Review

(Q1) show that $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent.

Solution:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	Т
F	F	T	T	T	T

Q2) Let Q(x) be the statement " $x - 1 > 2x^2$ ". If the domain consists of all integers, What are the truth values?

- a)Q(0) F
- b)Q(1) **F**
- c)Q(-1) F
- $d)\exists_x \in Q(x)$ F
- $e) \forall_{x} \in Q(x)$ F

Q3) Let $A = \{1,2,3,4,5\}$ and $B = \{0,3,6\}$ Find

- a) $A \cup B = \{0,1,2,3,4,5,6\}$
 - b) $A \cap B = \{3\}$
 - c) $A B = \{1, 2, 4, 5\}$
 - d) $B A = \{0,6\}$

Q4)Find the value of

$$a)\left[\frac{7}{8}\right] = 0$$

$$b) \left[\frac{3}{4} \right] = 1$$

Q5) Find the inverse Function of $f(x) = x^3 + 1$ Solution:

1)
$$y = x^3 + 1$$

2)
$$x = y^3 + 1$$

$$3) x - 1 = y^3$$

$$\sqrt[3]{x-1} = \sqrt[3]{y^3}$$

$$\sqrt[3]{x-1} = y$$

Steps:

$$1$$
- set $f(x)=y$

2-Replace X with Y

3-solve for Y

4- Write $f(x)^{-1}$

$$f(x)^{-1} = \sqrt[3]{x - 1}$$

Q6) a) let
$$f(x) = 3x + 4$$
 and $g(x) = x^2$

Find $f \circ g$

Solution:

$$f(g(x)) = f(x^2) = 3x^2 + 4$$

b)let
$$f(x) = 3x + 4$$
 and $g(x) = x^2 - 1$
Find $f \circ g$ Solution:

$$f(g(x)) = f(x^2 - 1) = 3(x^2 - 1) + 4 = 3x^2 - 3 + 4$$
$$= 3x^2 + 1$$

Q7) Calculate the number of multiples of 3 or 5 from 1 to 500?

Solution:

A: the set of numbers of multiple 3 from 1 to 500

B: the set of numbers of multiple 5 from 1 to 500

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$= \left\lfloor \frac{500}{3} \right\rfloor + \left\lfloor \frac{500}{5} \right\rfloor - \left\lfloor \frac{500}{15} \right\rfloor = 166 + 100 - 33 = 233$$

Q8)Find the formula of the following sequence, Find the initial value.

$$\frac{1}{2}$$
, $\frac{3}{4}$, 1, $\frac{5}{4}$, $\frac{3}{2}$,

Solution: $\{a + nd\}_{n=0}$

The initial value $a=\frac{1}{2}$, $b=\frac{1}{4}$

Q9)Find the value of the following summation :

a)
$$\sum_{j=1}^{4} j^2$$
 Solution:= $1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30$

b)
$$\sum_{i=1}^{10}$$
 2 Solution:=2+2+2+2+2+2+2+2+2=2(10)=20