Efficient and accurate arbitraryshaped text detection with pixel aggregation network (PAN)

ICCV 2019

Kim Bochan 2020. 07. 19 Mon

Scene Text Detection

Figure 9. Detection results on Total-Text.

FPS

Method	Ext	R	P	F	FPS
SegLink* [28]	-	23.8	30.3	26.7	-
EAST* [49]	_	36.2	50.0	42.0	_
Lyu <i>et al</i> .[24]	✓	55.0	69.0	61.3	_
TextSnake [23]	✓	74.5	82.7	78.4	_
MSR [43]	✓	74.8	83.8	79.0	4.3
PSENet [33]	-	75.1	81.8	78.3	3.9
PSENet [33]	✓	78.0	84.0	80.9	3.9
Wang <i>et al</i> .[35]	-	76.2	80.9	78.5	_
TextDragon [6]	✓	74.2	84.5	79.0	_
TextField [41]	✓	79.9	81.2	80.6	6
PAN [34]	_	79.4	88.0	83.5	39.6
LOMO [46]	✓	75.7	88.6	81.6	4.4
LOMO† [46]	✓	79.3	87.6	83.3	_
CRAFT [2]	✓	79.9	87.6	83.6	_
Ours	-	83.9	86.9	85.4	3.8

Method	Ext	R	P	F	FPS
EAST [49]	✓	73.5	83.6	78.2	13.2
Liao et al. [15]	✓	79.0	85.6	82.2	6.5
Lyu et al. [25]	✓	70.7	94.1	80.7	3.6
FOTS [20]	✓	82.0	88.8	85.3	7.8
PixelLink [4]	-	81.7	82.9	82.3	7.3
MSR [43]	✓	78.4	86.6	82.3	4.3
PSENet [33]	-	79.7	81.5	80.6	1.6
PSENet [33]	✓	84.5	86.9	85.7	1.6
PAN [34]	-	77.8	82.9	80.3	26.1
TextDragon [6]	✓	81.8	84.8	83.1	-
LOMO [46]	✓	83.5	91.3	87.2	3.4
TextField* [41]	✓	83.9	84.3	84.1	1.8
Liu <i>et al</i> . [21]	✓	83.8	89.4	86.5	-
Tian <i>et al</i> . [32]	✓	85.0	88.3	86.6	3
CRAFT [2]	✓	84.3	89.8	86.9	-
Wang <i>et al.</i> [35]	-	83.3	90.4	86.8	_
Wang et al.† [35]	-	86.0	89.2	87.6	_
Ours	-	86.1	87.6	86.9	3.5

Architecture

(Light)Backbone + Feature Pyramid Enhancement Module(FPEM) + Feature Fusion Module(FFM) + Pixel Aggregation(PA)

Architecture - backbone

- 1. Resnet18
- 2. 4 feature maps generated by conv2, conv3, conv4, and conv5 stages of backbone (4, 8, 16, 32 strides)
- 3. 1×1 conv to reduce the channel to 128

Architecture - FPEM

- 1. U-shaped with two phases, up-scale & down-scale enhancement 1. enhancement is iteratively conducted on [4, 8, 16, 32] strides
- 2. Depthwise Separable Conv(DWConv)
 - 1. small computation overhead

Architecture - FPEM

- 1. Fully Cascadable
 - 1. as n_c increased, feature map of different scales are fused
 - 2. receptive field more bigger
- 2. Computationally cheap
 - 1. 1/5 FLOPS of FPN

Architecture - FFM

- 1. Combine the corresponding-scale feature maps by element-wise addition
- 2. Feature maps after addition are upsampled and concatenated into a final feature map (4×128 channels)

Architecture - PA

Text regions lying closely are often overlapping -> need to merge text region pixels to kernels

- 1. Distance between the **text pixel** and kernel of the same text instance should be small.
- -> Aggregation Loss
- 2. **Kernels** of different text instances should maintain enough distance.
- -> Discrimination Loss

Architecture - PA

1. Aggregation Loss

$$\mathcal{L}_{agg} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|T_i|} \sum_{p \in T_i} ln(\mathcal{D}(p, K_i) + 1)$$

$$\mathcal{D}(p,K_i) = max(\|\mathcal{F}(p) - \mathcal{G}(K_i)\| - \delta_{agg},0)^2$$
 (Sagg = 0.5)

N: number of text instances

T: text instance

p: pixel

K: kernel

F(p): similarity vector of pixel p

g(k): similarity vector of kernel k, calculated as $\sum_{q \in K_i} \mathcal{F}(q) / |K_i|$

Architecture - PA

2. Discrimination Loss

Try to keep the distance among the kernels not less than δ dis (δ dis = 3)

$$\mathcal{L}_{dis} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} ln(\mathcal{D}(K_i, K_j) + 1),$$

$$\mathcal{D}(K_i, K_j) = \max(\delta_{dis} - \|\mathcal{G}(K_i) - \mathcal{G}(K_j)\|, 0)^2.$$

Full Objective

$$\mathcal{L}_{tex} = 1 - \frac{2\sum_{i} P_{tex}(i) G_{tex}(i)}{\sum_{i} P_{tex}(i)^{2} + \sum_{i} G_{tex}(i)^{2}},$$

$$\mathcal{L}_{ker} = 1 - \frac{2\sum_{i} P_{ker}(i) G_{ker}(i)}{\sum_{i} P_{ker}(i)^{2} + \sum_{i} G_{ker}(i)^{2}},$$

$$\mathcal{L} = \mathcal{L}_{tex} + \alpha \mathcal{L}_{ker} + \beta (\mathcal{L}_{agg} + \mathcal{L}_{dis}),$$

- 1. Dice Loss
- 2. tex, ker: binary map
- 3. GT of kernel map is generated by shrinking original GT polygon
 - 1. methods followed by PSENet
- 4. Online Hard Example Mining(OHEM, ratio=3)
- 5. alpha=0.5, beta=0.25

Result Visualization

1. Dimension of similarity vector is reduced to 3, 2 by PCA

Post Processing

- i) Finding the connected components in the kernels' segmentation result, and each connected component is a single kernel.
- i) For each kernel K_n merging its neighbor text pixel in predicted text regions while the Euclidean distance of their similarity vectors is less than d(=6).
- i) Repeating step ii) until there is no eligible neighbor text pixel.

Training Details

- 1. Dimension of similarity vector = 4
- 2. SGD
- 3. Two training strategies
 - 1. From scratch(36K)
 - 1. Ir = 10-3, "poly" Ir strategy
 - 2. Pre-training on SynthText(50K) and finetuning(36K)
 - 1. Ir = 10-3, weight decay = 5X10-4, Nesterov momentum = 0.99, He init
- 4. random scale, random horizontal flip, random rotation and random crop

Ablation Study - FPEM

Influence of the number of cascaded FPEMs

#FPEM	GFLOPS	[CDA]	R 2015	CTW1500	
#I'I LIVI	GILOIS	F	FPS	F	FPS
0	42.17	78.4	33.7	78.8	49.7
1	42.92	79.9	29.5	80.4	44.7
2	43.67	80.3	26.1	81.0	39.8
3	44.43	80.4	23.0	81.3	35.2
4	45.18	80.5	20.1	81.5	32.4

Table 1. The results of models with different number of cascaded FPEMs. "#FPEM" means the number of cascaded FPEMs. "F" means F-measure. The FLOPS are calculated for the input of $640 \times 640 \times 3$.

- 1. Satureaed after $n_c = 2$
- 2. Set default as $n_c = 2$

Ablation Study - FPEM

Effectiveness of FPEM

#FPEM	GFLOPS	ICDA]	R 2015	CTW1500	
#IT LIVI	GILOFS	F	FPS	F	FPS
0	42.17	78.4	33.7	78.8	49.7
1	42.92	79.9	29.5	80.4	44.7
2	43.67	80.3	26.1	81.0	39.8
3	44.43	80.4	23.0	81.3	35.2
4	45.18	80.5	20.1	81.5	32.4

Method	ICDAI	R 2015	CTW1500		
Wictiod	F	FPS	F	FPS	
ResNet18 + 2 FPEMs + FFM	80.3	26.1	81.0	39.8	
ResNet50 + PSPNet [56]	80.5	4.6	81.1	7.1	

- 1. With FPEM, can make about 1.5% improvement on F-measure while bringing tiny extra computation
- 1. Can reach almost same performance with huge model
 - 1. 5 times faster
 - 2. Model size is only 12.25M

Ablation Study - FFM

Effectiveness of FFM

#	# Backbone	Fuse	PA	[CDA]	ICDAR 2015		1500
π	Dackbone	Tusc	17	F	FPS	F	FPS
1	ResNet18	FFM	\checkmark	80.3	26.1	81.0	39.8
2	ResNet18	-	\checkmark	79.7	26.2	80.2	40.0
3	ResNet18	Concat	\checkmark	80.4	22.3	81.2	35.9
4	ResNet18	FFM	-	79.3	26.1	79.8	39.9
5	ResNet50	FFM	√	81.4	16.7	81.6	26.0
6	VGG16	FFM	\checkmark	81.9	6.6	81.5	10.1

- 1. F-measure drop 0.6%-0.8% when the FFM is removed
- 2. Proposed FFM can achieve performance comparable to the direct concatenation

Ablation Study - PA

Effectiveness of PA

#	Backbone	Fuse	PA	ICDAI	ICDAR 2015		1500
	Dackbone	Tusc		F	FPS	F	FPS
1	ResNet18	FFM	\checkmark	80.3	26.1	81.0	39.8
2	ResNet18	-	√	79.7	26.2	80.2	40.0
3	ResNet18	Concat	\checkmark	80.4	22.3	81.2	35.9
4	ResNet18	FFM	(-)	79.3	26.1	79.8	39.9
5	ResNet50	FFM	√	81.4	16.7	81.6	26.0
6	VGG16	FFM	\checkmark	81.9	6.6	81.5	10.1

- 1. set β to 0
- 2. F-measure of the model without PA (Table #4) drops over 1%

Ablation Study - backbone

Effectiveness of backbone

#	Backbone	Fuse	PA	ICDAI	ICDAR 2015		1500
	Dackbone	Tuse	171	F	FPS	F	FPS
1	ResNet18	FFM	\checkmark	80.3	26.1	81.0	39.8
2	ResNet18	-	√	79.7	26.2	80.2	40.0
3	ResNet18	Concat	\checkmark	80.4	22.3	81.2	35.9
4	ResNet18	FFM	-	79.3	26.1	79.8	39.9
5	ResNet50	FFM	\checkmark	81.4	16.7	81.6	26.0
6	VGG16	FFM	\checkmark	81.9	6.6	81.5	10.1

- 1. ResNet50 and VGG16 can bring over 1% improvement on ICDAR 2015 and over 0.5% improvement on CTW1500.
- 2. The reduction of FPS brought by the heavy backbone is apparent

CTW 1500 – Curved TD (Polygon)

Method	Ext.	Venue		CTW	1500	
Wictiou	LAt.	venue	P	R	F	FPS
CTPN* [47]	-	ECCV'16	60.4*	53.8*	56.9*	7.14
SegLink* [42]	-	CVPR'17	42.3*	40.0*	40.8*	10.7
EAST* [58]	-	CVPR'17	78.7*	49.1*	60.4*	21.2
CTD+TLOC [31]	-	ICDAR'18	77.4	69.8	73.4	13.3
PSENet-1s [24]	-	CVPR'19	80.6	75.6	78.0	3.9
PAN-320	-	-	82.2	72.6	77.1	84.2
PAN-512	-	-	83.8	77.1	80.3	58.1
PAN-640	-	-	84.6	77.7	81.0	39.8
TextSnake [35]	√	ECCV'18	67.9	85.3	75.6	-
PSENet-1s [24]	√	CVPR'19	84.8	79.7	82.2	3.9
PAN-320	√	-	82.7	77.4	79.9	84.2
PAN-512	✓	-	85.5	81.5	83.5	58.1
PAN-640	✓	-	86.4	81.2	83.7	39.8

Total Text – Curved TD (Polygon)

Method	Ext.	Venue		Total-	Text	
Wictiou	EXt.	venue	P	R	F	FPS
SegLink* [42]		CVPR'17	30.3*	23.8*	26.7*	-
EAST* [58]	-	CVPR'17	50.0*	36.2*	42.0*	-
DeconvNet [2]	-	ICDAR'18	33.0	40.0	36.0	-
PSENet-1s [24]	-	CVPR'19	81.8	75.1	78.3	3.9
PAN-320	-	-	84.0	71.3	77.1	82.4
PAN-512	-	-	86.7	78.4	82.4	57.1
PAN-640	-	-	88.0	79.4	83.5	39.6
TextSnake [35]	✓	ECCV'18	82.7	74.5	78.4	-
PSENet-1s [24]	✓	CVPR'19	84.0	78.0	80.9	3.9
SPCNet [50]	✓	AAAI'19	83.0	82.8	82.9	-
PAN-320	✓	-	85.6	75.0	79.9	82.4
PAN-512	✓	-	89.4	79.7	84.3	57.1
PAN-640	✓	-	89.3	81.0	85.0	39.6

ICDAR 2015 – Arbitrary oriented dataset(most commonly used dataset)

Method	Ext.	Venue		ICDAI	R 2015	
Wictiod	LAL.	venue	P	R	F	FPS
CTPN [47]	-	ECCV'16	74.2	51.6	60.9	7.1
EAST [58]	-	CVPR'17	83.6	73.5	78.2	13.2
RRPN [38]	-	TMM'18	82.0	73.0	77.0	-
DeepReg [17]	-	ICCV'17	82.0	80.0	81.0	-
PixelLink [3]	-	AAAI'18	82.9	81.7	82.3	7.3
PAN	-	-	82.9	77.8	80.3	26.1
SegLink [42]	√	CVPR'17	73.1	76.8	75.0	-
SSTD [16]	✓	ICCV'17	80.2	73.9	76.9	7.7
WordSup [19]	✓	CVPR'17	79.3	77.0	78.2	-
Lyu et al. [37]	✓	CVPR'18	94.1	70.7	80.7	3.6
RRD [28]	✓	CVPR'18	85.6	79.0	82.2	6.5
MCN [32]	✓	CVPR'18	72.0	80.0	76.0	-
TextSnake [35]	✓	ECCV'18	84.9	80.4	82.6	1.1
PSENet-1s [24]	√	CVPR'19	86.9	84.5	85.7	1.6
SPCNet [50]	✓	AAAI'19	88.7	85.8	87.2	-
PAN	✓	-	84.0	81.9	82.9	26.1

MSRA-TD500 - Long straight TD (Quadrangle)

Method	Ext.	Venue		MSRA-	-TD500	
Wictiou	EAt.	Venue	P	R	F	FPS
EAST [58]	-	CVPR'17	87.3	67.4	76.1	13.2
RRPN [38]	-	TMM'18	82.0	68.0	74.0	-
DeepReg [17]	-	ICCV'17	77.0	70.0	74.0	1.1
PAN	-	-	80.7	77.3	78.9	30.2
SegLink [42]	✓	CVPR'17	86.0	70.0	77.0	8.9
PixelLink [3]	✓	AAAI'18	83.0	73.2	77.8	3.0
Lyu et al. [37]	✓	CVPR'18	87.6	76.2	81.5	5.7
RRD [28]	✓	CVPR'18	87.0	73.0	79.0	10
MCN [32]	✓	CVPR'18	88.0	79.0	83.0	-
TextSnake [35]	✓	ECCV'18	83.2	73.9	78.3	1.1
PAN	✓	-	84.4	83.8	84.1	30.2

Time consumption comparison

Method	F	Time consumption (ms)			FPS
		Backbone	Head	Post	113
PAN-320	77.10	4.4	5.4	2.1	84.2
PAN-512	80.32	6.4	7.3	3.5	58.1
PAN-640	81.00	9.8	10.1	5.2	39.8

- 1. Time costs of backbone and segmentation head are similar, and the time cost of post-processing is half of them.
- 1. Measured on 1 1080Ti GPU and 2.20GHz GPU with PyTorch

Results - robustness analysis

Cross-dataset results on word-level and line-level datasets

Annotation	Train Set→Test Set	P	R	F
Word	SynthText → ICDAR 2015	65.9	46.9	54.8
	SynthText \rightarrow Total-Text	69.1	40.8	51.3
	ICDAR 2015 \rightarrow Total-Text	72.0	57.8	64.1
	Total-Text \rightarrow ICDAR 2015	77.6	65.5	71.1
Text Line	$CTW1500 \rightarrow MSRA-TD500$	76.6	73.1	74.8
Text Line	$MSRA-TD500 \rightarrow CTW1500$	82.4	69.1	75.2

1. still competitive

Results - robustness analysis

Results comparison on CTW1500 with other (high efficiency) segmentation methods

Methods	Ext.	F (%)	FPS
BiSeNet (ResNet18) [54]	-	78.8	25.9
CU-Net-2 (m =128, n =32) [46]	-	76.4	39.3
Ours (ResNet18 + 2FPEM + FFM)	-	81.0	39.8

- 1. They make prediction on 1/8 feature map
- 2. Our method enjoys obviously better accuracy (+2.2% and +4.6%) at the similar speed

개인적 소감

- 1. 속도 하나는 독보적이다
- 2. 속도를 중점적으로 focus하면서 성능도 최대한 지킬려고 노력한 느낌 - 아키텍쳐 설계도 합리적이고 속도에 비해 성능도 나쁘지 않음
- 3. Training method(PA) 는 좀 애매한 느낌 (robust 할 수 있을까?)
 - 1) 가령 한 이미지에 text instance 가 엄청 많으면 4d-similarity vector 로 다 표현하게 학습할 수 있을까?
 - 2) text box를 binary segmentation 하는게 맞는건지 잘 모르겠음
 - 3) kernel을 정의하기 애매한 text나 이미지들도 wild 에선 존재할 듯
- -> 속도는 빠르고 그 속도는 가성비 좋은 아키텍쳐 디자인에서 온 것 같으니 PA는 빼고 아키텍쳐만 한번 갖다 써볼까..

Q & A

감사합니다.