LIVE and breakDown: explainers for single prediction

Mateusz Staniak Munich, 25.05.2018

breakDown

DALEX

Descriptive mAchine Learning EXplanations

DALEX Stories

- · A gentle introduction to DALEX with examples
- How to use DALEX with caret
- How to use DALEX with mlr
- How to use DALEX with xgboost package
- Talk about DALEX at Complexity Institute / NTU February 2018
- Talk about DALEX at SER / WTU April 2018
- How to use DALEX for teaching, Part 1

Install

From GitHub

dependencies
devtools::Install_github("MI2DataLab/factorMerger")
devtools::Install_github("pbiecek/breakDown")

DALEX package
devtools::install_github("pbiecek/DALEX")

or from CRAN

install.packages("DALEX")

BreakDown: idea

For linear models:

$$f(x^{new}) = (1, x^{new})(\mu, \beta)^T = baseline + (x_1^{new} - \bar{x}_1)\beta_1 + ... + (x_p^{new} - \bar{x}_p)\beta_p$$

$$baseline = \mu + \bar{x}_1\beta_1 + ... + \bar{x}_p\beta_p.$$

Contribution:

$$(x_1^{new} - \bar{x}_1)\beta_1$$

Model-agnostic contribution:

Definition 2.4.3 (Added feature contribution) For *j*-th feature we define its contribution relative to a set of indexes IndSet (added contribution) as

$$contribution^{IndSet}(j) = f^{IndSet \cup \{j\}}(x^{new}) - f^{IndSet}(x^{new}).$$
 (8)

It is the change in model prediction for x^{new} after relaxation on j.

Model-agnostic breakDown

→ Step-up

→ Step-down

```
    p ← number of variables
    IndSet ← {1,...,p} set of indexes of all variables
    for i in {1,...,p} do
    Find new variable that can be relaxed with small loss in relaxed distance to f(x<sup>new</sup>)
    for j in IndSet do
    Calculate relaxed distance with j removed
    dist(j) ← d(x<sup>new</sup>, IndSet \ {j})
    end for
    Find and remove j that minimizes loss
    j<sub>min</sub> ← arg min<sub>j</sub> dist(j)
    Contribution<sup>IndSet</sup>(i) ← f<sup>IndSet</sup>(x<sup>new</sup>) - f<sup>IndSet</sup>\{j<sub>min</sub>}(x<sup>new</sup>)
    Variables(i) ← j<sub>min</sub>
    IndSet ← IndSet \ {j<sub>min</sub>}
    end for
```

```
1: p \leftarrow number of variables
2: IndSet \leftarrow \emptyset empty set
3: for i in \{1, ..., p\} do
        Find new variable that can be relaxed with large distance to f^{\emptyset}(x^{new})
        for j in \{1, \ldots, p\} \setminus IndSet do
5:
             Calculate relaxed distance with j added
 6:
             dist(j) \leftarrow d(x^{new}, IndSet \cup \{j\})
         end for
        Find and add j that maximize distance
        j_{max} \leftarrow \arg\max_{i} dist(j)
10:
        Contribution<sup>IndSet</sup>(i) \leftarrow f^{IndSet}(j_{max})(x^{new}) - f^{IndSet}(x^{new})
11:
         Variables(i) \leftarrow i_{max}
12:
         IndSet \leftarrow IndSet \cup \{j_{max}\}\
13:
14: end for
```

Waterfall plots

Prediction for SVM model 5.032

Future of breakDown

- Sparse explanations
- Non-additive contributions
- Going from local to global

LIVE

live: Local Interpretable (Model-agnostic) Visual Explanations

See the latest changes.

Features coming up next:

- · more methods of sampling,
- better support for comparing explanations for different models / different instances,
- Improved Shiny application (see live_shiny function in development version).

If you have any bug reports, feature requests or Ideas to Improve the methodology, feel free to leave an Issue.

Materials

Find the paper about live and breakDown on arXiv.

Website: https://mi2datalab.github.io/live/

Conference talk on live: https://github.com/mstanlak/Berlin_2017

LIVE: idea

LIME for regression / tabular data

Focus on model visualization

LIME: advantages

- Different methods of sampling
- High flexibility regarding e.g. explanation model
- → Built-in visualization tools for linear explanation

LIVE: work flow

*sample_locally() %>% add_predictions() %>% fit_explanation() %>% plot()

Variable	N	Estimate		р
fixed_acidity	500	Ė	0.10 (0.08, 0.12)	<0.001
volatile_acidity	500	I	-1.47 (-1.64, -1.29)	<0.001
citric_acid	500	į.	-0.54 (-0.64, -0.44)	<0.001
residual_sugar	500	P	0.01 (-0.04, 0.06)	0.664
chlorides	500	Ė	1.12 (0.32, 1.91)	0.006
free_sulfur_dioxide	500	į į	-0.01 (-0.01, -0.00)	<0.001
total_sulfur_dioxide	500	į.	0.00 (-0.00, 0.00)	0.417
density	500		-27.45 (-41.49, -13.41)	<0.001
рH	500		-0.29 (-0.42, -0.16)	<0.001
sulphates	500	L	1.19 (1.08, 1.30)	<0.001
alcohol	500	<u> </u>	0.23 (0.21, 0.26)	<0.001
		-40-30-20-10 0		

Future of LIVE

- → Going from local to global
- More theoretical background (E.g. How to pick sample size? How to generate neighbourhoods?)
- → More visualization tools

Thank you for you attention!