Programming

Javier Garcia-Bernardo (based on material by Gerko Vink)

Introduction to R and RStudio

So far

- How to use R, RStudio, R-scripts and R-notebooks
- Data types (elements)
 - character, numeric, integer, logical, factor
- Data structures: composed of data types
 - vector, matrix, list, data.frame
- Subsetting data structures
- Reading files in different formats

Now

- Best practices in R
- Control-flow:
 - Choice: if-else statements
 - Loops: For loops
- Functions
- Environments

Is the material too basic?

- Reproducible science and dependency management in R
- Ask questions

Best practises in R

Naming conventions: File names

File names should end in .R and be meaningful.

GOOD:

foo.R

```
predict_ad_revenue.R
BAD:
```

Naming conventions: Identifiers

Use underscores (_) to separate words within a name (see more here: http://adv-r.had.co.nz/Style.html)

- 1. Variable names should be nouns and function names should be verbs.
- 2. Strive for names that are concise and meaningful
- 3. Avoid using names of existing functions and variables

Syntax: Line Length

The maximum line length is 80 characters.

Syntax: Indentation

When indenting your code, use two spaces. RStudio does this for you!

Never use tabs or mix tabs and spaces.

Exception: When a line break occurs inside parentheses, align the wrapped line with the first character inside the parenthesis.

Syntax: Spacing

Place spaces around all binary operators (=, +, -, <-, etc.).

Exception: Spaces around ='s are optional when passing parameters in a function call.

```
lm(age ~ bmi, data=boys)
```

or

```
lm(age ~ bmi, data = boys)
```

Syntax: Spacing (continued)

Do not place a space before a comma, but always place one after a comma.

GOOD:

```
tab.prior <- as_tibble(d[d$x < 2, "x"])
total <- sum(d[, 1])
total <- sum(d[1, ])</pre>
```

Syntax: Spacing (continued)

BAD:

```
# Needs spaces around '<'
tab.prior <- table(df[df$days.from.opt<0, "campaign.id"])
# Needs a space after the comma
tab.prior <- table(df[df$days.from.opt < 0, "campaign.id"])
# Needs a space before <-
tab.prior<- table(df[df$days.from.opt < 0, "campaign.id"])
# Needs spaces around <-
tab.prior<-table(df[df$days.from.opt < 0, "campaign.id"])
# Needs a space after the comma
total <- sum(x[,1])
# Needs a space after the comma, not before
total <- sum(x[,1])</pre>
```

Syntax: Spacing (continued)

Place a space before left parenthesis, except in a function call.

GOOD:

```
if (debug)
BAD:
```

Syntax: Extra spacing

if(debug)

Extra spacing (i.e., more than one space in a row) is okay if it improves alignment of equals signs or arrows (<-).

```
plot(x = x.coord,
    y = data.mat[, MakeColName(metric, ptiles[1], "roiOpt")],
    ylim = ylim,
    xlab = "dates",
    ylab = metric,
    main = (paste(metric, " for 3 samples ", sep = "")))
```

Do not place spaces around code in parentheses or square brackets.

Exception: Always place a space after a comma.

Syntax: In general...

- Use common sense and BE CONSISTENT.
- The point of having style guidelines is to have a common vocabulary of coding
 - so people can concentrate on what you are saying, rather than on how you are saying it.
- If the code that you add to a script looks drastically different from the existing code around it, the discontinuity will throw readers out of their rhythm when they go to read it. Try to avoid this.

Control-flow

Code control and functions

- Choice:
 - We often want to run some code *only if* some *condition* is true.
 - if(cond) {cons.expr} else {alt.expr}
- Loops:
 - We often want to repeat the execution of a piece of code many times.
 - for(var in seq) {expr}

Loops in R often happen under the hood, using apply functions:

- apply(): apply a function to margins of a matrix
- sapply(): apply a function to elements of a list, returns vector or matrix (if possible)
- lapply(): apply a function to elements of a list, returns list

Control-flow (I): Choice

If statement

Operation of an **if** statement:

Source: datamentor.io

Code of an if statement:

```
value <- 3
if (value > 3) { #text expression
  print("Value greater than 3") #body of if
}
```

If-else statements

Operation of an if-else statement:

Source: datamentor.io

Code of an if-else statment:

```
value <- 3
if (value > 3) { #test expression
  print("Value greater than three") #body of if
} else {
    print("Value <= 3") #body of else
}</pre>
```

```
## [1] "Value <= 3"
```

If-else statements

Operation of an if-else if statement:

Source: CS161 oregonstate.edu

Code of an if-else if statment:

```
value <- 3
if (value > 3) { #condition 1
    print("Value greater than 3") #condition 1 statements
} else if (value > 1) { #condition 2
    print("Value greater than 1") #condition 2 statements
} else if (value > 0) { #condition 3
    print("Value greater than 0") #condition 3 statements
}
```

```
## [1] "Value greater than 1"
```

You can also add an else at the end.

Subsetting consists of if-else statements

Remember our example from last time

```
example_vector = c(1,2,3,4,5,6,7,8,9)
example_vector>3

## [1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
```

```
example_vector[example_vector>3]
```

```
## [1] 4 5 6 7 8 9
```

The computer keeps the value of the elements of example_vector **if** the corresponding elements in the condition (example_vector>3) are TRUE.

Control-flow (II): Loops

For loops

For loops are used when we want to perform some repetitive calculations.

```
# Let's print the numbers 1 to 6 one by one.
print(1)
## [1] 1
print(2)
## [1] 2
print(3)
## [1] 3
print(4)
## [1] 4
print(5)
## [1] 5
print(6)
## [1] 6
```

For-loops

For-loops allow us to automate this!

For each element of 1:6, print the element:

```
for (i in 1:6){
  print(i)
}
```

```
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
```

For-loops

You can use any variable name, i is a convention for counting/index.

```
for (some_var_name in 1:6){
    print(some_var_name)
}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
```

For-loops (visually)

Source: datacamp.com

Subsetting consists of for-loops and if-else statements

```
example_vector = c(1,2,3,4,5,6,7,8,9)
example_vector>3

## [1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE
example_vector[example_vector>3]
```

```
## [1] 4 5 6 7 8 9
```

For each element in example_vector, keep the value if the corresponding element of the condition (example_vector>3) is TRUE

For-loops

Often you don't want to iterate over a range, but over an object

```
for (element in c("Amsterdam","Rotterdam","Eindhoven")){
  print(element)
}
```

```
## [1] "Amsterdam"
## [1] "Rotterdam"
## [1] "Eindhoven"
```

```
for (element in c("Amsterdam","Rotterdam","Eindhoven")){
   print(element)
   if (element == "Amsterdam"){
      print("Terrible football team.")
   } else {
      print("No comments.")
   }
}
```

```
## [1] "Amsterdam"
## [1] "Terrible football team."
## [1] "Rotterdam"
## [1] "No comments."
## [1] "Eindhoven"
## [1] "No comments."
```

For-loops

Something a bit more useful

```
## V1 V2 V3

## 1 -0.3566815 8.328688 5.233470

## 2 0.6621932 4.591411 5.938710

## 3 -1.0228646 7.778982 8.052985

## 4 1.0107994 7.458928 6.932176

## 5 -0.1352751 7.635722 6.641304
```

For-loops

Doing an operation on each column

```
for (col in names(df)) {
    print(col)
}

## [1] "V1"
## [1] "V2"
## [1] "V3"

for (col in names(df)) {
    print(col)
    print(mean(df[, col]))
}
```

```
## [1] "V1"

## [1] 0.03163426

## [1] "V2"

## [1] 7.158746

## [1] "V3"

## [1] 6.559729
```

For-loops

Doing an operation on each row

```
for (row in 1:nrow(df)) {
  row_values = df[row, ]
  print(row_values)
  print(sum(row_values>5))
                      ٧2
                               VЗ
##
             V1
## 1 -0.3566815 8.328688 5.23347
## [1] 2
                     ٧2
                             VЗ
##
            V1
## 2 0.6621932 4.591411 5.93871
## [1] 1
##
            ۷1
                     ٧2
                               VЗ
## 3 -1.022865 7.778982 8.052985
## [1] 2
           V1
                    ٧2
## 4 1.010799 7.458928 6.932176
## [1] 2
##
             V1
                      ٧2
## 5 -0.1352751 7.635722 6.641304
## [1] 2
```

While loops

Do something forever until a condition is (not) met

```
i = 0
while (i < 10) {
    i = i + 1
    print(i)
}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10</pre>
```

More info on loops: https://www.datamentor.io/r-programming/break-next/

Vectorized version of if-else statements

For loops are very slow.

Operations in R are much faster when applied at once to a vector

```
example_vector = c(1,2,3,4,5,6,7,8,9)
ifelse(example_vector > 5.5, "Pass", "Fail")
```

```
## [1] "Fail" "Fail" "Fail" "Fail" "Pass" "Pass" "Pass" "Pass"
```

The apply() family

apply()

The apply family is a group of very useful functions that allow you to easily execute a function of your choice over a list of objects, such as a list, a data.frame, or matrix.

We will look at three examples:

- apply
- sapply
- lapply

There are more: - vapply - mapply - rapply - ...

apply()

apply is used for homogeneous matrices/dataframes. It applies a function to each *row* or *column*. It returns a vector or a matrix.

```
head(df, 1)
## V1 V2 V3
## 1 -0.3566815 8.328688 5.23347
```

Apply it by row (MARGIN = 1):

```
apply(df, MARGIN = 1, mean)
## [1] 4.401825 3.730771 4.936367 5.133968 4.713917
```

Apply it by column (MARGIN = 2):

apply()

It doesn't need to aggregate:

```
apply(df, MARGIN = 2, sqrt)
## Warning in FUN(newX[, i], ...): NaNs produced
## V1 V2 V3
## [1,] NaN 2.885947 2.287678
## [2,] 0.8137526 2.142758 2.436947
## [3,] NaN 2.789083 2.837778
## [4,] 1.0053852 2.731104 2.632903
## [5,] NaN 2.763281 2.577073
```

sapply()

sapply() is used on list-objects. It returns a vector or a matrix (if possible).

```
my_list <- list(A = c(4, 2, 1), B = "Hello.", C = TRUE)
sapply(my_list, class)</pre>
```

```
## A B C
## "numeric" "character" "logical"

my_list <- list(A = c(4, 2, 1), B = c("hello","Hello","Aa","aa"), C = c(FALSE,TRUE))
sapply(my_list, range)</pre>
```

```
## A B C
## [1,] "1" "aa" "0"
## [2,] "4" "Hello" "1"
```

Why is each element a character string?

sapply()

Any data.frame is also a list, where each column is one list-element.

This means we can use sapply on data frames as well, which is often useful.

```
sapply(df, mean)
```

```
## V1 V2 V3
## 0.03163426 7.15874603 6.55972889
```

lapply()

lapply() is exactly the same as sapply(), but it returns a list instead of a vector.

lapply(df, class)

```
## $V1
## [1] "numeric"
##
## $V2
## [1] "numeric"
##
## $V3
## [1] "numeric"
```

Writing your own functions

What are functions?

Functions are reusable pieces of code that

- 1. take some standard input (e.g. a vector of numbers)
- 2. do some computation (e.g. calculate the mean)
- 3. return some standard output (e.g. one number with the mean)

We have been using a lot of functions: code of the form something() is usually a function.

```
mean(1:6)
## [1] 3.5
```

Our own function

We can make our own functions as follows:

```
squared <- function (x){
  x.square <- x * x
  return(x.square)
}</pre>
```

```
## [1] 16
```

x, the input, is called the (formal) argument of the function. x.square is called the return value.

Our own function

If there is no return(), the last line is automatically returned, so we can also just write:

```
square <- function(x){
  x * x
}
square(-2)</pre>
```

[1] 4

I do not recommend this, please always specify what you return unless you have a one-line function.

Anonymous/Lambda expressions

```
#Python
df.apply(lambda x: np.percentile(x, .42))

#R
sapply(df, {function(x) quantile(x, .42)})

## V1.42% V2.42% V3.42%
## -0.2061252 7.5791476 6.4164736
```

Default options in functions

- Default options for some arguments are provided in many functions.
- They allow us to provide additional (optional) arguments

```
is_contained <- function(str_1, str_2, print_input = TRUE){
  if (print_input){
    cat("Testing if", str_1, "contained in", str_2, "\n")
  }
  return(str_1 %in% str_2)
}</pre>
```

```
is_contained("R", "rstudio")
```

```
is_contained("R", "rstudio")
## Testing if R contained in rstudio
## [1] FALSE
is_contained("R", "rstudio", print_input = TRUE)
## Testing if R contained in rstudio
## [1] FALSE
is_contained("R", "rstudio", print_input = FALSE)
## [1] FALSE
```

Create documentation of functions

```
##Python
def square(x):
    """
    Squares a number

Parameters:
    x (float): Number (or vector)

Returns:
    float: Squared numbers
    """
    return(x**2)
```

```
##R more info at https://r-pkgs.org/man.html

#' Squares a number

#'
#' @param x A number.

#' @returns A numeric vector.

#' @examples

#' square(3)

square <- function(x){
    x * x
}</pre>
```

Troubleshooting

- Your first self-written for-loop, or function, will probably not work.
- Don't panic! Just go line-by-line, keeping track of what is currently inside each variable.
- Stackoverflow and LLMs are your friends.

Scoping rules in R

Global environemnt (workspace)

When you write the name of a variable, R needs to find the value.

In the interactive computation (outside of functions, e.g., your console), this happens in the following order:

- First, search the global environment (i.e., your workspace)
- If it cannot be found, search each of the loaded packages

search()

```
## [1] ".GlobalEnv" "package:lubridate" "package:forcats"
## [4] "package:stringr" "package:dplyr" "package:purrr"
## [7] "package:readr" "package:tidyr" "package:tibble"
## [10] "package:ggplot2" "package:tidyverse" "package:stats"
```

```
## [13] "package:graphics" "package:grDevices" "package:utils"
## [16] "package:datasets" "package:methods" "Autoloads"
## [19] "package:base"
```

The order of packages is important.

Scoping rules in R: Functions

Inside a function, this happens in the following order:

- First, search within the function.
- If it cannot be found, search in the global environment (i.e., your workspace)
- If it cannot be found, search each of the loaded packages

```
y <- 3
test_t <- function() {
    print(y)
}
test_t()
## [1] 3

y <- 3
test_t <- function() {
    y <- 2
    print(y)
}</pre>
```

Scoping rules in R: Functions

What happens inside a function, stays within a function (unless you specify it differently)

```
y <- 3
test_t <- function() {
    y <- 2
    print(y)
}
test_t()</pre>
## [1] 2
y
```

[1] 3

test_t()
[1] 2

Scoping rules in R: Packages

Packages are neatly contained/isolated, so they are not affected by your code. They do so through namespaces:

- Namespaces allow the package developer to hide functions and data.
- Objects in the global environment that match objects in the function's namespace are ignored when running functions from packages (prevent clashes)
- Functions are executed within the namespace of the package and have access to the global environment
- They provide a way to refer to an object, with the double colon ::

```
dplyr::n_distinct(c(1,2,3,4,2))
```

Scoping rules in R: Packages (good practices)

• Pass to the function (using arguments) *everything* that the function needs to use (i.e. don't define something outside the function that is being used for the function)

BAD

[1] 4

```
shifted_mean <- function(numbers) {
   return(mean(numbers) + shift_by)
}
shift_by <- 3
shifted_mean(c(1,2,3))</pre>
```

GOOD

```
shifted_mean <- function(numbers, shift_by) {
   return(mean(numbers) + shift_by)
}
shift_by <- 3
shifted_mean(c(1,2,3), shift_by)</pre>
```

Reproducibility

Working in projects in RStudio

- Every research project has its own project
- Every project can have its own folder, which also serves as a research archive
- Every project can have its own version control system (e.g. github)
- Every project can have its own dependency management (e.g. renv)

Keep your code clean

- 1. Break the code in components, keep it tidy
- 2. Use (at least) one folder for the data, and one for figures; don't save all code in one folder.
- 3. If you have several R files, use descriptive names (e.g. 1_data_collection.Rmd)
- 4. Write all code in the source editor, don't use the console until you know what you are doing.
- 5. You shouldn't need to write a command more than two times.
 - If you are doing something similar several times -> Use **functions** (e.g. you made an amazing plot and you want to use it for two subsets of the data)
 - Reusable in other projects
 - If you find yourself writing the same thing several times -> use **for loops** (potentially with purrr::map for convenience)
 - Both functions and loops allow you:
 - Have a clear code
 - Easier to maintain / less errors
- 6. Use **comments** (text preceded by #) to clarify what you are doing
- If you look at your code again, one year from now: you will not know what you did -> unless you use comments

Dependency management

Each project uses specific versions of the packages.

What happens if the function that you are using is deprecated in a new version?

We should separate the packages we use in each project.

- Tools:
 - conda / mamba / poetry (Python): Use virtual environments to compartmentalize projects
 - renv (R): Load the right version of packages when you open the project
- Dependencies are specified in plain text files:
 - Python: requirements.txt, environment.yml (conda/mamba), pyproject.toml (poetry)
 - R: renv.lock
- Caveats:
 - Results may depend on the Operating System -> You could use Docker
 - Packages may be deleted

Dependency management workflow

- Python
 - Create environment: mamba env create -n my_cool_project python=3
 - Activate environment: mamba activate my_cool_project
 - Install packages: mamba install jupyter pandas scipy
 - Export when ready: mamba export -n my_cool_project > my_cool_project.yml
 - Delete when you're done: mamba env remove -n my_cool_project
 - Restore if you need it: mamba env create --file my_cool_project.yml
- R

- Create project (RStudio)
- Create renv file: renv::init()
- Install packages: install.packages("tidyverse")
- Export when ready: renv::snapshot()
- Restore if you need it: renv::restore()

Version control

- I just messed up something and closed the file. How do I go back?
- Solutions:
 - Okay: Use a cloud system (most offer 30-days backups)
 - Better: Use git (e.g. provided by github)
- Workflow (for one person, not for teams):
 - Create repository, selecting README.md and .gitignore files
 - Add files that you want to upload: git add file 1_data_cleaning.R
 - Commit files: git commit -m "add data cleaning pipeline"
 - Push changes online: git push origin main
 - If things change online: git pull origin main

Practical

Final recap

- How to use R, RStudio, R-scripts and R-notebooks
- Data types (elements)
 - character, numeric, integer, logical, factor
- Data structures: composed of data types
 - vector, matrix, list, data.frame
- Subsetting data structures
- Reading files in different formats
- Best practices in R
- Control-flow:
 - Choice: if-else statements
 - Loops: For loops
- Functions
- Environments