Analysis II

January 9, 2024

(Real) Analysis

- Calculus
 - Differential
 - Integral (Riemann)
- Functions and Maps
 - Measure Theory
 - (Lebesgue) Integration
- Topology
 - Completeness (as a metric space)
 - Compactness (Bolzano-Weierstrass theorem [real]) (Arzela-Ascoli)
 - Paracompactness / Metrizable / Baire Category Theorem
 - Algebraic / Combinatoric (continuous maps or functions)

Definition: Cardinality

For sets A, B, Card(A) = Card(B) if there exists a one-to-one correspondence $q : A \leftrightarrow B$. Counting, labelling, indexing, etc.

 $\operatorname{Card}(A) \leq \operatorname{Card}(B)$ if $A \subset B$ or there exists a one-to-one mapping $A \to B$.

Definition: Countable

If $A \hookrightarrow \mathbb{N}$, then A is countable.

Theorem

The countable union of countable sets is countable.

Proof

Let
$$A_i = \{a_j\}_{j=1}^{\infty}, i = 1, 2, \dots$$

Index by diagonalization.

Theorem

The cartesian product of countable sets is countable.

Proof

$$X \times Y = \{(x_i, y_i \mid x_i \in X, y_j \in Y\}$$

$$(x_1, y_1)$$
 (x_1, y_2) (x_1, y_3) \cdots (x_2, y_1) (x_2, y_2) (x_2, y_3) \cdots \vdots (x_k, y_1) (x_k, y_2) (x_k, y_3) \cdots

Theorem

 $\operatorname{Card}\left(2^{X}\right) > \operatorname{Card}(X)$, where $2^{X} = \{A \subset X\}$ is the power set of X.

Proof

For all $x \in X$, $\{x\} \subset 2^X$, so $\operatorname{Card}(X) \leq \operatorname{Card}(2^X)$.

Assume, for sake of contradiction, that $Card(X) = Card(2^X)$.

Then, by definition, there exists a one-to-one correspondence $\phi: X \leftrightarrow 2^X$.

Set $A = \{x \in X \mid x \notin \phi(x)\}$, and let $a = \phi^{-1}(A)$ (i.e. $A = \phi(a)$).

If $a \in A$, then $a \notin A \subset \phi(a)$; but if $a \notin A$, then $a \in A$, a contradiction.

Theorem

 $\operatorname{Card}(\mathbb{R}) = \operatorname{Card}(2^{\mathbb{N}}).$

Topology of the Real Line

Completeness (as a metric space)

$$d(a,b) = |a-b|, \quad \forall a, b \in \mathbb{R}.$$

- 1. $x_i \to x$ if $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ such that $|x_i x| < \varepsilon$, $\forall i \ge n$.
- 2. $\{x_i\}$ is Cauchy if $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ such that $|x_i x_j| < \varepsilon$, $\forall i, j \ge n$.

Definition: Open Inteval

(a,b) is an open set on the real line.

There exist interior points for any subset A of real numbers.

 $\forall x \in A, x \text{ is interior if } \exists (a, b) \text{ such that } (1) \ x \in (a, b) \text{ and } (2) \ (a, b) \subset A.$

• Theorem

The union of open sets is open.

The intersection of finitely many open sets is open.

 \emptyset and \mathbb{R} are open.

Definition: Limit Point

A limit point $x \in \mathbb{R}$ of a subset A is a limit point in A if for every open neighborhood U of X, $(U \setminus \{x\}) \cap A \neq \emptyset$.

Definition: Closed

A is closed if A contains all of its limit points.

• Theorem

A is closed if and only if $A^c = \mathbb{R} \setminus A$ is open.

- Proof

 $A \text{ closed} \implies A^c \text{ open.}$

Otherwise, $\exists x \in A^c$ such that for every neighborhood U of X, $(U \setminus \{x\}) \cap A = \emptyset$ which would make it a limit point of A not in A. By assumption, A contains all its limit points so this is a contradiction. A^c open $\implies A$ closed.

For any x a limit point of A, assume otherwise that $x \in A^c$.

Then there exists some neighborhood U of x such that $U \subset A^c$ (since A^c is open).

It follows that $(U \setminus \{x\}) \cap A = \emptyset$ and x is not a limit point of A, which is a contradiction.

Definition: Sequential Compactness

A is compact if $\forall \{x_i\}, x_i \in A$ there exists a convergent subsequence $\{x_{i_k}\}$ and $x_{i_k} \to x \in A$.

• Theorem: Bolzano-Weierstrass

For $A \subseteq \mathbb{R}$, A is compact if and only if A is closed and bounded.

- Proof

 $A \text{ compact} \implies A \text{ closed and bounded.}$

Assume that A is not bounded from abvove.

Then there exists a sequence $\{x_i\}$, $x_i \in A$ where $x_{i+1} > x_i + 1$ and $\{x_i\}$ has no convergent subsequences.

Then compactness implies closedness.

A closed and bounded \implies A (sequentially) compact.

Let any $\{x_i\}$, $x_i \in A$.

Claim: $\forall \{x_i\}$ of reals, if there exists $m \in \mathbb{R}$ such that $|x_i| \leq m$, $\forall m$ then there is some convergent subsequence.

Divide and conquer: dividing the interval in half necessitates that at least one half contains infinitely many points. Repeat indefinitely.

• Theorem: Heine-Borel)

 $A \subseteq \mathbb{R}$ is (sequentially) compact if and only if any open cover has a finite subcover.

- Proof

Heine-Borel Property ⇒ closed and bounded.

Assume that A is unbounded, $U_n = (-n, n)$ and $\{U_n\}_{n=1}^{\infty}$ an open cover for $A \subseteq \mathbb{R}$ has no finite subcover.

Assume A is not closed, then $x \in A$ (where A is the limit set of A) and $x \notin A$, $U_n \left\{ \left(-\infty, x - \frac{1}{n} \right) \cup \left(x + \frac{1}{n}, +\infty \right) \right\}$.

Then $\{U_n\}$ covers $\mathbb{R} \setminus \{x\} \supset A$ has no finite subcover of A.

A is bounded and closed \implies A is Heine-Borel

Divide and conquer: using open sets with respect to open covers.

Definition: Cantor Set

 $C = \{x \in [0,1] \mid \text{the ternary expansion of } x \text{ has only the digits } \{0,2\}\}.$ Equivalenetly, let $C_0 = [0,1], C_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right], C_2 = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{3}{9}\right] \cup \left[\frac{6}{9},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right].$ Then $C_n = \bigcup_{k=1}^{2^n} C_n^k$ and $C = \bigcap_{n=1}^{\infty} C_n$. $|C_n| = 2^n \left(\frac{1}{3}\right)^n \to 0.$

Definition: Perfectly Symmetric Sets

Let $\{\xi_n\}$ where $\xi_n \in \left(0, \frac{1}{2}\right)$. $E_0 = [0, 1], E_1 = [0, \xi_1] \cup [1 - \xi_1, 1], E_2 = [0, \xi_1 \xi_2] \cup [\xi_1 - \xi_1 \xi_2, \xi_1] \cup [1 - \xi_1, 1 - \xi_1 + \xi_1 \xi_2] \cup [1 - \xi_1 \xi_2, 1].$ Then the cantor set is given by $\xi_n = \frac{1}{3}$.

 $E_n = \bigcup_{k=1}^{2^n} E_n^k, |E_n^k| = \xi_1 \xi_2 \cdots \xi_n, \text{ and } |E_n| = \sum |E_n^k| = 2^n \xi_1 \xi_2 \cdots \xi_n.$ Therefore, $E = \bigcap_{n=1}^{\infty} E_n$ and we define $|E| = \lim_{n \to \infty} |E_n| = \lim_{n \to \infty} \left(2^n \xi_1 \xi_2 \cdots \xi_n\right) = \lambda$ where $\lambda \in [0, 1)$. Let

$$2\xi_n = \frac{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n-1}\right)^{n-1}}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^n} < 1$$

, then

$$2^{n}\xi_{1}\cdots\xi_{n} = \frac{1}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^{n}} \to \lambda.$$

Proof

 $\lim_{n\to\infty} \left(\left(1 + \frac{x}{n} \right)^{n/x} \right)^x = e^x$, then $\lim_{y\to0} \left(1 + y \right)^{1/y} = e$, $\log(1+y)^{1/y} = \frac{\log(1+y)}{y} \xrightarrow[y\to0]{} 1$. Observe that

$$\left(\frac{\log(1+y)}{y}\right)' = \frac{\frac{y}{1+y} - \log(1+y)}{y^2} = \left(1 + \frac{1}{1+y} - \log(1+y)\right)' = \frac{1}{(1+y)^2} - \frac{1}{1+y} = -\frac{y}{(1+y)^2} < 0$$

Theorem

Cantor sets and perfect symmetric sets are closed, perfect, uncountable, and nowhere dense.

January 11, 2024

Last Week

Cardinality.

Topology of the reals.

• Cantor (perfect symmetric sets)

$$C_0 = [0, 1]$$

$$C_1 = [0, 1/3] \cup [2/3, 1]$$

$$C_2 = [0, 1/9] \cup [2/9, 3/9] \cup [6/9, 7/9] \cup [8/9, 1]$$

$$C_n = \bigcup_{n=1}^{2^n} C_n^k$$

$$|C_n^k| = \left(\frac{1}{3}\right)^n$$

$$C = \bigcap_{n=1}^{\infty} C_n$$

$$|C_n| = 2^n \frac{1}{3^n} = \left(\frac{2}{3}\right)^n \implies |C| = \lim_{n \to \infty} |C_n| = 0$$
Closed, no interior points and uncountable.

• Perfect Symmetric Sets

$$\begin{aligned} &\{\xi_k\} \in \left(0, \frac{1}{2}\right) \\ &E_0 = [0, 1] \\ &E_1 = [0, \xi_1] \cup [1 - \xi_1, 1] \\ &E_2 = [0, \xi_1 \xi_2] \cup [\xi_1 - \xi_1 \xi_2, \xi_1] \cup [1 - \xi_1, 1 - \xi_1 + \xi_1 \xi_2] \cup [1 - \xi_1 \xi_2, 1] \\ &E_n = \bigcup_{n=1}^{2^n} E_n^k \\ &|E_n| \, \xi_1 \xi_2 \cdots \xi_n \\ &|E_n| = 2^n \xi_1 \xi_2 \cdots \xi_n \\ &|E_n| = 2^n \xi_1 \xi_2 \cdots \xi_n \\ &2\xi_n = \frac{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n-1}\right)^{n-1}}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^n} < 1 \\ &|E_n| = \frac{1}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^n} \\ &|E| = \lim_{n \to \infty} |E_n| = \frac{1}{e^{\log\left(\frac{1}{n}\right)}} = \lambda, \quad \lambda \in (0, 1) \end{aligned}$$

Volterra's Function

$$\phi(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

 $IMAGE\ HERE\ -\ graph\ of\ phi(x)$

$$\phi'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

$$f(x) = \begin{cases} 0 & x \in E \\ \phi(x-a) & x \in (a, a+y) \\ -\phi(b-x) & x \in (b-y, b) \\ \phi(y) & x \in (a+y, b-y) \end{cases}, \quad (a,b) \in E^{c}$$

IMAGE HERE - f interval (a,b)

Propositions

1.
$$f'(x) = 0$$
 for $x \in E$.

- 2. f'(x) discontinuous on E.
- 3. f' exists on [0,1] and is bounded.

Since |E| > 0, f'(x) is not Riemann integrable and, therefore, the fundamental theorem of calculus does not apply.

Lebesgue Outer Measure

$$|(a,b)| = b - a.$$

Let $A \subseteq \mathbb{R}$, then $m^*(A) = \inf \left\{ \sum_{n=1}^{\infty} I_n \mid A \subseteq \bigcup_{n=1}^{\infty} \right\}$
Question: $m^*(A \cup B) \stackrel{?}{=} m^*(A) + m^*(B)$ for $A \cap B \neq \emptyset$?

Properties

- 1. $A \subseteq B \implies m^*(A) \le m^*(B)$.
- 2. $m^*(\emptyset) = 0$.
- 3. If I is an interval, then $m^*(I) = |I|$.
- 4. If $\{A_i\}$ is countable, $m^*(\bigcup A_i) \leq \sum m^*(A_i)$.
- Proof of 4 $\forall A_i, \ \exists \{I_n\} \text{ open intervals such that } \sum_n |I_n| < m^*(A_i) + \frac{\varepsilon}{2^i}.$ Then $\bigcup_i \bigcup_n I_n^i \supset \bigcup_i A_i$, and $\sum_{n,i} |I_n^i| = \sum_i \left(\sum_n |I_n^i|\right) \leq \sum_i \left(m^*(A_i) + \frac{\varepsilon}{2^i}\right).$
 - Corollary

If A is countable, then $m^*(A) = 0$. Thus, by contraposition, every interval is uncountable.

Proposition

For $A \subseteq \mathbb{R}$, $\forall \varepsilon > 0$, $\exists U$ open such that $A \subseteq U$ and $m^*(U) \leq m^*(A) + \varepsilon$.

Corollary

There exists G in the intersection of countable open sets such that $m^*(G) = m^*(A)$ and $G \supseteq A$.

6

Caratheodory Criteria

If $\forall E, m^*(E \cap A) + m^*(E \cap A^c) = m^*(E)$, then A is Lebesgue measurable.

• Remark: $m^*(E \cap A) + m^*(E \cap A^c) \le m^*(E) \le +\infty$

Propositions

1. If A is measurable, then A^c is measurable.

- 2. $m^*(A) = 0$, then A is measurable.
- 3. If A, B are measurable, then $A \cup B$, $A \cap B$, $A \setminus B$ are measurable.
- 4. If $\{A_i\}_{i=1}^k$ are disjoint and measurable, then $m^*\left(\bigcup_{i=1}^k A_i\right) = \sum_{i=1}^k m^*(A_i)$.
- Proof of 3

$$m^{*}(E \cap (A \cup B)) + m^{*}(E \cap (A \cup B)^{c}) = m^{*}((E \cap A) \cup (E \cap B)) + m^{*}(E \cap A^{c} \cap B^{c})$$
$$= m^{*}(E \cap A) + m^{*}((E \cap A^{c}) \cap B) + m^{*}((E \cap A^{c}) + B^{c})$$
$$\leq m^{*}(E)$$

Since $o(A \cap B)^C = A^c \cup B^c$, this holds from before; similarly, $A \setminus B = A \cap B^c = A^c \cup B$. If A, B disjoint, then

$$m^*(A \cup B) = m^*(E \cap A) + m^*(E \cap A^c)$$

= $m^*(A) + m^*(B)$

Theorem

If $\{A_i\}$ is a countable collection of disjoint and measurable sets, then

- 1. $\bigcup_i A_i$ is measurable.
- 2. $m^*(||A_i|) = \sum_i m^*(A_i)$.

Proof of 1

Want to show:

$$m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right) \le m^*(E)$$

By assumption, since the measure of E is finite, $m^*(E \cap \bigcup_{i=1}^{\infty} A_i) < +\infty$.

Claim: $\forall \varepsilon > 0$, $\exists k$ such that Therefore $m^* \left(E \cap \bigcup_{i=1}^k A_i \right) \ge m^* \left(E \cap \bigcup_{i=1}^\infty A_i \right) - \varepsilon$.

$$m^*(E) \le m^* \left(E \cap \bigcup_{i=1}^k A_i \right) + \varepsilon + m^* \left(E \cap \left(\bigcup_{i=1}^k A_i \right)^c \right) \le m^*(E) + \varepsilon$$

Proof of 2

We have shown $m^* \left(\bigcup_i A_i \right) \leq \sum_{i=1}^{\infty} m^* (A_i)$. Assume $m^* \left(\bigcup_i A_i \right) < +\infty$, then

$$\sum_{i=1}^{k} m^*(A_i) = m^* \left(\bigcup_{i=1}^{k} A_i \right) \le m^* \left(\bigcup_{i=1}^{\infty} A_i \right) \implies \sum_{i=1}^{\infty} m^*(A_i) \le m^* \left(\bigcup_{i=1}^{\infty} A_i \right)$$

January 16, 2024

Office Hours Tuesday / Thursday 10 AM - 11:30 AM

A note on notation: Latin characters are to be understood as countable indecies; greek as possible uncountable.

Lebesgue Outer Measure

 $A\subset \mathbb{R}$

$$m^*(A) = \inf \left\{ \sum_{i=1}^{\infty} |I_i| \mid \bigcup_{i=1}^{\infty} I_i \supset A, I_i \text{ open intervals} \right\}$$

Properties

- 1. $A \subset B \implies m^*(A) \leq m^*(B)$.
- 2. $m^*(\emptyset) = 0$.
- 3. $m^*(I) = |I|$ for I an interval.
- 4. Countable Subadditivity: $\{A_i\}_{i=1}^{\infty} \implies m^* \left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} m(A_i)$.
- 5. $\forall A \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists \text{ open neighborhood } U \supseteq A \text{ such that } m^*(U) \leq m^*(A) + \varepsilon.$
- 6. $\exists G \in \bigcap_{n=1}^{\infty} U_n, U_n \text{ open, } U_n \supseteq A \implies G \supseteq A, \text{ such that } m^*(G) = m^*(A).$

Measurable (Caratheodory Criterion)

 $\forall A \subseteq \mathbb{R}$ is Lebesgue measurable if

$$m^*(A) = m^*(E \cap A) + m^*(E \cap A^c)$$

Essentially, $m^*(E \cap A) + m^*(E \cap A^c) \le m^*(E) \le +\infty$.

- Propositions
 - 1. A measurable $\implies A^c$ measurable.
 - 2. $m^*(A) = 0 \implies A$ measurable.
 - 3. $\{A_i\}_{i=1}^{\infty}$ countable with A_i measurable, then
 - (a) $\bigcap_{i=1}^{\infty} A_i$ are measurable.
 - (b) Moreover, $A_i \cap A_j = \emptyset \implies m^* \left(\bigcup_{i=1}^{\infty} (A_i) = \sum_{i=1}^{\infty} m^* A_i \right)$.
 - (c) A, B measurable $\implies A \cup B, A \cap B, A \setminus B$ measurable.
 - (d) $A \cap B = \emptyset \implies m^*(A \cup B) = m^*(A) + m^*(B)$.
 - (e) $\{A_i\}_i^{\infty}$ with A_i measurable, then $\bigcup_{i=1}^{\infty} A_i$ is measurable and $A_i \cap A_j \varnothing \implies m^* (\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} m^* (A_i)$.
 - Proof of $e \ \forall E \in \mathbb{R}$, $m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right)$.

Claim: $m^*(E \cap (\bigcup_{i=1}^{\infty} A_i)) = \sum_{i=1}^{\infty} m^*(E \cap A_I)$ for $A_i \cap A_j = \emptyset$. Then, $\forall \varepsilon > 0, \exists n \in \mathbb{N}$,

$$m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) = \sum_{i=1}^{\infty} m^* (E \cap A_i) \le \sum_{i=1}^{n} m^* (E \cap A_i) + \varepsilon$$

$$\implies m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right) \le m^* \left(E \cap \left(\bigcup_{i=1}^{n} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{n} A_i \right)^c \right) + \varepsilon \le m^* (E) + \varepsilon$$

$$\implies \bigcup_{i=1}^{\infty} A_i \text{ measurable}$$

Proof of Claim:

Step 1: A, B measurable and $A \cap B = \emptyset$. Since A is measurable,

$$m^*(E \cap (A \cup B)) = m^*((E \cap (A \cup B)) \cap A) + m^*((E \cap (A \cup B)) \cap A^c)$$

= $m^*(E \cap A) + m^*(E \cap A^c)$

For $\{A_i\}_{i=1}^{\infty}$, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A_i'$ with $A_1 = A_1'$ and $A_i' = A_i \setminus \bigcup_{k=1}^{i-1} A_k$, $\forall i \geq 2$. Therefore $A_i' \cap A_j' = \emptyset$ and A_i' is measurable.

$$m^* \left(\bigcup_{i=1}^n A_i \right) \le m^* \left(\bigcup_{i=1}^\infty A_i \right) \le \sum_{i=1}^\infty m^* (A_i)$$

$$m^* \left(\bigcup_{i=1}^n A_i \right) = \sum_{i=1}^n m^* (A_i) \le m^* \left(\bigcup_{k=1}^\infty A_k \right) < +\infty \implies \sum_{i=1}^\infty m^* (A_i) \le m^* \left(\bigcup_{k=1}^\infty A_k \right) \le \sum_{i=1}^\infty m^* (A_i)$$

Sigma Algebra and Borel Sets

Definition: Sigma Algebra

Let $S \subset 2^X$ for some set X. Then S is said to be a σ -algebra if

- 1. $\emptyset \in S$.
- 2. $A^c \in S \text{ if } A^c$.
- 3. $\bigcup_{i=1}^{\infty} A_i \in S$ if $A_i \in S$.
 - Equivalently, $\bigcap_{i=1}^{\infty} A_i \in S$ if $A_i \in S$.

Theorem:

The collection \mathcal{L} of all Lebesgue measurable sets is a σ -algebra.

Definition: Borel Set

Let B be the σ -algebra generated by open sets of reals (i.e. the smallet σ -algebra containing all open sets of reals). Then $b \in B$ is called a Borel set.

Remark

B is generated by $\{(a, +\infty) \mid a \in \mathbb{R}\}.$

1. $(a, +\infty)^c = (-\infty, a]$.

2.
$$\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, +\infty \right) = [a, +\infty).$$

3. $[a, +\infty)^c = (-\infty, a)$.

4.
$$(-\infty, b) \cap (a, +\infty) = (a, b)$$
.

5.
$$(-\infty, b] \cap [a, +\infty) = [a, b]$$
.

Theorem:

Any Borel set is Lebesgue measurable.

Proof

It suffices to demonstrate that $(a, +\infty)$ is measurable $\forall a \in \mathbb{R}$. $\forall E \in \mathbb{R}$, we want to show that $m^*(E \cap (a, +\infty)) + m^*(-\infty, a]) \leq m^*(E)$. Then, $\forall \varepsilon > 0$, $\exists C = \{I_i\}$ with I_i open intervals such that $\sum_{I_i \in C} |I_i| \leq m^*(E) + \varepsilon/2$. Set

$$\mathcal{C}^{\ell} = \{ I \in \mathcal{C} \mid x < a, \forall x \in I \}$$

$$\mathcal{C}^{r} = \{ I \in \mathcal{C} \mid x > a, \forall x \in I \}$$

$$\mathcal{C}^{m} = \{ I \in \mathcal{C} \mid a \in I \} = \{ I_{k} \}$$

Then $AC = C^{\ell} \cup C^r \cup C^m$. $\forall I_k \in C^m = \{I_k\}, I_k = (c_k, d_k) \text{ for some } c_k, d_k \in \mathbb{R}, \text{ define}$

$$I_k^{\ell} = \left(c_k, a + \frac{\varepsilon}{2^{k+1}}\right)$$
$$I_k^{r} = (a, d_k)$$

Let $C^m = \{I_k^\ell\} \cup \{I_k^r\} = \overline{C}^{m\ell} \cup \overline{C}^{mr}$. Then

$$\mathcal{C}^{\ell} \cup \overline{\mathcal{C}}^{m\ell} \text{ covers } E \cap (-\infty, k]$$

$$\mathcal{C}^{r} \cup \overline{\mathcal{C}}^{mr} \text{ covers } E \cap (k, +\infty)$$

$$\mathcal{C}^{\ell} \cup \mathcal{C}^{r} \cup \mathcal{C}^{m} \text{ covers } E$$

Observe that

$$|I_k^{\ell}| + |I_k^r| \le |I_k| + \frac{\varepsilon}{2^{k+1}}$$

Therefore

$$m^*(E \cap (a, +\infty)) \le \sum_{I \in \mathcal{C}^R + \overline{\mathcal{C}}^{mr}} |I|$$

 $m^*(E \cap [-\infty, a]) \le \sum_{I \in \mathcal{C}^\ell + \overline{\mathcal{C}}^{m\ell}} |I|$

Therefore

$$m^{*}(E \cap (a, +\infty)) + m^{*}(E \cap (-\infty, a]) \leq \sum_{I \in \mathcal{C}^{r} \cup \overline{\mathcal{C}}^{mr}} |I| + \sum_{I \in \mathcal{C}^{\ell} |I| \cup \overline{\mathcal{C}}^{m\ell}} |I|$$

$$= \sum_{I \in \mathcal{C}^{r}} |I| + \sum_{I \in \mathcal{C}^{\ell}} |I| + \sum_{k} \left(|I_{k}^{\ell}| + |I_{k}^{r}| \right)$$

$$\leq \sum_{I \in \mathcal{C}} |I| + \sum_{k=1}^{+\infty} \frac{\varepsilon}{2^{k+1}}$$

$$\leq m^{*}(E) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\leq m^{*}(E) + \varepsilon$$

Lebesgue Measurable vs Borel

Theorem

The following statements are equivalent

- 1. A is measurable.
- 2. $\forall \varepsilon > 0$, $\exists U$ open, $U \supset A$ such that $m(U \setminus A) < \varepsilon$.
- 3. $\forall \varepsilon > 0$, $\exists C$ closed, $C \subset A$ such that $m(A \setminus C) < \varepsilon$.
- 4. $\forall A \in \mathbb{R}, \exists \bigcap_{n=1}^{\infty} U_n = F \in B, U_n \text{ open, } U_n \supset A \text{ such that } F \supset A \text{ and } m(F \setminus A) = 0.$
- 5. $\exists \{C_n\}, C_n \text{ closed and } C_n \subset A \text{ such that } G = \bigcup_{n=1}^{\infty} C_n \subset A \text{ and } m(A \setminus G) = 0.$

Corollary

Every measurable set is the union of a Borel set and a measure zero set.

Proof 1 Implies 2

Step 1: if $m(A) < \infty$, then for $\varepsilon > 0$, $\exists U$ open and $U \supset A$, then

$$m(U) \le m(A) + \varepsilon \iff m(U \setminus A) = m(U) - m(A) \le \varepsilon$$

Step 2: let $A_n = A \cap (-n, n), n \in \mathbb{N}$.

Then $m(A_n) \leq 2n < +\infty$.

For ech A_n , $\exists U_n$ open with $U_n \supset A_n$ and $m(U_n \setminus A_n) < \frac{\varepsilon}{2^n}$

Let $U = \bigcup_{n=1}^{\infty} U_n$ and $A = \bigcup_{n=1}^{\infty} A_n$.

Now verify that

$$m(U \setminus A) = m\left(\bigcup_{n=1}^{\infty} U_n \setminus \bigcup_{n=1}^{\infty} A_n\right) = m\left(\bigcup_{n=1}^{\infty} U_n \setminus A_n\right) \le \sum_{n=1}^{\infty} m(U_n \setminus A_n) \le \varepsilon$$

Proof 2 Implies 3

Write

$$A \setminus C = A \cap C^c = C^c \cap A = C^c \setminus A^c$$

Apply (2).

Proof 3 Implies 4

 U_n comes from 2.

Proof 4 Implies 5

Follows from 4.

Proof 5 Implies 1

 $A = G \cup (A \setminus G) \implies A$ is measurable.

Example: Non-measurable Set

Define $x \sim y$ if $x - y \in \mathbb{Q}$, $\forall x, y \in \mathbb{R}$.

Let $A = \{x \in (0,1) \mid x \text{ is a representative of each class } \mathbb{R}/\sim \} \subset (0,1) \subset \mathbb{R}$.

Claim: A is not Lebesgue measurable.

Let $(-1,1) \supset S = \bigcup_{r \in \mathbb{Q} \cap (0,1)} (A+r) \supset (0,1)$, and observe that $\mathbb{Q} \cap (0,1)$ is countable.

So $(A+r) \cap (A+s) = \emptyset$ for $s \neq r$.

Then 1 < m(S) < 2, so m(A) = 0 and m(A) > 0 are both contradictions.

January 18, 2024

Abstract measure theory.

Definition: Topological Space

A set X equipped with a collection of subsets $\tau \in 2^X$ where τ is a topology if

- 1. $\emptyset, X \in \tau$
- 2. Union of subsets in τ remains in τ .
- 3. Intersection of finitely many subsets in τ remains in τ .

Any subset of τ is called an open set of X.

Definition: Measure Space

For a set X with $\Lambda \subset 2^X$ a σ -algebra such that

1. $\emptyset \in \Lambda$

- 2. $A^c \in \Lambda$ if $A \in \Lambda$.
- 3. $\bigcup_{i=1}^{\infty} A_i \in \Lambda \text{ if } A_i \in \Lambda.$
- 4. Remark: Borel Sigma Algebra

The σ -algebra generated by τ for a topological space (X, τ) . The measure space (X, Λ, μ) , $\Lambda \in 2^X$ a σ -algebra equipped with set function $\mu : \Lambda \to [0, +\infty]$ such that

1. $\mu(\emptyset) = 0$

2. $\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}m(A_i)$ for $A_i\in\Lambda$ and $A_i\cap A_j=\emptyset$ for all $i\neq j$ (countable additivity).

Proposition: Monotonicity

 $A, B \in \Lambda, A \subseteq B \implies \mu(A) \le \mu(B).$

Proposition: Countable Subadditivity

$$\mu(\bigcup A_i) \le \sum \mu(A_i) \text{ if } A_i \in \Lambda$$

Proposition: Monotone Convergence

Given $A_i \subset \Lambda$ such that $A_i \subset A_{i+1}$ where $A = \bigcup_{i=1}^{\infty} A_i$, then $\mu(A_i) \to \mu(A)$. Similarly, if $A_i \supset A_{i+1}$ such that $A = \bigcap_{i=1}^{\infty} A_i$, then $\mu(A_i) \to \mu(A)$ if $\mu(A_k) < +\infty$ for some $k = 1, 2, 3, \ldots$

Given
$$A_i' = \begin{cases} A_1 & i = 1 \\ A_i \setminus \bigcup_{j=1}^{i-1} A_j & i > 1 \end{cases}$$
, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A_i'$ and

$$\mu(A)\sum_{i=1}^{\infty}A'_i = \lim_{n\to\infty}\sum_{i=1}^{\infty}\mu(A'_i)$$

and

$$\sum_{i=1}^{n} \mu(A_i') = \mu(A_1) + (\mu(A_2) - \mu(A_1)) + (\mu(A_3) - \mu(A_2)) + \dots + (\mu(A_n) - \mu(A_{n-1})) = \mu(A_n)$$

Similarly, $A_1 \setminus A = \bigcup_{i=2}^{\infty} (A_i \setminus A_{i-1})$ where $\mu(A_1) < +\infty$ gives

$$\mu(A_1) - \mu(A) = \mu(A_1) + \sum_{i=2}^{\infty} (\mu(A_i) - \mu(A_{i-1})) = \lim_{n \to \infty} \mu(A_n)$$

Definition: Complete Measure Space

A measure space (X, Λ, μ) is complete if $\forall A \in \Lambda$ with $\mu(A) = 0$, then $\forall B \in A$ and $B \in \Lambda$.

Example

The Lebesgue measure space on the reals $(\mathbb{R}, \mathcal{L}, m)$ is complete.

Theorem: Completion of a Measure Space

Given a measure space (X, Λ, μ) , then there exists $(X, \overline{\Lambda}, \overline{\mu})$ such that

- 1. $\Lambda \subset \overline{\Lambda}$.
- 2. If $A \in \Lambda$, then $\overline{\mu}(A) = \mu(A)$.
- 3. $(X, \overline{\Lambda}, \overline{\mu})$ is complete.

Proof (Construction)

Let $\overline{\Lambda}=\{A\cup Z\mid A\in\Lambda, \exists D\in\Lambda, m(D)=0, Z\subset D\}$ and $\overline{\mu}(A\cup Z):=\mu(A).$ Verify:

- 1. $\overline{\Lambda}$ is a σ -Algebra.
 - (a) If $A \cup Z \in \overline{\Lambda}$, then $(A \cup Z)^c \in \overline{\Lambda}$.
 - (b) If $A_i \cup Z_i \in \overline{\Lambda}$, then $\bigcup (A_i \cup Z_i) \in \overline{\Lambda}$.
- 2. $\overline{\mu}$ is a well-defined measure on $\overline{\Lambda}$.
- 3. $(X, \overline{\Lambda}, \overline{\mu})$ is complete.
- Proof of 1 Given $A \in \Lambda$ and $Z \subset D$ where $\mu(D) = 0$ and $D \in \Lambda$, we know $D^c \subset Z^c$ and $Z^c = D^c \cup (Z^c \cap D)$. Therefore

$$(A \cup Z)^C = A^c \cap Z^c = A^c \cap (D^c \cup (Z^c \cap D)) = (A^c \cap D^c) \cup (A^c \cap Z^c \cap D) \in \overline{\Lambda}$$

Since $A^c \cap D^c \in \Lambda$ and $A^c \cap Z^c \cap D \in D$ Since $\bigcup A_i \in \Lambda$ and $\bigcup Z_i \subset \bigcup D_i$,

$$\bigcup_{i=1}^{\infty} (A_i \cup Z_i) = \left(\bigcup_{i=1}^{\infty} A_i\right) \cup \left(\bigcup_{i=1}^{\infty} Z_i\right) \in \overline{\Lambda}$$

• Proof of 2

Given
$$A_1 \cup Z_1 = A_2 \cup Z_2$$
, $A_1 \subset A_2 \cup Z_2 \subset A_2 \cup D_2$ implies $\mu(A_1) \leq \mu(A_2)$.

Then, $\mu(A_2) \leq \mu(A_1) \implies \mu(A_1) = \mu(A_2)$. So $\overline{\mu}$ is well defined.

Given $\{A_i \cup Z_i\}$ with $(A_i \cup Z_i) \cap (A_j \cup Z_j) = \emptyset$ for all $i \neq j$,

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty}(A_i\cup Z_i)\right)=\overline{\mu}\left(\left(\bigcup_{i=1}^{\infty}A_i\right)\cup\bigcup_{i=1}^{\infty}Z_i\right)=\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)=\sum_{i=1}^{\infty}\overline{\mu}(A_i\cup Z_i)$$

So $\overline{\mu}$ is countably additive and therefore a measure.

Borel Measure and Radon Measure

Given a measure space (X, Λ, μ) and an underlying topology (X, τ) ,

Definition: Borel Measure

 μ is a Borel measure if all borel sets $\tau \subset \Lambda$.

Definition: Locally Finite Measure

 μ is locally finite if $\forall x \in X$, $\exists U \subset X$ a neighborhood such that $\mu(U) < +\infty$.

Definition: Borel Regularity

 μ is Borel regular if $\forall A \in \Lambda$, $\exists B$ a Borel set such that $B \supseteq A$ and $\mu(B) = \mu(A)$.

Definition: Radon Measure

 μ is a Radon measure if

- 1. it is a Borel measure.
- 2. $\mu(K) \leq +\infty$ for K compact.
- 3. $\mu(V) = \sup \{ \mu(K) \mid K \subset V, K \text{ compact} \}, V \text{ open.}$
- 4. $\mu(A) = \inf \{ \mu(V) \mid A \subset V, V \text{ open} \}, \forall A \in \Lambda.$
- Example 1 Lebesgue measure.
- Example 2 Point charge: $\mu(\lbrace x \rbrace) = 1$ and $\mu(A) = 0$ if $x \notin A$.

Theorem:

Let (X, Λ, μ) be a Borel regular measure space where the underlying topology (X, τ) is a metric space. Then

- 1. For $A \in \Lambda$ with $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists C \subseteq A$ closed such that $\mu(A \setminus C) < \varepsilon$.
- 2. For $A \in \Lambda$, $\exists \{V_i\}$ open sets such that $A \subset \bigcup_{i=1}^{\infty} V_i$ and $\mu(V_i) < +\infty$. Then $\forall \varepsilon > 0$, $\exists U$ open with $A \subset U$ and $\mu(U \setminus A) < \varepsilon$.

Proof

Given $\mu(A) < +\infty$, $\nu(B) = \mu(B \cap A) < +\infty$, $\forall B \in \Lambda$ and (X, Λ, ν) .

Let $F = \{B \in \Lambda \mid \forall \varepsilon > 0, \exists C \in B \text{ closed, with } \nu(B \setminus C) < \varepsilon\}.$

Note that closed sets are in F.

Claim 1: the Borel σ -algebra is in F.

Claim 2: if $A_i \in F$, $\bigcup A_i$, $\bigcap A_i \in F$.

Given claim 2, $\forall U$ open, U^c is closed. Then $U_\varepsilon = \{x \in U \mid \operatorname{dist}(x, U^c) \leq \varepsilon\}$ is closed and, therefore, $U = \bigcup_{i=1}^{\infty} U_{1/i}$.

So, given $A_i \in F$, $\exists C_i \in A_i$ closed where $\nu(A_i \setminus C_i) < \varepsilon/2^{i+1}$. We want to show that $\nu(\bigcap A_i \setminus \bigcap C_i) < \varepsilon$.

Then, for $x \in \bigcap A_i \setminus \bigcap C_i$, $x \in A_i$ for all i and $x \notin C_{i_0}$ for some i_0 .

Therefore $x \in A_{i_0}$, $x \notin C_{i_0}$, and $x \in A_{i_0} \setminus C_{i_0}$. It follows that

$$\bigcap_{i=1}^{\infty} A_i \setminus \bigcap_{i=1}^{\infty} C_i \subset \bigcup_{i=1}^{\infty} (A_i \setminus C_i)$$

$$\nu \left(\bigcap_{i=1}^{\infty} A_i \setminus \bigcap_{i=1}^{\infty} C_i\right) \leq \sum_{i=1}^{\infty} \nu(A_i \setminus C_i) < \varepsilon$$

Therefore

$$\nu\left(\bigcup_{i=1}^{\infty}A_i\setminus\bigcup_{i=1}^{n}C_i\right)\to\nu\left(\bigcup_{i=1}^{\infty}A_i\setminus\bigcup_{i=1}^{\infty}C_i\right)\leq\nu\left(\bigcup_{i=1}^{\infty}(A_i\setminus C_i\right)<\frac{\varepsilon}{2}$$

so $\exists N >> 1$ such that $\nu\left(\bigcup_{i=1}^{\infty} \setminus \bigcup_{i=1}^{N} C_i < \varepsilon\right)$ with $\bigcup_{i=1}^{N} C_i$ closed.

Restatement

For A Borel,

$$\varepsilon > \nu(A \setminus C) = \mu((A \setminus C) \cap A) = \mu(A \setminus C)$$

January 23, 2024

Review - Abstract Measure

Given (X, Λ, μ) where $\Lambda \subseteq 2^X$ is a σ -algebra, $\mu : \Lambda \to [0, +\infty]$

1.
$$\mu(\emptyset) = 0$$
.

2.
$$m(\bigcup A_i) = \sum \mu(A_i), A_i \cap A_i = \emptyset.$$

Properties of a Measure

Monotonicity

$$\mu(A) \subseteq \mu(B), A, B \in \Lambda, A \subseteq B$$

Countable Subadditivity

$$\mu(\bigcup A_i) \leq \sum \mu(A_i)$$

Monotone Convergence

$$\begin{array}{ccc} A_i \subset A_{i+1}, \ A_i \rightarrow \bigcup A_i & \Longrightarrow & \mu(A) = \mu \left(\bigcup A_i\right). \\ A_i \supset A_{i+1}, \ A_i \rightarrow \bigcap A_i & \Longrightarrow & \mu(A_i) \rightarrow \mu \left(\bigcap A_i\right) \ \text{if} \ \mu(A_1) < \infty \end{array}$$

• Example $A_n = (n, +\infty)$ gives $\bigcap A_n = \emptyset$

Completeness of a Measure

 (X, Λ, μ) is complete if $\forall A \in \Lambda$ with $\mu(A) = 0$, then $\forall B \in \Lambda$ if $B \subseteq A$.

Theorem:

Given (X, Λ, μ) , there exists $(X, \overline{\Lambda}, \overline{\mu})$ such that $\Lambda \subset \overline{\Lambda}$ and $\overline{\mu}(A) = \mu(A)$ if $A \in \Lambda$.

$$\overline{\Lambda} = \{A \cup Z \mid A \in \Lambda, Z \subset D, D \in \Lambda \text{ with } \mu(D) = 0\}$$

$$\overline{\mu}(A \cup Z) = \mu(A)$$

 $(X, \overline{\Lambda}, \overline{\mu})$ is complete.

Measure Space with Topology

Given a topological space (X, τ) , a measure space (X, Λ, μ)

Definition: Locally Finite

The measure μ is locally finite if $\forall x \in X$, there exists an open neighborhood U of x such that $U \in \Lambda$ and $\mu(U) < +\infty$.

Definition: Borel Measure

 μ is a Borel measure if the Borel σ -algebra generated by τ , \mathcal{B} , is a subset of Λ .

Definition: Borel Regular

 $\forall A \in \Lambda, \exists B \in \mathcal{B} \text{ such that } B \supset A \text{ and } \mu(B) = \mu(A).$

Definition: Radon Measure

- 1. Borel.
- 2. $\mu(K) < +\infty$ for K compact.
- 3. $\mu(V) = \sup \{ \mu(K) \mid K \text{ compact}, K \subset V \}, \forall V \text{ open}.$
- 4. $\mu(A) = \inf \{ \mu(V) \mid V \text{ open}, A \subset V \}, \forall A \in \Lambda.$

Theorem:

If X is a metric space equipped with a Borel regular (X, Λ, μ) , then

- 1. $\forall A \in \Lambda$, $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists C$ closed where $C \subset A$ and $\mu(C \setminus A) < \varepsilon$.
- 2. If $\exists \{V_i\}$, V_i open and $\mu(V_i) < +\infty$, and $A \in \Lambda$ with $A \subset \bigcup V_i$, then $\exists U$ open such that $A \subset U$ and $\mu(U \setminus A) < \varepsilon$.

Proof of 1

Define $\nu(B) = \mu(B \cap A)$ such that (X, Λ, ν) is a new measure space.

Define $F = \{B \in \Lambda \mid \forall \varepsilon > 0, \exists C \text{ closed}, C \subset B, \nu(B \setminus C) < \varepsilon\}$, all closed sets in F.

Claim 1: $\bigcap A_i, \bigcap A_i \in F$ if $A_i \in F$.

Claim 2: U is open.

 $U = \bigcup U_i, U_i = \{x \in U \mid \operatorname{dist}(x, U^c) \leq \frac{1}{i}\}, \text{ therefore } \mathcal{B} \subset F.$

IMAGE HERE - 1

If A is Borel, then $\forall \varepsilon > 0$, $\exists C$ closed with $C \subset A$ and $\mu(A \setminus C) < \varepsilon$.

To finish, $\forall A \in \Lambda$ by Borel Regularity of μ , $\exists B \in \mathcal{B}$ such that $B \supset A$ and $\mu(B) = \mu(A)$.

Note also that this requires $\mu(B \setminus A) = 0$ since $\mu(A) < +\infty$.

IMAGE HERE - 2

Then $B \setminus A \in \Lambda$, $\exists D \in \mathcal{B}$ such that $DB \setminus A$ and $\mu(D) = \mu(B \setminus A) = 0$. Then

$$B \cap A^{c} = B \setminus A \subset D$$
$$(B \cap A^{c})^{c} \supset D^{c}$$
$$B \cap (B^{c} \cup A) \supset D^{c} \cap B$$
$$A \supset B \setminus D$$

$$A \setminus (B \setminus D) = A \cap (B \cap D^c)^c = A \cap (B^c \cup D = (A \cap B^c) \cup A \cap D = A \cap D \subset D$$

Therefore $B \setminus D \subset A$, and $\mu(A \setminus (B \setminus D)) = 0$.

 $B \setminus D \in \mathcal{B}, \ \forall \varepsilon > 0, \ \exists C \text{ closed such that } C \subset B \setminus D \subset A, \ \mu((B \setminus D) \setminus C) < \varepsilon.$

This implies that $\mu(A \setminus C) = \mu(A \setminus (B \setminus D)) + \mu((B \setminus D) \setminus C) < \varepsilon$.

Proof of 2

Consider $V_i \setminus A$ where $\mu(V_i \setminus A) \leq \mu(V_i) < +\infty$.

By (1), $\exists C_i$ closed with $C_i \subset V_i \setminus A$ and $\mu((V_i \setminus A) \setminus C_i) < \varepsilon/2^{i+1}$. Write

$$(V_i \setminus A) \setminus C_i = (V_i \setminus A) \cap C_i^c = V_i \cap A^c \cap C_i^c = (V_i \cap C_i^c) \cap A^c = (V_i \setminus C_i) \setminus A$$

Note that $V_i \setminus C_i$ is open, since C_i is closed.

Define $U = \bigcup (V_i \setminus C_i) \supset A$. Then,

$$U \setminus A = \left(\left| \int (V_i \setminus C_i) \right| \setminus A = \left| \int ((V_i \setminus C_i) \setminus A) \right|$$

Therefore $\mu(U \setminus A) \le \varepsilon \frac{\varepsilon}{2^{1+1}} = \varepsilon$.

Remark

 $X = \bigcup V_i, V_i \text{ open and } \mu(V_i) < +\infty.$

Then $\forall A \in \Lambda$, $\forall \varepsilon > 0$, $\exists U$ open such that $U \supset A$ and $\mu(U \setminus A) < \varepsilon$.

For A^c , $\exists U \supset A^c$ ($\Longrightarrow U^c \subset A$), $\mu(U \setminus A^c) < \varepsilon$. So

$$U \cap A = U \setminus A^c = A \setminus U^c = A \cap U$$

and $\mu(A \setminus U^c) < \varepsilon$, $U^c \subset A$ with U^c closed.

Corollary

For \mathbb{R}^n , a measure is Radon if and only if it is locally finite and Borel regular.

- Proof

 (\Longrightarrow)

 Let $B(r, x_0) = \{x \in \mathbb{R}^n \mid |x x_0| < r\}$ and $\overline{B(r, x_0)} = \{x \in \mathbb{R}^n \mid |x x_0| \le r, \text{ compact}\}$. Then $\mu(B(r, x_0)) \le \mu(\overline{B(r, x_0)}) < +\infty$. So μ is locally finite. For $A \in \Lambda$, we may assume without loss of generality that $\mu(A) < +\infty$. Then $\forall i, \exists U_i \text{ open where } U_i \supset A \text{ and } \mu(A) \le \mu(U_i) \le \mu(A) + \frac{1}{i} < +\infty$. Set $G = \bigcap U_i \in \mathcal{B}$, then $\mu(G) = \mu(A)$.
 - 1. Borel regular implies Borel.
 - 2. For K compact, $\forall x \in K \ni U_x$ open where $\mu(U_x) < +\infty$.

 $\{U_{\lambda}\}_{\lambda\in k}$ is an open cover. Therefore there is a finite subcover $\{U_{\lambda_i}\}_{i=1}^{\lambda}$ where

$$\mu(K) \le \mu\left(\bigcup_{i=1}^k U_{\lambda_i}\right) \le \sum_{i=1}^k \mu\left(U_{x_i}\right) < +\infty$$

3. $\forall V$ open, $B(i) = B(i,0), V \cap B(i), \mu(V \cap B(i)) < +\infty$, $\exists C_i$ closed where $C_i \subset V_{\cap B(i)}$ so C_i is bounded and therefore compact.

So
$$\mu(C_i) \leq \mu\left((V \cap B(i)) \setminus C_i\right) < \frac{1}{i}$$
 and $\mu(V \cap B(i)) \leq \mu(C_i) + \frac{1}{i}$.
Then $\mu(V) = \lim_{i \to \infty} \mu(V \cap B(i)) = \lim_{i \to \infty} \mu(C_i)$, and $C_i \subset V \cap B(i) \subset V$ compact.
Therefore $\mu(V) = \sup\{\mu(K) \mid K \text{ compact}, K \subset V\}$.

4. $\forall A \in \Lambda, \ \forall i, \ \exists U_i \text{ open where } U_i \supset A \text{ and } \mu(U_i \setminus A) < \frac{1}{i}$

This implies that $\mu(A) \le \mu(U_i) \le \mu(A) + \frac{1}{i}$ and therefore $\mu(A) = \inf\{\mu(U) \mid U \supset A, U \text{ open}\}.$

Caratheodory Construction

Definition: Outer Measure

$$\mu^*(A), \forall A \in 2^X$$

- 1. $\mu^*(\emptyset) = 0$.
- 2. $\mu^*(A) \le \mu^*(B)$ if $A \subseteq B$.
- 3. $\mu^*(|A_i|) \leq \sum \mu^*(A_i), \forall A_i \in 2^X$ (countable subadditivity)

Define $\Lambda = \{A \in 2^x \mid \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \in 2^X \}$. Then $\mu(A) = \mu^*(A)$ if $A \in \Lambda$. (X, Λ, μ) is complete.

January 25, 2024

Theorem: Caratheodory Construction

Outer Measure

$$u^*: 2^X \to [0, +\infty].$$

- 1. $\mu^*(\emptyset) = 0$
- 2. Monotonicity: $\mu^*(A) \leq \mu^*(B)$, $A \subseteq B$
- 3. Countable Subadditivity: $\mu^* \left(\bigcup_i A_i \right) \leq \sum_i \mu^* (A_i)$.

Caratheodory Criterion

 $A \subset X$ is measurable if $\forall E \in X$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Theorem

The collection Λ of all measurable sets is a σ -algebra. (X, Λ, μ) is a complete measure space (cf. proof of Lebesgue completeness).

Hausdorff Measure

 $\forall A \subseteq \mathbb{R}^n, \ \forall s \geq 0, \ H_s^{\delta}(A) = \inf \left\{ \sum_i (d(E_i))^s \mid \bigcup_i E_i \supset A, \ d(E_i) \leq \delta \right\} \text{ where } d(E_i) \text{ is the diameter of } E_i.$ Notice that $H_s^{\delta_1}(A) \leq H_s^{\delta_2}(A)$ if $\delta_2 \leq \delta_1$. Let $H_s^*(A) = \lim_{\delta \to 0} H_s^{\delta}(A), \ \forall A \in 2^{\mathbb{R}^n}$. Claim: H_s^* is an outer measure.

- Verify
 - 1. $H_s^*(\emptyset) = 0$.
 - 2. $H_s^*(A) \leq H_s^*(B), \forall A \subseteq B \subseteq \mathbb{R}^n$.
 - 3. Given $A_i \subset \mathbb{R}^N$,

$$\begin{split} &\exists \delta_0 > 0 \text{ such that } \forall \delta < \delta_0, \ H_s^*\left(\bigcup_i A_i\right) \leq H_s^\delta\left(\bigcup_i A_i\right) + \frac{\varepsilon}{2}. \\ &\text{Then } \forall \delta < \delta_0 \text{ fixed, } \forall A_i, \ \exists \{E_i^j\} \text{ such that } \bigcup_j E_i^j \supset A_i, \ \sum_j (d(E_i^j))^s \leq H_s^\delta(A_i) + \frac{\varepsilon}{2^{i+1}}, \text{ and } d(E_j^j) \leq \delta. \end{split}$$

$$H_s^{\delta}\left(\bigcup_i A_i\right) \leq \sum_{i,j} (d(E_i^j))^s$$

$$= \sum_i \left(\sum_j (d(E_i^j)^s)\right)$$

$$= \sum_i \left(H_s^{\delta}(A_i) + \frac{\varepsilon}{2^{i+1}}\right)$$

$$= \sum_j H_s^{\delta}(A_i) + \frac{\varepsilon}{2}$$

and

$$H_s^*\left(\bigcup_i A_i\right) \le \sum_i H_s^\delta(A_i) + \varepsilon \le \sum_i H_s^*(A_i) + \varepsilon, \quad \forall \varepsilon > 0.$$

Then, since H_s^* is an outer measure, it is a measure by the Caratheodory construction.

Definition: Hausdorff Measure

The Hausdroff Measure $H_s: \Lambda \to [0, +\infty)$ on a σ -algebra $\Lambda \subset 2^{\mathbb{R}^n}$.

Not Locally Finite

Consider $B(0,1) = \{x \mid |x| < 1\}.$

Then $H_s(B(0,1)) = \infty$ for s < n.

That is, the Hausdorff measure is not locally finite for s < n.

Complete

The Hausdorff measure, by the Caratheodory construction, is complete.

Symmetry

- 1. Translation Invariance: $H_s(A + x) = H_s(A)$.
- 2. Rotation Invariance: $H_s(RA) = H_s(A)$.
- 3. Scaling: $H_s(\lambda A) = \lambda^s H_s(A)$.

Open Balls Measurable

What about $B(0,1) \subset \mathbb{R}^n$. For $\delta > 0$,

 $H_s^*(E \cap B(0,1)) + H_s^*(E \cap B(0,1)^c) \le H_s^*(E \cap B(0,1-\delta)) + H_s^*(E \cap (B(0,1) \setminus B(0,1-\delta))) + H_s^*(E \cap B(0,1)^c)$ Want to show that for all $\varepsilon > 0$, this is $\le H_s^*(E) + \varepsilon$.

• Lemma 1

$$H_s^*(E \cap B(0, 1 - \delta)) + H_s^*(E \cap B(0, 1)^c) = H_s^*(E \cap (B(0, 1 - \delta) \cup B(0, 1)^c))$$

$$\leq H_s^*(E)$$

• Lemma 2

$$H_s^*(E \cap (B(0,1) \setminus B(0,1-\delta)) < \varepsilon.$$

• Lemma 1'

If $A, B \in \mathbb{R}^n$, dist(A, B) > 0, then $H_s^*(A \cup B) = H_s^*(A) + H_s^*(B)$. Since $\{E_i\}$ covering $A \cup B$, $d(E_i) < \frac{1}{4}$ dist(A, B) gives

$$\delta < \frac{1}{4} \mathrm{dist}(A, B) \iff \{E_j^A\} \cup \{E_k^B\}$$

if and only if $\{E_i^A\}$ covers A and $\{E_k^B\}$ covers B. Therefore,

$$\sum_{i} (d(E_{i}))^{s} = \sum_{j} (d(E_{j}^{A}))^{s} + \sum_{k} (d(E_{k}^{B}))^{s}$$

$$\inf \left\{ \sum_{i} (d(E_{i}))^{s} \right\} = \inf \left\{ \sum_{j} (d(E_{j}^{A}))^{s} \right\} + \inf \left\{ \sum_{k} (d(E_{k}^{B}))^{s} \right\}$$

and $H_s^{\delta}(A \cup B) = H_s^{\delta}(A) + H_s^{\delta}(B)$. Thus $H_s^*(A \cup B) = H_s^*(A) + H_s^*(B)$.

Let $T_i = E \cap \left(B\left(0, 1 - \frac{1}{i+1}\right)\right) \setminus B\left(0, 1 - \frac{1}{i}\right)$. IMAGE HERE - 1 CONCENTRIC RINGS We want to show that $H_s^*\left(E \cap \left(B(0,1) \setminus B\left(0, \frac{1}{i}\right)\right)\right) < \varepsilon$ for i >> 1. Then

$$\bigcup_{k=1} T_k = (B(0,1) \setminus \{0\}) \cap E$$

$$\bigcup_{k=i} T_k = \left(B(0,1) \setminus B\left(0,1 - \frac{1}{i}\right)\right) \cap E$$

Claim: $\sum_{i} H_s^*(T_i) < +\infty$. It suffices to prove this claim.

$$\sum_{i \text{ even}}^{2k} H_s^*(T_i) = H_s^* \left(\bigcup_{i \text{ even}}^{2k} \right) \le H_s^*(E) < +\infty$$

$$\sum_{i \text{ odd}}^{2k+1} H_s^*(T_i) = H_s^* \left(\bigcup_{i \text{ odd}}^{2k+1}\right) \le H_s^*(E) < +\infty$$

Then $\sum_{i=1}^{k} H_s^*(T_i) \ll \infty$.

Borel

Take a countable, dense set $\{q_i\} \subset \mathbb{R}^n$ and $\{B\left(q_i, \frac{1}{k}\right)\}_{i,k}$.

Claim: $\forall V \subseteq \mathbb{R}^n$ open, then $V = \bigcup_l B\left(q_{i_l}, \frac{1}{k_l}\right)$.

Then $\mathcal{B} \subseteq \Lambda$ and the Hausdorff measure is Borel.

Borel Regular

 $\forall A \subset \Lambda, \exists B \in \mathcal{B} \text{ such that } B \supset A \text{ and } H_s(B) = H_s(A).$ $\forall \delta = \frac{1}{i}, \{E_i^j\} \ E_i^j \text{ closed balls with } d(E_i^j) < \frac{1}{i},$

$$\sum_{i} (d(E_i))^s \le H_s^{\frac{1}{j}}(A) + \frac{1}{j}$$

Take $B = \bigcap_j (\bigcup_i E_i^j) \in \mathcal{B}$ since $B = \bigcap_j \bigcup_i E_i^j \supset A$. Then

$$H_{s}^{\frac{i}{j}}(B) \leq H_{s}^{\frac{1}{j}}\left(\bigcup_{i} E_{i}^{j}\right)$$

$$\leq \sum_{i} H_{s}^{\frac{1}{j}}\left(E_{i}^{j}\right)$$

$$\leq \sum_{i} \left(d(E_{i}^{j})\right)^{s}$$

$$\leq H_{s}^{\frac{1}{j}}(A) + \frac{1}{j}$$

and in the limit as $j \to \infty$

$$H_s^*(A) \le H_s^*(B) \le H_s^*(A)$$

Fractional or Hausdorff Dimension

Theorem:

1.
$$H_s^*(A) < +\infty \implies H_t^*(A) = 0, \forall t > s \ge 0.$$

2.
$$H_t^s > 0 \implies H_s(A) = \infty, \forall 0 \le s < t$$

Proof

$$H_s^{\delta}(A) \sim \sum_i (d(E_i))^s$$
$$= \sum_i (d(E_i))^t (d(E_i))^{s-t}$$

So s < t gives $\geq \delta^{s-t}$. In the other direction, when s < t

$$\sum_{i} (d(E_i))^t = \sum_{i} (d(E_i))^s (d(E_i))^{t-s}$$

$$\leq \delta^{t-s} \sum_{i} (d(E_i))^s$$

Definition: Hausdorff Dimension

Given $A \subset \mathbb{R}^n$,

$$\dim_{H}(A) = \sup \left\{ s \mid H_{s}^{*}(A) = \infty \right\}$$

$$= \sup \left\{ s \mid H_{s}^{*}(A) > 0 \right\}$$

$$= \inf \left\{ s \mid H_{s}^{*}(A) < 0 \right\}$$

$$= \inf \left\{ s \mid H_{s}^{*}(A) < +\infty \right\}$$

Example 1

 \mathbb{R}^n has n Hausdorff dimension. Consider the n-cube with sides d, C(d). Then

$$H_s(C(d)) = C(n,s)d^s$$

So
$$C(n,s) = C(n,s)2^{nk} \frac{1}{(2^k)^s} = C(n,s)2^{(n-1)k}$$
.
If $s < n$, this tends to infinity as $k \to \infty$.
Is $s > n$ it tends to 0.

Example 2

Cantor set has Hausdorff dimension $\frac{\log(2)}{\log(3)}$.

$$\bigcup_{k=1}^{2^n} C_n^k = \frac{\log(2)}{\log(3)}$$

where
$$|C_n^k| = \frac{1}{3^n}$$
, so $H_s^{\delta}(C^n) \sim \frac{2^n}{(3^n)^s} = \left(\frac{2}{3^s}\right)^n$.

Example 3

The Koch snowflake has dimension $\frac{\log(4)}{\log(3)}$.

January 30, 2024

Lemma:

Given a measure space (X, Λ, μ) and an extended real-valued function $f: X \to [-\infty, +\infty]$, the following are equivalent

- 1. $\forall \alpha \in \mathbb{R}, \{x \in X \mid f(x) > \alpha\} \in \Lambda$.
- 2. $\forall \alpha \in \mathbb{R}, \{x \in X \mid f(x) \ge \alpha\} \in \Lambda$.
- 3. $\forall \alpha \in \mathbb{R}, \{x \in X \mid f(x) < \alpha\} \in \Lambda$.
- 4. $\forall \alpha \in \mathbb{R}, \{x \in X \mid f(x) \leq \alpha\} \in \Lambda$.
- 5. $\forall U \in \mathbb{R} \text{ open, } f^{-1}(U) \in \Lambda \text{ and } f^{-1}(\pm \infty) \in \Lambda.$

Proof 1 Implies 2

$$\{x\in X\mid f(x)\geq\alpha\}=\bigcap_{n=1}^{\infty}\Big\{x\in X\mid f(x)>\alpha-\tfrac{1}{n}\Big\}.$$

Proof 2 Implies 3

$$\{x \in X \mid f(x) < \alpha\} = \{x \in X \mid f(x) \ge \alpha\}^c$$

Proof 3 Implies 4

$$\left\{x \in X \mid f(x) \le \alpha\right\} = \bigcap_{n=1}^{\infty} \left\{x \in X \mid f(x) < \alpha + \frac{1}{n}\right\}$$

Proof 4 Implies 1

$$\{x \in X \mid f(x) > \alpha\} = \{x \in X \mid f(x) \le \alpha\}^c$$

Proof of 5

 $\forall U \in \mathbb{R}$ open, $V = \bigcup_i I_i$ disjoint open intervals.

Therefore
$$f^{-1}((a,b)) = \{x \in X \mid f(x) > a\} \cap \{x \in X \mid f(x) < b\}$$
.
Similarly, $f^{-1}(-\infty) = \bigcap_n \{x \in X \mid f(x) < -n\}$ and $f^{-1}(\infty) = \bigcap_n \{x \in X \mid f(x) > n\}$.

Proof 5 Implies 1

$$\{x \in X \mid f(x) > \alpha\} = f^{-1}((\alpha, +\infty)) \cup f^{-1}(+\infty) \in \Lambda.$$

Definition: Measurable Function

For a measure space (X, Λ, μ) , an extended real-valued function $f: X \to [-\infty, +\infty]$ is said to be measurable if one or all of (1)-(5) hold.

Remark:

If (X, Λ, μ) is Borel, then continuous functions are always measurable.

Remark:

The characteristic function

$$\chi_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

is measurable if $A \in \Lambda$.

Definition: Simple Functions

The function ϕ is simple if

$$\phi(x) = \sum_{i=1}^{k} \lambda_i \chi_{A_i}, \quad \lambda_I \in \mathbb{R}, \ A_i \in \Lambda$$

Proposition:

Given a measure space (X, Λ, μ) and measurable, real-valued f, g,

• $f \pm g$ is measruable.

$$\{x \in X \mid f(x) + g(x) < \alpha\} = \bigcup_{r \in \mathbb{Q}} \left(\{x \in X \mid f(x) < r\} \cup \{x \in X \mid g(x) < \alpha - r\} \right).$$

• f^2 is measurable

$$\forall \alpha \ge 0, \{x \in X \mid f^2(x) < \alpha\} = \{x \in x \mid f(x) < \sqrt{\alpha}\} \cap \{x \in X \mid f(x) > -\sqrt{\alpha}\}.$$

• $f \cdot g$ is measurable

$$f(x) \cdot g(x) = \frac{1}{2} ((f+g)^2 - f^2 - g^2).$$

Definition: Almost Everywhere Equality

Measurable functions f and g on the space (X, Λ, μ) are the same almost everywhere with respect to μ (written μ -a.e.) if

$$\mu(\{x \in X \mid f(x) \neq g(x)\}) = 0$$

Proposition:

For a complete measure space (X, Λ, μ) , if f and g are equal μ -a.e., then f is measurable if and only if g is measurable.

Proof

$$\{x \in X \mid f(x) > \alpha\} = (\{x \in X \mid f(x) > \alpha\} \cap \{x \in X \mid f(x) = g(x)\}) \cup \{x \in X \mid f(x) > \alpha\} \cap \{x \in X \mid f(x) \neq g(x)\}$$

$$= (\{x \in X \mid g(x) > \alpha\} \cap \{x \in X \mid f(x) = g(x)\}) \cup \{x \in X \mid f(x) > \alpha\} \cap \underbrace{\{x \in X \mid f(x) \neq g(x)\}}_{\mu = 0}$$

Proppsotion:

Given $\{f_k(x)\}$ measurable.

- 1. $g_n(x) = \sup\{f_1(x), f_2(x), \dots, f_n(x)\}\$ and $h_n(x) = \inf\{f_1(x), f_2(x), \dots, f_n(x)\}\$ measurable.
- 2. $g(x) = \sup\{f_n(x)\}\$ and $h(x) = \inf\{f_n(x)\}\$ measurable.
- 3. $\limsup_{n\to+\infty} f_n(x) = \inf_n \sup\{f_n(x), f_{n+1}(x), \ldots\}$ and $\liminf_{n\to+\infty} f_n(x) = \sup_n \inf\{f_n(x), f_{n+1}(x), \ldots\}$ measurable.
- 4. $f_n(x) \to f(x)$ pointwise \implies f measurable.

Proof of A

Proof of B

$$\{x \in X \mid g(x) > \alpha\} = \bigcup_n \{x \in X \mid f_n(x) > \alpha\}$$

$$\{x \in X \mid h(x) < \alpha\} = \bigcup_n \{x \in X \mid f_n(x) < \alpha\}$$

Definition: Almost Everywhere Convergence

For $f_n(x)$ measurable, $f_n(x) \to f(x)$ μ -a.e. in X if $f_n(x) \to f(x)$ in $A \subset X$ pointwise where $\mu(X \setminus A) = 0$.

Proposition:

On a complete measure space (X, Λ, μ) with f_n measurable and $f_n(x) \to f(x)$ μ -a.e. in X, f(x) is measurable.

Proof

$$f_n(x) \to f(x)$$
 pointwise in A and $\mu(A^c) = 0$.
 $\{x \in X \mid f(x) > \alpha\} = (\{x \in X \mid f(x) > \alpha\} \cap A) \cup (\{x \in X \mid f(x) > \alpha\} \cap A^c).$

Theorem:

With (X, Λ, μ) a measure space and f measurable, there exist simple functions ϕ_n such that

- 1. $|\phi_n(x)| \le |\phi_{n+1}(x)|$.
- 2. $\phi_n(x) \to f(x)$ pointwise in X.
- 3. If f is bounded, then $\phi_n(x) \rightrightarrows f(x)$ in X.

Proof

Consider $(-\infty, -n] \cup (-n, n) \cup [n, +\infty)$, and define $N_n = \{x \in X \mid f(x) \le -n\}$ and $P_n = \{x \in X \mid f(x) \ge n\}$. Then $\bigcap_n (N_n \cup P_n) = \emptyset$. Define

$$A_{n,k} = \left\{ x \in X \mid \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n} \right\}_{k=-1,-2,\dots,-n2^n+1}$$

$$A_{n,0} = \left\{ x \in X \mid \frac{-1}{2^n} < f(x) < 0 \right\}$$

$$A_{n,1} = \left\{ x \in X \mid 0 < f(x) < \frac{1}{2^n} \right\}$$

$$A_{n,k} = \left\{ x \in X \mid \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}_{k=2} \xrightarrow{n \ge n} n^{2^n}$$

and set

$$\phi_n(x) = -n\chi_{N_n} + \sum_{k=0}^{-n2^n+1} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{A_{n,k}} + n\chi_{P_n}$$

Claim:

- 1. $\forall x \in X, \phi_n(x) \to f(x)$.
- 2. if $\exists N \in \mathbb{N}$ such that $|f(x)| < N \implies \phi_n(x) \Rightarrow f(x)$ in X.

Proof

$$\begin{split} |\phi_n(x)-f(x)| &\leq \tfrac{1}{2^n}, \ \forall x \in X \setminus (U_n \cup P_n) \\ \text{Note} \ \forall x \in X, \ \exists m \in \mathbb{N} \ \text{such that} \ x \notin N_m \cup P_m. \ \text{So} \ |f(x)| < m. \\ \text{Then boundedness implies} \ \exists N \ \text{such that} \ N_N \cup P_N = \varnothing. \\ \text{Therefore} \ \forall x \in X, \ |\phi_n(x)-f(x)| &< \tfrac{1}{2^n}, \ \forall n \geq N. \end{split}$$

Theorem: Egoroff

Given a measure space (X, Λ, μ) , $\mu(x) < +\infty$ and $f_n \to f$ μ -a.e. in X, then $\forall \delta > 0$, $\exists A \in \Lambda$ such that $\mu(X \setminus A) < \delta$ and $f_n(x) \rightrightarrows f(x)$ in A.

Recall: Pointwise Convergence

$$\forall x \in X, f_n(x) \to f(x) \text{ if } \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |f_n(x) - f(x)| < \varepsilon, \forall n \ge N.$$

$$Bjj_{N,\varepsilon} = \{x \in X \mid \exists N \in \mathbb{N}, |f_n(x) - f(x)| < \varepsilon, \forall n \ge N\}$$
In negation, $\exists \varepsilon > 0$ such that $\forall N \in \mathbb{N}, \exists m \ge N$ such that $|f_n(x) - f(x)| \ge \varepsilon.$

$$A_{N,\varepsilon} = B_{N,\varepsilon}^c = \{x \in X \mid \exists m \ge N, |f_n(x) - f(x)| \ge \varepsilon\}$$
Then $\{x \in X \mid f_n(x) \to f(x)\} = \bigcap_{\varepsilon > 0} \bigcup_N B_{N,\varepsilon} = \bigcap_{\varepsilon_i \to 0} \bigcup_i B_{N_i,\varepsilon_i}$
and $\{x \in X \mid f_n(x) \to f(x)\} = \bigcup_{\varepsilon > 0} \bigcap_N A_{N,\varepsilon} = \bigcup_{\varepsilon_i \to 0} \bigcap_i A_{N_i,\varepsilon_i} \text{ where } \varepsilon_i = \frac{1}{i}.$

February 2, 2024

Review: Measurable Function

An extended, real-valued function $f: X \to [-\infty, +\infty]$ is measurable if one or all of the following hold

- 1. $\forall \alpha \in \mathbb{R}, \{x \mid f(x) > \alpha\} \in \Lambda$.
- 2. $\forall \alpha \in \mathbb{R}, \{x \mid f(x) \geq \alpha\} \in \Lambda$.
- 3. $\forall \alpha \in \mathbb{R}, \{x \mid f(x) < \alpha\} \in \Lambda$.
- 4. $\forall \alpha \in \mathbb{R}, \{x \mid f(x) \leq \alpha\} \in \Lambda$.
- 5. $\forall V \subseteq \mathbb{R}$ open, $f^{-1}(U) = \{x \mid f(x) \in V\}$ and $f^{-1}(-\infty), f^{-1}(+\infty) \in \Lambda$.

Properties

- 1. For $f = g \mu$ -a.e., f is measurable if and only if g is measurable.
- 2. For f, g measurable, f + g and $f \cdot g$ are measurable.
- 3. For $\{f_n\}$ measurable,
 - (a) $\sup_{n \le k} \{f_n\}$ and $\inf_{n \le k} \{f_n\}$ are measurable.
 - (b) $\sup_n \{f_n\}$ and $\inf_n \{f_n\}$ are measurable.
 - (c) $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$ are measurable.
 - (d) if $f_n \to f$ μ -a.e. in X, then f is measurable.

Examples

Characteristic Functions

$$\chi_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}, \quad A \in \Lambda$$

Simple Functions

$$\sum_{i=1}^{k} \alpha_i \chi_{A_i}, \quad \alpha_i \in \mathbb{R}, \ A_i \in \Lambda, \ A_j \cap A_k = \emptyset$$

Step Functions

$$\sum_{i=1}^{k} \alpha_i \chi_{I_i}, \quad I_i \text{ interval}$$

Theorem:

On a measure space (X, Λ, μ) , suppose f is measurable. There exists a sequence of simple functions $\{\phi_n\}$ such that

- 1. $\phi_n \to f$ pointwise.
- 2. $\phi_n \Rightarrow f$ for f bounded.

Proof

Let $N_n = \{x \mid f(x) \le -n\}$ and $A_{n,k} = \{x \mid \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n}\}$. Then

$$A_{n,0} = \left\{ x \mid -\frac{1}{2^n} < f(x) < 0 \right\}$$

$$A_{n,1} = \left\{ x \mid 0 < f(x) < \frac{1}{2^n} \right\}$$

$$A_{n,k} = \left\{ x \mid \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}$$

$$P_n = \left\{ x \mid f(x) \ge n \right\}$$

and

$$\phi_n = -n\chi_{N_n} + \sum_{k=-n2^n+1}^{D} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{1}^{n2^n} \chi_{A_{n,k}} + n\chi_{\phi_n}$$

So

$$|\phi_n(x) - f(x)| \le \frac{1}{2^n}, \quad x \in X \setminus (N_n \cup P_n), \quad \bigcap_n (N_n \cap P_p) = \emptyset$$

Egoroff Theorem

Given (X, Λ, μ) where $\mu(X) < +\infty$, if

- 1. $f_n(x) \to f(x)$ μ -a.e. in X and
- 2. f_n , f μ -a.e. finite.

Then, $\forall \delta > 0$, $\exists A \in \Lambda$ with $\mu(A) < \delta$ such that $f_n(x) \Rightarrow f(x)$ on A^c .

Proof

Define $D = \{x \mid f_n(x) \to f(x)\} = X$.

Then $\forall \varepsilon > 0$, $\exists m \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon$, $\forall n \ge m$.

Say that the universal quantifier \forall is equivalent to grand intersection and the existential quantifier \exists is equivalent to grand union. Then

$$D_{m,\varepsilon} = \{x \mid f_n(x) - f(x) < \varepsilon, \ \forall n \ge m\}$$

and

$$\bigcap_{\varepsilon>0}\bigcup_{m}D_{m,\varepsilon}=X.$$

The negation is

$$D_{n,\varepsilon}^c = \{x \mid \exists n \ge m, |f_n(x) - f(x)| \ge \varepsilon\}$$

Then injection is equivalent to the complement.

Set $\varepsilon_i = \frac{1}{i}$ such that

$$D = \bigcap_{i} \bigcup_{m_{i}} D_{m_{i},1/i}$$

$$\emptyset = D^{c} = \bigcup_{i} \bigcap_{m} D_{m,1/i}^{c}$$

So $\bigcap_m D_{m,1/i}^c = \emptyset$,

$$D_{m,1/i}^{c} = A_{m,1/i} = \left\{ x \mid \exists n \ge m, |f_n(x) - f(x)| \ge \frac{1}{i} \right\}$$

and $A_{n,1/i} \supset A_{n+1,1/i} \supset \cdots$. Therefore

$$\mu(A_{n,1/i}) \to \mu\left(\bigcap_{m} A_{m,1/i}\right) = 0$$

for $\mu(X) < +\infty$.

Thus, $\forall i, \exists m_i \text{ such that } \mu(A_{m_i,1/i}) < \frac{\delta}{2^{i+1}}$. It follows that $A = \bigcup_i (A_{m_i,1/i})$,

$$\mu(A) \leq \sum \mu(A_{m_i,1/i}) < \delta$$

and

$$x \in A^{c} = \bigcap_{i} A_{m_{i},1/i}^{c} = \bigcap_{i} D_{m_{i},1/i} = \bigcap_{i} \left\{ x \mid |f_{n}(x) - f(x)| < \frac{1}{i}, \ \forall n \ge m_{i} \right\}$$

Finally, this implies $f_n(x) \rightrightarrows f(x)$ in A^c .

Example

Take $f_n = \chi_{[n,n+1]}$ on \mathbb{R} , then $f_n(x) \to 0$ in \mathbb{R} but $A \subset \mathbb{R}$, $\mu(A) < \frac{1}{2}$, $A^c \cap [n,n+1] \neq \emptyset$, $\forall n$. That is, $\forall n, \exists x \in A^c$ such that $f_n(x) = 1$ but f(x) = 0. Therefore $f_n(x) \not\Rightarrow f(x)$ on \mathbb{R} .

Definition: Essential Bounds

On a measure space (X, Λ, μ) with f measurable, define $||f||_{\infty} = \inf\{M \mid \mu(\{x \mid |f(x)| > M\}) = 0\}$. This is the L^{∞} -norm.

Proposition:

 $f_n \Rightarrow f$ on A where $\mu(A^c) = 0$ if and only if $||f_n - f||_{\infty} \to 0$.

Proof

 (\Longrightarrow)

 $\forall \varepsilon > 0, \exists m \in \mathbb{N} \text{ such that } |f_n(x) - f(x)| < \frac{\varepsilon}{2}, \forall x \in A.$

Claim: $||f_n(x) - f(x)|| > \infty < \varepsilon, \forall n \ge m.$

$$||f_n(x) - f(x)||_{\infty} = \inf\{M \mid \mu(\{x \mid |f_n(x) - f(x)| > M\}) = 0\}$$

Where $\{x \mid |f_n(x) - f(x)| > n\} \subset A^c \text{ and } n \ge m \text{ and } M \ge \varepsilon/2$. (\longleftarrow)

Recall: Urysohn's Lemma

For X locally compact and Hausdorff, $K \subset U$ for K compact and U open, $\exists \phi$ continuous such that $\phi = \begin{cases} 1 & K \\ 0 & U^c \end{cases}$.

Theorem: Vitali-Lusin

On measure space (X, Λ, μ) with X locally compact and Hausdorff and μ a Radon measure. For f measurable, μ -a.e. finite and vanishing outside A where $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists g$ continuous with compact support such that $\mu(\{x \mid f(x) \neq g(x)\}) < \varepsilon$.

Proof

- 1. $\exists C \subset A$ compact with $\mu(A \setminus C) < \varepsilon$.
- 2. For A compact with $\mu(A) < +\infty$, $\exists U \supset A$ open neighborhood with compact closure and $\mu(U \setminus A) < \varepsilon$.
- 3. $\phi_n = -n\chi_{N_n} + \sum_{-n2^n+1}^0 \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{1}^{n2^n} \frac{k-1}{2^n} \chi_{A_{n,k}} + n\chi_{P_n}$

Since we may minimize $\mu(N_n \cup P_n) < \varepsilon$,

$$\phi_n = \sum_{-n2^n+1}^{0} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{1}^{n2^n} \frac{k-1}{2^n} \chi_{A_{n,k}}$$

Take $C_{1,k} \subset A_{1,k}$ compact with $\mu(C_{1,k}) \ge \mu(A_{1,k}) - 2^{-1}2^{-|k|+1}\varepsilon$. Write

$$C_1 = \bigcup_k C_{1,k}$$

and inductively define $C_{n-1,k}$ and $C_{n-1} = \bigcup_k C_{n-1,k}$ such that $C_{n,k} \subset A_{n,k} \cap C_{n-1}$ compact and

$$\mu(C_{n,k}) \ge \mu(A_{n,k} \cap C_{n-1}) - 2^{-1}2^{-|k|+1}\varepsilon$$

Define, by Urysohn's Lemma,

$$\tilde{\chi}_{A_{n,k}} := \begin{cases} 1 & C_{n,k} \\ 0 & U^c \cup \bigcup_{l \neq k} C_{n,l} \end{cases}$$

where $C_n \subset C_{n-1}, C = \bigcap C_n, C_n = \bigcup_k C_{n,k}$. Then define

$$g_n := \sum_{-n2^n+1}^0 \frac{k}{2^n} \tilde{\chi}_{A_{n,k}} + \sum_{1}^{n2^n} \frac{k-1}{2^n} \tilde{\chi}_{A_{n,k}}$$

Then $g_n = \phi_n$ on C for all n.

Therefore $g_n = \phi_n \Rightarrow \hat{g} = f$ on C.

By uniform convergence, \hat{g} is continuous on C.

So, again by Urysohn's Lemma, $g = \phi \hat{g}$ and $\{x \mid g \neq f\} = U \setminus C$.