REINFORCEMENT

FUNDAMENTALS

APPLICATIONS

WEEK 4

MONTE CARLO
FOR
PREDICTION AND CONTROL

MONTE CARLO IN RL

Learning Targets for the Week

- What is Monte Carlo sampling? Why is it useful in RL? What are its drawbacks? How is it different from dynamic programming?
- How does first-visit MC work? Every visit?
- What is an "ε-soft" policy?
- What is off-policy learning?
- What is the difference between on-policy and off-policy?
- How do off-policy MC algorithms work? What are some problems that emerge in off-policy learning?
- What are importance weights, and why do we need them?

MONTE CARLO IN RL

Model-Free Prediction and Control

- Estimates expected return via sampling and calculating the empirical mean of experienced returns.
- Depends on episodes. Environment must be episodic.
- For use when the environment (state space) is too complex to compute the value function via dynamic programming, or when the environment is unknown.
- Run episode -> calculate returns to each state -> append to list -> average.

Remember

FIRST-VISIT MONTE CARLO

On-Policy Prediction

Initialize: π (to be evaluated), $\mathbf{V}(s) = 0 \ \forall \ s$, $returns(s) = [] \ \forall \ s$

```
Repeat for N iterations:
```

```
trajectory ← run_episode(π)
```

visits + get_first_visits(trajectory)

For state in visits:

G ← Return following state visit.

returns[state].append(G)

V(state) <- average(returns[state])</pre>

FIRST-VISIT MONTE CARLO

On-Policy Prediction: Example

Episode 1

Episode 2

$$V(A) = \frac{1}{2} * ((3 + 2 - 4 + 4 - 3) + (3 - 3)) = \frac{1}{2} * 2 = 1$$

$$V(B) = \frac{1}{2} * ((-4 + 4 - 3) + (-2 + 3 - 3)) = \frac{1}{2} * (-5) = -2.5$$

EVERY-VISIT MONTE CARLO

On-Policy Prediction

Initialize: π (to be evaluated), $\mathbf{V}(s) = 0 \ \forall \ s$, $returns(s) = [] \ \forall \ s$

```
Repeat for N iterations:
```

trajectory ← run_episode(π)

For state in trajectory:

G ← Return following state visit.

returns[state].append(G)

V(state) <- average(returns[state])</pre>

MONTE CARLO METHODS

On-Policy Control: ε-soft

- To achieve convergence to the optimal policy, Monte Carlo methods must ensure they visit every state-action pair (in the limit, i.e., "eventually").
- Greedy on-policy control does not work because we might get "locked out" of some patterns of behaviour by greed.
 - Think back to bandits and the reasoning behind optimistic initial values: we want to avoid early samples completely forcing us away from trying other options.
- As a result, we need to include some element of guaranteed constant exploration into our control method. Epsilon-greedy is a way to do this, which is a type of ε -soft policy.
- An ϵ -soft policy gives every available action at least a probability of ϵ / |A(s)| of being chosen, i.e., epsilon divided by the number of actions available from state s.
 - \circ Note that uniform random is an example of ϵ -soft .

MONTE CARLO METHODS

On-Policy Control: ε-soft

$$\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon / |A(s)| & \text{if } a = A^* \\ \varepsilon / |A(s)| & \text{if } a \neq A^* \end{cases}$$

ε - Soft

FIRST-VISIT MONTE CARLO

On-Policy Control

```
Initialize: \pi(a|s) \leftarrow \text{arbitrary } \epsilon - \text{soft policy}
Q(s,a) = 0 \forall s,a
returns(s) = [] \forall s,a
While true:
       trajectory ← run_episode(¶)
        first_visits + get_first_visits(trajectory)
     For state, action in first_visits:
                G ← Return following state, action pair.
                returns[state, action].append(©)
                Q(s,a) \leftarrow average(returns[state, action])
        For state in trajectory:
               A^* = \operatorname{argmaxQ}(s, \sigma)
                For all actions available from state (a \in A(s)):
                       \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon / |A(s)| & \text{if } a = A^* \\ \varepsilon / |A(s)| & \text{if } a \neq A^* \end{cases}
```

ON-POLICY VS. OFF-POLICY

ON-POLICY VS. OFF-POLICY

- What we've been doing so far.
- "Learn on the job"
 - One policy used for both learning (prediction) and improvement (control).
 - Exploration must be part of the single policy.
 - More simple.

- The new concept.
- "Look over someone's shoulder"
- Two policies, one for learning and one for improvement.
- Exploration can be isolated just to the learning policy.
- More complex but more flexible (e.g., enables learning from historical data, other agents/policies, human examples, ...)

Behavioural Policy

h

The Explorer

Generates Experiences

Prediction

Value Estimates or Estimator (V, Q, Q-Network, ...)

Target Policy

 ${f T}$

The Exploiter

Learns from Experiences

Control

- Behavioural policy *b* must ensure *coverage*: It must be able to visit all states the optimal policy would visit.
 - We can learn Π_* even if **b** is random, so that is an easy way to get coverage.
- We must include some correction for the difference between the behavioural policy and the target policy. This is usually done through importance weights.

Ordinary Importance Sampling

The probability of choosing action a in state s under target policy π

$$\pi(A_t|S_t)$$

The probability of choosing action a in state s under behavioural policy b

$$b(A_t|S_t)$$

Ordinary Importance
Weight
$$p_{t:T-1} = \frac{\pi(A_k|S_k)}{b(A_k|S_k)}$$

To be clear, this is the weighted relative probability of the trajectory up to timestep T-1.

Which is just a lot of multiplication of probability ratios (arithmetic).

The <u>ordinary importance weight</u> of the return from time t through T-1 is equal to the ratio between the state-action probability under the target and behavioural policies, multiplied by the ratio at time t+1, ... multiplied by the ratio at time T-1.

Ordinary Importance Sampling

$$\mathbb{E}_{X\sim P}[f(X)] = \Sigma P(X)f(X)$$

$$= \Sigma Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X\sim Q} \frac{P(X)}{Q(X)} f(X)$$

Ordinary Importance Sampling

- If an action is very likely in target policy π, but unlikely in behavioural policy b, the numerator is large compared to the denominator and the transition is more heavily weighted.
 - o If this difference is huge, e.g. $\pi(A_t|S_t) = .9 \text{ vs. } b(A_t|S_t) = .001$, the weight is also huge and the variance explodes. To fix this we use weighted importance sampling.
- If the action is unlikely under π but likely under b, the transition is more lightly weighted.

Ordinary vs. Weighted Importance Sampling

Normal Monte Carlo Sample Averaging

$$V(s) = \frac{\sum_{t}^{\infty}}{T(s)}$$

The sum of the returns experienced following visits to state s, divided by the number of times we have visited state s.

Ordinary vs. Weighted Importance Sampling

Unfortunate Ordinary Importance Sampling

$$V(s) = \frac{\sum_{t:T-1}^{S}G_t}{T(s)}$$

Each return is scaled, but the average is still calculated using the number of visits T(s)

Clearly
Superior
Weighted
Importance
Sampling

$$V(s) = \frac{\sum_{t:T-1}^{C} C_{t}}{\sum_{t:T-1}^{C}}$$

This makes the average of the returns a true weighted average, where the weights are the ratio between the likelihood of the action under the target policy vs. the behavioural policy.

Weighted Importance Sampling: The Easy Way

$$V_{n+1} = V_n + \frac{V_n}{C_n} \left[G_n - V_n \right]$$

$$W_{i} = P_{t:T(t)-1}$$

$$C = \sum W$$

Just like in bandits, we can incrementally update our weighted average return. Whew!!!

All we do is divide the latest weight W_n by the sum of the weights so far C_n , and then multiply that by the difference between the current return G_n and our current weighted return V_n .

All three equations in incremental form

Sample Averaging

$$V(S_t) = V(S_t) + (1/n)[G_t - V(S_t)]$$

Ordinary Importance Sampling

$$V(S_t) = V(S_t) + (1/n)[p_{t:T(t)-1}G_t - V(S_t)]$$

Weighted Importance Sampling

$$V_{n+1} = V_n + \frac{W_n}{C_n} [C_n - V_n]$$
 C_n

$$W_{i} = P_{t:T(t)-1}$$

$$C_{p} = \Sigma W_{i}$$

MONTE CARLO

Off-Policy Prediction with Weighted Importance Sampling

If W = 0 (i.e., if an action is selected that would never be selected

```
Initialize \forall s, a: Q(s,a) \in O, C(s,a) \in O

Repeat for Niterations:

b \in \text{any policy with coverage of } \pi

\text{trajectory} = \text{generate\_episode}(b)

G \in O

W \in I

For T = T-1, ..., O (i.e., run through trajectory in reverse):

G \in \gamma G + R_{t+1}

C(S_t, A_t) \in C(S_t, A_t) + W

Q(S_t, A_t) \in Q(S_t, A_t) + (W / C(S_t, A_t)) \cdot [G - Q(S_t, A_t)]

W \in W \cdot [\pi(A_t|S_t) / b(A_t|S_t)]
```

In the target policy; $\pi(A_{+}|S_{+}) = 0$), exit loop.

Input: π (arbitrary target policy),

MONTE CARLO

Off-Policy Control

```
Initialize \forall s, \alpha : Q(s,\alpha) \leftarrow 0, C(s,\alpha) \leftarrow 0,
                 \pi \leftarrow \operatorname{argmax} \mathbb{Q}(S_{+}, A_{+}) * ties broken consistently, not randomly
Repeat for N iterations:
        b ← any soft policy
        trajectory = generate_episode(b)
         G \leftarrow 0
        W ← 1
        For T = T-1, ..., (i.e., run through trajectory in reverse):
                 G ← γG + R<sub>t+1</sub>
                 C(S_{+},A_{+}) \leftarrow C(S_{+},A_{+}) + W
                 \mathbb{Q}(S_{t}, \mathbb{A}_{t}) \leftarrow \mathbb{Q}(S_{t}, \mathbb{A}_{t}) + (\mathbb{W}/\mathbb{C}(S_{t}, \mathbb{A}_{t})) \cdot [\mathbb{G} - \mathbb{Q}(S_{t}, \mathbb{A}_{t})]
                 \pi(S_t) \leftarrow \operatorname{argmax} (S_t, A_t) * ties broken consistently, not randomly
                 If A_{\downarrow} \neq \pi(S_{\downarrow}) then exit loop
                 W ← W • [1/b(A, |S,)]
```