Tema 4: Valores y vectores propios de una matriz **AUTOVALORES / AUTOVECTORES**

AUTOVALORES / AUTOVECTORES

Sea A una matriz cuadrada (nxn) de R,

Si existe **x** vector columna ($\mathbf{x} \neq \mathbf{0}$) de \mathbb{R}^n y $\boldsymbol{\lambda}$ un escalar (real o complejo) /

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x} (1)$$

λ recibe el nombre de autovalor o valor propio

x es un **autovector** o vector propio asociado a λ .

El conjunto de todos

los **autovectores asociados** a un **mismo autovalor** λ se llama **autoespacio o subespacio propio**,

$$E_A(\lambda)$$

AUTOVALORES / AUTOVECTORES

- Cada autovalor tiene asignados infinitos autovectores
- Cada autovector está asociado a un único autovalor.
- En Ax = λx, el autovector x no es único, pues cualquier otro vector múltiplo de x también es un autovector asociado al mismo autovalor.
- \triangleright Ej. Sea x autovector asociado a λ e $y = \alpha x$ (α real no nulo) \rightarrow

$$Ay = A(\alpha x) = \alpha(Ax) = \alpha(\lambda x) = \lambda(\alpha x) = \lambda y$$

AUTOVALORES / AUTOVECTORES

EJEMPLO

$$A = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} \text{ Para la matriz } \textbf{A} \text{ los vectores } v_1 = (1,-1)^T \text{ y } v_2 = (2,-2)^T$$
 son autovectores de A asociados a $\lambda = 1$, autovalor de A

$$Av_1 = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \lambda v_1$$

$$\lambda = 1$$

$$Av_2 = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \lambda v_2$$

$$\mathbf{E_{A}(1)} = \left\{ a \begin{bmatrix} 1 \\ -1 \end{bmatrix} & a \in \mathbf{R} \right\}$$

Al operar matricialmente con la ecuación $A\mathbf{x} = \lambda \mathbf{x}$ se obtiene un sistema homogéneo

$$A\mathbf{x} = \lambda \mathbf{x}$$

$$A\mathbf{x} - \lambda I\mathbf{x} = 0$$

$$(A - \lambda I) \mathbf{x} = 0$$
(2)

- ❖ La ecuación (2) es un sistema de ecuaciones lineales homogéneo (SH)
- ❖ Los SH tienen solución trivial x = 0.
- Los autovectores deben ser no nulos, luego (2) debe ser compatible indeterminado, esto es,
 - la matriz de coeficientes (A λI), debe ser no invertible,
 - el determinante de la matriz de coeficientes de (3) debe ser nulo

Para que el SH (A -
$$\lambda I$$
) $\mathbf{x} = 0$ sea SCI \rightarrow

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0} \quad (3)$$

 \rightarrow Su solución está dada por **n** valores de λ (reales o complejos).

La ecuación (3) es una ecuación polinómica llamada

ecuación característica /

polinomio característico en potencias de λ

$$q_A(\lambda) = \det(A - \lambda I)$$

→ Cada raíz del polinomio es un autovalor

Ej-1 (hoja 6)

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$

$$det(A - \lambda I) = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix}$$

$$q_A(\lambda) = det(A - \lambda I) = (2 - \lambda) (-6 - \lambda) - 21 = \lambda^2 + 4\lambda - 21$$

$$\det(A - \lambda I) = 0$$

$$\lambda_1 = -7$$

$$\lambda_2 = 3$$

$$B = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix}$$

$$det(B - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 & -1 \\ 1 & 1 - \lambda & 1 \\ 4 & 2 & -\lambda \end{vmatrix}$$

$$det(B - \lambda I) = 0$$

$$q_B(\lambda) = \det(B - \lambda I) = -\lambda^3 + 4\lambda^2 - 4\lambda = \lambda(-\lambda^2 + 4\lambda - 4) = -\lambda(\lambda - 2)^2$$

$$\lambda_1 = 0$$
 $\lambda_2 = 2$ (doble)

Los n autovalores pueden no ser distintos,

Autovalores de la matriz A:

$$\lambda_1 = -7$$

$$\lambda_2 = 3$$

$$q_A(\lambda) = \lambda^2 + 4\lambda - 21$$

Autovalores de la matriz B:

$$\lambda_1 = 0$$

$$\lambda_2 = 2$$
 (doble)

$$q_B(\lambda) - \lambda^3 + 4\lambda^2 - 4\lambda$$

El nº de autovalores está directamente relacionado con el grado del polinomio

Si
$$q_A(\lambda)$$
 es de grado n \rightarrow

hay n autovalores

MULTIPLICIDAD ALGEBRAICA de un AUTOVALOR

Autovalores "repetidos" para una matriz

Si al factorizar $\mathbf{q}_{\mathbf{A}}(\lambda)$ aparece $(\lambda - \lambda_{\mathbf{i}})^{\mathbf{k}} \rightarrow \lambda_{\mathbf{i}}$ tiene multiplicidad algebraica \mathbf{k}

La **multiplicidad algebraica** de un autovalor λ_i **ma** (λ_i) es la multiplicidad que tiene λ_i como raíz de $\mathbf{q}_{\Delta}(\lambda)$

Ej-2 (hoja 6)

$$\lambda_1 = -7$$
 $\lambda_2 = 3$
 $ma(-7) = 1$
 $ma(3) = 1$

$$\lambda_1 = 0$$
 $\lambda_2 = 2$
 $ma(0) = 1$
 $ma(2) = 2$

❖ Para una matriz A (nxn) la suma de las multiplicidades algebraicas de sus autovalores asociados es n.

PROPIEDADES DE LOS AUTOVALORES

❖ La suma de los n autovalores de la matriz A es igual a su traza:

$$\lambda_1 + \lambda_2 + \dots \lambda_n = \text{traza}(A)$$

El producto de los n autovalores de A es igual a su determinante:

$$\lambda_1 \cdot \lambda_2 \dots \lambda_n = \det(A)$$

$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \qquad \qquad \begin{cases} \lambda_1 = -7 \\ \lambda_2 = 3 \end{cases}$$

$$\lambda_1 = -7$$

$$\lambda_2 = 3$$

$$\lambda_1 \cdot \lambda_2 = -7 \cdot 3 = -21$$

$$det(A) = -21$$

$$\lambda_1 + \lambda_2 = -7 + 3 = -4$$

$$traza(A) = 2 - 6 = -4$$

- Los autovalores de una matriz triangular (superior o inferior) son los elementos de su diagonal.
- ❖ La multiplicidad de un autovalor es el nº de veces que aparece en la diagonal.

Ej-4 (hoja 6)

G. I. Informática

$$C = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\det(C - \lambda I) = (3 - \lambda) (-\lambda) (2 - \lambda) \Rightarrow \lambda_1 = 3$$

$$\lambda_2 = 0$$
Diagonal de C: **3, 0, 2,**

$$\lambda_3 = 2$$

$$\max(3) = \max(0) = \max(2) = 1$$

$$D = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix} \quad det(D - \lambda I) = (4 - \lambda)^{2}(1 - \lambda) \Rightarrow \lambda_{1} = 4 \quad ma(4) = 2 \\ \lambda_{2} = 1 \quad ma(1) = 1$$

Diagonal de D : **4, 1, 4**;

Teorema Cayley-Hamilton

Si A es una matriz cuadrada, entonces q(A) = 0 (matriz nula)

En $q_A(\lambda)$ sustituimos λ por A

Este resultado se usa para calcular la inversa.

$$A = \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}$$
 $q_A(\lambda) = \lambda^2 - 2\lambda - 3 = 0$

$$q(A) = A^2 - 2A - 3I = 0$$

$$A^2 - 2A - 3I = 0$$

 $A(A - 2I) = 3I$

$$A(1/3(A-2I))=I$$

$$A^{-1} = \frac{1}{3}(A - 2I).$$

Una vez obtenidos los autovalores se obtienen los autovectores asociados a ellos. Para ello:

- ❖ Cada autovalor λ_i se reemplaza en $(A \lambda_i I) x = 0$ (SCI) cuya solución da origen a una familia de vectores, **autovectores**
- ❖ La solución del SH es un subespacio de Rn: $E_{\Delta}(\lambda)$ llamado subespacio propio de A asociado a λ
- \bullet $E_{\Delta}(\lambda)$ está formado por los autovectores asociados a λ

- Sea A una matriz cuadrada de orden n, entonces los autovectores correspondientes a autovalores diferentes asociados a A son linealmente independientes.
- **\diamond Una base** de $E_A(\lambda)$ estará formada por los autovectores asociados a λ .

$$E_{A}(\lambda) = Nul(A-\lambda I)$$
 dimensión $E_{A}(\lambda) = multiplicidad geométrica de λ
$$mg(\lambda) .$$$

CÁLCULO de AUTOVALORES / AUTOVECTORES

Dada matriz A,

> 1º Calcular sus autovalores y multiplicidad algebraica.

Para ello resolver
$$q_A(\lambda) = det(A - \lambda I) = 0$$

> 2º Calcular los autovectores asociados

Para ello resolver SH (A - λ I) x = 0 para cada autovalor λ

OjO: No calcular los valores propios de una matriz en su reducida ya que **no** siempre los autovalores coinciden.

Ej. Los autovalores de A = [1, 1; -2, 4] son λ_1 =2, λ_2 =3 Los de rref(A) = [1,0; 0,1] son λ_1 =1, λ_2 =1

Verificar que la matriz A = [1,2,0; 2,4,0; 0,0,1] posee tres autovalores distintos: $\lambda_1 = 1$; $\lambda_2 = 0$ y $\lambda_3 = 5$, asociados, respectivamente, a los autovectores :

$$v_1 = (0, 0, 1); \quad v_2 = (-2, 1, 0); \quad v_3 = (1, 2, 0)$$

Probar que los autovectores son linealmente independientes.

Ej-6 (hoja 6)

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$$

Autovalores

$$q_A(\lambda) = \det(A - \lambda) = 0$$

$$\begin{vmatrix} 4 - \lambda & 3 \\ 3 & -4 - \lambda \end{vmatrix} = 0$$

$$\mathbf{q}_{\mathbf{A}}(\lambda) = (4-\lambda)(-4-\lambda)-9 = 0$$

$$\lambda_1 = -5$$
, $m_a(-5) = 1$
 $\lambda_2 = 5$, $m_a(5) = 1$

Ej-6 (cont) (hoja 6)

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$$

Autovectores

$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{x} = \mathbf{0}$$

Para
$$\lambda_1 = -5$$

$$\begin{pmatrix} 9 & 3 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

La solución del SH está dada por vectores de la forma $\mathbf{x} = (\mathbf{x_1}, -3\mathbf{x_1})^\mathsf{T}$

$$\mathbf{E_A(\lambda_1)} = \text{Env}\{(x_1, -3x_1)^T, x \in R\}$$

Un autovector asociado a $\lambda_1 = -5$ es, por ej, $\mathbf{v_1} = (1, -3)^T$

Ej-6 (cont) (hoja 6)

$$A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$$

Autovectores

$$(A - \lambda_2 I) x = 0$$

Para
$$\lambda_2 = 5$$

$$\begin{pmatrix} -1 & 3 \\ 3 & -9 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

La solución del SH está dada por vectores de la forma $\mathbf{x} = (3\mathbf{x}_1, \mathbf{x}_1)^T$

$$E_A(\lambda_2) = Env\{(3x_1, x_1)^T, x \in R\}$$

Un autovector asociado a $\lambda_2 = 5$ es, por ej, $\mathbf{v_2} = (3, 1)^T$

CÁLCULO del SUBESPACIO PROPIO asociado a un AUTOVALOR

Ej-7 (hoja 6)

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & 4 & 5 \end{bmatrix}$$

 $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$ Los autovalores de A son: $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$ encontrar el **subespacio** propio asociado a cada autovalor y un autovector para cada uno de ellos

Para
$$\lambda_1 = 1$$

Para
$$\lambda_1 = 1$$
 (A - $\lambda_1 I$)x = 0

$$(A - \lambda_1 I) = \begin{bmatrix} 0 & 2 & -1 \\ 1 & -1 & 1 \\ 4 & -4 & 4 \end{bmatrix} \qquad rref(A - \lambda_1 I) = \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$rref(A - \lambda_1 I) = \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

SCI
$$\rightarrow$$
 x = $(x_1, x_2, x_3)^T / x_1 = -\alpha/2; x_2 = \alpha/2; x_3 = \alpha$

$$x = \alpha (-1/2, 1/2, 1)^T$$

$$E_A(\lambda_1) = Env\{\alpha (-1/2, 1/2, 1)^T \alpha \in R \}$$

Multiplicidad geométrica: $mg(\lambda_1) = 1$

Un autovector asociado a $\lambda_1 = 1$ es, por ej, $\mathbf{v_1} = (-1, 1, 2)^T$

MATEMÁTICAS I ÁLGEBRA

CÁLCULO del SUBESPACIO PROPIO asociado a un AUTOVALOR

Ej-7 (cont) (hoja 6)

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

Para
$$\lambda_2 = 2$$
 $(A - \lambda_2 I)x = 0$

$$(A - \lambda_2 I)x = 0$$

SCI
$$\rightarrow$$
 x = (x₁, x₂, x₃)^T / x₁ = - α /2; x₂ = α /4; x₃ = α
x = α (-1/2, 1/4, 1)^T

$$E_A(\lambda_2) = Env\{\alpha (-1/2, 1/4, 1)^T \alpha \in R \}$$

Multiplicidad geométrica: $mg(\lambda_2) = 1$

Un autovector asociado a $\lambda_2 = 2$ es, por ej, $\mathbf{v_2} = (-2, 1, 4)^T$

CÁLCULO del SUBESPACIO PROPIO asociado a un AUTOVALOR

Ej-7 (cont) (hoja 6)

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$$

Para
$$\lambda_3 = 3$$
 $(A - \lambda_3 I)x = 0$

SCI
$$\rightarrow$$
 x = (x₁, x₂, x₃)^T / x₁ = - α /4; x₂ = α /4; x₃ = α
x = α (-1/4, 1/4, 1)^T

$$E_A(\lambda_2) = Env\{\alpha (-1/4, 1/4, 1)^T \alpha \in R \}$$

Multiplicidad geométrica: $mg(\lambda_3) = 1$

Un autovector asociado a $\lambda_3 = 3$ es, por ej, $\mathbf{v_3} = (-1, 1, 4)^T$

Cálculo de autovalores /autovectores

Ej-8 (hoja 6)

$$(A) = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{pmatrix}$$

Calcula los autovalores de A (3x3) e indica su multiplicidad

 $(A) = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix}$ algebraica. Para calcular los autovectores encuentra el subespacio propio generado por cada autovalor e indica su multiplicidad generado por cada autovalor e indica su multiplicidad geométrica.

Autovalores

$$q_A(\lambda) = \det(A - \lambda I) = 0$$

$$\lambda_1 = 0$$
, $m_a(0) = 1$
 $\lambda_2 = 2$, $m_a(2) = 2$

$$\lambda_2 = 2$$
, $m_a(2) = 2$

MATEMÁTICAS I ÁLGEBRA

Cálculo de autovalores /autovectores

Ej-8 (cont) (hoja 6)

Subespacio propio para λ₁

Para
$$\lambda_1 = 0$$
 $(A - \lambda_1 I)x = 0$

$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{x} = \mathbf{0}$$

$$(A - \lambda_1 I) = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix}$$

SCI
$$\rightarrow$$
 x = $(x_1, x_2, x_3)^{\top} / x_1 = \alpha \quad x_2 = -2\alpha; \quad x_3 = \alpha$
x = $\alpha (1, -2, 1)^{\top}$

$$\mathbf{E}_{\mathbf{A}}(\boldsymbol{\lambda}_1) = \text{Env}\{\alpha (1, -2, 1)^T \alpha \in \mathbf{R} \}$$

Multiplicidad geométrica: $mg(\lambda_1) = 1$

Un autovector asociado a $\lambda_1 = 0$ es, por ej, $\mathbf{v_1} = (1, -2, 1)^T$

MATEMÁTICAS I ÁLGEBRA

Cálculo de autovalores /autovectores

Ej-8 (cont) (hoja 6)

Subespacio propio para λ_2

Para
$$\lambda_1 = 2$$
 $(A - \lambda_2 I)x = 0$

SCI
$$\rightarrow$$
 x = (x₁, x₂, x₃)^T / x₁ = 0 x₂ = α ; x₃ = α
 x = α (0, 1, 1)^T

$$\mathbf{E_A(\lambda_2)} = \operatorname{Env}\{\alpha (0, 1, 1)^T \alpha \in R \}$$

Multiplicidad geométrica: $mg(\lambda_2) = 1$

Un autovector asociado a $\lambda_2 = 0$ es, por ej, $\mathbf{v_2} = (0, 2, 2)^T$

Cálculo de autovalores /autovectores

Ej-8 (cont) (hoja 6)

$$(A) = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 1 \\ 4 & 2 & 0 \end{bmatrix}$$

Valores	M. Algebráica	M. Geométrica
0	1	1
2	2	1