

王石嵘

January 30, 2020

Contents

3	The	Hartı	ree-Fock Approximation	2
	3.1	The H	IF Equations	2
		3.1.1	The Coulomb and Exchange Operators	2
		3.1.2	The Fock Operator	2
			Ex 3.1	2
	3.2	Deriva	ation of the HF Equations	2
		3.2.1	Functional Variation	2
		3.2.2	Minimization of the Energy of a Single Determinant	2
			Ex 3.2	2
			Ex 3.3	2
		3.2.3	The Canonical HF Equations	3
	3.3	Interp	retation of Solutions to the HF Equations	3
		3.3.1	Orbital Energies and Koopmans' Theorem	3
			Ex 3.4	3
			Ex 3.5	3
			Ex 3.6	4
		3.3.2	Brillouin's Theorem	4
		3.3.3	The HF Hamiltonian	4
			Ex 3.7	4
			Ex 3.8	4
	3.4	Restri	cted Closed-shell HF: The Roothaan Equations	4
		3.4.1	Closed-shell HF: Restricted Spin Orbitals	4
		91-1-	Ex 3.9	4
		3.4.2	Introduction of a Basis: The Roothaan Equations	5
		· - · -	Ex 3.10	5
		3.4.3	The Charge Density	5
		0.2.0	Ex 3.11	5
			Ex 3.12	5
			Ex 3.13	6
		3.4.4	Expression for the Fock Matrix	6
		J	Ex 3.14	6
		3.4.5	Orthogonalization of the Basis	7
		0.2.0	Ex 3.15	7
			Ex 3.16	7
		3.4.6	The SCF Procedure	8
		3.4.7	Expectation Values and Population Analysis	8
		J. 1. I	Fy 3 17	Q

3 The Hartree-Fock Approximation

3.1 The HF Equations

3.1.1 The Coulomb and Exchange Operators

3.1.2 The Fock Operator

Ex 3.1

$$\left\langle \chi_{i} \left| \hat{f} \left| \chi_{j} \right\rangle = \left\langle \chi_{i}(1) \left| h(1) + \sum_{b} \left[\mathscr{J}_{b}(1) - \mathscr{K}_{b}(1) \right] \right| \chi_{j}(1) \right\rangle$$

$$= \left[i |h| j \right] + \sum_{b \neq j} \left[\left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(2) \chi_{j}(1) \right\rangle - \left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(1) \chi_{j}(2) \right\rangle \right] \right]$$

$$= \left[i |h| j \right] + \sum_{b \neq j} \left(\left[i j |bb \right] - \left[i b |bj \right] \right)$$

$$(3.1.1)$$

Since

$$[ij|jj] - [ij|jj] = 0 (3.1.2)$$

we have

$$\left\langle \chi_{i} \middle| \hat{f} \middle| \chi_{j} \right\rangle = \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left(\left\langle ib \middle| jb \right\rangle - \left\langle ib \middle| bj \right\rangle \right)$$
$$= \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left\langle ib \middle\| jb \right\rangle \tag{3.1.3}$$

3.2 Derivation of the HF Equations

3.2.1 Functional Variation

3.2.2 Minimization of the Energy of a Single Determinant

Ex 3.2 Take the complex conjugate of

$$\mathscr{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab})$$
(3.2.1)

we have

$$\mathscr{L}[\{\chi_{\alpha}\}]^* = E_0[\{\chi_{\alpha}\}]^* - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([a|b]^* - \delta_{ab}^*)$$
(3.2.2)

i.e.

$$\mathcal{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([b|a] - \delta_{ab})$$
(3.2.3)

thus

$$\sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab}) = \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^{*}([b|a] - \delta_{ab}) = \sum_{b}^{N} \sum_{a}^{N} \varepsilon_{ab}^{*}([a|b] - \delta_{ba})$$
(3.2.4)

٠.

$$\varepsilon_{ba} = \varepsilon_{ab}^* \tag{3.2.5}$$

Ex 3.3 :

$$[\delta \chi_a | h | \chi_a] = [\chi_a | h | \delta \chi_a]^* \tag{3.2.6}$$

$$[\chi_a \delta \chi_a | \chi_b \chi_b] = [\delta \chi_a \chi_a | \chi_b \chi_b]^*$$
(3.2.7)

$$[\chi_a \chi_a | \chi_b \delta \chi_b] = [\chi_a \chi_a | \delta \chi_b \chi_b]^*$$
(3.2.8)

$$[\chi_a \chi_b | \chi_b \delta \chi_a] = [\chi_b \delta \chi_a | \chi_a \chi_b] = [\delta \chi_a \chi_b | \chi_b \chi_a]^*$$
(3.2.9)

$$[\chi_a \chi_b | \delta \chi_b \chi_a] = [\delta \chi_b \chi_a | \chi_a \chi_b] = [\chi_a \delta \chi_b | \chi_b \chi_a]^*$$
(3.2.10)

٠.

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] + [\chi_a \chi_a | \delta \chi_b \chi_b])$$

$$- \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_b | \chi_b \chi_a] + [\chi_a \chi_b | \delta \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.11)

while

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_a | \delta \chi_b \chi_b] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_b | \delta \chi_a \chi_a] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_a | \chi_b \chi_b]$$
(3.2.12)

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_b | \delta \chi_b \chi_a] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_a | \delta \chi_a \chi_b] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_b | \chi_b \chi_a]$$
(3.2.13)

thus

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] - [\delta \chi_a \chi_b | \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.14)

3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

Ex 3.4

$$f_{ij} = \langle \chi_i \mid f \mid \chi_j \rangle = \langle i \mid h \mid j \rangle + \sum_b \langle ib \parallel jb \rangle$$
 (3.3.1)

$$f_{ji}^* = \langle \chi_j | f | \chi_i \rangle^* = \langle j | h | i \rangle^* + \sum_b \langle jb \| ib \rangle^*$$

$$= \langle i | h | j \rangle + \sum_b \langle ib \| jb \rangle$$

$$= f_{ij}$$
(3.3.2)

thus the Fock operator is Hermitian.

Ex 3.5

$$\begin{split} & \operatorname{IP} = ^{N-2} E - E_{0} \\ & = \sum_{a \neq c,d} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab \parallel ab \rangle - \left[\sum_{a} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle \right] \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \frac{1}{2} \sum_{a \neq c,d} \langle ac \parallel ac \rangle - \frac{1}{2} \sum_{a \neq c,d} \langle ad \parallel ad \rangle - \frac{1}{2} \sum_{b \neq c,d} \langle cb \parallel cb \rangle - \frac{1}{2} \sum_{b \neq c,d} \langle db \parallel db \rangle - \langle cd \parallel cd \rangle \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \sum_{a \neq c,d} \langle ac \parallel ac \rangle - \sum_{a \neq c,d} \langle ad \parallel ad \rangle - \langle cd \parallel cd \rangle \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \left(\sum_{a \neq c} \langle ac \parallel ac \rangle - \langle dc \parallel dc \rangle \right) - \left(\sum_{a \neq d} \langle ad \parallel ad \rangle - \langle cd \parallel cd \rangle \right) - \langle cd \parallel cd \rangle \\ & = - \varepsilon_{c} - \varepsilon_{d} + \langle cd \mid cd \rangle - \langle cd \mid dc \rangle \end{split}$$

Ex 3.6

$${}^{N}E_{0} - {}^{N+1}E^{r} = \sum_{a} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle$$

$$- \left[\sum_{a} \langle a \mid h \mid a \rangle + \langle r \mid h \mid r \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle + \frac{1}{2} \sum_{b} \langle rb \parallel rb \rangle + \frac{1}{2} \sum_{a} \langle ar \parallel ar \rangle \right]$$

$$= - \langle r \mid h \mid r \rangle - \frac{1}{2} \sum_{b} \langle rb \parallel rb \rangle - \frac{1}{2} \sum_{b} \langle br \parallel br \rangle$$

$$= - \langle r \mid h \mid r \rangle - \sum_{b} \langle rb \parallel rb \rangle$$

$$(3.3.4)$$

3.3.2 Brillouin's Theorem

3.3.3 The HF Hamiltonian

Ex 3.7 Suppose \mathcal{H}_0 commutes with \mathcal{P}_n ,

$$\mathcal{H}_{0} |\Psi_{0}\rangle = \mathcal{H}_{0} \frac{1}{\sqrt{N!}} \sum_{n}^{N!} (-1)^{p_{n}} \mathcal{P}_{n} \left\{ \sum_{i}^{N} f(i) \chi_{j}(1) \cdots \chi_{k}(N) \right\}$$

$$= \frac{1}{\sqrt{N!}} \sum_{n}^{N!} (-1)^{p_{n}} \mathcal{P}_{n} \left\{ (\varepsilon_{j} + \cdots + \varepsilon_{k}) \chi_{j}(1) \cdots \chi_{k}(N) \right\}$$

$$= \sum_{n} \varepsilon_{n}$$
(3.3.5)

Now we show \mathcal{H}_0 commutes with \mathcal{P}_n , for example, \mathcal{P}_{ab}

$$\mathscr{P}_{ab}\mathscr{H}_0 = \mathscr{P}_{ab}(\dots + f(a) + \dots + f(b) + \dots) = (\dots + f(b) + \dots + f(a) + \dots) \mathscr{P}_{ab} = \mathscr{H}_0\mathscr{P}_{ab} \quad (3.3.6)$$

Ex 3.8

$$\mathcal{V} = \sum_{i}^{N} \sum_{j>i}^{N} \mathcal{O}_2 - \sum_{i}^{N} \sum_{b}^{N} [\mathcal{G}_b(i) - \mathcal{K}_b(i)]$$
(3.3.7)

thus

$$\langle \Psi_{0} | \mathcal{V} | \Psi_{0} \rangle = \sum_{i}^{N} \sum_{j>i}^{N} \langle \Psi_{0} | \mathscr{O}_{2} | \Psi_{0} \rangle - \sum_{i}^{N} \sum_{b}^{N} [\langle \Psi_{0} | \mathscr{G}_{b}(i) - \mathscr{K}_{b}(i) | \Psi_{0} \rangle]$$

$$= \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} \langle ab \parallel ab \rangle - \sum_{i}^{N} \sum_{b}^{N} [\langle ib \mid ib \rangle - \langle ib \mid bi \rangle]$$

$$= -\frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} \langle ab \parallel ab \rangle$$
(3.3.8)

3.4 Restricted Closed-shell HF: The Roothaan Equations

3.4.1 Closed-shell HF: Restricted Spin Orbitals

Ex 3.9

$$\varepsilon_{i} = (i|h|i) + \sum_{b}^{N} (\langle ib | ib \rangle - \langle ib | bi \rangle)
= (i|h|i) + \sum_{c}^{N/2} (\langle ic | ic \rangle - \langle ic | ci \rangle) + \sum_{\bar{c}}^{N/2} (\langle i\bar{c} | i\bar{c} \rangle - \langle i\bar{c} | \bar{c}i \rangle)$$
(3.4.1)

Assume χ_j has α spin, since assuming α or β is identical

$$\varepsilon_{i} = (i|h|i) + \sum_{c}^{N/2} \left[(ic|ic) \langle \alpha | \alpha \rangle \langle \alpha | \alpha \rangle - (ic|ci) \langle \alpha | \alpha \rangle \langle \alpha | \alpha \rangle \right] + \sum_{c}^{N/2} \left[(ic|ic) \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle - (ic|ci) \langle \alpha | \beta \rangle \langle \beta | \alpha \rangle \right] \\
= (i|h|i) + \sum_{c}^{N/2} \left[2(ic|ic) - (ic|ci) \right] \\
= (i|h|i) + \sum_{c}^{N/2} (2J_{ib} - K_{ib}) \tag{3.4.2}$$

3.4.2 Introduction of a Basis: The Roothaan Equations

Ex 3.10

$$(\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C})_{\mu\nu} = \sum_{i} \sum_{j} C_{\mu i}^{\dagger} S_{ij} C_{j\nu}$$

$$= \sum_{i} \sum_{j} C_{i\mu}^{*} \langle \phi_{i} | \phi_{j} \rangle C_{j\nu}$$

$$= \langle \phi_{\mu} | \phi_{\nu} \rangle$$

$$= \delta_{\mu\nu}$$
(3.4.3)

thus

$$\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C} = \mathbf{1} \tag{3.4.4}$$

3.4.3 The Charge Density

Ex 3.11

$$\rho(\mathbf{r}) = \langle \Psi_0 \mid \hat{\rho}(\mathbf{r}) \mid \Psi_0 \rangle$$

$$= \sum_{i}^{N} \frac{1}{N!} \sum_{I}^{N!} \sum_{J}^{N!} (-1)^{p_I} (-1)^{p_J} \int d\mathbf{x}_1 \cdots d\mathbf{x}_N \hat{\mathscr{P}}_I \{ \chi_1(1) \cdots \chi_N(N) \}^* \delta(\mathbf{r}_i - \mathbf{r}) \hat{\mathscr{P}}_J \{ \chi_1(1) \cdots \chi_N(N) \}$$
(3.4.5)

Since $\{\chi_m\}$ are orthogonal,

$$\rho(\mathbf{r}) = \sum_{i}^{N} \frac{1}{N!} \sum_{I}^{N!} \int d\mathbf{x}_{1} \cdots d\mathbf{x}_{N} \hat{\mathscr{P}}_{I} \{\chi_{1}(1) \cdots \chi_{N}(N)\}^{*} \delta(\mathbf{r}_{i} - \mathbf{r}) \hat{\mathscr{P}}_{I} \{\chi_{1}(1) \cdots \chi_{N}(N)\}
= \sum_{i}^{N} \frac{1}{N!} (N - 1)! \sum_{s}^{N} \int d\mathbf{x}_{i} \chi_{s}^{*}(\mathbf{x}_{i}) \delta(\mathbf{r}_{i} - \mathbf{r}) \chi_{s}(\mathbf{x}_{i})
= \sum_{i}^{N} \frac{1}{N} \cdot 2 \sum_{s}^{N/2} \int d\mathbf{r}_{i} \phi_{s}(\mathbf{r}_{i}) \delta(\mathbf{r}_{i} - \mathbf{r}) \phi_{s}(\mathbf{r}_{i})
= \sum_{i}^{N} \frac{2}{N} \sum_{s}^{N/2} \phi_{s}(\mathbf{r}) \phi_{s}(\mathbf{r})
= N \frac{2}{N} \sum_{s}^{N/2} \phi_{s}(\mathbf{r}) \phi_{s}(\mathbf{r})
= 2 \sum_{s}^{N/2} \phi_{s}(\mathbf{r}) \phi_{s}(\mathbf{r})$$
(3.4.6)

Ex 3.12 From Ex 3.10, we have

$$\mathbf{C}^{\dagger}\mathbf{S}\mathbf{C} = \mathbf{1} \tag{3.4.7}$$

i.e.

$$\sum_{i}^{K} \sum_{j}^{K} C_{i\mu}^{*} S_{ij} C_{j\nu} = \delta_{\mu\nu}$$
 (3.4.8)

thus

$$(\mathbf{PSP})_{\mu\sigma} = \sum_{\nu}^{K} \sum_{\lambda}^{K} P_{\mu\nu} S_{\nu\lambda} P_{\lambda\sigma}$$

$$= 4 \sum_{\nu}^{K} \sum_{\lambda}^{K} \sum_{a}^{N/2} C_{\mu a} C_{\nu a}^{*} S_{\nu\lambda} \sum_{b}^{N/2} C_{\lambda b} C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} \sum_{b}^{N/2} C_{\mu a} \left(\sum_{\nu}^{K} \sum_{\lambda}^{K} C_{\nu a}^{*} S_{\nu\lambda} C_{\lambda b} \right) C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} \sum_{b}^{N/2} C_{\mu a} \delta_{ab} C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} \sum_{c}^{N/2} C_{\mu a} \delta_{ab} C_{\sigma b}^{*}$$

$$= 4 \sum_{a}^{N/2} C_{\mu a} C_{\sigma a}^{*}$$

$$= 2 P_{\mu\sigma}$$
(3.4.9)

thus

$$\mathbf{PSP} = 2\mathbf{P} \tag{3.4.10}$$

Ex 3.13 Eq. 3.122 shows

$$f(\mathbf{r}_1) = h(\mathbf{r}_1) + \sum_{a}^{N/2} \int d\mathbf{r}_2 \psi_a^*(\mathbf{r}_2) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \psi_a(\mathbf{r}_2)$$
(3.4.11)

thus

$$f(\mathbf{r}_{1}) = h(\mathbf{r}_{1}) + \sum_{a}^{N/2} \int d\mathbf{r}_{2} \sum_{\sigma} C_{\sigma a}^{*} \phi_{\sigma}^{*}(\mathbf{r}_{2}) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \sum_{\lambda} C_{\lambda a} \phi_{\lambda}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \sum_{\sigma} \sum_{\lambda} \left(\sum_{a}^{N/2} C_{\sigma a}^{*} C_{\lambda a} \right) \int d\mathbf{r}_{2} \phi_{\sigma}^{*}(\mathbf{r}_{2}) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2})$$

$$= h(\mathbf{r}_{1}) + \frac{1}{2} \sum_{\sigma,\lambda} P_{\lambda \sigma} \int d\mathbf{r}_{2} \phi_{\sigma}^{*}(\mathbf{r}_{2}) (2 - \hat{\mathscr{P}}_{12}) r_{12}^{-1} \phi_{\lambda}(\mathbf{r}_{2})$$

$$(3.4.12)$$

3.4.4 Expression for the Fock Matrix

Ex 3.14 In expression $(\mu\nu|\lambda\sigma)$, there are three interchangeable pairs, i.e. $\mu \leftrightarrow \nu$, $\lambda \leftrightarrow \sigma$, and $\mu\nu \leftrightarrow \lambda\sigma$. Thus $(\mu\nu|\lambda\sigma)$ has an 8-fold symmetry. Similarly, $(\mu\mu|\lambda\sigma)$, $(\mu\nu|\mu\nu)$, $(\mu\mu|\sigma\sigma)$ has 2-fold symmetry, and $(\mu\mu|\mu\nu)$, $(\mu\mu|\mu\mu)$ has 1-fold symmetry.

Therefore, the number of unique 2e integrals is

expression	number	K = 100
$-(\mu\nu \lambda\sigma)$	K(K-1)(K-2)(K-3)/8	11763675
$(\mu\mu \lambda\sigma)$	K(K-1)(K-2)/2	485100
$(\mu\nu \mu\lambda)$	K(K-1)(K-2)/2	485100
$(\mu u \mu u)$	K(K-1)/2	4950
$(\mu\mu \sigma\sigma)$	K(K-1)/2	4950
$(\mu\mu \mu u)$	K(K-1)	9900
$(\mu\mu \mu\mu)$	K	100

thus the total number is 12753775.

3.4.5 Orthogonalization of the Basis

Ex 3.15 ∵

$$\mathbf{U}^{\dagger}\mathbf{S}\mathbf{U} = \mathbf{s} \tag{3.4.13}$$

∴.

$$\mathbf{SU} = \mathbf{Us} \tag{3.4.14}$$

i.e.

$$\sum_{\nu} S_{\mu\nu} U_{\nu i} = U_{\mu i} s_i \tag{3.4.15}$$

thus

$$\sum_{\mu} U_{\mu i}^* \sum_{\nu} S_{\mu \nu} U_{\nu i} = \sum_{\mu} U_{\mu i}^* U_{\mu i} s_i \tag{3.4.16}$$

$$\sum_{\mu} \sum_{\nu} U_{\mu i}^* \langle \phi_{\mu} | \phi_{\nu} \rangle U_{\nu i} = s_i \sum_{\mu} |U_{\mu i}|^2$$
(3.4.17)

Suppose

$$\phi_i' = \sum_{\nu} U_{\nu i} \phi_{\nu} \tag{3.4.18}$$

thus

$$\langle \phi_i' | \phi_i' \rangle = s_i \sum_{\mu} |U_{\mu i}|^2 \tag{3.4.19}$$

. .

$$\langle \phi_i' | \phi_i' \rangle > 0 \qquad |U_{\mu i}|^2 > 0$$
 (3.4.20)

: .

$$s_i > 0 \tag{3.4.21}$$

Ex 3.16

• (3.174)

Since (ϕ, ϕ', ψ) are row vectors)

$$\psi = \phi \mathbf{C} \tag{3.4.22}$$

$$\psi = \phi' \mathbf{C}' = \phi \mathbf{X} \mathbf{C}' \tag{3.4.23}$$

we have

$$\mathbf{C} = \mathbf{XC'} \tag{3.4.24}$$

i.e.

$$\mathbf{C}' = \mathbf{X}^{-1}\mathbf{C} \tag{3.4.25}$$

• (3.177)

$$F'_{\mu\nu} = \langle \phi'_{\mu} \mid f \mid \phi'_{\nu} \rangle$$

$$= \left\langle \sum_{i} \phi_{i} X_{i\mu} \mid f \mid \sum_{j} \phi_{j} X_{j\nu} \right\rangle$$

$$= \sum_{i} \sum_{j} X_{i\mu}^{*} X_{j\nu} \langle \phi_{i} \mid f \mid \phi_{j} \rangle$$

$$= \sum_{i} \sum_{j} X_{i\mu}^{*} F_{ij} X_{j\nu}$$
(3.4.26)

i.e.

$$\mathbf{F}' = \mathbf{X}^{\dagger} \mathbf{F} \mathbf{X} \tag{3.4.27}$$

3.4.6 The SCF Procedure

3.4.7 Expectation Values and Population Analysis

Ex 3.17 From (3.148) in the textbook, we get

$$F_{\mu\nu} = H_{\mu\nu}^{\text{core}} + G_{\mu\nu} = H_{\mu\nu}^{\text{core}} + \sum_{a}^{N/2} [2(\mu\nu|aa) - (\mu a|a\nu)]$$
 (3.4.28)

thus

$$E_{0} = \sum_{a}^{N/2} [2h_{aa} + \sum_{b}^{N/2} (2J_{ab} - K_{ab})]$$

$$= 2 \sum_{a}^{N/2} (a|h|a) + \sum_{a}^{N/2} \sum_{b}^{N/2} [2(aa|bb) - (ab|ba)]$$

$$= 2 \sum_{a}^{N/2} \sum_{\mu} \sum_{\nu} C_{\mu a}^{*} C_{\nu a} (\mu|h|\nu) + \sum_{a}^{N/2} \sum_{b}^{N/2} \left[2 \sum_{\mu} \sum_{\nu} C_{\mu a}^{*} C_{\nu a} (\mu\nu|bb) - \sum_{\mu} \sum_{\nu} C_{\mu a}^{*} C_{\nu a} (\mu b|b\nu) \right]$$

$$= 2 \sum_{\mu} \sum_{\nu} P_{\mu \nu} H_{\mu \nu}^{\text{core}} + \sum_{b}^{N/2} \sum_{\mu} \sum_{\nu} [2P_{\mu \nu} (\mu\nu|bb) - P_{\mu \nu} (\mu b|b\nu)]$$

$$= \sum_{\mu} \sum_{\nu} P_{\mu \nu} [2H_{\mu \nu}^{\text{core}} + G_{\mu \nu}]$$

$$= \sum_{\mu} \sum_{\nu} P_{\mu \nu} [H_{\mu \nu}^{\text{core}} + F_{\mu \nu}]$$

$$(3.4.29)$$