

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 12.72 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the danage.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.05	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1127.32</u>	<u>3983.64</u>	k
<u>4691.21</u>	<u>4868.46</u>	k
<u>313.75</u>	<u>1454.67</u>	k
<u>0.64</u>	0.43	k
	4691.21 313.75	1127.32 3983.64 4691.21 4868.46 313.75 1454.67

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check 99562.1 in-lbs $M_O =$ 1508.52 lbs Resisting Force Required = A minimum 132in long x 23in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2514.19 lbs to resist overturning. Minimum Width = <u>23 in</u> in Weight Provided = 4585.63 lbs Sliding 349.48 lbs Force = Friction = Use a 132in long x 23in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 873.71 lbs Friction is OK. Resisting Weight = 4585.63 lbs Additional Weight Required = 0 lbs Cohesion Sliding Force = 349.48 lbs Cohesion = 130 psf Use a 132in long x 23in wide x 18in tall 21.08 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2292.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{23 \text{ in}} = \frac{24 \text{ in}}{25 \text{ in}} = \frac{25 \text{ in}}{26 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.92 \text{ ft}) = \frac{4586 \text{ lbs}}{25 \text{ lbs}} = \frac{4785 \text{ lbs}}{25 \text{ lbs}} = \frac{4984 \text{ lbs}}{25 \text{ lbs}} = \frac{4584 \text{ lbs}}{25 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in
	1767 lbs	1767 lbs	1767 lbs	1767 lbs	1372 lbs	1372 lbs	1372 lbs	1372 lbs	2223 lbs	2223 lbs	2223 lbs	2223 lbs	-536 lbs	-536 lbs	-536 lbs	-536 lbs
FA			1831 lbs		1423 lbs	1423 lbs	1423 lbs	1423 lbs		2305 lbs				-1909 lbs		-1909 lbs
F _B	1831 lbs	1831 lbs		1831 lbs					2305 lbs		2305 lbs	2305 lbs	-1909 lbs		-1909 lbs	
F _V	157 lbs	157 lbs	157 lbs	157 lbs	626 lbs	626 lbs	626 lbs	626 lbs	577 lbs	577 lbs	577 lbs	577 lbs	-699 lbs	-699 lbs	-699 lbs	-699 lbs
P _{total}	8184 lbs	8384 lbs	8583 lbs	8782 lbs	7380 lbs	7580 lbs	7779 lbs	7979 lbs	9114 lbs	9313 lbs	9513 lbs	9712 lbs	307 lbs	426 lbs	546 lbs	666 lbs
M	4292 lbs-ft	4292 lbs-ft	4292 lbs-ft	4292 lbs-ft	4084 lbs-ft	4084 lbs-ft	4084 lbs-ft	4084 lbs-ft	5964 lbs-ft	5964 lbs-ft	5964 lbs-ft	5964 lbs-ft	1051 lbs-ft	1051 lbs-ft	1051 lbs-ft	1051 lbs-ft
е	0.52 ft	0.51 ft	0.50 ft	0.49 ft	0.55 ft	0.54 ft	0.53 ft	0.51 ft	0.65 ft	0.64 ft	0.63 ft	0.61 ft	3.43 ft	2.47 ft	1.93 ft	1.58 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	277.2 psf	274.7 psf	272.4 psf	270.3 psf	244.4 psf	243.3 psf	242.2 psf	241.3 psf	278.0 psf	275.5 psf	273.1 psf	271.0 psf	0.0 psf	0.0 psf	0.0 psf	3.9 psf
f _{max}	499.2 psf	487.5 psf	476.7 psf	466.7 psf	455.7 psf	445.8 psf	436.7 psf	428.2 psf	586.6 psf	571.2 psf	557.1 psf	544.0 psf	51.5 psf	46.8 psf	48.9 psf	52.0 psf

Maximum Bearing Pressure = 587 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

2154.2 ft-lbs $M_O =$

Resisting Force Required = 2247.90 lbs

S.F. = 1.67

Weight Required = 3746.50 lbs Minimum Width = <u>23 in</u> in Weight Provided = 4585.63 lbs

A minimum 132in long x 23in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		23 in			23 in		23 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	256 lbs	661 lbs	228 lbs	971 lbs	2928 lbs	949 lbs	85 lbs	193 lbs	57 lbs	
F _V	216 lbs	213 lbs	218 lbs	161 lbs	155 lbs	169 lbs	216 lbs	214 lbs	217 lbs	
P _{total}	5933 lbs	6338 lbs	5905 lbs	6375 lbs	8332 lbs	6353 lbs	1745 lbs	1853 lbs	1717 lbs	
М	866 lbs-ft	859 lbs-ft	871 lbs-ft	657 lbs-ft	652 lbs-ft	681 lbs-ft	862 lbs-ft	856 lbs-ft	864 lbs-ft	
е	0.15 ft	0.14 ft	0.15 ft	0.10 ft	0.08 ft	0.11 ft	0.49 ft	0.46 ft	0.50 ft	
L/6	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	
f _{min}	152.8 psf	173.0 psf	150.7 psf	204.8 psf	298.4 psf	200.2 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	410.1 psf	428.2 psf	409.4 psf	399.9 psf	491.9 psf	402.5 psf	227.9 psf	226.2 psf	228.7 psf	

Maximum Bearing Pressure = 492 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 23in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.609 k 12.808 k 7.421 k <u>49%</u>	Rear Strut Maximum Axial Load = 3.572 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 48%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.059 k 12.808 k 7.421 k <u>14%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.466 \text{ in} \\ \end{array}$

 $0.466 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 123 \text{ in}$$

$$J = 0.432$$

$$340.276$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$L_{b} = 123$$

$$J = 0.432$$

$$216.395$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(($$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.6$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.3 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

Sx =

 $M_{max}St =$

 $\phi F_L St =$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = **BF0**

Strong Axis:

3.4.14

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$L_b = 88.9$$

 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.2$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = Ct$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{rll} \phi F_L St = & 29.4 \text{ ksi} \\ \text{lx} = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \text{y} = & 43.717 \text{ mm} \\ \text{Sx} = & 1.375 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{L} &= \phi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \phi \mathsf{F}_{L} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

38.9 ksi $\phi F_L =$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L VV K = 28.2 \text{ KSI}$$

$$\begin{aligned} & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & \text{M}_{\text{max}} \text{Wk} = & 1.460 \text{ k-ft} \end{aligned}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56	$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*/(Cb^*/(Cb)/(Cb^*\sqrt{(LbSc)/(Cb^*/(Cb)/(Cb^*/(Cb^*/(Cb)/(Cb)/(Cb^*/(Cb)/(Cb)/(Cb)/(Cb)/(Cb)})})}}$	$yJ)/2))]$ $\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$

0.672 in⁴ 27.5 mm y = Sx =0.621 in³

 $M_{max}St =$ 1.460 k-ft

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\phi F_L W k =$

 $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm $\mathsf{x} =$

28.2 ksi

Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

30.6 ksi

28.2 ksi

$$\phi F_L =$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.6$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L =$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\phi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268$ ksi

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_{L} = 18.9268 \text{ ksi}$ 3.4.9 b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-35.466	-35.466	0	0
2	M14	V	-35.466	-35.466	0	0
3	M15	V	-56.746	-56.746	0	0
4	M16	V	-56.746	-56.746	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	٧	81.572	81.572	0	0
2	M14	V	63.13	63.13	0	0
3	M15	V	35.466	35.466	0	0
4	M16	У	35.466	35.466	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Y		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Y		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Y		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Y		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Y		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	252.457	2	1113.758	1	1.115	1	.005	1	0	1	0	1
2		min	-355.612	3	-930.437	3	-85.106	5	328	4	0	1	0	1
3	N7	max	.048	1	1232.573	1	319	12	0	12	0	1	0	1
4		min	055	2	-248.22	3	-241.348	4	491	4	0	1	0	1
5	N15	max	.024	9	3608.624	1	0	11	0	11	0	1	0	1
6		min	825	2	-867.169	3	-232.674	5	48	4	0	1	0	1
7	N16	max	1061.645	2	3744.972	1	0	3	0	3	0	1	0	1
8		min	-1118.974	3	-3064.338	3	-84.828	5	331	4	0	1	0	1
9	N23	max	.048	1	1232.573	1	8.091	1	.017	1	0	1	0	1
10		min	055	2	-248.22	3	-236.504	4	482	4	0	1	0	1
11	N24	max	252.457	2	1113.758	1	05	12	0	12	0	1	0	1
12		min	-355.612	3	-930.437	3	-85.599	4	331	4	0	1	0	1
13	Totals:	max	1565.624	2	12046.259	1	0	11						
14		min	-1830.574	3	-6288.823	3	-961.413	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	88.776	1	510.677	1	-4.862	12	0	3	.211	1	0	1
2			min	3.51	12	-481.648	3	-139.852	1	013	1	.008	12	0	3
3		2	max	88.776	1	357.801	1	-3.809	12	0	3	.073	4	.467	3
4			min	3.51	12	-338.9	3	-107.548	1	013	1	.003	12	495	1
5		3	max	88.776	1	204.926	1	-2.755	12	0	3	.038	5	.772	3
6			min	3.51	12	-196.153	3	-75.243	1	013	1	034	1	815	1
7		4	max	88.776	1	52.05	1	-1.702	12	0	3	.02	5	.914	3
8			min	3.51	12	-53.406	3	-42.939	1	013	1	101	1	961	1
9		5	max	88.776	1	89.341	3	649	12	0	3	.003	5	.894	3
10			min	3.51	12	-100.826	1	-16.042	4	013	1	132	1	934	1
11		6	max	88.776	1	232.089	3	21.67	1	0	3	004	12	.711	3
12			min	3.51	12	-253.701	1	-11.938	5	013	1	125	1	732	1
13		7	max	88.776	1	374.836	3	53.975	1	0	3	003	12	.365	3
14			min	-4.006	5	-406.577	1	-10.308	5	013	1	082	1	356	1
15		8	max	88.776	1	517.583	3	86.28	1	0	3	0	10	.194	1
16			min	-15.697	5	-559.452	1	-8.679	5	013	1	036	4	143	3
17		9	max	88.776	1	660.33	3	118.584	1	0	3	.114	1	.919	1
18			min	-27.388	5	-712.328	1	-7.05	5	013	1	044	5	814	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
19		10	max	<u>88.776</u>	1	865.204	1_	-4.616	12	.005	<u>14</u>	.268	1	1.817	1
20			min	3.51	12	-803.078	3	-150.889	1	013	1_	.007	12	-1.647	3
21		11	max	88.776	1	712.328	_1_	-3.563	12	.013	1	.114	1	.919	1
22		4.0	min	3.51	12	-660.33	3	-118.584	1	0	3	.002	12	814	3
23		12	max	88.776	1	559.452	1_	-2.51	12	.013	1_	.035	4	.194	1
24		4.0	min	3.51	12	-517.583	3	-86.28	1	0	3	003	1	143	3
25		13	max	88.776	1	406.577	1	-1.457	12	.013	1	.016	5	.365	3
26			min	3.51	12	-374.836	3	-53.975	1	0	3	082	1	356	1
27		14	max	88.776	1	253.701	1_	404	12	.013	1_	0	15	.711	3
28		4.5	min	.768	15	-232.089	3	-21.67	1_	0	3	125	1	732	1
29		15	max	88.776	1	100.826	1_	10.634	1	.013	1_	004	12	.894	3
30		4.0	min	-10.431	5	-89.341	3	-12.477	5	0	3	132	1	934	1
31		16	max	88.776	1	53.406	3	42.939	1	.013	1	003	12	.914	3
32			min	-22.122	5	-52.05	1_	-10.848	5	0	3	101	1	961	1
33		17	max	88.776	1_	196.153	3	75.243	1	.013	1_	0	12	.772	3
34		4.0	min	-33.813	5	-204.926	1	-9.219	5	0	3	049	4	815	1
35		18	max	88.776	1	338.9	3	107.548	1	.013	1_	.07	1	.467	3
36			min	-45.504	5	-357.801	_1_	-7.59	5	0	3	051	5	495	1
37		19	max	88.776	1	481.648	3	139.852	1_	.013	_1_	.211	1	0	1
38			min	-57.195	5	-510.677	1_	-5.96	5	0	3	058	5	0	3
39	<u>M14</u>	1	max	63.36	4	538.389	1_	-4.996	12	.006	3	.24	1	0	1
40			min	1.51	12	-378.414	3	-144.09	1_	011	1_	.009	12	0	3
41		2	max	51.669	4	385.514	_1_	-3.942	12	.006	3_	.104	4	.369	3
42			min	1.51	12	-269.272	3	-111.786	1	011	1	.004	12	526	1
43		3	max	40.777	1_	232.638	_1_	-2.889	12	.006	3_	.056	5	.613	3
44			min	1.51	12	-160.13	3	-79.481	1	011	1_	015	1	878	1
45		4	max	40.777	1	79.762	_1_	-1.836	12	.006	3	.03	5	.734	3
46			min	1.51	12	-50.989	3	-47.177	1	011	1	087	1	-1.056	1
47		5	max	40.777	1	58.153	3	783	12	.006	3	.006	5	.729	3
48			min	1.51	12	-73.113	1_	-23.778	4	011	1	122	1	-1.06	1
49		6	max	40.777	1	167.295	3	17.432	1	.006	3	004	12	.601	3
50			min	-3.427	5	-225.989	1_	-18.655	5	011	1_	121	1	889	1
51		7	max	40.777	1	276.437	3	49.737	1_	.006	3	003	12	.348	3
52			min	-15.118	5	-378.864	1	-17.026	5	011	1	082	1	545	1
53		8	max	40.777	1	385.579	3	82.041	1	.006	3	0	10	0	15
54			min	-26.808	5	-531.74	1	-15.397	5	011	1	058	4	032	2
55		9	max	40.777	1	494.721	3	114.346	1	.006	3	.104	1_	.666	1
56			min	-38.499	5	-684.616	1	-13.767	5	011	1	072	5	53	3
57		10	max	62.173	4	837.491	1	-4.482	12	.006	3	.253	1_	1.533	1
58			min	1.51	12	-603.862	3	-146.65	1	011	1	.007	12	-1.155	3
59		11	max		4	684.616	_1_	-3.429	12	.011	_1_	.105	4	.666	1
60			min	1.51	12	-494.721	3	-114.346	1	006	3	.002	12	53	3
61		12	max	40.777	1	531.74	1_	-2.376	12	.011	1_	.054	5	0	15
62			min	1.51	12	-385.579	3	-82.041	1	006	3	007	1	032	2
63		13	max	40.777	1	378.864	_1_	-1.323	12	.011	_1_	.028	5	.348	3
64			min	1.51	12	-276.437	3	-49.737	1	006	3	082	1	545	1
65		14	max	40.777	1	225.989	_1_	27	12	.011	_1_	.004	5	.601	3
66			min	1.51	12	-167.295	3	-24.335	4	006	3	121	1	889	1
67		15	max	40.777	1	73.113	1_	14.872	1	.011	1_	004	12	.729	3
68			min	-4.325	5	-58.153	3	-18.768	5	006	3	122	1	-1.06	1
69		16	max	40.777	1	50.989	3	47.177	1	.011	_1_	002	12	.734	3
70			min	-16.016	5	-79.762	1	-17.139	5	006	3	087	1	-1.056	1
71		17	max	40.777	1	160.13	3	79.481	1	.011	1_	0	3	.613	3
72			min	-27.707	5	-232.638	1	-15.509	5	006	3	061	4	878	1
73		18	max	40.777	1	269.272	3	111.786	1	.011	1	.094	1	.369	3
74			min	-39.397	5	-385.514	1	-13.88	5	006	3	074	5	526	1
75		19	max	40.777	1	378.414	3	144.09	1	.011	1	.24	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]		Torque[k-ft]			LC	z-z Mome	
76			min	-51.088	5	-538.389	1	-12.251	5	006	3	089	5	0	3
77	M15	1	max	80.277	5	603.816	1	-4.972	12	.011	1	.24	1	0	2
78			min	-42.856	1	-208.447	3	-144.07	1	005	3	.009	12	0	3
79		2	max	68.586	5	431.552	1	-3.919	12	.011	1	.14	4	.204	3
80			min	-42.856	1	-149.715	3	-111.766	1	005	3	.004	12	59	1
81		3	max	56.895	5	259.288	1	-2.866	12	.011	1	.081	5	.341	3
82			min	-42.856	1	-90.983	3	-79.461	1	005	3	015	1	983	1
83		4	max	45.204	5	87.024	1	-1.813	12	.011	1	.045	5	.411	3
84			min	-42.856	1	-32.251	3	-47.157	1	005	3	087	1	-1.18	1
85		5	max	33.513	5	26.481	3	76	12	.011	1	.011	5	.414	3
86		-	min	-42.856	1	-85.24	1	-32.517	4	005	3	122	1	-1.181	1
		6					_	17.453							_
87		6	max	21.822	5	85.213	3		1	.011	1	004	12	.351	3
88		-	min	-42.856	1	-257.504	1	-27.392	5	005	3	121	1	986	1
89		7	max	10.131	5	143.945	3	49.757	1	.011	1	003	12	.22	3
90			min	-42.856	1	-429.768	1_	-25.763	5	005	3	082	1	595	1
91		8	max	-1.007	15	202.677	3	82.062	1	.011	1	0	10	.023	3
92			min	-42.856	1	-602.032	_1_	-24.133	5	005	3	082	4	009	9
93		9	max	-1.731	12	261.409	3	114.366	1	.011	1	.104	1	.777	1
94			min	-42.856	1	-774.296	1	-22.504	5	005	3	106	5	241	3
95		10	max	-1.731	12	946.56	1	-4.505	12	.011	1	.253	1	1.757	1
96			min	-42.856	1	-320.14	3	-146.671	1	005	3	.007	12	572	3
97		11	max	8.747	5	774.296	1	-3.452	12	.005	3	.139	4	.777	1
98			min	-42.856	1	-261.409		-114.366	1	011	1	.002	12	241	3
99		12	max	-1.731	12	602.032	1	-2.399	12	.005	3	.079	5	.023	3
100		1-	min	-42.856	1	-202.677	3	-82.062	1	011	1	007	1	009	9
101		13	max	-1.731	12	429.768	1	-1.346	12	.005	3	.043	5	.22	3
102		13	min	-42.856	1	-143.945	3	-49.757	1	011	1	082	1	595	1
		1.1													3
103		14	max	-1.731	12	257.504	1	293	12	.005	3	.009	5	.351	
104		4.5	min	-42.856	1	-85.213	3	-33.087	4	011	1	121	1	986	1
105		15	max	-1.731	12	85.24	1	14.852	1	.005	3	004	12	.414	3
106		1.0	min	-47.149	4	-26.481	3	-27.506	5	011	1	122	1	-1.181	1
107		16	max	-1.731	12	32.251	3	47.157	1	.005	3	002	12	.411	3
108			min	-58.84	4	-87.024	1	-25.876	5	011	1	087	1	-1.18	1
109		17	max	-1.731	12	90.983	3	79.461	1	.005	3	0	3	.341	3
110			min	-70.531	4	-259.288	1	-24.247	5	011	1	087	4	983	1
111		18	max	-1.731	12	149.715	3	111.766	1	.005	3	.094	1	.204	3
112			min	-82.222	4	-431.552	1	-22.618	5	011	1	109	5	59	1
113		19	max	-1.731	12	208.447	3	144.07	1	.005	3	.24	1	0	2
114			min	-93.913	4	-603.816	1	-20.989	5	011	1	134	5	0	5
115	M16	1	max	80.103	5	576.355	1	-4.786	12	.012	1	.212	1	0	1
116				-93.673	1	-195.379		-140.023		007	3		12	0	3
117		2	max		5	404.091	1	-3.733	12	.012	1	.104	4	.189	3
118		_	min	-93.673	1	-136.647	3	-107.719		007	3	.003	12	558	1
119		3	max	56.721	5	231.827	1	-2.68	12	.012	1	.06	5	.311	3
120		5	min	-93.673	1	-77.916	3	-75.414	1	007	3	033	1	92	1
121		4	max	45.03	5	59.563	1	-1.627	12	.012	1	.033	5	.367	3
122		4	-												
		-	min	-93.673	1	-19.184	3	-43.11	1	007	3	101	1	<u>-1.086</u>	1
123		5	max	33.339	5	39.548	3	574	12	.012	1	.008	5	.355	3
124			min	-93.673	1	-112.701	1	-23.357	4	007	3	131	1	-1.056	1
125		6	max	21.648	5	98.28	3	21.499	1	.012	1	004	12	.276	3
126			min	-93.673	1	-284.965	1	-19.185	5	007	3	125	1	83	1
127		7	max	9.958	5	157.012	3	53.804	1	.012	1	003	12	.131	3
128			min	-93.673	1	-457.229	1	-17.556	5	007	3	083	1	407	1
129		8	max	-1.1	15	215.744	3	86.108	1	.012	1	0	10	.212	1
130			min	-93.673	1	-629.493	1	-15.927	5	007	3	056	4	081	3
131		9	max	-3.559	12	274.476	3	118.413	1	.012	1	.114	1	1.027	1
132			min	-93.673	1	-801.757	1	-14.297	5	007	3	072	5	36	3
						_	_								

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-3.559	12	974.021	1	-4.691	12	.012	1_	.267	1	2.038	1
134			min	-93.673	1	-333.208	3	-150.717	1	007	3	.008	12	706	3
135		11	max	4.006	5	801.757	1	-3.638	12	.007	3	.114	1	1.027	1
136			min	-93.673	1	-274.476	3	-118.413	1	012	1	.003	12	36	3
137		12	max	-3.559	12	629.493	1	-2.585	12	.007	3	.054	4	.212	1
138			min	-93.673	1	-215.744	3	-86.108	1	012	1	003	1	081	3
139		13	max	-3.559	12	457.229	1	-1.532	12	.007	3	.027	5	.131	3
140			min	-93.673	1	-157.012	3	-53.804	1	012	1	083	1	407	1
141		14	max	-3.559	12	284.965	1	479	12	.007	3	.002	5	.276	3
142			min	-93.673	1	-98.28	3	-25.97	4	012	1	125	1	83	1
143		15	max	-3.559	12	112.701	1	10.805	1	.007	3	004	12	.355	3
144			min	-93.673	1	-39.548	3	-19.715	5	012	1	131	1	-1.056	1
145		16	max	-3.559	12	19.184	3	43.11	1	.007	3	003	12	.367	3
146			min	-93.673	1	-59.563	1	-18.086	5	012	1	101	1	-1.086	1
147		17	max	-3.559	12	77.916	3	75.414	1	.007	3	0	12	.311	3
148			min	-93.673	1	-231.827	1	-16.457	5	012	1	071	4	92	1
149		18	max	-3.559	12	136.647	3	107.719	1	.007	3	.071	1	.189	3
150			min	-97.478	4	-404.091	1	-14.827	5	012	1	081	5	558	1
151		19	max	-3.559	12	195.379	3	140.023	1	.007	3	.212	1	0	1
152			min	-109.169	4	-576.355	1	-13.198	5	012	1	097	5	0	5
153	M2	1		1105.913	1	2.332	4	1.261	1	0	3	0	3	0	1
154		-	min	-847.91	3	.571	15	-80.663	4	0	4	0	1	0	1
155		2		1106.241	1	2.316	4	1.261	1	0	3	0	1	0	15
156		_	min		3	.568	15	-80.948	4	0	4	018	4	0	4
157		3	max	1106.57	1	2.301	4	1.261	1	0	3	0	1	0	15
158			min	-847.418	3	.564	15	-81.233	4	0	4	036	4	001	4
159		4		1106.898	1	2.286	4	1.261	1	0	3	0	1	0	15
160			min	-847.171	3	.561	15	-81.518	4	0	4	054	4	002	4
161		5		1107.226	1	2.271	4	1.261	1	0	3	.001	1	0	15
162			min	-846.925	3	.557	15	-81.803	4	0	4	072	4	002	4
163		6		1107.555	1	2.255	4	1.261	1	0	3	.001	1	0	15
164			min	-846.679	3	.553	15	-82.087	4	0	4	09	4	003	4
165		7		1107.883	1	2.24	4	1.261	1	0	3	.002	1	0	15
166				-846.433	3	.55	15	-82.372	4	0	4	108	4	003	4
167		8		1108.212	1	2.225	4	1.261	1	0	3	.002	1	0	15
168		0	min	-846.186	3	.546	15	-82.657	4	0	4	127	4	004	4
169		9		1108.54	1	2.21	4	1.261	1	0	3	.002	1	0	15
170		- 3	min	-845.94	3	.543	15	-82.942	4	0	4	145	4	004	4
171		10		1108.869	1	2.194	4	1.261	1	0	3	.002	1	004 001	15
172		10	min	-845.694	3	.539	15	-83.227	4	0	4	163	4	005	4
173		11		1109.197		2.179	4	1.261	1	0	3	.003	1	003	15
174		11		-845.447	3	.536	15	-83.511	4	0	4	182	4	005	4
175		12		1109.526		2.164	4	1.261	1	0	3	.003	1	003	15
176		12		-845.201	3	.532	15		4	0	4	2	4	005	4
177		13		1109.854	<u></u>	2.149	4	1.261	1		3	.003	1	003 001	15
178		13		-844.955	3	.528	15	-84.081	4	0	4	219	4	006	4
179		11		1110.182				1.261			3	.004	1	002	
		14	1		1	2.133	4 1E		1	0					15
180		4.5		-844.708		.525	<u>15</u>	-84.366	4	0	4	238	4	006	4
181		15		1110.511	1	2.118	4	1.261	1	0	3	.004	1	002	15
182		4.0	min		3	.521	15	-84.651	4	0	4	256	4	007	4
183		16		1110.839	1	2.103	4	1.261	1	0	3	.004	1	002	15
184		4-7		-844.216	3	.518	15	-84.936	4	0	4	275	4	007	4
185		17		1111.168	1	2.087	4	1.261	1	0	3	.004	1	002	15
186		4.0		-843.969		.514	15	-85.22	4	0	4	294	4	008	4
187		18		1111.496	1	2.072	4	1.261	1	0	3	.005	1	002	15
188		4 -		-843.723		.51	15	-85.505	4	0	4	313	4	008	4
189		19	max	1111.825	1	2.057	4	1.261	1	0	3	.005	1	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC		LC	z-z Mome	LC_
190			min	-843.477	3	.507	15	-85.79	4	0	4	332	4	009	4
191	M3	1	max	230.979	2	8.105	4	.012	1	0	3	0	1_	.009	4
192			min	-337.413	3	1.917	15	-1.215	5	0	4	012	4	.002	15
193		2	max	230.808	2	7.332	4	.012	1	0	3	0	1	.005	4
194			min	-337.541	3	1.736	15	673	5	0	4	013	4	.001	15
195		3	max	230.638	2	6.56	4	.012	1	0	3	0	1	.003	2
196			min	-337.669	3	1.554	15	131	5	0	4	013	4	0	12
197		4	max	230.468	2	5.787	4	.465	4	0	3	0	1	0	2
198			min	-337.796	3	1.373	15	0	12	0	4	013	4	001	3
199		5	max	230.297	2	5.015	4	1.007	4	0	3	0	1	0	15
200			min	-337.924	3	1.191	15	0	12	0	4	013	4	002	6
201		6	max	230.127	2	4.243	4	1.549	4	0	3	0	1_	0	15
202			min	-338.052	3	1.01	15	0	12	0	4	012	4	004	6
203		7	max	229.957	2	3.47	4	2.091	4	0	3	0	1	001	15
204			min	-338.18	3	.828	15	0	12	0	4	011	4	006	6
205		8	max	229.786	2	2.698	4	2.633	4	0	3	0	1	002	15
206			min	-338.307	3	.646	15	0	12	0	4	01	4	007	6
207		9	max	229.616	2	1.925	4	3.175	4	0	3	0	1	002	15
208			min	-338.435	3	.465	15	0	12	0	4	009	4	008	6
209		10	max	229.446	2	1.153	4	3.718	4	0	3	0	1	002	15
210			min	-338.563	3	.283	15	0	12	0	4	008	5	009	6
211		11	max	229.275	2	.381	2	4.26	4	0	3	0	1	002	15
212			min	-338.691	3	.046	12	0	12	0	4	006	5	009	6
213		12	max	229.105	2	08	15	4.802	4	0	3	0	1	002	15
214			min	-338.819	3	393	6	0	12	0	4	004	5	009	6
215		13	max	228.934	2	261	15	5.344	4	0	3	0	1	002	15
216			min	-338.946	3	-1.165	6	0	12	0	4	002	5	009	6
217		14	max	228.764	2	443	15	5.886	4	0	3	0	4	002	15
218			min	-339.074	3	-1.938	6	0	12	0	4	0	12	008	6
219		15	max	228.594	2	625	15	6.428	4	0	3	.003	4	002	15
220			min	-339.202	3	-2.71	6	0	12	0	4	0	12	007	6
221		16	max	228.423	2	806	15	6.97	4	0	3	.006	4	001	15
222			min	-339.33	3	-3.483	6	0	12	0	4	0	12	006	6
223		17	max	228.253	2	988	15	7.512	4	0	3	.009	4	0	15
224			min	-339.457	3	-4.255	6	0	12	0	4	0	12	004	6
225		18	max	228.083	2	-1.169	15	8.055	4	0	3	.012	4	0	15
226			min	-339.585	3	-5.028	6	0	12	0	4	0	12	002	6
227		19	max	227.912	2	-1.351	15	8.597	4	0	3	.016	4	0	1
228			min	-339.713	3	-5.8	6	0	12	0	4	0	12	0	1
229	M4	1		1229.507	1	0	1	318	12	0	1	.008	4	0	1
230				-250.52	3	0	1	-240.299		0	1	0	10	0	1
231		2		1229.677	1	0	1	318	12	0	1	0	12	0	1
232			min		3	0	1	-240.447		0	1	019	4	0	1
233		3	+	1229.848	1	0	1	318	12	0	1	0	12	0	1
234			min		3	0	1	-240.594		0	1	047	4	0	1
235		4		1230.018	1	0	1	318	12	0	1	0	12	0	1
236			min		3	0	1	-240.742		0	1	075	4	0	1
237		5		1230.188	1	0	1	318	12	0	1	0	12	0	1
238				-250.009	3	0	1	-240.89	4	0	1	102	4	0	1
239		6		1230.359		0	1	318	12	0	1	0	12	0	1
240				-249.881	3	0	1	-241.037		0	1	13	4	0	1
241		7		1230.529		0	1	318	12	0	1	0	12	0	1
242		-	min		3	0	1	-241.185		0	1	158	4	0	1
243		8		1230.699	<u> </u>	0	1	318	12	0	1	0	12	0	1
244		0	min	-249.626		0	1	-241.333		0	1	185	4	0	1
244		9		1230.87	<u>ာ</u> 1	0	1	318	12	0	1	0	12	0	1
		3					1	-241.48	4		1	213	4	0	1
246			THIII)	-249.498	3	0		-241.40	4	0		213	4	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1231.04	1	0	1	318	12	0	1	0	12	0	1
248			min	-249.37	3	0	1	-241.628	4	0	1	241	4	0	1
249		11	max	1231.21	1	0	1	318	12	0	1	0	12	0	1
250			min	-249.242	3	0	1	-241.775	4	0	1	268	4	0	1
251		12	max	1231.381	1	0	1	318	12	0	1	0	12	0	1
252			min	-249.115	3	0	1	-241.923	4	0	1	296	4	0	1
253		13	max	1231.551	1	0	1	318	12	0	1	0	12	0	1
254			min	-248.987	3	0	1	-242.071	4	0	1	324	4	0	1
255		14	max	1231.721	1	0	1	318	12	0	1	0	12	0	1
256			min	-248.859	3	0	1	-242.218	4	0	1	352	4	0	1
257		15		1231.892	1	0	1	318	12	0	1	0	12	0	1
258			min	-248.731	3	0	1	-242.366	4	0	1	38	4	0	1
259		16	+	1232.062	1	0	1	318	12	0	1	0	12	0	1
260		1.0	min	-248.604	3	0	1	-242.514	4	0	1	407	4	0	1
261		17		1232.232	1	0	1	318	12	0	1	0	12	0	1
262		1 ' '	min		3	0	1	-242.661	4	0	1	435	4	0	1
263		18		1232.403	1	0	1	318	12	0	1	0	12	0	1
264		10	min	-248.348	3	0	1	-242.809	4	0	1	463	4	0	1
265		19	+	1232.573	1	0	1	318	12	0	1	0	12	0	1
		19				0	1	-242.956			1				1
266	Me	1	min	-248.22	3	_	_		1	0	1	491	4	0	_
267	<u>M6</u>	-		3566.039 -2786.996	1	2.569	2	0	_	0		0	4	0	1
268		2	min		3	.326	12	-81.388	4	0	4	0	1	0	1
269		2		3566.368	1	2.557	2	0	1	0	1	0	1	0	12
270			min	-2786.75	3	.32	12	-81.673	4	0	4	018	4	0	2
271		3		3566.696	1	2.545	2	0	1	0	1	0	1	0	12
272			min	-2786.504	3	.314	12	-81.957	4	0	4	036	4	001	2
273		4		3567.024	1	2.534	2	0	1	0	1	0	1	0	12
274		<u> </u>	min	-2786.258	3	.308	12	-82.242	4	0	4	054	4	002	2
275		5		3567.353	1	2.522	2	0	1	0	1	0	1	0	12
276			min	-2786.011	3	.302	12	-82.527	4	0	4	073	4	002	2
277		6		3567.681	1	2.51	2	0	1	0	1	0	1	0	12
278			min	-2785.765	3	.297	12	-82.812	4	0	4	091	4	003	2
279		7	max		_1_	2.498	2	0	1	0	1	0	1_	0	12
280			min	-2785.519	3	.291	12	-83.097	4	0	4	109	4	003	2
281		8		3568.338	_1_	2.486	2	0	1	0	1	0	1_	0	12
282			min	-2785.272	3	.285	12	-83.382	4	0	4	128	4	004	2
283		9	max	3568.667	1_	2.474	2	0	1	0	1	0	1_	0	12
284			min	-2785.026	3	.279	12	-83.666	4	0	4	146	4	004	2
285		10	max	3568.995	1	2.462	2	0	1	0	1	0	1	0	12
286			min	-2784.78	3	.273	12	-83.951	4	0	4	165	4	005	2
287		11	max	3569.323	1	2.45	2	0	1	0	1	0	1	0	12
288			min	-2784.533	3	.267	12	-84.236	4	0	4	183	4	006	2
289		12	max	3569.652	1	2.438	2	0	1	0	1	0	1	0	12
290			min	-2784.287	3	.261	12	-84.521	4	0	4	202	4	006	2
291		13	max	3569.98	1	2.427	2	0	1	0	1	0	1	0	12
292			min	-2784.041	3	.255	12	-84.806	4	0	4	221	4	007	2
293		14	max	3570.309	1	2.415	2	0	1	0	1	0	1	0	12
294			min		3	.249	12	-85.091	4	0	4	24	4	007	2
295		15		3570.637	1	2.403	2	0	1	0	1	0	1	0	12
296			min		3	.243	12	-85.375	4	0	4	259	4	008	2
297		16		3570.966	1	2.391	2	0	1	0	1	0	1	0	12
298			min		3	.237	12	-85.66	4	0	4	278	4	008	2
299		17		3571.294	1	2.379	2	0	1	0	1	0	1	0	12
300		11	min		3	.231	12	-85.945	4	0	4	297	4	009	2
301		18		3571.623	1	2.367	2	0	1	0	1	0	1	003	12
302		10	min		3	.225	12	-86.23	4	0	4	316	4	009	2
303		19		3571.951	1	2.355	2	0	1	0	1	0	1	003	12
505		13	πιαλ	1.501						U				UU I	14

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-2782.563	3_	.219	12	-86.515	4	0	4	335	4	01	2
305	M7	1	max		2	8.119	6	0	1_	0	1	0	1	.01	2
306			min	-1056.506	3_	1.905	15	-1.285	5	0	4	013	4	.001	12
307		2		1002.756	2	7.346	6	0	1	0	1	0	1	.007	2
308			min	-1056.634	3_	1.723	15	743	5	0	4	013	4	0	3
309		3	max		2	6.574	6	0	1	0	1	0	1_	.005	2
310			min	-1056.761	3_	1.542	15	201	5	0	4	013	4	002	3
311		4	max		2	5.801	6	.387	4	0	1	0	1	.002	2
312			min	-1056.889	3	1.36	15	0	1	0	4	013	4	003	3
313		5		1002.244	2	5.029	6	.929	4	0	1	0	1	0	2
314			min	-1057.017	3	1.178	15	0	1	0	4	013	4	004	3
315		6		1002.074	_2_	4.257	6	1.471	4	0	1	0	1_	001	15
316			min	-1057.145	3	.997	15	0	1	0	4	012	4	005	3
317		7		1001.904	2	3.484	6	2.013	4	0	1	0	1	001	15
318			min	-1057.273	3	.815	15	0	1	0	4	012	4	006	3
319		8	max	1001.733	2	2.712	6	2.556	4	0	1	0	1	002	15
320			min	-1057.4	3	.634	15	0	1	0	4	011	4	007	4
321		9	max		2	1.939	6	3.098	4	0	1	0	1	002	15
322			min	-1057.528	3	.444	12	0	1	0	4	009	4	008	4
323		10		1001.393	2	1.294	2	3.64	4	0	1	0	1	002	15
324			min	-1057.656	3	.143	12	0	1	0	4	008	4	009	4
325		11	max	1001.222	2	.692	2	4.182	4	0	1	0	1	002	15
326			min	-1057.784	3	267	3	0	1	0	4	006	4	009	4
327		12	max	1001.052	2	.09	2	4.724	4	0	1	0	1	002	15
328			min	-1057.911	3	718	3	0	1	0	4	005	4	009	4
329		13	max	1000.882	2	274	15	5.266	4	0	1	0	1	002	15
330			min	-1058.039	3	-1.169	3	0	1	0	4	002	4	009	4
331		14	max	1000.711	2	456	15	5.808	4	0	1	0	1	002	15
332			min	-1058.167	3	-1.923	4	0	1	0	4	0	5	008	4
333		15	max	1000.541	2	637	15	6.35	4	0	1	.002	4	002	15
334			min	-1058.295	3	-2.695	4	0	1	0	4	0	1	007	4
335		16	max	1000.371	2	819	15	6.893	4	0	1	.005	4	001	15
336			min	-1058.422	3	-3.468	4	0	1	0	4	0	1	006	4
337		17	max	1000.2	2	-1	15	7.435	4	0	1	.008	4	0	15
338			min	-1058.55	3	-4.24	4	0	1	0	4	0	1	004	4
339		18	max	1000.03	2	-1.182	15	7.977	4	0	1	.012	4	0	15
340			min	-1058.678	3	-5.012	4	0	1	0	4	0	1	002	4
341		19	max	999.86	2	-1.363	15	8.519	4	0	1	.015	4	0	1
342			min	-1058.806	3	-5.785	4	0	1	0	4	0	1	0	1
343	M8	1	max	3605.558	_1_	0	1	0	1	0	1	.008	4	0	1
344			min	-869.469	3	0	1	-234.915	4	0	1	0	1	0	1
345		2	max	3605.729	_1_	0	1	0	1_	0	1	0	1	0	1
346			min		3	0	1	-235.062	4	0	1	019	4	0	1
347		3	max	3605.899	1_	0	1	0	1	0	1	0	1	0	1
348			min	-869.214	3	0	1	-235.21	4	0	1	046	4	0	1
349		4	max	3606.069	1_	0	1	0	1	0	1	0	1	0	1
350			min	-869.086	3	0	1	-235.358	4	0	1	073	4	0	1
351		5	max	3606.24	1	0	1	0	1	0	1	0	1	0	1
352				-868.958	3	0	1	-235.505	4	0	1	1	4	0	1
353		6		3606.41	1	0	1	0	1	0	1	0	1	0	1
354				-868.83	3	0	1	-235.653	4	0	1	127	4	0	1
355		7	max	3606.58	1	0	1	0	1	0	1	0	1	0	1
356			min	-868.703	3	0	1	-235.801	4	0	1	154	4	0	1
357		8	max	3606.751	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-235.948	4	0	1	181	4	0	1
359		9		3606.921	1	0	1	0	1	0	1	0	1	0	1
360				-868.447	3	0	1	-236.096	4	0	1	208	4	0	1

Model Name

Schletter, Inc. HCV

Otanadanal DVMass F

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		P -	LC	_	
361		10		3607.091	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-868.319	3	0	1	-236.243	4	0	1_	235	4	0	1
363		11		3607.262	1	0	1	0	1_1	0	1_	0	1_4	0	1
364		40		-868.191	3	0	1	-236.391	4	0	<u>1</u> 1	263	4	0	1
365 366		12		3607.432 -868.064	<u>1</u> 3	0	1	0 -236.539	<u>1</u> 4	0	1	29	4	0	1
367		13		3607.602	<u> </u>	0	1	0	1	0	1	0	1	0	1
368		13	min	-867.936	3	0	1	-236.686	4	0	1	317	4	0	1
369		14		3607.773	<u> </u>	0	1	0	1	0	+	31 <i>1</i> 0	1	0	1
370		14	min	-867.808	3	0	1	-236.834	4	0	1	344	4	0	1
371		15		3607.943	<u> </u>	0	1	0	1	0	1	0	1	0	1
372		10	min	-867.68	3	0	1	-236.982	4	0	1	371	4	0	1
373		16		3608.113	1	0	1	0	1	0	1	0	1	0	1
374				-867.553	3	0	1	-237.129	4	0	1	399	4	0	1
375		17		3608.284	1	0	1	0	1	0	1	0	1	0	1
376				-867.425	3	Ö	1	-237.277	4	0	1	426	4	0	1
377		18		3608.454	1	0	1	0	1	0	1	0	1	0	1
378			min	-867.297	3	0	1	-237.425	4	0	1	453	4	0	1
379		19	max	3608.624	1	0	1	0	1	0	1	0	1	0	1
380				-867.169	3	0	1	-237.572	4	0	1	48	4	0	1
381	M10	1	max	1105.913	1	2.229	6	046	12	0	1	0	1	0	1
382			min	-847.91	3	.503	15	-81.296	4	0	5	0	3	0	1
383		2	max	1106.241	1	2.214	6	046	12	0	1	0	10	0	15
384			min	-847.664	3	.499	15	-81.581	4	0	5	018	4	0	6
385		3	max	1106.57	1	2.199	6	046	12	0	1_	0	12	0	15
386				-847.418	3	.496	15	-81.865	4	0	5	036	4	0	6
387		4	max	1106.898	_1_	2.184	6	046	12	0	1	0	12	0	15
388			min	-847.171	3	.492	15	-82.15	4	0	5	054	4	001	6
389		5		1107.226	_1_	2.168	6	046	12	0	1_	0	12	0	15
390			min	-846.925	3	.489	15	-82.435	4_	0	5	073	4	002	6
391		6		1107.555	1_	2.153	6	046	12	0	1	0	12	0	15
392		_	min	-846.679	3	.485	15	-82.72	4	0	5	091	4	002	6
393		7		1107.883	1_	2.138	6	046	12	0	1_	0	12	0	15
394		0		-846.433	3	.481	15	-83.005	4	0	5	109	4	003	6
395		8		1108.212	1	2.123	6 15	046	12	0	1	120	12	0	15
396		9		<u>-846.186</u> 1108.54	<u>3</u> 1	.478 2.107	6	-83.29 046	<u>4</u> 12	0	<u>5</u> 1	128 0	12	003 0	15
397 398		9	max	-845.94	3	.474	15	-83.574	4	0	5	146	4	004	6
399		10		1108.869	<u> </u>	2.092	6	046	12	0	1	0	12	0	15
400		10		-845.694	3	.471	15	-83.859	4	0	5	165	4	004	6
401		11		1109.197	1	2.077	6	046	12	0	1	0	12	004	15
402				-845.447	3	.467	15	-84.144	4	0	5	183	4	005	6
403		12		1109.526	1	2.062	6	046	12	0	1	0	12	001	15
404				-845.201	3	.463	15	-84.429	4	0	5	202	4	005	6
405		13		1109.854	1	2.046	6	046	12	0	1	0	12	001	15
406				-844.955	3	.46	15	-84.714	4	0	5	221	4	006	6
407		14		1110.182	1	2.031	6	046	12	0	1	0	12	001	15
408				-844.708	3	.456	15	-84.999	4	0	5	239	4	006	6
409		15		1110.511	1	2.016	6	046	12	0	1	0	12	001	15
410				-844.462	3	.453	15	-85.283	4	0	5	258	4	007	6
411		16		1110.839	1	2.001	6	046	12	0	1	0	12	002	15
412				-844.216	3	.449	15	-85.568	4	0	5	277	4	007	6
413		17		1111.168	1	1.985	6	046	12	0	1	0	12	002	15
414				-843.969	3	.445	15	-85.853	4	0	5	296	4	007	6
415		18	max	1111.496	1_	1.97	6	046	12	0	1	0	12	002	15
416				-843.723	3	.442	15	-86.138	4	0	5	315	4	008	6
417		19	max	1111.825	_1_	1.955	6	046	12	0	1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	<u>Sec</u>		Axial[lb]	<u>LC</u>	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
418			min	-843.477	3	.438	15	-86.423	4	0	5	334	4	008	6
419	M11	1	max	230.979	2	8.051	6	0	12	0	_1_	0	12	.008	6
420			min	-337.413	3	1.881	15	-1.216	5	0	4	013	4	.002	15
421		2	max	230.808	2	7.279	6	0	12	0	_1_	0	12	.005	6
422			min	-337.541	3	1.7	15	674	5	0	4	013	4	.001	15
423		3	max	230.638	2	6.506	6	0	12	0	1_	0	12	.003	2
424			min	-337.669	3	1.518	15	132	5	0	4	013	4	0	12
425		4	max	230.468	2	5.734	6	.459	4	0	_1_	0	12	0	2
426			min	-337.796	3	1.337	15	012	1	0	4	013	4	001	3
427		5	max	230.297	2	4.961	6	1.001	4	0	_1_	0	12	0	15
428			min	-337.924	3	1.155	15	012	1	0	4	013	4	003	4
429		6	max	230.127	2	4.189	6	1.543	4	0	_1_	0	12	001	15
430			min	-338.052	3	.974	15	012	1	0	4	012	4	005	4
431		7	max	229.957	2	3.416	6	2.085	4	0	_1_	0	12	002	15
432			min	-338.18	3	.792	15	012	1	0	4	011	4	006	4
433		8	max	229.786	2	2.644	6	2.628	4	0	1_	0	12	002	15
434			min	-338.307	3	.61	15	012	1	0	4	01	4	007	4
435		9	max	229.616	2	1.872	6	3.17	4	0	1	0	12	002	15
436			min	-338.435	3	.429	15	012	1	0	4	009	4	008	4
437		10	max	229.446	2	1.099	6	3.712	4	0	1	0	12	002	15
438			min	-338.563	3	.247	15	012	1	0	4	008	4	009	4
439		11	max	229.275	2	.381	2	4.254	4	0	1	0	12	002	15
440			min	-338.691	3	.046	12	012	1	0	4	006	4	009	4
441		12	max	229.105	2	116	15	4.796	4	0	1	0	12	002	15
442			min	-338.819	3	447	4	012	1	0	4	004	4	009	4
443		13	max	228.934	2	297	15	5.338	4	0	1	0	12	002	15
444			min	-338.946	3	-1.219	4	012	1	0	4	002	4	009	4
445		14	max	228.764	2	479	15	5.88	4	0	1	0	5	002	15
446			min	-339.074	3	-1.992	4	012	1	0	4	0	1	008	4
447		15	max	228.594	2	661	15	6.422	4	0	1	.003	4	002	15
448			min	-339.202	3	-2.764	4	012	1	0	4	0	1	007	4
449		16	max	228.423	2	842	15	6.965	4	0	1	.006	4	001	15
450			min	-339.33	3	-3.536	4	012	1	0	4	0	1	006	4
451		17	max	228.253	2	-1.024	15	7.507	4	0	1	.009	4	001	15
452			min	-339.457	3	-4.309	4	012	1	0	4	0	1	004	4
453		18	max	228.083	2	-1.205	15	8.049	4	0	1	.012	4	0	15
454			min	-339.585	3	-5.081	4	012	1	0	4	0	1	002	4
455		19	max	227.912	2	-1.387	15	8.591	4	0	1	.016	4	0	1
456			min	-339.713	3	-5.854	4	012	1	0	4	0	1	0	1
457	M12	1	max	1229.507	1	0	1	8.414	1	0	1	.008	4	0	1
458				-250.52	3	0	1	-236.067	4	0	1	0	1	0	1
459		2	max	1229.677	1	0	1	8.414	1	0	1	0	1	0	1
460			min	-250.392	3	0	1	-236.214	4	0	1	019	4	0	1
461		3	max	1229.848	1	0	1	8.414	1	0	1	.002	1	0	1
462			min	-250.265	3	0	1	-236.362	4	0	1	046	4	0	1
463		4		1230.018	1	0	1	8.414	1	0	1	.003	1	0	1
464					3	0	1	-236.509	4	0	1	073	4	0	1
465		5		1230.188	1	0	1	8.414	1	0	1	.004	1	0	1
466				-250.009	3	0	1	-236.657	4	0	1	1	4	0	1
467		6		1230.359	1	0	1	8.414	1	0	1	.005	1	0	1
468				-249.881	3	0	1	-236.805	4	0	1	127	4	0	1
469		7		1230.529	1	0	1	8.414	1	0	1	.006	1	0	1
470			min	-249.754	3	0	1	-236.952		0	1	155	4	0	1
471		8		1230.699	1	0	1	8.414	1	0	1	.007	1	0	1
472		_	min	-249.626	3	0	1	-237.1	4	0	1	182	4	0	1
473		9		1230.87	1	0	1	8.414	1	0	1	.008	1	0	1
474				-249.498	3	0	1	-237.248	4	0	1	209	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1231.04	1	0	1	8.414	1	0	1	.009	1	0	1
476			min	-249.37	3	0	1	-237.395	4	0	1	236	4	0	1
477		11	max		1	0	1	8.414	1	0	1	.01	1	0	1
478			min	-249.242	3	0	1	-237.543	4	0	1	264	4	0	1
479		12		1231.381	1	0	1	8.414	1	0	1	.01	1	0	1
480			min	-249.115	3	0	1	-237.691	4	0	1	291	4	0	1
481		13		1231.551	1	0	1	8.414	1	0	1	.011	1	0	1
482			min	-248.987	3	0	1	-237.838	4	0	1	318	4	0	1
483		14		1231.721	1	0	1	8.414	1	0	1	.012	1	0	1
484			min	-248.859	3	0	1	-237.986	4	0	1	346	4	0	1
485		15		1231.892	1	0	1	8.414	1	0	1	.013	1	0	1
486		-10	min	-248.731	3	0	1	-238.133	_	0	1	373	4	0	1
487		16		1232.062	1	0	1	8.414	1	0	1	.014	1	0	1
488		10	min	-248.604	3	0	1	-238.281	4	0	1	4	4	0	1
489		17		1232.232	1	0	1	8.414	1	0	1	.015	1	0	1
490		17	min	-248.476	3	0	1	-238.429	4	0	1	428	4	0	1
491		18		1232.403	1	0	1	8.414	1	0	1	.016	1	0	1
492		10	min	-248.348	3	0	1	-238.576	4	0	1	455	4	0	1
493		19		1232.573	1	0	1	8.414	1	0	1	.017	1	0	1
494		19	min	-248.22	3	0	1	-238.724	4	0	1	482	4	0	1
495	M1	1	max	139.855	<u> </u>	481.636	3	57.184	5	0	1	.211	1	0	3
496	IVI I	l	min	-5.96		-509.49	1	-88.69	1	0	3	058	5	013	1
497		2			<u>5</u>	480.599		58.426	5		1	.164		.256	_
			max		1	-510.874	3			0	3		<u>1</u> 5		3
498		2	min	-5.787	5		1	-88.69	1	0		028	_	253	
499		3	max	198.505	3_	563.671	1	-3.461	12	0	3	.117	1	.513	3
500		4	min	-129.094	2	-347.455	3	-87.65	1	0	1	.001	15	497	$\overline{}$
501		4	max	198.783	3_	562.287	1	-3.461	12	0	3	.071	1	.216	1
502		_	min	-128.723	2	-348.493	3	-87.65	1	0	1_	008	5	313	3
503		5	max	199.061	3_	560.904	1	-3.461	12	0	3	.025	1	004	15
504			min	-128.353	2	-349.53	3	-87.65	1	0	1	017	5	129	3
505		6	max	199.339	3	559.52	1	-3.461	12	0	3	0	12	.056	3
506		_	min	-127.982	2	-350.568	3	-87.65	1	0	1_	029	4	376	1
507		7	max		3_	558.136	1	-3.461	12	0	3	003	12	.241	3
508			min	-127.611	2	-351.606	3	-87.65	1	0	1	068	1	671	1
509		8	max	199.895	3_	556.753	1	-3.461	12	0	3	004	12	.427	3
510			min	-127.24	2	-352.643	3	-87.65	1	0	1	114	1	965	1
511		9	max	207.695	3_	33.4	2	39.23	5	0	9	.067	1	.499	3
512			min	-71.404	2	.418	15		1_	0	3	119	5	-1.1	1
513		10	max	207.974	3	32.016	2	40.472	5	0	9	0	12	.486	3
514			min	-71.033	2	0	5	-128.447	1_	0	3	099	4	-1.109	1
515		11	_	208.252	3	30.632	2	41.713	5	0	9	003	12		3
516		4 -	min		2	-1.732	4	-128.447		0	3	09	4	-1.117	1
517		12		216.015	3_	231.829	3	127.621	5	0	1	.112	1	.412	3
518			min		5	-591.87	1	-85.631	1	0	3	171	5	986	1
519		13		216.293	3_	230.791	3	128.862	5	0	1	.067	1	.29	3
520			min	-47.123	<u>5</u>	-593.253	1	-85.631	1	0	3	103	5	673	1
521		14		216.571	3_	229.753	3	130.103	5	0	1	.022	1	.168	3
522			min	-46.95	5	-594.637	1	-85.631	1	0	3	035	5	36	1
523		15		216.849	3	228.716	3	131.345		0	1	.034	5	.047	3
524				-46.777	5	-596.02	1	-85.631	1	0	3	023	1	046	1
525		16	max	217.127	3	227.678	3	132.586	5	0	1	.104	5	.269	1
526			min	-46.604	5	-597.404	1	-85.631	1	0	3	068	1	073	3
527		17	max	217.405	3	226.64	3	133.828	5	0	1	.174	5	.585	1
528			min		5	-598.788	1	-85.631	1	0	3	114	1	193	3
529		18	max		5	578.863	1	-3.559	12	0	5	.144	5	.293	1
530			min	-140.392	1	-194.368	3	-110.459		0	1	163	1	096	3
531		19	max	13.198	5	577.48	1	-3.559	12	0	5	.097	5	.007	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
532			min	-140.022	1	-195.406	3	-109.217	4	0	1	212	1	012	1
533	M5	1_	max	301.772	1	1606.112	3	87.128	5	0	_1_	0	1	.027	1
534			min	9.232	12	-1723.345	1	0	1	0	4	132	4	0	3
535		2	max	302.143	1	1605.075	3	88.369	5	0	_1_	0	1	.937	1
536			min	9.417	12	-1724.728	1	0	1	0	4	086	4	848	3
537		3	max	637.407	3	1729.138	1	13.693	4	0	4	0	1_	1.805	1
538			min	-493.3	1	-1120.083	3	0	1	0	1	04	4	-1.662	3
539		4	max	637.685	3	1727.755	1	14.935	4	0	_4_	0	1_	.893	1
540			min	-492.929	1	-1121.121	3	0	1	0	1	033	4	-1.071	3
541		5	max	637.963	3	1726.371	1	16.176	4	0	4	0	1	.013	9
542			min	-492.559	1	-1122.158	3	0	1	0	1	025	4	479	3
543		6	max		3	1724.988	1	17.418	4	0	_4_	0	1_	.113	3
544			min	-492.188	1	-1123.196	3	0	1	0	1_	016	5	929	1
545		7	max	638.519	3	1723.604	1	18.659	4	0	4	0	1	.706	3
546			min	-491.817	1	-1124.234	3	0	1	0	1	008	5	-1.838	1
547		8	max	638.798	3	1722.22	1	19.901	4	0	4	.004	4	1.3	3
548			min	-491.446	1	-1125.271	3	0	1	0	1	0	1	-2.747	1
549		9	max	652.464	3	110.481	2	125.337	4	0	_1_	0	1_	1.497	3
550			min	-360.033	2	.418	15	0	1	0	1	156	4	-3.106	1
551		10	max	652.742	3	109.097	2	126.579	4	0	_1_	0	1_	1.45	3
552			min	-359.662	2	0	15	0	1	0	1_	09	5	-3.138	1
553		11	max	653.02	3	107.714	2	127.82	4	0	_1_	0	1	1.404	3
554			min	-359.291	2	-1.587	6	0	1	0	_1_	024	5	-3.168	1
555		12	max	666.759	3	734.753	3	173.729	4	0	_1_	0	1	1.232	3
556			min	-244.948	2	-1840.175	1	0	1	0	4	237	4	-2.821	1
557		13	max	667.037	3	733.716	3	174.971	4	0	_1_	0	1	.845	3
558			min	-244.577	2	-1841.559	1	0	1	0	4_	145	4	-1.85	1
559		14	max	667.315	3	732.678	3	176.212	4	0	_1_	0	1	.458	3
560			min	-244.206	2	-1842.942	1	0	1	0	4	052	4	878	1
561		15	max	667.593	3	731.64	3	177.454	4	0	_1_	.041	4	.141	2
562			min	-243.835	2	-1844.326	1	0	1	0	4	0	1	004	13
563		16	max		3	730.603	3	178.695	4	0	_1_	.135	4	1.069	1
564			min	-243.465	2	-1845.71	1_	0	1	0	4	0	1	314	3
565		17	max	668.149	3	729.565	3	179.937	4	0	_1_	.229	4	2.043	1
566			min	-243.094	2	-1847.093	1_	0	1	0	4_	0	1	7	3
567		18	max	-9.568	12	1956.054	1	0	1	0	4	.225	4	1.056	1
568			min	-301.809	1	-665.541	3	-42.097	5	0	_1_	0	1	366	3
569		19	max	-9.382	12	1954.67	1	0	1	0	4	.204	4	.024	1
570		1	min	-301.439	1	-666.579	3	-40.855	5	0	1_	0	1	014	3
571	<u>M9</u>	1_	max	139.855	1	481.636	3	88.69	1	0	3	008	12	0	3
572			min	4.861	12	-509.49	1	3.51	12	0	1	211	1	013	1
573		2	max		1	480.599	3	88.69	1	0	3	007	12	.256	1
574			min	5.047	12	-510.874	1	3.51	12	0	1	164	1	253	3
575		3	max		3	563.671	1	87.65	1	0	1_	005	12	.513	1
576			min	-129.094	2	-347.455	3	-10.388	5	0	3	117	1	497	3
577		4		198.783	3	562.287	1	87.65	1	0	1	003	12	.216	1
578		_			2	-348.493	3	<u>-9.146</u>	5	0	3	071	1	313	3
579		5		199.061	3	560.904	1	87.65	1	0	1	001	12	004	15
580			min	-128.353	2	-349.53	3	-7.905	5	0	3	025	1	129	3
581		6			3	559.52	1	87.65	1	0	1_	.021	1	.056	3
582		-			2	-350.568	3	-6.663	5	0	3	023	5	376	1
583		7		199.617	3	558.136	1	87.65	1	0	1	.068	1	.241	3
584					2	-351.606	3	-5.422	5	0	3	026	5	671	1
585		8	max		3	556.753	1	87.65	1	0	1_	.114	1	.427	3
586			min	-127.24	2	-352.643	3	-4.181	5	0	3	029	5	965	1
587		9	max		3	33.4	2	128.447	1	0	3	003	12	.499	3
588			min	-71.404	2	.422	15	4.971	12	0	9	141	4	-1.1	1

Model Name

: Schletter, Inc. : HCV

110 V

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	207.974	3	32.016	2	128.447	1	0	3	0	1	.486	3
590			min	-71.033	2	.005	15	4.971	12	0	9	099	4	-1.109	1
591		11	max	208.252	3	30.632	2	128.447	1	0	3	.069	1	.473	3
592			min	-70.662	2	-1.693	6	4.971	12	0	9	07	5	-1.117	1
593		12	max	216.015	3	231.829	3	155.213	4	0	3	004	12	.412	3
594			min	-44.799	10	-591.87	1	3.241	12	0	1	206	4	986	1
595		13	max	216.293	3	230.791	3	156.455	4	0	3	003	12	.29	3
596			min	-44.49	10	-593.253	1	3.241	12	0	1	124	4	673	1
597		14	max	216.571	3	229.753	3	157.696	4	0	3	0	12	.168	3
598			min	-44.181	10	-594.637	1	3.241	12	0	1	041	4	36	1
599		15	max	216.849	3	228.716	3	158.938	4	0	3	.042	4	.047	3
600			min	-43.872	10	-596.02	1	3.241	12	0	1	0	12	046	1
601		16	max	217.127	3	227.678	3	160.179	4	0	3	.126	4	.269	1
602			min	-43.563	10	-597.404	1	3.241	12	0	1	.003	12	073	3
603		17	max	217.405	3	226.64	3	161.421	4	0	3	.211	4	.585	1
604			min	-43.254	10	-598.788	1	3.241	12	0	1	.004	12	193	3
605		18	max	-4.972	12	578.863	1	93.756	1	0	1	.196	4	.293	1
606			min	-140.392	1	-194.368	3	-81.428	5	0	3	.006	12	096	3
607		19	max	-4.786	12	577.48	1	93.756	1	0	1	.212	1	.007	3
608			min	-140.022	1	-195.406	3	-80.186	5	0	3	.008	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.111	1	.004	3	8.819e-3	1	NC	1	NC	1
2			min	484	4	014	3	001	10	-1.079e-3	3	NC	1	NC	1
3		2	max	0	1	.23	3	.035	1	1.016e-2	1	NC	5	NC	2
4			min	484	4	126	1	014	5	-1.126e-3	3	1006.698	3	7360.682	1
5		3	max	0	1	.428	3	.084	1	1.151e-2	1	NC	5	NC	3
6			min	484	4	314	1	016	5	-1.173e-3	3	556.526	3	3000.503	1
7		4	max	0	1	.547	3	.126	1	1.285e-2	1	NC	5	NC	3
8			min	484	4	42	1	011	5	-1.221e-3	3	438.008	3	1981.172	1
9		5	max	0	1	.574	3	.148	1	1.42e-2	1	NC	5	NC	3
10			min	484	4	428	1	002	5	-1.268e-3	3	417.975	3	1684.348	1
11		6	max	0	1	.511	3	.143	1	1.554e-2	1	NC	5	NC	3
12			min	484	4	341	1	.005	15	-1.315e-3	3	468.668	3	1740.707	1
13		7	max	0	1	.375	3	.113	1	1.689e-2	1	NC	5	NC	3
14			min	484	4	181	1	.007	10	-1.362e-3	3	631.594	3	2210.589	1
15		8	max	0	1	.204	3	.067	1	1.823e-2	1	NC	4	NC	2
16			min	484	4	003	9	.002	10	-1.409e-3	3	1128.844	3	3793.866	1
17		9	max	0	1	.188	1	.02	1	1.958e-2	1	NC	4	NC	1
18			min	484	4	.005	15	002	10	-1.456e-3	3	3189.08	1	NC	1
19		10	max	0	1	.266	1	.011	3	2.092e-2	1	NC	3	NC	1
20			min	484	4	022	3	007	2	-1.504e-3	3	1587.09	1	NC	1
21		11	max	0	12	.188	1	.02	1	1.958e-2	1	NC	4	NC	1
22			min	484	4	.005	15	011	5	-1.456e-3	3	3189.08	1	NC	1
23		12	max	0	12	.204	3	.067	1	1.823e-2	1	NC	4	NC	2
24			min	484	4	003	9	011	5	-1.409e-3	3	1128.844	3	3793.866	1
25		13	max	0	12	.375	3	.113	1	1.689e-2	1	NC	5	NC	3
26			min	484	4	181	1	004	5	-1.362e-3	3	631.594	3	2210.589	1
27		14	max	0	12	.511	3	.143	1	1.554e-2	1	NC	5	NC	3
28			min	484	4	341	1	.004	15	-1.315e-3	3	468.668	3	1740.707	1
29		15	max	0	12	.574	3	.148	1	1.42e-2	1	NC	5	NC	3
30			min	485	4	428	1	.009	12	-1.268e-3	3	417.975	3	1684.348	1
31		16	max	0	12	.547	3	.126	1	1.285e-2	1	NC	5	NC	3
32			min	485	4	42	1	.008	12	-1.221e-3	3	438.008	3	1981.172	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
33		17	max	0	12	.428	3	.084	1	1.151e-2	1_	NC	5_	NC	3
34			min	485	4	314	1	.006	12	-1.173e-3	3	556.526	3	3000.503	
35		18	max	0	12	.23	3	.035	1	1.016e-2	_1_	NC	5_	NC	2
36			min	485	4	126	1	.002		-1.126e-3	3	1006.698	3	7360.682	
37		19	max	0	12	.111	1	.004	3	8.819e-3	_1_	NC	_1_	NC	1
38			min	485	4	014	3	001		-1.079e-3	3	NC	_1_	NC	1
39	M14	1_	max	0	1	.147	3	.003	3	5.552e-3	1_	NC	1_	NC	1
40		_	min	<u>387</u>	4	36	1	001		-2.663e-3	3_	NC	_1_	NC NC	1
41		2	max	0	1	.381	3	.025	1	6.679e-3	1_	NC	_5_	NC NC	1
42			min	387	4	728	1	02	5	-3.249e-3	3	667.623	1_	NC NC	1
43		3	max	0	1	.579	3	.068	1	7.805e-3	1	NC 250,400	<u>15</u>	NC	3
44		4	min	387	4	-1.044	1	024	5	-3.836e-3	3	359.499	1_	3733.123	
45		4	max	0	1 4	<u>.715</u> -1.271	3	.109	1	8.932e-3	1	NC 269.971	<u>15</u> 1	NC 2309.742	3
46 47		5	min	387	1	<u>-1.271</u> .777	3	016 .132	<u>5</u>	-4.422e-3 1.006e-2	<u>3</u> 1	9468.875	<u>1</u> 15	NC	3
48		3	max	0 387	4	-1.391	1	002	5	-5.009e-3	3	238.619	1	1895.28	1
49		6	max	0	1	.764	3	.131	1	1.119e-2	1	9394.133	15	NC	3
50		1	min	387	4	-1.403	1	.009		-5.595e-3	3	235.843	1	1914.977	1
51		7	max	<u>567</u>	1	.691	3	.105	1	1.231e-2	1	NC	15	NC	3
52		-	min	387	4	-1.325	1	.006	10	-6.182e-3	3	254.884	1	2392.954	
53		8	max	0	1	.583	3	.063	1	1.344e-2	1	NC	15	NC	2
54		Ť	min	387	4	-1.192	1	.002	10	-6.768e-3	3	295.454	1	4050.796	
55		9	max	0	1	.479	3	.027	4	1.457e-2	1	NC	15	NC	1
56			min	387	4	-1.058	1	002	10	-7.355e-3	3	352.006	1	8946.295	_
57		10	max	0	1	.43	3	.01	3	1.569e-2	1	NC	5	NC	1
58			min	387	4	995	1	006	2	-7.941e-3	3	387.312	1	NC	1
59		11	max	0	12	.479	3	.02	1	1.457e-2	1	NC	15	NC	1
60			min	387	4	-1.058	1	02	5	-7.355e-3	3	352.006	1	NC	1
61		12	max	0	12	.583	3	.063	1	1.344e-2	1	NC	15	NC	2
62			min	387	4	-1.192	1	023	5	-6.768e-3	3	295.454	1	4050.796	
63		13	max	0	12	.691	3	.105	1	1.231e-2	1_	NC	15	NC	3
64			min	387	4	-1.325	1	014	5	-6.182e-3	3	254.884	1_	2392.954	
65		14	max	0	12	.764	3	.131	1	1.119e-2	_1_	9393.797	15	NC	3
66			min	387	4	-1.403	1	0		-5.595e-3	3	235.843	<u>1</u>	1914.977	1
67		15	max	0	12	.777	3	.132	1	1.006e-2	_1_	9468.447	<u>15</u>	NC	3
68			min	387	4	-1.391	1	.008	12	-5.009e-3	3	238.619	1_	1895.28	1
69		16	max	0	12	<u>.715</u>	3	.109	1	8.932e-3	1	NC	<u>15</u>	NC	3
70		+	min	387	4	-1.271	1	.007	12	-4.422e-3	3	269.971	_1_	2309.742	
71		17	max	0	12	.579	3	.068	1	7.805e-3	1_	NC 050 400	15	NC 0700 400	3
72		40	min	387	4	-1.044	1	.005	10	-3.836e-3	3	359.499	1_	3733.123	
73		18	max	0	12	.381	3	.028				NC CC7 CO2	5		1
74		10	min	387	4	728	1	0	10	-3.249e-3	3	667.623	1_1	8652.582	
75		19		0	12	.147	3	.003	3	5.552e-3	1	NC NC	<u>1</u> 1	NC NC	1
76 77	M15	1	min	387 0	12	36	3	001 .003	3	-2.663e-3 2.244e-3	3	NC NC	1	NC NC	1
78	IVITO	1	max min	326	4	.15 359	1	<u>.003</u>	10	-5.645e-3	1	NC NC	1	NC NC	1
79		2	max	- <u>320</u> 0	12	.299	3	.025	1	2.74e-3	3	NC	5	NC	1
80		-	min	326	4	761	1	03	5	-6.795e-3	1	612.399	1	7921.174	
81		3	max	- . <u>520</u>	12	.428	3	.068	1	3.236e-3	3	NC	15	NC	3
82			min	326	4	-1.104	1	037	5	-7.945e-3	1	330.469	1	3722.999	
83		4	max	<u>520</u>	12	.522	3	.109	1	3.732e-3	3	NC	15	NC	3
84			min	326	4	-1.347	1	026	5	-9.095e-3	1	249.089	1	2304.805	
85		5	max	0	12	.575	3	.132	1	4.229e-3	3	9476.982	15	NC	3
86			min	326	4	-1.47	1	007	5	-1.024e-2	1	221.42		1891.544	
87		6	max	0	12	.585	3	.131	1	4.725e-3	3	9403.738	15	NC	3
88			min	326	4	-1.474	1	.009	12	-1.139e-2	1	220.721	1	1910.98	1
89		7	max	0	12	.56	3	.105	1	5.221e-3	3	NC	15	NC	3
			man							J 10 0					<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
90			min	326	4	-1.377	1	.006	10	-1.254e-2	_1_	241.594	_1_	2386.688	
91		8	max	0	12	.513	3	.063	1	5.717e-3	3	NC	15	NC	2
92			min	326	4	-1.222	1	.002	10	-1.37e-2	1_	285.243	1_	4033.209	
93		9	max	0	12	.464	3	.036	4	6.214e-3	3	NC	15	NC	1
94			min	326	4	-1.067	1	002	10	-1.485e-2	1	347.674	1	6741.695	4
95		10	max	0	1	.44	3	.009	3	6.71e-3	3	NC	5	NC	1
96			min	326	4	994	1	006	2	-1.6e-2	1	387.819	1	NC	1
97		11	max	0	1	.464	3	.02	1	6.214e-3	3	NC	15	NC	1
98			min	326	4	-1.067	1	029	5	-1.485e-2	1	347.674	1	8513.987	5
99		12	max	0	1	.513	3	.063	1	5.717e-3	3	NC	15	NC	2
100			min	326	4	-1.222	1	034	5	-1.37e-2	1	285.243	1	4033.209	1
101		13	max	0	1	.56	3	.105	1	5.221e-3	3	NC	15	NC	3
102		1.0	min	326	4	-1.377	1	022	5	-1.254e-2	1	241.594	1	2386.688	
103		14	max	0	1	.585	3	.131	1	4.725e-3	3	9403.492	15	NC	3
104			min	326	4	-1.474	1	002	5	-1.139e-2	1	220.721	1	1910.98	1
105		15	max	0	1	.575	3	.132	1	4.229e-3	3	9476.671	15	NC	3
106		13	min	326	4	-1.47	1	.008	12	-1.024e-2	1	221.42	1	1891.544	1
107		16		0	1	.522	3	.109	1	3.732e-3	3	NC	15	NC	3
		10	max										1		
108		47	min	326	4	-1.347	1	.006	12	-9.095e-3	1	249.089		2304.805	
109		17	max	0	1	.428	3	.068	1	3.236e-3	3	NC 220,400	<u>15</u>	NC 2700 000	3
110		40	min	326	4	-1.104	1	.005	10	-7.945e-3	1	330.469	1_	3722.999	1
111		18	max	0	1	.299	3	.039	4	2.74e-3	3_	NC	5_	NC 2000 CO.4	1
112		1.0	min	326	4	7 <u>61</u>	1	0	10	-6.795e-3	1	612.399	1_	6360.204	_
113		19	max	0	1	.15	3	.003	3	2.244e-3	3	NC	1_	NC	1
114			min	326	4	359	1	0	10	-5.645e-3	<u>1</u>	NC	1_	NC	1
115	M16	1	max	0	12	.108	1	.003	3	3.896e-3	_3_	NC	_1_	NC	1_
116			min	143	4	049	3	0	10	-8.307e-3	1	NC	1_	NC	1
117		2	max	0	12	.038	3	.035	1	4.6e-3	3	NC	5	NC	2
118			min	144	4	164	1	023	5	-9.527e-3	1	905.148	1	7404.104	1
119		3	max	0	12	.106	3	.084	1	5.304e-3	3	NC	5	NC	3
120			min	144	4	38	1	028	5	-1.075e-2	1	504.33	1	3008.497	1
121		4	max	0	12	.143	3	.126	1	6.008e-3	3	NC	5	NC	3
122			min	144	4	503	1	021	5	-1.197e-2	1	402.805	1	1982.863	1
123		5	max	0	12	.143	3	.148	1	6.712e-3	3	NC	5	NC	3
124			min	144	4	516	1	007	5	-1.319e-2	1	394.53	1	1683.201	1
125		6	max	0	12	.107	3	.143	1	7.417e-3	3	NC	5	NC	3
126			min	144	4	422	1	.005	15	-1.441e-2	1	464.751	1	1736.307	1
127		7	max	0	12	.043	3	.114	1	8.121e-3	3	NC	5	NC	3
128		'	min	144	4	244	1	.007	10	-1.563e-2	1	700.068	1	2198.153	
129		8	max	0	12	.004	4	.067	1	8.825e-3	3	NC	3	NC	2
130			min		4	051	2	.003		-1.685e-2	1	1835.44	2	3743.435	
131		9	max	0	12	.169	1	.026	4	9.529e-3	3	NC	4	NC	1
132		9	min	144	4	102	3	001	10	-1.807e-2	1	4007.657	1	9457.215	
133		10	max	0	1	.256	1	.008	3	1.023e-2	3	NC	5	NC	1
134		10	min	144	4	132	3	005	2	-1.929e-2	1	1654.85	1	NC NC	1
135		11	max	_	1		1	005 .021	1	9.529e-3	3	NC	4	NC NC	1
				144		<u>.169</u>									
136		10	min	144	4	102	3	018	5	-1.807e-2	1	4007.657	1	NC NC	1
137		12	max	0	1	.004	6	.067	1	8.825e-3	3	NC	3	NC	2
138		40	min	143	4	051	2	019	5	-1.685e-2	1_	1835.44	2	3743.435	
139		13	max	0	1	.043	3	.114	1	8.121e-3	3	NC	5_	NC 2400.450	3
140			min	143	4	244	1	009	5	-1.563e-2	1_	700.068	<u>1</u>	2198.153	
141		14	max	0	1	.107	3	.143	1	7.417e-3	3	NC	5	NC	3
142			min	143	4	422	1	.004	15	-1.441e-2	1_	464.751	1_	1736.307	1
143		15	max	0	1	.143	3	.148	1	6.712e-3	3	NC	5	NC	3
144			min	143	4	516	1	.008	12	-1.319e-2	1	394.53	1	1683.201	1
145		16	max	0	1	.143	3	.126	1	6.008e-3	3	NC	5	NC	3
146			min	143	4	503	1	.007	12	-1.197e-2	1	402.805	1	1982.863	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC		
147		17	max	0	1	.106	3	.084	1	5.304e-3	3	NC	5	NC	3
148			min	143	4	38	1	.005	12	-1.075e-2	1_	504.33	1	3008.497	1
149		18	max	0	1	.038	3	.035	1	4.6e-3	3	NC	5	NC	2
150			min	143	4	164	1	.002	10	-9.527e-3	1	905.148	1	7224.676	4
151		19	max	0	1	.108	1	.003	3	3.896e-3	3	NC	1	NC	1
152			min	143	4	049	3	0	10	-8.307e-3	1	NC	1	NC	1
153	M2	1	max	.005	1	.002	2	.007	1	1.213e-3	5	NC	1	NC	2
154	1712		min	004	3	005	3	459	4	-1.756e-4	1	NC	1	104.32	4
155		2	max	.005	1	.002	2	.006	1	1.3e-3	5	NC	1	NC	2
156			min	004	3	005	3	421	4	-1.627e-4	1	NC	1	113.67	4
		2		.005			2		1	1.387e-3	_	NC NC	1	NC	2
157		3	max		1	.001		.006			5				
158		-	min	003	3	004	3	383	4	-1.498e-4		NC	1_	124.789	4
159		4	max	.004	1	0	2	.005	1	1.473e-3	_5_	NC	_1_	NC	2
160			min	003	3	004	3	346	4	-1.369e-4	1_	NC	1_	138.138	4
161		5	max	.004	1	00	2	.005	1_	1.56e-3	<u>5</u>	NC	_1_	NC	1
162			min	003	3	004	3	31	4	-1.24e-4	_1_	NC	1_	154.349	4
163		6	max	.004	1	0	2	.004	1	1.647e-3	5_	NC	<u>1</u>	NC	1
164			min	003	3	004	3	275	4	-1.112e-4	1_	NC	1	174.296	4
165		7	max	.003	1	0	15	.004	1	1.733e-3	5	NC	1	NC	1
166			min	003	3	004	3	24	4	-9.826e-5	1	NC	1	199.222	4
167		8	max	.003	1	0	15	.003	1	1.82e-3	4	NC	1	NC	1
168			min	002	3	004	3	207	4	-8.537e-5	1	NC	1	230.944	4
169		9	max	.003	1	0	15	.003	1	1.911e-3	4	NC	1	NC	1
170			min	002	3	004	3	176	4	-7.248e-5	1	NC	1	272.202	4
171		10	max	.003	1	<u>.00-</u>	15	.002	1	2.003e-3	4	NC	1	NC	1
172		10	min	002	3	003	3	146	4	-5.959e-5	1	NC	1	327.288	4
173		11		.002	1	- <u>003</u> 0	15	.002	1	2.094e-3		NC	1	NC	1
			max								4				
174		40	min	002	3	003	3	119	4	-4.67e-5		NC NC	1_	403.247	4
175		12	max	.002	1	0	15	.001	1	2.186e-3	4_	NC	1_	NC	1
176		4.0	min	002	3	003	3	093	4	-3.38e-5	1_	NC	_1_	512.307	4
177		13	max	.002	1	0	15	.001	1	2.277e-3	4	NC	1_	NC	1
178			min	001	3	003	3	071	4	-2.091e-5	_1_	NC	_1_	677.265	4
179		14	max	.001	1	0	15	0	1	2.368e-3	_4_	NC	_1_	NC	1
180			min	001	3	002	3	051	4	-8.022e-6	1_	NC	1_	944.776	4
181		15	max	.001	1	0	15	0	1	2.46e-3	4	NC	1_	NC	1
182			min	0	3	002	3	034	4	0	3	NC	1_	1423.249	4
183		16	max	0	1	0	15	0	1	2.551e-3	4	NC	1	NC	1
184			min	0	3	001	6	02	4	5.06e-7	12	NC	1	2415.887	4
185		17	max	0	1	0	15	0	1	2.643e-3	4	NC	1	NC	1
186			min	0	3	001	6	009	4	1.019e-6	12	NC	1	5068.432	4
187		18	max	0	1	0	15	0	1	2.734e-3	4	NC	1	NC	1
188			min	0	3	0	6	003	4	1.532e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.825e-3	4	NC	1	NC	1
190		10	min	0	1	0	1	0	1	2.046e-6	12	NC	1	NC	1
191	M3	1		0	1	0	1	0	1	-6.397e-7	12	NC	1	NC	1
192	IVIO	1	max	0	1	0	1	0	1	-6.299e-4	4	NC	1	NC	1
		2	min				•		-						
193		2	max	0	3	0	15	.014	4	4.24e-6		NC	1	NC NC	1
194			min	0	2	001	6	0	12	-4.581e-6	5_	NC NC	1_	NC NC	1
195		3	max	0	3	0	15	.027	4	6.251e-4	4	NC	_1_	NC	1
196			min	0	2	003	6	0	12	9.69e-7	12	NC	1_	NC	1
197		4	max	0	3	001	15	.039	4	1.253e-3	_4_	NC	_1_	NC	1
198			min	0	2	005	6	0	12	1.773e-6	12	NC	1	NC	1
199		5	max	0	3	001	15	.051	4	1.88e-3	4	NC	1_	NC	1
200			min	0	2	007	6	0	12	2.578e-6	12	NC	1	8714.412	4
201		6	max	0	3	002	15	.063	4	2.508e-3	4	NC	1	NC	1
202			min	0	2	008	6	0	12	3.382e-6	12	NC	1	7842.706	4
203		7	max	0	3	002	15	.073	4	3.135e-3	4	NC	1	NC	1
		<u> </u>	,						<u> </u>	, , , , , , , ,	_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	0	2	01	6	0	12	4.186e-6		9458.294	6	7448.54	4
205		8	max	.001	3	002	15	.084	4	3.763e-3	4	NC	1_	NC 7000.754	1
206			min	0	2	011	6	0	12	4.991e-6		8418.843	6	7386.754	4
207		9	max	.001	3	003	15	.094	4	4.39e-3	4	NC	1_	NC	1
208		40	min	0	2	012	6	0	12	5.795e-6	12	7796.615	6	7607.453	
209		10	max	.001	3	003	15	.103	4	5.018e-3	4	NC 7490 F24	2	NC	1
210		11	min	001	2	012	6	0	12	6.599e-6	12	7480.521	6	8124.71	5
211		11	max	.002	3	003	15	.112	4	5.645e-3	4	NC 7422.062	2	NC	1
212		40	min	001	2	013	6	0	12	7.404e-6	12	7422.962	6	9016.007	5
213 214		12	max	.002	3	003 012	15	<u>.121</u> 0	12	6.273e-3	<u>4</u> 12	NC 7621.395	2	NC NC	1
		40	min	001			6			8.208e-6			6		•
215		13	max	.002	3	002	15	.13	4	6.9e-3	4	NC 8119.561	1	NC NC	1
216		4.4	min	001	2	012	6	0	12	9.012e-6			6	NC NC	1
217		14	max	.002	3	002	15	.138	4	7.528e-3	4	NC 0000 054	1_	NC	1
218		4.5	min	001	2	01	6	0	12	9.817e-6	12	9030.954	6	NC NC	1
219		15	max	.002	3	002	15	.147	4	8.155e-3	4	NC NC	1_1	NC NC	1
220		40	min	002	2	009	1	0	12	1.062e-5	12	NC NC	1_	NC NC	1
221		16	max	.002	3	001	15	.155	4	8.783e-3	4	NC	1	NC NC	1
222		47	min	002	2	008	1	0	12	1.143e-5	12	NC	1_	NC NC	1
223		17	max	.003	3	0	15	.164	4	9.411e-3	4	NC	1_	NC NC	1
224		40	min	002	2	006	1	0	12	1.223e-5	12	NC NC	1_	NC NC	1
225		18	max	.003	3	0	15	.174	4	1.004e-2	4	NC NC	1_	NC NC	1
226		10	min	002	2	005	1	0	12	1.303e-5	12	NC NC	1_	NC NC	1
227		19	max	.003	3	0	5	.184	4	1.067e-2	4	NC	1_	NC NC	1
228	N 4 4	1	min	002	2	003	1	0	12	1.384e-5	12	NC NC	1_	NC NC	1
229	M4	1	max	.003	1	.001	2	0	12	-3.986e-7	12	NC NC	1_	NC 404.045	3
230		<u> </u>	min	0	3	003	3	<u>184</u>	4	-9.493e-4	4	NC	1_	134.945	4
231		2	max	.003	1	.001	2	0	12	-3.986e-7	12	NC	1	NC 4.40.000	2
232			min	0	3	003	3	<u>169</u>	4	-9.493e-4	4_	NC	1_	146.926	4
233		3	max	.003	1	.001	2	0	12	-3.986e-7	12	NC	1_	NC 404.470	2
234		-	min	0	3	003	3	<u>154</u>	4	-9.493e-4	4	NC NC	1_	161.173	4
235		4	max	.002	1	.001	2	0	12	-3.986e-7	12	NC	1	NC 470.070	2
236		+-	min	0	3	002	3	<u>139</u>	4	-9.493e-4	4	NC	1_	178.278	4
237		5	max	.002	1	.001	2	0	12	-3.986e-7	12	NC	1_	NC 400 040	2
238			min	0	3	002	3	125	4	-9.493e-4	4_	NC	1_	199.043	4
239		6	max	.002	1	.001	2	0	12	-3.986e-7	12	NC	1	NC	2
240		+ -	min	0	3	002	3	<u>11</u>	4	-9.493e-4	4	NC	1_	224.581	4
241		7	max	.002	1	0	2	0	12	-3.986e-7	12	NC	1	NC 050,470	2
242		<u> </u>	min	0	3	002	3	097	4	-9.493e-4	4	NC	1_	<u>256.473</u>	4
243		8	max	.002	1	0	2	0	12	-3.986e-7	12	NC	1_	NC 007,000	2
244			min		3	002	3	084		-9.493e-4		NC NC	1	297.022	
245		9	max	.002	1	0	2	0	12	-3.986e-7	12	NC	1_	NC 0.40,000	2
246		40	min	0	3	002	3	071	4	-9.493e-4	4	NC NC	1_	349.699	4
247		10	max	.001	1	0	2	0	12	-3.986e-7	12	NC	1_	NC 440.00	1
248		44	min	0	3	001	3	059	4	-9.493e-4	4	NC NC	1_	419.93	4
249		11	max	.001	1	0	2	0	12	-3.986e-7	12	NC NC	1	NC 540,500	1
250		10	min	0	3	001	3	048	4	-9.493e-4	4	NC	1_	516.589	4
251		12	max	.001	1	0	2	0	12	-3.986e-7	12	NC	1_	NC 055,000	1
252		10	min	0	3	001	3	038	4	-9.493e-4	4_	NC	1_	655.032	4
253		13	max	0	1	0	2	0	12	-3.986e-7	<u>12</u>	NC NC	1_	NC OCO 700	1
254		4.4	min	0	3	0	3	029	4	-9.493e-4	4	NC	1_	863.768	4
255		14	max	0	1	0	2	0	12	-3.986e-7	12	NC		NC 1000 000	1
256			min	0	3	0	3	021	4	-9.493e-4	4	NC	_1_	1200.803	
257		15	max	0	1	0	2	0	12	-3.986e-7	12	NC		NC 4700 000	1
258		4.0	min	0	3	0	3	<u>014</u>	4	-9.493e-4	4_	NC	1_	1799.882	
259		16	max	0	1	0	2	0	12	-3.986e-7	12	NC	_1_	NC	1
260			min	0	3	0	3	008	4	-9.493e-4	4	NC	1_	3030.836	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
261		17	max	00	1	00	2	00	12	-3.986e-7	12	NC	_1_	NC	1
262			min	0	3	0	3	004	4	-9.493e-4	4	NC	_1_	6265.463	4
263		18	max	0	1	0	2	0	12	-3.986e-7	12	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-9.493e-4	4_	NC	_1_	NC	1
265		19	max	0	1	0	1	0	1	-3.986e-7	12	NC	_1_	NC	1
266	140		min	0	1	0	1	0	1	-9.493e-4	4	NC	1_	NC NC	1
267	<u>M6</u>	1	max	.016	1	.01	2	0	1	1.267e-3	4	NC 4040.040	3_	NC 400,400	1
268		<u> </u>	min	013	3	014	3	<u>463</u>	4	0	1_	4842.218	2	103.432	4
269		2	max	.016	1	.009	2	0	1	1.352e-3	4	NC 5040.075	3_	NC 440.700	1
270		2	min	012	3	014	3	425	4	0	1_	5342.275	2	112.703	4
271		3	max	.015	1	.008	2	0	1	1.438e-3	4	NC FOEO 007	1_	NC 400 700	1
272		4	min	011	3	013	3	387	4	0	1_	5952.237	2	123.728	4
273		4	max	.014	1	.007	2	0	1	1.523e-3	4	NC czoc oco	1_	NC 400.005	1
274		-	min	011	3	012	3	349	4	0	1_	6706.069	2	136.965	4
275		5	max	.013	1	.006	2	0	1	1.609e-3	4	NC 7050 407	1_	NC 450.04	1
276			min	01	3	011	3	313	4	0	1_	7652.437	2	153.04	4
277		6	max	.012	3	.005	2	0	1	1.694e-3	4	NC 8863.148	1	NC	1
278		7	min	009		011	3	277	4	0	1_		2	172.82	4
279		-	max	.011	1	.005	2	0	1	1.78e-3	4	NC	<u>1</u> 1	NC	1
280 281		0	min	009	3	<u>01</u>	2	242	1	0 1.865e-3	1_	NC NC	1	197.538 NC	1
282		8	max	.01 008	3	.004 009	3	0 209	4	0	<u>4</u> 1	NC NC	1	228.996	4
283		9	min	.009	1	.003	2	<u>209</u> 0	1	1.951e-3	4	NC NC	1	NC	1
		9	max	009 007	3		3	177	4	0	<u>4</u> 1	NC NC	1	269.911	4
284		10	min		1	008			1	2.036e-3		NC NC	1	NC	1
285 286		10	max	.008 006	3	.002 008	3	0 147	4	2.0366-3	<u>4</u> 1	NC NC	1	324.541	4
287		11	min	.007	1	.002	2	147 0	1	2.121e-3	4	NC NC	1	NC	1
288		11	max	00 <i>7</i>	3	002 007	3	12	4	0	1	NC NC	1	399.874	4
289		12		.006	1	.001	2	<u>12</u> 0	1	2.207e-3	4	NC NC	1	NC	1
290		12	max min	005	3	006	3	094	4	0	1	NC NC	1	508.039	4
291		13	max	.005	1	<u>006</u> 0	2	<u>094</u> 0	1	2.292e-3	4	NC NC	1	NC	1
292		13	min	004	3	005	3	071	4	0	1	NC	1	671.655	4
293		14	max	.005	1	003	2	0	1	2.378e-3	4	NC	1	NC	1
294		14	min	004	3	004	3	051	4	0	1	NC	1	937.009	4
295		15	max	.004	1	<u>.004</u>	2	0	1	2.463e-3	4	NC	1	NC	1
296		13	min	003	3	004	3	034	4	0	1	NC	1	1411.678	4
297		16	max	.003	1	<u>004</u>	2	<u>054</u>	1	2.549e-3	4	NC	1	NC	1
298		10	min	002	3	003	3	02	4	0	1	NC	1	2396.591	4
299		17	max	.002	1	<u>.005</u>	2	0	1	2.634e-3	4	NC	1	NC	1
300		1,	min	001	3	002	3	01	4	0	1	NC	1	5029.276	4
301		18	max	0	1	0	2	0	1	2.72e-3	4	NC	1	NC	1
302		10	min	0	3	0	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.805e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306		•	min	0	1	0	1	0	1	-6.231e-4	4	NC	1	NC	1
307		2	max	0	3	0	15	.014	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-9.191e-6	5	NC	1	NC	1
309		3	max	.001	3	0	15	.027	4	6.069e-4	4	NC	1	NC	1
310		Ĭ	min	0	2	004	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	.039	4	1.222e-3	4	NC	<u> </u>	NC	1
312			min	001	2	005	3	0	1	0	1	NC	1	NC	1
313		5	max	.002	3	002	15	.051	4	1.837e-3	4	NC	1	NC	1
314			min	002	2	007	4	0	1	0	1	NC	1	8359.493	4
315		6	max	.003	3	002	15	.062	4	2.452e-3	4	NC	1	NC	1
316			min	002	2	009	4	0	1	0	1	NC	1	7499.671	4
317		7	max	.003	3	002	15	.073	4	3.067e-3	4	NC	1	NC	1
		•				_			_			_		_	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_	LC	(n) L/y Ratio			
318			min	003	2	01	4	0	1	0	<u>1</u>	9561.6	4_	7096.68	4
319		8	max	.004	3	003	15	.083	4	3.682e-3	4	NC	1_	NC	1
320			min	003	2	011	4	0	1	0	_1_	8503.383	4_	7007.413	4
321		9	max	.004	3	003	15	.093	4	4.297e-3	4	NC	1_	NC	1
322		40	min	004	2	012	4	0	1	0	1_	7869.295	4_	7183.674	4
323		10	max	.005	3	003	15	.102	4	4.912e-3	4	NC 75.45.005	1_	NC	1
324		4.4	min	004	2	013	4	0	1	0	1_	7545.805	4	7633.547	4
325		11	max	.005	3	003	15	111	4	5.527e-3	4	NC	1	NC 0447.007	1
326		40	min	005	2	013	4	0	1	0	1_	7484.071	4_	8417.327	4
327		12	max	.006	3	003	15	.119	4	6.142e-3	4	NC 7000.00	1_	NC 2000 400	1
328		40	min	005	2	013	4	0	1	0	1_	7680.99	4	9668.169	4
329		13	max	.006	3	003	15	.128	4	6.757e-3	4	NC 0400.050	1_	NC	1
330		4.4	min	006	2	012	4	0	1	0	1_	8180.259	4_	NC NC	1
331		14	max	.007	3	003	15	.136	4	7.372e-3	4	NC	1_	NC	1
332		4.5	min	006	2	012	1	0	1	0	1_	9095.899	4_	NC NC	1_
333		15	max	.007	3	002	15	.144	4	7.987e-3	4	NC	1_	NC	1
334		40	min	007	2	011	1	0	1	0	1_	NC NC	1_	NC NC	1
335		16	max	.008	3	002	15	.153	4	8.602e-3	4	NC	1_	NC	1
336		47	min	007	2	011	1	0	1	0	1_4	NC NC	1_	NC NC	1
337		17	max	.008	3	001	15	.161	4	9.217e-3	4	NC NC	1	NC NC	1
338		40	min	008	2	<u>01</u>	1	0	1	0	1_1	NC NC		NC NC	_
339		18	max	.009	3	0	15	.17	4	9.832e-3	4	NC	1_	NC	1
340		10	min	008		009	1	0	1	0	1_1	NC NC	1_	NC NC	1
341		19	max	.009	3	0	15	.18	4	1.045e-2	4	NC	1	NC	1
342	MO	1	min	009	1	007	1	<u> </u>	1	0	<u>1</u> 1	NC NC	1	NC NC	1
343	<u>M8</u>		max	.009		.007	2		_	_					
344		1	min	002	3	009	3	18	4	-9.711e-4	4	NC NC	1_	137.948	4
345		2	max	.008	1	.007	2	<u> </u>	1	0 -9.711e-4	1_1	NC NC	1	NC 150 107	1
346		2	min	002	3	<u>009</u>	3	165	4		4	NC NC	1	150.197	4
347		3	max	.008 002	3	.006 008	3	<u> </u>	1 4	0 -9.711e-4	<u>1</u> 4	NC NC	1	NC 164.764	4
349		4	min	.002	1	.006	2	<u>151</u> 0	1	0	1	NC NC	1	NC	1
350		4	max	00 <i>7</i>	3	008	3	136	4	-9.711e-4	4	NC NC	1	182.252	4
351		5	max	.002	1	.006	2	<u>136</u> 0	1	0	1	NC NC	1	NC	1
352		3	min	002	3	007	3	122	4	-9.711e-4	4	NC NC	1	203.482	4
353		6	max	.002	1	.005	2	<u>122</u> 0	1	0	1	NC	1	NC	1
354			min	001	3	007	3	108	4	-9.711e-4	4	NC	1	229.593	4
355		7	max	.006	1	.005	2	0	1	0	1	NC	1	NC	1
356			min	001	3	006	3	095	4	-9.711e-4	4	NC	1	262.199	4
357		8	max	.005	1	.004	2	093	1	0	1	NC	1	NC	1
358			min	001	3	006	3	082		-9.711e-4	_	NC	1	303.656	4
359		9	max	.005	1	.004	2	0	1	0	1	NC	1	NC	1
360			min	001	3	005	3	069	4	-9.711e-4	_	NC	1	357.514	4
361		10	max	.004	1	.003	2	0	1	0	1	NC	1	NC	1
362		10	min	001	3	005	3	058	4	-9.711e-4	4	NC	1	429.317	4
363		11	max	.004	1	.003	2	<u>.000</u>	1	0	1	NC	1	NC	1
364			min	0	3	004	3	047	4	-9.711e-4	4	NC	1	528.141	4
365		12	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	004	3	037	4	-9.711e-4	4	NC	1	669.687	4
367		13	max	.003	1	.002	2	0	1	0	1	NC	1	NC	1
368		10	min	0	3	003	3	028	4	-9.711e-4	4	NC	1	883.099	4
369		14		.002	1	.002	2	0	1	0	1	NC	1	NC	1
370		17	min	0	3	003	3	02	4	-9.711e-4	4	NC	1	1227.686	4
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372		'	min	0	3	002	3	013	4	-9.711e-4	4	NC	1	1840.191	4
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	002	3	008	4	-9.711e-4	4	NC	1	3098.739	4
017			1111111			.002		.000		0.1 1 TO T		110		5000.700	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	0	2	0	1	0 744 - 4	1_4	NC NC	1_4	NC C40F 007	1
376		40	min	0	3	001	3	004	4	-9.711e-4	4_	NC NC	1_	6405.897	4
377		18	max	0	1	0	2	0	1	0 744 - 4	1_1		1_1	NC NC	1
378		40	min	0	3	0	3	001	4	-9.711e-4	4	NC NC	1_	NC NC	1
379		19	max	0	1	<u>0</u> 	1	0	1	0 -9.711e-4	11	NC NC	1	NC NC	1
380	MAO	4	min				-	0			4				
381	M10	1	max	.005	1	.002	2	0	12	1.268e-3	4	NC NC	1_1	NC 402.FF	2
382		_	min	004	3	005	3	462	4	7.192e-6	12	NC NC	1_	103.55	4
383		2	max	.005	1	.002	2	0	12	1.353e-3	4	NC NC	1_	NC 440,000	2
384		_	min	004	3	005	3	424	4	6.679e-6	12	NC NC	1_	112.832	4
385		3	max	.005	1	.001	2	0	12	1.438e-3	4	NC NC	1_	NC 400,000	2
386		+	min	003	3	004	3	386	4	6.165e-6	12	NC NC	1_	123.869	4
387		4	max	.004	1	0	2	0	12	1.523e-3	4	NC NC	1_	NC 407.404	2
388		-	min	003	3	004	3	349	4	5.652e-6	12	NC	1_	137.121	4
389		5	max	.004	1	0	2	0	12	1.608e-3	4	NC NC	1_	NC 450.045	1
390			min	003	3	004	3	312	4	5.139e-6	12	NC NC	1_	153.215	4
391		6	max	.004	1	0	2	0	12	1.693e-3	4	NC	1_	NC 470.047	1
392		+	min	003	3	004	3	277	4	4.626e-6	12	NC	1_	173.017	4
393		7	max	.003	1	0	2	0	12	1.778e-3	4	NC	1_	NC	1
394			min	003	3	004	3	242	4	4.113e-6	12	NC	1_	197.764	4
395		8	max	.003	1	0	10	0	12	1.863e-3	4_	NC	_1_	NC	1
396			min	002	3	004	3	209	4	3.599e-6	12	NC	1_	229.257	4
397		9	max	.003	1	0	10	0	12	1.948e-3	4	NC	1_	NC	1
398			min	002	3	004	3	177	4	3.086e-6	12	NC	1_	270.219	4
399		10	max	.003	1	00	10	0	12	2.033e-3	4_	NC	_1_	NC	1
400			min	002	3	003	3	147	4	2.573e-6	12	NC	1_	324.912	4
401		11	max	.002	1	0	15	0	12	2.118e-3	4_	NC	_1_	NC	1
402			min	002	3	003	3	12	4	2.06e-6	12	NC	1_	400.332	4
403		12	max	.002	1	0	15	0	12	2.202e-3	4	NC	1_	NC	1
404			min	002	3	003	3	094	4	1.547e-6	12	NC	1_	508.623	4
405		13	max	.002	1	0	15	0	12	2.287e-3	4_	NC	_1_	NC	1
406			min	001	3	003	4	071	4	1.034e-6	12	NC	1_	672.429	4
407		14	max	.001	1	0	15	0	12	2.372e-3	4	NC	_1_	NC	1
408			min	001	3	002	4	051	4	5.204e-7	12	NC	1	938.094	4
409		15	max	.001	1	0	15	0	12	2.457e-3	4	NC	_1_	NC	1
410			min	0	3	002	4	034	4	-4.869e-6	1	NC	1_	1413.325	4
411		16	max	0	1	0	15	0	12	2.542e-3	4	NC	_1_	NC	1
412			min	0	3	002	4	02	4	-1.776e-5	1_	NC	1	2399.421	4
413		17	max	0	1	0	15	0	12	2.627e-3	4	NC	1_	NC	1
414			min	0	3	001	4	01	4	-3.065e-5	1	NC	1	5035.356	4
415		18	max	0	1	0	15	0	12	2.712e-3	4	NC	1_	NC	1
416			min	0	3	0	4	003	4	-4.354e-5	1	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	2.797e-3	4	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-5.643e-5	1	NC	1_	NC	1
419	M11	1	max	0	1	0	1	0	1	1.749e-5	1_	NC	_1_	NC	1
420			min	0	1	0	1	0	1	-6.211e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.014	4	-1.646e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-4.992e-6	5	NC	1	NC	1
423		3	max	0	3	0	15	.027	4	6.121e-4	4	NC	1	NC	1
424			min	0	2	003	4	0	1	-2.597e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.039	4	1.229e-3	4	NC	1	NC	1
426			min	0	2	005	4	0	1	-4.77e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	.051	4	1.845e-3	4	NC	1	NC	1
428			min	0	2	007	4	001	1	-6.944e-5	1	NC	1	8596.943	4
429		6	max	0	3	002	15	.062	4	2.462e-3	4	NC	1	NC	1
430			min	0	2	009	4	001	1	-9.117e-5	1	NC	1	7731.557	4
431		7	max	0	3	003	15	.073	4	3.078e-3	4	NC	1	NC	1

: Schletter, Inc. : HCV

Job Number : Standard

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	0	2	01	4	002	1	-1.129e-4	1_	9108.365	4	7336.789	
433		8	max	.001	3	003	15	.083	4	3.695e-3	4	NC	_1_	NC	1
434			min	0	2	012	4	002	1	-1.346e-4	1_	8131.383	4_	7268.506	4
435		9	max	.001	3	003	15	.092	4	4.312e-3	_4_	NC	_1_	NC	1
436			min	0	2	013	4	002	1	-1.564e-4	<u>1</u>	7548.702	4_	7480.733	4
437		10	max	.001	3	003	15	.102	4	4.928e-3	4_	NC	2	NC	1
438			min	001	2	013	4	003	1	-1.781e-4	1_	7257.253	4	7987.263	
439		11	max	.002	3	003	15	.111	4	5.545e-3	4_	NC	2	NC	1
440		10	min	001	2	<u>013</u>	4	003	1	-1.998e-4	1_	7213.522	4_	8859.68	4
441		12	max	.002	3	003	15	.119	4	6.161e-3	4_	NC	2	NC NC	1
442		40	min	001	2	013	4	004	1	-2.216e-4	1_	7416.773	4	NC	1
443		13	max	.002	3	003	15	.128	4	6.778e-3	4	NC	1_	NC NC	1
444		4.4	min	001	2	012	4	004	1	-2.433e-4	1_	7910.838	4_	NC NC	1
445		14	max	.002	3	003	15	.136	4	7.395e-3	4	NC 0007.040	1_	NC NC	1
446		4.5	min	001	2	011	4	004	1	-2.65e-4	1_1	8807.343	4_	NC NC	1
447		15	max	.002	3	002	15	.144	4	8.011e-3	4	NC NC	1_	NC NC	1
448		4.0	min	002	2	01	4	005	1	-2.868e-4	1_1	NC NC	1_	NC NC	1
449		16	max	.002	3	002	15	.153	4	8.628e-3	4_	NC NC	1_	NC	1
450		47	min	002	2	008	4	005	1	-3.085e-4	1_1	NC NC	1_1	NC NC	1
451 452		17	max	.003	3	001	15	.162	1	9.244e-3 -3.302e-4	<u>4</u> 1	NC NC	1	NC NC	1
452		18	min	002 .003	3	006 0	15	006 .171	4	9.861e-3	4	NC NC	1	NC NC	1
454		10	max	002	2	005	1	006	1	-3.52e-4	1	NC NC	1	NC NC	1
454		19	min	.002	3	<u>005</u> 0	12	<u>006</u> .181	4		4	NC NC	1	NC NC	1
		19	max		2		1		1	1.048e-2 -3.737e-4	1	NC NC	1	NC NC	1
456 457	M12	1	min	002 .003	1	003 .001	2	006 .006	1	1.369e-5	1	NC NC	1	NC NC	3
458	IVIIZ		max	0	3	003	3	181	4	-9.423e-4	4	NC NC	1	137.388	4
459		2	min	.003	1	003 .001	2	.006	1	1.369e-5	1	NC NC	1	NC	2
460			max	.003	3	003	3	166	4	-9.423e-4	4	NC NC	1	149.585	4
461		3	max	.003	1	.003	2	.005	1	1.369e-5	1	NC NC	1	NC	2
462		3	min	0	3	003	3	151	4	-9.423e-4	4	NC	1	164.089	4
463		4	max	.002	1	.003	2	.005	1	1.369e-5	1	NC	1	NC	2
464		-	min	0	3	002	3	137	4	-9.423e-4	4	NC	1	181.502	4
465		5	max	.002	1	.002	2	.004	1	1.369e-5	1	NC	1	NC	2
466			min	0	3	002	3	122	4	-9.423e-4	4	NC	1	202.641	4
467		6	max	.002	1	.002	2	.004	1	1.369e-5	1	NC	1	NC	2
468			min	0	3	002	3	108	4	-9.423e-4	4	NC	1	228.639	4
469		7	max	.002	1	0	2	.003	1	1.369e-5	1	NC	1	NC	2
470			min	0	3	002	3	095	4	-9.423e-4	4	NC	1	261.105	4
471		8	max	.002	1	0	2	.003	1	1.369e-5	1	NC	1	NC	2
472		T .	min		3	002	3	082		-9.423e-4		NC	1	302.385	4
473		9	max	.002	1	0	2	.003	1	1.369e-5	1	NC	1	NC	2
474		Ť	min	0	3	002	3	07	4	-9.423e-4	4	NC	1	356.011	4
475		10	max	.001	1	0	2	.002	1	1.369e-5	1	NC	1	NC	1
476			min	0	3	001	3	058	4	-9.423e-4	4	NC	1	427.506	4
477		11	max	.001	1	0	2	.002	1	1.369e-5	1	NC	1	NC	1
478			min	0	3	001	3	047	4	-9.423e-4	4	NC	1	525.906	4
479		12	max	.001	1	0	2	.001	1	1.369e-5	1	NC	1	NC	1
480		<u> </u>	min	0	3	001	3	037	4	-9.423e-4	4	NC	1	666.843	4
481		13	max	0	1	0	2	.001	1	1.369e-5	1	NC	1	NC	1
482			min	0	3	0	3	028	4	-9.423e-4	4	NC	1	879.337	4
483		14	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
484			min	0	3	0	3	02	4	-9.423e-4	4	NC	1	1222.439	
485		15	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
486			min	0	3	0	3	014	4	-9.423e-4	4	NC	1	1832.301	4
487		16	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
488			min	0	3	0	3	008	4	-9.423e-4	4	NC	1	3085.409	4
															_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	1.369e-5	1	NC	1_	NC	1
490			min	0	3	0	3	004	4	-9.423e-4	4	NC	1	6378.232	4
491		18	max	0	1	0	2	0	1	1.369e-5	1	NC	1	NC	1
492			min	0	3	0	3	001	4	-9.423e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.369e-5	1	NC	1	NC	1
494			min	0	1	0	1	0	1	-9.423e-4	4	NC	1	NC	1
495	M1	1	max	.004	3	.111	1	.485	4	1.808e-2	1	NC	1	NC	1
496			min	001	10	014	3	0	12	-1.855e-2	3	NC	1	NC	1
497		2	max	.004	3	.055	1	.471	4	8.905e-3	4	NC	3	NC	1
498			min	001	10	007	3	005	1	-9.177e-3	3	2036.645	1	NC	1
499		3		.004	3	.005	3	.458	4	1.405e-2	4	NC	5	NC	1
		- 3	max												
500		-	min	001	10	006	1	007	1	-1.285e-4	1_	973.648	<u>1</u>	8625.032	5
501		4	max	.004	3	.027	3	.446	4	1.245e-2	4_	NC	5	NC	1
502		_	min	001	10	077	1	006	1	-3.354e-3	3	607.679	1_	5845.637	5
503		5_	max	.004	3	.055	3	.433	4	1.084e-2	_4_	NC	<u>15</u>	NC	1
504			min	001	10	1 <u>52</u>	1	004	1	-6.618e-3	3	434.407	1_	4448.941	5
505		6	max	.003	3	.085	3	.421	4	1.534e-2	_1_	NC	<u>15</u>	NC	1
506			min	001	10	225	1	002	1	-9.882e-3	3	339.645	1	3632.01	5
507		7	max	.003	3	.114	3	.407	4	2.05e-2	1	9557.39	15	NC	1
508			min	001	10	291	1	0	12		3	284.044	1	3108.69	4
509		8	max	.003	3	.139	3	.393	4	2.565e-2	1	8489.959	15	NC	1
510			min	001	10	344	1	0	12	-1.641e-2	3	251.3	1	2758.45	4
511		9	max	.003	3	.155	3	.377	4	2.818e-2	1	7933.583	15	NC	1
512		Ť	min	001	10	377	1	0	1	-1.649e-2	3	234.308	1	2563.227	4
513		10	max	.003	3	.161	3	.359	4	2.897e-2	1	7764.188	15	NC	1
514		10	min	001	10	388	1	0	12	-1.446e-2	3	229.215	1	2511.656	
		11			3		3					7933.432	•	NC	4
515		11	max	.003		.157		.339	4	2.976e-2	1		<u>15</u>		1
516		40	min	0	10	377	1	0	12	-1.243e-2	3	234.564	1_	2580.533	
517		12	max	.003	3	.144	3	.317	4	2.803e-2	1	8489.611	15	NC 0707.000	1
518		10	min	0	10	343	1	0	1	-1.038e-2	3	252.096	1_	2787.893	
519		13	max	.003	3	.122	3	.292	4	2.252e-2	1	9556.721	<u>15</u>	NC	1
520			min	0	10	29	1	0	1	-8.307e-3	3	286.012	_1_	3291.407	4
521		14	max	.003	3	.095	3	.264	4	1.702e-2	_1_	NC	15	NC	1
522			min	0	10	223	1	0	12	-6.237e-3	3	343.886	1_	4305.05	4
523		15	max	.003	3	.064	3	.237	4	1.151e-2	1_	NC	15	NC	1
524			min	0	10	149	1	0	12	-4.167e-3	3	443.179	1	6449.133	4
525		16	max	.003	3	.032	3	.209	4	9.293e-3	4	NC	5	NC	1
526			min	0	10	074	1	0	12	-2.097e-3	3	626.226	1	NC	1
527		17	max	.003	3	.002	3	.184	4	1.018e-2	4	NC	5	NC	1
528			min	0	10	004	1	0	12	-2.651e-5	3	1015.758	1	NC	1
529		18	max	.003	3	.055	1	.162	4	1.041e-2	1	NC	5	NC	1
530		10	min	0	10	025	3	0	12			2143.851	1	NC	1
531		19	max	.003	3	.108	1	.143	4	2.069e-2	1	NC	1	NC	1
532		13	min	0	10	049	3	0	1	-6.664e-3	3	NC	1	NC	1
	NAE	4		.011						0			•		
533	<u>M5</u>	1	max		3	.266	1	.484	4		1_1	NC NC	1	NC NC	1
534			min	007	2	022	3	0	1	-2.163e-6	4	NC NC	1_	NC NC	1
535		2	max	.011	3	.132	1	.474	4	7.196e-3	4_	NC 050,004	5_	NC NC	1
536			min	007	2	<u>011</u>	3	0	1	0	_1_	852.394	_1_	NC	1
537		3	max	.011	3	.017	3	.462	4	1.417e-2	4	NC	<u>15</u>	NC	1
538			min	007	2	021	1	0	1	0	1	398.217	1	7211.62	4
539		4	max	.011	3	.076	3	.449	4	1.154e-2	4	9110.921	<u>15</u>	NC	1
540			min	007	2	208	1	0	1	0	1	241.433	1	5216.18	4
541		5	max	.011	3	.156	3	.436	4	8.92e-3	4	6377.323	15	NC	1
542			min	007	2	412	1	0	1	0	1	168.652	1	4191.448	4
543		6	max	.011	3	.246	3	.422	4	6.296e-3	4	4910.763	15	NC	1
544		Ĭ	min	006	2	616	1	0	1	0	1	129.64	1	3560.891	4
545		7	max	.01	3	.334	3	.407	4	3.671e-3	4	4063.65	15	NC	1
UTU			πιαλ	.01		.007	J			0.07 10 0	_т_	T000.00	10	110	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio LC		
546			min	006	2	801	1	0	1	0	1_	107.121 1	3123.835	4
547		8	max	.01	3	.407	3	.393	4	1.046e-3	4_	3571.019 15		1
548			min	006	2	95	1	0	1	0	1_	94.033 1	2791.369	4
549		9	max	.01	3	.455	3	.377	4	0	_1_	3318.355 15		1
550			min	006	2	-1.043	1	0	1	-1.238e-6	5	87.327 1	2563.742	4
551		10	max	.01	3	.472	3	.359	4	0	_1_	3242.219 15		1
552			min	006	2	-1.074	1	0	1	-1.171e-6	5	85.328 1		4
553		11	max	.01	3	.46	3	.339	4	0	<u>1</u>	3318.407 15		1
554			min	006	2	-1.043	1	0	1	-1.104e-6	5	87.429 1	2605.833	4
555		12	max	.009	3	.421	3	.318	4	7.33e-4	4	3571.146 15		1_
556			min	006	2	948	1	0	1	0	1	94.371 1	2751.208	4
557		13	max	.009	3	.356	3	.292	4	2.572e-3	4	4063.911 15		1
558			min	006	2	796	1	0	1	0	1	107.999 1	3242.152	4
559		14	max	.009	3	.275	3	.264	4	4.411e-3	4	4911.28 15	NC NC	1
560			min	005	2	607	1	0	1	0	1	131.616 1	4423.371	4
561		15	max	.009	3	.184	3	.235	4	6.25e-3	4	6378.354 15	NC NC	1
562			min	005	2	401	1	0	1	0	1_	172.933 1	7463.8	5
563		16	max	.008	3	.092	3	.206	4	8.089e-3	4	9113.089 15	NC NC	1
564			min	005	2	196	1	0	1	0	1	251.007 1	NC	1
565		17	max	.008	3	.006	3	.18	4	9.929e-3	4	NC 15	NC NC	1
566			min	005	2	013	1	0	1	0	1	421.459 1	NC	1
567		18	max	.008	3	.132	1	.16	4	5.042e-3	4	NC 5	NC	1
568			min	005	2	067	3	0	1	0	1_	914.571 1	NC	1
569		19	max	.008	3	.256	1	.144	4	0	1	NC 1	NC	1
570			min	005	2	132	S	0	1	-8.907e-7	4	NC 1	NC	1
571	M9	1	max	.004	3	.111	1	.484	4	1.855e-2	3	NC 1	NC	1
572			min	001	10	014	3	0	1	-1.808e-2	1	NC 1	NC	1
573		2	max	.004	3	.055	1	.474	4	9.177e-3	3	NC 3	NC	1
574			min	001	10	007	3	0	12	-8.812e-3	1	2036.645 1	NC	1
575		3	max	.004	3	.005	3	.462	4	1.413e-2	4	NC 5	NC	1
576			min	001	10	006	1	0	12	-2.005e-5	10	973.648 1	7322.467	4
577		4	max	.004	3	.027	3	.449	4	1.108e-2	5	NC 5		1
578			min	001	10	077	1	0	12	-5.027e-3	1	607.679 1	5254.076	4
579		5	max	.004	3	.055	3	.436	4	8.312e-3	5	NC 15		1
580			min	001	10	152	1	0	12	-1.018e-2	1	434.407 1	4192.938	4
581		6	max	.003	3	.085	3	.422	4	9.882e-3	3	NC 15		1
582			min	001	10	225	1	0	12	-1.534e-2	1	339.645 1	3545.417	4
583		7	max	.003	3	.114	3	.407	4	1.315e-2	3	9545.597 15		1
584			min	001	10	291	1	0	1	-2.05e-2	1	284.044 1	3104.633	4
585		8	max	.003	3	.139	3	.393	4	1.641e-2	3	8479.716 15		1
586			min	001	10	344	1	0	1	-2.565e-2		251.3 1		
587		9	max	.003	3	.155	3	.377	4	1.649e-2	3	7924.129 15		1
588			min	001	10	377	1	0	12	-2.818e-2	1	234.308 1	2557.446	_
589		10	max	.003	3	.161	3	.359	4	1.446e-2	3	7754.964 15		1
590			min	001	10	388	1	0	1	-2.897e-2	1	229.215 1	2512.515	
591		11	max	.003	3	.157	3	.339	4	1.243e-2	3	7923.982 15		1
592			min	0	10	377	1	0	1	-2.976e-2	1	234.564 1	2587.764	
593		12	max	.003	3	.144	3	.317	4	1.038e-2	3	8479.439 15		1
594		1-	min	0	10	343	1	0	12	-2.803e-2	1	252.096 1	2769.971	4
595		13	max	.003	3	.122	3	.292	4	8.307e-3	3	9545.164 15		1
596		13	min	0	10	29	1	0	12	-2.252e-2	1	286.012 1		
597		14	max	.003	3	.095	3	.264	4	6.237e-3	3	NC 15		1
598		14	min	<u>.003</u>	10	223	1	002	1	-1.702e-2	1	343.886 1	4405.941	5
599		15		.003	3	<u>223</u> .064	3	.235	4	5.818e-3	5	NC 15		1
600		10	max	<u>.003</u>	10	149	1	004	1	-1.151e-2	<u> </u>	443.179 1	6965.446	
		16	min	.003	3		3		4		•			
601		16	max			.032		.206		7.849e-3	5			1
602			min	0	10	074	1	006	1	-6.001e-3	<u> 1</u>	626.226 1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
603		17	max	.003	3	.002	3	.181	4	9.952e-3	4	NC	5	NC	1
604			min	0	10	004	1	007	1	-4.934e-4	1	1015.758	1	NC	1
605		18	max	.003	3	.055	1	.16	4	4.663e-3	5	NC	5	NC	1
606			min	0	10	025	3	005	1	-1.041e-2	1	2143.851	1	NC	1
607		19	max	.003	3	.108	1	.143	4	6.664e-3	3	NC	1	NC	1
608			min	0	10	049	3	0	12	-2.069e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.