Uydu Ağları ve Sistemleri

Kablosuz Haberleşme Ağları Derya YILTAŞ KAPLAN

12.10.2018

Ruhiddin Dağdelen 1306120085

Neden Uydulara İhtiyaç Duyduk?

Dünyanın şekli nedeniyle birbiri arasında iletişim kuramayan iki noktanın birbirinden haberdar olmasını istedik.

Uyduların Tarihi

Fikir ilk olarak Arthur C. Clarke tarafından 1945 yılında ortaya atılmış.

1957 yılında Sputnik-1 ve Sputnik-2 uzaya gönderilen ilk uydular oldular.

Aktif olarak kullanılan ilk uydu Explorer-1, 31 Ocak 1958'de yörüngeye yerleştirilmiştir.

Yine 1958'de Echo-1 uydusu ABD'nin doğu ve batı kıyılarının haberleşmesini sağladı.

1962'de ise çok yörüngeli Telstar uyduları atıldı.

Uyduların Yörünge Çeşitleri

GEO Uydular

- -36.000 km uzakta oldukları için çok fazla ses gecikmesi yaşanır.
- -Aynı anda sadece bir tane uydu ile çalışılabilir.
- -Sabote edilmeye müsaittir.
- -Tek uydu ile çalışıldığı için bir arıza yaşanması durumunda ya da güçlü karıştırıcı frekans basılarak sabote edilebilir.

LEO Uydular

- 200-2000 km arasında oldukları için çok az ses gecikmesi yaşanır.
- Birden fazla uydu ile çalışılabildiğinden tek bir uyduya bağımlı olmazsınız.
- Sabotaj ihtimali yok.

Leo uyduların periyotları

LEO, MEO ve GEO Uydular

	Alçak Yörünge (LEO)	Orta Yörünge (MEO)	Yerdurağan Yörünge(GEO)
Yükseklik (km)	200 to 3000	5,000 to 15,000	36,000
Evrensel kapsama için gereken uydu sayısı	> 32	10 -15	3 to 4 (70° N and 70° S)
Ağ karmaşıklığı	Karmaşık	Orta	Basit
1 yönde yayılım gecikmesi	5-20 ms	80-130 ms	250-280 ms
Eldeğiştirme	Sık sık	Sık değil	Hiçbir zaman
Araçüstü işleme	+	+	+
Broadcast TV	-	-	+

GEO: Haberleşme Uyduları

LEO: Yeryüzü Gözlem Uyduları

MEO: GPS Uyduları

LEO, MEO ve GEO Uydular

Uydu İletişimini Oluşturan Kısımlar

Uydu İletişimi 3 ana kısımda incelenir.

Alıcı Yer İstayonu /Down-Link

- -Uydudan gönderilen bir mikrodalga sinyalinin yer istasyonu tarafından alınması işlemine "down-link" denir.
- -Bir yer istasyonu alıcı sistemi anten, feed, alıcı ve demodülatörden oluşur.

Verici Yer İstayonu /Up-Link

Yer istasyonundan uyduya erişme işlemine "up-link" denir. Bir yer istasyonunun verici sistemi; anten, modülatör, verici ve feed elemanlarından oluşmaktadır.

Verici katı, modülatör katından gelen modüler işareti iletim ortamına uygun olan frekansa çeviren bir up-converter birimi ve uyduya çıkış için gerekli gücü sağlayan güç kuvvetlendirici birimlerden oluşur.

Uydu Haberleşmesinde Kullanılan Antenler

HORN ANTEN

Yüksek kazanç/gürültü oranına sahiptirler. Maliyetleri oldukça yüksektir.

Uydu Haberleşmesinde Kullanılan Antenler

FAZ DİZİLİ ANTEN

-Hareketli Uydu Haberleşmesinde avantajlıdırlar.

-Maliyetleri yüksektir.

Uydu Haberleşmesinde Kullanılan Antenler

PARABOLİK REFLEKTÖR ANTENLER

Maliyetleri Faz Dizilimli antenlere göre oldukça düşüktür.

Uydu haberleşmesinde en çok kullanılan antenlerdir.

Eksen-Simentrik antenler, Offset antenler, Cassegrain antenler Parabolik Reflektör Antenlere örnektir.

Teşekkürler

Dinlediğiniz için teşekkür ederim.

Kaynaklar;

http://cscrs.itu.edu.tr/

http://www.radartutorial.eu/

http://www.emo.org.tr/