MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name:	Last name:	Points:

Assignment 5, due Thursday, February 27, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let $(\Lambda_n)_{n=1}^\infty$ be a sequence of bounded linear functionals from a normed vector space X to a Banach space Y and suppose $\sup_{n\in\mathbb{N}}\|\Lambda_n\|=M<\infty$, and assume there is a dense set $E\subset X$ such that for each $x\in E$, $(\Lambda_nx)_{n=1}^\infty$ is a convergent sequence. Prove that $(\Lambda_nx)_{n=1}^\infty$ converges for each $x\in X$.

Problem 2

Let X be a Banach space with norm $\|\cdot\|$ and $\varphi:X\to\mathbb{C}$ a linear functional. Define another norm $\|\cdot\|_{\varphi}$ on X by

$$||x||_{\Phi} = ||x|| + |\Phi(x)|$$

(no need to prove the norm properties). Show that if X with the norm $\|\cdot\|_{\varphi}$ is also a Banach space, then there is $M\geq 0$ such that for each $x\in X$, $|\varphi(x)|\leq M\|x\|$.

Problem 3

Let V be a subspace of a normed vector space X and $y \in X$. Show that $y \in \overline{V}$ if and only if $\varphi(y) = 0$ for each bounded linear functional such that $\varphi|_V = 0$.