```
In [1]:
```

```
import pandas as pd
```

In [75]:

```
data1 = pd.read_csv('Cars.csv')
data1
```

Out[75]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
76	322	36.900000	50	169.598513	16.132947
77	238	19.197888	115	150.576579	37.923113
78	263	34.000000	50	151.598513	15.769625
79	295	19.833733	119	167.944460	39.423099
80	236	12.101263	107	139.840817	34.948615

81 rows × 5 columns

In [83]:

```
cars_MPG = data1['MPG']
cars_MPG
```

Out[83]:

```
53.700681
1
      50.013401
2
      50.013401
3
      45.696322
4
      50.504232
76
      36.900000
77
      19.197888
78
      34.000000
79
      19.833733
80
      12.101263
Name: MPG, Length: 81, dtype: float64
```

In [84]:

```
cars_MPG.mean()
```

Out[84]:

34.422075728024666

```
In [85]:
cars_MPG.std()
Out[85]:
9.131444731795982
In [81]:
from scipy import stats
In [86]:
stats.norm.cdf(38,34.42,9.13)
Out[86]:
0.6525129749869594
In [88]:
1 - 0.65
Out[88]:
0.35
In [89]:
stats.norm.cdf(40,34.42,9.13)
Out[89]:
0.7294571279557076
In [90]:
stats.norm.cdf(50,34.42,9.13) - stats.norm.cdf(20,34.42,9.13)
Out[90]:
```

0.8989177824549222

Check whether the MPG of Cars follows Normal Distribution:

In [3]:

```
import matplotlib.pyplot as plt
```

In [107]:

```
stats.probplot(cars_MPG,dist = 'norm',plot = plt,)
plt.title('Normal Q-Q Plot for MPG')
plt.show()
```


In [98]:

```
data2 = pd.read_csv('wc-at.csv')
data2
```

Out[98]:

	Waist	AT
0	74.75	25.72
1	72.60	25.89
2	81.80	42.60
3	83.95	42.80
4	74.65	29.84
104	100.10	124.00
105	93.30	62.20
106	101.80	133.00
107	107.90	208.00
108	108.50	208.00

109 rows × 2 columns

In [104]:

```
waist_data = data2['Waist']
waist_data
Out[104]:
0
        74.75
        72.60
1
2
        81.80
3
        83.95
4
        74.65
        . . .
104
       100.10
105
        93.30
106
       101.80
107
       107.90
       108.50
108
Name: Waist, Length: 109, dtype: float64
```

In [110]:

```
AT_data = data2['AT']
AT_data
```

Out[110]:

```
0
        25.72
        25.89
1
2
        42.60
3
        42.80
4
        29.84
        . . .
       124.00
104
105
        62.20
106
       133.00
107
       208.00
       208.00
Name: AT, Length: 109, dtype: float64
```

In [108]:

```
stats.probplot(waist_data,dist = 'norm',plot = plt,)
plt.title('Normal Q-Q Plot for Waist')
plt.show()
```


In [111]:

```
stats.probplot(AT_data,dist = 'norm',plot = plt,)
plt.title('Normal Q-Q Plot for AT')
plt.show()
```

