



#### Carrera:

# Licenciatura en Sistemas de Información

Tema:

**Retrieval-Augmented Generation (RAG)** 

Asignatura:

Inteligencia Artificial

Alumnos:

Díaz, Bricia Candela

Guevara Gonzalez, Johan Sebastian





# Justificación de la elección del Tema:

La tecnología Retrieval-Augmented Generation (RAG) es una solución emergente muy innovadora. RAG aborda una limitación clave de los "large language models" (LLMs): su tendencia a "alucinar" (generar información incorrecta) y la dificultad para justificar sus respuestas. Esta tecnología RAG fusiona el conocimiento paramétrico (almacenado en los pesos del modelo) con el no-paramétrico (bases de datos externas). Esta integración mejora significativamente el Procesamiento del Lenguaje Natural (NLP), permitiendo aplicaciones de IA más fiables y verificables.

Relevancia Social: En un contexto global donde la desinformación es un desafío, la capacidad de RAG para proporcionar respuestas fundamentadas y atribuibles es invaluable. Incrementa la confianza en los sistemas de IA utilizados en sectores críticos como la educación, la atención médica y los medios de comunicación, ya que los usuarios pueden verificar directamente la fuente de la información.

### Aspectos Teóricos que lo Sustentan:

La propuesta es una arquitectura que combina un modelo de lenguaje generativo pre-entrenado paramétrico (como BART) con una memoria no-paramétrica (un índice vectorial denso de Wikipedia). La innovación teórica radica en hacer el proceso de recuperación diferenciable de extremo a extremo. Esto significa que el sistema aprende no solo a generar texto, sino también a seleccionar activamente la información más relevante de su memoria externa para informar su generación, basándose en el concepto de recuperación de pasajes densos (DPR).

### Métodos y Herramientas Seleccionadas:

RAG-Sequence: El modelo utiliza el mismo documento recuperado para condicionar la generación de toda la secuencia de salida.

RAG-Token: Permite que el modelo recupere un nuevo documento para cada token que genera.

### Impacto de estas Tecnologías Emergentes de la IA:

La tecnología RAG ha sentado las bases para el diseño de arquitecturas de IA híbridas que combinan las fortalezas de los paradigmas generativos y basados en la recuperación. Subraya la importancia de fundamentar los modelos de IA en bases de conocimiento externas y actualizadas, empujando los límites de los LLMs al reducir las "alucinaciones" y aumentar la confianza.





### **Palabras Clave:**

Retrieval-Augmented Generation (RAG)

Large Language Models (LLMs)

Natural Language Processing (NLP)

# Bibliografía

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, *D. Kiela, "Retrieval-augmented generation for knowledge-intensive NLP tasks" in Proc. of the 34th Conf. Neural Information Processing Systems (NeurIPS 2020)\**, Vancouver, Canada, 2020, pp. 9459-9474. [Online]. Disponible: Retrieval-augmented generation for knowledge-intensive NLP tasks