

Introduction to Linux for Bioinformatics

Managing data

Joachim Jacob 5 and 12 May 2014

Bioinformatics data

Historically, bioinformatics has always used text files to store data.

NGS data

The NGS machines produce a lot of data, stored in **plain text** files. These files are multiple gigabytes in size.

Tips for managing (NGS) data

- 1. When you move the data, do it in its smallest form.
- → Compress the data.
- 2. When you decompress the data, leave it where it is.
- → **Symbolic links** point to the data in different folders.
- 3. Provide enough storage for your data.
- → choose your file system type wisely

Compression: tools in Linux

Compression Tools	
Lrzip	Achieve very high compression ratios and speed when used with large files
lbzip2	Multi-threaded implementation of bzip2, suited for serial and parallel processing
7-Zip	File archiver with a high compression ratio
XZ Utils	Successor to the Lempel-Ziv/Markov-chain Algorithm compression format
bzip2	Freely available, patent free, high-quality data compressor
gzip	Provides the standard GNU file compression utilities
PeaZip	Cross-platform portable file archiver

But some more exist (e.g. freearc, dtrx). **gzip** and **bzip2** are the most used and fairly performant.

Tips

Widely used compression tools:

- GNU zip (qzip)
- Block Sorting compression (bzip2)

Typically, compression tools work on one file. How to compress complete directories and their contents?

```
Terminal
       File Edit View Search Terminal Help
      joachim@mint13 ~/Downloads $ ls
      alignment.sam clustalw_2.1+lgpl-2_amd64.deb
      joachim@mint13 ~/Downloads $ gzip alignment.sam
      joachim@mint13 ~/Downloads $ ls
      alignment.sam.gz clustalw_2.1+lgpl-2_amd64.deb
JAKONIX joachim@mint13 ~/Downloads $ gzip ../Downloads/
      gzip: ../Downloads/ is a directory -- ignored
      joachim@mint13 ~/Downloads $
```

6 of 46

Tar without compression

Tar (Tape Archive) is a tool for bundling a set of files or directories into a single archive. The resulting file is called a tar ball.

Syntax to create a tarball:

\$ tar -cf archive.tar file1 file2

Syntax to extract:

\$ tar -xvf /path/to/archive.tar

Compression: a typical case

Archiving and compression mostly occur together. The most used formats are **tar.gz** or **tar.bz**. These files are the result of **two** processes.

Compression: on your desktop

Compression: on your desktop

Compression: on the command line

Tar is the tool for creating .tar archives, but it can compress in one go, with the z or j option.

Creating a compressed tar archive:

```
$ tar cvfz mytararchive.tar.gz docs/
$ tar cvfj mytararchive.tar.bz docs/
```

create

Compression technique

Decompressing a compressed tar archive

```
$ tar xvfz mytararchive.tar.gz
$ tar xvfj mytararchive.tar.bz
```


files

verbose

De-/compression

To compress one or more files:

```
$ gzip [options] file
$ bzip2 [options] file
```

To decompress one or more files:

```
$ gunzip [options] file(s)
$ bunzip2 [options] file(s)
```

Every file will be compressed, and tar.gz or tar.bz appended to it.

Tips

1. Do you have to uncompress a big text file to read it? No! Some tools allow to **read compressed files** (instead of first unpacking then reading). Time saver!

```
$ zcat file(s)
$ bzcat file(s)
```

2. Compression is always a **balance** between time and compression ratio. Gzip is faster, bzip2 compresses harder.

If compression is important to you: benchmark!

Exercise

→ a little compression exercise.

Symlinks

Something very convenient!

A **symbolic link** (or symlink) is a *file* which points to the location of another file. You can do anything with the symlink that *you can do on the original file*. But when you move the original file from its location, the symlink is 'dead'.

Symlinks

To create a symlink, move to the folder in where the symlink must be created, and execute **1n**.

```
~/Projects $ cd Butterfly 
~/Butterfly $ In -s .../Rice/Sequences/alignment.sam 
Link_to_alignment.sam
```


Symlinks

The symlink is created. You can check with 1s. To delete a symlink, use unlink.

```
~/Projects $ cd Butterfly
~/Butterfly $ ln -s ../Rice/Sequences/alignment.sam
Link_to_alignment.sam
~/Butterfly $ ls -lh Link_to_alignment.sam
lrwxrwxrwx 1 joachim joachim 44 Oct 22 14:47
Link_to_alignment.sam -> ../Sequences/alignment.sam
```


Exercise

→ a little symlink exercise

Disks and storage

If you dive into bioinformatics, you will have to manage disks and storage.

Two types of disks

- solid state disks
 Low capacity, high speed, random wrπes
- spinning hard disks
 High capacity, 'normal' speed, sequential writes.

A disk is a device

Via the terminal, show the disks using

```
$ sudo fdisk -l
[sudo] password for joachim:

Disk /dev/sda: 13.4 GB, 13408141312
bytes
...
Disk /dev/sdb: 3997 MB, 3997171712 bytes
...
```


A disk is divided into partitions

A disk can be divided in parts, called partitions.

An **internal disk** which runs an operating system is usually divided in partitions, one for each functions.

An **external disk** is usually not divided in partitions. (but it can be partioned).

Check out the disk utility tool

The system disk

The system disk

The system disk

An example of an USB disk

An example of an USB disk

The USB disk is 'mounted' automatically on the directory tree under **/media**.

An example of an USB disk

File system formats

By default, many USB flash disks are formatted in **FAT32**.

Other types are NTFS, ext4, ZFS.

FAT32 – max 4GB files

NTFS – maximum portability (also for use under windows)

Ext4 – default file system in Linux,

Btrfs – the next default file system in Linux in the near future.

Example: formatting a USB disk

First **unmount** the device (red box 1 below). Now the USB disk can not be accessed anymore.

Next, choose **format** the device (red box 2 below).

Format disks with disk utility

Choose the type of file system you want to be on that device.

Format disks with disk utility

Format disks with disk utility

The program disk-utility put a lot of commands at work behind the scenes.

Some of the command line tools used:

- mount
- umount
- fdisk
- mkfs

You can read the man pages and search for guides on the internet if you want to get to know these (out of scope for this course).

Checking storage space

By default 'disk usage analyzer'.

Checking storage space

Bonus: K4DirStat. Not installed by default.

K4Dirstat is a KDE package

Rehearsal: what is KDE?

Bonus: what happens when you install this

package on our system?

Space left on disks with df

To check the storage that is used on the different disks: **df -h**

```
~/ $ df -<u>h</u>
Filesystem
                Size
                      Used Avail Use% Mounted on
/dev/sda1
                 12G
                       5.3G 5.7G
                                   49% /
                490M
                      4.0K
                             490M
                                    1% /dev
udev
tmpfs
                200M
                      920K
                             199M
                                    1% /run
                5.0M
                             5.0M
                                    0% /run/lock
                          0
none
                498M 76K
                                    1% /run/shm
                             498M
none
/dev/sdb1
                3.8G
                        20M
                             3.7G
                                    1% /media/test
  $ df -h .
```


The size of directories

To check the size of files or directories: du

```
du -sh *
520K
       bin
       Compression_exercise
281M
4.0K
       Desktop
4.0K
       Documents
5.0M
       Downloads
                                     * means 'anything'.
4.0K
       Music
4.0K
       Pictures
                                   This is called 'globbing':
4.0K
       Public
                                   * is a wild card symbol.
       Rice Example
373M
4.0K
       Templates
4.0K
       test
17Mtest.img
       ugene-1.12.2
114M
4.0K
       Videos
IAKONIX
```


Wildcards are used to describe the names of **files/dirs**.

*

On that position, any length of string is allowed e.g. **s*** matches: **s**an, **s**dd, **s**anitisation, **s**am.alignment,...

?
On that position, any character is allowed.
e.g. **saniti?ation** matches: saniti**s**ation, saniti**r**ation, ...

On that position, the character may be one of the characters between [],

e.g. saniti[sz]ation matches: sanitisation and sanitization

```
~/ $ du -sh Do*
```



```
~/ $ du -sh Do*
4.0K Documents
20GDownloads
```



```
~/ $ ls *.fastq
```



```
~/ $ ls *.fastq
ERR148552_1.fastq ERR148552_2.fastq
testout.fastq
ERR148552_1_prinseq_good_zzwI.fastq test.fastq
```


Keywords

Compression

Archive

Symbolic link

mounting

File system format

partition

Recursively

df

du

unlink

Break

