Student ID: 113063572

Name: 王品然

$$Y = A + \overline{B} + C = \overline{A + C + \overline{B}} = \overline{(A + 0)} \cdot B$$

$$A = A + \overline{B} + C = \overline{A + C + \overline{B}} = \overline{(A + 0)} \cdot B$$

$$C = A + \overline{B} + C = \overline{A + C + \overline{B}} = \overline{(A + 0)} \cdot B$$

$$(d) \quad \frac{A^{B} \circ | 1}{\circ | 1 \circ |} \Rightarrow \quad Y = \overline{A} \overline{B} + AB = \overline{(A+B)} + \overline{(A+B)} = \overline{(A+B)} \cdot (\overline{A} + \overline{B})$$

2.

(b)

(c)

FS

FF

Process Corner 定義了 NMOS 和 PMOS 的切換速度,有分三種型態 slow (慢) typical (典型) fast (快),組合成為五種製程的環境參數:TT、SS、SF、FS、FF (前 NMOS 後 PMOS)。而決定切換速度的方式,是藉由調變製程檔中各參數的值來達成,調變的參數 delta 值包含:DTOX(氧化層厚度變化量)、DVTH0(初始臨界電壓變化量)、DU0(遷移率 μ 的變化量)、DWU0(隨通道寬度變化的遷移率偏移量)、DCGDO(閘極與汲極重疊電容 Delta Capacitance of Gate-Drain Overlap)......等。調變這些參數目的是想要更精確控制影響切換速度的兩個主要因素:V th和 μ 。

這些在 TT、SS、SF、FS、FF 中所設定的參數 delta 值會在製程檔中定義 NMOS/PMOS 時被引入,以 N_18 的氧化層厚度為例,製程檔中的設定為: TOX='4.2000E-09+DTOX_N_18',因此會根據.sp 檔中所設定的不同 corner,改 變參數的 delta 值,進而調變元件中的各項參數,最終決定開關速度。

五種 corner 的 transfer curve 的疊圖:

可以從放大上半部分的圖中看出,開始 PMOS turning off, NMOS turning on 的轉換過程所需的 Vin 大小:SF>SS>TT>FF>FS。

SF 時,PMOS 為 F-corner,使 Vth_p 的絕對值變小,因此需要更大的 Vin 才會使 PMOS 關掉;NMOS 為 S-corner,使 Vth_n 變大,因此也需要更大的 Vin 才會使 NMOS 開啟,兩者疊加使得 Vin 真的要很大才能開始這個 PMOS 正在 turning off,NMOS 正在 turning on 的過程,且也最晚結束此過程。同理,FS 時會是 Vin 較小的時候即能開始轉換 MOS 狀態,且也是最早結束的。

SS 時, PMOS 為 S-corner, 使 Vth p 的絕對值變大, 因此較小的 Vin 即可

使 PMOS 關掉; NMOS 為 S-corner,使 Vth_n 變大,因此需要較大的 Vin 才會使 NMOS 開啟,兩者相互影響下,使得 Vin 不需要像 SF 時的那麼大,就能開始轉換 MOS 的狀態,但也由於 NMOS 的 S, F, T-corner 製程變異影響較 PMOS 大(這可以從製程檔中各個 corner 的所設定的參數 delta 值大小差異得到),因此最終 Vin 仍然需要比 TT 時的稍大一點,MOS 才會開始轉換狀態。同理,FF時,MOS 開始轉換的 Vin 會比 FS 時略大,TT 時略小。

可以從放大下半部分的圖中看出,PMOS 即將完全 off,NMOS 即將完全 on 時的 Vin 大小:SF>SS \approx TT \approx FF>FS。這可能是因為 SS、TT、FF 的製程變異 在此段輸入電壓無法表現得很明確所導致,而且在 SS、FF corner 中,Vth 和 μ 皆會同時上升/下降,因此也較難得出明確的差異。

除此之外,也能從 β ratio 看出曲線之間的差異,TT corner 時,我們將 Wp 調至 $4.18\mu m$ 使得 β ratio=1,從課程中,我們也學到 β ratio 越大曲線越往右,而分析 SF corner 時的 NMOS 為 S corner, βn 正比於 μn ,因此會變小;反之, βp 會變大,因此 β ratio 變得非常大,曲線向右偏移許多。同理可知 FS corner 的曲線會向左偏移許多。而 FF 和 SS corner 的 μn 、 μp 會同時變大變小,因此 β ratio 變動不大,曲線都在 TT corner 的附近。當然 μn 、 μp 變大變小的幅度不會完全一樣,可以直接 tracking 製程檔中每一個影響 μ 的 delta 值去算出每個輸入電壓下對應的 μ ,這樣的話應該會得到更精確的推論,但整體而言 FF 和 SS corner 的 β ratio 變動就是不大,會在 TT corner 的轉移曲線附近。

3. (a)

٠	77	55	SF	F5	FF
Vzl	168 mV	815mV	926mV	63/mV	155 mV
VIH	1,03 V	1,030	1919	898mV	('03 N
Voc	94 mV	91mV	15mV	105 mV	103mV
VOH	1.687	1.697	1.68 V	1,1 V	1.6) V
ЮΜн	650 mV	660 mV	DM OCK	80 7W/	640 mV
NML	674mV	124 mV	851 mV	\$32mV	652 mV

上表數據可藉由在圖上加一個偵測微分值(斜率)的 filter,找到斜率為-1 的點座標。如下圖所示:

(b)

 V_{IL} 的大小為:SF>SS>TT>FF>FS,其原因如同第二題(d)的解釋一樣,因為 V_{IL} 代表了輸出高電位訊號結束時的 Vin 值,也就代表著雨顆 MOS 正在進入轉換狀態的 Vin 值。

 V_{IH} 的大小為:SF>SS \approx TT \approx FF>FS,其原因也如第二題(d)的解釋一樣。從 β ratio 的角度切入,SF corner,也就是 β ratio>1 的情況(在 2. (d)最後一段有解釋為甚麼),會如上課所說,這會使其 V_{IL} 、 V_{IH} 在 5 個 corner 中最大,而 β ratio 的值不太影響 V_{OL} 、 V_{OH} ,因此 NM_H 最小、 NM_L 最大。同理也能解釋 FS corner, β ratio<1,使得 V_{IL} 、 V_{IH} 在 5 個 corner 中最小,因此 NM_H 最大、 NM_L 最小。而 TT、SS、FF 的 β ratio 都差不多,因此 V_{IL} 、 V_{IH} 、 V_{OL} 、 V_{OH} 、 NM_H 、 NM_L 都沒有顯著差異。