VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA

Bakalaurinis darbas

Autonominis ketursraigčio skrydžio valdymas Autonomus Control of Quadcopter Flight

		grupės studentas
10,015 110	ii pasia .	(parašas)
Darbo v Irus Gri		
Recenze Vytauta		(parašas)

Turinys

Įva	$das \dots$		2
1.	Keturs	raigčio techninė įranga	3
	1.1.	Rėmas, varikliai ir propeleriai	3
	1.2.	Valdymo elektronika	3
2.	Fizikin	is modelis	4
	2.1.	Lokali ir globali koordinačių sistemos	4
	2.2.	Keliamoji bei sukamoji jėgos	4
	2.3.	Bendras judėjimo modelis	4
3.	Kampi	Kampinės padėties skaičiavimas	
	3.1.	Kvaternionai	5
	3.2.	Kampinės padėties skaičiavimas pagal giroskopą	5
	3.3.	Kampinės padėties skaičiavimas pagal akselerometrą	5
	3.4.	Galutinės kampinės padėties radimas	5
4.	Kampi	nės padėties valdymo algoritmas	6
	4.1.	PID valdymo algoritmas	6
	4.2.	PID pritaikymas ketursraigčio valdymui	6
5. Skrydžio valdymas		io valdymas	7
	5.1.	Atviro-ciklo valdymas	7
	5.2.	Kampinės pozicijos tikslų lentelė	7
	5.3.	Atviro-ciklo valdymo trūkumai	7
6. Programinė įranga		minė įranga	8
	6.1.	Bendroji architektūra	8
	6.2.	Kompiuteriui skirtas klientas	8
	6.3.	Retransmitorius	8
	6.4.	Ketursraigčio pagrindinis valdiklis	8
Išv	Išvados		
Lit	Literatūros sąrašas		

Įvadas

- 1. Ketursraigčio techninė įranga
- 1.1. Rėmas, varikliai ir propeleriai
- 1.2. Valdymo elektronika

2. Fizikinis modelis

- 2.1. Lokali ir globali koordinačių sistemos
- 2.2. Keliamoji bei sukamoji jėgos
- 2.3. Bendras judėjimo modelis

3. Kampinės padėties skaičiavimas

- 3.1. Kvaternionai
- 3.2. Kampinės padėties skaičiavimas pagal giroskopą
- 3.3. Kampinės padėties skaičiavimas pagal akselerometrą
- 3.4. Galutinės kampinės padėties radimas

- 4. Kampinės padėties valdymo algoritmas
- 4.1. PID valdymo algoritmas
- 4.2. PID pritaikymas ketursraigčio valdymui

- 5. Skrydžio valdymas
- 5.1. Atviro-ciklo valdymas
- 5.2. Kampinės pozicijos tikslų lentelė
- 5.3. Atviro-ciklo valdymo trūkumai

- 6. Programinė įranga
- 6.1. Bendroji architektūra
- 6.2. Kompiuteriui skirtas klientas
- 6.3. Retransmitorius
- 6.4. Ketursraigčio pagrindinis valdiklis

Išvados

- $[AAJ+01\] Implementing\ a\ Sensor\ Fusion\ Algorithm\ for\ 3D\ Orientation\ Detection\ with \\ Inertial/Magnetic\ Sensors,\ http://franciscoraulortega.com/pubs/Algo3DFusionsMems.$ pdf
- [SSF+11] A sensor fusion algorithm for an integrated angular position estimation with inertial measurement units, http://www.date-conference.com/proceedings/PAPERS/2011/DATE11/PDFFILES/IP1_06.PDF
 - [MS11] Modeling, Design and Experimental Study for a Quadcopter System Construction, http://brage.bibsys.no/xmlui/bitstream/id/86811/uiareport.pdf