## Plan

- 1. Dimensional reduction reduce the number of features to simplify data
  - a. Improving performance
  - b. Visualization
- 2. Principal Component Analysis PCA algorithm overview
  - a. Understanding PCA problem
  - b. PCA Algorithm
  - c. Comparing PCA with linear regression
- 3. Applying PCA recommended ways to use PCA
  - a. Reconstruction from compressed representation
  - b. Choosing the number of principal components
  - c. Advice for applying pca



Reduce from n-dimension to k-dimension: Find k vectors  $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$  onto which to project the data, so as to minimize the projection error.

Sigma = 
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$

$$[U,S,V] = svd(Sigma);$$
Ureduce =  $U(:,1:k);$ 

$$z = Ureduce'*x;$$

Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$
 (1%)

"99% of variance is retained"

## **Application of PCA**

- Compression
  - Reduce memory/disk needed to store data
  - Speed up learning algorithm
- Visualization

## **Questions:**

- 1. What is dimensional reduction?
- 2. What's the main reasons to use PCA?
- 3. Which parameter illustrates percentage of retained variance?