Sistem Linier

Week 5 - 6

B.T. Atmaja & D. Prananto

- 1) Teknik Fisika, ITS Surabaya
- 2) Prodi. Teknik Elektro, Universitas Panca Marga Probolinggo

Sistem Linear Vs Non-Linear

Contoh Sistem Linear:

$$y(n) = \frac{-x(n)}{2}$$

Contoh Sistem Non-Linear:

$$y(n) = -x(n)^2$$

Tentukan Sistem Berikut Linear/Tdk

•
$$y(n)=T[x(n)]=3x^2(n)$$

•
$$y(n)=2x(n-2)+5$$

•
$$y(n)=x(n+1)-x(n-1)$$

• Linier → memiliki sifat <u>superposisi</u>:

1. Aditivitas
$$x_1(t) + x_2(t) \to y_1(t) + y_2(t)$$

2. Homogenitas $ax_1(t) \rightarrow ay_1(t)$

Gabungan kedua sifat menghasilkan kombinasi linier:

$$ax_1(t) + bx_2(t) \to ay_1(t) + by_2(t)$$
 (1)

$$ax_1[n] + bx_2[n] \to ay_1[n] + by_2[n]$$
 (2)

• Waktu-invarian (tak-ubah waktu):

$$x(t) \rightarrow y(t) \implies x(t-t_0) \rightarrow y(t-t_0)$$

Jika masukan,

$$x[n] = \sum_{k} a_k x_k[n]$$

= $a_1 x_1[n] + a_2 x_2[n] + a_3 x_3[n] + \dots$

keluaran:

$$y[n] = \sum_{k} a_k y_k[n]$$

= $a_1 y_1[n] + a_2 y_2[n] + a_3 y_3[n] + \dots$

Sehingga, jika dituliskan:

$$x[n] = \sum_{k} a_k x_k[n] \to y[n] = \sum_{k} a_k y_k[n]$$

Tentukan Sistem Berikut LTI/Tidak

•
$$y(n)=L[x(n)]=10\sin(0.1\pi n)$$

•
$$y(n)=L[x(n)]=x(n+1)-x(1-n)$$

•
$$y(n)=L[x(n)]=\frac{1}{4}x(n)+\frac{1}{2}x(n-1)+\frac{1}{4}x(n-2)$$

(1) Representasi sinyal waktu-diskrit sebagai impuls

Sinyal di samping dapat dipisahkan menjadi sinyalsinyal impuls seperti 3 sinyal impuls di bawah

(1) Representasi sinyal waktu-diskrit sebagai impuls

Sifting property (sifat memisahkan)

(1.1) Jumlahan Konvolusi Waktu-diskrit

Jika ada sebuah sistem linier dan kita definisikan $h_k[n]$ sebagai tanggapan (*output*) dari $\delta[n-k]$

$$\delta[n-k] \to h_k[n],$$

hubungan masukan-keluaran;

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \to y[n] = \sum_{k=-\infty}^{+\infty} x[k]h_k[n]$$

(1.1) Jumlahan Konvolusi Waktu-diskrit

Jika sistem juga bersifat waktu-invarian dan $h_0[n]$ adalah tanggapan dari $\delta[n]$

$$\delta[n] \to h_0[n],$$

pergeseran waktu akan menghasilkan:

$$\delta[n-k] \to h[n-k]$$

Sehingga,

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \to y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

(1.1) Jumlahan Konvolusi Waktu-diskrit

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k]\delta[n-k] \to y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$$

JUMLAHAN KONVOLUSI (CONVOLUTION SUM)

$$x[n] \longrightarrow h[n] \qquad \longrightarrow y[n] = x[n] * h[n]$$

Contoh:

$$y[n] = x[n] * h[n]?$$

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

Solusi:

Solusi:

SOAL

- $x[n] = (-1)^n \{u[-n] u[-n 8]\}$
- h[n] = u[n] u[n 8]
- Cari y[n] = x[n] * h[n]

(2) Representasi sinyal waktu-kontinu sebagai impuls

Agar menghasilkan kurva yang halus, limitkan delta mendekati nol

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta)\delta(t - k\Delta)\Delta$$

Sehingga dihasilkan:

Sifting property untuk Sinyal waktu-kontinu

$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t - \tau)d\tau$$

(2.1) Integrasi konvolusi

Analog dengan LTI waktu-diskrit...

Linier

$$\delta(t-\tau) \to h_{\tau}(t)$$

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau \to y(t) = \int_{-\infty}^{\infty} x(\tau)h_{\tau}(t)d\tau$$

Waktu-invarian

$$\delta(t) \to h_0(t) \Rightarrow \delta(t-\tau) \to h(t-\tau)$$

$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t-\tau)d\tau \to y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

INTEGRAL KONVOLUSI

(2.1) Integrasi konvolusi

y (t) =
$$\int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

Contoh:

$$h(t) = u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 1 \end{cases}$$
1.0
0.5

Tentukan
$$y(t) = x(t) * h(t)!$$

Solusi:

$$x(t) = e^{-at}u(t), \ a > 0$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
$$= \int_{0}^{t} e^{-a\tau}d\tau$$

$$= -\frac{1}{a}e^{-a\tau}\Big|_0^t$$

$$h(t) = u(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 1 \end{cases}$$

1.0

$$= (-\frac{1}{a}e^{-at} + \frac{1}{a})$$

$$y(t) = \frac{1}{a}(1 - e^{-at})$$

$$x(t)h(t-\tau) = \begin{cases} e^{-a\tau} & 0 < \tau < t \\ 0 & \text{lainnya} \end{cases}$$

Hasil konvolusi:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \frac{1}{a}(1-e^{-at})u(t)$$

Integral Konvolusi

Integral Konvolusi

- 1. $x(t) \rightarrow x(\tau)$
- 2. $h(t) \rightarrow h(t \tau)$: dibalik dan digeser
- 3. Dicari irisannya

Referensi

- (1) A. V. Oppenheim, A. S. Willsky, S. H. H. Nawab, *Sinyal dan Sistem jilid 1*, (Penerbit Erlangga, Jakarta, 2000)
- (2) Plot grafik dibuat dengan bantuan program iPython dan Inkscape

Referensi pemrograman Python:

- (1) Python Scientific Lecture Notes, http://scipy-lectures.github.io/index.html
- (2) The Python Tutorial, https://docs.python.org/2/tutorial/index.html
- (3) Matplotlib, http://matplotlib.org/index.html