Computer Organization and Architecture Memory Unit-Introduction

Veena Thenkanidiyoor National Institute of Technology Goa

1

Computer Memory

- Program and data they operate on are held in the memory of the computer
 - Number & character operands, as well as instructions are stored in the memory of the computer

Assignment statement: A = B + C LOAD R0, B LOAD R1, C ADD R2, R0, R1 STORE A, R2

- Execution speed of programs
 - Also dependent on the speed with which instructions and data can be transferred between the processor and memory

3

3

Computer Memory

- Desirable to have large memory
 - To execute large programs
 - To handle huge amount of data
- Ideally to have memory that is fast, large, and inexpensive
 - Unfortunately not possible to meet this requirement
 - Increased speed and size will increase the cost too
 - · Clever solutions to address this

Computer Memory

- Maximum size
 - Determined by the addressing scheme
 - (16-bit computer) -- generates 16-bit addresses

 Addressing up to 2¹⁶=64K memory locations
- Modern computers are byte addressable

1 bit -> cill
1 Byte
1 word. -> Collection of biff
1 Bytes

Word Lingth = 32 bit (Word) 30 bils 2 bils
1 bit -> 2 bit (Word) 30 bils 2 bils

- Memory is designed to store and retrieve data in word-length quantities
 - Word: number of bits actually stored or retrieved in one memory access

Bylio Bi Ba B3

5

Byte Addressable Memory

Word Address	Byte Address				Wor Add
0	3	2	1	0	(
1	7	6	5	4	1
2	11	10	9	8	2
			•		
2 ^{k/4} - 1	2 ^k -4	2 ^k -3	2 ^k -2	2 ^k -1	2 ^{k/2}

Little Endian

Big Endian

Example: Intel Processors

Motorola Processors

Memory Read and Write Operation Read Processor loads the address of memory **CPU** location into MAR PC IR - Set the R/W line to 1 Address MAR - Memory responds by R/\overline{W} placing the data from Data MDR Data **Memory** address location onto MFC Unit data line RO R1 - Confirm the action by asserting MFC (memory function complete) signal R_{n-1} n general purpose Upon **MFC** receiving egisters signal, processor loads the data on data line into MDR

7

Memory Read and Write Operation Write Processor loads the address of memory **CPU** location into MAR PC - Processor loads data Address into MDR MAR R/W - Set the R/W line to 0 to Data MDR Data **Memory** indicate write operation MFC Unit R0 - Processor places the R1 data in MDR onto data line - Data on data line is **R***n*-1 written into memory n general purpose registers location – Memory confirms the action by asserting MFC

Computer Memory

• CPU executes the instructions for which the instructions and operands have to come from memory unit

LOAD RI, C

STORE A, R2 7

RD, RI, RO

A, B, C

ρισ

MCGA

- · Operations which involve memory:
 - Instruction fetch
 - · Memory read
 - Memory operand fetch and store
 - Memory read
 - Memory write
- · Instructions involving memory access:
 - LOAD and STORE instructions
- Block transfer
 - If read or write operations involve consecutive address locations in the main memory
 - Only address sent is the starting address

ç

9

Memory Performance Parameters

- Access Time:
 - Time interval between initiation of one operation and completion of that operation
 - Example: Time between assertion of Read signal and MFC signal
- Memory Cycle Time:
 - Minimum time delay between the initiation of two successive memory operations
 - Time delay between start of a read/write operation to start of next memory operation
- Memory cycle time is usually slightly larger than access time

Memory Latency and Memory Organization

- Latency: Time to access the first of the sequence of memory words
- What is involved in determining the latency of the memory operation?
 - Processor issues the logical address to memory unit
 - The logical address need to be converted into physical address
- Memory unit is called random access memory (RAM)
 - Any location can be accessed for read/write operation independent of the location's address
- Memory unit is organised in hierarchical manner

11

11

Memory Hierarchy

- Processor processes instructions and data faster than it can be fetched from memory unit
- Memory access time is the bottleneck
- One way to reduce memory access time is to use faster memory
 - A small and faster memory bridge the gap between processor and main memory
- Virtual memory

Semiconductor Memories

Two basic ways of designing memory

1 bit -> Memory all

- Static RAM (SRAM)
- Dynamic RAM (DRAM)

Static RAM:

- Built using metal-oxide semiconductor (MOS) transistors
- MOS transistors acts as switch
 - +5 v (when Gate input is 1): Transistor conducts: ON state
 - 0 v (when Gate input is 0): Transistor does not conducts: OFF state

13

13

Static RAM Cell

- Two inverters are cross connected to form latch
- Inverters are connected to 2 transistors which act as switches
- Switches are opened or closed under the control of word line
- This circuit retain the state (bit) as long as power is applied (Static Memory)

- Two inverters are cross connected to form latch
- Inverters are connected to 2 transistors which act as switches
- Switches are opened or closed under the control of word
- This circuit retain the state (bit) as long as power is applied (Static Memory)

15

Static RAM Cell - Write

- Two inverters are cross connected to form latch
- Inverters are connected to 2 transistors which act as switches
- Switches are opened or closed under the control of word line
- This circuit retain the state (bit) as long as power is applied (Static Memory)

CMOS Static RAM Cell

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

17

17

CMOS Static RAM Cell

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

18

CMOS Static RAM Cell - Read

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

19

19

CMOS Static RAM Cell - Write

- This circuit retain the state (bit) as long as power is applied (Static Memory)
- Continuous power is needed for a cell to retain the state

20

CMOS Static RAM Cell

- Volatile
- Low power consumption-current flows in the cell only when the cell is accessed
- · Access time is less i.e. faster memory
- · Uses 6 transistors: Costly
- Used in applications where speed is critical concern: Cache

21

Dynamic RAM (DRAM) Cell

- · Less expensive and simpler cell
- Information is stored in the form of a charge on a capacitor (C)
 - Charge in capacitor is stored only for short time
 - · Tens of a millisecond
 - However, a cell is required to store information for a much longer time
- To retain information for longer time, content of capacitor mush be periodically refreshed

- Low speed as refresh needed
- Only 1 transistor is used
- Used to build main memory

Reference

 Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", 5th Edition, Tata McGraw Hill, 2002

23

23

Thank You

24