Introduction to Probabilistic Graphical Models and Deep Generative Models

P. Latouche

PR UCA

Ecole Polytechnique / ENS Paris Saclay

pierre.latouche@math.cnrs.fr

thtps://lmbp.uca.fr/~latouche/
thtps://lmbp.uca.fr/~latouche/mva/
IntroductiontoProbabilisticGraphicalModelsMVA.html

ENS Paris Saclay, Master MVA

Part I

Lecture 2: K-means EM
Gaussian mixtures

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Introduction to clustering

- we are provided with a data set $(x_i)_i = (x_1, \dots, x_n)$ (sample of size n) with $x_i \in \mathbb{R}^d$
- goal : retrieve groups = clusters = classes of individuals where :
 - ▶ 2 individuals within a group must be as similar as possible
 - 2 individuals of different groups must be as different as possible
- unsupervised learning setting : no target variable
- we aim at uncovering (learning) what is hidden in the data set

Types of clusters:

- disjoint
- hierarchical
- overlapping

Def

A partition of a data set $(x_i)_i$ into K clusters

$$\mathcal{P} = (C_k)_k = (C_1, \dots, C_K)$$
 verifies :

- 1. $\bigcup_{k=1}^{K} C_k = (x_i)_i$
- 2. $C_k \cap C_l = \emptyset, \forall k \neq l$

So each observation is clustered into a unique cluster

Def

The nth Bell number B_n counts the number of different ways to partition a set that has exactly n elements

Theorem

The Bell numbers satisfy the following recurrence relation:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

 $ex: B_{18} = 682\,076\,806\,159$

Dobinski's formula

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

- so exact clustering is a combinatorial problem (NP-hard)
- two most famous heuristics: kmeans and hierarchical clustering
- the statistical point of view: mixture models and expectation maximisation

Inertia

Def

The total inertia of a data cloud of points in \mathbb{R}^d (sample of observations) is :

$$S = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \bar{x}||^2,$$

where $\bar{x} = (1/n) \sum_{i=1}^{n} x_i$ is the barycentre of the data cloud (= empirical mean of the sample)

Remark

The total inertia can be written:

$$S = \sum_{j=1}^{d} \hat{\sigma}_j^2,$$

where $\hat{\sigma}_j^2=(1/n)\sum_{i=1}^n(x_{ij}-\bar{x}_j)^2$ is the empirical (biased) variance of variable j

Def

The intra class inertia of a data cloud of points in \mathbb{R}^d (sample of observations), for a partition $\mathcal{P}=(C_k)_k$ with K clusters, is :

$$W = \frac{1}{n} \sum_{k=1}^{K} \sum_{x_i \in C_k} ||x_i - \mu_k||^2,$$

where $\mu_k=(1/n_k)\sum_{x_i\in C_k}x_i$ is the empirical mean of the observations in cluster C_k and n_k is the number of observations in C_k

Def

The inter class inertia of a data cloud of points in \mathbb{R}^d (sample of observations), for a partition $\mathcal{P}=(C_k)_k$ with K clusters, is :

$$B = \frac{1}{n} \sum_{k=1}^{K} n_k ||\mu_k - \bar{x}||^2,$$

Huygens theorem

$$S = W + B$$

Remarks

- lacktriangleright S does not depend on the partition ${\mathcal P}$ contrary to W and B
- so, when W decreases, B increases, and vice versa

A clustering task

Find \mathcal{P} which minimises W (maximises B) with K < n

Remark

When K=n (each observation is in its own cluster), $W=0 \rightarrow$ useless in practice

Inertia and Huygens theorem

- ▶ again : combinatorial problem (NP hard) (if K < n)
- heuristics

kmeans

The kmeans algorithm focuses directly on the optimisation of W, K being fixed

- init: initialise all the (bary)centres μ_k (at random in \mathbb{R}^d or on random observations)
- each observation is clustered in the cluster with the closest centre
- 2. recompute the centres
- 3. If the μ_k have moved (no eps convergence) back to 1.

Pros and cons

kmeans:

- + fast. Complexity : $\mathcal{O}(nK)$
- +- dependent on the initialisation
 - + easy to parallelise
 - fixed K

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Gaussian mixture models

Let us first consider a random sample (X_1,\ldots,X_n) where $X_i\sim\mathcal{N}(\mu,\Sigma)$ (assumed mulvariate Gaussian).

Property

The MLE for μ and Σ are :

- $\hat{\mu} = \bar{x}$ (empirical mean)
- $\hat{\Sigma} = (1/n) \sum_{i=1}^{n} (x_i \hat{\mu}) (x_i \hat{\mu})^{\mathsf{T}}$ (empirical variance-covariance matrix)

Multivariate Gaussian density (d = 2)

Mixture of densities

Figure: Analysis of the swiss data set with Mclust

Def

A Gaussian mixture model with ${\cal K}$ components is defined through the density :

$$p(x|\pi, \theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x; \mu_k, \Sigma_k),$$

where $\theta = (\mu_k, \Sigma_k)_k$ and $\pi = (\pi_1, \dots, \pi_K)^{\mathsf{T}}$ the vector of mixing weights lies in the standard K-simplex :

- $\pi_k \in]0,1[, \forall k \in \{1,\ldots,K\}$
- $\sum_{k=1}^{K} \pi_k = 1$

 $\mathcal{N}(x; \mu_k, \Sigma_k)$ denotes here the multivariate Gaussian density with parameters μ_k and Σ_k evaluated at $x \in \mathbb{R}^d$

Starting point

- ▶ as usual, we are provided with a random sample $(X_1, ..., X_n)$ but now $X_i \sim \sum_{k=1}^K \pi_k \mathcal{N}(\mu_k, \Sigma_k)$
- \blacktriangleright we aim at estimating π and the component parameters θ

Property

The log-likelihood of a Gaussian mixture model is given by:

$$L_{(x_1,\dots,x_n)}(\pi,\theta) = \sum_{i=1}^n \log p(x_i|\pi,\theta)$$
$$= \sum_{i=1}^n \log \left(\sum_{k=1}^K \pi_k \mathcal{N}(x_i;\mu_k,\Sigma_k)\right)$$

Property

- the optimisation task is not trivial
- \blacktriangleright no analytical expression for the estimators of π and θ
- can rely on numerical algorithms for optimisation (conjugate gradient descent for instance) but ...

Another point of view

The Gaussian mixture model can be rewritten by introducing auxiliary variables:

- 1. $Z_i \sim \mathcal{M}(1,\pi), \forall i \in \{1,\ldots,n\} \text{ iid}$
- 2. $X_i|Z_{ik}=1 \sim \mathcal{N}(\mu_k, \Sigma_k)$

So

- $ightharpoonup Z_i \in \{0,1\}^K$ such that $\sum_{k=1}^K Z_{ik} = 1$
- $ightharpoonup Z_{ik} = 1$ encodes the fact that observation i is from component k
- **b** by definition of the multinomial law : $\mathbb{P}(Z_{ik}=1)=\pi_k$
- the observations are now sampled conditionally on their components

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Def

Considering the (complete) random sample of couples $((X_1,Z_1)\dots,(X_n,Z_n))$, the complete data log-likelihood is given by :

$$L_{(x_i, z_i)_i}(\pi, \theta) = \log p((x_i, z_i)_i | \pi, \theta)$$
$$= \sum_{i=1}^n \sum_{k=1}^K z_{ik} \log (\pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k))$$

Property

The estimators of π and θ maximising the complete data log-likelihood are :

- $\hat{\pi}_k = (1/n) \sum_{i=1}^n z_{ik}$
- $\hat{\mu}_k = (1/n_k) \sum_{i=1}^n z_{ik} x_i$
- $\hat{\Sigma}_k = (1/n_k) \sum_{i=1}^n z_{ik} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^{\mathsf{T}}$

However:

- ightharpoonup the z_i are unknown in practice
- this is the clustering information we are looking for
- how estimating the parameters without knowing the clusters?
- ightharpoonup ightharpoonup the expectation maximisation (EM) algorithm (DLR77)

Remark

Link with the kmeans algorithm : $\pi_k = 1/K$ and

$$\Sigma_k = I_d, \forall k \in \{1, \dots, K\}$$

The EM algorithm relies on two fondamental properties:

Property

Given the observations (and the parameters), all the Z_i are independent :

$$p((z_i)_i|(x_i)_i, \pi, \theta) = \prod_{i=1}^n p(z_i|x_i, \pi, \theta)$$

Recall that Z_i is discrete so $p(z_i|x_i,\pi,\theta)$ translates into $\mathbb{P}(Z_i=z_i|x_i,\pi,\theta)$

Property

The probabilities $p(z_i|x_i,\pi,\theta)$ have analytical forms :

$$p(z_i|x_i, \pi, \theta) = \mathcal{M}(z_i; 1, \tau_i)$$

where
$$\tau_i = (\tau_{i1}, \dots, \tau_{iK})^\intercal$$

Property

 au_{ik} is given by :

$$\tau_{ik} = \frac{\pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)}{\sum_{l=1}^K \pi_l \mathcal{N}(x_i; \mu_l, \Sigma_l)}$$

 $ightharpoonup au_{ik}$ is the probability for observation i to be in cluster k, given x_i and the (current) value of the parameters

Remark

The Z_i being unknown, they are treated as random vectors in the complete data log-likelihood :

$$L_{(x_i,Z_i)_i}(\pi,\theta)$$

Remark

The Z_i being unknown, the expectation of the complete data log-likelihood is computed

Property

The expectation of the complete data log-likelihood is given by :

$$\mathbb{E}_{(Z_i)_i}[L_{(x_i,Z_i)_i}(\pi,\theta)] = \sum_{i=1}^n \sum_{k=1}^K \tau_{ik} \log \left(\pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k) \right),$$

where the expectation is taken with respect to the random variables $Z_i \sim \mathcal{M}(1; \tau_i)$

Property

The estimators of π and θ maximising the expected complete data log-likelihood are :

- $\hat{\pi}_k = (1/n) \sum_{i=1}^n \tau_{ik}$
- $\hat{\mu}_k = (1/n_k) \sum_{i=1}^n \tau_{ik} x_i$
- $\hat{\Sigma}_k = (1/n_k) \sum_{i=1}^n \tau_{ik} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^{\mathsf{T}}$

EM algorithm for Gaussian mixture models

- ▶ init: initialise the clusters (with kmeans for instance)
- M compute $\hat{\pi}$ and $\hat{\theta}$ with respect to the τ_i
- E compute the au_i with respect to π and heta
- ▶ if the log-likelihood has changed (or the parameters) (no eps convergence) back to M.

Remarks

The parameters can also be initialised (instead of the clusters) through a sampling. In that case, the algorithm starts with the E step

Property

- lacktriangle the EM iteration does increase the log-likelihood $L_{(x_i)_i}(\pi,\theta)$
- in general, no guarantee to converge to the global maximum

Outline Part 1

Clustering

Gaussian mixture models

EM algorithm

Model selection

Model selection

In order to estimate the number K of components from the data, the EM algorithm is run for various values of K and the one maximising a criterion is chosen :

- ▶ M_K denoting the total number of (free) parameters in the model with K components
- ▶ Bayesian information criterion : $BIC(K) = L_{(x_i)_i}(\hat{\pi}, \hat{\theta}) (M_K/2) \log n$
- ▶ Akaike's information criterion : $AIC(K) = L_{(x_i)_i}(\hat{\pi}, \hat{\theta}) M_K$

Figure: Analysis of the swiss data set with Mclust

Part II

Bayesian linear regression
Gaussian processes
EM revisited
Model selection

Outline Part 2

Bayesian linear regression

EM revisited

Gaussian processes

Bayesian linear regression

Linear regression model

Using matrix notations, the linear regression model is given by:

$$Y = X\beta + \epsilon$$
,

where $Y \in \mathbb{R}^n$ is a vector made out of the elements y_i , $X \in \mathcal{M}_{n \times p}(\mathbb{R})$ is a matrix where row i is x_i^{T} , and $\epsilon \in \mathbb{R}^n$ is a Gaussian random vector such that $\epsilon \sim \mathcal{N}(0_n, \sigma^2 I_n)$

• we now introduce a prior distribution over the regression vector β :

$$p(\beta) = \mathcal{N}(\beta; 0_p, \frac{I_p}{\alpha}),$$

with $\alpha > 0$ fixed (for now)

Reminders

Reminders

The maximum likelihood estimator of the weight vector in the linear regression model is given by:

$$\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

- ightharpoonup cannot be computed if $X^{\intercal}X$ is not full rank
- ▶ if p > n, if p >> n: the so called high-dimensional setting

Bayesian framework: first step

Property

In the Bayesian framework, and considering the prior distribution $p(\beta)$ introduced before, looking for the maximum a posteriori estimate $\hat{\beta}_{\text{MAP}}$ is equivalent to compute the ridge estimator:

$$\begin{split} \hat{\beta}_{\text{MAP}} &= \operatorname{argmax}_{\beta} \log p(\beta|X,Y,\sigma^2) \\ &= \operatorname{argmin}_{\beta} \left\{ ||Y - X\beta||^2 + \lambda ||\beta||^2 \right\}, \end{split}$$

with $\lambda = \alpha \sigma^2$

Remark

In practice, in ridge regression, λ is estimated using cross validation

Property

In the Bayesian framework, and considering the prior distribution $p(\beta)$ introduced before, the maximum a posteriori estimate of β is given by:

$$\hat{\beta}_{\text{MAP}} = (X^{\mathsf{T}}X + \alpha\sigma^2 I_p)^{-1}X^{\mathsf{T}}Y$$

- ▶ provided that $\lambda = \alpha \sigma^2$ is large enough, $(X^\intercal X + \lambda I_p)$ is full rank and so $\hat{\beta}_{\text{MAP}}$ can be computed
- simple solution for the high dimensional setting

Bayesian framework: step 2

Property

In the Bayesian framework, and considering the prior distribution $p(\beta)$ introduced before, the posterior distribution of the regression vector given the data has an analytical form:

$$p(\beta|X, Y, \sigma^2) = \mathcal{N}(\beta; m_n, S_n),$$

with

$$S_n = (\frac{X^{\mathsf{T}}X}{\sigma^2} + \alpha I_p)^{-1},$$

and

$$m_n = (X^{\mathsf{T}}X + \alpha\sigma^2 I_p)^{-1}X^{\mathsf{T}}Y$$

Remark

Since $p(\beta|X,Y,\sigma^2)$ is Gaussian, its mode is its expectation:

$$\hat{\beta}_{\text{MAP}} = m_n$$

Outline Part 2

Bayesian linear regression

EM revisited

Gaussian processes

we now want to see α as an (hyper)parameter to be estimated from the training data set (link with ridge regression). So, $p(\beta)$ is replaced by:

$$p(\beta|\alpha) = \mathcal{N}(\beta; 0_p, \frac{I_p}{\alpha}),$$

with $\alpha > 0$ to be estimated.

Bayesian framework: step 3: EM revisited

Seing β as a latent (unknown) random vector, an EM algorithm can be derived to estimate the pair (α, σ^2) on the *full* training data set:

- ▶ init: initialise the values of (α, σ^2)
- E compute
 - $S_n = \left(\frac{X^{\dagger}X}{\hat{\sigma}^2} + \hat{\alpha}I_p\right)^{-1}$

M compute

- $\hat{\alpha} = p/(\text{Tr}(S_n) + m_n m_n^{\intercal})$
- $\hat{\sigma}^2 = (1/n) \{ ||Y Xm_n||^2 + \text{Tr}(X^{\mathsf{T}}XS_n) \}$
- ▶ if the log-likelihood has changed (or the parameters) (no eps convergence) back to E.

The evidence procedure

This algorithm is referred to as the evidence procedure (Mac92)

- \blacktriangleright the full training set is used to estimate α and σ^2 !
- no splits of the training data set are used as in cross validation!

Outline Part 2

Bayesian linear regression

EM revisited

Gaussian processes

Gaussian processes

As of now, we have:

- $ightharpoonup Y|X, \beta, \sigma^2 \sim \mathcal{N}(X\beta, \sigma^2 I_n)$
- $\beta | \alpha \sim \mathcal{N}(0_p, \frac{I_p}{\alpha})$

Reminder

The regression vector β is seen as a latent (unknown) random vector. The hyperparameters are α and σ^2

The Gaussian property

Property

From the Gaussian property, we have:

$$Y|X, \sigma^2, \alpha \sim \mathcal{N}(O_n, \frac{XX^{\mathsf{T}}}{\alpha} + \sigma^2 I_n)$$

Remark

- ▶ the associated likelihood $\mathcal{N}(Y; O_n, \frac{XX^{\mathsf{T}}}{\alpha} + \sigma^2 I_n)$ is sometimes referred to as the *type 2* maximum likelihood
- it can be optimised directly using optimisation algorithms
- warning: complexity: $O(n^3)$!

Gaussian processes

Def

More generally, Gaussian processes can be built directly as:

$$Y|X, \sigma^2, \theta \sim \mathcal{N}(0_n, C_n),$$

where $C_n = K_n + \sigma^2 I_n$ and

$$(K_n)_{ij} = k(x_i, x_j)$$

The function $k(\cdot, \cdot)$ is a kernel function.

Example of a kernel function for Gaussian processes

Def

The exponential quadratic kernel is given by:

$$k(x_i, x_j) = \theta_0 \exp\left\{-\frac{\theta_1}{2}||x_i - x_j||^2\right\} + \theta_2 + \theta_3 x_i^\intercal x_j,$$

with

$$\beta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix} \in \mathbb{R}^4$$

Optimisation

In Gaussian processes (GP), the optimisation problem is given by:

$$(\hat{\theta}, \hat{\sigma^2}) = \operatorname{argmax}_{\theta, \sigma^2} \log \mathcal{N}(Y; 0_n, C_n)$$

Remarks

- ightharpoonup again, the complexity is $O(n^3)$
- the parameters θ and σ^2 "only" play a role in the covariance matrix of the model

Predictions in GP

- ightharpoonup (X,Y) is the training data set with n elements
- let us consider a new observation x_{n+1} for which we aim at predicting y_{n+1}
- we build

$$X_{n+1} = \begin{pmatrix} X \\ x_{n+1}^{\mathsf{T}} \end{pmatrix},$$

and

$$Y_{n+1} = \begin{pmatrix} Y \\ y_{n+1} \end{pmatrix},$$

the model becomes:

$$Y_{n+1}|X_{n+1}, \theta, \sigma^2 \sim \mathcal{N}(0_{n+1}, C_{n+1})$$

with

$$C_{n+1} = \begin{pmatrix} C_n & k \\ k^{\mathsf{T}} & c \end{pmatrix},$$

and $k_i = k(x_i, x_{n+1}) = k(x_{n+1}, x_i), \forall i \in \{1, \dots, n\}$, and $c = k(x_{n+1}, x_{n+1}) + \sigma^2$

Property

From Gaussian property, it follows that:

$$y_{n+1}|X_{n+1},Y,\theta,\sigma^2 \sim \mathcal{N}(\tilde{m},\tilde{\sigma^2})$$

References I

- A.P. Dempster, N.M. Laird, and D.B. Rubin, *Maximum likelihood for incomplete data via the em algorithm*, Journal of the Royal Statistical Society **B39** (1977), 1–38.
- D. MacKay, A practical bayesian framework for backpropagation networks, Neural Computation 4 (1992), 448–472.