Tópicos de Matemática

Licenciatura em Ciências da Computação

2° teste

__ duração: 2 horas ____

1. Sejam $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ e $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ as funções definidas por

$$f((x,y)) = x + y \qquad \qquad \mathrm{e} \qquad \qquad g(x) = \left\{ \begin{array}{ll} (0,x) & \quad \mathrm{se} \ x \geq 0 \\ (x,0) & \quad \mathrm{se} \ x < 0 \end{array} \right. .$$

(a) Determine, justificando:

i.
$$g(\{-1,0,1\}));$$
 ii. $f^{\leftarrow}(\{0\}).$

- (b) Diga, justificando, se a aplicação f é injetiva e se é sobrejetiva.
- (c) Justifique que $f \circ g = \mathrm{id}_{\mathbb{Z}}$. Sem determinar $g \circ f$, justifique que $g \circ f \neq \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$.
- 2. Sejam S e T as relações binárias em $\mathbb N$ definidas por

$$S = \{(x,y) \mid x,y \in \mathbb{N} \land x + 1 = 2y\},\$$
$$T = \{(1,2), (2,1), (3,5), (5,2)\}.$$

- (a) Determine $Dom(S) \cap Dom(T)$.
- (b) Justifique que $S \cap S^{-1} \subseteq id_{\mathbb{N}}$. Conclua que S é antissimétrica.
- (c) Verifique que $T\circ T\nsubseteq T$. Dê exemplo de uma relação binária R em $\mathbb N$ tal que $R\neq \omega_{\mathbb N},\ T\subseteq R$ e $R\circ R\subseteq R$.
- 3. Seja R a relação binária em $A=\{n\in\mathbb{N}\,|\,n\leq 10\}$ definida por

$$x R y$$
 se e só se $\exists_{k \in \mathbb{Z}} y = 2^k x$,

para quaisquer $x, y \in A$.

 $A \times B$ não é contável.

- (a) Sabendo que R é reflexiva e simétrica, justifique que R é uma relação de equivalência em A.
- (b) Determine $[1]_R$ e A/R.
- 4. Sejam A um conjunto e Π uma partição de A. Seja R_{Π} a relação de equivalência em A determinada por Π , i.e., R_{Π} é a relação binária em A definida por

$$(a,b) \in R_{\Pi}$$
 se e só se $\exists_{S \in \Pi} \ a,b \in S$.

Mostre que, para quaisquer $X \in \Pi$ e $x \in X$, $[x]_{R_{\Pi}} = X$.

- 5. Considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse associado: Indique, caso exista(m):
 - (a) os elementos maximais, os elementos minimais, o máximo e o mínimo de ${\cal A}.$
 - (b) $\inf(\{h, i, j\})$, $\sup(\{d, e, f\})$, $\inf(\emptyset)$ e $\sup(\emptyset)$.
 - (c) um subconjunto X de A tal que $(X,\leq_{|_X})$ não seja uma cadeia e seja um reticulado.
 - (d) uma relação de ordem \leq' em A tal que $\leq \cup \leq'$ não seja uma relação de ordem.
- 6. Sejam A e B conjuntos. Mostre que se A é um conjunto não contável e B é um conjunto não vazio, então

