

物联网系统解决方案商

User Manual

MXKit 开发套件

MXCHIP Development Kit

版本: 1.0

日期: 2018-5-10

编号: RM0113CN

产品简介

MXKit 开发套件是上海庆科(MXCHIP)推出的物联网开发套件,可用于物联网、智能硬件原型机开发。开发套件提供一个开箱即用的智能硬件解决方案,方便验证用户的软件和功能,使产品可以快速、安全地连接至云服务平台和手机端,缩短研发周期,迅速推向市场。MXKit 开发套件由 MXKit-Base , MXKit-Core,MXKit-Arduino(可选)以及 MXKit-Sensor(可选)四部分组成。其中:

- MXKit-Base 板是具备丰富外设接口的通用开发主板,可以兼容所有 MXKit-Core 板;
- MXKit-Core 板是包含 MXCHIP 无线通讯模组的 IOT 接入核心板;
- MXKit-Sensor 板是包含多种类应用传感器的扩展板,可方便各种 IOT 应用快速开发;
- MXKit-Arduino 板采用标准 Arduino 接口,兼容任何具备 Arduino 接口的单片机开发板,配合 MXKit-Core 板为用户产品提供 IOT 接入功能。

版权声明

未经许可,禁止使用或复制本手册中全部或任何一部分内容,这尤其适用于商标、机型命名、零件号和图形。

版本更新记录

日期	版本	更新内容
2018-5-10	1.0	初始文档

目录

产品	品简介.		1
版	本更新	记录	1
1.	开发	套件简介及组合方式	5
	1.1	开发套件组合方式	5
	1.2	MXKit-Base 简介	
	1.3	MXKit-Core 简介	8
	1.4	MXKit-Sensor 简介	
	1.5	MXKit-Arduino 简介	9
2.	MXK	Cit-Base 详解	11
	2.1	电源	11
	2.2	USB to Dual UART 电路	
	2.3	JTAG /SWD 调试接口	13
	2.4	拨码开关和按键	13
	2.5	工作模式选择	14
	2.6	自动控制电路	14
	2.7	Arduino 接口	15
	2.8	MXPort 接口	16
3.	MXK	Cit-Sensor 详解	18
	3.1	OLED 显示屏	
	3.2	RGB 三色 LED	19
	3.3	环境传感器(选配)	20
	3.4	九轴运动传感器(选配)	
	3.5	苹果认证芯片(选配)	
	3.6	距离、光照传感器	
	3.7	温湿度传感器	
	3.8		
	3.9	光照传感器	
	3.10	微型直流电动机	
	3.11	标准 Arduino 接口	
	3.12	Arduino 传感器接口	
	3.13		
4.		板应用实例	
4.	开及1 4.1	使用 MXKit Standalone 套件进行开发	
	7.1	4.1.1 硬件清单	
		4.1.2 硬件连接	
		4.1.3 AT 指令使用示例	
		4.1.4 二次开发示例	
	4.2	使用 MXKit Hosted 套件进行开发	29

	4.	2.1 硬件清单	29
		2.2 硬件连接	
5.	• •	.2.3 开发应用示例	
J.	,np-11		
		图目录	
	E 11		_
	图 1.1	MXKit Standalone 套件组成	
	图 1.2	MXKit Hosted 套件组成	
	图 1.3	MXKit-Base 板组成示意图	7
	图 1.4 —	MXKit-Core 板示意图	
	图 1.5	MXKit-Sensor 板功能示意图	
		MXKit-Arduino 板功能示意图	
	图 2.1	USB 供电电路原理图	
	图 2.2	USB 供电电路原理图USB to Dual UART 电路原理图	12
	图 2.3	USB to Dual UART 电路原理图	12
	图 2.4	PC 端显示串口	
	图 2.5	JTAG 接口电路	
	图 2.6	拨码开关和按键电路	
	图 2.7	自动控制电路	15
	图 2.8	MXPort 接口电路	17
	图 3.1	OLED 显示屏电路原理图	18
	图 3.2	RGB 驱动电路原理图	19
	图 3.3	P8913 驱动时序图	19
	图 3.4	环境传感器电路原理图	20
	图 3.5	九轴运动传感器电路原理图	21
	图 3.6	苹果 CP 芯片电路原理图	21
	图 3.7	距离、光照检测电路原理图	22
	图 3.8	温湿度电路原理图	23
	图 3.9	DHT11 时序图	23
	图 3.10	红外反射电路原理图	23
	图 3.11	光照传感器电路原理图	24
	图 3.12	直流电机电路原理图	25

图 3.13	扩展板 Arduino 电路原理图	25
图 3.14	Arduino 传感器接口电路原理图	26
图 3.15	UART 接口电路原理图	26
图 4.1	MXKit Standalone 套件开发硬件清单	27
图 4.2	串口工具配置	28
图 4.3	AT 指令应用	29
图 4.4	MXKit Hosted 套件开发硬件清单	29
+	表目录 MXKit-Core 板型号	<i>/</i> *
表 1.2	MXKit-Base 组成及功能描述	7
表 2.1	USB 供电选择	11
表 2.2	MXKit-Base 工作模式选择	14
表 2.3	自动控制逻辑真值表	15
表 2.4	Arduino 接口引脚定义	15

1. 开发套件简介及组合方式

1.1 开发套件组合方式

MXCHIP 为开发者提供两种应用场景下的开发套件,可根据实际应用需求进行搭配选型。

● MXKit Standalone 套件

在 MXCHIP 无线通讯模组上进行二次开发,组合如下:

- 1. MXKit-Base 板: 具备丰富外设接口的通用开发主板,通过 MXPort 接口与 MXKit-Core 板 连接,可兼容所有 MXKit-Core 板。
- 2. MXKit-Core 板: 板载 MXCHIP 无线通讯模组,通过 MXPort 接口与 MXKit-Base 板连接。
- 3. MXKit-Sensor 板(选配): 包含多种传感器的扩展板,方便模拟现实生活中各类应用进行 开发,通过标准 Arduino 接口与 MXKit-Base 板连接。

图 1.1 MXKit Standalone 套件组成

● MXKit Hosted 套件

使用支持 AT 指令的模组为用户产品提供 IOT 接入功能(前提是用户已有具备标准 Arduino 接口的单片机开发板),套件组合如下:

- 1. MXKit-Arduino 板: 采用标准 Arduino 接口,可兼容任何具备标准 Arduino 接口的单片机 开发板,通过 MXPort 接口与 MXKit-Core 板连接。
- 2. MXKit-Core 板: 板载 MXCHIP 无线通讯模组,通过 MXPort 接口与 MXKit- Arduino 板连接。
- 3. MXKit-Sensor 板 (选配): 包含多种传感器的扩展板,方便模拟现实生活中各类应用进行开发,通过标准 Arduino 接口与 MXKit- Arduino 板连接。z

图 1.2 MXKit Hosted 套件组成

现有 MXKit-Core 板型号如表 1.1 所示。

表 1.1 MXKit-Core 板型号

MXKit-Core 型号	适用模块	量产状态
MXKit-Core-3090	EMW3090	已量产
MXKit-Core-110	EMW110	已量产
MXKit-Core-3047	EML3047	已量产
MXKit-Core-110A	EMW110A	生产中
MXKit-Core-3060	EMW3060	待推出
MXKit-Core-3080	EMW3080	待推出
MXKit-Core-3239	EMW3239	待推出
MXKit-Core-5062	EMG5062	待推出
MXKit-Core-1060	EMB1060	待推出

1.2 MXKit-Base 简介

MXKit-Base 板可兼容所有 MXKit-Core 板, 具备丰富外设接口, 主要资源有:

- MXPort 接口,通过板对板连接器与 MXKit-Core 板连接。
- 标准 Arduino 接口
- JTAG/SWD 接口
- 提供两个 USB 接口,供电可选:
 - 一 当跳线帽接至 J2 接口的 USB1 时,选择左下方 USB1-UART 为系统供电。USB1-UART 除了给系统供电外,还虚拟出两个 UART 接口作为用户串口和调试串口。其中, Enhanced COM Port 是用户串口, Standard COM Port 是调试串口。
 - 一 当跳线帽接至 J2 接口的 USB2 时,选择用上方 USB2 为系统供电。USB2 除了给系统供电外,还可作为 USB 数据传输接口使用。
- 5V 转 3.3V 电压转换电路,输出 3.3V 供模块工作。
- 2位拨码开关: BOOT 和 STATUS
- 2 个按键: RESET 和 ELINK
- 提供自动控制电路,可通过上位机控制 CP2015 的 DTR_SCI 和 RTS_SCI, 实现自动控制系统的复位和进入 Bootloader 模式功能。

MXKit-Base 板组成示意图如图 1.3 所示, 其各组成部分及功能描述如表 1.2 所示。

图 1.3 MXKit-Base 板组成示意图

表 1.2 MXKit-Base 组成及功能描述

标号	描述
A	电源指示灯
В	标准 JTAG / SWD 接口
С	MicroUSB 接口,为系统供电,并提供 USB 数据传输功能
D, F	Arduino 标准接口
Е	MXPort 接口
Ğ	Easylink 按键
Н	2 位拨码开关 (BOOT & STATUS)
I	RESET 按键
J	MicroUSB 接口,为系统供电,并提供 USB to dual UART 功能
K	USB to dual UART 电路
L	自动控制电路
M	电源选择
N	5V to 3.3V 电源转换电路

标号	描述
O	无线模组的 USER_UART_TXD & USER_UART_RXD 跳线端子 * 默认为短接,此时模组的用户串口和调试串口 log 信息均从 J 输出; * 当不短接时,模组的用户串口 log 信息将从 D 中的 UART 口输出。
Р	无线模组的 USER_UART_CTS & USER_UART_RTS 跳线端子 * 默认为短接,开启模组的用户串口硬件流控功能; * 当不短接时,关闭模组的用户串口硬件流控功能。

1.3 MXKit-Core 简介

MXKit-Core 板载 MXCHIP 无线通讯模组,通过 MXPort 接口与 MXKit-Base 板或 MXKit-Arduino 板连接,主要包括:

- MXPort 接口,通过板对板连接器与 MXKit-Base 板或 MXKit-Arduino 板连接。
- MXCHIP 无线通讯模块,包括 Wi-Fi 模块,BLE 模块,Wi-Fi + BT 模块,LoRa 模块,GPRS 模块以及 SigFox 模块等。

MXKit-Core 板示意如图 1.4 所示。

图 1.4 MXKit-Core 板示意图

1.4 MXKit-Sensor 简介

MXKit-Sensor 板包含多种传感器,可模拟各类应用进行开发,主要资源有:

● Arduino 标准接口;

- 128x64 OLED 双色显示屏;
- 温湿度传感器,光照强度传感器,距离传感器,红外传感器;
- 8mm RGB 三色 LED, 手机控制色彩和亮度调节;
- 可调速微型直流电机;
- 2个用户按键;
- 环境传感器,九轴运动传感器(选配);
- 苹果专用 CP 芯片 (选配);
- UART 调试接口。

MXKit-Sensor 板的接插件采用色彩来区分功能,黄色插件是数字信号接口,蓝色插件是模拟信号接口,红色插件是电源接口,和 MXKit-Base 板一一对应。MXKit-Sensor 板功能示意图如图 1.5 所示。

图 1.5 MXKit-Sensor 板功能示意图

1.5 MXKit-Arduino 简介

MXKit-Arduino 板采用标准 Arduino 接口,可兼容任何拥有 Arduino 标准接口的单片机开发板,通过 MXPort 接口与 MXKit-Core 板连接,提供 IOT 接入功能,主要资源有:

- Arduino 接口,下层可通过排针与单片机开发板连接,上层可通过排母与 MXKit-Sensor 板连接
- MXPort 接口,与 MXKit-Core 板连接
- JTAG / SWD 调试接口
- Debug 调试接口
- BOOT 短接端子(默认不接。短接时,复位后进入 BOOT 模式)
- RESET 按键

MXKit-Arduino 板功能示意图如图 1.6 所示。

图 1.6 MXKit-Arduino 板功能示意图

2. MXKit-Base 详解

2.1 电源

MXKit-Base 板采用 USB 接口供电,可通过 J2 来选择从 USB1 或 USB2 供电。电源选择模式 如表 $2.1~\mathrm{Mpc}$ 。

J2	描述
短接 Pin1, Pin2	通过 USB1-UART 供电
短接 Pin2,Pin3	通过 USB2 供电

表 2.1 USB 供电选择

USB 供电选择电路原理如图 2.1 所示。

图 2.1 USB 供电电路原理图

MXKit-Base 板载一个 3.3V 的高效率 DC-DC, 型号为 TLV62565。TLV62565 是一种高效率 (95%)、恒定频率 (1.5MHz)单片同步降压稳压器,器件有输出电压可调版本和 1.5V、1.8V 固定电压输出版本,输出电流最大 1.5A,但是静态损耗只有 50uA,2.7V 至 5.5V 的输入电压范围使 TLV62565 非常适用于单节锂离子电池供电的应用。开关频率在内部设置为 1.5MHz,方便使用小型表面贴装电感器和电容器。器件具有过温保护功能,内部同步开关提高了效率并省去了外部肖特基二极管。

5V 转 3.3V 部分的电路原理图如图 2.2 所示。当电源工作正常时,电源指示灯 D1 会点亮。设计有电流测试功能,通过 J1 插座可以检测板子的电流,进而可计算出功耗。

图 2.2 USB 供电电路原理图

用户使用中需要注意:正常使用时,J1 必须用跳线帽短接,否则无法输出 3.3V 电源,导致系统无法工作。

2.2 USB to Dual UART 电路

为方便用户使用和调试,MXKit-Base 板上配有 USB 转双路 UART 电路,选用芯片 CP2105,主要功能有:

- MODEM 接口信号,支持硬件及软件流控;
- 接口支持 UART 7 / 8 Bit 数据位、1 / 2 停止位、奇偶校验、Mark/Space 校验或无校验;
- 通信速率: 300bps-2Mbps (TTL), 320 Byte 传输缓冲区;
- 集成了电平转换器, I/O 口电平支持 5V-3.3V 电平逻辑;
- 完全兼容 USB 2.0;

关于 CP2105 的具体参数请查阅 CP2105 数据手册。

USB 转双路 UART 电路原理图如图 2.3 所示。

图 2.3 USB to Dual UART 电路原理图

MXKit-Base 通过 Micro-USB 和 PC 连接,安装驱动后,PC 端口会增加两个串口,如图 2.4 所示。

图 2.4 PC 端显示串口

其中,Enhanced COM Port 为用户串口,Standard COM Port 为调试串口。

CP2105 的驱动下载地址:

 $\underline{https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers}$

用户使用中需要注意以下两点:

- (1) 图 1.1 中 O 区域 RXD (J4)和 TXD (J6) 默认用跳线帽短接,此时模块用户串口通过 USB1-UART 与 PC 通信; 当模块通过 Arduino 接口的 TXD 和 RXD 与外部通信时,RXD (J4)和 TXD (J6)的跳线端子需要断开。
- (2) 当使用用户串口的硬件流控功能时,图 1.1 中 P 区域 CTS (J5)和 RTS (J3)需要用跳线帽短接,当不使用硬件流控功能时请断开。

2.3 JTAG/SWD 调试接口

MXKit-Base 支持标准 JTAG(20PIN)下载调试接口,可以方便连接 J-LINK 或者 U-LINK2 等调试工具,支持 JTAG 和 SWD 方式,JTAG 接口电路原理图如图 2.5 所示。

图 2.5 JTAG 接口电路

2.4 拨码开关和按键

为方便用户调试, MXKit-Base 板提供一个 2 位拨码开关和两个按键, 靠近板子左下方。BOOT 和 STATUS 状态可通过拨码开关控制, RESET 和 Easylink 通过按键控制, 此部分的原理图如

图 2.6 所示。

图 2.6 拨码开关和按键电路

2.5 工作模式选择

用户通过控制 MXKit-Base 上的拨码开关和按键开关可以使 MXCHIP 无线模组进入不同的工作模式,比如:将 BOOT 拨至 ON 状态,则上电启动后就会自动进入 Bootloader 模式。各工作模式下管脚对应状态见表 2.2。

Mode	BOOT	STATUS	EasyLink
Normal	OFF	×	×
Bootloader	ON	OFF	×
ATE	ON	OFF	Press
QC	ON	ON	×

表 2.2 MXKit-Base 工作模式选择

2.6 自动控制电路

MXKit-Base 板上设计有自动控制电路,可以通过上位机控制 CP2015 的 DTR_SCI 和 RTS_SCI, 进而实现自动控制系统复位和进入 Bootloader 模式的功能。

自动控制电路原理图如图 2.7 所示。

图 2.7 自动控制电路

自动控制逻辑真值表如表 2.3 所示。

RTS_SCI DTR_SCI RESET BOOT 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1

表 2.3 自动控制逻辑真值表

2.7 Arduino 接口

MXKit-Base 板支持标准 Arduino 接口,可方便插接各种 Arduino 接口扩展板,Arduino 接口引脚定义如表 2.4 所示。

Connector	Pin Number	Pin name	Function
Arduino1 digital	10	D15	I2C1_SCL
	9	D14	I2C1_SDA
	8	NC	NC
	7	GND	ground
	6	D13	SPI_CLK
	5	D12	SPI_MISO
	4	D11	SPI_MOSI

表 2.4 Arduino 接口引脚定义

	3	D10	SPI_CS
	2	D9	D9
	1	D8	D8
	8	D7	D7
	7	D6	D6
	6	D5	D5
	5	D4	D4
Arduino2 digital	4	D3	D3
	3	D2	D2
	2	D1	USER_UART_TX
	1	D0	USER_UART_RX
	1	NC	NC
	2	VDD_3.3V	3.3V input/output
	3	RESET	RESET
Arduino3 power	4	VDD_3.3V	3.3V input/output
Ardunios power	5	VDD_5V	5V output
	6	GND	ground
• 🔨	7	GND	ground
	8	VIN	Power input
	1	A0	A0
	2	A1	A1
Arduino4 analog	3	A2	A2
Ardumo4 anaiog	4	A3	A3
,	5	A4	A4
	6	A5	A5

2.8 MXPort 接口

MXKit-Base 板为开发者提供一种灵活的 MXPort 接口,可兼容所有 MXKit-Core 板。MXPort 接口如图 2.8 所示。

图 2.8 MXPort 接口电路

3. MXKit-Sensor 详解

3.1 OLED 显示屏

有机发光二极管(Organic Light-Emitting Diode, OLED)具有自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。

MXKit-Sensor 采用一块 0.96 寸、128x64 点阵式、黄蓝双色 OLED 显示屏,上面 128x16 为黄色显示区,下面 128*48 为蓝色显示区。其原理图如

图 3.1 所示。该显示屏的特点:

- 高分辨率: 128x64(和 12864LCD 相同分辨率,但该 OLED 屏的单位面积像素点更多);
- 超广可视角度:大于 160°;
- 超低功耗:正常显示时 0.06W (远低于 TFT 显示屏);
- 宽供电范围: 直流 3V-5V;
- 工业级:工作温度范围-30℃~70℃;
- 支持多种操作方式: 8位并口、4线 SPI、IIC;
- 带片选 CS 信号,可以实现多个 SPI 或 IIC 设备在同一总线工作;
- 兼容 3.3V 和 5V 控制芯片的 I/O 电平 (无需任何设置,直接兼容);
- 亮度、对比度可以通过程序指令控制;
- 使用寿命不少于 16000 小时;
- OLED 屏幕内部驱动芯片: SSD1306。

图 3.1 OLED 显示屏电路原理图

3.2 RGB 三色 LED

MXKit-Sensor 板集成了一个 8mm 直径的 RGB 三色 LED 指示灯,通过 P9813 驱动,可以通过 手机等实现对 LED 的全色彩控制。

P9813 是一款全彩点光源 LED 驱动芯片,采用 CMOS 工艺,提供三路恒流驱动及 256 级灰度调制输出。采用双线传输方式(DATA 与 CLK),内建再生,可提升传输距离。用于驱动显示灯光变换、各式字符变换、彩色动漫图案。根据不同控制器和客户不同形式要求,进行脱机或联机运行。该芯片的特点:

- IC 输入电压 5V~6.5V; 内置 LDO , 4.5V 稳压输出;
- 外置单电阻反馈模式,三路驱动,每路驱动电流 0-45mA;
- 带有输入信号校验功能;
- 内置环振(1.2MHz)支持不间断 FREE-RUN 调制输出,维持画面静止功能;
- 最大串行输入数据时钟频率 15MHz;
- 具有信号锁相再生, 1MHz 数据传输速度下级联点光源可达 1024 个;
- LED 驱动端口耐压 17V。
- 这部分的电路原理如图 3.2 所示。驱动的时序图如图 3.3 所示。

图 3.2 RGB 驱动电路原理图

图 3.3 P8913 驱动时序图

注意:由于 P9813 不是标准的 I²C 接口,为了节约 IO,电路连接在 I²C 的总线上,但是需要配置为 GPIO,

根据时序图来实现调色,调光的功能。

3.3 环境传感器(选配)

MXKit-Sensor 板可选配博世的新款数字环境传感器 BME280,该芯片集成了数字湿度、温度和大气压等三个传感器,封装在一个 2.5x2.5mm 的金属封装内,实现了小体积,低功耗。

BME280 内部的湿度传感器在快速变化的环境中实现迅速的相应,响应时间为 1 秒,在很宽的温度范围内实现高精度(±3%)。压力传感器是一个绝对大气压传感器,具有很高的精度(±0.25%)和分辨率。内置的温度传感器优化了噪声干扰,提高了分辨率,主要用于内部压力传感器和湿度传感器的温度补偿,也可用于环境温度的监测。

BME280 具有标准的 I²C (可选 SPI) 接口, 电路连接比较简单, 如图 3.4 所示。

图 3.4 环境传感器电路原理图

3.4 九轴运动传感器(选配)

MXKit-Sensor 板可选配博世的新款数字九轴运动传感器 BMX055,包含了一个 12 位的三轴加速度传感器,一个 16 位的三轴角速率(陀螺仪)和一个全功能的三轴地磁传感器。加速度传感器的测量范围为: $\pm 2g$ 、 $\pm 4g$ 、 $\pm 8g$ 、 $\pm 16g$; 陀螺仪的监测范围为: ± 125 °/s 到 ± 2000 °/s; 磁场的测量典型值为: 1300μT(X 轴、Y 轴)和 ± 2500 μT(Z 轴)。

BMX055 具有标准的 I^2C (可选 SPI)接口,每一个传感器都有独立的中断功能, 电路连接比较简单,如图 3.5 所示。

图 3.5 九轴运动传感器电路原理图

3.5 苹果认证芯片(选配)

为了便于苹果 Home Kit 等开发,MXKit-Sensor 板载一个苹果的认证芯片(Apple authentication coprocessor,CP),用于开发苹果认证的外设。具体的资料和使用方法请咨询苹果公司。

CP 芯片具有标准的 I2C 接口, 电路连接比较简单, 如图 3.6.所示。

图 3.6 苹果 CP 芯片电路原理图

3.6 距离、光照传感器

MXKit-Sensor 板采用了一个集成型环境亮度和接近传感器 APDS-9930,该传感器在单个 8 引脚封装内提供 I² C 接口兼容的环境亮度传感器(Ambient Light Sensor, ALS)和带有红外 LED的接近传感器,其中环境亮度传感器使用双光二极管来近似 0.01 lux 照度下低流明性能的人眼视觉反应,提供的高灵敏度使得器件可以在深色玻璃后运作。接近传感器经过完全调校可进行100毫米物体检测,免除终端设备和次组件的工厂校准需求。从明亮的阳光照射到黑暗的房间,接近检测功能都能运作良好。模块中加入微光学透镜提供红外能量的高效率传送和接收,可降低总体功耗。另外,内部状态机可使器件进入低功耗模式,带来极低的平均功耗。具有特点:

- 集成 ALS、红外 LED 和接近检测器的光学模块;
- 环境亮度感测 (ALS):
 - ◆ 近似人眼的视觉反应:
 - ◆ 带有上限和下限阈值的可编程中断功能;
 - ◆ 高达 16 位分辨率;
 - ◆ 深色玻璃后运作的高灵敏度:
 - ◆ 0.01lux 低流明性能。
- 接近检测:
 - ◆ 完全校准到 100 毫米检测:
 - ◆ 集成红外 LED 和同步 LED 驱动器;
 - ◆ 免除接近传感器的工厂校准。
- 可编程等待计时器:

- ◆ 等待状态功耗-90μA 典型值;
- ◆ 可编程范围为 2.7 毫秒到大于 8 秒。
- I²C 接口兼容:
 - ◆ 高达 400kHz;
 - ◆ 专用中断引脚。
- 睡眠模式功率- 2.2µA 典型值;
- 小型封装 3.94x2.36x1.35 毫米。

APDS-9930 芯片具有标准的 I2C 接口, 电路连接比较简单, 如图 3.7 所示。

图 3.7 距离、光照检测电路原理图

3.7 温湿度传感器

MXKit-Sensor 板采用常用的温湿度传感器 DHT11,该传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个 NTC 测温元件,并与一个高性能 MCU 连接。因此该产品具有品质卓越、抗干扰能力强、性价比极高等优点。每个DHT11 传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式储存在 OTP 内存中,传感器内部在检测信号的处理过程中要调用这些校准系数。单线制串行接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达 20 米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选择。产品为 4 针单排引脚封装。连接方便,特殊封装形式可根据用户需求而提供。

DHT11 数据采用单线制串行接口,电路连接比较简单,如图 3.8 所示。时序图如图 3.9 所示。

图 3.8 温湿度电路原理图

图 3.9 DHT11 时序图

3.8 红外反射开关

用 RPR220 型光电对管, RPR220 是一种一体化反射型光电探测器, 其发射器是 一种砷化镓红外光二极管, 而接收器是一个高灵敏度、硅平面光电三极管, RPR220 采用 DIP4 封装, 其具有如下特点:

- 塑料透镜可以提高灵敏度;
- 体积小、结构紧凑;
- 当发光二极管发出的光发射回来时,三极管导通输出低电平。此光电二极管调理电路简单,工作性能稳定。

为了准确监测反射的距离,三极管的集电极接在 ADC 的接口上,通过检测电压的大小检测反射的距离,同时接一个 LED 指示,可以通过 LED 的亮度变化判断粗略距离的远近。这部分的原理图如图 3.10 所示。

图 3.10 红外反射电路原理图

3.9 光照传感器

MXKit-Sensor 设计了一个专门的光照传感器,采用光敏电阻,光敏电阻器一般用于光的测量、

光的控制和光电转换 (将光的变化转换为电的变化)。常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76) μm 的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。

光敏电阻是电阻值的变化,可转化为电压的变化,所以接 ADC 的输入来监测电压的变化,就能推算出光线的变化,这部分的原理图如图 3.11 所示。

图 3.11 光照传感器电路原理图

注意:由于不同的 MCU 的 ADC 的最大输入电压会不同,所以在光敏电阻并联一个分压电阻,可根据 MCU 最大的 ADC 输入电压来调整电阻值,以达到最佳的效果。

3.10 微型直流电动机

为了模拟现场的执行机构,MXKit-Sensor 板上设计一个空心杯的电动机,型号是:LX0610C,空心杯电机属于直流、永磁、伺服微特电机。空心杯电动机具有突出的节能特性、灵敏方便的控制特性和稳定的运行特性,作为高效率的能量转换装置,代表了电动机的发展方向。空心杯电机在结构上突破了传统电机的转子结构形式,采用的是无铁芯转子。空心杯电机具有十分突出的节能、控制和拖动特性。

直流电机用一个 NPN 的三极管驱动,简化驱动模式,使用 PWM 信号进行调速,这部分的电路原理图如图 3.12 所示。

图 3.12 直流电机电路原理图

3.11 标准 Arduino 接口

MXKit-Sensor 板采用了标准的 Arduino 接口,和 MXKit-Sensor 的主板是无缝链接的,也可以插在任何标准的 Arduino 的 MCU 主板中,具体的插脚定义如图 3.13 所示。接插件采用色彩来区分功能,黄色的插件是数字信号接口,蓝色的插件是模拟信号接口,红色的插件是电源接口。

图 3.13 扩展板 Arduino 电路原理图

3.12 Arduino 传感器接口

MXKit-Sensor 板还留有 Arduino 传感器接口,可以外接模拟、数字等多种传感器,并支持 3.3V 和 5V 两种电压规格(通过板上的"VDD SELECT"选择),同时,传感器接口接插件也采用色彩来区分功能,黄色的插件是数字信号接口,蓝色的插件是模拟信号接口,红色的插件是电源接口,黑色的表示地线的接口。这部分的电路如图 3.14 所示。

图 3.14 Arduino 传感器接口电路原理图

3.13 UART 接口

MXKit-Sensor 板预留一个 UART 接口(不是 RS232 接口),方便用户调试和通信。 该部分的电路如图 3.15 所示。

图 3.15 UART接口电路原理图

4. 开发板应用实例

4.1 使用 MXKit Standalone 套件进行开发

4.1.1 硬件清单

图 4.1 MXKit Standalone 套件开发硬件清单

- MXKit Standalone 套件(MXKit-Base + MXKit-Core + MXKit-Sensor(选配))1 套;
- JLink V8 或 V9, 或 STlink 仿真器 1 套 (JLink 支持 MXCHIP 所有硬件平台, STlink 仅支持模块: EMW3162, EMW3165, EMW3166 和 EMW3239);
- Micro-USB 连接线 1 根 (用于为开发板供电, PC 与模块之间通信,以及查看用户串口和调试串口 log 信息)。

4.1.2 硬件连接

● **连接**串口: 将 MXKit Standalone 套件通过 Micro-USB 线连接至 PC,为开发套件提供电源和连接串口,即:

用户 PC 端 USB 口 ————> Micro USB 线 ————> 开发套件 microUSB 口

● 连接仿真器:将开发套件的 JTAG 口通过 JLink 或 STLink (仅针对 ST 芯片) 仿真器, 连接至 PC,即:

用户 PC 端 USB 口 --> USB 线 --> 仿真器 --> JTAG 排线 --> 开发套件

4.1.3 AT 指令使用示例

● 软件准备:

- 1. 对应模块的 AT 透传应用固件.bin 文件,如:EMW3xxx 0000.xxxx.xxxx ota.bin。
- 2. 固件下载软件: SecureCRT。
- 3. AT 指令串口调试软件: 格西烽火。MXCHIP 提供一个集成了新版 AT 指令的格西烽火 bsp 工程文件: MiCO AT 指令格西烽火 bsp 工程,可直接点击下载。

● AT 指令应用:

1. 连接串口

通过 Mini USB 线将开发套件的用户串口连接到 PC,在 PC 的控制面板中-设备管理器找到 COM 端口号,打开"格西烽火"串口工具,创建连接,配置如图 4.2 所示(以 EMW3080 为例):

图 4.2 串口工具配置

2. 发送 AT 指令

打开 MiCO AT 指令格西烽火 bsp 工程,发送 "AT\r",返回 "OK",此时已经进入 AT 指令模式,如图 4.3 所示。

图 4.3 AT 指令应用

更多 AT 指令的使用详见: MiCO AT v2.0 指令 - 使用用例。

4.1.4 二次开发示例

使用 MXKit Standalone 套件进行二次开发的示例详见: 第一个 MICO 应用程序。

4.2 使用 MXKit Hosted 套件进行开发

4.2.1 硬件清单

图 4.4 MXKit Hosted 套件开发硬件清单

● MXKit Hosted 套件(具备标准 Arduino 接口的单片机开发板 + MXKit-Arduino +

MXKit-Core + MXKit-Sensor (选配)) 1 套,本示例选用的 Arduino 开发板为 Microchip 的 SAML21x IOT SK 开发板;

- JLink V9 仿真器 1 套;
- Micro-USB 连接线 1 根 (用于为开发套件供电, PC 与模块之间通信,以及查看调试串口 log 信息)。

4.2.2 硬件连接

- **连接仿真器**:将 MXKit Hosted 套件的 JTAG 口通过 JLink V9 仿真器,连接至 PC,即:用户 PC 端 USB 口 —> USB 线 —> 仿真器 —> JTAG 排线 —> 开发套件
- 连接串口: 将 MXKit Hosted 套件通过 Micro-USB 线连接至 PC,为开发套件提供电源和连接串口,即:用户 PC 端 USB □ → Micro USB 线 → 开发套件

4.2.3 开发应用示例

使用 MXKit Hosted 套件进行开发应用示例详见: How to use MXkit-L21 sdk。

5. 销售与技术支持信息

如果需要咨询或购买本产品,请在办公时间拨打电话咨询上海庆科信息技术有限公司。

办公时间:

星期一至星期五上午: 9:00~12:00, 下午: 13:00~18:00

联系电话: +86-21-52655026

联系地址:上海市普陀区金沙江路 2145 弄 B 幢 9 楼

邮编: 200333

Email: sales@mxchip.com