《数值计算方法》试卷模板

(考试对象: 计算机科学与技术专业)

班	级姓	名学	号	_ 成绩			
1. 填	空(每空2分,共2	30分)					
(1) 己	知真值 x*=0.4256	,则近似值 $x=0$.42有位有	有效数字, $x^*=0.43$ 有			
	有效数字。						
(2) 方	程 $e^x - 2 = 0$ 根的	隔离区间为	(区间长度不	超过 2); 若用二分			
法求方	程的根,则第一	次二分后根所在[区间为,	且二分次后			
能使根	$\frac{1}{2}$ 的误差不超过 $\frac{1}{2}$	<10 ⁻⁴ 。					
(3)		$+2x^2+4$,则	善商 $f[2^0,2^1] = $ _	,			
$f[2^0, 2]$	$[2^1, \dots, 2^4] = \underline{\hspace{1cm}}$	$f[2^0,2^1,\cdots,2]$	⁵]=。				
(4) 插值型求积公式是重要的求积分近似值的方法,其中梯形公式和辛卜生公							
式分别具有次和次代数精度。							
(5)							
(10)若用三次牛顿插值多项式 $L_3(x)$ 求函数 $f(x) = x^3 + 2x^2 + 1$ 的函数值 $f(8.3)$,							
则误差	$EL_3(8.3) - f(8.3) =$	•					
2. (8	分)用牛顿迭代法	$ar{x}\sqrt{15}$ 的近似值	(结果精确到小数)	点后四位有效数字)。			

3. (8分) 给定数据表:

X	-3	-1	1	2
f(x)	1	1.5	2	2

- (1) 给出 f(x) 的三次插值多项式;
- (2) 计算 f(-2) 的近似值,并给出其误差表达式。

4. (10 分)对于方程组 $\begin{cases} 4x_1+2x_2+10x_3=12\\ 10x_1-4x_2-x_3=5 \end{cases}$,通过调整参数,建立收敛的雅克 $2x_1+10x_2-4x_3=8$

比迭代法和高斯—赛德尔迭代法,并解释为什么。

5. $(10\, f)$ 给定数据 $\frac{x-2-1}{y}$ $\frac{0}{1}$ $\frac{1}{2}$ $\frac{2}{1}$ $\frac{1}{0}$, 求一代数多项式曲线,使其最好地拟合这组给定数据。

6. $(8 \, \mathcal{G})$ 已知 $\int_{-2h}^{2h} f(x) dx \approx A_{-1} f(-h) + A_0 f(0) + A_1 f(h)$, 其中 -h,0,h 为已知节点,试确定求积系数,使其具有尽可能高的代数精度,并给出所求公式的代数精度。

7. (10 分) 用龙贝格算法 R_1 计算积分 $I = \int_0^1 \frac{1}{x+2} dx$ 。

- 8. (8分) 设f(x)在[-1,1]上具有二阶连续导数.
 - (1) 写出以 $x_0 = -1, x_1 = 0, x_2 = 1$ 为插值节点f(x)的二次插值多项式 $L_2(x)$;
 - (2) 设想要计算积分 $\int_{-1}^{1} f(x) dx$,现以 $L_2(x)$ 代替 f(x) 导出求积公式。

9. (8 分)用改进欧拉公式法解初值问题 $\begin{cases} y'=x^2+y^2 \\ y|_{x=0}=0 \end{cases}$, $(0 \le x \le 0.4)$, 取步长 h=0.2。