Textbook sections: 7.1

This extends <u>autonomous equations & population dynamics</u>, focusing on autonomous non-linear systems.

Autonomous Systems

An autonomous system is a system

$$rac{dx}{dt} = f(x,y), \quad rac{dy}{dt} = g(x,y)$$

(Not connected to t).

This can be non-linear.

Critical Points

Critical points occur when...

$$\frac{dx}{dt} = 0$$
, and $\frac{dy}{dt} = 0$

Let \vec{x}_0 be a given critical point, and let $\vec{x}(t)$ be a trajectory that starts sufficiently close to \vec{x}_0 . Then, \vec{x}_0 can be classified as one of the following.

classification	intepretation
stable	$\ ec{x}-ec{x}_0\ $ is bounded
asymptotically stable	stable and $ec{x} ightarrow ec{x}_0$
unstable	not bounded

∷ Example: Pendulums ∨

Under a gravitational force, the angle $\theta(t)$ makes with the vertical axis can be described with

$$rac{d^2 heta}{dt^2} + \gammarac{d heta}{dt} + \omega^2\sin heta = 0$$

Sketching

Sketch the phase portrait θ' vs. θ for a few different initial conditions. Where are the critical points located?

$\gamma=0$, no damping

At (0,0), there is a stable equilibrium. At $(\pm k\pi,0)$, the curve oscillates through (+) and (-).

 $\gamma
eq 0$, damping

At $(\pm 2k\pi,0)$, there are asymptoically stable equilibria. At $(\pm 2k\pi + \pi,0)$, there are unstable(?) equilibria.

Nullclines

An **x-nullcline** is a line along which $\frac{dx}{dt} = 0$. A **y-nullcline** is a line along which $\frac{dy}{dt} = 0$.

A **nullcline** is a line along which x' = y' = 0.

∃ Example ∨

Identify all the critical points of the autonomous system

$$egin{aligned} rac{dx}{dt} &= 2x - x^2 - xy \ rac{dy}{dt} &= 3y - 2y^2 - 3xy. \end{aligned}$$

x-nullclines

$$x'=0$$
 when $2x-x^2-xy=x(2-x-y)=0.$ Hence, $x'=0$ when $x=0$ or $y=2-x.$

y-nullclines

$$y'=0$$
 when $3y-2y^2-3xy=y(3-2y-3x)=0.$ Hence, $y'=0$ when $y=0$ or $y=\frac{3}{2}x-\frac{3}{2}.$

Points

The points occur where a x-nullcline intersects a y-nullcline.

