적응적 패턴 특징을 활용한 가상 영상 분류 알고리즘 연구

IPIU 2014

하명희

최현준

최민국

이상철

인하대학교 컴퓨터 정보공학부 영상정보시스템 연구실

myunghee90 @hanmail.net, rene650962 @gmail.com mkchoi @inha.edu, sclee @inha.ac.kr

ABSTRACT

본 논문은 동일 카테고리 내 가상 영상과 실제 영상을 자동화된 방법으로 분류하는 알고리즘을 제안한다. 기존의 특징점 기반의 기술자나 에지 히스 토그램 기반 기술자는 카테고리간 분류에 강건한 성능을 보이지만 동일한 물체 내 집단 분류에서는 좋은 성능을 얻기가 어렵다. 그러므로 본 논문에 서는 영상 내에 존재하는 컬러의 분포 패턴을 통해 얻어진 특징 값들로 구성된 특징벡터를 제안하였으며, 동일 집단 내 가상 영상과 실제 영상의 분류 에서 기존 특징 추출 방법보다 높은 성능을 나타내었다.

INTRODUCTION

- 기존의 영상물 분류 연구는 서로 다른 카테고리간의 분류에 집중되어 있음.
- 본 연구는 동일 그룹 내 가상/실제영상 분류를 위해 영상 내 컬러 패턴과 분포 특징 분석을 통한 분류 알고리즘을 제안.

- [그림 1] 동일 그룹 내 가상/실제 영상의 예시
- 패턴 특징은 영상의 특정한 지역적 영역 안에서 텍스처 특성의 분포가 어떤 형태를 이루는가에 대한 정보를 기반으로 함.
- 흑백 및 컬러영상에 적용하여 2, 3차원 패턴 추출을 수행.

FLOWCHART

■ 제안하는 알고리즘의 순서도

[그림 2] 가상/실제 영상 분류를 위한 알고리즘의 순서도

METHODS 1

. 2차원 패턴 특징 추출

$$f_{3,1} = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}, f_{3,2} = \begin{bmatrix} -1 & 2 & -1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{bmatrix}, f_{3,3} = \begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, f_{3,4} = \begin{bmatrix} -1 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}, f_{3,5} = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}, f_{3,6} = \begin{bmatrix} 0 & -2 & -1 \\ 2 & 0 & -2 \\ 1 & 2 & 0 \end{bmatrix}$$

■ 패턴 벡터 집합 V_g 를 얻기 위해 다음과 같은 형태의 커널 행렬 집합 $\mathbf{f}_w \in \{f_{w,1}, f_{w,2}, ..., f_{w,6}\}$ 을 정의.

$$I_{g,x}(u,v) = I_g(u,v) - I_g(u+1,v), \qquad I_{g,y}(u,v) = I_g(u,v) - I_g(u,v+1)$$

$$\nabla I_g = I_{g,x} + I_{g,y}$$

- 영상 내에 다양한 특성을 반영하기 위해 흑백영상 I_g 에 대한 1차 미분영상 ∇I_g 를 연산하며 위와 같이 정의.
- 두 영상 I_a 와 ∇I_a 로부터 패턴 특징을 얻기 위해 \mathbf{f}_w 를 적용하며. \mathbf{f}_w 는 아래와 같이 총 세 가지 형태로 적용.

$$b_{1,i} = I_g * f_{w,i}$$
 $b_{2,i} = \nabla I_g * f_{w,i}$

■ 첫 번째는 f_w 의 i 번째 원소 $f_{w,i}$ 에 대한 컨볼루션 연산으로 적용.

$$b_{3,i}(u,v) = \frac{1}{w^2} \sum_{[x]=-\frac{w}{2}}^{\lfloor w/2 \rfloor} \sum_{[y]=-\frac{w}{2}}^{\lfloor w/2 \rfloor} \hat{I}_g(u,v;x,y), b_{4,i}(u,v) = \frac{1}{w^2} \sum_{[x]=-\frac{w}{2}}^{\lfloor w/2 \rfloor} \sum_{[y]=-\frac{w}{2}}^{\lfloor w/2 \rfloor} \nabla \hat{I}_g(u,v;x,y)$$

 $\hat{I}_g(u, v; x, y) = I_g(u + x, v + y) f_{w,i}(u + x, v + y)$

- 픽셀 위치 (u,v) 상에서의 커널 가중치 곱 $\hat{I}_a(u,v;x,y)$ 의 정의는 위와 같음.
- 두 번째는 f_w 의 i 번쨰 원소 $f_{w,i}$ 에 대한 가중치 평균을 추출.

$$b_{5,i}(u,v) = \left(\frac{1}{w^2} \sum_{|x| = -\frac{w}{2}}^{\lfloor w/2 \rfloor} \sum_{|y| = -\frac{w}{2}}^{\lfloor w/2 \rfloor} \left(\hat{I}_g(u,v;x,y) - b_{3,i}(u,v)\right)^2\right)^{\frac{1}{2}} b_{6,i}(u,v) = \left(\frac{1}{w^2} \sum_{|x| = -\frac{w}{2}}^{\lfloor w/2 \rfloor} \sum_{|y| = -\frac{w}{2}}^{\lfloor w/2 \rfloor} \left(\nabla \hat{I}_g(u,v;x,y) - b_{4,i}(u,v)\right)^2\right)^{\frac{1}{2}}$$

- 세 번째는 f_w 의 i 번쨰 원소 $f_{w,i}$ 에 대한 가중치표준편차 값으로 추출.
- 2. 적응적 패턴 특징 추출

$$\begin{cases} P(I_g, \nabla I_g; u, v) & \text{if } k > \alpha \\ \emptyset & \text{otherwise} \end{cases}, k = \left\lceil \frac{\max z - \min z}{h} \right\rceil \qquad \tilde{I}_g(u, v) = \frac{1}{l^2} \sum_{|x| = -\frac{l}{2}}^{\lfloor l/2 \rfloor} \sum_{|y| = -\frac{l}{2}}^{\lfloor l/2 \rfloor} I_g(u + x, v + y) \end{cases}$$

■ α 는 텍스처 정보에 대한 처리 민감도를 결정하는 파라미터로 영상의 배경이나 지나치게 텍스처 정 보가 존재하지 않는 영역에서 패턴 특징 추출 수행 유무를 결정하는데 사용.

METHODS 2

- 1. 3차원 패턴 특징 추출
- 2차원 패턴 특징 추출과 비교 시 달라진 점은 단지 3차원 커널 큐브를 이용한다는 점 뿐이며 그 외 특 징 추출과 관련된 모든 연산 방법은 2차원 패턴 특징 추출과 동일.
- 최종적으로 이미지의 특정 위치 (u,v) 에 대해서 72차원의 패턴 벡터 집합 추출.
- 2. 3차원 적응적 패턴 특징 추출
- 3차원 적응적 패턴 특징 추출 과정은 2차원에서 수행했던 방식과 개념적으로 같으며 다만 한가지 차 이점은 그리드 영역으로 분할하는 전사 함수 적용을 r,g,b 각 차원 별로 수행 .
- |3. 패턴 특징 기반의 분류기 구축|

$$\max_{\alpha} L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2\lambda} \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_i y_i) (\alpha_j y_j) \mathbf{K}(b_i, b_j)$$
s. t. $\mathbf{y}\alpha = 0, 0 \le \alpha_i \le \frac{1}{n}$

■ b는 추출된 패턴 특징의 특징 벡터를 나타냄.

EXPERIMENTAL RESULT

HoG [8]

real

■ 가상 이미지와 실제 이미지의 분류 정확도에 대한 비교 결과

apple	real	synthetic	precision
Real	144	66	0.686
synthetic	137	73	0.348
recall	0.512	0.525	0.517
			0.519

face	real	synthetic	precision
real	189	21	0.9
synthetic	89	121	0.576
recall	0.68	0.852	0.738
			0.766

landscape	real	synthetic	precision
real	127	83	0.605
synthetic	139	71	0.338
recall	0.477	0.461	0.471
			0.469

synthetic	159	/ 1	0.550
recall	0.477	0.461	0.471
			0.469
building	real	synthetic	precision
	4.60		0.004

landscape	real	synthetic	precision
real	127	83	0.605
synthetic	139	71	0.338
recall	0.477	0.461	0.471
			0.469

real	679	161	0.808	
synthetic	576	679	0.314	
recall	0.541	0.621	(p) 0.561	
			(r) 0.581	
[표1] HoG 특징에 대한 precision-recall				

synthetic

precision

SIFT [4]	real	synthetic	precision
real	730	110	0.869
synthetic	621	730	0.2607
recall	0.5403	0.665	(p) 0.564
			(r) 0.603

[표2] SIFT 특징에 대한 precision-recall

Proposed m ethod	real	synthetic	Precision
real	629	211	0.749
synthetic	489	351	0.418
Recall	0.563	0.623	0.583
			0.504

[표3] 패턴 특징에 대한 precision-recall

building	real	synthetic	precision
real	169	41	0.804
synthetic	124	83	0.41
recall	0.577	0.677	0.607
			0.627

- 알고리즘의 성능 평가를 위해 각 부류 별 총 100장의 가상/실제 영상을 수집하여 5fold cross validation을 수행.
- 총 80장에 해당하는 가상/실제제 영상으로부터 분류기를 구축하고, 20장의 가상/실 제 영상으로 분류를 수행. 학습과 테스트하는 영상의 내부 구성을 변경하여 총 21번 의 실험을 수행하였다. 수행된 실험 결과로부터 precision과 recall 값을 연산.
- [표 1,2,3]에서 볼 수 있듯이 제안된 알고리즘이 HoG와 SIFT에 비해 전체 평균 precision에서 가장 높은 성능을 나타내었으며 특히 가상 영상에 대한 평균 precision 이 가장 높게 나타난 것으로 나타났다.

CONCLUSIONS

본 논문에서는 영상에 대한 부류 내 분류를 위한 커널 기반의 패턴 특징을 제안하 였으며, 패턴 특징은 기존의 특징점 및 에지 기반의 특징과 다르게 클래스 내 분 류 정확도를 향상 시키기 위한 텍스처 기반의 특징으로 기존의 알고리즘에 비해 상대적으로 높은 분류 정확도를 달성.

FUTURE WORK

제안하는 커널의 형태 뿐 아니라, 확장된 패턴을 활용한 특징의 추출이 가능하고, 특정 지역적 영역 내에서 활용할 수 있는 다른 통계적 특성을 모색할 수 있을 것.