- · @Title: 检错与纠错
- @Description:
- @Author: SoulCompiler/prinscarce
- @Email: prinscarce@outlook.com
- · @Blog:
- @LastEditors: prinscarce

-->

第10章 检错与纠错

一. 差错的类型

- 单个位差错
 - 。在单比特差错中,数据单位中仅有一比特发生变化。

- 突发性差错
 - 。一个突发差错意味着数据单元中两位或多位发生变化。

二. 块编码的概念

- 概念:
 - 。把报文划分成块,每个块有k位,称为**数据字**,并增加r个冗余位使其长度变为n = k + r,形成n位的块称为**码字**。
 - 。块编码处理是一对一,相同的数据字总是编码成相同的码字。

2ⁿ Codewords, each of n bits (only 2^k of them are valid)

三. 纠错的概念与方法

汉明距离、最小汉明距离

汉明距离

- 概念:
 - 。两个(相同长度)字的汉明距离是对应位不同的数量。
 - 。最小汉明距离是一组字中所有可能对的最小汉明距离。
- 方法:
 - 。以d(x,y)表示两个字之间的汉明距离。
 - 。对两个字进行异或操作并计算1的个数,就可以很容易地得出汉明距离。
 - 。汉明距离大于零。

最小汉明距离

- 概念:
 - 。在一组字中,最小汉明距离是所有可能对中的最小汉明距离。
 - 。 为了保证<mark>检测</mark>出最多s个错误,块编码中最小汉明距离一定是d_{min} = s + 1。
 - 。为了保证最多能<mark>纠正</mark>t个差错,块码中最小汉明距离是d_{min} = 2t + 1。

- 方法:
 - 。以d_{min} 定义编码方案中的最小汉明距离。
 - 。导出所有字的汉明距离并选择最小值。

e.g. $d_{min}=3$

$$d(00000, 01011) = 3$$
 $d(00000, 10101) = 3$ $d(00000, 11110) = 4$ $d(01011, 10101) = 4$ $d(01011, 11110) = 3$ $d(10101, 11110) = 3$

四. 线性块编码

线性块编码的距离、简单奇偶校验编码、两维奇偶校验编码、汉明码

线性块编码

- 非正式定义:
 - 。线性块编码是一种由任何两个有效码字的异或(XOR)产生的另一个有效码字。
- 线性块编码的最小距离
 - 。具有最小1的个数的非0有效码字中1的个数。(非零码字的1的个数)(

简单奇偶校验编码

- 概念:
 - 。 简单的奇偶校验码是n = k + 1, 且 d_{min} = 2的单比特检错码。
 - 。n位码字,k位数据
- 简单奇偶校验编码能检测出奇数个差错。

两维奇偶校验编码

- 概念:
 - 。数据字以表格形式(行和列)组织。
 - 。对于每一行和每一列,计算出一个奇偶校验位,然后将整个表发送给接收方,接收方将分别得出每一 行和每一列的校正子。
- 两维奇偶校验能检测出表中任何位置发生的最多三个差错(箭头指向生成的非零校正子位置)。4位的差错 无法检测到。

汉明编码

- 概念:
 - 。 汉明距离m与码字长n和数据字长k的关系为 $n=2^m-1,\ k=n-m,\ 校验位个数<math>r=m$
 - odotsdash
 - $n = 2^m 1$
 - 。详见计组

5. 循环冗余编码 CRC

计算、检错能力分析(检测单个位差错、两个独立的位差错、奇数个差错、突发性差错)

循环冗余校验的计算

2. CRC 码的编码

设n位数据为 $D_{n-1}\sim D_0$,k+1位生成码为 $G_k\sim G_0$,则构成的CRC码码长为m=n+k,其中包含k位校验位。

(1) 二进制数据用多项式表示。将 n 位数据用多项式 M(x)表示为

$$M(x) = D_{n-1}x^{n-1} + D_{n-2}x^{n-2} + \dots + D_1x^1 + D_0x^0$$
 (2.21)

式中, D_i 为 1 或 0。k+1 位生成码用多项式 G(x)表示为

$$G(x) = G_k x^k + G_{k-1} x^{k-1} + \dots + G_1 x^1 + G_0 x^0$$
 (2.22)

(2) 数据做左移 k 位操作。数据左移 k 位相当于多项式 M(x) 做乘以 x^k 的操作,即得 $M(x) \cdot x^k$,其 n+k 位的二进制编码如图 2.16 所示。

n+k-1		k	k-1	ISPO TE	1	0	
D_{n-1}	D_{s-2})	D_{0}	0	- "	0	0

图 2.16 $M(x) \cdot x^k$ 的 n+k 位二进制编码

其中,低 k 位为 0,将该编码作为待编信息码。

(3) 求余数。用 $M(x) \cdot x^k$ 对生成多项式 G(x) 作模 2 除法, 求余数多项式 R(x), 即

$$\frac{M(x) \cdot x^k}{G(x)} = Q(x) + \frac{R(x)}{G(x)} \pmod{2} \tag{2.23}$$

其中,Q(x)为商的多项式,余数 R(x)的二进制编码为 k 位。在此强调,除法过程必须按照模 2 运算规则计算。

(4) 构成 CRC 码。将余数作为校验位,用(2)中获得的待编信息码多项式 M(x) · x 与 余数 R(x) 作模 2 加,构成 CRC 码多项式 C(x),即

$$C(x) = M(x) \cdot x^k + R(x) = Q(x) \cdot G(x) \pmod{2} \tag{2.24}$$

CRC 码的编码格式如图 2.17 所示。

图 2.17 CRC 码的编码格式

CRC 的检错能力分析

- 单个位差错
 - 。如果生成多项式至少有两项并且x⁰的系数为1,那么所有单个位差错都可以被捕捉到。
- 两个独立的单个位差错
 - 。 如果生成多项式不能整除 x^t+1 (t在0和n-1之间),那么所有独立的双差错都能被检测到。
 - 。 若能整除 x^t+1 ,则两个相隔t个位置的单个位差错不能检测到
- 奇数个差错
 - 。 包含因子x+1的生成多项式能检测到所有奇数个差错。
- 突发性差错
 - 。 所有L<=r的突发性差错都会被检测到。
 - 。 所有L=r+1的突发性差错有 $1-(1/2)^{r-1}$ 的概率会被检测到。
 - 。 所有L>r+1的突发性差错有 $1-(1/2)^r$ 的概率会被检测到。
- 生成多项式检错能力总结:
 - 1. 至少有两项
 - 2. x0的系数应该是1
 - 3. 应该不能整除xt + 1 (2 < t < n-1)
 - 4. 应该有因子 x + 1。

六. 校验和及其计算方法

- 概念:
 - 。假设要发送的目的数据是5个4位数。除了发送这些数,还发送它们的和。例如,如果数字组是 (7,11,12,0,6),那么我们发送 (7,11,12,0,6,36),这里 36 是原来的数字的和。接收方将这5个数字求和并比较。如果相等,接收方认为没有差错;否则认为有差错。
 - 。可发送校验和的补码
 - 。 约束和(wrapped sum): 多出的位数与和相加
 - 。 校验和: 求约束和的补码。可用 $2^n 1$ 减去这个数
 - p.s. 图左右下角都有错

• 计算方法:

。 发送方:

- 1. 报文被划分为16位字。
- 2. 校验和字的值设为0。
- 3. 所有字包括校验和使用反码运算相加。
- 4. 对这个和求反变成校验和。
- 5. 校验和随数据一起发送。

。接收方:

- 1. 报文(包括校验和)被划分成16位字。
- 2. 用反码加法将所有字相加。
- 3. 对该和求反生成新的校验和。
- 4. 如果校验和的值是0,接收报文;否则就丢弃报文。

1	0	1	3		Carries
	4	6	6	F	(Fo)
	7	2	6	F	(ro)
	7	5	7	Α	(uz)
	6	1	6	Ε	(an)
	0	0	0	0	Checksum (initial)
	8	F	С	6	Sum (partial)
L			\rightarrow	- 1	
	8	F	C	7	Sum
	7	0	3	8	Checksum (to send)

a. Checksum at the sender site

1	0	1	3		Carries
	4	6	6	F	(Fo)
	7	2	6	F	(ro)
	7	5	7	Α	(uz)
	6	1	6	Ε	(an)
	7	0	3	8	Checksum (received)
	F	F	F	_	Sum (partial)
-			\rightarrow	• 1	
	8	F	C	7	Sum
	0	0	0	0	Checksum (new)

a. Checksum at the receiver site