Descriptive Statistics With R Software

Association of Variables

• •

Smooth Scatter Plots

Shalabh

Department of Mathematics and Statistics
Indian Institute of Technology Kanpur

Suppose two variables are related.

A scatter plot along with a fitted line will provide information on the trend or relationship between them.

scatter.smooth produces a scatter plot and adds a smooth curve to the scatter plot.

scatter.smooth is based on the concept of LOESS which is a locally weighted scatterplot smoothing method.

LOESS is used for local polynomial regression fitting.

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Use help("scatter.smooth") to get more details.

```
scatter.smooth(x, y = NULL, span = 2/3, degree
= 1, family = c("symmetric", "gaussian"), xlab =
NULL, ylab = NULL, ylim = range(y, pred$y,
na.rm = TRUE),...)
```

х, у	x and y arguments provide the x and y coordinates for the plot.
span	smoothness parameter for LOESS.
degree	degree of local polynomial used.
family	if "gaussian" fitting is by least-squares, and if family = "symmetric" a re-descending M estimator is used.
xlab	label for x axis.
ylab	label for y axis.
ylim	the y limits of the plot.

Scatter Plots with Smooth Curve Example

Data on marks obtained by 20 students out of 500 marks and the number of hours they studied per week are recorded as follows:

We know from experience that marks obtained by students increase as the number of hours increase.

Marks	337	316	327	340	374	330	352	353	370	380
Number of hours per week	23	25	26	27	30	26	29	32	33	34

Marks	384	398	413	428	430	438	439	479	460	450
Number of hours per week	35	38	39	42	43	44	45	46	44	41

Example

```
marks =
c(337,316,327,340,374,330,352,353,370,380,384,39
8,413,428,430,438,439,479,460,450)
hours =
c(23,25,26,27,30,26,29,32,33,34,35,38,39,42,43,44,45,46,44,41)
```

Scatter Plots with Smooth Curve Example

scatter.smooth(x,y) provides scatter plot with smooth curve
Example: scatter.smooth(hours, marks)

Example: Single Variable

Weights of 10 bags of grain are obtained and recorded as follows: 159 159 165 156 164 166 158 154 157 163

```
> weight = c(159, 159, 165, 156, 164, 166, 158,
154, 157, 163)
```

> scatter.smooth(weight)

Example: Single Variable

Height of 50 persons are recorded as follow

166,125,130,142,147,159,159,147,165,156,149,164,137,166,135,142, 133,136,127,143,165,121,142,148,158,146,154,157,124,125,158,159, 164,143,154,152,141,164,131,152,152,161,143,143,139,131,125,145, 140,163

```
> height = c(166,125,130,142,147,159,159,147,
165,156,149,164,137,166,135,142,133,136,127,143,
165,121,142,148,158,146,154,157,124,125,158,159,
164,143,154,152,141,164,131,152,152,161,143,143,
139,131,125,145,140,163)
```

Example: Single Variable

> scatter.smooth(height)

Other options are available.

```
scatter.smooth(x, y = NULL, span = 2/3, degree =
1, family = c("symmetric", "gaussian"), xlab =
NULL, ylab = NULL, ylim = range(y, pred$y, na.rm
= TRUE), evaluation = 50, ..., lpars = list())
```

smoothScatter produces a smoothed colour density representation of a scatterplot, obtained through a (2D) kernel density estimate.

```
smoothScatter(x)
```

ж, у	x and y arguments provide the x and y coordinates for the plot. If supplied separately, they must be of the same length.
nbin	numeric vector of length one (for both directions) or two (for x and y separately) specifying the number of equally spaced grid points for the density estimation.
bandwidth	numeric vector (length 1 or 2) of smoothing bandwidth
colramp	function accepting an integer n as an argument and returning n colours.
nrpoints	number of points to be superimposed on the density image. The first <pre>nrpoints</pre> points from those areas of lowest regional densities will be plotted.
ret.selection	logical indicating to return the ordered indices of "low density" points if nrpoints > 0.

pch, cex, col	arguments passed to <u>points</u> , when nrpoints > 0: point symbol, character expansion factor and colour.
transformation	function mapping the density scale to the colour scale.
postPlotHook	either NULL or a function which will be called (with no arguments) after <u>image</u> .
xlab, ylab	character strings to be used as axis labels, passed to image .
xlim, ylim	numeric vectors of length 2 specifying axis limits.

Use help("smoothScatter") to get more details.

Example: Single Variable

Weights of 10 bags of grain are obtained and recorded as follows: 159 159 165 156 164 166 158 154 157 163

> weight = c(159, 159, 165, 156, 164, 166, 158,
154, 157, 163)

We had earlier obtained the smooth scatter plot with curve as follows by using the command scatter.smooth(weight)

Now we obtain smooth scatter plot.

Example

> weight <-c(159, 159, 165, 156, 164, 166,
158, 154, 157, 163)</pre>

> smoothScatter(weight)

Recall the scatter plot

Example

Height of 50 persons are recorded as follow:

```
166,125,130,142,147,159,159,147,165,156,149,164,137,166,135,142,
133,136,127,143,165,121,142,148,158,146,154,157,124,125,158,159,
164,143,154,152,141,164,131,152,152,161,143,143,139,131,125,145,
140,163
```

```
> height = c(166,125,130,142,147,159,159,147,
165,156,149,164,137,166,135,142,133,136,127,143,
165,121,142,148,158,146,154,157,124,125,158,159,
164,143,154,152,141,164,131,152,152,161,143,143,
139,131,125,145,140,163)
```

Smooth Scatter Plots Example

> smoothScatter(height)

Smooth Scatter Plots Example

> smoothScatter(height)

Recall the scatter plot

Example

```
marks =
c(337,316,327,340,374,330,352,353,370,380,384,39
8,413,428,430,438,439,479,460,450)

hours =
c(23,25,26,27,30,26,29,32,33,34,35,38,39,42,43,4
4,45,46,44,41)

smothScatter(hours, marks)
```

Scatter Plots with Smooth Curve Example

smoothScatter(hours, marks)

