

PATENT
0641-0254P

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant: John Henry Thomas POWER Conf.: Unknown
Appl. No.: 10/651,056 Group: Unknown
Filed: August 29, 2003 Examiner: UNKNOWN
For: METHODS FOR DETECTING OXIDATIVE STRESS

L E T T E R

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

September 23, 2003

Sir:

Under the provisions of 35 U.S.C. § 119 and 37 C.F.R. § 1.55(a), the applicant(s) hereby claim(s) the right of priority based on the following application(s):

<u>Country</u>	<u>Application No.</u>	<u>Filed</u>
AUSTRALIA	2002951775	September 30, 2002

A certified copy of the above-noted application(s) is(are) attached hereto.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fee required under 37 C.F.R. §§ 1.16 or 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By *Gerald M. Murphy Jr.*
Gerald M. Murphy, Jr., #28,977

P.O. Box 747
Falls Church, VA 22040-0747
(703) 205-8000

GMM/las
0641-0254P

Attachment(s)

(Rev. 04/29/03)

John H.T. Power
101651,056
FILED 08-29-03
BSKB, UP
(703)205-8000
1 OF 1
0641-0254P

Patent Office
Canberra

I, SMILJA DRAGOSAVLJEVIC, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. 2002951775 for a patent by FLINDERS TECHNOLOGIES PTY LTD as filed on 30 September 2002.

WITNESS my hand this
Fifth day of September 2003

S. Dragosavljevic

SMILJA DRAGOSAVLJEVIC
TEAM LEADER EXAMINATION
SUPPORT AND SALES

AUSTRALIA
Patents Act 1990

PROVISIONAL SPECIFICATION

Invention Title: **METHODS FOR DETECTING OXIDATIVE STRESS**

Applicant: **FLINDERS TECHNOLOGIES PTY LTD**

The invention is described in the following statement:

METHODS FOR DETECTING OXIDATIVE STRESS

Field of the Invention

5

The present invention relates to assays that can be used to detect oxidative stress in a subject and also diagnose disease states that are associated with oxidative stress. The assays may be useful in the detection of neurodegenerative diseases such as Parkinson's disease, Alzheimer's 10 disease and Dementia.

Background of the Invention

Oxidative stress is a general term that is used to describe a state of cellular 15 damage that is caused by reactive oxygen species ('ROS'). ROS include free radicals and peroxides that can damage a specific molecule or an entire organism.

ROS are known to cause cell degeneration, especially in the brain. ROS have 20 been implicated as a cause of neurodegenerative diseases such as Alzheimer's disease (AD), Dementia, Lou Gehrig's disease, Parkinson's disease (PD) and Huntington's disease.

It has also been postulated that subjects afflicted with cancer, heart disease or 25 neurodegenerative disease are under severe oxidative stress for long periods of time before these illnesses become evident.

It is estimated that in the United States alone there are approximately 1 million PD sufferers and four million AD sufferers. Unfortunately, there is no definitive 30 biological marker or behavior test to diagnose PD, AD or Dementia with Lewy bodies (DLB). As a result, misdiagnosis rates are as high as 20%. Utilising

current methods, by the time a diagnosis is made a patient is likely to have incurred significant neuronal damage.

There is therefore a need for a diagnostic method that can be used in early diagnosis of neurodegenerative diseases or can be used to monitor disease progression and the effectiveness of any therapeutic intervention. Moreover, there is a need for a diagnostic method that is relatively simple to carry out, such as a simple blood test measurement based on a suitable biological marker. Biological markers have the advantage of identifying at risk subjects, early diagnosis, monitoring disease progression and improved accuracy.

5 However, no such biological marker is currently available for PD, AD and DLB.

10

Summary of the Invention

15 The present invention arises out of the discovery of elevated levels of non-selenium glutathione peroxidase (NSGP) enzyme in the brains of subjects afflicted with AD, PD or DLB relative to the brains of non-afflicted subjects. It is postulated that the increased levels of NSGP reflects an increase in neuronal oxidative stress.

20 Accordingly, the present invention provides a method for detecting an increase in oxidative stress in a subject, the method including the step of:

- monitoring the level of NSGP in a biological fluid or tissue obtained from the subject over time to detect an increase in the level of NSGP in the subject, and/or
- measuring the level of NSGP in a biological fluid or tissue obtained from the subject and comparing the measured level of NSGP with a control level.

25

30 The present invention also provides a method for diagnosing a disease state associated with oxidative stress in a subject, the method including the steps of:

- measuring the level of NSGP in a biological fluid or tissue obtained from the subject, and

- comparing the measured level of NSGP with a control level.

The present inventors have developed oligopeptide fragments of NSGP and antibodies raised against these fragments were found to be specific for NSGP.

5

Therefore, the present invention also provides an isolated oligopeptide wherein antibodies raised against the oligopeptide are specific for NSGP. In one preferred form of the invention the oligopeptide contains the following amino acid sequence: RIRFHDFLGDSWGLFSHPR [SEQ ID NO:1]. In another 10 preferred form of the invention the oligopeptide contains the following amino acid sequence: KKLFPKGVFTKELPSGKKYLR [SEQ ID NO:2].

The invention also provides an immunogenic conjugate that includes an oligopeptide of the present invention, and a carrier protein. The immunogenic 15 conjugate may be used to raise antibodies that are specific for NSGP.

Therefore, the invention also provides an antibody that binds to an oligopeptide that includes the sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, or the sequence of SEQ ID NO:2 or a fragment of SEQ ID NO:2.

20

The invention also provides an antibody that is specific for NSGP wherein the antibody is raised against an oligopeptide that includes the sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, or the sequence of SEQ ID NO:2 or a fragment of SEQ ID NO:2.

25

In addition, the invention provides a method for producing antibodies that are specific for NSGP, the method including the steps of administering the immunogenic conjugate of the present invention to an animal, and collecting antibodies raised against the immunogenic conjugate.

30

The present invention also provides a method for inhibiting or alleviating one or more of the symptoms of a neurodegenerative disease associated with

oxidative stress in a subject, the method including the step of up-regulating expression of NSGP in the subject.

As used herein the term 'up-regulation' in reference to expression of NSGP

5 means that the protein is expressed at levels above the levels at which the protein is normally expressed in a subject that is not afflicted with the neurodegenerative disease. Whether or not expression of a protein is up-regulated can be determined by comparative immunohistochemical and western blot analysis of test subjects and appropriate control subjects

10 'Subject' as used herein includes any mammalian single subject for which therapy is desired, including (but not limited to) humans, cattle, dogs, guinea pigs, rabbits, pigs, horses, or chickens. Most preferably, the subject is a human.

15 The method of the present invention may be used for prophylactic treatment and/or it may be used to maintain a condition or prevent further degeneration.

20 Alternatively, one or more of the symptoms of a neurodegenerative disease associated with oxidative stress in a subject may be inhibited or ameliorated by administering to the subject a mimic of NSGP. Preferably, the mimic is able to cross the blood brain barrier so that it is able to metabolise ROS in neurons.

25 The invention also provides a pharmaceutical composition for inhibiting or alleviating one or more of the symptoms of a neurodegenerative disease associated with oxidative stress in a subject, the composition including a substance that up-regulates expression of NSGP in the subject, and/or a substance that mimics NSGP. The pharmaceutical composition may contain suitable carriers and additives as is known in the art.

30 Throughout this specification reference is made to peptide, oligopeptide or protein sequences and by way of a shorthand notation the three and one letter

abbreviations for amino acid residues in Table 1 are used in the specification.

TABLE 1

Amino Acid	Three letter Abbreviation	One letter Abbreviation
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic Acid	Asp	D
Cysteine	Cys	C
Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

No admission is made that any reference, including any patent or patent document, cited in this specification constitutes prior art. In particular, it will be understood that, unless otherwise stated, reference to any document herein does not constitute an admission that any of these documents forms part of the

common general knowledge in the art in Australia or in any other country. The discussion of the references states what their authors assert, and the applicant and/or patentee reserves the right to challenge the accuracy and pertinency of any of the documents cited herein.

5

General Description of the Invention

Using the methods of the present invention it is possible to detect an increase in oxidative stress in a subject. This can be done by either monitoring the level of
10 NSGP in a biological fluid or tissue obtained from the subject over time and/or measuring the level of NSGP in a biological fluid or tissue obtained from the subject and comparing the measured level of NSGP with a control level.

A number of disease states have either been shown or have been postulated to
15 be associated with oxidative stress. These include neurodegenerative diseases, heart disease and cancer. Consequently, the method of the present invention may be used to diagnose any one or more of these disease states in a subject. It has previously been shown that subjects can be under severe oxidative stress for long periods of time before these illnesses become evident,
20 and therefore the method of the present invention may be used in the early diagnosis of any one or more of these disease states.

The method of the invention may be particularly suitable for the diagnosis or therapeutic monitoring of neurodegenerative disease, in particular in PD, AD or
25 Dementia patients, or for the early diagnosis of neurodegenerative disease, in particular PD, AD or Dementia.

According to the present invention a method for diagnosing a disease state associated with oxidative stress in a subject includes the steps of measuring the
30 level of NSGP in a biological fluid or tissue obtained from the subject and comparing the measured level of NSGP with the level from a non-diseased subject.

The present inventors have developed antigenic fragments of NSGP and antibodies raised against either of these fragments were found to be specific for NSGP.

5

Therefore, the present invention also provides an isolated oligopeptide fragment of NSGP. In one preferred form of the invention the fragment contains the following sequence: RIRFHDFLGDSWGLFSHPR [SEQ ID NO:1]. In another preferred form of the invention the fragment contains the following sequence:
10 KKLFPKGVFTKELPSGKKYLR [SEQ ID NO:2]. Alternatively, oligopeptides derived from other regions of the NSGP sequence may be prepared. The published amino acid sequence (see Kim,T.S. et al., 1997 "Identification of a human cDNA clone for lysosomal type Ca²⁺-independent phospholipase A2 and properties of the expressed protein" J. Biol. Chem. 272 (4), 2542-2550,
15 and/or GENBANK ACCESSION #: D14662) of the NSGP protein is :

MPGGL LLGDV APNFE ANTTV GRIRF HDFLG DSWGI LFSHP
RDFTP VCTTE LGRAA KLAPE FAKRN VKLIA LSIDS VEDHL
AWSKD INAYN CEEPT EKLPF PIIDD RNREL AILLG MLDPA
20 EKDEK GMPVT ARVVF VFGPD KKLKL SILYP ATTGR NFDEI
LRVVIS LQLTA EKRVA TPVDW KDGDS VMVLP TIPEE EAKKL
FPKGV FTKEL PSGKK YLRYT PQP
[SEQ ID NO:3].

25 Oligopeptide sequences of about 10 or more amino acids may be suitable raising antibodies that are specific for NSGP.

The amino acid sequence of alternative oligopeptides may be discovered by the use of overlapping or random oligopeptide generation or alternative
30 computer simulation software so long as the alternatives permit the induction of antibodies of the same specificity as the chosen sequence, that is to say antibodies specific for NSGP.

The oligopeptide may also be homologous to any of the abovementioned oligopeptides provided that the oligopeptide provides antibodies that are specific for NSGP. In this context, an oligopeptide is considered homologous to
5 an oligopeptide of the present invention when it is immuno cross-reactive with antibodies specific for NSGP. It will be recognised by those skilled in the art that some amino acid sequences within the oligopeptide can be varied without significant effect on the structure or function of the oligopeptide. Thus for instance it is anticipated that 'type' amino acid substitutions still retain immuno-
10 cross reactivity and as such a neutral amino acid may be conservatively substituted with another neutral natural or non-natural amino acid, an acidic amino acid may be conservatively substituted with a natural or non-natural acidic amino acid, a hydrophilic amino acid may be substituted with another hydrophilic amino acid, and so on, provided that the immunological function of
15 the oligopeptide is not altered by the substitution.

Typically seen as conservative substitutions are the replacement of one for another among the aliphatic amino acids Ala, Val, Leu and Ile ; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and
20 Glu; substitutions between the amide residues Asn and Gln ; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Preferably the homologous oligopeptide shares 50% homology with an oligopeptide of the present invention, more preferably shares 70% homology, and most preferably shares 90% homology.

25 The invention also extends to variants of these oligopeptides that are either shorter by a few amino acids, at the N-terminal or C-terminal end or both, or longer by a few amino acids. The variants may be obtained by chemical synthesis or by enzymatic digestion of NSGP.

30 To raise NSGP specific antibodies, one or more of the oligopeptides of the present invention can be conjugated as haptens to a suitable carrier protein to

form an immunoconjugate. Suitable carrier proteins include diphtheria toxin, ovalbumin (OVA), bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH). The antibody may be produced by immunising a suitable animal such as mice, guinea pigs, rabbits, goats, sheep, horses, with one or more immunogenic conjugates of the present invention and isolating antibodies from the immunised animal. More specifically, when the antibody reaches sufficient titre, the animals can bleed out and the specific antibody purified using a NSGP affinity column. The serum can be collected and the antibody titre evaluated, in a first stage, in a homologous system, against the oligopeptides used as immunogens, then against NSGP in order to select the antibodies which can be potentially used in the diagnostic test.

The present invention also relates to isolated antibodies whose production results from the use of the immunogenic conjugates defined above. These antibodies may be purified by affinity chromatography on a Sepharose™ type gel grafted with the same oligopeptide which served as hapten in the immunogenic conjugate, so as to select antibodies having the desired specificity. This can be controlled by the same immunoenzymatic assays which were used to choose the oligopeptide and which show that the purified antibodies specifically recognize naturally occurring NSGP.

The present invention also extends to monoclonal antibodies exhibiting the same specificity, that is for NSGP, which are induced according to conventional procedures using as the immunogen, the oligopeptides according to the present invention or derivatives thereof, and which are purified according to conventional methods.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique, the trioma technique, the human B-cell hybridoma technique. In a preferred method, the antibody producing cells may be fused with a myeloma cell to produce a pool of hybridoma cells which can

then be screened for cells that produce the monoclonal antibody.

Monoclonal antibody fragments may also be used in the above method. Thus, the NSGP containing biological sample may be contacted with a fragment of a
5 monoclonal antibody specific for an oligopeptide of the present invention.

Alternatively, additional antibodies capable of binding to NSGP may be produced in a two step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens,
10 and that, therefore, it is possible to obtain an antibody which binds to a second antibody. Thus, NSGP specific antibodies can be used to immunise an animal and the splenocytes of the animal are then used to produce hybridoma cells, and the hybridoma cells screened to identify clones which produce an antibody whose ability to block the NSGP specific antibody can be blocked by the NSGP
15 protein. Such antibodies comprise anti-idiotypic antibodies to the NSGP protein specific antibody.

Antibodies capable of binding to NSGP may also be prepared by raising antibodies to any class of NSGP, including NSGP from rat olfactory mucosa
20 (rat), bovine ciliary body epithelium (bovine), mouse skin, liver and kidney (mouse) as well as porcine, ovine, ave (chicken, duck), rabbit or guinea pig sources. It is thought that the sequence of NSGP is highly conserved (>90% homology) among these species.

25 Reference to an antibody throughout this specification should also be taken to include a fragment of a monoclonal antibody. Therefore the term includes, but is not limited to, Fab, Fv and peptide fragments of the monoclonal antibody, and it may also include such fragments when made as part of a different larger peptide or protein, which may be the product of a recombinant vector. Thus the
30 variable region of the respective monoclonal antibody may be cloned and be made part of a hybrid protein.

The biological fluid that is assayed may be any biological fluid in the subject that is capable of containing NSGP including, but not limited to, serum, plasma, whole blood, cerebro spinal fluid, amniotic fluid, and synovial fluid.

5 The levels of NSGP may be measured using an agent that specifically recognises the NSGP protein. More specifically, the levels may be measured by detecting the binding of NSGP with an antibody specific for NSGP. Alternatively, the levels may be measured by detecting the binding of NSGP with a labelled substrate for NSGP.

10

In one specific form, the invention provides a method for detecting oxidative stress in a subject, the method including the steps of:

- producing antibodies specific to at least one peptide fragment of NSGP, or derivative thereof,
- obtaining a putative NSGP containing biological sample from the subject,
- contacting the biological sample with the antibodies under conditions for formation of an antibody:NSGP complex, and
- assaying for the formation of the antibody:NSGP complex to detect the presence and/or levels of NSGP.

20

In one form of the invention the step of assaying for the formation of antibody:NSGP complex involves detecting the complex using a second revealing antibody. This method is commonly called 'sandwich immunoassay'.

25 The revealing antibody could be a second anti-peptide antibody derived from an NSGP protein sequence or alternatively a polyclonal antibody derived from native NSGP.

30 This method therefore comprises the steps of binding specific anti-peptide antibodies to a support; immunocapture of NSGP in a sample of biological material by the antibodies; and revealing of the immunocaptured NSGP by a second labelled anti-peptide antibody. Other embodiments of the same

immunocapture assay principle can also be envisaged and form part of the present invention. According to a preferred embodiment of the method, one of the anti-peptide antibodies is bound to a support. The antibodies thus bound permit the specific immunocapture of the NSGP present in the sample to be
5 assayed, the latter being preferably serially diluted. The NSGP thus captured by the anti-peptide antibody is revealed with the aid of a second antibody which is labelled in order to increase the sensitivity of the detection. The second type of antibody or revealing antibody is obtained after immunization of animals with one or the other of the purified oligopeptides; these antibodies are purified by
10 utilizing NSGP conjugated Sepharose beads on a column; they are then labelled. The second type of antibody may optionally be a monoclonal antibody or a polyclonal antibody raised against native NSGP. The NSGP titre of the sample to be assayed is determined by comparison with a reference curve established with a standard sample of purified NSGP. Alternatively, the second
15 antibody may remain unlabelled and the use of a third labelled antibody, with specific reactivity against the second antibody may be utilized for the purposes of detection.

In contacting the biological sample with the antibody, the antibody may be
20 attached or conjugated to a carrier molecule or attached or conjugated to a solid support. A solid support in the present invention means any solid material to which the antibody can be complexed or attached. Examples of such solid supports include, but are not limited to, microtitre plates, petri dishes, bottles, slides, and other such containers made of plastic, glass, polyvinyl, polystyrene,
25 and other solid materials which allow detection of labelled antibodies. Other suitable carriers for binding the antibody exist or will be able to be ascertained by routine experimentation.

In a preferred form of the invention the antibody is covalently or noncovalently
30 bound to the surface of a microtitre well. A serum sample suspected of containing NSGP may then be added, unbound sample washed away and the level of NSGP bound in the antibody:NGSP complex assayed. However, to

determine levels of NSGP in a sample, it may be preferable to serially dilute the antibody in several wells in a microtitre plate and to contact a homogeneous biological sample with each of the wells.

5 The assay for the formation of antibody:NSGP complex preferably involves adding a compound that enables detection of the NSGP which is specifically bound to the antibody.

In a preferred form of the invention the assay is an ELISA and the raised antibodies may be used to bind the NSGP in the sample, and a labelled antibody specific for another immuno-recognition site on NSGP can be used to assay for bound NSGP. These assays employ a wide variety of labels including radionuclides, enzymes, fluorescers, chemiluminescers, particles, ligands, enzyme substrates, enzyme cofactors, enzyme inhibitors, light emitter-quencher combinations.

It will be appreciated that the antibodies being assayed may be members of any of the five major classes of antibodies and therefore the diagnostic method encompasses IgA, IgD, IgE, IgG and IgM antibodies and the labelled antibodies for use in an ELISA may be IgA, IgD, IgE, IgG, and IgM antiantibodies, respectively.

The labelled antibodies specific for NSGP may be labelled with a radioisotope, which can then be determined by such means as the use of a gamma counter or a scintillation counter.

Another way in which the antibodies specific for NSGP can be detectably labelled is by linking to an enzyme. This enzyme, in turn, when later exposed to its substrate, will react with the substrate in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorometric or visual means. Examples of enzymes which can be used to detectably label the antibody include malate dehydrogenase, staphylococcal

nuclease, delta-V-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-VI-phosphate dehydrogenase, glucoamylase and acetylcholine esterase. Avidin-biotin binding may be used to facilitate the enzyme labelling.

It is also possible to label the antibodies specific for NSGP with a fluorescent compound. When the fluorescently labelled antibody is exposed to light of the proper wavelength, its presence can then be detected due to the fluorescence of the dye. Among the most commonly used fluorescent labelling compounds are fluorescein isothiocyanate, rhodamine, phycoerytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The antibodies specific for NSGP can also be detectably labelled using fluorescent emitting metals such as ^{152}Eu , or others of the lanthanide series. These metals can be attached to the antibody molecule using such metal chelating groups as diethylenetriaminepentaacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The antibodies specific NSGP can also be detectably labelled by coupling them to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labelling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the antibodies specific for NSGP. Bioluminescence is a type of chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent antibody is determined by detecting the presence of luminescence. Important

bioluminescent compounds for purposes of labelling are luciferin, luciferase and aequorin.

Another technique which may also result in greater sensitivity when used in conjunction with the present invention consists of coupling the antibodies specific for NSGP to low molecular weight haptens. The haptens can then be specifically detected by means of a second reaction. For example, it is common to use haptens such as biotin (reacting with avidin) or dinitrophenyl, pyridoxal and fluorescamine (reacting with specific anti-hapten antibodies) in this manner.

5 The step of assaying for formation of the antibody: NSGP complex may include the step of separating the bound antibody: NSGP complex from unbound NSGP. Thus, the raised antibodies, or fragments thereof may be labelled as discussed previously. Any antibody: NSGP complex formed by contacting the sample with the antibody may be separated from unbound antibody using 10 suitable techniques such as immunoprecipitation or techniques for separation based on size. For example, a mixture obtained after contacting the sample with antibody may be filtered through a suitable membrane so that antibody: NSGP complex is retained on the membrane and unbound antibody passes 15 through the membrane. The labelled antibody: NSGP complex can then be quantitatively assayed using standard techniques for the label used.

20

Other known methods may also be used to assay for levels of NSGP in the biological sample. For example NSGP expression in tissues can be studied with classical immunohistological methods. In these, specific recognition is provided 25 by the primary antibody but the secondary detection systems can utilise fluorescent, enzyme, or other conjugated secondary antibodies. As a result an immunological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, for example with urea and neutral detergent, for the liberation of the NSGP protein for Western-blot or dot/slot 30 assay.

The present invention also relates to a ready-for-use kit or set for the implementation of the assay method described above. This kit comprises: a titration plate, divisible or otherwise, preferably with 96 wells, in which the anti-peptide antibody has been bound, according to a conventional method, and

5 covers the entire surface of the wells, a solution for diluting the samples to be assayed, preferably consisting of a buffered solution (Tris or phosphate), NaCl, protein (casein, ovalbumin or serum albumin and the like) at a concentration of 0.1 to 1%, detergent and preserving agent (sodium azide or merthiolate) and a washing solution of the same composition but without proteins, a standard

10 consisting of recombinant, purified NSGP, a solution of labeled anti-NSGP oligopeptide revealing antibodies; these antibodies may be polyclonal or monoclonal and result from an immunization, according to a conventional procedure; these antibodies are labeled either with biotin, or with a revealing enzyme (such as alkaline phosphatase or horseradish peroxidase). The

15 antibody solution is prepared in Tris or phosphate buffer containing 150 mM NaCl, 0.1 to 1% of overload protein (serum albumin, ovalbumin or casein), glycerol and a preserving agent, a substrate for revealing the antibody labelling, such as for example pNPP (4-nitrophenylphosphate) for alkaline phosphatase, ortho-phenylenediamine for peroxidase and so on.

20

The kit according to the invention can be used for any assay of NSGP in biological fluids or tissue extracts, in particular for the diagnosis and therapeutic monitoring neurodegenerative diseases including PD, AD and Dementia.

25 The oligopeptides of the present invention may also be used to directly or indirectly detect the presence of antibodies to NSGP present in the subject.

The present invention also provides a method for inhibiting or alleviating one or more of the symptoms of a neurodegenerative disease associated with

30 oxidative stress in a subject, the method including the step of up-regulating expression of NSGP in the subject.

As used herein the term 'up-regulation' in reference to expression of NSGP means that the protein is expressed at levels above the levels at which the protein is normally expressed in a subject that is not afflicted with the neurodegenerative disease. Whether or not expression of a protein is up-regulated can be determined by comparative immunohistochemical and western blot analysis of test subjects and appropriate control subjects

'Subject' as used herein includes any mammalian single subject, including (but not limited to) humans, cattle, dogs, guinea pigs, rabbits, pigs, horses, or chickens. Most preferably, the subject is a human.

The method of the present invention may be used for prophylactic treatment and/or it may be used to maintain a condition or prevent further neuron degeneration.

In an alternative form of the invention, one or more of the symptoms of a neurodegenerative disease associated with oxidative stress in a subject may be inhibited or ameliorated by administering to the subject a mimic of NSGP. Preferably, the mimic is able to cross the blood brain barrier so that it is able to metabolise ROS in neurons.

The invention also provides a pharmaceutical composition for inhibiting or alleviating one or more of the symptoms of a neurodegenerative disease associated with oxidative stress in a subject, the composition including a substance that up-regulates expression of NSGP in the subject, and/or a substance that mimics NSGP.

The pharmaceutical compositions of this invention can be administered to humans and other animals orally, rectally, parenterally (i.e. intravenously, intramuscularly, or sub-cutaneously), intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), transdermally, buccally, or as an oral or nasal spray. Multiple administration may be required.

Pharmaceutical compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils (such as olive oil), and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

These compositions may also contain adjuvants such as preservative, wetting agents, emulsifying agents, or dispersing agents. For example, it may be desirable to administer the composition together with an adjuvant such as Freund's (complete or incomplete), mineral gels, surface active substances such as peptides or oil emulsions. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

If desired, and for more effective distribution, the compounds can be incorporated into slow release or targeted delivery systems such as polymer matrices, liposomes, and microspheres.

Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier

such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia, c) humectants such as glycerol, d) 5 disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, 10 and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.

15 Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.

The solid dosage forms of tablets, dragees, capsules, pills, and granules can be 20 prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which 25 can be used include polymeric substances and waxes.

If desired, and for more effective distribution, the compounds can be incorporated into slow release or targeted delivery systems such as polymer matrices, liposomes, and microspheres.

30 Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active

compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol,

5 dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

Besides inert diluents, the oral compositions can also include adjuvants such as
10 wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.

The composition may be administered at any time. Preferably the composition is administered at or after the time of diagnosis.

15 Formulations containing the composition of the invention may conveniently be presented in unit-dose or multi-dose containers, e.g. sealed ampoules and vials. Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose, or an appropriate fraction of the administered ingredient.

20 It is contemplated that an attending clinician will determine, in his or her judgement, an appropriate dosage and regimen, based on the subject's age and condition as well as the severity of the neurodegenerative disease.

25 Description of Preferred Embodiments of the Invention

The following description illustrates the specific aspects of the development of the invention as well as embodiments thereof, without however limiting its scope.

30 The preferred embodiment of the invention is for a diagnostic method of detecting the protein enzyme NSGP in blood, serum, plasma or tissue samples

in a body as a measure of the oxidative stress of the subject. The invention is useful, *inter alia*, in the early detection of a range of diseases, particularly neurodegenerative diseases including, but not limited to, Parkinson's disease, Alzheimer's disease and Dementia and for measuring disease progression and

5 the effects of therapeutic intervention by virtue of the levels of the enzyme in the subject.

In the embodiment described, the amino acid sequences of various human NSGP peptides were analysed using the PINSOFT software which makes it

10 possible to define the hydrophilicity and flexibility profile of the primary sequence. The following oligopeptides were chosen and synthesized based on the known sequence of NSGP:

Oligopeptide 1: RIRFHDFLGDSWGLFSHPR [SEQ ID NO:1]

Oligopeptide 2: KKLFPKGVFTKELPSGKKYLR [SEQ ID NO:2]

15 The oligopeptides were synthesised using published procedures, with the sequences synthesised on a solid phase in the direction "C-terminal end" towards the "N-terminal end". The purity of the amino acids used for the syntheses is always greater than or equal to 99% (HPLC purity). The different reagents and solvents involved in the cutting step (hydrofluoric acid, ether, p-

20 cresol and trifluoroacetic acid) are characterized by a purity of at least 99%. The purification of the peptides is performed and are analysed by high pressure liquid chromatography (HPLC).

The oligopeptides were then conjugated as haptens on diphtheria toxin. The conjugates were prepared by coupling the oligopeptides to a carrier protein so

25 as to be used within the framework of a program of immunisations of animals. The conjugate necessarily consists of a hapten represented by one of the oligopeptide sequences described above onto which there has generally been grafted, either at the N-, or C-terminal end, any amino acid (such as for example tyrosine). The additional residue is always incorporated into the oligopeptide

30 chain during the peptide synthesis. This additional amino acid serves as a

linkage between the sequence itself and a bifunctional reagent (such as bisdiazobenzidine, glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester, carbodiimide) which is used to couple the oligopeptide structure to the carrier protein, diphtheria toxin. The coupling is carried out according to standard
5 procedures.

The diphtheria toxin-bound oligopeptides were used to immunize rabbits or sheep, according to a conventional procedure: A mass of conjugate corresponding to 100 µg of peptide (rabbit) or 1 mg (sheep) is used per injection. The injection is performed intradermally and repeated 3 times at 3 to
10 4 week intervals. The serum is collected and the response with respect to antibodies directed against the oligopeptide ("anti-peptide antibodies") is measured using a standard ELISA-based technique.

An assay based on competition between the recognition of NSGP insolubilized onto a microtitre plate and recognition of NSGP in solution, by the anti-peptide
15 antibodies made it possible to verify whether the antibodies are capable of binding to the protein in solution. In order to selectively recover antibodies specific for NSGP, the sera recovered were subjected to a purification by affinity chromatography on a gel grafted with NSGP which served as immunogen, by grafting of 5 mg of NSGP onto 1 ml of high-performance Sepharose gel
20 (Pharmacia) preactivated by means of N-hydroxysuccinimide (NHS-activated HiTrap column). Deactivation of the active groups not coupled to the ligand and washing of the non-specifically bound ligands using a 0.5M saline solution of ethanalamine pH 8.3 and a 0.1M saline solution of acetate pH 4.0. These solutions both contain 0.5M NaCl and are used alternately over cycles of 6 ml of
25 each solution at each step (three cycles). Then equilibrate the column with a PBS solution before loading the serum. The loading of about 10 ml of rabbit/sheep serum onto the column previously equilibrated with PBS buffer (phosphate-buffered saline) was followed by washing the column with PBS buffer and elution of the specific anti-peptide antibodies by passing 0.1M citrate
30 buffer pH 2.

The antibodies were concentrated on an ultrafiltration membrane (10 to 30,000 cut-off). The antibodies thus purified specifically recognize human NSGP and no significant cross reaction is observed. These antibodies are capable of recognizing the human NSGP bound to an insoluble support or in solution in a liquid phase.

For titration of an antibody solution, the titration method can be applied to sera collected during the selection of the peptides as well as to the specific purified antibody. The method is based on the recognition of antigen insolubilised on a microtitre plate and the revealing of the antibody bound by a labelled anti-antibody. 96-well microplates, conventionally used for titrations in various fields, are preferably used. The titration is carried out according to the following procedure: Sensitize the wells of the microplate with 100 µl of antigen solution (oligopeptide or purified NSGP) at 2 or 1 µg/ml respectively (sensitization buffer: 10 mM Tris-HCl, pH 8.5, 100 mM NaCl) and then incubated overnight at 4 °C or 10 hours at 37 °C. Empty the wells and saturate the non-specific binding sites with a solution of protein such as for example 0.5% gelatine prepared with 50 mM Tris-HCl buffer, pH 7.8, 150 mM NaCl for 30 minutes at room temperature. Empty then wash the wells 3 times with 50 mM Tris-HCl solution at pH 7.8 containing 150 mM NaCl and 0.1% TWEEN 20. After removal of the 15 last washing solution, distribute 100 µl of dilution buffer (50 mM Tris-HCl buffer at pH 7.8 containing 150 mM NaCl, 0.1% TWEEN 20 and 0.5% gelatine) into all the wells except the first well of each line.

Each of the unused wells is reserved for the deposition of each of the samples (serum or purified antibody) to be tested and of the control serum (negative 25 control). These samples should often be diluted 50 to 200 fold with the dilution buffer. The volume of deposit is 200 µl in all cases. The dilutions (2-fold serial dilution) are performed from well to well by transferring 100 µl of solution. The transfer starts with the well containing the 200 µl of serum sample to be tested. Make provisions to reserve at least one well for the internal zero of the test, 30 which is performed at the time of the optical density readings: this well should not be used to dilute any serum and should therefore contain only the dilution

buffer. The 100 µl removed from the last well are eliminated and then incubate for 2 hours at room temperature. Empty the plate and wash the wells with a series of 5 successive washes. Eliminate the last washing solution and then distribute 100 µl of revealing solution, that is to say an anti-antibody conjugate

5 labelled (for example with alkaline phosphatase). This anti-antibody is specific for the species from which the serum is obtained (rabbit, mouse, goat, and the like). The solution of conjugate is diluted with the dilution buffer (50 mM Tris-HCl buffer pH 7.8 containing 150 mM NaCl, 0.1% TWEEN.RTM. 20 and 0.5% gelatine) and incubated for 1 hour at room temperature. Empty the plate and

10 wash the wells with a series of 5 successive washes. Distribute 100 µl of a solution of substrate, such as for example para-nitrophenyl phosphate in the case where alkaline phosphatase is used as revealing enzyme. The pNPP is prepared in an amount of 1 mg/ml of reagent in 0.1M Tris-HCl buffer pH 9.5 containing 1.35M NaCl. Incubate the plate at 37°C and the optical density of

15 each of the wells is read at 405 nm after about 20 minutes. After recording the signals obtained, the optical density values are represented by means of a graph as a function of the logarithm of the serum dilution. The titre value is set as being equal to the dilution value for which 50% of the antigen-antibody complex is obtained.

20 Development of an Immunoassay Method Specific for NSGP. The anti-peptide antibodies purified as described were used to perform an immunoenzymatic assay of the extraction-saturation or "sandwich" type in which the anti-peptide antibodies are absorbed in the wells of the microplate (they are the "capturing" antibodies). The NSGP present in the sample to be assayed is

25 immunocaptured by the antibodies adsorbed and the presence of NSGP is revealed by a second labeled anti-peptide antibody. The assay was carried out according to the following procedure: The anti-peptide antibodies used as tracer antibodies are obtained from purification methods from immunized rabbits.

The anti-peptide antibodies are bound to an insoluble support, which may be

30 microtitre plate wells, polystyrene beads or any other material capable of adsorbing antibodies. A 96-well microplate is used for example. The primary

antibody used to coat the tray is a rabbit polyclonal anti-peptide antibody directed against the N-terminal oligopeptide (#1) of NSGP. A stock solution of the antibody (5 mg/ml) in carbonate buffer pH 9.6 (Buffer A: carbonate-bicarbonate buffer, pH 9.6 consists of 1.59 g of Na₂CO₃, 2.93 g NaHCO₃ and 5 made to 1 L with ddH₂O) is made and 100 µl per well (except blanks) is aliquotted and covered with parafilm and incubated overnight at 4°C or alternatively 37 °C for 2 hours.

The antibody is aspirated away and immediately replaced with 150 µl blocking solution (Buffer A + 1% BSA) to all wells, including blanks and incubated at 37°C for at least 30 minutes. The samples are washed five times in ELISA wash solution pH 7.0 (6.055 g Tris Base, 29.22 g NaCl, 0.744 g EDTA and made to 1 L with ddH₂O and add 1 mL Triton X-100 then pH to 7.0 with 5M HCl). Purified NSGP is initially prepared in Antibody Buffer pH 7.0 (0.6055 g 15 Tris Base, 2.922 g NaCl, 0.5 g BSA, 0.0372 g EDTA and made to 50 mL with ddH₂O, then add 50 µl Triton X-100 and finally pH to 7.0 with 5M HCl. 200 ng of the NSGP in solution was added in duplicate to the first wells and serially diluted down the plate for a standard curve (100, 50, 25, 12.5, 6, 3 1.5, 0.75 ng/well). For each sample neat serum was added to the first well and serially 20 dilute down the plate in antibody buffer in triplicate, then incubated at 37°C for 60 minutes. The tray was washed five times with ELISA wash solution. The addition of the second anti-peptide antibody raised against C-terminal oligopeptide (#2) from NSGP was biotinylated using standard procedures and 100 µl of a 1/1000 dilution to each well was added. The tray was incubated at 25 37°C for 60 minutes, and the tray washed five times with ELISA wash solution and 100 µl of a 1/3000 dilution of Streptavidin alkaline phosphatase was added to each well. The tray was incubated in the dark for 20 minutes at room temperature. The wells are emptied, washed and then emptied before introducing 100 µl of a pNPP solution. The optical densities of the solutions 30 contained in each of the wells are read at 405 nm with a 96-well microtitre plate reader. A volume of 50 µl of stop solution (1M sodium hydroxide) is added

when the highest optical density reaches 2 to 2.5 units, that is to say after 20 to 30 minutes of incubation at 37°C.

The biological samples to be assayed are measured in the same manner and
5 evaluated relative to the standard curve. If the spectrophotometric microplate
reader comprises a suitable software for calculation, the representation can be
made directly by the latter.

The method developed in the preceding example served as the basis for the development of a ready-for-use kit for assaying NSGP in any dissolved blood or
10 tissue sample. This kit comprises all the following constituents: 1. 96-well immunotitre plate sensitized with the purified anti-peptide antibody. It can be a divisible plate (strips of 8, 16, 24 or 48 wells) or a non-divisible plate. In all cases, the strips or the plate are packaged in a blister in the presence of a dessicating agent for their preservation. 2. Solution for diluting the samples:
15 buffered solution (Tris, phosphate) containing a protein (such as casein, BSA, ovalbumin) at a concentration of the order of 0.1% to 1%, an ionic or non-ionic detergent and a preserving agent (sodium azide or merthiolate). 3. Freeze-dried standard: this is human or recombinant NSGP and freeze-dried. 4. Concentrated washing buffer: buffered solution (Tris, phosphate) containing
20 NaCl, a detergent and a preserving agent such as those described above. 5. Solution of labeled tracer antibodies: this may be an anti-human NSGP monoclonal or polyclonal or peptide antibody obtained by immunization of animals with purified human NSGP or peptide derivatives thereof. These antibodies are labelled with biotin or coupled to a revealing enzyme (alkaline
25 phosphatase or PAL, horseradish peroxidase or HRP). These antibodies are in solution in a mixture containing Tris or phosphate buffer, NaCl (150 mM), an overload protein (BSA, OVA, casein) at 0.1-1%, glycerol and a preserving agent. Alternatively, a third antibody against the second antibody may be labeled. 6. A solution of avidin coupled to a revealing enzyme: this solution is
30 present only when the tracer antibody is biotinylated. Either avidin or streptavidin may be used. This protein may be coupled to PAL or HRP. It is in saline solution (Tris, phosphate) with an overload protein (BSA, OVA, casein)

and a preserving agent adapted to the type of revealing (sodium azide proscribed for peroxidase). 7. Revealing substrate(s): pNPP in the case of alkaline phosphatase and ortho-phenylenediamine (OPD) in the case of peroxidase. 8. Substrate dilution buffer: Basic buffer (Tris, ethanolamine) pH 9.5
5 containing magnesium chloride and a preserving agent (sodium azide or merthiolate) in the case of alkaline phosphatase. Acidic buffer (for example citrate pH 5.5) containing hydrogen peroxide (about 0.012%) and a preserving agent (merthiolate) in the case of peroxidase. 9. Stop solution: 1M sodium hydroxide solution containing a metal chelator such as 0.1M
10 ethylenediaminetetraacetate (EDTA) in the case of alkaline phosphatase; 1M sulphuric acid solution in the case of revealing with peroxidase.

The implementation of the test is performed according to the following procedure: Collect venous blood in a glass tube without anticoagulant. Leave the blood to stand for a minimum of two hours before removing the serum.
15 Centrifuge for 10 minutes at 2000 xg and recover the serum. The serum samples are stable for 24 hours at 4°C. Beyond that, it is advisable to freeze the samples at -20°C or better at -80°C. Dilution: the serum samples should be diluted in the solution for diluting the samples. A dilution value of between 1:40 and 1:80 is sufficient.

20

DATED: 30 September 2002
PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:
25 FLINDERS TECHNOLOGIES PTY LTD