Planning

Jour/Taches	Quentin	Omar
Mardi	Structure données	Structure données + Sauvegarde
Mercredi	Fin structure + début liaison	Début liaison + début QT
	(fortement connexe) + Mode	
	console	
Jeudi	Fin CDC sur 11	Fin CDC sur 11 (fin QT)
Vendredi	Simulation	Simulation + maj QT
Samedi	Simulation + Version « final »	Simulation + maj QT + Version « final »
Dimanche	Documentation Projet	Début final

CDC

Sur 6:

- Mode graphique avec :
 - Création de graphe/édition
 - Ajout de nœud (espèce) : image + nom
 - Modification de place/taille des nœuds
 - Ajout/modification d'arête entre les nœuds (graphe orienté)
 - Supprimer/modifier des éléments
- Sauvegarder/Charger des graphes déjà fait
- Fournir 3 graphes complets réels remplis

Sur 11:

- Ajout de l'importance de relation sur les arêtes
- Ajout des quantités de l'espèce présente.
- Ajout le Kmin , le nombre minimal d'arête entre deux nœuds pour maintenir la relation entre les deux graphes + méthodes mettant à jour le graphe
- Algorithme qui affiche les différentes relations connexes à partir d'une espèce
- Mode graphique avec :
 - Modification de la quantité des espèces
 - Modification de l'importance des liaisons
 - Affichage des groupe connexe par rapport a une espèce (entourer les arêtes et espèce dans le groupe d une couleur)
 - Mise a jour du graphe en fonction de l'application des nouvelles importance de liaison

Sur 16:

- Faire la simulation :
 - Préparer des statistiques de départ :
 - Nombre de quantité d'une espèce pour survire / augmenter
 - Valider un arbre avant le lancement de la simulation
 - Faire une simulation tour par tour (année par année)
 - Mettre à jour les quantités
 - > Si disparition mettre a jour les arêtes : nouveau graphe possible
 - Quand on veut arrêter la simulation et retomber sur le graphe de départ
- Niveau graphique :
 - Préparer les cases pour rentrer les informations de quantité/ans :
 - Sur chaque sommet le nombre d'espèce qu'il faut pour produire une en plus
 - Sur chaque arête le nombre de consommation de la dominante sur la dominé
 - Passer d une année à l'autre :
 - Un bouton qui la passe
 - ➤ Mettre à jour les informations visuelles quantitatives
 - Donc aussi les liaisons / nouveau graphes
 - Quand on veut revenir au mode édition (le graphe de départ)

Documents à rendre :

- License.txt: toutes nos sources de code
- 3 sauvegardes de graphe complet
- Diagramme de classe sur Draw.io
- La doc du GIT (photo du diagramme)
- La doc Dioxygène
- Le diaporama qui contient :
 - Liens vers les éléments au dessus
 - Billant collectif

Bonus du code (on les faits pas dimanches Omar :p) :

- Amélioration QT en tout beau tout propre
- Des graphes statistiques à la fin des simulations
- Amélioration des équations mathématiques
- Donner des sauvegardes le plus proche possible du réel
- Ajouter d'autre effet que manger (ex : action humaine/polénisasion
- Notre imagination Mais ça va être chaud