

NumPy:

- introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects
- provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance
- many other python libraries are built on NumPy

Link: http://www.numpy.org/

4

SciPy:

- collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics and more
- part of SciPy Stack
- built on NumPy

Link: https://www.scipy.org/scipylib/

Pandas:

- adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: http://pandas.pydata.org/

6

SciKit-Learn:

- provides machine learning algorithms: classification, regression, clustering, model validation etc.
- built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/

matplotlib:

- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- a set of functionalities similar to those of MATLAB
- line plots, scatter plots, barcharts, histograms, pie charts etc.
- relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

В

Login to the Shared Computing Cluster

- · Use your SCC login information if you have SCC account
- · If you are using tutorial accounts see info on the blackboard

Note: Your password will not be displayed while you enter it.

Selecting Python Version on the SCC

```
# view available python versions on the SCC

[Secol = | module avail python

# load python 3 version

[Secol = | module load python/3.6.2
```


Start Jupyter nootebook

Loading Python Libraries

```
In []: //Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
```

Press Shift+Enter to execute the jupyter cell

Reading data using pandas

Note: The above command has many optional arguments to fine-tune the data import process.

There is a number of pandas commands to read other data formats:

```
pd.read_excel('myfile.xlsx',sheet_name='Sheetl', index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
```

Exploring data frames

Out[3]:

	rank	discipline	phd	service	•••	salary
•	Prof		56	49	Male	186960
•	Prof		12	6	Male	93000
2	Prof		23	20	Male	110515
3	Prof		40	31	Male	131205
	Prof		20	18	Male	104800

1

Data Frame data types

Pandas Type	Native Python Type	Description
object	string	The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).
int64	int	Numeric characters. 64 refers to the memory allocated to hold this character.
float64	float	Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal.
datetime64, timedelta[ns]	N/A (but see the <u>datetime</u> module in Python's standard library)	Values meant to hold time data. Look into these for time series experiments.

Data Frame data types

```
In [4]: #Check a particular column type
        df['salary'].dtype
Out[4]: dtype('int64')
In [5]: #Check types for all the columns
        df.dtypes
Out[4]: rank
                     object
        discipline
                     object
        phd
                     int64
                     int64
        service
        sex
                     object
                     int64
        salary
        dtype: object
```

Data Frame data types

```
In [4]: #Check a particular column type
        df['salary'].dtype
Out[4]: dtype('int64')
In [5]: #Check types for all the columns
        df.dtypes
Out[4]: rank
                     object
        discipline
                     object
        phd
                     int64
                     int64
        service
        sex
                     object
                     int64
        salary
        dtype: object
```

Data Frames attributes

Python objects have attributes and methods.

df.attribute	description	
dtypes	list the types of the columns	
columns	list the column names	
axes	list the row labels and column names	
ndim	number of dimensions	
size	number of elements	
shape	return a tuple representing the dimensionality	
values	es numpy representation of the data	