Rec'd PCT/PTO 06 MAY 2005

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 13 January 2005 (13.01.2005)

PCT

(10) International Publication Number WO 2005/003292 A2

(51) International Patent Classification7:

C12N

(21) International Application Number:

PCT/US2003/035902

(22) International Filing Date:

12 November 2003 (12.11.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/425,689 12 November 2002 (12.11.2002) US 60/425,536 12 November 2002 (12.11.2002) US PCT/US03/04779

18 February 2003 (18.02.2003) US

- (71) Applicant (for all designated States except US): NORTH-WESTERN UNIVERSITY [US/US]; 1880 Oak Avenue, Suite 100, Evanston, IL 60201 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): STUPP, Samuel, I. [US/US]; 57 E. Delaware Place, Apartment 2802, Chicago, IL 60611 (US). BENIASH, Elia [IL/US]; 4615 Davis Street, Skokie, IL 60076 (US). HARTGERINK, Jeffrey, D. [US/US]; 1115 Elmwood Avenue, Evanston, IL 60202 (US).

- (74) Agent: MILLER, Raymond, A.; Pepper Hamilton LLP, 500 Grant Street, One Mellon Center, 50th Floor, Pittsburgh, PA 15219 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE, EG, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (utility model), SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: COMPOSITION AND METHOD FOR SELF-ASSEMBLY AND MINERALIZATION OF PEPTIDE AMPHIPHILES

Molecule 1

Molecule 2

(57) Abstract: The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

10/53409/

WO 2005/003292 A2

Red PCT/PTO 0 6 MAY 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.