8. Skládání funkcí

Úloha 1. Mějme funkce $f\colon y=x+2,\,g\colon y=2x-1,\,h\colon y=x^2-x,\,i\colon y=\frac{1}{x}.$ Určete předpisy a definiční obory následujících funkcí: (a) $f\circ g$ (b) $g\circ f$ (c) $f\circ h$ (d) $h\circ f$ (e) $i\circ h$ (f) $h\circ i$ (g) $i\circ g\circ h\circ f$

Úloha 2. O funkci f víme to, že $D(f) = (-\infty; 1)$ (a více vědět nepotřebujeme). Jaký definiční obor bude mít funkce $f \circ w$, jestliže (a) $w(x) = x^2$ (b) $w(x) = -x^2 + 1$ (c) $w(x) = \frac{1}{x}$?

Úloha 3. Vizte grafy funkcí f a g:

Určete hodnoty:

- (a) f(0)
- (b) $(f \circ f)(0)$
- (c) $(f \circ f \circ f)(0)$
- (d) $(f \circ f \circ f \circ f \circ f)(0)$
- (e) $(f \circ g)(3)$
- (f) $(g \circ f)(3)$
- (g) $(f \circ g)(\frac{3}{2})$
- (h) $(g \circ g)(\frac{3}{2})$
- (i) $(q \circ f \circ q)(-1)$
- (j) $(g \circ f \circ g)(-2)$

Úloha 4. K funkci f z Úlohy 3 nalezněte takovou lineární funkci ℓ (tj. její předpis), aby platilo $(\ell \circ f)(1) = 0$ a $(\ell \circ f)(\frac{2}{3}) = 2$.

Úloha 5. Uvažme funkci h: y = x - 2. Jak budou vypadat grafy funkcí $h \circ g$ a $g \circ h$, kde g je z Úlohy 3?

Úloha 6. Nalezněte všechny lineární funkce ℓ takové, že (a) $(\ell \circ \ell)(x) = 4x + 2$, (b) $(\ell \circ \ell)(x) = -x + 2$. (Nápověda: Vyjděte z obecného předpisu lineární funkce y = kx + q, který jen "složíte se sebou samým".)

Úloha 7. Označme a(x) = x + 1 a b(x) = 2x.

(a) Jaký předpis bude mít (lineární!) funkce $\underline{a \circ a \circ \cdots \circ a}$?

 $100 \times$

(b) Jaký předpis bude mít (lineární!) funkce $\underbrace{b \circ b \circ \cdots \circ b}_{100}$?

 \star (c) Jaký předpis bude mít (lineární!) funkce
 $\underbrace{c \circ c \circ \cdots \circ c}_{100 \times},$ kde $c = a \circ b?$

Úloha 8. Rozhodněte, pro které z následujících vlastností \heartsuit platí výrok "Složení dvou \heartsuit funkcí je vždy \heartsuit ." (a) lineární (b) kvadratická (c) prostá (d) rostoucí (e) klesající (f) sudá (g) lichá.

1. (a)
$$y = (2x - 1) + 2 = 2x + 1$$
, \mathbb{R}

(b)
$$y = 2(x+2) - 1 = 2x + 3$$
, \mathbb{R}

(c)
$$y = x^2 - x + 2$$
, \mathbb{R} (d) $y = (x+2)^2 - (x+2)$, \mathbb{R}

(e)
$$y = \frac{1}{2}$$
, $\mathbb{R} \setminus \{0; 1\}$ (f) $y = (\frac{1}{2})^2 - \frac{1}{2}$, $\mathbb{R} \setminus \{0\}$

(e)
$$y = \frac{1}{x^2 - x}$$
, $\mathbb{R} \setminus \{0; 1\}$ (f) $y = \left(\frac{1}{x}\right)^2 - \frac{1}{x}$, $\mathbb{R} \setminus \{0\}$ (g) $y = \frac{1}{2((x+2)^2 - (x+2)) - 1}$, $\mathbb{R} \setminus \left\{\frac{1}{2}(-3 \pm \sqrt{3})\right\}$

2. (a)
$$\langle -1; 1 \rangle$$
 (b) \mathbb{R} (c) $(-\infty; 0) \cup \langle 1; \infty \rangle$

3. (a) 2 (b)
$$-2$$
 (c) -2 (d) -2 (e) -2 (f) 1 (g) -2 (h) 2 (i) 2 (j) 0

4.
$$\ell(x) = 2x + 2$$

- **6.** (a) dvě řešení: $\ell_1(x) = 2x + \frac{2}{3}$ a $\ell_2(x) = -2x 2$
- (b) taková ℓ neexistuje

7. (a)
$$y = x + 100$$
 (b) $y = 2^{100}x$

(c)
$$y = 2^{100}x + 2^{100} - 1$$

- 8. (a) ano (b) ne (c) ano (d) ano
- (e) ne, bude rostoucí (f) ano (g) ano