OPEN-SET RECOGNITION: A GOOD CLOSED-SET CLASSIFIER IS ALL YOU NEED?

概要

- Open-set recognition (OSR)
 - テスト時で訓練時に遭遇していないクラスを観測した時に、それを無知と 区別するタスク
 - The standard baseline for OSR maximum softmax probability (MSP) baseline
 - 訓練時
 - 。 クラスのクロスエントロピー損失
 - テスト時
 - 入力が既存のクラスに属しているか、属していないかをソフトマックス関数による確率の形で出力する

一言

- 閉集合と開集合のパフォーマンスは密接に関連しており、これは様々なデータセット、目的関数、モデル構造に対して言えることがこの論文からわかった
- 閉集合のパフォーマンスを向上させることが重要
 - 強力なデータ拡張
 - 学習率のスケーリング
 - label smoothing (ラベル正則化)
 - 。 ラベル平滑化では、CNNなどの出力層(クラス信頼度のsoftmax確率)を、交差エントロピー損失関数(負の対数損失)を用いて学習す

る際に、まず負のエントロピーを正則化項として加える。これにより、{0,1}だけで構成される「ハードな」正解のラベルに対して、パラメータをの割合だけハードラベルから差し引いた確率値を、全クラスに分配して小さなノイズ値として追加する。すると、元のハードなsoftmax確率の変わりに,「滑らかな」**ソフトラベル**(ラベル確率ベクトルの教師ラベル)に代替させて学習できる。そのおかげで、ハードラベルへの過剰適合を防ぐことができるという仕組みである

■ 開集合

- 正則化されたソフトマックス確率の代わりにmaximum logit score (MLS)を提案した
- 評価指標
 - Semantic Shift Benchmark suite (SSB)
- テストデータが閉集合からなる
 - 訓練時に学習したクラスに関して、クラス確率を出力する
- テストデータが開集合からなる
 - クラス確率に加えて、入力が既存のクラスに当てはまるかどうかのスコアを出力する
- ベースライン
 - Maximum Softmax Probability (MSP, baseline)
 - 。訓練時
 - targetのラベルとソフトマックス関数の出力のクロスエントロ ピーで学習
 - 。 テスト時
 - ソフトマックス関数による最大確率をスコアとする
 - ARPL
 - 。 RPL (Reciprocal Point Learning) optimization strategyの拡張
 - 。 潜在空間上の「reciprocal point」との距離を測る

- 未知のクラスについては既存のクラスの「reciprocal point」との 距離が遠くなる
 - ユークリッド距離とコサイン距離(コサイン類似度?)の和を スコアとした
- ARPL + CS
 - 。 未知のクラスの「reciprocal point」を擬似的に作成する
- 実験
 - 小規模
 - 。 データセット
 - データセットの一部のクラスでもって学習させ、テスト時に既 存のクラスと使用していないクラスを用いてOSRの精度をみる
 - MNIST, SVHN, CIFAR10 全て10クラス
 - これを6クラスを訓練に、4クラスが未知
 - CIFAR+N
 - CIFAR10の中から4クラスを用いて学習し、CIFAR100から 10もしくは50クラスが未知
 - TinylmageNet
 - ImageNetから200クラスを抽出したもの
 - 。 20クラスを学習に用いて、180クラスが未知
 - 。 テスト時に入力が既知であるか、もしくは未知であるかをバイナリ で出力する
 - threshold-free area under the Receiver-Operator curve (AUROC)を評価指標として使用
 - 。 結果

閉集合と開集合について正の相関がある

• 大規模

- 。 モデル
 - VGG, ResNet, EfficientNet, ViT, MLP-Mixer
 - Imagenet-21kで事前学習し、Imagenet-1kでファインチューンしたもの
- 。 データセット
 - Imagenet-21k-P
 - Imagenetから11kほどのクラスを選んだもの
 - その中から、Imagenet-1Kに現れない1000クラスを二つ用 意する。そのうち切り分けるのが簡単なデータセットを 「Easy」、難しい方を「Hard」とした
 - 結果
 - 。 ViTだけeasy, hardについて他のモデルのような精度の 挙動は示さなかった

• baselineの強化

Setting							Closed-Set	Open-Set	Combined
Epochs	Scheduler	Aug.	Logit Eval	Warmup	Label Smoothing	Ensemble	(Accuracy)	(AUROC)	(OSCR)
100	Step	RandCrop	Х	X	Х	Х	64.3	68.9	51.4
100	Step	RandCrop	✓	X	×	X	64.3	69.6	50.7
200	Cosine (0)	RandCrop	1	X	Х	Х	77.7	74.8	64.3
200	Cosine (0)	CutOut	✓	×	X	×	77.6	75.4	64.7
200	Cosine (0)	RandAug	✓	X	×	X	79.8	76.6	67.3
600	Cosine (2)	RandAug	√	X	Х	Х	82.5	78.2	70.3
600	Cosine (2)	RandAug	✓	✓	X	X	82.5	78.4	70.3
600	Cosine (2)	RandAug	✓	✓	✓	X	84.2	83.0	74.3
600	Cosine (2)	RandAug	✓	✓	✓	✓	85.3	84.0	76.1

- maximum logit score (MLS)
 - 最終層でSoftmax関数に入力する前の出力のこと