CHƯƠNG 2: TÍN HIỆU RỜI RẠC THEO THỜI GIAN

Nội dung chính:

- ☐ Biểu diễn các tín hiệu rời rạc cơ bản.
- ☐ Thực hiện các phép toán đơn giản.
- ☐ Tính năng lượng của tín hiệu.
- □ Xác định các tính chất của hệ rời rạc.

Các hàm Matlab liên quan:

- ♣ stemp: vẽ dãy dữ liệu như các que theo trục x
- ♣ sum: Xác định tổng của tất cả các phần từ của một vector
- * min: Xác định phần tử nhỏ nhất của một vector
- * max: Xác định phần tử nhỏ nhất của một vector
- ♣ zeros: cấp phát một vector hoặc ma trận với các phần tử 0
- ♣ subplot: Chia đồ thị ra thành nhiều phần nhỏ, mỗi phần vẽ một đồ thị khác nhau
- * title: Thêm tên tiêu đề cho đồ thị
- * xlabel: Viết chú thích dưới trục x trong đồ thị 2D
- ♣ ylabel: Viết chú thích dưới trục y trong đồ thị 2D

axis([-11 21 -0.5 1.5]);

- ♣Hàm impz(num, den, N+1): Hàm xác định đáp ứng xung đơn vị của một hệ thống
- ♣ Hàm filter(num, den, x, ic): lọc dữ liệu với mạch lọc IIR hoặc FIR

2.1 CÁC TÍN HIỆU CƠ BẢN

Bài 2.1 Hàm xung đơn vị:

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$
 n = -10:20; delta=[zeros(1,10) 1 zeros(1,20)]; stem(n,delta);

Hình 2.1 Hàm xung đơn vị

Bài 2.2. Tín hiệu hàm bước nhảy đơn vị u(n).

Hàm bước nhảy đơn vị:

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

n=-10:20; u=[zeros(1,10) ones(1,21)]; stem(n,u); axis([-11 21 -0.5 1.5]);

Hình 2.2 Hàm bước nhảy đơn vị

Bài 2.3: Tạo dãy xung chữ nhất

$$rect_{N}(n) = \begin{cases} 1: N-1 \ge n \ge 0 \\ 0:n \end{cases}$$

$$n=-10:10;$$

$$L=10; % dãy xung có chieu dai N=10$$

$$rec=[zeros(1,10) ones(1,L) zeros(1,20-L+1)];$$

$$stem(n,rec);$$

$$axis([-11 21 -0.5 1.5]);$$

Hình 2.3 Dãy xung chữ nhật rect10(n)

Bài 2.4: Tạo dãy đốc đơn vị

$$r(n) = \begin{cases} n: n \ge 0 \\ 0: n < 0 \end{cases}$$

```
n=-5:10;
m=[zeros(1,5) 0:10];
u=[zeros(1,5) ones(1,11)];
r=m.*u;
stem(n,r);
axis([-5 10 -0.5 10.5]);
```


Hình 2.4 Hàm dốc đơn vị

Bài 2.5. Tín hiệu hàm mũ thực

Hàm mũ:

$$x(n) = \begin{cases} a^n & n \ge 0 \\ 0 & n < 0 \end{cases} = a^n u(n)$$

n=0:30; a=1.5; K=0.2; $x=K*a.^n; %Ham mũ <math>x=K.a^n$ stem(n,x);

Hình 2.5 Hàm mũ thực

Bài 2.6. Tín hiệu hàm mũ phức

```
n=0:30;
s=-(1/12)+(pi/6)*i;
K=2;
n=0:40;
x=K*exp(s*n);
subplot(211);
stem(n,real(x));
title('Phan thuc');
subplot(212);
stem(n,imag(x));
title('Phan ao');
```


Hình 2.6 Hàm mũ phức

Bài 2.7 Tạo dãy xung vuông và dãy xung răng cưa tuần hoàn có chiều dài L, biên độ đỉnh A, chu kỳ N

```
A=input('Bien do dinh='); %A=3
L=input('Chieu dai day=');%100
N=input('Chu kỳ của day=');%15%
Fs=input('tan so lay mau mong muon=');%20kHz
DRX=input('Do rong cua xung vuong=');%60
```

```
Ts=1/Fs;
t=0:L-1;
x=A*sawtooth(2*pi*t/N);
y=A*square(2*pi*t/N,DRX);
subplot(211);
stem(t,x);
xlabel(['Thoigian',num2str(Ts),'giay']);
ylabel('Bien do');
title('Day xung rang cua');
subplot(212);
stem(t,y);
xlabel(['Thoigian',num2str(Ts),'giay']);
ylabel('Bien do');
title('Day xung vuong');
```

Kết quả mô phỏng cho các thông số của tín hiệu như sau:

Bien do dinh=3

Chieu dai day=100

Chu ky cua day=15

tan so lay mau mong muon=20000

Do rong cua xung vuong=60

Hình 2.7 Dãy xung răng cưa và dãy xung vuông

Bài 2.8 Tạo tín hiệu hình sin $y(n) = A\cos(\omega_0 n + \varphi)$

```
A=input('Bien do dinh=');
L=input('Chieu dai day=');
omeg=input('Tan so goc=');
if ((omeg<=0)|(omeg>=pi)),error('Tan so goc khong
hop le'); end;
pha=input('Goc pha=');
     ((pha<0)|(pha>(2*pi))),error('Pha khong
                                                 hop
le');end;
n=0:L-1;
arg=omeg*n-pha;
x=A*cos(arg);
stem(n,x);
axis([0 50 -2.5 2.5]);
title('Day sin tuan hoan');
xlabel('Thoi gian roi rac n');
ylabel('Bien do');
```

Kết quả:

Bien do dinh=2

Chieu dai day=50

Tan so goc=0.2*pi

Goc pha=0

Hình 2.8 Dãy xung tín hiệu hình sin

2.2 CÁC PHÉP TOÁN TRÊN TÍN HIỆU

```
- Dịch: x(n) k xung: x(n - k)

- Ảnh gương: x(n) x(-n)

- Co trên miền thời gian: x(n): x(an)

- Cộng: y(n) = x1(n) + x2(n)

- Nhân: y(n) = x1(n)x2(n)

- Co biên độ: y(n) = Ax(n)

Bài 2.9. Cộng hai tín hiệu cộng:

n=0:10;

h1=[ones(1,11)];

h2=[zeros(1,4) ones(1,7)];

h=h1+h2;
```

stem(n,h);

Hình 2.9 Cộng hai tín hiệu bước nhảy đơn vị và dãy xung chữ nhật

Bài 2.10. Nhân hai tín hiệu:

```
x1=[0 1 2 3];
x2=[2 3 4 0];
x=x1.*x2;
n=0:length(x)-1;
stem(n,x);
```


Hình 2.10 Nhân hai tín hiệu bài 2.10

Bài 2.11 Dịch tín hiệu y(n) thành y(n-d)

d=2;

```
y=[1 2 3 4];
yd=[zeros(1,d) y];

Tin hieu y

Tin hieu y duoc dich 2 mau

Tin hieu y duoc dich 2 mau
```

Hình 2.11 Dịch phải xung y(n) 2 đơn vị

Bài 2.12. Vẽ các tín hiệu x(-n), 2x(n)

```
x=[0 1 2 3 4];
n=0:length(x)-1;
y=fliplr(x);
m=-fliplr(n);
subplot(211); stem(n,x);
subplot(212); stem(m,y);
```


Hình 2.12 Tín hiệu x(n) và x(-n)

Hình 2.13 Tín hiệu x(n) và 2x(n)

Bài 2.13. Cộng và nhân 2 tín hiệu. Ví dụ thực hiện cho 2 tín hiệu $x(n) = \{1,-1,2,3,-2\}$ và $x(n) = \{-2,-2,1,1,-4\}$

$$y1=x1+x2$$

$$y2=x1.*x2$$

Kết quả:

2.3 KIỂM TRA TÍNH CHẤT TUYẾN TÍNH VÀ BẤT BIẾN

Hệ thống H bất biến theo thời gian nếu và chỉ nếu:

$$y(n) = H[x(n)] \rightarrow y(n - k) = H[x(n - k)]$$

Hệ thống là tuyến tính nếu và chỉ nếu:

$$H[a_1x_1(n) + a_2x_2(n)] = a_1H[x_1(n)] + a_2H[x_2(n)]$$

Bài 2.14. Xét hệ thống y(n) = nx(n).

$$n = -10:10;$$

```
x = randn(size(n)); %Tín hiệu x ngẫu nhiên <math>y = n.*x; %y(n) = nx(n) ynk = [0 0 0 0 y]; %Dịch phải <math>y(n) 4 mẫu -> y(n - 4) x1 = [0 0 0 0 x]; %Dịch phải <math>x(n) 4 mẫu n1 = [n 11:14]; % Bổ sung them giá trị cho n <math>yn = n1.*x1; % yn = H[x(n - 4)] subplot(211), stem(n1,ynk), title('y(n - k)'); subplot(212), stem(n1,yn), title('H[x(n - k)]');
```

Kiểm tra tính chất bất biến theo thời gian của y(n) = nx(n).

Hình 2.14 Tính chất không bất biến theo thời gian của y(n) = nx(n)**Bài 2.15.** Xét hệ thống y(n) = nx(n).

```
clf
n = -10:10;
x1 = randn(size(n)); %Tín hiệu x1 ngẫu nhiên
x2 = randn(size(n)); %Tín hiệu x2 ngẫu nhiên
a1 = 3; a2 = -2; %a1, a2 tùy ý
y1 = n.*x1;
y2 = n.*x2;
y = n.*(a1*x1 + a2*x2);
subplot(211), stem(n,a1*y1+a2*y2);
```

Kết luận về tính chất tuyến tính của y(n) = nx(n).

Hình 2.15 Tính chất tuyến tính của y(n) = nx(n).

2.4 Hệ LTI

Phương trình sai phân:

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

Bài 2.16. Xét hệ thống có phương trình sai phân:

$$y(n) = 0.3x(n) + 0.2x(n-1) - 0.3x(n-2) \ \text{-}0.9y(n-1) + 0.9y(n-2).$$

Xác định đáp ứng xung đơn vị của hệ thống.

Xác định ngõ ra khi biết đáp ứng xung và ngõ vào:

```
x = randn(1,10);
y = conv(x,h);
subplot(311),stem(x);
subplot(312),stem(h);
subplot(313),stem(y);
```

Bài trên sử dụng hàm **conv** để tính tích chập giữa hai tín hiệu rời rạc x và h.

Bài 2.17. Kiểm tra tính giao hoán và kết hợp:

```
h1 = [1 \ 2 \ -2 \ -3]; Hệ thống 1
h2 = [-2 \ 0 \ 3 \ 1]; Hệ thống 2
h = conv(h1, h2);
N = 30;
x = randn(1, N);
y11 = conv(x, h1);
y1 = conv(y11, h2);
y21 = conv(x, h2);
y2 = conv(y21, h1);
y = conv(x, h);
subplot(311), stem(y1);
title('y(n) = (x*h 1(n))*h 2(n)');
 subplot(312), stem(y2);
 title('y(n) = (x*h 2(n))*h 1(n)');
 subplot(313), stem(y);
 title('y(n) = x*(h 1(n)*h 2(n)');
```

Bài 2.18 Tính tương quan chéo của hai tính hiệu

```
x=[1 2 3 2 1];
y=[1 -1 1 -1];
N1=length(y)-1;
N2=length(x)-1;
rxy=conv(x,fliplr(y));
```

```
k=(-N1):N2';
n1=0:N1;n2=0:N2;
subplot(311);
stem(n2,x);
subplot(312);
stem(n1,y);
subplot(313)
stem(k,rxy)
```

Bài này tính tương qua chéo của hai tín hiệu rời rạc dùng lệnh conv và fliplr.

Bài 2.19 Dùng hàm impz vẽ đáp ứng xung của hệ từ phương trình sai phân

```
N=input('Chieu dai dap ung xung mong muon');
p=input('Gia tri vector p=');
d=input('Gia tri vector d=');
[h,t]=impz(p,d,N;);
disp(h);
n=0:N-1;
stem(n,h);
xlabel('Thoi gian roi rac');
ylabel('Bien do');
title('Dap ung xung cua he roi rac ');
Nhập các giá trị:
N = 5
p=[2.25 2.5 2.25];
d=[1 -0.5 0.75];
```


Hình 2.16 Đáp ứng xung của hệ

Bài 2.20 Xét tính ổn định của hệ thống từ đáp ứng xung rời rạc h(n) bài 2.19

```
sum=0;
for k=1:N+1;
sum=sum+abs(h(k));
end
disp('Gia tri tong =');
disp(abs(h(k)));

Kết quả:
Gia tri tong = 2.2500
```

Suy ra hệ thống ổn định.

Bài 2.21. Chương trình Matlab tính tích chập của 2 dãy có chiều dài hữu hạn. Kết quả của tích chập được trễ đi d mẫu. Vẽ tín hiệu y(n)*h(n) và y(n-d)

Hình 2.17 Kết quả mô phỏng của bài 2.21

Bài 2.22 Cho hai hệ thống có phương trình sai phân hệ số hằng như sau:

Hệ thống 1:

$$y[n] = 0.5 x[n] + 0.27 x[n-1] + 0.77 x[n-2]$$

Hệ thống 2:

$$y[n] = 0.45 x[n] + 0.5x[n-1] + 0.45 x[n-2] + 0.53 y[n-1] - 0.46 y[n-2]$$

Chương trình Matlab tính đầu ra của hai hệ thống trên với đầu vào:

$$x[n] = \cos\left(\frac{20\pi n}{256}\right) + \cos\left(\frac{200\pi n}{256}\right)$$

$$n=0:299$$

```
% Compute the output sequences
num1 = [0.5 \ 0.27 \ 0.77];
y1 = filter(num1, 1, x); % Output of System No. 1
den2 = [1 -0.53 \ 0.46];
num2 = [0.45 \ 0.5 \ 0.45];
y2 = filter(num2, den2, x); % Output of System No. 2
% Plot the output sequences
subplot(2,1,1);
plot(n, y1); axis([0 300 -2 2]);
ylabel('Amplitude');
title('Ngo ra he thong 1');grid;
subplot(2,1,2);
plot(n, y2); axis([0 300 -2 2]);
xlabel('Thoi gian n'); ylabel('Amplitude');
title('Ngo ra he thong 2');grid;
                     Ngo ra he thong 1
                  100
                        150
                     Ngo ra he thong 2
   Amplitude
                      Thoi gian n
```

Hình 2.18 Kết quả mô phỏng của bài 2.22

2.5 BÀI TẬP

Bài tập 1: Viết chương tình Matlab nhập tín hiệu x từ bàn phím, tìm và vẽ thành phần chẳn và lẽ của tín hiệu x:

$$x_{even}(n) = \frac{1}{2} [x(n) + x(-n)]$$

 $x_{odd}(n) = \frac{1}{2} [x(n) - x(-n)]$

Bài tập 2: Sử dụng Matlab để thực hiện ghép nối hai hệ thống LTI sau

$$y1(n) + 0.9y1(n-1) + 0.8y1(n-2) = 0.3x(n) - 0.3x(n-1) + 0.4x(n-2)$$

và

$$y2(n) + 0.7y2(n-1) + 0.85y2(n-2) = 0.2y1(n) - 0.5y1(n-1) + 0.3y1(n-2)$$

Cho tín hiệu ngõ vào $x=(0.8)^n u(n)$, xác định và vẽ tín hiệu ngõ ra của hệ.