ASSIGNMENT-2 GATE XE-2008

EE24BTECH11019 - DWARAK A

C: ELECTRICAL SCIENCES

Q.9 to Q.30 carry two marks each.

- 1) In an induction motor the phase-difference, ϕ , between the voltage applied at the stator terminals and the magnetizing current is
 - a) $\phi = 0^{\circ}$
 - b) $0^{\circ} < \phi < 90^{\circ}$
 - c) $\phi = 90^{\circ}$
 - d) $90^{\circ} < \phi < 180^{\circ}$
- 2) A voltage of +5V is applied (with respect to ground) to both the inputs V_1 and V_2 of an operational amplifier circuit shown in the figure. $R_1 = 20k\Omega$ and $R_2 = 10k\Omega$. The output voltage, V_o is

- a) -5V
- b) 0V
- c) 5V
- d) 20V
- 3) A pair of zener diodes each with a forward drop of 0.7V and a zener voltage of 4.7V is connected as shown in the figure. The input voltage is $v_{in} = 10sin(2t)$. The peak-to-peak output voltage, v_o , is
 - a) 5.4V
 - b) 4.7V
 - c) 1.4V
 - d) 0.7V

1

4) The npn transistor shown in figure has $h_{fe} = 99$ and $V_{BE} = 0.7V$. Under quiescent condition, $V_{EG} = 4.3V$ and $I_E = 1mA$, and the current in R_2 is 0.1mA. The value of R_1 , required for biasing the circuit is

- a) $10.1k\Omega$
- b) $90.9k\Omega$
- c) $100.1k\Omega$
- d) $150.2k\Omega$
- 5) The forward characteristics of a p-n diode is given by $i = I_s e^{\frac{n}{(nV_T)}}$ with n = 2 and $V_T = 25mV$. If the diode current is measured to be 100mA at 0.7V drop, the diode power dissipation at a diode current of 200mA is
 - a) 70mW
 - b) 140mW
 - c) 143mW
 - d) 147mW
- 6) For the n-channel JFET shown in the figure the pinch-off voltage, $V_p = -5V$, and gate source voltage, $V_{GS} = -3V$. The minimum required drain to source voltage, V_{DS} to operate at pinch-off condition is
 - a) 0V
 - b) 2*V*
 - c) 5V
 - d) 8V
- 7) The Boolean function corresponding to the truth table shown is

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

- a) $F = A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}BC$
- b) $F = ABC + AB\overline{C} + \overline{A}BC$
- c) $F = ABC + AB\overline{C} + A\overline{BC} + \overline{A}B\overline{C}$
- d) $F = A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}BC$
- 8) The decimal number 328 when converted to the base of 9 is equivalent to
 - a) $(434)_9$
 - b) $(424)_9$
 - c) $(404)_9$
 - d) (304)₉
- 9) The following logic circuit can be represented by the Boolean expression

a)
$$F = \overline{B} + BC + \overline{C}$$

b)
$$F = \overline{B} + \overline{C}$$

c)
$$F = (\overline{B+C})$$

b)
$$F = \overline{B} + \overline{C}$$

c) $F = (\overline{B} + \overline{C})$
d) $F = \overline{A} + \overline{B} + \overline{C}$

10) A 4-bit resistor network based D/A converter is shown in the figure. The output corresponding to the number 1010 is

- a) 5.0V
- b) 6.25V
- c) 7.25V
- d) 10.0V
- 11) Two 10V square waves of same frequency but 90° out-of-phase to each other are applied to X and Y deflecting plates of a CRO. Both channels are set at 5V/division and the CRO is operating in the X-Y mode. The display on CRO will be
 - a) A bright circle
 - b) A bright ellipse
 - c) Two bright spots at the diagonal of a faint square
 - d) Four bright spots at the comers of a faint square
- 12) CRO that is used in X Y mode displays a line inclined at an angle of 135° . The X-channel gain is 5V/division and the Y-channel gain is 10V/division. If the display point at a given instant corresponds to +3 divisions on the X-axis, the input voltage to the Y-channel at that instant is
 - a) -30V
 - b) -15V
 - c) +15V
 - d) +30V

Common Data Questions

Common Data for Questions 29 and 30:

A 1.0kW induction motor has 15 pole-pairs and is supplied from a 60Hz source. The motor runs at 0.05 slip. The stator loss is 80W.

- 13) The speed of the rotating magnetic field in the motor and the frequency of the rotor induced voltage are
 - a) 120rpm, 1.5Hz
 - b) 120rpm, 28.5Hz
 - c) 240rpm, 3.0Hz
 - d) 240rpm, 57.0Hz
- 14) The rotor copper loss of this induction motor is

- a) 120rpm, 1.5Hz
- b) 120rpm, 28.5Hz
- c) 240rpm, 3.0Hz
- d) 240rpm, 57.0Hz

Linked Answer Questions: Q.31 to Q.34 carry two marks each.

Statement for Linked Answer Questions 31 and 32:

A practical dc voltage source is represented as an ideal dc voltage source in series with an internal resistance. The V-I characteristics of two such sources, E_1 and E_2 , are shown in the figure.

- 15) The respective internal resistances of E_1 and E_2 are
 - a) 20Ω , 8Ω
 - b) $5\Omega, 2\Omega$
 - c) 8Ω , 20Ω
 - d) 2Ω , 5Ω
- 16) If the two sources, E_1 and E_2 , in question Q.31 are connected in parallel to feed a load of 200Ω resistance, then the load current is in the range
 - a) 0.0A to 0.5A
 - b) 0.5A to 2.0A
 - c) 2.0A to 4.0A
 - d) 4.0A to 8.0A

Statement for Linked Answer Questions 33 and 34:

A function F, in "Sum of Product (SOP)" form is described by

$$F = \sum m(0, 1, 3, 4, 5, 6, 7, 13, 15)$$

17) The Karnaugh Map for F is given by (X being don't care)

a)

AB CD	00	01	11	10
00	X	X	X	1
01	X	X	X	X
11	1	X	X	1
10	1	1	1	1

b)

AB CD	00	01	11	10
00	1	1	1	X
01	1	1	1	1
11	X	1	1	х
10	X	X	X	X

c)

AB CD	00	01	11	10
00	1	X	1	X
01	X	1	X	1
11	1	X	X	X
10	X	1	X	1

d)

AB CD	00	01	11	10
00	1	1	X	X
01	X	X	X	X
11	X	1	1	1
10	X	1	1	X

18) Using the Karnaugh Map obtained in question Q.33, the function, F reduces to

a)
$$F = \overline{AC} + \overline{AD} + AB + BD$$

b)
$$F = AC + AD + \overline{AB} + \overline{BD}$$

c)
$$F = \underline{AC} + \overline{\underline{A}D} + \overline{\underline{AB}} + \overline{BD}$$

d) $F = \overline{AC} + \overline{AD} + \overline{AB} + BD$

$$d) F = AC + AD + AB + BD$$