## ÁLGEBRA Y GEOMETRÍA ANALÍTICA 1- DIIT SEGUNDO CUATRIMESTRE 2020

Jefa de cátedra: Lic. Gabriela Ocampo

# MÓDULO 2: TRABAJO PRÁCTICO VECTORES GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO

#### **VECTORES** en el PLANO

1) a) Graficar los vectores  $\overrightarrow{OA}$ ,  $\overrightarrow{OB}$ ,  $\overrightarrow{OC}$ ,  $\overrightarrow{OD}$  y  $\overrightarrow{OE}$  en el sistema de ejes siguiente y escribir sus componentes.



- b) Ubicar en el gráfico anterior, los puntos P=(-3;-5) y Q=(1;-2). Graficar el vector,  $\overrightarrow{PQ}$  y el vector  $\overrightarrow{v}$  equivalente a  $\overrightarrow{PQ}$  con origen en O=(0;0).
- c) Graficar los vectores  $\overrightarrow{DC}$ ,  $\overrightarrow{EC}$  y  $\overrightarrow{AB}$  en el sistema de ejes anterior y escribir sus componentes.
- 2) Sean  $\vec{u} = (2;3)$  y  $\vec{v} = (-5;4)$  encontrar gráfica y analíticamente:
- a)  $3\vec{u}$  b)  $\vec{u} + \vec{v}$
- c)  $\vec{v} \vec{u}$
- d)  $2\vec{u} 5\vec{v}$

- 3) Dados los puntos A y B, en cada caso, expresar al vector  $\overrightarrow{AB}$  por sus componentes:
- a) A = (1,2) B = (5,5)
- b) A = (3, -5) B = (4, 7)
- 4) Hallar el vector  $\vec{v}$  si  $\vec{u} = (2; -1)$  y  $\vec{w} = (1; 2)$
- a)  $\vec{v} = \frac{1}{2}(3\vec{u} + \vec{w})$
- b)  $\vec{v} = \vec{u} 2\vec{w}$
- 5) Encontrar el módulo o norma de los vectores:
- a)  $\vec{u} = (4:4)$

- b)  $\vec{v} = -3\vec{i} + 4\vec{j}$  c)  $\vec{w} = (-4; -4)$  d)  $\vec{p}$  (-1;  $\sqrt{3}$ )
- e)  $\overrightarrow{AB}$  siendo  $A = (5, 3 \sqrt{7}), B = (2, 3)$
- 6) Si  $\vec{u} = \left(1; \frac{1}{2}\right)$  y  $\vec{v} = (2; 3)$  calcular: a)  $\|\vec{u}\|$  b)  $\|\vec{u} + \vec{v}\|$  c)  $\|\vec{v}\|$  d)  $\|\frac{\vec{u}}{\|\vec{u}\|}\|$  e)  $\|\frac{\vec{v}}{\|\vec{v}\|}\|$  f)  $\|\frac{\vec{u} + \vec{v}}{\|\vec{u} + \vec{v}\|}\|$
- ¿Qué conclusiones puede extraer?
- 7) Hallar el versor (vector unitario) que tenga dirección y el sentido de  $\vec{v}$ , en cada caso:
- a)  $\vec{v} = -3\vec{i} + 4\vec{j}$
- b)  $\vec{v} = \vec{i} + \vec{j}$
- c)  $\vec{v} = 2\vec{i} + 3\vec{i}$
- 8) Hallar un vector de la norma pedida que tenga el sentido opuesto al vector  $\vec{v}$ , en cada caso:
- a)  $\vec{v} = \vec{i} + \vec{j}$  con norma 2

- b)  $\vec{v} = -24\vec{i} + 7\vec{i}$  con norma 5
- 9) Determinar  $a \in \mathbb{R}$  y  $b \in \mathbb{R}$ , en cada caso, si existen, tal que  $\vec{v} = a\vec{u} + b\vec{w}$ , siendo  $\vec{u} = (1,2)$  y si: a)  $\vec{v} = (2;1)$ b)  $\vec{v} = (-1,7)$  $\vec{w} = (1;-1)$
- En caso de que existan los escalares a y b, decimos que  $\vec{v}$  es **combinación lineal** de  $\vec{u}$  y  $\vec{w}$
- 10) Sean  $\vec{u} = -2\vec{i} + 5\vec{j}$  y  $\vec{v} = \alpha \vec{i} 2\vec{j}$ , determinar  $\alpha$  perteneciente a los reales tal que  $\vec{u}$  y  $\vec{v}$ sean paralelos.
- 11) Dados A= (2; -1), B= (5; 0) y C= (3; -1)
- a) Obtener analíticamente D para que el cuadrilátero ABCD sea un paralelogramo (en el orden indicado). Graficarlo.
- b) Comprobar que las diagonales se cortan en el punto medio de ellas.
- c) Sean U= (1-k; 3) y E = (5; 2k+9), ¿cuáles son los valores reales de k para que  $\overline{AC}$  sea equivalente a  $\overrightarrow{UE}$ ? Indicar E.
- d) Indicar un vector  $\vec{w}$  que sea paralelo y de sentido contrario de  $\vec{AU}$  pero  $\vec{w} \neq -\vec{AU}$ .

- 12) Dados A = (-6; 1), B = (-3; -2), C = (1; -5) y D = (3; 3).
- a) Obtener  $\vec{v} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}$ . Justificar geométricamente el resultado obtenido.
- b) Determinar analítica y geométricamente a  $\vec{w} = \overrightarrow{AB} \frac{1}{2} \overrightarrow{DC}$ .
- c) ¿Quién es E si BEDC resulta ser un paralelogramo (en el orden indicado)?
- d) Determinar k real para que resulte  $\overrightarrow{CF} // \overrightarrow{BD}$  si F = (k-4; -1+2k).
- e) Mostrar F y señalar si los vectores paralelos resultan de igual o diferente sentido.
- f) ¿Qué puntos W del eje y cumplen con la condición dist (W,D) = 5? Graficar.

## **VECTORES** en el ESPACIO

13) Escribir las coordenadas de los puntos A y D y las componentes de los vectores  $\overrightarrow{OA}$  y  $\overrightarrow{OD}$ 



- 14) Dados los puntos A y B expresar al vector  $\overrightarrow{AB}$  por sus componentes:
- a) A = (-1, 2, 3) B = (3, 3, 4)
- b) A = (2;-1;-2) B = (-4;3;7)
- 15) Escribir las coordenadas de los puntos A, F y Q y las componentes del vector  $\overrightarrow{FA}$  y  $\overrightarrow{AQ}$



16) Si  $\vec{u} = (1,2,3)$ ,  $\vec{v} = (2,2,-1)$  y  $\vec{w} = (4,0,-4)$  calcular:

a) 
$$4\vec{v} + 2\vec{u} - \vec{w} =$$

b) 
$$-3\vec{v} + 5\vec{u} - \frac{1}{2}\vec{w} =$$

17) Dados los vectores  $\vec{u} = (3;-1;-4)$ ,  $\vec{v} = (-2;4;-3)$  y  $\vec{w} = (-1;2;-1)$ , hallar:

a) 
$$2\vec{u} - \vec{v} + 3\vec{w}$$

b) 
$$\|\vec{u} + \vec{v} - \vec{w}\|$$

c) 
$$\|3\vec{u} - 2\vec{v} + \vec{w}\|$$

- d) Un vector unitario (versor) en la dirección y sentido del vector  $\vec{v} \vec{w}$
- 18) Sea P = (2;1;4) y Q = (3;-2;8). Hallar el vector unitario en la dirección y sentido de  $\overrightarrow{PQ}$ .
- 19) Determinar los escalares  $a,b,c \in \mathbb{R}$ , en cada caso, si existen, tal que  $\vec{v} = a\vec{u} + b\vec{w}$ , siendo  $\vec{u} = (1;2;0)$  y  $\vec{w} = (1;-1;2)$  si: a)  $\vec{v} = (2;1;2)$  b)  $\vec{v} = (-1;7;1)$  c)  $\vec{v} = (-1;1;-2)$  En caso de que existan los escalares a y b, se dice que  $\vec{v}$  es combinación lineal de  $\vec{u}$  y  $\vec{w}$
- 20) Dado el vector  $\vec{v} = (k, -2, 3 + k)$  determinar todos los valores reales de k si  $||\vec{v}|| = 3$
- 21) Hallar  $\alpha$ ,  $\beta$  y  $\lambda \in \mathbb{R}$ , si existen, tal que  $\vec{v} = \alpha \vec{u} + \beta \vec{w} + \lambda \vec{t}$ , siendo  $\vec{v} = (1;4;2)$ ,  $\vec{u} = (1;2;1)$  y  $\vec{w} = (0;2;1)$   $\vec{t} = (2;6;3)$
- 22) Calcular  $k \in \mathbb{R}$  si  $\vec{v} = (-1; 2\sqrt{3}; \sqrt{3}) ||k.\vec{v}|| = 5$
- 23) Sean  $\vec{u} = (-2;4;k^2+1)$  y  $\vec{v} = (-3k;5k+2;15)$ , hallar analíticamente todos los valores reales de k, si existen, para que (los ítems se resuelven de manera independiente):
- a) los vectores resulten paralelos. Indicar si son de igual o distinto sentido.
- b)  $\|\vec{v}\| = \sqrt{229}$

## PRODUCTO ESCALAR – PROYECCIÓN -ÁNGULO

24) Dados los siguientes pares de vectores, hallar su producto escalar y el ángulo que forman:

a) 
$$\vec{u} = 2\vec{i} + 5\vec{j}$$
  $\vec{v} = 6\vec{i} - 8\vec{j}$  b)  $\vec{u} = \vec{i} + \vec{j}$   $\vec{v} = \vec{i} - \vec{j}$  c)  $\vec{u} = 2\vec{i} - \vec{j}$   $\vec{v} = -4\vec{i} + 2\vec{j}$ 

b) 
$$\vec{u} = \vec{i} + \vec{j}$$
  $\vec{v} = \vec{i} - \vec{j}$ 

c) 
$$\vec{u} = 2\vec{i} - \vec{j}$$
  $\vec{v} = -$ 

$$\vec{v} = -4\vec{i} + 2\vec{j}$$

25) Si  $\vec{a} = (4;-1)$ ,  $\vec{b} = (1;-1)$  y  $\vec{c} = (0;6)$ , calcular:

a) 
$$(\vec{a} + \vec{b}) \bullet \vec{a}$$

a) 
$$(\vec{a} + \vec{b}) \cdot \vec{c}$$
 b)  $(3\vec{a} + 4\vec{b}) \cdot 2\vec{c}$  c)  $||b|| b \cdot a$  d)  $||c||^2 - c \cdot c$ 

c) 
$$||b||b \cdot a$$

$$d) \|c\|^2 - c \bullet c$$

26) Determinar si los siguientes pares de vectores son paralelos, ortogonales o ninguna de las dos condiciones y graficarlos:

a) 
$$\vec{u} = 3\vec{i} + 5\vec{j}$$
  $\vec{v} = -6\vec{i} - 10\vec{j}$ 

b) 
$$\vec{u} = 2\vec{i} + 3\vec{i}$$
  $\vec{v} = -6\vec{i} + 4\vec{i}$ 

c) 
$$\vec{u} = 2\vec{i} + 3\vec{j}$$
  $\vec{v} = 6\vec{i} - 4\vec{j}$ 

- 27) Sean  $\vec{u} = -2\vec{i} + 5\vec{j}$  y  $\vec{v} = \alpha \vec{i} 2\vec{j}$ , determinar  $\alpha$  tal que:
- a)  $\vec{u}$  y  $\vec{v}$  sean ortogonales.

b)  $\vec{u}$  y  $\vec{v}$  sean paralelos.

c) El ángulo entre  $\vec{u}$  y  $\vec{v}$  sea  $2\pi/3$ 

- d) El ángulo entre  $\vec{u}$  y  $\vec{v}$  sea  $\pi/3$
- 28) Dados los siguientes pares de vectores, hallar gráfica y algebraicamente, la proyección escalar y vectorial de  $\vec{u}$  sobre  $\vec{v}$  y de  $\vec{v}$  sobre  $\vec{u}$

a) 
$$\vec{u} = \vec{i} + \vec{j}$$
  $\vec{v} = \vec{i} - \vec{j}$ 

$$\vec{v} = \vec{i} - \vec{j}$$

b) 
$$\vec{u} = (2; -3)$$
  $\vec{v} = (1; 1)$  c)  $\vec{u} = -5\vec{i} + 4\vec{j}$   $\vec{v} = -\vec{i}$ 

$$5 = (1;1)$$

c) 
$$\vec{u} = -5\vec{i} + 4\vec{j}$$

$$\vec{v} = -\vec{i}$$

- 29) Sean P=(2;3), Q=(5;7), R=(2;-3) y S=(1;2). Calcular la proyección de  $\overrightarrow{RS}$  sobre  $\overrightarrow{PQ}$ y la proyección de  $\overrightarrow{PQ}$  sobre  $\overrightarrow{RS}$ .
- 30) a) Graficar el vector proyección de  $\overrightarrow{OB}$  sobre  $\check{t}$  y también el vector proyección de  $\overrightarrow{OB}$ sobre - j. Indique, en cada caso, si la proyección escalar es positiva, negativa o cero.
- b) Señalar dos vectores  $\vec{u}$  y  $\vec{v}$  diferentes entre sí tal que  $proy_{\vec{v}}\vec{v} = \vec{0}$ .



31) Calcular el producto escalar y el ángulo que forman:

a) 
$$\vec{u} = 2\vec{i} - 4\vec{j} + 4\vec{k}$$
  $\vec{v} = \vec{i} - \vec{k}$ 

b) 
$$\vec{u} = 2\vec{i} + \vec{j} - 2\vec{k}$$
  $\vec{v} = \vec{i} - 3\vec{j} + 2\vec{k}$ 

c) 
$$\vec{u} = \left(\frac{1}{2}; -3; 1\right)$$
  $\vec{v} = (6; 4; 9)$ 

- 32) Dados los vectores  $\vec{u}$ = (5,-1,2);  $\vec{v}$ = (-1, 2,-2).
- a) Calcular el ángulo entre ambos vectores.
- b) ¿Cuánto tiene que valer k para que el vector  $\vec{w} = (7, 2, k)$  sea perpendicular al vector  $\vec{u}$ ?
- 33) Calcular la proyección escalar y vectorial del vector  $\vec{u}$  sobre  $\vec{v}$ , en cada caso:

a) 
$$\vec{u} = (1, 1, 1)$$
 y  $\vec{v} = (1, 1, 0)$ 

b) 
$$\vec{u} = (-1; 2; 1)$$
 y  $\vec{v} = (1; 2; 3)$ .

- 34) Dados los vectores  $\vec{u}=(3,-2,1); \vec{v}=(4,3,2); \vec{w}=(1,5,1),$  hallar la proyección ortogonal, (escalar y vectorial) de  $\vec{u}$  sobre  $(\vec{v}+\vec{w})$ .
- 35) Hallar todos los valores de k reales tal que  $\|proy_{\vec{u}} \vec{v}\| = \sqrt{21}$ , siendo  $\vec{u} = (2; -1; 4)$  y  $\vec{v} = (k; k-1; 2-k)$ . Para todos los valores de k encontrados, indicar quién es  $\vec{v}$ .
- 36) Dados los vectores  $\vec{u}$ =(1,1,0) y  $\vec{v}$ =(-2,k,1);
- a) Encontrar k tal que el ángulo que forman ambos vectores sea de 150°.
- b) Hallar la proyección vectorial de  $\vec{u}$  sobre  $\vec{v}$ , para los valores de k obtenidos
- 37) Sean en  $R^3$  los vectores  $\vec{v}$  y  $\vec{w}$  de igual longitud y que forman un ángulo cuyo coseno vale -0.6. Si sucede que  $(4\vec{v}+3\vec{w}) \bullet (\vec{v}-2\vec{w})=7$ , ¿cuánto vale  $\|\vec{v}\|$ ?
- 38) Dados en R³ los vectores  $\vec{u}$ ,  $\vec{v}$  y  $\vec{w}$  de los cuales se sabe que  $\vec{w}$  es unitario;  $\vec{v} \perp \vec{w}$ ;  $\|\vec{u}\| = 3$ ;  $\|\vec{v}\| = \frac{4}{3}$ ; el coseno del ángulo entre  $\vec{u}$  y  $\vec{w}$  vale  $-\frac{2}{3}$ . Si sucede que  $(\vec{u} + 3\vec{v}) \cdot (2\vec{u} \vec{w}) = 8$ , ¿cuál es el ángulo formado entre  $\vec{u}$  y  $\vec{v}$ ?
- 39) Si  $\vec{u} = -3\vec{i} + \vec{j} \sqrt[2]{5}\vec{k}$  y  $\vec{v} = 2\vec{i} + 4\vec{j} \sqrt{5}\vec{k}$  expresar  $\vec{u}$  como suma de un vector  $\vec{m}$  paralelo a  $\vec{v}$  y un vector  $\vec{n}$  perpendicular a  $\vec{v}$ .
- 40)a) Hallar, si existen, los valores de k real tal que los vectores  $\vec{u} = (1,1,1)$ ;  $\vec{v} = (k,2,1)$  cumplan con la igualdad en la desigualdad de Cauchy-Schwartz. b) Interpretar geométricamente el resultado hallado.

## PRODUCTO VECTORIAL Y MIXTO

41) Encontrar el vector  $\vec{u} \wedge \vec{v} = \vec{u} \times \vec{v}$  en cada caso: (Usaremos indistintamente "x" o "\" para simbolizar el producto vectorial entre vectores)

- a)  $\vec{u} = (-1,2,1)$  y  $\vec{v} = (0,1,2)$
- b)  $\vec{u} = (3;2;-1) \quad \vec{v} = (0,1,-1).$
- c)  $\vec{u} = (1; -1; 0) \rightarrow \vec{v} = (2; -1; 1)$
- d)  $\vec{u} = (1;2;4) \quad \vec{v} = (-2;0;5)$
- 42) Hallar el área del paralelogramo cuyos lados adyacentes están determinados por los vectores (2;-5;2) y (3;-3;6).
- 43) Dados  $\vec{u} = (1,2,-1)$ ,  $\vec{v} = (1,1,-1)$  y  $\vec{w} = \vec{i} \vec{j} + 4\vec{k}$ . Calcular

- a)  $\vec{u} \wedge \vec{v}$  b)  $\vec{u} \times \vec{w}$  c)  $\vec{u} \bullet (\vec{v} \wedge \vec{w})$  d)  $\vec{u} \wedge (\vec{v} \wedge \vec{w})$  e)  $\vec{u} \wedge (\vec{u} \wedge \vec{w})$
- 44) Encontrar el área del triángulo cuyos vértices son H=(3;2;-1), M=(0;3;0) y T=(4;5;6).
- 45) Hallar dos vectores unitarios ortogonales simultáneamente a  $\vec{u} = \vec{i} + \vec{j} + \vec{k}$  y a  $\vec{v} = \vec{i} - \vec{j} - \vec{k}$ .
- 46) Utilizando propiedades demostrar que  $(\vec{v} + \vec{w}) \wedge (\vec{v} \vec{w}) = 2\vec{w} \wedge \vec{v}$
- 47) Dados los vectores  $\vec{u} = (1,2,1)$  y  $\vec{v} = (2,-1,-1)$ . Encontrar un vector de norma 4 ortogonal a  $\vec{u}$  y a  $\vec{v}$ . ¿Es único?
- 48) Si  $\vec{u}$ ,  $\vec{v}$  y  $\vec{w}$  son vectores en R<sup>3</sup> explicar si es posible (o no) efectuar las operaciones indicadas; en caso afirmativo indique si se obtiene un escalar o un vector.
- "• "corresponde a producto escalar entre vectores.
- a)  $\vec{u} \cdot \vec{v} + \vec{w}$

- b)  $\vec{u} \bullet (\vec{v} + \vec{w})$  c)  $\vec{u} \bullet (\vec{v} \times \vec{w})$  d)  $\vec{u} \bullet (\vec{v} \bullet \vec{w})$
- e)  $(\vec{u} \cdot \vec{v})(\vec{v} \times \vec{w})$  f)  $(\vec{u} \wedge \vec{v}) \wedge \vec{w}$  g)  $\vec{u} \wedge (\vec{v} \cdot \vec{w})$
- 49) Sean los puntos P=(-3;-1;0), Q=(-2;0;-3) y R=(0;-2;1) Determinar:
- a) El perímetro del triángulo PQR.
- b) La longitud de la mediana correspondiente al lado  $\overline{PO}$ .
- c) El área del triángulo PQR.
- 50) Dados los puntos A=(2;3;-1) B = (1;0;2) C= (3;1;1) hallar  $\vec{w}$  //  $\overrightarrow{AB}$  tal que  $\vec{w}$  y  $\overrightarrow{AC}$ determinen un paralelogramo de área  $10\sqrt{2}$
- 51) Sean los vectores  $\vec{u} = (3;2;1)$ ,  $\vec{v} = (1;1;2)$  y  $\vec{w} = (1;3;3)$  en  $\mathbb{R}^3$ , se pide calcular:
- a) El área del paralelogramo determinado por  $\vec{u}$  y  $\vec{v}$
- b) El volumen del paralelepípedo determinado por  $\vec{u}$ ,  $\vec{v}$  y  $\vec{w}$ .

- 52) Dados los vectores  $\vec{g} = (5;0;1)$ ,  $\vec{u} = (3;-2;0)$  y  $\vec{m} = (-4;1;k)$  en  $\mathbb{R}^3$ , hallar  $k \in \mathbb{R}$  (en cada caso) de modo que:
- a) los tres vectores determinen un paralelepípedo de volumen 5.
- b) los tres vectores resulten coplanares
- 53) Sean los puntos A=(1;0;1), B=(1;1;1) y  $C=(1;6;\mathbf{a})$ . Resolver utilizando los productos entre vectores estudiados:
- a) Determinar, si existen, todos los valores reales de a para que A, B y C resulten alineados.
- b) Determinar, si existen, todos los valores reales de **a** para que los vectores  $\overrightarrow{AB}, \overrightarrow{AC}$  y  $\vec{v} = (a; a^2 + 1; a^2 - 1)$  resulten coplanares.
- c) Determine, si existen, todos los valores reales de "a" para que los vectores  $\overrightarrow{AB}$ ,  $\overrightarrow{AC}$  y w = (8; a; a)determinen un paralelepípedo de volumen 2.
- 54) El esquema muestra un paralelepípedo rectángulo en el espacio.

Se sabe que 
$$\overrightarrow{AB} = (-k; 2a-1; -1), \ \overrightarrow{BC} = (-3; 1; 1+k), \ \overrightarrow{CD} = (2k; 8-a; 17).$$







## EJERCITACIÓN EXTRA

- 55) Dado el cuadrilátero ABCD (en ese orden) con A=(-3;-1), B=(-4;3), C=(0;4) y D=(2;-1)4).
- a) Obtener su perímetro.
- b) Verificar que es un trapecio, es decir tiene un solo par de lados opuestos paralelos.
- c) Si E = (5-k; k+1), ¿cuáles son los valores de k real que determinan que la distancia entre E y B es 13? Indicar los puntos E.
- d) Para algún valor de k recién hallado encuentrar todos los vectores de norma uno paralelos al vector  $\overrightarrow{BE}$ .
- 56) Si  $\mathcal{U}$ ,  $\mathcal{V}$  y  $\mathcal{W}$  son vectores en R<sup>3</sup> explicar si es posible (o no) efectuar las operaciones indicadas; en caso afirmativo indique si se obtiene un escalar o un vector. "• "corresponde a producto escalar entre vectores.

a) 
$$\vec{u} + \vec{v} - \vec{w} \bullet \vec{u}$$

b) 
$$(\vec{u} + \vec{v} - \vec{w}) \bullet \vec{u}$$

a) 
$$\vec{u} + \vec{v} - \vec{w} \bullet \vec{u}$$
 b)  $(\vec{u} + \vec{v} - \vec{w}) \bullet \vec{u}$  c)  $(\vec{u} \wedge \vec{v}) - (\vec{w} \bullet \vec{u}) \cdot \vec{v}$  d)  $(\vec{u} \wedge \vec{v}) \wedge (\vec{v} \bullet \vec{w})$ 

d) 
$$(\vec{u} \wedge \vec{v}) \wedge (\vec{v} \cdot \vec{w})$$

e) 
$$(\vec{u} \wedge \vec{v}) \bullet (\vec{v} \wedge \vec{w})$$
 f)  $(\vec{u} \wedge \vec{v}) \bullet (\vec{w} \bullet \vec{w})$ 

$$(\vec{u} \wedge \vec{v}) \bullet (\vec{w} \bullet \vec{w})$$

- 57) Dados los vectores  $\vec{u} = (1;3;-2)$  y  $\vec{v} = (4;-6;5)$  descomponer el vector  $\vec{v}$  en la suma de dos vectores: uno en la misma dirección que  $\vec{u}$  y otro en una dirección ortogonal a  $\vec{u}$ .
- 58) Si  $\vec{u}$  y  $\vec{v}$  son vectores en R<sup>3</sup> tales que  $\vec{u} \wedge \vec{v} = (1; -1; -1)$  y  $\vec{u} \cdot \vec{v} = -3$ . Calcular
- a) El área del paralelogramo que determinan los vectores dados.
- b) El ángulo que forman los vectores  $\vec{u}$  y  $\vec{v}$
- 59) Dados los vectores  $\vec{u} = (2;3-k;k-1)$ ,  $\vec{v} = (1;4;-1)$   $\vec{w} = (3;1;5)$ .
- a) Obtener todos los valores de k para que volumen del paralelepípedo de lados  $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{v}, \overrightarrow{w}$  sea
- 4. Señalar los vectores u alcanzados.
- b) Determinar la proyección vectorial de V sobre W.
- c) Si  $\vec{t}$  = (m, n, 0),  $\vec{q}$  = (0, m, -n) y  $\vec{s}$  = (-1, 2, 1) y con m + n = 1. Probar que  $(\vec{t} \wedge \vec{q}) \cdot \vec{s} = 1$  para todos los m y n reales.
- 60) Determinar la norma de un vector  $\vec{v}$  sabiendo que  $\vec{u}$  y  $\vec{v}$  son vectores del espacio y que satisfacen:  $||\vec{v}|| = 2$ .  $||\vec{u}||$ , el ángulo entre ambos es de 120° y  $(3\vec{u} + 2\vec{v}) \cdot (-\vec{v} + 4\vec{u}) = -9$  ¿Cuánto vale la proyección escalar de  $\vec{v}$  sobre  $\vec{u}$ ? Señalar claramente todas las propiedades que utiliza.
- 61) Dados  $\vec{u}$  y  $\vec{v}$  vectores no nulos de R<sup>3</sup>, explique qué debe suceder para que cada ítem es independiente):
- a) La proyección vectorial de  $\vec{u}$  sobre  $\vec{v}$  sea  $\vec{0}$ .
- b)  $\|\vec{u} + \vec{v}\| < \|\vec{u} \vec{v}\|$
- $c)(\vec{u}-2\vec{v})\bullet(\vec{u}+2\vec{v})=0$
- 62) a) Si  $\vec{u} = (-3; 4; 7)y \vec{v} = (1; -1; 2)$ , obtener todos los vectores perpendiculares simultáneamente a  $\vec{u}$  y  $\vec{v}$  de norma  $\sqrt{1580}$ .
- b) Si C es un punto desconocido en R<sup>3</sup>, ¿Cuál es el área triangulo ABC con A= C +  $\overrightarrow{u}$  y B = C +  $\overrightarrow{v}$ ?
- 63) Si  $\vec{u}=(1;;-1;0)$  y  $\vec{v}=2\hat{\imath}-3\hat{k}$ , calcular  $\|\vec{u}x\vec{v}\|$  y  $\|2.\vec{u}x(-1).\vec{v}\|$ . ¿Es coherente el resultado obtenido? Justificar usando propiedades
- 64) Sean A = (7; 3; 1), B = (1; 2; -3) y C = (0; 2; -1):
- a) Mostrar que los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{BC}$  verifican la desigualdad de Cauchy-Schwartz.
- b) Encontrar todos los  $\vec{u} \in R^3$  que verifiquen simultáneamente:  $\vec{u} \perp \overrightarrow{AB}$ ,  $\vec{u} \perp \overrightarrow{BC}$ ,  $||\vec{u}|| = \sqrt{29}$ .
- 65) Clasifique el triángulo ABC en escaleno, isósceles no equilátero o equilátero de acuerdo a la longitud de sus lados y en acutángulo, rectángulo u obtusángulo de acuerdo a la amplitud de sus ángulos interiores, siendo A=(-5,-1,0), B=(-3,-3,1) y C=(-6,1,-2).

- 66) Dados los vectores  $\vec{u} = (1, -2, 3)y \vec{v} = (k, 1, -1)$ .
- a) Encontrar todos los valores reales de k, para que los vectores resulten perpendiculares.
- b) Para k=0, verificar que se cumple la desigualdad de Cauchy-Schwartz.
- c) Obtener, si existe,  $k \in \mathbb{R}$  para que  $\vec{u}x\vec{v} = (-1; -5; 3)$ .
- d) Determinar, si existe,  $k \in \mathbb{R}$  para que el área del paralelogramo delimitado por  $\vec{u}$  y  $\vec{v}$  sea  $\sqrt{26}$ .
- 67) a) Encuentre la distancia entre los puntos A=(-3,-5,1) y B=(1,-7,-4).
- b) Muestre un punto C que cumpla dist(A; C) = dist(A; B).
- c) Determine el ángulo entre los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{v} = (-1, -3, 2)$  y el signo de la proy. escalar<sub> $\overrightarrow{v}$ </sub>  $\overrightarrow{AB}$
- 68) Usando producto vectorial, encuentre, si existe, el valor o los valores reales de a para que los vectores  $\vec{u} = (1;-2;3)$  y  $\vec{v} = (a-5;3a;-4a-1)$  resulten paralelos.
- 69) Dados los vectores  $\vec{a} = (2k^2; 1; -4k)$  y  $\vec{b} = (1; 2; 1)$ , vectores no nulos de R<sup>3</sup>, se pide:
- a) Encontrar el/los valores reales de k, de manera que  $\vec{a}$  y  $\vec{b}$  resulten perpendiculares. Indicar  $\vec{a}$ .
- b) Dado  $\vec{c} = (1; 1; -2)$ , Encontrar el volumen del paralelepípedo que  $\vec{a}$ ,  $\vec{b}$  y  $\vec{c}$  determinan. ¿Son coplanares?
- c) ¿Cuáles son los vectores paralelos a  $proy_{\vec{b}}\vec{a}$  que tienen norma 6 ?
- 70) Sean los siguientes puntos en R<sup>3</sup>: A=(k;k;3),B=(k;2;k-1), C=(0;1;k+1), D=(1;2;k). Hallar todos los  $k \in R$  tales que el tetraedro que se forma con los vectores  $\overrightarrow{BA}$   $\overrightarrow{BC}$  y  $\overrightarrow{BD}$  tenga volumen  $\frac{2}{3}$ .
- 71) Dados los vectores  $\vec{u} = (2; -1; 2)y \ \vec{v} = (0; 3; -4)$
- a) Verificar que se cumple la desigualdad de Cauchy-Schwartz
- b) Hallar el área del paralelogramo que tiene por lados a los vectores  $\vec{u}$  y  $\vec{v}$

## **ALGUNAS RESPUESTAS**

Los ejercicios con una R están resueltos en los archivos de Miel.

- 1) R
- 2) a)  $3\vec{u} = (6; 9)$  b)  $\vec{u} + \vec{v} = (-3; 7)$ ; c)  $\vec{v} \vec{u} = (-7; 1)$  d)  $2\vec{u} 5\vec{v} = (29; -14)$
- 3) a)  $\overrightarrow{AB} = (4;3)$  b)  $\overrightarrow{AB} = (1;12)$  4) a)  $\overrightarrow{v} = (\frac{7}{2}; -\frac{1}{2})$  b)  $\overrightarrow{v} = (0;-5)$
- 5) a)  $\|\vec{u}\| = \sqrt{32}$  b)  $\|\vec{v}\| = 5$ ; c)  $\|\vec{w}\| = \sqrt{32}$ ; d)  $\|\vec{p}\| = 2$ ; e)  $\|\overrightarrow{AB}\| = 4$
- 6) a)  $\|\vec{u}\| = \frac{\sqrt{5}}{2}$  b)  $\|\vec{u} + \vec{v}\| = \sqrt{\frac{85}{4}}$ ; c)  $\|\vec{v}\| = \sqrt{13}$ ; d)  $\left\|\frac{\vec{u}}{\|\vec{u}\|}\right\| = 1$ ; e)  $\left\|\frac{\vec{v}}{\|\vec{v}\|}\right\| = 1$ ;

f)  $\left\| \frac{\vec{u} + \vec{v}}{\|\vec{u} + \vec{v}\|} \right\| = 1$  Conclusiones: el módulo de la suma no es igual a la suma de los módulos. La norma de un vector multiplicado por el inverso de su norma es uno

7) a) 
$$\check{v} = \left(-\frac{3}{5}; \frac{4}{5}\right)$$
 b)  $\check{v} = \left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right)$ ; c)  $\check{v} = \left(\frac{2}{\sqrt{13}}; \frac{3}{\sqrt{13}}\right)$ 

8) R a) 
$$\left(-\sqrt{2}; -\sqrt{2}\right)$$
 ; c)  $\left(\frac{24}{5}; -\frac{7}{5}\right)$ 

9) a) 
$$a = 1$$
 y  $b = 1$  ; c)  $a = 2$  y  $b = -3$ 

10) R 
$$\alpha = \frac{4}{5}$$

11) a) 
$$D = (0; -2); c) k= -3, d) E= (5; 3)$$

12) a) 
$$\vec{v} = (0; 0)$$
 b)  $\vec{w} = (4; 1);$  c)  $E=(-1; 6)$  d)  $k=-7$  e)  $F=(-12; -10)$ 

b) 
$$\vec{w} = (4; 1);$$

d) 
$$k = -7$$

e) 
$$F = (-12 : -10)$$

Diferente signo f) 
$$W_1=(0;-1)$$
 y  $W_2=(0;7)$ 

14) a) 
$$\overrightarrow{AB} = (4; 1; 1)$$
 b)  $\overrightarrow{AB} = (-6; 4; 9)$ 

17) a) (5; 0; -8); b) 
$$\sqrt{41}$$
; c)  $\sqrt{274}$  d)  $\left(-\frac{1}{3}; \frac{2}{3}; -\frac{2}{3}\right)$  18)  $\left(\frac{1}{\sqrt{26}}; -\frac{3}{\sqrt{26}}; \frac{4}{\sqrt{26}}\right)$ 

d) 
$$\left(-\frac{1}{3}; \frac{2}{3}; -\frac{2}{3}\right)$$

18) 
$$\left(\frac{1}{\sqrt{26}}; -\frac{3}{\sqrt{26}}; \frac{4}{\sqrt{26}}; \frac{4}{\sqrt{26$$

19) a) 
$$a = b = 1$$
 b) 1

19) a) 
$$a = b = 1$$
 b) no existen c)  $a = 0$ ,  $b = -1$ 

20) 
$$k = -1$$
 ó  $k = -2$ 

21) Hay infinitas soluciones 
$$\begin{cases} \alpha = 1 - 2\lambda \\ \beta = 1 - \lambda \end{cases}, \\ \lambda = \lambda \end{cases}$$

$$k' = 1 - \lambda$$
 ,  $k = \pm \frac{5}{4}$   $= \lambda$ 

23) a) 
$$k = 2$$
 Igual sentido

b) 
$$k = 0$$
 ó  $k = -\frac{10}{17}$ 

23) a) 
$$k = 2$$
 Igual sentido; b)  $k = 0$  ó  $k = -\frac{10}{17}$   
24) a)  $\vec{u} \cdot \vec{v} = -28$   $< := 121^{\circ}19'44''$  b)  $\vec{u} \cdot \vec{v} = 0$   $< := 90$  grados

b) 
$$\vec{u} \cdot \vec{v} = 0$$
  $\angle : 90 \ grados$ 

c) 
$$\vec{u} \cdot \vec{v} = -10 \quad \angle :180 \ grados$$

25) a) 
$$-12$$
; b)  $-84$ ; c)  $5\sqrt{2}$ ; d) 0

26) a) Paralelos; b) Ortogonales; c) Ortogonales 27) a) 
$$\alpha = -5$$
; b)  $\alpha = \frac{4}{5}$ 

27) *a*) 
$$\alpha = -5$$
 ; b)  $\alpha = \frac{4}{5}$ 

28) a) 0, (0;0) ambas, b) 
$$-\frac{\sqrt{2}}{2}$$
;  $\left(-\frac{1}{2}; -\frac{1}{2}\right)$ ,  $-\frac{\sqrt{13}}{13}$ ;  $\left(-\frac{2}{13}; \frac{3}{13}\right)$  c) 5, (-5;0) );  $\frac{5\sqrt{41}}{41}$ ;  $\left(\frac{-25}{41}; \frac{20}{41}\right)$ 

29) 
$$proy_{\overrightarrow{PQ}}\overrightarrow{RS} = \left(\frac{51}{25}; \frac{68}{25}\right); proy_{\overrightarrow{RS}}\overrightarrow{PQ} = \left(-\frac{17}{26}; \frac{85}{26}\right)$$

30) R



i) La proyección escalar de  $\overrightarrow{OB}$  sobre  $\check{t}$  es negativa (por que los vectores forman un ángulo mayor a 90°) y sobre - j también es negativa (por que el ángulo que forman es obtuso).

- ii) Por ejemplo,  $\vec{u} = \overrightarrow{OD}$  y  $\vec{v} = \overrightarrow{CO}$  porque son perpendiculares.
- 31)R Rta: a)  $\vec{u} \cdot \vec{v} = -2$   $\angle : \simeq 104 \ grados$ ; b)  $\vec{u} \cdot \vec{v} = -5$   $\angle : \simeq 116 \ grados$
- c)  $\vec{u} \cdot \vec{v} = 0 \quad \angle: 90 \ grados$
- 32) R a) 132° 1' 25,52.,  $k = -\frac{33}{2}$
- 33) R a)  $proy \ esc_{\vec{v}} \vec{u} = \sqrt{2}, \ proy_{\vec{v}} \vec{u} = (1; 1; 0) \ b) \ proy. \ esc_{\vec{v}} \vec{u} = \frac{6}{\sqrt{14}} \ proy_{\vec{v}} \vec{u} = \left(\frac{3}{7}; \frac{6}{7}; \frac{9}{7}\right)$
- 34) R proyección vectorial es:  $proy_{\vec{v}+\vec{w}} = \left(\frac{5}{49}, \frac{8}{49}, \frac{3}{49}\right)$ , proyección escalar es:  $proy \ esc_{\vec{v}+\vec{w}}$   $\vec{u} = \frac{\sqrt{2}}{7}$

38) R <: 120 grados

- 35) R  $k = -4 \rightarrow \overrightarrow{v_1} = (-4; -5; 6)$ ,  $k = 10 \rightarrow \overrightarrow{v_2} = (10; 9; -8)$
- 36) R a)  $k_1 = -1$   $\wedge k_2 = -7$  b)  $(1, \frac{1}{2}, -\frac{1}{2}), (\frac{1}{3}, \frac{7}{6}, -\frac{1}{6})$
- 37) R  $\|\vec{v}\| = \sqrt{7}$
- 39) R $\vec{m} = \frac{3}{25} (2,4,-\sqrt{5})$ ;  $\vec{n} = (-\frac{81}{25},\frac{13}{25},-\frac{110}{125}\sqrt{5})$
- 41)R a)  $\vec{u} \times \vec{v} = (3,2,-1)$  b) (-1;3;3) c) (-1;-1;1) d) (10;-13;4)
- 42) R  $\sqrt{693} = 3.\sqrt{77}$
- 43) a)  $\vec{u} \wedge \vec{v} = (-1;0;-1)$  b)  $\vec{u} \times \vec{w} = (7;-5;-3)$  c)  $\vec{u} \cdot (\vec{v} \wedge \vec{w}) = -5$ 
  - d)  $\vec{u} \wedge (\vec{v} \wedge \vec{w}) = (-9;-1;-11)$  e)  $\vec{u} \wedge (\vec{u} \wedge \vec{w}) = (-11;-4;-19)$
- 44) R  $\sqrt{150}$  45) R  $\left(0; \frac{1}{\sqrt{2}}; -\frac{1}{\sqrt{2}}\right)$  y  $\left(0; -\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right)$
- 47) R± $\frac{4}{35}\sqrt{35}(-1;3;-5)$
- 48) a) no se puede ; b) Si se puede. Da un escalar ; c) Si se puede. Da un escalar ;
- d) no se puede e) Si se puede. Da un vector ; f) Si se puede. Da un vector g) no se puede
- 49) R Perímetro  $2(\sqrt{6} + \sqrt{11})$  Longitud de la mediana =  $\frac{\sqrt{59}}{2}$  Área del triángulo =  $\sqrt{30}$
- 50)  $R(\mp 2; \mp 6; \pm 6)$  51) R a)  $\sqrt{35}$  ,b) 9
- 52)R a) k=-1 o k=0 b)  $k=-\frac{1}{2}$  53) Ra) a=1 ; b) a=1 ó a=0 ; b)  $a=\frac{5}{4}$  ó  $a=\frac{3}{4}$
- 54) a) k = -2 y a = 3; b) 330; c)  $\frac{\sqrt{13530}}{2}$
- 55): a)  $4\sqrt{17} + \sqrt{34}$ ; c) k = 14 ó k = -3 E = (-9; 15) ó E = (8; -2);
- d) k = -3:  $\check{v} = \left(\frac{12}{\sqrt{169}}; -\frac{5}{\sqrt{169}}\right) \ y \ \check{v} = \left(-\frac{12}{\sqrt{169}}; \frac{5}{\sqrt{169}}\right)$
- 56) a) no se puede; b) Si se puede. Da un escalar; c) Si se puede. Da un vector;
- d) no se puede e) Si se puede. Da un escalar ; f) no se puede
- 57) R  $\left(-\frac{12}{7}; \frac{36}{7}; \frac{24}{7}\right) y \left(\frac{40}{7}; -\frac{6}{7}; \frac{11}{7}\right)$  58) Área =  $\sqrt{3}$  ángulo =  $\frac{5\pi}{6}$

59) a) 
$$k = 11$$
 ó  $k = \frac{25}{3}$ ;  $\vec{u} = (2; -8; 10)$  ó  $\vec{u} = \left(2; -\frac{16}{3}; \frac{22}{3}\right)$ ; b)  $proy_{\vec{w}}\vec{v} = \left(\frac{6}{35}; \frac{2}{35}; \frac{2}{7}\right)$ 

60) a) 
$$\|\vec{v}\| = 6$$
;  $proy_{\vec{u}}\vec{v} = -\vec{u}$ 

61)R a) Ambos vectores deben ser ortogonales entre sí. b) El producto escalar entre ellos debe ser negativo; c)  $\|\vec{u}\| = 4\|\vec{v}\|$ 

62) a) 
$$(30; 26; -2)$$
 y  $(-30; -26; 2)$ ; b)  $\frac{\sqrt{395}}{2}$ 

63) a) 
$$\sqrt{22}$$
 y  $2\sqrt{22}$ 

64) b) 
$$\vec{u} = \frac{1}{3}(-2, 16, -1)$$
  $\vec{u} = -\frac{1}{3}(-2, 16, -1)$ 

- 65) a) long de sus lados: 3, 3,  $\sqrt{34}$ ; amplitud de sus ángulos:  $\hat{\alpha}=152^{\circ}$  44′  $\hat{\beta}=\hat{\gamma}=13^{\circ}$  38′
- 66) a) k=5; c) no existe k. d) k=1 o k=-23/13.
- 67) a)  $\sqrt{45} = 3.\sqrt{5}$  b) Un punto C=(-7, -3, 6) c)  $\hat{\alpha} = 108^{\circ} 35'$ ; el signo es negativo.
- 68) a = 2
- 69)R a) k= 1  $\vec{a}$  = (2, 1, -4) b) vol= 3 no son coplanares. c) no existes esos vectores.
- 70)  $k = \pm 2/3$
- 71) *b*)  $\sqrt{104}$