Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3112 К работе допущен

Студент Сенина Мария Михайловна Работа выполнена

Преподаватель Сорокина Е.К. Отчёт принят

Рабочий протокол и отчёт по лабораторной работе № 3-05

Температурная зависимость

электрического сопротивления

металла и полупроводника

1. Цель работы

Изучение температурной зависимости электрического сопротивления металла и полупроводника.

2. Задачи, решаемые при выполнении работы.

- 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75°С.
- 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

3. Объект исследования.

Металл и полупроводник.

4. Метод экспериментального исследования.

Соберём схему (см. рисунок 1), где сопротивление $R_{\rm orp} = 680~{\rm Om},~u$ нужно для чтобы, сопротивление в схеме не стало слишком малым по сравнению с внутренним сопротивлением вольтметра. С помощью вольтметра и амперметра мы можем узнать напряжение на исследуемом объекте и ток через него. А по закону Ома мы можем вычислить и значение его сопротивления, как $R=\frac{U}{A}$. Значит постепенно нагревая образец мы можем узнать зависимость его сопротивления от температуры.

A зная эту зависимость в нескольких точках по формулам $lpha=rac{1}{R_0}rac{\Delta R}{\Delta t}u$

5. Рабочие формулы и исходные данные.

Используемые формулы:

- 1. Температурный коэффициент металла $\alpha = \frac{1}{R_0} \frac{\Delta R}{\Delta t}$
- 2. Температурный коэффициент металла для двух точек зависимости R(T) -

$$\alpha = \frac{R_i - R_j}{R_j t_i - R_i t_j}$$

3. Ширина запрещённой зоны проводника $E_g=rac{2k\Delta\ln(R_n)}{\Delta\left(rac{1}{T}
ight)}$, где k- постоянная

Больцмана равная $k=1,380649\,\cdot\,10^{-23}\,\frac{\text{Дж}}{\text{K}}$ и $8,61733\,\cdot\,10^{-5}\,\frac{\text{эВ}}{\text{K}}$

4. Ширина запрещённой зоны проводника для двух точек зависимости R(T) -

$$E_g = 2k \frac{T_i T_j}{T_j - T_i} \ln \left(\frac{R_i}{R_j} \right)$$

5. Среднее арифметическое всех результатов измерений: $\langle x \rangle_N = \frac{1}{N} (x_1 + x_2 + \dots + x_N) = \frac{1}{N} \sum_{i=1}^N x_i$

6.

7. Среднеквадратичное отклонение от среднего значения: $\sigma_{\langle x \rangle} =$

$$\sqrt{\frac{1}{(N-1)N}\sum_{i=1}^{N}(x_i-\langle x\rangle_N)^2}$$

8. Абсолютная погрешность через коэффициент Стьюдента, где N – число измерений, α – доверительная вероятность: $\Delta x = x_{\alpha,N} \cdot \sigma_{(x)}$

6. Схема установки

Принципиальная электрическая схема установки представлена на рисунке 1.

B качестве вольтметра и амперметра мы используем – ABI

 Γ енератора постоянного тока – ΓHI

Установка с нагревающим элементом, проводником и металлом - стенд «С3-TT01»

А резистор $R_{\text{огр}}$ имеет сопротивление 680 Ом.

7. Измерительные приборы.

№ n/n	Наименование	Используемый диапазон	Погрешность прибора
1.	Вольтметр	0.879 - 0.092 B	0,001 B
2.	Амперметр	627 – 1638 мкА	1 мкА
3.	Термометр	298 – 350 K	1 K

8. Результаты прямых измерений и их обработки.

Результаты измерений см в приложении.

9. Расчёт результатов косвенных измерений.

Посчитаем значения температурного коэффициента для измерений T_i , R_i и T_j , R_j , отличающихся на одинаковую температуру — т.е. объединим в пары значения 1 и 8, 2 и 9 и m.д. B таком случае температурный коэффициент будет считаться по следующей формуле:

$$\alpha = \frac{R_i - R_j}{R_i t_i - R_i t_j}$$

Конечное значение температурного коэффициента вычислим, как среднее получившихся значений по формуле (5) $\frac{1}{N}\sum_{i=1}^{N}\alpha_i$

Погрешность измерения а вычислим через коэффициент Стьюдента по формуле

$$\Delta x = x_{\alpha,N} \cdot \sigma_{\langle x \rangle}, \ \epsilon \partial e \ \sigma_{\langle x \rangle} = \sqrt{\frac{1}{(N-1)N} \sum_{i=1}^{N} (x_i - \langle x \rangle_N)^2}$$

Разбиение на пары и результаты промежуточных вычислений:

(i,j)	R_i , нОм	R_j , нОм	t_i , K	t_j , K	α , 10^{-3} K ⁻¹
(1, 8)	1.40	1.26	350	322	4.79
(2, 9)	1.38	1.25	346	318	4.43
(3, 10)	1.36	1.23	342	314	4.13
(4, 11)	1.33	1.21	338	310	4.02
(5, 12)	1.32	1.20	334	306	4.02
(6, 13)	1.30	1.18	330	302	4.08
(7, 14)	1.29	1.17	326	298	4.07

Аналогично разбивая значения на пары по формуле $E_g=2k\frac{T_iT_j}{T_j-T_i}\ln\left(\frac{R_i}{R_j}\right)$ посчитаем ширину запрещённой зоны.

И аналогично посчитаем погрешность.

Разбиение на пары и результаты промежуточных вычислений:

(i,j)	R_i , Ом	$\hat{R_j}$, Ом	t_i , K	t_j , K	E_g , э B
(1, 8)	536	130	298	326	0.85
(2, 9)	366	106	302	330	0.76
(3, 10)	342	99	306	334	0.78
(4, 11)	276	90	310	338	0.72
(5, 12)	239	76	314	342	0.76
(6, 13)	187	65	318	346	0.72
(7, 14)	151	56	322	350	0.68

10. Графики

11. Окончательные результаты.

Температурный коэффициент металла $\alpha=(42\pm 2)10^{-3}K^{-1}$ тогда, относительная погрешность: $\delta\alpha=6\%$

Из полученного значения можно сделать предположение, что этим металлом являлась медь.

Ширина запрещенной зоны полупроводника $E_g=(120\pm7)10^{-17}$ Дж или $E_g=(75\pm4)10^{-2}$ эВ тогда, относительная погрешность будет $\delta E_g=6\%$ Из полученного значения можно сделать предположение, что этим полупроводником являлся германий.

12. Выводы и анализ результатов работы.

В данной лабораторной работе я исследовала зависимость сопротивления полупроводника и металла от их температуры. Теоретические предположения подтвердились — сопротивление металла при нагревании увеличивается. А у полупроводника наоборот — уменьшается.