SECOND DEGRE (Partie 2)

I. Résolution d'une équation du second degré

<u>Définition</u>: Une <u>équation du second degré</u> est une équation de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \ne 0$.

Une solution de cette équation s'appelle une racine du trinôme $ax^2 + bx + c$.

Exemple:

L'équation $3x^2 - 6x - 2 = 0$ est une équation du second degré.

<u>Définition</u>: On appelle <u>discriminant</u> du trinôme $ax^2 + bx + c$, le nombre réel, noté Δ , égal à $b^2 - 4ac$.

Propriété : Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si Δ < 0 : L'équation $ax^2 + bx + c = 0$ n'a pas de solution réelle.
- Si $\Delta = 0$: L'équation $ax^2 + bx + c = 0$ a une unique solution : $x_0 = -\frac{b}{2a}$.
- Si Δ > 0 : L'équation $ax^2 + bx + c = 0$ a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Propriété démontrée dans le paragraphe II.

Méthode : Résoudre une équation du second degré

- Vidéo https://youtu.be/youUIZ-wsYk
- Vidéo https://youtu.be/RhHheS2Wpyk
- Vidéo https://youtu.be/v6fl2RqCCiE

Résoudre les équations suivantes :

a)
$$2x^2 - x - 6 = 0$$

b)
$$2x^2 - 3x + \frac{9}{8} = 0$$

c)
$$x^2 + 3x + 10 = 0$$

a) Calculons le discriminant de l'équation $2x^2 - x - 6 = 0$:

$$a = 2$$
, $b = -1$ et $c = -6$ donc $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$.

Comme Δ > 0, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

b) Calculons le discriminant de l'équation $2x^2 - 3x + \frac{9}{8} = 0$:

a = 2, b = -3 et c =
$$\frac{9}{8}$$
 donc Δ = b^2 – 4ac = $(-3)^2$ – 4 x 2 x $\frac{9}{8}$ = 0.

Comme Δ = 0, l'équation possède une unique solution :

$$x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$$

c) Calculons le discriminant de l'équation $x^2 + 3x + 10 = 0$: a = 1, b = 3 et c = 10 donc Δ = $b^2 - 4ac$ = $3^2 - 4x$ 1 x 10 = -31.

$$a = 1$$
, $b = 3$ et $c = 10$ donc $\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$.

Comme Δ < 0, l'équation ne possède pas de solution réelle.

II. Factorisation d'un trinôme

On a vu dans le chapitre "Second degré (partie 1)" que la fonction f définie sur $\mathbb R$ par $f(x) = ax^2 + bx + c$ peut s'écrire sous sa forme canonique :

$$f(x) = a(x-\alpha)^2 + \beta$$
 avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{b^2 - 4ac}{4a}$.

Donc:

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$
$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$$
$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right]$$

Si Δ < 0 : L'équation f(x) = 0 peut s'écrire :

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$$

Comme un carré ne peut être négatif $\left(\frac{\Delta}{4a^2} < 0\right)$, l'équation n'a pas de solution.

- Si $\Delta = 0$: $f(x) = a \left(x + \frac{b}{2a} \right)^2$

L'équation f(x) = 0 peut s'écrire :

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

$$\left(x + \frac{b}{2a}\right)^2 = 0$$

L'équation n'a qu'une seule solution : $x_0 = -\frac{b}{2a}$

- Si
$$\Delta > 0$$
: $f(x) = a \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right) \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right)$

L'équation f(x) = 0 peut s'écrire :

$$\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = 0$$

L'équation a deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Propriété : Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si Δ = 0 : Pour tout réel x, on a : $f(x) = a(x x_0)^2$.
- Si $\Delta > 0$: Pour tout réel x, on a : $f(x) = a(x x_1)(x x_2)$.

Remarque : Si Δ < 0, on n'a pas de forme factorisée de f.

Méthode: Factoriser un trinôme

Vidéo https://youtu.be/eKrZK1lisc8

Factoriser les trinômes suivants : a) $4x^2 + 19x - 5$ b) $9x^2 - 6x + 1$

a) On cherche les racines du trinôme $4x^2 + 19x - 5$:

Calcul du discriminant : $\Delta = 19^2 - 4 \times 4 \times (-5) = 441$

Les racines sont :
$$x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$$
 et $x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$

On a donc:

$$4x^{2} + 19x - 5 = 4(x - (-5))(x - \frac{1}{4})$$
$$= (x + 5)(4x - 1)$$

Une vérification à l'aide de la calculatrice n'est jamais inutile!

On peut lire une valeur approchée des racines sur l'axe des abscisses.

b) On cherche les racines du trinôme $9x^2 - 6x + 1$:

Calcul du discriminant : $\Delta = (-6)^2 - 4 \times 9 \times 1 = 0$

La racine (double) est : $x_0 = -\frac{-6}{2 \times 9} = \frac{1}{3}$

On a donc: $\frac{9x^2 - 6x + 1}{9(x - \frac{1}{3})^2}$ $= (3x - 1)^2$

<u>Méthode</u>: Résoudre une équation

Résoudre l'équation (E) : $\frac{x-2}{2x^2-3x-2} - \frac{x^2}{2x^2+13x+6} = 0$

- On commence par factoriser les expressions $2x^2 - 3x - 2$ et $2x^2 + 13x + 6$:

Le discriminant de $2x^2 - 3x - 2$ est $\Delta = (-3)^2 - 4 \times 2 \times (-2) = 25$ et ses racines sont :

$$x_1 = \frac{3 - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$$
 et $x_2 = \frac{3 + \sqrt{25}}{2 \times 2} = 2$

On a donc: $2x^2 - 3x - 2 = 2\left(x + \frac{1}{2}\right)(x - 2) = (2x + 1)(x - 2)$.

Le discriminant de $2x^2 + 13x + 6$ est $\Delta' = 13^2 - 4 \times 2 \times 6 = 121$ et ses racines sont :

$$x_1' = \frac{-13 - \sqrt{121}}{2 \times 2} = -6$$
 et $x_2' = \frac{-13 + \sqrt{121}}{2 \times 2} = -\frac{1}{2}$

On a donc: $2x^2 + 13x + 6 = 2(x+6)(x+\frac{1}{2}) = (x+6)(2x+1)$.

- L'équation (E) s'écrit :
$$\frac{x-2}{(2x+1)(x-2)} - \frac{x^2}{(x+6)(2x+1)} = 0$$

Les valeurs -6, $-\frac{1}{2}$ et 2 annulent le dénominateur. On résout alors (E) sur

$$\mathbb{R}\setminus\left\{-6;-\frac{1}{2};2\right\}$$
:

(E) s'écrit :
$$\frac{1}{2x+1} - \frac{x^2}{(x+6)(2x+1)} = 0$$

$$\frac{x+6}{(2x+1)(x+6)} - \frac{x^2}{(x+6)(2x+1)} = 0$$

$$\frac{x+6-x^2}{\left(2x+1\right)\left(x+6\right)} = 0$$

$$x + 6 - x^2 = 0$$

car
$$x \neq -\frac{1}{2}$$
 et $x \neq -6$.

Le discriminant de $-x^2 + x + 6$ est $\Delta'' = 1^2 - 4 \times (-1) \times 6 = 25$.

Les racines sont : $x_1'' = \frac{-1 - \sqrt{25}}{2 \times (-1)} = 3$ et $x_2'' = \frac{-1 + \sqrt{25}}{2 \times (-1)} = -2$

Les solutions de l'équation (E) sont : -2 et 3.

III. Signe d'un trinôme

- Vidéo https://youtu.be/sFNW9KVsTMY
- Vidéo https://youtu.be/pT4xtl2Yg2Q

Remarque préliminaire :

Pour une fonction polynôme de degré 2 définie par $f(x) = ax^2 + bx + c$:

- si a > 0, sa représentation graphique est une parabole tournée vers le haut : \bigvee
- si a < 0, sa représentation graphique est une parabole tournée vers le bas : \bigcap

Propriété : Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- Si ∆ < 0 :

Si	$\Delta < 0$:		
	X	 +∞	
	f(x)	Signe de a	

Méthode : Résoudre une inéquation

Vidéo https://youtu.be/AEL4qKKNvp8

Résoudre les inéquations suivantes : a) $x^2 + 3x - 5 < -x + 2$ b) $\frac{1}{x^2 - x - 6} \ge 2$

a)
$$x^2 + 3x - 5 < -x + 2$$

b)
$$\frac{1}{x^2 - x - 6} \ge 2$$

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier les signes des trinômes.

a)
$$x^2 + 3x - 5 < -x + 2$$
 équivaut à $x^2 + 4x - 7 < 0$

Le discriminant de $x^2 + 4x - 7$ est $\Delta = 4^2 - 4 \times 1 \times (-7) = 44$ et ses racines sont :

$$x_1 = \frac{-4 - \sqrt{44}}{2 \times 1} = -2 - \sqrt{11}$$
 et $x_2 = \frac{-4 + \sqrt{44}}{2 \times 1} = -2 + \sqrt{11}$

On obtient le tableau de signes :

x		$-2 - \sqrt{11}$		$-2 + \sqrt{11}$	+∞
f(x)	+	ϕ	-	0	+

L'ensemble des solutions de l'inéquation $x^2 + 3x - 5 < -x + 2$ est donc $-2 - \sqrt{11}$; $-2 + \sqrt{11}$.

Une vérification à l'aide de la calculatrice n'est jamais inutile! On peut lire une valeur approchée des racines sur l'axe des abscisses.

Un logiciel de calcul formel permet également de contrôler le résultat :

solve
$$(x^2+3\cdot x-5<-x+2,x)$$

- $(\sqrt{11}+2)< x<\sqrt{11}-2$

b)
$$\frac{1}{x^2 - x - 6} \ge 2$$
 équivaut à $\frac{1}{x^2 - x - 6} - 2 \ge 0$

Soit:
$$\frac{-2x^2 + 2x + 13}{x^2 - x - 6} \ge 0$$

- On commence par déterminer les racines du trinôme $x^2 - x - 6$: Le discriminant est $\Delta = (-1)^2 - 4 \times 1 \times (-6) = 25$ et ses racines sont :

$$x_1 = \frac{1 - \sqrt{25}}{2 \times 1} = -2$$
 et $x_2 = \frac{1 + \sqrt{25}}{2 \times 1} = 3$

Les valeurs -2 et 3 annulent le dénominateur. On résout donc l'équation dans $\mathbb{R}\setminus\left\{-2;3\right\}.$

- On détermine les racines du trinôme $-2x^2 + 2x + 13$:

Le discriminant est $\Delta' = 2^2 - 4 \times (-2) \times 13 = 108$ et ses racines sont :

$$x_1' = \frac{-2 - \sqrt{108}}{2 \times (-2)} = \frac{1 + 3\sqrt{3}}{2}$$
 et $x_2' = \frac{-2 + \sqrt{108}}{2 \times (-2)} = \frac{1 - 3\sqrt{3}}{2}$

- On obtient le tableau de signe :

x	-8	$\frac{1-3\sqrt{3}}{2}$	- } -	-2		3	1-	$\frac{+3\sqrt{3}}{2}$	+∞
$-2x^2 + 2x + 13$	_	ф	+		+		+	ф	_
$x^2 - x - 6$	+		+	φ	-	φ	+		+
$\frac{-2x^2 + 2x + 13}{x^2 - x - 6}$	_	o	+		_		+	0	-

L'ensemble des solutions de l'inéquation $\frac{1}{x^2-x-6} \ge 2$ est :

$$\left[\frac{1-3\sqrt{3}}{2};-2\right]\cup\left[3;\frac{1+3\sqrt{3}}{2}\right].$$

Un logiciel de calcul formel permet de contrôler le résultat :

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur.

www.maths-et-tiques.fr/index.php/mentions-legales