R.O.C.

Suites

Propriétés:

Soit deux suites (u_n) et (v_n) et un entier naturel N tels que pour tout entier $n \ge N$, $u_n \le v_n$.

Théorème de minoration :

Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

Démonstration :

On suppose que $\lim_{n \to +\infty} u_n = +\infty$.

On cherche à démontrer que tout intervalle de la forme $A : +\infty[$ contient toutes les valeurs de (v_n) à partir d'un certain rang.

Soit A un réel. Comme $\lim_{n\to+\infty} u_n = +\infty$, l'intervalle A; + ∞ [contient tous les A a partir d'un rang A; pour tout A > 0, A.

Alors pour tout entier $n \ge max(p; N)$, on a $v_n \ge u_n > A$, c'est-à-dire $v_n \in A$;+ ∞ .

On en déduit : $\lim_{n \to +\infty} v_n = +\infty$.

La démonstration du théorème de majoration est analogue.

Propriété:

Les suites géométriques (q^n) où q>1 divergent vers $+\infty$.

pour q réel tel que
$$q > 1$$
, $\lim_{n \to +\infty} q^n = +\infty$

Démonstration:

Soit q>1. Posons q=1+a où a>0.

Préliminaire: montrons par récurrence que pour tout $n \ge 0$, $(1+a)^n \ge 1+na$.

• Initialisation:

Pour n=0, $(1+a)^n=1$ et 1+na=1 donc l'inégalité est vérifiée pour n=0.

• Hérédité :

Soit $n \in \mathbb{N}$ tel que $(1+a)^n \ge 1+na$. Montrons que $(1+a)^{n+1} \ge 1+(n+1)a$.

 $(1+a)^n \ge 1+na$ et (1+a)>0 donc $(1+a)(1+a)^n \ge (1+a)(1+na)$.

Soit $(1+a)^{n+1} \ge 1 + na + a + na^2$, d'où $(1+a)^{n+1} \ge 1 + (n+1)a + na^2$.

Comme $n \ge 0$ et $a^2 > 0$, $1 + (n+1)a + na^2 \ge 1 + (n+1)a$.

Ainsi $(1+a)^{n+1} \ge 1 + (n+1)a$.

• Conclusion:

Pour tout $n \ge 0$, $(1+a)^n \ge 1+na$.

Soit A un réel. Dès que $n \ge \frac{A-1}{a}$ on aura $1+na \ge A$ et donc $(1+a)^n \ge A$.

La suite $((1+a)^n)$ c'est-à-dire la suite (q^n) a donc pour limite $+\infty$.

Propriété :

Soit une suite (u_n) **convergent** vers un réel ℓ . Si la suite (u_n) est **croissante**, alors la suite (u_n) est **majorée** par ℓ . Pour tout entier n, $u_n \le \ell$.

Démonstration:

On raisonne par l'absurde : on suppose qu'il existe un entier n_0 tel que $u_{n_0} > \ell$.

- Comme la suite (u_n) est croissante, pour tout $n \ge n_0$, $\ell < u_n \le u_n$.
- L'intervalle] $\ell-1$; u_{n_0} [est un intervalle ouvert qui contient ℓ . Comme la suite (u_n) converge vers ℓ , il existe un rang N tel que pour tout $n \ge N$, $u_n \in]$ $\ell-1$; u_{n_0} [.

Ainsi pour tout entier $n \ge N$, $u_n < u_{n_0}$.

Alors, pour tout entier $n \ge max(N; n_0)$, on a $u_{n_0} \le u_n$ et $u_n < u_{n_0}$.

On aboutit à une contradiction, et l'hypothèse initiale est donc fausse.

On en déduit que pour tout entier n, $u_n \le \ell$.

Propriétés:

- Si une suite est **croissante** et **non majorée**, alors elle tend vers $+\infty$.
- Si une suite est **décroissante** et **non minorée**, alors elle tend vers $-\infty$.

Démonstration:

Soit (u_n) une suite non majorée, donc pour tout $M \in \mathbb{R}$, il existe un rang $n_0 \in \mathbb{N}$ tel que $u_{n_0} > M$. Comme (u_n) est croissante, pour tout entier $n \ge n_0$, on a $u_n \ge u_{n_0}$ et donc $u_n > M$.

Ce qui signifie que, pour tout $M \in \mathbb{R}$, tous les termes de la suite sont dans l'intervalle M; + ∞ [à partir d'un certain rang. Donc, par définition, $\lim_{n \to +\infty} u_n = +\infty$.

La deuxième proposition se démontre de la même façon.

Exponentielle

Théorème:

Il existe une unique fonction f dérivable sur \mathbb{R} telle que :

$$f' = f$$
 et $f(0) = 1$

Cette fonction est appelée fonction exponentielle et notée exp.

Ainsi pour tout réel x :

$$\exp'(x) = \exp(x)$$
 et $\exp(0) = 1$

Démonstration de l'unicité de la fonction :

On suppose l'existence d'une fonction dérivable g vérifiant g'=g et g(0)=1.

La fonction exp ne s'annulant pas, on peut définir $h = \frac{g}{\exp}$ sur \mathbb{R} .

$$h'(x) = \frac{g'(x)\exp(x) - g(x)\exp'(x)}{(\exp(x))^2} = \frac{g(x)\exp(x) - g(x)\exp(x)}{(\exp(x))^2} = 0.$$

$$h \text{ est donc constante sur } \mathbb{R} \text{ et } h(0) = \frac{g(0)}{\exp(0)} = 1. \text{ Ainsi, pour tout réel } x, \text{ on a } h(x) = 1.$$

On en déduit que, pour tout réel $x : g(x) = \exp(x)$.

Propriété:

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Démonstration:

f est la fonction définie sur $[0;+\infty[$ par $f(x)=e^x-\frac{1}{2}x^2$.

Pour tout nombre réel $x \ge 0$, $f'(x) = e^x - x$ et $f''(x) = e^x - 1$. Sur $[0;+\infty[$, $e^x \ge 1$, donc $f''(x) \ge 0$ et f' est croissante sur $[0;+\infty[$

f'(0)=1, donc f'(x)>0 sur $[0;+\infty[$. Donc, f est croissante sur $[0;+\infty[$. Comme f(0)=1, on en déduit que pour tout $x \ge 0$, f(x) > 0, c'est-à-dire $e^x > \frac{1}{2}x^2$.

Par conséquent, pour tout x>0, $\frac{e^x}{x}>\frac{1}{2}x$. Or $\lim_{x\to +\infty} \left(\frac{1}{2}x\right)=+\infty$

donc d'après le théorème de minoration, $\lim_{x \to \infty} \frac{e^x}{x} = +\infty$.

x	0		$+\infty$
f"(x)	0	+	
f'(x)	1	A	
f(x)	1	1	

3

Propriété:

$$\lim_{x \to -\infty} x e^x = 0$$

Démonstration:

Pour tout nombre réel x, on pose X = -x. Ainsi $xe^x = -Xe^{-X} = -\frac{X}{2}$.

 $\lim_{x \to -\infty} X = +\infty \text{ et d'après la propriété précédente, } \lim_{X \to +\infty} \frac{e^X}{X} = +\infty \text{ , donc } \lim_{X \to +\infty} \left(-\frac{X}{e^X} \right) = 0.$

Donc d'après la propriété de la limite d'une fonction composée, $\lim_{x \to -\infty} x e^x = 0$

Intégration

Théorème fondamental:

f est une fonction continue et positive sur un intervalle [a;b].

La fonction $F: x \mapsto \int f(t) dt$ est dérivable sur [a;b] et a pour dérivée f.

Démonstration: cas où f est croissante sur [a;b].

 x_0 désigne un nombre réel de [a;b] et h un nombre réel non nul tel $x_0+h \in [a;b]$.

 $1^{er} cas : h > 0$ f est continue et positive sur [a;b]donc d'après la relation de Chasles :

$$\int_{a}^{x_{0}+h} f(t) dt = \int_{a}^{x_{0}} f(t) dt + \int_{x_{0}}^{x_{0}+h} f(t) dt$$
c'est-à-dire

$$F(x_0+h)-F(x_0) = \int_{x_0}^{x_0+h} f(t) dt.$$

f est croissante sur [a;b] donc on peut encadrer $\int f(t) dt$ par l'aire des rectangles de

largeur h et de hauteurs $f(x_0)$ et $f(x_0+h)$ donc :

$$h \times f(x_0) \leqslant F(x_0 + h) - F(x_0) \leqslant h \times f(x_0 + h) \text{ et par conséquent}$$

$$f(x_0) \leqslant \frac{F(x_0 + h) - F(x_0)}{h} \leqslant f(x_0 + h).$$

- 2° cas : h < 0 . On établit de même que $f\left(x_0 + h\right) \leqslant \frac{F\left(x_0 + h\right) F\left(x_0\right)}{h} \leqslant f\left(x_0\right)$.
- **Conclusion:**

f est continue en x_0 donc $\lim_{h\to 0} f(x_0+h)=f(x_0)$. Le théorème des gendarmes permet de

conclure dans les deux cas ci-dessus que $\lim_{h \to 0} \frac{F(x_0+h) - F(x_0)}{h} = f(x_0)$.

F est donc dérivable en x_0 et $F'(x_0) = f(x_0)$.

Or x_0 est un nombre réel quelconque de [a;b], donc F est dérivable sur [a;b] et F'=f.

Théorème:

Toute fonction continue sur un intervalle I admet des primitives sur I.

Démonstration: cas où I = [a;b] et où f admet un minimum *m* sur *I*.

La fonction g définie sur I par g(x) = f(x) - m est continue et positive sur |a;b|.

Donc, d'après le théorème fondamental, elle admet une

primitive G sur [a;b]: $G(x) = \hat{\int} g(t) dt$.

La fonction F définie sur [a;b] par F(x)=G(x)+mx est une primitive de f sur [a;b] car pour tout nombre réel x de [a;b], F'(x)=G'(x)+m=g(x)+m=f(x). Donc, f admet des primitives sur [a;b].

Espace

Théorème « du toit »:

Si deux plans \mathscr{P} et \mathscr{P} ' sont sécants selon une droite Δ et si d_1 et d_2 sont deux droites parallèles contenues respectivement dans \mathscr{P} et \mathscr{P} ' alors la droite Δ est parallèle à d_1 et d_2 .

Démonstration :

- Si d_1 et d_2 sont confondues alors Δ est aussi confondue avec d_1 et d_2 , la propriété est donc vrai.
- Supposons que d₁ et d₂ soient strictement parallèles.
 Raisonnons par l'absurde : supposons que Δ et d₁ soient sécantes et notons M leur point d'intersection.

M appartient à Δ , intersection de \mathscr{P} et \mathscr{P} ' donc M appartient à \mathscr{P} '.

M n'appartenant pas à d_2 , car d_1 et d_2 sont strictement parallèles, M et d_2 définissent le plan $\mathcal P$ '.

 d_1 étant parallèle à d_2 passant par M , il en résulte que d_1 appartient aussi au plan $\mathcal P$ '.

On en déduit que \mathscr{P} et \mathscr{P} ' sont sécants suivant la droite d_1 , alors confondue avec Δ , ce qui contredit le fait que d_1 et Δ soient sécantes.

En conclusion Δ et d_1 ne peuvent pas être sécantes et comme elles sont coplanaires, elles sont donc parallèles.

Par suite, Δ est aussi parallèle à d_2 car d_1 et d_2 sont parallèles.

Propriétés :

d est une droite de vecteur directeur \vec{u} .

 \mathscr{P} est un plan dirigé par un couple (\vec{v}, \vec{v}') de vecteurs non colinéaires.

La droite d et le plan \mathcal{P} sont orthogonaux si, et seulement si,

 $\vec{u} \cdot \vec{v} = 0$ et $\vec{u} \cdot \vec{v}' = 0$

Démonstration:

Par définition, dire que d et \mathscr{P} sont orthogonaux signifie que d est orthogonale à toutes les droites du plan \mathscr{P} , ce qui équivaut à $\overrightarrow{u} \cdot \overrightarrow{MN} = 0$ quels que soient les points M et N du plan \mathscr{P} .

- La condition est nécessaire En effet, si d et \mathscr{P} sont orthogonaux, alors quels que soient les points M et N de \mathscr{P} , $\vec{u} \cdot \overrightarrow{MN} = 0$. Donc, en particulier $\vec{u} \cdot \overrightarrow{AB} = 0$ et $\vec{u} \cdot \overrightarrow{AC} = 0$
- La condition est suffisante En effet, quels que soient les points M et N de \mathcal{P} , il existe des nombres réels α et β tels que $\overline{MN} = \alpha \vec{v} + \beta \vec{v}$ car le couple $(\vec{v}; \vec{v}')$ dirige \mathcal{P} .

Donc $\vec{u} \cdot \overline{MN} = \vec{u} (\alpha \vec{v} + \beta \vec{v}') = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{v}' = 0$.

Propriétés :

L'espace est muni d'un repère orthonormé.

- Un plan de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$ a une équation de la forme ax+by+cz+d=0, où ddésigne un nombre réel. On dit que c'est une équation cartésienne de ce plan.
- Réciproquement a, b, c et d étant quatre nombres réels donnés avec a, b et c non tous nuls, l'ensemble des points M(x;y;z) tels que ax+by+cz+d=0 est un plan de vecteur normal $\vec{n} \mid b$

Démonstration:

- Un point M(x; y; z) appartient au plan \mathcal{P} passant par $A(x_A; y_A, z_A)$ et de vecteur normal \vec{n} si, et seulement si, $\vec{AM} \cdot \vec{n} = 0$, c'est-à-dire $a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$. En posant $d = -(ax_A + by_A + cz_A)$, on obtient ax + by + cz + d = 0.
- & est l'ensemble des points M(x;y;z) qui vérifient ax+by+cz+d=0 où a, b et c sont des nombres réels non tous nuls.

On peut supposer, par exemple, a non nul.

Le point $A\left(\frac{-d}{a};0;0\right)$ est alors un point de \mathscr{E} et l'équation équivaut à : $a\left(x+\frac{d}{a}\right)+by+cz=0$, c'est-à-dire $\overline{AM}\cdot \vec{n}=0$ avec $\vec{n}\begin{pmatrix}a\\b\\c\end{pmatrix}$. \mathscr{E} est donc le plan passant par A et de vecteur normal $\vec{n}\begin{pmatrix}a\\b\\c\end{pmatrix}$.

$$a\left(x+\frac{d}{a}\right)+by+cz=0$$
, c'est-à-dire $\overline{AM}\cdot \vec{n}=0$ avec $\vec{n}\begin{pmatrix} a\\b\\c \end{pmatrix}$.

Probabilité

Propriété :

Si \overline{A} et \overline{B} sont deux événements indépendants, alors \overline{A} et \overline{B} sont indépendants.

Démonstration :

L'événement A est la réunion des deux événements incompatibles $A \cap B$ et $A \cap \bar{B}$, donc : $p(A) = p(A \cap B) + p(A \cap \bar{B})$. On en déduit : $p(A \cap \bar{B}) = p(A) - p(A \cap B)$. A et B étant indépendants, on a : $p(A \cap B) = p(A) \times p(B)$ d'où : $p(A \cap \bar{B}) = p(A) - p(A) \times p(B)$ $p(A \cap \bar{B}) = p(A) \times (1 - p(B))$ $p(A \cap \bar{B}) = p(A) \times (1 - p(B))$ $p(A \cap \bar{B}) = p(A) \times (p(\bar{B}))$ Ainsi, par définition A et \bar{B} sont indépendants.

Loi exponentielle

Propriété:

Soit λ un réel strictement positif.

Si une variable aléatoire X suit une loi exponentielle de paramètre λ , alors cette variable aléatoire vérifie la propriété dite de **durée de vie sans vieillissement**, qui s'énonce ainsi :

$$P_{X \geqslant t}(X \geqslant t+h) = P(X \geqslant h)$$

pour tous réels t et h positifs.

Démonstration:

Par définition d'une probabilité conditionnelle, on a :

$$P_{X \geqslant t}(X \geqslant t+h) = \frac{P(\lbrace X \geqslant t+h \rbrace \cap \lbrace X \geqslant t \rbrace)}{P(X \geqslant t)} = \frac{P(X \geqslant t+h)}{P(X \geqslant t)}$$

Or l'événement contraire de l'événement $\{X \ge t + h\}$ (resp $\{X \ge t\}$) est l'événement $\{X < t + h\}$ (resp $\{X < t\}$).

Il en découle :

$$P_{X \geqslant t}(X \geqslant t + h) = \frac{1 - P(X < t + h)}{1 - P(X < t)} = \frac{1 - F(t + h)}{1 - F(t)} = \frac{1 - (1 - e^{-\lambda(t + h)})}{1 - (1 - e^{-\lambda t})} = e^{-\lambda(t + h) + \lambda t} = e^{-\lambda h}$$

Or
$$e^{-\lambda h} = 1 - (1 - e^{-\lambda h}) = 1 - F(h) = 1 - P(X < h) = P(X \ge h)$$
.

D'où le résultat.

Propriété:

L'espérance d'une variable aléatoire X suivant une loi exponentielle de paramètre $\lambda>0$ est donnée par :

$$E(X) = \frac{1}{\lambda}$$

Démonstration :

Soit *x* un nombre réel strictement positif.

On appelle g la fonction définie sur \mathbb{R} par $g(t)=t\,f(t)$, f désignant la densité de la loi exponentielle de paramètre $\lambda>0$. Comme cette fonction g est continue sur l'intervalle [0;x], elle admet sur cet intervalle des primitives.

En outre, comme pour tout $t \ge 0$, $(te^{-\lambda t})' = e^{-\lambda t} - \lambda t e^{-\lambda t}$, il en découle :

$$\int_{0}^{x} g(t) dt = \int_{0}^{x} t \lambda e^{-\lambda t} dt = \int_{0}^{x} e^{-\lambda t} dt - \int_{0}^{x} (t e^{-\lambda t})' dt = \left[-\frac{e^{-\lambda t}}{\lambda} \right]_{0}^{x} - \left[t e^{-\lambda t} \right]_{0}^{x} = \frac{1}{\lambda} - \frac{e^{-\lambda x}}{\lambda} - x e^{-\lambda x}$$

Par passage à la limite quand x tend vers $+\infty$, on obtient le résultat.

Loi normale

Propriété:

Pour tout nombre réel α inclus dans l'intervalle]0;1[, il existe un unique réel positif u_{α} tel que :

$$P(-u_{\alpha} \leq X \leq u_{\alpha}) = 1 - \alpha$$

où X désigne une variable aléatoire suivant la loi normale centrée réduite.

Démonstration:

Soit α un nombre réel inclus dans l'intervalle]0;1[. La densité f associée à la variable aléatoire X étant continue sur \mathbb{R} , on peut définir la fonction F sur $[0;+\infty[$ par $F(b)=\int_{0}^{b}\frac{1}{\sqrt{2\pi}}e^{-\frac{x}{2}}dx$, bétant un nombre réel positif.

Cette fonction F est l'unique primitive de f sur $[0;+\infty[$ qui s'annule en 0. Elle est continue et strictement croissante sur [0;+∞[. Par propriété de la densité et par symétrie de la courbe représentative \mathcal{C}_f , il découle $\lim_{b\to +\infty} F(b) = \frac{1}{2}$.

L'image de 0 par F étant 0, F prend ses valeurs dans l'intervalle $\left[0;\frac{1}{2}\right]$. Comme le nombre réel α est strictement compris entre 0 et 1, le nombre réel $\frac{1-\alpha}{2}$ est strictement compris entre 0 et $\frac{1}{2}$. Ainsi, d'après le théorème des valeurs intermédiaires, il existe un unique nombre réel strictement positif que l'on note u_{α} tel que $F(u_{\alpha}) = \frac{1-\alpha}{2}$

Par symétrie de la courbe
$$\mathcal{C}_f$$
 et par linéarité de l'intégrale, on obtient le résultat :
$$P(-u_\alpha \leqslant X \leqslant u_\alpha) = \int_{-u_\alpha}^{u_\alpha} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \int_{-u_\alpha}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx + \int_{0}^{u_\alpha} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 2 \int_{0}^{u_\alpha} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 2$$

Intervalle de fluctuation

Propriété:

Si la variable aléatoire X_n suit la loi binomiale $\mathcal{B}(n;p)$ avec p dans l'intervalle]0;1[, alors pour tout nombre réel α de]0;1[,

$$\lim_{n \to +\infty} P\left(\frac{X_n}{n} \in I_n\right) = 1 - \alpha$$
 où $I_n = \left[p - u_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + u_\alpha \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right]$ et u_α désigne le nombre réel tel que $P\left(-u_\alpha \leqslant Z \leqslant u_\alpha\right) = 1 - \alpha$ lorsque Z suit la loi normale $\mathcal{N}(0;1)$.

Démonstration :

On pose
$$Z_n = \frac{X_n - np}{\sqrt{np(1-p)}}$$
.

D'après le théorème de Moivre-Laplace, $\lim_{n\to+\infty} P(-u_{\alpha} \leqslant Z_n \leqslant u_{\alpha}) = P(-u_{\alpha} \leqslant Z \leqslant u_{\alpha})$.

Or
$$P(-u_{\alpha} \leq Z_{n} \leq u_{\alpha}) = P(np - u_{\alpha}\sqrt{np(1-p)}) \leq X_{n} \leq np + u_{\alpha}\sqrt{np(1-p)})$$

$$P(-u_{\alpha} \leq Z_{n} \leq u_{\alpha}) = P\left(p - u_{\alpha}\frac{\sqrt{p(1-p)}}{\sqrt{n}} \leq \frac{X_{n}}{n} \leq p + u_{\alpha}\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right)$$

Donc
$$\lim_{n \to +\infty} P\left(\frac{X_n}{n} \in I_n\right) = P(-u_\alpha \le Z \le u_\alpha) = 1 - \alpha$$

Estimation

Propriété:

Soit X_n une variable aléatoire suivant une loi binomiale $\mathcal{B}(n;p)$ où p est la proportion inconnue d'apparition d'un caractère, et $F_n = \frac{X_n}{n}$ la fréquence associée à X_n . Alors, pour n suffisamment grand, p appartient à l'intervalle $\left[F_n - \frac{1}{\sqrt{n}}; F_n + \frac{1}{\sqrt{n}}\right]$ avec une probabilité supérieur ou égale à 0,95.

Démonstration:

Nous avons vu que l'intervalle $\left[p - \frac{1}{\sqrt{n}}; p + \frac{1}{\sqrt{n}}\right]$ est, pour n assez grand, un intervalle de fluctuation au seuil de 95 % pour $F_n = \frac{X_n}{n}$.

Donc,
$$\exists n_0 \in \mathbb{N}^*$$
, $\forall n \ge n_0$, $P\left(p - \frac{1}{\sqrt{n}} \le F_n \le p + \frac{1}{\sqrt{n}}\right) \ge 0.95$.
Or $\left(p - \frac{1}{\sqrt{n}} \le F_n \le p + \frac{1}{\sqrt{n}}\right) \Leftrightarrow \left(F_n - \frac{1}{\sqrt{n}} \le p \le F_n + \frac{1}{\sqrt{n}}\right)$
Donc, $\exists n_0 \in \mathbb{N}^*$, $\forall n \ge n_0$, $P\left(F_n - \frac{1}{\sqrt{n}} \le p \le F_n + \frac{1}{\sqrt{n}}\right) \ge 0.95$.