decidibilità secondo Turing

obiettivo

- dimostrare che alcuni problemi sono algoritmicamente risolvibili ed altri no
 - del primo fatto abbiamo ampia evidenza dalla esperienza di informatici

problemi indecidibili

- un linguaggio è Turing-indecidibile (o semplicemente indecidibile) quando non esiste una MT che lo decida
- analoghe definizioni per la risolvibilità di problemi e per la calcolabilità di funzioni

il problema della fermata

- vogliamo realizzare una funzionalità di base per un debugger
- vogliamo scrivere del software che, dato un programma e dei dati di input, stabilisca se il programma termina su quei dati

un primo problema indecidibile

- molto simile al problema della fermata
- problema A_{TM} (linguaggio A_{TM})
 - A_{TM} = {<M,w> | M e' una MT che accetta la stringa w}
- in primo luogo osserviamo che A_{TM} è Turing-riconoscibile
 - sottoponiamo M e w alla MT universale U
 - se prima o poi U arriva ad uno stato accettante, accettiamo la stringa

il problema A_{TM} è indecidibile

- teorema: il linguaggio A_{TM} = {<M,w> | M è una MT che accetta la stringa w} è indecidibile
- dimostrazione: per assurdo, supponiamo che esista una macchina che decide A_{TM} ed otteniamo una contraddizione

il problema A_{TM} è indecidibile dimostrazione

- sia H una MT che decide A_{TM}
 H(<M,w>) = accetta se M accetta w
 = rifiuta se M non accetta w
- costruiamo un'altra MT H' che usa H come subroutine
- H' usa H per stabilire cosa fa M quando riceve come input M stessa
- H' valuta H(<M,M>)

il problema A_{TM} è indecidibile dimostrazione

- se H esiste, allora esiste anche H', infatti H' deve solo copiare M (usa una macchina C che fa la copia) e far partire H
- H'(M) = accetta se M accetta M
 = rifiuta se M non accetta M
- costruiamo ora un'altra macchina D che usa H' come subroutine
- D fa partire H' e restituisce l'opposto del risultato: se H' restituisce accetta D restituisce rifiuta e viceversa
- se H' esiste, allora esiste anche D (usa una macchina E che calcola l'opposto)

il problema A_{TM} è indecidibile dimostrazione

riassumendo:

• H(<M,w>) = accetta se M accetta w

= rifiuta se M non accetta w

H'(M) = accetta se M accetta M

= rifiuta se M non accetta M

• D(M) = accetta se M non accetta M

= rifiuta se M accetta M

il problema A_{TM} è indecidibile dimostrazione

cosa succede se a D diamo in input D?

il problema A_{TM} è indecidibile dimostrazione

• H(<M,w>) = accetta se M accetta w

= rifiuta se M non accetta w

• H'(M) = accetta se M accetta M

= rifiuta se M non accetta M

• D(M) = accetta se M non accetta M

= rifiuta se M accetta M

D(D) = accetta se D non accetta D

= rifiuta se D accetta D

il problema A_{TM} è indecidibile dimostrazione

 qualunque cosa faccia D in realtà fa l'opposto: abbiamo un assurdo

rivediamolo alla moviola

- D(D)
- = accetta se D non accetta D
- = rifiuta se D accetta D

rapporto tra l'indecidibilità di A_{TM} e la diagonalizzazione

 è possibile osservare una relazione tra la tecnica di dimostrazione appena usata e il metodo di diagonalizzazione di Cantor

richiamo sulla diagonalizzazione

- dimostrazione del fatto che l'intervallo aperto di reali (0,1) non è numerabile
- supponiamo per assurdo che una enumerazione di (0,1) esista, denotiamo con Φ_i l'iesimo elemento di (0,1)
- consideriamo $r \in (0,1)$ che ha come i-esima cifra della mantissa (i=1, 2, ...) un valore diverso da 0, da 9, e dal valore della i-esima cifra di Φ_i

richiamo sulla diagonalizzazione cifre delle mantisse di Φ_i : 1 2 3 4 5 6 7 ... Φ_1 5 1 0 4 3 9 6 ... Φ_2 2 4 1 0 0 0 0 ... Φ_3 7 9 8 5 3 7 7 ... Φ_4 0 0 4 6 0 3 1 ... r 6 5 1 7 ...

r, detto *elemento diagonale*, non fa parte della enumerazione, in quanto differisce da ogni elemento della enumerazione in almeno una cifra, e ciò è assurdo

rapporto tra l'indecidibilità di A_{TM} e la diagonalizzazione

- elenchiamo tutte le MT sulle righe e sulle colonne di una tabella
- la posizione i,j è accetta se M_i accetta M_j ed è uno spazio se rigetta o cicla

rapporto tra l'indecidibilità di A_{TM} e la diagonalizzazione

 nella tabella che segue è mostrato il comportamento di H quando ha in input gli elementi della tabella precedente

rapporto tra l'indecidibilità di A_{TM} e la diagonalizzazione

 nella tabella possiamo aggiungere D, che essendo una MT, prima o poi appare nell'elenco

rapporto tra l'indecidibilità di A_{TM} e la diagonalizzazione

- ma D calcola esattamente l'opposto di quanto appaia sulla diagonale
- l'elemento in posizione D,D deve essere l'opposto di se stesso

calcolabilità secondo Turing

calcolabilità secondo Turing in vari contesti decisione di predicati: un predicato su Σ^* è una funzione p: $(\Sigma^*)^n \rightarrow \{\text{vero,falso}\}$

- p è Turing-decidibile se esiste una MT che calcola p, se non esiste nessuna MT allora p è Turing-indecidibile;
 - il predicato A_{TM} e' Turing-indecidibile
- p è semi-decidibile se pur essendo indecidibile è Turing-riconoscibile il predicato A_{TM} è semi-decidibile

un linguaggio che non è Turingriconoscibile

- pur essendo indecidibile, il linguaggio A_{TM}
 è riconoscibile (è semi-decidibile)
- esistono linguaggi che non sono neppure riconoscibili
- diciamo che un linguaggio è coriconoscibile se il suo complemento è riconoscibile

un linguaggio che non è Turingriconoscibile

- teorema: un linguaggio è decidibile se e solo se è sia Turing-riconoscibile sia co-Turingriconoscibile
- dimostrazione:
 - consideriamo il linguaggio A e supponiamo sia decidibile
 - se A è decidibile lo è anche il suo complemento
 - e se un linguaggio è decidibile è anche Triconoscibile
 - ciò completa la prima parte della dimostrazione

un linguaggio che non è Turingriconoscibile

- · dimostrazione:
 - per ciò che riguarda la direzione opposta
 - se sia A che <u>A</u> sono Turing-riconoscibili, siano M ed N le MT che riconoscono A e A
 - costruiamo una MT che decide A eseguendo M ed N in parallelo sullo stesso input
 - Se M accetta la macchina accetta, se N accetta la macchina rifiuta

un linguaggio che non è Turingriconoscibile

- teorema: \underline{A}_{TM} non è Turing-riconoscibile
- dimostrazione:
 - se lo fosse, A_{TM} sarebbe decidibile