Barem

Examen - Restanta / - Matematică - Lucrarea 2 - nr. 1 (10.02.2020)

Subjectul 1
a) $\frac{\partial f}{\partial x} = -4x + 2y + 6$
$\frac{\partial f}{\partial y} = 2x - 10y + 6\dots$
$\frac{\partial f}{\partial z} = -2z + 2 \dots$
$\nabla f(1, -1, 1) = \left(\frac{\partial f}{\partial x}(1, -1, 1), \frac{\partial f}{\partial y}(1, -1, 1), \frac{\partial f}{\partial z}(1, -1, 1)\right) = (0, 18, 0) \dots $
b) Abordarea subiectului
Rezolvarea sistemului $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0$: $(x, y, z) = (2, 1, 1)$
c) $\frac{\partial^2 f}{\partial x^2} = -4$, $\frac{\partial^2 f}{\partial u^2} = -10$, $\frac{\partial^2 f}{\partial z^2} = -2$,
$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = 2$, $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = 0$, $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} = 0$.
Determinarea Hessianului în punctul critic: $H_f(2,1,1) = \begin{bmatrix} -4 & 2 & 0 \\ 2 & -10 & 0 \\ 0 & 0 & -2 \end{bmatrix}$
$(-1)^{k+1}\Delta_k < 0, \forall k = \overline{1,n}$, unde Δ_k sunt minorii principali ai hessianului $H_f(2,1,1)$
Concluzie: $(2, 1, 1)$ punct de maxim local
Subiectul 2
a) Calculul limitelor iterate
$\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) = \lim_{x \to 0} \left(\lim_{y \to 0} \frac{ x ^{\alpha} \cdot y ^{\beta}}{\sqrt{x^2 + y^2}} \right) = \lim_{x \to 0} \left(\frac{0}{\sqrt{x^2}} \right) = 0 \dots$
(0)
$\lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) = \lim_{y \to 0} \left(\lim_{x \to 0} \frac{ x ^{\alpha} \cdot y ^{\beta}}{\sqrt{x^2 + y^2}} \right) = \lim_{y \to 0} \left(\frac{0}{\sqrt{y^2}} \right) = 0 \dots 10$
b) Abordarea subiectului
Funcția f este continuă pe $\mathbb{R}^2 \setminus \{(0,0)\}$
Studiul continuității în $(0,0)$:
Avem $ f(x,y) = \left \frac{ x ^{\alpha} \cdot y ^{\beta}}{\sqrt{x^2 + y^2}} \right \le \left \frac{ x ^{\alpha} \cdot y ^{\beta}}{\sqrt{2 x \cdot y }} \right = \frac{1}{\sqrt{2}} x ^{\alpha - \frac{1}{2}} \cdot y ^{\beta - \frac{1}{2}} \stackrel{not}{=} g(x,y) $ (1).
$\lim_{(x,y)\to(0,0)} g(x,y) = \lim_{(x,y)\to(0,0)} \frac{1}{\sqrt{2}} x ^{\alpha-\frac{1}{2}} \cdot y ^{\beta-\frac{1}{2}} = 0, \ \alpha,\beta > \frac{1}{2} \ (2)$
Din (1) şi (2) rezultă $\lim_{(x,y)\to(0,0)} \frac{ x ^{\alpha} \cdot y ^{\beta}}{\sqrt{x^2 + y^2}} = 0 \Rightarrow f$ este continuă pe \mathbb{R}^2
c) $\iint_{D} \left(x(1-y) + \frac{1}{x^{2}+1} \right) dx dy = \int_{0}^{1} \left(\int_{-x^{2}}^{x^{2}+1} \left(x(1-y) + \frac{1}{x^{2}+1} \right) dy \right) dx = \int_{0}^{1} \left(\left(-\frac{x(1-y)^{2}}{2} + \frac{1}{x^{2}+1} \cdot y \right) \Big _{y=-x^{2}}^{y=x^{2}+1} \right) dx$
$= \int_0^1 \left(-\frac{x^5}{2} + \frac{x}{2} \cdot (1 + x^2)^2 + \frac{2x^2 + 1}{x^2 + 1} \right) dx = \left(-\frac{x^6}{12} + \frac{x^2}{4} + \frac{x^4}{4} + \frac{x^6}{12} \right) \Big _{x=0}^{x=1} + \int_0^1 \frac{2x^2 + 1}{x^2 + 1} dx = \frac{1}{2} + 2 - \int_0^1 \frac{1}{x^2 + 1} dx$ $= \frac{5}{2} - \arctan \left x \right _0^1 = \frac{5}{2} - \frac{\pi}{4} $ 20
Puncte din oficiu: