Sequence Protocol

<110> metaGen Gesellschaft für Genomforschung mbH

<120> Human Nucleic Acid Sequences from Hysteromyomic Tissue

```
<140> PCT/DE99/01178
<141> 1999-04-14
<160> 55
<210> 1
<211> 779
<212> DNA
<213> homo sapiens
<400> 1
agcgagcagc ggcggcggcg cggagagacg cagcggaggt tttcctggtt tcggacccca 60
geggeeggat ggtgaaatee teeetgeage ggateeteaa tageeactge ttegeeagag120
agaaggaagg ggataaaccc agcgccacca tccacgccag ccgcaccatg ccgctcctaa180
geetgeacag eegeggegge ageageagtg agagtteeag ggteteeete eaetgetgta240
gtaacceggg teeggggeet eggtggtget cetgatgeec eteacceace eetgaagate300
 ccaggtgggc gagggaatag tcaaagggac cacaatcttt cagctaactt attctactcc360
 gatgatcggc tgaatgtaac agaggaacta acgtccaacg acaagacgag gattctcaac420
gtccagtcca ggctcacaga cgccaaacgc attaactggc gaacagtgct gagtggcggc480
 actgctctac atcgagatec egggeggege getgeeegag gggageaagg acagetttgc540
 agtteteetg ggagtteget gaggageage tgegaggeeg accatgtett aatttgette600
 cacaagaacc ccgaggacag agccgccttg ctccgaacct tcagcttttt cgggcttgag660
 attttgagac cggggcatcc cctttgttcc ccaagagacc cgacgcttgc ttcatgggcc720
 tacaagtttc gagagagagt ctttggggag aggaagaagg attaggggcc gcgtcgggt 779
<210> 2
<211> 2310
<212> DNA
<213> homo sapiens
<400> 2
 gttctccgaa acatggagtc ctgtaggcaa ggtcttacct gaatcaggat gagggagtgg 60
 tgggtccagg tggggctgct ggccgtgccc ctgcttgctg cgtacctgca catcccaccc 120
 cctcagcgct cccctgccct tcactcatgg aagtcttcag gcaagttttt cacttacaag 180
 ggactgcgta-tcttctacca agactctgtg ggtgtggttg gaagtccaga gatagttgtg 240
```

cttttacacg gttttccaac atccagctac gactggtaca agatttggga aggtctgacc 300 ttgaggtttc atcgggtgat tgcccttgat ttcttaggct ttggcttcag tgacaaaccg 360 agaccacatc actattccat atttgagcag gccagcatcg tggaagcgct tttgcggcat 420 ctggggctcc agaaccgcag gatcaacctt ctttctcatg actatggaga tattgttgct 480 caggagette tetacaggta caageagaat egatetggte ggettaceat aaagagtete 540 tgtctgtcaa atggaggtat ctttcctgag actcaccgtc cactccttct ccaaaagcta 600 ctcaaagatg gaggtgtgct gtcacccatc ctcacacgac tgatgaactt ctttgtattc 660 tetegaggte teaccecagt etttgggeeg tatactegge eetetgagag tgagetgtgg 720 gacatgtggg cagggatccg caacaatgac gggaacttag tcattgacag tctcttacag 780 tacatcaatc agaggaagaa gttcagaagg cgctgggtgg gagctcttgc ctctgtaact 840 atccccattc attttatcta tgggccattg gatcctgtaa atccctatcc agagtttttg 900 gagotgtaca ggaaaacgot googoggtoo acagtgtoga ttotggatga coacattago 960 cactatccac agctagagga tcccatgggc ttcttgaatg catatatggg cttcatcaac1020 teettetgag etggaaagag tagetteeet gtattacete ecetaeteee ttatgtgttg1080 tgtattccac ttaggaagaa atgcccaaaa gaggtcctgg ccatcaaaca taattctctc1140 acaaagtcca ctttactcaa attggtgaac agtgtatagg aagaagccag caggagctct1200 gactaaggtt gacataatag tccacctccc attactttga tatctgatca aatgtataga1260 cttggctttg ttttttgtgc tattaggaaa ttctgatgag cattactatt cactgatgca1320

```
gaaagacgtt cttttgcata aaagactttt tttaacactt tggacttctc tgaaatattt1380
aqaaqtgcta atttctggcc cacccccaac aggaattcta tagtaagggg gaggagaagg1440
ggggctcctt ccctctcctc gaatgacgtt atgggcacat gccttttaaa agttctttaa1500
gcaacacaga gctgagtcct ctttgtcata cctttggatt tagtgtttca tcagctgttt1560
ttagttataa acattttgtt aaaatagata ttggtttaaa tgatacagta ttttaggtat1620
gatttaagac tatgatttac ctatacatta tatatattt ataaagatac taaaccagca1680
taccettact etgecagagt agtgaageta attaaacacg tttggtttet gaataaattg1740
aactaaatcc aaactatttc ctaaaatcac aggacattaa ggaccaatag catctgtgcc1800
agagatgtac tgttattagc tgggaagacc aattctaaca gcaaataaca gtctgagact1860
cctcatacct cagtggttag aagcatgtct ctcttgagct acagtagagg ggaagggatt1920
gttgtgtagt caagtcacca tgctgaatgt acactgattc ctttatgatg actgcttaac1980
tececactge etgteceaga gaggetttee aatgtagete agtaatteet gttaetttae2040
agacaggaaa gttccagaaa ctttaagaac aaactctgaa agacctatga gcaaatggtg2100
ctgaatactt tttttttaaa gccacatttc attgtcttag tcaaagcagg attattaagt2160
gattatttaa aattegtttt tttaaattag caaetteaag tataacaaet ttgaaaetgg2220
aataagtgtt tattttctat taataaaaat gaattgtgac aaaaaaaaa aaaggcttcg2280
gcttttgaag tctatgtgtg ggggggggt
<210> 3
<211> 854
<212> DNA
<213> homo sapiens
<400> 3
```

ctgcacgggg gctcgggctc actataaaag gtgggagcgc gtggtgcccc agcaacgacg 60 agtttcagaa cgatggagag ctcccgcgtg aggctgctgc ccctcctggg cgccgcctg120 ctgctgatgc tacctctgtt gggtacccgt gcccaggagg acgccgagct ccagcccga180 gccctggaca totactotgc cgtggatgat gcctcccacg agaaggaget gatcgaagcg240 ctgcaagaag tettgaagaa getcaagagt aaacgtgtte ccatetatga gaagaagtat300 ggccaagtcc ccatgtgtga cgccggtgag cagtgtgcag tgaggaaagg ggcaaggatc360 gggaagetgt gtgaetgtee eegaggaace teetgeaatt eetteeteet gaagtgetta420 tgaaggggg tccattctcc tccatacatc cccatccctc tactttcccc agaggaccac480 accttcctcc ctggagtttg gcttaagcaa cagataaagt ttttattttc ctctgaaggg540 aaagggctct tttcctgctg tttcaaaaat aaaagaacac attagatgtt actgtgtgaa600 qaataatqcc ttgtatggtg ttgatacgtg tgtgaagtat tcttatttta tttgtctgac660 aaactcttgt gtacctttgt gtaaagaagg gaagctttgt ttgaaaattg tatttttgta720 tgtggcatgg cagaatgaaa attagatcta gctaatctcg gtagatgtca ttacaacctg780 gaaaataaat caccctaagt gacacaaatt gaagcatgta caaattatac ataataaagt840 854 gtttttaata attg

<210> 4 <211> 1112 <212> DNA <213> homo sapiens

<400> 4

```
gtctgcccct cgggttgggg gagtatccca ggcctctctg tgggaccctg ggccctgacg 960
ggccttctca gcccgttttg aggacagaca gtcccccgag gtaggctaca tccccccacc1020
ccagctggtc tgcttggatt tcctacagcc cccgtgggca tggaccacct ttattttata1080
caaaattaaa aacaagtttt tacaaaaaaa aa
<210> 5
<211> 1051
<212> DNA
<213> homo sapiens
<400> 5
gcgcaggcgc gaagaagctg gcaggggcac gagccggggg cgggtttgaa gacgcgtcgt
 tgggttttgg aggccgtgaa acagccgttt gagtttggct gcgggtggag aacgtttgtc 120
 aggggcccgg ccaagaagga ggcccgcctg ttacgatggt gtccatgagt ttcaagcgga 180
 accgcagtga ccggttctac agcacccggt gctgcggctg ttgccatgtc cgcaccggga 240
 cgatcatcct ggggacctgg tacatggtag taaacctatt gatggcaatt ttgctgactg 300
 tggaagtgac tcatccaaac tccatgccag ctgtcaacat tcagtatgaa gtcatcggta 360
 attactattc gtctgagaga atggctgata atgcctgtgt tctttttgcc gtctctgttc 420
 ttatgtttat aatcagttca atgctggttt atggagcaat ttcttatcaa gtgggttggc 480
 tgattccatt cttctgttac cgactttttg acttcgtcct cagttgcctg gttgctatta 540
gttctctcac ctatttgcca agaatcaaag aatatctgga tcaactacct gattttccct 600
 acaaagatga cctcctggcc ttggactcca gctgcctcct gttcattgtt cttgtgttct 660
 ttgccttatt catcattttt aaggcttatc taattaactg tgtttggaac tgctataaat 720
 acatcaacaa ccgaaacgtg ccggagattg ctgtgtaccc tgcctttgaa gcacctcctc 780
agtacgtttt gccaacctat gaaatggccg tgaaaatgcc tgaaaaagaa ccaccacctc 840
 cttacttacc tgcctgaaga aattctgcct ttgacaataa atcctatacc agctttttgt 900
 ttgtttatgt tacagaatgc tgcaattcag ggctcttcaa acttgtttag atataaaata 960
 tggtggccct ttggttttaa agcaatttat tttccaaaac actaagggag cctttttgga1020
catctggtta aacggccttt ttgggttttt t
<210> 6
<211> 1516
<212> DNA
<213> homo sapiens
<400> 6
 gttgtcctca tccctctcat acagggtgac caggacgttc ttgagccagt cccgcatgcg 60
 cagggggaag aagatccatg agaaggagaa gcgcctggag gcaggagacc accccgtgga 120
 getgetggee egggaetteg agaagaacta taacatgtae atetteeetg tacaetggea 180
 gttcggccag ctggaccagc accccattga cgggtacctc tcccacaccg agctggctcc 240
 actgcgtgct cccctcatcc ccatggagca ttgcaccacc cgctttttcg agacctgtga 300
 cctggacaat gacaagtaca tcgccctgga tgagtgggcc ggctgcttcg gcatcaagca 360
 gaaggatate gacaaggate tigigateta aatecaetee tiecaeagta eeggattete 420
 tetttaacce teceettegt gttteececa atgtttaaaa tgtttggatg gtttgttgtt 480
 ctgcctggag acaaggtgct aacatagatt taagtgaata cattaacggt gctaaaaatg 540
 aaaattotaa oocaagaaca tgacattott agotgtaact taactattaa ggoottttoo 600
 acacgcatta atagtcccat ttttctcttg ccatttgtag ctttgcccat tgtcttattg 660
 ggcacatggg gtggacacgg atctgctggg ctctgcctta aacacacatt gcagcttcaa 720
 cttttctctt tagtgttctg tttgaaacta atacttaccg agtcagactt tgtgttcatt 780
 tcatttcagg gtcttggctg cctgtgggct tccccaggtg gcctggaggt gggcaaaggg 840
 aagtaacaga cacacgatgt tgtcaaggat ggttttggga ctagaggctc agtggtggga 900
 gagatccctg cagaacccac caaccagaac gtggtttgcc tgaggctgta actgagagaa 960
 agattetggg getgtgttat gaaaatatag acatteteae ataageeeag tteateaeea1020
 tttcctcctt tacctttcag tgcagtttct tttcacatta ggctgttggt tcaaactttt1080
 gggagcacgg actgtcagtt ctctgggaag tggtcagcgc atcctgcagg gcttctcctc1140
 ctctgtcttt tggagaacca gggctcttct caggggctct agggactgcc aggctgtttc1200
 agccaggaag gccaaaatca agagtgagat gtagaaagtt gtaaaataga aaaagtggag1260
 ttggtgaatc ggttgttctt tcctcacatt tggatgattg tcataaggtt tttagcatgt1320
 tectectitt etecaceete eeettitte eeecaagaat acagagaaaa eteaaagtta1380
```

atggggaggg tcggatccta caggcctgag aatcggtcaa ctccaagcat ttcatggaaa1440 aggcggcttc ctaattaatc ctacaaaccc ccacccagga tggtgagggg tttcaccaat1500

```
<210> 7
<211> 2367
<212> DNA
<213> homo sapiens
```

<400>,7

cgccgggact cttggcgggt gaaggtgtgt gtcagctttt gcgtcactcg agccctgggc gctgcttgct aaagagccga gcacgcgggt ctgtcatcat gtcgcgttac gggcggtacg 120 gaggagaaac caaggtgtat gttggtaacc tgggaactgg cgctggcaaa ggagagttag 180 aaagggettt cagttattat ggteetttaa gaaetgtatg gattgegaga aateeteeag 240 gatttgcctt tgtggaattc gaagatccta gagatgcaga agatgcagta cgaggactgg 300 atggaaaggt gatttgtggc tcccgagtga gggttgaact atcgacaggc atgcctcgga 360 gatcacgttt tgatagacca cctgcccgac gtccctttga tccaaatgat agatgctatg 420 agtgtggcga aaagggacat tatgcttatg attgtcatcg ttacagccgg cgaagaagaa 480 gcaggtcacg gtctagatca cattctcgat ccagaggaag gcgatactct cgctcacgca 540 gcaggagcag gggacgaagg tcaaggtcag catctcctcg acgatcaaga tctatctctc 600 ttcgtagatc aagatcagct tcactcagaa gatctaggtc tggttctata aaaggatcga 660 ggtatttcca atccccgtcg aggtcaagat caagatccag gtctatttca cgaccaagaa 720 gcagccgatc aaagtccaga tctccatctc caaaaagaag tcgttcccca tcaggaagtc 780 ctcgcagaag tgcaagtcct gaaagaatgg actgaagctc tcaagttcac cctttaggga 840 aaagttattt tgtttacatt attataaggg atttgtgatg tctgtaaagt gtaacctagg 900 aaagataatt caaccatcta atcaaaatgg atctggatta ctatgtaaat tcacagcagt 960 aagataatat aaattttgtt gaatgtatta acatcatatg gtctgaaaat gtgggttttt1020 atttggcaca tttaaataaa atgtttctaa ctagattttt gatttgtgtt caatattaac1080 acttettaat ttgatatatt tgagagteag acattataat tgttaacett atteatacat1140 acctacattc agaattgaaa ggtgttggtt aagtcttgaa catcactatt ctatgcataa1200 aacttggcca ggatcttaag ggactttgaa aattccatct tacccttgta gctctgggta1260 agatgacetg agtecettat gatacageet gaatgeatea tgacagatee ttaagttage1320 taatccgttt gaagttggtg ttagtaggta ttgtatgatc agtggtgaag caagtaggac1380 cactgatgtg tctaaatgag catgacagga actaaacgaa actgattaaa tgtatgagaa1440 atagaaactg atttctggat gatctttata ctaattgcag ctttcaggct actaggtggc1500 atagtgttaa ttaggactcc ccaagatatg gggagttcta ctctcaatgg tcttgtttct1560 ttgctttcta cattagttaa ccagttttat accaaaaaat gcatgtttga ggaattgtct1620 gaaattggga caaaacacct tcatgtaaac cagctttgca aaattttcca gcccagatac1680 tetteateta tteaaatgga ttgtettatt etgageaaag acetgttgtt aatetteaag1740 ctaggttttg cagttcccaa ccacaacatt cttctatttt gccaggctgg tgcaaagtaa1800 ttaaagatgt caatcagaaa tgtcaatgag actaaagtgg ttttgtaaat ctcagctata1860 tttagcaaca ctccatgtag ctaatatttt ttggtagcat ctggtagacc ttagaatgtt1920 acatagccag taggttcttt attcaaattt taagtatctt aagaatagta gggcagtaac1980 agttactttt gagagttttc tggtcaagct tttaccaggc attctctagc cttggtacaa2040 aaaaaaaaaa aacctgctgg ttgcgcagat acctaggctt gtccatttta tgcatttcag2100 caaagtcatt ggatactatt gcaacttggg aatactggtc tgcatcaagt ttattcggta2160 gtttgaccgc tagtatgttg gaagttattt ggattgtttt tggaattttg actggctgaa2220 ttatggttgg tataaagtta tgtgtataac tggcaggctt atttatctgt tgcacttggt2280 tagctttaat tgttctgtat tatttaaaga taagtttact caacaataaa tctgcagaga2340 ttgaacaaat aaaaaaaaa aaaaaaa

```
<210> 8
<211> 568
<212> DNA
<213> homo sapiens
```

<400> 8

```
ctcgagccgt gggcagtggc cgcgaatgcg cggagacact gaccttcagc gcctcggctc 60 cagcgccatg gcgccctcca ggaagttctt cgttggggga aactggaaga tgaacgggcg120 gaagcagagt ctgggggac tcatcggcac tctgaacgcg gccaaggtgc cggccgacac180 cgaggtggtt tgtgctcccc ctactgccta tatcgacttc gcccggcaga agctagatcc240 caagattgct gtggctgcgc agaactgcta caaagtgact aatggggctt ttactgggga300 gatcagccct ggcatgatca aagactgcgg agccacgtgg gtggtcctgg ggcactcaga360
```

```
gagaaggcat gtctttgggg agtcagatga gctgattggg cagaaagtgg cccatgctct420
ggcagaggga ctcggagtaa tcgcctgcat tggggagaag ctagatgaaa gggaagctgg480
catcactgag aatgttgttt tcgagcagac aaaggtcatc ggggatgact tgaaggactg540
gatcaagttc gtcctggcct gttggcct
<210> 9
<211> 1775
<212> DNA
<213> homo sapiens
<400> 9
ctcgggggcc attttgtgaa gagacgaaga ctgagcggtt gtggccgcgt tgccgacctc
cagcagcagt cggcttctct acgcagaacc cgggagtagg agactcagaa tcgaatctct 120
tetecetece ettettgtga gatttttttg atetteaget acattttegg etttgtgaga 180
aaccttacca tcaaacacga tggccagcaa cgttaccaac aagacagatc ctcgctccat 240
gaactcccgt gtattcattg ggaatctcaa cactcttgtg gtcaagaaat ctgatgtgga 300
ggcaatettt tegaagtatg gcaaaattgt gggetgetet gtteataagg getttgeett 360
cgttcagtat gttaatgaga gaaatgcccg ggctgctgta gcaggagagg atggcagaat 420
gattgctggc caggttttag atattaacct ggctgcagag ccaaaagtga accgaggaaa 480
agcaggtgtg aaacgatctg cagcggagat gtacggctcc tcttttgact tggactatga 540
ctttcaacgg gactattatg ataggatgta cagttaccca gcacgtgtac ctcctcctcc 600
tectattget egggetgtag tgeeetegaa aegteagegt gtateaggaa aeaetteaeg 660
aaggggcaaa agtggcttca attctaagag tggacagcgg ggatcttcca agtctggaaa 720
gttgaaagga gatgaccttc aggccattaa gaaggagctg acccagataa aacaaaagt 780
ggattetete etggaaaace tggaaaaaat tgaaaaggaa cagagcaaac aagcagtaga 840
gatgaagaat gataagtcag aagaggagca gagcagcagc tccgtgaaga aagatgagac 900
taatgtgaag atggagtetg aggggggtge agatgaetet getgaggagg gggaeetaet 960
ggatgatgat gataatgaag atcgggggga tgaccagctg gagttgatca aggatgatga1020
aaaagaggct gaggaaggag aggatgacag agacagcgcc aatggcgagg atgactctta1080
agcacatagt ggggtttaga aatcttatcc cattatttct ttacctaggc gcttgtctaa1140
gatcaaattt ttcaccagat cctctccct agtatcttca gcacatgctc actgttctcc1200
ccatccttgt ccttcccatg ttcattaatt catattgccc cgcgcctagt cccattttca1260
cttcctttga cgctcctagt agttttgtta agtcttaccc tgtaattttt gcttttaatt1320
ttgatacctc tttatgactt aacaataaaa aggatgtatg gtttttatca actgtctcca1380
aaataatete ttgttatgea gggagtaeag ttetttteat teataeataa gtteagtagt1440
tgcttcccta actgcaaagg caatctcatt tagttgagta gctcttgaaa gcagctttga1500
gttagaagta tgtgtgttac accctcacat tagtgtgctg tgtggggcag ttcaacacaa1560
atgtaacaat gtatttttgt gaatgagagt tggcatgtca aatgcatcct ctagaaaaat1620
aattagtgtt atagtcttaa gatttgtttt ctaaagttga tactgtgggt tatttttgtg1680
aacageetga tgtttgggae etttttteet caaaataaac aagteettat taaaccagga1740
atttggagaa aaaaaaaaa aaaaaaaaa aaaaa
<210> 10
<<del>211> 509</del>
<212> DNA
<213> homo sapiens
<400> 10
tttcctccgc aaccatgtct gacaaacccg atatggctga gatcgagaaa ttcgataagt120
cgaaactgaa gaagacagag acgcaagaga aaaatccact gccttccaaa gaaacgattg180
aacaggagaa gcaagcaggc gaatcgtaat gaggcgtgcg ccgccaatat gcactgtaca240
ttccacaagc attgccttct tattttactt cttttagctg tttaactttg taagatgcaa300
agaggttgga tcaagtttaa atgactgtgc tgcccctttc acatcaaagg gactacttga360
acaacggaag ggccgcggcc tacctttccc atctgtctat ctatctggct ggcagggaag420
ggaagagttg caggttggtg aggaagaagt ggggtggaag aagttggatg ggccgccagt480
aaaacttggg taaaccgaac ttggccaag
```

<210> 11 <211> 2191 <212> DNA

<400> 11

actgagcgag ggccagccgt gcggcatcta caccgagcgc tgtggctccg gccttcgctg ccagccgtcg cccgacgagg cgcgaccgct gcaggcgctg ctggacggcc gcgggctctg 120 cgtcaacgct agtgccgtca gccgcctgcg cgcctacctg ctgccagcgc cgccagctcc 180 aggaaatgct agtgagtcgg aggaagaccg cagcgccggc agtgtggaga gcccgtccgt 240 ctccagcacg caccgggtgt ctgatcccaa gttccacccc ctccattcaa agataatcat 300 catcaagaaa gggcatgcta aagacagcca gcgctacaaa gttgactacg agtctcagag 360 cacagatace cagaacttet ceteegagte caagegggag acagaatatg gteeetgeeg 420 tagagaaatg gaagacacac tgaatcacct gaagtteete aatgtgetga gteecagggg 480 tgtacacatt cccaactgtg acaagaaggg attttataag aaaaagcagt gtcgcccttc 540 caaaggcagg aagcggggct tetgetggtg tgtggataag tatgggcage eteteceagg 600 ctacaccacc aaggggaagg aggacgtgca ctgctacagc atgcagagca agtagacgcc 660 tgccgcaagg ttaatgtgga gctcaaatat gccttatttt gcacaaaaga ctgccaagga 720 catgaccage agetggetae ageetegatt tatatttetg tttgtggtga aetgattttt 780 tttaaaccaa agtttagaaa gaggtttttg aaatgcctat ggtttctttg aatggtaaac 840 ttgagcatct tttcactttc cagtagtcag caaagagcag tttgaatttt cttgtcgctt 900 cctatcaaaa tattcagaga ctcgagcaca gcacccagac ttcatgcgcc cgtggaatgc 960 tcaccacatg ttggtcgaag cggccgacca ctgactttgt gacttaggcg gctgtgttgc1020 ctatgtagag aacacgette acceccacte ceegtacagt gegeacagge tttategaga1080 ataggaaaac ctttaaaccc cggtcatccg gacatcccaa cgcatgctcc tggagctcac1140 agcettetgt ggtgteattt etgaaacaag ggegtggate eetcaaceaa gaagaatgtt1200 tatgtcttca agtgacctgt actgcttggg gactattgga gaaaataagg tggagtccta1260 cttgtttaaa aaatatgtat ctaagaatgt tctagggcac tctgggaacc tataaaggca1320 ggtatttcgg gccctcctct tcaggaatct tcctgaagac atggcccagt cgaaggccca1380 ggatggcttt tgctgcggcc ccgtggggta ggagggacag agagacaggg agagtcagcc1440 tccacattca gaggcatcac aagtaatggc acaattcttc ggatgactgc agaaaatagt1500 gttttgtagt tcaacaactc aagacgaagc ttatttctga ggataagctc tttaaaggca1560 aagetttatt tteatetete atettttgte eteettagea caatgtaaaa aagaatagta1620 atatcagaac aggaaggagg aatggcttgc tggggagccc atccaggaca ctgggagcac1680 atagagattc accoatgttt gttgaactta gagtcattct catgcttttc tttataattc1740 acacatatat gcagagaaga tatgttcttg ttaacattgt atacaacata gccccaaata1800 tagtaagatc tatactagat aatcctagat gaaatgttag agatgctata tgatacaact1860 gtggccatga ctgaggaaag gagctcacgc ccagagactg ggctgctctc ccggaggcca1920 aacccaagaa ggtctggcaa agtcaggctc agggagactc tgccctgctg cagacctcgg1980 tgtggacaca cgctgcatag agctctcctt gaaaacagag gggtctcaag acattctgcc2040 tacctattag cttttcttta tttttttaac tttttggggg gaaaagtatt tttgagaagt2100 ttgtcttgca atgtatttat aaatagtaaa taaagttttt accattaaaa aaaaaaggag2160 taaaaagaaa aaaaagggcg gccgccgact a

<212> DNA <213> homo sapiens

<400> 12

```
attatttaca tttcaaaata attccctta atcgttttac tcctaagttc attaccattg 60 ttggccacc ttaggttcca ccacttggtt gttaccccag ccctgggttc aaacagggac 120 atggcaaggg gacacaggac agaggggtcc ccagctgca cctcaccac cgcaattcat 180 ttagtagcag gcacagggc agctccggca cggctttctc aggcctatgc cggagcctcg 240 agggcgaacgg ccacgggag ggggccccgg gacattgcg agcaaggag ggggccccgg gacattgcg agcaaggag ctgcagggc 360 tcggcctgcg ggcgccggtc ccacgaggca ctgcggccca gggtctggtg cggagagggc 240 ccacagtgga cttggtgacg ctgtatgcc tcaccgctca ggccttggtg cggagagggc 420 ccacagtgga cttggtgacg ctgtatgccc tcaccgctca gccctgggg ctggcttggc 480 agacagtaca gcatccaggg gagtcaaggg catggggcga gaccaggagg cactggcgg gaggagggg cactggcgg gaggagggg cactggctc cagaggccg ggccaagggg cactggcgc ggcggggggg gagcgggagg cactggctc cagagccgt ggccaagggg ggcctcgcgg 660 gcggcgacgg gacgtgcca ccagctgcg aaggcaggac gacggggtg gacgtgcca ccagctgcg aaggcaggac ggcagggcg gtggacgtga caggctcgcg ggcaggacg gtggacgtga 780 caagcaggac atgacatggt ccggttgac ggcaggaca gacgaggcg gtccggctt 840
```

```
cctgaacacc ttaggctggt ggggctgcgg caagaagcgg gtctgtttct ttacttcctc 900
cacggagteg geacactatg getgeeetet gggeteeeag aacceacaac atgaaagaaa 960
 tggtgctacc cagctcaagc ctgggccttt gaatccggac acaaaaccct ctagcttgga1020
 aatgaatatg ctgcacttta caaccactgc actacctgac tcaggaatcg gctctggaag1080
gtgaagctag aggaaccaga cctcatcagc ccaacatcaa agacaccatc ggaacagcag1140
 egecegeage acceaeceeg caceggegae tecatettea tggccaecee etgeggegga1200
 tececaceae etecetette ttetttttea teettetgte tetttgttte tgagetttee1320
 tgtctttcct tttttctgag agattcaaag cctccacgac tctgtttccc ccgtcccttc1380
tgaatttaat ttgcactaag tcatttgcac tggttggagt tgtggagacg gccttgagtc1440
tcagtacgag tgtgcgtgag tgtgagccac cttggcaagt gcctgtgcag ggcccggccg1500
ccctccatct gggccgggtg actgggcgcc ggctgtgtgc ccgaggcctc accctgccct1560
cgcctagtct ggaagctccg accgacatca cggagcagcc ttcaagcatt ccattacgcc1620
ccatctcgct ctgtgcccct ccccaccagg gcttcagcag gagccctgga ctcatcatca1680
aaaaaaaaa aaaaaaaaa aaaaaaaag
<210> 13
<211> 1026
<212> DNA
<213> homo sapiens
<400> 13
aaaagetgte egegeggga geecagggee agetttgggg ttgteeetgg aettgtettg 60
gttccagaac ctgacgaccc ggcgacggcg acgtctcttt tgactaaaag acagtgtcca 120
gtgctccagc ctaggagtct acggggaccg cctcccgcgc cgccaccatg cccaacttct 180
ctggcaactg gaaaatcatc cgatcggaaa acttcgagga attgctcaaa gtgctggggg 240
tgaatgtgat gctgaggaag attgctgtgg ctgcagcgtc caagccagca gtggagatca 300
 aacaggaggg agacactttc tacatcaaaa cctccaccac cgtgcgcacc acagagatta 360
acttcaaggt tggggaggag tttgaggagc agactgtgga tgggaggccc tgtaagagcc 420
tggtgaaatg ggagagtgag aataaaatgg tctgtgagca gaagctcctg aagggagagg 480
gccccaagac ctcgtggacc agagaactga ccaacgatgg ggaactgatc ctgaccatga 540
eggeggatga egttgtgtge accagggtet acgteegaga gtgagtggee acaggtagaa 600
ccgcggccga agcccaccac tggccatgct caccgccctg cttcactgcc ccctccgtcc 660
caccccctcc ttctaggata gcgctcccct taccccagtc acttctgggg gtcactggga 720
tgcctcttgc agggtcttgc tttctttgac ctcttctctc ctcccctaca ccaacaaaga 780
ggaatggctg caagagccca gatcacccat tccgggttca ctccccgcct ccccaagtca 840
gcagtectag ecceaaacca geecagagea gggtetetet aaaggggaet tgagggeetg 900
agcaggaaag actggccctc tagcttctac cctttgtccc tgtagcctat acagtttaga 960
1026
aaaaaa
<210> 14
<211> 676
<212> DNA .
<213> homo sapiens
<400> 14
ggccattttg tgaagagacg aagactgagc ggttgtggcc gcgttgccga cctccagcag 60
cagtcggctt ctctacgcag aacccgggag taggagactc agaatcgaat ctcttctccc120
tccccttctt gggcagcaag gcgaacccca tccctactca ctggagctca gctttgattt180
ttaacctccc ttccccaccc ttccagaaca cacacattcc attccaaaac tgattttata240
aagacatttt aaacataatg atgcaacttg gtgtgcacta cagcaaatgt acaggtgttt300
tttttttaat tgtttccaaa accgggacct ggatttaaga tgtaattttt aaaatttcta360
tttctatttt ttcggcagca gttgggttag aggaggagga gccttttagc ctcccagaaa420
ctgacctctc tacttcctcg tgtattttta agattgattg atgatgtgga aagggctttg480
cttgtctgct actgaaaact ttatccttgc ggtttttgtg gaactgcgtt tggaaagaga540
aaagaaatga actttactga cttgacattt tgcacctccc ggttttcgaa tctgggcaat600
tttaattttg gttttacagt gagagttttt gatctcagca cagaagtaat ccaatttttt660
```

ttagcatttt ccgact

```
<210> 15
<211> 1254
<212> DNA
<213> homo sapiens
<400> 15
cggctcgagc agctcgagcg gctcaaacac ctcatttgac cttgccagct gaccttcaaa
ccctgcattt gaaccgacca acattaagtc cagagagtaa acttgaatgg aataacgaca 120
ttccagaagt taatcatttg aattctgaac actggagaaa aaccgaaaaa tggacggggc 180
atgaagagac taatcatctg gaaaccgatt tcagtggcga tggcatgaca gagctagagc 240
tegggeecag ecceaggetg cageceatte geaggeacee gaaagaactt ecceagtatg 300
qtqgtcctgg aaaggacatt tttgaagatc aactatatct tcctgtgcat tccgatggaa 360
 tttcagttca tcagatgttc accatggcca ccgcagaaca ccgaagtaat tccagcatag 420
cggggaagat gttgaccaag gtggagaaga atcacgaaaa ggagaagtca cagcacctag 480
aaggcagege etcetettea eteteetetg attagatgaa aetgttaeet taeeetaaac 540
acagtattic tittitaacti tittattigi aaactaataa aggtaatcac agccaccaac 600
attccaagct accetgggta cetttgtgca gtagaagcta gtgagcatgt gagcaagcgg 660
tgtgcacacg gagactcatc gttataattt actatctgcc aagagtagaa agaaaggctg 720
gggatatttg ggttggcttg gttttgattt tttgcttgtt tgtttgtttt gtactaaaac 780
agtattatct tttgaatatc gtagggacat aagtatatac atgttatcca atcaagatgg 840
ctagaatggt gcctttctga gtgtctaaaa cttgacaccc ctggtaaatc tttcaacaca 900
cttccactgc ctgcgtaatg aagttttgat tcatttttaa ccactggaat ttttcaatgc 960
cgtcattttc agttagatga ttttgcactt tgagattaaa atgccatgtc tatttgatta1020
gtcttatttt tttattttta caggcttatc agtctcactg ttggctgtca ttgtgacaaa1080
gtcaaataaa cccccaagga cgacacacag tatggatcac atattgtttg acattaagct1140
tttgccagaa aatgttgcat gtgttttacc tcgacttgct aaaatcgatt agcagaaagg1200
catggctaat aatgttggtg gtgaaaataa ataaataagt aaacaaaaag aaaa
<210> 16
<211> 537
<212> DNA
<213> homo sapiens
<400> 16
ggcccgggcc cccaccctcg acatgcgctt ccggcgacgc cttagcgctg acccccacgc 60
aacccagcga aactccgcgg aggcgcgcgg cacgatggac ggtcgggtgc agctgatgaal20
ggccctcctg gccgggcccc tccggcccgc ggcgcgtcgc tggaggaacc cgattccctt180
tecegagaeg tttgaeggag atacegaeeg acteeeggag tteategtge agaegtgete240
ctacatgttc gtggacgaga acacgttctc caacgacgcc ctgaaggtga cgttcctcat300
caccegeete aeggggeeag ceetgeagtg ggtgateeee tacateagga aggagageee360
cctgctcaat gattaccggg gctttctggc cgagatgaag cgagtctttg gatgggagga420
ggacgaggac ttctaggccg ggagaccctc gggcctgggg gcgggtgctc tgggaagagt480
tegetgtgee agtggeeace getagggtet ceacaggege cetececagg gaatget
<210> 17
<211> 823
<212> DNA
<213> homo sapiens
<400> 17
tagactgaac aggagggga gtcctgggta gcgcgccggt ctaaatcgtt acttggcgga 60
aagttcccat gagtctttgc cagcgtcccc ctccttttgt gaggattggg atattccgac120
tccttaaggg cctggcgcac ataaggtgtg accttttcat tcccgttgtt atggagggcc180
acatetgeca gageetggag tetgegaagg eegggaeeeg gtteeeegge eeacagtggg240
ggtgtgcaaa cccgagagaa ctgggttgca aattcgtgaa gaatcagcat catgtttggc300
agctgagtat tggagccagg agcctgccat gaggttttga gaacagagtg ctgttttaga360
gctggcagca gcatctcagc ccaagagaag gttatattcc cagaggatgt cagtcccaag420
gaccagtage tgecatcagt ttggattetg aaaactaact ggcatcaaca ctgggtgtag480
aaacatgett geettatgta teagaggaea tgeteageag ateeaagaga tatatttgge540
```

aactttttct agaaaaggca cattgggtat cattcattac attcttgagg ttttttttggg600

```
ttttttttt tttttttga gacagtcttg ctgtattgcc caggctggga gtgtggtggc660
acaatcacag ctcattgcat cctcaatcac ccagggccta agcaatcctc ccaccttgta720
gctgggacta cagctcacag cacaccgggc taaaattttt ttttgttgag acggtttttc780
 tatgttgccc gggtggtttt cagggtccgg ggttcagatg gtc
<210> 18
<211> 1082
<212> DNA
<213> homo sapiens
<400> 18
gggcgcacat aaggtgtgac cttttcattc ccgttgttat ggagggccac atctgccaga
gcctggagtc tgcgaaggcc gggacccggt tccccggccc acagtggggg tgtgcaaacc 120
 cgagagaact ggtcgctgaa acctctacaa cttagttgac cgtaactgcc agagccctgc 180
 cctgaattcc tgtccttact ccctctttaa gattgcgtac ccactgcaga gtgctgaaga 240
 cggggtagcc acgaggttgc aaattcgtga agaatcagca tcatgtttgg cagctgagta 300
 ttggagccag gagcctgcca tgaggttttg agaacagagt gctgttttag agctggcagc 360
 agcateteag eccaagagaa ggttatatte ecagaggatg teagteecaa ggaceagtag 420
 ctgccatcag tttggattct gaaaactaac tggcatcaac actgggtgta gaaacatgct 480
 tgccttatgt atcagaggac atgctcagca gatccaagag atatatttgg caactttttc 540
 tagaaaaggc acattgggta tcattcatta cattcttgag ttttttttggg ttttttttt 600
 ttttttttga gacagtcttg ctgtattgcc caggctggag tgtggtggca caatcacagc 660
 tcattgcatc ctcaatcacc caggcctaag caatcctccc accttgtagc tgggactaca 720
getcacagea cacetggeta aaattttttt tttgttgaga eggattetet atgttgeeca 780
ggctggtctc aggctcctgg gctcagatgg tcctcctgcc tcagcttcca aaggcacagg 840
 ccaagttgta gctttgtccc ttgccatcat gcccaacaag aggttctata ccttttaatg 900
 aattgacttt cataaattgg ttatgttggt gggcaagttc tttaagctgg aaattgtaaa 960
 ttcctcctga aatgtttttt catgcagtta ccatgaacta atactacaat aaaggatggt1020
 <210> 19
<211> 1548
<212> DNA
<213> homo sapiens
<400> 19
 cccattccat agggaatgag ctgggctgtc ctttctcccc acgttcacct gcacttcgtt 60
 agagagcagt gttcacatgc cacaccacaa gatccccaca atgacataac tccattcaga 120
 gactggcgtg actgggctgg gtctccccac ccccccttc agctcttgta tcactcagaa 180
 totggcagcc agttccgtcc tgacagagtt cacagcatat attggtggat tottgtccat 240
 agtgcatctg ctttaagaat taacgaaagc agtgtcaaga cagtaaggat tcaaaccatt 300
 tgccaaaaat gagtctaagt gcatttactc tcttcctggc attgattggt ggtaccagtg 360
 gccagtacta tgattatgat tttcccctat caatttatgg gcaatcatca ccaaactgtg 420
 caccagaatg taactgccct gaaagctacc caagtgccat gtactgtgat gagctgaaat 480
 tgaaaagtgt accaatggtg cetectggaa teaagtatet ttacettagg aataaceaga 540
 ttgaccatat tgatgaaaag gcctttgaga atgtaactga tctgcagtgg ctcattctag 600
 atcacaacct tctagaaaac tccaagataa aagggagagt tttctctaaa ttgaaacaac 660
 tgaagaagct gcatataaac cacaacaacc tgacagagtc tgtgggccca cttcccaaat 720
 ctctggagga tctgcagctt actcataaca agatcacaaa gctgggctct tttgaaggat 780
 tggtaaacct gaccttcatc catctccagc acaatcggct gaaagaggat gctgtttcag 840
 ctgcttttaa aggtcttaaa tcactcgaat accttgactt gagcttcaat cagatagcca 900
 gactgeette tggteteeet gtetetette taacteteta ettagacaae aataagatea 960
 gcaacatccc tgatgagtat ttcaagcgtt ttaatgcatt gcagtatctg cgtttatctc1020
 acaacgaact ggctgatagt ggaatacctg gaaattettt caatgtgtca teeetggttg1080
 agctggatct gtcctataac aagcttaaaa acataccaac tgtcaatgaa aaccttgaaa1140
 actattacct ggaggtcaat caacttgaga agtttgacat aaagagcttc tgcaagatcc1200
 tggggccatt atcctactcc aagatcaagc atttgcgttt ggatggcaat cgcatctcag1260
 aaaccagtct tccaccggat atgtatgaat gtctacgtgt tgctaacgaa gtcactctta1320
```

attaatatet gtateetgga acaatatttt atggttatgt ttttetgtgt gteagtttte1380 atagtateea tattttatta etgtttatta etteeatgaa ttttaaaate tgagggaaat1440

```
gttttgtaaa catttatttt tttttaaagg aaaaggatgg aaaggccagg gcctaatttc1500
catccaccaa ggaacacacc acattattcc acggaatagg ccatcggg
<210> 20
<211> 844
<212> DNA
<213> homo sapiens
<400> 20
acctgcagag gggtccatac ggcgttgttc tggattcccg tcgtaactta aagggaaatt 60
ttcacaatgt ccggagccct tgatgtcctg caaatgaagg aggaggatgt ccttaagttc120
cttgcagcag gaacccactt aggtggcacc aatcttgact tccagatgga acagtacatc180
tataaaagga aaagtgatgg catctatatc ataaatctca agaggacctg ggagaagctt240
ctgctggcag ctcgtgcaat tgttgccatt gaaaaccctg ctgatgtcag tgttatatcc300
tccaggaata ctggccagag ggctgtgctg aagtttgctg ctgccactgg agccactcca360
attgctggcc gcttcactcc tggaaccttc actaaccaga tccaggcagc cttccgggag420
ccacggette ttgtggttae tgaceceagg getgaceaee ageeteteae ggaggeatet480
tatgttaacc tacctaccat tgcgctgtgt aacacagatt ctcctctgcg ctatgtggac540
attgcaatcc catgcaacaa caaggtaatg attttaggat ctagagtttg tgaatgcgtg600
ctctagaaaa aacattcctg tgcacattgt tagagcttgg agttgaggct actgactggc660
cgatgaactc gcaagtgtag gtagtgtgct acatgagggg caagttttcg ctaacaccac720
aagggtetet ggcecaatga gtggagtttg atagtaatte ttgetacaag tataacatta780
 ctgcatgaca gctttgtgga gaaatgaaaa catttggaaa atagtgtgtt ctctgccttg840
 tcca
<210> 21
<211> 862
<212> DNA
<213> homo sapiens
<400> 21
 gagcaagaga gaaggaggcc cagacagtga gggcaggagg gagagaagag acgcagaagg 60
 agagcgagcg agagagaaag ggttctggat tgggggggag agcaagggag ggaggaaggc120
 ggtgagagag gcgggggcct cgggagggtg aaagggggga ggagaagggc ggggcacgga180
 ggcccgagcg agggacaaga ctccgactcc agctctgact tttttcgcgg ctctcggctt240
 ccactgcage catgtcacte etettgetgg tggtetcage cettcacate eteattetta300
 tactgctttt cgtggccact ttggacaagt cctggtggac tctccctggg aaagagtccc360
 tgaatctctg gtacgactgc acgtggaaca acgacaccaa aacatgggcc tgcagtaatg420
 tcagcgagaa tggctggctg aaggcggtgc aggtcctcat ggtgctctcc ctcattctct480
 gctgtctctc cttcatcctg ttcatgttcc agctctacac catgcgacga ggaggtctct540
 totatgccac cggcctctgc cagctttgca ccagcgtggc ggtgtttact ggcgccttga600
 tetatgecat teacgeegag gagateetgg agaageacee gegaggggge agetteggat660
 actgcttcgc cetggcctgg gtggccttcc ccctcgccct ggtcagcggc atcatctaca720
 tecacetaeg gaagegggag tgagegeece geetegeteg getgeeceeg eccetteeeg780
 gccccctcg ccgcgcgtcc tccaaaaaat aaaaccttaa ccgcggggaa aaaaaaaaa840
 aaaaaggaag gaaaaaaaaa aa
<210> 22
<211> 546
<212> DNA
<213> homo sapiens
<400> 22
 cccagccaag ggtccttcag gtaggaggtc ctgggtgact ttggaagtcc gtagtgtctc 60
 attgcagata atttttagct tagggcctgg tggctaggtc ggttctctcc tttccagtcg120
 gagacetetg cegeaaacat geteegeeag ateateggte aggeeaagaa geateegage180
 ttgatccccc tctttgtatt tattggaact ggagctactg gagcaacact gtatctcttg240
 cgtctggcat tgttcaatcc agatgtttgt tgggacagaa ataacccaga gccctggaac300
 aaactgggtc ccaatgatca atacaagttc tactcagtga atgtggatta cagcaagctg360
 aagaaggaac gtccagattt ctaaatgaaa tgtttcacta taacgctgct ttagaatgaa420
```

```
ggtcttccag aagccacatc cgcacaattt tccacttaac caggaaatat ttctcctctt480
aaatgaatga aatcaatggt ggggggcgct attggaagcc ctattggggt tcaagtgttg540
<210> 23
<211> 1591
<212> DNA
<213> homo sapiens
<400> 23
geogaggage egagecegee acceecege cegecegeeg cegecatggg etgecteggg
aacagtaaga ccgaggacca gcgcaacgag gagaaggcgc aggtgaggcc aacaaaaga 120
tcgagaagca gctgcagaag gacaagcagg tctaccgggc cacgcaccgc ctgctgctgc 180
 tgggtgctgg agaatctggt aaaagcacca ttgtgaagca gatgaggatc ctgcatgtta 240
 atgggtttaa tggagacagt gagaaggcaa ccaaagtgca ggacatcaaa aacaacctga 300
 aagaggcgat tgaaaccatt gtggccgcca tgagcaacct ggtgcccccc gtggagctgg 360
 ccaaccccga gaaccagttc agagtggact acattctgag tgtgatgaac gtgcctgact 420
 ttgacttccc tcccgaattc tatgagcatg ccaaggctct gtgggaggat gaaggagtgc 480
 gtgcctgcta cgaacgctcc aacgagtacc agctgattga ctgtgcccag tacttcctgg 540
acaagatcga cgtgatcaag caggctgact atgtgccgag cgatcaggac ctgcttcgct 600
gccgtgtcct gacttctgga atctttgaga ccaagttcca ggtggacaaa gtcaacttcc 660
 acatgtttga cgtgggtggc cagcgcgatg aacgccgcaa gtggatccag tgcttcaacg 720
 atgtgactgc catcatcttc gtggtggcca gcagcagcta caacatggtc atccgggagg 780
acaaccagac caaccgcctg caggaggctc tgaacctctt caagagcatc tggaacaaca 840
 gatggctgcg caccatctct gtgatcctgt tcctcaacaa gcaagatctg ctcgctgaga 900
 aagteettge tgggaaateg aagattgagg actaetttee agaatttget egetaeacta 960
 ctcctgagga tgctactccc gagcccggag aggacccacg cgtgacccgg gccaagtact1020
 tcattcgaga tgagtttctg aggatcagca ctgccagtgg agatgggcgt cactactgct1080
 acceteattt cacetgeget gtggacaetg agaacateeg eegtgtgtte aacgaetgee1140
 gtgacatcat tcagcgcatg caccttcgtc agtacgagct gctctaagaa gggaaccccc1200
 aaatttaatt aaagccttaa gcacaattaa ttaaaagtga aacgtaattg tacaagcagt1260
 taatcaccca ccatagggca tgattaacaa agcaaccttt cccttccccc gagtgatttt1320
 gcgaaacccc cttttccctt cagcttgctt agatgttcca aatttagaaa gcttaaggcg1380
 gcctacagaa aaaggaaaaa aggccacaaa agttccctct cactttcagt aaaaataaat1440
 aaaacagcag cagcaaacaa ataaaatgaa ataaaagaaa caaatgaaat aaatattgtg1500
 ttgtgcagca ttaaaaaaaa tcaaaataaa aattaaatgt gagcaaagga aaaaaaaaa1560
 ggcaaaaggg gaaagaagaa aagggggggg g
<210> 24
<211> 441
<212> DNA
<213> homo sapiens
<400> 24
 ggcaggcaga tacgttcgtc agcttgctcc tttctgcccg tggacgccgc cgaagaagca 60
 togttaaagt ototottoac ootgoogtoa tgtotaagto agagtotoot aaagagooog120
 aacagctgag gaagctcttc attggagggt tgagctttga aacaactgat gagagcctgal80
 ggagccattt tgagcaatgg ggaacgctca cggactgtgt ggtaatgaga gatccaaaca240
 ccaagegete caggggettt gggtttgtca catatgecae tgtggaggag gtggatgeag300
 ctatgaatgc aaggccacac aaggtggatg gaagagttgt ggaaccaaag agagctgttt360
 cagagaagat ttgaaaagcc aggtgccact tacctgtgaa aaggtatttg ttggtggatt420
 aaggagcact tgagacatca c
<210> 25
<211> 1131
<212> DNA
<213> homo sapiens
<400> 25
```

```
acccccgga gcccgagcag tgtgaagaag aggcgagaac gacccccgga ccgaccaaag 120
cccgcgcgcc gctgcatccc gcgtccagca cctacgtccc gctgccgtcg ccgccgccac 180
catgcccaag agaaaggctg aaggggatgc taagggagat aaagcaaagg tgaaggacga 240
accacagaga agateegega ggttgtetge taaacetget cetecaaage cagageecaa 300
gcctaaaaag gcccctgcaa agaagggaga gaaggtaccc aaagggaaaa agggaaaagc 360
tgatgctggc aaggaggga ataaccctgc agaaaatgga gatgccaaaa cagaccaggc 420
acagaaagct gaaggtgctg gagatgccaa gtgaagtgtg tgcatttttg ataactgtgt 480
actictggtg actgtacagt ttgaaatact atttttatc aagttttata aaaatgcaga 540
attttgtttt acttttttt ttttttaaa agctatgttg ttagcacaca gaacacttca 600
ttgttgtttt tgggggaagg ggcatatgtc actaatagaa tgtctccaaa gctggattga 660
tgtggagaaa acacctttcc cttctagttt tgagagactt cctcttggct cccaggagga 720
gggattccct gactttgaca cacatggcca ccttggcaca aaagccttgt ggtatagaaa 780
aacaaatttg tttttatgtc ctcttctccc tttccatctt tcagcataga cttaactccc 840
ttaagcccag acatctgttg agacctgacc cctagtcatt ggttaccagt gtgtcaggca 900
atctggactt tccagtgatg ccactgagat ggcacctgtc aaaagagcag tggttccatt 960
tctagattgt ggatcttcag ataaattctg ccattttcat ttcacttcct gaaagtcagg1020
gtcggcttgt gaaaagttgt taaacaacat gctaaatgtg aaatgtcaac cctcactcta1080
aaacttttcc ctgggtcaga ggatccgatg gaggacttca attgggggtt t
<210> 26
<211> 1071
<212> DNA
<213> homo sapiens
<400> 26
gtaccctcaa agacagagac accaagaaga atcggaacat acaggctttg atatcaaagg 60
tttataaagc caatatctgg gaaagagaaa accgtgagac ttccagatct tctctggtga 120
agtgttgttt cctgcaacga tcacgaacat gaacatcaaa ggatcgccat ggaaagggtc 180
cctcctgctg ctgctggtgt caaacctgct cctgtgccag agcgtggccc ccttgcccat 240
ctgtcccggc ggggctgccc gatgccaggt gacccttcga gacctgtttg accgcgccgt 300
```

```
<210> 27
<211> 896
<212> DNA
<213> homo sapiens
```

<400> 27

```
cctgccttgt ccctctcact ccccagcccc acccctaagt gcccaaagtg gggagggaca720
agggattctg ggaagcttga gcctccccca aagcaatgtg agtcccagag cccgcttttg780
ttcttcccca caattccatt actaagaaac acatcaaata aactgacttt ttccccccaa840
<210> 28
<211> 1050
<212> DNA
<213> homo sapiens
<400> 28
ttttcatttt tttttttt tttttctcag ttcaagttta atacaaacta caaaagatta
atgggttgct ctactaatac atcatacaaa ccagtagcct gcccacaacg ccaactcagg 120
ccattectae caaaggaaga aaggetggte tetecaecee etgtaggaaa ggeetgeett 180
gtaagacacc acaattcggc tgaatctgaa gtcttgtgtt ttactaatgg aaaaaaaaa 240
tacagaagag gttttgttct catggctgcc caccgcagcc tggcactaaa acagcccagc 300.
gctcacttct gcttggagaa atattctttg ctcttttgga catcaggctt gatggtatca 360
ctgccaggtt tccagccagc tgggcacact tccccatgtt tgtcagtgaa ctggaaggcc 420
tgaactagtc tcaaagtctc atccacagag cggccaacag ggaggtcatt tacagtgatc 480
tgccgaagaa taccettate atcaatgata aaaaggeeee tgaacgagat geetteatea 540
gcctttaaga ccccataatc ctgagcaatg gtgcgcttcg ggtctgatac caaaggaatg 600
ttcatgggtc ccagtcctcc ttgtttctta ggtgtattga cccatgctag atgacagaag 660
 tgagaatcca cagaagcacc aatcacttgg cagttgagtt tettaaatte ttetgeeeta 720
tcactgaaag caatgatete egtggggeae acaaaggtga agtcaagagg gtaaaagaag 780
aacacaacat attttccttt gtagtcagac aggctgatat ctttaaactg accatctggc 840
ataacagetg tggetttgaa gttgggggca gggtgeecaa ttttageatt teetgaagae 900
atcttcctat cagcagtccc aacacaagtc gcagaaacta accaccgaca ccaggcaaga 960
acaagacgcg caagagctct ccggggcgct gcctttatag ccagtaggga tctcgccaca1020
qtcggaacgg acgggggtgc cggagtagga
<210> 29
<211> 581
<212> DNA
<213> homo sapiens
<400> 29
 caggetteet tetggeaaca ggegtgggte aegetetege teggtettte tgeegeeate 60
 ttggttccgc gttccctgca caaaatgccc ggcgaacacc agaaaccgtc cctgctacag120
 agraggagtt geogeageee caggetgaga cagggtetgg aacagaatet gacagtgatg180
 aatcagtacc agagettgaa gaacaggatt ccacccagge aaccacacaa caageccage240
 tggcggcagc agctgaaatc gatgaagaac cagtcagtaa agcaaaacag agtcggagtg300
 aaaagaaggc acggaaggct atgtccaaac tgggtcttcg gcaggttaca ggagttacta360
 gagtcactat ccggaaatct aagaatatcc tctttgtcat cacaaaacca gttgtctaca420
 agagccctgc ttcagatacg tacatagttt ttggggaagc cagatcgaag attatcccag480
 caagcacaac tagcagctgc tgagaagtca agttcaggtg aactgtctca acgttcagga540
 aacccccggc ttccactgta gagggggagt aaggggaggg t
<210> 30
<211> 264
<212> DNA
<213> homo sapiens
<400> 30
 gggactatgt tgtgagcctg cgaaagaagt ttgtgtgggg actgtgggca gtgaatgcgt 60
 tgggaacaat atggaaaact gggagctgcc ctcagtttct ccccaagttg gactcacttt120
 cggggtgtcc caaaagcctg attccagggc ctgctagccc gaccccggtg acgcctccac180
 ccgcgcctgg ccccagcctt cacccgcgat cgccgccctc cggggcacac cctccgccag240
 aaaacagccg gcgggcggcg agac
```

```
<400> 31
cggcgaatca cttataaatg gcgccgaagc aggagcccga aggctaaatt gcaggagggg 60
tgagcgaatg ctgtgctttc atgggcctct tacgttgatg aggcaaagta t
<210> 32
<211> 76
<212> PRT
<213> homo sapiens
<400> 32
                                      Thr
                                                      Leu Trp Pro
                                                                            Cys
                                                                                 Arg
                       Glu
                            Thr Lys
                                            Glu
                                                 Arg
                                                                      Arg
Pro
            Cys
                 Glu
                                                                             15
                                                  10
                         5
                                            Thr
                                                 Gln
                                                                 Gly
                                                                       Val
                                                                            Gly
                                                                                 Asp
            Ala
                 Ala
                       Val
                            Gly
                                 Phe
                                       Ser
                                                       Asn
                                                            Pro
 Pro
       Pro
                   20
                                             25
                                                                        30
                                                                 Ser
                                                                       Lys
                                                                            Ala
 Ser
       Glu
            Ser
                 Asn
                       Leu
                            Phe
                                 Ser
                                       Leu
                                            Pro
                                                 Phe
                                                       Leu
                                                            Gly
                                                                                 Asn
                                        40
                                                                   45
            . 35
                                                       Ile
                                                            Phe
                                                                 Asn
                                                                       Leu
                                                                           Pro
                                                                                 Ser
                 Thr
                       His
                            Trp
                                 Ser
                                       Ser
                                            Ala
                                                 Leu
 Pro
       Ile
            Pro
                                                             60
        50
                            Thr
                                 His
                                       Ile
                                            Pro
                                                 Phe
                                                       Gln
                                                            Asn
       Pro
            Phe
                 Gln
                      Asn
 Pro
                             70
   65
<210> 33
<211> 72
<212> PRT
<213> homo sapiens
<400> 33
                                            Thr
                                                 Gln
                                                       Phe
                                                            His
                                                                 Lys
                                                                       Asn
                                                                            Arg
                                                                                 Lys
            Phe
                 Leu
                       Phe
                            Ser
                                 Phe
                                      Gln
                                                                             15
                         5
                                                  10
                                                                       His
                                                                            His
                                                                                 Gln
            Val
                 Phe
                       Ser
                            Ser Arg Gln Ala
                                                 Lys
                                                       Pro
                                                            Phe
                                                                 Pro
                                                                        30
                                                                 Val
                                                                       Ser
                                                                            Gly
                       Ile
                            His
                                 Glu
                                       Glu
                                            Val
                                                 Glu
                                                            Ser
                                                                                 Arg
       Ile Leu
                 Lys
                                                                   45
             35
 Leu Lys
                       Ser
                            Ser
                                 Ser
                                       Asn
                                            Pro
                                                 Thr Ala
                                                            Ala
                                                                 Glu Lys
                  Ser
                                                             60
        50
                                  55
                                 Thr
                            Ile
                                       Ser
  Ile
       Glu
            Ile
                Leu
                       Lys
                             70
  65
<210> 34
<211> 70
<212> PRT
<213> homo sapiens
<400> 34
                                                                            Cys
                           Phe Cys Ala Glu Ile Lys Asn Ser His
     Lys Leu Asp
                       Tyr
 Lys
                                                                             15
    1
                         5
                                                  10
```

<211> 111 <212> DNA

<213> homo sapiens

Thr	Lys	Ile	Lys 20	Ile	Ala	Gln	Ile	Arg 25	Lys	Pro	Gly	Gly	Ala 30	Lys	Cys
Gln	Val	Ser 35	Lys	Val	His	Phe	Phe 40	Ser	Leu	Ser	Lys	Arg 45	Ser	Ser	Thr
Lys	Thr 50	Ala	Arg	Ile	Lys	Phe 55	Ser	Val	Ala	Asp	60 Lys	Gln	Ser	Pro	Phe
His 65	Ile	Ile	Asn	Gln	Ser 70										
<210><211><212><213>	60 PRT	sapie	ns												
<400>	35												•		
Ser 1	Ser	Gly	Pro	Ala 5	Pro	Gly	Cys	Ser	Pro 10	Phe	Ala	Gly	Thr	Arg 15	Lys
Asn	Phe	Pro	Ser 20	Met	Val	Val	Leu	Glu 25	Arg	Thr	Phe	Leu	Lys 30	Ile	Asn
Tyr	Ile	Phe 35	Leu	Cys	Ile	Pro	Met 40	Glu	Phe	Gln	Phe	Ile 45	Arg	Cys	Ser
Pro	Trp 50	Pro	Pro	Gln	Asn	Thr 55	Glu	Val	Ile	Pro	Ala 60				
<210><211><211><212><213>	63 PRT	sapie	ns												
<211> <212>	63 PRT homo	sapie	ns						<i>:</i>		•				
<211><212><213><400>	63 PRT homo	sapie Gly		His 5	Thr	Glu	Thr	His	Arg 10	Tyr	Asn	Leu	Leu	Ser 15	Ala
<211> <212> <213> <400> Ala 1	PRT homo 36 Ser	_	Val	5				•	10					Ser 15 Phe	
<211><212><212><213><400> Ala 1 Lys	PRT homo 36 Ser	Gly Arg Leu	Val Lys 20	5 Lys	Gly	Trp	Gly Cys	Tyr 25	10 Leu	Gly	Trp	Leu Leu	Gly 30	15	Asp
<211><212><212><213><400> Ala 1 Lys	PRT homo 36 Ser	Gly Arg Leu 35	Val Lys 20 Val	5 Lys - Cys	Gly Leu	Trp Phe	Gly Cys 40	Tyr 25 Thr	10 Leu Lys	Gly Thr	Trp Val	Leu Leu 45	Gly 30 Ser	Phe Phe	Asp
<211><212><213><400> Ala 1 Lys	PRT homo 36 Ser	Gly Arg Leu 35	Val Lys 20 Val	5 Lys - Cys	Gly	Trp Phe	Gly Cys 40	Tyr 25 Thr	10 Leu Lys	Gly	Trp Val	Leu Leu 45	Gly 30 Ser	Phe Phe	Asp
<211><212><213><400> Ala 1 Lys	63 PRT homo 36 Ser Ser Leu Arg 50 37 170 PRT	Gly Arg Leu 35 Arg	Val Lys 20 Val Asp	5 Lys - Cys	Gly Leu	Trp Phe Ile	Gly Cys 40	Tyr 25 Thr	10 Leu Lys	Gly Thr	Trp Val Asn	Leu Leu 45	Gly 30 Ser	Phe Phe	Asp
<211> <212> <213> <400> Ala 1 Lys Phe Tyr <210> <211> <212>	63 PRT homo 36 Ser Ser Leu Arg 50 37 170 PRT homo	Gly Arg Leu 35 Arg	Val Lys 20 Val Asp	5 Lys - Cys	Gly Leu	Trp Phe Ile	Gly Cys 40	Tyr 25 Thr	10 Leu Lys	Gly Thr	Trp Val Asn	Leu Leu 45	Gly 30 Ser	Phe Phe	Asp
<211> <212> <213> <400> Ala 1 Lys Phe Tyr <210> <211> <212> <213>	63 PRT homo 36 Ser Ser Leu Arg 50 37 170 PRT homo 37	Gly Arg Leu 35 Arg	Val Lys 20 Val Asp	5 Lys -Cys Ile	Gly Leu Ser	Trp Phe Ile 55	Gly Cys 40 Tyr	Tyr 25 Thr Met	10 Leu Lys Leu	Gly Thr Ser	Trp Val Asn	Leu 45 Gln	Gly 30 Ser	Phe Phe	Asp

Lys	Leu	Glu 35	Trp	Asn	Asn	Asp	Ile 40	Pro	Glu	Val	Asn	His 45	Leu	Asn	Ser
Glu	His 50	Trp	Arg	Lys	Thr	Glu 55	Lys	Trp	Thr	Gly	His 60	Glu	Glu	Thr	Asn
His 65	Leu	Glu	Thr	Asp	Phe 70	Ser	Gly	Asp	Gly	Met 75	Thr	Glu	Leu	Glu	Leu 80
Gly	Pro	Ser	Pro	Arg 85	Leu	Gln	Pro	Ile	Arg 90	Arg	His	Pro	Lys	Glu 95	Leu
Pro	Gln	Tyr	Gly 100	Gly	Pro	Gly	Lys	Asp 105	Ile	Phe	Glu	Asp	Gln 110	Leu	Tyr :
Leu	Pro	Val 115	His	Ser	Asp	Gly	Ile 120	Ser	Val	His	Gln	Met 125	Phe	Thr	Met
Ala	Thr 130	Ala	Glu	His	Arg	Ser 135	Asn	Ser	Ser	Ile	Ala 140	Gly	Lys	Met	Leu _.
Thr 145	Lys	Val	Glu	Lys	Asn 150	His	Glu	Lys	Glu	Lys 155	Ser	Gln	His	Leu	Glu 160
Gly	Ser	Ala	Ser	Ser 165	Ser	Leu	Ser	Ser	Asp 170						
<210><211><211><212><213>	144	sapie	ns.												
		<u>-</u>													
<400>															
	38		Pro	Thr 5	Leu	Asp	Met	Arg	Phe 10	Arg	Arg	Arg	Leu	Ser 15	Ala
<400> Ala	38 Arg			5		Asp Arg			10			Arg Arg	Leu Gly 30		Ala Met
<400> Ala 1	38 Arg Pro	Ala	Pro Ala 20	5 Thr	Gln	Arg	Asn	Ser 25	10 Ala	Glu	Ala	Arg	Gly 30	15 Thr	
<400> Ala 1 Asp	38 Arg Pro Gly	Ala His Arg 35	Pro Ala 20 Val	5 Thr	Gln Leu	Arg	Asn Lys 40	Ser 25 Ala	10 Ala Leu	Glu Leu	Ala Ala	Arg Gly	Gly 30 Pro	15 Thr Leu	Met
<400> Ala 1 Asp Asp Pro	Arg Pro Gly Ala	Ala His Arg 35	Pro Ala 20 Val Arg	5 Thr Gln Arg	Gln Leu	Arg Met Arg	Asn Lys 40 Asn	Ser 25 Ala	10 Ala Leu Ile	Glu Leu	Ala Ala Phe	Arg Gly 45	Gly 30 Pro	15 Thr Leu	Met Arg
<400> Ala 1 Asp Asp Pro	Arg Pro Gly Ala 50	Ala His Arg 35	Pro Ala 20 Val Arg	5 Thr Gln Arg	Gln Leu Trp Arg 70	Arg Met Arg 55	Asn Lys 40 Asn	Ser 25 Ala Pro	10 Ala Leu Ile Phe	Glu Leu Pro Ile 75	Ala Ala Phe 60 Val	Arg Gly 45 Pro	Gly 30 Pro Glu	15 Thr Leu Thr	Met Arg Phe
<400> Ala 1 Asp Asp Pro Asp 65	Arg Pro Gly Ala 50 Gly Met	Ala His Arg 35 Ala	Pro Ala 20 Val Arg	5 Thr Gln Arg Asp	Gln Leu Trp Arg 70 Glu	Arg Met Arg 55	Asn Lys 40 Asn Pro	Ser 25 Ala Pro Glu Phe	10 Ala Leu Ile Phe Ser	Glu Leu Pro Ile 75 Asn	Ala Ala Phe 60 Val	Gly 45 Pro	Gly 30 Pro Glu Thr	15 Thr Leu Thr Cys	Met Arg Phe Ser 80
<400> Ala 1 Asp Asp Pro Asp 65	Arg Pro Gly Ala 50 Gly Met	Ala His Arg 35 Ala Asp	Pro Ala 20 Val Arg Thr Val	Thr Gln Arg Asp Asp 85	Gln Leu Trp Arg 70 Glu	Arg Met Arg 55 Leu Asn	Asn Lys 40 Asn Pro	Ser 25 Ala Pro Glu Phe Gly 105	10 Ala Leu Ile Phe Ser 90 Pro	Glu Leu Pro Ile 75 Asn Ala	Ala Ala Phe 60 Val Asp	Gly 45 Pro Gln Ala	Gly 30 Pro Glu Thr Leu Trp 110	Thr Leu Thr Cys Lys 95	Met Arg Phe Ser 80 Val
<400> Ala 1 Asp Asp Pro Asp 65 Tyr	Arg Pro Gly Ala 50 Gly Met Phe	Ala His Arg 35 Ala Asp Phe Leu Ile	Pro Ala 20 Val Arg Thr Val Ile 100 Arg	Thr Gln Arg Asp Asp 85	Gln Leu Trp Arg 70 Glu Arg Glu	Arg Met Arg 55 Leu Asn Leu	Asn Lys 40 Asn Pro Thr	Ser 25 Ala Pro Glu Phe Gly 105 Leu	10 Ala Leu Ile Phe Ser 90 Pro	Glu Leu Pro Ile 75 Asn Ala	Ala Ala Phe 60 Val Asp Leu Asp	Gly 45 Pro Gln Ala Gln Tyr 125	Gly 30 Pro Glu Thr Leu Trp 110 Arg	Thr Leu Thr Cys Lys 95 Val	Met Arg Phe Ser 80 Val Ile Phe

<211> 178

<212> PRT

<213> homo sapiens

<400> 39

His 1	Ser	Leu	Gly	Arg 5	Ala	Pro	Val	Glu	Thr 10	Leu	Ala	Val	Ala	Thr 15	Gly
Thr	Ala	Asn	Ser 20	Ser	Gln	Ser	Thr	Arg 25	Pro	Gln	Ala	Arg	Gly 30	Ser	Pro
Gly	Leu	Glu 35	Val	Leu	Val	Leu	Leu 40	Pro	Ser	Lys	Asp	Ser 45	Leu	His	Leu
Gly	Gln 50	Lys	Ala	Pro	Val	Ile 55	Ile	Glu	Gln	Gly	Ala 60	Leu	Leu	Pro	Asp
Val 65	Gly	Asp	His	Pro	Leu 70	Gln	Gly	Trp	Pro	Arg 75	Glu	Ala	Gly	Asp	Glu 80
Glu	Arg	His	Leu	Gln 85	Gly	Val	Val	Gly	Glu 90	Arg	Val	Leu	Val'	His 95	Glu
His	Val	Gly	Ala 100	Arg	Leu	His	Asp	Glu 105	Leu	Arg	Glu	Ser	Val 110	Gly	Ile
Ser	Val	Lys 115	Arg	Leu	Gly	Lys	Gly 120	Asn	Arg	Val	Pro	Pro 125	Ala	Thr	Arg
Arg	Gly 130	Pro	Glu	Gly	Pro	Gly 135	Gln	Glu	Gly	Leu	His 140	Gln	Leu	His	Pro
Thr 145	Val	His	Arg	Ala	Ala 150	Arg	Leu	Arg	Gly	Val 155	Ser	Leu	Gly	Cys	Val 160
Gly	Val	Ser	Ala	Lys 165	Ala	Ser	Pro	Glu	Ala 170	His	Val	Glu	Gly	Gly 175	Gly
_															

Pro Gly

<210> 40

<211> 89

<212> PRT

<213> homo sapiens

		•													
<400>	40								_						
Lys 1	Leu	Thr	Gly	Ile 5	Asn	Thr	Gly	Cys	Arg 10	Asn	Met	Leu	Ala	Leu 15	Cys
Ile	Arg	Gly	His 20	Ala	Gln	Gln	Ile	Gln 25	Glu	Ile	Tyr	Leu	Ala 30	Thr	Phe
Ser	Arg	Lys 35	Gly	Thr	Leu	Gly	Ile 40	Ile	His	Tyr	Ile	Leu 45	Glu	Val	Phe
Leu	Gly 50	Phe	Phe	Phe	Phe	Phe 55	Leu	Arg	Gln	Ser	Cys 60	Cys	Ile	Ala	Gln
Ala 65	Gly	Ser	Val	Val	Ala 70	Gln	Ser	Gln	Leu	Ile 75	Ala	Ser	Ser	Ile	Thr 80
Gln	Gly	Leu	Ser	Asn	Pro	Pro	Thr	Leu							

<210> <211> <212> <213>	95 PRT	sapie	ns									,			
<400>	41														
Ile 1	Val	Thr	Trp	Arg 5	Lys	Val	Pro	Met	Ser 10	Leu	Cys	Gln	Arg	Pro 15	Pro
Pro	Phe	Val	Arg 20	Ile	Gly	Ile	Phe	Arg 25	Leu	Leu	Lys	Gly	Leu 30	Ala	His
Ile	Arg	Cys 35	Asp	Leu	Phe	Ile	Pro 40	Val	Val	Met ,	Glu	Gly 45	His	Ile	Cys
Gln	Ser 50	Leu	Glu	Ser	Ala	Lys 55	Ala	Gly	Thr	Arg	Phe 60	Pro	Gly	Pro	Gln
Trp 65	Gly	Cys	Ala	Asn	Pro 70	Arg	Glu	Leu	Gly	Cys 75	Lys	Phe	Val	Lys	Asn 80
Gln	His	His	Val	Trp 85	Gln	Leu	Ser	Ile	Gly 90	Ala	Arg	Ser	Leu	Pro 95	
<210> <211> <212> <213>	154 PRT	sapie	ns									,			
<400>	42														
Cys 1	Gln	Leu	Val	Phe 5	Arg	Ile	Gln	Thr	Asp 10	Gly	Ser	Tyr	Trp	Ser 15	Leu
Gly	Leu	Thr	Ser 20	Ser	Gly	Asn	Ile	Thr 25	Phe	Ser	Trp	Ala	Glu 30	Met	Leu
Leu	Pro	Ala 35	Leu	Lys	Gln	His	Ser 40	Val	Leu	Lys	Thr	Ser 45	Trp	Gln	Ala
Pro	Gly 50	Ser	Asn	Thr	Gln	Leu 55	Pro	Asn	Met	Met	Leu 60	Ile	Leu	His	Glu
Phe 65	Ala	Thr	Gln	Phe	Ser 70	Arg	Val	Cys	Thr	Pro 75	Pro	Leu	Trp	Ala	Gly 80
Glu	Pro	Gly	Pro	Gly 85	Leu	Arg	Arg	Leu	Gln 90	Ala	Leu	Ala	Asp	Val 95	Ala
Leu	His	Asn	Asn 100	Gly	Asn	Glu -	Lys	Val 105	Thr	Pro	Tyr	Val	Arg 110	Gln	Ala
Leu	Lys	Glu 115	Ser	Glu	Tyr	Pro	Asn 120	Pro	His	Lys	Arg	Arg 125	Gly	Thr	Leu
Ala	Lys 130	Thr	His	Gly	Asn	Phe 135	Pro	Pro	Ser	Asn	Asp 140	Leu	Asp	Arg	Arg
Ala 145	Thr	Gln	Asp	Ser	Pro 150	Ser	Cys	Ser	Val						

```
<210> 43
<211> 79
<212> PRT
<213> homo sapiens
<400> 43
                          Gly Val Glu Thr
                                              Cys
                                                   Leu Pro Tyr
                                                                  Val
                                                                        Ser
           Ser
                Thr
                     Leu
                                                10
                                                                   Phe
                                                                        Leu
                                                                             Glu
                                          Tyr
                                               Ile
                                                   Trp
                                                        Gln
 qzA
      Met
           Leu
                Ser
                     Arg
                          Ser
                               Lys
                                    Arg
                                                              Leu
                                                                    30
                                           25
                                                                   Phe
                                                                        Gly
                                                                             Phe
 Lys Ala
                Trp
                     Val
                          Ser
                                Phe
                                     Ile
                                         Thr
                                               Phe
                                                   Leu
                                                         Ser
                                                              Phe
           His
                                      40
                                                               45
            35
                          Glu
                                                                        Trp
                                Thr
                                     Val
                                         Leu Leu
                                                    Tyr
                                                         Cys
                                                              Pro
                                                                   Gly
 Phe Phe
           Phe
                Phe
                     Phe
                                                          60
       50
                                 55
                                                         Ile
                                                              Thr
                                                                  Gln Ala
           Ala Gln Ser Gln
                               Leu
                                    Ile Ala Ser
                                                    Ser
 Val Val
                           70
  65
<210> 44
<211> 82
<212> PRT
<213> homo sapiens
<400> 44
                                                                             Leu
                               Ile Gln Thr Asp
                                                   Gly Ser Tyr
                                                                   Trp
                                                                        Ser
      Gln Leu Val
                     Phe
                          Arg
                                                                         15
                                                                  Glu
                                        Thr
                                                             Ala
                                                                        Met
                                                                             Leu
           Thr
                          Gly Asn
                                    Ile
                                              Phe
                                                   Ser
                                                         Trp
 Gly Leu
                Ser
                      Ser
                                                                    30
                                           25
                  20
                                                                        Gln
                                                                             Ala
          Ala
                     Lys
                          Gln
                              His
                                     Ser
                                          Val
                                               Leu
                                                   Lys
                                                         Thr
                                                              Ser
                                                                   Trp
      Pro
                Leu
 Leu
            35
                                      40
                                                         Leu
                                                              Ile
                     Thr
                          Gln Leu
                                     Pro
                                         Asn
                                              Met
                                                   Met
      Gly
           Ser
                Asn
                                 55
       50
      Ala
           Thr Ser
                     Trp
                          Leu Pro Arg Leu
                                              Gln His
                                                         Ser Ala
                                                                  Val
                                                                             Thr
 Phe
                                                                              80
  65
                            70
                                                     75
 Gln
      Ser
<210> 45
<211> 68
<212> PRT
<213> homo sapiens
<400> 45
                          Arg Asn Ser Gly Gln Gly Ser Gly
                                                                   Ser
                                                                        Tyr
                                                                             Gly
 Arg Gly Ser Lys
                     Asp
                                                                         15
                          Gly Phe
                                     Ser
                                         Asp
                                              Gln
                                                   Phe
                                                         Ser
                                                             Arg
                                                                   Val
                                                                        Cys
                                                                             Thr
 Gln
      Leu
           Ser
                Cys
                     Arg
                                           25
                                                                    30
                  20
                Trp Ala Gly Glu Pro Gly Pro Gly Leu Arg
                                                                   Arg
                                                                        Leu Gln
 Pro
      Pro Leu
            35
                                      40
```

Ala	Leu 50	Ala	Asp	Val	Ala	Leu 55	His	Asn	Asn	Gly	Asn 60	Glu	Lys	Val	Thr
Pro 65	Tyr	Val	Arg												
<210><211><212><213>	87 PRT	sapie	ns												
<400>	46														
Asp 1	Tyr	Val	Val	Ser 5	Leu	Arg	Lys	Lys	Phe 10	Val	Trp	Gly	Leu	Trp 15	Ala
Val	Asn	Ala	Leu 20	Gly	Thr	Ile	Trp	Lys 25	Thr	Gly	Ser	Cys	Pro 30	Glņ	Phe
Leu	Pro	Lys 35	Leu	Asp	Ser	Leu	Ser 40	Gly	Cys	Pro	Lys	Ser 45	Leu	Ile	Pro
Gly	Pro 50	Ala	Ser	Pro	Thr	Pro 55	Val	Thr	Pro	Pro	Pro 60	Ala	Pro	Gly	Pro
Ser 65	Leu	His	Pro	Arg	Ser 70	Pro	Pro	Ser	Gly	Ala 75	His	Pro	Pro	Pro	Glu 80
Asn	Ser	Arg	Arg	Ala 85	Ala	Arg									
				•											
<210><211><211><212><213>	51 PRT	sapie	ns												
<211> <212>	51 PRT homo	sapie	ns												
<211><212><213><400>	51 PRT homo	sapie Leu		Ser	Gly	Phe	Trp	Asp	Thr 10	Pro	Lys	Val	Ser	Pro 15	Thr
<211><212><212><213> 10 Gln	51 PRT homo	Leu		. 5		Phe Ser			10	Pro			•		
<211><212><212><213> 10 Gln	51 PRT homo 47 Ala	Leu Glu Leu	Glu	5 Glu			Ser	Gln	10 Phe			Leu Ala	Phe 30	15	
<211><212><213> 10 Gln Trp	51 PRT homo 47 Ala Gly	Leu Glu	Glu Thr 20	5 Glu	Gly	Ser	Ser	Gln 25	10 Phe	Ser	Ile	Leu	Phe 30	15 Pro	Thr
<211><212><213> 10 Gln Trp	51 PRT homo 47 Ala Gly Ser	Leu Glu Leu	Glu Thr 20	5 Glu	Gly	Ser	Ser	Gln 25	10 Phe	Ser	Ile	Leu Ala	Phe 30	15 Pro	Thr
<211> <212> <213> <400> Gln 1 Trp His <210> <211> <212>	51 PRT homo 47 Ala Gly Ser 50 48 20 PRT	Leu Glu Leu 35	Glu Thr 20 Pro	5 Glu	Gly	Ser	Ser	Gln 25	10 Phe	Ser	Ile	Leu Ala	Phe 30	15 Pro	Thr
<211> <212> <213> <400> Gln 1 Trp His <210> <211> <212>	51 PRT homo 47 Ala Gly Ser 50 48 20 PRT homo	Leu Glu Leu 35 Pro	Glu Thr 20 Pro	5 Glu	Gly	Ser	Ser	Gln 25	10 Phe	Ser	Ile	Leu Ala	Phe 30	15 Pro	Thr
<211> <212> <213> <400> Gln 1 Trp His <210> <211> <212> <213>	51 PRT homo 47 Ala Gly Ser 50 48 20 PRT homo	Leu Glu Leu 35 Pro	Glu Thr 20 Pro	5 Glu Thr	Gly Val	Ser	Ser	Gln 25 Gln	10 Phe Thr	Ser	Ile Phe	Leu Ala 45	Phe 30 Gly	Pro Ser	Thr

```
<210> 49
<211> 36
<212> PRT
<213> homo sapiens
<400> 49
                                                                        Leu Asn
                     Ile Asn Gly Ala Glu Ala
                                                   Gly Ala Arg Arg
      Glu
           Ser
                Leu
 Gly
                                                                         15
                                                   His
                                                        Gly
                                                              Pro
                                                                   Leu
                          Arg Met Leu Cys
                                               Phe
           Arg
                Gly
                     Glu
      Ara
                                           25
           Gln
                Ser
 Met
      Arq
             35
<210> 50
<211> 26
<212> PRT
<213> homo sapiens
<400> 50
                                                                             Pro
                                                                        Ala
                                    Leu Leu
                                              Gln Phe Ser Leu Arg
                           Ser
                               Pro
            Ser
                 Ile
                     Arg
                                                                         15
                                                10
                                          Ser
                                               Pro
      Ser
            Ala
                 Pro
                      Phe
                           Ile
                                Ser
                                    Asp
                                           25
                 . 20
<210> 51
<211> 25
<212> PRT
<213> homo sapiens
<400> 51
                                                              Cys Asn Leu
                                    Phe Ala His
                                                   Pro
                                                         Ser
  Glu Ala His Glu Ser
                           Thr. Ala
                        5
    1
                                    His
                                          Leu
                      Leu Arg Arg
  Phe Gly Leu Leu
                  20
<210> 52
<211> 3665
<212> DNA
<213> homo sapiens
<400> 52
 ggccattttg tgaagagacg aagactgagc ggttgtggcc gcgttgccga cctccagcag 60
 cagteggett etetacgeag aaccegggag taggagaete agaaategaa tetettetee 120
 ctccccttct tgggcagcaa ggcgaacccc atccctactc actggagctc agctttgatt 180
 tttaacctcc cttccccacc cttccagaac acacacattc cattccaaaa ctgattttat 240
 aaagacattt taaacataat gatgcaactt ggtgtgcact acagcaaatg tacaggtgtt 300
 ttttttttaa ttgtttccaa aaccgggacc tggatttaag atgtaatttt taaaatttct 360
 atttctattt tttctgcagc agttgggtta gaggaggagg agccttttag cctctcataa 420
 actgacctct ctacttcctc gtgtattttt aagattgatt gatgatgtgg aaagggcttt 480
 gcttgtctgc tactgaaaac tttatcctgc ggtttttgtg gaaactgctt ttggaaagag 540
 aaaagaaatg aactttactg acttgacatt tttgcacctc ccgtttttct aatctgggct 600
 atttttattt ttgttttttt acagtgagat ttttttgatc ttcagcttac attttcgggc 660
 tttgtgagga aacctttacc catcaaacac gatggccagc aacgttacca acaagacaga 720
```

tectegetee atgaacteee gtgtatteat tgggaatete aacactettg tggteaagaa 780

atctgatgtg gaggcaatct tttcgaagta tggcaaaatt gtgggctgct ctgttcataa 840 gggctttgcc ttcgttcagt atgttaatga gagaaatgcc cgggctgctg tagcaggaga 900 ggatggcaga atgattgctg gccaggtttt agatattaac ctggctgcag agccaaaagt 960 gaaccgagga aaagcaggtg tgaaacgatc tgcagcggag atgtacggct cctcttttga1020 cttggactat gactttcaac gggactatta tgataggatg tacagttacc cagcacgtgt1080 acctectect ectectatty eteggetyt agtgeeteg aaacgteage gtgtateagg1140 aaacacttca cgaaggggca aaagtggctt caattctaag agtggacagc ggggatcttc1200 caagtctgga aagttgaaag gagatgacct tcaggccatt aagaaggagc tgacccagat1260 aaaacaaaaa gtggattctc tcctggaaaa cctggaaaaa attgaaaagg aacagagcaa1320 acaagcagta gagatgaaga atgataagtc agaagaggag cagagcagca gctccgtgaa1380 gaaagatgag actaatgtga agatggagtc tgaggggggt gcagatgact ctgctgagga1440 gggggaccta ctggatgatg atgataatga agatcggggg gatgaccagc tggagttgat1500 caaqqatgat gaaaaagagg ctgaggaagg agaggatgac agagacaagg ccaatggcga1560 ggatgactct taagcacata gtggggttta gaaatcttat cccattattt ctttacctag1620 gcgcttgtct aagatcaaat ttttcaccag atcctctccc ctagtatctt cagcacatgc1680 teactgttet ecceateett gteetteeca tgtteattaa tteatattge eccgegeeta1740 gtcccatttt cacttccttt gacgctccta gtagttttgt taagtcttac.cctgtaattt1800 ttgcttttaa ttttgatacc tctttatgac ttaacaataa aaaggatgta tggtttttat1860 caactgtctc caaaataatc tcttgttatg cagggagtac agttcttttc attcatacat1920 aagttcagta gttgcttccc taactgcaaa ggcaatctca tttagttgag tagctcttga1980 aagcagcttt gagttagaag tatgtgtgtt acaccctcac attagtgtgc tgtgtggggc2040 agttcaacac aaatgtaaca atgtattttt gtgaatgaga gttggcatgt caaatgcatc2100 ctctagaaaa ataattagtg ttatagtctt aagatttgtt ttctaaagtt gatactgtgg2160 gttatttttg tgaacagcct gatgtttggg accttttttc ctcaaaataa acaagtcctt2220 attaaaccag gaatttggag aaaaaaaaaa aaaaaaattt tttatttttg tattttatta2280 ttgtttactt caaactttgt tttacagcgt cctccacaaa acctctagaa tgcactagat2340 atatttttct tggagtcata atcatgatgc ataccaacac aacactactc aaattatatt2400 tcattgagat gcatgttgca ttgaggagtc aacttgacat agagtggaga ctttttcaaa2460 atggctttta catcctaatg aaagtttggg aagtatatcc tctctgcctt ttcatcagtg2520 ctttgtggtc cagctggcac cctttctgag gtttgtgttt tgtgctaaat ggttttgtcc2580 ttaaatagga gaggctcaaa aacatcaaga tttcaggaaa atggcgacac tggcataatg2640 gaaccccct gcttctattt tgttctttta attactattt atagccccag ttaccttctg2700 aattotgaag tgtatataco tocatgttoo tgaaaacaag aaaactotta ottootgata2760 ttccatagac tgccttccca ggtgattgag aacatagaga atgttacaca tttattttac2820 totaaatgat ottitaccco tgttagotaa totttgtgtt ttootcaact ttattaatta2880 cagtgattgc attittagca tccagttgta agatgaatat attaaacagc taccagtgtt2940 ggtgatacct catccttgaa aggcttagtt catttgtgtt ttatacttca gtttttccag3000 catagcagaa aatgccgctt ataatttttg tgcacacaaa ccttggaatc cccctgtaaa3060 gttgctatgg tttcatagca tgcggcactg gccccttttt catcccactc attacaggca3120 aaacccatgt cttatttatg aggattttat agatcatttt ctgtaacagg tgacaaaagc3180 agaaaagaat gaagaggctg aagtatgaac tacccttgga gcccatatac atgatatagg3240 caatttcttt tgtatgttaa ttcagtcaaa aatactaccc acttgatgtt ttctaatctg3300 atgtgagctc atgttacaca gacttttagt aagtaacccg tgactagaaa ataaactgga3360 tgcttaggag agagtgtcag atgtataaga tgctaataaa acctgtttaa tattattgtt3420 agctgtaagt ttttgggaaa tactgaacaa attagtccac aatcaagtgt ctacttttcc3480 cttcactgta gggcctctcc ctgcacagag cagtctgttt agctgtgaac accacaatct3540 qcagatgttc aagtccctta cataaaatgg catagtattt atatgtaacc tatgcatatt3600 ctcctgtata ttttaaatca tctctacatt aaaatacctg ataaaatcta aataaaaaaa3660 3665 aaaaa

```
<210> 53
<211> 301
<212> PRT
<213> homo sapiens
<400> 53
                                                                       Thr
                  Tyr
                       Pro
                            Ser Asn
                                      Thr
                                            Met
                                                 Ala
                                                       Ser
                                                            Asn
                                                                 Val
                                                                            Asn
                                                                                  Lys
  Gly
       Asn
            Leu
                                                                              15
                                       Ser
                                           Arg
                                                 Val
                                                       Phe
                                                           Ile Gly Asn
                                                                            Leu
                                                                                 Asn
       Asp
            Pro
                  Arq
                       Ser
                            Met
                                 Asn
                                                                        30
                   20
                                             25
```

Thr	Leu	Val 35	Val	Lys	Lys	Ser	Asp 40	Val	Glu	Ala	Ile	Phe 45	Ser	Lys	Tyr
Gly	Lys 50	Ile	Val	Gly	Cys	Ser 55	Val	His	Lys	Gly	Phe 60	Ala	Phe	Val	Gln
Tyr .65	Val	Asn	Glu	Arg	Asn 70	Ala	Arg	Ala	Ala	Val 75	Ala	Gly	Glu	Asp	Gly 80
Àrg	Met	Ile	Ala	Gly 85	Gln	Val	Leu	Asp	Ile 90	Asn	Leu	Ala	Ala	Glu 95	Pro
Lys	Val	Asn	Arg 100	Gly	Lys	Ala	Gly	Val 105	Lys	Arg	Ser	Ala	Ala 110	Glu	Met
Tyr	Gly	Ser 115	Ser	Phe	Asp	Leu	Asp 120	Tyr	Asp	Phe	Gln	Arg 125	Asp	Tyr	Tyr
Asp	Arg 130	Met	Tyr	Ser	Tyr	Pro 135	Ala	Arg	Val	Pro	Pro 140	Pro	Pro	Pro	Ile
Ala 145	Arg	Ala	Val	Val	Pro 150	Ser	Lys	Arg	Gln	Arg 155	Val	Ser	Gly	Asn	Thr 160
Ser	Arg	Arg	Gly	Lys 165	Ser	Gly	Phe	Asn	Ser 170	Lys	Ser	Gly	Gln	Arg 175	Gly
Ser	Ser	Lys	Ser 180	Gly	Lys	Leu	Lys	Gly 185	Asp	Asp	Leu	Gln	Ala 190	Ile	Lys
Lys	Glu	Leu 195	Thr	Gln	Ile	Lys	Gln 200	Lys	Val	Asp	Ser	Leu 205	Leu	Glu	Asn
Leu	Glu 210	Lys	Ile	Glu	Lys	Glu 215	Gln	Ser	Lys	Gln	Ala 220	Val	Glu	Met	Lys
Asn 225	Asp	Lys	Ser	Glu	Glu 230	Glu	Gln	Ser	Ser	Ser 235	Ser	Val	Lys	Lys	Asp 240
Glu	Thr	Asn	Val	Lys 245	Met	Glu	Ser	Glu	Gly 250	Gly	Ala	Asp	Asp	Ser 255	Ala
Glu	Glu	Gly	Asp 260	Leu	Leu	Asp	Asp	Asp 265	Asp	Asn	Glu	Asp	Arg 270	Gly	Asp
Asp	Gln	Leu 275	Gl _, u	Leu	Ile	Lys	Asp 280	Asp	Glu	Lys	Glu	Ala 285	Glu	Glu	Gly
Glu	Asp 290	Asp	Arg	Asp	Lys	Ala 295	Asn	Gly	Glu	Asp	Asp 300	Ser			
<210><211><212><213>	112	sapie	ns												
<400>	54														
Glu 1	Ser	Ser	Ser	Pro 5	Leu	Ala	Leu	Ser	Leu 10	Ser	Ser	Ser	Pro	Ser 15	Ser
Ala	Ser	Phe	Ser	Ser	Ser	Leu	Ile	Asn	Ser	Ser	Trp	Ser	Ser	Pro	Arg

			20					25					30		
Ser	Ser	Leu 35	Ser	Ser	Ser	Ser	Ser 40	Arg	Ser	Pro	Ser	Ser 45	Ala	Glu	Ser
Ser	Ala 50	Pro	Pro	Ser	Asp	Ser 55	Ile	Phe	Thr	Leu	Val 60	Ser	Ser	Phe	Phe
Thr 65	Glu	Leu	Leu	Leu	Cys 70	Ser	Ser	Ser	Asp	Leu 75	Ser		Phe	Ile	Ser 80
Thr	Ala	Cys	Leu	Leu 85	Cys	Ser	Phe	Ser	Ile 90	, Phe	Ser	Arg	Phe	Ser 95	Arg
Arg	Glu	Ser	Thr 100	Phe	Cys	Phe	Ile	Trp 105	Val '	Ser	Ser	Phe	Leu 110	Met	Ala
<210><211><211><212><213>	107 PRT	sapie	ens		-						riga.				
<400>	55		•												
Thr 1	Arg	Asn	Leu	Glu 5	Lys	Lys	Lys	Lys	Lys 10	Asn	Phe	Leu	Phe	Leu 15	Tyr
Phe	Ile	Ile	Val 20	Tyr	Phe	Lys	Leu	Cys 25	Phe	Thr	Ala	Ser	Ser 30	Thr	Lys
Pro	Leu	Glu 35	Cys	Thr	Arg	Tyr	Ile 40	Phe	Leu	Gly	Val	Ile 45	Ile	Met	Met
His	Thr 50	Asn	Thr	Thr	Leu	Leu 55	Lys	Leu	Tyr	Phe	Ile 60	Glu	Met	His	Val
Ala 65	Leu	Arg	Ser	Gln	Leu 70	Asp	Ìle	Glu	Trp	Arg 75	Leu	Phe	Gln	Asn	Gly 80
Phe	Tyr	Ile	Leu	Met 85	Lys	Val	Trp	Glu	Val 90	Tyr	Pro	Leu	Cys	Leu 95	Phe
Ile	Ser	Ala	Leu 100	Trp	Ser	Ser	Trp	His 105	Pro	Phe			-		