Physics-105-Lecture-Notes-03-19-2019

Connor Duncan

March 19, 2019

Contents

0.1	Inertial Tensor
0.2	Spinning Top
	0.2.1 Step 2
	0.2.2 Step 3
	gettting the euler angles! (space 2 body)

Abstract

A single PDF with all lectures in a single document can be downloaded at https://www.dropbox.com/sh/8sqzvxghvbjifco/AAC9LoSRnsRQDp7pYedgWpQMa?dl=0. The password is 'analytic.mech.dsp'. This file was automatically generated using a script, so there might be some errors. If there are, you can contact me at mailto:ctdunc@berkeley.edu.

0.1 Inertial Tensor

$$\Omega_1 = \sqrt{\left(rac{I_2 - I_1}{I_2}
ight)\left(rac{I_2 - I_1}{I_1}
ight)}\omega_2$$

cyclic differential equation

$$\dot{\omega}_1 + \left(\frac{I_3 - I_2}{I_1}\right) \omega_2 \omega_3 = 0$$

$$\dot{\omega}_2 + \left(\frac{I_1 - I_3}{I_2}\right) \omega_1 \omega_3 = 0$$

$$\dot{\omega}_3 + \left(\frac{I_2 - I_1}{I_3}\right) \omega_2 \omega_1 = 0$$

0.2 Spinning Top

If we want to be more rigorous, we should include gravity and torque. Let some coordinate system $\vec{r}' \equiv$ space coordinates \equiv fixed in space. \vec{r} is our body coordinates, rotating with some spinning top. These are related by $\vec{r}' = U\vec{r}$. Also θ, φ, ψ are the euler angles. We need to choose a convenient definition for these, so let θ be the angle between z, \hat{x}'_3 , and φ the angle between x, \hat{x}'_2 , and ψ the angle between the xy plane and \hat{x}'_2 . So, step 1 is that if we rotate around $z - \hat{x}_3$ by some angle φ (in xy plane), we get new coordinate transformation $\alpha, \beta\gamma$, which gives

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

0.2.1 Step 2

Rotate around α by angle θ . Su, we get

$$\begin{bmatrix} \alpha' \\ \beta' \\ \gamma' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

0.2.2 Step 3

Finally, wrotate by ψ about γ'

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

0.3 gettting the euler angles! (space 2 body)

 $U^* = U_3^* U_2^* U_1^*$ transforms from space to body, with $U = U_1 U_2 U_3$ transforms from body to space. We get the big transpose form of U as

$$U^* = \begin{bmatrix} \cos\psi\cos\varphi - \sin\psi\sin\varphi\cos\theta & \cos\psi\sin\varphi\sin\psi\cos\varphi\cos\theta & \sin\theta\sin\psi \\ -\sin\psi\cos\varphi - \cos\psi\sin\varphi\cos\theta & -\sin\varphi\sin\psi + \cos\psi\cos\varphi\cos\theta & \sin\theta\cos\psi \\ \sin\theta\sin\varphi & -\cos\varphi\sin\theta & \cos\theta \end{bmatrix}$$

j++į