Lab 6: LCD

Instructor: Sung-Yeul Park

TA: S M Rakiul Islam

ECE 3411
Department of Electrical and Computer Engineering
University of Connecticut

February 5th, 2018

ATmega328P Xplained Mini Pin Allocation

Soldering the Connectors for LCD

• Insert a 16-pin male header in LCD pads from the bottom and solder from the top.

PIN details of LCD

- Use 4 bit configuration for LCD
- Interface with explained mini as in table

Pin No.	Symbol	External Connection	Function Description
1	V _{ss}	Power Supply	Ground
2	V _{DD}	Power Supply	Supply Voltage for logic (+5.0V)
3	Vo	Adj. Power Supply	Supply Voltage for contrast (approx. 1.3V)
4	RS	MPU	Register Select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	E	MPU	Operation Enable signal. Falling edge triggered.
7-10	DB0 - DB3	MPU	Four low order bi-directional three-state data bus lines. These
			four are not used during 4-bit operation.
11-14	DB4 - DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED+	Power Supply	Backlight Anode(+5.0V via on-board resistor)
16	LED-	Power Supply	Backlight Cathode (Ground)

No.	Symbol	Connections with ATmega328P
1, 3	V_{SS} , V_{EE}	GND
2	V _{cc}	5V
4	RS	PC4
5	R/W	GND (Always Write to LCD)
6	Е	PC5
7-10	DB0-DB3	Not Connected
11-14	DB4-DB7	PCO-PC3
15	Anode	5V
16	Cathode	GND 4

LCD Interfacing: for 14 pin

- We are going to use the LCD in 4-bit mode
 - Only 4 data wires are required instead of 8
- LCD pin assignment is as follows:

No.	Symbol	Connections with ATmega328P
1, 3	V _{SS} , V _{EE}	GND
2	V _{cc}	5V
4	RS	PC4
5	R/W	GND (Always Write to LCD)
6	Е	PC5
7-10	DB0-DB3	Not Connected
11-14	DB4-DB7	PCO-PC3

→ GND Pin1: V_{ss} **→** 5V Pin2: V_{cc} → GND Pin3: V_{FF} Pin4: RŠ \rightarrow PC4 → GND Pin5: R/W → PC5 Pin6: E \rightarrow N/C Pin7: DB0 Pin8: DB1 \rightarrow N/C \rightarrow N/C Pin9: DB2 Pin10: DB3 \rightarrow N/C \rightarrow PC0 Pin11: DB4 Pin12: DB5 → PC1 → PC2 Pin13: DB6 Pin14: DB7 → PC3

Pin16: ANODE → 5V

: Pin15: E CATHODE → GND

Wiring the Breadboard (for LCD)

Connections

- Connect the board as in Fig.1.
- Use the diagrams of the following slides to connect LCD properly
- Connect LCD power and control pin properly
- Use the datasheet to understand LCD connection more

LCD Test Program

```
// ----- Preamble ----- //
#define F CPU 1600000UL
                              /* Tells the Clock Freq to the Compiler. */
#include <avr/io.h>
                   /* Defines pins, ports etc. */
#include <util/delay.h> /* Functions to waste time */
                               /* LCD Library */
#include "lcd lib.h"
int main(void) {
  // ----- Inits ----- //
                               /* Initialize LCD */
  initialize LCD();
                               /* Print a few characters for test */
  LcdDataWrite('A');
  LcdDataWrite('B');
  LcdDataWrite('C');
  // ----- Event loop ----- //
  while (1) {
          /* Nothing to do */
  }/* End event loop */
  return (0);
```