Cours

C. LACOUTURE

Année scolaire 2024-2025, MPSI2, Lycée Carnot

Table des matières

Ι	Al	gèbre	e linéaire	7
1	Strı	acture	d'espace vectoriel sur un corps $\mathbb K$	9
	1.1	Préser	ntation	10
		1.1.1	Exemple prélimminaire	10
		1.1.2	Définition générale	10
		1.1.3	Propriétés élémentaires	10
		1.1.4	Exemples	10
	1.2	Sous-e	espaces vectoriels	10
		1.2.1	Définition	10
		1.2.2	Caractérisation	10
		1.2.3	Exemples	10
		1.2.4	Intersection de sous-espaces vectoriels	10
	1.3	Famill	les libres ou liées	10
		1.3.1	Définitions	10
		1.3.2	Propriétés immédiates	10
		1.3.3	Deux résultats	10
	1.4	Sous-e	espace engendré par une partie	10
		1.4.1	Présentation générale	10
		1.4.2	Somme de sous- \mathbb{K} ev	10
		1.4.3	Sommes directes	10
		1.4.4	Sous-espaces supplémentaires	10
2	$\mathbb{K} ext{-}\mathbf{e} ext{:}$	spaces	vectoriels de dimension finie	11
	2.1	Préser	ntation	12
		2.1.1	Définition	12
		2.1.2	Comparaison des cardinaux d'une partie libre et d'une	
			partie génératrice	12
		2.1.3	Bases	12
	2.2	Dimer	nsion d'un \mathbb{K} ev de dimension finie	12
		2.2.1	Définition	12
		2.2.2	Exemples usuels	12

		2.2.3	Caractérisation d'une base quand on connaît la dimen-	
			sion	12
		2.2.4	Formules de dimensions	12
	2.3	_	d'un système de vecteurs	12
		2.3.1	Définition	12
		2.3.2	Deux résultats pratiques	12
		2.3.3	Méthode	12
3	App	olicatio	ons linéaires	13
	3.1	Préser	ntation	14
		3.1.1	Définitions	14
		3.1.2	Exemples usuels	14
		3.1.3	Propriétés simples	14
		3.1.4	Structures	14
	3.2	Précis	sions quand E est de dimension finie \ldots	14
		3.2.1	Concernant $Im(f)$	14
		3.2.2	Si de plus $(e_1,, e_n)$ est une base de E	14
		3.2.3	Étude analytique quand E et F sont de dimension finie	14
	3.3	Rang	d'une AL	14
		3.3.1	Définition	14
		3.3.2	Théorème du rang	14
		3.3.3	Conséquence lorsque $\dim(E) = \dim(F) \dots \dots$	14
		3.3.4	Isomorphismes	14
	3.4	Projec	cteurs et symétries	14
		3.4.1	Définitions	14
		3.4.2	Propriétés	14
		3.4.3	Caractérisation	14
	3.5	Forme	es linéaires et hyperplans	14
		3.5.1	Formes linéaires	14
		3.5.2	Hyperplans en dimension quelconque	14
		3.5.3	Hyerplan en dimension finie	14
4	Mat	trices	(structures)	15
_	4.1		tions	16
	1.1	4.1.1	Générale	16
		4.1.2	Matrice carrée	16
	4.2		ations	16
		4.2.1	Combinaison linéaire	16
		4.2.2	Produit	16
	4.3		tures	16
		4.3.1	Structure de groupe abélien pour $(M_{np}(\mathbb{K}), +)$	16
			$F \longrightarrow (i\mu(), +)$	-

	TOT		DIC	7 1 1	TIER	TO
. 1 . /\	H	н.	1145	$\Lambda / I / \Lambda$	TTHH	' H' 🕓
1 /1	1)1.	11.7	1/1/1/1	IVI 🗖	1 11/11	.1 1/1)

		4.3.2	Structure d'anneau pour $(M_n(\mathbb{K}), +, \times)$	16
		4.3.3	Structure de groupe pour $(GL_n(\mathbb{K}), \times)$	16
5	Mat	trices e	et applications linéaires	17
•	5.1		tions	18
	0.1	5.1.1	Matrice d'un système de vecteurs	18
		5.1.2	Matrice d'une application linéaire	18
		5.1.3	Cas d'un endomorphisme	18
		5.1.4	Étude analytique	18
	5.2		rphismes	18
	0.2	5.2.1	Résultat général	18
		5.2.1	Conséquence	18
		5.2.2	Isomorphisme transposition	18
	5.3		it matricel et composition d'AL	18
	0.0	5.3.1	Correspondance	18
		5.3.2	Isomorphisme d'anneaux	18
		5.3.3	Conséquence	18
	5.4		gements de base	18
	0.1	5.4.1	Matrices de changement de base	18
		5.4.2	Effet sur une AL	18
		5.4.3	Cas d'un endomorphisme	18
		5.4.4	Matrices équivalentes	18
		5.4.5	Matrices semblables	18
	5.5		d'une matrice	18
	0.0	5.5.1	Définition	18
		5.5.2	Caractérisation	18
		5.5.2	Application	18
	5.6		de matrice carrée	18
	5.0	5.6.1	Définition	18
		5.6.2	Propriétés	18
		5.0.2	Trophetes	10
6	Apr	olicatio	ons multilinéaires	19
	6.1		ntation	19
		6.1.1	Définition	19
		6.1.2	Exemples usuels	19
		6.1.3	Compléments de définition	19
		6.1.4	Propriétés simples des formes n -linéaires antisymétriques	
			(ou alternées)	19
	6.2	Cas de	es formes n -linéaires antisymétriques sur E_n	19
	~ · -	6.2.1	Étude analytique	19
		6.2.2	Rappel	19
				

		6.2.3	Conséquence de structure	19
		6.2.4	Condition nécessaire et suffisante d'indépendance linéaire	19
7	Dét	ermina	ants	21
	7.1	Présen	ntation	21
		7.1.1	Déterminant de n vecteurs dans un $\mathbb{K}\mathrm{ev}$ de dimension n	21
8	Sys	tèmes	d'équations linéaires	23
	8.1	Préser	ntation	23
		8.1.1	Définition	
		8.1.2	Traductions	
		8.1.3	Traductions	24
		8.1.4	Structure de l'ensemble des solutions	24
	8.2	Métho	ode de résolution	
	8.3		oles	
		8.3.1	Cas où $n = p$ (=3)	
		8.3.2	Cas où $n > p$	
		8.3.3	Cas où $n < p$	
		8.3.4	Cas où $n = p$ (quelconque)	
		8.3.5	Autre exemple : classiquement par le pivot de Gauss .	
		8.3.6	Exemple résolu "en rusant"	
9	Cor	npléme	ent : opérations élémentaires sur les lignes et les	
	colo	onnes d	l'une matrice	2 5
	9.1	Préser	ntation	25
	9.2	Tradu	ction matricielle	25
	9.3		pe pour inverser une matrice	
	9.4		ole	25

Première partie Algèbre linéaire

Structure d'espace vectoriel sur un corps \mathbb{K}

-	-1	D '	
		Présentation	α n
_	• ㅗ	I I COCIIUAUI	\mathbf{O}

- 1.1.1 Exemple prélimminaire
- 1.1.2 Définition générale
- 1.1.3 Propriétés élémentaires
- 1.1.4 Exemples

Usuels

Théoriques

1.2 Sous-espaces vectoriels

- 1.2.1 Définition
- 1.2.2 Caractérisation
- 1.2.3 Exemples

Dans $\mathbb{C}: \mathbb{R}\mathrm{ev}$

Dans \mathbb{R}^2 , \mathbb{R} ev

...

1.2.4 Intersection de sous-espaces vectoriels

Démonstration

Remarque

1.3 Familles libres ou liées

1.3.1 Définitions

Partie libre

K-espaces vectoriels de dimension finie

2.1 Présentation

- 2.1.1 Définition
- 2.1.2 Comparaison des cardinaux d'une partie libre et d'une partie génératrice

Démonstration

Illustration

2.1.3 Bases

Définition

Caractérisation

Exemples usuels

Existence de bases

Théorèmes de la base incomplète et de la base extraite

- 2.2 Dimension d'un Kev de dimension finie
- 2.2.1 Définition
- 2.2.2 Exemples usuels
- 2.2.3 Caractérisation d'une base quand on connaît la dimension

Énoncé

Démonstration

Illustration

2.2.4 Formules de dimensions

Applications linéaires

3.1 Présentation

3.1.1 Définitions

Générale

Précisions

Compléments

3.1.2 Exemples usuels

3.1.3 Propriétés simples

Sous- $\mathbb{K}\text{evs}$

Caractérisation de l'injectivité

Composée

Réciproque

3.1.4 Structures

3.2 Précisions quand E est de dimension finie

- **3.2.1** Concernant Im(f)
- 3.2.2 Si de plus $(e_1,...,e_n)$ est une base de E
- 3.2.3 Étude analytique quand E et F sont de dimension finie

Données

But

Résolution

Conclusion

3.3 Rang d'une AL

Matrices (structures)

11	Définitions
4. I	Deminions

- 4.1.1 Générale
- 4.1.2 Matrice carrée

4.2 Opérations

4.2.1 Combinaison linéaire

4.2.2 Produit

Condition nécessaire d'existence

Pratique

Expression générale

Exemple

Exemple générale de AX

Propriétés diverses du produit de matrices

Transposée d'un produit

4.3 Structures

4.3.1 Structure de groupe abélien pour $(M_{np}(\mathbb{K}), +)$

Élément neutre

Symétrique

4.3.2 Structure d'anneau pour $(M_n(\mathbb{K}), +, \times)$

Explication

Compléments

Sous-anneau

(0.7 (77)

Matrices et applications linéaires

_ 1	D / C	• , •
5.1	l Jétir	nitions

- 5.1.1 Matrice d'un système de vecteurs
- 5.1.2 Matrice d'une application linéaire
- 5.1.3 Cas d'un endomorphisme
- 5.1.4 Étude analytique

5.2 Isomorphismes

- 5.2.1 Résultat général
- 5.2.2 Conséquence
- 5.2.3 Isomorphisme transposition

5.3 Produit matriciel et composition d'AL

- 5.3.1 Correspondance
- 5.3.2 Isomorphisme d'anneaux
- 5.3.3 Conséquence

5.4 Changements de base

5.4.1 Matrices de changement de base

Définition

Caractérisation

Étude analytique

5.4.2 Effet sur une AL

Applications multilinéaires

_	-4	D /	•
6.		Prágai	ntation
		1 1 1 1 1 1	

- 6.1.1 Définition
- 6.1.2 Exemples usuels
- 6.1.3 Compléments de définition
- 6.1.4 Propriétés simples des formes *n*-linéaires antisymétriques (ou alternées)
- 6.2 Cas des formes n-linéaires antisymétriques sur E_n
- 6.2.1 Étude analytique
- 6.2.2 Rappel
- 6.2.3 Conséquence de structure
- 6.2.4 Condition nécessaire et suffisante d'indépendance linéaire

Déterminants

7.1 Présentation

7.1.1 Déterminant de n vecteurs dans un \mathbb{K} ev de dimension n

Systèmes d'équations linéaires

8.1 Présentation

8.1.1 Définition

Un système d'équations linéaire dans
$$\mathbb{K}(\mathbb{R}\text{ou}\mathbb{C})$$
 est de la forme :
$$\begin{cases} a_{11}x_1+\ldots+a_{1p}x_p &= b_1\\ \vdots & \vdots\\ a_{n1}x_1+\ldots+a_{np}x_p &= b_n \end{cases}$$
 où
$$\begin{cases} a_{ij},b_i\in\mathbb{K}\text{sont fixés}\\ n,p\in\mathbb{N}^* \end{cases}$$

8.1.2 Traductions

Matricielle

Vectorielle

En termes d'applications linéaires

On pose
$$A=\mathrm{mat}_{\mathcal{B}_p,\mathcal{B}_n}(f)$$
 où $f\in L(E_p,E_n)$

- 8.1.3 Traductions
- 8.1.4 Structure de l'ensemble des solutions
- 8.2 Méthode de résolution
- 8.3 Exemples
- 8.3.1 Cas où n = p (=3)
- **8.3.2** Cas où n > p
- **8.3.3** Cas où n < p
- 8.3.4 Cas où n = p (quelconque)
- 8.3.5 Autre exemple : classiquement par le pivot de Gauss
- 8.3.6 Exemple résolu "en rusant"

Complément : opérations élémentaires sur les lignes et les colonnes d'une matrice

- 9.1 Présentation
- 9.2 Traduction matricielle
- 9.3 Principe pour inverser une matrice
- 9.4 Exemple

TEST TEST GITHUB