

Conic Modeling Cheatsheet

Cones

Quadratic cone Q^n

$$x_1 \ge \sqrt{x_2^2 + \dots + x_n^2}$$

Rotated quadratic cone Q_r^n

$$2x_1x_2 \ge x_3^2 + \dots + x_n^2, \ x_1, x_2 \ge 0$$

Power cone $\mathcal{P}_3^{\alpha,1-\alpha}, \ \alpha \in (0,1)$

$$x_1^{\alpha} x_2^{1-\alpha} \ge |x_3|, \ x_1, x_2 \ge 0$$

Exponential cone K_{exp}

$$x_1 \ge x_2 e^{x_3/x_2}, \ x_2 \ge 0$$

Simple bounds	
$t \ge x^2$	$(0.5, t, x) \in \mathcal{Q}_r^3$
$ t \leq \sqrt{x}$	$(0.5, x, t) \in \mathcal{Q}_r^3$
$t \ge x $	$(t,x)\in\mathcal{Q}^2$
$t \ge 1/x, \ x > 0$	$(x,t,\sqrt{2})\in\mathcal{Q}_r^3$
$t \ge x ^p, \ p > 1$	$(t,1,x) \in \mathcal{P}_3^{1/p,1-1/p}$
$t \ge 1/x^p, \ x > 0, \ p > 0$	$(t, x, 1) \in \mathcal{P}_3^{1/(1+p), p/(1+p)}$
$ t \le x^p, \ x > 0, \ p \in (0,1)$	$(x,1,t) \in \mathcal{P}_{2}^{p,1-p}$
$t \ge x ^p / y^{p-1}, \ y \ge 0$	$(t, y, x) \in \mathcal{P}_3^{1/p, 1 - 1/p}$
p > 1	
$t \ge x^T x/y, \ y \ge 0$	$(0.5t, y, x) \in \mathcal{Q}_r^{n+2}$
$t \ge e^x$	$(t,1,x) \in K_{\exp}$
$t \le \log x$	$(x,1,t) \in K_{\exp}$
$t \ge 1/\log x, \ x > 1$	$(u,t,\sqrt{2})\in\mathcal{Q}_r^3$
	$(x,1,u) \in K_{\exp}$
$t \ge a_1^{x_1} \cdots a_n^{x_n}, \ a_i > 0$	$(t, 1, \sum x_i \log a_i) \in K_{\exp}$
$t \ge xe^x, \ x \ge 0$	$(t,x,u) \in K_{\exp}$
	$(0.5, u, x) \in \mathcal{Q}_r^3$
$t \ge \log(1 + e^x)$	$u + v \le 1$
	$(u,1,x-t) \in K_{\exp}$
	$(v,1,-t) \in K_{\mathrm{exp}}$
$t \ge x ^{3/2}$	$(t,1,x) \in \mathcal{P}_3^{2/3,1/3}$
$t \ge x^{3/2}, \ x \ge 0$	$(s,t,x),(x,1/8,s)\in\mathcal{Q}_r^3$
$t \ge 1/x^3, \ x > 0$	$(t, x, 1) \in \mathcal{P}_3^{3/4, 1/4}$
$0 \le t \le x^{2/5}, \ x \ge 0$	$(x,1,t) \in \mathcal{P}_3^{2/5,3/5}, \ t \ge 0$

Log-sum-exp	$(z_i, 1, x_i - t) \in K_{\exp}$
$t \ge \log(\sum e^{x_i})$	$i = 1, \dots, n$
	$\sum z_i \le 1$
Harmonic mean	$(z_i,x_i,t)\in \mathcal{Q}_r^3$
$0 \le t \le n(\sum x_i^{-1})^{-1}$	$i = 1, \dots, n$
$x_i > 0$	$\sum z_i = nt/2$
Geometric mean	$(z_i, x_i, z_{i+1}) \in \mathcal{P}_3^{1-1/i, 1/i}$
$ t \le (x_1 \cdots x_n)^{1/n}$	$i=2,\ldots,n$
$x_i > 0$	$z_2 = x_1, \ z_{n+1} = t$
$ t \le \sqrt{xy}, \ x, y > 0$	$(x,y,\sqrt{2}t) \in \mathcal{Q}_r^3$
Weighted geom. mean	$(z_i, x_i, z_{i+1}) \in \mathcal{P}_3^{1-\beta_i, \beta_i}$
$ t \le x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \ x_i > 0$	$\beta_i = \alpha_i/(\alpha_1 + \dots + \alpha_i)$
$\alpha_i > 0, \sum \alpha_i = 1$	$i=2,\ldots,n$
	$z_2 = x_1, \ z_{n+1} = t$
$ t \le x^{1/4} y^{5/12} z^{1/3}$	$(s, z, t) \in \mathcal{P}_3^{2/3, 1/3}$
$x, y, z \ge 0$	$(x,y,s) \in \mathcal{P}_3^{3/8,5/8}$

Entropy	
$t \le -x \log x$	$(1,x,t) \in K_{\exp}$
$t \ge x \log(x/y)$	$(y, x, -t) \in K_{\exp}$
$t \ge \log(1 + 1/x)$	$(x+1,u,\sqrt{2})\in\mathcal{Q}_r^3$
x > 0	$(1-u,1,-t) \in K_{\exp}$
$t \le \log(1 - 1/x)$	$(x,u,\sqrt{2})\in\mathcal{Q}_r^3$
x > 1	$(1-u,1,t) \in K_{\exp}$
$t \ge x \log(1 + x/y)$	$(y, x + y, u) \in K_{\exp}$

 $(x+y,y,v) \in K_{\exp}$

t + u + v = 0

Convex quadratic problems

x, y > 0

Let $\Sigma \in \mathbb{R}^{n \times n}$, symmetric, p.s.d. Find $\Sigma = LL^T$, $L \in \mathbb{R}^{n \times k}$ (Cholesky factor). Then $x^T \Sigma x = \|L^T x\|_2^2$. $t \ge \frac{1}{2} x^T \Sigma x$ $(1, t, L^T x) \in \mathcal{Q}_r^{k+2}$ $t \ge \sqrt{x^T \Sigma x}$ $(t, L^T x) \in \mathcal{Q}^{k+1}$ $\frac{1}{2} x^T \Sigma x + p^T x + q \le 0$ $(1, -p^T x - q, L^T x) \in \mathcal{Q}_r^{k+2}$ $\max_x c^T x - \frac{1}{2} x^T \Sigma x$ $\max_x c^T x - r$ $(1, r, L^T x) \in \mathcal{Q}_r^{k+2}$ $c^T x + d \ge \|Ax + b\|_2$ $(c^T x + d, Ax + b) \in \mathcal{Q}_r^{m+1}$

Norms, $x \in \mathbb{R}^n$	
$\ \cdot\ _1, \ t \geq \sum x_i $	$(z_i, x_i) \in \mathcal{Q}^2, \ t = \sum z_i$
$\ \cdot\ _2, \ t \ge (\sum x_i^2)^{1/2}$	$(t,x) \in \mathcal{Q}^{n+1}$
$\ \cdot\ _{p}, \ p>1$	$(z_i,t,x_i)\in\mathcal{P}_3^{1/p,1-1/p}$
$t \ge (\sum x_i ^p)^{1/p}$	$i=1,\ldots,n$
	$\sum z_i = t$

Geometry	
Bounding ball	$\min r$
$\min_x \max_i x - x_i _2$	$(r, x - x_i) \in \mathcal{Q}^{n+1}$
Geometric median	$\min \sum t_i$
$\min_x \sum x - x_i _2$	$(t_i, x - x_i) \in \mathcal{Q}^{n+1}$
Analytic center	$\max \sum t_i$
$\max_x \sum \log(b_i - a_i^T x)$	$(b_i - \overline{a_i^T} x, 1, t_i) \in K_{\exp}$

Regression and fitting

	0
Regularized least squares	$\min t + \lambda r$
$\min_{w} Xw - y _2^2 + \lambda w _2^2$	$(0.5, t, Xw - y) \in \mathcal{Q}_r^{m+2}$
	$(0.5, r, w) \in \mathcal{Q}_r^{n+2}$
Max likelihood	$\max \sum a_i t_i$
$\max_p p_1^{a_1} \cdots p_n^{a_n}$	$(p_i, 1, t_i) \in K_{\exp}$
Logistic cost function	$u + v \le 1$
$t \ge -\log(1/(1 + e^{-\theta^T x}))$	$(u, 1, -\theta^T x - t) \in K_{\exp}$
	$(v,1,-t) \in K_{\exp}$

Risk-return

Telsix Telulii	
$\Sigma \in \mathbb{R}^{n \times n}$ – covariance, $\Sigma = LL^T$, $L \in \mathbb{R}^{n \times k}$	
$\max_x \alpha^T x$	$\max_x \alpha^T x$
s.t. $x^T \Sigma x \leq \gamma$	$(\sqrt{\gamma}, L^T x) \in \mathcal{Q}^{k+1}$
$\max_{x} \alpha^{T} x - \delta x^{T} \Sigma x$	$\max_x \alpha^T x - \delta r$
	$(0.5, r, L^T x) \in \mathcal{Q}_r^{k+2}$
Risk plus $x^{1.5}$ impact cost	$t \ge \delta r + \beta \sum u_i$
$t \ge \delta x^T \Sigma x + \beta \sum x_i ^{3/2}$	$(0.5, r, L^T x) \in \mathcal{Q}_r^{k+2}$
	$(u_i, 1, x_i) \in \mathcal{P}_3^{2/3, 1/3}$
Risk in factor model	$\gamma \ge t + s$
$\gamma \ge x^T (D + FSF^T) x$	$(0.5, t, \sqrt{D}x) \in \mathcal{Q}_r^{n+2}$
D – specific risk (diag.)	$(0.5, s, U^T F^T x) \in \mathcal{Q}_r^{k+2}$
$F \in \mathbb{R}^{n \times k}$ – factor loads	
$S = IIII^T = factor cov$	