	Marwadi University		
Marwadi University	Faculty of engineering and technology		
	Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

1. 4-Bit Full Adder

A 4-bit Full Adder is designed to generate a 4-bit Sum and is designed by combining four 2-bit Full Adders and the Four bits output along with the Carry Bit.

Circuit Diagrams: -

Truth Tables: -

	Input		Out	put
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logic Equations: -

The sum (S) of the full-adder is the XOR of A, B, and Cin. Therefore,

$$\mathrm{Sum},\, S\, =\, A\, \oplus\, B\, \oplus\, C_{\mathrm{in}}\, =\, A'B'C_{\mathrm{in}}\, +\, A'BC'_{\mathrm{in}}\, +\, AB'C'_{\mathrm{in}}\, +\, ABC_{\mathrm{in}}$$

The carry (C) of the half-adder is the AND of A and B. Therefore,

$$Carry,\,C\,=\,AB\,+\,AC_{in}\,+\,BC_{in}$$

	Marwadi University		
Marwadi University	Faculty of engineering and technology Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

	Marwadi University		
Marwadi University	Faculty of engineering and technology		
	Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

2. 8×1 Multiplexer

The 8×1 Multiplexer is made using 4×1 Multiplexers and 2×1 Multiplexer. We know that 4×1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8×1 Multiplexer has 8 data inputs, 3 selection lines and one output.

Circuit Diagrams: -

Block Diagram: -

Figure 4 - 8:1 Multiplexer

Truth Tables: -

	Selection Inputs	Output	
S_2	$\mathbf{s_{1}}$	S_0	Y
0	0	0	I ₀
0	0	1	I ₁
0	1	0	I ₂
0	1	1	I ₃
1	0	0	I ₄
1	0	1	I ₅
1	1	0	I ₆
1	1	1	I ₇

	Marwadi University		
Marwadi University	Faculty of engineering and technology Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

Logic Equations: -

Y = S2S1S0I0 + S2S1S0I1 + S2S1S0I2 + S2S1S0I3 + S2S1S0I4 + S2S1S0I5 + S2S1S0I6 + S2S1S0I7

	Marwadi University		
Marwadi University	Faculty of engineering and technology		
	Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

3. 1-bit Magnitude Comparator

A 1-bit magnitude comparator circuit diagram compares two 1-bit binary inputs (A and B) and produces outputs indicating whether A is greater than, equal to, or less than B. The circuit typically uses logic gates like XOR, AND, and NOT gates to implement these comparisons. The output signals would represent the comparison outcomes: A > B, A = B, or A < B.

Circuit Diagrams: -

The logic circuit of a 1-bit comparator

Truth Tables: -

Inp	Inputs		Outputs			
В	A	A > B	A = B	A < B		
0	0	0	1	0		
0	1	1	0	0		
1	0	0	0	1		
1	1	0	1	0		

Logic Equations: -

$$Z = A'B' + AB$$

This is similar to the equation of an EXNOR gate. Hence,

$$Z = A \oplus B$$

	Marwadi University Faculty of engineering and technology Department of Information and Communication Technology		
Marwadi University			
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

	Marwadi University		
Marwadi University	Faculty of engineering and technology		
	Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

4. 4-bit Serial-In Serial-Out (SISO) Register

The term "SISO" stands for "Serial-In Serial-Out". The SISO shift register circuit accepts serial data on its input pin and shifts it out serially on its output pin. The number of bits that can be shifted out before the next bit arrives depends on the speed of the clock signal that controls the operation of the shift register. This type of shift register can be used as a buffer between two asynchronous devices that communicate with each other using signals with different frequencies or phases.

Circuit Diagrams: -

Truth Table:

	Operat	ion of th	e Shift-ri	ght Reg	fister
Timing pulse	Q_A	Q_{B}	Q_{c}	Q_D	Serial output at Q_D
Initial value	0_	0 _	0_	0	0
After 1st clock pulse	1	A 0	A 0	^ 0	0
After 2 nd clock pulse	1	1	0	0	0
After 3rd clock pulse	0	1	1	0	0
After 4 th clock pulse	1	0	1	1	1

	Marwadi University		
Marwadi University	Faculty of engineering and technology Department of Information and Communication Technology		
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind		
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045	

Timing Diagram:

	Marwadi University	
Marwadi University	Faculty of engineering and technology	
	Department of Information and Communication Technology	
Subject: VLSI Design	AIM: Design and Implementation of Digital Circuits in Microwind	
LONG HOUR DESIGN	Date: 13/09/2025	Enrollment No:92410133045

Conclusion

- Successfully designed and simulated four circuits in Microwind
- Learned transistor-level layout design and timing verification
- Future work: extend to larger adders, PIPO registers, multipliers