Parallel Sorting

Sequential Sorts

- ◆ Selection sort, Insertion sort, Bubble sort
 - $O(N^2)$
- ♦ Quicksort, Merge sort, Heap sort
 - O(N log N)
 - Quicksort best on average
- ◆ Optimal PARALLEL time complexity
 - O(N log N) / P
 - Note: if P = N, O(log N)

Designing a Parallel Sort

- ◆ Use a sequential sort and adapt
 - how well can it be done in parallel
 - sometimes a poor sequential algorithm can develop into a reasonable parallel algorithm
 (e.g. bubble sort -> odd-even transposition sort)
- ◆ Develop a different approach
 - harder, but sometimes leads to better solutions

Divide and Conquer approaches

- ◆ Merge sort
 - collects sorted list onto one processor, merging as items come together
 - maps well to tree structure, sorting locally on leaves, then merging up the tree
 - as items approach root of tree, processors drop out of merging process, limiting parallelism
 - O(log N), if P = N

Divide and Conquer Approaches

- ♦ Quick sort
 - maps well to hypercube
 - divide list across dimensions of the hypercube, then sort locally
 - selection of partition values is even more critical than for sequential version since it affects load balancing
 - hypercube version leaves different numbers of items on different processors

Quick Sort on Hypercube

- 1. Select global partition value, split values across highest cube dimension, high values going to upper side, low values to lower side (using gray code numbering of processing nodes)
- 2. Repeat on each of the one lower dimensional cubes forming the upper and lower halves of the original.
- 3. Continue this process until the remaining cube is a single processor, then sort locally.
- 4. Each node contains a sorted list, and the lists from node to node are in order (using processing node numbers.)
- 5. $O(N/P \log (N/P))$

Divide and Conquer approaches

- ♦ Hyper Quicksort
 - 1. Divide data equally among nodes
 - 2. Sort locally on each node first
 - 3. Broadcast median value from node 0 as first pivot
 - 4. Each lists splits locally, then trades halves across highest dimension
 - 5. Apply steps 3 and 4 successively (and in parallel) to lower dimensional cube forming the two halves, and so on until dimension reaches 0

New Idea -- Bitonic Sort

- ◆ Developed for a sorting network
- ♦ Based on bitonic merge
 - start with bitonic sequence
 - finish with sorted (monotonic) sequence

Bitonic Sequence

 $a_1, a_2, a_3, \ldots, a_n$ is bitonic if there is a k such that $a_1 <= a_2 <= \ldots <= a_k >= a_{k+1} >= \ldots >= a_n$ OR there is a cyclic shift of the sequence such that this is true.

Examples:

Bitonic sequence

Split one bitonic into two

- lacktriangle Given $a_1, a_2, a_3, ..., a_{2n}$ is bitonic
- ♦ Let $c_k = \min(a_k, a_{n+k})$
- ♦ Then the sequences c_1 , c_2 , ... c_n and d_1 , d_2 , ..., d_n are both bitonic AND all the c_k are less than all the d_k

Graphical Proof

Bitonic sequence, overlay halves

Bitonic sequence, max and min

Bitonic Merge

Given $a_1, a_2, ..., a_{2n}$, a bitonic sequence

- 1. Carry out pair-wise (a_k, a_{k+n}) min-max comparison and form sequences
 - $c_1, c_2, ..., c_n, d_1, d_2, ..., d_n$ so that all $c_k \le$ all d_k and each half is bitonic.
- 2. Apply the same procedure recursively (or in parallel) to each half of the list, and so on, until each bitonic sublist consists of exactly one element
- 3. The list is now in increasing order.

Bitonic merge network

- ◆ Based on simple comparator
 - two inputs, two outputs
 - upper output is max of inputs
 - lower output is min of inputs
 - Reversed arrow indicates lower is max, upper is min

Bitonic Sort

- ◆ A series of bitonic merges
 - 1. Pairwise compare to create ordered pairs, alternating increasing and decreasing pairs.
 - 2. Sets of four now form bitonic sequences: carry out bitonic merge on fours, alternating order to create fours alternately in increasing and decreasing order.
 - 3. Sets of eight now form bitonic sequences: carry out bitonic merge on eights, alternating order to create eights alternately in increasing and decreasing order.

Bitonic Sort

◆ Continue this process, creating longer and longer bitonic sequences, until the whole sequence is bitonic and the final bitonic merge creates a sorted list.

Bitonic Sort, Analysis

- lacktriangle Assume list length is $N = 2^k$
- ◆ The bitonic merge stages have 1, 2, 3, ..., k steps each, so time to sort is

time =
$$1 + 2 + ... + k = k (k-1) / 2$$

= $O(k^2) = O(log^2 N)$

- ◆ Each step needs N/2 processors, so the total number of processors is O((N/2)(log² N))
- ◆ Many lists can be pipelined, so lists can be output at the rate of one per time step.

Bitonic Sort, Hypercube

- ◆ Each input line corresponds to a node of the hypercube
- ◆ Each comparison box corresponds to an exchange between nodes along hypercube connections
- ◆ Larger lists divided among nodes, sorted locally, merge exchange between nodes according to bitonic pattern.

Compare & Exchange Algorithms

- ◆ Odd-Even Transposition Sort
- **♦** Shearsort

Odd-Even Transposition

- ◆ Based on bubble sort
- ◆ Compare even with next higher position
 - swap if needed
- ◆ Compare odd with next higher position
 - swap if needed
- ♦ How many iterations needed for N items?

Odd-Even Transposition Sort VRML

♦ http://www.cs.rit.edu/~icss571/parallelwrl/oets.wrl

Shearsort

- riangle 2D sorting: O(SQRT(N) (log N + 1))
- ◆ Odd phases: each row sorted independently in alternate directions
 - Even rows: smallest on left
 - Odd rows: smallest on right
- ◆ Even phases: Each column sorted independently top to bottom
- \triangle Log N + 1 iterations

Shearsort - original

Shearsort: Phase 1 – Row Sort

Shearsort: Phase 4 – Column Sort

Shearsort: Final Phase – Row Sort

Sorting Applet

♦ http://www.cs.rit.edu/~atk/Java/Sorting/sorting.html

Other parallel sorts

- ♦ Bucket sort
- ♦ Pipeline/insertion sort
- ♦ Rank sort

Sequential Bucket Sort

- ♦ Works well only if numbers in list are uniformly distributed across known interval, e.g. 0 a-1
- lacktriangle Divide interval into m equal (bucket) regions
- ◆ Numbers in buckets then sorted using quicksort or mergesort
- ◆ Are alternatives, e.g., can recursively divide buckets into smaller buckets => like quicksort without pivot

Sequential Bucket Sort

◆ Compare each number with start of bucket => *m-1* comparisons per number

OR

- lacktriangle Divide each number by a/m to get bucket number.
- ◆ If *m* power of 2, just need to look at upper bits of number in binary, e.g., assume m is 8 and number in binary is 1100101. This would go into bucket 6 (110) => less expensive then division.

Sequential Bucket Sort

Best case analysis:

- ◆ Assume placing a number into bucket requires 1 step and there a *n* numbers to place. If distribution is uniform *n/m* numbers/bucket
- ♦ Quicksort/mergesort O($n \log n$), e.g. (n/m) log(n/m) here.
- $\Phi T_{\text{seq}} = n + m ((n/m) \log (n/m)) = n + n \log (n/m) = O(n \log (n/m))$ if no time needed to compile final sorted list

Parallel Bucket Sort (1)

- ♦ One bucket per processor
- ♦ $T_{par} = n + n/p \log (n/p)$, where n computations needed to place numbers and then numbers are sorted using quicksort.

Parallel Bucket Sort (2)

Each processor handles *1/p* of original array and does a bucket sort on it.

Phase 1: Computation and Communication

 ◆ n computations needed to partition n numbers into p regions (This seems too big to me!), i.e.,

$$t_{comp1} = n$$

◆ p partitions containing n/p numbers are sent to processes using broadcast or scatter routine, (Here too this seems potentially too big!) i.e.,

$$t_{comm1} = t_{startup} + n t_{data}$$

Parallel Bucket Sort (2)

Each processor does a bucket sort into *p* buckets

Phase 2: Computation

Parallel Bucket Sort (2)

If uniform distribution, each small bucket has n/p^2 numbers. Each process must send contents of p-1 small buckets to other processes

Phase 3: Communication

◆ p processors need to make this communication, if cannot overlap

$$t_{comp3} = p (p-1) (t_{startup} + (n/p^2) t_{data})$$

♦ If communications can overlap, then lower bound is $t_{comm3} = (p-1) t_{startup} + (n/p^2) t_{data}$

Parallel Bucket Sort (2)

Each processor must sort approximately n/p numbers.

Phase 4: Computation

$$t_{comp4} = (n/p) \log (n/p)$$

Final Cost:

$$T_{par} = 2t_{startup} + n t_{data} + n/p + (p-1) t_{startup} + (n/p^2) t_{data} + (n/p) \log (n/p)$$

Measures of Performance

- ◆ Best sequential (comparison based) sort?
 - O(n log n)
- ◆ Time for odd-even sort?
 - -O(n)
 - improvement factor of log n faster.
- ♦ Other measures?
- ♦ What if P<<N?