

	1	
	2	1. A method of controlling a flow of serial data across an Radio
	3	Frequency (RF) barrier of an RF enclosure, comprising:
ÈW	ALA	
	/ (₅	a processor sending one of more control data using one or more
	6	lines of a serial control data bus;
	7	
	8	an interface electronids module, receiving the one or more lines
	9	of the serial control data bus and selecting one or more signals
	10	corresponding to one or more addresses of the one or more
	11	lines; and
	12	
	13	the interface electronics module, sending the selected one or
	14	more signals to an electronics module within the RF enclosure.
	15	
-	16	2. The method of claim 1, wherein selecting the one or more signals
	17	further comprises selecting each signal with a same line value.
	18	
	19	3. The method of claim 1, wherein the processor is a microprocessor.
	20	
	21	4. The method of claim 1, wherein integrated circuit techniques are
	22	used to select the one or more signals.

-10-

PATENT

	1		
M	2	5.	The method of claim 1, wherein the serial control data bus is an SPI
	3		bus.
	4		
	5 .	6.	The method of claim 1, wherein the one or more signals are
	6		selected by the processor.
	7		
	8	7.	The method of claim 1, wherein the interface electronics module
	9		further comprises an RF filtered connector.
	10		
	11	8.	The method of claim 7, wherein one or more Schmitt trigger input
	12		buffers are used to eliminate potential noise problems caused by
	13		the RF filtered connectors.
	14		
	15	9.	A structure for controlling a flow of serial data across an Radio
Transport	16		Frequency (FF) barrier of an RF enclosure, comprising:
	17		
	18		a processor, operable to send and receive data, coupled to one
	19		or more lines of a serial control data bus;
	20		
	21		an/interface electronics module, operable to select one or more

22

PATENT

signals corresponding to one or more addresses of the one or

10010591-1

		F
1		more lines of the serial control data bus, said RF interface
2		module coupled to an RF enclosure; and
3		
4		an electronics module physically located within the RF cavity,
5		operable to receive the one or more lines selected by the
6		interface electronics module, said electronics module coupled to
7		the interface electronics module.
8		
9	10.	The structure of claim 9, wherein the interface electronics module
10		selects each signal with a same line number.
11		
12	11.	The structure of claim \$\forall wherein the processor is a microprocessor.
13		
14	12.	The structure of claim 9, wherein integrated circuit techniques are
15		used to select the or more signals.
16		
17	13.	The structure of claim 9, wherein the serial control data bus is an
18		SPI bus.
19		
20	14.	The structure of claim 9, wherein the one or more signals are
21		selected by the processor.
22		

electronics module.

01059	1-1
15.	The structure of claim 9, wherein an RF filtered connector is
	coupled to the interface electronics module and to the RF
	enclosure, said RF enclosure providing an interface to the RF
	cavity.
16.	The structure of claim 15, wherein one or more Schmitt trigger inpu
	buffers are used to eliminate potential noise problems caused by
	the RF filtered connectors.
17.	The method of claim/1, wherein sending the selected one or more
	signals to the electronics module within the RF enclosure is
	performed in accordance with a gating functionality of the interface

The method ϕ f claim 17, wherein the gating functionality is a 18. temporal gating functionality.