EE/CE 468/468: Mobile Robotics

Fall 2023

Dr. Basit Memon
Assistant Professor, Habib University

Logistics robots

Delivery Robots

Autonomous manufacturing

TESLA ROBOTS

Space Robots

Disaster Robots

Robot-assisted surgery

Underwater Mining

Agricultural Robots

Self-driving cars

Bipedal robots

Snake Robots

World Robotics 2022 | October 2022

RELATED EXPERTISE: INDUSTRIAL GOODS, DIGITAL, TECHNOLOGY, AND DATA

Robotics Outlook 2030: How Intelligence and Mobility Will Shape the Future

JUNE 28, 2021

By Ralph Lässig, Markus Lorenz, Emmanuel Sissimatos, Ina Wicker, and Tilman Buchner

Exhibit 2 - Three Ways the Robotics Industry May Evolve by 2030

Exhibit 1 - Professional Services Robots Will Significantly Outpace Industrial Robots and Cobots in 2030

- In 2030, the global robotics total market volume is expected to reach \$160 billion to \$260 billion.
- In 2030, professional services robots (with market volume of \$90 billion to 170 billion) will outpace conventional industrial robots and cobots (with market volume of \$40 billion to \$50 billion) by far.
- Between 2020 and 2023, the professional services robot market will grow at an annual compounded rate of 25% to 35%.

Sources: IFR; MarketsandMarkets; BCG market model. **Note:** AGVs = automated guided vehicles.

https://www.bcg.com/publications/2021/how-intelligence-and-mobility-will-shape-the-future-of-the-robotics-industry

What is a robot?

Is thermostat a robot? Is Alexa a robot? Does machine have to look like us to be called a robot?

Some history ...

- First use of term "Robot" can be traced to Czech playwright Karel Capek (pronounced Kha-rel Chapek) in his 1921 play Rossum's Universal Robots (R.U.R.), meaning forced labor.
- The word "Robotics" was coined by Asimov based on Capek.

Ask ISO

 Industrial robot: an "automatically controlled, reprogrammable multipurpose manipulator programmable in three or more axes", which can be either fixed in place or mobile for use in industrial automation applications. (ISO 8373)

- Service robot: a robot "that performs useful tasks for humans or equipment excluding industrial automation applications". (ISO 8373).
 - According to ISO 8373 robots require "a degree of autonomy", which is the "ability to perform intended tasks based on current state and sensing, without human intervention".

Roboticist: A robot is a physically embodied

agent

Physical

world as us and follows the same physical laws.

Embodied

It's body
determines its
physical extent, i.e.
what can it do and
what it cannot.

Agent

It is able to choose from range of actions and do the right thing for a situation. Agency is a matter of degree.

Is there difference between Automated and Autonomous?

Automated

automatic (adj.)

"self-acting, moving or acting on its own," 1812 (automatical is from 1580s; automatous from 1640s), from Greek automatos of persons "acting of one's own will;" of things "self-moving, self-acting," used of the gates of Olympus and the tripods of Hephaestus (also "without apparent cause, by accident"), from autos "self" (see auto-) + matos "thinking, animated," *men- (1) "to think."

Repeats the same motions

Autonomous

autonomous (adj.)

1777, "subject to its own laws" (in translations of Montesquieu); 1780, "pertaining to autonomy;" from Greek *autonomos* "having one's own laws," of animals, "feeding or ranging at will," from *autos* "self" (see **auto-**) + *nomos* "law" (from PIE root *nem- "assign, allot; take"). Compare privilege. Used mostly in metaphysics and politics; see **autonomic**. Related: *Autonomously*.

Choose actions to maximize its chances of success

Taxonomy

Stationary vs Mobile Robots

Mobile robots have to perform in a large space.

Based on Operational Environment

- Ground
- Underground
- Underwater
- Surface
- Aerial

Based on Mode of locomotion

- Wheeled
- Tracked
- Legged
- Modular
- Leggless

Based on Autonomy

- Fully autonomous
- Semi-autonomous
- Remote-controlled

Based on Field of application

What about this course?

It is about Autonomous Wheeled Robots

• Learn a small set of fundamental tools that solve a wide range of robotic problems for all mobile robots.

Prerequisites

- Linear Algebra
- Probability
- Geometry
- Physics, sometimes

Canvas is go-to location for all information

 Weekly content table on Canvas will provide links to material on Canvas and references to relevant book sections.

Books

Mobile Robotics

ISBN: 9781107031159 Authors: Alonzo Kelly

Publisher: Cambridge University Press

Publication Date: 2013-11-11

Introduction to Autonomous Mobile Robots, second edition

ISBN: 9780262015356

Authors: Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza

Publisher: MIT Press

Publication Date: 2011-02-18

Introduction to Autonomous Robots

ISBN: 9780262047555

Authors: Nikolaus Correll, Bradley Hayes, Christoffer Heckman, Alessandro

Roncone

Publisher: MIT Press

Publication Date: 2022-12-20

Open access link:

Course Evaluation

Assessment	Weight in course grade
Homework Assignments (4-5, every 2-3 weeks)	40%
Quizzes (3-4)	30%
Project	25%
Discussions	5%

Late Submission Policy: Late submissions will be accepted <u>up to only a week after the due date</u>. Every hour, 0.12% of the maximum assessment score will be deducted.

Homework Assignments

- You'll work in pairs and make a single submission.
- Coding assignments in MATLAB.
- Last question is individual. Each student shares their understanding of the included content.
- OK to look at online resources (cite when you do!), but don't use code.
- Policy about generative AI will be shared with each homework.
- Academic Integrity: Zero tolerance for collusion, plagiarism, cheating

Quizzes

- Fundamental ideas.
- In-class.
- May have to be scheduled on a working Saturday.

Project

- Group
- Timeline to be shared.
 - Idea paper
 - Literature Review
 - Testing plan
 - Final conference-style paper
- Build a mobile robot in simulation

Time to be a roboticist

- You know there is a chest of gold hidden somewhere in this maze.
- You cannot go in search of it yourself and so you decide to send a robot.
- Unfortunately, you don't have a map of the maze.
- If you find the chest, you can only take couple of coins at a time and bring them to your car parked at the exit.

Pair up and think about these questions:

- Think about a strategy that will let you harvest maximal coins in minimal time.
- What kind of robot will you use?
- What will be its sensing and action abilities?
- What thinking abilities will your robot need?

If you could not use these abilities, what will you do?

- What if your robot was blind?
- What if it had no memory of the past?

Core challenges in mobile robotics

- •Where am I going?
- •What is the best way there?
- •Where have I been?
- •Where am I?
- •How do I get there?

Survey

https://hulms.instructure.com/courses/3110/quizzes/8111

Thank you

History of Robotics

Some history ...

- Pygmalion created statue of Galatea and asked
 Venus to breathe in life into it 'android' today
- Hephaestus had metallic figures to assist him in his workshop
- Ktesibios, 3rd century BC, created pneumatic birds for clock
- Automaton in some form or another since then

Roots of present-day robotics

The world around 1940s

- **Control Theory:** Science of building automated systems. It was well-established. Being used for windmills, steam engines, electronic amplifiers.
- Cybernetics: Pioneered by Norbert Weiner in 1940s.
 - Using control theory to understand biological systems.
 - Focuses on coupling, combining, and interaction between mechanism or organism and environment.
 - Proponents studied biological systems and tried to implement in simple robots using methods from control

What is the first known robot according to our definition of robot?

- Grey Walter's Tortoises (1940s)
- Biomimetic
- Motors; Tricycle model
- Photocell; Bump sensor
- Analog circuit
- Behaviors:
 - Head or back away from light
 - Turn and push to avoid obstacles

What else was happening?

- Manhattan project
- Telemanipulators for handling nuclear material

Figure 1.2 A Model 8 Telemanipulator. The upper portion of the device is placed in the ceiling, and the portion on the right extends into the hot cell. (Photograph courtesy Central Research Laboratories.)

Photo source: AI Robotics

A beginning to industrial manipulators

Development of the first industrial robot by George Devol and Joseph Engelberger

1959

within 1/10,000 of an inch.

It weighed two tons and was controlled by a program on a magnetic drum. They used hydraulic actuators and were programmed in joint coordinates, i.e. the angles of the various joints were stored during a teaching phase and replayed in operation. They were accurate to

Unimation installed the first industrial robot at GM

1961

The world's first industrial was robot used on a production line at the GM Ternstedt plant in Trenton, NJ, which made door and window handles, gearshift knobs, light fixtures and other hardware for automotive interiors. Obeying step-by-step commands

stored on a magnetic drum, the Unimate robot's 4,000 pound arm sequenced and stacked hot pieces of diecast metal. The robot cost US\$ 65,000 to make but Unimation sold it for US \$18,000.

Artificial Intelligence

- Dartmouth summer research project, 1956
- Create intelligence in machines

Two paths in robotics development

Next major development?

- Shakey, developed at Stanford (1960s)
- Camera, Contact sensors
- Plans its movement
- Used to shake a bit when it executed its plans.
- Used AI algorithms

