Capítulo 13: Sistemas de E/S

Capítulo 13: Sistemas de E/S

- Hardware de E/S
- Interface de E/S da aplicação
- Subsistema de E/S do kernel
- Transformando requisições de E/S em operações de hardware
- Fluxos
- Desempenho

Objetivos

- Explorar a estrutura do subsistema de E/S de um sistema operacional
- Discutir os princípios do hardware de E/S e sua complexidade
- Oferecer detalhes dos aspectos de desempenho do hardware e software de E/S

Hardware de E/S

- Variedade incrível de dispositivos de E/S
- Conceitos comuns
 - Porta
 - Barramento (daisy chain ou acesso direto compartilhado)
 - Controlador (adaptador de host)
- Dispositivo de controle das instruções de E/S
- Dispositivos têm endereços, usados por
 - Instruções de E/S diretas
 - E/S mapeada na memória

Estrutura típica de barramento de PC

Locais de porta de E/S de dispositivo nos PCs

I/O address range (hexadecimal)	device	
000-00F	DMA controller	
020–021	interrupt controller	
040–043	timer	
200–20F	game controller	
2F8-2FF	serial port (secondary)	
320–32F	hard-disk controller	
378–37F	parallel port	
3D0-3DF	graphics controller	
3F0-3F7	diskette-drive controller	
3F8-3FF	serial port (primary)	

Protocolo de interação entre host e controladores

- Estado do dispositivo:
 - pronto
 - ocupado
 - erro
- Ciclo de busy-wait para esperar E/S do dispositivo (se o dispositivo demorar demais para atender requisições, pode haver perda de dados no buffer)

Interrupções

- Linha de requisição de interrupção da CPU disparada por dispositivo de E/S
- Manipulador de interrupção recebe interrupções
- Mascarável para ignorar ou adiar algumas interrupções
- Vetor de interrupção para despachar interrupção ao tratador correto
 - Baseado em prioridade
 - Algumas não-mascaráveis
- Mecanismo de interrupção também usado para exceções

Ciclo de E/S controlado por interrupção

Tabela de vetor de evento do Intel Pentium

vector number	description	
0	divide error	
1	debug exception	
2	null interrupt	
3	breakpoint	
4	INTO-detected overflow	
5	bound range exception	
6	invalid opcode	
7	device not available	
8	double fault	
9	coprocessor segment overrun (reserved)	
10	invalid task state segment	
11	segment not present	
12	stack fault	
13	general protection	
14	page fault	
15	(Intel reserved, do not use)	
16	floating-point error	
17	alignment check	
18	machine check	
19–31	(Intel reserved, do not use)	
32–255	maskable interrupts	

Acesso direto à memória

- Usado para evitar E/S programada para grande movimento de dados
- Requer controlador de DMA (Direct Memory Access)
- Contorna CPU para transferir dados diretamente entre dispositivo de E/S e memória

6 etapas para realizar transferência por DMA

Interface de E/S

- Sistema de E/S chama comportamentos de dispositivo em classes genéricas
- Camada de driver de dispositivo esconde diferenças entre controladores de E/S do kernel
- Dispositivos variam em muitas dimensões
 - Fluxo de caracteres ou bloco
 - Acesso sequencial ou aleatório
 - Compartilhável ou dedicado
 - Velocidade de operação
 - Leitura/escrita, somente de leitura ou somente de escrita

Uma estrutura de E/S do kernel

Características de dispositivos de E/S

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only read–write	CD-ROM graphics controller disk

Dispositivos de bloco e caractere

- Dispositivos de bloco incluem unidades de disco
 - Comandos incluem read, write, seek
 - E/S bruta ou acesso ao sistema de arquivos
 - Possível acesso a arquivo mapeado na memória
- Dispositivos de caractere incluem teclado, mouse, porta serial
 - Comandos incluem get, put

Dispositivos de rede

- Variação suficiente de bloco e caractere para ter interface própria
- Unix e Windows NT/9x/2000 incluem interface de socket
- Técnicas variam bastante (pipes, FIFOs, fluxos, filas, mailboxes)

Relógios e temporizadores

- Oferecem hora atual, tempo transcorrido, temporizador
- Temporizador de intervalo programável usado para temporizações, interrupções periódicas

E/S bloqueante e não bloqueante

- Bloqueante processo suspenso até E/S terminar
 - Fácil de usar e entender
 - Insuficiente para algumas necessidades
- Não bloqueante Chamada de E/S retorna o máximo possível
 - Interface de usuário, cópia de dados (E/S em buffer)
 - Implementado via multithreading
 - Retorna rapidamente com contagem de objetos lidos ou gravados
- Assíncrona processo executa enquanto E/S executa
 - Difícil de usar
 - Subsistema de E/S sinaliza processo quando E/S termina

Dois métodos de E/S

Síncrona

Assíncrona

Subsistema de E/S do kernel

- Escalonamento
 - Alguma ordenação de requisição de E/S via fila por dispositivo
 - Alguns SOs tentam imparcialidade
- Buffering armazena dados na memória enquanto transfere entre dispositivos
 - Para enfrentar divergência de velocidade de dispositivo
 - Para enfrentar divergência de tamanho de transferência do dispositivo

Tabela de status de dispositivo

Taxas de transferência de dispositivo do Sun Enterprise 6000

Subsistema de E/S do kernel

- Caching memória rápida mantendo cópia dos dados
 - Sempre apenas uma cópia
 - Fundamental para o desempenho
- Spooling mantém saída para um dispositivo
 - Se dispositivo pode atender apenas uma requisição por vez
 - Por exemplo, impressão
- Reserva de dispositivo oferece acesso exclusivo a um dispositivo
 - Chamadas do sistema para alocação e desalocação
 - Observa deadlock

Tratamento de erros

- O SO pode se recuperar de falhas na leitura de disco, dispositivo não disponível, falhas de gravação
- A maioria retorna um número ou código de erro quando a requisição de E/S falha
- Logs de erro do sistema mantêm relatórios de problemas

Proteção da E/S

- O processo do usuário pode acidental ou propositalmente tentar atrapalhar a operação do sistema via instruções de E/S ilegais
 - Todas as instruções de E/S definidas como privilegiadas
 - E/S precisa ser realizada via chamadas do sistema
 - Locais de memória mapeada e de porta de E/S também precisam ser protegidos

Uso de uma chamada do sistema para realizar E/S

Estruturas de dados do kernel

O kernel mantém informações de estado para componentes de E/S, incluindo tabelas de arquivos abertos, conexões de rede, estado de dispositivo de caractere

Estrutura de E/S do kernel no UNIX

Requisições de E/S para operações de hardware

- Considere a leitura de um arquivo do disco para um processo:
 - Determinar dispositivo mantendo arquivo
 - Traduzir nome para representação de dispositivo
 - Ler dados fisicamente do disco para o buffer
 - Tornar dados disponíveis ao processo solicitante
 - Retornar controle ao processo

STREAMS

- STREAM um canal de comunicação full-duplex entre um processo em nível do usuário e um dispositivo no Unix System V em diante
- Um STREAM consiste em:
 - Interfaces de cabeça STREAM com o dispositivo
 - zero ou mais módulos STREAM entre elas.
- Cada módulo contém uma fila de leitura e uma fila de gravação
- Passagem de mensagens é usada para comunicar entre as filas

A estrutura STREAMS

Desempenho

- E/S como fator principal no desempenho do sistema:
 - Demanda CPU para executar o driver de dispositivo, código de E/S do kernel
 - Trocas de contexto devido às interrupções
 - Cópia de dados
 - Tráfego de rede especialmente estressante

Melhorando o desempenho

- Reduzir o número de trocas de contexto
- Reduzir a cópia de dados
- Reduzir interrupções usando grandes transferências, controladores inteligentes, polling
- Usar DMA
- Balancear CPU, memória, barramento e desempenho de E/S para um throughput mais alto

Progressão da funcionalidade do dispositivo

Final do Capítulo 13

