

DERIVATION

1

La figure ci-contre représente $\left(\mathbf{C}_{\mathbf{f}}\right)$ la courbe représentative de la fonction \mathbf{f} dans un repère orthonormé

 (O,\vec{i},\vec{j}) .

- 1. En déduire graphiquement les limites suivantes :
 - $\underset{x\to+\infty}{\underline{\underline{a}}}$ $\underset{x\to+\infty}{\lim} f(x)$ et $\underset{x\to0}{\lim} f(x)$ et $\underset{x\to0}{\lim} f(x)$.
 - $\underline{\underline{\mathbf{b}}}_{\substack{x \to 8}} \quad \lim_{\substack{x \to 4 \\ x < 0}} f(x) \text{ et } \lim_{\substack{x \to 4 \\ x > 0}} f(x)$
- **2.** Que peut-on dire de la limite de f au voisinage de $-\infty$.
- **3.** ..
 - $\underline{\mathbf{a}}$ Etudier graphiquement la continuité à droite de $\mathbf{x}_0 = \mathbf{0}$.
 - **<u>b.</u>** Etudier graphiquement la continuité à gauche de $x_0 = 0$.
 - $\underline{\underline{c}}$ Est-ce que la fonction f est continue en $x_0 = 0$.
- **4.** ..
- **a.** Est-ce que la fonction f est dérivable à droite de $x_0 = 0$.
- **b.** Est-ce que la fonction f est dérivable à gauche de $x_0 = 0$.
- $\underline{\underline{\mathbf{c}}}$ Est-ce que la fonction f est dérivable en $\mathbf{x}_0 = \mathbf{0}$.
- $\underline{\mathbf{d}}_{\mathbf{c}}$ Donner le nombre dérivé à gauche de $\mathbf{x}_0 = \mathbf{0}$.
- $\underline{\mathbf{e}}$ Donner $\mathbf{f}'(-2)$.
- **<u>f</u>**. Donner l'équation réduite de la tangente en $x_0 = -2$.
- **g.** Donner l'équation réduite de la demi tangente à gauche $x_0 = 0$.

DERIVATION

- **4.** .. On considère g la restriction de la fonction f sur $I_1 = [2, +\infty[$.
- $\underline{\mathbf{a}}$. Montrer que la restriction g admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle \mathbf{J}_1 dont le déterminera .
- **b**. Construire dans le même repère (O, \vec{i}, \vec{j}) la courbe représentative $(C_{g^{-1}})$ de la fonction g^{-1} puis construire la demie tangente à droite de $x_0 = 4$ à la courbe $(C_{g^{-1}})$
- **5.** .. On considère h la restriction de la fonction f sur $I_2 =]0,4[$.
 - $\underline{\mathbf{a}}_{1}$ Montrer que la restriction h admet une fonction réciproque \mathbf{h}^{-1} définie sur l'intervalle \mathbf{J}_{2} dont le déterminera .
 - $\underline{\underline{b}}_{\underline{i}} \quad \text{Construire dans le même repère } \left(O, \vec{i}, \vec{j} \right) \text{ la courbe représentative } \left(C_{h^{-1}} \right) \text{ de la fonction } h^{-1} \, .$

2.

Calculer f'(x) la fonction dérivée de la fonction f pour chaque fonction s suivante :

1.
$$f(x) = 5x^3 - 7x^2 + \frac{7}{5}x + 9$$
 et $f(x) = \frac{2}{x} + \frac{3x^2 + 1}{x}$ et $f(x) = \frac{7x + 2}{3 - x}$ et $f(x) = (5x + 1)^4$.

2.
$$f(x) = \sqrt{x} + 3x$$
 et $f(x) = \sqrt{x^2 - 5x + 6}$ et $f(x) = x^3 \sqrt{4x + 1}$ et $f(x) = \sqrt{x + 2} \times (5x - 3)^4$
 $f(x) = \frac{x + \sqrt{x}}{x + 2}$ et $f(x) = \sqrt{\frac{3x - 5}{2 - x}}$ et $f(x) = \frac{x + 2}{\sqrt{x + 7}}$.

3.
$$f(x) = \sin(5x+2)$$
 et $f(x) = \sin^3(x)$ et $f(x) = \sin 2x \cos 3x$ et $f(x) = \tan(3x)$ et $f(x) = x^2 + 3\sin x$

4.
$$f(x) = \sqrt[5]{x}$$
 et $f(x) = \sqrt[3]{x^{11}}$ et $f(x) = \sqrt[5]{x^2 - 7x + 12}$ et $f(x) = (x^2 - 7x + 12)^{\frac{2}{5}}$.

3

Etudier la dérivabilité de la fonction f au point x_0 :

1.

$$\underbrace{\mathbf{a}}_{0} \quad \mathbf{x}_{0} = 1 \text{ avec } \begin{cases} \mathbf{f}(\mathbf{x}) = \frac{|\mathbf{x}| \sqrt{\mathbf{x}^{2} - 2\mathbf{x} + 1}}{\mathbf{x} - 1} \\ \mathbf{f}(\mathbf{0}) = 1 \end{cases} .$$

$$\frac{f(0) = 1}{f(x) = \frac{\sqrt{x+1} - \sqrt{1-x}}{x}}$$

$$\frac{f(x) = \frac{\sqrt{x+1} - \sqrt{1-x}}{x}}{f(0) = 0}$$

$$\underline{\underline{c}} \quad x_0 = 1 \text{ avec } \begin{cases} f(x) = \sqrt[3]{7x+1} , x < 0 \\ f(x) = \frac{3x^2 + 1}{x+1} , x \ge 0 \end{cases}.$$

DERIVATION

- 2. On considère la fonction numérique f définie par : $\begin{cases} f(x) = -\frac{1}{2}x^2 + x + \frac{9}{2} ; x \le 3 \\ f(x) = \frac{x}{x-2} ; x > 3 \end{cases}$
 - <u>a.</u> Calculer f'(x) pour tout x de $]-\infty,3[$ puis déduire le nombre dérivé en $x_0=2$.
 - **b.** Donner la fonction affine approximative de la fonction f en $x_0 = 2$.
 - \underline{c} En déduire une valeur approchée du nombre f(1,999).
 - $\underline{\mathbf{d}}_{\!_{\!\!4}}$ Etudier la dérivabilité à gauche de f au point $\mathbf{x}_0=\mathbf{3}$ puis interpréter le résultat graphiquement .
 - \underline{e} Donner l'équation réduite de la tangente à la courbe représentative de f au point A(3,f(3)).
- 3. On considère la fonction numérique f définie par : $f(x) = \sqrt[3]{1-x^2}$
- <u>a.</u> Etudier la dérivabilité en $x_0 = 0$.
- **b.** Donner la fonction affine approximative de la fonction f en $x_0 = 0$.
- \underline{c} En déduire une valeur approchée du nombre f(0,01).

4.

On considère la fonction numérique f définie sur [0;1] par : $f(x) = \sqrt{x(1-x)}$.

- 1. Etudier la dérivabilité à gauche de f au point $x_0 = 1$ puis interpréter le résultat graphiquement.
- 2. Etudier la dérivabilité droite de f au point $x_0 = 0$ puis interpréter le résultat graphiquement.

5.

On considère la fonction numérique f définie par : $\begin{cases} f(x) = \sqrt{x^2 - 4} & ; x \ge 2 \\ f(x) = x^2 - 6x + 8 & ; x < 2 \end{cases}$

- 1. Vérifier que : la fonction numérique f est définie sur ${\mathbb R}\,$.
- **2.** ..
- $\underline{\mathbf{a}}_{\underline{\mathbf{x}}}$ Calculer: $\lim_{x\to+\infty} f(x)$ et $\lim_{x\to-\infty} f(x)$.
- **b.** Etudier la continuité de f au point $X_0 = 2$.
- <u>3.</u> ..
- $\underline{\mathbf{a}}$ Etudier la dérivabilité à gauche de f au point $\mathbf{x}_0 = 2$ puis interpréter le résultat graphiquement.
- **b.** Calculer: $\lim_{x\to 2^+} \frac{f(x)}{x-2}$ puis interpréter le résultat graphiquement.
- $\underline{\mathbf{c}}$ Est-ce que la fonction f est dérivable en $\mathbf{x}_0 = 2$.

4. .

- 2. Pourquoi la fonction f est-elle dérivable sur l'intervalle $2,+\infty$
- **b.** Sur l'intervalle $]2,+\infty[$ calculer f'(x) et déterminer les variations de f.

DERIVATION

- **5.** ..
- <u>a.</u> Pourquoi la fonction f est-elle dérivable sur l'intervalle $]-\infty,2[$.
- **b.** Sur l'intervalle $]-\infty,2[$ calculer f'(x) et déterminer les variations de f .
- $\underline{\mathbf{c}}$ Dresser le tableau de variations de la fonction f sur $\mathbb R$.
- **6.** Donner l'équation de la tangente à (C_f) au point $x_1 = 1$.
- **7.** On considère g la restriction de la fonction f sur $I = [2, +\infty[$.
 - <u>a.</u> Montrer que la restriction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera .
 - **b.** Déterminer $g^{-1}(x)$ pour tout x de J.
- La figure suivante représente la courbe représentative de la fonction f Construire dans le même repère $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_{g^{-1}}\right)$ de la fonction g^{-1} .

- **8.** .
- <u>a.</u> Démontrer que l'équation $x \in]-\infty, 2[$: f(x)=3 admet une unique puis on déterminera graphiquement.
- \subseteq En déduire les solutions de l'équation $x \in \mathbb{R}$: f(x) = 3.

DERIVATION

6.

On considère la fonction numérique f définie par : $f(x) = -x + \sqrt{x^2 - x}$.

1. Déterminer D_f le domaine de définition de la fonction f.

2. ..

- <u>a.</u> Calculer: $\lim_{x\to\infty} f(x)$ et $\lim_{x\to+\infty} f(x)$.
- $\underline{\mathbf{b}}$ Calculer: $\lim_{x \to -\infty} \frac{\mathbf{f}(\mathbf{x})}{\mathbf{x}}$.

3. ..

- $\underline{\mathbf{a}}$ Etudier la dérivabilité à gauche de f au point $\mathbf{X}_0 = \mathbf{0}$ puis interpréter le résultat graphiquement .
- $\underline{\underline{b}}_{\underline{.}}$ Calculer : $\lim_{x \to 1^+} \frac{f(x)}{x-1}$ puis interpréter le résultat graphiquement .

4. ..

- **a.** Montrer que : pour tout x de $]-\infty,0[f'(x)=-1+\frac{2x-1}{2\sqrt{x^2-x}}]$ puis déterminer son signe sur $]-\infty,0[$.
- **b.** Calculer f'(x) pour tout x de $]1,+\infty[$ puis déterminer son signe sur $]1,+\infty[$.
- $\underline{\underline{\textbf{c}}}$ Dresser le tableau de variations de la fonction f sur $\boldsymbol{D}_{\!f}$.
- **5.** ...Soit g la restriction de la fonction f à l'intervalle $]-\infty,0]$.
 - $\underline{\mathbf{a}}$. Montrer que la restriction g admet une fonction réciproque \mathbf{g}^{-1} définie sur l'intervalle J qu'on déterminera .
 - **<u>b.</u>** Calculer: g(2) et $(g^{-1})'(-2+\sqrt{2})$.
 - \subseteq Expliciter $g^{-1}(x)$.
- <u>d.</u> La figure ci-contre représente la courbe représentative de f dans un repère (O,\vec{i},\vec{j}) . Tracer de 2 cm la courbe représentative de g^{-1}

7.

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = 4x^3 - 48x^2 + 144x$.

<u>1.</u> .

- **a.** Calculer f'(x) pour tout x de \mathbb{R} .
- **b.** déterminer son signe sur \mathbb{R} .
- f C. Dresser le tableau de variations de la fonction f sur $\Bbb R$
- Dresser le tableau de variations de la fonction f sur [0,20].

- Sa hauteur est de longueur x cm (avec 0 < x < 6).
- Sa base est de la forme d'un carré dont la longueur du coté est : 12-2x cm.
- <u>a.</u> Vérifier que : V(x) le volume de chaque boite en fonction de x est : $V(x) = 4x^3 48x^2 + 144x$.
- **b.** Donner la valeur de x qui corresponde à une volume maximale

On considère la fonction numérique f définie sur $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ par : $f(x) = 2x + 4 + \frac{8}{x}$.

1. ..

- **a.** Calculer f'(x) pour tout x de \mathbb{R}^* .
- $\underline{\mathbf{b}}$ déterminer son signe sur \mathbb{R}^* .
- $\underline{\mathbf{c}}$ Dresser le tableau de variations de la fonction \mathbf{f} sur \mathbb{R}^*
- $\underline{\mathbf{d}}$. Dresser le tableau de variations de la fonction \mathbf{f} sur $\begin{bmatrix} 0,5;4 \end{bmatrix}$.
- <u>e.</u> Donner l'équation de la tangente à la courbe représentative de la fonction f au point $x_0 = 1$

12 - 2x

On se propose de construire un réservoir en tole de forme parallélépipédique rectangle dont le volume intérieur soit $4\ m^3$ (mètre cube) .le nombre h est la mesure de la hauteur de ce parallélépipède rectangle et sa base a un coté mesure $x\ m$ et l'autre pour longueur $2\ m$.

- 2. Déduire des informations données , une realtion entre h et x .
- <u>a.</u> Montrer que : la somme des aires des faces du parallélépipède rectangle (sans le couvercle) en fonction de x s'écrit: $S(x) = 2x + 4 + \frac{8}{x}$.
- <u>b.</u> Déterminer les valeurs de x et de h qui correspondent à une aire minimale .

9.

On considère la fonction numérique f définie sur $\mathbb{R}^{+*} = \left]0,+\infty\right[$ par : $f(x) = 0,06x + \frac{150}{x}$.

- 1. Calculer f'(x) pour tout x de $]0,+\infty[$.
- **2.** déterminer son signe sur $]0,+\infty[$.

DERIVATION

- 3. Dresser le tableau de variations de la fonction f $]0,+\infty[$.
- 4. Dresser le tableau de variations de la fonction f sur [10,130] .
- La consommation C d'un véhicule peut s'exprimer en fonction de la vitesse ν , pour une vitesse comprise entre 10 km/h et 130 km/h, par l'expression suivante : $C(v) = 0.06\nu + \frac{150}{\nu}$.
- **6.** A quelle vitesse faut-il rouler pour que la consommation soit minimale ?

10.

Un ciylindre de révolution de rayon x cm est inscrit dans un cone de révolution de rayon 10 cm et de hauteur 30 cm . le volume de ce cylindre , exprimé en cm^2 , est donné par la formule suivante :

$$V(x) = 30\pi x^2 \left(1 - \frac{x}{10}\right)$$
 où $0 \le x \le 10$

1. Déterminer : x pour que le volume du cylindre soit maximale .

11.

Le nombre d'accident est donné par $A(r) = 20000 - 10r^2$; c'est la fonction de cout .l'optimisation serait la recherche du nombre d'accident minimum A_{min} et le nombre de radar r_{opt} qui permet d'attendre ce minimum.