Generating Lambda Term Individuals in Typed Genetic Programming Using Forgetful A*

Tomáš Křen, Roman Neruda

Charles University, Faculty of Mathematics and Physics & Institute of Computer Science, Academy of Sciences of the Czech Republic

Presentation outline

- Standard population generating vs...
- Exhaustive enumeration
- Less exhaustive (more random) enumeration
- Generalization for simply typed lambda calculus
- Experiments

Standard generating procedure

- works in separate iterations
 - In each iteration one tree individual is generated.

- We can do this differently:
 - "Generating of shared parts can be shared."

- Systematic population generating
 - From smallest to biggest tree
- We use A* algorithm

Let's see an example

INPUT

e.g. T = {a}, F = {b:1 arg, c:2 args}

PRIORITY QUEUE

OUTPUT

OUTPUT

PRIORITY QUEUE

INPUT

PRIORITY QUEUE

OUTPUT

INPUT

PRIORITY QUEUE

OUTPUT

INPUT

PRIORITY QUEUE

OUTPUT

How to make enumeration more random?

- We add a new step deciding what to do with an expanded tree:
 - keep it,
 - or delete it?
- We call this additional decision procedure a generating strategy.
 - "Keep all" strategy = exhaustive enumeration
 - "Delete all but one" strategy = standard generating approach

Our geometric strategy

- It puts an expanded tree back to the queue with probability p = q^{depth}
- Where q is a constant, we used q = 0.75
- And depth is depth of the expanded node

Lambda calculus

- Simple yet powerful (mathematical) programming language
- It uses anonymous functions very often.
 - (λ x . <function body, where x may occur>)

Types

- Types help us overcome the *closure requirement*.
- But also make the programs more reasonable.
- (Local) context (usually denoted as Γ)
 - Set of symbol names accompanied with types
 - "T ∪ F is an initial/global context"
 - We can add local variables to a context

Generalization for simply typed lambda calculus

	No types	Types, no contexts	Simply typed lambda calculus	
Unfinished node	0	(<u>α</u>);		
Expansion(s)	→ ⊕	$ \begin{array}{c} (\alpha) \\ \downarrow \\ (\tau_1) \cdots (\tau_n) \end{array} $ $f: \tau_1 \rightarrow \cdots \rightarrow \tau_n \rightarrow \alpha$ inputs types ouput type	atomic types: $\begin{array}{c c} \alpha & \Gamma \\ \hline \downarrow \\ \hline \downarrow \\ \hline \downarrow \\ \hline \\ (\mathbf{T}_1 \mid \Gamma) \cdots (\mathbf{T}_n \mid \Gamma) \\ \hline \\ (\mathbf{f}: \mathbf{T}_1 \rightarrow \cdots \rightarrow \mathbf{T}_n \rightarrow \alpha) \in \Gamma \\ \end{array}$	·

Experiments

- We compared performance of our *geometric* strategy with standard *ramped half-and-half* on 3 benchmark problems.
- 50 runs, 500 population size, 51 generations
- Metrics
 - Average fitness of the best individual
 - Average term size
 - Cumulative probability of success
 - Number of individuals that must be processed to yield a correct solution with probability 99%
 - Time

Simple symbolic regression

Ramped half-and-half

Geometric

Times: 46 minutes 26 minutes

Artificial ant problem

Ramped half-and-half

Geometric

Times: 265 minutes 107 minutes

Even parity problem

Ramped half-and-half

Geometric

Times: 28 minutes

33 minutes

Conclusions

- Geometric outperforms standard Ramped halfand-half
- It seems that it reduces bloat.
- Works nicely with types.
- Future work
 - More test problems
 - Stronger type systems
 - Meta-evolution of generating strategy

Thank you for your attention!

Any questions?