEPGSRGRGAAAWRILRCRRLPEPSPFLT QPNLAQSQPPAPVPVTDPSVTMHPAVFLSLPDLRCSLLLLVTW VFTPVTTEITSLDTENIDEILNNADVALVNFYADWCRFSQMLH PIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYP TLKLFRNGMMMKREYRGQRSVKALADYIRQQKSDPIQEIRDLA EITTLDRSKRNIIGYFEQKDSDNYRVFERVANILHDDCAFLSA FGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWI QDKCVPLVREITFENGEELTEEGLPFLILFHMKEDTESLEIFQ NEVARQLISEKGTINFLHADCDKFRHPLLHIQKTPADCPVIAI DSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDP TDTAPGEQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL
574	1313	928	142	LTPSVGPVFPGRPTRPLASPFPVPLHRCSAGSQPPGPVPEGLI RIYSMRFCPYSHRTRLVLKAKDIRHEVVNINLRNKPEWYYTKH PFGHIPVLETSQCQLIYESVIACEYLDDAYPGRKLFPYDPYER ARQKMLLELFCKVPHLTKECLVALRCGRECTNLKAALRQEFSN LEEILEYQNTTFFGGTCISMIDYLLWPWFERLDVYGILDCVSH TPALRLWISAMKWDPTVCALLMDKSIFQGFLNLYFQNNPNAFD FGLC
575	1314	884	363	NTATNMTQPNAGTRKYSVPAISVHTSSSSFAYDREFLRTLPGF LIVAEIVLGLLVWTLIAGTEYFRVPAFGWVMFVAVFYWVLTVF FLIIYITMTYTRIPQVPWTTVGLCFNGSAFVLYLSAAVVDASS VSPERDSHNFNSWAASSFFAFLVTICYAGNTYFSFIAWRSRTI Q
576	1315	165	944	GLRDPFRRKRRLKPQVKMSNYVNDMWPGSPQEKDSPSTSRSGG SSRLSSRSRSFSRSSRSHSRVSSRFSSRSRRSKSRSRSRRR HQRKYRRYSRSYSRSRSRSRRYRERRYGFTRRYYRSPSRYR SRSRSRSRGRSYCGRAYAIARGQRYYGFGRTVYPEEHSRWR DRSRTRSRSRTPFRLSEKDRMELLEIAKTNAAKALGTTNIDLP ASLRTVPSAKETSRGIGVSSNGAKPEVSILGLSEQNFQKANCQ I

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
ļ		sequence	sequence	
577	1316	265	2300	AEGSTMDLTKMGMIQLQNPNHPTGLLCKANQMRLAGTLCDVVI MVDSQEFHAHRTVLACTSKMFEILFHRNSQHYTLDFLSPKTFQ QILEYAYTATLQAKAEDLDDLLYAAEILEIEYLEEQCLKMLET IQASDDNDTEATMADGGAEEKKDRKARYLKNIFISKHSSEESG YASVAGQSLPGPMVDQSPSVSTSFGLSAMSPTKAAVDSLMTIG QSLLQGTLQPPAGPEEPTLAGGGRHPGVAEVKTEMMQVDEVPS QDSPGAAESSISGGMGDKVEERGKEGPGTPTRSSVITSARELH YGREESAEQVPPPAEAGQAPTGRPEHPAPPPEKHLGIYSVLPN HKADAVLSMPSSVTSGLHVQPALAVSMDFSTYGGLLPQGFIQR ELFSKLGELAVGMKSESRTIGEQCSVCGVELPDNEAVEQHRKL HSGMKTYGCELCGKRFLDSLRLRMHLLAHSAGAKAFVCDQCGA QFSKEDALETHRQTHTGTDMAVFCLLCGKRFQAQSALQQHMEV HAGVRSYICSECNRTFPSHTALKRHLRSHTGDHPYECEFCGSC FRDESTLKSHKRIHTGEKPYECNGCGKKFSLKHQLETHYRVHT GEKPFECKLCHQRSRDYSAMIKHLRTHNGASPYQCTICTEYCP SLSSMQKHMKGHKPEEIPPDWRIEKTYLYLCYV
578	1317	686	908	IWEAPTLIFTLAGGRALGHPPMQKGSQGCALPHPLPGASLPAQ PGPADHRGWECRIGGEASVFTHLFCLPHSPT
579	1318	150	1204	ASGSPAPSSSSAMAAACGPGAAGYCLLLGLHLFLLTAGPALGW NDPDRMLLRDVKALTLHYDRYTTSRRLDPIPQLKCVGGTAGCD SYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEGY ESSEDQYVLRGSCGLEYNLDYTELGLQKLKESGKQHGFASFSD YYYKWSSADSCNMSGLITIVVLLGIAFVVYKLFLSDGQYSPPP YSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGHGATSGF GSAFTGQQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSDS WYYPSYPPSYPGTWNRAYSPLHGGSGSYSVCSNSDTKTRTASG YGGTRRR
580	1319	1208	276	GRCGAMAAGLARLLLLGLSAGGPAPAGAAKMKVVEEPNAFGV NNPFLPQASRLQAKRDPSPVSGPVHLFRLSGKCFSLVESTYKY EFCPFHNVTQHEQTFRWNAYSGILGIWHEWEIANNTFTGMWMR DGDACRSRSRQSKVELACGKSNRLAHVSEPSTCVYALTFETPL VCHPHALLVYPTLPEALQRQWDQVEQDLADELITPQGHEKLLR TLFEDAGYLKTPEENEPTQLEGGPDSLGFETLENCRKAHKELS KEIKRLKGLLTQHGIPYTRPTETSNLEHLGHETPRAKSPEQLR GDPGLRGSL
581	1320	1074	132	NSFWSVLFLVQEETEVARCNAQHRLRQSRDSKPDPSFRSQPID SSISFAGSDIQPLFSFASVDGTQVGEAEEWAGPWAEATLLPGP GNRWPPRAGLSGNWLEEDGDWPSLPEVVGFVSERELFRDALGA GCRILLICEMQLTHQLDLFPECRVTLLLFKDVKNAGDLRRKAM EGTIDGSLINPTVIVDPFQILVAANKAVHLYKLGKMKTRTLST EIIFNLSPNNNISEALKKFGISANDTSILIVYIEEGEKQINQE YLISQVEGHQVSLKNLPEIMNITEVKKIYKLSSQEESIGTLLD AIICRMSTKDVL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
582	1321	5021	7694	QRSWAGPGAGPEAGTRPPARGRRRQPGNVDPRRRAPQLRSQMQ VAMARATTATGNRLWPGLLIMLGSLCHRGSPCGLSTHIEIGHR ALEFLQLHNGRVNYRELLLEHQDAYQAGIVFPDCFYPSICKGG KFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLFG ITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAGDFG GDVLSQFEFNFNYLARRWYVPVKDLLGIYEKLYGRKVITENVI VDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLVEQFQEYFLGG LDDMAFWSTNIYHLTIFMLENGTSDCNLPENPLFIACGGQQNH TQGSKMQKNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTP DSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLSFPYA RLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIHIGRVYLIYGN DLGLPPVDLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVP DLAVGAPSVGSEQLTYKGAVYVYFGSKQGGMSSSPNITISCQD IYCNLGWTLLAADVNGDSEPDLVIGSPFAPGGGKQKGIVAAFY SGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTL LLVGSPTWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFT ISGDKAMGKLGTSLSSGHVLMNGTLKQVLLVGAPTYDDVSKVA FLTVTLHQGGATRMYALTSDAQPLLLSTFSGDRRFSRFGGVLH LSDLDDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKET TLGDMTGKCKSWITPCPEEKAQYVLISPEASSRFGSSLITVRS KAKNQVVIAAGRSSLGARLSGALHVYSLGSD
583	1322	1	357	SLRNSARGLKMAASAARGAAALRRSINQPVAFVRRIPWTAASS QLKEHFAQFGHVRRCILPFDKETGFHRGLGWVQFSSEEGLRNA LQQENHIIDGVKVQVHTRRPKLPQTSDDEKKDF
584	1323	1205	433	GSSNIHSASTHGFCHWFSSPSTLKRQKQAIRFQKIRRQMEAPG APPRTLTWEAMEQIRYLHEEFPESWSVPRLAEGFDVSTDVIRR VLKSKFLPTLEQKLKQDQKVLKKAGLAHSLQHLRGSGNTSKLL PAGHSVSGSLLMPGHEASSKDPNHSTALKVIESDTHRTNTPRR RKGRNKEIQDLEESFVPVAAPLGHPRELQKYSSDSESPRGTGS GALPSGQKLEELKAEEPDNFSSKVVQRGREFFDSNGNFLYRI
585	1324	134	954	ETRVKTSLELLRTQLEPTGTVGNTIMTSQPVPNETIIVLPSNV INFSQAEKPEPTNQGQDSLKKHLHAEIKVIGTIQILCGMMVLS LGIILASASFSPNFTQVTSTLLNSAYPFIGPFFFIISGSLSIA TEKRLTKLLVHSSLVGSILSALSALVGFIILSVKQATLNPASL QCELDKNNIPTRSYVSYFYHDSLYTTDCYTAKASLAGTLSLML ICTLLEFCLAVLTAVLRWKQAYSDFPGSVLFLPHSYIGNSGMS SKMTHDCGYEELLTS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1.53.7	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				LFLTPYIEAGKIQKGRELSLVGPFPGLNMKSYAGFLTVNKTYN SNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEHGPYV VTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVN EDDVARDLYSALIQFFQIFPEYKNNDFYVTGESYAGKYVPAIA HLIHSLNPVREVKINLNGIAIGDGYSDPESIIGGYAEFLYQIG LLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTS DPSYFQNVTGCSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIH VGNQTFNDGTIVEKYLREDTVQSVKPWLTEIMNNYKVLIYNGQ LDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVA GYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWD PYVG
587	1326	883	541	RDERAKVPFRSTEG\GRRRRRRMEAVVFVFSLLDCCALIFLSV YFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLM SLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQL KSHMKEAMIKLGFHLLCFFMYLYSMILALIND
588	1327	1126	732	QSPGHGAPCQLSSSHSRSNRLLSPMARATLSAAPSNPRLLRVA LLLLLVAASRRAAGAPLATELRCQCLQTLQGIHLKNIQSVKV KSPGPHCAQTEVIATLKNGQKACLNPASPMVKKIIEKMLKNGK SN
589	1328	197	330	HPLSLVFLALNTGKEKSHPGGGGERPGLAGQGEPDHPAGARDG R
590	1329	1	1575	CTPVARSMATTATCTRFTDDYQLFEELGKGAFSVVRRCVKKTS TQEYAAKIINTKKLSARDHQKLEREARICRLLKHPNIVRLHDS ISEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIHQILE SVNHIHQHDIVHRDLKPENLLLASKCKGAAVKLADFGLAIEVQ GEQQAWFGFAGTPGYLSPEVLRKDPYGKPVDIWACGVILYILL VGYPPFWDEDQHKLYQQIKAGAYDFPSPEWDTVTPEAKNLINQ MLTINPAKRITADQALKHPWVCQRSTVASMMHRQETVECLRKF NARRKLKGAILTTMLVSRNFSAAKSLLNKKSDGGVKPQSNNKN SLVSPAQEPAPLQTAMEPQTTVVHNATDGIKGSTESCNTTTED EDLKVRKQEIIKITEQLIEAINNGDFEAYTKICDPGLTSFEPE ALGNLVEGMDFHKFYFENLLSKNSKPIHTTILNPHVHVIGEDA ACIAYIRLTQYIDGQGRPRTSQSEETRVWHRRDGKWLNVHYHC SGAPAAPLQ NRRTVKMLLELSEEHKEHLAFLPQVDSAVVAEFGRIAVEFLRR
791	1330	± /		GANPKIYEGAARKLNVSSDTVQHGVEGLTYLLTESSKLMISEL DFQDSVFVLGFSEELNKLLLQLYLDNRKEIRTILSEL\APSLP SYHNLEWRLDVQLASRSLRQQIKPAVTIKLHLNQNGDHNTKVL QTDPATLLHLVQQLEQALEEMKTNHCRRVVRNIK
592	1331	1	237	GTSIYLAHRVA\RAWELAQFIHHTSKKADVVLACGDSIVHPED LICCPLTGRSCLCDVHLLSSLLARLGRGYAVSLTNL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
:		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
!	ł	acid	acid	\=possible nucleotide insertion)
]	residue	residue of amino	
		of amino acid	acid	
		sequence	sequence	•
593	1332	2506	1684	RGCGSCGYKPSAGPAWRPRPPPPAVSPLRHPEPAKVLSFSSCPL
223	1332	2500	1001	PALGRIGPSRAARAQSLIMASLFKKKTVDDVIKEQNRELRGTQ
				RAIIRDRAALEKQEKQLELEIKKMAKIGNKEACKVLAKQLVHL
			ļ	RKOKTRTFAVSSKVTSMSTQTKVMNSQMKMAGAMSTTAKTMQA
		ļ	!	VNKKMDPQKTLQTMQNFQKENMKMEMTEEMINDTLDDIFDGSD
				DEEESQDIVNQVLDEIGIEISGKMAKAPSAARSLPSASTSKAT
	İ			ISDEEIEROLKALGVD
594	1333	905	432	STDGNGAERLFAELRKMNARGLGSELKDSIPVTELSASGPFES
334	1333	303	752	HDLLRKGFSCVKNELLPSHPLELSEKNFQLNQDKMNFSTLRNI
				QGLFAPLKLQMEFKAVQQVQRLPFLSSSNLSLDVLRGNDETIG
		1	1	FEDILNDPSQSEVMGEPHLMVEYKLGLL
595	1334	111	117	RNMKLHYVAVLTLAILMFLTWLPESLSCNKALCASDVSKCLIQ
פעכן	1334	T.T.T	11/	ELCOCRPGEGNCSCCKECMLCLGALWDECCDCVGMCNPRNYSD
	1			TPPTSKSTVEELHEPIPSLFRALTEGDTOLNWNIVSFPVAEEL
1	}			SHHENLVSFLETVNQPHHQNVSVPSNNVHAPYSSDK/E*LPTV
	ŀ			DFFHSAPSCGLSM*SIIFFEET
596	1335	817	278	VGGVPTWLEGCGSGNPSPRSGGGPGARLTLPALQMTVHNLYLF
סקכן	1333	01/	210	DRNGVCLHYSEWHRKKOAGIPKEEEYKLMYGMLFSIRSFVSKM
				SPLDMKDGFLAFQTSRYKLHYYETPTGIKVVMNTDLGVGPIRD
				VLHHIYSALYVELVVKNPLCPLGQTVQSELFRSRLDSYVRSLP
				FFSARAG
597	1336	171	881	PGLSQEPSGSMETVVIVAIGVLATIFLASFAALVLVCRQRYCR
391	1330	1./.	001	PRDLLQRYDSKPIVDLIGAMETQSEPSELELDDVVITNPHIEA
				ILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKM
				KTSASVSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTAL
-				LLSVSHLVLVTRNACHLTGGLDWIDQSLSAAEEHLEVLREAAL
	İ			ASEPDKGLPGPEGFLQEQSAI
598	1337	1078	594	VGMELPAVNLKVILLGHWLLTTWGCIVFSGSYAWANFTILALG
ه ود	""	10,0	3,7	VWAVAQRDSIDAISMFLGGLLATIFLDIVHISIFYPRVSLTDT
1	-			GRFGVGMAILSLLLKPLSCCFVYHMYRERGGELLVHTGFLGSS
				QDRSAYQTIDSAEAPADPFAVPEGRSQDARGY
599	1338	717	116	PASRPLLGPDTGSVANIFKGLVILPEMSLVIRNLORVIPIRRA
399	1336	(- '	110	PLRSKIEIVRRILGVQKFDLGIICVDNKNIQHINRIYRDRNVP
İ				TDVLSFPFHEHLKAGEFPOPDFPDDYNLGDIFLGVEYIFHOCK
		1		ENEDYNDVLTVTATHGLCHLLGFTHGTEAEWOOMFQKEKAVLD
				ELGRRTGTRLOPLTPGPLPEGAEGRVPF
600	1339	1	804	LRNALDVLHREVPRVLVNLVDFLNPTIMROVFLGNPDKCPVOO
000	1339	-	004	A/MLEPLGSKTETLDLRAEMPITCPTONEPFLRTPRNSNYTYP
				IKPAIENWGSDFLCTEWKASNSVPTSVHQLRPADIKVVAALGD
1			1	
				SLTTAVGARPNNSSDLPTSWRGLSWSIGGDGNLETHTTLPNIL
				KKFNPYLLGFSTSTWEGTAGLNVAAEGARARDMPAQAWDLVER
				MKNSPDINLEKDWKLVTLFIGGNDLCHYCENPEAHLATEYVQH
<u></u>		1		IQQALDILSE

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre- sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
İ	ţ	acid	acid	
	1	sequence	sequence	
601	1340	1	860	VVEFLWSRRPSGSSDPRPRRPASKCQMMEERANLMHMMKLSIK
1		ļ		VLLQSALSLGRSLDADHAPLQQFFVVMEHÇLKHGLKVKKSFIG
	1			QNKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
1				YLALMQKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
)]			LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
				EHERITDVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL
1				QERVSAATDRICSLQEEQQQLREQNELIR
602	1341	60	762	KPEGARRVQFVMGLFGKTQEKPPKELVNEWSLKIRKEMRVVDR
		ļ		QIRDIQREEEKVKRSVKDAAKKGQKDVCIVLAKEMIRSRKAVS
1			;	KLYASKAHMNSVLMGMKNQLAVLRVAGSLQKSTEVMKAMQSLV
				KIPEIQATMRELSKEMMKAGIIEEMLEDTFESMDDQEEMEEEA
ł	İ			EMEIDRILFEITAGALGKAPSKVTDALPEPEPPGAMAASEDEE
				EEEEALEAMQSRLATLRS
603	1342	3	456	RWNSIMELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPI
				LSYWPYGCHCGLGGRGQPKDATDWCCQTHDCCYDHLKTQGCGI
	į		i i	YKDYYRYNFSQGNIHCSDKGSWCEQQLCACDKEVAFCLKRNLD
				TYQKRLRFYWRPHCRGQTPGC
604	1343	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
				INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
				FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
605	1344	2	382	LPLTLLLAAPFAHLLLPPGHDQSPCWHPGPALSPGTLGPLSWA
				MANSGLQLLGYFLALGGWVGIIASTALPQWKQSSYAGDASIQL
				RSKVFVLESEWGGDSLGLPRDCGWSCLLHSAVRSEKGFWS
606	1345	2	987	DPRVRPPLLQPPPPLLPRLVILKMAPLDLDKYVEIARLCKYLP
				ENDLKRLCDYVCDLLLEESNVQPVSTPVTVCGDIHGQFYDLCE
			.	LFRTGGQVPDTNYIFMGDFVDRGYYSLETFTYLLALKAKWPDR
				ITLLRGNHESRQITQVYGFYDECQTKYGNANAWRYCTKVFDML
		1		TVAALIDEQILCVHGGLSPDIKTLDQIRTIERNQEIPHKGAFC
				DLVWSDPEDVDTWAISPRGAGWLFGAKVTNEFVHINNLKLICR
				AHQLVHEGYKFMFDEKLVTVWSAPNYCYRCGNIASIMVFKDVN
<u> </u>	1245	1.0	7.00	TREPKLFRAVPDSERVIPPRTTTPYFL
607	1346	10	768	SFAGAAARPSTPPASGRGAAPGRPGPSPMDLRAGDSWGMLACL
				CTVLWHLPAVPALNRTGDPGPGPSIQKTYDLTRYLEHQLRSLA
				GTYLNYLGPPFNEPDFNPPRLGAETLPRATVDLEVWRSLNDKL
	1			RLTQNYEAYSHLLCYLRGLNRQAATAELRRSLAHFCTSLQGLL
				GSIAGVMAALGYPLPQPLPGTEPTWTPGPAHSDFLQKMDDFWL LKELQTWLWRSAKDFNRLKKKMQPPAAAVTLHLGAHGF
600	13247	114	700	
608	1347	114	700	IKISLKKRSMSGISGCPFFLWGLLALLGLALVISLIFNISHYV
				EKQRQDKMYSYSSDHTRVDEYYIEDTPIYGNLDDMISEPMDEN CYEOMKARPEKSVNKMQEATPSAQATNETOMCYASLDHSVKGK
		1		~ ~ ~
	1			RRKPRKQNTHFSDKDGDEQLHAIDASVSKTTLVDSFSPESQAV EENIHDDPIRLFGLIRAKREPIN
L			 _	DENTITOR TRUE GRIT VANCAGE TIM

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
609	1348	2	807	VEFHPQRARAGARAPSMGVLLTQRTLLSLVLALLFPSMASMAA IGSCSKEYRVLLGQLQKQTDLMQDTSRLLDPYIRIQGLDVPKL REHCRERPGAFPSEETLRGLGRRCFLQTLNATLGCVLHRLADL EQRLPKAQDLERSGLNIEDLEKLQMARPNILGLRNNIYCMAQL LDNSDTAEPTKAGRGASQPPTPTPASDAFQRKLEGCRFLHGYH RFMHSVGRVFSKWGESPNRSRRHSPHQALRKGVRRTRPSRKGK RLMTRGQLPR
610	1349	2	418	DFPGRRFRLVWLLVLRLPWRVPGQLDPTTGRRFSEHKLCADDE CSMLMYRGEALEDFTGPDCRFVNFKKGDPVYVYYKLARGWPEV WAGSVGRTFGYFPKDLIQVVHEYTKEELQVPTNETDFVCFDGG RDDFHNYNV
611	1350	823	115	SPLGKEGQEEVRVKIKDLNEHIVCCLCAGYFVDATTITECLHT FCKSCIVKYLQTSKYCPMCNIKIHETQPLLNLKLDRVMQDIVY KLVPGLQDSEEKRIREFYQSRGLDRVTQPTGEEPALSNLGLPF SSFDHSKAHYYRYDEQLNLCLERLSSGKDKNKSVLQNKYVRCS VRAEVRHLRRVLCHRLMLNPQHVQLLFDNEVLPDHMTMKQIWL SRWFGKPSPLLLQYSVKEKRR
612	1351	9	545	LWWYSAHAAVDAMMDVFGVGFPSKVPWKKMSAEELENQYCPSR WVVRLGAEEALRTYSQIGIEATTRARATRKSLLHVPYGDGEGE KVDIYFPDESSEATTRARATRKSLLHVPYGDGEGEKVDIYFPD ESSEALPFFLFFHGGYWQSGRHPGPHGRPGDPQRCVCPEAVSK QQAFSW
613	1352	49	902	GVRMASRGRRPEHGGPPELFYDETEARKYVRNSRMIDIQTRMA GRALELLYLPENKPCYLLDIGCGTGLSGSYLSDEGHYWVGLDI SPAMLDEAVDREIEGDLLLGDMGQGIPFKPGTFDGCISISAVQ WLCNANKKSENPAKRLYCFFASLFSVLVRGSRAVLQLYPENSE QLELITTQATKAGFSGGMVVDYPNSAKAKKFYLCLFSGPSTFI PEGLSENQDEVEPRESVFTNERFPLRMSRRGMVRKSRAWVLEK KERHRRQGREVRPDTQYTGRKRKPRF
614	1353	1960	871	TLICRMAGCGEIDHSINMLPTNRKANESCSNTAPSLTVPECAI CLQTCVHPVSLPCKHVFCYLCVKGASWLGKRCALCRQEIPEDF LDKPTLLSPEELKAASRGNGEYAWYYEGRNGWWQYDERTSREL EDAFSKGKKNTEMLIAGFLYVADLENMVQYRRNEHGRRRKIKR DIIDIPKKGVAGLRLDCDANTVNLARESSADGADSVSAQSGAS VQPLVSSVRPLTSVDGQLTSPATPSPDASTSLEDSFAHLQLSG DNTAERSHRGEGEEDHESPSSGRVPAPDTSIEETESDASSDSE DVSAVVAQHSLTQQRLLVSNANQTVPDRSDRSGTDRSVAGGGT VSVSVRSRRPDGQCTVTEV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
615	1354	5653	4549	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF IDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVF DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR HCNGFPAGAEVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK HCFMMPQSLGVIGGKPNSAHYFIGYVGEELIYLDPHTTQPAVE PTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLSTQAF GAECCLGMTRKTFGFLRFFFSMLG
616	1355	416	65	PTTSNRAITLTAWPKIPFLGICEAKNPRSENMRLATILEVACH HLGSGPPPSWELWEQGPPGNSSRYIEFLNKHTYIKGTLRVYTK KFCMLVIKSFESKSCVCVYDFDSKSSVNVTV
617	1356	2	382	PRVRFRLLHVTSIRSAWILCGIIWILIMASSIMLLDSGSEQNG SVTSCLELNLYKIAKLQTVNYIALVVGCLLPFFTLSICYLLII RVLLKVEVPESGLRVSHRKALTTIIITLIIFFLCFLPYHT
618	1357	3	672	GRHWLGSAQLTDGGSARKPKMAVPAALILRESPSMKKAVSLIN AIDTGRFPRLLTRILQKLHLKAESSFSEEEEEKLQAAFSLEKQ DLHLVLETISFILEQAVYHNVKPAALQQQLENIHLRQDKAEAF VNTWSSMGQETVEKFRQRILAPCKLETVGWQLNLQMAHSAQAK LKSPQAVLQLGVNNEDSKSLEKVLVEFSHKELFDFYNKLETIQ AQLDSLT
619	1358	557	208	EASSAKTKRKEEKGPKAKMKLMVLVFTIGLTLLLGVQAMPANR LSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDGKGCEMI CYCNFSELLCCPKDVFFGPKISFVIPCNNQ
620	1359	335	1735	KMAEAVFHAPKRKRRVYETYESPLPIPFGQDHGPLKEFKIFRA EMINNNVIVRNAEDIEQLYGKGYFGKGILSRSRPSFTISDPKL VAKWKDMKTNMPIITSKRYQHSVEWAAELMRRQGQDESTVRRI LKDYTKPLEHPPVKRNEEAQVHDKLNSGMVSNMEGTAGGERPS VVNGDSGKSGGVGDPREPLGCLQEGSGCHPTTESFEKSVREDA SPLPHVCCCKQDALILQRGLHHEDGSQHIGLLHPGDRGPDHEY VLVEEAECAMSEREAAPNEELVQRNRLICRRNPYRIFEYLQLS LEEAFFLVYALGCLSIYYEKEPLTIVKLWKAFTVVQPTFRTTY MAYHYFRSKGWVPKVGLKYGTDLLLYRKGPPFYHASYSVIIEL VDDHFEGSLRRPLSWKSLAALSRVSVNVSKELMLCYLIKPSTM TDKEMESPECMKRIKVQEVILSRWVSSRERSDQDDL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID SEQ	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1,0105	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	}	residue	residue	•
1		of amino	of amino	•
		acid	acid	
		sequence	sequence	
621	1360	5693	4435	RDIWTMNLQRYWGEIPISSSQTNRSSFDLLPREFRLVEVHDPP
	ļ			LHQPSANKPKPPTMLDIPSEPCSLTIHTIQLIQHNRRLRNLIA
]		TAQAQNQQQTEGVKTEESEPLPSCPGSPPLPDDLLPLDCKNPN
			•	APFQIRHSDPESDFYRGKGEPVTELSWHSCRQLLYQAVATILA
				HAGFDCANESVLETLTDVAHEYCLKFTKLLRFAVDREARLGQT
ļ	}	1	j	PFPDVMEQVFHEVGIGSVLSLQKFWQHRIKDYHSYMLQISKQL
	ļ	1		SEEYERIVNPEKATEDAKPVKIKEEPVSDITFPVSEELEADLA
Ì				SGDQSLPMGVLGAQSERFPSNLEVEASPQASSAEVNASPLWNL
	ĺ	l		AHVKMEPQESEEGNVSGHGVLGSDVFEEPMSGMSEAGIPQSPD
	ļ	ļ		DSDSSYGSHSTDSLMGSSPVFNQRCKKRMRKI
622	1361	15	678	REQILFIEIRDTAKGGETEQPPSLSPLHGGRMPEMGEGIQSLA
]		}	RETQSHRGRRQGWDATWVTRCRESLNRGGAGAGKRAGALAHHV
				FLALIEPNLAEREASEEEVKACSDETVVADLLVKVVYVLGAIL
	Ì		1	KIFLREGNVLNQHSGMDIEKYSEHYQHDHSPGAEDDAAGGQLR
	1	l		PTAQERRHKEGSRGSPRCKRARKAVGESPGCPRPRVRPRVRPR
				VRPRV
623	1362	1080	835	GTRGCCREGTAYAKAYQFMASHLSLGKPVSTGSIPRFNKALFN
1				KQAKCKPNHYSFIGLSMLSPENFSIGCKYSVWFSETKGF
624	1363	872	441	GAQGVRVGIGEVGRVQAPRVSLLHSQGVPRGGTGEAVKEEGRG
				SSLHPPLPPQGLGEYAACQSHAFMKGVFTFVTGTGMAFGLQMF
ļ				IQRKFPYPLQWSLLVAVVAGSVVSYGVTRVESEKCNNLWLFLE
		1		TGQLPKDRSTDQRS
625	1364	1	585	GTSELLCIQRWNWGPAFPPRPGLALAPTLQLLVEMGSAKSVPV
1		_		TPARPPPHNKHLARVADPRSPSAGILRTPIQVESSPQPGLPAG
		1		EQLEGLKHAQDSDPRSPLGKN*GHGWQVGQGSDLGSPQPLPPS
]	ļ			ASHL/YSSRASRCSQPPCLSLPWFGVRSSPANTYHVPVTSLCP
Ì				SPALHYTALQAGIISTSQARAPR
626	1365	36	381	PLLLPRFIDIPCLLCYLTQVTPDDMYAKAFLIKPNTAITGTDR
""				RKL\RADETTDFP\TLGTDQIYELLPGKDELNIVKSNAHKRDA
				*TAYVSGENHILSEP*KNLYPAVNTLSSYP
627	1366	763	1003	SROPPPLLTMVFLLEFLFLVFFPGCVNQLLLSYPWQGQGTSLW
02/	1 2300	, 53	-005	SSLSFHWLLPQEDSSRLSIFPLRAGSPPQPAQAPQRI
628	1367	296	1199	KSREOSSLFAADAERSWGGKSCCLLRWRFVGKASHFPRLLPLP
020	1367	450	***/	GEERPETKERAWKMEOTWTRDYFAEDDGEMVPRTSHTA/ASVS
				LTAFLSDTKDRGPPVQSQIWRSGEKVPFVQTYSLRAFEKPPQV
				QTQALRDFEKHLNDLKKENFSLKLLIYFLEERMQQKYEASRED
	1			IYKRNTELKVEVESLKRELQDKKOHLDKTWADVENLNSQNEAE
				LRROFEEROQEMEHVYELLENKMOLLQEESRLAKNEAARMAAL
				VEAEKECNLELSEKLKGVTKNWEDVPGDOVKPDOYTEALAORD
		<u> </u>		K

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
629	1368	191	1116	TRRRGTTWRSPRPRRASTSRPSTRPRGVASWPWETAGTATTGP GPSARTRRAARRRRSRPRRRAHGGLSQPAGWQSLLSFTILFL AWLAGFSSRLFAVIRFESIIHEFDPWFNYRSTHHLASHGFYEF LNWFDERAWYPLGRIVGGTVYPGLMITAGLIHWILNTLNITVH IRDVCVFLAPTFSGLTSISTFLLTRELWNQGAGLLAACFIAIV PGYISRSVAGSFDNEGIAIFALQFTYYLWVKSVKTGSVFWTMC CCLSYFYMVSAWGGYVFIINLIPLHAFVLVLM/Q/RYSKRVYI *YSTFYIVG
630	1369	852	214	RRLIVVLSDAFLSRAWCSHSF/RVGPARGWVGPSVAPTPLTVP PRREGLCRLLELTRRPIFITFEGQRRDPAHPALRLLRQHRHLV TLLLWRPGSVTPSSDFWKEVQLALPRKVRYRPVEGDPQTQLQD DKDPMLILRGRVPEGRALDSEVDPDPEGDLGVRGPVFGEPSAP PHTSGVSLGESRSSEVDVSDLGSRNYSARTDFYCLVSKDDM
631	1370	246	1091	LSHEGWRRGREGERINSSVASLAPLCILPDLPSNMHLARLVGS CSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALD GINSGITHAGREVEKVFNGLSNMGSHTGKELDKGVQGLNHGMD KVAHEINHGIGQAGKEAEKLGHGVNNAAGQAGKEADKAVQGFH TGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAG KELQNAHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLAS GASVNTPFINLPALWRSVANIMP
632	1371	3150	2792	SASGGLGMTVEGPEGSEREHRPPEKPPRPPRPLHLSDRSFRRK KDSVESHPTWVDDTRIDADAIVEKIVQSQDFTDGSNTEDSNLR LFVSRDGSATLSGIQLATRVSSGVYEPVVIESH
633	1372	667	993	ERSGWPQPEGTVTAQGPLFWERLSGAVTVSSGYKADMWPSFPQ \VRVGSFLFGILFFSFGSSSLPPGLPPPASLLCCAVQWGARAL FLPCLKERALGMEMRNNTLSFRQ
634	1373	636	2	SSSNLRLSFLINENTLGKCFRSGPSCAGPRISPLAAQYECPRP SLLIMASVPKTNKIEPRSYSIIPSCGI\RRLGPALNTLIF\QS KRFGPRG\HSAKSIEGAPRGKGRGRAVARLAADRPPAPKIQLR AF*LQQL*YTLLELELPRLLAPDLPSNGSSLKDLKWTHSNYRA SKESCIVIF\VTTSPGREWVICALAAFLGCGS\LSQAPSPES
635	1374	61	519	LRIINTYFCFKFLIVNYIHGTTKARKPHVLGESLISAMSRQEP KMFVLLYVTSFAICASGQPRGNQLKGENYSPRYICSIPGLPGP PGPPGANGSPGPHGRIGLPGRDGRDGRKGEKGEKGTAGLRGKT GPLGLAGEKGDQGETGKKGPIGPE
636	1375	129	579	FASAMLGSRVDRPKLSVAPSVVLEEDQVLVSPAVDLEAGCRLR DFTEKIMNVKGKVILSMLVVSTVIIVFWEFINSTEGSFLWIYH SKNPEVDDSSAQKGWWFLSWFNNGIHNYQQGEEDIDKEKGREE TKGRKMTQQSFGYGTGLIQT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
637	1376	127	1376	GSHRFSLASPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTT LSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLE HRSYCSAKARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQI SPVWLQLKRRGREMFEVTGLHDVDQGWMRAVRKHAKGLHIVPR LLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGFVVE VWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWV RACVQVLDPKSKWRSKILLGLNFYGMDYATSKDAREPVVGARY IQTLKDHRPRMVWDSQVSEHFFEYKKSRSGRHVVFYPTLKSLQ VRLELARELGVGVSIWELGQGLDYFYDLL
638	1377	998	48	GREGTGWGPAMSEVTRSLLQRWGASFRRGADFDSWGQLVEAID EYQILARHLQKEAQAQHNNSEFTEEQKKTIGKIATCLELRSAA LQSTQSQEEFKLEDLKKLEPILKNILTYNKEFPFDVQPVPLRR ILAPGEEENLEFEEDEEGGAGAGSPDSFPARVPGTLLPRLPS EPGMTLLTIRIEKIGLKDAGQCINPYITVSVKDLNGIDLTPVQ DTPVASRKEDTYVHFNVDIELQKHVEKLTKGAAIFFEFKHYKP KKRFTSTKCFAFMEMDEIKLGPIVIELYKKPTDFKRKQLQLLT KKPLYLHLHQTLHKE
639	1378	1298	1569	GSITSEPSLDSLQPLPPGFKRFSCLSLPSSWDYRRPPPGLAYF CIFSRDEVSPCWPGCSPSPDLMIRLPRPPSVGITGVSHRAWPT IDNF
640	1379	196	1197	KMPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLW DSDILCLPGDIVPAPGPVLAPTHLQTELVLRCQKETDCDLCLR VAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLS FQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEV RIWSYTQPRYEKELNHTQQLPDCRGLEVWNSIPSCWALPWLNV SADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLVRP PPSQVHSHCRP\CLCK\DAVPYQRGSLKRTHPKQGKIGGGTSA FLVSLTLASSSSSLSSPTSFLYLFHRLDRRSLP
641	1380	756	1110	LRLWNRNQMMHNIIVKELIVTFFLGITVVQMLISVTGLKGVEA QNGSESEVFVGKYETLVFYWPSLLCLAFLLGRFLHMFVKALRV HLGWELQVEEKSVLEVHQGEHVKQLLRIPRP
642	1381	631	1278	KVNRKLRKKGKISHDKRKKSRSKAIGSDTSDIVHIWCPEGMKT SDIKELNIVLPEFEKTHLEHQQRIESKVCKAAIATFYVNVKEQ FIKMLKESQMLTNLKRKNAKMISDIEKKRQRMIEVQDELLRLE PQLKQLQTKYDELKERKSSLRNAAYFLSNLKQLYQDYSDVQAQ EPNVKETYDSSSLPALLFKARTLLGAESHLRNINHQLEKLLDQ G
643	1382	1167	755	VWVAMEEPPVREEE*EEGEEDEERDEVGPEGALGKSPFQLTAE DVYDISYLLGRELMALGSDPRVTQLQFKVVRVLEMLEALVNEG SLALEELKMERDHLRKEVEGLRRQSPPASGEWPDSTKRRPRRK KRKRCCGY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
644	1383	1	271	PRNDHRLTQSRRDSSSKTRAFLVPRFLPAHAGVTSEERTAMKR EGGAAHLCSDSLPESQQQDGNHAPNFSSHGSCRRRQRRRHDKA LHAR
645	1384	1	499	THASEKSRATMSSWSRQRPKSPGGIQPHVSRTLFLLLLLAASA WGVTLSPKDCQVFRSDHGSSISCQPPAEIPGYLPADTVHLAVE FFNLTHLPANLLQGASKLQELHLSSNGLESLSPEFLRPVPQLR VLDLTRNALTGLPPGLFQASATLDTLVLKENQLEVLE
646	1385	178	675	ERPRIMDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLL WPINKQLFRKINCRLSYCISSQLVMLLEWWSGTECTIFTDPRA YLKYGKENAIVVLNHKF\EI\DFLCGWSLSERFGLLGVSQKCI PPCLTHFFGSAPPLVFLLLVIQNLQKNQQSFYLMKWS
647	1386	630	1499	MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNS CICRDDSGTDDSVDTQQQQAENSAVPTADTRSQPRDPVRPPRR GRGPHEPRRKKQNVDGLVLDTLAVIRTLVDNDQEPPYSMITLH EMAETDEGWLDVVQSLIRVIPLEDPLGPAVITLLLDECPLPTK DALQKLTEILNLNGEVACQDSSHPAKHRNTSAVLGCLAEKLAG PASIGLLSPGILEYLLQCLLQSHPTVMLFALIALEKFAQTSEN KLTISESSISDRL\VTLESW\ANDPDYLKRQVG
648	1387	1	962	RFGTRGLAKSKGVVLMALCALTRALRSLNLAPPTVAAPAPSLF PAAQMMNNGLLQQPSALMLLPCRPVLTSVALNANFVSWKSRTK YTITPVKMRKSGGRDHTGRIRVHGIGGGHKQRYRMIDFLRFRP EETKSGPFEEKVIQVRYDPCRSADIALVAGGSRKRWIIATENM QAGDTILNSNHIGRMAVAAREGDAHPLGALPVGTLINNVESEP GRGAQYIRAAGTCGVLLRKVNGTAIIQLPSKRQMQVLETCVAT VGRVSNVDHNKRVIGKAGRNRWLGKRPNSGRWHRKGGWAGRKI RPLPPMKSYVKLPSASAQS
649	1388	291	714	PVQGARCWLDARRNVRVFSGVCCGCGIHGYWAEPCGGCGAMEG LRSSVELDPELTPGKLDEEMVGLPPHDASPQVTFHSLDGKTVV CPHFMGLLLGLLLLTLSVRNQLCVRGERQLAETLHSQVKEKS QLIGKKTDCRD
650	1389	874	2220	GARGRPLAETWPFLTAPVLPGQLQITEPTMAEKGDCIASVYGY DLGGRFVDFQPLGFGVNGLVLSAVDSRACRKVAVKKIALSDAR SMKHALREIKIIRRLDHDNIVKVYEVLGPKGTDLQGELFKFSV AYIVQEYMETDLARLLEQGTLAEEHAKLFMYQLLRGLKYIHSA NVLHRDLKPANIFISTEDLVLKIGDFGLARIVDQHYS\HKGYL SEGLVTKWYRSPRLLLSPNNYTKAIDMWAAGCILAEMLTGRML FAGAHELEQMQLILETIPVIREEDKDELLRVMPSFVSSTWEVK RPLRKLLPEVNSEAIDFLEKILTFNPMDRLTAEMGLQHPYMSP YSCPEDEPTSQHPFRIEDEIDDIVLMAANQSQLSNWDTCSSRY PVSLSSDLEWRPDRCQDASEVQRDPRAGSAPLAENVQVDPRKD SHSSSASCQAGRNGVSRYQ

OFO	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
İ		residue	residue	r possion national mornion,
		of amino	of amino	
		acid	acid	,
[sequence	sequence	
651	1390	1	2451	MRTLGTCLATLAGLLLTAAGETFSGGCLFDEPYSTCGYSQSEG
				DDFNWEQVNTLTKPTSDPWMPSGSFMLVNASGRPEGQRAHLLL
				PQLKENDTHCIDFHYFVSSKSNSPPGLLNVYVKVNNGPLGNPI
]]		WNISGDPTRTWNRAELAISTFWPNFYQVIFEVITSGHQGYLAI
	i	1		DEVKVLGHPCTRTPHFLRIQNVEVNAGQFATFQCSAIGRTVAG
	1			DRLWLOGIDVRDAPLKEIKVTSSRRFIASFNVVNTTKRDAGKY
				RCMI\RTEGGVGISNYAEL\VVKEPPVPIAPPQLASVGATYLW
	1	1	}	IOLNANSINGDGPIVAREVEYCTASGSWNDRQPVDSTSYKIGH
				LDPDTEYEISVLLTRPGEGGTGSPGPALRTRTKCADPMRGPRK
]		}		LEVVEVKSROITIRWEPFGYNVTRCHSYNLTVHYCYQVGGQEQ
1				VREEVSWDTENSHPOHTITNLSPYTNVSVKLILMNPEGRKESQ
				~
				ELIVQTDEDLPGAVPTESIQGSTFEEKIFLQWREPTQTYGVIT
	ł	ļ	İ	LYEITYKAVSSFDPEIDLSNQSGRVSKLGNETHFLFFGLYPGT
1	ł	1		TYSFTIRASTAKGFGPPATNQFTTKISAPSMPAYELETPLNQT
		1		DNTVTVMLKPAHSRGAPVSVYQIVVEEERPRRTKKTTEILKCY
	l	1	1	PVPIHFQNASLLNSQYYFAAEFPADSLQAAQPFTIGDNKTYNG
	1		1	YWNTPLLPYKSYRIYFQAASRANGETKIDCVQVATKGAATPKP
1		1		VPEPEKQTDHTVKIAGVIAGILLFVIIFLGVVLVMKKRLYKHG
1			·	ASICSASGEASGSFQSWRKAKHKQACPMARAGARERAGGCLKL
652	1391	30	459	GIRQLLQLSRASMAARKSWTALRLCATVVVLDMVVCKGFVQDL
				DESFKENRNDDIWLVHFYAPWCGHCKKLEPIWNEAGLEMKSIG
1			1	SPVKAGKMDATSYSSIASEFGVRGYPTIKLALIRPLPSQQMFE
1	1	1	1	HMHKRHRVFFVYV
653	1392	168	1016	GLVIVISHFSPSPGLLPATQSPAMSDPITLNVGGKLYTTSLAT
				LTSFPDSMLGAMFSGKMPTKRDSQGNCFIDRDGKVFRYILNFL
1				RTSHLDLPEDFQEMGLLRREADFYQVQPLIEALQEKEVELSKA
-	1			EKNAMLNITLNQRVQTVHFTVREAPQIYSLSSSSMEVFNANIF
				STSCLFLKLLGSKLFYCSNGNLSSITSHLQDPNHLTLDWVANV
				EGLPEEEYTKQNLKRLWVVPANKQINSFQVFVEEVLKIALSDG
1				FCIDSSHPHALDFMNNKIIRLIRY
654	1393	3	927	SCADNLVAASGGCWFVLGERRAGSLLSASYGTFAMPGMVLFGR
	1			RWAIASDDLVFPGFFELVVRVLWWIGILTLYLMHRGKLDCAGG
1				ALLSSYLIVLMILLAVVICTVSAIMCVSMRGTICNPGPRKSMS
				KLLYIRLALFFPEMVWASLGAAWVADGVQCDRTVVNGIIATVV
				VSWITIAATVVSIIIVFDPLGGKMAPYSSAGPSHLDSHDSSOL
1	1			LNGLKTAATSVWETRIKLLCCCIGKDDHTRVAFSSTAELFSTY
				FSDTDLVPSDIAAGLALLHQQQDNIRNNO\DLPRWSAMPQGAP
				RKLIWMON
CFF	1204	1	716	FRAATAAAKGNGGGGGRAGAGDASGTRKKKGPGPLATAYLVIY
655	1394	*	1,10	PRAATAAAKGNGGGGGKAGAGAASGIRKKKGPGPLATATLVII NVVMTAGWLVIAVGLVRAYLAKGSYHSLYYSIEKPLKFFQTGA
				LLEILHCAIGIVPSSVVLTSFQVMSRVFLIWAVTHSVKEVQSE
]	}	DSVL\FVIAWTITEIIRYSFYTFSLLNHLPYLIKRARYTLFIV
				LYPMGVSGELLTIYAALPFVRQAGLYSISLPNSTKKIFLISQV
				WWHMLAVSADAKAAEMPAVLKPGP

SEQ Predicted beginning Not of closed Notice No					
No. of of the control of of the control of the co	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: of Nucleic location order Nucleic Acids Acid	ID	ID			C=Cysteine, D=Aspartic Acid, E= Glutamic Acid.
of Nucleic Acids Amino Corresponding to first amino acid residue of amino acid residue of amino acid residue of amino acid sequence K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, acid sequence 656 1395 72 766 MLTGVGCLVSSESLSCVQCNSWEKSCVNSIASECPSHANTSCI SSSASSSLETPYRIYONNFCSAENCSEETHITAFTVIRVSAEBH FHYSQCCESCREGISTISDALDPIE,RNSSNAECPACVESSOTS CRGRPWRCYBEBQCVPLVABLIKND IBSKSLVLKGCSNVSNATC QPLSGEIKKTLGGVIPRKFCABNVSLIPPISAFTVSHVSAEBH LYLLALASLLLEGLIP 657 1396 97 746 WIRTSVGCLVSSESLSCVQCNSWEKSCVNSIASECACVESSORTS CRGRPWRCYBEBQCVPLVABLIKND IBSKSLVLKGCSNVSNATC QPLSGEIKKTLGGVIPRKFCABNVSLIPPISAFTVSHVSAEBH VANKKSQDOMMTEDLSLIPPISAFTVSHVSACHD LYRGAMAN AND AMARKSQDOMMTEDLSLIPPISAFTVSHVSACHD LYRGAMAN AND AMARKSQDOMMTEDLSLIPPISAFTVSHVSACHD LYRGAMAN AND AMARKSQDOMMTEDLSLIPISAFTVSHLVADLASLASLUKRGVIPTY PSSLKSSDTNITPDSNVPSNKSNPSRGDERRHBAAVPPL\AIPS ARPKRDRSRVSTSSQSSTTAVRNQTVDBGARTEMSTVY, PELE PAPSEDVIDIKPEPDDLIDEDLINFVQEKPLSQKKPTVTLTYG SSR 658 1397 155 560 ASRVLAAAVMGLPWGQPHLGLQMLLLAINMLRFSLSLELVPYTF QITAMALGKCTTTPSLEQPRCVFDGLARSADTVWLVAFSN ASRGGQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 669 1399 281 736 SSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLILIGKCRSGKSATG NALIGKETYKERKSDLTVTLYKCQEESWVLKERKVVVIDTPDLF SSLACABDKORNIQHLLELSAP 660 1399 2974 FVETTVVSVQSABESSDALSWSRLPRALASVGPEERAKSGLAWT RGREW RGNGVGSDALDSPEELLPOOLONEPLIKAGSS SASTG FSSYEDSEE	NO:	NO:			
Acids Acids Acids of first a mino acid residue of amino acid residue of amino acid sequence of acid sequence of acid sequence of acid seq	of	of	location		
Acids of the proming ponding of the promine of the	- "		corre-	corre-	
to first amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequenc		I .	sponding		
amino acid residue of amino acid residue of amino acid residue of amino acid sequences sequences sequences sequences sequences sequences sequences sequence	110.00	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
acid residue of amino acid residue of amino acid residue of amino acid sequence sequ			amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
residue				acid	
	ļ	}			(—possible indecorde insertion)
acid acid sequence sequen					
	<u> </u>				
	ļ			1	
SSSASSLETPVELYQNMFCSAENCSEETHITAFTVHVSAERH FHFVSQCCEGKECSNTSDALDPPLKNVSNÄECPACYESNGTS CRCKPKKCYEERGCVFLVAELKHDIESKSLVLKGGSNVSNATC QFLSGENKTLGGVIFRFFECANVNSLTPTSAPTTSHNVGSKAS LYLLALASLLRGLLP OPARRAMEIGTEISKRIRSAIKGKLQELGAYVDEELPDYIMV MVANKKSQDQMTEDLSLFLGNNTIRFTVMLHGVLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATTELMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR 658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEOPRCVFFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALDD QQLLPPRTSGSLCQESMSEGSCQMSELRLLLLGKCRSGKSATG NATLGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRNLEP LPCWDAARDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRODSALPSPELLPQDDNKPFLRKASCSPS NIFAVIITDMGTQEDGALEETQGSPRGNLPLRKLISSSSASTG FSSSYLEDSEDSISSDERTLDPNSAPLHTLDQCKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLLL 662 1401 232 3 KTCSSYPIRIICITLGKRARQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSIPLLYGHLKSYTFSEETYLHLLQTFAFFKKYLNVCVLIF HHKPVVPAIQGTMVGGSLEPRRLRQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGYILLAAGVWGKLTLGSY ISLIAENSTAPYVILVITGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCKKARLBEAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAVARRSSWMAA***RLEOKRGADTOQQMAD DCREIFATELRDICDDVLSLLEKLIPNASHA*SLVYYLHMIG DYXRYWL 666 1405 2 334 GGGPLGKMPRQLADPWGMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLERVLRQGSL EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLERVLRQGSL EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLERVLRQGSL		1205			MI TOYCOL VCCTOL COVONICUTICOVNICITA CECDOLIANTECOT
FHFVSQCCEKEGSNTSDALDPLKAVSSNÄBCPACYESNGTS CRGKPMKCYBEBQCVFLVABLIKDIESKSLVLKGGSNVSNATC QFLSGBNKTLGGVIFERFECANVNSLTPTSAPTTSHNVGSKAS LYLLALASLLLRGLLP 746 VPARRRAMEIGTEISRKIRSAIKGKLQELGAYVDEELPDYIMV MVANKKSQDQMTEDLSLFLGNNTIRFTVMLHGYLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGDBRRHEAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPLR EPAPSEDVIDIKPEPPDLLIDEDLNFVQEKPLSGKKFTVTLTYG SSR 858 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEGPRCVFFGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL KSLPLQKHPKPSCQEDCGLAGGSLSGHSPLTLLTFITSCALGD QOLLPPRTSGSLCQESMSGSCGNSELRLLLKERSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWLRERKVVVIDTPDLF SSIACABDKQRNIQHLLELSAP FVETTVSVGSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGBRVGVQPGNSRWQGTMRKAGLAWT RGTGVGSEGTWESQRODSDALPSPELLPQDDDKPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGSPRGNUPFLRKACSPS NIPAVIITDMGTQEDGALEBTQGAMIVPLHFGLAWA RIIFGFLVERGFHNVGQDGLYLLLL 662 1401 232 3 KICSSYFLIILQKBAQEASNLYTSCDFFSPAFYFVIYLY NFKLHWGAVAHTYSPSTLGGRGRWT*SCBEFM 663 1402 250 556 LILSLPLKGGAGANTVTTOGGAMIVPLTOGGALS NFKLHWGAVAHTYSPSTLGGRGRWT*SCBEFM 664 1403 1 373 RMFRKPVITCKKTLIITYSFYFFITUALAGAWGKLTLTGG 665 1404 3 413 NABHPGMDRHDLCGKARLABHBERDDDMAACMKTVTDQGALS NERRILLSDAHTNAV*ARRSSWMGA*RIEGADTQQMAP DCREIFATELRDIC	656	1395	12	/66	j ·
CRGKPWKCYEEQCVFLVABLKNDIESKSLVLKGCSNVSNATC			į		1
QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS LYLLALASLLLRGLLP		1		Ĺ	1 ~
TYLLALASLLRGLLP	ļ			l	CRGKPWKCYEEEQCVFLVAELKNDIESKSLVLKGCSNVSNATC
		1	1		QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS
	ļ	İ		1	LYLLALASLLLRGLLP
MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPLR EPAPSBDVIDIKPBPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFPGLAGASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL G60 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLIFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLIGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGDSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPPLRRACSPS NIFAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAPLHTLDQQKPRVVERSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYPLRICTLIQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRWYT*GRFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVNYIPRSSSRALVRLVVILRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGABLS NEERNLLSDAHTNAV*ARRSSWMGA*FLEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYXYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADMGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	657	1396	97	746	
PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTY/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR 658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFGNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL (ACCUMPANT OF COLOR O	} "	1330	1 - '	' 13	
ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFONPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQCTMEKAGLAWT RGTGVQSEGTWESQRODSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEBGALETTQGSPRGNLPLRKLSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFHTLDQCKPRVVSRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRICTLQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPALGGTNVGGSLEPRRLRQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLFFLERHPS 665 1404 3 1 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSILEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRQCLADPWQMMAVESPSDCADNGQQIMDEPMGED BISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	1	1			1
EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR			1		
SSR	ļ		ļ		
1397					
QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTMESQRQDSDALPSPELLPQDQDKPFLRKLGSSSASTG FSSYEDSEEDISSDPERTLDPNSAFLHTLDQXFRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICIQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTPSEHYLHLLQTFATFNKYLNVCVLIF IHKKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLITYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVILRFLLSRHS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSMYGA*RIEQKTGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			İ	1	SSR
ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLIGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTMESQRQDSDALPSPELLPQDQDKPFLKKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQALL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKBAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSSPLLYGHLKSYTFPSEHYLHLLOTFAFFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKEVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVKLVVLLEFPLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTMAV*ARRSSWMGA*RIECKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED BISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	658	1397	155	560	ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP
ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLIGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTMESQRQDSDALPSPELLPQDQDKPFLKKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQALL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKBAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSSPLLYGHLKSYTFPSEHYLHLLOTFAFFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKEVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVKLVVLLEFPLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTMAV*ARRSSWMGA*RIECKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED BISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					OITAWDLEGKVTATTFSLEOPRCVFDGLASASDTVWLVVAFSN
GSGSAP 1398 416 539	i				1 7
1398 416 539		1	1	Ì	
REFERENCE 1401 1373 136 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALETTQGSPRGNLPLPRKLSSSSASTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHRVGQDGLYLLIL RFILFGFLVERGFHRVGQDGLYLLIL NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM STATE	650	7200	116	F20	
QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASHYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*SCBFFM NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYYLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFILSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					
NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDPHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	660	1399	281	/36	~ ~ ~
SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHKKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLFFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					~ ~ ~
1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG					
RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	}		1	1	SSIACAEDKQRNIQHLLELSAP
LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKLHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	661	1400	2	974	FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG
RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	1	1			RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP
RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	ļ	ļ			LPCWDAAKDLKEPOCPPGDRVGVOPGNSRVWOGTMEKAGLAWT
NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			1	1	
FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			1	1	
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			1		
RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					
662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			1	1	
NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF		1		<u> </u>	RIIFGFLVERGFHHVGQDGLYLLIL
1402 250 556	662	1401	232	3	KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY
IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	ľ				NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM
IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	663	1402	250	556	LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF
PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					
664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	1				
ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	CC 1	1402	 	272	
VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	664	1403	1 -	3/3	
665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					
NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	L				
DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	665	1404	3	413	NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS
DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP
DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG
666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		l .			
EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL				1	DYYRYWL
	666	1405	12	33/1	
GKVYLGKKVSGSDAKQLYAMKVLT	666	1405	2	334	GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED
	666	1405	2	334	GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				AAFGGHPQCLVWLIQAGANINKPDCEGETPIHKAARSGSLECI SALVANGAHVDNPKKGIRVLEWLFE
668	1407	242	1157	LLKLMFIAELGDYDLAEHSPELVSEFRFVPIQTEEMELAIFEK WKEYRGQTPAQAETNYLNKAKWLEMYGVDMHVVKARDGNDYSL GLTPTGVLVFEGDTKIGLFFWPKITRLDFKKNKLTLVVVEDDD QGKEQEHTFVFRLDHPKACKHLWKCAVEHHAFFRLRGPVQKSS HRSGFIRLGSRFRYSGKTEYQTTKTNKARRSTSFERRPSKRYS RRTLQMKACATKPEELSVHNNVSTQSNGSQQAWGMRSALPVSP SISSAPVPVEIENLPQSPGTDQHDRKWLSAASDCCQRGGNQWN TRAL
669	1408	278	1	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
670	1409	139	646	AEGLGSWAVWAGLGWAGRHMEAGGATGALGVGSKLPSAFCFPG SSVAMDMFQKVEKIGEGTYGVVYKAKNRETGQLVALKKIRLDL *VLGRPLSYPPWAITTWALPDPFPLSWSPRLTPLGAAQQPLPV LSPVHCLLTSLCRGPDCGVWWMTCQGAQVSIAGALVILWG
671	1410		442	LCVSVLCSFSYLQNGWTASDPVHGYWFR\AGDHVSRNIPVATN NPVRAVQEETRDRFHLLGDPQNKDCTLSIRDTRESDAGTYVFC VERGNMKWNYKYDQLSVNVTASQDLLSRYRLEVPESVTVQEGL CVSVP/WQCPLPPLQLDCL
672	1411	84	836	QLQLCQNCTKRGECHCVPFDTYIKTKKEKKRLSVLPPTRLMEA RFSPINQILPWCRQDLAISISKAINTQEAPVKEKHARRIILGT HHEKGAFTFWSYAIGLPLPSSSILSWKFCHVLHKVLRDGHPNV LHDCQRYRSNIREIGDLWGHLHDRYGQLVNVYTKLLLTKISFH LKHPQFPAGLEVTDEVLEKAAGTDVNNM*VTLHGYMASSPRLP HSFLPRLTPRRPHGAVGLNESVALLVDAHAPRDRG
673	1412	307	664	AAPHRMPRAPHFMPLLILLLLLSLPHTQAAFPQDPLPLLISDL QGTSPLSWLPSLEDDAVAA*LGLDFQRFLTLNRTLLVAARDHV FSFDLQAEEEGEGLVPNKYLTWRSQDVENCAVR*KLTLNRTLL VAARDHVFSFDLQAEEEGEGLVPNKYLTWRSQDVENCAVR
674	1413	24	420	HLVPKTRGRGTPSGDQSPVLTLTP*GDPPTILGPQTNQPKEHL TNFKSGKRSFHSLLQPLLLLHPSISPFLNFGSFPFLVETEET CFIHKLKTPALVTPDSLPLVFNHCGDACLIIHPHFRDVEFHHT GN

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID `	ID `	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding to first	T=Tronne, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first		
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid residue	\=possible nucleotide insertion)
]		residue of amino	of amino	
j		acid	acid	
		sequence	sequence	
675	1414	3 Sequence	1101	CCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLK
675	7474	*	1101	PAKGLMSYRIITDFPSLTRNLPSQELPQEDSLLHGQFSQAVTP
	{		Ī	LAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLFKMDEASAQL
		}		LAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTT
		l		1
1	ļ			SATPKPATLL\PTNASVTPSGTSQPQLA\TTAPPVTTVTSQPP
ļ		<u> </u>		TTLISTVFTRAAATLQAMATTAVLTTTFQAPTDSKGSLETIPF
		1	İ	TEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGREASPG
1	[1		SSSQGSVPENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRIL
				SESLRRKRYSRLDYLINGIYVDI
676	1415	178	621	IFAGSGVMRLKISLLKEPKHQELVSCVGWTTAEELYSCSDDHH
1		1	1	IVKWNLLTSETTQIVKLPDDIYPIDFHWFPKSLGVKKQTHAES
	Ì		Į	FVLTSSDGKFHLISKLGRVEKSVEAHCGAVLAGRWNYEGTALV
			<u> </u>	TVGEDGQI*IWSKTGMLIS
677	1416	1258	944	ARATTKRHFILLFLFFLRRC\LFLSPRMECNGAILAHCNLHLP
	1		ļ.	GSSSSSASAS*VAGITDVRHHAQLILFVFLVETGFHRVGQAGL
				KLLTSGDLLTSASQSAGIIMGISHCAQPKKAF*TKTF
678	1417	876	1291	EAGSNDDLAT*KTCGRARPSSRSRQFGSRVWNHRQGVRSSPGE
		ì		GAGSRSPCRRHRRKHRRNVQSP*RRRSRSCSRRSGRCSVALL
]			GACPVAGHSRGKVVCRRAHAITQRRRCCGFDPMVHPKEHRG*R
				ERSRKWSRS
679	1418	262	539	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK
		Į.		TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK
				RPPSGF
680	1419	104	236	LTVNYVLVFSRDSGLRAIENLMQKKGKFDYILLETTGLADPGK
İ	Ì	1	Ì	K
681	1420	3	277	HEAALCRTRAVAAERHFLRVFLFFRPFRGVGTESGSESGSSKA
				KEPRTPSSSYGTAQYRRWPIAQEYKHCTAHNDTGTLCSELREP
}			}	WRRPQ
682	1421	3	576	EGSSQANTLRSRKENRNNLLACLESHVLR*QFTESHLCSLMGD
1				NPFQPKSNSKMAELFMECEEEELEPWQKKVKEVEDDDDDEPIF
				VGEISSSKPAISNILNRVNPSSYSRGLKNGALSRGITAAFKPT
	1		-	SQHYTNPTSNPVPASPINFHPESRSSDSSVIGQPFSKPVSVSK
ļ				TIRPAQGSIGCCLSISTV
683	1422	6	627	CFSLEDILNFFLOGFSAGLFAFYHDKDGNPLTSRFADGLPPFN
555		-		YSLGLYOWSDKVVRKVERLWDVRDNKIVRHTVYLLVTPRVVEE
	1			ARKHFDCPVLEGMELENQGGVGTELNHWEKRLLENEAMTGSHT
				ONRVLSRITLALMEDTGRQMLSPYCDTLRSNPLQLTCRQDQRA
				VAV\CNLQKFPKPLPQEYQYFDELSGIPAEDLPYYG
		1	1	ATTA COUNTY THE DE XDIXIT DESIDE TEA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
684	1423	1	1272	AARRRQLVSRRRTAE\YPRRRRSSPSARPPDVPGQQPKAAKS PSPVQGKKSPRLLCIEKVTTDKDPKEEKEEEDDSALPQEVSIA ASRPSRGWRSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPN TDQLDYDVGEEHQSPGGISSEEEEEEEEEMLISEEEIPFKDDP RDETYKPHLERETPKPRRKSGKVKEEKEKKEIKVEVEVEVKEE ENEIREDEEPPRKRGRRRKDDKSPRLPKRKKPPIQYVRCEME GCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLFRLQKQL LRHAKHHTDQRDYICEYCARAFKSSHNLAVHRMIHTGEKPLQC EICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSV VAHKAKSHPEVLIAEALAANAGALITSTDILGTNPES
685	1424	56	526	MTANRLAESLLALSQQEELADLPKDYLLSESEDEGDNDGERKH QKLLEAISSLDGKNRRKLAERSEASLKVSEFNVSSEGSGEKLV LADLLEPVKTSSSLATVKKQLSRVKSKKTVELPLNKEEIERIH REVAFNKTAQVLSKWDPVVLKNRQAEQL*
686	1425	132	344	RIDFMFHSSAMVNSHRKPMFNIHRGFYCLTAILPQICICSQFS VPSSYHFTEDPGAFPVATNGERFPWQELRLPSVVIPLHYDLFV HPNLTSLDFVASEKIEVLVSNATQLIILHSKDLEITNATLQSE EDSRYMKPGKELKVLSYPAHEQIALLVPEKLTPHLKYYVAMDF QAKLGDGFEGFYKSTYRTLGGETRILAVTDFEPTQARMAFPCF DEPLFKANFSIKIRRESRHIALSNMPKVKTIELEGGLLEDHFE TTVKMSTYLVAYI/DL*FPLMGNDFLGRS
687	1426	3	678	RSKIPRSDPRVRTPAPAEAEQGKSQCPSGSTAQSWSAMDILVP LLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNR KMESKKRELFSQIKGLTGASGKVALLELGCGTGANFQFYPPGC RVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDMRQLAD GSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAE PYGSWAFMW
688	1427	240	641	RLQNSSLMDPKLGRMAASLLAVLLLLLLERGMFSSPSPPPALL EKVFQYIDLHQDEFVQTLKEWVAIESDSVQPVPRFRQELFRMM AVAADTLQRLGARVASVDMGPQQLPDGQSLPIPPVILAELGSD PTKG
689	1428	1	116	FFFFEMESCSVTQAGVPWHDLSSLQPPPPRFKRFSCLS
690	1429	75	511	DPKAQLPEPLRVLWTAHLVAMAPGSRTSLLLAFALLCLPWLQE AGAVQTVPLSRLFDHAMLQAHRAHQLAIDTYQEFEETYIPKDQ KYSFLHDSQTSFCFSDSIPTPSNMEETQQKSNLELLRISLLLI ESWLEPVRILMSIVPN

SEQ ID NO:	SEQ ID NO:	Predicted beginning nucleotide	Predicted end nucleotide location	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
]	1	residue	residue	Possicie Macioside Inserticia,
		of amino	of amino	
1	!	acid	acid	
		sequence	sequence	
691	1430	2	1364	FVKLIKKHQAAMEKEAKVMSNEEKKFQQHIQAQQKKELNSFLE
				SQKREYKLRKEQLKEELNENQSTPKKEKQEWLSKQKENIQHFQ
			1	AEEEANLLRRQRQYLELECRRFKRRMLLGRHNLEQDLVREELN
			l	KRQTQKDLEHAMLLRQHESMQELEFRHLNTIQKMRCELIRLQH
		1		QTELTNQLEYNKRRERELRRKHVMEVRQQPKSLKSKELQIKKQ
		1		FQDTCKIQTRQYKALRNHLLETTPKSEHKAVLKRLKEEQTRKL
				AILAEQYDHSINEMLSTQALRLDEAQEAECQVLKMQLQQELEL
1				LNAYQSKIKMQAEAQHDRELRELEQRVSLRRALLEQKIEEEML
ł				ALQNERTERIRSLLERQAREIEAFDSESMRLGFSNMVLSNLSP
ļ	-			EAFSHSYPGASGWSHNPTGGPGPHWGHPMGGPPQAWGHPMQGG
	<u> </u>			PQPWGHPS\GPMQ\GVPR/GSSMGVR
692	1431	50	504	LAHGSFGVSDFPAPAAAPAHTLTSFSGSLSPQFRKPLGRAPAM
				PLVRYRKVVILGYRCVGKTSLAHQFVEGEFSEGYDPTVENTYS
				KIVTLGKDEFHLHLVDTAGQDEYSILPYSFIIGVHGYVLVYSV
		120	1.577	TSLHSFQVIESLYQKLHEGHGK SSPSRELCFYGFWIASSWWSRWVGSLGPGILPSPPARGRTFAS
693	1432	130	1671	
	}			VSRLPPPWSAGITLTPFLICQSGSVCPGLGAGFGVRSFHHPVA RSAVLLLPLAPAAAQDSTQASTPGSPLSPTEYERFFALLTPTW
			1	KAETTCRLRATHGCRNPTLVQLDQYENHGLVPDGAVCSNLPYA
		[SWFESFCOFTHYRCSNHVYYAKRVLCSQPVSILSPNTLKEIEA
		1	1	SAEVSPTTMTSPISPHFTVTERQTFQPWPERLSNNVEELLQSS
1				LSLGGQEQAPEHKQEQGVEHRQEPTQEHKQEEGQKQEEQEEEQ
				EEEGKOEEGOGTKEGREAVSQLOTDSEPKFHSESLSSNPSSFA
1	1		1	PRVREVESTPMIMENIQELIRSAQEIDEMNEIYDENSYWRNQN
1				PGSLLOLPHTEALLVLCYSIVENTCIITPTAKAWKYMEEEILG
				FGKSVCDSLGRRHMSTCALCDFCSLKLEQCHSEASLQRQQCDT
				SHKTPFVSPLLASQSLSIGNQVGSPESGRFYGLDLYGGLHM
694	1433	517	578	VSWVPSKDGDVEGARRPFTRLNTSLGPGLQEGRRRTWLVPIPG
				AVLPGRTQEQPRASPLY*PGAPPCQPQGLVAGPWAQ*AGLRSD
1	1			GFGPWPW\RLVGTAGPREKKVQKSKCWHFRCGRHPARRSGWAG
1				RHASLLATGRPCSSAPSQQPLGTAGDSRQELLRPPLV*VNGAQ
				SSAAGDWGSSPRTAQALARPHRLGHHPAAVAPAARLRTQSGHS
	1			PRGPLCRSPGSPRRMGTWRGPAGHSHD
695	1434	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
		}	1	INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
				FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
696	1435	333	881	GECFIMAAVVQQNDLVFEFASNVMEDERQLGDPAIFPAVIVEH
	1			VPGADILNSYAGLACVEEPNDMITESSLDVAEEEIIDDDDDDI
		1		TLTVEASCHDGDETIETIEAAEALLNMDSPGPMLDEKRINNNI
			ļ	FSSPEDDMVVAPVTHVSVTLDGIPEVMETQQVQEKYADSPGAS
			ļ	SPEQPKRKKK
1 .			<u> </u>	<u></u>

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	
697	1436	sequence 3	sequence 466	HEASGVSRALLQSAPGTPATVGISVGELWPFARCCSHSYVRSL
697	1436	3	400	RGLSVSTHLLCFTIYIMNPSMKQKQEEIKENIKTSSVPRRTLK
			1	MIOPSASGSLVGRENELSAGLSKRKHRNDHLTSTTSSPGVIVP
			1	``~
	3.43.	<u> </u>	241	ESSENKNLGGVTQESFDLMIKGMKK
698	1437	50	241	PLPARGKSTLPATFCSPSAPELASMSVVPPNRSQTGWPRGVTQ
-	1422		400	FGNKYIQQTKPLTLERTINL AEGEDVPPLPTSSGDGWEKDLEEALEAGGCDLETLRNIIQGRP
699	1438	1	422	1
				LPADLRAKVWKIALNVAGKGDSLASWDGILDLPEQNTIHKDCL
				QFIDQLSVPEEKAAELLLDIESVITFYCKSRNIKYSTSLSWIH
			113	LLKPLVHLQLP
700	1439	161	413	ALPKFLTHGVKSNERVVVWLFPPSFRAATMVHMNVLPDALKSI
				NNAERRGKPQVLIRLCSKIIIWFLTVMVKYGYIGKFEPTRP
701	1440	211	977	AMAQYGHPSPLGMAAREELYSKVTPRRNRQQRPGTIKHGSALD
		ļ		VLLSMGFPRARAQKALASTGGRSVQAACDWLFSHVGDPFLDDP
				LPREYVLYLRPTGPLAQKLSDFWQQSKQICGKNKAHNIFPHIT
				LCQFFMCEDSKVDALGEALQTTVSRWKCKFSAPLPLELYTSSN
				FIGLFVKEDSAEVLKKFAADFAAEAASKTEVHVEPHKKQLHVT
			1.00	LAYHFQASHLPTLEKLAQNIDVKLGCDWVATIFSRDIRFA
702	1441	3	408	QTRPASPRTARESVLGVSQNMSFNLQSSKKLFIFLGKSLFSLL
			1	EAMIFALLPKPRKNVAGEIVLITGAGSGLGRLLALQFARLGSV
	-	-		LVLWDINKEGNEETCKMAREAGATRVHAYTCDCSQKEGVYRVA
700	1110	700	244	DQVKK MVARKGOKSPRFRRVTCFLRLGRSTLLELEPAGRPCSGRTRHR
703	1442	708	244	ALHRRLVACVTVSSRRHRKEAGRGRAESFIAVGMAAPSMKERQ
Ì				VCWGARDEYWKCLDENLEDASQCKKLRSSFESSCPQQWIKYFD
	ľ	ŀ		KRRDYLKFKEKFEAGOFEPSETTAKS
704	1443	3	475	PAPAARSRELLKELRNGQDMDTVVFEDVVVDFTLEEWALLNPA
/04	1443	3	4/5	ORKLYRDVMLETFKHLASVDNEAQLKASGSISQQDTSGEKLSL
	1			KOKIEKFTRKNIWASLLGKNWEEHSVKDKHNTKERHLSRNPRV
Ì	1			_ ~
705	17/14	275	1427	ERPCKSSKGNKRGRTFRKTRNCNRHLRR CVCGFFVCFETKSCFVAOAGVOWHNLSSLOALPPGFKOFSCLS
705	1444	276	437	
	1 1 1 =	 _ 	1222	LLSSWHYRRV
706	1445	2	322	GTRLRRRREAVWFEVVNMDFSRLHMYSPPQCVPENTGYTYALS
				SSYSSDALDFETEHKLDPVFDSPRMSRRSLRLATTACTLGDGE
	1	1.00	17.5	AVGADSGTSSAVSLKNRAAR
707	1446	123	410	DTMQAVVPLNKMTAISPEPQTLASTEQNEVPRVVTSGEQEAIL
1			İ	RGNAADAESFRQRFRWFCYSEVAGPRKALSQLWELCNQWLRPD
		<u> </u>		IHTKE\QILE
708	1447	2	384	PICLFSRPTLRPSRSKVSLIEGRGANMAARWRFWCVSVTMVVA
1	1	}	1	LLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDK
1			1	FRRLVKAPPRNYSVIVMFTALQLHRQCVVCKYELQLRFKIK

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 104	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) QMRVKDPTKALPEKAKRSKRPTVPHDEDSSDDIAVGLTCQHVS HAISVNHVKRAIAENLWSVCSECLKERRFYDGQLVLTSDIWLC
				LKCGFQGCGKNSESQHSLKHFKSSRTEPHCIIINLSTWIIWWY EWDEKIFTPLNKKG
710	1449	116	479	AKERGEERQGEGGGWLSGSRWPLVRSAFVPAPSSLILSMCLSP GIPEAAPDSPLTASAPTP*VMLLGDTGVGKTCFLIQFKDGAFL SGTFIATVGIDFRVRWLQALASSREPGLWLRHGGV
711	1450	2	232	FYPRSSADLPFQTTRCEFQTSVMELAHSLLLNEEALAQITEAK RPVFIFEWLRFLDKVLVAANKVWYCSFFPVALT
712	1451	105	393	MNMKQKSVYQQTKALLCKNFLKKWRMKRESLLEWGLSILLGLC IALFSSSMRNVQFPGMAPQNLGRVDKFNSSSLMVVYTPISNLT QQIMNKTAL
713	1452	2	525	SPQGNGCPDVTGDSVIRVPLTLLVHNLAGLTGLLHHCLSGPLP APSPPPAMSSSRKDHLGASSSEPLPVIIVGNGPSGICLSYLLS GYTPYTKPDAIHPHPLLQRKLTEAPGVSILDQDLDYLSEGLEG RSQSPVALLFDALLRPDTDFGGNMKSVLTWKHRKEHAIPHVVL GR
714	1453		1557	NRRTRAQRCQRGRSCGAREEEVEPGTARPPPAASAMDASLEKI ADPTLAEMGKNLKEAVKMLEDSQRRTEEENGKKLISGDIPGPL QGSGQDMVSILQLVQNLMHGDEDEEPQSPRIQNIGEQGHMALL GHSLGAYISTLDKEKLRKLTTRILSDTTLWLCRIFRYENGCAY FHEEEREGLAKICRLAIHSRYEDFVVDGFNVLYNKKPVIYLSA AARPGLGQYLCNQLGLPFPCLCRVPCNTVFGSQHQMDVAFLEK LIKDDIERGRLPLLLVANAGTAAVGHTDKIGRLKELCEQYGIW LHVEGVNLATLALGYVSSSVLAAAKCDSMTMTPGPWLGLPAVP AVTLYKHDDPALTLVAGLTSNKPTDKLRALPLWLSLQYLGLDG FVERIKHACQLSQRLQESLKKVNYIKILVEDELSSPVVVFRFF QELPGSDPVFKAVPVPNMTPSGVGRERHSCDALNRWLGEQLKQ LVPASGLTVMDLEAEGTCLRFSPLMTAAGKPGLVDIPCFCSGA AG
715	1454	319	873	LCIMDTKEEKKERKQSYFARLKKKKQAKQNAETASÄVATRTHT GKEDNNTVVLEPDKCNIAVEEEYMTDEKKKRKSNQLKEIRRTE LKRYYSIDDNQNKTHDKKEKKMVVQKPHGTMEYTAGNQDTLNS IALKFNITPNKLVELNKLFTHTIVPGQVLFVPDANSPSSTLRL SSSSPGATVSPSS
716	1455	60	681	SAGGDSCRAVPMLRFPTCFPSFRVVGEKQLPQEIIFLVWSPKR DLIALANTAGEVLLHRLASFHRVWSFPPNENTGKEVTCLAWRP DGKLLAFALADTKKIVLCDVEKPESLHSFSVEAPVSCMHWMEV TVESSVLTSFYNAEDESNLLLPKLPTLPKNYSNTSKIFSEENS DEIIKLLGDVRLNILVLGGSSGFIELYAYGMFKI
717	1456	357	658	PRDPVTDRARAMPRRGLVAGPDLEYFQRHYFTPAEVAQHNRPE DLWVSYLGRVYDLTSLAQEYKGNLLLKPIVEVAGQDISHWFDP KTRDVSYAGTWDCG

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,			
ID	ID	beginning	end				
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,			
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,			
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,			
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,			
	710100	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,			
	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,			
}	ļ	acid	acid	\=possible nucleotide insertion)			
	<u> </u>	residue	residue				
		of amino	of amino	•			
	1	acid	acid	,			
		sequence	sequence				
718	1457	2	481	RIPGRRFRAAFVLGSANVASSVRLRCSFPLSLGGPSGPAAASV			
-	Ì	l	•	ALGPAGPGRSLGRTPDTGDWEMDSVSFEDVAVAFTQEEWALLD			
				PSQKNLYRDVMQEIFRNLASVGNKSEDQNI`QDDFKNPGRNLSS			
L	<u> </u>			HVVERLFEIKEGSQYGETFSQDSNLNLNKI			
719	1458	6	469	SLSLSVSPFLRLSLGRVGGMAEEMESSLEASFSSSGAVSGASG			
				FLPPARSRIFKIIVIGDSNVGKTCLTYRFCAGRFPDRTEATIG			
		·		VDFRERAVEIDGERIKIQLWDTAGQERFRKSMVQHYYRNVHAV			
				VFVYDMTNMASFHSLPSWIEECKQH			
720	1459	82	490	RRPSPGSIVIMAAESDVLHFQFEQQGDVVLQKMNLLRQQNLFC			
		Ì	}	DVSIYINDTEFQGHKVILAACSTFMRDQFLLTQSKHVRITILQ			
			1	SAEVGRKLLLSCYTGALEVKRKELLKYLTAASYLQMVHIAEKR			
				TEAFVKF			
721	1460	48	708	AEGLQSAAGIRIDTKAGPPEMLKPLWKAAVAPTWPCSMPPRRP			
				WDRQAGTLQVLGALAVLWLGSVALICLLWQVPRPPTWGQVQPK			
				DVPRSWEHGSSPAWEPLEAEARQQRDSCQLVLVESIPQDLPSA			
				AGSPSAQPLGQAWLQLLDTAQESVHVASYYWSLTGPDIGVNDS			
				SSQLGEALLQKLQQLLGRNISLAVATSSPTLARTSTDLQVLAA			
-	ŀ		}	RGAH			
722	1461	436	677	RKKKMPLPFGLKLKRTRRYTVSSKSCLVARIQLLNNEFVEFTL			
-		ļ		SVESTGQESLEAVAQRLELREVTYFSLWYYNKQNQRR			
723	1462	45	569	LQPLSSWESASEVTRSPVSPEDVKQATSNFENLQKQLARKMKL			
		1		PIFIADAFTARAFRGNPAAVCLLENELDEDMHQKIAREMNLSE			
1				TAFIRKLHPTDNFAQSSCFGLRWFTPASEVPLCGHATLASAAV			
				LFHKIKNMNSTLTFVTLSGELRARRAEDGIVLDLPLYPAHPQD			
1		ł		FHE*			
724	1463	79	530	AADTMQSDDVIWDTLGNKQFCSFKIRTKTQSFCRNEYSLTGLC			
	1	1	1	NRSSCPLANSQYATIKEEKGQCYLYMKVIERAAFPRRLWERVR			
				LSKNYEKALEQIDENLIYWPRFIRHKCKQRFTKITQYLIRIRK			
	1			LTLKRQRKLVPLSKKVERREK			
725	1464	2	261	FVERGLGDPALPTLMFEEPEWAEAAPVAAGLGPVISRPPPAAS			
				SQNKVSDSREQWELFQAAKRTLVDPSAVCIAGRDTCGTVKGES			
726	1465	1	860	VVEFLWSRRPSGSSDPRPRRPASKCOMMEERANLMHMMKLSIK			
	-333			VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG			
1				QNKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL			
	1			YLALMOKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG			
				LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK			
1				EHERITDVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL			
				QERVSAATDRICSLQEEQQQLREQNELIR			
727	1466	69	452	GCYAPSPHLGGSLTPRFFPNGVFHRRLPRPRPPOPPSVSSAPT			
1 '4'	7.400	100	1 772	LRPLCAHFSLGKLRLRVRKSAEVAPPRTEKGWGSAEPRHSRAP			
	1						
L	<u> </u>			LGLQGLRMAASAQVSVTFEDVAVTFTQEEWGQLDAAQRTLY			

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	[acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	
		sequence	sequence	
728	1467	1	439	FRGSLSSPSSLRGRRLVTGQTSPRGTWCLYPGFCRSVACAMPC
	1		[CSHRSCREDPGTSESREMDPVVFEDVAVNFTQEEWTLLDISQK
	İ			NLFREVMLETFRNLTSIGKKWSDQNIEYEYQNPRRSFRSLIEE
	ļ,			KVNEIKEDSHCGETFTQ
729	1468	103	236	LNFANSAAFAVTMPQNEYIELHRKRYGFRLDYHEKKRKKQSRE
l				A
730	1469	213	809	SGDLSPAELMMLTIGDVIKQLIEAHEQGKDIDLNKVKTKTAAK
	1		1	YGLSAQPRLVDIIAAVPPQYRKVLMPKLKAKPIRTASGIAVVA
		ļ		VMCKPHRCPHISFTGNICVYCPGGPDSDFEYSTQSYTGYEPTS
1				MRAIRARYDPFLQTRHRIEQLKQLGHSVDKVEFIEMGGTFMAL
ì				PEEYRDYFIRNLHDALSGHTSNNIYE
731	1470	264	799	WESDVGEGLRPPPPPPPPPGRRRTQEPRARDAATVIFACPAALL
1	l	1	1	ETLIAYGSSSPSFCKHRAARPLIFLLHRLTAEATARCPICALE
	1			ARNPGRWGICASWPGMKTPFGKAAAGQRSRTGAGHGSVSVTMI
1	ł		ł	KRKAAHKKHRSRPTSQPRGNIVGCIIQHGWKDGDEPLTQWKGT
1				VLDQLL
732	1471	2	763	RDLGVALEAFQWARAGDCGSGAGRAGGEGVDAGRRVPERQHRG
				RGGGGEPGRRQRGGRRQ\RSSSRRSGGDGGDEVEGSGVGAGEG
	1	l	1	ETVQHFPLARPKSLMQKLQCSFQTSWLKDFPWLRYSKDTGLMS
		1		CGWCQKTPADGGSVDLPPVGHDELSRGTRNYKKTLLLRHHVST
	[1	1	EHKLHEANAQESEIPSEEGYCDFNSRPNENSYCYQLLRQLNEQ
	1			RKKGILCDVSIVVSGKIFKAHKNILVAGSRFFKTLYCFS
733	1472	82	523	SLRAAAAMADVTARSLQYEYKANSNLVLQADRSLIDRTRRDEP
1.			1	TGEVLSLVGKLEGTRMGDKAQRTKPQMQEERRAKRRKRDEDRH
	Ì		1	DINKMKGYTLLSEGIDEMVGIIYKPKTKETRETYEVLLSFIQA
				ALGDQPRDILCGAADEVL
734	1473	536	110	CNSAESRMDVLFVAIFAVPLILGQEYEDEERLGEDEYYQVVYY
				YTVTPSYDDFSADFTIDYSIFESEDRLNRLDKDITEAIETTIS
				LETARADHPKPVTVKPVTTEPQSP\DL\NDAVSS\LRSPIPL\
				LLS\CAFVQVGMYFM
735	1474	2	557	FVRGPGEEQAPAFRKPAPGAMGAQVRLPPGEPCREGYVLSLVC
				PNSSQAWCEITNVSQLLASPVLYTDLNYSINNLSISANVENKY
				SLYVGLVLAVSSSIFIGSSFILKKKGLLQLASKGFTRAGQGGH
	1		}	SYLKEWLWWVGLLSILSWNAREKVDL*NITF*PQTSCIFFTIT
				IEKSTFLSYFPTS
736	1475	127	401	ARGSCPTRPRPANGRMAETKDAAQMLVTFKDVAVTFTREEWRQ
				LDLAQRTLYREVMLETCGLLVSLGHRVPKPELVHLLKHGQELW
				IVKRG
737	1476	311	790	YTMLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQ
1			1	PASTVOKPGGTVILGCVVEPPRMNVTWRLNGKELNGSDDALGV
1	1			LITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTLASE
	1			SAPLPPCHGAVPPHLSHPEAPTIHAASCYS
L			J	7

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
738	1477	2	421	WGRRRQLVSEAARAQGDPVCSTMSEEEAAQIPRSSVWEQDQQN VVQRVVALPLVRATCTAVCDVYSAAKDRHPLLGSACRLAENCV CGLTTRALDHAQPLLEHLQPQLATMNSLACRGLDKLEEKLPFL QQPSETVVTS
739	1478	256	1250	AKAFTMAESPGCCSVWARCLHCLYSCHWRKCPRERMQTSKCDC IWFGLLFLTFLLSLSWLYIGLVLLNDLHNFNEFLFRRWGHWMD WSLAFLLVISLLGTYASLLLVLALLRLCRQPLHLHSLHKVLL LLIMLLVAAGLVGLDIQWQQERHSLRVSL/QDCR*L*TPAVRP *EESGEGHWRRAHLTSSCPQATAPFLHIGAAAGIALLAWPVAD TFYRIHRREPKILLLLLFFGVVLVIYLAPLCISSPCIMEPRDL PPKPGLVGHRGAPMLAPENTLMSLRKTAECGATVFETDVMVSS DGVPFLMHDEHLSRTTNVASVFPTRITAHSS

WHAT IS CLAIMED IS:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO:1-739, an active domain of SEQ ID NO: 1-739, and complementary sequences thereof.

- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:

(a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

- (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO:1-739.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a
 complex with the polynucleotide of claim 1 for a period sufficient to form the complex;
 and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:

 a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and

- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO: 1-739, an active domain of SEQ ID NO: 1-739, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-739, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 740-1478, the mature protein portion thereof, or the active domain thereof.

- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- 22. A collection of polynucleotides, wherein the collection comprises the sequence information of at least one of SEQ ID NO: 1-739.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 26. The collection of claim 22, wherein the collection is provided in a computerreadable format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

SEQUENCE LISTING

```
<110> Hyseq Inc
<120> Novel Nucleic Acids and Polypeptides
<130> 784PCT
<140> To be assigned
<150> US09/488,725
<151> 2000-01-21
<150> US09/552,317
<151> 2000-04-25
<160> 739
<170> Pt_CT_1
<210> 1
<211> 556
<212> DNA
<213> Homo sapiens
```

<400>	1					
tttcgtgggc	cggttgctaa	gacttggcga	agcgctgcgc	ttgcgcccgg	atccctcagg	60
cggctgcagg	cttcagcctg	cgctggttgg	tgaaacagag	atgtcagaaa	aggagaacaa	120
cttcccgcca	ctgcccaagt	tcatccctgt	gaagccctgc	ttctaccaga	acttctccga	180
cgagatccca	gtggagcacc	aggtcctggt	gaagaggatc	taccggctgt	ggatgtttta	240
ctgcgccacc	ctcggcgtca	acctcattgc	ctgcctggcc	tggtggatcg	gcggaggctc	300
ggggaccaac	ttcggcctgg	ccttcgtgtg	gctgctcctg	ttcacgcctt	gcggctacgt	360
gtgctggttc	cggcctgtct	acaaggcctt	ccgagccgac	agctccttta	atttcatggc	420
gtttttcttc	atctttcgga	gcccagtttg	tcctgaccgt	catccaggcg	attggcttct	480
	cgcgtgcggc					540
ctgccgtggt						556

<210> 2 <211> 837 <212> DNA <213> Homo sapiens

<400> 2 gagatgagtc ccagggagta cggagtcagc tctgagccga ggtcaccgca gaagggagct 60 cggtcttcgg ccaggaccgg agcagttgga acaaagggaa tgtggaaatg aaagagagag 120 ggagagagag gctggcagat gtaatgagac gcggtgaagg tgtacgcaga ctggcactcc 180 cactcctccc ttctgctctc actgcagccc tgggtaactc gcaggctaac acaaacagct 240 tttctcccgc agcctgccct ctgtcactgt cactttcatg aattcaaagg caatttacca 300 gtgatttctg ggtgctgggg ctgatatttt ttgtgcatat ttaagaatgt cttccaagca 360 agccacctct ccatttgcct gtgcagctga tggagaggat gcaatgaccc aggatttaac 420 ctcaagggaa aaggaagagg gcagtgatca acatgtggcc tcccatctgc ctctgcaccc 480 cataatgcac aacaaacctc actctgagga gctaccaaca cttgtcagta ccattcaaca 540

agatgetgac tgggacageg ttetgteate teageaaaga atggaateag agaataataa 600 gttatgttee etatatteet teegaaatac etetacetea eeacataage etgaegaagg 660 gagtegggac egtgagataa tgaecagtgt taettttgga acceeagage geegeaaagg 720 gagtettgee gatgtggtgg acacaetgaa acagaagaag ettgaggaaa tgaeteggae 780 tgaacaagag gatteeteet geatggaaaa actaetttea aaagattgga aggaaac 837

<210> 3 <211> 1562 <212> DNA <213> Homo sapiens

<400> 3

cggaaccgta ggaggggtac ttaaccggac ggcctaccag gcctgtggcc gtgcgcggga 60 agagcactgc agatctcagg atgatggggc gcagccctgg gtttgccatg cagcacatcg 120 tgggtgtgcc ccacgtactg gttcggaggg gcctccttgg aagggacctc ttcatgacca 180 ggactetetg cageccagge ccaagecage ceggagagaa aagacetgag gaggtggeee 240 tggggctgca ccaccgcctc ccagcactgg gaagagccct ggggcacagc attcagcaac 300 gagegaeete cacagecaag aettggtggg acagatatga agagtttgtt ggaetcaaeg 360 aggttcgaga ggcccaggga aaggtgacag aggctgagaa agtgttcatg gtggctcgag 420 ggettgteeg agaggetegg gaggaettgg aagtteacca ggeeaagetg aaggaggtga 480 gggaccgctt ggaccgtgtc tccagggagg acagtcagta cttggaactg gctactctcg 540 agcacaggat gctgcaggag gagaagaggc ttcgcacagc ctatctgcgt gcagaagact 600 ctgagcgaga gaagttctcc ctcttctctg cagctgtgcg ggaaagtcat gagaaggagc 660 gcacaagggc tgagaggacc aagaactggt ccctcattgg ctcagtcctg ggggccctga 720 ttggtgtggc tggctccacc tatgtgaacc gtgtgcgact acaggagctg aaggctttac 780 teetggagge geagaagggg cetgtgagte teeaagagge cattegagaa caqqegteta 840 gctactcccg ccagcagagg gacctccaca atctcatggt ggacttgagg ggcctggtac 900 atgetgetgg gecagggeag gaetetgggt cacaggeagg tagtececeg accagagaca 960 gagatgtaga tgtcctttca gctgccttga aagagcagct tagtcattcc aggcaagtcc 1020 attcatgtct agaaggctta cgagagcagc ttgatggcct agaaaagact tgtagccaaa 1080 tggctggggt ggttcagctt gtaaagtctg cagcacaccc aggcctggtg gaaccagcag 1140 acggggctat gcccagcttc ttgctggagc aggggagcat gatcttggca ctqtcaqaca 1200 cggagcagag actagaagcc caagtcaaca ggaacaccat ctatagcacc ctgqtcacct 1260 gtgtgacatt tgtggccaca ctgcctgtgc tctacatgct attcaaaqcc aqctaacccc 1320 tggcccetcc tccagagggt ctgaggcaat agctgtgaat gtggatttaa gtagagaatc 1380 gtagcaatga agcgagcctt tgggggcatg tacaacctca atctgaagga gcagtatctg 1440 tgtggctcac cagcaggcat gcttcgcttt gtagacaagg ttcatttaca ttaattatca 1500 aaactttgtg ctaatgtcca attaaaatat cctgagtttt attatttaaa acaaaaaaaa 1560 1562

<210> 4 <211> 745 <212> DNA <213> Homo sapiens

<400> 4
agggcttggg gctgggtctc cgtgacagag gcctggcttt tctgtcaggg cagggcctag cccctgcccc cataaaagag gagacatagg gggcttggtg agataccctg aaacctcccc 120

cetetgaece egeageeagg ecceaggetg geegggagtg geeceteaca etggttetee 180 ecaetttete tgeetgtgge ategaaggee eegggeacea tggeecagge eetgggggag 240 gacetggtge ageeteeega getgeaggat gaeteeaget eettqqqqte eqacteaqaq 300 ctcageggge etggeceata tegecaggee gacegetatg gattcattgg gggcagetea 360 gcagagccag ggccgggcca cccacctgca gacctcatcc gccaacggga gatgaagtgg 420 gtggagatga cctcgcactg ggagaaaacc atgtcccggc ggtacaagaa ggtaaagatg 480 cagtgccgga aaggcatccc gtctgccctg cgcgcccgat gctggcccct gttgtgtggg 540 gcccatgtgt gccagaagaa cagccctggc acctatcagg.agctggcaga ggcccctgga 600 gacccacagt ggatggagac cattggcagg gacctgcacc gtcaattccc tctgcacgag 660 atgtttgtgt cgcctcaagg ccacgggcag caggggctcc tgcaggtgct caaggcctac 720 accetgtate gaceggagea agget 745

<210> 5 <211> 536 <212> DNA

<213> Homo sapiens

<400> 5 acggaagete ggttgatgtt tetgeagaag tttteeecet tggteggtgg eggagetget 60 gagcgcgata gtagcagctc cggcggcagc aacattgact acgaggaatg gcggcggctg 120 degraggace tgeageatee cagaggtttt tecagagett etcagatget etaategace 180 aggaccccca ggcggcgtta gaggtgggag agccttttct gcttcctcca ctcccggctg 240 accegeetee ttecageace geetgattag gaeteagget etagtgatge tgegteteag 300 ccccagtatt gagatteteg gteteettte teteteteac ggtageegeg ttaceteaga 360 ctcctgtctt gccctttcca cttccagact cttgcattcc tgaagcttct gagaaaaact 420 480 ttaatgacta aaaaagaaaa ggggactctg ggctcgatga aaattaattt tttctt 536

<210> 6 <211> 780 <212> DNA <213> Homo sapiens

<4.00> 6 attttatcga ctattccgtc agacgccctc ttgcctttag tgaactgcgg ggacctggcc 60 tttgccggta ggggccagcg cagaaaagcc tgggagatgc gcgtccaggg ccgcgagtgc 120 ggggaagetg egggaeegea gagteegete ggeageeggt agteagggeg eeggggegtt 180 aggetteaga tttaetteaa tgtteetaat gggettgett eagaagtget eactgttete 240 gccacetgag gaacegcatt tteatgtatt tgtattggga caagacgegg agteeggtgt 300 gtaaagggcc tgctttgagg gaagaaaggc cgcagcccag gctcaaactg gaggattata 360 aggategeet gaaaagtgga gageatetta ateeagaeea gttggaaget gtagagaaat 420 atgaagaagt gctacataat ttggaatttg ccaaggagct tcaaaaaacc ttttctgggt 480 tgagcctaga tctactaaaa gcgcaaaaga aggcccagag aagggagcac atgctaaaac 540 ttgaggctga gaagaaaaag cttcgaacta tacttcaagt tcagtatgta ttgcagaact 600 tgacacagga gcacgtacaa aaagacttca aagggggttt gaatggtgca gtgtatttgc 660 cttcaaaaga acttgactac ctcattaagt tttcaaaact gacctgccct gaaagaaatg 720

aaagtetgag acaaacactt gaaggateta etgtetaaat tgetgaacte aggetatttt

780

```
<210> 7
      <211> 654
      <212> DNA
      <213> Homo sapiens
      <220>
      <221> misc_feature
      <222> (1)...(654)
      <223> n = a,t,c or g
      <400> 7
 ctccccgtct cttccctggc cttgccctct ctctttctgc cctgtagccg cgggcgtcca
                                                                       60
 aatgaagetg gaatteetee agegeaaatt etgggeggea aegeggeagt geageaetgt
                                                                      120
ggatgggccg tgcacacaga gctgcgagga cagtgatctg gactgcttcg tcatcgacaa
                                                                      180
 caacgggttc attctgatct ccaagaggtc ccgagagacg ggaagatttc tgggggaggt
                                                                      240
 ggatggtgct gtcctgaccc agctgctcag catgggggtg ttcagccaag tgactatgta
                                                                      300
 tgactatcag gccatgtgca aaccctcgag tcaccaccac agtgcagccc agcccctggt
                                                                      360
 cageccaatt tetgeettet tgaeggegae caggtggetg etgeaggage tggtgetgtt
                                                                      420
 cctgctggag tggagtgtct ggggctcctg gtacgacaga ggggccgagg ccaaaagttg
                                                                      480
 tettecatea eteccacaaa cacaagaage aggaceeget geageeetge gacaeggagt
                                                                      540
 accoegtgtt egtgtaceag ceeggecate egggaggeca aeggggatte gtggagtgeg
                                                                      600
 ggcccttncc agaaagggta tttgttggtg cangcagatt ccnaacatta aact
                                                                      654
      <210> 8
      <211> 469
      <212> DNA
      <213> Homo sapiens
      <400> 8
 tgccgtgggc ggctggccca gctggaggaa gcggcggtgg cggccacgat gagtgcgggc
                                                                       60
 gacgcagtgt gcaccggctg gctcgttaag tcgcccccg agaggaagct acagcgctac
                                                                      120
 gcctggcgca agcgctggtt tgtcctccgg cgaggccgca tgagcggcaa ccccgatgtc
                                                                      180
 ttggagtact acaggaacaa gcactccagc aagcccatcc gggtgataga cctcagcgag
                                                                      240
 tgtgcagtgt ggaagcatqt gggccccaqc tttqttcqqa aggaatttca qaataatttc
                                                                      300
 gtgttcattg tcaagactac ttcccgtaca ttctacctgg tggccaaaaac tgagcaagaa
                                                                      360
```

```
<210> 9
<211> 409
<212> DNA
<213> Homo sapiens
```

<220>

atgcaggtgt gggtgcacag catcagtcag gtctgcaacc ttggccacct ggaggatggt

geageagatt ceatggagag cetetettae acgegeteet acetgeage

420

469

```
<221> misc_feature
<222> (1)...(409)
<223> n = a,t,c or g
```

<400>	9					
agaaaccnaa	cagatctgtg	gggcaggaaa	atgtttcttt	tccagctttc	acagetetet	60
gagaaggggc	atggtgggaa	ttttagccga	tttaataaaa	gctgcagcat	gagacctgtg	120
aatcccaccc	tgctgcttcc	tggatcctgc	cacaccccat	ccagcagcaa	ccaagccagt	180
ctcgcccctg	actgggacag	agtggctgag	aggggctctg	gagccagctg	cctggatttg	240
aatcccagct	gtgccactta	ccagctgtgt	gactgtagga	agctactctt	tgtccgtgcg	300
agactacgac	cctcggcagg	gagataccgt	gaaacattac	aagatccgga	cccttgaaca	360
aacggggctt	ctacatatcc	cccccgaagc	accttcagca	ctctgcagg		409

<210> 10 <211> 1145 <212> DNA <213> Homo sapiens

<400> 10 aaagattctg ttttgaatat aqccagaqqa aaaaaqtatq qaqaaaaaac taaqaqaqtq tettetegga aaaaaccage ettqaaqtqt etteteaqaa acaaccagea ttqaaqqeta 120 totgtgacaa ggaagattot qttocgaata cqqccacqqa aaaaaaqqat qaacaaatat 180 ctgggacagt gtcttctcag aaacaaccag ccttgaaggc tacaagtgac aagaaagatt 240 ctgtttcgaa tatacccaca gaaataaagg atggacaaca atctggaaca gtgtcttctc 300 agaaacaacc ggcctggaag gctacaaqtg tcaaqaaaqa ttctqtttcq aatataqcca 360 cagaaataaa ggatggacaa ataccqtqqq acaqtqtctt ctcaqaqaca accaqccttq 420 aaggettaca ggtgatgaga aagattetgt, ttegaatata gecagagaaa taaaggatgg 480 agaaaaatct gggacagtgt ctcctcagaa acaatcggcc cagaaggtta tatttaaaaa 540 gaaagtttct cttttgaata ttgccacaag aataacgggc ggttggaaat ctggaacaga 600 gtatcctgag aatctgccca ccttgaaqqc tacaattqaa aataaaaatt ctqttctqaa 660 tacagccacc aaaatgaaag atgtacaaac atccacacca gaacaagact tagaaatggc 720 atcagaggga gagcaaaaga ggcttgaaga atatgaaaat aaccagccac aggtgaaaaa 780 ccaaatacat totagggatg accttgatga cataattcag tcatctcaaa caqtctcaqa 840 ggacggtgac tcgctttgct gtaattgtaa gaatgtcata ttactcattg atcaacatga 900 aatgaagtgt aaagattgtg ttcacctatt gaaaattaaa aagacatttt gtttatgtaa 960 aagattaaca gaacttaaag ataatcactg tgagcaactt aqagtaaaaa ttcgaaaact 1020 gaaaaataag gctagtgtac tacaaaaqag actatctqaa aaaqaaqaaa taaaatcqca 1080 gttaaagcat gaaacacttg aattggaaaa agaactctgt agtttgagat ttgccataca 1140 gcaag 1145

<210> 11 <211> 890 <212> DNA <213> Homo sapiens

<400> 11 gtagtccgct gcggtaccgg gccggacaat ctgggtcgac gatttcgagc tcgtcatgcg 60 caatgtggcg ctgcggcggg cggcagggcc tgtgtgtgct gaggcggctg agcggcggac 120 atgcacacca cagagogtgg cgatggaaca gtaaccgggc ttgtgagagg gctctgcagt 180 ataaactagg agacaagatc catggattca ccgtaaacca ggtgacatct gttcccgagc 240 tgttcctgac tgcagtgaag ctcacccatg atgacacagg agccaggtat ttacacctgg 300 ccagagaaga cacgaataat ctgttcagcg tgcagttccg taccactccc atqqacaqta 360 ctggtgttcc tcacattctt gagcataccg tcctttgtgg gtctcagaaa tatccgtgca 420 gagaccettt etteaaaatg ttgaaceggt eeeteteeac gtteatgaac geetteacag 480 ctagtgatta tactetgtat ccattttcca cacaaaatcc caaggacttt cagaatctcc 540 teteggtgta tttggatgee acctttttee catgtttaeg egagetggat tteteggeagg 600 aaggatggcg gctggaacat gagaatccga gcgaccccca gacqcccttq qtctttaaaq 660 gagtcgtctt taatgagatg aagggagcgt ttacagacaa tgagaggata ttctcccagc 720 accttcagaa cagacttctt cctgaccaca cgtactcagt ggtctccggg ggtgacccac 780 tgtgcatccc ggagcttaca tgggagcagc ttaagcagtt tcatgccact cactatcacc 840 caagcaatgc taggttcttc acgtacqqta attttccctt aqaccaqcat 890

<210> 12 <211> 982 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(982) <223> n = a,t,c or g

<400> 12 tttcgtcaca cacgcacacg caccctgcca ctgcagccgc catggatatc agctaacaac 60 acacaccag gegegegege gegtteceae tegeaceaeg caggagtgge ecceggeate 120 cotaccetce ttecceacce ecaccacace egeteaccag eteggetact getegeteeg 180 getgeegeeg eegeegeege egaegeeace accaetqett cetetqetqe qqqqceacaq 240 cettgagtgt cattcaaggg acagcacaac ctcatccaaq etetectace tetqeccaqe 300 cgtgcctctc atcctcccca ttcctcgtcc acactccatc caaagaagag ggaaagcacc 360 gaatagaggg gggcgaaggc aaagtctgct gttcttcccc ctgggccccc ttgctcctcc 420 atcctcattc tctcaccacc agcccccta accccaaqqa qcccaqqaac tqaqqcqact 480 cgccccactg ccatgtccaa aagcttgaaa aagaaaagcc actggactag caaagtccat 540 gagagtgtca ttggcaggaa cccggagggc cagctgggct ttgaactgaa ggggggcgcc 600 gagaatggac agttccccta cctgggggag gtgaagcccg gcaaggtggc ctatgagagc 660 ggcagcaaat tggtgtcgga ggagctgctg ctggaggtga acgagaccc cgtggcgggg 720 ctcaccatca gggacgtgct ggccgtgatc aaacactgca aggaccccct ccggctcaag 780 tgtgtcaagc aaggtgagag cagcggcttg ctcagtgttt tgccqqqcqq tgggaccgct 840 cggggcgcag ggcaatgaaa gggtggccgc gcatgttgaa gggggtgtgt tgcgcgatga 900 tggggtgggg gccagagagc acccgcagtg caagtgagtt tcgccgggga ttcgacgaaa 960 tegtnneceg ggaatteegg ac 982

<210> 13 <211> 440 <212> DNA <213> Homo sapiens

<400>	13					
ccgtgccgga	attcccgcgt	cgacgatttc	gtggctaagg	cgccaggcac	gggcaccacc	60
agggcgccca	ggagccgccc	gccgccggca	tggaccagct	gtactgccca	ccgagcgcgt	120
gccagtcttt	tggtaagaac	tagtcacaca	gacctcaacc	tgatgcgtgg	agacaaggaa	180
atgcttttca	gtgtgtccag	aaagagaaaa	tgcaggtgtc	ttctgcggag	gtgcgcatcg	240
ggcccatgag	actgacgcag	gaccctattc	aggttttgct	gatctttgca	aaggaagata	300
gtcagagcga	tggcttctgg	tgggcctgcg	acagagctgg	ttatagatgc	aatattgctc	360
ggactccaga	gtcagccctt	gaatgctttc	ttgataagca	tcatgaaatt	attgtaattg	420
atcatagaca	aactcagaac					440

<210> 14 <211> 581 <212> DNA

<213> Homo sapiens

```
<400> 14
tttcgtttgg ccggctgcgg gcacctcctg gtctcgctgc tgggggctgct gctgctgctg
                                                                       60
gegegeteeg geacceggge getggtetge etgecetgtg acgagteeaa gtgegaggag
                                                                      120
cccaggaact gcccggggag catcgtgcag ggcgtctgcg gctgctgcta cacgtgcgcc
                                                                      180
agccagagga acgagagctg cggcggcacc ttcgggattt acggaacctg cgaccggggg
                                                                      240
ctgcgttgtg tcatccgccc cccgctcaat ggcgactccc tcaccgagta cgaagcgggc
                                                                      300
gtttgcgaag atgagaactg gactgatgac caactgcttg gttttaaacc atgcaatgaa
                                                                      360
aaccttattg ctggctgcaa tataatcaat gggaaatgtg aatgtaacac cattcgaacc
                                                                      420
tgcagcaatc cctttgagtt tccaagtcag gatatgtgcc tttcagcttt aaagagaatt
                                                                      480
gaagaagaga agccagattg ctccaaggcc cgctgtgaag tccagttctc tccacgttgt
                                                                      540
cctgaagatt ctgttctgat cgagggttat gctcctcctg g
                                                                      581
```

<210> 15 <211> 693 <212> DNA <213> Homo sapiens

<400> 15 tttcgtatgg cggccaatgt gggatcgatg tttcaatatt ggaagcgctt tgatttacag 60 cagctgcaga gagaactcga tgccaccgca acggtattgg cgaaccggca ggatgaaagt 120 gagcagtcca gaaagcggct tatcgaacag agccgggagt tcaagaagaa cactccagag 180 gtgaggcgcg tgaccatcgt gttcgctttg aagggatctt agaatgctgg tgcatgttca 240 ggcgacgctc cgtgagcgtt tcattttcat cagatgaacg cacggccggc aaacaacccg 300 tttctttccc cagatgtctt cagccccatt tccagcagaa cgcatgccat cctgcaggct 360 gtggggatgt ggaaattgat aggttgtctg gaaatatgaa agtcagagcc aattccaggt 420 480 geagatactg gacaagettg gtetgtaaga acaegtggge aggtgtgtgg gtgteteaaa ccctcgagct catcccagac cctgtcccat gtcagttagc aagccaccaa agtccataag 540 ggatcctgtg gggtggaagg tccgcggggc ctgcttccct gttgctggtg caggcggagt 600 gtctgaaggc tgcacgcatc tgggcatagc agtgcgccta acgcttcttg taaaacagac 660

atttcgcctg ctaagccttt taaatgcctc tct

693

<210> 16 <211> 562 <212> DNA <213> Homo sapiens

<400> 16 tttcgtggaa agagagaaac caccgctgcg ggtgggtaga gaagcacttg gcgcctcqqq 60 gaggggaceg egecegeete atttgegeet tgeageactg etggaceaqq ttacaaqatq 120 ttcacctaag attgagacct agtgactaca tttcctacgg gaacaaataa atqqtttttc 180 atctcccgga gatacattac aaacaaatat ggtgctaaaa gaactcctta cctttctctg 240 actacaattt atttggacat acttttgtat tgaagagagg tatacatact gaagctactt 300 gctgtactat aggagactct gtcctgtagg atcatggacc atcctagtag ggaaaaggat 360 gaaagacaac ggacaactaa acccatggca caaaggagtg cacactgctc tcgaccatct 420 ggeteeteat egteetetgg ggttettatg gtgggaceca actteagggt tggcaagaag 480 ataggatgtg ggaacttcgg agagctcaga ttaggtgaag gtctcccaca ggtgtattac 540 tttggaccat gtgggaaata ta 562

<210> 17 <211> 899 <212> DNA <213> Homo sapiens

<400> 17 tttcgtgcgt ccccggccca accatggcgt cctccgcggc cggctgcgtg gtgatcgttg 60 gcaggaagtc tgaaacagca gttggagtgt agtggttaag aggaaggact caggagtcag 120 attgcttggc ttcatctcat agatccataa cttatcaccc ttgtggactt aattcctcca 180 tgcctcagtt tatcacttat gtaggcttaa ttcctccatg cctcagtttc cctacatata 240 aaatggaaat actaataaca cttatcttgt agggttgttg taaagattaa catagtggag 300 teattgggeg aagetgggee atgetgtttg ceagtggagg ettecaggtg aaactetatg 360 acattgagca acagcagata aggaatgccc tggaaaacat caqqtqqqcc aqccqqqct 420 ctccagaagg aatggaagtg ggtctgtttc tctcagttgg tcttgtttgt catatcctca 480 aggctatgag gatctgtgat gtcacatttt cgtctgatgg ctactgcagt gcctctgagt 540 tggtaaaggc caggcctaca gtggctggaa tgtgaattca cactggggaa gggctcccat 600 gggggaggaa acgaccette ttgctaagag gatetgcate aagegtgagt gaetttgcag 660 gcttctccag ctgtttgccc cggggctgga gggctggggt ttcctgcttc catctaggca 720 ggaggaactc gcttccagca tgtgacagcc atagctgcag gggcattaca gtttaagaac 780 agaggtcctg cagcttgttt tgacctgttg atctagtaat ggtaggaccc aaatgaaaac 840 atcttgaatt ttagttagag gtttagcact catgtgagag gacagaactg gagctgttt 899

<210> 18 <211> 519

<212> DNA

<213> Homo sapiens

<400>	18					
ggaattcccg	ggtcgacgat	ttcgtctccg	cccgcccgaa	gccgcgccca	ctgcccagag	60
ccagagggat	ggtggtagtc	acggggcggg	agccagacag	ccgtcgtcag	gacggtgcca	120
tgtccagctc	tgacgccgaa	gacgactttc	tggagccggc	cacgccgacg	gccacgcagg	180
cggggcacgc	gctgcccctg	ctgccacagg	agtttcctga	ggttgttccc	cttaacatcg	240
gaggggctca	cttcactaca	cgcctgtcca	cactgcggtg	ctacgaagac	accatgttgg	300
	cagtgggcgg					360
	cacacacttt					420
ccagggagcg	tgttcgagct	gtgtacaaag	aggcccagta	ctatgccatc	gggcccctcc	480
tggagcagct	ggagaacatg	ccgccactga	aaggcgaga			519

<210> 19 <211> 460 <212> DNA <213> Homo sapiens

<400> 19 tttcgtgcag gggccaggcc tctctaggct ctccggctga gccgggttgg ggcccgggtt 60 gggccgcccg gggactctgg agcattggga tttgtagcgc gccctctggg taggcggctg 120 tagcggagag gcgtgcggga tcgggatgtc ggggctgctc acggacccgg agcagagagc 180 gcaggagccg cggtaccccg gcttcgtgct ggggctggat gtgggcagtt ctgtgatccg 240 ctgccacgtc tatgaccggg cggcgcgggt ctgcggctcc agcgtgcaga aggtagaaaa 300 tetttateet caaattgget gggtagaaat tgateetgat gttetttgga tteaatttgt 360 tgccgtaata aaagaagcag tcaaagctgc aggaatacag atgaatcaaa ttgttggtct 420 tggcatttca acacagagag caacttttat tacgtggaac

460

<210> 20 <211> 731 <212> DNA <213> Homo sapiens

<400> 20 gagatcaagg agggctcaga agaggcgatg tctgatctgt cctccaggca gcaaaggaaa 60 gggaggtgtg ttcctggcag aaggcacage ttgtactgag geetggcage agaacagagt 120 atgcaatttg tgaagctgtg gtgtggctgc agtggagagt tcccaacaag gctacgcaga 180 agaaccccct tgactgaage aatggagggg ggtccagctg tctgctgcca ggatcctcgg 240 gcagagctgg tagaacgggt ggcagccatc gatgtgactc acttggagga ggcagatggt 300 ggcccagagc ctactagaaa cggtgtggac cccccaccac gggccagagc tgcctctgtg 360 atccctggca gtacttcaag actgctccca gcccggccta gcctctcagc caggaagctt 420 tecetacagg ageggecage aggaagetat etggaggege aggetgggee ttatgecaeg 480 gggcctgcca gccacatete eeecegggce tggeggagge ccaccatega gteccaceae 540 gtggccatct cagatgcaga ggactgcgtg cagctgaacc agtacaagct gcagagtgag 600

attggcaagg gtgcctacgg tgtggtgagg ctggcctaca acgaaagtga agacagacac 660 tatgcaatga aagteettte caaaaagaag ttaetgaage agtatggett teeacgtege 720 cctcccccqa a 731 <210> 21 <211> 519 <212> DNA <213> Homo sapiens <400> 21 tttcgtttat gggaagccag taacactgtg gcctactate tettccgtgg tgccatctae 60 atttttggga ctcgggaatt atgaggtaga ggtggaggcg gagccggatg tcagaggtcc 120 tgaaatagtc accatggggg aaaatgatcc gcctgctgtt gaagccccct tctcattccg 180 atcgcttttt ggccttgatg atttgaaaat aagtcctgtt gcaccagatg cagatgctgt 240 tgctgcacag atcctgtcac tgctgccatt gaagtttttt ccaatcatcg tcattgggat 300 cattgcattg atattagcac tggccattgg tctgggcatc cacttcgact gctcagggaa 360 gtacagatgt cgctcatcct ttaagtgtat cgagctgata gctcgatgtg acggagtctc 420 ggattgcaaa gacggggagg acgagtaccg ctgtgtccgg gtgggtggtc agaatgccgc 480 getccaggtg ttcacagetg cttcgcggaa gaccatgtg 519 <210> 22 <211> 544 <212> DNA <213> Homo sapiens <400> 22 tttegtgetg gaggtteget ageegaageg getgeatetg gegeegegte tgeeeegegt 60 geteggageg gattetgeec geegteeceg gagecetegg egeecegetg ageeegegat 120 caetteetee etgtgaceaa eeggegetge aggttagage etggeaatge egtttgggtg 180 tqtgactctq qqcqacaaqa aqaactataa ccaqccatcq qaqqtqactq acaqatatqa 240 tttgggacag gtcatcaaga ctgaggagtt ttgtgaaatc ttccgggcca aggacaagac 300 gacaggcaag ctgcacacct gcaagaaqtt ccagaaqcgg gacggccqca aggtgcggaa 360 agctgccaag aacgagatag gcatcctcaa gatggtgaag catcccaaca tcctacagct 420

<210> 23 <211> 749 <212> DNA <213> Homo sapiens

ggag

ggtggatgtg tttgtgaccc gcaaggagta ctttatcttc ctggagctgt gagtgtgggt

ctggggaccc aaaattcccc agcgcccagg gctttcacct gtcccaccct ctgcagctaa

480

540

544

<400> 23 caacgtcgac gatttcgtgc ggggctgtgg ggagggcacg gactgacaga cggactccgg 60 cggaatgggg ggtgtggctg ctccgccagg gtccccaggg tgggagagcg gctccgcggc 120 caccgatgee eggacecect etgtettetg etagacatge tetteetete gttteatgea 180 ggetettggg aaagetggtg etgetgetge etgatteeeg eegacagaee ttgggaeegg 240 ggccaacact ggcagctgga gatggeggac aegagateeg tgcaegagac taggtttgag 300 geggeegtga aggtgateca gagtttgeeg aagaatggtt catteeagee aacaaatgaa 360 atgatgetta aattttatag ettetataag eaggeaactg aaggaeeetg taaaetttea 420 aggeetggat tttgggatee tattggaaga tataaatggg atgettggag tteactgggt 480 gatatgacca aagaggaagc catgattgca tatgttgaag aaatgaaaaa gattattgaa 540 actatgccaa tgactgagaa agttgaagaa ttgctgcgtg tcataggtcc attttatgaa 600 attgtcgagg acaaaaagag tggcaggagt tctgatataa cctcagatct tggtaatgtt 660 ctcacttcta ctccaaacgc caaaaccgtt aatggtaaag ctgaaagcag tgacagtgga 720 gccgagtctg aggaagaaga ggcgtgtgt 749

<210> 24 <211> 556 <212> DNA <213> Homo sapiens

<400> 24 tttcgtgctt taaggggcgg acgggcggga ggtcggggtc ctccggggat tcgagccggt 60 gggctcgttg tgggcgccat ttctcggcgt ctaccgagga gccgcccctt tctcagcctt 120 geteggetet teecegetet ggtegeeggg getgegeegt ceecagetea gtgacaaaaa 180 tgctgagttt cttccgtaga acactagggc gtcggtctat gcgtaaacat gcagagaagg 240 aacgactccg agaagcacaa cgcgccgcca cacatattcc tgcagctgga gattctaagt 300 ccatcatcac gtgtcgggtg tcccttctgg atggtactga tgttagtgtg gacttgccaa 360 aaaaagccaa aggacaagag ttgtttgatc agattatgta ccacctggac ctgattgaaa 420 gcgactattt tggtctgaga tttatggatt cagcacaagt agcacattgg ttggatggta 480 caaaaagcat caaaaagcaa gtaaaaattg gttcacccta ttgtctgcat cttcgagtta 540 agttttattc ctcaga 556

<210> 25 <211> 422 <212> DNA <213> Homo sapiens

<400> 25 gtcggtgaga atccagggag aggagcggaa acagaagagg ggcagaagac cggggcactt 60 gtgggttgca gagcccctca gccatgttgg gagccaagcc acactggcta ccaggtcccc 120 tacacagtee egggetgeee ttggttetgg tgettetgge eetgggggee gggtgggeee 180 aggaggggtc agagcccgtc ctgctggagg gggagtgcct ggtggtctgt gagcctggcc 240 gagetgetge aggggggeee gggggageag eeetgggaga ggeaeeeeet gggegagtgg 300 catttgctgc ggtccgaagc caccaccatg agccagcagg ggaaaccggc aatggcacca 360 gtggggccat ctacttcgac caggtcctgg tgaacgaggg cggtggcttt gaccgggcct 420 ct 422

<210> 26 <211> 506 <212> DNA <213> Homo sapiens

<400> 26 agaagatgtg aagtcgtatt atacagtaca tctaccacaa ttagaaaata tcaatagtgg 60 tgaaaccaga acaatatete aettteatta tactaettgg ccagattttg gagteeetca 120 atcaccaget teattectea atttettett taaagtgaga gaateteget cettgaacce 180 tgaccatgga cctgtggtga tccaccgtag tgcaggcact ggacgctcca gcaccttctc 240 tgtggtacac acttgtcttg ttttgatgga aaaaggagat gatattaaca ttaaacaagt 300 gttactgaac ataagaaaat tccaaatggg tcttatctca gaccccagat caactgagat 360 tctcatacat ggctataaca gaaggagcaa aatgtgtaaa gggagattct agtatacaga 420 aacgatggaa agaactttct aaggaagact ccctcctgct tttgatcatt caccaaacaa 480 506 aataatgact gaaaaataca atagga

<210> 27 <211> 850 <212> DNA <213> Homo sapiens

<400> 27 caggcctttg tgtaaggcca gaggaggatc acgggtgcca taaaccttca cggggccaag 60 ggctggtgtc ccggggctgg tgacttaaca ggcagagatg tggagaccag gtgcttgtgc 120 ccgggacggg cctggctgcc atcctgagga cactgcccat gttccatgac gaggagcacg 180 cccgagcccg cggcctctct gaggacaccc tggtgctacc cccggccagc cgcaaccaga 240 ggatteteta caccgtgetg gagtgecage cectettega etccagtgae atgaccateg 300 ctgagtgggt ttgccttgcc cagaccatca agaggcacta cgagcagtac cacggctttg 360 tggtcatcca cggcaccgac accatggcct ttgctgcctc gatgctgtcc ttcatgctgg 420 agaacctgca gaagactgtc atcctcactg gggcccaggt gcccatccat gccctgtgga 480 gcgacggccg tgagaacctg ctgggggcac tgctcatggc tggccagtat gtgatcccag 540 aggicitycct titcitccaq aatcaqcigt ticqqqqcaa ccqqqcaacc aaqgiaqacg 600 cteggaggtt egeagettte tgeteeega acetgetgee tetggeeaca gtgggtgetg 660 acatcacaat caacagggag ctggtgcgga aggtggacgg gaaggctggg ctggtggtgc 720 acagcagcat ggagcaggac gtggqcctgc tgcgcctcta ccctgggatc cctgccgccc 780 tggttcgggc cttcttgcag cctcccctga agggcgtggt catggagacc ttcggttcag 840 ggaacggacc 850

<210> 28 <211> 990 <212> DNA <213> Homo sapiens

```
<400> 28
ttttttttt ttacttgtaa tacgtatttt aatttttgtt tcatatgagt ttaagtgttg
                                                                      60
totaggtgac atcaaaatct aaggcaaaca gacttgacca tottcagacc cactqcattc
                                                                     120
tcaagctgaa gtggtctgct catagtttgt gtgccaggtt gctcatcagt attgatactg
                                                                     180
teccagaaca ggttgtaggt ataatteaga gaetgteett tgeaaaggaa atgaecagea
                                                                     240
tttcaactgt atgtcttcct ggaagggtag attctgctat atcttctttg tctqcatcaa
                                                                     300
aagactcaag aggaatgtgg acacatttca tatcccattt gtagagtaaa gcttcaagtg
                                                                     360
accagtcage actectaact tgataagtag accacaattg gacettggga ttettgtgca
                                                                     420
tcaaaaaata tattgtagcc aaaatgtctt caaaatcttc tggttcaaag aacacatcag
                                                                     480
atgcaaggat aatatettgt ggtggtagag ccagaagate ccaagatata tgaccccatg
                                                                     540
ttagtectae cacetgeaga tgtggeaggt tatteatttg geagetttge egacaqaett
                                                                     600
ccagacagtg aggcagttct gagctgtctg acagtattac ttctgcacca catttggcag
                                                                     660
ccaaaattcc tggaaggctc actccagctc caatctgcgg gacgtggacc tccaggacag
                                                                     720
coccgtcggc ccccggaccc ggctcctccg agaatcgaaa gcgctgggcc cggaccccct
                                                                     780
gtcctcggaa atcgtgctcg cccagtaggg cgtcgttggg ccccgggcgg gcgggqqacc
                                                                     840
geggaagget cegggetgec agaetgegeg agegggaage egegggeeac gtggeeqtag
                                                                     900
cacctgacgg caagaagggg aaagcccaga tctggtgata accctgccgc gctagcqaqc
                                                                     960
gaagaaagcc cggagcaagg cgaaagagac
                                                                     990
```

<210> 29 <211> 622 <212> DNA <213> Homo sapiens

<400> 29 ttttttttt ttgtgttgat aaagctttat ttataaacac actcacaggg ccagatttgg 60 gccacgggcc atagttgcca gcccggcttt aactgctggt cctcacgtta gtctcactgc 120 ctectgeagg gtgggeatgt gggtgtegtg tteacceage ceetteetee acceacaaa 180 caccetggtg getgteetgg agegegacae aetgggeate egtgaggtge ggetgtteaa 240 tgccgttgtc cgctggtccg aggccgagtg tcagcggcag cagctgcagg tgacgccaga 300 gaacaggcgg aaggttctgg gcaaggccct gggcctcatt cgcttcccgc tcatgaccat 360 cgaggagttc gctgcaggta acagagctcg ggctcagggg ctggtttggg aggggagtgg 420 cacacaggtg ggcatctggg taccgaggat agtgcccccg agttcactgc ggaaaqcctg 480 gcagatgcct ggcatataca gataggaaga aacctggctt gtgaggacgc gtccacaggg 540 ccatctgtta gccccggccc ggctctgtcc ccaccgtgca cactgccaga ccccgcctct 600 cgtgtctgtc cagctgtttt gg 622

<210> 30 <211> 181 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(181) <223> n = a,t,c or q

```
<400> 30

ttttttttt ttgagacgga gntgngctct gtnacccagg ntagagtgca atggcacgnt ctcggctcac tgcaagctct gcgtcctggg ttgacgccat tctcctgcct cagcctcccg agtagctggg actacaggag cttcgccac aattccagcc tggggtggac agagtgataa 180
g
```

<210> 31 <211> 1956 <212> DNA <213> Homo sapiens

<400> 31 aaactccgaa cacatccaaa catcagaagg aacaaactcc agacacaccq cctttaaqaa 60 ctgttacgct caccgcgagg gtccacqgct tcattctcca aqtcaqacca aqaacccacc 120 aatteeggae acaaaaggeg tagegtgeet eetgtgattg ttgaagaget gtggtgtget 180 gctgagtggc gtgtgtattc catgtgaggg gaagggtcca acagtcctgg tcattcagac 240 tgcagttccc caggacagac ccacgaagtc aagcatgcgg agtgcagcca agccctqqaa 300 cccagccatc agagcagggg gccacggccc agaccgggtg cggcctctgc ctgcagcctc 360 ttccggcatg aagagttcta agtcttcaac ttccttggct tttgagtccc gactcagcag 420 gctcaagagg gccagcagtg aggacacgct caacaagcca ggaagtaccg ctgcatcggg 480 ggtggttcgc ctgaagaaga ccgccactgc cggagccatc tcggagctca cggagagccg 540 cctgaggagc ggcacagggg cctttacaac aactaaacgg acaggcattc cagccccacg 600 ggaattttca gtaactgtct caagagagag gtctgtgcca cgtggtccct ccaaccccag 660 gaaatcagtg tccagtccaa cttcctccaa cactcccact cctacgaaac acctgaggac 720 cccttccaca aagcccaagc aagagaatga aggtggagaa aaggctgcgc ttgagtccca 780 agttcgggaa cttttggcag aagccaaagc aaaagatagt gaaattaaca ggcttcgaag 840 tgaactaaag aaatacaaag agaaaaggac totgaacgot gaggggactg atgotttggg 900 cccaaatgte gatggaacat cagteteece aggtgacaeg gaacetatga taaqaqetet 960 tgaggagaag aacaagaact ttcagaaaga gctttccgat ctagaggaag aaaaccgggt 1020 cctgaaggag aaactgatct atcttgagca ctccccaaat tcagaagggg cagcaagtca 1080 cactggcgac agcagctgcc caacatccat aactcaagag tcaagcttcg gaagcccaac 1140 tggaaatcag ttgtccagtg acattgatga gtataaaaaa aacatacatg gaaatgcatt 1200 acggacatca ggctcctcaa gtagcgatgt taccaaagct tctttgtcgc caqatqcttc 1260 cgactttgag cacattacag cagagacacc ctcaaggccc ctgtcctcca ccagtaaccc ctttaagagt tcaaagtgtt ctactgctgg gagttcccca aacagcgtaa gtgaattgtc cctggcttcc ctcacagaga agatacaaaa gatggaagaa aaccaccata gcactgcaga agaactacag gctactctac aagaattatc agaccagcaa caaatggtac aggaattqac 1500 agctgaaaat gagaagctgg tggatgaaaa gacgatttta qaqacatcct ttcatcaqca 1560 tegagagagg geagageage taagteaaga aaatqaqaaq etqatqaate ttttacaaqa 1620 gcgagtaaag aatgaagagc ccaccactca ggaaggaaaa attattgaac tqqagcaqaa 1680 gtgcacaggt attcttgaac agggccgctt tgaaagagag aagctactca acattcaqca 1740 gcagttgacc tgtagcttgc ggaaggttga ggaagaaaac caaggagctt tagaaatgat 1800 taaacgtctg aaggaagaaa atgaaaaact gaatgagttt ctagaactgg aacggcataa 1860 taataacatg atggccaaaa ctttggaaga gtgtagagtt accttggaag ggctaaaaat 1920 ggagaatgga tctttgaagt ctcatttgca gggtga 1956

<210> 32 <211> 513

<212> DNA

<213> Homo sapiens

<400>	32					
ctcagcacca	caaggaagtg	cgggacccac	acgcgctcgg	aaagttcagc	atgcatgaag	60
tttggggaga	gctcggcgat	taacacagcg	acccgggcca	gcgcagggcg	agcgcaggcg	120
gcgagagcgc	agggcggcgc	ggcgtcggtc	ccgggagcag	aacccggctt	tttcttggag	180
cgacgctgtc	tctagtcgct	gatcccaaat	gcaccggctc	atctttgtct	acactctaat	240
ctgcgcaaac	ttttgcagct	gtcgggacac	ttctgcaacc	ccgcagagcg	catccatcaa	300
agctttgcgc	aacgccaacc	tcaggcgaga	tgagagcaat	cacctcacag	acttgtaccg	360
aagagatgag	accatccagg	tgaaaggaaa	cggctacgtg	cagagtccta	gattcccgaa	420
cagctacccc	aggaacctgc	tcctgacatg	gcggcttcac	tctcaggaga	atacacggat	480
acagctagtg	tttgacaatc	agtttggatt	aac			513

<210> 33 <211> 712 <212> DNA

<213> Homo sapiens

<400>	33					
acagacatgg	ttccagctct	gtagaactga	gagaaagaat	aaacaagtca	cacattagcc	60
cttcaaaaag	atgaccgacc	tcttgagaag	tgttgtcacc	gtaattgatg	ttttctacaa	120
atacaccaag	caagatgggg	agtgtggcac	actgagcaag	ggtgaactaa	aggaacttct	180
ggagaaagag	cttcatccag	ttctgaagaa	cccagatgat	ccagacacag	tggatgtcat	240
catgcatatg	ctggatcgag	atcatgacag	aagattggac	tttactgagt	ttcttttgat	300
gatattcaag	ctgactatgg	cctgcaacaa	ggtcctcagc	aaagaatact	gcaaagcttc	360
agggtcaaag	aagcataggc	gtggtcaccg	acaccaagaa	gaagaaagtg	aaacagaaga	420
ggatgaagag	gatacaccag	gacataaatc	aggttacaga	cattcaagtt	ggagtgaggg	480
agaggagcat	ggatatagtt	ctgggcactc	aaggggaact	gtgaaatgta	gacatgggtc	540
caactccagg	aggctaggaa	gacaaggtaa	tttatccagc	tctgggaacc	aagagggatc	600
tcagaaaaga	taccacaggt	ccagctgtgg	tcattcatgg	agtggtggca	aagacagaca	660
tggttccagc	tctgtagaac	tgagagaaag	aataaacaag	tcacacatta	aa	712

<210> 34 <211> 600 <212> DNA <213> Homo sapiens

<400> 34

cagatttctc aggtgagctc agatagcaat ccactgtgtt cctttatctc cagcagatat 60
atatcaatat cttgaagcag ttttctactc aatttagaag aacttctggt taaatttaca 120
attcttttt ctctcccatg cttgttgtt ctcattcaaa caagactggc atagctactt 180
tatgagggta ggtctccctg aattttaagt tccaaagatc tctggacctg atcatattga 240
ctttattccg tgggatcaac tcttcatggc cagttcttcc tctgtcactg agttcttagt 300
gctgggcttc tctagccttg gggaattgca gcttgtcctc tttgcagtct ttctctgcct 360

ctatttgatt atcttgagtg gaaacatcat catcatctca gtcattcatt tggatcacag 420 cctccacaca cccatgtact tctttctagg tattcttct atctctgaaa tcttctacac 480 aactgttatt ctgcccaaga tgcttatcaa cttattctct gtattcagga cactctcctt tgtgagttgt gccacccaaa tgttctacga aatcgtcggc ccgggaactc aggaacggtc 600

<210> 35

<211> 985

<212> DNA

<213> Homo sapiens

<400> 35

tttcgtccta ctgtccctgt cctgcccttg cagacatgtg tcctgccctt gcagacagcc gcaggcaggc agggaccacc atgagcaacc ccgtctctcc tcctgagggg cagcacagag 120 cctggaggag gcctgagtgg ggttgaggcc tggggcgagc tggggtggag gggcactggc 180 tgccgggctc cagggatctt ctccccttcc tgccccggag ggtgctggca caggggtggg 240 gctcactccc actccgtaga cacaatgatc agaggtcctg ggtgtctggg gaagctgggc 300 tgtgcgtgta tgcgtctacc atgtgggggt gcctgtgagt gtgctggggc gtctgcagtg 360 aaggcctcct gagaccactc cacggaaaca ccgggaatcc ctgcagctga gcctgtctct 420 cacgggaccg ggaagctgga gagagccca acctgcccg ctgggqccga qctcctqct 480 cetgeageag tecegtgeee caeactetga gtetgeeeta tecacaqetq etqqqeetet 540 ctgtggccac catggtgact cttacctact tcggggccca ctttgctgtc atccgccgag 600 cgtccctgga gaagaacccg taccaggctg tgcaccaatg ggggactcag cagcgactta 660 tecaacatec agagagegg agegagggec agageetget ggggecaete agggeettet 720 ctgcggggtt gagcctggtg ggcctcctga ctctgggagc cgtgctgagc gctgcagcca 780 ccgtgaggga ggcccagggc ctcatggcag ggggcttcct qtgcttctcc ctqqcqttct 840 gcgcacaggt gcaggtggtg ttctggagac tccacagccc cacccaggtg gaggacgcca 900 tgctggacac ctacgacctg gtatatgagc aggcgatgaa aggtacgtcc cacgtccggc 960 ggcaggaget ggcggccatc cagga 985

<210> 36

<211> 464

<212> DNA

<213> Homo sapiens

<400> 36

ccgtatcggc gtttatatac tgaagataag cctgatgagt aacaggcttg ctcgtcatac 60 tttcgtgagt attggcgttg tacaggcaag tcgtaaaata acagcctggc tattcagagt 120 atgataaaaa cagggggcaa gggatgttgc ttaatatgat gtgtggtcgt cagctgtcgg 180 caatcagttt gtgcctggcc gtaacattcg ctccactgtt caatgcgcag gccgatgagc 240 ctgaagtaat ccctggcgac agcccggtgg ctgtcagtga acagggcgag gcactgccgc 300 aggcgcaagc cacggcaata atggcgggga tccagccatt gcctgaaggt gcggcagaaa 360 aagcccgcac gcaaatcgaa tctcaattac ccgcaggtta caagccggtt tatcttaacc 420 agetteaact gttgtatgcc gcacgeggta tttcctgcag egtg 464

<210> 37 <211> 429 <212> DNA <213> Homo sapiens

<400> 37 tegeacaaga getgetgatg tetatgtett ttegetcaeg ggaaaatete gaaacgtgag 60 ttcctcaacc gtgcggcgaa gtgcggtagg cgggatgtcg gcattagcgt tgtttgattt 120 gctcaagcca aattatgcgc tggcgactca ggtagagttt accgacccgg aaattgttgc 180 tgagtacatc acgtatcctt cgccaaatgg tcacggcgag gtgcgggggtt atctggtgaa 240 gcccgcaaag atgagcggca aaacgccagc cgtagtggtg gtgcatgaga atcgtggact 300 gaatccgtat atcgaagatg tggcacggcg agtggcgaag gcggggtata tcgccctggc 360 acctgacggc ttaagttccg ttggaggtta tccgggaaat gatataaagg tggtatccgc 420 ageggeece 429

<210> 38 <211> 556 <212> DNA <213> Homo sapiens

<400> 38 gagaataacc tagacgttat tgacttgatg ccccgcgtcg gtaaggcgct ggataccacg 60 cagegegeg tgetgtttaa tgeagtaace egatggggea attaaqtgaa acaqaqacat 120 ggcaattcct tgctgacaac agaaacgaaa tgtatatcat gccgcttagg tgtgccgttg 180 tcacctcaac ggcgattcca ggctataagg atagaagaag tgaaattgag atggtttgcc 240 tttttgattg tgttattage gggttgttca tcaaagcatg actatacgaa cccgccgtgg 300 aacgcgaaag ttccggtgca acgtgcgatg cagtggatgc caataagcca gaaagccggt 360 gcagcctggg gcgtcgatcc acaattgatc acggcgatta tcgctatcga atcgggtggt 420 aatccgaacg cggtgagtaa atcgaatgcc attggtttga tgcagttaaa agcttcaacc 480 teeggaegtg atgtttateg eegtatggge tggagtggtg ageegaegae eagegagetg 540 aagaattcct caagac 556

<210> 39 <211> 890 <212> DNA <213> Homo sapiens

<400> 39
 accacgetge aggaattegg cacgaggeea aaccaaagag aagtttttat getgecaggg 60
 atttgtacaa gtaccgacae cagtacccaa acttcaaaga tatccgatat caaaatgact 120
 tgagcaatet tegttttat aagaataaaa ttccattcaa gecagatggt gtttacattg 180
 aagaagttet aagtaaatgg aaaggagatt atgaaaaact ggagcacaae cacacttaca 240
 ttcaatgget tttcccctg agagaacaag gettgaactt ctatgccaaa gaactaacta 300
 catatgaaat tgaggaatte aaaaaaacaa aagaagcaat tagaagatte ctcctggett 360

```
ataaaatgat gctagaattt tttggaataa aactgactga taaaactgga aatgttgctc
                                                                     420
gggctgttaa ctggcaggaa agatttcagc atctgaatga gtcccagcac aactatttaa
                                                                     480
gaatcactcg tattcttaaa agccttggtg agcttggata tgaaagtttt aaatctcctc
                                                                     540
ttgtaaaatt tattcttcat gaagctcttg tggagaatac tattcccaat attaagcaga
                                                                     600
gtgctctaga gtattttgtt tatacaatta gagacagaag agaaaggaga aagctcctgc
                                                                     660
ggttcgccca gaaacactac acgccttcag agaactttat ctggggaccg cctcgaaaag
                                                                     720
aacagtegga gggaagcaaa geecagaaaa tgtetteece tetegeetee agteataaca
                                                                     780
gtcaaacttc tatgcacaaa aaagccaagg actccaaaaa ttcctcctca gctgttcatt
                                                                     840
taaatagcaa aacagctgaa gacaaaaaag tggcaccaaa agagcctgtg
                                                                     890
```

<210> 40 <211> 393

<212> DNA

<213> Homo sapiens

<400> 40
accggctgcc atcttagtct agggactgag gagtcgccgc cgccccgagt cccggtacca 60
tgcatttcac ggtggccttg tggagacaac gccttaaccc aaggaagtga ctcaaactgt 120
gagaacttca ggttttccaa cctattggtg gtatgtctga cagtggatca caacttggtt 180
caatgggtag cctcaccatg aaatcacagc ttcagatcac tgtcatctca gcaaaactta 240
aggaaaataa gaagaattgg tttggaccaa gtccttacgt agaggtcaca gtagatggac 300
agtcaaagaa gacagaaaaa tgcaacaaca caaacagtcc caagtggaag caacccctta 360
cagttatcgt tacccctgtg agtaaattac att

<210> 41 <211> 437 <212> DNA <213> Homo sapiens

gcattccttg aaagaaatgt tacagccaga tcacagcgca gaacgataaa atggcacaat 60 ccaacaacaa ttttacattt tegegacege tttggctgct ttcaqqtceq tttcaatgat 120 atactgccag tcgttaattc aaaaatagtt gataattaca acaatctatt gaattgaaac 180 gctttccttc gtaattcgca actggaacac gcacgctatg agtaaaccca ttqtqatqqa 240 acgcggtgtt aaataccgcg atgccgataa gatggccctt atcccgqtta aaaacqtqqc 300 aacagagege gaagecetge tgegcaagee ggaatggatg aaaatcaage ttecagegga 360 ctctacacgt atccagggca tcaaagccgc aatgcgcaaa aatggcctgc attctgtctg 420 cgaggaagcc tcctgcc 437

<210> 42

<211> 392

<212> DNA

<213> Homo sapiens

gacctgggtc gtcaggatgc gtgcagtaca acagcggcgt tggcaaaccg	caatttteet atgetgaage tacagtaata gttgatagee tatetggete	gagccaccag cattgatgta ccttcccagg tggagaaagc cgactctcga	gagacacaaa ctgcatgtat tagcgggaag ttataacaga atggttcttg	caaatcgcgc gcgaaagcta gcaaaggacg catatttcgg ggataaccgc tctcattgcc	tgctaaaaca tcacattacc caatccagag gcatggtgct	60 120 180 240 300 360 392
<210> <211> <212> <213>	555	ns				
ttcaccggga tttaaggatt aattgcggcg gtctctgctc acagcatttt cattgcacta tgaagtgtat	gtcataatgg atgaggttga agcgtgcaag gcagaggcgc aatggcaaca gctgccagca aatactgata gcaaaacagg ggcaacagcc	gtggattaag aaagaattaa ttccggatgc aaatcctctg tgatcaaccg atgttgtctt tgcgggcgct	gatgcettta agettgette catctcccgt ttgtggtaat tttcgaaacg aacggcgatt gggtcatgcg	gccggttcga atggccactc actgaaagca gcagccatga ggaacttccg gagcggccca gccaacgatc ggagatgtat gaagccgccg	ataattaagg ttcaaactca cgctggttca ctgccaatgc gcttacctgc gcttacatga tgttagccat	60 120 180 240 300 360 420 480 540 555
<210> <211> <212> <213>	553	ıs				
ctacacaagc cgcaagctgc gagggctata tgcataaaaa gattgcgccg ctgggtcaaa gaacatctgg	attacaattc taaccatgct ttgagcagga cgccggaaga caaacacaac ttgctcatct gataccaacg ggcttcaaag	gattaatgaa gatggtcaac taaaaaataa acgcacccgg cctgttcgac gttttgatat aggtggtgat	aagaaactca tteetgtteg aaacagtgee aatgatgaaa gaccaaaaaa tetgatgggg egetggteet	aaaatgccag acatgatgaa agggtaaaga ggagcacgcc aaatatctcg ggcgatacct caatttgccc aaggactacg ggtacgatta	tgccgagcac ggtgcatatc tccggcaact cgctggcttt ataacgaagc acaatattga tgaaatacac	60 120 180 240 300 360 420 480 540

catccccggg aca

553

<210> 45 <211> 310 <212> DNA <213> Homo sapiens

<400> 45
tetegttaeg aettegageg ttggaeeegg ggatetetet aetategetg caagegagee 60
agaaaaaaet ggatgaaetg ategaaeage aetaaaeeea ggaeaggaat eegeaatgaa 120
caggettttt teaggtegtt eegatatgee etttgegetg etgetteteg egeeeagett 180
attaetgetg ggeggtetgg tggegtggee gatggtgteg aatategaaa teagtttttt 240
aegtetgeeg eteaateeea aeategagte aaegtttgtt ggggtgagea aetatgtgeg 300
tateetetee

<210> 46 <211> 627 <212> DNA <213> Homo sapiens

<400> 46 60 ctegetgaet egettegett eecegaegeg etgggtteec ggagegeaga geccagegtt agegggtggg ctccccgagg cccctgccc tcgccgggct gctccagggt gtcgctcctc 120 180 tggctgctcc cgaaggggct tctggccctg aggacggtgg tgccaagcga acttcatttt taaaaagaac tggtggatga gaagagcgag cgagggcgag ctatggaccc tgtgagtcag 240 ctggcctctg cgggcacctt ccgggtgctg aaggagcccc ttgccttcct gcgagccctg 300 gaattgettt ttgeaatett tgeatttgea acatgeggtg getattetgg aggeetgegg 360 420 ctgagtgtgg actgcgtcaa caagacagaa agtaacctca gcatcgacat agcgtttgcc tacccattca ggttgcacca ggtgacgttt gaggtgccca cctgcgaggg aaaggaacgg 480 540 cagaagetgg cattgattgg tgacteeteg tetteageag agttettegt caetgttget 600 gtettegeet teetetaete tittggetgee aetggtegtt acattitett teacaaacaaa 627 aaccgggaaa acaaccgggg cccactg

<210> 47 <211> 998 <212> DNA <213> Homo sapiens

<400> 47
acctgggcac cgtgtcctat ggcgccgaca cgatggatga gatccagagc catgtcaggg 60
actcctactc acagatgcag tctcaagctg gtggaaacaa tactggttca actccactaa 120
gaaaagccca atcttcagct cccaaagtta ggaaaagtgt cagtagtcga atccatgaag 180
ccgtgaaagc catcgtgctg tgtcacaacg tgacccccgt gtatgagtct cgggccggcg 240

```
ttactgagga gactgagttc gcagaggctg accaagactt cagtgatgag aatcgcacct
                                                                     300
accaggette cageceggat gaggtegete tggtgeagtg gacagagagt gtgggeetea
                                                                     360
cgctggtcag cagggacctc acctccatgc agctgaagac ccccagtggc caggtcctca
                                                                     420
gettetgeat tetgeagetg tttecettea ceteegagag caageggatg ggegteateg
                                                                     480
tcagggatga atccacggca gaaatcacat tctacatgaa gggcgctgac gtggccatgt
                                                                     540
ctcctatcgt gcagtataat gactggctgg aagaggagtg cggaaacatg gctcgcgaag
                                                                     600
gactgcggac cctcgtggtt gcaaagaagg cgttgacaga ggagcagtac caggactttg
                                                                     660
aggtgagccg actcccaggc atcccatcct cctacgacgg tgccttcctt acgctgaaat
                                                                     720
tagttettee tgtetttgta tgaaattaga getgggateg etatagteta ggagtqaagg
                                                                     780
cagetteget cageaggage atggggggat cetqtetqea tttetqttte caecatttet
                                                                     840
ccagcttgct ggggaaggag ggttacagaa gcaaagaagt gccagtttcc ttagaattgt
                                                                     900
gcttgataac tcctcaatga tcacacgcca gccgagctga gtacacataa gagtatgtgc
                                                                     960
acataggege etceceetet gteeceagag eccatgeg
                                                                     998
```

```
<210> 48
<211> 864
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(864)
<223> n = a,t,c or g
```

```
<400> 48
ttttttttt ttgagacaca gtctggctat gtcacccagg ctgagtacag tagcatgatc
                                                                      60
ctggttcgct gcaacctcca cctcccaggc tcaagtgatc ctcccacctc agcctcctga
                                                                     120
gtagctagga ctacaggtac gtgccacaac acctggctaa ttttttatt ttttgtagag
                                                                     180
acaagggtct ccctacgttg tccaggctgg acttgaactc ctgggttcaa gcgatcctac
                                                                     240
caccttggcc tcccacagca ctggggttac aggcaggagc cactgcacct ggccctgtct
                                                                     300
ttactgatgg tcctgcccca tgcctcccac acctaaccct gggcacccac tcccgaagct
                                                                     360
ctcctactgg ctgcagggtc tgcctctgtg aggacagtga agccgatgac acgggaggtg
                                                                     420
aagtcgaagg ccgtctgctg gccatcgtgg atcactgaga tgcagtggcg gtccccgtag
                                                                     480
ctggcccgtg gcatgccacc ctggaagatg gtgaagggca acccctgcct agtgqtcaqc
                                                                     540
cagaggattc tggtaatcgc tttgcaagga aagggaccgt aaggcacgaq qctqcqqaqq
                                                                     600
ggetetggtt getgggette getggacaeg ggeccaetgg cagtagetge egteagagtg
                                                                     660
acagetgaeg ageaggegge egteeegetg ceaceagatg tteteeagtt getggetget
                                                                     720
gaggaagtgg tagagcacgc ggctgccctg taggtcccag atgacaacga ggcctcggct
                                                                     780
gtagccgatc aggatctggt tggggtcttc aggtgcttcc tgcatgcttt caccatttng
                                                                     840
aacaaacagc cggtgggggc cctc
                                                                     864
```

```
<210> 49
<211> 1327
<212> DNA
<213> Homo sapiens
```

<400> 49
tttcgtgagc atttgagggc tgtttatgat ctatggggta aaactctctg actgactgga

tgaggaaaat	gaaatgcgag	agggttgagc	ccaaggttca	ttcatctgct	caatcgaggc	120
cactcattct	ggccactgtg	tgccagatgc	tggggattct	gtcctcttgg	gagctgacgt	180
	gtggctgtgg					240
ggaagtgtgc	tggggaggcc	ctctctgagg	aggtgacatg	ccagctgaga	tctgaatggc	300
	ggccatgagg					360
gaagcaggta	aggagttgtg	atctaattct	gggagccact	ggagggtgaa	agcagggatt	420
	gatttacatt					480
ctgcaagagg	ccaagcatgg	ttccaggggg	ccagttgcag	agggctggtg	caggagecea	540
	acggggctca					600
	gcaggcctac					660
cagtagacac	tgggggtggg	taagtgctcc	cgtgaagggg	gggcccaggc	gattctgggt	720
	gtctacaggg					780
gcctgaagat	ggacaggaag	gtgtggacag	aaacacttat	cgaggtgggg	atgcccctgc	840
ttgccaccga	tacttggggt	ctgccccatt	caacagctgt	ctgggtctcc	cagccccctc	900
	tgaccacagc					960
ggtggggatt	tcggaaaagc	aatttttggc	aaagtcagca	aactggccag	tgagctaaga	1020
atgtttttat	agttgtaaag	tgttatttt	ttttaaagaa	aaaaaagga	agaaaatgca	1080
gcagagactg	tatgtgttct	gtaaagccga	aaataattac	tatttcgccc	tttagagaaa	1140
gaatttgcta	acttctgatc	taatttcact	gtcatccatt	gaatagatgt	gtaaactgag	1200
	gggctgtaat					1260
cctgcctctt	tctgtcccac	ttctgaatga	cccagggcct	tctcccctac	cttgcacagc	1320
ctgtatt						1327

<210> 50 <211> 436

<212> DNA

<213> Homo sapiens

```
<400> 50
ctgtcgtgca attccgagca ggcactgctc agtctggtgc ctgtgcagag ggagctactt
                                                                     60
cgaaggcgct atcagtccag ccctgccaag ccagactcca gcttctacaa gggcctaggt
                                                                     120
acctgecett eccagetgag getttetgag ecceeacega ecceeagaea ecteagegta
                                                                     180
gcctctgtct cccatcacat gttcccctct catcgctccc tttgcccaca tcttccagac
                                                                     240
ttcttcgccg ccccattccc atcagacaat ctcccctaca ccctccagtc ccctttcccc
                                                                     300
tcacctcctc cagctactcc ctctgaccat gctcttatcc tccaccacag acttaaatgg
                                                                     360
gggcccagat gaccctctgc agcagacagg ccagctcttc gggggcctgg tgcgtgatat
                                                                     420
ccggcgccgc tacccc
                                                                     436
```

<210> 51

<211> 481

<212> DNA

<213> Homo sapiens

<400> 51 tcgcctagca gtaagttggt tggcatgtgg tgggcaggca gggctggcag tagtcggacc 60 acttcagtct ccctgctctg ccttccccag caccattcgg tgcctcgaac ctcctggtga 120 accccctgga gccccaaaat gcagataaga tcaagatcaa gatcgcagac ctgggcaacg 180 cctgctgggt ggtatgagca agtgtgggag agcagagtgg ggggccctgc tccaagggtg 240

gaggcacagg gccgctcttg gggagcccta ccccagtctg cagtgcacgt gaaccgtcgg 300 ctgggtgggc actggtcctg cccagtcaac agcactgggg ccatggccaa gggcaggggc 360 cactaggaag ggatcagcct cagcctcaga tcactgggc tgtccctctt ggaggacctg 420 gggaccccga ggctcacagc aaaccccact gagcttctcg ggtaggcgga tcggggtggg 480 g

<210> 52 <211> 435 <212> DNA <213> Homo sapiens

<400> 52 cccgggtcga cccacgcgtc cgagctcctc gttgtggaga caagatcaaa aatcatatgt 60 atagaatgtg actgtggctc ccttaaagat tgtgccagtg atagatgttg tgagacctct 120 tgtacccttt ctcttggcag tgtttgcaat acaggacttt gctgccataa gtgtaaatat 180 getgeecetg gagtggtttg cagagacttg ggtggtatat gtgatetace ggaatactgt 240 gatgggaaaa aggaagagtg tccaaatgac atctacatcc aggatggaac cccatgttca 300 gcagtatctg tttgtataag aggaaactgc agtgaccgtg atatgcagtg tcaagccctt 360 tttggctacc aagtgaaaga cggttcccca gcgtgctatc gaaaattgaa taggattggt 420 aaccgatttg gaacq 435

<210> 53 <211> 728 <212> DNA <213> Homo sapiens

<400> 53 cogggtogac ccacgogtoc ggacgocaqt ttaqcocaqq tocacqqact acaatqtttc 60 gtattcctga gtttaaatgg tctccaatgc accagcggct tctcactgat ttactatttg 120 cattagaaac tgatgtacat gtttggagga gcccattcta caaagtctgt aatggatttt 180 gtcaatagca atgaaaatat tatttttqta cataacacaa ttcacctcat ttcccaaatq 240 gtagacaaca tcatcattgc ttgtggagga attttacctt tgctctctgc tgctacatca 300 ccaactggtt ctaagacgga attggaaaat attgaagtga cacaaggcat qtcagctgag 360 acagcagtaa ctttcctcag ccggctgatg gctatggttg atgtacttqt qtttqcaagc 420 tctctaaatt ttagtgagat tgaagctgag aaaaacatgt cttctqqaqq tttaatqcqa 480 cagtgcctaa aattagtttg ttgtgttgct gtgagaaact gtttagaatg tcggcaaaga 540 cagagagaca ggggaaataa atcttcccat ggaagdagta aacctcagga agttcctcaa 600 agtgtgactg ctacagcagc ttcgaagact ccattggaaa atgttccagg taacctttct 660 cctattaagg atccggatag acttcttcag gatgttgata tcaatcgcct tcgtqctgtt 720 gtctttcg 728

<210> 54 <211> 2228

<212> DNA

<213> Homo sapiens

<400>	54					
tttttttt	ttcctgaaat	gtaaattgtt	tttaatatat	ttaagagcac	acagaagtct	60
	aaaaataaat					120
ggtcaaactc	tttaaatgat	cagtgaaaac	ataaaacatc	catgatctgt	taacacacac	180
	tccagttgta					240
gtctttatgg	cagaaagcac	atccaaagct	aggcaatgaa	gttcagcctg	ggccacgtga	300
acctttcacc	agccagccta	taacctatgg	agccaggaca	ggaaagcatg	atccttcagc	360
	acccaggctt					420
cagcccctgc	tgccatcata	aagcacggga	gggattgttt	tgtccttagc	ggctctgtcc	480
taaatttgag	agcaggagac	tgagaaggtt	atgctcatta	aatattgtca	ttgtaacacg	540
gaatggaaat	catgatcctt	gcccatgggc	actgagctga	aagaaagagg	aacctcacat	600
gaggctttcc	tagagaccag	gatgttgggt	gagtgggcgt	gcacttctca	agtgggcaag	660
gaagaactgc	ttttctccag	ctgacatgct	ctcaggggtg	aagaagttta	gcttaaaata	720
cctgatggcg	ctgcataaac	tggggatttg	ggaactgagt	ttttagctct	gtgacacaca	780
acataaaaaa	caaaaatcca	gtctcattag	ctaaattcgg	attaaaatct	gaaatgtttt	840
	ccaacaggct					900
ggctgtcttc	caaaccactt	tcttcctgta	attcttaagt	tggctagttc	tccttcctca	960
	ccctaagaat					1020
	atggcatctc					1080
	tggaaggata					1140
	ctggagcctg					1200
	ctggtgtcta					1260
tcctgcagcc	acggctgcca	gctggttggc	ccagtgtcca	tccacagttg	ccaggatgtg	1320
	gtgtggaaat					1380
	aagatccaga					1440
	agagaagagt					1500
ttcattcagc	ccaagggaag	tcaccgcggg	aaagacctgc	tgaaggaaca	atgctgctca	1560
tgagctccct	gttagtcata	ctggcccagc	tctaggtgaa	actggaatac	cagtggggat	1620
gtcagaaatg	gaggttacaa	cctccaagag	tctcttcctc	tggagctcct	tgctttgtcc	1680
ctccatcatg	tgcaatccag	agaggccccc	caggtctggc	tgaaactcct	ccaggctaga	1740
cacaaacacc	tccagcatat	tcatggcccc	gttggagagg	tcgtgagaga	agatgaatcg	1800
gttggcatgg	ggagctttta	actggcccca	ctcctcccct	gcttgatact	ctaaaatgag	1860
gtggaactca	tccacttcct	gcaatgactc	tggtggaaca	aagacattgt	catcaagaag	1920
ctcatgtagc	tttggaccaa	ctggaccgca	aagaagaacc	tttaaatctg	agttggctgc	1980
aaatttctgt	ccaattaaag	ctgcatttcc	tcctacatag	tgctgggctc	ctgggaactc	2040
tgacgcaacc	tgggcaatgt	cgtgaaaagt	ttccttatca	ctgaagaagc	gctcagcagc	2100
	cccatgaagt					2160
	ttcccattcc					2220
ggaattca						2228

```
<210> 55
<211> 405
<212> DNA
<213> Homo sapiens
```

```
<400> 55

gcaggagttc aagaccaacg tggccaacat ggggaaagcc catcactact aaaaatacaa 60
aaactagcca ggcgtggta cacacatctg taatcccagc tactcgaggc gctgaggcag 120
gagaatcact tgaaccagga ggcagaggtt gcagtgagcc gagatcatgc cactgcactc 180
cagcctgggc cacagagcaa gactccatct gacaactagc tgttccagcc cccagccact 240
```

tgagtcatet cagetgagge cecacacace aagaageaga ggtgagteta atecacagag 300 ceetggteag acatgatgae ggtggettea eeegggggte teegcacage ageggeeteg 360 ggtaageaga acetegetee ggggtttaca aatectteet egtge 405

<210> 56 <211> 1652 <212> DNA

<213> Homo sapiens

<400> 56 actaggggag gtgctcaagt gccagcaggg cgtatccagt ctggcctttg ccctggcctt 60 cttgcagcgc atggacatga agccgctggt ggtcctgggg ctgccggccc ctacggctcc 120 ctcgggctgt ctttccttct gggaggccaa ggcgcagctg gccaagagct gcaaggtgct 180 ggtagacgcg cttcgacaca acgccgccgc tgctgtgcca ttttttggcg gcgggtctgt 240 gctacgcgct gccgagccgg ctccccatgc cagctacggc ggcatcgtct cggtggagac 300 agacctgctg cagtggtgcc tggagtcggg cagcatcccc atcctgtgcc ccatcgggga 360 gacggccgcg cgccgctccg tgcttctcga ctccctggag gtgaccgcgt cgctggccaa 420 ggcgctgcgg cccaccaaaa tcatcttcct caataacaca ggcggcctgc gcgacagcag 480 tcataaggtc ctgagtaacg tgaacctgcc cgccgacctg gacctggtgt gcaacgccga 540 gtgggtgagc acaaaagaac ggcagcagat geggctcatc gtggacgtgc tcagccgcct 600 gccccaccac tecteggeeg teatcacege egetageaeg etgeteaetg agetetttag 660 caacaagggg teegggaeee tgttcaagaa egeegagega atgctaeggg tgegeageet 720 ggacaagctg gaccagggcc gtctagtgga cctggtcaac gccagcttcg gcaagaagct 780 cagggacgac tacetggcct cgctgcgcc gcggctgcac tecatctacg tetecgaggg 840 gtacaacgcc gccgccattc tgaccatgga gcccgtcctg gggggcaccc cgtacctgga 900 caaatttgtg gtgagctcca gccgccaggg ccaaggctcc ggccagatgc tgtgggagtg 960 cctgcggcgg gaccttcaga cacttttctg gcgctcccgg gtcaccaacc ccatcaatcc 1020 ctggtacttc aaacacagtg atggcagctt ctccaacaag cagtggatct tcttctggtt 1080 tggcctggct gatatccggg actcctatga gttggtcaac cacgccaagg gactgccaga 1140 ctcctttcac aagccagett ctgacccagg cagctgaccc tcaccatgga cactacaggc 1200 cctggaatgg ccagggtgga ccaaaagcca tgcccagctg ggcatgaccc caggcagcca 1260 gccacagget gaaggggget tgttggetga gtgatetgea gaggagaaag cageeccag 1320 ctctgcccca gaggaggcgc tgaagtggga caagcacagg aaagaagggg accagtctag 1380 gaccccaact tgactcactc taaagctaca accaaatggc cttcgatttt caacctgggg 1440 attaggggag gggagggtgc cttccagggc tcttactcag gacttaaccc ttaagggtga 1500 gettagttte tgteetettg tgettatgtt ttgaggetee ettacecaaa ataatacece 1560 tgcctgcgtg atattctacc attcatttta attcctttgg gtcttgcagt ttttcaggag 1620 gccttgatta aaatgcaaat acttgtctga ga 1652

<210> 57 <211> 1129 <212> DNA <213> Homo sapiens

<400> 57
tttttttttt ttgagacgga gtctcgctct gtggcccagg ctggagtgca gtggcgcgat 60
ctcggctcac tgcaagctcc gcctcccggg ttcacgccat tctcctgcct cagcctcccg 120
agtagctggg actacaggcg cccgctacca cgcccggcta attttttgta tttttagtag 180

agacggggtt	tcaccgtgtt	agccaggatg	gtctcgatct	cctgacctcg	tgatccgccc	240
gcctcggcct	cccaaagtgc	tgggattaca	ggcgtgagcc	accgcgcccg	gcccatttac	300
taaatgttaa	gttccttata	attccatctc	tttcagcacc	caatacaggg	gtttacatag	360
aggaagtact	caatatttcc	tttcttttt	tcttttttt	ctggagatag	tctcgctctg	420
tcaccaggct	ggagtgcagt	ggdgtaatct	cggctcactg	caacctccac	ctcctgggtt	480
cacgccattc	tcctgcctca	gcctcccgag	tagctgggac	tacaggcgcc	caccatcacg	540
cccggctaat	tttttttgta	tttttagtag	agatggggtt	tcaccgtgtt	agccaggatg	600
gtctcgatct	cctgaccttg	tgatccgccc	gcctcggcct	cccaaagtgc	tgggattaca	660
ggtgtgagcc	accgcgcccg	gcctaaaaaa	atttttttt	tcttgagaca	aagtcttgct	720
ctgttgccca	ggctgaagtg	caggggcatg	atatcagctc	attgcaacct	ccacctcccg	780
ggttcaagcg	attctcctgc	ctcagcctcc	cgagtagctg	ggattacagg	tgccctccgc	840
cacgtccagc	taattttctg	ttttttagta	gagacggggt	ttcaccgtgt	tagccaggat	900
ggtctcgatc	tcctgacctc	gtgatccacc	tgcctcagcc	tcccaaagtg	ctgggattac	960
aggcgtgagc	cactgagccc	agccccattt	tatttcattt	ctctaacagc	aatgatatat	1020
atacatccca	tagtatatcc	tactgatata	atagcccctt	tccccattca	acacctgtgt	1080
aatcaggaaa	taaaaccctc	gtgcagcatt	ggcgtctgga	tagtcctcg		1129

<210> 58 <211> 475

<212> DNA

<213> Homo sapiens

<400>	58					
gttccgccca	attggcataa	tacgccaagc	cctgtgctct	gcagacggcc	accagagaag	60
gatccttact	ctgcgcctgg	gattgctcgt	tatcccgttt	ctccccgcaa	gtaacctgtt	120
cttccgagtg	ggcttcgtgg	tcccgagcgt	ggggtgctgt	gtgatgctgc	tttttggatt	180
cggagcctgc	gcaaacacac	cgagaaaaag	aagctcatcg	ctgccgtggt	gctgggaatc	240
ctactcagca	agatgctgag	aggctgagat	gcgcggtgcg	cggcggcgag	tggcggagcg	300
aggggcggtt	ttcagaggcg	ctgtgtctgt	gtgtcccctc	agtgctgagg	ttcgctgcaa	360
catcggcaga	aacctggctg	ctaaaggcaa	ccaaacgggc	gccatcagat	accaccggga	420
agctgtaagc	ttaaatccca	agacgaaatc	gtcgacacgg	gaattccggc	cttgc	475

<210> 59 <211> 711 <212> DNA

<213> Homo sapiens

<400> 59 ggaaaatagc agattttggg ttcagtaacc tcttcactcc tgggcagctg ctgaagacct 60 ggtgtggcag ccctccctat gctgcacctg aactctttga aggaaaagaa tatgatgggc 120 ccaaagtgga catctggagc cttggagttg tcctctacgt gcttgtgtgc ggtgccctgc 180 catttgatgg aagcacactg cagaatctgc gggcccgcgt gctgagtgga aagttccgca 240 tcccattttt tatgtccaca gaatgtgagc atttgatccg ccatatgttg gtgttagatc 300 ccaataagcg cctctccatg gagcagatct gcaagcacaa gtggatgaag ctaggggacg 360 ccgatcccaa ctttgacagg ttaatagctg aatgccaaca actaaaggaa gaaagacagg 420 tggaccccct gaatgaggat gtcctcttgg ccatggagga catgggactg gacaaagaac 480 540 agacactgca gtcattaaga tcagatgcct atgatcacta tagtgcaatc tacagcctgc 600 tgtgtgatcg acataagaga cataaaaccc tgcgtctcgg agcacttcct agcatgcccc

gagccetggg cettteaage accagteaat atceaggegg ageaggeagg tactgetatg 660 aacateageg tteeceaggt geagetgate aacceagaga accaaattgt g 711

<210> 60 <211> 344 <212> DNA <213> Homo sapiens

<400> 60

ggcacgagaa tttttaggcc accgagcttc tataacatgg tcatgagctc gggtgcacca 60
tagatttccc aaagctgagg ttgcataacc cctctgctga ggacagatct taccgaagat 120
cgcacgaagt gctgccatgg agatctgctt gaatgcgctg atgacaggc agaccttgtc 180
gaggatatct gggaaaatca agattcaatc tccactatac tgattgaatg ctgtgaaaaa 240
cctctgttgg aaaaatccca ctgcattgcc gaagtggaaa atgatgagat gcctgctgac 300
ttgccttcat tagctgctga ttttgttgaa agtaaggatg tttg 344

<210> 61 <211> 594 <212> DNA <213> Homo sapiens

<400> 61 gcttgagctc gagcgacggc gctggcggag acgccggctg ctcctcccct ccccgccgct 60 tttcctaaaa ggattgtaca ccttagaagt gcttaaggaa gagtgatgaa gctctgaatc 120 gtgtcctgca gcagattctg agtgccaccc aagatgaaga gagggacaag cttgcatagt 180 aggeggggea agecagagge eccaaaggga agtececaaa teaacaggaa gtetggteag 240 gagatgacag ctgttatgca gtcaggccga cccaggtctt catccacaac tgatgcacct 300 acceggetetg ctatgatgga aatagettgt getgetgetg etgetgetge tgeatgteta 360 ccaggagagg agggaactgc ggagcggatc gaacggttgg aagtaagcaq ccttgcccaa 420 acatecagtg cagtggcctc cagtaccgat ggcagcatcc acacagactc tgtqqatqqa 480 acaccagacc ctcagcgcac aaaggctgcc attgctcacc tgcagcagaa gatcctgaag 540 ctcacagaac aaatcaagat tgcacaaaca qcccqacqaa atcqtcqacc cqqq 594

<210> 62 <211> 1609 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1609) <223> n = a,t,c or g

<400>	62					
cgaagttatg	gccttcctta	taaggaaaag	gggtggattg	gaggaatcgc	caattgaagt	60
ttcgaaggat	cgctttagct	gaatatcaga	gaaccttgtg	aagatcttaa	agagcaacta	120
aagcataaag	aatttcttct	ggctgctaat	acttgtaacc	gtgttggtgg	tctttgtttg	180
aaatgtgctc	agcatgaagc	tgttctttcc	caaacccata	ctaatgttca	tatgcagacc	240
atcgaaagac	tggttaaaga	aagagatgac	ttgatgtctg	cactagtttc	cgtaaggagc	300
agcttggcag	atacgcagca	aagagaagca	agtgcttatg	aacaggtgaa	acaagttttg	360
caaatatctg	aggaagccaa	ttttgaaaaa	accaaggett	taatccagtg	tgaccagttg	420
aggaaggagc	tggagaggca	ggcggagcga	cttgaaaaag	aacttgcatc	tcagcaagag	480
aaaagggcca	ttgagaaaga	catgatgaaa	aaggaaataa	cgaaagaaag	ggagtacatg	540
ggatcaaaga	tgttgatctt	gtctcagaat	attgcccaac	tggaggccca	ggtggaaaag	600
gttacaaagg	aaaagatttc	agctattaat	caactggagg	aaattcagag	ccagctggct	660
tctcgggaaa	tggatgtcac	aaaggtgtgt	ggagaaatgc	gctatcagct	gaataaaacc	720
aacatggaga	aggatgaggc	agaaaaggag	cacagagagt	tcagagcaaa	aactaacagg	780
gatcttgaaa	ttaaagatca	ggaaatagag	aaattgagaa	tagaactgga	tgaaagcaaa	840
caacacttgg	aacaggagca	gcagaaggca	gccctggcca	gagaggagtg	cctgagacta	. 900
acagaactgc	tgggcgaatc	tgagcaccaa	ctgcacctca	ccagacagga	aaaagatagc	960
	gctttagcaa					1020
caggagctga	cacagaagat	acagcaaatg	gaggcccagc	atgacaaaac	tgaaaatgaa	1080
cagtatttgt	tgctgacctc	ccagaataca	tttttgacaa	agttaaagga	agaatgctgt	1140
acattagcca	agaaactgga	acaaatctct	caaaaaacca	gatctgaaat	agctcaactc	1200
agtcaagaaa	aaaggtatac	atatgataaa	ttgggaaagt	tacagagaag	aaatgaagaa	1260
ttggaggaac	agtgtgtcca	gcatgggagg	agtacatgag	acgatgaagc	aaaggctaag	1320
	aagcacaggc					1380
	ttccnggaga					1440
nngttaccca	gnatncncaa	tcttttttgg	ttgacccggt	tggacagggt	ggacttnant	1500
	ggngnttttt			_	caacgnaccc	1560
acggcctncc	cggnntgaaa	cccccnccc	tgagggggg	ttntccccc		1609

```
<210> 63
<211> 615
<212> DNA
<213> Homo sapiens
```

<400>	63					
catcctatcc	cgtgtggtgg	aattcgccgc	tgactgctga	ggtgccaccc	gagctgctgg	60
ctgctgccgg	cttcttccac	acaggccatc	aggacaaggt	gaggtgcttc	ttctgctatg	120
ggggcctgca	gagctggaag	cgcggggacg	acccctggac	ggagcatgcc	aagtggttcc	180
ccagctgtca	gttcctgctc	cggtcaaaag	gaagagactt	tgtccacagt	gtgcaggaga	240
ctcactccca	gatgatggga	tcttgggacc	cgtgggaaga	accggaagac	gcagcccctg	300
tggccccctc	cgtccctgcc	tctgggtacc	ctgagctgcc	cacacccagg	agagaggtcc	360
agtctgaaag	tgcccaggag	ccaggagggg	tcagtccagc	cgaggcccag	agggcgtggt	420
gggttcttga	gcccccagga	gccagggatg	tggaggcgca	gctgcggcgg	ctgcaggagg	480
agaggacgtg	caaggtgtgc	ctggaccgcg	ccgtgtccat	cgtctttgtg	ccgtgcggcc	540
acctggtctg	tggctgagtg	tgcccccggc	ctgcagctgt	gccccatctg	gcagaagccc	600
ccgtcccgca	gccgg					615

```
<210> 64
<211> 839
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(839)
<223> n = a,t,c or g
```

<400> 64 aagaatgtct ggaagagatg gaagaaaagg ttttttgtat tggtgcaggt cattcagtac 60 acgtttgcca tgtgcagtta tcgggagaag aaagcggagc ctcaqqaact tctacaattq 120 gatggctaca ctgtggatta caccgacccc cagccaggtt tggagggtgg ccgaqccttc 180 ttcaatgctg tcaaggaggg agacaccgtg atatttgcca gtgacgatga acaagaccgc 240 atcctgtggg tccaggccat gtatcgggcc acggggcagt cacacaagcc tgtgccccg 300 acccaagtcc agaaactcaa cgccaaggga ggaaatgtac ctcagctgga tgcccctatc 360 420 ccctgtaact ttgaccacgc ttccctcttt gagatggtac aacgccttac tttggatcac 480 agacttaatg attoctattc ttgcctgggc tggttcagtc ctggccaggt gtttgtacta 540 gacgagtatt gcgcccgaaa tggagtccgg gggtgtcacc gacatctctg ctacctcaga 600 gacttgcttg aacgggcaga aaatggcgcc atgatcgacc ccacccttnt tcactacagc 660 tttgccttct gtgcatccca tgtccatggg aacaggcctg atggaattgg gaactgttga 720 ctgttgaaga aaaggaacgt tttttgaagg aaatcaaaag aggaggnttc cgnagttctg 780 ctaagaaaaa tcaggttaca acattttagg naattgcttt tcccatttgg gtcgaacct 839

<210> 65 <211> 1678 <212> DNA <213> Homo sapiens

<400> 65 caagcagctg atcgtgctgg gaaacaaagt ggacctcctg ccccaggatg ctcctggcta 60 ccggcagagg ctgcgggagc gactgtggga ggactgtgcc cgcgccgggc tcctgctggc 120 ccctggccac caagggccac agegccccgt caaggacgag ccacaggacg gggagaatcc 180 gaatccgccg aactggtccc gcacagtggt cagggacgtg cggctgatca gcgccaagac 240 cggctatgga gtggaagagt tgatctctgc ccttcagcgc tcctggcgct accgtgggga 300 cgtctactta gtgggcgcca ccaacgccgg caaatccact ctctttaaca cgctcctgga 360 gtccgattac tgcactgcca agggctccga ggccatcgac agagccacca tctccccttg 420 gccaggtact acattaaacc ttctgaagtt tcctatttgc aacccaactc cttacagaat 480 gtttaaaagg catcaaagac ttaaaaaaga ttcaactcaa gctgaagaag atcttagtga 540 gcaagaacaa aatcagctta atgtcctcaa aaagcatggt tatgtcgtag gaagagttgg 600 aaggacattc ttgtattcag aagaacagaa ggataacatt ccctttgagt ttgatgctga 660 ttcacttgcc tttgacatgg aaaatgaccc tgttatgggt acacacaaat ccaccaaaca 720 agtagaattg actgcacaag atgtgaaaga tgcccactgg ttttatgaca cccctggaat 780 tacaaaagaa aattgtattt taaatcttct aacagaaaaa gaagtaaata ttgttttgcc aacacagtcc attgttccaa gaacttttgt gcttaaacca ggaatggttc tgtttttggg 900 tgctataggc cgcatagatt tcctgcaggg aaatcagtca gcttggttta cagtcgtggc 960 ttccaacatc ctccctgtgc atatcacctc cttggacagg gcagacgctc tgtatcagaa 1020 gcatgcaggt catacgttac tccagattcc aatgggtgga aaagaacgaa tggcaggatt 1080 tectectett gttgetgaag acattatgtt aaaagaagga etgggggcat etgaagcagt 1140 ggccgacatc aagttttcct ctgcaggttg ggtttcagta acacctaatt ttaaggacag 1200 actgcatete egaggetata cacetgaagg aacagttttg accgteegge eccetetett 1260 gccatatatt gttaacatca aaggacagcg catcaagaaa agtgtggcct ataaaaccaa 1320

gaagcctcct	tcccttatgt	acaacgtgag	gaagaagaaa	ggaaagataa	atgtatgaga	1380
ccgaccttgt	tcactccaga	tattaactgt	attgaacaca	acaaaataca	ttgaatttgt	1440
attaaacata	taacgcataa	ataaagctcc	cattcttacc	cttaaaaata	aaaggagaat	1500
gaaaaaaaaa	gatgccaata	ggcatatacg	tggttttggg	tattccgggg	tcttcccgtg	1560
gtctgttcac	tttgcggtgg	tggtgatata	ttaggcagtc	ggggcgcctg	atgtacgcct	1620
tcttatagag	gtacatggtt	ggatgcagcg	tcttgacgtg	ggattcgctt	tattcgcc	1678

<210> 66 <211> 1888 <212> DNA <213> Homo sapiens

<400> 66 tccacggtgg catccatgat gcatcgtcag gagactgtgg agtgtttgcg caagttcaat 60 gcccggagaa aactgaaggg tgccatcctc acgaccatgc ttgtctccag gaacttctca 120 gctgccaaaa gcctattgaa caagaagtcg gatggcggtg tcaagccaca gagcaacaac 180 aaaaacagte tegtaageec ageecaagag ceegegeeet tqeaqacqqe catqqaqeea 240 caaaccactg tggtacacaa cgctacagat gggatcaagg gctccacaga gagctgcaac 300 accaccacag aagatgagga ceteaaaget geecegetee geaetgggaa tggcageteg 360 gtgcctgaag gacggagete cegggacaga acaqeeeet etqeaqqeat qeaqeeeaq 420 cettetetet geteeteage catgegaaaa caggagatea ttaagattac agaacagetg 480 attgaagcca tcaacaatgg ggactttgag gcctacacga agatttgtga tccaqqcctc 540 actteetttg ageetgagge eettggtaac etegtggagg ggatggattt eeataagttt 600 tactttgaga atctcctgtc caagaacagc aagcctatcc ataccaccat cctaaaccca 660 cacgtccacg tgattgggga ggacgcagcg tgcatcgcct acatccgcct cacccagtac 720 atcgacgggc agggtcggcc ttcgaaccca gccaagtcag aagaagaccc gggtctggca 780 cccgtcggga atggcaagtg gctcaatgtc cactatcact gctcaggggc cccctqcccq 840 caccgctgca gtgagctcag ccacaggggc ttttaggaga ttccagccgg aggtccgaac 900 cttcgcagcc agtggctctg gagggcctga gtgacagcgg ccagtcctgt ttgtttgaag 960 gtttaaaaca attcaattac aaaagcggca agcagccaat gcacgcccct gcatgcagcc 1020 ctcccgcccg cccttcgtgt ctgtctctgc tgtaccgagg tgttttttac atttaagaaa 1080 aaaaaaaaag aaaaaaagat tgtttaaaaa aaaaaggaat ccataccatg atgcgtttta 1140 aaaccaccga cagcccttgg gttggcaaga aggcaggagt atgtatgagg tccatcctgg 1200 catgagcagt ggctcaccca ccggccttga agaggtgagc ttggcctctc tggtccccat 1260 ggacttaggg ggaccaggca agaactctga cagagctttg ggggccgtga tgtgattgca 1320 gctcctgagg tggcctgctt accccaggtc taggaatgaa cttctttgga acttgcatag 1380 gcgcctagaa tggggctgat gagaacatcg tgaccatcag acctacttgg gagagaacgc 1440 agageteeca geetgetgtg gaggeagetg agaagtggtg geeteaggae tgagageeeg 1500 gacgttgctg tactgtcttg tttagtgtag aagggaagag aattggtgct gcagaagtgt 1560 accegecatg aagcegatga gaaacctegt gttagtetga catgeactea cteatecatt 1620 totataggat gcacaatgca tgtgggccct aatattgagg ccttatccct gcagctagga 1680 gggggagggg ttgttgctgc tttgcttcgt gttttcttct aacctgggca aggagagag 1740 caggecetgg geaaggetee egtgeegeet ttgggtteet tgttttettg ttgettgate 1800 tggaccatct ttgtctttgc cttttcacgg tagggtcccc atgctgaccc tcatcttggg 1860 cctgggcctc ttgccaaagt tgcccctg 1888

<210> 67 <211> 1712 <212> DNA

<213> Homo sapiens

<400> 67 ctttacccaa gaatgtggta ttcgtgcttg acagcagtgc ttctatggtg ggaaccaaac 60 teeggeagae caaggatgee etetteacaa tteteeatga eeteegaeee caggacegtt 120 tcagtatcat tggattttcc aaccggatca aagtatggaa ggaccacttg atatcagtca 180 ctccagacag catcagggat gggaaagtgt acattcacca tatgtcaccc actggaggca 240 cagacatcaa cggggccctg cagagggcca tcaggctcct caacaagtac gtggcccaca 300 gtggcattgg agaccggaga gtgtccctca tcgtcttcct gacggatggg aagcccacgg 360 teggggagae geacaceete aagateetea acaacaceeg agaggeegee egaggeeaag 420 tetgeatett caccattggc ateggcaacg acgtggactt caggetgetg gagaaactgt 480 cgctggagaa ctgtggcctc acacggcgcg tgcacgagga ggaggacgca ggctcgcagc 540 tcatcgggtt ctacgatgaa atcaggaccc cgctcctctc tgacatccgc atcgattatc 600 cccccagcte agtggtgcag gccaccaaga ccctgttccc caactacttc aacggctcgg 660 agatcatcat tgcggggaag ctggtggaca ggaagctgga tcacctgcac gtggaggtca 720 ccgccagcaa cagtaagaaa ttcatcatcc tgaagacaga tgtgcctgtg cggcctcaga 780 aggcagggaa agatgtcaca ggaagcccca ggcctggagg cgatggagag ggggacacca 840 accacatega gegtetetgg agetacetea ecacaaagga getgetgage teetggetge 900 aaagtgacga tgaaccggag aaggagcggc tgcggcagcg ggcccaggcc ctggctgtga 960 gctaccgctt cctcactccc ttcacctcca tgaagctgag ggggccggtc ccacgcatgg 1020 atggcctgga ggaggcccac ggcatgtcgg ctgccatggg acccgaaccg gtggtgcaga 1080 gcgtgcgagg agctggcacg cagccaggac ctttgctcaa gaagccatac cagccaagaa 1140 ttaaaatctc taaaacatca gtggatggtg atccccactt tgttgtggat ttccccctga 1200 gcagactcac cgtgtgcttc aacattgatg ggcagcccgg ggacatcctc aggctggtct 1260 ctgatcacag ggactctggt gtcacagtga acggagagtt aattggggca cccgccctc 1320 caaatggcca caagaaacag cgcacttact tgcgcactat caccatcctc atcaacaagc 1380 cagagagate ttatetegag ateacacega geagagteat ettggatggt ggggacagae 1440 tggtgctccc ctgcaaccag agtgtggtgg tggggagctg ggggctggag gtgtccgtgt 1500 ctgccaacgc caatgtcacc gtcaccatcc agggctccat agcctttgtc atcctcatcc 1560 acctctacaa aaageeggeg ceetteeage gacaceacet gggtttetae attgecaaca 1620 gcgagggcct ttccagcaac tgcagggtct tctgtgagtc tggcatcctg attcaggaac 1680 tgacccagca gtccgtggca gttgctggtc ga 1712

```
<210> 68
<211> 839
<212> DNA
<213> Homo sapiens
```

<400> 68 gttttttctc gagcaggtta gccaatatac ctttgctatg tgcagttata gagaaaagaa 60 gtetgaacca caagaattaa tgeagettga aggetataet gtggattata cegateecca 120 cccaggcctt cagggtggtt gtatgttctt taatgctgtt aaagaaggag atactgtaat 180 ctttgccagt gatgatgaac aggacagaat attatgggtt caagccatgt atagggccac 240 aggtcaatca tataaaccag ttcctgcaat tcaaacccag aaactgaatc ctaaaggagg 300 aactetecat geagatgete agetttatge agategtttt eagaaacatg gtatggatga 360 gtttatttct gcaaaccct gcaagcttga tcatgccttc ctttttagaa tactccagag 420 gcagactitg gatcacagac tgaatgattc ctattcttgc ttgggatggt ttagccctgg 480 ccaagtcttt gtgttagatg agtactgtgc ccgttatggt gtgagaggct gtcacagaca 540 tetetgetae ettgeagaac tgatggaaca tteagaaaat ggtgetgtea ttgaccetae 600 cctgctccat tacagctttg cattctgtgc ctctcgatgt gcacggcaac aggcctgatg 660 gaattgggac tgtttcagtg gaagaaaaag aaagatttga ggagataaaa gagagactct 720 cttccctttt agaaaatcag ataagccatt tcagatactg ttttcccttt ggacgacctg 780 aaggtgctct aaaagctaca ctttcattac ttgaaagggt tttaatgaaa gatattgcc 839

```
<210> 69
<211> 801
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(801)
<223> n = a,t,c or g
```

<400> 69 agacgggctg ctccatgagg tgctgaacgg gctcctagat cgccctgact gggaggaagc 60 tgtgaagatg cctgtgggca tcctcccctg cggctcgggc aacgcgctgg ccggaqcagt 120 gaaccagcac gggggatttg agccagccct gggcctcgac ctgttgctca actgctcact 180 gttgctgtgc cggggtggtg gccacccact ggacctgctc tccgtgacgc tggcctcggg 240 ctcccgctgt ttctccttcc tgtctgtggc ctggggcttc gtqtcaqatq tqqatatcca 300 gagogagogo ttcagggcot tgggcagtgc ccgcttcaca ctqqqcacqq tqctqqqcct 360 egecacactg cacacetace geggacgeet etectacete ecegecactg tggaacetge 420 ctegeceace cetgeceata geetgeeteg tgecaagteg gagetgacee taaceceaqa 480 cccagccccg cccatggccc actcaccct gcatcqttct qtqtctqacc tqcctcttcc 540 cotgcccag cotgccotgg cotctcotgg ctcqccaqaa cccctqccca tcctqtccct 600 caacggtggg ggcccagagc tggctgggga ctqgggtggg gctqqqqatq ctccactqtc 660 cccggaccca cagctgtctt cacctcctgg ctctcccaag gcagctctac actcacccgt 720 ctaaaaaaag gcccccgtaa ttccccccga catgnnnccc cgctctagag gatcaagcaa 780 ctacgcggcg gctcacgacg c 801

```
<210> 70
<211> 531
<212> DNA
<213> Homo sapiens
```

```
<400> 70
agaagggtgt cccaaccttg ctcatggcag ctggcagctt ctatgacatt ctggccatca
                                                                      60
ctggcttcaa cacatgcttg ggcatagcct tttccacagg ctctactgtc tttaatgtcc
                                                                     120
tcagaggagt tttggaggtg gtaattggtg tggcaactgg atctgttctt ggatttttca
                                                                     180
ttcagtactt tccaagccgt gaccaggaca aacttgtgtg taagagaaca ttccttqtgt
                                                                     240
tggggttgtc tgtgctagct gtgttcagca gtgtgcattt tggtttccct ggatcaggag
                                                                     300
gactgtgcac gttggtcatg gctttccttg caggcatggg atggaccagc gaaaaggcag
                                                                     360
aggttgaaaa gataattgca gttgcctggg acatttttca gccccttctt tttgqactaa
                                                                     420
ttgggagcag aggtatctat ttgcatctct cagaccagaa actgtaggcc tttgtgttgc
                                                                     480
caccgtaggc atttgcagta ttgatacgaa tttttqacta cattttctqa a
                                                                     531
```

```
<210> 71
<211> 540
<212> DNA
```

<213> Homo sapiens

<400>	71	-				
tgtgcgagga	attcgaatca	ggtaatggag	aggactggca	tgaagggggc	acaggactgt	60
gaaaacctga	gtgattctgt	ccttccctca	tectctatec	ctgaaccagg	gcagacatag	120
atggaatcag	agcaggagtt	ggtgttgatg	tggtttcagg	tccacctatc	agagtttgag	180
agatttaggc	catgaaccat	tatgaatata	gatgagaacc	tttgtaattg	ctgaaggagg	240
tagtagtgca	ggcaagtcct	gtgtgcaaga	cctgctgctc	ccagttagta	cggacccctg	300
tgacattcac	agaagttcag	aatgtctgag	atgctctgca	ggctacctta	tctccgtctg	360
cagctacacc	tccagtgatc	acaatcagtg	ctacgctggc	acagccagcc	tggccctgct	420
ctggattgga	ggcatcctca	agggctgctt	gctgtggaag	cagtttcgct	ggaccgagag	480
gagccactgg	aattttgggt	actgggcctt	atggtcaccc	gggaatggga	atggctgctg	540

<210> 72 <211> 428 <212> DNA <213> Homo sapiens

<400> 72 cggacgcgtc cgcccacgcg tecgccacg cgtccgctag aaatttctgt ggaactccat 60 ttgactttct atctgtgaaa tccaaactgt ctctgaagaa ataagaaaaa tagtgttttg 120 acttttagga gacaactatg tttattattt tgccttgcaa attaatgtct aaatttgtac 180 aagcacctat ctacagattt ttccaggtaa accatcatgt tttatgtgta aaggtagatt 240 gatgtgcatt tactttatac tttggtactt aggccattac acatetttgc actggaattg 300 gtgcagatat ataagtgatc ctaatgttga tgctgcccag accccaggaa tgcagaggtg 360 agcatgacac acacagtccc tgccctgatg gagctcatag actagtgaag gaatagggct 420 ctatqacc 428

<210> 73
<211> 584
'<212> DNA
<213> Homo sapiens

<400> 73 getggagtea ttgeetggtt teaaagagat tgtgageagg ggagtaaaag tggattaett 60 gactccagac ttccctagtc tctcgtatcc caattattat accctaatqa ctggccgcca 120 ttgtgaagtc catcagatga tcgggaacta catgtgggac cccaccacca acaagtcctt 180 tgacattggc gtcaacaaag acagectaat geetetetgg tggaatggat cagaacetet 240 gtgggtcact ctgaccaagg ccaaaaggaa ggtctacatg tactactggc caggctgtga 300 ggttgagatt ctgggtgtca gacccaccta ctgcctagaa tataaaaatg tcccaacgga 360 tatcaatttt gccaatgcag tcagegatgc tcttgactcc ttcaagagtg gccgggccga 420 cetggcagec atataccatg agegeattga egtggaaggc caccactacg ggcctgcate 480 teegeagagg aaagatgeee teaaggetgg tagacactgt cetgaagtac atgaccaagt 540 ggatccagga gcggggcctg caggaccgcc tgaacgtcat tatt 584

<210> 74 <211> 348 <212> DNA <213> Homo sapiens <400> 74 ggcacgagat tttcatccaa aacaaacact ggacttcctg cggagtgaca tggctaattc 60 gaaaatcaca gaagagtga aaaggagtat agcacaacag tatctagatt tgacagtagc 120 ccggaacaag tggaccctga tgccgaagtc gatgcagccc catctaccac atcttcatgt 180 ggacattgag attcacacgc tggctcctga agggtgctca gtctccttgg tgattaaggt 240 cctgcttgaa ctggtgccaa ctccatggca gggaagttgc ttttggttgc ctggctgggt 300 ttcccagatc ccttctgggg caaggagcta tcagaccctg ctttcaag 348 <210> 75 <211> 365 <212> DNA <213> Homo sapiens <400> 75 caagcaaagt ggggatgtca cctgcaactg cactgatggg cgcttggccc ccagctgcct 60 gacctgcgtc ggccactgca tttttggcgg ctactgtacc atgaacagca aaatgatgcc 120 tgaatgccag agcccacccc acatgacagg gccccggtgt gaggagcacg tcttcagcca 180 gcatcagcca ggacatataa cctccatcct aatccctatg ctgtagctgc tgctgctggt 240 tetggtggee ggagtgatat tetgecataa acggegagte caaggggeta agggetteca 300 gcaccaacgg atgaccaacg gggccatgaa cgcgcagatt gcaaacccca cctacaagat 360 gtacc 365 <210> 76 <211> 700 <212> DNA <213> Homo sapiens <400> 76 caagaaccat cagcaccaac acaaatgtat ctttgcagac cgaaggaatc agctaaacaa 60 tttacagtca tctcaatctc tactaaaaca aaaatcacat ccaacatgcc acctgacacc 120 atttettet etetetet tttgeteett gegatgagge atteatetet cettgageet 180 ccgttctgaa gagataacag tatagcaaca actctgccac tgaaatcctg ttctctgacc 240 gatattggca cctgcaaaga gaaacaacca gtaacaggca gcagcagcat cagtattaat 300 cttccatgat gaaatcttta caggtcaaga acaagtacac agctcttttc tcactccttc 360

```
acagtggacc atgcaactag ttgaggtgga agacaatgga ttgtctacaa gccttttgaa 420 cagtggagaa tgcagggcgt tggctttagg aagaggcaga aatccaggca gaacttgaac 480 gtttggaaag agtcagaaat cttcacatac gtgagctgaa aagaataaac aatgaagata 540 attcacagtt caaagatcac ccaacattaa atgaaagata tttattactt catctgcttg 600 gtagaggtgg ctttagtgaa gtgtataagg taatgtagg tttattctgg tttttttaca 660 ctaatgtagc aaggatatag gagtatgtgg ttaagaagtg
```

<210> 77

<211> 426

<212> DNA

<213> Homo sapiens

<400>	77					
ttgcctagca	catggcaggg	tgcagcgcct	gtctgaatgt	gtgaagagtt	cttagtgatg	
ggtaaagggt	gttcctgtgt	gttttagatt	ctgctcagca	atcctcagat	gtggtggtta	
aatgattcca	atcctgaaac	cgacaaccgt	caagaaagtc	cttcccagga	aaacattgac	

aatgattcca atcctgaaac cgacaaccgt caagaaagtc cttcccagga aaacattgac cgagtgagtg acaggecttt gtgccctcag cttggacagc ctcgggtggg gttgcttggg gtaacctggg tgaatcaggc agcaggactg gggagtccg tgctgaaacc ttggctcca ggctccaggt gtaacctgcc cacctcagag gccacccacg cagtaacaga gggcagggga

ggcctccttg gaaagcagga aaactgggga agtgtcagga agttctcttt aggtttgctg 420 cctttg 426

60

120

180

240

300

360

358

<210> 78 <211> 358 <212> DNA

<213> Homo sapiens

<400> 78
tttcgtgcta tgttcttggc tgttcaacac gactgcagac ccatggacaa gagcgcaggc

tttegtgeta tgttettgge tgtteaacae gaetgeagae ecatggaeaa gagegeagge 60
agtggeeaca agagegagga gaagegagaa aagatgaaae ggaeeetttt aaaagattgg 120
aagaeeegtt tgagetaett ettacaaaat teetetaete etgggaagee caaaaeegge 180
aaaaaaaagea aacageaage ttteateaag taagttgaga ateetgaget tgeaaatate 240
aatagttage tgetgaaetg aaaaggggaa etetgatgag egtaagetaa eatacagaae 300

etetettgea ggeettetee tgaggaagea eagetgtggt cagaageatt tgacgagg

<210> 79

<211> 322

<212> DNA

<213> Homo sapiens

ctagagataa aagagcagtt ctgcattggg tctgcgcaaa	atttttccag ggaagaacat ttccaagcaa gaccgccctc	acttcgtttc agacgccaga tcatactcca gccgttggga	ttagatgcag cactccagtg gccaggccgt	aaatcaattc aacgagatgt tgcaccggta gacgtgaccg cccctcgctc	gtcagtggtc gttcacccaa acctccgact	60 120 180 240 300 322
\ <210> <211> <212> <213>	310	ns				
gatgatcaac aaactccata aatgaatcca	ccagaaaaca aagaattaaa aaaaatgcaa taactattct	acgcgtaaca tatcatacag aaagcttagc	tagtatagtc gcagatatca gattttgggt	cacaaaaata aaaaagaata agccagacaa cggcttcaca catcatcgcc	cacgaaaaag tatcctggat tgttgcggat	60 120 180 240 300 310
<210> <211> <212> <213>	134	is				
<400> tcgagtaaac gactgctatt ggcgacacgg	catgggacta gcataatacc	aagcttggct aacgtgcatt	ccaaagcatt ggacgagaac	caggctgaac gatgctatgg	gaaaaacatg aacctgcata	60 120 134
<210> <211> <212> <213>	358	as				
tactctcacc	gaaagactaa acttttaata	cctttagtat	tacagttgat	cattggtaaa cagattacct ttcaacaatt	ttacttgata	60 120 180

gtttaaaatt cctcaaagaa actggtcatg gaacaccaat ggaagaaata cctgaggagg 240 aattatcaga ggatgttgaa cagattgatc acgctgatag ggagttgcgg cgtggccaaa 300 acttgaggtg caaaggaatt catagattgc ctactcatat acaagtaggg caaaatcg 358

<210> 83 <211> 723 <212> DNA <213> Homo sapiens

> <400> 83 tacacacaca cacacacaca cacacacact cactetetea gaggagagaa aatattaaga 60 atcgtgtatt ttacacaggt atccaaacat aaaaatactt tagaattgct tactgtatgg 120 acaggttata tggaatggag tttgtagtat ccacattaac aaagcaagtt tatatggact 180 ggttatgata ttagggatat gaattagaaa tggatgttgt tgcactcatt taaaatattt 240 tgcctctcac tttatcccca gttatagtgt ccttttgaat ttttctcaca cagtgctact 300 atatttcatg aactggtata taaacaaacc aaaattattt cttcaaatca agaacttatc 360 tacgaagggc gacgcttagt cttagaacct ggaaggctgg cacaacattt ccctaaaact 420 actgaggaaa accctatatt tgtagtaagc cgggaacctc tgaataccat aggattaata 480 tatgaaaaaa tttccctccc taaagtacat ccacgttatg atttagacgg ggatgctagc 540 atggctaagg caataacagg ggttgtgtgt tatgcctgca gaattgccag taccttactg 600 ctttatcagg aattaatgcg aaaggggata cgatggctga ttgaattaat taaagatgat 660 tacaatgaaa ctgttcacaa aaagacagaa gttgtgatca cattgggatt tctggtatcc 720 aqa 723

<210> 84 <211> 407 <212> DNA <213> Homo sapiens

<210> 85 <211> 342 <212> DNA

<213> Homo sapiens

atctacacgg atagacaagc ggcaacttgg atcgacttgc	cgaaaattta agcctagaca tggagctgct actcccagga	gccgaaccag ggctcccgga cctcctgacg gctgcctcac	aggetteett tgaattteag gteetgaeta gattggageg	ttccctttac ttgtccaaga acctggggtt tactgtttac tgaacacctt cg	agaggatgga ctcagctcca tacccgttcc	60 120 180 240 300 342
<210> <211> <212> <213>	420	ns				
cccctagcgg gccctggcca gcgccagccg cgaaagtggc cagccgcacc	gtttagcacc ttttaaccgc gtaggagcca tgcctcacca ctcgccatgt tgggtccgag	teetgaeeag caaagegega ggteeaeegg ceagaeegge teategeege	tecegttgee ttageeteae eteegageag cageteeee ggeegeeaeg	ggaccgatta gcaccccatc tgcatttcag cagcaagccc gcctacctga gccccgcaca gccatggcgc	ttggaagtat gtacaggccg ggtcggaaag ccccgccccg	60 120 180 240 300 360 420
<210><211><212><213>	392	os į				
cttttctgac cctcccacag atgcctccag gggtagatgg cctcgagcct	gagaaggegg accetcaaag tgacacetet eteettcaag aateetgagt	gtcagaaggt ctgacttctg cccagtggga gaggacaagc tgttgtctaa	taaagggca acctagggtt ccaagtttgc tgactgtgag gatcatctgg	aaggtttttg gaaggcattc ccaccaccgc cattcagtat tggcctttga cttagggagg	ggaaagetee tteaateeea ggaaetggge eteeaggaag	60 120 180 240 300 360 392

```
<210> 88
<211> 332
<212> DNA
<213> Homo sapiens
```

<400>	88					
gggaggaata	taatgcatta	cccaaatggt	catgccatat	gtattgcaaa	tggacattgt	60
atcatcttgt	gaaatagtca	taacattaaa	gtttgggtat	agtagttagc	atattttcat	120
ggccagtatt	gatgctattt	tttcccttac	ctatcagact	ctttcaaaga	gaaaagaggg	180
agcagttgga	attttatgtt	tgttgttcta	ttttgtctat	tatgaattgt	gacaaaacca	240
ttataaaaga	tgacaagtgt	gtgtgtttct	ttttttcttt	ttaaactgta	gggaacatag	300
tcattagtga	tctcaaatac	cgaaagacat	tt			332

<210> 89 <211> 535

<212> DNA

<213> Homo sapiens

<400>	89					
attaacctag	gaaatacatg	ttatatgaac	agtgttattt	aagccttgtt	tatggccaca	60
gatttcagga	gacaagtatt	atctttaaat	ctaaatgggt	gcaattcatt	aatgaaaaaa	120
ttacagcatc	tttttgcctt	tctggcccat	acacagaggg	aagcatacgc	acctcggata	180
ttctttgagg	cttccagacc	tccatggttt	actcccagat	cacagcaaga	ctgttctgaa	240
tacctcagat	ttctccttga	caggctccat	gaagaagaaa	agatcttgaa	agttcaggcc	300
tcacacaagc	cttctgaaat	tctggaatgc	agtgaaactt	ctttacagga	agtagctagt	360
aaagcagcag	tactaacaga	gacccctcgt	acaagtgacg	gtgagaagac	tttaatagaa	420
aaaatgtttg	gaggaaaact	acgaactcac	atacgttgtt	tgaactgcac	gagtacctca	480
caaaaagtgg	aagcctttac	agatctttcg	cttgcctttt	ggccttcctc	ttctg	535

<210> 90 <211> 432 <212> DNA <213> Homo sapiens

<400> 90 gcccgggacg acccacgcgt acgactcagt ttaagtccaa actttctaat aatttgatgt 60 agcagcgtaa tgggctgcat tactagtgag ttccttatgt gagtgtgcga gcatatgctg 120 gatgacttat ctagaataat gtagaagaga attaaacatt gaatgggagc ttaaattagt 180 taatttctga ggttcccttc cattcttaga attctttgat ttttatattg aattgagaga 240 actagtatag tttttatttc agcaaattat aacaccattg ttctcaaggc atggaaaatg 300 tgcttttcat ctttaagata ctaaaccttt tcactcatgg caattttttt tagctagcct 360 ctaagcttgg aaagcagtgg accccattaa taatcctggc caactctctt agtggaacta 420 atatgggaga ag 432

<210> 91

```
<211> 780
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(780)
<223> n = a,t,c or g
```

<400> 91 ccatgcatag gattaaactg aatgatcgaa tgacatttcc cgaggaacta gatatgagta 60 cttttattga tgttgaagat gagaaatctc ctcagactga aagttgcact gacagtgqaq 120 cagaaaatga aggtagttgt cacagtgatc agatgagcaa cgatttctcc aatgatgatg 180 gtgttgatga aggaatctgt cttgaaacca atagtggaac tgaaaagatc tcaaaatctg 240 gacttgaaaa gaattccttg atctatgaac ttttctctgt tatggttcat tctgggagcg 300 ctgctggtgg tcattattat gcatgtataa agtcattcag tgatgagcag tqqtacaqct 360 tcaatgatca acatgtcagc aggataacac aagaggacat taagaaaaca catggtqqat 420 cttcaggaag cagaggatat tattctagtg ctttcgcaag ttccacaaat gcatatatqc 480 tgatctatag actgaaggat ccagccagaa atgcaaaatt tctaqaagtg gatgaatacc 540 cagaacatat taaaaacttg gtgcagaaag agagagagtt ggaagaacaa gaaaagagac 600 aacgagaaat tgaqcgcaat acatqcaaqa taaaattatt ctqtttqcat cctacaaaac 660 aagtaatgat ggaaaantaa attgaggttc ataaggataa gacattaaag gaaqcaqtaq 720 aaatggctta taagatgatg gatttagaag aggtaatacc cctggattgc tgtcgccttg 780

<210> 92 <211> 867 <212> DNA <213> Homo sapiens

```
<400> 92
ctcagtcatg ccagtgcctg ctctgtgcct gctctgggcc ctggcaatgg tgacccggcc
                                                                      6Q
tgcctcagcg gcccccatgg gcggcccaga actggcacag catgaggagc tgaccctgct
                                                                     120
cttccatggg accetgcage tgggccagge cetcaaeggt gtgtacagga ccaeggaggg
                                                                     180
acggctgaca aaggccagga acagcctggg tctctatggc cqcacaatag aactcctggg
                                                                     240
gcaggaggtc agccggggcc gggatgcagc ccaggaactt cgggcaagcc tgttggagac
                                                                     300
tcagatggag gaggatattc tgcagctgca ggcagaggcc acagctgagg tgctggggga
                                                                     360
ggtggcccag gcacagaagg tgctacggga cagcgtgcag cggctagaag tccagctgag
                                                                     420
gagegeetgg etgggeeetg ectacegaga atttgaggte ttaaaggete acqetgacaa
                                                                     480
geagageeac atcetatggg ccctcacagg ccacgtgeag eggcagagge gggagatggt
                                                                     540
ggcacageag categgetge gacagateca ggagagacte cacacagegg egeteccage
                                                                     600
ctgaatctgc ctggatggaa ctgaggacca atcatgctgc aaggaacact tccacgcccc
                                                                     660
gtgaggcccc tgtgcaggga ggagctgcct gttcactggg atcagccagg gcgccgggcc
                                                                     720
ccacttttga gcacagagca gagacagacg caggcgggga caaaggcaga ggatgtagcc
                                                                     780
ccattgggga ggggtggagg aaggacatgt accetttcat geccacacac ccetcattaa
                                                                     840
agcagagtca aggcatctca aaaaaaa
                                                                     867
```

<210> 93 <211> 690

<212> DNA <213> Homo sapiens

<400> 93 teggaacege cetgaattae etetgtegae eeaegegtee gqqgaaacge ttetacaqqa tatggaaaaa tttggctcga tgatgtttcc tgtgatggag atgagtcaga tctctggtca 120 tgcaggaaca gtgggtgggg aaataatgac tgcagtcaca gtgaagatgt tggagtgatc 180 tgttctgatg catcggatat ggagctgagg cttgtgggtg gaagcagcag gtgtgctgga 240 aaagttgagg tgaatgtcca gggtgccgtg ggaattctgt gtgctaatgg ctggggaatg 300 aacattgctg aagttgtttg caggcaactt gaatgtgggt ctgcaatcag ggtctccaga 360 gagecteatt teacagaaag aacattacac atettaatgt ecaattetgg etgegetgga 420 ggggaagcct ctctctggga ttgtatacga tgggagtgga aacagactgc gtgtcattta 480 aatatggaag caagtttgat ctgctcagcc cacaggcagc ccaggctggt tggagctgat 540 atgecetget etggaegtgt tgaagtgaaa eatgeacaea eatggegete tgtetgtgat 600 tetgatttet etetteatge tgeeaatgtg etgtgeagag aattaaactg tggagatgee 660 atatctcttt ctgtgggaga tcactttggg 690

<210> 94 <211> 948 <212> DNA

<213> Homo sapiens

<400>	94					
cgagtggcga	ggttcatcat	ggaggcagac	ggagtctcgc	tctgttggcc	aggctggagt	60
gcaggggcgt	gatctcggct	cactgcaacc	teegteteee	ggactaaagc	aattatcctt	120
cctcacgctt	ccgagtagct	ggaattacag	gtgtcaagct	agggatgcgg	tccattccca	180
ttgccactgc	ttgcaccatt	taccataagt	tcttttgcga	gaccaacctg	gacgcctatg	240
acccttacct	gattgccatg	tcttcaattt	acttggccgg	caaagtggaa	gagcagcacc	300
tgcggactcg	tgacatcatc	aatgtgtcca	acaggtactt	taacccaagc	ggtgagcccc	360
tggaattgga	ctcccgcttc	tgggaactcc	gggacagcat	cgtgcagtgt	gagcttctca	420
tgctgagagt	tetgegette	caggtctcct	tccagcatcc	acacaagtac	ctgctccact	480
acctggtttc	cctccagaac	tggctgaacc	gccacagctg	gcagcggacc	cctgttgccg	540
tcaccgcctg	ggccctgctg	cgggacagct	accatggggc	gctgtgcctc	cgcttccagg	600
cccagcacat	cgccgtggcg	gtgctctacc	tggccctgca	ggtctacgga	gttgaggtgc	660
ccgccgaggt	cgaggctgag	aagccgttgg	gtggcagatt	tatgccatgg	acacagagat	720
cccctaaggt	cctggcccag	gcctgcccaa	agagaagcca	catctgcgtt	tgtcctttga	780
gaggactttg	actacaatac	aggcatgaca	tcaatgaaag	gaaagtcatg	aaatcgatga	840
	ctacggattt				tgtgcaacgt	900
ggctgaaatc	tattttgtgt	aataaaaggt	gatacaagtc	aaaaaaaa		948

<210> 95 <211> 541 <212> DNA <213> Homo sapiens

<400> 95 ttagtttata aagaaaagac atttaattgg ctcatagttc tgcaggctgt acaggaagca 60 tagtagette tgettetggg gaggeeteag gaaaettaea ateacageag aaggtgaagg 120 ggaagcaggc acgccgtaca tggctgggct ttcggcctcc tcttcatcaa caaggagtcg 180 gtggtcatgg cetatetett caccacette aacgeettee agggggtett catetteqte 240 tttcactgcg ccttacagaa gaaggtgagg tcgaggcggg gtcctgggtc acagcctccc 300 ttggagacgt ttcctgggta cccaggagaa ggcggcgagg gtggagggga ctcaggggct 360 ccctcaagce cccagtgagt gctgcagggc ttctgtggtc aggtctgcgt cccccgggag 420 gggagcacga gctcagggtt agggagggtt taaccacggg tgaagagggt tctgttqaca 480 gacgetgagg cegeaaacge tecteetet tetteacaet egecaacaee geggtggege 540 541

<210> 96 <211> 603 <212> DNA

<213> Homo sapiens

<400> 96 cagcccgtaa ggatgatcta cctccaaata tgagattcca tgaggagaag aggctggact 60 ttgaatggac actgaaggca gggtgagaaa aaggctagcc ctcgaagtga aataagggct 120 gggagggcca agaatgatga tagacggtga gggactgagg gatcagctga tgagttaagc 180 ctcaacacct gtcctagggc tttgcagatg gccctcaaac gtgtttacac cctcctgage 240 teetggaact geetagaaga etttgateag atettetggg geeagaagag tgeeetgget 300 ggtcagtggt tccccgaggt ctccataatc ccttaatggc ccctctggat gactcatcac 360 actocacagt coccogtaac totttgcaag aagagacott atcatatotg gtcaactcag 420 agaggccttg agaatgaaaa cgcagaagct gggttcaggg agggttatat acctgaaccc 480 ctggggtaga ttttggagaa gggatatgca ggctgtggta catatatcct cctttcaccg 540 cccaccaaag agaacgttcg ccagtgctgg caggatgatg agttgttcag cttccctcgt 600 gcc 603

<210> 97 <211> 1385 <212> DNA <213> Homo sapiens

<400> 97 tctttcagca aggtggggc aagcagaatg cctcccagga tttcacacct gagccctgcc 60 ccaccctgct gagaaaacac tccgccacgt gaagagacag aggaggatgg caggagttac 120 ctcgggaaac aaacaggatc ttctctgccc tgctccagtc gagttggcct gacccgcttg 180 gatcagtgac catttgctgg cagacagggg agagcagctt ccagcctggg tcagaagggg 240 tgggcgagcc cctcggcccc tcaccctcca ggctgctgtg agagtgtcaa gtgtgtaagg 300 gcccaaactc aggttcagtg cagaaccagg tcagcaggta tgcccgcccg tacgttaagg 360 gggccctcta aaccccttgc ctggcctcac ctggccaget cacccctttt gggtgtaggg 420 gaaaagaatg cctgaccctg ggaaggctcc ctggtagaat acaccacact tttcaggttg 480 ttgcaacaca ggtcctgagt tgacctctgg ttcagccaag gaccaaagaa ggtgtgtaag 540 tgaagtggtt ctcagtcccc agacatgtgc ccctttgctg ctggctacca ctcttcccca 600 gagcagcagg ccccgagccc cttcaggccc agcactgccc cagactcgct ggcactcagt 660

tccctcatct gtaaaggtga agggtgatgc aggatatgcc tgacaggaac agtctgtgga 720 tggacatgat cagtgctaag gaaagcagca gagagagacg ctccggcgcc ccagcccac 780 tatcagtgtc cagogtgctg gttccccaga gcacagetca gcatcacact gacaetcacc 840 ctgccctgcc cctggccaga gggtactgcc gacggcactt tgcactctga tgacctcaaa 900 960 caagccagga gatggggtga agggacacag tottgagctg tocacatgca tgtgactcct 1020 caaacctctt ccagatttct ctaagaatag caccccttc cccattgccc cagcttagcc 1080 tetteteeca ggggagetae teaggaetea egtageatta aateagetgt gaategteag 1140 ggggtgtetg etageeteaa eeteetgggg eaggggaege egagaeteeg tgggagaage 1200 tcattcccac atcttgccaa gacagccttt gtccagctgt ccacattgag tcagactgct 1260 cccggggaga gagccccggc ccccagcaca taaagaactg cagccttggt actgcagagt 1320 ctgggttgta gagaactctt tgtaagcaat aaagtttggg gtgatgacaa atgttaaaaa 1380 aaaaa 1385

<210> 98 <211> 2191 <212> DNA <213> Homo sapiens

<400> 98

accaccacce gtgcggggg atatetgage catttetetg tgggettttq tttttcaaaq 60 actgggcagg ttgttgttga ggtgtgtgtg ggctgccacg attttgtgga agtataatac 120 tttgtcatta tgagatgtcg tctctcggtg cctcctttgt gcaaattaaa tttgatgact 180 tgcagttttt tgaaaactgc ggtggaggaa gttttgggag tgtttatcga gccaaatgga 240 tatcacagga caaggaggtg gctgtaaaga agctcctcaa aatagagaaa gaggcagaaa 300 tactcagtgt cctcagtcac agaaacatca tccagtttta tggagtaatt cttgaacctc 360 ccaactatgg cattgtcaca gaatatgett ctctgggatc actctatgat tacattaaca 420 gtaacagaag tgaggagatg gatatggatc acattatgac ctgggccact gatgtagcca 480 aaggaatgca ttatttacat atggaggctc ctgtcaaggt gattcacaga gacctcaagt 540 caagaaacgt tgttatagct gctgatggag tattgaagat ctgtgacttt ggtgcctctc 600 ggttccataa ccatacaaca cacatgtcct tggttggaac tttcccatgg atggctccag 660 aagttatcca gagtctccct gtgtcagaaa cttgtgacac atattcctat ggtgtggttc 720 tctgggagat gctaacaagg gaggtcccct ttaaaggttt ggaaggatta caagtagctt 780 ggcttgtagt ggaaaaaaac gagagattaa ccattccaag cagttgcccc agaagttttg 840 ctgaactgtt acatcagtgt tgggaagctg atgccaagaa acggccatca ttcaagcaaa 900 tcatttcaat cctggagtcc atgtcaaatg acacgagcct tcctgacaag tgtaactcat 960 tcctacacaa caaggeggag tggaggtgeg aaattgagge aactettgag aggetaaaga 1020 aactagagcg tgatctcagc tttaaggagc aggagcttaa agaacgagaa agacgtttaa 1080 agatgtggga gcaaaagctg acagagcagt ccaacacccc gcttctcttg cctcttgctg 1140 caagaatgtc tgaggagtct tactttgaat ctaaaacaga ggagtcaaac agtgcagaga 1200 tgtcatgtca gatcacagca acaagtaacg gggagggcca tggcatgaac ccaagtctgc 1260 aggecatgat getgatggge tttggggata tetteteaat gaacaaagea ggagetgtga 1320 tgcattctgg gatgcagata aacatgcaag ccaagcagaa ttcttccaaa accacatcta 1380 agagaagggg gaagaaagtc aacatggctc tggggttcag tgattttgac ttgtcagaag 1440 gtgacgatga tgatgatgat gacggtgagg aggagtataa tgacatggat aatagtgaat 1500 gaaagcagaa agcaaagtaa taaaatcaca aatgtttgga aaacacaaaa gtaacttgtt 1560 tatctcagtc tgtacaaaaa cagtaaggag gcagaaagcc aagcactgca tttttaggcc 1620 aatcacattt acatgaccgt aatttettat caattetact tttatttttg ettacagaaa 1680 aacgggggga gaattaagcc aaagaagtat atttatgaat cagcaaatgt ggtgcctgat 1740 tatagaaatt tgtgatccta tatacaatat aggactttta aagttgtgac attctggctt 1800 tttcttttaa tgaatacttt ttagtttgta tttgacttta tttcctttat tcaaatcatt 1860 tttaaaaact tacattttga acaaacactc ttaactccta attgttcttt gacacgtagt 1920 aattotgtga catacttttt ttttottata gcaatacact gtaatatcag aaatggttgg 1980 cctgagcaac ctagtaagac ctcgtctcta ctaataatta aaaaactagc tggcatggta 2040 gcacacacct gtagtcccag atacttggga ggccaaggca ggaggattgc ttgagaccta 2100 gcaatcagtc agggctgcag tgagccatga tggcaccact gcactctagc ctgggcaaga 2160 gaacaagatc ctgtctcaaa aaacagggaa a

2191

<400> 99
ggcacqaggc tgaacttcag gtggatgatg agacaaaata gaccgatagg aatcgtctgg 60
ctatatactc cttgttgcca ctgctgagtg actagactgg cccagagate cgcggtgcac 120
atgctggccg ctcctcctc agaaaaaggc aatggcctaa atactgtta aatgacctga 180
ctcgatgctg tgggaaactg gctgctctgc tgcatgccgt gtgactgtca gtccaaccgt 240
tacatttgcc acgttctcca cacgggggat agacgcaatg cgcccaggtc ccagtttct 300
ttggaggcag cagctctcgc agggctgaat gttgn

<210> 100 <211> 348 <212> DNA <213> Homo sapiens

<400> 100
cctactctgg gggatcaacc agatcttcat tccataactc gtgcttctcg tcctaaatta 60
tgtactagaa aaaattgtaa tcctcttact ataactgtcc atgaccctaa ttcaactcag 120
tagtattatg gcatgtcatg ggaattaaga ttttatatcc caggatttga tgttgggact 180
atgttcacca tccaaaaaat cctggtcta tggagcccac ccaagccaat cgggccttta 240
actgatctag gtgaccctat gttccagaaa ccccctaaca aagttgattt aactgttcct 300
ccaccattct tagtcataaa agatacactc caaaagttcg agaaaatc 348

<210> 101 <211> 416 <212> DNA <213> Homo sapiens

<400> 101
agcctcaata atgtaacact gccccaagcg aaaacagaaa aagatttcat ccaactctgc

60

acccctgggg	taattaagca	agagaaactg	ggcacagttt	actgtcaggc	aagctctcct	120
ggagcaaata	tgattggtaa	taaaatgtct	gccatttctg	ttcacggtgt	gagtacctct	180
ggaggacaga	tgtaccacta	tgacatgaat	acagcatccc	tttctcaaca	gtaggatcag	240
aagcctattt	ttaatgtcat	cccaccaatt	cccgttggtt	ctgaaaattg	gaataggtgt	300
	gagatgacaa					360
gtttcttttt	cttttgagat	ggagtctcgc	tctgtcgccc	aggctggagt	gcagtg	416

<210> 102

<211> 352

<212> DNA

<213> Homo sapiens

<400> 102 acgcgtccga caaaaacaac aacagatggg gaaactgaaa gtgcatagca caaaatgcgg actaattctg aaatcaccaa tatgtatctg tgcttgggaa atagaggcat acacaggaat 120 gcagatgccc acacactcac attcacactc acactcactc tcacactcac tctcacactc 180 actotoacto goactotoac actacacega gatgotoaca cactoageot coccatgeco 240 aggcccctgc tctttgttaa tcataagaag accgtggaca acccacctgg aaactatgtg 300 cccacagacc cagactgaag gtgataaaag agggtggctg gcttgggggc tg

352

<210> 103

<211> 702

<212> DNA

<213> Homo sapiens

<400> 103 aaagcaggtg cctggaaaag cctgctgagg gtgaagggga accatccagt gtcctgggtt 60 ggggaagcat tttcctcttt atgagtctgt ctctggtcct catggaacaa aagtgggcag 120 tggtggtatg agaagcagag gctaattgtc taccccctgc ctccaagtag aattactcct 180 tgtctgtgta cctggtgagg cagttgactg caggaaccct tctacaaaaa ctcagagcaa 240 agggtatccg gaacccagac cactcgcggg cactgagtga gtaacatctt tcctcttc 300 cccacctgat ctggattcaa gtcttcctgg ccctccagcc ttcataatta aacccatacc 360 tettetttga caacttacte ceetteteac atgaacceca accetecece tetaccetq 420 accagtette cagtetttat agttgaagtt ggaccactee caqqeaceet tqaattteca 480 atcatgtate tgetttgeac etcacagtee etaacteeag ecetgetaga atatgggete 540 tccggactgg aaagaatctt aggggtcctc taatctaacc ctcacatgat gcttcaactc 600 ctccagatca tctctaacat agccagagtg tcacgctatg tttaagcatc ttcagggatg 660 ggaaaatccc ccacacccat gtattgcggc cgctctagag ga 702

<210> 104

<211> 689

<212> DNA

<213> Homo sapiens

<400>	104					
ggcaacatac	attgtggact	ttggcttcag	tacaacattc	agagagggc	agatgctgac	60
agctttttgt	ggcatgtacc	cctacgtggc	cccagaacgc	tccctgggcc	aggcatgcca	120
gtgacccgcc	agggacatac	aaagcctcag	tgtcatactg	tatttcagga	atacagtagg	180
tagaagggcc	aggactttgc	ccttttactc	agggaagcct	ccaaacttca	agaaaaaatt	240
	gatatcatgc					300
	gaacgccagg					360
aaagtagcca	gaagatgcca	ctgataccat	acgaagagcc	actcctggac	caccccaaac	420
aatccagctc	atggtggcca	tgggatttca	ggccaagaac	atctctgtgg	caatcataga	480
	aactatccca					540
gaagtgctcc	accatcagag	aactgtccct	tecteceggg	gttcccacct	ctccttcccc	600
atccactgaa	ctttccacct	tecetetete	actgatgcgg	gctcataggg	agccagcttt	660
taacgttcag	cctcccgaag	aaagccagg				689

<210> 105 <211> 776 <212> DNA <213> Homo sapiens

<400> 105 agcaaagcag gagctggcca agctgatgcg gattgaggac ccctccctcc tgaacagcag 60 agtettgetg caccacgeca aagetggeac catcattgec egecagggag accaggacgt 120 gageetgeae ttegtgetet ggggetgeet geaegtgtae eagegeatga tegaeaagge 180 ggaggacgtg tgcctgttcg tagcgcagcc cggggaactg gtggggcagc tggcggtgct 240 cactggcgaa cctctcatct tcacactgcg agcccaacgc gactgcacct tcctgcggat 300 ctccaagtcc gacttctatg agatcatgcg cgcacagccc agtgtggtgc tgagtgcggc 360 gcacacggtg gcagccagga tgtcgccctt cgtgcgccag atggacttcg ccatcgactg 420 gactgcagtg gaggcgggac gcgcgctgta caggtgcagc tcccaccgcg ctgctcaggc 480 ccggcctagg ggtggggacc tgggggtggt cagaccttgc tgacctccac gcccactcag 540 gcagggcgac cgctccgact gcacttacat cgtgctcaat gggcggctgc gtagcgtgat 600 ccagcgaggc agtggcaaga aggagctggt gggcgagtac ggccgcggcg acctcatcgg 660 cgtggtgage gegacececa cecaetgace tetggeettt tecaggecag teceteggea 720 actcacacge atcatecegg gtaatecagg gagtggtgaa gttttteeeg gggete 776

<210> 106 <211> 707 <212> DNA <213> Homo sapiens

<400> 106

cccaegcgtc cggatggacc ccaggaacca cccagacctt aggacagggg acagcatggg 60
acacagttgc ttccactcca ggaaccagcg agactacagc ttcagctgag ggaagacgaa 120
ccccaggagc aaccaggcca gcagctccag ggacaggcag ctgggcagag ggttctgtca 180
aagcacctgc tccgattcca gagagtccac cttcaaagag cagaagcatg tccaatacaa 240

```
cagaaggtgt ttgggagggc accagaagct cggtgacaaa cagggctaga gccagcaagg
                                                                     300
acaggaggga gatgacaact accaaggctg ataggccaag ggaggacata gagggggtca
                                                                     360
ggatagetet tgatgeagee aaaaaggtee taggaaceat tqqqeeacea qetetqqtet
                                                                     420
cagaaacttt ggcctgggaa atcctcccac aagcaacgcc agtttctaag caacaatctc
                                                                     480
agggttccat tggagaaaca actccagctg caggcatgtg gaccttggga actccagctg
                                                                     540
cagatgtgtg gatcttggga actccagctg cagatgtgtg gaccagcatg gaggcagcat
                                                                     600
ctggggaagg aagcgctgca ggggacctag atgctgccac tggagacaga gqtccccaaq
                                                                     660
caacactgag ccagaccccg gcagtatgac cctggggacc ccctggg
                                                                     707
```

<210> 107 <211> 485 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(485) <223> n = a,t,c or g

<400> 107 ccgctggaac atcaggtact ggggacactg gccctggtaa cacagcagtc tcaggcacac 60 ctgtggtatc acctggagca actcctggag ctccaqqtaq caqcaccct qqqqaaqcaq 120 acattggaaa caccagtttt ggaaaatcag ggaccccaac aqtatctqct qcctcaacta 180 ccagtagccc tgtgagtaaa cacaccgatq cagcctcaqc cacaqcaqtq acaatctctq 240 gaagcaaacc aggtacacct qqaacaccaq qtqqtqcaac taqtqqaqqc aaaattacac 300 ctggaattgc atgacccacc ctqqaccaaa aqaqcccctq cttctccqqq tatqqaqqtt 360 atttccctgt aaatcctcac cagaacccat gtgctgattc cctgtaatct tcccacaata 420 aatttttage agetetgnnn nnnnnnnnn nggggegeee gttttaaggg acceaecttt 480 actcq 485

<210> 108 <211> 565 <212> DNA <213> Homo sapiens

<400> 108 egggeteace getgetgtet eeegeteeca agtetttett gtgaaateca aattggatte 60 tettgatett ceatetttee agggeagtga gettgteett gtteetgetg cagaagttgt 120 agaaggaact ggcctcagag cccacgctgt cctcatcatc ctcccgcacc ctgctccctg 180 ettetgaget cetgtetgee geeteetete tettgetett ggegtggtae etcegggaag 240 cetecttete aatetecage ageetetegt tecatgegte ceaggtgete teegaggaca 300 tegagtetge geggegeete etgeegtggt eegggeggtt eageteeage tgetgettea 360 ggacccagat gtcgtggctg ctcacgctct cccaggcgct gctctcgctc agggtgcgcc 420 geogeeteec caeegaggag ecagegtege teteeteete ttteteetee teeetteece 480 accteeggta ecettetget aaaaacetet egtttegget etgecaeteg tgaatgatee 540 tetecacgte etegteeteg acceq 565

```
<210> 109
<211> 986
<212> DNA
<213> Homo sapiens
```

<400> 109 qqatqacqtq ccqccccqq ctcctqacct ctacqacqtq cccctqqct tqcqqcqqcc taggecagge accetataca atatagecea taaacaggta ettecteeta aggtagetaa 120 tggtggcgtg gtcgacagtg gtgtgtatgc ggtgcctccc ccagctgaac gtgaagcccc 180 ggcagagggc aagcgcctgt cggcctccag caccggcagc acacgcagca gccagtctgc 240 gtcctccttg gaggtggcag ggccgggccg ggaacccctg gagctggaag ttgctgtgga 300 ggccctggca cggctgcagc agggtgtgag cgccaccgtt gcccaccttc tggacctggc 360 aggeagegee ggtgegaetg ggagetggeg tageeeetet gageeaeagg ageegetggt 420 gcaggacctg caggctgctg tggccgccgt ccagagtgcc gtccacgagc tgttggagtt 480 tgcccgcagc gcggtgggca atgctgccca cacatctgac cgtgccctgc atgccaagct 540 tagccggcag ctgcagaaga tggaggacgt gcaccagacg ctggtggcac atggtcaggc 600 cctcgacgct ggccggggag gctctggagc cacccttgag gacctggacc ggctggtggc 660 ctgctcgcgg gctgtgcccg aggacgccaa gcagctggcc tccttcctgc acggcaatgc 720 ctcactgctc ttcagacgga ccaaggccac tgccccgggg cctgaggggg gtggcaccct 780 gcaccccaac cccactgaca agaccagcag catccagtca cgacccctgc cctcaccccc 840 taagttcacc tcccaggact cgccagatgg gcagtacgag aacagcgagg ggggctggat 900 ggaggactat gactacgtcc acettacagg gggaaggagg agtttttaga agacccagaa 960 986 ggagcttctg ggaaaaaggg cagcat

<210> 110 <211> 414 <212> DNA <213> Homo sapiens

<400> 110

cgaagggaaa gcagcaggtt ggggcttctt gtggccaact tcagagcctg tcaccaggaa 60
aggtaagcat gggaggaagg aagatggcga cagatgaaga aaatgtctat ggtttagaag 120
agaacgctca gtcccggcag gagtccacgc ggaggctcat ccttgttggg agaacagggg 180
ccgggaagag cgccactggg aacagcatcc tgggccagag acggttcttc tccaggctgg 240
gggccacgtc tgtgaccagg gcctgcacca cgggcagccg caggtgggac aagtgccacg 300
tggaagtcgt ggacactccg gacattttca gctccaagt gtccaagaca gatcctggct 360
gtgaggagag aggtcactgc tacctgctct cggccccgg accccacgcg ctgg 414

```
<210> 111
<211> 419
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

```
<222> (1)...(419)
<223> n = a,t,c or g
```

<400>	111					
gactctcggg	ttacgttcac	taacgaagga	gggcggtggt	gggggtgatg	tggcggcctt	60
tgaggttggc	acaggggctg	cggccagccg	ggcgctgggg	cagtgcgggc	agctccagaa	120
gctcatcgtc	atcttcattg	gcagcctgtg	cgggctgtgc	accaagtgcg	ctgtgtccaa	180
cgacctcacc	cagcaggaga	tacagacccc	ggagatacaa	cagagaaatg	cataatgtcc	240
agtcaattta	ttaaagttcc	aaagtnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	300
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnatttcaa	tatgattaaa	gcaggagtga	360
ggacacagcg	aaagtgagac	aaggaaaaga	gaacaaaata	aaacaggaga	gacagaata	419

<210> 112 <211> 1191 <212> DNA <213> Homo sapiens

<400> 112 gtgcaaggtg ctgtcactca cgtgtgccct cgaccctccc gttcacccgc agccttctca 60 gegeetetee etgggeegga ggeeteetea ceaqeetace tqttgetetq qaaaaaaate 120 cegtececeg acteegteec tacceceagt etteggeegg etetggeece tggggagggg 180 gctgcacggt ggaaggaggc tggctatggg cccggctgcc cgctgcatgt acctcctcct 240 ccacccatcg cctcttgcct gggggtaact ttgcctgggg ctcattcttt ggttaagctg 300 aagctgccgt gggtggccaa accgcagatt ctttgcaaat tctgagctgg cagagctcgc 360 ageogggage eggeogggga agaggagaet tgegegeege aageogcetg cetecaceet 420 getetecate tecegeteta gaagggetgg gaagetegeg geeggggtte cacetqqaaq 480 ctgcttgcat ggctgaaccc agcttaggtc cctgacqqqg ctqctgqtqq aattctcccc 540 cttcgaagct ggggaggttt aggagggga aggcttctgt gaagctctca aaccactaat 600 agagecect ecceaacagt gaeggegeag atgetecece tittettagt tgacaceace 660 aggcagette etggeegttg gtaggtteet geagetgget gagggaacag ggaceggeag 720 gggactttgt taggggaggg ttgggatggg cagtgggccc ctqaaaqtta atatattqqa 780 acctageteg agtgtegtte tttecaatte egaaagtaga aagagtaaaa ataggggtga 840 ttggggtggg gttagtagaa tqcctctctc aqqqcqctcc cccctccccc accqttttaq 900 agagetagge etcagecagt ettgecacte ceateteagt getteetgaa gaggetgttt 960 tgagtgttga tgaaaagcaa tgcaattatg ccaaacagta ttgagcagaa taatttattt 1020 ctttttttc ttttgcttta aatcatgaat cccgccaggt acggtggctc acgcctgtca 1080 teccageact ttgggaggee aaggegggeg gattaettaa taettaaggt caggagtteg 1140 1191

```
<210> 113
<211> 1240
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1240)
<223> n = a,t,c or q
```

<400>	113					
agaacacgaa	ctagtgtctc	taagccacta	taatagttgc	acatacaaca	tgagtgtggt	60
gtggtaggat	gcttttcctt	ttaggtcttt	actgaacttt	caagggatta	aaaccaatgt	120
atgtcaactt	tatagcaaaa	gattcagatt	ctaatcctga	ataccaatgc	attttagagg	180
gggaaaaaat	gagggatgta	aaatatatat	agtagggtaa	gagttttgcc	tttgaacaat	240
gtgcatattc	tattttaatt	tggaatgttt	tatacttgca	tttcatgtta	tgtagttttt	300
ggactggact	gtgtttttcc	acaaaatgaa	aaatcaacta	ttttgccacc	ttattattca	360
acctacctgc	ccatagttgt	ctatgccagt	tactaatcta	tttaaattta	ataaatcaaa	420
agctgtcctt	agggattggc	caagagtcgt	aagtccttca	gcctgaaggt	ttttcaattc	480
attcataaac	gttgcatggt	tttctttcca	tccagccttg	atagcatagg	geggetette	540
gaaagtgacc	agcatatacc	tgtctcctct	gctggcaggg	tcccgggcac	ggagcttcat	600
gaaggtctct	accgcgcctt	tggccgtgtc	caggtaggtg	gtgcccagat	ggctgcgctg	660
gttcatagag	gcagacgtgt	ctatcaggaa	cagtaagatg	ggcatagtgc	tggccgggga	720
caccggggcc	cgaggtggtg	gagaaagagg	agatggtaga	ggtggaggcg	ccggtggcgg	780
cgaccgccgc	tagcggggcg	ggggagcacg	gcccccggga	ggaaaacact	gtctgggtct	840
ttcctccggc	tgcggggaat	tcctcccccg	atagttgaga	ggaaactccc	cagacccagt	900
gctccccgtc	gtaccnccgc	ctccgcctcc	tectgeetge	ctgcccgctg	gggcgggcgc	960
ccagccgtct :						1020
ccctgtgtgt	gtcccagcgg	gagacgggcc	tggctcccca	ccccaccccc	ggtacaggag	1080
tggggacctg	ggagctggcg	aagagggag	tgggctgagg	gaagattggc	cctggggctg	1140
ttgggagaag	tttcagggac	tccctccgca	caccggcggt	gtcaccactt	tctcagcccc	1200
tctcgcggac	gcgtgggtcg	cgccggggtt	tccgcaggca			1240

<210> 114 <211> 810 <212> DNA <213> Homo sapiens

<400> 114 aatagaatto ogtoggoaca ogcacgogta cotaggatog tatagagogg cogcaataca 60 tgccgtcttc ttaaatcaac tcctctctc caaaaagcct ttctttccgt gtcgcgaata 120 teatecetee ggteetgtee egeagegagt teeceggegt tgggettete tattatgeeg 180 gccageggag tccaattggt ctgacttcac tgtccggaga atcctctcgc tcccaaacct 240 ccctgagaga cgacctttaa ccgtgccagc cggacctgcc tacaaagacc ctcctcttca 300 acctgtcccc tgtgttactc cacaaaacgg acacagaagt tcgtcaacct gcccagatac 360 caegeetcaa ageggcaaca gageegaace cettteteag getteggaeg geecagaeee 420 ggcatctctt ttctcctctt ccccagaccc ttccacctct ggcctccgag agccccagcc 480 teagttecce tecaggeest aggaacceta etetecagea gtacagtetg tagacceceg 540 aatcagttcc ccactcaacc tcagaactcc tctqqcqccq actqqcccca ctcgggcaaa 600 ggatggcggt ggataggatg acccgaacca ccagagccag caaacttacc ccagccgcca 660 tggtgattcc gcaaagaaag ggggtggggt tctcggcqct gccqcaaagt aagcccgccc 720 gggagagaag ggagggggaa agaggagagc cgtggagaaa cagcagccga aaaacgagga 780 cgaaacagaa gacatacgta cgacagttcg 810

<210> 115 <211> 320 <212> DNA

<213> Homo sapiens

```
<400> 115
caagagcacg atgctgaagc actggagagt ggggctctgg ggtcagtgct ggatcagagg
                                                                      60
caagaggagg tgatgatgcg gccctgtcct gagtgacacc aacccctccc cagtactaca
                                                                     120
cctgcagctg tgtcctgggc ttcattgcct gctccatctt cttgcagatg agcctgaagc
                                                                     180
caaaggteat getgetgaea gtggeeetgg tggeetgtet egtgetette aaceteteee
                                                                     240
agtgetggea gegggaetge tgeagecaag geetgggeaa eeteactgag eecagtggea
                                                                     300
ccaacaggta qqqcccqcc
                                                                     320
     <210> 116
     <211> 456
     <212> DNA
     <213> Homo sapiens
     <400> 116
ggcaaggcag gcggcggc cggcctcttc gccaagcagg tgcagaagaa qtttaqcaqq
                                                                      60
gcccaggaga agtagacaag gcggtttggg aagacatgtc agccaqaaqa aaqaqcqaqq
                                                                     120
gaagaaagac aagaaggacc tgagatagag tttgggtttt cctttttttc tctctcttt
                                                                     180
tattaagccc aacctgcctt ctacaacgga gaagttttgg ttttctaaga gctgatggac
                                                                     240
ttagaagcat ttggatgaac agetetgett accaactgaa atatecetat tatettetaa
                                                                     300
aagtggagca ctgctttgag ccctgggaag gcttaaaggc aaccagctct cccgaqttqa
                                                                     360
tttatcagca gaaaactgat ggaatgtaga tgtagctcct gactttaaga gaccacaatg
                                                                     420
gaagggaggt tattttctat catttgaggt catgtg
                                                                     456
     <210> 117
     <211> 2398
     <212> DNA
     <213> Homo sapiens
     <400> 117
cccacgcgtc cggtcagcct cagtcttcaa tgagggaccc cgtacagagt aacccaaacg
                                                                      60
cttgttccta tttcaggatg tgaacactct gcaaggaggt gggcagcctg tggtgactcc
                                                                     120
gtccgtccag ccctctcttc agccggccca tccagcgtta ccacagatga cctcacaggc
                                                                     180
acctcagcca tetgttactg ggetecagge accttetget geettaatge aagtgteate
                                                                     240
totogattcc cactcagctg tatotggaaa tgcccaatcc tttcagccct atgcaggtat
                                                                     300
gcaagcctac gcttatcccc aggcatctgc cgtcacctcc cagctgcagc ccgttcggcc
                                                                     360
tttgtaccca gcaccgctct ctcagcctcc ccatttccaa ggatcaggtg atatggcttc
                                                                     420
atttctcatg actgaagccc ggcaacataa cactgaaatt cgaatggcag tcagcaaagt
                                                                     480
ggctgataaa atggatcatc tcatgactaa ggttgaagag ttacagaaac atagtgctgg
                                                                     540
caattccatg cttattccta gcatgtcagt tacaatggaa acaagcatga ttatgagcaa
                                                                     600
catccagcga atcattcagg aaaatgaaag attgaagcaa gagatccttg aaaagagcaa
                                                                     660
tcggatagaa gaacagaatg acaagattag tgaactaatt gaacgaaatc agaggtatgt
                                                                     720
```

780

tgagcagagt aacctgatga tggagaagag gaacaactca cttcagacag ccacagaaaa

cacacaggca	agagtattgc	atgctgaaca	agagaaggcc	aaggtgacag	aggagttagc	840
agcggccact	gcacaggtct	ctcatctgca	gctgaaaatg	actgctcacc	aaaaaagga	900
aacagagctg	cagatgcagc	tgacagaaag	cctgaaggag	acagatette	tcaggggcca	960
gctcaccaaa	gtgcaggcaa	agctctcaga	gctccaagaa	acctctgagc	aagcacagtc	1020
	agtgaaaagc					1080
ggaggaactg	actgaccttc	gagttgagaa	ggagtccttg	gaaaagaacc	tctcagaaag	1140
gaaaaagaag	tcagctcaag	agcgttctca	ggccgaggag	gagatagatg	aaattcgcaa	1200
	gaggaattgg					1260
agaccaagca	gctgcagagc	agctgtcttt	agtacaggct	gagctacaga	cccagtggga	1320
agcaaaatgt	gaacatttgt	tggcctccgc	caaggatgag	cacctgcagc	agtaccagga	1380
ggtgtgcgca	cagagagatg	cctaccagca	gaagctggta	caacttcagg	aaaagtctgt	1440
ttgttttgca	gtgtttagcc	ctccaggccc	aaatcacagc	tctcaccaag	caaaatgaac	1500
agcacatcaa	ggaactagag	aagaacaagt	cccagatgtc	tggggttgaa	gctgctgcat	1560
ctgacccctc	agagaaggtc	aagaagatca	tgaaccaggt	gttccagtcc	ttacggagag	1620
agtttgagct	ggaggaatct	tacaatggca	ggaccattct	gggaaccatc	atgaatacga	1680
tcaagatggt	gactcttcag	ctgttaaacc	aacaggagca	agagaaggaa	gagagcagca	1740
gtgaagaaga	agaagaaaaa	gcagaagagc	ggccacgaag	accttcccag	gagcagtcag	1800
cctcagccag	ttctgggcag	cctcaagcac	ccctgaatag	ggagaggcca	gagtccccca	1860
tggtgccctc	agagcaggtg	gtcgaggaag	ctgtcccgtt	gcctcctcag	gccctcacca	1920
	tggacacaga					1980
aagatggttc	ccttccaccc	gaactgtctt	gcatcccatc	ccacagagtt	ctagggcccc	2040
cgacttcaat	tccacctgag	cccctaggcc	ctgtatccat	ggactctgag	tgtgaggagt	2100
cacttgctgc	cagcccaatg	gcagctaaag	cccgacaacc	catcagggaa	aggtctgtgt	2160
tcaggggaag	taggcaccag	atgggcccac	ttacaaggaa	aggttccaca	agattgttcc	2220
ctggatttca	ggaccccgag	ggaggggac	ccactggcct	tagggcttga	aaagcccagg	2280
gagagcctca	gcctccacag	cttcaaggaa	aggttgatgt	tcactaggtt	ccaccggttc	2340
cccacaaggg	agcttttcaa	gaacaggagg	gcaggtttcc	acagttttgc	agggagca	2398

<210> 118 <211> 800 <212> DNA

<213> Homo sapiens

<400> 118 agcgaaacgg cgcagcaaat tatcgaccgt ctgcgcgtaa aactggcgaa agaaccgggg 60 gcgaatctgt tcctgatggc ggtacaggat attcgcgttg gtgggcgtca gtcgaacgcc 120 agctaccagt acacgttgtt atccgacgac ctggcggcac tgcgagaatg ggagccgaaa 180 atccgcaaaa aactggcgac gttgccggaa ctggcggacg tgaactccga tcagcaggat 240 aacggcgcgg agatgaatct ggtttacgac cgcgacacca tggcacggct gggaatcgac 300 gtacaagccg ccaacagtct gttaaataac gccttcggtc agcggcaaat ctcgaccatt 360 taccagccga tgaaccagta taaagtggtg atggaagtgg atccgcgcta tacccaggac 420 atcagtgcgc tggaaaaaat gttcgttatc aataacgaag gcaaagcgat cccgctgtca 480 tatttcgcta aatggcaacc ggcgaatgcc ccactatcgg tgaatcatca gggattatcg 540 geggeettga ceatttegtt taacetgeeg aceggaaaat egetetegga egecagtgeg 600 gcgatcgatc gcgcaatgag ccagcttggt gtgccttcga cggtgcgcgg cagttttgcc 660 ggcccggcgc aggtgttcca ggagaccatg aactcgcagg tgatcctgat tattgccgcc 720 atcgccacgg tgtatatcgt gctgggaatc ccttacgaga ggtacgtaca tccgccgacg 780 attctcttgt gaaggccgcc 800

<210> 119 <211> 427

<212> DNA

<213> Homo sapiens

<400>	119					
aaatcatcac	acctgatgcg	atgggttgcc	agaaagatat	tgcagagaag	atacaaaaac	60
agggaggtga	ttatttattc	gctgtaaaag	gaaaccaggg	gcggcttaat	aaagcctttg	120
aggaaaaatt	tccgctgaaa	gaattaaata	atccagagca	tgacagttac	gcaatcagtg	180
aaaagagtca	cggcagagaa	gaaatccgtc	ttcatattgt	ttgcgatgtc	cctgatgaac	240
ttattgattt	cacgtttgaa	tggaaagggc	tgaagaaatt	atgcgtggca	gtctcctttc	300
ggtccataat	agcagaacaa	aagaaagagc	cagaaatgac	ggtcagatac	aatatcagtt	360
agttgggtat	cgccggggat	atatcagtca	cagcgatctc	cgggacggac	gattgaatct	420
cgtaatc						427
				· ·		

<210> 120

<211> 378

<212> DNA

<213> Homo sapiens

<400> 120
ccattatttg aaaatgctca ctcaggcgcg gcgggaagtg attatcgcca acgcctactt 60
cttccccggc tatcgatttt tacacgcctt gcgtaaagcg gcacggcgcg gggtgcggat 120
caaactgatc attcagggcg aaccggatat gccgattgtc agagtcggtg cgcgcttgct 180
gtataactat ctggttaaag gcggcgttca ggtttttgag taccgccgcc gcccgctcca 240
cggcaaagtg gcattgatgg acgatcactg ggcgacagta gggtccagta atctccatcc 300
ggtcagttag tcggggaatc tccaagcaaa tgtcatcctc cacgttctac gggtaccgac 360
attgaatccg taatcatg

<210> 121

<211> 508

<212> DNA

<213> Homo sapiens

<400> 121 ctgccgcctg gtgaagttta cgccccatcg aagccctggc aaaagaagtc cgtgaactga 60 aataacatac tcgttaattg ctcaatccag ccacaacgcg agaactgacc agtctgggac 120 gaaacctgaa ccgattgtta aaaagtgaac gcgaacgtta cgacaaatac cgtacgacgc 180 tcaccgacct gacccatagt ctgaaaacgc cactggcggt gctgcaaagt acgctgcgtt 240 ctctgcgtag tgaaaagatg agcgtcagtg atgctgagcc ggtaatgctg gagcaaatca 300 gccgcatttc acagcaaatt ggctactacc tgcatcgtgc cagtatgcgc ggcgggacat 360 tgctcagccg cgagctgcat ccggtcgccc cactgctgga caatctcacc tcagcgctga 420 tcaaaggcaa gccgcgtaaa gggggcaacg tcactgtttt tccattcaca gcgatgtaca 480 gggacggaca ttgaatccgt gatcagtg 508

<210> 122 <211> 724 <212> DNA <213> Homo sapiens

<400> 122 gggtaacact gtgatgtttc agcacetgat gcagaagcgg aagcacaccc agtggacqta 60 tggaccactq acctcgactc tctatgacct cacagagatc gactcctcaq qqqatqaqca 120 qtccctqctq qaacttatca tcaccaccaa qaaqcqqqaq qctcqccaqa tcctqqacca 180 gacqccggtq aaggaqctgg tqagcctcaa gtqgaagcgg tacqqgcggc cqtacttctq 240 catgetgggt gecatatate tgetgtacat catetgette accatgtget geatetaceg 300 ccccctcaag cccaggacca ataaccgcac gagcccccgg gacaacaccc tcttacagca 360 gaagctactt caggaagcct acatgacccc taaggacgat atccggctgg tcggggagct 420 ggtgactgtc attggggcta tcatcatcct gctggtagag gttccagaca tcttcagaat 480 gggggtcact cgcttctttg gacagaccat ccttgggggc ccattccatg tcctcatcat 540 cacctatgec ttcatggtgc tggtgaccat ggtgatgegg ctcatcagtg ccagegggga 600 ggtggtaccc atgtcctttg cactcgtgct gggctggtgc aacgtcatgt acttcgcccg 660 aggattccag atgctaggcc ccttcaccat catgattcag aagatgattt ttggcgacct 720 gatg 724

<210> 123 <211> 435 <212> DNA <213> Homo sapiens

<400> 123 gaqaaagcag cagctgccaa catagatgaa gtqcagaagt cagatgtatc ctctacaggg 60 cagggtgtca tcgacaagga tgcgctgggg cctatgatgc ttgaggtagc acatcttcat 120 tttaqtqctq tattttaaaa tcttqttqat cttcacatta ttacatttaa tttcaqqtqa 180 atataattta aggagaatee acactagtae tagtactatg gacetettga gettgetgat 240 atgectgtgt gtetetatgt atgttttgge teetgetgee agtatatgtg tgtttgaaat 300 taacatagaa ttaaattaac tagattagag tagacattgg caagttgtaa ttgccagttg 360 agcatttatt tqaaaaactq tattcacaaq tcctactaaa ttctqtqttq attttaqctt 420 gaaatgttct caaaa 435

<210> 124 <211> 363 <212> DNA <213> Homo sapiens

<400> 124
actggaagtg ccttcagagg tcaccccttt gggctttgcc atgcaggcta caaagactct

cetecteaga acatgetget tgeaggaatt caacateatg gaaaagaata aaggatggge 120
tetectggga ggaaaagatg gecatettea gggactattt eteettgeea aegeattget 180
ggaaagaaat cageteettg cacagaaggt catgtactta ttagteecte ttettaaeeg 240
agggaatgat aaacataaac teacatetge aggettttt gtggagette teeggagtee 300
agtggeeaag agactgeea geatataete tgttgeeege tttaaagaet ggetaeaaga 360
tgg 363

<210> 125 <211> 373 <212> DNA

<213> Homo sapiens

<400>125agaccggeccccgctccctcagctgcgccggaggaggcgcccagtcctcggggtgaagggtcgggggatggcgaagcgaagagtgccgctccggtgtgggggggagcaggaggagggacgaagtccgcccgccgcgcctcagcaccgagcggagcgaggaaggaggacgagcggtgaaggaagcctacccttccagccgtcagccgcgccgccgtcgccgtgacccctgcgttgcgcccggcgctgctcagcccctcgatgccaatttcaaatagggaaggaaaaagggaaaágaagggaagagaaaatccggccgctgagtcccgcgtccactcacacctccgctcgtgcc373

<210> 126 <211> 362 <212> DNA <213> Homo sapiens

<400> 126
gcctacaggg ggtccatggc agcagttcta ctttctgcag ctccctaagc agtgactttg 60
accccctaga gtactgcagc cctaaagggg atccccagcg agtggacatg cagcctagtg 120
tgacctctcg gcctcgttcc ttggactcgg aggtgccac aggggaaacc caggtttcca 180
gccatgtcca ctaccaccg caccggcacc accactacaa aaaggggttc cagaggcatg 240
gcaggaagcc tggcccagaa accggagtcc cccagtccag gcctcctatt cctcggacac 300
agccccagcc agagccacct tctcctgatc agcaagtcac cagatccaac tcagcagccc ct .

<210> 127 <211> 351 <212> DNA <213> Homo sapiens

cagcagcgag cattctatct ggatggacgg gccaatgtga	127 cccgaccccc gcctccgaca ctgcaggatc actgactggc cggtattaag agtgacgagg	ccgtgcacat tcttagctac tgcaaaggcc aggaggggcc	tcgaatggcc tgtgacttcg tgactgtgtc ttagaggggg	tttctgagaa acagataatt tccttcaaaa attagatcct	gagtctacag tagcctttga ttcatgtgct gaaaggtcct	60 120 180 240 300 351
<210> <211> <212> <213>	374	ıs				
gggetggetg ttecagetea tetggetgag tggtettatt	aaggcaccat ctcagcagga ccttaactgt tgagctggaa tcacaggagc tttggctact	gtgtttaata ttcctggctg tgagtgtagt acttcccgaa	agcacttaat actcgcctct ggtagtgcca cgagtttacc	tgcccggtga cggcctgatt cctataggtt tcgggagatg	gtacagacca gccctgctca cctcttacct gaaagaaagc	60 120 180 240 300 360 374
<210> <211> <212> <213>	392	ıs				
ggtcagaggt tcttttcccc ttgctgtgct tctctctagg tcctcgacgc	129 cccagccca cagacaggtc cagcaattaa gagggettet accaactgcc gatgttccca tccccagccc	atcaggaatt gtcccccgg ccagactgaa cctgtaagta cttaccccaa	ttgcttcaag ggcttggggg tcagcaggtc cagttttttg ggtaagatga	tgagttgctg ttgggtttgt ctcagctcat gataacctca	ctgccctgac cagcttgctt ctctgctcct agaagttgac	60 120 180 240 300 360 392
<210> <211> <212> <213>	359	ıs				

```
<400> 130
cogggacgat gootgootet actococago otcagotoco gaggteatea cagtaggggo
                                                                     60
caccaatgcc caggaccagc cggtgaccct ggggactttg qqqaccaact ttqqccqctq
                                                                     120
tgtggacctc tttgccccag gggaggacat cattggagcc tccaqcqact qcaqcacctq
                                                                     180
ctttgtgtca cagagtggga catcacaggc tgctqcccac qtqqctqqca ttqcaqccat
                                                                     240
gatgctgtct gccgagccgg agctcaccct ggccgagttg aggcagagac tgatccactt
                                                                     300
ctctgccaaa gatgtcatca atgaggcctg gttccctgag gaccagcggg tactgaccc
                                                                     359
     <210> 131
     <211> 389
     <212> DNA
     <213> Homo sapiens
     <400> 131
gttagaaatc aagtttttgg agcaggtgga tcaattctat gatgacaact ttcccatgga
                                                                     60
aattoggoat otgttggood aatggattga aaatcaagad tggtaggatd aaacatattt
                                                                     120
tccctagaag ttgatgcaca aatgtctgat gctctatcca tqtqaattta ttttatqqtc
                                                                     180
cactttttac tcagtagatg cattcttttc aggtaaagaa ctttctcaag gatttgaaag
                                                                     240
ccttcccaaa gaaggggaat aattgtcctt tctggttcca ttcattgtaa atgaaaagtt
                                                                     300
aatggttcca gtgcttcttt tctctgtaaa caaaaaccca aataattttt catgtattaa
                                                                     360
aaaaagaagc aaatcaattg attgtcagt
                                                                     389
     <210> 132
     <211> 465
     <212> DNA
     <213> Homo sapiens
     <400> 132
ggaggcagga gatgcggatg aagatgaggc tgatqctaat aqctctqact qtqaaccaqa
                                                                     60
ggggcccgtg gaagcggaag agcctcctca ggaggatagt agcagtcagt cagactctgt
                                                                     120
ggaggaccgg agtgaggatg aggaagatga acattcagag gaggaagaaa caagtggaag
                                                                     180
ttcagcatca gaggaatctg agtctgaaga gtctgaggat gcccaatcac agaqccaaqc
                                                                     240
agatgaagag gaggaagatg atgattttgg ggtggagtac ttgcttgcca gggatgaaga
                                                                     300
gcagagtgag gcagatgcag gcagtgggcc tcctactcca gggcccacta ctctaggtcc
                                                                     360
aaagaaagaa attactgaca ttgctgcagc agctgaaagt ctccagccca agggttacac
                                                                     420
getggecaeg acceaggtaa agaegeecat teceetgett etgeg
                                                                     465
     <210> 133
     <211> 354
     <212> DNA
```

<213> Homo sapiens

ttgccagagt gagggcattt aacaaagttt gagttgctat	taagggagtt ctttgacaga caagacttat gcgagaaaac cactatcttt	acttagtcta aaacttgaaa taacatagaa caattctctt	attcaaacca aatctctatt gatggagtat tcacacgtgc	taccccaaat atatatacaa tggcctggaa ttgaaacgct cacccaaact ttagtgaaga	cataactaaa ctgctatttt gacaaatttg gccaagctcc	60 120 180 240 300 354
<220>	326 DNA Homo sapier					
<222>	misc_featur (1)(326) n = a,t,c c	1				
gegeageeag teteceeaga atgaattgee geegttttaa	cggngacagg gccctgggcc agaggaagtt accacattaa	agteggegee teeetgtgtg ataaaatata ggggggeeaa	ctcgctcacc tccaaatgct tccaaagctc	acgtccaacc gccagcctga gggagaacat nnnnnnnnn ggctggcaag	aggagetgag cacccettgg nnnngggggg	60 120 180 240 300 326
<210> <211> <212> <213>	210	ıs				
ttgaaccagc cattctgtcc	tctgtcttcc tgatgcgctg	tcttcggaaa agtgtttgat	taccaatccc	tttctcttct ggactcccag gcccagtgtt	tcccctccta	60 120 180 210
<210> <211> <212>	310					

<213> Homo sapiens

tgtatactca aggtatttaa tgaaccatat	136 acacatataa ctgcttttcc cagactcccg gaaactagcc agatagaatt	taacgtgaaa acaaaaagca aaggtagtaa	aatttaccaa gaatgatcag taatttcgta	aatgctaatt cgaaatcgga tcaacaaaag	gtgacttata aaagaaaagc tactcaattc	60 120 180 240 300 310
<210> <211> <212> <213>	502	ns				
agagacagtt cttccgatac aaccacttgc cagagaactt gtgatcgaca ttggaaagtt ttgtgctgac	137 aatttaaaaa ttacatagct cctcaggaaa agagtggcta tatctattcc caatgacaat tttgggacat ctctgatatg tgtggacctc	taatattta atccaagtgg aggaaataca tgtgctggat ataatgcttc gcacagatgt gcatatgtca	tcattaaagg aatatggtgt atccctctga gctgtgtagc gaagcacggg ttggcagctt	catggtggag gacaggatcc agaagaatat cacctatgtt acacatgttt caaaagggat	ctggttcctg tttaaagata gaaaaggctt ttaggcatct cacattgact cgggctcctt	60 120 180 240 300 360 420 480 502
<210> <211> <212> <213>	963	ns				
gccettcace tcccaggga gtttcccaag cccactctet acagaggaca gcagetgagg gttgggggca agcagectgt gctgagetge cagaaaaaag gtggeeccag	138 cctccctagc ccacacagct agccaggctg tgacttcatc ctggttctcc gtgctggagg gtctgggggc gcccccaacc gtttgagcag agagtcttcg aaattgaaga ctgctatgct gcaacagcct	gaggtggaga gcgcccatct caaggaaccg aaaaccttca cgggccagag tggagttgag cctgagccat cgaggagtca gcagaagcac tttgtacagc gtccagccgc	gtgaggcete ctgaagaggg gctgagcete accetcage accagggaag gaggaaggag cccagcecag gaaagcagtg ttgtcagagg cggctgggga cagcecec	accacctcct aaagccgcag ttcccttgca tcacttcaga ctctggctga atgatgggaa tgtggatgaa gggaagatga tggaaacact agcagccccc tctccaaggg	gctcggcccc cttgttggc gccaacatcc gagctcagat gagcgaccgt ggaaccccaa ctactcctac ggagttctgg acagacacta accgggtatt cagcttcccc	60 120 180 240 300 360 420 480 540 600 660 720 780

```
acccagette catetttee etgagacce tttetgtega etgttttet ecaggeettg 840 ggggtetgee eegggggaat agacceete teeceacete ecettteete acttagtget 900 eteetteece cateetgget ecaggeatea tgegaaggaa etetetgagt ggeageagea 960 eeg
```

```
<211> 376
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(376)
<223> n = a,t,c or g
```

<210> 139

<400> 139
cgccgctttg tttctcaaga gactgggaat ctgtatattg ccaaagtaga aaaatcagat 60
gttgggaatt atacctgtgt ggttaccaat accgtgacaa accacaaggt cctggggcca 120
cctacaccac taatattgag aaatgatgga gtgatgggtg aatatgagcc caaaatagaa 180
gtgcagttcc cagaaacagt tccgactgca aaaggagcaa cggtgaagct ggaatgcttt 240
gctttaggaa atccagtacc aactattatc tggcgaagag ctgatggaaa gccaatagca 300
aggaaagcca gaagacacaa gtcaagagtg gggaaanntc ttgagaaatc ccttaatttt 360
tcagcaggga ggatgc

```
<211> 968
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(968)
<223> n = a,t,c or g
```

<210> 140

<400> 140 gcaaggggca gttggtgaac ttgctgcctc cagagaattt tccctggtgt ggaggcagcc agggacecag gatgeteegg acetgttaeg tgetetgtte ecaagetggt eccegeteea 120 180 ggggctggca gtccctgagc tttgatggcg gggccttcca ccttaagggc acaggagagc 240 tgacacggge cttgctggtt ctccggctgt gtgcctggcc cccactcgtc actcacgggc 300 tgttgctcca ggcctggtct cggcgactcc tgggctcccg gctctcaggc gcatttctcc 360 gagcatccgt ctatgggcag tttgtggctg gtgagacagc agaggaggtg aagggctgcg 420 tgcagcagct gcggaccctc agcctccgac cactgctggc agtgcccact gaggaggagc cggactctgc tgccaagagt ggtgaggcgt ggtatgaggg gaacctcggt gctatgctgc 480 ggtgtgtgga cctgtcacgg ggcctcctgg agccccccag cctggctgag gccagcctca 540 tgcagctgaa ggtgacggcg ctgaccagta ctcggctctg taaggagcta gcctcgtggg 600 660 teagaaggee aggageetee ttggagetga geeegagag getggetgaa getatggaet 720 etgggeagaa eeteeaggte teetgeetea atgetgagea gaaccageae eteegggeet 780 ccctcagccg cctgcatcgg gtggcacagt atgcccgggc ccagcacgtg cggctcctgg

tggatgegga gtacacetea etgaaceetg egeteteget getggtgget geeetggetg 840
tgegetggaa eageeeggt gaaggegge eetgggtgt gaacacetae eaggeetgte 900
taaaggacae attetagegg etggggaggg atgeanagge tgegeaeagg geeggeetgg 960
eetteggg

<210> 141

<211> 306

<212> DNA

<213> Homo sapiens

<400> 141

agacggctga	aaagggaggg	gtattgaggg	cggttcagag	ggcgaggaga	ggggcgtaga	60
gaacctgtgg	agaagaagtt	cactggaggg	gcattaggcc	tcgcactatg	tatccagatc	120
atcagtaggg	gaagagaaaa	gatgggcaat	atgtatagtc	agacgagaag	tgggatcaaa	180
cagagggctc	atggagaagt	aggctaccca	ccacataacc	ccatcatagg	attgcaggag	240
atacagctat	agataagaat	atccaccagt	cggtgagtga	gcagatcaag	aagaactttg	300
ccaaga						306

<210> 142

<211> 316

<212> DNA

<213> Homo sapiens

<400> 142

	atttaatata					60
	ttatattcct					120
tacattctta	ttattgcaca	acaaatagaa	gactttggat	ttccttatat	aagtaccttg	180
acagatgact	aacccatttt	tcctatgctt	tacaactatg	atcagtaact	gtaattttt	240
taaaggtcct	cctggacccc	cgggtgaaaa	aggagatcga	ggtcccactg	gagaaagtgg	300
tccacgagga	tttcca					316

<210> 143

<211> 339

<212> DNA

<213> Homo sapiens

<400> 143

gacaatacca	aatgaatgaa	cgtgactgtg	ttccaacaaa	actttattta	caaaaacagg	60
gatgggccgg	atgtagccag	aggccataat	ttgccaaccc	ctgatttaga	cgaaggaaag	120
gagcagtgct	tcactgcttt	taaattaatt	ctgtattctc	acaaggccta	cattgaaatg	180

gaattatage eteattitt ettagaaeet titatatitti tittatieat atacagggit 240 gicaageigg acagaetati aaagiteaag teleettiga titigeitagi etgatgitta 300 cattigiaag teeatgiaee aaegatitaa teatacaeg 339

<210> 144 <211> 2018 <212> DNA <213> Homo sapiens

<400> 144

acaagttatc tgtgaatcat aggagaacac atcttacaaa actcatgcac actgttgaac 60 aagctacttt aaggatatcc cagagcttcc aaaagaccac agagtttqat acaaattcaa 120 cggatatage teteaaagtt ttettttttg atteatataa catgaaacat atteateete 180 atatgaatat ggatggagac tacataaata tatttccaaa gagaaaagct gcatatgatt 240 caaatggcaa tgttgcagtt gcatttttat attataagag tattggtcct ttgctttcat 300 catctgacaa cttcttattg aaacctcaaa attatgataa ttctgaagag gaggaaagag 360 tcatatcttc agtaatttca gtctcaatga gctcaaaccc acccacatta tatgaacttg 420 aaaaaataac atttacatta agtcatcgaa aggtcacaga taggtatagg agtctatgtg 480 cattttggaa ttactcacct gataccatga atggcagctg gtcttcagag ggctgtgagc 540 tgacatactc aaatgagacc cacacctcat gccgctgtaa tcacctgaca cattttgcaa 600 ttttgatgtc ctctggtcct tccattggta ttaaagatta taatattctt acaaggatca 660 ctcaactagg aataattatt tcactgattt gtcttgccat atgcattttt accttctggt 720 tetteagtga aatteaaage accaggacaa caatteacaa aaatetttge tgtageetat 780 ttcttgctga acttgttttt cttgttggga tcaatacaaa tactaataag ctcttctgtt 840 caatcattge eggactgeta cactacttet ttttagetge ttttgeatgg atgtgeattg 900 aaggcataca tctctatctc attgttgtgg gtgtcatcta caacaaggga tttttgcaca 960 agaattttta tatctttggc tatctaagcc cageegtggt agttggattt teggeagcac 1020 taggatacag atattatggc acaaccaaag tatgttggct tagcaccgaa aacaacttta 1080 tttggagttt tataggacca gcatgcctaa tcattcttgt taatctcttg gcttttggag 1140 tcatcatata caaagttttt cgtcacactg cagggttgaa accagaagtt agttgctttg 1200 agaacataag gtcttgtgca agaggagccc tcgctcttct gttccttctc ggcaccacct 1260 ggatctttgg ggttctccat gttgtgcacg catcagtggt tacagcttac ctcttcacag 1320 tcagcaatgc tttccagggg atgttcattt ttttattcct gtgtgtttta tctagaaaga 1380 ttcaagaaga atattacaga ttgttcaaaa atgtcccctg ttgttttgga tgtttaaggt 1440 aaacatagag aatggtggat aattacaact gcacaaaaat aaaaattcca agctgtggat 1500 gaccaatgta taaaaatgac tcatcaaatt atccaattat taactactag acaaaaagta 1560 ttttaaatca gtttttctgt ttatgctata ggaactgtag ataataaggt aaaattatgt 1620 atcatataga tatactatgt ttttctatgt gaaataggtc ctgtccaaaa atagtattgg 1680 ccagatattt gggaaaagta aattgggttt cctcagggag tgatatcccc ttgcacccaa 1740 gggaaaagat tttcttcta acacgagaag tatatgaatg tcctgaaggg aaaccctggg 1800 ccttgatatt tctgtgactc gtgttgcctt tgaaactagt cccctaccac ctcggtaatg 1860 agctccatta cagaaagtgg aacataagag aatgaagggg cagaatatca aacagtgaaa 1920 agggaatgat aagatgtatt ttgaatgaac tgttttttct qtaqactagc tqaqaaattq 1980 ttgacataaa ataaagaatt gaagaaacaa aaaaaaaa 2018

```
<210> 145
<211> 429
<212> DNA
<213> Homo sapiens
```

<400> 145 ggcacgaggg aagctgcccc gtccaggttc atgttcctct tatttctcct cacgtgtgag 60 ctggctgcag aagttgctgc agaagttgag aaatcctcag atggtcctgg tgctgcccag 120 gaacccacgt ggctcacaga tgtcccagct gccatggaat tcattgctgc cactgaggtg 180 gctgtcatag gcttcttcca ggatttagaa ataccagcag tgcccatact ccatagcatg 240 gtgcaaaaat tcccaggcgt gtcatttggg atcagcactg attctgaggt tctgacacac 300 tacaacatca ctgggaacac catctgcctc tttcgcctgg tagacaatga acaactgaat 360 ttagaggacg aagacattga aagcattgat gccaccaaat tgagccgttt cattgagatc 420 429 aacagcctc .

<210> 146 <211> 717 <212> DNA

<213> Homo sapiens

<400>	146					
gatgaaactt	ccggtctcat	tgtccgggaa	gtgagcattg	agatttcgcg	ccagcaagtg	60
gaagaactct	ttggacctga	agattactgg	tgccagtgtg	tggcctggag	ctcagcgggt	120
accacaaaga	gccggaaggc	gtatgtgcgc	attgcatagg	aactcatgac	ctgacatcca	180
ttagcagagt	catcagagtc	atctggctgc	tgtgttgaga	atggaccatg	ctgggcaagg	240
ggagaagcag	gaagaccagt	gatgagactg	cagctatgag	agatgttaag	ctactgtaga	300
ttggaagcag	tggaggtggt	gaggccagga	tttcagatat	atttaaaagt	agagataaca	360
gcttttgttg	agaccttgga	tgtgtgatgt	gagagaaaga	agagaaagga	tgattttgaa	420
agggcctaag	cctttatcca	aggatttctt	tcaaatgtct	ttagtgaagc	cattcctgcc	480
tcacagaggg	aggaggctgg	gcattccttt	ctcaatactt	tcagagcagt	ttgtccatac	540
ccctaatata	gtgcttgtct	catttcgaat	tatattcact	cgtaaaattt	gtgtttcatg	600
ccagtgagtt	ccatgagatc	aagaattcta	ttgtacttaa	ttttatatct	ctcctgctta	660
gcacaatacc	tagagtatca	cagatgttta	acaattttct	tgaattaaaa	ctgttat	717

<210> 147 <211> 367 <212> DNA <213> Homo sapiens

<400> 147
ggcacgagat cgattcatgt aaagctggac gtgggcaagc tgcacaccca gcctaagtta 60
gcggcccagc tcaggatggt ggacgacggc tctgggaagg tggagggcct acctgggatt 120
tgaccagagt ccgcctggct ccaggctctg ccacccacag gaagaagaaa ctacactgac 180
agatgtgaga cagtgttcc ccttcagtct ttgaacaggc ttttgtgtttt ctaaatgaca 240
ctggataaaa gggaattcat tcaagagctc caaggcttcc ctttccgccc ggcttctgtt 300
gccctggcct gagcagcgag cagctggag gggactgaac tgccctaac cagggttgtg 360
gctggcg

```
<210> 148
<211> 791
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(791)
<223> n = a,t,c or g
```

<400> 148 cgagacccga ccctgggcgt ggtgcatcga ggtagatgca aagatgctgg ccagagcaag 60 tgtcgcctgg agcgggctca agccctggag caagccaaga agcctcagga agctgtgttt 120 gtcccagagt gtggcgagga tggctccttt acccaggtgc agtgccatac ttacactggg 180 tactgctggt gtgtcacccc ggatgggaag cccatcagtg gctcttctgt gcagaataaa 240 actoctgtat gttcaggttc agtcaccgac aagcocttga gccagggtaa ctcaggaagg 300 aaagatgacg ggtctaagcc gacacccacg atggagaccc agccggtgtt cgatggagat 360 gaaatcacag ccccaactct atggattaaa cacttggtga tcaaggactc caaactgaac 420 aacaccaaca taagaaattc agagaaagtc tattcgtgtg accaggagag gcagagtgcc 480 ctggaagagg cccagcagaa tccccgtgag ggtattgtca tccctgaatg tgcccctggg 540 ggactetata agecagtgea atgecaceag tecaetgget actgetggtg tgtgetggtg 600 gacacagggc gcccgctgcc tgggacctcc acacgctacg tgatgcccag ttgtgagagc 660 gacgccaggg ccaagactac agaggcggat gaccccttca aggacaggga gctaccaggc 720 tgtccagaag ggaagaaaat ggagtttatc accagcctac tggatgctct caccactgac 780 atggntcagg g 791

<210> 149 <211> 335 <212> DNA <213> Homo sapiens

<400> 149
ggcacgagca aactcggggc tcagcttggg gacgggagtt gatagtcagg tgcctggaac 60
ataatggaga ccgtccatat tggttgaatg agtggatgaa tgaattaatg aatttctttt 120
ctcttaagtc ctgcagctga ttaagtcaca gaaatttctg aataagttgg tgatcttggt 180
ggaaacggag aaggagaga tcctgcggaa ggaatatgtt tttgctgact ccaaagtaag 240
tgacagcaaa cttctaaagt gggctgtgag gtagggaggg gacacaagcg ttttgaggct 300
cgctgtgtgc cagggagtgt atcattagct cactc 335

<210> 150 <211> 1293 <212> DNA <213> Homo sapiens

<400> 150 egaegeetgt ecetettaga ettgeagete ggteetettg geagagaeee eeegeaggag 60 tgcagcacct tctccccaac agacagcggg gaggagccgg ggcagctctc ccctggcgtg 120 cagttccage ggcggcagaa ccagcgccgc ttctccatgg aggacgtcag caagaggctc 180 tctctgccca tggatatccg cctgccccag gaattcctac agaagctaca gatggagagc 240 ccagatetge ccaageeget cageegeatg teeegeeggg cetecetgte agacattgge 300 tttgggaaac tggaaacata cgtgaaactg gacaaactgg gagagggcac ctatgccaca 360 gtcttcaaag ggcgcagcaa actgacggag aaccttgtgg ccctgaaaga gatccggctg 420 gagcacgagg agggagcgcc ctgcactgcc atccgagagg tgtctctgct gaagaacctg 480 aagcacgcca atattgtgac cctgcatgac ctcatccaca cagatcggtc cctcaccctg 540 gtgtttgagt acctggacag tgacctgaag cagtatctgg accactgtgg gaacctcatg 600 agcatgcaca acgtcaaggt gaggcctcgg gggcagggtc cccccatctt ggcagccacc 660 tgtccagaag cccagtgtgg ggaccactc tcaccaccag ggatccggct gctgaggtgg 720 ctcaaacctt cccacgtagg aaagagggag agggcaatgc catcaacgag tccaggaact 780 qqqttqaqcq ctttacccca agaacagaca cacactqtct qccactqtct agctqttqgt 840 ataaaaccca ctctcaactc tgaacatcag tttcccagtc tgtcaaatgg gagtgtgagc 900 tacctgccaa aatgcaggga ggcttctggg gaagctcggg gttatgaatg acctctcctg 960 gtgtttgtta aagaatcaag actgggcatg gtggcccacg cctgtaatcc cagcactggg 1020 aggccaaggc aggaagatgg cttgagccca ggagtttgag accagcctgg gcaacatggc 1080 aagacctcat ctctactaaa aattgaaaaa ttagccgggc acagtagcgt gcacccatag 1140 teccagetge ttgagagget gaggeaggag ggecaettga gecegggagg ttgaggetge 1200 agtgagccat gatcacacca ctgcactcca gcatgggtga cagagtaaaa ccctgacatg 1260 tattgcgggc gctctagagg ataacaagca tac 1293

<210> 151 <211> 349 <212> DNA

<213> Homo sapiens

<400> 151

ggcacgagcg gcacgagcct tctcctactg cattagcatt tggggaccac cctattgtac 60
aaccaaagca attatccttt aaaattattc aggtaaatga taattaaaat gttttttct 120
atggcttcta agaaaccatt gactaactta ctaacaacta agatgtctgt ttgttttata 180
tgtagtcata aagcagaatt acacatcaag aaagataact tactaaacaa aaacaacaga 240
atttgtagga aggagtgaga aactgaaaca cacaatttac tatcagcttt ttaaacaacc 300
gttaacatgt cagttctgtt tactgattct ttctgaactt aatttccag 349

<210> 152 <211> 324 <212> DNA <213> Homo sapiens

<400> 152
ggcacgagga ccttccttgc tttcagaatt tcacccaggg tctgacaggc ctcaagaaag 60
gagaactagt tatgaaccga ttcatccagg cccatccca gtggatcatg attcactgga 120
atcgaagcga ccacgtctgg aacaggcttc tgattctcat tatcagggtc acatcactgg 180
cgaatcccta ccaggacgtg tacactagca gctcctcact gtggaatctg atgggcaatg 240

ccatggtgat taccactat atccgtctta ccccatatgt tcaaagtaaa ctcggttccc 300 tagggaacct gatgccatgt tacc 324

<210> 153 <211> 377 <212> DNA

<213> Homo sapiens

<400> 153
ggcacgagaa aagaagaatt cagtgcagaa gaaaattttc tcattttgac ggaaatggca 60
accaatcatg tacaggttct tgtagaattc acaaaaaagc taccaggtat tttttaaata 120
atcacagtta atatttattg agagtttaaa tatgtgccca cagattagat tacctatttt 180
acatacggtg ttttaatttt caaaacattc ctgtgagatc agctctattt tcactattac 240
tttgccaagt attttcacat gtacttattt cactgctatt ctctacaata gtcttgtgac 300
attgagaaag gcaggtctgt tctttgtaaa atgaaaatca tttaatact gatttaaagt 360
aactgtcgaa ctactat

<210> 154 <211> 1224 <212> DNA

<213> Homo sapiens

<400> 154 ggtttttttt ttttttcttt tgggaaaggc attggccact ttggacttta ttagcaacag 60 taatqtcccc tgacatacqc acaagcttgt aqctccacgg ccaggtcttc ccccaacctc 120 acaatggccc cgtgatgcag gcaggcaggc gagtgggggt ctcccctcct tatccacagg 180 qccaccqaaa qqcccacqaq acqqccttqc ccqaqqtcac ccaqcqqaqt qqcttqctqq 240 qaqccctqqq aataacaqtc ccacacaaqq ctctctccct ccqcaqctqq acctqtacqc 300 gggggetetg tttgtgcaca tetgeetggg etggaactte taceteteea ceatecteae 360 gctcggcatc acagccctgt acaccatcgc aggtatggtg cctgcagcag ggaggtccac 420 ccaqqqqacq tqtaaaqqqq tcaqaaqqcc acctcccct acaqqcccqa qqqaqcagcc 480 caqqaaqtqq cccaqcaqq aqccccaqaa qttcctcccc qtqtccctcc tccctqqqqc 540 cagggecece tecageaace ttgettecac tggeaggggg cetggetget gtaatetaca 600 eggaegeect geagaegete ateatggtgg tgggggetgt cateetgaea ateaaaggtg 660 aggacagagt ctgtggccat ggcggggctg tccccacagc gagccctttg gagtctggca 720 ctgcccggca ctgtgcagga ttcatgccgt tggggttctg ggtagcatcg ctgggagtgg 780 gtgggttcag gaggttgagc cactaggcag tcagccccc tgctggcccc tcagggactg 840 ccctggctgg tagaggctac ccaccctgct gccccgctgt taccagctct ggccctggca 900 960 aggagetgae teaggaaete agggeeagee acaceegeat tggeteageg ettgatggtg 1020 aggtggggct gtaggcgggt gtgaaggcac acaaccagga ggccataaaa ctgcctgggc agetecteca attgtttaaa ageatgtaca aaatgecaag aggtgatget acetectgea 1080 ggacaaaggc cagggaggaa agaagaqaqc tqqqaqaqt tqqcqatact agtctggaac 1140 agataggaaa ctcacagggc tgcccggaga gagcgtgagc tcaccgtccc tggaagtatg 1200 taagcagage caggageteq tgee 1224

```
<210> 155
     <211> 345
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(345)
     <223> n = a,t,c or q
    <400> 155
ggcacgageg gcacgagatc tgaagaggta tattgcttac agaaagagcg ggagatggta
                                                                 60
aatcacagtc ttcaagagac ttctgagcaa aacgttattc tacagcatac tcttcagcaa
                                                                 120
cagcagcaaa tgttacaaca agagacaatt agaaatggag agctagaaga tactcaaact
                                                                 180
aaacttgaaa aacaggtgtc aaaactggaa caagaacttc aaaaacaaaq qqaaaqttca
                                                                 240
gctgaaaagt tgagaaaaat ggaggagaaa tgtgaatcag ctgcacatga agcagatttg
                                                                 300
aaaaggcaaa aagtgattga gcttactggc actgccaqgc aaqtn
                                                                 345
    <210> 156
    <211> 340
    <212> DNA
    <213> Homo sapiens
    <400> 156
ggcacgagct tctacttgta caggaaaggt tacttgagtt tgtccaaagt ggtgccgttt
                                                                 60
totcactatg ctgggacatt gctgctactt ctggcacgtg tggcctgcct cctaggcatt
                                                                 120
180
tacctgacgt cataactcta tatgcatgtt atgcggtcca tcttagtctt ctaaaaaggc
                                                                 240
cattttaget tacetgecat caagetatac atgtggaaat atacactgta ttatttteec
                                                                 300
tttccaggtg attacttacc tcatctgttc ttatatctgc
                                                                 340
    <210> 157
    <211> 478
    <212> DNA
    <213> Homo sapiens
    <220>
    <221> misc feature
    <222> (1) ... (478)
    <223> n = a,t,c or g
```

<400> 157
gagactccaa gccccagttt cacctcagag gcagagatga ggggtccccc ggtcctgctc

```
ctccaggccg ccccaatgga gtgtcctgtt ccgcagggga tcccggccgg gtccagtcct 120 gagcctgcac ctgaccccc ggggcctcat ttcctccggc aggagcgcag cttcgagtgc 180 cgcatgtgcg gcaaggcctt caagcgctcg tccacgctgt ccaccacct gctcatccac gccataccac ctgccagtc tgcggcaagc gtttccacca gaagtccgac 300 aaggccttca gccagagctc caaccacgt gagaagccgc acaagtgcca ggtgtgcgga 360 aaggccttca gccagagct caacctcatc acccacagac tcagagagaa cccaccatgg tgctgtctcc tgccgacaag accaacgtca aggccgcctg gngtaagggt cgcgcgca 478
```

<210> 158

<211> 332

<212> DNA

<213> Homo sapiens

<400> 158

ggcacgagca gctcaccaac a	aacacagcca	ctgccccctc	tgccacgccc	gtgtttgggc	60
aagtggcagc cagcaccgca c					120
cagcagttgc cactccacag g					180
tagtattatt gaatatatat a					240
ataatttatg tataactgtt a			agattagaaa	attctattaa	300
tttattaatg aattatatct a	aattatgtga	ca			332

<210> 159

<211> 868

<212> DNA

<213> Homo sapiens

<400> 159

```
cccacgegte eggaataaag agagaactet gttactattg tttttacate accaaataat
                                                                      60
tatttaatat cgttagctaa gagaagaatt ggctatgaac tgtactttaa caactgacac
                                                                     120
aactgcatac aagttataaa gtttaataat ctttatcatc ttggaaaata aatctcttct
                                                                     180
tgctaagtat cagtttttaa aaattgcccc atgtattaga tatgtatttt tttaacaaaa
                                                                     240
atgttctgtg tattaattat tttgaaataa attttaagtt cacaaaaagc cattacaaga
                                                                     300
agtggaaata gcagcaatta cacatggtgc tcttcaggga ttagcctact tacattctca
                                                                     360
tactatgatt catagagata tcaaagcagg aaatatcctt ctgacagaac caggccaggt
                                                                     420
gaaacttgct gactttggct ctgcttccat ggcatcacct gccaattcct ttgtgggaac
                                                                     480
gccgtattgg atggccccag aagtaatttt agccatggat gaaggacaat atgatggcaa
                                                                     540
agtagatgtg tggtctcttg gaataacatg tattgaacta gcggaaagga agcctccttt
                                                                     600
atttaatatg aatgcaatga gtgccttata tcacatagcc caaaatgaat cccctacact
                                                                     660
acagtctaat gaatggtgag tattgttaat atatatattg ctcagtgttg aataaatgaa
                                                                     720
atgettttte ataatetgtt atcaaagtga tttaatttea gttaggtaaa atgtateace
                                                                     780
ttataagata ttaaaataga tgtattttac ccttttaaat atatttattc tttatcatgt
                                                                     840
ttccatttca tggcatacgt ataactgg
                                                                     868
```

```
<211> 1404
<212> DNA
<213> Homo sapiens
```

<400> 160 gegecaegeg eggeetggeg geggeggeea etetaaceag egeaaaatgt eeetqqaaca 60 ggaggaggaa acgcaacctg ggcggctcct aggacgcaga gacgccgtcc ccgccttcat 120 tgagcccaac gtgcgcttct ggatcaccga gcgccaatcc tttattcgac gatttcttca 180 atggacagaa ttattagatc ctacaaatgt gttcatttca gttqaaaqta taqaaaactc 240 gaggcaacta ttgtgcacaa atgaagatgt ttccagccct gcctcggcgg accaaaggat 300 acaggaaget tggaagegga gtettgeaac agtgeatece gacageagea acctgatece 360 caagettttt egacetgeag egtteetgee ttteatggeg eccaeggtat ttttgteaat 420 gacgccactg aaagggatca agtccgtgat tttacctcag gttttcctct gtgcctacat 480 ggcagcgttc aacagcatca atggaaacag aagttacact tgtaagccac tagaaagatc 540 attactaatg gegggageeg ttgettette aactttetta ggagtaatee eteagtttgt 600 ccagatgaag tatggcctga ctggcccttg gattaaaaga ctcttacctg tgatcttcct 660 cgtgcaagcc agtggaatga atgtctacat gtcccgaagt cttgaatcca ttaaggggat 720 tgcggtcatg gacaaggaag gcaatgtcct gggtcattcc agaattgctg ggacaaaggc 780 tgttagagaa acgctagcat ccagaatagt gctgtttggg acctcagctc tgattcctga 840 agtetteace taettttta aaaggaccca gtattteagg aaaaacccaq qqteattqtq 900 gattttgaaa ctgtcttgta ctgtcctggc aatgggactg atggtgccat tttcttttag 960 tatatttcca cagattggac agatacagta ctqtagtctt qaaqaqaaaa ttcagtctcc 1020 aacagaagaa acagaaatct tttatcacaq aqqqqtqtaq qccqtqaqtt ttaqqtqaat 1080 ttatgtggtt ccctgcttga aaaccttccc cctctcccag gttcggttta gagaactttg 1140 cccacaggte ttctggggac cccagaggtg tctgtgctga caaqgcgact tcaqattcca 1200 tactgagatc gttcccaggc tggcgtctct ggggttttta aggctggctg gagaagacag 1260 tgggaagggt geceegtetg acaecectgg ggttgetgag ggaacggttg gagtggggat 1320 cggcctgcga aaggatactg tgaaatcact aattaactaa taaacctgtc tcaagttgaq 1380 gatttgaaga aaaaaaaaa aaag 1404

```
<210> 161
<211> 562
<212> DNA
<213> Homo sapiens
```

```
<400> 161
cccacgcgtc cgggagattg gaagtcttct ataacgggac ctggggcagc gtcggcagga
                                                                      60
ggaacatcac cacagccata gcaggcattg tgtgcaggca gctgggctgt ggggagaatg
                                                                     120
gagttgtcag cctcgccct ttatctaaga caggctctgg tttcatgtgg gtggatgaca
                                                                     180
ttcagtgtcc taaaacgcat atctccatat ggcagtgcct gtctgcccca tgggagcgaa
                                                                     240
gaatctccag cccagcagaa gagacctgga tcacatgtga agatagaata agagtgcgtg
                                                                     300
gaggagacac cgagtgctct gggagagtgg agatctggca cgcaggctcc tggggcacag
                                                                     360
tgtgtgatga ctcctgggac ctggccgagg cqqaaqtggt qtgtcaqcaq ctqqqctqtq
                                                                     420
getetgetet ggetgeeetg agggaegett egtttggeea gggaactgga accatetggt
                                                                     480
tggatgacat gcggtgcaaa ggaaatgagt catttctatg ggactgtcac gccaaaccct
                                                                     540
ggggacagag tgactgtgga ca
                                                                     562
```

<210> 162

```
<211> 1812
<212> DNA
<213> Homo sapiens
```

<400> 162 geettgettg gaggeaaage gteeteeaet etgteeteag gaeteagetg tgtggeettg 60 gatttetttt tgegggaett gegeeetttg ggtgeeaaeg gteeaggate eeeetggaae 120 cagatggtac ggccatgccg gtcctgcagg gagctcatgc ctggcatgcc atagcagcgc 180 agecaggete gaaaggeage aaagteetee teeeegetet etgaeeegta geceetgeee 240 cccaactgga ccactteett gggcactgag tgacataget ccagcaggtc tggattetge 300 agettggtee ttatettetg geteagggte ageteeggge teggeetgtg etgetgeagg 360 gcctccagga ccgagcggc cttctcaaag ggggggatct tcagccggta caggatctct gcccgcagat agttgccaat gccattgaag aacctctggt ccaggagggc ctcgcagatg ggccggtcaa aggccttatc cgctagqttt cgtagcacat tctccctgaa ctgctggtac 540 toctgcaaga cacagggccc gcgcccggc tgccactttc ccccaaggtc ccagcggccg 600 aaccggcgga tgtccacgaa acatagggcg agccgggggc caggcggggc cgtgtaaaag 660 cgcaggtggg catggcgtgg cagetceteg cggggcacca getgaaaaga geeggacatg 720 ccgaagegga agaccaggge cagtggetee tgttgggget gggeeceagg cagagggete 780 agtatcagge gcagetectt geegeggget gaagetgaga tgeggtagge aetgetetea 840 aagggcacct cagggttgcg getgacagag gacttctcca cgcagccgcc gaacaccagc 900 geeetgeagg ceteatteae aaactggetg geeaggtgea geteggggee etcaggeate 960 ctgagggagg gtggcagagt cctggctggg aggtggcgga agaacctgac ttcccactgc 1020 ctggcgccgg cgagatgcgg gggcaggtct gaggccccgg gtcgccgctg tctctgcggt 1080 tgggggaagt cacccagcta gcgtgggaca gggtcggcac ccccagcagg aaacagcagc 1140 gacgagccag agcggagtcg cctgcagctg cgcgcaggac gtgcacaggt gcgcggtacg 1200 cacaggccct agggacccgg tggggatctt aagcaccaac gaacagtcag acctaactca 1260 taaacaaca tcatcacggc ctgccctgtc agaagcgcag ccaagcaaca acaacaacaa 1320 aaaaaggcga ggaggtagac ccacttgaga tggttctgtt gcggagagtc tctgaaatca 1380 gaaagcgcca gtccgcaaaa acgaggaaac ccgacgtgtc cggcggaagg aaccgccagt 1440 acaaaggccc tgaggcgaga aagagattgg tcactgaaag aactcaaaga agtcctgtgt 1500 ggctggagta tagctgcggg ttagtgctgg caggtgaaga cagagaagca aacccaggtc 1560 aggteeggtt gggeeteggg agggeeteeg tgtggagtet geactteatt etaagtgtat 1620 acctaaccca tcgccacgat ttcccctcct tcacactacc ctgctacgtc tccttattag 1680 gegtaataaa attatgtggc tttgtaagaa attggttttt agagatgcat gttaaagtat 1740 tgggtatgaa atgtcatgat ttgtctaatt tactttaaaa tacttctgcc ataataaatg 1800 aatagaatta ac 1812

```
<210> 163
<211> 333
<212> DNA
<213> Homo sapiens
```

```
<400> 163
agctgacgtg gtctgcctgt tattggagag atatattaag aatccagttg tggattgcag 60
ctgatattct tttgcgaatg cttgaaaaag cacttcttta tagtgaacac cagaacatca 120
gcaacactgg actgtcatcc caaggcttat tgatatttgc ggagttgatt cctgccatta 180
agaggacgtt ggctcgcctt ctcgtgatca ttgcgagcct ggactatggc attgagaaac 240
ctcatttagg aacaggcatg caccgtgtga tcggactgat gcttctatac ttaatctttg 300
caaatgctga aagcgtgatt agagtcattq qqq
333
```

<210> 164 <211> 134 <212> DNA <213> Homo sapiens

<400> 164
ttttttttt gagatggagt ctcgctctgc tgcccaggct ggagtgcagt ggtgcaatct 60
tggctcactg caagctctgc ctcccaggtt cacgccattc tcctgcctca gcctcccgag 120
tagctgggac taca 134

<210> 165 <211> 839 <212> DNA <213> Homo sapiens

<400> 165 60 cctgagcccg gcgagcagga gaggaggtct tccgggccgc ggcctccgag cgcgcgggat 120 ttgcagaact taatatgaat gtgaagaact tgcaaagaaa cttgaaaaca gccaaaggga 180 tggcatatca agaaataaat tggccttggc agaattgtat gaagatgaag tgaagtgcaa atottocaag totaatagac otaaagocac agtottoaag agoccaogga caccacotca 240 300 acggttttac tcaagtgaac atgaatacag tggattaaat atagttcgac cttcaactgg 360 gaaaattgtg aatgaacttt tcaaagaggc aagggaacat ggggctgtcc ctctgaatga 420 agccacaaga gcttcaggtg atgataaatc taagtcattt acaggtggag gatacagatt 480 gggtagttet ttttgtaage ggtetgaata tatetatgga gaaaateage tgeaagatgt tragattttg rttaaartgt ggagraatgg tttragttta gatgatggag aattgagar 540 ttacaatgaa ccaacaaatg ctcaatttct ggagtctgtt aagagagggg tgactctcat 600 tqcatqtatq cctqaaattc agcaacttat gttagaaatc ttttaatgtg gcattactgc 660 tggcagaaga tttcaaaagg ttagtttgaa gttataattt gtgaaagtaa actcagatat 720 teagtgetet cacceateca aagaacattg taacttacca getettettg etaaaggatg 780 aggaatcaag tgattttgct atgataataa aagcttttct gtgttatgat taaaaaaaa 839

<210> 166 <211> 1256 <212> DNA <213> Homo sapiens

tgacccggag	cgcgatcact	tccgcaagat	ctgtgaggaa	tatatcacgg	gcaagtttga	360
ccccaggac	atggacaaga	acttgaatgc	catccagaca	gtgtcaggga	tcctgcaggg	420
cccctttgac	ctgggcaacc	agctgctggg	actgaaaggt	gtgatggaga	tgatggtggc	480
actatgtggc	tcagagcgcg	agacggacca	gctggtggcc	gtggaggccc	tcatccatgc	540
ctccacgaag	ctcagccgcg	ccaccttcat	catcaccaat	ggagtgtcac	tgctcaaaca	600
gatctacaag	accaccaaaa	atgagaagat	caagatccgc	acactggtgg	gactctgtaa	660
gctcggctct	gcaggtggca	cagactacgg	tctcaggcag	tttgcggaag	ggtcgacaga	720
aaaactggcc	aaacagtgtc	gcaagtggct	gtgcaatatg	tccatagaca	ctcggacccg	780
acgctgggca	gtggagggcc	tggcctacct	cacgctggac	gctgatgtga	aggacgactt	840
tgtccaggac	gtacatgaca	tgcaggccat	gtttgagctg	gccaagacca	gtgacaagac	900
catcctgtac	teggtggeea	ccaccctggt	gaactgcacc	aacagctacg	atgtcaagga	960
ggtcatccca	gagcttgtcc	agctcgccaa	gttctccaag	cagcatgtgc	ccgaggaaca	1020
ccccaaggac	aagaaggact	ttatagacat	gcgggtgaag	cggcttctga	aggcgggtgt	1080
catctctgcc	ctggcttgca	tggtgaaagc	agatagtgcc	atcctcactg	accagaccaa	1140
ggagctgctg	gccagggtat	tcctggcact	gtgtgacaac	ccaaaggacc	gaggcaccat	1200
tgtggctcaa	ggtggtggca	aggccctgat	tcccctggct	ttggagggca	cagatg	1256

<210> 167

<211> 892

<212> DNA

<213> Homo sapiens

<400>	167					
atgtggacag	cgtgggtggc	ggcagcgagt	ctcggtccct	ggactcaccc	acttccagcc	60
caggcgctgg	cacgaggcag	ctggtgaagg	cttcgtccac	aggcactgag	tcctcagatg	120
actttgagga	gcgagaccct	gacctgggag	acgggctgga	gaatgggctg	ggcagcccct	180
tcgggaagtg	gacactgtcc	agcgcggctc	agacccacca	gctgcggcga	ctgcggggcc	240
cagccaagtg	ccgcgagtgc	gaagccttca	tggtcagcgg	gacggagtgt	gaggagtgct	300
ttctgacctg	ccacaagcgc	tgcctggaga	ctctcctgat	cctctgtgga	cacaggcggc	360
tcccagcccg	gacacccctt	tttggggttg	acttcctgca	gctacccagg	gacttcccgg	420
aggaggtacc	ctttgtggtc	acgaagtgca	cggctgagat	agaacaccgt	gccctggatg	480
tgcagggcat	ttaccgggtc	agcgggtccc	gggtccgtgt	ggagcggctg	tgccaggctt	540
tcgagaatgg	ccgagcgttg	gtggagctgt	cggggaactc	gcctcatgac	gtctcgagtg	600
tcctcaagcg	atttcttcag	gagctcaccg	agcccgtgat	ccccttccac	ctctacgacg	660
ccttcatctc	tctggctaag	accttgcatg	cagaccctgg	ggacgaccct	gggaccccca	720
gccccagccc	tgaggttatc	cgctcgctga	agaccctctt	ggtacagctg	cctgactcta	780
actacaacac	cctgcggcac	ctggtggccc	atctgttcag	ggtggctgca	cgatttatgg	840
aaaacaagat	gtctgccaac	aacctgggca	ttgtgtttgg	gccgacactg	ct	892

<210> 168

<211> 394

<212> DNA

<213> Homo sapiens

```
<400> 168
ggactccatg tcatctctct gcacagcgct gatggtcgtc actgggagga tcccctttct gagcttgaca gtgaacgtgt gtctgcattt cttgtcactg agaccctggt gttctatttg tcttgtctcc ttgcagatga aaccgtcgtg ccaccagatg ttccaagcta cctctcttct 180
```

caggggaccettctgaccgacaagaaaccgtggtcaggaccgagggtggccctcaggcc240aatgggcacattgagagcaatggtaaggcctcagtaaccgtgaagcagagctctgctgtg300actgtgtctctgggtgctggaggtggcctccaggtctttacagggcaggtacctggcatt360agatgggcaaacttggtgaagcccacgcgtccg394

<210> 169

<211> 550

<212> DNA

<213> Homo sapiens

<400> 169

ctgtgacacc	teegggeage	ccggcacttg	ttgctcccac	gacctgttgt	cattccctta	60
acccggcttt	accagtggaa	ccccgcctcc	tcccggcttc	gctccttttc	atgtgagcat	120
ctgggacact	gatctctcag	accccgctgc	tcgggctgga	gaatagatgg	ttttgtgaaa	180
aattaaacac	cgccctgaag	aggagccccg	ctgggcagcg	gcaggagcgc	agagtgctgg	240
cccaggtgct	gcagaggtgg	cgcctccccg	gcccgggacg	gtagccccgg	gcgccaacgg	300
catgacagac	tcggcgacag	ctaacgggga	cgacagggac	cccgagatcg	agctctttgt	360
gaaggctgga	atcgatggag	aaagcatcgg	caactgtcct	ttctctcagc	gcctcttcat	420
gatcctctgg	ctgaaaggag	tcgtgttcaa	tgtcaccact	gtggatctga	aaagaaagcc	480
agctgacctg	cgcaacctag	cccccggaac	gcacccgccc	tttctggcct	tcaactggta	540
cgtgaagaca						550

<210> 170

<211> 422

<212> DNA

<213> Homo sapiens

<400> 170

cttggattca	gtgatggaca	ggaagccagg	cctgaagaaa	ttggctggtt	aaatggctat	60
aatgaaacca	caggggaaag	gggggacttt	ccgggaactt	acgtagaata	tattggaagg	120
aaaaaaatct	cgcctcccac	accaaagccc	cggccacctc	ggcctcttcc	tgttgcacca	180
ggttcttcga	aaactgaagc	agatgttgaa	caacaagtgc	tctacaagta	tagaaagaag	240
ccttcctctt	cccaccgtcc	ccagacacca	cataatggaa	aaagcaagaa	ttttctgcat	300
aagcaaggcc	ttaaaaaaaa	aaaagccagc	ctctgatggg	acttttttcc	tgccaaaaat	360
cccactggtc	cactgtcgca	atttttacaa	aaggccacga	taaaagagta	aggcccattt	420
tα						422

<210> 171

<211> 1042

<212> DNA

<213> Homo sapiens

cggacgcgtg gggtcatgga gctggcactg cggcgctctc ccgtcccgcg gtggttgctg	60 20
ctgctgccgc tgctgctggg cctgaacgca ggagctgtca ttgactggcc cacagaggag 1	
ggcaaggaag tatgggatta tgtgacggtc cgcaaggatg cctacatgtt ctggtggctc 1	.80
tattatgcca ccaactcctg caagaacttc tcagaactgc ccctggtcat gtggcttcag 2	40
ggcggtccag gcggttctag cactggattt ggaaactttg aggaaattgg gccccttgac 3	00
agtgatetea aaceaeggaa aaceaeetgg etecaggetg eeagteteet atttgtggat 3	60
aatcccgtgg gcactgggtt cagttatgtg aatggtagtg gtgcctatgc caaggacctg 4	20
gctatggtgg cttcagacat gatgggtctc ctgaagacct tcttcagttg ccacaaagaa 4	80
ttccagacag ttccattcta cattttctca gagtcctatg gaggaaaaat ggcagctggc 5	40
	00
gttgeettgg gtgatteetg gateteecet gttgattegg tgeteteetg gggaeettae 6	60
ctgtacagca tgtctcttct cgaagacaaa ggtctggcag aggtgtctaa ggttgcagag 7	20
caagtactga atgccgtaaa taaggggctc tacagagagg ccacagagct gtgggggaaa 7	80
gcagaaatga tcattgaaca ggtaaaaagg ggaaacactc agaggcgagc ctgcttggct 8	40
ttttctggtg ggtacagggc ccatggttgg tgttgtcaaa cttggagtct acactgaggc 9	00
tocccacata totgcaaatg attgcatgot ggataataaa totottgggt ctaagcagtg 9	60
atgtagtggc tccttacaga gtcagaaagc cacccaggcc tgcaagactt gcttgtcctt 10	20
cactaaatgt aaaaattcta tt	42

<210> 172 <211> 890 <212> DNA <213> Homo sapiens

<400> 172 aaagtagtag gttggtgcaa acgtagtaat aaattggttt qqccctqttt tcataqaact 60 atagaggttg gacctttgtc cccttccaga tgcctacaaa caaactgatg tttttgattt 120 ttttttttttt ttaaattttg gttgccacta attcttataa aaatcctcac acaaggctgg 180 gctcagtggc tcacacctgt aatcccagca ctttgggagg ctgaggcagg cggatcacga 240 ggtcaggaga tcgagaccat cctggctaac acggtgaaac ccccgtctct actaaaaata 300 caaaaaaatt ageegggegt ggtggeggge geetgtagte ceagetacte gggaggetga 360 ggcaggagaa tggcgtgaac ccgggaggca gagcttgcag tgagccgaga tagcgccact 420 480 ctgtaatccc agcactttgg gaggccgagg caggcggatc acgaggtcag gagatcgaga 540 ccatcctggc taacacggtg aaaccccgtc tctactaaaa atacaaaaaa ttagctgggc 600 gtggtggcgg gcacctgtag tcccagctac ctgggaggct gaggcaggag aatggcgtga 660 acccaggagg cggagcttgc agtgagcgga gatcatgcca ctgcacttca gcctgggcga 720 780 atagaaaaat aataatagtt ttaagcacct ctaaagtaca gatattgtgc caagcaattt 840 atgtgaattg attagattga taactctaaa aatagtttcc ctaatcaact 890

<210> 173 <211> 1922 <212> DNA <213> Homo sapiens

<400> 173 tttctttctt catccaaaat agtagagatg tctttcccac gatqacctgt gatqqtqqaq 60 atatettte eteggeeaac teeteeteea teggettett tgatgteate tteaataget 120 tcatcaattg cttcatcaaa ctcatcaaat ctgtagctta tacatttcct tgttcttgtt 180 gacctccttt caaagcaagt ttgctttgga tttttttgaa tctttttct tttcttcttg 240 atcttcagaa aagtctggct ctttgtggag gaatgatgtt ttcaatactq gataccaaca 300 tacaccaage gttettttee ttegtteegg caaegetett teettettta aqqeaacate 360 ccaaatcctg gaaactggtc ctctaatttt tccaacaaga gcaagtttaa tgttgggcaa 420 aaggtggggc aagaacccat cctcccatct ggggatggat catcagagga ggggcgaaag 480 gcagggcagt atggtatcca ctatcgcaag agtcacacag aagaattagc tcaggatqqt 540 ttggaaggcc acattttttg catggttcat catcatctqc taggatqqct tcttcacttt 600 cetttette etectettet gaagetgeag atgatttte actgeeagae eetteaettt 660 catcattgct ggaatatttc catctgccac gtgtccgaga accagtccat cgaactttqc 720 ctttgggttt taccttgctt actttagaat ttgtatcttt ctctgatttt ttcaaaattt 780 cetttttgtc agttttttgc aaagctgttg actcttcttc cacctcatct tctccttccc 840 ctctttttt atcagctttc tgatctctga tctcagccac ttttgcagtg ggtctagata 900 ttcttggaga tcttcttaaa gtacgaccca catttgtttt ctcctcttcc ttttctqtct 960 tetettgett gttttetggt tetagaaett tggggggaga atcgggette tttttecgae 1020 ttgatatcct gattgttaat ttgatgccct ctttctgcct ttcagaggtt atctctgtat 1080 tttctgaggc agtggtttct tcttcaggaa ccaacttata tttgaatttg cttttttgca 1140 tagaaccctt tgtctcagaa ggctcctcta tgccagaggt ctgggcattg tccagattat 1200 ccatttctac ctttgtgaac tcagaatcct cttttagggt ttctaggtct actttttca 1260 cagactggcc accaacagta cttgtactct ggcattctac cacttctttt tctgaggcta 1320 gtttctcaca gtggtcaatg atattagatg gtggagaagt ttcagctgcc tcaggagage caggetttte tgaetetaga gtaetetttg gaacttette tggtattgga eteaatettt 1440 gtgcgtcctt atcaagaaaa gtctttttgg acttctctaa cttttcaaga cattctagga 1500 ttggtgggog cttatccttc ttagttttgg gagacttctc ttcacctttc atqqtacacq 1560 actoggtgga agataaagca gtttttgaag agagatottt tqccatotca qaaqaatcaa 1620 gagaagtttc catttctgga ggatcgggtt cctctatttq tqctttttqa ctatqqatct 1680 ctaagactga tattgaacta tctgcatctt tcctcaaaqq qqctqtttct ttctcaaqct 1740 caccigittit catacitggi taigacaqaa titaaqqact ciqticcatt tccctccqtq 1800 atgatatttc tgtccttagg ggggctatag ctctcttcct ttgtctcata aaactttgtc 1860 totacttggt totgtottaa aatttqqaqo taccotttca toactaactt otccatttac 1920 1922

```
<210> 174
<211> 537
<212> DNA
<213> Homo sapiens
```

<400> 174 aaaagcggcg cggctcgttc aagatggcgg agctcgacca gttgcctgac gagagctctt 60 cagcaaaagc ccttgtcagt ttaaaagaag gaagcttatc taacacgtgg aatgaaaagt 120 acagttettt acagaaaaca eetgtttgga aaggeaggaa tacaagetet getgtggaaa 180 tgcctttcag aaattcaaaa cgaagtcgac tttttctga tgaagatgat aggcaaataa 240 atacaaggtc acctaaaaga aaccagaggg ttgcaatggt tccacagaaa tttacagcaa 300 caatgtcaac accagataag aaagcttcac agaagattgg ttttcgatta cgtaatctgc 360 tcaagcttcc taaagcacat aaatggtgta tatacgagtg gttctattca aatatagata 420 aaccactttt tgaaggtgat aatgactttt gtgtatgtct aaaggaatct tttcctaatt 480 tgaaaacaag aaagttaaca agagtagaat ggggaaaaaat tcggcggctt atgggaa 537

```
<210> 175
<211> 659
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(659)
<223> n = a,t,c or g
```

<400> 175 totototttg coagtaatgt tggaagtgga catttcattg gootggcagg gtcaggtgot 60 gctacgggca tttctgtatc agcttatgaa cttaatggct tgttttctgt gctgatgttg 120 180 eggaageget teggtggeat cagaateece ateateetgg etgtaeteta eetatttate 240 tacatettea ceaagatete ggtagacatg tatgegggtg ceatetteat ceageagtet 300 ttgcacctgg atctgtacct ggccatagtt gggctactgg ccatcactgc tgtatacacg 360 gttgctggtg gcctggctgc tgtgatctac acggatgccc tgcagacgct gatcatgctt 420 ataggagege teacettgat gggetaeagt ttegeegegg ttggtgggat ggaaggaetg 480 aaggagaagt acttettgge cetggetage aaceggagtg agaacageag etgegggetg 540 ccccgggaag atgcctttca tatttttcga gatccgctga catctgatct cccqtqqccq 600 ggggtcctat ttggaatgtc catcccatcc ctctggtact ggngcacgga tcaggtgaa 659

```
<210> 176
<211> 1033
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(1033)
<223> n = a,t,c or g
```

<400> 176 eccacgegic eggatgigtg etcacactig ggggacetga tiggggette agacetiggg 60 ggeetgteeg cagggtetee tecateette ttgatttgee tgtcattgag getgeeeget 120 etgggegeca tteeceagec taacacetet teteagtett teettgeagg teectggagt 180 ccaggecttg gggcagtgaa gaaaccgtgg ggaggggcat gagatgccag tccccaaagt 240 ccttgggage ccttgtggge caagtcattg taggacacae cctetectgg geattgctga 300 ggtcacccag tgagcctagg ctccccctc ctcccatccc cagcctgggg gaaccttcag 360 egteteteet eeetgtagge eeeggeteag etteceagga aettttgttg gtgggtacta 420 gtagggtaag gcagttcttc ccatcatgag ggagaccttg ggagactttc attaccaaat 480 ccattgctgc cccgaccttc ctgggactga tctgggtcac cctggtctcc tgatcttgga 540 gaagtcaagt tettateeca gaettgagag gttacaagee tecaggtete tggcaaagtg 600 tggagatgat ggacagccat ttgtacacac accagccagt cccttagcat atctctcttg 660 gttttgtctc aggtctgcct cagccacctc cctgacgctg tcccactgtg tggatgtggt 720 gaaggggctt ctggatttta agaagaggag aggtcactca attgggggag cccctgagca 780 gcgataccag atcatccctg tgtgtgtggc tgcccgactt cctacccggg ctcaggatgt 840 getgeageet cetggeeact ggaggggetg accgeetgat ceacetetgg aatgttgtgg 900 gaagtcgcct ggaggccaac cagaccctgg agggagctgg tggcagcatc accagtgtgg 960 actttgaccc ctcgggctac caggttttag cagcaactta caaccaggtt gcccagtttt 1020 ggaaggtngg gga 1033

```
<210> 177
<211> 335
<212> DNA
<213> Homo sapiens
```

<400> 177
gtcaaaaacg atttcctagc aactgtggcc gtgatggaaa actgtttctt tggggacaag 60
cacttcatat catcgcaaaa ctcctgggta agtggagaag attgggaatg gtatttttt 120
ccttgttatt aagctattag aaataaatat gcctttgctg gcacataata gtactttggt 180
acaacaggat atcctatgga gtttaaaaat aagtatttaa aatataacaa atctgtatta
gtccattctc atgctactaa taaagatata cccaagactg ggtaatttat aaaggaagga 300
gttttaatgg cctcacagtt ccgtcgacgc gggcg
335

```
<210> 178
<211> 556
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(556)
<223> n = a,t,c or g
```

<400> 178 gttcacgtct gcagcagtaa gatgggagct ttgtccacgg agcggctaca gtactacact 60 caggaactgg gggtccggga gcgcagtggc cacagcgtgt ccctcatcga cctctggggc 120 ctccttgttg agtatetect gtaccaggag gagaaccetg ccaagetgte tgaccaacag 180 240 gaggeggtee gecagggtea gaaccettae eccatttaca ecagtgteaa egteegeace aacttgagtq gggaagattt tgcagagtgg tgcgagttca cgccctatga ggttggcttc 300 cccaagtacg gggcttatgt tcccaccgag ctcttcggct cagaactctt catgggacga 360 420 ttgctgcagc tccagcctga accceggatc tgttacctgc aaggtatgtg gggcagcgcc 480 tttgccacca gcctggatga gatcttccta aagaccgccg gctcgggcct cagcttcctg gagtggtaca gaggcagtgt gaatatcaca gacgactgcc agaagcctca gctgcacaac 540 ncctcgacgc gggaat 556

```
<210> 179
<211> 631
<212> DNA
<213> Homo sapiens
```

<400> 179 gaatttctgg gtcgtcccac gcgtcccgca aaggatgagg gaaacgatga gggaaaggat 60 gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat 120 gagagaaagg atgagggaaa ggatgaggga aaggatgaga gaaaggatga gggaaaggat 180 gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat 240 gagggaaagg atgagggaaa cgatgaggga aaggatgagg gaaaggatga gggaaaggat 300 gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaacgatga gggaaacgat 360 gagggaaacg atgagggaaa ggatgagga aaggatgaga gaaacgatga gggaaaggat 420 gagggaaagg atgagggaaa ggatgaggga aaggatgaga gaaacgatga gggaaaggat 480 gagagaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat 540 gagggaaagg atgagggaaa cgatgaggga aaggatgaga gaaaggatga gggaaaggat 600 gagggaaagg atgagggaaa ggataagtaa g 631

<210> 180 <211> 469 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(469) <223> n = a,t,c or g

<400> 180 ggcggggctc ntttgagacc tgatgaccat cattacgccc agcttggcac gagggggagg 60 acttcagcta cggcctgcag ccctactgcg ggtactcctt ccaggttgtg ggggagatga 120 teeggaaceg ggaggtgetg cettgeeceg atgactgtee egeetgggeg tatgeetea 180 tgatcgaggg ctggaacgag ttccccagcc ggagggcccg ctttaaggac atccacagcc 240 ggctccgagc ctggggcaac ctttccaact acaacagctc ggagcagacc tcggggggca 300 gaaacaccac gcagaccagc tccctgagca ccagcccact gtgcaatgtg agcaacgccc 360 cctacgtggg gcccaagcag aaggtcccgc cctttccaca gacccaggtc atccccatga 420 agggccagat cagacccatg gtgcccccgc cgcagctata cgtccccgg 469

<210> 181 <211> 453 <212> DNA <213> Homo sapiens

<400> 181 caggaattcc gggcgccacc cacgcgttcg atggatcctg gaagagcgca agcgggtgat 60 gcaggaggcc tgcgccaagt accgggcgag cagcagccgc cgggccgtca cgccccgcca 120 egtgteeegt atettegtgg aggacegeea eegegtgete taetgegagg tgeeeaagge 180 240 egacateeag cacaacaceg tecaetatgg cagegetete aagegeetgg acacettega 300 ccgccagggt atcttgcacc gtctcagcac ctacaccaag atgctctttg tccgcgagcc 360 cttcgagagg ctggtgtccg ccttccgcga caagtttgag caccccaaca gctactatca 420 cccggtcttc tgcatggcca tactggcccq qta 453

<210> 182 <211> 377 <212> DNA <213> Homo sapiens

<400>	182		,			
cataatgtat	agtatttctc	ctgccaactc	tgaggaaggc	caggaacttt	atgtctgcac	60
agtcaaggat	gatgtgaact	tggatacagt	acttctccta	ccctttttga	aagaaatagc	120
	ctggatcaac					180
	tccttccata					240
taagctactt	caggtcttga	gagetettgt	ggatatacat	gtgctctgct	ggtctgacaa	300
gagccaagag	cttcctgctg	agcccatatt	aatgccttcc	tctatcgaca	tcattgatgg	360
aaccaaagag	aagaaga					377

<210> 183 <211> 621 <212> DNA <213> Homo sapiens

<400> 183 ctcatcctta aagtgacaga gtaaattaac tctaaggccc catccaggac tcaagctgtg 60 tgattttaca aaaatgaaaa ttatattaat aatcccattg taaaatccca aaagaaagtc 120 aagagactag cagaaagaca ggtgggtgat gggatgtcct ggacagagcc tggatcatga 180 ggtccccatg tagtgcttgt actacgcaga tgtttcctct tgagctattt taaaggtgtg 240 gaaaaagcca aagcaatgcc ctctccacgg atactaaaga ctcacctttc cactcagctg 300 ctgccaccgt ctttctggga aaacaactgc aaggtaagat accaacagct ccctqtgaca 360 gaagggaaag taagccaacc aaagcgagtc ctgcagaccc caacgcagaq cattcqtqat 420 cacctttgcc tctccactgt ctctgatgct taccagcaaa gagaaaacat aaagttctac 480 attcagcagg acattcacct gaacagtttc aaataqqaca tqaaqqcaqq atccaqattq 540 aatgtttgga gggaactaga gacatgggga ggcagtgagt gcagtaagcg tagctgtgaa 600 atgaagggga gaagatggtg g 621

<210> 184 <211> 415 <212> DNA <213> Homo sapiens

<400> 184
accgggacga cccacgcgtc cgggaattta attctattat atatgcagac tttctaaaga

agataaaget tttttatgg agaaacgtta ttattgette aaacacecaa attgtettee 120 taaaatatta gcaagegee caaactggaa atgggttaat ettgecaaaa ettaeteatt 180 getteaceag tggeetgeat tgtacecaet aattgeattg gaacttettg atteaaagta 240 agteaaatae atttattge tettgttta ttgteagtt tteeagtaag gtatgttgee 300 agaagtattt eettteettt taacatgaaa gcaatteaat ataatecaaa tgtgtaaatg tatatttata caaacatate ttetgeattg aagttgteaa taaageattg eatgt 415

<210> 185

<211> 359 <212> DNA

<213> Homo sapiens

<400> 185

ggaaaatgat	gatttgaggt	ttatttgaaa	tacaacaatg	tccaatagga	aaacactgca	60
actttcttca	ggtgttgaga	aatccaatag	agacctctgc	ttgtctcctc	ctttggcaag	120
agctccaagg	ggagagagag	gatgggccac	cacgatgaat	actacaggct	gcggggaagg	180
ataaccctag	tccagaccat	tcctacaaaa	gaaatgggga	atccgaaagg	aaaaggaaga	240
aatctcacta	gcacatgtca	aagagccagg	agaggcacaa	ttcaccaagc	agaggaagaa	300
atagtgaccg	cagcgggggc	cggtgcagcc	gcagtgataa	cqqtcqqaqc	cqttacaqq	359

<210> 186

<211> 1616

<212> DNA

<213> Homo sapiens

<400> 186

ggaggttgeg geggeggetg eggegeagee eggggeggeg ggtgggaaga ggactaceag 60 aggggcctgc gggagaccca gggtcggacc cataggagtc ctgtcgtcag gacctccttg 120 ateggtette tgettgggtt eteggtgaag gaggagette ggggtgtegg etgggetgeg 180 cggactcctc ttgggatccg atgatggatc ccacccggtg atcgggaatg gggttacaat 240 gcagtgaggc ggaaaggctc tegcegggge acagaaagat ceccagggec gcaaggegtg 300 etgtegeetg caaaggeact gacceaegag cecaetgeet cecteettee tgggtggage 360 aggggcctgc cttcatctcc aaggcccggg ggctccggca tctcgacgcg gcttccggcg 420 acacgggcaa agagagacag aggctagtcc gagccggagc cagtgtgacc acacgtggca 480 etgacgtece ccaagageac atgeagtgag cetgtgtete tgaggeegta gtgggegaeg 540 acgagacgga cagtgatgtc caggcctgcg cccgggggcc actggagacc tgcccctcaa 600 agcggaggaa acgccaagct cacctgaaaa cctgcgagac agggcctgtg cacgagtcca 660 gtactcctac ttcgccaagt ctcagggacc catccccgag caacggtggc ggcgcagaga 720 agagcacggc gccggcgcag gtgcagagag acaggaggct gatgggggga agttgaggca 780 cctggggcag agaaaaaaat gcattgccaa gaggtttctg ggtcatctac tgacgaaaat 840 gtottoccat cagocottge gotggtoccc agggaccotg gcatcogtog ttggcgccca 900 gggtgcgcgt cgggccacta ggggtacccc aactcggaca gaaggcccat gagttgaatt 960 tgaagtttgt gggaatagag gtgaggcacc aggggcagaa aaaaaacagg agacctcgcc 1020 tcagacaagc ggggcctggg tcccccatgg atgaaagtgc cttcccatta tgctgtaccc 1080 tgggcagagt ggacagtgac gaccctggtt cgagcccagg gtgcgcttcg ggaccgcttg 1140 eggttaccag aaagegaaca aatggteeat gageggaagg tgaggeacet gaggeagaga 1200 aagtaaagaa acgcgccgcc gagaagcagt gcctgggtcc ctcacggagg aaattgtctt 1260 ctccttagcc cgttcgcttg gcagtgaggt ccctggcgtc cctggtttga tcccagggta 1320

cgcctcgggc cactagtgtt accccaaggt gggcagaaag cccataaggg gaaggcgagg 1380 cacctggggc agagaaaaa aaaaacttcg ccgcaaagaa gcgcggcctg attccccacg 1440 gacgaaagtg tcttcccatc agtccctgca ctgggacccg gggaccctgg tgtccctggt 1500 tcgagctcag ggtgtgcctc agccgctacg tgcaccccaa ggggagcttt gggagcccaa 1560 aagccaataa gggaaagtaa tttttaaggc ccccagtggt gaggccctg tcacag 1616

<210> 187

<211> 916

<212> DNA

<213> Homo sapiens

<400> 187 ttttgataag aggcaacatg aagcaagaat ccagcaaatg gagaatgaaa ttcactattt 60 gcaagaaaat ctaaaaagta tggaggaaat ccaaggcctt acagatctcc aacttcaqga 120 agctgatgaa gagaaggaga gaattctggc ccaactccga gagttagaga aaaagaagaa 180 acttgaagat gccaaatctc aggagcaagt ttttggttta gataaagaac tgaagaaact 240 aaagaaagcc gtggccacct ctgataagct agccacagct gagctcacca ttgccaaaga 300 ccagctgaag tcccttcatg gaactgttat gaaaattaac caggagcgag cagaggagtt 360 gcaggaagca gagaggttca gcagaaaggc agcacaagca gccagagatc tcacccgagc 420 agaagetgag ategaactee tgeagaatet eeteaggeag aagggggage agtttegaet 480 tgagatggag aaaacaggtg taggtactgg agcaaactca caggtcctag aaattgagaa 540 actgaatgag acaatggaac gacaaaggac agagattgca aggctgcaga atgtactata 600 cctcactgga agtgacaaca aaggaggett tgaaaatgtt ttagaagaaa ttgctgaact 660 tcgacgtgaa ggttcttatc agaatgatta cataagcagc atggcagatc ctttcaaaaag 720 acgaggetat tggtaettta tgccaccacc accatcatca aaagttteca gccatagtte 780 ccaggecace aaggactetg gtgttggeet taagtactea geeteaacte etqttaqaaa 840 accaegeett gggeageagg atgggaagga aggeagteaa ceteceett ceteaggata 900 ctgggtttat tctccc 916

<210> 188 <211> 1080 <212> DNA <213> Homo sapiens

<400> 188 cototactgc agetteatea teagattett etttetgtte ttggggtget tettetteet 60 ccatgggctc ctcaacagtt tcagtcttgc tgctccatac ataaatagga aagtttatga 120 actgtgaata ttttttgacg agatttttaa ttgtatccaa ttcaaggtaa tcagatgctt 180 cttcttttaa gacaagggta attgtcgttc cccqtcctaq aqtqtttcct cttqqqtcaq 240 caattacaga aaattcattg gagtcagact cccagattgg ccagtttggt gtcggtttct 300 attecgeett cettgtagea gataaggtta ttgtcactte aaaacacaac aacgatacee 360 agcacatctg ggagtctgac tccaatgaat tttctgtaat tgctgaccca agaggaaaca 420 ctctaggacg gggaacgaca attacccttg tcttaaaaga agaagcatct gattaccttg 480 aattggatac aattaaaaat ctcgtcaaaa aatattcaca gttcataaac tttcctattt 540 atgtatggag cagcaagact gaaactgttg aggagcccat ggaggaagaa gaagcagcca 600 aagaagagaa agaagaatct gatgatgaag ctgcagtaga ggaagaagaa gaagaaaaga 660 aaccaaagac taaaaaagtt gaaaaaactg tetgggactg ggaacttatg aatgatatca 720 aaccaatatg gcagagacca tcaaaagaag tagaagaaga tgaatacaaa gctttctaca 780

```
aatcattttc aaaggaaagt gatgaccca tggcttatat tcactttact gctgaagggg 840
aagttacctt caaatcaatt ttatttgtac ccacatctgc tccacgtggt ctgtttgacg 900
aatatggatc taaaaagagc gattacatta agctctatgt gcgccgtgta ttcatcacag 960
acgacttcca tgatatgatg cctaaatacc tcaattttgt caagggtgtg gtggactcag 1020
atgatctccc cttgaatgtt tcccgcgaga ctcttcagca acataaactg cttaaggtga 1080
```

<210> 189 <211> 1344 <212> DNA

<213> Homo sapiens

<400> 189 ttttttttt ttgctgctgg gtcgggtttt atttcaaatg cagccacaga ggcggtttct 60 gcacaggtac gtgatccgac tccacaagct cccaccaggg gctccccatg acccgcaatg 120 acgctgtgtg gggtcaaagg aaaacaggcc acagccaggc ccctcgatgg acgcaggcag 180 gggaccagga atgcggccca cgcaggggga tcgggaatca ggcggaaggt gcaggtttgc 240 agetggeggg aggagecage atgeeceaat etetaaaata tteeeggtag aaaaatagae 300 atttccctcc aaagcagatt cctggggctg gagggtccct ccaaggccag gggtccgggt 360 gattccagag catccacgct ctgcgctgaa ggcactgaac ctgccatcac tgtcacagcc 420 gtcaccggcc aaggagggtc tggaggaggg aaggggccct tgcgaggctc tggtgctggt 480 gateceggee eccaceaceg gaggagetga aageeettge teageegetg ecetgetggt 540 gaacceggee eccacegeeg gaggagetge accetgtgtg gtetgaggea gecetgeaet 600 gggcagegge ecegeceege getgaaceca etaggagage agetgeagea eetgteggat 660 gegetgggee eteceeggea gggggggate agageeetee teatecaget eeegcateag 720 ggetteegee ttetgeaceg teageteteg ggeeeggeee tgeageeest eeaggtagge 780 cagcagggtg gagaagtgct catcgggaac cttgtcactg tcatacatgt gcagcaggag 840 ccaegtetge etegtettet gaaaceteca gttettgtge ttttgggeee atetgeagag 900 gtagtccagg gccagttcgg cccccgagcg cctggcaggc gggtgctggg ccacaaggcc 960 tgcctcccgc agacgctgcc tctcctcttt cttccgttcc tttttcagct tcctttccag 1020 gaccetetge teetetgggg acagetetgg etetgegtee agecegggee tgageacage 1080 ttegecettg gageeggete ettegeeaet tggtgeagee teagggeeca geagtggeec 1140 1200 ctctgctgac gccttcttca gctttttgtt ctttttctct gtcacttcag gaacttttct cttctgtttt gccatcctgc gcccacctgc gcccacgtcg cccacctaag cgtgaacagc 1260 tgcgtcgcgg acgccgcctt ccggcaggga cccgcggacg cgtgggtcga cccggcaaaa 1320 cgggtccaac ctagggcgtc gagg 1344

<210> 190 <211> 550 <212> DNA <213> Homo sapiens

<400> 190
 cccggaccca cgcccccc gcgccacggc tctcccccac accgccttat tcgggtcgag 60
 accccgggcc ccccggcgcc gcctgctgat gagcggatct ccggaccccc cgccagcagc 120
 gataggctag ctatcctaga agactatgcg gacccgtttg atgttcagga gactggcgaa 180
 ggctcagcag gagcttcagg agccccagag aaggtccctg aaaatgatgg ctacatggag 240
 ccctatgagg ctcaaaagat gatggccgag atccggggct ccaaggagac agcaactcag 300
 cccttgcctc tgtatgacac accctatgag ccagaggagg atgggccac cccggaaggt 360

gagggggccccctggccccgggagtcccgcctgccagaggatgatgagaggcccctgag420gagtatgaccagccctgggagtggaagaaggagcggatttccaaagcctttgcagttgac480attaaggtcatcaaagacctaccttggcctccacctgtgggacagctggacagcagccc540tccctgcctg550

<210> 191

<211> 562

<212> DNA

<213> Homo sapiens

<400> 191

caatttttt	ctcttttctt	aaggtatcag	atacacaccg	gacttcaaca	ttctatcata	60
agacctaccc	aacccaactg	tttacctctg	gacaatgcca	ccctacctca	gaaactgaag	120
			aaatggcact			180
			ttttttggtt			240
			gggatgtgtg			300
			atatactcca			360
			acaaagccta			420
			ggcaggtatt			480
atcaacataa	acaggaggag	atatgctgcc	atgctttcct	gcttagatga	agcaatcaac	540
aacgtgacat	tggctctaaa	ag				562

<210> 192

<211> 2171

<212> DNA

<213> Homo sapiens

<400> 192

```
cacgcgtccg gaaaggaaga ggcggtgaga ggctgcaaag ccccttgcgt gttccgcaga
                                                                       60
aaccagaaag acctcccctt ccacccaagc ctcagttcct aaactcaggg gcatatcctc
                                                                      120
aaaaacctct tagaaatcag ggagtggtga ggacactgtc cagctctgcc caagaggaca
                                                                      180
tcatccggtg gtttaaagag gagcagctac cacttcgagc gggctaccag aaaacctcag
                                                                      240
acaccatage eccetggtte catggaatte teacacteaa gaaagcaaat gaacttette
                                                                      300
tgagcacagg catgcccggc agttttctca tccgagtcag tgaaaggatc aaaggctatg
                                                                      360
ccctgtccta tctgtcggag gacggctgta aacatttcct catcgatgcc tctgcagacg
                                                                      420
cctacagctt cctgggcgtg gaccagctac agcatgccac cttggcggat ttggtggaat
                                                                      480
atcacaagga ggaacccatc acttccctgg ggaaggagct ccttctctat ccctgtggtc
                                                                      540
agcaggacca gctgcctgac tacctggagc tgtttgagtg acagcctcca tcagggtcat
                                                                      600
cetacageet ecaageggge ttteceetgg acaaatgeea etgeaacatt tatgtgtgaa
                                                                      660
gccaaaatca ccctgcagca gagccaatac tgatcaactg aaagtatcca tggagtcctc
                                                                      720
attgacacet ettttetgea caaataetgg aatteaatgt caagagaaaa tgacetetge
                                                                      780
tcaaaaggga gaagagtete aattteagea agtacetgte atgaagggta tgaeettaat
                                                                      840
gatgtacata aaataaaaca aatgaagaaa tggaaaactt ttagaaatta aggtgtactt
                                                                      900
gaaaacgagt atctatcata tgacccctgc actccctctg tatcatctca ggaggtttca
                                                                      960
ggggcctgtt gacatgaagt ttcgaagttt catgttggct ttggaatggt agcaaaagcc
                                                                     1020
tttcctggct gagatgatgc ttaaaacaca cctcacttat tgtacatgtt ggaaccagga
                                                                     1080
catgagagac atagaaaaac agaagtcatg aatgtaaatt gaatgagagg cttaacatgc
                                                                     1140
atgaaaatac agatggacct gcaggaaagt gagcaaacat cgctgagttt gttttcttgt
                                                                     1200
```

tegggagaat ggggeegggg etggeetgge eteceetgga tataetetat agtgeaceaa 1260 aaggataaag catctgtaca tgtatttttt tatttttat cagaagtgct tagacaagaa 1320 cagaataagc aggctgtttg gatgctactt gtggttgaat tgtgttcccc caaaatatat 1380 ggtgaagtct taacccccat ccccgtgaat gggaccttgt ttggaaatag ggtctttgca 1440 gatatagtca agatgaggtc acattggatt agggtgggcc ccaaatccaa tgactggcat 1500 ccttaggaga agagaggtt ttggtaatag acacaaatgc agtgggaaga agaccagggg 1560 1620 ccagcagaaga ccagcagaga ggcatgggac aggttcccca caagccttag aaggaaqcat 1680 ggccctgact tcagaattcc agactccaga actggaagaa taaatgtctg ttgttttaaq 1740 ctgcttagtt catgctgagt tcatgctgac ttgttactat agccccagaa agctaataca 1800 gtcgtttatg taattacata acctgacaca caagatcgac ccattcactq ctqcccaqtc 1860 caccattttc ataatgaagt agaaatggga ggtaaqaaaa acattccaqc caqttctqtt 1920 tagccetggg acacatattt gtcccgtcag gaatettatg ccctcctgga acccccgccc 1980 acctcagtcc agtcccagtc aggcgaacgg cctctggaca gggactgagg tggctttgag 2040 ccactggaga tcattttct tggaggatgg agattggcta gtacctctgg cctaactgtg 21.00 taggtcaata ctcttttaca ttgccttcta ataaaagcag aatgatacag cagtgttgtt 2160 aaaaaaaaa a 2171

<210> 193 <211> 2095 <212> DNA <213> Homo sapiens

<400> 193

ggggaagtet ggagaaggea ttgttteaat tattaaaagt gtgggggeag tgggeggaae 60 aaacgegeeg actacagagg etggaegtaa gettateggt qqeqeqeqtq eqeaqeqeeq 120 gcccgagttg ccaaaacaaa ggggatttgg tgatggaggc tttgttagaa ggaatacaaa 180 atcgagggca tggtggggga tttttgacat cttgtgaagc agaactacag gagctcatga 240 aacagattga cataatggtg gctcataaaa aatctgaatg ggaaggacgt acacatgctc 300 tagaaacttg cttgaaaatc cgtgaacagg aacttaagag tcttaggagt cagttggatg 360 tgacacataa ggaggttgga atgttgcatc agcaggtaga agaacatgaa aaaatcaagc 420 aagagatgac catggaatat aagcaggagt tgaagaaact acatgaagaa ttatgcatac 480 tgaagagaag ctatgaaaag cttcagaaaa agcaaatgag ggaattcaga ggaaatacca 540 aaaatcacag ggaagatcgg tctgaaattg agaggttaac tgcaaaaata gaggaattcc 600 gtcagaaatc gctggactgg gagaagcaac gcttgattta tcagcaacag gtatcttcac 660 tggaggcaca aaggaagget etggetgaac aatcagagat aattcagget cagettgtca 720 atcggaaaca gaaattagag tctgtggaac tttctagcca atcagaaatt caacacttaa 780 gcagtaaact ggagcgggct aatgacacta tctgtgccaa tgagttggaa atagagcgcc 840 tcaccatgag ggtcaatgac ttggttggaa ccagtatgac tgtcctacag gagcagcagc 900 aaaaagaaga aaaattgagg gaatctgaaa aactattaga ggctctgcag gaagaaaaga 960 gagaattgaa ggcagctctt cagtctcaag aaaatctcat acatgaggcc agaatacaaa 1020 aggagaagtt acaagaaaaa gtaaaggcaa ctaacactca acatgctgta gaagctataa 1080 gtttggaatc tgtgagtgca acgtgtaaac agctgagcca agaactaatg gaaaaatatg 1140 aagaactgaa gaggatggaa gcacataaca atgaatacaa agcagagatt aagaagttga 1200 aagaacagat tttacagggt gaacaaagtt acagttctgc actagaagga atgaagatgg 1260 aaatotocca totaactoag gagttacato agogagatat cactattgot tocaccaaag 1320 gttcttcctc agacatggaa aagcgactca gagcagagat gcaaaaggca gaagacaaag 1380 cagtagagca taaggagatt ttggatcagc tggagtcact caaattagaa aatcgtcatc 1440 tttctgaaat ggtgatgaaa ttggaattgg gtttacatga gtgttccttg cctgtatctc 1500 cccttggttc aatagctacc agatttttgg aagaggagga actgaggtct catcacattc 1560 tagagcgctt ggatgcccat attgaagaac taaaaagaga gagtgaaaag acagtgagac 1620 aattcacagc cttaaagtag cctcttaaaa aaatcacaat cttggaaata aaaataaaca 1680 ccaaagagtt actgtcatct gaagtagcag ctctttaaaa acatgaagag ataaaattat 1740 aaaaatgata catctaaagc agtggtgaag aaagctgaaa aactgatact tttgataggc 1800 attttctctg cactggtttt tttaaaggac ttcttccagc aataagttga aagaataaac 1860 cactttgcta gactttttc tcatacgaat atttattatc ataaagtgat acttaccttg 1920

ctgacttaaa tgtgaatagc tatgtactaa ttgaaataag gattttatga tacatgttga 1980 aaataaagta actgcaggaa ctttctttag gggaaatgtg tagaagcatg gatttagggg 2040 tcaaacatac ctggatcgat agactggttt tgccacttac cagccaacgg ggctt 2095

<210> 194 <211> 1051 <212> DNA

<213> Homo sapiens

<400>	194					
gagaccttgt	cttaaaaaaa	taaaatgctg	tcagaataaa	aagcagtcaa	cagaaatgaa	60
acccttataa	gagacaaata	aatgtgggca	attattttct	gcaaaatgcc	ctccaagccc	120
ctgggcgcca	ttgccttctg	taataggaca	tcacctgaac	aggctttctg	ggctggagcc	180
aaggaccctc	cctgactccc	acctcccttt	ctgccttgta	ccccagccag	gtggaagaga	240
ccggagtggt	gctgtccctg	gagcaaacgg	agcaacactc	tcgcagaccc	attcagcggg	300
gegeeecete	tcagaaggac	acccctaacc	ctggggacag	ccttgacacc	cctggccccc	. 360
ggatccttgc	cttcctgcac	ccgccttccc	tgagcgaggc	tgccctggcc	gctgaccccc	420
gccgtttctg	cagccctgac	ctccgtcgcc	tcctgggacc	catcctggat	ggggcttcag	480
tagcagccac	tcccagcacc	ccgctggcca	cacggcaccc	ccaaagtcct	ctttcggctg	540
atctcccaga	tgaactacct	gtgggcaccg	agaatgtgca	cagactcttc	acctccggga	600
	ggcagtggag					660
tggagatgct	ggccccctac	atctccatgg	atgatgactt	ccagctcaac	gccagcgagc	720
agctacccag	ggcctaccac	agacctctgg	gggctgtccc	ccggccccgt	gctcggagct	780
tccatggcct	gtcacctcca	gcccttgagc	cctccctgct	accccgctgg	gggagtgacc	840
cccggctgag	ctgctccagc	ccttccagag	gggacccctc	agcatcctct	cccatggctg	900
gggctcggaa	gaggaccctg	gcccagagct	caaaggacga	ggacgaggga	gtggagctgc	960
tgggagtgag	acctcccaaa	aggtccccca	gcccagaaca	cgaaaacttt	ctgctcttc	1020
ctctcagcct	gagtttcctt	ctgacaggag	a			1051

<210> 195 <211> 423 <212> DNA <213> Homo sapiens

<400> 195 gtgaactcca agactgtttt gatgttcatg atgcatcttg ggaagagcag atattctggg 60 gatggcataa tgatgtccac atatttgaca caaagacaca gacttggttt caaccagaaa 120 ttaaaggtgg agttccacca cagccacgag ccgcgcatac gtgtgcagtt cttggaaata 180 agggttatat ctttggcgga cgtgttctgc aaactaggat gaatgatttg cactatctaa 240 acctagacac ctggacttgg tctggaagga ttactattaa tggagaaagc ccaaaacatc 300 ggtcatggca tactttaaca cctatagctg atgataaact tttcctatgt ggtggactaa 360 atgcatataa tatgccatta agtgatggtt ggattcataa tgtcacaaca cattgttgga 420 aac 423

```
<210> 196
<211> 411
<212> DNA
<213> Homo sapiens
```

<400> 196
ttttttttt ttgaggacaa ggtctcactc tgtcacccca aggtgggagt gcagtgacga 60
catcacagct cactggcagc ctcaaccctg gggttcaagt gatcctctca ccttcagcct 120
ccccaagtag ttgtgcctcc taggcacac acactatgcc ccggcaaatt tttttgtatt 180
ttgtattttt tgtagaaaca ggatttcgcc atgttggcca ggctggtctc gaacaccctg 240
ggctcaactg atccgcctgc ctcggcctcc caaagtgctg ggattacagg tgtgagccac 300
cctgctcaac caggttttat tatttaagtt agttaaactt tggatagatt gtataatata 360
tagtttaatg taatcatgct catattttt aaataaataa aacactatac t 411

<210> 197 <211> 751 <212> DNA <213> Homo sapiens

<400> 197 cccacgggaa gggcaggtga agcaggggct gctgggggat tgctggttcc tgtgtgcctg 60 egeegegetg cagaagagea ggeaceteet ggaceaggte attecteegg gacageegag 120 ctgggccgac caggagtacc ggggctcctt cacctgtcgc atttggcagt ttggacgctg 180 ggtggaggtg accacagatg accgcctgcc gtgccttgca gggagactct gtttctcccg 240 ctgccagagg gaggatgtgt tctggctccc cttactggaa aaggtctacg ccaaggtcca 300 tgggtcctac gagcacctgt gggccgggca ggtggcggat gccctggtgg acctgaccgg 360 cggcctggca gaaagatgga acctgaaggg cgtagcagga agcggaggcc agcaggacag 420 gccaggccgc tgggagcaca ggacttgtcg gcagctgctc cacctgaagg accagtgtct 480 gatcagctgc tgcgtgctca gccccagagc aggtgaggca cgtggccagc atgggagggc 540 tgcagccagc gtgccccca ctgccaggcc tcaggcacac tgtagctttt tatgtgactg 600 gctacacagc cctgtcagga ctaagtggga agaagtaagc ttgttctcaa gggtggtgtc 660 ctcagtttgt gaccttcccc tgctgtcctc ttccagaggg acgtggccct tctctcccct 720 gaccagtcct ttccactagt gcgaggcagg g 751

<210> 198 <211> 636 <212> DNA <213> Homo sapiens

<400> 198
gggccgagtg tctggaggcc tctattgccc gatatgccca ccgtgtcgcc aatagccgtt 60
atacctttga cggtgaaacc gtgacgcttt cgccaagtca gggcgttaac cagctgcacg 120
gcgggccgga agggttcgac aaacgtcgct ggcagattgt gaaccagaac gatcgtcagg 180
tgctgtttgc cctgagttca gatgatggtg atcagggctt cccgggtaat ctcggcgcga 240

cggtgcaata tcgtctgacc gacgataacc gtatctccat tacttatcgc gccacagttg 300 ataaaccttg cccggtgaat atgactaatc acgtctattt caatcttgac ggcgagcagt 360 ctgacgtgcg caatcacaag ttgcagattc tggcggacga atatctgccg gttgatgaag 420 gcggcattcc gcacgacggc ctgaaatctg tcgccggaac gtcttttgat ttccgcagcg 480 ccaaaaatcat cgccagtgag tttcttgccg acgacgatca gcgcaaagtg aaaggttacg 540 atcacgcatt cttgttacag gccaaaggcg atggcaagaa agtggcggcg catgtctggt 600 cagcagatga aaaattgcag ctgaaggtct acacca 636

<210> 199

<211> 690

<212> DNA

<213> Homo sapiens

<400> 199

aaagtggcag	tgtttcttct	gaaattctca	ggcagtcaga	ctgtcttagg	caaatcttga	60
taaaatagcc	cttatccagg	tttttatcta	aggaatccca	agaagactgg	ggaatggaga	120
gacagtcaag	ggttatgtca	gaaaaggatg	agtatcagtt	tcaacatcag	ggagcggtgg	180
agctgcttgt	cttcaatttt	ttgctcatcc	ttaccatttt	gacaatctgg	ttatttaaaa	240
atcatcgatt	ccgcttcttg	catgaaactg	gaggagcaat	ggtgtatgac	aagccgccga	300
aatttgccat	gtcacgagag	caaatgtcac	agtcatgttc	tcacacggca	cataatgcaa	360
gtctgttgac	agatgcgggt	ccattgtcat	gtggggagtc	gagggcgagc	tgtttgtttt	420
tgtaacgatg	ttgggaagtg	atggctctgc	agtcacaaag	agcagccttc	tctcactggc	480
tgcaccgatg	aacattacga	agttctagaa	caaacatcac	ttcaaaatgc	ctggagtaat	540
tcctcttata	tcaactaatt	tcaagaagaa	aacctgcaga	aactaacccc	acccctctca	600
acgagaatat	tgtgtccacg	tcctctttac	ttatacgacc	cgtctcttat	tctcttataa	660
cacaacgtca	taactaaacg	agcacaacac				690

<210> 200

<211> 433

<212> DNA

<213> Homo sapiens

<400> 200

gtgactccaa	ggaaccaaga	ctgcagcagc	tgggcctcct	qqaqqaqqaa	caqctqaqaq	60
and the second s	ccgacagact					120
ccctggtgct	gcaactcctc	tccttcacgc	tcttggctgg	gctccttgtc	caagtgtcca	180
aggtccccag	ctccataagt	caggaacaat	ccaggcaaga	cgcgatctac	cagaacctga	240
cccagcttaa	agctgcagtg	ggtgagctct	cagagaaatc	caagctgcag	gagatctacc	300
aggagctgac	ccagctgaag	gctgcagtgg	gtgagcttcc	agagaaatct	aagctgcagg	360
agatctacca	ggagctgacc	tggctgaagg	ctgcagtggg	tgagcttcca	gagaaatcta	420
agatgcagga	qaq ·					433

<210> 201

<211> 782

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(782)
<223> n = a,t,c or g
```

<400> 201 gaagaagggg aaaagaggct ccaggcccct tctccaatca ctccctqcca ccctttctcc 60 tttggattee ttggetgett tageaggtet teetagagge taaetttgat etttettget 120 gcagtttctt tttgggagag ctagtcagtc ccacagagtg gtatccctag aagggagaag 180 taaggattgc cctcttcttt aaaatgaaag ccagctattt ttcacgccct ttaactgcag 240 gtetgeteta ttttetttte tetetetgga getgagagte agagggeeet teteeteete 300 ctttcagccc ccaacactaa gctgatggat tgataaatac ctcagcccct cgcctttctc 360 aacccacctg gcaagtette ttaggatetg atcccagttt tetggaagea atcctaccce 420 ageceattet teccagagte gageettaat cetteteact teteagtgte agageagaaa 480 tgaatcctgg ggttgactgt gtccattcgg gttattagca gctaagaagc ccagacgagt 540 agtgtgaget geettgggag eetcagtgag ggeactggga etggeetcae tetettgeee 600 ccagcctagt gggctttctc ctctgtctct ccggtggccc caggcaatcg actqcatcac 660 geanggacgt gagttggage ggecaegtge etgeceaeca gaggtetaeq ceateatqee 720 gggctgctgg gcagcggagc cccagcaacg ccacagcatc aaggatqtqc acqccqctq 780 ca 782

<210> 202 <211> 714 <212> DNA <213> Homo sapiens

<400> 202 ttegagaece tatecatgag gggaatteet cacatgetgg etttggggee acageagetg 60, ctggcccagg atgaggaggg ggacacgctc cttcacctgt ttgcggctcg ggggctgcgc 120 tgggcggcat atgctgcggc tgaggtgctc caggtgtacc ggcgtcttga cattcgtgag 180 cataagggca agacccctct cctggtggcg gctgctgcca accagcccct gattgtggag 240 gatctgttga acctgggagc agagcccaat gccgctgacc atcagggacg ttcggtcttg 300 cacgtggccg ctacctacgg gctcccagga gttctcttgg ctgtgcttaa ctctggggtc 360 caggttgacc tggaagccag agacttcgag ggcctcaccc cgctccacac ggccatcctg 420 gcccttaacg ttgctatgcg cccttccgac ctctgtcccc gggtgctgag cacacaggcc 480 cgagacaggc tggattgtgt ccacatgttg ctgcaaatgg gtgctaatca caccatccag 540 gtgagcgggg atgtgggcgg tcagaccctg ggagattgtg tggaatgggg ccacttggat 600 gtccgggagc tccaggcaaa tgctgacttt gcctcttcct tgctgcgtgc ccttgaacat 660 gttacttcac ttctctgtgc cttaagggtt ttttgcttgt ttctttgtca gtta 714

<210> 203 <211> 477 <212> DNA <213> Homo sapiens

<400> 203 cggacgcgtg ggcggacgcg tgggtgggga ccaagatggc ggaccttgat tcgcctccga 60 agetgteagg ggtgeageag cegtetgagg gggtgggagg tggeegetge teegaaatet 120 ccgctgagct cattcgctcc ctgacagagc tgcaggagct ggaggctgta tacgaacggc 180 tctgcggcga ggagaaagtg gtggagagag agctggatgc tcttttggaa cagcaaaaca 240 ccattgaaag taagatggtc actctccacc gaatgggtcc taatctgcag ctgattgagg 300 gagatgcaaa gcagctggct ggaatgatca cetttacetg caacctggct gagaatgtgt 360 ccagcaaagt tcgtcagctt gacctggcca agaaccgcct ctatcaggcc attcagagag 420 ctgatgacat cttggacctg aagttctgca tggatggagt tcagactgct ttgagga 477

<210> 204 <211> 706

<212> DNA

<213> Homo sapiens

<400>	204					
gcggtggaat	teegggttee	ccgttctggt	tcggcatatc	tctacagcta	tgtcactgtg	60
ggtgaactct	gggccttcac	cactggctgg	aacctcatcc	tctcctatgt	cattggtaca	120
gccagtgtgg	cccgggcctg	gagctctgct	tttgacaacc	tgattgggaa	ccacatctct	180
aagactctgc	aggggtccat	tgcactgcac	gtgccccatg	tccttgcaga	atatccagat	240
ttctttgctt	tgggcctcgt	gttgctgctc	actggattgt	tggctctcgg	ggctagtgag	300
teggecetgg	ttaccaaagt	gttcacaggc	gtgaaccttt	tggttcttgg	gttcgtcatg	360
atctctggct	tcgttaaggg	ggacgtgcac	aactggaagc	tcacagaaga	ggactacgaa	420
ttggccatgg	ctgaactcaa	tgacacctat	agcttgggtc	ctctgggctc	tggaggattt	480
gtgcctttcg	gcttcgaggg	aattctccgt	ggagcagcga	cctgtttcta	tgcatttgtt	540
ggtttcgact	gtattgctac	cactggagaa	gaagcccaga	atccccagcg	ttccatcccg	600
atgggcattg	ggateteact	gtctgtctgc	tttttggcgg	attttgctgt	ctcttctgca	660
ctcaccctga	tgatgcctta	ctaccagctt	cagcctgaga	gccctg		706

<210> 205 <211> 852 <212> DNA <213> Homo sapiens

<400> 205 ggcttccatc ctaatacgac tcactatagg gctcgagcgg ccgcccggge aggtgctggg 60 togtttgtgg gcgaagtaag tgctgtagat aaagactttg ggccaaatgg agaagtaagg 120 tattcttttg aaatggtgca gccagatttt gagttgcatg ccatcagtgg ggaaattaca 180 aatactcatc agtttgacag ggagtctctt atgaggcgga gagggactgc tgtgtttagc 240 tttacagtca tagcaacaga tcaggggatc cctcagcctc tcaaggatca ggccactgta 300 catgtttaca tgaaggatat aaatgataat gctcccaaat ttttaaaaaga cttttaccaa 360 gctacaatat cagaatcagc agccaatctg acacaagtgt taagagtatc tgcctcagat 420 gttgatgaag gtaataatgg acttattcac tattctataa taaaaggaaa tgaagaaaga 480. cagtttgcta tagacagtac ctctggtcag gtaacactaa ttggcaaatt agactatgaa 540

gcaacacctg cctattccct tgtaattcaa gcagtggatt cagggacaat ccccctcaat 600 tcaacgtgta ctttaaatat tgatatttta gatgaaaatg acaatacccc tttctttccc 660 taaatcaaca cttctttgtt gatgttttgg aaaacatgag aattggtgaa ctcggggcct 720 ctggtactgc aactgattcc cgattcaggt gacattgctg atttatatta caagtttact 780 gggactaaac accccccgg aacttttagc attagcccca aacacttggg agtattttc ttggcccaaa aa 852

<210> 206

<211> 361

<212> DNA

<213> Homo sapiens

<400> 206
ctggtgattg ctatgacctg tatggaggg agaagtttgc cactttggct gagttggtcc 60
agtattacat ggaacatcat gggcaattaa aagagaagaa tggagatgtt attgagctta 120
aaaatcctct gaactgtgca gatcctactt ctcaaaggtg gtttcatgga cacctctctg 180
gaaaagaagc agagaaattg ttaactgaaa aaggaaagca tagtagcttt cttgtacgag 240
agagccagag ccaccctgga gattttgttc tctccgtgtg caccggtgat gacaaaggag 300
agagcaatga cggcaagtct aaagtgactc atgtcatgat tcactgtcag gaactgaaat 360

361

<210> 207

<211> 2483

<212> DNA

<213> Homo sapiens

<400> 207 ataaaatgga catagtagta ggacttacct cccagggctg tggttataga ggttttgtaa 60 qaattaaatg acatcatcca tgtaaagcat atagcagaat gcctggcaca tagatgccct 120 tagtgaattt ttgctgttgt tgtgattctt ttgggagcag tcatagtaac atattctcat 180 atgttggtat gttctttcat attgcattgt cttatgaata gattctggaa accaaaatgg 240 aggaaatgat gataagacta agaatgctga gaggaactat ttaaatgttt tacctgggga 300 attituatatt acacggcatt ctaatctctc agaaatccat gttgctttcc atctctgtgt 360 ggatgaccat gtgaaatcgg gaaacatcac tgctcgtgat cctgccatta tgggactccg 420 aaatatactc aaagtttgct gtacccatga catcacaaca ataagcattc ctctcttgct 480 ggtacatgat atgtcagagg aaatgactat accetggtge ttaaggagag eggaacttgt 540 600 gttcaagtgt gtcaaaggtt tcatgatgga aatggcttca tgggatggag gaatttctag gacagtgcaa tttctagtac cacagagtat ttctgaagaa atgttttatc aacttagtaa 660 catgettece cagatettee gagtateate aacaeteact etgacateca ageactaaac 720 780 cettatagat tgacatgetg geagaagatg attgttaaac tetecaggaa ettgtgetat 840 gctgggaatc tgtcaagcaa aagatgccca gaaagagaac ttgcagctca atccacaaat 900 caagatacat gtgtgtgaaa cccattccaa aaatttatat actggcacaa actggtggat 960 caacccctaa cttaaacact taaaqtctct ttatqaattt ctctttttt cttctctgtg 1020 ttacctgtgg aatattaggt aatctaaaac tttttattta ttcacacagg gacacttggg gggaaaggga aacttgatta tatttacatg ggagggcatt tgactttttt caaggagggc 1080 ttggacttcg tcttcaggtg gcaatcctta attaaacata caaacaaaat tttcctttta 1140 1200 ctttctttgc caaaacaaaa tgtaaaagca ctgaaatata cattgcaagt acaaatttcc tgtgaaaatc tttttataga aacacaaatg tataagacaa atgtgcttgt tcttttaaat 1260

tctcctgttt	cagaatctct	ttttaatcta	ctcctaagga	tgtacaagtt	agagtcagaa	1320
gacgttttgg	attttttccc	teteteteat	cctcccgctg	tgcccttgca	cttgcatatt	1380
aataacattt	catggactgg	gaaatagtgt	tcttttttgc	aagcttgatg	tcaagttagt	1440
ctaaaccagc	acctggcagt	attttagtgc	tcatcaacat	tgtgacaatc	acacaaggaa	1500
gatcatttct	acatttctgt	cctccctgcg	ttctcagctt	gcttaaccat	tcctctacct	1560
cttgcatttt	titgcggata	aatgtatccc	catttctgct	tctctgtttc	ccctcctttt	1620
ccattgtttt	tecttatggt	actactttct	caggtgctac	atatcatata	tttgtcccat	1680
ctataacata	tttaaatgct	ataagtagta	actccattaa	acaaaggcat	ttacaaaagc	1740
acacaggtgt	ttagaaaagc	aatagtttca	tcaattccaa	gttatgtgga	tattgtaact	1800
ggccacaaga	atgaaatgga	gggcatttgg	tgtcataaga	tggcatgtct	tgatgacaag	1860
aaacaaaacg	cccttcatta	atatgcctca	gtgtaataac	tattatagaa	actgttggca	1920
agcagagtgc	tttcctataa	cagaatgtgt	cttaattttc	tacttgaggg	aaaggtttgt	1980
ccaggtaaca	acactaaaga	caaccctaag	aacacccact	ccagcagtat	gtccattaga	2040
cactaaaact	ctccaaatta	tttgtcaggg	agcctggcga	ttctgccaag	aaggcaggtg	2100
ttttgccctt	agagcctata	cagttctctt	ggagaaattg	tctttcaggc	accactgtta	2160
atcactgaga	ctgattctaa	tgcaaagcag	ggaagacaga	ggcagaaacc	aggagagtgg	2220
tagatcagtg	cagcccagat	atcggaatgg	aggagcaaag	tttcattcac	ggatgtttgt	2280
tgaatgctgc	tgcccaactc	ttcctttgtc	acctctaggc	tattccacta	agttacttat	2340
aaactggtgg	ctttaactga	gggctgtgta	aaggtactat	ttggcatgtg	aagtcaggat	2400
aaatttatcg	aatgtccgtt	ttccacatgc	aactgtgtta	cagaagtagt	aaaattggaa	2460
gaatcatgtt	tatggtgtta	cca				2483

<210> 208 <211> 366

<212> DNA

<213> Homo sapiens

<400> 208
caagcatcet gccgccctg ctggtgacca tcctgatctt catggaccag cagatcactg 60
ccgtcattgt caaccggaag gagaacaaac tgaagaaggc tgccggctac catctggacc 120
tgttctgggt gggcatcetc atggctttgt gctcetttat ggggctcccc tggtacgtgg 180
ctgccacggt catctccatc gcccacatcg acagcctcaa gatggagaca gagaccagtg 240
cccctgggga gcagcccag tttctgggag tcagggaaca gagagtaacc ggcatcatcg 300
tcttcatcct gacggaatc tctgtcttcc tggctccat cctaaagtgt atcccctgc
cggtgc

<210> 209 <211> 574 <212> DNA

<213> Homo sapiens

```
tgttattgaa gtttattctg gtggcgtgct tgatgttagg ggtggtacgg caacaaatgt 420 tacccagcac gatggtgcaa ttttaaaaac taacactaac ggtacgacgg tgagcggtac 480 gaatagtgaa ggtgcattct ccatccacaa tcacgtggca gacaatgtgt tgctggaaaa 540 cggtggtcat ttagacataa acgcatatgg ttcg 574
```

<210> 210 <211> 383 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(383) <223> n = a,t,c or q

<400> 210

tttttctctt ccatccagct gactgatgat cagggccccg tcctgatgac cactgtagcc 60
atgcctgtgt ttagtaagca gaacgaaacc agatcgaagg gcattcttct gggagtggtt 120
ggcacagatg tcccagtgaa agaacttctg aagaccatcc ccaaatacaa ggtaatgaat 180
gacctaatcc ctgaaatcaa agcaacagag atgcccagag ccttgtttc acaaagttca 240
ggcttcaaac tctactttgg agcgatgttt ttgctcacca ctattacagc ctgttagctt 300
gtctttatac catctgcaca gttatttaaa aggnnnnnnn nnnattattt acaaggactg 360
gctgtttttc ttatttacct cct

<210> 211 <211> 592 <212> DNA <213> Homo sapiens

<400> 211 tttcgtgttc aggaactggc accaatgcgt gttacatgga ggacatgagc aacattgacc 60 tggtggaggg cgacgagggc aggatgtgca tcaacacaga gtggggggcc ttcggggacg 120 acggggccct ggaggacatt cgcactgagt tcgacaggga gctggacctc ggctctctca 180 acccaggaaa gcaactgttc gagaagatga tcagtggcct gtacctgggg gagcttgtca 240 ggcttatctt gctgaagatg gccaaggctg gcctcctgtt tggtggtgag aaatcttctg 300 ctctccacac taagggcaag atcgaaacac ggcacgtggc tgccatggag aagtataaag 360 aaggeettge taatacaaga gagateetgg tggacetggg tetggaaceg tetgaggetg 420 actgcattgc cgtccagcat gtctgtacca tcgtctcctt ccgctcggcc aatctctgtg 480 cagcagetet ggeggeeate etgacaegee teegggagaa caagaaggtg gaaeggetee 540 ggaccacagt gggcatggac ggcaccctct acaaqataca ccctcaqtac cc 592

92

<210> 212 <211> 2166 <212> DNA

<213> Homo sapiens

```
<400> 212
tttcgttgca attgcaacga atggtgttgt gcctgctggt ggctcctact acatgatttc
                                                                      60
caggitetetg ggeccagagit tigggggtge egigggeete igettetace igggeactac
                                                                     120
ctttgcagga gccatgtaca tcctgggcac catcgaaatc ctgctggctt acctcttccc
                                                                     180
agccatggcc atcttcaagg cagaagatgc cagtggggag gcagcaqcca tqctqaacaa
                                                                     240
catgcgtgtt tacggcacct gtgtgctcac ctgcatggcc actgtggtgt ttgtgggtgt
                                                                     300
caagtatgtc aacaagtttg cccttgtctt cctgggttgt gtcatcctct ccatcctggc
                                                                     360
catctatgct ggggtcatca agtctgcctt cgacccaccc aacttcccga tctgcctcct
                                                                     420
gggtaaccgc acgctgtctc gccatggctt tgatgtctgt gccaagctgg cttgggaagg
                                                                     480
aaatgagacg gtgaccacac ggctatgggg cettttetge teeteteget teeteaacge
                                                                     540
cacctgtgat gaatacttca cccgaaacaa tgtcacagag atccagggca tccctggtgc
                                                                     600
tgccagtggc ctcatcaaag agaacctctg gagctcctac ctgaccaagg gcgtgattgt
                                                                     660
ggagaggagt gggatgacet eggtgggeet ggeegatgge actectateg acatggacea
                                                                     720
ccettatgte tteagtgata tgacetecta etteaceetg etggttggea tetaetteee
                                                                     780
cteagteaca gggateatgg etggttetaa eegetetggg gaeetgaggg atgeecagaa
                                                                     840
gtcaatcccc actggcacca tcctggccat cgccaccacc tctgctgtct acatcagctc
                                                                     900
cgttgttctg tttggggcct gcattgaggg ggtcgtcctg cgggacaagt ttggcgaagc
                                                                     960
tgtgaatggc aacctcgtgg tgggcactct ggcctggcca tctccatggg taattgtcat
                                                                    1020
eggatectte ttetecacet gtggggetgg getgeagage eteaeggggg ceceaegeet
                                                                    1080
gctgcaggcc atctcgaggg atggcattgt gcccttcctg caggtctttg gccatggcaa
                                                                    1140
ggccaatgga gagccgacct gggccctgct cctgactgcc tqcatctqcq aqattqqcat
                                                                    1200
cctcattgca tccctcgacg aggtggcccc catcctctct atgttcttcc tgatgtgcta
                                                                    1260
catgtttgtg aatctggcct gtgcagtgca gacgctgctg aggacaccca actggagqcc
                                                                    1320
acgetttega tattaceaet ggaccetete etteetggge atgaqeetet geetggeet
                                                                    1380
catgiticate tgetectggt attatgeact ggtagecatg eteattgetg gaeteateta
                                                                    1440
caagtacatt gagtaccgtg gggcaaagaa ggagtggggc gatgggatac gaggtctgtc
                                                                    1500
teteagtgeg getegetatg ceetettaeg cetggaggaa gggeececae acaceaagaa
                                                                    1560
ctggaggcca cagctgctgg tgctggtgcg tgtggaccaa gaccagaatg tggtgcaccc
                                                                    1620
ccagctgctc tcactgacct cccagctgaa ggcagggaag ggcctgacca tcgtgggctc
                                                                    1680
tgtccttgag ggcacctttc tggaaaatca tccacaggcc cagcgggcag aaqagtctat
                                                                    1740
caggcgcctg atggaggcag agaaggtgaa gggcttctgc caggtggtga tctcctccaa
                                                                    1800
cttgcgtgat ggcgtgtccc atctgatcca gtctgggggc ctcggggggc tgcagcacaa
                                                                    1860
cactgtgctt gttggctggc cccgcaactg gcgccagaag gaagatcatc agacgtggag
                                                                    1920
gaacttcatt gagctggtcc gggaaaccac agctggccac ttagccctgc tggtcaccaa
                                                                    1980
gaacgtttcc atgtttcctg ggaaccctga gcgcttctct gaaggcagca tcgaccgttg
                                                                    2040
ggggattggg cacgatggag gcatgctcat gctggtgccc ttcctgctgc ggcaccacaa
                                                                    2100
ggtctggcgg aagtgcaaga tgcgtatctt cactgtggcc cagatggttg acatgcatgc
                                                                    2160
catgag
                                                                    2166
```

```
<210> 213

<211> 392

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(392)

<223> n = a,t,c or q
```

<400> 213

ttctatctga	ggctactgtc	ttttttctgc	tttcaggagc	atgagaagag	gtgttggagc	60
gttgacttta	atttgatgga	tcctaaactc	ttggcttcag	gttctgatga	tgcaaaaggt	120
actgtttgaa	tctctttctc	agcacctcct	tataaatgga	cctcttaact	gtaattcctt	180
tcatcggcag	aaatacaaat	atttactcaa	actcatgtca	gtcctttgtg	attactgatt	240
attattattc	cccannnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	300
nnnnnnnnn	nnnnnnnnn	uuuuuuuuu	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	360
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nn			392

<210> 214

<211> 425

<212> DNA

<213> Homo sapiens

<400> 214

ggcggaattc	aaaagcaatg	cacaggtctt	cctgtgacgg	gccgctactc	tctctgccct	60
cagtgggacg	gtcagccacc	catgccctgg	tccaggccca	gctgatctgc	tcaggagcca	120
ggcggggcat	gcacgctttt	attgtgccaa	teeggagtet	tcaggaccac	accccactgc	180
caggtaagcc	cataatgctc	cctcaaggaa	ccctgccagg	aggagagccc	aggtggcctc	240
cctgacctgg	ggccccagag	ggccacagga	gtagctaaga	catgtctccc	ttgggcaggg	300
agcggtccag	ttggacagac	ttggtgctaa	ctggctaggt	gaacttgagc	aagatttagc	360
atctttctga	cctcagcttg	ttcacctgca	aaataggtac	aataatccca	gtgtcacagg	420
ctgct						425

<210> 215

<211> 608

<212> DNA

<213> Homo sapiens

<400> 215

ctgcgggacc	ctcatcttgc	aggcccgggc	ctatgtggga	ccgcacgtcc	tggcagtggt	60
gacccgcaca	gggttctgca	cggcaaaagg	gggcctggtg	agctccatct	tgcacccccg	120
gcccatcaac	ttcaagttct	ataaacacag	catgaagttt	gtggctgccc	tatatgtaat	180
ggatataata	ggcaccatct	acagcatctt	catcctctac	cgaaaccggg	tgcctctgaa	240
tgagattgta	atccgggctc	tcgacctggt	gaccgtggtg	gtgccacctg	caatgaatga	300
tgccatgact	gtgtgcacgc	tctacgccca	gagccgactg	cggagacagg	gcattttctg	360
catccaccca	ctgcgcatca	acctgggggg	caagctgcag	ctggtgtgtt	tcgacaagac	420
gggcaccctc	actgaggacg	gcttagacgt	gatgggggtg	gtgcccctga	aggggcaggc	480
attcctgccc	ctggtcccag	agcctcgccg	cctgcctgtg	gggcccctgc	tccgagcact	540
	catgccctca					600
gaagatgt						608

<210> 216

<211> 858

<212> DNA

<213> Homo sapiens

<400>						
ctatctggtc	actggccact	gtggctttgt	attcctctaa	cgtggctgcc	aaggctgctt	60
ttcctttctg	ctcagactca	ataattcgct	ccatatggtg	actgcgttct	ttgagtgccc	120
ctatcatttc	ttgagettee	ttattgtctt	gttctgccat	tttcaaagta	ttgcttaaat	180
	accaagaagc					240
aacgttgctc	taattccata	tagcgcccac	tttttacatc	ttcatctatg	acagattgaa	300
	ctcttctaga					360
agtgggcgct	atatggaatt	agagcaacgt	tacatggacc	tcgctgagaa	tgcccgtttt	420
gaacgggagc	agcttcttgg	tgtccagcag	catttaagca	atactttgaa	aatggcagaa	480
caagacaata	aggaagctca	agaaatgata	ggggcactca	aagaacgcag	tcaccatatg	540
gagcgaatta	ttgagtctga	gcagaaagga	aaagcagcct	tggcagccac	gttagaggaa	600
tacaaagcca	cagtggccag	tgaccagata	gagatgaatc	gcctgaaggc	tcagctggag	660
	agaaagtggc					720
	tcctggagag					780
	aagatctggc					840
gctaaaggta		_	_ _	-		858

<210> 217

<211> 399

<212> DNA

<213> Homo sapiens

<400>	217					
agcacgctac	cgctttaccc	tcagcgccag	gacgcaggtg	ggctctgggg	aagccgtcac	60
agaggagtca	ccagcacccc	cgaatgaagc	tactccaacc	gcagctcctc	ccacattgcc	120
cccgactacc	gtgggtgcga	cgggcgctgt	gagcagtacc	gatgctactg	ccattgctgc	180
	gccacaacag					240
caccaccacc	gtcgccacaa	ctactacaac	cactgctgcc	gccaccacca	ccacggagag	300
tcctcccacc	accacctccg	ggactaagat	acacgaatcc	gcccctgatg	agcagtccat	360
atggaacgtc	acggtgctcc	ccaacagtaa	atgggccaa			399

<210> 218

<211> 662

<212> DNA

<213> Homo sapiens

<400> 218 ctgaagtcaa cgcaagacga aatcaaccag gcaaggagca aactgtccca gctgcatgaa 60 agccgccagg aggcccacag gagcctggag cagtatgacc aggtgctcga tggagcccat 120 ggtgccagcc tgaccgacct ggccaacctg agcgaaggcg tctccctggc agagaggggc 180 agttttggag ccatggatga tcctttcaaa aataaagcct tgttatttag caacaacacg 240 caagagttgc atccggatcc tttccagaca gaagacccct tcaaatctga cccatttaaa 300

```
ggagctgacc cettcaaagg cgacccgtte cagaatgace cetttgeaga acagcagaca 360 acttcaacag atccatttgg aggggaccet ttcaaagaaa gtgacccatt cegtggetet 420 gecactgacg acttettcaa gaaacagaca aagaatgace catttacete ggatccatte 480 acgaaaaacc etteettace ttcgaagete gacccetttg aatccagtga tecettttea 540 teetecagtg tetectcaaa aggatcagat ecetttggaa eettagatee etteggaagt 600 gggteettea atagtgetga aggetttgee gactteagea etattgaagg tegaeggge 660 eg
```

<210> 219

<211> 752

<212> DNA

<213> Homo sapiens

<400> 219 eggacgegtg ggggatetgg caatagetee caacceteae ttegtgaggg ecaegacaaa 60 cctgttttta atggagctgg aaagcctcat tccagcacct cttcaccaag tgtcccaaag 120 acttetgeta quagqaetca qaaatetget qttqaqcaca aaqccaaaaa atetetgtee 180 catectagee attecaggee tgggeecatg gteaccecae acaataagge taagagteea 240 ggtgtcaggc agccaggcag cagctctagc tcagcccctg ggcagcccag cacaggqqtt 300 gctcgaccca cagttagttc tggccctgtg cctaggcgcc agaatggcag ctccagctca 360 ggacctgagc gatcaatcag tgggtccaag aagccaacca atgactcaaa tccctctagg 420 cggacagtca gtggtacatg tggccctgga caacctgcaa gcagctcagg tggccctggg 480 cgacccatca gtggttcagt tagttctgca agacccttgg gcagctctcg tggccctggc 540 cggcctgtga gcagtccaca tgaacttcga cgaccagtga gtggcttggg cccccgggg 600 cggtctgtca gtggccctgg gagatccata agtggctcaa ttccagctgg acggactgtc 660 agtaattcag tcccaggaag accagtgagc agcttgggac ctgggcaaac agttagtagc 720 tcaggtccca ctataaagcc taagtgcact gt 752

<210> 220 <211> 582. <212> DNA <213> Homo sapiens

<400> 220 ttattattat tttgcataga gacaagcact cactgtgtta cccaggctgg ttttgaactc 60 ctgagcttaa tcagttctca cctgctttqc cctcccaaaq tqctatqatt acaqqtqtqa 120 gccaccacgc ttggccctgc ccaggagtca tttttgtatc tacaggtatc ttcctatgct 180 gtagacagat gccctttttc aaggcaaaaa ccctagccat ttttctcttc tccttcagag 240 tetgeaacat ceteteaact catecaagtg actaetgeet ggtgetettg gggatgeagg 300 gaggcctgag aaggccaatg tctatacaga aagttctaac atagtgcact gagtcaatgt 360 gggcacttta aagcccttte acctgccaag tcacgaagca cccctatagt tgtgtttgta 420 aaatactggg gggtttgaag gggaaaaggg ataactccaa ggtaccatct ttgcatttca 480 gatccacaca acttaaagat ctgctgtcga gtgaatgggg aagtggtcca gagcagcaac 540 accaaccaga tggtattcaa gacagaggac ctgatagcct gg 582

<210> 221 <211> 440 <212> DNA <213> Homo sapiens

<400> 221 ggaattegat cagtagaagt ttgggggata tagaaacgaa ggttttctaa cttttagett 60 tcaaggagat tgtccggttg ggaaagcaag atatgaaaaa taaatatgtc aaqaatataa 120 tecaaaacaa tetaattaag tgetagaagt ttgecatgga cagacaaagt getacttggg 180 aaggaagtte cagaaacacc acagetgggt acattettea ceaetetgag tggtggcagt 240 gacgcgttgg ctttgtgaga atggtgtgtc ttacttgaga aagtgtgtgt gttctgcctg 300 caggcatggg actcgctgtg ctggagaagt ggcagccgct gcaaacaatt cgcactgcac 360 agtcggaatt gctttcaacg ccaagatcgg aggtatggga aaccaactca cgtggatgta 420 gaaatgcgcc agttagctct 440

<210> 222 <211> 489 <212> DNA <213> Homo sapiens

<400> 222 ccgacgattt cgtgaggcgg cagccaggtg gggttccagc cagagcacgc acgcacggag 60 ccgggagcat gcagcctgca ctgcggggga tgtgatgctc ggctctaact cgcctggctg 120 georgeoacg gacgeoteag ettgeaacca tggtaacgtt tetggegggg gacaceceeg 180 ggagcccacc gcgatgggca gcctcctggt gactgatgga cgagtqtcca cctcccaqac 240 cgagagcgct tagtaggtcg gaggaagtgg agaggatgta acacqccccc aqccqqqaqt 300 gaagccctga ggagctcctc cccccttcgt tcccaccctc aagtctgacg atgacacctc 360 caatittgat gaaccaaaga agaattcgtg ggtttcatcc tctccgtgcc agctgagccc 420 ctcaggcttc tcgggtgaag aactgccgtt tgtggggttt tcgtacagca aggcactggg 480 gattcttgg 489

<210> 223 <211> 493 <212> DNA <213> Homo sapiens

<400> 223
tttcgtcgag cgccttgcgc acctccacgc tgcctgcgcc ccgcgcgca aggtggcgct 60
cctcttggag gtgtcagag atgtctatgc gggcctggct cgaggcgaga accaagatcc 120
cctggggacacg cagccttcc tgccggcgct gaccgaggaa ctcatctgga gcccggacat 180
tggggacacg cagctggacg tagagtttct tatggagctc ttagatccag atgagctgcg 240
gggagaggct gggtactacc tgaccacgtg gtttggggcg ctgcaccaca ttgcccacta 300
ccagcccgaa acagaccgcg ctccccgggg gctcagctcc gaggcccgcg cctccctgca 360

ccagtggcac cgcaggcgga cgctgcacag aaaggatcat cccagagccc aacagctgga 420 ctgaccctgg ctggtcgaag agccctggcc agatgtcctg tggacagacc caatttctgg 480 cctcgtctgc tgg

<210> 224

<211> 883

<212> DNA

<213> Homo sapiens

<400> 224

agtgacctgg aaacaagtt	c tgatccagaa	ggtgaggatt	gggatgagga	agctgaggat	60
gatggttttg atagtgata	g ctcactgtca	gactcagacc	ttgaacaaga	ccctgaaggg	120
cttcaccttt ggaactctt	ctgcagtgta	gatccttata	atccccagaa	ctttacagca	180
acaattcaga ctgctgcca	g aattgttcct	gaagagcctt	ctgattcaga	gaaggatttg	240
tctggcaagt ctgatctag	a gaattcctcc	cagtctggaa	gccttcctga	gacccctgag	300
catagttctg gggaggaag	a tgactgggaa	tctagtgcag	atgaagcaga	gagtetteaa	360
actgtgggaa cttcattct	g ttaattctgg	atggacccct	acaacccttt	aaattttaag	420
gctccttttc aaacatcag	g ggaaaatgag	aaaggctgtc	gtgactcaaa	gaccccatct	480
gagtccattg tggccattt	c tgagtgtcac	accttacttt	cttgtaaggt	gcagctgttg	540
gggagccaag aaagtgaat	g tccagactcg	gtacagcgtg	acgttctttc	tggaggaaga	600
cacacacatg tcaaaagaa	a aaaggtaacc	ttccttgaag	aagttactga	gtattatata	660
agtggtgatg aggatcgca	a aggaccatgg	gaagaatttg	caagggatgg	atgcaggttc	720
cagaaacgaa ttcaagaaa	c agaagatgct	attggatatt	gcttgacatt	tgaacacaga	780
gaaagaatgt ttaatagac	c ccagggaaca	tgcttcaaag	gacttaatgt	tctcaagcaa	840
tgttgagttg gcagcctgt	a gtcctagcta	gcatacacta	act		883

<210> .225

<211> 389

<212> DNA

<213> Homo sapiens

<400> 225

```
cggccgcgtc tacggcatat tcttttttg gaactgtgga gaatatggct ccaaaagtgg 60 ttaatcgtcc aggtcatact cagagtgctg actgggggtc ttttggggggg ttaatgggaa 120 ggtttgaatt tgggatttt ttaaagggga aggagattgt taagtgagga tcaacaggga 180 atggtaaaga aactgggggt tttattttct ttattttatg ccctatgtaa taaataacca 240 aaaaacatta ttgcgtgcag tataaaagga ctatgaaatc tgttagctgc gtctatctca 300 tcctaatttg aaagggcaaa aaaaaatatt accatagatt tcctgctaat agtaacaatc 360 taaagcatta atggtgttgg gtcttttgg
```

<210> 226

<211> 412

<212> DNA

<213> Homo sapiens

gagcatgtct gtcctatggt tgggtgtgca tttggtgata tgtctgtgga	ttettecagg atgggatece gacateagga tattggatae gaaaattttt gtggtgttag	tgagcatgca agatggaggt tctaggcaag tgagaaagga catataacgc	gacaacctga gggcaggaag catgggtcat caagaggagc agcctggggc	acttetetet ggetgaaggt gagteaggee ttettgtgte etttgettat eagttageag aatttggatg	cactgagtga tttagggaga cagaatcacc ctctcacctg cccaagtctg	60 120 180 240 300 360 412
<210> <211> <212> <213>	390	ns				
cacactgctt tgcctggtcc gactcagatg cccagcaaag accacctacc	gccagggcac ctggccctga tgctgctgct tggctgactc cagacaaccc	ggacgtggcc tgtcctcatc gtccattctc ccatctgctc ctgtccccgg	ctctatgtgg ctcgtttatt acctcaggct accatccagc	gtaccagtga gcctcatcgc gccggaagaa tccagcccgt cggacctcag ccagccccaa	cgtggccgtc ggaggggctg cagcatcaag caccaccacc	60 120 180 240 300 360 390
<210>	228					
<211> <212>						
	Homo sapiens					
<400>						
				gagaatcttc aatggacaat		60 120
caatccttcc	acaatgtqca	acaaatqqcq	attgactggc	tcactcgaaa	tctctatttt	120 180
gtggaccatg	tcggtgaccg	gatctttgtt	tgtaattcca	acggttctgt	atgtgtcacc	240
ctgattgatc	tggagcttca	caatcctaaa	gcaatagcag	tagatccaat	agcaggaaaa	300
aaccgaacaa	ctgactacgg	gaatgtcgcc	aaagtggaga	gatgtgacat ctgcactggc	ggatgggatg	360 420
gtcaacaaat	tggtttactg	qqtaqatctt	tacttogact	atgtgggagt	actagacetat	420 480
caaggaaaaa	atagacacgc	tgtcattcaa	ggcagacaag	tcagacatct	ttatggtata	540
actgtgtttg	aagattattt	gtatgcaacc	aattctgata	gctacaatat	cgtaaggata	600
				ttgagaatgc		660
cyaalltätC	aaaaaaqaac	tcaaccaaca	grcagaagcc	atgcatgtga	agticgaticca	720

720

777

cgaatttatc aaaaaagaac tcaaccaaca gtcagaagcc atgcatgtga agtcgatcca

tatggaatgc cagggggctg ttcacacatc tgtctactca gcagcagtta cacgaaa

<210> 229 <211> 486 <212> DNA <213> Homo sapiens <400> 229 tttcgtctgg gaacccgcag cctggggact cctccggcgg gggcgctggg ggcgggctgc 60 cgtcccctgg ggagcaggag ctgagccggc gcttgcagcg cctgtatccc gcggtcaacc 120 agcaagagac teegetgeeg egeteetgga geeccaagga caaatacaac tacattggte 180 teteccaggg caaceteege gtecaetaca aaggteatgg caaaaateae aaagatgegg 240 cctcagtgcg tgccacccac cccatacctg ctgcctgtgg catttattac tttgaagtga 300 agattgtcag caaaggaaga gatggttaca tgggaatagg actctcggct caaggcgtca 360 acatgaacag acttectggt tgggacaaac attectatgg ttaccatggt gatgatgggc 420 attegttetg etectegggg actggecage cetatggtee cacatteace acaggagacq 480 tgatcg 486 <210> 230 <211> 396 <212> DNA <213> Homo sapiens <400> 230 ttttttttt ttaagatggg gtctcgctct gtcacccagg ctggagtgca gtggtgtgat 60 gtcagetcae tgcaagetce geeteecagg ttcacactat tetgeetcag ecteecaagt 120 agctgggact acaggtgcgt gccaccatgc ccggctaatt ttttgtatt tttagtagag 180 acggggtttc accgtgttag ccagtatggt cttgatctcc tgacctcgtg atccacctgc 240 ctcggcctcc caaaagtgct gggattacag gtgtgagctg ctgcgcctgg cttatgagtc 300 gtatgttctg atcctccctc ttgaagttgc cttctgtggt ctaaggaggg cctgaaggtt 360 caggtaaaaa cttcagggtg accttcactg ggggtg 396 <210> 231 <211> 713 <212> DNA <213> Homo sapiens <400> 231 tcagctcagc ttggcacgag gaaaggtgtt cttgtgtgcc ttgtcttttg tttactttgc 60 caaagcattg gcagaaggct atctgaagag caccatcact cagatagaga gaagggttga 120 tatcccttct tcactggtgg gagttattga tggtagtttt gaaattggga atctcttagt 180

240

tataacattt gttagctact ttggagccaa acttcacagg ccaaaaataa ttggagcagg