

Cálculo Diferencial e Integral I

1º Teste/2º Teste/Exame

Campus da Alameda

23 de Junho de 2012, 8:00 horas

LEIC (Prova B)

Apresente todos os cálculos e justificações relevantes

1º Teste

1. Considere

$$A = \left\{ x \in \mathbb{R} : \frac{x-4}{x^2 - 4} \ge 1 \right\}, \qquad B = \mathbb{R}_0^+, \qquad C = A \cap B$$

- a) Escreva o conjunto A sob a forma de intervalo ou reunião de intervalos e mostre que $C = \{0\} \cup [1,2[$.
- b) Determine, se existirem em \mathbb{R} , máx C, inf $(C \cap (\mathbb{R} \setminus \mathbb{Q}))$, min $(C \cap \mathbb{Q})$, sup $(C \cap (\mathbb{R} \setminus \mathbb{Q}))$ e sup $(C \cap \mathbb{Z})$.
- 2. Calcule ou mostre que não existe (em $\overline{\mathbb{R}}$) cada um dos seguintes limites:

$$\lim \frac{2 + \pi n^3 (n+1)^2}{3 + 2(n+3)^3 + 4n(n+2)^4}, \quad \lim \frac{n^2 + n2^n}{3 + n!}, \quad \lim \frac{\cos(2 - 5^n) - \sqrt{n}}{3 + 4n^2}, \quad \lim \left(1 + \frac{1}{2n^n}\right)^{3n^n}$$

- 3. Considere uma sucessão real $(b_n)_{n\in\mathbb{N}}$ de termos negativos e minorada. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - a) A sucessão b_n é limitada.
 - b) O conjunto dos sublimites de b_n é não vazio.
 - c) Se b_n é crescente, então b_n é convergente e $\lim b_n = 0$.
- 4. Considere a função $g: \mathbb{R} \setminus \{2\} \to \mathbb{R}$ tal que

$$g(x) = \begin{cases} \log(2-x) & \text{se } x < 1\\ \arcsin(x-1) & \text{se } 1 \le x < 2\\ -\arctan\frac{2}{x} & \text{se } x > 2 \end{cases}$$

- a) Calcule (se existirem em $\overline{\mathbb{R}}$) $\lim_{x \to -\infty} g(x)$ e $\lim_{x \to +\infty} g(x)$.
- b) Calcule (se existirem em $\overline{\mathbb{R}}$) os limites

$$\lim_{x \to 1^{-}} g(x), \lim_{x \to 1^{+}} g(x), \lim_{x \to 2^{-}} g(x), \lim_{x \to 2^{+}} g(x).$$

- c) Será g prolongável por continuidade ao ponto x=2? Justifique.
- d) Indique o contradomínio de g.
- 5. Seja $f:\mathbb{R}^+\to\mathbb{R}$ uma função contínua e suponha $(y_n)_{n\in\mathbb{N}}$ é uma sucessão tal que

$$\forall n \in \mathbb{N}$$
 $y_n \in V_{\frac{1}{n}}(0) \cap \mathbb{R}^+, \quad f(y_n) = \cos[1 + (-1)^n].$

Será a função f prolongável por continuidade ao ponto 0? Justifique a sua resposta.

2° Teste

1. Calcule, se existirem em $\overline{\mathbb{R}}$,

$$\lim_{x \to 0} \frac{\arctan 3x}{2 \sin x}, \qquad \lim_{x \to e^{-}} (\log x)^{\frac{2}{x-e}}$$

2. Calcule uma primitiva de cada uma das funções seguintes

$$\frac{x^3}{2+x^4}$$
, $\frac{2\log x}{x}$, $\frac{\sin x}{4+\cos^2 x}$

3. Calcule, utilizando a substituição natural,

$$\int_0^3 \cos(\sqrt{x}) \, dx$$

4. Seja $f \in C^1(\mathbb{R})$) e seja $\varphi : \mathbb{R} \to \mathbb{R}$ a função definida por

$$\varphi(x) = f(\cos x) + \int_{x}^{x^{2}} f(t) dt.$$

Calcule φ' e φ'' .

5. Para cada valor de $a \in \mathbb{R}$, determine a natureza (absolutamente convergente, simplesmente convergente ou divergente) da seguinte série

$$\sum_{n=1}^{+\infty} \frac{n^2 a^n}{n^2 + 1}.$$

- 6. Seja $g \in C^4(\mathbb{R})$ e suponha que y = 1 + 2x é uma equação da recta tangente ao gráfico de g no ponto de abcissa 0.
 - a) Calcule g(0) e g'(0). Poderá a função g ter um extremo local no ponto 0? Justifique.
 - b) Supondo ainda que g''(0) = g'''(0) = 2 e que

$$\forall x \in \mathbb{R}^+ \qquad g^{(4)}(x) \le 4,$$

prove que

$$\forall x \in \mathbb{R}^+$$
 $g(x) \le 1 + 2x + x^2 + \frac{x^3}{3} + \frac{x^4}{6}$.

2