

Space Launch System The Future of Exploration

Sharon Cobb, Ph.D., Assistant Program Manger Space Launch System NASA Marshall Space Flight Center

B.S., M.S., Materials Engineering, University of Alabama in Birmingham

November 7, 2013

A
Deeper
Purpose,
A Bolder
Mission

The Next
Great
Ship

Bigger
Rocket =
Unrivaled
Mass,
Unrivaled
Volume

Enables missions no other rocket can perform.

NASA's Space Launch System

Orion:

Carrying astronauts into deep space

Core Stage:

Newly developed for SLS, the Core Stage towers more than 200 feet tall

RS-25 Engines:

16 Space Shuttle engines are already in inventory

Interim Cryogenic Propulsion Stage: Based on the Delta IV Heavy upper stage; the power to leave Earth

Solid Rocket Boosters:

Built on Space Shuttle hardware; more powerful for a new era of exploration

A National **Effort**

224 Subcontracts in 30 States are advancing technology and innovation.

NASA's
Space
Launch
System

SLS is the first step in the journey to Mars

Space Launch System Core Stage

Michelle Taylor, SLS Engineer Boeing Corporation

B.S., Electrical Engineering; M.S., Aerospace Engineering University of Alabama

Core Stage & Avionics

NASA Marshall Space Flight Center (MSFC) Integrates SLS

Core
Stage
Major
Structural
Elements

Vertical Weld Center (VWC)

VWC Dimensions

- 41 feet tall
- 40 feet wide
- 50 feet long
- Weight –165.5 tons (not including production hardware

VWC Complete - Tool In Use

First Tank Barrel at MAF Vertical Weld Center

Enhanced Robotic Weld Tool (ERWT)

- Welds twelve gore panels together to form gore section
- Welds dome
 cap to top and
 ring to bottom
 of gore section
 to create
 complete dome

The Circumferential Dome Weld Tool (CDWT)
welds gore dome assemblies, rings and dome
caps together to make dome assemblies

Segmented Ring Tool (SRT)

- Welds six ring segments to form one 8.4 meter ring
- Y-Rings connect tanks domes and barrels
- L-Rings connect dry structure barrels

Space Launch System Rocket Engine Technology

Mike Kynard, Manager SLS Liquid Engines Element NASA Marshall Space Flight Center

RS-25

The Workhorse of SLS Core Stage

RS-25 Single Engine Test on A1 Test Stand at Stennis Space Center

Core Stage Engine	Existing RS-25 Inventory	New Build RS-25			
Propellant	LO2/LH2	LO2/LH2			
Max power level	109%	111%			
Throttle Range	65%-109%	65%-111%			
Avg Thrust @ max Pwr (vac)	<i>512,185</i> lbs	521,700lbs			
Min Isp @ max Pwr (vac)	450.8 (452 Avg)	450.8			
Engine Mass (each)	7,816	NTE 8,156			
Nom, Range MR	6.043, 5.85-6.1	6.043, 5.85-6.1			
Size	96" x 168"	96" x 168"			

RS-25 as the Space Shuttle Main Engine

- 3171 Total Starts
- 1,095,679 Total Seconds
- 135 flights 100% mission success
- Reusable Designed for 55 starts and 27,000 seconds
- First Test 1975, Last
 Flight 2011

J-2X

Upper Stage Engine for Evolved Vehicle

Gimbal Test for J-2X
On A1 Test Stand at Stennis
Space Center

Upper Stage Engine	J-2X			
Propellant	LO2/LH2			
General Attributes				
Max power level	100.0%			
Thrust (vac)	294,000 lbf			
Min Isp (vac)	448 seconds			
Size	92" X 131"			
Engine Mass	5,400 lbm			
Mixture Ratio	5.5			
Secondary Power Level	~82%			

Key Baseline Features

- Short nozzle implemented (285k, 435s)
 - (Capable of 294K thrust and 448s)
- Re-startable

J-2X Development

System Testing

Powerpack 2

- 13 tests
 - Performance
 characterization
 of turbopumps,
 inlet ducts, and
 turbine bypass
 system
- 6177 seconds total
 - Includes 1350
 second test longest test on
 A1 test stand

Engine 10001

- The first 10 tests
 performance
 characterization at
 sea level
- Next 11 tests
 performance
 characterization with
 stub nozzle extension
 at simulated altitude
- 2718 seconds total

6 tests on A2 test stand

- Engine-to-engine
 performance
 repeatability
 characterization with
 stub nozzle at simulated
 altitude
- 7 tests on A1 test stand
 - Gimbal testing at sea level
- 5201 seconds total to date

14,096 total seconds

Single Engine Test Facility

Structured
Light
Scanning
Development

Replaced difficult measurements with scanning to help reduce performance uncertainty (throat and exit areas)

Structured Light Introduced to Sub-tier Vendors to modify tube dies to **integrate supply chain** (i.e. reduce turn around time for nozzle assembly)

Completing study to advance structured light as a quality acceptance tool. Implementing > 5:1 time savings.

Structured Light Used to **Generate**Machining Code and Match Machine
at PWR

Developing new optical techniques to augment traditional engine measurements

Reducing the Development Cycle for Hardware

Structured Light

Selective Laser Melting

Selective Laser Melting

Engine Controller Unit (ECU)

♦ ECU function

- Controls thrust and mixture ratio
 - Open and closed loop
- Continuously monitors engine health
- Provides electric power to control elements, sensors, and effectors
- Accepts commands from and reports data to vehicle computers
- Challenge: Heritage controller incompatible with new vehicle

♦ Solutions

- Design new controller rather than adapt old
- Leverage J-2X design for "universal controller"

Engine Controller Unit (ECU) (Continued)

Roadmap to Improved RS-25

- Leverages Nation's wealth of propulsion experience
 - Maintain 100%
 mission success
 - Introduce high maturity affordability enhancements
- Sustainable design, processes and supply chain
- •Evolve into SLS to meet future mission needs

Delivery of affordable RS-25 engines is key to SLS success. J-2X represents the current state of NASA/AR capability to affordably design, develop, test, evaluate, and manage human-rated flight-qualified liquid rocket engines.

Space Launch System Systems Engineering & Integration

Garry Lyles, Chief Engineer SLS Program Office

B.A. in Mechanical Engineering, University of Alabama Class of 2010 Distinguished Engineering Fellows

"We're going to get this country — and the world — exploring beyond low-Earth orbit very shortly."

Dan Dumbacher
 Deputy Associate Administrator
 Exploration Mission Directorate

A National Infrastructure Asset

Exploration Mission 1

70 Metric Ton Expanded View

Initial Capability Builds on Heritage Hardware

SLS Development Schedule

PROGRAM PROGRESS

Development Test

Concept **Studies**

Concept & Technology Development

Preliminary Design & Technology Completion

Final Design & Fabrication

System Assembly, Integration & Test, Launch & Checkout

MCR: Mission Concept Review	CDR: Critical Design Review		
SRR: System Requirements Review	SIR: System Integration Review		
SDR: System Definition Review	FRR: Flight Readiness Review		
PDR: Preliminary Design Review	PLAR: Post-Launch Asses. Review		

Communication and Integration

Accountability and Responsibility

Strong focus on leadership at all levels

Organized to balance functional expertise and cross-functional integration

Chief Safety Officer and staff provide guidance, analysis, and oversight/insight

Chief Engineer serves as lead designer, with staff focused on technical integration

Early integration of production considerations

Entire organization focused on stakeholder value

SLS Systems Engineering & Integration Organization	Systems Engineering	Vehicle Management	Structures & Environments	Propulsion	Production	Integrated Avionics & Software	Operations	Test	Safety & Mission Assurance
Program Chief Engineer (CE)	Lead Systems Engineer (LSE)	Discipline Lead Engineer (DLE)	DLE	DLE	DLE	DLE	DLE	DLE	Chief S&MA Officer (CSO)
Stages Element Chief Engineer (ECE)	Element LSE (ELSE)	Element DLE (EDLE)	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	Element CSO (ECSO)
Booster ECE	ELSE	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	ECSO
Engines ECE	ELSE	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	ECSO
Integrated Spacecraft & Payload ECE	ELSE	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	EDLE	ECSO
Advanced Development ECE									

Top Technical Issues

Loads and Environments

- •ICPS Engine/Actuator Loads
- Predicted Core Stage acceleration
- Booster forward skirt
- •MPCV designed to Ares loads
- Updated acoustic environments

Performance Threats

- Propulsion Performance
- Mass Growth
- Loads

Interfaces

- Core Stage Engine
- BSM Cover
- Core Stage
- Booster Separation
- Core Stage Engine
- •FTS Pyro Delay

DAC-3 Touches Majority of Open Issues

Meeting Our Commitments & Exceeding Expectations

On Course for First Flight In 2017

Engines
Tested
selective laser
melted part
on J-2X at
Stennis Space
Center
(March 2013)

Spacecraft & Payload Integration
Conducted fit-check of the Multi-Purpose

Conducted tif-check of the Multi-Purpose Crew Vehicle Stage Adapter at the Marshall Space Flight Center for 2014 Exploration Flight Test (June 2013)

Boosters
Conducted
Thrust Vector
Flight Control
Test at ATK in
Promontory, UT
(Jan 2013)

Advanced
Development
Conducted F-1
engine hot-fire
testing at Marshall
(Jan 2013)

First Core Stage barrel section welded at MAF (July 2013)

Systems Engineering & Integration

Tested buffet model in Langley Research Center's Transonic Dynamics Wind Tunnel (Jan 2013)

"Awesome...huge step...stay focused and keep designing and building. December 2017 is closer than we think.

——————William Gerstenmaier,

Human Exploration and Operations Director,
July 31, 2013

Islands in Our Ocean

Powering the Future of Exploration

Aerospace Engineering & Mechanics

Chemical & Biological Engineering

Computer Science

Mechanical Engineering

Civil, Construction & Environmental Engineering

Electrical & Computer Engineering

Metallurgical & Materials Engineering

"Man cannot discover new oceans unless he has the courage to lose sight of the shore."

Join us on the journey

www.nasa.gov/sls www.twitter.com/nasa_sls www.facebook.com/nasasls

Connect Now.

Connect Now.

www.usajobs.gov/studentopps/default.htm

Connect Now.

https://intern.nasa.gov/ossi/web/public/main/

ONE amazing opportunity

Questions & Answers