Medicina nuclear ("molecular imaging")

Ideia fundamental: injectar no paciente uma molécula bioactiva e radioactiva

- A molécula vai participar nos processos biológicos para os quais tem afinidade e vai acumular radioactividade nos locais onde esses processos são mais activos
- A detecção exterior da distribuição de actividade no paciente permite revelar a intensidade do processo biológico que se pretende estudar.
- Revela-se a função e não a anatomia.

Imagiologia funcional vs. anatómica

MRI

PET

FIGURE 67.4 The MRI image shows the arteriovenous malformation (AVM) as an area of signal loss due to blood flow. The PET image shows the AVM as a region devoid of glucose metabolism and also shows decreased metabolism in the adjacent frontal cortex. This is a metabolic effect of the AVM on the brain and may explain some of the patient's symptoms.

fonte: http://www.iba-cyclotron-solutions.com/products-cyclo

Radioisótopos

TABLE 10.2 Principal Characteristics of Most Commonly Used Radioisotopes for Emission Imaging

há muitos mais...

Radioisotope	Half-life	Decay	Gamma energy used for imaging (keV)	Production	
^{99m} Tc	6.02 h	IT	140	Generator —	_
²⁰¹ Tl	73 h	EC	70, 169	Cyclotron	
¹¹¹ In	68 h	EC	170	Cyclotron	
131I	8.04 d	β-	362	Fission product	sintianofia/CDECT
123 _I	13.2 h	EC	158	Fission product	cintigrafia/SPECT
¹³³ Xe	5.25 d	β-	80	Fission product	
⁶⁷ Ga	78.3 h	EC	93, 185, 300	Cyclotron	
^{81m} Kr	13 s	IT	190	Generator)
¹⁸ F	110 m	β+	511	Cyclotron	
15O	2.1 m	β+	511	Cyclotron	
13N	10 m	β+	511	Cyclotron	➢ PET
11C	20.4 m	β+	511	Cyclotron	
82Rb	1.3 m	β+	511	Generator	J

IT: Isomeric transition; EC: Electron capture. Fonte: ref 6

Cintigrafia: imagem planar (projectada)

SPECT: Single Photon Computed Emission Tomography

PET: Positron Emission Tomography

Gerador de 99Mo/99Tc (o mais comum em MN - "milking cow")

$${}^{99}_{42}Mo \xrightarrow{\tau_{1/2}=66h} {}^{99m}_{43}Tc + \beta^{-} \xrightarrow{\tau_{1/2}=6.0h} {}^{99g}_{43}Tc + \gamma (140keV)$$

O ⁹⁹Mo é separado quimicamente do combustível usado de centrais nucleares e incorporado num material cerâmico.

99mMo (66 h)

86%

99mTc (6 h)

97%

γ 140 keV

O Tc produzido é separado do Mo por lavagem (eluição).

Aceleradores

Exemplo de acelerador para produção de radioisótopos

$$\begin{array}{c}
^{12}C \xrightarrow{\text{proton}} & ^{11}C + \text{proton} + \text{neutron} \\
^{14}N \xrightarrow{\text{proton}} & ^{11}C + ^{4}_{2}\text{He} \\
^{16}O \xrightarrow{\text{proton}} & ^{11}N + ^{4}_{2}\text{He} \\
^{13}C \xrightarrow{\text{proton}} & ^{13}N + \text{neutron} \\
^{15}N \xrightarrow{\text{proton}} & ^{15}O + \text{neutron} \\
^{14}N \xrightarrow{\text{deuterium}} & ^{15}O + \text{neutron} \\
^{18}O \xrightarrow{\text{deuterium}} & ^{18}F + \text{neutron} \\
^{20}Ne \xrightarrow{\text{deuterium}} & ^{18}F + ^{4}_{2}\text{He}
\end{array}$$

IBA Cyclone 18/10

- •iões negativos até 18MeV
- deuterões até 10MeV

fonte: http://www.iba-cyclotron-solutions.com/products-cyclo

Reactores

Exemplo de reactor para produção de radioisótopos

Radiofármacos

Radiopharmaceutical	Clinical Application			
99mTc-macroaggregated albumin	Pulmonary perfusion			
^{99m} Tc-diphosphonate	Skeletal			
^{99m} Tc-glucoheptonate	Brain tumors			
99mTc-sulfur colloid	Liver and spleen, sentinel node location			
^{99m} Tc-DTPA	Renal, pulmonary ventilation			
^{99m} Tc-HMPAO	Brain perfusion			
^{99m} Tc-Sestamibi	Myocardial perfusion			
^{99m} Tc-MAG ₃	Renal			

há muitos mais...

Radiofármacos

DALTT AND AND A SECTION OF THE PARTY OF THE				
²⁰¹ Tl (potassium analogue)	38K (potassium)			
99mTc-sestamibi (passive diffusion)	¹⁵ O water (difussion)			
99mTc-tetrofosmin (passive diffusion)	82Rb (potassium analogue)			
99mTc-teboroxime (passive diffusion)	¹³ N ammonia (metabolic trapping)			
99mTc-furifosmin, Q12 (passive diffusion)	62Cu PTSM (lipophilicity)			
99mTc-albumin microspheres (blood flow)				
²⁰¹ Tl (Na+-K+ ATP-ase)	¹⁸ F FDG (fluorodeoxy-D-glucose)			
99mTc-glucarate (cell damage)	¹³ N L-Glutamate (amino acid metabolism)			
99mTc-nitroimidazole (hypoxia)	¹⁸ F Misonidazole (hypoxia)			
99mTc-fatty acid	11C palmitate (fatty acid metabolism)			
123I-BMIPP (fatty acid)	¹¹ C acetate (oxidative metabolism)			
123I-IPPA, (fatty acid)	¹¹ C (¹³ N) amino acids (metabolism)			
990 YO O 19 ⁴ YOO O 1000	¹⁸ F FDG (fluoro deoxy-D-glucose)			
	15O oxygen (oxygen consumption)			
123I MIBG (norepinephrine analogue)	¹⁸ F metaraminol (adrenergic neuron density)			
	¹¹ C-HED, hydroxyephedrine (adrenergic neuron density)			
111 In platelets (thrombus)	¹¹ C (¹³ N) amino acids (protein synthesis)			
111 In antimyosin (cell damage)				
	99mTc-tetrofosmin (passive diffusion) 99mTc-teboroxime (passive diffusion) 99mTc-furifosmin, Q12 (passive diffusion) 99mTc-N-NOET (passive diffusion) 99mTc-albumin microspheres (blood flow) 201Tl (Na+-K+ ATP-ase) 99mTc-glucarate (cell damage) 99mTc-nitroimidazole (hypoxia) 99mTc-fatty acid 123I-BMIPP (fatty acid) 123I-IPPA, (fatty acid) 123I MIBG (norepinephrine analogue)			

^{99m}Tc red blood cells (blood pool) ¹²⁵I and ¹²³I fibrinogen (thrombus)

Síntese de radiofármacos

Os radiofármacos são sintetizados em laboratórios automáticos.

Estes devem ser alojados em "células quentes": contentores isolados que contêm a radioactividade no seu interior.

fonte: http://www.iba-cyclotron-solutions.com/products-cyclo

Princípio da câmara gama

O colimador constitui um sistema óptico para raios-X, permitindo a formação de imagem.

Eficiência ~10⁻⁴!

<u>Muito</u> ineficaz: a imensa maioria dos fotões são perdidos.

11 Simplified diagram of a gamma camera and its major components. Fonte: ref 6

Detecção dos fotões

FIGURE 10.15 Probable events during the interaction of a gamma ray with a scintillation crystal: (a) photoelectric absorption, (b) Compton scattering, (c) multiple Compton and a final photoelectric absorption and (d) escape of the gamma ray.

Apontamento histórico: a "câmara Anger"

Esquema da câmara original de Harold Anger

Esquema da "lógica de Anger":
um esquema simples (ainda
usado hoje!) de codificação da
posição do sinal de luz na
diferença entre dois sinais
eléctricos

O colimador

M = ampliação = tamanho da imagem/ tamanho do objecto

FIGURE 2.9. Energy spectra of ^{99m}Tc γ-rays detected by the scintillation crystal. (Left) The situation when only the gamma camera is used, with no patient. (Right) A broadened spectrum is obtained with the patient in place. The dashed vertical lines represent the range of values accepted by the pulse height analyzer. Fonte: ref 1

O colimador paralelo

Resolução

(separação entre pontos)

Eficiência geométrica

$$R = \frac{d(L+z)}{L} \underset{(z\gg L)}{\simeq} \frac{d}{L}z$$

$$R = \frac{d(L+z)}{L} \underset{(z\gg L)}{\simeq} \frac{d}{L}z \qquad G = k \left(\frac{d^2}{L(d+t)}\right)^2 = k \underbrace{\left(\frac{d}{L}\right)^2}_{\substack{fracção aceite \\ do ângulo sólido}} \underbrace{\left(\frac{d}{d+t}\right)^2}_{\approx 1}$$

$$\simeq k \left(\frac{R}{z}\right)^2 \left(\underbrace{\frac{d}{d+t}}\right)^2$$

TABLE 10.7 Performance Characteristics of some Typical Parallel Hole Collimators used in Emission Imaging with Gamma Cameras Fonte: ref 6

Collimator Type	Septa FWHM at 10 cm (mm) From the Collimator	Number of Holes	Maximum Energy (keV)	Geometric Sensitivity (%)
LEHR 7.4 mm	0.15	90,000	140	0.019
LEGP 8.8 mm	0.18	86,000	140	0.024
LEHS 13.4 mm	0.18	82,000	140	0.055
MEGP 12.3 mm	1,14	13,000	300	0.018
HEGP 12.5 mm	1.73	7,000	400	0.017

Note: LEHR: low energy high resolution; LEGP: low energy general purpose; LEHS: low energy high sensitivity; MEGP: medium energy general purpose; HEGP: high energy general purpose.

Cintigrafia

Figure 8. Whole-body image of a bone scan patient using translation of the gamma camera from head to foot. A sample of 20 mCi of 98 mTc-MDP was used as the radiotracer for this image taken at 4 h postinjection.

Cintigrafia

Figure 9. A multiple gated (MUGA) study of the left ventricle. The 16 images acquired over a heartbeat are uniformly assigned in time to the R wave-to-R wave cardiac interval. An ejection fraction of 69% was calculated.

Table 3. Representative Gamma Camera Imaging Studies Done in Nuclear Medicine Fonte: ref 2

Study	Agent	Label	Device	Results		
Renogram	DTPA and MAG3	^{99m} Tc	Camera	Kinetic values		
MUGA	Red cells	99mTc	Camera with EKG gating	Ejection fraction of LV		
Myocardium	Sestamibi	99mTc	Camera	Bulls eye image of LV		
Bone scan	MDP	99mTc	Camera	Fracture location. Tumor location		
Lung scan	Aggregated albumin	99mTc	Camera	Regions of reduced perfusion		
Lung scan	Aerosolized albumin	99mTc	Camera	Regions of reduced ventilation		
Lung scan	Xenon gas	¹³³ Xe	Camera	Regions of reduced ventilation		
Thyroid imaging	Iodine	¹²³ I	Camera	Uniformity of uptake in gland		

SPECT

Single Photon Emission Computed Tomography

Multiplas cintigrafias reconstrução

FIGURE 2.15. Multislice SPECT brain perfusion images of a patient who has extensive brain damage from a stroke. A striking perfusion deficit can be seen in the lower right side of the brain

Fonte: ref 1

Transaxial Slice

FIGURE 10.18 Projection of a Jaszczak phantom and reconstructed transaxial slice of the plane TP.

Princípio do PET

Positron Emission Tomography

Linhas falsas (criam ruído na imagem)

Colectando muitas coincidências (linhas) pode-se reconstruir a distribuição de actividade no objecto de forma semelhantes ao que se faz em TAC.

Óptima resolução <1mm

Sensibilidade ~100x superior ao SPECT (não há colimador)

Erros físicos na localização da actividade

- alcance do positrão: <r>≈1mm
- não-colinearidade: θ=180º±0.25º HWHM

⇒ 2.2 mm por metro de diâmetro do tomógrafo

Detecção dos fotões

TABLE 2.4. Properties of Various Detectors Employed in PET^a Fonte: ref 1

				Torrect 1			
Material	Decay Time (ns)	Emission Intensity	Density (g/cm ³)	λ _{emitted} (nm)	η	$A_{\rm eff}$	Hygroscopic
BGO	300	0.15	7.13	480	2.15	75	No
GSO(Ce)	60 _{prim} , 600 _{sec}	0.3	6.71	430	1.85	59	No
BaF ₂	0.8 _{prim} , 600 _{sec}	0.12	4.88	220, 310	1.49	53	No
CsF	4	0.05	4.64	390	1.48	53	Yes
CaF ₂ (Eu)	900	0.4	3.18	435	1.44	17	No
LSO(Ce)	40	0.75	7.40	420	1.82	65	Yes
NaI(TI)	230 _{prim} , 1000 _{sec}	1	3.67	410	1.85	51	Yes

 $[^]aA_{\text{eff}}$ is the effective atomic number, η is the refractive index, and decay times are expressed as primary and secondary decays. The emission intensity is reported relative to a value of 1.0 for Nal(TI). GSO(Ce) is cerium-doped gadolinium orthosilicate (Gd₂SiO₅), and LSO(Ce) is cerium-doped lutetium orthosilicate (Lu₂SiO₅).

Modos de aquisição

Maior sensibilidade

Reconstrução mais exigente Mais "scatter"

Ruído de fundo

Linhas falsas (criam ruído na imagem)

$$f_{randoms} = 2\tau f^2$$

f = taxa de "randoms" τ = janela de coincidências no tempo f = taxa total de detecções (todos os detectores)

Semi-camada = $7 \text{cm} \Rightarrow \text{a maioria dos}$ fotões interagem no objecto (~90%).

Reduz-se este efeito por discriminação em energia (os fotões difundidos perdem energia).

Tomógrafos

PET-CT: a combinação moderna

Ruído de contagem

Em Imagiologia de emissão são detectados relativamente poucos fotões (~10000x menos que em TAC).

Numa região de intensidade uniforme no objecto o numero de fotões N em cada pixel não é constante: segue uma estatística de Poisson ⇒ ruído de contagem

$$P(N) = \frac{\mu^N e^{-\mu}}{N!}; \quad SNR = \frac{\mu}{\sigma} = \frac{\mu}{\sqrt{\mu}} = \sqrt{\mu}$$

A relação sinal/ruído (SNR) melhora com √média

Comportamento da reconstrução FBP com ruído de contagem

O filtro de Ram-Lak amplifica muito as altas frequências onde o sinal é menor e a relação sinal-ruído (SNR) pior.

Outros filtros dão melhores resultados:

Reconstrução em Imag. de Emissão

Algoritmo iterativo MLEM

(Maximum Likelihood – Expectation Maximization)

Imagem=1; CICLO Sinograma'=Projecção(Imagem); ErroRelSinograma=Sinograma/Sinograma'; ErroRelImagem=Retroprojecção(ErroRelSinograma); Imagem=Imagem*ErroRelImagem; % estimativa inicial da imagem

% projecção da estimativa da imagem % comparação com o Sinograma medido % reconstrução grosseira do erro na imagem % correcção da imagem pixel-a-pixel

REPETIR

Exemplo MLEM em SPECT

Mas incorporando as características específicas do detector nas funções

Projecção() RetroProjecção()

O algoritmo corrige parcialmente as imperfeições do detector

HGURE 64.12 Sample images from a phantom SPECT study. (a) Radioactivity distribution from a selected slice of a 3D brain phantom. (b) Reconstructed image obtained from the FBP algorithm without any compensation. (c) Reconstructed image obtained with the application of noise-smoothing filter and compensation for uniform attenuation and scatter. (d) Similar to (c) except for an additional application of a Metz filter to partially compensate for the collimator-detector blurring. (e) Reconstructed image similar to that obtained from the iterative ML-EM algorithm that accurately mode is the attenuation and spatially variant detector response. (From Tsui BMW, Frey EC, Zhao X-D, et al. 1994. Reprinted with permission.)

Origem das figuras

- 1 -Introduction to biomedical imaging, Andrew Webb, Wiley-Interscience, ISBN: 0-471-23766-3.
- 2- Introduction to biomedical engineering, John D. Enderle, Susan M. Blanchard, Joseph D. Bronzino, Elsevier, Amsterdam, ISBN: 978-0-12-238662-6.
- 3 Encyclopedia of medical devices and instrumentation, JG Webster, 1990, John Wiley & Sons, Inc. New York, NY, USA.
- 4 Advances in Digital Radiography: Physical Principles and System Overview, Markus Körner et al., RadioGraphics 2007; 27:675–686 Published online 10.1148/rg.273065075
- 5 Basic Physics of Nuclear Medicine, KieranMaher et al., http://en.wikibooks.org/wiki/Basic Physics of Nuclear Medicine
- 6 Biomedical Technology and Devices Handbook, CRC press, James Moore, George Zouridakis (eds.), Boca Raton 2004.

