

ООО «Компания АКОН» Украина, г. Киев, 03058 ул. Лебедева-Кумача 5, оф. 319 (+38067) 442-33-89 (+38044) 496-29-60 sales@akon.com.ua www.akon.com.ua

Skype: wadbus

Модули ввода-вывода серии МАХРго

WAD-MIO-MAXPro

TY Y 33.2-33056998-001:2009 AKOH.426438.012

1 канал аналогового ввода (U/I) 1 канал аналогового вывода (U/I) 2 канала дискретного ввода-вывода:

а) DI-каналы: «сухой контакт», постоянные/переменные напряжения б) DO-каналы: оптореле (I <= 100мA, U <= 300V)

Групповая гальваническая развязка Интерфейс RS485 (Modbus RTU)

Содержание

СОВМЕСТИМОСТЬ МОДУЛЕЙ АКОН С МИРОВЫМИ АППАРАТНО-ПРОГРАММНЫМИ	БРЕНДАМИ 3
АППАРАТНОЕ ОБЕСПЕЧЕНИЕ	5 ·
Назначение и устройство модуля	5 -
Технические характеристики	6 -
Информация для заказа	7 -
Структурная схема и принцип работы	8 -
Назначение контактов разъемов	10 -
Схемы подключения источников сигналов	12 ·
Подключение к сети RS485	
ПРОГРАММНАЯ НАСТРОЙКА	14 ·
Конфигурирование модуля и программа «Администратор»	14 ·
ПРОГРАММНАЯ СТРУКТУРА КАНАЛА АНАЛОГОВОГО ВВОДА	15 ·
Выбор измеряемого параметра и диапазона	16 -
Установка частоты среза фильтра	16 -
Установка коэффициентов полинома пользователя	16 ·
Использование полинома пользователя	17 -
Установка пределов светодиодной индикации	17 -
ПРОГРАММНАЯ СТРУКТУРА КАНАЛА АНАЛОГОВОГО ВЫВОДА	18 ·
ПРОГРАММИРОВАНИЕ	20
ПРОТОКОЛ ОБМЕНА MODBUS RTU	20 -
Функция 0х03 - чтение регистров	20 -
Функция 0х10 - запись регистров	22 -
Функция 0х06 – запись регистра	23 -
Карты регистров модуля	
Карта регистров системного объекта	26 ·
KAPTA PERUCTPOR PERVILITATOR	- 28 -

Совместимость модулей АКОН с мировыми аппаратно-программными брендами.

Протестировано со следующими продуктами:

Интерфейсы

RS232, RS485, USB, Ethernet, Current LOOP, 1-Wire

Протоколы обмена

MODBUS RTU - открытый коммуникационный протокол, основанный на архитектуре «клиент-сервер». Основные достоинства стандарта — открытость, простота программной реализации и элегантность принципов функционирования. Практически все промышленные системы контроля и управления имеют программные драйвера для работы с MODBUS-сетями.

SCADA

TRACE MODE. Инструментальный программный комплекс класса SCADA HMI.Предназначен для разработки программного обеспечения АСУТП, систем телемеханики, автоматизации зданий, систем учёта электроэнергии (АСКУЭ, АИИС КУЭ), воды, газа, тепла, а также для обеспечения их функционирования в реальном времени. Обладает функциями программирования промышленных контроллеров.

SCADA-система **InTouch** является наиболее популярным в мире программным пакетом визуализации для промышленных применений, установленным более чем на 600.000 объектах во всем мире. InTouch обеспечивает интеграцию со всеми основными поставщиками систем автоматизации, включая Siemens, Rockwell, Omron, Metso, ABB и др. InTouch обеспечивает беспрецедентные мощность, гибкость, простоту в использовании имасштабируемость при построении систем — от малых НМІ приложений до крупнейших систем автоматизации предприятий.

PROMOTIC это комплекс инструментов для разработки приложений для мониторинга, управления и визуализации технологических процессов в самых различных отраслях промышленности. PROMOTIC предназначена для ОС Windows 8/7/Vista/XP/XPe/2003-8Server и выше. В систему PROMOTIC встроены все необходимые компоненты для создания простых и сложных систем визуализации и управления.

MasterSCADATM — это не просто один из современных SCADA- и SoftLogic-пакетов, это принципиально новый инструмент разработки систем автоматизации и диспетчеризации. В нем реализованы средства и методы разработки проектов, обеспечивающие резкое сокращение трудозатрат и повышение надежности создаваемой системы.

OPC Server

Основной продукт Керware — **KEPServerEX**: модульный ОРС-сервер, который обеспечивает связь с более чем 100 различных контроллеров, приводов и программных модулей, подгружая конкретный драйвер. KEPServerEX поддерживает последовательные и Ethernet-соединения с широчайшим диапазоном промышленных устройств. Сейчас KEPServerEX применяется в тысячах SCADA-системах по всему миру.

 Modbus
 Universal
 MasterOPCServer
 это:
 расширенная

 функциональность
 в рамках технологии OPC, гибкие возможности пользовательского интерфейса, повышенная надежность и развитая диагностика, средства работы через Интернет, открытость и следование стандартам, рабочие демоверсии для загрузки.
 и следование

Инструментальные средства

Основной продукт Керware — **KEPServerEX**: модульный ОРС-сервер, который обеспечивает связь с более чем 100 различных контроллеров, приводов и программных модулей, подгружая конкретный драйвер. KEPServerEX поддерживает последовательные и Ethernet-соединения с широчайшим диапазоном промышленных устройств. Сейчас KEPServerEX применяется в тысячах SCADA-системах по всему миру.

Программируемые логические контроллеры

Одной из важных особенностей продукции **VIPA** является поддержка открытых интерфейсов, широко применяемых в промышленности. Это создаёт возможность для подключения дополнительных аппаратных средств и облегчает интеграцию отдельных производственных участков в информационную сеть предприятия.

Система **DeltaV** это полностью цифровая архитектура, обеспечивающая цифровую точность и цифровое быстродействие. Встроенное ведение архива облегчает ввод в эксплуатацию и обслуживание. Сам контроллер занимает мало места, обеспечивает резервирование и отличается прочностью.

Датчики

Термопары

B, C, E, J, K, L, N, R, S, T, BP5/20 Γp.38, BP5/20 Γp.68, A1, A2, A3

TCM50, TCП50, TCП1006 TCП500, TCП1000, TCП1088, TCM53,TCП46, Pt100, Pt1000

DS18B20

Аппаратное обеспечение

Назначение и устройство модуля

Модуль WAD-MIO-MAXPro предназначен для измерения и формирования электрических величин, обработки информации и передачи ее в главный вычислитель сети (компьютер) по линиям последовательного двухпроводного интерфейса RS485.

В своём составе модуль имеет: один канал аналогового ввода, один канал аналогового вывода и два канала дискретного ввода-вывода.

Аналоговый ввод

Свойства используемых датчиков (нелинейность и пр.) корректируются модулем. Кроме того, благодаря применению полинома пользователя значение измеряемого параметра (напряжение, ток, сопротивление) можно дополнительно скорректировать.

Вид измеряемой величины и пределы измерения модуля указываются при заказе (на этих пределах производится заводская калибровка каналов). Диапазоны модуля и виды сигналов, откалиброванные изготовителем, доступны для использования, и "видны" из программы "Администратор" (из комплекта поставки). "Администратор" предназначен для задания пользовательских настроек модуля: чувствительности, частоты среза фильтра, вида входного сигнала, порогов индикации и т.д. Все диапазоны и виды сигналов, поддерживаемые данным экземпляром изделия, автоматически обнаруживаются, и отображаются данной программой.

Аналоговый вывод

Вид формируемой величины (напряжение или ток) и пределы указываются при заказе.

Дискретный ввод-вывод

Каналы дискретного ввода изготавливаются для работы с потенциальными уровнями постоянного и/или переменного напряжения, а также в режиме «Сухой контакт». Каналы дискретного вывода представляют собой оптореле ($I \le 100$ мA, $U \le 300$ V).

Встроенная индикация позволяет визуально контролировать значение каналов. Пороги срабатывания индикации изменяются программно. Это позволяет мгновенно оценивать исправность линии связи и выход измеряемых величин за допустимые пределы.

Конструктивно модуль рассчитан для работы, как в единственном числе, так и для построения систем с числом модулей до 127, объединённых по системной шине. Шина создаётся на DIN-рейке установкой соответствующего числа миниатюрных системных разъёмов, формируя собой подобие компактной материнской платы, или "бэк-плейна". Сами модули являются неразборными, легко и надёжно устанавливаются и снимаются в любом порядке, не "мешая" соседним. Допускается "горячая" замена, в т.ч. без остановки технологического цикла и управляющей программы.

По системной шине передаются сигналы интерфейса RS485 и подводится питание. Входов питания два, основной и для резервного источника. Выход из строя любого из них никак не сказывается на работе системы.

Все наружные цепи модулей (входы, питание, интерфейс) надёжно защищены от перегрузок. Защита - двухуровневая: при кратковременной перегрузке срабатывает первый уровень защиты, при длительном превышении напряжения выше нормы срабатывает второй, размыкающий цепь. При исчезновении перегрузки работоспособность модуля восстанавливается автоматически.

Корпус модуля выполнен из высококачественного ударопрочного пластика, отличается надёжностью, высокой точностью изготовления, термостойкостью, отличным дизайном. Устанавливается на DIN-рейку.

Технические характеристики

Страница каталога:

(С полной версией каталога можно ознакомиться на сайте www.akon.com.ua в разделе "Документация")

	МНОГОФУНКЦИОНАЛЬНЫЙ КОНТРОЛЛЕР MAXPro					
	ПАРАМЕТР	WAD-MIO-MAXPro				
	Внешний вид					
	Краткое описание	Многофункциональный контроллер с интерфейсом RS-485, аналоговый ввод - 1 канал, аналоговый вывод - 1 канал, дискретный ввод/вывод - 2 канала, часы реального времени, файл базы данных . Защита всех входов/выходов.				
	Количество каналов	1				
Ħ	Гальваноразвязка	1,5кВ (по требованию 2,5кВ)				
í BB0	Разрядность АЦП	14				
Аналоговый ввод	Погрешность каналов измерения	0,12%				
лого	Схема подключения	2-х проводная				
Ана	Измеряемые параметры и диапазоны	Напряжения: +/-250мВ,,+/-1000В; Токи: 1мА, 2мА, 5мА, 20мА, 50мА,100мА Сопротивления: 100м,,10кОм; Термосопротивления: Pt/TCM/TCП, другие.				
	По други	м параметрам аналогового ввода см. WAD-AI4-MAXPro				
	Количество каналов	1				
вод	Гальваноразвязка	1,5кВ (по требованию 2,5кВ)				
й вы	Разрядность ЦАП	16 бит				
Аналоговый вывод	Относительная погрешность по напряжению	0,05%				
Анал	Относительная погрешность по току	0,07%				
	По другим	п параметрам аналогового вывода см. WAD-AO2-MAXPro				
	Количество выходных каналов	02				
д	Количество входных каналов	20				
ввод/вывод	Суммарное количество каналов	2				
од/1	Гальваноразвязка	Групповая 1,5кВ (по требованию 2,5кВ)				
ій вв	Максимальный коммутируемый ток	До 100мА				
этны	Максимальное коммутируемое напряжение	До 300В				
Дискретный	Входные уровни логической "1" (постоянное/переменное)	2,5 500В (указывается при заказе)				
	Контроль обрыва линии в конфигурации "сухой контакт"	включен/выключен				
	По другим па	раметрам дискретного ввода/вывода см. WAD-DIO-MAXPro				
	Рабочий температурный диапазон	по умолчанию: -20+75 °C; расширенный: -40+75 °C				
	Габариты	125,5х93,1х7,2 мм				
	Bec	652				
	Корпус и клеммы	Phoenix Contact(Германия); литые винтовые зажимные клеммы; сечение провода: 0.2-2.5 мм²				
	Связь	RS485, протокол Modbus RTU				
	Потребляемая мощность	1,5Bm (в зависимости от конфигурации)				
	Питание	Постоянное (можно не стабилизированное) напряжение от 10В до 30В				

Информация для заказа

В полном обозначении модуля после названия WAD-MIO-MAXPro, указывается условный код, соответствующий входному диапазону, выходному диапазону: WAD-MIO-MAXPro-"ai-код"-"ao-код". Отсутствующий канал обозначается "X". Соответствие кодов диапазонам приведено в таблице:

Код	Входной сигнал
04	0-250мВ
05	0-500мВ
06	0-1B
07	0-2B
08	0-5B
09	0-10B
0A	0-20B
0B	0-40B
0C	0-80B
0D	0-160B
0E	0-300B
0F	0-600B
0X	Другой диапазон для напряжения
1F	Те же для переменного напряжения, с вычислением действующего значения
1X	Другой, переменное напряжение, с вычислением действующего значения
32	0-600м
33	0-1250м
34	0-2500м
35	0-5000м
36	0-1кОм
37	0-2кОм
3X	Другой
70	TCM 50
71	TCM100
72	Pt50, ТСП 50
73	Pt100, TCΠ 100
7X	Другой тип термосопротивления или использование части диапазона
95	0-20мА
96	4-20мА
97	0-50мА
98	0-100мА
99	0-200мА
9A	0-500мА
9B	0-1A
9C	0-2A
9D	0-5A
9X	Другой диапазон для тока

Пример 1: аналоговый ввод – 0..20мА, аналоговый выход – 0..10В **Обозначение модуля: WAD-MIO-MAXPro-95-09.**

Пример 2: аналоговый ввод – 0..10В, аналоговый выход – 0..20мА, дискретный ввод - 1, дискретный вывод - 1

Обозначение модуля: WAD-MIO-MAXPro-09-95-DI-DO.

Пример 3: аналоговый ввод – Pt100, аналоговый выход – 0..20мA, дискретный ввод - 2 **Обозначение модуля: WAD-MIO-MAXPro-73-95-2DI.**

Пример 4: аналоговый ввод – нету, аналоговый выход – 0..10В, дискретный вывод - 2 **Обозначение модуля: WAD-MIO-MAXPro-X-09-2DO.**

Полностью параметры каналов приводятся в паспорте.

Структурная схема и принцип работы

Модуль состоит из следующих узлов: канала аналогового ввода, канала аналогового вывода, двух каналов DI/DO, микроконтроллера со встроенным АЦП и цепей формирования сигналов интерфейса RS485.

Рис 1. Структурная схема модуля

Количество каналов и их типы определяются индивидуально при заказе. Эти характеристики закладываются аппаратно на этапе изготовления.

Аналоговый ввод

Сигнал от источника информации поступает на измерительный вход модуля. После входной цепи сигнал поступает на АЦП микроконтроллера. После оцифровки происходит нормирование, коррекция погрешностей и вычисление значения измеряемого параметра. Выбор измеряемого параметра осуществляется программно.

Аналоговый вывод

Канал модуля имеет только один тип выхода: токовый или по напряжению (определяется при заказе). После получения значения канала от мастера модуль сразу же устанавливает его на выходе. После команды «Сохранить настройки в Flash-память» значение канала сохраняется вместе с другими настройками и при следующем включении модуля это значение автоматически формируется на выходе.

Каналы дискретного ввода-вывода

Каналы дискретного ввода могут работать с потенциальными уровнями постоянного и/или переменного напряжения или в режиме «Сухой контакт».

Каналы дискретного вывода представляют собой оптореле (I <= 100мA, U <= 300V).

Схема светодиодной индикации предназначена для контроля значения канала.

Для аналогового ввода

Схема светодиодной индикации предназначена для контроля уровня сигнала. Когда значение измеряемого параметра находится в пределах светодиодной индикации (задаются программно), то светодиод AI-канала постоянно подсвечивается, если ниже – мигает редко, и мигает часто, если значение измеряемого параметра превышает установленный предел.

Для дискретных входов:

- 1) светодиод выключен логический ноль (удаленный контакт разомкнут)
- 2) светодиод включен логическая единица (удаленный контакт замкнут)
- 3) светодиод мерцает обрыв линии

Для дискретных выходов:

- 1) светодиод выключен реле разомкнуто
- 2) светодиод включен реле замкнуто

Со стороны интерфейса RS485 значения всех каналов доступны для чтения/записи по протоколу Modbus RTU. Адрес устройства и скорость обмена настраиваются с помощью программы АКОН Администратор и сохраняются в Flash.

Назначение контактов разъемов

Модуль WAD-MIO-MAXPro имеет 2 типа разъемов: 8 клеммников (К1-К8) и один системный 5-ти контактный разъём (Х1).

Назначение контактов К1-К8:

Номер	Обозначение	Назначение		
контакта				
1	DIO1 K2	Дискретный ввод-вывод 1		
2	DIO1 K1			
3	AO COM	Общий провод аналогового вывода		
4	AO	Аналоговый вывод		
5	AI	Аналоговый ввод		
6	AI COM	Общий провод аналогового ввода		
7	DIO2 K2	Дискретный ввод-вывод 2		
8	DIO2 K1			

Каналы дискретного ввода используют свой K2 как общий контакт, а K1 как вход. Для каналов дискретного вывода контакты K2 и K1 являются равноценными, так как на них выходят нормально разомкнутые контакты оптореле.

Назначение контактов разъема X1:

	TOB pusbema III.				
Номер контакта	Обозначение	Назначение			
1	D+	Линия Data+ интерфейса RS485			
2	D-	Линия Data- интерфейса RS485			
3	Uпит.	Вход напряжения питания			
4	Uпит.рез.	Вход напряжения питания (резервный)			
5	Gnd	Общий провод для источников питания			

Рекомендация:

При выборе основного и резервного источников питания нужно учитывать, что мощность каждого из них должна быть достаточной для питания всех блоков системы. Когда включены два источника питания, они не нагружены поровну: вся нагрузка будет приходиться на тот, выходное напряжение которого больше. Распределение нагрузки между двумя блоками возможно лишь тогда, когда разбаланс выходных напряжений составляет менее 50мВ. Не нужно стремиться распределить нагрузку – скажем, основной

источник может быть на 24В, а резервный – на 12В.

Схемы подключения источников сигналов

Подключение удаленных ключей без возможности контроля обрыва линии

Подключение удаленных ключей и резисторов тока покоя для контроля обрыва линии

Подключение датчиков с активным выходом в режиме «Потенциальный вход»

Подключение датчиков с активным выходом в режиме «Переменный вход»

Аналоговый ввод

Аналоговый вывод

Дискретный вывод (запитка постоянным током)

Дискретный вывод (запитка переменным током)

Рекомендация:

При измерении тока внешние помехи и сопротивление проводников проявляются крайне слабо, что позволяет рекомендовать этот способ при передаче сигнала на большие расстояния.

Подключение к сети RS485

Подключение к сети заключается в одноимённом соединении двух линий DATA+ и DATA- головного вычислителя (компьютера, или выхода преобразователя RS232/RS485) и модуля (или группы модулей, соединённых по системной шине).

Модуль WAD-MIO-MAXPro предназначен для работы в сетях типа Master-Slave, при этом, выступая всегда в роли Slave. При подключении нескольких устройств к сети нужно позаботиться о том, чтобы адрес каждого модуля в пределах сети был уникальным, и у всех модулей была установлена одинаковая скорость обмена. Поэтому, если адреса и скорости обмена неизвестны, рекомендуется производить настройку каждого модуля в отдельности, используя программу «АКОН Администратор» и лишь потом подключить их в одну сеть.

Программная настройка

Конфигурирование модуля и программа «Администратор»

Настройка модуля производится посредством интерфейса RS485. Для настройки рекомендуется использовать стандартный инструментарий, которым является программа «Администратор». Или можно использовать, опираясь на описание протокола обмена, собственные средства. Программа «Администратор» предназначена для настройки и проверки работоспособности модулей, разработанных компанией. В «Администраторе» настройка модуля производится посредством наглядных графических структур, относящихся к настраиваемому объекту. По умолчанию «Администратор» отображает все прочитанные из модуля свойства: заводские установки и откалиброванные аппаратные пределы. "Администратор" отображает ВСЕ доступные в ДАННОМ экземпляре устройства пределы измерения, позволяет выбрать для дальнейшей работы любой из них, установить частоту среза фильтра, пределы индикации, адрес в сети, скорость обмена и т.д., т.е. — настроить модуль для дальнейшей самостоятельной работы. При обнаружении отсутствия необходимого Вам предела измерения - обращайтесь к изготовителю для проведения дополнительной калибровки.

При отсутствии модуля, при возникновении необходимости проверить, как должна проходить исправная настройка изделия в "Администраторе", в программе встроен эмулятор блоков производства АКОН.

Для настройки модуля с помощью «Администратора» необходимо выполнить следующие шаги:

- **1.** Подключить устройство к компьютеру. (См. раздел «**Подключение к сети RS485**»)
- 2. Запустить программу "Администратор" из комплекта поставки.
- 3. Выбрать "Шина", "Настройки", задать СОМ-порт и скорость обмена.
- 4. Выбрать "Шина", "Подключить".
- **5.** Выбрать "Устройства", "Обнаружение устройств". Двойным щелчком выбрать нужное устройство из найденных на шине.
- 6. В открывшемся окне двойным щелчком выберите нужный объект модуля.
- 7. Используя функции «Администратора» произвести настройку устройства.
- 8. Выходя из программы, записать настройки во Флэш-память модуля.

Программа "Администратор" поддерживает весь спектр устройств серии BUS, MAXPro и ECO. Функции «Администратора» по настройке конкретной модели устройства приводятся в техническом описании на данное устройство.

Общие функции «Администратора» приведены в разделе "Помощь" программы «Администратор».

Программная структура канала аналогового ввода

Сигнал от источника, через входные цепи поступает на АЦП. После аналогоцифрового преобразования и нормализации получаем значение измеряемой величины. Далее вычисления зависят от выбранного алгоритма пересчета значения канала - если полином пользователя включен, то нормализованное значение будет дополнительно обработано полиномом пользователя. После того как получено результирующее значение, оно подается на блок индикации, где сравнивается с установленными порогами.

Блок термокомпенсации указывает текущую температуру, но не производит термокомпенсацию для данного типа модуля.

Для получения текущего значения канала нужно читать свойство «Значение канала» из объекта «Канал аналогового ввода» или см. карту результатов из раздела «Карты регистров модуля».

Выбор измеряемого параметра и диапазона

Щелчок на блоке «Входной параметр и диапазон» открывает окно выбора возможных для данного экземпляра модуля измеряемых параметров и диапазонов.

Установка частоты среза фильтра

Двойным щелчком на блоке «АЦП» указывается частота среза фильтра. Значение этого параметра лежит в пределах от $0.5\Gamma\mu$ до $50\Gamma\mu$.

Повышение частоты среза повышает скорость реакции системы на изменение значения сигнала, но увеличивает чувствительность к шумам и помехам, поступающих от источника сигнала, или наводимых в линиях связи. В большинстве случаев значение частоты среза в диапазоне 1-10 Гц для задач автоматизации является оптимальным. Как правило, чем ниже уровень сигнала, тем ниже необходимо устанавливать частоту среза, т.к. помехи влияют всё больше. Для термосопротивлений скорость реакции, которых не высока, значение частоты среза может приближаться к минимальной величине (0,1-0.5Гц).

Установка коэффициентов полинома пользователя

Данный блок будет отрабатываться в том случае, если он указан в алгоритме пересчета для соответствующего канала. Полином имеет вид:

$$y = a * x^2 + b * x + c$$

С помощью полинома пользователя можно значение входного параметра пересчитать по полиному с указанными пользователем коэффициентами. Например, для пересчета напряжения с датчика давления в значение давления, или сопротивления с

термодатчика в температуру. Это делается, в том числе и для устранения погрешностей датчика: нелинейности, смещения, погрешности коэффициента преобразования.

Использование полинома пользователя

Если полином пользователя используется, то в верхнем левом углу блока «Полином пользователя» (см. структурную схему канала) подсвечивается красный индикатор и на кнопке коммутатора появляется надпись «1». Если нет, то красный индикатор не подсвечивается и на кнопке коммутатора высвечивается надпись «0». Для изменения текущего статуса необходимо произвести щелчок на кнопке коммутатора. В большинстве случаев полином пользователя не используется, но он бывает необходим, когда нужно сигнал от датчика с необычными свойствами преобразовать в требуемую истинную физическую величину.

Установка пределов светодиодной индикации

Для указания пределов светодиодной индикации нужно щелкнуть мышкой на блоке «Индикатор». При этом откроется окно, в котором нужно указать значение минимума и максимума.

Программная структура канала аналогового вывода

Щелчок на объекте в окне параметров устройства программы «Администратор» открывает окно параметров канала:

Для установки выхода нужно бегунком выбрать значение выходного параметра и нажать кнопку «Установить». Выбор параметра осуществляется нажатием на кнопку «Выходной параметр».

Выбор выходного параметра

Щелчок на блоке «Выходной параметр» открывает окно выбора возможных выходных параметров.

Так же в этом окне можно указать желаемые пределы выхода, прописав соответствующие значения в поля «Минимум» и «Максимум»

При выходе из "Администратора" необходимо заданные Вами настройки записать во Флэш-память модуля (программа автоматически предлагает это сделать). После записи настроек модуль готов к применению.

Программирование

Протокол обмена Modbus RTU

В своих устройствах Компания АКОН использует стандартный протокол Modbus RTU. Протокол применяется в сетях, в которых контроллеры соединяются, используя технологию master-slave, при которой только одно устройство (master) может инициировать передачу (сделать запрос). Другие устройства (slave) передают запрашиваемые главным устройством данные, или производят запрашиваемые действия. Главный контроллер может адресоваться к индивидуальному подчиненному или может широковещательную сообщения на все подчиненные инициировать передачу устройства. Подчиненное устройство возвращает сообщение в ответ адресуемый именно ему. Ответы не возвращаются при широковещательном запросе от главного контроллера. При запросе от главного контроллера код функции говорит подчиненному устройству, какое действие необходимо провести. Байты данных содержат информацию необходимую для выполнения запрошенной функции. Для чтения используется функция 0х03, а для записи 0х06 и 0х10.

Функция 0х03 – чтение регистров

Формат запроса:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Start register, H	Номер начального регистра (старший байт)		
Start register, L	Номер начального регистра (младший байт)		
Register number, H	Количество регистров (старший байт)		
Register number, L	Количество регистров (младший байт)		
CRC, H	Контрольная сумма запроса (старший байт)		
CRC, L	Контрольная сумма запроса (младший байт)		

Формат ответа:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Byte counter, H	Счетчик байт		
Data 0, H	Содержимое регистра X (старший байт)		
Data 0, L	Содержимое регистра X (младший байт)		
Data 1, H	Содержимое регистра X + 1 (старший байт)		
Data 1, L	Содержимое регистра X + 1 (младший байт)		
Data N, H	Содержимое регистра X + N (старший байт)		
Data N, L	Содержимое регистра X + N (младший байт)		
CRC, H	Контрольная сумма ответа (старший байт)		
CRC, L	Контрольная сумма ответа (младший байт)		

Пример. Нужно прочитать результат измерения канала аналогового ввода. Результат находится в регистре 0x0100 и занимает два регистра.

Запрос:

Address	Function	Start register Number registers		CRC
0x01	0x03	0x0100	0x0002	0xC5F7

Ответ:

Address	Function	Byte counter	Data	CRC
0x01	0x03	0x04	0x41483127	0x3B98

Data = 0x41483127 = 12.512

Ниже предоставлена функция для вычисления CRC на языке Cu.

```
unsigned short mbCrc(unsigned char *buf, unsigned short size)
         unsigned short crc;
         unsigned char bit_counter;
         crc = 0xFFFF;
                                                        // initialize crc
         while (size > 0)
                  crc ^= *buf++ :
                                                        // crc XOR with data
                  bit_counter = 0;
                                                        // reset counter
                  while ( bit_counter < 8 )
                            if ( crc & 0x0001 )
                                     crc >>= 1;
                                                        // shift to the right 1 position
                                     crc ^= 0xA001; // crc XOR with 0xA001
                            else
                            {
                                                        // shift to the right 1 position
                                     crc >>= 1;
                                                        // increase counter
                            bit_counter++;
                  }
                                                        // adjust byte counter
                  size--;
                                                        // final result of crc
         return crc;
}
```


Функция 0х10 – запись регистров

Формат запроса:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Start register, H	Номер начального регистра (старший байт)		
Start register, L	Номер начального регистра (младший байт)		
Register number, H	Количество регистров (старший байт)		
Register number, L	Количество регистров (младший байт)		
Byte Counter	Счетчик байт		
Data 0, H	Содержимое регистра X (старший байт)		
Data 0, L	Содержимое регистра Х (младший байт)		
Data 1, H	Содержимое регистра X + 1 (старший байт)		
Data 1, L	Содержимое регистра X + 1 (младший байт)		
Data N, H	Содержимое регистра X + N (старший байт)		
Data N, L	Содержимое регистра X + N (младший байт)		
CRC, H	Контрольная сумма запроса (старший байт)		
CRC, L	Контрольная сумма запроса (младший байт)		

Формат ответа:

Название поля	Назначение		
Address	Адрес модуля в сети		
Function	Функция		
Start register, H	Номер начального регистра (старший байт)		
Start register, L	Номер начального регистра (младший байт)		
Register number, H	number, H Количество регистров (старший байт)		
Register number, L	Количество регистров (младший байт)		
CRC, H	Контрольная сумма ответа (старший байт)		
CRC, L	Контрольная сумма ответа (младший байт)		

Пример. Нужно установить четыре канала дискретного вывода в единицу. Каналы располагаются с адреса 0х4000 и на каждый канал отведен свой собственный регистр.

Запрос:

1	Address	Function	Start register	Number registers	Data	Data	Data	Data	CRC
	0x01	0x10	0x4000	0x0004	0x0001	0x0001	0x0001	0x0001	0x1BAF

Ответ:

Address	Function	Start register	Number registers	CRC
0x01	0x03	0x4000	0x0004	0xD40A

Функция 0х06 – запись регистра

Формат запроса:

Название поля	Назначение	
Address	Адрес модуля в сети	
Function	Функция	
Start register, H	Номер регистра (старший байт)	
Start register, L	Номер регистра (младший байт)	
Data, H	Содержимое регистра (старший байт)	
Data, L	Содержимое регистра (младший байт)	
CRC, H	Контрольная сумма запроса (старший байт)	
CRC, L	Контрольная сумма запроса (младший байт)	

Формат ответа:

Название поля	Назначение
Address	Адрес модуля в сети
Function	Функция
Start register, H	Номер регистра (старший байт)
Start register, L	Номер регистра (младший байт)
Data, H	Содержимое регистра (старший байт)
Data, L	Содержимое регистра (младший байт)
CRC, H	Контрольная сумма ответа (старший байт)
CRC, L	Контрольная сумма ответа (младший байт)

Пример. Нужно установить канал дискретного вывода в единицу. Адрес регистра 0х4000.

Запрос:

Address	Function	Start register	Data	CRC
0x01	0x06	0x4000	0x0001	0x5DCA

Ответ:

Address	Function	Start register	Data	CRC
0x01	0x06	0x4000	0x0001	0x5DCA

Карты регистров модуля

Устройство содержит карты регистров для следующих объектов

- Системный объект
- Канал аналогового ввода
- Канал аналогового вывода
- Каналы дискретного ввода-вывода
- Менеджер дискретного ввода-вывода
- Контроллер исправности системы
- Карта результатов (рекомендуемая к использованию)

Для всех карт регистров, кроме карты результатов, доступ осуществляется только к двум регистрам одновременно и при этом номер первого регистра должен быть обязательно четным. Адресное пространство карты регистров результатов доступно для чтения-записи пакетами произвольной длины, используя функции 0x03, 0x06, 0x10.

Карта регистров системного объекта

Регистр, hex	Название	Тип данных	Доступ
0000	Код типа устройства	uint32	R
0002	Серийный номер устройства	uint32	R
0004	Маска каналов	uint32	R
0006	Адрес устройства, скорость обмена	uint32	R/W
0008	Сохранение в Flash текущих настроек системы	uint32	W
0010	Чтение с Flash paнее сохраненных настроек в ОЗУ	uint32	W
0020	Версия ПО	uint32	R
0022	Резерв	uint32	R/W
0024	Машинное время	uint32	R

Карта регистров каналов аналогового ввода

Регистр, hex	Название свойства	Тип данных	Доступ
0100-0101	Значение канала	float	R
0102-0103	Тип входного параметра (Текущий диапазон)	uint32	R/W
010E-010F	010E-010F Количество диапазонов в канале		R
011C-011D	Выбор индексов диапазона и параметра	uint32	W
011E-011F	Регистр значения списка диапазонов	float/uint32	R
0106-0107	Частота среза фильтра	float	R/W
010A-010B	Время отклика канала	uint32	R/W
0108-0109	Флаги канала	uint32	R/W
0112-0113	Коэффициент А полинома пользователя	float	R/W
0114-0115	Коэффициент В полинома пользователя	float	R/W
0116-0117	Коэффициент С полинома пользователя	float	R/W
0118-0119	Минимум светодиодной индикации	float	R/W
0110 0119 011A-011B	Максимум светодиодной индикации	float	R/W
VIIA-VIIB	паксинум светоднодной индикации	noat	14, 44
0120-0121	Температура канала	float	R

Карта регистров каналов аналогового вывода

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
10	0x30	Значение канала	float
03/10	0x32	Нормализация (Вкл/Выкл)	uint32
03/10	0x34	Диапазон измерения	uint32
03	0x36	Класс точности	uint32
03	0x38	Количество используемых диапазонов	uint32
10	0x3C	Выбор индекса	uint32
03	0x3E	Реестр используемых диапазонов	uint32

Карта регистров для объекта «Канал дискретного ввода» (n - номер канала; 3 и 4)

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №п	
03	0x0n10	Состояние линии	uint32_t
03	0x0n12	Значение напряжения на входе канала	float
03/10	0x0n14	Уровень контроля обрыва линии	float
03/10	0x0n16	Уровень логической единицы	float
03/10	0x0n20	Разрешение/запрещение контроля обрыва линии	uint32_t
03/10	0x0n24	Время отклика	uint32_t

Карта регистров для объекта «Канал дискретного вывода» (n - номер канала; 3 и 4)

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №n	
03/10	0x0n10	Установка состояния	0, 1
03	0x0n12	Контроль состояния	0 – 0k
			1 - неисправность в канала
03	0x0n14	Код разрешения установки	uint32_t
03/10	0x0n16	Выбор режима установки выхода	0 – обычный
			1 – защищенный
10	0x0n18	Сгенерировать последовательность	0 – запрос на генерирование последовательности
03/10	0x0n1A	Начальный уровень	0, 1
03/10	0x0n1C	Количество периодов	0 – 15
10	0x0n1E	Индекс элемента массива периодов	0 - 15
03/10	0x0n20	Массив периодов	uint32_t

Карта регистров для объекта «Менеджер дискретного ввода/вывода»

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №9	
03	0x0510	Состояние всех каналов	uint32
03/10	0x0512	Установка каналов DO	uint32
03	0x0514	Код разрешения установки	uint32
03/10	0x0516	Выбор режима установки выхода	0 – обычный: 1 – защищенный
03	0x0518	Состояние всех каналов (старшие 8 бит; если они есть)	uint32

Карта регистров для объекта «Контроллер исправности системы»

Код операции	Адрес регистра	Наименование параметра	Диапазон изменений
		Канал №10	
03/10	0x0610	Значение таймаута	uint32
03/10	0x0612	Условие сброса таймаута	uint32
03/10	0x0614	Состояние каналов DO	uint32
03/10	0x0616	Маска каналов DO	uint32
03/10	0x0618	Номер канала АО	uint32
03/10	0x0619	Значение канала АО	float
03/10	0x061A	Маска каналов АО	uint32

Карта регистров результатов

Адрес регистра, НЕХ	Название	Тип данных	Назначение
4000	CPU Temp	int16_t	Температура контроллера, °C
4001	FreqMeasureT	int16_t	Время измерения (частоты)
4002	CounterToDI	uint16_t	Проекция значения счетчика канала на битовое значение
4003	FreqToDI	uint16_t	Проекция значения частоты канала на битовое значение
4004-4005	Al	float	Аналоговый ввод
4006	Al (ui16)	uint16_t	Аналоговый ввод (ui16) [065535]
4007-4008	AO	float	Аналоговый вывод
4009	AO (ui16)	uint16_t	Аналоговый вывод (ui16) [065535]
400A	DIO	uint16_t	Все каналы DI/DO
400B	DIBreakLine	uint16_t	Все DI-каналы - обрыв линии. 0 – ok, 1 – break line
400C	DIO 1	uint16_t	Значение канала DIO 1
400D	DIO 2	uint16_t	Значение канала DIO 2
400E	DICounter 1	uint16_t	Счетчик импульсов DIO 1
400F	DICounter 2	uint16_t	Счетчик импульсов DIO 2
4010	DIFreq 1	uint16_t	Частота импульсов DIO 1
4011	DIFreq 2	uint16_t	Частота импульсов DIO 2

Карта регистров системного объекта

Код типа устройства содержит код устройства. Для модуля WAD-MIO-MAXPro его значение равно **0x0026**.

Серийный номер устройства содержит серийный номер устройства.

Маска каналов указывает, какие каналы есть в модуле.

Адрес устройства, скорость обмена.

Диапазон адресов устройств лежит в пределах от 0x01 до 0xFF. Адрес 0x00 является широковещательным. Ответ от устройства при широковещательном запросе не формируется, за исключением чтения кода типа устройства.

Поля свойства:

3-й байт	2-й байт	1-й байт	0-й байт
Parity ID	Reserve	Baudrate ID	Address

Коды скоростей:

Nº	Скорость обмена	Код скорости обмена
1	BR_1200	3
2	BR_2400	4
3	BR_4800	5
4	BR_9600	6
5	BR_14400	7
6	BR_19200	8
7	BR_38400	9
8	BR_56000	10
9	BR_57600	11
10	BR_115200	12

Коды четностей:

Nº	Четность	Код четности
1	ptNone	0
2	ptOdd	1
3	ptEven	2
4	ptMark	3
5	ptSpace	4

Версия ПО устройства указывает номер версии программного обеспечения устройства.

Поля свойства:

3-й байт	2-й байт	1-й байт	0-й байт
0	Version Hi	Version Middle	Version Lo

Машинное время это длинное целое беззнаковое число, указывающее количество секунд прошедших с момента последнего перезапуска устройства.

Сохранение в Flash текущих настроек системы. Чтение с Flash ранее сохраненных настроек в ОЗУ. Эти свойства применяются для работы с флэш-памятью и доступны только для записи. При записи выше перечисленных свойств будет выполнена соответствующая команда.

Карта регистров результатов

Адрес регистра, НЕХ	Название	Тип данных	Назначение
4000	CPU Temp	int16_t	Температура контроллера, °С
4001	FreqMeasureT	int16_t	Время измерения (частоты)
4002	CounterToDI	uint16_t	Проекция значения счетчика канала на битовое значение
4003	FreqToDI	uint16_t	Проекция значения частоты канала на битовое значение
4004-4005	Al	float	Аналоговый ввод
4006	Al (ui16)	uint16_t	Аналоговый ввод (ui16) [065535]
4007-4008	AO	float	Аналоговый вывод
4009	AO (ui16)	uint16_t	Аналоговый вывод (ui16) [065535]
400A	DIO	uint16_t	Все каналы DI/DO
400B	DIBreakLine	uint16_t	Все DI-каналы - обрыв линии. 0 – ok, 1 – break line
400C	DIO 1	uint16_t	Значение канала DIO 1
400D	DIO 2	uint16_t	Значение канала DIO 2
400E	DICounter 1	uint16_t	Счетчик импульсов DIO 1
400F	DICounter 2	uint16_t	Счетчик импульсов DIO 2
4010	DIFreq 1	uint16_t	Частота импульсов DIO 1
4011	DIFreq 2	uint16_t	Частота импульсов DIO 2

Карта регистров результатов носит собирательный характер и содержит в себе только самые необходимые регистры для работы с модулем. В каких-то детальных описаниях ее поля не имеют нужды, так как из их названий ясна их суть.

Карта регистров изделия может быть переконфигурирована на произвольный порядок. Для этого предназначена программа UMMC.

Скачать программу http://akon.com.ua/download/soft/UMMC.zip
Скачать описание http://akon.com.ua/download/soft/UMMC.Docx

Модуль разработан и изготовлен Компанией АКОН. Предлагаем к поставке модули АЦП, модули ЦАП, устройства ввода-вывода цифровой информации, модули нормирующих преобразователей с гальванической развязкой, модули для распределённых систем и другое оборудование.

Украина, г. Киев, ул. Лебедева-Кумача 5, оф. 319 тел. +38(044) 496-29-60, +38(067) 442-33-89

E-mail: sales@akon.com.ua Caйт: www.akon.com.ua Skype: wadbus