# Switching Constrained Max-Weight Scheduling for Wireless Networks

## Soumya Basu, and Sanjay Shakkottai

The University of Texas at Austin

The University of Texas at Austin
Electrical and Computer Engineering
Cockrell School of Engineering

#### **Dense Cellular Networks**

- Dense deployment of base stations (BS) to support peak data traffic
- Dynamic activation and de-activation of BS to optimize energy usage
- Fast activation dynamics is necessary to maintain data rate
- Fast activation dynamics leads to large switching overhead,
  e.g. hand-offs, state exchange among BSs, and BS start-up costs



## **System Model**

- Downlink time-slotted system consists of N BSs and M users
- Queue  $Q_{nm}(t)$  correspond to the queue for (n,m) BS-user pair
- An i.i.d. joint arrival A(t) (N×M) is realized:  $A_{nm}(t)$  packets for  $Q_{nm}$
- An i.i.d. joint channel H(t) (N $\times$ M) is realized: state h with prob.  $\mu_h$
- Two stages of decisions Activation, and Scheduling from active BSs
- Step 1: Activate a subset of BSs, J(t), in timeslot t
- Step 2: Observe channel from active BSs: row n of H(t) iff BS n is ON
- Step 3: Schedule an 'active BS'-user matching S(t) from S(J(t), H(t))
- Cost of operation + switching:  $C(t) = |J(t)| + |J(t-1)\Delta J(t)|$
- Departure D(t):  $D_{nm}(t) = H_{nm}(t)$  if (BS n is ON & serves User m), o/w 0

Queue Update:  $Q_{nm}(t+1) = \left(Q_{nm}(t) + A_{nm}(t) - D_{nm}(t)\right)^{+}$ 

#### **BS Activation and Scheduling**

- Two key decisions: BS activation and Channel Scheduling
- BS activation is further split into two decisions
  - When to switch? Switch at a very slow rate(Constrained Switching)
  - What to switch to? Expected Max-weight with activation penalty
- Channel state is unknown before BS activation
  - Exploration-exploitation tradeoff in learning channel states
- Channel Scheduling: Exact max-weight with known channel state

#### Need for a New Approach

- Greedy Optimization Techniques (Primal-Dual, Drift+Penalty)
  - Frequent BS state change as switching cost is not optimized
- Reinforcement learning with bounded queue length
  - Prohibitive computation for large queue lengths
  - Complex packet drop vs optimality tradeoffs
- Sticky BS selection using static-split rule + MW scheduling
  - Large delay as BS selection is non-adaptive to queue lengths

## Learning Aided Switching and Scheduling (LASS)

- Parameters: Switching rate,  $\epsilon_s$  and Penalty scale, V
- Independent R.V.s: Switch:  $E_s(t) \sim Ber(\epsilon_s)$ , Explore:  $E_{ex}(t) \sim Ber(log(t)/t)$



### **Dynamic Switching**

- Uses two variables Switch Counter: T(t) and Switch Queue :  $Q_{sw}(t)$
- Switch counter keeps count of the time since  $J^*(t)$  is scheduled
- **Switch queue** counts the number of switching events that exceeds rate  $\epsilon_s$

Switch queue: 
$$Q_{sw}(t+1) = (Q_{sw}(t) - E_s(t) + 1\{Q_{sw}(t) \le T(t)\})^+$$

*Switch counter*: 
$$T(t + 1) = 1\{J(t) = J^*(t)\}(1 + T(t))$$

#### **Performance Guarantees**

- Assumptions on system parameters
  - Capacity gap  $\epsilon_g>0$ , and bounded arrivals and departures
  - Optimal cost of the system  $C_{avg}^*$  with no switching constraints
- Algorithm parameters: Switching rate,  $\epsilon_s$  and Penalty scale, V
- Performance metrics of interest:
  - Time average of queue lengths:  $Q_{avg}$  and costs:  $C_{avg}$
  - Tail bounds for queue lengths:  $\mathbb{P}(|Q(t)| \geq x)$
- For LASS with Static switching and LASS with Dynamic switching

• 
$$Q_{avg} \le O\left(\frac{C_{avg}^*}{\epsilon_g} + V + \frac{NM}{\epsilon_g \epsilon_s}\right)$$
 and  $C_{avg} \le C_{avg}^* + O\left(\epsilon_s + \frac{NM}{V \epsilon_s}\right)$ 

• For LASS Static: 
$$\mathbb{P}(|Q(t)| \ge x) \le \exp(-\Theta(\epsilon_s \epsilon_g) x) + O(\frac{\log(t)}{t})$$

• For LASS Dynamic: 
$$\mathbb{P}(|Q(t)| \ge x) \le \exp(-\Theta(\epsilon_g)x) + O(\frac{\log(t)}{t})$$

#### **Simulation Results**

- Four algorithms are simulated for 8 Users and 3 BSs until convergence:
  - DP: Greedy Drift + Penalty
  - LSG: LASS Static with geometric interarrival between  $E_s(t)$
  - LSF: LASS Static with fixed inter arrival between  $E_s(t)$
  - LD: LASS with Dynamic switching
- First plot:  $Q_{avg}$  of DP < LD < LSF < LSG (V = 100, load = 0.9)
- Second plot:  $C_{avg}$  of DP > LD  $\approx$  LSF  $\approx$  LSG (V = 100,  $\epsilon_S$  = 0.1)
- Third and Fourth plot: Separation of queue length tail distribution
  - **DP < LD < LSF << LSG** (V = 100, load = 0.9)
  - Differences are more pronounced for smaller  $\epsilon_s$

