Automotive Sensors **Basics of Sensor** Automotive Intelligence Lab.

Contents

- Definition of automotive sensor
- Measurement methods
- Sensor performance and characteristics

Definition of automotive sensor

What is Sensor?

A device that detects	from a measurement objects and converts
them into	

Purpose of sensor

- ▶ Replace human sensory functions with other controllable signals.
- ▶ In addition, sensors allow us to detect more than just our sense organs.

Five senses	Sight	Hearing	Smell	Taste	Touch	
As behavior	See the thing Feel the light	Listen the sound Feel the shaking Take the balance	Smell the thing	Feel the taste	By touching, feel the heat, force, or texture	
Sensory organ as human	Eye 💮	Ear 🕤	Nose	Tongue	Skin /=/	
Typical sensors as machinery	Image sensor Light intensity sensor	Acoustic sensor Ultrasonic sensor	Gas component sensor	Liquid component sensor	Pressure sensor Temperature sensor Humidity sensor Displacement sensor	

Structure of Automotive Systems

Automotive Sensors

Automotive Electronic Sensors

- Measurement device for monitoring and control of mechatronics system.
 - Electronics sensor: changes "real world" parameter into "electrical signal".
 - Signal conditioning and interfacing converts electrical signal into analog or digital values.

Automotive Sensors – Past

Use of sensors is limited.

- Used to detect and monitor the status of the vehicle.
- ► Mainly used to measure pressure, speed, engine temperature, etc.
- Most parts consisted only of mechanical parts and wires.

Automotive Sensors – Present & Future

Sensors are used in various area.

- Applied for driving safety, fuel efficiency, vehicle condition monitoring, etc.
- Increasing use of electronic controllers.
- ► Has more advanced data processing and communication capabilities.

Measurement methods

Passive vs. Active

- - Outputs electrical signals directly in response to external stimuli.
 - ▶ Pros: Does not require any additional energy source & only a receiver needed.
 - ► Cons: Being vulnerable to noise.
- - Sends a random signal and detects it by analyzing the reflected signal.
 - ► Pros: High measurement accuracy.
 - ► Cons: Requiring additional power and circuit.

Direct vs. Indirect

► Compare the same kind of reference quantity with the quantity you want to measure.

▶ Determining the quantity of a target by measuring another quantity that has a certain relationship with the quantity to be measured.

Direct measurement

Measurement is performed using the scale of the measuring instrument.

Indirect measurement

Comparison with the reference device

A: Target B: Gauge block

Absolute vs. Relative

▶ To measure the measurement that is an absolute value itself.

▶ To measure the measurement that is the relative value from reference quantity.

Absolute measurement

Relative measurement

Example of Absolute and Relative Measurement

Adaptive Cruise Control (ACC)

- Maintain the safe relative distance for the front vehicle.
- ▶ Time gap control
 - Time gap = Relative distance / Absolute vehicle speed

Deflection vs. Null

▶ A method of measurement that compares with the scale.

➤ A method of measurement that get the value when it is balanced compared to the reference value by adjusting the reference size.

Figure: A deflection instrument (spring scale in this case) requires input from only one source

Figure: An equal arm balance scale (The measurand and the known quantities balanced one another in a null instrument)

Deflection method

Null method

Sensor performance and characteristics

Accuracy, Precision, Resolution

Accuracy and precision

- is used to describe the closeness of a measurement to the true value.
- is the degree to which repeated measurements under unchanged conditions show the same results.

▶ **Resolution** refers to the smallest change in the measured variable that can be detected by the sensor.

Reference: https://en.wikipedia.org/wiki/Accuracy_and_precision

Uncertainty

- The degree of difference between the sensor measurement and the actual value.
- The greater the difference between the measured value and the true value, the greater the uncertainty.

Elements of Uncertainty

- - Errors due to random fluctuations.
 - Measurements vary erratically over time.
 - Statistical averaging of multiple measurements reduces the effect of random error.
- - Corrects errors caused by sensor manufacturing process, installation location, etc.
 - ▶ May appear consistently under certain conditions, requiring calibration or compensation.

Loading Error

Real ammeter with input impedance.

Real voltmeter with input impedance.

Classification Performance & Confusion Matrix

refers to the sensor's ability to accurately identify and categorize objects in the surrounding environment.

is a table used to evaluate performance in classification problems.

- Correctly predicted the actual True as True.
- Incorrectly predicted the actual False as True.
- Incorrectly predicted the actual **True** as **False**
- Incorrectly predicted the actual True as False.
 - Correctly predicted the actual **False** as **False**.

Accuracy, Precision, Recall

- Accuracy: The proportion of correct predictions among the total number of observations.
- Precision: The proportion of actual positives among the observations predicted as positive.
- Recall: The proportion of observations that were predicted as positive among the actual positive observations.

F1 Score

■ F1 score

► The harmonic mean of and

► Advantageous when considering both metrics simultaneously.

Example

					I	1					
	airplane	923	4	21	8	4	1	5	5	23	6
â	automobile	5	972	2					1	5	15
	bird	26	2	892	30	13	8	17	5	4	3
	cat	12	4	32	826	24	48	30	12	5	7
Class	deer	5	1	28	24	898	13	14	14	2	1
True Class	dog	7	2	28	111	18	801	13	17		3
	frog	5		16	27	3	4	943	1	1	
	horse	9	1	14	13	22	17	3	915	2	4
	ship	37	10	4	4		1	2	1	931	10
	truck	20	39	3	3			2	1	9	923
	air	plane	obile	bird	cat	geer	900	f109 h	norse	shiP ,	luck
		Predicted Class									

Static vs. Dynamic

- - When the input does not change over time.
 - When the sensor in a steady state.
 - ► Essential for understanding the basic operating range and performance of the sensor.
 - Example
 - Accuracy, precision, resolution, sensitivity, linearity.
- - When the input changes over time.
 - Indicates how a sensor responds to changing conditions.
 - ► Essential for evaluating how well a sensor can track signals that change over time.
 - Example
 - Response time, frequency characteristic.

Static Characteristic – Factors Affecting Performance

Static input-output relationship

- Ideal
 - $Output = K_{gain} \times Input$

Dynamic Characteristic – Response Model (I)

1st order dynamic filter transient response model

• The time that output reaches 63.2% of the steady state value.

Dynamic Characteristic – Response Model (II)

■ 2nd order dynamic filter transient response model

- - The time that takes for the response to rise from (10% to 90%), (5% to 95%) or (0% to 100%) of the final value.
 - Rise time from 0% to 100% is usually used in under damped 2nd order systems, and rise time from 10% to 90% in overdamped 2nd order systems.
- - The maximum value of the response curve 1
 - Maximum overshoot = $\frac{c(t_p)-c(\infty)}{c(\infty)} * 100\%$
- - The time it takes that response curve to stay within 2% or 5% of the final value.

Frequency Response Analysis

Physical values

- position, velocity, acceleration,
- force, torque, strain, pressure,
- temperature, flow rate, humidity

. . .

What is Fourier Transform?

Convert an aperiodic function from the time domain to the frequency domain.

► Continuous time Fourier transform : $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$

▶ Discrete time Fourier transform : $X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi}{N}kn}$

Signal amplitude

Frequency amplitude

Bandwidth

The range of frequencies that a signal occupies in the frequency spectrum.

▶ Defines as a frequency where the input is not attenuated to -3dB

$$ightharpoonup rac{P_{out}}{P_{in}} = rac{1}{2}, \quad rac{A_{out}}{A_{in}} = \sqrt{rac{P_{out}}{P_{in}}} = \sqrt{rac{1}{2}} \approx 0.707, \quad 20log\sqrt{rac{1}{2}} \ dB \approx -3dB$$

amplitude ratio $(A_{\text{out}}/A_{\text{in}})$

dB	Power ratio	Amplitude ratio
100	10 000 000 000	100 000
90	1 000 000 000	31 623
80	100 000 000	10 000
70	10 000 000	3 162
60	1 000 000	1 000
50	100 000	316.2
40	10 000	100
30	1 000	31 .62
20	100	10
10	10	3 .162
6	3.981 ≈ 4	1.995 ≈ 2
3	1.995 ≈ 2	1.413 ≈ √2
1	1 .259	1.122
0	1	1
-1	0.794	0.891
-3	0.501 ≈ ½	0.708 ≈ √ 1
-6	0.251 ≈ 1/4	0.501 ≈ ½
-10	0.1	0 .316 2
-20	0.01	0 .1
-30	0.001	0 .031 62
-40	0 .000 1	0 .01
-50	0 .000 01	0 .003 162
-60	0 .000 001	0 .001
-70	0 .000 000 1	0 .000 316 2
-80	0 .000 000 01	0 .000 1
-90	0 .000 000 001	0 .000 031 6
-100	0 .000 000 000 1	0 .000 01

Low-Pass Filter

■ Filters that allow frequencies below a certain frequency and block higher frequencies.

► Low-pass filter is used to remove or attenuate from a signal.

What is Reliability?

Reliability is the ability of a system, product, or service to consistently perform as intended, with minimal or swift recovery from failures under given conditions.

Reliability MTBF vs. MTTR vs. MTTR

Reliability - Mean Time To Repair

Mean Time To Repair (MTTR)

- Mean Time To Repair is the average time a system or device can be repaired after a failure.
- means faster repairs and more reliable system behavior.

Reliability - Mean Time To Failures

Mean Time To Failures (MTTF)

- Mean Time To Failure is the average time a system or device can operate before failing.
- means fewer failures and more reliable system behavior.

Reliability - Mean Time Between Failures

Mean Time Between Failures (MTBF)

- ▶ Mean time between failures is the average time a system or device can operate before it fails.
- means fewer failures and more reliable system operation.

Reliability - Mean Time To Detection

Mean Time To Detection (MTTD)

- ▶ Mean time to detection is the average time a system or device can detect a failure.
- means faster the system can detect anomalous behavior or attacks.

Reliability - Extreme Testing

Extreme testing to ensure that your product will perform reliably under any extreme conditions.

Reliability - Automotive Safety Integrity Level

Automotive Safety Integrity Level (ASIL)

- ▶ Risk classification scheme defined by the ISO26262.
 - ▶ ISO26262: International standards for automotive functional safety.
- ► **ASIL** is determined by result of hazard analysis and risk assessment.
- ▶ ASIL D is the highest degree of automotive hazard and highest degree of rigor applied.

Automotive Safety Integrity Level (ASIL)

▶ **QM** represents automotive risk-free application.

ASIL = Severity * (Exposure * Controllability)

THANK YOU FOR YOUR ATTENTION

