A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EP

Bookmark

Show all steps: ON

Problem

Let G be an abelian group of order $p^k m$, where p^k and m are relatively prime (that is, p^k and m have no common factors except ± 1). (REMARK: If two integers j and k are relatively prime, then there are integers s and t such that sj + tk = 1. This is proved on page 220.)

Let $G_p k$ be the subgroup of G consisting of all elements whose order divides p^k . Let Gm be the subgroup of G consisting of all elements whose order divides ra. Prove:

$$G \cong G_p k \times G_m$$
 (See Exercise H, Chapter 14.)

Step-by-step solution

Step 1 of 3

Assume that G is an abelian group of order $p^k m$, where p^k and m are relatively prime. Suppose that G_{p^k} be the subgroup of G consisting of all elements whose order divides p^k . Let G_m be the subgroup of G consisting of all elements whose order divides m.

Objective is to prove that $G \cong G_{n^k} \times G_m$.

Consider the following result:

If G is an internal direct product of H_1 , H_k , then $G \cong H_1 \times \dots \times H_k$.

Comment

Step 2 of 3

Definition of Internal direct product:

A group G is said to be the internal direct product of H_1 , H_2 if the following conditions are satisfied:

(1) The H_1 , H_2 are both normal subgroups of G.

- (2) H_1 $H_2 = \{e\}$..
- (3) And the product subgroup $H_1H_2=G$.

Since one knows that, for any $\ x\in G$, there are $\ y\in G_{\rho^t}$ and $\ z\in G_{\rm m}$ such that $\ x=yz$.

Also the intersection of G_{p^k} and G_m is empty. And the fact that G_{p^k} , G_m are the subgroups of an abelian group G, therefore both are normal too.

Comment

Step 3 of 3

Thus, G is an internal direct product of G_{p^*} , G_{m} . Hence, from the above result

$$G \cong G_{p^k} \times G_m$$
.

Comment