CDI-II

Volume de um sólido de revolução

Exercícios

- 1. Calcule o volume do sólido obtido pela rotação:
 - (a) da curva $y = x^3$, $0 \le x \le 2$ em torno de $\circ x$;
 - (b) da curva $y = \cos x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ em torno de $\circ x$;
 - (c) do conjunto de pontos $R = \{(x,y) \in \mathbb{R}^2; 1 \le y \le e^x \text{ e } 0 \le x \le 1\}$ em torno de $\circ x$;
 - (d) do conjunto de pontos $R=\left\{(x,y)\in\mathbb{R}^2;1\leq y\leq e^x\text{ e }0\leq x\leq 1\right\}$ em torno de $\circ y;$
 - (e) da curva $y = \frac{1}{x}$, $0 \le x \le 2$ em torno de $\circ x$ e de $\circ y$;
 - (f) da curva $y = (x 1)^2$, $1 \le x \le 3$ em torno de $\circ x$ e de $\circ y$;
 - (g) do conjunto de pontos $(x,y) \in \mathbb{R}^2$ tais que $x \geq 0$, $(x-1)^2 \leq y \leq 9$ em torno de $\circ x$ e de $\circ y$;
 - (h) da curva $y = x^2 7x + 10$, $1 \le x \le 7$ em torno do eixo $\circ y$.
- 2. Mostre que o volume V do interior de uma esféra de raio r é dado pela equação $V=\frac{4\pi r^3}{3}.$