Abstract Harmonic Analysis

Ikhan Choi

June 16, 2022

Contents

Ι	Fourier analysis	2
1	Locally compact groups 1.1 Topological groups 1.2 Haar measures 1.3 Group algebra 1.4 Structure theorems	3 3 3 3
2	Fourier inversion 2.1 Fourier inversion	4 4
3	Spectral synthesis 3.1 Closed ideals of the colvolution algebra	5
II	Representation theory	6
4	Unitary representations 4.1	7 7 7 7
5	Compact groups5.1 Peter-Weyl theorem	8 8 8
6	Mackey machine 6.1 Example of non-compact Lie groups	9 9
III	I Kac algebras	10
IV	Locally compact quantum groups	11

Part I Fourier analysis

Locally compact groups

1.1 Topological groups

1.2 Haar measures

1.1 (Riesz-Markov-Kakutani representation theorem).

Why is the break of σ -finiteness not serious?

1.3 Group algebra

- 1.2 (Modular functions).
- 1.3 (Convolution).

1.4 Structure theorems

Fourier inversion

2.1 Fourier inversion

- 2.1 (Positive definite functions).
- 2.2 (Bochner's theorem).
- **2.3** (Fourier inversion theorem).
- 2.4 (Plancherel's theorem).

2.2 Pontryagin duality

proofs

Spectral synthesis

3.1 Closed ideals of the colvolution algebra

Part II Representation theory

Unitary representations

4.1

4.1 (Schur's lemma).

4.2 Group C*-algerbas

4.2 (Operator-value Fourier transform).

4.3 Functions of positive type

- **4.3** (Functions of positive type).
- 4.4 (Fourier-Stieltjes algebra).
- **4.5** (GNS construction for locally compact groups). Let G be a locally compact group. By a state of $C^*(G)$, we could construct the GNS representation of G. An analog of GNS construction for $L^1(G)$ without completion is doable, when given a function of positive type on G, instead of a state.

Compact groups

- 5.1 Peter-Weyl theorem
- 5.2 Tannaka-Krein duality
- 5.3 Example of compact Lie groups

Mackey machine

6.1 Example of non-compact Lie groups

Wigner classification

Part III Kac algebras

Part IV Locally compact quantum groups