ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via Adversarial Rotation

Huo Mingda

Jinan University, Guangzhou May 11, 2023 无法保证任意 旋转鲁棒性

通过旋转增强获得: 旋转来增加数据

天文数字,难以企及

研究内容: 旋转不变性

全局坐标系下点对关于主方向的角度和距离判定描述符

研究创新: 对抗性训练优势

where $\rho(\theta) = \mathbb{E}_{(p,q) \sim \mathcal{D}} [\max_{\delta \in \mathcal{S}} L(\theta, p + \delta, q)].$

旋转不变性

依赖于特定的描述符和网络架构,限制了 分类器在对齐数据集上的性能

如何在不改变输入空间和网络架构的前提下,减少点云旋转对分类结果的影响?

通过对抗训练获得

内部最大:

被判定模型遭遇的最坏情况

外部最小:

解决矛盾的最小调优方法

最终目的:

寻找最坏情况下的最优解,鲁棒性角度,解决本质问题

研究创新: 对抗性训练优势

where $\rho(\theta) = \mathbb{E}_{(p,q) \sim \mathcal{D}} [\max_{\delta \in \mathcal{S}} L(\theta, p + \delta, q)].$

旋转不变性

依赖于特定的描述符和网络架构,限制了 分类器在对齐数据集上的性能

如何在不改变输入空间和网络架构的前提下,减少点云旋转对分类结果的影响?

通过对抗训练获得

内部最大:

被判定模型遭遇的最坏情况

外部最小:

解决矛盾的最小调优方法

最终目的:

寻找最坏情况下的最优解,鲁棒性角度,解决本质问题

研究方法

内部最大: 轴向旋转攻击

(Axis-Wise Rotation Attack)

$$\frac{\partial L}{\partial \phi_z} = \sum_{i=1}^n \left(\frac{\partial x_i}{\partial \phi_z} \frac{\partial L}{\partial x_i} + \frac{\partial y_i}{\partial \phi_z} \frac{\partial L}{\partial y_i} + \frac{\partial z_i}{\partial \phi_z} \frac{\partial L}{\partial z_i} \right)$$
$$= \sum_{i=1}^n \left(-y_i \frac{\partial L}{\partial x_i} + x_i \frac{\partial L}{\partial y_i} \right),$$

通过梯度下降迭代优化找到高损失对抗性旋转的角度

$$\xi^* = \mathrm{argmax}_{\xi} |\frac{\partial L}{\partial \phi_{\xi}}|, \xi \in [x,y,z],$$

细分为三个轴后选择最激进的旋转轴

$$\phi_{\xi^*}^{(t+1)} = \mathrm{Proj}_{[-\pi,\pi]}(\phi_{\xi^*}^{(t)} + \alpha \mathrm{sign}(\frac{\partial L}{\partial \phi_{\xi^*}})).$$

投影梯度下降 (PGD) 选择攻击角度

外部最小:一步优化 (one-step optimization)

模型梯度信息击穿旋转增强(RA)

Method	ModelNet40			
	Attack	Random	Clean	
PointNet [29] (RA)	55.6	74.4	76.7	
PointNet++ [30] (RA)	58.9	80.1	82.3	
DGCNN [39] (RA)	65.6	85.7	87.6	
ART-PointNet (Ours)	85.6(30.0↑)	84.3(9.91)	85.5(8.81)	
ART-PointNet++ (Ours)	90.1(31.2↑)	87.5(7.41)	88.6(6.31)	
ART-DGCNN (Ours)	91.5 (25.9†)	90.5 (4.8↑)	91.3 (3.7†)	
Method	ShapeNet16			
	Attack	Random	Clean	
PointNet [29] (RA)	66.4	87.3	89.5	
PointNet++ [30] (RA)	70.5	89.7	92.1	
DGCNN [39] (RA)	74.4	90.5	94.3	
ART-PointNet (Ours)	96.9(30.5↑)	95.1(7.81)	96.2(6.7†)	
ART-PointNet++ (Ours)	97.8(27.3↑)	96.3(6.61)	97.5(5.41)	
ART-DGCNN (Ours)	98.4 (24.0 [†])	97.7 (7.2 [†])	98.1 (3.8 [†])	

用预训练的模型找到分类模型在旋转上的弱点,然后生成新点云作为数据,去训练模型。

旋转不变(ID)/等变(EA)依赖 输入空间姿态信息分离

Method	ModelNet40		
	Attack	Random	Clean
Classifiers Using Invo	ariant Desc	riptors	
SFCNN [31]	90.1	90.1	90.1
RI-Conv [48]	86.5	86.4	86.5
ClusterNet [4]	87.1	87.1	87.1
RI-Framework [17]	89.4	89.3	89.4
Classifiers with Equiv	variant Arci	hitectures	
TFN [37]	87.6	87.6	87.6
REQNN [34]	74.4	74.1	74.4
VN-PointNet [7]	77.2	77.2	77.2
VN-DGCNN [7]	90.2	90.2	90.2
EPN [5]	88.3	88.3	88.3
Ours			
ART-PointNet	85.6	84.3	85.5
ART-PointNet++	90.1	87.5	88.6
ART-DGCNN	91.5	90.5	91.3

鲁棒依赖: 空间姿态信息 与点云分离

Thanks!