# Podstawy mechaniki kwantowej

# Notatki z wykładu

# $14~\mathrm{marca}~2025$

# Spis treści

| 1 | His | toria powstania fizyki kwantowej        |
|---|-----|-----------------------------------------|
|   | 1.1 | Zapomnijmy o mechanice klasycznej       |
|   | 1.2 | Promieniowanie ciała doskonale czarnego |
|   | 1.3 | Prawo Rayleigha-Jeansa                  |
|   | 1.4 | Teoria kwantowa Plancka                 |
|   | 1.5 | Efekt fotoelektryczny                   |
|   | 1.6 | Widma atomowe i model Bohra             |
| 2 | Fun | kcja falowa                             |
|   | 2.1 | Eksperyment z dwoma szczelinami         |
|   | 2.2 | Eksperyment ze światłem                 |
|   | 2.3 | Proste zagadnienie                      |
|   | 2.4 | Funkcja falowa swobodnego elektronu     |

# 1 Historia powstania fizyki kwantowej

### 1.1 Zapomnijmy o mechanice klasycznej

Związek z nią będzie jasny, kiedy pójdziemy głębiej w teorię.

### 1.2 Promieniowanie ciała doskonale czarnego

Eksperyment Stefana-Boltzmanna (1878) badał promieniowanie cieplne emitowane przez ciało doskonale czarne. Ciało doskonale czarne to obiekt, który pochłania całe promieniowanie i emituje je zgodnie z temperaturą.



Rysunek 1: Ciało doskonale czarne. Źródło: Wikipedia

Pokazano, że całkowita energia wypromieniowywana przez takie ciało jest proporcjonalna do czwartej potęgi jego temperatury absolutnej

$$R(T) = \sigma T^4$$
,

gdzie R to moc promieniowania na jednostkę powierzchni, T to temperatura w kelwinach, a  $\sigma$  to stała Stefana-Boltzmanna.

Całkowita moc promieniowania to

$$R(T) = \int_0^\infty \rho(\lambda, T) d\lambda,$$

gdzie  $\lambda$  to długość fali, a  $\rho(\lambda,T)$  to spektralna funkcja rozkładu.

W 1893 Wien zauważył, że spektralna gęstość promieniowania nie zależy od  $\lambda$ i Tosobno, ale od ich iloczynu  $\lambda T$ 

$$\rho(\lambda, T) = \lambda^{-5} f(\lambda T).$$

# 1.3 Prawo Rayleigha-Jeansa

W klasycznej elektrodynamice, promieniowanie elektromagnetyczne opisane jako fale stojące daje rozkład energii w funkcji długości fali. Liczba takich fal o długości od  $\lambda$  do  $\lambda+d\lambda$  to

$$\rho(\lambda, T) = \frac{8\pi}{\lambda^4} \cdot \bar{\epsilon},$$

gdzie  $\bar{\epsilon}$  to średnia energia takiej fali. Wzór ten jest dokładny dla długich fal, ale prowadzi do problemu z "katastrofą ultrafioletową" przy krótkich falach, co zostało skorygowane przez teorię kwantową Plancka.



Rysunek 2: Widmo promieniowania ciała doskonale czarnego w wybranych temperaturach. Źródło: Zbigniew Kakol, Jan Żukrowski (e-Fizyka, AGH)

#### Teoria kwantowa Plancka 1.4

W 1900 roku Planck zaproponował, że ciała emitują światło w postaci kwantów ( $\epsilon = n\epsilon_0$ )

$$\bar{\epsilon} = \frac{\sum_{n=0}^{\infty} n\epsilon_0 \exp\left(-\frac{n\epsilon_0}{kT}\right)}{\sum_{n=0}^{\infty} \exp\left(-\frac{n\epsilon_0}{kT}\right)} = \dots = \frac{\epsilon_0}{\exp\left(\frac{\epsilon_0}{kT}\right) - 1},$$

gdzie  $\epsilon_0 = h\nu = \frac{hc}{\lambda}$  jest energią jednego kwantu promieniowania. Z tego wyrażenia Planck otrzymał rozkład promieniowania w funkcji długości fali, który ma postać

$$\beta(\lambda, T) = \frac{8\pi hc}{\lambda^5} \cdot \frac{1}{\exp(\frac{hc}{k\lambda T}) - 1},$$

Wzór ten zgadza się z wynikami eksperymentalnymi, eliminując problem "katastrofy ultrafioletowej".

#### Efekt fotoelektryczny 1.5

Efekt fotoelektryczny to zjawisko emisji elektronów z powierzchni metalu pod wpływem padającego na niego światła.



Rysunek 3: Układ do obserwacji zjawiska fotoelektrycznego. Źródło: Zbigniew Kąkol, Jan Żukrowski  $(e\text{-}Fizyka,\ AGH)$ 

W 1900 roku doświadczenia Lenarda wykazały, że energia elektronów zależy od częstotliwości światła, a nie jego intensywności. Einstein sformułował wzór efektu fotoelektrycznego

$$\frac{1}{2}mv_{\max}^2 = h\nu - W,$$

gdzie W to funkcja pracy metalu (zależna od rodzaju metalu).

### 1.6 Widma atomowe i model Bohra

Newton (1660) badał rozszczepienie światła. Melvill (1755) odkrył, że różne pierwiastki mają charakterystyczne linie widmowe. Kirchhoff (1855) zauważył, że widmo zależy od typu atomu i istnieją zarówno widma emisyjne, jak i absorpcyjne.

Balmer (1885) podał wzór:

$$\lambda = C \cdot \frac{n^2}{n^2 - 4}.$$

Rydberg sformułował bardziej ogólny wzór:

$$\tilde{\nu} = R_H \left( \frac{1}{2^2} - \frac{1}{n^2} \right).$$

# 2 Funkcja falowa

## 2.1 Eksperyment z dwoma szczelinami

Eksperyment z dwoma szczelinami to doświadczenie, w którym światło przechodzi przez dwie szczeliny i na ekranie za nimi pojawia się interferencja.



Rysunek 4: Eksperyment z dwoma szczelinami. Źródło: Ranjbar, Vahid. (2023)

## 2.2 Eksperyment ze światłem



Rysunek 5: Eksperyment z dwoma szczelinami. Źródło: Zbigniew Kąkol, Jan Żukrowski  $(e\text{-}Fizyka,\ AGH)$ 

Amplituda światła:  $A(\vec{r}, t)$ 

Intensywność światła:  $I = |A|^2$ 

$$I = |A_1|^2 + |A_2|^2 + A_1 A_2^* + A_1^* A_2$$

Jest to skutek superpozycji.

# 2.3 Proste zagadnienie

Amplitudy w dwóch miejscach:

$$A_1 = a_1 \exp[i(\omega t - kr_1 + \delta_1)]$$

$$A_2 = a_2 \exp[i(\omega t - kr_2 + \delta_2)]$$

Niech  $a_1 = a_2 = a$  i  $\delta_1 = \delta_2$ . Dla dużych odległości (D >> d), fale są płaskie:

$$r_1^2 = D^2 + \left(x + \frac{d}{2}\right)^2$$

$$r_2^2 = D^2 + \left(x - \frac{d}{2}\right)^2$$

Stad:

$$r_1^2 - r_2^2 = 2xd$$
$$r_1 - r_2 \approx \frac{xd}{D}$$

Intensywność końcowa:

$$I = (a \cdot e^{i\omega t})^2 \cdot \left[e^{-ikr_1} + e^{-ikr_2}\right]$$

$$= 2a^2 \left(\cos\left(kr_1 - kr_2\right) + 1\right)$$

$$= 2a^2 \left(1 + \cos\left(k(r_1 - r_2)\right)\right)$$

$$= 2a^2 \left(1 + \cos\left(\frac{2\pi}{x} \cdot \frac{xd}{D}\right)\right)$$

### 2.4 Funkcja falowa swobodnego elektronu

 $e^- \sim \text{fala (formalna definicja później)}$ 

Niech  $\Psi(x, y, z, t) \sim A(\vec{z}, t)$ .

 $|\Psi|^2=P$  – "Intensywność" fali elektronowej, prawdopodobieństwo znalezienia elektronu w tej chwili w danym miejscu.

Dla dwóch funkcji falowych:

$$\Psi = \Psi_A + \Psi_B$$
$$P \sim |\Psi_A + \Psi_B|^2$$

Prawdopodobieństwo znalezienia elektronu w danej przestrzeni = 1. Zatem

$$\int |\Psi(z,t)|^2 dz = 1.$$

Funkcja falowa znormalizowana do jedynki. Funkcja falowa jest całkowalna kwadratowo.

Superpozycja:

$$\Psi = c_1 \Psi_1 + c_2 \Psi_2$$

$$\Psi_1 = |\Psi_1| e^{i\alpha_1}$$

$$\Psi_2 = |\Psi_2| e^{i\alpha_2}$$

Stad:

$$|\Psi|^2 = |c_1\Psi_1|^2 + |c_2\Psi_2|^2 + 2\operatorname{Re}\left[c_1c_2\Psi_1\Psi_2e^{i\alpha_1-\alpha_2}\right]$$