Recitation 1

Wednesday 29th October, 2014

Contents

1	General Information	2
2	Domain of Definition of a Function 2.1 Examples	3 3
3	Odd and Even Functions	4
	3.1 Even function	4 4 4 4 4
4	Image and Range of a Function 4.1 Examples	5 5
5	Graphs 5.1 Shifting with respect to the axes	6 6
6		7 7 7
7	Inequalities 7.1 Examples	8 8 8
8	Periodic Functions	8

1 General Information

 $\begin{array}{c} \textbf{Michael Bromberg} \\ \text{mic1@post.tau.ca.il} \end{array}$

$\mathbf{2}$ Domain of Definition of a Function

2.1 Examples

- 2.1.1 Find the domain of definition of the following functions.

2.1.1.1 $\ln(1-|x|) + \frac{1}{\sin x}$ For $\ln x$ to be defined, it is necessary that 1-|x|>0

$$\therefore |x| < 1 \Rightarrow -1 < x < 1$$

For $\frac{1}{\sin x}$ to be defined, $\sin x \neq 0$

$$\therefore x \neq k\pi, k \in \mathbb{Z}$$

Therefore, the domain of definition is $(-1,1)-\{0\}$

 $2.1.1.2 \quad \sqrt{\frac{x+5}{|x^4-16|}}$ For the square root to be defined,

$$\frac{x+5}{|x^4-16|} > 0$$

For the ratio to be defined,

$$x^4 - 16/ \neq 0$$

Therefore, the domain is $[-5, \infty) - \{-2, 2\}$

3 Odd and Even Functions

3.1 Even function

If f(-x) = f(x); $(x, -x \in D)$ then, f is called an <u>even function</u>. Each even function is symmetric about the y-axis.

3.2 Odd function

If f(-x) = -f(x); $(x, -x \in D)$ then, f is called an odd function. Each odd function is symmetric about the origin.

3.3 Examples

3.3.1 Prove that if f is even and g is odd, then $f \cdot g$ is odd

Let $x \in D(f) \cap D(g)$. Then, $-x \in D(f) \cap D(g)$, because f and g are even and odd respectively.

$$f(-x)g(-x) = f(x)(-g(x)) = -f(x)g(x)$$

 $\Rightarrow f \cdot g \text{ is odd.}$

3.3.2 Check if $f(x) = x^5 + x^3 - x$ is odd or even

$$f(-x) = (-x)^{5} + (-x)^{3} - (-x)$$

$$= -x^{5} - x^{3} + x$$

$$= -f(x)$$

Therefore, f is odd.

3.3.3 Check if $f(x) = 2^{x^2+x}$ is odd, even or neither

$$f(1) = 2^{1^2 + 1} = 4$$
$$f(-1) = 2^{(-1)^2 + 1} = 2^0 = 1$$

Therefore, f is neither odd nor even.

4 Image and Range of a Function

4.1 Examples

4.1.1 What is the image of

4.1.1.1 $f(x) = \ln x$ in the domain (0,4]

As the function is monotonic, it is easy to observe that the image is $(-\infty, \ln 4]$

4.1.1.2 $f(x) = \cos x$ in the domain (0,4]

From the graph of the function, it is evident that the image is [-1,1)

5 Graphs

5.1 Shifting with respect to the axes

f(x+a) is the graph of f(x), shifted by a, in the direction of the x-axis, opposite to the sign of a.

f(x) + a is the graph of f(x), shifted by a, in the direction of the y-axis, according to the sign of a.

5.2 Mirror Images with respect to the axes

f(-x) is the mirror image of f(x) w.r.t. the y-axis.

-f(x) is the mirror image of f(x) w.r.t. the x-axis.

6 Monotonic Functions

6.1 Examples

6.1.1 Are the following functions monotonic?

6.1.1.1 e^{e^x}

 $e^{e^x}=e^{(e^x)}$ is a composition of two monotonically increasing functions. Therefore, it is monotonically increasing.

6.1.1.2 $x^2 - 1$

The function is not monotonic over \mathbb{R} .

7 Inequalities

- 7.1 Examples
- 7.1.1 Solve the following
- **7.1.1.1** |x+6| < |x-2|

Solving by dividing the domain into regions

The regions are

$$x \le -6$$

$$-6 < x \le 2$$

$$2 < x$$

Solving by squaring both sides

$$|x+6| < |x-2|$$

$$\Leftrightarrow (x+6)^2 < (x-2)^2$$

$$\Leftrightarrow 12x + 36 < -4x + 4$$

$$\Leftrightarrow 16x < -32$$

$$\Leftrightarrow x < -2$$

7.1.1.2 $\frac{x-1}{x-3} > \frac{x+3}{x+1}$

We multiply both sides by $(x-3)^2$ and $(x+1)^2$, rather than (x-3) and (x+1), to avoid dealing with flipping of the direction of the inequality.

$$\therefore (x-1)(x-3)(x+1)^2 > (x+3)(x+1)(x-3)^2$$

$$\Leftrightarrow (x-3)(x+1)((x-1)(x+1-(x+3)(x-3)) > 0$$

$$\Leftrightarrow 8(x-3)(x+1) > 0$$

Therefore the inequality holds iff x > 3 or x < -1

8 Periodic Functions

f is periodic iff $\exists T > 0$ s.t. $f(x+T) = f(x), \forall x \in D(f)$

The smallest T, if it exists, for which the above equality holds true, is called the period of f.

Note that if f has period T, and g has a period which is a rational multiple of T, say $\frac{m}{n}T$, then f and g have a mutual period mT.