Number Theory GCD, Modulo, dan Keterbagian

Audrey Felicio Anwar

Its like asking why is Ludwig van Beethovens Ninth Symphony beautiful. If you don't see why, someone can't tell you. I know numbers are beautiful. If they aren't beautiful, nothing is. - Paul Erdos

Teori Dasar Aritmatika

Setiap bilangan dapat dinyatakan sebagai hasil perkalian dari bilangan-bilangan prima dan representasinya unik.

Contoh: $12 = 2^2 \cdot 3$, $27 = 3^3$

Algoritma Pembagian

Untuk setiap bilangan asli a,b dengan a>b, ada tepat 1 pasang (q,r) bilangan asli yang memenuhi

$$a = bq + r$$
 $0 \le r < b$

GCD dan LCM

Misalkan kita punya n bilangan asli berbeda $a_1, a_2, ..., a_n$

$$gcd(a_1, a_2, a_3, ..., a_n)$$

adalah bilangan terbesar yang membagi a_i untuk i = 1, 2, ..., n

$$lcm(a_1, a_2, a_3, ..., a_n)$$

adalah bilangan terkecil yang habis dibagi oleh a_i untuk i=1,2,...,n Biasanya hanya ditanya untuk dua bilangan saja. Untuk dua bilangan, misalkan

$$a = p_1^{a_1} p_2^{a_2} ... p_n^{a_n} \quad b = p_1^{b_1} p_2^{b_2} ... p_n^{b_n}$$

maka,

$$gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} ... p_n^{\min(a_n,b_n)}$$

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} ... p_n^{\max(a_n,b_n)}$$

Kita juga mempunyai hubungan berikut

$$gcd(a,b) \cdot lcm(a,b) = ab$$

$$gcd(a, b, c) = gcd(gcd(a, b), c)$$
 $lcm(a, b, c) = lcm(lcm(a, b), c)$

Algoritma Euclid

Untuk menghitung gcd, kita dapat menggunakan algoritma euclid. Misalkan a,b adalah bilangan asli dengan a>b, menggunakan algoritma pembagian berkali-kali,

$$a = bq_1 + r_1$$

$$b = r_1q_2 + r_2$$

$$r_1 = r_2q_3 + r_3$$

$$\dots$$

$$r_{n-1} = r_nq_{n+1}$$

Maka, kita punya $gcd(a,b) = gcd(b,r_1) = gcd(r_1,r_2) = \dots = gcd(r_{n-1},r_n) = r_n$

Contoh 1 Hitunglah qcd(1234,86)

$$qcd(1234, 86) = qcd(30, 86) = qcd(30, 26) = qcd(4, 26) = qcd(4, 2) = 2$$

Keterbagian

Notasi $a \mid b$ menyatakan a habis membagi b Notasi $a \nmid b$ menyatakan a tidak habis membagi b beberapa properti penting :

- Jika $a \mid b$ dan $a \mid c$, maka $a \mid xb + yc$ dengan x, y bilangan bulat
- Jika $a \mid b$ dan $b \mid c$, maka $a \mid c$
- Jika $a \mid b$ maka $a \leq b$
- Jika $a \mid b$ dan $a \mid b \pm c$, maka $a \mid c$
- Jika $a \mid b$ dan $b \mid a$, maka a = b
- Jika gcd(a,b) = 1 dan $a \mid bc$ maka $a \mid c$

Sifat-Sifat Habis Dibagi

- $\bullet\,$ Suatu bilangan habis dibagi 2^n jika n digit terakhirnya habis dibagi 2^n
- Suatu bilangan habis dibagi 3 jika jumlah semua digitnya habis dibagi 3
- Suatu bilangan habis dibagi 5 jika digit terakhirnya 0 atau 5
- Suatu bilangan habis dibagi 9 jika jumlah semua digitnya habis dibagi 9
- Suatu bilangan habis dibagi 11 jika jumlah digit posisi genap jumlah digit posisi ganjil hasilnya habis dibagi 11

Modulo

Notasi $a \equiv b \mod m$ berarti a,b jika dibagi dengan m memiliki sisa bagi yang sama. Sifat-sifat :

- Jika $a \equiv b \mod m$ dan $b \equiv c \mod m$, maka $a \equiv c \mod m$
- Jika $a \equiv b \mod m$ dan $c \equiv d \mod m$, maka $a+c \equiv b+d \mod m$ dan $a-c \equiv b-d \mod m$
- Jika $a \equiv b \mod m$ maka $ka \equiv kb \mod m$ untuk k suatu bilangan bulat.

Beberapa teorema penting:

Invers Modulo

Sebuah bilangan bulat b kita sebut invers dari $a \mod m$ jika $ab \equiv 1 \mod m$. Invers dari $a \mod m$ ada jika dan hanya jika gcd(a,m)=1. b dapat ditulis sebagai a^{-1}

Contohnya invers dari 7 mod 20 adalah 3

Fermat Little Theorem

Jika p adalah suatu bilangan prima dan gcd(a, p) = 1, maka

$$a^{p-1} \equiv 1 \mod p$$

Euler's Theorem

Jika a,badalah bilangan asli dengan $\gcd(a,b)=1,\,b=p_1^{a_1}p_2^{a_2}...p_n^{a_n},$ maka

$$a^{\phi(b)} \equiv 1 \mod b$$

dengan

$$\phi(b) = b\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_n}\right)$$

Chinese Remainder Theorem

Sistem kongruensi berikut

$$\begin{cases} x \equiv a_1 \mod b_1 \\ x \equiv a_2 \mod b_2 \\ \dots \\ x \equiv a_n \mod b_n \end{cases}$$

dengan $gcd(b_i,b_j)=1$ untuk setia
p $i\neq j$ pasti memiliki solusi modulo $b_1b_2...b_n$ dan nila
ixunik modulo $b_1b_2...b_n$ Secara eksplisit,

$$x \equiv (a_1 x_1 y_1) + (a_2 x_2 y_2) + \dots + (a_n x_n y_n) \mod B$$

dengan $B = b_1 b_2 ... b_n$, $x_i = \frac{B}{b_i}$, $y_i = x_i^{-1} \mod b_i$

Soal

Soal 1 Faktorkan 30030

Soal 2 Hitunglah gcd(380, 35)

Soal 3 Hitunglah gcd(49726, 2946)

Soal 4 Hitunglah gcd(24, 900, 1729)

Soal 5 Hitunglah lcm(13, 37)

Soal 6 Hitunglah lcm(4, 12, 27)

Soal 7 Jika gcd(a, b) = 1, buktikan gcd(ab, a + b) = 1

Soal 8 Hitunglah $gcd(2002 + 2,2002^2 + 2,2002^3 + 2,...)$

Soal 9 Diberikan n-1 buah pecahan berikut, n > 2, n bilangan asli.

$$\frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}$$

Buktikan bahwa sebanyak genap dari pecahan-pecahan tersebut tidak dapat disederhanakan lagi

 ${\bf Soal}\ {\bf 10}$ Jika a,badalah bilangan asli 1 digit sehingga 3a86bhabis dibagi 11 dan 9, tentukan a+b

Soal 11 Tentukan semua nilai n bulat sehingga $\frac{4n-49}{n+3}$ adalah bilangan bulat.

Soal 12 Tentukan semua nilai n bulat sehingga $n-3 \mid n^3-3$

Soal 13 Buktikan bahwa $\sqrt{2}$ adalah bilangan irasional

Soal 14 Buktikan ada tak hingga banyaknya bilangan prima

Soal 15 Hitunglah sisa pembagian 2018^{1296} dengan 37

Soal 16 Hitunglah sisa pembagian 3⁴¹ dengan 42

Soal 17 Hitunglah sisa pembagian 7^{6^5} dengan 100

Soal 18 Tentukan invers dari 9 mod 13

Soal 19 Tentukan invers dari 31 mod 341

Soal 20 Tentukan nilai n bilangan asli $0 \le n \le 1000$ yang memenuhi

$$\begin{cases} n \equiv 3 \mod 13 \\ n \equiv 7 \mod 37 \end{cases}$$

 $\mathbf{Soal}\ \mathbf{21}$ Tentukan nilai n bilangan asli kurang dari 100 yang memenuhi

$$\begin{cases} n \equiv 1 \mod 4 \\ n \equiv 3 \mod 5 \\ n \equiv 2 \mod 3 \end{cases}$$

Soal 22

Misalkan x, y, z adalah tiga bilangan asli yang memenuhi gcd(x, y, z) = 1 dan

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$$

Misalkan qcd(x, y) = d

- (a) Buktikan gcd(d,z) = 1
- (b) Buktikan x-z,y-z,x+y,xyz adalah bilangan kuadrat sempurna

Soal 23 Tentukan semua pasangan bilangan prima (p,q) yang memenuhi

$$p^3 - q^5 = (p+q)^2$$

Tantangan

Challenge 1 Tentukan semua pasangan bilangan asli (x, y) yang memenuhi

$$xy^2 + y + 7 \mid x^2y + x + y$$

Challenge 2 Adakah sebuah polinom P(x) sehingga terdapat tiga bilangan asli a, b, c dengan P(a) = b, P(b) = c, P(c) = a?

Challenge 3 Misalkan a, b, c adalah bilangan asli yang memenuhi

$$c = a + \frac{b}{a} - \frac{1}{b}$$

Buktikan c adalah bilangan kuadrat sempurna

Challenge 4 Misalkan p adalah suatu bilangan prima yang habis membagi $\phi(p^2+2)$

- (a) Buktikan terdapat suatu bilangan prima q sehingga $p \mid q-1, q \mid p^2+2$
- (b) Tentukan semua nilai p yang mungkin

Challenge 5 Misalkan a adalah bilangan bulat positif sehingga

$$\gcd(an+1, 2n+1) = 1$$

- (a) Tunjukan bahwa gcd(a-2,2n+1)=1
- (b) Tentukan semua nilai a yang mungkin

^{*}soal tidak diurutkan berdasarkan tingkat kesulitan