Computabilità e Algoritmi (Computabilità) 5 Aprile 2013

Esercizio 1

Dati due insiemi $A, B \subseteq \mathbb{N}$ definire il significato di $A \leq_m B$. Dimostrare che, dato comunque $A \subseteq \mathbb{N}$, vale A r.e. sse $A \leq_m K$.

Esercizio 2

Una funzione $f: \mathbb{N} \to \mathbb{N}$ si dice totale crescente quando è totale e per ogni $x, y \in \mathbb{N}$, se $x \leq y$ allora $f(x) \leq f(y)$. La funzione f si dice binaria se $cod(f) \subseteq \{0,1\}$. L'insieme delle funzioni totali crescenti binarie è numerabile? Motivare adeguatamente la risposta.

Esercizio 3

Studiare la ricorsività dell'insieme

$$B = \{x \mid k \cdot (x+1) \in W_x \cap E_x \text{ per ogni } k \in \mathbb{N}\},\$$

ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Si dica che una funzione $f : \mathbb{N} \to \mathbb{N}$ è k-bounded se $\forall x \in dom(f)$ vale f(x) < k. Per ogni $k \in \mathbb{N}$ fissato, studiare la ricorsività dell'insieme

$$A_k = \{x \in \mathbb{N} : \varphi_x \text{ } k\text{-bounded}\},\$$

ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Si enunci il Secondo Teorema di Ricorsione e lo si utilizzi per dimostrare che esiste un indice $e \in \mathbb{N}$ tale che

$$\varphi_e(y) = \begin{cases} y + e & \text{se } y \text{ multiplo di } e \\ \uparrow & \text{altrimenti} \end{cases}$$