CP203: Digital Logic and Design

Teaching Scheme			Credits	Marks Distribution				
				Theory Marks		Practical Marks		Total
L	Т	P	С	ESE	CE	ESE	CE	Marks
3	0	2	5	70	30	30	20	150

Course Content:

Sr.	Torios	Teaching
No.	Topics	Hrs.

1 **Introduction:**

03

Digital Systems; Data representation and coding; Logic circuits; integrated circuits; Analysis; design and implementation of digital systems. Truth table; Basic logic operation and logic gates.

2 Number Systems and Codes:

04

Positional number system; Binary; octal and hexadecimal number systems; Methods of base conversions; Binary; octal and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers; Binary coded decimal codes; Gray codes; Error detection and correction codes - parity check codes and Hamming codes.

Boolean Algebra & Simplification of Boolean Algebra:

07

Basic postulates and fundamental theorems of Boolean algebra; Standard representation of logic functions; The Map Method; SOP and POS forms; Simplification of switching functions K-map and Quine-McCluskey tabular methods; Synthesis of combinational logic circuits.

4 Combinational Logic Modules and their applications:

06

Decoders; encoders; multiplexers; demultiplexers and their applications; Parity circuits and comparators; Arithmetic modules- adders; sub tractors and ALU; Design examples.

5 **Sequential Logic systems:**

08

Definition of state machines; state machine as a sequential controller; Basic sequential circuits- latches and flip-flops: SR-latch; D-latch; D flip-flop; JK flip-flop; T flip-flop; Timing hazards and races; Analysis of state machines using D flip-flops and JK flip-flops; Design of state machines - state table; state assignment; transition/excitation table; excitation maps and equations; logic realization; Design examples.

Finite State machine design and applications:

08

Designing state machine using ASM charts; Designing state machine using state diagram; Design approaches for Synchronous and asynchronous machines; Registers and Counters; Application examples.

7 <u>Logic Families:</u>

05

Transistor-Transistor Logic (TTL); MOSFET; CMOS.

Programmable Logic Devices:

04

PLAs; PALs and their applications; Sequential PLDs and their applications; State-machine design with sequential PLDs; Introduction to field programmable gate arrays (FPGAs).

Total Hrs.

45

Reference Books:

- 1. M Morris Mano, "Digital Logic and Computer Design Fourth Edition", Prentice Hall Publication.
- 2. A. Anand Kumar, "Fundamentals of Digital Circuits" third Edition: PHI Learning Pvt. Ltd.
- 3. Malvino and Leach, "Principle of digital Electronics" Seventh Edition; McGraw-Hill Education.
- 4. R.P. Jain, "Modern Digital Electronics" Fourth Edition; McGraw-Hill.