## Лабораторная работа №4.

## Линейная фильтрация полей.

Отфильтруем поле, заданное следующими значениями:

Таблица 1 – Случайная функция

10

11

12

13

14

| F(x) | -4,36 | 6,36   | 8,36   | 6,36 | -7,44  | 13,86 | 4,81   | 5,82  | 3,85  | 5,48  | 1,8   | -7,32 | -7,25  | -2,27 | -8,82   |
|------|-------|--------|--------|------|--------|-------|--------|-------|-------|-------|-------|-------|--------|-------|---------|
|      |       |        |        |      |        |       |        |       |       |       |       |       |        |       |         |
| X    | 16    | 17     | 18     | 3    | 19     | 20    | 21     | 22    | 23    | 24    | 25    | 26    | 27     | 28    | 3 29    |
| F(x) | -5,32 | -11,83 | -10,28 | -10  | ),86 - | 13,88 | -11,12 | -7,15 | 12,62 | 17,18 | 10,12 | 5,18  | -5,29  | -3,92 | 2 -6,26 |
|      |       |        |        |      |        |       |        |       |       |       |       |       |        |       |         |
| X    | 30    | 31     | 32     | 33   | 34     |       | 35     | 36    | 37    | 38    | 3     | 9     | 40     | 41    | 42      |
| F(x) | -6,72 | 5,38   | 3,81   | 4,22 | 5,32   | 6     | 5,28   | 12,25 | 5,66  | 14,28 | 13,2  | 7 -9  | 9,4 -6 | 5,23  | -6,4    |

Вычислим математическое ожидание

5

$$M[F] = \sum_{i=1}^{n} \frac{F(x_i)}{n} = \frac{-4,36+6,36+8,36+6,36+\cdots-6,23-6,4}{42} = 0,48$$

Вычислим дисперсию (автоковариационная функция для сдвига  $\theta = 0$ ):

Вычислим дисперсию (автоковариационная функция для сдвига 
$$\theta = 0$$
):
$$D[F] = \frac{\sum_{j=1}^{n} (F(x_j) - M[F])^2}{N-1} = \frac{(-4,38 - (0,48))^2 + (6,36 - (0,48))^2 + \dots + (-6,4 - (0,48))^2}{42-1} = 71,18$$

$$K_F(\theta) = \frac{\sum_{j=1}^{n-\theta} (F(x_j) - M[F])((F(x_{j-\theta}) - M[F])}{N-\theta-1}$$

И автокорреляционную функцию:

$$r_F(\theta) = \frac{K_F(\theta)}{D[F]}$$

 $\theta$  – сдвиг функции относительно самой себя

Построим автокорреляционную функцию по значениям  $r_{F}$  . со сдвигами  $\theta = 0,1,2,3,4,5,6,7,8,9,10$ 

1) Пусть  $\theta = 0$ . тогда

$$K_F(0) = D[F] = 71,18$$
  
 $r_F(0) = \frac{K_F(0)}{D[F]} = \frac{71,18}{71,18}$ 

2) Пусть  $\theta = 1$  тогда:

Таблица 2 — Вспомогательная таблица расчетов для  $\theta=1$ 

| $F(x_i)$ | $F(x_{i+1})$ | $F(x_i) - M(F)$ | $F(x_{i+1}) - M(F)$ | $(F(x_i) - M(F))^* F(x_(i+1)) - M(F)$ |
|----------|--------------|-----------------|---------------------|---------------------------------------|
| -4,36    | 6,36         | -4,84           | 5,88                | -28,46                                |
| 6,36     | 8,36         | 5,88            | 7,88                | 46,34                                 |
| 8,36     | 6,36         | 7,88            | 5,88                | 46,34                                 |
| 6,36     | -7,44        | 5,88            | -7,92               | -46,57                                |
| -7,44    | 13,86        | -7,92           | 13,38               | -105,97                               |
| 13,86    | 4,81         | 13,38           | 4,33                | 57,94                                 |
| 4,81     | 5,82         | 4,33            | 5,34                | 23,12                                 |
| 5,82     | 3,85         | 5,34            | 3,37                | 18,00                                 |
| 3,85     | 5,48         | 3,37            | 5,00                | 16,85                                 |
| 5,48     | 1,8          | 5,00            | 1,32                | 6,60                                  |
| 1,8      | -7,32        | 1,32            | -7,80               | -10,30                                |
| -7,32    | -7,25        | -7,80           | -7,73               | 60,29                                 |
| -7,25    | -2,27        | -7,73           | -2,75               | 21,26                                 |
| -2,27    | -8,82        | -2,75           | -9,30               | 25,57                                 |
| -8,82    | -5,32        | -9,30           | -5,80               | 53,94                                 |
| -5,32    | -11,83       | -5,80           | -12,31              | 71,39                                 |
| -11,83   | -10,28       | -12,31          | -10,76              | 132,45                                |
| -10,28   | -10,86       | -10,76          | -11,34              | 122,01                                |
| -10,86   | -13,88       | -11,34          | -14,36              | 162,84                                |
| -13,88   | -11,12       | -14,36          | -11,60              | 166,57                                |
| -11,12   | -7,15        | -11,60          | -7,63               | 88,50                                 |
| -7,15    | 12,62        | -7,63           | 12,14               | -92,63                                |
| 12,62    | 17,18        | 12,14           | 16,70               | 202,74                                |
| 17,18    | 10,12        | 16,70           | 9,64                | 160,99                                |
| 10,12    | 5,18         | 9,64            | 4,70                | 45,31                                 |
| 5,18     | -5,29        | 4,70            | -5,77               | -27,12                                |
| -5,29    | -3,92        | -5,77           | -4,40               | 25,39                                 |
| -3,92    | -6,26        | -4,40           | -6,74               | 29,65                                 |
| -6,26    | -6,72        | -6,74           | -7,20               | 48,52                                 |
| -6,72    | 5,38         | -7,20           | 4,90                | -35,28                                |
| 5,38     | 3,81         | 4,90            | 3,33                | 16,32                                 |

| 1     | 2     | 3     | 4     | 5       |
|-------|-------|-------|-------|---------|
| 3,81  | 4,22  | 3,33  | 3,74  | 12,46   |
| 4,22  | 5,32  | 3,74  | 4,84  | 18,10   |
| 5,32  | 6,28  | 4,84  | 5,80  | 28,07   |
| 6,28  | 12,25 | 5,80  | 11,77 | 68,27   |
| 12,25 | 5,66  | 11,77 | 5,18  | 60,97   |
| 5,66  | 14,28 | 5,18  | 13,80 | 71,49   |
| 14,28 | 13,27 | 13,80 | 12,79 | 176,51  |
| 13,27 | -9,4  | 12,79 | -9,88 | -126,36 |
| -9,4  | -6,23 | -9,88 | -6,71 | 66,29   |
| -6,23 | -6,4  | -6,71 | -6,88 | 46,16   |

$$K_F(1) = \frac{\sum_{i=1}^{n-\theta} (F_{(x_i-\theta)} - M[F])(F_{x_i} - M[F])}{(N-\theta-1)} = \frac{-28,46 + 46,34 + \dots + 66,29 + 46,16}{42 - 1 - 1} = 39,06$$

$$K_F(1) = 39,06; \qquad r_F(1) = \frac{39,06}{71,18} = 0.68$$

3) Пусть  $\theta = 2$  тогда:

Таблица 3 — Вспомогательная таблица расчетов для  $\theta=2$ 

| $F(x_i)$ | $F(x_{i+1})$ | $F(x_i) - M(F)$ | $F(x_{i+1}) - M(F)$ | $(F(x_i) - M(F))^* F(x_{(i+1)}) - M(F)$ |
|----------|--------------|-----------------|---------------------|-----------------------------------------|
| -4,36    | 8,36         | -4,84           | 7,88                | -38,14                                  |
| 6,36     | 6,36         | 5,88            | 5,88                | 34,58                                   |
| 8,36     | -7,44        | 7,88            | -7,92               | -62,41                                  |
| 6,36     | 13,86        | 5,88            | 13,38               | 78,68                                   |
| -7,44    | 4,81         | -7,92           | 4,33                | -34,29                                  |
| 13,86    | 5,82         | 13,38           | 5,34                | 71,45                                   |
| 4,81     | 3,85         | 4,33            | 3,37                | 14,59                                   |
| 5,82     | 5,48         | 5,34            | 5,00                | 26,70                                   |
| 3,85     | 1,8          | 3,37            | 1,32                | 4,45                                    |
| 5,48     | -7,32        | 5,00            | -7,80               | -39,00                                  |
| 1,8      | -7,25        | 1,32            | -7,73               | -10,21                                  |
| -7,32    | -2,27        | -7,80           | -2,75               | 21,45                                   |
| -7,25    | -8,82        | -7,73           | -9,30               | 71,88                                   |
| -2,27    | -5,32        | -2,75           | -5,80               | 15,95                                   |
| -8,82    | -11,83       | -9,30           | -12,31              | 114,48                                  |

| 1      | 2      | 3      | 4      | 5       |
|--------|--------|--------|--------|---------|
| -5,32  | -10,28 | -5,80  | -10,76 | 62,40   |
| -11,83 | -10,86 | -12,31 | -11,34 | 139,59  |
| -10,28 | -13,88 | -10,76 | -14,36 | 154,51  |
| -10,86 | -11,12 | -11,34 | -11,60 | 131,54  |
| -13,88 | -7,15  | -14,36 | -7,63  | 109,56  |
| -11,12 | 12,62  | -11,60 | 12,14  | -140,82 |
| -7,15  | 17,18  | -7,63  | 16,70  | -127,42 |
| 12,62  | 10,12  | 12,14  | 9,64   | 117,03  |
| 17,18  | 5,18   | 16,70  | 4,70   | 78,50   |
| 10,12  | -5,29  | 9,64   | -5,77  | -55,62  |
| 5,18   | -3,92  | 4,70   | -4,40  | -20,68  |
| -5,29  | -6,26  | -5,77  | -6,74  | 38,89   |
| -3,92  | -6,72  | -4,40  | -7,20  | 31,68   |
| -6,26  | 5,38   | -6,74  | 4,90   | -33,03  |
| -6,72  | 3,81   | -7,20  | 3,33   | -23,98  |
| 5,38   | 4,22   | 4,90   | 3,74   | 18,33   |
| 3,81   | 5,32   | 3,33   | 4,84   | 16,12   |
| 4,22   | 6,28   | 3,74   | 5,80   | 21,69   |
| 5,32   | 12,25  | 4,84   | 11,77  | 56,97   |
| 6,28   | 5,66   | 5,80   | 5,18   | 30,05   |
| 12,25  | 14,28  | 11,77  | 13,80  | 162,43  |
| 5,66   | 13,27  | 5,18   | 12,79  | 66,26   |
| 14,28  | -9,4   | 13,80  | -9,88  | -136,34 |
| 13,27  | -6,23  | 12,79  | -6,71  | -85,82  |
| -9,4   | -6,4   | -9,88  | -6,88  | 67,97   |

$$K_F(2) = \frac{\sum_{i=1}^{n-\theta} (F_{(x_i-\theta)} - M[F])(F_{x_i} - M[F])}{(N-\theta-1)} = \frac{(-38,14) + 34,58 + \dots + (-85,82) + 67,97}{42 - 1 - 1} = 19,62$$

$$K_F(2) = 19,62; \qquad r_F(1) = \frac{19,62}{71,18} = 0,28$$

4) Сдвигая функцию в дальнейшем на  $\theta = 3,4,5,6,7,8,9,10$  получим последующие значения функций:

| θ             | 0     | 1     | 2     | 3    | 4     | 5      | 6      | 7      | 8      | 9      | 10     |
|---------------|-------|-------|-------|------|-------|--------|--------|--------|--------|--------|--------|
| $K_F(\theta)$ | 71,18 | 39,06 | 19,62 | 1,96 | -9,05 | -15,70 | -20,57 | -13,43 | -12,53 | -22,44 | -17,54 |
| $r_F(\theta)$ | 1,00  | 0,55  | 0,28  | 0,03 | -0,13 | -0,22  | -0,29  | -0,19  | -0,18  | -0,32  | -0,25  |



Рис.1 – Автокорреляционная функция

По графику автокорреляционной функции определим ширину окна L, а далее построим сглаженное значение функции.

Исходя из графика, найдём радиус корреляции  $R \approx 3.2, 2R = 6.4$ За длину окна L примем целое нечетное число L < 2R и нечетное: L = 5

$$\tilde{F}(x_j) = M[F(x)] = \frac{\sum_{j=1}^{L} F(x_j)}{L}$$

Перемещая интервал вдоль оси х, каждый раз подсчитывая среднее значение, внутри интервала, получим отфильтрованное поле. Рассмотренный метод носит название скользящего среднего или среднего окна.

Отфильтруем поле на оси х: 
$$\frac{1+5}{2} = 3$$

$$\tilde{F}(3) = \frac{-4,36+6,36+8,36+6,36-7,44}{5} = 1,86$$

$$\tilde{F}(4) = \frac{6,36+8,36+6,36-7,44+13,86}{5} = 5,5$$

$$F_{(40)} = \frac{14,28+13,27-9,4-6,23-6,4}{5} = 1,1$$

| X              | 1     | 2    | 3    | 4    | 5     | 6     | 7    | 8    | 9    | 10   | 11    | 12    | 13    | 14    | 15    | 16    | 17     | 18     | 19     | 20     | 21     |
|----------------|-------|------|------|------|-------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| F(x)           | -4,36 | 6,36 | 8,36 | 6,36 | -7,44 | 13,86 | 4,81 | 5,82 | 3,85 | 5,48 | 1,8   | -7,32 | -7,25 | -2,27 | -8,82 | -5,32 | -11,83 | -10,28 | -10,86 | -13,88 | -11,12 |
| $\tilde{F}(x)$ |       |      | 1,86 | 5,5  | 5,19  | 4,68  | 4,18 | 6,76 | 4,35 | 1,93 | -0,69 | -1,91 | -4,77 | -6,2  | -7,1  | -7,7  | -9,42  | -10,43 | -11,59 | -10,66 | -6,08  |

| X              | 22    | 23    | 24    | 25    | 26   | 27    | 28    | 29    | 30    | 31   | 32   | 33   | 34   | 35   |
|----------------|-------|-------|-------|-------|------|-------|-------|-------|-------|------|------|------|------|------|
| F(x)           | -7,15 | 12,62 | 17,18 | 10,12 | 5,18 | -5,29 | -3,92 | -6,26 | -6,72 | 5,38 | 3,81 | 4,22 | 5,32 | 6,28 |
| $\tilde{F}(x)$ | -0,47 | 4,33  | 7,59  | 7,96  | 4,65 | -0,03 | -3,4  | -3,36 | -1,54 | 0,09 | 2,4  | 5    | 6,38 | 6,75 |

|   | X              | 36    | 37    | 38    | 39    | 40   | 41    | 42   |
|---|----------------|-------|-------|-------|-------|------|-------|------|
| Ī | F(x)           | 12,25 | 5,66  | 14,28 | 13,27 | -9,4 | -6,23 | -6,4 |
|   | $\tilde{F}(x)$ | 8,76  | 10,35 | 7,21  | 3,52  | 1,1  |       |      |



Рис. 2- Отфильтрованное поле