Higher-ranked Exception Types

Ruud Koot

February 12, 2015

1 The λ^{\cup} -calculus

Types

$$au \in \mathbf{Ty}$$
 ::= \mathcal{P} (base type)
$$\mid \ \tau_1 \to \tau_2$$
 (function type)

Terms

$$t \in \mathbf{Tm} \hspace{1cm} ::= \hspace{1cm} x,y,... \hspace{1cm} \text{(variable)}$$

$$\mid \hspace{1cm} \lambda x : \tau.t \hspace{1cm} \text{(abstraction)}$$

$$\mid \hspace{1cm} t_1 \hspace{1cm} t_2 \hspace{1cm} \text{(application)}$$

$$\mid \hspace{1cm} \emptyset \hspace{1cm} \text{(empty)}$$

$$\mid \hspace{1cm} \{c\} \hspace{1cm} \text{(singleton)}$$

$$\mid \hspace{1cm} t_1 \cup t_2 \hspace{1cm} \text{(union)}$$

Values Values v are terms of the form

$$\lambda x_1: \tau_1 \cdots \lambda x_i: \tau_i \cdot \{c_1\} \cup (\cdots \cup (\{c_i\} \cup (x_1 \ v_{11} \cdots v_{1m} \cup (\cdots \cup x_k \ v_{k1} \cdots v_{kn}))))$$

Environments

$$\Gamma \in \mathbf{Env} ::= \cdot \mid \Gamma, x : \tau$$

1.1 Typing relation

$$\frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma, x: \tau \vdash x: \tau} \text{ [T-Var]} \quad \frac{\Gamma, x: \tau_1 \vdash t: \tau_2}{\Gamma \vdash \lambda x: \tau_1.t: \tau_1 \to \tau_2} \text{ [T-Abs]} \quad \frac{\Gamma \vdash t_1: \tau_1 \to \tau_2 \quad \Gamma \vdash t_2: \tau_1}{\Gamma \vdash t_1: t_2: \tau_2} \text{ [T-App]}$$

$$\frac{}{\Gamma \vdash \varnothing : \mathcal{P}} \text{ [T-Empty]} \quad \frac{}{\Gamma \vdash \{c\} : \mathcal{P}} \text{ [T-Con]} \quad \frac{\Gamma \vdash t_1 : \tau \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash t_1 \cup t_2 : \tau} \text{ [T-Union]}$$

1.2 Semantics

1.3 Reduction relation

Definition 1. *Let* \prec *be a strict total order on* $\mathbf{Con} \cup \mathbf{Var}$, *with* $c \prec x$ *for all* $c \in \mathbf{Con}$ *and* $x \in \mathbf{Var}$.

$$(\lambda x : \tau.t_1) \ t_2 \longrightarrow [t_2/x] \ t_1 \qquad (\beta\text{-reduction})$$

$$(t_1 \cup t_2) \ t_3 \longrightarrow t_1 \ t_3 \cup t_2 \ t_3 \qquad (congruences)$$

$$(\lambda x : \tau.t_1) \cup (\lambda x : \tau.t_2) \longrightarrow \lambda x : \tau. \ (t_1 \cup t_2) \qquad (congruences)$$

$$x \ t_1 \cdots t_n \cup x' \ t'_1 \cdots t'_n \longrightarrow x \ (t_1 \cup t'_1) \cdots (t_n \cup t'_n) \qquad (associativity)$$

$$(t_1 \cup t_2) \cup t_3 \longrightarrow t_1 \cup (t_2 \cup t_3) \qquad (associativity)$$

$$\emptyset \cup t \longrightarrow t \qquad (unit)$$

$$t \cup \emptyset \longrightarrow t \qquad (unit)$$

$$x \cup x \longrightarrow x$$

$$x \cup (x \cup t) \longrightarrow x \cup t \qquad (idempotence)$$

$$\{c\} \cup \{c\} \longrightarrow \{c\} \cup t \qquad (t_1 \cup t_2) \cup t_2 \cup t_3 \qquad (idempotence)$$

$$\{c\} \cup \{c\} \longrightarrow \{c\} \cup x \ t_1 \cdots t_n \qquad (1)$$

$$x \ t_1 \cdots t_n \cup \{c\} \longrightarrow \{c\} \cup x \ t_1 \cdots t_n \cup t) \qquad (2)$$

$$x \ t_1 \cdots t_n \cup (\{c\} \cup t) \longrightarrow \{c\} \cup (x \ t_1 \cdots t_n \cup t) \qquad (if \ x' \prec x \qquad (3)$$

$$x \ t_1 \cdots t_n \cup (x' \ t'_1 \cdots t'_n \cup t) \longrightarrow x' \ t'_1 \cdots t'_n \cup (x \ t_1 \cdots t_n \cup t) \qquad if \ x' \prec x \qquad (4)$$

$$\{c\} \cup \{c'\} \longrightarrow \{c'\} \cup \{c\} \cup t \qquad if \ c' \prec c \qquad (5)$$

$$\{c\} \cup (\{c'\} \cup t) \longrightarrow \{c'\} \cup (\{c\} \cup t) \qquad if \ c' \prec c \qquad (6)$$

Conjecture 1. *The reduction relation* \longrightarrow *preserves meaning.*

Conjecture 2. The reduction relation \longrightarrow is strongly normalizing.

Conjecture 3. *The reduction relation* \longrightarrow *is locally confluent.*

Corollary 1. *The reduction relation* \longrightarrow *is confluent.*

Proof. Follows from SN, LC and Newman's Lemma.

Corollary 2. The λ^{\cup} -calculus has unique normal forms.

Corollary 3. Equality of λ^{\cup} -terms can be decided by normalization.

2 Completion

$$\kappa \in \mathbf{Kind}$$
 ::= E (exception)
 $\mid \kappa_1 \Rightarrow \kappa_2$ (exception operator)

$$\chi \in \mathbf{Exn} \qquad ::= e \qquad \qquad \text{(exception variables)}$$

$$\mid \lambda e : \kappa. \chi \qquad \qquad \text{(exception abstraction)}$$

$$\widehat{\tau} \in \mathbf{ExnTy} \qquad ::= \forall e :: \kappa. \widehat{\tau} \qquad \text{(exception quantification)}$$

$$\mid b\widehat{ool} \qquad \qquad \text{(boolean type)}$$

$$\mid [\widehat{\tau}\{\chi\}] \qquad \qquad \text{(list type)}$$

$$\mid \widehat{\tau}_1\{\chi_1\} \to \widehat{\tau}_2\{\chi_2\} \qquad \qquad \text{(function type)}$$

The completion procedure as a set of inference rules:

$$\begin{split} & \frac{\overline{e_i :: \kappa_i} \vdash \mathbf{bool} : \widehat{bool} \ \& \ e \ \overline{e_i} \triangleright e :: \overline{\kappa_i} \Rightarrow_{\mathbf{E}} \ [\text{C-Bool}] \\ \\ & \frac{\overline{e_i :: \kappa_i} \vdash \tau : \widehat{\tau} \ \& \ \chi \triangleright \overline{e_j :: \kappa_j}}{\overline{e_i :: \kappa_i} \vdash [\tau] : [\widehat{\tau}\{\chi\}] \ \& \ e \ \overline{e_i} \triangleright e :: \overline{\kappa_i} \Rightarrow_{\mathbf{E}}, \overline{e_j} :: \kappa_j} \ [\text{C-List}] \\ \\ & \frac{\vdash \tau_1 : \widehat{\tau}_1 \ \& \ \chi_1 \triangleright \overline{e_j :: \kappa_j} \quad \overline{e_i :: \kappa_i}, \overline{e_j :: \kappa_j} \vdash \tau_2 : \widehat{\tau}_2 \ \& \ \chi_2 \triangleright \overline{e_j :: \kappa_j}}{\overline{e_i :: \kappa_i} \vdash \tau_1 \to \tau_2 : \forall \overline{e_j} :: \overline{\kappa_j}. (\widehat{\tau}_1\{\chi_1\} \to \widehat{\tau}_2\{\chi_2\}) \ \& \ e \ \overline{e_i} \triangleright e :: \overline{\kappa_j} \Rightarrow_{\mathbf{E}}, \overline{e_k} :: \overline{\kappa_k}} \ [\text{C-Arr}] \end{split}$$

Figure 1: Type completion $(\Gamma \vdash \tau : \hat{\tau} \& \chi \triangleright \Gamma')$

The completion procedure as an algorithm:

```
complete :: \mathbf{Env} \times \mathbf{Ty} \to \mathbf{ExnTy} \times \mathbf{Exn} \times \mathbf{Env}

complete \overline{e_i :: \kappa_i} \ \mathbf{bool} =

let e \ be \ fresh

in \langle bool; e \ \overline{e_i}; e :: \overline{\kappa_i} \Rightarrow \mathbf{E} \rangle
```

3 Type system