Лекция 6 (продолжение). Базис в P_2 . Теореме о числе функций в базисе P_2 . Предполные классы. Теорема о предполных классах в P_2 .

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mk.cs.msu.ru

Базис P_2

Пусть $B \subseteq P_2$.

Множество B называется **базисом** P_2 , если

- 1) $[B] = P_2$, т. е. система B полна;
- 2) для любой функции $f \in B$ верно $[B \setminus \{f\}] \neq P_2$, т. е. система B неизбыточна.

Теорема 6.2 (о числе функций в базисе P_2).

- 1. Любой базис P_2 содержит не больше четырех функций.
- 2. Для любого числа k, $1 \leqslant k \leqslant 4$, в P_2 найдется базис, содержащий ровно k функций.

Доказательство. 1. Пусть B, $B \subseteq P_2$, — базис P_2 . Тогда B — полная система. Значит, по теореме Поста в B найдутся следующие (не обязательно различные) функции

$$f_0 \notin T_0, \ f_1 \notin T_1, \ f_l \notin L, \ f_s \notin S, \ f_m \notin M.$$

Система $\{f_0, f_1, f_l, f_s, f_m\}$ — полна, а B — неизбыточная система, поэтому

$$B = \{f_0, f_1, f_l, f_s, f_m\}.$$

Значит, $|B| \leqslant 5$.

Доказательство. Рассмотрим функцию $f_0 \in B$, $f_0 \notin T_0$:

<i>x</i> ₁	 Xn	f_0	
0	 0	1	
			,
1	 1	a	

где $a \in E_2$.

Теперь

- 1) если a=0, то $f_0 \notin T_1, M$, а значит, $f_1=f_m=f_0$, и $|B|\leqslant 3$;
- 2) если a=1, то $f_0
 otin S$, а значит, $f_s=f_0$, и $|B|\leqslant 4$.

Следовательно, $|B| \leqslant 4$.

Доказательство. 2. Для каждого числа k, $1 \le k \le 4$, приведем примеры базисов B из k функций:

- 1) если k=1, то, например, $B=\{x/y\}$ или $B=\{x\downarrow y\}$;
- 2) если k=2, то, например, $B=\{\bar{x},x\cdot y\}$ или $B=\{\bar{x},x\vee y\}$;
- 3) если k=3, то, например, $B=\{1, x \oplus y, x \cdot y\}.$

Доказательство. Если же k = 4, то рассмотрим

$$B = \{0, 1, x \oplus y \oplus z, x \cdot y\}.$$

Построим таблицу для этого множества B:

	T_0	T_1	L	S	M
0	+		+	_	+
1	_	+	+	_	+
$x \oplus y \oplus z$	+	+	+	+	
$x \cdot y$	+	+	_	_	+

Кроме того,

$$B \setminus \{0\} \subseteq T_1,$$
 $B \setminus \{1\} \subseteq T_0,$ $B \setminus \{x \oplus y \oplus z\} \subseteq M,$ $B \setminus \{x \cdot y\} \subseteq L.$

Значит, система B — полна и неизбыточна, т. е. является базисом.

Предполный класс

Пусть $A \subseteq P_2$. Множество A называется **предполным классом**, если

- 1) $[A] \neq P_2$, т. е. система A не полна;
- 2) для любой функции $f \in P_2 \setminus A$ верно $[A \cup \{f\}] = P_2$, т. е. при добавлении к A любой новой функции получается полная система.

Замкнутость предполного класса

Предложение 6.2. Любой предполный класс является замкнутым классом.

Доказательство проведем от обратного: пусть $A \subseteq P_2$ — предполный класс, но $[A] \neq A$.

Значит, найдется функция $f \in [A] \setminus A$. Получаем:

$$[A \cup \{f\}] = [A].$$

По п. 1 определения предполного класса $[A] \neq P_2$, но по п. 2 определения предполного класса $[A \cup \{f\}] = [A] = P_2$. Приходим к противоречию.

Значит, A — замкнутый класс.

Теорема 6.3. В P_2 найдется всего пять предполных классов: T_0, T_1, L, S, M .

Доказательство. 1. Сначала покажем, что каждый из классов T_0, T_1, L, S, M не содержится ни в каком другом из этих классов.

Для этого построим таблицу, в которой строки и столбцы соответствуют этим классам, а на пересечении строки и столбца указана функция, принадлежащая классу, которым обозначена эта строка, и не принадлежащая классу, которым обозначен этот столбец:

	T_0	T_1	L	S	М	
T_0	_	0	$x \cdot y$	0	$x \oplus y$	
T_1	1	_	$x \cdot y$	1	$x \sim y$	
L	x	x	_	0	\bar{x}	,
S	x	x	m(x, y, z)	_	\bar{x}	
М	1	0	$x \cdot y$	0	_	

Доказательство. 2. Теперь покажем, что каждый из классов T_0, T_1, L, S, M является предполным.

Например, рассмотрим класс T_0 . Тогда:

- 1) $[T_0] = T_0 \neq P_2$;
- 2) если $f \notin T_0$, то по теореме Поста

$$[T_0 \cup \{f\}] = P_2,$$

т. к. $0, x \cdot y, x \oplus y \in T_0$ и $0 \notin T_1, S, x \cdot y \notin L, x \oplus y \notin M$ (см. первую строку таблицы из п. 1).

Значит, T_0 — предполный класс.

Аналогично проводятся рассуждения для остальных классов.

Доказательство. 3. Наконец, покажем от обратного, что других предполных классов нет.

Пусть $A \subseteq P_2$ — предполный класс, причем $A \neq T_0, T_1, L, S, M$.

Значит либо A не содержится ни в одном из этих классов, либо строго содержится в каком-то из них.

Если A не содержится ни в одном из классов T_0, T_1, L, S, M , то по теореме Поста $[A] = P_2$. Получаем противоречие с п. 1 определения предполного класса.

Пусть A строго содержится в каком-то из этих классов, например, пусть $A\subseteq T_0$, $A\ne T_0$. Тогда найдется функция $f\in T_0\setminus A$, откуда $[A\cup\{f\}]\subseteq T_0\ne P_2$. Получаем противоречие с п. 2 определения предполного класса.

Значит, других предполных классов нет, т. е. T_0, T_1, L, S, M — все предполные классы в P_2 .

Сведения о результатах Э. Поста

Э. Пост описал все замкнутые классы в P_2 .

Он показал, что

- 1) в P_2 найдется всего счетное число замкнутых классов;
- 2) каждый замкнутый класс в P_2 содержит конечный базис (т. е. конечное множество функций, замыкание которых равно этому классу).

Задачи для самостоятельного решения

- 1. Пусть $B\subseteq P_2$ базис P_2 и $x\oplus y\oplus z\in B$. Определить, сколько функций может содержаться в множестве B.
- 2. Какие функции принадлежат всем замкнутым классам?

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.
- 2. Марченков С. С. Основы теории булевых функций. М.: Физматлит, 2014.
- 3. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001.
- 4. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. II 6.1–6.5, 6.8, 6.10, 6.11–6.17.