Task 3.1

For this task, use the publications dataset. The dataset has been downloaded from

Out[155		id	title	authors	venue	year
	0	304586	The WASA2 object- oriented workflow management	Gottfried Vossen, Mathias Weske	International Conference on Management of Data	1999
	1	304587	A user-centered interface for querying distrib	Isabel F. Cruz, Kimberly M. James	International Conference on Management of Data	1999
	2	304589	World Wide Database- integrating the Web, CORBA	Athman Bouguettaya, Boualem Benatallah, Lily H	International Conference on Management of Data	1999
	3	304590	XML-based information mediation with MIX	Chaitan Baru, Amarnath Gupta, Bertram Ludä	International Conference on Management of Data	1999
	4	304582	The CCUBE constraint object-oriented database	Alexander Brodsky, Victor E. Segal, Jia Chen,	International Conference on Management of Data	1999
	•••					
	995	conf/vldb/RamakrishnanR96	Modeling Design Versions	D. Janaki Ram, R. Ramakrishnan	VLDB	1996
	996	conf/sigmod/BerchtoldK98	High-Dimensional Index Structures, Database Su	Daniel A. Keim, Stefan Berchtold	SIGMOD Conference	1998
	997	conf/sigmod/ChoALS03	LockX: A System for Efficiently Querying Secur	SungRan Cho, Laks V. S. Lakshmanan, Divesh Sri	SIGMOD Conference	2003
	998	journals/sigmod/Winslett02a	David DeWitt Speaks Out	Marianne Winslett	SIGMOD Record	2002
	999	conf/sigmod/AndersonAF98	Oracle Rdb's Record Caching Model	Richard Frank, Gopalan Arun, Richard Anderson	SIGMOD Conference	1998

1000 rows × 5 columns

Question 1. Perform pairwise comparison between the records in the dataset (publications.csv) to detect the duplicate records. To compare two records, follow the steps:

a. Ignore the pub_id.

Out[156	title	authors	

	title	authors	venue	year
0	The WASA2 object-oriented workflow management	Gottfried Vossen, Mathias Weske	International Conference on Management of Data	1999
1	A user-centered interface for querying distrib	Isabel F. Cruz, Kimberly M. James	International Conference on Management of Data	1999
2	World Wide Database-integrating the Web, CORBA	Athman Bouguettaya, Boualem Benatallah, Lily H	International Conference on Management of Data	1999
3	XML-based information mediation with MIX	Chaitan Baru, Amarnath Gupta, Bertram Ludä	International Conference on Management of Data	1999
4	The CCUBE constraint object- oriented database	Alexander Brodsky, Victor E. Segal, Jia Chen,	International Conference on Management of Data	1999
•••				
995	Modeling Design Versions	D. Janaki Ram, R. Ramakrishnan	VLDB	1996
996	High-Dimensional Index Structures, Database Su	Daniel A. Keim, Stefan Berchtold	SIGMOD Conference	1998
997	LockX: A System for Efficiently Querying Secur	SungRan Cho, Laks V. S. Lakshmanan, Divesh Sri	SIGMOD Conference	2003
998	David DeWitt Speaks Out	Marianne Winslett	SIGMOD Record	2002
999	Oracle Rdb's Record Caching Model	Richard Frank, Gopalan Arun, Richard Anderson	SIGMOD Conference	1998

1000 rows × 4 columns

question 2 Use Levenshtein similarity for comparing the titles and computing the score (s_t)

```
In [157...
         import pandas
          from py stringmatching import similarity measure as sm
          df = df pub.copy()
          #adding a fake column to do a merge
          df["test"] = 1
          #Adding the row number column to dont loose in which row the data was
          df["row"] = df.index
          #merging to make pairs
          rela = df.merge(df, on= "test", how = 'left', indicator = True).drop duplicates()
          #dropping similar rows data (comparing between themselfs)
          rela = rela[rela.row x != rela.row y]
          rela
          \#Dropping rows that will be compared twice E.g title A compared to title B = Title B
          compared to Title A
          group = rela[['row x', 'row y']].agg(frozenset, axis=1)
          rela = (rela
           .groupby(group, as index=False) # you can also group by [group, 'Score']
```

```
.agg(**{c: (c, 'first') for c in rela},
)
)

#We reduced from 1Million to 495k pairs to compare
rela
```

									J
Out[157		id_x	title_x	authors_x	venue_x	year_x	test	row_x	
	0	304586	The WASA2 object- oriented workflow management 	Gottfried Vossen, Mathias Weske	International Conference on Management of Data	1999	1	0	
	1	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	journa
	2	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	
	3	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	
	4	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	
	•••						•••		
	499495	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	journe
	499496	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	journal
	499497	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	conf/sigmod/At

	id_x	title_x	authors_x	venue_x	year_x	test	row_x	
499498	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	journals/s
499499	journals/sigmod/Winslett02a	David DeWitt Speaks Out	Marianne Winslett	SIGMOD Record	2002	1	998	

499500 rows × 14 columns

In [159... rel1

Out[159		title_x	title_y	s_t
	0	The WASA2 object-oriented workflow management	A user-centered interface for querying distrib	0.211268
	1	Adaptive multi-stage distance join processing	An Introduction to Deductive Database Language	0.220339
	2	Adaptive multi-stage distance join processing	Thémis: A Database Programming Language Handli	0.228571
	3	Adaptive multi-stage distance join processing	Integrating Information for On Demand Computing	0.212766
	4	Adaptive multi-stage distance join processing	Enterprise Information Architectures They'r	0.234375
	•••			
	499495	Replication, consistency, and practicality: ar	WaveCluster: A Wavelet Based Clustering Approa	0.191011
	499496	Replication, consistency, and practicality: ar	Priority Assignment in Real-Time Active Databases	0.260274
	499497	Replication, consistency, and practicality: ar	Aurora: A Data Stream Management System	0.191781
	499498	Replication, consistency, and practicality: ar	Database Research at UT Arlington	0.178082
	499499	David DeWitt Speaks Out	Oracle Rdb's Record Caching Model	0.181818

499500 rows × 3 columns

question 3)Use Jaro similarity to compare the values in the authors field and compute (s_a)

```
In [160... from py_stringmatching import similarity_measure as sm
    df = df_pu.copy()
    df["test"] = 1
    rel= rela.copy()
    rel = rel[["authors_x", "authors_y"]]
    jaro_sim = sm.jaro.Jaro()

rel["s_a"] = rel.apply(lambda x: jaro_sim.get_raw_score(x['authors_x'],
    x['authors_y']), axis=1)
    rel2 = rel.copy()
    rel2
```

Out[160		authors_x	authors_y	s_a
	0	Gottfried Vossen, Mathias Weske	Isabel F. Cruz, Kimberly M. James	0.450585
	1	Hyoseop Shin, Bongki Moon, Sukho Lee	Kotagiri Ramamohanarao, James Harland	0.446232
	2	Hyoseop Shin, Bongki Moon, Sukho Lee	Anne Doucet, Véronique Benzaken	0.507691
	3	Hyoseop Shin, Bongki Moon, Sukho Lee	Nelson Mendonça Mattos	0.510943
	4	Hyoseop Shin, Bongki Moon, Sukho Lee	Wesley P. Melling	0.482026
	•••			
	499495	Todd Anderson, Yuri Breitbart, Henry F. Korth,	Surojit Chatterjee, Gholamhosein Sheikholeslam	0.564157
	499496	Todd Anderson, Yuri Breitbart, Henry F. Korth,	Rajendran M. Sivasankaran, Bhaskar Purimetla, 	0.589344
	499497	Todd Anderson, Yuri Breitbart, Henry F. Korth,	Nesime Tatbul, Daniel J. Abadi, C. Erwin, Anur	0.537256
	499498	Todd Anderson, Yuri Breitbart, Henry F. Korth,	Sharma Chakravarthy, Y. Alp Aslandogan, Ramez	0.576597
	499499	Marianne Winslett	Richard Frank, Gopalan Arun, Richard Anderson	0.470152

499500 rows × 3 columns

question 4) Use the modified affine similarity for the conference (conf) attribute (s_c)

```
min(len(x['venue_x']),len(x['venue_y'])), axis=1)
rel3 = rel.copy()
```

In [162...

rel3

0000
'1428
'1428
9999
0588
'1428
'1428
0588
0769
6154
7 7 7 3

499500 rows × 3 columns

question5) Use Match (1) / Mismatch (0) for the year (s_y)

question6)Use the formula rec_sim= $0.5s_t + 0.2s_a + 0.2s_c + 0.1s_y$ to combine the scores and compute the final score.

Out[164	id_x	title_x	authors_x	venue_x	year_x	test	row_x	
0	304586	The WASA2 object- oriented workflow management 	Gottfried Vossen, Mathias Weske	International Conference on Management of Data	1999	1	0	
1	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	journa
2	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	
3	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	
4	335428	Adaptive multi-stage distance join processing	Hyoseop Shin, Bongki Moon, Sukho Lee	International Conference on Management of Data	2000	1	422	
•••						•••		
499495	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	journa
499496	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	journal
499497	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	conf/sigmod/At
499498	276347	Replication, consistency, and practicality: ar	Todd Anderson, Yuri Breitbart, Henry F. Korth,	International Conference on Management of Data	1998	1	183	journals/s
499499	journals/sigmod/Winslett02a	David DeWitt Speaks Out	Marianne Winslett	SIGMOD Record	2002	1	998	

question 7) Report the records with rec_sim > 0.7 as duplicate records by storing the ids of both records in a list.

```
Out [165...
                   id_x
                                               id_y
             0 335429
                                conf/sigmod/ChoSG00
             1 335465
                             conf/sigmod/Weininger00
                                conf/sigmod/HsuLG00
               336573
               336560
                              conf/sigmod/ChenDLT00
               336587
                           conf/sigmod/BressanGOT00
          148 276353
                            conf/sigmod/BerchtoldK98
          149 276355
                              conf/sigmod/WhiteCF98
           150 276345
                              conf/sigmod/LometW98
           151 276341 conf/sigmod/FernandezFKLS98
                         conf/sigmod/AndersonBKW98
           152 276347
```

153 rows × 2 columns

```
In [166... #Storing in a dictionay to eliminate some repeated ids
dic
dic ={}

for i in range(len(df_du["id_x"])):
    key = df_du.loc[i,"id_x"]

    if key not in dic:
        dic[key] = []
        dic[key].append(df_du.loc[i,"id_y"])

    else:
        dic[key].append(df_du.loc[i,"id_y"])

print("total ids repeated",len(dic.keys()))
dic1 = dic.copy()
```

QUESTION 8)In the table pub_mappings.csv, you can find the actual mappings (the ids of the correct duplicate records). Compare the accuracy of this method by counting the number of duplicate records that you discovered correctly.

```
In [167...
         dic = dic1.copy()
          real = pd.read csv("Data/Task3/pub mappings.csv")
          #Real count
          real len = len(real)
          #Estimation count
          estimation = len(dic.keys())
          error = (abs(real len - estimation) / real len) * 100
          error
          #Precision in terms of counts number
          precision = 100 -error
          print("precision in count is ",precision,"%")
          #Adjustinf real df columns names
          real.columns = ['idDBLP', 'idACM']
          #Getting just the first element of dic lists to pair
          for i in dic.keys():
              dic[i] = dic[i][0]
          #creating a df with dictionary elements (estimated elements)
          pred = pd.DataFrame(dic.keys(), dic.values())
          pred = pred.reset index()
          pred.columns = ['idDBLP', 'idACM']
          real['idACM']=real['idACM'].astype(str)
          #getting coincidence between real and estimated dfs
          df merged 1 = pred.merge(real, how='outer', on=['idDBLP', 'idACM'], indicator=True)
          #Present in both lists
          a = df merged 1.loc[df merged 1[" merge"] == "both"]
          print("Found ",len(a)," coincidences Out of", len(real))
```

```
precision in count is 75.26881720430107 % Found 89 coincidences Out of 93
```

question 9) Record the running time of the method when processing the pairwise similarity between the 1000 records.

```
In [168... import time
start_time = time.time()
```

```
import pandas
from py stringmatching import similarity measure as sm
df = df pub.copy()
df["test"] = 1
df["row"] = df.index
rela = df.merge(df, on= "test", how = 'left', indicator = True).drop duplicates()
rela = rela[rela.row x != rela.row y]
rela
group = rela[['row x', 'row y']].agg(frozenset, axis=1)
rela = (rela
.groupby(group, as index=False) # you can also group by [group, 'Score']
 .agg(**{c: (c, 'first') for c in rela},
rela
rel= rela.copy()
rel = rel[["title x", "title y"]]
lev sim = sm.levenshtein.Levenshtein()
rel["s t"] = rel.apply(lambda x: lev sim.get sim score(x['title x'], x['title y']),
axis=1)
rel1 = rel.copy()
from py stringmatching import similarity measure as sm
rel = rela.copy()
rel = rel[["authors x", "authors y"]]
jaro sim = sm.jaro.Jaro()
rel["s a"] = rel.apply(lambda x: jaro sim.get raw score(x['authors x'],
x['authors y']), axis=1)
rel2 = rel.copy()
rel2
from py stringmatching import similarity measure as sm
rel= rela.copy()
rel = rel[["venue x","venue y"]]
```

```
aff = sm.affine.Affine(gap start = 1, gap continuation = 0.1, \
                       sim func = lambda s1, s2: (int(1 if s1 == s2 else 0)))
rel["s c"] = rel.apply(lambda x: aff.get raw score(x['venue x'], x['venue y'])/
min(len(x['venue x']),len(x['venue y'])), axis=1)
rel3 = rel.copy()
dic = {True:1, False:0}
df["test"] = 1
rel= rela.copy()
rel = rel[["year x", "year y"]]
rel["s y"] = rel["year x"] ==rel["year y"]
rel["s y"] = rel["s y"].replace(dic)
rel4 = rel.copy()
df = rela.copy()
df["rec sim"] = (rel1["s t"]*.5) + (rel2["s a"]*.2) + (rel3["s c"]*.2) +
(rel4["s y"]*.1)
df
df dup = df.loc[df["rec sim"]> 0.7]
df dup.head(50)
df du = df dup[["id x","id y"]]
df du.reset index(inplace=True, drop=True)
df du
#Storing in a dictionay
dic ={}
for i in range(len(df du["id x"])):
    key = df du.loc[i,"id x"]
    if key not in dic:
       dic[key] = []
        dic[key].append(df du.loc[i,"id y"])
    else:
        dic[key].append(df du.loc[i,"id y"])
```

```
dic
dic1 = dic.copy()
print("total ids repeated",len(dic1.keys()))

#saving total time in a variable
q1 = "--- %s seconds ---" % (time.time() - start_time)
print(q1)
```

```
total ids repeated 116
--- 398.79845905303955 seconds ---
```

Task 3.2

Repeat question1 but compare only the records from table publications_B1.csv with those in publications_B2.csv (do not compare the records that exist in the same file). That is, you will compare each record from the 500 records in the first table with all records in the second table. Compute the accuracy and the running time and compare the running time with the running time that was obtained in guestion 1.

```
In [169...
          import time
          start time = time.time()
          import pandas
          from py stringmatching import similarity measure as sm
          df pub1= pd.read csv("Data/Task3/publications B1.csv")
          df pub2= pd.read csv("Data/Task3/publications B2.csv")
          df1 = df publ.copy()
          df2 = df pub2.copy()
          df1["test"] = 1
          df1["row"] = df1.index
          df2["test"] = 1
          df2["row"] = df2.index
          rela = df1.merge(df2, on= "test", how = 'left', indicator = True).drop duplicates()
          rel= rela.copy()
          rel = rel[["title x","title y"]]
          lev sim = sm.levenshtein.Levenshtein()
          rel["s t"] = rel.apply(lambda x: lev sim.get sim score(x['title x'], x['title y']),
          axis=1)
          rel1 = rel.copy()
          from py stringmatching import similarity measure as sm
```

```
rel= rela.copy()
rel = rel[["authors x", "authors y"]]
jaro sim = sm.jaro.Jaro()
rel["s a"] = rel.apply(lambda x: jaro sim.get raw score(x['authors x'],
x['authors y']), axis=1)
rel2 = rel.copy()
rel2
rel = rela.copy()
rel = rel[["venue x", "venue y"]]
aff = sm.affine.Affine(gap start = 1, gap continuation = 0.1, \
                       sim func = lambda s1, s2: (int(1 if s1 == s2 else 0)))
rel["s c"] = rel.apply(lambda x: aff.get raw score(x['venue x'], x['venue y'])/
min(len(x['venue x']),len(x['venue y'])), axis=1)
rel3 = rel.copy()
dic = {True:1, False:0}
rel = rela.copy()
rel = rel[["year x", "year y"]]
rel["s y"] = rel["year x"] ==rel["year y"]
rel["s y"] = rel["s y"].replace(dic)
rel4 = rel.copy()
df = rela.copy()
df["rec sim"] = (rel1["s t"]*.5) + (rel2["s a"]*.2) + (rel3["s c"]*.2) +
(rel4["s y"]*.1)
df
df dup = df.loc[df["rec sim"]> 0.7]
df dup.head(50)
df du = df dup[["id x","id y"]]
```

```
df_du.reset_index(inplace=True, drop=True)
 #Storing in a dictionay
 dic ={}
for i in range(len(df du["id x"])):
    key = df du.loc[i,"id x"]
    if key not in dic:
        dic[key] = []
        dic[key].append(df du.loc[i,"id y"])
    else:
        dic[key].append(df du.loc[i,"id y"])
dic2 = dic.copy()
print("total ids repeated", len(dic2.keys()))
q2 = "--- %s seconds ---" % (time.time() - start time)
print(q2)
df du
total ids repeated 93
--- 167.38291811943054 seconds ---
                                id_y
```

Out [169... id_x

0	304589	conf/sigmod/BouguettayaBH99
1	304590	conf/sigmod/BaruGLMPVC99
2	306112	journals/sigmod/JenningsNF98
3	304573	conf/sigmod/BraumandIKK99
4	304568	conf/sigmod/JarkeQBLMS99
•••	•••	
98	362136	journals/sigmod/Bussche00
99	363954	journals/tods/BaralisW00
100	373709	journals/sigmod/MeltonMJKSZ01
101	375664	conf/sigmod/HanPDW01
102	362091	journals/sigmod/KantM00

103 rows × 2 columns

```
#comparing total times
print("total time q1=" , q1 )
print("total time q2=" , q2 )
```

```
total time q1= --- 398.79845905303955 seconds --- total time q2= --- 167.38291811943054 seconds ---
```

```
In [171...
         dic = dic2.copy()
          real = pd.read csv("Data/Task3/pub_mappings.csv")
          #Real count
          real len = len(real)
          #Estimation count
          estimation = len(dic.keys())
          error = (abs(real len - estimation) / real len) * 100
          error
          #Precision in terms of counts number
          precision = 100 -error
          print("precision in count is ",precision,"%")
          #Adjustinf real df columns names
          real.columns = ['idDBLP', 'idACM']
          #Getting just the first element of dic lists to pair
          for i in dic.keys():
             dic[i] = dic[i][0]
          #creating a df with dictionary elements (estimated elements)
          pred = pd.DataFrame(dic.keys(), dic.values())
          pred = pred.reset index()
          pred.columns = ['idDBLP', 'idACM']
          pred['idACM']=pred['idACM'].astype(str)
          real['idACM']=real['idACM'].astype(str)
          #getting coincidence between real and estimated dfs
          df merged 1 = pred.merge(real, how='outer', on=['idDBLP', 'idACM'], indicator=True)
          #Present in both lists
          a = df merged 1.loc[df merged 1[" merge"] == "both"]
          print("Found ", len(a)," coincidences Out of", len(real))
          df merged 1
```

```
precision in count is 100.0 % Found 89 coincidences Out of 93
```

Out[171		idDBLP	idACM	_merge
	0	conf/sigmod/BouguettayaBH99	304589	both
	1	conf/sigmod/BaruGLMPVC99	304590	both
	2	journals/sigmod/JenningsNF98	306112	both
	3	conf/sigmod/BraumandIKK99	304573	both
	4	conf/sigmod/JarkeQBLMS99	304568	both
	•••		•••	•••
	92	journals/sigmod/KantM00	362091	both
	93	conf/sigmod/Larson01	375792	right_only
	94	conf/sigmod/ClossmanSHKPB98	276352	right_only

95 journals/sigmod/SnodgrassGIMSU98 290599 right_only

journals/sigmod/OukselS99 309849 right_only

97 rows × 3 columns

96

Tn	Γ.	-		
	L .			
			_	