

Introduction to SimCLR

Yiming Zhang July 20, 2023

Contents

▶ Before SimCLR.

▶ The Contrastive Learning Framework

► Summary

How to get representations without supervision?

Generative approach

- modelling the joint distribution
- converge more quickly, can deal with latent features
- computationally expensive and may not be necessary
- can switch to discriminative approach
- Naive Bayes, GAN, GPT

Discriminative approach

- modelling the boundary, distribution-free
- can't switch to generative approach
- Linear Regression, SVM, KNN

Examplar Learning

- Main idea: treat each instance as a class represented by a feature vector
- Apparent similarity is from the visual data themselves.

Dosovitskiy et al. (2014)

- applying transformations to a 'seed' image
- better performance in object classification and descriptor matching

Wu et al. (2018)

- treat the feature space as an unit sphere
- use Non-Parametric Softmax Classifier and Memory Bank

Contents

▶ Before SimCLR

▶ The Contrastive Learning Framework

► Summary

The Contrastive Learning Framework

Idea:maximizing agreement between differently augmented views of the same data example

- stochastic data augmentation
- neural network: base encoder
- small neural network: projection head
- contrastive loss function

Stochastic Data Augmentation Module

Data augmentation operations are crucial!

Stochastic Data Augmentation Module

Result of linear evaluation(ImageNet top-1 accuracy):

- No single transformation suffices to learn good representations
- Random cropping and random color distortion stands out.
- Why color distortion is crucial?

Effect of Color Distortion

From experiments:

- It is critical to compose cropping with color distortion in order to learn generalizable features.
- Contrastive learning needs stronger data augmentation than supervised learning.

(a) Without color distortion.

(b) With color distortion.

Color distortion strength						
Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR	59.6	61.0	62.6	63.2	64.5	61.1
Supervised	77.0	76.7	76.5	75.7	75.4	77.1

Encoder Component of Framework

- $h_i = f(x_i) = \text{ResNet}(x_i)$
- \bullet output: 2048-dim vector h

Architectures for Encoder and Head

Existence of projection head?

- A nonlinear projection head improves the representation quality
- g(h) may remove information that may be useful for the downstream task
- In SimCLR, set $z_i = g(\mathbf{h_i}) = W^{(2)}\sigma(W^{(1)}\mathbf{h_i})$, where σ is a ReLU nonlinearity.

Name	Negative loss function	Gradient w.r.t. $oldsymbol{u}$
NT-Xent	$u^T v^+ / au - \log \sum_{v \in \{v^+, v^-\}} \exp(u^T v / au)$	$(1 - \frac{\exp(u^T v^+ / au)}{Z(u)}) / au v^+ - \sum_{v^-} \frac{\exp(u^T v^- / au)}{Z(u)} / au v^-$
NT-Logistic	$\log \sigma(\boldsymbol{u}^T \boldsymbol{v}^+ / \tau) + \log \sigma(-\boldsymbol{u}^T \boldsymbol{v}^- / \tau)$	$(\sigma(-oldsymbol{u}^Toldsymbol{v}^+/ au))/ auoldsymbol{v}^+-\sigma(oldsymbol{u}^Toldsymbol{v}^-/ au)/ auoldsymbol{v}^-$
Margin Triplet	$-\max(oldsymbol{u}^Toldsymbol{v}^ oldsymbol{u}^Toldsymbol{v}^+ + m, 0)$	$oldsymbol{v}^+ - oldsymbol{v}^-$ if $oldsymbol{u}^T oldsymbol{v}^+ - oldsymbol{u}^T oldsymbol{v}^- < m$ else $oldsymbol{0}$

Loss Functions: NT-Xent function

Batch Sizes and Training Time

Contrastive learning benefits more from larger batch sizes and longer training.

- When the number of training epochs is small (e.g. 100 epochs), larger batch sizes have a significant advantage over the smaller ones.
- With more training steps/epochs, the gaps between different batch sizes decrease or disappear, provided the batches are randomly resampled.

Contents

▶ Before SimCLR

► The Contrastive Learning Framework

ightharpoonup Summary

Summary

- Composition of data augmentations plays a critical role in defining effective predictive tasks.
- a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations.
- Contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning.

17 / 17

Thanks for listening!