GIỚI THIỆU MÔN HỌC

Tên môn học : KỸ THUẬT SỐ (EE1009)

Phân phối giờ : 30 LT - 30 TN

Website để tải bài giảng :http://e-learning.hcmut.edu.vn/course

Sách & giáo trình chính:

ال

- 1. M Morris Mano and Charles R. Kime, "Logic and Computer Design Fundamentals" 5th Ed, Prentice-Hall, 2015.
- 2. S. Brown and Z. Vranesic, "Fundamentals of Digital Logic with Verilog Design", 3rd Ed, Mc-Graw-Hill, 2013.

<u>Tài liệu tham khảo</u>:

- 1. Charles H.Roth, Jr and Larry L. Kinney, "Fundamentals of Logic Design", 7th Ed, Cengage Learning, 2013.
- 2. John F. Wakerly, "Digital Design Principles and Practice", 4th Ed, Prentice-Hall, 2006.

Lê Thị Kim Anh

Bộ môn Điện Tử – Khoa Điện Điện Tử.

Đại học Bách Khoa TP. HCM

Email: kimanhlebk@hcmut.edu.vn

Nội dung kiến thức:

- Các hệ thống số.
- Đại số Boole.
- Hệ tổ hợp.

, [

- Hệ tuần tự.

Kết quả đạt được:

Sau khi đạt môn này SV có khả năng phân tích, thiết kế các hệ thống số tổ hợp và tuần tự.

ĐIỂM VÀ CÁCH ĐÁNH GIÁ

Kiểm tra giữa kỳ: 30%

- Thời gian: 60 – 90 phút

- Hình thức: tự luận)

Thi cuối kỳ: 40%

, [

- Thời gian: 90-120 phút

- Hình thức: tự luận

Thí nghiệm: 30%

Chương 1: CÁC HỆ THỐNG SỐ

- I. CÁC HỆ THỐNG SỐ ĐẾM
- II. SỐ NHỊ PHÂN
- III. SỐ NHỊ PHÂN CÓ DẤU
- IV. CỘNG TRỪ SỐ BCD

I. CÁC HỆ THỐNG SỐ ĐẾM

- Một số định nghĩa trong biểu diễn số.
- Các hệ thống số thường dùng.
- Chuyển đổi qua lại giữa các hệ thống số.

CẦU TRÚC TỔNG QUÁT & MỘT SỐ ĐỊNH NGHĨA

CÁC HỆ THỐNG SỐ ĐẾM THƯỜNG DÙNG

HỆ THỐNG	THẬP PHÂN (Decimal)	NHỊ PHÂN (Binary)	BÁT PHÂN (Octal)	THẬP LỤC PHÂN (HexaDecimal)			
KÝ SỐ (Digit)	0 ÷ 9	0,1	0 ÷ 7	$0 \div 9, A \div F$			
CO SÓ (Radix)	r = 10	r = 2	r = 8	r = 16			
KÝ HIỆU (Symbol)	{ D, ₁₀ }	{ B, 2}	{ O, ₈ }	{ H, ₁₆ }			
VÍ DỤ	125.37D 125.37 ₁₀	101.11B 101.11 ₂	623.140 623.14 ₈	F8E.0CH F8E.0C ₁₆			
GIÁ TRỊ (Value)	$\sum_{i} d_{i}. r^{i}$	Giá trị của một số chính là chuyển đổi số đó về hệ thống số thập phân (i: vị trí - r: cơ số)					

Bài giảng môn Kỹ Thuật Số GV: Lê Thi Kim Anh

$\overline{\text{VD}}$ Chuyển đổi các số 101.11_2 , 317.25_8 & 1AB.EF_{16} sang hệ thập phân

			BIN	ARY					0	CTAI	1			Н	EXAD	ECIMA	AL.	
Số	1	0	1		1	12	3	1	7		2	58	1	A	В		E	F ₁₆
Vị trí ký số	2	1	0		-1	-2	\ \ 2	1	0		-1	-2	1 2	1	0		-1	-2
Trọng số	22	21	20		2-1	2-2	82	8 ¹	80		8-1	8-2	16 ²	16 ¹	16 ⁰		16 ⁻¹	16-2
Biểu thức tính giá trị			$\sum_{i=-2}^{2}$	d_i . 2^i					\sum_{i=-}^2	$\int_{-2}^{\infty} d_{i}.8$	B ⁱ				$\sum_{i=-2}^{2} a^{i}$	l_i . 16^i		
Giá trị	= 1.2	2+0.21+	-1.20+1	.2-1+1.2	2-2= 5	.75 ₁₀	= 3.82	2+1.81+	7.80+2	.8-1+5	.8-2 = 207	7.65625 ₁₀	=1.16 = 42	72+10.1 7.9335	6 ¹ +11.1 9375 ₁₀	16 ⁰ +14	.16 ⁻¹ +1	5.16-2

$\overline{\text{VD}}$ Đổi số 129.27₁₀ sang các hệ BIN, OCT và HEX

......

$$129.27_{10} = 10000001.0100_2$$

\underline{VD} Chuyển đổi giữa các hệ cơ số $r(2^n)$

DECIMAL	I	BIN	AR	Y	OCT	HEX
0	0	0	0	0	0	0
1	0	0	0	1	1	1
2	0	0	1	0	2	2
3	0	0	1	1	3	3
4	0	1	0	0	4	4
5	0	1	0	1	5	5
6	0	1	1	0	6	6
7	0	1	1	1	7	7
8	1	0	0	0	10	8
9	1	0	0	1	11	9
10	1	0	1	0	12	A
11	1	0	1	1	13	В
12	1	1	0	0	14	C
13	1	1	0	1	15	D
14	1	1	1	0	16	E
15	1	1	1	1	17	F

OCT TO BIN	HEX TO BIN
7 1 . 5 ₈	A B . C ₁₆
(111) (001) .(101) ₂	(1010) (1011) . (1100) ₂
↓	\downarrow
111001.1012	10101011.11002

Phương pháp khác để chuyển đổi qua lại giữa hệ nhị phân và thập phân

PP phân tích (DECIMAL _TO_ BIN)

Một số nhị phân không dấu N bit có thể biểu diễn được cho 2^N số thập phân M khác nhau có giá trị từ $0 \div (2^N - 1)$. Với $2^{N-1} < M < 2^N$ cần N bit nhị phân để biểu diễn cho số M.

$$45_{10} = 32 + 8 + 4 + 1 = 2^5 + 0 + 2^3 + 2^2 + 0 + 2^0 = 101101_2$$

PP nhân cộng kép (Double-dabble) (BIN_ TO_ DECIMAL)

$$11011_2 = 27_{10}$$

a. Cho số A = 365 trong hệ thống số co số r. Hãy xác định giá trị cơ số r; nếu biết **giá trị** của A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác, biểu diễn của A(hay nói cách khác, biểu diễn của A(hay nói cách khác))

b. Cho số Q = 310.2 trong hệ thống số $c\sigma$ số 4. Hãy xác định giá trị Q trong hệ thống số $c\sigma$ số 8.

<u>Giải</u>

a. Định nghĩa giá trị: $A = 3r^2 + 6r + 5 = 194$ PT bậc 2: $3r^2 + 6r - 189 = 0$

r = 7 và r = -9 (loại)

⇒ Hệ thống cơ số 7

* Câu hỏi đặt ra: nếu nghiệm nhận được là: $r = \{5, -9\}$???

a. Cho số A = 365 trong hệ thống số co số r. Hãy xác định giá trị cơ số r; nếu biết **giá trị** của A(hay nói cách khác, biểu diễn của <math>A(hay nói cách khác) trong hệ co số 10) là 194.

b. Cho số Q = 310.2 trong hệ thống số $c\sigma$ số 4. Hãy xác định giá trị Q trong hệ thống số $c\sigma$ số 8.

b. Cách 1:

sử dụng thập phân (r = 10)

$$Q = 3 \times 4^2 + 1 \times 4 + 2 \times 4^{-1} = 52.5$$

Chuyển sang cơ số 8

$$52:8 = 6 du 4$$

$$0.5 \times 8 = 4.0$$

$$\Rightarrow Q = 64.4$$

<u>Cách 2:</u>

sử dụng nhị phân (r=2)

Cơ số 4 tương đương nhị phân 2 bit

$$\rightarrow Q = 310.2 = 11 \ 01 \ 00 \ 10$$

Chuyển sang cơ số 8 (tương đương nhị phân 3 bit)

$$Q = \underline{110} \ \underline{100} . \ \underline{100}$$

$$\Rightarrow Q = 64.4$$

II. SỐ NHỊ PHÂN

- Một số tính chất cơ bản của số nhị phân.
- Các phép toán số học trên số nhị phân.
- Các mã nhị phân thông dụng.

MỘT SỐ TÍNH CHẤT CƠ BẢN CỦA SỐ NHỊ PHÂN

Dinh nghĩa

- Mỗi ký số trong hệ nhị phân được gọi là **BIT** (binary digit).
- MSB (Most Significant Bit): bit có trọng số lớn nhất.
- LSB (Least Significant Bit): bit có trọng số nhỏ nhất.
- Số nhị phân được dùng để biểu diễn các tín hiệu trong mạch số.

Một số tính chất

- Số nhị phân n bit có tầm giá trị từ $0 \div (2^n 1)$.
- Số nhị phân $CH\tilde{A}N$ có LSB = 0.
- $S\hat{o}$ nhị phân $L\hat{E}$ có LSB = 1.
- BIT được dùng làm đơn vị đo lường thông tin.
- Các bội số của **BIT**:

```
\begin{array}{l} 1 \text{ nibble} = 4 \text{ bit} \\ 1 \text{ byte} = 2 \text{nibble} \\ 1 \text{ word} = n \text{ bit, } \{n = 16,32,\ldots\} \\ 1 \text{KB} = 2^{10} \text{ byte} = 1024 \text{ byte} \\ 1 \text{MB} = 2^{10} \text{ KB} \\ 1 \text{GB} = 2^{10} \text{ MB} \\ 1 \text{GH} = 2^{10} \text{ MB} \\ 1 \text{ MB} = 2^{10} \text{ MB}
```

Bài giảng môn Kỹ Thuật Số GV: Lê Thi Kim Anh

MỘT SỐ TÍNH CHÁT CƠ BẢN CỦA SỐ NHỊ PHÂN

	BINARY						
DECIMAL	TRỌNG SỐ						
	8 (MSB)	4	2	1(LSB)			
0	0	0	0	0			
1	0	0	0	1			
2	0	0	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			
10	1	0	1	0			
11	1	0	1	1			
12	1	1	0	0			
13	1	1	0	1			
14	1	1	1	0			
15	1	1	1	1			

Bài giảng môn Kỹ Thuật Số GV: Lê Thị Kim Anh

CÁC PHÉP TOÁN SỐ HỌC TRÊN SỐ NHỊ PHÂN

a. Phép cộng

0	0	1 1
+ 0	+ 1	+ 0 + 1
0	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

b. Phép trừ

c. Phép nhân

$$0 * 0 = 0$$
 $0 * 1 = 0$
 $1 * 0 = 0$
 $1 * 1 = 1$

		•	1	0	1	0
		X	1	1	0	0
			0	0	0	0
		0	0	0	0	
	1	0	1	0		
1	0	1	0			
1	1	1	1	0	0	0

Hoặc thực hiện theo pp tổng tích lũy các tích từng phần.

Bài giảng môn Kỹ Thuật Số GV: Lê Thị Kim Anh d. Phép chia: thực hiện trên cơ sở của phép nhân và trừ.

TỔNG QUÁT VỚI HỆ CƠ SỐ n

Thực hiện 1 cách tương tự như trong hệ thập phân cho từng decade(mỗi decade có giá trị từ **0**÷(**n-1**)). Mỗi decade liên tiếp nhau sẽ hơn kém nhau **n** lần.

Ví dụ: $(1001)_2 + (1011)_2$

Bài giảng môn Kỹ Thuật Số GV: Lê Thi Kim Anh

Ví dụ: $(7125)_8 + (3046)_8$

Ví dụ: $(159F)_{16} + (3E46)_{16}$

Bài giảng môn Kỹ Thuật Số GV: Lê Thị Kim Anh

Phép trừ trong hệ HexaDecimal?

Phép nhân trong hệ Octal?

Quan sát
phép toán
trong hệ
thập phân

	1	2	5
		4	3
	3	7	5
5	0	0	
5	3	7	5

THỰC HIỆN	PHÂN TÍCH	KQ
3 x 5	= 15 = 1x10 +5	= 15
3 x 2 + 1	= 7	= 7
3 x 1	= 3	= 3
4 x 5	= 20 = 2x10 + 0	= 20
4 x 2 + 2	$= 10 = 1 \times 10 + 0$	= 10
4 x 1 + 1	= 5	= 5

Ví dụ: (562)₈ * (45)₈

		7	6	2
			4	5
	4	6	7	2
3	7	1	0	
4	3	7	7	2

Octal

Octal	Decimal	Octal
5 x 2	= 10 = 1x8 + 2	= 12
5 x 6 + 1	= 31 = 3x8 + 7	= 37
5 x 7 + 3	= 38 = 4x8 + 6	= 46
4 x 2	= 8 = 1x8 + 0	= 10
4 x 6 + 1	= 25 = 3x8 + 1	= 31
4 x 7 + 3	= 31 = 3x8 + 7	= 37

MỘT SỐ MÃ NHỊ PHÂN THÔNG DỤNG

Mã nhị phân cho số thập phân (**BCD** – **B**inary Coded **D**ecimal)

KÝ SỐ THẬP PHÂN	MÃ BCD (8421)	MÃ BCD (2421)	MÃ QUÁ 3 Excess 3-XS3	MÃ 1 TRONG n			
0	0000	0000	0011	0 0 0 0 0 0 0 0 0 1			
1	0001	0001	0100	0 0 0 0 0 0 0 0 1 0			
2	0010	0010	0101	0 0 0 0 0 0 0 1 0 0			
3	0011	0011	0110	0 0 0 0 0 0 1 0 0 0			
4	0100	0100	0111	0 0 0 0 0 1 0 0 0 0			
5	0101	1011	1000	0 0 0 0 1 0 0 0 0 0			
6	0110	1100	1001	0 0 0 1 0 0 0 0 0 0			
7	0111	1101	1010	0 0 1 0 0 0 0 0 0 0			
8	1000	1110	1011	0 1 0 0 0 0 0 0 0 0			
9	1001	1111	1100	1 0 0 0 0 0 0 0 0 0			

Sự khác nhau giữa số BCD và nhị phân

BCD: $1001001010000111 \rightarrow (1001)(0010)(1000)(0111) = 9287_{10}$

Nhị phân: $1001001010000111 \longrightarrow 1.2^{15} + 1.2^{12} + 1.2^{9} + 1.2^{7} + 1.2^{2} + 1.2^{1} + 1.2^{0} = 37511_{10}$

Áp dụng: chuyển số 1537₁₀ sang số BCD và nhị phân?

NGUYÊN TẮC HIỆU ĐÍNH SỐ BCD: +6 (0110)

SỐ NHỊ PHÂN			BCD1			BCD0					
0	0	0	0					0	0	0	0
0	0	0	1					0	0	0	1
0	0	1	0					0	0	1	0
0	0	1	1					0	0	1	1
0	1	0	0					0	1	0	0
0	1	0	1					0	1	0	1
0	1	1	0					0	1	1	0
0	1	1	1					0	1	1	1
1	0	0	0					1	0	0	0
1	0	0	1					1	0	0	1
1	0	1	0	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	1
1	1	0	0	0	0	0	1	0	0	1	0
1	1	0	1	0	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	0	1	0	0
1	1	1	1	0	0	0	1	0	1	0	1

Mã Gray

Mã Gray là loại mã không có trọng số, được tạo ra từ mã nhị phân theo nguyên tắc sau:

- MSB của số mã Gray và mã nhị phân là giống nhau.
- Cộng MSB của số nhị phân vào bit bên phải và ghi tổng (bổ qua số nhớ).
- Tiếp tục như vậy cho đến LSB.
- Số mã Gray luôn cùng bit với số nhị phân.

BIN_TO_GRAY

GRAY_TO_BIN

V	D	

Bộ mã nhị phân 3 bit và mã Gray tương ứng

B ₂	B ₁	B ₀	G ₂	G ₁	G ₀
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	00	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

Nhận xét: hai mã Gray liền kề nhau chỉ khác nhau ở vị trí 1 bit, và tại vị trí MSB khi chuyển từ giá trị 0 sang 1 chính là trục đối xứng về giá trị của các bit còn lại.

- Từ nhận xét trên có thể tạo bộ mã Gray nhiều bit từ các bộ mã có số bit nhỏ hơn dựa trên tính đối xứng của nó.

Trị thập phân

- Cũng có thể tạo ra mã Gray từ mã nhị phân theo cách sau: tính từ bên trái, bit đi sau bit 0 (của số nhị phân) được giữ nguyên, bit đi sau bit 1 thì bị đảo.

<u>VD</u> 1 1 0 0 1 1 0 1B

 $\rightarrow 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1G$

tuong duong

 $\rightarrow 0$

 $\rightarrow 1$

 $\rightarrow 2$

 $\rightarrow 3$

 $\rightarrow 4$

 $\rightarrow 5$

 $\rightarrow 6$

 $\rightarrow 7$

 $\rightarrow 8$

 $\rightarrow 9$

 $\rightarrow 10$

 $\rightarrow 11$

 $\rightarrow 12$

 $\rightarrow 13$

 $\rightarrow 14$

 $\rightarrow 15$

000

001

011

010

110

111

101

100

100

101

111

110

010

0 1 1

001

000

bit

Bảng biểu diễn các loại mã nhị phân có giá trị từ $0 \div 15$

Decimal	Binary	Hexadecimal	BCD	Gray
0	0	0	0000	0000
1	1	1	0001	0001
2	10	2	0010	0011
3	11	3	0011	0010
4	100	4	0100	0110
5	101	5	0101	0111
6	110	6	0110	0101
7	111	7	0111	0100
8	1000	8	1000	1100
9	1001	9	1001	1101
10	1010	Α	0001 0000	1111
11	1011	В	0001 0001	1110
12	1100	С	0001 0010	1010
13	1101	D	0001 0011	1011
14	1110	E	0001 0100	1001
15	1111	F	0001 0101	1000

Led 7 doan (7 segment display)

Mã Led 7 đoạn (7 segment display Code)

Áp dụng

Cho số mã Gray 16 bit sau: **0001 1101 0101 1111 G**

- a. Xác định mã **BCD** của số trên.
- b. Xác định mã led 7 đoạn loại **anode chung** và **cathode chung** cho các giá trị thập phân của các số **BCD** trên.

<u>Giải</u>

a. Đổi mã **Gray** sang số nhị phân, sau đó xác định giá trị thập phân rồi chuyển sang mã **BCD**.

```
0001 1101 0101 1111 G
```

 \Rightarrow 0001 0110 0110 1010 B

```
⇒ 5738D
```

```
⇒Mã BCD: 0101 0111 0011 1000
```

b. Mã led 7 đoạn loại anode chung

Mã ký tự ASCII

(a)

				$b_6 b_5 b$	4			
$b_3 b_2 b_1 b_0$	000	001	010	011	100	101	110	111
0000	NULL	DLE	Space	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	,,	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYNC	&	6	F	V	f	V
0111	BELL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	I
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	О	_	О	DEL

Mã ký tự ASCII

(b)

Control	Characters:	Control	Characters:	Graphic	Characters:
NULL	Null	DLE	Data link escape	,	Apostrophe
SOH	Start of heading	DC1	Device control 1	-	Hyphen
STX	Start of text	DC2	Device control 2	/	Forward slant
ETX	End of text	DC3	Device control 3	<	Less than
EOT	End of transmission	DC4	Device control 4 (stop)	>	Greater than
ENQ	Enquiry	NAK	Negative knowledge	[Opening bracket
ACK	Acknowledge	SYNC	Synchronous idle	\	Reverse slant
BELL	Bell (audible Signal)	ЕТВ	End of transmission block]	Closing bracket
BS	Backspace	CAN	Cancel	٨	Circumflex
HT	Horizontal tabulation	EM	End of medium	_	Underline
LF	Line feed	SUB	Substitute	`	Grave accent
VT	Vertical tabulation	ESC	Escape	{	Opening brace
FF	Form feed	FS	File separator	I	Vertical line
CR	Carriage return	GS	Group separator	}	Closing brace
SO	Shift out	RS	Record separator	~	Overline (tilde)
SI	Shift in	US	Unit separator		
		DEL	Delete		

Mã phát hiện lỗi parity bit

Ví dụ:

Khi truyền tổ hợp mã **ASCII** {**A**,**B**,**C**} theo nguyên tắc parity chẵn, ta cần truyền các tổ hợp sau: {**0**1000001, **0**1000010, **1**1000011 và **0**11000000}

data		P				Từ mã	i		
A		0	1	0	0	0	0	0	1
В		0	1	0	0	0	0	1	0
C		1	1	0	0	0	0	1	1
Kiểm tra cột	0	1	1	0	0	0	0	0	0

III. SỐ NHỊ PHÂN CÓ DẤU

- Các hệ thống biểu diễn số có dấu.
- Các phép toán cộng trừ trên số có dấu.
- Thực hiện phép toán cộng trừ trên số BCD.

Số NHỊ PHÂN	1	0	1	1	0	0	1	0	0	1
BÙ 1	0	1	0	0	1	1	0	1	1	0
+										1
BÙ 2	0	1	0	0	1	1	0	1	1	1

TÍNH NHANH S	Ó BÙ	2								
Số nhị phân	1	0	1	1	0	0	1	1	0	0
Số bù 2	0	1	0	0	1	1	0	1	0	0

BIỂU DIỄN SỐ CÓ DẦU

Số có dấu theo biên độ (Signed Magnitude)

Số có dấu theo số bù 1 (1's complement)

Số có dấu theo số bù 2 (2's complement)

QUI ƯỚC

- MSB = bit dấu
- $-S\acute{o}(+) = 0$ $S\acute{o}(-) = 1$
- Phần còn lại là độ lớn.
- $S\acute{o} (+): MSB = 0, ph \hat{a}n$ còn lại là độ lớn.
- Số (-): lấy **bù 1** của số dương tương ứng.
- $S\acute{o} (+): MSB = 0, phần$ còn lại là độ lớn.
- Số (-): lấy **bù 2** của số duong tương ứng.
- Số 0 có 2 cách biểu diễn | Số 0 có 2 cách biểu diễn
- Số 0 có 1 cách biểu diễn

PHAM VI BIẾU DIỄN

$$-(2^{n-1}-1) \div + (2^{n-1}-1)$$

$$-(2^{n-1}-1) \div + (2^{n-1}-1)$$

$$-(2^{n-1}) \div + (2^{n-1}-1)$$

BIỂU DIỄN SỐ NHỊ PHÂN CÓ DẤU 4BIT

DECIMAL		HỆ BIÊN ĐỘ (Magnitude)		THÓNG BÙ 1 e's Complement)	HỆ THỐNG BÙ 2 (Two's Complement		
-8					1	000 ← (-2 ⁿ)	
-7	1	111	1	000	1	001	
-6	1	110	1	001	1	010	
-5	1	101	1	010	1	011	
-4	1	100	1	011	1	100	
-3	1	011	1	100	1	101	
-2	1	010	1	101	1	110	
-1	1	001	1	110	1	111	
0	00	000 hoặc 1 000	0	000 hoặc 1111	0	000	
1	0	001	0	001	0	001	
2	0	010	0	010	0	010	
3	0	011	0	011	0	011	
4	0	100	0	100	0	100	
5	0	101	0	101	0	101	
6	0	110	0	110	0	110	
7	0	111	0	111	0	111	

Bài giảng môn Kỹ Thuật Số GV: Lê Thị Kim Anh

Chú ý

Trong hệ thống biểu diễn số có dấu theo số bù 2:

- Giá trị -1 được biểu diễn là : 11....11(n bit 1).
- Giá trị 2ⁿ được biểu diễn là 10...00(n bit 0).
- Lấy bù 2 hai lần của một số thì bằng chính số đó.
- Mở rộng chiều dài bit: thêm vào trước bit dấu các bit 0 nếu là số dương và ngược lại.

Nguyên tắc tính giá trị của một số có dấu trong các hệ thống biểu diễn số có dấu

- Số dương có giá trị giống nhau trong cả 3 hệ thống.
- Số âm trong hệ biên độ có giá trị chính là độ lớn của các bit còn lại.
- Số âm trong hệ thống số bù 1 và 2 có giá trị được tính bằng cách lấy bù tương ứng của số đó.

TÍNH CHẤT SỐ CÓ DẦU TRONG HỆ THỐNG SỐ BÙ 2

	Н	Hệ thống số 4bit					Нệ	thốn	g số 8	Bbit		
Biểu diễn số (-1)	1	1	1	1	1	1	1	1	1	1	1	1
$(-8) = -2^3$	1	0	0	0	1	1	1	1	1	0	0	0
Bù 2 hai lần	1	0	0	1	1	1	0	0	1	0	1	0
của 1 số là	0	1	1	1	0	0	1	1	0	1	1	0
chính nó	1	0	0	1	1	1	0	0	1	0	1	0
		+ 11					0	0	1	0	1	1
		+ 5		0	0	0	0	0	0	1	0	1
Tính giá trị		- 15				1	1	1	0	0	0	1
của số có dấu		- 15				0	0	0	1	1	1	1
		- 6	1	1	1	1	1	1	1	0	1	0
		- 0	0	0	0	0	0	0	0	1	1	0

CÁC PHÉP TOÁN CỘNG TRỪ SỐ CÓ DẦU

Nguyên tắc:

- Thực hiện giống như số không dấu.
- Thực hiện trên các toán hạng có cùng chiều dài bit và kết quả cũng có cùng số bit.
- Kết quả đúng nếu nằm trong phạm vi biểu diễn số có dấu. (Nếu kết quả sai thì cần mở rộng chiều dài bit.

Hoặc

Chuyển thành phép cộng với số bù của hệ thống tương ứng

$$A - B = A + s\hat{o} b\hat{u} c\hat{u}a(B)$$

THỰC HIỆN PHÉP CỘNG TRÊN HT SỐ BÙ 1

0	1	0	1	(+5)
0	1	1	1	(+7)
1	1	0	0	(-3)

	1	0	1	0	(-5)
	0	1	1	1	(+7)
1	0	0	0	1	
			>	. 1	
	0	0	1	0	(+2)

Câu hỏi:

- Phạm vi thực hiện của phép toán trên?
- Nhận xét gì về kết quả và nguyên tắc thực hiện?

THỰC HIỆN PHÉP CỘNG TRÊN HT SỐ BÙ 2

1	1	1	U	(-2)	(1)	U		,	
						b	o qua s	số nhớ	' cuối
0	1	0	1	(+5)		1	0	1	1
0	1	1	1	(+7)		1	0	0	1
				_					

Câu hỏi:

Phạm vi thực hiện của phép toán trên?

0

1

Nhận xét gì về kết quả và nguyên tắc thực hiện?

0

(-4)

0

1

0

bỏ qua số nhớ cuối

1

1

0

0

(-5)

(+7)

(+2)

(-5)

(-7)

(+4)

Áp dụng

Cho các số có dấu sau: $A = +48_{10}$ $B = -17_{10}$

- a. Hãy biểu diễn các số trên trong cả 3 hệ thống số có dấu 8 bit.
- b. Thực hiện phép toán A + B.
- c. Thực hiện phép toán A B.
- d. Thực hiện phép toán A B bằng cách chuyển sang phép cộng với số bù 2.

a. Hãy biểu diễn các số trên trong cả 3 hệ thống số có dấu 8 bit.

Số	Biên độ	Bù 1	Bù 2
+48	0011 0000	0011 0000	0011 0000
+17	0001 0001	0001 0001	0001 0001
-17	1001 0001	1110 1110	1110 1111

b. Thực hiện phép toán A + B.

	0	0	0	1	1	1	1	1	+31	
+	1	1	1	0	1	1	1	1	-17	
					0					
	1	1								

c. Thực hiện phép toán A - B.

c. Thực hiện phép toán A - B bằng pp chuyển sang phép cộng với số bù 2.

IV. CỘNG TRÙ SỐ BCD (Phần tham khảo)

CỘNG TRỪ SỐ BCD

Cộng	S = A + B	Nếu decade $\mathbf{S_i}$ > hoặc có bit nhớ $\mathbf{C_i}$ thì hiệu đính $\mathbf{S_i}$: $\mathbf{S_i}$ = $\mathbf{S_i}$ +	= 1
	$D = A - B$ $= A + B\dot{\mathbf{u}}_{9} (B)$	Nếu decade $D_i > 9$ hoặc $C_i = 1$ thì hiệu đính D_i :	$C_n = 1$: kết quả D là số dương D = D + 1
Trừ		$D_i = D_i + 0110 (6D)$	C _n = 0: kết quả D là số âm Lấy bù_9 (D)

C_n là bit nhớ tạo ra từ decade cao nhất, C_i là số nhớ tạo ra từ decade thứ i

c. 1025 + 8255 = 9280

d. 24 - 19
$$\Leftrightarrow$$
 24 +80

d'. 19 - 24
$$\Leftrightarrow$$
 19 +75

e. $900 - 872 \Leftrightarrow 900 + 127$

 $Cn=1 \Rightarrow s\acute{o} durong \Rightarrow D=D+1$

Kết quả: 28

7

$$\mathbf{Cn} = \mathbf{0} \Rightarrow \hat{\text{so}} \hat{\text{am}} \Rightarrow \hat{\text{lay bù 9}} (\mathbf{Di})$$

Kết quả: - 28