Test Report of FCC Part 15 C for FCC Certificate On Behalf of

ShenZhen Aoni Electronic Industry Co., Ltd.

FCC ID: Z63-922923924

Product Description: Bluetooth Stereo Headphone

Test Model: 922BT

Supplement Model: AF16,923BT,924BT,925BT,926BT

Trade Mark: ANC, Aoni, MEElectronics

Prepared for: ShenZhen Aoni Electronic Industry Co., Ltd.

HongHui Industrial Park,2nd LiuXian Road, Xin'An streets, District

68, Bao'an District, ShenZhen, China

Prepared by: Shenzhen Laker Testing Technology Co.,Ltd

4D, Block 1, Sunshine Huayi Building, Nanhai West Road,

Nanshan, Shenzhen, China

Tel: 86-755-86307736 Fax: 86-755-86307356

Report No.: LK14DR-0105E-1

Issue Date: May 08, 2014

Test Date: May 03~08, 2014

Test by: Reviewed By:

Owen Li

Owen Li

Edmund Zou

Jedminal Low

TABLE OF CONTENTS

1.	GENERAL INFORMATION	
	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2Test Facility	5
	1.4 MEASUREMENT UNCERTAINTY	
2	SYSTEM TEST CONFIGURATION	
۷.	2.1 EUT CONFIGURATION	
	2.2 EUT EXERCISE	
	2.3 GENERAL TEST PROCEDURES	6
	2.4 LIST OF MEASURING EQUIPMENTS	
	2.5 LIST OF AUXILIARY DEVICE	
3.	SUMMARY OF TEST RESULTS	.10
4.	CONDCUTED EMISSION TEST	.11
	4.1 APPLICABLE STANDARD	
	4.2 LIMITS	
	4.4 PROCEDURE OF CONDUCTED EMISSION TEST	.11 12
	4.5 Test Result	
5.	TEST OF HOPPING CHANNEL BANDWIDTH	.15
	5.1 APPLICABLE STANDARD	.15
	5.2 EUT SETUP	
	5.3 TEST EQUIPMENT LIST AND DETAILS	
	5.4 TEST PROCEDURE	
6	TEST OF HOPPING CHANNEL SEPARATION	
υ.	6.1 APPLICABLE STANDARD	
	6.2 EUT SETUP	
	6.3 TEST EQUIPMENT LIST AND DETAILS	
	6.4 TEST PROCEDURE	
_	TEST OF NUMBER OF HOPPING FREQUENCY	
1.	7.1 APPLICABLE STANDARD	
	7.1 APPLICABLE STANDARD	
	7.3 TEST EQUIPMENT LIST AND DETAILS	
	7.4 TEST PROCEDURE	
	7.5 TEST RESULT	
8.	TEST OF DWELL TIME OF EACH FREQUENCY	
	8.1 APPLICABLE STANDARD	
	8.3 TEST EQUIPMENT LIST AND DETAILS	
	8.4 TEST PROCEDURE	
	8.5 TEST RESULT	.25
9.	TEST OF MAXIMUM PEAK OUTPUT POWER	
	9.1 APPLICABLE STANDARD	
	9.2 EUT SETUP	
	9.4 TEST EQUIPMENT LIST AND DETAILS	
	9.5 TEST RESULT	
10	. TEST OF BAND EDGES EMISSION	.29
	10.1 APPLICABLE STANDARD	.29

10.2 EUT SETUP	29
10.3 TEST EQUIPMENT LIST AND DETAILS	30
10.4 Test Procedure	
10.5 Test Result	30
11. TEST OF SPURIOUS RADIATED EMISSION	33
11.1 APPLICABLE STANDARD	33
11.2 RADIATED MEASUREMENT SETUP	34
11.3 TEST EQUIPMENT LIST AND DETAILS	35
11.4 RADIATED MEASUREMENT TEST PROCEDURE	35
11.5 TEST RESULT	35
12. ANTENNA REQUIREMENT	
12.1 STANDARD APPLICABLE	46
12.2 ANTENNA CONNECTED CONSTRUCTION	46
APPENDIX A - EXTERNAL PHOTOGRAPHS	47
APPENDIX B - INTERNAL PHOTOGRAPHS	48
APPENDIX C - TEST SETUP PHOTOGRAPHS	49
CONDUCTED EMISSION TEST	49
RADIATED EMISSION TEST	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: ShenZhen Aoni Electronic Industry Co., Ltd.

Address of applicant: HongHui Industrial Park,2nd LiuXian Road, Xin'An streets,

District 68, Bao'an District, ShenZhen, China

Manufacturer: ShenZhen Aoni Electronic Industry Co., Ltd.

Address of manufacturer: HongHui Industrial Park,2nd LiuXian Road, Xin'An streets,

District 68, Bao'an District, Shen Zhen, China

General Description of E.U.T

Items	Description	
EUT Description:	Bluetooth Stereo Headphone	
Model No.:	922BT,AF16,923BT,924BT,925BT,926BT	
Type of Modulation:	FHSS	
Frequency Band:	2402 MHz ~ 2480 MHz	
Number of Channels:	79	
Channel Bandwidth:	1 MHz	
Antenna Type:	Integrated antenna, fixed on PCB	
Antenna Gain:	0dBi	
Rated Voltage:	DC 5V from USB , DC3.7V from battery	

Note:

Report No.: LK14DR-0105E-1 Page 4 of 49 FCC ID: Z63-922923924

^{*} The test data gathered are from the production sample provided by the manufacturer,

^{*} The 922 BT is the same as other models, just difference in external features, model number and trade mark serves as Marketing strategy.

1.2Test Facility

All measurement required was performed at laboratory of Centre Testing International (ShenZhen) Corporation ,Location at Building C, Sienific Innovation Park,Tiegang Reservior, Xixiang, Baoan District, Shenzhen, Guangdong, The site and apparatus are constructed in conformance with the requirements of ANSI C63.4, CISPR 16-1-1 and other equivalent standards.

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 565659

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659, expiration date is 01/27/2017.

IC Registration No.: 7408B

The 3m alternate test site of CENTRE TESTING INTERNATIONAL (SHENZHEN) CORPORATION. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7408B on December 29, 2009.

CNAS - Registration No.: L1910

CENTRE TESTING INTERNATIONAL (SHENZHEN) CORPORATION,. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. The acceptance letter from the CNAS is maintained in our files: Registration:L1910,January 12,2010.

1.3 Related Submittal(s) / Grant (s)

This submittal(s) is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4 - 2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.209, and 15.247 rules.

1.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted Emission	3.2
Radiated Emission	4.5

Report No.: LK14DR-0105E-1 Page 5 of 49 FCC ID: Z63-922923924

2. SYSTEM TEST CONFIGURATION

The tests documented in this report were performed in accordance with ANSI C63.4-2003 and FCC CFR 47 Part 15 Subpart C.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m/10m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

Report No.: LK14DR-0105E-1 Page 6 of 49 FCC ID: Z63-922923924

2.4 List of Measuring Equipments

Test equipments list of CENTRE TESTING INTERNATIONAL (SHENZHEN) CORPORATION.

Shielding Room No. 1 - Conducted disturbance Test				
Equipment	Manufacturer	Model	Serial No.	Due Date
Receiver	R&S	ESCI	100009	07/19/2014
LISN	ETS-LINDGREN	3850/2	00051952	07/19/2014
LISN	R&S	ENV216	100098	07/19/2014
Voltage Probe	R&S	ESH2-Z3	100042	07/19/2014
Current Probe	R&S	EZ17	100106	07/19/2014
ISN	TESEQ GmbH	ISN T800	30297	07/04/2014

Control Room - Conducted disturbance Test (10m part)				
Equipment	Manufacturer	Model	Serial No.	Due Date
Receiver	R&S	ESCI	100435	07/19/2014
LISN	schwarzbeck	NNLK8121	8121-529	07/19/2014
Transient Limiter	ELECTRO- METRICS	EM-7600	806	07/29/2014
Voltage Probe	R&S	ESH2-Z3	100042	07/19/2014
Current Probe	R&S	EZ17	100106	07/19/2014
ISN	TESEQ GmbH	ISN T800	30297	07/04/2014
Horn Antenna	ETS-LINGREN	3117	00057407	07/19/2014

3M Semi-anechoic Chamber - Radiated disturbance Test				
Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	ETS-LINDGREN	FACT-3	3510	07/09/2014
Spectrum Analyzer	Agilent	E4440A	MY46185649	07/07/2014
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	401	07/21/2014
Multi device Controller	ETS-LINGREN	2090	00057230	N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/19/2014
Microwave Preamplifier	Agilent	8449B	3008A02425	07/29/2014

10M Semi-anechoic Chamber - Radiated disturbance Test				
Equipment	Manufacturer	Model	Serial No.	Due Date
10M Chamber & Accessory Equipment	Rainford			07/06/2015
Receiver	R&S	ESCI	100435	07/19/2014
Spectrum Analyzer	R&S	FSP40	100416	07/06/2014
EMI test receiver	R&S	ESIB40	2023282915	07/24/2014

TRILOG Broadband Antenna	schwarzbeck	VULB 9163	484	07/21/2014
Horn Antenna	ETS-LINGREN	3117	00044562	07/07/2015
Microwave Preamplifier	Agilent	11909A	186871	07/06/2014
Microwave Preamplifier	HP	HP 8447F	2805A03379	07/06/2014
Microwave Preamplifier	CD	PAP-1G18G	2001	07/29/2014

Shielding Room No. 2 - Harmonic / Flicker Test (EN 61000-3-2) / (EN 61000-3-3)					
Equipment	Manufacturer	Model	Serial No.	Due Date	
5KVA AC POWER SOURCE	California instruments	5001iX-400-413	57344	07/29/2014	
Flicker & Harmonic Tester	California instruments	PACS-1	72492	07/29/2014	

Shielding Room No. 3 - ESD Test (IEC 61000-4-2)				
Equipment	Manufacturer	Model	Serial No.	Due Date
ESD Simulator	EM TEST	ESD30C	V0603101091	07/30/2014
ESD Simulator	TESEQ	NSG437	478	08/22/2014

3M Full-anechoic Chamber - Radio-frequency electromagnetic field Immunity Test (IEC 61000-4-3)					
Equipment	Manufacturer	Model	Serial No.	Due Date	
3M Chamber & Accessory Equipment	ETS-LINDGREN	FACT-3	3510	07/09/2014	
ESG Vector signal generators	Agilent	E4438C	MY45095744	07/07/2014	
Power Amplifier	AR	150W1000	0322288	07/19/2014	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	401	07/21/2014	
Temperature & Humidity Chamber	ESPEC	DSW0540	ER-009	09/29/2014	

Shielding Room No. 3 - EFT / Surges Test (IEC 61000-4-4) (IEC 61000-4-5)							
Equipment	Manufacturer Model Serial No.						
Compact Generator	EM-Test	UCS500M/6B	V0603101093	07/19/2014			
Capacitive Clamp	EM-Test	C Clamp HFK	0306-43	07/19/2014			
CDN for Telecom Port	EM-Test	CNV504S1	V0603101094	07/19/2014			
EFT Generator	SCHAFFNER	NSG 2025	19878	07/29/2014			
SURGE Generator	SCHAFFNER	NSG 2050	200313-135AR	07/29/2014			
CDN	SCHAFFNER	CDN-131/133	34397	07/29/2014			

Shielding Room No. 2 - Radio-frequency continuous conducted Immunity Test (IEC 61000-4-6)					
Equipment Manufacturer Model Serial No. Due Date					

Signal Generator	nal Generator IFR 2023B		202307/883	07/07/2014
Power Amplifier	AR	75A 250A 320297		07/29/2014
Attenuator	EM-Test	ATT6/75	0320837	07/19/2014
CDN	EM-Test	CDN M2/M3	0204-01	07/19/2014
EM-Clamp	EM-Test	EM101	35770	07/19/2014

Shielding Room No. 2 - Power-frequency magnetic fields Immunity Test (IEC 61000-4-8)							
Compact Generator EM-Test UCS500M/6B V0603101093 07/19/2014							
Induction Coil	EM-Test	MS100	0106-47	07/29/2014			
Current Transformer	EM-Test	MC2630	0106-02	07/29/2014			

Shielding Room No. 2 –Voltage dips and interruptions Test (IEC 61000-4-11)							
Equipment Manufacturer Model Serial No. Due Da							
5KVA AC POWER SOURCE	California instruments	5001iX-400-413	57344	07/29/2014			
Electronic output switch	California instruments	EOS-1	72616	07/29/2014			

2.5 List of auxiliary device

Equipment	Manufacturer	Model	Specification	Cert.
Notebook	Lenovo	E46L		FCC DoC, CE,CCC
Adapter	Lenovo	PA-1650-56LC		FCC DoC, CE,CCC

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
15.207	Conducted Emission	Pass
15.247(a)(1)	Hopping Channel Bandwidth	Pass
15.247(a)(1)	Hopping Channel Separation	Pass
15.247(a)(1)	Number of Hopping Frequency Used	Pass
15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass
15.247(b)(1)	Maximum Peak Output Power	Pass
15.247(d)	Band Edges Emission	Pass
15.247(d)	Spurious Radiated Emission	Pass
15.203/15.247(b)/(c)	Antenna Requirement	Pass

4. Condcuted Emission Test

4.1 Applicable Standard

Section 15.247(a): for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

4.2 Limits

Limits for Class A digital devices

Frequency range	Limits dB(μV)				
(MHz)	Quasi-peak Average				
0.15 to 0.50	79	66			
0,50 to 30	73	60			

NOTE: The lower limit shall apply at the transition frequency.

Limits for Class B digital devices

Frequency range	Limits dB(μV)			
(MHz)	Quasi-peak	Average		
0,15 to 0,50	66 to 56	56 to 46		
0,50 to 5	56	46		
5 to 30	60	50		

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

4.3 EUT Test Setup

Report No.: LK14DR-0105E-1 Page 11 of 49 FCC ID: Z63-922923924

4.4 Procedure Of Conducted Emission Test

- a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

4.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Transmit with charging

NOTE:The proformed test mode data is the worest test data.

The Test Data Of Conducted Emission

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: Transmit with charging mode

Test Site: CHAMBER
Operator: Owen Li
Comment: Line:L

Tem:23℃ Hum:50%

Result Table QP

Frequency	QuasiPeak	Line	Corr.	Margin	Limit
(MHz)	(dB		(dB)	(dB)	(dB μ V)
0.170	43.1	L1	9.6	21.9	65.0
0.498	38.2	L1	9.6	17.8	56.0
0.586	38.6	L1	9.6	17.4	56.0
3.589	42.1	L1	9.7	13.9	56.0
18.256	43.1	L1	9.8	16.9	60.0
25.652	41.6	L1	10.4	18.4	60.0

Result Table AV

Frequency	Average	Line	Corr.	Margin	Limit
(MHz)	(dB μ V)		(dB)	(dB)	(dB μ V)
0.170	36.2	L1	9.6	18.8	55.0
0.498	33.2	L1	9.6	12.8	46.0
0.586	32.8	L1	9.6	13.2	46.0
3.589	29.5	L1	9.7	16.5	46.0
18.256	36.2	L1	9.8	13.8	50.0
25.652	34.5	L1	10.4	15.5	50.0

The Test Data Of Conducted Emission

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: Transmit with charging mode

Test Site: CHAMBER
Operator: Owen Li
Comment: Line:N

Tem:23°C Hum:50%

Result Table QP

Frequency	QuasiPeak	Line	Corr.	Margin	Limit
(MHz)	(dB µ V)		(dB)	(dB)	(dB µ V)
0.166	45.8	N	9.7	19.4	65.2
0.194	46.2	N	9.6	17.7	63.9
0.486	38.5	N	9.6	17.7	56.2
1.362	37.1	N	9.8	18.9	56.0
3.146	35.8	N	9.7	20.2	56.0
27.685	37.4	N	10.4	22.6	60.0

Result Table AV

Frequency	Average	Line	Corr.	Margin	Limit
(MHz)	(dB µ V)		(dB)	(dB)	(dB μ V)
0.166	39.5	N	9.7	15.7	55.2
0.194	41.2	N	9.6	12.7	53.9
0.486	31.2	N	9.6	15.0	46.2
1.362	34.0	N	9.8	12.0	46.0
3.146	30.3	N	9.7	15.7	46.0
27.685	30.2	N	10.4	19.8	50.0

5. Test of Hopping Channel Bandwidth

5.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2 EUT Setup

Spectrum Analyzer

5.3 Test Equipment List and Details

See section 2.4.

5.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The spectrum width with level higher than 20dB below the peak level.
- 5. Repeat above 1~3 points for the low, middle and highest 3 channels of the EUT.

5.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)	Result
Low	2402	1080	Pass
Middle	2441	1080	Pass
High	2480	1089	Pass

Channel Low:

Channel Middle:

Channel High:

6. Test of Hopping Channel Separation

6.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 EUT Setup

6.3 Test Equipment List and Details

See section 2.4.

6.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 300KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.

6.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Normal Mode

Channel No.	Frequency (MHz)	Channel Separation (kHz)	Limit (kHz)	Result
Low	2402	1002		
Middle	2441	1020	>=25 KHz or 2/3 20 dB BW	Pass
High	2480	1002		

Channel Low:

Channel Middle:

Channel High:

7. Test of Number of Hopping Frequency

7.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

7.2 EUT Setup

Spectrum Analyzer

7.3 Test Equipment List and Details

See section 2.4.

7.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 1MHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.

7.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Normal Mode

Modulation Type	Frequency	Number of Hopping	Min. Limit
	(MHz)	Channels	(kHz)
FHSS	2402~2480	79	>15

8. Test of Dwell Time of Each Frequency

8.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

8.2 EUT Setup

Spectrum Analyzer

8.3 Test Equipment List and Details

See section 2.4.

8.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is more than once pulse time.
- 4. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 5. Measure the maximum time duration of one single pulse.

8.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Normal Mode

Note:The channel mid test data is the worest case in channel low,mid and high there modes test results

Test Data (Worset case)

Packet	Frequency (MHz)	Pulse Wide (ms)	Number of Hopping Pulses in 0.4*channel number	Dwell Time (ms)	Limit (ms)
DH1	2441	0.41	*(1600/(2*79))*31.6	131.2	400
DH3	2441	1.64	*(1600/(4*79))*31.6	262.4	400
DH5	2441	2.92	*(1600/(6*79))*31.6	311.5	400

DH1:

DH3:

DH5:

9. Test of Maximum Peak Output Power

9.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

9.2 EUT Setup

Spectrum Analyzer

9.3 Test Equipment List and Details

See section 2.4.

9.4 Test Equipment List and Details

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz.Span to10MHz
- 3. Set Detector to Peak,

9.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Channel	Frequency (MHz)	Output Power (dBm)	Limits (dBm)	Margin (dB)
Low	2402	-0.97	30	30.97
Middle	2441	-0.56	30	30.56
High	2480	-0.89	30	30.89

10. Test of Band Edges Emission

10.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

10.3 Test Equipment List and Details

See section 2.4.

10.4 Test Procedure

Conducted Measurement

- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4-2003
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 1MHz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1MHz RBW for reading under PK.

10.5 Test Result

Temperature ($^{\circ}$ C) : 22~23	EUT: Bluetooth Stereo Headphone
Humidity (%RH): 50~54	M/N: 922BT
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Note:Channel low,mid and high,30MHz-25GHz conducted emissions all more than 20 dB below fundamental.

Radiated Test Result

Frequency(MHz)		
<2400		
>2483.5		

The worest frequency range of continual TX Low Channel

The worest frequency range of continual TX High Channel

The worest frequency range of Hopping Mode

11. Test of Spurious Radiated Emission

11.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

Limits for Class B digital devices

Frequency (MHz)	limits at 3m dB(μV/m)
30-88	40.0
88-216	43.5
216-960	46.0
Above 960	54.0

NOTE: 1. The lower limit shall apply at the transition frequency.

- 2. The limits shown above are based on measuring equipment employing a CISPR quasipeak detector function for frequencies below or equal to 1000MHz.
- 3. The limits shown above are based on measuring equipment employing an average detector function for frequencies above 1000MHz.

Limits for Class B digital devices

Frequency (MHz)	limits at 10m dB(μV/m)
30-88	30.0
88-216	33.5
216-960	56.0
Above 960	64.0

NOTE: 1. The lower limit shall apply at the transition frequency.

- 2. The limits shown above are based on measuring equipment employing a CISPR quasipeak detector function for frequencies below or equal to 1000MHz.
- 3. The limits shown above are based on measuring equipment employing an average detector function for frequencies above 1000MHz.

11.2 Radiated Measurement Setup

30MHz ~ 1GHz:

Above 1GHz:

11.3 Test Equipment List and Details

See section 2.4.

11.4 Radiated Measurement Test Procedure

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8/0.1 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8/0.1 m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

11.5 Test Result

Temperature (°C) : 22~23	EUT: Bluetooth Stereo Headphone				
Humidity (%RH): 50~54	M/N: 922BT				
Barometric Pressure (mbar): 950~1000	Operation Condition: Normal operation				

The Spurious Emission (30~1000MHz) Of Horizontal (Charging mode)

EUT: Bluetooth Stereo Headphone

M/N: 922BT Operating Condition: Charging

Test Site: 10m CHAMBER

Operator: Owen Li Test Specification: DC 5V

Comment: Polarization: Horizontal

Tem:23°C Hum:50%

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Fleta Scrong Store Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw. MaxPeak Coupled 100 kHz 30.0 MHz 1.0 GHz VBLU9163

Level [dBµV/m] 80 70 60 50 40 30 20 10 0 40M 200M 300M 30M 50M 60M 70M 100M 400M 500M 600M M008 1G Frequency [Hz]

MEASUREMENT RESULT:

x x x MES

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
142.745491	17.90	-15.6	33.5	15.6		100.0	179.00	HORIZONTAL
206.893788 344.909820	18.80 27.10	-12.6 -8.1	33.5 36.5	14.7 9 4		100.0	88.00 268.00	HORIZONTAL HORIZONTAL
362.404810	26.60	-8.2	36.5			100.0	284.00	HORIZONTAL
484.869739	28.50	-6.2	36.5			100.0	370.00	HORIZONTAL
867.815631	29.90	0.4	36.5	6.6		100.0	120.00	HORIZONTAL

The Spurious Emission (30~1000MHz) Of Vertical (Charging mode)

EUT: Bluetooth Stereo Headphone

M/N: 922BT Operating Condition: Charging

Test Site: 10m CHAMBER

Operator: Owen Li Test Specification: DC 5V

Comment: Polarization: Vertical

Tem:23℃ Hum:50%

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.

Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

	Level dBµV/m			_	_	Azimuth deg	Polarization
43.607214	16.50	-11.4	30.0	13.5	 100.0	33.00	VERTICAL
59.158317	16.40	-11.3	30.0	13.6	 100.0	355.00	VERTICAL
136.913828	18.50	-15.4	33.5	15.0	 100.0	58.00	VERTICAL
300.200401	29.70	-9.3	36.0	6.3	 100.0	227.00	VERTICAL
313.807615	29.40	-9.1	36.0	6.6	 100.0	227.00	VERTICAL
957.234469	31.10	1.3	36.0	4.9	 100.0	339.00	VERTICAL

The Spurious Emission (30~1000MHz) Of Horizontal (BT TX Model L)

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: BT TX Channel Low

Test Site: 10m CHAMBER

Operator: Owen Li Test Specification: DC 5V

Comment: Polarization: Horizontal

Tem:23℃ Hum:50%

Transducer

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Field Strength
Start Stop Detector Meas. IF

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

Frequency MHz		Transd dB		_	Height cm	Azimuth deg	Polarization
47.494990	15.50	-11.1	30.0	14.5	 100.0	255.00	HORIZONTAL
57.214429	16.20	-10.8	30.0	13.8	 100.0	190.00	HORIZONTAL
103.867735	20.60	-12.2	33.5	12.9	 100.0	158.00	HORIZONTAL
304.088176	30.90	-9.2	36.0	5.1	 100.0	134.00	HORIZONTAL
311.863727	29.00	-9.1	36.0	7.0	 100.0	134.00	HORIZONTAL
895 030060	29 70	0.9	36.0	6 3	 100.0	341 00	HORTZONTAT.

The Spurious Emission (30~1000MHz) Of Vertical (BT TX Model L)

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: BT TX Channel Low

Test Site: 10m CHAMBER

Operator: Owen Li DC 5V Test Specification:

Comment: Polarization: Vertical

Tem:23°C Hum:50%

Transducer

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Field Strength Stop Detector Meas. IF Start

Time Bandw. Frequency Frequency

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
43.607214	15.60	-11.4	30.0	14.4		100.0	181.00	VERTICAL
59.158317	15.40	-11.3	30.0	14.6		100.0	229.00	VERTICAL
136.913828	17.80	-15.4	33.5	15.7		100.0	294.00	VERTICAL
292.424850	28.20	-9.5	36.0	7.8		100.0	222.00	VERTICAL
311.863727	28.20	-9.1	36.0	7.8		100.0	222.00	VERTICAL
895.030060	28.90	0.9	36.0	7.1		100.0	157.00	VERTICAL

The Spurious Emission (30~1000MHz) Of Horizontal (BT TX Model M)

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: BT TX Channel Middle

Test Site: 10m CHAMBER

Operator: Owen Li Test Specification: DC 5V

Comment: Polarization: Horizontal

Tem:23℃ Hum:50%

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
41.663327	16.00	-11.5	30.0	14.0		100.0	352.00	HORIZONTAL
55.270541	16.10	-10.8	30.0	13.9		100.0	303.00	HORIZONTAL
107.755511	21.10	-12.4	33.5	12.4		100.0	173.00	HORIZONTAL
300.200401	30.30	-9.3	36.0	5.7		100.0	197.00	HORIZONTAL
321.583166	28.30	-8.9	36.0	7.7		100.0	197.00	HORIZONTAL
871.703407	29.50	0.5	36.0	6.5		100.0	60.00	HORIZONTAL

The Spurious Emission (30~1000MHz) Of Vertical (BT TX Model M)

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: BT TX Channel Middle

Test Site: 10m CHAMBER

Operator: Owen Li DC 5V Test Specification:

Comment: Polarization: Vertical

Tem:23°C Hum:50%

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Fleid Solling
Stop Detector Meas. IF

Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Height cm	Azimuth deg	Polarization
45.551102	15.70	-11.2	30.0	14.3	 100.0	239.00	VERTICAL
55.270541	15.20	-10.8	30.0	14.8	 100.0	69.00	VERTICAL
136.913828	19.00	-15.4	33.5	14.5	 100.0	60.00	VERTICAL
309.919840	30.10	-9.1	36.0	5.9	 100.0	222.00	VERTICAL
311.863727	30.30	-9.1	36.0	5.7	 100.0	222.00	VERTICAL
924.188377	29.30	1.3	36.0	6.7	 100.0	239.00	VERTICAL

The Spurious Emission (30~1000MHz) Of Horizontal (BT TX Model H)

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: BT TX Channel High

Test Site: 10m CHAMBER

Operator: Owen Li Test Specification: DC 5V

Comment: Polarization: Horizontal

Tem:23℃ Hum:50%

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Field Strength Start Stop Detector Meas. IF

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

Transducer

Frequency MHz	Level dBµV/m		Limit dBµV/m	_	Height cm	Azimuth deg	Polarization
43.607214	14.70	-11.4	30.0	15.3	 100.0	231.00	HORIZONTAL
55.270541	15.40	-10.8	30.0	14.6	 100.0	117.00	HORIZONTAL
103.867735	20.50	-12.2	33.5	13.0	 100.0	134.00	HORIZONTAL
298.256513	30.20	-9.3	36.0	5.8	 100.0	198.00	HORIZONTAL
321.583166	27.60	-8.9	36.0	8.4	 100.0	134.00	HORIZONTAL
955.290581	30.00	1.3	36.0	6.0	 100.0	150.00	HORIZONTAL

The Spurious Emission (30~1000MHz) Of Vertical (BT TX Model H)

EUT: Bluetooth Stereo Headphone

M/N: 922BT

Operating Condition: BT TX Channel High

Test Site: 10m CHAMBER

Operator: Owen Li Test Specification: DC 5V

Comment: Polarization: Vertical

Tem:23°C Hum:50%

SWEEP TABLE: "test (30M-1G) 8447F"

Short Description: Field Strength Start Stop Detector Meas. IF

Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VBLU9163

Level [dBµV/m] 60 50 30 20 10 30M 60M 70M 100M 200M 300M 400M 500M 600M 800M Frequency [Hz] x x x MES

Transducer

Frequency MHz	Level dBµV/m			Margin dB	Height cm	Azimuth deg	Polarization
47.494990	16.10	-11.1	30.0	13.9	 100.0	116.00	VERTICAL
86.372745	15.30	-15.7	30.0	14.7	 100.0	28.00	VERTICAL
136.913828	19.60	-15.4	33.5	13.9	 100.0	116.00	VERTICAL
253.547094	23.20	-10.5	36.0	12.8	 100.0	181.00	VERTICAL
533.466934	23.00	-5.6	36.0	13.0	 100.0	109.00	VERTICAL
910.581162	29.30	1.1	36.0	6.7	 100.0	165.00	VERTICAL

The Spurious Emission (Above 1GHz)

	Test Results-(Measurement Distance: 3m)_Channel low										
_	Mea	asurement v	alue	Li	mit	Antenna	Result				
Frequency (MHz)	PK (dBµV/m)	AV factor (dB)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)				
2402.000*	91.42					Н	Р				
4804.000	38.75			74	54	Н	Р				
7206.000	32.31			74	54	Н	Р				
							•				
2402.000*	91.27					V	Р				
4804.000	37.41			74	54	V	Р				
7206.000	32.53			74	54	V	Р				

^{*:} fundamental frequency

	Test Results-(Measurement Distance: 3m)_Channel middle										
_	Mea	asurement v	alue	Li	mit	Antenna	Result				
Frequency (MHz)	PK (dBµV/m)	AV factor (dB)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)				
2441.000*	91.84					Н	Р				
4882.000	38.54			74	54	Н	Р				
7323.000	32.67			74	54	Н	Р				
2441.000*	90.79					V	Р				
4882.000	36.81			74	54	V	Р				
7323.000	30.46			74	54	V	Р				

^{*:} fundamental frequency

	Test Results-(Measurement Distance: 3m)_Channel high											
_	Mea	asurement v	alue /	Li	mit	Antenna	Result					
Frequency (MHz)	PK (dBµV/m)	AV factor (dB)	AV (dBµV/m)	PK (dBµV/m)	AV (dBµV/m)	(H/V)	(P/F)					
2480.000*	91.62					Н	Р					
4960.000	37.57			74	54	Н	Р					
7440.000	32.18			74	54	Н	Р					
2480.000*	90.65					V	Р					
4960.000	36.87			74	54	V	Р					
7440.000	29.93			74	54	V	Р					

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. According to the emissions below 18GHz, the data curve is lower than the limit, and the data between 18GHz to 25GHz will be lower than the limit, so they are not recorded in the report. All outside of operating frequency band and restricted band specified are below 15.209.

12. ANTENNA REQUIREMENT

12.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Connected Construction

The antenna used in this product is complied with Standdard. The maximum Gain of the antenna lower than 6.0dBi and the antenna is integrated, fixed on PCB.

APPENDIX A - External Photographs

APPENDIX B - Internal Photographs

APPENDIX C - Test Setup Photographs

Conducted Emission Test

Radiated Emission Test

