

Cálculo I - Segunda Prova 24/10/2023 (7:00 – 8:40)

Nome:

Utilize resultados estudados na disciplina em todas as questões. BOA PROVA!!! Questão 01 (6,0): Considere a função f definida por $f(x) = \begin{cases} \frac{x^2 - 2x + 1}{x - 1} & se \ x \neq 1 \\ log \beta & se \ x = 1 \end{cases}$. Calcule o valor β para que a função f seja contínua em $x = 1$.
β para que a função f seja contínua em $x=1$.

Questão 02 (4,0): Suponha que um balão esteja sendo inflado, produzindo uma esfera perfeita. Calcule a taxa com que o volume desse balão está variando em relação ao raio, quando $r=10\ cm$								

$\mathbf{a)}\ f(x) = (x \cdot tgx)^2$	(b) $g(x) = \frac{e^x - 1}{e^{2x}}$	(c) $h(x) = \sqrt{x^{10} + 3x^5 - \sqrt{7}}$	