Correction du DHC n°2

Qualité du devoir	Note /5
Non rendu (après 2 séances).	0
Aucun investissement et/ou soin : travail bâclé!	1
Partie du sujet non traitée ou bâclée.	2
Travail correct mais qui aurait mérité plus d'investissement.	3
Bon travail mais quelques erreurs et/ou manque de soin.	4
Très bon travail, soigneux et détaillé.	5

Exercice 1

1. On a
$$\overrightarrow{AB}$$
 $\begin{pmatrix} 1-2\\1-0\\2-1 \end{pmatrix} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$ et $I\begin{pmatrix} \frac{2+1}{2}\\0+1\\\frac{2+1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{2}\\\frac{1}{2}\\\frac{3}{2} \end{pmatrix}$.

- 2. Pour déterminer si des vecteurs forment une base, il faut déterminer s'ils sont coplanaires.
- Montrons que \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires. S'il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{u} = \lambda \overrightarrow{v}$, alors en regardant les premières coordonnées, on a $\lambda \times 0 = 2$, ce qui est impossible.

Donc les vecteurs ne sont pas colinéaires.

• Enfin, \overrightarrow{AB} , \overrightarrow{u} et \overrightarrow{v} sont coplanaires si et seulement si il existe $\lambda, \mu \in \mathbb{R}$ tels que :

$$\overrightarrow{AB} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$$

Or,

$$\overrightarrow{AB} = \lambda \overrightarrow{u} + \mu \overrightarrow{v} \iff \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2\lambda \\ 0 \\ \lambda \end{pmatrix} + \begin{pmatrix} 0 \\ -\mu \\ 2\mu \end{pmatrix}$$

$$\iff \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2\lambda \\ -\mu \\ \lambda + 2\mu \end{pmatrix}$$

$$\iff \begin{cases} 2\lambda = -1 \\ -\mu = 1 \\ \lambda + 2\mu = 1 \end{cases}$$

$$\iff \begin{cases} \lambda = -\frac{1}{2} \\ \mu = -1 \\ \lambda + 2\mu = 1 \end{cases}$$

On remarque que la dernière équation de notre système est incompatible avec les valeurs de λ et μ : $\lambda + 2\mu = -\frac{1}{2} - 2 = -\frac{5}{2} \neq 1$.

Donc il n'existe pas de tels λ et μ et donc nos vecteurs ne sont pas colinéaires et forment une base.

3. Puisque I est le milieu de [AB], on a :

$$\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AB} + 0\overrightarrow{u} + 0\overrightarrow{v}$$

On a donc
$$I\begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \end{pmatrix}$$
 dans le repère $(A, \overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v})$.

Exercice 2

1. Si q=1, alors la suite (u_n) est constante : pour tout $n \in \mathbb{N}$, on a $u_n=u_0$.

En particulier, on a donc que $u_n \xrightarrow[n \to +\infty]{} u_0$.

2. Pour tout $n \in \mathbb{N}$, on a $u_{n+1} = qu_n < u_n$ puisque 0 < q < 1. On a donc, pour tout $n \in \mathbb{N}$, que $u_{n+1} < u_n$, c'est à dire que (u_n) est décroissante.

Ensuite, puisque $u_0 > 0$ et q > 0, on a, pour tout $n \in \mathbb{N}$, que $u_n = u_0 q^n > 0$. Ainsi, (u_n) est décroissante et minorée donc convergente.

On rappelle que, d'après le cours, $\lim_{n\to\infty}q^n=0$ donc (u_n) converge vers 0.

3. On pose a=q-1. Puisque q>1, alors a>0 et donc on peut appliquer l'inégalité de Bernoulli. Pour tout $n\in\mathbb{N}$, on a :

$$(1+a)^n \ge 1 + na \iff (1+(q-1))^n \ge 1 + n(q-1) \iff q^n \ge 1 + n(q-1)$$

4. Puisque q-1>0, alors $n(q-1)\xrightarrow[n\to+\infty]{}+\infty$ et donc :

$$1 + n(q-1) \xrightarrow[n \to +\infty]{} +\infty$$

Par comparaison, on a alors que $q^n \xrightarrow[n \to +\infty]{} +\infty$.

Puisque $u_n = u_0 q^n$ pour tout $n \in \mathbb{N}$, alors on a aussi que $\lim_{n \to \infty} u_n = +\infty$.

- **5.** Pour tout $n \in \mathbb{N}$, on a $v_n = \sum_{k=0}^n q^k = \frac{1 q^{n+1}}{1 q}$.
- **6.** On va étudier l'expression $\frac{1-q^{n+1}}{1-q}$ en fonction de q.
- Si q > 1, alors $\lim_{n \to +\infty} q^{n+1} = +\infty$ et donc $1 q^{n+1} \xrightarrow[n \to +\infty]{} -\infty$

Or 1 - q < 0 donc $v_n \xrightarrow[n \to +\infty]{} + \infty$

• Si 0 < q < 1, alors $\lim_{n \to +\infty} q^{n+1} = 0$ et donc $v_n \xrightarrow[n \to +\infty]{} \frac{1}{1-q}$.