Lógica de Predicados

Relembrando... Restrição de Domínio

Quantificadores com Restrição

- Restrições reescritas de outra forma
 - $\forall x < 0 \ (x^2 > 0)$
 - $\forall x (x<0 \rightarrow x^2 > 0)$
 - $\forall y \neq 0 (y^3 \neq 0)$
 - $\forall y(y \neq 0 \rightarrow y^3 \neq 0)$
 - $\exists z > 0 \ (z^2 = z)$
 - $\exists z(z>0 \land z^2 = z)$

Quantificador Universal equivale a Universal de Proposição Condicional

Quantificador Existencial equivale a Existencial de um Conjunção

Exercício 7 – Pg 47

Transcreva estas proposições para o português, em que C(x) é "x é um comediante", F(x) é "x é divertido" e o domínio são todas as pessoas.

- a) $\forall x(C(x) \rightarrow F(x))$
- b) $\forall x(C(x) \land F(x))$
- c) $\exists x (C(x) \rightarrow F(x))$
- d) $\exists x (C(x) \land F(x))$

Conteúdo

- Prioridade dos Quantificadores (Rosen 38)
- Ligando Variáveis (Rosen 38)
- Quantificadores Agrupados
- Negando expressões com quantificadores Agrupados

Prioridade dos Quantificadores

 Os quantificadores ∀ e ∃ têm prioridade maior que todos os operadores lógicos do cálculo proposicional.

$$\forall x P(x) v Q(x) \equiv (\forall x P(x)) v Q(x)$$

 $\forall x P(x) v Q(x) \neq \forall x (P(x) v Q(x))$

Prioridade dos Quantificadores

 Os quantificadores ∀ e ∃ têm prioridade maior que todos os operadores lógicos do cálculo proposicional.

$$\forall x P(x) v Q(x) \equiv (\forall x P(x)) v Q(x)$$

 $\forall x P(x) v Q(x) \neq \forall x (P(x) v Q(x))$

Isso nos mostra o conceito de variável ligada

Prioridade dos Quantificadores

 Os quantificadores ∀ e ∃ têm prioridade maior que todos os operadores lógicos do cálculo proposicional.

$$\forall x P(x) v Q(x) \equiv (\forall x P(x)) v Q(x)$$

 $\forall x P(x) v Q(x) \neq \forall x (P(x) v Q(x))$

E o conceito de escopo de uma variável

Variável Ligada

$$\forall \underline{x} (\underline{x} + y = 1)$$

$$x \in \text{ligada}$$

 Quando um quantificador é usado na variável x, dizemos que essa ocorrência da variável é ligada.

Variável Livre

$$\forall \underline{x} (\underline{x}+y=1)$$

 $x \in \text{ligada}$

 Uma ocorrência de uma variável que não é ligada por um quantificador ou não representa um conjunto de valores particulares é chamada de variável livre (y).

Variável Livre

 Todas as variáveis que ocorrem em um função proposicional devem ser ligadas ou devem representar um conjunto de valores particulares para ser uma proposição.

Escopo

 É a parte da expressão lógica à qual um quantificador é aplicado.

Escopo

- É a parte da expressão lógica à qual um quantificador é aplicado.
- Uma variável é livre se não está sob o escopo de algum quantificador.

Dúvidas!!!

 Dúvidas sobre Variável Livre, Variável Ligada e Escopo????

Predicados com duas variáveis

Dados os conjuntos

$$A=\{-2,0,1,2\}$$

$$B=\{-1,0,3\}$$

Determinar o conjunto verdade de

$$P(x,y)="x+y < 1" x \in A e y \in B$$

Predicados com duas variáveis

Dados os conjuntos

$$A=\{-2,0,1,2\}$$

 $B=\{-1,0,3\}$

Determinar o conjunto verdade de

$$P(x,y)="x+y < 1" x \in A e y \in B$$

$$CV = \{ (-2,-1), (-2,0), (0,-1), (0,0), (1,-1) \}$$

Refrescar a Mente!!!

Todo estudante da classe visitou Canadá ou México!!!

Exercício

- Todo estudante da classe visitou Canadá ou México.
- Domínio={estudantes da classe}
- C(x) = "x visitou o Canadá"
- M(x) = "x visitou o México"

?????

Exercício

- Todo estudante da classe visitou Canadá ou México.
- Domínio={estudantes da classe}
- C(x) = "x visitou o Canadá"
- M(x) = "x visitou o México"

 $\forall x(C(x) \lor M(x))$

Exercício

- Podemos construir esta formula com
 podemos construir

 - M(x) = "x visitou o México"

 $\forall x(C(x) \lor M(x))$

Predicados com duas variáveis

Todo estudante da classe visitou Canadá ou México.

Domínio: {estudantes desta classe}

V(x,y) = "x visitou o país y"

∀x (V(x,México) v V(x,Canadá))

 Dois quantificadores são agrupados se um está no escopo do outro.

$$\forall x \exists y (x+y=0)$$

Quantificadores Agrupados

 Dois quantificadores são agrupados se um está no escopo do outro.

$$\forall x \; \exists y \; (x+y=0)$$
Tudo que está no escopo pode ser considerado uma função proposicional
$$\forall x \; Q(x) \; onde$$

$$Q(x) = "\exists y P(x,y)"$$

 $P(x,y) = "(x+y=0)"$

Quantificadores Agrupados

 Dois quantificadores são agrupados se um está no escopo do outro.

$$\forall x \exists y (x+y=0)$$

É difícil de se
 $\forall x Q($ entender!!!!

$$Q(x) = "\exists y P(x,y)"$$

 $P(x,y) = "(x+y=0)"$

• $x \in \{1,2,3\}$ e y $\{a,b,c\}$

Todas as combinações devem ser verdadeiras

• $x \in \{1,2,3\}$ e y $\{a,b,c\}$

• $x \in \{1,2,3\}$ e y $\{a,b,c\}$

• $x \in \{1,2,3\}$ e y $\{a,b,c\}$

 Como vimos a ordem dos quantificadores agrupados é importante, a menos que todos sejam iguais (∀ ou ∃).

Quantificadores Agrupados

- Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ∀ ou ∃ .
- Exemplo:

$$Q(x,y) = "x+y=0"$$

Domínio = {números reais}

 $\exists y \ \forall x \ Q(x,y)$ Falso ou Verdadeiro?

Pensando....

• $x,y \in R$ Existe um número real y para todo numero real x

Pensando....

x,y ∈ R

Deveria ser o mesmo y para todo x, logo é ...

FALSC

- Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ∀ ou ∃ .
- Exemplo:

$$Q(x,y) = "x+y=0"$$

Domínio = {números reais}

$$\exists y \ \forall x \ Q(x,y)$$
 Falso !!!!

$$\forall x \exists y Q(x,y)$$
 Falso ou Verdadeiro?

Pensando....

x,y ∈ R

Pensando....

x,y ∈ R

Quantificadores Agrupados

 Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ∀ ou ∃ .

Exemplo:

```
Q(x,y) = ENTÃO ....

Domíni A ORDEM

IMPORTA!!!
```

 $\exists y \ \forall x \ Q(x,y)$ Falso !!!!

 $\forall x \exists y Q(x,y)$ Verdadeiro!!!

Quantificadores Agrupados

 Como vimos a ordem dos quantificadores agrupados é importante, a menos que sejam todos sejam todos ∀ ou ∃ .

Exemplo:

Q(x,y) = "x+y=0"

Podemos ter quantificações com
 ∃ mais de duas
 ∀ variáveis!!!

7111

 "A soma de dois números inteiros positivos é sempre positiva"

• Domínio = Z^+

- "A soma de dois números inteiros positivos é sempre positiva"
- Domínio = Z^+

$$\forall x \ \forall y \ (x+y>0)$$

- "A soma de dois números inteiros positivos é sempre positiva"
- Domínio = Z+

$$\forall x \ \forall y \ (x+y>0)$$

Domínio = Z

- "A soma de dois números inteiros positivos é sempre positiva"
- Domínio = Z+

$$\forall x \ \forall y \ (x+y>0)$$

Domínio = Z

$$\forall x \ \forall y \ (((x>0)^{(y>0)}) \rightarrow (x+y>0))$$


```
Domínio = { todas as pessoas}

F(x) = \text{``x \'e do sexo feminino''}

P(x) = \text{``x tem filho''}

M(x,y) = \text{``x \'e mãe de y''}
```



```
Domínio = { todas as pessoas}

F(x) = \text{``x \'e do sexo feminino''}

P(x) = \text{``x tem filho''}

M(x,y) = \text{``x \'e mãe de y''}
```

????? > ????


```
Domínio = { todas as pessoas}

F(x) = \text{``x \'e do sexo feminino''}

P(x) = \text{``x tem filho''}

M(x,y) = \text{``x \'e mãe de y''}
```

$$(F(x) \land P(x)) \rightarrow ????$$


```
Domínio = { todas as pessoas}

F(x) = \text{``x \'e do sexo feminino''}

P(x) = \text{``x tem filho''}

M(x,y) = \text{``x \'e mãe de y''}
```

 $(F(x) \land P(x)) \rightarrow M(x,y)$ e os quantificadores?

Domínio = { todas as pessoas}

F(x) = "x 'e do sexo feminino"

P(x) = "x tem filho"

M(x,y) = "x 'e mãe de y"

Todas as pessoas que são do sexo feminino e tem filhos.

 $\forall x((F(x) \land P(x)) \rightarrow M(x,y))$


```
Domínio = { todas as pessoas}
```

$$F(x) = "x \'e do sexo feminino"$$

$$P(x) = "x tem filho"$$

$$M(x,y) = "x \'e m\~ae de y"$$

Para todos os x's existe um y.

$$\forall x((F(x) \land P(x)) \rightarrow \exists yM(x,y))$$


```
Domínio = { todas as pessoas}

F(x) = "x é do sexo feminino"

P(x) = "x tem filho"

M(x,y) = "x é mãe de y"
```

Podemos por do lado de fora

$$\forall x \exists y ((F(x) \land P(x)) \rightarrow M(x,y))$$

 Sentenças que envolvem quantificadores agrupados podem ser negados por aplicações sucessivas das regras de negação de sentenças com um único quantificador.

Quais eram as regras?

$$~∀x P(x) ≡ ∃x ~P(x)$$

$$~∃x P(x) ≡ ∀x ~P(x)$$

 Sentenças que envolvem quantificadores agrupados podem ser negados por aplicações sucessivas das regras de negação de sentenças com um único quantificador.

Verdade?

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Exemplo:

P(w,f) = "w tomou o avião f"

Q(f,a) = "f é um avião da linha a"

Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Vamos construir primeiro a afirmação!!!!

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Quais predicados teremos que usar???

Exemplo:

P(w,f) = "w tomou o avião f"

Q(f,a) = "f é um avião da linha a"

Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Qual o conectivo???

P(w,f) ???? Q(f,a)

Exemplo:

P(w,f) = "w tomou o avião f"

Q(f,a) = "f é um avião da linha"

Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Qual o quantificador de w???

 $(P(w,f) \wedge Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Qual o quantificador de a???

 $\exists w(P(w,f) \land Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f"

Q(f,a) = "f é um avião da linha a"

Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Qual o quantificador de f???

 $\exists w \forall a (P(w,f) \land Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

$$\exists w \forall a \exists f(P(w,f) \land Q(f,a))$$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Negando!!!!!

 $\neg\exists w \forall a \exists f (P(w,f) \land Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

De Morgan!!!!!

 $\sim \exists w \forall a \exists f (P(w,f) \land Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

De Morgan Novamente!!!!!

 $\forall w \sim \forall a \exists f (P(w,f) \land Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

De Morgan Mais Uma Vez!!!!!

 $\forall w \exists a \sim \exists f (P(w,f) \land Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

Eita De Morgan!!!!!

 \forall w \exists a \forall f ~ (P(w,f) ^ Q(f,a))

Exemplo:

P(w,f) = "w tomou o avião f"

Q(f,a) = "f é um avião da linha a"

Domínio = {todas as mulheres}

"Não existe uma mulher que já tenha tomado um avião em todas as linhas aéreas do mundo"

No Português!!!!!

 $\forall w \exists a \forall f (\sim P(w,f) \lor \sim Q(f,a))$

Exemplo:

P(w,f) = "w tomou o avião f" Q(f,a) = "f é um avião da linha a" Domínio = {todas as mulheres}

"Para toda mulher existe uma linha aérea tal que, para todos os aviões, essa mulher não tomou esse avião ou esse avião não é dessa linha aérea"

 \forall w \exists a \forall f(~ P(w,f) v ~ Q(f,a))

Traduzindo para o português

• É complicado!!!!

Traduzindo para o português

- 10. Passo:
 - Escrever por extenso o que os quantificadores e predicados da expressão significam.

Traduzindo para o português

Exemplo:

C(x) = "x tem um computador"

F(x,y) = "x e y são amigos"

Domínio(x,y)= {estudantes da sua escola}

 $\forall x(C(x) \lor \exists y(C(y) \land F(x,y)))$

Exemplo:

C(x) = "x tem um computador"

F(x,y) = "x e y são amigos"

Domínio(x,y)= {estudantes da sua escola}

 $\forall x(C(x) \ v \ \exists y(C(y) \ ^F(x,y)))$

1o. Passo: Escrever por extenso o que os quantificadores e predicados da expressão significam.

Exemplo:

C(x) = "x tem um computador"

F(x,y) = "x e y são amigos"

Domínio(x,y)= {estudantes da sua escola}

$$\forall x(C(x) \lor \exists y(C(y) \land F(x,y)))$$

Para todo estudante x da sua classe, x tem um computador ou existe um estudante y tal que y tem um computador e x e y são amigos!!!

Traduzindo para o português

- 20. Passo:
 - Expressar esse significado em uma sentença o mais simples possível

Para todo estudante x da sua classe, x tem um computador ou existe um estudante y tal que y tem um computador e x e y são amigos!!!

Todo estudante da sua classe tem um computador ou tem um amigo que tem uma computador!!!

Traduzindo para o português

Podemos continuar???

F(x,y) = "x e y são amigos" Domínio (x,y,z) = "estudantes da sua escola"

$$\exists x \forall y \forall z ((F(x,y)^{F}(x,z)^{G}(y \neq z)) \rightarrow \sim (F(y,z)))$$

Traduzir para o português!!!!

F(x,y) = "x e y são amigos" Domínio (x,y,z) = "estudantes da sua escola"

$$\exists x \forall y \forall z ((F(x,y)^{F}(x,z)^{(y \neq z)}) \rightarrow \sim (F(y,z)))$$

Se os estudantes x e y são amigos e os estudantes x e z são amigos e, ainda mais, se y e z não são o mesmo estudante, então y e z não são amigos.

F(x,y) = "x e y são amigos"

Domínio (x,y,z) = "estudantes da sua escola"

 $\exists x \forall y \forall z ((F(y,z))) \rightarrow (F(y,z)))$

Entenderam?!

Se os estudantes x e y são amigos e os estudantes x e z são amigos e, ainda mais, se y e z não são o mesmo estudante, então y e z não são amigos.

F(x,y) = "x e y são amigos" Domínio (x,y,z) = "estudantes da sua escola"

$$\exists x \forall y \forall z ((F(x,y)^{F}(x,z)^{G}(y \neq z)) \rightarrow \sim (F(y,z)))$$

Com os quantificadores!!!

Existe um estudante tal que para todo estudante y e para todo estudante z diferente de y, se x e y são amigos e x e z são amigos então y e z não são amigos.

F(x,y) = "x e y são amigos" Domínio (x,y,z) = "estudantes da sua escola"

$$\exists x \forall y \forall z ((F(x,y)^{F}(x,z)^{G}(y \neq z)) \rightarrow \sim (F(y,z)))$$

Simplificando!!!

Existe um estudante tal que nenhum par de amigos seus é também amigos entre si.

F(x,y) = "x e y são amigos" Domínio (x,y,z) = "estudantes da sua escola"

$$\exists x \forall y \forall z ((F(x,y)^{F}(x,z)^{G}(y \neq z)) \rightarrow \sim (F(y,z)))$$

Simplificando!!!

Existe um estudante tal que nenhum par de amigos seus é também amigos entre si.

!!! Meus amigos não são amigos uns dos outros!!!

Perguntas?!!

- Rosen pg 58
 - 1
- Rosen pg 59
 - 9
 - 11 a), b)
- Rosen pg 61
 - 26,27,28

