Transformações Geométricas

Pablo G. Cavalcanti

Motion Models

LearnOpenCV.com

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{cccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$		Concurrency, collinearity, order of contact : intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{ccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, \mathbf{l}_{∞} .
Similarity 4 dof	$\begin{bmatrix} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\Diamond	Length, area

Translate

Rotate

$$c = s = \sin(45^{\circ})$$

Scale

Shear

1	0.5	0	
0	1	1	
0	0	1	

Rotação

$$x_2 = x_1 \cos(\alpha) + y_1 \sin(\alpha)$$

$$y_2 = -x_1 \sin(\alpha) + y_1 \cos(\alpha)$$

Translação

$$x_2 = x_1 + \Delta x$$

$$y_2 = y_1 + \Delta y$$

Podendo $\Delta x == \Delta y$ ou $\Delta x! = \Delta y$

Implementação

Olhar documentação e testar funções:

- resize
- rescale
- rotate

https://scikit-image.org/docs/dev/api/skimage.transform.html

https://en.wikipedia.org/wiki/Affine_transformation

Transformada Afim

Uma transformada afim se dá na forma:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Ou:

$$q = Tp$$

Onde **q** e **p** são vetores com as coordenadas dos pixels e **T** define a transformada.

Transformada Afim

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{Translation by } (x_0, y_0)$$

$$\mathbf{T} = \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{Scale by } s_1 \text{ and } s_2$$

$$\mathbf{T} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{Rotate by } \theta$$

Transformada Afim

Exemplos:

Operation	Expression	Result		
Translate to Origin	$\mathbf{T}_1 = \begin{bmatrix} 1.00 & 0.00 & -5.00 \\ 0.00 & 1.00 & -5.00 \\ 0.00 & 0.00 & 1.00 \end{bmatrix}$	0 10 10 10 10 10 10 10 10 10 10 10 10 10		
Rotate by 23 degrees	$\mathbf{T}_2 = \begin{bmatrix} 0.92 & 0.39 & 0.00 \\ -0.39 & 0.92 & 0.00 \\ 0.00 & 0.00 & 1.00 \end{bmatrix}$			
Translate to original location	$\mathbf{T}_3 = \begin{bmatrix} 1.00 & 0.00 & 5.00 \\ 0.00 & 1.00 & 5.00 \\ 0.00 & 0.00 & 1.00 \end{bmatrix}$			

Se combinarmos $T = T_1T_2T_3$, T é capaz de aplicar as 3 operações juntas, assim como T^{-1} é a transformada inversa.

 $\mathsf{Image}\ A$

 $\mathsf{Image}\;B$

$$\mathbf{P} = \begin{bmatrix} x_0 & x_1 & \dots & x_{n-1} \\ y_0 & y_1 & \dots & y_{n-1} \\ 1 & 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 & \dots & \mathbf{p}_{n-1} \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} u_0 & u_1 & \dots & u_{n-1} \\ v_0 & v_1 & \dots & v_{n-1} \\ 1 & 1 & \dots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_0 & \mathbf{q}_1 & \dots & \mathbf{q}_{n-1} \end{bmatrix}$$

Sendo P as coordenadas da imagem A e Q da imagem B, podemos:

$$Q = HP$$

Onde H é a transformada afim que mapeia todas coordenadas de P em Q.

Podemos obter H = QP^{-1} . A inversa pode ser aproximada pela pseudo-inversa: H = QP^{+} = $QP^{T}(PP^{T})^{-1}$

 $\mathsf{Image}\ A$

 $\mathsf{Image}\ B$

					_ \		
Table of Matching Points							
X_a	Y_a	X_b	Y_b	X'_a	Y'_a		
30.5	325.3	125.8	322.5	126.0	322.8		
86.8	271.3	199.3	295.3	198.7	294.9		
330.3	534.0	320.0	632.0	320.5	632.2		
62.0	110.3	238.0	137.0	238.4	136.8		
342.0	115.0	494.0	250.0	493.9	250.4		
412.0	437.0	434.3	574.8	433.3	574.7		
584.5	384.8	611.8	594.0	612.2	593.8		

 $\mathsf{Mapped}\ A$

Original B

Escala

 $x_2 = a x_1$ $y_2 = b y_1$

Podendo a==b ou a!=b

Interpolação nível de cinza

- Quando o resultado da transformada for um valor real, será preciso interpolar
- Método mais simples: nearest neighbour
 - atribui-se ao pixel o valor do pixel mais próximo na imagem transformada.
 - Apresenta erro de posição de, no máximo, metade do pixel que pode ser perceptível em objetos com bordas "retas".

 $f_1(x,y) = g_s[round(x), round(y)]$ Kernel de interpolação (1D)

Interpolação linear

- Explora os 4 pontos da vizinhança de (x,y).
- A função de intensidade é linear nessa vizinhança.

$$egin{aligned} f_2(x,y) &= & (1-a)(1-b)\,g_s(l,k) \ &+ a(1-b)\,g_s(l+1,k) \ &+ b(1-a)\,g_s(l,k+1) \ &+ ab\,g_s(l+1,k+1) \end{aligned}$$

$$l = round(x),$$
 $a = x - l$
 $k = round(y),$ $b = y - k$

Fontes:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm

https://www.cis.rit.edu/class/simg782/lectures/lecture 02/lec782 05 02.pdf

Implementação

Exemplos de transformadas em:

https://scikit-image.org/docs/0.13.x/auto_examples/xx_applications/plot_geometric.html