An example of project presentation slides

Aki Vehtari Aalto University

An example of project presentation slides

Aki Vehtari Aalto University

Introduce yourself

- Is there difference in student retention in different years?
- When making changes to the course and assignment it is useful to follow changes in retention
 - although external effects (like pandemic) make it difficult to make precise conclusions

Is there difference in student retention in different years?

Is there difference in student retention in different years?

Student retention

- As we want to compare different years, we use hierarchical models and compare
- 1. Latent hierarchical linear model

```
nstudents | trials (nstudents1) ~ (assignment | year),
family=binomial()
```

2. Latent hierarchical linear model + spline

```
nstudents | trials (nstudents1) ~ (assignment | year) +
s(assignment, k=4), family=binomial()
```

Student retention – Posterior predictive distributions

Latent hierarchical linear model

Latent hierarchical linear model + spline

Student retention – Marginal PPC

Latent hierarchical linear model

Latent hierarchical linear model + spline

Student retention – Posterior predictive ribbon

Latent hierarchical linear model

Latent hierarchical linear model + spline

Student retention – LOO-PIT checking

Latent hierarchical linear – LOO predictive intervals

Student retention - LOO-PIT checking

Latent hierarchical linear + spline - LOO predictive intervals/

Student retention – LOO model comparison

Latent hierarchical linear vs. latent hierarchical linear + spline

- R²: 0.92 vs 0.97 in favor of +spline
- ELPD-difference: 43 (SE 14) in favor of +spline

Student retention latent spline model, year 2023?

• 90% posterior predictive interval for assignment 9 (155, 193)

Student retention latent spline model, year 2023?

- 90% posterior predictive interval for assignment 9 (155, 193)
- Actually observed 179

How does year 2023 compare to others?

How does year 2023 compare to others?

Convergence diagnostics

MCMC sampling performed well based on the usual convergence diagnostics

Conclusions

- Latent hierarchical model with spline can model 98% of the variation submission numbers
- Based on the model checking diagnostics, the model is reasonable
- Year 2023 retention was slightly above average

Extra hints

• Following slides discuss some presentation hints

Bodyfat

Marginal posteriors of coefficients

Bodyfat

Check that the font in all figures is big enough!

Bodyfat

Marginal posteriors of coefficients (Much better!)

Figure font size

For example:

Projective predictive covariate selection

• The full model predictive distribution represents our best knowledge about future \tilde{y}

$$p(\tilde{\mathbf{y}}|D) = \int p(\tilde{\mathbf{y}}|\boldsymbol{\theta})p(\boldsymbol{\theta}|D)d\boldsymbol{\theta},$$

where $\theta = (\beta, \sigma^2)$) and β is in general non-sparse (all $\beta_i \neq 0$)

- What is the best distribution $q_{\perp}(\theta)$ given a constraint that only selected covariates have nonzero coefficient
- Optimization problem:

$$q_{\perp} = \arg\min_{q} \frac{1}{n} \sum_{i=1}^{n} \text{KL} \left(p(\tilde{y}_i \mid D) \parallel \int p(\tilde{y}_i \mid \boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta} \right)$$

 Optimal projection from the full posterior to a sparse posterior (with minimal predictive loss)

For 10min presentation, too much information

• The full model predictive distribution represents our best knowledge about future \tilde{y}

$$p(\tilde{y}|D) = \int p(\tilde{y}|\theta)p(\theta|D)d\theta,$$

where $\theta = (\beta, \sigma^2)$) and β is in general non-sparse (all $\beta_i \neq 0$)

- What is the best distribution $q_{\perp}(\theta)$ given a constraint that only selected covariates have nonzero coefficient
- Optimization problem:

$$q_{\perp} = \arg\min_{q} \frac{1}{n} \sum_{i=1}^{n} \text{KL} \bigg(p(\tilde{y}_i \mid D) \parallel \int p(\tilde{y}_i \mid \boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta} \bigg)$$

 Optimal projection from the full posterior to a sparse posterior (with minimal predictive loss)

THANKS!

Don't ever end with a slide having just "THANKS"

- Don't ever end with a slide having just "THANKS"
- "THANKS" slide has zero information content

- Don't ever end with a slide having just "THANKS"
- "THANKS" slide has zero information content
- Leave the conclusion slide or contact information slide

Conclusions

- Latent hierarchical model with spline can model 98% of the variation submission numbers
- Based on the model checking diagnostics, the model is reasonable
- Year 2023 retention was slightly above average

Additional information

- You can have additional slides after the conclusion for supporting material to answer questions
 - for example, in this course, include Stan code and additional convergence and model checking results

Gaussian linear model with regularized horseshoe prior

```
// generated with brms 2.14.4
functions {
  vector horseshoe(vector z. vector lambda, real tau, real c2) {
    int K = rows(z):
    vector[K] lambda2 = square(lambda);
    vector[K] lambda tilde = sqrt(c2 * lambda2 ./ (c2 + tau^2 * lambda2));
    return z .* lambda tilde * tau:
data {
  int <lower=1> N; // total number of observations
  vector[N] Y; // response variable
  int <lower=1> K: // number of population-level effects
  matrix[N, K] X; // population-level design matrix
  // data for the horseshoe prior
  real <lower=0> hs df: // local degrees of freedom
  real (lower=0) hs_df_global; // global degrees of freedom
  real (lower=0) hs df slab; // slab degrees of freedom
  real (lower=0) hs scale global; // global prior scale
  real (lower=0) hs scale slab: // slab prior scale
  int prior only; // should the likelihood be ignored?
```