Lineare Algebra II Repetitorium

Jendrik Stelzner

15. September 2016

1 Jordannormalform

1.1 Nilpotente Endomorphismus

Definition 1.1. Ein Endomorphismus $f\colon V\to V$ eines K-Vektorraums V heißt nilpotent, falls es ein $n\in\mathbb{N}$ mit $f^n=0$ gibt. Eine Matrix $A\in\mathrm{M}_n(K)$ heißt nilpotent, falls es ein $n\in\mathbb{N}$ mit $A^n=0$ gibt.

Lemma 1.2. Ist $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so ist f genau dann nilpotent, wenn für jede geordnete Basis $\mathcal B$ von V die Matrix $\mathrm M_{\mathcal B}(f)$ nilpotent ist.

Notation 1.3. Für alle $n \ge 1$ sei

$$J_n := \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix} \in \mathcal{M}_n(K).$$

Theorem 1.4. Es sei V ein endlichdimensionaler K-Vektorraum und $f\colon V\to V$ ein nilpotenter Endomorphismus.

i) Es gibt eine geordnete Basis \mathcal{B} von V und $n_1, \ldots, n_s \geq 1$, so dass

$$\mathbf{M}_{\mathcal{B}}(f) = \begin{pmatrix} J_{n_1} & & \\ & \ddots & \\ & & J_{n_s} \end{pmatrix}.$$

- ii) Die Zahlen n_1, \ldots, n_s sind eindeutig bis auf Permutation.
- iii) Ist $f^N = 0$ für ein $N \ge 1$, so ist $n_i \le N$ für alle $i = 1, \dots, s$.

Korollar 1.5. Ist $A \in M_n(K)$ nilpotent, so gibt es $S \in GL_n(K)$ und $n_1, \ldots, n_s \ge 1$ mit

$$SAS^{-1} = \begin{pmatrix} J_{n_1} & & \\ & \ddots & \\ & & J_{n_s} \end{pmatrix}.$$

Dabei sind die Zahlen n_1, \ldots, n_s eindeutig bis auf Permutation, und ist $A^N = 0$ für ein $N \ge 1$, so ist $n_i \le N$ für alle $i = 1, \ldots, s$.

Lemma 1.6. Ist V ein endlichdimensionaler K-Vektorraum, und sind $U,W,\subseteq V$ zwei Untervektorräume mit $U\cap W=0$, so gibt es einen Untervektorraum $\overline{W}\subseteq V$ mit $W\subseteq \overline{W}$ und $V=U\oplus \overline{W}$.

1.2 Allgemeine Jordannormalform

Definition 1.7. Für einen Endomorphismus $f \colon V \to V$ und einen Skalar $\lambda \in K$ ist

$$V_{\lambda}^{\sim}(f)\coloneqq \{v\in V\mid \text{es gibt } n\geq 1 \text{ mit } (f-\lambda\operatorname{id}_V)^n(v)=0\}$$

der *Hauptraum* von f zu λ .

Lemma 1.8. Es sei $f: V \to V$ und $\lambda \in K$.

- i) Der Hauptraum $V_{\lambda}^{\sim}(f)$ ist ein Untervektorraum von V.
- ii) Es gilt $V_{\lambda}(f) \subseteq V_{\lambda}^{\sim}(f)$.
- iii) Es ist genau dann $V_{\lambda}^{\sim}(f) \neq 0$, wenn λ ein Eigenwert von f ist.
- iv) Der Hauptraum $V_{\lambda}^{\sim}(f)$ ist f-invariant.
- v) Ist V endlichdimensional, so gibt es $N \geq 1$ mit $(f \lambda \operatorname{id}_V)^N(v) = 0$ für alle $v \in V$, $\text{ und es gilt } V_{\lambda}^{\sim}(f) = \ker(f - \lambda \operatorname{id}_V)^N.$

Lemma 1.9. Es sei $f \colon V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

Notation 1.10. Für alle $n \geq 1$ und $\lambda \in K$ ist

$$J(n,\lambda) \coloneqq \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_n(K)$$

der Jordanblock von Größe n zu
(m Eigenwert) λ

Theorem 1.11. Es sei $f: V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so dass $V=V_{\lambda_1}^{\sim}(f)\oplus\cdots\oplus V_{\lambda_t}^{\sim}(f)$ für die Eigenwerte $\lambda_1,\ldots,\lambda_t\in K$ von f.

i) Es gibt eine geordnete Basis \mathcal{B} von V und $n_1^{(1)}, \ldots, n_{s_1}^{(1)}, \ldots, n_1^{(t)}, \ldots, n_{s_t}^{(t)} \geq 1$, so dass

s gibt eine geordnete Basis
$$\mathcal B$$
 von V und $n_1^{(r)},\dots,n_{s_1}^{(r)},\dots,n_1^{(r)},\dots,n_{s_t}^{(r)}\geq 1$, so date
$$J(n_1^{(1)},\lambda_1)$$

$$\vdots$$

$$J(n_{s_1}^{(1)},\lambda_1)$$

$$\vdots$$

$$J(n_1^{(t)},\lambda_1)$$

$$\vdots$$

$$\vdots$$

$$J(n_{s_t}^{(t)},\lambda_1)$$

- ii) Die Zahlen $(n_1^{(1)},\dots,n_{s_1}^{(1)}),\dots,(n_1^{(t)},\dots,n_{s_t}^{(t)})$ sind jeweils eindeutig bis auf Permu-
- iii) Es gilt $n_1^{(i)} + \cdots + n_{s_i}^{(i)} = \dim V_{\lambda}^{\sim}(f)$ für alle $i = 1, \ldots, t$.

1.3 Existenz der Hauptraumzerlegung

Lemma 1.12. Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

- i) Für alle $\lambda,\mu\in K$ mit $\lambda\neq\mu$ ist die Einschränkung $(f-\lambda\operatorname{id}_V)|_{V_\mu^\sim(f)}$ invertierbar.
- ii) Für alle $\lambda_1, \ldots, \lambda_t \in K$ ist die Summe $V_{\lambda_1}^{\sim}(f) + \cdots + V_{\lambda_t}^{\sim}(f)$ direkt.

Lemma 1.13. Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen Vektorraums V und $\lambda\in K$. Ferner sei $U\subseteq V$ ein f-invarianter Untervektorraum mit $V=V_\lambda^\sim(f)\oplus U$. Dann ist λ kein Eigenwert von $f|_U$, und es gilt

$$\chi_f(T) = (T - \lambda)^{\dim V_{\lambda}^{\sim}(f)} \cdot \chi_{f|_U}(T).$$

Lemma 1.14 (Fitting). Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Für alle $k\ge 0$ sei

$$N_k \coloneqq \ker f^k \quad \text{und} \quad R_k \coloneqq \operatorname{im} f^k.$$

i) Es gilt

$$0 = N_0 \subseteq N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$$

und

$$V = R_0 \supseteq R_1 \supseteq R_2 \supseteq R_3 \supseteq \cdots$$

- ii) Für $k \ge 0$ sind die folgenden Bedingungen äquivalent:
 - a) $N_{k+1} = N_k$,
 - b) $N_l = N_k$ für alle $l \ge k$,
 - c) $R_{k+1} = R_k$,
 - d) $R_l = R_k$ für alle $l \ge k$.

(Wenn also eine der beiden Ketten einmal stabiliert, so sind beide Ketten von dort an stabil.)

iii) Die beiden Teilmengen $N\coloneqq\bigcup_{k\geq 0}N_k$ und $R\coloneqq\bigcap_{k\geq 0}R_k$ sind f-invariante Untervektorräume von V, und es gilt $V=N\oplus R$.

Theorem 1.15 (Existenz der Hauptraumzerlegung). Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Dann gibt es genau dann eine Hauptraumzerlegung von V bezüglich f, wenn das charakteristische Polynom $\chi_f(T)$ in Linearfaktoren zerfällt.

Korollar 1.16. Ist K ein algebraisch abgeschlossener Körper und $f: V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so ist $V = \bigoplus_{\lambda \in K} V_{\lambda}^{\sim}(f)$.

Korollar 1.17. Ist K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V (bzw. $A\in \mathrm{M}_n(K)$), so ist $\chi_f(f)=0$ (bzw. $\chi_A(A)=0$).

Korollar 1.18 (Abstrakte Jordanzerlegung). Ist K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so gibt es eindeutige Endomorphismen $d,n\colon V\to V$, so dass

- a) f = d + n,
- b) d ist diagonalisierbar und n ist nilpotent,
- c) d und n kommutieren