## Measurements and uncertainties structured questions

1 A source of radio waves sends a pulse towards a reflector. The pulse returns from the reflector and is detected at the same point as the source. The emitted and reflected pulses are recorded on a cathode-ray oscilloscope (c.r.o.) as shown in Fig. 1.1.



Fig. 1.1

The time-base setting is  $0.20\,\mu s\,cm^{-1}$ .

(a) Using Fig. 1.1, determine the distance between the source and the reflector.

| distance = | m [4 <sup>-</sup> |
|------------|-------------------|
| OISTANCE = | 111 14            |

(b) Determine the time-base setting required to produce the same separation of pulses on the c.r.o. when sound waves are used instead of radio waves. The speed of sound is  $300\,\mathrm{m\,s^{-1}}$ .

.....

2 A cylindrical disc is shown in Fig. 2.1.



Fig. 2.1

The disc has diameter 28 mm and thickness 12 mm. The material of the disc has density  $6.8 \times 10^3 \, \text{kg m}^{-3}$ .

Calculate, to two significant figures, the weight of the disc.

weight = ..... N [4]

| _ |          |                |              |           |          |         |     |
|---|----------|----------------|--------------|-----------|----------|---------|-----|
| 3 | The time | T for a        | satellite to | orhit the | Farth is | aiven h | ۸/  |
| J | THE UITE | <i>i</i> 101 a | satellite to |           | Laitiis  | given b | • у |

$$T = \sqrt{\left(\frac{KR^3}{M}\right)}$$

where R is the distance of the satellite from the centre of the Earth, M is the mass of the Earth, and K is a constant.

(a) Determine the SI base units of K.

(b) Data for a particular satellite are given in Fig. 3.1.

| quantity | measurement                   | uncertainty |
|----------|-------------------------------|-------------|
| T        | $8.64 \times 10^4$ s          | ± 0.5%      |
| R        | $4.23 \times 10^7 \mathrm{m}$ | ± 1%        |
| М        | $6.0 \times 10^{24}$ kg       | ± 2%        |

Fig. 3.1

Calculate K and its actual uncertainty in SI units.

$$K = \dots \pm \dots$$
 SI units [4]

4 A microphone detects a musical note of frequency f. The microphone is connected to a cathode-ray oscilloscope (c.r.o.). The signal from the microphone is observed on the c.r.o. as illustrated in Fig. 4.1.



Fig. 4.1

The time-base setting of the c.r.o. is 0.50 ms cm<sup>-1</sup>. The Y-plate setting is 2.5 mV cm<sup>-1</sup>.

- (a) Use Fig. 4.1 to determine
  - (i) the amplitude of the signal,

(ii) the frequency f,

(iii) the actual uncertainty in f caused by reading the scale on the c.r.o.

**(b)** State *f* with its actual uncertainty.

**5** A coin is made in the shape of a thin cylinder, as shown in Fig. 5.1.



Fig. 5.1

Fig. 5.2 shows the measurements made in order to determine the density  $\rho$  of the material used to make the coin.

| quantity  | measurement | uncertainty |
|-----------|-------------|-------------|
| mass      | 9.6g        | ± 0.5 g     |
| thickness | 2.00 mm     | ± 0.01 mm   |
| diameter  | 22.1 mm     | ± 0.1 mm    |

Fig. 5.2

|     |             |     |         |           | _             |
|-----|-------------|-----|---------|-----------|---------------|
| (a) | Calculate t | the | density | $\rho$ in | $kg m^{-3}$ . |

$$\rho$$
 = .....kg m $^{-3}$  [3]

(b) (i) Calculate the percentage uncertainty in  $\rho$ .

(ii) State the value of  $\rho$  with its actual uncertainty.

$$\rho = \dots \qquad \pm \dots \qquad \ker^{-3} \left[ 1 \right]$$

**6** The volume *V* of liquid flowing in time *t* through a pipe of radius *r* is given by the equation

$$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$$

where P is the pressure difference between the ends of the pipe of length l, and C depends on the frictional effects of the liquid.

An experiment is performed to determine C. The measurements made are shown in Fig. 6.1

| $\frac{V}{t}$ / 10 <sup>-6</sup> m <sup>3</sup> s <sup>-1</sup> | P/10 <sup>3</sup> Nm <sup>-2</sup> | r/mm        | l/m           |
|-----------------------------------------------------------------|------------------------------------|-------------|---------------|
| 1.20 ± 0.01                                                     | 2.50 ± 0.05                        | 0.75 ± 0.01 | 0.250 ± 0.001 |

Fig. 6.1

(a) Calculate the value of C.

$$C = \dots Nsm^{-2}[2]$$

(b) Calculate the uncertainty in C.

uncertainty = ...... 
$$Nsm^{-2}$$
 [3]

(c) State the value of C and its uncertainty to the appropriate number of significant figures.

$$C = \dots \pm \dots \text{Nsm}^{-2} [1]$$