Sterowanie procesami ciągłymi

Data:	30.11.2021	Dzień:	Wtorek
Grupa:	Y03-50e	\parallel Godzina:	17:05
Numery zajęć:	1,2,3	Prowadzący:	mgr. inż. Maciej Filiński
Nazwisko i imię	: Nowek Jak	ub	

Spis treści

1	Lab	1.	1
	1.1	Odpowiedzi skokowe i impulsowe prostych obiektów	1
	1.2	Położenie biegunów, a odpowiedzi obiektu na skok i impuls.	
2	Lab		7
	2.1	Wyznaczanie amplitudy, oraz przesunięcia fazowego.	7
	2.2	Charakterystyka amplitudowo-fazowa obiektu	
	2.3	Skrypt programu do lab2 w Matlabie	9
3	Lab	3.	10
	3.1	Wyznaczanie kp, dla którego system jest stabilny	10
		3.1.1 Wyznaczanie teoretyczne	
		3.1.2 Wyznaczanie symulacyjne	
		3.1.3 Wykres zależności uchybu od wzmocnienia	11
	3.2	Regulator typu PI	
	3.3	Skrypt programu do lab3 w Matlabie	
4			14
	4.1	Lab1	14
	4.2	Lab2	15
		Lab?	

1 Lab 1.

1.1 Odpowiedzi skokowe i impulsowe prostych obiektów.

Do wykonania zadania w programie Simulink zostały wykorzystane następujące bloki:

Rys. 1: Schematy w programie Simulink.

Pożądana transmitancja została wprowadzona do bloków Transfer Fnc. Skok zadano przy pomocy bloku step, a impuls został zamodelowany za pomocą dwóch bloków step.

•
$$K(s) = \frac{1}{s}$$

Rys. 2: K(s)=1/s.

• K(s) = s

Rys. 3: K(s)=s.

• K(s) = 2

Rys. 4: K(s)=s.

1.2 Położenie biegunów, a odpowiedzi obiektu na skok i impuls.

 $\bullet \ s1=2,s2=3$

(a) Skok (b) Impuls

• s1=0,s2=3

• s1=0,s2=0

• s1=0,s2=-3

• s1=-i,s2=i

• s1=-2,s2=3

(k) Skok (l) Impuls

• s1=-2,s2=-3

\bullet s1=-0.5+3i,s2=-0.5-3i

2 Lab 2.

Do zadania, wybrano stałą czasową transmitancji obiektu A=2. Na układ podawane były fale sinusoidalne o różnych częstotliwościach ω_0 . Uzyskana odpowiedź była porównywana z sygnałem wejściowym, a jej parametry mierzone. W zadaniu analizowanych jest 10 sygnałów o pulsacjach $\omega_0=[1,\pi/2, 2,\pi,5,2\pi,10,20,25,30]$

Rys. 5: Schemat układu w Simulinku.

2.1 Wyznaczanie amplitudy, oraz przesunięcia fazowego.

Sposób wyznaczania parametrów został pokazany na poniższym wykresie, dla pulsacji $\omega=2.$

- 1. Δt to odległość między szczytami sinusoid.
- 2. T to okres sygnału wyjściowego
- 3. A to amplituda sygnału wyjściowego
- 4. przesunięcie fazowe φ w stopniach oblicza się ze wzoru $\frac{\Delta t}{T}*360$

Rys. 6: Wykres u(t) oraz y(t).

W poniższej tabeli zostały przedstawione wartości wyznaczone z wykresów oraz wartości przesunięcia fazowego oraz amplitudy metodą symulacyjną.

Tab. 1: Tabela wartości wyznaczonych z wkresów oraz z symulacji.

ω	$\Delta \mathbf{t}$	${f T}$	φ	\mathbf{A}	φ sym	A sym
1	1.1	6.3	62.85714	0.451	63.4349	0.4472
$\pi/2$	0.8	4	72	0.3033	72.3432	0.3033
2	0.64	3.185	72.33909	0.266	75.9638	0.2425
π	0.45	2	81	0.17	80.9569	0.1572
5	0.295	1.26	84.28571	0.139	84.2894	0.0995
2π	0.24	0.995	86.83417	0.1021	85.4501	0.0793
10	0.149	0.6348	84.49905	0.0621	87.1376	0.0499
20	0.078	0.315	89.14286	0.039	88.5679	0.025
25	0.0627	0.2502	90.21583	0.0033	88.8542	0.02
30	0.0512	0.2089	88.2336	0.028	89.0452	0.0167

2.2 Charakterystyka amplitudowo-fazowa obiektu.

Poniższy wykres przedstawia diagram Nyquista dla podanej w zadaniu transmitancji. Dodatkowo na wykres zostały naniesione punkty odpowiadające wybranym wcześniej pulsacjom. Kąty którym odpowiadają te punkty na wykresie zostały wyznaczone w Matlabie funkcją angle (Rys.8) i umieszczone w tabeli Tab. 1.

Rys. 7: Char. amp-faz wraz z zaznaczonymi punktami ω_0 .

2.3 Skrypt programu do lab2 w Matlabie

```
1 -
      A = 2;
2 -
      sys = tf(1, [A, 1]);
3 -
      datacursormode on %żeby można było klikać sobie na wykres i widzieć dane
      w=[1,pi/2,2,pi,5,2*pi,10,20,25,30];
 5
       % pętla do plotowania wykresów dla różnych omeg
 6 - For w=[1,pi/2,2,pi,5,2*pi,10,20,25,30]
7 -
      sim('zadanie2.slx');
 8 -
       figure;
9 -
      plot(ans.sinus)
10 -
      grid(gca,'minor')
11 -
      grid on;
12 -
      hold on;
      plot(ans.odpowiedz)
13 -
14 -
      title(w);
15 -
      hold off;
16 -
      end
17
      % char. amp-faz (Nyquist) obiektu i dorysowanie na niej punktów
18 -
      figure;
19 -
      grid on;
20 -
      nyquist(sys);
21 -
      hold on;
22 -
      w=[1,pi/2,2,pi,5,2*pi,10,20,25,30];
23 -
      nyquist(sys,'*',w);
24 -
      [re,im,waus]=nyquist(sys,'*',w);
25 -
      zespolona=complex(re,im);
26 -
      kont=angle(zespolona)*180/pi; % kolejne kąty wzięte z nyquista (w stopniach)
27
28 -
      %amplituda
      amplituda=abs(zespolona);
29 - wynik [kont, amplituda]
```

Rys. 8: Skrypt w Matlabie.

3 Lab 3.

3.1 Wyznaczanie kp, dla którego system jest stabilny.

3.1.1 Wyznaczanie teoretyczne.

$$K_o(s) = \frac{1}{(s+1)^3}, K_R(s) = kp$$

$$K_{UAR} = \frac{L_o * K_R(s)}{L_o * K_R(s) + M_o} = \frac{kp}{s^3 + 3s^2 + 3s + 1 + kp}$$

Teraz z kryterium Hurwitza warunki stabilności:

$$H_3 = \left[\begin{array}{ccc} 3 & 1 + kp & 0 \\ 1 & 3 & 0 \\ 0 & 3 & 1 + kp \end{array} \right]$$

Podwyznaczniki macierzy Hurwitza 3x3:

$$_1 = 3 > 0$$
 $_2 = 9 - (1 + kp) = 8 - kp > 0 => kp < 8$
 $_3 = \delta_2 - (1 + kp) > 0 => k > -1$

Zatem UAR jest stabilny, jeśli $kp \ \epsilon \ (-1, 8)$.

3.1.2 Wyznaczanie symulacyjne.

Dla kp bliskich -1 oraz 8, czas ustalania był bardzo długi, więc zamiast tych wartości, w symulacji użyto wartości -0.8 oraz 7.5.

Rys. 9: Schemat UAR z regulatorem P w Simulinku.

Rys. 10: Schemat UAR z regulatorem PI w Simulinku.

Poniższy wykres przedstawia przebiegi uchybów układu, dla różnych wartości wzmocnienia kp. Wszystkie wykresy dla kp z wcześniej obliczonego przedziału, zbiegają do pewnej wartości ustalonej.

Rys. 11: Uchyby dla stabilnych kp.

3.1.3 Wykres zależności uchybu od wzmocnienia.

Aby uzyskać z powyższego wykresu wartości ustalone uchybów, wykresy z Simulinka przesłano do Matlaba jako timeseries przez blok To Workspace. Z danych w postaci timeseries, odczytane zostały końcowe wartości (ostatnia wartość w tabeli danych), które następnie zostały naniesione na wykres razem z odpowiadającymi im wartościami wzmocnienia.

Rys. 12: Zależność uchybu od wzmocnienia.

3.2 Regulator typu PI.

Dla regulatora typu PI o transmitancji $K_R(s) = kp + \frac{ki}{s}$, oraz wybranym kp, należało zminimalizować kryterium:

$$Q(kp, ki) = \int_0^\infty \varepsilon^2(t)dt$$

Wybrane zostało kp = 3.

Początkowy przedział wartości ki został przyjęty jako ki=[-10:10]. Był to jednak za duży przedział, gdyż funkcje szybko zbiegały do bardzo dużych wartości, a nam chodzi przecież o wartość jak najmniejszą. Zakres został zatem zmniejszony do ki=[-1,3]. Jego wykres umieszczony został na poniższym rysunku.

Rys. 13: Minimum dla kp = 3, duży zakres.

Jak widać z wykresu, przedział jest nadal za duży, widać już jednak, że nasze minimum powinno się znajdować pomiędzy 0.5 a 1. Następny wykres stworzony został dla przedziału ki=[0.4:0.5] oraz przybliżony. Na jego podstawie z bardzo dobrym przybliżeniem możemy stwierdzić, że szukane minimum występuje dla ki = 0.48, zatem wartość funkcji Q, dla kp=3 jest najmniejsza dla ki = 0.48.

Rys. 14: Minimum dla kp = 3, mały zakres.

3.3 Skrypt programu do lab3 w Matlabie.

```
1
 2
       %-----%
       figure;
 4 -
       k = [-0.8, 1, 2, 3, 4, 5, 6, 7, 7.5]; %nasz wektor wzmocnień
       w=[size(k,2)];
     \neg for i= 1:size(k,2)
 7 -
       kp=k(i);
       sim('zadanie3.slx');
 8 -
       txt = ['kp = ',num2str(kp)]; %zamiana liczby na tekst żeby wpisać do legendy
 9 -
10 -
       hold on
11 -
       grid on
       plot(simout, 'DisplayName', txt);
12 -
13 -
       w(i) = getdatasamples(simout, 80001)
      L end
14 -
       ylim([-2.5 2.5]) % ograniczenie osi y
15 -
       legend show
16 -
17 -
      figure;
18 -
       plot(k, w, '-x');
19 -
       grid on
```

Rys. 15: Skrypt do UAR z regulatorem P.

```
20
      %-----%
21 -
      figure;
      kp 2 = 3;
22 -
      k i=[-1:0.5:3];
23
      k i=[0.4:0.02:0.5];
24 -
25 - ☐ for j= 1:size(k i,2)
26 -
      ki=k i(j)
27 -
      sim('zadanie3.slx');
28 -
      txt = ['ki = ',num2str(ki)]; %zamiana liczby na tekst żeby wpisać do legendy
29 -
      hold on
30 -
      grid on
      plot(uchyb2, 'DisplayName', txt);
31 -
32 -
      ylim([0 2.5]) % ograniczenie osi y
33 -
      %xlim([40 50])% ograniczanie x dla uchybów w przynliżeniu
34
      legend show
35 -
36
```

Rys. 16: Skrypt do UAR z regulatorem PI.

4 Wnioski.

4.1 Lab1.

• Układ będzie stabilny, jeśli części rzeczywiste wszystkich jego biegunów będą ujemne.

- Jeśli bieguny mają część urojoną, w układzie wystąpią oscylacje.
- Jeśli części rzeczywiste biegunów będą równe zero, a urojone będą niezerowe, to układ będzie się znajdował na granicy stabilności - w odpowiedzi układu będą występować nierosnące i niegasnące oscylacje.
- Im bardziej ujemny biegun (jego część rzeczywista), tym szybciej ustala się odpowiedź układu, jeśli jest stabilny. Im bardziej dodatni biegun (jego część rzeczywista), tym szybciej dąży on do nieskończoności
- Wartość parametru b układu z oscylacjami o transmitancji w postaci

$$K_o(s) = \frac{1}{s^2 + as + b}$$

wyznaczamy z wartości ustalonej:

$$\lim_{s \to 0} \frac{1}{s^2 + as + b} = \frac{1}{b}$$

Tak na przykład dla układu ?? o transmitancji

$$K_o(s) = \frac{1}{2s^2 + 2s + 5}$$

i wartości ustalonej 0.2 :

$$b = \frac{1}{0.2} = 5$$

 Wartość parametru a liczymy z odpowiedzi impulsowej, aproksymując szczyty odpowiedzi impulsowej funkcją wykładniczą o wzorze:

$$f(t) = A * e^{-t * \tau}$$

. Wtedy a obliczamy ze wzoru:

$$a = -2\tau$$

4.2 Lab2.

- Wartości kątów obliczone i odczytane z symulacji Matlaba pokrywają się. W przypadku amplitud widać pewne rozbieżności, tym większe, im mniejsza amplituda i wynikaj one z błądu obserwatora.
- Wraz ze wzrostem pulsacji wzrasta przesunięcie fazowe oraz maleje amplituda.

4.3 Lab3.

- Przedział stabilności UAR obliczony zapomocą kryterium Hurwitza, pokrywa się z przedziałem wynaczonym w symulacji.
- Im większe wzmocnienie kp, tym większe są oscylacje (jeśli bieguny mają części urojone) i tym szybciej układ się stabilizuje.
- Im większe wzmocnienie tym mnijesza wartość uchybu ustalonego.
- W układzie z regulatorem P uchyb ustalony jest zawsze niezerowy.
- W regulatorze PI możemy wyliczyć wartość jednego parametru dla której układ jest stabilny, przyjmując stałą wartość drugiego jako stałą. W tym przypadku parametrem było ki, a stałą kp.