التمثيل المبياني لدالة عددية

الدرس العاشر

	محتوى الدرس	
2 2 3	فرع لا نهائي لمنحنى دالة عددية 1.1 المستقيمات المقاربة	
3	تقعر منحني – نقطة الانعطاف	2
4	محور تماثل – مركز تماثل دراسة دالة عددية	3
4	دراسة دآلة عددية	4
5	المماسات	5

1. فرع لا نهائي لمنحني دالة عددية

تعريف

لتكن f دالة عددية لمتغير حقيقي x و (C_f) منحناها في معلم متعامد ممنظم. نقول إن (C_f) يقبل فرعا لا نهائيا إذا آلت x أو (C_f) إلى ما لا نهاية.

1.1. المستقيمات المقاربة

1.2. الفروع الشلجمية

تطبيق

 $f_1: x \mapsto \frac{3x+1}{2x-3}; \quad f_2: x \mapsto \frac{x^2}{3x+2}; \quad f_3: x \mapsto \sqrt{x+4}; \quad f_4: x \mapsto x^2+2$ أدرس الفروع اللانهائية للدوال:

2. تقعر منحني - نقطة الإنعطاف

تعریف

لتكن f دالة قابلة للإشتقاق على مجال I و (C_f) منحناها في معلم متعامد ممنظم.

- نقول إن للمنحنى (C_f) تقعر موجه نحو الأراتيب الموجبة إذا كان (C_f) فوق جميع مماساته.
- نقول إن للمنحنى (C_f) تقعر موجه نحو الأراتيب السالبة إذا كان (C_f) تحت جميع مماساته.
 - نسمى نقطة انعطاف للمنحنى (C_f) كل نقطة يغير فيها (C_f) تقعره.

خاصية

لتكن f دالة قابلة للإشتقاق مرتين على مجال I و (C_f) منحناها في معلم متعامد ممنظم.

- إذا كانت $0 \ge f'' \ge 0$ على I فإن للمنحنى (C_f) تقعر موجه نحو الأراتيب الموجبة.
- إذا كانت $0 \leq f'' \leq 0$ على I فإن للمنحنى C_f) تقعر موجه نحو الأراتيب السالبة.
- إذا كانت f'' تنعدم في عنصر a من I و تغير إشارتها بجواره فإن المنحنى (C_f) يقبل نقطة انعطاف و هي النقطة التي إحداثيتيها (a; f(a)).

تطبيق

- $f_1: \ x \mapsto x^2; \quad f_2: \ x \mapsto rac{1}{x}; \quad f_3: \ x \mapsto -x^3 x^2 + 2x 1; \quad :$ 1.
- $f_1: x \mapsto x^3; f_2: x \mapsto x^3 + x^2 2x + 1; f_3: x \mapsto \frac{1}{x}; f_4: x \mapsto x^4;$ 1. 1. 1. 1. 2. 2. 2. 2.

3. محور تماثل - مركز تماثل

خاصية

لتكن f دالة عددية لمتغير حقيقي x مجموعة تعريفها D_f و D_f منحناها في معلم متعامد ممنظم.

- $igl. egin{array}{ll} \forall x \in D_f\colon (2a-x) \in D_f \ \forall x \in D_f\colon f(2a-x) = f(x) \end{array}$ فقط إذا كان C_f المستقيم ذو المعادلة C_f محور تماثل المنحنى المنافع المنا
 - $\{ egin{aligned} & \forall x \in D_f \colon (2a-x) \in D_f \ & \forall x \in D_f \colon f(2a-x) = 2b-f(x) \end{aligned} \}$ النقطة $\Omega(a;b)$ مركز تماثل المنحنى والمائح المائح والمائح المائح والمائح المائح والمائح والمائح

تطبيق

- $x=rac{1}{2}$ متماثل بالنسبة للمستقيم الذي معادلته $x\mapsto x^2-x+rac{5}{4}$ متماثل بالنسبة للمستقيم الذي معادلته .1
 - I(-2,1) بين أن منحنى الدالة $g: x \mapsto \frac{x-1}{x+2}$ متماثل بالنسبة للنقطة الذي $g: x \mapsto \frac{x-1}{x+2}$

4. دراسة دالة عددية

مراحل دراسة دالة عددية:

- تحديد مجموعة تعريف الدالة.
- دراسة زوجية و دورية الدالة.
- حساب نهايات الدالة عند محدات مجموعة تعريفها.
 - دراسة قابليَّة اشتقاق الدالة على مجموعة تعريفهَّا. ﴿
 - حساب مشتقة الدالة.
 - دراسة تغيرات الدالة.
 - دراسة الفروع اللانهائية للدالة.

- دراسة الوضع النسبي لمنحنى الدالة و مقارباته.
- تحديد نقط تقاطع مُنحني الدالة و محوري المعلم.
- إعطاء معادلات مماسات منحني الدالة في نقط معينة.
- دراسة تقعر منحنى دالة و تحديد نقط إنعطافه إن
 حدت.
 - إَنْشَاء التمثيل المبياني للدالة مع جميع عناصره.

5. الماسات

		1				
f(a)	(C_f) a	f(a)	(C_f) a	المنحنى (C_f) يقبل مماسا أفقيا في النقطة ذات الأفصول a	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = 0$	المماسات
f(a)	$a \longrightarrow (C_f)$	f(a)	a (C_f)	المنحنى (C _f) يقبل نصف مماس أفقي على اليمين في النقطة ذات الأفصول a.	$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = 0$	الأفقية
f(a)	(C_f) a	f(a)	$\frac{ C_f }{a}$	المنحنى (C_f) يقبل نصف مماس أفقي على اليسار في النقطة ذات الأفصول a .	$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = 0$	
f(a)	(C_f) a	f(a)	$a \longrightarrow (C_f)$	المنحنى (C _f) يقبل نصف مماس عمودي موجه نحو الأعلى في النقطة ذات الأفصول a.	$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = +\infty$ $\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = -\infty$	المماسات العمودية
f(a)	(C_f)	f(a)	$a \longrightarrow (C_f)$	المنحنى (C _f) يقبل نصف مماس عمودي موجه نحو الأسفل في النقطة ذات الأفصول a.	$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = -\infty$ $\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = +\infty$	العمودية
f(a)	a	f(a)	(C_f) a	المنحنى (C _f) يقبل مماسا مائلا معامله الموجه b بجوار a.	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = b \neq 0$	المماسات المائلة
f(a)	a (C_f)	f(a)	(C_f) a	المنحنى (C _f) يقبل نصف مماس مائلا معامله الموجه b على اليمين في النقطة ذات الأفصول a.	$\lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a} = b \neq 0$	1113/2
f(a)	(C_f) a	f(a)	(C_f) a	المنحنى (C_f) يقبل نصف مماس مائلا معامله الموجه b على اليسار في النقطة ذات الأفصول a .	$\lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a} = b \neq 0$	