Probabilistic Algorithms: What, Why, and How

A Deep Dive into Randomness in Computing

Sailesh Dahal

May 12, 2025

Kathmandu University

Outline

What are Probabilistic Algorithms?

Why Probabilistic Algorithms?

How do Probabilistic Algorithms Work?

Example: Randomized Quicksort

Analysis: Recurrence and Expectation

Example: Coin Toss Probability

Random Bits in Practice

Probabilistic Data Structures

What are Probabilistic Algorithms?

What is a Probabilistic Algorithm?

Definition

An algorithm that makes random choices during execution to influence its behavior or output.

- Output or performance may vary on different runs
- Two main types: Las Vegas (always correct, time varies), Monte Carlo (time fixed, may err)

Types of Probabilistic Algorithms

- Las Vegas: Always correct, random running time
- Monte Carlo: Fixed running time, may give incorrect result with small probability
- Example: Randomized Quicksort (Las Vegas)
- Example: Primality testing (Monte Carlo)

Why Probabilistic Algorithms?

Why Randomness?

Motivation

- Simpler algorithms
- Better expected performance
- Avoid worst-case scenarios
- Useful for large-scale and distributed systems

Real-World Motivation

- Web search (PageRank)
- Load balancing (power of two choices)
- Hashing (universal hash functions)
- Primality testing (Miller-Rabin)

How do Probabilistic Algorithms

Work?

How: Randomization in Algorithms

Key Idea

Use random choices to influence the algorithm's path or output.

- Random pivot in Quicksort
- Random walks in graphs
- Random sampling

Example: Randomized Quicksort

QuickSort vs Randomized QuickSort

QuickSort:

- 1. Pick a pivot element from the array
- 2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself
- 3. Recursively sort the subarrays, and concatenate them

Randomized QuickSort:

- 1. Pick a pivot element uniformly at random from the array
- 2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself
- 3. Recursively sort the subarrays, and concatenate them

Example: Randomized Quicksort

 $\label{eq:Recall: QuickSort can take $\Omega(n^2)$ time to sort an array of size n.}$

Randomized QuickSort: Expected Runtime

Theorem

Randomized QuickSort sorts a given array of length n in $O(n \log n)$ expected time.

Note: On every input, randomized QuickSort takes $O(n\log n)$ time in expectation. On every input, it may take $\Omega(n^2)$ time with some small probability.

Randomized Quicksort: Step 1 (Initial Array)

Consider the array:

15 3 1	10	9	0	6	4
--------	----	---	---	---	---

Randomized Quicksort: Step 1 (Initial Array, Pivot Chosen)

Suppose the random pivot chosen is 10 (at index 3):

15	3	1	10	9	0	6	4
----	---	---	----	---	---	---	---

Randomized Quicksort: Step 2 (Partitioning)

After selecting pivot 10, we partition the array:

- Left: 4, 3, 1, 9, 0, 6 (elements before pivot position)
- Middle: 10 (pivot)
- Right: 15 (element after pivot position)

After partitioning:

Randomized Quicksort: Step 3 (Recurse to Left Subarray)

Recurse on the left subarray:

Let's choose a random pivot, say 4.

Randomized Quicksort: Step 3 (Left Subarray Partitioning)

After partitioning the left subarray:

Partition:

- Left: 0, 3, 1 (elements before pivot)
- Middle: 4 (pivot)
- Right: 9, 6 (elements after pivot)

Randomized Quicksort: Step 3 (Recurse to Left Subarray)

Recurse on the left subarray:

Let's choose a random pivot, say 0.

0 3 1

Randomized Quicksort: Step 3 (Left Subarray Partitioning)

After partitioning the left subarray:

Partition:

- Left: (empty)
- Middle: 0 (pivot)
- Right: 3, 1 (elements after pivot)

Randomized Quicksort: Step 3a1 (Right of 0 Subarray)

Recurse on the right subarray:

Let's choose a random pivot, say 3.

3 1

Randomized Quicksort: Step 3 (Left Subarray Partitioning)

After partitioning the right subarray:

1 3

Partition:

- Left: 1 (element before pivot)
- Middle: 3 (pivot)
- Right: (empty)

Randomized Quicksort: Step 3 (Left Subarray)

After partitioning the left subarray:

1

Partition:

- Left: (empty)
- Middle: 1 (pivot)
- Right: (empty)

Single element subarray, done, return.

Randomized Quicksort: Step 3a2 (Right of 3 Subarray)

Recurse on the right subarray A[3,2] (empty, done).

Return to parent call A[1,2]

Randomized Quicksort: Step 3a2 (Right of 3 Subarray)

Return to parent call A[0,2]

Randomized Quicksort: Step 3a2 (Right of 3 Subarray)

Recurse on the right subarray A[4,5]:

Let's choose a random pivot, say 9.

9 6

Randomized Quicksort: Step 3b (Right of 4 Subarray)

Recurse on the right subarray A[4,5]:

Suppose the random pivot is 9:

6 9

Partition:

- Left: 6 (element before pivot)
- Middle: 9 (pivot)
- Right: (empty)

Randomized Quicksort: Step 3b1 (Leftmost Subarray)

After partitioning the left subarray:

6

Partition:

• Left: (empty)

Middle: 6 (pivot)

Right: (empty)

Single element subarray, done, return.

Randomized Quicksort: Step 3b1 (Leftmost Subarray)

Recurse on the right subarray A[6,5] (empty, done).

Return to parent call A[4,5]

Return to parent call ${\cal A}[0,5]$

Randomized Quicksort: Step 3b1 (Leftmost Subarray)

Recurse on the right subarray A[7,7] After partitioning the right subarray:

1

Partition:

- Left: (empty)
- Middle: 1 (pivot)
- Right: (empty)

Single element subarray, done, return.

Randomized Quicksort: Final Sorted Array

The final sorted array is:

0	1	3	4	6	9	10	15
---	---	---	---	---	---	----	----

Quicksort Implementation (Python)

```
import random
   def quicksort(arr):
       if len(arr) <= 1:
           return arr
4
       pivot idx = random.randrange(len(arr)) # Random index
5
       pivot = arr[pivot idx]
       left = [x for x in arr if x < pivot]</pre>
       middle = [x for x in arr if x == pivot]
8
       right = [x for x in arr if x > pivot]
       return quicksort(left) + middle + quicksort(right)
10
```

Monte Carlo Method - Estimating π

The Monte Carlo method estimates π by simulating random points in a unit square and counting how many fall inside a quarter circle of radius 1. The ratio of points inside the circle to the total points, multiplied by 4, approximates π .

Monte Carlo Algorithm

- 1. Generate N random points (x, y) where $0 \le x \le 1$ and $0 \le y \le 1$.
- 2. For each point, check if it lies inside the quarter circle: $x^2 + y^2 \le 1$.
- 3. Count the number of points ${\cal M}$ that satisfy the condition.
- 4. Estimate π as: $\pi \approx 4 \times \frac{M}{N}$.

Visual Illustration

Example Calculation

- Suppose we generate N=1000 random points in the unit square
- After simulation, we count M=785 points inside the quarter circle
- We estimate π as:

$$\pi \approx 4 \times \frac{M}{N} = 4 \times \frac{785}{1000} = 3.14$$

 \bullet The true value of π is approximately 3.14159

Convergence and Error Analysis

- The error in our estimate decreases as $O(1/\sqrt{N})$
- This means:
 - N=100 points gives roughly 10% error
 - N=10,000 points gives roughly 1% error
 - N=1,000,000 points gives roughly 0.1% error
- The Monte Carlo method is especially useful for calculating multidimensional integrals
- For π calculation, there are more efficient methods, but this one is visually intuitive

Demo Visualization

Open Interactive Demo

Analysis: Recurrence and

Expectation

Quicksort Recurrence

Expected Comparisons

$$T(n) \le n + \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i))$$

Base case: T(1) = 0

Solution: $T(n) = O(n \log n)$

Slick Analysis: Indicator Variables

- Q(A): Number of comparisons on input A
- X_{ij} : Indicator for whether elements i and j are compared
- $E[Q(A)] = \sum_{i < j} Pr[R_{ij}]$
- $Pr[R_{ij}] = \frac{2}{j-i+1}$

Visualization

Harmonic Numbers in Analysis

Harmonic Number

$$H_n = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$$

Summation in Quicksort

$$E[Q(A)] \le 2nH_n = O(n\log n)$$

Example: Coin Toss Probability

Coin Toss Example

Experiment

John tosses a biased coin (probability p of heads) to decide whether to wear a tie. If heads, tosses a fair coin to pick red or blue tie.

Question

What is the probability John wears a red tie on the first day he wears a tie?

Random Bits in Practice

Where do Random Bits Come From?

- Hardware random number generators
- Pseudo-random number generators (PRNGs)
- Physical phenomena (thermal noise, radioactive decay)
- In practice, PRNGs are sufficient for most applications

Probabilistic Data Structures

What is a Probabilistic Data Structure?

Definition

Data structures that use randomization or probabilistic techniques to achieve space or time efficiency, often allowing for small errors (e.g., false positives).

- Useful for large-scale data, streaming, or approximate answers
- Examples: Bloom filter, Count-Min Sketch, HyperLogLog

Bloom Filter: What and Why?

What is a Bloom Filter?

A space-efficient, probabilistic data structure for set membership queries.

- Answers: "Is x in the set?"
- May return false positives, but never false negatives
- Very compact compared to hash sets

How Does a Bloom Filter Work?

- 1. Start with a bit array of m bits, all set to $\mathbf{0}$
- 2. Use k independent hash functions
- 3. To add an element, set k bits (one per hash) to 1
- 4. To check membership, test if all \boldsymbol{k} bits are 1

Bloom Filter Example

Suppose m=8 bits, k=2 hash functions, and we insert $\{\operatorname{cat},\operatorname{dog}\}$.

Bit Array After Insertion

- To check if "cat" is in the set, hash and check the corresponding bits
- If all are 1, answer is "possibly in set"; if any is 0, "definitely not in set"

Bloom Filter: Trade-offs

- False positives: May say "in set" when not
- No false negatives: Never says "not in set" if it is
- Space efficient: Much smaller than explicit set
- No deletions: Standard Bloom filters do not support removing elements

References i