Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный технический университет»

Факультет (институ	т) Информационных технологий и компьютерных систем					
Кафедра	Прикладная математика и фундаментальная информатика					
	Расчетно-графическая работа					
по дисциплине Д	[искретная математика					
на тему П	Применение теории графов					
Пояснительная запи	иска					
Шифр проекта	020-РГР-02.03.02-№ 14- ПЗ					
	Студента Курпенова Куата Ибраимовича					
	Курс <u>1</u> Группа <u>ФИТ-212</u>					
	Направление (специальность) 02.03.02 Фундаментальная информатика и информационные технологии					
	код, наименование					
	Руководитель <u>ст. преподаватель</u>					
	ученая степень, звание Федотова И.В.					
	фамилия, инициалы					
	Выполнил дата, подпись студента					
	Работа защищена с количеством баллов (О бестиче					
	ОЧ- О В. 20 22 До дата, подпись руководичеля					

Омск 2022

СОДЕРЖАНИЕ

1 Теоретический анализ	3
1.1 Основные понятия теории графов	3
2 Решение практической задачи	11
2.1 Постановка задачи	11
2.2 Выбор метода решения	11
2.3. Описание ручной реализации алгоритма	12
2.4 Описания программной реализации алгоритма	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14
ПРИЛОЖЕНИЕ А	15

1 Теоретический анализ

Теоретический анализ задания состоит в ознакомлении с основными понятиями, вводимыми и используемыми при рассмотрении данного задания.

1.1 Основные понятия теории графов

Графом называется любая пара (V,E), где V- непустое множество элементов любой природы, $E=\{e_1,e_2,...\}-$ семейство пар $e_i=(u,v)$ элементов из V произвольной кратности и упорядоченности. Обозначают граф G или G(V,E).

Элемент множества Vназывается вершиной.

Элемент множества E называется peбpom.

Число вершин графа называется его *порядком* и обозначается $\mid V \mid$.

Если вершины v_1 и v_2 соединены ребром $e=(v_1,v_2)$, то говорят, что вершины v_1 и v_2 смежные, а ребро $e=(v_1,v_2)$ инцидентно вершинам v_1 и v_2 .

Множество всех вершин графа G смежных с некоторой вершиной v, называется окружением вершины v и обозначается как U(v).

Два ребра называются смежными, если они имеют общую вершину.

Mатрица cмежности графа G с конечным числом вершин n – это квадратная матрица A размера $n \times n$, в которой значение элемента a_{ij} равно числу рёбер из i-й вершины графа в j-ю вершину.

Если E множество упорядоченных пар элементов из V, то граф G = (V,E) называется *ориентированным графом* (*орграфом*).

В этом случае элементы множества E называются ∂y гами.

При этом дуга $e=(v_1,v_2)$ называется исходящей из вершины v_1 и заходящей в вершину v_2 . На диаграмме графа дуга изображается линией со стрелкой из вершины v_1 в вершину v_2 .

Если в графе хотя бы одна пара вершин соединена более чем одной ребром, то такой граф называется *мультиграфом*, а ребра называются *кратными*.

Дуги, имеющие одинаковые концевые вершины и одинаково направленные называются *параллельными* или *кратными*, анаправленные противоположно – *противоположно-направленными*.

Кроме того, элементами множества E могут быть пары (v,v), $v \subset V$, то они называются nemnsmu, а графG называется $ncesdorpa\phiom$. Обычно петля считается неориентированной.

Число ребер, инцидентных вершине v, называется cmeneнью bepuunhwv и обозначается deg(v) или d(v).

Для ориентированного графа число дуг, исходящих из вершины v, называется полустепенью исхода и обозначается через $dev^+(v)$, а число дуг, входящих в вершину U, – полустепенью захода и обозначается $dev^-(v)$.

Маршрутом в графеG=(V,E) называется чередующаяся последовательность вершин и ребер $\{v_0,e_1,v_1,....e_k,v_k,....\}$,в которой любые два соседних элемента инцидентны.

Маршрут называется *цепью*, если все его ребра различные. Цепь, соединяющая вершины u и v,обозначается [u,v], и тогда вершина v называется достижимой из вершиныu.

Цепь называется простой, если все вершины различны.

Для ориентированных графов цепь называется путем.

Путь называется простым, если все вершины различны.

Граф G называется cвязным, если для любых двух его вершин u и v существует соединяющий их маршрут[u,v].

Вес ребра — числовое значение, поставленное в соответствие данному ребру взвешенного графа.

Взвешенным графом (или нагруженным) называется граф G(E,V) если на нём определена любая функция $F:V \to R$ (функция на множестве ребер со

значениями во множестве вещественных чисел)[1].

2 Решение практической задачи

Далее будет рассмотрена практическая задача и описаны решения ручным и программным способом.

2.1 Постановка задачи

Постановка задачи следующая: «Имеется сеть железнодорожных станций, соединяющих пункты между собой. Каждая линия характеризуется протяженностью в километрах. Определить минимальные расстояния между пунктами.

Формат входных данных

Во входном файле записано сначала число N (1<=N<=100), определявшее количество пунктов. Затем идет описание соединений, где каждое соединение задается тремя числами - номерами узлов, которые она соединяет и протяженностью в километрах. Все соединения строго ориентированы.

Формат выходных данных

На экран выводятся значения минимальных расстояний между пунктами.

2.2 Выбор метода решения

Для получения ответа нужно применить алгоритм Флойда-Уоршелла, так как именно он позволяет найти самую длинную цепь в графе.

2.3. Описание ручной реализации алгоритма

До первой рекурсии внешнего цикла, обозначенного выше k=0, единственные известные пути соответствуют отдельным ребрам в графе. При k=1 находятся пути, проходящие через вершину 1: в частности, найден путь [2,1,3], заменяющий путь [2,3], который имеет меньше ребер, но длиннее (с точки зрения веса). При k=2 находятся пути, проходящие через вершины 1,2. Красные и синие прямоугольники показывают, как путь [4,2,1,3] собирается из двух известных путей [4,2] и [2,1,3], встреченных в предыдущих итерациях, с 2 на пересечении. Путь [4,2,3] не рассматривается, потому что [2,1,3] - это кратчайший путь, встреченный до сих пор от 2 до 3. При k=3 пути, проходящие через вершины 1,2,3 найдены. Наконец, при k=4 находятся все кратчайшие пути.

Матрица расстояний на каждой итерации k, обновленные расстояния выделены жирным шрифтом, будет иметь вид:

	3	∞	∞	0	2
	4	∞	-1	∞	0
	l 0			j	
	<i>k</i> = 2	1	2	3	4
	1	0	∞	-2	∞
i	2	4	0	2	∞
	3	∞	∞	0	2
	4	3	-1	1	0
	L _ 0		j		
	k = 3	1	2	3	4
	1	0	∞	-2	0
	2	4	0	2	4
i	3	∞	∞	0	2
	4	3	-1	1	0
	1 4				
	<i>k</i> = 4	1	2	3	4
	1	0	-1	-2	0
i	2	4	0	2	4
	3	5	1	0	2
	4	3	-1	1	0

2.4 Описания программной реализации алгоритма

Необходимо выполнить программную реализацию алгоритма (Приложение A) и проверить на том же примере. Скриншот работы в Приложении A.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1) Конова Е.А., Поллак Г.А. Алгоритмы и программы. Язык С++: –издательство «Лань», 2017-384 с.
- 2) Мазалов В.В. Математическая теория игр и приложения: издательство «Лань», 2016 446 с.
- 3) Омельченко А.В. Теория графов: Москва: издательство МЦНМО 2018. 415 с.
- 4) Скотт Мейерс. Эффективный и современный C++: 42 рекомендации по использованию C++: Пер. с англ. Вильямс, 2016. 304 с.
- 5) Уилсон Р. Введение в теорию графов, 5-е изд: Пер. с англ. издательство «Диалектика», 2018 240 с.

ПРИЛОЖЕНИЕ А

Исходный код

PipesNetwork.py

Скриншот работы программы

```
import PipesNetwork

pn = PipesNetwork.PipesNetwork(4)

pn.connect(0, 2, -2)
pn.connect(1, 0, 4)
pn.connect(1, 2, 3)
pn.connect(2, 3, 2)
pn.connect(3, 1, -1)

print(pn.getMaxValue())

tux@tux-computer ~/D/0/2/D/C/Code (main)> python test.py

tux@tux-computer ~/D/0/2/D/C/Code (main)> ■
```