

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

[Handwritten Signature]

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/772,971	02/05/2004	Joseph Z. Lu	I20 06799US	5188
128 7590 06/01/2007 HONEYWELL INTERNATIONAL INC. 101 COLUMBIA ROAD P O BOX 2245 MORRISTOWN, NJ 07962-2245			EXAMINER LO, SUZANNE	
			ART UNIT 2128	PAPER NUMBER
			MAIL DATE 06/01/2007	DELIVERY MODE PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No.	Applicant(s)	
	10/772,971	LU, JOSEPH Z.	
	Examiner Suzanne Lo	Art Unit 2128	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 05 March 2007.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-27 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-27 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 05 February 2004 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date _____	5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152)
	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

1. Claims 1-29 have been presented for examination and the request for continued examination has been acknowledged.

Claim Rejections - 35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

2. Claims 1-29 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

In the instant application it is unclear how the diagonals are defined. The method of selecting the diagonals is ambiguous. It appears the diagonals are arbitrarily picked and it is unclear why any particular diagonals (i.e. 606a, 606b) were picked.

Claim 12 recites, “at least one input operable to receive a first signal and a second signal”, while an input port or input bus may receive an input, it is unclear how an input itself receives another input (first and second signal).

Claim 26 recites, “the upper triangular matrix comprises a first upper triangular matrix” but it is unclear which upper triangular matrix the last line of claim 26 is referring to in the limitation “with a specific one of the first defined areas in the upper triangular matrix” as both the original “upper triangular matrix” and the “first upper triangular matrix” both have “first defined areas”.

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

Art Unit: 2128

3. Claims 1-29 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter. Specifically, the claims are directed to nonfunctional descriptive material per se which is an abstract idea and therefore is not statutory. The nonfunctional descriptive material is outputted by a computer without any functional interrelationship.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

4. **Claims 12-27 are rejected** under 35 U.S.C. 102(e) as being clearly anticipated by Gopisetty et al. (U.S. Patent No. 6,615,164 B1).

As per claims 12-27, Gopisetty is directed to an apparatus comprising a memory and processor, a computer program embodied on a computer readable medium, and a monitored system with a controller (column 16, line 22 – column 17, line 55). Although there are other limitations included in the claims language, the phrases “operable to” and “program for” indicate intended use and the aforementioned other limitations are not given patentable weight.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at

the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

5. **Claims 1-6, 9-10, 12-16, 18, 20-23, 25-26, and 28-29** are rejected under 35 U.S.C. 103(a) as being unpatentable over **Madievski et al. (U.S. Patent Application Publication 2004/0057585 A1)** in view of **Repucci et al. (U.S. Patent Application Publication 2005/0015205 A1)**.

As per claim 1, Madievski is directed to a method, comprising: receiving a projection associated with a first signal and a second signal, the second signal comprising a first portion associated with the first signal and a second portion not associated with the first signal, the projection at least partially isolating the first portion of the second signal from the second portion of the second signal ([0008]-[0012], [0050]); identifying one or more parameters of a model using at least a portion of the projection, the model associating the first signal and the first portion of the second signal ([0043]); and outputting the one or more model parameters for use in processing one or more signals ([0043]) but fails to explicitly disclose wherein *the projection comprises an upper triangular matrix having two diagonals; and wherein identifying the one or more model parameters comprises using one or more defined areas in the upper triangular matrix, the one or more defined areas located in a single section of the upper triangular matrix defined by the two diagonals.*

Repucci teaches projecting a matrix by performing canonical QR-decomposition on the matrix with an orthogonal matrix and an upper triangular matrix ([0010], [0073], page 8, [0101]) having two diagonals wherein identifying model parameters comprises using one or more defined areas in the upper triangular matrix ([0089]), the one or more defined areas located in a single section of the upper triangular matrix (page 5, Equation 5). As the diagonals are arbitrarily defined, any two diagonals are inherent in a matrix. Furthermore, as the diagonals are arbitrarily defined, the one or more defined areas are also arbitrarily defined. Madievski and Repucci are analogous art because they are from the same field of endeavor, modeling and separating mixed signals. It would have been obvious to one of ordinary skill in the art at the time of the invention to combine the method of separating signals of Madievski with the matrix projection method of Repucci in order to minimize error in the modeled signals (Repucci, page 8, [0101]).

As per claim 2, the combination of Madievski and Repucci is directed to the method of claim 1, wherein identifying the one or more model parameters comprises: identifying one or more pole candidates and one or more model candidates using the projection (Madievski, [0044]-[0045]); and selecting at least one of the one or more pole candidates and selecting at least one of the one or more model candidates as the model parameters (Madievski, [0046]-[0047]).

As per claim 3, the combination of Madievski and Repucci is directed to the method of claim 1, wherein: the upper triangular matrix has a plurality of values along a first *of the* diagonals each value being greater than or equal to zero (Repucci, [0010], [0073], page 8, [0101]).

As per claim 4, the combination of Madievski and Repucci already discloses the method of claim 3, wherein identifying the one or more model parameters comprises: defining *the* one or more *defined* areas in the upper triangular matrix (Repucci, [0101]); and identifying one or more pole candidates using the one or more defined areas, the one or more model parameters comprising at least one of the one or more pole candidates (Madievski [0045] and Repucci [0105]-[0106]).

As per claim 5, the combination of Madievski and Repucci already discloses the method of claim 4, wherein the diagonals divide the upper triangular matrix into upper, lower, left, and right sections; and the one or more defined areas in the upper triangular matrix are located in the right section of the upper triangular matrix (**Repucci, [0101]**).

As per claim 6, the combination of Madievski and Repucci already discloses the method of claim 1, wherein the one or more defined areas in the upper triangular matrix comprise one or more first defined areas (**Repucci, [0101]**); and identifying the one or more model parameters further comprises: defining one or more second areas in the upper triangular matrix; and identifying one or more model candidates using the one or more second defined areas, the one or more model parameters comprising at least one of the one or more model candidates (**Repucci, [0089]**).

As per claim 9, the combination of Madievski and Repucci already discloses the method of claim 4, wherein: defining the one or more areas in the upper triangular matrix comprises defining multiple areas in the triangular matrix (**Repucci, [0085]-[0086]**); and identifying the one or more model parameters comprises identifying one or more model parameters for each of the defined areas in the upper triangular matrix (**Repucci, [0089]**).

As per claim 10, the combination of Madievski and Repucci already discloses the method of claim 9 wherein: the one or more model parameters associated with different defined areas in the upper triangular matrix are different (**Repucci, [0085]-[0086]**); and identifying the one or more model parameters further comprises selecting the one or more model parameters associated with a specific one of the defined areas in the upper triangular matrix (**Repucci, [0087]-[0089]**).

As per claim 28, the combination of Madievski and Repucci is directed to the method of claim 1, wherein the projection at least partially isolates the first portion of the second signal from the second portion of the second signal in an orthogonal space (**Repucci, [0010], [0073], page 8, [0101]**).

Art Unit: 2128

As per claim 12, Madievski is directed to an apparatus, comprising: at least one input operable to receive a first signal and a second signal, the second signal comprising a first portion associated with the first signal and a second portion not associated with the first signal ([0008]-[0012]); and at least one processor operable to generate a projection associated with the first and second signals and to identify one or more parameters of a model associating the first signal and the first portion of the second signal using at least a portion of the projection, the projection at least partially isolating the first portion of the second signal from the second portion of the second signal ([0043]) and output the one or more model parameters for use in processing one or more signals but fails to explicitly disclose wherein *the projection comprises an upper triangular matrix having two diagonals; and wherein identifying the one or more model parameters comprises using one or more defined areas in the upper triangular matrix, the one or more defined areas located in a single section of the upper triangular matrix defined by the two diagonals.*

Repucci teaches projecting a matrix by performing canonical QR-decomposition on the matrix with an orthogonal matrix and an upper triangular matrix ([0010], [0073], page 8, [0101]) having two diagonals wherein identifying model parameters comprises using one or more defined areas in the upper triangular matrix ([0089]), the one or more defined areas located in a single section of the upper triangular matrix (**page 5, Equation 5**). As the diagonals are arbitrarily defined, any two diagonals are inherent in a matrix. Furthermore, as the diagonals are arbitrarily defined, the one or more defined areas are also arbitrarily defined. Madievski and Repucci are analogous art because they are from the same field of endeavor, modeling and separating mixed signals. It would have been obvious to one of ordinary skill in the art at the time of the invention to combine the method of separating signals of Madievski with the matrix projection method of Repucci in order to minimize error in the modeled signals (**Repucci, page 8, [0101]**).

As per claim 13, the combination of Madievski and Repucci is directed to the apparatus of claim 12, wherein the at least one processor is operable to identify the one or more model parameters by:

identifying one or more pole candidates and one or more model candidates using the projection (**Madievski, [0044]-[0045]**); and selecting at least one of the one or more pole candidates and selecting at least one of the one or more model candidates as the model parameters (**Madievski, [0046]-[0047]**).

As per claim 14, the combination of Madievski and Repucci is directed to the apparatus of claim 12, wherein: the projection comprises an orthogonal matrix and an upper triangular matrix; and the upper triangular matrix has a plurality of values along a diagonal of the upper triangular matrix, each value being greater than or equal to zero (**Repucci, [0010], [0073], page 8, [0101]**).

As per claim 15, the combination of Madievski and Repucci already discloses the apparatus of claim 14, wherein the at least one processor is operable to identify the one or more model parameters by: defining one or more areas in the upper triangular matrix (**Repucci, [0101]**); and identifying one or more pole candidates using the one or more defined areas, the one or more model parameters comprising at least one of the one or more pole candidates (**Madievski [0045] and Repucci [0105]-[0106]**).

As per claim 16, the combination of Madievski and Repucci already disclose the apparatus of claim 12, wherein the one or more defined areas in the upper triangular matrix comprise one or more first defined areas (**Repucci, [0101]**); and the at least one processor is operable to identify the one or more model parameters further by: defining one or more second areas in the upper triangular matrix; and identifying one or more model candidates using the one or more second defined areas, the one or more model parameters comprising at least one of the one or more model candidates (**Repucci, [0089]**).

As per claim 18, the combination of Madievski and Repucci already disclose the apparatus of claim 15 wherein: the at least one processor is operable to define the one or more areas in the upper triangular matrix by defining multiple areas in the upper triangular matrix (**Repucci, [0085]**); and the at least one processor is operable to identify the one or more model parameters by identifying one or more model parameters for each of the defined areas in the upper triangular matrix (**Repucci, [0085]-[0086]**).

As per claim 20, Madievski is directed to a computer program embodied on a computer readable medium and operable to be executed by a processor, the computer program comprising computer readable program code for: receiving a projection associated with a first signal and a second signal, the second signal comprising a first portion associated with the first signal and a second portion associated with at least one disturbance, the projection at least partially isolating the first portion of the second signal from the second portion of the second signal ([0008]-[0012], [0050]); identifying one or more parameters of a model associating the first signal and the first portion of the second signal using at least a portion of the projection ([0043]); and outputting the one or more model parameters for use in processing one or more signals ([0043]) but fails to explicitly disclose wherein *the projection comprises an upper triangular matrix having two diagonals; and wherein identifying the one or more model parameters comprises using one or more defined areas in the upper triangular matrix, the one or more defined areas located in a single section of the upper triangular matrix defined by the two diagonals.*

Repucci teaches projecting a matrix by performing canonical QR-decomposition on the matrix with an orthogonal matrix and an upper triangular matrix ([0010], [0073], page 8, [0101]) having two diagonals wherein identifying model parameters comprises using one or more defined areas in the upper triangular matrix ([0089]), the one or more defined areas located in a single section of the upper triangular matrix (**page 5, Equation 5**). As the diagonals are arbitrarily defined, any two diagonals are inherent in a matrix. Furthermore, as the diagonals are arbitrarily defined, the one or more defined areas are also arbitrarily defined. Madievski and Repucci are analogous art because they are from the same field of endeavor, modeling and separating mixed signals. It would have been obvious to one of ordinary skill in the art at the time of the invention to combine the method of separating signals of Madievski with the matrix projection method of Repucci in order to minimize error in the modeled signals (**Repucci, page 8, [0101]**).

As per claim 21, the combination of Madievski and Repucci is directed to the computer program of claim 20, wherein the computer readable program code for identifying the one or more model parameters comprises computer readable program code for: identifying one or more pole candidates and one or more model candidates using the projection (Madievski, [0044]-[0045]); and selecting at least one of the one or more pole candidates and selecting at least one of the one or more model candidates as the model parameters (Madievski, [0046]-[0047]).

As per claim 22, the combination of Madievski and Repucci already discloses the computer program of claim 20, wherein: the upper triangular matrix has a plurality of values along a first *of the* diagonals each value being greater than or equal to zero (Repucci, [0010], [0073], page 8, [0101]).

As per claim 23, the combination of Madievski and Repucci already discloses the computer program of claim 20, wherein the one or more defined areas in the upper triangular matrix comprise one or more first defined areas (Repucci, [0101]); and the computer readable program code for identifying the one or more model parameters comprises computer readable program code for: defining the one or more first areas in the upper triangular matrix (Repucci, [0101]); identifying one or more pole candidates using the one or more first defined areas (Madievski [0045] and Repucci [0105]-[0106]); defining one or more second areas in the upper triangular matrix (Repucci, [0085]-[0086]); and identifying one or more model candidates using the one or more second defined areas (Repucci, [0087]-[0089]), the one or more model parameters comprising at least one of the one or more pole candidates and at least one of the one or more model candidates (Madievski [0045] and Repucci [0105]-[0106]).

As per claim 25, the combination of Madievski and Repucci already discloses the computer program of claim 23, wherein: the computer readable program code for defining the one or more areas in the upper triangular matrix defines multiple first areas in the triangular matrix (Repucci, [0085]-[0086]); and the computer readable program code for identifying the one or more model parameters comprises

computer readable program code for identifying one or more model parameters for each of the first defined areas in the upper triangular matrix (**Repucci, [0089]**).

As per claim 26, the combination of Madievski and Repucci already discloses the computer program of claim 25 wherein: the upper triangular matrix comprises a first upper triangular matrix (**Repucci, [0073]**), the one or more model parameters associated with different first defined areas in the first upper triangular matrix are different (**Repucci, [0085]-[0086]**); and the computer readable program code for identifying the one or more model parameters further comprises computer readable program code for selecting the one or more model parameters associated with a specific one of the first defined areas in the upper triangular matrix (**Repucci, [0087]-[0089]**).

As per claim 29, the combination of Madievski and Repucci is directed to the apparatus of claim 12, wherein the at least one processor is operable to output the one or more model parameters for use in processing one or more signals by: storing the one or more model parameters (**Madievski, [0042]**); and using the one or more stored model parameters to de-noise the second signal (**Madievski, [0047]-[0048], [0055]**).

Allowable Subject Matter

6. Claims 7-8, 11 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims and rewritten so that the 112 and 101 issues are resolved. Claims 17, 19, 24, and 27 also contain allowable subject matter but would be allowable only if rewritten in independent form including all of the limitations of the base claim and any intervening claims as well as resolving the 112 and 101 issues and removing the claim language indicating intended use. The reasons for allowance are held in abeyance until all other outstanding rejections in regards to the instant application are resolved.

Response to Arguments

7. Applicant's arguments filed 03/05/07 have been fully considered but they are not persuasive.

8. The 101 rejection of claims 1-29 are maintained. Furthermore, Examiner notes that claims 12-27 contain intended use language such as the phrases "operable to" and "program for" and any limitations following these phrases are not given patentable weight; thus claims 12-27 are fully anticipated by any computer.

9. Applicant's prior art arguments have been considered and replied to by Examiner in an Advisory Action dated 02/21/07 but the Examiner's response to Applicant's prior art arguments is reiterated below for the Applicant's convenience. The Applicant appears to be arguing that a limitation originally within a dependent claim rejected under 35 U.S.C. 103, as it required a second reference teaching, renders the independent claim, which originally did not include said limitation and therefore rejected under 35 U.S.C. 102, in which the limitation was relocated to now renders the amended independent claim patentable due solely to the allegation that the shifted limitation is not fully anticipated by a solitary piece of prior art. Applicant also appears to be making the argument that due to the fact that the now amended independent claim is allegedly patentable over a single piece of prior art, the dependent claims rejected under 35 U.S.C. 103 with the second reference teaching are rendered patentable as well. Such arguments are specious and wholly unpersuasive.

Conclusion

10. The prior art made of record is not relied upon because it is cumulative to the applied rejection.

These references include:

1. U.S. Patent No. 6,564, issued to Kadtko et al. on 05/13/06.
2. U.S. Patent Application Publication 2004/0071103A1 published by Henttu on 04/15/04.
3. "Blind signal separation with a projection pursuit index" published by Sarajedini et al. in 1998.
4. "Blind Deconvolution of Dynamical Systems: A State-Space Approach" published by Zhang et al. in March 2000.

Art Unit: 2128

5. U.S. Patent No. 6,622,117 B2 issued to Deligne et al. on 09/16/03.
6. U.S. Patent No. 5,980,097 issued to Dagnachew on 11/09/99.
7. U.S. Patent Application Publication 2004/0078412 published by Nakanishi on 04/22/04.
8. U.S. Patent No. 6,907,513 B2 issued to Nakanishi on 06/14/05.
9. U.S. Patent No. 6,757,596 B2 issued to Lin on 06/29/04.
10. U.S. Patent No. 7,003,380 B2 issued to MacMartin et al. on 02/21/06.
11. U.S. Patent No. 7,089,159 B2 issued to Hachiya on 08/08/06.
12. U.S. Patent No. 6,510,354 B1 issued to Lin on 01/21/03.
13. U.S. Patent No. 5,991,525 issued to Shah et al. on 11/23/99.
14. U.S. Patent No. 5,706,402 issued to Bell on 01/06/98.
11. All Claims are rejected.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Suzanne Lo whose telephone number is (571)272-5876. The examiner can normally be reached on M-F, 8-4:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kamini Shah can be reached on (571)272-2297. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2128

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Suzanne Lo
Patent Examiner
Art Unit 2128

SL

05/23/07

KAMINI SHAH
SUPERVISORY PATENT EXAMINER