1. Expand the following functions in Taylor's series and determine the region of convergence

(a)
$$log\left(\frac{1+z}{1-z}\right)$$
 about $z=0$

- (b) $\sin z$ about $\frac{\pi}{4}$
- (c) $\frac{1}{z^2+4}$ about z=-i
- (d) $\frac{2z^3 + 1}{z^2 + z}$ about 1.
- 2. Can the Series $\sum_{n=1}^{\infty} a_n z^n$ converges at z=0 and diverges z=3?
- 3. Find all possible Laurent series expansion of the function $f(z) = \frac{1}{(z+1)(z+2)^2}$ in the region
 - (a) |z-1| < 2,
 - (b) 2 < |z 1| < 3,
 - (c) |z-1| > 3
- 4. (a) $\sum_{n=-\infty}^{\infty} a_n z^n \text{ Laurent series expansion of } f(z) = \frac{1}{2z^2 13z + 15} \text{ in the annulus } \frac{3}{2} < |z| < 5 \text{ then } \frac{a_1}{a_2} = ?$
 - (b) The coefficient of $(z-\pi)^2$ in Laurent series expansion of $f(z) = \frac{\sin z}{z-\pi}$ around π .
- 5. Write down the principal part of the Laurent Series:

(a)
$$\frac{e^z}{z + sinz}$$

Problem Set - 12 MATHEMATICS-I(MA10001)

Autumn 2018

(b)
$$\frac{e^z}{z - sinz}$$

6. Find the singularity and classify them:

(a)
$$\frac{1}{e^z - 1}$$

(b)
$$\tan \frac{1}{z}$$

(c)
$$z^2 + 1$$

(d)
$$e^z$$

(e)
$$\frac{1}{z(z^2+4)}$$

7. Find the residue at all singular point:

(a)
$$\frac{1}{z^3 + z^5}$$

(b)
$$\frac{z^2}{(z^2+1)^2}$$

(c)
$$zsin(\frac{1}{z})$$

(d)
$$f(z) = \frac{z^2}{(z^2+1)^2}$$

8. Using Cauchy Residue Formula find the value of

(a)
$$\frac{1}{2\pi i} \int_{|z|=2} z^7 \cos(\frac{1}{z^2}) dz = ?$$

(b)
$$\frac{i}{4-\pi} \int_{|z|=4} \frac{dz}{z cos z} = ?$$

(c) $\Omega = \{z \in \mathbb{C} | Imz > 0\}$ C be the curve lying in ω with initial and final point -1 + 2i and 1 + 2i then $\int \frac{1 + 2z}{1 + z} dz = ?$

Problem Set - 12 MATHEMATICS-I(MA10001)

Autumn 2018

9. Find the value of
$$\frac{(1-|a|^2)}{\pi} \int_{|z|=1} \frac{|dz|}{|z+a|^2}$$
 where $a \in \mathbb{C}, |a| < 1$

10. Evaluate

(a)
$$I = \int_C \frac{f(z)}{(z-1)(z-2)}$$
 where, $f(z) = \sin \frac{\pi z}{2} + \cos \frac{\pi z}{2}$, $C: |z| = 3$

(b)
$$C = \{z \in \mathbb{C} | |z - i| = 2\}, \text{then } \frac{1}{2\pi} \int_C \frac{z^2 - 4}{z^2 + 4} = ?$$

(c)
$$\Gamma$$
 be the given circle, $z=4e^{i\theta}, \theta:0$ to 2π then $\int_{\Gamma} \frac{e^z}{z^2-2z}dz=?$

(d)
$$I = \int_0^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2}$$
, and $(i)|a| < 1, (ii)|a| > 1$

11. Evaluate the integral
$$I = \int_0^{2\pi} e^{\cos \theta} \cos(\sin \theta) d\theta$$

12. use Cauchy integral formula find the value of:

(a)
$$\int_0^\infty \frac{\cos ax}{x^2 + 1} dx$$

(b)
$$\int_0^\infty cosx^2 dx$$
 [Assume the value of he Gaussian integral $\int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}$]