Chapter 1

Linear Algebra

Lectured by Dr Charlotte Kestner Typed by Yu Coughlin Autumn 2023 & Spring 2024

Introduction

The following are supplementary reading:

- S Lang, Linear algebra, 1987
- G Strang, Introduction to linear algebra, 2023
- S Axler, Linear Algebra Done Right, 2015

Lecture 1 Thursday 10/01/19

Contents

1	Line	ear Alg		1
L1	1	Linear	Systems and matrices	3
		1.1	Linear systems	3
		1.2	Matrix algebra	3
		1.3	EROs	3
		1.4	Matirces of note	4
	2	Vector	Spaces	4
		2.1		4
		2.2	Vector spaces	5
		2.3	Subspaces	5
	3	Spanni	ing and Linear Independence	5
		3.1	Spanning	5
		3.2	Linear independence	6
	4	Bases		6
		4.1	Definition	6
		4.2	Dimension	6
	5		rank	6
	6	Linear	transformations	7
		6.1	Definition	7
		6.2	Image and kernel	7
		6.3	Rank nulity	7
	7		sentations	8
		7.1		8
		7.2		8
	8			8
		8.1	Definition	8
		8.2	Properties	9
	9		things	9
		9.1	Eigenvectors and eigenvalues	9
		9.2	Characteristic polynomial	9
		9.3	* v	١0
	10			10
	10	10.1		10
		10.2	· · ·	10
		10.3		10
	11		±	11
	11	11.1		1
		11.2		1
		· -	Spectrum theorem	

1 Linear Systems and matrices

1.1 Linear systems

Definition 1.1.1 (Linear system). A linear system is a set of linear equations in the same variables.

Notation 1.1.2. The follow are all equivalent notation for the same linear system:

1.2 Matrix algebra

Definition 1.2.1 (Matrix by elements). An $m \times n$ matrix written as $A = [a_{ij}]_{m \times n}$ has the element a_{ij} in the *i*th row and *j*th column.

Definition 1.2.2 (Matrix addition). If $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{m \times n}$ then $A + B := [a_{ij} + b_{ij}]_{m \times n}$.

Definition 1.2.3 (Scalar multiplication). If $A = [a_{ij}]_{m \times n}$ then $\lambda A := [\lambda a_{ij}]_{m \times n}$.

Definition 1.2.4 (Matrix multiplication). If $A = [a_{ij}]_{p \times q}$ and $B = [b_{ij}]_{q \times r}$ then $AB := C = [c_{ij}]_{p \times r}$ where $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$.

Theorem 1.2.5. Matrix multiplication is associative.

Proof. We will be considering the *ij*th element of the matrix which is the product of $m \times n, n \times p, p \times q$, matrices respectively: [A(BC)] =

$$\sum_{k=1}^{n} a_{ik} [BC]_{kj} = \sum_{k=1}^{n} a_{ik} \left(\sum_{t=1}^{p} b_{kt} c_{tj} \right) = \sum_{k=1}^{n} \sum_{t=1}^{p} a_{ik} b_{kt} c_{tj} = \sum_{t=1}^{p} \left(\sum_{k=1}^{n} a_{ik} b_{kt} \right) c_{tj} = \sum_{t=1}^{p} [AB]_{it} c_{tj} = [(AB)C_{ij}]$$

Remark 1.2.6. Matrix multiplication is not commutative.

1.3 EROs

Definition 1.3.1 (Elementary row operations). The three **elementary row operations** (EROs) that can be performed on augmented matrixes are as follows:

- 1. Multiply a row by a non-zero scalar.
- 2. Swap two rows.
- 3. Add a scalar multiple of a row to another row.

Remark 1.3.2. EROs preserve the set of solutions of a linear system. Each ERO has an inverse.

Definition 1.3.3 (Equivalence of linear systems). Two systems of linear equations are equivalent iff either:

- 1. They are both inconsistent.
- 2. (wlog) The augmented matrix of the first system can be transformed to the augmented matrix of the second system with just EROs.

Definition 1.3.4 (Row echelon form / Echelon form/ REF). A matrix is in **row echelon form** if it satisifes the following:

- 1. All of the zero rows are at the bottom of the matrix,
- 2. The first non-zero entry in any row is 1,
- 3. The first non-zer entru in row is strictly to the left of the first non-zero entry in row i+1.

Definition 1.3.5 (Reduced row echelon form / Row reduced echelon form / rREF). A matrix is im **reduced row echelon form** if it is in REF and the first non-zero entry in a row is the only non-zero entry in its column.

1.4 Matirces of note

Definition 1.4.1 (Square matirx). A matrix is square iff it has the same number of rows and columns.

Definition 1.4.2. A square matrix $(A = [a_{ij}]_{n \times n})$ is: 1. Upper triangular iff $i > j \implies a_{ij} = 0$. 2. Lower triangular iff $i < j \implies a_{ij} = 0$. 3. Diagonal iff $i \neq j \implies a_{ij} = 0$.

Definition 1.4.3 (Identity matrix). The **identity matrix** of size n written I_n , is the square diagonal matrix of size n with all diagonal entries equal 1.

Definition 1.4.4 (Elementary matrix). An **elementary matrix** is a matrix that can be achieved by appling a single ERO to the identity matrix.

Definition 1.4.5 (Inverse). For a square matrix B if there exists a matrix B^{-1} such that $BB^{-1} = I = B^{-1}B$ then B^{-1} is the **inverse** of B and vice versa.

Definition 1.4.6 (Singular). A matrix without an inverse is **singular**.

Theorem 1.4.7. The inverse of a matrix is unique.

Proof. Suppose we have
$$AB = I = BA$$
 and $AC = I = CA$: $B = BI = B(AC) = (BA)C = IC = C$.

Definition 1.4.8. A transpose of the matrix $A = [a_{ij}]_{m \times n}$ is $A^{T} := [a_{ji}]_{n \times m}$.

Theorem 1.4.9. If the matrix A has an inverse then its transpose has an inverse with $(A^{T})^{-1} = (A^{-1})^{T}$.

Proof.
$$AA^{-1} = I \implies I^{T} = (AA^{-1})^{T} = A^{T} (A^{-1})^{T}$$
 and similarly for the left inverse.

Theorem 1.4.10. If a matrix $A \in M_{m \times n}$ can be reduced to I_n by a sequence of EROs then A is inevitable with A^{-1} given by applying the same sequence of EROs to I_n .

Proof. Consider the ERO matrices applied to $A, E_r \dots E_2 E_1 A = I_n$, as all elementary matrices are invertible we have $A^{-1} = E_r \dots E_2 E_1$ hence A is invertible.

Definition 1.4.11. A matrix \underline{A} is **orthogonal** if it has an inverse with $\underline{A}^{-1} = \underline{A}^{T}$.

Theorem 1.4.12. An orthogonal matrix A satisfies the condition $(Ax) \cdot (Ay) = x \cdot y$, where \cdot is the dot product.

2 Vector Spaces

The notion of a vector space is a structure designed to generalise that of real vectors, so before developing them we must first produce a generalisation of the real numbers.

2.1 Fields

Definition 2.1.1 (Field). A field is a set \mathbb{F} equipped with the binary operations addition $+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ and multiplication $\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ satisfying the follow axioms:

```
A1 \forall x, y \in \mathbb{F} : x + y = y + x (commutativity of addition),
```

A2 $\forall x, y, z \in \mathbb{F} : x + (y + z) = (x + y) + z$ (associativity of addition),

A3 $\exists 0_{\mathbb{F}} \in \mathbb{F}$ such that $\forall x \in \mathbb{F} : x + 0_{\mathbb{F}} = x$, (additive identity element),

A4 $\forall x \in \mathbb{F}, \exists (-x) \in \mathbb{F} \text{ such that } x + (-x) = 0_{\mathbb{F}}, \text{ (additive inverse)};$

M1 $\forall x, y \in \mathbb{F} : x \cdot y = y \cdot x$ (commutativity of multiplication),

M2 $\forall x, y, z \in \mathbb{F} : x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity of multiplication),

M3 $\exists 1_{\mathbb{F}} \in \mathbb{F}$ such that $\forall x \in \mathbb{F} : x \cdot 1_{\mathbb{F}} = x$, (multiplicative identity element),

M4 $\forall x \in \mathbb{F} \setminus \{0_{\mathbb{F}}\}, \exists x^{-1} \in \mathbb{F} \text{ such that } x \cdot x^{-1} = 1_{\mathbb{F}}, \text{ (multiplicative inverse)};$

D $\forall x, y, z \in \mathbb{F} : x \cdot (y+z) = x \cdot y + x \cdot z$ (distributivity of multiplication over addition).

The field $(\mathbb{F}, +, \cdot)$ is often referred to as just \mathbb{F} .

Example 2.1.2. The familiar sets $\mathbb{R}, \mathbb{Q}, \mathbb{C}$ are all fields.

Theorem 2.1.3. If $p \in \mathbb{N}$ is prime with $\mathbb{F}_p = \{0, 1, \dots, p-1\}$ then $(\mathbb{F}_p, +_p, \cdot_p)$ is a field.

Proof. A1-A4, M1-M3, D are all clear from the properties of \mathbb{N} . From IUM we know there exists some $s, t \in \mathbb{Z}$ such that sx + tp = 1 for all $0 \le x < p$, have $x^{-1} \equiv s \pmod{p}$.

2.2 Vector spaces

Definition 2.2.1 (Vector space). A **vector space** over a field \mathbb{F} is a set V equipped with the binary operations **vector addition** $\oplus : V \times V \to V$ and **scalar multiplication** $\odot : \mathbb{F} \times V \to V$ satisfying the follow axioms:

A1 $\forall u, v, w \in V : u \oplus (v \oplus w) = (u \oplus v) \oplus w$ (associativity of addition),

A2 $\forall u, v \in V : u \oplus v = v \oplus u$ (commutativity of vector addition),

A3 $\exists 0_V \in V$ such that $\forall v \in V : v + 0_V = v$, (vector additive identity element),

A4 $\forall v \in V, \exists (-v) \in v \text{ such that } v + (-v) = 0_V, \text{ (vector additive inverse)},$

A5 $\forall x \in \mathbb{F}, \ \forall u, v \in V : x \odot (u \oplus v) = (x \odot u) \oplus (x \odot v)$ (vector distributivity 1),

A6 $\forall x, y \in \mathbb{F}$, $\forall v \in V : x \cdot (x+y) \odot v = (x \odot v) \oplus (y \odot v)$ (vector distributivity 2),

A7 $\forall x, y \in \mathbb{F}, \ \forall v \in V : (x \cdot y) \odot v = x \odot (y \odot v)$ (scalar multiplication associativity),

A8 $\forall v \in V : 1_F \odot v = v$, (scalar multiplication identity element).

If V is a vector space over \mathbb{F} we say V is an \mathbb{F} -vector space with $v \in V$ a vector and $x \in \mathbb{F}$ a scalar.

2.3 Subspaces

Definition 2.3.1 (Subspace). A subset $W \subseteq V$ is a subspace of V, denoted $W \subseteq V$ iff:

S1 $W \neq \emptyset$,

 $S2 \ \forall w_1, w_2 \in W : w_1 \oplus w_2 \in W,$

S3 $\forall x \in \mathbb{F}, \ \forall w \in W : x \odot w \in W$.

If $W = \{0_V\}$ then W is the **trivial subspace**.

Theorem 2.3.2. Every subspace of V contains 0_V .

Proof. As W non-empty, multiply an element of W by $0_{\mathbb{F}}$ to get $0_{\mathbb{V}}$.

Theorem 2.3.3. If U and W are subspaces of V, $U \cap W$ is a subspace of V.

3 Spanning and Linear Independence

Throughout this section, assume V is an \mathbb{F} -vector space.

3.1 Spanning

Definition 3.1.1 (Span). Given some set $\{v_1, v_2, \dots, v_n\} \subseteq V$ define the span by,

$$\mathrm{Span}(\{v_1, v_2, \dots, v_n\}) := \{u \in V : u = \sum_{i=1}^n \alpha_i v_i \text{ with } \alpha_i \in \mathbb{F}\}.$$

Note that the span of a subset of V is always a subspace of V.

Remark 3.1.2. If $S \subseteq V$ is infinite, $\operatorname{Span}(S)$ is the set of all **finite** linear combinations of elements of S.

Definition 3.1.3 (Spanning sets). If $S \subseteq V$ and $\operatorname{Span}(S) = V$, we say S spans V or S is a spanning set for V.

3.2 Linear independence

Definition 3.2.1. The set $\{v_1, v_2, \dots, v_n\} \subseteq V$ is linearly independent in V iff:

$$\sum_{i=1}^{n} \alpha_i v_i = 0_V \iff \alpha_i = 0_{\mathbb{F}} \text{ for all } i \in [1, n].$$

Theorem 3.2.2. If $S = \{v_1, v_2, \dots, v_n\} \subseteq V$ is linearly independent in V with $v_{n+1} \in V \setminus \operatorname{Span}(S)$ then $S \cup \{v_{n+1}\}$ is also linearly independent in V.

4 Bases

4.1 Definition

Again, assume V is an \mathbb{F} -vector space throughout this section.

Definition 4.1.1 (Bases). A basis for V is linearly independent, spanning set of V. If V has a finite bases then V is said to be a finite dimensional vector space.

Theorem 4.1.2. Any $S \subseteq V$ is a basis for V iff every vector in V can be uniquely expressed as a linear combination of the elements of S.

Theorem 4.1.3. If V is non-trivial and S is a finite spanning set of V then S contains a basis for V.

Lemma 4.1.4 (Steinitz Echange Lemma). Given some $X \subseteq V$ with $u \in \operatorname{Span}(X)$ but $u \notin \operatorname{Span}(X \setminus \{v\})$ for some $v \in X$, let $Y = (X \setminus \{v\}) \cup \{u\}$ then $\operatorname{Span}(X) = \operatorname{Span}(Y)$.

Proof. Have
$$X = \{e_1, e_2, \dots, v\}$$
 with $u = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n v$. For any $x = \beta_1 e_1 + \beta_2 e_2 + \dots + \beta_n v \in \operatorname{Span}(X)$ we can write $x = \beta_1 e_1 + \beta_2 e_2 + \dots + \frac{\beta_n}{\alpha_n} (u - \alpha_1 e_1 - \alpha_2 e_2 - \dots) \in \operatorname{Span}(Y)$.

Theorem 4.1.5. Given a LI $S \subseteq V$ and spanning set $T \subseteq V$, $|S| \leq |T|$.

Corollary 4.1.6. If S and T are both bases for V, |S| = |T|.

4.2 Dimension

Definition 4.2.1 (Dimension of a vector space). If V is finite dimensional then the **dimension** of V, $\dim V$, is the size of any basis of V.

Definition 4.2.2 (Notable subspaces). Let U and W both be subspaces of V, the **intersection** of U and W:

$$U \cup W := \{v \in V : v \in U \text{ and } v \in W\}$$

is a subspace of V, and the sum of U and W:

$$U + W := \{u + W : u \in U, w \in W\}$$

is also a subspace of V.

Theorem 4.2.3. Let U and W both be subspaces of V, we have:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

5 Matrix rank

Definition 5.0.1. Given a field \mathbb{F} and a matrix $A \in M_{m \times n}(\mathbb{F})$ we have:

- the row space of A, RSp(A), as the span of the rows of A, this is a subspace of \mathbb{F}^n ,
- the row rank of A, is $\dim(RSp(A))$,
- the column space of A, CSp(A), as the span of the columns of A, this is a subspace of \mathbb{F}^m ,
- the column rank of A, is $\dim(\operatorname{CSp}(A))$.

Theorem 5.0.2. For any matrix A, the row rank of A is equal to the column rank of A.

Definition 5.0.3 (Rank of a matrix). The **rank** of a matrix A, rank(A), is equal to the row/column rank of A.

Theorem 5.0.4. Given a field \mathbb{F} and a matrix $A \in M_{n \times n}(\mathbb{F})$ with $\operatorname{rank}(A) = n$:

- the rows of A for a basis for \mathbb{F}^n ,
- the columns of A for a basis for \mathbb{F}^n ,
- A is invertible.

6 Linear transformations

6.1 Definition

Definition 6.1.1 (Linear transformation). Given \mathbb{F} -vector spaces V and W, let $T: V \to W$ be a function, T is a **linear transformation** iff the following two properties hold:

- 1. T preservers vector addition: $\forall v_1, v_2 \in V$ we have $T(v_1 +_V v_2) = T(v_1) +_W T(v_2)$,
- 2. T preservers scalar multiplication: $\forall v \in V \text{ and } \forall \lambda \in \mathbb{F} \text{ we have } \lambda T(v) = T(\lambda v).$

Definition 6.1.2 (Identity transformation). The **identity transformation** of the vector space V is the linear transformation $\operatorname{Id}_V: V \to V$ with $\operatorname{Id}_V(v) := v$ for all $v \in V$.

Definition 6.1.3 (Linear transformation of a matrix). If $A \in M_{m \times n}(\mathbb{F})$ then we can define $T : \mathbb{F}^n \to \mathbb{F}^m$ by T(v) := Av, T is a linear transformation.

Theorem 6.1.4. If V and W are F-vector spaces, $T(0_V) = 0_W$ and

$$v = \lambda_1 v_1 + \ldots + \lambda_n v_n \iff T(v) = \lambda_1 T(v_1) + \ldots + \lambda_n T(v_n).$$

Theorem 6.1.5. If V and W are \mathbb{F} -vector spaces, $\operatorname{Hom}(V,W)$ is the set of linear transormations from V to W, with pointwise addition and scalar multiplication $\operatorname{Hom}(V,W)$ is a \mathbb{F} -vector space.

6.2 Image and kernel

Throughout, assume $T: V \to W$ is a linear transformation and V, W are \mathbb{F} -vector spaces

Definition 6.2.1 (Image). We define the **image** of T, denoted Im T, as

Im
$$T := \{ w \in W : \exists v \in V, T(v) = W \},\$$

with $\operatorname{Im} T$ being a subspace of W.

Definition 6.2.2 (Kernel). We define the **kernel** of T, denoted $\ker T$, as

$$\ker T := \{ v \in V : T(v) = 0_W \},$$

with $\ker T$ being a subspace of V.

Theorem 6.2.3. If $v_1, v_2 \in V$ then $T(v_1) = T(v_2) \iff v_1 - v_2 \in \ker T$.

Theorem 6.2.4. If $\{v_1, v_2, \dots, v_n\}$ is a basis for V, then Im $T = \text{Span}(\{T(v_1), T(v_2), \dots, T(v_n)\})$.

Remark 6.2.5. If T is the linear transformation for some matrix $A \in M_{m \times n}(\mathbb{F})$ then, $\ker T$ is the set of solutions for Av = 0, $\operatorname{Im} T$ is the column space of A, and $\dim(\operatorname{Im} T) = \operatorname{rank} A$

6.3 Rank nulity

Theorem 6.3.1 (Rank Nulity Theorem). If V and W are finite dimensional \mathbb{F} -vector spaces and $T: V \to W$ is a linear transformation, we have:

$$\dim(\operatorname{Im} T) + \dim(\ker T) = \dim V.$$

7 Representations

7.1 Matrices of transformations

Throughout this subsection let V be an n-dimensional \mathbb{F} -vector space and $B = \{e_1, e_2, \dots, e_n\}$ be a basis for V.

Definition 7.1.1 (Repersentation of a vector). Given some $v \in V$ with $v = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n$ for $\lambda_i \in \mathbb{F}$, we define the v with respect to $(\mathbf{w.r.t.})$ B as

$$[v]_B := \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathbb{F}^n.$$

Remark 7.1.2. This must be well defined as all vectors have a unique representation in terms of every basis.

Definition 7.1.3 (Linear isomorphism). A **linear isomorphism** is a bijective linear transformation.

Theorem 7.1.4. The linear transformation $T: V \to \mathbb{F}^n$ given by $T(v) := [v]_B$ is a linear isomorphism.

7.2 Matrices of transformations

Definition 7.2.1 (Representation of a linear transformation). Given finite dimensional \mathbb{F} -vector spaces V and W with bases $B = \{v_1, v_2, \dots, v_n\}$, $C = \{w_1, w_2, \dots, w_n\}$ respectively, the **matrix of** T **w.r.t.** B **and** C denoted $C[T]_B$ is $m \times n$ matrix with the ith column given by $[T(v_i)]_C$. $[T]_B$ is often shortened to $[T]_B$.

Remark 7.2.2. $_{C}[T]_{B}[v]_{B} = [T(v)]_{C}$, for all $v \in V$.

Theorem 7.2.3. Given a finite dimensional \mathbb{F} -vector space V with bases $B = \{v_1, v_2, \dots, v_n\}$ and $C = \{w_1, w_2, \dots, w_n\}$, if $v_i = \lambda_{1i}w_1 + \lambda_{2i}w_2 + \dots + \lambda_{ni}w_n$ and P is the matrix given by $P = [\lambda_{ij}]_{n \times n}$, we have:

- $P = [X]_C$ where X is the unique linear transformation given by $X(w_i) = v_i$ for all $i \in [1, n]$,
- $P([v]_B) = [v]_C$ for all $v \in V$,
- $P = {}_{C}[\operatorname{Id}_{V}]_{B}$.

P is often also called the **change of basis matrix** from B to C.

Corollary 7.2.4. P is invertible with $(P)^{-1} = (_C[\operatorname{Id}_V]_B)^{-1} = _B[\operatorname{Id}_V]_C$.

Theorem 7.2.5. If $T: V \to V$ is a linear transformation $[T]_C = (C[\mathrm{Id}_V]_B)[T]_B(B[\mathrm{Id}_V]_C)$.

8 Determinants

8.1 Definition

Definition 8.1.1 (Minor of matrix). Given a matrix $A \in M(\mathbb{F})_n$ the ijth-minor of the matrix A, $A_{ij} \in M(\mathbb{F})_n$, is A with row i and column j removed.

Definition 8.1.2 (Determinant). The **determinant** of the matrix A is defined recursively by

$$\det(A) := \begin{cases} a_{11} & \text{if } A \text{ is a matrix with a single row and column} \\ \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det(A_{1j}) & \text{otherwise.} \end{cases}$$

The determinant is only a function on square matrices.

Theorem 8.1.3. If a matrix A is singular, det(A) = 0.

Theorem 8.1.4. If A is invertible then the columns of A are LI.

8.2 Properties

Definition 8.2.1 (EROs). The three ERO's on the matrix A to form A' have the following effects on the determinant:

- multiplying a row by $\lambda \neq 0$, $\det(A') = \lambda \det(A)$;
- swapping two rows, det(A') = -det(A);
- adding a scalar multiple of one row to another, det(A') = det(A).

Definition 8.2.2 (Other miscellaneous properties). For obvious types:

- If A, B and C all only differ in the ith row with the ith row of C being the sum of the ith row of A and B, $\det(C) = \det(A) + \det(B)$,
- if a matrix A has two identical rows, det(A) = 0,
- $\det(AB) = \det(A)\det(B)$,
- $\det(A^{\mathrm{T}}) = \det(A)$,
- $\det(I_n) = 1$.

Definition 8.2.3 (Cofactor). The ijth cofactor of a matrix A is defined as,

$$c_{ij} := (-1)^{i+j} \det(A_{ij}).$$

The matrix of cofactors of A is defined as $C = [c_{ij}]_{n \times n}$ where c_{ij} is the *ij*th cofactor of A.

Theorem 8.2.4. For a matrix A with matrix of cofactors C, $C^{T}A = \det(A)I_{n}$.

Theorem 8.2.5 (Cramer's Rule). ugh

Definition 8.2.6. The **determinant** of a linear transformation $T: V \to V$ where B is a basis for T, $\det(T) = \det([T]_B)$. This definition says, rather importantly, that the determinant of the matrix of linear transformation is independent of the basis that linear transformation is represented in.

9 Eigen-things

The prefix "eigen" comes from the German word "eigen" which can be roughly translated to mean "proper" or "characteristic".

9.1 Eigenvectors and eigenvalues

Definition 9.1.1 (Eigenvectors and eigenvalues). Given the finite dimensional \mathbb{F} -vector space, V, and the linear transformation $T: V \to V$, we say $v \in V \setminus \{0_V\}$ is an **eigenvector** of T if it satisfies the equation $T(v) = \lambda v$ for some $\lambda \in \mathbb{F}$, we call λ the corresponding **eigenvalue**.

Definition 9.1.2 (Eigenspace). The **eigenspace** of an eigenvalue of a given linear transformation $T: V \to V$ is the set of eigenvectors that correspond to said eigenvalue. The eigenspace of any eigenvalue λ of T is a subspace of V.

Remark 9.1.3. The eigenvectors, eigenvalues and eigenspaces of a matrix are defined obviously and do not depend on which basis the linear transformation is respresented in.

9.2 Characteristic polynomial

Theorem 9.2.1. If D is a square diagonal matrix, D^k is D with its entries raised to the power of k.

Definition 9.2.2 (Characteristic polynomial). Given the finite dimensional \mathbb{F} -vector space V with basis B and the linear transformation $T:V\to V$, we define the **characteristic polynomial** of T, $\chi_T:\mathbb{F}\to\mathbb{F}$ by $\chi_T(\lambda):=\det(\lambda I_n-T_B)$.

Theorem 9.2.3. The characteristic polynomial of a linear transformation is independent of the basis it is represented in.

Remark 9.2.4. Therefore, the characteristic polynomial of a matrix can be defined as the characteristic polynomial of the linear transformation it represents.

9.3 Diagonalisation

Definition 9.3.1 (Diagonalisability). Given a finite dimensional \mathbb{F} -vector space V, a linear transformation $T:V\to V$ is **diagonalisable** if there exists a basis for V consisting of eigenvectors of T. Similarly the matrix $A\in M_n(\mathbb{F})$ is **diagonalisable** if there exists a basis to \mathbb{F}^n as eigenvectors of A.

Theorem 9.3.2. If V is a n-dimensional vector space and $T:V\to V$ has n distince eigenvalues, T is diagonalisable.

Theorem 9.3.3. If a matrix $A \in M_n(\mathbb{F})$ is diagonalisable, let P be the matrix with columns as eigenvectors of A and D be the diagonal matrix with iith entry as the corresponding eigenvalue for the ith column of P, then $A = PDP^{-1}$.

Theorem 9.3.4 (Precursor of Cayley-Hamilton). If a matrix $A \in M_n(\mathbb{F})$ is diagonasiable, $\chi_A(A) = 0$ where 0 is the zero-matrix in $M_n(\mathbb{F})$.

Note 9.3.5. The full Cayley-Hamilton theorem, which applies to all $A \in M_n(\mathbb{F})$, requires more advanced reasoning, this simpler version only requires the expansion of the polynomial and diagonalisation.

10 Orthogonality

10.1 Inner product spaces*

Definition 10.1.1 (Inner product). Let V be an n-dimensional \mathbb{F} -vector space, a **inner product** on V is a bilinear map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ satisfying the following:

- $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$ (Symmetry),
- $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \lambda u,v\rangle=\lambda\langle u,v\rangle$ for all $u,v,w\in V$ and $\lambda\in\mathbb{F}$ (Bilinearity),
- $\langle v, v \rangle \ge 0$ for all $v \in V$ with equality when $v = 0_V$ (Positive-definite).

Bilinearity must hold in both arguments however it can be derived from a single argument with the symmetry propoerty.

Definition 10.1.2 (Norm). Given a real-vector space V with an inner product $\langle \cdot, \cdot \rangle$ the **norm** induced by the inner product of $v \in V$ is:

$$||v|| := \sqrt{\langle v, v \rangle}$$

Definition 10.1.3 (Orthogonality). Two vectors u, v in an real or complex vector space V with inner product $\langle \cdot, \cdot \rangle$ are **orthogonal** iff: $\langle u, v \rangle = 0$.

10.2 Orthonormal sets

Throughout the remainder of this section we will assume all vectors spaces are over the real or complex numbers and will use the dot product as our inner product with its induced norm.

Definition 10.2.1 (Orthogonal sets). A set of vectors $\{v_1, v_2, \dots, v_n\}$ in a vector space is **orthogonal** if it is pariwise orthogonal.

Definition 10.2.2 (Orthonormal sets). A set of vectors $\{v_1, v_2, \dots, v_n\}$ in a vector space is **orthonormal** if it orthogonal and satisfies $||u_i|| = 1$ for all $i \in [1, n]$.

Theorem 10.2.3. The columns of an orthogonal matrix $P \in M_n(\mathbb{R})$ form an orthonormal set.

10.3 Gramm-Schmidt process

The Gramm-Shmidt process is a method of producing orthonormal bases.

Algorithm 10.3.1 (Gramm-Shmidt process). Given a LI set $\{v_1, v_2, \dots, v_r\} \in \mathbb{R}^n$ the Gramm-Shmidt process will produce the set of vectors $\{w_1, w_2, \dots, w_r\} \in \mathbb{R}^n$ by the following:

$$\begin{split} w_1 &= v_1, \\ w_2 &= v_2 - \frac{w_1 \cdot v_2}{||w_1||^2} w_1, \\ w_3 &= v_3 - \left(\frac{w_1 \cdot v_3}{||w_1||^2} w_1 + \frac{w_2 \cdot v_3}{||w_2||^2} w_2 \right), \\ &\vdots \\ w_r &= v_r - \sum_{i=1}^{r-1} \frac{w_j \cdot v_r}{||w_j||^2} w_j. \end{split}$$

Note that each vector is the original vector v_i with its projection along all of the previous w_j s subtracted and therefore $\{w_1, w_2, \ldots, w_r\}$ is orthogonal. Finally, $\{u_1, u_2, \ldots, u_r\}$, where $u_i = \frac{w_i}{||w_i||}$ for all $i \in [1, r]$, is an orthonormal set with $\text{Span}(\{u_1, u_2, \ldots, u_r\}) = \text{Span}(\{v_1, v_2, \ldots, v_r\})$.

Corollary 10.3.2. Given some vector $u \in \mathbb{R}^n$ there exists an orthogonal matrix in $M_n(\mathbb{R})$ with u as its first column.

11 Real symmetric matrices

Throughout this section, unsurprisingly, all matrices will be assumed to be real.

11.1 Introduction

Definition 11.1.1 (Self-adjoint matrices). If a matrix $A \in M_n(\mathbb{R})$ is symmetric and satisfies $A(u \cdot v) = (Au) \cdot v$ for all vectors $u, v \in \mathbb{R}^n$, we say A is self-adjoint w.r.t. the usual scalar product.

Theorem 11.1.2. If $A \in M_n(\mathbb{R})$ is symmetric with $\lambda \in \mathbb{C}$ a root of $\chi_A(x) = 0, \lambda \in \mathbb{R}$.

Corollary 11.1.3. Real symmetric matrices have at least 1 real eigenvalue.

Theorem 11.1.4. If $A \in M_n(\mathbb{R})$ is symmetric with discrete eigenvalues $\lambda, \mu \in \mathbb{R}$, their corresponding eigenvectors $u, v \in \mathbb{R}^n$ satisfy $u \cdot v = 0$.

11.2 Spectral theorem

Theorem 11.2.1 (Spectral theorem). If $A \in M_n(\mathbb{R})$ is symmetric, then there exists an orthonormal matrix P such that $P^{-1}AP$ is diagonal.

Corollary 11.2.2. Appropriately scaled eigenvectors of a symmetric matrix $A \in M_n(\mathbb{R})$ form an orthonormal basis for \mathbb{R}^n .