Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Задания для РК №2.

по дисциплине «Методы машинного обучения»

Выполнила:

студентка группы ИУ5И-23М

Цзян Юхуэй

Задание

Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать два варианта векторизации признаков - на основе CountVectorizer и на основе TfidfVectorizer.

Мои классификатора: LinearSVC и LogisticRegression.

Для каждого метода необходимо оценить качество классификации. Сделайте вывод о том, какой вариант векторизации признаков в паре с каким классификатором показал лучшее качество.

Основной раздел кода

В этом задании мы используем набор данных "Набор данных кинорецензий IMDB".

Данные о нагрузке:

```
import pandas as pd

from sklearn.datasets import load_files

# 下载并加载 IMDB 电影评论数据集

!wget -O aclImdb_v1.tar.gz https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz

!tar -xf aclImdb_v1.tar.gz

# 加载训练数据

train_data = load_files('aclImdb/train', categories=['pos', 'neg'], shuffle=True, random_state=42)

test_data = load_files('aclImdb/test', categories=['pos', 'neg'], shuffle=True, random_state=42)

# 分离数据和标签

X_train, y_train = train_data.data, train_data.target

X_test, y_test = test_data.data, test_data.target
```

Составьте портфолио:

```
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.svm import LinearSVC

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import make_pipeline

from sklearn.metrics import classification_report

# 创建不同的管道

pipelines = {

    'CountVectorizer + LinearSVC': make_pipeline(CountVectorizer(), LinearSVC(random_state=42)),

    'CountVectorizer + LinearSVC': make_pipeline(CountVectorizer(), LogisticRegression(random_state=42)),

    'TfidfVectorizer + LinearSVC': make_pipeline(TfidfVectorizer(), LinearSVC(random_state=42)),

    'TfidfVectorizer + LogisticRegression': make_pipeline(TfidfVectorizer(), LogisticRegression(random_state=42))

} # 训练和评估每个管道
```

```
for name, pipeline in pipelines.items():

print('='*80)

print(fTraining and evaluating pipeline: {name}')

print('='*80)

pipeline.fit(X_train, y_train)

y_pred = pipeline.predict(X_test)

print(classification_report(y_test, y_pred))

print('-' * 80)
```

Результат

		evaluating p				earSVC
	/lil	o/python3.10				se.py:1244: ConvergenceWar
		precision	recall	f1-score	support	
	0	0.84	0.86	0.85	12500	
	1	0.85	0.84	0.84	12500	
accura	су			0.85	25000	
macro a		0.85	0.85	0.85	25000	
weighted a	ivg	0.85	0.85	0.85	25000	
						isticRegression
		o/python3.10). of ITERAT			rn/linear_	model/_logistic.py:458: Co
Increase t	he r	number of it	erations	(max_iter)	or scale t	he data as shown in:
https:	//s	cikit-learn.	org/stable	e/modules/p	reprocessi	ng.html
						solver options:
		<u>cikit-learn.</u> _check_optim			inear mode	l.html#logistic-regression
H_1cel_1		_cneck_opcim precision			support	
	0	0.86	0.87	0.87	12500	
	1	0.87	0.86	0.86	12500	
accura	1			0.86	12500	
accura macro a	1					
	1 acy avg	0.87	0.86	0.86 0.86	12500 25000	
macro a weighted a	1 acy avg avg	0.87 0.86 0.86	0.86 0.86 0.86	0.86 0.86 0.86 0.86	12500 25000 25000 25000	
macro a weighted a	1 acy avg avg avd	0.86 0.86 2.86	0.86 0.86 0.86	0.86 0.86 0.86 0.86	12500 25000 25000 25000 25000	
macro a weighted a	1 acy avg avg avd	0.86 0.86 2.86	0.86 0.86 0.86	0.86 0.86 0.86 0.86	12500 25000 25000 25000 25000	
macro a veighted a	1 acy avg avg avd	0.86 0.86 0.86	0.86 0.86 0.86	0.86 0.86 0.86 0.86	12500 25000 25000 25000 25000	nearSVC
macro a veighted a	1 acy avg avg	0.86 0.86 evaluating p	0.86 0.86 0.86	0.86 0.86 0.86 0.86 fidfVector	12500 25000 25000 25000 25000 izer + Lir support	nearSVC
macro a weighted a	1 acy avg avg 0 1	0.86 0.86 evaluating p	0.86 0.86 0.86 ipeline: 1	0.86 0.86 0.86 0.86 0.86 UfidfVector f1-score 0.88 0.88	12500 25000 25000 25000 	nearSVC
macro a weighted a Fraining a accura	1 acy	0.87 0.86 0.86 evaluating p precision 0.87 0.89	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 UfidfVector f1-score 0.88 0.88	12500 25000 25000 25000 25000 izer + Lin support 12500 12500	nearSVC
macro a veighted a Fraining a accura	1 organized and the second se	0.86 0.86 evaluating p	0.86 0.86 0.86 ipeline: 1	0.86 0.86 0.86 0.86 0.86 UfidfVector f1-score 0.88 0.88	12500 25000 25000 25000 	nearSVC
macro a weighted a Fraining a accura	1 organized and the second se	0.87 0.86 0.86 0.86 evaluating precision 0.87 0.89	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 CfidfVector 0.88 0.88 0.88	12500 25000 25000 25000 25000 izer + Lir support 12500 12500 25000	learSVC
macro a weighted a Fraining a accura macro a weighted a	1 or a cy	0.87 0.86 0.86 evaluating precision 0.87 0.89 0.88 0.88	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 0.88 0.88 0.88 0.88 0.88	12500 25000 25000 25000 25000 izer + Lir support 12500 12500 25000 25000 25000	learSVC
macro a weighted a Fraining a accura macro a weighted a	1 or a cy	0.87 0.86 0.86 evaluating precision 0.87 0.89 0.88 0.88	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 0.88 0.88 0.88 0.88 0.88	12500 25000 25000 25000 25000 izer + Lir support 12500 12500 25000 25000 25000	learSVC
macro a veighted a Fraining a accura macro a veighted a	1 or a cy	0.87 0.86 0.86 evaluating p precision 0.87 0.89 0.88 0.88 evaluating	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 O.86 O.88 0.88 0.88 0.88 0.88	12500 25000 25000 25000 25000 izer + Lir support 12500 12500 25000 25000 25000	learSVC
macro a weighted a Fraining a accura macro a weighted a	1 acy avg avg 0 1 acy avg avg and acy avg and	0.87 0.86 0.86 evaluating p precision 0.87 0.89 0.88 0.88 evaluating	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 O.88 0.88 0.88 0.88 TfidfVector	12500 25000 25000 25000 25000 25000 12500 25000 25000 25000 25000 25000	learSVC
macro a weighted a Fraining a accura macro a weighted a Training	on the state of th	0.87 0.86 0.86 evaluating p precision 0.87 0.89 0.88 0.88 evaluating precision 0.88	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 O.88 0.88 0.88 0.88 TfidfVector	12500 25000 25000 25000 25000 rizer + Lir 12500 12500 25000 25000 25000 25000 25000 25000	learSVC
macro a veighted a Fraining a accura macro a veighted a	1 acy avg avg 0 1 acy aracy	0.87 0.86 0.86 evaluating p precision 0.87 0.89 0.88 0.88 evaluating precision 0.88	0.86 0.86 0.86 ipeline: 1 recall 0.89 0.87	0.86 0.86 0.86 0.86 0.86 0.88 0.88 0.88	12500 25000 25000 25000 25000 25000 12500 25000 25000 25000 25000 25000 25000 25000 25000 25000	learSVC

Рис 1. Результаты различных комбинаций.

Вывод

На основании приведенных выше результатов мы можем сделать следующие выводы:

- 1. TfidfVectorizer обычно лучше передает семантическую информацию текста, чем CountVectorizer, и, следовательно, лучше справляется с этой задачей.
- 2. LinearSVC обычно лучше справляется с высокоразмерными данными, чем LogisticRegression, и поэтому лучше справляется с этой задачей.

Таким образом, комбинация TfidfVectorizer + LinearSVC лучше всего справляется с задачей классификации текста.