

Project Title:

AI/ML-Based IoT Framework for Wide-Area Energy Management System

B25RVP01

Mentor:

Dr Raja Vara Prasad Y

Presented By:

P HARISH RAGAVENDER (S20220020301)

Table of Contents

- 1. Introduction & Motivation
 - 1.1 Importance of Energy Management
 - 1.2 Facts & Statistics
- 2. Problem Statement
 - 2.1 Challenges in Current Energy Management Systems
 - 2.2 Need for an Al/ML-Based IoT Solution
- 3. Objectives
- 4. System Architecture
 - 4.1 Hardware Perspective
 - 4.2 AI/ML Perspective
- 5. Literature Survey/Review
- 6. Proposed System Architecture
- 7. Current Status and Achievements
- 8. Future works
- 9. **References**

1.Introduction & Motivation

Electric power consumption per capita in India from financial year 2016 to 2023 (in kilowatt-hours)

Electricity consumption per capita in India FY 2016-2023

Energy Management is crucial due to rising **demand**, **inefficiencies**, and **environmental concerns**. Traditional systems lack **real-time monitoring** and **optimization**.

1. Introduction & Motivation

1.1 Importance of Energy Management

- 1. Reduces costs, carbon footprint, and grid load
- 2. Traditional systems lack real-time monitoring & analytics
- 3. Al/ML enables load forecasting & anomaly detection

1.2 Facts & Statistics

- 1. **India** → 3rd largest energy consumer (after China & USA)
- 2. Global demand ↑ 25% by 2040
- 3. **30% energy wasted** in buildings due to inefficiencies
- 4. Al-based management cuts energy costs by 10-30%

2. Problem Statement

2.1 Challenges in Current Energy Management Systems

- 1. No Real-Time Monitoring
- 2.No Predictive Analytics
- 3. Manual & Inefficient
- 4.Limited Connectivity & Scalability

2. Problem Statement

2.2 Need for an AI/ML-Based IoT Solution

- 1. Smart Monitoring
- 2. LoRa Communication
- 3. Cloud Database
- 4. AI/ML Optimization
- 5. Automated Decisions

3. Objective

Develop an Al/ML-based IoT framework for real-time energy monitoring and optimization using Modbus meters and LoRa communication. Utilize cloud storage, Al/ML analytics, and a real-time dashboard for load forecasting, anomaly detection, and efficiency improvement. Optimize energy consumption to reduce costs and support sustainability goals.

4. System Architecture

4.1 Hardware Perspective

- Multifunction Meters → Measure voltage, current, power, and energy (Modbus)
- 2.**LoRa Nodes** → Wirelessly transmit real-time data over long distances
- 3. **LoRa Gateway** → Connects LoRa nodes to the cloud for reliable data transfer

Low-power, long-range, cost-effective setup for seamless energy monitoring

MULTIFUNCTION METER

4. System Architecture

4.2 AI/ML Perspective

- 1. Energy Consumption Patterns → AI/ML analyzes usage trends for better planning
- 2.**Predicting** → ML forecasts energy demand using real-time and historical data
- 3. **Anomaly Detection** → Al/ML identifies faults, inefficiencies, and unusual consumption
- 4. **Insights** → Provides data-driven recommendations for optimization and cost reduction

AI/ML OPTIMIZATION

DASHBOARD VISUALISATION

5. Literature Survey/Review

YEAR	TITLE OF THE PAPER	AUTHOR	CONTRIBUTIONS	OBSERVATIONS
2023	Unified Metering System Deployed for Water and Energy Monitoring in Smart City	N Sushma H N Suresh	1.Integration of Wireless Technology for Real-Time Monitoring((LPWAN) 2.Scalable Smart Metering for Efficient Resource Management	1.Limited Al/ML-Based Energy Optimization 2.No Custom Hardware Implementation
2021	Smart Energy Metering For Cost And Power Reduction In Household Applications	C Komathi S Durgadevi	1.Integration of Modbus-Compatible Smart Meters 2.Automated Energy Monitoring & Consumer Awareness	1.Lack of LoRa-Based Communication 2.No Al/ML-Based Energy Optimization
2023	Design of IoT-Based Electrical Energy Meter	Heri Andrianto Yohana Susanthi	1.IoT-based energy monitoring using ESP32 and Modbus-compatible meters 2.Automated Energy Data Acquisition	1.Limited Communication Range 2.Lack of AI/ML-Based Optimization

6. Proposed System Architecture

Multi Function Meters (RS-485 compatible)

7. Current Status and Achievements

7.1 Hardware Implementation


```
ata sent to ThingSpeak: {'Frequency': None, 'Active Energy': None, 'Voltage': None, 'Current': 10.93, 'Power
Data sent to ThingSpeak: ('Frequency': None, 'Active Energy': None, 'Voltage': None, 'Current': None, 'Power'
 ata sent to ThingSpeak: ('Frequency': 50.0, 'Active Energy': None, 'Voltage': None, 'Current': None, 'Powe
Data sent to ThingSpeak: ('Frequency': None, 'Active Eneagy': None, 'Voltage': 230.11, 'Current': None, 'Powe
 Data sent to ThingSpeak: {'Frequency': None, 'Active Energy': None, 'Voltage': None, 'Current': None, 'Power'
   eta sent to ThingSpeak: {'Frequency': None, 'Active Energy': None, 'Voltage': 230.08, 'Current': None, 'Pow
    ta sent to ThingSpeak: {'Frequency': None, 'Active Energy': None, 'Voltage': None, 'Current': 11.18,
```

```
//delay(1000); // General delay between
38 // I2C Callback Function (when Raspberry P)
       if (receivedData.length() > 0) {
         Serial.println("Sending Data to Raspberr
         for (int i = 0; i < receivedData.length(
           Wire.write(receivedData[i]):
          delay(50); // Delay between each byte
          Wire.write('\0'); // End of string marks
          receivedData = ""; // Clear buffer after
 48
          Serial.println("Data Sent to Raspberry Pi
Received via LoRa: EActive Energy (kWh): 133449776.
```

Tested with our campus multifunction meter

Data receiving on serial monitor

7. Current Status and Achievements

Data visualization on Things speak

7. Current Status and Achievements

7.1 Hardware Implementation

Wing

LoRa and Cellular Energy Meters Monitoring G08 and Faculty Wing

LoRa gateway

8. Future works

- 1.Creating an **AI/ML-based** for predictive energy analytics and optimization.
- 2.Develop a **custom hardware solution** for improved efficiency, scalability, and cost-effectiveness.
- 3.Deploy a **complete IoT framework** with real-time analytics and an advanced dashboard for energy management.

9.References

- 1.H. Andrianto, Y. Susanthi, V. Jonathan and N. Ismail, "Design of IoT-Based Electrical Energy Meter," 2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED), Kuala Lumpur, Malaysia, 2023, pp. 1-4, doi: 10.1109/ICCED60214.2023.10425406.
- 2.C. Komathi, S. Durgadevi, K. Thirupura Sundari, T. R. Sree Sahithya and S. Vignesh, "Smart Energy Metering For Cost And Power Reduction In Household Applications," *2021 7th International Conference on Electrical Energy Systems (ICEES)*, Chennai, India, 2021, pp. 428-432, doi: 10.1109/ICEES51510.2021.9383725
- 3.N. Sushma, H. N. Suresh, J. M. Lakshmi, P. N. Srinivasu, A. K. Bhoi and P. Barsocchi, "A Unified Metering System Deployed for Water and Energy Monitoring in Smart City," in *IEEE Access*, vol. 11, pp. 80429-80447, 2023, doi: 10.1109/ACCESS.2023.3299825. keywords: {Meters; Water resources; Real-time systems; Water

THANK YOU