## Lecture 12 SIS Lattices & Applications

**Instructor: Chris Peikert** 

Scribe: Jacob Alperin-Sheriff

## 1 SIS Lattices

In this lecture we give properties and applications of SIS (short integer solution) lattices. We first recall the SIS problem.

**Definition 1.1 (Shortest Integer Solution Problem).** For a positive integer modulus q, dimensions n, m and a norm bound  $\beta > 0$ , the  $\mathsf{SIS}_{n,q,\beta,m}$  problem is defined as follows: given uniformly random  $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ , find a nonzero "short" solution  $\mathbf{z} \in \mathbb{Z}^m$  such that  $\mathbf{A}\mathbf{z} = \mathbf{0} \in \mathbb{Z}_q^n$  and  $\|\mathbf{z}\| \leq \beta$ .

Equivalently, the goal is to find a non-zero vector of norm at most  $\beta$  in the following integer "SIS lattice" (it is easy to verify that this set is a discrete additive subgroup):

$$\mathcal{L}^{\perp}(\mathbf{A}) := \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{0} \}.$$

Borrowing a term from coding theory, matrix **A** is often called a *parity-check matrix* for the lattice  $\mathcal{L}^{\perp}(\mathbf{A})$ .