CAŁKOWANIE NUMERYCZNE		
Do przybliżonego obliczania całek najczęściej		
stosuje się kwadratury. Ogólny wzór na		
kwadraturę: $I(f) = \int_a^b f(x)dx \approx Q(f) =$		
$\sum_{k=0}^{n} A_k f(x_k), a = x_0 < x_1 < \dots < x_n = b$		
Gdzie A_k -współ.kwadratury, $x_1 \dots x_n$ -węzły		
wyznaczające podział przedziału [a,b] Reszta kwadratur: $Rf := I(f) - Q(f)$		
powinna być minimalna.		
RZĄD KWADRATURY (kryt. dokładności)		
Def: Kwadratura Q jest rzędu n jeżeli jest		
dokładna dla wszystkich wielomianów		
stopnia <n <math="" ="">Q(w)=I(w) dla $w \in W_{n-1}$ oraz</n>		
istnieje wielomian stopnia n, dla którego		
$Q(W_n) \neq I(W_n)$ Kwadr. jest dobra dla		
funkcji małego i dużego stopnia. Kawdr. NC		
oparte na n+1 węzłach są rzędu: n+2 dla n parzystych; n+1 dla n nieparzystych		
KWADRATURA INTERPOLACYJNA		
Otrzymujemy całkując wielom.interp.		
Hermitea (lub w szczególności Lagrangea)		
funkji początkowej $f(x) = H_{n,f}(x) + v(x)$ [<-		
reszta interpolacji] po scałkowaniu dostaję $\int_a^b f(x) dx = \int_a^b H_{n,f}(x) dx + \int_a^b v(x) dx \mid$		
$\int_{a}^{b} f(x) dx = \int_{a}^{b} H_{n,f}(x) dx + \int_{a}^{b} v(x) dx \mid$		
Po przybliżniu dostajemy $Q(f) = I(H_{n,f}(x))$		
(kwadratu. interp.) Jeżeli $f \in \mathcal{C}^n_{[a,b]}$ to		
(kwadratu. interp.) Jeżeli $f \in C^n_{[a,b]}$ to reszta $R(f) = \frac{1}{(n+1)!} \int_a^b f_{n+1}(x) f^{(n+1)}(\xi) dx$		
gdzie: $f_{n+1}(x) = \prod_{i=0}^{k} (x - x_i)^{m_i}; m_i$ -ilość		
informacji w danym punkcie(z Hermitea); k-		
ilość punktów Jeżeli f(x)-wielomian stopnia		
n to $f^{(n+1)}(x) = 0$ Lemat: Kwadratury		
interpolacyjne oparte na węzłach o łącznej		
krotności (n+1) są rzędu co najmniej (n+1)		
Liczę dla interpolacji Lagrangea $f(x) =$		
$\sum_{i=0}^n f(x_i) \prod_{j=0, j \neq i}^n rac{x-x_j}{x_i-x_j} + v(x)$ Całkuję i		
otrzymuję kwadraturę $Q(f) = \sum_{i=0}^{n} A_i f(x_i)$		
otrzymuję kwadraturę $Q(f) = \sum_{i=0}^n A_i f(x_i)$ gdzie $A_i = \int_a^b \prod_{j=0,j\neq i}^n \frac{x-x_j}{x_i-x_j} dx$ Kwadratura		
otrzymana dla funkcji sklejanych stopnia 1 nie		
jest kwadraturą interpolacyjną – nie jest		
dokładna dla wielomianu stopnia drugiego		
KWADRATURY NEWTONA-COTESA		
Kwadraturami N-C przybliżającymi $\int_a^b f(x)dx$		
są kwadratury $Q(x) = I(L_n)$ gdzie L_n (w		
interp. Lagrange) funkcji f(x) oparty na		
równoodległych węzłach $x_0 = a, x_1 = a + h,$		
, $x_n = a + nh$ =b Podstawiając x=a+t(h)=b		
otrzymujemy: $L_n(x) = l_n(a + th) =$		
otrzymujemy: $L_n(x)=l_n(a+th)=\sum_{i=0}^n f(x_i)\prod_{j=0,i\neq j}^{n}\frac{t-j}{i-j}; x_i=a+ih;$ i=0,1,n		
$ h = \frac{b-a}{2} Q(t) = \sum_{i=0}^{n} A_i f(x_i) $		
$A_i = h \int_b^n \prod_{j=0, j \neq i}^n \frac{t-j}{i-j} dt$		
ZŁOŻONE KWADRATURY NEWTONA-COTESA w odróżnieniu od kwadratury prostej nie jest		
kwadratura interpolacyjną. Zadany przedział		
[a,b] dzielimy na podprzedziały, a następnie		
stosujemy kwadratury proste(interpolacyjne).		
(1)Dzielimy przedział [a,b] na N		
podprzedziałów z węzłami równoległymi		
$x_i=a+irac{a-b}{N};$ i=0,1,,N (2) W każdym		
przedziale $[x_i, x_{i+1}]$ wyznaczamy n+1 węzłów postaci: $x_{ij} = x_i + j \frac{x_{i-1} - x_i}{n}$; i=0,1,n (3)W		
postaci: $x_{ij} = x_i + j \frac{x_{i-1} - x_i}{n}$; i=0,1,n (3)W		
kazdym przedziałe stosujemy kwadraturę		
Newtona-Cotesa opartą na n+1 węzłach:		
$I^{(i)}(f) = \inf_{x_i}^{x_{i-1}} f(x) dx = Q_i(f) - E_i(f)$		
Zatem wzór złożonej kwadratury NC to:		
$Q(f) = \sum_{i=0}^{N-1} Q_i(f) = \frac{b-a}{n} \sum_{i=0}^{N-1} \sum_{j=0}^{n} A_j f(x_{ij})$		
Złożony Wzór Trapezów		
$\sum_{k=1}^{N-1} x_{k+1} - x_k$		
$Q_n(f) = \sum_{k=0}^{\infty} \frac{x_{k+1} - x_k}{2} (f(x_k) + f(x_{k+1}))$		
k=0		
Błędy: $E_T(f) = \frac{1}{12} \frac{(b-a)^3}{n^2} f^{(2)}(\xi)$		
Ziozony wzor Simpsona		
$Q_n(f) = \sum_{k=0}^{N-1} \frac{x_{k+1} - x_k}{6} \left(f(x_k) + \frac{x_{k+1} - x_k}{6} \right) $		
$4f\left(\frac{x_{k+1}+x_k}{2}\right) + f(x_{k+1}) $ Błąd: $E_S(f) = \frac{1}{180} \frac{(b-a)^5}{n^4} f^{(4)}(\xi)$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\frac{1}{180} \frac{(v-u)^2}{n^4} f^{(4)}(\xi)$		
Ziozoffy wzor Prostokątow		
$\sum_{k=0}^{N-1} c_k(x_{k+1} - x_k)$		
$Q_n(f) = \sum_{k=0}^{N-1} f\left(\frac{x_{k+1} - x_k}{2}\right) \left((x_k) - (x_{k+1})\right)$		
k=0		