

La Lagrangiana del Modello Standard

Fenomenologia delle Interazioni Forti

Diego Bettoni Anno Accademico 2008-09

Formalismo di Dirac

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$

$$\left|j^{\mu}=\overline{\psi}\gamma^{\mu}\psi\right|$$

Corrente Conservata

$$\gamma^{i} = \begin{pmatrix} 0 & -\sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix} \qquad \gamma^{0} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \Longrightarrow \qquad \gamma^{5} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix} \qquad \mathcal{L} = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi$$

Invarianza di Gauge

L'invarianza di gauge richiede l'introduzione di bosoni vettoriali, che agiscono da quanti di nuove interazioni. Nelle teorie di gauge le simmetrie determinano le interazioni.

D. Bettoni

Le Simmetrie del Modello Standard

- Invarianza U(1). Tutte le particelle hanno questo tipo di invarianza, legata all'elettromagnetismo. Richiede l'esistenza di un bosone vettoriale, B^{μ} , la cui corrispondenza con il fotone verrà stabilita in seguito.
- Invarianza SU(2). Corrisponde ad una invarianza di gauge locale non abeliana (isospin debole). Richiede l'esistenza di tre bosoni vettoriali, W_i^{μ} , uno per ogni generatore di SU(2). Le particelle fisiche hanno cariche elettriche definite.

$$W^{+} = (-W^{1} + iW^{2})/\sqrt{2}$$
 $W^{-} = (-W^{1} - iW^{2})/\sqrt{2}$ $W^{0} = W^{3}$

<u>Invarianza SU(3)</u>. Richiede l'esistenza di otto bosoni vettoriali G_a^μ, i gluoni, il cui scambio dà origine all'interazione forte, descritta dalla Cromodinamica Quantistica (QCD).

La Lagrangiana

 Per ottenere la lagrangiana del modello standard si parte dalla lagrangiana per particelle libere e si sostituisce la derivata con la derivata covariante. Distingueremo due parti:

 $\mathcal{L}_{\text{gauge}}$ energie cinetiche dei campi di gauge $\mathcal{L}_{\text{ferm}}$ derivata covariante o energie cinetiche dei fermioni

- Bisogna specificare poi le particelle e le loro proprietà di trasformazione sotto le tre simmetrie interne.
- Notazione

Leptoni

$$e_R^- = P_R \psi_{e^-} \qquad e_L^- = P_L \psi_{e^-}$$

Gli stati left-handed e right-handed si trasformano diversamente sotto trasformazioni di SU(2) elettrodebole: gli elettroni R sono singoletti di SU(2), mentre gli elettroni L appartengono a doppietti insieme ai neutrini L.

$$e_R^-$$
 singoletto di SU(2) $L = \begin{pmatrix} v_e \\ e^- \end{pmatrix}_L$ doppietto di SU(2)

- Le rotazioni in SU(2) elettrodebole trasformano elettroni L in neutrini L e viceversa.
- Spin ordinario: operatori di salita e di discesa (vettori).
- Isospin forte: pioni (vettori).
- Isospin debole: bosoni W, connettono i membri di un isodoppietto
- e_R non è connesso ad altri stati da transizioni elettrodeboli.
- p,q,r=1,2 es: $L_p L_1 = v_{eL}, L_2 = e^-_L$.

Quarks

$$Q_{L\alpha} = \begin{pmatrix} u_{\alpha} \\ d_{\alpha} \end{pmatrix}_{L} \qquad d_{R\alpha}, u_{R\alpha}$$

- Indice α descrive come il quark trasforma sotto SU(3) di colore.
- La rappresentazione di base è un tripletto. $\alpha, \beta, \gamma = 1, 2, 3$ o r, g, b.
- Colore (es. r) e anticolore (es. \overline{r}). Singoletto ($\overline{rr}+\overline{gg}+\overline{bb}$)
- Tutti i leptoni sono singoletti di colore.
- Tutti i quark sono tripletti di colore.
- I gluoni generano le transizioni da un colore all'altro: analogamente ai fotoni sono i quanti dell'interazione forte, ma contrariamente ai fotoni hanno carica di colore.
- Ci sono 8 gluoni "bi-colorati" (es. \overline{bg}): rappresentazione di ottetto di SU(3) di colore.

- Nel modello standard non ci sono neutrini R:
 - Sperimentalmente si osservano solo v_I .
 - Massa dei neutrini molto piccola (ma non nulla, v. oscillazioni).
 - Se in natura ci sono neutrini $v_{\rm R}$ o sono molto pesanti, oppure interagiscono molto debolmente.
- I fermioni R e L sono stati messi in diversi multipletti di SU(2) elettrodebole: questo implica violazione della parità, in quanto la teoria risulta non invariante rispetto all'inversione dello spin lungo la direzione di moto. Questo è il modo in cui la violazione della parità emerge dal modello standard, ma non ne dà una spiegazione fondamentale.
- La stessa teoria si può applicare alle altre due famiglie di fermioni: (v_{μ}, μ, c, s) e (v_{τ}, τ, t, b) .
 - L'universo consiste di fermioni della prima generazione.
 - Le altre famiglie sono prodotte in interazioni di raggi cosmici o agli acceleratori.
 - Non esiste una spiegazione dell'esistenza di tre famiglie di particelle con gli stessi numeri quantici e le stesse interazioni.

Lagrangiana di Quark e Leptoni

$$\overline{\psi}\gamma^{\mu}\partial_{\mu}\psi \rightarrow \overline{\psi}\gamma^{\mu}D_{\mu}\psi$$

$$\mathcal{D}_{\mu} = \partial_{\mu} - ig_1 \frac{Y}{2} B_{\mu} - ig_2 \frac{\tau^{i}}{2} W_{\mu}^{i} - ig_3 \frac{\lambda^{a}}{2} G_{\mu}^{a}$$

- B_{μ} è il campo necessario a mantenere l'invarianza di gauge U(1). g_{1} è la costante di accoppiamento introdotta ad hoc. Y è il generatore di U(1), costante, ma in linea di principio diverso per i diversi fermioni.
- Considerazioni analoghe valgono per i termini di SU(2) e SU(3). Vengono introdotti rispettivamente 3 e 8 bosoni vettoriali per garantire l'invarianza di gauge. $\tau^i W_u^i = \tau^1 W_u^1 + \tau^2 W_u^2 + \tau^3 W_u^3$
- \mathcal{D}_{μ} dà risultato nullo quando agisce su uno stato fermionico di diversa forma matriciale. Per esempio $\tau^i W^i$ è una matrice 2×2 in SU(2) e dà zero se agisce su e_R , u_R , d_R .

$$\mathcal{L}_{\text{ferm}} = \sum_{f} \bar{f} \gamma^{\mu} \mathcal{D}_{\mu} f \qquad f = L, e_{R}, Q_{L}, u_{R}, d_{R}$$

Gauging the Global Symmetries

Lagrangiana di Dirac (termini cinetici) per la prima generazione:

$$\mathcal{L} = \overline{e}_R \gamma^{\mu} \partial_{\mu} e_R + \overline{e}_L \gamma^{\mu} \partial_{\mu} e_L + \overline{v}_L \gamma^{\mu} \partial_{\mu} v_L$$

Mettiamo e_L e v_L in un doppietto, e_R in un singoletto.

$$L o e^{i ec{ au} \cdot ec{ heta}/2} L$$
 $e_R o e_R$ Simmetria Globale $SU(2)$ $L o e^{i eta} L$ $e_R o e^{i eta'} e_R$ Simmetria Globale $U(1)$

Rendiamo locali le simmetrie introducendo i potenziali W_i^{μ} e B^{μ} e sostituendo ∂^{μ} con la derivata covariante \mathcal{D}^{μ} (operazione di "gauging"). In questo modo si ottiene lo stesso risultato.

Alcuni tentativi di estensione del modello standard vengono fatti in questo modo, aggiungendo particelle e simmetrie e facendo poi il "gauging".

Lagrangiana Elettrodebole

- Poichè il termine in ∂^{u} è sempre presente verrà omesso (sottinteso).
- Tutti i calcoli in SU(2) verranno fatti solo per i leptoni.
- Poichè la parte di colore della funzione d'onda dei quark non agisce negli spazi U(1) ed SU(2) i quark si comportano nello stesso modo dei leptoni per le interazioni U(1) ed SU(2).

I Termini U(1)

$$-\mathcal{L}_{\text{ferm}}(U(1), \text{leptoni}) = \overline{L}i\gamma^{\mu} \left(ig_1 \frac{Y_L}{2} B_{\mu}\right) L + \overline{e}_R i\gamma^{\mu} \left(ig_1 \frac{Y_R}{2} B_{\mu}\right) e_R$$

$$\overline{L}\gamma^{\mu}L = \overline{v}_{L}\gamma^{\mu}v_{L} + \overline{e}_{L}\gamma^{\mu}e_{L}$$

$$-\mathcal{L}_{\text{ferm}}(U(1), \text{leptoni}) = \frac{g_1}{2} \left[Y_L \left(\overline{v}_L \gamma^{\mu} v_L + \overline{e}_L \gamma^{\mu} e_L \right) + Y_R \overline{e}_R \gamma^{\mu} e_R \right] B_{\mu}$$

I Termini SU(2)

$$\begin{split} -\mathcal{L}_{\text{ferm}}(SU(2), \text{leptoni}) &= \overline{L}i\gamma^{\mu} \Biggl(ig_2 \frac{\tau^i}{2} W_{\mu}^i \Biggr) L \\ &= -\frac{g_2}{2} (\overline{v}_L \quad \overline{e}_L) \gamma^{\mu} \Biggl(\begin{array}{ccc} W_{\mu}^3 & W_{\mu}^1 - iW_{\mu}^2 \\ W_{\mu}^1 + iW_{\mu}^2 & -W_{\mu}^3 \end{array} \Biggr) \Biggl(\begin{array}{ccc} v_L \\ e_L \end{array} \Biggr) \\ &= -\frac{g_2}{2} (\overline{v}_L \quad \overline{e}_L) \gamma^{\mu} \Biggl(\begin{array}{ccc} W_{\mu}^0 & -\sqrt{2}W_{\mu}^+ \\ -\sqrt{2}W_{\mu}^- & -W_{\mu}^0 \end{array} \Biggr) \Biggl(\begin{array}{ccc} v_L \\ e_L \end{array} \Biggr) \\ &= -\frac{g_2}{2} \Biggl(\overline{v}_L \quad \overline{e}_L \Biggr) \gamma^{\mu} \Biggl(\begin{array}{ccc} W_{\mu}^0 v_L & -\sqrt{2}W_{\mu}^+ e_L \\ -\sqrt{2}W_{\mu}^- v_L & -W_{\mu}^0 e_L \end{array} \Biggr) \\ &= -\frac{g_2}{2} \Biggl[\overline{v}_L \gamma^{\mu} v_L W_{\mu}^0 - \sqrt{2}\overline{v}_L \gamma^{\mu} e_L W_{\mu}^+ - \sqrt{2}\overline{e}_L \gamma^{\mu} v_L W_{\mu}^- - \overline{e}_L \gamma^{\mu} e_L W_{\mu}^0 \Biggr] \end{split}$$

La Corrente Neutra

Interazione elettromagnetica di particelle con carica Q

$$\mathcal{L}_{EM} = QA_{\mu} \left[\overline{e}_L \gamma^{\mu} e_L + \overline{e}_R \gamma^{\mu} e_R \right]$$

Ci sono termini con neutrini
$$\left(-\frac{g_1}{2}Y_LB_\mu - \frac{g_2}{2}W_\mu^0\right)\overline{\nu}_L\gamma^\mu\nu_L$$

Assumiamo che il campo magnetico A_u sia la combinazione ortogonale:

$$A_{\mu} \propto g_2 B_{\mu} - g_1 Y_L W_{\mu}^0$$

$$Z_{\mu} \propto g_1 Y_L B_{\mu} + g_2 W_{\mu}^0$$

$$A_{\mu} = \frac{g_2 B_{\mu} - g_1 Y_L W_{\mu}^0}{\sqrt{g_2^2 + g_1^2 Y_L^2}}$$

$$Z_{\mu} = \frac{g_1 Y_L B_{\mu} + g_2 W_{\mu}^0}{\sqrt{g_2^2 + g_1^2 Y_L^2}}$$

Termini con gli elettroni:
$$\overline{e}_L \gamma^\mu e_L \left(-\frac{g_1}{2} Y_L B_\mu + \frac{g_2}{2} W_\mu^0 \right) + \overline{e}_R \gamma^\mu e_R \left(-\frac{g_1}{2} Y_R B_\mu \right)$$

$$\begin{split} B_{\mu} &= \frac{g_{2}A_{\mu} + g_{1}Y_{L}Z_{\mu}}{\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}} \qquad W_{\mu}^{0} = \frac{-g_{1}Y_{L}B_{\mu} + g_{2}Z_{\mu}}{\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}} \\ -A_{\mu} &\left\{ \overline{e}_{L}\gamma^{\mu}e_{L} \left[\frac{g_{1}g_{2}Y_{L}}{\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}} \right] + \overline{e}_{R}\gamma^{\mu}e_{R} \left[\frac{g_{1}g_{2}Y_{R}}{2\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}} \right] \right\} \\ -Z_{\mu} &\left\{ \overline{e}_{L}\gamma^{\mu}e_{L} \left[\frac{g_{1}^{2}Y_{L}^{2} - g_{2}^{2}}{2\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}} \right] + \overline{e}_{R}\gamma^{\mu}e_{R} \left[\frac{g_{1}^{2}Y_{R}Y_{L}}{2\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}} \right] \right\} \end{split}$$

Il termine in A_μ deve rappresentare la corrente elettromagnetica. Il termine in Z_μ rappresenta un'ulteriore interazione, da verificare sperimentalmente.

$$-e = \frac{g_1 g_2 Y_L}{\sqrt{g_2^2 + g_1^2 Y_L^2}} \qquad -e = \frac{g_1 g_2 Y_R}{2\sqrt{g_2^2 + g_1^2 Y_L^2}}$$

$$Y_{R} = 2Y_{L}$$

$$Y_{L} = -e^{\frac{\sqrt{g_{2}^{2} + g_{1}^{2}Y_{L}^{2}}}{g_{1}g_{2}}}$$

Possiamo scegliere $Y_L=-1$, in quanto ogni cambiamento in Y_L può venire riassorbito da una ridefinizione di g_1 .

$$Y_L = -1 \implies e = \frac{g_1 g_2}{\sqrt{g_2^2 + g_1^2}}$$

La teoria che abbiamo sviluppato comprende l'interazione elettromagnetica per i soli elettroni e una nuova interazione di corrente neutra Z_{μ} sia per gli elettroni che per i neutrini.

Definiamo:

$$\sin \theta_W = \frac{g_1}{\sqrt{g_2^2 + g_1^2}}$$

$$\cos \theta_W = \frac{g_2}{\sqrt{g_2^2 + g_1^2}}$$

 θ_W Angolo di mixing debole (angolo di Weinberg)

$$g_1 = \frac{e}{\cos \theta_W}$$

$$g_2 = \frac{e}{\sin \theta_W}$$

 g_1 e g_2 sono scritte in termini della costante nota $e\left(e^2/4\pi\approx1/137\right)$ e dell'angolo di mixing debole, da determinarsi sperimentalmente.

$$\sin \theta_W \approx 0.23$$

Accoppiamento v-Z

$$-\frac{\sqrt{g_2^2 + g_1^2}}{2} Z_{\mu} \bar{\nu}_L \gamma^{\mu} \nu_L = -\frac{g_2}{2 \cos \theta_W} Z_{\mu} \bar{\nu}_L \gamma^{\mu} \nu_L$$

 $\frac{g_2}{2\cos\theta_W}$ è la quantità da associare ad ogni vertice v_L -Z. "carica elettrodebole" del neutrino left-handed.

$$\sqrt{g_2^2 + g_1^2} = \left[\frac{e^2}{\cos^2 \theta_W} + \frac{e^2}{\sin^2 \theta_W}\right]^{1/2}$$

$$= \left[\frac{e^2}{\cos^2 \theta_W \sin^2 \theta_W}\right]^{1/2}$$

$$= \frac{e}{\cos \theta_W \sin \theta_W}$$

Accoppiamento e-Z

$$\begin{split} -Z_{\mu} & \left\{ \overline{e}_{L} \gamma^{\mu} e_{L} \left[\frac{g_{1}^{2} - g_{2}^{2}}{2\sqrt{g_{2}^{2} + g_{1}^{2}}} \right] + \overline{e}_{R} \gamma^{\mu} e_{R} \left[\frac{-g_{1}^{2}}{\sqrt{g_{2}^{2} + g_{1}^{2}}} \right] \right\} \\ & \frac{g_{1}^{2} - g_{2}^{2}}{2\sqrt{g_{2}^{2} + g_{1}^{2}}} = \frac{e^{2}}{2\sqrt{g_{2}^{2} + g_{1}^{2}}} \left(\frac{1}{\cos^{2} \theta_{W}} - \frac{1}{\sin^{2} \theta_{W}} \right) \\ & = \frac{e}{\cos \theta_{W} \sin \theta_{W}} \left(-\frac{1}{2} + \sin^{2} \theta_{W} \right) \quad \text{Accoppiamento } e_{L} \end{split}$$

$$\frac{-g_1^2}{\sqrt{g_2^2 + g_1^2}} = -\frac{e^2}{\cos^2 \theta_W} \frac{\cos \theta_W \sin \theta_W}{e}$$
$$= \frac{e}{\cos \theta_W \sin \theta_W} \left(-\sin^2 \theta_W\right)$$

Accoppiamento e_R

$$\frac{e}{\cos\theta_W\sin\theta_W} \left(T_3^f - Q_f\sin^2\theta_W\right)$$

Questa espressione dà la carica elettrodebole per ogni fermione, cioè l'intensità del suo accoppiamento allo Z.

 T_3^f è il generatore di T_3 per ogni fermione f.

Per un singoletto ($f=e_R, u_R, d_R$ ecc) $T_3^f = 0$.

Per il membro superiore di un doppietto ($f = v_L, u_L$ ecc) $T_3^f = +1/2$.

Per il membro inferiore di un doppietto ($f=e_L,d_L$ ecc) $T_3^f=-1/2$.

 Q_f è la carica elettrica del fermione in unità di e: Q_e =-1. Q_v =0, Q_u =2/3, Q_d =-1/3)

Nella teoria elettrodebole sono presenti sia l'interazione elettromagnetica, mediata dal fotone, che la corrente debole neutra, mediata dal bosone \mathbb{Z}^0 , che si accoppia ad ogni fermione dotato di carica elettrica o isospin debole.

L'intensità dell'interazione della \mathbb{Z}^0 non è intrinsecamente piccola, ma si riduce a causa dell'elevato valore della sua massa che, al contrario del fotone, è diversa da zero.

L'asimmetria deriva dal termine di interferenza, l'effetto è dell'ordine del 10 % per s = 1000 GeV².

D. Bettoni

Corrente Carica

La parte U(1) della Lagrangiana contiene solo termini diagonali, mentre la parte SU(2) contiene anche termini non diagonali.

$$\begin{split} \mathcal{L}_{\text{ferm}} &= \frac{g_2}{\sqrt{2}} \Big[\overline{v}_L \gamma^\mu e_L W_\mu^+ + \overline{e}_L \gamma^\mu v_L W_\mu^- \Big] \qquad \text{corrente carica} \\ & \overline{v}_L \gamma^\mu e_L = \frac{1}{2} \overline{v} \gamma^\mu \Big(1 - \gamma^5 \Big) e \qquad \qquad \text{interazione V-A} \end{split}$$

Si prevede dunque l'esistenza dei bosoni carichi W^{\pm} e di correnti cariche associate ad essi. Le correnti cariche osservate hanno intensità molto minore da quella che ci si potrebbe aspettare:

$$\frac{\left(g_2/\sqrt{2}\right)^2}{4\pi} = \frac{\left(e^2/4\pi\right)}{2\sin^2\theta_W} \approx \frac{2}{137}$$

Esempio di Corrente Carica: il Decadimento β

$$n \rightarrow p + e^{-} + \overline{\nu}_{e}$$
 $\tau = 885.7 \pm 0.8 s$
 $(d \rightarrow u + e^{-} + \overline{\nu}_{e})$

L'interazione è praticamente puntiforme, descritta da un accoppiamento a 4 fermioni

$$G = \frac{g^2}{M_W^2}$$

Come nel caso delle correnti neutre le ampiezze dei processi di corrente carica vengono ridotte dall'elevato valore della massa del W^{\pm} .

D. Bettoni

I Termini Elettrodeboli con i Quark

La struttura di spin e di SU(2) per quark e leptoni è la stessa, per cui le conclusioni precedenti riguardanti i leptoni si applicano in maniera identica ai quark:

- Si accoppiano agli stessi bosoni di gauge W^{\pm} , Z^{0} , γ .
- Normale accoppiamento elettromagnetico al fotone.
- Accoppiamento di corrente carica che genera transizioni $u_L \leftrightarrow d_L$, mentre non ci sono transizioni di corrente carica per $u_R e d_R$.
- Interazioni di corrente neutra con accoppiamento:

$$\frac{e}{\cos\theta_W\sin\theta_W} \Big(T_3^f - Q_f \sin^2\theta_W \Big)$$

f	Q	T_{3}^{f}
u_L	+2/3	+1/2
d_L	-1/3	-1/2
u_R	+2/3	0
d_R	-1/3	0

La Lagrangiana QCD

$$\frac{g_3}{2} \overline{q}_{\alpha} \gamma^{\mu} \lambda_{\alpha\beta}^a G_{\mu}^a q_{\beta} \qquad \begin{cases} \alpha, \beta = 1, 2, 3 \\ a = 1, \dots, 8 \end{cases}$$

- Contiene solo i quark, perchè i leptoni non hanno carica di colore.
- Nel caso elettrodebole i Wⁱ sono in relazione a stati di carica elettrica perchè c'e' interazione con il campo elettromagnetico. I gluoni sono neutri elettricamente, cioè non hanno interazione e.m.
- Poichè i generatori λ non sono tutti diagonali, l'interazione tra gluoni e quark cambia il colore dei quark.
- I gluoni e i quark sono confinati negli adroni.

La Seconda e Terza Famiglia

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \rightarrow \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \\
\begin{pmatrix} u \\ d \end{pmatrix} \rightarrow \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

- Tutta la fenomenologia nota è consistente con queste sostituzioni
- Non sappiamo se ci sono altre famiglie, o altri quark o leptoni che non entrano in questo schema
- Tutti i fermioni delle tre famiglie sono stati osservati sperimentalmente.
- Lo stesso set di bosoni di gauge (γ , W^{\pm} , Z^{0} ,g) interagisce con tutti i fermioni delle tre famiglie:
 - lepton universality
 - u- and d- universality

La Lagrangiana Fermione-Bosone di Gauge

$$\begin{split} \mathcal{L} &= \sum_{f=v,e,u,d} eQ_f \left(\bar{f} \gamma^\mu f \right) A_\mu \\ &+ \frac{g_2}{\cos \theta_W} \sum_{f=v,e,u,d} \left[\bar{f}_L \gamma^\mu f_L \left(T_f^3 - Q_f \sin^2 \theta_W \right) + \bar{f}_R \gamma^\mu f_R \left(-Q_f \sin^2 \theta_W \right) \right] Z_\mu \\ &+ \frac{g_2}{\sqrt{2}} \left[\left(\bar{u}_L \gamma^\mu d_L + \bar{v}_L \gamma^\mu e_L \right) W_\mu^+ + \text{h.c.} \right] \\ &+ \frac{g_3}{2} \sum_{q=u,d} \bar{q}_\alpha \gamma^\mu \lambda_{\alpha\beta}^a q_\beta G_\mu^a \end{split}$$

Masse

• Per i fermioni un termine di massa sarebbe della forma $m = \overline{\psi} \psi$.

$$m\,\overline{\psi}\,\psi = m\big(\overline{\psi}_R\psi_L + \overline{\psi}_L\psi_R\big)$$

Poichè i fermioni L sono membri di un doppietto di SU(2) mentre i fermioni R sono singoletti, i termini $\psi_R \psi_L$ e $\psi_L \psi_R$ non sono singoletti in SU(2) e quindi non danno una lagrangiana invariante per trasformazioni di SU(2).

Per i bosoni di gauge i termini di massa sono del tipo

$$\frac{1}{2}m_B^2B^{\mu}B_{\mu}$$

Anch'essi non sono invarianti per trasformazioni di gauge. La risoluzione del problema passa attraverso il meccanismo di Higgs.