UNCLASSIFIED

AD 400 252

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

ADVANCED RESEARCH PROJECTS AGENCY
CONTRACT WITH BROWN UNIVERSITY

Technical Report No. C 3

THE X-RAY CRYSTAL STRUCTURE OF SODIUM BROMIDE DIHYDRATE

William Robert Haaf
Metcalf Research Laboratory, Brown University,
Providence 12, Rhode Island

A Thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in the Department of Chemistry at Brown University

June, 1963

APR 5 1963
TISIA

APR 5 APR 5

Reproduction in whole or in part is permitted for any purpose of the United States Government.

NO OTS

Advanced Research Projects Agency

Contract SD-86

Program in Material Sciences

Technical Reports Distribution List

Assistant Director of Materials Sciences Advanced Research Projects Agency The Pentagon Washington 25, D.C.

(5 copies)

ASTIA Arlington Hall Station Arlington 12, Virginia (10 copies)

Dr. R.H. Cole Brown University Providence, R.I.

Dr. R.L. Sproull Materials Science Center Cornell University Ithaca, New York

Dr. Fred Seitz University of Illinois Urbana, Illinois

Dr. Carl Floe Massachusetts Institute of Technology Cambridge, Massachusetts

Dr. Morris E. Fine Materials Research Center Northwestern University Evanston, Illinois

Dr. P.N. Powers Purdue University West Lafayette, Indiana Dr. W.H. Zachariasen University of Chicago Chicago 37, Illinois

Dean Harvey Brooks Harvard University Cambridge, Massachusetts

Dr. R. Myers Department of Physics University of Maryland College Park, Maryland

Dr. E.D. Palmetier Department of Physics University of North Carolina Chapel Hill, North Carolina

Dr. J.N. Hobstetter Director, IRSM Program University of Pennsylvania Philadelphia, Pennsylvania

Dr. R.A. Huggins Stanford University Stanford, California

is	accepted in its present form by the Department of				
Chemistry as satisfying the thesis requirement					
	for the degree of Master of Science.				
Date.					
	Approved by the Graduate Council				

This thesis by William Robert Haaf

ACKNOWLEDGMENTS

The author sincerely thanks
Dr. Gene B. Carpenter for his advice
and assistance throughout the course
of this work.

This research work was supported in part by
the office of Naval Research, Contract Nonr 562(04),
and by the Advanced Research Projects Agency,
contract with Brown University.

Table of Contents

	page
I. The Aim of This Research	1
II. Experimental Procedures	3
A. Preparation of Sodium Bromide Dihydrate	3
B. Growth and Mounting of a Single Crystal	3
C. Recording of X-Ray Diffraction Spectra	5
1. Apparatus and Equipment Involved	5
a. X-Ray Sources	5
b. Cameras	5
c. Film, Developing Materials and Procedure	7
2. X-Ray Diffraction Photographs	7
a. Weissenberg Photographs	7
b. Precession Photographs	8
D. Determination of Unit Cell Dimensions	9
1. Film Measurements	9
2. Calculating the Cell Dimensions	10
3. Discussion of the Cell Dimensions	11
E. Determination of the Space Group	13
F. Obtaining Structure Factor Magnitudes from Corrected Relative Intensity Data	13
 Microphotometer Method for Measuring Intensities on Precession Films 	13
2. Visual Method for Measuring Intensities on Weissenberg Films	14
3. Comparison of the Microphotometer and Visual Methods	16
4. Extraction of Structure Factor Mag- nitudes from Relative Intensities	17

			page
		5. Placing All Structure Factor Magnitudes. on the Same Scale	18
III.		ermining the Detailed Structure of Sodium mide Dihydrate	2?
	A.	The Phase Problem of X-Ray Crystallography	22
	В.	The Patterson Synthesis	22
		1. Physical Significance of the Patterson Function	22
		2. Forms of the Patterson Function Suitable for Calculation	23
		3. Interpreting the Patterson Synthesis	27
		a. The Patterson Projection P(u,w)	27
		b. The Three-Dimensional Patterson Synthesis	27
	c.	Locating Atomic Positions in the Trial Structure	29
		1. The Structure Factor	29
		2. The Temperature Factor	29
		3. The Structure Factor Calculation and the R-Value	30
		4. The Electron Density Calculation	34
		5. Obtaining Atomic Coordinates	35
	D.	Refining the Trial Structure	36
		1. The Difference Electron Density Calculation	36
		2. Correction of Coordinate Errors by Difference Maps	37
		3. Adjustment of Anisotropic Temperature Factors by Difference Maps	37
		4. Least Squeres Refinement	38

	vi		
	page		
IV. Description and Discussion of the Structure	43		
A. General Structural Features	43		
B. Discussion of Interatomic Distances	44		
C. Comparison between this Structure Determination and Van Meerssche's	45		
D. Hydrogen Bonding in Sodium Bromide Dihydrate	51		
Appendices:			
Figures 1, 2A, 2B - Projections of the NaBr·2H ₂ O structure			
Comparisons of Observed and Calculated Structure Factors (This thesis work and Van Meerssche's)			
Bibliography			

.....

I. The Aim of This Research

A great deal of the existent knowledge of the hydrogen bond in the solid state has been derived from X-ray crystallographic studies. The solution of the X-ray crystal structure of sodium bromide dihydrate will add to this basic information concerning the hydrogen bond.

It is of interest, at this point, to briefly summarize the work which eventually led to this thesis investigation.

It has been reported (Mutter, Mecke and Lüttke, 1959) that a hitherto unknown form of ice resulted when water vapor was slowly condensed onto a sodium chloride plate kept The infrared spectrum of this subat a low temperature. stance showed sharp lines, in marked contrast to the spectra of cubic and of hexagonal ice. A repetition and extension of this work at Princeton University (Hornig and Schiffer, 1961) indicated that the proposed new form of ice is, in reality, the dihydrate of sodium chloride. Comparison of the infrared spectrum of sodium chloride dihydrate with that of sodium bromide dihydrate, produced by condensation of water vapor upon a sodium bromide plate, suggested that the two structures are very similar. Schiffer and Hornig also studied these salt hydrates, again by infrared methods, after having introduced small replacements of HDO for the H₂O or D₂O present in the hydrates. They concluded that there is some evidence of $0-H\cdots X^-$ and $0-H\cdots 0$ bonding. The problem of whether or not all the hydrogen atoms are involved in hydrogen bonding was called to our attention by

Hornig's private communication, during the summer of 1961, to G. B. Carpenter.

By examination of the interatomic distances in the sodium bromide dihydrate crystal, it should be possible to confirm and extend the findings of Schiffer and Hornig. It was also desired to investigate the possibility that, from a well-refined crystal structure model of this hydrate, the hydrogen atoms may be evident in a three dimensional difference electron density synthesis.

During the final stages of this investigation, it was learned that Van Meerssche, Culot and Piret (1962) had recently completed their independent determination of the crystal structure of sodium bromide dihydrate by X-ray methods. The reported details of the structure are essentially the same as those concluded in this work. More detailed comparisons will appear later.

II. Experimental Procedures

A. Preparation of Sodium Bromide Dihydrate

The method of preparation of sodium bromide dihydrate (Gmelin, 1928, p. 420-421) is simply recrystallization from an aqueous solution of sodium bromide.

A water solution of sodium bromide, saturated at 42°C, was prepared in a beaker which was kept in a thermostatted electric oven. By controlled, very slow cooling of the oven down to room temperature (about 25°C), large, irregular, flat plates of translucent material arranged in step-wise layers crystallized out of the solution. These plates could be easily broken apart by mechanical means to yield what appeared to be single crystals. The percentage of water in the substance was determined roughly by weighing a sample before and after heating in an oven. It corresponded to the molecular formula NaBr·2H₂O.

B. Growth and Mounting of a Single Crystal.

There were three considerations involved in the problem of growing and using a single crystal of sodium bromide dihydrate in an X-ray study. Firstly, if a crystal of this substance were left exposed to the air, it would either deliquesce or effloresce strongly, depending upon the prevailing atmospheric conditions. Secondly, the "optimum" cross-sectional diameters (assuming a cylindrical crystal) are 0.142 mm for CuK_{∞} radiation and 0.197 mm for MoK_{∞} radiation. (These values were calculated from the equation $t = 2/\mu$ (Buerger, 1942), where μ is the linear absorption coefficient in cm⁻¹ calculated from $\mu = 4 \sum_{i} \rho_{i} \left(\mathcal{N} \rho_{i} \right)_{i}$.

In the latter equation, d is the density of the crystal in gm-cm⁻³, p_t is the weight-fraction of the ith element in the compound, and (^/ / ?)_t is the mass absorption coefficient in gm⁻¹cm², characteristic of the ith element and the type of X-radiation used.) Growing and handling of a very small "optimum-size" crystal would be somewhat awkward. Finally, if an irregularly-shaped crystal were used, the correction for its absorption of X-rays would be complicated.

These problems could be neatly solved by growing single crystals, again from saturated solutions as outlined above, in 5-8 cm lengths of thin-walled Pyrex capillary tubing of inside diameter about 0.1-0.2 mm. saturated solution was drawn up into the capillaries, both ends were sealed off with Picein wax. A large number of these capillaries containing crystalline material were examined, both visually and under a polarizing microscope, in order to detect possibly serious defects of shape, size, or pessible twinning in the crystals. Finally, a practically cylindrical crystal measuring about 0.19 mm. in diameter and 3 mm in length, contained in a 5 cm length of capillary, was deemed acceptable for the subsequent X-ray photography. The capillary was carefully snapped off and re-sealed with Picein wax se as to leave a 3 cm length of capillary, with the desired crystal about 1 cm from one end. The other end was mounted by means of Picein wax on the end of an 8 mm. length of solid glass rod 3 mm in diameter. This rod was then inserted in the epening provided on a geniemeter head. The crystal could then be placed in the path of the X-ray

beam by screwing the whole goniometer head into place on the chosen X-ray diffraction camera.

C. Recording of X-Ray Diffraction Spectra

1. Apparatus and Equipment Involved

a. X-Ray Sources

The X-rays were produced from sealed, watercooled X-ray tubes set in a Norelco X-ray Diffraction Unit of Type 12031, manufactured by the North American Philips Co., New York, N.Y. Tubes with targets of molybednum and of copper were used. Unfiltered molybdenum radiation was employed for all orientation photographs, but practically monochromatic radiation was desirable for other purposes. MoK ≈ radiation was partly isolated by intercepting the X-ray beam with a zirconium filter, CuK by interception with a The molybdenum radiation was produced at a nickel filter. filament current of 15-20 ma and voltage of 55 kV, the copper radiation at 20 ma and 35 kV. Molybdenum radiation was used for most intensity photographs to minimize absorption of the X-rays; copper radiation was used only to obtain certain small-angle reflections.

b. Cameras

Use was made of the Weissenberg camera and of the Buerger precession camera, both of which were manufactured by the Charles Supper Co., Newton Center, Mass. The Weissenberg camera accommodates an approximately 12½ by 14½ cm rectangle of X-ray film, whereas 12½ cm squares of X-ray film are usually fitted into the precession camera.

In practice, the film which is loaded into the

Weissenberg camera is translated back and forth as the crystal, bathed in the X-ray beam, is rotated. case, the rotation axis was the long axis of the capillary containing the single crystal of sodium bromide dihydrate.) By use of a cylindrical metal screen called a layer-line screen, it is possible to limit the film-recorded reflections to those in a given plane of the reciprocal lattice. The resulting developed photograph shows "festoons" of spots which represent a distorted picture of a single plane of the reciprocal lattice. The distortion, however. does not prevent one from assigning hkl indices to each spot with relative ease. A comprehensive, detailed explanation of the principles and geometry of the Weissenberg camera, the recording of reflections by the equi-inclination method, and the simple technique for rapid indexing is presented by Buerger (1942, pp. 214-295).

sion method of photography is somewhat complicated; the normal to the reciprocal lattice plane being photographed sweeps out a circular cone about the X-ray beam. The precession method has the advantage of providing undistorted pictures of the reciprocal lattice, thus facilitating the rapid and accurate determination of unit cell constants, as well as making the indexing quite obvious. A further advantage is seen in that it is possible to photograph several groups of planes while the crystal is mounted in a single orientation. There is, however, a blind spot present at the center of the diffraction pattern of each

level, and this blind spot increases rapidly in area as the distance from the reciprocal lattice origin increases. Full details of the precession method are presented in the Supper Co. Manual and in an ASXRED monograph (Buerger, 1944). Both Weissenberg and precession intensity photographs were taken in the course of this study.

c. Film, Developing Materials and Procedure

No-Screen Medical X-Ray Film, manufactured by Eastman Kodak Co., Rochester, N.Y., was used for all X-ray photographs. Black cellulose acetate plastic was used to shield the X-ray film from light and to hold the film in place in the camera.

The developing procedure for all photographs was as follows: The exposed film was immersed for $5\frac{1}{2}$ minutes in Kodak X-Ray Developer treated with Kodak AntiFog No. 2 (0.3 g/l of developer), held in a dilute acetic acid "stop" bath for about 3 seconds, immersed in Kodak X-Ray Fixer for twenty minutes, and washed finally in cold running water for 30 minutes.

2. X-Ray Diffraction Photographs

a. Weissenberg Photographs

The crystal was oriented on the Weissenberg apparatus by making use of 20° oscillation photographs taken 90° apart. By adaptation of Bunn's method (1946, p.173-174), it was possible to estimate the correction to be applied to the crystal setting in order that the rotation axis and the c (crystallographic) axis should coincide. (The c axis was so designated to facilitate comparison between the cell

parameters obtained in this study and those obtained by Wooster (1932)). The orientation of the crystal was checked by examination of a 6-hour rotation photograph. Two series of 24-hour Weissenberg intensity photographs of the $\underline{a}^* - \underline{b}^*$ plane were made with an oscillation range of about The first series was made using MoKo radiation; levels 0,1,2,3,4, and 5 were included in this series. The second series was made using Cuk radiation; levels 0,1,2, and 3 were included in this series. These two sets of photographs complemented each other inasmuch as the MoKa set provided good, large angle intensity data, while the CuK_∞ set provided small angle reflections not available on the MoK set. Both series employed the multiple film technique as described, for example, by Richards (1959). For MoK∞ radiation, the pack of three films was separated by two thin sheets of brass foil before being loaded into the camera. But for both MoKe and CuKe radiation, the ratios of the intensities of a given diffraction spot recorded simultaneously on the three films was about 16:4:1. In this manner, most of the weakest and strongest intensities were conveniently measurable. All of the intensities belonging to one given reciprocal lattice level were subsequently placed upon the same numerical scale by the application of film scale factors.

b. Precession Photographs

The crystal was transferred to the precession apparatus for orientation. Since the crystal had already been oriented for Weissenberg photography, only the dial

axis of the precession instrument needed adjustment for the a*-c* plane to be in photographic position. The amount of this adjustment could be found by examination of a zerolevel Weissenberg exposure for the position of reflection of the spots aligned along the \underline{b}^* axis. Final adjustments were carried out with the aid of the "Orientation Error Chart for Precession Method" (Supper Co. Manual). Measurements obtained from a cone-axis photograph, coupled with the application of a standard chart (Evans, Tilden and Adams, 1949), provided camera settings which led to the precession photography of five reciprocal lattice levels--levels 0,1,2,3 and 4. Exposures of 24 hours, 6 hours and $1\frac{1}{2}$ hours were made of each level. It should be noted that about midway through the precession intensity series, a whitish cast had developed upon the surface of the crystal, indicating that some deterioration of the crystal had taken place during its exposure to X-rays. That the deterioration did not significantly affect the diffraction properties of the crystal was shown by the comparison of a first-level photograph taken before the whiteness was noticed with one taken well after it became visible.

D. Determination of Unit Cell Dimensions

1. Film Measurements

Freliminary examination of the Weissenberg and precession records showed that Wooster's (1932) monoclinic unit cell is correct. His choice of \underline{b} as the unique axis was retained.

Measurements were performed on a zero-level

precession film in order to determine \underline{a}^* \underline{c}^* and cosine $\boldsymbol{\ell}^*$. Another zero-level precession film, obtained after rotating the precession spindle axis 90°, was used to determine \underline{b}^* . Seventy-two spot positions and twelve spot positions, respectively, were measured to 0.01 mm with the aid of a film viewer manufactured by the Charles Supper Co., Newton Center, Mass.

2. Calculating the Cell Dimensions

The reciprocal cell parameters were calculated by application of the method of least squares, which, in this case, minimized the quantity $\sum \omega_{\rm kkl} (s_{\rm o}^2 - S_{\rm c}^2)^2$. In this expression, $S_{\rm o}^2$ is the observed squared reciprocal lattice vector calculated for reflection hkl by the quantity $4 \sin^2 \theta / \ell^2$, where θ is the Bragg angle for reflection hkl, and ℓ is the wavelength of X-radiation used in recording the reflection; $w_{\rm hkl}$ is the weight assigned to $S_{\rm o}^2$. The sum is taken over all the measured reflections. Weights were subjectively assigned on the basis of the magnitude of \underline{S} and ease of measurement of the spot position. It was a simple matter to ∞ nvert the reciprocal cell constants into those of the direct lattice.

The standard deviations associated with \underline{a}^* , \underline{c}^* and $\underline{\mathcal{C}}^*$ were calculated by means of the equation for the variance, σ_i^2 , which is $\sigma_i^2 = \begin{bmatrix} \frac{1}{m-s} & D \\ \frac{D}{m-s} & D \end{bmatrix} \sum_{j=1}^{m-s} \left(S_{ij}^2 - S_{ij}^2 \right)^2$ (Whittaker and Robinson, 1940), where m is the number of observational equations, s is the number of parameters involved, D_U is the ith cofactor of the determinant D of the coefficients of the normal equations, and $\left(S_{ij}^2 - S_{ij}^2 \right)^2$ is the

residual of the jth observational equation. The standard deviation of b* was obtained in like manner. Again, the standard deviations in the direct cell constants may be easily obtained from these. It must be realized that the standard deviations in the cell constants are measures only of the internal consistency of the data, and do not take systematic errors into account. (The sources of such errors may be, for example, film shrinkage, or failure to calibrate the X-ray cameras. These factors were not corrected for in this work.)

3. Discussion of the Cell Dimensions

The only X-ray work on sodium bromide dihydrate published prior to the beginning of this study was a determination of the cell constants and space group by Wooster (1932). He employed Weissenberg and oscillation photographs for this purpose.

Very recently, Van Meerssche, Culot, and Piret (1962) have also determined cell constants (in the course of their complete structure determination) by making use of Weissenberg and rotation photographs. For comparison, Table I below lists the cell parameters, number of molecules per unit cell, and the calculated densities resulting from the three independent investigations. Note that the limits given in this work are standard deviations. The actual errors are probably of the same order of magnitude as those of Van Meersche and co-workers.

Upon examination of Table I, it is clear that
Wooster's set of cell constants do not approach the value
"4" for the calculated number of molecules per unit cell
quite as well as do the other two sets. Moreover, the
agreement is quite good between the individual axial lengths
and monoclinic angle given here and those given by Van
Meerssche and co-workers. For these reasons, it would seem
that either of these two sets of cell parameters are
preferable to Wooster's.

TABLE I
Comparison of Unit Cell Quantities

<u>Quantity</u>	This Thesis Work	Van Meerssche	Wooster
	(1963)	and co-workers	(1932)
		(1962)	
<u>a</u>	6.575±0.002Å	6.57±0.0 3 Å	6.59Å(±0.5%)
<u>b</u>	10.456±0.005Å	10.38±0.05Å	10.20Å(±0.5%)
<u>c</u>	6.776±0.002Å	6.78±0.03Å	6.51Å(±0.5%)
B	113°23'±0.002°	113°30'±0.4°	112°5' (±0.5%)
Calc'd No. Molecules per Unit Ce	11 4.04	4.00	3.83
Calc'd Density	. 23-25°C 2.16 room temp.	unspec'd 2.18 room temp	unspec'd . 2.16 ~oom temp.
Experimenta	l Density is $D_4^{20} =$	2.176±0.003 (Gm	elin, 1928)

E. Determination of the Space Group

It was already indicated that the cell parameters of sodium bromide dihydrate are characteristic of the monoclinic crystal class. In addition, it was noted upon examination of the X-ray photographs that, for the class of hOl reflections, only those for which l=2n (n is an integer) were present, and that for the class of OkO reflections, only those for which k = 2n were present. It was then possible to determine the space group corresponding to these systematic absences as P21/c uniquely (Internationale Tabellen, 1935, p. 382). This finding is in agreement with those of Wooster and of Van Meerssche.

F. Obtaining Structure Factor Magnitudes from Corrected Relative Intensity Data

1. Microphotometer Method for Measuring Intensities on Precession Films

All intensity measurements of diffraction spots on precession films were made with the aid of a Recording Microphotometer manufactured by the F. C. Henson Co., Pasadena, California. The original recording and detection system was modified to consist essentially of a light source and a photomultiplier tube electrically connected to a microammeter. The procedure of estimating an intensity was as follows: The spot, the intensity of which was desired, was positioned so that the area of the spot's maximum blackness intercepted a light beam which impinged upon a photoelectric cell. The amount of light which passed through the spot was indicated by the deflection of a sensitive microammeter.

The background (that is, the intensity of the area immediately surrounding a spot) was also measured in the same way. The relative intensity of the given spot is then $I_{rel} = log$ (average galvanometer reading corresponding to background) - log(galvanometer reading corresponding to spot). In this study, the differences were multiplied by loo for numerical convenience. It was necessary to measure only half of the reflections recorded on the intensity photograph; one half of a given film was related to the other half by a center of symmetry.

2. <u>Visual Method for Measuring Intensities on</u> Weissenberg Films

An adaptation of the visual method described, for example, by Lee (1958) was used in this study, since the arrangement and shape of the Weissenberg spots did not facilitate the measurement of their intensities by the microphotometer method. In addition, the opportunity of comparing the intensities resulting from the two different methods of measurement is presented.

The visual method consists in comparing the intensity of a given spot to the intensities of one or two spots belonging to a series of spots of assigned, graded, relative intensities. By interpolation, an estimated value of relative intensity is assigned to the given spot. In order to obtain the desired series of spots for purposes of comparison, it was necessary to prepare an "intensity strip". The intensity strip was made as follows:

A region of reflection within the crystal corresponding to a suitable diffraction spot on the film (suitable in blackness, absence of strong background, and shape) was isolated within a 4-8° oscillation on the Weissenberg apparatus. The reflection region was exposed to X-rays for a pre-determined length of time (or number of oscillations) causing the corresponding spot on the processed film to be blackened accordingly. The film was given a 3 mm translation, and the reflection region again exposed to X-rays for another known length of time. process was repeated until a series of 20 spots, arranged in a straight line and graded in blackness, were produced. The time intervals of X-ray exposure followed a geometric series of form $(base)^{X}$ = exposure time, where, in this study, the base is 1.25, x assumes all integral values from 0-19, and exposure time is in minutes. In principle, any numerical base with any regular sequence of exponents could be utilized, and the result could be expressed in any time units, depending upon the nature of the crystal used. A geometric series of exposure times was employed because the neuro-physiology of the eye is such that it responds to the logarithm of the exposure time rather than to the exposure time itself when estimating intensities. Thus, if a geometric series of time exposures is chosen, the eye sees the same interval of blackness between any two successive spots in the intensity strip.

Usually, when the relative intensity of a given spot was estimated, it was between two spots (in blackness)

on the intensity strip. To obtain the desired relative intensity, use was made of the relation $\log I_X=r\log I_d+(1-r)\log I_1$, where I_X is the desired relative intensity of the given spot, I_d is the relative intensity of the darker spot, I_1 is the relative intensity of the lighter spot, and r is the fraction of interpolation. It was found convenient to construct a table of values of I_X for the r values of 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4 and 4/5. Thus, all that needed to be done, in practice, was to write down the exponent corresponding to the lighter reflection together with the fraction of interpolation, and I_X could then be easily read off from the table. The intensity of every spot that could be detected by eye on the Weissenberg films was visually estimated.

All Weissenberg and precession intensity measurements were performed in no particular order, and under conditions which were as uniform as possible. Film factors were computed after all intensity measurements were completed in order to eliminate bias.

3. Comparison of the Microphotometer and Visual Methods

The microphotometer method yields measurements of slightly greater precision than are obtained by the visual method. A microphotometer measurement may enjoy 5-10% reproducibility whereas a visual measurement ranges from 5-15% in reproducibility. Furthermore, the microphotometer method depends less upon the physical condition of the experimenter and less upon local lighting conditions.

On the other hand, it must be noted that the microphotometer method yields peak intensities rather than the more desirable integrated intensities given by the visual method. In addition, it cannot be denied that the visual method is faster, enabling one to perform 2 or 3 measurements in the same time required for one measurement by the microphotometer method. This fact is of some importance if one is interested in obtaining the intensities of a thousand or more diffraction spots. Finally, serious errors are more likely to be avoided if one is able to measure an hkl reflection several times by the visual method rather than once or twice by the slightly more precise microphotometer method.

Taking all factors into consideration, it is the author's opinion that, in spite of the slight superiority in precision of the microphotometer method, and that provided good intensity strips can be readily made, the visual method, which produces rapid estimates of integrated intensities, is generally the more desirable method.

4. Extraction of Structure Factor Magnitudes from Relative Intensities

Squared structure factor magnitudes were obtained by multiplying the relative intensities, the I_{hkl} 's, by the reciprocals of the Lorentz and the polarization factors. Mathematically, $|F_{hkl}|^2 = (Lp)_{hkl}^2 I_{hkl}$ (Buerger, 1960, pp. 25-48), where $|F_{hkl}|$ is the magnitude of the structure factor corresponding to reflection hkl, and $(Lp)_{hkl}^{-1}$ represents the reciprocal product of the Lorentz factor (including any geometrical factors associated with the

particular method of X-ray photography employed) and the polarization factor.

A set of Lorentz-polarization charts reproduced upon transparent film were available for use in applying the Lorentz-polarization correction to the relative intensity data obtained from precession films. Save for adjustments of scale, these charts are identical to those made by Waser (1951), and by Grenville-Wells and Abrahams (1952). constructed a Lorentz-polarization chart for the zero level of the reciprocal lattice and precession angle $\mu = 30^{\circ}$; the seven Grenville-Wells charts are constructed at intervals of 0.05 reciprocal lattice units above the zero level, again for $\mu = 30^{\circ}$. Linear interpolation was applied to obtain Lorentz-polarization factors for precession films corresponding to intermediate reciprocal lattice levels. Extraction of the square roots of the squared structure factor magnitudes resulted in a set of "precession" structure factor magnitudes.

The Lorentz-polarization corrections for relative intensities from Weissenberg films were applied by computer means at the Brown University Computing Laboratory. A program developed for this purpose was utilized (Carpenter and Hall, 1962, pp. 8-12). A set of "Weissenberg" structure factor magnitudes along with their corresponding squared values were obtained as computer output.

5. Placing All Structure Factor Magnitudes on the Same Scale

In the preceding, it was explained how relative

structure factor magnitudes were obtained for reflections appearing on films corresponding to seven reciprocal lattice levels photographed by the Weissenberg method, and for reflections appearing on films corresponding to five reciprocal lattice levels photographed by the precession method.

The next problem was that the structure factor magnitudes corresponding to one film were on a numerical scale different from that for any other of the twelve films. It was necessary to place all the structure factor magnitudes on the same numerical scale by finding and applying twelve scale factors, $k_1, k_2, k_3, \ldots, k_{12}$, to the structure factor magnitudes corresponding to the twelve films. Evaluation of these scale factors depended on the fact that a considerable number of reflections were recorded at two film positions, once on a precession film and again on a Weissenberg film.

In order to find the set of k's which would lead to the best adjustment of all the structure factor magnitudes, it was decided to apply a modification of the method of Rollett and Sparks (1960). The finding of the best set of k's became essentially a least-squares problem. The function which was minimized with respect to the k's is $E = \sum_{i,j} \sum_{i \in S_{i,j}} \omega(s_{i,j}) \left[k_i F_i(s_{i,j}) - k_j F_j(s_{i,j}) \right]^2 \qquad .$ Subscripts i and j refer to two different films of a total of N different films to be correlated; Sij designates reflections common to films i and j; $F_i(s_{i,j})$ is the magnitude of the structure factor for reflection $s_{i,j}$ as measured on film i; $s_{i,j}$ is the scale factor to be applied to the structure

factor magnitudes of film i; $w(\underline{S}_{ij})$ is the weighting factor to be applied to reflection \underline{S}_{ij} . It was necessary to introduce an undetermined multiplier to find a set of k's other than k_i = 0 for all i. The problem then became one of solving a 12X12 matrix for the minimum eigenvalue and its associated eigenvector (or set of scale factors). Fortunately, the Brown Computing Laboratory facilities together with an eigenvalue-eigenvector program written by T. Hughes were available. Thus, after the proper matrix coefficients were set up with aid of a desk calculator, the eigenvalue and eigenvector were readily found.

After application of the scale factors to the films, it became evident that certain corrections should have been applied to the "raw" (that is, uncorrected for the Lorentz-polarization factors) intensity data of the precession films. Since only peak precession intensities had been measured by the microphotometer method, it was necessary to correct for the area of the spot. (The need for this correction, however, does not arise if one measures intensities by the visual method, owing to the eye's natural allowance for area.) The correction was carried out by the following semi-empirical means.

Assume a roughly conical distribution in the diffraction spot intensity. The microphotometer method yields a measure of the cone height, h, only. Now consider the integrated intensity of a diffraction spot to be roughly analogous to the volume of a cone. In other words, assume that the raw, integrated intensity, I, is given by the

product of the height, h, and base area, A, of the cone. But since A may be expressed empirically in terms of h by the relation $h = A^n$, $I_{raw} = hA = h^{(1+1/n)}$; hence n may be evaluated by a log h vs. log A plot. About 12-15 precession spots, varying in blackness, were chosen for the plot. The spot areas were measured with a travelling microscope. The log-log plot showed considerable scatter, but, nevertheless, it was possible to draw what appeared to be a reasonable straight line through the distribution of This line led to the expression for the corrected raw intensity $I_{raw}=h^{1.26}$, which was used to correct all the previously-measured precession intensities. A new set of structure factor magnitudes was derived from the corrected After the eigenvalue-eigenvector precession intensities. program was applied, using the corrected precession structure factor magnitudes, a set of k's resulted which led to reasonably well-correlated structure factor magnitudes. In this way, structure factor magnitudes, all on one numerical scale, were obtained for 634 independent reflections. this point, it was possible to begin the detailed structure investigation of sodium bromide dihydrate.

III. <u>Determining the Detailed Structure of Sodium</u> Bromide Hydrate

A. The Phase Problem of X-Ray Crystallography

The structure factor, Fhkl, is, in general, a complex quantity which may be expressed as a product of [Fhk], the structure factor magnitude for reflection hkl, and $e^{i \phi}$ hkl, the phase factor. If the complex structure factor, Fhkl, were experimentally available, solving a crystal structure would be a routine matter. Knowledge of the Fhkl's would enable one to evaluate the electron density $\mathcal{P}(x,y,z)$, at any point x,y,z in the unit cell from the relation $P(x,y,z) = \sqrt{\sum_{i} \sum_{k} F_{kkl} e^{-2\pi i (kx+ky+lz)}}$ (Lipson and Cochran, 1953, p. 12), the summation extending over all in-An electron density map could then be constructed, dices hkl. which would reveal the atomic positions in the unit cell. But thus far, it has been possible to obtain only structure factor magnitudes by experimental means. It would seem that, owing to the lack of phase information, the solution of a crystal structure would be at least very difficult. constitutes the phase problem of X-ray crystallography expressed, for example, by Buerger (1960, p. 551). attack on the phase problem is by means of the Patterson (or $|F|^2$) synthesis.

B. The Patterson Synthesis

1. The Physical Significance of the Patterson Function

An insight into the physical significance of the Patterson function, P(u,v,w), is provided by examination of one expression of P(u,v,w) which is

 $P(u,v,w) = V \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y,z) g(x+u,y+v,z+w) dxdydz.$ This relationship expresses the fact that the Patterson function, evaluated for the chosen vectorial distance u,v,w, is given by the product of f(x,y,z), the electron density at x,y,z and f(x+u,y+v,z+w), the electron density at x+u,y+v,z+w. Fractional coordinates x,y,z may vary through all values from 0 to 1, while u, v, w are held fixed. The highest positive numerical value of the Patterson function will be at those particular values of u,v, and w which are coordinate differences between peaks in the electron density, or which, in other words, correspond to certain interatomic Whereas an interatomic vector may have its origin anywhere in the unit cell, that vector must begin at the origin in "Patterson (or vector) space". The preceding was condensed from Buerger's book (1959, chapter 2), which contains a detailed discussion of the theory and application of the Patterson function.

2. Forms of the Patterson Function Suitable for Calculation

The general expression for the Patterson function is given as (Lipson and Cochran, 1953, pp. 9-15) $P(u,v,w) = 1/V \sum_{i=1}^{\infty} |F_{hk1}|^2 \cos 2\pi (hu+kv+lw), \text{ where } u,v,w$ refer to fractions of the lengths of $\underline{a},\underline{b},\underline{c}$ axes, respectively, V is the unit cell volume, and the triple summation is taken over indices h,k, and l. By taking advantage of the space group symmetry of the particular substance under study, the general expression is usually modified to facilitate practical calculation. The modifications involved in the

calculation of the Patterson projection and the three-dimensional Patterson synthesis, both for space group $P2_{\gamma}/c$, will be considered next.

Before all the intensity data had been gathered, a zero-level Patterson projection was constructed, using the available squared structure factor magnitudes of the zerolevel precession film, in order to obtain preliminary indications of the structure of sodium bromide dihydrate. Since a Fourier synthesis computer program had not been completed at that time, the Patterson projection was calculated with Beevers-Lipson strips (Lipson and Cochran, The general form of the Patterson 1953, pp. 89-93). function (as given above) had to be modified in the following manner to allow the efficient use of this strip method. Since the projection was along the b axis onto the zero level, k = 0, and the general form could be written as $P=1/A \sum \sum |F_{hO1}|^2 \cos 2\pi (hu+lw)$. (This form may be derived by observing that an electron density projected in a certain direction corresponds mathematically to an integration over the lattice period in that direction (Buerger, 1960, p. 382)). In this case, $f(x,z) = \int_{a}^{b} f(x,y,z) b dy$, where b refers to the axis along which the projection is taken, $\mathcal{S}(\mathbf{x},\mathbf{z})$ is the projected electron density at point \mathbf{x},\mathbf{z} , and f(x,y,z) is the electron density at x,y,z. The form of Patterson projection could then be obtained by a treatment similar to that given by Lipson and Cochran (1953, pp. 11-13).) Application of the trigonometric identity $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ resulted in

the form $P=1/4 \sum_{n=1}^{\infty} \frac{|F_{noj}|^2 \left[\cos(2\pi hu)\cos(2\pi lw) - \sin(2\pi hu)\sin(2\pi lw)\right]}{2\pi lw}$ It was necessary to measure the intensities appearing on only one-half of the film (see section IIF 1), hence the summation could be split up to appear as 1/4P = $1/A \sum_{n=1}^{\infty} \left[F_{h01} \right]^2 \left[\cos(2\pi hu) \cos(2\pi lw) - \sin(2\pi hu) \sin(2\pi lw) \right] +$ By rearrangement and collection of terms, the Patterson function for the zero-level projection could be written as $P = 4/A \sum_{o} \left[F_{hOl} ^{2} + F_{hOl} ^{2} \right] \cos(2\pi hu) \cos(2\pi lw) [|F_{h01}|^2 - |F_{h01}|^2] \sin(2\pi hu)\sin(2\pi lw)$. Thus it was possible to evaluate numerically the Patterson function at intervals of 1/60 in u and w by means of the Beevers-Lipson strips. A Patterson map was then constructed by drawing contour lines which connected points of equal "heights".

The estimation and subsequent processing of all of the spot intensities were completed at about the same time that the BXFS computer program was finished (Carpenter and Wilmot, 1962). It provides a rapid means of evaluating the crystallographic functions usually expressed in terms of the Fourier series, such as the Patterson, electron density, difference Patterson, and difference electron density functions. In the program, the Fourier synthesis is evaluated in the form $\sum_{k} \sum_{k} G(hk) \begin{pmatrix} \cos_2\pi hx \\ \sin_2\pi ky \end{pmatrix} \begin{pmatrix} \cos_2\pi hx \\ \sin_2\pi hx \end{pmatrix} \begin{pmatrix} \cos_2\pi hx \\$

factor magnitudes, or differences between squared structure factor magnitudes. In order to obtain the Patterson function in this form, the general form was transformed as will now be explained.

For space group $P2_1/c$, where k+l=2n (n being an integer), $F_{hkl}^2 = F_{hkl}^2$ and $F_{hkl}^2 = F_{hkl}^2$. For the case where k+l=2n+1, again $F_{hkl}^2 = F_{hkl}^2$ and $F_{hkl}^2 = F_{hkl}^2$ (International Tables, 1952, p. 383). Obviously, it was sufficient to deal only with the case for which k+l=2n. In this case the summation may be split and the trigonometric identity $\cos(\alpha+\ell)=\cos^2\cos^2(-\sin^2\sin\ell)$ applied to yield P=1/2V $\sum_{k=1}^{\infty} \{F_{hkl}^2 \{\cos 2\pi (hu+lw)\cos 2\pi kv - large equation in the case of the summation o$

sin277(hu+lw)sin277kv] +

 $F_{hkl}^{2}\left[\cos 2\pi\left(hu+lw\right)\cos 2\pi\left(-kv\right)-\sin 2\pi\left(hu+lw\right)\sin 2\pi\left(-ky\right)\right]+$

 $F_{nkl}[\cos 2\pi (-hu+lw)\cos 2\pi kv - \sin 2\pi (-hu+lw)\sin 2\pi kv] +$

 $F_{hk1}^2\left[\cos 2\pi \left(hu-lw\right)\cos 2\pi kv - \sin 2\pi \left(hu-lw\right)\sin 2\pi kv\right]\right\}.$ After combining terms, and noting that the case k=2n+1 yields the same results, the expression for the Patterson function could be written as

 $P=4/V\sum\sum_{0}^{\infty}\sum_{k=1}^{\infty}\{F_{hk1}^{2}\cos 2\pi (hu+lw)+F_{hk1}^{2}\cos 2\pi (hu-lw)\}\cos 2\pi kv.$ When the trigonometric identities $\cos(\alpha+\mathcal{C})=\cos\alpha\cos\mathcal{C}-\sin\alpha\sin\mathcal{C}$ and $\cos(\alpha-\mathcal{C})=\cos\alpha\cos\mathcal{C}+\sin\alpha\sin\mathcal{C}$ were applied, and the resulting terms were combined, the Patterson function was written as

 $P=4/V \sum_{\infty} \sum_{n=1}^{\infty} \left[F_{hkl}^{2} + F_{hkl}^{2} \cos(2\pi hu)\cos(2\pi kv)\cos(2\pi lw) - \left[F_{hkl}^{2} - F_{hkl}^{2} \right] \sin(2\pi hu)\cos(2\pi kv)\sin(2\pi lw) \right].$

With the Patterson function in this form, it was possible to obtain a three-dimensional Patterson synthesis using the BXFS program. Layers of the Patterson synthesis upon which important peaks were located were mapped for closer study.

3. Interpreting the Patterson Synthesis a. The Patterson Projection, P(u.w)

The map of the zero-level Patterson projection showed only a few large, well-defined peaks, each of these peaks being of one of two different heights. It was assumed that the larger of the two kinds of peaks represented a bromine-bromine interstomic vector, and that the smaller peak represented a sodium-bromine interatomic vector. Based upon these assignments, two dimensional coordinates for the bromine and sodium atoms were found. A structure factor calculation showed the discrepancy factor, R, to be 0.387. (See section III C3 for a discussion of this type of calculation and the resulting R-value.) struction of the zero-level Patterson projection map did serve as a rough guide in locating bromine-bromine peaks on the three-dimensional Patterson maps, but had there been computer facilities initially available for the ready evaluation of the three-dimensional synthesis, the projection would have been completely unnecessary.

b. The Three-Dimensional Patterson Synthesis

The advantage of employing a three-dimensional Patterson synthesis lies in that the resulting peaks (for a simple crystal) usually do not seriously overlap.

The three-dimensional Patterson showed three

very large peaks, in addition to the usual origin peak, which were located at u=25/60, v=14/60, w=35/60; u=0/60, v=16/60, w=30/60; and u=25/60, v=30/60, w=5/60. It was assumed that, since bromine has by far the largest atomic number of the elements present in sodium bromide dihydrate, these peaks were most probably representative of bromine-bromine interatomic vectors. Tentative coordinates for the bromine atom were obtained by the following reasoning.

The general equivalent positions of the space group P21/c are x,y,z; x, $\frac{1}{5}$ -y, $\frac{1}{5}$ +z; \overline{x} , $\frac{1}{5}$ +y, $\frac{1}{5}$ -z; and \overline{x} , \overline{y} , \overline{z} . Position x,y,z could be chosen arbitrarily as a starting point for formulating predicted interatomic vectors. The interatomic vectors 1-2x,1-2y,1-2z; $1-2x,\frac{1}{2},\frac{1}{2}-2z;$ and $0,\frac{1}{2}-2y,\frac{1}{2}$ would then be expected to appear on the Patterson sections. Now if the peak located at u=0/60, v=16/60, w=30/60 corresponds to the predicted peak at $0, \frac{1}{2}$ -2y, $\frac{1}{2}$, then 30/60-2y=16/60, and y=7/60. In like manner, if the peak located at u=25/60, v=30/60, w=5/60 corresponds to the predicted peak at $1-2x, \frac{1}{2}, \frac{1}{2}-2z$, then x and z should be 17.5/60 and 12.5/60, respectively. Thus, with the general coordinates of the bromine atom being tentatively established as x=17.5/60, y=7/60, z=12.5/60, it was possible to predict that the third bromine-bromine vector should appear at u=25/60, v=14/60, w=35/60 (that is, at 1-2x,1-2y,1-2z). The third of the peaks did, indeed, appear at that position. This postulated structure was tested by means of a structure factor calculation as explained in the next section.

C. Locating Atomic Positions in the Trial Structure 1. The Structure Factor

The structure factor F_{hkl} , a function of indices hkl, may be written in general as $F_{hkl} = \sum_{j=1}^{N} f_j \exp 2\pi i \left(hx_j + ky_j + lz_j\right).$ The scattering factor, f_j , for the jth atom of the N atoms present in the unit cell, is a function of the number and distribution of the electrons in the atom; it also depends upon $\sin \theta/\lambda$, where θ is the Bragg angle, and λ is the wavelength of the X-radiation employed in the diffraction experiment. The modulus of F_{hkl} is "the ratio of the amplitude of the radiation scattered in the reflection hkl by the contents of one unit cell to that scattered by a single electron under the same conditions" (Lipson and Cochran, 1953, p. 11).

2. The Temperature Factor

When discussing a crystal structure, it must be realized that the atoms involved, far from remaining stationary, undergo thermally-induced motion. This means simply that the electrons of an atom are "spread out" over a larger volume in space than they would occupy if the atom were at rest. The scattering factor curve for the atom-in-thermal-motion thus decreases more rapidly, as $\sin\Theta/\lambda$ increases, than it would if the atoms were at rest. An approximate correction to be applied to the scattering factor is the Debye-Waller correction, so that $f=f_0e^{-B\sin^2\Theta}/\lambda^2$ (Buerger, 1960, p. 231-232), where f is the modified scattering factor for a given atom, f_0 is

the scattering factor for that stationary atom, and B is denoted as the temperature coefficient or as the isotropic temperature factor for the atom. (B is generally different for each of the different kinds of atoms in a structure.)

Thermal motion may be considered to be significantly anisotropic as well as different for each kind of atom. It is possible to convert an isotropic temperature factor into its corresponding anisotropic temperature factors by the relation

 $B(\sin^2 \theta / \lambda^2) = \mathcal{C}_{11}h^2 + \mathcal{C}_{22}k^2 + \mathcal{C}_{33}l^2 + \mathcal{C}_{12}hk + \mathcal{C}_{23}kl + \mathcal{C}_{31}lh$ $= (Ba^{*2}/4)h^2 + (Bb^{*2}/4)k^2 + (Bc^{*2}/4)l + (Ba^*b^*cos \tau^*/2)$

+ $(Bb*c*cos \alpha*/2)$ + $(Bc*a*cos \beta*/2)$.

By equating coefficients of h^2 , k^2 , l^2 , hk, kl, and lh, one may evaluate the \mathcal{C} 's in terms of B and the usual reciprocal cell constants. For example, $\mathcal{C}_{11} = (Ba^{*2}/4)$, $\mathcal{C}_{22} = (Bb^{*2}/4)$,... These relations are useful in that very often, for purposes of refinement, it is desired to allow the enisotropic factors corresponding to a known isotropic factor to vary independently, as in a least squares refinement, or in difference map refinement. The variation of these factors will depend, of course, upon the extent to which the atoms undergo anisotropic thermal motion; it will also depend upon whether or not certain undetected or uncorrected systematic errors remain in the structure factor data.

3. The Structure Factor Calculation and the R-Value If, for a particular crystal structure, the calculated structure factor magnitudes approximately match the

observed structure factor magnitudes, it usually indicates that the correct model for that crystal structure has been proposed. Therefore, the structure factor calculation is useful as a means of testing whether or not a reasonable approximation to the crystal structure has been made.

It has been customary to regard the crystallographic discrepancy factor, R, defined as $R = \frac{|F_0| - |F_c|}{2|F_0|}$ as an indication of the correctness of a structure. Subscripts "o" and "c" refer to observed and calculated values of |F|, while the summation is taken over all available reflections. It is not unusual to begin refinement of a tentative structure with an R-value of 0.40, and to work down to a highly-refined structure with an R-value in the neighborhood of 0.05-0.10. But it must be emphasized that the R-value need not necessarily be accepted at its face value. Other residuals have been suggested as measures of discrepancy, among them being Booth's residual, $R = \frac{||F_0| - |F_c||^2}{2|F_0|^2}$, shown here as an example.

For a fuller discussion of the above, see Buerger's book (1960, pp. 585-589). In this study, a weighted R-value $R_{\rm W} = \sqrt{\frac{|{\bf F_0}| - |{\bf F_0}||^2}{|{\bf F_0}||^2}}$, is calculated in addition to the conventional R-value. The weight, w, is obtained from the equation ${\bf w} = 1/\sigma^2$, where σ is the estimated standard deviation in $|{\bf F}|$. Usually in judging the accuracy of a crystal structure model, it is very helpful to compare the individual calculated structure factors with their experimentally-obtained values.

For convenience in calculation, the form of Fhkl (given above) is usually modified by taking advantage of the space group symmetry of the crystal, as is illustrated below for P21/c. The four general equivalent positions of this space group are x,y,z; $x, \frac{1}{2}-y, \frac{1}{2}+z$; $\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z$; The structure factor, Fhkl, may then be written as 瓦,ÿ,夏,

$$F_{hkl} = \sum_{j=1}^{N|4} \sum_{\alpha \in I}^{4} f_{j} A_{j,\alpha,hkl}, \text{ where } A_{j,\alpha,hkl} = 2\pi i (hx_{j,\alpha} + ky_{j,\alpha} + kz_{j,\alpha})$$

and ≪ refers to one of the number of atoms of kind j. summation over may be evaluated in the following manner:

$$\sum_{\alpha=1}^{4} A_{j}, \alpha, hkl = e^{2\pi i (hx_{j}+ky_{j}+lz_{j})} + e^{-2\pi i (hx_{j}+ky_{j}+lz_{j})} + e^{\pi i (hx_{j}+k(\frac{1}{2}-y_{j})+l(\frac{1}{2}+z_{j}))} + e^{2\pi i (hx_{j}+k(\frac{1}{2}-y_{j})+l(\frac{1}{2}+z_{j}))}$$

Since the general relation, $e^{2ix} = cos(ax) + isin(ax)$ holds, the preceding expression may be simplified to yield $\sum_{\alpha=1}^{A_j} A_j, \alpha, hkl = 2\cos(2\pi(hx_j+ky_j+lz_j))$ +2cos(277[hxj-kyj+1zj+(k+1)/2)).

Application of the identity $\cos \propto +\cos \theta = 2\cos(\frac{1}{2}(\propto +\theta))$ $\cos(\frac{1}{2}(\sim -\mathcal{C}))$ produces $\sum_{i=1}^{n} A_{j,i} \sim hkl = 4 \left\{\cos(\frac{1}{2}(4\pi(hx_{j+1}z_{j}))\right\}$ $+2\pi (k+1)/2 \cos \frac{1}{2} (4\pi ky_j-2\pi (k+1/2))$, which may be simplified to $4\cos 2\pi (hx_j+lz_j+(k+1)/4)\cos 2\pi (ky_j-(k+1)/4)$. Thus the structure factor is $F_{hkl} = 4\sum_{j=1}^{Nk} f_j\cos 2\pi (hx_j+lz_j+(k+1)/4)$ $\cos 2\pi (ky_{j-}(k+1)/4)$. A further simplification may be obtained by splitting the summation into two portions, depending upon whether (k+1) is even or odd, then applying simple trigonometric identities.

In these mathematical forms, the values of the structure factors may be efficiently calculated using standard tables of $\sin(2\pi hx)$ and $\cos(2\pi hx)$ (International Tables, 1959, Sec.8).

In practice, however, all structure factor calculations were performed by computer means. Two computer programs were utilized -- the Fittsburgh Structure Factor Program (Shiono, 1962), a means to calculate rapidly structure factors with isotropic temperature factors only, and the BXLS Program (Carpenter, 1963), which facilitates the calculation of structure factors with anisotropic temperature parameters. The BXLS program output also provides values of (F_0-F_c) for all hkl reflections, which may then be used as Fourier coefficients for a difference Fourier synthesis if so desired. Tables of atomic scattering factors, obtained by quantummechanical calculations from self-consistent or variational wave functions are readily available for the sodium cation,, bromine anion and oxygen atom (International Tables, 1962, pp. 202-207).

A structure factor calculation was made using only the tentative coordinates of the bromine atom; an isotropic temperature factor parameter for bromine was assumed to be 2.0Å². The R-value of the calculation was 0.258, indicating that a reasonable model had indeed been proposed, also that a good deal of the X-ray

scattering in the unit cell of sodium bromide dihydrate is due to the bromine ion only. From the calculation, the tentative assignment of phases (positive or negative signs in this case) to the observed structure factors could be made. Knowledge of both the magnitudes and the phases of the observed structure factors made possible the construction of a three-dimensional electron density map.

4. The Electron Density Calculation

As mentioned earlier, the general expression for the electron density evaluated at point x,y,z in the unit cell is $P(x,y,z) = 1/V \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} F_{hkl}e^{-2\pi i (hx+ky+lz)}$ (Lipson and Cochran, 1953, p.12), the summation being performed over indices hkl. Since the crystal under investigation is centosymmetric, the form $f(x,y,z) = 1/V \sum_{z=1}^{\infty} F_{hkl}$ cos277(hx+ky+lz) is easily obtained, as in the treatment of the three-dimensional Patterson function (see III Bl). sum was split into two portions, one for the case of indices k+1 = 2n, and another for the case of indices k+1 =Use of the identities Fhkl= Fhkl, Fhkl = Fhkl for k+1 = 2n, and $F_{hkl} = -F_{h\overline{k}l}$, $F_{hkl} = -F_{hk\overline{l}}$ for k+1 = 2n+1, coupled with the application of standard trigonometric identities, led to the following form of the electron density function suitable for computer calculation. $P(x,y,z)=4/V\sum_{\infty}\sum_{k+l=2n}^{n+l=2n}\cos(2\pi hx)\sin(2\pi ky)\sin(2\pi lz)$ $-4/V \sum_{n=1}^{\infty} \frac{\left[F_{nkl}-F_{nkl}\right]\sin(2\pi hx)\sin(2\pi ky)\cos(2\pi lz)}{\left[F_{nkl}+F_{nkl}\right]\cos(2\pi hx)\sin(2\pi ky)\sin(2\pi lz)}$ + [Fhkl-Fhkl] sin(200hx) sin(200ky) cos(200lz) .

5. Obtaining Atomic Coordinates.

Four separate peaks appeared on the first threedimensional electron density map. By examination of the relative peak heights, it was possible to label the peaks unambiguously as bromine, sodium and the two oxygens. It was found convenient to locate peak centers by an approximation method (Carpenter and Donahue, 1950). coordinates of these peak centers were taken as the tentative coordinates of the four atoms. After a second structure factor calculation was made, using these coordinates together with an assumed isotropic temperature factor of 2.0Å² for all the atoms, the R-value was a muchimproved 0.127. This second calculation provided an improved set of structure factor signs for a second electron density calculation which, in turn, provided improved atomic coordinates for a third structure factor calculation. After the results of the third calculation were examined, it was apparent that there were no further changes to be made in the assignments of phases to the structure factors. (The above procedure is often referred to as the method of refinement by Fourier cycles (Buerger, 1960, pp. 590-593).) A few more factor calculations led to the adjustment of the overall isotropic temperature factor, from its initial value of 2.0Å2 to the value 2.5Å². As indicated by the R-value of 0.103, there was, at this point, fair agreement between calculated and observed structure factors. In order to refine the structure further, it was decided to employ the

three-dimensional difference synthesis.

D. Refining the Trial Structure

1. The Difference Electron Density Calculation

If the trial structure exactly matches the real structure, the difference map should be absolutely featureless, but, in reality, random fluctuations will appear owing to observational errors. If, however, the trial structure differs in some systematic way from the real structure, the difference map will often exhibit that difference, and, in so doing, will indicate the direction in which improvements of atomic parameters should be carried out in order to produce a more nearly

featureless map.

2. Correction of Coordinate Errors by Difference Maps

If a postulated atomic location is only moderately in error, the difference map will reveal it to be situated upon a steep gradient. There is a convenient semi-empirical formula used to evaluate the magnitude of the correction. It is the relation $\epsilon = \frac{d(P_0 - P_c)}{dr} / 2 P_0(0) p$ (Buerger, 1960, pp. 604-606), where e is the coordinate correction, r is the distance from the atomic center, $\frac{d(P_0 - P_e)}{dr}$ is the slope of $(P_0 - P_e)$ in the immediate neighborhood of the center, and $P_a(0)$ is the maximum electron density given approximately by $P_{o}(0) = Z(p/\pi)^{3/2}$, Z denoting the atomic number and p being about 5.0. The fractional coordinate corrections carried out for the bromine, sodium and two oxygen atoms were all quite small, none exceeding 0.002.

3. Adjustment of Anisotropic Temperature Factors by Difference Maps

On the difference map, anisotropy in the thermal motion of an atom will generally be evidenced by the appearance of a saddle-shaped region about the atomic center. (As previously mentioned, this appearance might also be traced to the presence of systematic errors in the structure factor data.) Some relatively large adjustments had to be made in the temperature parameters of bromine, sodium and the two oxygens. After adjustments based upon four difference maps had been carried out, it

was judged that the expense of computer operation and the time involved in the determination of smaller and smaller parameter adjustments seemed not to warrant further refinement by this method. A good general discussion of the difference synthesis is given by Buerger (1960, pp. 603-609) and Lipson and Cochran (1953, pp. 208-306).

For the final refinement of the crystal structure, a least squares method seemed most suitable.

4. Least Squares Refinement

The BXLS computer program, which carries out refinement by least squares, minimizes essentially the function $R_w = \frac{\sum_{w} |K|Fo|-|Fc||^2}{|W|K|Fo||^2}$ (Carpenter, 1963). The minimization of R_w led to changes in all of the atomic parameters. After two cycles of least squares were completed, a difference map was constructed. The map showed marked improvement in that it was much more nearly featureless than previous ones. After the third cycle of least squares, however, it was evident that the parameter values had converged, that is, the changes in the parameters were insignificantly small. At that point it was judged that the refinement was completed.

A total of 506 reflections were employed throughout the course of refinements; no "unobserved" reflections were utilized. (an unobserved reflection is one which has a corresponding intensity value less than a certain observable minimum.) The comparisons between the observed and calculated structure factors, for all

the available hkl reflections, are listed in the Appendix of this thesis.

The effects of the difference map and leastsquares refinements upon the atomic parameters and other
structural quantities which resulted from Fourier refinement, are shown in Table II. It should be remembered
that the difference map refinement was not carried as far
as it should have been.

TABLE II Effects of Difference Map and Least-Squares Refinement upon Atomic Parameters and Other Structural Quantities

Bromine

<u>Parameter</u>	Fourier Refinement	Diff. Map Refinement	Least Sq. Refinement
x	0.2962	0.2969	0.2964
у	0.1194	0.1195	0.1191
z	0.2117	0.2123	0.2119
6 ₁₁	0.01718	0.02406	0.02404
Q_{22}	0.00572	0.00800	0.00841
ල ₃₃	0.01615	0.01939	0.01861
0 12	0.0	0.0	0.0
@ ₂₃	0.0	0.0	0.0
\mathcal{O}_{31}	0.01322	0,01851	0.01875
	Se	odium	
x	0.0150	0.0146	0.0146
у	0.1680	0.1684	0.1693
z	0.4567	0.4568	0.4567
\mathcal{Q}_{11}	0.01718	0.02406	0.02525
655	0.00572	0.00800	0.00772
Ø ₃₃	0.01615	0.01939	0.01798
\mathcal{Q}_{12}	0.0	0.0	0.0
@ ₂₃	0.0	0.0	0.0
Ø ₃₁	0,01322	0,01851	0.01263

TABLE II (continued)

Oxygen (I)

Parameter	Fourier Refinement	Diff. Map Refinement	Least Sq. Refinement
x	0.7940	0.7940	0.7882
У	0.3110	0.3118	0.3132
Z.	0.1780	0.1774	0.1762
\mathcal{G}_{11}	0.01718	0.02268	0.02052
622	0.00572	0,00755	0.00831
O ₃₃	0.01615	0.02132	0.02213
\mathcal{O}_{12}	0.0	0.0	0.0
\mathcal{C}_{23}	0.0	0.0	0.0
P ₃₁	0.01322	0.01746	0.00911
	Oxygen	(II)	
x	0.2129	0.2139	0.2130
у	0.4929	0.4914	0.4900
z	0.2218	0.2203	0.2199
\mathcal{G}_{11}	0.01718	0.02268	0.02063
@ ₂₂	0.00572	0.00755	0.00833
@ ₃₃	0.01615	0.02132	0.02292
@ 12	0.0	0.0	0.0
φ ₂₃	0.0	0.0	0.0
6 31	0.01322	0.01746	0.01608

TABLE II (continued)

Other Quantities

<u>Quantity</u>	Fourier <u>Refinement</u>	Diff. Map <u>Refinement</u>	Least Sq. <u>Refinement</u>
K(scale factor)	4,40469	3.91000	3.89510
R-value	0.103	0.065	0.0615
Rw-value	0.133	0.077	0.0707

Note: The anisotropic parameters \mathcal{C}_{12} and \mathcal{C}_{23} are required to be equal to zero since, for the monoclinic crystal, $\cos \propto^* = \cos r^* = 0$ (see III C 2). Therefore, these parameters were held invariant throughout the structure refinement.

IV. Description and Discussion of the Structure A. General Structural Features

Figure 1*is a projection, on the <u>a-c</u> plane, of the crystal structure of sodium bromide dihydrate. The numbers in parentheses are fractional coordinates which indicate distances along the <u>b</u> axis. The structure may be described as composed of separate layers parallel to the <u>b-c</u> plane. Each of these layers may be subdivided into three sheets of atoms containing, respectively, bromine and oxygen, sodium, and bromine and oxygen. As will be more fully discussed later, the separate layers appear to be held together largely by hydrogen bonds, thus accounting for the ready cleavage of this hydrate in the <u>b-c</u> plane (Van Meersche et al, 1962).

Alternately, one may regard the layers as being constructed from a series of octahedra, with the sodium cation at the center of each octahedron. The sodium cation is coordinated to four oxygen atoms and to two bromine anions, but each bromine anion and each oxygen atom is also coordinated to an adjoining sodium cation. Thus, since each electronegative atom is shared between two adjoining octahedra, the cohesion within the layers parallel to the <u>b-c</u> plane is explained (see Figure 2A).

* The figures are on pages 54 and 56.

B. Discussion of Interatomic Distances

Based upon the coordinates of the sodium, bromine and two oxygen atoms which resulted from leastsquares refinement, and the unit cell dimensions, it was possible, with the aid of an "Interatomic Distances" computer program (Carpenter and Hall, 1962) to obtain all the relevant interatomic distances in the sodium bromide dihydrate These distances are listed below with their standcrystal. ard deviations in parentheses. The standard deviations were calculated from the equation for variance, $\sigma_{D_{12}}^{2} = \sum_{i}^{2} \left(\frac{\partial D_{12}}{\partial x_{i}}\right)^{2} \sigma_{x_{i}}^{2}$ where D_{12} refers to the distance between atom 1 and atom 2, is the partial derivative with respect to the ith (The variance, σ_{x}^2 is the square of the coordinate. standard deviation obtained from BXLS output; it is an estimate of internal data consistency only.)

The distances of 2.963Å (0.005Å) and 2.983Å(0.006Å) between the sodium and bromine ions are consistent with the sum of their crystal radii, 2.90Å (Pauling, 1960, p. 514). The two distances are almost identical with that observed in the sodium bromide crystal, 2.98Å. The sodium ion-oxygen atom distances of 2.401Å(0.009Å), 2.410Å(0.009Å), 2.418Å(0.009Å), and 2.495Å(0.11Å) are also in good accord with the predicted value of 2.35Å based upon Pauling's crystal radii (see Figure 2A).

The shortest oxygen-bromine ion distances are 3.355Å(0.008Å), 3.356Å(0.009Å), and 3.383Å(0.010Å). The sum of the van der Waals radii of these atoms is 3.35Å (Pauling, 1960, p. 260). The next shortest bromine-oxygen

interatomic distance is 3.575Å(0.007Å). An important oxygen-bromine-oxygen angle is 103.33°(0.27°) (see Figure 1).

The following interatomic distances and angles refer only to atoms which belong to one octahedron. Bromine-oxygen distances vary from 3.806Å(0.009Å) to 3.920Å(0.009Å), oxygen-oxygen lengths range from 3.185Å (0.009Å) to 3.637Å(0.013Å), and the two bromine ions are 4.356Å(0.002Å) apart. The angle formed by the sodium cation and the two bromine anions is 94.22(0.17°), while the oxygen-sodium-oxygen and oxygen-sodium-bromine angles vary from 82.92°(0.42°) to 95.50°(0.57°) (see Figure 2B).

C. Comparison Between This Structure Determination and Van Meerssche's

The structure of sodium bromide dihydrate just described is almost exactly that worked out by Van Meerssche and co-workers (1962). This development presented a rare opportunity for a comparison of two completely independent, yet contemporary, structure determinations of the same sub-There is, in general, good agreement between the atomic coordinates determined here and those reported by Van Meerssche and co-workers at the Université de Louvain in Belgium. But in order to arrive at a more detailed comparison of the two structure determinations, it was decided to subject Van Meerssche's data to the BXLS least-squares program previously mentioned. In this treatment, the weights assigned to Van Meerssche's structure factor data were based upon those employed in this In addition, his isotropic temperature factors

were converted to anisotropic temperature factors, which were then allowed to vary independently along with the coordinates and scale factor. In essence, the final refinements of the two sets of data resulting from the two separate studies were identical. Table III is presented for purposes of comparison.

It may be readily seen that by allowing each of the anisotropic temperature factors to vary, slight changes appear in the coordinates originally reported by Van Meerssche. Indeed, these changes, on the whole, lead to less agreement between the two sets of coordinates. In most cases, however, the altered coordinates do not differ from those obtained in this study by more than 2σ , where σ is an estimated standard deviation obtained from the BXLS program output. To be more specific: Of the twelve coordinates, six agree within the range of $0 - \Gamma$, four within $\sigma - 2\sigma$, and two within $2\sigma - 3\Gamma$.

No useful comparison, however, can be made between the two sets of anisotropic temperature factors, owing to the different absorption errors in both sets of structure factor data. This point is more fully discussed in the following paragraphs.

TABLE III

Structural Parameters from Brown University and from the
Universite de Louvain, after BXLS Refinement

Bromine

Note: The figures in parentheses are standard deviations obtained from BXLS output.

Parameter	Brown University	Université reported	de Louvain after BXLS
x	0.2964 (0.00017)	0.2965	0.2965 (0.00020)
у	0.1191 (0.00013)	0.1191	0.1192 (0.00014)
Z	0.2119 (0.00018)	0.2120	0.2120 (0.00021)
\mathcal{G}_{11}	0.02404(0.00024)	0.02197 (B=3.19)	0.01995(0.00032)
@ ₂₂	0.00841(0.00012)		0.00704(0.00015)
@ ₃₃	0.01861(0.00022)	0.02063	0.02020(0.00033)
\mathcal{Q}_{12}	0.00000(0.00000)	0.00000	0.00000(0.00000)
@ ₂₃	0.00000(0.00000)	0.00000	0.00000(0.00000)
6 ³¹	0.01875(0.00034)	0.01698	0.01539(0.00049)
	Sodiu	ım	
x	0.0146 (0.00067)	0.0155	0.0159 (0.00075)
y	0.1693 (0.00049)	0.1679	0.1683 (0.00050)
z	0.4566(0.00069)	0.4576	0.4579 (0.00075)
@ ₁₁	0.02525(0.00117)		0.02198(0.00116)
O ₂₂	0.00772(0.00050)	(B=3.15) 0.00731	0.00465(0.00045)
6 ³³	0.01798(0.00108)	0.02037	0.01748(0.00113)
\mathcal{O}_{12}	0.00000(0.00000)	0.00000	0.00000(0.00000)
⊘ 23	0.00000(0.00000)	0.00000	0.00000(0.00000)
©31	0.01263(0.00180)	0.01676	0.01610(0.00173)

TABLE III (continued)

Oxygen (I)

<u>Parameter</u>	Brown University	Université de Louvain reported after BXLS
x	0.7882 (0.00122)	0.7907 0.7915 (0.00131)
у	0.3132 (0.00091)	0.3132 0.3138 (0.00102)
z	0.1762 (0.00129)	0.1761 0.1770 (0.00149
\mathfrak{G}_{11}	0.02052(0.00184)	0.02472 0.01924(0.00209)
@ ₂₂	0.00831(0.00095)	(B=3.59) 0.00833 0.00580(0.00091)
@ ₃₃	0.02213(0.00211)	0.02321 0.02367(0.00233
0 12	0.00000(0.00000)	0.00000 0.00000(0.00000)
@ ₂₃	0.00000(0.00000)	0.00000 0.00000(0.00000)
e_{31}	0.00911(0.00302)	0.01911 0.01497(0.00328)
	Oxyger	ı (II)
x	0.2130 (0.00112)	0.2162 0.2154 (0.00132)
у	0.4900 (0.00084)	0.4922 0.4919 (0.00096
Z	0.2199 (0.00130)	0.2195 0.2189 (0.00143
\mathcal{O}_{11}	0.02063(0.00175)	0.02370 0.02100(0.00210)
Q_{22}	0.00833(0.00099)	(B=3.47) 0.00805 0.00651(0.00094)
Ø ₃₃	0.02292(0.00198)	0.02244 0.01974(0.00208
Q_{12}	0.00000(0.00000)	0.00000 0.00000(0.00000)
@ ₂₃	0.00000(0.00000)	0.00000 0.00000(0.00000)
@ ₃₁	0.01608(0.00284)	0.01847 0.01662(0.00320)

TABLE III (continued)

Quantity	Brown University	Université <u>reported</u>	de Louvain after BXLS
R(scale factor) 3.89510	0.80	0.88290
R(obs.only)	0.0615		0.0999
R(obs.only)	0.0707		0.1188
R(all refl.)		0.1236 (0.114)	0.1095
R(all refl.)	_	0.1486	0.1239
Shortest 0-Br Distances	3.355Å	3.32Å	3.325Å
Distances	3.356Å	3.37Å	3.372Å
	3.383Å	3 .36 Å	3.362Å

Notes: $egin{aligned} egin{aligned} \mathfrak{g}_{12} & \text{and} & \mathcal{G}_{23} & \text{must be zero.} \end{aligned}$ (see Note at end of Table II.

The "reported" R-values of the Université de Louvain are those which resulted from a structure factor calculation using the "reported" coordinates and B-values, together with the BXLS program. The R-value in parentheses is taken directly from Van Meerssche's paper (1962).

When the two sets of coordinates were used to calculate structure factors, a comparison between the observed and calculated structure factors brought forth two interesting observations. Firstly, Van Meerssche's group has taken pains in obtaining intensity data for very weak reflections; secondly, in spite of these apparently painstaking intensity measurements, with an integrating Weissenberg goniometer, the agreement between observed and calculated structure factors was not quite as good (for the same reflections) as it was in this study (Van Meersche et al, 1962; also see Appendix).

A possible clue to the explanation of the latter observation may be found in the fact that no absorption corrections were applied either in this work or in that performed by Van Meerssche's group. The absorption correction would be more important for data obtained from the rectangular crystal and CuK∝ radiation employed by Van Meerssche than for the cylindrical crystal and MoK∝ radiation used in this thesis work. This absorption effect is noticeable in that Van Meersche's temperature factors tend to be lower than those obtained here. It appears that the higher precision in intensity measurements gained by Van Meerssche and co-workers by employing an integrating Weissenberg camera was offset by their omitting the absorption correction.

The structure of sodium bromide dihydrate proves to be isomorphous also with that of the dihydrate of sodium cyanide (Le Bihan, 1958).

D. Hydrogen Bonding in Sodium Bromide Dihydrate

Only three oxygen-bromine interatomic distances, 3.355Å, 3.356Å and 3.383Å, are short enough to be reasonably indicative of hydrogen bonds. only three of the four hydrogen atoms present in the unit of sodium bromide dihydrate are involved in hydrogen bonding. This finding is supported by Hornig's infrared investigations (see Chap. I) and by Van Meerssche's nuclear magnetic resonance experiments. The latter indicate that nearly-rectilinear hydrogen bonds exist between those oxygen and bromine atoms separated by distances of 3.32Å, 3.37Å and 3.36Å (Van Meerssche, 1962). The six O-Br distances just mentioned are very similar to the hydrogen bonded O-Br distances of 3.30Å and 3.35Å in D(-) isoleucine HBr·H2O, and to the distance of 3.38A in ll-amino-undecanoic acid HBr. H20 (quoted by Pimental and McClellan, 1960, p. 290).

In this study, it was determined to investigate the possibility of locating the hydrogen atoms directly by examination of difference maps. It was possible to detect three peaks on the difference map which are located at about the positions where one would expect to find the hydrogen atoms involved in hydrogen bonding. The proposed locations for the three hydrogen atoms are x = 0.317, y = 0.567, z = 0.250; x = 0.283, y = 0.422, z = 0.317; and x = 0.733, y = 0.395, z = 0.200. The oxygen-to-peak distances were calculated to be 0.96\AA , 1.02\AA , and 0.97\AA . The H-O-H angle was then calculated to be 110.3° (see Figure 1).

These numbers are in fair agreement with the known parameters of the deuterium oxide molecule. From neutron diffraction work, the O-D distance is listed as 1.01Å, and the D-O-D angle is given as 109.5° (Pauling, 1960, p.468).

Unfortunately, there are many peaks appearing on the difference map which are as large as, or slightly larger than, the three peaks just mentioned. Therefore, although the three peaks in all probability indicate hydrogen atom positions, the peaks cannot be unambiguously idenfied as such.

There was no peak discernible on the difference map which could be designated as the position of the fourth hydrogen atom. Its location may even be a disordered one: even though the H-O-H angle must be maintained, there are many possible locations for the fourth, non-hydrogen-bonded hydrogen atom.

The extent of hydrogen bonding in sodium bromide dihydrate is, oddly enough, much greater than that reported to exist in the dihydrate of sodium cyanide (Le Bihan, 1958). The nitrogen atom typically shows a markedly greater tendency towards hydrogen bond formation than does the bromine atom. Hence, one would expect that at least three of the four hydrogen atoms in the cyanide (structurally isomorphous with the bromide) would be involved in hydrogen bonds. But Le Bihan found only one nitrogen-oxygen interatomic distance (2.81Å) short enough to be considered for hydrogen bonding. It should be noted, however, that the R-value for the cyanide structure is 0.19. It is

therefore difficult to assess the reliability of Le Bihan's reported interatomic distances for the only partially-refined structure. For example, there is a nitrogen-oxygen distance of 3.18Å in the structure which, after further structure refinement, might possibly be modified to a value indicative of at least a weak hydrogen bond.

In summary, this thesis work has shown that a well-refined crystal structure, even one composed of both light and heavy atoms, can provide interesting information regarding the distribution of hydrogen bonds in the structure, and the probable locations of the hydrogen atoms. It was gratifying to note the agreement between this crystal structure analysis, the infrared work done by Hornig (1961), and the structure determination carried out by Van Meerssche and co-workers (1962).

 $\begin{array}{c}
\underline{\text{Legend}} \\
\bullet & = N_2^* \\
O & = 0 \\
O & = B_Y
\end{array}$

Figure 2A
Projection of the NaBr·2H₂O
structure along the <u>a</u> axis
(only 2 octahedra shown)

Legend

Figure 2B Dimensions of a single octahedron (Projection along a axis)

Appendix

Structure Factors Obtained in This Thesis Work (after BXLS refinement) Structure Factors Given by Van Meerssche and Co-workers (1962) (after BXLS refinement)

Notes: All Fo's prefixed by a minus sign are "unobserved".

All structure factors are multiplied by 10 for convenience.

hkl	Fo	F _c	r o	F _c
100	184	135	159	135
200	1057	- 982	865	- 991
300	666	659	653	687
400	528	529	600	548
500	213	- 216	274	- 256
600	104	101	124	118
700	150	154	194	197
002 102 102 202 202 202 302 402 502 502 602 702 802	1048 104 767 1202 958 - 89 434 303 104 242 425 92 206 - 142 100 185	-1043 99 879 1212 981 0 - 468 - 311 100 275 436 128 - 200 - 69 - 80 185	945 115 962 1210 848 - 18 397 362 88 344 477 141 247	-1036 96 881 1234 985 - 4 - 472 - 336 115 311 477 141 - 225 - 104
00 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	550	532	486	536
	432	437	406	445
	604	- 584	433	- 559
	394	- 396	406	- 404
	- 32	- 34	- 35	10
	- 107	660	- 26	31
	673	318	556	655
	300	- 288	327	346
	287	- 288	265	- 284
	292	- 288	62	- 51
	335	- 333	300	- 302
	189	- 192	353	346
006	- 76	- 34	- 44	- 31
1 0 6	288	- 300	300	- 289

hkl	Fo	F _c	Fo	F _c
T06 206 206 306 306 406 506	452 137 228 131 416 293 - 81 316	443 147 - 234 104 - 406 309 76 - 304	353 177 230 106 424 230	424 156 - 213 114 - 392 277
008 108 708 208 308 408 508 608 708	61 95 201 145 - 80 263 - 78 118 88	- 98 147 - 236 156 83 - 260 - 4 114 - 126		
110 210 310 410 510 610 710	635 448 201 537 - 115 213	- 626 429 195 - 510 - 56 210	521 433 185 583 62 265 106	- 631 442 206 - 551 - 71 239 - 96
011 111 111 211 211 311 311 411 511 511 511 711	70 879 431 169 695 282 264 430 451 127 139 180 316	- 53 - 863 +38 202 - 716 286 - 262 - 441 +46 - 144 - 136 183 - 287	79 803 388 168 653 274 274 441 450 150 141 238 327 44 150	- 59 - 870 433 199 - 713 296 - 266 - 466 458 153 - 154 212 - 318 - 47 133
012 112 112 212 212 312 312 412 412	376 619 276 - 80 853 242 275 201 425	- 360 611 - 302 80 966 - 243 305 204 - 429	380 547 309 71 768 284 283 256 433	- 358 607 - 297 62 976 - 269 322 224 - 438

1

hkl	Fo	F _c	Fo	F _c
512 512 612 612 712	- 115 156 151 319	80 180 - 144 294	79 221 185 344 71	95 194 - 176 327 - 80
013 113 113 213 213 213 213 213 213 213 2	386 345 270 115 425 399 212 153 486 276	- 358 349 - 273 - 121 485 - 394 - 225 124 - 498 283	309 318 283 115 380 424 203 141 477 150 291 106 230 221	- 350 346 - 268 - 124 +59 - 412 - 238 133 - 499 133 299 - 153 209 - 243
014 114 214 214 314 414 414 414 414 414 414 414	603 198 417 - 93 421 258 199 493 117 - 107 214	625 - 196 - 387 - 94 - 406 - 280 - 193 - 492 - 93 - 32 - 194	539 185 397 97 441 300 177 - 35 450 71 62 - 35 247	611 - 195 385 - 94 - 383 288 196 17 501 - 80 - 72 - 17 218
015 115 115 215 215 215 315 315 415 515 715	292 185 - 89 108 388 171 285 261 317 - 104 230	265 - 181 - 56 - 104 - 378 166 303 272 - 332 - 61 219	212 168 44 106 397 185 238 - 35 238 309 71	242 - 183 - 62 - 105 - 349 174 298 - 41 258 - 332 - 58
016 116 116 216	211 168 86 171	- 190 183 90 199	168 194 79 212	- 175 178 91 195

hkl	Fo	F _c	Fo	Fc
216 316 316 416 516 616 716	423 - 96 - 65 - 266 - 99 74	364 - 79 - 54 - 266 - 113	309 88 71 - 44 256	351 - 79 - 50 - 28 265
017 117 217 217 317 417 517 517	148 106 215 222 - 100 271 - 100 155	- 159 127 188 - 222 - 46 258 - 25 - 120		
018 T18 218 318	120 - 95 - 100 173	135 - 43 - 52 176		
319	164	144		
020 120 220 320 420 520 620 720	191 316 106	- 194 - 270 - 98	- 35 212 300 97 - 35 79 71 - 35	- 16 - 200 - 277 - 88 - 37 - 76 - 39 - 10
021 121 121 221 221 321 321 421 421 521 521 621 721	1071 - 57 654 676 419 453 971 238 163 409 462 174	-1039 - 19 606 658 466 - 437 - 962 - 238 - 173 387 461 - 174 - 222	936 - 53 - 680 - 636 - 415 - 433 - 892 - 247 - 185 - 486 - 556 - 62 - 212 - 168 - 274	-1045 - 11 610 686 474 - 457 - 999 - 259 - 195 439 495 21 - 199 - 198 - 263
022 122 122	356 335 104	- 309 - 318 89	388 327 124	- 311 - 315 95

hkl	Fo	Fc	Fo	F _c
222 222 322 322 422 422 522 522 622 722	110 187 197	92 - 200 - 169	35 124 - 18 203 79 212 - 26 - 35 - 44 - 26	- 50 97 - 13 - 214 - 60 - 186 - 48 - 7 - 40 22 - 1
023 123 123 223 223 323 323 423 423 523 523 623 723	443 255 1110 620 437 - 102 675 229 300 197 556 230 - 125 233	430 245 -1019 - 616 - 413 - 7 673 232 - 288 - 167 - 530 195 - 59 - 181	441 238 1121 600 433 - 35 583 274 274 221 539 212 35	427 246 - 1014 - 628 - 427 6 659 264 - 299 - 192 - 562 197 55
024 124 124 224 224 324 324 424 524 524 524	213 220 - 73 112	- 210 - 188 70 98	62 106 256 79 230 141 88 - 26 106 35 - 35	70 104 - 219 - 84 - 198 - 109 73 - 24 110 5 - 45
025 125 125 225 225 325 425 425 525 725	340 453 486 211 197 - 117 635 197 210 119 377 - 119	- 317 - 447 - 446 212 - 203 - 53 - 593 - 201 - 223 - 110 - 351	300 441 415 221 238 62 592 194 203 97 370	- 314 - 441 416 216 - 202 55 - 583 - 217 189 86 - 367

hkl	Fo	F _c	r o	Fc
825	219	132		
026 126 126 226 226 226 326 326 426 526	- 79 90	- 45 79	- 44 71 79 - 26 79 26 - 44 - 44 - 26	- 46 - 73 81 16 74 35 - 19 - 28
027 127 127 227 327 427 527 627 727	- 123 188 314 103 - 121 364 - 122 237 86 166	- 56 165 - 314 138 116 - 329 - 15 203 - 121 - 98		
229 329 429	143 - 125 143	- 153 - 18 158		
130 230 330 430 530 630 730	999 342 457 347 - 119 198	- 915 345 421 - 354 - 46 193	927 336 441 406 79 265 62	- 918 356 431 - 387 - 46 230 - 82
031 131 131 231 231 231 231 431 431 531 531 531 731	259 1350 719 130 506 290 554 293 62 164 125	205 1253 - 644 168 488 - 303 572 268 - 83 202 85	283 1244 733 159 539 300 539 291 97 194 141 - 62 185 62	212 1282 - 649 175 505 - 318 593 295 - 95 219 100 - 55 180 59 - 87
032	302	- 300	371	- 297

hkl	F _o	F _c	F _o	Fc
132 132 232 232 332	697 619 - 83 514 419	695 - 606 - 61 535 - 425	662 680 35 645 450	703 - 597 - 64 542 - 446
252 232 332 432 432 432 532 532 632 732	143 175 406 140 112	141 184 - 442 136	168 212 450 185 124	139 205 - 463 152 146
	129 206 175	131 - 128 188 - 158	150 256 177	- 157 215 - 185
033 133 133 233 233 233 333 433 433 433 533 533 533 733	421 369 585 102 237 409	419 - 350 540 74 - 248 424	468 353 592 106 265 459 71	432 - 354 553 73 - 239 451 49
433 433 533 533 633 733	298 147 - 115 164	320 - 128 - 74 157	327 88 150 62 194	339 - 88 - 136 - 90 178
034 134 134 134 234 334 434 434 434 434 434 434 434 4	390 310 135 140 494 240 116	362 - 335 152 - 114 - 506 257 127	371 336 141 132 539 265 132	357 - 335 150 - 115 - 490 275 131 - 47
434 534 534 634 734	346 236 161 179	339 - 269 - 110 189	353 88 274 141 230	342 - 132 - 276 - 119 209
035 135 135 235 235 235 235 335 435 535 635	264 190 - 70 146 348 144 165 221 168 - 108	- 253 177 - 9 143 339 - 109 - 156 - 225 183 18	238 194 - 35 168 362 150 185 221 185 - 26	- 245 187 - 6 155 338 - 117 - 148 - 232 176

}

hkl	Fo	Fc	Fo	F _c
74444444444444444444444444444444444444	657 640 303 176 611 231 138 266 430	- 651 - 623 - 321 192 643 226 - 155 - 271 - 465	724 636 353 212 636 256 177 362 512 71 247 168	- 661 - 656 - 331 202 649 248 - 172 - 311 - 501 - 83 227 164
043 143 143 143 143 144 144 154 164 174 174 174 174 174 174 174 174 174 17	212 - 86 183 - 97 177 - 109 147 122	208 37 190 - 37 188 106 155 104	221 79 247 - 35 221 62 177 124 62 - 35 - 35 141 106	215 40 202 - 45 200 98 162 105 - 18 68 164 70
44444444444444444444444444444444444444	287 266 478 316 133 - 114 523 207 296 277 291 - 127 157	- 293 - 273 495 315 - 86 - 35 - 547 - 228 315 282 - 306 - 49 160	318 265 539 327 106 35 583 274 318 291 353	- 230 - 274 473 324 - 97 - 42 - 540 - 255 323 287 - 329
014455555555555555555555555555555555555	133 143 - 76 - 79 166 150	118 137 27 48 187 104	150 71 159 71 26 - 26 62 194 177 - 35 - 26	121 89 140 88 35 19 64 206 124 - 17

h kl	Fo	Fc	F o	F _c
046 146 146 246 246 346 546 546	- 92 204 310 128 214 252 304 - 95 303	29 210 - 315 - 137 206 269 - 318 - 61 278	- 26 212 318 168 238 212 362 44 327	26 199 - 292 - 143 199 250 - 306 - 51 286
4 48	248	228		
150 250 350 450 550 650 750	355 262 - 113 334	348 - 229 - 122 310	397 283 79 388 - 44 168 79	370 - 236 - 131 346 - 149 - 149
051 151 151 251 251 251 351 451 451 551 551 651 751	418 512 787 196 375 448 213 169 451 - 113 - 105 181	- 383 488 - 738 - 225 394 - 403 191 180 - 478 23 - 31 - 179 174	459 574 909 238 424 450 221 194 530 62 44 212 230 88	- 397 507 - 764 - 244 - 417 - 437 208 211 - 524 37 - 41 - 219 207 - 109
052 152 152 252 252 252 352 452 452 552 552 652 752	103 378 116 - 91 504 153 120 165 209 169	122 - 372 132 - 9 - 506 166 - 150 - 144 239 - 142 - 190	124 406 132 - 35 627 150 141 221 238 - 26 238 115 212 79	126 - 390 135 - 9 - 536 187 - 176 - 158 243 - 72 - 162 118 - 221 60
053 1 53	415 506	402 - 499	450 477	411 - 518

1

hkl	Fo	F _C	Fo	Fc
T53 253 253 253 353 453 453 553 553 753	315 204 653 215 152 370	318 - 207 - 651 219 - 148 374	362 221 697 256 203 71 380 141 97 159	325 - 214 - 674 242 - 168 - 95 393 - 126 - 117 - 153 135
054 154 154 254 254 254 254 254 254 254 254 254 2	324 121 199 - 107 187 192 192 292 - 107 - 117 155	- 342 103 - 201 19 207 - 184 - 176 - 306 86 26 - 139	362 124 256 - 26 212 212 238 - 35 300 79 - 35	- 356 105 - 219 21 193 - 198 - 188 - 1 - 329 70 12 - 163
055 155 155 255 255 255 255 255 255 255 2	391 169 103 182 411 171 - 88 - 220 158	- 377 186 - 112 169 394 - 166 - 74 209 182	397 177 132 203 450 177 53 238 185 - 26	- 384 186 - 121 175 390 - 179 - 59 - 208 175 25 - 124
056 156 156 256 256 356 456 556	120 141 - 90 238 - 87 - 92 191	100 - 110 - 83 - 227 70 - 33 - 187	71 132 79 88 274 53 - 26 212	91 - 115 - 89 122 - 231 48 14 - 197
060 160 260 360 460 560	290 271 158 - 110 - 119 175	265 293 137 - 38 116 189	371 336 194 - 26 62 221	305 323 150 - 34 133 217

. •

1

hkl	Fo	Fc	Fo	F _c
660			79	28
061 161 161 261 261 361 361 461 461 561 561	797 - 84 271 622 507 231 381 231 - 100 200 286	766 - 36 - 291 - 603 - 502 - 232 - 395 - 243 - 86 - 200 - 276	874 35 318 671 530 256 433 247 71 256 344 - 26	798 - 39 - 302 - 639 - 521 258 430 269 89 - 240 - 318 - 19 114
062 162 162 262 262 362 362 462 462 562 562	137 189 - 84 127 125	148 165 6 110 . 161 292	177 221 - 35 124 177 150 318 124 88 - 35	157 181 9 132 187 189 320 92 33 - 26 - 89
063 163 163 263 263 263 363 463 463 563 563 563 763	433 161 401 402 139 - 118 451 202 116	- 439 - 176 407 411 144 - 55 - 456 - 224 125 241 - 210	459 194 450 415 159 79 494 247 141 115 274 247 88	- 449 - 179 419 443 146 - 61 - 472 - 254 142 120 268 - 239 - 74
064 164 164 264 264 364 364 464 464	- 96 148	24 156	- 35 177 71 - 35 71 97 - 35 44 106	38 15 163 103 19 42 - 83 5 73 63

hkl	Fo	Fc	Fo	Fc
6 64			- 35	- 63
065 165 765 265 265 265 365 465 565 665	142 205 376 189 110 324 257 144 236	103 206 - 369 - 186 83 312 - 250 139 215	106 212 406 203 97 35 353 256 141 221	107 213 - 363 - 197 88 - 52 314 - 255 - 147 230
066 166 166 <u>2</u> 66 <u>3</u> 66 466 366			- 26 - 26 - 44 - 26 - 26 - 17 - 26	14 33 - 43 13 - 5 - 93 - 24
170 270 370 470 570 670	522 232 312 200 - 136 171	511 - 252 - 294 224 7 - 157	600 265 318 247 - 35 212	555 - 269 - 331 242 1 - 193
071 171 171 271 271 271 371 471 471 571 671 671	- 89 236 - 89 113 305 - 103 - 97 197 205	3 - 235 80 67 - 291 65 - 80 - 190 203	- 35 283 35 97 371 - 44 - 44 247 238 - 44 124 97	- 11 - 263 70 66 - 325 - 66 - 95 - 223 - 220 - 55 - 69 106 - 162
072 172 172 272 272 272 372 472 472 572	214 348 390 - 110 202 332 - 99	211 - 385 415 116 - 238 319 25	265 441 494 71 256 380 - 35 132 397	224 - 419 451 120 - 234 355 37 - 159 398 - 125

ľ

hkl.	Fo	F _c	Fo	Fc
5 72 6 72			44 141	- 76 - 114
073 173 173 273 273 273 373 473 473 573 673	161 134 115 - 115 213 168 - 104	- 177 111 - 104 - 27 215 - 135 - 66	185 132 150 71 256 159 106 88 230 168 62 88	190 109 - 113 - 39 216 - 157 - 80 52 - 232 105 96 - 94
074 174 174 274 274 274 374 474 574	150 267 - 100 - 119 405 180 - 103 166 244 159	- 131 277 20 88 400 - 154 - 60 - 170 271 124	132 300 - 35 106 459 185 - 26 168 300 177	- 126 299 30 97 420 - 175 - 51 - 162 309 149
075 175 175 275 275 275 375 475 575	128 139 - 104 139 - 104 - 110 135	116 - 80 - 5 - 152 100 104 - 120	115 97 - 26 - 26 168 141 97	111 - 86 - 10 - 56 - 151 106 104 - 129
076 176 176 276 376 476 576	205 152 229 169 178	218 - 148 230 155 - 165	194 - 26 - 26 150 247 194 159	224 - 6 - 5 - 133 243 170 - 157
080 180 280 380 480 580	372 203 416 219 - 130 229	381 - 215 - 407 217 67 - 233	503 283 450 265 62 291	411 - 242 - 455 250 81 - 285
081	1 3 6	145	159	148

hkl	Fo	F _c	Fo	F _c
181 181 281 281 381 381 481 481 581 581	- 97 - 104 142 166	- 12 - 106 - 141 - 162	- 44 132 177 212 - 44 - 88 - 44 - 44 141 53	- 17 - 119 - 151 - 179 81 43 69 - 17 - 39 - 107 - 9
082 182 182 282 282 282 382 482 482 582 582 582	442 167 287 261 165 - 118 433 160 - 113	- 451 - 196 307 262 191 - 108 - 430 - 162 - 49	539 212 371 300 238 124 486 185 - 35 88 256	- 494 - 219 335 291 210 - 128 - 484 - 195 - 65 112 244 - 104
083 183 183 283 283 283 383 483 483 483 583 583	143 147 - 107 - 107 159	- 164 - 103 - 41 - 11 - 162	168 150 44 - 35 - 35 - 26 194 88 106 - 26	- 181 - 112 27 62 - 31 - 27 - 189 - 70 - 56 1
084 184 1884 2884 3884 3884 5884	180 183 384 219 - 109 297 - 116 160	187 199 - 381 - 224 - 86 308 - 87 - 140	212 212 433 265 106 44 353 97 177	199 217 - 413 - 250 - 105 - 80 329 - 83 - 153 134
085 185 185 285	- 117 157	- 12 - 140	- 35 - 35 168 44	- 24 13 - 155 - 81

hkl	Fo	Fc	Fo	Fc
285 385 485 385			62 - 35 62 97	- 61 11 - 98 - 75
086 186 <u>1</u> 86 <u>2</u> 86 <u>3</u> 86 486	- 118 175 217 - 111 152 139	- 48 - 160 219 - 47 - 146 143	- 71 141 132	- 39 - 148 138
190 290 390 490 590	213	- 238	283 79 97 62 - 26	- 267 62 147 - 69 - 21
091 191 191 291 291 391 391 491 491 591	171 175 347 178 165 252 - 110	186 - 178 336 204 - 184 227 - 22	247 212 424 221 185 283 - 44 141 380 - 35	224 - 172 382 248 - 194 - 269 - 9 - 150 368 2
092 192 192 292 292 292 392 492 492 592	- 108 190 153 - 116	- 54 186 - 167 - 17 - 130	- 35 230 194 44 115 141 - 26 71 62 79	- 55 212 - 180 - 20 91 - 151 41 44 - 95 41
093 193 193 293 293 293 393 393 593 593	139 250 - 115 333 - 120 200	- 132 257 - 76 334 - 214	132 274 88 79 371 132 - 35 230 150	- 130 292 - 66 79 376 - 125 9 - 235 148 127
094	- 119	68	62	75

I

hkl	Fo	Fc	Fo	F _c
194 194 294 294 394 494 594	- 116 139	30 - 115	115 - 35 - 35 124 62 62 115	- 100 31 - 25 - 121 37 80 - 89
095 195 195 295 395 495 595 hk 1	184 - 121 194	173 15 - 196	168 71 - 35 212 97 132 150	187 - 85 19 - 200 111 122 - 173
0100 1100 2100 3100 4100 5100	162 - 126 186	152 - 47 - 160	177 - 44 194 - 44 53 - 35	166 - 63 - 199 9 37 - 47
0101 1101 T101 2101 2101 3101 3101 4101 4101 5101	276 - 112 157 257 184 132 175	- 268 42 156 245 209 - 127 - 169	318 - 44 185 274 230 150 185 79 - 44	- 312 49 179 291 252 - 150 - 185 - 135 11 203
0102 1102 1102 2102 2102 2102 3102 3102	147	- 159	185 62 - 35 106 79 - 35 79 62 71	- 194 - 57 28 109 68 - 37 - 90 - 89 - 26
0103 1103 1103 2103 2103 2103 3103	222 - 129 - 134 157 - 123	209 91 - 132 - 154 10	247 115 141 177 - 35 62	246 107 - 133 - 183 - 22 70

hk 1	F o	Fc	Fo	Fc
3103 4103 5103	252	251	256 44 79	292 - 45 - 101
0104 1104 1104 2104 2104 4104 5104			- 26 44 79 53 - 26 62 - 26 26	49 34 - 93 - 82 - 24 - 69 - 36 - 37
0105 1105 2105 3105 4105	- 131 198 - 128 - 130 187	- 5 192 - 22 - 108 162	- 35 177 - 35 88 177	2 216 - 15 - 104 194
1110 2110 3110 4110	217 - 139 150	- 224 118 128	256 115 177 115	- 259 149 159 - 143
0111 1111 T111 2111 2111 3111 3111			79 - 44 124 71 35 53 - 35 115	- 101 45 - 144 - 60 55 - 86 18 - 114
0112 1112 1112 2112 2112 2112 3112 3112	170 180 190 180 - 128 190	- 135 182 - 196 161 - 30 - 176	168 185 230 - 44 185 106 - 35	- 163 208 - 234 - 23 179 - 163 24 - 225
0113 1113 1113 1113 2113 2113 4113			71 106 44 124 - 26 35	72 - 104 48 - 141 - 56 67
0114 T114 2114	142 - 132 204	115 38 - 204	115 - 35 2 3 0	122 31 - 245

hk 1	Fo	F _C	Fo	Fc
0120 1120 2120 3120	- 143 - 143 184	- 111 98 1 <i>5</i> 4	115 115 177 88	- 113 137 199 - 91
0121 T121 2121			35 35 - 44	- 50 69 26
0122 1122	177	162	168 44	204
1 122	- 130	- 78	53 53	77 - 81 - 94
2122 2122 3122	- 132 169	- 31 164	- 35 150	- 22 212
0123 1123			- 26 35	38 - 97
<u>1</u> 131 1131	.175 183	147 - 153		

.

ļ.

.

.

Bibliography

- Buerger, M.J. (1942) "X-Ray Crystallography", New York: Wiley.
- Buerger, W.J. (1944) "The Photography of the Reciprocal Lattice", ASXRED Monograph No. 1, Cambridge, Mass.:

 Murray Printing Co.
- Buerger, M.J. (1959) "Vector Space", New York: Wiley.
- Buerger, M.J. (1960) "Crystal Structure Analysis", New York: Wiley.
- Bunn, C.W. (1946) "Chemical Crystallography", London:
 Oxford University Press.
- Carpenter, G.B., and Donahue, J. (1950) J.Amer. Chem. Soc. 72, 2315.
- Carpenter, G.B., and Hall, D. (1962) "Computer Programs for Crystallographic Calculations", ARPA Contract with Brown University Technical Report No. 1
- Carpenter, G.B., and Wilmot, G.T. (1962) "Brown Crystal-lographic Fourier Synthesis Program", Office of Naval Research Contract Nonr 562(04) NR-017-607, Technical Report No. 10.
- Carpenter, G.B. (1963) "Brown Crystallographic Least

 Squares Program, BXLS", ARPA Contract with Brown University Technical Report No. C 2.
- Evans, H.T., Tilden, S.G., and Adams, D.P. (1949) Rev. Sci. Instr. 20, 156.
- Gmelins Handbuch der Anorganischen Chemie (1928) vol.21, Berlin: Verlag Chemie G.M.B.H.

- Grenville-Wells, H.J., and Abrahams, S.C. (1952) Rev. Sci. Instr. 23, 328.
- Hornig, D.F., and Schiffer, J. (1961) J.Chem. Phys., 35, 1136.
- Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935) Berlin: Gebrüder Borntraeger.
- International Tables for X-Ray Crystallography, Vol. I
 (1952), Vol. II (1959), Vol. III (1962), Birmingham:
 Kynoch Press
- Le Bihan, M.T. (1958) Acta Cryst. 11, 770.
- Lee, F.S. (1958) Ph.D. Thesis Brown University
- Lipson, H., and Cochran, W. (1953) "The Crystalline State,
 Vol. III of The Determination of Crystal Structures",
 London: G. Bell and Sons Ltd.
- Manual for the Use of The Buerger Precession Camera as manufactured by the Charles Supper Co., Newton Center, Mass.
- Mutter, R., Mecke, R., and Lüttke, W. (1959) Z. physik Chem. 19, 83.
- Pauling, L. (1960) "The Nature of the Chemical Bond", Ithaca: Cornell University Press.
- Pimental, G.C., and McClellan, A.L. (1960) "The Hydrogen Bond", San Francisco and London: W.H. Freeman and Co.
- Richards, S.M. (1959) M.S. Thesis Brown University
- Rollett, J.S., and Sparks, R.A. (1960) Acta Cryst. 13, 273.
- Shiono, R. (1960) Pittsburgh Structure Factor Program,
 University of Pittsburgh
- Van Meerssche, M., Culot, J.P., and Piret, P. (1962) Bull.
 Soc. franç. Miner. Crist. LXXXV, 282.

Waser, J. (1951) Rev. Sci. Instr. 22, 567
Whittaker, E.T., and Robinson, G. (1940) "The Calculus of Observations" 2nd ed. London: Blackie and Son.
Wooster, W.A. (1932) Nature 130, 698.