

Part 3.2

Frequency Response

Asst Prof Chen Shoushun

email: eechenss@ntu.edu.sg

EE2002 Analog Electronics

References

Textbook:

Jaeger, Richard C. & Blalock, Travis N., "Microelectronic Circuit Design", 4th Edition, McGraw Hill, 2011 (Chapters 13 and 14)

References

- Hambley, Allan R. "Electronics", 2nd Edition, Prentice Hall, 2000
- Neamen, Donald A. "Electronic Circuit Analysis and Design", 2nd Edition, McGraw-Hill, 2002

At the end of this lesson, you should be able to:

- Explain the concepts of transfer functions, poles and zeros, bode plots, and –3 dB frequency
- Draw bode plot diagrams using hand drawing
- Explain the typical frequency response of an amplifier
- Identify parasitic capacitors
- Explain short circuit analysis and open circuit analysis

Frequency Response: Real Life Experience

Audio

Video

Frequency Response: Real Life Experience

Why don't we have a 100 GHz CPU for cellphone?

Real world signals can be decomposed into many single frequency primitives, namely 0th harmonic, 1st harmonic, etc.

Three terms fully describe a sine wave:

- Frequency
- Amplitude
- Phase

Angular frequency, in radians/sec

Sine-wave frequency, in Hz

Period, T Amplitude Amplitude

Time domain

Recap: Fourier Transform (1) Signal Decomposition

Transforms is able to convert a waveform from the time domain into a

waveform in the frequency domain.

Three types of Fourier Transforms:

- Fourier Integral (FI)
- Discrete Fourier Transform (DFT)
- Fast Fourier Transform (FFT)

Frequency Response: Why Do We Care?

Each harmonic signal has different gain when it passes through an electronic element/ system. ⇒ The output signal may get distorted.

Conclusion: Different frequency response results in different reconstructed signal at the output.

Introduction

- An ideal amplifier would have an infinite bandwidth.
- The gain would remain constant at all frequencies.
- However, the bandwidth is finite in practice, and the gain changes with frequency.
- This is due to the fact that capacitive/ inductive elements in the circuit becomes prominent when the signal frequency changes.
- This effect occurs in all circuits including amplifier design.

Introduction

(Cont.)

- The basics of signal processing and analysis will be covered.
- Study frequency response of a few examples in order to account the behavior of a circuit operating at different frequencies.
- Study time constants for approximating the response of amplifiers.
- ⇒ Understand bode plot, pole, zero, and the method to identify the pole/zero elements in real circuits.

Transfer Function

Transfer function, also known as the **system function** or **network function** is a mathematical representation, in terms of spatial or temporal frequency, of the relation between the input and output of a linear time-invariant system.

Transfer function is defined by,

$$H(S) = \frac{V_O(S)}{V_i(S)}$$

Note: We evaluate the system's behavior using a **single** frequency signal.

Transfer Functions and Pole-Zero Plots

Powerful tool: AC impedance

$$R_{DC}: Z = \frac{V}{I}$$

$$R_{AC}: Z = \frac{dV}{dI}$$

- Definition is always true.
- Don't forget to disable (independent current/ voltage) sources in the design under test.

Review of Transfer Functions and Pole-Zero Plots

The transfer function is a property of the circuit and does not depend on the input or the output.

Translation from the circuit domain to the Laplace ($s = j\omega$) domain is made by making the following substitutions of circuit elements:

Element	Definition	Impedance
R2 R1	$V = I \times R$	Z = R
	$I = \frac{dQ}{dt} = C\frac{dV}{dt}$	$Z = \frac{1}{j\omega C} = \frac{1}{sC}$
	$I = L \frac{dI}{dt}$	$Z = j\omega L = sL$

Complex Number Recap (1): Format

- A complex number has a real part and an imaginary part.
- The standard format is:

$$z = 4 + 5i$$
 or

Complex Number Recap (2): Graphing in the Complex Plane

Complex Number Recap (3): Addition, Subtraction, and Multiplication

Addition:

$$(-1+2i) + (3+3i)$$

$$= (-1+3) + (2+3)i$$

$$= 2+5i$$

Subtraction:

$$(-1+2i) - (3+3i)$$

$$= (-1-3) + (2-3)i$$

$$= -4-i$$

Multiplication:

$$i(3+i) = i \times 3 + i \times i$$
$$= 3i + (-1)$$
$$= 3i - 1$$

$$(2+3i)(5+6i) = 2 \times (5+6i) + 3i \times (5+6i)$$
$$= 10+12i+15i+18i^{2}$$
$$= 10+27i+(-18)$$
$$= -8+27i$$

Complex Number Recap (4): Division and Absolute Value

Division:

$$\frac{3+11i}{-1-2i} = \frac{3+11i}{-1-2i} \times \frac{-1+2i}{-1+2i}$$

$$= \frac{(3+11i) \times (-1+2i)}{(-1-2i) \times (-1+2i)}$$

$$= \frac{-3+6i-11i+22i^2}{(-1)^2-(2i)^2}$$

$$= \frac{-25-5i}{1-(-4)}$$

$$= -5-i$$

Absolute Value:

$$\left| -2 + 5i \right| = \sqrt{(-2)^2 + 5^2}$$

$$= \sqrt{29}$$

$$|a+bi| = \sqrt{a^2 + b^2}$$

$$\left| a + b\omega i \right| = \sqrt{a^2 + (b\omega)^2}$$

Complex Number Recap (5): Root of Polynomials

Solve:
$$x^2 - 6x + 13 = 0$$

$$x = \frac{6 \pm \sqrt{36 - 52}}{2}$$

$$x = \frac{6 \pm \sqrt{-16}}{2}$$

$$x = \frac{6 \pm \sqrt{16}\sqrt{-1}}{2}$$

$$x = 3 \pm 2i$$
 (Two roots, a pair of complex conjugates)

Complex Number Recap (6): Polar Form for Complex Numbers

$$z = x + iy$$

$$= r\cos(\theta) + ir\sin(\theta)$$

$$= r(\cos(\theta) + i\sin(\theta))$$

$$|z| = \sqrt{r^2 \cos(\theta)^2 + r^2 \sin(\theta)^2}$$
$$= \sqrt{r^2}$$
$$= r$$

$$\angle(z) = \theta$$

$$= \arctan\left(\frac{y}{x}\right)$$

Complex Number Recap (7): Exponential Form

$$z = x + iy = r\cos(\theta) + ir\sin(\theta) = re^{i\theta}$$

$$|z| = r$$

$$\angle(z) = \theta$$

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Complex Number Recap (8): Important Examples

Given:
$$Z_1 = a + bi$$
, $Z_2 = c + di$, $Z_3 = e + fi$

$$|Z_1 \times Z_2 \times Z_3| = |Z_1| \times |Z_2| \times |Z_3|$$

$$\log(|Z_1 \times Z_2 \times Z_3|) = \log|Z_1| + \log|Z_2| + \log|Z_3|$$

$$\log\left(\left|\frac{Z_1}{Z_2}\right|\right) = \log|Z_1| - \log|Z_2|$$

$$\angle (Z_1 \times Z_2 \times Z_3)$$

$$= \angle (Z_1) + \angle (Z_2) + \angle (Z_3)$$

$$\angle \left(\frac{Z_1}{Z_2}\right) = \angle (Z_1) - \angle (Z_2)$$

Frequency Response Analysis: First Example

$$H(s) = \frac{V_O(s)}{V_i(s)} = \frac{\overline{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega RC}$$

$$|H(s)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

Tasks:

- H(s) describes the relationship between the output to the input: gain.
- *H*(*s*) varies with frequency, due to the impedance of the capacitor changes with frequency (like a variable resistor).
- This circuit is a low pass filter: |H(s)| drops when ω increases, so only low frequency signals can pass.

This is so called frequency response analysis!

General Transfer Function

$$H(s) = \frac{b_0 + b_1 s + b_2 s^2 + \dots + b_{m-1} s^{m-1} + b_m s^m}{a_0 + a_1 s + a_2 s_2 + \dots + a_{n-1} s^{n-1} + a_n s^n} = \frac{H_o \left(1 + \frac{s}{z_1}\right) \left(1 + \frac{s}{z_2}\right) \dots \left(1 + \frac{s}{z_m}\right)}{\left(1 + \frac{s}{p_1}\right) \left(1 + \frac{s}{p_2}\right) \dots \left(1 + \frac{s}{p_n}\right)}$$

 H_0 : Low-frequency gain

Zeros: Roots of numerator, $-Z_1, -Z_2, ..., -Z_m$

Poles: Roots of denominator, $-p_1$, $-p_2$, ..., $-p_n$

Poles and Zeros: Examples

1)
$$S^2 + 5S + 6 = (S+2)(S+3)$$

roots:
$$r_1 = -2$$
, $r_2 = -3$

2)
$$aS^2 + bS + c = (S - r_1)(S - r_2)$$

roots:
$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$H(S) = \frac{S^2 - 5S + 6}{aS^2 + bS + c}$$

zeros:
$$z_1 = -2$$
, $z_2 = -3$

poles:
$$p_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$p_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Poles and Zeros

- The values of poles and zeros can be either real or imaginary.
- For a physical system, all the coefficients are real, hence, the poles and zeros can only have two forms:
 - 1. The roots are real.
 - 2. If one root is complex, its complex conjugate has to be another root, i.e., if -p = a + jb is a root, $-z^* = a jb$ must be another root.
- Both poles and zeros can be located in either left half-plane (LHP) or right half-plane (RHP).

Bode Plots

To study the frequency response of a system, the transfer function H(s) is re-written in the polar form.

$$H(s) = H(s) \cdot \angle H(s)$$

Bode plots are a very useful way to represent the gain and phase of a system as a function of frequency.

Bode Plots of Single Pole System: Amplitude Response

$$H(s) = \frac{1}{1 + \frac{s}{p_1}} \Rightarrow |H(s)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{p_1}\right)^2}}$$

$$dB(H) = 20\log\left[\frac{1}{\sqrt{1 + \left(\frac{\omega}{p_1}\right)^2}}\right] = -10\log\left[1 + \left(\frac{\omega}{p_1}\right)^2\right]$$

$$dB(H) = \begin{cases} 0 & \text{when } \omega << p_1 \\ -20\log \omega + 20\log p_1 & \text{when } \omega >> p_1 \end{cases}$$

Try some frequency $\omega_1 >> p_1$, $dB[H(\omega_1]]$, = $-20 \log \omega_1 + 20 \log p_1$

Try another frequency $\omega_2 = 10^* \omega_1$, $dB[H(\omega_2]]$, $= -20 \log \omega_1 - 20 + 20 \log p_1$

When we hit a pole, p_1 , the Bode magnitude falls with a slope of -20 dB/dec.

Bode Plots of Single Pole System: Phase Response

$$H(s) = \frac{1}{1 + \frac{s}{p_1}}$$

$$\angle H(j\omega) = \angle(\text{Numerator}) - \angle(\text{Denominator})$$

$$= \angle(1) - \angle\left(1 + \frac{j\omega}{p_1}\right) = 0 - \arctan\left(\frac{\omega}{p_1}\right)$$

At
$$\omega_1 = p_1$$
, $\angle H(j\omega_1) = -\arctan\left(\frac{p_1}{p_1}\right) = -45^\circ$

At
$$\omega_2 = 10 p_1$$
, $\angle H(j\omega_2) = -\arctan\left(\frac{10 p_1}{p_1}\right) = -84.3^\circ \approx -90^\circ$

At
$$\omega_3 = 100 p_1$$
, $\angle H(j\omega_3) = -\arctan\left(\frac{100 p_1}{p_1}\right) = -89.4^\circ \approx -90^\circ$

At p_1 , phase shift is -45° . Phase shit is -90° when frequency is very high.

Low pass, LHP pole

Low pass, RHP pole

When we hit a pole, p_1 , the Bode magnitude falls with a slope of -20 dB/dec.

Bode Plots of Single Zero System: Amplitude Response

$$H(s) = 1 + \frac{s}{z_1} \Rightarrow |H(s)| = |H(j\omega)| = \sqrt{1 + \left(\frac{\omega}{z_1}\right)^2}$$

$$dB(H) = 20\log\left(\sqrt{1 + \left(\frac{\omega}{z_1}\right)^2}\right) = 10\log\left[1 + \left(\frac{\omega}{z_1}\right)^2\right]$$

$$dB(H) = \begin{cases} 0 & \text{when } \omega << z_1 \\ 20\log \omega - 20\log z_1 & \text{when } \omega >> z_1 \end{cases}$$

High pass

Try some frequency $\omega_1 >> z_1$, $dB[H(\omega_1]] = 20 \log \omega_1 - 20 \log z_1$

Try another frequency $\omega_2 = 10^* \omega_1$, $dB[H(\omega_2]] = -20 \log \omega_1 + 20 \log z_1$

When we hit a zero, z_1 , the Bode magnitude rises with a slope of $+20~\mathrm{dB/dec}$.

High pass, LHP zero

 $H(s) = 1 + \frac{1}{2}$

High pass, RHP zero

$$H(s) = 1 - \frac{s}{z_1}$$

When we hit a zero, z_1 , the Bode magnitude rises with a slope of +20 dB/dec.

Many-Pole and Many-Zero System's Bode Plots

Now you can deal with a system with many poles and/ or many zeros using the complex number's knowledge:

$$H(s) = \frac{H_0 \left(1 + \frac{s}{z_1}\right) \left(1 + \frac{s}{z_2}\right) ... \left(1 + \frac{s}{z_m}\right)}{\left(1 + \frac{s}{p_1}\right) \left(1 + \frac{s}{p_2}\right) ... \left(1 + \frac{s}{p_n}\right)}$$

Amplitude:
$$dB(H) = 20log(H_0) + dB\left(1 + \frac{s}{z_1}\right) + ...dB\left(1 + \frac{s}{z_m}\right) + dB\left(\frac{1}{1 + \frac{s}{p_1}}\right) + ...dB\left(\frac{1}{1 + \frac{s}{p_n}}\right)$$

Phase:
$$\angle(H) = \angle \left(1 + \frac{s}{z_1}\right) + ... \angle \left(1 + \frac{s}{z_m}\right) + \angle \left(\frac{1}{1 + \frac{s}{p_1}}\right) + ... \angle \left(\frac{1}{1 + \frac{s}{p_n}}\right)$$
 Linear addition of many single pole and single zero system.

33

Many-pole and Many-zero System: Example

Given:
$$H(s) = \frac{10^8 s^2}{(s-10)(s-10^3)(s-10^6)}$$

2 Zeros: $z_1 = z_2 = 0$

3 Poles: $p_1 = 10$, $p_2 = 10^3$, $p_3 = 10^6$

Many-pole and Many-zero System: Example

Try any specific frequency you prefer, for example, 10⁴:

$$20\log|H(s=j10^4)| = 20\log|\frac{10^8(j10^4)^2}{(j10^4-10)(j10^4-10^3)(j10^4-10^6)}| = 40$$

- 1. Replace "s" by " $j\omega$ " to get $H(j\omega)$. Then take magnitude of the resulting complex number $|H(j\omega)|$.
- 2. Label the frequency of poles $(p_1, p_2 \text{ etc.})$ and zeros $(z_1, z_2 \text{ etc.})$ on the " ω " axis.
- 3. Find the slope of each segment between each pole/ zero frequency: suppose, there are n_p poles and n_z zeros at frequencies **lower** than ω_0 . Then, the slope at ω_0 is $n_z \times (20 \text{ dB/dec}) + n_p \times (-20 \text{ dB/dec})$, i.e. it is the sum of contributions of all poles and zeros at frequencies lower than ω_0 .
- 4. Pick a frequency other than any pole/ zero frequency: usually at least one decade away from p_i or z_i . Using this frequency value to find out the exact complex number of the $H(j\omega)$. Calculate its amplitude and convert to dB.
- 5. Now you should have the complete Bode plot drawing.

Play by Yourself: Bode Plots Using Matlab (1)

How can we display the following transfer function?

$$H(s) = \frac{s^2 + 0.1s + 7.5}{s^4 + 0.12s^3 + 9s^2}$$

Matlab code:

H = tf([1 0.1 7.5], [1 0.12 9 0 0]); bode(H,{0.1,1e3}); set(findall(gcf,'type','line'),'linewidth',2) grid on;

Play by Yourself: Bode Plots Using Matlab (2)

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{1 + sRC}$$

Given some real numbers: R = 10 K, $C = 1 \mu\text{F}$, LHP pole = -100 rad/s

Note the capacitor's contribution to the roll-off.

Play by Yourself: Bode Plots Using Matlab (3)

Swap the capacitor with the resistor:

$$H(s) = \frac{V_O(s)}{V_i(s)} = \frac{R}{R + \frac{1}{sC}} = \frac{sRC}{1 + sRC}$$

Note the capacitor's contribution to the roll-off.

40

$$H(s) = 1 + \frac{s}{p_1} \Rightarrow |H(s)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{p_1}\right)^2}}$$

$$dB(H) = 20\log\left(\sqrt{1 + \left(\frac{\omega}{p_1}\right)^2}\right) = -10\log\left[1 + \left(\frac{\omega}{p_1}\right)^2\right]$$

$$dB(H) = \begin{cases} 0 & \text{when } \omega << p_1 \\ -20\log \omega + 20\log p_1 & \text{when } \omega >> p_1 \end{cases}$$

How about exactly at frequency p_1 ?

$$dB \lceil H(p_1) \rceil = -10 \log 2 \simeq -3 \text{ when } \omega = p_1$$

Lecture Milestones

- The basics of signal processing and analysis are covered.
- Math ←→ Circuits, toolkit: impedance, KVL, KCL
- Study frequency response of a few examples in order to account the behavior of a circuit operating at different frequencies.
- Study time constants for approximating the response of amplifiers.

Understand bode plot, pole, zero, the method to identify the pole/zero elements in real circuits.

Real Circuit Frequency Analysis

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{1 + sRC}, \quad p_1 = \frac{1}{RC}$$

$$20\log |H(\omega \to 0)| = 0$$
, $20\log |H(\omega = p_1)| = -3$

- At low frequency, the capacitor is effectively open and the gain is flat. As frequency increases, the capacitor tends to a short and the gain starts to decrease.
- At a special frequency, the gain drops by 3 dB;
 This gives idea of frequency beyond which /H/ starts rolling off quickly → pass band

Frequency Response of General Single Stage Amplifier (1)

$$V_O(s) = [V_i(s) \times G_m] \times \left[R_O / \frac{1}{sC_L} \right]$$

$$H(s) = \frac{V_O(s)}{V_i(s)} = G_m \times \left(\frac{1}{sC_L} \right) = \frac{G_m R_O}{1 + sR_O C_L} = \frac{G_m R_O}{1 + \frac{s}{p_1}} \text{ where } p_1 = \frac{1}{R_O C}$$

A single pole low pass system, its low frequency gain: $|H(\omega \to 0)| = \left| \frac{G_m R_O}{1 + j\omega R_O C_L} \right| \approx G_m R_O$

Frequency Response of General Single Stage Amplifier (1)

We can find its unity gain frequency:

Let
$$|H(s)| = 1$$
, $\Rightarrow \left| \frac{G_m R_O}{1 + \frac{j\omega}{p_1}} \right| = 1$
 $\Rightarrow G_m R_O = \left| 1 + \frac{j\omega}{p_1} \right| \simeq \frac{\omega}{p_1}$
 $\Rightarrow \omega = (G_m R_O) \times p_1$

Frequency Response of Single Stage Amplifier (2)

Now, add some complexity at the input:

$$V_{i}' = V_{i} \frac{\frac{1}{sC_{s}} / / R_{in}}{R_{s} + \frac{1}{sC_{s}} / / R_{in}}$$

$$H(s) = \frac{V_{o}(s)}{V_{i}(s)} = \frac{\left[G_{m}V_{i}'\right] \times \left[R_{o} / / \frac{1}{sC}\right]}{V_{i}}$$

$$= \frac{R_{in}}{R_{s} + R_{in} + sR_{s}R_{in}C_{s}} \times \frac{G_{m}R_{o}}{1 + sR_{o}C_{L}}$$

This is a 2-pole system

Frequency Response of Single Stage Amplifier (2)

$$H(s) = \frac{R_{in}}{R_s + R_{in} + sR_sR_{in}C_s} \times \frac{G_mR_o}{1 + sR_oC_L}$$

$$p_1 = \frac{1}{R_oC_L}$$

$$p_2 = \frac{R_s + R_{in}}{R_sR_{in}C_S} = \frac{1}{(R_s//R_{in})C_S}$$

How About a Very Complicated Circuit?

$$H(s) = \frac{b_0 + b_1 s + b_2 s^2 + \dots + b_{m-1} s^{m-1} + b_m s^m}{a_0 + a_1 s + a_2 s^2 + \dots + a_{n-1} s^{n-1} + a_n s^n} = \frac{H_0 \left(1 + \frac{s}{z_1}\right) \left(1 + \frac{s}{z_2}\right) \dots \left(1 + \frac{s}{z_m}\right)}{\left(1 + \frac{s}{p_1}\right) \left(1 + \frac{s}{p_2}\right) \dots \left(1 + \frac{s}{p_n}\right)}$$

- However, for multistage amplifier with many capacitive elements, explicit computation (by hand) of the frequency response (i.e. transfer function) is generally **impractical**.
- Machine computation is cheap and getting cheaper all the time, so perhaps the analysis of networks doesn't present much of a problem. However, we are interested in developing design insight so that if a simulator tells us that there is a problem, we have some idea of what to do about it.
- In fact, accurate calculation on the frequency response may not be required but only a very rough estimation to predict the performance is sufficient. In that case, the -3 dB frequency is the most important parameter.

Lecture Milestones

- The basics of signal processing and analysis are covered.
- Math ←→ Circuits, toolkit: impedance, KVL, KCL
- Study frequency response of a few examples in order to account the behavior of a circuit operating at different frequencies.
- Study time constants for approximating the response of amplifiers.

Understand bode plot, pole, zero, the method to identify the pole/zero elements in real circuits.

Find the Sources of the Lower and Higher Cut-off Frequencies

Identify capacitors that contribute to the cut-off frequency.

Root Cause of Frequency Response

Capacitor: impedance changes with frequency (like a variable resistor).

Where do Capacitors come from?

Clean Schematic

Transistor symbol

Complicated Real Silicon

Interconnection

Cross section

Some capacitors come from the capacitive structures from active devices (transistors), some come from the coupling effect between interconnections.

- Capacitance between Gate/Source and Gate/Drain due to the overlap of gate electrode (Parallel-plate capacitor)
- 2. Junction capacitance between **Source/Body** and **Drain/Body** (Reverse-bias junction)

Note: The body of NMOS is automatically connected to the lowest voltage in the system; the body of PMOS is automatically connected to the highest voltage in the system.

Identify Parasitic Capacitors: Examples

SCTC and OCTC Methods

Developed in the mid-1960s at MIT. Procedure is as follows:

- Disable all independent sources (voltage sources → Short Circuit; current sources → Open Circuit); Do not remove or "disable" dependent sources!
- 2. **Identify** capacitors contributing to the frequency of interest, i.e., lower of higher cut-off.

higher cut-off

- 3. **Idealise** irrelevant capacitors by **short circuit** (because at high f, cap → short)
- 4. For each contributing capacitor C_i , set all other capacitors (other than the one you are looking at) **removed** (i.e. **Open Circuits**) and determine the resistance, R_i seen by C_i
- 5. Higher cut-off frequency is estimated as:

$$\omega_{H-3\text{dB}} \approx \frac{1}{\sum_{i} C_{i} R_{i}}$$

- 3. **Idealise** irrelevant capacitors by **open circuit** (because at low f, cap → open)
- 4. For each contributing capacitor C_i , set all other capacitors (other than the one you are looking at) **removed** (i.e. **Short Circuits**) and determine the resistance, R_i seen by C_i
- 5. Lower cut-off frequency is estimated as:

$$\omega_{L-3\text{dB}} \approx \sum_{i} \frac{1}{C_i R_i}$$

SCTC and OCTC Methods

4-step Standard Procedure

- Helpers = Irrelevant Caps
- Trouble Makers = Contributing Caps

Disable Batteries

Group Capacitors

Find out the effect of the trouble makers one by one

Idealise
Helpers

A Game of Short/ Open

- Short a cap → Higher Gain → Helper for high frequency
 - Trouble maker for low frequency
- Open a cap → Higher Gain → Helper for low frequency
 - Trouble maker for high frequency

Helpers are those who don't contribute to the drop of the gain.

- For low frequency helpers: open them
- For high frequency helpers: short them

Q3: How to find out the Effect of the Trouble Makers One by One?

Trouble makers are those who cause the drop of the gain.

- For low frequency trouble makers: when we calculate one cap's bad effect (i.e., open circuit effect), we have to temporally remove the bad effect of the others by shortening them.
- For high frequency trouble makers: when we calculate one cap's bad effect (i.e., short wire effect), we have to temporally remove the bad effect of the others by opening them.

Common Source Amp:

Step 1: Label parasitic capacitors

Note that body of the transistor is connected to $-V_{SS}$ (AC ground).

 V_{sig}

At High Frequency

Short $C_c \rightarrow$ better sharing of $\frac{V_i}{V_{sig}}$

- → higher gain
- \rightarrow C_c helper for high f, should be idealised.

At High Frequency

 C_{gd} short: Input is connected to output \rightarrow gain is reduced to 1 \rightarrow C_{gd} is a contributor

 C_{db} or C_L short: $V_o = 0$, $\rightarrow C_{db}$ and C_L are contributors

One helper and four trouble makers

 C_{gs} short: $V_i = 0, \rightarrow V_o = 0, \rightarrow C_{gs}$ is a contributor

At High Frequency

Step 3: Find out Ri seen by C_i

It can be easily obtained by placing a test voltage.

At High Frequency

Step 3: Find out R_i seen by C_i

At High Frequency

Step 4: Higher cut-off frequency

At Low Frequency

Step 2: Find out contributing capacitors

Open $C_c \rightarrow$ input is isolated from the circuits $\rightarrow C_c$ is a contributor (trouble maker) for low frequency.

At Low Frequency

 C_{gd} open: output impedance is increased \rightarrow gain higher $\rightarrow C_{gd}$ should be idealised (i.e. open)

 C_{db} or C_L open: output impedance is increased \rightarrow gain higher \rightarrow both of them should be idealized (open)

four helpers and one trouble makers

 C_{gs} open: V_i better sharing of V_{sig} , $\rightarrow C_{gs}$ should be idealised (open.)

At Low Frequency

Step 3: Find out Ri seen by C_i

Seen by C_c :

$$R_{C_c} = R_{sig} + R_G$$

Step 4: Lower cut-off frequency

$$\omega_{L-3dB} = \frac{1}{C_c R_{C_c}}$$

Apply What We Learnt to BJT Circuits

Similar to MOS transistors,

- At low frequency, no capacitor plays a role.
- At high frequency, capacitive effects come into play.

Apply What We Learnt to BJT Circuits: Example 1

Common emitter at high frequency

$$C_{\pi}$$
: $r_{\pi}//R_{S}$
 C_{μ} : $(r_{\pi}//R_{S}) + (r_{O}//R_{C}) + g_{m}(r_{\pi}//R_{S})(r_{O}//R_{C})$

Apply What We Learnt to BJT Circuits: Example 2

Two stage at high frequency

$$C_{gs1}, C_{gd1}, C_{db1}, C_{gs2}, C_{gd2}, C_{db2}$$

For
$$C_{gs1}$$
, $R_{gs1} = R_s$
For C_{gs2} , $R_{gs2} = R_{L1} // r_{o1}$
For C_{db1} , $R_{db1} = R_{L1} // r_{o1}$
For C_{db2} , $R_{db2} = R_{L2} // r_{o2}$

$$C_{gd1}: R_S + [1 + g_{m1} R_S](r_{O1}//R_{L1})$$

$$C_{gd2}: (r_{O1}//R_{L1}) + [1 + g_{m2}(r_{O1}//R_{L1})](r_{O2}//R_{L2})$$

- Complex Numbers
- Transfer function and Bode plots
- -3 dB frequency, bandwidth
- Capacitor's contribution to the roll-off frequency
- Short Circuit and Open Circuit Analysis to identify roll-off frequency

Part 3.2

Frequency Response

Asst Prof Chen Shoushun

email: eechenss@ntu.edu.sg

-End of Lecture-