Confidence Intervel

Miaoyan Wang

Department of Statistics UW Madison

Review: Point Estimators

- Most probability distributions are indexed by one or more parameters. For example, $N(\mu, \sigma^2)$.
- In hypothesis tests, we have used **point estimators** for parameters. For example, consider an i.i.d. sample $D_1, D_2, \ldots, D_n \sim_{\text{i.i.d}} N(\mu_D, \sigma_D^2)$. Let

$$\bar{D} = \frac{1}{n} \sum_{i=1}^{n} D_n, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_n - \bar{D})^2.$$

Then \bar{D} is a point estimator of μ_D and S_D^2 is a point estimator of σ^2 .

- We know that $E(\bar{D}) = \mu_D$ and $E(S_D^2) = \sigma_D^2$.
- That is, \bar{D} is an **unbiased estimator** of μ_D and S_D^2 is an unbiased estimator of σ_D^2 .

Interval Estimators

- Now we turn to interval estimators to give a reasonable interval for parameters.
 - ▶ For μ : $[a_1, a_2]$ for some constants a_1, a_2 based on data
 - ▶ For σ^2 : $[b_1, b_2]$ for some constants b_1, b_2 based on data
- The assumptions are the same as in hypothesis testing, but we do not need a null hypothesis about the parameters (e.g. $\mu_D = \mu_1 \mu_2 = 0$).

Confidence Interval for μ_D

- Suppose D_1, D_2, \dots, D_n is an i.i.d. sample from $N(\mu_D, \sigma_D^2)$ and σ_D^2 is unknown.
- Note that

$$\frac{D-\mu_D}{S_D/\sqrt{n}}\sim T_{n-1}.$$

• Let $t_{n-1,\alpha/2}$ denote the t critical value such that

$$P(-t_{n-1,\alpha/2} \leq T_{n-1} \leq t_{n-1,\alpha/2}) = 1 - \alpha.$$

Confidence Interval for $\mu_D = \mu_1 - \mu_2$

Then we have

$$1-\alpha = P\left(\mu_D \in \left[\bar{D} - t_{n-1,\alpha/2} \frac{S_D}{\sqrt{n}}, \ \bar{D} + t_{n-1,\alpha/2} \frac{S_D}{\sqrt{n}}\right]\right)$$

• A $(1-\alpha)$ CI for μ_D is

$$\mu_D \in \left[\bar{d} - t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}, \ \bar{d} + t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}} \right]$$

or

$$ar{d} \pm t_{n-1,\alpha/2} rac{s_D}{\sqrt{n}}$$

- The half width of this CI is $t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}$.
- The width of this CI is $2 \times t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}$.

Confidence Intervals for $\mu_D = \mu_1 - \mu_2$

• A $(1-\alpha)$ CI for μ_D is

$$\mu_D \in \left[\bar{d} - t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}}, \ \bar{d} + t_{n-1,\alpha/2} \frac{s_D}{\sqrt{n}} \right]$$

ullet In the lake clarity 1980 vs. 1990 example, a 95% CI for μ_D is

$$0.497 - 2.080 \times \frac{0.435}{\sqrt{22}} \le \mu_D \le 0.497 + 2.080 \times \frac{0.435}{\sqrt{22}}$$

which is [0.30, 0.69] or 0.497 ± 0.195 .

Remarks

- By convention, CIs are two-sided. But one-sided confidence bounds are possible.
- It is not true that $P(0.30 \le \mu_D \le 0.69) = 0.95$. Why not? because
 - once a sample is observed, there is nothing random.
- The 0.95 probability concerns with the repeated random sampling. It is interpreted as, 95% of the time, the (random) CIs calculated in this way contains (fixed) μ_D .
- For a single case, it is interpreted as ? having 95% confidence that μ_D is between 0.30 m and 0.69 m.
- The interval [0.30, 0.69] (or 0.497 ± 0.195) can be thought of as a plausible range of μ_D .
- What are the assumptions made when we perform a paired T test or construct a corresponding confidence interval for μ ?

Two-sided Confidence Interval

• Based on Z-statistic: $(\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\ \bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}})$

Size of Interval

• Based on T-statistic: $(\bar{X}-t_{n-1,\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}},\ \bar{X}+t_{n-1,\alpha/2}\frac{\hat{\sigma}}{\sqrt{n}})$

One-sided Confidence Interval

- Based on Z-statistic:
 - Lower interval: $(-\infty, \underbrace{\bar{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}})$
 - ▶ Upper interval: $(\bar{X} z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$

Upper Interval

Lower Interval

- Based on T-statistic:
 - ▶ Lower interval: $(-\infty, \underbrace{\bar{X} + t_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}}})$ Upper bound
 - Upper interval: $(\bar{X} t_{n-1,\alpha} \frac{\hat{\sigma}}{\sqrt{n}}, \infty)$

Example

Problem: Suppose the mean of an i.i.d. sample of n=100 is $\bar{x}=50$ with sample standard deviation 10. Set up an upper 95%-Cl estimate for the population mean μ .

Answer: Assume the observation $X_i \sim_{\text{i.i.d.}} N(\mu, \sigma^2)$ for all $i=1,\ldots,100$. Since σ is unknown, we consider the T-statistic. Note that $t_{99,0.05}=1.66$ and $\hat{\sigma}=10$. So the 95%-CI for μ is

$$(\bar{x}-t_{99,0.05}*\frac{\hat{\sigma}}{\sqrt{n}},\infty)=(50-1.66*\frac{10}{\sqrt{100}},\ \infty)=(48.34,\ \infty).$$