Definition

Definition. Sei $t: \mathbb{R}^n \to \mathbb{R}^d$ eine messbare Funktion. Dann nennt man $T = t(X_1, \dots, X_n)$ eine **Statistik**.

· Notation für Realisierungen

$$t = t(x_1, \ldots, x_n).$$

• Menge von [[Zufallsvariable]]

• Stichprobenverteilung

– Verteilung ${\cal F}_T$ von ${\cal T}$

Eigenschaften

$$Minimum X_{(1)} = min\{X_1, \dots, X_n\},\$$

Maximum
$$X_{(n)} = \max\{X_1, \dots, X_n\}$$
,

Reichweite
$$X_{(n)} - X_{(1)}$$
,

Geordnete Stichprobe
$$(X_{(1)}, X_{(2)}, \dots, X_{(n)})'$$
.

Beispiele

Beispiel. Seien X_1, \ldots, X_n i.i.d. Binom(1, p) verteilte Zufallsvariablen. Die Statistik

$$S_n = \sum_{i=1}^n X_i = X_1 + \cdots + X_n$$

zählt die Anzahl der Erfolge (das heißt $X_i = 1$). Man kann zeigen, dass S_n auch binomialverteilt ist, nämlich $S_n \sim \text{Binom}(n, p)$.

Beispiel. Seien X_1, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$ verteilt. Dann entspricht

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

dem Mittelwert der Stichprobe und es gilt $\bar{X} \sim N(\mu, \sigma^2/n)$.

Beispiel. Seien X_1, \ldots, X_n i.i.d. N(0,1) verteilte Zufallsvariablen. Die Statistik

$$T_n = \sum_{i=1}^n X_i^2$$

- $\quad \text{ist allerdings nicht normal verteilt.} \\$
 - negative Werte werden durch Quadrat eleminiert