RDT&E Division

San Diego, CA 92152-5001 20030226124

AD-A278 757

Technical Document 2435 August 1993

Benthic Flux Sampling Device

Prototype Design, Development, and Evaluation

D. B. Chadwick S. D. Stanley

S DTIC ELECTE APR 2 8 1994 G

94-12707

DTTC QUALLE & Commence &

Approved for public release; distribution is unlimited.

94 4 28 001

Technical Document 2435 August 1993

Benthic Flux Sampling Device

Prototype Design, Development, and Evaluation

D. B. Chadwick S. D. Stanley

Accesio	n For	
NTIS	CPA&I	1
DTIC	TAB	.
Ucanno		
Justific	ation	
By Dist_ib:	ution /	
A	vailability	Codes
Dist	Avail ar Spec	
A-1		

NAVAL COMMAND, CONTROL AND OCEAN SURVEILLANCE CENTER RDT&E DIVISION

San Diego, California 92152-5001

J. D. FONTANA, CAPT, USN Commanding Officer

R. T. SHEARER
Executive Director

ADMINISTRATIVE INFORMATION

The study covered in this document was performed from October 1991—September 1992. It was sponsored and funded by the Naval Facilities Engineering Command, Alexandria, VA, under accession number DN307490, program element 0603721N, project no. ME81, and subproject no. Y0817. The work was performed by Code 522 of the Naval Command, Control, and Ocean Surveillance Center, RDT&E Division (NRaD), San Diego, CA.

Released by J. G. Grovhoug, Head Marine Environment Branch Division Under authority of P. F. Seligman, Head Environmental Sciences

ACKNOWLEDGMENTS

The design, development, and testing of the BFSD was achieved in collaboration with Clare Reimers and Matt Christianson at Scripps Institution of Oceanography. Trace metal chemistry was performed by John Andrews and Lora Kear at our NRaD laboratory and by Eric Crecelius at Battelle Marine Sciences Laboratory; nutrients, alkalinity, and CO₂ were analyzed by Clare Reimers. Chuck Katz, Brad Davidson, and Andy Patterson of Computer Sciences Corporation assisted with preparation and deployment of the flux chamber.

EXECUTIVE SUMMARY

As part of the Navy's cleanup program under the Defense Environmental Restoration Act (DERA), we are conducting research to provide more effective assessment, remediation, and restoration strategies for sites that contain sediments contaminated with toxic compounds. Toward this goal, we have developed a remote instrument for in situ measurement of toxicant flux rates from contaminated sediments. A flux out of-or into-the sediment is measured by isolating a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samples for an increase or decrease in toxicant concentration. The device that performs this task is an autonomous sampling instrument, consisting of an open-bottomed chamber mounted in a tripod-shaped framework with associated sampling gear, sensors, control system, power supply, and deployment/retrieval equipment. It is used in coastal and inland waters to depths of 50 m, with a maximum deployment time of about 4 days, based on available battery capacity. The instrument is easily deployed from a small boat by lowering it to a position just above the sediment and then allowing it to free fall to the bottom. All sampling, data logging, and control functions are then carried out automatically, based on user-programmable experimental parameters. Upon completion, the system is retrieved using an acoustically triggered buoy that carries a line to the surface for lifting the device back on board.

Results from a series of test deployments indicate that the system can quantify flux rates of contaminants and other biogeochemical compounds at realistic levels for coastal and inshore sediments using a sample period of 2-4 days. The resulting flux rates will be useful in evaluating the risks posed by in-place sediment contamination from several aspects, including

- Source quantification for comparison to other sources and input to models.
- As an indicator of bioavailability, since many studies indicate that resolubilized contaminants are more readily available for uptake.
- Determining the cleansing rate of a contaminated sediment site due to natural biogeochemical cycling of the in-place contaminants.
- Providing a nonintrusive monitoring tool for sites capped or sealed to minimize biological exposure.
- As a scientific tool for a realistically testing and validating hypotheses and models for predicting the response of marine sediments to various contaminants.

CONTENTS

EXECUTIVE SUMMARY	i
INTRODUCTION	1
INSTRUMENTATION	3
DESIGN PARAMETERS	3
BFSD PROTOTYPE SYSTEM DESCRIPTION	4
Chamber Enclosure	4
Acquisition and Control System	6
Sampling System	7
Flow-Through Sensor System	9
Stirring System	9
Oxygen Control System	10
Deployment and Retrieval Systems	10
METHODS	13
PREPARATION	13
DEPLOYMENT	13
SAMPLE COLLECTION AND HANDLING	14
RETRIEVAL	14
SAMPLE PROCESSING AND ANALYSIS	14
Trace Metal Samples	11
PAH/PCB Samples	15
Silica Samples	15
QA/QC PROCEDURES	17
TRACE METAL SAMPLES	17
Method Blanks	17
Instrument Calibration	17
Method Accuracy and Precision	17
PAH/PCB SAMPLES	17
Accuracy of PAH/PCB Concentrations	17
Precision of PAH/PCB Analyses	17
DATA ANALYSIS	19
CALCULATION OF FLUX RATES	19
RESULTS	21
CONCLUSIONS	29
REFERENCES	31
APPENDIX A	A-1

FIGURES

1.	Benthic Flux Sampling Device (BFSD)	5
2.	Chamber enclosure	6
3.	Acquisition and control unit	6
4.	Sampling system schematic	7
5.	Sampling system components	8
6.	Hydrostatic collection system schematic	8
7.	Flow-through sensor system	9
8.	Oxygen control system	11
9.	Acoustic release and retrieval buoy	11
10.	BFSD deployment	13
11.	BFSD retrieval	15
12.	Flux rate calculation spreadsheet	20
13.	Time-series results from blank tests of the BFSD	22
14.	Shelter Island yacht basin	23
15.	Continuous time-series traces for chamber conditions during the 6/19/92 deployment	24
16.	Time-series evolution of trace metals, nutrients, alkalinity, and total CO ₂ in the flux chamber during the 6/19/92 deployment at Shelter Island yacht basin	25
17.	Time-series evolution of trace metals, nutrients, alkalinity, and total CO ₂ in the flux chamber during the 6/25/92 deployment at Shelter Island yacht basin	25
TAI	BLES	•
1.	Blank chamber results	21
2.	Bulk sediment characteristics at the Shelter Island test site	21
3.	Summary of flux rates from the 6/19 and 6/25 deployments compared to results from other studies. Trace metal flux rates are in µg/m ² /day. Units	-
	for Si PO ₄ and CO ₂ are mmoles/m ² /day	27

INTRODUCTION

Sediments in many U.S. bays, harbors, and coastal waters are contaminated with potentially harmful metal and organic compounds. The United States Environmental Protection Agency (EPA) (1988) reports 134 toxic hot spots where in-place pollutants are a serious problem. A review of Navy hazardous waste sites (Johnston, et al., 1988) found 367 sites at 58 Navy and Marine Corps activities with a significant potential for affecting aquatic environments. Historically, contamination has occurred directly through industrial discharge, chemical spills, improper disposal of shipyard and shipboard waste, and indirectly through urban runoff and ground-water exchange with land sites. These pollutants pose a threat—directly to benthic organisms via porewater and particulate-bound contaminate exchange and indirectly to aquatic organisms through leaching and resuspension.

Difficulties in assessing sediment contamination have led to a myriad of approaches to sediment quality assessment and criteria (Giesy & Hoke, 1990). Many of the disadvantages cited for various approaches relate to removal of the contaminated material for submission to the laboratory for chemical and biological assays. These methods are very costly in terms of sample collection and analysis, and they also represent an unrealistic departure from natural conditions. In many instances, identification of chemical contamination in sediments, based on bulk concentrations, has led to extensive assessment and remedial measures. However, the bulk concentration of a toxic substance in sediment is not always a good measure for predicting biological risk (Di Toro, 1989). Bioassay methods in which indicator species are exposed to sediment removed from the site for submission to a laboratory environment may also represent an unrealistic departure from natural conditions. Neither of these techniques addresses the potential for sediments to act as a source to the water column through leaching of toxicants.

Previous studies indicate that biological uptake, accumulation, and toxicity result primarily from the fraction of the toxicant pool that is readily solubilized (Anderson & Morel, 1982). In surface sediments, the production of this soluble fraction will usually cause it to migrate through the pore water and across the sediment-water interface. For these reasons, benthic toxicant fluxes can provide a unique in situ measure of the source potential of contaminated sediments as well as an indication of bioavailability. In concert with traditional monitoring and assessment techniques, these flux measurements can lead to a better understanding of the environmental significance of historically contaminated sediments.

As part of the Navy's cleanup program (the Installation Restoration (IR) program), methods are being evaluated to better assess suitable remediation and restoration strategies for sites that contain sediments contaminated with toxic compounds. Toward this goal, we have developed a Benthic Flux Sampling Device (BFSD) to quantify toxicant mobility from contaminated sediments. The BFSD is a remote instrument for *in-situ* measurement of toxicant flux rates from sediments. A flux out of—or into—the sediment is measured by isolating a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samples for an increase or decrease in toxicant concentration. Increasing concentrations indicate that the toxicant is fluxing out of the sediment. Decreasing concentrations indicate a sediment uptake. Initial tests carried out in conjunction with Scripps Institution of Oceanography and the Environmental Protection Agency's Environmental Research Laboratory (Newport, OR) show that the system can measure a variety of contaminant and nutrient fluxes.

INSTRUMENTATION

DESIGN PARAMETERS

During the design of the Benthic Flux Sampling Device (BFSD), two major categories of design constraints were identified. The first category included all the requirements needed to perform the basic sampling operations. These requirements are similar to those of previous chamber designs (Berelson et al., 1987) and include the following:

- Sediment Disturbance. The BFSD and associated landing gear must be emplaced with minimum disturbance of the sediment surface.
- Isolation of Chamber Volume. The chamber design must provide an adequate seal
 at the sediment-water interface to isolate the chamber volume during the experiment.
- Chamber Mixing. The water inside the chamber must be mixed artificially to
 avoid its stagnation and stratification within the chamber and to ensure the samples collected represent the water at the interface.
- Sampling Effects. Chamber-induced effects, such as oxygen depletion, must be
 minimized to ensure that changes in one parameter do not affect the exchange
 rates of the target contaminates.

The second category included additional constraints defined by (1) the environment in which the chamber would be utilized and (2) the need to monitor pollutants as well as nutrients. The BFSD system was designed primarily for use in industrialized coastal bays and estuaries where sediment contamination is prevalent. These areas present significant operational challenges in addition to the known hardships imposed upon scientific instrumentation by the marine environment. Shipping traffic, strong currents, bottom debris, low visibility, and vandalism are all major hazards when deploying systems at such sites. We developed the following design parameters to address these issues:

- Operation Time. The device must be capable of continuous, unattended operation
 for a minimum of 72 hours. Based on previous measurements performed in laboratory settings (Hunt & Smith, 1983) and analytical detection limits for target
 contaminants, we estimated this period of time would suffice for detecting release
 rates at significant levels.
- Operation Depth. A depth capability of 50 m is sufficient to perform studies in most U.S. bays and estuaries.
- Deployment and Recovery. The system must be capable of deployment and recovery from a small craft using light-duty handling equipment. Operations must be done without diver assistance to minimize costs and scheduling constraints associated with diver emplacement and retrieval.
- Autonomous Operation. The device must operate in a completely autonomous (untethered) mode after it has been placed at the site. This is essential to minimize exposure to navigation hazards and vandalism.

- Sample Size. Samples collected by the system must have sufficient volume to facilitate analysis for trace levels of organic and metal compounds.
- Construction. All materials used in the system must be suitable for use and prolonged exposure in the marine environment. All materials that contact the sample water must be noncontaminating with respect to trace-level measurement of organic and metal compounds.
- Environmental Considerations. The system must be operational under a wide range of environmental conditions, and the device should be stable in bottom currents up to 5 knots. In poor visibility conditions, the system must be deployable without diver assistance. In addition, the system must provide an adequate seal and supportive footprint for sediments ranging from course sand to soft organic ooze.

BFSD PROTOTYPE SYSTEM DESCRIPTION

The BFSD prototype system shown in figure 1 consists of an open-bottomed chamber mounted in a tripod-shaped framework with associated sampling gear, sensors, control system, power supply, and deployment/retrieval equipment. The device is approximately 1.2 by 1.2 m from leg to leg. The lower part of the framework contains the chamber, sampling valves, sampling bottles, and batteries. Mounted on the vertical members are the acquisition and control unit, the oxygen supply bottle, a video camera, and the retrieval line canister. The upper frame houses an acoustic release embedded in a syntactic foam retrieval buoy. The BFSD is designed for use in coastal and inland waters to depths of 50 m. Maximum deployment time is approximately 4 days, based on available battery capacity. Descriptions of the major system components follow. Appendix A contains construction drawings and details.

Chamber Enclosure

The chamber (figure 2) is a bottomless box approximately 40 cm square by 25 cm tall and isolates 32.7 l of seawater. As samples are drawn from this volume, bottom water is allowed to replace it via a length of 4-mm Teflon tubing. The volume was chosen to allow for a maximum overall dilution of 10 percent due to sampling withdrawal and subsequent replacement of six samples of 500 ml each. The chamber is constructed of clear polycarbonate to avoid disrupting any exchanges that may be biologically driven and, thus, light sensitive. To prevent stagnation in the corners of the chamber, triangular blocks of polycarbonate occupy the 90-degree angles.

Sediment disturbance must be minimized, since the surface sediment may be quite flocculent, and a bow wave propagating in front of the descending chamber could remove the most reactive material. To minimize such a disturbance, the lid of the chamber is hinged and left open during deployment. Once the chamber is in place, the computer control system closes the lid. A gasket around the perimeter of the chamber ensures a positive seal between the chamber and the lid. Exact alignment is not required, because the lid is slightly larger than the sealing perimeter of the gasket and pivots about two sets of hinges. The lid is held closed by rows of magnets placed along the chamber perimeter. The bottom of the chamber forms a knife edge; and a flange, circling it 5 cm above the base, provides a positive seal between the chamber and the sediment.

Figure 1. Benthic Flux Sampling Device (BFSD).

Figure 2. Chamber enclosure.

Acquisition and Control System

The acquisition and control unit (figure 3) is a Seabird Electronics, Model SBE-19 Seacat Profiler, modified to allow control of the BFSD. It consists of a data logger that acquires and stores data from sensors, and a control unit that regulates sampling and other functions of the BFSD. The data logger collects data from a suite of sensors mounted in a flow-through loop on the lid of the chamber; these data include temperature, oxygen, pH, and salinity. The control unit, an integrated part of the data logger, performs several functions; for example, it closes the lid, activates the flow-through/mixing pump, and opens the sampling valves.

Figure 3. Acquisition and control unit.

Sampling System

The sampling system is shown schematically in figure 4. Discrete samples are obtained using a hydrostatic collection system consisting of sample containers, fill and vent lines, a check valve on the vent line, and a water-tight solenoid control valve on the fill line (figures 5 and 6). Offthe-shelf collection bottles are modified to allow filling and venting through the cap. Sampling containers of any volume, material, or shape may be used—provided the cap can be modified to accept the fill and vent line connection, the bottle walls are strong enough to withstand the sampling depth pressure, and the cap seal is watertight at the sampling depth pressure. Glass, Teflon, and polycarbonate bottles have been tested and used successfully with this system. All valves, fittings, and tubes are made of Teflon to minimize potential contamination of samples and to facilitate cleaning. Samples are drawn from the chamber through a 4-mm Teflon tube connected to a manifold of valves and into the air-filled sampling bottles. If necessary, prior to deployment, preservatives may be added to the sample containers. Sampling is initiated by the control system that opens the valves at preprogrammed intervals. Hydrostatic pressure then causes the bottles to fill while venting through check valves mounted at the top of the frame. The head difference between the chamber level and the vent level is sufficient to open the check valves. Once the bottle and vent line have filled, the head difference equalizes, the check valve closes, and the sample volume is sealed.

Figure 4. Sampling system schematic.

Figure 5. Sampling system components.

SAME NO SYSTEM

Figure 6. Hydrostatic collection system schematic.

Flow-Through Sensor System

Sensors, manufactured by Seabird Electronics, are mounted on the chamber lid (figure 7) and used for monitoring conditions within the chamber, including temperature, salinity, pH, and dissolved oxygen. The temperature sensor, Model SBE 3, is a pressure-protected, shock- and vibration-resistant, aged thermistor. Salinity is measured using a Model SBE-4 Conductivity Meter containing a two-terminal, three-electrode (platinum), flow-through sensing element. A Model SBE-18 pH Sensor measures the pH with a combination probe, using a pressure-balanced Teflon-junction Ag/Ag-Cl reference electrode. The Dissolved Oxygen Sensor, Model SBE 13, is a "Beckman" polarographic sensor that produces an oxygen-dependent electrical current. Circulation in the flow-through sensor system is maintained using a Model SBE-5 Submersible Pump with a flow rate of 90 mls/sec.

Figure 7. Flow-through sensor system.

Stirring System

In the experimental chamber, the process in question is the exchange of chemical toxicants at the sediment-water interface. The hydrodynamics inside the chamber must adequately simulate movement of water from near bottom currents outside the chamber. For this purpose, a helical diffuser mounted vertically on the central axis of the chamber is used to mix the enclosed volume.

The diffuser system was tested by constructing a mock chamber and performing a series of mixing experiments with varying geometries and flow rates. A stirring-bar configuration was also tested using two orthogonal '4-inch diameter glass rods totating on a vertical shaft at the

center of the chamber. Based on these experiments, we found the diffuser provided a uniform, gentle mixing action that effectively dispersed dye injected into the chamber—without disturbing the sediment layer on the chamber bottom. At rotation rates sufficient to provide adequate mixing, the stirring bar system tended to suspend light sediments from the chamber bottom.

The final diffuser system consisted of a standard Model SBE-5 Submersible Pump outfitted with a custom polycarbonate head to minimize potential contamination (see Appendix A). The pump circulates water from an inlet on the lid of the chamber, over the flow-through sensors, and back into the chamber via a rigid Teflon pipe 0.25 m long. The vertically mounted pipe is capped at the discharge end and has eight 5-mm holes drilled in a helix pattern along its length. The tests showed that within 30 to 60 seconds, this method visually dispersed a dye injection of Rhodamine WT.

Oxygen Control System

The oxygen regulating system consists of a supply tank, pressure regulator, control valve, diffusion coil, and oxygen sensor, and control hardware and software (figure 8). The supply tank is a 13-cubic foot aluminum diving tank equipped with a first-stage regulator that allows adjustment of output pressure to the system. The control valve is a 12-volt, latching-solenoid valve housed within a watertight pressure case with connections through bulkhead fittings on the end cap. The diffusion coil is thin-walled, 4-mm, oxygen-permeable, Teflon tubing approximately 15 m long. Oxygen is monitored using the oxygen sensor in the flow-through system described previously. The oxygen control system is incorporated into the control system of the BFSD.

During an experiment, when the flux chamber is initially deployed, the ambient oxygen level is recorded by averaging a user-specified number of samples from the oxygen sensor. The control system then establishes maximum and minimum allowable oxygen levels based on a user-specified range about the average. Once the chamber is sealed, the oxygen level inside the chamber is monitored continuously. If the level drops below the allowable minimum, the control valve is opened, the diffusion coil is pressurized, and the oxygen level in the chamber begins to increase. When the oxygen level reaches the maximum allowable level, the control valve is closed. This sequence is repeated continuously during the deployment, maintaining the oxygen level in the chamber closely to that of the ambient level.

Deployment and Retrieval Systems

During deployment and prior to landing, the test site is surveyed for obstacles. This is done using a SeaCam-2000 video camera and SeaLite, manufactured by DeepSea Power & Light, on board the BFSD. The BFSD is also equipped with an Endeco Type-900 Acoustic Release, encased in a retrieval buoy (figure 9). Upon completion of the experiment, the release is triggered by the Deck Command Unit, the retrieval buoy surfaces, and the BFSD is recovered.

Figure 8. Oxygen control system.

Figure 9. Acoustic release and retrieval buoy.

METHODS

This chapter briefly describes the methods for conducting experiments with the Benthic Flux Sampling Device (BFSD). Detailed procedures for BFSD preparation, deployment, sample collection, and sensor-data collection are described by Chadwick and Stanley, 1993.

PREPARATION

Prior to deployment, several steps must be performed to prepare the BFSD for operation and to ensure the integrity of the samples the device will collect. The entire system, including the flow-through sensor system, all plumbing lines, and sample bottles, must be cleaned with solutions appropriate for the analyses to be performed on the collected samples. Batteries must be charged, and the acoustic release and oxygen systems must be checked to ensure successful deployment, experimentation, and retrieval.

DEPLOYMENT

Once all the cables have been connected, and proper systems operation is verified, the experiment software is run to set up the actual sampling intervals and to input other information needed for experimentation (Chadwick & Stanley, 1993). Final adjustments are completed, such as opening the lid of the chamber and the oxygen supply tank, and the BFSD is lowered into the water (figure 10). When the sea floor becomes visible, the video camera on board the BFSD is

Figure 10. BFSD deployment.

used to survey the area for an appropriate landing site. Once a clear site is established, the instrument is raised 2 to 5 m above the sediment and allowed to free fall to the bottom. The weight of the system and its downward momentum bury the knife-edge seal of the sampling chamber into the sediment. To assure the system is functioning correctly, the initial functions, such as lid closure and pumping, are monitored by the computer and video camera aboard the deployment vessel. The cables are then detached, plugged, and thrown overboard for the remainder of the experiment.

SAMPLE COLLECTION AND HANDLING

Sampling procedures have been developed for metals, polychlorinated biphenyls (PCBs), and polynuclear aromatic hydrocarbons (PAHs). Additional samples are taken for silica as a performance indicator, and bulk sediment samples are taken to determine the condition of the sediment by traditional methods.

During deployment, time-series water samples are collected by the BFSD at preprogrammed time intervals. Initial (t₀) water samples are taken from outside the BFSD using the Teflon pumping system aboard the survey vessel. Samples for metals analysis are collected in acid-washed, 500-ml Teflon (TFE) sampling bottles, while precleaned borosilicate glass sampling bottles are used for collecting PAH/PCB samples. These water samples are then refrigerated until they are analyzed. Prior to processing, split samples for silica analysis are taken from time-series and t₀ samples.

Bulk sediment grab samples are acquired at the end of the deployment using a modified Van Veen grab. Sediment samples for metal analysis are transferred from the grab into precleaned, 500-ml wide-mouth polyethylene jars using a precleaned plastic scoop. Samples for PAH/PCB analysis are collected using a precleaned, stainless-steel scoop and placed into precleaned 500-ml, wide-mouth glass jars. Prior to analysis, samples are transported to the lab and stored, frozen.

RETRIEVAL

After returning to the approximate deployment location, a hydrophone is lowered into the water, and the acoustic release is triggered by the Deck Command Unit. After 56 seconds, coding is complete, and the buoy should appear on the water's surface (figure 11). The BFSD is then retrieved, and sample bottles are labeled before being transferred from their holders to a refrigerator or cooler. Sensor data is retrieved by reconnecting the cables and again running the experiment software. The sensors on board the BFSD are prepared for storage, and the frame is thoroughly cleaned and dried.

SAMPLE PROCESSING AND ANALYSIS

Trace Metal Samples

In the lab, samples are immediately filtered through precleaned 0.45- μ cellulose nitrate membrane filter units and acidified to pH 2 with high-purity nitric acid. Constituent metals of interest are separated from the seawater matrix and concentrated by APDC chelation/MIBK extraction. The extracts are then analyzed by Graphite Furnace Atomic Absorption (GFAA), using the

Figure 11. BFSD retrieval.

method of standard additions to develop a standard curve. Additional water samples, including replicates and t₀ samples, are similarly analyzed. Bulk sediment samples are acid digested by a standard microwave-assisted digestion technique (EPA Method 3051). Following digestion, the digestate is analyzed by GFAA, following the procedures just described, for all elements of interest, except arsenic (As) and mercury (Hg). Sample aliquots are digested separately and analyzed for As and Hg by a cold-vapor technique (EPA 7471A). A detailed description of these procedures may be found in the standard methods cited.

PAH/PCB Samples

Water samples from the BFSD are liquid-liquid extracted immediately after collection. Sediment samples from surficial sediments are extracted by sonication with acetonitrile and cleaned using C-18 solid-phase sorbent. The concentrations of selected PAH compounds and PCB congeners in these two matrices are then determined using high-performance gas chromatography and mass spectrometry. Total PCB concentrations are then estimated from an Aroclor 1254 standard, based on PCB congener 110. A detailed description of these protocols may be found in Young et al. (1991).

Silica Samples

Silica samples are split into 50-ml plastic vials from the BFSD time-series samples and to samples following filtration and prior to acidification. Samples are refrigerated until analyzed. The analysis follows the standard colorimetric method for determining reactive silicate in seawater (Strickland & Parsons, 1968).

QA/QC PROCEDURES

TRACE METAL SAMPLES

Method Blanks

Throughout the analyses, method blanks are employed to verify contamination-free preparation and reagents. Each batch of extracted and digested samples is accompanied by a blank that is analyzed in parallel with the rest of the samples—and carried through the entire preparation and analysis procedure.

Instrument Calibration

Instruments are calibrated at the start of each analytical batch. With water samples and extracted water samples, the method of standard additions is used to generate each calibration curve. Successive dilution of a standard is used to generate standard curves for analyzing the digestates. Initial calibration is verified by subsequently measuring an independently prepared standard. The calibration is confirmed at regular intervals during an analytical batch.

Method Accuracy and Precision

Standard reference sediments are digested and analyzed periodically as a check on general method accuracy. Additionally, spiked replicates of field samples are processed with each analytical batch to also validate this accuracy within the context of varying matrices. With water and extracted water samples that are analyzed by the method of standard additions, spiked samples are not used. Analytical precision and method detection limits are determined by replicate storage, preparation, and analysis of standard seawater. Further verification of precision is achieved by splitting 1 in 20 field samples.

PAH/PCB SAMPLES

Accuracy of PAH/PCB Concentrations

For water samples, relatively clean representative matrix samples are spiked with target PAH compounds. Typical recovery efficiencies for the compounds range around 90 percent. Internal standards are also used as part of the GC/MS (Selected Ion Monitoring Gas Chromatography—Mass Spectrometry) procedures that automatically correct for recovery efficiency to the first order. For sediment analyses, standard reference sediments containing known PCB and PAH concentrations are analyzed in duplicate, and typically agree within 15 percent.

Precision of PAH/PCB Analyses

Duplicate procedural blanks are analyzed, as well as triplicate water samples. For sediments, replicate aliquots are taken from within one sample container. In addition, the precision of the GC/MS injection step is measured by periodically programming a sample to be injected three times to determine the percent relative standard deviation (%RSD) values for its target compounds. Typical median %RSD values are approximately 15 percent for water and sediment.

Chadwick et al. (1993) contains a complete record of sample collection, processing, and QA/QC procedures for an actual deployment.

DATA ANALYSIS

CALCULATION OF FLUX RATES

Flux rates from BFSD time-series samples are estimated using a linear regression model. Before running the regression, sample concentrations are corrected for dilution effects caused by taking in outside water as sample water is removed from the chamber. The concentration of the diluting water is based on the t₀ sample. The corrected concentration is calculated from the equation,

$$[C_n] = [s_n] - \frac{v}{V} (\sum_{i=1}^n s_{n-i} + (n-1)[t_0])$$

where [C] is the corrected concentration, [s] is the measured sample concentration, n is the sample number (1 through 6), ν is the sample volume, and V is the chamber volume.

Some samples may be dropped from the regression, based on performance criteria for dissolved silica and oxygen. A steady increase in dissolved silica during the experiment indicates a "problem-free" deployment. Additionally, deployments are evaluated by reviewing oxygen data from the sensors on board the BFSD. Since, during deployment, oxygen is controlled within the chamber, anoxic conditions, or large oxygen fluctuations indicate possible problems with the experiment.

Following the regression of the time-series concentrations, the flux is calculated from the equation,

Flux Rate =
$$\frac{mV}{A}$$

where m is the slope of regression, V is the chamber volume, and A is the chamber area. Typically, flux rates are calculated using a standard spreadsheet similar to the one shown in figure 12.

An 80-percent confidence interval (80% CI) is then assigned to the flux rate, based on a two-sided T-test ($t_{0.05(2),n-2}$), and the standard error of the regression coefficient. If the mean flux is positive and the lower limit of the 80% CI is greater than zero, then the flux is designated a release rate with magnitude of mean $\pm 80\%$ CI. Similarly, if the flux rate is negative, with an upper limit of the 80% CI le: than zero, then the flux is designated an uptake. The 80% CI is chosen to be conservative, i.e., it does not eliminate potential release rates (as an indicator of environmental impact), unless confidence in them is quite low.

Shelter Island Release Rate Study

S/B Date:	Srib: Shelter Island Jaio: 6/19-6/22/52	P &			Start time: 16:35:00 6/19/92 Interval: 14:00:00 End time: 16:15:00 6/22/92	16:35:00 6/19/92 14:00:00 16:15:00 6/22/92	119/52			GPS lat 7	GPS lat not recorded long: not recorded		Lor let bog:	Larlet notrecorded long: not secorded	<u>8</u> 8
almb date			BFSO deta			v	di. correction		from reg	Regressions			Depth: 4.6.	9	
Semple id	(306)	semple	per special	Conc) (ppb)	poedqe eLiji	Cond (pop)	Conc.	€ of Officions	Cong	•	•				
Copper															
T061992-10	2.80	2		260		8			Ĕ	Regression Culput:					
T061982-b	2.13	=	800	2.13	800	8 5	6	8	ć	Constant		2.33	Chamber Volume	40.65	liters
T061982.	2.08	2	1,00	2.68	8	2.88	284	3 5	2, 5	Statement Y Est		0.45	Chamber Area =	1600.40	
T061992-4	27	2	28.00	27	28.00	2	165	3 8	- C	H Squared		98			
T0619824	3 8	I	45.00	33	8	8	3 ₹	3 8	2 5	No. of Observations Decrees of Freedom		88	Plax rate = -70 ug/m^2/day	Kay	
1001382 c	8 :	£ :	86.00	8.	28 .00	2.80	1.85	8	8	iionoi i o maisa		3	2. A	ţ	i
10013824	10	¥	20.00	1.01	90.00	1.81	1.63	200	3.	X Coefficient(s)	-0.0115		eche Ca (low) = (Priorh) =	5	ug/m2/day
										Std Err of Coef.	0.0076			-	ogmic/only
Cedmium															
T061992-40	2/00	ρ		200		8			¥	Regression Output:	Output				
T061992-b	6000	\$	000	900	8	2/0.0				Constant	-	90.0	Chamber Volume -	40.65	(ÇOL)
T061982-	0.057	2	8 4	200	3 5		900	8	9900	Std En of Y Est	•	0.00	Chamber Area =	1600	, E
TD619924	0.050	2	28.00	900	3 8	9 6	9000	8	0.067	R Squared	•	44.0			•
T0619824	900	! 4	3 6		3 3	900	0.067	8	0.060	No. of Observations	_	6.00	Plux rate = 1 up/m^2/dev	2	
T061992 -c	0.074	¥	8 9	720	3 2	8 6	90.0	8	800	Degrees of Freedom	•	00.4		•	
TD61992+	0.070	8	20.07	0.00	3 8		0.070	3 5	3				80% CI (low) =	0	ug/m2/day
					}		200	8	9000	X Coefficient(s)	0.0001		(high)	~	ug/m2/3my
7											10000				
T061982-0	D. O	£		\$					£	Regression Output	Disput				
1061902 to	8	: =	000	3	80) Y	900	8		Constant		0.59	Chamber Volume	40.65	Mors
T061982 -	8 .0	ğ	14.00	8	8	8	3 6	3 5		SECTORY CAR		0.17	Chamber Area	1600.40	cm,5
1051962	0.67	ę	28.00	0.67	28,00	190	990	3 5	3 6	n squared	•	0.47			
Theress	18 0	Z !	45.00	6.0	83	60	80	8	2	No. of Coservations Decrees of Freedom	• •	88	Plux rate = 33 ug/m^2/day	é	
The toop A	<u>.</u> (2 :	8	1. 9.	86.00	7.7	<u>=</u>	8	8		•		4 C Ac., 4	•	;
14 74 14 17	5	2	86	2	800	0.70	92.0	8	160	X Confliction(s)	0,0056		* (wa) > end	• ;	US THE KARRY
											0.000		יי (אולאיי)	Ø	ug/m2/dey
Zhe															
T061962-40	7.67	2		7.67		707			ĕ	Regression Output	Supur				
T061962-5	8.	E	800	8	000	8	29	8	,	Constant	7	_	Chamber Volume =		Mors
TU61962-	10.05	2	14,00	10.05	14.00	10.05	3 6	3 5	5 8		9	_	Chamber Area	$\overline{}$	2,50
10619924	13.68	ā		13,68	28,00	13.68	13.67	3 8	2	n squared	0				
10619024	15.73	I		15.75	60.00	15.75	15.4	38	5 63	No. of Coservations	.	89	Pux rate = 1250 ug/m*2/dey	2kdeny	
JUDIUS C	19.17	£		19.17	56.00	19.17	18.75	8	18.50	ilioppeal i in specifica	•				
520	3	£	20,00	21.56	800	21.56	210	8		Y Creff denties	0,000	-	80% CI (50%) =	<u> </u>	ughin? Klay
											0,000		(Light)	1324	ug/m2/day

Figure 12. Flux rate calculation spreadsheet.

RESULTS

The BFSD has undergone a series of test deployments to determine the effectiveness of the system to quantify sediment-water contaminant exchange rates. A blank test was performed by sealing the chamber bottom with a polycarbonate panel and conducting a standard experiment over 50 hours. Additional blank results were obtained from deployments at clean sites in San Diego Bay and Sinclair Inlet, WA. Mean chamber concentration, %RSD, calculated blank fluxes, and their standard errors (S.E.) are summarized in table 1 and presented graphically in figure 13. These results set a lower limit on the flux rates that can be resolved using the BFSD system.

Table 1. Blank chamber results.

Compound	n	Mean Conc. (μg/l)	%RSD	Flux \pm S.E. $(\mu g/m^2/day)$
¹ Cadmium	7	0.52	14	6±7
¹ Copper	7	3.4	14	-71 ± 62
³ Iron				
¹ Lead	7	0.39	16	-4 ± 8
³ Manganese	-			
² Nickel	6	1.5	27	65 ± 69
² Zinc	6	2.1	25	-227 ± 65

¹From blank chamber.

Two experiments were conducted at Shelter Island yacht basin in San Diego Bay (figure 14) from 6/19-6/21/92 and 6/25-6/28/92. Previous studies have shown elevated water, sediment, and mussel-tissue levels of a number of trace metals at this site (Salazar and Chadwick, 1991). Table 2 summarizes bulk sediment characteristics at this site from samples collected during the deployments. These data suggest elevated concentrations of cadmium, copper, lead, nickel, and zinc at 2- to 25-times background levels at reference sites.

Table 2. Bulk sediment characteristics at the Shelter Island test site.

Metal Concentrations		¹ Other Cha	racteristics
Cadium	0.26 μg/g	Sand	5%
Copper	161 μg/g	Silt	65%
Iron	4.02 μg/g	Clay	30%
Lead	42.8 μg/g	TOC	2.4%
Manganese	414 μg/g		
Nickel	16.2 μg/g		
Zinc	199 μg/g		

¹From Kram et al. (1989).

²From clean reference sites.

³No blank data available.

Figure 13. Time-series results from blank tests of the BFSD.

Figure 14. Shelter Island yacht basin.

Typical time-series traces from the on-board oxygen, pH, temperature, and salinity sensors are shown in figure 15 for the 6/19 deployment. The traces show that oxygen was maintained between $130-200~\mu\text{M}$ during the experiment with an initial decrease due to the response time of the feedback control system. The pH decreased from an initial value of about 8.1 to 7.5 at the end of the experiment, presumably due to sediment respiration and consequent production of CO_2 (figure 16). The shallow depth of the site (4 m) is reflected in the diel variation of the temperature signal that also followed a longer-term decreasing trend of about 1°C over the 75-hour deployment. Salinity showed a slight, monotonic decrease during the deployment.

Figure 15. Continuous time-series traces for chamber conditions during the 6/19/92 deployment.

Flux data time-series plots for the two deployments are shown in figure 16 for a number of trace metals and nutrients, as well as for alkalinity and CO₂. The consistent flux of silica is used as a performance check on the seal and sampling integrity of the deployment. Based on this criteria, both deployments appear to have been successful. While previous deployments during which the seal was violated or the samples were compromised showed erratic silica concentrations, the time series from these deployments were linear and consistent between deployments. Trace metal flux rates were analyzed for cadmium, copper, nickel, iron, manganese, zinc, silver, and lead. Of these, lead and silver were not present at detectable levels (<0.26 µg/l and <0.001 µg/l respectively), so no results are reported. Manganese and zinc showed strong increasing trends during both experiments, while nickel, cadmium, and iron showed no significant flux; and copper generally indicated a slight sediment uptake. Phosphate increased during the 6/19 experiment, but was inconsistent during the 6/25 experiment (figure 17), with an initial large increase followed by a more gradual decrease. Alkalinity and total CO₂ both increased steadily throughout the experiments. Flux rates calculated from these time series are summarized in table 3 and compared to results from other deployments of the BFSD and measurements by other research-

٠,,

Figure 16. Time-series evolution of trace metals, nutrients, alkalinity, and total CO₂ in the flux chamber during the 6/19/92 deployment at Shelter Island yacht basin.

Figure 17. Time-series evolution of trace metals, attients, alkalinity, and total CO₂ in the flux chamber during the 6/25/92 deployment at Shelter Island yacht basin.

Table 3. Summary of flux rates from the 6/19 and 6/25 deployments compared to results from other studies. Trace metal flux rates are in $\mu g/m^2/day$. Units for Si, PO₄, and CO₂ are mmoles/m²/day.

Study Site	ಶ	ರ	Fe	Mn	ž	Pb	Zn	Si	PO4	CO ₂
Shelter Island, San Diego Bay 6/19/93 (this study)	9.0	₹	47	1820	53	İ	1179	1.6	9.04	4
Shelter Island, San Diego Bay 6/25/93 (this study)	-2	-58	193	6847	4	1	920	2.1	1	53
Paleta Creek, San Diego Bay 3/22/93 (Chadwick et al., 1993)	50	-87	760	11730	128	2	3553	1	1	I
PACO Term., San Diego Bay 3/15/93 (Chadwick et al., 1993)	en -	103	3	2519	34	31	1557	I		1
Naragansett Bay (Hunt and Smith, 1983)	1	19	1	į		S	1	1		1
Naragansett Bay (McCaffrey et al., 1980)	1	1	I	Ì	1	1	1	12	0.7	20
Gulllmarsfjorden, Sweden (Westerlund et al., 1986)	9.0	3.4	1	1208	1	5.8	42	1	1	1
Gulllmarsfjorden, Sweden (Rutgers van der Loeff et al., 1984	1 (2)	1	1	İ	1	1	1	0.17-6.26	1	1
Long Island Sound (Aller, 1980)	1	1	1–500	10-4000	1	I	1	I	1	ļ
Puget Sound (Murray and Gill, 1978)	1	1	13	ļ	1	ı	*****	1	1	1
Whites Point, Los Angeles (Berelson and Johnson, 1991)	1	1	1	l	1	1	1	1.9	0.44	1

CONCLUSIONS

An autonomous system has been developed to monitor the exchange rates of contaminants and other biogeochemical compounds across the sediment water interface. Results from a series of test deployments indicate that the system can quantify these exchange rates at realistic levels for coastal and inshore sediments using a 2-4 day sampling period. The resulting flux rates will be useful in evaluating the risks posed by in-place sediment contamination, from several aspects, including

- Source quantification for comparison to other sources and input to models.
- As an indicator of bioavailability, since many studies indicate that resolubilized contaminants are more readily available for uptake.
- To determine the cleansing rate of a contaminated sediment site due to natural biogeochemical cycling of the in-place contaminants.
- To provide a nonintrusive monitoring tool for sites that have been capped or sealed to minimize biological exposure.
- As a scientific tool, to provide realistic testing and validation of hypotheses and models for predicting the response of marine sediments to various contaminants.

Future efforts include adapting the BFSD system to allow feedback control of pH, an increased number of samples, in-place filtration and preservation of samples, increased depth rating, and standardization for constructing multiple units. Methodologies are also being developed to allow continuous flux measurements of contaminants using integrated, in-situ sensor technology.

REFERENCES

- Aller, R. C. 1980. "Diagenetic Processes Near the Sediment-Water Interface of Long Island Sound. II. Fe and Mn, Advances in Geophysics, 22:351-315.
- Anderson, D. M., and F. M. M. Morel. 1982. "The Influence of Aqueous Iron Chemistry on the Uptake of Iron by the Coastal Diatom *Thalassiosira Weissflogii*," Limnology and Oceanography, 27:789–813.
- Berelson, W. M., and K. S. Johnson, 1991. "Measurements of Nutrient and Metal Fluxes from the Sea Floor in the Area Around the White Point Sewage Outfall, Los Angeles, California. In: Proceedings of Coastal Zone '91, 101-111.
- Berelson, W. M., D. E. Hammond, K. L Smith, Jr., R. A. Jahnke, A. H. Devol, K. R.Hinga, G. T. Rowe, and F. Sayles. 1987. "In Situ Benthic Flux Measurement Devices: Bottom Lander Technology," MTS Journal, vol. 21, no. 2, pp. 26-32.
- Chadwick, D. B., and S. D. Stanley. 1993. "Benthic Flux Sampling Device—Operations, Methods, and Procedure." NRaD TD 2387 (Feb). Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San Diego, CA.
- Chadwick, D. B., S. H. Lieberman, C. E. Reimers, and D. Young. 1993. "An Evaluation of Contaminant Flux Rates for Sediments of Sinclair Inlet, WA, Using a Benthic Flux Sampling Device." NRaD TD 2434. Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San Diego, CA.
- Di Toro, D. M. 1989. "A Review of the Data Supporting the Equilibrium Partitioning Approach to Establishing Sediment Quality Criteria." Contaminated Marine Sediments—Assessment and Remediation, pp. 100-114. National Academy Press, Washington, DC.
- Giesy, J. P., and R. A. Hoke. 1990. "Freshwater Sediment Quality Criteria: Toxicity Bioassessment." Sediments: Chemistry and Toxicity of In-Place Pollutants. Baudo, R. (Ed.), pp. 265-348. Lewis Publishers, Inc., Ann Arbor, MI.
- Hunt C. D., and D. L. Smith. 1983. "Remobilization of Metals from Polluted Marine Sediments, Can. J. Fish. Aquat. Sci., 40 (Supp. 2):132-142.
- Johnston, R. K., W. J. Wild, K. E. Richter, D. Lapota, P. M. Stang, and T. H Flor. 1988. "Navy Aquatic Hazardous Waste Sites: The Problem and Possible Solutions," *Proceedings of the Thirteenth Annual Environmental Quality R&D Symposium* (pp. 256-277). 15-17 November, Williamsburg, VA. U. S. Army Toxic and Hazardous Materials Agency.
- McCaffrey, R. J., A. C. Myers, E. Davey, G. Morrison, M. Bender, N. Luedtke, D. Cullen, P. Froelich, and G. Klinkhammer. 1980. "The Relation Between Pore-Water Chemistry and Benthic Fluxes of Nutrients and Manganese in Narragansett Bay, Rhode Island." Limnology and Oceanography, 25:31—44.
- Murray, J. W., and G. Gill. 1978. "The Geochemistry of Iron in Long Island Sound," Geochim. Cosmochim. Acta, 42:9-19
- Rutgers van der Loeff, M. M, L. G. Anderson, P. O. J. Hall, A. Iverfeldt, A. B. Josefson, B. Sundby, and S. F. G. Westerlund. 1984. "The Oxygen Asphyxiation Technique: An Approach to Distinguish Between Molecular Diffusion and Biologically Mediated Transport at the Sediment-Water Interface, Limnology and Oceanography, 30:327-381.

- Salazar, M. H., and D. B. Chadwick, 1991. "Using Real-Time Physical/Chemical Sensors and In-situ Biological Indicators to Monitor Water Pollution," Conference Proceedings, First International Conference on Water Pollution, Wessex Institute of Technology.
- Strickland, J. D. H., and T. R. Parsons. 1968. "Determination of Reactive Silicate." A Practical Handbook of Seawater Analysis, Bulletin 167, pp. 65-70. Fisheries Research Board of Canada, Ottawa.
- United States Environmental Protection Agency. 1988. "Toxic Sediments: Approaches to Management." EPA 68-01-7002.
- Westerlund, S. F. G., L. G. Anderson, P. O. J. Hall, A. Iverfeldt, M. M. Rutgers van der Loeff, and B. Sundby. 1986. "Benthic Fluxes of Cadmium, Copper, Nickel, Zinc, and Lead in the Coastal Environment," *Geochim. Cosmochim. Acta*, 50:1289-1296.
- Young, D. R., R. J. Ozretich, F. A. Roberts, and K. A. Sercu. 1991. "PCB Congeners and PAH Compounds in Seawater off Industrial Sites in San Diego Bay," *Proceedings of the Twelfth Annual SEATC Meeting* (in press).

Appendix A Drawings

TRIPOD ASSEMBLY

HORIZONTAL MEMBER (3 REGUIRED) 43.7B " SCH HØ ALUMINUM PIPE-33.EE " SCH HØ ALUMINUM PIPE

... 24

VERTICAL MEMBER

FRAME MEMBERS

SCALE: 1:5

TOP FRAME & RELEASE/FLOAT CAGE

-

1 REQUIRED

FOOT/LEG UNIT

PLAN VIEW

SCALE: 114

UNITS REQUIRED - 9

SECTION A-A

AIR LIFT BAIL

TOP VIEW

FRAME TERMINATION

SCALE: 11

UNITS REDUIRED . 12

an income a

والمراجع والمحاريا والمفاقف والروان المالية والمتعارية المتعارية والمتعارض والمتعارض والمتعارض والمتعارب

Δ.

SECTION D-D CHAMBER CORNER

!

13.34	
ANGLE	
	/
SEAL RETAINER	LID PANEL
1/4° DIA. 9T. STE HINGE PI WITH 2 X 1/16° THICK DELRI WASHERS SANDWICHED DETWEEN HINGE ARM AND PIVOT PLATES	N TO LID STIFFENER
	1.5" X 1.5" X 1/8" AL, ANGLE
/8° AL. TEE KET	
SECTION A-A-HINGE	DETAIL
· · ·	
	CHAMBER DETAILS
	CHAMBER DETAILS

(2)

NOTE :

- 1) O-RING SHOULDER 2-027
- 2) BREAK ALL SHARP EDGES -
- 3) POLISH ALL SURFACES

L SHARP EDGES
L SURFACES

MATIL

POLYCARBONATE ROD

$\mathbb{C}\mathbb{D}$	\mathbb{D}		
	BULKHEA SIBLE PI	NMP HEAD	B-001
DAM AN	REV	PATE PBUUL D	SCALE 1:1

NOTE:

- 1) GROOVE FOR 2-027 O-RING SEAL
 2) PILOT DIA FOR REAR BULKHEAD
 3) PUMP BORE, POLIGN THIS SURFACE
 4) BREAK ALL SHARP EDGES
 5) POLISH ALL SURFACES

PR'FACE

MAT'L
21/2' POLY CARBONATE ROD
| PER ASSEMBLY

CD	D		
1	B004		CDD/NOSC
SUBME	ROIBLE F	NAP HEAD	8-002
MBC MBC	REU.	DATE. 6 JUN 89	SCALE /:I

POLISH ALL SURFACES
SKEAK ALL SHARP EDGES

LISH ALL SURFACES

MATIL

POLYCARBONATE ROD STOCK

CDI	D		
REAR BU	IUKHEAD SIBLE PU	MP HEAD	DEW# COD/NOSC B-003
MBC MBC	REU	DATE 6 JUN 89	SCALE 211

0

NOTE:

- 1) REMOVE MAGNET FROM MARCH MANUF. ROTTOR \$115.008:01
- 2) LIGHT PRESS FIT ONTO TEFLON JOURNAL WITH EPOXY
- 3) LIGHT PRESS FIT INTO IMPELLER BODY BLANK WITH EDOKY
- 4) SPORM INTO PLACE A TEFLOW WASHER TO COURE BACK ENTO OF MAGNET
- 5) TURN IMPELLER BODY TO FINAL DIAMETER I MILL CROSS

115.008.01

I EPOXY

K WITH EPOXY

BURR BACK ENTO OF MAGNET

R I MILL CROSS

MATIC
WHITE TEFLON 1/8 DIR ROD
CERAMIC MAGNET FROM
MARCH MANUFACTURING IMPELLER
115.008.01

CD:	D		
l l	ROTOR AS	- •	DRW # CDD/NOSC B-004
DRW BY MBC	REV	DATE 69	SCALE 231

CAP DETAIL

SCATE: FULL SIZE

REQUIRED: 6

CAP DETAIL FOR GLASS BOTTLES

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of in viriation is estimated to everage 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing as it werewing the oblection of information. Send comments in participing this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Whathis of the Office of Management and Buogst, Paperwork Reduction Project (1704-0188), Washington, DC 20603.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	August 1993	Final: FY 92—FY 93	
4. TITLE AND SUSTITIE BENTHIC FLUX SAMPLING DEVICE: Prototype Design, Development, and Evaluation a. AUTHOR(S)		8. FUNDING NUMBERS PR: ME81523T01 PE: 0603721N SUBPROJ: Y0817	
D. B. Chadwick, S. D. Stanley 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Command, Control and Ocean Surveillance Center (NCCOSC) RDT&E Division San Diego, CA 92152-5001		ACCESS NO: DN307490 8. PERFORMING ORGANIZATION REPORT NUMBER TD 2435	
9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) Naval Facilities Engineering Command 200 Stovall Street Alexandria, VA 22332		10. SPONSORING/MONITOPING AGENCY REPORT NUMBER	
11 SUPPLEMENTARY NOTES			
Approved for public release; distribution is	s unlimited.	12b. DISTRIBUTION CODE	
13. ABSTRACT (Meximum 200 words)			

To support the Navy's cleanup program, a remotely operated, autonomous instrument, the Benthic Flux Sampling Device, has been developed for in situ measurement of toxicant flux rates from contaminated sediments. A flux out of—or into—the sediment is measured by isolatir ~ a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samp. 4 for an increase or decrease in toxicant concentration. This device is used in coastal and inland waters to depths of 50 m.

14. BUILLECT TERMS			16. LUMBER OF PAGES
hazardous waste Navy cleanup program		57	
toxicity	city chemical contamination		16. PPICE CODE
in-place pollutante	bioremediation		
17 SECURITY CLASSIFICATION OF REPORT	18. SCCURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAME AS REPORT

UNCLASSIFIED

21s. NAME OF RESPONDING INDIVIDUAL	21b. TELEPHONE (include Area Code)	21c. OFFICE SYMBOL
D. B. Chadwick	(619) 553-5333	Code 522
	Val Survivo	
		- 1
		1
		ſ
		ł
		1
		[
		i
		1
		I
]
		1
		1
		l
		ľ
77-40-01-200-0000		J

INITIAL DISTRIBUTION

Code 0012	Patent Counsel	(1)
Code 0274B	Library	(2)
Code 0275	Archive/Stock	(6)
Code 50	H. O. Porter	(1)
Code 52	P. F. Seligman	(1)
Code 522	J. Grovhoug	(1)
Code 522	B. Chadwick	(10)
Code 57	R. H. Moore	(1)
Code 571	M. L. Sorensen	(1)
Code 572	S. D. Stanley	(5)

Defense Technical Information Center Alexandria, VA 22304-6145 (4)

NCCOSC Washington Liaison Office Washington, DC 20363-5100

Center for Navai Analyses Alexandria, VA 22302-0268

Navy Acquisition, Research and Development Information Center (NARDIC) Arlington, VA 22244-5114

GIDEP Operations Center Corona, CA 91718-8000

NCCOSC Division Detachment Warminster, PA 18974-5000

Naval Facilities Engineering Command Alexandria, VA 22332-2300 (3)