Math 120

2.1 Linear Equations and Rational Equations

Objectives

- 1. Solve linear equations in 1 variable.
- 2. Solve linear equations containing fractions.
- 3. Recognize identities, conditional equations, and inconsistent equations.
- 4. Solve rational equations with variables in the denominator.
- 5. Solve applied problems using linear functions.

Topic #1: Solving Linear Equations in One Variable – By "Hand" Highest Power is 1

<u>Linear functions</u> can be written in the form f(x) = mx + b.

Consider the linear functions f(x) = 2(x-3) - 17 and g(x) = 13 - 3(x+2). Suppose we want to find where f(x) = g(x). It may not be obvious that the functions are linear, but the resulting equation is:

$$f(x) = g(x)$$

$$2(x-3) - 17 = 13 - 3(x+2)$$

$$3x - 6 - 17 = 13 - 3x - 6$$

$$3x - 33 = -3x + 7$$

$$-7$$

$$3x - 30 = -3x$$

$$-3x = -3x$$

The result is the solution set to the equation, we can plug into the original equation to verify:

$$2(6-3)-17 = 13-3(6+2)$$

 $2(3)-17 = 13-3(8)$
 $6-17 = 13-24$
 $-(1) = -11$

Moreover, the original functions are shown to be equivalent at x = 6:

$$f(6) = 2(6-3) - |7 = -||$$

$$g(6) = 13 - 3(6+2) = -11$$

Thinking of linear equations as 2 lines provides the basis for the steps to solving a linear equation:

- 1. Simplify both sides of the equation as much as possible (get both sides in y = mx + b form). Clear _______ if necessary (LCM).
- 2. Collect all variable terms to one side of the equation and the constant terms of the side
- 3. <u>Isolate</u> the variable to solve.
- 4. Check the proposed solution in the original equation.

Example #1 - Solve the Linear Equation

a.
$$3(x-2) + 7 = 2(x+5)$$

 $3x - 6 + 7 = 3x + 10$
 $3x + 1 = 3x + 10$
 $-3x - 3x$
 $-3x -$

Check:
$$3(9-2)+7=2(9+5)$$

 $3(7)+7=2(14)$
 $21+7=28$
 $28=28$

b. Suppose y = 5[x - (2 - x)] - 9(x + 1). Find the zeros of the equation. In other words, find all x values such that y = 0.

$$0 = 5[x - (a - x)] - 9(x + 1)$$

$$0 = 5[x - a + x] - 9x - 9$$

$$0 = 5[ax - a] - 9x - 9$$

$$0 = 10x - 10 - 9x - 9$$

$$0 = x - 19$$

$$+19 + 19$$

$$\boxed{19 = x}$$

Check:
$$0=5[9-(2-19)]-9(9+1)$$
 $0=5[9-(-17)]-9(20)$
 $0=5(36)-180$
 $0=180-180$

c.
$$\frac{x}{11} = \frac{x}{12} - 3$$

$$L(D = || \cdot || 2 = || 3 || 2)$$

$$\frac{|| 32|}{|| 1|} \cdot \frac{x}{|| 1|} = \frac{|| 32|}{|| 2|} \cdot \frac{x}{|| 2|} - \frac{|| 32|}{|| 3|} \cdot \frac{3}{|| 2|}$$

$$\frac{|| 32|}{|| 1|} \cdot \frac{x}{|| 1|} = \frac{|| 32|}{|| 2|} \cdot \frac{3}{|| 2|} \cdot$$

Check: $-\frac{396}{11} = -\frac{396}{12} - 3$ -36=-33-3 -36 = -36LCD = 4.9 = 36 Check:

$$\frac{\left(-\frac{33}{13} + 5\right)}{4} = \left| -\frac{\left(-\frac{33}{13} + 6\right)}{9} \right|$$

$$18 \quad \text{calculator}$$

$$-\frac{8}{13} = -\frac{8}{13}$$

<u>Topic #2: Solving Linear Equations in One Variable –</u> With Technology

We can use a graphing calculator to solve equations.

Recall the equation:

$$2(x-3) - 17 = 13 - 3(x+2)$$

We can input the left side of the equation in the calculator as $y_1 = 2(x-3) - 17$ and the right side of as $y_2 = 13 - 3(x+2)$

Look at a table to see what x values makes them equal (in other words $y_1 = y_2$).

Based on the table below, we can see that both sides are equivalent when X = 6

Х	Υı	Y ₂		П
-2	-27	13		Т
-1	-25	10		_
0	-23	7		_
1	-21	4		_
2	-19	1		
3	-17	-2		
4	-15	-5		П
5	-13	-8		П
6	-11	-11		П
7	-9	-14	1	П
8	-7	-17		

We can also look at the graph of the two sides of the equation to see where they meet. This point along the x-axis is the solution.

<u>Example #1</u> – Use the Table to Write and Solve the Linear Equation

Plot1	Plot2	Plot3
$Y_1 = -5$	(X - 3)	
$Y_2 = 7(2)$	-X)	
\ Y 3=		
\Y4=		
\Y5=		
\Y ₆ =		
\ Y 7=		

X	Y ₁	Y ₂
-2	25	28
- 1.5	22.5	24.5
-1	20	21
- 0.5	17.5	17.5
0	15	14
0.5	12.5	10.5
1	10	7
X = -2		

Here
$$y_1 = \frac{-5(X-3)}{}$$
 and $y_2 = \frac{7(2-X)}{}$.

The resulting equation is

$$y_1 = y_2$$
 OR $-5(x-3) = 7(2-x)$.

The solution to the equation is at x = -0.5

Technology is useful, feel free to use it as you see fit!

Topic #3: Solution Types to Linear Equations

There are 3 types possible solution sets when solving linear equations:

1) <u>Conditional</u> – there is a <u>Finite</u> solution set. The equation is only <u>True</u> for certain values.

Recall that the equation:

$$2(x-3) - 17 = 13 - 3(x+2)$$
 has a solution when $x = 6$.

This equation is **only** true when x = 6, so the equation is <u>Conditional</u>

2) <u>Identity</u> – there is an <u>Infinite</u> solution set. The equation is always true and x is a real number.

Consider the equation: 6x + 2 = 2(3x + 1)Which simplifies to: 6x + 2 = 6x + 3 Same

All real #'S 2 = 2

Collecting the variable terms and constant terms to either side gives

This equation is **always** true, so the equation is an <u>identity</u>

- 3) Inconsistent there is NO solution.

 The equation is New true, which we can convey with the null symbol:
 - Consider the equation: 6x + 2 = 2(3x + 2)Which simplifies to: 6x + 2 = 6x + 43 = 4
 - Collecting the variable terms and constant terms to either side gives: 2 = 4
 - This is never true, so the equation is inconsistent

<u>Example #1</u> – Solve the Linear Equation and Categorize the Solution Type

a.
$$3(x + 2) = 7 + 3x$$

 $3x + 6 = 7 + 3x$
 $-3x$
 $6 = 7$
 $0 = 7$
 $0 = 7$
 $0 = 7$

b.
$$5x + 9 = 9(x + 1) - 4x$$

 $5x + 9 = 9x + 9 - 4x$
 $5x + 9 = 5x + 9$
All real #'s
identity

c.
$$10x + 3 = 8x + 3$$

$$-8x - 8x$$

$$2x + 3 = 3$$

$$-3 - 3$$

$$2x = 0$$

$$x = 0$$
Conditional

YOU TRY #1 – Solve the Linear Equation and Categorize the Solution Type

a.
$$3(x-4)-4(x-3) = x+3-(x-2)$$

 $3x-12-4x+12 = x+3-x+2$
 $-x = 5$
 $-1 = -1$
 $x=-5$

b.
$$4x+7=7(x+1)-3x$$

$$4x+7=7\times+7-3\times$$

$$4x+7=4\times+7$$
All real #'s
identity

c.
$$3(x+1) = 7+3x$$

 $3x + 3 = 7 + 3x$
 $-3x - 3x$
 $3 = 7$
No solution

inconsistent

d.
$$\frac{3x}{5} - x = \frac{x}{10} - \frac{5}{2}$$
 LCD = $|0|$

$$\frac{10}{1} \cdot \frac{3x}{5} - \frac{10}{1} \cdot x = \frac{10}{1} \cdot \frac{x}{10} - \frac{10}{1} \cdot \frac{5}{2}$$

$$\frac{10^{2}}{10^{2}} \cdot \frac{3x}{5} - \frac{10}{10^{2}} \cdot x = \frac{10}{10^{2}} \cdot \frac{x}{10} - \frac{10}{10^{2}} \cdot \frac{5}{2}$$

$$6x - 10x = x - 25$$

$$-4x = x - 25$$

$$-x - x$$

$$-5x = -25$$

$$-5 = -25$$

$$x = 5$$
Conditional

Topic #4: Solving Rational Equations

Rational equations include a variable in the denominator.

Since division by zero is <u>undefined</u>, we cannot accept any solution that makes the denominator.

We clear out denominators with the

From there, the equation will become "linear" – we just have to make sure none of the solutions make the denominator zero. Otherwise, we throw it out of the solution set.

Consider the equation:

$$\frac{1}{x} = \frac{1}{5} + \frac{3}{2x}$$

Denominator #0 X #0 2x #0

What is the restricted value? $x \neq 0$

$$\frac{1}{x} = \frac{1}{5} + \frac{3}{2x}$$

1. Identify the LCM.

The unique factors are $\frac{X}{1}$, $\frac{5}{2}$, $\frac{2}{3}$ (the factor x shows up twice, but is only unique once), which gives an LCM of $\frac{X \cdot 5 \cdot 2}{2} = \frac{10x}{2}$

2. Multiply each term by the LCM ______ to clear out the denominators:

$$\frac{10x}{1} \cdot \frac{1}{x} = \frac{10x}{1} \cdot \frac{1}{5} + \frac{10x}{1} \cdot \frac{3}{2x}$$

$$\frac{10x}{x} = \frac{10x}{5} + \frac{30x}{2x}$$

$$\frac{10x}{x} = 2\frac{10x}{5} + \frac{30x}{2x}$$

3. This simplifies to a linear equation:

$$10 = 2x + 15$$

4. Solve the equation with techniques discussed earlier and check the restricted values: $\rightarrow \times \neq \bigcirc$

$$10 = 2 \times +15$$

 -15 -15
 $-5 = 2 \times 2$

$$-\frac{5}{2} = X$$

Since this is <u>not</u> the excluded value $x \neq 0$, the solution works.

A graph also confirms the solution, where:

$$y_1 = \frac{1}{X} \quad \text{and } y_2 = \frac{1}{5} + \frac{3}{2X}$$

Notice the two sides meet when $x = \frac{5}{2}$

<u>Example #1</u> – State the Excluded Values and Solve the Rational Equation

a.
$$\frac{4}{5x + 25} = \frac{6}{x + 5} - \frac{2}{5}$$

- 1. Identify restricted values: Dynaminator $\neq 0$ $5x+a5\neq 0$ $\times 45\neq 0$ $\times 45$
- 2. Identify LCM Factors: 5, X+5 5(X+5)
- 3. Multiply every term by LCM

$$\frac{5(x+s)}{1} \cdot \frac{4}{5(x+s)} = \frac{5(x+s)}{1} \cdot \frac{6}{(x+s)} - \frac{5(x+s)}{5} \cdot \frac{2}{5}$$

4. Simplify to linear equation.

$$\frac{5(x+5)}{1} \cdot \frac{4}{5(x+5)} = \frac{5(x+5)}{1} \cdot \frac{6}{(x+5)} - \frac{5(x+5)}{5}$$

$$4 = 30 - 2(x+5)$$

5. Solve and check the restricted values. $\times \pm 5$

$$4 = 30 - 2x - 10$$

$$4 = -2x + 20$$

$$-20 - 20$$

$$-16 = -2x$$

$$-2 - 20$$

$$8 = x$$

b.
$$\frac{2}{x+4} + \frac{3}{x-4} = \frac{24}{(x+4)(x-4)}$$

Denominator #0

- 1. Identify restricted values: $\times +4 \neq 0$ $\times -4 \neq 0$ $\times +4 \neq 0$
- 2. Identify LCM (X+4)·(X-4)
- 3. Multiply every term by LCM

$$\frac{(x+y)(x-y)}{1} \cdot \frac{2}{(x+y)} + \frac{(x+y)(x-y)}{1} \cdot \frac{3}{(x-y)} = \frac{(x+y)(x-y)}{1} \cdot \frac{2y}{(x+y)(x-y)}$$

4. Simplify to linear equation.

$$\frac{(x+y)(x-y)}{1} \cdot \frac{2}{(x+y)} + \frac{(x+y)(x-y)}{1} \cdot \frac{3}{(x-y)} = \frac{(x+y)(x-y)}{(x+y)(x-y)} \cdot \frac{2y}{(x+y)(x-y)}$$

$$2(x-y) + 3(x+y) = 24$$

5. Solve and check the restricted values. $\longrightarrow X + 4,-4$

$$2x - 8 + 3x + 12 = 24$$
 $5x + 4 = 24$
 $-4 = 4$
 $5x = 20$
 $5x = 20$
 $5x = 20$
 $5x = 20$

NO Solution

c.
$$\frac{2}{x+1} - \frac{1}{x-1} = \frac{2x}{x^2 - 1}$$
 $\frac{2}{x+1} - \frac{1}{x-1} = \frac{2x}{(x+1)(x-1)}$

- 2. Identify LCM (X+I)(X-I)
- 3. Multiply every term by LCM

$$\frac{(x+1)(x+1)}{1} \cdot \frac{2}{(x+1)} - \frac{(x+1)(x-1)}{1} \cdot \frac{1}{(x-1)} = \frac{(x+1)(x-1)}{1} \cdot \frac{2x}{(x+1)(x-1)}$$

4. Simplify to linear equation.

$$\frac{(x+1)(x+1)}{1} \cdot \frac{2}{(x+1)} - \frac{(x+1)(x+1)}{1} \cdot \frac{1}{(x+1)} = \frac{(x+1)(x+1)}{2} \cdot \frac{2x}{(x+1)(x+1)}$$

$$2(x-1) - (x+1) = 2x$$

5. Solve and check the restricted values. $\longrightarrow \times \neq \setminus - \mid$

$$3x-3-x-1=2x$$

$$x-3=2x$$

$$-x$$

$$-x$$

$$-3=x$$

A table generated by a graphing calculator can also solve the equation (notice the parenthesis), where:

$$y_1 = \frac{2}{x+1} - \frac{1}{x-1} \text{AND } y_2 = \frac{2x}{x^2-1}$$

A graph also works!

YOU TRY #2 – Solve the following equations. Make sure to include any restricted values if there are any.

a.
$$\frac{2}{x} + \frac{1}{2} = \frac{3}{4}$$

$$\frac{4x}{1} \cdot \frac{2}{x} + \frac{4x}{1} \cdot \frac{1}{a} = \frac{4x}{1} \cdot \frac{3}{4}$$

$$\frac{4x}{1} \cdot \frac{2}{x} + \frac{4x}{1} \cdot \frac{1}{a} = \frac{4x}{1} \cdot \frac{3}{4}$$

$$\frac{4x}{1} \cdot \frac{2}{x} + \frac{4x}{1} \cdot \frac{1}{a} = \frac{4x}{1} \cdot \frac{3}{4}$$

$$\frac{8}{1} + \frac{2x}{1} = \frac{3}{1} \cdot \frac{3}{4}$$

$$\frac{8}{1} + \frac{2x}{1} = \frac{3}{1} \cdot \frac{3}{4}$$

b.
$$\frac{1}{x-2} + \frac{3}{x+5} = \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x-2)} + \frac{(x+5)(x-2)}{(x-2)} \cdot \frac{3}{(x+5)} = \frac{(x+5)(x-2)}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x-2)} + \frac{(x+5)(x-2)}{(x+5)} \cdot \frac{3}{(x+5)} = \frac{(x+5)(x-2)}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x+5)} + \frac{3}{(x+5)} \cdot \frac{3}{(x+5)} = \frac{(x+5)(x-2)}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x+5)} + \frac{3}{(x+5)} \cdot \frac{3}{(x+5)} = \frac{7}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x+5)} + \frac{3}{(x+5)} \cdot \frac{3}{(x+5)} = \frac{7}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x+5)} + \frac{3}{(x+5)} \cdot \frac{3}{(x+5)} = \frac{7}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

$$\frac{(x+5)(x-2)}{(x+5)(x-2)} + \frac{7}{(x+5)(x-2)} \cdot \frac{7}{(x+5)(x-2)}$$

Topic #5: Applications of Linear and Rational Equations

Linear and rational equations are often are used to model data.

Example #1 – Application of a Linear Equation

The bar graph shows the percentage of US college freshmen with an average grade of A in high school over time.

One model for the data is given by the equation:

$$p - \frac{4x}{5} = 25$$

Where p is the percentage with an average grade of A and x are years after 1980.

Let x be: years after 1980

Let p be: % of freshman with high school average of A

a. According to the model, what percentage of US college freshmen have an average grade of A in 2010? How far off is the model from the actual data? $\times = 30$

2010 is 30 years after 1980, which gives
$$x = 30$$

$$P - \frac{4.30}{5} = 25$$

$$P = 49\%$$

$$P - 24 = 25$$

b. Based on the model, when will the percentage of US college freshmen with an average grade of A be 61%?

The projected percentage is given, p = 61. Plug into the equation and solve for x, which is the number of years after 1980:

$$61 - \frac{4x}{5} = 25$$

LCD=5

$$\frac{5 \cdot 61 - 5 \cdot \frac{4x}{5} = \frac{5}{7} \cdot 25}{305 - 4x = 125}$$

$$\frac{-305}{-305}$$

$$\frac{-4 \times = -180}{-4}$$

In 2025, 61% of college freshman should have a high school average grade of A.

Example #2 - Application of a Rational Equation

A learning curve is a math model that estimates the proportion of correct responses on a test/task in terms of the number of trials/attempts. As the number of trials/attempts increase, the proportion of correct responses increase.

Consider the model

$$P(x) = \frac{0.9x - 0.4}{0.9x + 0.1}$$

where P is the proportion correct and x is the number of trials.

Let x be: # of trials

Let P(x) be: proportion correct

a. Find P(1) and interpet its meaning.

$$P(i) = \frac{6.9(i) - 0.4}{0.9(i) + 0.1} = 0.5$$
 After I trial, The proportion of correct responses is 50%.

b. How many trials are necessary to get 95% correct responses? P(x) = 95

$$0.95 = \frac{0.9 \times -0.4}{0.9 \times +0.1}$$

$$(0.9 \times +0.1) \cdot 0.95 = \frac{(0.9 \times -0.4)}{(0.9 \times +0.1)} \cdot (0.9 \times +0.1)$$

$$(0.9x+0.1)\cdot 0.95 = \frac{(0.9x-0.4)}{(0.9x+0.1)} \cdot (0.9x+0.1)$$

$$0.95(0.9 \times +0.1) = 0.9 \times -0.4$$

$$0.855 \times +0.095 = 0.9 \times -0.4$$

$$-0.855 \times -0.85 \times$$

$$0.095 = .045 \times -0.4$$

$$+0.4 \qquad +0.4$$

$$0.495 = 0.045 \times 0.045$$

$$11 = X$$

11 trials