2011 年全国硕士研究生入学统一考试数学一试题

一、选择	释题: 1∼	~8 小题,	每小题4分,	共32分,	下列每题给出的四个选项中,	只有一
个选项符合是	厦目要求	,请将所	选项前的字母	填在答题	纸指定位置上.	

- (1) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是()

- (A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0).
- (2) 设数列 $\{a_n\}$ 单调减少, $\lim_{n\to\infty}a_n=0$, $S_n=\sum_{k=1}^na_k\;(n=1,2,\cdots)$ 无界,则幂级数

 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 的收敛域为()

- (A) (-1,1]. (B) [-1,1). (C) [0,2). (D) (0,2].

- (3) 设函数 f(x) 具有二阶连续导数,且 f(x) > 0, f'(0) = 0,则函数 $z = f(x) \ln f(y)$ 在点(0,0)处取得极小值的一个充分条件是(
 - (A) f(0) > 1, f''(0) > 0.
- (B) f(0) > 1, f''(0) < 0.
- (C) f(0) < 1, f''(0) > 0.
- (D) f(0) < 1, f''(0) < 0.
- (4) $ag{1} = \int_{0}^{\frac{\pi}{4}} \ln \sin x \, dx$, $J = \int_{0}^{\frac{\pi}{4}} \ln \cot x \, dx$, $K = \int_{0}^{\frac{\pi}{4}} \ln \cos x \, dx$, $ag{1}, J, K$ in A

小关系是(

(A) I < J < K.

(B) I < K < J.

(C) J < I < K.

- (D) K < J < I.
- (5) 设 A 为 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B ,再交换 B 的第 2 行与第 3

行得单位矩阵,记 $P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, 则 A = (

- (A) P_1P_2 . (B) $P_1^{-1}P_2$. (C) P_2P_1 . (D) $P_2P_1^{-1}$.
- (6) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, A^* 为A的伴随矩阵,若 $(1,0,1,0)^T$ 是方程组 Ax = 0的一个基础解系,则 $A^*x = 0$ 的基础解系可为(

- (A) α_1, α_3 . (B) α_1, α_2 . (C) $\alpha_1, \alpha_2, \alpha_3$. (D) $\alpha_2, \alpha_3, \alpha_4$.

- (7) 设 $F_1(x)$, $F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$, $f_2(x)$ 是连续函数,则必为概率密度的是() $(A)\,f_1(x)f_2(x) \,. \qquad \qquad (B)\,2\,f_2(x)F_1(x) \,.$ $(C)\,f_1(x)F_2(x) \,. \qquad \qquad (D)\,f_1(x)F_2(x)+f_2(x)F_1(x) \,.$
- (8) 设随机变量 X 与 Y 相互独立,且 E(X) 与 E(Y) 存在,记 $U = \max\{X,Y\}$, $V = \min\{X,Y\} \, \text{则} \, E(UV) = (\qquad)$
 - (A) $E(U) \cdot E(V)$.

(B) $E(X) \cdot E(Y)$.

 $(C) E(U) \cdot E(Y)$.

- $(D) E(X) \cdot E(V)$.
- 二、填空题: 9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
- (9) 曲线 $y = \int_0^x \tan t dt (0 \le x \le \frac{\pi}{4})$ 的弧长 s =_____.
- (10) 微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0) = 0 的解为 $y = \underline{\hspace{1cm}}$.
- (11) 设函数 $F(x,y) = \int_0^{xy} \frac{\sin t}{1+t^2} dt$,则 $\frac{\partial^2 F}{\partial x^2}\Big|_{\substack{x=0\\y=2}} = \underline{\qquad}$.
- (12) 设 L 是柱面方程 $x^2+y^2=1$ 与平面 z=x+y 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则曲线积分 $\int_{L}xzdx+xdy+\frac{y^2}{2}dz=$ ______.
- (13) 若二次曲面的方程 $x^2 + 3y^2 + z^2 + 2axy + 2xz + 2yz = 4$,经过正交变换化为 $y_1^2 + 4z_1^2 = 4$,则 a =_____.
 - (14) 设二维随机变量(X,Y)服从正态分布 $N(\mu,\mu;\sigma^2,\sigma^2;0)$,则 $E(XY^2)=$ _____.
- 三、解答题: 15~23 小题, 共 94 分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15)(本题满分 10 分)

求极限
$$\lim_{x\to 0} \left(\frac{\ln(1+x)}{x}\right)^{\frac{1}{e^x-1}}$$
.

(16)(本题满分9分)

设函数 z=f(xy,yg(x)),其中函数 f 具有二阶连续偏导数,函数 g(x) 可导且在 x=1 处取得极值 g(1)=1,求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{\substack{x=1\\y=1}}$.

(17)(本题满分 10 分)

求方程 k arctan x - x = 0 不同实根的个数,其中 k 为参数.

(18)(本题满分 10 分)

(I)证明:对任意的正整数 n,都有 $\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$ 成立.

(II)设
$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n (n = 1, 2, \dots)$$
,证明数列 $\{a_n\}$ 收敛.

(19)(本题满分 11 分)

已 知 函 数 f(x,y) 具 有 二 阶 连 续 偏 导 数 , 且 f(1,y)=0 , f(x,1)=0 $\iint_D f(x,y) dx dy = a$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$, 计算二重积分 $I = \iint_D xy f_{xy}^{"}(x,y) dx dy$.

(20)(本题满分 11 分)

设向量组 $\alpha_1=(1,0,1)^T$, $\alpha_2=(0,1,1)^T$, $\alpha_3=(1,3,5)^T$,不能由向量组 $\beta_1=(1,1,1)^T$,

 $\beta_2 = (1,2,3)^T$, $\beta_3 = (3,4,a)^T$ 线性表示.

- (I) 求 a 的值;
- (II) 将 β_1 , β_2 , β_3 由 α_1 , α_2 , α_3 线性表示.

(21)(本题满分 11 分)

$$A$$
 为三阶实对称矩阵, A 的秩为 2,即 $r(A)=2$,且 $A\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$.

- (I) 求A的特征值与特征向量;
- (II) 求矩阵 A.
- (22)(本题满分 11 分)

设随机变量 X 与 Y 的概率分布分别为

	Y	0	1
I	P	1/3	2/3

Y	-1	0	1
P	1/3	1/3	1/3

且
$$P\{X^2 = Y^2\} = 1$$
.

- (I) 求二维随机变量(X,Y)的概率分布;
- (II) 求 Z = XY 的概率分布;
- (III) 求X与Y的相关系数 ρ_{XY} .

(23) (本题满分 11 分)

设 X_1,X_2,\cdots,X_n 为来自正态总体 $N(\mu_0,\sigma^2)$ 的简单随机样本,其中 μ_0 已知, $\sigma^2>0$ 未知. \overline{X} 和 S^2 分别表示样本均值和样本方差.

- (I) 求参数 σ^2 的最大似然估计量 $\overset{\land}{\sigma^2}$;
- (II) 计算 $E(\hat{\sigma^2})$ 和 $D(\hat{\sigma^2})$.