

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

■ We mean Von Neumann-Morgenstern type of game theory.

■ We mean Von Neumann-Morgenstern type of game theory.

■ We mean Von Neumann-Morgenstern type of game theory.

Definition. Game theory is the study of strategic interaction between individuals.

■ 1950-now: individuals = humans.

■ We mean Von Neumann-Morgenstern type of game theory.

Definition. Game theory is the study of strategic interaction between individuals.

■ 1950-now: individuals = humans. Homo economicus.

■ We mean Von Neumann-Morgenstern type of game theory.

Definition. Game theory is the study of strategic interaction between individuals.

■ **1950-now**: individuals = humans. Homo economicus. Often self-interested

■ We mean Von Neumann-Morgenstern type of game theory.

Definition. Game theory is the study of strategic interaction between individuals.

■ **1950-now**: individuals = humans. Homo economicus. Often self-interested, even if altruistic...

■ We mean Von Neumann-Morgenstern type of game theory.

Definition. Game theory is the study of strategic interaction between individuals.

■ **1950-now**: individuals = humans. Homo economicus. Often self-interested, even if altruistic... (The latter is open to debate.)

■ We mean Von Neumann-Morgenstern type of game theory.

- **1950-now**: individuals = humans. Homo economicus. Often self-interested, even if altruistic... (The latter is open to debate.)
- 1980-now: the notion of individual may also refer to an artificial agent:

■ We mean Von Neumann-Morgenstern type of game theory.

- **1950-now**: individuals = humans. Homo economicus. Often self-interested, even if altruistic... (The latter is open to debate.)
- **1980-now**: the notion of individual may also refer to an artificial agent: a software / hardware entity that displays a certain degree of autonomy / initiative, and is proactive/goal-directed.

■ We mean Von Neumann-Morgenstern type of game theory.

- **1950-now**: individuals = humans. Homo economicus. Often self-interested, even if altruistic... (The latter is open to debate.)
- **1980-now**: the notion of individual may also refer to an artificial agent: a software / hardware entity that displays a certain degree of autonomy / initiative, and is proactive/goal-directed.
- Academic research studies strategic interaction among agents from an abstract point of view.

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

Multi-agent learning studies how strategically interacting individuals may adapt their interaction policy on the basis of past interactions.

- Multi-agent learning studies how strategically interacting individuals may adapt their interaction policy on the basis of past interactions.
- Game theory is about strategically interacting individuals.

- Multi-agent learning studies how strategically interacting individuals may adapt their interaction policy on the basis of past interactions.
- Game theory is about strategically interacting individuals.
- Therefore, game theory is an important prerequisite of multi-agent learning.

The two most important game types are: extensive-form games and normal-form games.

The two most important game types are: extensive-form games and normal-form games.

In an extensive-form game, actions are taken in succession:

The two most important game types are: extensive-form games and normal-form games.

In an extensive-form game, actions are taken in succession:

In a normal-form game a.k.a. matrix game, actions are taken simultaneously:

		Player 2		
		no	yes	
Player 1	K	0,0	2,0	
	S	0,0	1,1	
	G	0,0	0,2	

The two most important game types are: extensive-form games and normal-form games.

In an extensive-form game, actions are taken in succession:

In a normal-form game a.k.a. matrix game, actions are taken simultaneously:

		Player 2		
		no	yes	
Pla	K	0,0	2,0	
ауе	S	0,0	1,1	
r 1	G	0,0	0,2	

■ The two game types can be translated into each other.

The two most important game types are: extensive-form games and normal-form games.

In an extensive-form game, actions are taken in succession:

In a normal-form game a.k.a. matrix game, actions are taken simultaneously:

		Player 2		
		no	yes	
Pla	K	0,0	2,0	
ауе	S	0,0	1,1	
<u>r</u> 1	G	0,0	0,2	

- The two game types can be translated into each other.
- It is easy to represent extensive-form games with more than two players.

The two most important game types are: extensive-form games and normal-form games.

In an extensive-form game, actions are taken in succession:

In a normal-form game a.k.a. matrix game, actions are taken simultaneously:

		Player 2		
		no	yes	
Pla	K	0,0	2,0	
ауе	S	0,0	1,1	
r 1	G	0,0	0,2	

- The two game types can be translated into each other.
- It is easy to represent extensive-form games with more than two players. With normal-form games that would not be so easy.

Game types

Game types

■ Games in normal form: count the various types.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

Solution concepts

Pareto front.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

- Pareto front.
- Nash equilibrium (pure and mixed).

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

- Pareto front.
- Nash equilibrium (pure and mixed).
- Various types of equilibria (correlated, trembling hand, ϵ -Nash, ...).

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

- Pareto front.
- Nash equilibrium (pure and mixed).
- Various types of equilibria (correlated, trembling hand, ϵ -Nash, ...).
- Subgame-perfect equilibrium.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

- Pareto front.
- Nash equilibrium (pure and mixed).
- Various types of equilibria (correlated, trembling hand, ϵ -Nash, ...).
- Subgame-perfect equilibrium.
- Maxmin and minmax strategies.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

- Pareto front.
- Nash equilibrium (pure and mixed).
- Various types of equilibria (correlated, trembling hand, ϵ -Nash, ...).
- Subgame-perfect equilibrium.
- Maxmin and minmax strategies.
- Strategies that are not dominated by other strategies.

Game types

- Games in normal form: count the various types.
- Games in extensive form: (im-)perfect information, (im-)perfect recall.

- Pareto front.
- Nash equilibrium (pure and mixed).
- Various types of equilibria (correlated, trembling hand, ϵ -Nash, ...).
- Subgame-perfect equilibrium.
- Maxmin and minmax strategies.
- Strategies that are not dominated by other strategies.
- Rationalisable strategies.

Games in normal form

The Prisoner's dilemma

. . . oh no, not again

The Prisoner's dilemma

. . . oh no, not again

. . . yes again!

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

	C	D
C	3,3	0,5
D	5,0	1,1

Prototypical and "earliest" normal form game / matrix game.

■ Two parties (persons, artificial agents, ...).

- Two parties (persons, artificial agents, ...).
- Symmetric.

- Two parties (persons, artificial agents, ...).
- Symmetric.
- Simultaneous moves.

- Two parties (persons, artificial agents, ...).
- Symmetric.
- Simultaneous moves.
- Quantitative payoffs.

- Two parties (persons, artificial agents, ...).
- Symmetric.
- Simultaneous moves.
- Quantitative payoffs.
- Non-zero sum.

- Two parties (persons, artificial agents, ...).
- Symmetric.
- Simultaneous moves.
- Quantitative payoffs.
- Non-zero sum.
- Full information, common knowledge of rationality (CKR).

	C	D
C	3,3	0,5
D	5,0	1,1

Why is the Prisoner's dilemma a dilemma?

■ For both parties, to defect is always the best response.

Why is the Prisoner's dilemma a dilemma?

■ For both parties, to defect is always the best response.

Therefore the only Nash equilibrium is the action profile (D, D).

- For both parties, to defect is always the best response.

 Therefore the only Nash equilibrium is the action profile (D, D).
- \blacksquare The action profile (D,D) is Pareto-dominated.

- For both parties, to defect is always the best response.

 Therefore the only Nash equilibrium is the action profile (D, D).
- The action profile (D,D) is Pareto-dominated.

 No other action profiles are Pareto-dominated.

- For both parties, to defect is always the best response.

 Therefore the only Nash equilibrium is the action profile (D, D).
- The action profile (D,D) is Pareto-dominated.
 No other action profiles are Pareto-dominated.
 Therefore, the Pareto front is the set of action profiles (C, C), (C, D) and (D, C).

- For both parties, to defect is always the best response.

 Therefore the only Nash equilibrium is the action profile (D, D).
- The action profile (D,D) is Pareto-dominated.
 No other action profiles are Pareto-dominated.
 Therefore, the Pareto front is the set of action profiles (C, C), (C, D) and (D, C).
- Pareto front \cap Nash equilibria = \emptyset .

- For both parties, to defect is always the best response.

 Therefore the only Nash equilibrium is the action profile (D, D).
- The action profile (D,D) is Pareto-dominated.
 No other action profiles are Pareto-dominated.
 Therefore, the Pareto front is the set of action profiles (C, C), (C, D) and (D, C).
- Pareto front \cap Nash equilibria = \emptyset . That's the dilemma.

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

■ This is a so-called anti-coordination game.

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- This is a so-called anti-coordination game.
- Two (pure) Nash equilibria:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- This is a so-called anti-coordination game.
- \blacksquare Two (pure) Nash equilibria: (D, S) and (S, D).

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- This is a so-called anti-coordination game.
- Two (pure) Nash equilibria: (D, S) and (S, D).
- Pareto-front:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- This is a so-called anti-coordination game.
- Two (pure) Nash equilibria: (D, S) and (S, D).
- Pareto-front: all but (D, D).

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- This is a so-called anti-coordination game.
- Two (pure) Nash equilibria: (D, S) and (S, D).
- Pareto-front: all but (D, D).

Battle of the sexes:

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- This is a so-called anti-coordination game.
- Two (pure) Nash equilibria: (D, S) and (S, D).
- Pareto-front: all but (D, D).

Battle of the sexes:

■ Two (pure) Nash equilibria = Pareto front: (F, F) and (B, B).

$$\begin{array}{c|cc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

In general:

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

■ If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.

$$\begin{array}{c|ccc}
L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games

$$\begin{array}{c|ccc}
L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- "10" is arbitrary and [-10, 10] may be too wide a range.

$$\begin{array}{c|ccc}
L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- \blacksquare "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).
- Action identities are unimportant

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- \blacksquare "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).
- Action identities are unimportant (swap rows / columns).

$$\begin{array}{c|ccc}
L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- \blacksquare "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).
- Action identities are unimportant (swap rows / columns).
- Payoff magnitudes are unimportant

Other two-person / two-strategy normal form games

In general:

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).
- Action identities are unimportant (swap rows / columns).
- Payoff magnitudes are unimportant (normalise payoffs).

Other two-person / two-strategy normal form games

In general:

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- \blacksquare "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).
- Action identities are unimportant (swap rows / columns).
- Payoff magnitudes are unimportant (normalise payoffs).
- Rapoport and Guyer (1966): there are exactly 78 strategically distinct 2×2 games

Other two-person / two-strategy normal form games

In general:

$$\begin{array}{c|ccc}
 & L & R \\
T & a,b & c,d \\
B & e,f & g,h
\end{array}$$

- If $a, b, c, d, e, f, g, h \in [-10, 10] \cap \mathbb{Z}$ we probably have all 2×2 games.
- $21^8 \approx 10^{11}$ different games ... is a tad too much.
- \blacksquare "10" is arbitrary and [-10, 10] may be too wide a range.
- Player identities are unimportant (reflect in main diagonal).
- Action identities are unimportant (swap rows / columns).
- Payoff magnitudes are unimportant (normalise payoffs).
- Rapoport and Guyer (1966): there are exactly 78 strategically distinct 2×2 games, of which 12 are symmetric.

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

■ It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1,2,3,4.

- It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1,2,3,4.
- For the row player, there are 4! ways to distribute the payoffs.

	L	R
T	x, y	x, y
B	x, y	x,y

- It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1,2,3,4.
- For the row player, there are 4! ways to distribute the payoffs.

$$\begin{array}{c|ccc}
 & L & R \\
T & x, y & x, y \\
B & x, y & x, y
\end{array}$$

- It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1,2,3,4.
- For the row player, there are 4! ways to distribute the payoffs.

$$\begin{array}{c|cc}
 & L & R \\
T & x, y & x, y \\
B & x, y & x, y
\end{array}$$

Similarly for the column player. This gives $4! \times 4! = 576$ different games.

First action / second action does not matter for both: $576/(2 \times 2) = 144$ games.

- It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1,2,3,4.
- For the row player, there are 4! ways to distribute the payoffs.

$$\begin{array}{c|cc}
 & L & R \\
T & x, y & x, y \\
B & x, y & x, y
\end{array}$$

- First action / second action does not matter for both: $576/(2 \times 2) = 144$ games.
- \blacksquare 4 × 3 = 12 of these games turn out to be symmetric.

- It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1, 2, 3, 4.
- For the row player, there are 4! ways to distribute the payoffs.

$$\begin{array}{c|cc}
L & R \\
T & x, y & x, y \\
B & x, y & x, y
\end{array}$$

- First action / second action does not matter for both: $576/(2 \times 2) = 144$ games.
- \blacksquare 4 × 3 = 12 of these games turn out to be symmetric.
- The remaining 132 are a-symmetric and players can be interchanged.

- It is assumed that payoffs are strictly ordinal: different payoffs, let's say 1,2,3,4.
- For the row player, there are 4! ways to distribute the payoffs.

$$\begin{array}{c|ccc}
L & R \\
T & x, y & x, y \\
B & x, y & x, y
\end{array}$$

- First action / second action does not matter for both: $576/(2 \times 2) = 144$ games.
- \blacksquare 4 × 3 = 12 of these games turn out to be symmetric.
- The remaining 132 are a-symmetric and players can be interchanged.
- We end up with 12 + 132/2 = 78 essentially different games. Author: Gerard Vreeswijk. Slides last modified on May 1st, 2019 at 13:24 essentially different games. Multi-agent learning: Game theory, slide 13

Author: Gerard Vreeswijk. Slides last modified on May 1st, 2019 at 13:24

A: 1, 1, 1, 1 indifferent among all 4 outcomes

1

Author: Gerard Vreeswijk. Slides last modified on May 1st, 2019 at 13:24

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12

1, 1, 1, 1	indifferent among all 4 outcomes	1
1, 1, 1, 2	indifferent among three least preferred	4
1, 1, 2, 2	indifferent between two least and two most	6
1, 1, 2, 3	indifferent between two least preferred	12
1, 2, 2, 2	indifferent among three most preferred	4
	1, 1, 1, 2 1, 1, 2, 2 1, 1, 2, 3	 1, 1, 1, 1 indifferent among all 4 outcomes 1, 1, 1, 2 indifferent among three least preferred 1, 1, 2, 2 indifferent between two least and two most 1, 1, 2, 3 indifferent between two least preferred 1, 2, 2, 2 indifferent among three most preferred

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E :	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E:	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12
G:	1, 2, 3, 3	indifferent between two most preferred	12

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E :	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12
G:	1, 2, 3, 3	indifferent between two most preferred	12
H:	1, 2, 3, 4	distinct level of preference for each outcome	24

Possible payoff orderings.

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E:	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12
G:	1, 2, 3, 3	indifferent between two most preferred	12
H:	1, 2, 3, 4	distinct level of preference for each outcome	24

Possible payoff orderings.

■ Guyer and Hamburger (1968): $75 \times 75 = 5625$ possibilities.

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E :	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12
G:	1, 2, 3, 3	indifferent between two most preferred	12
H:	1, 2, 3, 4	distinct level of preference for each outcome	24

Possible payoff orderings.

Guyer and Hamburger (1968): $75 \times 75 = 5625$ possibilities. When strategically equivalent duplicates are eliminated: 726 strategically distinct 2×2 games.

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E :	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12
G:	1, 2, 3, 3	indifferent between two most preferred	12
H:	1, 2, 3, 4	distinct level of preference for each outcome	24

Possible payoff orderings.

- Guyer and Hamburger (1968): $75 \times 75 = 5625$ possibilities. When strategically equivalent duplicates are eliminated: 726 strategically distinct 2×2 games.
- These 726 distinct games are difficult to order.

A:	1, 1, 1, 1	indifferent among all 4 outcomes	1
B:	1, 1, 1, 2	indifferent among three least preferred	4
C:	1, 1, 2, 2	indifferent between two least and two most	6
D:	1, 1, 2, 3	indifferent between two least preferred	12
E :	1, 2, 2, 2	indifferent among three most preferred	4
F:	1, 2, 2, 3	indifferent between two middle	12
G:	1, 2, 3, 3	indifferent between two most preferred	12
H:	1, 2, 3, 4	distinct level of preference for each outcome	24

Possible payoff orderings.

- Guyer and Hamburger (1968): $75 \times 75 = 5625$ possibilities. When strategically equivalent duplicates are eliminated: 726 strategically distinct 2×2 games.
- These 726 distinct games are difficult to order. In 1988, Fraser and Kilgour proposed a taxonomy for these 726 distinct games.

	L	R
T	R,R	S,T
В	T,S	P, P

$$\begin{array}{c|cc}
 & L & R \\
T & R, R & S, T \\
B & T, S & P, P
\end{array}$$

 \blacksquare *R*, *S*, *T*, and *P* represent payoffs named *reward*, *sucker*, *temptation* and *punishment*, respectively.

$$\begin{array}{c|cc}
 & L & R \\
T & R, R & S, T \\
B & T, S & P, P
\end{array}$$

- \blacksquare R, S, T, and P represent payoffs named reward, sucker, temptation and punishment, respectively.
- WLOG it may be assumed that R > P. If not, then swap the actions.

$$\begin{array}{c|cc}
 & L & R \\
T & R, R & S, T \\
B & T, S & P, P
\end{array}$$

- \blacksquare *R*, *S*, *T*, and *P* represent payoffs named *reward*, *sucker*, *temptation* and *punishment*, respectively.
- WLOG it may be assumed that R > P. If not, then swap the actions.
- WLOG the payoffs can be normalised so that R = 1 and P = 0. orderings corresponding to very different strategic situations.

$$\begin{array}{c|cc}
 & L & R \\
T & R, R & S, T \\
B & T, S & P, P
\end{array}$$

- \blacksquare *R*, *S*, *T*, and *P* represent payoffs named *reward*, *sucker*, *temptation* and *punishment*, respectively.
- WLOG it may be assumed that R > P. If not, then swap the actions.
- WLOG the payoffs can be normalised so that R = 1 and P = 0. orderings corresponding to very different strategic situations.
- All interesting symmetric 2×2 games can be generated by

$$(S,T) \in [-\epsilon, 1+\epsilon] \times [-\epsilon, 1+\epsilon], R = 1, P = 0, \epsilon > 0.$$

$$\begin{array}{c|cc}
 & L & R \\
T & R, R & S, T \\
B & T, S & P, P
\end{array}$$

- \blacksquare *R*, *S*, *T*, and *P* represent payoffs named *reward*, *sucker*, *temptation* and *punishment*, respectively.
- WLOG it may be assumed that R > P. If not, then swap the actions.
- WLOG the payoffs can be normalised so that R = 1 and P = 0. orderings corresponding to very different strategic situations.
- All interesting symmetric 2×2 games can be generated by

$$(S,T) \in [-\epsilon, 1+\epsilon] \times [-\epsilon, 1+\epsilon], R = 1, P = 0, \epsilon > 0.$$

For simplicity, we take $\epsilon = 1$ so that (S, T) is in $[-1, 2] \times [-1, 2]$.

The (S,T) plane

Partition of the (S, T) plane which displays various symmetric 2×2 games.

Author: Gerard Vreeswijk. Slides last modified on May 1^{st} , 2019 at 13:24

Definition.

Definition.

1. An action profile is called a Pareto optimum if the corresponding payoff profile can't do better for all players.

Definition.

- 1. An action profile is called a Pareto optimum if the corresponding payoff profile can't do better for all players.
- 2. The set of Pareto optima is called the Pareto front.

Definition.

- 1. An action profile is called a Pareto optimum if the corresponding payoff profile can't do better for all players.
- 2. The set of Pareto optima is called the Pareto front.

So, in all profiles outside the Pareto front, at least one player is worse off.

Pareto front

Definition.

- 1. An action profile is called a Pareto optimum if the corresponding payoff profile can't do better for all players.
- 2. The set of Pareto optima is called the Pareto front.

So, in all profiles outside the Pareto front, at least one player is worse off.

Question: Determine the Pareto front of the following game.

	A	В	C	D
A	1,8	4,7	3,0	1,3
B	1,8	3,0	4,7	4,6
C	3,0	5,8	6,7	1,3
D	4,7	3,0	1,3	1,8

Pareto front

Definition.

- 1. An action profile is called a Pareto optimum if the corresponding payoff profile can't do better for all players.
- 2. The set of Pareto optima is called the Pareto front.

So, in all profiles outside the Pareto front, at least one player is worse off.

Question: Determine the Pareto front of the following game.

	A	В	C	D
A	1,8	4,7	3,0	1,3
B	1,8	3,0	4,7	4,6
C	3,0	5,8	6,7	1,3
D	4,7	3,0	1,3	1,8

Mixed strategies

Strategies may be mixed: row player sways with probability p and column player sways with probability q.

■ Suppose col sways most of the time. What should row do?

Strategies may be mixed: row player sways with probability p and column player sways with probability q.

■ Suppose col sways most of the time. What should row do? This is the blue vertical line left.

- Suppose col sways most of the time. What should row do? This is the blue vertical line left.
- Suppose col dares most of the time. What should row do?

- Suppose col sways most of the time. What should row do? This is the blue vertical line left.
- Suppose col dares most of the time. What should row do? This is the blue vertical line right.

- Suppose col sways most of the time. What should row do? This is the blue vertical line left.
- Suppose col dares most of the time. What should row do? This is the blue vertical line right.
- Somewhere in between, it does not matter much what row does.

- Suppose col sways most of the time. What should row do? This is the blue vertical line left.
- Suppose col dares most of the time. What should row do? This is the blue vertical line right.
- Somewhere in between, it does not matter much what row does.
 This is the blue horizontal line.

- Suppose col sways most of the time. What should row do? This is the blue vertical line left.
- Suppose col dares most of the time. What should row do? This is the blue vertical line right.
- Somewhere in between, it does not matter much what row does.
 This is the blue horizontal line.
- Analogous considerations for the column player.

Author: Gerard Vreeswijk. Slides last modified on May 1st, 2019 at 13:24

Payoffs for mixed strategies in the chicken game

Chicken:

$$\begin{array}{c|cccc} & S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- Strategies may be mixed: row player sways with probability p and column player sways with probability q.
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (0pq - 1p(1-q) + 1(1-p)q - 8(1-p)(1-q)) = 0.$$

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- Strategies may be mixed: row player sways with probability p and column player sways with probability q.
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (0pq - 1p(1-q) + 1(1-p)q - 8(1-p)(1-q)) = 0.$$

This is when q = 7/8.

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- Strategies may be mixed: row player sways with probability p and column player sways with probability q.
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (0pq - 1p(1-q) + 1(1-p)q - 8(1-p)(1-q)) = 0.$$

This is when q = 7/8. Similarly for the column player: p = 7/8.

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- Strategies may be mixed: row player sways with probability p and column player sways with probability q.
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (0pq - 1p(1-q) + 1(1-p)q - 8(1-p)(1-q)) = 0.$$

This is when q = 7/8. Similarly for the column player: p = 7/8. Mixed Nash equilibrium: (7/8,7/8).

Chicken:

$$\begin{array}{c|cccc} S & D \\ S & 0,0 & -1,1 \\ D & 1,-1 & -8,-8 \end{array}$$

- Strategies may be mixed: row player sways with probability p and column player sways with probability q.
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (0pq - 1p(1-q) + 1(1-p)q - 8(1-p)(1-q)) = 0.$$

This is when q = 7/8. Similarly for the column player: p = 7/8. Mixed Nash equilibrium: (7/8,7/8).

Chicken has three Nash equilibria: two pure, and one mixed.

Battle of the sexes:

Battle of the sexes:

$$\begin{array}{c|cccc}
F & B \\
F & 3,2 & 1,1 \\
B & -1,-1 & 2,3
\end{array}$$

■ Exercise: give alle pure NE, and compute the mixed NE (if it exists).

Battle of the sexes:

$$\begin{array}{c|cccc}
F & B \\
F & 3,2 & 1,1 \\
B & -1,-1 & 2,3
\end{array}$$

- Exercise: give alle pure NE, and compute the mixed NE (if it exists).
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)) = 0$$

Battle of the sexes:

$$\begin{array}{c|cccc}
F & B \\
F & 3,2 & 1,1 \\
B & -1,-1 & 2,3
\end{array}$$

- Exercise: give alle pure NE, and compute the mixed NE (if it exists).
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)) = 0$$

This is when q = 1/5.

Battle of the sexes:

$$\begin{array}{c|cccc}
F & B \\
F & 3,2 & 1,1 \\
B & -1,-1 & 2,3
\end{array}$$

- Exercise: give alle pure NE, and compute the mixed NE (if it exists).
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)) = 0$$

This is when q = 1/5. Similarly for the column player: p = 4/5.

Battle of the sexes:

$$\begin{array}{c|cccc}
F & B \\
F & 3,2 & 1,1 \\
B & -1,-1 & 2,3
\end{array}$$

- Exercise: give alle pure NE, and compute the mixed NE (if it exists).
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)) = 0$$

This is when q = 1/5. Similarly for the column player: p = 4/5. Mixed Nash equilibrium: (4/5, 1/5).

Battle of the sexes:

$$\begin{array}{c|cccc}
 & F & B \\
F & 3,2 & 1,1 \\
B & -1,-1 & 2,3
\end{array}$$

- Exercise: give alle pure NE, and compute the mixed NE (if it exists).
- \blacksquare Row player has no incentive to change p if

$$\frac{\partial}{\partial p} (3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)) = 0$$

This is when q = 1/5. Similarly for the column player: p = 4/5. Mixed Nash equilibrium: (4/5, 1/5).

■ Battle of the sexes has three Nash equilibria: two pure, and one mixed.

Battle of the sexes:

Battle of the sexes:

■ Battle of the sexes has three Nash equilibria: two pure, and one mixed.

Battle of the sexes:

- Battle of the sexes has three Nash equilibria: two pure, and one mixed.
- Exercise: for each equilibrium, give (or compute) the payoff profiles.

Battle of the sexes:

- Battle of the sexes has three Nash equilibria: two pure, and one mixed.
- **Exercise**: for each equilibrium, give (or compute) the payoff profiles. For the pure equilibria it's just (3,2) and (2,3).

Battle of the sexes:

- Battle of the sexes has three Nash equilibria: two pure, and one mixed.
- **Exercise**: for each equilibrium, give (or compute) the payoff profiles. For the pure equilibria it's just (3,2) and (2,3).

For the mixed NE the expected payoff for the row player equals

$$[3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)]_{\{p = \frac{4}{5}, q = \frac{1}{5}\}} = \frac{7}{5}$$

Battle of the sexes:

- Battle of the sexes has three Nash equilibria: two pure, and one mixed.
- **Exercise**: for each equilibrium, give (or compute) the payoff profiles. For the pure equilibria it's just (3,2) and (2,3).

For the mixed NE the expected payoff for the row player equals

$$[3pq + 1p(1-q) - 1(1-p)q + 2(1-p)(1-q)]_{\{p = \frac{4}{5}, q = \frac{1}{5}\}} = \frac{7}{5}$$

and the expected payoff for the column player equals

$$[2pq + 1p(1-q) - 1(1-p)q + 3(1-p)(1-q)]_{\{p = \frac{4}{5}, q = \frac{1}{5}\}} = \frac{7}{5}.$$

Let *G* be an *n*-player game.

Let *G* be an *n*-player game.

An action profile, a, is a tuple (a_1, \ldots, a_n) of actions in G.

Let *G* be an *n*-player game.

- An action profile, a, is a tuple (a_1, \ldots, a_n) of actions in G.
- Let $s_i(a)$ be the probability that Player j plays his part of a.

Let *G* be an *n*-player game.

- An action profile, a, is a tuple (a_1, \ldots, a_n) of actions in G.
- Let $s_j(a)$ be the probability that Player j plays his part of a. Then, for each action profile a,

$$\prod_{j=1}^{n} s_j(a)$$

is the probability that *a* is played.

Let *G* be an *n*-player game.

- An action profile, a, is a tuple (a_1, \ldots, a_n) of actions in G.
- Let $s_j(a)$ be the probability that Player j plays his part of a. Then, for each action profile a,

$$\prod_{j=1}^{n} s_j(a)$$

is the probability that *a* is played.

Let $u_i(a)$ be the payoff for Player i when a is played.

Let *G* be an *n*-player game.

- An action profile, a, is a tuple (a_1, \ldots, a_n) of actions in G.
- Let $s_j(a)$ be the probability that Player j plays his part of a. Then, for each action profile a,

$$\prod_{j=1}^{n} s_j(a)$$

is the probability that *a* is played.

■ Let $u_i(a)$ be the payoff for Player i when a is played. Then

$$u_i(s) = \sum_{a \in A} u_i(a) \prod_{j=1}^n s_j(a),$$

Let *G* be an *n*-player game.

- An action profile, a, is a tuple (a_1, \ldots, a_n) of actions in G.
- Let $s_j(a)$ be the probability that Player j plays his part of a. Then, for each action profile a,

$$\prod_{j=1}^{n} s_j(a)$$

is the probability that *a* is played.

■ Let $u_i(a)$ be the payoff for Player i when a is played. Then

$$u_i(s) = \sum_{a \in A} u_i(a) \prod_{j=1}^n s_j(a),$$

where *A* is the set of all action profiles of *G*.

Let G be an n-player /m-action game.

Let G be an n-player /m-action game.

Let s_i^j be the probability that player i plays his jth action.

Let G be an n-player /m-action game.

Let s_i^j be the probability that player i plays his jth action. Then

$$s_i = (s_i^1, \dots, s_i^m), \ 1 \le i \le n$$

is the mixed strategy of player i

Let G be an n-player /m-action game.

Let s_i^j be the probability that player i plays his jth action. Then

$$s_i = (s_i^1, \dots, s_i^m), \ 1 \le i \le n$$

is the mixed strategy of player i, and $s = (s_1, \ldots, s_n)$ is the strategy profile.

Let G be an n-player /m-action game.

Let s_i^j be the probability that player i plays his jth action. Then

$$s_i = (s_i^1, \dots, s_i^m), \ 1 \le i \le n$$

is the mixed strategy of player i, and $s = (s_1, \ldots, s_n)$ is the strategy profile.

■ With s_{-i} we mean to denote the counter strategy profile

$$(s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_n).$$

Let G be an n-player /m-action game.

Let s_i^j be the probability that player i plays his jth action. Then

$$s_i = (s_i^1, \dots, s_i^m), \ 1 \le i \le n$$

is the mixed strategy of player i, and $s = (s_1, \ldots, s_n)$ is the strategy profile.

■ With s_{-i} we mean to denote the counter strategy profile

$$(s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_n).$$

 \blacksquare A best response to s_{-i} is a strategy s_i such that

$$u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$$

for all other mixed strategies s_i' .

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that $support(s'_i) \subseteq support(s_i)$. Then s'_i is a best response to s_{-i} as well.

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that support(s'_i) \subseteq support(s_i). Then s'_i is a best response to s_{-i} as well.

Proof. Let

$$\{j, j'\} \subseteq \operatorname{support}(s_i)$$

be arbitrary.

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that $support(s'_i) \subseteq support(s_i)$. Then s'_i is a best response to s_{-i} as well.

Proof. Let

$$\{j,j'\}\subseteq \operatorname{support}(s_i)$$

be arbitrary., meaning $s_i^j > 0$ and $s_i^{j'} > 0$.

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that support(s'_i) \subseteq support(s_i). Then s'_i is a best response to s_{-i} as well.

Proof. Let

$$\{j,j'\}\subseteq \operatorname{support}(s_i)$$

be arbitrary., meaning $s_i^j > 0$ and $s_i^{j'} > 0$. If

$$u_i(s_i^j, s_{-i}) < u_i(s_i^{j'}, s_{-i})$$

then s_i is not a best response

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that $support(s'_i) \subseteq support(s_i)$. Then s'_i is a best response to s_{-i} as well.

Proof. Let

$$\{j, j'\} \subseteq \operatorname{support}(s_i)$$

be arbitrary, meaning $s_i^j > 0$ and $s_i^{j'} > 0$. If

$$u_i(s_i^j, s_{-i}) < u_i(s_i^{j'}, s_{-i})$$

then s_i is not a best response because in that case s_i^j 's share had better be transferred in its entirety to $s_i^{j'}$ in order to obtain a higher payoff.

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that support(s'_i) \subseteq support(s_i). Then s'_i is a best response to s_{-i} as well.

Proof. Let

$$\{j,j'\}\subseteq \operatorname{support}(s_i)$$

be arbitrary., meaning $s_i^j > 0$ and $s_i^{j'} > 0$. If

$$u_i(s_i^j, s_{-i}) < u_i(s_i^{j'}, s_{-i})$$

then s_i is not a best response because in that case $s_i^{j'}$ s share had better be transferred in its entirety to $s_i^{j'}$ in order to obtain a higher payoff. So $u_i(s_i^{j}, s_{-i}) = u_i(s_i^{j'}, s_{-i})$ for all j, j' in s_i 's support.

Theorem. Suppose s_i is a best response to s_{-i} and s'_i is a strategy such that support(s'_i) \subseteq support(s_i). Then s'_i is a best response to s_{-i} as well.

Proof. Let

$$\{j,j'\}\subseteq \operatorname{support}(s_i)$$

be arbitrary., meaning $s_i^j > 0$ and $s_i^{j'} > 0$. If

$$u_i(s_i^j, s_{-i}) < u_i(s_i^{j'}, s_{-i})$$

then s_i is not a best response because in that case s_i^j 's share had better be transferred in its entirety to $s_i^{j'}$ in order to obtain a higher payoff. So $u_i(s_i^j, s_{-i}) = u_i(s_i^{j'}, s_{-i})$ for all j, j' in s_i 's support.

It follows that a best response is obtained as long as indices are chosen from s_i 's support. \square

Example. Matching pennies:

$$\begin{array}{c|cc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

Example. Matching pennies:

$$\begin{array}{c|cc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

■ This game has one (fully mixed) NE: (p,q) = (1/2,1/2).

Example. Matching pennies:

$$\begin{array}{c|cc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

- This game has one (fully mixed) NE: (p,q) = (1/2,1/2).
- Any strategy $0 \le q \le 1$ now is a best response to p! (And conversely.)

Intuitively, this is because the opponent is completely unpredictable. There is nothing to coordinate, it does not matter what you do.

Example. Matching pennies:

$$\begin{array}{c|cc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

- This game has one (fully mixed) NE: (p,q) = (1/2,1/2).
- Any strategy $0 \le q \le 1$ now is a best response to p! (And conversely.) Intuitively, this is because the opponent is completely unpredictable. There is nothing to coordinate, it does not matter what you do.
- If your opponent is predictable, i.e, if

$$q\neq \frac{1}{2}$$
,

there is only one best response.

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

■ A Nash equilibrium is a strategy profile where all strategies are best responses to their counter strategy profiles.

■ A Nash equilibrium is a strategy profile where all strategies are best responses to their counter strategy profiles.

(Nash, 1951). Every game with a finite number of players and action profiles possesses at least one Nash equilibrium.

■ A Nash equilibrium is a strategy profile where all strategies are best responses to their counter strategy profiles.

(Nash, 1951). Every game with a finite number of players and action profiles possesses at least one Nash equilibrium.

 \blacksquare A strict best response to s_{-i} is a mixed strategy s_i such that

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

for all other mixed strategies s_i' .

■ A Nash equilibrium is a strategy profile where all strategies are best responses to their counter strategy profiles.

(Nash, 1951). Every game with a finite number of players and action profiles possesses at least one Nash equilibrium.

 \blacksquare A strict best response to s_{-i} is a mixed strategy s_i such that

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

for all other mixed strategies s_i' .

■ A strict Nash equilibrium is a strategy profile where all strategies are **strict** best responses to their counterstrategies.

■ A Nash equilibrium is a strategy profile where all strategies are best responses to their counter strategy profiles.

(Nash, 1951). Every game with a finite number of players and action profiles possesses at least one Nash equilibrium.

 \blacksquare A strict best response to s_{-i} is a mixed strategy s_i such that

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

for all other mixed strategies s_i' .

- A strict Nash equilibrium is a strategy profile where all strategies are strict best responses to their counterstrategies.
- A weak Nash equilibrium is

■ A Nash equilibrium is a strategy profile where all strategies are best responses to their counter strategy profiles.

(Nash, 1951). Every game with a finite number of players and action profiles possesses at least one Nash equilibrium.

 \blacksquare A strict best response to s_{-i} is a mixed strategy s_i such that

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

for all other mixed strategies s_i' .

- A strict Nash equilibrium is a strategy profile where all strategies are **strict** best responses to their counterstrategies.
- A weak Nash equilibrium is a NE that is not a strict Nash equilibrium.

Spot a Nash equilibrium

Question:

Spot a Nash equilibrium in the following game. Players may use mixed strategies.

	A	В	C	D
A	1,8	4,7	3,0	1,3
В	1,8	3,0	4,7	4,6
C	3,0	5,8	6,7	1,3
D	4,7	3,0	1,3	1,8

Spot a Nash equilibrium

Question:

Spot a Nash equilibrium in the following game. Players may use mixed strategies.

	A	В	C	D
A	1,8	4,7	3,0	1,3
B	1,8	3,0	4,7	4,6
C	3,0	5,8	6,7	1,3
D	4,7	3,0	1,3	1,8

■ Great!

Spot a Nash equilibrium

Question:

Spot a Nash equilibrium in the following game. Players may use mixed strategies.

	A	В	C	D
A	1,8	4,7	3,0	1,3
B	1,8	3,0	4,7	4,6
C	3,0	5,8	6,7	1,3
D	4,7	3,0	1,3	1,8

- Great!
- How do you know it is a Nash equilibrium?!

I.e., how do you know it is a Nash equilibrium if players may used mixed strategies as well?

A Nash equilibrium in pure play is a NE in mixed play

Claim: a NE in pure play is a NE in mixed play.

A Nash equilibrium in pure play is a NE in mixed play

Claim: a NE in pure play is a NE in mixed play.

■ With pure play we mean that players may use pure strategies only.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose *s* is a pure strategy profile that is not an equilibrium in mixed play.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Because all mixed strategies in s_i' 's support are best responses, we have $\operatorname{support}(s_i') \setminus \operatorname{support}(s_i) \neq \emptyset$.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Because all mixed strategies in s_i' 's support are best responses, we have $\operatorname{support}(s_i') \setminus \operatorname{support}(s_i) \neq \emptyset$. Let the action b be an element of this non-empty set.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Because all mixed strategies in s_i' 's support are best responses, we have $\operatorname{support}(s_i') \setminus \operatorname{support}(s_i) \neq \emptyset$. Let the action b be an element of this non-empty set. If $s_i = a$, then $b \neq a$.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Because all mixed strategies in s_i' 's support are best responses, we have $\operatorname{support}(s_i') \setminus \operatorname{support}(s_i) \neq \emptyset$. Let the action b be an element of this non-empty set. If $s_i = a$, then $b \neq a$. Since b is a best response to s_{-i} in the space of mixed strategy profiles, it certainly is a best response to s_{-i} in the space of pure strategy profiles.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Because all mixed strategies in s_i' 's support are best responses, we have $\operatorname{support}(s_i') \setminus \operatorname{support}(s_i) \neq \emptyset$. Let the action b be an element of this non-empty set. If $s_i = a$, then $b \neq a$. Since b is a best response to s_{-i} in the space of mixed strategy profiles, it certainly is a best response to s_{-i} in the space of pure strategy profiles. Hence, s is not a NE in pure play.

Claim: a NE in pure play is a NE in mixed play.

- With pure play we mean that players may use pure strategies only.
- With mixed play we mean otherwise.

Proof. We prove the contraposition. Suppose s is a pure strategy profile that is not an equilibrium in mixed play. Then s_i is not a best response to s_{-i} in mixed play for some i. There must be a better response in mixed play, say s_i' . Since the set of best responses is convex, let it be a best response (WLoG).

Because all mixed strategies in s_i'' s support are best responses, we have $\operatorname{support}(s_i') \setminus \operatorname{support}(s_i) \neq \emptyset$. Let the action b be an element of this non-empty set. If $s_i = a$, then $b \neq a$. Since b is a best response to s_{-i} in the space of mixed strategy profiles, it certainly is a best response to s_{-i} in the space of pure strategy profiles. Hence, s is not a NE in pure play. \square .

■ Correlated equilibrium. Strategies depend on a common readable external signal.

- Correlated equilibrium. Strategies depend on a common readable external signal.
- Trembling-hand perfect equilibrium. Equilibrium is robust.

- Correlated equilibrium. Strategies depend on a common readable external signal.
- Trembling-hand perfect equilibrium. Equilibrium is robust.
- ϵ -Nash equilibrium. Let $\epsilon > 0$. A ϵ -best response to s_{-i} is a strategy s_i such that

$$u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}) - \epsilon$$

for all other mixed strategies s'_i .

- Correlated equilibrium. Strategies depend on a common readable external signal.
- Trembling-hand perfect equilibrium. Equilibrium is robust.
- ϵ -Nash equilibrium. Let $\epsilon > 0$. A ϵ -best response to s_{-i} is a strategy s_i such that

$$u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}) - \epsilon$$

for all other mixed strategies s'_i .

Exercise: spot the pure ϵ -Nash equilibria in

	L	R
U	1,1	0,0
D	$1+\frac{\epsilon}{2}$, 1	10,10

- Correlated equilibrium. Strategies depend on a common readable external signal.
- Trembling-hand perfect equilibrium. Equilibrium is robust.
- ϵ -Nash equilibrium. Let $\epsilon > 0$. A ϵ -best response to s_{-i} is a strategy s_i such that

$$u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}) - \epsilon$$

for all other mixed strategies s_i' .

Exercise: spot the pure ϵ -Nash equilibria in

	L	R
U	1,1	0,0
D	$1+\frac{\epsilon}{2}$, 1	10,10

Answer: (D,R) is Nash and ϵ -Nash; (U,L) is ϵ -Nash.

The maxmin or security level strategy for player i is a strategy for which the minimum payoff against all counter strategies is maximal:

$$MAXMIN(S_i) = argmax_{s_i \in S_i} \min\{u_i(s_i, s_{-i}) \mid s_{-i} \in S_{-i}\}$$

The maxmin or security level strategy for player i is a strategy for which the minimum payoff against all counter strategies is maximal:

$$MAXMIN(S_i) = argmax_{s_i \in S_i} \min\{u_i(s_i, s_{-i}) \mid s_{-i} \in S_{-i}\}$$

■ Exercise: give **pure** maxmin strategies for the row player

	A	В	C	D
A	-1,2	2,0	1,0	-2,0
B	3,0	-1,3	0, -1	1,3
C	-1, -1	2,0	0,1	4,0
D	2,1	2,0	2,1	0, -1

The maxmin or security level strategy for player i is a strategy for which the minimum payoff against all counter strategies is maximal:

$$MAXMIN(S_i) = argmax_{s_i \in S_i} \min\{u_i(s_i, s_{-i}) \mid s_{-i} \in S_{-i}\}$$

■ Exercise: give **pure** maxmin strategies for the row player

	A	В	C	D
A	-1,2	2,0	1,0	-2,0
В	3,0	-1,3	0, -1	1,3
C	-1, -1	2,0	0,1	4,0
D	2,1	2,0	2,1	0, -1

For the column player.

The maxmin or security level strategy for player i is a strategy for which the minimum payoff against all counter strategies is maximal:

$$MAXMIN(S_i) = argmax_{s_i \in S_i} \min\{u_i(s_i, s_{-i}) \mid s_{-i} \in S_{-i}\}$$

■ Exercise: give **pure** maxmin strategies for the row player

	A	В	C	D
A	-1,2	2,0	1,0	-2,0
B	3,0	-1,3	0, -1	1,3
C	-1, -1	2,0	0,1	4,0
D	2,1	2,0	2,1	0, -1

For the column player.

■ Mixed maxmin strategies may have higher payoffs than pure maxmin strategies.

Minmax strategies

The minmax or punishment counter strategy profile against player *i* is a counter strategy profile for which the maximum payoff against all counter strategies is minimal:

$$MINMAX(S_{-i}) = \operatorname{argmin}_{S_{-i} \in S_{-i}} \max \{ u_i(s_i, s_{-i}) \mid s_i \in S_i \}$$

Minmax strategies

The minmax or punishment counter strategy profile against player *i* is a counter strategy profile for which the maximum payoff against all counter strategies is minimal:

$$MINMAX(S_{-i}) = \operatorname{argmin}_{s_{-i} \in S_{-i}} \max \{ u_i(s_i, s_{-i}) \mid s_i \in S_i \}$$

■ Exercise: give **pure** minmax strategies for both players

	A	В	C	D
A	-1,2	2,0	1,0	-2,0
В	3,0	-1,3	0, -1	1,3
C	-1, -1	2,0	0,1	4,0
D	2,1	2,0	2,1	0, -1

Minmax strategies

The minmax or punishment counter strategy profile against player *i* is a counter strategy profile for which the maximum payoff against all counter strategies is minimal:

$$MINMAX(S_{-i}) = \operatorname{argmin}_{s_{-i} \in S_{-i}} \max \{ u_i(s_i, s_{-i}) \mid s_i \in S_i \}$$

■ Exercise: give **pure** minmax strategies for both players

	A	В	C	D
A	-1,2	2,0	1,0	-2,0
В	3,0	-1,3	0, -1	1,3
C	-1, -1	2,0	0,1	4,0
D	2,1	2,0	2,1	0, -1

Minmax theorem (von Neumann, 1928). In any finite two-player zero-sum game, in any Nash equilibrium, each player receives a payoff that is equal to both his maxmin value and his minmax value.

Minmax: payoff surface of the opponent

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

Strategy s_i stricly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.

- Strategy s_i strictly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- Strategy s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and strictly for at least one s_{-i} .

- Strategy s_i strictly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- Strategy s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and strictly for at least one s_{-i} .
- Strategy s_i very weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.

- Strategy s_i stricly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- Strategy s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and strictly for at least one s_{-i} .
- Strategy s_i very weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.
- If one strategy dominates all others, we say that it is (strongly, weakly or very weakly) dominant.

- Strategy s_i stricly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- Strategy s_i weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$, and strictly for at least one s_{-i} .
- Strategy s_i very weakly dominates s_i' if for all $s_{-i} \in S_{-i}$ we have $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.
- If one strategy dominates all others, we say that it is (strongly, weakly or very weakly) dominant.

Exercise: eliminate dominated actions.

	L	C	R
U	3,1	0,1	0,0
M	1,1	1,1	5,0
D	0,1	4,1	0,0

Removal of dominated actions

	L	C	R
U	3,1	0,1	0,0
M	1,1	1,1	5,0
D	0,1	4,1	0,0

Removal of dominated actions

	L	C	R
U	3,1	0,1	0,0
M	1,1	1,1	5,0
D	0,1	4,1	0,0

Answer: action R is strictly dominated by, for instance, action C:

	L	C
U	3,1	0,1
M	1,1	1,1
D	0,1	4,1

Removal of dominated actions

	L	C	R
U	3,1	0,1	0,0
M	1,1	1,1	5,0
D	0,1	4,1	0,0

Answer: action R is strictly dominated by, for instance, action C:

Action M is now strictly dominated by a mix of U and D.

Author: Gerard Vreeswijk. Slides last modified on May $1^{\rm st}$, 2019 at 13:24

■ With strict domination, the elimination order does not matter: the reduced game does not depend on the order of elimination.

■ With **strict domination**, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With **strict domination**, the elimination order does not matter: the reduced game does not depend on the order of elimination.
 - This is called confluence or the Church-Rosser property.
- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.

■ With strict domination, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.
- Weakly dominated strategies can be part of a Nash equilibrium.

■ With **strict domination**, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.
- Weakly dominated strategies can be part of a Nash equilibrium.

dominated strategies.

	L	C	R
U	0,2	3,1	2,3
M	1,4	2,1	4,1
D	2,1	4,4	3,2

With strict domination, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.
- Weakly dominated strategies can be part of a Nash equilibrium.

dominated strategies.

	L	C	R
U	0,2	3,1	2,3
M	1,4	2,1	4,1
D	2,1	4,4	3,2

	L	C	R
M	1,4	2,1	4,1
D	2,1	4,4	3,2

With strict domination, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.
- Weakly dominated strategies can be part of a Nash equilibrium.

dominated strategies.

	L	C	R
U	0,2	3,1	2,3
M	1,4	2,1	4,1
D	2,1	4,4	3,2

	L	C	R
M	1,4	2,1	4,1
D	2,1	4,4	3,2

With strict domination, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.
- Weakly dominated strategies can be part of a Nash equilibrium.

dominated strategies.

	L	C	R
U	0,2	3,1	2,3
M	1,4	2,1	4,1
D	2,1	4,4	3,2

	L	C	R
M	1,4	2,1	4,1
D	2,1	4,4	3,2

With strict domination, the elimination order does not matter: the reduced game does not depend on the order of elimination.

This is called confluence or the Church-Rosser property.

- With weak domination, the elimination order <u>does</u> matter: the reduced game <u>does</u> depend on the order of elimination.
- Weakly dominated strategies can be part of a Nash equilibrium.

Exercise: remove strictly

dominated strategies.

	L	C	R
U	0,2	3,1	2,3
M	1,4	2,1	4,1
D	2,1	4,4	3,2

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

■ Rationalisability is a solution concept.

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

■ Rationalisability is a solution concept. It involves CKR.

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

- Rationalisability is a solution concept. It involves CKR.
- Algorithm to compute the rationalisable set of strategies:

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

- Rationalisability is a solution concept. It involves CKR.
- Algorithm to compute the rationalisable set of strategies:
 - 1. Start with the full action set for each player.

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

- Rationalisability is a solution concept. It involves CKR.
- Algorithm to compute the rationalisable set of strategies:
 - 1. Start with the full action set for each player.
 - 2. Repeat:

Remove all actions which can never be a best response.

until no actions are removed.

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

- Rationalisability is a solution concept. It involves CKR.
- Algorithm to compute the rationalisable set of strategies:
 - 1. Start with the full action set for each player.
 - 2. Repeat:

Remove all actions which can never be a best response.

until no actions are removed.

Strategies that are strictly dominated are certainly not rational.

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

- Rationalisability is a solution concept. It involves CKR.
- Algorithm to compute the rationalisable set of strategies:
 - 1. Start with the full action set for each player.
 - 2. Repeat:

Remove all actions which can never be a best response.

until no actions are removed.

- Strategies that are strictly dominated are certainly not rational.
- Strategies from a NE are rational

Definition. A strategy is said to be rational if a perfectly rational player could justifiably play it against one or more perfectly rational opponents.

- Rationalisability is a solution concept. It involves CKR.
- Algorithm to compute the rationalisable set of strategies:
 - 1. Start with the full action set for each player.
 - 2. Repeat:

Remove all actions which can never be a best response.

until no actions are removed.

- Strategies that are strictly dominated are certainly not rational.
- Strategies from a NE are rational, and are correct in a NE.

$$\begin{array}{c|cccc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

Matching pennies

$$\begin{array}{c|cccc} & H & T \\ H & 1,-1 & -1,1 \\ T & -1,1 & 1,-1 \end{array}$$

■ The pure strategy H is rationalisable for row, because row may justifiably suppose that col plays pure H, since pure H is rationalisable for col.

$$\begin{array}{c|cccc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

- The pure strategy H is rationalisable for row, because row may justifiably suppose that col plays pure H, since pure H is rationalisable for col.
- Pure H is rationalisable for col, because col may justifiably suppose that row plays pure T, since pure T is rationalisable for row.

$$\begin{array}{c|cccc} & H & T \\ H & 1,-1 & -1,1 \\ T & -1,1 & 1,-1 \end{array}$$

- The pure strategy H is rationalisable for row, because row may justifiably suppose that col plays pure H, since pure H is rationalisable for col.
- Pure H is rationalisable for col, because col may justifiably suppose that row plays pure T, since pure T is rationalisable for row.
- The pure strategy T is rationalisable for row, because row may justifiably suppose that col plays pure T, since pure T is rationalisable for col.

$$\begin{array}{c|cccc} & H & T \\ H & 1, -1 & -1, 1 \\ T & -1, 1 & 1, -1 \end{array}$$

- The pure strategy H is rationalisable for row, because row may justifiably suppose that col plays pure H, since pure H is rationalisable for col.
- Pure H is rationalisable for col, because col may justifiably suppose that row plays pure T, since pure T is rationalisable for row.
- The pure strategy T is rationalisable for row, because row may justifiably suppose that col plays pure T, since pure T is rationalisable for col.
- Pure T is rationalisable for col, because col may justifiably suppose that row plays pure H, since pure H is rationalisable for row.

Matching pennies

$$\begin{array}{c|cc} & H & T \\ H & 1,-1 & -1,1 \\ T & -1,1 & 1,-1 \end{array}$$

- The pure strategy H is rationalisable for row, because row may justifiably suppose that col plays pure H, since pure H is rationalisable for col.
- Pure H is rationalisable for col, because col may justifiably suppose that row plays pure T, since pure T is rationalisable for row.
- The pure strategy T is rationalisable for row, because row may justifiably suppose that col plays pure T, since pure T is rationalisable for col.
- Pure T is rationalisable for col, because col may justifiably suppose that row plays pure H, since pure H is rationalisable for row.

...

■ A pure strategy for Player 1 could be: B, H.

- A pure strategy for Player 1 could be: B, H.
- A pure strategy for Player 2 could be: D, E.

Backward induction

Theorem (Kuhn, 1952). Every finite game in extensive form has a pure strategy Nash equilibrium.

Backward induction

Theorem (Kuhn, 1952). Every finite game in extensive form has a pure strategy Nash equilibrium.

Proof: by means of so-called backward induction.

Subgames, and subgame-perfect equilibrium

Consequence of backward induction: subgame-perfectness: the main NE restricted to subgames are NE for those subgames as well.

Backward induction is not always intuitive

The centipede game:

Nash equilibrium through backward induction

Nash equilibrium through backward induction

The action profile $\{(A,H), (C,F)\}$ is a Nash equilibrium.

The action profile $\{(A,H), (C,F)\}$ is also a valid Nash equilibrium.

The action profile $\{(B,H), (C,E)\}$ is also a Nash equilibrium.

The action profile {(B,H), (C,E)} is a Nash equilibrium

The action profile {(B,H), (C,E)} is a Nash equilibrium, but it does not induce a NE on all subgames.

The action profile {(B,H), (C,E)} is a Nash equilibrium, but it does not induce a NE on all subgames. H is a non-credible threat.

The action profile {(B,H), (C,E)} is a Nash equilibrium, but it does not induce a NE on all subgames. H is a non-credible threat. We have a subgame-imperfect Nash equilibrium.

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

Handy fact. Every extensive-form game can be put into normal-form with (evidently) identical pure and mixed Nash equilibria.

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

■ There are exactly three pure Nash equilibria.

Handy fact. Every extensive-form game can be put into normal-form with (evidently) identical pure and mixed Nash equilibria.

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

■ There are exactly three pure Nash equilibria. All weak

Handy fact. Every extensive-form game can be put into normal-form with (evidently) identical pure and mixed Nash equilibria.

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

■ There are exactly three pure Nash equilibria. All weak (= non-strict).

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

- There are exactly three pure Nash equilibria. All weak (= non-strict).
- Exactly one pure NE is obtained by backward induction.

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

- There are exactly three pure Nash equilibria. All weak (= non-strict).
- Exactly one pure NE is obtained by backward induction.
- Exactly two pure NE are subgame-perfect.

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3,8	3,8	8,3	8,3
(A,H)	3,8	3,8	8,3	8,3
(B,G)	5,5	2,10	5,5	2,10
(B,H)	5,5	1,0	5,5	1,0

- There are exactly three pure Nash equilibria. All weak (= non-strict).
- Exactly one pure NE is obtained by backward induction.
- Exactly two pure NE are subgame-perfect.
- There are five more NE! (Found with http://banach.lse.ac.uk/.)

Example: the sharing game.

Example: the sharing game. Player 1 distributes two entities, then Player 2 accepts or not.

Example: the sharing game. Player 1 distributes two entities, then Player 2 accepts or not.

■ A pure strategy for Player 1 could be: 1-1.

Example: the sharing game. Player 1 distributes two entities, then Player 2 accepts or not.

- A pure strategy for Player 1 could be: 1-1.
- A pure strategy for Player 2 could be: no, yes, yes.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

Pure Nash equilibria:

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

Pure Nash equilibria:

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

Pure Nash equilibria:

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

■ Then there there are twelve (partially / fully) mixed equilibria.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

Pure Nash equilibria:

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- Then there there are twelve (partially / fully) mixed equilibria.
- Some (not all) are obtained by backward induction.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

Pure Nash equilibria:

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- Then there there are twelve (partially / fully) mixed equilibria.
- Some (not all) are obtained by backward induction.
- Some (not all) are subgame-perfect.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

Pure Nash equilibria:

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- Then there there are twelve (partially / fully) mixed equilibria.
- Some (not all) are obtained by backward induction.
- Some (not all) are subgame-perfect.

Conclusion: extensive games allow for an embarrassing richness of NE.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

■ It is possible to search for all NE in the corresponding normal-form representation

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

■ It is possible to search for all NE in the corresponding normal-form representation, but the actions in those strategies are correlated among nodes

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

■ It is possible to search for all NE in the corresponding normal-form representation, but the actions in those strategies are correlated among nodes, which is a somewhat unnatural assumption.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- It is possible to search for all NE in the corresponding normal-form representation, but the actions in those strategies are correlated among nodes, which is a somewhat unnatural assumption.
- An alternative is work with so-called *behavioural strategies*.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- It is possible to search for all NE in the corresponding normal-form representation, but the actions in those strategies are correlated among nodes, which is a somewhat unnatural assumption.
- An alternative is work with so-called *behavioural strategies*.

Behavioural strategy. A behavioural strategy for Player i puts a probability distribution on actions on all the nodes that i owns.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- It is possible to search for all NE in the corresponding normal-form representation, but the actions in those strategies are correlated among nodes, which is a somewhat unnatural assumption.
- An alternative is work with so-called *behavioural strategies*.

Behavioural strategy. A behavioural strategy for Player i puts a probability distribution on actions on all the nodes that i owns.

■ Pure strategy profiles and pure behavioural strategies coincide.

	nnn	nny	nyn	nyy	ynn	yny	yyn	ууу
2-0	0,0	0,0	0,0	0,0	2,0	2,0	2,0	2,0
1-1	0,0	0,0	1,1	1,1	0,0	0,0	1,1	1,1
0-2	0,0	0,2	0,0	0,2	0,0	0,2	0,0	0,2

- It is possible to search for all NE in the corresponding normal-form representation, but the actions in those strategies are correlated among nodes, which is a somewhat unnatural assumption.
- An alternative is work with so-called *behavioural strategies*.

Behavioural strategy. A behavioural strategy for Player i puts a probability distribution on actions on all the nodes that i owns.

■ Pure strategy profiles and pure behavioural strategies coincide. However, mixed strategy profiles \neq mixed behavioural strategies.

Example: the sharing game.

Example: the sharing game.

 \blacksquare A behavioural strategy for Player 1 could be: (0.2, 0.3, 0.5).

Example: the sharing game.

- \blacksquare A behavioural strategy for Player 1 could be: (0.2, 0.3, 0.5).
- A behavioural strategy for Player 2 could be: (0.4, 0.6), (0.7, 0.3), (0.1, 0.9).

Theorem (Kuhn, 1953). In an extensive-form game with perfect information,

Theorem (Kuhn, 1953). In an extensive-form game with perfect information,

■ any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy

Theorem (Kuhn, 1953). In an extensive-form game with perfect information,

- any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy
- any behavioural strategy can be replaced by an equivalent mixed strategy.

Remarks:

Theorem (Kuhn, 1953). In an extensive-form game with perfect information,

- any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy
- any behavioural strategy can be replaced by an equivalent mixed strategy.

Remarks:

1. Two strategies are considered equivalent if they induce the same probabilities on outcomes, for every fixed counter strategy profile.

Theorem (Kuhn, 1953). In an extensive-form game with perfect information,

- any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy
- any behavioural strategy can be replaced by an equivalent mixed strategy.

Remarks:

- 1. Two strategies are considered equivalent if they induce the same probabilities on outcomes, for every fixed counter strategy profile.
- 2. Induces the same equilibria.

Imperfect information games

An imperfect information game

An imperfect information game

	A	В
Ll	3,1	0,2
Lr	0,0	1,1
R1	2,2	2,2
Rr	2,2	2,2

An imperfect information game

	A	В
Ll	3,1	0,2
Lr	0,0	1,1
R1	2,2	2,2
Rr	2,2	2,2

The Nash equilibrium concept (both pure and mixed) remains the same for imperfectinformation extensive-form games.

The prisoner's dilemma

Exercise: represent the prisoner's dilemma as an imperfect information game.

The prisoner's dilemma

Exercise: represent the prisoner's dilemma as an imperfect information game.

Solution:

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door.

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Pure (mixed and behavioural) strategies: CR, CN2, N1R, N1N2.

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Pure (mixed and behavioural) strategies: CR, CN2, N1R, N1N2. Suppose we want a truly mixed strategy that maximises expected utility:

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Pure (mixed and behavioural) strategies: CR, CN2, N1R, N1N2. Suppose we want a truly mixed strategy that maximises expected utility:

■ **Mixed strategy**. For any 0 the mix <math>(p, 1 - p, 0, 0) does the job: $EU = p \cdot 0 + (1 - p) \cdot 0 = 0$.

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Pure (mixed and behavioural) strategies: CR, CN2, N1R, N1N2. Suppose we want a truly mixed strategy that maximises expected utility:

- **Mixed strategy**. For any 0 the mix <math>(p, 1 p, 0, 0) does the job: $EU = p \cdot 0 + (1 p) \cdot 0 = 0$.
- Behavioural strategy. Check with prob p and re-check second time with prob q.

Player 1 has bad memory. He must makes two decisions: whether to Check his front door after leaving the house, whether to Re-check his front door. There is also the option to Not check the door.

Pure (mixed and behavioural) strategies: CR, CN2, N1R, N1N2. Suppose we want a truly mixed strategy that maximises expected utility:

- **Mixed strategy**. For any 0 the mix <math>(p, 1 p, 0, 0) does the job: $EU = p \cdot 0 + (1 p) \cdot 0 = 0$.
- Behavioural strategy. Check with prob p and re-check second time with prob q. For 0 < p, q < 1 we have $EU = (1 p)(1 q) \cdot -10 < 0$.

L R
U 1,0 5,1
D 1,0 2,2

Considering mixed strategies:

L R
U 1,0 5,1
D 1,0 2,2

Considering mixed strategies:

■ R is the dominant strategy for Player 1.

L R
U 1,0 5,1
D 1,0 2,2

Considering mixed strategies:

- R is the dominant strategy for Player 1.
- D is Player 2's best response.

L R
U 1,0 5,1
D 1,0 2,2

Considering mixed strategies:

- R is the dominant strategy for Player 1.
- D is Player 2's best response.
- \blacksquare So (R, D) is the unique Nash equilibrium.

Considering behavioural strategies, suppose Player 1 chooses L with probability p.

■ D is weakly dominant for Player 2 (c.f. p = 1).

- D is weakly dominant for Player 2 (c.f. p = 1).
- Player 1's expected payoff: $1p^2 + 8p(1-p) + 2(1-p)$.

- D is weakly dominant for Player 2 (c.f. p = 1).
- Player 1's expected payoff: $1p^2 + 8p(1-p) + 2(1-p)$. This is a mountain parabola with a maximum for p = 3/7.

- D is weakly dominant for Player 2 (c.f. p = 1).
- Player 1's expected payoff: $1p^2 + 8p(1-p) + 2(1-p)$. This is a mountain parabola with a maximum for p = 3/7.
- So ((3/7,4/7),(0,1)) is the unique behavioural equilibrium.

Theorem (Kuhn, 1953). In an extensive-form imperfect information game with perfect recall,

Theorem (Kuhn, 1953). In an extensive-form imperfect information game with perfect recall,

■ any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy

Kuhn's theorem

Theorem (Kuhn, 1953). In an extensive-form imperfect information game with perfect recall,

- any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy
- any behavioural strategy can be replaced by an equivalent mixed strategy.

Remarks:

Kuhn's theorem

Theorem (Kuhn, 1953). In an extensive-form imperfect information game with perfect recall,

- any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy
- any behavioural strategy can be replaced by an equivalent mixed strategy.

Remarks:

1. Two strategies are considered equivalent if they induce the same probabilities on outcomes, for every fixed counter strategy profile.

Kuhn's theorem

Theorem (Kuhn, 1953). In an extensive-form imperfect information game with perfect recall,

- any mixed strategy of a given agent can be replaced by an equivalent behavioural strategy
- any behavioural strategy can be replaced by an equivalent mixed strategy.

Remarks:

- 1. Two strategies are considered equivalent if they induce the same probabilities on outcomes, for every fixed counter strategy profile.
- 2. The translation works because conditional probabilities depend on information sets and not on the particular moves therein.

What more is there to know?

What more is there to know? A lot!

What more is there to know? A lot! There are many other game types.

■ Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).
- Games of incomplete information a.k.a. Bayesian games.

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).
- Games of incomplete information a.k.a. Bayesian games.
- Auctions. (Games played by bidders under an auctioneer.)

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).
- Games of incomplete information a.k.a. Bayesian games.
- Auctions. (Games played by bidders under an auctioneer.)
- Coalition games.

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).
- Games of incomplete information a.k.a. Bayesian games.
- Auctions. (Games played by bidders under an auctioneer.)
- Coalition games.
- Differential games.

What more is there to know? A lot! There are many other game types.

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).
- Games of incomplete information a.k.a. Bayesian games.
- Auctions. (Games played by bidders under an auctioneer.)
- Coalition games.
- Differential games.

There are many extensions / ramifications.

What more is there to know? A lot! There are many other game types.

- Zero-sum games (like Chess: 1-0, 0-1, 1/2-1/2).
- Combinatorial games (like Nim and Mancala).
- Population games a.k.a. many-player games.
- Congestion games (like driver's decisions in road networks).
- Games of incomplete information a.k.a. Bayesian games.
- Auctions. (Games played by bidders under an auctioneer.)
- Coalition games.
- Differential games.

There are many extensions / ramifications.

Learning in games \sim to adapt strategies in time \sim multi-agent learning.