

Capsule Neural Network and Discussion on Sync NN

Wei Han

Outline

- Capsule Neural Network
 - Background and Motivation
 - Structure of CapsNet and a demo
 - **■** Experiments

- Synchronization Neural Network
 - Background and Motivation
 - Potential ways and Related works

Capsule Neural Network

1.1. Background and Motivation

Hinton's Thinking:

- No BP in the brain
- Fewer layers and slower computing

1.1. Background and Motivation

- Cortical minicolumn in the cortex
 - Include hundreds of neuros
 - Internal stratification

1.1. Background and Motivation

Invariance & Equivariance

Not Face

Face

'Routing' mechanism

1.2. Structure of CapsNet

• Capsule: a group of neurons

1.2. Structure of CapsNet

Layer connection

Representation

Rectangle

x=20 y=30 angle=16°

Triangle

x=24 y=25 angle=-65°

Inverse rendering

Instantiation parameters

Image

Capsule

Activation vector:

Length = estimated probability of presence Orientation = object's estimated pose parameters

Capsule

Equivariance

Hierarchy of parts

Primary Capsules

Predict Next Layer's Output

Chicken & Egg

$$\mathbf{s}_j = \sum_i c_{ij} \mathbf{\hat{u}}_{j|i} , \qquad \mathbf{\hat{u}}_{j|i} = \mathbf{W}_{ij} \mathbf{u}_i$$

where c_{ij} is the similarity of S_j and $u_{j|i}$

• Clusters of Agreement

• Clusters of Agreement

• Clusters of Agreement

Predict Next Layer's Output

• Predict Next Layer's Output

Routing by Agreement

Routing Weights

Compute Next Layer's Output

Update Routing Weights

Update Routing Weights

Compute Next Layer's Output

Compute Next Layer's Output

Routing algorithm

Procedure 1 Routing algorithm.

```
1: procedure ROUTING(\hat{\mathbf{u}}_{j|i}, r, l)
2: for all capsule i in layer l and capsule j in layer (l+1): b_{ij} \leftarrow 0.
3: for r iterations do
4: for all capsule i in layer l: \mathbf{c}_i \leftarrow \text{softmax}(\mathbf{b}_i) \triangleright \text{softmax} computes Eq. 3
5: for all capsule j in layer (l+1): \mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}
6: for all capsule j in layer (l+1): \mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j) \triangleright \text{squash} computes Eq. 1
7: for all capsule i in layer i and capsule i and
```


Routing algorithm

Handling Crowded Scenes

Handling Crowded Scenes

Handling Crowded Scenes

Training

Regularization by Reconstruction

1.3. Experiments

Classification accuracy on MNIST

Table 1: CapsNet classification test accuracy. The MNIST average and standard deviation results are reported from 3 trials.

Method	Routing	Reconstruction	MNIST (%)	MultiMNIST (%)
Baseline	-	-	0.39	8.1
CapsNet	1	no	$0.34_{\pm 0.032}$	-
CapsNet	1	yes	$0.29_{\pm 0.011}$	7.5
CapsNet	3	no	$0.35_{\pm 0.036}$	-
CapsNet	3	yes	$0.25_{\pm0.005}$	5.2

• Reconstruction with perturbations

Figure 4: Dimension perturbations. Each row shows the reconstruction when one of the 16 dimensions in the DigitCaps representation is tweaked by intervals of 0.05 in the range [-0.25, 0.25].

Scale and thickness	000000000000000000000000000000000000000
Localized part	0666666666
Stroke thickness	555555555
Localized skew	9 9 9 9 9 9 9 9 9 9 9
Width and translation	11133333333
Localized part	222222222

• Robustness to Affine Transformations

CNN:

99.22% -> 66%

CapsNet:

99.23% -> 79%

MultiMNIST result

CNN: 5% error rate -> in <4% overlapping

CapsNet: 5% error rate -> in 80% overlapping

Sample reconstructions on MultiMNIST

1.4. Conclusion

- Pros
 - Preserve position and pose information (equivariance)
 - Require less training data
 - Routing by agreement is great for overlapping objects
 - Robust to affine transformations
 - Interpretability
- Cons
 - Not effective in large datasets
 - Slow training

Discussion on Synchronization Neural Network

2.1. Background

- Oscillations and Amazing Synchronization
 - Animate oscillator
 - Inanimate oscillator
 - Complex system

2.1. Background

- Neural oscillation / synchronization
 - Spike trains
 - Local field potentials
 - Large-scale oscillations

- Property
 - Frequency
 - Amplitude
 - Phase

2.1. Motivation

- What's wrong on ANN model (comparing to human brain)?
 - Overfitting / Flexible
 - Intricate representation
 - Task-dependent representation
 - Data hungry
 - Catastrophic forgetting

2.1. Motivation

- Interpretability
- Hierarchy
 - Protocol oriented (multi-source) transfer learning
 - Life-long learning (besides Online learning)
 - Super-parallel (Task hierarchy)
- Disentangled representation
 - Robustness
 - Image segmentation / description
 - •
- Additive decision (Multi-view)

- What to sync?
 - Vector/Matrix representation [1][2]
 - Complex Neural Network [3-6]
 - Amplitude and phase [7]
 - Reusable module [8]

- [1] Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. In *Advances in Neural Information Processing Systems* (pp. 3856-3866).
- [2] Hinton, G. E., Sabour, S., & Frosst, N. (2018). Matrix capsules with EM routing.

- What to sync?
 - Vector/Matrix representation [1][2]
 - Complex Neural Network [3-6]
 - Amplitude and phase [7]
 - Reusable module [8]
- [3] Jose, C., Cisse, M., & Fleuret, F. (2017). Kronecker Recurrent Units. arXiv preprint arXiv:1705.10142.
- [4] Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos, J. F., ... & Pal, C. J. (2017). Deep complex networks. *arXiv* preprint *arXiv*:1705.09792.
- [5] Mescheder, L., Nowozin, S., & Geiger, A. (2017). The numerics of GANs. In *Advances in Neural Information Processing Systems* (pp. 1825-1835).
- [6] Rahman, M., & Geiger, D. (2016). Quantum Clustering and Gaussian Mixtures. *arXiv preprint arXiv:1612.09199*.

• What to sync?

- Vector/Matrix representation [1][2]
- Complex Neural Network [3-6]
- Amplitude and phase [7]
- Reusable module [8]

$$f(\boldsymbol{w}, \boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle = \boldsymbol{w}^{\top} \boldsymbol{x},$$

$$f(\boldsymbol{w}, \boldsymbol{x}) = \|\boldsymbol{w}\| \|\boldsymbol{x}\| \cos(\theta_{(\boldsymbol{w}, \boldsymbol{x})}) = h(\|\boldsymbol{w}\|, \|\boldsymbol{x}\|) \cdot g(\theta_{(\boldsymbol{w}, \boldsymbol{x})})$$

[7] Liu, W., Liu, Z., Yu, Z., Dai, B., Lin, R., Wang, Y., ... & Song, L. (2018, April). Decoupled Networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2771-2779).

[8] Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., ... & Wierstra, D. (2017). Pathnet: Evolution channels gradient descent in super neural networks. *arXiv preprint arXiv:1701.08734*.

Thank you

