Multiprocessor caching and false sharing

- Cache(s) sit between processor and memory
 - Handle memory accesses w/o going all the way to memory
 - Exploit temporal locality and spatial locality

- Cache(s) sit between processor and memory
 - Handle memory accesses w/o going all the way to memory
 - Exploit temporal locality and spatial locality

- Cache(s) sit between processor and memory
 - Handle memory accesses w/o going all the way to memory
 - Exploit temporal locality and spatial locality

- Cache(s) sit between processor and memory
 - Handle memory accesses w/o going all the way to memory
 - Exploit temporal locality and spatial locality

- Cache(s) sit between processor and memory
 - Handle memory accesses w/o going all the way to memory
 - Exploit temporal locality and spatial locality

 Store lines that with recently accessed memory locations and other locations nearby

Caching for multiple processing elements (PEs)

 Potential issue when cache line is in one cache and other PE requests it

- Potential issue when cache line is in one cache and other PE requests it
- Cache of requesting PE needs way to steal that line

- Potential issue when cache line is in one cache and other PE requests it
- Cache of requesting PE needs way to steal that line
- Slower than normal cache hit because of need to steal

- Potential issue when cache line is in one cache and other PE requests it
- Cache of requesting PE needs way to steal that line
- Slower than normal cache hit because of need to steal

 False sharing: When a memory access causes a cache line to be stolen even though no data is actually being shared