Predmet: Linearni algebra 2

Ukol: 2. Verze: 1.

Autor: David Napravnik

Prezdivka: DN

1. zadani

Urcete charakteristicky polynom, spocitejte vlastni cisla a odpovidajici vlastni vektory

reseni A

$$(4 - \lambda) * (1 - \lambda) - (-3 * (-6))$$

 $4 - 5\lambda + \lambda^2 - 18$

charakteristicky polynom: $\lambda^2 - 5\lambda - 14$

vlastni cisla:

$$\lambda^2 - 5\lambda - 14 = 0$$

$$\underline{\lambda_1 = 7}$$
; $\underline{\lambda_2 = -2}$

vlastni vektory:

$$\begin{bmatrix} 4-\lambda & -3 \\ -6 & 1-\lambda \end{bmatrix}$$

$$\begin{bmatrix} 4 - \lambda & -3 \\ -6 & 1 - \lambda \end{bmatrix}$$
 pro $\lambda_1 : \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ vlastni vektor pro $\lambda_1 = \underline{[-1, 1]}$

pro
$$\lambda_2 : \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$$
 vlastni vektor pro $\lambda_2 = \underbrace{[1,2]}$

reseni B

$$(2-\lambda)^2 + 1$$

charakteristicky polynom: $\underline{\lambda^2 - 4\lambda + 5}$

vlastni cisla:

$$\lambda^2 - 4\lambda + 5 = 0$$

$$\underline{\lambda_1 = 2 + i}$$
; $\underline{\lambda_2 = 2 - i}$

vlastni vektory:

$$\begin{bmatrix} 2 - \lambda & -1 \\ 1 & 2 - \lambda \end{bmatrix}$$

pro
$$\lambda_1:\begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix}$$
 vlastni vektor pro $\lambda_1=\underline{[i,1]}$

pro
$$\lambda_2 : \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}$$
 vlastni vektor pro $\lambda_2 = \underline{[-i,1]}$

reseni C

$$(1-\lambda)^3 - 1 + 3\lambda$$

charakteristicky polynom: $-\lambda^3 + 3\lambda^2$

vlastni cisla:

$$rank\ C=1,\ rank\ ker\ C=2$$

$$\lambda_1 = \lambda_2 = 0$$

$$\lambda^2 - 4\lambda + 5 = 0$$

$$\underline{\lambda_1 = 2 + i} \; ; \; \underline{\lambda_2 = 2 - i}$$

vlastni vektory:

$$\begin{bmatrix} 2-\lambda & -1 \\ 1 & 2-\lambda \end{bmatrix}$$
 pro $\lambda_1:\begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix}$ vlastni vektor pro $\lambda_1=\underline{\underbrace{[i,1]}}$ pro $\lambda_2:\begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}$ vlastni vektor pro $\lambda_2=\underline{\underbrace{[-i,1]}}$

2. zadani

Najdete $\alpha \in \mathbb{R}$ tak, aby $\lambda = 3$ było jedno z vlastnich cisel matice M

reseni

$$3+\lambda_2+\lambda_3=track\ M=9$$

$$3*\lambda_2*\lambda_3=det\ M=\frac{8\alpha}{3}-8$$
 zvolime nahodne jedno vlastni cislo, druhe dopocitame, treti mame zadane $\lambda_2=2,\ \lambda_3=4$ po dosazeni do rovnice tri vlastnich cisel dopocitame pres determinant α
$$3*2*4=\frac{8\alpha}{3}-8$$

$$\underline{\alpha=6}$$

3. zadani

Najdete nejmensi cislo $\alpha \in \mathbb{R}$ takove, ze matice $A + \beta I_n$ je regularni pro vsechna $\beta > \alpha$ (pozn. predpokladam za matici A se mysli matice z prikladu 1)

reseni

nejdrive najdeme pro ktera β je matice A singularni

$$\begin{bmatrix} 4 + \beta & -3 \\ -6 & 1 + \beta \end{bmatrix}$$
$$\beta^2 + 5\beta - 14 = 0$$
$$\beta_1 = -7 \; ; \; \beta_2 = 2$$

aby byla matice regularni musi platit $\beta > max(\beta_1, \beta_2) = \underline{\alpha} = \underline{2}$

4. zadani

Matice $A \in \mathbb{R}^{3\times 3}$ ma vlastni cisla $\lambda_1 = -1$, $\lambda_2 = 2$ a $\lambda_3 = 5$ Urcete stopu a determinant matice $(-A^2 + 5I_3)^{-1}$

reseni

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 25 \end{bmatrix}$$

$$(-A^{2} + 5I_{3})^{-1} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -20 \end{bmatrix}$$

$$track \ A = 4 + 1 - 20 = -15$$

$$determinant \ A = 4 * 1 * (-20) = -80$$