Manipulating Tables with dplyr (contd)

Data Wrangling: Session 3

Kieran Healy Statistical Horizons, October 2023

Window functions and moving averages

Load our libraries

```
library(here)  # manage file paths
library(socviz)  # data and some useful functions
library(tidyverse)  # your friend and mine
```

dplyr's window functions

Ranking and cumulation within groups.

```
## Data on COVID-19
library(covdata)
covnat_weekly
## # A tibble: 4,966 × 11
     date
                                  iso3
                                             pop cases deaths cu_cases cu_deaths
                 year week cname
                                           <dbl> <dbl>
     <date>
                 <chr>
                           <chr>
                                   <chr>
                                                        <dbl>
                                                                  <dbl>
                                                                            <dbl>
   1 2019-12-30 2020-01
                           Austria AUT
                                         8932664
                                                                     NA
                                                                               NA
   2 2020-01-06 2020-02 Austria AUT
                                         8932664
                                                           NA
                                                                     NA
                                                                               NA
   3 2020-01-13 2020-03
                           Austria AUT
                                         8932664
                                                           NΑ
                                                                     NA
                                                                               NA
                                                    NΑ
   4 2020-01-20 2020-04
                           Austria AUT
                                         8932664
                                                                               NA
                                                           NA
                                                                     NA
                                                    NA
   5 2020-01-27 2020-05
                           Austria AUT
                                         8932664
                                                           NA
                                                                               NA
                                                    NA
                                                                     NA
   6 2020-02-03 2020-06
                                         8932664
                           Austria AUT
                                                    NA
                                                           NA
                                                                     NA
                                                                               NA
   7 2020-02-10 2020-07
                           Austria AUT
                                         8932664
                                                           NΑ
                                                                     NA
                                                                               NΑ
   8 2020-02-17 2020-08
                           Austria AUT
                                         8932664
                                                           NA
                                                                     NA
                                                                               NA
   9 2020-02-24 2020-09
                           Austria AUT
                                         8932664
                                                                     12
  10 2020-03-02 2020-10
                           Austria AUT
                                         8932664
                                                                    127
## # i 4,956 more rows
## # i 2 more variables: r14_cases <dbl>, r14_deaths <dbl>
```

dplyr's window functions

cumsum() gives cumulative sums

```
covnat weekly ▷
  filter(iso3 = "FRA") ▷
  select(date, cname, iso3, cases) ▷
  mutate(cases = ifelse(is.na(cases), 0, cases), # convert NA vals in `cases` to 0
         cumulative = cumsum(cases))
## # A tibble: 159 × 5
     date
          cname iso3 cases cumulative
     <date> <chr> <chr> <dbl>
                                       <dbl>
   1 2019-12-30 France FRA
   2 2020-01-06 France FRA
   3 2020-01-13 France FRA
   4 2020-01-20 France FRA
   5 2020-01-27 France FRA
   6 2020-02-03 France FRA
   7 2020-02-10 France FRA
                                          12
   8 2020-02-17 France FRA
                                       16
   9 2020-02-24 France FRA
                               133
                                      149
## 10 2020-03-02 France FRA
                               981
                                        1130
## # i 149 more rows
```

dplyr's window functions

cume_dist() gives the proportion of values less than or equal to the current value.

```
covnat weekly ▷
  select(date, cname, iso3, deaths) ▷
  filter(iso3 = "FRA") ▷
  filter(cume dist(desc(deaths)) < 0.1) # i.e. Top 10%
## # A tibble: 15 × 4
     date
           cname iso3 deaths
     <date> <chr> <chr> <dbl>
   1 2020-04-06 France FRA
                               3348
   2 2020-10-26 France FRA
                               3517
   3 2020-11-02 France FRA
                               5281
   4 2020-11-09 France FRA
                               6018
   5 2020-11-16 France FRA
                               6208
   6 2020-11-23 France FRA
                               5215
   7 2020-11-30 France FRA
                               4450
   8 2020-12-07 France FRA
                               4257
                               3786
   9 2020-12-14 France FRA
                               3560
## 10 2020-12-21 France FRA
## 11 2021-01-04 France FRA
                               3851
                               3833
## 12 2021-01-11 France FRA
                               3754
## 13 2021-01-18 France FRA
                               3535
## 14 2021-01-25 France FRA
## 15 2021-02-01 France FRA
                               3431
```

The dplyr vignette on Window functions is good.

An application

```
covus ▷
  filter(measure = "death") ▷
  group by(state) ▷
  arrange(state, desc(date)) ▷
  filter(state %in% "NY")
## # A tibble: 371 × 7
## # Groups: state [1]
                            data_quality_grade measure count measure_label
     date
              state fips
              <chr> <chr> <lql>
                                               <chr>
                                                     <dbl> <chr>
     <date>
   1 2021-03-07 NY
                      36
                            NΑ
                                               death
                                                      39029 Deaths
   2 2021-03-06 NY
                      36
                            NA
                                               death
                                                     38970 Deaths
                                                    38891 Deaths
   3 2021-03-05 NY
                                               death
                            NΑ
   4 2021-03-04 NY
                            NΑ
                                                    38796 Deaths
                                               death
   5 2021-03-03 NY
                            NA
                                                    38735 Deaths
                                               death
   6 2021-03-02 NY
                            NA
                                               death
                                                     38660 Deaths
   7 2021-03-01 NY
                            NA
                                               death
                                                    38577 Deaths
                                                    38497 Deaths
   8 2021-02-28 NY
                            NΑ
                                               death
   9 2021-02-27 NY
                                                    38407 Deaths
                            NA
                                               death
                                                     38321 Deaths
## 10 2021-02-26 NY
                            NA
                                               death
## # i 361 more rows
```

Here the count measure is *cumulative* deaths. What if we want to recover the daily count for all the states in the data?

An application

dplyr has **lead()** and **lag()** functions. These allow you to access the previous and next values in a vector. You can calculate offsets this way.

An application

We can write the expression directly:

```
covus ▷
  select(-data quality grade) ▷
  filter(measure = "death") ▷
  group by(state) ▷
  arrange(date) ▷
  mutate(deaths_daily = count - lag(count, order_by = date)) ▷
  arrange(state, desc(date)) ▷
  filter(state %in% "NY")
## # A tibble: 371 × 7
## # Groups: state [1]
     date state fips measure count measure label deaths daily
     <date>
             <chr> <chr> <chr>
                                    <dbl> <chr>
                                                               <dbl>
   1 2021-03-07 NY
                            death
                                    39029 Deaths
                                                                  59
   2 2021-03-06 NY
                                    38970 Deaths
                                                                  79
                            death
   3 2021-03-05 NY
                            death
                                    38891 Deaths
                                                                  95
   4 2021-03-04 NY
                            death
                                    38796 Deaths
                                                                  61
                                                                  75
   5 2021-03-03 NY
                            death
                                    38735 Deaths
   6 2021-03-02 NY
                                    38660 Deaths
                                                                  83
                            death
   7 2021-03-01 NY
                                    38577 Deaths
                                                                  80
                            death
   8 2021-02-28 NY
                                    38497 Deaths
                                                                  90
                            death
   9 2021-02-27 NY
                      36
                            death
                                    38407 Deaths
                                                                  86
## 10 2021-02-26 NY
                            death
                                    38321 Deaths
                                                                  94
                      36
## # i 361 more rows
```

Writing our own functions

But we could also write a function to do this.

We write functions using the special function() function.*

```
my_fun ← function(x) {
    x + 1
}

my_fun # we've created the function; it's just an object

## function(x) {
    ##    x + 1
    ## }

my_fun(x = 1) # But we can supply it with an input!

## [1] 2

my_fun(10)

## [1] 11
```

^{*}Nerds love this sort of stuff.

Writing our own functions

We write our function. It's just the expression we originally wrote, wrapped up.

```
get_daily_count ← function(count, date){
  count - lag(count, order_by = date)
}
```

This function has no generality, error-handling, or anything else. It's a once-off.

Writing our own functions

Now we can use it like any other:

```
covus ▷
  filter(measure = "death") ▷
  select(-data quality grade) ▷
  group by(state) ▷
  arrange(date) ▷
  mutate(deaths_daily = get_daily_count(count, date)) >
  arrange(state, desc(date)) ▷
  filter(state %in% "NY")
## # A tibble: 371 × 7
## # Groups: state [1]
     date state fips measure count measure label deaths daily
     <date>
             <chr> <chr> <chr>
                                   <dbl> <chr>
                                                              <dbl>
   1 2021-03-07 NY
                            death
                                   39029 Deaths
                                                                 59
   2 2021-03-06 NY
                            death
                                   38970 Deaths
   3 2021-03-05 NY
                                   38891 Deaths
                                                                 95
                            death
   4 2021-03-04 NY
                            death
                                   38796 Deaths
                                                                 61
   5 2021-03-03 NY
                            death
                                   38735 Deaths
                                                                 75
   6 2021-03-02 NY
                                                                 83
                            death
                                   38660 Deaths
   7 2021-03-01 NY
                                   38577 Deaths
                                                                 80
                            death
   8 2021-02-28 NY
                                   38497 Deaths
                                                                 90
                            death
   9 2021-02-27 NY
                            death
                                   38407 Deaths
                                                                 86
## 10 2021-02-26 NY
                                   38321 Deaths
                                                                 94
                            death
## # i 361 more rows
```

Not super-useful quite yet, but if our task had more steps ...

Tidy moving averages with slider

dplyr's window functions don't include moving averages.

There are several options, notably RcppRoll

We'll use the slider package.

```
# install.packages("slider")
library(slider)
```

Tidy moving averages with slider

```
covus ▷
  filter(measure = "death") ▷
  select(-data quality grade) ▷
  group by(state) ▷
  arrange(date) ▷
  mutate(
    deaths daily = get daily count(count, date),
    deaths7 = slide mean(deaths daily.
                         before = 7,
                         na rm = TRUE)) ▷
  arrange(state, desc(date)) ▷
  filter(state %in% "NY")
## # A tibble: 371 × 8
## # Groups: state [1]
     date state fips measure count measure label deaths daily deaths7
                                  <dbl> <chr>
     <date>
             <chr> <chr> <chr>
                                                              <dbl> <dbl>
                                                                      77.8
   1 2021-03-07 NY
                            death
                                   39029 Deaths
   2 2021-03-06 NY
                            death
                                   38970 Deaths
                                                                       81.1
   3 2021-03-05 NY
                            death
                                   38891 Deaths
                                                                 95
                                                                       83
                                                                       82.6
   4 2021-03-04 NY
                            death
                                   38796 Deaths
                                                                 75
   5 2021-03-03 NY
                            death
                                   38735 Deaths
                                                                       88
   6 2021-03-02 NY
                            death
                                   38660 Deaths
                                                                       89.9
   7 2021-03-01 NY
                            death
                                   38577 Deaths
                                                                       90.8
   8 2021-02-28 NY
                            death
                                   38497 Deaths
                                                                 90
                                                                       90.1
                                                                       91.5
   9 2021-02-27 NY
                                   38407 Deaths
                                                                 86
                            death
```

95.6

10 2021-02-26 NY

i 361 more rows

death

38321 Deaths

Tidy moving averages with slider

Notice the Tidyverse-style na_rm argument rather than the usual base na.rm

The package provides a lot of different functions, from general-purpose slide_max(), slide_min() to more specialized sliding functions. In particular note e.g. slide_index_mean() that addresses some subtleties in averaging over dates with gaps.

Tidy up after yourself with relocate()

gss_sm ## # A tibble: 2,867 × 32 id ballot age childs sibs degree race sex region income16 vear ### <dbl> <dbl> <labelled> <dbl> <labe> <fct> <fct> <fct> <fct> <fct> 1 2016 1 1 3 2 Bache... White Male New E... \$170000... 2 2016 2 2 61 0 3 High ... White Male New E... \$50000 ... 3 2016 3 3 72 2 3 Bache... White Male New E... \$75000 ... 2016 4 1 43 4 3 High ... White Fema... New E... \$170000... Gradu... White Fema... New E... \$170000... 5 2016 5 3 55 2 2 2 2 6 2016 6 2 53 Junio... White Fema... New E... \$60000 ... 2 2 7 2016 7 1 50 High ... White Male New E... \$170000... 2016 8 3 23 3 6 High ... Other Fema... Middl... \$30000 ... 9 2016 9 1 45 3 5 High ... Black Male Middl... \$60000 ... ## 10 2016 10 3 71 4 1 Junio... White Male Middl... \$60000 ... ## # i 2,857 more rows ## # i 21 more variables: relig <fct>, marital <fct>, padeg <fct>, madeg <fct>, partyid <fct>, polviews <fct>, happy <fct>, partners <fct>, grass <fct>, ## # ## # zodiac <fct>, pres12 <labelled>, wtssall <dbl>, income rc <fct>, agegrp <fct>, ageq <fct>, siblings <fct>, kids <fct>, religion <fct>, ## # bigregion <fct>, partners rc <fct>, obama <dbl> ## #

gss_sm

```
## # A tibble: 2,867 × 32
               id ballot
                                age childs sibs
                                                   degree race sex
                                                                        region income16
       vear
      <dbl> <dbl> <labelled> <dbl> <labe> <fct> <fct> <fct> <fct> <fct>
   1 2016
                1 1
                                          3 2
                                                    Bache... White Male New E... $170000...
                                 47
   2
       2016
                2 2
                                 61
                                          0 3
                                                   High ... White Male New E... $50000 ...
       2016
                3 3
                                 72
                                          2 3
                                                    Bache... White Male New E... $75000 ...
   3
       2016
                4 1
                                 43
                                          4 3
                                                   High ... White Fema... New E... $170000...
       2016
                5 3
                                          2 2
                                  55
                                                    Gradu... White Fema... New E... $170000...
       2016
                6 2
                                  53
                                          2 2
                                                    Junio... White Fema... New E... $60000 ...
       2016
                7 1
                                  50
                                          2 2
                                                   High ... White Male New E... $170000...
       2016
                8 3
                                 23
                                          3 6
                                                   High ... Other Fema... Middl... $30000 ...
       2016
                9 1
                                 45
                                          3 5
                                                   High ... Black Male Middl... $60000 ...
## 10
       2016
               10 3
                                 71
                                          4 1
                                                    Junio... White Male Middl... $60000 ...
## # i 2,857 more rows
## # i 21 more variables: relig <fct>, marital <fct>, padeg <fct>, madeg <fct>,
       partyid <fct>, polviews <fct>, happy <fct>, partners <fct>, grass <fct>,
       zodiac <fct>, pres12 <labelled>, wtssall <dbl>, income rc <fct>,
       agegrp <fct>, ageg <fct>, siblings <fct>, kids <fct>, religion <fct>,
       bigregion <fct>, partners rc <fct>, obama <dbl>
## #
```

```
gss_sm ▷
  select(region, bigregion, year,
        id:region,
        starts_with("p"),
        contains("income"))
```

```
## # A tibble: 2,867 × 19
      region
                 bigregion year
                                     id ballot
                                                  age childs sibs degree race sex
      <fct>
                            <dbl> <dbl> <labe> <dbl> <lab> <fct> <fct> <fct><</pre>
                 <fct>
    1 New Engla... Northeast 2016
                                      1 1
                                                           3 2
                                                                    Bache... White Male
                                                   47
    2 New Engla... Northeast
                             2016
                                      2 2
                                                   61
                                                           0 3
                                                                    High ... White Male
   3 New Engla... Northeast
                             2016
                                       3 3
                                                   72
                                                           2 3
                                                                    Bache... White Male
   4 New Engla... Northeast
                             2016
                                       4 1
                                                   43
                                                           4 3
                                                                    High ... White Fema...
    5 New Engla... Northeast
                             2016
                                       5 3
                                                   55
                                                           2 2
                                                                    Gradu... White Fema...
                                       6 2
    6 New Engla... Northeast
                             2016
                                                   53
                                                           2 2
                                                                    Junio... White Fema...
   7 New Engla... Northeast
                             2016
                                      7 1
                                                   50
                                                           2 2
                                                                    High ... White Male
                                                           3 6
   8 Middle At... Northeast 2016
                                      8 3
                                                   23
                                                                    High ... Other Fema...
## 9 Middle At... Northeast 2016
                                       9 1
                                                   45
                                                           3 5
                                                                    High ... Black Male
## 10 Middle At... Northeast 2016
                                     10 3
                                                   71
                                                           4 1
                                                                    Junio... White Male
## # i 2,857 more rows
## # i 8 more variables: padeg <fct>, partyid <fct>, polviews <fct>,
       partners <fct>, pres12 <labelled>, partners rc <fct>, income16 <fct>,
## #
       income rc <fct>
```

```
## # A tibble: 2,867 × 19
      region
                  bigregion year
                                      id ballot
                                                   age children siblings degree race
      <fct>
                             <dbl> <dbl> <labe> <dbl>
                                                          <dbl> <labell> <fct> <fct>
                  <fct>
    1 New England Northeast
                             2016
                                       1 1
                                                              3 2
                                                                          Bache... White
                                                    47
    2 New England Northeast
                              2016
                                       2 2
                                                    61
                                                              0 3
                                                                          High ... White
    3 New England Northeast
                              2016
                                       3 3
                                                    72
                                                              2 3
                                                                          Bache... White
    4 New England Northeast
                              2016
                                       4 1
                                                    43
                                                              4 3
                                                                          High ... White
                                       5 3
                                                    55
                                                              2 2
    5 New England Northeast
                              2016
                                                                          Gradu... White
    6 New England Northeast
                                       6 2
                              2016
                                                    53
                                                              2 2
                                                                          Junio... White
   7 New England Northeast
                              2016
                                       7 1
                                                    50
                                                              2 2
                                                                          High ... White
   8 Middle Atl... Northeast
                              2016
                                       8 3
                                                    23
                                                              3 6
                                                                          High ... Other
## 9 Middle Atl... Northeast
                             2016
                                       9 1
                                                    45
                                                              3 5
                                                                          High ... Black
## 10 Middle Atl... Northeast 2016
                                      10 3
                                                    71
                                                              4 1
                                                                          Junio... White
## # i 2,857 more rows
## # i 9 more variables: sex <fct>, padeg <fct>, partyid <fct>, polviews <fct>,
       partners <fct>, pres12 <labelled>, partners rc <fct>, income16 <fct>,
## #
       income rc <fct>
```

```
## # A tibble: 2,867 × 19
         id region
                         bigregion year ballot
                                                   age children siblings degree race
                                   <dbl> <labe> <dbl>
                                                          <dbl> <labell> <fct> <fct>
      <dbl> <fct>
                        <fct>
          1 New England Northeast 2016 1
                                                              3 2
                                                                          Bache... White
                                                    47
          2 New England Northeast
                                    2016 2
                                                    61
                                                              0 3
                                                                          High ... White
          3 New England Northeast
                                    2016 3
                                                    72
                                                              2 3
                                                                          Bache... White
##
          4 New England Northeast 2016 1
                                                    43
                                                              4 3
                                                                          High ... White
                                                    55
                                                              2 2
          5 New England Northeast
                                    2016 3
                                                                          Gradu... White
          6 New England Northeast
                                    2016 2
                                                    53
                                                              2 2
                                                                          Junio... White
          7 New England Northeast
                                    2016 1
                                                    50
                                                              2 2
                                                                          High ... White
          8 Middle Atl... Northeast 2016 3
                                                    23
                                                              3 6
                                                                          High ... Other
          9 Middle Atl... Northeast 2016 1
                                                    45
                                                              3 5
                                                                          High ... Black
## 10
         10 Middle Atl... Northeast 2016 3
                                                    71
                                                              4 1
                                                                          Junio... White
## # i 2,857 more rows
## # i 9 more variables: sex <fct>, padeg <fct>, partyid <fct>, polviews <fct>,
## #
       partners <fct>, pres12 <labelled>, partners rc <fct>, income16 <fct>,
## #
       income rc <fct>
```

```
gss_sm >
  select(region, bigregion, year,
        id:region,
        starts_with("p"),
        contains("income")) >
  rename(children = childs,
        siblings = sibs) >
  relocate(id) >
  select(-ballot)
```

```
## # A tibble: 2,867 × 18
         id region bigregion year
                                       age children siblings degree race sex
                                                                                   paded
                                              <dbl> <labell> <fct> <fct> <fct> <fct>
      <dbl> <fct> <fct>
                              <dbl> <dbl>
          1 New E... Northeast 2016
                                                   3 2
                                                               Bache... White Male Grad...
          2 New E... Northeast 2016
                                                   0 3
                                                              High ... White Male Lt H...
          3 New E... Northeast 2016
                                        72
                                                   2 3
                                                               Bache... White Male High...
          4 New E... Northeast 2016
                                        43
                                                   4 3
                                                              High ... White Fema... <NA>
                                                   2 2
##
          5 New E... Northeast 2016
                                        55
                                                              Gradu... White Fema... Bach...
          6 New E... Northeast 2016
                                        53
                                                   2 2
                                                              Junio... White Fema... <NA>
          7 New E... Northeast 2016
                                        50
                                                   2 2
                                                              High ... White Male High...
          8 Middl... Northeast 2016
                                        23
                                                   3 6
                                                              High ... Other Fema... Lt H...
          9 Middl... Northeast 2016
                                        45
                                                   3 5
                                                              High ... Black Male Lt H...
## 10
         10 Middl... Northeast 2016
                                                   4 1
                                                               Junio... White Male High...
## # i 2,857 more rows
## # i 7 more variables: partyid <fct>, polviews <fct>, partners <fct>,
       pres12 <labelled>, partners rc <fct>, income16 <fct>, income rc <fct>
```

```
gss_sm ▷
  select(region, bigregion, year,
         id:region,
         starts_with("p"),
         contains("income")) ▷
  rename(children = childs,
         siblings = sibs) ▷
  relocate(id) ⊳
  select(-ballot) ▷
  relocate(where(is.numeric),
           .before = where(is.factor))
```

```
## # A tibble: 2,867 × 18
         id year
                      age children siblings
                                                           region bigregion degree race
                                                pres12
      <dbl> <dbl> <dbl>
                             <dbl> <labelled> <labelle> <fct> <fct>
                                                                             <fct> <fct>
              2016
                       47
                                 3 2
                                                           New E... Northeast Bache... White
                                                 3
                                 0 3
             2016
                       61
                                                           New E... Northeast High ... White
                                 2 3
    3
              2016
                      72
                                                           New E... Northeast Bache... White
              2016
                       43
                                 4 3
                                                           New E... Northeast High ... White
                                 2 2
              2016
                       55
                                                           New E... Northeast Gradu... White
                       53
                                 2 2
              2016
                                                           New E... Northeast Junio... White
                       50
                                 2 2
              2016
                                                NA
                                                           New E... Northeast High ... White
                                 3 6
              2016
                       23
                                                NA
                                                           Middl... Northeast High ... Other
              2016
                       45
                                 3 5
                                                           Middl... Northeast High ... Black
                                                NA
## 10
         10
              2016
                                 4 1
                                                 2
                                                           Middl... Northeast Junio... White
## # i 2,857 more rows
```

i 8 more variables: sex <fct>, padeg <fct>, partyid <fct>, polviews <fct>, partners <fct>, partners rc <fct>, income16 <fct>, income rc <fct>

```
## # A tibble: 2,867 × 18
         id year region
                               bigregion
                                            age children siblings pres12 degree race
      <dbl> <dbl> <fct>
                                                   <dbl> <labell> <labe> <fct> <fct>
                               <fct>
                                          <dbl>
             2016 New England Northeast
                                             47
                                                       3 2
                                                                          Bache... White
          2 2016 New England Northeast
                                             61
                                                       0 3
                                                                          High ... White
                                             72
             2016 New England Northeast
                                                       2 3
                                                                          Bache... White
             2016 New England Northeast
                                             43
                                                       4 3
                                                                          High ... White
                                             55
                                                       2 2
             2016 New England Northeast
                                                                          Gradu... White
                                             53
                                                       2 2
             2016 New England Northeast
                                                                          Junio... White
                                             50
                                                       2 2
             2016 New England Northeast
                                                                   NA
                                                                          High ... White
                                                       3 6
          8 2016 Middle Atl... Northeast
                                             23
                                                                   NA
                                                                          High ... Other
  9
             2016 Middle Atl... Northeast
                                             45
                                                       3 5
                                                                          High ... Black
                                                                   NA
## 10
             2016 Middle Atl... Northeast
                                             71
                                                       4 1
                                                                    2
                                                                          Junio... White
## # i 2,857 more rows
## # i 8 more variables: sex <fct>, padeg <fct>, partyid <fct>, polviews <fct>,
```

partners <fct>, partners rc <fct>, income16 <fct>, income rc <fct>

library(ukelection2019)

ukvote2019

```
## # A tibble: 3,320 × 13
      cid
              constituency electorate party name candidate votes vote share percent
                                                   <chr>
      <chr> <chr>
                                 <int> <chr>
                                                              <int>
                                                                                  <dbl>
   1 W07000... Aberavon
                                                   Stephen ... 17008
                                 50747 Labour
                                                                                   53.8
   2 W07000... Aberavon
                                 50747 Conservat... Charlott... 6518
                                                                                   20.6
   3 W07000... Aberavon
                                 50747 The Brexi... Glenda D... 3108
                                                                                    9.8
   4 W07000... Aberavon
                                 50747 Plaid Cym... Nigel Hu... 2711
                                                                                    8.6
   5 W07000... Aberavon
                                 50747 Liberal D... Sheila K... 1072
                                                                                    3.4
   6 W07000... Aberavon
                                 50747 Independe... Captain ...
                                                              731
                                                                                    2.3
   7 W07000... Aberavon
                                 50747 Green
                                                   Giorgia ...
                                                                450
                                                                                    1.4
   8 W07000... Aberconwy
                                 44699 Conservat... Robin Mi... 14687
                                                                                   46.1
   9 W07000... Aberconwy
                                                   Emily Ow... 12653
                                 44699 Labour
                                                                                   39.7
                                 44699 Plaid Cym... Lisa Goo... 2704
## 10 W07000... Aberconwy
                                                                                    8.5
## # i 3,310 more rows
## # i 6 more variables: vote_share_change <dbl>, total_votes_cast <int>,
      vrank <int>, turnout <dbl>, fname <chr>, lname <chr>
```

Use **sample_n()** to sample n rows of your tibble.

```
library(ukelection2019)
ukvote2019 ⊳
  sample_n(10)
## # A tibble: 10 × 13
              constituency electorate party name candidate votes vote share percent
      <chr> <chr>
                                 <int> <chr> <chr>
                                                              <int>
                                                                                   <fdb>>
   1 E14000... Sheffield H...
                               72763 Labour Olivia B... 19709
                                                                                    34.6
   2 E14000... Brigg & Goo...
                              65939 Green Jo Baker 1281
                              74623 Conservat… Alok Sha… 24393
   3 E14000... Reading West
                                                                                    48.4
   4 S14000... Ochil & Sou...
                             78776 Conservat... Luke Gra... 22384
                                                                                    38.7
## 5 E14000... Bradford We... 70694 Conservat... Mohammed... 6717
                                                                                    15.2
   6 E14000... Salford & E... 82202 Labour Rebecca ... 28755 7 W07000... Newport East 58554 The Brexi... Julie Pr... 2454
                                                                                    56.8
## 7 W07000... Newport East
                                                                                    6.8
   8 E14000... Arundel & S...
                                 81726 Liberal D... Alison B... 13045
                                                                                    21.2
   9 S14000... Orkney & Sh...
                             34211 Conservat... Jennifer... 2287
                                                                                     9.9
                                                                                     0.1
## 10 E14000... Folkestone ...
                                 88273 Young Peo... Rohen Ka...
### # i 6 more variables: vote_share_change <dbl>, total_votes_cast <int>,
      vrank <int>, turnout <dbl>, fname <chr>, lname <chr>
```

A vector of unique constituency names

```
ukvote2019 ⊳
  distinct(constituency)
## # A tibble: 650 × 1
     constituency
     <chr>
## 1 Aberavon
## 2 Aberconwy
## 3 Aberdeen North
## 4 Aberdeen South
## 5 Aberdeenshire West & Kincardine
## 6 Airdrie & Shotts
## 7 Aldershot
## 8 Aldridge-Brownhills
## 9 Altrincham & Sale West
## 10 Alyn & Deeside
## # i 640 more rows
```

Tally them up

Which parties fielded the most candidates?

```
ukvote2019 ⊳
  count(party name) ▷
  arrange(desc(n))
## # A tibble: 69 × 2
     party_name
                                    n
     <chr>
                                 <int>
   1 Conservative
                                  636
   2 Labour
                                  631
## 3 Liberal Democrat
                                  611
## 4 Green
                                  497
## 5 The Brexit Party
                                  275
## 6 Independent
                                   224
## 7 Scottish National Party
                                   59
## 8 UKIP
                                   44
## 9 Plaid Cymru
                                   36
## 10 Christian Peoples Alliance
                                   29
## # i 59 more rows
```

Top 5

Top 5

Bottom 5

```
ukvote2019 ▷
  count(party name) ▷
  slice min(order by = n, n = 5)
## # A tibble: 25 × 2
     party_name
                                              n
     <chr>
                                          <int>
   1 Ashfield Independents
   2 Best for Luton
   3 Birkenhead Social Justice Party
   4 British National Party
## 5 Burnley & Padiham Independent Party
   6 Church of the Militant Elvis Party
## 7 Citizens Movement Party UK
## 8 CumbriaFirst
## 9 Heavy Woollen District Independents
## 10 Independent Network
## # i 15 more rows
```

How many constituencies are there?

```
ukvote2019 ⊳
  count(constituency)
## # A tibble: 650 × 2
     constituency
                                         n
     <chr>
                                     <int>
   1 Aberavon
## 2 Aberconwy
## 3 Aberdeen North
## 4 Aberdeen South
## 5 Aberdeenshire West & Kincardine
## 6 Airdrie & Shotts
## 7 Aldershot
## 8 Aldridge-Brownhills
   9 Altrincham & Sale West
## 10 Alyn & Deeside
## # i 640 more rows
```

How many constituencies are there?

```
ukvote2019 ⊳
  count(constituency)
## # A tibble: 650 × 2
     constituency
                                         n
     <chr>
                                     <int>
   1 Aberavon
   2 Aberconwy
## 3 Aberdeen North
## 4 Aberdeen South
## 5 Aberdeenshire West & Kincardine
## 6 Airdrie & Shotts
## 7 Aldershot
## 8 Aldridge-Brownhills
   9 Altrincham & Sale West
## 10 Alyn & Deeside
## # i 640 more rows
```

ukvote2019

```
## # A tibble: 3,320 × 13
      cid
              constituency electorate party name candidate votes vote share percent
      <chr> <chr>
                                 <int> <chr>
                                                   <chr>
                                                              <int>
                                                                                  <dbl>
                                                   Stephen ... 17008
   1 W07000... Aberavon
                                 50747 Labour
                                                                                   53.8
   2 W07000... Aberavon
                                 50747 Conservat... Charlott... 6518
                                                                                   20.6
   3 W07000... Aberavon
                                 50747 The Brexi... Glenda D... 3108
                                                                                    9.8
   4 W07000... Aberavon
                                 50747 Plaid Cym... Nigel Hu... 2711
                                                                                    8.6
   5 W07000... Aberavon
                                 50747 Liberal D... Sheila K... 1072
                                                                                    3.4
   6 W07000... Aberavon
                                 50747 Independe... Captain ...
                                                                731
                                                                                    2.3
## 7 W07000... Aberavon
                                 50747 Green
                                                   Giorgia ...
                                                                450
                                                                                    1.4
   8 W07000... Aberconwy
                                 44699 Conservat... Robin Mi... 14687
                                                                                   46.1
## 9 W07000... Aberconwy
                                                   Emily Ow... 12653
                                 44699 Labour
                                                                                   39.7
## 10 W07000... Aberconwy
                                 44699 Plaid Cym... Lisa Goo... 2704
                                                                                    8.5
## # i 3,310 more rows
## # i 6 more variables: vote share change <dbl>, total votes cast <int>,
       vrank <int>, turnout <dbl>, fname <chr>, lname <chr>
```

```
ukvote2019 ▷
count(constituency, name = "n_cands")
```

```
## # A tibble: 650 × 2
     constituency
                                     n cands
## <chr>
                                      <int>
## 1 Aberavon
## 2 Aberconwy
## 3 Aberdeen North
## 4 Aberdeen South
## 5 Aberdeenshire West & Kincardine
## 6 Airdrie & Shotts
## 7 Aldershot
## 8 Aldridge-Brownhills
## 9 Altrincham & Sale West
## 10 Alyn & Deeside
## # i 640 more rows
```

```
ukvote2019 ▷
count(constituency, name = "n_cands") ▷
count(n_cands, name = "n_const")
```

```
## # A tibble: 8 × 2
   n_cands n_const
      <int> <int>
## 1
                 21
## 2
                194
## 3
                226
                139
## 4
                 49
## 5
## 6
                 18
                  2
## 7
         12
## 8
```

Recapping Yesterday and Looking Ahead

Data Wrangling

Kieran Healy Statistical Horizons, October 2023

Coding as gardening

Working in RStudio with RMarkdown documents

Core dplyr verbs

```
Subset your table: filter() rows, select() columns
Logically group_by() one or more columns
Add columns with mutate()
Summarize (by group, or the whole table) with summarize()
```

Expand your dplyr actions

```
Count up rows with n(), tally() or count()
Calculate quantities with sum(), mean(), min(), etc
Subset rows with logical expressions or slice functions
Conditionally select columns by name directly, with %in% or %nin%, or with tidy
selectors like starts_with(), ends_with(), contains()
Conditionally select columns by type with where () and some criterion, e.g.
where(is.numeric)
Conditionally select and then act on columns with
across(where(<condition>), <action>)
```

Expand your dplyr actions

```
Tidy up columns with relocate() and rename()
Tidy up rows with arrange()
```

Today's sessions

So far we have been writing, e.g.,

```
gss_sm ▷
  group_by(bigregion, religion) ▷
  summarize(total = n())
## # A tibble: 24 × 3
## # Groups:
              bigregion [4]
     bigregion religion
                          total
               <fct>
     <fct>
                           <int>
   1 Northeast Protestant
                            158
   2 Northeast Catholic
                            162
   3 Northeast Jewish
                             27
   4 Northeast None
                             112
   5 Northeast Other
                              28
   6 Northeast <NA>
   7 Midwest Protestant
                             325
   8 Midwest Catholic
                             172
   9 Midwest
               Jewish
## 10 Midwest
               None
                             157
## # i 14 more rows
```

Or

10 Midwest

i 14 more rows

None

```
gss_sm ▷
  group_by(bigregion, religion) ▷
  tally()
## # A tibble: 24 × 3
## # Groups:
              bigregion [4]
      bigregion religion
                              n
     <fct>
               <fct>
                           <int>
    1 Northeast Protestant
                             158
    2 Northeast Catholic
                             162
   3 Northeast Jewish
   4 Northeast None
                             112
    5 Northeast Other
                              28
    6 Northeast <NA>
   7 Midwest Protestant
                             325
   8 Midwest Catholic
                             172
   9 Midwest
               Jewish
```

157

Or

```
gss_sm ▷
  count(bigregion, religion)
## # A tibble: 24 × 3
     bigregion religion
                               n
     <fct>
               <fct>
                           <int>
   1 Northeast Protestant
                             158
   2 Northeast Catholic
                             162
   3 Northeast Jewish
                              27
   4 Northeast None
                             112
   5 Northeast Other
                              28
   6 Northeast <NA>
   7 Midwest Protestant
                             325
   8 Midwest Catholic
                             172
   9 Midwest
               Jewish
## 10 Midwest
               None
                             157
## # i 14 more rows
```

With this last one the final result is *ungrouped*, no matter how many levels of grouping there are going in.

But we can also write this:

```
gss_sm ▷
  summarize(total = n(), .by = c(bigregion, religion))
## # A tibble: 24 × 3
     bigregion religion
                          total
     <fct>
               <fct>
                         <int>
   1 Northeast None
                           112
   2 Northeast Catholic
                           162
   3 Northeast Protestant
                           158
## 4 Northeast Other
   5 Northeast Jewish
                            27
               Jewish
   6 West
                            10
          None
   7 West
                           180
   8 West
          Other
                            48
          Protestant
   9 West
                           238
           Catholic
## 10 West
                           155
## # i 14 more rows
```

Notice that by default the result is an *ungrouped* tibble, whereas with group_by() ... summarize() the result would still be grouped by bigregion at the end. To prevent unexpected results, you can't use .by on tibble that's already grouped.

The data is implicitly the first argument

This code:

```
gss_sm ▷
  summarize(total = n(), .by = c(bigregion, religion))
## # A tibble: 24 × 3
     bigregion religion
                          total
     <fct>
               <fct>
                          <int>
   1 Northeast None
                            112
   2 Northeast Catholic
                            162
   3 Northeast Protestant
                            158
   4 Northeast Other
   5 Northeast Jewish
               Jewish
   6 West
                             10
               None
                            180
   7 West
   8 West
           Other
                             48
   9 West
           Protestant
                            238
## 10 West
               Catholic
                            155
## # i 14 more rows
```

The data is implicitly the first argument

... is also equivalent to this:

```
summarize(gss\_sm, total = n(), .by = c(bigregion, religion))
## # A tibble: 24 × 3
     bigregion religion
                          total
     <fct>
               <fct>
                          <int>
   1 Northeast None
                            112
   2 Northeast Catholic
                            162
   3 Northeast Protestant
                            158
   4 Northeast Other
                             28
   5 Northeast Jewish
                             27
               Jewish
   6 West
                             10
   7 West
            None
                            180
           Other
   8 West
                             48
   9 West
           Protestant
                            238
               Catholic
## 10 West
                            155
## # i 14 more rows
```

This is true of Tidyverse pipelines in general. Let's look at the help for summarize () to see why.

Two dplyr gotchas

Let's say you are working with proportions ...

```
## # A tibble: 4 × 3
## id prop1 prop2
## <chr> <dbl> <dbl> ## 1 A 0.1 0.2
## 2 B 0.1 0.21
## 3 C 0.11 0.2
## 4 D 0.1 0.1
```

And you want to focus on cases where prop1 *plus* prop2 is greater than 0.3:

And you want to focus on cases where prop1 *plus* prop2 is greater than 0.3:

The row with id A shouldn't have been included there.

And you want to focus on cases where prop1 *plus* prop2 is greater than 0.3:

The row with id A shouldn't have been included there.

This is not dlpyr's fault. It's our floating point friend again.

```
df D
  filter(prop1 + prop2 = 0.3)

## # A tibble: 0 × 3

## # i 3 variables: id <chr>, prop1 <dbl>, prop2 <dbl>
```

The row with id A should have been included here!

This won't give the right behavior either:

```
df >
  mutate(prop3 = prop1 + prop2) >
  filter(prop3 = 0.3)

## # A tibble: 0 × 4

## # i 4 variables: id <chr>, prop1 <dbl>, prop2 <dbl>, prop3 <dbl>
```

So, beware.

```
df D
   filter(prop1*100 + prop2*100 = 0.3*100)

## # A tibble: 1 × 3
## id prop1 prop2
## <chr> <dbl> <dbl> <dbl> ## 1 A 0.1 0.2
```

Better:

<chr> <dbl> <dbl> ## 1 A 0.1 0.2

```
df >
  filter(near(prop1 + prop2, 0.3))
## # A tibble: 1 × 3
## id prop1 prop2
```

```
df ← read_csv(here("data", "first_terms.csv"))
df
## # A tibble: 280 × 4
       pid start_year party
                                sex
     <dbl> <date>
                      <chr>
                                 <chr>
   1 3160 2013-01-03 Republican M
   2 3161 2013-01-03 Democrat
   3 3162 2013-01-03 Democrat
   4 3163 2013-01-03 Republican M
   5 3164 2013-01-03 Democrat
   6 3165 2013-01-03 Republican M
   7 3166 2013-01-03 Republican M
   8 3167 2013-01-03 Democrat
   9 3168 2013-01-03 Republican M
## 10 3169 2013-01-03 Democrat M
## # i 270 more rows
```

```
df ⊳
    group_by(start_year, party, sex) ▷
    summarize(N = n()) \triangleright
    mutate(freq = N / sum(N))
## # A tibble: 14 × 5
## # Groups: start year, party [8]
     start year party
                                     N freq
                           sex
     <date>
             <chr>
                           <chr> <int> <dbl>
   1 2013-01-03 Democrat F
                                    21 0.362
   2 2013-01-03 Democrat M
                                    37 0.638
   3 2013-01-03 Republican F
                                   8 0.101
   4 2013-01-03 Republican M
                                    71 0.899
   5 2015-01-03 Democrat
                                    1 1
   6 2015-01-03 Republican M
                                     5 1
   7 2017-01-03 Democrat
                                    6 0.24
   8 2017-01-03 Democrat M
                                    19 0.76
  9 2017-01-03 Republican F
                                    2 0.0667
## 10 2017-01-03 Republican M
                                    28 0.933
## 11 2019-01-03 Democrat F
                                    33 0.647
## 12 2019-01-03 Democrat M
                                    18 0.353
## 13 2019-01-03 Republican F
                                   1 0.0323
## 14 2019-01-03 Republican M
                                    30 0.968
```

p_col

p_line

Option 1: factors and . drop

Factors are for categorical variables and are stored differently from characters.

This can matter when modeling, and also now.

```
df f \leftarrow df \triangleright
  mutate(party f = factor(party))
df f
## # A tibble: 280 × 5
       party_f
                            <chr> <fct>
     <dbl> <date>
                     <chr>
   1 3160 2013-01-03 Republican M
                                      Republican
   2 3161 2013-01-03 Democrat
                                      Democrat
   3 3162 2013-01-03 Democrat
                                      Democrat
   4 3163 2013-01-03 Republican M
                                      Republican
                                      Democrat
   5 3164 2013-01-03 Democrat
   6 3165 2013-01-03 Republican M
                                      Republican
   7 3166 2013-01-03 Republican M
                                      Republican
   8 3167 2013-01-03 Democrat
                                      Democrat
   9 3168 2013-01-03 Republican M
                                      Republican
## 10 3169 2013-01-03 Democrat M
                                      Democrat
## # i 270 more rows
```

Option 1: factors and . drop

Factors are integer values with named labels, or *levels*:

```
typeof(df_f$party_f)

## [1] "integer"

levels(df_f$party_f)

## [1] "Democrat" "Republican"
```

Option 1: factors and .drop

By default, unused levels won't display:

```
df f \leftarrow df \triangleright
  mutate(party_f = factor(party,
                           levels = c("Democrat",
                                      "Republican",
                                      "Libertarian")))
df f ⊳
  group_by(party_f) ▷
  tally()
## # A tibble: 2 × 2
## party_f
   <fct>
            <int>
## 1 Democrat
               135
## 2 Republican 145
levels(df_f$party_f)
## [1] "Democrat"
                  "Republican" "Libertarian"
```

Option 1: factors and .drop

By default, unused levels won't display:

```
df ⊳
  mutate(across(where(is.character), as factor)) >
  group by(start year, party, sex) ▷
  summarize(N = n()) \triangleright
  mutate(freq = N / sum(N))
## # A tibble: 14 × 5
## # Groups: start_year, party [8]
     start year party sex
                                       freq
     <date>
                <fct> <fct> <fct> <int> <dbl>
   1 2013-01-03 Republican M
                                   71 0.899
   2 2013-01-03 Republican F
                                  8 0.101
   3 2013-01-03 Democrat M
                                   37 0.638
   4 2013-01-03 Democrat F
                                   21 0.362
   5 2015-01-03 Republican M
                                  5 1
   6 2015-01-03 Democrat
                                   1 1
   7 2017-01-03 Republican M
                                   28 0.933
   8 2017-01-03 Republican F
                               2 0.0667
   9 2017-01-03 Democrat
                                   19 0.76
## 10 2017-01-03 Democrat
                                   6 0.24
## 11 2019-01-03 Republican M
                                   30 0.968
## 12 2019-01-03 Republican F
                                  1 0.0323
## 13 2019-01-03 Democrat
                                   18 0.353
## 14 2019-01-03 Democrat
                                   33 0.647
```

Option 1: factors and . drop

You can make dplyr keep empty factor levels though:

```
df ⊳
  mutate(across(where(is.character), as factor)) >
  group_by(start_year, party, sex, .drop = FALSE) >
  summarize(N = n()) \triangleright
  mutate(freq = N / sum(N))
## # A tibble: 16 × 5
## # Groups: start_year, party [8]
     start year party sex
                                      freq
               <fct> <fct> <fct> <int> <dbl>
     <date>
   1 2013-01-03 Republican M
                                   71 0.899
   2 2013-01-03 Republican F
                             8 0.101
   3 2013-01-03 Democrat M
                                   37 0.638
   4 2013-01-03 Democrat F
                                   21 0.362
   5 2015-01-03 Republican M
                              5 1
   6 2015-01-03 Republican F
                               0 0
   7 2015-01-03 Democrat
   8 2015-01-03 Democrat
                                    0 0
   9 2017-01-03 Republican M
                                   28 0.933
## 10 2017-01-03 Republican F
                                  2 0.0667
## 11 2017-01-03 Democrat
                                   19 0.76
## 12 2017-01-03 Democrat
                                  6 0.24
## 13 2019-01-03 Republican M
                                   30 0.968
## 14 2019-01-03 Republican F
                                  1 0.0323
## 15 2019-01-03 Democrat
                                   18 0.353
## 16 2019-01-03 Democrat
                                   33 0.647
```

Maybe you don't want to deal with factors.

```
df_c 		 df 		 group_by(start_year, party, sex) 		 summarize(N = n()) 		 mutate(freq = N / sum(N)) 		 mutate(freq = N / sum(N)) 		 ungroup() 		 complete(start_year, party, sex, fill = list(N = 0, freq = 0))
```

df_c

```
## # A tibble: 16 × 5
     start year party
                                     N freq
                           sex
                           <chr> <int> <dbl>
     <date>
                <chr>
   1 2013-01-03 Democrat
                                    21 0.362
   2 2013-01-03 Democrat M
                                    37 0.638
   3 2013-01-03 Republican F
                                   8 0.101
   4 2013-01-03 Republican M
                                    71 0.899
   5 2015-01-03 Democrat
                                     0 0
   6 2015-01-03 Democrat
                                     1 1
                                     0 0
   7 2015-01-03 Republican F
   8 2015-01-03 Republican M
                                     5 1
   9 2017-01-03 Democrat
                                     6 0.24
## 10 2017-01-03 Democrat M
                                    19 0.76
## 11 2017-01-03 Republican F
                                     2 0.0667
## 12 2017-01-03 Republican M
                                    28 0.933
## 13 2019-01-03 Democrat F
                                    33 0.647
## 14 2019-01-03 Democrat M
                                    18 0.353
## 15 2019-01-03 Republican F
                                    1 0.0323
## 16 2019-01-03 Republican M
                                    30 0.968
```

p_out

