LECTURE - 9

Logical Consequence $\Gamma \models \phi$ $- M(\Gamma) \subseteq M(\phi)$

- Alternatively: For each p:

if for each q' E T

truth q' p = true

then

truth p p = true

Fact: If [] then [U {-p} is NOT SATISFIABLE

PROOF: Suppose $M(\Gamma) \subseteq M(p)$ if $g \in M(\Gamma)$, $g \in M(p)$ Suppose $\Gamma \cup \{\neg p\}$ Satisfiable

Let $g \in M(\Gamma \cup \{\neg p\})$ if $g \in M(\Gamma)$ and $g \in M(\neg p)$ But by $D: g \in M(p)$ if $g \in M(p)$ and $g \in M(\neg p)$

X CONTRADICTION!

PROOF STRATEGY:
TO PROVE [+ ,

SHOW I'U & - P} NOT SAT.

HOW? RESOLUTION

ASSUME: CONVERT

(NOTE: THESE BECOME

- CONJUNCTIONS OF

DISTUNCTION OF

A ¬A (+ve) (-ve)

NOTE: IF ANY CLAUSE IS NOT SATISFIABLE, THE WHOLE SET OF CLAUSES IS NOT SATISFIABLE

Q: HOW IS A CLAUSE SATISFIED?

Q: SO WHICH CLAUSE IS NOT

SATISFIABLE?

HOWEVER: EACH CLAUSE MAY BE SATISFIABLE, BUT THE COLLECTION MAY NOT BE.

Eg: { { A}}, { ¬A}}

RESOLUTION

Idea: If one clause contains literal A, and another Contains 7A, RESOLVE the two clauses.

 $C_{i} = \{ l_{i1}, l_{i2}, \dots l_{ik} \}$ $C_{j} = \{ l_{j1}, l_{j2}, \dots l_{jm} \}$

w.l.og. lis = 7 ljs

$$C_{i,j}^{res} = \{ l_{i2}, ..., l_{iR}, l_{j2}, ..., l_{jm} \}$$
RESOLVENT ON l_{i1} .

LEMMA: SUPPOSE A SET OF CLAUSES

$$S = \{C_1, \ldots, C_n\}$$

IS SATISFIED BY P

SUPPOSE THERE ARE CLAUSES

$$C_{i} = \{ l_{i1}, l_{i2}, \dots l_{ik} \}$$
 $C_{j} = \{ l_{j1}, l_{j2}, \dots l_{jm} \}$
 $s. t.$
 $l_{i1} = \neg l_{j1}$

Let Cres = { li2, ..., lik, lj2, ..., ljm}

THEN P satisfies SU { C'es }

PROOF: ρ Satisfies S: ρ Satisfies $C_i = \{l_{i1}, l_{i2}, \dots l_{ik}\}$ and ρ Satisfies $C_j = \{l_{j1}, l_{j2}, \dots l_{jm}\}$ and $l_{i1} = \neg l_{j1}$ (wo.g)

Claim: P satisfies Cres: Sl. l. l. l. ?

- Suppose truth Liz p = true .. truth ling = false So since p satisfies Cj, truth (1) p= true for at least one $(\ell) \in \{(\ell_{j2}, \ldots, \ell_{jm})\}$

So o satisfies Cres

- Suppose truth lis = false : truth bis = True

> Since p satisfies Ci, truth (2) p = True for at least one (1) = { liz, ... lik}

in p satisfies Ci, i.

CORDLLARY: If we start with a set 5 of clauses, and perform a Series of resolution steps $S_{i+1} = S_i \cup \{C_i'\}$ If ever the it resolvent Ci={}

then S was UNSATISFIABLE.

QUESTION: HOW DO WE CHOOSE THE "RIGHT" SEQUENCE?

NOTE: CAN DO USELESS RESOLUTIONS
* CAN GET INTO CYCLES

HORN CLAUSES

AT MOST ONE +VE LITERAL

- 0 tre, 0 -re: {}

- 1 tre, 0 - re: A "fact"

- 1 tre, k>0 -re: AV-18, V... V18k

(B₁ ∧ ... ∧B_k) → A (by De Morgan)

("goal"

- 0 +ve, k >0 -ve: ¬B, V.....V¬Bk

 $\neg (B_1 \land ... \land B_k)$

S uppose [- only facts & rules (each clause has exactly 1 toe literal) φ - A, A A2 ... Λ Ak To "prove" l'tp take TU { 7 p} and perform RESOLUTION. Note: -p is a "GOAL" ALWAYS RESOLVE GOAL WITH A fact / rule. -> WILL ALWAYS GET A NEW GOAL.

$$\widehat{\mathbb{D}}$$
 A,B \rightarrow C.

(4) $C_1 E \rightarrow F$.

BAR AC

{O... ●} = FAG

Q: DOES RULE/FACT DRDER MATTER?

Q: DOES ORDER OF LITERALS IN GOAL/

RULE BODY MATTER?