第二章 随机变量及其分布

2.1 随机变量

1. 随机变量的定义

设 $\Omega = \{w\}$ 为随机试验 E 的样本空间, $\xi(w)$ 是定义在 Ω 上的单值实函数, 如果对任一实数 x, $\{\xi(w) \leq x\}$ 是一随机事件,则称 $\xi = \xi(w)$ 为**随机变量**.

一般地,常用希腊字母 ξ,η,ζ 表示随机变量.

2. 随机变量的分布函数

设 ξ 是样本空间 Ω 上的随机变量,对任意的 $x \in (-\infty, +\infty)$,称 F(x) = $P(\xi \leq x)$ 为随机变量 ξ 的分布函数.

对于任意实数 a,b(a < b),有

 $P(\xi > a) = 1 - P(\xi \le a) = 1 - F(a)$, $P(a < \xi \leq b) = P(\xi \leq b) - P(\xi \leq a) = F(b) - F(a)$,

 $P(\xi=x) = \lim_{x \to \infty} P(x-\varepsilon < \xi \le x) = F(x) - F(x-0).$

分布函数的性质:

定理 设随机变量 ξ 的分布函数为 F(x),则

 $1^{\circ} F(x)$ 单调不减,即对任意 $x_1 < x_2$,有 $F(x_1) \le F(x_2)$;

 $2^{\circ} 0 \leqslant F(x) \leqslant 1, x \in (-\infty, +\infty);$

 $3^{\circ} F(-\infty) = \lim_{x \to \infty} F(x) = 0, F(+\infty) = \lim_{x \to \infty} F(x) = 1;$

 $4^{\circ} F(x)$ 为右连续函数,即对任意的实数 x,有 F(x+0)=F(x).

(离散型随机变量

反之,具有以上四个性质的函数,一定是某个随机变量的分布函数.

3. 随机变量的概率分布

随机变量的一切可能值的集合——值域,与它取各可能值或在值域内各部 分取值的概率,二者总称为随机变量的概率分布.

4. 随机变量的分类

连续型随机变量 混合型随机变量

奇异型随机变量(既非离散型又非连续型)

2.2 离散型随机变量

若随机变量 ξ 只取有限个或可列个值 $x_1, x_2, \dots, x_n \dots$,则称 ξ 为离散型随机

$$P(\xi = x_k) = p_k \quad (k = 1, 2, \dots, n, \dots)$$

为随机变量 ξ 的概率分布列(简称分布列).

离散型随机变量 ξ 的分布列可表示为

其中第一行是 ξ 的一切可能取值,第二行是 ξ 取相应值的概率,即

$$P(\xi = x_k) = p_k \quad (k = 1, 2, \dots, n, \dots).$$

2. 离散型随机变量 6 的分布列的性质

1°非负性:p*≥0 (k=1,2,···,n,···).

2°规范性: $\sum_{k=1}^{\infty} p_{k}=1$.

一般地,若离散型随机变量 ξ 的概率分布为 $P(\xi=x_k)=p_k$ $(k=1,2,\cdots)$, 由概率的可加性知, 6的分布函数为

$$F(x) = P(\xi \leqslant x) = P(\bigcup_{\substack{x_1 \leqslant x \\ x_2 \leqslant x}} (\xi = x_k)) = \sum_{x_i \leqslant x} P(\xi = x_k) = \sum_{x_i \leqslant x} p_k.$$

如果离散型随机变量 ξ 只取有限个值,分布函数 F(x)的图形是阶梯形曲 线,在 $x=x_k$ ($k=1,2,\dots,n$)处有跃度为 p_k 的跳跃.

若已知随机变量的分布函数为F(x),则有

 $P(\xi=b)=F(b)-F(b-0)$.

 $P(\xi \leq b) = F(b)$,

 $P(\xi \geqslant b) = 1 - F(b - 0)$,

 $P(\xi > b) = 1 - F(b)$,

 $P(a < \xi \leq b) = F(b) - F(a)$,

 $P(a \le \xi \le b) = F(b-0) - F(a-0)$, $P(a < \xi < h) = F(h-0) - F(a)$.

 $P(a \leqslant \xi \leqslant b) = F(b) - F(a-0).$

2.3 常见的离散型随机变量及其分布

1. 单点分布(退化分布)

若随机变量 ξ 恒取常数 C,即 $P(\xi=C)=1$,则称 ξ 服从单点分布.

2. 两点分布(0-1 分布)

若随机变量 & 的分布列为

其中 $0 ,则称 <math>\varepsilon$ 服从两点分布,亦称 ε 服从 0-1 分布,简记为 $\varepsilon \sim 0-1$.

两点分布可用来描述只有两种可能结果的随机试验.

3. 二项分布 B(n,p)

若随机变量 ξ 的分布列为

$$P(\xi=k)=C_n^k p^k q^{n-k}$$
 $(k=0,1,2,\cdots,n)$,

其中 $0 ,则称 <math>\xi$ 服从参数为 n, p 的二项分布,记为 $\xi \sim B(n, p)$. $P(\xi=k)$ 简记为 $b_k(n,p)$ 或 b_k .

当 n=1 时,二项分布退化为两点分布.

二项分布是离散型随机变量概率分布中重要的分布之一,它以 n 重伯努利 试验为背景,具有广泛的应用.

当n,p 固定时 $,b_k(n,p)$ 随k变化的情况.由于对固定的n,p有

$$\frac{P(\xi=k)}{P(\xi=k-1)} = \frac{b_k(n,p)}{b_{k-1}(n,p)} = \frac{C_*^k p^k (1-p)^{k-k}}{C_*^{k-1} p^{k-1} (1-p)^{k-k+1}} \qquad \qquad k = \frac{(n-k+1)p}{k \cdot (1-p)} = 1 + \frac{(n+1)p-k}{k \cdot (1-p)}.$$

二项分布有如下性质:

 1° 当 k < (n+1)p 时 $b_k(n,p) > b_{k-1}(n,p)$;

 2° 当 k > (n+1)p 时, $b_k(n,p) < b_{k-1}(n,p)$;

3° 当 k=(n+1)p 时, $b_k(n,p)=b_{k-1}(n,p)$.

使 $b_k(n,p)$ 取极大值的项 $b_m(n,p)$ 称为 $b_k(n,p)$ 的中心项,而 m 称为最可能 出现次数.

4. 泊松分布

若随机变量 ξ 的概率分布列为 $P(\xi=k) = \frac{\lambda^k}{k!} e^{-\lambda} (k=0,1,2,\cdots), \lambda > 0, 则称$ ξ 服从参数为 λ 的泊松分布,记作 $\xi \sim P(\lambda)$.

$$\sum_{k=0}^{\infty} P(\xi = k) = \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = 1,$$

$$\pm \mp \qquad \frac{P(\xi\!=\!k)}{P(\xi\!=\!k\!-\!1)} \!=\! \frac{\frac{\lambda^k}{k!} \mathrm{e}^{-\lambda}}{\frac{\lambda^{k-1}}{(k\!-\!1)!} \mathrm{e}^{-\lambda}} \!=\! \frac{\lambda}{k}.$$

于是 $P(\xi=k)$ 在 $k < \lambda$ 时,随 k 的增大而增大; $k > \lambda$ 时,随 k 的增大而减小. 在 $k=[\lambda]$ 时, $P(\xi=k)$ 达到最大值,当 λ 为整数时,有两个相等的最大值 $P(\xi=\lambda)$ 和 $P(\xi=\lambda-1)$.

定理(Poission 定理) 设随机变量 ξ_n 服从二项分布 $(n=1,2,\cdots)$,其分布

 $P(\xi_n=k)=C_n^k p_n^k (1-p_n)^{n-k} \quad (k=0,1,2,\cdots),$ 其中 p_n 与 n 有关. 如果 p_n 满足 $\lim np_n = \lambda(\lambda)$ 为正常数),则有

列为 $P(\xi_n=k)=C_n^kp_n^k(1-p_n)^{n-k} \quad (k=0,1,2,\cdots),$

其中 p_n 与 n 有关. 如果 p_n 满足 $\lim np_n = \lambda(\lambda)$ 为正常数),则有

$$\lim_{n\to\infty} P(\xi_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

定理(Poission 定理) 设随机变量 & 服从二项分布(n=1,2,…),其分布

当 n 较大,p 较小时,有 $C_n^*p^*(1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$,即二项分布 B(n,p)近似于 泊松分布 $P(\lambda)$,其中 $\lambda=nb$.

5. 几何分布(等待分布)

若随机变量 ξ 的分布列为

$$P(\xi=k)=p(1-p)^{k-1} \quad (k=1,2,\cdots,n,\cdots),$$

其中 $0 ,则称 <math>\xi$ 服从参数为 p 的几何分布,记作 $\xi \sim G(p)$.

几何分布与重复独立试验有关,可用来计算等待"事件 A 出现"总共等待了 k 次的概率,因而又称为等待分布.

6. 超几何分布

若随机变量 & 的分布列为

$$P(\xi=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n},$$

其中 $0 \le n \le N$, $0 \le M \le N$, 则称 ξ 服从参数为 n, M, N 的超几何分布, 记作 $\xi \sim$ H(n,M,N).

有 N 件产品,其中 M 件废品,任意抽取 n 件,其中废品数 € 服从超几何分布. 若 $\lim_{N\to\infty} \frac{M}{N} = p$,即在无穷多产品中,废品率是 p,则在 n, p 保持不变的条件

 $\lim_{N\to\infty} \frac{C_M^k C_{N-M}^{n-k}}{C_N^n} = C_n^k p^k (1-p)^{n-k},$

即超几何分布的极限是二项分布.

2.4 连续型随机变量

1. 定义

设随机变量 ξ 的分布函数 $F(x)=P(\xi \leqslant x)$,若存在非负可积函数 f(x),使 对任意实数 x,有 $F(x) = \int_{-x}^{x} f(t) dt, x \in \mathbb{R},$

则称 ξ 是连续型随机变量,f(x) 为随机变量 ξ 的概率密度函数,简称密度.

2. 密度函数的性质

1°
$$f(x) \ge 0$$
; 2° $\int_{-\infty}^{+\infty} f(x) dx = 1$; 3° $P(a < \xi \le b) = \int_{a}^{b} f(x) dx$;

 4° 若 f(x)在点 x 处连续,则 F'(x) = f(x).

性质 1°,2°是概率密度的基本性质,一个函数当且仅当具备这两条性质时, 才能作为某个随机变量的密度函数.

f(x)反映了概率在 x 处的"密集程度"。当 Δx 充分小时,有 $f(x)\Delta x \approx$

 $P(x < \xi \le x + \Delta x)$,说明 ξ 落在 $(x, x + \Delta x]$ 上的概率近似地等于 $f(x)\Delta x$. 特别地,对于连续型随机变量 ξ ,它取任何特定值 α 的概率为 0,即 $P(\xi=\alpha)$ =0. 这表明,一个事件的概率为0,此事件不一定是不可能事件;同样地,某事件 的概率为1,该事件也不一定是必然事件,因此

 $P(a < \xi < b) = P(a \leq \xi \leq b) = P(a \leq \xi < b) = P(a < \xi \leq b).$

2.5 常见连续型随机变量的分布

1. 均匀分布

设[a,b]为任一区间,若随机变量 ξ 的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b; \\ 0, & \text{其他.} \end{cases}$$

则称 ξ 在区间[a,b]上服从均匀分布,记作 $\xi \sim U[a,b]$.

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x < b; \\ 1, & x > b. \end{cases}$$

若 $\xi \sim U[a,b]$,则对于满足 a < c < d < b 的任意 c < d,均有

$$P(c \leqslant \xi \leqslant d) = \int_{c}^{d} \frac{1}{b-a} dx = \frac{d-c}{b-a}.$$

这表明 ξ 在[a,b]内的任一子区间[c,d]内取值的概率仅与区间的长度 l=d-c成正比,而与区间[c,d]的位置无关,这就是均匀分布的直观意义.均匀分布可用 来描述在某个区间上具有等可能结果的随机试验的统计规律性.

2. 指数分布

若随机变量 < 的概率密度函数为

管度函数为
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

其中 $\lambda > 0$ 为常数,则称 ξ 服从参数为 λ 的指数分布,记作 $\xi \sim E(\lambda)$. 其分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0; \\ 0, & x < 0. \end{cases}$$

指数分布具有"无记忆性". 设 $\xi \sim E(\lambda)$,则对于任意的 s > 0,t > 0,有

$$P(\xi > s + t | \xi > s) = \frac{P(\xi > s + t)}{P(\xi > s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda}} = e^{-\lambda} = P(\xi > t).$$

3. 厂分布

若随机变量《的概率密度函数为

$$f(x) = \frac{\beta^a}{\Gamma(\alpha)} x^{a-1} e^{-\beta x}, \quad x > 0, \text{ if } \text{ } \alpha > 0, \beta > 0,$$

则称 ξ 服从参数为 α , β 的 Γ 分布,记作 $\xi \sim \Gamma(\alpha,\beta)$.

定义中的
$$\Gamma(\alpha) = \int_0^{+\infty} x^{s-1} e^{-x} dx \quad (\alpha > 0),$$

当 $\alpha=1$ 时, $f(x)=\beta e^{-\beta x}$, 即 $\Gamma(1,\beta)$ 就是指数分布 $E(\beta)$.

4. 正态分布

若连续型随机变量 & 的概率密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad (-\infty < x < +\infty),$$

其中 $-\infty<\mu<+\infty$, $\sigma>0$ 为常数,则称 ϵ 服从参数 μ , σ 的正态分布,记作 $\epsilon\sim N(\mu,\sigma^{\flat})$,称 ϵ 为正态变量.

正态分布的概率密度函数的图形是一条钟形曲线,又称正态曲线.

正态变量的分布函数为

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^2}{2\sigma^2}} dt.$$

正态曲线有如下特征:

 $1^{\circ} f(x)$ 是偶函数,曲线 f(x) 关于 $x = \mu$ 对称.

 $2^{\circ} \lim f(x) = 0$,曲线 f(x)以 x 轴为水平渐近线.

 3° 在 $(-\infty,\mu)$ 内 f(x)单增,在 $(\mu,+\infty)$ 内 f(x)单减,当 $x=\mu$ 时,f(x)取

得最大值 $f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$

 4° 在 $(-\infty,\mu-\sigma)$ 及 $(\mu+\sigma,+\infty)$ 内,曲线 f(x)向下凸,在 $(\mu-\sigma,\mu+\sigma)$ 内,曲线 f(x)向上凸, $(\mu\pm\sigma,f(\mu\pm\sigma))$ 是曲线 f(x)的两个拐点.

5° 当固定 σ 让 μ 变动时,曲线沿 x 轴平行移动,不改变曲线的形状,只改变其位置,当固定 μ 让 σ 变动时, σ 越大,曲线越"扁平",即分布相对比较分散; σ 越小,曲线越"陡峭",即分布越集中在 $x=\mu$ 附近.

当 $\mu=0$, $\sigma=1$ 时,称 ε 服从标准正态分布,记作 $\varepsilon\sim N(0,1)$. 标准正态分布的概率密度函数为 $\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ $(-\infty< x<+\infty)$,标准正态变量的分布

函数为
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \quad (-\infty < x < +\infty).$$

 $\Phi(x)$ 具有如下性质:

 $1^{\circ} \Phi(0) \! = \! 0.5; \quad 2^{\circ} \Phi(+\infty) \! = \! 1; \quad 3^{\circ} \Phi(-x) \! = \! 1 \! - \! \Phi(x);$

 $4^{\circ} P(a < \xi \leq b) = \Phi(b) - \Phi(a).$

对于一般正态分布的计算,可以通过换元积分化为标准正态分布,然后再查表求得.

设 $\xi \sim N(\mu, \sigma^2)$, 则 ϵ

$$P(a < \xi \leq b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),$$

令 $b=x,a=-\infty$,则有

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

 $η = \frac{\xi - \mu}{\sigma}$ 为 ξ 的标准化变换.

2.6 随机变量函数的分布

1. 离散型随机变量函数的分布

设离散型随机变量等的分布列为

 $\eta = g(\xi)$ 为 ξ 的函数,现求 η 的分布列:

$$P(\eta = y_k) = P(g(\xi) = y_k) = P(\xi = x_k) = p_k \quad (k=1,2,\dots),$$

于是 $\eta = g(\xi)$ 的分布列为

设离散型随机变量等的分布列为

 $\eta = g(\xi)$ 为 ξ 的函数,现求 η 的分布列:

$$P(\eta = y_k) = P(g(\xi) = y_k) = P(\xi = x_k) = p_k \quad (k=1,2,\dots),$$

于是 $\eta = g(\xi)$ 的分布列为

$\eta = g(\xi)$	y_1	y_2	 y_k	
$P(\eta = y_i)(y_i = g(x_i))$	p ₁	p ₂	 p _k	

 2° 若 $g(x_s)$ 中存在两个或两个以上的值相等,例如 $y_i = y_j = y_i = y, y_i = y_i y_i$ 这个确定值的概率等于 η 取 y_i, y_j, y_i 这些值的概率之和,即

$$\begin{split} P(\eta = \overline{y}) = & P(\eta = y_i) + P(\eta = y_j) + P(\eta = y_i) \\ = & P(\xi = x_i) + P(\xi = x_j) + P(\xi = x_i) \\ = & p_i + p_j + p_i. \end{split}$$

2. 连续型随机变量函数的分布

(1)分布函数法

设连续型随机变量 ξ 的概率密度为 $f_{\xi}(x)$,函数 $\eta = g(\xi)$ 的分布函数为

$$F_{\eta}(y) = P(\eta \leqslant y) = P(g(\xi) \leqslant y),$$

然后两端对 y 求导,即得 η 的概率密度函数 $f_{\eta}(y)$.

(2)公式法

定理 设 ξ 为连续型随机变量,其密度函数为 $f_{\xi}(x)$,又函数 y=g(x)严格 单调,反函数 $g^{-1}(y)$ 有连续导数,则 $\eta=g(\xi)$ 也是连续型随机变量,其密度函数 为

$$f_{\dagger}(y) = \begin{cases} f_{\ell}[g^{-1}(y)] | [g^{-1}(y)]' |, & \alpha < y < \beta; \\ 0, & \text{ 其他}, \end{cases}$$

其中 $\alpha = \min[g(-\infty), g(+\infty)], \beta = \max[g(-\infty), g(+\infty)].$

问 2.1 随机变量与微积分中讨论的函数有什么区别?

答 随机变量虽然是一个实值单值函数,但它与微积分中讨论的函数有本质区别,第一,随机变量是定义在样本空间上的,而不一定是实数值;第二,随机变量的取值是随机的,它取每一个可能值都是有一定概率的;第三,随机变量是随机事件的数量化.

问 2.2 分布函数 F(x)是什么样的函数?

答 定义中的 $\{\xi \leq x\}$ 表示事件"随机变量 ξ 取值不大于 x",F(x)是以事件 $\{\xi \leq x\}$ 的概率定义的函数,其自变量 x 取值在 $(-\infty, +\infty)$ 内,值域为[0,1].

3σ规则 设 ξ~N(μ,σ²),则

 $P(\mu - \sigma < \xi \le \mu + \sigma) = P(|\xi - \mu| < \sigma) = 0.6826,$ $P(\mu - 2\sigma < \xi \le \mu + 2\sigma) = P(|\xi - \mu| < 2\sigma) = 0.9544,$

 $P(\mu - 3\sigma < \xi \le \mu + 3\sigma) = P(|\xi - \mu| < 3\sigma) = 0.9973.$

正态随机变量线性函数性质 如果 $\xi \sim N(\mu, \sigma^2)$,则 $\eta = \frac{\xi - \mu}{\sigma} \sim N(0, 1)$.

如果 $\xi \sim N(0,1)$,则 $\eta = \sigma \xi + \mu \sim N(\mu, \sigma^2)$. 如果 $\xi \sim N(\mu, \sigma^2)$,则 $\eta = a \xi + b \sim N(a\mu + b, (a\sigma)^2)$.

综合练习题二

1. 填空题

(1)进行一系列独立的试验。每次试验成功的概率为p(0 ,在<math>n次成功之前已经失败的次数 ϵ 的分布列为

解 因为前 n+k-1 次试验属于伯努利试验,第 n+k 次为成功试验.

所以
$$P(\xi=k)=C_{n+k-1}^k(1-p)^kp^{n+k-1-k}\cdot p=C_{n+k-1}^k(1-p)^kp^n$$
.

(2)设
$$\xi \sim U[0,2]$$
,则 $P(|\xi| < \frac{1}{3}) =$ _____.

解 因 $\epsilon \sim U[0,2]$,故 ϵ 的密度函数为 $f(x) = \begin{cases} \frac{1}{2}, & 0 \leqslant x \leqslant 2; \\ 0, & \text{其他;} \end{cases}$

$$\begin{split} P\bigg(|\xi| < \frac{1}{3}\bigg) = P\bigg(-\frac{1}{3} < \xi < \frac{1}{3}\bigg) &= \int_{-\frac{1}{3}}^{\frac{1}{3}} f(x) \mathrm{d}x = \int_{0}^{\frac{1}{3}} \frac{1}{2} \mathrm{d}x \\ &= \frac{1}{2} x \Big|_{0}^{\frac{1}{3}} = \frac{1}{2} \Big(\frac{1}{3} - 0\Big) = \frac{1}{6}. \end{split}$$

(3)设随机变量
$$\xi$$
 的分布列为 $\begin{pmatrix} 0 & 1 & 2 & 3 \\ 0.24 & 0.31 & c & 0.15 \end{pmatrix}$,则 $c =$ ______.

解 因 $\sum p_i=1$, 故

$$0.24+0.31+c+0.15=1$$
,

$$c=1-(0.24+0.31+0.15)=1-0.7=0.3.$$

(4)随机变量
$$\varepsilon$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < 0; \\ 2x, & 0 \le x \le a; 则 a = \underline{\hspace{1cm}}, \varepsilon \\ 1, & x > a, \end{cases}$

服从 分布.

解 因 F(x) 为右连续函数,故 $\lim_{x\to a^+} F(x) = F(a)$,即 1=2a,故 $a=\frac{1}{2}$.

故
$$F(x) = \begin{cases} 0, & x < 0; \\ 2x, & 0 \le x \le \frac{1}{2}; \text{对 } F(x)$$
求导可得 $f(x) = \begin{cases} 2, & 0 \le x \le \frac{1}{2}; \\ 1, & x > \frac{1}{2}, \end{cases}$

故 $\xi \sim U[0, \frac{1}{2}].$

(5) 设 $\xi \sim N$ (3, 0. 1^z),则 P ($|\xi - 3| < 0. 3$) = ______, P ($|\xi - 3| < 0. 3$) = 0. 95.

解 因 $\xi \sim N(3, 0.1^2)$,故 $\frac{\xi - 3}{0.1} \sim N(0, 1)$. 故

$$P(|\xi-3|<0.3)=P(\left|\frac{\xi-3}{0.1}\right|<\frac{0.3}{0.1})=P(\left|\frac{\xi-3}{0.1}\right|<3)$$

$$=P\left(-3<\frac{\xi-3}{0.1}<3\right)=\Phi(3)-\Phi(-3)=\Phi(3)-[1-\Phi(3)]=2\Phi(3)-1$$

=2×0.9987-1=1.9974-1=0.9974,

设
$$P(|\xi-3| < a) = 0.95$$
. 因

$$P(|\xi-3| < a) = P(\left|\frac{\xi-3}{0.1}\right| < \frac{a}{0.1}) = P(\left|\frac{\xi-3}{0.1}\right| < 10a)$$

$$= P\left(-10a < \frac{\xi - 3}{0.1} < 10a\right) = \boldsymbol{\phi}(10a) - \boldsymbol{\phi}(-10a) = \boldsymbol{\phi}(10a) - \begin{bmatrix}1 - \boldsymbol{\phi}(10a)\end{bmatrix}$$

 $=2\Phi(10a)-1=0.95$, 故 $\Phi(10a)=\frac{1+0.95}{2}=0.975$. 因 $\Phi(1.96)=0.975$,

故 10a=1.96, a=0.196.

(6)从一批子弹中任意取 5 发试射,如果没有一发子弹落在靶心 2cm 以外,则整批子弹将被接受,设弹着点与靶心的距离 €(cm)的概率密度为

$$f(x) = \begin{cases} Axe^{-x^2}, & 0 < x < 3 \\ 0, & \text{ 其他}, \end{cases}$$

则 A=_____,任一发子弹落在靶心 2em 以内的概率为_____,这批子弹 被接受的概率为_____

解 因
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
, 故

$$P(\xi < 2) = \int_{-\infty}^{z} f(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{z} \frac{2}{1 - e^{-s}} x e^{-x^{2}} dx$$

$$= 0 + \frac{1}{1 - e^{-s}} (-1) \int_{0}^{z} d(e^{-x^{2}}) = \frac{1}{1 - e^{-s}} (-1) e^{-x^{2}} \Big|_{0}^{z}$$

$$= \frac{1}{1 - e^{-s}} (-1) (e^{-s} - 1) = \frac{1 - e^{-s}}{1 - e^{-s}}.$$

(6)从一批子弹中任意取 5 发试射,如果没有一发子弹落在靶心 2cm 以外,则整批子弹将被接受,设弹着点与靶心的距离 €(cm)的概率密度为

$$f(x) = \begin{cases} Axe^{-x^2}, & 0 < x < 3; \\ 0, & \text{ i.i. } \end{cases}$$

则 A=_____,任一发子弹落在靶心 2em 以内的概率为_____,这批子弹被接受的概率为_____。

设事件 A 表示这批子弹被接受,则所求概率为 P(A). 事件 A, 表示第 i 发子 弹落在靶心 2cm 以内 (i=1,2,3,4,5),则 A_i 相互独立且 $P(A_i)=\frac{1-e^{-i}}{1-e^{-i}}$ (i=1,2,3,4,5),则

$$P(A) = P(A_1 A_2 A_3 A_4 A_5) = \prod_{i=1}^{3} P(A_i) = \left(\frac{1 - e^{-4}}{1 - e^{-3}}\right)^5.$$

(7)测量圆的直径,设其近似值在区间[a,b]内服从均匀分布(a>0,b>0),则圆面积的概率象作为

解 设 ξ 表示直径近似值,则 $\xi \sim U[a,b]$,所求为 $\eta = \pi \left(\frac{\xi}{2}\right)^2$ 的概率密度.

因为

$$\xi \sim f(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b; \\ 0, & 其他, \end{cases}$$

所以

$$\begin{split} F_{\tau}(\mathbf{y}) &= P(\eta \leqslant \mathbf{y}) = P\left(\pi\left(\frac{\xi}{2}\right)^2 \leqslant \mathbf{y}\right) = P\left(-2\sqrt{\frac{y}{\pi}} \leqslant \xi \leqslant 2\sqrt{\frac{y}{\pi}}\right) \\ &= \int_{-y_0}^{2\sqrt{\frac{y}{\pi}}} f(\mathbf{x}) d\mathbf{x}, \end{split}$$

即当
$$\frac{\pi a^2}{4} < y < \frac{\pi b^2}{4}$$
时, $f_{\eta}(y) = F'_{\eta}(y) = \frac{1}{b-a} \frac{1}{\sqrt{\pi y}}$.

2. 选择题

(1)随机变量 ξ 的分布函数 $F(x) = P(\xi \leq x)$ 在 $(-\infty, +\infty)$ 上().

(A)处处连续

(B)必有间断点

(C)处处左连续

(D)处处右连续

解 选(D).

因分布函数 F(x)为右连续函数,即 $\forall x \in R$,有

$$F(x+0)=F(0)$$
.

(2)设 $f(x) = Ae^{-2x}(x>0)$,是某个随机变量的密度函数,则 A 的值是

(D)
$$\frac{1}{2}$$

解 选(B). 因 $\int_{-\infty}^{+\infty} f(x) dx = 1$,即 $\int_{-\infty}^{+\infty} Ae^{-2x} dx = 1$,

$$\int_{0}^{+\infty} A e^{-2x} dx = A \left(-\frac{1}{2} \right) e^{-2x} \Big|_{0}^{+\infty} = -\frac{1}{2} A (0-1) = \frac{1}{2} A,$$

(3)设随机变量 ξ 的分布函数 $F(x) = A + Be^{-\frac{1}{2}x^2}(x>0)$,则 A,B 的值是

$$(A)A=1,B=1$$

 $(C)A=-1,B=1$

(B)
$$A=1,B=-1$$

(D) $A=-1,B=-1$

解 选(B).

因
$$\lim_{x \to +\infty} F(x) = 1$$
, 即 $\lim_{x \to +\infty} (A + Be^{-\frac{1}{2}x^2}) = 1$,

$$\lim (A + Be^{-\frac{1}{2}x^2}) = A$$

故 A=1.

又因 F(x)是右连续函数, 故 $\lim_{x\to 0^+} F(x) = F(0)$,即 $\lim_{x\to 0^+} (1+Be^{-\frac{1}{2}x^2}) = 0$,

可得
$$1+B=0$$
, 故 $B=-1$.

(4)设随机变量 ξ 的分布函数 $F(x) = 1 - \frac{1}{3}e^{-3x}, x \ge 0$,则 $P(\xi = 0)$ 是

(B)1 (C) $\frac{1}{3}$ (D) $\frac{2}{3}$

解 选(D).

 $\boxtimes P(\xi=x) = \lim_{\epsilon \to 0} P(x-\epsilon < \xi \leq x) = \lim_{\epsilon \to 0} [F(x)-F(x-\epsilon)]$

$$=F(x)-\lim_{\epsilon\to 0}F(x-\epsilon)=F(x)-F(x-0)$$
,

故
$$P(\xi=0)=F(0)-F(0-0)=\left(1-\frac{1}{3}\right)-0=\frac{2}{3}$$
.

x < 0: (5)设随机变量 ξ 的分布函数 $F(x) = \begin{cases} \frac{1}{5}(x^2+3), & 0 \le x < 1; 记 P(\xi=0) \end{cases}$

 $=p,P(\xi=1)=q,$ 则有().

(A) $p = \frac{3}{5}, q = \frac{1}{5}$ (B) $p = \frac{1}{5}, q = \frac{3}{5}$

(C) p = 0, q = 0 (D) $p = 0, q = \frac{4}{5}$

解 选(A).

因
$$P(\xi=0)=F(0)-F(0-0)=\frac{3}{5}-0=\frac{3}{5}$$
,

$$P(\xi=1)=F(1)-F(1-0)=1-\frac{1}{5}(1^2+3)=1-\frac{4}{5}=\frac{1}{5}$$

故
$$p = \frac{3}{2}, q = \frac{1}{2}$$
.

(6)设 $\xi \sim \begin{bmatrix} 0 & 1 & 2 & 3 & \cdots & n & \cdots \\ 0.7 & 0.7k & 0.7k^2 & 0.7k^3 & \cdots & 0.7k^n & \cdots \end{bmatrix}$,则 k 的值为().

(A)0.1 (B)0.2 (C)0.3 (D)0.4

解 选(C).

因 $\sum_{n=0}^{\infty} p_n = 1$, 故 $\sum_{n=0}^{\infty} 0.7k^n = 0.7 \sum_{n=0}^{\infty} k^n = 0.7 \frac{1}{1-k} = 1$,即 1-k=0.7,

(7)设函数 $f(x) = \sin x (x \in D)$, 是某个随机变量的密度函数,则 D 为

 $(A) \left[0, \frac{\pi}{2}\right]$ $(B) \left[0, \pi\right]$ $(C) \left[0, 2\pi\right]$ $(D) \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

解 选(A).

因密度函数有性质(1) $f(x) \ge 0$;(2) $\int_{-\infty}^{+\infty} f(x) dx = 1$,

(7)设函数 $f(x) = \sin x (x \in D)$, 是某个随机变量的密度函数,则 D 为

 $(A) \left[0, \frac{\pi}{2} \right] \qquad (B) \left[0, \pi \right] \qquad (C) \left[0, 2\pi \right]$

(B)1 (C)2 (D) $\frac{1}{4}$

(D) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

解 选(A). 因密度函数有性质(1) $f(x) \ge 0$;(2) $\int_{-\infty}^{+\infty} f(x) dx = 1$,

故当 $x \in \left[0, \frac{\pi}{2}\right]$ 时, $f(x) = \sin x \ge 0$,

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_{0}^{\frac{\pi}{2}} = -(0-1) = 1.$$

(8)设随机变量 ξ 的概率密度为 $f(x) = k\cos 2x \left(x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]\right)$,则 k 的值

为(). $(A)\frac{1}{2}$

因 $\int_{-\infty}^{+\infty} f(x) dx = 1$, $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} k \cos 2x dx = \frac{1}{2} k \sin 2x \Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{1}{2} k [1 - (-1)] = k$,

3. 计算题

(1)设随机变量 ξ 的分布列为 $P(\xi=k)=A\left(\frac{2}{3}\right)^k(k=1,2,3)$,求常数 A.

解 因
$$\sum_{k} P(\xi=k)=1$$
,

故
$$A\left[\frac{2}{3} + \frac{4}{9} + \frac{8}{27}\right] = A\left[\frac{18}{27} + \frac{12}{27} + \frac{8}{27}\right] = A\frac{38}{27} = 1$$
,即 $A = \frac{27}{38}$.

(2)设随机变量 ξ 的分布函数为 $F(x) = 1 - (1+x)e^{-x}, x > 0, 求:① <math>\xi$ 的密 度函数;②P(ξ≤1).

解 ①因 f(x)=F'(x),

故
$$f(x) = -e^{-x} - (1+x)e^{-x} - 1 = -e^{x} + e^{-x} + xe^{-x} = xe^{-x}(x>0)$$
;

(3)设 ξ 的分布列为

(3)设 ξ 的分布列为

求 ŋ=cost 的分布列.

解 η=cosξ的分布列为

(4)设随机变量 ε 的密度函数为 $f(x) = \frac{1}{\pi(1+x^2)}$, 求 $\eta = 1-\varepsilon^3$ 的密度函数.

解 先求 η 的分布函数 $F_{\eta}(y)$,

$$\begin{split} F_{\dagger}(y) = & P(\eta \leqslant y) = P(1 - \xi^2 \leqslant y) = P(\xi) \sqrt[3]{1-y}) = 1 - F_{\xi}(\sqrt[3]{1-y}), \\ \text{再由 } f_{\dagger}(y) = & F_{\dagger}^{\dagger}(y) \text{得} \end{split}$$

(4)设随机变量 ε 的密度函数为 $f(x) = \frac{1}{\pi(1+x^2)}$,求 $\eta = 1 - \varepsilon^3$ 的密度函数.

解 先求 η 的分布函数 $F_{\eta}(y)$,

$$\begin{split} F_{\dagger}(y) = & P(\eta \leqslant y) = P(1-\xi^{\sharp} \leqslant y) = P(\xi \geqslant \sqrt[3]{1-y}) = 1 - F_{\xi}(\sqrt[3]{1-y})\,, \\ \text{再由}\ f_{\dagger}(y) = & F_{\sharp}(y) \text{得} \end{split}$$

$$\begin{split} f_{\eta}(y) &= F_{\ell}^{\ell} \left(\sqrt[3]{1-y} \right) \frac{1}{3} (1-y)^{-\frac{2}{3}} (-1) \\ &= \frac{1}{\pi \left[1 + (1-y)^{\frac{2}{3}} \right]} \left(-\frac{1}{3} \right) (1-y)^{-\frac{2}{3}} \\ &= -\frac{1}{3\pi \left[1 + (1-y)^{\frac{2}{3}} \right] (1-y)^{\frac{2}{3}}}. \end{split}$$

(5)设 ξ 服从区间[-1,1]上的均匀分布,求 $\eta = \sqrt{|\xi|}$ 的密度函数.

(5)设
$$\xi$$
 服从区间[-1 ,1]上的均匀分布,求 $\eta = \sqrt{|\xi|}$ 的密度函数

故
$$\xi \sim f(x) = \begin{cases} \frac{1}{2}, & -1 \leqslant x \leqslant 1; \\ 0, & 其他. \end{cases}$$

先求 η 的分布函数 $F_{\eta}(y)$,

$$F_{\eta}(y) = P(\eta \leqslant y) = P(\sqrt{|\xi|} \leqslant y),$$

当
$$y < 0$$
 时, $F_{\eta}(y) = 0$,故 $f_{\eta}(y) = 0$.

当 0
$$\leqslant$$
y \leqslant 1 时, $F_{\dagger}(y)=P(|\xi|\leqslant y^2)=P(-y^2\leqslant\xi\leqslant y^2)$

$$= \int_{-\mathbf{r}^2}^{\mathbf{r}^2} f(x) \mathrm{d}x,$$

故
$$f_{\pi}(y) = F'_{\pi}(y) = 2y$$
.

模拟试题自测

11. 误至題
(1)设随机变量
$$\xi$$
 的概率分布为 $P(\xi=k)=A\frac{\lambda^k}{k!}$ $(k=1,2,\cdots),\lambda>0$,则常

因 1 =
$$\sum_{k=1}^{\infty} A \frac{\lambda^{k}}{k!} = A \sum_{k=1}^{\infty} \frac{\lambda^{k}}{k!} = A(\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} - 1) = A(e^{\lambda} - 1)$$
,

故
$$A = \frac{1}{e^{\lambda} - 1} = \frac{e^{-\lambda}}{1 - e^{-\lambda}}$$
.

(2) 设随机变量
$$\xi$$
 的概率密度为 $f(x) = \begin{cases} Ax^2 e^{-2x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$

___, \$ 的分布函数为 F(x)=_

$$\begin{split} \Xi &1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{+\infty} Ax^{2} e^{-2x} dx = -\frac{1}{2} A \int_{0}^{+\infty} x^{2} d(e^{-2x}) \\ &= -\frac{1}{2} A \left[x^{2} e^{-2x} \right]_{0}^{+\infty} - \int_{0}^{+\infty} e^{-2x} d(x^{2}) \right] = \frac{1}{2} A \int_{0}^{+\infty} 2x e^{-2x} dx \\ &= -\frac{1}{2} A \int_{0}^{+\infty} x d(e^{-2x}) = -\frac{1}{2} A \left[x^{2} e^{-2x} \right]_{0}^{+\infty} - \int_{0}^{+\infty} e^{-2x} dx \end{split}$$

(2)设随机变量
$$\varepsilon$$
 的概率密度为 $f(x)=\begin{cases}Ax^2\mathrm{e}^{-2x},&x\geqslant 0;\\0,&x<0.\end{cases}$ 则 $A=$

$$\begin{split} \boxtimes 1 &= \int_{-\infty}^{+\infty} f(x) \mathrm{d}x = \int_{0}^{+\infty} A x^2 \mathrm{e}^{-2x} \mathrm{d}x = -\frac{1}{2} A \int_{0}^{+\infty} x^2 \mathrm{d}(\mathrm{e}^{-2x}) \\ &= -\frac{1}{2} A \Big[x^2 \mathrm{e}^{-2x} \Big|_{+\infty}^{+\infty} - \int_{0}^{+\infty} \mathrm{e}^{-2x} \mathrm{d}(x^2) \Big] = \frac{1}{2} A \int_{0}^{+\infty} 2x \mathrm{e}^{-2x} \mathrm{d}x \\ &= -\frac{1}{2} A \int_{0}^{+\infty} x \mathrm{d}(\mathrm{e}^{-2x}) = -\frac{1}{2} A \Big[x \mathrm{e}^{-2x} \Big|_{0}^{+\infty} - \int_{0}^{+\infty} \mathrm{e}^{-2x} \mathrm{d}x \Big] \\ &= -\frac{1}{2} A \left[\frac{1}{2} \mathrm{e}^{-2x} \Big|_{0}^{+\infty} = -\frac{1}{4} A (0 - 1), \end{split}$$

$$\text{ If } f(x) = \begin{cases} 4x^2 e^{-2x}, & x \geqslant 0; \\ 0, & x < 0. \end{cases}$$

因
$$F(x) = P(\xi \leqslant x) = \int_{-\infty}^{x} f(t) dt$$
,故当 $x \leqslant 0$ 时, $F(x) = \int_{-\infty}^{x} 0 dt = 0$. 当 $x > 0$ 时,
$$F(x) = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} 4t^{2} e^{-t} dt = -2 \int_{0}^{x} t^{2} d(e^{-t})$$

$$= -2t^{2}e^{-2t}\Big|_{0}^{x} + 2\int_{0}^{x} 2te^{-2t}dt = -2x^{2}e^{-2x} - 2\int_{0}^{x} td(e^{-2t})$$

因函数 $y=e^\epsilon$ 单增,反函数为 $x=\ln y$,其导数为 $x'=\frac{1}{y}$, 故 η 的概率密度为 $f_*(y) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma y} e^{-\frac{(6y-\mu)^2}{2\sigma^2}}, & y>0; \\ 0, & y\leqslant 0. \end{cases}$ (6) 设随机变量 $\xi \sim B(2,p)$, $\eta \sim B(3,p)$, 若 $P(\xi\geqslant 1) = \frac{5}{9}$, 则 $P(\eta\geqslant 1) = \frac{1}{9}$ $P(\xi\geqslant 1) = \frac{5}{9}$ $P(\xi\geqslant 1$

(5)设随机变量 $\xi \sim N(\mu, \sigma^2)$,则 $\eta = e^{\xi}$ 的概率密度为 $f_{\eta}(y) =$