Introduction to R for data analysis

- hypothesis tests -

Carl Herrmann & Carlos Ramirez R4SC - Freiburg June 2024

Testing the means

Test on mean values

- Hypothesis on mean values can be investigated using a t-test
- Family of tests with different version:
 - one-sample test: is the mean body temperature 37.7 C?
 - two-sample test, unpaired: do men and women have different mean cholesterol levels?
 - **two-sample test, paired**: is there a change in cholesterol level after a one-month egg rich diet?

(do both samples have equal variance?)

Running a t-test in R

two-sample unpaired, two-sided

t = test statistics df = degrees of freedom

confidence interval differences of the means

```
> t.test(weight.m, weight.f, var.equal=TRUE)
        Two Sample t-test
data: weight.m and weight.f
t = 1.8265, df = 400, p-value = 0.06852
alternative hypothesis: true difference in
means is not equal to 0
95 percent confidence interval:
 -0.5669448 15.4259192
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```

Running a t-test in R

two-sample unpaired, one-sided

t = test statistics df = degrees of freedom

confidence interval differences of the means

```
>t.test(weight.m, weight.f, alternative="greater", va
r.equal=TRUE)
        Two Sample t-test
       weight.m and weight.f
data:
t = 1.8265, df = 400, p-value = 0.03426
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
 0.723444
               Inf
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```


Testing proportions

Proportion tests

- This class of tests can be used when searching for
 - relation between different categorical variables

 Is there a relation between social background and school grades?
 - comparison of observed vs. expected counts
 Is there a significant gender bias in the math department if 4 professors out of 10 are women?
- Two tests are generally used
 - Fisher-Exact test (FET): gives an exact p-value, used for small samples
 - **chi-square test**: for larger samples (*n*>5 in each category)
 - both tests are equivalent for large n

Fisher Exact Test

- Tests for a significant relationship between 2 variables
- Starting point: contingency table

	iPhone	other	Total
Men	4	1	5
Women	2	3	5
Total	6	4	10

Proportion iPhone/other:

- Men: 4/1 = 4

- Women: 2/3 = 0.66

Odds-Ratio:

OR = (4/1)/(2/3) = 6

If we would <u>randomly</u> distribute 6 iPhone and 4 other smartphones to 5 men and 5 women, how often would we get a larger/smaller*/more extreme

*smaller: < 1/6

**More extreme: > 6 or < 1/6

chi-square test

- The chi-square test compares observed and expected counts
- Starting point is a contingency table
- Test statistics

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- H₀: expected and observed proportions are equal
- H₀ distribution: chi2 distribution with *n-1* degrees of freedom for *n* observations
- Application possible when $O_i > 2$ and $O_i > 5$ in 80% of observations
- Note: the chi-square test is always a 1-sided upper tail test!

Observed

	iPhone	other	Total
Men	14	30	44
Women	5	20	25
Total	19	50	69

	iPhone	other	Total	
Men	31,8 %	68,2 %	100 %	
Women	20 %	80 %	100 %	
Total	27,5 %	72,5 %	100 %	

Expected counts under H0

	iPhone	other	Total
Men	12,1	31,9	44
Women	6,9	18,1	25
Total	19	50	69

= 0.6022

H0 proportions

iPhone		other	Total
Men	27,5 %	72,5 %	100 %
Women	27,5 %	72,5 %	100 %
Total	27,5 %	72,5 %	100 %

$$\chi^2 = \frac{(14 - 12.1)^2}{12.1} + \frac{(30 - 31.9)^2}{31.9} + \frac{(5 - 6.9)^2}{6.9} + \frac{(20 - 18.1)^2}{18.1}$$

degrees of freedom = (rows-1) x (columns-1)

chi-square distribution

Critical values

	0,025	0,05	0,1
df = 1	5,02	3,84	2,71
df = 2	7 , 38	5,99	4,61
df = 3	9,35	7,81	6 , 25
df = 4	11,14	9,49	7 , 78
df = 5	12,83	11,07	9,24
df = 6	14,45	12,59	10,64
df = 7	16,01	14,07	12,02
df = 8	17, 53	15,51	13,36
df = 9	19,02	16,92	14,68
df = 10	20,48	18,31	15,99

$$\alpha = 0.05$$

$$\chi^2 = 0.6022$$
 not significant...
$$df = 1$$

More than 2 categories

Side effects

	weak	medium	strong	Total
Drug A	25	11	13	49
Drug B	9	14	11	34
Total	34	25	24	83

> ta	able(sidee	ffect)			
	SideEffec	t			
Dru	y weak med	ium stro	ng		
	25	11	13		
]	9	14	11		
> C]	nisq.test(table(si	deeffect))		
	Pears	on's Chi	-squared test		
data	a: table(sideeffe	ect)		
X-so	quared = 5	.5257, d	df = 2, p-value = 0.06311		
> f:	sher.test	(table(s	sideeffect))		
	Fishe	r's Exac	t Test for Count Data		
data: table(sideeffect)					
p-va	alue = 0.0	6375			
alte	ernative h	ypothesi	s: two.sided		

	weak	medium	strong	Total
Drug A	51 %	22,5 %	26,5 %	100 %
Drug B	26,5 %	41,2 %	32,3 %	100 %
Total	41 %	30,1 %	28,9 %	100 %

Testing correlations

• How easy is it to draw a line through a scatter plot?

Variance:

$$Var(x) = (s_x)^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

dimension: [x]²

Covariance :

$$Cov(x, y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

dimension: [x][y]

Pearson Correlation :

$$Corr(x, y) = r = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(x_i - \bar{x})}{s_x} \frac{(y_i - \bar{y})}{s_y}$$

dimension: none

- Properties:
 - correlation is scale invariant, covariance is not!
 - o cor(x,x) = 1
 - -1 = < cor(x,y) = < +1

$$Corr(x, y) = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(x_i - \bar{x})}{s_x} \frac{(y_i - \bar{y})}{s_y}$$

These are sample-based estimations of the correlation

→ what about the population correlation?

Statistical test on correlation

- the sample correlation coefficient r is an estimate of the real unknown correlation coefficient ρ
- Hypothesis test: could ρ actually be zero?
- t-test with H_0 : $\rho = 0$

$$t = \frac{r}{se_r} \xrightarrow{\text{estimate}} se_r = \sqrt{\frac{1 - r^2}{n - 2}}$$
standard error

• H_0 distribution: t-distribution with n-2 degrees of freedom

Example

$$t = \frac{r}{se_r} \qquad se_r = \sqrt{\frac{1 - r^2}{n - 2}}$$

> cor.test(diab[1:30,7],diab[1:30,12])
 Pearson's product-moment correlation

data: diab[1:30, 7] and diab[1:30, 12]
t = 2.386, df = 28, p-value = 0.02404
alternative hypothesis: true correlation is
not equal to 0
95 percent confidence interval:
 0.05960801 0.67182894
sample estimates:
 cor

0.41105