WHAT IS CLAIMED IS:

1	1. In a multi-carrier data communication system, a method of estimating
2	a carrier frequency offset for a received signal, the method comprising:
3	associating each of a plurality of carrier-specific weighting factors with a
4	different one of a plurality of carriers of the multi-carrier data;
5	assigning a value to each of the plurality of carrier-specific weighting factors,
6	the value being related to a noise power associated with the associated carrier; and
7	computing a carrier frequency offset estimate using the received signal, an
8	estimate of a channel transfer function associated with the received signal, and the plurality
9 11" 11" 11" 11" 11" 11" 11" 11" 11"	of carrier-specific weighting factors.
1	2. The method of claim 1, wherein the step of assigning a value to each of
12	the plurality of carrier-specific weighting factors comprises:
23	measuring a noise power spectrum across the plurality of carriers;
<u>4</u>	selecting a value inversely proportional to the noise power for one of the
5	plurality of carriers; and
	assigning the selected value to the associated carrier-specific weighting factor.
	3. The method of claim 2, wherein:
2	the plurality of carriers includes a first subset of pilot carriers and a second
3	subset of non-pilot carriers; and
4	the step of assigning a value to each of the plurality of carrier-specific
5	weighting factors comprises increasing a first carrier-specific weighting factor associated
6	with one of the pilot carriers relative to a second carrier-specific weighting factor associated
7	with one of the non-pilot carriers.
1	4. The method of claim 1, wherein the step of computing a carrier
2	frequency offset estimate comprises:
3	phase-compensating the received signal using a previous carrier frequency
4	offset estimate;
5	equalizing the phase-compensated signal using the estimate of the channel
6	transfer function;

7	computing a phase metric from the phase-compensated signal, the equalized
8	signal, the estimate of the channel transfer function, and the plurality of carrier-specific
9	weighting factors;
10	computing a phase of the phase metric; and
11	applying a loop filter to the computed phase.
1	5. The method of claim 4, wherein the step of computing the phase metric
2	comprises:
3	applying a threshold cutoff to the equalized signal, thereby producing a sliced
4	signal;
5	multiplying the phase-compensated signal for each of the plurality of carriers
<u>-6</u>	by the complex conjugate of the sliced signal for the carrier and by the complex conjugate of
9	the channel estimate for the carrier, thereby obtaining a first product;
8	multiplying the first product by the carrier-specific weight associated with the
	carrier, thereby obtaining a weighted product; and
	summing the weighted product over the plurality of carriers, thereby obtaining
11	the phase metric.
	6. The method of claim 1, further comprising:
1 2	using the carrier frequency offset estimate to phase-compensate a subsequent
3	received signal.
1	7. A method for processing a multi-carrier signal transmitted across a
2	channel, comprising:
3	assigning a value to each of a plurality of carrier-specific weighting factors,
4	each of the plurality of carrier-specific weighting factors being associated with a different one
5	of a plurality of carriers of the multi-carrier signal, the assigned value of each carrier-specific
6	weighting factor being related to a noise power associated with the carrier;
7	receiving the multi-carrier signal;
8	phase compensating the multi-carrier signal using a phase compensation
9	factor;
10	equalizing the phase-compensated signal using a channel estimate;
11	estimating a carrier frequency offset using the phase-compensated signal, the
12	equalized signal, the channel estimate, and the plurality of carrier-specific weighting factors;

13	estimating the clock frequency offset using the estimated carrier frequency
14	offset; and
15	updating the phase compensation factor using the estimated carrier frequency
16	offset and the estimated clock frequency offset.
1	8. The method of claim 7, wherein the step of assigning a value to each of
2	the plurality of carrier-specific weighting factors comprises:
3	measuring a noise power spectrum across the plurality of carriers;
4	selecting a value inversely proportional to the noise power for one of the
5	plurality of carriers; and
	assigning the selected value to the associated carrier-specific weighting factor.
	9. The method of claim 7, wherein:
	the plurality of carriers includes a first subset of pilot carriers and a second
13	subset of non-pilot carriers; and
<u>-</u> 4	the step of establishing a plurality of carrier-specific weighting factors
15	comprises increasing a first carrier-specific weighting factor associated with one of the pilot
<u>1</u> 6	carriers relative to a second carrier-specific weighting factor associated with one of the non-
	pilot carriers.
1	10. The method of claim 7, wherein
2	the plurality of carriers includes a first carrier and a second carrier, a first
3	channel estimate associated with the first carrier having a higher reliability than a second
4	channel estimate associated with the second carrier; and
5	the step of establishing a plurality of carrier-specific weighting factors
6	comprises increasing a first carrier-specific weighting factor associated with the first carrier
7	relative to a second carrier-specific weighting factor associated with the second carrier.
1	11. The method of claim 7, wherein the step of estimating the carrier
2	frequency offset comprises:
3	computing a phase metric from the phase-compensated signal, the equalized
4	signal, the channel estimate, and the plurality of carrier-specific weighting factors;
5	computing a phase of the phase metric; and
6	applying a loop filter to the computed phase.

4	updating the phase compensation factor using the coarse carrier frequency
5	offset and the fine carrier frequency offset.
1	17. In a multi-carrier data communication system, a method of equalizing
2	a multi-carrier signal, the method comprising:
3	estimating a channel transfer function;
4	compensating a received signal using a phase compensation factor, yielding a
5	phase-compensated signal;
6	compensating the first compensated signal using the estimated channel
7	transfer function, yielding an equalized signal;
-8	estimating a phase metric using the phase-compensated signal and the
9	equalized signal, the estimated channel transfer function, and a plurality of carrier-specific
Ō	weighting factors, each of the carrier-specific weighting factors being associated with a
	different one of a plurality of carriers of the multi-carrier signal and assigned a value related
2	to a noise power associated with the carrier;
13	estimating a carrier frequency offset using the estimated phase metric;
<u>.</u> 14	estimating a clock frequency offset using the updated estimate of the carrier
1 5	frequency offset; and
l-6	updating the phase compensation factor using the estimated carrier frequency
<u>.</u> 17	offset and the estimated clock frequency offset.
1	18. The method of claim 17, wherein the value of each of the carrier-
2	specific weighting factors is inversely proportional to a noise power associated with the
3	associated carrier.
1	19. The method of claim 18, wherein:
2	the plurality of carriers comprises a first subset of pilot carriers and a second
3	subset of non-pilot carriers; and
4	the carrier-specific weighting factor associated with at least one of the pilot
5	carriers is increased relative to the carrier-specific weighting factor associated with at least
6	one of the non-pilot carriers.
1	20. The method of claim 18, wherein:

2	the plurality of carriers includes a first carrier and a second carrier, a first
3	channel estimate associated with the first carrier having a higher reliability than a second
4	channel estimate associated with the second carrier; and
5	the carrier-specific weighting factor associated with the first carrier is
6	increased relative to the carrier-specific weighting factor associated with the second carrier.
1	21. The method of claim 17, wherein the step of estimating a phase metric
2	comprises:
3	applying a threshold cutoff to the equalized signal, thereby producing a sliced
4	signal;
L 5	multiplying the phase-compensated signal for each carrier by the complex
_6	conjugate of the sliced signal for the carrier and by the complex conjugate of the estimated
17	channel transfer function for the carrier, thereby obtaining a product;
-8	multiplying the product by the carrier-specific weight associated with the
وَّ	carrier, thereby obtaining a weighted product; and
10	summing the weighted product over the plurality of carriers, thereby obtaining
	the phase metric.
	22. The method of claim 17, wherein the step of estimating a clock offset
12	comprises multiplying the estimated carrier frequency offset by a factor inversely
3	proportional to the carrier frequency.
1	The method of claim 22, further comprising:
2	computing a net time offset based on the clock offset estimate and an elapsed
3	time;
4	generating a drop instruction when the net time offset exceeds a drop
5	threshold, the drop instruction causing a portion of the multi-carrier signal to be dropped
6	from a symbol;
7	generating an add instruction when the net time offset is below an add
8	threshold, the add instruction causing a portion of the multi-carrier signal to be added to the
9	symbol; and
10	resetting the elapsed time after the portion of the multi-carrier signal has been
11	added to or dropped from the symbol.

1	24. The method of claim 17, wherein the step of estimating the carrier
2	frequency offset comprises:
3	computing a phase metric from the phase-compensated signal, the equalized
4	signal, the channel estimate, and the plurality of carrier-specific weighting factors;
5	computing a phase of the phase metric; and
6	applying a loop filter to the computed phase.
1	25. In a receiver for a multi-carrier data communication system, an
2	equalizer comprising:
3	a phase compensator configured to receive the input sample, a carrier
<u>-</u> 4	frequency phase offset estimate, and a clock frequency phase offset estimate, and to output a
<u>1</u> 5	phase compensated sample;
	a channel equalization block configured to receive a plurality of channel
47	estimates and the phase compensated sample, and to output an equalized data sample;
<u> </u>	a carrier frequency offset estimator configured to receive the plurality of
19	channel estimates, the phase compensated sample, and the equalized sample, and to compute
10	and output the carrier frequency phase offset estimate using a plurality of carrier-specific
13	weighting factors, each of the carrier-specific weighting factors being associated with a
12	different one of a plurality of carriers of the multi-carrier data and having a value related to a
13	noise power associated with the associated carrier; and
14	a clock frequency offset estimator configured to receive the carrier frequency
15	phase offset estimate and compute the clock frequency phase offset estimate.
1	26. The equalizer of claim 25, wherein the carrier frequency offset
2	estimator comprises:
3	a weight source configured to output the plurality of carrier-specific weighting
4	factors;
5	a slicer configured to receive the equalized signal and to output a sliced signal
6	a phase metric updater configured to receive the plurality of channel estimates
7	the phase-compensated signal, the sliced signal, and the plurality of carrier-dependent
8	weights, and to compute and output a phase metric;
9	a phase computation unit coupled to the phase metric updater and configured
10	to compute and output a phase of the phase metric: and

11	a loop filter coupled to the phase computation unit and configured to store a
12	plurality of values of the phase and to compute the carrier frequency phase offset estimate.
1	27. The equalizer of claim 26, wherein the weight source comprises a
2	noise estimator configured to measure a noise power spectrum.
1	28. A multi-carrier data communication system comprising:
2	a transmitter including:
3	a demodulator/deserializer configured to convert an input data stream
4	into a parallel plurality of multi-carrier signals;
5	a frequency-domain to time-domain converter having an input coupled
1 6	to the modulator/deserializer and configured to transform the parallel plurality of multi-
1 27	carrier signals from frequency domain into time domain at an output;
8	a guard period insertion block coupled to the frequency-domain to
17 18 19	time-domain converter and configured to insert a guard period in the output of the frequency-
10	domain to time-domain converter;
<u>1</u> 1	a serializer coupled to an output of the guard period insertion block and
12	configured to perform a parallel to serial conversion on the signal; and
II 3	a digital-to-analog converter coupled to the serializer and configured to
13 14	convert the digital signal into an analog signal and to transmit the analog multi-carrier time
15	domain signal across a channel; and
16	a receiver including:
17	an analog-to-digital converter coupled to receive the analog signal and
18	configured to convert the analog signal into a digital signal;
19	a deserializer coupled to the analog-to-digital converter and configured
20	to convert the digital signal into a plurality of parallel signals;
21	a channel estimator coupled to an output of the deserializer and
22	configured to compute a channel transfer function estimate;
23	a guard period removal block coupled to an output of the channel
24	estimator and configured to remove the guard period;
25	a time-domain to frequency-domain converter coupled to an output of
26	the guard period removal block;
27	an equalizer coupled to an output of the time-domain to frequency-
28	domain converter, configured to equalize the signal using the channel estimates and further

configured to compensate for a carrier frequency offset and a clock offset using a carrier frequency offset estimate that includes a plurality of carrier-specific weighting factors, each of the carrier-specific weighting factors being associated with a different one of a plurality of carriers of the multi-carrier data and having a value related to a noise power associated with the associated carrier; and

a serializer/demodulator coupled to the output of the equalizer and

a serializer/demodulator coupled to the output of the equalizer and configured to generate an output data stream.

29. The multi-carrier data communication system of claim 28, further comprising:

a preliminary carrier frequency offset estimation block coupled between the deserializer and the guard period removal block, the preliminary carrier frequency offset estimation block configured to output a preliminary estimate of carrier frequency offset.

30. The multi-carrier data communication system of claim 29, wherein the equalizer is configured to receive the preliminary estimate of carrier frequency offset for use in compensating for the carrier frequency offset.