MAT 228B Notes

Sam Fleischer

February 6, 2016

1 Von Neumann Analysis

- This is relatively easy for one-step methods (includes only u^n and u^{n+1})
- Assume $u_j^n = e^{i\xi x_j}$ (assume you have an eigenvector).
- Then $u_j^{n+1} = g(\xi)e^{i\xi x_j}$.
- And we want $|g(\xi)| \le 1 + \alpha \Delta t$ for all ξ .

•

$$\begin{split} u_{j}^{n+1} &= u_{j}^{n} + \frac{\Delta t D}{\Delta x^{2}} \left(u_{j-1}^{n} - 2 u_{j}^{n} +_{j+1}^{n} \right) \\ u_{j}^{n+1} &= e^{i\xi x_{j}} + \frac{\Delta t D}{\Delta x^{2}} \left(e^{-i\xi(x_{j} - \Delta x)} - 2 e^{i\xi x_{j}} + e^{i\xi(x_{j} + \Delta x)} \right) \\ &= \left(1 + \frac{\Delta t D}{\Delta x^{2}} \left(e^{-i\xi \Delta x} - 2 + e^{i\xi \Delta x} \right) \right) e^{i\xi x_{j}} \end{split}$$

2 Show the Leapfrog Scheme is Unstable for Diffusion

•

$$\frac{u_j^{n+1} - u_j^{n-1}}{2\Delta t} = \frac{D}{\Delta x^2} \left(u_{j-1}^n - 2u_j^n + u_{j+1}^n \right)$$

- Assume $u_j^n = g^n e^{i\xi x_j}$.
- We get

$$\frac{g^{n+1}-g^{n-1}}{2\Delta t} = \frac{D}{\Delta x^2} g^n \left(-4\sin^2\left(\frac{\xi \Delta x}{2}\right) \right)$$

• This is a recursion relation for the amplification factor. Dividing by g^{n-1} gives

$$g^{2} - 1 = -\underbrace{\frac{8D\Delta t}{\Delta x^{2}}\sin^{2}\left(\frac{\xi\Delta x}{2}\right)}_{\text{define this to be }\beta(\xi)}g$$

and we can do this because g = 0 automatically gives stability $(|g(\xi)| \le 1 + \alpha \Delta t)$.

- We know $\beta \geq 0$ for all ξ . And the product of the roots g_1 and g_2 , $g_1g_2 = -1$. So if one of the roots is close to 0, then one is far from 0.
- Calculating the roots of $g^2 + \beta(\xi)g 1 = 0$ gives

$$g_{+/-} = \frac{1}{2} \left(-\beta \pm (\beta^2 + 4)^{\frac{1}{2}} \right)$$

• In particular, we see

$$g_{-} = \frac{1}{2} \left(-\beta - \left(\beta^2 + 4 \right)^{\frac{1}{2}} \right)$$

In particular, $|g_-| > 1$ for $\beta \neq 0$.

3 Forced Diffusion

- $u_t = bu_{xx} + f$.
- Forward Euler presents a timestep restriction.. in 1D, $\Delta t \leq \frac{\Delta x^2}{2b}$.
- We can write

$$u_j^{n+1} = \frac{b\Delta t}{\Delta x^2} u_{j-1}^n + \left(1 - \frac{2b\Delta t}{\Delta x^2}\right) u_j^n + \frac{b\Delta t}{\Delta x^2} u_{j+1}^n$$

- In the ∞ -norm analyis, we wanted the diagonal terms to be $\geq 0...$
- In 2D, $\Delta t \leq \frac{\Delta x^2}{4b}$.
- In 3D, $\Delta t \leq \frac{\Delta x^2}{6b}$.
- This is because 4 and 6 nearest neighbors in 2 and 3D, respectively.
- In practice, we generally use an implicit time method to avoid these restrictions.
- \bullet Let L be the discrete Laplacian. Then

$$\frac{u^{n+1} - u^n}{\Delta t} = \frac{b}{2} \left(Lu^n + Lu^{n+1} \right) + f^{n+\frac{1}{2}}$$

$$\implies \left(I - \frac{d\Delta t}{2} L \right) u^{n+1} = \left(I + \frac{d\Delta t}{2} L \right) u^n + \Delta t f^{n+\frac{1}{2}}$$

- We need to solve a linear system each time step.. accounting (how much work)?
 - Grid spacing $\Delta x \propto \frac{1}{N}$.
 - Assume $\Delta t \propto \Delta x$ in the implicit method.
 - We have to take $\mathcal{O}(\frac{1}{\Delta x}) = \mathcal{O}(N)$ timesteps.
 - Cost per timestep (1D)? Since the matrix is tri-diagonal and diagonally dominant, it's just $\mathcal{O}(N)$ per step.
- So the cost of the implicit method is $\mathcal{O}(N^2)$.
- What about Forward Euler?
 - The number of timesteps $\propto \frac{T}{\Delta t} = \mathcal{O}\left(\frac{1}{\Delta x^2}\right) = \mathcal{O}(N^2)$.
 - Work per timestep? It's $\mathcal{O}(N)$ (since it's multiplication by a known sparse, tridiagonal matrix)
- So the total work is $\mathcal{O}(N^3)$. So asymptotically, Forward Euler is more expensive.
- Using sparse solvers and sparse matrix arithmetic makes all the difference!

4 Next Time?

- $\bullet \ u_t = -ku_{xxxx}$
- Came up in Bob's research about thin filaments (bending structures) in viscous fluids.
- Through the Von Neumann Analysis, you get

$$\Delta t \le C \Delta x^4$$
 for stability

- The work for Crank Nicolson is the same.. requires $\mathcal{O}(N^2)$ steps.
- The explicit time, though, requires $\mathcal{O}(N^5)$ steps.