Partiel du 21/02/2023 - Durée : 3 heures

Les téléphones portables doivent obligatoirement être rangés <u>éteints</u>. Documents et tout autre appareil électronique sont interdits.

Exercice 1.

- 1. Soient $n \in \mathbb{N}$, $n \ge 1$, $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$, $\|\cdot\|$ une norme sur \mathbb{K}^n et $\|\cdot\|$ la norme matricielle sur $\mathcal{M}_n(\mathbb{K})$ subordonnée à la norme $\|\cdot\|$. Soit $A \in \mathcal{M}_n(\mathbb{K})$ tel que $\|A\| < 1$.
 - (a) Montrer que la matrice $I_n A$ est inversible.
 - (b) Montrer que

$$|||(I_n - A)^{-1}||| \le \frac{1}{1 - |||A|||}.$$

Indication: utiliser que $(I_n-A)^{-1}(I_n-A)=I_n$ et chercher à minorer $|||(I_n-A)^{-1}(I_n-A)|||$.

- 2. Supposons que la matrice A est inversible, soit $b \in \mathbb{K}^n$, $b \neq 0$, et $x \in \mathbb{K}^n$ tel que Ax = b. Soit $\Delta A \in \mathcal{M}_n(\mathbb{K})$ tel que $A + \Delta A$ est inversible et soit $x_\Delta \in \mathbb{K}^n$ tel que $(A + \Delta A)x_\Delta = b$.
 - (a) Montrer que

$$\frac{\|x_{\Delta} - x\|}{\|x\|} \le \|(A + \Delta A)^{-1}\| \|\Delta A\|.$$

Indication: chercher à écrire $x_{\Delta} - x = Mx$ pour une matrice M convenable.

- (b) Justifier que la matrice $I_n + A^{-1}\Delta A$ est inversible.
- (c) Soit $cond(\cdot)$ le conditionnement relatif à la norme $\|\cdot\|$. Conclure que

$$\frac{\|x_{\Delta} - x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|} \|(I_n + A^{-1}\Delta A)^{-1}\|.$$

En déduire que si en plus $||A^{-1}|| ||\Delta A|| < 1$, alors

$$\frac{\|x_{\Delta} - x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|} \frac{1}{1 - \|A^{-} 1 \Delta A\|}.$$

3. On considère ici la norme $\|\cdot\|_{\infty}$ dans \mathbb{R}^2 , la norme subordonnée à la norme $\|\cdot\|_{\infty}$ dans $\mathcal{M}_2(\mathbb{R})$ (la norme $\|\cdot\|_{\infty}$) et le conditionnement $\operatorname{cond}_{\infty}(\cdot)$ relatif à cette norme. Soit

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 10^{-6} \end{bmatrix}$$
 et $\Delta A = \begin{bmatrix} 10^{-14} & 0 \\ 0 & 10^{-8} \end{bmatrix}$.

- (a) Soit $B = \begin{bmatrix} 1 & 10^{-6} \end{bmatrix}^T$. Donner la solution $X \in \mathbb{R}^2$ de AX = B, et la solution X_{Δ} de $(A + \Delta A)X_{\Delta} = B$.
- (b) Calculer

$$\operatorname{cond}_{\infty}(A), \quad \frac{\|X - X_{\Delta}\|_{\infty}}{\|X\|_{\infty}} \quad \text{et} \quad \frac{\|\Delta A\|_{\infty}}{\|A\|_{\infty}}.$$

Commenter les résultats obtenus (il suffit de donner un ordre de grandeur des valeurs pour les comparer).

Exercice 2. Soit $n \in \mathbb{N}$. On note $(\cdot|\cdot)$ le produit scalaire euclidien dans \mathbb{R}^n .

On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est antisymétrique si $M^T = -M$. On dit qu'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ quelconque est définie positive si (Mx|x) > 0, pour tout $x \in \mathbb{R}^n$, $x \neq 0$.

1. Montrer, en justifiant les calculs, que si $M \in \mathcal{M}_n(\mathbb{R})$ est antisymétrique, alors

$$(Mx|x) = 0$$
, pour tout $x \in \mathbb{R}^n$.

- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $A_s \in \mathcal{M}_n(\mathbb{R})$ symétrique et $A_{as} \in \mathcal{M}_n(\mathbb{R})$ antisymétrique tel que $A = A_s + A_{as}$. On appelle A_s la partie symétrique de A et A_{as} sa partie antisymétrique.
- 3. En déduire que $A \in \mathcal{M}_n(\mathbb{R})$ est définie positive si et seulement si sa partie symétrique est définie positive.
- 4. Soit

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

- (a) Montrer que A est définie positive.
- (b) Calculer le spectre de A (c'est-à-dire l'ensemble des valeurs propres de A). Que remarquet-on par rapport au spectre d'une matrice symétrique réelle définie positive?

Exercice 3. L'objectif de cet exercice est de montrer une généralisation à des matrices rectangulaires du théorème spectral pour des matrices normales. Attention donc : dans cet exercice les matrices sont rectangulaires.

1. Questions préliminaires.

Soient $p, n \in \mathbb{N}$ et $A \in \mathcal{M}_{p,n}(\mathbb{R})$. Sa transposée est la matrice $A^T \in \mathcal{M}_{n,p}(\mathbb{R})$ définie par $A^T_{i,j} = A_{j,i}, i \leq n, j \leq p$. On note $(\cdot|\cdot)_{\mathbb{R}^n}$ et $(\cdot|\cdot)_{\mathbb{R}^p}$ respectivement le produit scalaire euclidien dans \mathbb{R}^n et dans \mathbb{R}^p . (Re)démontrer les résultats suivants :

- (a) $(A^T)^T = A$ et $(AB)^T = B^T A^T$, pour toute matrice $B \in \mathcal{M}_{n,p}(\mathbb{R})$.
- (b) $(Ax|y)_{\mathbb{R}^p} = (x|A^Ty)_{\mathbb{R}^n}$, pour tous $x \in \mathbb{R}^n$, $y \in \mathbb{R}^p$.

Soit $A \in \mathcal{M}_{p,n}(\mathbb{R})$. On suppose p > n.

- 1. Justifier que la matrice $A^T A \in \mathcal{M}_n(\mathbb{R})$ admet des valeurs propres réelles et qu'il existe une base orthonormée (u_1, \ldots, u_n) de \mathbb{R}^n constituée de vecteurs propres de $A^T A$.
- 2. Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ les valeurs propres de $A^T A$, associées respectivement aux vecteurs propres u_1, \ldots, u_n (donc $A^T A u_i = \lambda_i u_i$).
 - (a) Montrer que pour tout $i \in \{1, ..., n\}, \lambda_i \ge 0$, et que si $\ker(A) = \{0\}$, alors $\lambda_i > 0$.
 - (b) On suppose désormais que $\ker(A) = \{0\}$. Conclure que $A^T A = UDU^T$, avec $U \in \mathcal{M}_n(\mathbb{R})$ matrice orthogonale $(i.e.\ UU^T = U^T U = I_n)$ dont les colonnes sont les vecteurs u_1, \ldots, u_n , $D \in \mathcal{M}_n(\mathbb{R})$ matrice diagonale telle que $D_{ii} = \lambda_i > 0$.
 - (c) On pose $\mu_i = \sqrt{\lambda_i}$. Soient $v_1, \ldots, v_n \in \mathbb{R}^p$ définis par $v_i = \frac{1}{\mu_i} A u_i$. Montrer que la famille (v_1, \ldots, v_n) est une famille orthonormale de vecteurs de \mathbb{R}^p .
 - (d) On utilise ici que p > n. On considère $v_{n+1}, \ldots, v_p \in \mathbb{R}^p$ tel que $(v_1, \ldots, v_n, v_{n+1}, \ldots, v_p)$ soit une base orthonormale de \mathbb{R}^p . Soit $V \in \mathcal{M}_p(\mathbb{R})$ la matrice dont les colonnes sont les vecteurs $v_1, \ldots, v_n, v_{n+1}, \ldots, v_p$. Justifier que V est une matrice orthogonale et montrer que l'on a $A = V \Sigma U^T$, avec $\Sigma \in \mathcal{M}_{p,n}(\mathbb{R})$ la matrice

$$\Sigma = \begin{bmatrix} \tilde{D} \\ 0 \end{bmatrix}$$

où \tilde{D} est la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ tel que $\tilde{D}_{ii} = \mu_i$ et 0 la matrice nulle de taille $(p-n) \times n$.

Indication: représenter la matrice V par colonnes et regarder ce que vaut le produit $V\Sigma$.

Exercice 4.

- 1. Soit $U \in \mathcal{M}_n(\mathbb{C})$ une matrice unitaire $(UU^* = U^*U = I_n)$. Soit $\|\cdot\|_2$ la norme induite par le produit hermitien canonique de \mathbb{C}^n ($\|x\|_2 = |x_1|^2 + \cdots + |x_n|^2$, pour tout $x = (x_1, \dots, x_n) \in \mathbb{C}^n$) et $\|\cdot\|$ la norme matricielle sur $\mathcal{M}_n(\mathbb{C})$ subordonnée à la norme $\|\cdot\|_2$. Montrer que :
 - (a) $||Ux||_2 = ||U^*x||_2 = ||x||_2$, pour tout $x \in \mathbb{C}^n$.
 - (b) $||UA||_2 = ||AU||_2 = ||A||_2$, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$.
 - (c) $\operatorname{cond}_2(AU) = \operatorname{cond}_2(UA) = \operatorname{cond}_2(A)$, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$.

Exercice 5.

Quelles sont les matrices diagonalisables $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $(I_n - M)^2 = 0$? Remarque: attention, dans $\mathcal{M}_n(\mathbb{C})$ on peut avoir AB = 0 avec $A \neq 0$ et $B \neq 0$.