Advanced Econometrics Midterm Exam, 2020 2 Hours and 15 Minutes

Problem 1. (10 Points) The OLS objective function discussed in class is

$$Q(a,b) = \sum_{i=1}^{n} (Y_i - a - bX_i)^2.$$

Now consider a modification of it:

$$\widetilde{Q}(a,b) = \left[\sum_{i=1}^{n} (Y_i - a - bX_i)\right]^2.$$

Let $\left(\widetilde{\alpha},\widetilde{\beta}\right)$ be the minimizer of \widetilde{Q} . Show that $\widetilde{Q}\left(\widetilde{\alpha},\widetilde{\beta}\right)=0$. Hint: You do not need to derive the first order conditions.

Problem 2. (10 Points) Let Y and X be two random variables.

- (i) Show that $\mathbb{E}(Y|X)$ and $Y \mathbb{E}(Y|X)$ are uncorrelated. Hint: Use law of iterated expectations.
- (ii) Show that $Var(Y) \ge Var(Y \mathbb{E}(Y|X))$. Hint: Use (i).

Problem 3. (10 Points) Let X be the matrix collecting all the n observations on the k regressors. Let Z = XB, where B is a $k \times k$ non-singular matrix. Let $(\widehat{\beta}, \widehat{e})$ denote the LS estimates and residuals from regression of Y on X. Similarly, let $(\widetilde{\beta}, \widetilde{e})$ denote these from regression of Y on Z. Find the relationship between $(\widehat{\beta}, \widehat{e})$ and $(\widetilde{\beta}, \widetilde{e})$.

Problem 4. (20 Points) Consider a regression of Y_i against a constant and X_i . Let $\hat{\beta}_0$, $\hat{\beta}_1$, and s^2 denote the estimated intercept, estimated slope parameter, and estimator of the variance of errors from that regression. Let T denote the t-statistic for testing H_0 that the slope parameter is zero in that regression. Now, let c_1 and c_2 be two constants ($c_2 \neq 0$). Define a new dependent variable and a new regressor as

$$Y_i^* = c_1 Y_i,$$

$$X_i^* = c_2 X_i.$$

Let $\hat{\beta}_0^*$, $\hat{\beta}_1^*$, and s_*^2 denote the estimated intercept, estimated slope parameter, and estimator of the variance of errors from the regression of Y_i^* against a constant and X_i^* . Let T^* denote the t-statistic for testing H_0 that the slope parameter in the regression of Y_i^* against a constant and X_i^* is zero.

- (i) Find an expression for $\hat{\beta}_1^*$ in terms of $\hat{\beta}_1, c_1$, and c_2 .
- (ii) Find an expression for $\hat{\beta}_0^*$ in terms of $\hat{\beta}_0$ and c_1 .
- (iii) Find an expression for s_*^2 in terms of s^2 and c_1 .
- (iv) What is the relationship between T and T^* ?

Problem 5. (15 Points) Show that in a simple (one-regressor) regression model,

$$Y_i = \beta_0 + \beta_1 X_i + U_i, i = 1, \dots, n,$$

the LS estimate for β_1 is

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X}) Y_i}{\sum_{i=1}^n (X_i - \overline{X})^2},$$

where $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$. Then assume (1) (X_i, Y_i) , i = 1, ..., n are independently and identically distributed (i.i.d.). (2) $E(U_i|X_i) = 0$, for i = 1, ..., n. (3) $E(U_i^2|X_i) = \sigma^2$, for i = 1, ..., n, with some $\sigma > 0$. Show that

$$\operatorname{Var}\left(\widehat{\beta}_{1}|X_{1},...,X_{n}\right) = \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}}.$$

Problem 6. (15 Points) Consider a simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + U_i,$$

where Y_i is the dependent variable, X_i is the explanatory variable, β_0 and β_1 are unknown scalar parameters, $\{(X_i, U_i) : i = 1, \ldots, n\}$ are independent and identically distributed, $E(U_i|X_i) = 0$ and $E(U_i^2|X_i) = \sigma^2$. Consider the following estimator of β_1 : $\widetilde{\beta}_1 = \frac{Y_n - Y_1}{X_n - X_1}$, where (X_1, Y_1) and (X_n, Y_n) are the first and last observations in the data set respectively. Assume that

$$P\left(X_1 \neq X_n\right) = 1.$$

- (i) Is $\widetilde{\beta}_1$ unbiased?
- (ii) Find $Var\left(\widetilde{\beta}_1|X_1,\ldots,X_n\right)$.
- (iii) Let $\hat{\beta}_1$ be the OLS estimator of β_1 . Show directly, without relying on the Gauss-Markov theorem, that the conditional variance of $\hat{\beta}_1$ is smaller than that of $\widetilde{\beta}_1$. Hints: First, show that $Var\left(\widetilde{\beta}_1|X_1,\ldots,X_n\right) > Var\left(\hat{\beta}_1|X_1,\ldots,X_n\right)$ if

$$\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 - \frac{1}{2} \left(\left(X_n - \overline{X} \right) - \left(X_1 - \overline{X} \right) \right)^2 > 0, \tag{1}$$

and then prove that the inequality in (1) holds.

Problem 7. (10 Points) Let $U \mid X \sim N(0, \sigma^2 I_n)$, where X is an $n \times k$ matrix of rank k, and $\sigma^2 > 0$ is an unknown constant.

- (i) Describe the distribution of $U'PU/\sigma^2$, where $P = X(X'X)^{-1}X'$.
- (ii) Give a proof of your result in part (i). Show how the result is implied by the fact that P is symmetric and idempotent.

Problem 8. (10 Points) Suppose we observe a random sample $\{(Y_i, D_i)\}_{i=1}^n$, where Y_i is the dependent variable and D_i is a binary independent variable: for all i = 1, 2, ..., n, $D_i = 1$ or $D_i = 0$. Suppose we regress Y_i on D_i with an intercept. Show: the LS estimate of the slope is equal to the difference between the sample averages of the dependent variable of the two groups, observations with $D_i = 1$ and observations with $D_i = 0$. Hint: The sample average of Y of observations with $D_i = 1$ can be written as $\frac{\sum_{i=1}^n D_i Y_i}{\sum_{i=1}^n D_i}$. What is the sample average of Y of observations with $D_i = 0$? Also note: $D_i = D_i^2$.