DSC 1408 Representation Learning

Lecture 05 | Part 1

The Spectral Theorem

Eigenvectors

Let A be an $n \times n$ matrix. An eigenvector of A with eigenvalue λ is a nonzero vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$.

Eigenvectors (of Linear Transformations)

Let \vec{f} be a linear transformation. An eigenvector of \vec{f} with eigenvalue λ is a nonzero vector \vec{v} such that $f(\vec{v}) = \lambda \vec{v}$.

Geometric Interpretation

- Mhen \vec{f} is applied to one of its eigenvectors, \vec{f} simply scales it.
 - Possibly by a negative amount.

Symmetric Matrices

► Recall: a matrix A is **symmetric** if $A^T = A$.

The Spectral Theorem¹

► **Theorem**: Let A be an n × n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

¹for symmetric matrices

What?

- What does the spectral theorem mean?
- What is an eigenvector, really?
- Why are they useful?

Example Linear Transformation

$$A = \begin{pmatrix} 5 & 5 \\ -10 & 12 \end{pmatrix}$$

Example Linear Transformation

$$A = \begin{pmatrix} -2 & -1 \\ -5 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

Example Symmetric Linear Transformation

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$$

Symmetric linear transformations have axes of symmetry.

► The axes of symmetry are **orthogonal** to one another.

The action of \vec{f} along an axis of symmetry is simply to scale its input.

The size of this scaling can be different for each axis.

Main Idea

The **eigenvectors** of a symmetric linear transformation (matrix) are its axes of symmetry. The **eigenvalues** describe how much each axis of symmetry is scaled.

Exercise

Consider the linear transformation which mirrors its input over the line of 45°. Give two orthogonal eigenvector of the transformation.

$$A = \begin{pmatrix} 5 & -0.1 \\ -0.1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.2 \\ -0.2 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.3 \\ -0.3 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.4 \\ -0.4 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.5 \\ -0.5 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.6 \\ -0.6 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.7 \\ -0.7 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.8 \\ -0.8 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 5 & -0.9 \\ -0.9 & 2 \end{pmatrix}$$

The Spectral Theorem²

Theorem: Let A be an n x n symmetric matrix. Then there exist n eigenvectors of A which are all mutually orthogonal.

²for symmetric matrices

What about total symmetry?

Every vector is an eigenvector.

$$A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

Computing Eigenvectors

DSC 1408 Representation Learning

Lecture 05 | Part 2

Why are eigenvectors useful?

OK, but why are eigenvectors³ useful?

- Eigenvectors are nice "building blocks" (basis vectors).
- Eigenvectors are **maximizers** (or minimizers).
- Eigenvectors are equilibria.

³of symmetric matrices

Eigendecomposition

- Any vector \vec{x} can be written in terms of the eigenvectors of a symmetric matrix.
- ► This is called its **eigendecomposition**.

- $\vec{f}(\vec{x})$ is longest along the "main" axis of symmetry.
 - In the direction of the eigenvector with largest eigenvalue.

Main Idea

To maximize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the largest eigenvalue (in abs. value).

Main Idea

To minimize $\|\vec{f}(\vec{x})\|$ over unit vectors, pick \vec{x} to be an eigenvector of \vec{f} with the smallest eigenvalue (in abs. value).

Proof

Show that the maximizer of $||A\vec{x}||$ s.t., $||\vec{x}|| = 1$ is the top eigenvector of A.

Corollary

To maximize $\vec{x} \cdot A\vec{x}$ over unit vectors, pick \vec{x} to be top eigenvector of A.

Example

Maximize $4x_1^2 + 2x_2 + 3x_1x_2$ subject to $x_1^2 + x_2^2 = 1$

- $\vec{f}(\vec{x})$ rotates \vec{x} towards the "top" eigenvector \vec{v} .
- $ightharpoonup \vec{v}$ is an equilibrium.

The Power Method

- Method for computing the top eigenvector/value of A.
- ► Initialize $\vec{x}^{(0)}$ randomly
- Repeat until convergence:
 - Set $\vec{x}^{(i+1)} = A\vec{x}^{(i)} / ||A\vec{x}^{(i)}||$