Practice ML with Examples

No-Code

About ME | My Portfolio

Ahmed Elsayed Abdelgawad

Junior reservoir engineer , Data analyst , Python developer and ML developer.

I am very interested an passionate about digitalization and digital transformation in the petroleum industry. I have built and still building several project connecting my programming skill with the petroleum engineering knowledge like (Jet Pump Optimization desktop application, Customized Production Data Fetching pipeline from Outlook down to OFM and PowerBi, DCA desktop application, Artificial lift selection desktop application, Simple Nodal Analysis desktop application).

Workshop Content

The purpose of the Workshop

- Demonstrate basics of ML and how you can apply it using No-Code.
- Practice with simple examples no everyone can follow along.

Content

- Data science life Cycle.
- What is ML and its types and overview of its types.
- Hands on practice using Orange software. (Regression & Classification).

What is will not Cover

- ML Model details
- Go in details, just overview and basics.

Session Flow

Data Science Life Cycle

Just an Introduction

What is DS

A problem that you need to solve, Using the Data!

Data Collection

Collect Data from Different Sources

Data Preparation

Make data ready for analysis

Exploration and visualization

Understand patterns in the data

Experimentation and prediction

Create a model, an analysis, or an experiment

Machine Learning

Knowledge Repository & Shareable Analysis Data Storytelling & communication

Share insights

Report, presentation, notebook...

Excel File, Tables .. Structured / Tabular Data

Knowledge Repository & Shareable Analysis

Dashboards

Data Storytelling &

communication

Create a clean, high quality dataset that yield accurate and reliable analytical results

Share insights

Report, presentation, notebook...

Perform Statistical Analysis / Data Analysis , Visualizing the Data using graphs to gain insights and recognize patterns in the data.

Data

notebook...

Data Storytelling &

communication

Create Predictive Model (ML), Dashboarding, Statistical Model.

Data Storytelling & communication

Share insights

Report, presentation, notebook...

Create Predictive Model (ML), Dashboarding, Statistical Model.

This step has no value without the previous steps

Data Preparation

Check for anomalies

Missing Data

Typos

What We Can do

The Reality

- **DS/ML** are just tools.
- Through tutorials / Courses you will learn the tool.
- To work on real projects and add value you must have the **Domain Expertise**.

What is ML

Intro

Types of ML

Supervised ML

PETRO-ANALYST

Ahmed Abd Elgawaa

Supervised ML

Virtual Flow Metering

Virtual Flow Metering | Physics Based

Input

Program | Rules

ML Virtual Flow Metering | ML Based

Production Tests Dataset

ВНР	WHP	WHT	Tsep	Psep	Choke_in	Qoil	Qwater	Qgas
5410.33	3185.75	83.3	60.32	100	0.25	954.6	0	2.39
5388	3015.38	86.88	60.65	100	0.25	801.9	200.5	2.01
5391.13	2808.8	90.83	61.19	100	0.25	634.7	423.2	1.59
5405.72	2515.99	95.11	61.97	100	0.25	448.1	672.2	1.12

Input Output Program | Rules

Machine Learning Vs Traditional Programming

Traditional Programming

Using Machine learning

Virtual Flow Metering

Physics Based

- Multi-phase flow simulation
- Combine thermodynamics, fluid dynamics, fluid modeling, optimization techniques.
- Consider it prosper put with sensor data, downhole sensors (BHP, BHT), surface data (WHP, WHT)
- Calibrated on Production Test and back allocation

ML Based

• Real time flow rate estimation using only permeant sensor data.

Virtual Flow Metering

Model Structure

Supervised | How

Supervised | How

Model Training and Validation

ВНР	WHP	WHT	Tsep	Psep	Choke_ in
5410.33	3185.75	83.3	60.32	100	0.25
5388	3015.38	86.88	60.65	100	0.25
5391.13	2808.8	90.83	61.19	100	0.25
5405.72	2515.99	95.11	61.97	100	0.25

Qoil	Qwater	Qgas
954.6	0	2.39
801.9	200.5	2.01
634.7	423.2	1.59
448.1	672.2	1.12

ML Workflow

Steps

ML Workflow

ML Workflow

Structured data

Feature 1	Feature 2	Feature 3	Feature 4	Target feature (Y)

Unstructured data

Audio

Text

ML Steps

ML Steps

Define the problem

Problem type

Classification

Regression

other

Baseline:

Beat the baseline

Successful project

ML Steps

Data Collection

Qoil	Qwater	Qgas	BHP	WHP	WHT	Tsep	Psep	Choke_in
954.6	0	2.39	5410.33	3185.75	83.3	60.32	100	0.25
801.9	200.5	2.01	5388	3015.38	86.88	60.65	100	0.25
634.7	423.2	1.59	5391.13	2808.8	90.83	61.19	100	0.25
448.1	672.2	1.12	5405.72	2515.99	95.11	61.97	100	0.25
238.9	955.7	0.6	5433.8	2059.65	99.88	63.1	100	0.25
954.6	0	2.39	5410.33	3185.75	83.3	60.32	200	0.25
801.9	200.5	2.01	5388	3015.38	86.88	60.65	200	0.25
634.7	423.2	1.59	5391.13	2808.8	90.83	61.19	200	0.25
448.1	672.2	1.12	5405.72	2515.99	95.11	61.97	200	0.25
238.9	955.7	0.6	5433.8	2059.65	99.88	63.1	200	0.25
954.6	0	2.39	5410.33	3185.75	83.3	60.32	300	0.25
801.9	200.5	2.01	5388	3015.38	86.88	60.65	300	0.25

ML Steps

Data Processing

- Dealing with:
 - Missing data
 - Irrelevant data
 - Outliers
- Feature Engineering:
 - Deleting features / columns
 - Adding new features using existing one
 - Grouping features
- Data Transformation:
 - normalizing the data
 - converting categorical data into numerical data
 - reducing the dimensionality of the data.

Data Preparation

- This step involves splitting the data into training and testing datasets.
 - The training dataset is used to train the ML model
 - Testing dataset is used to evaluate the performance of the model.

ML Steps

Model Evaluation

X

ВНР	WHP	WHT	Tsep	Psep	Choke_in
5410.33	3185.75	83.3	60.32	100	0.25
5388	3015.38	86.88	60.65	100	0.25
5391.13	2808.8	90.83	61.19	100	0.25
5405.72	2515.99	95.11	61.97	100	0.25

Y

Qoil	Qwater	Qgas
954.6	0	2.39
801.9	200.5	2.01
634.7	423.2	1.59
448.1	672.2	1.12

X

ВНР	WHP	WHT	Tsep	Psep	Choke_in
4140.61	982.36	170.84	120.94	300	1.94
4238.67	881.64	176.61	130.02	300	1.94
4436.07	724.66	181.97	139.03	300	1.94
4234.42	1178.02	159.75	105.42	400	1.94

Qoil	Qwater	Qgas
4007.2	2671.4	12.02
2919.7	4379.5	8.76
1605.2	6420.9	4.82
5967.3	0	17.9

Qoil	Qwater	Qgas	
4010	2696	12	
2930	4365	9.1	
1610	6425	5.2	
5960	0	15.3	

Training set

Model Evaluation

Predicted

Qoil	Qwater	Qgas
4007.2	2671.4	12.02
2919.7	4379.5	8.76
1605.2	6420.9	4.82
5967.3	0	17.9

Actual

Qoil	Qwater	Qgas
4010	2696	12
2930	4365	9.1
1610	6425	5.2
5960	0	15.3

$$MAE = rac{1}{n} \sum_{j=1}^n |y_j - \hat{y_j}|$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Model Evaluation

Predicted

Qoil	Qwater	Qgas	
4007.2	2671.4	12.02	
2919.7	4379.5	8.76	
1605.2	6420.9	4.82	
5967.3	0	17.9	

Actual

Qoil	Qwater	Qgas
4010	2696	12
2930	4365	9.1
1610	6425	5.2
5960	0	15.3

ML Steps

LITHO Prediction

Features:

- TORQUE: Surface torque average (N.m)
- STRATESUM: Pump total stroke rate (Hz)
- BIT_RPM: Rotation per minute at drill bit (c/s)
- PUMP: Pump pressure (Pa)
- FLOWOUT: Mud flow out (m3/s)
- ROP_AVG: Depth averaged rotation per minute (m/s)
- TOTGAS: Total gas content (ppm)
- WOB: Weight on bit (N)
- ECDBIT: Effective circulating density on bit (kg/m3)

• Target:

Lithology

LITHO Prediction | Model

Classification

$$\mathbf{Accuracy} = \frac{num\ of\ correct\ predictions}{total\ num\ of\ samples}$$

Model

Data

90% is Sandstone

Just predict it is **Sandstone**

PETRO-ANALYST

Ahmed Abd Elgawaa

- No Supervision, No label, No Y.
- There are different type of algoritms, they do certain tasks given the data
 - Clustering
 - Association analysis
 - Dimensionality reduction

- Only X, no Y
- Clustering
- Association
- Dimensionality reduction

- Only X, no Y
- Clustering
- Association
- Dimensionality reduction

- Only X, no Y
- Clustering
- Association
- Dimensionality reduction

Reduced the dimensions of the data from **3D** to **2D** and still **preserving** most of the information

Dimensionality Reduction | PCA

PETRO-ANALYST

Ahmed Abd Elgawad

ML | RL

- Self driving cars
- Robotics (Boston Dynamics)
- Gaming (AlphaGo)

ML | DL | AI

Artificial Intelligence

A science devoted to making machines think and act like humans.

Machine Learning

Focuses on enabling computers to perform tasks without explicit programming.

Deep Learning

A subset of machine learning based on artificial neural networks.

Two Approaches in ML

Model Centric Approach Data Centric Approach

Model Selection / Model Tuning

Auto ML

When To Do ML

When To Do ML

When not to use ML:

• ML is not a solution for every type of problem, you don't need ML if you can determine a target value by suing simple rules, computations, or predetermined steps that can be programmed.

Use machine learning for the following situations:

- You cannot code the rules:
 - Email Classification (Spam or not Spam), cannot be adequately solved using a simple (deterministic), rule-based solution that depend on too many factors.
- You cannot scale:
 - You might be able to manually recognize a few hundred emails and decide whether they are spam or not. However, this task becomes tedious for millions of emails. ML solutions are effective at handling large-scale problems.

When To Do ML

Just say the magic words

ML

Is there a problem you need to solve?

Why Python

Why Python

- Use your model effectively
- You can use it for automation
- You can calculate your own calculations, programs, applications.

Some Python Projects

- Production Data Automation Insights: A Python-Powered Journey from Outlook to PowerBl
- Capturing Uncertainty in Production Rates: Monte Carlo Simulations Using Python, OpenServer, and Prosper
- Relative Permeability Data Normalization and Denormalization APP

References

PETRO-ANALYST Abmod Abd Elgased

- Virtual Flow Metering (physics vs ML based)
- <u>Lithology Prediction From Drilling Parameters</u>
- Machine Learning for oil and gas (Book)