

LAB 5: ADVANCED RECURRENT NERUAL NETWORKS

University of Washington, Seattle

Spring 2025

OUTLINE

Part 1: Encoder-Decoder RNNs

- Many-to-many RNN Recap
- Encoder-Decoder Architecture
- Training Encoder-Deocder RNNs

Part 2: RNN Extensions

- Deep RNN
- Bidirectional RNN

Part 3: Training tips for RNNs

- Mini-batch Gradient in RNNs

Part 4: Additional RNN examples

- Signal Denoising (Many-to-many)
- Signal Prediction (Encoder-decoder)

Part 6: Lab Assignment

- Stock Prediction

ENCODER-DECODER RNNs

Many-to-Many RNN Recap

Encoder-Decoder Architecture

Training Encoder-Decoder RNNs

RNN Configurations

Many-to-Many

many to many

Encoder-Decoder Architecture

Encoder

Encoded State

Decoder

Encoder-Decoder Architecture

Input sequence length to Encoder (Tx) can be different from the output sequence length of Decoder (Ty)

Training Encoder-Decoder

Target Sequence

Training Encoder-Decoder

Target Sequence Loss START

Backpropagation in Time

RNN Extensions

Deep RNNs

Bidirectional RNNs

RNN Extensions

Regular RNN

Deep RNN

Bi-directional RNN

Deep RNN

(+)Can provide better performanceOften used for complex problems

(-)
Potential for overfitting
Longer training time

Implemented as 'num_layers' parameters in torch.nn.RNN()

Bi-directional RNNs

Higher performance in Natural Language Processing tasks

Suitable when both left and right contexts are used

(-)

Harder to train than Uni-directional RNN Not suitable for real-time processing

Implemented as 'bidirectional' parameter in torch.nn.RNN()

Bi-directional RNN

RNN Extensions in LSTM/GRU

```
class example_LSTM(torch.nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, output_size):
            super(example LSTM, self). init ()
            self.lstm = torch.nn.LSTM(input size=input size, hidden_size=hidden_size,
                                    num_layers = num_layers,
 9
                                    batch first = True,
                                    bidirectional = False,
10
                                    dropout = 0.1)
11
12
            self.decoder = torch.nn.Linear(hidden size, output size)
13
14
15
        def forward(self, input seq, hidden state):
16
            pred, hidden = self.lstm(input_seq, hidden_state)
17
18
                                        Set to hidden_size * 2 if bidirectional = True
            pred = self.decoder(pred)
19
20
21
            return pred
```

num_layers:

LSTM layers to be stacked

batch first:

Tells PyTorch we are using (batchsize, seq len, feature #)

bidirectional:

Whether to configure bidirectional LSTM

dropout:

introduces dropout layer on the outputs of each LSTM layer except for last layer (use when num_layers > 1)

RNN Extensions in LSTM/GRU

```
class example_GRU(torch.nn.Module):
        def __init__(self, input_size, hidden_size, num_layers, output_size):
            super(example_GRU, self).__init__()
            self.gru = torch.nn.GRU(input size=input size, hidden_size=hidden_size,
                                    num_layers = num_layers,
                                    batch_first = True,
 9
                                     bidirectional = False,
10
                                     dropout = 0.1)
11
12
            self.decoder = torch.nn.Linear(hidden_size, output_size)
13
14
        def forward(self, input seq, hidden state):
15
16
17
            pred, hidden = self.gru(input seq, hidden state)
18
            pred = self.decoder(pred)
                                         Set to hidden_size * 2 if bidirectional = True
19
20
21
            return pred
```

num_layers:

GRU layers to be stacked

batch first:

Tells PyTorch we are using (batchsize, seq_len, feature #)

bidirectional:

Whether to configure bidirectional GRU

dropout:

introduces dropout layer on the outputs of each GRU layer except for last layer (use when num_layers > 1)

TRAINING Tips for RNNs

Mini-batch Gradient in RNNs

Mini-batch Gradient in RNNs

RNN input format in PyTorch = (batch size, sequence length, # of features)

Example above = (4, 17, 1)

IMPLEMENTATION OF GATED RNNs in PYTORCH

Signal Denoising

Signal Denoising

Output Sequence

GRU → GRU → GRU → GRU → GRU → GRU

Input Sequence


```
def sinusoidal_generator(X, signal_freq=60.):
        return np.sin(2 * np.pi * (X) / signal_freq)
 3
   def add noise(Y, noise_range=(-0.35, 0.35)):
 6
       noise = np.random.uniform(noise_range[0], noise_range[1], size=Y.shape)
 8
        return Y + noise
 9
10
   def sample seq(sequence length):
12
       random offset = random.randint(0, sequence_length)
13
       X = np.arange(sequence_length)
14
15
16
       denoised_output_seq = sinusoidal_generator(X + random_offset)
        noisy_input_seq = add_noise(denoised_output_seq)
17
18
19
        return noisy_input_seq, denoised_output_seq
```

Sinusoidal wave generator

Add noise function

Generate sample ground truth/noisy sinusoidal waves


```
noisy_input_seq, denoised_output_seq = sample_seq(sequence_length = 100)

plt.figure(figsize = (10, 5))

plt.plot(noisy_input_seq, label ='Noisy', linewidth = 3)

plt.plot(denoised_output_seq, label ='Denoised', linewidth = 3)

plt.legend()
sns.despine()
```

Example sample ground truth & noisy sinusoidal wave with sequence length = 100


```
def create_synthetic_dataset(n_samples, sequence_length):
 2
       noisy_seq_inputs = np.zeros((n_samples, sequence_length))
       denoised seq outputs = np.zeros((n samples, sequence length))
 6
       for i in range(n samples):
 7
 8
           noisy inp, denoised out = sample seq(sequence length)
 9
10
           noisy_seq_inputs[i, :] = noisy_inp
           denoised seq outputs[i, :] = denoised out
11
12
13
       return noisy seq inputs, denoised seq outputs
```

Using the sample_seq() function to generate synthetic ground truth/noisy dataset of n-samples

Take first 8000 as training dataset and 4000 as testing dataset

```
train_input_seqs = train_input_seqs.reshape((train_input_seqs.shape[0], -1, 1))
train_output_seqs = train_output_seqs.reshape((train_output_seqs.shape[0], -1, 1))

test_input_seqs = test_input_seqs.reshape((test_input_seqs.shape[0], -1, 1))
test_output_seqs = test_output_seqs.reshape((test_output_seqs.shape[0], -1, 1))
```

Reshape training and testing dataset to conform to (# of samples, seq_len, feature #) format

Define Model

```
class Denoiser_GRU(torch.nn.Module):
 2
       def init (self, input size, hidden size, num layers, output size):
           super(Denoiser_GRU, self).__init__()
           self.gru = torch.nn.GRU(input_size=input_size, hidden_size=hidden_size,
                                    num layers = num layers,
 8
 9
                                    batch_first = True,
                                    bidirectional = False)
10
11
           self.decoder = torch.nn.Linear(hidden_size, output_size)
12
13
           self.output_activation = torch.nn.Tanh()
14
15
       def forward(self, input seq, hidden state):
16
17
18
           pred, hidden = self.gru(input seq, hidden state)
19
           pred = self.output activation(self.decoder(pred))
20
21
22
           return pred
```

Using GRU with batch first = True

Decoder layer to convert hidden states to final output

Using **Tanh** on decoder output layer to squeeze output value between -1 and 1

Input_sequence, hidden_states → GRU → output_sequence, hidden_states → Decoder Layer → Tanh activation

Define Hyperparameters

```
Input dim to GRU = 1
Hidden state size = 30
GRU layers to be stacked = 1
Output dim of decoder layer = 1
```

Define learning rate, epochs and batch size

Using L1Loss (Least Absolute Deviations) and Adam optimizer

Identify Tracked Values

1 train_loss_list = []

Empty Python list to keep track of training loss

Train Model

```
train input seqs = torch.from numpy(train input seqs).float()
   train_output_seqs = torch.from_numpy(train_output_seqs).float()
   test_input_seqs = torch.from_numpy(test_input_seqs).float()
   test_output_seqs = torch.from_numpy(test_output_seqs).float()
   train batches features = torch.split(train input segs, batchsize)
   train batches targets = torch.split(train output seqs, batchsize)
 9
   batch split num = len(train batches features)
11
   for epoch in range(epochs):
13
       for k in range(batch_split_num):
14
15
16
           hidden state = None
17
           pred = denoiser GRU(train batches features[k], hidden state)
18
19
           optimizer.zero grad()
20
21
           loss = loss_func(pred, train_batches_targets[k])
22
           train_loss_list.append(loss.item())
23
24
25
           loss.backward()
26
27
           optimizer.step()
28
       print("Averaged Training Loss for Epoch ", epoch,": ", np.mean(train_loss_list[-batch_split_num:]))
29
```

Convert training and testing data to Tensors

Split training data into mini-batches

Training loop with mini-batch gradient

Print averaged loss throughout the epoch

Visualize & Evaluate Model

```
plt.figure(figsize = (10, 5))

plt.plot(train_loss_list, linewidth = 3, label = 'Training Loss')

plt.ylabel("training loss")

plt.xlabel("Iterations")

plt.legend()

sns.despine()
```

```
with torch.no_grad():

test_prediction = denoiser_GRU(test_input_seqs, None)
print("Testing Loss (Least Absolute Deviations): ",
loss_func(test_prediction, test_output_seqs).item())
```

Testing Loss (Least Absolute Deviations): 0.04158925637602806

ENCODER-DECODER APPLICATION IN PYTORCH

Signal Prediction

Example Task Description

Example Task Description


```
1 def generate_noisy_signal(datapoints_num, tf):
      t = np.linspace(0., tf, datapoints num)
      y = np.sin(2. * t) + 0.5 * np.cos(t) + np.random.normal(0., 0.2, datapoints_num)
      return y.reshape(-1, 1)
```

Function for generating a noisy signal $(\sin + \cos + \text{noise})$

```
1 def generate input output seqs(y, encoder inputseq len, decoder outputseq len, stride = 1, num features = 1):
       L = y.shape[0]
       num_samples = (L - encoder_inputseq_len - decoder_outputseq_len) // stride + 1
       train_input_seqs = np.zeros([num_samples, encoder_inputseq_len, num_features])
       train_output_seqs = np.zeros([num_samples, decoder_outputseq_len, num_features])
       for ff in np.arange(num_features):
 9
10
           for ii in np.arange(num_samples):
11
12
               start x = stride * ii
13
               end x = start x + encoder inputseg len
14
               train_input_seqs[ii, :, ff] = y[start_x:end_x, ff]
15
16
               start y = stride * ii + encoder inputseq len
17
18
               end_y = start_y + decoder_outputseq_len
               train_output_seqs[ii, :, ff] = y[start_y:end_y, ff]
19
20
       return train_input_seqs, train_output_seqs
21
```

Function for generating

- input sequences to encoder
- output target sequences for decoder

```
e.g., y = [1,2,3,4,5,6,7,8]
Encoder inputseg len = 3
Decoder outputseg len = 2
```

```
train input seqs =
[[1,2,3],[2,3,4],[3,4,5],[4,5,6]]
train output seqs =
[[4,5],[5,6],[6,7],[7,8]]
```



```
1 encoder_inputseq_len = 5
2 decoder_outputseq_len = 2
3 testing_sequence_len = 50
4
5 y = generate_noisy_signal(datapoints_num = 2000, tf = 80 * np.pi)
6 y_train = y[:-testing_sequence_len]
```

- Encoder input sequence length = 5
- Decoder output sequence length = 2
- Testing sequence length = 50

```
print("Encoder Training Inputs Shape: ", train_input_seqs.shape)
print("Decoder Training Outputs Shape: ", train_output_seqs.shape)
```

```
Encoder Training Inputs Shape: (1944, 5, 1)

Decoder Training Outputs Shape: (1944, 2, 1) (sample size, sequence length, feature/timestep)
```


train_output_seqs[0]
(output target by decoder)

Prepare Data

Prepare Data

Prepare Data

Define Model

Using LSTM for Encoder

No need for FC layer since encoder only passes hidden states to Decoder

```
class Encoder(torch.nn.Module):
       def __init__(self, input_size, hidden_size, num_layers):
           super(Encoder, self).__init__()
           self.lstm = torch.nn.LSTM(input_size = input_size, hidden_size = hidden_size,
                                      num_layers = num_layers,
                                      batch first = True)
 9
10
       def forward(self, input_seq, hidden_state):
11
12
           lstm_out, hidden = self.lstm(input_seq, hidden_state)
13
14
15
           return 1stm out, hidden
```


Define Model

Using LSTM for Decoder

FC layer for converting hidden states to a single number (prediction)

```
class Decoder(torch.nn.Module):
18
       def __init__(self, input_size, hidden_size, output_size, num_layers):
19
20
           super(Decoder, self). init ()
21
22
            self.lstm = torch.nn.LSTM(input_size = input_size, hidden_size = hidden_size,
23
24
                                      num_layers = num_layers,
25
                                      batch first = True)
26
27
            self.fc_decoder = torch.nn.Linear(hidden_size, output_size)
28
       def forward(self, input_seq, encoder_hidden_states):
29
30
            lstm_out, hidden = self.lstm(input_seq, encoder_hidden_states)
31
32
           output = self.fc decoder(lstm out)
33
           return output, hidden
34
```


Define Model

Combine Encoder and Decoder classes into a single class (Encoder Decoder)

```
class Encoder_Decoder(torch.nn.Module):
37
       def __init__(self, input_size, hidden_size, decoder_output_size, num_layers):
38
39
           super(Encoder_Decoder, self).__init__()
40
41
            self.Encoder = Encoder(input_size = input_size, hidden_size = hidden_size,
42
43
                                   num_layers = num_layers)
44
45
           self.Decoder = Decoder(input_size = input_size, hidden_size = hidden_size,
                                   output_size = decoder_output_size, num_layers = num_layers)
46
```


Define Hyperparameters

Identify Tracked Values

```
1 train_loss_list = []
```

Empty Python list for keeping track of loss values

Train Model

```
train_input_seqs = torch.from_numpy(train_input_seqs).float()
train_output_seqs = torch.from_numpy(train_output_seqs).float()

train_batches_features = torch.split(train_input_seqs, batchsize)[:-1]
train_batches_targets = torch.split(train_output_seqs, batchsize)[:-1]

batch_split_num = len(train_batches_features)
```

Convert numpy arrays to torch tensors

Split training data into mini-batches (skip last mini-batch since it can have smaller batch size)

Compute total number of mini-batches

Train Model

```
1 for epoch in range(epochs): # For each epoch
       for k in range(batch_split_num):
           hidden state = None
           decoder output seg = torch.zeros(batchsize, decoder outputseg len, num features)
           optimizer.zero grad()
           encoder output, encoder hidden = Encoder Decoder RNN.Encoder(train batches features[k], hidden state)
11
           decoder hidden = encoder hidden
12
13
           decoder input = train_batches_features[k][:, -1, :]
           decoder_input = torch.unsqueeze(decoder_input, 2)
16
17
           for t in range(decoder_outputseq_len):
               decoder_output, decoder_hidden = Encoder_Decoder_RNN.Decoder(decoder_input, decoder hidden)
19
20
               decoder_output_seq[:, t, :] = torch.squeeze(decoder_output, 2)
               decoder_input = train_batches_targets[k][:, t, :]
               decoder input = torch.unsqueeze(decoder input, 2)
           loss = loss func(torch.squeeze(decoder_output_seq), torch.squeeze(train_batches_targets[k]))
26
28
           train_loss_list.append(loss.item())
29
           loss.backward()
31
           optimizer.step()
32
33
       print("Averaged Training Loss for Epoch ", epoch,": ", np.mean(train loss list[-batch split num:]))
34
```

Define initial hidden states and empty tensor for decoder outputs

Pass training input sequence + hidden states to encoder

Initial input to decoder = last value of the input sequence

Fill in decoder output tensor by using teacher forcing method (provide ground truth inputs)

Compute and append Loss Back-propagation Update network

Visualize & Evaluate Model

Plot moving average training loss

Visualize & Evaluate Model

See example notebook for detailed code implementation

LAB 5 ASSIGNMENT:

Stock Prediction Al with Encoder-Decoder RNN

Stock Dataset

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-06-29	19.000000	25.00	17.540001	23.889999	23.889999	18766300
1	2010-06-30	25.790001	30.42	23.299999	23.830000	23.830000	17187100
2	2010-07-01	25.000000	25.92	20.270000	21.959999	21.959999	8218800
3	2010-07-02	23.000000	23.10	18.709999	19.200001	19.200001	5139800
4	2010-07-06	20.000000	20.00	15.830000	16.110001	16.110001	6866900

	Date	Open	High	Low	Close	Adj Close	Volume
0	2004-08-19	50.050049	52.082081	48.028027	50.220219	50.220219	44659000
1	2004-08-20	50.555557	54.594593	50.300301	54.209209	54.209209	22834300
2	2004-08-23	55.430431	56.796795	54.579578	54.754753	54.754753	18256100
3	2004-08-24	55.675674	55.855854	51.836838	52.487488	52.487488	15247300
4	2004-08-25	52 532532	54 054054	51 991993	53 053055	53 053055	9188600

	Date	Open	High	Low	Close	Adj Close	Volume
0	1985-01-29	1277.719971	1295.489990	1266.890015	1292.619995	1292.619995	13560000
1	1985-01-30	1297.369995	1305.099976	1278.930054	1287.880005	1287.880005	16820000
2	1985-01-31	1283.239990	1293.400024	1272.640015	1286.770020	1286.770020	14070000
3	1985-02-01	1276.939941	1286.109985	1269.770020	1277.719971	1277.719971	10980000
4	1985-02-04	1272.079956	1294.939941	1268.989990	1290.079956	1290.079956	11630000

- TSLA.csv
- 2227 days
- 7 attributes

- GOOGL.csv
- 3702 days
- 7 attributes

- DJI.csv
- 8636 days
- 7 attributes

Stock Prediction AI with Encoder-Decoder RNN

In this exercise, you will use Encoder-Decoder RNN architecture to predict the last 100 days' stock values.

You are given 3 stock datasets (TSLA, GOOGL, DJI) for training and testing your model. Use closing stock value (i.e., "Close" column) for both training and testing data.

Feel free to pick **encoder/decoder sequence sizes** of your choice, **LSTM or GRU** for your RNN cell as **RNN extensions** such as Deep RNN or Bidirectional RNN.

Before training, normalize the data and create train input seqs and train output seqs like the example task.

After training, plot your RNN predicted stock value against the ground truth test values and calculate its MSE error for all 3 datasets. Use Teacher forcing method for predicting test outputs (i.e., next day prediction given ground-truth inputs).

Your predicted stock values should match very closely to ground truth with a little delay.