

Course Name: Machine Learning

Weekly Report: 4

Group Name: XYZ

Submitted to faculty:

Mehul Raval

Date of Submission: 22 Mar

2025

Student Details

Roll No.	Name of the student	Name of the program
AU2240106	Meet Rathi	B.Tech in CSE
AU2240160	Harsh Panchal	B.Tech in CSE
AU2240153	Aditya Agarwal	B.Tech in CSE
AU2240085	Hariom Bhatt	B.Tech in CSE
AU2140181	Jeel Kadivar	B.Tech in CSE

Table of Contents.

Work Done This Week	4
Work To be done next week	4

WORK DONE THIS WEEK

1. Preprocessing Phase

• Preparation of dataset components took place concurrently during the project week while researchers followed the research methodology to create tracklets.

Dataset Selection:

- The analyst selected particular sequences from VisDrone dataset that consisted of authentic aerial surveillance video clips filmed by drones.
- The evaluation involved two objects taken from each sequence in the dataset.

Frame and Annotation Filtering:

- The selected objects obtained an entire pair of extracted frames and their respective annotations.
- All unintelligible and unfinished data points were discarded to obtain clean data for process.

Intentional Tracklet Fragmentation:

- The researchers applied artificial truncation to the long tracking series to generate short tracklet sequences with lengths between 15 and 60 consecutive frames for representing wild tracking scenarios.
- The framework organized video frames in consecutive groups to create tracklets that represent the combined effect of tracking interruptions accompanied by object blocking.

2. Feature Extraction

Motion Features:

- Computed average velocity across tracklets.
- The object size was captured through measurements conducted on the bounding box area.
- As a measure to analyze shape alterations the researcher calculated aspect ratio.

Appearance Features:

- The extraction of color histograms contained 512 values from each tracklet.
- Tracks used both SIFT descriptors and their associated 128 values as invariant descriptors to scale and rotation changes.

3. Tracklet Merging

Feature Matrix Construction:

- Combined motion and appearance features.
- Standardized extracted features for consistency.

KD-Tree Association:

- The Build_kdtree() function enabled <u>KD-Trees</u> to be built by performing data point splits that utilized separate axes.
- Nearest-neighbors identification occurred successfully with the help of these two functions which operated in an efficient manner.
- Merge_tracklets() functions as a system <u>which</u> unites fragmented tracklets by performing nearest neighbor matching algorithms.

Saving Results:

• The program stored the merged tracklet IDs using a single standardized file structure.

WORK TO BE DONE NEXT WEEK

- 1. **Performance Evaluation on Diverse Objects**: We will do testing on multiple object types like cars, bikes, buses and etc., inorder to assess failure cases.
- 2. **Cubic Spline Interpolation**: We will be implementing the interpolation techniques, from which we aim to achieve smoother trajectory recovery.
- 3. **Feature Optimization**: We will be enhancing the feature extraction part, inorder to balance both the accuracy and the computational efficiency.
- 4. **Dataset Expansion**: We will be exploring the additional datasets like VSAI, from which we can achieve better generalization.
- 5. **Adaptive Merging Strategies**: We will be investigating the graph-based approach and probabilistic approaches, which will pose as the alternatives to KD-Tree.