Classificação de Imagens Utilizando K-NN e SVC

1st Júlia Marques Boaventura

Inst. de Ciências Exatas e Tecnológicas

Universidade Federal de Viçosa

Rio Paranaíba, Minas Gerais

julia.m.boaventura@ufv.br

2nd Vinicius Meireles Pereira Santos Inst. de Ciências Exatas e Tecnológicas Universidade Federal de Viçosa Rio Paranaíba, Minas Gerais vinicius.m.santos@ufv.br

Abstract—Trabalho apresentado para obtenção de créditos na disciplina SIN 393 - Introdução à Visão Computacional da Universidade Federal de Viçosa - Campus de Rio Paranaíba, ministrada pelo Professor João Fernando Mari.

Index Terms—Visão Computacional, Classificação de Imagens, K-NN, SVC

I. Introdução

Este projeto teve como objetivo implementar um classificador de imagens utilizando técnicas de aprendizado de máquina. Através da extração de características, segmentação e normalização das imagens, buscamos treinar e avaliar modelos de classificação para identificar diferentes classes de imagens. O conjunto de dados utilizado é uma adaptação do MPEG-7. Composto por imagens divididas em 6 classes, sendo processado e analisado por meio de um Jupyter Notebook. Todo o projeto está disponível no repositório: https://github.com/vinimeirelres/classificandoimagens

II. ETAPAS REALIZADAS

A. Pré-procesamento de dados

A primeira etapa do projeto envolveu o carregamento e pré-processamento das imagens. As imagens foram redimensionadas para reduzir o tamanho e acelerar o processamento. Utilizou-se um fator de redimensionamento de 0,25, o que resultou em imagens com 25% do tamanho original, mantendo as características essenciais.

B. Normalização das Imagens

Após o carregamento das imagens, foi realizada uma normalização, garantindo que os valores de intensidade das imagens variem entre 0 e 1. Isso facilita a convergência dos modelos de aprendizado de máquina, especialmente em redes neurais, mas também é útil em modelos como SVM e KNN.

C. Segmentação das Imagens

Em seguida, as imagens foram segmentadas utilizando o *limiar de Otsu* para identificar os objetos de interesse nas imagens. A segmentação é crucial para separar os objetos das áreas de fundo, tornando o processo de extração de características mais eficiente.

D. Extração de Características

A extração de características foi realizada a partir das regiões segmentadas, utilizando medidas geométricas como área, comprimento do eixo maior, solidez e excentricidade. Estas características são essenciais para a classificação das imagens, pois fornecem informações sobre a forma e a estrutura dos objetos presentes nas imagens.

E. Divisão e Normalização dos Conjuntos de Dados

O conjunto de dados foi dividido em três partes: treinamento (70%), validação ($\tilde{8}$,57%) e teste ($\tilde{2}1$,43%). Isso permitiu treinar os modelos, ajustar seus parâmetros e, finalmente, avaliar sua performance em dados não vistos.// Após a divisão, os conjuntos de dados (treinamento, teste e validação) foram normalizados para garantir também que os modelos não sejam enviesados por diferentes escalas de características.

F. Treinamento e Avaliação dos Modelos

Foram treinados dois modelos de classificação: KNN (K=1, melhor parâmetro escolhido após testes) e SVM com kernel RBF (melhor kernel escolhido após testes). Os modelos foram avaliados com a matriz de confusão e o relatório de classificação (acurácia, precisão, recall, f1-score, support).

G. Resultados

A análise dos resultados mostrou que o modelo KNN obteve uma melhor acurácia no conjunto de teste, enquanto o SVM teve um desempenho razoável, mas inferior. O relatório de classificação do modelo KNN pode ser visualizado na Tabela 1, enquanto o relatório do modelo SVM pode ser visualizado na Tabela 2, ambos no conjunto de teste.

TABLE I RELATÓRIO DE CLASSIFICAÇÃO KNN (K=1) - TESTE

Classe	Métricas			Suporte
	Precisão	Recall	F1-Score	Suporte
Apple	1.00	0.97	0.98	30
Bat	0.85	0.85	0.85	20
Beetle	0.89	0.85	0.87	20
Bell	0.88	0.94	0.91	16
Bird	0.75	0.79	0.77	19
Bone	0.95	0.95	0.95	21
Acurácia	0.90			126
Macro Avg	0.89	0.89	0.89	126
Weighted Avg	0.90	0.90	0.90	126

Classe	Métricas			Suporte
	Precisão	Recall	F1-Score	Suporte
Apple	0.97	0.93	0.95	30
Bat	0.76	0.65	0.70	20
Beetle	0.80	0.80	0.80	20
Bell	0.81	0.81	0.81	16
Bird	0.57	0.63	0.60	19
Bone	0.87	0.95	0.91	21
Acurácia	0.81			126
Macro Avg	0.80	0.80	0.80	126
Weighted Avg	0.81	0.81	0.81	126

H. Conclusão

O projeto demonstrou a eficácia do pré-processamento de imagens, especialmente a normalização e a segmentação, na melhoria do desempenho dos modelos de aprendizado de máquina. Embora o SVM com kernel RBF seja uma boa escolha, o KNN se mostrou mais eficiente na classificação deste problema. O desempenho dos modelos poderia ser ainda melhorado com a inclusão de mais características ou o uso de técnica de aprendizado mais avançadas.

REFERENCES

- [1] GONZALEZ, R.C.; WOODS, R.E.; Processamento Digital de Imagens. 3ª edição. Editora Pearson, 2009.
- [2] COSTA, L. DA F.; CESAR-JR., R. M. Shape analysis and classification: theory and practice. CRC Press, 2000. Chapter 8.