Introduction à l'ordinateur INO Christine LEIGNEL (CLG) cleignel@he2b.be

■Chaque leçon mise sur:

https://poesi.esi.heb.be...

- Lorsqu'il y a des transparents...
- La moitié du cours sera en prise de notes sans transparents ni slides → Venez en cours!
- Pensez à relire vos notes et exercices vus en cours

UE et AA

- Unité d'Enseignement INT1
- Activité d'apprentissage INtroduction à l'Ordinateur
- ■INT1 composé de :
 - Introduction aux systèmes
 - Introduction à l'ordinateur
 - Introduction aux logiciels
 - Introduction aux réseaux
 - Introduction à l'informatique industriel
- ■Une seule note pour toutes ces AA: Examen commun

Organisation

- Examens « Janvier Mai Août »
- Pas de syllabus
- Livres de référence: Bibliothèque de l'ESI
- « Structure ou Architecture des Ordinateurs »

Livres

- « Architecture et technologie des ordinateurs », Zanella et Ligier (Dunod, 2005)
- « Architecture des ordinateurs », Schwarz (Eyrolles, 2005)
- « Architecture de l'Ordinateur », E. Lazard, (Synthex, Pearson Education France, 2006)
- « Les Fondements de l'Informatique », H. Bersini (Vuibert, 2004)
- « Leçons sur l'Informatique », R. Feynman (Odile Jacob, 2006)

Organisation - suite

- 1^{er} semestre (48h, 4h par semaine)
- Cours grand auditoire=théorie + exercices
- 3 sessions d'examen (janvier, juin, août)
- Bonus (participation pendant l'année) +4 (/90)

Professeurs

Denis Boigelot, Christine Leignel
DBO CLG

Organisation interne

- Présence non obligatoire ;
- Ordinateur personnel non accepté ;
- Gsm éteint ;
- Rentrée en cours à l'heure (1/4 d'heure académique toléré) sinon attendre la pause pour entrer en cours ;
- Bavardages non autorisés sauf pendant les séances d'exercices;
- Le cours doit se faire dans le respect de chacun ;
- Les points bonus ne sont pas octroyés en cas de mauvais comportement pendant le cours (retard, bavardage, ordinateur personnel, Gsm, non respect des autres, etc.).

Plan du cours (48H)

- 1) Unité Arithmétique et Logique (30h)
 - Arithmétique Binaire. Représentation des nombres sur Ordinateur (10h)
 - Circuits logiques combinatoires (18h)
 - Compression (2h)
- 2) Mémoire Centrale (12h)
 - Circuits logiques séquentiels : Bascules
 - Capacité mémoire vive
- 3) Unité de commande (6h)
 - Machine simplifiée de von Neumann

Objectifs de cours

- Comprendre l'architecture de base d'un ordinateur ;
- Comprendre et savoir faire le codage de l'information;
- Savoir produire un circuit logique combinatoire;
- Savoir produire un circuit logique séquentiel;
- Savoir générer un algorithme de compression de données (Huffman);
- Savoir rassembler les informations données en cours.

Leçon 1 Introduction et historique

Qu'est-ce qu'un ordinateur?

- Un ordinateur est une Machine qui <u>traite</u> les nombres, mais aussi les lettres, les caractères, les tableaux, les sons, les images... les images 3D;
- Traite les informations: « Processeur »
 - » Data processing et Image processing;
- Un ordinateur est donc un processeur, mais aussi une mémoire, des périphériques d'entrée et de sortie, des périphériques de stockage.

Différence entre algorithme et programme informatique

Un algorithme est le traitement que la machine effectue sur les données;

Un programme = algorithme traduit dans un langage de programmation donné (Java, Python, C, C++, etc.)

Machine de Turing

- Inventée par Alan Turing (1912-1954) dans les années 1930;
- Pur modèle mathématique abstrait
- Permet d'expliquer la notion d'algorithme
- https://interstices.info/jcms/nn_72391/comment-fonctionne-une-machine-de-turing
- http://zanotti.univ-tln.fr/turing/

Machine de Turing

- ■Cette machine comporte un ruban divisé en cases ;
- Écriture de symboles binaires (0 ou 1) dans ces cases;
- La machine ne peut lire qu'une seule case à la fois ;
- La machine n'écrit que dans une seule case ;
- La machine décale le ruban d'une seule case vers la gauche ou vers la droite;
- La machine comporte une table d'actions et d'états.

Machine de Turing

Soit la table d'actions suivantes (additionne +1)

État	Lit	Écrit	Déplacement	État suivant
e1	VIDE	VIDE	gauche	e2
e2	0	0	gauche	e2
	1	1	gauche	e2
	VIDE	VIDE	droite	e3
e3	0	1	droite	fin
	1	0	droite	e3
	VIDE	1	droite	fin

Que se passe-t-il si mon ruban initial est : état de départ e1

ENIAC - Electronic Numerical Integrator, Analyser and Computer

- ■1944-1946, à l'université de Pennsylvanie, construction d'un très gros calculateur: l'ENIAC
- Entièrement électronique
- Financé par l'armée américaine
- Pesait 30 tonnes, 18000 tubes électroniques
- Occupe une place de 1500 m².
- Utilisé pour des calculs ayant servi à mettre au point la bombe H.

ENIAC - Electronic Numerical Integrator, Analyser and Computer

- Son principal inconvénient était sa programmation : manuellement avec des câbles à enficher;
- https://www.universalis.fr/encyclopedie/e-n-i-a-c/

ENIAC https://commons.wikimedia.org/wiki/File:Classic_shot_of_the_ENIAC_(full_resolution).jpg

Machine de von NEUMANN

Caractéristiques:

- Une unité de contrôle (unité de commande)
- Une mémoire séquentielle contenant :
 - Les données;
 - Le programme (instructions);
- Une unité de calcul arithmétique et logique UAL;
- Une unité d'entrées-sorties pour communiquer avec l'extérieur

Machine de von NEUMANN

- Ces machines sont à la base des architectures des ordinateurs actuels!
- Ces machines permettent de:
 - Stocker des données;
 - Traiter des données;
 - Mettre en mouvement des données (E/S);
 - Activer le contrôle.

Architecture de von NEUMANN

ORDINATEUR Machine UNIVERSELLE (Fonctionnement des machines actuelles) Únité d'**entrée sortie** (E/S ; I/O): Echange d'informations avec les périphériques Unité de contrôle/ CPU Commande (UC) Central Processing Unit Calcul: Mémoire Centrale UAL/ALU (ou mémoire vive) Unité Arithmétique et Logique Programme (instructions)ET Données INFORMATION NUMERISEE

Machine de von NEUMANN

- Mémoire centrale permanente (MC) = organe de rangement des informations utilisées par le processeur;
- On exécute un programme en le chargeant (=copiant) dans la mémoire centrale.

Machine de von NEUMANN

- Fonctionnement de l'unité de contrôle:
 - Extraction de l'instruction depuis la mémoire;
 - Analyse de l'instruction
 - Recherche des données sur lesquelles porte l'instruction dans la mémoire;
 - déclenchement de l'opération adéquate sur l'unité de calcul ou encore l'unité d'entrées/sorties;
 - éventuellement rangement du résultat dans la mémoire.

«Informatique»

- Désigne une discipline née avec l'ordinateur;
- Néologisme français datant de 1962 condensant les mots information et automatique;
- Science de l'information;
- Les Anglo-Saxons parlent de Computer Science et data processing

«Informatique»

■ Tout est INFORMATION:

- -0 ou 1, vrai-faux;
- numéro, lettre, nom, verbe, phrase, texte, image,
 son..., image 3-D, réalité virtuelle,
- Données (nom) ou instructions (verbe)
- -« J'ai tiré l'AS de PIQUE » dans un jeu de 32 cartes (1 chance sur 32)
- Comment quantifier cette information;
- Probabilité et théorie de information (Shannon)

Théorie de Shannon

- Définition: La quantité d'information d'un message représente le nombre de symboles binaires nécessaires pour représenter ce message. Ces symboles, appelés bits, correspondent aux chiffres en base 2, 0 et 1.
- Exemple: lancer d'une pièce « pile »/« face » 3 fois;
- Un seul symbole suffit: symbole 0 représente Pile, symbole 1 représente Face.

Théorie de Shannon

- Pièce lancée 3 fois de suite: 8 résultats possibles:
- FFF, FFP, FPP, FPF, PPP, PPF, PFF, PFP représentés par les messages: 000, 001, 011, 010, 111, 110, 100, 101;
- ■Probabilité de chaque message p=1/8;
- Quantité d'information de Shannon $I=log_2(1/1/8)=log_28=3$;
- Il faut donc 3 bits pour représenter chaque message!

Théorie de Shannon

- Quantité d'information nécessaire pour coder 26 lettres de l'alphabet + l'espace + 5 signes de ponctuations soit 32 caractères équiprobables ?
- Quantité d'information de chaque caractère : I=log₂(1/1/32)=5 donc 5 bits suffisent pour coder chaque caractère/message!

Unité d'information

- Pièce truquée pile-pile (1 possibilité)
 - Quantité d'information: 0
- Pièce pile ou face (2 possibilités)
 - Quantité d'information: 1

-Quel nom choisir?

Arithmétique Binaire (Base 2)

- Binary digIT, unité élémentaire d'information en base 2.
 - Chiffre binaire BASE 2: Deux chiffres binaires (0 et 1)
- Pile ou face: 0 ou 1, soit 0 soit 1.
- ■Comment représente-t-on 2 en base 2 ?
- Pourquoi pas en unaire (encore plus simple)?
 - Toutes les puissances sont égales donc non discriminant!