Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 8

To be completed by November 13, 14:00

Problem 1. Let G be a connected graph with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$ and let $v = (v_1, \ldots, v_n)^T$ be an eigenvector of G with eigenvalue λ_1 . Prove the following statements.

- (a) v_i is non-zero for every i.
- (b) All the v_i 's have the same sign.
- (c) $\lambda_1 > \lambda_2$.
- (d) Let H be a subgraph of G (which is not G itself). Then $\lambda_1(H) < \lambda_1(G)$.
- (e) If G is d-regular, then $v_1 = \cdots = v_n$.

Problem 2. Let G be a graph with maximum degree d. Show that:

- (a) $\lambda_1(G) \leq d$.
- (b) If G is d-regular then $\lambda_1 = d$.
- (c) If G is connected and not d-regular, then $\lambda_1 < d$.

Problem 3. Let G be a bipartite graph that does not have a *perfect matching*, i.e. a set of vertex-disjoint edges that cover all the vertices. Show that 0 is an eigenvalue of G.