# Market Structure and Multiple Equilibria in Airline Markets

Federico Ciliberto and Elie Tamer

March 13, 2017

#### Introduction

#### Research Question:

How to estimate the payoff functions in entry games where there are multiple equilibria?



## Novelty

- · general forms of heterogeneity across players
- no assumptions on equilibrium selection mechanism



# An Empirical Model of Market Structure

$$\begin{array}{lcl} \pi_{im} & = & S_m'\alpha_i + Z_{im}'\beta_i + W_{im}'\gamma_i + \sum_{j\neq i} \delta_j^i y_{jm} + \sum_{j\neq i} Z_{jm}'\phi_j^i y_{jm} + \epsilon_{im} \\ y_{im} & = & 1[\pi_{im} \geq 0] \end{array}$$

- S<sub>m</sub>: market characteristics
- $Z_{im}$ : firm characteristics that enter into  $\pi_{im}$ ,  $\forall j$
- $W_{im}$ : firm characteristics that enter into  $\pi_{im}$  only (crucial for identification)
- $y_{jm}$ : entry decision of firm j
- $\delta_i^i$ : fixed competitive effects
- $\phi^i_i$ : variable competitive effects

#### Estimation

## Conditional moment inequality

$$H_1(\theta, \mathbf{X}) \leq Pr(\mathbf{y}|\mathbf{X}) \leq H_2(\theta, \mathbf{X})$$

## Objective function

$$Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n [\|(P_n(X_i) - H_1(X_i, \theta))_-\| + \|(P_n(X_i) - H_2(X_i, \theta))_+\|]$$

#### Hausdorff-consistent set estimator

$$\hat{\Theta}_I = \{\theta \in \Theta | nQ_n(\theta) \le \nu_n\}$$

where  $\nu_n \to \infty$  and  $\nu_n/n \to 0$ 



# Market Structure in the U.S. Airline Industry

no variable competitive effects,  $\phi^i_j=0$  column 2:  $\delta^i_i=\delta_j, \ \forall i$ 

TABLE III EMPIRICAL RESULTS<sup>a</sup>

|                          | Berry (1992)                      | Heterogeneous<br>Interaction | Heterogeneous<br>Control | Firm-to-Firm<br>Interaction |  |
|--------------------------|-----------------------------------|------------------------------|--------------------------|-----------------------------|--|
| Competitive fixed effect | e fixed effect [-14.151, -10.581] |                              |                          |                             |  |
| AĀ                       |                                   | [-10.914, -8.822]            | [-9.510, -8.460]         |                             |  |
| DL                       |                                   | [-10.037, -8.631]            | [-9.138, -8.279]         |                             |  |
| UA                       |                                   | [-10.101, -4.938]            | [-9.951, -5.285]         |                             |  |
| MA                       |                                   | [-11.489, -9.414]            | [-9.539, -8.713]         |                             |  |
| LCC                      |                                   | [-19.623, -14.578]           | [-19.385, -13.833]       |                             |  |
| WN                       |                                   | [-12.912, -10.969]           | [-10.751, -9.29]         |                             |  |
| LAR on LAR               |                                   |                              |                          |                             |  |
| LAR: AA, DL, UA, MA      |                                   |                              |                          | [-9.086, -8.389]            |  |
| LAR on LCC               |                                   |                              |                          | [-20.929, -14.321]          |  |
| LAR on WN                |                                   |                              |                          | [-10.294, -9.025]           |  |
| LCC on LAR               |                                   |                              |                          | [-22.842, -9.547]           |  |
| WN on LAR                |                                   |                              |                          | [-9.093, -7.887]            |  |
| LCC on WN                |                                   |                              |                          | [-13.738, -7.848]           |  |
| WN on LCC                |                                   |                              |                          | [-15.950, -11.608]          |  |
| Airport presence         | [3.052, 5.087]                    | [11.262, 14.296]             | [10.925, 12.541]         | [9.215, 10.436]             |  |
| Cost                     | [-0.714, 0.024]                   | [-1.197, -0.333]             | [-1.036, -0.373]         | [-1.060, -0.508]            |  |
| Wright                   | [-20.526, -8.612]                 | [-14.738, -12.556]           | [-12.211, -10.503]       | [-12.092, -10.602]          |  |
| Dallas                   | [-6.890, -1.087]                  | [-1.186, 0.421]              | [-1.014, 0.324]          | [-0.975, 0.224]             |  |
| Market size              | [0.972, 2.247]                    | [0.532, 1.245]               | [0.372, 0.960]           | [0.044, 0.310]              |  |
| WN                       |                                   |                              | [0.358, 0.958]           |                             |  |
| LCC                      |                                   |                              | [0.215, 1.509]           |                             |  |
|                          |                                   |                              |                          | (Continues)                 |  |

Step 1: First Stage Estimation of Choice Probabilities

$$P_n^{(y')}(x) = \frac{\sum_i 1[y_i = y'] 1[x_i = x]}{\sum_i 1[x_i = x]}$$

#### **Comments:**

need to discretize the continuous Xs, but the cells of Xs increases exponentially with the dimension of Xs (quartiles- $4^{18} \approx 6.8 \times 10^{10}$ ).

- Step 2: Take random draws of  $\epsilon$  and simulate for  $H_1(\theta, X)$  and  $H_2(\theta, X)$ For each  $\epsilon$ ,
  - if  $y_j$  is a unique equilibrium, add 1 to both  $H_1$  and  $H_2$  for  $y_j$
  - if  $y_j$  is one of the multiple equilibria, add 1 to only to  $H_2$ .

#### Comments:

strong assumption:  $\epsilon_{im} = u_{im} + u_m + u_m^o + u_m^d$  are independently (relaxed in Section 5.2) and normally distributed

Step 3: Minimize the objective function

$$Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n [\|(P_n(X_i) - H_1(X_i, \theta))_-\| + \|(P_n(X_i) - H_2(X_i, \theta))_+\|]$$

#### Comments:

Because of  $\delta^i_j$  and  $\phi^i_j$  dimension of  $\theta$  increases with the number of firms, k. It might be a problem when k is large but n is small.

• Step 4: Construct the confidence region  $C_n$  such that  $\lim_{n\to\infty} P(\theta_I \in C_n) \geq \alpha$ 

$$C_n(c) = \{\theta \in \Theta : n * Q_n(\theta) \le n * min_t Q_n(t)\} + c\}$$

#### Comments:

This is a multi-dimensional confidence region. To get the confidence intervals, one also need to project the confidence region onto each covariates, which is computationally complicated.

## One more general comments Reduced form profit function

$$\pi_{im} = S'_{m}\alpha_{i} + Z'_{im}\beta_{i} + W'_{im}\gamma_{i} + \sum_{j \neq i} \delta^{i}_{j}y_{jm} + \sum_{j \neq i} Z'_{jm}\phi^{i}_{j}y_{jm} + \epsilon_{im}$$

## Results from Numerical Exercise

Only take the entry decisions of AA and DL as endogenous

$$\pi_{AA,m} = Z'_{AA,m}\beta_i + W'_{AA,m}\gamma_i + \delta_{DL}y_{DL,m} + \sum_{j \neq i} \mu_j y_{jm} + \epsilon_{AA,m}$$

•  $argmin_t nQ_n(t)$ 

|          |                 |      | fixed competitive effects |        |        |      |        |      |
|----------|-----------------|------|---------------------------|--------|--------|------|--------|------|
| constant | market presence | cost | AA                        | DL     | UA     | MA   | LCC    | WN   |
| 28.22    | -0.30           | 0.02 | -29.18                    | -29.50 | -11.75 | 0.07 | -17.38 | 0.86 |

- threshold c=385.4871
- still working on projecting the confidence region onto each covariate.