Introduction to Machine Learning

The Two Cultures of Statistical Modeling

compstat-lmu.github.io/lecture_i2ml

Statistics, the Data Modeling Culture

- In a strongly simplified world an arbitrary outcome y is produced by "nature" from the features given in x
- The knowledge about nature's true mechanisms ranges from entirely unknown (or stochastic) to established (scientific), possibly deterministic explanations

- Focus on the modeling of data, which can be reduced to two targets:
 - Learn a model to predict the outcome for new covariates
 - Get a better understanding about the relationship between covariates and outcome

• Find a stochastic model of the data-generating process:

$$y = f(x, parameters, random error)$$

In this "data modeling culture", a stochastic model for the datagenerating process is assumed

Typical assumptions and restrictions

- Specific stochastic model that generated the data
- Distribution of residuals
- Linearity, additivity (e.g. linear predictor)
- Manual specification of interactions

Machine Learning, the Algorithmic Modeling Culture

Find a function $f(\mathbf{x})$ that minimizes the loss: $L(y, f(\mathbf{x}))$

- In the "algorithmic modeling culture", the true mechanism is treated as unknown
- The goal is not finding the true data-generating process but developing an algorithm that imitates/predicts (specific aspects of) a data-generating process as closely as possible
- Modeling is reduced to a mere problem of function optimization: Given the covariates x, outcome y and a loss function, find a function $f(\mathbf{x})$ which minimizes the loss for the prediction of the outcome

Algorithm in Machine Learning

- Boosting
- Support Vector Machines
- Artificial neural networks
- Random Forests
- Hidden Markov
- Bayes-Nets
- ...

PREDICTION VS. INTERPRETATION

PREDICTION VS. INTERPRETATION

- There is a trade-off between interpretability and predictive accuracy: models that yield accurate predictions are often complex and models that are easy to interpret are often bad predictors
- Example logistic regression and k Nearest Neighbors: in LR, we
 can inspect each coefficient and understand how changes in a
 single feature affect the class probabilities. kNN offers no such
 interpretability, but if the class boundaries are very nonlinear, it will
 have much better predictive accuracy.

DIMENSIONALITY OF THE DATA

- The higher the dimensionality of the data (# covariates) the more difficult is the separation of signal and noise
- Common practice in data modeling: variable selection (by expert selection or data driven) and reduction of dimensionality (e.g. PCA)
- Common practice in algorithmic modeling: Engineering of new features (covariates) to increase predictive accuracy; algorithms robust for many covariates

Problems and Blindspots of Data Modeling Culture:

- Conclusions about assumed model are interpreted as being about nature (reification).
- Model assumptions often violated.
- Often improper model evaluation presuming model validity
 can lead to irrelevant theory and questionable statistical conclusions
- Data models fail in areas like image and speech recognition

Problems and Blindspots of Algorithmic Modeling Culture:

- Uncertainty quantification often difficult / impossible, almost always an afterthought.
- Models are often uninterpretable "black boxes":
 - ⇒ Can you trust something you don't understand?
- Often ignores suitable sampling plans or issues with data provenance that can jeopardize generalizability

Different terminology for machine learning and statistics:

Machine Learning	Statistics
Feature, Attribute	Covariate
Label	Response
Example, Instance	Observation
Weight	Parameter, Coefficient
Bias term	Intercept
Minimizing loss	Maximizing likelihood / Estimating posterior
Learning	Fitting, Estimation
Hypothesis	(Fitted) Model
Learner	Model (Class)
Supervised Learning	Regression / Classification
Unsupervised Learning	Density estimation / Clustering
Data Mining (good)	Data Mining (bad)

see also: https://ubc-mds.github.io/resources_pages/terminology

Summary

Data modeling culture: "The model is true."

Tries to estimate stochastic properties of the true data-generating process and focuses on parameters and their uncertainty.

Algorithmic modeling culture: "The model is useful."

Tries to minimize some measure of divergence between observations from the data-generating process and a function that imitates its behavior and focuses on predictive accuracy.

These are broad generalizations, there is much overlap and synergy between the two perspectives.

Rashomon Effect

In practice, many different models often describe a given set of data equally well, which makes it difficult to identify a "true" data-generating process.

In practice, using different loss functions / evaluation schemes will yield different optimal models, which makes it difficult to identify the "most useful" model.

PARAMETERS, STATISTICS AND SUPERVISED MACHINE LEARNING

- Supervised ML additionally assumes that f is of a certain "form" or comes from a certain class of functions.
 This is necessary to make the problem of automatically finding a "good" model feasible at all.
- The specific behavior of a mapping from this class can then be described by parameters which defines its shape.
- Statistics also studies how to learn such functions (or, rather: their parameters) from example data and how to perform inference on them and interpret the results.
- For historical reasons, statistics is mostly focused on fairly simple classes of mappings, like (generalized) linear models.
- Supervised ML also includes more complex kinds of mappings that can often deal with more complicated and high-dimensional inputs.