

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

"Made available under NASA sponsorship
in the interest of early and wide dis-
semination of Earth Resources Survey
Program information and without liability
for any use made thereof."

TECHNICAL MEMORANDUM
OPERATIONAL CHANGES
FOR THE

74-10223 NMIE

JSC- 13813

Q.0 - 10.22

NASA CR-

160633

KANSAS STATE UNIVERSITY WHEAT MODEL

Job Order 74- 4863

AD 63-1347- 4863-04

(E80-10223) OPERATIONAL CHANGES FOR THE
KANSAS STATE UNIVERSITY WHEAT MODEL
(Lockheed Electronics Co.) 30 p
HC A03/MF A01

N80-29797

CSCL 02C Unclass
G3/43 00223

Prepared By
Lockheed Electronics Company, Inc.
Aerospace Systems Division
Houston, Texas
Contract NAS 9-15200
For
EARTH OBSERVATIONS DIVISION

National Aeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER
Houston, Texas

December 1977

LEC- 11393

JSC- 13813

TECHNICAL MEMORANDUM
OPERATIONAL CHANGES
FOR THE
KANSAS STATE UNIVERSITY WHEAT MODEL
Job Order 74-4863
AD 63-1347-4863-04

PREPARED BY
R. L. Davenport

APPROVED BY

James A. Wilkinson
for P. L. Krumm, Supervisor
Applications Software Section

Prepared By
Lockheed Electronics Company, Inc.
For
Earth Observations Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON
HOUSTON, TEXAS

December 1977

LEC- 11393

CONTENTS

Section	Page
1. SCOPE.	1-1
2. APPLICABLE DOCUMENTS.	2-1
3. SYSTEM DESCRIPTION	3-1
3.1 <u>HARDWARE DESCRIPTION</u>	3-1
3.2 <u>SOFTWARE CHANGES</u>	3-1
3.2.1 PROGRAM MAIN	3-1
3.2.2 PROGRAM VARIAN	3-2
3.2.3 OTHER PROGRAMS WITH MINOR CHANGES	3-11
ATTACHMENTS	
A. NEW PROGRAM LISTINGS	A-1
B. LEAD CARDS READ BY MAIN	B-1
C. MODIFIED CARD READ BY WHYMOD.	C-1

FIGURES

Figure	Page
3.2.1 Main Program	3-3
3.2.2 Varian Program.	3-4
3.2.3 Varian Program cont	3-5
3.2.4 Varian Program cont	3-6
3.2.5 Varian Program cont	3-7
3.2.6 Varian Program cont	3-8
3.2.7 Varian Program cont	3-9
3.2.8 Varian Program cont	3-10

1. SCOPE

The operational version of the Kansas State University (KSU) Yield System is now a load module which does not require recompiling before each execution. This was done by combining the KSU Main and Block Data programs into a new Main that reads the variable information from lead cards. Other changes include insertion of the variance model and changes to include the regional yields in the output.

2. APPLICABLE DOCUMENTS

- 2.1 Planting Date and Wheat Yield Models, Final Report for Period Feb 1975 - March 1977. Contract NAS 9-14533. A.M. Feyerherm, Dept of Statistics, KSU. Sept 1977.
- 2.2 Revision of the Wheat Yield Model (WHYMOD) Computer Program, A.M. Feyerherm, Dept of Statistics, KSU. July 1977.
- 2.3 Action Documentation 63-1557-4863-04, Modification of Kansas State University Model, July 19, 1977.

2/1
1

3. SYSTEM DESCRIPTION

Refer to document 1 under Applicable Document for the design of the KSU system.

3.1 HARDWARE DESCRIPTION

The programs and associated data files are resident on the IBM 360/195 complex near Suitland, Maryland.

3.2 SOFTWARE CHANGES TO KSU SYSTEM

3.2.1 PROGRAM MAIN

Main reads input variables from unit 2 and assigns constant information inline. This information had previously been assigned by Block Data. See attachment B for lead card input. The USDA reported yields are also input by cards when the variance model is run.

3.2.1.1 Linkages

MAIN calls WHYMOD

3.2.1.2 Interfaces

MAIN provides control information to WHYMOD and the necessary USDA reported yields for the VARIAN MODULE.

3.2.1.3 FLOWCHART

See Figure 3.2.1

3.2.1.4 Program Listing

See Attachment A

3.2.2 PROGRAM VARIAN

VARIAN estimates the variance of the Spring or Winter Wheat of the KSU Model. It uses USDA reported, yields against the KSU estimated yields.

3.2.2.1 Linkages

VARIAN is called by WHYMOD

3.2.2.2 Inputs

Inputs are USDA reported yields and the corresponding KSU estimated yields.

3.2.2.3 Outputs

Output is Estimated variance of the inputs. Refer to attachment D for output example.

3.2.2.4 Flowchart

See Figures 3.2.2 through 3.2.8

3.2.2.5 Program Listing

See Attachment A

FIGURE 3.2.1- MAIN

FIGURE 3.2.2

SUBROUTINE VARIAN

FIGURE 3.2.3

FIGURE 3.2.4

FIGURE 3.2.5

3-1
9

FIGURE 3.2.6

FIGURE 3.2.7

3-9
//

FIGURE 3.2.8

SUBROUTINE MEAN

3.2.3 OTHER PROGRAMS WITH MINOR CHANGES

This section describes minor changes to other subroutines. Program changes were made in each of three subroutines: WHYMOD, ESTYLD and OUTPUT. These changes were made to accomplish two basic purposes: change the regional yield estimation from a single multiplier form to a linear equation to provide interfacing with the variance calculation subroutine.

Subroutine WHYMOD, the general control routine for the model was modified for both of the above reasons. Statements were added to input the slope and intercept coefficients for the linear regional yield estimation equation and transfer these values to both the yield estimation subroutine (ESTYLD) and the variance estimation subroutine (VARIAN). Counters and a common block were added to save each year's regional yield estimate for transfer to the variance routine as each location is processed. Finally, a call to the variance subroutine was added so that this calculation will be made at the end of processing each location.

Subroutine ESTYLD, in which the estimated yields are computed, was modified to accept the slope and intercept coefficients (refer to Attachment C for lead card change) from WHYMOD. They are used in a linear equation to calculate the estimated regional (i.e. CRD) yields from the local WAC (weather and cultural practices component) values obtained from individual weather station data. These estimates are then transferred to WHYMOD for use by the variance routine. Both the WAC and regional yield estimates are also transferred to subroutine OUTPUT for printing.

Subroutine OUTPUT which controls and formats most printed and punched output from the model has been modified to print both the WAC and regional yields for each year as each location is processed. A sample of the format of the new output is given in attachment B. Modifications were thus made so that subroutine OUTPUT would accept both these yield estimates from subroutine ESTYLD.

ATTACHMENT A
PROGRAM LISTINGS

MAY

ORIGINAL PAGE IS
OF POOR QUALITY

A-II

COLLEGE OF MEDICAL SCIENCES AND HUMAN SERVICES
UNIVERSITY OF TORONTO
1990

A-3 18

VARIAN

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

C CALL THE FUNCTION YILKSUM IN P.J. - INTERMEDIATE
SYSD=0.0
SYSD=0.0
DO 300 I=1,11
SYSD=SYSD+YILKSU(I)**2
SYSD=SYSD+(YILKSU(I)-3(1)*YILKSU(1))**2
CONTINUE
T1=(SYSD/FN)
T2=SYSD/(FN*(FN-1))
T3=(1.0-(2.0/Tn))
YAWI=1.0/(T3*T2)
T4=(Xn,P1)**2
T5=EN*(YAWI**2)
FSTVAR=VAR/(1.0+T4/T5)
ERRONEOUS T5(YAWI)
WRITER(6,30)ESTIMATE,ESTIMATE,VARIANCE IS 0.
30 FORMAT(1.5,F1.4,F1.4,A3/54X,THE ESTIMATE,ESTIMATE,VARIANCE IS 0.
DF6*25IX,THE ESTIMATE,ESTIMATE,VARIANCE IS 0.FD2/
WRTIE(6,76)YILKSU(SV30,T3,T2,T4,T5,VARIANCE,FSTVAR
76 FORMAT(1.20X,YILKSU=0.02/2/
.20X,SYSD=0.02/2/
.20X,T1=0.02/2/
.20X,T2=0.02/2/
.20X,T3=0.02/2/
.20X,T4=0.02/2/
.20X,T5=0.02/2/
.20X,VAR=YILKSU=0.02/2/
.20X,FSTVAR=0.02/2/
RETURN
END
SUBROUTINE YILKSU(I,FN)
THIS SUBROUTINE IS PREPARED BY MELVIN J. JUR
TO USE THE CALGULUS OF A GIVEN
ESTIMATE, YILKSU
REAL Z(Z0), FN,
FN=N
SUM=0.0
DO 400 I=1,11
SUM=SUM+Z(I)
400 CONTINUE
ZAR=SUM/FN
RETURN
END

A5 100

ORIGINAL PAGE IS
OF POOR QUALITY

ATTACHMENT B
NEW LEAD CARDS READ BY MAIN

ATTACHMENT B

CARD 1 Values used for all locations being processed in a single computer run:

COL 1: Estimated yields	ICALCE
= 0 Do not compute. Use input data card 8A.	
= 1 Compute yields. Use input data card 8B.	
= 2 Compute weather components. Use input data card 8B.	
COL 2: Model for Estimated yields	MODEL
= 1 Fall planted wheat model	
= 2 Spring planted wheat model	
COL 3: Printing of Average weather related variable values	IPRTAV
= 0 Do not print	
= 1 Do print	
COL 4: Printing of weather related variables and estimated yields or weather components	IPRWRV
= 0 Do not print	
= 1 Do print	
COL 5: Punching of soil moisture budget contents	IPUSMC
= 0 Do not punch	
= 1 Punch at planting does	
= 2 Punch at break day.	
= 3 Punch both days	

COL 6: Punching of weather related variables IAUWRV

- = 0 Do not punch
- = 1 Punch all weather related variables
- = 2 Punch # days/stage and
Precipitation/stage only

COL 7: Punching of estimated yields or weather components

IPUEST

- = 0 Do not punch
- = 1 Punch estimated yields
- = 2 Punch weather components

COL 8: Standard I/O Units

KUNIT

- = 0 Default to standard values
 - 4 for errors
 - 5 for reads
 - 6 for writes
 - 7 for punching
- = 1 Lead card assigns values.

COL 9: Variance Model Flag

ICAL

- = 0 No Variance
- = 1 Winter model
- = 2 Spring model

Cols 10-12 Total number of locations to be processed MAXWSN

B-2
23

Card 2 Weather Station Numbers in order as on data tape.

IWSNO(I), I = 1, MAXWSN

Multiple cards with 10I7 format.

Card 3 Program location numbers in same order as weather station numbers. (user's assigned)

LOCNOS(I), I = 1, MAXWSN

Multiple cards with 18I4 format.

Cards 4-9 are starting and ending dates for tape records in order by Weather Station. Each type card can have multiple card input with 24I3 formats.

Card 4 Starting Years

ISTDTY (I), I = 1, MAXWSN

Card 5 Starting Months

ISTDTM (I), I = 1, MAXWSN

Card 6 Starting Days

ISTDTD (I), I = 1, MAXWSN

Card 7 Ending Years

IENDDTY (I), I = 1, MAXWSN

Card 8 Ending Months

IENDTM (I) I = 1, MAXWSN

Card 9 Ending Days

IENDTD (I), I = 1, MAXWSN

Card 10 Location Latitude in correspondence with location numbers

LOCLAT (I), I = 1, MAXWSN

Multiple cards with 12F6.2 format.

Card 11 January Average Temperatures in correspondence with location numbers.

LOCJAT (I), I = 1, MAXWSN
Same format as card 10.

Card 12 Average Annual Precipitation in correspondence with location numbers.

LOCANP (I), I = 1, MAXWSN
Same format as card 10.

If the variance model is run the following cards are necessary.

Card 13 The beginning processing year and the number of years to process (minimum 10 yrs)

INYR, NOYR
Format (I4, X, I2)

Card Sets 14 USDA data for each crop reporting district (CRD) desiring a comparison with KSU data. Must be in order to relate to WSN's.

Card 1 NOCRD (CRD order from 1 To MAXWSN)

SRSYIL (NOCRD, I), I=1,10. Ten years of USDA yield data Format (I2,ex,10(X,F4,1))

Card 2 Used only if more than 10 years of data are tested (max-20)

SRSYIL(NOCRD,I), I=11,NOYR. Over 10 years of USDA data Format (5X,10(X,F4.1))

ATTACHMENT C
MODIFIED LEAD CARD FOR STOP-INTERCEPT INPUT

Refer to document 2 under Applicable Documents section.

Add to lead card 8B the following input.

COLUMNS 69-73: INTERCEPT for regional yield equation (punch decimal). When a Management and productivity factor, MAP, is used these columns will contain 0.0

COLUMNS 75-79: SLOPE for regional yield equation (punch decimal). When a MAP factor is used input in the columns instead of COLUMNS 59-62.