

Presentation on

Paragraph Segmentation Using Semi-Supervised Deep Clustering Network

Under the guidance of Prof. Zeyd Boukhers

Presented by

Vidyasagar Aithal Radhakrishna Soujanya Basangari Toralben Arvindbhai Davara Varuni Gururaja Sai Manasa Tanniru

Agenda

3. Pre-Processing

Description about the data preparation before sending it to our model.

4. Methodolgy

Description about our model, training phase and evaluation of trained model.

A short description of methodology involved in generating a large data tp train our model.

5. Results and Evaluation

Discussion on the results achieved by our model on the different set of test data.

1. Introduction

A brief introduction about our application. Problem statement? How can it be tackled? Design of our model to solve the problem?

6. User Interface

A small demonstration of our website application.

Introduction

- PDF is one of the most popular and powerful electronic document formats
- Extracting information from the PDF document is a tricky job
- A huge number of applications are available online to extract the content. But the variety is so confusing and there is no clear winner
- Deep Learning techniques are booming nowadays and could be used to solve numerous problems
- Our application is developed on semi-supervised model combined with clustering technique
- End result is the clustered data, which will be used to get the segmented paragraphs in an oredered manner

Data Generation

- Metadata records from ArXiv On Kaggle2 (1.7 million articles in JSON format)
- 1000 Pdfs with 200 paragraphs, headers, and footnotes each
- CSV files are generated parallelly, containing each lines of pdfs with respective labels
- Scraped webpages to create large set of pdfs (Unlabelled data)
- Starting line of paragraph as 1
- Rest lines of paragraph as 2
- Header and footer as 3

Pre-Processing

- Feature extraction is done using PyMuPDF
- Along with the each line of text the layout information of the line are also derived using the PyMuPDF.
- From the extracted features, we also derive a few more features by the method of transormation.
- All together around 26 handcrafted features are extracted.
- A few of the examples are as follows: Ishorizontaltab, isenddot, isstartnumber, etc.

Methodolgy

Training Process

Training process involves two phases in our application as follows:

- Phase 1 Pre-train model with labeled dataset
- Phase 2-Two step process
 - Step 1: Train model with both datasets without true labels(labeled and unlabeled)
 - Step 2: Train using only labeled dataset until the desired accuracy score is obtained

The accuracy achieved on our trained model is 0.99

Results & Evaluation

	Accuracy	Precision	Recall	F-score
		Using Kmea	ns	
Set1	0.84	0.84	0.839	0.84
Set2	0.85	0.85	0.84	0.84
Set3	0.81	0.81	0.81	0.81
	Usi	ng Gaussian mixt	ure model	
Set1	0.83	0.835	0.839	0.835
Set2	0.84	0.84	0.84	0.83
Set3	0.78	0.78	0.78	0.79

Elask

