LUNG CANCER ANALYSIS

By Sean Volpi

BACKGROUND

- Study looked at data from 462,000 + people in China who were followed for an average of six years.
- The participants were divided into two groups: those who lived in areas with high levels of air pollution and those who lived in areas with low levels of air pollution.
- The researchers found that the people in the high-pollution group were more likely to develop lung cancer than those in the low-pollution group.
- Also found that the risk was higher in nonsmokers than smokers, and that the risk increased with age.
- While this study does not prove that air pollution causes lung cancer, it does suggest that there may be a link between the two.

ABOUT THE DATA SET

Potential Causes

Potential Effects/Symptoms

- Sample from study: 1000 Chinese patients all with lung cancer.
- Predictor variables:
 - Age
 - Gender
 - Air Pollution
 - Alcohol use
 - Dust allergies
 - Occupational hazards
 - Genetic risk
 - Diet
 - Obesity
 - Smoking
 - Passive smoking
 - Chest pain
 - Coughing of blood
 - Fatigue
 - Shortness of breath
 - Wheezing
 - Swallowing difficulty
 - Fingernail clubbing

• Response variables:

- Chronic lung disease severity
- "Level" (categorical)

ABOUT THE DATA SET

index	Patient Id	Age	Gender	Level
0	P1	33	1	Low
1	P10	17	1	Medium
2	P100	35	1	High
3	P1000	37	1	High
4	P101	46	1	High
5	P102	35	1	High
6	P103	52	2	Low
7	P104	28	2	Low
8	P105	35	2	Medium

ABOUT THE DATA SET

index	Patient Id	Age	Gender	Level	
0	P1	33	М	1	
1	P10	17	M	2	
2	P100	35	M	3	
3	P1000	37	М	3	
4	P101	46	М	3	
5	P102	35	M	3	
6	P103	52	F	1	
7	P104	28	F	1	
8	P105	35	F	2	

GOALS

- Observe and identify general relationships between predictor variables and response variable(s).
 - Exploratory analysis.
- Rather than focus on just air pollution, consider every predictor variable while model building to determine which are most impactful to lung cancer severity.
 - Create two models: one for potential causes and one for potential effects.
 - Hypothesis: smoking will be the most impactful.

EXPLORATORY ANALYSIS

MODEL BUILDING

- Most of the data is ordinal: cumulative logit regression model.
- Proportional odds assumption (cumulative logit slopes are the same, intercepts differ).
- As said before, building two models.

WHAT KIND OF MODEL IS THIS ANYWAY?

$$\log\left(rac{P(Y\leq j)}{P(Y>j)}
ight) = \log\left(rac{P(Y\leq j)}{1-P(Y\leq j)}
ight) = \log\left(rac{\pi_1+\ldots+\pi_j}{\pi_{j+1}+\ldots+\pi_J}
ight)$$

$$L_{J-1} = \beta_{0,J-1} + \beta_{1,J-1}x_1 + \cdots + \beta_{p,J-1}x_p$$

```
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept):1 2.02519
                           0.28179 7.187 6.63e-13 ***
(Intercept):2 4.88541
                           0.27803 17.571 < 2e-16 ***
(Intercept):3 6.85655
                           0.31208 21.971 < 2e-16 ***
(Intercept):4 9.14142
                           0.38193 23.935 < 2e-16 ***
                                                                           coefficients:
(Intercept):5 10.80204
                           0.45519 23.731 < 2e-16 ***
                                                                                              Estimate Std. Error z value Pr(>|z|)
                                                                                             0.0006539 0.2699188
(Intercept):6 14.99147
                           0.56787 26.399 < 2e-16 ***
                                                                            (Intercept):1
                                                                                                                 0.002 0.99807
                                                                                                       0.2496058
                                                                                                                       < 2e-16 ***
                                                                            (Intercept):2
AirPollution -0.65479
                           0.05795 -11.300 < 2e-16 ***
                                                                            (Intercept)
                                                                                                            5703 15.425 < Ze-16 ***
Alcohol
               0.51237
                           0.06686
                                    7.664 1.81e-14 ***
                                                                            (Intera
                                                                                                                 19.171 < 2e-16 ***
DustAllergy
               0.82228
                           0.07410 11.098 < 2e-16 ***
                                                                            (Inta
                                                                                                                 21.046 < 2e-16 ***
Hazards
              -2.25765
                           0.11235 -20.095 < 2e-16 ***
                                                                                                                        < 26-16 ***
              -0.53990
GeneticRisk
                           0.07942 -6.798 1.06e-11 ***
                                                                                                                        < 2e-16 ***
Diet
              -0.09014
                           0.05404 -1.668 0.0953 .
                                                                                                                       3.430-00 ***
                                                                                                                        2.69e-12 ***
               0.42747
                           0.05458
                                    7.832 4.80e-15 ***
Obesity
                                                                                                                         c 2e-16 ***
Smokina
              -0.09329
                           0.04556 -2.048 0.0406 *
                                                                                                                         78e-06 ***
PassiveSmoker -0.23952
                           0.05545 -4.320 1.56e-05 ***
                                                                                                                          2e-16 ***
                                                                                                                          00425 **
Signif. codes:
                                                                                                                           e-06 ***
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                                                                           e-13 ***
                                                                                                                            0.1 1
Number of linear predictors: 6
Names of linear predictors: logitlink(P[Y<=1]),
logitlink(P[Y<=2]), logitlink(P[Y<=3]), logitlink(P[Y<=4]),
                                                                                                                           t1ink(P[vc=2]), logit1ink(P[vc=3]), logit1ink(P[vc=4]), logit1ink(P[vc=5]),
logitlink(P[Y<=5]), logitlink(P[Y<=6])
Residual deviance: 2022.02 on 5985 degrees of freedom
Log-likelihood: -1011.01 on 5985 degrees of freedom
Number of Fisher scoring iterations: 14
                                                                                                                   estinates
Warning: Hauck-Donner effect detected in the following estimate(s):
'(Intercept):4', '(Intercept):5'
                                                                            Exponentiated o
                                                                                             coughingofslood
                                                                                                                     Fatigue shortnessofbreath
                                                                                                                                                     wheezing
                                                                                                                                                                      clubbing.
                                                                                                                                                                                  Frequentcold
                                                                                   chestrain
                                                                                   0.3259849
                                                                                                   0.7598499
                                                                                                                    0.7645559
                                                                                                                                    1.8516254
                                                                                                                                                    1.1746014
                                                                                                                                                                     0.5154926
                                                                                                                                                                                     1.1406143
Exponentiated coefficients:
                                                                                                     Snorting.
                                                                                   DryCough
 AirPollution
                    Alcohol
                               DustAllerav
                                                  Hazards
                                                                                   0.8246784
                                                                                                   1.4533379
    0.5195522
                  1.6692361
                                 2.2756898
                                                0.1045964
  GeneticRisk
                        Diet
                                   Obesity
                                                  Smoking
    0.5828043
                  0.9138044
                                 1.5333731
                                                0.9109313
PassiveSmoker
    0.7870039
```

IN SIMPLER TERMS...

For the potential causes and effects, for a one unit increase in _____ there is a ____ multiplicative change in the odds of a being at a lower lung cancer severity level.

FINDINGS + CONCLUSIONS

```
Exponentiated coefficients:
 AirPollution
                    Alcohol
                               DustAllerav
                                                  Hazards
    0.5195522
                  1.6692361
                                 2.2756898
                                                0.1045964
 GeneticRisk
                       Diet
                                   Obesity
                                                  Smokina
    0.5828043
                  0.9138044
                                 1.5333731
                                                0.9109313
PassiveSmoker
    0.7870039
```

Potential causes:

- A 1 level increase in alcohol, dust allergies, or obesity is associated with a higher odds of being at a lower lung cancer severity level.
 - Most influential: Dust allergies
- A 1 level increase in air pollution, genetic risk, smoking, passive smoking, diet, or work hazards is associated with a higher odds of being at a higher lung cancer severity level.
 - Most influential: Work hazards

FINDINGS + CONCLUSIONS

Exponentiated coefficients: Fatique ShortnessofBreath ChestPain CoughingofBlood Wheezing clubbing. FrequentCold 0.3259849 0.7598499 0.7645559 1.8516254 1.1746014 0.5154926 1.1406143 DryCough Snoring 0.8246784 1.4533379

Potential effects/symptoms:

- A 1 level increase in snoring, shortness of breath, wheezing, or frequent colds is associated with a higher odds of being at a lower lung cancer severity level.
 - **Most influential:** Shortness of breath
- A 1 level increase in chest pain, dry cough, coughing of blood, fatigue, or fingernail clubbing is associated with higher odds of being at a higher lung cancer severity level.
 - Most influential: Chest pain

IF I HAD MORE TIME...

- Explore different relationships.
- Different model type?
- · Verify and check my model.
 - Complicated
- · Additional research?

THANK YOU FOR LISTENING!

References

https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link

https://online.stat.psu.edu/stat504/book/export/html/793