Advanced classification methods

The most stupid classifier

- Rote learner
 - To classify object X, check if there is a labelled example in the training set identical to X
 - ☐ Yes ☐ X has the same label
 - □ No □ I don't know

Classify by similarity

- K-Nearest Neighbors
 - Decide label based on K most similar examples

Build a model

- Decision Trees
 - Cut space by lines orthogonal to the axes

Artificial Neural Networks (ANN)

X_1	X ₂	X_3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

X_1	X_2	X ₃	Y
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t) \text{ or}$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

Sample model on 2-D

- Linear separation line
 - General case: lines can be oblique

General Structure of ANN

Notice: activation function is fundamental !!!

- With Identity (= no activation function) the ANN reduces to a simple perceptron
 - Proof: a linear sum of linear sums, is just another linear sum

Algorithm for learning ANN

- Initialize the weights (w₀, w₁, ..., w_k)
- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples $E = \sum_{i=1}^{n} [Y_i - f(w_i, X_i)]^n$
 - Objective function:
 - Find the weights w_i's that minimize the above objective function
 - e.g., backpropagation algorithm (see lecture notes)

A quick look on Deep Learning

Various approaches exist

Basic examples equivalent to ANNs

with several levels

Deep learning

Representation learning methods that

- allow a machine to be fed with raw data and
- to automatically discover the representations needed for detection or classification.

Raw representation

Ŷ

•	Age	35	-
•	Weight	65	
•	Income	23 k€	w_i $f(x)$
•	Children	2	$x_i \longrightarrow u_i$
•	Likes sport	0.3	—
•	Likes reading	0.6	
•	Education	high	
•	•••	•••	

Higher-level representation

•	Young parent	0.9
•	Fit sportsman	0.1
•	High-educated reader	0.8
•	Rich obese	0.0
•	•••	•••

Multiple Levels Of Abstraction

Why now?

(Big) Data

GPU

Theory

Support Vector Machine

· Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

x = data points (n-dimensional vectors)

w = direction of line (n-dimensional vector)

b = displacement of line

Example

Projections along w_2 have much larger margin than w_1

- We want to maximize: Margin = $\frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{\|\vec{w}\|^2}{2}$
 - But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

· What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables

• Need to minimize:
$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + \mathbf{b} \ge 1 - \xi_i \\ -1 & \text{if } \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i + \mathbf{b} \le -1 + \xi_i \end{cases}$$

- Basically, each point is "moved" by a a specific amount along the w direction
- The cost function "pays" for each extra movement

Non-linear separation line

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

- Key problem: find the most appropriate set of extra dimensions
 - They are derived from original attributes
 - Most common: x^2 , $(x+y)^2$, and other polynomials