Investigation of San Francisco Crime Data 2003-2019

•••

By: Garrett Yamane

Problem Statement

- Target Client: San Francisco Police Department
- **Goal**: Identify important crime features and use them to develop unsupervised machine learning models for suggesting patterns that contribute to crimes in San Francisco

*https://www.google.com/url?sa=i&source=images&cd=&ved=2 ahUKEwihgoXMy9rlAhV8HzQIHQvBANcQiRx6BAgBEAQ&url= https%3A%2F%2Fwww.aarp.org%2Ftravel%2Fdestinations%2 Funited-states%2Fsan-francisco%2F&psig=AOvVaw2j0Ncqi3x C617wHsUwMGMy&ust=1573301668804179

Data Acquisition and Wrangling

- Sources:

- CABLE mainframe 2003-2018 police reports
- <u>Crime Data Warehouse 2018-2019 police reports</u> (update in 2018)

- Final Data Frame:

- 2,415,298 rows (independent crime reports)
- 15 crime feature columns
- **2018**: update made from CABLE mainframe to Crime Data Warehouse to make crime data more accessible

Crime Features for Final Data Frame (% missing values)

Incident Number	0.00
Incident Category	0.00
Incident Description	0.00
Incident Day of Week	0.00
Incident Date	0.00
Incident Time	0.00
Police District	0.00
Resolution	0.00
Intersection	0.59
Longitude	0.59
Latitude	0.59
point	0.59
Row ID	0.00
Incident Year	0.00
Analysis Neighborhood	0.64

Initial Findings

Questions for Data Set

- Yearly crime rate change?
- What types of crimes are reported the most?
- Are crimes more likely to happen on certain days? Months? Times of the day?
- What neighborhoods are most dangerous?

2018-2019 Choropleth Map of Crimes per Neighborhood

	Neighborhood	Number of Reports	
0	Mission	27168	
1	Tenderloin	24788	
2	Financial District/South Beach	22052	
3	South of Market	20614	
4	Bayview Hunters Point	13385	
5	North Beach	7746	
6	Western Addition	7475	
7	Castro/Upper Market	7114	
8	Sunset/Parkside	6935	
9	Nob Hill	6572	

Application of Inferential Statistics

Crime Report Rate: Is there a statistical significance between the average number of

crimes per year between different police districts?

- H_o : The true mean crime rate between the two police districts are the same
- H_I : The true mean crime rate between the two police districts are <u>not</u> the same

	Mean Per Year	Variance	Total Reports
Police District			
southern	26848.50	1.949013e+07	107394
mission	20342.50	2.423115e+06	81370
northern	20130.25	5.389582e+05	80521
central	20011.50	1.041427e+07	80046
bayview	13818.50	1.223255e+06	55274
ingleside	11874.50	1.143297e+06	47498
taraval	11501.00	5.272353e+05	46004
tenderloin	11223.75	8.588913e+06	44895
richmond	8993.25	1.796556e+05	35973
park	8479.75	7.493216e+05	33919

Application of Inferential Statistics: Feature Selection

- Chi-Square Test
 - Target Feature: Incident Category
 - Test Features:
 - Incident Hour
 - Incident Day of Week
 - Incident Month
 - Police District
 - Resolution
- Goal
 - What features are useful determining the type of crime to be committed?

Baseline Clustering Model: K-Means

^{*}Baseline k-me<u>ans model built with k = 5</u>

^{*5} features used to cluster: Incident Hour, Incident Day of Week, Incident Month, Police District, Incident Category

Cluster 0 Crime Classification % Distribution

Cluster 0 Police District % Distribution

Visualizing K-Means Clusters: PCA

2D K-means Clusters for Crime Reports for k=5 Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 4 -2 -0 --2 --4 -5 5 -10 o 10

neighbor embedding (t-SNE)

Model Extension: Application of t-distributed stochastic

Model Extension: K-Modes

- Better for handling categorical data
- Distance Function: dissimilarity between objects rather than Euclidean distance

*Used same features to cluster as k-means model

K-Modes: Key Differences

Cluster 1 Crime Classification % Distribution

Conclusions and Future Work

- Big takeaways

- No single algorithm can reveal all the underlying patterns of my crime data
- K-modes specifically targets categorical data -> stronger representation of SF crime data

- Future Work

- Configure own crime classifications rather than dealing with every unique category
- Supervised Learning Perspective
 - Predict the type of crime that will happen given certain conditions (time of day, location, etc.)

Recommendations to Client

- "Larceny Theft" by far the most reported crime
 - Large impact on crimes that could be connected to each other
- Target police districts such as Central and Northern with high priority
- Allocate more resources to districts where crimes are most likely may help reduce and prevent future crimes

