

TEOREMA DE UNICIDAD DE EXTENSIONES

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 13) 06.MARZO.2023

Medidas definidas sobre Generadores

Sea X conjunto no vacío. Consideremos el caso de $\mathcal{A}=\sigma(\mathcal{S})$, una σ -álgebra en X generada por $\mathcal{S}\subseteq X$, donde \mathcal{S} es cerrado bajo intersecciones finitas. Afirmamos que para definir una medida en \mathcal{A} , es suficiente definirla esta medida en \mathcal{S} .

En efecto, sea $\mu: \mathcal{S} \to \overline{\mathbb{R}}$, y consideremos conjuntos $A, B \in \mathcal{S}$, disjuntos. De las propiedades vistas en el aula anterior, podemos definir la μ de los conjuntos $A \cup B$ por

$$\mu(\mathsf{A} \cup \mathsf{B}) = \mu(\mathsf{A}) + \mu(\mathsf{B}) - \mu(\mathsf{A} \cap \mathsf{B}).$$

En el caso finito, si establecemos $\mu(X)=M<\infty$, Entonces también podemos definir μ en A^c y B^c mediante

$$\mu(A^{c}) = \mu(X - A) = \mu(X) - \mu(A), \qquad \mu(B^{c}) = \mu(X - B) = \mu(X) - \mu(B).$$

y podemos definir también

$$\mu(A-B) = \mu(A) - \mu(A\cap B)$$
 y $\mu(B-A) = \mu(B) - \mu(A\cap B)$.

Podemos generalizar lo anterior a cualquier unión finita de elementos de ${\cal S}$ o sus complementos:

Medidas definidas sobre Generadores

$$\mu\Big(\bigcup_{k=1}^n A_k\Big) = \sum_{k=1}^n \mu(A_k) - \sum_{i< j} \mu(A_i \cap A_j) + \sum_{i< j< k} \mu(A_i \cap A_j \cap A_k) + \ldots + (-1)^n \mu\Big(\bigcap_{k=1}^n A_k\Big).$$

Más aún, como $\mathcal{A}=\sigma(\mathcal{S})$, en \mathcal{A} también están consideradas las uniones (e intersecciones) enumerables de elementos en \mathcal{S} . Si $\{A_k\}_{k\geq 1}$ es una secuencia de elementos disjuntos a pares en \mathcal{S} , la propiedade de σ -aditividad podemos definir la medida en la unión de todos los A_k por

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) = \sum_{k=1}^{\infty} \mu(A_k).$$

(**Pregunta**: ¿Qué ocurre si los A_k no son disjuntos a pares?)

De lo anterior, surgen algunas preguntas naturales:

- ¿Es posible construir medidas a partir de definirlas sobre un conjunto generador?
- Si es así, cómo garantizo la existencia? ¿O la unicidad?

Recordemos que un **sistema de Dynkin** en X es una colección \mathcal{D} de subconjuntos de X que cumple:

- i) $X \in \mathcal{D}$,
- ii) $A \in \mathcal{D} \implies A^c \in \mathcal{D}$,
- iii) Si $\{A_k\}_{k\geq 1}\subseteq \mathcal{D}$, son disjuntos a pares $(A_i\cap A_j=\varnothing, \text{ para } i\neq j)$, entonces la unión disjunta $\bigcup_k A_k\in \mathcal{D}$.

Propiedades:

- Si $\mathcal D$ es un sistema de Dynkin, entonces $\mathcal D$ es σ -álgebra $\Leftrightarrow \mathcal D$ es π -sistema.
- Si $S \subseteq \mathcal{P}(X)$ es estable bajo intersecciones (finitas), entonces $\delta(S) = \sigma(S)$.

Teorema (Unicidad de Extensión de Medidas)

Sea (X, A) un espacio mesurable, y suponga que $A = \sigma(S)$ es generada por una colección $S \subseteq \mathcal{P}(X)$ que

- i) es estable bajo intersecciones finitas (E, $F \in S \Rightarrow E \cap F \in S$),
- ii) existe una secuencia exhaustiva $\{G_k\}_{k\geq 1}$ en S $(G_k\nearrow X)$.

Entonces, si μ y ν son dos medidas que coinciden en \mathcal{S} (μ (E) = ν (E), \forall E \in \mathcal{S}) y son finitas para todos elemento de la secuencia exhaustiva (μ (G_k) = ν (G_k) < ∞ , \forall k \geq 1), entonces $\mu = \nu$ coinciden en todo \mathcal{A} .

Prueba: Para cada $k \ge 1$ definimos el conjunto

$$\mathcal{D}_{k} = \{ A \in \mathcal{A} : \ \mu(A \cap G_{k}) = \nu(A \cap G_{k}) \}.$$

Afirmamos que los \mathcal{D}_k son sistemas de Dynkin.

- (i) Como $\varnothing \cap G_k = \varnothing$, entonces $\mu(\varnothing \cap G_k) = O = \nu(\varnothing \cap G_k)$, de modo que $\varnothing \in \mathcal{D}_k$.
- (ii) Si $A \in \mathcal{D}_k$, entonces $\mu(A \cap G_k) = \nu(A \cap G_k)$. Luego

$$\mu(A^{c} \cap G_{k}) = \mu(G_{k} - A) = \mu(G_{k} - (A \cap G_{k})) = \mu(G_{k}) - \mu(A \cap G_{k})$$

= $\nu(G_{k}) - \nu(A \cap G_{k}) = \nu(G_{k} - A) = \nu(A^{c} \cap G_{k}),$

y esto muestra que $A^c \in \mathcal{D}_k$.

(iii) Sea $\{A_n\}_{n\geq 1}\subseteq \mathcal{D}_k$, una colección de conjuntos disjuntos a pares. Entonces $\mu(A_n\cap G_k)=\nu(A_n\cap G_k)\ \forall n\geq 1$. Luego,

$$\mu\Big(\bigcup_{n}A_{n}\cap G_{k}\Big) = \mu\Big(\bigcup_{n}(A_{n}\cap G_{k})\Big) = \sum_{n\geq 1}\mu(A_{n}\cap G_{k}) = \sum_{n\geq 1}\nu(A_{n}\cap G_{k})$$
$$= \nu\Big(\bigcup_{n}(A_{n}\cap G_{k})\Big) = \nu\Big(\bigcup_{n}A_{n}\cap G_{k}\Big),$$

lo que muestra que $\bigcup_n A_n \in \mathcal{D}_k$.

Así que esto muestra la afirmación, y todos los \mathcal{D}_k son sistemas de Dynkin.

Sea $E \in \mathcal{S}$. Para cada $k \ge 1$, se tiene que $G_k \in \mathcal{S}$. Como \mathcal{S} es estable bajo intersecciones finitas, entonces $E \cap G_k \in \mathcal{S}$, $\forall k \ge 1$. Así,

$$\mu(\mathsf{E}\cap\mathsf{G}_k)=\nu(\mathsf{E}\cap\mathsf{G}_k),$$

de modo que $E \in \mathcal{D}_k$, $\forall k \geq 1$. Esto muestra que $S \subseteq \mathcal{D}_k$, para todo $k \geq 1$.

Ahora, del Teorema π - λ , como S es estable bajo intersecciones, entonces $\delta(S) = \sigma(S)$. Pero, siendo $S \subseteq \mathcal{D}_k$, y los \mathcal{D}_k son sistemas de Dynkin, entonces

$$\sigma(S) = \delta(S) \subseteq \mathcal{D}_k, \ \forall k \geq 1.$$

Además, $A = \sigma(S) \subseteq \mathcal{D}_k \subseteq A$, implica que $\mathcal{D}_k = A$ para todo $k \ge 1$. En particular,

$$\mu(A \cap G_k) = \nu(A \cap G_k)$$
, para todo $A \in \mathcal{A}$, y todo $k \ge 1$.

Sea $A \in \mathcal{A}$. Como $\{G_k\}_{k \geq 1}$ es una secuencia exhaustiva en \mathcal{S} , entonces $G_k \nearrow X$. De ahí que

$$A \cap G_k \nearrow A \cap X = A$$
, para todo $A \in A$.

Por continuidad inferior de μ y ν , entonces

$$\mu(A) = \mu(\lim_{k} (A \cap G_{k})) = \lim_{k} \mu(A \cap G_{k}) = \lim_{k} \nu(A \cap G_{k}) = \nu(\lim_{k} (A \cap G_{k}))$$
$$= \nu(A).$$

Esto muestra que $\mu(A)=\nu(A)$, para todo $A\in\mathcal{A}$, de modo que $\mu\equiv\nu$ en \mathcal{A} . \square

Pregunta: ¿Por qué la medida de Lebesgue es importante?

Teorema (Invarianza de la Medida de Lebesgue)

i) La medida de Lebesgue λ^n en \mathbb{R}^n es invariante por traslaciones, esto es

$$\lambda^n(\mathbf{x}+B)=\lambda^n(B), \qquad ext{para todo } B\in\mathcal{B}(\mathbb{R}^n), \ orall \mathbf{x}\in\mathbb{R}^n.$$

ii) Toda medida μ en $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ que es invariante bajo traslaciones, es de la forma

$$\mu = k\lambda^n$$
, para alguna constante $0 \le k < \infty$.

De hecho, $k = \mu([0, 1)^n)$.

Prueba: 1.- Mostraremos que si $B \in \mathcal{B}(\mathbb{R}^n)$ y si $\mathbf{x} \in \mathbb{R}^n$, entonces el conjunto $\mathbf{x} + B \in \mathcal{B}(\mathbb{R}^n)$. (Traslaciones llevan borelianos en borelianos).

Sea $\in \mathbb{R}^n$. Consideremos la colección

$$\mathcal{A}_{\mathbf{x}} = \{B \in \mathcal{B}(\mathbb{R}^n) : \ \mathbf{x} + B \in \mathcal{B}(\mathbb{R}^n)\}.$$

Afirmamos que A_x es una σ -álgebra:

- $\mathbf{x} + \emptyset = \emptyset \in \mathcal{B}(\mathbb{R}^n)$. Luego, $\emptyset \in \mathcal{A}_{\mathbf{x}}$.
- Si $A \in \mathcal{A}_{\mathbf{x}}$, entonces $\mathbf{x} + A \in \mathcal{B}(\mathbb{R}^n)$. Como $\mathbf{x} + A^c = (\mathbf{x} + A)^c \in \mathcal{B}(\mathbb{R}^n)$, tenemos que $A^c \in \mathcal{A}_{\mathbf{x}}$.
- Sea $\{A_k\}_{k\geq 1}\subseteq \mathcal{A}_{\mathbf{x}}$. Entonces $\mathbf{x}+A_k\in \mathcal{B}(\mathbb{R}^n)$, para cada $k\geq 1$. Como $\mathbf{x}+\bigcup_k A_k=\bigcup_k (\mathbf{x}+A_k)\in \mathcal{B}(\mathbb{R}^n)$, tenemos que $\bigcup_k A_k\in \mathcal{A}_{\mathbf{x}}$.

Esto muestra que $A_{\mathbf{x}}$ es una σ -álgebra, para todo $\mathbf{x} \in \mathbb{R}^n$.

Por otro lado, afirmamos que los rectángulos semi-abiertos

$$\mathcal{J} = \mathcal{J}(\mathbb{R}^n) = \Big\{ \prod_{i=1}^n [a_i, b_i) : a_i < b_i \Big\}$$

están todos contenidos en A_x .

En efecto, sea $I = \prod_{i=1}^{n} [a_i, b_i]$ cualquier intervalo semi-abierto en \mathcal{J} . Si $\mathbf{x} = (x_1, x_2, \dots, x_n)$, entonces

$$\mathbf{x}+\prod_{i=1}^n[a_i,b_i)=\prod_{i=1}^n[x_i+a_i,\ x_i+b_i)\in\mathcal{B}(\mathbb{R}^n).$$

De ahí que $\prod_{i=1}^n [a_i, b_i) \in \mathcal{A}_{\mathbf{x}}$. Esto muestra que $\mathcal{J} \subseteq \mathcal{A}_{\mathbf{x}}$. Luego, $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{J}) \subseteq \mathcal{A}_{\mathbf{x}} \subseteq \mathcal{B}(\mathbb{R}^n)$.

y hemos probado que $\mathcal{A}_{\mathbf{x}} = \mathcal{B}(\mathbb{R}^n)$, para todo $\mathbf{x} \in \mathbb{R}^n$.

En particular, $\mathbf{x} + B \in \mathcal{B}(\mathbb{R}^n)$, para todo $B \in \mathcal{B}(\mathbb{R}^n)$, y todo $\mathbf{x} \in \mathbb{R}^n$, (lo que muestra que traslaciones de borelianos son de nuevo borelianos).

2.- Fijado $\mathbf{x} \in \mathbb{R}^n$, definimos ahora una función $\nu_{\mathbf{x}} : \mathcal{B}(\mathbb{R}^n) \to \mathbb{R}$ dada por $\nu_{\mathbf{x}}(B) = \lambda^n(\mathbf{x} + B)$.

Afirmamos que $\nu_{\mathbf{x}}$ es una medida en $\mathcal{B}(\mathbb{R}^n)$:

- i) $\nu_{\mathbf{x}} \geq \mathbf{o}$, ya que $\lambda^n \geq \mathbf{o}$.
- ii) $\nu_{\mathbf{x}}(\varnothing) = \lambda^n(\mathbf{x} + \varnothing) = \lambda^n(\varnothing) = \mathbf{0}.$
- iii) Si $\{A_k\}_{k>1}$ es una colección de subconjuntos disjuntos a pares en (\mathbb{R}^n) , entonces

$$\nu_{\mathbf{x}}\Big(\bigcup_{k}A_{k}\Big) = \lambda^{n}\Big(\mathbf{x} + \bigcup_{k}A_{k}\Big) = \lambda^{n}\Big(\bigcup_{k}(\mathbf{x} + A_{k})\Big) = \sum_{k=1}\lambda^{n}(\mathbf{x} + A_{k}) = \sum_{k=1}\nu_{\mathbf{x}}(A_{k}),$$

lo que muestra que $\nu_{\mathbf{x}}$ es una medida (positiva) en $\mathcal{B}(\mathbb{R}^n)$.

Además, para un intervalo $I = \prod_{i=1}^n [a_i, b_i) \in \mathcal{B}(\mathbb{R}^n)$, vale

$$\nu_{\mathbf{x}}(I) = \mu_{\mathbf{x}}\Big(\prod_{i=1}^n [a_i, b_i)\Big) = \lambda^n\Big(\mathbf{x} + \prod_{i=1}^n [a_i, b_i)\Big) = \lambda^n\Big(\prod_{i=1}^n [x_i + a_i, x_i + b_i)\Big) = \lambda^n(I).$$

Así, $\nu_{\mathbf{x}}(I) = \lambda^n(I)$, para todo intervalo semi-abierto $I \in \mathcal{J}$.

- 3.- Mostramos ahora que la colección $\mathcal J$ de intervalos semi-abiertos cumple con las condiciones requeridas en el Teorema de Unicidad de Extensión.
 - i) Sean $I_1 = \prod_{i=1}^n [a_i, b_i)$ e $I_2 = \prod_{i=1}^n [c_i, d_i)$ intervalos semi-abiertos. Para calcular la intersección, tenemos dos casos:
 - Si $c_i < b_i$ para todo $1 \le i \le n$: En ese caso, definimos $\alpha_i = \max\{a_i, c_i\}$ y $\beta_i = \min\{b_i, d_i\}$. Tenemos que

$$I_1 \cap I_2 = \prod_{i=1}^n [a_i, b_i) \cap \prod_{i=1}^n [c_i, d_i) = \prod_{i=1}^n [\max\{a_i, c_i\}, \ \min\{b_i, d_i\}) = \prod_{i=1}^n [\alpha_i, \beta_i).$$

de nuevo un intervalo semi-abierto en \mathcal{J} .

• Si $b_i < c_i$ para algún i, entonces $[a_i, b_i) \cap [c_i, d_i) = \emptyset$ e $l_1 \cap l_2 = \emptyset \in \mathcal{J}$.

ii) Para cada $k \geq 1$, definamos $I_k = \prod_{i=1}^n [-k, k]$. La colección $\{I_k\}_{k \geq 1}$ está en \mathcal{J} y define una secuencia ascendente $I_1 \subset I_2 \subset I_3 \subset \ldots$ cuyo límite es

$$\bigcup_{k}I_{k}=\bigcup_{k}\prod_{i=1}^{n}[-k,k)=\mathbb{R}^{n}.$$

Así, $\{I_k\}$ define una secuencia exhaustiva en \mathcal{J} . Además, $\nu_{\mathbf{x}}(I_k) = \lambda^n(I_k) = (2k)^n < \infty$, para todo $k \ge 1$.

Así, $\nu_{\mathbf{X}}$ y λ^n son dos medidas que coinciden en \mathcal{J} . Como \mathcal{J} es un generador para la σ -álgebra de Borel de \mathbb{R}^n , \mathcal{J} es estable bajo intersecciones finitas, y posee una secuencia exhaustiva, de elementos con medida finita, entonces por el Teorema de Unicidad de Extensión, $\nu_{\mathbf{X}} = \lambda^n$, coinciden en $\mathcal{B}(\mathbb{R}^n)$.

Esto muestra que $\lambda^n(\mathbf{x} + B) = \nu_{\mathbf{x}}(B) = \lambda^n(B)$, $\forall \mathbf{B} \in \mathcal{B}(\mathbb{R}^n)$, $\forall \mathbf{x} \in \mathbb{R}^n$, y portanto la medida de Lebesgue es invariante por traslaciones.

Para mostrar la segunda parte (ii), sea $\mu: \mathcal{B}(\mathbb{R}^n) \to \mathbb{R}$ una medida en $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ que es invariante bajo traslaciones.

Tome $I = \prod_{i=1}^n [a_i, b_i)$, un intervalo semi-abierto, con $a_i, b_i \in \mathbb{Q}$. Esto es, $I \in \mathcal{J}_{\mathbb{Q}} = \mathcal{J}_{\mathbb{Q}}(\mathbb{R}^n)$.

Ahora, observe que existen $M \in \mathbb{N}$, $k(I) \in \mathbb{N}$, y existen puntos $\mathbf{x}_i \in \mathbb{R}^n$ tales que

$$I = \bigcup_{i=1}^{k(I)} (\mathbf{x}_i + [0, \frac{1}{M})^n).$$

Usamos ahora la invarianza por traslación de las medidas μ y λ^n . Tenemos:

$$\mu(I) = k(I) \cdot \mu([0, \frac{1}{M})^n), \qquad \qquad \mu([0, 1]^n) = M^n \cdot \mu([0, \frac{1}{M})^n),$$

$$\lambda^n(I) = k(I) \cdot \lambda^n([0, \frac{1}{M})^n), \qquad \qquad \lambda^n([0, 1]^n) = M^n \cdot \lambda^n([0, \frac{1}{M})^n).$$

Juntando la primera y segunda identidad

$$\mu(I) = \frac{k(I)}{M^n} \mu([0,1)^n).$$

Juntando la tercera y cuarta identidad

$$\lambda^{n}(I) = \frac{k(I)}{M^{n}} \underbrace{\lambda^{n}([0,1)^{n})}_{=1} = \frac{k(I)}{M^{n}}.$$

Luego,
$$\mu(I) = \underbrace{\mu\big([\mathtt{O},\mathtt{1})^n\big)}_{-h} \cdot \lambda^n\big([\mathtt{O},\mathtt{1})^n\big).$$

Lo anterior muestra que $\mu(I) = k \cdot \lambda^n(I)$, para todo intervalo $I \in \mathcal{J}_{\mathbb{Q}}$.

Como $\mathcal{J}_{\mathbb{Q}}$ es un generador para la σ -álgebra de Borel $\mathcal{B}(\mathbb{R}^n)$, nos gustaría usar ahora el Teorema de Unicidad para extender esta igualdad $\mu = k\lambda^n$ a todo $\mathcal{B}(\mathbb{R}^n)$.

De nuevo, se debe mostrar que

i) $\mathcal{J}_{\mathbb{Q}}$ es cerrado bajo intersecciones finitas, ya que

$$I_1 \cap I_2 = \prod_{i=1}^n [a_i, b_i) \cap \prod_{i=1}^n [c_i, d_i) = \prod_{i=1}^n [\max\{a_i, c_i\}, \min\{b_i, d_i\}) = \prod_{i=1}^n [\alpha_i, \beta_i),$$

con $\alpha_i = \max\{a_i, c_i\}, \beta_i = \min\{b_i, d_i\} \in \mathbb{Q}$, es de nuevo un intervalo semi-abierto en $\mathcal{J}_{\mathbb{Q}}$.

ii) La secuencia de intervalos $I_k = \prod_{i=1}^n [-k,k) \in \mathcal{J}_{\mathbb{Q}}$, define de nuevo una secuencia exhaustiva en $\mathcal{J}_{\mathbb{Q}}$, con $\lambda^n(I_k) = (2k)^n < \infty$, para todo $k \geq 1$.

Ejemplos

Finalmente, el Teorema de Unicidad de Extensión de medidas, implica que $\mu = k \cdot \lambda^n$ coinciden en toda la σ -álgebra de Borel $\mathcal{B}(\mathbb{R}^n)$.

Así, las únicas medidas positivas, que son invariantes bajo traslaciones en \mathbb{R}^n , son aquellas múltiplos de la medida de Lebesgue. (O sea, salvo factores constantes, la medida de Lebesgue es la única invariante por traslaciones). Lo que completa el resultado. \square