Experiment 1

Overview

In this task, I have employed three distinct optimizers: the regular Gradient Descent, the Stochastic Gradient Descent, and the ADAM Optimizer.

Subsequently, I have preserved and graphed the values of loss, carrying out a analysis of the results.

Results

Gradient Descent: Accuracy = 98.44% (lr=0.01)

SGD: Accuracy = 91.36% (lr=0.01)

ADAM: Accuracy = 96.5% (lr=0.01, beta1=0.8, beta2=0.999)

ADAM loss

Analysis

It is clear that regular GD takes less iterations to converge, but it is known that each iteration is more computationally difficult. ADAM optimizer convergence depends on values of $beta_1$ and $beta_2$. For high values of $beta_1(beta_1=0.9)$ it is not always converge. For the plot I have used $beta_1=0.8$. ADAM convergence speed seems similar to regular GD. All optimizers have similar accuracy value, while GD have the highest and SGD the lowest, but depends on hyperparameters and chosen seed.