Exercise 1: Groundwater modeling in excel

17 oct 2016
Elco Luijendijk, <eluijen@gwgd.de>

Earth science research:

- Observations:
 - Field, lab data, etc ...
 - Use observations to formulate theory of underlying processes
 - This theory may or may not be physically realistic

- Modeling:
 - Solve physics eq. to predict earth science process
 - Outcome may or may not be realistic, input parameters often highly uncertain

- Combining models & data
 - Use observations and datasets (temperature, pressure, etc...) to constrain process-based models
 - More insight into underlying processes than obtained by just qualitative analysis of data or modeling alone

Exercise 1: your very first groundwater model

- Make your very first computer model in excel
- Objectives
 - Learn how to set up a model of an earth science process
 - Learn how to constrain models with data (model calibration)
 - Learn how groundwater systems function and respond to changes in recharge and pumping

Exercise 1: your very first groundwater model

- Simple flow system: groundwater flow to a stream
- Groundwater levels are a function of
 - 1) Groundwater recharge (ie., how much precipitation infiltrates to the groundwater table)
 - 2) Flow resistance by porous rocks (=permeability/hydraulic conductivity)
 - 3) Water level in stream
- Can we predict the water table?

Exercise 1: your very first groundwater model

- Solution governed by groundwater flow equation
 - Darcy's law: groundwater flow is proportional to the difference in hydraulic head (h, ~watertable) and hydraulic conductivity (K)

 $q = K \frac{\partial h}{\partial x}$ • 2 ways to solve this: exact analytical solution of equation or numerical approximation

Analytical solutions of the groundwater flow equation

 Highly simplified: analytical solutions usually require assumptions of constant parameters (K, R), only horizontal or vertical flow, simplified geometries (rectangular, circular or infinite aquifers), etc...

Analytical solution of groundwater flow eq.

- Simplifications in this case:
 - Rectangular aquifer (=permeable layer) with impermeable base
 - Stream reaches all the way to the bottom of the aquifer
 - Horizontal groundwater flow only, no vertical flow

Realistic groundwater system

Simplified groundwater system

Analytical solution of groundwater flow eq.

 At any point x, the flow towards the left (Q) has to be equal to the water input to the right (R * (L-x)):

$$Q = R(L - x)$$

Darcy's law for flow in an aquifer with constant thickness (b)

$$Q = Kb \frac{\partial h}{\partial x}$$

 Combine the two, some shuffling, integration and voila: an analytical solution for hydraulic head (h):

$$h = h_0 + \frac{R}{Kb}(Lx - \frac{1}{2}x^2)$$

(see handout for full derivation)

Numerical solution of groundwater flow eq.

- Numerical solution: approximate derivatives in groundwater flow equation (=hydraulic gradient) with differences over discrete intervals in time or space
- In this case: the hydraulic gradient (dh/dx) at point x is approximately equal to the difference in h between two nodes divided by their distance (dx):

$$\frac{\partial y}{\partial x} \approx \frac{y(x + \Delta x) - y(x)}{\Delta x}$$

Numerical solution of groundwater flow eq.

 Applying the finite difference method to get rid of derivatives in the groundwater flow equation gives a numerical solution for the hydraulic head in our simplified groundwater system:

$$h(x) = \frac{1}{2} \left(\frac{Wb\Delta x^2}{Kb} + h(x + \Delta x) + h(x - \Delta x) \right)$$
 Recharge (R)

(see handout for full derivation)

Numerical solution of groundwater flow eq.

- Numerical solution: hydraulic head as a function of h at 2 adjacent points in space → needs to be solved iteratively
- Advantages: much more flexible. All parameters can vary in space or time (variable recharge, hydraulic conductivity, etc...)
- Disadvantages:
 - Approximate solution → need to make sure error stays small
 - Computationally intensive, especially in 2D or 3D
 - Potential numerical stability issues for solutions of more complex systems, coupled fluid and heat flow, deformation, solute transport etc....

$$h(x) = \frac{1}{2} \left(\frac{Wb\Delta x^2}{Kb} + h(x + \Delta x) + h(x - \Delta x) \right)$$

Exercise 1: Design your very first groundwater model in excel

- Numerical solution of groundwater flow to a stream in excel
- Follow step by step instructions in pdf handout
- We will model the global median aquifer using recently published data on stream density, recharge and permeability
- Use analytical solution to check how well your numerical solution is doing
- Experiment with adding a pumping well (question 2) and calibrating model parameters to match observations (question 3)
- Questions are free....

Good luck!

