۱- در روش nearest-neighbor از اولین نقطه شروع میکنیم و بعد به سراغ نزدیک ترین نقطه ی انتخاب نشده میرویم و این روند را تا جایی که همه نقاط انتخاط شوند، ادامه میدهیم.

در متد fill_array_by_file یک آرایه ۲ بعدی را با فایلی که به عنوان ورودی میگیریم پر میکنیم.

در متد nearest_neighbor از اولین نقطه شروع می کنیم و دنبال نقطه بعد با کمک متد

find_next_nearest_neighbor

اما در روش exhaustive ما باید تمام حالاتی که میتوان نقاط ورودی را پیمایش کرد را بررسی کنیم و کم هزینه ترین حالت را به عنوان خروجی گزارش کنیم.

در متد fill_array_by_file یک آرایه ۲ بعدی را با فایلی که به عنوان ورودی میگیریم یر میکنیم.

در متد exhaustive هر جایگشت از نقاط ورودی را به ترتیب به متد calculate_path_cost می دهیم تا هزینه پیمودن مسیر را محاسبه کند و آن را با بقیه جایگشت ها مقایسه می کنیم و در نهایت کمترین را بر میگردانیم.

-۲

Nearest neighbor	Exhaustive
n^2	n * n!

-٣

ران تايم هاى الگوريتم nearest-neighbor

	غونه اول	نمونه دوم	غونه سوم	نمونه چهارم
ران اول us	379	356	372	348
ران دوم us	355	381	336	511
ران سوم us	367	361	320	341
میانگین	367	366	342	400

ران تايم هاى الگوريتم exhaustive

	غونه اول	نمونه دوم	نمونه سوم	نمونه چهارم
ران اول us	1886	1946	442	584
ران دوم us	1918	1891	378	614
ران سوم us	1852	1875	368	583
میانگین	1885	1904	396	593