20XD68 - Deep Learning Lab

SENTIMENT ANALYSIS BI-LSTM & CNN

Contents

Introduction

Problem Statement, Goals

BiLSTM & CNN Implementation

Research Paper Approach

Federated Learning

Our Improvisation of the problem statement using Federated Learning

References

Introduction

Sentiment Analysis

Text sentiment analysis is a significant technology in the field of natural language processing (NLP), which aim to identify and extract the subjective information of the reviewers from the text data

Classical Strategy

In order to overcome the deficiency of sentiment analysis based on traditional machine learning, which difficulty of effective feature selection and inadequacy of marked training corpus will affect the performance of the classification system.

Recent Advancements

we address the sentiment emotions analysis problem of Chinese product reviews text by combining convolutional neural network (CNN) with bidirectional long-short term memory network (BiLSTM)

BiLSTM & CNN Model

Architecture

Fig. 1. THE ARCHITECTURE OF CNN - BIDIRECTIONAL LSTM MODEL.

Paper: Sentiment Analysis of Text Based on CNN and Bi-directional LSTM Model

Implementation

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 32, 128)	128000 128000
conv1d_1 (Conv1D)	(None, 32, 32)	12320
<pre>max_pooling1d_1 (MaxPooling 1D)</pre>	(None, 16, 32)	0
<pre>bidirectional_1 (Bidirectional)</pre>	(None, 64)	16640
dropout_1 (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 3)	195
Total params: 157,155 Trainable params: 157,155 Non-trainable params: 0		

BiLSTM & CNN Model

BiLSTM & CNN Model

Test Results

Dataset: Twitter Sentiment Analysis Data with 90000 rows .3 labels each of 30000 rows

Train Confusion Matrix

```
Epoch 4/15
Epoch 7/15
Epoch 10/15
Epoch 14/15
```

Test Confusion Matrix

confusion mat [114 418 81 [33 195 355	.]	9 24]		
	precision	recall	f1-score	support
0	0.69	0.55	0.61	604
1	0.48	0.68	0.57	613
2	0.77	0.61	0.68	583
accuracy			0.61	1800
macro avg	0.65	0.61	0.62	1800
weighted avg	0.65	0.61	0.62	1800

Federated Learning

Introduction

- 1. Federated learning is a decentralized approach to machine learning.
- 2. It enables multiple devices to collaboratively train a model without sharing their raw data with a central server.
- 3. Each device trains a local model using its own data.
- 4. The local models are then sent to a central server, which aggregates them to create a global model.
- 5. This approach allows devices to learn from each other without compromising their privacy.
- 6. Federated learning consists of three main components: the client devices, the central server, and the machine learning algorithm.
- 7. The client devices are responsible for training the local models.
- 8. The central server coordinates the training process and aggregates the local model updates.
- 9. The machine learning algorithm is used to update the global model based on the aggregated local model updates.
- 10. Federated learning can reduce the amount of data that needs to be transferred to a central server, which can be expensive and slow.
- 11. It can also enable machine learning on devices with limited resources, such as smartphones or IoT devices.
- 12. Federated learning has applications in various fields, including healthcare, finance, and IoT.

Federated Learning

FedAvg Architecture

Federated Learning

Results

No of Clients = 5 Global Epochs = 30 Local Epochs = 10

Future Improvements

References

- 1. Federated Learning: A Simple Introduction
- 2. Complete guide to Bidirectional LSTM
- 3. <u>Sentiment Analysis using Neural Networks and LSTM</u>