onde:

 V_c = vazão controlada,

R_h = regime hidrológico,

Fórmula - $Rh' = Rh \times [A + P + E(U + I)]$

(A = Aporte de afluentes;

P = Precipitação;

E = Escoamento superficial;

U = Uso do solo,

I = Infiltração).

C_i = chuvas intensas,

Fórmula - Ci' = $Ci \times [Im \times Ae(t) \times Pf(t)]$

(Im = Intensidade média da chuva (mm/h);

Ae(t) = Amplitude do evento extremo (1-3), modelando picos intensos,

Pf(t) = Fator probabilístico de ocorrência (0-1), indica se chove ou não naquele tick).

E_t = eficiência técnica,

Fórmula - Et' = Et × [0.4Ct + 0.3Ds + 0.2Ro + 0.1Cf]

(Ct = Competência técnica de equipe;

Ds = Disponibilidade dos sensores e sistemas;

Ro = Rapidez de operação (1 / tempo de resposta),

Cf = Confiabilidade do sistema).

Interpretação dos valores (escala 0 a 1)

Valor de	Significado	Situação típica
Et		
0.0 – 0.1	Perda muito baixa	Períodos chuvosos, clima úmido, baixa radiação solar
0.2 - 0.4	Perda moderada	Clima ameno, vegetação controlada
0.5 – 0.7	Perda alta	Clima quente e seco, vegetação densa, longos períodos sem chuva
0.8 – 1.0	Perda extrema	Seca prolongada, temperatura elevada, vegetação com alta transpiração

C_r = capacidade de retenção,

Fórmula - $Cr' = Cr \times (Cr1 + Cr2 + Cr4) / (1 + Cr3)$

(Cr1 = Capacidade estrutural;

Cr2 = Eficiência de descarga;

Cr3 = Tempo de reposta operacional,

Cr4 = Manutenção e integridade).

Interpretação:

- Cr alto (próximo de 1): a barragem responde bem. Liberação e retenção eficazes, estrutura íntegra.
- Cr baixo (próximo de 0): a barragem responde mal. Falhas mecânicas, má operação, manutenção insuficiente.

F_c = fator comporta.

Fórmula - Fc' = $Fc \times [Fc1 + (1 - Fc2) + (1 - Fc3) + (1 - Fc4)] / 4$

(Fc1 = Vulnerabilidade social;

Fc2 = Capacidade de adaptação;

Fc3 = Comunicação e alerta,

Fc4 = infraestrutura crítica).

Interpretação dos valores de Fc:

Valor de Fc	Situação comunitária	Interpretação
0.0 - 0.2	Alta resiliência	Comunidades bem preparadas, impactos minimizados
0.3 – 0.5	Média resiliência	Estruturas parciais de contenção e alerta
0.6 - 0.8	Alta vulnerabilidade	Comunidades sem estrutura de resposta
0.9 – 1.0	Crítica	População desprotegida, alto risco de perdas humanas e materiais

- Fc alto agrava os danos sociais e econômicos.
- Fc baixo comunidade preparada = menor impacto.

O que é o Regime Hidrológico (R_h)

O regime hidrológico do Rio Hercílio (ou de qualquer rio) é a variação natural da vazão do rio ao longo do tempo, resultante de fatores como:

- precipitação (chuva) e infiltração no solo,
- · escoamento superficial,
- · evaporação,
- · aporte de afluentes,
- e uso do solo na bacia.

Em outras palavras, ele indica **quanto de água o rio normalmente transporta**, mesmo **sem chuva intensa ou ação da barragem**.

Elemento	Descrição	Tipo	Unidade /
			Faixa sugerida
Vazão média do rio	Valor médio de	Constante base	200–500 m ³ /s
	escoamento natural sem		
	chuva		
Variação temporal	Oscilações naturais (ex.:	Função temporal (ex.:	±20% da média
	estação seca/chuvosa)	seno, ruído aleatório)	
Sensibilidade à	Quanto o regime aumenta	Coeficiente	0-0.3
chuva local	conforme chuva	multiplicador	
Área de drenagem	Proporção da bacia que	Percentual (0–1)	0.5–1.0
efetiva	contribui à vazão		
Tempo de resposta	Atraso entre chuva e	Delay (ticks)	1–3 ticks
	aumento de vazão		

O que é o parâmetro C_i

O C_i representa a **intensidade das chuvas incidentes na bacia de contribuição da Barragem de José Boiteux** durante um intervalo de tempo (por exemplo, uma hora ou um dia).

Ele reflete **eventos extremos de precipitação** — chuvas concentradas, temporais, frentes frias — que podem elevar o nível do rio rapidamente.

No modelo, C_i é uma **variável ambiental de entrada**, com comportamento estocástico (aleatório) ou sazonal.

Elemento	Descrição	Tipo	Unidade / Faixa sugerida	Impacto
Intensidade média da chuva	Valor médio esperado de precipitação	Base / parâmetro inicial	0 – 200 mm/h	Eleva diretamente a vazão total
Duração do evento	Quanto tempo o evento de chuva dura	Parâmetro temporal	1 – 10 ticks	Controla a persistência da chuva
Frequência de ocorrência	Probabilidade de chover em um tick	Probabilidade (0–1)	0.1 – 0.5	Define se a chuva é esporádica ou frequente
Amplitude do evento extremo	Multiplicador para eventos raros	Coeficiente (1–3)	1-3	Permite simular enchentes críticas
Área afetada	Porção da bacia atingida pela chuva	Proporção (0–1)	0.4 – 1.0	Reduz o efeito da chuva se atingir apenas parte da bacia

O que é E_t (Eficiência de Controle Técnico)

O parâmetro E_t expressa o **nível de eficiência operacional e tecnológica** do sistema de controle da barragem — ou seja, **o quanto o sistema consegue reagir corretamente** às variações de chuva e vazão.

Ele combina fatores humanos, técnicos e estruturais, como:

- precisão dos sensores e instrumentos (nível, vazão, pluviômetros);
- tempo de resposta do operador;
- treinamento e planejamento para situações de emergência;
- integração de dados entre agências meteorológicas e a administração da barragem;
- confiabilidade do sistema automatizado (atuadores, comportas, energia, etc.).

Elemento	Descrição	Tipo	Faixa sugerida (0–1)	Interpretação
Eficiência média	Grau geral de controle técnico	Valor base	0.6-0.9	1 = sistema perfeito; 0 = falha total

Tempo de resposta	Demora entre	Variável	0 – 10 ticks	Quanto maior,
operacional	evento e ação	associada		menor a eficiência
Confiabilidade do	Probabilidade de	Probabilidade	0.8 – 1.0	Reflete redundância
sistema	não falhar	(0–1)		e automação
Competência	Nível de	Coeficiente	0.5 – 1.0	Simula a influência
técnica	treinamento da			humana
	equipe			
Disponibilidade de	Proporção de	Percentual (0–	0.5 – 1.0	Impacta
sensores	sensores	1)		diretamente a
	funcionando			precisão das ações

Cr — Coeficiente de Resposta da Barragem

Função:

O **Cr** representa a **eficiência física e operacional da barragem** em responder aos eventos hidrológicos — isto é, **o quanto a estrutura consegue suportar, conter ou liberar água de forma segura e controlada**.

Um **Cr alto** indica uma barragem **eficiente e bem mantida**; um **Cr baixo** indica falhas estruturais, lentidão operacional ou má conservação.

Subparâmetro	Descrição	Tipo	Intervalo típico
Cr ₁ - Capacidade	Relação entre o volume máximo	Numérico	0–1
estrutural	suportado e o volume atual. Mede a		
	resistência física da barragem a		
	sobrecarga.		
Cr ₂ - Eficiência de	Representa a eficiência do	Numérico	0–1
descarga	vertedouro e das comportas para		
	liberação controlada da água.		
Cr ₃ – Tempo de	Tempo médio para intervenção	Numérico	>0 (pode ser
resposta	humana ou automática após		transformado em
operacional	aumento do nível.		peso inverso)
Cr ₄ – Manutenção e	Grau de conservação e manutenção	Numérico	0–1
integridade	da estrutura, influenciando sua confiabilidade.		

Fc — Fator de Correção Comunitário

Função:

Representa **a vulnerabilidade e a capacidade de resposta das comunidades** afetadas pela barragem.

Em outras palavras, é um coeficiente que **amplifica ou reduz o impacto**

socioeconômico de acordo com o preparo da comunidade, sua infraestrutura, e os mecanismos de mitigação existentes.

Subparâmetro	Descrição	Tipo	Intervalo típico
Fc ₁ – Vulnerabilidade social	Mede o grau de exposição da população ao risco (nível de pobreza, localização em áreas de risco, dependência da barragem).	Numérico	0–1
Fc ₂ – Capacidade de adaptação	Avalia o quanto a comunidade consegue reagir e se recuperar (planos de evacuação, assistência social, recursos).	Numérico	0–1
Fc ₃ – Comunicação e alerta	Eficiência dos sistemas de aviso e resposta (sirene, comunicação local, monitoramento).	Numérico	0–1
Fc ₄ – Infraestrutura crítica	Grau de preparo de estradas, pontes, hospitais e energia frente a enchentes.	Numérico	0–1

Forma final do modelo completo

Símbolo	Nome do Parâmetro	Tipo	Intervalo (sugerido)	Interpretação
Vc	Vazão controlada (m³/s)	Variável dependente (resultado)	≥0	É a vazão de saída após o controle da barragem. Indica quanto de água o sistema deixa seguir pelo rio. Quanto menor o valor, maior a eficiência no controle de enchentes.
Rh	Regime hidrológico (m³/s)	Variável de entrada (ambiental)	200 – 500	Representa a vazão natural do Rio Hercílio (sem influência da barragem). Reflete o comportamento hidrológico da bacia — aumenta com o volume de água que chega ao rio.
Ci	Chuvas intensas (mm/h)	Variável de entrada (ambiental)	0 – 200	Representa a intensidade das chuvas na região. Aumenta a quantidade de água que chega à barragem e ao rio.
Et	Eficiência de controle técnico (adimensional)	Parâmetro interno da barragem	0-1	Mede a eficiência operacional : monitoramento, tempo de resposta e precisão no manejo. Um valor alto significa operação eficaz e previsível.

Cr	Capacidade de	Parâmetro	0 – 1	Representa o quanto a barragem
	retenção	interno da		consegue reter
	(adimensional)	barragem		temporariamente da água. 1 =
				100% da capacidade de
				retenção.
Fc	Fator comporta	Parâmetro de	0.3, 0.6,	Expressa o grau de abertura das
	(adimensional)	controle	1.0	comportas. 0.3 = fechadas, 0.6 =
				parcialmente abertas, 1.0 =
				totalmente abertas. Controla
				diretamente o fluxo de saída.