0.1 可测集与 Borel 集的关系

引理 0.1 (Carathéodory 引理)

设 $G \neq \mathbb{R}^n$ 是开集, $E \subset G$, 令 $E_k = \{x \in E : d(x,G^c) \geq 1/k\}$ $(k = 1,2,\cdots)$, 则

$$\lim_{k\to\infty} m^*(E_k) = m^*(E).$$

证明 (i) 易知 $\{E_k\}$ 是递增列, 且 $\lim_{k\to\infty} E_k \subset E$. 又对 $x\in E$, 由于 $x\in G$ 的内点, 因此 d(x,y)>0, $\forall y\in G^c$, 否则, 存在 $y_0\in G^c$, 使得 $d(x,y_0)=0$, 从而 $x=y_0\in G^c$ 矛盾! 于是

$$d(x, G^c) = \inf\{d(x, y)|y \in G^c\} \ge 0 = \lim_{k \to \infty} \frac{1}{k}.$$

进而存在充分大的 k > 0, 使得 $d(x, G^c) \ge \frac{1}{k}$, 即此时 $x \in E_k$.

故当 k 充分大时, 必有 $x \in E_k$, 这说明 $E \subset \bigcup_{k=1}^{\infty} E_k = \lim_{k \to \infty} E_k$. 从而可知

$$E = \lim_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} E_k.$$

(ii) 由外测度的单调性可知 $m^*(E_k) \le m^*(E)(k = 1, 2, \cdots)$, 从而 $\lim_{k \to \infty} m^*(E_k) \le m^*(E)$. 为证反向不等式, 不妨假定 $\lim_{k \to \infty} m^*(E_k) < +\infty$. 令

$$A_k = E_{k+1} \setminus E_k = \left\{ x \in E : d(x, G^c) \in \left[\frac{1}{k+1}, \frac{1}{k} \right) \right\} (k = 1, 2, \cdots),$$

则

$$A_{2k} = \left\{ x \in E : d(x, G^c) \in \left[\frac{1}{2k+1}, \frac{1}{2k} \right) \right\} (k = 1, 2, \cdots).$$

对 $\forall i, j \in \mathbb{N}$ 且 $i \neq j$, 不妨设 j > i, 则 $j - i \ge 1$. 任取 $x \in A_{2i}$, $y \in A_{2i}$, 则

$$d(x, G^c) \in \left[\frac{1}{2i+1}, \frac{1}{2i}\right), \quad d(y, G^c) \in \left[\frac{1}{2i+1}, \frac{1}{2i}\right).$$

再由三角不等式可知

$$|d(x,y)| \ge |d(x,G^c) - d(y,G^c)| \ge \frac{1}{2i+1} - \frac{1}{2i} = \frac{2(j-i)-1}{2i(2i+1)} > 0.$$

因此 $d(A_{2i}, A_{2j}) \ge \frac{2(j-i)-1}{2j(2i+1)} > 0(i \ne j)$. 再注意到 $E_{2k} \supset \bigcup_{j=1}^{k-1} A_{2j}$, 可得

$$m^*(E_{2k}) \geqslant m^* \left(\bigcup_{j=1}^{k-1} A_{2j} \right) \xrightarrow{\text{#\dot{w}??}} \sum_{j=1}^{k-1} m^*(A_{2j}).$$

这说明 (令 $k \to \infty$)

$$\sum_{j=1}^{\infty} m^*(A_{2j}) < +\infty. \qquad \left(类似地可知 \sum_{j=1}^{\infty} m^* \left(A_{2j+1} \right) < +\infty \right)$$

因为对任意的k,我们有

$$E \xrightarrow{\widehat{\oplus} \underbrace{\mathbb{Z}??}} \bigcup_{j=2k}^{\infty} E_j = E_{2k} \cup \left(\bigcup_{j=k}^{\infty} A_{2j}\right) \cup \left(\bigcup_{j=k}^{\infty} A_{2j+1}\right),$$

所以对任意的k,就有

$$m^*(E) \le m^*(E_{2k}) + \sum_{i=k}^{\infty} m^*(A_{2j}) + \sum_{i=k}^{\infty} m^*(A_{2j+1}).$$

现在, 令 $k \to \infty$, 并注意上式右端后两项趋于零, 因此又知

$$m^*(E) \leqslant \lim_{k \to \infty} m^*(E_k),$$

即得所证.

定理 0.1

非空闭集F是可测集.

证明 对任一试验集 T, 由于 $T \setminus F \subset F^c = G$ 是开集, 故由 Carathéodory 引理知, 存在 $T \setminus F$ 中的集列 $\{F_k\}$:

$$d(F_k, F) \geqslant 1/k > 0(k = 1, 2, \cdots), \quad \lim_{k \to \infty} m^*(F_k) = m^*(T \setminus F).$$

从而由外测度的单调性我们有 (对任一试验集 T)

$$m^*(T) \geqslant m^*[T \cap (F \cup F_k)] = m^*[(T \cap F) \cup F_k] \xrightarrow{\text{$\frac{1}{2}$}} m^*(T \cap F) + m^*(F_k).$$

再令 $k \to \infty$, 可得

$$m^*(T) \geqslant m^*(T \cap F) + m^*(T \setminus F) = m^*(T \cap F) + m^*(T \cap F^c).$$

这说明F是可测集.

推论 0.1

Borel 集是可测集.

证明 由闭集的可测性及可测集的性质 (2) 可知开集是可测集. 又因为可测集类是一个 σ -代数, 所以由 Borel 集的 定义可知可测集包含 Borel σ -代数, 故任一 Borel 集皆可测.

定理 0.2

若 E ∈ M, 则对任给的 ε > 0, 我们有

- (i) 存在包含 E 的开集 G, 使得 $m(G \setminus E) < \varepsilon$;
- (ii) 存在含于 E 的闭集 F, 使得 $m(E \setminus F) < \varepsilon$.

证明

(i) 首先考虑 $m(E) < +\infty$ 的情形. 由定义知, 存在 E 的 L-覆盖 $\{I_k\}$, 使得

$$\sum_{k=1}^{\infty} |I_k| < m(E) + \varepsilon.$$

令 $G = \bigcup_{k=1}^{\infty} I_k$,则 G 是包含 E 的开集,且 $m(G) < m(E) + \varepsilon$. 因为 $m(E) < +\infty$, 所以移项后再合并得 $m(G \setminus E) < \varepsilon$. 其次讨论 m(E) 是 $+\infty$ 的情形.令

$$E_k = E \cap B(0, k), \quad E = \bigcup_{k=1}^{\infty} E_k, \quad k = 1, 2, \cdots.$$

因为 $m(E_k) < \infty (k = 1, 2, \cdots)$,所以对任给的 $\varepsilon > 0$,存在包含 E_k 的开集 G_k ,使得 $m(G_k \setminus E_k) < \varepsilon/2^k$. 现在作点集 $G = \bigcup_{k=1}^{\infty} G_k$,则 $G \supset E$ 且为开集. 由定理**??**(3) 我们有

$$G \setminus E \subset \bigcup_{k=1}^{\infty} (G_k \setminus E_k),$$

从而得

$$m(G \setminus E) \leqslant \sum_{k=1}^{\infty} m(G_k \setminus E_k) \leqslant \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon.$$

(ii) 考虑 E^c . 由 (i) 可知, 对任给的 $\varepsilon > 0$, 存在包含 E^c 的开集 G, 使得 $m(G \setminus E^c) < \varepsilon$. 现在令 $F = G^c$, 显然 $F \in \mathbb{R}$ 从集且 $F \subset E$. 由命题**??**(4) 可知 $E \setminus F = G \setminus E^c$, 所以得到 $m(E \setminus F) < \varepsilon$.

定理 0.3

若 $E \in \mathcal{M}$,则

- (i) $E = H \setminus Z_1, H \neq G_{\delta}$ $\& M(Z_1) = 0$;
- (ii) $E = K \cup Z_2, K \not\in F_{\sigma}$ 集, $m(Z_2) = 0$.

证明

(i) 对于每个自然数 k, 由定理 0.2(i)可知, 存在包含 E 的开集 G_k , 使得 $m(G_k \setminus E) < \frac{1}{k}$. 现在作点集 $H = \bigcap_{k=1}^{\infty} G_k$, 则 $H 为 G_{\delta}$ 集且 $E \subset H$. 因为对一切 k, 都有

$$m(H \setminus E) \leqslant m(G_k \setminus E) < \frac{1}{k},$$

所以令 $k \to \infty$ 可得 $m(H \setminus E) = 0$. 若令 $H \setminus E = Z_1$, 则得 $E = H \setminus Z_1$.

(ii) 对于每个自然数 k, 由定理 0.2(ii)可知, 存在含于 E 的闭集 F_k , 使得 $m(E \setminus F_k) < \frac{1}{k}$. 现在作点集 $K = \bigcup_{k=1}^{\infty} F_k$, 则 $K \not\in F_{\sigma}$ 集且 $K \subset E$. 因为对一切 k, 都有

$$m(E \setminus K) \leq m(E \setminus F_k) < \frac{1}{k},$$

所以令 $k \to \infty$ 可得 $m(E \setminus K) = 0$. 若令 $E \setminus K = Z_2$, 则得 $E = K \cup Z_2$.

定理 0.4 (外测度的正则性)

若 $E \subset \mathbb{R}^n$, 则存在包含 E 的 G_δ 集 H, 使得 $m(H) = m^*(E)$.

证明 由外测度的定义和下确界的定义可知,对于每个自然数 k,存在包含 E 的开集 G_k ,使得

$$m(G_k) \leqslant m^*(E) + \frac{1}{k}.$$

现在作点集 $H = \bigcap_{k=1}^{\infty} G_k$, 则 $H \neq G_{\delta}$ 集且 $H \supset E$. 因为

$$m^*(E) \leqslant m(H) \leqslant m(G_k) \leqslant m^*(E) + \frac{1}{k},$$

所以令 $k \to \infty$ 可得 $m(H) = m^*(E)$.

定义 0.1 (等测包与等测核)

- 1. 设 $E \subset \mathbb{R}^n$, 若存在包含 E 的可测集 H, 使得 $m(H) = m^*(E)$. 我们称如此的 H 为 E 的**等测包**.
- 2. 设 $E \in \mathcal{M}$, 若存在含于 E 的可测集 K, 使得 m(K) = m(E). 我们称如此的 K 为 E 的**等测核**.
- 室记 由外测度的正则性可知上述定义的等测包 (一定存在) 是良定义的. 由定理 0.3(ii)可知上述定义的等测核 (一定存在) 是良定义的.

注 注意, 若 H 是 E 的等测包且 $m^*(E) < \infty$, 则有

$$m(H) - m^*(E) = 0,$$

但 $m^*(H \setminus E)$ 不一定等于零. 不过可以证明 $H \setminus E$ 的任一可测子集皆为零测集 (见命题 0.1).

命题 0.1

若 $H \in E$ 的等测包且 $m^*(E) < \infty$, 则 $H \setminus E$ 的任一可测子集皆为零测集.

证明 设 $A 为 H \setminus E$ 的可测子集,则由 $A \subset H \setminus E$ 可知, $A \subset H$ 且 $A \cap E = \emptyset$. 又注意到 $E \subset H$, 故 $E \subset H \setminus A$. 又因 H 可测, 故 $H \setminus A$ 也可测. 从而由外测度的单调性可知

$$m(H \setminus A) \geqslant m^*(E).$$
 (1)

由 $H \setminus A$ 可测得(H) 为试验集)

$$m(H) = m^*(H) = m^*(H \cap (H \setminus A)) + m^*(H \cap (H \setminus A)^c)$$

$$= m(H \setminus A) + m^*(H \cap (H \cap A^c)^c)$$

$$= m(H \setminus A) + m^*(H \cap (H^c \cup A))$$

$$= m(H \setminus A) + m(A).$$

又由 H 为 E 的等测包可知 $m(H) = m^*(E)$, 结合上式可得

$$m^*(E) = m(H \setminus A) + m(A).$$

再结合(1)式,有

$$m^*(E) \geqslant m^*(E) + m(A)$$
.

移项得 $m(A) \leq 0$. 故由测度的非负性可知 m(A) = 0.

推论 0.2

设 $E_k \subset \mathbb{R}^n (k = 1, 2, \cdots)$, 则

$$m^* \left(\underline{\lim}_{k \to \infty} E_k \right) \leqslant \underline{\lim}_{k \to \infty} m^*(E_k).$$

证明 对每个 E_k 均作等测包 H_k :

$$H_k \supset E_k$$
, $m(H_k) = m^*(E_k)$ $(k = 1, 2, \cdots)$,

则可得

$$m^*\left(\underline{\lim_{k\to\infty}}E_k\right)\stackrel{f^*}{\leqslant} m\left(\underline{\lim_{k\to\infty}}H_k\right)\stackrel{\text{$\not$$\tiny$$}}{\leqslant} \underline{\lim_{k\to\infty}}m(H_k) = \underline{\lim_{k\to\infty}}m^*(E_k).$$

推论 0.3

若 $\{E_k\}$ 是递增集合列,则

$$\lim_{k\to\infty} m^*(E_k) = m^* \left(\lim_{k\to\infty} E_k \right).$$

证明 记 $E = \lim_{k \to \infty} E_k = \bigcup_{k=1}^{\infty} E_k$,则由 $\{E_k\}$ 的递增性可知 $E_k \subset E(k=1,2,\cdots)$,从而由外测度的单调性可得

$$m^*(E_k) \leq m^*(E), \quad k = 1, 2, \cdots$$

 $\Diamond k \to \infty$, 得 $\lim_{k \to \infty} m^*(E_k) \leqslant m^*(E)$. 若 $\lim_{k \to \infty} m^*(E_k) = +\infty$, 则结论显然成立. 故不妨设 $\lim_{k \to \infty} m^*(E_k) < +\infty$.

下证 $\lim_{k\to\infty} m^*(E_k) \geqslant m^*(E)$. 对 $\forall k\in\mathbb{N}$, 取 E_k 的等测包 H_k , 则 $m(H_k) = m^*(E_k)$. 令 $F_k = \bigcap_{m=k}^{\infty} H_m$, 则显然 F_k 可

测, $\{F_k\}$ 递增, $E_k \subset F_k \subset H_k$. 再令 $F = \bigcup_{k=1}^{\infty} F_k$,则 F 可测, $E = \bigcup_{k=1}^{\infty} E_k \subset \bigcup_{k=1}^{\infty} F_k = F$. 于是由外测度的单调性及递增可测集列的测度运算可得

$$m^*(E) \leqslant m(F) = m\left(\bigcup_{k=1}^{\infty} F_k\right) = m\left(\lim_{k \to \infty} F_k\right)$$
 递增可测集列的测度运算 $\lim_{k \to \infty} m(F_k)$. (2)

4

又由 $F_k \subset H_k$ 和测度的单调性以及 $m(H_k) = m^*(E_k)$ 可知

$$\lim_{k \to \infty} m(F_k) \leqslant \lim_{k \to \infty} m(H_k) = \lim_{k \to \infty} m^*(E_k). \tag{3}$$

故结合(2)(3)式可得 $m^*(E) \leqslant \lim_{k \to \infty} m^*(E_k)$. 综上可得, $m^*(E) = \lim_{k \to \infty} m^*(E_k)$.

定理 0.5

若 $E \in \mathcal{M}, x_0 \in \mathbb{R}^n$, 则 $(E + \{x_0\}) \in \mathcal{M}$ 且

$$m(E + \{x_0\}) = m(E).$$

证明 由定理 0.3可知

$$E = H \setminus Z$$
,

其中 $H = \bigcap_{k=1}^{\infty} G_k$, 每个 G_k 都是开集,m(Z) = 0. 因为 $G_k + \{x_0\}$ 是开集, 所以

$$\bigcap_{k=1}^{\infty} (G_k + \{x_0\})$$

是可测集. 根据外测度的平移不变性, 可知点集 $Z + \{x_0\}$ 是零测集, 于是从等式

$$E + \{x_0\} = (H + \{x_0\}) \setminus (Z + \{x_0\}) = \left(\bigcap_{k=1}^{\infty} (G_k + \{x_0\}) \setminus (Z + \{x_0\})\right)$$

立即可知 $E + \{x_0\} \in \mathcal{M}$. 再用外测度的平移不变性得到

$$m(E + \{x_0\}) = m(E).$$

<u>注</u> 一般地说, 若在 Borel σ -代数上定义了测度 μ , 且对紧集 K 有 $\mu(K) < +\infty$, 则称 μ 为 Borel 测度 (显然, \mathbb{R}^n 上的 Lebesgue 测度是一种 Borel 测度).

可以证明: $\ddot{a} \mu \in \mathbb{R}^n$ 上的平移不变的 Borel 测度, 则存在常数 λ , 使得对 \mathbb{R}^n 中每一个 Borel 集 B, 均有

$$\mu(B) = \lambda m(B)$$
.

这就是说,除了一个常数倍因子外,Lebesgue 测度是 \mathbb{R}^n 上平移不变的唯一的 Borel 测度.

例题 0.1 作 [0,1] 中的第二纲零测集 E.

$$m\left(\bigcup_{n=1}^{\infty}I_{n,k}\right)\leqslant 2^{-k+1},\quad m\left(\bigcap_{k=1}^{\infty}\bigcup_{n=1}^{\infty}I_{n,k}\right)=0.$$

由于每个 $[0,1]\setminus\bigcup_{n=1}^{\infty}I_{n,k}(k\in\mathbb{N})$ 均是无处稠密集, 故可知 $E=\bigcap_{k=1}^{\infty}\bigcup_{n=1}^{\infty}I_{n,k}$ 是第二纲集.

例题 0.2 设 $A \subset \mathbb{R}$, 且对 $x \in A$, 存在无穷多个数组 $(p,q)(p,q \in \mathbb{Z},q \geqslant 1)$, 使得 $|x-p/q| \leqslant 1/q^3$, 则 m(A) = 0证明

(i) 令
$$B = [0,1] \cap A$$
, 注意到 $x + n - (p + nq)/q = x - p/q$, 故 $A = \bigcup_{n=-\infty}^{+\infty} (B + \{n\})$, 从而只需指出 $m(B) = 0$.

(ii) 令
$$I_{p,q} = \left[\frac{p}{q} - \frac{1}{q^3}, \frac{p}{q} + \frac{1}{q^3}\right]$$
, 则 $x \in I_{p,q}$ 等价于

$$qx - \frac{1}{a^2} \leqslant p \leqslant qx + \frac{1}{a^2}.\tag{4}$$

易知对 $q\geqslant 2$ 或 q=1, 在长度为 $2/q^2$ 的区间中至多有一个或三个整数, 故 $x\in B$ 当且仅当 x 属于无穷多个 $B_q\colon B_q=[0,1]\cap\left(\bigcup_p I_{p,q}\right)$. 从而又只需指出 $\sum_q m(B_q)<+\infty$. 由(4)式知, 对整数 q, 使 $I_{p,q}\cap[0,1]\neq\emptyset$ 就

是 $-\frac{1}{q^2} \le p \le q + \frac{1}{q^2}$. 在 $q \ge 2$ 时, 这相当于 $0 \le p \le q$. 因此, 我们有 $m(B_q) \le 2(q+1)/q^3$, 即得所证.