# **y**

#### Thème: applications des mathématiques à d'autres disciplines

### L'exercice

Lorsque la vitesse de coupe d'une scie sauteuse dépasse 1,5 m.s<sup>-1</sup>, la découpe d'un plastique dur – tel que le plexiglas – devient impossible, car il y a un échauffement trop important du matériau, et donc un risque de fonte de celui-ci.

Le but de l'exercice est de déterminer la fréquence de rotation F d'un point A de la manivelle – élément de la scie sauteuse qui permet de régler la vitesse de coupe – afin que la vitesse maximale de coupe n'excède pas  $1,5\,\mathrm{m.s^{-1}}$ . La fréquence de rotation de la manivelle est commandée par une molette de réglage (*voir figures au verso*).

La modélisation mathématique de ce problème conduit à étudier le mouvement du point H, projeté orthogonal du point A sur l'axe des ordonnées. Celui-ci est décrit par la fonction g définie par :

 $y_H = g(t) = 12 \sin(2\pi F t)$  où  $y_H$  est exprimée en mm, F en tours.s<sup>-1</sup> et t en s.

Fréquence de rotation en fonction de la molette de réglage.

| Position      | Fréquence de rotation      |
|---------------|----------------------------|
| de la molette | (tours.min <sup>-1</sup> ) |
| 1             | 500                        |
| 2             | 1000                       |
| 3             | 1400                       |
| 4             | 2000                       |
| 5             | 2500                       |
| 6             | 3100                       |

- 1. Exprimer la vitesse instantanée du point H en fonction de t et de la fréquence de rotation F.
- 2. Déterminer la vitesse maximale du point H.
- 3. Déterminer la fréquence de rotation F du point A de sorte que la vitesse du point H qui correspond à la vitesse de coupe n'excède pas  $1,5\,\mathrm{m.s^{-1}}$ .
- 4. Préciser la position choisie pour la molette de réglage.

D'après document Ressources interdisciplinaires, classe de première STI2D

#### Extraits du document ressources interdisciplinaires pour la classe de première STI2D

L'objectif premier de la parution de ce document ressource pour la classe de première STI2D est de proposer aux enseignants de mathématiques quelques situations d'appui pour la mise en œuvre du nouveau programme de mathématiques, conformes à l'esprit dans lequel il a été conçu. [...] ce nouveau programme insiste auprès des enseignants de mathématiques sur la nécessité de :

- prendre appui sur les situations expérimentales rencontrées dans les enseignements scientifiques et technologiques de la série.
- prendre en compte les besoins mathématiques des autres disciplines.

#### [...] Etude d'une scie sauteuse, objectifs de l'exercice.

| Mathématiques             | Physique-chimie                      | Enseignement technologique commun        |
|---------------------------|--------------------------------------|------------------------------------------|
| Fonctions trigonométrique | Thème : transport                    | Comportement énergétique des systèmes    |
| Fonction dérivée          | Sous-thème : Mise en mouvement       | (transformation de l'énergie)            |
| Dérivée de sin(wt)        | Notions et contenus :                | Typologie de solutions                   |
|                           | Référentiels, trajectoires, vitesse, | constructives des liaisons entre solides |
|                           | vitesse angulaire, accélération      |                                          |

## Le travail à exposer devant le jury

- 1 En vous appuyant sur le document ressources, précisez l'intérêt d'un enseignement mathématique dans lequel l'étude de situations contextualisées revêt un rôle important.
- 2 Exposez une correction de l'exercice telle que vous la présenteriez devant une classe.
- 3 Proposez deux ou trois exercices prenant en compte l'utilisation des mathématiques dans d'autres disciplines. Vous motiverez vos choix en indiquant les compétences que vous cherchez à développer chez les élèves.