

Introduction to Distributed HTC and overlay systems

Tuesday morning session

Igor Sfiligoi <isfiligoi@ucsd.edu>
University of California San Diego

Logistical reminder

- It is OK to ask questions
 - During the lecture
 - During the demos
 - During the exercises
 - During the breaks
- If I don't know the answer,
 I will find someone who likely does

High Throughput Computing

- Yesterday you were introduced to HTC
 - Often called batch system computing
 - A paradigm that emphasizes maximizing the amount of useful computing

 Over

long periods of time

Local HTC

- What you have really experienced so far is local HTC
- i.e. computing on dedicated cluster of dedicated resources
 - Managed by a single admin group
 - Co-located in a single location

Is there anything else?

- As you might expect, there are several insulated "local HTC" clusters installed around the world
- And there are non-HTC systems out there, too

Is there anything else?

- As you might expect, there are several insulated "local HTC" clusters installed around the world
- And there are non-HTC systems out there, too

Just local HTC

- You moved from a single PC
 - O(1) cores
- To a local HTC cluster
 - Say, O(100) cores daily avg

Just local HTC

- You moved from a single PC
 - O(1) cores
- To a local HTC cluster
 - Say, O(100) cores daily avg
- But is it fast enough?

It will still take me over a month to get the results back!

The result of the 10 body simulation is very promising!

I want to run a 100 body one!

- If you find out that you are resource constrained
 - What do you do?

- If you find out that you are resource constrained
 - What do you do?
- Beg for a larger share of the local pool
 - i.e. better priority compared to the other users of the same pool

- If you find out that you are resource constrained
 - What do you do?
- Beg for a larger share of the local pool
- Pay to get more resources bought into the pool
 - Great for long term needs
 - If you can afford it
 - But will not help you in the short term

installed can take months!

- If you find out that you are resource constrained
 - What do you do?
- Beg for a larger share of the local pool
- Pay to get more resources bought
- Get the needed resources somewhere else
 - i.e. not locally

- If you find out that you are resource constrained
 - What do you do?
- Beg for a larger share of the local pool
- Pay to get more resources bought
- Get the needed resources somewhere else
 - i.e. not locally

This is what this lecture is all about!

Distributed HTC

 A computing paradigm that aims at maximizing useful computation using any available resource located anywhere on the planet

As a corollary

 Compute resources are owned and operated by several independent groups

This place is huge!

Implications of distributed computing

- We will be dealing with multiple independent compute systems
 - That do not know about each other

They are owned by several independent groups, remember?

Implications of distributed computing

- We will be dealing with multiple independent compute systems
 - That do not know about each other
- No global HTC scheduler

Implications of distributed computing

- We will be dealing with multiple independent compute systems
 - That do not know about each other
- No global HTC scheduler out of the box
 - Will have to stitch them all together

The naïve way

 The simplest way is to partition your jobs and submit a subset to each cluster

The naïve way

- The simplest way is to partition your jobs and submit a subset to each cluster
- The drawbacks
 - You may need multiple user accounts
 - You may need several different tools
 - Doing a good partitioning is hard
 - Want proportional to the resources you will get
 - And what if those CPUs are not in a HTC setup at all?

The naïve way

 The simplest way is to partition your jobs and submit a subset to each cluster

Use an overlay system

- Use a systems that looks and feels like a regular HTC to users
 - But has compute nodes all over the world

Use an overlay system

- Use a systems that looks and feels like a regular HTC to users
 - But has compute nodes all over the world

But...
didn't you just say
there was no such thing???

Use an overlay system

- Use a systems that looks and feels like a regular HTC to users
 - But has compute nodes all over the world

I said
"out of the box"
But one can
create one.

But...
n't you just say
there was
no such thing???

 No single person cannot manage all the existing resources

- But we can lease a subset of them
 - We discuss the how later

- But we can lease a subset of them
- And instantiate a HTC system on them

- But we can lease a subset of them
- And instantiate a HTC system on them
 - Now we can schedule user jobs on them

- Only "our" resources are considered

DHTC through an overlay sys

 Just another HTC system Well, almost Cool! More details in a few slides Jobs Scheduler

Overlay system ownership

- Setting up an overlay a major task
 - Comparable with installing a dedicated cluster
- Long term maintenance is also costly

Not something a final user would want to do

Typical overlay sys operators

- Existing HTC admins, e.g.
 - The UW HTC cluster can "overflow" into OSG
 - The UCSD operates one for local users
- Scientific communities, e.g.
 - The CMS LHC experiment
- The Open Science Grid itself
 - With the OSG Connect -

More on this later today

Is DHTC really just HTC?

 Even with overlays, there are some differences between DHTC and HTC

- With or without overlays, the core reasons are:
 - Multiple independent HW operators
 - Not all resources are co-located

The multiple owners problem

- In the "Grid" world, the resource owner decides which Operating System, which OS services and which libraries to install
 - A way smaller problem in the "Cloud" world
 - But most of the current DHTC landscape is based on the Grid paradigm
- Different clusters likely configured differently

The multiple owners problem

- In the "Grid" world, the resource owner decides which Operating System, which OS services and which libraries to install
 - A way smaller problem in the "Cloud" world
 - But most of the current DHTC landscape is based on the Grid paradigm
- Different clusters likely configured differently
- Even if you could get your pet library/service installed on some clusters, you cannot expect to get it installed everywhere

- DHTC systems are way more heterogeneous than "local HTC" ones
- Two ways to approach this:
 - Minimize external dependencies in your compute jobs
 - Make them self-contained
 - Adapt to the running environment (e.g. multiple binaries, one per platform)
 - Do not use licensed software

- DHTC systems are way more heterogeneous than "local HTC" ones
- Two ways to approach this:
 - Minimize external dependencies in your compute jobs Sounds like
 - Make them self-contained
 - Adapt to the running environment
 (e.g. multiple binaries, one per platform)
 - Do not use licensed software

a lot of work!

- DHTC systems are way more heterogeneous than "local HTC" ones
- Two ways to approach this:
 - Minimize external dependencies
 - Use only a subset of the resources
 - Restrict where your jobs can run
 - Your job will of course take longer to finish
 - May still get you the result sooner

- DHTC systems are way more heterogeneous than "local HTC" ones
- Two ways to approach this:
 - Minimize external dependencies
 - Use only a subset of the resources
 - Restrict where your jobs can run
 - Your job will of course
 - May still get you the

- DHTC systems are way more heterogeneous than "local HTC" ones
- Two ways to approach this:
 - Minimize external dependencies
 - Use only a subset of the resources

Restriunately,
 Can run

those are the only two long for alternatives.

No shared file system

- As a side effect, you cannot expect a globally shared file system
 - It's just "yet another user requested service"
- You will have to deal with data explicitly
 - Either using the HTC scheduler capabilities (remember yesterday's lecture)
 - Or, embed file transfer to and from permanent storage into your own jobs
- More details tomorrow

The location problem

- Nodes in different locations need a way to talk to each other
 - This is what networks are for
- If your computation is mostly about CPU cycles, with little input and output data
 - Node location is not an issue at all
- If you have lots of data
 - Remember, throughput is typically inversely proportional with the distance

The data problem

- Transferring large amounts of data over Wide Area Network can take a lot of time
- You should try to compute close to the data source and/or sink
 - Network-wise
 - More about this tomorrow

Bottom line

- For simple computation,
 DHTC is very similar to HTC
- As soon as you require any complex setup for your jobs, you are in for a rough ride
 - This includes large datasets

Infrastructure considerations

- DHTC is likely to give you access to many more compute slots
- Which is mostly a good thing
 - You get your results faster
- But could crash your HTC system, e.g.
 - Can your storage system handle more data traffic?
 - Can the job scheduling system handle an order of magnitude more nodes?

Infrastructure considerations

- DHTC is likely to give you access to many more compute slots
- Which is mostly a good thing
 - You get your results faster
- But could crash vour HTC system, e.g.
 - Hopefully not something final users should deal with but it is good to keep in mind.

system handle ander of magnitude more nodes?

Questions?

- Questions? Comments?
 - Feel free to ask me questions later:
 Igor Sfiligoi <isfiligoi@ucsd.edu>
- Upcoming sessions
 - Where to get the needed resources
 - glideinWMS the OSG overlay software
 - Hands-on exercises
 - Tour

Beware the power

Courtesy of fanpop.com

Copyright statement

- Some images contained in this presentation are the copyrighted property of ToonClipart.
- As such, these images are being used under a license from said entities, and may not be copied or downloaded without explicit permission from ToonClipart.