ASTR8150/PHYS8150 Optimization

Fabien Baron

Georgia State University baron@chara.gsu.edu

Fall 2023

Convexity of a set

- In a convex set, for every pair of points within the region, every point on the straight line segment that joins the pair of points is also within the region.
- A set which is hollow or has an indent, for example, a crescent shape, is not convex.

Convexity of a function

- A real-valued function is called convex if the set of points on or above the graph of the function (epigraph) is a convex set.
- For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex. Examples: $f(x) = x^2$ or $f(x) = e^x$
- Jensen's inequality: if X is a convex set and $f: X \to \mathbb{R}$, f is convex if:

$$\forall x_1, x_2 \in X, \forall t \in [0,1]: f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

Smoothness of a function

- The smoothness of a function is a property measured by the number of derivatives it has which are continuous. A smooth function is a function that has derivatives of all orders everywhere in its domain.
- The function $f(x) = |x|^k$ is continuous and k times differentiable at all x. But at x = 0 it is not (k + 1) times differentiable.
- The norms ℓ_2 , ℓ_1 and pseudo-norm ℓ_0 are used in regularization. ℓ_2 is convex, differentiable and smooth. ℓ_1 is convex, differentiable but nonsmooth. ℓ_0 is non-convex and nonsmooth.

Fabien Baron (GSU) Optimization Fall 2023 4/34

Gradient descent (1)

• Gradient descent is based on the observation that if the multi-variable function $f(\mathbf{x})$ is defined differentiable in a neighborhood of a point $\mathbf{x_0}$, then $f(\mathbf{x})$ decreases "fastest" if one goes from $\mathbf{x_0}$ in the direction of the negative gradient of f at $\mathbf{x_0}$, $-\nabla f(\mathbf{x_0})$.

Gradient descent (2)

It follows that, if

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \nabla f(\mathbf{x}_n) \tag{1}$$

for α small enough, then $f(\mathbf{x_n}) \geq f(\mathbf{x_{n+1}})$. In other words, the term $\alpha \nabla f(\mathbf{x})$ is subtracted from \mathbf{x} because we want to move against the gradient, namely down toward the minimum.

- How can we choose α ?
- The Rosenbrock function $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$. has a narrow curved valley which contains the minimum. The bottom of the valley is very flat. Because of the curved flat valley the optimization is zig-zagging slowly with small stepsizes towards the minimum.

Steepest descent using line search

- Inexact line search consists in finding $\alpha_k \simeq \underset{\alpha \in \mathbb{R}_+}{\operatorname{argmin}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$
- The **line search** method is one of two basic iterative approaches to find a local minimum \mathbf{x}^* of an objective function $f: \mathbb{R}^n \to \mathbb{R}$ using gradients. The other approach is **trust region**.

Algorithm 1 Steepest descent with line search

```
1: procedure STEEPEST DESCENT(f, x)
                                          ▷ Iteration counter + initial parameter guess
         k=0. x<sub>0</sub>
2:
        while \|\nabla f(\mathbf{x}_k)\| > \epsilon do
                                                                                      \triangleright \epsilon = \text{tolerance}
3:
              \mathbf{d_k} = -\nabla f(x_k)
                                      ▷ Descent direction = Steepest descent
4:
              \alpha_k \simeq \operatorname{argmin} f(\mathbf{x}_k + \alpha \mathbf{d}_k)
                                                                                          Line search
5:
                         \alpha \in \mathbb{R}_{\perp}
              \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k
6:
           k = k + 1
7:
         end while
8.
9: end procedure
```

Nonlinear conjugate gradient methods

- Let's pose $\mathbf{g_k} = \nabla f(x_k)$
- \bullet The steepest descent direction was $d_k = -g_k$
- Conjugate directions differs from the steepest descent by attempting moves based on the history of the previous moves
- The descent direction for nonlinear conjugate gradient methods is

$$\mathbf{d}_{k+1} = -\mathbf{g}_{k+1} + \beta_k \mathbf{d}_k, \quad \mathbf{d}_0 = -\mathbf{g}_0 \tag{2}$$

- ullet The variation of the gradient is measured by $\mathbf{y_k} = \mathbf{g_{k+1}} \mathbf{g_k}$
- ullet The Conjugate Gradient update parameter eta_k can be updated with different formulas

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Conjugate gradient: convergence

 A comparison of the linear convergence of simple gradient descent with optimal step size (in green) and the superlinear convergence of conjugate gradient (in red) for minimizing a quadratic function.

Nonlinear conjugate gradient methods

$$\beta_k^{HS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{\mathbf{d}_k^{\mathsf{T}} \mathbf{y}_k}$$
 (1952) in the original (linear) CG paper of Hestenes and Stiefel [59]

$$\beta_k^{FR} = \frac{\|\mathbf{g}_{k+1}\|^2}{\|\mathbf{g}_k\|^2}$$
 (1964) first nonlinear CG method, proposed by Fletcher and Reeves [45]

$$\beta_k^D = \frac{\mathbf{g}_{k+1}^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}{\mathbf{d}_k^\mathsf{T} \nabla^2 f(\mathbf{x}_k) \mathbf{d}_k}$$
(1967) proposed by Daniel [39], requires evaluation of the Hessian $\nabla^2 f(\mathbf{x})$

$$\beta_k^{PRP} = \frac{\mathbf{g}_{k+1}^1 \mathbf{y}_k}{\|\mathbf{g}_k\|^2}$$
 (1969) proposed by Polak and Ribière [84] and by Polyak [85]

$$\beta_k^{CD} = \frac{\|\mathbf{g}_{k+1}\|^2}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
 (1987) proposed by Fletcher [44], CD stands for "Conjugate Descent"

$$\beta_k^{LS} = \frac{\mathbf{g}_{k+1}^{\mathsf{T}} \mathbf{y}_k}{-\mathbf{d}_k^{\mathsf{T}} \mathbf{g}_k}$$
(1991) proposed by Liu and Storey [67]
$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_k^{\mathsf{T}} \mathbf{y}_k}$$
(1999) proposed by Dai and Yuan [27]

$$\beta_k^{DY} = \frac{\|\mathbf{g}_{k+1}\|^2}{\mathbf{d}_1^{\mathsf{T}} y_k}$$
 (1999) proposed by Dai and Yuan [27]

$$\beta_k^N = \left(\mathbf{y}_k - 2\mathbf{d}_k \frac{\|\mathbf{y}_k\|^2}{\mathbf{d}_1^T \mathbf{y}_k}\right)^T \frac{\mathbf{g}_{k+1}}{\mathbf{d}_1^T \mathbf{y}_k} \quad (2005) \quad \text{proposed by Hager and Zhang [53]}$$

Newton optimization method

Figure: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route.

Hessian is used to exploit the curvature information

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha [\mathbf{H} f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$
(3)

 $lpha \in (0,1)$, with lpha = 1 the exact form.

Fabien Baron (GSU) Optimization Fall 2023 11 / 34

Newton-Raphson root-finding and eccentric anomaly

- Newton optimization method and Newton-Raphson's root finding methods are based on similar principles
- Newton-Raphson: $x_{n+1} = x_n f(x_n)/f'(x_n)$
- Example: the mean anomaly is proportional to time it is an easily measured quantity for an orbiting body. Given the mean anomaly M, find the eccentric anomaly E and the orbital eccentricity e with Kepler's Equation:

$$M = E - e \sin E \tag{4}$$

12/34

Fabien Baron (GSU) Optimization Fall 2023

Better than Newton: quasi-Newton methods

- Also known as variable metric methods, they avoid computing the Hessian then its inverse.
- The Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Davidon-Fletcher-Powell (DFP) algorithms build iteratively approximations of $[\mathbf{H}f(\mathbf{x}_n)]^{-1}$.
- The most successful and well-known quasi-Newton method is the **Limited-memory BFGS (L-BFGS)** that approximates $[\mathbf{H}f(\mathbf{x}_n)]^{-1}\nabla f(\mathbf{x}_n)$ directly and thus can work on large scale problems (millions of variables).
- New gradient descent variants attempt to deal with non-smooth functions (subgradient and bundle method).
- There are variants that deal with constrained miminization (i.e. bounds on variables or linearly tied variables) such as L-BFGS-B.
 Further refinements led to the VMLM algorithm in OptimPack.

Fabien Baron (GSU) Optimization Fall 2023 13/34

Trust-region method and Levenberg-Marquardt

• Consider the quadratic approximation of function f around x_0 :

$$q(\epsilon) \simeq f(x_0) + \nabla f(x_0)\epsilon + \frac{1}{2}\epsilon^T \nabla^2 f(x_0)\epsilon$$
 (5)

- $q(\epsilon)$ has a close-form mimimum.
- $q(\epsilon)$ remains a good approximation within a given radius, $||e||_2 < r^2$ defines the **trust region** radius r.
- The quadratic approximation predicts a certain reduction in the cost function, Δf_{pred} , which is compared to the true reduction $\Delta f_{\mathrm{actual}} = f(x) f(x+\epsilon)$. By looking at the ratio $\Delta f_{\mathrm{pred}}/\Delta f_{\mathrm{actual}}$ we can estimate the trust-region size at each iteration, jump to the closed-form minimum within the trust region, and iterate.
- The **Levenberg-Marquardt** algorithm (first published in 1944 by Kenneth Levenberg, rediscovered in 1963 by Donald Marquardt) uses the trust-region approach with conjugate-gradients and Gauss-Newton (Newton optimized for non-linear χ^2). Like conjugate gradient and Newton, these local optimization.

Derivative-free optimization methods

- Derivative-free optimization methods simply do not require gradient information
- Among the most popular local optimizer is **Nelder–Mead** method (aka downhill simplex method or amoeba method), which moves points of a polytope of n+1 vertices in n-parameter dimensions via reflection, contraction, expansion steps
- Most MCMC optimization methods.
- The NLopt library provides mostly derivative-free algorithms, some of them for global optimization.

Constrained minimization: the Lagrangian method

- Constrained minimization is minimization under equality or inequality constrains. Bounded optimization is a special case of constrained optimization where bounds are imposed on parameters (e.g. positivity, or variable within a range). In Bayesian terms, we're imposing a prior.
- A classic example is:

$$(\tilde{x}, \tilde{y}) = \underset{(x,y) \in \mathbb{R}^2}{\operatorname{argmin}} (x+y)$$
 s. t. $x^2 + y^2 = 1$

• We pose $g(x,y) = x^2 + y^2 - 1$ and the Lagrangian is:

$$\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot g(x, y)$$

= $x + y + \lambda(x^2 + y^2 - 1)$.

where λ is a Lagrange multiplier.

4 1 1 4 1 1 4 2 1 4 2 1 4 2 1 4 2 1

16/34

Constrained minimization: the Lagrangian method

• The gradient with respect to variables x,y and λ

$$\nabla_{x,y,\lambda} \mathcal{L}(x,y,\lambda) = \left(\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda}\right)$$
$$= \left(1 + 2\lambda x, 1 + 2\lambda y, x^2 + y^2 - 1\right)$$

and therefore:

$$abla_{x,y,\lambda}\mathcal{L}(x,y,\lambda) = 0 \quad \Leftrightarrow \quad \begin{cases} 1 + 2\lambda x = 0 \\ 1 + 2\lambda y = 0 \\ x^2 + y^2 - 1 = 0 \end{cases}$$

• Solution $x=y=-\frac{1}{2\lambda},\ \lambda\neq 0.$. Substituting into the last equation we get $\lambda=\pm\frac{1}{\sqrt{2}}$ which implies that the stationary points of $\mathcal L$ are $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},-\frac{1}{\sqrt{2}}\right),\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},\frac{1}{\sqrt{2}}\right)$. And since $f\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)=\sqrt{2}$ and $f\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}$. the solution is found.

Fabien Baron (GSU) Optimization Fall 2023 17 / 34

Constrained minimization: Half-quadratic splitting (1)

• Let's say we want to minimize:

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \mu \Phi(\mathbf{x})$$

- If $\Phi(x) = \|Wx w\|_2^2$, Tikhonv gives us the solution $x = (H^\top H + W^\top W)^{-1}(H^\top y + W^\top w)$
- Other cases do not have closed-form solution, typical example is $\Phi(\mathbf{x}) = \ell_1(\mathbf{x}) = \|\mathbf{x}\|_1$.
- Splitting methods are methods that split the unconstrained problem into a constrained problem, using two different variables to represent the same one in different functions:

$$\tilde{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \mu \Phi(\mathbf{z}) \quad s.t. \quad \mathbf{z} = \mathbf{x}$$
$$= \underset{\mathbf{x}, \mathbf{z}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \mu \Phi(\mathbf{z}) + \frac{\rho}{2} \| \mathbf{z} - \mathbf{x} \|_{2}^{2}$$

Fabien Baron (GSU) Optimization Fall 2023 18/34

Constrained minimization: the two subproblems

• So we now want to minimize:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}) = \frac{1}{2} \|\boldsymbol{H}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \mu \Phi(\boldsymbol{z}) + \frac{\rho}{2} \|\boldsymbol{z} - \boldsymbol{x}\|_{2}^{2}$$

- $\frac{\rho}{2} \| \mathbf{z} \mathbf{x} \|_2^2$ is called an augmented term, and ρ is the augmented penalty hyperparameter.
- The half-quadratic splitting method solves iteratively (iteration variable = k) the problem with respect to x, then z:

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \frac{\rho}{2} \|\tilde{\mathbf{z}}^{k} - \mathbf{x}\|_{2}^{2}$$
 \mathbf{x} sub-problem

$$\tilde{\boldsymbol{z}}^{k+1} = \operatorname*{argmin}_{\boldsymbol{z}} \frac{\rho}{2} \left\| \boldsymbol{z} - \tilde{\boldsymbol{x}}^{k+1} \right\|_{2}^{2} + \mu \Phi(\boldsymbol{z})$$

z sub-problem

and then increases ρ from initially low values to higher and higher ones.

Fabien Baron (GSU) Optimization Fall 2023 19/34

Constrained minimization: analytical solutions exist

• Why is this easier than the original problem ?

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \frac{\rho}{2} \|\tilde{\mathbf{z}}^{k} - \mathbf{x}\|_{2}^{2}$$
 \mathbf{x} sub-problem

$$\tilde{\mathbf{z}}^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} \frac{\rho}{2} \left\| \mathbf{z} - \tilde{\mathbf{x}}^{k+1} \right\|_{2}^{2} + \mu \Phi(\mathbf{z})$$
 \mathbf{z} sub-problem

- The x sub-problem can be solved by classic Tikhonov.
- The z sub-problem can be solved analytically for some functions, for which we know the solution of the problem:

$$\operatorname{prox}_f(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{z}} \left(\frac{1}{2} \| \boldsymbol{z} - \boldsymbol{x} \|_2^2 + f(\boldsymbol{z}) \right)$$

• This solution $\operatorname{prox}_f(x)$ is the **proximal operator** for the function f. At each point x it finds a close-by local minimum of f. Note that Tikhonov is

Proximal operator for the ℓ_1 norm and positivity

ullet One can demonstrate that the proximal operator for ℓ_1 norm is:

$$\operatorname{prox}_{\alpha\ell_1}(\boldsymbol{x}) = \underset{\boldsymbol{z}}{\operatorname{argmin}} \ \left(\frac{1}{2} \left\| \boldsymbol{z} - \boldsymbol{x} \right\|_2^2 + \alpha\ell_1(\boldsymbol{z}) \right) = \operatorname{sign}(\boldsymbol{x}) \cdot \max(|\boldsymbol{x}| - \alpha, 0)$$

where \cdot is the Hadamard product.

 The proximal operator for positivity is the projection onto the positive set:

$$\operatorname{prox}_{I_{\mathbb{R}^+}}(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{z} \in \mathbb{R}^{+n}} \left(\frac{1}{2} \| \boldsymbol{x} - \boldsymbol{z} \|_2^2 \right) = \max(\boldsymbol{x}, 0)$$

Fabien Baron (GSU) Optimization Fall 2023 21/34

Half-quadratic splitting: beyond the 1:1 change of variable

- Half-quadratic splitting only involves analytical steps: the x sub-problem is solved via Tikhonov and the z sub-problem via proximal operators (provided it is known). Generalizing beyond z = x, we can also have more complex linear constrains under the form $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c} = 0$.
- How should we solve the total variation problem, i.e. minimize $\frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \mu \ell_{1} (\nabla \mathbf{x}) ?$
- We only know the proximal operator for $\ell_1(z)$ and not for $\ell_1(\nabla z)$. So while we could pose z = x, we wouldn't know how to solve the z sub-problem in closed form. However we can pose $z = \nabla x$, leading to:

$$\mathcal{L}(x, z) = \frac{1}{2} \|Hx - y\|_{2}^{2} + \mu \ell_{1}(z) + \frac{\rho}{2} \|z - \nabla x\|_{2}^{2}$$

22 / 34

Total variation solved via Half-quadratic splitting

$$\mathcal{L}(x, z) = \frac{1}{2} \|Hx - y\|_{2}^{2} + \mu \ell_{1}(z) + \frac{\rho}{2} \|z - \nabla x\|_{2}^{2}$$

• The x sub-problem has the closed form Tikhonov solution:

$$\tilde{\mathbf{x}}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_{2}^{2} + \frac{\rho}{2} \| \tilde{\mathbf{z}}^{k} - \nabla \mathbf{x} \|_{2}^{2} \qquad \mathbf{x} \text{ sub-problem}$$

$$\Longrightarrow \mathbf{H}^{\top} (\mathbf{H} \mathbf{x} - \mathbf{y}) - \rho \nabla^{\top} (\tilde{\mathbf{z}}^{k} - \nabla \mathbf{x}) = 0$$

$$\Longrightarrow \tilde{\mathbf{x}}^{k+1} = (\mathbf{H}^{\top} \mathbf{H} + \rho \nabla^{\top} \nabla)^{-1} (\mathbf{H}^{\top} \mathbf{y} + \rho \nabla^{\top} \tilde{\mathbf{z}}^{k})$$

• The z sub-problem has a closed form proximal solution:

$$\begin{split} \tilde{\boldsymbol{z}}^{k+1} &= \operatorname*{argmin}_{\boldsymbol{z}} \mu \ell_1(\boldsymbol{z}) + \frac{\rho}{2} \left\| \boldsymbol{z} - \nabla \tilde{\boldsymbol{x}}^{k+1} \right\|_2^2 \qquad \boldsymbol{z} \text{ sub-problem} \\ &= \operatorname{prox}_{\frac{\mu}{\rho}\ell_1}(\boldsymbol{\nabla} \tilde{\boldsymbol{x}}^{k+1}) = \operatorname{sign}(\boldsymbol{\nabla} \tilde{\boldsymbol{x}}^{k+1}) \cdot \operatorname{max}(|\boldsymbol{\nabla} \tilde{\boldsymbol{x}}^{k+1}| - \frac{\mu}{\rho}, 0) \end{split}$$

Fabien Baron (GSU) Optimization Fall 2023 23/34

Making the x step faster: some tricks

• The x sub-problem is the slowest one since it involves:

$$\tilde{\pmb{x}}^{k+1} = (\pmb{H}^{\top} \pmb{H} + \rho \nabla^{\top} \nabla)^{-1} (\pmb{H}^{\top} \pmb{y} + \rho \nabla^{\top} \tilde{\pmb{z}}^k)$$

but matrix inversion is $\sim \mathcal{O}(N^3)$ process for a $N \times N$ matrix, and thus costly both in memory space and computing time. To work with larger images, tricks to speed up the inversion are used in practice.

- One is to use sparse arrays that only store the non-zero elements of *H* and ∇. The inversion and subsequent multiplication are then faster.
- Using an **orthogonal wavelet basis**, W, as a sparsity basis instead of the spatial gradient ∇ since in this case $W^{\top}W = \alpha I$.
- Another is to employ the backslash operator in Julia (or Matlab). We have $\mathbf{X}^{-1}\mathbf{Y} = \mathbf{X} \backslash \mathbf{Y}$, but the latter operation doesn't store the inverted matrix \mathbf{X}^{-1} ; instead it just temporarily stores the parts useful for its multiplication by \mathbf{Y} .

$$ilde{oldsymbol{x}}^{k+1} = (oldsymbol{H}^{ op}oldsymbol{H} +
hooldsymbol{
abla}^{ op}oldsymbol{
abla}) ackslash (oldsymbol{H}^{ op}oldsymbol{y} +
hooldsymbol{
abla}^{ op} ilde{oldsymbol{z}}^k)$$

Fabien Baron (GSU) Optimization Fall 2023 24 / 34

Making the x step faster: circulant matrices (1)

- It turns out $\nabla^{\top}\nabla$ and $\mathbf{H}^{\top}\mathbf{H}$ can be simplified if ∇ and \mathbf{H} are circulant matrices, or concatenation of circulant matrices. This is the case when ∇ is the spatial gradient, and when \mathbf{H} is a convolution (= if modeling the imaging done by an optical system).
- A circulant matrix **C** takes the form:

$$\mathbf{C} = \begin{bmatrix} c_1 & c_n & \dots & c_3 & c_2 \\ c_2 & c_1 & c_n & & c_3 \\ \vdots & c_2 & c_1 & \ddots & \vdots \\ c_{n-1} & \vdots & \ddots & \ddots & c_n \\ c_n & c_{n-1} & \dots & c_2 & c_1 \end{bmatrix}.$$

• All circulant matrixes can be written as $C = FDF^{\top}$ where F is the Fourier transform $(n^2 \times n^2)$ if implemented via matrix operations) and $D = \text{diag}(F([c_1 \dots c_n]))$ is diagonal.

Making the x step faster: circulant matrices (2)

- ullet We remind that $oldsymbol{F}^ op oldsymbol{F} = oldsymbol{I}$ since $oldsymbol{F}^ op = oldsymbol{F}^{-1}$ and $(oldsymbol{A}oldsymbol{B})^ op = oldsymbol{B}^ op oldsymbol{A}^ op$
- Since $C = FDF^{\top}$, $C^{\top} = ((FD)F^{\top})^{\top} = F(FD)^{\top} = FD^{\top}F^{\top}$
- Consequently $\mathbf{C}^{\top}\mathbf{C} = \mathbf{F}\mathbf{D}\mathbf{F}^{\top}\mathbf{F}\mathbf{D}^{\top}\mathbf{F}^{\top} = \mathbf{F}\mathbf{D}^{2}\mathbf{F}^{\top}$ since \mathbf{D} is diagonal.
- The application relies on the fact that applying the Fourier transforms \mathbf{F} or \mathbf{F}^{-1} can be done with very fast FFT algorithms:

$$(\mathbf{H}^{\top}\mathbf{H} + \rho \nabla^{\top}\nabla)\tilde{\mathbf{x}}^{k+1} = \mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k}$$

$$(\mathbf{F}\mathbf{D}_{\mathbf{H}}^{2}\mathbf{F}^{\top} + \rho \mathbf{F}\mathbf{D}_{\nabla}^{2}\mathbf{F}^{\top})\tilde{\mathbf{x}}^{k+1} = \mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k}$$

$$\mathbf{F}(\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2})\mathbf{F}^{\top}\tilde{\mathbf{x}}^{k+1} = \mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k}$$

$$(\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2})\mathbf{F}^{\top}\tilde{\mathbf{x}}^{k+1} = \mathbf{F}^{-1}(\mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k})$$

$$\mathbf{F}^{\top}\tilde{\mathbf{x}}^{k+1} = \frac{\mathbf{F}^{-1}(\mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k})}{\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2}}$$

$$\tilde{\mathbf{x}}^{k+1} = \mathbf{F}\left(\frac{\mathbf{F}^{-1}(\mathbf{H}^{\top}\mathbf{y} + \rho \nabla^{\top}\tilde{\mathbf{z}}^{k})}{\mathbf{D}_{\mathbf{H}}^{2} + \rho \mathbf{D}_{\nabla}^{2}}\right)$$

Fabien Baron (GSU) Optimization Fall 2023 26 / 34

Augmented Lagrangian methods

• Let's say we want to minimize f(x) under a sets of constraints on x. We saw we could express each of these constrains as $g_i(x) = 0$. Then we just need to minimize the Lagrangian:

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) = f(\boldsymbol{x}) + \sum_{i} \lambda_{i} \cdot g_{i}(\boldsymbol{x})$$

where λ is a vector this time.

• The idea is to use an augmented Lagrangian:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i} \lambda_{i} \cdot g_{i}(\mathbf{x}) + \frac{\rho}{2} \sum_{i} |g_{i}(\mathbf{x})|^{2}$$

where the augmentation term $\sum_{i} |g_{i}(\mathbf{x})|^{2}$ is multiplied by penalty terms ρ .

The method of multipliers solves this by iterating:

$$m{x}^{k+1} = \mathop{\mathsf{argmin}}_{m{x}} \mathcal{L}(m{x}, \lambda_i^k) \ \lambda_i^{k+1} = \lambda_i^k +
ho^k g_i(m{x}^k) \quad orall i$$

Example: Method of multipliers for linear constraints

- Let's say we want to minimize f(x) under a sets of linear constraints on x, we can express them as Ax = b.
- The augmented Lagrangian is:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

The method of multipliers solves this by iterating:

$$egin{aligned} \mathbf{x}^{k+1} &= \operatorname*{argmin}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, oldsymbol{\lambda}^k) \ \mathbf{\lambda}^{k+1} &= oldsymbol{\lambda}^k +
ho(\mathbf{A}\mathbf{x}^{k+1} - \mathbf{b}) \end{aligned}$$

4□ > 4ⓓ > 4≧ > 4≧ > ½ > ∅

28 / 34

Alternating Direction Method of Multipliers (ADMM)

 Putting all our previous knowledge together, using variable splitting, Lagrangian multipliers, and augmentation terms, we come with ADMM, a method to solve:

$$\underset{\boldsymbol{x},\boldsymbol{z}}{\operatorname{argmin}} \ f(\boldsymbol{x}) + g(\boldsymbol{z}) \quad \text{s.t. } \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} + \boldsymbol{c} = 0$$

ADMM solves this by posing:

$$\mathcal{L}(\mathbf{x}, \mathbf{z}, \boldsymbol{\lambda}) = f(\mathbf{x}) + g(\mathbf{z}) + \boldsymbol{\lambda}^{\top} (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} + \mathbf{c}\|_{2}^{2}$$

• And then we iterate:

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \, \mathcal{L}(\mathbf{x}, \mathbf{z}^k, \boldsymbol{\lambda}^k) = \underset{\mathbf{x}}{\operatorname{argmin}} \, f(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^k + \mathbf{c} + \frac{\boldsymbol{\lambda}^k}{\rho} \right\|_2^2$$

$$\mathbf{z}^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} \, \mathcal{L}(\mathbf{x}^{k+1}, \mathbf{z}, \boldsymbol{\lambda}^k) = \underset{\mathbf{z}}{\operatorname{argmin}} \, g(\mathbf{z}) + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z} + \mathbf{c} + \frac{\boldsymbol{\lambda}^k}{\rho} \right\|_2^2$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \rho(\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} + \mathbf{c})$$

Fabien Baron (GSU) Optimization Fall 2023 29 / 34

Scaled ADMM

• For convenience we often find in paper the scaled form of ADMM, using the lagragian multiplier $\eta = \lambda/\rho$

$$x^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}) + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^{k} + \mathbf{c} + \eta^{k} \right\|_{2}^{2}$$

$$z^{k+1} = \underset{\mathbf{z}}{\operatorname{argmin}} g(\mathbf{z}) + \frac{\rho}{2} \left\| \mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z} + \mathbf{c} + \eta^{k} \right\|_{2}^{2}$$

$$\eta^{k+1} = \eta^{k} + (\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} + \mathbf{c})$$

ullet η is just the running sum of residuals.

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Fabien Baron (GSU)

ADMM residuals and convergence

- Primal residual: $\mathbf{r}^{k+1} = \mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} + \mathbf{c}$, i.e. checks if the relation between x and z works.
- Dual residual: $\mathbf{s} = \rho \mathbf{A}^{\top} \mathbf{B} (\mathbf{z}^{k+1} \mathbf{z}^k)$, i.e. if z has converged
- Convergence properties: global convergence of the iterative procedure to a local optimum is guaranteed. Slow (linear) rate of convergence, slower than gradient-based methods in theory. But the steps can be made very fast.
- Adaptive ADMM modifies ρ based on heuristics such as residual norm balancing or spectral methods.

4□ > 4□ > 4 = > 4 = > = 90

ADMM: application to TV regularization with Gaussian likelihood

• Like with half quadratic, we pose $f(x) = \frac{1}{2} \| \mathbf{H} \mathbf{x} - \mathbf{y} \|_2^2$, $g(\mathbf{z}) = \ell_1(\mathbf{z})$ and $\mathbf{z} = \nabla \mathbf{x}$, i.e. $\mathbf{A} = \nabla$, $\mathbf{B} = -\mathbf{I}$ and $\mathbf{c} = \mathbf{0}$.

$$egin{align*} oldsymbol{x}^{k+1} &= \operatorname*{argmin}_{oldsymbol{x}} f(oldsymbol{x}) + rac{
ho}{2} \left\| oldsymbol{
abla} oldsymbol{x} - oldsymbol{z}^k + oldsymbol{\eta}^k
ight\|_2^2
ightarrow \operatorname{Proximal operator for g} \ oldsymbol{z}^{k+1} &= oldsymbol{\eta}^k + oldsymbol{
abla} oldsymbol{x}^{k+1} - oldsymbol{z}^{k+1} - oldsymbol{z}^{k+1} \end{aligned}$$

These steps are very similar to Half Quadratic, with just the addition of η in the squared norms.

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

32 / 34

Fabien Baron (GSU) Optimization Fall 2023

Consensus ADMM

• Consensus ADMM is solving argmin $\sum_{i=1}^{N} f_i(\mathbf{x})$ by recasting it as:

$$\underset{\pmb{x}_1, \dots, \pmb{x}_N, \pmb{x}}{\operatorname{argmin}} \sum_{i=1}^N f_i(\pmb{x}_i) \quad \text{s.t. } \pmb{x}_i = \pmb{x}, \quad \forall i.$$

- Used to add more regularization terms. But more importantly if the log-likelihood can be split (into different wavelengths, epochs, etc.), such as is often the case with χ^2 then ADMM allows for **efficient parallelization** of large-scale problems.
- Reminder: k = iteration index, i = term index.

$$\mathbf{x}_{i}^{k+1} = \operatorname*{argmin}_{\mathbf{x}_{i}} f_{i}(\mathbf{x}_{i}) + \frac{\rho}{2} \left\| \mathbf{x}_{i} - \mathbf{x}^{k} + \boldsymbol{\eta}^{k} \right\|_{2}^{2} \rightarrow \text{computed in parallel}$$

$$oldsymbol{x}^{k+1} = rac{1}{N} \sum_{i=1}^N (oldsymbol{x}_i^{k+1} + oldsymbol{\eta^k})
ightarrow extstyle extstyl$$

$$oldsymbol{\eta}^{k+1} = oldsymbol{\eta}^k + oldsymbol{x}_i^{k+1} - oldsymbol{x}^{k+1}
ightarrow \mathsf{fast}$$

←□▶ ←□▶ ← □▶ ← □ ▶ ←

Fabien Baron (GSU) Optimization Fall 2023 33 / 34

Interesting ADMM papers

- Deblurring with Poisson noise:
 https://ieeexplore.ieee.org/document/5492199
- Deblurring with unknown boundaries:
 https://ieeexplore.ieee.org/document/6738120

Fabien Baron (GSU) Optimization Fall 2023 34 / 34