Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_st-nat

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numerele $\log_2 3$, $\log_2 6$ și $\log_2 12$ sunt termeni consecutivi ai unei progresii aritmetice.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 x + 1$. Determinați numărul real x pentru care f(x) = x.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația |2x-1|=2x+1.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor pară și cifra unităților impară.
- **5p** | **5.** Determinați numărul real a, pentru care vectorii $\vec{u} = a\vec{i} + \vec{j}$ și $\vec{v} = 8\vec{i} + 2\vec{j}$ sunt coliniari.
- **5p 6.** În triunghiul *ABC* dreptunghic în *A*, *BC* = 12 și $B = \frac{\pi}{6}$. Arătați că aria triunghiului *ABC* este egală cu $18\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 2a-1 & 4a-4 \\ 1-a & 3-2a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(2))=1$.
- **5p b**) Demonstrați că $A(a) \cdot A(b) = A(a+b-1)$, pentru orice numere reale a și b.
- **5p** c) Determinați numărul natural n, știind că $A(1) \cdot A(2) \cdot A(2^2) \cdot A(2^3) \cdot A(2^4) = A(32) \cdot A(-n)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 3x^2 5xy + 2y^2$.
- **5p** a) Arătați că $1 \circ 2 = 1$.
- **5p b**) Demonstrați că $x \circ x = 0$, pentru orice număr real x.
- **5p** c) Determinați numerele reale x pentru care $2^x \circ 3^x = 0$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 2x + 2} x$.
- **5p** a) Arătați că $f'(x) = \frac{x+1}{\sqrt{x^2 + 2x + 2}} 1, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = -1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\sqrt{(x^2+1)^2+2(x^2+1)+2}-\sqrt{4x^2+4x+2} \le (x-1)^2$, pentru orice număr real x.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{2x}{\sqrt{x^2 + 1}}$.
- **5p** a) Arătați că $\int_{0}^{1} \left(4 f^{2}(x)\right) dx = \pi.$

- **5p b)** Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 1 are aria egală cu $2(\sqrt{2} 1)$.
- **5p** c) Arătați că $\int_{1}^{2} \frac{f(x^2)}{x} dx = \ln(\sqrt{34} \sqrt{17} + 4\sqrt{2} 4)$.