Parameterized Complexity

Total marks: 40 (5% of total evaluation)

- 1. K_{10} is a clique (complete graph) on 10 vertices. Consider the following K_{10} -Collecting problem: Given a graph G and an integer k, parameter k, the goal is to find if there exists at least k vertex disjoint K_{10} s in G.
 - (a) (5 points) Let \mathcal{F} be a family of all the 10 sized vertex subsets of V(G) that induce a K_{10} in G. Show that G contains a set of ℓ vertex disjoint K_{10} s if and only if \mathcal{F} contains ℓ pairwise disjoint sets.
 - (b) (10 points) Design a polynomial time algorithm to find a family $\mathcal{F}^* \subseteq \mathcal{F}$ of size at most $\mathcal{O}(k^{10})$ such that \mathcal{F} contains at least k pairwise disjoint sets if and if \mathcal{F}^* contains at least k pairwise disjoint sets. (Use Sunflower lemma)
 - (c) (5 points) Show that if there exists a vertex $v \in V(G)$ such that v is not in any set in \mathcal{F}^* , then (G, k) is a yes instance of K_{10} -Collecting if and only if (G v, k) is a yes instance of K_{10} -Collecting.
 - (d) (5 points) Use (a), (b) and (c) to show that K_{10} -Collecting admits a kernel with $\mathcal{O}(k^{10})$ vertices. Write the running time analysis as well.
- 2. (15 points) Write Vertex Cover parametrized by solution size kernel in details with all the proofs and running time analysis from the lecture 7 of class.