Analoge Elektronik Labor Technische Informatik 136110

Laborübung 2

Datum:	Name / Matr. Nr.: 1)	
	2)	
	3)	

Thema: Schaltungssimulation mit LTSpice

a) Simulieren Sie folgende Schaltung mit LTSpice und verwenden Sie dabei folgende Komponenten:

Spannungsversorgung: "voltage", Amplitude 22V, Frequenz 50Hz

Simulationszeit (Transient): 80ms

D1 ... D4: MURS320

Kondensatortyp: Al electrolytic, Werte s.o.

Achten Sie auf den "Ground" Anschluss und die zu ergänzenden Referenzpunkte ("Mark Referenz") für die einzelnen Spannungen.

Stellen Sie die Spannungsversorgung, die Spannung $U_{\scriptscriptstyle D}$ und $U_{\scriptscriptstyle A}$ die Kombinationen in der Simulation wie folgt dar:

	Eingangsspannung 22V									
		UD								
UA (je nach Kombination) Oms 4ms 8ms 12ms 16ms 20ms 24ms 28ms 32ms 36ms										

(Es ergeben sich dann also 5 dieser oben gezeigten Grafik)

Welche Aussage können Sie über die Ausgangsspannung U_A (Restwelligkeit) bezogen auf die R-C Kombinationen machen?

b) Erweitern Sie die obige Simulation zu einer Stabilisierungsschaltung mit Z-Diode und Transistor:

Folgende Bauteilewerte werden zunächst eingesetzt:

R (oben): 10k C (oben): 1000μF RZ: 330 Ohm

D: EDZV15B (15V Z-Diode)

T1, T2: npn (keine Änderungen der Parameter)

RL: 10k

Starten Sie die Simulation (Transient 80ms) und messen Sie dabei U_E , U_Z und U_{REG} . Welche Ausgangsspannung U_{REG} erwarten Sie (Wert und Form)? Ändern Sie nun RL derart, dass keine konstante Ausgangsspannung mehr vorliegt und Dokumentieren Sie dies. Bei welchen Wert von R_L (ca.) ergibt sich keine stabile Spannung U_{REG} mehr? Wie sehen in diesem Fall die Spannungen U_Z und UE aus?

c) Ändern Sie nun die Schaltung wie folgt:

RL = 10k; R (oben): entfällt

Starten Sie die Simulation (Transient 80ms) und messen Sie dabei U_E , U_Z und U_{REG} . Ändern Sie nun C (oben) derart, dass keine konstante Ausgangsspannung mehr vorliegt und Dokumentieren Sie dies. Bei welchen Wert von C (ca.) ergibt sich keine stabile Spannung U_{REG} mehr? Wie sehen in diesem Fall die Spannungen U_Z und UE aus?

Erläutern Sie alle Simulationen und begründen Sie die Simulationsergebnisse.