Hypothesis Class and ERM

```
Apply ERM over a restricted set of hypotheses \mathcal{H} = hypothesis class \rightarrow h \in \{ " hower models", "SUM", "NNs", ... \}
• each h \in \mathcal{H} is a function h : \mathcal{X} \rightarrow \mathcal{Y}

ERM_{\mathcal{H}} learner:

ERM_{\mathcal{H}} \in \arg\min_{h \in \mathcal{H}} L_{S}(h) \text{ with the last hypothesis}

Which hypothesis classes \mathcal{H} do not lead to overfitting?
```

Finite Hypothesis Classes

Assume \mathcal{H} is a finite class: $|\mathcal{H}| < \infty$

Let h_S be the output of $ERM_{\mathcal{H}}(S)$, i.e. $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$

Assumptions —

- Realizability: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*) = 0$
- <u>i.i.d.</u>: examples in the <u>training set are independently and</u> identically distributed (i.i.d) according to \mathcal{D} , that is $S \sim \mathcal{D}^m$

Observation: realizability assumption implies that $L_S(h^*) = 0$

Can we learn (i.e., find using ERM) h*? - us determining

(Simplified) PAC learning

Probably Approximately Correct (PAC) learning

Since the training data comes from \mathcal{D} : we can only be approximately correct we can only be probably correct

Parameters:

- accuracy parameter ε: we are satisfied with a good hs: $L_{\mathcal{D},f}(h_S) \leq \varepsilon$ — I don't lask for 0 cause I'm not three it were exists
- confidence parameter δ : want h_S to be a good hypothesis

with probability $\geq 1-\delta$ Wc wont both & and I smou (~ 0)

Theorem

Let $\underline{\mathcal{H}}$ be a finite hypothesis class. Let $\underline{\delta} \in (0,1)$, $\varepsilon \in (0,1)$, and $\underline{m} \in \mathbb{N}$ such that

$$|\rho| \implies m \ge \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon}. \implies \text{troining set}$$

Then for any f and any D for which the realizability assumption holds, with probability $\geq 1 - \delta$ we have that for every ERM hypothesis h_S it holds that

I can apply this to every

 $L_{\mathcal{D},f}(h_{\mathcal{S}}) \leq \varepsilon.$

Note: log = natural logarithm

Quantifies how large the dateset should be

The smaller the E and S, the more data 1'11 need

Proof (see book as well, Corollary 2.3)

let $S|_{X} = \{X_{i_1}X_{i_1,...}, X_{i_m}\}$ be the instances in the training set S. We want to bound to:

We coll $H_0 = \{h \in H : L_{0,p}(h_s) > E \}$ (bod hypotheris) and $H = \{S|_X : \exists h \in H_0, L_s(h) = 0\}$ (mileading samples)

Since the volisobility ornuption holds (hs)=0

That is, au fracting date must be in the set H: $|SIx:L_{DA}(h_s)>\epsilon|\leq H$

Therefore Dm({Six: LD((hs) > E }) < Dm(H). Dm(Ubeho {Sixils(h)=3}) Du (O SIx: Ls(h) = 0 }) < Du (SIx: Ls(h) = 0 }) Now let's fix hette: Ls(h)=0 0-> Vi=1..., m : h(xi)= f(xi) Therefore: DM ({SIx: Ls(h)=0})=DM ({SIx: tri=1,...,m; h(xi)=f(xi)})

= TTD({X:: h(xi)=f(xi)}) Coundr som 1, 1414 m : D({xi: h(xi)= p(xi)}) $= 1 - D(\{ x_i : h(x_i) \neq \ell(x_i) \})$ Log(h) = Px~ 5 (4(x) x ((x)))
= 1-Log(h) < 1-E

= toylor experien

Combining this venet with the product of the productivities: D" (| SIx: Ls(h) = of) = Th c= e-me

Combining the above with the sun of the probabilities:

Now, given the choice of m, we have < | | = (| =) = d

PAC Learning

Definition (PAC learnability)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X} \to \{0,1\}$, if the realizability assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generate by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability $h \to 0$ (over the choice of examples): $h \to 0$ (over the choice of examples): $h \to 0$

 $\underline{m}_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}:$ sample complexity of learning \mathcal{H} .

• $m_{\mathcal{H}}$ is the minimal integer that satisfies the requirements.

Corollary

Every finite hypothesis class is PAC learnable with sample complexity $m_{\mathcal{H}}(\varepsilon,\delta) \leq \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\varepsilon} \right\rceil$. Algorithm to find a post hypothesis