2020 春微积分期末试题

考试要求:本试卷满分80分,请于答题纸上作答。

- 一、简答题(1-6小题, 每题10分, 合计60分)
 - 1. 求方程3y'' y' 14y = 0的通解.

2. 已知
$$z = \ln\left(x + \sqrt{x^2 + y^2}\right)$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(3,4)}$.

- 3. 已知平面区域 $D = \left\{ (r, \theta) \middle| 2\cos\theta \le r \le 1, \frac{\pi}{3} \le \theta \le \frac{\pi}{2} \right\}$, 计算二重积分 $\iint_D y dx dy$.
- 4. 求函数 $z = (x^2 + y)e^{2x+y}$ 的极值.
- 5. 求幂级数 $\sum_{n=2021}^{\infty} \frac{x^n}{n-2020}$ 的收敛域及和函数.
- 6. 计算 $J = \iint_{\Sigma} x dy dz + y dz dx + z dx dy$, 其中 Σ 是旋转抛物面 $z = 1 x^2 y^2$ $(z \ge -1)$ 的下侧.
- 二、解答题: (7-9 小题, 共计 20 分)
 - 7. (本题满分 8 分)设抛物面 Σ_1 : $z=1+x^2+y^2$ 及圆柱面 Σ_2 : $(x-1)^2+y^2=1$,求 Σ_1 的一个切平面 Π , 使得由它及 Σ_1 与 Σ_2 围成的立体体积 Ω 达到最小.
 - 8. (本题满分 7 分) 计算曲线积分 $I = \int_L y dx + z dy + x dz$, 其中 L 是从点 $\left(2,0,0\right)$ 沿着下曲线到点 $\left(0,0,2\right)$ 的路径: $\frac{x^2}{4} + y^2 + \frac{z^2}{4} = 1, x + z = 2$ $(x \ge 0, y \ge 0, z \ge 0)$
 - 9. (本题满分 5 分)设数列 $\{a_n\}$ 单调减少收敛于零,且对任意正整数 n, $(a_1-a_n)+(a_2-a_n)+\cdots+(a_{n-1}-a_n)$ 有界,证明 $\sum_{i=1}^{\infty}a_n$ 收敛.