# SG2042 计算平台 用户手册



文档版本: V0.2

发布日期: 2023/03/04

# 版本信息

| 日期         | 版本   | 说明     |
|------------|------|--------|
| 2023.02.28 | V0.1 | 1.初始版本 |
| 2023.03.04 | V0.2 | 1.内容补充 |
|            |      |        |



## 法律信息

**版权所有** © 2023 澎峰(北京)科技有限公司。本公司保留一切权利,本文档中的内容可随时更改, 恕不另行通知。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

#### 商标声明

PerfMPL®等为澎峰(北京)科技有限公司公司注册商标。

本文档所提及的其他所有商标或注册商标,由各自的所有人拥有。

#### 澎峰科技

地址: 北京市海淀区紫雀路 55 号院 9 号楼翠湖科创平台 304 室

邮箱: xianyi@perfxlab.com

中文网址: www.perfxlab.cn, www.perfxlab.com



## 目 录

| 版本信息      | ]                       | 2        |
|-----------|-------------------------|----------|
| 法律信息      | ]                       | 3        |
| 基础软件      | <b>‡环境</b>              | 5        |
| 1.        | 软件源码                    | 5        |
| <i>2.</i> | 系统软件                    | <i>5</i> |
| SD 卡镜     | 像制作说明                   | 7        |
| 1.        | 环境要求                    | 7        |
| <i>2.</i> | 使用源码构建镜像                | <i>7</i> |
| <i>3.</i> | 制作 SD 卡的准备工作            | 9        |
| <i>4.</i> | 获取 Ubuntu 镜像            | 9        |
| <i>5.</i> | 制作可引导的 microSD 卡        | 9        |
|           | 法 1: 使用 balenaEtcher    |          |
| 方         | 法 2: 直接使用 dd 命令         | 10       |
| <i>6.</i> | 从 microSD 引导启动          | 13       |
| 7.        | 使用 NVMe SSD 和 microSD 卡 | 13       |
| 堂贝伯斯      | 5.详旧                    | 14       |

## 基础软件环境

#### 1. 软件源码

SG2042 计算平台的相关软件资源均采取开源方式,欢迎有兴趣的开发者和团队一起加入开发和维护,有关的软件源码包获取地址:

| 软件类别       | 下载路径                                          |  |
|------------|-----------------------------------------------|--|
| Bootloader | https://github.com/sophgo/bootloader-riscv    |  |
| Linux      | h                                             |  |
| Kernel     | https://github.com/sophgo/linux-sophgo        |  |
| BIOS       | TBD                                           |  |
| Compiler   | TBD                                           |  |
| 官方镜像       | http://219.142.246.77:65000/sharing/dK1PHukbe |  |

## 2. 系统软件

为方便用户使用,降低用户开发难度并节约用户开发时间,澎峰科技在 SG2042 计算平台的系统中集成了丰富的高性能计算工具和相关的加速库。相关 的系统软件信息如下表所列:

| 分类         | 软件名称     | 安装路径 | 版本号       |
|------------|----------|------|-----------|
| 操作系统       | Ubuntu   | /    | 22. 04. 1 |
|            |          | /    | 22. 10    |
| 编译器        | ZCC      | TBD  | TBD       |
| 计算库        | PerfMPL  | TBD  | TBD       |
| 计算框架       | PerfXAPI | TBD  | TBD       |
| MPI        | OpenMPI  | TBD  | TBD       |
| Benchmarks | hp1      | TBD  | TBD       |

| stream | TBD | TBD |
|--------|-----|-----|
| iozone | TBD | TBD |



## SD 卡镜像制作说明

#### 1. 环境要求

构建镜像需要安装有如下 Linux 操作系统的 PC 环境:

- Fedora 系统
- Ubuntu 系统

另外因为制作镜像需要构建 uroot, uroot 编译依赖 go 编译器, 因此必须确认系统已经安装 go 1.17, Ubuntu 环境下的 go 1.17 安装方法可参考此网页指引安装: <a href="https://tecadmin.net/how-to-install-go-on-ubuntu-20-04/">https://tecadmin.net/how-to-install-go-on-ubuntu-20-04/</a>。

安装后可参考下面的命令检查go版本是否正确。

\$ go version
go version go1.17 linux/amd64

#### 2. 使用源码构建镜像

1. 使用 git 命令下载源码包

\$ git clone https://github.com/sophgo/bootloader-riscv.git
\$ git clone https://github.com/sophgo/linux-sophgo.git

2. 构建用于 BSP 包的交叉编译工具 GCC (RISC-V 版)

进入 bootloader-riscv 与 linux-sophgo 所在的同级别文件目录, 使用下列命令构建用于 RISC-V 的交叉编译工具链:

- \$ CHIP=mango
- \$ source bootloader-riscv/scripts/envsetup.sh
- \$ build rv gcc

3. 命令正确执行完毕后可以得到如下的文件夹结构:

.

├─ bootloader-riscv

├─ linux-sophgo

└─ gcc-riscv

├─ gcc-riscv64-unknown-elf

└─ gcc-riscv64-unknown-linux-gnu

- 4. 镜像构建命令如下:
  - \$ CHIP=mango
  - \$ source bootloader-riscv/scripts/envsetup.sh
  - \$ build rv all
- 5. 命令执行完毕后,生成的输出文件位于 install/soc\_mango/riscv64 文件目录下:

#### 3. 制作 SD 卡的准备工作

- 能运行 Linux OS 的 PC 环境;
- SG2042 EVB;
- microSD 卡一张 (16GB 或以上容量), microSD 卡读卡器;
- NVMe SSD (可选);
- 串口线 (MicroUSB USB Type-A);

#### 4. 获取 Ubuntu 镜像

- 直接下载镜像: <u>Ubuntu image</u>。该镜像基于 Ubuntu 官方预装的服务器 镜像构建。
- 或者使用你自己编译好的 sd. img 文件,位于目录 install/soc\_mango/r iscv64。

以下均使用 sd. img 来指代 Ubuntu 镜像。

#### 5. 制作可引导的 microSD 卡

## 方法 1: 使用 balenaEtcher

- 1. 下载并安装: balenaEtcher。
- 2. 打开 balenaEtcher, 点击 "Flash from file" 按钮并选择你需要使用的 sd.img。

- 3. 点击 "Select target" 按钮并选择你需要写入 sd. img 的 microSD 卡
- 4. 点击 "Flash!" 按钮, 等待写入完成。

#### 方法 2: 直接使用 dd 命令

1. 使用 dd 命令写入 sd. img 至 microSD 卡:

# To find the block device name of your microSD Card.

# For example, the microSD Card drive is /dev/sdc. Checking the name of your device is a key step,

# as writing to the wrong device might corrupt or destroy your data.

\$ sudo dd if=sd.img of=/dev/sdc bs=32M

160+0 records in

160+0 records out

5368709120 bytes (5.4 GB, 5.0 GiB) copied, 108.587 s, 49.4 MB/s

2. 重新调整 microSD 卡的 root 分区大小(可选):

# Change partition table of your microSD Card.

\$ sudo fdisk /dev/sdc

Welcome to fdisk (util-linux 2.37.2).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help): p

Disk /dev/sdc: 29.72 GiB, 31914983424 bytes, 62333952 sectors

Disk model: MassStorageClass

Units: sectors of 1 \* 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

```
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x5c9f9baa
Device
          Boot Start
                         End Sectors Size Id Type
/dev/sdc1
                /dev/sdc2
              262144 524287 262144 128M c W95 FAT32 (LBA)
/dev/sdc3
             524288 10485759 9961472 4.8G 83 Linux
Command (m for help): d
Partition number (1-3, default 3): 3
Partition 3 has been deleted.
Command (m for help): n
Partition type
   primary (2 primary, 0 extended, 2 free)
  extended (container for logical partitions)
Select (default p): p
Partition number (3,4, default 3):
First sector (524288-62333951, default 524288):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (524288-62333951,
default 62333951):
Created a new partition 3 of type 'Linux' and of size 29.5 GiB.
Partition #3 contains a ext4 signature.
Do you want to remove the signature? [Y]es/[N]o: N
Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
```

Syncing disks.

```
# Check partitions of your microSD Card.
$ sudo fdisk -L /dev/sdc
Disk /dev/sdc: 29.72 GiB, 31914983424 bytes, 62333952 sectors
Disk model: MassStorageClass
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x5c9f9baa
Device
          Boot Start A
                          End Sectors Size Id Type
/dev/sdc1
                 2048
                        262143 260096 127M c W95 FAT32 (LBA)
               262144 524287 262144 128M c W95 FAT32 (LBA)
/dev/sdc2
/dev/sdc3
               524288 62333951 61809664 29.5G 83 Linux
# Force checking your file system.
$ sudo e2fsck -f /dev/sdc3
e2fsck 1.46.5 (30-Dec-2021)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
cloudimg-rootfs: 79598/575424 files (0.0% non-contiguous),
1022378/1150203 blocks
xingxg@vmware:~/sophgo/install/soc_mango/riscv64$ sudo resize2fs
/dev/sdc3
```

resize2fs 1.46.5 (30-Dec-2021)

Resizing the filesystem on /dev/sdc3 to 7726208 (4k) blocks. The filesystem on /dev/sdc3 is now 7726208 (4k) blocks long.

3. 拷贝镜像至 microSD 卡 root 分区的/home/ubuntu:

\$ cp sd.img /mnt/home/Ubuntu

#### 6. 从microSD 引导启动

- 1. 将 microSD 卡插入到 SG2042 EVB,并将串口线连接至电脑 USB 端口,等 待驱动安装完成并识别,然后给 EVB 上电。
- 2. 输入登录名 ubuntu 以及登录密码 sophgo。
- 3. 任何操作均需要 sudo 权限。

#### 7. 使用 NVMe SSD 和 microSD 卡

如果需要使用 NVMe SSD 和 microSD 卡组合的方式启动系统,需要执行以下步骤。

- 1. 使用 dd 命令拷贝 sd. img 到 NVMe 硬盘。
- 2. 重新调整 NVMe 硬盘的 root 分区大小。
- 3. 使用 fdisk 命令删除 microSD 卡的 root 分区,这一步非常重要,因为 microSD 卡和 NVMe 硬盘的 root 分区标签一样,会导致 CPU 无法识别。
- 4. 重启并且使用 NVMe 硬盘上的 Ubuntu 系统。

## 常见问题说明

1. 源码从哪里下载?

Github: <a href="https://github.com/sophgo/">https://github.com/sophgo/</a>。

2. 登录名和密码不对?

登录名: ubuntu

登录密码: sophgo

3. 大于8GB内存不识别?

下载并使用最新的 bootloader-risev 制作新的系统镜像(或下载最新的系统镜像),并重新制作 microSD 启动卡。



