Introduction to Bayesian Data Analysis

Lecture 6: Generalized Linear Model

Julia Haaf

Summer 2025

Background

- GLMs are a big deal in frequentist stats
 - Do you use glm or lme ?!?
- In Bayesian stats, we are used of thinking about our entire model more deliberately, including which model of the data to use.
- Yet, choosing between probability distributions for the data and interpreting the results requires a bit more thought than with linear models.

Overview

- 1. An Example
- 2. Model
 - Generalized Linear Model
 - Model of the Data
 - Prior
- 3. Estimate the Model
 - Model in brms
 - Interpretation of the Results
- 4. Model fit
 - Posterior prediction
 - Model comparison

4/32

An Example

Can mental health be predicted by daily habits and stress?

```
mentalhealth.dat <-
read.csv("data/mental_health_dataset.csv")
knitr::kable(head(mentalhealth.dat[,
c(2,6,9,10,11,12)]))%>%
kable_styling(font_size = 16)
```

Age	Mental_Health_Condition	Stress_Level	Sleep_Hours	Work_Hours	Physical_Activity_Hours
36	No	Medium	7.1	46	5
34	Yes	Low	7.5	47	8
65	Yes	Low	8.4	58	10
34	No	Medium	9.8	30	2
22	Yes	Medium	4.9	62	5
64	Yes	High	6.3	34	0

An Example

"Do you have a mental illness?"

table(mentalhealth.dat\$Mental_Health_Condition)

An Example

```
library("psych")
multi.hist(mentalhealth.dat[, c(2, 10:12)])
```


The Model

What does a meaningful model for this data look like?

The Model

• Linear regression:

$$Y_i \sim ext{Normal}(\mu_i, \sigma^2)$$
 $\mu_i = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2$

Extension:

$$Y_i \sim ext{Normal}(\mu_i, \sigma^2)$$
 $\mu_i = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,n}eta_n$

Problems?

 Y_i : Does the ith person have mental problems? o Yes/No (1/0)

 $Y_i:$ Does the ith person have mental problems? o Yes/No (1/0)

- $Y_i \sim \operatorname{Binomial}(n, \theta_i)$,
- $0 > \theta > 1, n = ?$

???
$$\theta_i = \beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2 + \ldots + x_{i,n}\beta_n$$
 ???

Link Function $g(\cdot)$

- Goal: Connect the linear model with the parameter to be estimated (here: probability)
- For 0,1 responses, the link function used is the logit transformation: $\mu_i=g(heta_i)=\log\left(rac{ heta_i}{1- heta_i}
 ight)$

Using the link function, we go from the probability space into the "logit space" $\$ \rightarrow $\$ \$\pi\$ can be between $-\infty$ and ∞ .

Linear Model

$$\mu_i = \log\left(rac{ heta_i}{1- heta_i}
ight) = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,n}eta_n$$

The generalized linear model specifies the probability distribution of a random variable and a link function that allows flexible use of linear regression models.

Inverse Function $g^{-1}(\cdot)$

• To get from μ_i back to θ_i we use the inverse of the logit function:

$$heta_i = g^{-1}(\mu_i) = rac{e^{\mu_i}}{1 + e^{\mu_i}}$$

- $Y_i \sim \text{Binomial}(1, \theta_i)$,
- Predictors
 - $x_{i,1}$: Age
 - $x_{i,2}$: Stress level (high = 1, not high = 0)
 - $x_{i,3}$: Stress level (medium = 1, not medium = 0)
 - $x_{i,4}$: Sleep in hours
 - $x_{i,5}$: Work time per week in hours
 - $x_{i,6}$: Physical activity per week in hours

•
$$\mu_i = \log\left(rac{ heta_i}{1- heta_i}
ight) = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,6}eta_6$$

How Does the Model Work?

- $Y_i \sim \mathrm{Binomial}(1, \theta_i)$,
- $\mu_i = \log\left(rac{ heta_i}{1- heta_i}
 ight) = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,6}eta_6$
- Example:

$$\mu_i = -5 + x_{i,1} 0.1 + x_{i,2} 1 + x_{i,3} 0.5 + x_{i,4} (-0.3) + \ x_{i,5} 0.1 + x_{i,6} (-0.2)$$

$$\mu_i = -5 + x_{i,1} 0.1 + x_{i,2} 1 + x_{i,3} 0.5 + x_{i,4} (-0.3) + \ x_{i,5} 0.1 + x_{i,6} (-0.2)$$

- Age = 40
- Stress level = medium
- Sleep in hours = 7
- Work hours per week = 32
- Physical activity per week = 8

$$\mu_i = -5 + 40 \times 0.1 + 0 \times 1 + 1 \times 0.5 + 7 \times (-0.3) +$$
 $32 \times 0.1 + 8 \times (-0.2) = -1$

$$\mu_i = -5 + 40 \times 0.1 + 0 \times 1 + 1 \times 0.5 + 7 \times (-0.3) +$$
 $32 \times 0.1 + 8 \times (-0.2) = -1$

The probability of mental problems is then

$$heta_i = g^{-1}(-1) = rac{e^{-1}}{1 + e^{-1}} = 0.27$$

- Age = 50
- Stress level = high
- Sleep in hours = 5
- Work hours per week = 60
- Physical activity per week = 0

$$\mu_i = -5 + 50 \times 0.1 + 1 \times 1 + 0 \times 0.5 + 5 \times (-0.3) +$$
 $60 \times 0.1 + 0 \times (-0.2) = 4.5$

The probability of mental problems is then

$$heta_i = g^{-1}(4.5) = rac{e^{4.5}}{1 + e^{4.5}} = 0.99$$

Prior

• $Y_i \sim \text{Binomial}(1, \theta_i)$,

•
$$\mu_i = \log\left(rac{ heta_i}{1- heta_i}
ight) = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,6}eta_6$$

What parameters do we need in the model?

- All parameters!
 - $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6$
 - Normal distribution
- What about σ ?

Prior

- $Y_i \sim \text{Binomial}(1, \theta_i)$,
- $ullet \quad \mu_i = \log\left(rac{ heta_i}{1- heta_i}
 ight) = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,6}eta_6$

- $x_{i,1}$: Age
- $x_{i,2}$: Stress level high
- $x_{i,3}$: Stress level med
- $x_{i,4}$: Sleep in hours
- $x_{i,5}$: Work hours
- $x_{i,6}$: Physical activity

Prior

- $Y_i \sim \text{Binomial}(1, \theta_i)$,
- $\mu_i = \log\left(rac{ heta_i}{1- heta_i}
 ight) = eta_0 + x_{i,1}eta_1 + x_{i,2}eta_2 + \ldots + x_{i,6}eta_6$

```
model.1 <- brm(Mental_Health_Condition ~ Age +</pre>
                  Stress Level + Sleep Hours + Work Hours
                  + Physical_Activity_Hours
                , family = bernoulli(link = "logit")
                , data = mentalhealth.dat
                , prior = bprior)
## Compiling Stan program...
## Trying to compile a simple C file
## Running /usr/lib/R/bin/R CMD SHLIB foo.c
## using C compiler: 'gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0'
## gcc -I"/usr/share/R/include" -DNDEBUG
I"/home/juliahaaf/R/x86_64-pc-linux-gnu-library/4.4/Rcpp/include/"
I"/home/juliahaaf/R/x86_64-pc-linux-gnu-
library/4.4/RcppEigen/include/" -I"/home/juliahaaf/R/x86_64-pc-linux-
gnu-library/4.4/RcppEigen/include/unsupported" -I"/usr/lib/R/site-
library/BH/include" -I"/usr/lib/R/site-
library/StanHeaders/include/src/" -I"/usr/lib/R/site-
library/StanHeaders/include/" -I"/usr/lib/R/site-
library/RcppParallel/include/" -I/usr/include -DTBB_INTERFACE_NEW -
```

summary(model.1)

```
Family: bernoulli
##
##
    Links: mu = logit
## Formula: Mental_Health_Condition ~ Age + Stress_Level + Sleep_Hours
+ Work_Hours + Physical_Activity_Hours
     Data: mentalhealth.dat (Number of observations: 1000)
##
    Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
            total post-warmup draws = 4000
##
##
## Regression Coefficients:
##
                           Estimate Est.Error l-95% CI u-95% CI Rhat
Bulk ESS
## Intercept
                              -0.12
                                         0.44
                                                 -0.97
                                                           0.72 1.00
6260
## Age
                               0.00
                                         0.00
                                                 -0.01
                                                           0.01 1.00
5871
## Stress LevelLow
                              -0.23
                                         0.15
                                                 -0.51
                                                           0.06 1.00
4551
## Stress_LevelMedium
                               0.11
                                         0.14
                                                 -0.17
                                                           0.39 1.00
4846
## Sleep_Hours
                              -0.03
                                         0.04
                                                 -0.10
                                                           0.05 1.00
6236
```

	Estimate	Est.Error	I-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	-0.12	0.44	-0.97	0.72	1	6260.39	3361.95
Age	0.00	0.00	-0.01	0.01	1	5870.93	3008.00
Stress_LevelLow	-0.23	0.15	-0.51	0.06	1	4551.31	2957.68
Stress_LevelMedium	0.11	0.14	-0.17	0.39	1	4845.65	3399.84
Sleep_Hours	-0.03	0.04	-0.10	0.05	1	6236.45	3186.00
Work_Hours	0.01	0.00	0.00	0.01	1	6695.53	2986.99
Physical_Activity_Hours	0.01	0.02	-0.03	0.04	1	5656.69	3045.62

Posterior Prediction

Does the model accurately predict the response category for mental disorder?

Posterior Prediction

```
# tapply gives a matrix, for ggplot we need a data frame
post.pred.dat <- as.data.frame(rbind(post.pred.dat$Yes</pre>
                                       , post.pred.dat$No))
# Naming the columns and rows
colnames(post.pred.dat) <- c("lower", "median", "upper")</pre>
post.pred.dat$mental.health.condition <- c("yes", "no")</pre>
ggplot(post.pred.dat) +
    geom_bar(aes(x = mental.health.condition
                  \cdot v = median)
              , stat = "identity"
             , fill = "skyblue"
              , alpha = 0.7) +
    geom_errorbar(aes(x = mental.health.condition
                       , ymin=lower
                       , ymax=upper)
                   , width=0.4, colour="orange"
                   , alpha=0.9, linewidth=1.3)+
  theme_classic(base_size = 20)
```

Model Comparison

Is the model informative overall?

→ Comparison with a model without predictors

```
## Running /usr/lib/R/bin/R CMD SHLIB foo.c
## using C compiler: 'gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0'
## gcc -I"/usr/share/R/include" -DNDEBUG -
I"/home/juliahaaf/R/x86_64-pc-linux-gnu-library/4.4/Rcpp/include/" -
I"/home/juliahaaf/R/x86_64-pc-linux-gnu-
```

Model Comparison

```
bayes_factor(model.0, model.1)
## Warning: effective sample size cannot be calculated, has been
replaced by
## number of samples.
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Estimated Bayes factor in favor of model.0 over model.1:
1455990.93553
```

Model Comparison

- Strong evidence against effects of all predictors.
- Prevalence for a mental disorder cannot be predicted by age, life habits, and stress (for this dataset).
- Possible reasons?

:)