Gaussian Vectors

· A standard Gaussian random vector is a random vector whose entries are independent Gaussian random variables with mean O and variance 1.

$$Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_m \end{bmatrix}$$
 where $Z_1, ..., Z_m$ are independent notation $Z^{\infty} N(Q, \mathbf{I})$ and Z_i is Gaussian $(0, 1), i = 1, ..., m$

· a (jointly) Gaussian random vector is a random vector that can be expressed as a linear transformation of a standard Gaussian random vector.

$$X = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}$$
 where $X = AZ + b$ for some standard Gaussian random vector Z , matrix $A \in \mathbb{R}^{n \times m}$, and vector $b \in \mathbb{R}^n$.

-> Fully specified by its mean vector $\mu_{\underline{x}} = \mathbb{E}[X]$ and covariance matrix $\Sigma_{\underline{x}} = \mathbb{E}[(\underline{X} - \mu_{\underline{x}})(\underline{X} - \mu_{\underline{x}})^T]$.

- · Some equivalent definitions: X is a (jointly) Gaussian random vector if,
 - I for any choice of vector $\underline{a} \in \mathbb{R}^n$, $\underline{a}^T \underline{X}$ is a scalar Gaussian random variable.
 - -) assuming that $\Sigma_{\underline{x}}$ is invertible, the joint PDF is $f_{\underline{x}}(\underline{x}) = \frac{1}{\int (2\pi)^n \det(\Sigma_{\underline{x}})} \exp\left(-\frac{1}{2}\left(\underline{x} \mu_{\underline{x}}\right)^T \Sigma_{\underline{x}}^{-1}\left(\underline{x} \mu_{\underline{x}}\right)\right)$
- · Shorthand Notation: X ~ N(μx, Σx)
- · Linear transformations of Gaussian random vectors are themselves Gaussian random vectors.
 - \rightarrow If $X \sim N(\mu_{x}, \Sigma_{x})$ and Y = BX + c, then $Y \sim N(B\mu_{x} + c, B\Sigma_{x}B^{T})$.

- · Recall that jointly Gaussian random variables X and Y are independent if and only if Cov[X,Y] = 0.
- · Similarly, the entries $X_1,...,X_n$ of a jointly Gaussian vector X are independent if and only if $Cou[X_i,X_j]=0$ for all pairs $i \neq j$. This condition is equivalent to the requirement that the covariance matrix is diagonal

$$\sum_{\underline{x}} = \begin{bmatrix} Var[x_1] & 0 & \cdots & 0 \\ 0 & Var[x_2] & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Var[x_n] \end{bmatrix}$$

· One can also call X1,..., Xn jointly Gaussian random variables if they satisfy the definition of a jointly Gaussian random vector when grouped into a vector.

mean vector
$$\mu_{x} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 and covariance matrix

$$\sum_{x} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

-) Let
$$Y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \times + \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
. Note that Y is also a Gaussian random vector.

-) Determine the mean vector and covariance matrix of Y.

Linearity of Expectation:
$$\mu_{\underline{x}} = A \mu_{\underline{x}} + \underline{b}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
skipped calculation

Covariance Matrix of a Linear Transformation: $\Sigma_{x} = A \Sigma_{x} A'$

$$\sum_{Y} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
Skipped calculation