4.

(1) Histogram of the Salman and Seabass lightness

Figure 1: Salmon lightness histogram

Figure 2: Seabass lightness histogram

- (2) P(salmon) = 0.34783 and P(seabass) = 0.65217.
- (3) Plots of P(lightness|salmon) and P(lightness|seabass)

Figure 3: P(lightness|salmon) and P(lightness|Seabass)

(4) Compute probabilities:

$$\begin{split} &P(lightness \leq 5|salmon) = 0.8625 \text{ and } P(lightness \leq 8|salmon) = 1 \\ &P(lightness \geq 5|seabass) = 0.91333 \text{ and } P(lightness \geq 2|seabass) = 1 \end{split}$$

(5) Plot of the evidence pmf P(lightness)

Figure 4: P(lightness)

(5) Plot the posterior probabilities P(salmon|lightness) and P(seabass|lightness)

Figure 5: Posterior probabilities

Appendix:

assignment 1.m % $\%\ CS7720\ Spring\ 2015$ % Introduction to Machine Learning and Pattern Recognition $\% \ \ University \ \ of \ \ Missouri-Columbia$ $\% \ Author: \ Chanmann \ Lim$ $\% \ email: \ cl9p8@mail.missouri.edu$ % Homework Assignment 1 % Problem 4 % clc; clear; close all; salmon = load('SalmonLightness.dat');
seabass = load('SeabassLightness.dat');
xvalues = load('formathist.dat'); % 1 - Plot Salmon and Seabass histogram with the intervals of % [(k-1)*0.5, k*0.5], with k = 1,...,20 $\% \ k_min = 1; \ k_max = 20;$ $\% \ \overline{xvalues} = (k \ min-1)*0.5:0.5:k \ max*0.5;$ figure; hist(salmon, xvalues); figure; hist (seabass, xvalues); % 2 - Compute P(salmon) and P(seabass)sample = length(salmon) + length(seabass); P salmon = length(salmon)/sample; P_seabass = length(seabass)/sample; disp(['P(salmon) = 'num2str(P salmon), ... '_and_P(seabass)_=_' num2str(P_seabass)]); % 3 - Plot conditional probability P(lightness/salmon) and % P(lightness/seabase) pmf P_lightness_given_salmon = hist(salmon, xvalues)'/length(salmon); P_lightness_given_seabass = hist(seabass, xvalues)'/length(seabass); disp('P(lightness|salmon) _=_'); disp(P_lightness_given_salmon); disp('P(lightness|seabass)==,'); disp(P_lightness_given_seabass); stem(xvalues, [P_lightness_given_salmon P_lightness_given_seabass]);
legend('Salmon', 'Seabass'); % 4 - Compute: $P(lightness \le 5/salmon)$ and $P(lightness \le 8/salmon)$ % $P(lightness >= 5/sea \ bass) \ and \ P(lightness >= 2/sea \ bass)$ % $P_lightness_less_equal_5_given_salmon \ = \ \textbf{sum}(\ P_lightness_given_salmon \ (\ xvalues <= 5));$ P_lightness_less_equal_8_given_salmon = sum(P_lightness_given_salmon(xvalues <= 8)); disp(['P(lightness <=5|salmon) == 'num2str(P_lightness_less_equal_5_given_salmon), ...
'_and_P(lightness <=8|salmon) == 'num2str(P_lightness_less_equal_8_given_salmon)]);</pre> $P_lightness_grater_equal_5_given_seabass = \textbf{sum}(P_lightness_given_seabass(xvalues>=5));$ P lightness grater equal 2 given seabass = sum(P lightness given seabass (xvalues >= 2)); $\begin{array}{l} \textbf{disp} \, (\, [\, 'P(\, lightness \, > = 5 | \, seabass \,) \, _ = \, ' \, \, num2str(\, P \, _ \, lightness \, _ \, grater \, _ \, equal \, _ \, 5 \, _ \, given \, _ \, seabass \,) \, , \\ \, '_and_P(\, lightness \, > = 2 | \, seabass \,) \, _ = \, ' \, \, num2str(\, P \, _ \, lightness \, _ \, grater \, _ \, equal \, _ \, 2 \, _ \, given \, _ \, seabass \,) \,] \,) \, ; \end{array}$ %

```
% 5 - Plot the evidence pmf P(lightness)
%
P_lightness = P_lightness_given_salmon * P_salmon + P_lightness_given_seabass * P_seabass;
disp('P(lightness)=='); disp(P_lightness);
figure; stem(xvalues, P_lightness);

%
% 6 - Plot posterior probabilities
%
P_salmon_given_lightness = P_lightness_given_salmon * P_salmon ./ P_lightness;
P_seabass_given_lightness = P_lightness_given_seabass * P_seabass ./ P_lightness;
disp('P(salmon|lightness)'); disp(P_salmon_given_lightness);
disp('P(seabass|lightness)'); disp(P_seabass_given_lightness);
figure;
stem(xvalues, [P_salmon_given_lightness P_seabass_given_lightness]);
legend('Salmon', 'Seabass');
```