Aula 14 – Funções Contínuas

Metas da aula: Introduzir o fundamental conceito de função contínua. Apresentar os critérios básicos para o estabelecimento da continuidade e da descontinuidade de funções.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o significado do conceito de função contínua e seu uso na verificação da continuidade de funções.
- Conhecer os critérios básicos de continuidade e descontinuidade e suas aplicações para a verificação dessas propriedades.

Introdução

Nesta aula vamos definir o que significa uma função ser contínua num ponto ou sobre um conjunto. Essa noção é um dos conceitos centrais da análise matemática e será usada em quase todo o material seguinte deste curso. Será, portanto, decisivo que você domine esse conceito.

Funções Contínuas

Comecemos com a definição de continuidade de uma função num ponto de seu domínio.

Definição 14.1

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$, e $\bar{x} \in X$. Dizemos que f é contínua em \bar{x} se, dado qualquer $\varepsilon > 0$ existe $\delta > 0$ tal que se $x \in X$ satisfaz $|x - \bar{x}| < \delta$, então $|f(x) - f(\bar{x})| < \varepsilon$.

Se f não é contínua em \bar{x} , dizemos que f é descontínua em \bar{x} .

Como no caso da definição de limite, a definição de continuidade num ponto também pode ser formulada de modo muito interessante em termos de vizinhanças. Isso é feito no próximo resultado, cuja verificação bastante simples deixamos como um importante exercício para você. Veja Figura 14.1.

Teorema 14.1

Uma função $f: X \to \mathbb{R}$ é contínua num ponto $\bar{x} \in X$ se, e somente se, dada qualquer ε -vizinhança $V_{\varepsilon}(f(\bar{x}))$ de $f(\bar{x})$ existe uma δ -vizinhança $V_{\delta}(\bar{x})$

ANÁLISE REAL

Figura 14.1: A função f é contínua em \bar{x} .

de \bar{x} tal que se x é um ponto qualquer em $X \cap V_{\delta}(\bar{x})$, então f(x) pertence a $V_{\varepsilon}(f(\bar{x}))$, isto é,

$$f(X \cap V_{\delta}(\bar{x})) \subset V_{\varepsilon}(f(\bar{x})).$$

Observação 14.1

(i) Se $\bar{x} \in X$ é um ponto de acumulação de X, então uma comparação da Definição 12.2 com a Definição 14.1 mostra que f é contínua se, e somente se,

$$\lim_{x \to \bar{x}} f(x) = f(\bar{x}). \tag{14.1}$$

Logo, se \bar{x} é um ponto de acumulação de X, então três condições devem valer para f ser contínua em \bar{x} :

- (i.1) f deve estar definida em \bar{x} (de modo que $f(\bar{x})$ faça sentido),
- (i.2) o limite de f em \bar{x} deve existir (de modo que $\lim_{x \to \bar{x}} f(x)$ faça sentido), e
- (i.3) a equação (14.1) deve ser válida.
- (ii) Se $x \in X$ não é um ponto de acumulação de X, então existe uma vinhança $V_{\delta}(\bar{x})$ de \bar{x} tal que $X \cap V_{\delta}(\bar{x}) = \{\bar{x}\}$. Assim, concluímos que a função f é automaticamente contínua num ponto $\bar{x} \in X$ que não é ponto de acumulação de X. Tais pontos são frequentemente

chamados "pontos isolados". Eles são de pouco interesse para nós já que não têm relação com qualquer processo limite. Como a continuidade é automática para tais pontos, em geral verificamos a continuidade apenas em pontos de acumulação. Por isso encaramos a condição (14.1) como sendo característica para a continuidade em \bar{x} .

Uma leve adaptação na prova do Teorema 12.4 para limites nos leva à seguinte versão sequencial para a continuidade num ponto.

Teorema 14.2 (Critério Sequencial para Continuidade)

Uma função $f: X \to \mathbb{R}$ é contínua num ponto $\bar{x} \in X$ se, e somente se, para toda sequência (x_n) em X que converge a \bar{x} , a sequência $(f(x_n))$ converge para $f(\bar{x})$.

O seguinte Critério de Descontinuidade é uma consequência imediata do teorema anterior. Você deve prover sua demonstração detalhada.

Teorema 14.3 (Critério de Descontinuidade)

Sejam $X \subset \mathbb{R}$, $f: X \to \mathbb{R}$ e $\bar{x} \in X$. Então f é descontínua em \bar{x} se, e somente se, existe uma sequência (x_n) em X tal que (x_n) converge para \bar{x} , mas a sequência $(f(x_n))$ não converge para $f(\bar{x})$.

A seguinte definição estende de forma natural a noção de continuidade num ponto para a de continuidade num subconjunto qualquer de \mathbb{R} .

Definição 14.2

Seja $X \subset \mathbb{R}$ e seja $f: X \to \mathbb{R}$. Se Y é um subconjunto de X, dizemos que f é contínua no conjunto Y se f é contínua em todo ponto de Y.

Exemplos 14.1

(a) Dado $c \in \mathbb{R}$, a função constante f(x) := c é contínua em \mathbb{R} .

Vimos no Exemplo 12.2 (a) que se $\bar{x} \in \mathbb{R}$, então $\lim_{x \to \bar{x}} f(x) = c$. Como $f(\bar{x}) = c$, temos que $\lim_{x \to \bar{x}} f(x) = f(\bar{x})$, e portanto f é contínua em todo $\bar{x} \in \mathbb{R}$. Logo, f é contínua em \mathbb{R} .

- (b) A função f(x) := x é contínua em \mathbb{R} .
 - Vimos no Exemplo 12.2 (b) que se $\bar{x} \in \mathbb{R}$, então $\lim_{x \to \bar{x}} f = \bar{x}$. Como $f(\bar{x}) = \bar{x}$, segue que f é contínua para todo $\bar{x} \in \mathbb{R}$. Logo, f é contínua em \mathbb{R} .
- (c) A função $f(x) := x^2$ é contínua em \mathbb{R} .

ANÁLISE REAL

Vimos no Exemplo 12.2 (c) que se $\bar{x} \in \mathbb{R}$, então $\lim_{x \to \bar{x}} f = \bar{x}^2$. Como $f(\bar{x}) = \bar{x}^2$, segue que f é contínua em todo ponto $\bar{x} \in \mathbb{R}$. Logo, f é contínua em \mathbb{R} .

- (d) A função f(x) := 1/x é contínua em $X := \{x \in \mathbb{R} : x > 0\}$. Vimos no Exemplo 12.2 (d) que se $\bar{x} \in X$, então $\lim_{x \to \bar{x}} f = 1/\bar{x}$. Como $f(\bar{x}) = 1/\bar{x}$, temos que f é contínua em todo ponto $\bar{x} \in X$. Logo, f é contínua em X.
- (e) Dado qualquer $c \in \mathbb{R}$ a função $f: X := [0, +\infty) \to \mathbb{R}$ definida por

$$f(x) := \begin{cases} c, & \text{se } x = 0, \\ 1/x, & \text{se } x > 0, \end{cases}$$

é descontínua em x=0.

De fato, a sequência (1/n) converge para 0, mas f(1/n) = n não converge em \mathbb{R} . Pelo Teorema 14.3 concluímos que f é descontínua em x = 0.

(f) A função $f(x) := \operatorname{sgn}(x)$ é descontínua em x = 0. Veja Figura 12.2. Vimos no Exemplo 12.3 (b) que se $x_n = (-1)^n/n$ então $x_n \to 0$ mas a sequência $(f(x_n))$ não converge. Então, pelo Teorema 14.3 concluímos que f é descontínua em x = 0.

Será um bom exercício para você mostrar que sgn(x) é contínua em todo ponto $\bar{x} \neq 0$.

(g) Seja $X := \mathbb{R}$ e seja f a "função descontínua" de Dirichlet definida por

$$f(x) := \begin{cases} 1 & \text{se } x \text{ \'e racional,} \\ 0 & \text{se } x \text{ \'e irracional.} \end{cases}$$

Afirmamos que f é descontínua em todo ponto $\bar{x} \in \mathbb{R}$. Essa função foi introduzida por P. G. L. DIRICHLET (1805–1859), um grande matemático do século XIX.

De fato, seja \bar{x} um número racional. Pelo Teorema da Densidade 4.5, existe um número irracional ξ_n satisfazendo $\bar{x} < \xi_n < \bar{x} + 1/n$ para todo $n \in \mathbb{N}$. Assim, a sequência (ξ_n) converge a $\bar{x} \in \xi_n \in \mathbb{R} \setminus \mathbb{Q}$ para todo $n \in \mathbb{N}$. Como $f(\xi_n) = 0$ para todo $n \in \mathbb{N}$, temos que $\lim f(\xi_n) = 0$, enquanto $f(\bar{x}) = 1$. Portanto, f não é contínua em \bar{x} se \bar{x} é um número racional.

Por outro lado, se \bar{x} é um número irracional, pelo Teorema da Densidade 4.5, similarmente, podemos obter uma sequência (r_n) tal que $r_n \in \mathbb{Q}$ para todo $n \in \mathbb{N}$ e $r_n \to \bar{x}$. Como $f(r_n) = 1$ para todo $n \in \mathbb{N}$, temos $\lim f(r_n) = 1$, enquanto $f(\bar{x}) = 0$. Portanto, f não é contínua em \bar{x} se \bar{x} é um número irracional.

Como todo número real ou é racional ou é irracional, concluímos que f é descontínua em todo ponto em \mathbb{R} .

(h) Seja $X:=\{x\in\mathbb{R}:x>0\}$. Para todo número irracional x>0 definimos f(x)=0. Dado um número racional em X, podemos escrevê-lo na forma p/q, com $p,q\in\mathbb{N}$ primos entre si (i.e., sem divisores comuns exceto 1), e então definimos f(p/q)=1/q. Afirmamos que f é contínua em todo número irracional em X, e descontínua em todo número racional em X. Essa função foi introduzida em 1875 por K. J. Thomae.

De fato, se $\bar{x} > 0$ é racional, tomemos uma sequência (x_n) de números irracionais em X que converge para \bar{x} . Então $\lim f(x_n) = 0$, mas $f(\bar{x}) > 0$. Logo, f é descontínua em \bar{x} .

Por outro lado, se \bar{x} é um número irracional e $\varepsilon > 0$, então (pela Propriedade Arquimediana) existe um número natural N_0 tal que $1/N_0 < \varepsilon$. Note também que existe apenas um número finito de racionais com denominador menor que N_0 no intervalo $(\bar{x}-1,\bar{x}+1)$, já que para cada $q \in \{1,\ldots,N_0-1\}$ existem no máximo 2q racionais com denominador igual a q nesse intervalo (por quê?). Portanto, podemos escolher $\delta > 0$ pequeno o bastante de modo que a vizinhança $(\bar{x}-\delta,\bar{x}+\delta)$ não contenha nenhum racional com denominador menor que N_0 . Segue então que para $|x-\bar{x}| < \delta$, com $x \in X$, temos $|f(x)-f(\bar{x})| = |f(x)| \le 1/N_0 < \varepsilon$. Portanto, f é contínua no número irracional \bar{x} .

Consequentemente, deduzimos que a função de Thomae f é contínua exatamente nos pontos irracionais de X.

(i) Sejam $f: X \to \mathbb{R}$ e \bar{x} um ponto de acumulação de X tal que $\bar{x} \notin X$. Se f tem um limite L no ponto \bar{x} e se definimos $\bar{f}: X \cup \{\bar{x}\} \to \mathbb{R}$ por

$$\bar{f} := \begin{cases} L & \text{para } x = \bar{x}, \\ f(x) & \text{para } x \in X, \end{cases}$$

então \bar{f} é contínua em \bar{x} .

ANÁLISE REAL

De fato, precisamos apenas verificar que $\lim_{x\to \bar x}\bar f=L$ mas isso é imediato já que $\lim_{x \to \bar{x}} f = L$.

Por exemplo, se $f(x) = x \operatorname{sen}(1/x)$ para $x \neq 0$, $\bar{f}(x) = f(x)$ para $x \neq 0$ e $\bar{f}(0) = 0$, então \bar{f} é contínua em \mathbb{R} . Veja Figura 13.1.

(j) Se a função $f: X \to \mathbb{R}$ não possui limite em \bar{x} , então não existe nenhuma forma de obter uma função $\bar{f}: X \cup \{\bar{x}\} \to \mathbb{R}$ contínua em \bar{x} definindo

$$\bar{f} := \begin{cases} c & \text{para } x = \bar{x}, \\ f(x) & \text{para } x \in X, \end{cases}$$

qualquer que seja $c \in \mathbb{R}$.

De fato, se $\lim_{x\to \bar x} \bar f$ existisse, então também existiria $\lim_{x\to \bar x} f$ e valeria a igualdade $\lim_{x\to \bar x} \bar f = \lim_{x\to \bar x} f$.

Por exemplo, a função f(x) := sen(1/x) para $x \neq 0$ (veja Figura 12.3) não possui limite em x=0. Assim, não há nenhum valor que possamos atribuir à ela em x=0 de modo a obter uma extensão de f contínua em x = 0.

Exercícios 14.1

- 1. Prove o Teorema 14.2 (Critério Sequencial).
- 2. Prove o Teorema 14.3 (Critério de Descontinuidade).
- 3. Seja a < b < c. Suponhamos que f é contínua em [a, b], que q é contínua em [b,c] e que f(b)=g(b). Defina h sobre [a,c] pondo h(x):=f(x)para $x \in [a, b]$ e h(x) := q(x) para $x \in [b, c]$. Prove que h é contínua em [a, c].
- 4. Se $x \in \mathbb{R}$, definimos [x] como o maior inteiro $m \in \mathbb{Z}$ tal que $m \leq x$. Por exemplo, $\llbracket 5.7 \rrbracket = 5$, $\llbracket \pi \rrbracket = 3$, $\llbracket -\pi \rrbracket = -4$. A função $x \mapsto \llbracket x \rrbracket$ é chamada a função parte inteira. Determine os pontos de continuidade das seguintes funções:
 - (a) f(x) := [x],
 - (b) f(x) := x + [x]
 - (c) $f(x) := \text{sen}([\![x]\!]),$
 - (d) $f(x) := [1/x] (x \neq 0)$.

- 5. Seja $f(x) = (x^2 2x 3)/(x 3)$ para $x \neq 3$. É possível definir f em x = 3 de modo que f seja contínua nesse ponto?
- 6. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua em \bar{x} e $f(\bar{x}) > 0$. Mostre que existe uma vizinhança $V_{\delta}(\bar{x})$ de \bar{x} tal que se $x \in V_{\delta}(\bar{x})$, então f(x) > 0.
- 7. Seja $f: \mathbb{R} \to \mathbb{R}$ contínua em \mathbb{R} e seja $Z = \{x \in \mathbb{R} : f(x) = 0\}$ o "conjunto zero" de f. Se (x_n) é uma sequência tal que $x_n \in Z$ para todo $n \in \mathbb{N}$ e $\bar{x} = \lim x_n$, mostre que $\bar{x} \in Z$.
- 8. Sejam $X\subset Y\subset \mathbb{R},\ f:Y\to \mathbb{R}$ e $g:X\to \mathbb{R}$ a restrição de f a X, i.e., g:=f|X.
 - (a) Se f é contínua em $\bar{x} \in X$, mostre que g é contínua em \bar{x} .
 - (b) Dê um exemplo em que a restrição g é contínua num ponto \bar{x} , mas sua extensão f não é contínua em \bar{x} .
- 9. Seja K>0 e suponhamos que $f:\mathbb{R}\to\mathbb{R}$ satisfaz $|f(x)-f(y)|\leq K|x-y|$ para todo $x,y\in\mathbb{R}$. Mostre que f é contínua em todo ponto $\bar{x}\in\mathbb{R}$.
- 10. Suponhamos que $f: \mathbb{R} \to \mathbb{R}$ é contínua em \mathbb{R} e que f(r) = 0 para todo $r \in \mathbb{Q}$. Prove que f(x) = 0 para todo $x \in \mathbb{R}$.
- 11. Sejam $f, g : \mathbb{R} \to \mathbb{R}$ funções contínuas em \mathbb{R} , e seja $h : \mathbb{R} \to \mathbb{R}$ definida por h(x) := f(x) para $x \in \mathbb{Q}$ e h(x) := g(x) para $x \in \mathbb{R} \setminus \mathbb{Q}$. Prove que h é contínua em \bar{x} se, e somente se, $f(\bar{x}) = g(\bar{x})$.