Topological-Fluid Quantum Lagrangian in the Vortex Æther Model (VAM)

Omar Iskandarani

June 2025

1. Introduction

This Lagrangian reformulates the quantum field framework using fluid and topological terms of the Vortex Æther Model (VAM). It incorporates:

- Compressibility effects for quantum pressure and wave phenomena
- Knot-topological invariants (linking number, helicity)
- Quantized circulation and vorticity fields
- Dissipative terms via effective viscosity in reconnection events

2. Field Definitions

$$\begin{split} \rho_{\varpi}(\vec{x},t) &: \text{Local } \text{ ϖther density} \\ \vec{v}(\vec{x},t) &: \text{ ϖther velocity field} \\ \vec{\omega} &= \nabla \times \vec{v} \quad \text{(vorticity)} \\ \Gamma &= \oint \vec{v} \cdot d\vec{\ell} \quad \text{(quantized circulation)} \\ \mathcal{H} &= \int \vec{v} \cdot \vec{\omega} \, d^3x \quad \text{(helicity)} \end{split}$$

3. Lagrangian Density

3.1 General Form

$$\mathcal{L}_{\text{VAM}} = \underbrace{\frac{1}{2}\rho_{\text{x}}\vec{v}^2}_{\text{Kinetic Energy}} - \underbrace{\frac{1}{2}\kappa(\nabla \cdot \vec{v})^2}_{\text{Compressibility}} - \underbrace{\frac{1}{2}\lambda(\nabla\rho_{\text{x}})^2}_{\text{Density gradient penalty}} + \underbrace{\alpha\vec{v}\cdot(\nabla\times\vec{v})}_{\text{Helicity term}} - \underbrace{\nu\vec{\omega}^2}_{\text{Dissipation}}$$
(1)

3.2 Additional Terms

$$\mathcal{L}_{\text{circulation}} = \sum_{i} \mu_{i} \delta(\vec{x} - \vec{x}_{i}) \Gamma_{i}^{2}$$
 (2)

$$\mathcal{L}_{\text{quantum pressure}} = -\frac{\hbar^2}{2m} \frac{(\nabla \sqrt{\rho_{\text{m}}})^2}{\sqrt{\rho_{\text{m}}}}$$
 (3)

4. Gauge Symmetry and Topological Conservation

The Lagrangian preserves invariance under:

- Volume-preserving diffeomorphisms: $\nabla \cdot \vec{v} = 0 \Rightarrow \text{ideal vortex transport}$
- Knot-type conservation: Linking number and Hopf invariant $\int A \wedge dA$

5. Quantization Condition

$$\Gamma = n \frac{h}{m}$$
 (Onsager-Feynman quantization) (4)

6. Outlook

This VAM-inspired Lagrangian unifies mass, charge, and field interactions via:

- Fluid topology (\mathcal{H})
- Quantum vorticity (Γ)
- Compressibility for wave mechanics
- Dissipative scaling for unstable modes

It sets the stage for an æther-based quantum theory with topological solitons.