Structured Streaming in Apache Spark 2

UNDERSTANDING THE HIGH LEVEL STREAMING API IN SPARK 2.X

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand the need for stream processing

Identify differences between batch and stream architectures

Understand Spark DStreams and streaming in Spark 1.x

Analyze advances made in Spark 2.x

Introduce Structured Streaming

Streams modeled as unbounded datasets

Prerequisites and Course Outline

Prerequisite Courses

Beginning Data Exploration and Analysis with Apache Spark

- Programming in Spark 1.x using Python

Getting Started with Spark 2

- Programming in Spark 2.x using Python

Software and Skills

Be very comfortable programming in Python (Python 3)

Understand the basics of distributed computing

Understand the basics of Spark - transformations and aggregations

Course Outline

Introduction to streaming

- Difference between batch and stream architectures
- Structured streaming in Spark 2

Streaming pipelines

- Selections, projections, aggregations of streaming data
- Querying streaming data
- Windowing, event-time aggregations, joins
- Working with Twitter streaming data

Integrating Kafka with Spark

- Stream processing from a Kafka source

RDDs and Spark 1.x

Why is this relevant in Spark 2?

RDDs are still the fundamental building blocks of Spark

Resilient Distributed Datasets

All operations in Spark are performed on in-memory objects

Resilient Distributed Datasets

An RDD is a collection of entities - rows, records

Characteristics of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

RDDs, once created, cannot be changed

Can be reconstructed even when a node crashes

Only Two Types of Operations

Transformation

Action

Transform into another RDD

Request a result

Lineage and Lazy Evaluation

Spark keeps a record of the series of transformations requested by the user

The transformations are materialized or evaluated only when the user requests a result

Lineage and Lazy Evaluation

The record of transformations is called an RDDs lineage

Allows RDDs to be reconstructed on node crashes

Batch and Stream Processing

Bounded datasets are processed in batches

Unbounded datasets are processed as streams

Batch vs. Stream Processing

Batch

Bounded, finite datasets

Slow pipeline from data ingestion to analysis

Periodic updates as jobs complete

Order of data received unimportant

Single global state of the world at any point in time

Stream

Unbounded, infinite datasets

Processing immediate, as data is received

Continuous updates as jobs run constantly

Order important, out of order arrival tracked

No global state, only history of events received

Data is received as a stream

- Log messages
- Tweets
- Climate sensor data

- Filter error messages
- Find references to the latest movies
- Track weather patterns

- Show trending graphs
- Warn of sudden squalls

Streaming data

Traditional Systems

Files

Databases

Reliable storage as the source of truth

Stream-first Architecture

Stream-first Architecture

Message Transport

Buffer for event data

Performant and persistent

Decoupling multiple sources from processing

Kafka, MapR streams

Stream-first Architecture

Databases

Message transport

Stream processing

High throughput, low latency

Fault tolerance with low overhead

Manage out of order events

Easy to use, maintainable

Replay streams

Spark Streaming, Storm, Flink

Stream Processing

Stream Processing Model

Stream Processing Model

Transformations

Transformations

A directed-acyclic graph

Streaming in Spark 1.x

Streaming Data

Log messages received from a server can be thought of as a stream

Streaming Data

```
2016-12-30 09:09:57,862 INFO
org.apache.hadoop.http.HttpServer2: Jetty bound to port
56745
2016-12-30 09:09:57,862 INFO org.mortbay.log: jetty-6.1.26
2016-12-30 09:09:58,037 INFO org.mortbay.log: Started
HttpServer2$SelectChannelConnectorWithSafeStartup@localhost:
56745
2016-12-30 09:09:58,124 INFO
org.apache.hadoop.hdfs.server.datanode.web.DatanodeHttpServe
r: Listening HTTP traffic on /0.0.0.0:50075
2016-12-30 09:09:58,239 INFO
```

2016 -12-30 09:0 9:58 ,239 INFO

org.apache.hado
op.hdfs.server.
datanode.web.Da
tanodeHttpServe
r: Listening
HTTP traffic on
/0.0.0.0:50075

HttpServer 2\$SelectCh annelConne ctorWithSa feStartup@ localhost: 56745

2016-12-3 0 09:09:58, 037 INFO org.mortb ay.log: Started 2016-12-30 09:09:57,8 62 INFO org.mortba y.log: jetty-6.1. 26

2016-12-30 09:09:57,862 INFO org.apache.hadoo p.http.HttpServe r2: Jetty bound to port 56745

Each message is one entity in this stream

2016 -12-30 09:0 9:58 ,239 INFO

org.apache.hado
op.hdfs.server.
datanode.web.Da
tanodeHttpServe
r: Listening
HTTP traffic on
/0.0.0.0:50075

HttpServer 2\$SelectCh annelConne ctorWithSa feStartup@ localhost: 56745

2016-12-3 0 09:09:58, 037 INFO org.mortb ay.log: Started 2016-12-30 09:09:57,8 62 INFO org.mortba y.log: jetty-6.1. 26

2016-12-30 09:09:57,862 INFO org.apache.hadoo p.http.HttpServe r2: Jetty bound to port 56745

Spark works with stream data using the same batch RDD abstraction

2016 -12-30 09:0 9:58 ,239 INFO org.apache.hado
op.hdfs.server.
datanode.web.Da
tanodeHttpServe
r: Listening
HTTP traffic on
/0.0.0.0:50075

HttpServer 2\$SelectCh annelConne ctorWithSa feStartup@ localhost: 56745

2016-12-3 0 09:09:58, 037 INFO org.mortb ay.log: Started 2016-12-30 09:09:57,8 62 INFO org.mortba y.log: jetty-6.1. 26

2016-12-30 09:09:57,862 INFO org.apache.hadoo p.http.HttpServe r2: Jetty bound to port 56745

This stream of entities is represented as a discretized stream or DStream

DStream = Sequence of RDDs

Entities => RDDs => DStream

Entities in a Stream are grouped into batches

Each batch = 1 RDD

Batches are formed based on a batch interval

All logs received within the batch interval make one RDD

All logs received within the batch interval make one RDD

Within a DStream, Spark still performs operations on individual RDDs

Transformed DStream

Within DStreams, Spark 1.x does batch processing on individual RDDs

Spark 1.x to Spark 2.x

Changes Starting Spark 2.0

Easier

Unifying Datasets and DataFrames, SQL support...

Faster

Optimize like a compiler, not a DBMS

Execution in Spark 1.x

In Spark 1.x, execution optimization resembled traditional DBMS

"Volcano Iterator Model"

Missed several code/compiler optimizations

Execution in Spark 2.x

Tungsten engine (2nd generation)

Eliminate virtual function calls

Store data in registers, not RAM/cache

Compiler loop unrolling, pipelining

Spark 2.0 uses Tungsten, an engine that speeds up execution 10-20X

Performance Improvements

Comparison of time per row, on 1 billion records on single thread

Deline iking	Consult 1 C	Consult O O	Cu a a altura E a alta u
Primitive	Spark 1.6	Spark 2.0	Speedup Factor
filter	15ns	1.1ns	13.6
sum w/o group	14ns	0.9ns	15.6
sum w/ group	79ns	10.7ns	7.4
hash join	115ns	4.Ons	28.8
sort (8-bit)	620ns	5.3ns	117.0
sort (64-bit)	620ns	40ns	15.5
sort-merge-join	750ns	700ns	1.1

Source: https://databricks.com/blog/2016/07/26/introducing-apache-spark-2-0.html

The basic data structure for records in Spark 2.x is the DataFrame

DataFrame: Data in Rows and Columns

	DATE	OPEN	 PRICE	
	2016-12-01	772	 779	
Each row represents	2016-11-01	758	 747	
1 observation				
	2006-01-01	302	 309	

DataFrame: Data in Rows and Columns

DATE	OPEN		PRICE
2016-12-01	772		779
2016-11-01	758		747
2006-01-01	302	•••	309

Each column represents 1 variable (a list or vector)

From File to DataFrame

DATE	OPEN		PRICE
2016-12- 01	772		779
2016-11- 01	758		747
2006-01 -01	302	•••	309

DATE	OPEN	 PRICE
2016-12- 01	772	 779
2016-11- 01	758	 747
2006-01 -01	302	 309

File

DataFrame

Unified API for DataFrames

Starting Spark 2.0, APIs for Datasets and DataFrames have merged

DataFrames Built on Top of RDDs

Partitioned

Immutable

Resilient

Split across data nodes in a cluster

Once created, cannot be changed

Can be reconstructed even when a node crashes

The Intuition Behind Structured Streaming

Batch is Simply Prefix of Stream

Every data item that is arriving on the stream is like a new row being appended to the input table

Data stream as an unbounded input Table

Batch is Simply Prefix of Stream

In other words, the input table (batch) is simply a prefix of the stream

Data stream as an unbounded input Table

Batch is Simply Prefix of Stream

All operations
that can be
performed on
data frames can
be performed
on the stream

Data stream as an unbounded input Table

Structured Streaming treats a live data stream as a table that is being continuously appended

Burden of stream-processing shifts from user to system

Streaming and Structured Streaming

Streaming

Structured Streaming

Older

Newer

RDDs

DataFrames

No optimizations

Optimizations on DataFrames

Batch and streaming support not unified

Unified support for batch and streaming

Demo

Installations for this course

- Spark 2
- Kafka

Python libraries

- Tweepy
- Pykafka
- Afinn

Structured Streaming in Spark 2.x

Spark Streaming

What

A high-level API that takes burden off user

How

Micro-batch processing with exactly-once fault-tolerance

Why

Code virtually identical for batch and streaming

Spark Streaming

What

A high-level API that takes burden off user

How

Micro-batch processing with exactly-once fault-tolerance

Why

Code virtually identical for batch and streaming

Spark 1.x: Spark Streaming

sources

Continuous Application

End-to-end application that reacts to data in real-time

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html

Continuous Applications

A stream is not a stream

- It is simply an unbounded dataset

End-to-end application

- Unify batch and streaming pipelines
- With same queries for both

Structured Streaming

New high-level API in Apache Spark 2.0 that supports continuous applications

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html

Pure Streaming System

Interactions with other systems are completely up to the user

Continuous Applications

Spark 2.x: Continuous Applications

Structured Streaming

High-level User API

User implements batch computation using DataFrame/Dataset API

Automatic Support for Continuous Apps

Spark automatically incrementalizes the batch computation

Automatic Support for Continuous Apps

i.e. Spark automatically converts the job from batch to continuous

Batch Is Simply Prefix of Stream

Every data item that is arriving on the stream is like a new row being appended to the input table

Data stream as an unbounded input Table

Batch Is Simply Prefix of Stream

In other words, the input table (batch) is simply a prefix of the stream

Data stream as an unbounded input Table

Batch Is Simply Prefix of Stream

Output of Structured Streaming job is same as running batch job on prefix (subset) of data

Prefix Integrity

Running job on continuous data yields same result as running job on batch data (where the batch is a prefix or snapshot of continuous data)

Prefix Integrity

Running job on continuous data yields same result as running job on batch data (where the batch is a prefix or snapshot of continuous data)

Prefix Integrity

Running job on continuous data yields same result as running job on batch data (where the batch is a prefix or snapshot of continuous data)

Structured Streaming treats a live data stream as a table that is being continuously appended

Burden of stream-processing shifts from user to system

Structured Streaming

Structured Streaming maintains prefix integrity

Most other technologies do not

- Apache Flink
- Apache Kafka
- Apache Storm
- Google Dataflow

Tight Spark Integration

Structured Streaming retains tight integration with rest of Spark

Tight Spark Integration

Serves interactive queries on the streaming state

Tight Storage Integration

Also maintains transactional integration with traditional storage

Spark 2.x: Continuous Applications

Combines advantages of traditional streaming with high-level API

A stream is just an unbounded dataset

Spark Streaming

What

A high-level API that takes burden off user

How

Micro-batch processing with exactly-once fault-tolerance

Why

Code virtually identical for batch and streaming

Stream Processing Model

Transformations

Time

Event Time

Ingestion Time

Processing Time

Two Types of Triggers

Processing time Triggers

Result Table is recalculated at periodic processing time interval

One-time Trigger

Result Table only calculated once; any new data is ignored in result

Triggers rely on processing time not event time (unless watermarks used)

Result Table Is Generated

Triggers System Time Input data up data up data up **Table** to t = 1to t = 2to t = 3Incremental Query Result result up result up result up to t = 1to t = 2to t = 3**Table** rows rows Output updated updated **Update Mode** at t = 3at t = 2

User's batch-like query on input table

Incremental execution on streaming data

Every trigger, new rows from the input table are processed

These pass through the transformations in the query and update the results table

Stream Processing Model

Transformations

Result Table Is Generated

The Result Table is then written out to data sink

Result Table Is Generated

Changes to input table eventually result in changes to output table

Types of Sources

Data Source

File source

Kafka source

Socket source

Rate source

Data Sink

Types of Sinks

File sink

Kafka sink

Foreach sink

Console sink

Memory sink

Data Sink

Materialization

Structured streaming reads data from source

- Processes incrementally
- Updates result
- Discards source

Only minimal intermediate state maintained

When writing to the sink the entire table is not materialized

What is written out depends on the mode

Data Sink

Output Modes

Determines what Result Table rows get sent to storage

- Update mode
- Append mode
- Complete mode

Output Modes

Update mode - only Result Table rows updated since last trigger

Even previous results will be updated in case of aggregations

Append mode - only Result Table rows appended since last trigger

Previous (existing) output rows cannot change

Complete mode - entire updated Result Table is sent across

Storage connector must decide how to use all that data

Spark Streaming

What

A high-level API that takes burden off user

How

Micro-batch processing with exactly-once fault-tolerance

Why

Code virtually identical for batch and streaming

Structured Streaming

Batch and stream code virtually identical

Fault tolerance and exactly-once guarantees

Handles event-time and late data

Spark Streaming

What

A high-level API that takes burden off user

How

Micro-batch processing with exactly-once fault-tolerance

Why

Code virtually identical for batch and streaming

Comparison with Other Engines

Property	Structured Streaming	Spark Streaming	Apache Storm	Apache Flink	Kafka Streams	Google Dataflow
Streaming API	incrementalize batch queries	integrates with batch	separate from batch	separate from batch	separate from batch	integrates with batch
Prefix Integrity Guarantee			X	×	×	X
Internal Processing	exactly once	exactly once	at least once	exactly once	at least once	exactly once
Transactional Sources/Sinks		some	some	some	×	×
Interactive Queries			×	×	×	X
Joins with Static Data			×	×	×	×

Demo

A simple streaming application

Count the number of times a word appears in streaming sentences

Summary

Understood attributes of stream processing applications

Identified differences between batch and stream architectures

Understood Spark DStreams and streaming in Spark 1.x

Introduced Structured Streaming

Streams are modeled as unbounded datasets