Contents

1 Introduzione 2

1 Introduzione

$$X_1 = 1.7$$

$$X_2 = 1.82$$

$$X_3 = 1.73$$

$$X_4 = 1.7$$

$$X_5 = 1.8$$

 $\hat{ heta}$? Altezza della popolazione

Possibile soluzione

$$\hat{\theta_a} = \frac{1}{n} \sum_{4}^{5} x_i = \frac{1.7 + 1.82 + 1.73 + 1.7 + 1.8}{5} = \frac{8.75}{5} = 1.75$$

$$\hat{\theta_b} = \frac{\min(x_i) + \max(x_i)}{2} = \frac{3.52}{2} = 1.76$$

$$\hat{\theta_c} = \frac{1}{3} \sum_{4}^{4} x_i = \frac{1}{3} (1.8 + 1.73 + 1.7) = \frac{5.23}{3} = 1.743$$

Scartiamo il più piccolo e il massimo, calcolando poi la media dei rimanenti

Stima parametrica (Point) Parametric Estimation

Formula generica: Bayes

$$P(\theta/X_1 \dots X_n) = \frac{P(X_1 \dots X_n/\theta)P(\theta)}{P(X_1 \dots X_n)}$$

Verosomiglianza (likelihood)

MLE Maximum Likelihood Estimation (Stima a Massima Verosomiglianza)

$$\hat{\theta} = argmaxL(\theta) = argmax[f(X_1 \dots X_n/\theta)]$$

Esempio (Legge -> Distribuzione di Poisson)

$$f(X_1, X_2 \dots X_n/\theta) = f(X_1/\theta) \cdot f(X_2/\theta) \dots f(X_n/\theta)$$

$$= \frac{1}{\theta} e^{-\frac{X_1}{\theta}} \cdot \frac{1}{\theta} e^{-\frac{X_2}{\theta}} \cdot \dots \frac{1}{\theta} e^{-\frac{X_n}{\theta}}$$

$$= \frac{1}{\theta n} e^{-\frac{1}{\theta} \sum_i X_i}$$

Esempio (MLE Ipotesi di Bernoulli)

$$X_{i} = \begin{cases} 0\\1 \end{cases}$$

$$P\{X_{i} = 1\} = 1 - P\{X_{i} = 0\}$$

$$P\{X_{i} = x\} = P^{x}(1 - P)^{x} \quad x \in \{0, 1\}$$

Dove X è una variabile aleatoria e x una variabile sperimentale

$$f(x_1 \dots x_n/P) = P^{x_1} (1-P)^{1-x_1} \cdot P^{x_2} (1-P)^{1-x_2} \dots P^{x_n} (1-P)^{1-x_n} = P^{\sum_{i=1}^{n} x_i} (1-P)^{n-\sum_{i=1}^{n} x_i} \longrightarrow \text{Bisogna trovare il } \mathbf{massimo} \text{ della funzione}$$

$$log(f(x_1 \dots x_n/P)) = \sum_{i=1}^{n} x_i log P - (n - \sum_{i=1}^{n} x_i) log(1 - P)$$

$$= \frac{d}{dP}[log(f)] = 0 = \frac{1}{\hat{P}} \sum_{i=1}^{n} x_i - \frac{n - \sum_{i=1}^{n} x_i}{(1 - \hat{P})}$$

$$= (1 - \hat{P}) \sum_{i=1}^{n} x_i = \hat{P}(n - \sum_{i=1}^{n} x_i)$$

$$= \hat{P} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \mathsf{MLE}$$

Esercizio 1 Probabilità che Oneto dia 30L (Lode)

$$n = 120$$

 $\sum_{i}^{120} x_{i} = 18$
 $\hat{P} = \frac{18}{120} = 0.15 \rightarrow 15\%$

Esercizio 2 N studenti da 30 e lode

$$n_1 = 18 \leftarrow \mathsf{Oneto}$$

 $n_2 = 20 \leftarrow \mathsf{Anguita}$

$$n_2 = 20 \leftarrow \mathsf{Anguita}$$

 $n_{1,2} = 10 \leftarrow 30 \text{L}$ sia con Oneto che con Anguita

$$N=$$
? Studenti da **30 e Lode**

$$N=?$$
 Studenti da **30 e Lode**
$$\hat{P}_1 \approx \frac{n_1 2}{n_2} \qquad \qquad \hat{P}_1 \approx \frac{n_1}{N} \qquad \qquad \frac{n_{1,2}}{n_2} = \frac{n_1}{N}$$
 $\Longrightarrow N=\frac{n_1 n_2}{n_1 n_2} o \frac{18 \cdot 20}{10} = 36$

MLE POISSON

$$f(x_1, x_2 \dots x_n/\lambda) = \frac{e^{-\lambda} \lambda^{x_1}}{x_1!} \cdot \frac{e^{-\lambda} \lambda^{x_2}}{x_2!} \dots \frac{e^{-\lambda} \lambda^{x_n}}{x_n!}$$
$$= \frac{e^{-n\lambda} \lambda^{\sum_i x_i}}{x_1! x_2! \dots x_n!}$$

Formula generica: $\lambda = \frac{\sum_i x_i}{N}$ MLE

Esercizio 3 Stima del numero di incidenti medio in auto n = 10 $x_1 = \{4, 0, 6, 5, 2, 1, 2, 0, 4, 3\}$ $\hat{\lambda} = \frac{\sum_i x_i}{n} = \frac{27}{10} = 2.7$

$$\hat{\lambda} = \frac{\sum_i x_i}{n} = \frac{27}{10} = 2.7$$

$$P\{x \le 2\} = e^{-2.7} \left(\frac{2.7^0}{0!} + \frac{2.7^1}{1!} + \frac{2.7^2}{2!}\right) \approx .4936 \to 49.36\%$$

Probabilità che non ci siano più di 2 incidenti

MLE UNIFORME

$$f(x_1, x_2 \dots x_n/\theta) = \begin{cases} \frac{1}{\theta^n} & 0 < x_i < \theta \\ 0 & \text{altrimenti} \end{cases}$$

$$\hat{\theta} = \max\{x_i\}$$

$$\frac{\hat{\theta}}{2} = \frac{\max\{x_i\}}{2}$$

MLE GAUSSIANA

$$f(x_1, x_2 \dots x_n/\mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x_1-\mu)^2}{2\sigma^2}}$$

$$(\frac{1}{2\pi})^{\frac{n}{2}} \frac{1}{\sigma^n} e^{\frac{-\sum_i (x_i - \mu)^2}{2\sigma}}$$

$$log[f] = -\frac{n}{2} log 2\pi - n log \sigma - \frac{\sum_i (x_i - \mu)^2}{2\sigma^2}$$

$$\frac{dlog f}{d\mu} = 0 = \frac{\sum_i (x_i - \mu)^2}{\sigma^2} \longrightarrow \hat{\mu} = \frac{\sum_i x_i}{n}$$

$$\frac{dlog f}{d\sigma} = 0 = -\frac{n}{\sigma} + \frac{\sum_i (x_i - \mu)^2}{4\sigma^4} \rightarrow \sigma = \sqrt{\frac{\sum_i (x_i - \mu)^2}{n}}$$

Esercizio primo

$$x_1 = 1.7$$

$$x_2 = 1.82$$

$$x_3 = 1.73$$

$$x_4 = 1.7$$

$$x_5 = 1.8$$

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{n} = \frac{1.7 + 1.82 + 1.73 + 1.7 + 1.8}{5} = 1.75$$

$$\hat{\sigma} = \sqrt{\frac{0.05^{2} + 0.07^{2} + 0.02^{2} + 0.05^{2} + 0.05^{2}}{5}} \approx 0.051$$

Intervalli di confidenza normali TODO

Intervalli di confidenza gaussiani σ^2 Nota

$$x_1mx_2\ldots x_n$$

$$\hat{\mu} \longleftarrow \mu$$

$$\begin{array}{l} \hat{\mu} \longleftarrow \mu \\ \frac{\overline{x} - \mu}{\frac{\sigma}{\overline{\sigma}}} \sim \mathcal{N}(0, 1) \end{array}$$

$$P(-1.96 < \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} < +1.96) = 0.95$$

Esempio: Sistema di comunicazione $\sigma^2 = 4$ n = 9

$$x_1 = \{5.85, 12, 15, 7, 9, 7.5, 6, 5, 10.5\}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{9} \sum_{i=1}^{n} x_i = \frac{81}{9} = 9$$

$$\begin{split} P\left(9-1.96\frac{\sigma}{\sqrt{m}} < \mu < 9+1.96\frac{\sigma}{\sqrt{m}}\right) &= 0.95 \\ p\left(9-1.96\frac{2}{3} < \mu < 9+1.96\frac{2}{3}\right) &= 0.95 \\ &\longrightarrow [7.693, 10.31] \to \mu \text{ si trova tra } 7.693 \text{ e } 10.31 \end{split}$$

In generale $Prob = 1 - \alpha$

$$(\overline{x}-z_a\frac{\sigma}{\sqrt{n}},\overline{x}+z_a\frac{\sigma}{\sqrt{n}})\to \mathsf{Si}$$
 rileva dalle tavole