Roll Number:	
Kon rumber.	

Thapar University, Patiala

Department of Computer Science and Engineering

B. E. (Third Year): Semester-II

Course Code: UCS701

(COE)

Course Name: Theory of Computations

March 17, 2016

Thursday, 1.00 - 3.00 PM

Time: 2 Hours, M. Marks: 30

Name Of Faculty: Shalini Batra

Note: All questions are compulsory. Make suitable assumptions, with reasoning, where ever required.

Q1.a) Give the Regular expression and DFA for the statement:

(1+3)

"The set of all strings in which every pair of adjacent zeros appears before any pair of adjacent ones" $\Sigma = \{0,1\}$

b) Convert the following NFA to DFA

(3)

State 0		Input	
	0	1	
→q0	q0,q1	q3	
q1	q0	q1,q3	
q2	Φ	q1,q2	
* q3	q0, q1,q2	q1	

Q2a) Consider the grammar given below. Obtain the leftmost and rightmost derivation for the string "011100" (3)

$$S \rightarrow 0S1S \mid 1S0S \mid \epsilon$$

b) Give the regular expression for the following DFA

(3)

Q3a) Check whether the given DFA can be minimized:-

- b) For $\Sigma = \{a,b\}$, Let L1= $\{w \mid w \text{ has an even number of a's} \}$ and L2 = $\{w \mid w \text{ has one or two b's} \}$. (3)
- Q4a) Convert the following grammar to Chomsky Normal Form:

S→ ASA | aB

 $A \rightarrow B \mid S$ $B \rightarrow b \mid epsilon$

(3)

(3)

- b) Design a Mealy machine for computing the excusive-OR of the two previous symbols in the input. (For example given the input string 0011101010, the output is 0010011111. (3)
- Q5 a) Model a DFA such that it accepts all binary strings that begin with a 1, and are divisible by 5, reading right to left. i.e. 101 is an acceptable answer but 0101 is not. (3)
 - b) Give the Thompson's construction for $a^*(a/b/c)^*$. (2)