Problem Set 4

Question 1: Let $f:A\to B$ be a function. Show that f is onto if and only if there exists a function $g:B\to A$ such that $f\circ g=\mathrm{id}_B$.

Question 2: Consider the mapping

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

given by the rule f(a, b) = (a + b, a - b).

- a. Prove or disprove that f is one to one.
- b. Prove or disprove that f is onto

Question 3: Let $f: A \to B$ be a function. We do not suppose that f is a bijection, so f^{-1} is not defined as a function.

If $X \subseteq A$, we defined the subset $f(X) \subseteq B$ as follows:

$$f(X) = \{ y \in B \mid \exists x \in X, y = f(x) \}.$$

If $Y \subseteq B$, we defined the subset $f^{-1}(Y) \subseteq A$ as follows:

$$f^{-1}(Y) = \{ x \in A \mid f(x) \in Y \}.$$

- a. If $Y \subseteq B$, show that $f(f^{-1}(Y)) \subseteq Y$.
- b. Show that if $\forall Y \subseteq B$, $f(f^{-1}(Y)) = Y$, then f is onto.
- c. Show that if f is onto, then $\forall Y \subseteq B, f(f^{-1}(Y)) = Y$.
- d. Give an example demonstrating that $f(f^{-1}(Y)) = Y$ can fail when f is not onto.

Question 4:

- a. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = 4x^3 + 13$. Is f a bijection? Carefully justify your answer.
- b. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 4x^3 + 13$. Is f a bijection? Carefully justify your answer.

Problem Set 4 due: 2025-09-29

Question 5: Let $f: S \to T$ be a function, and let A and B be subsets of S.

- a. Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
- b. Give an example to show that in general equality does not hold; i.e. give an example for which $f(A \cap B) \subsetneq f(A) \cap f(B)$.

Question 6: Let A, B, C be sets and let $f: A \to B$ and $g: B \to C$ be functions.

- a. Suppose that $g \circ f$ is surjective. Prove that g is surjective.
- b. Suppose that $g \circ f$ is injective. Prove that f is injective.

Question 7: (compare with Proposition 4.6.1 in the notes)

Let A, B be sets. Suppose that $f: A \to B$ is a function.

a. Suppose that f is injective. Prove that for any set C and any pair of functions

$$g_1:C\to A$$
 and $g_2:C\to A$

such that $f \circ g_1 = f \circ g_2$, then $g_1 = g_2$.

b. Conversely, suppose that for every set C and for every pair of functions

$$g_1: C \to A$$
 and $g_2: C \to A$,

the equality $f\circ g_1=f\circ g_2$ implies that $g_1=g_2.$ Prove that f is injective.