Statistical Learning Homework 4

110024516 邱繼賢

```
library(leaps)
library(splines)
library(tree)
library(latex2exp)
library(randomForest)
library(caret)
library(gbm)
library(dplyr)
library(ggplot2)
library(ggpubr)
library(ggpubr)
```

Problem 1.

EDA

```
bike <- read.csv(file="bike.csv") #read data
for (i in c(2,4,5,6,7,8)) {
    bike[,i] = as.factor(bike[,i])
}
dim(bike)</pre>
```

[1] 731 12

• 此資料共 731 比觀測值,12 個變數,其中沒有任何 NA 值

Histogram of bike\$count

- Response variable: count 為 discrete variable 但是分布數值很廣且左右對稱,可視為 normal continuous variable 處理
- Predictor variables: 其中7個為跟時間相關的變數,剩餘4個為跟天氣相關的變數,也是我們此次分析 主要著重的變數

將跟天氣相關的 4 個變數對 count 作圖:

```
par(mfrow = c(2,2))
boxplot(count ~ weather, bike)
plot(count ~ temp, bike)
plot(count ~ hum, bike)
plot(count ~ windspeed, bike)
```


- weather 為 nomial variable 共 3 個 levels,可明顯看出隨著天氣狀況變差,count 數量有明顯的下降
- temp, hum, windspeed 皆為 continuous variables, 其中只有 temp 對 count 有明顯的 non-linear 趨勢變
 化,另兩個變數對 count 在圖形上關聯性不明顯

將全部資料以 600:131 的比例隨機分割成 training data 和 testing data:

```
set.seed(1209)
idx = sample(1:731, 131)
train_bike = bike[-idx,]
test_bike = bike[idx,]
```

以下建模皆是對 training data 進行,並比較其在 testing data 上的表現

Linear Regression

以 count 為 response 建構 linear model, 並且以 BIC criterion 對模型做 forward seletion


```
which.min(fit1.1_reg_sum$bic)
```

[1] 16

選取 16 個變數時,BIC 達到最小,此 16 個變數的估計係數如下:

```
coef(fit1.1_reg, 16) %>% round(2)
```

```
## (Intercept) days_since_2011 seasonSPRING
## -4703601.13 -0.86 -346.96
```

```
seasonSUMMER
                                     seasonWINTER
                                                                      year
##
                  -585.43
                                         -1554.36
                                                                  2340.79
##
##
                 monthDEC
                                         monthJUL
                                                                 monthOCT
                    -7.11
                                          -524.98
                                                                   464.60
##
                                holidayNO HOLIDAY
##
                 monthSEP
                                                               weekdaySUN
                    750.37
                                           738.58
                                                                  -292.53
##
             weatherMISTY weatherRAIN/SNOW/STORM
##
                                                                      temp
                  -436.86
                                         -1825.83
                                                                   107.50
##
##
                      hum
                                        windspeed
                   -17.21
                                           -43.89
##
```

```
predict.regsubsets <- function(object, newdata, id, ...) {
  form <- as.formula(object$call[[2]])
  mat <- model.matrix(form, newdata)
  coefi <- coef(object, id = id)
  xvars <- names(coefi)
  mat[, xvars] %*% coefi
}</pre>
```

以此模型對 testing data 進行預測,並計算 MSE

```
pred = predict.regsubsets(fit1.1_reg, test_bike, id=16)
plot(pred, test_bike$count, xlab=TeX("$\\hat{y}$"), ylab = "y")
abline(0,1)
```



```
mean((pred-test_bike$count)^2)
```

[1] 551245.4

Non-linear Regression

藉由 EDA 對變數 temp 的觀察,可以發現其對 response count 有非線性影響,以下建構 non-linear model:對 temp 做 natural spline 取 knots = 10, 20, 然後一樣使用 BIC criterion 做 forward selection

[1] 14

選取 14 個變數時有最小的 BIC,估計係數如下:

coef(fit1.2_reg, 14) %>% round(2)

days_since_2011	(Intercept)	##
-0.84	-4573003.29	##
seasonSUMMER	seasonSPRING	##
-351.64	-709.10	##
year	seasonWINTER	##
2276.26	-1550.59	##
weekdaySUN	${\tt weekdayMON}$	##
-345.02	-304.71	##
weatherRAIN/SNOW/STORM	${\tt weather MISTY}$	##
-1780.55	-401.64	##
windspeed	hum	##
-49.24	-22.26	##

```
## ns(temp, knots = c(10, 20))1 ns(temp, knots = c(10, 20))2
## 4103.45 2998.85
## ns(temp, knots = c(10, 20))3
## 1100.30
```

以此 non-linear model 對 testing data 進行預測,並計算 MSE

```
pred = predict.regsubsets(fit1.2_reg, test_bike, 14)
plot(pred, test_bike$count, xlab = TeX("$\\hat{y}$"), ylab = "y")
abline(0,1)
```



```
mean((pred-test_bike$count)^2)
```

[1] 438341.7

⇒ 相對於 linear model MSE 有所減少

Tree-Based Models

Tree

建構 tree model, 並且利用 5-fold CV 決定 terminal nodes 的數量

```
tr = tree(count ~ ., data = train_bike)
set.seed(12091)
tr_cv = cv.tree(tr, FUN = prune.tree, K=5)
plot(tr_cv$size, tr_cv$dev, type = "b")
```


決定 terminal nodes = 8

```
fit1.3 = prune.tree(tr, best = 8)
plot(fit1.3)
text(fit1.3, pretty = 0)
```


使用此 tree model 對 testing data 進行預測,並計算 MSE

```
pred = predict(fit1.3, test_bike)
plot(pred, test_bike$count, xlab = TeX("$\\hat{y}$"), ylab = "y")
abline(0,1)
```


mean((pred-test_bike\$count)^2)

[1] 878507.9

Random Forests

Bagging of trees 只是 random forest 在 m=p 時的特例,故在此只建構 random forest model

```
rf = randomForest(count ~ ., train_bike)
plot(rf)
```


大概 ntrees > 200 後 error 趨於穩定,再來利用 OOB error 決定參數 m

```
tuneRF(train_bike[,-12],train_bike[,12], ntreeTry = 200)
```

```
## mtry = 3 00B error = 453395.4
## Searching left ...
## mtry = 2 00B error = 482199.6
## -0.06353008 0.05
## Searching right ...
## mtry = 6 00B error = 454212.8
## -0.001802786 0.05
```


mtry OOBError

2 482199.6

2


```
mean((pred-test_bike$count)^2)
```

[1] 442875.1

Boosting

建構 boosting model, 並利用 5-fold CV 選取 tuning parameter: n.trees, interaction.depth, shrinkage

```
## Stochastic Gradient Boosting
##
## 600 samples
## 11 predictor
```

```
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 480, 480, 480, 480, 480
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees
                                 RMSE
                                            Rsquared
                                                       MAE
##
                         50
                                 871.0494
                                           0.8170994
                                                       647.7889
     1
                        100
                                 758.4417 0.8507546 550.6932
##
     1
##
     1
                        150
                                 727.6231
                                           0.8609595 521.1160
##
                         50
                                 750.4880 0.8546718 541.4160
     2
                        100
                                  688.8816 0.8743615 489.5386
##
##
     2
                        150
                                  673.9056 0.8804652 479.3101
##
     3
                         50
                                 714.5174 0.8656928 502.3411
##
     3
                        100
                                  673.3243 0.8795628 463.2402
##
     3
                        150
                                  655.2624 0.8861280 451.1658
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 150, interaction.depth =
    3, shrinkage = 0.1 and n.minobsinnode = <math>10.
\Rightarrow (n.trees, interaction.depth, shrinkage) = (150, 3, 0.1)
以選取後的參數建構 boosting model 對 testing data 進行預測,並計算 MSE
fit1.5 = gbm(count ~., data=train_bike, n.trees = 150, distribution = "gaussian",
             interaction.depth = 3, shrinkage = 0.1)
pred = predict(fit1.5, test_bike)
plot(pred, test_bike$count, xlab = TeX("$\\hat{y}$"), ylab = "y")
abline(0,1)
```


mean((pred-test_bike\$count)^2)

[1] 377254.1

Performance comparison

	Linear model	Non-Linear model	Tree	Random Forests	Boosting
MSE	551245.4	438341.7	878507.9	442875.1	344140.7

⇒ Boosting model 在 MSE 上的表現最好,以下對該模型重要變數解釋

Important input variable and Summary

summary(fit1.5)


```
##
                                        rel.inf
                                var
## days_since_2011 days_since_2011 51.40688272
## temp
                               temp 25.44431404
                                    7.43147291
## hum
                                hum
## month
                              month
                                     3.72995785
## windspeed
                         windspeed
                                     3.39723909
## weather
                                     3.29454586
                            weather
## season
                                     3.05021915
                             season
## weekday
                                     1.65022347
                            weekday
## workingday
                                     0.49870047
                        workingday
## holiday
                                     0.09644444
                           holiday
## year
                                     0.00000000
                               year
```

最重要的變數是 day_since_2011 和 temp,以下僅對跟天氣有關的四個變數繪製 partial dependence plot

```
par(mfrow = c(2,2))
plot(fit1.5, i = "temp")
```


plot(fit1.5, i = "hum")

plot(fit1.5, i = "windspeed")

plot(fit1.5, i = "weather")

- 隨著 temp 上升,response 呈現先升後降的曲線趨勢,與我們在 EDA 時的觀察一致
- hum 上升到 50 之後, response 數量開始下降
- windspeed 上升 response 隨著下降,約升至 25 時,response 降到最低
- weather 越差, response 數量越低,與 EDA 時的觀察一致

藉由以上天氣變數可以推斷,天氣會明顯的影響使用者對腳踏車的租借數量,舒適的天氣 (溫度適中、濕度低、風速小、天氣晴朗) 則租借腳踏車的數量越多,而不適的天氣 (溫度過高或過低、濕度高、風速大、天氣陰雨) 則租借腳踏車的數量越少。

Problem 2.

EDA

導入資料並移除 NA 值:

```
survey <- read.csv(file="airline.csv") #read data
survey1 <- na.omit(survey) #remove missing data
for (i in c(2,3,5,6,24)) {
    survey1[,i] = as.factor(survey1[,i])
}
survey1 = survey1[,-1]</pre>
```

glimpse(survey1)

```
## Rows: 103,594
## Columns: 23
## $ Gender
                                       <fct> Male, Male, Female, Female, Male, Fe~
                                       <fct> Loyal Customer, disloyal Customer, L~
## $ Customer.Type
## $ Age
                                       <int> 13, 25, 26, 25, 61, 26, 47, 52, 41, ~
## $ Type.of.Travel
                                       <fct> Personal Travel, Business travel, Bu~
## $ Class
                                       <fct> Eco Plus, Business, Business, Busine~
## $ Flight.Distance
                                       <int> 460, 235, 1142, 562, 214, 1180, 1276~
## $ Inflight.wifi.service
                                       <int> 3, 3, 2, 2, 3, 3, 2, 4, 1, 3, 4, 2, ~
## $ Departure.Arrival.time.convenient <int> 4, 2, 2, 5, 3, 4, 4, 3, 2, 3, 5, 4, ~
## $ Ease.of.Online.booking
                                       <int> 3, 3, 2, 5, 3, 2, 2, 4, 2, 3, 5, 2, ~
## $ Gate.location
                                       <int> 1, 3, 2, 5, 3, 1, 3, 4, 2, 4, 4, 2, ~
## $ Food.and.drink
                                       <int> 5, 1, 5, 2, 4, 1, 2, 5, 4, 2, 2, 1, ~
## $ Online.boarding
                                       <int> 3, 3, 5, 2, 5, 2, 5, 3, 3, 5, 2, ~
## $ Seat.comfort
                                       <int> 5, 1, 5, 2, 5, 1, 2, 5, 3, 3, 2, 1, ~
## $ Inflight.entertainment
                                       <int> 5, 1, 5, 2, 3, 1, 2, 5, 1, 2, 2, 1, ~
## $ On.board.service
                                       <int> 4, 1, 4, 2, 3, 3, 5, 1, 2, 3, 1, ~
## $ Leg.room.service
                                       <int> 3, 5, 3, 5, 4, 4, 3, 5, 2, 3, 3, 2, ~
## $ Baggage.handling
                                       <int> 4, 3, 4, 3, 4, 4, 4, 5, 1, 4, 5, 5, ~
## $ Checkin.service
                                       <int> 4, 1, 4, 1, 3, 4, 3, 4, 4, 4, 3, 5, ~
## $ Inflight.service
                                       <int> 5, 4, 4, 4, 3, 4, 5, 5, 1, 3, 5, 5, ~
## $ Cleanliness
                                       <int> 5, 1, 5, 2, 3, 1, 2, 4, 2, 2, 2, 1, ~
## $ Departure.Delay.in.Minutes
                                       <int> 25, 1, 0, 11, 0, 0, 9, 4, 0, 0, 0, 0~
                                       <int> 18, 6, 0, 9, 0, 0, 23, 0, 0, 0, 0~
## $ Arrival.Delay.in.Minutes
## $ satisfaction
                                       <fct> neutral or dissatisfied, neutral or ~
```

這是一筆來自航空公司的問卷調查資料,一共 103594 比觀測值,23 個變數:

- response variable: satisfaction 為一 2-level 類別型變數
- Gender, Customer. Type, Type. of. Travel, Class 皆為類別型變數
- 有一大部分變數是問卷評分,為評分 0~5 的 ordinal 變數,在以下分析將其皆視為 continuous 變數

觀察所有連續型變數各自間的 corrplot

```
cor_ = cor(survey1[,-c(1,2,4,5,23)])
colnames(cor_) = NULL
corrplot(cor_, tl.cex=0.7)
```


Departure.Delay.in.Minutes 和 Arrival.Delay.in.Minutes 有非常強的正相關,建構模型時此二變數可能會有很強的共線性

繪製各變數對 response 影響 (以下僅畫出幾個較明顯的變數):

```
p1 = ggplot(survey1, aes(x=Type.of.Travel, fill=satisfaction)) +
    geom_bar(position = "dodge")
```

```
p2 = ggplot(survey1, aes(x = Class, fill = satisfaction)) +
    geom_bar(position = "dodge")
p3 = ggplot(survey1, aes(x=Inflight.wifi.service, fill=satisfaction)) +
    geom_boxplot() +
    theme(axis.text.y = element_blank(), axis.ticks = element_blank())
p4 = ggplot(survey1, aes(x=Online.boarding, fill=satisfaction)) +
    geom_boxplot() +
    theme(axis.text.y = element_blank(), axis.ticks = element_blank())
p5 = ggplot(survey1, aes(x=Seat.comfort, fill=satisfaction)) +
    geom_boxplot() +
    theme(axis.text.y = element_blank(), axis.ticks = element_blank())
p6 = ggplot(survey1, aes(x=Inflight.entertainment, fill=satisfaction)) +
    geom_boxplot() +
    theme(axis.text.y = element_blank(), axis.ticks = element_blank())
ggarrange(p1,p2,p3,p4,p5,p6, ncol=2, nrow=3, common.legend = T, legend = "bottom")
   40000 -
30000 -
20000 -
                                                   30000
                                                  20000
                                                   10000 -
   10000 -
       0 -
                                                       0 -
                              Personal Travel
                                                                         Eco
                                                                                   Eco Plus
             Business travel
                                                            Business
                     Type.of.Travel
                                                                        Class
                           3
                                           5
                                                                                          5
              Inflight.wifi.service
                                                               Online.boarding
   0
                                   4
                                           5
                                                  0
                                                          1
                                                                  2
                                                                                          5
                 Seat.comfort
                                                            Inflight.entertainment
```

將資料以 83594:2000 的比例隨機分割成 training data 和 testing data, 以下建模皆是利用 training data 建構,

neutral or dissatisfied

satisfied

satisfaction

並觀察其在 testing data 上表現

```
set.seed(1210)
idx = sample(1:103594, 2000)
train_survey = survey1[-idx,]
test_survey = survey1[idx,]
```

Tree based model

Tree

建構 tree model, 並且利用 5-fold CV 決定 terminal nodes 的數量

```
tr = tree(satisfaction ~ ., data = train_survey)
set.seed(12121)
tr_cv = cv.tree(tr, FUN = prune.tree, K=5)
plot(tr_cv$size, tr_cv$dev, type = "b")
```


 \Rightarrow terminal nodes = 12

建構 classification tree 如下

```
fit2.1 = prune.tree(tr, best = 12)
plot(fit2.1)
text(fit2.1, pretty = 0, cex = 0.5)
```


將此模型對 testing data 進行預測並計算 ACC 和 AUC

```
pred = predict(fit2.1, test_survey, type = "class")
ACC = mean(test_survey$satisfaction==pred)
AUC = roc.curve(test_survey$satisfaction,pred,plotit = F)$auc
c(ACC,AUC) %>% round(3)
```

[1] 0.898 0.896

Random Forests

Bagging of trees 只是 random forest 在 m=p 時的特例,故在此只建構 random forest model

```
rf = randomForest(satisfaction ~ ., train_survey)
plot(rf)
```

rf

 \Rightarrow ntree > 200 後 error 呈現穩定

```
set.seed(12122)
tuneRF(train_survey[,-23], train_survey[,23], ntreeTry = 200)
```

```
## mtry = 4  00B error = 3.79%
## Searching left ...
## mtry = 2  00B error = 4.5%
## -0.1877275 0.05
## Searching right ...
## mtry = 8  00B error = 3.59%
## 0.0525221 0.05
## mtry = 16  00B error = 3.62%
## -0.009055982 0.05
```



```
## 2.00B 2 0.04496329
## 4.00B 4 0.03785657
## 8.00B 8 0.03586826
## 16.00B 16 0.03619308
```

 \Rightarrow 利用 OOB eror 決定參數 mtry = 8

設定參數 ntree = 200, ntry = 8 建構 Random Forests model,並對 testing model 進行預測且計算 ACC 和 AUC

```
fit2.2 = randomForest(satisfaction ~., train_survey, ntree = 200, mtry=8, importance=T)
pred = predict(fit2.2, test_survey, type = "class")
ACC = mean(test_survey$satisfaction==pred)
AUC = roc.curve(test_survey$satisfaction,pred,plotit = F)$auc
c(ACC,AUC) %>% round(3)
```

[1] 0.969 0.968

Boosting

建構 boosting model, 並利用 5-fold CV 選取 tuning parameter: n.trees, interaction.depth, shrinkage

```
set.seed(12101)
contrl = trainControl(method = "repeatedcv", number=5, repeats = 1)
boots = train(satisfaction ~ ., train_survey, method = "gbm",
              trControl = contrl, verbose=F)
boots
## Stochastic Gradient Boosting
##
## 101594 samples
##
       22 predictor
##
        2 classes: 'neutral or dissatisfied', 'satisfied'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times)
## Summary of sample sizes: 81275, 81275, 81276, 81275, 81275
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees Accuracy
                                            Kappa
                         50
                                 0.8819418 0.7587004
##
     1
                        100
                                 0.9121011 0.8197695
##
                                 0.9238537 0.8442407
##
     1
                        150
                                 0.9189322 0.8343116
##
     2
                         50
                                 0.9307636 0.8585359
                        100
##
     2
##
     2
                        150
                                 0.9339725 0.8651519
##
     3
                         50
                                 0.9274760 0.8519915
##
     3
                        100
                                 0.9346812 0.8666104
                                 0.9399768 0.8774254
##
     3
                        150
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150, interaction.depth =
```

```
## 3, shrinkage = 0.1 and n.minobsinnode = 10.
```

⇒ 選定參數: ntree=150, interaction.depth=3, shrinkage=0.1

以上述選定的參數建構 Boosting model 並對 testing data 進行預測且計算 ACC 和 AUC

Using 150 trees...

```
pred_class = ifelse(pred>0.5, "satisfied", "neutral or dissatisfied")

ACC = mean(test_survey$satisfaction==pred_class)

AUC = roc.curve(test_survey$satisfaction, pred_class, plotit = F)$auc
c(ACC, AUC) %>% round(3)
```

[1] 0.944 0.942

Performance comparison

	Tree	Random Forests	Boosting
ACC	0.898	0.970	0.946
AUC	0.896	0.968	0.944

⇒ Random Forests model 在 ACC 和 AUC 上的表現最佳

觀察 Random Forests 模型的重要解釋變數

importance(fit2.2)

##	neutral or dissatisfied	satisfied
## Gender	10.23119	6.523206
## Customer.Type	47.40289	92.960158
## Age	36.07735	36.854078
## Type.of.Travel	53.30188	145.010659
## Class	28.22788	30.681970

##	Flight.Distance	25.38268	31.380118
##	Inflight.wifi.service	167.57065	51.974720
##	Departure.Arrival.time.convenient	30.20996	18.848181
##	Ease.of.Online.booking	18.42638	23.908916
##	Gate.location	26.68138	20.246859
##	Food.and.drink	13.12033	25.990484
##	Online.boarding	64.17580	50.868922
##	Seat.comfort	63.21041	40.837640
##	Inflight.entertainment	31.46400	27.260744
##	On.board.service	44.31448	21.250631
##	Leg.room.service	36.77020	27.554057
##	Baggage.handling	65.40479	28.184870
##	Checkin.service	90.35948	42.617513
##	Inflight.service	65.65949	14.173065
##	Cleanliness	36.04765	31.969213
##	Departure.Delay.in.Minutes	21.66875	11.315160
##	Arrival.Delay.in.Minutes	25.69945	25.952244
##		MeanDecreaseAccuracy Mea	nDecreaseGini
		neambeer cabenecaracy nee	indecreased in i
	Gender	11.07344	128.9260
##		-	
##	Gender	11.07344	128.9260
## ## ##	Gender Customer.Type	11.07344 76.51663	128.9260 2055.4948
## ## ##	Gender Customer.Type Age	11.07344 76.51663 47.58947	128.9260 2055.4948 1350.5424
## ## ## ##	Gender Customer.Type Age Type.of.Travel	11.07344 76.51663 47.58947 87.03393	128.9260 2055.4948 1350.5424 5000.0690
## ## ## ##	Gender Customer.Type Age Type.of.Travel Class	11.07344 76.51663 47.58947 87.03393 33.69211	128.9260 2055.4948 1350.5424 5000.0690 5438.5422
## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022
## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826
## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968
## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259
## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294
## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location Food.and.drink	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786 24.22428	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294 413.4067
## ## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location Food.and.drink Online.boarding	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786 24.22428 74.47639	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294 413.4067 10792.8938
## ## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location Food.and.drink Online.boarding Seat.comfort	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786 24.22428 74.47639 73.23281	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294 413.4067 10792.8938 1809.7969
## ## ## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location Food.and.drink Online.boarding Seat.comfort Inflight.entertainment	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786 24.22428 74.47639 73.23281 40.85662	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294 413.4067 10792.8938 1809.7969 3255.7777
## ## ## ## ## ## ## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location Food.and.drink Online.boarding Seat.comfort Inflight.entertainment On.board.service	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786 24.22428 74.47639 73.23281 40.85662 43.09728	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294 413.4067 10792.8938 1809.7969 3255.7777 1025.0434
## ## ## ## ## ## ## ## ## ## ## ## ##	Gender Customer.Type Age Type.of.Travel Class Flight.Distance Inflight.wifi.service Departure.Arrival.time.convenient Ease.of.Online.booking Gate.location Food.and.drink Online.boarding Seat.comfort Inflight.entertainment On.board.service Leg.room.service	11.07344 76.51663 47.58947 87.03393 33.69211 38.95668 103.30963 28.36737 23.18315 22.00786 24.22428 74.47639 73.23281 40.85662 43.09728 38.69369	128.9260 2055.4948 1350.5424 5000.0690 5438.5422 1363.0022 8075.0826 584.2968 1478.8259 735.2294 413.4067 10792.8938 1809.7969 3255.7777 1025.0434 1268.1415

## Inflight.service	50.55683	1083.4860
## Cleanliness	45.43543	903.0098
## Departure.Delay.in.Minutes	26.68014	449.1059
## Arrival.Delay.in.Minutes	34.74999	522.1362

varImpPlot(fit2.2, cex=0.5)

fit2.2

藉由 Decrease in ACC 可以選取出前幾個最重要的解釋變數: Inflight.wifi.service, Checkin.service, Online.boarding, Type.of.Travel, Seat.comfort, Customer.Type, Baggage.handling

藉由 Decrease in Gini 可以選取出錢幾個最重要的解釋變數: Online.boarding, Inflight.wifi.service, Type.of.Travel, Class

但是這種決定重要解釋變數個數的方法很主觀,沒辦法確定後面應該留幾個變數當作不重要變數,以下可以利用 在模型中加入 random noise factor 的方式來輔助。

Add noise factor

加入兩個 noise factor:

```
\bullet \ z_1 \ \sim \ N(0,1)
```

```
• z_2 \sim Ber(p = 0.5)
```

```
set.seed(12126)
n = dim(survey1)[1]
survey2 = survey1 %>%
  mutate(z1 = rnorm(n), z2 = as.factor(rbinom(n,1,0.5)))
```

對加入 noise factor 的資料建構 Random Forests model, 一樣觀察其重要解釋變數

```
fit2.4 = randomForest(satisfaction ~ ., survey2, ntree=200, mtry = 8, importance=T)
```

```
varImpPlot(fit2.4, cex = 0.5)
```

fit2.4

藉由 Decrease in Gini 可以看出有數個變數重要性比 z_1 還要低,那麼我們就可以確定這些變數是不重要變數,而其餘剩餘的就是重要解釋變數。

Suggestions

上述重要解釋變數中,有一部分是顧客的個人訊息,如: Type.of. Travel, Class 等,這些變數是航空公司無法控制的,故我們只能針對 Online.boarding, Inflight.wifi.service, Inflight.entertainment, Seat.comfort, Leg.room.service, Ease.of. Online.booking, Checkin.service, On.board.service, Baggage.handling, Inflight.service (重要度高到低)等變數給建議:

- 你們可以先增進公司的軟體系統及電子設備,像是:線上登機系統 (Online.boarding)、飛行途中無線網路 服務 (Inflight.wifi.service)、飛行途中娛樂設施 (Inflight.entertainment), 這會大幅提高顧客滿意比例。
- 再來改善你們飛機座位的舒適程度 (Seat.comfort) 和座位放置腳的空間 (Leg.room.service)。
- 最後可以再多注意你們公司在 Checkin (*Checkin.service*), On board (*On.board.service*), Inflight (*Inflight.service*) 各階段的服務品質。