УСЛОВИЯ И ОТГОВОРИ

1. Подредете функциите по порядък: 3^{n^2} , 5^n , n^{4n} , $\log^6 n$, n^5 .

Отговор: $\log^6 n \prec n^5 \prec 5^n \prec n^{4n} \prec 3^{n^2}$.

2. Решете рекурентните уравнения:

$$T(n) = 128T\left(\frac{n}{2}\right) + n^{7}; \qquad T(n) = \frac{16}{9}T\left(\frac{3n}{4}\right) + n\sqrt{2n}; \qquad T(n) = 4T\left(\frac{n}{4}\right) + n^{2}.$$

OTF.
$$T(n) = \Theta(n^7 \log n)$$
. **O**TF. $T(n) = \Theta(n^2)$. **O**TF. $T(n) = \Theta(n^2)$.

- 3. $T(n) = 13T(n-1) 40T(n-2) + 9n^2 5^n$ Otrobop: $T(n) = \Theta(8^n)$. $T(n) = T(n-1) + \sqrt[9]{n}$ Otrobop: $T(n) = \Theta(n^{10/9})$.
- **1.** Подредете функциите по порядък: 5^{2n} , 8^n , $\log^{2015} n$, n^6 , $\sqrt{n^{15}}$.

Отговор: $\log^{2015} n \prec n^6 \prec \sqrt{n^{15}} \prec 8^n \prec 5^{2n}$.

2. Решете рекурентните уравнения:

$$T(n) = 9T\left(\frac{n}{3}\right) + 1.5^n;$$
 $T(n) = 125T\left(\frac{n}{5}\right) + 1000 n^2;$ $T(n) = 32T\left(\frac{n}{2}\right) + n^5.$

OTF.
$$T(n) = \Theta(1,5^n)$$
. **OTF.** $T(n) = \Theta(n^3)$. **OTF.** $T(n) = \Theta(n^5 \log n)$.

3. $T(n) = 12T(n-1) - 20T(n-2) + 4n \cdot 15^n$ Otrobop: $T(n) = \Theta(n \cdot 15^n)$. $T(n) = T(n-1) + n^{2/15}$ Otrobop: $T(n) = \Theta(n^{17/15})$.

1. Подредете функциите по порядък: 3^{n^2} , 5^n , n^{4n} , $\log^6 n$, n^5 .

Отговор: $\log^6 n \prec n^5 \prec 5^n \prec n^{4n} \prec 3^{n^2}$.

2. Решете рекурентните уравнения:

$$T(n) = 128T\left(\frac{n}{2}\right) + n^7;$$
 $T(n) = \frac{16}{9}T\left(\frac{3n}{4}\right) + n\sqrt{2n};$ $T(n) = 4T\left(\frac{n}{4}\right) + n^2.$

OTF.
$$T(n) = \Theta(n^7 \log n)$$
. **O**TF. $T(n) = \Theta(n^2)$. **O**TF. $T(n) = \Theta(n^2)$.

- 3. $T(n) = 17T(n-1) 72T(n-2) + 9n^2 5^n$ Otrobop: $T(n) = \Theta(9^n)$. $T(n) = T(n-1) + \sqrt[7]{n}$ Otrobop: $T(n) = \Theta(n^{8/7})$.
- **1.** Подредете функциите по порядък: 5^{2n} , 8^n , $\log^{2015} n$, n^6 , $\sqrt{n^{15}}$.

Отговор: $\log^{2015} n \prec n^6 \prec \sqrt{n^{15}} \prec 8^n \prec 5^{2n}$.

2. Решете рекурентните уравнения:

$$T(n) = 9T\left(\frac{n}{3}\right) + 1.5^n;$$
 $T(n) = 125T\left(\frac{n}{5}\right) + 1000 n^2;$ $T(n) = 32T\left(\frac{n}{2}\right) + n^5.$

OTF.
$$T(n) = \Theta(1,5^n)$$
. **O**TF. $T(n) = \Theta(n^3)$. **O**TF. $T(n) = \Theta(n^5 \log n)$.

3. $T(n) = 16T(n-1) - 63T(n-2) + 4n \cdot 15^n$ Otrobop: $T(n) = \Theta(n \cdot 15^n)$. $T(n) = T(n-1) + n^{4/29}$ Otrobop: $T(n) = \Theta(n^{33/29})$.

4. Какво връща следният алгоритъм? Отг. n!
Формулирайте използваема инварианта на цикъла. Отг. s = (k-1)!
Alg (n: integer): integer
s ← 1
for k ← 1 to n
s ← s * k
return s

4. Какво връща следният алгоритъм? **Отг.** Индекса на първото четно число. Формулирайте използваема инварианта на цикъла.

Отг. Числата A[1] , A[2] , ... , A[k-1] са нечетни. Alg (A[1...n]: array of integers): integer for $k \leftarrow 1$ to n if A[k] е четно return k

4. Какво връща следният алгоритъм? **Отг.** true \Leftrightarrow A = (1, 2, ..., n). Формулирайте използваема инварианта на цикъла.

OTF.
$$A[i] = i$$
, $\forall i = 1, 2, ..., k-1$. Alg($A[1...n]$: array of integers): boolean for $k \leftarrow 1$ to n
if $A[k] \neq k$
return false

4. Какво връща следният алгоритъм? Отг. Най-голямата стойност в масива.

Формулирайте използваема инварианта на цикъла:

OTF.
$$s = max \{ A[1], ..., A[k-1] \}$$
. Alg(A[1...n]: array of integers): integer $s \leftarrow A[1]$ for $k \leftarrow 2$ to n if $A[k] > s$ $s \leftarrow A[k]$

return s

ПРИМЕРНИ РЕШЕНИЯ

1. Подредете функциите по порядък: 3^{n^2} , 5^n , n^{4n} , $\log^6 n$, n^5 .

Отговор:
$$\log^6 n \prec n^5 \prec 5^n \prec n^{4n} \prec 3^{n^2}$$
.

Доказателство: Проверяваме всяко сравнение поотделно, като прилагаме подходяща техника.

- 1) $\log^6 n \prec n^5 \Leftrightarrow \log n \prec n^{5/6}$, което следва от границата $\lim_{n \to \infty} \frac{\ln n}{n^{5/6}} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{5}{6} n^{-1/6}} = \lim_{n \to \infty} \frac{6}{5n^{5/6}} = \frac{6}{\infty} = 0.$
- 2) Логаритмуваме двете страни: $\log(n^5) = 5 \log n \iff \log n$; $\log(5^n) = n \log 5 \iff n$; $\lim_{n \to \infty} \frac{\ln n}{n} = \left[\frac{\infty}{\infty}\right] = \lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \lim_{n \to \infty} \frac{1}{n} = \frac{1}{\infty} = 0$. Следователно $\log n \iff n$, т.е. $\log(n^5) \iff \log(5^n)$. Понеже $5^n \to \infty$ при $n \to \infty$, то следва, че $n^5 \iff 5^n$ (антилогаритмуването усилва разликите).
- 3) Неравенствата $5^n \prec n^{4n} \prec 3^{n^2}$ също се доказват чрез логаритмуване: $\log(5^n) = n \log 5 \asymp n$, $\log(n^{4n}) = 4n \log n \asymp n \log n$, $\log(3^{n^2}) = n^2 \log 3 \asymp n^2$, като се отчете фактът, че $n \prec n \log n \prec n^2$ (тези неравенства на свой ред се доказват с помощта на граници).
- **2.** Тази задача се решава чрез мастър-теоремата. Всяко от трите рекурентни уравнения попада в различен случай на мастър-теоремата.

3. а) Да се реши уравнението $T(n) = 13T(n-1) - 40T(n-2) + 9n^2 5^n$.

Решение: Това е линейно-рекурентно уравнение. От хомогенната част получаваме характеристичното уравнение $x^n = 13x^{n-1} - 40x^{n-2}$, което при $x \neq 0$ е равносилно на уравнението $x^2 - 13x - 40 = 0$ с корени 5 и 8. От свободния член се получават още три петици, които заедно с корените образуват мултимножеството $\{5;5;5;5;5;8\}_{\rm M}$. Следователно $T(n) = C_1 5^n + C_2 n 5^n + C_3 n^2 5^n + C_4 n^3 5^n + C_5 8^n \bowtie 8^n$.

Отговор: $T(n) = \Theta(8^n)$.

б) Да се реши уравнението $T(n) = T(n-1) + \sqrt[9]{n}$.

Решение: Тук не можем да приложим метода от подточка "а" поради дробната степен на свободния член. Уравнението се решава чрез развиване:

$$T(n) = T(n-1) + \sqrt[9]{n} = T(n-2) + \sqrt[9]{n-1} + \sqrt[9]{n} = T(n-3) + \sqrt[9]{n-2} + \sqrt[9]{n-1} + \sqrt[9]{n} =$$

$$= \dots = T(0) + \sqrt[9]{1} + \dots + \sqrt[9]{n-1} + \sqrt[9]{n} \implies 1^{\frac{1}{9}} + 2^{\frac{1}{9}} + \dots + n^{\frac{1}{9}} \implies n^{\frac{10}{9}}.$$
Отговор: $T(n) = \Theta\left(n^{\frac{10}{9}}\right)$.

4. Какво връща следният алгоритъм? Отг. n! Формулирайте използваема инварианта на цикъла. Отг. s = (k-1)! Alg (n: integer): integer $s \leftarrow 1$ for $k \leftarrow 1$ to n

s ← s * k

return s

Доказателство на инвариантата: чрез индукция.

База: При първото изпълнение на проверката $k \le n$ имаме s = 1 и k = 1. Тогава (k-1)! = 0! = 1, т.е. равенството s = (k-1)! е в сила.

Поддръжка: Нека s = (k-1)! при някое изпълнение на проверката за край на цикъла, което да не е последно (т.е. $k \le n$). След една итерация стойността на s се умножава по k, т.е. s = (k-1)! k = k!; обаче и стойността на k се увеличава с единица, затова в равенството s = k! (което се отнася за новата стойност на s и старата стойност на k) заменяме k с k-1 (старото k е с едно по-малко от новото). Така отново s = (k-1)!, с което инвариантата е доказана.

Доказателство на твърдението за върнатата стойност: Цикълът завършва при k = n + 1. Алгоритъмът връща s = (n+1-1)! = n! (според инвариантата).