Higher Category Theory

September 23, 2024

1 Background category theory

Definition 1.1 Given $F: \mathcal{C} \to \mathcal{D}$ and $x: \mathcal{D}$ we can define the slice category over F as the pullback:

$$\begin{array}{ccc}
\mathcal{C}_{/F} & \longrightarrow \mathcal{D}_{/x} \\
\downarrow & & \downarrow \\
\mathcal{C} & \longrightarrow \mathcal{D}
\end{array}$$

Explicitly objects are given as pairs $c: \mathcal{C}$ and morphisms $Fc \to x$.

Example 1.2 Over the Yoneda embedding $\sharp : \mathcal{C} \to \hat{\mathcal{C}}$ and $F : \hat{\mathcal{C}}$ we have an element of $\mathcal{C}_{/F}$ is a pair of $c : \mathcal{C}$ and a morphism $\sharp_c \to F$, that is an element F(c).

Lemma 1.3 Given $F: \mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ the natural map $\mathrm{colim}_{c \in \mathcal{C}_{/F}} \ \sharp_c \to F$ is an equivalence

Proof. The natural map is given by choosing, for each $c: \mathcal{C}_{/F}$, the specified map $\sharp_c \to F$. We have equivalences, for each presheaf G

$$\hom_{\hat{\mathcal{C}}}(\operatorname*{colim}_{c:\mathcal{C}/F} \curlywedge_c, G) \cong \lim_{c \in \mathcal{C}/F} \hom(\curlywedge_c, G) \cong \lim_{c \in \mathcal{C}/F} G(c) \simeq \hom(F, G)$$

giving the natural equivalence by Yoneda. The last equivalence is quick to check by hand. \Box

Definition 1.4 (Kan extension (over inclusions)) Given $i: \mathcal{C}_0 \subseteq \mathcal{C}$, the inclusion of a subcategory, and \mathcal{D} a (co)complete category, the restriction functor $i^* : \text{hom}(\mathcal{C}, \mathcal{D}) \to \text{hom}(\mathcal{C}_0, \mathcal{D})$ has left and right adjoints, given by

$$i_!(F)(x) = \operatorname*{colim}_{c \in \mathcal{C}_0/x} F(c)$$

$$i_*(F)(x) = \lim_{c \in \mathcal{C}_0} F(c)$$

1.1 Simplicial sets

We define the category Δ with objects given by $[n] = \{0, \ldots, n\}$ and morphisms given by monotone maps. We define the category sSet to be presheaves on Δ . We denote the yoneda embedding of n to be Δ^n . This gives "expected" geometric results, such as $\operatorname{hom}_{\operatorname{sSet}}(\Delta^n, X) = X_n$, the n-simplices of X are given by morphisms of n-simplices.

Lemma 1.5 Given a simplicial set X, we have

$$X \cong \operatorname*{colim}_{[n] \in \Delta/X} \Delta^n$$

Proof. This is exactly the fact that presheaves are colimits of representables.

Definition 1.6 In the category of topological spaces, we define Δ_{Top}^n to be the subset of \mathbb{R}^{n+1} of tuples who sum to 1. This defines a cosimplicial object in Top by

$$[n] \mapsto \Delta^n_{\operatorname{Top}}$$

$$f:[n]\to[m]\mapsto f_*$$

where f_* is the unique affine linear extension of the map sending vertices of Δ_{Top}^n to their image under f. More precisely:

$$f_*(t_0, \dots t_n) = (v_0, \dots, v_m)$$

where

$$v_m = \sum_{j \in f^{-1}(i)} t_j$$

Definition 1.7 Given a topological space X, its singular simplicial set is given by

$$S(X) = [n] \mapsto \hom(\Delta^n_{\operatorname{Top}}, X)$$

We have a functor in the opposite direction given by Kan extension of the map sending $\Delta^n \mapsto \Delta^n_{\text{Top}}$. Explicitly

$$|X| = \operatorname*{colim}_{\Delta^n \in \Delta_{/X}} \Delta^n_{\operatorname{Top}}$$

We have | | is left adjoint to S.

Definition 1.8 1. $\partial \Delta^n$ has m-cells given by non-surjective $[m] \to [n]$.

- 2. Given $S \subseteq [n]$ the **horn** Λ_S^n has m-cells given $f : [m] \to [n]$ so there is $i \in [n] \backslash S$ s.t. $i \notin \text{im}(f)$.
- 3. The **spine** I^n has m-cells given by $[m] \to [n]$ with image $\{j\}$ or $\{j, j+1\}$.

Definition 1.9 We can form the subcategory $\Delta_{\leq n} \subseteq \Delta$. The natural adjunction given by kan extending the inclusion gives monads on simplicial sets called the skeleta and coskeleta. Specifically

$$\operatorname{sk}_n(X) = i_! i^* X$$

$$\operatorname{cosk}_n(X) = i_* i^* X$$

We have $\operatorname{cosk}_n(X)_k = \operatorname{hom}(\operatorname{sk}_n(\Delta^k), X)$

Definition 1.10 Given a category C, its nerve is the simplicial set given by

$$[n] \mapsto \hom([n], \mathcal{C})$$

That is chains of n composable maps.

Definition 1.11 Given a group G its classifying space is the geometric realisation of its nerve as a category with one object.

Definition 1.12 A Kan complex is a simplicial set X such that for all Horns Δ_j^n there are solutions to lifting problems

Example 1.13 The singular simplicial set of a topological space is a Kan complex. This follows quickly by adjunction, noting that a horn is a retract of Δ^n in topological spaces.

Example 1.14 The nerve of a category is a Kan complex if and only if the category is a groupoid.

Definition 1.15 Given $f, g: X \to Y$ maps of simplicial sets, we say they are homotopic if there exist a map $H: \Delta^1 \times X \to Y$ restricting to f, g on boundary. We can define the simplicial homotopy groups as homotopy classes of maps $(\Delta^n, \partial \Delta^n) \to (X, x)$.