PNG 의 항법상수와 이와 관련된 최적제어 문제

조 항 주 국 방 과 학 연 구 소

Navigation Constants in PNG law and the Associated Optimal Control Problems

Hangju Cho The Agency for Defense Development

Abstract

In this paper, we show that various navigation constant values in PNG law can result in as optimal gains when we introduce proper time-varying weighting functions into the cost function of an optimal control problem. We then apply this idea to the guidance problem where we are required to achieve a given impact angle as well as the zero miss distance. As a result, we obtain a set of optimal guidance laws each of which could be related to a navigation constant in PNG. Some basic properties of these guidance laws are also presented.

1. 서론

PNG (Proportional Navigation Guidance) 법칙은 2 차세계대전 이후 유도탄의 중기유도 혹은 종말유도에 사용되기시작하였으며, 현재 각종 전술 유도탄에 가장 광범위하게 사용되고 있는 유도법칙이다. 이 PNG 법칙은 목표물과 유도탄을 잇는 시선 (LOS, Line of Sight) 이 변화하지 않으면 결국 유도탄이 목표물과 충돌하게 된다는 사실로부터 유래된유도법칙이며 ([1], pp 359-361), 유도명령은 LOS 의 회전각속도에 비례한 값으로 주어진다. 즉, nc 를 유도탄에 대한가속도명령, Vm 을 유도탄의 속도, σ를 LOS 각이라고 하면, PNG 법칙은

$$n_c = N V_m \sigma \tag{1}$$

과 같이 쓸 수 있다. 이 때 식 (1) 의 N 은 항법상수 (Navigation Constant) 라고 하며, LOS 각속도 $\dot{\sigma}$ 을 측정하는 탐색기 (Seeker) 측정잡음이나 목표물의 기동능력, 유도단의 초기 방위각오차등의 크기에 따라 설계자가 선택하는 상수이다. 이 항법상수는 주로 많은 컴퓨터 시뮬레이션 결과에 따라 선정되며 보통 3 - 5 의 값이, 그리고 때로는 정지된 목표물이나 속도가 매우 느린 목표물의 경우에 3 보다작은 값도, 사용되고 있다.

PNG 법칙이 최적유도법칙으로서 수학적으로 유도된 것은 PNG 법칙이 처음 공개적인 문헌에 나타난지 20 년이 지난 후였으며 [2], 일정속도로 비행하는 목표물에 대하여 N = 3

으로 취할 때 식 (1) 의 PNG 법칙이 유도탄의 에너지를 최소화하면서 목표물과 충돌할 수 있는 최적해가 됨이 밝혀졌다 ([3], pp 154-155). 항법상수 N 이 3 일 때 식 (1) 의 PNG 법칙이 최적해가 된다면, 왜 실제 용용시에는 3 이 아닌 다른 항법상수값이 쓰이는 것일까 ? 이에 대한 답은 앞에서 언급한 바와 같은 탐색기의 측정잡음이나 목표물의 기동능력 또는 유도명령의 크기제한등이 N = 3 을 산출해 내는 최적제어 문제에서 고려되지 않았기 때문이라고 할 수 있다. 그렇다면, N = 3 이 아닌 다른 값을 갖는 PNG 법칙이 최적해가되는 최적제어문제는 존재하는가? 만일 존재한다면, 이 최적제어문제는 어떻게 주어지며 무엇을 최적화하는가? 이와같은 질문에 대한 해답은 PNG 법칙을 보다 잘 이해하는 데에도움을 줄 것이며, 이를 이용한 새로운 유도법칙의 개발을가능하게 할 수도 있을 것이다.

위 절문에 대한 하나의 해답은 이미 문헌에서 찾아볼 수 있다. 즉, [3, pp 287-289] 과 [6] 에서는 목표물로의 유도탄 유도문제를 Pursuer 와 Evader 간의 Differential Game으로 보고 Pursuer 와 Evader 의 에너지가 제한되어 있을 경우에 대하여 최적제어문제를 고려하였으며, 이 문제의 해가식 (1) 의 형태가 되고 이 때의 N 값은 Pursuer 와 Evader의 에너지를 나타내는 상수들의 값에 따라 달리 정해짐을 보였다. 이 결과는 Evader가 사용할 수 있는 에너지가 0 일 경우 N = 3 의 값을 주며, Evader의 에너지가 클 수록 N의 값이 증가해야 함을 보여준다. 따라서 이 결과는 기동하는목표물에 대하여 큰 값의 항법상수가 필요하다는 많은 시뮬레이션 결과와 해석결과를 뒷받침해 준다.

이 논문에서는 전술한 질문에 대한 또 하나의 해답을 제시하고자 한다. 이 해답은 최적제어문제의 가격함수에 시변 하중함수를 도입함으로써 0 보다 큰 임의의 항법상수를 갖는 PNG 법칙을 만들어 낼 수 있음을 보여주며, 따라서 [3] 에서 고려한 최적제어문제보다 훨씬 간단한 형태의 최적제어문제 가 [3] 에서 산출해 내는 항법상수의 범위 (N ≥ 3) 보다 큰 범위의 항법상수를 산출할 수 있음을 보인다. 또한 이 논문에서는, 이 결과를 정지된 목표물에 주어진 충돌각 (Impact Angler)을 갖고 충돌하도록 요구되는 유도문제에 적용하여, 여러가지 이득값들을 가질 수 있는 새로운 유도법칙을 구해내고 이들의 특성을 비교분석해 보고자 한다.

2. PNG 법칙과 이와 관련된 최적제어문제

이 절에서는 정지된 목표물에 대한 유도탄의 유도법칙으로서 PNG 법칙을 살펴보고 이와 관련된 최적제어문제를 제시한다. 일정속도로 진행하는 목표물에 대하여도 변수들의 재정의에 의해 이 절의 결과가 그대로 적용된다. 먼저 그림 1의 유도탄과 목표물간의 Intercept Geometry 를 고려해 보자.

그림 1. 정지목표물에 대한 Intercept Geometry Fig 1. Intercept geometry for a stationary target

그림 1 에서 z 는 유도탄이 초기시선 ILOS 로부터 떨어진 거리이며, σ_m 은 유도탄 속도벡타의 ILOS 에 대한 각이고 σ 는 시선각이다. \overrightarrow{V}_m 의 크기 V_m 을 상수라 가정하자. 유도탄의 응답시간 지연이 없고 σ_m 이 작다고 할 때,

$$\begin{array}{c}
\dot{z} = -V_m \ \sigma_m \\
\vdots \\
n_c = V_m \ \sigma_m
\end{array}$$
(2)

가 된다. 이 때 y = z/Vm, u = nc/Vm 으로 놓으면 식 (2) 는

$$\dot{\sigma}_{m} = u$$
(3)

와 같이 간략하게 표현할 수 있다. 식 (3) 위 시스템에서

$$J = \frac{1}{2} \int_{0}^{t_{f}} u^{2} dt$$
 (4)

의 가격함수를 최소화하고

$$y(t_f) = 0 (5)$$

의 종말구속조건을 만족하는 유도명령 u 를 구하면,

$$u(t) = 3 \left(\frac{y(t)}{(t_f - t)^2} - \frac{\sigma_m(t)}{t_f - t} \right)$$
 (6)

와 같다 ([3]). 이 때 $\sigma \simeq y/(t_f - t)$ 로 쓸 수 있으므로, 식 (6) 은 u(t) = 3 $\dot{\sigma}(t)$ 가 되어 항법상수 N = 3 인 PNG 법칙이 됨을 알 수 있다.

식 (4) 의 Control Effort 몰 최소화하는 해가 N = 3 의 PNG 법칙이 된다면, 다른 항법상수 값을 갖는 PNG 법칙은 어떠한 제어문제의 최적해가 될까? 임의의 항법상수 N 을 갖는 PNG 법칙 $u(t) = N \dot{\sigma}(t)$ 를 식 (3) 의 시스템에 적용하여 보면, u(t)의 시간에 따른 궤적이

$$u(t) = \frac{N}{t_f} \left(\frac{y(0)}{t_f} - \sigma_m(0) \right) \left(\frac{t_f - t}{t_f} \right) N^{-2}$$
 (7)

와 같이 됨을 쉽게 알 수 있다 ([2, pp 30-33], [4, pp 206-208] 참조). 식 (7) 은 유도명령 궤적이 항법상수 N 에 따라 크게 다르며, N 이 커질수록 유도초기에 u(t) 의 크기가 중가하고 반대로 유도말기에는 u(t) 의 크기가 감소함을 보여주고 있다. 이와 같은 사실은 식 (4) 의 가격함수 대신

$$J_{N} = \frac{1}{2} \int_{0}^{t} R_{N}(t) u^{2} dt$$
 (8)

와 같이 시변의 적절한 하중함수 R_N 을 도입하여 가격함수를 정함으로써 임의의 항법상수 N을 갖는 PNG 법칙을 최적해로 산출하는 최적제어문제가 구성될 수 있지 않을까 하는 가능성을 시사해 준다.

이제 모든 $t \in (0, t_f)$ 대하여 $R_N(t) > 0$ 임을 가정하고 식 (3), (5) 그리고 (8) 로 구성되는 최적제어문제의 해를 구해보자. 이 문제는 표준적인 LQ 문제의 하나이며, 해는 다음과 같이 쉽게 구할 수 있다.

$$u(t) = -(t_{f}-t) R_{N}^{-1}(t) G_{N}^{-1}(t) \cdot (y(t) - (t_{f}-t) \sigma_{m}(t))$$
(9)

여기에서

$$G_N(t) = -\int_1^{t_f} R_{N-1}(s) (t_f - s)^2 ds$$
 (10)

식 (9) 는

$$u(t) = -(t_f - t)^3 R_N^{-1}(t) G_N^{-1}(t) \left(\frac{y(t)}{(t_f - t)^2} - \frac{\sigma_m(t)}{t_f - t} \right)$$

$$\simeq -(t_f - t)^3 R_N^{-1}(t) G_N^{-1}(t) \dot{\sigma}(t)$$

로 쓸 수 있으며, 따라서

$$-(t_f - t)^3 R_N^{-1}(t) G_N^{-1}(t) = N$$
 (11)

의 관계식이 성립하면 식 (9) 는 N 의 항법상수를 갖는 PNG 법칙이 된다. 이 때

$$P_N(t) = R_N^{-1}(t)$$

로 놓으면, 식 (11) 과 식 (10) 에서

$$P_N(t) = \frac{N}{(t_f - t)^3} \int_{t}^{t_f} P_N(s) (t_f - s)^2 ds \qquad (12)$$

가 된다. 식 (12) 를 미분해 보면

$$\frac{d P_N(t)}{dt} = \left(\frac{3-N}{t_f - t} \right) P_N(t)$$

가 되므로

$$\frac{d P_N(t)}{P_N(t)} = \left(\frac{3-N}{t_f-t}\right) dt$$

의 양병을 정분하여

$$P_N(t) = c (t_f - t)^{N-3}$$
 , c 는 상수 (13)

의 해를 구할 수 있다. PN(t) 가 식 (13) 과 같이 주어질 때 GN(t) 를 살펴보면.

$$G_N(t) = -c \int_{t}^{t_f} (t_f - s)^{N-1} ds$$

과 같다. 만일 $N \le 0$ 이면 $G_N(t) \equiv -\infty$ 가 되어 식 (9) 의 유도명령으로 종말조건 $y(t_f) = 0$ 를 만족시킬 수 없다. 따라서 N > 0 가 요구됨을 알 수 있다. 여기서 $G_N(t) < \infty$, $0 \le t \le t_f$, 또는 동가적으로 $G_N(0) < \infty$, 의 조건은 다음과 같은 관점에서 해석할 수 있다. 즉.

$$v = R_N^{1/2}$$

로 정의되는 v 를 제어입력으로 보면

$$J_N = \frac{1}{2} \int_0^{t_f} v^2(t) dt$$

가 되고, 식 (3) 의 시스템은

$$\begin{array}{ccc}
\vdots & & & & \\
y & = & & \sigma_m & \\
\vdots & & & & \\
\sigma_m & = & R_N & V
\end{array}$$
(14)

가 된다. 따라서 식 (3), (5) 그리고 (8) 로 주어지는 최적 제어문제는

$$z v = \int_{0}^{t_f} (t_f - t) R_{N^{-1/2}} v(t) dt$$

로 정의되는 Linear Operator 北: L²[0,t_f] → ℜ (L²[0,t_f] 는 square integrable 한 [0, t_f] 구간의 함수) 에 대하여

$$2 v = v(0) - t_f \sigma_m(0)$$

가 되는 minimum norm 의 해를 찾는 문제가 된다 ([5, pp 136-139] 참조). 이 때 $G_N(0)$ 〈 ∞ 는 ℓ 이 Bounded Operator 가 되기 위한 충분조건이 됨을 쉽게 알 수 있다.

이상의 결과를 다음과 같이 정리할 수 있다.

절리 1: N 〉 0 그리고 R_N(t) = (t_f - t)^{3-N} 이라 하자. 그러면 식 (3) 의 시스템에 대하여 식 (5) 의 종말구속조건을 만족하고 식 (8) 의 가격함수를 최소화하는 u 는 N 의 항법상수를 갖는 PNG 법칙, 즉,

$$u(t) = N \left(\frac{y(t)}{(t_f - t)^2} - \frac{\sigma_m(t)}{t_f - t} \right)$$
 (15)

로 주어진다.

정리 1 이 보여주는 PNG 법칙의 항법상수 N 과 이와 관 련된 최적제어문제와의 관계는 [3] 에서 볼 수 있는 그것보 다 훨씬 간단하다. 또한 유도명령에 대한 하중함수 R_N(t) = (tf - t)3-N 과 식 (7) 의 유도명령궤적이 모두 (tf - t) 의 합수로서 서로 밀접하고 직접적인 관련이 있음은 매우 흥미 롭다. 이와 같은 하중함수 RN 과 PNG 항법상수 N 과의 관계 는 다음과 같이 설명될 수 있을 것이다. 먼저 이 장에서 고 려한 유도문제에서는 목표물의 기동이나 돌풍과 같은 외부의 교란등은 고려되지 않았음을 상기하자. 이러한 외부교란에 도 불구하고 작은 유도오차를 내기 위하여는 외부교란이 없 는 정상상태에서의 유도명령의 값이 충분히 작아서 외부교란 이 발생하였을 때 대응할 수 있는 충분한 에너지를 확보하고 있어야 한다. 유도초기보다 유도말기의 외부교란이 유도오 차에 큰 영향을 미치므로, 만일 큰 외부교란이 예상될 경우 에는 정상상태에서의 유도말기의 유도명령의 크기가 매우 작 도록 해 주어야 할 것이다. 따라서 최적제어문제의 가격함 수에서 유도말기의 유도명령에 대하여 큰 penalty 를 주어야 하며, 이것은 R_N 의 $(t_f - t)$ 애 대한 지수가 커짐을 뜻하고 따라서 큰 값의 항법상수를 갖는 PNG 법칙이 산출된다. 거 꾸로, 정지된 목표물의 경우와 같이 예상되는 외란의 크기가 작으면 유도말기의 유도명령에 대한 큰 penalty 가 필요없으 며, 따라서 작은 값의 항법상수를 사용하여도 무방할 것이다 (작은 값의 항법상수를 사용하는 PNG 법칙은 탐색기와 같은 감지기의 잡음에 유도성능이 크게 저하되지 않는 특성이 있 으므로 [1], 작은 외부교란에 대하여 작은 값의 항법상수를 쓰는 것이 바람직하다).

3. 충돌각 (Impact Angle) 올 고려한 유도문제에의 응용

이 절에서는 정지된 목표물에 대한 충돌각을 고려한 유 도문제에 관하여 살펴본다.

목표물에 대한 충돌각은 $\sigma_m(t_f)$ 로 정의되며, 유도오차 $y(t_f)=0$ 뿐만 아니라 충돌각이 주어진 값 σ_f 가 되도록 요구되는 유도문제는 Reentry Vehicle 등의 종말유도에서 종 종 고려되는 문제 ([7]) 이다. 또한 식 (3) 에서 볼 수 있는 바와 같이 충돌각은 ILOS 에 수직한 방향으로의 속도성분이므로, 충돌각까지 고려하는 유도문제는 거리오차 $y(t_f)$ 와속도오차 $y(t_f)$ - $y_{desired}$ 의 두 가지를 모두 종말구속조건으로 주는 문제로도 생각할 수 있다. 이 충돌각까지 고려한 유도문제는 식 (3) 의 운동방정식과

$$y(t_f) = 0$$
 and $\sigma_m(t_f) - \sigma_f = 0$ (16)

의 종말구속조건을 갖는 최적제이문제를 풀어서 해를 구할 수 있으며, 이 때 식 (4)의 가격함수를 사용하면

$$u(t) = \frac{6 y(t)}{(t_f - t)^2} - \frac{4 \sigma_m(t)}{t_f - t} - \frac{2 \sigma_f}{t_f - t}$$
(17)

가 됨을 쉽게 알 수 있다. 식 (17) 의 유도법칙을 $\sigma r = 0$ 의 경우에 대하여 PNG 법칙 (6) 과 비교해 보면, 변수 $y(t)/(t_f - t)^2$ 과 $\sigma_m(t)/(t_f - t)$ 에 대한 이득들의 값이 PNG 법칙과는 달리 서로 다름을 볼 수 있다. PNG 의 경우에는 이들 변수들에 대한 이득이 서로 같고 (즉, 항법상수 N),이 이득을 경우에 따라 최적해의 이득 3 보다 크거나 작게 사용함으로써 최적해의 산출시 고려되지 않은 외부의 교란이나 센서잡음등에 대용할 수 있었으나, 충돌각까지 고려한 유도법칙의 경우에는 각 변수에 대한 이득들이 서로 달라서 이들 이득들에 대한 조정의 필요가 있을 경우 어떻게 이득들의 값들을 바꾸어야 하는가의 문제가 새롭게 대두된다. 이 절에서는 2 절의 결과를 이용하여 이 문제에 대한 하나의 해답을 제시하고 그 결과에 대한 간단한 분석을 하고자 한다.

따라서 식 (3) 의 운동방정식과 식 (16) 의 종말구속조건을 만족하고 식 (8) 의 가격함수를 최소화하는 최적제어문제를 고려하자. 이 제어문제에 대한 해 역시 쉽게 구할 수있으며, 그 해는 다음과 같이 쓸 수 있다.

$$u(t) = [-(t_f-t) \ 1] \ R_N^{-1}(t)G_N^{-1}(t) \begin{bmatrix} y(t)-(t_f-t) \sigma_m(t) \\ \sigma_m(t) - \sigma_f \end{bmatrix}$$
(18)

여기에서

$$G_N(t) = -\int_{t}^{t} R_N^{-1}(s) \begin{bmatrix} (t_f - s)^2 & -(t_f - s) \\ -(t_f - s) & 1 \end{bmatrix} ds$$
 (19)

이제 정리 1 의 하중함수 $R_N(t) = (t_f - t)^{3-N}$ 을 고려하자. 먼저 식 (19) 에서 $\parallel G_N(0) \parallel \langle \infty$ 의 조건을 살펴보면 $N \rangle$ 2 가 됨을 알 수 있다. 즉, PNG 법칙의 경우와는 달리 $N \rangle$ 2 인 경우에 식 (16) 의 종말구속조건을 만족하는 해를 얻을 수 있다. $N \rangle$ 2 인 경우에 위 식들을 풀어보면,

$$u(t) = \frac{N_y}{(t_f - t)^2} \quad y(t) - \frac{N_m}{t_f - t} \quad \sigma_m(t) - \frac{N_f}{t_f - t} \quad \sigma_f$$

$$N_y = N \quad (N - 1),$$

$$N_m = 2 \quad (N - 1),$$

$$N_f = (N - 1)(N - 2)$$
(20)

과 같다. PNG 의 항법상수 N 값에 대응하는 각 변수들에 대한 이득 Ny, Nm, Nf 의 값을 표 1 에 보인다.

	Ny	Nm	Nf
N = 2.5	3,75	3	0.75
N = 3	6	4	2
N = 4	12	6	6
N = 5	20	8	12

표 1. PNG 항법상수 N 에 대용하는 Ny, Nm, Nf 값

(a) $u(t) / \sigma_m(0) (y(0)=0=\sigma_f)$

(b) u(t) / of (y(0)=0=om(0)) 그림 2. 유도명령 u(식(20)) 의 궤적

Fig.2. Trajectories of guidance command u (Eqn. (20))

여기에서 흥미로운 것은, N 의 중감에 따른 N_y , N_m 및 N_f 의 중감이 각 이득들에 대하여 같은 비율로 이루어지지는 않는다는 점이다. 특히 이득 N_f 의 값은 N 이 작아지제 되면 급격히 작아지며, $N \to 2$ 에 따라 $N_f \to 0$ 가 된다 (식(20) 에서 N = 2 가 되면 항법상수 2 인 PNG 법칙이 된다. 이 경우 $\sigma_m(t_f) - \sigma_f = 0$ 의 종말구속조건을 만족시킬 수 없다).

이제 식 (20) 의 유도법칙을 사용할 경우의 유도명령제 적을 살펴보자. 즉, u(t) 의 시간에 따른 궤적은 식 (20) 을 식 (3) 에 적용할 때 다음과 같이 구해진다.

$$u(t) = a_{N} \left(\frac{t_{f} - t}{t_{f}}\right)^{N-3} + b_{N} \left(\frac{t_{f} - t}{t_{f}}\right)^{N-2},$$

$$a_{N} = \frac{(N-1)(N-2)}{t_{f}} \left\{ -\frac{N}{t_{f}} y(0) + \sigma_{m}(0) + (N-1) \sigma_{f} \right\}$$

$$b_{N} = \frac{N(N-1)}{t_{f}} \left\{ \frac{N-1}{t_{f}} y(0) - \sigma_{m}(0) - (N-2) \sigma_{f} \right\}$$
(21)

식 (21) 에는 PNG 의 경우 (식 (7)) 에서 볼 수 있는 $[(t_f-t)/t_f]^{N-2}$ 항 외에 $[(t_f-t)/t_f]^{N-3}$ 항이 더 있다. 이 항의 영향으로 N = 3 의 경우에도 식 (21) 의 유도명령제 적 u(t) 는 $t \to t_f$ 일 때 0 으로 감소하지 않는다. 즉, PNG 의 경우에는 N \rangle 2 이면 $t \to t_f$ 일 때 $u(t) \to 0$ 이지만, 충돌각을 고려하는 유도법칙에서는 N \rangle 3 이어야 한다. N 에 따른 유도명령제적을 y(0) = 0 의 경우에 대하여 그림 2 에 그렸다.

그림 2 를 살펴보면 다음과 같은 특성을 알 수 있다. 첫 째, PNG 의 경우와 같이 N 이 중가하면 유도초기의 유도명령이 커지고, 반대로 유도말기의 유도명령은 작아진다. 들 째, PNG 의 경우와는 달리 |u(t)| 은 t 의 단조함수가 아니다. 셋 째, 앞에서 언급한 바와 같이, N \leq 3 이면 $u(t_f)$ \Rightarrow 0 이다. 따라서 외부교란등에 대응할 수 있는 유도명령의 역유를 확보하기 위하여서나 유도명령의 크기가 매우 제한되는 경우에 N \rangle 3 에 해당하는 이득들을 사용해야 함을 시사해 준다. 넷 째, $\sigma_m(0)$ 보다 σ_f 에 의한 유도명령의 크기변화가 크다. 이는 $\sigma_m(t_f)$ 에 대한 구속조건으로 Soft Constraint 를 사용하지 않고 $\sigma_m(t_f)$ - σ_f = 0 의 Hard Constraint 를 주었기 때문으로 생각되며, 따라서 σ_f 에 의해 큰 유도명령이 유발되는 것이 바람직하지 않은 경우에는 $(\sigma_m(t_f)-\sigma_f)^2$ 에 penalty 를 주는 Soft Constraint 를 고려하는 것이 좋을 것이다.

그림 3 에는 Autopilot 이 시정수 T 를 갖는 1 차 지연 시스템일 경우의 유도오차 y(tf) 와 ơm(tf)-ơf 를 그렸다. 즉, 이 때의 Autopilot 은

$$\sigma_{\rm m} = -1/T \dot{\sigma}_{\rm m} + 1/T u$$

로 모델링되었으며, 그림 3 의 결과는 Adjoint Technique ([2]) 에 의하여 (tf/T) - 0.001 에서의 유도오차 값을 그린 것이다. 여기에서 $|y(t_f)|$ 를 살펴보면, $\sigma_m(0)$ 와 σ_f 에 의한 |y(tr)| 의 크기는 거의 비슷하며, PNG 의 경우 ([2. pp 56-57]) 와는 달리 N=3 일 때 가장 좋은 성능을 보입을 알 수 있다. | om(tr)-orl 의 값은 매우 크게 나타났으나. 이것은 t 가 tf 에 접근할 때 유도명령이 급격히 커지게 됨 에 따른 것으로서 유도명령의 크기가 혐실적인 값으로 제하 된다면 그림 3 (c), (d) 에 나타난 충돌각 오차의 크기 역시 현실적으로 타당한 값으로 크게 줄어들 것이다. 따라서 그 림 3 (c), (d) 의 결과는 N 에 따른 충돌각 오차의 추세만을 보아야 할 것이다. 그림 4 에는 T=1, $t_f=20$, $\sigma_m(0)=1=\sigma_f$ 로 주어졌을 때의 y 의 시간에 따른 궤적을 그렸다. 여기에 서 고려한 세 가지의 N 값에 따른 y 의 궤적 차이가 뚜렷함 을 볼 수 있다. 따라서 식 (20) 의 유도법칙을 사용할 때 어떠한 종류의 y 궤적을 원하느냐에 따라서도 N 값을 달리 선정할 수 있을 것이다.

이 절에서는 유도명령에 대한 하중함수 $R_N(t)=(t_{f}-t)^3-N$ 을 충돌각을 고려한 최적제어문제의 가격함수에 도입함으로 써 식 (20) 으로 주어지는 새로운 유도법칙을 산출하였으며, 이 유도법칙의 N 값에 따른 기본적인 특성들을 살펴보았다. 이 유도법칙의 실제 응용시에는 여기에서 고려하지 않은 외

부교란이나 탐색기 잡음 또는 유도명령 크기제한등의 요인에 의한 유도성능변화까지 분석하여 적절한 N 값을 선정하는 작 업이 필요할 것이다.

(a) σm(0) 에 의한 |y(tf)|

(b) of 에 의한 |y(tf)|

(c) σm(0) 에 의한 |σm(tf)-σf|

(d) σ_f 에 의한 $|\sigma_m(t_f)-\sigma_f|$ 그림 3. 유도오차 (1차 시간지연 Autopilot) Fig.3. Terminal miss (First order lag autopilot)

그림 4, y 의 궤적 (T=1, $\sigma_m(0)=1=\sigma_f$)
Fig.4. Trajectories of y (T=1, $\sigma_m(0)=1=\sigma_f$)

4. 결론

이 논문에서는 임의의 N) 0 의 항법상수를 갖는 PNG 법칙이 유도명령의 에너지를 최소화하는 최적제어문제의 가격함수에 $R_N(t) = (tr-t)^3 \cdot N$ 의 유도명령에 대한 시변 하중함수를 도입함으로써 얻어질 수 있음을 보였다. 이와 같은 최적제어문제에서의 하중함수와 PNG 법칙의 항법상수와의 관계는 PNG 법칙의 항법상수 값에 따른 유도명령 궤적의 차이를 잘 설명해 주고 있다. 또한 PNG 법칙의 항법상수가 기존의 Differential Game 으로서의 문제설정에 의한 결과들([3], [6]) 보다 훨씬 간단하고 표준적인 최적제어문제의 해로서 주어지게 됨으로써 이 결과가 광범위한 여러 유도문제에도 쉽게 적용될 수 있으리라고 판단된다.

이 논문에서는 위와 같은 결과의 용용예로서 충돌각까지 종말구속조건으로 고려하는 유도문제를 $R_N(t)=(t_f-t)^{3-N}$ 의 하중함수를 도입한 최적제어문제로 구성하여 그 해를 산출하 여 보았다. 이 결과, 하중함수 R_N 의 N 값에 따라 유도변수 들에 대한 이득이 변화하는 새로운 유도법칙을 얻었다. 이 유도법칙은, PNG 법칙의 경우와 같이, N 값에 따라 시간에 따른 유도명령궤적이나 초기시선 (ILOS) 로부터 떨어진 거리의 궤적이 크게 변화하며, 따라서 여러가지 비행조건에 따라 적절한 N 값을 선정함으로써 최적의 유도성능을 도모할 수 있는 선택의 여지가 설계자에게 주어진다는 점에서 큰 가치가 있다고 할 것이다.

참고문헌

- [1] C-F. Lin, Modern Navigation, Guidance, and Control Processing, Prentice Hall, New Jersey, 1991
- [2] P. Zarchan, <u>Tactical and Strategic Missile Guidance</u>, AIAA, Washington, 1990
- [3] A. E. Bryson, Jr., Y-C. Ho, <u>Applied Optimal Control</u>, Rev., Hemisphere Pub. Co., Washington, 1975
- [4] P. Garnell, <u>Guided Weapon Control Systems</u>, 2nd Ed., Pergamon Press, 1980
- [5] R. W. Brockett, <u>Finite Dimensional Linear Systems</u>, John Wiley, 1970
- [6] G. M. Anderson, "Comparison of Optimal Control and Differential Game Intercept Missile Guidance Laws", J. Guidance and Control, Vol.4, No.2, 1981, pp 109 – 115
- [7] M. Kim, K. V. Grider, "Terminal Guidance for Impact Attitude Angle Constrained Flight Trajectories", IEEE Trans. Aerospace Electronic Syst., Vol. AES-9, No.6, 1973, pp 852-859