

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Bacharelado em Ciência da Computação

Gabriel de Cortez Mourão Luís Augusto Lima de Oliveira Mateus Fernandes Barbosa Victor Ferraz de Moraes

Teoria dos Grafos e Computabilidade: Implementação 2

Belo Horizonte

Gabriel de Cortez Mourão Luís Augusto Lima de Oliveira Mateus Fernandes Barbosa Victor Ferraz de Moraes

Teoria dos Grafos e Computabilidade: Implementação 2

Documentação para exercício da disciplina de Teoria dos Grafos e Computabilidade do curso de Ciência da Computação da Pontifícia Universidade Católica de Minas Gerais.

SUMÁRIO

1 I	INTRODUÇÃO	1
2 I	DESCRIÇÃO DAS FUNÇÕES	2
2.1	Função fatorial	2
2.2	Função calcula_subgrafos	2
2.3	Função exibe_grafo	
2.4	Função gera_subgrafos	
2.5	Função main	4

1 INTRODUÇÃO

Este documento descreve as funções implementadas em um código C++ que calcula subgrafos, exibe grafos, e gera subgrafos únicos com base em um número de vértices N. O documento abrange a funcionalidade de cada função, os tipos de variáveis utilizados, e a ordem de execução do código.

2 DESCRIÇÃO DAS FUNÇÕES

2.1 Função fatorial

- **Descrição:** Função que executa o fatorial de um determinado valor. É utilizada para efetuar a verificação matemática do total de subgrafos possíveis a partir de um conjunto de vértices.
- Assinatura: int fatorial(int n);
- Parâmetros:
 - int n: O número do qual se deseja calcular o fatorial.
- Retorno:
 - *int*: O fatorial de n.

2.2 Função calcula_subgrafos

 Descrição: Esta função calcula o número teórico de subgrafos possíveis para um grafo com N vértices. A fórmula utilizada combina a quantidade de combinações de vértices com a quantidade de possíveis arestas entre eles. Para cada quantidade p de vértices (de 1 até N), a função calcula:

combinacoes =
$$\frac{N!}{p!(N-p)!}$$

e o número de arestas possíveis:

$$arestas_possiveis = 2^{\frac{p(p-1)}{2}}$$

O total de subgrafos é acumulado e retornado ao final.

• Assinatura: int calcula_subgrafos(int N);

• Parâmetros:

- int N: O número de vértices no grafo.

• Retorno:

- int: O número total de subgrafos possíveis.

2.3 Função exibe_grafo

- Descrição: Esta função exibe um grafo a partir de dois vetores booleanos: vertices e arestas. O vetor vertices indica quais vértices estão presentes no subgrafo, enquanto arestas indica as conexões entre os vértices. A função imprime os vértices ativos e as arestas presentes, além de mostrar os vetores de vértices e arestas de forma binária.
- Assinatura: void exibe_grafo(const vector<bool> & vertices
 const vector<bool> & arestas, int N)

• Parâmetros:

- const vector<bool> & vertices: Um vetor booleano indicando quais vértices estão presentes.
- const vector<bool> & arestas: Um vetor booleano indicando quais arestas estão presentes.
- int N: O número de vértices no grafo.

• Retorno:

void: N\(\tilde{a}\) o h\(\tilde{a}\) retorno, apenas exibe o grafo no console.

2.4 Função gera_subgrafos

- **Descrição:** Esta função gera todos os subgrafos possíveis de um grafo com N vértices e filtra aqueles que são válidos. Em seguida, exibe os subgrafos únicos utilizando a função exibe_grafo. Ela também compara a quantidade de subgrafos gerados com o valor teórico calculado pela função calcula_subgrafos(int N).
- Assinatura: void gera_subgrafos(int N);

• Parâmetros:

- int N: O número de vértices no grafo.

• Retorno:

- void: Não há retorno, apenas exibe os subgrafos únicos no console.

2.5 Função main

- Descrição: A função main () é a porta de entrada do programa. Ela solicita ao usuário o número de vértices N e chama a função gera_subgrafos(int N) para iniciar o processo de geração e exibição dos subgrafos.
- Assinatura: int main();
- Parâmetros:
 - void: A função não recebe parâmetros.

• Retorno:

- int: Retorna 0 para indicar a execução bem-sucedida do programa.