Recall that the field axioms for \mathbb{R} are as follows:

(1) (Associativity) For all $x, y, z \in \mathbb{R}$,

$$x + (y + z) = (x + y) + z$$
 and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

(2) (Commutativity) For all $x, y \in \mathbb{R}$,

$$x + y = y + x$$
 and $x \cdot y = y \cdot x$.

(3) (Identity elements) There exists a unique element of \mathbb{R} called **zero**, denoted by 0, such that for all $x \in \mathbb{R}$ we have x + 0 = x.

There exists a unique element of $\mathbb R$ called **one**, different from 0, denoted by 1, such that for all $x \in \mathbb R$, $x \cdot 1 = x$.

(4) (Inverses) For each element $x \in \mathbb{R}$, there exists a unique element y (called the **negative** of x and usually denoted by -x) such that x + y = 0.

Similarly, for each element $x \in \mathbb{R} - \{0\}$, there exists a unique element y (called the **reciprocal** of x and usually denoted by 1/x or x^{-1}) such that $x \cdot y = 1$.

(5) (Distributivity) For all $x, y, z \in \mathbb{R}$,

$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 and $(x+y) \cdot z = x \cdot z + y \cdot z$.

We take x - y to be an abbreviation for x + (-y) and x/y to be an abbreviation for $x \cdot (1/y)$. We have shown in class that

(P1) If
$$x + y = x$$
, then $y = 0$

(P2)
$$0 \cdot x = 0$$

(P3)
$$-0 = 0$$

$$(P4) -(-x) = x$$

(1) Using only the axioms (1)–(5) and properties proven in class, prove the following statements for all $x, y, z \in \mathbb{R}$:

(a)
$$(-1)x = -x$$

axiom 4:
$$1+(-1)=0$$

multiplying by x on both sides:
 $(1+(-1))\cdot x=0\cdot x$
axiom 5: $1\cdot x+(-1)\cdot x=0\cdot x$
axiom 3: $x+(-1)\cdot x=0\cdot x$
P2: $x+(-1)\cdot x=0$
by the uniqueness in axiom 4,
 $(-1)\cdot x=-x$.

(b)
$$x(-y) = -(xy) = (-x)y$$

By (a), $-1(xy) = -(xy)$.
By axiom 1, $((-1)x)y = -(xy)$
By (a), $(-x)y = -(xy) *$
By axiom 2, $y(-x) = -(yx)$
Renaming x,y to y,x, $x(-y) = -(xy) *$

(c)
$$x(y-z) = xy - xz$$

By definition of subtraction,
$$x(y-z) = x(y+(-z))$$
By axiom 5, $x(y-z) = x \cdot y + x \cdot (-z)$
By (b),
$$x(y-z) = x \cdot y + -(x \cdot z)$$
By definition of subtraction,
$$x(y-z) = xy - xz.$$

(d) If
$$x \neq 0$$
 and $x \cdot y = x$, then $y = 1$

By axiom 4, there is $1/x \in \mathbb{R}$ s.t. $x \cdot (1/x) = 1$.

Suppose $x \cdot y = x$.

Multiplying on both sides by $1/x$,

 $1/x \cdot (x \cdot y) = 1/x \cdot x$

By axiom 1, $1/x \cdot (1/x) \cdot (1/x) \cdot y = 1/x \cdot x$

By axiom 2, $1/x \cdot (1/x) \cdot (1/x) \cdot y = 1/x \cdot x$

By axiom 4, $1/x \cdot (1/x) \cdot (1/x) \cdot y = 1/x \cdot (1/x)$

By axiom 3, $1/x \cdot (1/x) \cdot (1/x) \cdot (1/x) \cdot (1/x)$

(e) If
$$x \neq 0$$
, then $x/x = 1$

By definition of division,
$$\frac{x}{x} = x \cdot (\frac{y}{x})$$

By axiom 4, $\frac{x}{x} = 1$.

Recall that \mathbb{R} also satisfies the following axioms related to ordering:

- (6) For all $x, y, z \in \mathbb{R}$, if x > y, then x + z > y + z. For all $x, y, z \in \mathbb{R}$, if x > y and z > 0, then $x \cdot z > y \cdot z$.
- (7) The order relation < has the least upper bound property.
- (8) If x < y, there exists an element z such that x < z and z < y.

We have shown in class that

(P5)
$$x > y$$
 and $w > z$ implies $x + w > y + z$;

(P6)
$$x > 0$$
 and $y > 0$ implies $x + y > 0$ and $x \cdot y > 0$;

$$(P7) x > 0 \iff -x < 0$$

(2) Prove the following "Laws of inequalities"

(a)
$$x > y \iff -x < -y$$

$$\Rightarrow$$
 Suppose x>y. By axiom 6,
 $x + (-x + -y) > y + (-x + -y)$

By axiom 1,
$$(x+-x)+-y > y+(-x+-y)$$

By axiom 2,
$$(x+-x)+-y > y + (-y+-x)$$

By axiom 1,
$$(x+-x)+-y > (y+-y)+-x$$

For converse, suppose
$$-y > -x$$
.
By the forward direction, $-(-y) < -(-x)$
By (P4), $y < x$.

(b)
$$x > y$$
 and $z < 0$ implies $xz < yz$
 $-z > 0$, so by axiom 6, if $x > y$, then

 $x \cdot (-z) > y \cdot (-z)$.

By problem $1(b)$,

 $-(xz) > -(yz)$.

By $2(a)$,

 $x \neq 4$ $y \neq 2$.

(c)
$$x \neq 0$$
 implies $x^2 > 0$, where $x^2 = x \cdot x$

If $x > 0$, by axiom 6,

 $x \cdot x > 0 \cdot x$.

By (P2), $x^2 > 0$.

If $x < 0$, by 2(b),

 $x \cdot x > 0 \cdot x$.

By (P2) again, $x^2 > 0$.

Altogether, if $x \neq 0$, then $x^2 > 0$.

(3) Prove that every positive number has a square root as follows.

(a) Show that if x > 0 and 0 < h < 1, then

$$(x+h)^2 < x^2 + h(2x+1)$$

 $(x-h)^2 > x^2 - 2xh$.

We'll relax with the axioms now.

$$(x+h)^2 = x^2 + 2xh + h^2;$$
 $(x-h)^2 = x^2 - 2xh + h^2$
Since $0 < h < 1$, $0 < h^2 < h$.

Therefore.

$$(x+h)^{2} = x^{2} + 2xh + h^{2}$$

$$(x-h)^{2} = x^{2} - 2xh + h^{2}$$

$$(x-h)^{2} = x^{2} - 2xh + h^{2}$$

$$= x^{2} + h(2x+1)$$

(b) Let x > 0. Show that if $x^2 < a$, then $(x + h)^2 < a$ for some h > 0. Similarly, show that if $a < x^2$, then $a < (x - h)^2$ for some h > 0.

(X+1)2 (a, we can take h=1, and we are done.

Otherwise $\chi^2 < \alpha \le (\chi + 1)^2$

$$\Rightarrow$$
 $0 < a - \chi^2 \le (\chi + 1)^2 - \chi^2$

$$\Rightarrow$$
 $0 < a - x^2 \le 2x + 1$

$$\Rightarrow 0 < \frac{a-x^2}{2x+1} \le 1.$$

Set $h = \frac{1}{2} \left(\frac{a - \chi^2}{2 \chi_{11}} \right)$

By part a,
$$(x+h)^2 < x^2 + \frac{1}{2} (\frac{a-x^2}{2kt}) (2x+1)$$

 $= x^2 + \frac{1}{2}(a - x^2) < a$

as desired.

For the second part, if $a < (x-1)^2$, we can take h=1 and we are done. Otherwise aix $(x-1)^2 \le a < x^2 \Rightarrow 0 \le x^2 - a \le 2x - 1 < 2x \Rightarrow 0 < \frac{x^2 - a}{2x} < 1$. Set $h = \frac{x^2-a}{2x}$. By part a, $(x-h)^2 > x^2 - 2x \left(\frac{x^2-a}{2x}\right)$ = x2 - (x2-a)

(c) Given a > 0, let B be the set of all real numbers x such that $x^2 < a$. Show that B is bounded above and contains at least one positive number. (Hint: it may help to consider the case that $a \ge 1$ separately from that case that 0 < a < 1.)

If
$$a>1$$
, then $1^2 < a$, so $1 \in B$.

Ocac1, then 2 1 50 (3) a 2 ca, so a 6 B.

In either case B contains at least one positive real number.

If 1 is an upper bound on B, then B has an upper bound.

If 1 is not an upper bound on B, then FXEB s.t. 1 < x.

Since xeB, and 1 < x, 1 < x < x2 < a. Then for all yeB,

either y < 1 < a or 1 < y and y < y < a. Since y is arbitrary,

a is an apper bound on B.

(d) Let $b = \sup B$. Show that $b^2 = a$. (Hint: Suppose $b^2 < a$, then derive a contradiction. Then do the same when $b^2 > a$.)

Suppose $b^2 < a$. Then by part $b \exists h > 0$ s.t. $(b+h)^2 < a$. But then $b < b+h \in B$, contradicting that b is an upper bound on B. Therefore $b^2 \not < a$.

Therefore b=a.

(e) Show that if b and c are positive and $b^2 = c^2$, then b = c.

$$b^2 = c^2 \Rightarrow b^2 - c^2 = 0$$

 $\Rightarrow (b+c)(b-c) = 0$
Since $b>0$, $c>0$, $b+c>0$.
Dividing by $b+c$,
 $b-c=0$
 $\Rightarrow b=c$.