

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Курс «Методы машинного обучения»

Отчет по рубежному контролю №2

Выполнила:

студентка группы ИУ5-24М

Мащенко Е. И.

Проверил:

преподаватель каф. ИУ5

Гапанюк Ю.Е.

Задание

Для одного из алгоритмов временных различий, реализованных Вами в соответствующей лабораторная работе:

- SARSA
- Q-обучение
- Двойное Q-обучение

Осуществите подбор гиперпараметров. Критерием оптимизации должна являться суммарная награда.

Выполнение работы

Листинг:

Рубежный контроль №2

Выполнила: Мащенко Е.И., ИУ5-24М

Алгоритм SARSA

Для проведения работы была выбрана среда обучения с подкреплением CliffWalking из библиотеки Gym. Проведем подбор гиперпараметров для алгоритма SARSA. Критерий оптимизации – суммарная награда. В класс SARSA_Agent добавлен метод sum_rewards, подсчитывающий итоговую суммарную награду.

```
Requirement already satisfied: gymnasium in c:\users\user\anaconda3\lib\site-packages (0.28.1)
Requirement already satisfied: cloudpickle>=1.2.0 in c:\users\user\anaconda3\lib\site-packages (from gymnasium) (1.6.0)
Requirement already satisfied: jax-jumpy>=1.0.0 in c:\users\user\anaconda3\lib\site-packages (from gymnasium) (1.0.0)
Requirement already satisfied: typing-extensions>=4.3.0 in c:\users\user\anaconda3\lib\site-packages (from gymnasium) (4.6.3)
Requirement already satisfied: importlib-metadata>=4.8.0; python_version < "3.10" in c:\users\user\anaconda3\lib\site-package (from gymnasium) (6.6.0)
Requirement already satisfied: numpy>=1.21.0 in c:\users\user\anaconda3\lib\site-packages (from gymnasium) (1.24.3)
Requirement already satisfied: farama-notifications>=0.0.1 in c:\users\user\anaconda3\lib\site-packages (from gymnasium) (0.0.4)
Requirement already satisfied: zipp>=0.5 in c:\users\user\anaconda3\lib\site-packages (from importlib-metadata>=4.8.0; python_version < "3.10" > gymnasium as gym import numpy as np from pprint import pprint import pprint import tydm import tydm import tydm import tydm import tydm
```

```
class BasicAgent:
                   Базовый агент, от которого наследуются стратегии обучения
                   # Наименование алгоритма
ALGO_NAME = '---'
                   def __init__(self, env, eps=0.1):
                        # Cpeda
self.env = env
                        # Pasmephocmu Q-мampuuы
self.nA = env.action_space.n
self.nS = env.observation_space.n
                         #и сама матрица
                         self.Q = np.zeros((self.nS, self.nA))
                         # Значения коэффициентов
                         # Порог выбора случайного действия
                        self.eps=eps
# Награды по эпизодам
                        self.episodes_reward = []
                   def print_q(self):
                        print('Вывод Q-матрицы для алгоритма ', self.ALGO_NAME)
print(self.Q)
                   def get_state(self, state):
                         Возвращает правильное начальное состояние
                         if type(state) is tuple:
                             # Ecnu состояние вернулось с виде кортежа, то вернуть только номер состояния return state[\theta]
                         else:
                             return state
                   def greedy(self, state):
                         <<Жадное>> текущее действие
Возвращает действие, соответствующее максимальному Q-значению
                         для состояния state
                         return np.argmax(self.Q[state])
                  def make_action(self, state):
                       Выбор действия агентом
                       if np.random.uniform(0,1) < self.eps:
                             # Если вероятность меньше eps
# то выбирается случайное действие
return self.env.action_space.sample()
                       else:
# иначе действие, соответствующее максимальному Q-значению
                             return self.greedy(state)
                  def draw_episodes_reward(self):
                       draw_episodes_reward(self):

# Построение графика наград по эпизодам
fig, ax = plt.subplots(figsize = (15,10))
y = self.episodes_reward
x = list(range(1, len(y)+1))
plt.plot(x, y, '-', linewidth=1, color='green')
plt.title('Награды по эпизодам')
plt.xlabel('Номер эпизода')
plt.ylabel('Награда')
plt.show()
                       plt.show()
                  def learn():
                       Реализация алгоритма обучения
                       pass
```

```
def learn(self):
     Обучение на основе алгоритма SARSA
     self.episodes_reward = []
     for ep in tqdm(list(range(self.num_episodes))):
          # Начальное состояние среды
state = self.get_state(self.env.reset())
# Флаг штатного завершения эпизода
done = False
           # Флаг нештатного завершения эпизода
           truncated = False
            # Суммарная награда по эпизоду
          tot_rew = 0
          # По мере заполнения Q-матрицы уменьшаем вероятность случайного выбора действия if self.eps > self.eps_threshold:
    self.eps -= self.eps_decay
          # Выбор действия
action = self.make_action(state)
           # Проигрывание одного эпизода до финального состояния
           while not (done or truncated):
                # Выполняем шаг в среде
next_state, rew, done, truncated, _ = self.env.step(action)
                 # Выполняем следующее действие
                next_action = self.make_action(next_state)
                # Правило обновления Q для SARSA
self.Q[state][action] = self.Q[state][action] + self.lr * \
    (rew + self.gamma * self.Q[next_state][next_action] - self.Q[state][action])
                # Следующее состояние считаем текущим
state = next_state
action = next_action
                 # Суммарная награда за эпизод
                tot_rew += rew
if (done or truncated):
                      self.episodes_reward.append(tot_rew)
def sum_rewards(self):
     # Суммарная награда
sum_rewards = sum(self.episodes_reward)
```

print('Суммарная награда SARSA: ', sum_rewards)

```
B [5]: M !pip install pygame
           Requirement already satisfied: pygame in c:\users\user\anaconda3\lib\site-packages (2.4.0)
B [6]: M def play_agent(agent):
               Проигрывание сессии для обученного агента
               env2 = gym.make('CliffWalking-v0', render_mode='human')
               state = env2.reset()[0]
done = False
               while not done:
                   action = agent.greedy(state)
                   next_state, reward, terminated, truncated, _ = env2.step(action)
                   env2.render()
                    state = next_state
                   if terminated or truncated:
                       done = True
B [7]: Menv = gym.make('CliffWalking-v0')
agent = SARSA_Agent(env)
           agent.learn()
           agent.print_q()
           agent.draw_episodes_reward()
agent.sum_rewards()
           # play_agent(agent)
         100%|
                                                                          20000/20000 [00:08<00:00, 2238.39it/s]
          Вывод Q-матрицы для алгоритма
                                          SARSA
         [[ -11.45890587
                          -11.39245172
                                          -11.39377187
                                                        -11.504686731
             -10.89681885
                           -10.83580844
                                          -10.84237668
                                                        -10.93864324]
             -10.22523906
                           -10.20005169
                                          -10.19983023
-9.49954321
                                                         -10.23798437
              -9.54558935
                            -9.49992106
                                                         -9.70032823
              -8.77471888
                            -8.76895524
                                           -8.77424204
                                                         -8.87733262
              -8.15384977
                            -8.01546422
                                           -8.03136638
                                                         -8.15792674]
              -7.24147696
                             -7.23595199
                                           -7.24074512
                                                          -7.24469757
              -6.61617109
                            -6.43480788
                                           -6.43869993
                                                         -6.7660588
              -5.68927395
                            -5.61640292
                                           -5.62188551
                                                         -5.73445781
              -4.86917696
                            -4.78968798
                                           -4.98825246
                                                         -4.893135551
              -4.04316019
                            -3.90536008
                                           -4.02795145
                                                          -4.12075341
              -3.34324784
                            -3.29911547
                                           -2.93385819
                                                          -3.15528184
             -11.91221621
                           -10.92728946 -12.46168126
                                                        -11.65637737]
             -11.32114775
-10.84796841
                           -10.2284693
                                          -11.64161679
                                                        -11.78660572]
                            -9.50819649
                                         -10.93583543
                                                        -11.10881937
             -10.15738872
                            -8.76557432
                                           -9.85037117
                                                        -10.40821276
              -9.4614996
                            -8.00042359
                                           -9.20033474
                                                         -9.71738125]
              -8.73939261
                            -7.2127831
                                            -8.45797601
                                                         -8.98871495
              -7.98188521
                            -6.40232418
                                           -7.87363869
                                                         -8.19105959
              -7.22113978
                             -5.56814017
                                           -7.10665653
                                                          -7.42706066]
              -6.38362208
                            -4.70897585
                                           -6.33519224
                                                         -6.57419574]
              -5.59550226
                             -3.8235841
                                           -5.55401287
                                                          -5.74354892
              -4.76213816
                            -2.9109
                                           -3.17226568
                                                         -4.89172659
                             -2.92718412
                                                          4.07496077
              -3.86510534
                                           -1.97
                           -13.67829282 -13.07345187
             -11.60623464
-10.98894988
                                                        -12.33735645
                           -11.62500195 -44.23958802
                                                        -11.46876534]
             -10.30416498
                           -10.9597
                                          -29.11102548
                                                        -10.34146159]
                            -9.21163482 -37.23464082
              -9.24736811
                                                         -9.2466042
              -8.67416659
                            -8.61674017
                                         -28.90282086
                                                         -8.67424697
              -7.93509178
                            -7.9387103
                                          -28.62057099
                                                         -7.97193829
              -7.2034112
                             -7.20577184
                                          -20.29415789
                                                          -7.33251354]
              -6.42329716
                            -6.42138523 -10.12788496
                                                          -6.55531627
              -5.59916709
                             -5.5950909
                                          -29.46174181
                                                          -5.63643723
              -4.73600148
                             -5.56918049
                                         -20.24106386
                                                         -4.91527203
```

-2.54594655

-3.08351178

0.

0.

0. 0.

0.

0.

0.

0.

0.

-1.97

0.

0.

0.

0.

0.

0.

0.

-2.04213384

-12.26696885 -111.51402964 -12.94518914

-45.061545

0.

0.

0.

0.

a.

0.

0.

-2.74491248]

-2.90556086]

-12.93810748

0.

0.

0.

0.

a.

0.

0.

íı

Результаты изменения суммарной награды от скорости обучения lr представлены в Таблице 1. График зависимости суммарной награды от lr представлен на рис.1.

Таблица 1. Результаты изменения суммарной награды от скорости обучения lr

Суммарная награда	Награда за последний эпизод	lr	eps	gamma	episodes
-529192	-17	0,025	0,4	0,98	20000
-499310	-17	0,05	0,4	0,98	20000
-484401	-17	0,1	0,4	0,98	20000
-488352	-17	0,15	0,4	0,98	20000
-488035	-19	0,2	0,4	0,98	20000
-497641	-17	0,25	0,4	0,98	20000

Рис.1. График зависимости суммарной награды от lr

Результаты изменения суммарной награды от параметра ерs представлены в Таблице 2. График зависимости суммарной награды от параметра ерs представлен на рис.2.

Таблица 2. Результаты изменения суммарной награды от параметра ерѕ

Суммарная награда	Награда за последний эпизод	lr	eps	gamma	episodes
-321854	-15	0,1	0,015	0,98	20000
-322896	-15	0,1	0,025	0,98	20000
-322810	-15	0,1	0,05	0,98	20000
-329450	-15	0,1	0,1	0,98	20000
-351044	-15	0,1	0,2	0,98	20000
-422912	-17	0,1	0,3	0,98	20000
-484401	-17	0,1	0,4	0,98	20000
-586762	-17	0,1	0,5	0,98	20000
-806757	-17	0,1	0,6	0,98	20000

Рис.2. График зависимости суммарной награды от параметра ерѕ

Результаты изменения суммарной награды от параметра gamma представлены в Таблице 3. График зависимости суммарной награды от параметра gamma представлен на рис.3.

Таблица 3. Результаты изменения суммарной награды от параметра gamma

Суммарная награда	Награда за последний эпизод	lr	eps	gamma	episodes
-321112	-15	0,1	0,015	0,96	20000
-319923	-15	0,1	0,015	0,97	20000
-321854	-15	0,1	0,015	0,98	20000
-321521	-15	0,1	0,015	0,99	20000
-321573	-15	0,1	0,015	0,995	20000

Рис. 3. График зависимости суммарной награды от параметра gamma

Вывод

В результате подбора гиперпараметров лучшими значениями оказались: eps=0.015, lr=0.1, gamma=0.97, num_episodes=20000. При этом, при уменьшении eps стратегия агента приближалась к максимальной (к движению по краю обрыва).