TABLE OF FOURIER TRANSFORMS

1. Functions of a Single Variable

Entry no.	Generalized function f	Fourier transform $F[f]$
1	Ordinary summable function $f(x)$	$F[f] = \int_{-\infty}^{\infty} f(x) e^{ix\sigma} dx$
2	$\delta(x)$	1
3	1	$2\pi \ \delta(\sigma)$
4	Polynomial $P(x)$	$2\pi P\left(-irac{d}{d\sigma} ight)\delta(\sigma)$
5	$\delta^{(2m)}(x)$	$(-1)^m\sigma^{2m}$
6	$\delta^{(2m+1)}(x)$	$(-1)^{m+1} i\sigma^{2m+1}$
7	e^{bx}	$2\pi \delta(s-ib)$
8	sin bx	$-i\pi[\delta(s+b)-\delta(s-b)]$
9	$\cos bx$	$\pi[\delta(s+b)+\delta(s-b)]$
10	$\sinh bx$	$\pi[\delta(s-ib)-\delta(s+ib)$
11	\coshbx	$\pi[\delta(s-ib)+\delta(s+ib)]$
12	$\exp\left(\frac{x^2}{2}\right)$	Analytic functional $i\sqrt{2\pi} \exp(s^2/2)$ (integration along the imaginary axis)
13	$ x ^{\lambda}$ $(\lambda \neq -1, -3,)$	$-2\sin\frac{\lambda\pi}{2}\varGamma(\lambda+1)\mid\sigma\mid^{-\lambda-1}$
14	$ x ^{\lambda} \qquad (\lambda \neq -1, -3,)$ $f_{\lambda}(x) = 2^{-\frac{1}{2}\lambda} \frac{ x ^{\lambda}}{\Gamma\left(\frac{\lambda+1}{2}\right)}$	$\sqrt{2\pi}f_{-\lambda-1}(\sigma) = \sqrt{2\pi} \frac{2^{\frac{1}{2}(\lambda+1)} \sigma ^{-\lambda-1}}{\Gamma\left(-\frac{\lambda}{2}\right)}$
15	$ x ^{\lambda} \operatorname{sgn} x$ $(\lambda \neq -2, -4,)$	$2i\cos\frac{\lambda\pi}{2}\Gamma(\lambda+1) \sigma ^{-\lambda-1}\operatorname{sgn}\sigma$
16	$g_{\lambda}(x) = 2^{-\frac{1}{2}\lambda} \frac{ x ^{\lambda} \operatorname{sgn} x}{\Gamma\left(\frac{\lambda+2}{2}\right)}$	$\sqrt{2\pi} i g_{-\lambda-1}(\sigma) = \sqrt{2\pi} i \frac{2^{\frac{1}{2}(\lambda+1)} \sigma ^{-\lambda-1} \operatorname{sgn} \sigma}{\Gamma\left(\frac{1-\lambda}{2}\right)}$

Entry no.	Generalized function f	Fourier transform $F[f]$
17	x^m	$2(-i)^m \pi \delta^{(m)}(\sigma)$
18	x^{-m}	$i^m \frac{\pi}{(m-1)!} \sigma^{m-1} \operatorname{sgn} \sigma$
19	x^{-1}	$i\pi \ { m sgn} \ \sigma$
20	x^{-2}	$-\pi \mid \sigma \mid$
21	x_+^{λ} $(\lambda \neq -1, -2,)$	$ie^{i\lambda(\pi/2)}\Gamma(\lambda+1)(\sigma+i0)^{-\lambda-1}$
		$= i\Gamma(\lambda + 1) \times \left[e^{\lambda i(\pi/2)} \sigma_{+}^{-\lambda-1} - e^{-i\lambda(\pi/2)} \sigma_{-}^{-\lambda-1}\right]^*$
22	x_+^n	$i^{n+1}n! \ \sigma^{-n-1} + (-i)^n \pi \ \delta^{(n)}(\sigma)$
23	$\theta(x)$	$i\sigma^{-1} + \pi\delta(\sigma)$
24	x_{-}^{λ} $(\lambda \neq -1, -2,)$	$-ie^{-i\lambda(\pi/2)}\Gamma(\lambda+1)(\sigma-i0)^{-\lambda-1}$
		$= i\Gamma(\lambda + 1) \times \left[e^{i\lambda(\pi/2)} \sigma_{-}^{-\lambda-1} - e^{-i\lambda(\pi/2)} \sigma_{+}^{-\lambda-1}\right]^*$
25	$(x+i0)^{\lambda}$	$rac{2\pi e^{i\lambda(\pi/2)}}{\Gamma(-\lambda)}\sigma^{-\lambda-1}$
26	$(x-i0)^{\lambda}$	$\frac{2\pi e^{-i\lambda(\pi/2)}}{\Gamma(-\lambda)}\sigma_+^{-\lambda-1}$

In Entries 27-38 we write:

$$ie^{i\lambda(\pi/2)} \Gamma(\lambda+1) = \frac{a_{-1}^{(n)}}{\lambda+n} + a_0^{(n)} + a_1^{(n)}(\lambda+n) + ...,$$

$$-ie^{-i\lambda(\pi/2)} \Gamma(\lambda+1) = \frac{b_{-1}^{(n)}}{\lambda+n} + b_0^{(n)} + b_1^{(n)}(\lambda+n) + ...,$$

$$-2\sin\frac{\lambda\pi}{2} \Gamma(\lambda+1) = \frac{c_{-1}^{(n)}}{\lambda+n} + c_0^{(n)} + c_1^{(n)}(\lambda+n) + ...,$$

$$2\cos\frac{\lambda\pi}{2} \Gamma(\lambda+1) = \frac{d_{-1}^{(n)}}{\lambda+n} + d_0^{(n)} + d_1^{(n)}(\lambda+n).$$

^{*} Second expression for $\lambda \neq 0, \pm 1, \pm 2, \pm 3, \dots$

Entry	Generalized	Fourier transform
no.	function f	F[f]

The $a_{-1}^{(n)}$, $a_0^{(n)}$, ... are given by:

$$\begin{split} a_{-1}^{(n)} &= \frac{i^{n-1}}{(n-1)!}\,; \\ a_0^{(n)} &= \frac{i^{n-1}}{(n-1)!} \left[1 + \frac{1}{2} + \ldots + \frac{1}{n-1} + \Gamma'(1) + i \, \frac{\pi}{2} \right]\,; \\ a_1^{(n)} &= \frac{i^{n-1}}{(n-1)!} \left\{ \sum_{j,k=1}^{n-1} \frac{1}{jk} - \frac{\pi^2}{8} + \left(1 + \frac{1}{2} + \ldots + \frac{1}{n-1} \right) \Gamma'(1) + \Gamma''(1) \right. \\ &\qquad \qquad + i \, \frac{\pi}{2} \left[1 + \frac{1}{2} + \ldots + \frac{1}{n-1} + \Gamma'(1) \right] \right\}\,; \\ b_i^{(n)} &= \bar{a}_i^{(n)}; \qquad c_i^{(n)} = 2 \, \operatorname{Re} \, a_i^{(n)}; \qquad d_i^{(n)} = 2 \, \operatorname{Im} \, a_i^{(n)}. \end{split}$$

In particular,

$$b_{-1}^{(n)} = \frac{(-i)^{n-1}}{(n-1)!}; c_{-1}^{(n)} = \frac{2(-1)^{n-1}}{(n-1)!} \cos(n-1) \frac{\pi}{2};$$

$$d_{-1}^{(n)} = \frac{2(-1)^n}{(n-1)!} \sin(n-1) \frac{\pi}{2}.$$

Entry	Generalized	Fourier transform
no.	function f	F[f]
31	$\ln x_+$	$i\left\{\left(\Gamma'(1)+i\frac{\pi}{2}\right)(\sigma+i0)^{-1}\right\}$
		$-(\sigma+i0)^{-1}\ln(\sigma+i0)$
32	ln x_	$-i\left\{\left(\Gamma'(1)-i\frac{\pi}{2}\right)(\sigma-i0)^{-1}\right\}$
		$-(\sigma-i0)^{-1}\ln{(\sigma-i0)}$
33	$ x ^{\lambda} \ln x $	$ie^{i\lambda(\pi/2)}\left\{\left[\Gamma'(\lambda+1)+i\frac{\pi}{2}\Gamma(\lambda+1)\right]\right\}$
	$(\lambda \neq -1, -2,)$	$\times (\sigma + i0)^{-\lambda-1}$
		$-\Gamma(\lambda+1)\left(\sigma+i0\right)^{-\lambda-1}\ln\left(\sigma+i0\right)$
		$-ie^{-i\lambda(\pi/2)}\left\{\left[\Gamma'(\lambda+1)-i\frac{\pi}{2}\Gamma(\lambda+1)\right]\right\}$
		$\times (\sigma - i0)^{-\lambda - 1}$
		$-\Gamma(\lambda+1)\left(\sigma-i0\right)^{-\lambda-1}\ln\left(\sigma-i0\right)$
34	$ x ^{\lambda} \ln x \operatorname{sgn} x$	$ie^{i\lambda(\pi/2)}\left\{\left[\Gamma'(\lambda+1)+i\frac{\pi}{2}\Gamma(\lambda+1)\right]\right\}$
	$(\lambda \neq -1, -2,)$	$\times (\sigma + i0)^{-\lambda-1}$
		$-\Gamma(\lambda+1)\left(\sigma+i0\right)^{-\lambda-1}\ln\left(\sigma+i0\right)$
		$+ie^{-i\lambda(\pi/2)}\left\{\left[\Gamma'(\lambda+1)-i\frac{\pi}{2}\Gamma(\lambda+1)\right]\right\}$
		$\times (\sigma - i0)^{-\lambda - 1}$
		$-\Gamma(\lambda+1)\left(\sigma-i0\right)^{-\lambda-1}\ln\left(\sigma-i0\right)$
35	$x^{-2m} \ln x $	$ c_1^{(2m)} \sigma ^{2m-1}-c_0^{(2m)} \sigma ^{2m-1}\ln \sigma $
36	$x^{-2m-1} \ln x $	$id_1^{(2m+1)}\sigma^{2m}\operatorname{sgn}\sigma-id_0^{(2m+1)}\sigma^{2m}\operatorname{ln} \sigma \operatorname{sgn}\sigma$
37	$ x ^{-2m-1} \ln x $	$c_1^{(2m+1)}\sigma^{2m} - c_0^{(2m+1)}\sigma^{2m} \ln \sigma $
		$+\frac{1}{2}c_{-1}^{(2m+1)}\sigma^{2m}\ln^2 \sigma $

Entry no.	Generalized function f	Fourier transform $F[f]$
38	$ x ^{-2m} \ln x \operatorname{sgn} x$	$\left id_1^{(2m)}\sigma^{2m-1}-id_0^{(2m)}\sigma^{2m-1}\ln \sigma \right $
		$+\frac{i}{2} d_{-1}^{(2m)} \sigma^{2m-1} \ln^2 \sigma $
39	$(1-x^2)^{\lambda}_+$ $(\lambda \neq -1, -2,)$	$\sqrt{\pi}\Gamma(\lambda+1)\left(\frac{\sigma}{2}\right)^{-\lambda-\frac{1}{2}}J_{\lambda+\frac{1}{2}}(\sigma)$
40	$(1+x^2)^{\lambda}_+$	$\frac{2\sqrt{\pi}}{\Gamma(-\lambda)}\left \frac{\sigma}{2}\right ^{-\lambda-\frac{1}{2}}K_{-\lambda-\frac{1}{2}}(\mid\sigma\mid)$
41	$(x^2-1)^{\lambda}_{+}$ $(\lambda \neq -1, -2,)$	$-\Gamma(\lambda+1)\sqrt{\pi}\left \frac{\sigma}{2}\right ^{-\lambda-\frac{1}{2}}N_{-\lambda-\frac{1}{2}}(\mid\sigma\mid)$
	(* / _, _, _,	$= \Gamma(\lambda+1) \sqrt{\pi} \left \frac{\sigma}{2} \right ^{-\lambda-\frac{1}{2}}$
		$\times \frac{\cos \pi (\lambda + \frac{1}{2}) \int_{-\lambda - \frac{1}{2}} (\sigma) - \int_{\lambda + \frac{1}{2}} (\sigma)}{\sin \pi (\lambda + \frac{1}{2})}$
42	$(x^2-1)^n_+$	$(-1)^n 2\pi \left(1 + \frac{d^2}{d\sigma^2}\right)^n \delta(\sigma)$
		$+ (-1)^{n+1} \sqrt{\pi} \left(\frac{\sigma}{2}\right)^{-n-\frac{1}{2}} J_{n+\frac{1}{2}}(\sigma)$

2. Functions of Several Variables

1	$\delta(x_1,, x_n)$	1
2	1	$(2\pi)^n\delta(\sigma_1,,\sigma_n)$
3	Polynomial $P(x_1,, x_n)$	$(2\pi)^n P\left(-i\frac{\partial}{\partial\sigma_1},,-i\frac{\partial}{\partial\sigma_n}\right)\delta(\sigma)$
4	$r^{\lambda} \qquad \left(r = \sqrt{\sum_{j} x_{j}^{2}}\right)$	$2^{\lambda+n} \pi^{\frac{1}{2}n} \frac{\Gamma\left(\frac{\lambda+n}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)} \rho^{-\lambda-n} \left(\rho = \sqrt{\sum \sigma_j^2}\right)$
5	$f_{\lambda}(r) = \frac{2^{-\frac{1}{2}\lambda} r^{\lambda}}{\Gamma\left(\frac{\lambda + n}{2}\right)}$	$(2\pi)^{\frac{1}{2}n} f_{-\lambda-n}(\rho) = (2\pi)^{\frac{1}{2}n} \frac{2^{\frac{1}{2}(\lambda+n)} r^{-\lambda-n}}{\Gamma\left(-\frac{\lambda}{2}\right)}$

Entry	Generalized	Fourier transform
no.	${\rm function}f$	F[f]

In Entries 6-9 we write:

$$egin{align} C_{\lambda} &= 2^{\lambda+n} \, \pi^{rac{1}{2}n} \, rac{\Gamma\left(rac{\lambda+n}{2}
ight)}{\Gamma\left(-rac{\lambda}{2}
ight)} \ &= rac{c_{-1}^{(n+2m)}}{\lambda+n+2m} + c_{0}^{(n+2m)} + c_{1}^{(n+2m)}(\lambda+n+2m) + ...; \end{split}$$

the right-hand side is the Laurent expansion of this function about $\lambda = -n-2m$. Further,

$$\Omega_n = \frac{2\pi^{\frac{1}{2}n}}{\Gamma\left(\frac{n}{2}\right)}$$

is the hypersurface area of the unit sphere in n dimensions.

$$\begin{array}{lll}
6 & r^{\lambda} \ln r \\
(\lambda \neq -n, -n - 2, ...) & \frac{dC_{\lambda}}{d\lambda} \rho^{-\lambda - n} + C_{\lambda} \rho^{-\lambda - n} \ln \rho \\
7 & r^{\lambda} \ln^{2} r \\
(\lambda \neq -n, -n - 2, ...) & \frac{d^{2}C_{\lambda}}{d\lambda^{2}} \rho^{-\lambda - n} + 2 \frac{dC_{\lambda}}{d\lambda} \rho^{-\lambda - n} \\
8 & \Omega_{n} r^{-2m-n} & \times \ln \rho + C_{\lambda} \rho^{-\lambda - n} \ln^{2} \rho \\
9 & \Omega_{n} r^{-2m-n} \ln r & \frac{1}{2} c_{-1}^{(n+2m)} \rho^{2m} \ln \rho + c_{0}^{(n+2m)} \rho^{2m} \ln \rho \\
& + c_{1}^{(n+2m)} \rho^{2m} \\
10 & \delta(r - a) & (n \geqslant 1) & \times \int_{\frac{1}{2}(n-2)} (a\rho) \\
11 & \text{The same, for } n = 3 & 2^{\frac{1}{2}n-1} \Gamma\left(\frac{1}{2}n - \frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right) \Omega_{n-1} \alpha^{\frac{1}{2}n} \rho^{1-\frac{1}{2}n} \\
& \times \int_{\frac{1}{2}(n-2)} (a\rho) \\
12 & \left(\frac{d}{a da}\right)^{m} \frac{\delta(r - a)}{a} & 2^{\frac{1}{2}n-1} \Gamma\left(\frac{1}{2}n - \frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right) \Omega_{n-1} \sqrt{\frac{2}{\pi}} \frac{\sin a\rho}{\rho}
\end{array}$$

For the notation in Entries 13-25 see the Summary of Fundamental Definitions and Equations for Chapter III, Section 2.

Entry	Generalized	Fourier transform
no.	function f	F[f]
13	$(P+i0)^{\lambda}$	$\frac{1}{\Gamma(-\lambda)} e^{-(\pi/2)qi} 2^{n+2\lambda} \pi^{\frac{1}{2}n} \Gamma(\lambda + \frac{1}{2}n) (Q - i0)^{-\lambda - \frac{1}{2}n}$
14	$(P-i0)^{\lambda}$	$\frac{e^{(\pi/2)qi} 2^{n+2\lambda} \pi^{\frac{1}{2}n} \Gamma(\lambda+\frac{1}{2}n)}{\Gamma(-\lambda)} (Q+i0)^{-\lambda-\frac{1}{2}n}$
15	P_+^{λ}	$2^{n+2\lambda} \pi^{\frac{1}{2}n-1} \Gamma(\lambda+1) \Gamma(\lambda+\frac{1}{2}n)$
		$2^{n+2\lambda} \pi^{\frac{1}{2}n-1} \Gamma(\lambda+1) \Gamma(\lambda+\frac{1}{2}n)$ $\times \frac{1}{2i} \left[e^{-i(\frac{1}{2}q+\lambda)\pi} (Q-i0)^{-\lambda-\frac{1}{2}n} - e^{i(\frac{1}{2}q+\lambda)\pi} (Q+i0)^{-\lambda-\frac{1}{2}n} \right]$
16	P <u>\</u>	$-2^{n+2\lambda} \pi^{\frac{1}{2}n-1} \Gamma(\lambda+1) \Gamma(\lambda+\frac{1}{2}n)$
		$\times \frac{1}{2i} \left[e^{-(\pi/2)qi} (Q - i0)^{-\lambda - \frac{1}{2}n} - e^{(\pi/2)qi} (Q + i0)^{-\lambda - \frac{1}{2}n} \right]$
17	$(c^2+P+i0)^{\lambda}$	$\frac{2^{\lambda+1}(\sqrt{2\pi})^nc^{\frac{1}{2}n+\lambda}}{\Gamma(-\lambda)\sqrt{\Delta}}\frac{K_{\frac{1}{2}n+\lambda}\left[c(Q-i0)^{\frac{1}{2}}\right]}{(Q-i0)^{\frac{1}{2}(\frac{1}{2}n+\lambda)}}$
		$=\frac{2^{\lambda+\frac{1}{2}n+1}\pi^{\frac{1}{2}n}e^{-\frac{1}{2}q\pi i}c^{\lambda+\frac{1}{2}n}}{\Gamma(-\lambda)\sqrt{ \Delta }}$
		$\times \left[\frac{K_{\lambda + \frac{1}{2}n}(cQ^{\frac{1}{2}})}{O^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} + \frac{\pi i}{2} \frac{H_{-\lambda - \frac{1}{2}n}^{(1)}(cQ^{\frac{1}{2}})}{O^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right].$
18	$(c^2+P-i0)^{\lambda}$	$\frac{2^{\lambda+1}(\sqrt{2\pi})^n c^{\frac{1}{2}n+\lambda}}{\Gamma(-\lambda) \sqrt{\Delta}} \frac{K_{\frac{1}{2}n+\lambda} \left[c(Q+i0)^{\frac{1}{2}}\right]}{(Q+i0)^{\frac{1}{2}(\frac{1}{2}n+\lambda)}}$
		$=\frac{2^{\lambda+\frac{1}{2}n+1}\pi^{\frac{1}{2}n}e^{\frac{1}{2}q\pi i}c^{\lambda+\frac{1}{2}n}}{\Gamma(-\lambda)\sqrt{\mid\varDelta\mid}}$
		$\times \left[\frac{K_{\lambda + \frac{1}{2}n}(cQ_{+}^{\frac{1}{2}})}{Q_{+}^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} - \frac{\pi i}{2} \frac{H_{-\lambda - \frac{1}{2}n}^{(2)}(cQ_{-}^{\frac{1}{2}})}{Q_{-}^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right].$

		Continued
Entry	Generalized	Fouirer transform
no.	function f	F[f]
19	$\frac{(c^2+P)_+^{\lambda}}{\Gamma(\lambda+1)}$	$-\frac{2^{\lambda+\frac{1}{2}n}i\pi^{\frac{1}{2}n-1}c^{\frac{1}{2}n+\lambda}}{\sqrt{ \Delta }}$
THE THE PARTY OF T		$\times \left\{ e^{-i(\lambda + \frac{1}{2}q)\pi} \frac{K_{\frac{1}{2}n + \lambda} \left[c(Q - i0)^{\frac{1}{2}} \right]}{(Q - i0)^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right\}$
		$\left -e^{i(\lambda + \frac{1}{2}q)n} \frac{K_{\frac{1}{2}n + \lambda}[c(Q + i0)^{\frac{1}{2}}]}{(Q + i0)^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right = \frac{2^{\lambda + \frac{1}{2}n + 1} \pi^{\frac{1}{2}n - 1} c^{\frac{1}{2}n + \lambda}}{\sqrt{ \Delta }}$
		$\times \left\{ -\sin\left(\lambda + \frac{1}{2}q\right)\pi \frac{K_{\lambda + \frac{1}{2}n}(cQ_{+}^{\frac{1}{2}})}{Q_{+}^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} + \frac{\pi}{2\sin\left(\lambda + \frac{1}{2}n\right)\pi} \right\}$
		$\times \left[\sin \left(\lambda + \frac{1}{2} q \right) \pi \frac{J_{\lambda + \frac{1}{2}n} (cQ_{-}^{\frac{1}{2}})}{Q_{-}^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right]$
		$+\sin\frac{p\pi}{2}\frac{J_{-\lambda-\frac{1}{2}n}(cQ_{-}^{\frac{1}{2}})}{Q_{-}^{\frac{1}{2}(\lambda+\frac{1}{2}n)}}\bigg]\bigg\}.$
20	$\frac{(c^2+P)^{\lambda}_{-}}{\Gamma(\lambda+1)}$	$\frac{2^{\lambda + \frac{1}{2}n_{i\pi}\frac{1}{2}n - 1}c^{\frac{1}{2}n + \lambda}}{\sqrt{ \Delta }} \left\{ e^{-\frac{1}{2}q\pi i} \frac{K_{\frac{1}{2}n + \lambda}[c(Q - i0)^{\frac{1}{2}}]}{(Q - i0)^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right\}$
		$\left -e^{\frac{1}{2}qni} \frac{K_{\frac{1}{2}n+\lambda}[c(Q+i0)^{\frac{1}{2}}]}{(Q+i0)^{\frac{1}{2}(\lambda+\frac{1}{2}n)}} \right = \frac{2^{\lambda+\frac{1}{2}n+1}\pi^{\frac{1}{2}n-1}c^{\frac{1}{2}n+\lambda}}{\sqrt{ \Delta }}$
		$\times \left\{ \sin \frac{q\pi}{2} \frac{K_{\lambda + \frac{1}{2}n}(cQ_{+}^{\frac{1}{2}})}{Q_{+}^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} - \frac{\pi}{2\sin(\lambda + \frac{1}{2}n)\pi} \right\}$
		$\times \left[\sin \frac{q\pi}{2} \frac{J_{\lambda + \frac{1}{2}n}(cQ^{\frac{1}{2}})}{Q^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} + \sin \left(\lambda + \frac{p}{2} \right) \pi \frac{J_{-\lambda - \frac{1}{2}n}(cQ^{\frac{1}{2}})}{Q^{\frac{1}{2}(\lambda + \frac{1}{2}n)}} \right] \right\}.$
21	$\delta^{(t-1)} \times (c^2 + P)$	$(-1)^{t+1} \frac{i}{\sqrt{ \Delta }} 2^{\frac{1}{2}n-t} \pi^{\frac{1}{2}n-1} c^{\frac{1}{2}n-t}$
		$\times \left[e^{-\frac{1}{2}niq} \frac{K_{\frac{1}{2}n-t}[c(Q-i0)^{\frac{1}{2}}]}{(Q-i0)^{\frac{1}{2}(\frac{1}{2}n-t)}} \right]$
		$-e^{\frac{1}{2}niq}\frac{K_{\frac{1}{2}n-t}[c(Q+i0)^{\frac{1}{2}}]}{(Q+i0)^{\frac{1}{2}(\frac{1}{2}n-t)}}\right].$
		$(Q+i0)^{\frac{1}{2}(\frac{1}{2}n-t)}]$

Entry	Generalized	Fourier transform
no.	function f	$m{F}[f]$
22	$\delta(c^2+P)$	$-\frac{i}{\sqrt{ \Delta }} (2\pi c)^{\frac{1}{2}n-1} \left[-e^{-\frac{1}{2}\pi q i} \frac{K_{\frac{1}{2}n-1}[c(Q-i0)^{\frac{1}{2}}]}{(Q-i0)^{\frac{1}{2}(\frac{1}{2}n-1)}} \right]$
		$+ e^{\frac{1}{2}\pi qi} \frac{K_{\frac{1}{2}n-1}[c(Q+i0)^{\frac{1}{2}}]}{(Q+i0)^{\frac{1}{2}(\frac{1}{2}n-1)}} \bigg].$
23	$rac{(c^2+P)_+^t}{\Gamma(t+1)}$	$(-1)^{t+1}i2^{t+\frac{1}{2}n}\pi^{\frac{1}{2}n-1}c^{\frac{1}{2}n+t}$
	- (* 1 -)	$(-1)^{t+1}i2^{t+rac{1}{2}n}\pi^{rac{1}{2}n-1}c^{rac{1}{2}n+t} \ imes \left[e^{-rac{1}{2}q\pi i}rac{K_{rac{1}{2}n+t}[c(Q-i0)^{rac{1}{2}}]}{(Q-i0)^{rac{1}{2}(rac{1}{2}n+t)}} ight.$
		$-e^{\frac{1}{2}q\pi i}\frac{K_{\frac{1}{2}n+t}[c(Q+i0)^{\frac{1}{2}}]}{(Q+i0)^{\frac{1}{2}(\frac{1}{2}n+t)}}\bigg]$
		$+ (2\pi)^n \sum_{m=0}^t \frac{(-1)^m (\frac{1}{2}c)^{2t-2m}}{4^m m! (t-m)!} L^m \delta(s),$
24	$\frac{(c^2+P)^t}{\Gamma(t+1)}$	$\frac{i \cdot 2^{t + \frac{1}{2}n_{\boldsymbol{\pi}} \frac{1}{2}n - 1} c^{\frac{1}{2}n + t}}{\sqrt{ \Delta }} \left[e^{-\frac{1}{2}q\pi i} \frac{K_{\frac{1}{2}n + t} [c(Q - i0)^{\frac{1}{2}}]}{(Q - i0)^{\frac{1}{2}(\frac{1}{2}n + t)}} \right]$
		$-e^{\frac{1}{2}q\pi i}\frac{K_{\frac{1}{2}n+t}[c(Q+i0)^{\frac{1}{2}}]}{(Q+i0)^{\frac{1}{2}(\frac{1}{2}n+t)}}\bigg],$
25	$\frac{(c^2+P)^t}{\Gamma(t+1)}$	$(2\pi)^n \sum_{m=0}^t \frac{(-1)^m \left(\frac{1}{2} c\right)^{2t-2m}}{4^m m! (t-m)!} L^m \delta(s).$