COMP 472: Artificial Intelligence Machine Learning Unsupervised Learning

Russell & Norvig: not much really

Today

- Introduction to ML
- 2. Naive Bayes Classification
 - Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- Unsupervised Learning) Louinte HEREL
 Neural Nation

- Neural Networks
 - Perceptrons
 - Multi Layered Neural Networks

Types of Machine Learning

Remember this slide?

Unsupervised Learning

- 不会特别的分成小中大三类
- Learn without labeled examples
 - □ i.e. X is given, but not f(X)

big teeth

	L J	7
f(X) = ?		Ī

而是每一类中,里面的object尽同的接近,不同的接近,不同的类别差距尽量大

not given

small eyes

Without a f(X)

small nose

- you can't really identify/label a test instance
- but you can:
 - Cluster/group the features of the test data into a number of groups

moustache

■ Discriminate between these groups without actually labeling them

Clustering GMMIA

• Represent each instance as a vector $\langle a_1, a_2, a_3, ..., a_n \rangle$

Each vector can be visually represented in a n dimensional

space

	a_1	a_2	a_3	Output
X_1	1	0	0	3
X ₂	1	6	0	?
X ₃	8	0	1	?
X ₄	6	1	0	?
X ₅	1	7	1	?

x5x2一组,x4x3一组,因为他们满足了同一组的distance minimize,不同组的distance maximize

k-means Clustering

就是把每个instance在n dimensional space上表达成一个点

- 1. Represent each instance as a point on a n dimensional space
- Partition points into k regions such that:
 - distance between points within a region is minimized
 - distance between points across regions is maximized
 把points分为k组,确保同一region距离最小,不同region距离最大

- Naturally works well with features with numerical values
 - where distance between points can be measured by the Euclidean distance
- Needs modifications for categorical values 如果instance的feature都用数字表示,很好使,distance 用Euclidean distance计算
 - which have no order
 - eg. "Honda", "Audi", "BMW", "Ferrari", "Nissan", "Lamborghini"
 - needs domain-specific distance measure

```
dist(Honda, Nissan)=1
dist(Honda, Audi)=3
dist(ferrari, Lamborghini)=1
```

我们这里定义的是贵的距离近,便宜的距离近,不同价格区间的距离远 因为他们之间没有具体数字,需要一些特定领域的距离测量手段

k-means Clustering

- 1. Place k points into the space (eg. at random). These points represent initial group centroids.
- 2. Assign each data point x_n to the nearest centroid.
- 3. When all data points have been assigned, recalculate the positions of the k centroids as the average of the cluster
- 4. Repeat Steps 2 and 3 until none of the data instances change group.

Euclidean Distance

- To find the nearest centroid...
 - typical metric is the Euclidean distance
 - □ Euclidean distance between 2 pts:

p就是未分配的点的坐标
$$p = (p_1, p_2,, p_n)$$
 $q = (q_1, q_2,, q_n)$ $q = (q_1, q_2,, q_n)$

- To compute the next generation of centroids...
 - atake mean of all points in the cluster in each dimension
 - □ mean of 2 points: 两个点之间的mean

$$p = (p_1, p_2, ..., p_n)$$

 $q = (q_1, q_2, ..., q_n)$

$$c = (\frac{p_1 + q_1}{2}, \frac{p_2 + q_2}{2}, \dots, \frac{p_n + q_n}{2})$$

Example (in 2-D... i.e. 2 features)

initial 3 random centroïds

Example

partition data points to closest centroid

Example re-compute new centroïds

Example

re-assign data points to new closest centroïds

Example

Notes on k-means

- negatives:
 - □ does not guarantee to converge to the global optimum 不能确保最优解,因为你随机选的点不一定好用
 - very sensitive to initial choice of centroids
 - user must set initial k
 - not easy to do... ^{必须想好一开始的k},
- but converges very fast!
- many other clustering algorithms...

Today

- Introduction to ML
- 2. Naïve Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Up Next

- Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons
 - b. Multi Layered Neural Networks