e^{-x^2} Nasil Entegre Edilir?

$$\int_{-\infty}^{\infty} e^{-x^2} dx \tag{1}$$

ifadesi ozellikle olasilik matematiginde cokca gorulen bir ifadedir. Bu hesabi yapmak icin kutupsal kordinatlar kullanacagiz.

Simdi ustteki ifadeyle alakali su ifadeye bakalim.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy$$

Iddia ediyorum ki bu son ifade (1)'in sadece karesi, yani (1)'in kendisiyle carpimi. Niye boyle? Cunku *e* ifadelerini carpim olarak gosterirsek

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2} e^{-y^2} dx dy$$

cift entegral icinde isaretlenen blokta yer alan e^{-y^2} x'ten bagimsiz, o zaman bloktaki entegralin disina alinabilir. Yani soyle olabilir

$$\int_{-\infty}^{\infty} e^{-y^2} \int_{-\infty}^{\infty} e^{-x^2} dx dy$$

Devam edelim: ustteki ic entegral (1) ifadesi degil mi? Evet. Simdi bir ilginc durum daha ortaya cikti,

$$\int_{-\infty}^{\infty} e^{-y^2} \int_{-\infty}^{\infty} e^{-x^2} dx dy$$

simdi de isaretlenen blok y entegraline gore sabit, o da ikinci entegralin disina cikarilabilir! (1) yerine I kullanirsak

$$I\int_{-\infty}^{\infty}e^{-y^2}dy$$

Icinde y iceren entegral nedir? O da I'dir! Niye, cunku bu ifade (1)'in icinde y olan versiyonundan ibaret. O zaman

$$I \cdot I = I^2$$

Tum bu taklalari niye attik peki? Cunku cift entegralli ifadenin entegralini almak daha kolay, eger onu hesaplarsak, sonucun karekokunu aldigimiz anda I'yi bulmus olacagiz.

O zaman ifadeyi hesaplayalim,

$$I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy$$

Basta soyledigimiz gibi kullanacagimiz numara kutupsal forma gecmek. Entegralin sinirlarina bakalim, tum x ve tum y ekseni uzerinden entegral aliyoruz.

Kutupsal formda bu r'nin 0'dan sonsuza ve θ 'nin 0'dan 2π 'a gitmesi anlamina geliyor.

$$r^2 = x^2 + y^2$$

Peki $e^{-x^2-y^2}$ kutupsal formda nedir?

$$e^{-x^2-y^2} = e^{-(x^2+y^2)} = e^{-r^2}$$

Entegrali yazalim

$$\int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^2} r d\theta dr \tag{2}$$

Niye entegral sirasinda θ' yi once yazdim? Cunku entegral icindeki ifadede θ' ya bagli hicbir terim yok, o zaman ic entegral bana sadece 2π verir. Geriye kalanlar

$$=2\pi\int_{0}^{\infty}e^{-r^{2}}rdr$$

Bu entegral cok daha kolay. Yerine koyma (subtitution) teknigi ile bu problemi cozebiliriz.

$$u = -r^{2}$$

$$du = -2r dr$$

$$= 2\pi \int_{0}^{\infty} e^{u} \frac{-1}{2} du$$

$$= -\pi \int_{0}^{\infty} e^{u} du$$

$$= -\pi e^{u} \Big|_{0}^{\infty} = -\pi e^{-r^{2}} \Big|_{0}^{\infty}$$

$$= \pi$$

Bu sonuc I². Eger I degerini istiyorsak, karekok almaliyiz, yani aradigimiz sonuc $\sqrt{\pi}$.

Tek degiskenli bir problemi aldik ve cift degiskenli problem haline getirdik. Isleri kolaylastiran (2) denklemindeki r degiskeni oldu, onun sayesinde yerine gecirme islemi cok kolaylasti, ve sonuca ulastik.

http://www.youtube.com/watch?v=fWOGfzC3IeY