The Miller-Rabin Primality Test

Aryaman Maithani

IIT Bombay

5th November 2021

Table of Contents

Introduction

Pirst attempt

The Miller-Rabin test

Table of Contents

Introduction

2 First attempt

The Miller-Rabin test

The question at hand

In this talk, we are concerned with finding an algorithm for the following problem.

Algorithm

Input: An integer n > 1.

Output: isPrime(n).

Naïve approach

The simplest way to do this is by trial division. Indeed, we simply divide n by 2,3,4, and so on, and see if the remainder is 0 in any case. As we know, we only need to divide by numbers up to \sqrt{n} . The issue with this algorithm is that it is extremely inefficient, requiring $\Theta(\sqrt{n})$ operations, which is *exponential* in the *bit length* $\log(n)$. For example, if n has 100-decimal digits, it would take more than 10^{33} years to perform \sqrt{n} divisions.

Moreover, note that the above algorithm does *more* than what we expected from our algorithm. Namely, it not only tells us that the number is prime but also produces a nontrivial factor in the case that n is composite.

Probabilistic approach

In this talk, we describe a much faster primality testing. This is a polynomial time algorithm. It allows for 100-decimal digits numbers to be tested in less than a second. Unlike the earlier algorithm, it does *not* give us a prime factor in the case that n is composite.

The catch? This algorithm is *probabilistic*. This means that the algorithm can make a mistake.

However, one has control over this probability, and can make it arbitrarily small (but not zero).

Some algebraic objects

For the rest of the talk, we shall assume that n > 1 is an *odd* integer. Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be its prime factorisation.

By \mathbb{Z}_n , we shall denote the ring of integers modulo n. We have a ring homomorphism

$$\theta: \mathbb{Z}_n \to \mathbb{Z}_{p_1^{e_1}} \times \cdots \times \mathbb{Z}_{p_r^{e_r}}$$
$$[a]_n \mapsto ([a]_{p_1^{e_1}}, \cdots, [a]_{p_r^{e_r}}).$$

In fact, the Chinese Remainder Theorems tells us that the above is an isomorphism. This gives us a group isomorphism between the group of invertible elements of the two rings as

$$(\mathbb{Z}_n)^* \xrightarrow{\cong} (\mathbb{Z}_{p_1^{e_1}})^* \times \cdots \times (\mathbb{Z}_{p_r^{e_r}})^*.$$

Bird's eye view of probabilistic tests

Several probabilistic primality tests, including the Miller–Rabin test, have the following general structure.

Define \mathbb{Z}_n^+ to be the set of nonzero elements of \mathbb{Z}_n . Note that $|\mathbb{Z}_n^+|=n-1$. Moreover, $\mathbb{Z}_n^+=\mathbb{Z}_n^*$ iff n is prime. Suppose also that we define a set $L_n\subseteq\mathbb{Z}_n^+$ such that:

- there is an efficient algorithm that on input n and $\alpha \in \mathbb{Z}_n^+$, determines if $\alpha \in L_n$;
- ② if n is prime, then $L_n = \mathbb{Z}_n^*$; and
- \bullet if *n* is composite, $|L_n| \leqslant c(n-1)$ for some universal constant c < 1.

To test for primality, we set a "repetition parameter" k, and choose random elements $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_n^+$. If $\alpha_i \in L_n$ for all $i \in \{1, \ldots, k\}$, then we output true; otherwise, we output false.

Observations

Algorithm

To test for primality, we set a "repetition parameter" k, and choose random elements $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_n^+$. If $\alpha_i \in L_n$ for all $i \in \{1, \ldots, k\}$, then we output true; otherwise, we output false.

- **①** The algorithm is efficient since we can check $\alpha \in L_n$ efficiently.
- ② If *n* is prime, then the algorithm outputs true, and it does so *correctly*.
- **1** If n is composite, then the algorithm may output true, with probability at most c^k .

In particular, note that there is a *one-sided error*. In fancy language, this is a *Monte Carlo algorithm*.

Table of Contents

Introduction

Pirst attempt

The Miller-Rabin test

First attempt

We now try to define a suitable candidate for L_n .

Definition 1

$$L_n := \{ \alpha \in \mathbb{Z}_n^+ : \alpha^{n-1} = 1 \}.$$

Note that we can test $\alpha \in L_n$ efficiently, using a repeated-squaring algorithm.

It is easy to see that $L_n \subseteq \mathbb{Z}_n^*$. In fact, L_n is the kernel of the (n-1)-power map $\mathbb{Z}_n^* \to \mathbb{Z}_n^*$ given by $x \mapsto x^{n-1}$.

Does it fit the bill?

Theorem 2

If n is prime, then $L_n = \mathbb{Z}_n^*$. If n is composite and $L_n \subsetneq \mathbb{Z}_n^*$, then $|L_n| \leqslant \frac{1}{2}(n-1)$.

Proof sketch.

The first statement is clear. For the second, one recalls that L_n is a subgroup of Z_n^* . Thus, $\frac{|\mathbb{Z}_n^*|}{|L_n|}$ is a positive integer. Thus, if the integer is not 1, it is at least 2. Combine this with the fact that $|Z_n^*| \leq n-1$ to get the result.

However, there *are* infinitely many odd composite n for which $L_n = \mathbb{Z}_n^*$ and thus, they cannot be ignored.

Carmichael numbers

Definition 3

An odd composite number n such that $L_n = \mathbb{Z}_n^*$ is called a *Carmichael number*.

Example

The smallest Carmichael number is $561 = 3 \cdot 11 \cdot 17$.

Theorem 4

n is a Carmichael number iff n is of the following form:

- 0 $n = p_1 \cdots p_r$ for distinct primes p_i ,
- $2 r \geqslant 3$
- **3** $(p_i 1) \mid (n 1)$ for all $i \in \{1, ..., r\}$.

Carmichael Numbers characterisation

Proof.

Let $n = p_1^{e_1} \cdots p_r^{e_r}$ be a Carmichael number. From earlier, we have

$$\mathbb{Z}_n^* \cong \mathbb{Z}_{p_1^{e_1}}^* \times \cdots \times \mathbb{Z}_{p_r^{e_r}}^*.$$

Since n-1 annihilates the left group, it annihilates the right group. Thus,

$$p_i^{e_i-1}(p_i-1) \mid (n-1)$$

for all $i \in \{1, \ldots, r\}$. In particular, $(p_i - 1) \mid (n - 1)$. Moreover, if $e_i > 1$ for some i, then $p_i \mid n - 1$, a contradiction. Thus, $e_i = 1$ for all i. Now, we must show that $r \geqslant 3$. For the sake of contradiction, assume that

r=2. In this case, we have $n=p_1p_2$ for some $p_1>p_2$. We note that

$$n-1=p_1p_2-1=(p_1-1)p_2+(p_2-1).$$

The above shows that $p_1 - 1 \mid p_2 - 1$, a contradiction since $p_1 > p_2$.

Carmichael Numbers characterisation

Proof (Continued).

Conversely, suppose n has the given form. Let a be coprime to n and hence, to each p_i . Then, by Fermat's Little Theorem, we have $a^{p_i-1} \equiv 1 \mod p_i$. Since n-1 is a multiple of p_i-1 , we get

$$a^{n-1} \equiv 1 \mod p_i$$

for all $i \in \{1, \dots, r\}$. By the Chinese Remainder Theorem, we are now done.

Table of Contents

Introduction

2 First attempt

The Miller-Rabin test

A Better Candidate

We now define a new set L'_n as follows.

Definition 5

Let $n-1=t2^h$ where t is odd, and $h\geqslant 1$.

$$L_n':=\{lpha\in\mathbb{Z}_n^+:lpha^{t2^h}=1 ext{ and }$$
 $lpha^{t2^{j+1}}=1\Rightarrowlpha^{t2^j}=\pm 1 ext{ for } j=0,\ldots,h-1\}.$

The Miller-Rabin test uses this set L'_n . By definition, it is clear that $L'_n \subseteq L_n$, since the green condition is the same from earlier. In fact, L'_n is precisely the set of those elements of L_n which also satisfy the brown condition.

Testing membership

Testing whether a given $\alpha \in \mathbb{Z}_n^+$ belongs to L_n' can be done using the following algorithm:

Algorithm (Testing membership)

- 2 if $\beta = 1$ then return true
- **③** for $j \leftarrow 0$ to h 1 do
 - if $\beta = -1$ then return true
 - if $\beta=1$ then return false
 - $\beta \leftarrow \beta^2$
- return false

This algorithm runs in time $O(\text{poly}(\log(n)))$ and thus, satisfies the first criteria.

Does it fit the bill?

Theorem 6

If *n* is prime, then $L'_n = \mathbb{Z}_n^*$. If *n* is composite, then $|L'_n| \leqslant \frac{1}{4}(n-1)$.

Thus, this set L'_n does have the required properties. This choice gives the Miller Rabin test.

To put it all together, we have the test as:

Algorithm (Miller Rabin)

- \bigcirc input n and k
- ② for $j \leftarrow 1$ to k do
 - pick $\alpha \in \mathbb{Z}_n^+$ randomly
 - if $\alpha \notin L'_n$ then return false
- o return true

Let us now prove the above theorem.

Proof.

Case 1. *n* is prime.

Note that we have $L'_n \subseteq L_n = \mathbb{Z}_n^*$. Thus, it suffices to prove that $L_n \subseteq L'_n$. But this follows because $x^2 = 1 \Rightarrow x = \pm 1$ in a field.

Case 2. $n = p^e$ for a prime $p \ge 3$ and $e \ge 2$.

Recall that L_n is the kernel of the (n-1)-power map. Since \mathbb{Z}_n^* is cyclic, it follows that $|L_n| = \gcd(\varphi(n), n-1)$. We can explicitly calculate it to get

$$\left|L_n'\right|\leqslant |L_n|=\gcd(\varphi(n),n-1)\gcd(\varphi(p^e),p^e-1)\gcd(p^{e-1}(p-1),p^e$$

Proof (continued).

Case 3. $n = p_1^{e_1} \cdots p_r^{e_r}$ is the standard prime factorisation of n, with r > 1.

Let $\theta: \mathbb{Z}_n \to \mathbb{Z}_{\rho_1^{e_1}} \times \cdots \times \mathbb{Z}_{\rho_r^{e_r}}$ be the ring isomorphism from earlier. Write $n-1=t2^h$ and $\varphi(p_i^{e_i})=t_i2^{h_i}$ in the usual way, and let $g:=\min\{h,h_1,\ldots,h_r\}$. Note that $g\geqslant 1$, and that each $\mathbb{Z}_{\rho_i^{e_i}}^*$ is a cyclic group of order $t_i2^{h_i}$. Let $\alpha\in L_n'$.

We first show that $\alpha^{t2^g}=1$. By definition of L'_n , we may assume g< h. Now, suppose $\alpha^{t2^g}\neq 1$, and let j be the smallest index in $g,\ldots,h-1$ such that $\alpha^{t2^{j+1}}=1$. By definition of L'_n , we have $\alpha^{t2^j}=-1$. Let i be such that $g=h_i$. Writing $\theta(\alpha)=(\alpha_1,\ldots,\alpha_r)$, we have $\alpha_i^{t2^j}=-1$. Thus, the order of α_i^t (in $\mathbb{Z}_{p_i^{e_i}}^*$) is equal to 2^{j+1} . But this is a contradiction since 2^{j+1} does not divide $\left|\mathbb{Z}_{p_i^{e_i}}^*\right|=t_i2^{h_i}$. (: $j\geqslant g=h_i$)

Proof (continued).

For $j=0,\ldots,h$, define ρ_j to be the $(t2^j)$ -power map on \mathbb{Z}_n^* . From the previous claim, and the definition of L_n' , it follows that $\alpha^{t2^{g-1}}=\pm 1$ $\forall \alpha \in L_n'$. Thus, $L_n' \subseteq \rho_{g-1}^{-1}(\{\pm 1\})$ and hence, $|L_n|' \leqslant 2|\ker(\rho_{g-1})|$. Also,

$$|\mathsf{ker}(
ho_j)| = \prod_{i=1}^r \mathsf{gcd}(t_i 2^{h_i}, t 2^j) \qquad \forall j \in \{0, \dots, h\}.$$

Since $g \leqslant h$ and $g \leqslant h_i$ for all i, we get

$$2^r |\ker(\rho_{g-1})| = |\ker(\rho_g)| \leq |\ker(\rho_h)|.$$

Combining the red expressions, we get

$$\left|L_n'\right| \leqslant 2^{-r+1} \left| \ker(\rho_h) \right| = \frac{|L_n|}{2^{r-1}}.$$

Proof (continued).

$$\left|L_n'\right|\leqslant \frac{|L_n|}{2^{r-1}}$$

If $r \ge 3$, then we are done since $|L_n| \le |Z_n^*| \le n-1$, and $2^{r-1} \ge 4$. If r = 2, then n is not a Carmichael number and thus,

$$\frac{|L_n|}{2^{r-1}} = \frac{|L_n|}{2} \leqslant \frac{1}{4}(n-1),$$

and we are again done.

