Assignment 16

Jayati Dutta

Abstract—This is a simple document explaining how to determine whether a set of polynomials are linearly independent or not.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ ncert/geometry/figs

1 Problem

Let S be a set of non-zero polynomials over a field F. If no two elements of **S** have the same degree, show that **S** is an independent set in F[x].

2 Solution

Given	\mathbf{S} be a set of non-zero polynomial over a field F
	No two elements of S have the same degree
To prove	S is an independent set in F[x]
Linear	
Independency	Let $f_1, f_2,, f_n$ are the
independency	polynomials and they will be
	linearly independent if
	$a_1 f_1 + a_2 f_2 + \dots + a_n f_n = \theta$
	for $a_1 = a_2 = \dots = a_n = 0$
	where $a_1, a_2,, a_n$ are
	scalars from field F

Hence, it is proved that **S** is an independent set in F[x].

Proof

Let the degrees of $f_1, f_2, ..., f_n$ are $d_1,d_2,...,d_n$ respectively such that the degree of $f_i = d_i \neq d_i$ for j=1,2,...,n and $i \neq j$ and $d_1 < d_2 < < d_n$ so d_n is the largest degree

Now, let $a_1 f_1 + a_2 f_2 + ... + a_n f_n = \theta$

where
$$f_1 = \sum_{i=0}^{d_1} k_{1i} x^i$$

 $f_2 = \sum_{i=0}^{d_2} k_{2i} x^i$
 $\mathbf{or}, f_2 = \sum_{i=0}^{d_1} k_{2i} x^i + \sum_{i=d_1+1}^{d_2} k_{2i} x^i$

Similarly,
$$f_{n-1} = \sum_{i=0}^{d_{n-1}} k_{(n-1)i} x^i$$

 $\implies f_{n-1} = \sum_{i=0}^{d_{n-2}} k_{(n-1)i} x^i + \sum_{i=d_{n-2}+1}^{d_{n-1}} k_{(n-1)i} x^i$
and $f_n = \sum_{i=0}^{d_{n-1}} k_{ni} x^i + \sum_{i=d_{n-1}+1}^{d_n} k_{ni} x^i$

Now,

$$a_{1}f_{1} + a_{2}f_{2} + \dots + a_{n}f_{n}$$

$$= a_{1} \sum_{i=0}^{d_{1}} k_{1i}x^{i} + a_{2}(\sum_{i=0}^{d_{1}} k_{2i}x^{i} + \sum_{i=d_{1}+1}^{d_{2}} k_{2i}x^{i})$$

$$+ \dots + a_{n}(\sum_{i=0}^{d_{1}} k_{ni}x^{i} + \sum_{i=d_{1}+1}^{d_{2}} k_{ni}x^{i} + \dots$$

$$\dots + \sum_{i=d_{n-1}+1}^{d_{n}} k_{ni}x^{i})$$

$$= \sum_{i=0}^{d_{1}} (a_{1}k_{1i} + a_{2}k_{2i} + \dots + a_{n}k_{ni})x^{i}$$

$$+ \sum_{i=d_{1}+1}^{d_{2}} (a_{2}k_{2i} + \dots + a_{n}k_{ni})x^{i}$$

$$+ \dots + \sum_{i=d_{n-1}+1}^{d_{n}} a_{n}k_{ni}x^{i}$$

Now, as
$$a_1 f_1 + a_2 f_2 + ... + a_n f_n = \theta$$

for $d_{n-1} + 1 \le i \le d_n$, $k_{ni} \ne 0$
so a_n must be 0

Now, discarding
$$a_n$$
 associated term, we get
$$\sum_{i=0}^{d_1} (a_1 k_{1i} + a_2 k_{2i} + ... + a_n k_{ni}) x^i + \sum_{i=d_1+1}^{d_2} (a_2 k_{2i} + ... + a_n k_{ni}) x^i + ... + \sum_{i=d_{n-2}+1}^{d_{n-1}} a_{n-1} k_{(n-1)i} x^i = 0$$
 so, for $d_{n-2} + 1 \le i \le d_{n-1}$, $k_{(n-1)i} \ne 0$
$$\implies a_{n-1} = 0$$

Proof

Similarly, for $d_1 + 1 \le i \le d_2$ $\sum_{i=0}^{d_1} (a_1 k_{1i} + a_2 k_{2i}) x^i + \sum_{i=d_1+1}^{d_2} a_2 k_{2i} x^i$ $\implies a_2 = 0 \text{ as } k_{2i} \ne 0$ $\implies \sum_{i=0}^{d_1} a_1 k_{1i} x^i = 0$ $\implies a_1 = 0 \text{ as } k_{1i} \ne 0$ In this way, it can be proved that $a_1 = a_2 = \dots = a_{n-1} = a_n = 0 \text{ for}$ $a_1 f_1 + a_2 f_2 + \dots + a_n f_n = \theta$ $\implies f_1, f_2, \dots, f_n \text{ are}$ linearly independent