Taller de Grafos

Objetivo:

Comprender los conceptos básicos de grafos y su aplicación en problemas sencillos.

Implementar soluciones en pseudocódigo, diagramas de flujo y una aplicación web

interactiva.

1. Introducción a los Grafos

Definición de grafos (dirigidos y no dirigidos) que son?

Un grafo es una estructura matemática que representa relaciones entre objetos. Este

se compone por vértices (o nodos) y aristas (o arcos) que conectan estos vértices.

Estos se dividen en:

Grafo Dirigido (Dígrafo): Es u tipo de grafo en el que las aristas tienen una dirección especifica, es decir, van de un vértice a otro en un solo sentido. Se presentan como

pares ordenados (u, v), donde u es el vértice de origen y v es el vértice de destino.

Ejemplo: Redes de carreteras con sentido único, diagramas de flujo, redes sociales

con relaciones de "seguir".

Grafo no Dirigido: Es un tipo de grafo en el que las aristas ni tienen una dirección

especifica, lo que significa que si hay una conexión entre u y v, se puede recorrer en

ambos sentidos.

Ejemplo: Redes de amistad en Facebook, conexión de carreteras bidireccionales,

circuitos eléctricos.

• Representación con listas de adyacencia y matrices de adyacencia.

Lista de adyacencia: En esta representación, cada vértice tiene una lista que

almacena los vértices adyacentes (conectados a el mediante una arista). Es más eficiente en términos de espacio para grafos dispersos (pocos enlaces en

comparación con el número de vértices).

Ejemplo: Supongamos que tenemos 4 vértices

 $V = \{0,1,2,3\}$

Y las siguientes aristas

Lista de adyacencia Grafo no dirigido:

$$0 \longrightarrow 1 \longrightarrow 2$$

$$1 \longrightarrow 0 \longrightarrow 2$$

$$2 \longrightarrow 0 \longrightarrow 1 \longrightarrow 3$$

$$3 \longrightarrow 2$$

Cada vértice tiene una lista con sus vecinos directos

- Matriz de adyacencia: Es una matriz $n \times n$ donde n es el número de vértices.
- Si hay una lista entre el vértice i y el vertice j, entonces la posición [i][j] de la matriz es 1 (o el peso si es un grafo ponderado).
- Si no hay conexión, la celda se marca con 0.

Ejemplo: Para el mismo grafo anterior

	0	1	2	3
0	0	1	1	0
1	1	0	1	0
2	1	1	0	1
3	0	0	1	0

Aquí la matriz es simétrica porque el grafo es no dirigido.

Para un grafo dirigido, la matriz no es necesariamente simétrica.

Ejemplo:

Lista de adyacencia Grafo dirigido:

$$0 \rightarrow 1 \rightarrow 1 \rightarrow 2$$

$$1 \rightarrow 2 \rightarrow 2$$

$$2 \rightarrow 3 \rightarrow 3$$

$$3 \rightarrow$$

Ejemplo Matriz: Para el mismo grafo anterior

	0	1	2	3
0	0	1	0	0
1	0	0	1	0
2	0	0	0	1
3	0	0	0	0

Comparación

Representación	Ventajas	Desventajas	
Lista de Adyacencia	Eficiente en espacio para grafos dispersos, fácil de recorrer vecinos de un nodo.	Más lenta para verificar si una arista existe entre dos nodos.	
Matriz de Adyacencia	Consulta rápida de si hay una arista entre dos nodos $(O(1))$.	Usa más memoria $(O(n^2))$, incluso si hay pocas conexiones.	

- Para grafos densos, la matriz de adyacencia es mejor.
- Para grafos dispersos, la lista de adyacencia es más eficiente.
- Casos de uso básicos en la vida real.
 - Redes sociales
 - Los usuarios son los nodos y las relaciones (amistades, seguidores) son aristas.
 - ❖ Facebook usa grafos no dirigidos (amistades mutuas) mientras que X usa un grafo dirigido (seguimiento unidireccional).
 - Mapas y Rutas
 - Ciudades o interacciones son nodos y las carreteras son aristas.
 - Google Mapas usa grafos para encontrar la ruta mas corta entre dos ubicaciones (algoritmo Dijkstra).
 - Telecomunicaciones y redes de computación
 - Dispositivos (computadores, Routers) son nodos y las conexiones (cables, señales inalámbricas) son aristas.
 - Internet se modela como un grafo donde los servidores y clientes están conectados por enlaces de datos.

2. Elementos Claves para Resolver Grafos

- Recorridos en grafos: BFS (anchura) y DFS (profundidad).
- Algoritmos básicos:
- o Encontrar caminos entre dos nodos.
- o Determinar si un grafo es conexo.
- o Encontrar el nodo con más conexiones.