Brevi appunti di Fondamenti di Automatica¹

prof. Stefano Panzieri Dipartimento di Informatica e Automazione Università degli Studi "ROMA TRE"

21 gennaio 2019

INDICE STEFANO PANZIERI

Indice

L	La	Trasfomata di Laplace	2
		1.0.1 Definizione	2
	1.1	Una trasformata elementare	2
		1.1.1 Trasformate derivate da quella elementare	3
	1.2	Alcune proprietà	3
	1.3	Trasformata dell'impulso	5
	1.4	Trasformate dei polinomi	5
	1.5	Inversione della Trasformata di Laplace	6
		1.5.1 Un esempio: il carrello	6
	1.6	Andamento delle antitrasformate nel tempo	7
		1.6.1 Parametri dei poli reali	7
		1.6.2 Parametri dei poli complessi e coniugati	7
		1.6.3 Grafico complessivo	8
	1.7	Applicazione delle Trasformate di Laplace alle equazioni differenziali	8
	1.8	Esempi di funzioni di trasferimento	11

Capitolo 1

La Trasfomata di Laplace

1.0.1 Definizione

Si possono operare delle trasformazioni su segnali nel dominio del tempo (o dello spazio) in modo da:

- mettere in evidenza le caratteristiche periodiche o pseudoperiodiche del segnale (dominio della frequenza);
- facilitare alcune operazioni matematiche, quali l'integrazione o la derivazione, rendendole puramente algebriche

La trasformata di Laplace associa a funzioni di variabili reali funzioni di variabili complesse Definiamo come trasformata di Laplace unilatera sinistra il seguente integrale

$$\mathcal{L}_{-}\{f(t)\} \doteq \int_{0^{-}}^{\infty} f(t)e^{-st} dt \doteq F(s)$$

con $s = \sigma + j\omega$ (dove f(t) = 0 per t < 0)

1.1 Una trasformata elementare

$$\mathcal{L}_{-}\{e^{pt}\} = \int_{0^{-}}^{\infty} e^{pt} e^{-st} dt = \frac{1}{p-s} \left[e^{(p-s)t}\right]_{0^{-}}^{\infty} = \frac{1}{s-p}$$

se

$$\operatorname{Re}[s] > \operatorname{Re}[p] = \sigma^*$$

$$\mathcal{L}_{-}\left\{e^{pt}\right\} = \frac{1}{s-p}$$

Sostituendo $s = j\omega$ ottengo:

$$\mathcal{L}_{-}\left\{e^{j\omega t}\right\} = \frac{1}{s - j\omega}$$

Il termine $e^{-s t}$ accentua la convergenza dell'integrale, in quanto tende a zero più velocemente di qualsiasi polinomio

Ad esempio considerando s=2 avrà che:

$$e^{-2t} \xrightarrow{L} \frac{1}{s+2}$$

Bisogna trovare le radici del polinomio (cioè i poli del sistema) per sapere se il segnale cresce o decresce. In questo caso è -2, dunque converge; infatti la radice positiva mi fa divergere il segnale, mentre quella negativa lo fa convergere

1.1.1 Trasformate derivate da quella elementare

Gradino, step, funzione di Heaviside:

$$\mathcal{L}_{-}\left\{K\delta_{-1}(t)\right\} = \frac{K}{s}$$

$$\delta_{-1}(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

Stiamo supponendo che la funzione sia nulla prima dello zero; ovviamente l'ascissa di convergenza del gradino $\grave{e}=0$

$$\mathcal{L}_{-}\left\{\sin\left(\omega t\right)\right\} = \mathcal{L}_{-}\left\{\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right\} = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{L}_{-}\left\{\cos\left(\omega t\right)\right\} = \mathcal{L}_{-}\left\{\frac{e^{j\omega t} + e^{-j\omega t}}{2}\right\} = \frac{s}{s^2 + \omega^2}$$

 $\operatorname{Re}[s] = 0 \longrightarrow$ la funzione non diverge né converge

1.2 Alcune proprietà

• Linearità

$$\mathcal{L}_{-}\left\{c_{1}f_{1}(t)+c_{2}f_{2}(t)\right\}=c_{1}\mathcal{L}_{-}\left\{f_{1}(t)\right\}+c_{2}\mathcal{L}_{-}\left\{f_{2}(t)\right\}$$

• Coniugazione

$$F(s^*) = F^*(s)$$

• Teorema del valore iniziale (non vale per funzioni che hanno impulsi nell'origine)

$$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$$

• Teorema del valore finale: solo se l'ascissa di convergenza di F(s) è minore o uguale a zero:

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0^{-}} sF(s)$$

Può essere utilizzata ad esempio per sapere dove converge il segnale

• Moltiplicazione per un eponenziale

$$\mathcal{L}_{-}\left\{e^{at}f(t)\right\} = \int_{0^{-}}^{\infty} e^{-(s-a)t} f(t) dt = F(s-a)$$

• Traslazione nel tempo

$$\mathcal{L}_{-} \{ \delta_{-1}(t-a)f(t-a) \} = e^{-as}F(s)$$

Dimostrazione: dalla definizione

$$\int_{0^{-}}^{\infty} \delta_{-1}(t-a)f(t-a)e^{-st}dt$$

posto $\tau = t - a$, ovvero $t = \tau + a$:

$$\int_{-a^{-}}^{\infty} \delta_{-1}(\tau)f(\tau)e^{-s\tau}e^{-sa}d\tau = F(s)e^{-as}$$

‡

• Convoluzione: se

$$g(t)=f_1(t)\otimes f_2(t)=\int\limits_{0^-}^t f_1(t- au)f_2(au)d au$$

allora

$$\mathcal{L}_{-} \{g(t)\} = \mathcal{L}_{-} \{f_1(t)\} \cdot \mathcal{L}_{-} \{f_2(t)\}$$

Dimostrazione:

$$G(s) = \int_{0^{-}}^{\infty} \left[\int_{0^{-}}^{\infty} f_1(t-\tau) f_2(\tau) d\tau \right] e^{-st} dt = \int_{0^{-}}^{\infty} f_2(\tau) \left[\int_{0^{-}}^{\infty} f_1(t-\tau) e^{-st} dt \right] d\tau =$$

$$= \int_{0^{-}}^{\infty} f_2(\tau) \cdot F_1(s) e^{-s\tau} d\tau = F_1(s) \int_{0^{-}}^{\infty} f_2(\tau) e^{-s\tau} d\tau = F_1(s) \cdot F_2(s)$$

‡

• Derivazione

$$\mathcal{L}_{-}\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0^{-})$$

Dimostrazione: Notiamo che

$$\frac{d}{dt}\left(f(t)e^{-st}\right) = \frac{df(t)}{dt}e^{-st} - f(t)se^{-st}$$

e quindi, integrando per parti,

$$\mathcal{L}_{-}\left\{\frac{d}{dt}f(t)\right\} = \int_{0^{-}}^{\infty} \frac{df(t)}{dt} e^{-st} dt = \int_{0^{-}}^{\infty} \frac{d}{dt} \left(f(t)e^{-st}\right) dt + \int_{0^{-}}^{\infty} f(t)se^{-st} dt = \left[f(t)e^{-st}\right]_{0^{-}}^{\infty} + sF(s) = -f(0^{-}) + sF(s)$$

‡

Varranno inoltre

$$\mathcal{L}_{-} \left\{ \frac{d^{2}}{dt^{2}} f(t) \right\} = s^{2} F(s) - s f(0^{-}) - \left. \frac{df}{dt} \right|_{t=0^{-}}$$

e

$$\mathcal{L}_{-}\left\{\frac{d^{3}}{dt^{3}}f(t)\right\} = s^{3}F(s) - s^{2}f(0^{-}) - s\left.\frac{df}{dt}\right|_{t=0^{-}} - \left.\frac{d^{2}f}{dt^{2}}\right|_{t=0^{-}}$$

• Integrazione

$$\mathcal{L}_{-}\left\{\int_{0^{-}}^{t} f(t) d\tau\right\} = \frac{1}{s} F(s)$$

Dimostrazione: Dalla trasformata della convoluzione

$$\mathcal{L}_{-}\left\{\int_{0^{-}}^{t} f(\tau)g(t-\tau)d\tau\right\} = F(s) \cdot G(s)$$

se poniamo $g(t) = \delta_{-1}(t)$

$$\mathcal{L}_{-}\left\{\int_{0^{-}}^{t} f(\tau)\delta_{-1}(t-\tau)d\tau\right\} = F(s) \cdot \frac{1}{s}$$

$$\mathcal{L}_{-}\left\{\int_{0^{-}}^{t} f(\tau)d\tau\right\} = F(s) \cdot \frac{1}{s}$$

‡

1.3 Trasformata dell'impulso

L'impulso matematico di Dirac è il limite di una distribuzione ad area costante unitaria

Data l'uscita: $y(t) = \int_0^t x(\tau)h(t-\tau)d\tau$

Se poniamo l'ingresso pari ad un impulso avremo:

$$y(t) = \int_0^t \delta_0(\tau)h(t-\tau)d\tau = h(t)$$

In Laplace si ottiene:

$$Y(s) = X(s)H(s)$$

Definto con $\delta_0(t)$ l'impulso unitario, notiamo che la trasformata di Laplace dell'impulso vale:

$$\mathcal{L}_{-}\left\{\delta_{0}(t)\right\} = \int_{0^{-}}^{t} \delta_{0}(\tau)e^{-st} = \left[e^{-st}\right]_{t=0} = 1$$

Quindi Y(s) = H(s) e perciò H(s) è la trasformata di Laplace della risposta impulsiva

Il limite dell'impulso che porta alla definizione dell'impulso non esiste nel senso delle funzioni, ma esiste nel senso delle distribuzioni

1.4 Trasformate dei polinomi

Definizione delle funzioni $\delta_{-k}(t)$ per k = 1, 2, ...

$$\delta_{-k}(t) = \begin{cases} 0 & t < 0\\ \frac{t^{k-1}}{(k-1)!} & t \ge 0 \end{cases}$$

Proprietà di derivazione

$$\mathcal{L}_{-}\left\{\frac{t^{k-1}}{(k-1)!}\right\} = \frac{1}{s}\mathcal{L}_{-}\left\{\frac{d}{dt}\frac{t^{k}}{(k)!}\right\}$$

$$\mathcal{L}_{-}\left\{\delta_{-1}(t)\right\} = \frac{1}{s}$$
 (gradino)

$$\mathcal{L}_{-}\left\{\delta_{-2}(t)\right\} = \frac{1}{s^2} \qquad (\text{rampa})$$

In generale

$$\mathcal{L}_{-}\left\{\delta_{-k}(t)\right\} = \mathcal{L}_{-}\left\{\frac{t^{k-1}}{(k-1)!}\right\} = \frac{1}{s^{k}}$$

oppure

$$\mathcal{L}_{-}\left\{t^{k}\right\} = \frac{k!}{s^{k+1}}$$

Polinomi per esponenziali

$$\mathcal{L}_{-}\left\{\frac{t^{(k-1)}e^{pt}}{(k-1)!}\right\} = \frac{1}{(s-p)^k}$$

Dimostrazione:

$$\mathcal{L}_{-}\left\{\frac{t^{(k-1)}e^{pt}}{(k-1)!}\right\} = \int_{0^{-}}^{\infty} \frac{t^{(k-1)}e^{pt}}{(k-1)!} e^{-s t} dt = \int_{0^{-}}^{\infty} \frac{t^{(k-1)}}{(k-1)!} e^{-(s-p) t} dt$$

posto $s - p = \xi$

$$\int_{0^{-}}^{\infty} \frac{t^{(k-1)}}{(k-1)!} e^{-\xi t} dt = \frac{1}{\xi^k} = \frac{1}{(s-p)^k}$$

‡

1.5 Inversione della Trasformata di Laplace

1.5.1 Un esempio: il carrello

Dato un carrellino con attrito viscoso e forza applicata e dato l'ingresso:

$$f_e = \delta_{-1}(t) \longrightarrow F_e = \frac{1}{s}$$

Equazioni:

$$M = f_e(t) - Dv$$

$$M[sV(s) - v(0)] = F_e(s) - DV(s)$$

con V(0)=0

$$[sM + D] V(s) = F_e(s)$$

$$V(s) = \frac{1}{Ms + D} F_e(s) = \frac{1}{s+1} \frac{1}{s}$$

Applicando il Teorema del valore iniziale si otterrà, considernado M=1 e D=1:

$$\lim_{s \to 0} s \frac{1}{s+1} \frac{1}{s} = 1$$

$$V(s) = \frac{B}{s+1} + \frac{A}{s} = \frac{As + A + Bs}{(s+1)s} = \frac{1}{s} - \frac{1}{s+1}$$

Quindi antitrasformando otterremo: $v(t) = \mathcal{L}_{-}\left[\frac{1}{s} - \frac{1}{s+1}\right]$ Sapendo che la trasformata della somma è la somma delle trasformate otterremo:

$$\mathcal{L}_{-}\left[\frac{1}{s}\right] + \mathcal{L}_{-}\left[\frac{-1}{s+1}\right] = \delta_{-1}(t)e^{-t}$$

Così abbiamo quindi risolto l'equazione differenziale tramite un'equazione algebrica

Ma con v(o) = 0.5

$$V(s) = \frac{1}{Ms + D}F_e(s) + \frac{v(0)}{Ms + D} = \frac{1}{s+1}\frac{1}{s} + \frac{0.5}{s+1}$$

dove il primo termine $(\frac{1}{s+1}\frac{1}{s})$ lo poniamo come A ed è la risposta forzata cioè ingresso + sistema; mentre il secondo termine $(\frac{0.5}{s+1})$ lo poniamo come B ed è la risposta libera cioè solo il sistema

Polo della G(s): -1;

Polo della risposta libera: -1;

Poli della V(s): -1,0.

Dopo 5 secondi, la forza torna a 0; possiamo, quindi studiare la risposta all'ingresso: $\delta_{-1}(t) - \delta_{-1}(t-5)$, oppure considerare l'evoluzione libera da t=5.

Si ottiene comunque:

Se u(t) torna a zero il sistema torna a riposo e quindi è asintoticamente stabile.

1.6 Andamento delle antitrasformate nel tempo

1.6.1 Parametri dei poli reali

Conviene definire dei parametri pratici per caratterizzare gli andamenti

Poli reali:

$$Y_t(s) = \frac{\sum b_i s^i}{(s-p)(\dots)}$$

$$y(t) = Re^{pt}$$

$$y(0) = Rp$$

dove R è l'ampiezza del modo e $\tau = \frac{-1}{p}$ costante di tempo

Se il modo è convergente [p<0]si può considerare estinto per $t>3\tau$

$$\frac{y(3\tau)}{y(0)} = 5(inpercentuale)$$

1.6.2 Parametri dei poli complessi e coniugati

$$Y_t(s) = \frac{\sum b_i s^i}{(s^2 + a_1 s + a_0)(\dots)}$$

Dove le radici sono: $p = \sigma + j\omega$ e p^* ; mentre le radici sono: R R^*

Con $\sigma = 0$ otterrà un seno ed un coseno

• Antitrasformata

$$R = |R|e^{j\varphi}, R^* = |R|e^{-j\varphi}; \text{ con } p = \sigma + j\omega$$

$$y(t) = |R|e^{j\varphi}e^{(\sigma+j\omega)t} + |R|e^{-j\varphi}e^{(\sigma-j\omega)t} = |R|e^{\sigma t}[e^{j(\omega t+\varphi)} + e^{-j(\omega t+\varphi)}] = 2|R|e^{\omega t}\cos(\omega t + \varphi)$$

• Terminologia

$$(s-p)(s-p^*) = s^2 - 2\omega s + (\omega^2 + \sigma^2) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

Dove ω_n è la pulsazione naturale; e ζ è il coefficiente di smorzamento

dove se $\zeta \geq 1$ i poli del sistema sono reali

poi se è proprio uguale a 1 lo smorzamento è massimo e non ci sono oscillazioni

se invece $\zeta < 0$ il sistema diverge

Se poi lo smorzamento è proprio pari a zero ho poli sull'asse immaginario

$$p_{1,2} = -\zeta \omega_n \pm \sqrt{\zeta^2 \omega_n^2 - \omega_n^2}$$

Posso poi determinare, attraverso la regola del segno se le radici sono solo a parte reale negativa, infatti: se c'è una permanenza del segno ho radici negative, altrimenti nel caso in cui c'è variazione del segno ho radici positive

1.6.3 Grafico complessivo

1.7 Applicazione delle Trasformate di Laplace alle equazioni differenziali

ullet Trasformazione di una equazione differenziale lineare di ordine n

$$a_n \frac{d^n y}{dt^n} + \dots + a_1 \frac{dy}{dt} + a_0 y(t) = b_m \frac{d^m u}{dt^m} + \dots + b_0 u(t)$$

$$\mathcal{L}_- \left[\frac{d^n y(t)}{dt^n} \right] = s^n Y(s) - s^{n-1} y(0) - s^{n-2} y(0) - \dots - y^{(n-1)}(0) = s^n Y(s) - \sum_{k=0}^{n-1} s^{n-k-1} y^k(0) \text{ (dove il termine con la sommatoria sono le condizioni iniziali)}$$

quindi:
$$a_n s^n Y(s) + \dots + a_1 s Y(s) + a_0 Y(s) + C I_y^{(n-1)}(s) = b_m s^m U(s) + \dots + b_0 U(s) + C I_u^{(m-1)}(s)$$

Risolvendo per Y(s) avrà :

$$Y(s) = \frac{b_m s^m + \ldots + b_0}{a_n s^n + \ldots + a_0} U(s) - \frac{CIy^{(n-1)}(s)}{a_n s^n + \ldots + a_0} + \frac{CI_u^{(m-1)}(s)}{a_n s^n + \ldots + a_0}$$

dove il primo termine lo consideriamo come A il secondo come B e il terzo come C

Inoltre notiamo come al denominatore compaiano in tutti gli addendi, questo è il polinomio dell'equazione omogenea.

• Definizione dell'evoluzione libera e della risposta forzata

$$U(s) \sum_{a_i s^i}^{b_i s^i} \longrightarrow A$$

$$\sum_{a_i s^i}^{CI_y} \longrightarrow B$$

$$\sum_{a_i s^i}^{CI_u} \longrightarrow C$$

I termini A e C sono nulli se u(t)=0 quindi B rappresenta l'evoluzione libera del sistema; in particolare C è nullo se u(t)=0 per $t\leq 0$.

Visto che il denominatore di C e di B è lo stesso se converge l'evoluzione libera converge anche C

Il denominatore di A contiene i poli di B più quelli della trasformata dell'ingresso quindi:

- I modi presenti nell'uscita sono quelli propri del sistema più quelli dell'ingresso
- Se i modi del sistema convergono a zero nel lungo periodo rimangono solo quelli dell'ingresso e quindi
 IL SISTEMA E' STABILE

Quindi intuitivamente possiamo dire che un sistema è stabile se basta azzerare l'ingresso per riportare il sistema a riposo.

• Definizione della funzione di trasferimento e di sistema nel senso di Laplace

La funzione di trasferimento del sistema descritto dall'equazione differenziale è:

$$G(s) = \frac{\sum b_i s^i}{\sum a_i s^i}$$

Un sistema è descritto quasi completamente (salvo cancellazioni) dalla sua funzione di trasferimento L'analisi della G(s) ci permette di determinare facilmente:

- La stabilità asintotica: $R_e[p_i] < 0$
- Velocità di convergenza: maggiore se $R_e[p_i]$ minore
- Comportamento oscillatorio $p_i = p_j^*$ complessi
- Valore per $t \longrightarrow \infty$ dell'uscita (regime): $\lim_{s \to 0} sG(s)U(s)$ spesso $u(t) = \delta_{-1} \longrightarrow U(s) = \frac{1}{s}$
- Trasfomata di Laplace della convoluzione e legame tra la trasformata di Fourier e quella di Laplace Data:

$$g(t) = f_1(t) \otimes f_2(t) = \int_{0}^{t} f_1(t - \tau) f_2(\tau) d\tau$$

allora:

$$\mathcal{L}_{-} \{g(t)\} = \mathcal{L}_{-} \{f_1(t)\} \cdot \mathcal{L}_{-} \{f_2(t)\}$$

Dimostrazione:

$$G(s) = \int_{0^{-}}^{\infty} \left[\int_{0^{-}}^{\infty} f_1(t-\tau) f_2(\tau) d\tau \right] e^{-st} dt = \int_{0^{-}}^{\infty} f_2(\tau) \left[\int_{0^{-}}^{\infty} f_1(t-\tau) e^{-st} dt \right] d\tau =$$

$$= \int_{0^{-}}^{\infty} f_2(\tau) \cdot F_1(s) e^{-s\tau} d\tau = F_1(s) \int_{0^{-}}^{\infty} f_2(\tau) e^{-s\tau} d\tau = F_1(s) \cdot F_2(s)$$

Il valore di g(t) in t' dipende dal passato

Serie di Fourier:

$$f(t) = F(t \pm KT)$$
 periodica di periodo T

$$f(t) = \frac{A_0}{2} + \sum_{k=1}^{\infty} \left[A_k \cos \frac{2\pi k}{T} t + B_k \sin \frac{2\pi k}{T} t \right]$$

$$-\frac{A_0}{2} = \frac{1}{T} \int_{-\frac{T}{T}}^{\frac{T}{2}} f(t)dt$$
 [valore medio]

$$-A_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos \frac{2\pi k}{T} t dt;$$

$$-B_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin \frac{2\pi k}{T} t dt$$

Utilizzando i numeri complessi:

$$f(t) = \frac{\Omega}{2\pi} \sum_{k=-\infty}^{\infty} F(k\Omega) e^{jk\Omega t}$$

dove:

$$F(k\Omega) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jk\Omega t}dt$$

$$\operatorname{con} \Omega = \frac{2\pi}{T}$$

La serie è per i segnali periodici, un segnale qualsiasi può essere visto come periodico con periodo infinito

Se $T \longrightarrow \infty$, $\Omega \longrightarrow 0$, $k\pi \longrightarrow \omega$

Allora:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

$$F(t) = \int_{-\infty}^{\infty} F(\omega)e^{j\omega t}d\omega$$

Ma proprio i casi più interessanti creano problemi

Invece di trasformare f(t) trasformiamo:

$$\delta_{-1}(t)f(t)e^{-\sigma t}$$

Pongo $s = \sigma + j\omega$

e avrà :

$$F(\sigma + j\omega) = \int_{0}^{\infty} f(t)e^{-\sigma t}e^{-j\omega t}dt$$

Quindi:

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$
$$LAPLACE$$

Vediamo quindi che esiste una diretta corrispondenza tra la serie di Fourier e la tra trasformata di Laplace.

• Definizione della risposta impulsiva come antitrasformata della funzione di trasferimento

Data:

$$Y(s) = G(s)U(s)$$

Assumiamo $U(s)=1 \longrightarrow u(t)=\delta(t)$ Impulso

$$y(t) = g(t)$$
 RISPOSTA IMPULSIVA

Possiamo dire che l'impulso ha area unitaria quindi:

$$\int_{-\infty}^{\infty} \delta_0(t)dt = 1$$

Ma anche con la convoluzione : $y(t) = \int_0^t u(\tau)g(t-\tau)d\tau = \int_0^t \delta(t)g(t-\tau)d\tau = g(t)$

Inoltre se $u(t) = \delta_{-1}(t) \ U(s) = \frac{1}{s} \ \underline{Gradino}$

$$Y(s) = \frac{G(s)}{s}$$

$$y(t) = \int_{0}^{t} g(\tau)d\tau = g_{-1}(t)$$

Questa è la risposta indiciale cioè l'integrale della risposta impulsiva

• Modi propri di un sistema

L'antitrasformata di:

$$G(s) = \frac{\sum b_i s^i}{\sum a_i s^i}$$

è composta, o meglio, è combinazione lineare di:

- Esponenziali: e^{at} , $e^{at}\sin(\omega t + \varphi)$
- Polinomi del tempo: t^0 (che è una costante), $t, \frac{t^2}{2}, \frac{t^3}{3!}$
- Polinomi(t) per esponenziali: te^{at}
- Eventualmente impulsi nell'origine al limite della causalità : $\delta_0(t)$

Questi sono i MODI NATURALI del sistema, dove il loro numero è pari all'ordine dell'equazione differenziale(le sinusoidi contano 2)

Le caratteristiche del sistema si riflettono sulla posizione dei poli sul piano s (Re[s], Im[s]), infatti la convergenza dipende dalla loro parte reale che dovrà essere minore di 0.

• Definizione di stabilità asintotica

Si può parlare di stabilità asintotica se $R_e[p_i] < 0$

Nel caso del polo semplice $\longrightarrow \lim_{t\to\infty} e^{p_i t} \longrightarrow 0;$

nel caso del polo doppio $\longrightarrow \lim_{t\to\infty} t e^{p_i t} \longrightarrow 0$ comunque

Ma cosa succede se $R_e[p_i] = 0$?

Se semplice, l'evoluzione libera contiene una costante quindi il sistema è stabile ma non asintoticamente. Se invece è multiplo, contiene una rampa, una parabola quindi instabile. Per poli immaginari puri, si hanno sinusoidi nel caso di poli semplici o divergenti polinomialmente nel caso di poli multipli.

• Definizione di regime transitorio e di regime permanente

Dato un sistema stabile la risposta forzata può essere composta dal periodo di tempo prima dell'estinzione dei modi naturali del sistema dove l'uscita si assesta detto <u>REGIME TRANSITORIO</u>, mentre il periodo di tempo che lo segue dove rimane solo la parte con i poli dell'ingresso è detto REGIME PERMANENTE.

• Risposta al permanente di un sistema asintoticamente stabile

1.8 Esempi di funzioni di trasferimento

• Risposte tipiche: impulsiva e indiciale

La risposta impulsiva è di scarso interesse pratico perché gli impulsi non esistono fisicamente ma è importante perché consente di vedere tutti e soli i modi del sistema.

Infatti le risposte canoniche si ricavano integrando quella impulsiva.

La risposta al gradino, detta anche risposta indiciale, si ottiene integrando quella impulsiva; mentre la risposta alla rampa si ottiene integrando quella indiciale.

Tra l'altro è proprio sulla risposta al gradino che si definiscono le specifiche di progetto nel dominio del tempo.

• Sistemi del primo ordine: il carrellino (FdT+C.I.)

Date le condizioni per cui il sistema si trova a riposo $My^{..} + Dy = f(t)$ y(0) = 0, y(0) = 0

e considerando
$$D = M = 1$$
 $f_a = Dx$

$$Y(s)\left[Ms^2+Fs\right]=F(s)\;;\;f(t)=\delta_{-1}(t)$$

$$Y(s) = \frac{1}{s(Ms+D)} \frac{1}{s} = \frac{1}{s^2(Ms+D)}$$

avrà un doppio polo nell'origine quindi:

$$\frac{R_1^{(1)}}{s} + \frac{R_1^{(2)}}{s^2} + \frac{R_2}{s+1}$$

Ora vado ad effettuare il calcolo dei residui:

$$-R_1^{(1)} = \lim_{s \to 0} \frac{d}{ds} \left[s^2 \frac{1}{(s+1)s^2} \right] = \lim_{s \to 0} -\frac{1}{(s+1)^2} = -1$$

$$-R_1^{(2)} = \lim_{s \to 0} s^2 \frac{1}{s^2(s+1)} = 1$$

$$-R_2 = \lim_{s \to -1} (s+1) \frac{1}{s^2(s+1)} = 1$$

Quindi:

$$Y(s) = -\frac{1}{s} + \frac{1}{s^2} + \frac{1}{s+1}$$

e

$$y(t) = \delta_{-1}(t) \left[-1 + t + e^{-t} \right]$$

Vediamo quindi che il sistema non è asintoticamente stabile e quindi il transitorio non si annulla!!

• Sistemi del secondo ordine: massa-molla-smorzatore Date:

 $f(t) = \delta_1(t)$ e date le stesse condizioni per cui il sistema si trova a riposo:

$$y(0) = 0 e y(0) = 0$$

In questo caso invece consideriamo: M=1 , D=2 , K=101

$$My^{\cdot \cdot}(t) + Dy^{\cdot}(t) + Ky(t) = f(t)$$

$$Ms^{2}Y(s) + DsY(s) + KY(s) = F(s)$$

Risolviamo quindi per Y(s) ottenendo così :

$$Y(s) = \frac{1}{Ms^2 + Ds + K}F(s) = \frac{1}{s^2 + 2s + 101}\frac{1}{s} = \frac{N}{D}$$

con
$$p_1 = 0$$
, $p_2 = -1 - 10j$, $p_3 = p_2^*$

Anche in questo caso calcoliamo i residui:

$$R_1 = \lim_{s \to 0} s \frac{N}{D} = \frac{1}{101} \longrightarrow \frac{1}{101} \delta_{-1}(t)$$

$$R_2 = \lim_{s \to -1 - 10j} (s + 1 + 10j) \frac{N}{D} = -\frac{1}{202} - \frac{j}{2020}$$

$$R_3 = R_2^*$$

$$\frac{R_2}{s+1+10j} + \frac{R_3}{s+1-10j} = -\frac{s+2}{101(s^2+2s+101)}$$

Ora dobbiamo antitrasformare: $-\frac{s+2}{101(s^2+2s+101)}$

I poli sono complessi quindi usiamo:

$$e^{-\sigma t}\sin(\omega t) \longrightarrow \frac{\omega}{(s+\sigma)^2 + \omega^2} = \frac{\omega}{s^2 + 2\sigma s + (\sigma^2 + \omega^2)}$$

$$e^{-\sigma t}\cos\left(\omega t\right) \longrightarrow \frac{s+\sigma}{s^2+2\sigma s+(\sigma^2+\omega^2)}$$

da cui $\sigma=1~\omega=10$ e possiamo risolvere:

$$A(s+\sigma) + B\omega = -(s+2) A = 1, B = 0.1$$

E quindi l'antitrasformata sarà:

$$(-e^{-t}\cos 10t - \frac{e^{-t}}{10}\sin 10t)$$

Quindi avrà:

$$y(t) = \frac{1}{101} \left[\delta_{-1}(t) - \left(e^{-t} \cos 10t - \frac{e^{-t}}{10} \sin 10t \right) \right]$$

dove $\delta_{-1}(t)$ è simile all'ingresso ed il termine $(e^{-t}\cos 10t - \frac{e^{-t}}{10}\sin 10t)$ è il transitorio legato all'ingresso.

- Se il sistema è asintoticamente stabile in uscita ci ritroviamo l'ingresso
- Coincidenza di poli sull'asse immaginario

Nel paragrafo 3.6.2 abbiamo parlato dei parametri dei poli complessi e coniugati e abbiamo introdotto il coefficiente di smorzamento(ζ).

Dopo di che ci siamo soffermati cosa succedeva al sistema nel caso che ζ è < 0 oppure \geq 1; vedendo poi che nel caso in cui fosse stato proprio pari a 0 siamo in presenza di poli sull'asse immaginario.