

Scope

Grading

- Grading is the inspection, assessment and sorting into categories
- Based on
 - Quality
 - Freshness
 - Legal conformity
 - Market value

- Grades are determined by end use quality e.g.,:
 - Milling characteristics
 - Flour yield
 - Quality of the final product

Standards

Basis for Judging unknown samples

Provides pass or fail criteria

- RS EAS2:2017 Maize (Grains) Specifications
- ISO 24333 Cereals, and Cereal Product Sampling
- And many more

GRADING EQUIPMENT

Sample Mixing and Subdivision

Mechanical Methods

- · Use of Riffle or Boerner grain dividers
- Have slots that mix grain flow and buckets to collect grain
- · Can mix and subdivide at the same time

Manual Methods

- Coning and quartering is used
- Generally used for large composite samples
 Skg to obtain smaller samples that can be
 mixed with mechanical equipment
- Maybe used to mix and subdivide smaller samples in absence riffle/Boerner dividers

Test Sieves

- EAS 2:2017 requires a 4.5mm round sieve for broken grain determination
- Sieve must meet the ISO 5223
 Test Sieves for Cereal Standard

(1:

Moisture Meters

- Are of different types and technologies
- May test one or more grain types
- Some are more reliable than others
- Must be calibrated annually and cross-checked quarterly

Others

- Sample collection tools:
 - · 20-liter bucket to collect samples
 - 2-liter containers to store reference samples
 - Sample scoops

(1

Sample Mixing and Subdivision

Mechanical Methods

- Use of Riffle or Boerner grain dividers
- Have slots that mix grain flow and buckets to collect grain
- Can mix and subdivide at the same time

Manual Methods

- Coning and quartering is used
- Generally used for large composite samples
 5kg to obtain smaller samples that can be mixed with mechanical equipment
- Maybe used to mix and subdivide smaller samples in absence riffle/Boerner dividers

Moisture Meters

- Are of different types and technologies
- May test one or more grain types
- Some are more reliable than others
- Must be calibrated annually and cross-checked quarterly

Test Sieves

- EAS 2:2017 requires a 4.5mm round sieve for broken grain determination
- Sieve must meet the ISO 5223
 Test Sieves for Cereal Standard

Others

- Sample collection tools:
 - 20-liter bucket to collect samples
 - 2-liter containers to store reference samples
 - Sample scoops

Grading Process

Physical Examination

- odours
- infestation
- harmful or unusual conditions

Homogenization & Subdivision

- Working Sample
- Reference Sample

Grading

- Specification
- Test Method
- Test Equipment

From the bottom pan:

- Separate foreign matter and broken grains from the pan at the bottom of the sieve
- Weigh the broken grains that passed through the sieve and calculate as a % over 200g
- Weigh the foreign matter that passed through the sieve and calculate as a % over 200g

From the grains remaining on the sieve:

Separate kernels with the following defects and weigh them as a % over 200 g:

- · Pest damaged grain
- · Rotten and diseased
- · Discoloured grains
- · Immature/shrivelled grains
- · Other coloured

Take a small portion using the scoop provided my the moisture meter manufacturer and test moisture content Keep the rest of the sample as a reference sample

From the bottom pan:

Defect $\% = \frac{w_1}{}$

- Separate foreign matter and broken grains from the pan at the bottom of the sieve
- Weigh the broken grains that passed through the sieve and calculate as a % over 200g
- Weigh the foreign matter that passed through the sieve and calculate as a % over 200g

From the grains remaining on the sieve:

Separate kernels with the following defects and weigh them as a % over 200 g:

- Pest damaged grain
- Rotten and diseased
- Discoloured grains
- Immature/shrivelled grains
- · Other coloured

Take a small portion using the scoop provided my the moisture meter manufacturer and test moisture content

From the bottom pan:

- Separate foreign matter and broken grains from the pan at the bottom of the sieve
- · Weigh the broken grains that passed through the sieve and calculate as a % over 200g
- · Weigh the foreign matter that passed through the sieve and calculate as a % over 200g

From the grains remaining on the sieve:

Separate kernels with the following defects and weigh them as a % over 200 g:

- Pest damaged grain
- Rotten and diseased
- Discoloured grains
- Immature/shrivelled grains
- Other coloured

Take a small portion using the scoop provided my the moisture meter manufacturer and test moisture content

Keep the rest of the sample as a reference sample

(600g)

MAIZE GRADING SHEET		
Customer:	Date:	
Grain:	Variety:	
Truck No.	D No	
Sampled By:	Signature:	_
Analysed by:	Signature:	_
	MAIZE PARAMETERS	
+++		

PARAMETER	RESULT		ACCEPTABLE STANDARD
Grade:		Grade 1	Grade 2
Moisture Content		13.5	13.5% (Max)
Foreign Matter		0.5% (Max)	1.0% (Max)
Broken Grains		2.0% (Max)	4.0% (Max)
Insect Damage		1.0% (Max)	3.0% (Max)
Immature Grain		1.0% (Max)	2.0% (Max)
Live Infestation		Nil	Nil
Rotten Diseased		1.0% (Max)	2% (Max)
Discoloured		1.5% (Max)	2% (Max)
Other Colours		0.5% (Max)	1% (Max)
Total Aflatoxin		10 ppb (Max)	10 ppb (Max)
Total Defective		5.0% (Max)	9% (Max)

Remarks: Accepted/Rejected		

Odour

· Grain should be free from mouldy or any other objectionable odour

Broken Grains

- · Pieces of grain kernels that pass through a 4.5mm
- · Collected in the bottom pan
- · If kernel is broken but does not pass the sieve, it isn't considered broken grain

Foreign Matter

Grain should be free from:

- · Organic matter e.g., cobs, foliage,
- · Inorganic material e.g., sand, soil,
- Other grain than maize, e.g., broken kernels and other grains are NOT

Filth

Impurities of animal origin e.g., droppings, fur, etc

Pest Damaged

Kernels with damage caused by rodents, insects, mites, etc.

Discoloured

water

 Discolouration must be >25% of the surface

Immature/Shrivelled Grain

•Grains which are underdeveloped, thin and papery in appearance

Other coloured

 Maize of other colours, e.g., red or yellow maize

Rotten Diseased

- •Grains with decay, moulds, or bacterial decomposition
- Renders the maize unsafe for consumption

Stained Grain

 Grain kernels whose natural colour has been altered by external factors e.g., soil, etc

Odour

 Grain should be free from mouldy or any other objectionable odour

Broken Grains

- Pieces of grain kernels that pass through a 4.5mm sieve
- Collected in the bottom pan
- If kernel is broken but does not pass the sieve, it isn't considered broken grain

Foreign Matter

Grain should be free from:

- Organic matter e.g., cobs, foliage, etc.
- Inorganic material e.g., sand, soil, glass, etc.
- Other grain than maize, e.g., broken kernels and other grains are NOT foreign matter

Filth

Impurities of animal origin e.g., droppings, fur, etc

Pest Damaged

Kernels with damage caused by rodents, insects, mites, etc.

Immature/Shrivelled Grain

Grains which are underdeveloped, thin and papery in appearance

Rotten Diseased

- Grains with decay, moulds, or bacterial decomposition
- Renders the maize unsafe for consumption

Discoloured

- Grain damaged by heat, frost or water
- Discolouration must be >25% of the surface

Other coloured

 Maize of other colours, e.g., red or yellow maize

Stained Grain

Grain kernels
 whose natural
 colour has been
 altered by external
 factors e.g., soil,
 etc

Thank You!

Kevin Manyara

+254 723 263 312

Kevin_Manyara@kevman.co.ke