

Middleware and Communication Protocols for Dependable Systems TI-MICO

"Time-Triggered Ethernet TT-Ethernet"

Time-Triggered Ethernet

Article:

"The Time-Triggered Ethernet (TTE) Design" by

Hermann Kopetz; Astrit Ademaj; Petr Grillinger; Klaus Steinhammer.

8th IEEE International Symposium on Object-oriented Real-time Distributed Computing Seattle, Washington, May 2005: page 22–33.

Abstract

- 1. Introduction to Time Triggered Ethernet
- 2. TT-Ethernet Switch
- 3. TT-Ethernet Protocol
- 4. Safety Critical TT-Ethernet Systems
- 5. TT-Ethernet and IEEE 1588
- 6. Summary

New Demands from Future Systems

- Deterministic and time-related behavior with lowest possible jitter
- One common network for all kinds of traffic
 - Control functions
 - Diagnostic information
 - Updates with loading of new programs
 - Multimedia applications i.e. voice and video have higher bandwidth requirements
 - High availability, safety and reliability
 - Integration of existing IP based diagnosis and update systems (i.e. legacy systems)

TTP and TT-Ethernet

Deterministic Ethernet

Mixed Criticality Distributed Embedded Sytsems

(open networks, arbitrary traffic profile)

Ref. SAE Aerospace

Closed and Open World Communication

Closed World Communication

Performance guarantees: real-time, dependability, safety

Standards:

ARINC 664, ARINC 429, TTP, MOST, FlexRay, CAN, LIN, ...

Applications:

Flight control, powertrain, chassis, passive and active safety, ..

Validation & verification:

Certification formal analysis, ...

High cost

Open World Communication

No performance guarantees: best efforts

Standards:

Ethernet, TCP/IP, UDP, FTP, Telnet, SSH, ...

Applications:

Multi-media, audio, video, phones, PDAs, internet, web, ...

Validation & verification:

No certification, test, simulation, ...

Low cost

Time-Triggered Protocols and Bandwidths

• TTP/C 25 Mbit/s,

FlexRay 10 Mbit/s

TTCAN 1 Mbit/s

TT-Ethernet 100 Mbit/s (future 1 Gbit/s)

TT-Ethernet can be considered to be a unification of the best properties of standard Ethernet and TTP/C.

TT-Ethernet Usage Example

- TT-Ethernet is used as backbone network in NASA's new Orion Spacecraft.
 - News April 28, 2014: NASA Orion Avionics System Ready for First Test Flight

TT-Ethernet – Standard Configuration

3 Traffic Classes Supported by TTE

- Time-Triggered Traffic (TT)
- Rate-Constrained Traffic (RC)
- Best-Effort Traffic (BE)

TT-Ethernet Traffic Classes

Time-Triggered (TT) traffic:

 dispatch messages according to a predefined communication schedule

Rate-Constrained (RC) traffic:

 enforce minimum duration between two frames of the same stream (e.g. used for multimedia traffic)

Best-Effort (BE) traffic:

 standard Ethernet communication paradigm – no temporal guarantees are given

2. TT-Ethernet Switch

- Standard Ethernet switches use the store-andforward paradigm
 - Entire packets buffered and checksum verified
 - Corrupted packets dropped
- TT-Ethernet switches uses the cut-through paradigm for TT-messages
 - Reads only up to the type field before forwarding
 - A constant delay, before forwarding
 - Forwards also corrupted packets as the checksum is not verified by the switch
- TT-Ethernet switches uses the store-andforward paradigm for ET-messages (BE)

TT-Ethernet Switch Principles

- TT Ethernet switch transmits TT messages with a constant delay
- ET messages is preempted during transmission, when a Time-Triggered message arrives at a switch port
 - The ET message is retransmitted after the TT message
- If during the transmission of TT message an ET message arrives at a port of the switch,
 - the ET message is stored in the buffer of the switch and transmitted after the transmission of the TT message is finished

TT Ethernet Node Structure

Host Computer

HAL

CNI

Time-Triggered Ethernet Controller

- 1. Standard TT-Controller
- 2. Safety Critical TT-Controller

TT-Ethernet Controller

- A specific TT-Ethernet Controller is needed in each node who sends TT-traffic
- All TT-Ethernet Controller is synchronized to a common time base
- Each TT-Ethernet Controller has its reserved timeslots for sending frames onto the network
- This secures that TT-messages are not received at the same time at a given switch

3. TT-Ethernet Protocol

- TT-Ethernet standardized in 2011 by SAE
 - SAE AS6802: Time-Triggered Ethernet, Standard Version 1.11.2011.
 - SAE: Society of Automotive and Airspace Engineers

Basic Message Categories

- 1. Event -Triggered (ET) messages
 - Normal Ethernet event messages
- 2. Free Form Time-Triggered (FFTT) messages
 - Send with TT priority, can preempt ET in the switch
- 3. Unprotected Start-up messages
 - Used for initial synchronization in start-up phase
- 4. Unprotected Synchronization messages
 - Maintain the clock synchronization during normal op.
- 5. Unprotected TT messages (UTTM)
 - Transport user messages with state semantic from a sender to one or more receivers

Two Unprotected TT Message Types

1. Unprotected periodic TT Messages

- Periodic, always sent, until the *last message bit* is set
- Message length is variable
- Information pull mode interface to the host

2. Unprotected sporadic TT Messages

- Periodic
- Message length is variable
- Only sent when the host updates the message
- Information push mode interface to the host

Standard Ethernet Frame

(Source wikipedia)

- L2 Header= 14 bytes (standard, optional 18 bytes)
- Trailer CRC= 4 bytes
- L2 Overhead= 18 bytes (standard, optional 22 bytes)
- A minimum L2 frame must be at least 64 bytes long
- User data < 46 bytes are padded up to 46 bytes

TTE-Ethernet Frame

TT-Ethernet Header

- Included in a Standard Ethernet frame
- Standardized frame type field 0x88D7= TTE
- Ethernet data field contains the TT-Ethernet Header and the data fields of different TT Ethernet frames

TT Ethernet Header

- Control field (1 byte)
 - Identify the message category
- Msg Length (1 byte)
 - Number of 8 bytes data blocks
- Parameter Field (4-12 bytes)
 - Message ID (2 bytes) = period (4 bits) and phase (12 bits)
 - Node identification (1 byte)
 - Schedule identification (1 byte)
 - Membership data (8 bytes, 64 bits) one bit for each safety critical TT-node in a cluster

TT-Ethernet Time Format

Time Format: Period ID (=Msg ID)

Message Naming

- The two bytes Period ID is used as the message type name (unique for a given node)
- A particular message instance can be identified by the concatenation of the message type name (= Period ID) with the send instant of the message

Standard Configuration with HUB's

4. Safety Critical TT-Ethernet

Requires:

- Safety critical TT-Ethernet controllers
- Minimum two TT-Ethernet switches
- Guardians for switch/bus protection
- Two communication busses
- Redundant Fail Tolerant Units (Host + TTE Controller)

TTE Safety Critical Configuration

Communication Schedule Example

New Protected Message Categories

- 1. Protected Start-up message
- 2. Protected Synchronization message
- 3. Protected TT message

Common properties for Protected messages:

- Use TDMA scheme, TDMA rounds divided into time slots for each msg.
- Message length is fixed
- Sent through two redundant channels
- Protected TT messages are always sent (no message last bit)
- Protected by the guardians

Guardian properties

- A safety critical TT-Switch is monitored and controlled by its own dedicated guardian
- A guardian can disable the inputs and outputs of the switch through control lines
- A guardian has its own fault-tolerant clock synchronization system
- A guardian has knowledge of the schedule for protected TT messages
- A guardian controls how a switch delays outgoing messages to reshape the start of frame transmission

Guardian and Switch

An example of an ET message from a Guardian is a diagnostic message

Safety Critical Configuration Example

5. TT-Ethernet and IEEE 1588

 IEEE 1588 – a standard for clock synchronizations in distributed Ethernet switched based networks

TT-Ethernet Tool Suite from TTTech

Summary

- Builds upon many years of research and experiences with TTA/TTP
- Use a switch based Ethernet configuration
- Supports high data rates 100 Mbit/s (currently)
- Integration of Time Triggered and Event Triggered communication in the same network
- Use standard Ethernet frames
- Use dedicated TT-Ethernet switches and TT-Ethernet controllers

References

[Kopetz2005]

Hermann Kopetz; Astrit Ademaj; Petr Grillinger; Klaus Steinhammer. "The Time-Triggered Ethernet (TTE) Design". 8th IEEE International Symposium on Object-oriented Real-time distributed Computing (Seattle, Washington: TU Wien), May 2005, page 22–33.

[Steinhammer2006]

K. Steinhammer et al. "A Time-Triggered Ethernet (TTE) Switch". DATE '06 Proceedings: Design, Automation and Test in Europe, 2006, page 1-6.

[Ademaj2006]

A. Ademaj et. al. "Fault-Tolerant Time-Triggered Ethernet Configuration with Star Topology". Arcs'06 19th International Conference on Architecture of Computing System. 2006, page 95-105.

[Ademaj2007]

A. Ademaj, H. Kopetz, "Time-Triggered Ethernet and IEEE1588 Clock Synchronization". 2007 International symposium on Precision Clock Synchronization, Vienna 2007, page 41-43.

[Kopetz2008]

Hermann Kopetz: "The rationale for Time-Triggered Ethernet", Real-Time Systems Symposium, 2008, page 3-11.

[SAE2011]

SAE AS6802: Time-Triggered Ethernet, Standard Version 1.11.2011.