24.7. AFFINE MAPS 825

can also be written as

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

which shows that it is the composition of a rotation of angle  $\pi/3$ , followed by a stretch (by a factor of 2 along the x-axis, and by a factor of  $\frac{1}{2}$  along the y-axis), followed by a translation. It is easy to show that this affine map has a unique fixed point. On the other hand, the affine map

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 8/5 & -6/5 \\ 3/10 & 2/5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

has no fixed point, even though

$$\begin{pmatrix} 8/5 & -6/5 \\ 3/10 & 2/5 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} 4/5 & -3/5 \\ 3/5 & 4/5 \end{pmatrix},$$

and the second matrix is a rotation of angle  $\theta$  such that  $\cos \theta = \frac{4}{5}$  and  $\sin \theta = \frac{3}{5}$ .

There is a useful trick to convert the equation y = Ax + b into what looks like a linear equation. The trick is to consider an  $(n + 1) \times (n + 1)$  matrix. We add 1 as the (n + 1)th component to the vectors x, y, and b, and form the  $(n + 1) \times (n + 1)$  matrix

$$\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix}$$

so that y = Ax + b is equivalent to

$$\begin{pmatrix} y \\ 1 \end{pmatrix} = \begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix}.$$

This trick is very useful in kinematics and dynamics, where A is a rotation matrix. Such affine maps are called rigid motions.

If  $f: E \to E'$  is a bijective affine map, given any three collinear points a, b, c in E, with  $a \neq b$ , where, say,  $c = (1 - \lambda)a + \lambda b$ , since f preserves barycenters, we have  $f(c) = (1 - \lambda)f(a) + \lambda f(b)$ , which shows that f(a), f(b), f(c) are collinear in E'. There is a converse to this property, which is simpler to state when the ground field is  $K = \mathbb{R}$ . The converse states that given any bijective function  $f: E \to E'$  between two real affine spaces of the same dimension  $n \geq 2$ , if f maps any three collinear points to collinear points, then f is affine. The proof is rather long (see Berger [11] or Samuel [142]).

Given three collinear points a, b, c, where  $a \neq c$ , we have  $b = (1 - \beta)a + \beta c$  for some unique  $\beta$ , and we define the ratio of the sequence a, b, c, as

$$\operatorname{ratio}(a, b, c) = \frac{\beta}{(1 - \beta)} = \frac{\overrightarrow{ab}}{\overrightarrow{bc}},$$