Sandsynlighedsteori og Lineær algebra Workshop 4 - Linear optimization

Sebastian Livoni Larsen

June 6, 2022

Exercise 1 - Explain why the objective function does not satisfy the definition of a linear tranformation.

$$f(x) = \sum_{i=1}^{n} |x_i|$$

$$-1 \cdot f(x) \neq f(-1 \cdot x)$$

$$-1 \cdot f(1) = -1$$

$$f(-1 \cdot 1) = 1$$
Hence, $-1 \cdot f(1) \neq f(-1 \cdot 1)$

Exercise 3 - Determining all 10 basic solutions and select out of them 5 feasible basic solutions

$$\tilde{A}\tilde{x}=b$$

$$\begin{bmatrix}1&2&3&4&5&-1&-2&-3&-4&-5\end{bmatrix}\tilde{x}=\begin{bmatrix}10\end{bmatrix}$$

The 10 basic solutions are therefore:

 s_6 , s_7 , s_8 , s_9 , s_{10} are not feasible solutions because they contains negative entries. Therefore the remaining s_1 , s_2 , s_3 , s_4 , s_5 are feasible solutions with the best solution being s_5 because:

Exercise 4 - Converting the problem (1) to a linear optimization problem in canonical form

minimize
$$\tilde{c} \cdot \tilde{x},$$
 subject to
$$\tilde{A} \tilde{x} = b, \\ \tilde{x} \geq 0.$$
 (1)

Converted to canonical form:

maximize
$$-\tilde{c}\cdot \tilde{x},$$
 subject to
$$\tilde{A}\tilde{x}\leq b, \\ -\tilde{A}\tilde{x}\leq -b, \\ \tilde{x}>0.$$

Exercise 5 - Writing down the dual problem for the linear optimization problem in canonical form.

Converted to canonical form:

maximize
$$-\tilde{c}\cdot \tilde{x},$$
 subject to $\tilde{A}\tilde{x}\leq b,$ $-\tilde{A}\tilde{x}\leq -b,$ $\tilde{x}\geq 0.$

Converting it into a dual problem:

minimize
$$b\cdot y_1-b\cdot y_2,$$
 subject to
$$\begin{bmatrix} \tilde{A}\\ -\tilde{A} \end{bmatrix}^T y \geq -\tilde{c}$$
 $y>0.$

Exercise 5 - Sketching the feasible set for the dual problem and solve it graphically (continuation).

The feasible set sketched is:

minimize
$$\begin{bmatrix} 10 \end{bmatrix} \cdot y_1 - \begin{bmatrix} 10 \end{bmatrix} \cdot y_2$$
, subject to

$$y \ge 0$$
.

Exercise 5 - Sketching the feasible set for the dual problem and solve it graphically (continuation). Do we obtain the same optimal value as in question 3?

- ▶ We obtain the value $10 \cdot 0 10 \cdot 0.2 = -2$.
- Yes, we obtain the same value: -(-2) = 2.

