Engineering Analysis I, Fall 2017 Midterm 2

Name			
	Section number		

Section number	Discussion time	Instructor
30	9:00 a.m.	Ilya Mikhelson
31	10:00 a.m.	Ilya Mikhelson
32	10:00 a.m.	Iman Hassani Nia
33	11:00 a.m.	Iman Hassani Nia
34	12:00 noon	Randy Berry

This exam is closed-book and closed-notes. Calculators, computers, phones, or other computing/communication devices are not allowed.

Students should skip this page—it is only for graders.

Question	Points	Score
1	12	
2	10	
3	13	
4	14	
5	10	
6	32	
7	9	
Total:	100	

Answer each question in the space provided. There are 7 questions for a total of 100 points.

Problem 1

Consider the following network flow diagram and flow balance equations:

(a) [2 points] Write the flow balance equations in the form $A\mathbf{x} = \mathbf{b}$, with \mathbf{x} as defined above.

(b) [3 points] Find the reduced row echelon form of the augmented matrix $[A \ \mathbf{b}]$.

(c) [3 points] Write the solution set for your system of equations in parametric vector form.

(d) [2 points] Find a parametric vector form solution in which the flows in the particular solution are all non-negative. There may be more than one right answer.

(e) [2 points] Draw a solution to the network flow problem with $x_{12} = 0$ and $x_{24} = 0$. Make sure no flows are negative!

Problem 2

Let

$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -3 & 1 & 4 \\ 2 & 1 & -2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 3 & -4 \\ 0 & 1 & 4 & 2 \\ 2 & -2 & 6 & -8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find each of the following quantities or write "not defined" if the operation is not defined.

(a) [2 points] A^{100}

(b) [2 points] C^{-1}

(c) [2 points] $(C^T)^{-1}$

(d) [2 points] $(BB^T)C$

(e) [2 points] AB

EA1 Midterm #2

each of the following transformations.

(a) Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 . Write the standard matrix for

Problem 3

i.	[2 points] T sca	les vectors v	rertically by a	factor of 3.		
ii.	[2 points] T firs				throug	gh the origin and
				45.1		1 (1
iii.	then rotates clo				throug	th the origin and
	points] Select all in the box next				onto. I	Put a check marl
	i.		ii.			iii.

(c) [2 points] Select all transformations from part (a) that are **one-to-one**. Put a check mark (\checkmark) in the box next to **EACH** correct answer.

i.

ii.

iii.

(d) [3 points] Given a linear transformation $T: \mathbb{R}^7 \to \mathbb{R}^2$, suppose that $T(2\mathbf{x}) = \begin{bmatrix} 10 \\ 2 \end{bmatrix}$ and $T(\mathbf{x} + \mathbf{y}) = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ for two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^7 . What is $T(\mathbf{y})$?

and $T(\mathbf{x} + \mathbf{y}) = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ for two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^7 . What is $T(\mathbf{y})$?

EA1 Midterm #2

Problem 4

(a) Consider the following matrix:

$$\begin{bmatrix} a & 0 & c & 0 \\ 0 & 1 & 1 & 0 \\ 0 & b & 0 & d \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Here a, b, c, and d represent constant parameters. If this matrix is in **reduced** row echelon form, and there are *three pivots*, then what must be the values of these four parameters? For each parameter, either write a specific number or write "any number" if the parameter can have any value.

i. [2 p	oints]	What	must	be	the	value	of	a?
------	-----	--------	------	------	----	-----	-------	----	----

i. _____

ii. [2 points] What must be the value of b?

ii.

iii. [2 points] What must be the value of c?

iii

iv. [2 points] What must be the value of d?

iv. _____

(b) [2 points] What is the reduced row echelon form of the following matrix?

$$\begin{bmatrix} 5 & 0 & 1 & 3 & 4 & 8 \\ 0 & 0 & 3 & 4 & 4 & 7 \\ 0 & 0 & 0 & 5 & 2 & 3 \\ 0 & 0 & 0 & 0 & 4 & -8 \\ 0 & 0 & 0 & 0 & 0 & -4 \end{bmatrix}$$

(c) Consider a system of linear equations of the form Ax = b, where the matrix A is 4-by-5 and the column vector x consists of the five unknown variables x_1, x_2, \ldots, x_5 . Suppose the reduced row echelon form of the augmented matrix is given by

$$\begin{bmatrix} A & b \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 8 \\ 0 & 0 & 1 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

i. [2 points] Which of the unknown variables are free?

ii. [1 point] How many solutions are there?

iii. [1 point] Does the solution set pass through the origin in \mathbb{R}^5 (yes or no)?

Problem 5

Answer each question in the space provided. Consider the following matrices:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -5 & 3 \\ 0 & 4 & -2 \\ 0 & -2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

(a) [2 points] Is A invertible? If so, find its inverse.

(b) [2 points] Is B invertible? If so, find its inverse.

(c) [2 points] Is C invertible? If so, find its inverse.

(d) [2 points] Is the product AB invertible? If so, find its inverse.

(e) [2 points] Is the product AC invertible? If so, find its inverse.

EA1 Midterm #2

Problem 6 32 poin	Problem	6	32 point
--------------------------	---------	---	----------

Answer TRUE or FALSE for each of the following statements. You do not have to explain your answer. (2 points each)

(a) If $\{x, y, z\}$ is a linearly dependent set, then $\{x, y\}$ must be linear	ly independent.
--	-----------------

(a) _____

(b) If a matrix is in reduced row echelon form, then the entry in its bottom left-hand corner must be 0.

(b) _____

(c) The solution set for a system of linear equations of the form $A\mathbf{x} = \mathbf{b}$ can contain exactly two distinct vectors.

(c) _____

(d) If a matrix A has a row of all zeros, then the system of linear equations $A\mathbf{x} = \mathbf{b}$ must be inconsistent.

(d) _____

(e) No two matrices can have the same reduced row echelon form.

(e) _____

(f) If a linear transformation from \mathbb{R}^5 to \mathbb{R}^5 is one-to-one, then the span of the columns of its standard matrix must be the same as its codomain.

(f) _____

(g) If a matrix product AB exists and is invertible, then both A and B must be invertible with $(AB)^{-1} = B^{-1}A^{-1}$.

(g) _____

(h) If a matrix product AB exists and has all zero entries, then either A or B (or both) must have all zero entries.

(h) _____

(i) If $A = B^T$, and the columns of B are linearly independent, then it must be the case that the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m .

(i) _____

(j) If the span of the set $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ in \mathbb{R}^m does not include all vectors in \mathbb{R}^m , then the linear transformation defined by the standard matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \cdots \mathbf{a}_n]$ is not onto.

(j) _____

(k)	A linear transformation defined by a matrix with more columns than rows cannot be onto.
	(k)
(1)	A linear transformation defined by a matrix with more columns than rows must be onto. (l)
(m)	A linear transformation defined by a matrix with more columns than rows cannot be one-to-one.
	(m)
(n)	A linear transformation defined by a matrix with more columns than rows must be one-to-one. (n)
(a)	
(0)	If the system of linear equations $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} , then the linear transformation defined by A must be both onto and one-to-one.
(p)	If matrix A has more rows than columns, then $A\mathbf{x} = \mathbf{b}$ cannot have infinitely many solutions.
	(p)

EA1 Midterm #2 Fall 2017

Problem 7 9 points

ma	trix A and a	vector b, a	nd the outp	out is a logic	eal scalar y.	The funct	The inputs are in should check true. Otherwise
	should be f le. <i>Hint: us</i>		rror checkii	ng, help line	es, etc. is n	ecessary.	Just provide th