

Query Abandonment Prediction with Recurrent Neural Models of Mouse Cursor Movements

Lukas Brückner, Aalto University Ioannis Arapakis, Telefonica Research Luis A. Leiva, Aalto University

Less than half of Google Searches result in a click

Paid, Organic, & Zero-Click Searches in Google (June 2019)

data from 40M+ browser-based searches on millions of desktop & mobile devices in the United States

Source: https://sparktoro.com/blog/less-than-half-of-google-searches-now-result-in-a-click/

"Good" query abandonment

Previous work relied on engineered features

Mouse Movements allow to understand user behavior*

→ No need for expensive, handcrafted features

Domain-specific data augmentation helps prediction

Binary Classification with BiLSTM Model

Highest ROC AUC with custom augmentation

Input data	Time	Augmentation	Adj. Precision	Adj. Recall	F-measure	ROC AUC
All abandoned queries are considered bad abandonments			0.08 [0.06, 0.11]	0.28 [0.24, 0.32]	0.12 [0.10, 0.15]	0.50 [0.50, 0.50]
RF using 10-dim feat vectors		ADASYN	0.67 [0.58, 0.76]	0.64 [0.54, 0.73]	0.64 [0.54, 0.73]	0.60 [0.50, 0.69]
XGB using 10-dim feat vectors		ADASYN	0.70 [0.60, 0.78]	0.65 [0.55, 0.74]	0.65 [0.55, 0.74]	0.61 [0.51, 0.70]
Standardized coords	no	none	0.52 [0.48, 0.57]	0.72 [0.68, 0.76]	0.60 [0.56, 0.65]	0.50 [0.46, 0.55]
Raw coords	yes	rand. undersample	0.68 [0.64, 0.72]	0.59 [0.54, 0.63]	0.59 [0.54, 0.63]	0.59 [0.54, 0.63]
Standardized coords	yes	rand. oversample	0.67 [0.62, 0.71]	0.63 [0.58, 0.67]	0.62 [0.57, 0.66]	0.59 [0.54, 0.63]
Speed only	implied	SMOTE	0.67 [0.63, 0.71]	0.63 [0.58, 0.67]	0.63 [0.58, 0.67]	0.59 [0.55, 0.63]
Speed + distance to KM	implied	SMOTE	0.70 [0.65, 0.73]	0.65 [0.61, 0.69]	0.65 [0.61, 0.69]	0.61 [0.57, 0.65]
Raw coords	yes	SMOTE	0.69 [0.65, 0.73]	0.63 [0.59, 0.67]	0.63 [0.59, 0.68]	0.61 [0.57, 0.65]
Standardized coords	yes	ADASYN	0.68 [0.64, 0.72]	0.64 [0.60, 0.68]	0.64 [0.59, 0.68]	0.61 [0.56, 0.65]
Standardized coords	yes	distortion or trimming	0.72 [0.68, 0.76]	0.65 [0.61, 0.69]	0.65 [0.61, 0.69]	0.63 [0.59, 0.68]

Table 1: Experiment results. Top rows are baseline conditions. We report the best combination of {Coords, Time, Resampling, Augmentation} techniques tested (36 in total). 95% conf. intervals according to the Wilson method for binomial distributions.

→ Slightly improving on baselines based on engineered features of previous work

Discussion

Targeted Models

Commercial providers might want to ensure only bad abandonments are investigated

Limitation

Data set with small sample size

Practical

Mouse movements for abandoned queries complement click-based metrics for SERPs

Thank you for your attention

This presentation was supported by the SIGIR Student Travel Grant

Slides: https://github.com/luksurious/abandonment-rnn/presentation-cikm.pdf

Code: https://github.com/luksurious/abandonment-rnn

Talk to us on Twitter: @luksurious @iarapakis @luileito

Contact: <u>lukas@lukas-brueckner.de</u>