第六讲:广义不等式

向量之间的比较关系

杨林

大 纲

- 1.广义不等式
- 2.对偶锥与广义不等式的对偶

大 纲

1.广义不等式

2.对偶锥与广义不等式的对偶

- 定义1(正常锥): 凸锥 $K \subseteq \mathbb{R}^n$ 是一个正常锥如果:
- 1. K是闭集(包含其边界和极限点)
- 2. K是实的(具有非空内部)
- 3. K是尖的(不包含直线)

口例1:

- 1. 非负正交锥 $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1,...,n\}$
- 2. 半正定锥 $K = S_{+}^{n}$
- 3. [0,1] 上的非负多项式:

$$K = \{x \in \mathbb{R}^n | x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0, t \in [0, 1]\}$$

口例1:

- 1. 非负正交锥 $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1,...,n\}$
- 1.1证明:
- (1) 由 K 的定义知 K 是n个闭半平面的交集,因而是一个闭集,同时是凸的
 - (2) 可在 K中找到一个内点(1,1,...,1),因而具有非空内部
- (3) 对任意K中不同两点 x_1 , x_2 (不全为0) 确定的直线, $\theta x_1 + (1-\theta)x_2$. 假设 $x_{1,1} \neq x_{2,1}$, 且 $x_{1,1} < x_{2,1}$, θ 取正无穷时 $\theta x_{1,1} + (1-\theta)x_{2,1} = \theta(x_{1,1} x_{2,1}) + x_{2,1}$ 为负,因此可以得到 $\theta x_1 + (1-\theta)x_2$ 存在不在K中的点,因此K 是尖的 故 K 是一个正常锥

■ 定义2(广义不等式):广义不等式由一个正常锥 K 定义:

$$x \leq_K y \Leftrightarrow y - x \in K$$
, $x \prec_K y \Leftrightarrow y - x \in \mathbf{int} K$

口例2:

1. 分量不等式 $(K = \mathbb{R}^n_+)$

$$x \leq_{\mathbb{R}^n_+} y \Longleftrightarrow x_i \leq y_i, i = 1, ..., n$$

2. 矩阵不等式 $K = S_+^n$

$$X \leq_{S^n_+} Y \iff Y - X + \mathbb{E}$$

这两种类型非常常见,因此我们省略了 \leq_K 中的下标

■ 广义不等式的性质:

- 1. 对于加法是保序的: 如果 $x \leq_K y$ 并且 $u \leq_K v$,那么 $x + u \leq_K y + v$
- 2. 具有**传递性**: 如果 $x \leq_K y$ 并且 $y \leq_K z$, 那么 $x \leq_K z$
- 3. 对于**非负数乘是保序的**: 如果 $x \leq_K y$ 并且 $\alpha \geq 0$, 那 么 $\alpha x \leq_K \alpha y$
- 4. 是**自反的**: *x* ≤_{*K*} *x*
- 5. 是**反对称的**: 如果 $x \leq_K y$ 并且 $y \leq_K x$, 那么 x = y
- 6. 对于**极限运算是保序的**:如果对于 i = 1, 2, ...均有 $x_i \leq_K y_i$, 当 $i \to \infty$ 时,有 $x_i \to x$ 和 $y_i \to y$, $x \leq_K y$

■ 证明:

- 1. 如果 $x \leq_K y$ 并且 $u \leq_K v$, 那么 $y x \in K$, $v u \in K$, 从 而 $y + v (x + u) \in K$, 即 $x + u \leq_K y + v$
- 2. 如果 $x \leq_K y$ 并且 $y \leq_K z$, 那么 $y x \in K$, $z y \in K$, 从而 $z x \in K$, 即 $x \leq_K z$
- 3. 如果 $x \leq_K y$ 并且 $\alpha \geq 0$,那么 $y x \in K$,从而 $\alpha y \alpha x \in K$,即 $\alpha x \leq_K \alpha y$
- 4. 因为 $x x = 0 \in K$, 所以 $x \leq_K x$
- 5. 如果 $x \leq_K y$ 并且 $y \leq_K x$, 那么 $y x \in K$ 且 $x y \in K$,只 有x = y(否则包含直线)
- 6. 如果对于 i = 1, 2, ... 均有 $x_i \leq_K y_i$,当 $i \to \infty$ 时,有 $x_i \to x$ 和 $y_i \to y$,因为 $y_i x_i \in K$,有 $y x \in K$,即 $x \leq_K y$

■ 定义3(最小元与极小元):

 \leq_K 一般不是线性排序:我们可以有 $x \leq_K y$ 和 y $\leq_K x$.

 $x \in S$ 是 S 相对于 \leq 的最小元如果

$$y \in S \Rightarrow x \leq_K y$$

 $x \in S \in S$ 相对于 \leq 的极小元如果

$$y \in S, y \leq_K x \Rightarrow x = y$$

■ 示例(重要,阴影区域分别是正常锥K 和-K):

大 纲

- 1.广义不等式
- 2.对偶锥与广义不等式的对偶

■ 定义4(锥K的对偶锥):

$$K^* = \{ y \mid y^T x \ge 0, \forall x \in K \}$$

■ 对偶锥总是凸的,即使*K*不是一个凸锥

正常锥的对偶锥是正常锥,因此定义广义不等式:

$$y \geq_{K^*} 0 \iff y^T x \geq 0, \forall x \geq_K 0$$

口例3:

- 1. $K = \mathbb{R}^n_+, K^* = \mathbb{R}^n_+$
- 2. $K = S_+^n$, $K^* = S_+^n$
- 3. $K = \{(x,t) \mid ||x||_2 \le t\}, K^* = \{(x,t) \mid ||x||_2 \le t\}$
- 4. $K = \{(x,t) \mid ||x||_1 \le t\}, K^* = \{(x,t) \mid ||x||_{\infty} \le t\}$

前三个例子是自对偶锥

■ 例 3.3 3.4 的证明:

如果 $(y,z) \in K^*$, 那么对于 $\forall (x,t) \in K$, 都有 $y^T x + zt \ge 0$. 也就是说,对 $\forall (x,t) \in K$ 或是 $||x||_2 \le t$ 有 $y^T \frac{x}{t} + z \ge 0$ 定义u = x/t,则有 $y^T u + z \ge 0$, $\forall u: ||u||_2 \le 1$ 等价于 "下界 ≥ 0 " : $-||y||_2 + z \ge 0$ 或是 $||y||_2 \le z$

■ 对于任意范数:

定义对偶范数, $\|y\|_* = \sup\{y^T u \mid \|u\| \le 1\}$,则 $K^* = \{(y,z) \mid \|y\|_* \le z\}$

■ 例 3.3 3.4 的证明(续):

对于任意范数定义对偶范数, $||y||_* = \sup\{y^T u \mid ||u|| \le 1\}$,则 $K^* = \{(y,z) \mid ||y||_* \le z\}$. 对偶范数的证明如下:

- (1) 对任意 y, 由于 u = 0 满足 $||u|| \le 1$, 且 $y^T 0 = 0$, 因此 $||y||_* \ge 0$; 对于 $y \ne 0$, 令 $u = y/||y|| \le 1$, $y^T u > 0$. 因此满足非负正定性
- (2)设 α 为任意标量, $\|\alpha y\|_* = \sup\{\alpha y^T u \mid \|u\| \le 1\} = |\alpha|$ $\|y\|_*$,因此满足齐次性
 - (3)对于任意的y,z,

 $||y + z||_* = \sup\{(y + z)^T u \mid ||u|| \le 1\} = \sup\{y^T u + z^T u \mid ||u|| \le 1\} \le ||y||_* + ||z||_*$, 因而满足三角不等式

- □ 通过对偶不等式求最小元和极小元:
- **□ 关于** \leq_K 的最小元: 元素 $x \in S$ 是集合 S 最小元当且仅当对于所有 $\lambda >_{K^*} 0$, x 是在 S 上极小化 $\lambda^T z$ 的唯一最优解 $K^* = \{y \mid y^T x \geq 0, \forall x \in K\}$

 \Box 最小化 $\lambda^T Z$:

- 1. K的所有支撑超平面的法向量 λ^T 位于 K^* ,如果 $x \in S$ 是最小元,这些超平面也是S的支撑超平面,超平面可以表示为 $\{z \mid \lambda^T(z-x)=0\}$
- 2. 如果 λ^T 位于 K^* , χ 在 S 上极小化 $\lambda^T Z$, 即沿负法线— λ^T 方向平移超平面 $\lambda^T Z$
- = b 直至其成为S的支撑超平面,此时, $\lambda^T z = \lambda^T x$,x即为最优解

- □ 通过对偶不等式求最小元和极小元:
- 口关于 \leq_K 的极小元: 当对于某个 $\lambda >_{K^*} 0$, x 在 S 上极小化 $\lambda^T z$, 元素 $x \in S$ 是集合 S 极小元(分离-K + x和S , 逆命 题不一定成立). 当集合 S 为凸集时,对于任意极小元 x , 存在非零 $\lambda >_{K^*} 0$, 使得 x 在 S 上极小化 $\lambda^T z$.

超平面: $\{z \mid \lambda^T(z-x) = 0\}$

超平面: $\{z \mid \lambda^T(z - x_2) = 0\}$

超平面: $\{z \mid \lambda^T(z - x_2) = 0\}$

- 1. 对于极小元的情况,极小化 $\lambda^T z$ 同样也是在超平面 $\lambda^T z = b$ 为支撑超平面时取得,如果 $\lambda \succ_{K^*} 0$, $\lambda^T z = b$ 也是-K + x的支撑超平面(如上图)
- 2. 逆命题不成立,因为如果S非凸,可能不存在同时为S和-K + x支撑超平面的超平面(即分离超平面)
- 3. 但如果S是凸集,总是对于某个 $\lambda >_{K^*} 0$,(1)中的情况成立

- 例4: 最佳产品设计:
- □ 不同的生产方法使用不同数量的资源 $x \in \mathbb{R}^n$
- \Box 生产集合P: 所有可能的生产方法的资源向量 x
- □ 有效(帕累托最优)的方法对应于相对于 \mathbb{R}^n_+ 极小的资源 向量 x(对应于不同的价格向量 λ)
- 示例 (n = 2): x_1, x_2, x_3 是有效的, x_4, x_5 无效

谢 谢!