Optimization in Machine Learning

Evolutionary Algorithms CMA-ES Algorithm

Learning goals

- CMA-ES strategy
- Estimation of distribution
- Step size control

ESTIMATION OF DISTRIBUTION ALGORITHM

- Instead of population, maintain distribution to sample offspring from
- **1** Draw λ offsprings $\mathbf{x}^{(i)}$ from $p(\cdot|\boldsymbol{\theta}^{[t]})$
- 2 Evaluate fitness $f(\mathbf{x}^{(i)})$
- **3** Update $\theta^{[t+1]}$ with μ best offsprings

COVARIANCE MATRIX ADAPTATION

Sample distribution is multivariate Gaussian

$$\mathbf{x}^{[t+1](i)} \sim \mathbf{m}^{[t]} + \sigma^{[t]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[t]})$$
 for $i = 1, \dots, \lambda$

- $\mathbf{x}^{[t+1](i)} \in \mathbb{R}^d$ *i*-th offspring; $\lambda \geq 2$ number of offspring
- ullet $\mathbf{m}^{[t]} \in \mathbb{R}^d$ mean value and $\mathbf{C}^{[t]} \in \mathbb{R}^{d imes d}$ covariance matrix
- ullet $\sigma^{[t]} \in \mathbb{R}_+$ "overall" standard deviation/step size

Question: How to adapt $\mathbf{m}^{[t+1]}$, $\mathbf{C}^{[t+1]}$, $\sigma^{[t+1]}$ for next generation t+1?

CMA-ES: BASIC METHOD - ITERATION 1

① Initialize $\mathbf{m}^{[0]}, \sigma^{[0]}$ problem-dependent and $\mathbf{C}^{[0]} = \mathbf{I}_d$

CMA-ES: BASIC METHOD - ITERATION 1 / 2

① Sample λ offsprings from distribution

$$\mathbf{x}^{[1](i)} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathcal{N}(\mathbf{0}, \mathbf{C}^{[0]})$$

CMA-ES: BASIC METHOD - ITERATION 1/3

3 Selection and recombination of $\mu < \lambda$ best-performing offspring using fixed weights $w_1 \geq \ldots \geq w_{\mu} > 0, \sum_{i=1}^{\mu} w_i = 1$. $\mathbf{x}_{i:\lambda}$ is *i*-th ranked solution, ranked by $f(\mathbf{x}_{i:\lambda})$.

Calculation of auxiliary variables (
$$\mu = 3$$
 points)

$$\mathbf{y}_{w}^{[1]} := \sum_{i=1}^{\mu} w_{i}(\mathbf{x}_{i:\lambda}^{[1]} - \mathbf{m}^{[0]})/\sigma^{[0]} := \sum_{i=1}^{\mu} w_{i}\mathbf{y}_{i:\lambda}^{[1]}$$

CMA-ES: BASIC METHOD - ITERATION 1 / 4

Update mean

Movement towards the new distribution with mean $\mathbf{m}^{[1]} = \mathbf{m}^{[0]} + \sigma^{[0]} \mathbf{y}_w^{[1]}$.

CMA-ES: BASIC METHOD - ITERATION 1 / 5

Update covariance matrix

Roughly: elongate density ellipsoid in direction of successful steps. $\mathbf{C}^{[1]}$ reproduces successful points with higher probability than $\mathbf{C}^{[0]}$.

Update $\mathbf{C}^{[0]}$ using sum of outer products and parameter c_{μ} : $\mathbf{C}^{[1]} = (1 - c_{\mu})\mathbf{C}^{[0]} + c_{\mu} \sum_{i=1}^{\mu} w_i \mathbf{y}_{i:\lambda}^{[1]} (\mathbf{y}_{i:\lambda}^{[1]})^{\top}$ (rank- μ update).

CMA-ES: BASIC METHOD - ITERATION 2

Sample from distribution for new generation

CMA-ES: BASIC METHOD - ITERATION 2 / 2

- **2** Selection and recombination of $\mu < \lambda$ best-performing offspring
- Update mean

CMA-ES: BASIC METHOD - ITERATION 2/3

Update covariance matrix

CMA-ES: BASIC METHOD - ITERATION 2 / 4

⑤ Update step-size exploiting correlation in history of steps. steps point in similar direction ⇒ increase step-size steps cancel out ⇒ decrease step-size

UPDATING C: FULL UPDATE

Full CMA update of **C** combines rank- μ update with a rank-1 update using exponentially smoothed evolution path $\mathbf{p}_c \in \mathbb{R}^d$ of successive steps and learning rate c_1 :

$$\mathbf{p}_c^{[0]} = \mathbf{0}, \quad \mathbf{p}_c^{[t+1]} = (1-c_1)\mathbf{p}_c^{[t]} + \sqrt{\frac{c_1(2-c_1)}{\sum_{i=1}^{\mu} w_i^2}} \mathbf{y}_w$$

Final update of **C** is

$$\mathbf{C}^{[t+1]} = (1 - c_1 - c_{\mu} \sum_{j} w_j) \mathbf{C}^{[t]} + c_1 \underbrace{\mathbf{p}_c^{[t+1]} (\mathbf{p}_c^{[t+1]})^{\top}}_{\text{rank-1}} + c_{\mu} \underbrace{\sum_{j=1}^{\mu} w_j \mathbf{y}_{i:\lambda}^{[t+1]} (\mathbf{y}_{i:\lambda}^{[t+1]})^{\top}}_{\text{rank-}\mu}$$

- Correlation between generations used in rank-1 update
- Information from entire population is used in rank- μ update

UPDATING σ : METHODS STEP-SIZE CONTROL

- 1/5-th success rule: increases the step-size if more than 20 % of the new solutions are successful, decrease otherwise
- σ -self-adaptation: mutation is applied to the step-size and the better according to the objective function value is selected
- Path length control via cumulative step-size adaptation (CSA) Intuition:
 - Short cumulative step-size \triangleq steps cancel \rightarrow decrease $\sigma^{[t+1]}$
 - ullet Long cumulative step-size \triangleq corr. steps o increase $\sigma^{[t+1]}$

