which implies that

$$\dim(T) = \operatorname{codim}(U^{\perp}) - \dim(S) = \operatorname{codim}(U^{\perp}) - \operatorname{codim}(W)$$

SO

$$\dim(U/(U\cap V)) = \dim(W/U^{\perp}) = \operatorname{codim}(U^{\perp}) - \operatorname{codim}(W),$$

and since $\operatorname{codim}(U^{\perp}) = \dim(U)$, we deduce that

$$\dim(U \cap V) = \operatorname{codim}(W).$$

However, by Proposition 29.13, we have $\dim(U \cap V) = \operatorname{codim}((U \cap V)^{\perp})$, so $\operatorname{codim}(W) = \operatorname{codim}((U \cap V)^{\perp})$, and since $W \subseteq W^{\perp \perp} = (U \cap V)^{\perp}$, we must have $W = (U \cap V)^{\perp}$, as claimed.

In view of Proposition 29.12, we can make the following definition.

Definition 29.13. Let $\varphi \colon E \times F \to K$ be any sesquilinear form. If E/F^{\perp} and F/E^{\perp} are finite-dimensional, then their common dimension is called the rank of the form φ . If E/F^{\perp} and F/E^{\perp} have infinite dimension, we say that φ has infinite rank.

Not surprisingly, the rank of φ is related to the ranks of l_{φ} and r_{φ} .

Proposition 29.15. Let $\varphi \colon E \times F \to K$ be any sesquilinear form. If φ has finite rank r, then l_{φ} and r_{φ} have the same rank, which is equal to r.

Proof. Because for every $u \in E$,

$$l_{\varphi}(u)(y) = \overline{\varphi(u,y)}$$
 for all $y \in F$,

and for every $v \in F$,

$$r_{\varphi}(v)(x) = \varphi(x, v)$$
 for all $x \in E$,

it is clear that the kernel of $l_{\varphi} \colon \overline{E} \to F^*$ is equal to F^{\perp} and that, the kernel of $r_{\varphi} \colon \overline{F} \to E^*$ is equal to E^{\perp} . Therefore, $\operatorname{rank}(l_{\varphi}) = \dim(\operatorname{Im} l_{\varphi}) = \dim(E/F^{\perp}) = r$, and similarly $\operatorname{rank}(r_{\varphi}) = \dim(F/E^{\perp}) = r$.

Remark: If the sesquilinear form φ is represented by the matrix $n \times m$ matrix M with respect to the bases (e_1, \ldots, e_m) in E and (f_1, \ldots, f_n) in F, it can be shown that the matrix representing l_{φ} with respect to the bases (e_1, \ldots, e_m) and (f_1^*, \ldots, f_n^*) is \overline{M} , and that the matrix representing r_{φ} with respect to the bases (f_1, \ldots, f_n) and (e_1^*, \ldots, e_m^*) is M^{\top} . It follows that the rank of φ is equal to the rank of M.