BioC for HTS - PDCB topic Bioconductor 02

LCG Leonardo Collado Torres lcollado@wintergenomics.com — lcollado@ibt.unam.mx

September 22nd, 2010

Previous Exercise

Install weaver

MTEX

Sweave

Stangle

weaver package

Exercise

- Modify the randomSeq and calcGC functions to include parameter checks using conditionals (if, ...), and functions such as stop and warning
- ► Test the functions for cases with Ns and/or Us. Do they affect the distribution of GC?
- Create again the package GCcalc and add simple descriptions to all the help files.
- ► Try building and checking the package (R CMD build and R CMD check)¹. Do they work?

¹Only available through command line

Installing weaver

- I missed this package last class, luckly it's small :)
 - > source("http://bioconductor.org/biocLite.R")
 - > biocLite("weaver")

Why learn it?

Yes, LATEXhas a steep learning curve, but

- it's easy to include R code and the result
- has a lot of functionality to typeset formulas
- you don't have to worry about the format, only about the content:)
- ► LATEX files are simple text files (no encoding), therefore it's easy to use a control version system
- it's easy to include bibliography
- it's easy to link different parts of your file
- ▶ it's free

Setup

Installing LATEX is one of the hard parts.

- Windows: install Mixtex http://miktex.org/2.8/setup
- Linux: install texlive http://tug.org/texlive/ by using: sudo apt-get install texlive sudo apt-get install texlive-base sudo apt-get install texlive-common
- Mac: install MacTEX: http://tug.org/mactex/

LATEX Editors

Once you have the basic TEXutilities you might need an editor

- Windows: Emacs and/or WinEdt² http://vgoulet.act.ulaval.ca/en/ressources/emacs/ windows http://www.winedt.com/winedt.html
- Linux: Emacs sudo apt-get install emacs sudo apt-get install ess
- Mac: Emacs and/or Aquamacs
 http:
 //vgoulet.act.ulaval.ca/en/ressources/emacs/mac
 http://aquamacs.org/

²There is a trial period after which you can choose to buy it.

A little about Emacs

- ▶ It's useful for programming in R because in 1 windows you can have your code and in the other one your R session. Meaning that you can keep your code clean easily :)
- ▶ It highlights the basic LATEX commands
- ► Some versions of Emacs also integrate other LATEX commands
- Check the Emacs reference card for more info on the keyboard shortcuts.

Our First LATEXfile

Now that we have LATEXinstalled, lets start using it :)

- Create a file test.tex
- Copy the following text into it:

```
\documentclass{article}
\begin{document}
Test
\end{document}
```

Now lets create the PDF file test.pdf. To do so in your terminal (or command prompt) type: pdflatex test.tex

Our First LATEXfile

- Now we can open the file using your default PDF viewer: acroread test.pdf open test.pdf³
- What does it contain?

³For Windows users

Basic T_EX

- ▶ That was just a basic TFXfile in the article format.
- ► LATEX files are ASCII files. The only non-visible character that might be included is the end of line.
- ▶ To *control* the text (and figures) in a file, we use *commands* which are preceded by a backslash.

Our second file

- Open the latsamp0.txt file
- Which commands do you identify?
- Do spaces matter?
- ▶ As it says there, once you create a couple of LATEX files you'll get used to the commands:)
- How does the PDF look?

3rd file

- Now that we have some basic notions of LATEX files, are there any special characters?
- ► The full answer is in the latsamp1.txt file.
- ▶ What do the new commands do?

Math in LATEX

- We already included a fraction in one of our files. How do we include an equation?
- There are two main commands to do so. latsamp2.txt will teach us how to do it:)
- Which new commands enable us to link parts different parts of our files?
- Typesetting math formulas can be very useful :)

LATEXArrays

- ► Take a look at latsamp3.txt.
- ▶ What is a LATEXarray?
- Is it useful for math formulas?

More math in LATEX

- To end the series of examples by Matchett, lets look at latsamp4.txt
- What new goodies are we adding to this document?
- What is an eqnarray?
- All these examples are available at http: //www.uwlax.edu/faculty/matchett/late/late.htm
- ► Check
 http://www.wikihow.com/Typeset-Formulas-in-LaTeX
 How would you add math equations next to text?
- ► Later on you might want to review the basic steps with http: //www.wikihow.com/Use-LaTeX-for-Text-Formatting

A much longer file

- Open syllabus.tex and syllabus.Rnw
- ▶ What are the differences between the two files?
- Which new commands did I use in those files?
- ► How do we add the list of topics in a LATEXfile?
- What is the difference between the PDF derived from syllabus.tex and the PDF file in the course site?

In summary

We now know all basic parts related to LATEXfiles. Of course, if you need some help check

- ► The Not so Short Guide to LATEX http://tobi.oetiker.ch/lshort/lshort.pdf
- The Comprehensive Lagrangian Expression of the Comprehensive Lagrangian La
- The Beamer User Guide http: //faq.ktug.or.kr/wiki/uploads/beamer_guide.pdf
- A small list of LATEXsymbols http://www.artofproblemsolving.com/Wiki/index. php/LaTeX:Symbols

In summary

- ► A guide on how to insert figures in LATEX

 http://www.hep.manchester.ac.uk/u/jenny/jcwdocs/
 latex/figures.html
- Adding accents in LATEX(change francais to spanish) http://fontignie.blogspot.com/2006/04/ accents-in-latex.html
- ► A guide on how to use BibTEX
 http://amath.colorado.edu/documentation/LaTeX/
 reference/faq/bibstyles.html

Sweave origins

- Now that we know the basics of LaTeXfiles, lets start to use Sweave
- Check the help:
 - > `?` (Sweave)
- ▶ The basic idea is to replace the S code with its output, such that the final document only contains the text and the output of the statistical analysis.
- Sweave comes from the S days. Remember that R is an implementation of S.

So, how do we add R code?

- ▶ We use code chunks
- For each code chunck we can specify several tags: do we want to print the result? do we want to evaluate the code chunck? add a figure?
- Lets make a simple test file called test.Rnw

```
\documentclass{article}
\begin{document}
\begin{Schunk}
\begin{Sinput}
> rnorm(5)
\end{Sinput}
\begin{Soutput}
```

```
[1] 1.126848e-01 4.664422e-05

[3] 1.179701e+00 -5.364950e-01

[5] 1.378251e+00

\end{Soutput}

\end{Schunk}

\end{document}
```

- From R we can run Sweave like this:
 - > Sweave(file = "test.Rnw")
- ▶ Now we have a file called **text.tex** with the following info⁴:

```
\documentclass{article}
\usepackage { Sweave }
\begin { document }
\begin { Schunk }
\begin { Sinput }
> rnorm(5)
\end{Sinput}
\begin { Soutput }
[1] 1.6319330 -0.2694958 -0.8268343
                                          1.0493980
\end{Soutput}
\end{Schunk}
\end{document}
```

 Next, from outside R use pdflatex and open it: pdflatex test.tex acroread test.pdf

⁴The actual content will vary because we are getting 5 random numbers!!!

Alternatives

Besides opening R, we can also use Sweave like this:

```
R CMD Sweave test.Rnw pdflatex test.tex
```

Or like this:

```
R -e "Sweave('test.Rnw')"
pdflatex test.tex
```

► The last way is specially useful in Windows (R will be R.exe and you need to add it to your PATH by modifing your environment variables). More info at http:
//www.johndcook.com/troubleshooting_sweave.html

Sweave.sty

- Normally pdflatex will complain that it cannot find the file Sweave.sty.
- What is the solution? The simple one is to copy that file to your current working directory. It might be a pain but it's easy to do.

Sweave Options

Note that in Rnw files we can add the following LATEX command:

It will set the default options for our code chunks. It's specially useful if you want to save the figures in a special directory and/or add a given prefix.

Adding R plots

How do we do it? Simple, we use the flag **fig=TRUE**. Create a new directory with the file *test2.Rnw* and create the PDF file. What do you notice?

```
\documentclass{article}
\begin{document}
We create x
\begin{Schunk}
\begin{Sinput}
> x <- rnorm(5)
\end{Sinput}
\end{Schunk}
We now plot x:
\medskip</pre>
```

Adding R plots

```
\label{local-problem} $$ \left( \operatorname{local-problem} fig -007 \right) $$ \left( \operatorname{document} \right) $$
```

GenomicRanges vignette

- ▶ Now that we can add R code into our LaTeXfiles, lets reproduce a BIG vignette.
- Download https://hedgehog.fhcrc.org/bioconductor/ trunk/madman/Rpacks/GenomicRanges/inst/doc/ GenomicRangesIntroduction.Rnw
- Using Sweave and pdflatex create the PDF file.
- ▶ Did something unexpected happen? If so, what was it?

What do we use it for?

- ► Simple, this R function extracts all the R code chunks from a given file. For example:
 - > Stangle(file = "test2.Rnw")
- produces the file test2.R:

What do we use it for?

Overview

- ► The weaver Bioconductor package is a rather easy to use infraestructure package.
- It's useful in case parts of your R code take a lot of evaluation time.
- Lets look at the help and the vignette:
 - > library(weaver)
 - > help(package = weaver)
 - > browseVignettes("weaver")

Wrap up

- As they emphasize, you should normally only have ONE Rnw file per directory to avoid any confusion. This is also true for TEXfiles!
- ► LATEXitself is VERY useful if you are writing a long document (30 or more pages). In conjunction with weaver now you have nothing to worry about with long files.
- However, please do not use weaver for package vignettes! Why? Because the package has to build in less than 5 minutes and you should avoid slow computations.
- ► To enhance reproducibility avoid using the *EVAL=FALSE* tag in code chunks!
- Finally, take a look at the files sw.bat and toPDF.sh. They might be useful for you as well:)

Exercises

- Complete the doc1 and doc2 weaver examples.
- Create short PDF file using Sweave where you'll include a small abstract, a table of contents, some calculations in secion 1, a plot in section 2.

Session Information

attached base packages:

```
> sessionInfo()
R version 2.12.0 Under development (unstable) (2010-09-08 r52880)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
 [1] LC_CTYPE=en_US.utf8
 [2] LC NUMERIC=C
 [3] LC TIME=en US.utf8
 [4] LC_COLLATE=en_US.utf8
 [5] LC MONETARY=C
 [6] LC_MESSAGES=en_US.utf8
 [7] LC_PAPER=en_US.utf8
 [8] LC NAME=C
 [9] LC_ADDRESS=C
[10] LC TELEPHONE=C
[11] LC MEASUREMENT=en US.utf8
[12] LC_IDENTIFICATION=C
```

Session Information

```
[1] tools stats graphics
[4] grDevices utils datasets
[7] methods base

other attached packages:
[1] weaver_1.15.0 codetools_0.2-2
[3] digest_0.4.2
```