附录 - 面向跨模态行人重识别的单模态自监督信息挖掘

在正文的实验中, ResNet-50 (He 等, 2016)的骨干模型架构设计参照了 MGN (Wang 等, 2018)的方法,在输出的特征图上分割水平条带提取特征。在为了更充分地验证提出方法的有效性,使用 ResNet-50 的默认架构 (对最后一层特征图进行全局平均池化)进行与正文实验设置完全一致的消融实验和对比实验。

(1) 消融实验

参照 2.2 节的 1)的实验设置进行基于 ResNet-50 默认架构的消融实验。实验结果如表 A1 所示。与正文表 1 的结果对比,使用默认架构的性能略低于使用 MGN 架构的性能,消融 实验之间的对比结论不变,验证了方法每个部分的有效性。

(2) 对比实验

参照 2.2 节的 2)的实验设置,基于 ResNet-50 默认架构实现本文方法,与当前先进方法进行对比实验。在 SYSU-MM01、RGBNT201 和 RegDB 数据集上的实验结果分别如表 A2、A3 和 A4 所示。为节约篇幅,对比方法的结果只展示性能最高和具有代表性的 LBA (unreal)、CM-NAS (unreal)、CAJL (unreal)和 MPANet (unreal)。

基于 ResNet-50 的默认架构实现本文方法,三通道模型在 SYSU-MM01 数据集上取得与对比方法相当的性能,而在样本数更加受限的 RGBNT201 数据集和 RegDB 数据集上则能取得显著超过对比方法的性能。双模型融合的性能优于单模型的性能。实验结果表明了本文方法的有效性。

表A1 使用ResNet-50默认架构在SYSU-MM01数据集上的消融实验性能
Table A1 Ablation study performance for ResNet-50 (default architecture) on SYSU-MM01

/%

实验	互学习类型	预训练互学习	微调互学习	全搜索		室内搜索	
		顶奶奶五子石		mAP	Rank-1	mAP	Rank-1
0 (ImageNet)	无	无	无	42.4	41.8	52.7	42.8
1 (基础模型)	无	无	无	54. 1	54.8	63.4	54.8
2	三通道-三通道	有	无	55.0	56.0	66.8	58.8
3	三通道-乱序通道	有	无	57.6	58.9	67.4	60.0
4	三通道-灰度图	有	无	57.4	58.2	69.1	62.0
5	三通道-跨光谱图像(Fan 等)	有	无	57.8	58.8	69.0	62.0
6	三通道-单通道掩膜(本文)	有	无	58. 1	59.4	70.5	63.5
7	三通道-三通道	有	有	61.4	62.8	73.1	66. 9
8	三通道-乱序通道	有	有	63.3	64.8	74. 1	66.8
9	三通道-灰度图	有	有	62.1	64.9	73.8	67. 2
10	三通道-跨光谱图像(Fan 等)	有	有	65.6	68.6	76.7	71.6
11 (三通道模型)	三通道-单通道掩膜(本文)	有	有	66. 5	69.6	78. 2	73. 2

表A2 使用ResNet-50默认架构在SYSU-MM01数据集上的跨模态匹配性能对比

Table A2 Performance comparisons of cross-modality matching for ResNet-50 (default architecture) on SYSU-MM01

/9/

		全搜索		室内搜索			
刀伍	mAP	Rank-1	Rank-10	mAP	Rank-1	Rank-10	
LBA (unreal) (Park 等, 2021)	54.6	55. 4	92. 2	68.8	60.9	96. 5	
CM-NAS (unreal) (Fu等, 2021)	50.6	52. 4	89. 2	65. 3	57. 7	94.4	
CAJL (unreal) (Ye 等, 2021)	67.8	70.5	95.5	79. 9	75. 9	97. 3	
MPANet (unreal) (Wu 等, 2021)	68. 3	71. 3	95. 7	79. 7	75. 5	97. 9	
本文方法 (三通道模型)	66. 5	69.6	96. 3	78. 2	73. 2	98. 2	
本文方法(单通道模型)	65. 1	68.8	95.8	78.0	73. 4	97. 5	
本文方法 (双模型融合)	67.6	70.9	96. 6	79. 5	74. 9	98. 2	

表A3 使用ResNet-50默认架构在RGBNT201数据集上的跨模态匹配性能对比 Table A3 Performance comparisons of cross-modality matching for ResNet-50 (default architecture) on RGBNT201

/%

方法	热成像-可见光		可见光-热成像		近红外-可见光		可见光-近红外	
刀伍	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1
LBA (unreal) (Park 等, 2021)	18.6	18. 1	18. 4	17.2	31.4	37.3	30.7	31.9
CM-NAS (unreal) (Fu等, 2021)	26.8	25. 1	28. 7	28.0	36.8	38. 4	36.6	41.1
MPANet (unreal) (Wu 等, 2021)	28.8	27.6	25. 0	23. 4	34. 5	32. 1	34. 2	37.8
本文方法 (三通道模型)	34. 5	36. 2	34. 3	36. 1	44. 1	45. 5	45. 7	45. 9
本文方法(单通道模型)	33. 2	35. 3	33.0	34.0	38. 6	39. 7	41.5	45. 2
本文方法 (双模型融合)	36. 3	37. 3	36. 4	39. 1	43.4	46. 0	45. 9	47. 4

表A4 使用ResNet-50默认架构在RegDB数据集上的跨模态匹配性能对比 Table A4 Performance comparisons of cross-modality matching for ResNet-50 (default architecture) on RegDB

/%

方法	热成像	是可见光	可见光-热成像		
<i>///</i> /////////////////////////////////	mAP	Rank-1	mAP	Rank-1	
LBA (unreal)	67.0	72.1	67. 7	72.8	
CM-NAS (unreal)	83. 3	87.3	82.0	86.8	
CAJL (unreal)	76. 3	84.4	78. 9	87.0	
MPANet (unreal)	82. 2	84.7	83.4	85. 2	
本文方法 (三通道)	84. 9	87.5	87. 1	90. 3	
本文方法 (单通道)	83.9	87.0	85.9	88.9	
本文方法(双模型)	86. 2	88. 3	88. 3	90. 9	

参考文献

He K M, Zhang X Y, Ren S Q and Sun J. 2016. Deep residual learning for image recognition//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE: 770-778 [DOI: 10.1109/CVPR.2016.90]

Wang G S, Yuan Y F, Chen X, Li J W and Zhou X. 2018. Learning discriminative features with multiple granularities for person re-identification//Proceedings of the 26th ACM International Conference on Multimedia. Seoul, Korea: ACM: 274-282 [DOI: 10.1145/3240508.3240552]