MATH 710 HW # 1

MARIO L. GUTIERREZ ABED PROF. A. BASMAJIAN

Problem 1 (Problem 8-3). Let M be a nonempty positive-dimensional smooth manifold (with or without boundary). Show that $\mathfrak{X}(M)$ is infinite-dimensional.

Proof. Let n be a positive integer and let $\{p_i\}_{i=1}^n$ be a set of distinct points in M. Let $\{U_i\}$ be a set of corresponding pairwise disjoint open neighborhoods, and for each i, let $v_i \in T_{p_i}M$ be nonzero. By Lemma 8.6, there exist global smooth vector fields \widetilde{X}_i on M such that $(\widetilde{X}_i)_{p_i} = v_i$ and supp $\widetilde{X}_i \subseteq U_i$. Let $X = \sum_{i=1}^n a_i \widetilde{X}_i$ for some constants $a_i \in \mathbb{R}$. If X = 0, then $X_{p_i} = a_i (\widetilde{X}_i)_{p_i} = a_i v_i = 0$, and so $a_i = 0$ by construction. Hence we have that $\{\widetilde{X}_i\}_{i=1}^n$ is a linearly independent subset that spans $\mathfrak{X}(M)$. Since n was arbitrary, the result follows.

Problem 2 (Problem 8-9). Show by finding a counterexample that Proposition 8.19² is false if we replace the assumption that F is a diffeomorphism by the weaker assumption that it is smooth and bijective.

Solution. Let M = [0,1). Consider the smooth bijection $\varphi \colon M \to \mathbb{S}^1$ given by $s \mapsto e^{2\pi i s}$ and consider the smooth vector field $X \colon M \to TM$ given by $x \mapsto (1-2x) \, \mathrm{d}/\mathrm{d}t|_x$. Note that there is no way of defining a φ -related smooth vector field Y on \mathbb{S}^1 , since the sign of Y_1 (that is, the direction of the vector field Y at the point $1 \in \mathbb{S}^1$) is ambiguous.

Problem 3 (Problem 8-10). Let M be the open submanifold of \mathbb{R}^2 where both x and y are positive, and let $F: M \to M$ be the map F(x,y) = (xy,y/x). Show that F is a diffeomorphism, and compute F_*X and F_*Y , where

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$
 and $Y = y \frac{\partial}{\partial x}$.

Proof. Clearly, F is a diffeomorphism on $M = \{(x,y) \mid x,y > 0\}$ since it is smooth and the inverse

$$F^{-1}(u,v) = \left(\sqrt{\frac{u}{v}}, \sqrt{uv}\right)$$

is also smooth. Now to compute the pushforwards, we first find the differential

$$DF(x,y) = \begin{pmatrix} y & x \\ -y/x^2 & 1/x \end{pmatrix}.$$

(Extension Lemma for Vector Fields) Let M be a smooth manifold (with or without boundary), and let $A \subseteq M$ be a closed subset. Suppose X is a smooth vector field along A. Given any open subset U containing A, there exists a smooth global vector field \widetilde{X} on M such that $\widetilde{X}|_A = X$ and supp $\widetilde{X} \subseteq U$. (See proof of this lemma on HW set # 2.)

Suppose M and N are smooth manifolds (with or without boundary), and $F: M \to N$ is a diffeomorphism. Then for every $X \in \mathfrak{X}(M)$, there is a unique smooth vector field on N that is F-related to X.

¹Here's Lemma 8.6, for reference:

²Here's Proposition 8.19, for reference:

so that

$$DF(F^{-1}(u,v)) = \begin{pmatrix} \sqrt{uv} & \sqrt{u/v} \\ -v\sqrt{v/u} & \sqrt{v/u} \end{pmatrix}.$$

Therefore the coordinates of F_*X are given by

$$\begin{pmatrix} \sqrt{uv} & \sqrt{u/v} \\ -v\sqrt{v/u} & \sqrt{v/u} \end{pmatrix} \begin{pmatrix} \sqrt{u/v} \\ \sqrt{uv} \end{pmatrix} = \begin{pmatrix} 2u \\ 0 \end{pmatrix},$$

while the coordinates of F_*Y are given by

$$\begin{pmatrix} \sqrt{uv} & \sqrt{u/v} \\ -v\sqrt{v/u} & \sqrt{v/u} \end{pmatrix} \begin{pmatrix} \sqrt{uv} \\ 0 \end{pmatrix} = \begin{pmatrix} uv \\ -v^2 \end{pmatrix}.$$

Thus we have

$$F_*X = 2u\frac{\partial}{\partial u}$$
 and $F_*Y = uv\frac{\partial}{\partial u} - v^2\frac{\partial}{\partial v}$.

Problem 4 (Problem 8-11). For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\{(x,y) \mid x > 0\}$.

a)
$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$
.

b)
$$Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$$
.

c)
$$Z = (x^2 + y^2) \frac{\partial}{\partial x}$$
.

Solution. Applying the standard cartesian-polar relations $((x,y) \leftrightarrow (r\cos\theta, y\sin\theta))$ on the right half plane we have

$$\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \left(\arctan \frac{y}{x} \right) = -\frac{y}{x^2 + y^2} = -\frac{\sin \theta}{r};$$

$$\frac{\partial \theta}{\partial y} = \frac{\partial}{\partial y} \left(\arctan \frac{y}{x} \right) = \frac{x}{x^2 + y^2} = \frac{\cos \theta}{r};$$

$$\frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \left(\sqrt{x^2 + y^2} \right) = \frac{x}{r} = \cos \theta;$$

$$\frac{\partial r}{\partial y} = \frac{\partial}{\partial y} \left(\sqrt{x^2 + y^2} \right) = \frac{y}{r} = \sin \theta.$$

Combining these results we get

$$\frac{\partial}{\partial x} = \frac{\partial \theta}{\partial x} \frac{\partial}{\partial \theta} + \frac{\partial r}{\partial x} \frac{\partial}{\partial r}$$
$$= -\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} + \cos \theta \frac{\partial}{\partial r}$$

and

$$\begin{split} \frac{\partial}{\partial y} &= \frac{\partial \theta}{\partial y} \frac{\partial}{\partial \theta} + \frac{\partial r}{\partial y} \frac{\partial}{\partial r} \\ &= \frac{\cos \theta}{r} \frac{\partial}{\partial \theta} + \sin \theta \frac{\partial}{\partial r}. \end{split}$$

Thus, substituting we have

$$X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$

$$= r \cos \theta \left(-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} + \cos \theta \frac{\partial}{\partial r} \right) + r \sin \theta \left(\frac{\cos \theta}{r} \frac{\partial}{\partial \theta} + \sin \theta \frac{\partial}{\partial r} \right)$$

$$= r \frac{\partial}{\partial r} (\cos^2 \theta + \sin^2 \theta)$$

$$= \left[\frac{r \frac{\partial}{\partial r}}{\partial r} \right].$$

$$Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$$

$$= r \cos \theta \left(\frac{\cos \theta}{r} \frac{\partial}{\partial \theta} + \sin \theta \frac{\partial}{\partial r} \right) - r \sin \theta \left(-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} + \cos \theta \frac{\partial}{\partial r} \right)$$

$$= \left[\frac{r \cos 2\theta \frac{\partial}{\partial r} - \sin 2\theta \frac{\partial}{\partial \theta}}{\partial x} \right].$$

$$Z = (x^2 + y^2) \frac{\partial}{\partial x}$$

$$= r^2 \left(-\frac{\sin \theta}{r} \frac{\partial}{\partial \theta} + \cos \theta \frac{\partial}{\partial r} \right)$$

$$= \left[\frac{r^2 \cos \theta \frac{\partial}{\partial r} - r \sin \theta \frac{\partial}{\partial \theta}}{\partial \theta} \right].$$