

CSEN 601: COMPUTER SYSTEM ARCHITECTURE

GUC

Lecture I Dr. Cherif Salama

THE LECTURER

- B.Sc. and M.Sc. from Ain Shams University, Egypt
- Ph.D. from Rice University, TX, USA
- Collaborated with Intel Strategic CAD Labs, OR, USA
- Worked in IBM Austin Research Labs, TX, USA
- Lectured at the EELU and the MIU
- Currently lecturer at the GUC and ASU
- Other Research Interests
 - CAD Tools
 - GPU Computing
 - Programming Languages
 - Multistage Programming
 - Artificial Intelligence (game playing)

CONTACT INFO

- My Contacts:
 - · cherif.salama@guc.edu.eg, C7-310
- Office hours:
 - After lectures or by email appointment
- TAs:
 - Amal Rizkallah (<u>amal.rizkalla@guc.edu.eg</u>, C6-206)
 - · Lydia Mamdouh (lydia.mamdouh@guc.edu.eg, C7.301)
 - · Jailan Salah (jailan.salah@guc.edu.eg, C7.301)

COURSE INFO

- Lectures: Saturdays
 - For CSEN: 2nd slot in H18
 - For NETW+DMET: 3rd slot in H8
 - 12 lectures in total
 - Attendance is critically important
 - Plagiarism = Cheating = ZERO
- Tutorials: Starting Saturday, Feb 14th
- Labs: Starting Saturday, Feb 14th

COURSE INFO

- Textbook and reference:
 - David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 5th Edition, 2013
- Course Prerequisites:
 - CSEN 402: Computer Organization and System Programming
- Assessment:
 - Quizzes: 10%
 - Project+Report: 15+10=25%
 - Midterm: 25%
 - Final: 40%

WHY STUDY COMPUTER SYSTEM ARCHITECTURE?

- Computers are everywhere
- Get a deeper understanding of
 - Computers inner workings
 - Factors affecting computer performance & performance metrics
- Become a better programmer
- Microprocessors architecture is simply beautiful!
- You are an <u>engineering</u> student

MOORE'S LAW

50 years ago (in 1965) Gordon Moore Intel co-founder observed that the number of transistors on a chip was roughly doubling every 2 years and predicted that this trend was going to continue for the 10 following years. His prediction now known as Moore's law is still valid nowadays and is expected to continue till 2025.

On the road to a billion transistors per chip, Intel has developed transistors so small that about 200 million of them could fit on the head of each of these pins.

Gordon Moore estimated

in 2003 that the number of transistors shipped in a year had reached about 10,000,000,000,000,000 (1018). That's about 100 times the number of ants estimated to be in the world.

1965

IBM System 360/50 0.15 MIPS 64 KB \$1M

\$6.6M per MIPS

1977

DEC VAX11/780 1 MIPS 1 MB \$200K

\$200K per MIPS

1998

Dell Dimension XPS-300 **725 MIPS** 64 MB \$2412 (1/4/98)

\$3.33 per MIPS

2009

PS3 & GPUs \$500 \$0.01 per **MIPS**

SO WHAT?

- Making use of the large number of available transistors and the impressive technological advances is crucial
- This course will show you how to do that in the context of a commercial computer
 - MIPS ISA and programming (Chapter 2)
 - Simple MIPS implementation (Chapter 4)
 - Pipelined MIPS implementation (Chapter 4)
 - Parallel Processors (Chapter 6)

A QUICK REVIEW

- Von-Neumann model
- Key Concepts of abstraction
- The Basic Computer

VON-NEUMANN MODEL OF A COMPUTER

KEY CONCEPTS OF ABSTRACTION

- Instruction Set Architecture (ISA)
 - Functional interface to the assembly level programmer
 - Ex: Intel (x86)
- Implementation (Machine Organization)
 - Mechanism that interprets and executes the instructions
 - Ex: Intel Core i7 Processor
- Realization
 - Physical fabrication (depends on technology)
 - Ex: Intel Core i7 Processor using 32 nm

THE BASIC COMPUTER

Common bus

Instruction Format

THE BASIC COMPUTER

Instructions

Hexadecimal code			
Symbol	I = 0	I = 1	Description
AND	0xxx	8xxx	AND memory word to AC
ADD	1xxx	9xxx	Add memory word to AC
LDA	2xxx	Axxx	Load memory word to AC
STA	3xxx	Bxxx	Store content of AC in memory
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx	Dxxx	Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero
CLA	7800		Clear AC
CLE	7400		Clear E
CMA	7200		Complement AC
CME	7100		Complement E
CIR	7080		Circulate right AC and E
CIL	7040		Circulate left AC and E
INC	7020		Increment AC
SPA	7010		Skip next instruction if AC positive
SNA	7008		Skip next instruction if AC negative
SZA	7004		Skip next instruction if AC zero
SZE	7002		Skip next instruction if E is 0
HLT	7001		Halt computer
INP	F800		Input character to AC
OUT	F400		Output character from AC
SKI	F200		Skip on input flag
SKO	F100		Skip on output flag
ION	F080		Interrupt on
IOF	F040		Interrupt off

Control Unit

THE BASIC COMPUTER

COMPLETE BC MICROOPS 1/2

```
Fetch
                           R′T₀:
                                                   AR ← PC
                           R′T₁:
                                                   IR \leftarrow M[AR], PC \leftarrow PC + 1
Decode
                           R'T<sub>2</sub>:
                                                   D0, ..., D7 ← Decode IR(12 ~ 14),
                                                                 AR \leftarrow IR(0 \sim 11), I \leftarrow IR(15)
Indirect
                           D_7/IT_3:
                                                   AR \leftarrow M[AR]
Interrupt
       T_0'T_1'T_2'(IEN)(FGI + FGO):
                                                   R ← 1
                           RT<sub>0</sub>:
                                                   AR \leftarrow 0, TR \leftarrow PC
                                                   M[AR] \leftarrow TR, PC \leftarrow 0
                           RT₁:
                                                   PC \leftarrow PC + 1. IEN \leftarrow 0. R \leftarrow 0. SC \leftarrow 0
                           RT<sub>2</sub>:
Memory-Reference
   AND
                                                   DR \leftarrow M[AR]
                           D_0T_4:
                                                   AC \leftarrow AC \land DR, SC \leftarrow 0
                           D_0T_5:
                                                   DR \leftarrow M[AR]
   ADD
                           D_1T_4:
                                                   AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0
                           D_1T_5:
                           D<sub>2</sub>T<sub>4</sub>:
D<sub>2</sub>T<sub>5</sub>:
   LDA
                                                   DR \leftarrow M[AR]
                                                   AC \leftarrow DR, SC \leftarrow 0
   STA
                                                   M[AR] \leftarrow AC, SC \leftarrow 0
                           D_3T_4:
                           D_4T_4:
   BUN
                                                   PC ← AR, SC ← 0
                                                   M[AR] \leftarrow PC, AR \leftarrow AR + 1
   BSA
                           D_5T_4:
                                                   PC ← AR, SC ← 0
                           D_5T_5:
   ISZ
                                                   DR \leftarrow M[AR]
                           D_6T_4:
                                                   DR ← DR + 1
                           D_6T_5:
                                                    M[AR] \leftarrow DR, if (DR=0) then (PC \leftarrow PC + 1),
                           D_6T_6:
                                                   SC ← 0
```


COMPLETE BC MICROOPS 2/2

```
Register-Reference
                                         (Common to all register-reference instr)
                        D_7 I'T_3 = r
                        IR(i) = B_i (i = 0,1,2, ..., 11)
                                            SC ← 0
                          r:
   CLA
                          rB<sub>11</sub>:
                                      AC ← 0
   CLE
                                            E ← 0
                          rB<sub>10</sub>:
                                           AC - AC'
   CMA
                          rB<sub>9</sub>:
   CME
                                            E ← E′
                          rB<sub>8</sub>:
   CIR
                          rB<sub>7</sub>:
                                           AC \leftarrow shr AC, AC(15) \leftarrow E, E \leftarrow AC(0)
                                           AC \leftarrow shl AC, AC(0) \leftarrow E, E \leftarrow AC(15)
   CIL
                          rB<sub>6</sub>:
   INC
                          rB<sub>5</sub>:
                                           AC \leftarrow AC + 1
   SPA
                                            If(AC(15) =0) then (PC \leftarrow PC + 1)
                                            If(AC(15) =1) then (PC \leftarrow PC + 1)
   SNA
                          rB<sub>3</sub>:
                                            If(AC = 0) then (PC \leftarrow PC + 1)
   SZA
                          rB<sub>2</sub>:
   SZE
                                            If (E=0) then (PC \leftarrow PC + 1)
                          rB₁:
   HLT
                                            S \leftarrow 0
                          rB<sub>0</sub>:
                                            (Common to all input-output instructions)
Input-Output
                        D_7IT_3 = p
                        IR(i) = B_i
                                           (i = 6,7,8,9,10,11)
                                            SC ← 0
                          p:
                                            AC(0-7) \leftarrow INPR, FGI \leftarrow 0
   INP
                          pB<sub>11</sub>:
                                            OUTR \leftarrow AC(0-7), FGO \leftarrow 0
   OUT
                          pB<sub>10</sub>:
                                            If(FGI=1) then (PC \leftarrow PC + 1)
   SKI
                          pB<sub>o</sub>:
                                            If(FGO=1) then (PC \leftarrow PC + 1)
   SKO
                          pB<sub>8</sub>:
   ION
                                            IEN ← 1
                          pB<sub>7</sub>:
   IOF
                                            IEN ← 0
                          pB<sub>6</sub>:
```


REFERENCES

- Mano, Computer System Architecture, Third Edition, 1992
- · Microprocessor Architecture: From simple pipelines to chip multiprocessors, Jean-Loup Baer, 2010
- Computer Organization and Design: The Hardware/Software Interface, Fifth Edition, Patterson and Hennessy, 2013

