Spectral Graph Theory – Electric Flow

Zhiwei Zhang

March 15, 2019

1 Introduction

In this notes, we are going to discuss the interesting properties when turning a graph into a network of resistors.

1.1 Electrical Laws

First recall some E&M Laws:

$$I = \frac{U}{R}$$
 Ohm's law $E = I^2 R$ Energy formula $|I_{v,in}| = |I_{v,out}|$ conservation of flow

Note that the last law only holds for nodes that are not source or sink.

1.2 Matrices

Also recall the laplacian of a graph:

$$L_{i,j} := \begin{cases} \deg(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ 0 & \text{otherwise} \end{cases}$$

Weighted laplacian of a graph:

$$L_{ij} = \begin{cases} -w_{ij} & \text{if } i \sim j \\ w_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

where $w_i = \sum_{j \sim i} w_{ij}$ is the sum of the weights of edges incident on vertex i.

Pseudoinverse of laplacian: Let $0 = \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_n$ be the eigenvalues of L_G with associated eigenvectors u_1, u_2, \ldots, u_n . Then

$$L_G = \sum_{i=1}^n \lambda_i u_i u_i^T$$

. The pseudo-inverse of L_G is

$$L_G^+ = \sum_{i=2}^n \frac{1}{\lambda_i} u_i n_i^T$$

.

1.3 Formation on Graph

We will write a matrix formation of the problem.

- Let G(V, E) be an undirected graph with |V| = n, |E| = m.
- Let $v \in \mathbb{R}^n$ be the vector representing the potentials of vertices.
- Edges represent the resistors, and $\forall e(u,v) \in E$. Edge e has resistance r_e .
- Let $f \in \mathbb{R}^m$ representing the flow of all edges, where f(a, b) represents the flow from a to b with. Since f(a, b) is directed, we have f(a, b) = -f(b, a).
- Let weight $w_e = \frac{1}{r_e}$, or the "conductance" of e.

2 Matrix Formation

We also define $f_{ext}(a) = \sum_{b=(a,b)\in E} f(a,b)$, and $f_{ex}t(a)$ basically denotes the external current on a, which is **positive number if** a **is source**, **negative number with equal magnitude** if a is **source**, and **zero otherwise**. So f_{ext} is a very sparse vector.

Ohm's law directly states that $f(a,b) = \frac{v(a)-v(b)}{r_{a,b}} = w_{a,b}(v(a)-v(b))$, therefore

$$\sum_{b:(a,b)\in E} f(a,b) = \sum_{b:(a,b)\in E} w_{a,b}(v(a) - v(b)) = d(a)v(a) - \sum_{b:(a,b)\in E} w_{a,b}v(b)$$

where $d(a) = \sum_{b:(a,b)\in E} w_{a,b}$, the weighted degree of a.

Notice that d(a), $w_{a,b}$ are entries of the weighted laplacian L_G , and through simple verification, we can show that the equation above the equivalent to $L_G v = f_{ext}$