

Enrolment No: EUCSEVOS 27

Name of Student: MADINY (DUPTA

Department/ School: SCOBI

MID-TERM EXAMINATION, ODD SEMESTER 2024

COURSE CODE: CSE326

MAX. DURATION:

1 HRS

COURSE NAME: Soft Computing

PROGRAM: B.Tech (V Sem)

TOTAL MARKS: 15

	16 : 00		2 .		
Mapping of Questions to Course and Program Outcomes					
Q.No.	A1	A2	B1	B2	
CO	1	1	2	1	
BTL	3	3	2	2	

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phones, smartwatches and any other non-permissible materials in the examination hall is an act of UFM.

COURSE INSTRUCTIONS:

a) Attempt all questions

SECTION A

A1) Peter wants to design a fuzzy logic-based control system. For this, he needs to map fuzzy inputs R and fuzzy rules S to an output fuzzy set using fuzzy relation. Given the relations below:

Marks-5

$$R = \begin{bmatrix} 0.2 & 0.5 & 0.8 \\ 0.6 & 0.4 & 0.3 \end{bmatrix} \qquad S = \begin{bmatrix} 0.9 & 0.3 \\ 0.7 & 0.5 \\ 0.4 & 0.6 \end{bmatrix}$$

- a) Compute the output using Max-Min composition.
- b) Compute the output using Zadeh's max-min rule.
- Jeniffer uses a decision-making system for customer satisfaction to provide the following fuzzy A2) output for service quality. The numerical values associated with each linguistic term are defined

Marks-4

Poor = 2, Average = 4, Good = 7 and Excellent = 9

Service Quality ={(Poor,0.3); (Average,0.6); (Good,0.8); (Excellent,0.4)}

- a) Apply the centroid method to fuzzify the fuzzy set and provide a numerical rating for the service quality.
- b) How would defuzzification influence the decision-making process in this scenario?

SECTION B

ы)	a)	Define Genetic Algorithm (GA). Explain its key components and how it is used to solve optimization problems. Compute the output using Zadeh's max-min rule.	Marks-1.5
	b)	Draw and label the architecture of a Genetic Algorithm, highlighting the main stages involved in the process, such as initialization, selection, crossover, mutation, and evaluation.	Marks-1.5
B2)	Define defuzzi	defuzzification in the context of fuzzy logic systems. Explain why ification is essential in the fuzzy inference process and different defuzzification	Marks-3

methods.