1.4. Наибольший общий делитель

Определение 1.4.1. Полином g(x) называется общим делителем двух полиномов $f_0(x)$ и $f_1(x)$, если $f_0 \\\vdots g$, $f_1 \\\vdots g$.

Определение 1.4.2. Общий делитель d(x) полиномов $f_0(x)$ и $f_1(x)$ называется наибольшим общим делителем (НОД), если d(x) делится нацело на любой другой общий делитель этих полиномов.

Определение 1.4.3. Полиномы $f_0(x)$ и $f_1(x)$ называются взаимно простыми, если они не имеют общих делителей положительных степеней.

Лемма 1.4.1. Наибольший общий делитель двух полиномов определяется с точностью до постоянного сомножителя.

<u>Доказательство.</u> Пусть даны два различных наибольших общих делителя $d_0(x)$ и $d_1(x)$ полиномов $f_0(x)$ и $f_1(x)$. По определению НОД $d_0(x) = h_1(x)d_1(x)$, а $d_1(x) = h_0(x)d_0(x)$. Следовательно, $d_0(x) = h_1(x)h_0(x)d_0(x)$, поэтому $\deg[h_0(x)h_1(x)] = 0$, отсюда $\deg h_0(x) = \deg h_1(x) = 0$, т. е. полиномы $h_0(x)$ и $h_1(x)$ являются константами.

Приведем конструктивный способ построения НОД двух полиномов $f_0(x)$ и $f_1(x)$, который называется алгоритмом Евклида.

Пусть для определенности $\deg f_0(x) \geq \deg f_1(x)$. Делим полином $f_0(x)$ на полином $f_1(x)$ с остатком, получаем $f_0(x) = f_1(x)q_1(x) + r_1(x)$. Теперь полином $f_1(x)$ делим на остаток от деления $r_1(x)$, имеем $f_1(x) = r_1(x)q_2(x) + r_2(x)$. Затем полином $r_1(x)$ делим на $r_2(x)$ и т. д. В итоге получаем цепочку равенств:

$$f_0 = f_1 q_1 + r_1, \ f_1 = r_1 q_2 + r_2, \ r_1 = r_2 q_3 + r_3, \dots, \ r_{k-2} = r_{k-1} q_k + r_k, \ r_{k-1} = r_k q_{k+1}.$$
 (1.4.1)

Так как $\deg r_1 > \deg r_2 > \cdots > \deg r_{k-1} > \deg r_k$, то цепочка равенств (1.4.1) конечна и в ней существует звено, в котором деление осуществляется нацело. Докажем, что полином $r_k(x)$ является наибольшим общим делителем полиномов $f_0(x)$ и $f_1(x)$.

Действительно, поскольку r_{k-1} : r_k , то оба слагаемых в правой части соотношения $r_{k-2}=r_{k-1}q_k+r_k$ делятся на $r_k(x)$, поэтому r_{k-2} : r_k . Продолжая подобные рассуждения и передвигаясь по цепочке, получаем, что f_1 : r_k , f_0 : r_k . Таким образом, $r_k(x)$ является общим делителем полиномов $f_0(x)$ и $f_1(x)$.

Пусть d(x) — произвольный общий делитель указанных полиномов. В силу первого равенства цепочки (1.4.1) $f_0 = f_1q_1 + r_1$ остаток от деления $r_1(x)$ делится нацело на полином d(x). Тогда из второго равенства $f_1 = r_1q_2 + r_2$ следует, что $r_2 \\\vdots \\ d$. Рассуждая аналогично и перебирая последовательно все равенства (1.4.1), в итоге имеем $r_k \\\vdots \\ d$. В силу произвольности d(x) и в соответствии с определением НОД получаем, что $r_k(x)$ — наибольший общий делитель полиномов $f_0(x)$ и $f_1(x)$.

Глава 1. Полиномы и их корни

Теорема 1.4.1. Если d(x) — это наибольший общий делитель полиномов $f_0(x)$ и $f_1(x)$, то существуют такие полиномы $u_0(x)$ и $u_1(x)$, что

$$d(x) = u_0(x)f_0(x) + u_1(x)f_1(x). (1.4.2)$$

<u>Доказательство.</u> Для доказательства воспользуемся цепочкой (1.4.1). В соответствии с алгоритмом Евклида $d(x)=r_k(x)$. Но $r_k=r_{k-2}-r_{k-1}q_k=a_1^{(k-2)}r_{k-2}+a_2^{(k-1)}r_{k-1}$, где $a_1^{(k-2)}=1$, $a_2^{(k-1)}=-q_k$. Из (1.4.1) следует, что $r_{k-1}=r_{k-3}-r_{k-2}q_{k-1}$. Поэтому, подставляя в выражение для r_k , получаем $r_k=a_1^{(k-2)}r_{k-2}+a_2^{(k-1)}[r_{k-3}-r_{k-2}q_{k-1}]=a_1^{(k-3)}r_{k-3}+a_2^{(k-2)}r_{k-2}$, где $a_1^{(k-3)}=a_2^{(k-1)}$, $a_2^{(k-2)}=a_1^{(k-2)}-a_2^{(k-1)}q_{k-1}$. Далее заменяем r_{k-2} и т. д. В итоге будем иметь, что $r_k=a_1^{(1)}r_1+a_2^{(2)}r_2$. Но $r_1=f_0-f_1q_1$, а $r_2=f_1-r_1q_2=f_1-(f_0-f_1q_1)q_2$. Поэтому окончательно имеем

$$r_k = a_1^{(1)}(f_0 - f_1q_1) + a_2^{(2)}[f_1 - (f_0 - f_1q_1)q_2] = u_0f_0 + u_1f_1,$$

где $u_0 = a_1^{(1)} - a_2^{(2)} q_2$, $u_1 = -a_1^{(1)} q_1 + a_2^{(2)} (1 + q_1 q_2)$.

Следствие 1.4.1. Полиномы $f_0(x)$ и $f_1(x)$ взаимно просты тогда и только тогда, когда существуют полиномы $u_0(x)$ и $u_1(x)$, для которых

$$u_0(x)f_0(x) + u_1(x)f_1(x) = 1.$$
 (1.4.3)

Необходимость данного условия очевидна, а достаточность легко доказывается от противного.

Следствие 1.4.2. Если полином $f_0(x)$ взаимно прост с каждым из полиномов $f_1(x)$ и $f_2(x)$, то он взаимно прост и с их произведением $f_1(x)f_2(x)$.

Доказательство. Так как $f_0(x)$ и $f_1(x)$ взаимно просты, то существуют такие полиномы $u_0(x)$ и $u_1(x)$, что справедливо (1.4.3). Умножим обе части соотношения (1.4.3) на $f_2(x)$, получаем $[u_0(x)f_2(x)]f_0(x)+u_1(x)[f_1(x)f_2(x)]=f_2(x)$. Если предположить, что полиномы $f_0(x)$ и $f_1(x)f_2(x)$ имеют общий делитель положительной степени, то он должен быть делителем и полинома $f_2(x)$. Но по условию $f_0(x)$ взаимно прост с $f_2(x)$, следовательно, полином $f_0(x)$ и произведение $f_1(x)f_2(x)$ являются взаимно простыми полиномами.

Следствие 1.4.3. Если произведение $f_1(x)f_2(x)$ делится нацело на полином $f_0(x)$, причем $f_1(x)$ и $f_0(x)$ являются взаимно простыми, то f_2 : f_0 .

Доказательство. Поскольку $f_0(x)$ и $f_1(x)$ взаимно просты, то существуют такие полиномы $u_0(x)$ и $u_1(x)$, что справедливо (1.4.3). Умножим обе части соотношения (1.4.3) на $f_2(x)$, получаем $[u_0(x)f_2(x)]f_0(x)+u_1(x)[f_1(x)f_2(x)]=f_2(x)$. Левая часть последнего равенства, очевидно, делится нацело на $f_0(x)$. Следовательно, должна делиться нацело и правая часть, т. е. f_2 : f_0 .