割平面例子

2024年6月2日

整数规划的 Gomory 割平面法

• 整数规划问题:

$$\min \{c^T x \mid x \in \mathbf{Z}_+^n, Ax = b\}.$$

- 直接从单纯性表中创建有效不等式(割平面)。
- 给定 LP (最优的) 基 B, IP 可以写作

minimize
$$c_B^T B^{-1} b + \sum_{j \in NB} \bar{c}_j x_j$$

subject to $(x_B)_i + \sum_{j \in NB} \bar{a}_{ij} x_j = \bar{b}_i, \quad i = 1, 2, ...m$
 $x_j \in \mathbb{Z}_+^1, \ j = 1, 2, ...n$

NB 是非基变量指标集。

• $\bar{c}_j \geq 0$, $j \in NB$, $\bar{b}_i \geq 0$, i = 1, ..., m.

Gomory 割平面法

- 如果 LP 问题的解不是整数,那么存在某一行 $i, \bar{b}_i \notin \mathbb{Z}$
- 第 i 行的 C-G 割为

$$(x_B)_i + \sum_{j \in NB} \lfloor \bar{a}_{ij} \rfloor x_j \leq \lfloor \bar{b}_i \rfloor$$

● 替换 (x_B); 得

$$\sum_{j \in NB} (\bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor) x_j \ge \bar{b}_i - \lfloor \bar{b}_i \rfloor$$

• \diamondsuit $f_{ij} = \bar{a}_{ij} - \lfloor \bar{a}_{ij} \rfloor$, $f_i = \bar{b}_i - \lfloor \bar{b}_i \rfloor$

$$\sum_{j \in NB} f_{ij} x_j \ge f_i \quad \text{(Gomory 2)}$$

• 由于 LP 问题的最优解 $x_j^* = 0$ 对于 $j \in NB$,且 $0 \le f_{ij} < 1$, $0 < f_i < 1$,这个不等式切割 x^* !

例: Gomory 割平面法

● 例 1: 考虑如下问题

minimize
$$-5x_1 - 8x_2$$
 subject to $x_1 + x_2 \le 6$ $5x_1 + 9x_2 \le 45$ $x_1, x_2 \in \mathbf{Z}_+$

例: Gomory 割平面法

• 最优单纯形表

x_1	x_2	x_3	x_4	b
0	0	1.25	0.75	41.25
1	0	2.25	-0.25	2.25
0	1	-1.25	0.25	3.75

• 表中第二行的 Gomory 割为:

$$0.75x_3 + 0.25x_4 \ge 0.75$$

• 由于 $x_3 = 6 - (x_1 + x_2)$,且 $x_4 = 45 - (5x_1 + 9x_2)$,Gomory 割等价于

$$2x_1 + 3x_2 \le 15$$

例: Gomory 割平面法

• 修改后的可行集为

- 分式最优解 x = (2.35, 3.75) 不在割平面上,所以从新的可行域移除了。
- 修改后的可行域的边界点是整数。

● 例题 2

$$\begin{array}{ll} \text{minimize} & -4x_1+x_2\\ \text{subject to} & 7x_1-2x_2\leq 14\\ & x_2\leq 3\\ & 2x_1-2x_2\leq 3\\ & x_1,x_2\in \mathbf{Z}_+ \end{array}$$

• 最优单纯性表:

	x_1	x_2	X 3	x_4	X 5	Ь
_	0	0	$\frac{4}{7}$	$\frac{1}{7}$	0	$-\frac{59}{7}$
_	1	0	$\frac{1}{7}$	$\frac{2}{7}$	0	$\frac{20}{7}$
	0	1	Ô	1	0	3
	0	0	$-\frac{2}{7}$	$\frac{10}{7}$	1	$\frac{23}{7}$

表中第一行对应的 Gomory 割为:

$$\frac{1}{7}x_3 + \frac{2}{7}x_4 \ge \frac{6}{7}.$$

• 再次优化:

x_1	x_2	X 3	x_4	<i>X</i> 5	x_6	b
0	0	0	0	$\frac{1}{2}$	3	$-\frac{15}{2}$
1	0	0	0	0	1	2
0	1	0	0	$-\frac{1}{2}$	1	$\frac{1}{2}$
0	0	1	0	$-\overline{1}$	-5	$ ilde{1}$
0	0	0	1	$\frac{1}{2}$	6	$\frac{5}{2}$

表中第二行对应的 Gomory 割为:

$$\frac{1}{2}x_5 \geq \frac{1}{2}.$$

• 重新优化:

x_1	x_2	x_3	x_4	x_5	x_6	x_7	Ь
0	0	0	0	0	3	1	-7
1	0	0	0		1		2
0	1	0	0	0	1	-1	1
0	0	1	0	0	-5	-2	2
0	0	0	1			1	2
0	0	0	0	1	0	-1	1

完成! 最优解为 $x^* = (2,1)$.