1. Let function f be defined by the polynomial below:

$$f(x) = -3x^4 - 7x^3 - 2x^2 - 4x - 5$$

Draw lines that match each function reflection with its polynomial:

Reflections f(-x)• $3x^4 - 7x^3 + 2x^2 - 4x + 5$ -f(-x)• $3x^4 + 7x^3 + 2x^2 + 4x + 5$ -f(x)• $-3x^4 + 7x^3 - 2x^2 + 4x - 5$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	$\frac{f(x)}{9}$	g(x)	h(x)		
1	9	9	7		
$\frac{2}{3}$	8	1	4		
	6	5	1		
4	1	3	3		
5	2	4	8		
6	7	8	5		
7	5	6	2		
8	4	7	9		
9	3	2	6		

3. Evaluate f(3).

4. Evaluate $g^{-1}(2)$.

5. Assuming g is an **odd** function, evaluate g(-4).

6. Assuming h is an **even** function, evaluate h(-7).

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 + 1$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x}{3} + 9$$

a. Evaluate f(24).

b. Evaluate $f^{-1}(35)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(8).

b. Evaluate $b^{-1}(3)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	6			
-1	4			
0	0			
1	-4			
2	6			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?