HW10

Problem 1.

a)

This part has been done on Rstudio.

\{\text{r}\} y <- c(1, 0, 0, 1, x1 <- c(-3, -2, -1 x2 <- c(5, 0, -3, x3 <- c(-1, 1, 1, df <- data.frame(y df)	, 0, 1, 2, 3 -4, -3, 0, 5 0, -1, -1, 1)	
y <dbl></dbl>	x1 <dbl></dbl>	x2 <dbl></dbl>	x3 <dbl></dbl>
1	-3	5	-1
0	-2	0	1
0	-1	-3	1
1	0	-4	0
2	1	-3	-1
3	2	0	-1
3	3	5	1
7 rows			

Results:

call:

 $lm(formula = y \sim x1 + x2 + x3, data = df)$

Residuals:

Coefficients:

Residual standard error: 0.08909 on 3 degrees of freedom Multiple R-squared: 0.9975, Adjusted R-squared: 0.9951 F-statistic: 407 on 3 and 3 DF, p-value: 0.0002058

We get the following equation:

$$\hat{y} = 1.42857 + 0.5 * x_1 + 0.11905 * x_2 - 0.5 * x_3 + \varepsilon$$

And the following $\hat{\beta}$:

$$\hat{\beta} = \begin{bmatrix} 1.42857 \\ 0.5 \\ 0.11905 \\ -0.5 \end{bmatrix}$$

b)

$$\hat{y} = 1.42857 + 0.5 * 1 + 0.11905 * (-3) - 0.5 * (-1)$$
$$\hat{y} = 2.07142$$

The output is 2.07142, while the original y for those x_1 , x_2 , x_3 values was 2.

This mismatch is due to the ε , it is a random error, as the equation is an approximation to the true data.

c)
$$PI_{\alpha} = a^{T} \hat{\beta} \pm t_{\frac{\alpha}{2}, n-k-1} * \hat{\sigma} \sqrt{1 + a^{T} (X^{T} X)^{-1} a}$$

$$X = \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}$$

$$a = \begin{bmatrix} 1 \\ 1 \\ -3 \\ -1 \end{bmatrix}$$

$$SSE = Y^{T} Y - (X \hat{\beta})^{T} Y = 0.0238$$

$$\hat{\sigma}^{2} = \frac{SSE}{n-k-1} = \frac{0.0238}{7-3-1} = 0.007933333$$

$$\hat{\sigma} = \sqrt{\hat{\sigma}^{2}} = \sqrt{0.007933333} = 0.08906926$$

$$t_{\frac{\alpha}{2}, n-k-1} = t_{\frac{0.05}{2}, 7-3-1} = t_{0.025, 3} = 3.182$$

$$a^{T} \hat{\beta} \pm t_{\frac{\alpha}{2}, n-k-1} * \hat{\sigma} \sqrt{1 + a^{T} (X^{T} X)^{-1} a} =$$

$$= \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}^{T} \begin{bmatrix} 1.42857 \\ 0.5 \\ 0.11905 \\ -0.5 \end{bmatrix} \pm 3.182 * 0.08906926$$

$$1 + \begin{bmatrix} 1 \\ 1 \\ -3 \\ -1 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ -3 \\ -1 \end{bmatrix} =$$

 $= 2.07142 \pm 0.341561 = (1.729859, 2.412981)$

 $PI_{0.05} = (1.729859, 2.412981)$

Problem 2.

1)

For example, US crude imports from Norway in number of barrels and the number of drivers killed in collision with trains:

US crude oil imports from Norway correlates with

Drivers killed in collision with railway train

r=0.954509

2)

Another one can be the number of Films Nicolas Cage appeared in and the number of people who drowned by falling into a pool:

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

r=0.666004

3)

Math doctorates awarded and the amount of Uranium stored in the US nuclear power plants:

Math doctorates awarded correlates with

Uranium stored at US nuclear power plants

r=0.952257

Source: http://www.tylervigen.com/spurious-correlations