Universidade Federal de Viçosa Instituto de Ciências Exatas e Tecnólógicas CAMPUS UFV - FLORESTAL

Lista de Álgebra Linear A - Lista 1

Prof. Fernando Bastos

Exercícios

1. Sejam $A, B \in \mathbb{M}_{m \times n}(\mathbb{K})$. Mostre que:

a)
$$(A + B)^t = A^t + B^t$$

b)
$$(AB^t)^t = BA^t$$

c) Se
$$n = m$$
, então $(AB)^t = B^t A^t$

2. Sejam $A, B \in \mathbb{M}_n(\mathbb{K})$ e $\lambda \in \mathbb{R}$. Mostre que:

a)
$$det(AB) = detA.detB$$

b)
$$det A = det A^t$$

c)
$$det(\lambda A) = \lambda^n det A$$

3. Sejam $A, B \in \mathbb{M}_n(\mathbb{K})$ matrizes invertíveis. Mostre que:

a)
$$det(A^{-1}) = (det A)^{-1}$$

b)
$$A^{-1}$$
 é invertível e $(A^{-1})^{-1} = A$

c)
$$AB$$
 é invertível e $(AB)^{-1} = B^{-1}A^{-1}$

4. Considere as matrizes A, B, C, D e E com respectivas ordens, 4×3 , 4×5 , 3×5 , 2×5 e 3×5 . Determine quais das seguintes expressões matriciais são possíveis e determine a respectiva ordem.

(a)
$$AE + B^T$$
;

(b)
$$C(D^T + B)$$
;

$$(c) AC + B;$$

$$(d) E^T(CB).$$

5. Determine as ordens das matrizes A, B, C, D e E, sabendo que:

$$AB^T$$
 tem ordem 5×3 ; $(C^T + D)B$ tem ordem 4×6 e

$$AB^T$$
 tem ordem 5×3 ; $(C^T + D)B$ tem ordem 4×6 e E^TC tem ordem 5×4 .

- 6. Seja a matriz $A = \begin{bmatrix} 1 & -3 & 7 & 8 & 2 \\ -4 & 0 & 11 & 3 & -6 \\ 2 & -1 & 5 & 1 & 3 \\ 3 & 1 & -4 & 0 & 7 \end{bmatrix}$, determine :
 - (a) A ordem de A;
 - (b) Os elementos a_{23} , a_{35} e a_{43} .
- 7. Sejam as matrizes A, B, C, D e E que verificam ABCDE = EDCBA, sabendo que C é uma matriz de ordem 3×2 , quais são as ordens das outras quatro matrizes?
- 8. Sejam as matrizes $A = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & -3 \\ 1 & 2 & -1 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 & 3 & 2 \\ -2 & 1 & 4 \\ -1 & 2 & 1 \\ 4 & 3 & 1 \end{bmatrix}, C = A \cdot B \in D = B \cdot A.$ Determine os elementos c_{32} e d_{43} .

9. Determine a matriz quadrada, $A = (a_{ij})$, de ordem 4 cujos elementos são dados por:

$$a_{ij} = \begin{cases} 2i - 3j, & \text{se } i < j \\ i^2 + 2j, & \text{se } i = j \\ -3i + 4j, & \text{se } i > j \end{cases}$$

- 10. Seja a matriz $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$, determine:
- (c) A^{31} :
- $(d) A^{42}$.
- 11. Determine números reais $x \in y$ tais que

$$\left[\begin{array}{cc} x^3 & y^2 \\ y^2 & x^2 \end{array}\right] + \left[\begin{array}{cc} -x & 3y \\ 4y & 2x \end{array}\right] = \left[\begin{array}{cc} 0 & 4 \\ 5 & -1 \end{array}\right].$$

12. Determine, em cada um dos casos abaixo, $x, y \in z$ números reais tais que a matriz A seja simétrica.

$$(a) \ A = \left[\begin{array}{ccc} -2 & x \\ 4 & 1 \end{array} \right], \qquad (b) \ A = \left[\begin{array}{ccc} 8 & x+3 & -10 \\ 15 & -5 & -8 \\ y-2 & 2z & 9 \end{array} \right], \qquad (c) \ A = \left[\begin{array}{cccc} 8 & x^2+3 & -5 \\ 7 & -9 & 4 \\ y+x & z+3x & 11 \end{array} \right].$$

13. Considere as matrizes:

$$A = \left[\begin{array}{cc} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{array} \right], B = \left[\begin{array}{cc} 4 & -1 \\ 0 & 2 \end{array} \right], C = \left[\begin{array}{cc} 1 & 4 & 2 \\ 3 & 1 & 5 \end{array} \right], D = \left[\begin{array}{cc} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{array} \right], E = \left[\begin{array}{cc} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{array} \right].$$

Quando possível, calcule o que se pede.

- (a) 4E 2D; (b) $2A^T + C$; (c) $(2E^T 3D^T)^T$; (d) $(BA^T 2C)^T$;
- (e) $(-AC)^T + 5D^T$; (f) $B^T (CC^T A^T A)$; (g) $D^T E^T (ED)^T$.
- 14. Diz-se que uma matriz B é uma raiz quadrada de (uma matriz) A se $B^2=A$.
 - (a) Encontre duas raízes quadradas de $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$.
 - (b) Existem quantas raízes quadradas distintas de $A = \begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}$? Justifique.
 - (c) Na sua opinião qualquer matriz 2 × 2 tem pelo menos uma raiz quadrada? Explique seu raciocínio.
- 15. Sejam A e B matrizes em $M_n(\mathbb{R})$, se AB = BA, mostre que:
 - (a) $(A \pm B)^2 = A^2 \pm 2AB + B^2$,
- (b) $(A B)(A + B) = A^2 B^2$,
- (c) $(A B)(A^2 + AB + B^2) = A^3 B^3$.
- 16. Seja A matriz em $M_n(\mathbb{R})$, mostre que:
 - (a) As matrizes $A\cdot A^T$ e $\frac{1}{2}(A+A^T)^2$ são simétricas,
 - (b) A matriz $\frac{1}{2}(A-A^T)^2$ é anti-simétrica,
 - (c) Toda matriz quadrada é a soma de uma matriz simétrica com uma matriz anti-simétrica.
- 17. Dizemos que uma matriz quadrada A é ortogonal se, e somente se, $A \cdot A^T = I$. Determine:
 - (a) Os possíveis valores para o determinante de uma matriz ortogonal.
 - (b) Quantas matrizes reais de ordem 2 são simultaneamente anti-simétricas e ortogonais.
- 18. Determine o número real m de modo que a matriz $M=\begin{bmatrix} -1 & 0 \\ 0 & m \end{bmatrix}$ seja ortogonal.

19. Verifique quais das matrizes abaixo é ortogonal.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} \frac{1}{3} & \frac{2\sqrt{2}}{3} \\ \frac{2\sqrt{2}}{3} & -\frac{1}{3} \end{bmatrix}, \qquad D = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

- 20. Dado α número real considere a matriz $T_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$.
 - (a) Dados α e β em \mathbb{R} , mostre que $T_{\alpha} \cdot T_{\beta} = T_{\alpha+\beta}$.
 - (b) Calcule $T_{-\alpha}$.
 - (c) Mostre que para todo número α a matriz T_{α} é ortogonal.
- 21. Seja $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$, uma matriz quadrada de ordem n. O traço de A, denotado por tr(A),

$$tr(A) = \sum_{k=1}^{n} a_{kk} = a_{11} + a_{22} + \dots + a_{nn},$$

ou seja, o traço de A é a soma dos elementos da diagonal principal de A.

Dadas A e B matrizes quadradas de ordem n, valem as seguintes propriedades:

(a)
$$tr(A + B) = tr(A) + tr(B)$$
;

(b)
$$tr(kA) = k tr(A)$$
, onde $k \in \mathbb{R}$;

(c)
$$tr(A^T) = tr(A);$$

$$(d) tr (AB) = tr (BA).$$

Usando algumas destas propriedades verifique que não existem A e B matrizes quadradas de ordem n tais que AB - BA = I.

- 22. Verifique que se A é uma matriz $m \times n$, então os traços de AA^T e A^TA estão definidos. Em seguida, prove que tr $(AA^T) = tr$ (A^TA) .
- 23. Mostre que se $A^T A = A$, então A é simétrica e $A = A^2$.
- 24. Suponha que A é uma matriz quadrada e que D é uma matriz diagonal tal que AD = I. O que se pode afirmar sobre a matriz A? Explique seu raciocínio.
- 25. Considere a matriz $A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$, onde $a_{11}a_{22}...a_{nn} \neq 0$. Determine A^{-1} , a inversa de A, se existir.
- 26. Prove que se A é inversível e AB = AC, então B = C.
- 27. É possível ter AB = I e B não ser a inversa de A? Justifique sua resposta!
- 28. Seja A uma matriz quadrada de ordem n, mostre que:
 - (a) Se A satisfaz a igualdade $A^2 3A + I = 0$, então $A^{-1} = 3I A$.
 - (b) Se A é tal que $A^{n+1} = 0$, então $(I A)^{-1} = I + A + A^2 + ... + A^n$.
- 29. Decida se a afirmação dada é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.

- (a) () Se a primeira coluna de A for constituída somente de zeros, o mesmo ocorre com a primeira coluna de qualquer produto AB.
- (b) () Se a primeira linha de A for constituída somente de zeros, o mesmo ocorre com a primeira linha de qualquer produto AB.
- (c) () Se a soma de matrizes AB + BA estiver definida, então A e B devem ser matrizes quadradas.
- (d) () Se A é uma matriz quadrada com duas linhas idênticas, então A^2 tem duas linhas idênticas.
- (e) () Se A é uma matriz quadrada e A^2 tem uma coluna constituída somente de zeros, então necessariamente A tem uma coluna constituída somente de zeros.
- (f) () Se AA^T é uma matriz singular, então A não é invertível.
- (g) () Se A é invertível e AB=0, então necessariamente B é a matriz nula.
- (h) () A soma de duas matrizes inversíveis é sempre uma matriz invertível (não singular).
- (i) () Se A é uma matriz quadrada tal que $A^4=0$, então

$$(I - A)^{-1} = I + A + A^2 + A^3.$$

- 30. Seja A uma matriz quadrada de ordem 5, cujo determinante é igual a -3, pede-se:
 - (a) O determinante da matriz P dada por $P = 4A^{-1}A^{T}$.
 - (b) Dedicir se P é ou não inversível.
 - (c) O determinante da matriz B obtida de A após serem realizadas as seguintes operações: $L_3 \leftrightarrow L_2$; $L_1 \to L_1 + 2L_5$; $L_4 \to -3L_4$.
 - (d) Dedicir se a matriz $Q = AA^T$ é ou não inversível.
- 31. Calcule o determinante da matriz $A = \begin{bmatrix} 4 & -5 & 3 & 2 \\ -1 & 0 & 3 & 0 \\ 1 & 2 & -1 & 3 \\ 2 & 1 & 0 & 4 \end{bmatrix}$;
 - (a) Desenvolvendo-o pela segunda linha (usando cofatores)
 - (b) Pelo processo de triangulação (usando operações elementares sobre as linhas da matriz.
- 32. Dadas as matrizes $A = \begin{bmatrix} 1 & -5 & -1 & 2 \\ 0 & 2 & -3 & 4 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$ e $B = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 3 & -4 & 0 & 0 \\ 2 & 2 & -1 & 0 \\ 2 & 1 & 1 & -2 \end{bmatrix}$, determine:
 - (a) $\det(AB)$; (b) A^{-1} ; (c) B^{-1} ; (d) $(AB)^{-1}$; (e) $\det C$, one
- 33. Seja Q uma matriz quadrada de ordem n tal que det $Q \neq 0$ e $Q^3 + 2Q^2 = 0$, determine o valor de det Q.
- 34. Dada a matriz $A = \begin{bmatrix} 1 & 5 & -1 & 3 \\ -1 & 2 & -2 & 4 \\ 6 & 7 & 3 & -1 \\ 5 & 3 & 0 & 4 \end{bmatrix}$, determine:
 - (a) det A utilizando as operações elementares sobre as linhas de A;
 - (b) $\det A^T$; (c) $\det A^2$; (d) A^{-1} ; (e) $\det -A$; (f) $3AA^T$.
- 35. Seja a matriz $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Determine o polinômio $p(x) = \det(xI_3 A)$, onde I_3 é a matriz identidade de ordem 3 e $x \in \mathbb{R}$.
 - (b) Verifique que p(A) = 0, onde 0 é a matriz nula 3×3 .

- (c) Use o item (b) para calcular a inversa de A.
- 36. Calcule os seguintes determinantes:

 $37.\ {\rm Resolva}$ as seguintes equações:

$$(a) \left| \begin{array}{ccc|c} x & 5 & 7 \\ 0 & x+1 & 6 \\ 0 & 0 & 2x-1 \end{array} \right| = 0; \ (b) \left| \begin{array}{ccc|c} 2 & x-2 & 3 \\ 2x+3 & x-1 & 4 \\ 5 & 1 & 0 \end{array} \right| = 16; \ (c) \left| \begin{array}{ccc|c} x & -1 \\ 3 & 1-x \end{array} \right| = \left| \begin{array}{ccc|c} 1 & 0 & -3 \\ 2 & x & -6 \\ 1 & 3 & x-5 \end{array} \right|.$$

38. Calcule o determinante da matriz

$$A = \begin{bmatrix} 0 & 0 & 0 & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$$

Generalize o resultado para uma matriz $A = (a_{ij})_{n \times n}$ na qual $a_{ij} = 0$ sempre que $i + j \le n$.

- 39. Diz-se que uma matriz A é semelhante à matriz B quando existe uma matriz invertível P tal que $B = PAP^{-1}$.
 - (a) Mostre que se A é uma matriz semelhante a B então B é semelhante a A.
 - (b) Mostre que se A é semelhante a B e B é semelhante a C então A é semelhante a C.
 - (c) Prove que matrizes semelhantes têm o mesmo determinante.
- 40. Nos casos abaixo, pede-se: verificar se A é inversível; cof A, a matriz co-fatora de A, e A^{-1} , a matriz inversa de A, se esta existir.

(a)
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 7 & -1 \\ -3 & 1 & 4 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$;

$$(c) \ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 0 \\ -1 & 2 & 0 & 0 \end{bmatrix}; \qquad (d) \ A = \begin{bmatrix} 3 & 5 & 6 & 0 \\ 2 & -1 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ 5 & 2 & -4 & 3 \end{bmatrix}.$$

41. Sem calcular diretamente, verifique que

$$\left| \begin{array}{ccc} b+c & a+c & a+b \\ a & b & c \\ 1 & 1 & 1 \end{array} \right| = 0.$$

42. Nos casos abaixo, determine A^{-1} , utilizando operações elementares, se esta existir.

(a)
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 2 \\ 2 & 5 & 3 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 3 & -1 \\ 2 & 4 \end{bmatrix}$;

$$(c) \ A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}; \qquad (d) \ A = \begin{bmatrix} -3 & -6 & -12 \\ 0 & 3 & -3 \\ -6 & -9 & 24 \end{bmatrix}.$$

43. Calcule o determinante da matriz abaixo e determine sua inversa, se esta existir;

$$B = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}.$$

- 44. Decida se a afirmação dada é (sempre) verdadeira ou (às vezes) falsa. Justifique sua resposta dando um argumento lógico matemático ou um contra-exemplo.
 - (a) () $\det(2A) = 2 \det A$.
 - (b) () $\det(I + A) = 1 + \det A$.
 - (c) () Não existe matriz (real) quadrada A para a qual det $(AA^T) = -1$.
 - (d) () Se $\det(A^t A) = 4$, então $\det A = 2$.
 - (e) () $\det(A + B) = \det A + \det B$.
 - (f) () Se $\det A \neq 0$ e AB = 0, então B é inversível.
 - (g) () Se $A \in M_{n \times n}(\mathbb{R})$ e n é par, então $\det A = \det(-A)$.
 - (h) () Se A^{100} é inversível, então 3A também o é.
 - (i) () Se AB = 0 e B é inversível, então A = 0.
- 45. A tiragem diária na cidade de Mimosa dos jornais: **Dia a Dia, Nossa Hora, Acontece e Urgente**, durante o ano de 2002 está representada na seguinte tabela:

	Dia a Dia	Nossa Hora	Acontece	Urgente
Dias úteis	400	600	450	650
Feriados	350	550	500	600
Sábados	350	600	500	650
Domingos	450	500	400	700

Determine:

- (a) A tiragem de cada jornal em Mimosa em 2002, sabendo-se que 2002 tivemos 52 sábados, 52 domingos, 12 feriados e 249 dias úteis.
- (b) A estimativa da tiragem total de cada jornal em Mimosa para o ano de 2005, sabendo-se que a previsão é que até o final deste ano (2005) a tiragem tenha um aumento de 60% em relação à 2002.
- 46. Uma construtora está fazendo o orçamento de 47 estabelecimentos rurais sendo estes divididos em: 20 de alvenaria, 30 mistos e 15 de madeira. A tabela abaixo descreve a quantidade de material utilizado em cada tipo de construção.

Tipo de Cons-	Tábuas	Tijolos	Telhas	Tinta	Mão-de-obra
$\underline{\text{trução}/\text{Material}}$	(unidade)	(mil)	(mil)	(litros)	(dias)
Alvenaria	50	15	6	70	25
Madeira	500	1	5	20	30
Misto	200	68	7	50	40

Pede-se:

- (a) Determinar, utilizando produto de matrizes, a matriz A que descreve quantas unidades de cada componente serão necessárias para cumprir o orçamento.
- (b) Dar o significado do produto de matrizes AB, onde A é a matriz obtida no item (a) e B é a matriz obtida pela tabela abaixo.

	Valor da Compra	Transporte
	(a unidade em reais)	(a unidade em reais)
Tábuas	12	0,08
Tijolos	100	20
Telhas	300	10
Tinta	3	0,50
Mão-de-obra	40	1,50

47. Considere os adubos I, II, III e IV com características e preços descritos nas tabelas abaixo:

Substância	Fósforo	Nitrato	Potássio
por kg			
Adubo I	25g	15g	70g
Adubo <i>II</i>	30g	25g	40g
Adubo III	60g	10g	55g
Adubo IV	15g	30g	60g

Um agricultor necessita de uma mistura com a seguinte especificação:

6 kg do adubo I, 7 kg do adubo II, 5 kg do adubo III e 8 kg do adubo IV.

Usando produto de matrizes determine a quantidade de cada substância na mistura descrita acima e o preço (da mistura).

48. Um fabricante de farinha produz três tipos de farinha: de mandioca, de milho e de trigo. Para produzir cada um dos tipos de farinha o produto bruto passa por três processos: seleção, processamento e embalagem. O tempo necessário (em horas), em cada processo, para produzir uma saca de farinha, é dado na tabela abaixo:

Processos/	Seleção	Processamento	Embalagem
Tipo de Farinha			
Mandioca	1	3	1
Milho	2	5	1
Trigo	1,5	4	1

O fabricante produz as farinhas em duas usinas uma em Cacha Pregos (BA) e outra em Cacimba de Dentro (PB), as taxas por hora para cada um dos processos são dadas (em reais) na tabela abaixo:

	Cacha Pregos	Cacimba de Dentro
Seleção	2	1,50
Processamento	1	1,80
Embalagem	0,50	0,60

Encontre A e B matrizes obtidas pelas primeira e segunda tabelas, respectivamente. Qual o significado do produto AB?

49. A secretaria de meio ambiente do munícipio de Mil Flores constatou que as empresas que trabalham nos ramos de suinocultura, cunicultura e piscicultura são as grandes poluidoras de três regiões do município. Diariamente despejam dejetos destas culturas segundo a descrição da tabela abaixo:

Quant. de Dejetos	1^a Região	2^a Região	3^a Região
por dia $(em kg)$			
Cunicultura	80	90	70
Piscicultura	200	40	30
Suinocultura	150	120	100

A secretaria decidiu então aplicar multas diárias sobre estas empresas afim de angariar fundos para despoluir tais regiões, as multas foram estabelecidas de acordo com a tabela abaixo:

Multa Cobrada (em reais) por kg de dejetos depositados	1^a Região	2^a Região	3^a Região
Cunicultura	400	200	300
Piscicultura	50	400	100
Suinocultura	600	300	500

Considerando A e B as matrizes obtidas através das primeira e segunda tabelas, respectivamente, determine os elementos da matriz AB^T que fornece a arrecadação da secretaria de meio ambiente de Mil Flores ao aplicar as multas nas três regiões, por ramo de atividade.