ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta 08 gennaio 2013

Esercizio A

$R_1 = 1 k\Omega$	$R_9 = 200 \Omega$		V _{cc}	V_{cc}	V _{cc} $_{\blacktriangle}$	
$R_2 + R_3 = 20 \text{ k}\Omega$	$R_{10} = 100 \text{ k}\Omega$		$R_2 \gtrsim$	\geqslant R $_{4}$	$R_{8} \stackrel{ }{\leqslant}$	C
$R_4=2.5\;k\Omega$	$R_{11} = 2.3 \text{ k}\Omega$	R₁	C,		R ₆	C ₃
$R_5 = 5 k\Omega$	$C_1 = 10 \text{ nF}$		-11	$ Q_1$	Q_2	\geqslant R ₁₀ $\stackrel{+}{{\scriptstyle -}}$ V _u
$R_6 = 1 k\Omega$	$C_2=1 \mu F$	V _i (+)	$R_3 \lesssim$	/ _D		nlin
$R_7 = 5 k\Omega$	$C_3 = 100 \text{ pF}$			R_5	$R_7 > R_{11}$	
$R_8 = 4 k\Omega$	$V_{CC} = 18 \text{ V}$	111111	77777	n.	\	77777

 Q_1 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.25 mA/V² e $V_T=-1$ V. Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- 1) Calcolare il valore delle resistenze R_2 e R_3 in modo che, in condizioni di riposo, la tensione del collettore di Q_2 sia 10 V. Si ipotizzi di trascurare la corrente di base di Q_2 rispetto alla corrente che scorre nella resistenza R_7 . Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_1 . (R: $R_2 = 11597 \Omega$; $R_3 = 8403 \Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 10.259$)
- 3) (**Solo per 12 CFU**) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 2710.18$ Hz; $f_{z2} = 69.20$ Hz; $f_{p2} = 776.53$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 15303.36$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A+B}\right)\left(\overline{D}\left(\overline{AC}\right)\right) + \left(\overline{C+D}\right)\left(\overline{AB} + \overline{D}A\right)$$

Determinare il numero minimo di transistori necessari e disegnare lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_4 = 1 k \Omega$
$R_2 = 1 k \Omega$	$R_5 = 1 k \Omega$
$R_3 = 1 \text{ k}\Omega$	$C = 1 \mu F$
$V_{\rm CC} = 5 \text{ V}$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC}=5V$, Q_1 ha una $R_{on}=0$ e $V_T=1$ V, Q_2 ha una $R_{on}=0$ e $V_T=-1$ V e gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore. (R: f=2038.67 Hz).

$$(\overline{AC}) + (\overline{C+D})(\overline{AB} + \overline{DA}) =$$

$$= \overline{AB} \cdot (\overline{D} \cdot (\overline{A} + \overline{C})) + \overline{CB}(\overline{A+B} + \overline{DA}) =$$

$$= \overline{ABD} + \overline{ABDC} + \overline{CDA} + \overline{CDB} + \overline{CDA} =$$

$$= \widehat{A} \, \widehat{B} \, \widehat{D} + \widehat{C} \, \widehat{D} = \widehat{D} \, \widehat{L} \, \widehat{A} \widehat{B} + \widehat{C} \, \widehat{J}$$

$$\frac{1}{3\rho} + \frac{1}{x} = \frac{1}{\rho} \rightarrow \frac{1}{x} = \frac{1}{\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} \Rightarrow x = 1.5\rho$$

Gladen Nasp

U=1 D: OPEN U=0 D: base

h 7017ET necessori per

yoh . - - le rele

e la il dimen to

10 CASO G=1 (appear scottoto) Dath upedia => Gz OFF $V_{TH} = \frac{\ell}{3} V_{CC} = V_i$ $R_4 R_3$ R_4 R_5 R_4 R_7 R_4 R_7 R_4 R_7 R_8 RZ= SUKR 1KR Ry = Sies Boun cester 1K2 Rz = BKO LEKER IKZ R1 = \$18 Ker 300 R KR= 2 Vcc $I_{R2} = \frac{V_{CC} - \frac{2}{3}V_{CC}}{R_1} = \frac{1}{3}V_{CC} = 1.6 \text{ mA}$ Vic Vione Up IR3 = VCC - 2 VCC = 1 VCC = 0.83 mA

R4+R3 = R4+R2 1.6V2 2.08V< SV IRI = IRI + IRS = Kelegrand 2.5 mA RVC = R1 + R2 11 (R3+R4) = 1166,6 =) (1 = 1.16 m sec (=1 µF T₁= z ln V₁-V₂ = 300000, × 10⁻⁴ 5 2° (250 U=4 =) 42 OFF bons = Us on Vi = 2.083 V VI= \$ Vion = 1 Vcc RVC= R1+R3 = 150el Vi > Vcan > Ve Te= 1.5 msec -3.347 Te= 016003 x10-45 2.08 > 1.6V > &V 4.305 T= TI+TC = 812000 × 10-65 2038,67 f= 1 = 10000008 HZ