Telecom Customer Churn

Ravindra Neralla

DSC680- Spring 2021

Bellevue University

Milestone-3

Professor: Fadi Alsaleem

Abstract

Customer churn is a major problem and one of the most important concern for every company. Retaining an existing customer is many times more effective than gaining new customers. [2] Companies usually have a greater focus on customer acquisition and keep retention as a secondary priority. However, it can cost five times more to attract a new customer than it does to retain an existing one. Increasing customer retention rates by 5% can increase profits by 25% to 95%, according to research done by Bain & Company. Generally, people only switch to a different company only when the service is not to the level of expectation in one or the other factor when compared to competitors, more than getting attracted to the specials and offers which are offered by the other companies. [1] It is pretty common to hear people express frustration with some aspect of their communications provider — be it convoluted billing, unwanted marketing emails, hard-to-navigate customer service or high plan prices. As the number of peoples who use a phone or a telecom product does not increase in huge volume, any company looking to improve the profits is trying to attract other company customers. At the same time retaining existing customers is very important. As retaining a current customer is ten times more productive than gaining a new one.

Objective:

As customer churn directly effects the revenues of the companies, companies are seeking to develop means to predict potential customer to churn. Therefore, finding factors that increase customer churn is important to take necessary actions to reduce this churn and retain the customers.

Data:

The dataset, I am planning to work on in this project is [3] <u>Telco Customer Churn</u>. Dataset consists of 21 variables with 7043 observations. Each Observation in the dataset represents a customer. Below is the detailed list of variables.

- 1. customerID
- 2. gender
- 3. SeniorCitizen
- 4. Partner
- 5. Dependents
- 6. tenure
- 7. PhoneService
- 8. MultipleLines
- 9. InternetService
- 10. OnlineSecurity
- 11. OnlineBackup
- 12. DeviceProtection
- 13. TechSupport
- 14. StreamingTV
- 15. StreamingMovies
- 16. Contract
- 17. PaperlessBilling
- 18. PaymentMethod
- 19. MonthlyCharges
- 20. TotalCharges
- 21. Churn

Method

Data Analysis:

Customer churn data is loaded into a data frame using python and performed initial analysis to check if any duplicate observations or null values present in the dataset. Generate multiple charts

on the variables to see the spread of the values in the variables. Perform Univariant analysis by using histograms and box plots. Perform Bivariant analysis by using correlation matrix and heat maps.

a) Load data into data frame:

Out[2]:													
		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DeviceProtection	Tec
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	 No	
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	 Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	 No	
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	 Yes	
	4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	 No	
	5 rc	ows × 21 col	umns										

b) Verify the number of variables and observations:

```
In [3]: 

# Retrive the number of rows and columns in data frame
df.shape

Out[3]: (7043, 21)
```

c) Get the stats on numerical variables:

Describe	Telecom Cust	omer Data	
S	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

d) Get the stats on categorical variables:

Summarized Data

count unique top freq	customerID 7043 7043 0230-UBYPQ 1	7043 2	7043 2	2		Service Mu 7043 2 Yes 6361	· 7	7043 3 No	\
	_						_		
	InternetServ	vice Oni	lineSecu	rity Online	Backup	DevicePro	tection	\	
count	-	7043		7043	7043		7043		
unique		3		3	3		3		
top	Fiber o	ptic		No	No		No		
freq		3096	:	3498	3088		3095		
	TechSupport	Stream:	ingTV St	reamingMovi	es	Contra	ct \		
count	7043		7043	70	43	70	43		
unique	3		3		3		3		
top	No		No		no Mor	nth-to-mon	th		
freq	3473		2810	27	85	38	75		

	PaperlessBilling	PaymentMethod	TotalCharges	Churn
count	7043	7043	7043	7043
unique	2	4	6531	2
top	Yes	Electronic check		No
freq	4171	2365	11	5174

g) Generate Charts on Churn vs Categorical Variables:

Observations:

Gender vs Customer_Churn:

We do not see any difference in Male vs Female customers in terms of Customer Churn.

Contract_Type vs Customer_Churn:

'Month-on-month' type Contract has highest Customer Churn compared to other contract Types.

Payment_Method vs Customer_Churn:

'Electronic Check' payment method has the highest Customer Churn.

Paperless_Billing vs Customer_Churn: 'Paperless Billing' has highest Customer Churn.

Type_Of_Internet_Service vs Customer_Churn : 'Fiber optic' Internet service has highest Customer Churn.

Phone_Service vs Customer_Churn : Customer who has Phone Service has highest Customer Churn.

h) Heatmap Analysis:

From the below heatmap we can observe that tenure and monthly variables are better correlated with churn. So, a histogram is built to understand the spread of tenure data.

Tenure Histogram:

tenure Histogram

Monthly Charges Histogram:

i) Encoding Method:

Applied Encoding method to convert Categorical variables to numerical values.

Applied Scalar method to convert the Numerical variable to reduce the value and maintain consistent value range, i.e., Tenure in months value ranging from 10 to 70 by applying encoding, values are in consistent range.

<pre>n [19]: W # convert the Categorical data to Numerical data # One Hot Encoding df_categorical = pd.get_dummies(df_categorical) # check the data df_categorical.head()</pre>													
Out[19]:		SeniorCitizen	gender_F	emale	gender_Male	Contract_Month- to-month	Contract_One year	Contract_Two year	Dependents_No	Dependents_Yes	PhoneService_No	Phone!	
	0	0		1	0	1	0	0	1	0	1		
	1	0		0	1	0	1	0	1	0	0		
	2	0		0	1	1	0	0	1	0	0		
	3	0		0	1	0	1	0	1	0	1		
	4	0		1	0	1	0	0	1	0	0		
	4											•	

j) <u>Dimensionality Reduction:</u>

After converting categorical variables to numeric values, the number of input variables have increased. So, dimensionality reduction was performed by applying Principal Component Analysis [4], reducing the number of variables to 5.


```
Number of elements in the data frame after applying PCA
  Out[25]: (7043, 5)
In [26]: M # Display the input data which is converted to 5 components using PCA
df_input_PCA = pd.DataFrame(df_input_PCA)
df_input_PCA.columns = ['PCA_Component_1', 'PCA_Component_2', 'PCA_Component_3', 'PCA_Component_4', 'PCA_Component_5']
           df input PCA.head()
   Out[26]:
             PCA_Component_1 PCA_Component_2 PCA_Component_3 PCA_Component_4 PCA_Component_5
           0 -0.742041 0.624381 -0.588428 1.473460 0.243152
                    0.942647
                                 -0.733343
                                               -0.675357
                                                             0.348005
           2
                                -0.762840 -0.528639 0.858478
                   -0.310807
                                                                          0.117877
                                 -0.689557
           4 -1.346429 0.659860 -0.188579 -0.207400 0.223515
```

k) Split the data:

```
# split data into training and validation and check the details of the datasets
X_train, X_test, y_train, y_test = train_test_split(df_input_PCA, df_churn, test_size =0.3, random_state=11)
# number of samples in each set
print("No. of samples in training set: ", X_train.shape[0])
print("No. of samples in validation set:", X_test.shape[0])

No. of samples in training set: 4930
No. of samples in validation set: 2113
```

Modeling:

A baseline model was established by training a **Logistic Regression Model**, after splitting the data into test and train in the ratio of 70:30

Test Set Specificity LR: 0.8838416612589228

```
Testing Set Confusion Matrix 'LogisticRegression':
[[1362 179]
[ 319 253]]
Testing Set Classification_Report 'LogisticRegression':
             precision recall f1-score support
  Churn_YES
                  0.81
                            0.88
                                      0.85
                                               1541
   Churn NO
                  0.59
                            0.44
                                      0.50
                                                572
                                      0.76
                                               2113
   accuracy
                  0.70
                            0.66
                                      0.67
                                               2113
  macro avg
weighted avg
                  0.75
                            0.76
                                      0.75
                                               2113
Test Set Accuracy LR: 0.7643161381921438
Test Set Sensitivity LR: 0.4423076923076923
```

Conclusion:

Logistic Regression Model gave accuracy of 76%, which is not at the expected level. I am confident that greater accuracy is possible by considering other machine learning models like Random Forest Classifier, I would work on these in the upcoming weeks.

References:

[1]: How Costly Is Customer Churn in the Telecom Industry? - EBR

[2]: Customer Churn in Telecom Segment - Curi

https://towardsdatascience.com/customer-churn-in-telecom-segment-5e49356f39e5

[3]: Telco Customer Churn - BlastChar

https://www.kaggle.com/blastchar/telco-customer-churn

[4]: PCA using Python (scikit-learn) - Galarnyk

https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60

[5]: Churn Reduction in Telecom Industry – Arthur Middleton Hughes

http://www.dbmarketing.com/telecom/churnreduction.html