ジョルダン標準形 芝浦工業大学 数理科学研究会 長田 祐輝

~芝浦祭研究発表~ 平成 27年 11 月 6 日

目 次

1	ジョルダン標準形	2
	1.1 ジョルダン標準形の求め方	4
2	具体例	5
3	応用例	7
4	参老文献	7

1 ジョルダン標準形

定義 1.1 (ジョルダン細胞) サイズ n で次のような行列をジョルダン細胞という.

$$\begin{bmatrix} a & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & a \end{bmatrix}$$

この行列を J(a,n) で表す.

定義 1.2 (ジョルダン標準形) 次のような行列をジョルダン標準形という.

$$\begin{bmatrix} J(\lambda_1, n_1) & & & & \\ & \ddots & & & \\ & & J(\lambda_s, n_s) \end{bmatrix}$$

ただし, $\lambda_1, \dots, \lambda_s \in \mathbb{C}$, $n_1, \dots, n_s \in \mathbb{N}$ である. 空白部分は 0 が入っているものとする.

定義 1.3 (核 (Kernel)) A を行列とする. このとき KerA を次のように定義する.

$$Ker A := \{ x \in \mathbb{C} \, | \, Ax = 0 \}$$

注意 1.1 (次元 (dimension)) $A \subset \mathbb{C}$ とする. このとき dim $\operatorname{Ker} A$ は連立 1 次方程式 Ax = 0 を解いた ときの任意定数の個数である.

定理 1.1 $A \in M_n(\mathbb{C})$ とする. A の相異なる固有値を α , β , γ とする. p_{11} , p_{21} を $\operatorname{Ker}(A-\alpha E)$ に属す 1 次独立なベクトル, q_{11} , q_{21} を $\operatorname{Ker}(A-\beta E)$ に属す 1 次独立なベクトル, r_{11} , r_{21} を $\operatorname{Ker}(A-\gamma E)$ に属す 1 次独立なベクトルとする. p_{12} , \cdots p_{1,p_1} を $p_{1i}=(A-\alpha E)p_{1,i+1}$ で定義する. 同様に, p_{22} , \cdots p_{2,p_2} と q_{12} , \cdots q_{1,q_1} と q_{22} , \cdots q_{2,q_2} と r_{12} , \cdots r_{1,r_1} と r_{22} , \cdots r_{2,r_2} を定義する. このとき, p_{11} , \cdots p_{1,p_1} , p_{21} , \cdots p_{2,p_2} , q_{11} , \cdots q_{1,q_1} , q_{21} , \cdots q_{2,q_2} , r_{11} , \cdots p_{1,r_1} , r_{21} , \cdots r_{2,r_2} は 1 次独立である.

証明 1.1 (証明) (前準備) $(A-\alpha E)^{k-1}p_{1k}=p_{11}$ である. また, $(A-\gamma E)^k(A-\beta E)^lp_{11}=(\alpha-\gamma)^k(\alpha-\beta)^lp_{11}$ である.

$$a_{11}p_{11} + \dots + a_{1,p_1}p_{1,p_1} + a_{21}p_{21} + \dots + a_{2,p_2}p_{2,p_2}$$

$$+b_{11}q_{11} + \dots + b_{1,q_1}p_{1,q_1} + b_{21}q_{21} + \dots + b_{2,q_2}q_{2,q_2}$$

$$+c_{11}r_{11} + \dots + c_{1,r_1}r_{1,r_1} + c_{21}r_{21} + \dots + c_{2,r_2}r_{2,r_2} = 0$$

$$(1)$$

とおく. 両辺に $(A-\gamma E)^{\max\{r_1, r_2\}}(A-\beta E)^{\max\{q_1, q_2\}}(A-\alpha E)^{\max\{p_1, p_2\}-1}$ を掛けると,

$$a_{1,p_1}p_{11} + a_{2,p_2}p_{21} = 0$$

となる. (今, この式は, $p_1=p_2$ の場合に示した. $p_1< p_2$ の場合には, $a_{1,p_1}p_{11}$ の項が消え, $p_1> p_2$ の場合には, $a_{2,p_2}p_{21}$ の項が消える.) p_{11} , p_{21} は 1 次独立だから, $a_{1,p_1}=a_{2,p_2}=0$ となる. これを, (1) に代入すると.

$$a_{11}p_{11} + \dots + a_{1,p_1-1}p_{1,p_1-1} + a_{21}p_{21} + \dots + a_{2,p_2-1}p_{2,p_2-1}$$

$$+b_{11}q_{11} + \dots + b_{1,q_1}p_{1,q_1} + b_{21}q_{21} + \dots + b_{2,q_2}q_{2,q_2}$$

$$+c_{11}r_{11} + \dots + c_{1,r_1}r_{1,r_1} + c_{21}r_{21} + \dots + c_{2,r_2}r_{2,r_2} = 0$$
(2)

となる. 同様に $a_{1,p_1-1}=a_{2,p_2-1}=\cdots=a_{11}=a_{21}=0$ となる. これを, (2) に代入し, 上と同様の議論をすれば.

$$b_{1,q_1} = b_{2,q_2} = \dots = b_{11} = b_{21} = c_{1,r_1} = c_{2,r_2} = \dots = c_{11} = c_{21} = 0$$

となる. よって, p_{11} , \cdots p_{1,p_1} , p_{21} , \cdots p_{2,p_2} , q_{11} , \cdots q_{1,q_1} , q_{21} , \cdots q_{2,q_2} , r_{11} , \cdots p_{1,r_1} , r_{21} , \cdots r_{2,r_2} は 1 次独立である.

1.1 ジョルダン標準形の求め方

- 1. 固有多項式 $|A \lambda E|$ を求める.
- 2. 固有多項式が $(\lambda_1 \lambda)^{n_1} \cdots (\lambda_s \lambda)^{n_s}$ となったとする $(\lambda_1, \cdots, \lambda_s \in \mathbb{C}$ は固有値である).
- 3. 各 i $(i=1,\cdots,s)$ に対して、 \mathbb{C}^n の部分空間の増大列 $\operatorname{Ker}(A-\lambda_i E)$ \subsetneq \cdots \subsetneq $\operatorname{Ker}(A-\lambda_i E)^{m_i}=\cdots$ を求める $(\operatorname{Ker}(A-\lambda_i E)^{m_i}$ がこの増大列の最大の集合).
- 4. 各 j $(j=2,\cdots,m_i)$ に対して, $d_j=\dim \operatorname{Ker}(A-\lambda_i E)^j-\dim \operatorname{Ker}(A-\lambda_i E)^{j-1}$ とおき, $d_1=\dim \operatorname{Ker}(A-\lambda_i E)$ とおく.
- 5. 各 i $(i=1,\cdots,s)$ に対して、1 次独立な $p(\lambda_i)_{m_i,1},\cdots,p(\lambda_i)_{m_i,d_{m_i}}\in \operatorname{Ker}(A-\lambda_i E)^{m_i}\setminus \operatorname{Ker}(A-\lambda_i E)^{m_i-1}$ を求める.
- 7. $p(\lambda_i)_{j-1,1} = (A \lambda_i E) p(\lambda_i)_{j,1}, \cdots, p(\lambda_i)_{j-1,d_j} = (A \lambda_i E) p(\lambda_i)_{j,d_j}$ とおき、もし $d_{j-1} > d_j$ ならば、 $p(\lambda_i)_{j-1,1}, \cdots, p(\lambda_i)_{j-1,d_j}, p(\lambda_i)_{j-1,d_j+1}, \cdots, p(\lambda_i)_{j-1,d_{j-1}}$ が 1 次独立になるように、 $p(\lambda_i)_{j-1,d_j+1}, \cdots, p(\lambda_i)_{j-1,d_{j-1}}$ を選ぶ。
- 8. j を改めて j-1 にし, j>1 なら, 6. へ. j=1 なら 7. へ.
- 9. $p(\lambda_i)_{11} = (A \lambda_i E) p(\lambda_i)_{21}, \cdots, p(\lambda_i)_{1,d_2} = (A \lambda_i E) p(\lambda_i)_{2,d_2}$ とおく. もし、 $d_1 > d_2$ ならば、 $p(\lambda_i)_{11}, \cdots, p(\lambda_i)_{1,d_2}, p(\lambda_i)_{1,d_2+1}, \cdots, p(\lambda_i)_{1,d_1}$ が1次独立になるように、 $p(\lambda_i)_{1,d_2+1}, \cdots, p(\lambda_i)_{1,d_1}$ を選ぶ.
- 10. $P = [p(\lambda_1)_{11}, \dots, p(\lambda_1)_{1,d_1}, \dots, p(\lambda_1)_{m_1,d_{m_1}}, \dots, p(\lambda_s)_{m_s,d_{m_s}}]$ とおく.
- $11. P^{-1}$ を計算する.
- 12. $P^{-1}AP$ を計算する.
- 13. 終了

2 具体例

A の固有多項式は

$$|A - \lambda E| = \begin{vmatrix} 2 - \lambda & 4 & -2 & -4 & 3 \\ 3 & 6 - \lambda & 2 & -5 & -4 \\ 10 & 12 & 5 - \lambda & -11 & -10 \\ 2 & 4 & 1 & -3 - \lambda & -2 \\ 4 & 8 & 0 & -8 & -\lambda \end{vmatrix} = (2 - \lambda)^5$$

よって, A の固有値は $\lambda = 2$ (5 重根).

次に A-2E を求める.

となる. よって, $\dim \operatorname{Ker}(A-2E)=2$ となる.

同様に $(A-2E)^2$, dimKer $(A-2E)^2$, · · · と求めていくと,

$$(A - 2E)^2 = \begin{bmatrix} -4 & 0 & -2 & -2 & 6 \\ 6 & 0 & 3 & 3 & -9 \\ 4 & 0 & 2 & 2 & -6 \\ 4 & 0 & 2 & 2 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

よって, $(A-2E)^2$ の標準形は,

よって, dimKer $(A-2E)^2=4$ である.

よって, $\dim \operatorname{Ker}(A-2E)^3=5$ である.

 $(\operatorname{Ker}(A-2E)^3$ が \mathbb{C}^5 に含まれる最大の部分集合である.)

以上のことから、 $\operatorname{Ker}(A-2E)$ 、 $\operatorname{Ker}(A-2E)^2 \setminus \operatorname{Ker}(A-2E)$ 、 $\operatorname{Ker}(A-2E)^3 \setminus \operatorname{Ker}(A-2E)^2$ には次のように 1 次独立なベクトル $p(2)_{11}$, $p(2)_{12}$, $p(2)_{21}$, $p(2)_{22}$, $p(2)_{31}$ が属している.

$\ker(A-2E)$	$\operatorname{Ker}(A-2E)^2 \backslash \operatorname{Ker}(A-2E)$	$\operatorname{Ker}(A-2E)^3 \backslash \operatorname{Ker}(A-2E)^2$
$p(2)_{11}$	$p(2)_{21}$	$p(2)_{31}$
$p(2)_{12}$	$p(2)_{22}$	-

表 1: 固有ベクトルの表

ここで, $p(2)_{21}=(A-2E)p(2)_{31}$, $p(2)_{11}=(A-2E)p(2)_{21}$, $p(2)_{12}=(A-2E)p(2)_{22}$ とする. よって $p(2)_{31}$, $p(2)_{22}$ さえ求めてしまえばよい.

ここでは,
$$p(2)_{31} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
, $p(2)_{22} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}$ とするとそれぞれ条件を満たす. ここで, $p(2)_{11}$, $p(2)_{21}$, $p(2)_{31}$, $p(2)_{12}$, $p(2)_{22}$

は 1 次独立になる. よって
$$P = [p(2)_{11}, p(2)_{21}, p(2)_{31}, p(2)_{12}, p(2)_{22}] = \begin{bmatrix} -2 & -1 & 1 & -1 & 0 \\ 3 & 3 & 0 & -1 & 2 \\ 2 & 6 & 2 & -3 & 2 \\ 2 & 2 & 0 & -1 & 1 \\ 0 & 2 & 1 & -2 & 1 \end{bmatrix}$$
 とお

くと、P は正則行列になり、

$$\begin{bmatrix}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{bmatrix}$$

となる.

補足

$$(A-2E)^3p(2)_{31}=0,\;(A-2E)^2p(2)_{22}=0,\;p(2)_{21}=(A-2E)p(2)_{31},\;p(2)_{11}=(A-2E)p(2)_{21},\;p(2)_{12}=(A-2E)p(2)_{22}$$
 కి $\mathfrak h$, $(A-2E)p(2)_{11}=0,\;(A-2E)p(2)_{12}=0$ ో వి సీ సీ సీ

$$AP = A[p(2)_{11}, p(2)_{21}, p(2)_{31}, p(2)_{12}, p(2)_{22}] = [Ap(2)_{11}, Ap(2)_{21}, Ap(2)_{31}, Ap(2)_{12}, Ap(2)_{22}]$$
$$= [2p(2)_{11}, p(2)_{11} + 2p(2)_{21}, p(2)_{21} + 2p(2)_{31}, 2p(2)_{12}, p(2)_{12} + 2p(2)_{22}]$$

$$= [p(2)_{11}, \ p(2)_{21}, \ p(2)_{31}, \ p(2)_{12}, \ p(2)_{22}] \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

$$= P \left[\begin{array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{array} \right]$$

より,
$$P^{-1}AP = \left[egin{array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{array}
ight]$$
 となる.

3 応用例

連立の定数係数の線形微分方程式に使われる.

例えば、x を t を変数とする、n 個の関数を成分とするベクトル値関数とする. A を n 次正方行列とする. このとき連立微分方程式 Ax=0 を解くことを考える. もし A が対角化可能なら、すぐに解を得ることが出来る. しかし A が対角化可能でなくても、A をジョルダン標準形にすれば、解を得ることが出来る.

4 参考文献

- [1] 西山享, 重点解説ジョルダン標準形 行列の標準形と分解をめぐって, 数理科学編集部, 2010.
- [2] 千葉克裕, 行列の関数とジョルダン標準形【増補改訂版】, サイエンティスト社, 2010.
- [3] 「ときわ台学/固有値論/一般固有空間,ジョルダン標準形」, http://f-denshi.com/000TokiwaJPN/05unitr/110unt.html (2015/10/03)