UNCLASSIFIED

AD-460363

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereity incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CATALOGED BY. PING.

TECHNICAL REPORT 3223

SAFETY HAZARD CLASSIFICATION OF . WATER-WET EXPLOSIVES

DARRELL KITE, JR.

AMC 4110.16.3053.12 AMC 4110.16.2913.12 AMC 4110.16.2140.1.01.53

COPY _56 OF 56

FEBRUARY 1965

PICATINNY ARSENAL DOVER, NEW JERSEY

TECHNICAL REPORT 3223

SAFETY HAZARD CLASSIFICATION OF WATER-WET EXPLOSIVES

BY

DARRELL KITE, JR.

FEBRUARY 1965

AMC 4110.16.3053.12 AMC 4110.16.2913.12 AMC 4110.16.2140.1.01.53

SUBMITTED BY:

XAAL TANKEN BEATEMED BA

Chief, Process

Chief, High Explosives and Loading Section

Engineering Laboratory

APPROVED BY: 5

Y: 5 Lender J. J. MATT

Chief, Ammunition Production & Maintenance Engineering Division

AMMUNITION ENGINEERING DIRECTORATE PICATINNY ARSENAL DOVER, NEW JERSEY

TABLE OF CONTENTS

Section		Page
	SUMMARY	1
	CONCLUSIONS	3
	RECOMMENDATIONS	3
	BACKGROUND	5
	STUDY	7
	KEFERENCE	13
	APPENDICES	
	A. Tables	15
	B. Figures	19
	TABLE OF DISTRIBUTION	23
	ABSTRACT DATA	25

SUMMARY

The purpose of this investigation was to determine the proper safety hazard classification of in-process water-wet explosives at the manufacturing plant. Eighteen water-wet explosives were studied to determine whether they could support detonations. Of the 18 explosives tested, 15 sustained detonations when "saturated" with water. ("Saturated" in this instance is defined as the condition wherein the spaces between the loosely packed explosive granules or crystals are completely occupied by water.) These 15 explosives are:

RDX Class A RDX Class B RDX Class C RDX Class D RDX Class E RDX Class F RDX Class G

Composition C-4
Composition A-3

PBX Type B PBX 9010 HMX Class A HMX Class C

PBX 9404

HMX Class D HMX Class F

The other three explosives did not sustain detonations under saturated conditions. However, they did sustain detonations at these water levels:

PBX-N3 @ 25% water HMX Class 3 @ 44% water HMX Class E @ 40% water

All explosives tested were found to sustain detonations at water levels that could be encountered in manufacturing operations following the filtering operation. Therefore, the filtered explosives should be assigned a safety hazard classification of Class 9.

CONCLUSIONS

All materials tested a stained detonations at high water contents. As handled in manufacturing plants, after filtering, these explosives should be assigned a safety hazard classification of Class 9. These explosives are:

RDX Class A

RDX Class C

RDX Class D

RDX Class E

RDX Class F

RDX Class G

HMX Class A

HMX Class B

HMX Class C

HMX Class D

HMX Class E

HMX Class F

Composition C-4
Composition A-3

PBX 9404

PBX Type B

PBX 9010

PBX-N3

RECOMMENDATIONS

Since all explosives tested under this program sustained detonations at high water contents, the filtered explosives (as handled in manufacturing operations) should be considered Class 9.

BACKGROUND

At U. S. Army Materiel Command explosive manufacturing works, protection is afforded to personnel and facilities by limiting the amount of explosives that may be present at a given location under various conditions. Factors considered are: distance to inhabited buildings, type of barricades, interline distance, dangers inherent in the specific explosives involved and other safety factors. Information regarding the quantity limitations of explosives is contained in Section 17 of the Ordnance Safety Manual (Reference 1).

At Holston Army Ammunition Plant (HAAP), Kingsport, Tennessee various explosives are filtered from a water slurry to yield water-wet explosives. In the absence of data that would establish the hazard of these filtered materials, they have been considered to be Class 9 explosives -- mass-detonating, bulk explosives. This safety hazard classification limits the amount of explosives that can be in operating buildings. This result is a limitation on manufacturing efficiency and increased cost of explosives.

Since manufacturing operations could be more efficiently performed if the explosive hazard classification could be safely reduced, Picatinny Arsenal undertook to establish the safety hazard classification of various water-wet explosives.

STUDY

Test Vehicle

The test procedure used in this study was designed to show whether the explosives are mass detonatable. As defined in the Ordnance Safety Manual, mass detonation is: "Detonation of separated quantities of explosives or ammunition occurring so nearly at the same time that the effect on the surroundings is the same as if the several quantities were not separated." For the purpose of this study it was assumed that any bulk material capable of sustaining a detonation is potentially mass detonating and therefore should be assigned a safety hazard classification of Class 9.

In this investigation the water-wet explosives were loaded into plexiglas tubes, initiated and observed by means of a framing camera to determine whether detonations occurred, and to establish the approximate rate of detonation. Plexiglas tubes were chosen as containers because they enable a visual check on the quality of the loading operation.

A schematic of the test vehicle is shown in Figure 1. All tubes were 1-3/4 inches inside diameter. Wall thickness of the tubes was either 1/8 or 1/4 inch. Explosive column length was about 10 inches in some cases and about 20 inches in others. The booster usually was one 33-gram tetryl pellet. However, 40-grain RDX wafers were used on occasion.

Loading Methods

The materials loaded were bulk explosives procured from HAAP. These were granular explosives taken from the production line following the filtering operation. The materials were not dried prior to shipment. At Picatinny Arsenal, the explosives were water-washed and loaded into the test vehicles. The loading methods used are:

Method A - Water Displacement Method -- The washed explosives were covered with water. The test vehicles were filled with water. Wet explosives were loaded into the test vehicles, displacing the water. Excess water was removed from the top of the explosive column, leaving a column consisting essentially of explosive and water. This method was used when it was desired to test explosives, of medium-to-large granulations, at maximum water contents.

Method B - Saturated Explosive Method -- The explosives were washed and excess water filtered off or allowed to drain off leaving an explosive paste. The paste (consisting of wet RDX or HMX of small particle size) was loaded into the test vehicles. Excess water rose to the top of the column and was removed, leaving a column consisting essentially of explosive and water. This method was used to load explosives of fine granulation at high water levels. Method A was not suitable for use with explosives having fine granulation because they settled out too slowly and formed non-uniform explosive columns.

Method C - Partially Dry Method -- The washed explosive was retained on filter cloth. Air was drawn through to partially dry the explosive, which was then loaded into the test vehicles. Using this loading method, air was present. This method was used when it was desired to test explosives at less than maximum water levels.

Determination of Explosive Water Content

Two methods were used for determining the water content of the wet explosives being tested. They are:

Method I - Direct Calculation -- This method is based on the simultaneous solution of two equations. The equations are:

We + Ww = Wt and
$$\frac{We}{De} + \frac{Ww}{Dw} = Vt$$

We = Weight of explosive

Ww = Weight of water

Wt = Weight of explosive + water

De = Density of explosive

Dw = Density of water

Vt = Volume of explosive column

In this method, the volume and total weight of the explosive-water mixtures contained in the test vehicle are determined. Then for those mixtures which contain no air, and for which the explosive density is known, the amount of water present is calculated. Since Wt, De, Dw and Vt are known, We and Ww can be calculated. This method was used to determine the amount of water present in RDX-water mixtures and HMX-water mixtures that contained no air. The densities used were:

RDX, 1.82 grams per cc HMX, 1.9 grams per cc

In actual practice, percent water vs. bulk density curves were constructed and used to determine water present in the RDX-water and HMX-water mixtures.

Method II - Moisture by Analogy -- Method I is not suitable for determining the amount of water present in those explosives mixtures containing air or those mixtures in which the density of the explosive is unknown. In these cases, the determinations were made by analogy. Two or more test vehicles were loaded in a similar manner. One or more of the vehicles were then analyzed to determine the amount of water present. The amount of water present in the dried vehicle was assumed to be about the same as in the vehicle that was test fired. A rough check on this could be made by determining the bulk density of the wet explosives in the dried and fired vehicles; the assumption being that if the bulk densities were the same, the amount of water present was likely to be about the same. In general, there was good agreement between the two bulk densities.

The percent of water present in the RDX test vehicles is reported in Table 1. The water present in the fired vehicles was determined by Method I. There is one exception. In the case of RDX Class E, Shot 16A, there is a significant difference between the calculated amount of water present and that determined by analogy. The calculated amount of water present is 46%, by analogy the amount is 39%. In this case, some air may have been present -- causing the amount of water present to appear high when it was calculated. The probable correct value is 39%.

The percent of water present in the HMX test vehicles is reported in Table 2. The water present in the fired vehicles was determined by Method I.

The percent of water present in the explosive compositions is reported in Table 3. The amount of water present in the fired vehicles was determined by Method II.

Determination of Approximate Rate of Detonation

Detonation or lack of detonation was determined by two methods. One was simply by observation of the test site to determine if the test vehicle and holding stanchion were destroyed. In a second method, a series of photographs were made by means of a framing camera; the movement of the wavefront through the explosive could be followed by observation of these photographs.

Figure 2 is a series of photographs taken by the framing camera and shows the progress of a detonation wave. In this case, HMX Class E, containing 58% water was initiated by a 33-gram tetryl pellet. It can be seen that the explosion died out almost immediately. The series of photographs in Figure 3 shows the progress of a detonation through PBX-N3 that had a 28% water content. The photographs show that the detonation died out after it had traveled a short distance through the wet explosive column. Since the detonation died out before it passed through the entire length of the column, it is concluded that under the test conditions used, PBX-N3 will not sustain a detonation at the 28% water level.

Figure 4 is a series of photographs showing the progress of a detonation wave through HMX Class E containing 40% water. It is seen that the column detonated throughout its length. Shown in back of the test vehicle is a graph having alternating dark and light lines two inches wide. Since it is known that 4.27×10^{-6} seconds elapsed between picture frames, the approximate velocity of the detonation wave can be calculated. In this case, the detonation front moved about 12 inches in 10 time-intervals-in 4.27×10^{-5} seconds. The detonation front moved at a rate of 2.81×10^{5} inches per second (or 7,150 meters per second). All reported detonation velocities were approximated by this method.

Effect of Booster

Two different attempts were made to detonate two PBX 9404 charges containing 34% water. The known difference between the two tests is that in one case the booster used was a 40-grain RDX wafer; in the other case the booster was a 33-gram tetryl pellet. When the 40-grain RDX wafer was used, the PBX 9404 failed to detonate; when the 33-gram tetryl pellet was used, the PBX 9404 detonated. The test was not repeated and therefore the data is limited; however, as would be expected, the importance of donor selection is indicated. It appears that under these test conditions the wet PBX 9404 will sustain a detonation once it has been strongly initiated. Apparently the 40-grain RDX wafer was not powerful enough to initiate the wet explosive.

Effect of Explosive Confinement

The diameter of an explosive column is in some cases an important factor in determining if a detonation will be sustained. In general, for a given explosive and set of test conditions in which the diameter of the explosive column is varied, there is a critical diameter below which a detonation will not be sustained. This critical diameter can generally be decreased by increasing the strength of the containing wall. In the case of PBX-N3, at the 25% moisture level, the explosive column failed to sustain a detonation when contained by a plexiglas tube having 1/8-inchthick walls. However, in a similar test when the wall thickness was increased to 1/4-inch, a detonation was sustained. Again, this is only indicative since the data is limited.

Classification of Explosives Tested

The data generated under this study pertinent to establishing the safety hazard classification of water-wet explosives is in Tables 1-3. In evaluating this data it has been considered that bulk water-wet material capable of sustaining a detonation is potentially mass detonatable and consequently should be assigned a safety hazard classification of Class 9.

Using this criterion, the following 15 materials should be classified Class 9 since detonations were sustained in mixtures which consisted essentially of explosive and water. The explosives and water content are:

Explosive P	ercent Water
HMX Class A	19 26
RDX Class A	27
RDX Class C	
RDX Class D	
RDX Class E	
RDX Class F	23
RDX Class G	23
Composition C-4 Composition A-3	
PBX 9404	34
PBX Type B	
PBX 9110	

Three other explosives were tested: PBX-N3, HMX Class B and HMX Class E. It was found that PBX-N3 sustained a detonation at a 25% water level. In other tests, in which lighter walled test vehicles were used, PBX-N3 failed to sustain detonations at 25% and 28% water levels. Hl.IX Class B sustained a detonation at the 44% water level; it failed to do so at the 49% level. HMX Class E supported a detonation at the 40% water level; it failed to do so at the 58% level. Thus, water levels were established at which these explosives failed to sustain detonations. However, these tests were not adequate to show that these explosives will not sustain detonations at the higher moisture levels. For example, if they were to be confined in tubes stronger than the plexiglas tubes used or if tubes of greater diameter were to be used, perhaps detonations would be sustained. In any case, it was found that they sustain detonations at water levels generally higher than those of filtered explosives. For these reasons, these explosives should be considered Class 9.

Formulation of the explosive compositions is given in Table 4.

REFERENCE

1. Ordnance Safety Manual, ORD M7-224, Ordnance Corps, Department of the Army, 1951.

APPENDICES

APPENDIX A
TABLES

TABLE 1

RDX TEST DATA

							Wet Bulk Density	LIK ty		Approximate
			Wall	Percent Water	: Water		1b/ft	£3	Booster	Booster Detonation
	Shot	Loading	Thickness	Fired Vehicle	Dried Vehicle	hicle	Fired	Dried	(gram	Velocity
Explosive	Number	Method	(inches)	Calculated	Calculated	Analytical	Vehicle	Vehicle	tetry1)	Meters/sec
RDX Class A	3	‡	1/8	27	28	29	92.7	92.3	33	7,700
RDX Class C	2 A	*	1/8	21	21	19	26	9.96	33	7,700
RDX Class D	15A	*	1/4	24	23	22	95	92.6	33	7,800
RDX Class E	16A	‡	1/4	97	4,0	39	82.3	82.5	33	007'9
	4 6	‡	1/4	37	36	36	87.5	96.6	33	006 '9
RDX Class F	17A	*	1/4	23	21	23	95.8	7.96	33	7,900
RDX Class G	18A	*	1/4	23	22	113	95.4	96	33	8,000
,										
* #	Loaded by Loaded by	water disp saturated	* Loaded by water displacement method							
	Unless otl	nerwise spe	cified, data ref	Unless otherwise specified, data refers to fired vahicle	icle			140		

TABLE 2 HPC TEST DATA

				•						
				Percent Water	Jacer		Wet Bulk Density	ry E		Approximate
•			Wall				3	2	Booster	Detonation
	Shot	Loading	Thickness	Fired Vehicle	Dried Vehicle	icle	Fired	Dried	(gr	Velocity
Explosive	Number	Method	(inches)	Calculated	Calculated	Analytical	Vehicle Vehicle	Vehicle	tetry1)	Meters/sec
HDX Class A	21A	*	1/4	22	20	20	98.6	100.2	33	7,900
HPCK Class B	10A	‡	1/8	67	47	4 7	82.2	83.6	33	None
	8	‡	1/8	\$	97	\$	84.9	*	33	9,400
HDCK Class C	19A	*	1/4	61	. 19	18	101	101.5	33	7,900
HDK Class D	72 7	*	1/4	36	28	77.	96.5	95	33	7,400
HPCK Class E	114	#	1/8	58	25	*	6.77	79.6	33	None
	٧٧	‡	1/8	07	60	07	87.4	87.4	33	7,100
HPCX Class F	V 02	*	1/4	25	57	22	8.96	97.3	33	7,700
*	* Loaded by	water displa saturated ex	Loaded by water displacement method Loaded by saturated explosive method							
	Unless ot	Unless otherwise specified,		data refers to fired vehicle	, Q J					
						-				

TABLE 3
TEST DATA ON EXPLOSIVE COMPOSITION

				•					
				Percen	Percent Water	Wet Bulk			
				Fired		Density	~	,	Approximate
			Wall	Vehicle	Dried	1b/ft			Detonation
	Shot	Loading	Thickness	፭	Vehicle	Fired	Dried		Velocity
Explosive	Number	Method	(inches)	Analogy	Analytical	Vehicle	Vehicle	Booster	Meters/sec
Composition C-4	12	*	1/8	50	50	89.2	89.5	33 gram tetryl	9,800
Composition A-3	13	*	1/8	31	31	83	83.5	33 gram tetryl	6,500
PBX 9404	22	*	1/8	34	34	90.3	.06	40 grain RDX wafer	None
	18	*	1/8	34	34	89.5	90.5	33 græm tetryl	5,800
PBX Type B	23	*	1/8	35	35	84.7	84.3	40 grain RDX wafer	6,800
PBX 9010	11	*	1/8	36	36	86.5	87.8	33 gram tetryl	005*9
PBX N-3	14A	ŧ	1/4	25	25	53.9	54.4	33 gram tetryl	2,900
	12A	#	8/1	23	25	53.4	54.7	33 gram tetryl	None
	14	**	1/8	28	28	55	54.4	33 gram tetryl	None
* Loaded by ** Loaded by *** Loaded by	y water di y saturate y partiall	* Loaded by water displacement method ** Loaded by saturated explosive method ** Loaded by partially dry method	method method l						
Unless o	thervises	pecified, da	Unless otherwise specified, data refers to fired vehicle	fired vehicl	9				

TABLE 4
FORMULATION OF EXPLOSIVE COMPOSITIONS

Explosive	Nominal Composition	Percent
Composition C-4	RDX	90.5
	Polyisobutylene Binder	9.5
Composition A-3	RDX	91
	Wax	9
PBX 9404	нмх	94
	Nitrocellulose: Tris-beta chloroethyl phosphate binder	5.9
	Diphenylamine `	0.1
PBX Type B	RDX	90
	Polystyrene binder	10
PBX 9010	RDX	90
	Kel-F binder	10
PBX-N3	(Classified)	

APPENDIX B
FIGURES

Figure 1
SCHEMATIC OF TEST VEHICLE

Time after initiation is shown in microseconds

Figure 2
Attempted Detonation of HMX Containing 58% Water

Time after initiation is shown in microseconds

Figure 3
Attempted Detonation of PBX-N3 Containing 28% Water

Time after initiation is shown in microseconds

Figure 4
Detonation of HMX Class E Containing 40% Water

TABLE OF DISTRIBUTION

TABLE OF DISTRIBUTION

	. —	Copy Number
1.	Commanding General U. S. Army Materiel Command	
	Washington 25, D.C.	
	ATTN: AMCAD-ST	1-2
	ATTN. AMOAD-51	1-2
2.	Commanding General	•
	U. S. Army Munitions Command	
	Dover, New Jersey	•
	ATTN: AMSMU-SS	3
	AMSMU-RE	4
3.	Commanding Officer	
	Picatinny Arsenal	
	Dover, New Jersey	
	ATTN: SMUPA-VA6	5-9
	SMUPA-DX1	10
	SMUPA-DE2	11-20
	SMUPA-G	21
4.	Department of Defense	
	Armed Services Explosive Safety Board	
	Arlington, Virginia	22-23
5.	Chief, Bureau of Naval Weapons	
	Munitions Building, Room 2134	
	Washington 25, D.C.	
	ATTN: Code RUME-4	24
6.	Commanding Officer	
•	Harry Diamond Laboratories	
	Washington 25, D.C.	
	ATTN: Library	25
7.	Commandant	
	U. S. Army Ordnance Center and School	
	Aberdeen Proving Ground, Maryland	
	ATTN: AISO-SL	26
8.	Holston Army Ammunition Plant	
	Kingsport, Tennessee	27-28

TABLE OF DISTRIBUTION (Cont'd)

		Copy Number
10.	Radford Army Ammunition Plant	
	Radford, Virginia	29-30
11.	Commanding Officer	
	Ammunition Procurement & Supply Agency	
	Joliet, Illinois	
	ATTN: SMUAP-AE	31
	SMUAP-AM	32-33
	SMUAP-S	34
12.	Commanding Officer	
	U. S. Army Engineer Research & Development	
	Laboratories	
	Fort Belvoir, Virginia	
	ATTN: STINFO Branch	35-36
13.	Defense Documentation Center	
	Cameron Station	
	Alexandria, Virginia	37-56

ABSTRACT DATA

UNCLASSIFIED

Security Classification

DOCUMENT CO (Security classification of title, body of abstract and index	NTROL DATA - RAI		the overell report to classified)
1 ORIGINATING ACTIVITY (Corporate author)		20 REPOR	RT SECURITY C LASSIFICATION
Picatinny Arsenal		Ul	NCLASSIFIED
Dover, New Jersey		25 68001	
3 REPORT TITLE			
SAFETY HAZARD CLASSIFICA	ATION OF WAT	ER-WE	ET EXPLOSIVES
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			
5 AUTHOR(S) (Lest name, first name, initial)			
KITE, Darrell, Jr.			
6 REPORT DATE	74 TOTAL NO. OF PA	LGES	75 NO OF REFS
February 1965	26		1
Se CONTRACT OR GRANT NO.	Se. ORIGINATOR'S RE	PORT NUM	BER(5)
b PROJECT NO AMC 4110.16.3053.12	Technical Re	anort 3	223
AMC 4110.16.2913.12	Technical Re	sport 3	£ £ 3
AMC 4110.16.2713.12 AMC 4110.16.2140.1.01.53	96 OTHER REPORT I	10(S) (Any	other numbers that may be easigned
Wisto Historia	1		
d 10 A VAIL ABILITY/LIMITATION NOTICES			
IN A A IE ABIELI F/EIMILA ITON NOTICES			
11 SUPPLEMENTARY NOTES	12 SPONSORING MILIT		An Tu
- SUPPLEMENIARY NUIES	Picatinny Ar		VII V
	U. S. Army	Muniti	ons Command
	Dover, New	Jersey	
13 ABSTRACT			

Eighteen water-wet explosives were studied to determine whether they could support detonations. Of the 18 explosives tested, 15 sustained detonations when saturated with water.

All explosives tested were found to sustain detonations at water levels that could be encountered in manufacturing operations following the filtering operation. Therefore, the filtered explosives should be assigned a safety hazard classification of Class 9.

DD 508M. 1473

UNCLASSIFIED

UNCLASSIFIED

Security Classification

KEY WORDS		LIN	KA	LIN	K 8	LIN	K C
		ROLE	WT	ROLE	wt	ROLE	₩T
		1					
RDX							
Composition C-4 and A-3		p.*					
PBX							
HMX]					
Water-wet explosives							
Mass detonating		1					
Safety hazard							
Manufacturing cost					,		
		1					
•		! !				[
						•	
				ļ			

- INSTRUCTIONS
- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Delense activity or other organization (comporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2h. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8h. &c. & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9n. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the militory security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links rules, and weights is optional.

UNCLASSIFIED