

Designnotat

Tittel: Nivåregulator

Forfatter: Karl Henrik Ejdfors

Versjon: 2.0 Dato: 3. mai 2017

Innhold

1	Problembeskrivelse	1
2	Prinsipiell løsning	1
3	Realisering og test	2
4	Konklusjon	5

1 Problembeskrivelse

Vi vil ta for oss design av et system som vist i figur 1.1, inspirert av Lundheim [1]. Det skal brukes en variabel motstand for å regulere dempningsfaktoren A innenfor et gitt intervall $A_{min} = -3dB$ og $A_{max} = -28dB$, med en feilmargin på 0.1dB. Nivågeneratoren har til hensikt å dempe inngangssignalet v_1 , slik at utgangssignalet v_2 leverer det dempede signalet til R_L . Det dempede signalet er gitt ved formel 1.1.

Figur 1.1: Generell nivåregulator

2 Prinsipiell løsning

For å lage en variabel nivåregulator, der man manuelt endrer A, kan man bruke et potensiometer, R. På denne måten benyttes spenningsdeling, som vist i figur 2.1.

Figur 2.1: Spenningsdeling med variabel motstand R

Spenningen v_2 finner man ved spenningsdeling, gitt ved formel 2.1, og dermed dempningskonstanten A gitt i formel 2.2.

$$v_2 = \frac{v_1 \cdot R_2}{R_1 + R_2 + R}. (2.1)$$

$$A = \frac{v_2}{v_1} = \frac{\frac{v_1 \cdot R_2}{R_1 + R_2 + R_3}}{v_1} = \frac{R_2}{R_1 + R_2 + R}.$$
 (2.2)

Omgjøring til demping til dB er gitt ved formel 2.3.

$$A[dB] = 20 \cdot lgA. \tag{2.3}$$

3 Realisering og test

Nivåregulatoren kan realiseres som i figur 3.1, med komponentverdier i tabell 3.1, der man finner verdier for R_1 og R_2 ved likningssystem 3.1. $A_{min}[dB] = -3dB$, $A_{max}[dB] = -28dB$ og R_{max} er gitt ved høyeste verdi på potensiometeret, $10k\Omega$

$$A_{min} = \frac{R_2}{R_1 + R_2} = 10^{\frac{A_{min}[dB]}{20}} = 0.708.$$

$$A_{max} = \frac{R_2}{R_1 + R_2 + R_{max}} = 10^{\frac{A_{max}[dB]}{20}} = 0.039.$$

$$R_1 = \frac{A_{max} \cdot R_{max}(A_{min} - 1)}{A_{max} - A_{min}} = \frac{0.039 \cdot 10k\Omega(0.708 - 1)}{0.039 - 0.708} = 170\Omega.$$

$$R_2 = \frac{-A_{max} \cdot A_{min} \cdot R_{max}}{A_{max} - A_{min}} = \frac{-0.039 \cdot 0.708 \cdot 10k\Omega}{0.039 - 0.708} = 412\Omega.$$

I dette designet forutsetters motstandsverdiene $R_k \approx 0$ og $R_L \approx \infty$, fra figur 1.1 på side 1. R_1 tilnærmes ved å seriekoble 12Ω og 400Ω , og R_2 tilnærmes ved å seriekoble 147Ω og 22Ω .

Figur 3.1: Realisering av nivåregulatoren

Systemet blir testet med et sinusformet inngangssignal med amplitude A=1V og frekvens f=1kHz. Potensiometeret stilles til $R\approx 0\Omega$ og $R=10k\Omega$ for å måle henholdsvis A_{min} (figur 3.4) og A_{max} (figur 3.5).

Tabell 3.1: Motstandsverdier til figur 3.1

R_1	412Ω
R_2	167Ω
R	$0\text{-}10\mathrm{k}\Omega$

Figur 3.2: Testing av nivåregulatoren

Figur 3.3: Fotografi av oppsett

 ${f Figur~3.4:}$ Visualisering av spenning med minimal demping. Blå: inngangssignal, gul: dempet signal

 ${\bf Figur~3.5:}$ Visualisering av spenning med maksimal demping. Blå: inngangssignal, gul: dempet signal

Resultatet til A_{min} i figur 3.4 og A_{max} i figur 3.5 er høyeste og laveste verdi 0.708V og 39.704mV. Dette gir en demping på som vist i tabell 3.2.

$$A_{min}[dB] = 20lg(0.708) = -2.999dB.$$

$$A_{max}[dB] = 20lg(39.704 \cdot 10^{-3}) = -28.024dB.$$
(3.2)

Tabell 3.2: Teoretiske og målte resultater

[dB]	Teoretisk	Målt
A_{min}	-3	-2.99
A_{max}	-28	-28.02

De målte verdiene for A_{min} og A_{max} har et avvik fra de teoretiske verdiene, som er mindre enn 0.1dB. Den realiserte dempningsregulatoren oppfører seg dermed som forventet.

4 Konklusjon

Nivåregulatoren er designet ved å bruke spenningsdeling mellom motstander. Kravet om å ha avvik $\leq 0.1dB$ fra de teoretiske verdiene er oppfylt. De målte verdiene er $A_{min} = -2.99dB$ og $A_{max} = -28.02dB$.

Referanser

[1] Lars Lundheim. Variabel nivåregulator. NTNU 2017.