Lógica

Mauro Polenta Mora

Ejercicio 9

Consigna

(a) Denotamos por "|" la barra de Sheffer cuya función de valuación es la siguiente:

$$v(\varphi|\psi) = 0$$
 si y solo si $v(\varphi) = v(\psi) = 1$

Denotamos por "\perp" el conectivo cuya función de valuación es la siguiente:

$$v(\varphi \downarrow \psi) = 1$$
 si y solo si $v(\varphi) = v(\psi) = 0$ (ni φ ni ψ)

Demuestre que los conjuntos de conectivos $\{|\}$ y $\{\downarrow\}$ son funcionalmente completos. (Sugerencia: Pruebe que $(\neg p_1) \equiv (p_1|p_1)$ y que $(\neg p_1) \equiv (p_1 \downarrow p_1)$)

(b) Considere la conectiva ternaria \$ cuya función de valuación es la siguiente (conectiva mayoría):

$$v(\$(\varphi_1,\varphi_2,\varphi_3))=1$$
si y solo si $v(\varphi_1)+v(\varphi_2)+v(\varphi_3)\geq 2$

Exprese \$ en términos de \lor y \neg .

(c) Considere el conectivo # cuya función de valuación es la siguiente:

$$v(\varphi \# \psi) = 1$$
 si y solo si $v(\varphi) \neq v(\psi)$

Exprese # en términos de \vee y \neg .

(d) Demuestre que el conjunto $\{\land, \bot\}$ no es funcionalmente completo. (Sugerencia: Pruebe que ninguna fórmula que use solamente esos conectivos puede ser una tautología).

Resolución (parte a)

La idea para demostrar esto es demostrar que podemos expresar cualquier fórmula de PROP reducido a un conjunto completo de conectivos conocido, solo usando los conectivos "|" y " \downarrow " respectivamente. Es decir que:

$$(\forall \alpha \in PROP_{\{\neg, \land\}})(\exists \beta \in PROP_{\{\mid\}})$$
 tal que α eq β

Usando en este caso el conjunto de conectivos completo: $\{\neg, \land\}$

Conectivo "|"

Definamos $PROP_{\{\}}$ para poder trabajar sobre él.

- 1. $p \in PROP_{\{\}} \text{ con } p \in P$
- 2. Si $\alpha, \beta \in PROP_{\{\}}$, entonces $(\alpha|\beta) \in PROP_{\{\}}$

Definamos también $PROP_{\{\neg, \land\}}$ para poder trabajar con el PIP sobre él.

- 1. $p \in PROP_{\{\neg, \land\}} \text{ con } p \in P$
- 2. Si $\alpha \in PROP_{\{\neg, \land\}}$, entonces $\neg \alpha \in PROP_{\{\neg, \land\}}$ 3. Si $\alpha, \beta \in PROP_{\{\neg, \land\}}$, entonces $\alpha \land \beta \in PROP_{\{\neg, \land\}}$

Lemas

Lema #1

$$(\neg\varphi)\equiv(\varphi|\varphi)$$

Demostración: $v(\varphi|\varphi)=0$ sii $v(\varphi)=1$ y en cualquier otro caso vale 1. Esto coincide $con \neg \varphi$

Lema #2

$$(\alpha \wedge \beta) \equiv (\alpha | \beta) | (\alpha | \beta)$$

Demostración: $v(\alpha \wedge \beta) = v(\neg(\alpha|\beta))$ porque $v(\neg(\alpha|\beta)) = 1$ sii $v(\alpha) = v(\beta) = 1$. Usando el lema #1 tenemos que:

$$v(\neg(\alpha|\beta)) = v((\alpha|\beta)|(\alpha|\beta))$$

Demostración

Enunciemos la propiedad $P(\varphi)$ que queremos demostrar:

$$P(\varphi): (\exists \beta \in PROP_{\{|\}})$$
tal que φ eq β

PASO BASE

 $P(p_i): (\exists \beta \in PROP_{\{|\}})$ tal que p_i eq β

Esto es directo porque por la definición de $PROP_{\{|\}},\,p_i\in PROP_{\{|\}}$

PASO INDUCTIVO

PARTE 1

- (H) $P(\alpha): (\exists \alpha' \in PROP_{\{\}})$ tal que α eq α'
- (I) $P(\beta): (\exists \beta' \in PROP_{\{\}\}})$ tal que β eq β'
- (J) $P(\alpha \wedge \beta) : (\exists \psi \in PROP_{\{|\}})$ tal que $\alpha \wedge \beta$ eq ψ

$$\alpha$$
 eq α' y β eq β'

$$\Rightarrow \text{(por sustitución por fórmulas equivalentes)}$$

$$(\alpha \wedge \beta) \text{ eq } (\alpha' \wedge \beta')$$

$$\Rightarrow \text{(por lema #2)}$$

$$(\alpha' \wedge \beta') \text{ eq } ((\alpha'|\beta')|(\alpha'|\beta'))$$

Cómo este elemento $((\alpha'|\beta')|(\alpha'|\beta'))$ pertenece a $PROP_{\{\}}$, hemos demostrado que $P(\alpha \land \beta')$ β) se cumple.

PARTE 2

- (H) $P(\varphi): (\exists \varphi' \in PROP_{\{|\}})$ tal que φ eq φ'
- (I) $P(\neg \varphi): (\exists \psi \in PROP_{\{\}})$ tal que $\neg \varphi$ eq ψ

$$\varphi$$
 eq φ'
 \Rightarrow (por sustitución por fórmulas equivalentes)
$$\neg \varphi$$
 eq $\neg \varphi'$

$$\Rightarrow$$
 (por lema #1)
$$\neg \varphi'$$
 eq $(\varphi|\varphi)$

Cómo este elemento $(\varphi|\varphi)$ pertenece a $PROP_{\{\}}$, hemos demostrado que $P(\neg\varphi)$ se cumple.

Conectivo "↓"

Definamos $PROP_{\{\downarrow\}}$ para poder trabajar sobre él.

- 1. $p \in PROP_{\{\downarrow\}} \text{ con } p \in P$
- 2. Si $\alpha, \beta \in PROP_{\{\downarrow\}}$, entonces $(\alpha \downarrow \beta) \in PROP_{\{\downarrow\}}$

Definamos también $PROP_{\{\neg,\lor\}}$ para poder trabajar con el PIP sobre él.

- 1. $p \in PROP_{\{\neg, \lor\}}$ con $p \in P$
- 2. Si $\alpha \in PROP_{\{\neg,\lor\}}$, entonces $\neg \alpha \in PROP_{\{\neg,\lor\}}$ 3. Si $\alpha, \beta \in PROP_{\{\neg,\lor\}}$, entonces $\alpha \lor \beta \in PROP_{\{\neg,\lor\}}$

Lemas

Lema #1

$$(\neg \varphi) \equiv (\varphi \downarrow \varphi)$$

Demostración: $v(\varphi \downarrow \varphi) = 1$ si
i $v(\varphi) = 0$ y en cualquier otro caso vale 1. Esto coincide co
n $\neg \varphi$

Lema #2

$$(\alpha \lor \beta) \equiv ((\alpha \downarrow \beta) \downarrow (\alpha \downarrow \beta))$$

Demostración: $v(\alpha \lor \beta) = v(\neg(\alpha \downarrow \beta))$ porque $v(\neg(\alpha \downarrow \beta)) = 0$ sii $v(\alpha) = v(\beta) = 0$, en todos los demás casos $v(\neg(\alpha \downarrow \beta)) = 1$. Usando el lema #1 tenemos que:

$$v(\neg(\alpha\downarrow\beta)) = v((\alpha\downarrow\beta)\downarrow(\alpha\downarrow\beta))$$

Demostración

Enunciemos la propiedad $P(\varphi)$ que queremos demostrar:

$$P(\varphi): (\exists \beta \in PROP_{\{\downarrow\}})$$
tal que φ eq β

PASO BASE

$$P(p_i): (\exists \beta \in PROP_{\{\downarrow\}})$$
tal que p_i eq β

Esto es directo porque por la definición de $PROP_{\{\downarrow\}},\,p_i\in PROP_{\{\downarrow\}}$

PASO INDUCTIVO

PARTE 1

- (H) $P(\alpha): (\exists \alpha' \in PROP_{\{\downarrow\}})$ tal que α eq α'
- (I) $P(\beta): (\exists \beta' \in PROP_{\{\downarrow\}})$ tal que β eq β'
- (J) $P(\alpha \vee \beta): (\exists \psi \in PROP_{\{\downarrow\}})$ tal que $\alpha \vee \beta$ eq ψ

$$\alpha$$
 eq α' y β eq β'

$$\Rightarrow \text{(por sustitución por fórmulas equivalentes)}$$

$$(\alpha \lor \beta) \text{ eq } (\alpha' \lor \beta')$$

$$\Rightarrow \text{(por lema #2)}$$

$$(\alpha' \lor \beta') \text{ eq } ((\alpha' \downarrow \beta') \downarrow (\alpha' \downarrow \beta'))$$

Cómo este elemento $((\alpha' \downarrow \beta') \downarrow (\alpha' \downarrow \beta'))$ pertenece a $PROP_{\{\downarrow\}}$, hemos demostrado que $P(\alpha \lor \beta)$ se cumple.

PARTE 2

- (H) $P(\varphi): (\exists \varphi' \in PROP_{\{\downarrow\}})$ tal que φ eq φ'
- (I) $P(\neg \varphi): (\exists \psi \in PROP_{\{\downarrow\}})$ tal que $\neg \varphi$ eq ψ

$$\begin{split} \varphi & \text{ eq } \varphi' \\ \Rightarrow & \text{ (por sustitución por fórmulas equivalentes)} \\ \neg \varphi & \text{ eq } \neg \varphi' \\ \Rightarrow & \text{ (por lema } \#1) \\ \neg \varphi' & \text{ eq } (\varphi \downarrow \varphi) \end{split}$$

Cómo este elemento $(\varphi \downarrow \varphi)$ pertenece a $PROP_{\{\downarrow\}}$, hemos demostrado que $P(\neg \varphi)$ se cumple.

Resolución (parte b)

La estrategia que usaremos para esta parte consiste en primero hallar una fórmula de PROP para expresar \$ en términos de todos los conectivos, y luego encontrar una fórmula equivalente a la última que tenga solo \lor y \neg .

Hallar fórmula de PROP para \$

$$\$(\varphi_1, \varphi_2, \varphi_3) = 1$$
 si y solo si $v(\varphi_1) + v(\varphi_2) + v(\varphi_3) \ge 2$

Analicemos primero los casos donde $\$(\varphi_1, \varphi_2, \varphi_3)$ es verdadera:

- 1. $\varphi_1 = 1, \varphi_2 = 1, \varphi_3 = 1$
- 2. $\varphi_1 = 1, \varphi_2 = 1, \varphi_3 = 0$
- $3. \ \varphi_1=1, \varphi_2=0, \varphi_3=1$
- 4. $\varphi_1 = 0, \varphi_2 = 1, \varphi_3 = 1$

Busquemos una fórmula para representar cada una de estas situaciones:

- 1. Puede ser cualquier fórmula de las que vemos posteriormente porque todas valen 1.
- 2. $(\varphi_1 \wedge \varphi_2)$
- 3. $(\varphi_1 \wedge \varphi_3)$
- 4. $(\varphi_2 \wedge \varphi_3)$

Por lo tanto, la fórmula $\alpha \in PROP$ que representa a \$ es:

$$\alpha = (\varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \varphi_3) \vee (\varphi_2 \wedge \varphi_3)$$

La intuición de la fórmula que encontramos es que cuando pase alguno de los casos, quiero devolver verdadero. Si no pasa ninguno de ellos entonces tendré que devolver falso.

Hallar fórmula de PROP para \$ en términos de \lor y \neg

En esta parte tenemos que usar fórmulas equivalentes para reemplazar el \wedge . Usemos la siguiente fórmula equivalente conocida:

$$\alpha \wedge \beta \equiv \neg(\neg \alpha \vee \neg \beta)$$

Reemplazando en la fórmula α que encontramos anteriormente:

$$\alpha = \neg(\neg\varphi_1 \lor \neg\varphi_2) \lor \neg(\neg\varphi_1 \lor \neg\varphi_3) \lor \neg(\neg\varphi_2 \lor \neg\varphi_3)$$

Resolución (parte c)

Usaremos la misma estrategia que para la parte anterior.

Hallar fórmula de PROP para

$$v(\varphi \# \psi) = 1$$
 si y solo si $v(\varphi) \neq v(\psi)$

Analicemos primero los casos donde $(\varphi \# \psi)$ es verdadera:

- 1. $\varphi = 1, \psi = 0$
- 2. $\varphi = 0, \psi = 1$

Busquemos una fórmula para representar cada una de estas situaciones:

- 1. $(\varphi \land \neg \psi)$
- 2. $(\neg \varphi \wedge \psi)$

Por lo tanto, la fórmula $\alpha \in PROP$ que representa a # es:

$$\alpha = (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$

Hallar fórmula de PROP para # en términos de \lor y \lnot

En esta parte tenemos que usar fórmulas equivalentes para reemplazar el \wedge . Usemos la siguiente fórmula equivalente conocida:

$$\alpha \wedge \beta \equiv \neg(\neg \alpha \vee \neg \beta)$$

Reemplazando en la fórmula α que encontramos anteriormente:

$$\alpha = \neg(\neg\varphi \lor \psi) \lor \neg(\varphi \lor \neg\psi)$$

Resolución (parte d)

La estrategia para esta parte es seguir la sugerencia dada en la letra. Queremos probar entonces que ninguna fórmula que use solamente los conectivos \land y \bot puede ser una tautología. Traduciendo esto a una propiedad P, tenemos que:

$$P(\varphi): \exists v \in Val \mid v(\varphi) = 0 \quad (\forall \varphi \in PROP_{\{\land, \bot\}})$$

Usemos el PIP sobre $PROP_{\{\wedge, \perp\}}$ para demostrar esto.

Demostración

PASO BASE

PARTE 1

$$P(\bot): \exists v \in Val \mid v(\bot) = 0$$

Esto es trivialmente cierto para todas las valuaciones $v \in Val$ por la definición de lo que es una valuación.

PARTE 2

$$P(p_i): \exists v \in Val \mid v(p_i) = 0$$

Basta con tomar una valuación v tal que $v(p_i)=0$. Por lo que este paso también se cumple.

PASO INDUCTIVO

- (H) $P(\alpha): \exists v \in Val \mid v(\alpha) = 0$
- (I) $P(\beta) : \exists v \in Val \mid v(\beta) = 0$
- (J) $P(\alpha \wedge \beta) : \exists v \in Val \mid v(\alpha \wedge \beta) = 0$

Sea v una valuación cualquiera que cumple con las hipótesis inductivas, veamos que podemos decir sobre $v(\alpha \wedge \beta)$:

$$v(\alpha \wedge \beta)$$
= (definición de valuación)
 $min\{v(\alpha), v(\beta)\}$
= (por hipótesis inductiva)
 $min\{0, 0\}$
= 0

Entonces, v es una valuación que cumple con la tesis. Por lo tanto, hemos demostrado que $P(\alpha \wedge \beta)$ se cumple.

Esto prueba la propiedad $\forall \varphi \in PROP_{\{\wedge, \perp\}}$, es decir que no existen fórmulas que usen solamente los conectivos \wedge y \perp que sean tautologías. Por lo tanto, el conjunto $\{\wedge, \perp\}$ no es funcionalmente completo.