ECE 100 (Spring 2021) - Homework #7

Due Date: Sunday, May 16th @ 11:59pm PDT

Recommended Readings: 6.2-6.5, 9.1-9.7, 11.1-11.2

Problems highlighted in blue are optional but included for extra practice

Required problems: 1, 2, 3, 5, 10, 13, 14, 16, 19

Problem 1 (10 points)

- (a) Draw the expected frequency response of each of the following: (i) low-pass, (ii) high-pass,
- (iii) band-pass, and (iv) band-stop filters.

For (b)-(g), indicate whether the circuit is a low-pass, high-pass, band-pass, or band-reject (also known as band-stop) filter.

Problem 2 (10 points)

P6.20. Suppose we have a circuit for which the output voltage is the time derivative of the input voltage, as illustrated in **Figure P6.20** \square . For an input voltage given by $v_{\rm in}\left(t\right)=V_{\rm max}\cos\left(2\pi ft\right)$, find an expression for the output voltage as a function of time. Then, find an expression for the transfer function of the differentiator. Plot the magnitude and phase of the transfer function versus frequency.

Problem 3 (10 points)

*P6.25. An input signal given by

$$v_{ ext{in}}\left(t
ight) = 5\cos\left(500\pi t
ight) + 5\cos\left(1000\pi t
ight) \ + 5\cos\left(2000\pi t
ight)$$

is applied to the lowpass RC filter shown in Figure P6.25 . Find an expression for the output signal.

Problem 4 (optional)

***P6.30.** Sketch the magnitude of the transfer function $H(f) = \mathbf{V}_{\text{out}}/\mathbf{V}_{\text{in}}$ to scale versus frequency for the circuit shown in **Figure P6.30** \square . What is the value of the half-power frequency? [*Hint:* Start by finding the Thévenin equivalent circuit seen by the capacitance.]

Problem 5 (20 points)

P6.32. Consider the circuit shown in **Figure P6.32(a)** \square . This circuit consists of a source having an internal resistance of R_s , an RC lowpass filter, and a load resistance R_L .

a. Show that the transfer function of this circuit is given by

$$H\left(f
ight) = rac{\mathbf{V}_{ ext{out}}}{\mathbf{V}_{s}} = rac{R_{L}}{R_{s} + R + R_{L}} imes rac{1}{1 + j\left(f/f_{B}
ight)}$$

in which the half-power frequency f_B is given by

$$f_B = rac{1}{2\pi R_t C} \quad ext{where} \quad R_t = rac{R_L \; (R_s + R)}{R_L + R_s + R}$$

Notice that R_t is the parallel combination of R_L and (R_s+R) . [Hint: One way to make this problem easier is to rearrange the circuit as shown in Figure P6.32(b) \square and then to find the Thévenin equivalent for the source and resistances.]

b. Given that $C=0.2~\mu{\rm F},\,R_s=2~{\rm k}\Omega,\,R=47~{\rm k}\Omega,$ and $R_L=1~{\rm k}\Omega,$ sketch (or use MATLAB to plot) the magnitude of H(t) to scale versus f/f_B from 0 to 3.

Problem 6 (optional)

*P6.46. Two first-order lowpass filters are in cascade as shown in Figure P6.46 The transfer functions are

Figure P6.46

$$H_{1}\left(f
ight)=H_{2}\left(f
ight)=rac{1}{1+j\left(f/f_{B}
ight)}$$

- a. Write an expression for the overall transfer function.
- b. Find an expression for the half-power frequency for the overall transfer function in terms of f_B .

[Comment: This filter cannot be implemented by cascading two simple *RC* lowpass filters like the one shown in **Figure 6.7** \square on page **296** because the transfer function of the first circuit is changed when the second is connected. Instead, a buffer amplifier, such as the voltage follower discussed in **Section 14.3** \square , must be inserted between the *RC* filters.]

Problem 7 (optional)

P6.67. Suppose we need a first-order highpass filter (such as **Figure 6.19** \square on page **309**) to attenuate a 60-Hz input component by 60 dB. What value is required for the break frequency of the filter? By how many dB is the 600-Hz component attenuated by this filter? If $R=5~\mathrm{k}\Omega$, what is the value of C?

Problem 8 (optional)

Sketch i vs v for the following circuits. Assume voltages of 0.6V for all diodes when current flows in the forward direction.

Problem 9 (optional)

*P9.16. The nonlinear circuit element shown in Figure P9.16 \square has $i_x=[\exp{(v_x)}-1]/10$. Also, we have $V_s=3~{\rm V}$ and $R_s=1~\Omega$. Use graphical load-line techniques to solve for i_x and v_x . (You may prefer to use a computer program to plot the characteristic and the load line.)

Problem 10 (10 points)

P9.39. Sketch *i* versus *v* to scale for each of the circuits shown in **Figure P9.39** . Assume that the diodes are ideal and allow *v* to range from $-10~{\rm V}$ to $+10~{\rm V}$.

Problem 11 (optional)

P9.49. Draw the circuit diagram of a half-wave rectifier for producing a nearly steady dc voltage from an ac source. Draw two different full-wave circuits.

Problem 12 (optional)

P9.52. Consider the half-wave rectifier shown in **Figure 9.26** \square on page **477**. The ac source has an rms value of 20 V and a frequency of 60 Hz. The diodes are ideal, and the capacitance is very large, so the ripple voltage V_r is very small. The load is a 100- Ω resistance. Determine the PIV across the diode and the charge that passes through the diode per cycle.

Figure 9.26

Half-wave rectifier with smoothing capacitor.

Problem 13 (10 points)

*P9.54. Design a half-wave rectifier power supply to deliver an average voltage of 9 V with a peak-to-peak ripple of 2 V to a load. The average load current is 100 mA. Assume that ideal diodes and 60-Hz ac voltage sources of any amplitudes needed are available. Draw the circuit diagram for your design. Specify the values of all components used.

P9.55. Repeat **Problem P9.54** □ with a full-wave bridge rectifier.

P9.56. Repeat Problem P9.54 □ with two diodes and out-of-phase voltage sources to form a full-wave rectifier.

P9.57. Repeat Problem P9.54 □, assuming that the diodes have forward drops of 0.8 V.

Problem 14 (10 points)

P9.69. Consider the circuit shown in Figure **P9.69**, in which the *RC* time constant is very long compared with the period of the input and in which the diode is ideal. Sketch $v_o(t)$ to scale versus time.

Problem 15 (optional)

P9.71. Voltage-doubler circuit. Consider the circuit of **Figure P9.71** \square . The capacitors are very large, so they discharge only a very small amount per cycle. (Thus, no ac voltage appears across the capacitors, and the ac input plus the dc voltage of C_1 must appear at point A.) Sketch the voltage at point A versus time. Find the voltage across the load. Why is this called a voltage doubler? What is the PIV across each diode?

Problem 16 (10 points)

MOSFET as a Resistor: If the threshold is equal to 0.7 V, for each circuit determine whether the device is off or acts as a resistor or neither:

Problem 17 (optional)

P11.14.Given that the enhancement transistor shown in Figure P11.14 \square has $V_{to}=1~{
m V}$ and $K=0.5~{
m mA/V^2}$, find the value of the resistance R.

Problem 18 (optional)

*P11.19. Consider the circuit shown in Figure 11.10 \square on page 567. The transistor characteristics are shown in Figure 11.11 \square . Suppose that V_{GG} is changed to 0 V. Determine the values of V_{DSO} , V_{DSmin} , and V_{DSmax} . Find the gain of the amplifier.

Problem 19 (10 points)

P11.20. Consider the amplifier shown in Figure P11.20 □.

Figure P11.20

- a. Find $v_{GS}(t)$, assuming that the coupling capacitor is a short circuit for the ac signal and an open circuit for dc. [Hint: Apply the superposition principle for the ac and dc sources.]
- b. If the FET has $V_{to}=1~\mathrm{V}$ and K= sketch its drain characteristics to scale for $v_{GS}=1,\,2,\,3,$ and 4 V.
- c. Draw the load line for the amplifier on the characteristics.
- d. Find the values of $V_{DSQ},\,V_{DS{
 m min}},\,{
 m and}\,\,V_{DS{
 m max}}.$

Problem 20 (optional)

P11.22. Use a load-line analysis of the circuit shown in Figure P11.22 \square to determine the values of V_{DSQ} , $V_{DS \min}$, and $V_{DS \max}$. The characteristics of the FET are shown in Figure 11.21 \square on page 576. [Hint: First, replace the 15-V source and the resistances by their Thévenin equivalent circuit.]

