Import File in R

File name slr.csv

Always first plot scatter plot and see relationship

Copy plot and paste at your desired destination

Type equation here.

Build Linear Regression Model

```
> summary(mod)
call:
lm(formula = slr$Sales ~ slr$Advt)
Residuals:
   Min
            1Q Median
                            3Q
                                  Max
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                    203.78 -4.181 0.00188 **
(Intercept) -852.08
s1r$Advt
                          2.00 9.535 2.45e-06 ***
              19.07
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0.891
F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
```

	Α	В	С	D
1				
	Observat	Advt(x)	Sales(y)	x^2(xx)
2	ion no	Auvi(x)	Sales(y)	X**2(XX)
3	1	<mark>92</mark>	930	= <mark>B3</mark> *B3
4	2	94	900	
5	3	97	1020	
6	4	98	990	
7	5	100	1100	
8	6	102	1050	
9	7	104	1150	
10	8	105	1120	
11	9	105	1130	
12	10	107	1200	
13	11	107	1250	
14	12	110	1220	
15				

4	Α	В	С	D
1				
2	Observat ion no	Advt(x)	Sales(y)	x^2(xx)
3	1	92	930	8464
4	2	94	900	
5	3	97	1020	
6	4	98	990	
7	5	100	1100	
8	6	102	1050	
9	7	104	1150	
10	8	105	1120	
11	9	105	1130	
12	10	107	1200	
13	11	107	1250	
14	12	110	1220	
15				

4	Α	В	С	D
1				
	Observat	Advt(x)	Sales(y)	x^2(xx)
2	ion no	Auvi(x)	Suics(y)	A 2(AA)
3	1	92	930	8464
4	2	94	900	8836
5	3	97	1020	9409
6	4	98	990	9604
7	5	100	1100	10000
8	6	102	1050	1040 <mark>4</mark>
9	7	104	1150	10816
10	8	105	1120	11025
11	9	105	1130	11025
12	10	107	1200	11449
13	11	107	1250	11449
14	12	110	1220	12100
15				

4	А	В	С	D	E
1					
	Observat	Advt(x)	Sales(y)	x^2(xx)	VV
2	ion no	Auvi(x)	Sales(y)	x**2(xx)	xy
3	1	92	930	8464	85560
4	2	94	900	8836	84600
5	3	97	1020	9409	98940
6	4	98	990	9604	97020
7	5	100	1100	10000	110000
8	6	102 1050 10		10404	107100
9	7	104	1150	10816	119600
10	8	105	1120	11025	117600
11	9	105	1130	11025	118650
12	10	107	1200	11449	128400
13	11	107	1250	11449	133750
14	12	110	1220	12100	134200
15	SUM =	1221			
16					

There is a + sign...hold it and drag till E15 and leave cursor

1	Α	В	С	D	Е
1					
2	Observat ion no	Advt(x)	Sales(y)	x^2(xx)	ху
3	1	92	930	8464	85560
4	2	94	900	8836	84600
5	3	97	1020	9409	98940
6	4	4 98 990		9604	97020
7	5	5 100		1100 10000	
8	6	102	1050	10404	107100
9	7	104	1150	10816	119600
10	8	105	1120	11025	117600
11	9	105	1130	11025	118650
12	10	107	1200	11449	128400
13	11	107	1250	11449	133750
14	12	110	1220	12100	134200
15	SUM =	1221	13060	124581	1335420
16					

$$SS_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}$$

$$SS_{xy} = 1335420 - \frac{1221 \times 13060}{12} = 6565$$

$$SS_{xx} = \sum x^2 - \frac{(\sum x)^2}{n} = 124581 - \frac{(1221)^2}{12} = \frac{344.25}{12}$$
This is called Regression Coefficient
$$b_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{6565}{344.25} = \frac{19.07}{12}$$

$$b_0 = \frac{\sum y}{n} - b_1 \frac{\sum x}{n} = \frac{13060}{12} - \frac{19.07}{12} = -852.08$$

Regression Equation:

$$y = a + bx$$

$$y = b_0 + b_1 x$$

 $Sales = intercept + regression coefficient \times advertisement$

$$Sales = -852.08 + 19.07 \times advertisement$$

Interpretation of b₁

One unit change in Advertisement will result in 19.07 times change in Sales

Regression coefficient is also called Slope (or Tan θ = Perpendicular/Base = Sales/Advertisement)

Standard Error of Mean

```
> summary(mod)
call:
lm(formula = slr$Sales ~ slr$Advt)
Residuals:
   Min
            1Q Median
                          3Q
                                  Max
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -852.08 203.78 -4.181 0.00188 **
slr$Advt
              19.07
                         2.00 9.535 2.45e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0.891
F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
```


	Α	В	С	D	Е	F
1					-852.08	19.07
	Observ ation	Advt(x)	Sales(y)	x^2(xx)	xy	Pred= yhat = a + bx = -852.08+
2	no					19.07x
3	1	92	930	8464	85560	902.36
4	2	94	900	8836	84600	940.5
5	3	97	1020	9409	98940	997.71
6	4	98	990	9604	97020	1016.78
7	5	100	1100	10000	110000	1054.92
8	6	102	1050	10404	107100	1093.06
9	7	104	1150	10816	119600	1131.2
10	8	105	1120	11025	117600	1150.2 <mark>7</mark>
11	9	105	1130	11025	118650	1150.27
12	10	107	1200	11449	128400	1188.41
13	11	107	1250	11449	133750	1188.41
14	12	110	1220	12100	134200	1245.62
15	SUM =	1221	13060	124581	1335420	22432.39
16						!

> Pred<-predict(lm(slr\$Sales~slr\$Advt))

	Α	В	С	D	Е	F	G
1					-852.08	19.07	
2	Observ ation no	Advt(x)	Sales(y)	x^2(xx)	ху	Pred= yhat = a + bx = -852.08+ 19.07x	Residuals
3	1	92	930	8464	85560	902.36	=C3-F3
4	2	94	900	8836	84600	940.5	
5	3	97	1020	9409	98940	997.71	
6	4	98	990	9604	97020	1016.78	
7	5	100	1100	10000	110000	1054.92	
8	6	102	1050	10404	107100	1093.06	
9	7	104	1150	10816	119600	1131.2	
10	8	105	1120	11025	117600	1150.27	
11	9	105	1130	11025	118650	1150.27	
12	10	107	1200	11449	128400	1188.41	
13	11	107	1250	11449	133750	1188.41	
14	12	110	1220	12100	134200	1245.62	
15	SUM =	1221	13060	124581	1335420	22432.39	
16							

Press enter →
hold the + sign
at the right
bottom corner
of cell G3 →
drag till G15 →
LEAVE the
cursor → you
will have
calculations in
all cells
(G4:G15)

4	Α	В	С	D	Е	F	G
1					-852.08	19.07	
2	Observ ation no	Advt(x)	Sales(y)	x^2(xx)	ху	Pred=yhat = a + bx = -852.08+ 19.07x	Residuals
3	1	92	930	8464	85560	902.36	27.64
4	2	94	900	8836	84600	940.5	-40.5
5	3	97	1020	9409	98940	997.71	22.29
6	4	98	990	9604	97020	1016.78	-26.78
7	5	100	1100	10000	110000	1054.92	45.08
8	6	102	1050	10404	107100	1093.06	-43.06
9	7	104	1150	10816	119600	1131.2	18.8
10	8	105	1120	11025	117600	1150.27	-30.27
11	9	105	1130	11025	118650	1150.27	-20.27
12	10	107	1200	11449	128400	1188.41	11.59
13	11	107	1250	11449	133750	1188.41	61.59
14	12	110	1220	12100	134200	1245.62	-25.62
15	SUM =	1221	13060	124581	1335420	22432.39	-9372.39
16							

Find average in cell B16

	А	В	С	D	Е
1					-852.08
2	Observatio n no	Advt(x)	Sales(y)	x^2(xx)	ху
3	1	92	930	8464	85560
4	2	94	900	8836	84600
5	3	97	1020	9409	98940
6	4	98	990	9604	97020
7	5	100	1100	10000	110000
8	6	102	1050	10404	107100
9	7	104	1150	10816	119600
10	8	105	1120	11025	117600
11	9	105	1130	11025	118650
12	10	107	1200	11449	128400
13	11	107	1250	11449	133750
14	12	110	1220	12100	134200
15	SUM =	1221	13060	124581	1335420
16	Average =	=AVERA	GE(
17		AVERA	GE(number	1, [number	2],)
18					

	А	В	С		D	Е		F	G
1						-852.08	19.07		
2	Observatio n no	Advt(x)	Sales(y)	x,	^2(xx)	ху	Pred= yhat = a + bx = -852.08+ 19.07x		Residuals
3	1	<mark>92</mark>	930		8464	85560	9	902.36	27.64
4	2	94	900		8836	84600		940.5	-40.5
5	3	97	1020		Solos	t the range		97.71	22.29
6	4	98	990			t the range	016.78 054.92		-26.78
7	5	100	1100	1		.4 (DONT			45.08
8	6	102	1050	1		JDE B15)		093.06	-43.06
9	7	104	1150	1	→PKI	ESS enter		131.2	18.8
10	8	105	1120	1	1025	117600	1	150.27	-30.27
11	9	105	1130	1	1025	118650	1	150.27	-20.27
12	10	107	1200	1	1449	128400	1	188.41	11.59
13	11	107	1250	1	1449	133750	1	188.41	61.59
14	12	110	1220	1	12100	134200	1	245.62	-25.62
15	SUM =	1221	13060	1	24581	1335420	22	2432.39	-9372.39
16	Average =	=AVERA	=AVERAGE(B3:B14						
17		AVERAGE(number1, [number2],)							
18									

	А	В	С	D	Е	F	G
1					-852.08	19.07	
						Pred= yhat =	
	Observatio	Advt(x)	Sales(y)	x^2(xx)	ху	a + bx = -852.08+	Residuals
2	n no					19.07x	
3	1	92	930	8464	85560	902.36	27.64
4	2	94	900	8836	84600	940.5	-40.5
5	3	97	1020	9409	98940	997.71	22.29
6	4	98	990	9604	97020	1016.78	-26.78
7	5	100	1100	10000	110000	1054.92	45.08
8	6	102	1050	10404	107100	1093.06	-43.06
9	7	104	1150	10816	119600	1131.2	18.8
10	8	105	1120	11025	117600	1150.27	-30.27
11	9	105	1130	11025	118650	1150.27	-20.27
12	10	107	1200	11449	128400	1188.41	11.59
13	11	107	1250	11449	133750	1188.41	61.59
14	12	110	1220	12100	134200	1245.62	-25.62
15	SUM =	1221	13060	124581	1335420	22432.39	-9372.39
16	Average =	101.75					
17							

There is a + sign...hold it and drag till G16 and leave cursor

4	А	В	С	D	Е	F	G
1					-852.08	19.07	
2	Observatio n no	Advt(x)	Sales(y)	x^2(xx)	ху	Pred= yhat = a + bx = -852.08+ 19.07x	Residuals
3	1	92	930	8464	85560	902.36	27.64
4	2	94	900	8836	84600	940.5	-40.5
5	3	97	1020	9409	98940	997.71	22.29
6	4	98	990	9604	97020	1016.78	-26.78
7	5	100	1100	10000	110000	1054.92	45.08
8	6	102	1050	10404	107100	1093.06	-43.06
9	7	104	1150	10816	119600	1131.2	18.8
10	8	105	1120	11025	117600	1150.27	-30.27
11	9	105	1130	11025	118650	1150.27	-20.27
12	10	107	1200	11449	128400	1188.41	11.59
13	11	107	1250	11449	133750	1188.41	61.59
14	12	110	1220	12100	134200	1245.62	-25.62
15	SUM =	1221	13060	124581	1335420	22432.39	-9372.39
16	Average =	101.75	1088.33	10381.8	111285	1088.2925	0.040833

Congratulations! Good work done so far! Now we are set to crack the mystery of complicated terms (almost scary!) with the help of above numbers. We just need to calculate three more terms that is SST, SSR \$ SSE

[This time am not showing each excel step and believing that you will be able to create in your excel sheet and find SUM in row 15, HOWEVER, showing that how you should use the \$ sign in formulas]

4	Α	В	С	D	Е	F	G	Н	1	J
1					-852.08	19.07				
2	Observatio n no	Advt(x)	Sales(y)	x^2(xx)	ху	Pred= yhat = a + bx = -852.08+ 19.07x	Residuals	$SST = (y-AVGy)^2$	SSR = (yhat- AVG yhat) ²	SSE = (y-yhat) ²
3	1	92	930	8464	85560	902.36	27.64	=(C3- <mark>\$</mark> C <mark>\$</mark> 16)^2	=(F3- <mark>\$</mark> F <mark>\$</mark> 16)^2	=(C3-F3)^2
4	2	94	900	8836	84600	940.5	-40.5			
5	3	97	1020	9409	98940	997.71	22.29			
6	4	98	990	9604	97020	1016.78	-26.78			
7	5	100	1100	10000	110000	1054.92	45.08			
8	6	102	1050	10404	107100	1093.06	-43.06			
9	7	104	1150	10816	119600	1131.2	18.8			
10	8	105	1120	11025	117600	1150.27	-30.27			
11	9	105	1130	11025	118650	1150.27	-20.27			
12	10	107	1200	11449	128400	1188.41	11.59			
13	11	107	1250	11449	133750	1188.41	61.59			
14	12	110	1220	12100	134200	1245.62	-25.62			
15	SUM =	1221	13060	124581	1335420	22432.39	-9372.39			
16	Average =	101.75	1088.33	10381.8	111285	1088.2925	0.040833			
17										

Now the moment has to come to understand the calculation Residual Standard Error (37.11)

Standard Error_{residuals} =
$$\sqrt{\frac{SSE}{n-k-1}} = \sqrt{\frac{13769.2285}{12-1-1}} = 37.11$$

What is the practical use of 37.11 (Standard Error Residual)?

Say, you want to predict sales for a given advertisement budget of 95.

$$Sales_{@95} = b_0 + b_1 x = -852.08 + 19.07 \times 95 = 959.57$$

It is never a good idea to express prediction in POINT ESTIMATE....rather; we should present CONFIDENCE INTERVALS as shown below:

```
Upper Limit<sub>sales</sub> = \hat{y} + Critical value of Z at 95% CL × SE<sub>residuals</sub>

Upper Limit<sub>sales</sub> = 959.57 + 1.96 × 37.11 = 1032.306

Lower Limit<sub>sales</sub> = \hat{y} - Critical value of Z at 95% CL × SE<sub>residuals</sub>

Lower Limit<sub>sales</sub> = 959.57 - 1.96 × 37.11 = 886.83
```

So, you will say that you are 95% confident that the sales correspond to 95 budget of advertisement will lie between 886.83 and 1032.306

Now let's understand t test for slope

```
> summary(mod)
lm(formula = slr$Sales ~ slr$Advt)
Residuals:
            1Q Median
                           3Q
                                  Max
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -852.08 203.78 -4.181 0.00188 **
slr$Advt
                       2.00 9.535 2.45e-06 ***
            19.07
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009,
                             Adjusted R-squared: 0.891
F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
```

These 3 terms, t-statistics (9.535), Std Error of regression coefficient (2.00) and Probability (of committing Type I Error) is 2.45e-06 [2.45/1000000 = 0.00000245 = almost 0] are associated with a t test which tests following Null Hypothesis:

Ho: The slope of advertisement with sales is **not** significant

Ha: The slope of advertisement with sales is significant

In mathematical symbols:

$$H_0$$
: $\beta_1 = 0$ (there is **no** linear relationship)
 H_a : $\beta_1 \neq 0$ (there is linear relationship)

NO SLOPE will look like this:

See the angle....as a matter of fact there is NO angle....or

$$\beta_1 = 0$$
(there is **no** linear relationship)

So, first we will calculate the test statistics.

$$t = \frac{b_1 - \beta_1}{S_b}$$

$$S_b = \frac{Standard\ Error\ of\ residuals}{\sqrt{SS_{xx}}}$$


```
> summary(mod)
lm(formula = slr$Sales ~ slr$Advt)
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -852.08 203.78 -4.181 0.00188 **
slr$Advt
              19.07
                        2.00 9.535 2.45e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0.891
F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
```

S_b is called Standard Error of Regression Coefficient

```
> summary(mod)
lm(formula = slr$5ales ~ slr$Advt)
Residuals:
    Min
              1Q Median
                                 3Q
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -852.08
                             203.78
                                       -4.181
                                       9.535
slr$Advt
Signif. codes: 0 '***' 0.001 '**' 0.01
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0 F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
                                  t = \frac{b_1 - \beta_1}{S_b}
                           t = \frac{19.07 - 0}{2} = 9.535
```

Now let's discuss about Pr(>|t|) or Probability value (Significance value)

Here the rule goes like this:

If, p value is <,= 0.05 (for 5% Level of Significance) \rightarrow REJECT Ho

If, p value is > 0.05 (for 5% Level of Significance) \rightarrow ACCEPT Ho

As p value is 0.000 which is less than 0.05, REJECT the Ho (and ACCEPT Ha) and conclude that "Slope is significant"

```
> summary(mod)
lm(formula = slr$Sales ~ slr$Advt)
Residuals:
            1Q Median
   Min
                            3Q
                                  Max
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -852.08 203.78 -4.181 0.00188 **
slr$Advt
              19.07
                          2.00 9.535 2.45e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0.891
F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
```

Verify residuals with following R commands

```
> error<- residuals(lm(slr$sales~slr$Advt))
> error

1 2 3 4 5 6 7
27.60349 -40.53740 22.25127 -26.81917 45.03994 -43.10094 18.75817
8 9 10 11 12
-30.31227 -20.31227 11.54684 61.54684 -25.66449
> summary(error)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-43.100 -27.690 -4.383 0.000 23.590 61.550
```

Multiple R- squared: 0.9009

90% of the variance in Sales can be explained by Advertisement [Remaining 10% is unexplained variance....due to factors outside the model]

	Α	В	С	D	Е	F	G	Н	T I	J	K	L
1					-852.08	19.07						
2	Observatio n no	Advt(x)	Sales(y)	x^2(xx)	ху	Pred= yhat = a + bx = -852.08+ 19.07x	Residuals	$SST = (y-AVGy)^2$	SSR = (yhat- AVG yhat) ²	SSE = (y-yhat) ²		
3	1	92	930	8464	85560	902.36	27.64	25069.44444	34570.89456	763.9696		
4	2	94	900	8836	84600	940.5	-40.5	35469.44444	21842.62306	1640.25		
5	3	97	1020	9409	98940	997.71	22.29	4669.444444	8205.189306	496.8441		
6	4	98	990	9604	97020	1016.78	-26.78	9669.444444	5114.037656	717.1684		
7	5	100	1100	10000	110000	1054.92	45.08	136.1111111	1113.723756	2032.2064		
8	6	102	1050	10404	107100	1093.06	-43.06	1469.444444	22.72905625	1854.1636		
9	7	104	1150	10816	119600	1131.2	18.8	3802.777778	1841.053556	353.44		
10	8	105	1120	11025	117600	1150.27	-30.27	1002.777778	3841.210506	916.2729		
11	9	105	1130	11025	118650	1150.27	-20.27	1736.111111	3841.210506	410.8729		
12	10	107	1200	11449	128400	1188.41	11.59	12469.44444	10023.51381	134.3281		
13	11	107	1250	11449	133750	1188.41	61.59	26136.11111	10023.51381	3793.3281		
14	12	110	1220	12100	134200	1245.62	-25.62	17336.11111	24751.94226	656.3844		
15	SUM =	1221	13060	124581	1335420	22432.39	-9372.39	138966.6667	125191.6418	Dr. Vinod:		
16	Average =	101.75	1088.33	10381.8	111285	1088.2925	0.040833		0.900875331	R Sqaure =		
17								R Square = SS	R/SST,	125191.641	8/138966.6	56
18									1	67		
19									<u> </u>			

Adjusted R – squared: 0.891

$$Adj R Square = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$

 $n = nos \ of \ observations = 12, \qquad k = nos \ of \ predictors = 1$

Ī	Н	T.	J	
5	SST = (y- <i>AVG</i> y) ²	SSR = (yhat- AVG yhat) ²	SSE = (y-yhat) ²	
	25069.44444	34570.89456	763.9696	
	35469.44444	21842.62306	1640.25	
	4669.444444	8205.189306	496.8441	
	9669.444444	5114.037656	717.1684	
	136.1111111	1113.723756	2032.2064	
	1469.44444	22.72905625	1854.1636	
	3802.777778	1841.053556	353.44	
	1002.777778	3841.210506	916.2729	
	1736.111111	3841.210506	410.8729	
	12469.44444	10023.51381	134.3281	
	26136.11111	10023.51381	3793.3281	
	17336.11111	24751.94226	656.3844	
	138966.6667	125191.6418	13769.2285	

$$Adj R Square = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$

$$Adj R Square$$

$$= 1 - \frac{13769.2285/(12-1-1)}{138966.6667/(12-1)}$$

$$> 1 - (13769.2285/10)/(138966.6667/11)$$
[1] 0.8910087

Now we need to understand the last line: F-statistics 90.93 on 1 and 10 DF, p-value: 2.45e-06

```
> summary(mod)
call:
lm(formula = slr$Sales ~ slr$Advt)
Residuals:
           1Q Median
   Min
                           3Q
                                 Max
-43.101 -27.692 -4.383 23.589 61.547
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -852.08 203.78 -4.181 0.00188 **
                          2.00 9.535 2.45e-06 ***
slr$Advt
              19.07
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 37.11 on 10 degrees of freedom
Multiple R-squared: 0.9009,___ Adjusted R-squared:
F-statistic: 90.93 on 1 and 10 DF, p-value: 2.454e-06
```


Now we have understood all involved calculations and their interpretations! Kudos to all!

Assumption 1: Normality of error

Assumption 2: Linearity

X axis: advertisement; Y axis: error

> plot(slr\$Advt, slr\$error, main = "Linearity", col = "red")

Linearity

Assumption 3: Independence of error

X axis: observation number; Y axis: error

```
> obs_no<- c(1:12)
> slr$obs_no<- NULL
> s1r$obs_no<- obs_no</p>
> s1r
   Advt Sales predicted
                              error obs_no
1
     92
           930
                902.3965
                           27.60349
                                          1
                                          2
2
     94
           900
                940.5374 -40.53740
                                          3
3
     97
         1020
                997.7487
                           22.25127
4
     98
          990 1016.8192 -26.81917
                                          4
5
    100
         1100 1054.9601
                           45.03994
                                          5
6
    102
         1050 1093.1009 -43.10094
                                          6
                                          7
7
         1150 1131.2418
    104
                          18.75817
                                          8
8
    105
         1120 1150.3123 -30.31227
         1130 1150.3123 -20.31227
                                          9
9
    105
                           11.54684
                                         10
10
    107
         1200 1188.4532
11
    107
         1250 1188.4532
                           61.54684
                                         11
         1220 1245.6645 -25.66449
                                         12
12
    110
```

> plot(slr\$obs_no, slr\$error, main = "Independence of error", col = "green")

Independence of error

Assumption 4: Independence of error

X axis: predicted values; Y axis: error

Constant Error Variance

Multiple Regression

File: mtcars.csv

```
> fit<- lm(mpg~ disp+hp+wt+drat, data= mtcars)</pre>
> fit
call:
lm(formula = mpg \sim disp + hp + wt + drat, data = mtcars)
Coefficients:
                   disp
                                  hp
(Intercept)
                                               wt
                                                          drat
               0.003815
                          -0.034784
 29.148738
                                        -3.479668
                                                      1.768049
> ki<- lm(mtcars$mpg~ mtcars$disp+mtcars$hp+mtcars$wt+mtcars$drat)</p>
call:
lm(formula = mtcars$mpg ~ mtcars$disp + mtcars$hp + mtcars$wt +
   mtcars$drat)
Coefficients:
(Intercept) mtcars$disp
                         mtcars$hp
                                      mtcars$wt mtcars$drat
                                                      1.768049
  29.148738 0.003815
                          -0.034784
                                       -3.479668
```

```
> summary(fit)
call:
lm(formula = mpg \sim disp + hp + wt + drat, data = mtcars)
Residuals:
            1Q Median
-3.5077 -1.9052 -0.5057 0.9821 5.6883
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.148738 6.293588 4.631 8.2e-05 ***
disp
           0.003815 0.010805 0.353 0.72675
           -0.034784 0.011597 -2.999 0.00576 **
(hp)
wt
           -3.479668 1.078371 -3.227 0.00327 **
drat
            1.768049 1.319779 1.340 0.19153
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.602 on 27 degrees of freedom
Multiple R-squared: 0.8376, Adjusted R-squared: 0.8136
F-statistic: 34.82 on 4 and 27 DF, p-value: 2.704e-10
```

Multicollinearity

$$VIF_i = \frac{1}{1 - R_i^2}$$

Experiments

```
> summary(hi)
call:
lm(formula = mtcars$mpg ~ mtcars$hp)
Residuals:
   Min
           1Q Median
                         3Q
-5.7121 -2.1122 -0.8854 1.5819 8.2360
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
0.01012 -6.742 1.79e-07 ***
mtcars$hp -0.06823
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07
```

```
> summary(fi)
call:
lm(formula = mtcars$mpg ~ mtcars$wt)
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
                      0.5591 -9.559 1.29e-10 ***
mtcars$wt -5.3445
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```

Model	Predictors	R Square		
1. fit	disp, hp, wt, drat	<mark>0.8376</mark>		
2. ti	hp, wt	<mark>0.8268</mark>		
3. hi	hp	0.6024		
4. fi	wt	0.7528		

Assumptions of model: fit

Histogram of mtcars\$error

Linearity

Independence of error

Constant Error variance

