# o Orthogonalité et distance dans l'espace

# $\Diamond$

### Vecteur de l'espace

Un vecteur de l'espace est défini par une direction de l'espace, un sens et une norme (longueur).



# Remarques

Les vecteurs de l'espace suivent les mêmes règles de construction qu'en géométrie plane : relation de Chasles, propriétéz en rapport avec la colinéarité,...

# 1 Produit scalaire de deux vecteurs

#### 1.1 Définition



# Produit scalaire de l'espace

Soit  $\overrightarrow{u}$  et  $\overrightarrow{v}$  deux vecteurs de l'espace. Il existe un plan  $\mathscr{P}$  contenant un représentant de chacun des vecteurs trois points A, B et C tels que :

$$\overrightarrow{u} = \overrightarrow{AB}$$

$$\overrightarrow{v} = \overrightarrow{AC}$$

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos\left(\widehat{BAC}\right) = ||\overrightarrow{u}||.||\overrightarrow{v}||.\cos(\overrightarrow{u};\overrightarrow{v})$$

**Exemple 1** ABCDEFGH est un cube d'arrête a.



On a:

$$\overrightarrow{AB}.\overrightarrow{DG} = \overrightarrow{AB}.\overrightarrow{AF} = AB \times AF\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}a^2$$

## 1.2 Propriétés

Les propriétés du plan sont conservées dans l'espace.

V

# Propriétés

Soit  $\overrightarrow{u}$ ,  $\overrightarrow{v}$  et  $\overrightarrow{w}$  trois vecteurs de l'espace :

$$\overrightarrow{u} \cdot \overrightarrow{u} = ||\overrightarrow{u}||^2$$
.

$$\implies \overrightarrow{u}.\overrightarrow{v} = \overrightarrow{v}.\overrightarrow{u}.$$

$$\implies \overrightarrow{u}.(\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u}.\overrightarrow{v}+\overrightarrow{u}.\overrightarrow{w}$$

$$\implies (\overrightarrow{v} + \overrightarrow{w}).\overrightarrow{u} = \overrightarrow{v}.\overrightarrow{u} + \overrightarrow{w}.\overrightarrow{u}$$

$$\implies (k\overrightarrow{u}).\overrightarrow{v} = \overrightarrow{u}.(k\overrightarrow{v}) = k(\overrightarrow{u}.\overrightarrow{v}), k \in \mathbb{R}.$$

 $\implies \overrightarrow{u} \cdot \overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ sont orthogonaux ou au moins l'un des deux vecteurs est nul.}$ 

### 1.3 Identités remarquables



### Propriétés

Soit  $\vec{u}$  et  $\vec{v}$  deux vecteurs de l'espace :

$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2.$$

$$||\overrightarrow{u} - \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 - 2\overrightarrow{u}.\overrightarrow{v} + ||\overrightarrow{v}||^2.$$

# 1.4 Formules de polarisation



# Propriétés

Soit  $\overrightarrow{u}$  et  $\overrightarrow{v}$  deux vecteurs de l'espace :

$$\implies \overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left( ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2 - ||\overrightarrow{u} - \overrightarrow{v}||^2 \right)$$

$$\implies \overrightarrow{u}.\overrightarrow{v} = \frac{1}{2}\left(||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2\right)$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{4} \left( ||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u} - \overrightarrow{v}||^2 \right)$$

# 2 Produit scalaire dans un repère orthonormé

# 2.1 Base et repère orthonormé



### Base de l'espace

Une base  $(\vec{i}; \vec{j}; \vec{k})$  de l'espace est orthonormée si :

- $\implies$  les vecteurs  $\overrightarrow{i}$ ,  $\overrightarrow{j}$  et  $\overrightarrow{k}$  sont deux à deux orthogonaux.
- $\implies$  les vecteurs  $\overrightarrow{i}$ ,  $\overrightarrow{j}$  et  $\overrightarrow{k}$  sont unitaires :

$$\overrightarrow{i} = \overrightarrow{j} = \overrightarrow{k} = 1$$



# Repère de l'espace

Une repère  $(0; \vec{i}; \vec{j}; \vec{k})$  de l'espace est orthonormé, si sa base  $(\vec{i}; \vec{j}; \vec{k})$  est orthormée.

### 2.2 Expression analytique du produit scalaire



### Propriétés

Soit  $\vec{u}(x, y, z)$  et  $\vec{v}(x', y', z')$  deux vecteurs de l'espace muni d'un repère orthonormé  $(O; \vec{i}; \vec{j}; \vec{k})$ . Alors :

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' + zz'$$

$$||\overrightarrow{u}|| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}} = \sqrt{x^2 + y^2 + z^2}$$

### 2.3 Expression de la distance entre deux points



# Propriétés

Soit  $A(x_A, y_A, z_A)$  et  $B(x_B, y_B, z_B)$  deux points de l'espace :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

# 3 Orthogonalité

### 3.1 Orthogonalité de deux droites



### Définitions

- Deux droites de l'espace sont orthogonales lorsque leurs parallèles passant par le même point quelconque sont perpendiculaires.
- Deux droites de l'espace sont orthogonales lorsque les vecteurs directeurs de ces droites sont orthogonaux.
- Deux droites de l'espace sont perpendiculaires lorsqu'elles sont orthogonales et sécantes ( et par conséquent coplanaires ).
- Des droites perpendiculaires sont orthogonales mais la réciproque n'est pas forcement vraie.

**Exemple 2** ABCDEFGH est un cube.



Les droites (EH) et (EF) sont perpendiculaires : EFGH est un carré et (EF) et (EH) sont sécantes en E.

Les droites (BC) et (EF) sont orthogonales : (BC)//(FG) et (FG) est perpendiculaire à (EF), leur point de concours est en F.

Pourtant la droite (BC) est dans le plan (ABCD) et la droite (EF) est dans le plan (EFGH) : ces deux plans sont parrallèles par construction du cube donc non sécants. Par conséquent, les droites (BC) et (EF) ne sont pas perpendiculaires.

## 3.2 Orthogonalité d'une droite et d'un plan

### Propriétés

- Une droite  $\Delta$  est orthogonale à un plan  $\mathscr{P}$  si et seulement si elle est orthogonale à deux droites sécantes de  $\mathscr{P}$ .
- riangleq Si une droite  $\Delta$  est orthogonale à un plan  $\mathscr P$  alors elle est orthogonale à toutes les droites de  $\mathscr P$ .

#### **Exemple 3** ABCDEFGH est un cube.



(AE) est perpendiculaire aux droites (AD) et (AB). (AB) et (AD) sont sécantes et définissent le plan (ABC). Donc (AE) est orthogonal au plan (ABC).

**Exemple 4** ABC est un triangle équilatéral. E est le point d'intersection de ses médianes. La droite d passant par E est orthogonale au plan (ABC). La pyramide ABCD est telle que D soit un point de la droite d. Démontrer que les droites (BD) et (AC) sont orthogonales.



La droite d est orthogonale au plan (ABC) donc elle est orthogonale à (AC). La droite (BE) est la médiane issue de B dans le triangle ABC qui est équilatéral, c'est donc également la médiatrice de [AC]:  $(BE) \perp (AC)$ .

La droite (AC) est orthogonale aux deux droites non parallèles (BE) et (ED) du plan (BED) : elle est donc orthogonale au plan (BED) entier.

Par conséquent, (AC) est orthogonale à chacune des droites de (BED), en particulier la droite (BD).

**Exemple 5** Soit un tétraèdre ABCD d'arêtes de longueur l. Démontrer que les arêtes [AD] et [BC] sont orthogonales.



On va se servir du produit scalaire :

$$\overrightarrow{AD}.\overrightarrow{BC}$$

$$= \left(\overrightarrow{AC} + \overrightarrow{CD}\right).\left(\overrightarrow{BC}\right)$$

$$= \overrightarrow{AC}.\overrightarrow{BC} + \overrightarrow{CD}.\overrightarrow{BC}$$

$$= \overrightarrow{CA}.\overrightarrow{CB} - \overrightarrow{CD}.\overrightarrow{CB}$$

$$= CA \times CB \times \cos\left(\frac{\pi}{3}\right) - CD \times CB \times \cos\left(\frac{\pi}{3}\right) \text{ car les triangles sont \'equilat\'eraux}$$

$$= l^2 \times \frac{1}{2} - l^2 \times \frac{1}{2}$$

$$= 0$$

Par conséquent, les droites (AD) et (BC) sont orthogonaux.

# 4 Vecteur normal à un plan



### Définitions

Un vecteur non nul  $\overrightarrow{u}$  de l'espace est normal à un plan  $\mathscr{P}$  lorsqu'il est orthogonal à tout vecteur admettant un représentant dans  $\mathscr{P}$ .



# Propriétés

Soit *A* un point *A* et un vecteur  $\overrightarrow{n}$  non nul de l'espace.

- Arr L'ensemble des points M tels que  $\overrightarrow{AM}$ .  $\overrightarrow{n} = 0$  est un plan de l'espace.



#### Théorème

Un vecteur non nul  $\overrightarrow{n}$  de l'espace est normal à un plan  $\mathscr{P}$ , s'il est orthogonal à deux vecteurs non colinéaires de  $\mathscr{P}$ .

**Exemple 6** ABCDEFGH est un cube.



Démontrer que le vecteur  $\overrightarrow{CF}$  est normal au plan (ABG).

La droite (CF) et la droite (BG) sont perpendiculaires car le quadrilatère FGCB est un carré.

Le plan (FGCB) est orthogonal à la droite (AB) : comme ABCD est un carré, alors (AB)  $\perp$  (BC), comme EFGH est un carré, alors (EF)  $\perp$  (FG), or (EF)//(AB) donc (AB) et (FG) sont orthonogales.

La droite (AB) est alors orthogonale à deux droites non parallèles du plan (EFGH), elle est alors orthogonale au plan entier : en particulier, elle est orthogonale à (CF). On a donc montré que la droite (CF) était orthogonale aux deux droites sécantes (BG) et (AB) du plan (ABG) : elle est donc orthogonale à ce plan entier.

**Exemple 7** Dans un repère orthonormé, on considère les points suivants :

$$A(1;2;-2)$$

$$B(-1;3;1)$$

$$C(2;0;-2)$$

Déterminer un vecteur normal au plan (ABC). On va calculer deux vecteurs du plan (ABC) :

$$\overrightarrow{AB}(-2;1;3)$$

$$\overrightarrow{AC}(1;-2;0)$$

On appelle  $\overrightarrow{u}(x; y; z)$  un vecteur normal de (ABC):

$$\begin{cases}
\overrightarrow{AB} \cdot \overrightarrow{u} = 0 \\
\overrightarrow{AC} \cdot \overrightarrow{u} = 0
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-2x + y + 3z = 0 = 0 \\
x - 2y = 0
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-2x + y + 3z = 0 = 0 \\
2x - 4y = 0
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-2x + y + 3z = 0 = 0 \\
-3y + 3z = 0
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-2x + y + 3z = 0 = 0 \\
y = z
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-2x + y + 3z = 0 = 0 \\
y = z
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-2x + z + 3z = 0 = 0 \\
y = z
\end{cases}$$
on remplace y par z dans la première équation
$$\Leftrightarrow \begin{cases}
-2x + 4z = 0 \\
y = z
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x = 2z \\
y = z
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x = 2z \\
y = z
\end{cases}$$

On peut choisir comme vecteur normal au plan (ABC) le vecteur (2;1;1).

# 5 Projection orthogonale

### 5.1 Projection orthogonale d'un point sur une droite



### Définitions

Soit un point *A* et une droite *d* de l'espace. La projection orthogonale de *A* sur *d* est le point *H* appartenant

La projection orthogonale de A sur d est le point H appartenant à d tel que la droite (AH) soit perpendiculaire à la droite d.

## 5.2 Projection orthogonale d'un point sur un plan



## Définitions

Soit un point A et une plan  $\mathscr{P}$  de l'espace. La projection orthogonale de A sur  $\mathscr{P}$  est le point H appartenant à d tel que la droite (AH) soit perpendiculaire au plan  $\mathscr{P}$ .



# Propriétés

Le projeté orthogonal d'un point M sur un plan  $\mathscr{P}$  est le point H le plus proche de M.



On reprend les notations de l'énoncé de la propriété et on va essayer de montrer que MH < MK quel que soit le point K de  $\mathcal{P}$ , différent de H. Comme  $(MH) \perp (HK)$  par construction du projeté orthogonal, on peut écrire, grace au théorème de Pythagore :

$$MK^2 = MH^2 + HK^2$$

Comme le point  $H \neq K$  alors la distance HK > 0, par conséquent :

 $MK^2 - MH^2 = HK^2 \Rightarrow MK^2 - MH^2 > 0 \Rightarrow MK^2 > MH^2 \Rightarrow MK > MH$  par croissance de la fonction carré sur les nombres positifs

Par conséquent, dès que  $K \neq H$ : MK > MH; ce qui signifie que H est le point de  $\mathcal{P}$  le plus proche de M.

**Exemple 8** On considère un cube ABCDEFGH. Calculer la distance du point G au plan (BDE).



TG TG

L'objectif consiste à trouver le projeté orthogonal K de G sur le plan (BDE) et GK sera la distance cherchée.

On va se placer dans le repère orthonormé  $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$ . Les coordonnée des points *B*, *D et E sont* :

$$B(1;0;0)$$
  
 $D(0;1;0)$   
 $E(0;0;1)$   
 $G(1;1;1)$   
 $donc \overrightarrow{BD} = (-1;1;0)$   
 $\overrightarrow{BE} = (-1;0;1)$ 

Ces deux derniers vecteurs engendrent le plan (BDE) car ils sont non parallèles et sécants.

Appelons  $\overrightarrow{n}(x; y; z)$  un vecteur normal de (BDE):

$$\begin{cases} \overrightarrow{BD} \cdot \overrightarrow{n} = 0 \\ \overrightarrow{BE} \cdot \overrightarrow{n} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + y = 0 \\ -x + z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = y \\ x = z \end{cases}$$

$$\Leftrightarrow \overrightarrow{n} = x(1; 1; 1)$$

On peut décider que  $\vec{n} = (1;1;1)$ .

On suppose que les coordonnées de k sont (a, b, c). Il existe  $k \in \mathbb{R}$  tel que :

$$\overrightarrow{GK} = k \overrightarrow{n}$$
  
 $\Leftrightarrow (a-1;b-1;c-1) = k(1;1;1)$   
 $\Leftrightarrow a = b = c = k+1$ 

De plus, le point K est dans le plan (BDE) donc le vecteur  $\overrightarrow{BK}$  est une droite de ce plan et par conséquent combinaison linéaire des deux vecteurs qui l'engendrent :

$$\exists \mu, \lambda \ \overrightarrow{BK} = \mu \overrightarrow{BD} + \lambda \overrightarrow{BE}$$

$$\Leftrightarrow \exists \mu, \lambda \ (k; k+1; k+1) = (-\mu - \lambda; \mu; \lambda)$$

$$\Rightarrow, en ajoutant les trois coordonnées  $3k + 2 = 0$$$

$$\Rightarrow k = -\frac{2}{3}$$

Finalement:  $\overrightarrow{GK} = \left(-\frac{2}{3}; -\frac{2}{3}; -\frac{2}{3}\right)$  et  $GK = \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2} = \frac{2}{3}\sqrt{3}$ .



Propriétés Soient A un point de l'espace et  $\mathcal P$  un plan passant par un point B et de vecteur normal  $\vec{n}$ .

Soit H le projeté orthogonal de A sur  $\mathcal{P}$ , on a :

$$AH = \frac{|\overrightarrow{AB}.\overrightarrow{n}|}{||\overrightarrow{n}||}$$

**Exemple 9** Reprenons l'exemple précédent et concluons différemment. On a trouvé un vecteur normal  $\vec{n} = (1; 1; 1)$ ; on peut donc écrire :

$$GK = \frac{|\overrightarrow{GB}.\overrightarrow{n}|}{||\overrightarrow{n}||}$$

$$= \frac{|(0;-1;-1).(1;1;1)|}{||(1;1;1)||}$$

$$= \frac{|-2|}{\sqrt{3}}$$

$$= \frac{2}{3}\sqrt{3}$$