

Data Science Unit 1 Introduction to Python

Python

Python

Multiverse

Data Science Unit 1 Data Types and Operators

Data Types

Data Type	Definition	Example
Integer	Whole numbers given from negative infinity to infinity	5, 3, -1, 1000
Float	'Floating point number' – has a decimal point in it	3.3, -2.4, 5.0
String	A set of letters, numbers or characters in general – surrounded by quotation marks	'Data is Awesome'
Tuple	Ordered sequence with fixed number of elements- surrounded by parenthesis	(1,2), ('Red', 'Green', 'Blue')
List	Unordered sequence with no fixed number of elements- surrounded by square brackets	[1,2], ['Red', 'Green', 'Blue]
Dictionary	Unordered collection of key value pairs. To access the value you need to use its key	{'Blue':5, 'Red' :2, 'Green':0}

Collections

Wariables

Restrictions

- → Variable names cannot contain spaces.
- → A variable name must start with a letter or the underscore character.
- → A variable name cannot start with a number.
- → A variable name can only contain alphanumeric characters and underscores (A-z, 0-9, and _)
- → Variable names are case-sensitive (age, Age and AGE are three different variables)
- → Variable names cannot be one of Python's Reserved Keywords

Best Practices

- → Variable names should be lowercase.
- → A variable's name should be representative of the value(s) it has been assigned, and informative of its content and use.
- → If you must use multiple words in your variable name, use an underscore to separate them (snake_case)
- → Variables should not be assigned the same name as a default or imported function or class (i.e., 'type', 'print', 'for'), or you risk overwriting these.

Operators

Operator	What it does	Example
+	Adds	1 + 1 = 2
-	Subtracts	3 - 2 = 1
*	Multiplies	4 * 4 = 16
/	Divides	5/2 = 2.5
//	Quotient (after division rounds down to whole number)	5//2 = 2
**	Exponent	3 ** 2 = 9
=	Assigns value	x = 2
%	Modulo (finds remainder)	5 % 2 = 1

Comparisons

Operator	What it does	
==	Equals to	
!=	Not equals to	
>	Greater than	
>=	Greater than or equals to	
<	Less than	
<=	Less than or equals to	

Boolean	Outcome
x == 2	True
x == 4	False
x == 2 and x == 4	False
x != 2	False
x == 2 or x == 4	True

Changing Types

float(1) 1.0		
1.0		
int(2.0)		
2		
str(2.0) '2.0'		
'2.0'		

Private and Confidential Multiverse

Data Science Unit 1 Strings and Indexing

'Hello World'

012345678910

['Data', 1, 'London', 2.0]

Data Science Unit 1 Collections

(1,2,3)

Multiverse

{'A':2, 'B':5, 'C':10}

Multiverse

Data Science Unit 1 Importing Libraries

Import

```
import math
x = math.cos(2 * math.pi)
print(x)

1.0

from math import pi
x=pi
print(x)

3.141592653589793
```


multiverse

Data Science Unit 1 Control Flow

Control Flow

Indentation

```
if 'one' == 'two':
    print("The string 'one' is equal to the string 'two'.")

print('---')
print('These two lines are not indented, so they are always run next.')
```


М

For

```
numbers=[1,2,3,4,5]
for number in numbers:
    print(number**2)

1
4
9
16
25
```

М

try-except

Functions

```
def arithmetic(num1, num2):
   This function adds, subtracts
    and multiplies num1 and num2.
   print(num1 + num2)
   print(num1 - num2)
   print(num1 * num2)
#arithmetic(3,5)
```

W While

```
In [*]: x = 0
while x < 10:
              print (x)
```


List and Dictionary Comprehensions

```
# Create a new list which is an upper case version of the first list
animals=['cat', 'dog', 'cow', 'mouse']
upper_animals=[]

for animal in animals:
    upper_animals.append(animal.upper())

print(upper_animals)
['CAT', 'DOG', 'COW', 'MOUSE']
```

```
upper_animals=[animal.upper() for animal in animals]
print(upper_animals)
['CAT', 'DOG', 'COW', 'MOUSE']
```


multiverse

