

A HYBRID HIGH-PERFORMANCE COMPUTING AND BIG DATA FRAMEWORK FOR PARALLELIZED GENE-PROTEIN EXPRESSION ANALYSIS AND DISEASE CLASSIFICATION

CBI0312: HIGH PERFORMANCE COMPUTING

Name and ID: Farah Ibrahim 221001140 Malak Atef 221000906 Zeina Ahmed 221000417

Under Supervision of: Dr. Mohamed EL-Sayeh

INTRODUCTION

 Project Goal: Build and compare traditional HPC and Big Data frameworks for analyzing gene/protein expression data.

Tools Used:

- VirtualBox + Ubuntu (for VM cluster)
- MPI + mpi4py (Task 1)
- Docker + Spark + PySpark (Task 2)
- scikit-learn, pandas, logistic regression

PAGE 2

METHODOLOGY

Task 1: Mini-HPC Cluster using MPI

- VM Setup:
 - 3 Ubuntu VMs (1 master, 2 workers)
 - NAT networking and hostnames mapped
- Passwordless SSH:
 - ssh-keygen and ssh-copy-id across nodes
 - Verified with test commands

METHODOLOGY & RESULTS

Task 1: Mini-HPC Cluster using MPI

- MPI Configuration:
 - Created hostfile
 - Installed openmpi, python3, mpi4py, scikit-learn
- Script: process_dataset_mpi.py
 - Part 1: Gene expression comparison (healthy vs diseased)
 - Part 2: Logistic regression on gene/protein features
 - Used mpirun -np 6 to run across nodes

```
File Edit View

192.168.162.130 slots=2
192.168.162.131 slots=2
192.168.162.132 slots=2
```

HPC

METHODOLOGY & RESULTS

Task 2: Dockerized Spark Cluster

Docker Installation on All Nodes

- Master: docker swarm init
- Workers joined using docker swarm join

Swarm Initialization

Spark Stack Deployment

- Wrote spark-swarm.yml
- Deployed with docker stack deploy

HPC

PAGE 5

METHODOLOGY & RESULTS

Task 2: Dockerized Spark Cluster

PAGE 6

METHODOLOGY & RESULTS

Task 2: Dockerized Spark Cluster

ML Pipeline in PySpark

- Script: bio_classifier.py
- Read CSV Feature engineering Logistic regression
- Accuracy saved to result.txt "Model Accuracy: 100.00%"

HPC

ERRORS & CHALLENGES FACED

PAGE 7

Networking Issues

Static IPs not persisting between reboots \rightarrow fixed via netplan config

SSH Errors

Wrong permissions on .ssh folder \rightarrow fixed with chmod 700 and 600

MPI Crashes

Hostfile misconfigured \rightarrow corrected IPs and slot counts

Docker Permissions

Required newgrp docker to apply usermod

CONCLUSION

- We successfully deployed a hybrid computing architecture combining HPC and Spark.
- MPI was lightweight and faster to set up for smaller tasks.
- Spark offered better scalability and fault-tolerance.
- Both methods were effective at handling bioinformatics ML tasks.
- We gained real-world experience in systems setup, distributed ML, and debugging parallel computing environments.

THANK YOU