Tema 3.2 Hardware para Deep Learning

Miguel Ángel Martínez del Amor

Deep Learning

Departamento Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla

Contenido

- Necesidad de cómputo paralelo
- Hardware paralelo:
 - CPUs multinúcleo
 - GPUs
 - TPUs
- Plataformas distribuidas:
 - Clusters
 - Cloud

Necesidad de cómputo paralelo

- Hacer inferencia (propagación hacia adelante) "no es demasiado" costoso.
- El entrenamiento mediante backpropagation es muy costoso.
- Una red pequeña puede ejecutarse sin problema en una CPU.
- Una red profunda puede usarse para inferir en una CPU.
- Sin embargo, cuando necesitamos entrenar una red profunda en un tiempo razonable (de meses a días), o hacer inferencia en tiempo real (cámaras de tráfico), necesitamos hardware paralelo.

Hardware paralelo: CPUs multinúcleo

- Las CPUs actuales son multiprocesadores con varios núcleos (del orden de 4 a varias decenas).
- La librería por excelencia para programar procesadores multinúcleo (multicore) es **OpenMP**.
- Sin embargo, rendimiento **limitado**. No todos los frameworks de DL soportan OpenMP.
- Vendedores: Intel, AMD, ARM (móvil).

CORE A

CORE A

- **GPU** = Graphics Processing Unit (núcleo tarjeta gráfica).
- Con el tiempo este procesador ha evolucionado y hoy en día se puede usar para cómputo paralelo.

• Una GPU actual incluye del orden de cientos a miles de

núcleos.

 Los núcleos son más básicos que los de una CPU, pero son muchos más!

Tecnología clave para Deep Learning.

Big Data Availability

New ML Techniques

GPU Acceleration

350 millions images uploaded per day

 2.5 Petabytes of customer data hourly

300 hours of video uploaded every minute

- Librerías para programar GPUs:
 - CUDA (de NVIDIA)
 - OpenCL (Chronos → NVIDIA, AMD, Intel...)

OpenCL

- **NVIDIA** invirtió en Deep Learning desde el principio, y ahora ofrece un **mayor soporte** (todos los frameworks soportan de forma nativa GPUs mediante CUDA).
- OpenCL (y por tanto AMD) es soportado de manera experimental por algunos frameworks.

- Contenido de una GPU (en un vistazo):
 - Núcleos distribuidos en multi-procesadores, SM.
 - Memoria del dispositivo, local a la tarjeta, donde se disponen los datos que los núcleos van a procesar (copiados previamente!).

- ¿Qué hay que tener en cuenta al comprar una?
 - 1. La cantidad de memoria en la GPU: cuanto más GigaBytes, mayores modelos se podrán entrenar, y se podrán enviar batches de ejemplos más grandes.
 - 2. Una **memoria** de la tarjeta **rápida**: el acceso a los datos por los núcleos debe ser eficiente (últimos GDDR6, HBM2).
 - 3. El **número** de **núcleos**: cuantos más, mayor paralelización.
 - 4. La tasa de transferencia de datos a la tarjeta: los ejemplos fluirán continuamente de la CPU a la GPU, y por tanto necesitamos un bus rápido (PCI-e 3.0 x16, NVLink).
- Instalación: CUDA Toolkit, CUDA driver y CuDNN

- NVIDIA nombra cada generación de arquitecturas con un científico:
 - Fermi (descatalogado), Kepler, Maxwell, Pascal, Volta, Turing, ...
- Las distintas categorías de tarjetas:
 - Tesla (cálculo científico, muy caro)
 - GeForce (videojuegos, asequible)
 - Quadro (gráficos profesionales, caro)
 - Jetson (robótica)
- Es posible tener entornos
 MultiGPU (con varias GPUs).

- En **2017**, en la arquitectura **Volta**, NVIDIA introdujo unos núcleos nuevos dentro de sus tarjetas (a parte de los dedicados para CUDA) para solo Deep Learning.
- Tensor Cores: procesadores para cálculo con tensores.
- Half precision: float de 16 bits, int de 8 bits.
- Efectivos con redes convolucionales (las veremos).

- **TPU** = Tensor Processing Unit
- Chip introducido por Google en 2016 para Deep Learning.
- Especializados para acelerar cálculo tensorial (algebra lineal).
- Uso desde TensorFlow y PyTorch
- En fase **beta**:
 - De Gigas a Tera Bytes de memoria.
 - De cientos a miles de núcleos.
- Disponible en Cloud: 8\$/hora

Plataformas distribuidas: cloud

- Diversas empresas ofrecen servicios donde entrenar nuestros modelos, evitándonos tener que tener hardware para ello.
- Tecnologías basadas en contenedores (Dockers) o máquinas virtuales.
- Los tres principales proveedores:
 - Google Cloud
 - Amazon AWS
 - Microsoft Azure
- Google Colaboratory:
 - Basado tan solo en notebooks, requiere cuenta en Google Drive.
 - Gratuito, ofrece GPUs y TPUs.

Plataformas distribuidas: cloud

Google colab:

- Acceso gratuito a Tesla T4 y TPU.
- El trabajo se pierde cuando se cierra sesión: guardar el modelo y datos en Google Drive.

Google cloud:

- El trabajo se mantiene.
- 0,8\$/hora para V100. 0,35\$/hora para T4.

• AWS EC2:

- El trabajo se mantiene, y ofrece servicios adicionales.
- 0,9\$/hora para K80. 3\$/hora para V100. Spot instance (recursos bajo demanda) 1,2\$/hora.

Recapitulación

- Para poder entrenar modelos grandes sobre conjuntos de datos grandes necesitaremos de potencia computacional.
- Las GPUs proveen una solución hardware eficiente respecto a lo que cuestan. Las TPUs aún están por distribuirse.
- Si no se dispone capacidad de compra de GPUs, mejor usar un servicio **en la nube** (Google Colab?).