Notes on Statistical and Machine Learning

Multidimensional Scaling

Chapter: 28 Prepared by: Chenxi Zhou

This note is prepared based on

- Chapter 14, Unsupervised Learning in Hastie, Tibshirani, and Friedman (2009), and
- Chapter 13, Multidimensional Scaling and Distance Geometry in Izenman (2009).

I. Introduction

- 1. Overview: Given only a two-way table of proximities of data points, the problem of multidimensional scaling (MDS) attempts to find a lower-dimensional representation of data that preserves the pairwise distances as well as possible.
- 2. Setup: We are given
 - (a) the distances $d_{i,j}$ between the *i*-th and the *j*-th observations, or
 - (b) the similarity measurements $s_{i,j}$ between the *i*-th and the *j*-th observations,

for all $i, j = 1, 2, \dots, n$. In particular, we do *not* have the values of the original observations.

- **3.** Categories of Multidimensional Scaling: There are two broad categories of approaches to multidimensional scaling:
 - (a) *Metric Scaling:* Utilizes the actual similarity or dissimilarity measurements are used;
 - Examples. Least squares scaling, Sammon scaling, and classical scaling.
 - (b) Non-metric Scaling: Only utilizes the ranks of dissimilarity measurements. Example. Shephard-Kruskal non-metric scaling.

II. Metric Scaling

- 1. Least Squares Scaling:
 - (a) Main Idea: The main idea here is that to find a lower-dimensional representation of the data that preserves the pairwise distances as well as possible.

(b) Formulation: The least squares scaling seeks values $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n \in \mathbb{R}^k$ to minimize the following objective function

$$S_{ls}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n) := \sum_{i \neq j} (d_{i,j} - \|\mathbf{z}_i - \mathbf{z}_j\|_2)^2.$$
 (1)

The function S_{ls} is known as the stress function.

Remark. This approach to multidimensional scaling is also called Kruskal-Shephard scaling.

2. Sammon Mapping: A variation of the least squares scaling is the Sammon mapping which minimizes

$$S_{\text{Sammon}}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n) := \sum_{i \neq j} \frac{(d_{i,j} - \|\mathbf{z}_i - \mathbf{z}_j\|_2)^2}{d_{i,j}},$$
(2)

where more emphasis is put on preserving smaller pairwise distances.

3. Classical Scaling:

(a) Formulation: Suppose we are given the similarity measurements as the inner product of centered data, i.e.,

$$s_{i,j} := \langle \mathbf{x}_i - \bar{\mathbf{x}}, \mathbf{x}_j - \bar{\mathbf{x}} \rangle, \quad \text{for all } i, j = 1, 2, \dots, n,$$

where $\bar{\mathbf{x}} := \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$. The classical scaling problem attempts to minimize

$$S_{cs}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n) := \sum_{i,j=1}^n (s_{i,j} - \langle \mathbf{z}_i - \bar{\mathbf{z}}, \mathbf{z}_j - \bar{\mathbf{z}} \rangle)^2, \tag{3}$$

where $\mathbf{z}_i \in \mathbb{R}^k$ for all $i = 1, 2, \dots, n$.

(b) Alternative Formulation: Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ with the (i, j)-th entry being $\langle \mathbf{z}_i, \mathbf{z}_j \rangle$, where we assume each \mathbf{z}_i has already been centered so that $\sum_{i=1}^n \mathbf{z}_i = \mathbf{0}_k$. We can then write \mathbf{M} as

$$\mathbf{M} = egin{pmatrix} \mathbf{z}_1^{ op} \ \mathbf{z}_2^{ op} \ dots \ \mathbf{z}_n \end{pmatrix} egin{pmatrix} \mathbf{z}_1 \ \mathbf{z}_2 \ \cdots \ \mathbf{z}_n \end{pmatrix}.$$

We can write the criterion (3) as

$$S_{\text{cs}}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n) = \text{trace}((\mathbf{S} - \mathbf{M})^{\top}(\mathbf{S} - \mathbf{M})) = \|\mathbf{S} - \mathbf{M}\|_F^2.$$

Since $\mathbf{z}_i \in \mathbb{R}^k$ for all $i = 1, 2, \dots, n$, the classical scaling problem reduces to the best rank-k approximation problem for \mathbf{S} .

(c) Derivation of Solution: Using Eckart-Young theorem, the solution is given by the eigen-decomposition of **S**. Let $\mathbf{S} = \mathbf{E}\mathbf{D}^2\mathbf{E}^{\mathsf{T}}$, where $\mathbf{D}^2 := \mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathbb{R}^{n \times n}$ is a diagonal matrix with eigenvalues of **S** on the diagonal, columns of **E** are the eigenvectors of **S**. Let \mathbf{e}_i be the eigenvector associated with the *i*-th largest eigenvalue of **S**. The minimizer to S_{cs} is

$$\widehat{\mathbf{M}} := \arg \min S_{\mathrm{cs}}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n)$$

$$= \sum_{\ell=1}^k \lambda_{\ell} \mathbf{e}_{\ell} \mathbf{e}_{\ell}^{\top}$$

$$= (\mathbf{E}_k \mathbf{D}_k) (\mathbf{E}_k \mathbf{D}_k)^{\top},$$

where $\mathbf{D}_k := \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_k})$ and $\mathbf{E}_k := (\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_k) \in \mathbb{R}^{n \times k}$. In particular, if we let $(\hat{\mathbf{z}}_1, \hat{\mathbf{z}}_2, \cdots, \hat{\mathbf{z}}_n) := \operatorname{arg\,min} S_{\operatorname{cs}}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n)$, then $\hat{\mathbf{z}}_i^{\top}$ is given by the *i*-th row of $\mathbf{E}_k \mathbf{D}_k$.

4. Connection with PCA: If the similarities are in fact centered inner-products, classical scaling is exactly equivalent to principal components, an inherently linear dimension-reduction technique.

III. Non-Metric Scaling

1. Non-metric Scaling: Shephard-Kruskal non-metric scaling uses only ranks and seeks to minimize the stress function

$$S_{\text{NM}}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n, \theta) := \frac{\sum_{i \neq j} (\|\mathbf{z}_i - \mathbf{z}_j\|_2 - \theta(d_{i,j}))^2}{\sum_{i \neq j} \|\mathbf{z}_i - \mathbf{z}_j\|_2^2}$$

over \mathbf{z}_i 's and an arbitrary increasing function θ .

Minimizing $S_{\text{NM}}(\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n, \theta)$ involves the following two steps:

- (1) With the function θ fixed, we minimize over \mathbf{z}_i by gradient descent;
- (2) With \mathbf{z}_i 's fixed, we use the method of isotonic regression to find the best monotonic approximation $\theta(d_{i,j})$ to $\|\mathbf{z}_i \mathbf{z}_j\|_2$.

These two steps are iterated until the solutions stabilize.

References

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning. Vol. 1. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.

Izenman, Alan J (Mar. 2009). Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. en. Springer Science & Business Media.