The perceptron - details

Summary of the "perceptron"

We have data, typically called a training dataset!

An example (MNIST database)!

Inputs = 28 x 28 grayscale images

Targets = $\{ (0', 1', 2', 3', 4', 5', 6', 7', 8', 9' \}$

We are going to use simpler datasets, that are easier to illustrate

So, we have

$$y(\mathbf{x}_n) = \varphi(\mathbf{x}_n, oldsymbol{\omega})$$
 $\left\{\mathbf{x}_n, d_n\right\}$ Perceptron Training data

Task!

$$y_n = d_n$$
, $\forall n$

How?

Summary of the "perceptron"

Common approach, construct an error function, e.g.

$$E(\boldsymbol{\omega}) = \frac{1}{N} \sum_{n=1}^{N} (y(\mathbf{x}_n) - d_n)^2$$

A function of the weights!

Minimizing E(w) means "solving" the task (or at least an attempt to solve it)

How?

Minimize using gradient descent

$$\Delta\omega_i = -\eta \frac{\partial E(\boldsymbol{\omega})}{\partial \omega_i}$$

$$\Delta\omega_i = -\eta \frac{1}{N} \sum_n \frac{\partial E_n(\boldsymbol{\omega})}{\partial \omega_i}$$

Stochastic gradient descent (SGD)

$$\Delta\omega_i = -\eta \frac{1}{P} \sum_{p=1}^{P} \frac{\partial E_p(\boldsymbol{\omega})}{\partial \omega_i}$$

Where *P* is typically between 10-15 (randomly selected from the training data)

Finally!

$$y(\mathbf{x}_n) = \varphi(\mathbf{x}_n, oldsymbol{\omega}) \qquad \left\{ \mathbf{x}_n, d_n
ight\}$$
Perceptron Training data

Train the perceptron using SGD

$$\omega_i \to \omega_i - \eta \frac{1}{P} \sum_{p=1}^P \frac{\partial E_p(\boldsymbol{\omega})}{\partial \omega_i}$$

Repeat until convergence!

What about activation functions for the perceptron?

Classification problems

Regression problems

Not so common!

Fundamental limitation of the perceptron!

Linear regression!

To "get around" this limitation, we introduce a hidden layer → Multi-Layer Perceptron (MLP)

