ICAP'18 - 13th ICAP - Key West, Florida

USING FIELD MAPS TO TRACK CBETA FFAG ERL

F. Méot, N. Tsoupas, S. Brooks, D. Trbojevic, J. Crittenden Brookhaven National Laboratory Collider-Accelerator Department

Commissioning will commence in March 2019

 \vdash

Dan Abell, "Zgoubi: Recent Developments and Future Plans", Tue. 9:45. SIREPO sample here by Paul Moeller/Radiasoft.

An interface to accelerator codes - https://beta.SIREPO.com/#/accel

CBETA FFAG ARC Cell

107 cells in CBETA return loop

Orbits and optical functions, from OPERA field maps:

Why use field maps?

- All necessary material is available, so, why not just do it? (and, in passing... forget about questionable mapping approximations)
- FFAG experience dictates to do so... as Frank Coles wrote regarding Runge-Kutta tracking in MURA FFAGs 1950s, via KEK and KURRI 150 MeV rings, RACCAM spiral magnet, the EMMA linear FFAG ring at Daresbury (CBETA arc cell is similar)
- Have closest-to-real-life simulation of the Halbach doublets return loop, over the all 8 passes (4 accelerated, 4 decelerated)
- Validation of the method includes the feasibility of:
 - using separate/overlapping QF and BD/QD field maps
 - including the effect of corrector yokes
- Interest of using separate field maps: flexibility in the modeling
 - independent fine-tuning of QF or BD Halbach magnet strengths
 - independent "PS" knob for each corrector field map
 - possibility of independent field & positioning errors/compensation
 - easier connection between sectors (FA, TA, ZA, ...)

OPERA simulation of CBETA cell

• Either a single full-cell field map:

• Or, two separate field maps:

Code sequence for a cell

• Full-cell 3D field map:

```
'TOSCA' QF+BD

0  0
-9.69871600E-04  1.000  1.000  1.000

HEADER_8  ZroBXY

451 83 27 15.1  1.

3cellFieldMap.table

1 -508.5 44.49 2.2E4 ! MOTION BOUNDARY

2
.2
2  0.000  0.000  0.000

'CHANGREF'

XS -0.678391 YS -1.8870962 ZR -5.0
```

• Separate QF, BD maps:

```
'DRIFT' HD2
6.15
 'DRIFT'
-18.35! = (50 \text{cm} - 13.3 \text{cm})/2 (50 cm is field map extent)
'TOSCA'
0 0
-9.76E-04 1. 1. 1.
HEADER_8 ZroBXY
501 83 1 15.1 1.
QF-3D-fieldMap.table
0 0 0 0
2
  0.0000000E+00 0.0000000E+00 0.0000000E+00
 'DRIFT'
-18.35 ! = (50 \text{cm} - 13.3 \text{cm})/2 (50 cm is field map extent)
 'DRIFT'
             ED1
1.2
 'CHANGREF'
                   CORNER
ZR -2.50000000
 'DRIFT'
 'CHANGREF'
                   CORNER.
ZR -2.50000000
 'DRIFT'
             FD1
 'DRIFT'
-18.9 ! = (50cm - 12.2cm)/2 (50cm is field map extent)
'TOSCA'
-9.76E-04 1.0000000E+00 1.0000000E+00 1.0000000E+00
HEADER_8 ZroBXY
501 83 1 15.1 1.0
BD-3D-fieldMap.table
0 0 0 0
2
2 0.00000000E+00 -.019 0.E+00 ! Y-offset -0.019cm = inwar
 'DRIFT'
-18.9! = (50 \text{cm} - 12.2 \text{cm})/2 (50 cm is field map extent)
 'DRIFT' HD2
6.15
```

Beam optics validations

• FIRST ORDER PARAMETERS OF THE ARC CELL

separate field maps of QF and BD, or 3-D full-cell single map,
 yield same paraxial quantities (orbits, tunes, chromaticities, etc.)

Path length across cell (cm) Difference is at few ppm level.				
E (MeV)	42	78	114	150
Single 3D map	44.4846	44.3298	44.3898	44.5806
Two 2D or 3D maps	44.4845	44.3291	44.3884	44.5797

• DYNAMICAL ADMITTANCE, 400-CELL

 \diamond Maximum stable invariants are \sim meter normalized, far beyond μ m CBETA beam emittance

H V case of separate 2D field maps:

case of single 3D field map (same scales)

• DYNAMICAL ADMITTANCE, ENERGY SCAN

Maximum stable invariants and tunes, superimposed. Case of (i) separate QF, BD 2-D maps, (ii) single QF-BD 2-D, (iii) 3-D map

"H": horizontal motion (initial V invariant is taken very small).
"V": vertical motion (initial H invariant is taken very small).

We want the cell model even fancier...

• Include iron steerers, with independent control

- ⋄ Two corrector field maps, and as we did for EMMA:
- one has F-corrector on and D-corrector off
- one has F-corrector off and D-corrector on
- Code sequence, case of single full-map:

```
QF+BD map + corrector maps
 'TOSCA'
 0 \quad 0
  -9.69871600E-04 1. 1. 1.
  HEADER'8 ZroBXY
451 83 27 15.3 1. 0.01
                         0.00001 ! 3 independent knobs
3D-Cell-fieldMap.table
FConDCoff-3D-fieldMap.table
FCoffDCon-3D-fieldMap.table
  1 482.028 42.172 -20328
                                   ! integration boundary
                                   ! integration step size
     0.0 \ 0.0 \ 0.0
                                    ! magnet positioning
  'CHANGREF'
 XS -0.6586 YS -3.2061 ZR -5.0 YS 1.2047
                                               ! magnet positioning
```

The complete return loop is operational. Full field-map.

• FA (FB) arc optics:

Two-map cell sequence:

```
'DRIFT'
5.6
'DRIFT'
-18.35
'TOSCA'
          QF
0 0
 -9.69871600E-04 1.00E+00 1.00E+00 1.00E+00
HEADER_8 ZroBXY
501 83 1 15.2 1. 0.
 QF-2D-fieldMap.table
 FCorr-2D-fieldMap.table
0 0 0 0
2
. 1
              0.00E+00
                         0.00E+00
    0.00E+00
'DRIFT'
-18.35
'DRIFT'
1.2
              CORNER
'CHANGREF'
ZR -2.50
'DRIFT'
4.2
'CHANGREF'
              CORNER
                             24 cells
                                     14 cells
                                             13 cells
ZR -2.50
'DRIFT'
1.2
'DRIFT'
-18.9
'TOSCA'
0 0
 -9.69871600E-04 1.00E+00 1.00E+00 1.00E+00
HEADER_8
          ZroBXY
501 83 1 15.1 1.0
501 83 1 15.2 1. 0.
 BD-2D-fieldMap.table
 DCorr-2D-fieldMap.table
0 0 0 0
2
    0.00E+00 3.60319403E-04 0.00E+00
'DRIFT'
-18.9
'DRIFT'
6.7
```

SX and RX are under construction

• The 42 MeV spreader line + start of FFAG arc:

• In the code sequence, step by step, replace the analytical models of the quadrupoles and bends by their OPERA field maps • The 42 MeV spreader line S1 from linac exit to start of arc FA:

(former FFAG arc test optics, early 2018)

• Working on the first turn in SIREPO environment

THANK YOU FOR YOUR ATTENTION

BIBLIOGRAPHY

- BNL-Cornell collaboration and documents
- CBETA CDR
- F. Méot, et als., Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac, NIM A 896 60-67 (2018)
- F. Méot, N. Tsoupas, Using field maps to track CBETA, FFAG'18 Workshop, Kyoto University (10-14 Sept. 2018).

https://indico.rcnp.osaka-u.ac.jp/event/1143/contributions/1178/

BACKUP SLIDES

 $\textbf{Table 1.2.1:} \ \textbf{Primary parameters of the Cornell-BNL ERL Test Accelerator}.$

Parameter	Value	Unit
Largest energy	150	$\overline{\mathrm{MeV}}$
Injection energy	6	${ m MeV}$
Linac energy gain	36	${ m MeV}$
Injector current (max)	40	mA
Linac passes	8	4 accel. + 4 o
Energy sequence in the arc	$42 \rightarrow 78 \rightarrow 114 \rightarrow 150 \rightarrow 114 \rightarrow 78 \rightarrow 42$	${ m MeV}$
RF frequency	1300.	MHz
Bunch frequency (high-current mode)	325.	MHz
Circumference harmonic	343	
Circumference length	79.0997	m
Circumference time (pass 1)	0.263848164	$\mu \mathrm{s}$
Circumference time (pass 2)	0.263845098	$\mu \mathrm{s}$
Circumference time (pass 3)	0.263844646	$\mu \mathrm{s}$
Circumference time (pass 4)	0.265003298	$\mu \mathrm{s}$
Normalized transverse rms emittances	1	$\mu\mathrm{m}$
Bunch length	4	ps
Typical arc beta functions	0.4	m
Typical splitter beta functions	50	m
Transverse rms bunch size (max)	1800	$\mu\mathrm{m}$
Transverse rms bunch size (min)	52	$ m \mu m$
Bunch charge (min)	1	pC
Bunch charge (max)	123	pC

• Tracking accuracy? A non-issue

10⁵-turn phase spaces, case of single full-cell 2D field map

Horizontal phase space observed in long drift.

Excursions are in $10\,\mathrm{mm}$ range.

Vertical phase space observed in long drift.

Excursions are in mm range.