Números irracionales

RaylogVT

Número racional

Número que puede ser expresado como una división exacta o periódica

$$5, 12, 69, 378 = Racional$$

$$1.24, 9.0005, 736.89 = Racional$$

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{7}$, = Racional ¿Por qué?

$$\frac{1}{2} = 0.5$$
 $\frac{1}{4} = 0.25$ $\frac{1}{7} = 0.\overline{142857}$

Toda **fracción** que pueda convertirse en un número decimal **exacto** o **periódico** también es racional

Número racional

Número que puede ser expresado como una división exacta o periódica

$$5, 12, 69, 378 = Racional$$

$$1.24, 9.0005, 736.89 = Racional$$

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{7}$, = Racional ¿Por qué?

$$\frac{1}{2} = 0.5$$
 $\frac{1}{4} = 0.25$ $\frac{1}{7} = 0.\overline{142857}$

Toda **fracción** que pueda convertirse en un número decimal exacto o periódico también es racional

Número irracional

Número que es expresado como una división infinita

$$\sqrt{2} = 1.41421356237 \dots = Irracional$$

$$\pi = 3.14159265359 \dots = Irracional$$

$$e = 2.718281828459 \dots = Irracional$$

Todo número con decimales infinitos es irracional

$$\sqrt{2} = 1.41421356237 ... = Irracional$$
 $\sqrt{4} = 2 = Racional$

Toda raíz que de un resultado exacto es racional

Raíz

Número X que al ser multiplicado por sí mismo Y veces da como resultado A

Potencia (Índice)
$$\sqrt[y]{a} = x$$

Base (Radicando)

$$\sqrt[3]{8} = 2$$

2 al ser multiplicado por sí mismo 3 veces da como resultado 8

$$\sqrt[5]{243} = 3$$

3 al ser multiplicado por sí mismo 5 veces da como resultado 243

Es la contraparte de la **exponenciación**

Raíz vs. Exponente

Exponente: ¿Cuál es el resultado A de multiplicar X por sí mismo Y veces?

$$x^y = a$$
 $2^3 = 2 \times 2 \times 2 = 8$

8 es el resultado de multiplicar 2 por sí mismo 3 veces

Raíz: ¿Cuál es el número X que al multiplicarlo por sí mismo Y veces da como resultado A?

$$\sqrt[y]{a} = x$$
 $\sqrt[3]{8} = 2$

2 es el número que al multiplicarlo por sí mismo 3 veces da 8 como resultado

Volviendo a Ley de Exponentes

$$\sqrt[y]{a^x} = a^{\frac{x}{y}} \qquad \sqrt[3]{4^2} = 4^{\frac{2}{3}}$$

¿Una raíz es un exponente?

$$R = Si$$

¿Cuál es la diferencia entonces?

- > Exponente = Usa potencias enteras (Ej. 2,3,4,5)
- Raíz = Usa potencias <u>fraccionarias</u> (Ej. 1/2, 2/3, 4/7)

$$\sqrt[y]{a^x} = a^{\frac{x}{y}}$$

$$\sqrt[3]{a^5} = a^{\frac{5}{3}}$$

$$\sqrt[y]{a} * \sqrt[y]{b} = \sqrt[y]{ab}$$

$$\sqrt[5]{x^2} * \sqrt[5]{y^4} = \sqrt[5]{x^2 y^4}$$

$$a * \sqrt[y]{b} = a \sqrt[y]{b}$$

$$3 * \sqrt[4]{2} = 3\sqrt[4]{2}$$

Simplificación de raíces (Variables)

Método **formal**:

- 1) Separa variables en raíces distintas (propiedad de la multiplicación)
- 2) Simplifica potencias con la Ley de Exponentes
- 3) Reagrupa variables simplificadas

$$\sqrt{x^2} = \sqrt[2]{x^2} = x^{\frac{2}{2}} = x^1 = x$$

$$\sqrt[3]{x^6y^3} = \sqrt[3]{x^6} * \sqrt[3]{y^3} = x^{\frac{6}{3}} * y^{\frac{3}{3}} = x^2 * y^1 = x^2y$$

Simplificación de raíces (Variables)

Potencias como **fracciones impropias**:

- 1) Convierte la fracción impropia a mixta
- 2) Separa el entero y fracción en variables distintas
- 3) Simplifica potencias con la Ley de Exponentes
- 4) Reagrupa variables simplificadas

$$\sqrt[3]{x^5} = x^{\frac{5}{3}} = x^{1\frac{2}{3}} = x^1 * x^{\frac{2}{3}} = x * \sqrt[3]{x^2} = x^{\sqrt[3]{x^2}}$$

Simplificación de raíces (Variables)

$\sqrt[4]{\chi^{12}\gamma^5}$ $=\sqrt[4]{x^{12}}*\sqrt[4]{y^5}$ $= x^{\frac{12}{4}} * y^{\frac{5}{4}} = x^3 * y^{\frac{1}{4}}$ $= x^3 * y^1 * y^{\frac{1}{4}}$ $= x^3 * y * \sqrt[4]{y}$ $= x^3 y \sqrt[4]{y}$

Simplificación

- 1)
- Potencia como 2) fracción impropia
- 3) 1
 - 2)
 - 3)
 - 4)

Simplificación de raíces (Números)

Método **formal**:

- 1) Descompone el número en factores
- 2) Agrupa factores iguales en potencias
- 3) Separa factores en raíces distintas (propiedad de la multiplicación)
- 4) Simplifica potencias con la Ley de Exponentes
- 5) Reagrupa números simplificados

$$\sqrt{12}
= \sqrt{2 * 2 * 3}
= \sqrt{2^2 * 3} = \sqrt{2^2} * \sqrt{3}$$

$$= 2^{\frac{2}{2}} * \sqrt{3} = 2^1 * \sqrt{3}$$

$$= 2 * \sqrt{3} = 2\sqrt{3}$$
5)

$$\sqrt{48}$$

$$= \sqrt{2 * 2 * 2 * 2 * 3}$$

$$= \sqrt{2^4 * 3} = \sqrt{2^4} * \sqrt{3}$$

$$= 2^{\frac{4}{2}} * \sqrt{3} = 2^2 * \sqrt{3}$$

$$= 4 * \sqrt{3} = 4\sqrt{3}$$
5)

$$\sqrt{45} \qquad 1)$$

$$= \sqrt{3} * 3 * 5 \qquad 2)$$

$$= \sqrt{3^2 * 5} = \sqrt{3^2} * \sqrt{5} \qquad 3)$$

$$= 3^{\frac{2}{2}} * \sqrt{5} = 3^1 * \sqrt{5} \qquad 4)$$

$$= 3 * \sqrt{5} = 3\sqrt{5} \qquad 5)$$

$$\sqrt{1200}$$

$$= \sqrt{2 * 2 * 2 * 2 * 2 * 3 * 5 * 5}$$

$$= \sqrt{2^4 * 3 * 5^2} = \sqrt{2^4} * \sqrt{3} * \sqrt{5^2}$$

$$= 2^{\frac{4}{2}} * \sqrt{3} * 5^{\frac{2}{2}} = 2^2 * \sqrt{3} * 5$$

$$= 4 * 5 * \sqrt{3} = 20\sqrt{3}$$
1)

1)
2)
3)
5)

$$\sqrt{128}$$

$$= \sqrt{2 * 2 * 2 * 2 * 2 * 2 * 2}$$

$$= \sqrt{2^{7}}$$

$$= \sqrt{2^{7}}$$

$$= 2^{\frac{7}{2}} = 2^{3\frac{1}{2}} = 2^{3} * 2^{\frac{1}{2}}$$

$$= 8 * \sqrt{2} = 8\sqrt{2}$$

*Aquí hay una fracción impropia, usamos el método presentado anteriormente

$$\sqrt[3]{324}$$
= $\sqrt[3]{3 * 3 * 3 * 3 * 2 * 2}$
= $\sqrt[3]{3^4 * 2^2}$
= $3^{\frac{4}{3}} * 2^{\frac{1}{3}} = 3^{1\frac{1}{3}} * 2^{\frac{2}{3}} = 3^1 * 3^{\frac{1}{3}} * 2^{\frac{2}{3}}$
= $3 * \sqrt[3]{3^1} * \sqrt[3]{2^2} = 3 * \sqrt[3]{3} * \sqrt[3]{4}$
= $3 * \sqrt[3]{3 * 4}$
= $3\sqrt[3]{12}$

1)

2)

3)

4)*

*Aquí hay una fracción impropia, usamos el método presentado anteriormente

5)

$$\sqrt[4]{800}$$
= $\sqrt[4]{2 * 2 * 2 * 2 * 2 * 5 * 5}$
= $\sqrt[4]{2^5 * 5^2}$
= $2^{\frac{5}{4}} * 5^{\frac{2}{4}} = 2^{1\frac{1}{4}} * 5^{\frac{2}{4}} = 2^1 * 2^{\frac{1}{4}} * 5^{\frac{2}{4}}$
= $2 * \sqrt[4]{2^1} * \sqrt[4]{5^2} = 2 * \sqrt[4]{2} * \sqrt[4]{25}$
= $2 * \sqrt[4]{2 * 25}$
= $2^{\frac{4}{\sqrt{50}}}$

1)

2

3)

4)*

*Aquí hay una fracción impropia, usamos el método presentado anteriormente

5)

Método rápido:

- 1) Descompone el número en factores de tal manera que uno o varios de los factores sea una **raíz exacta**
- ... (Nos ahorramos el **Paso 2**)
- 3) Separa factores en raíces distintas (propiedad de la multiplicación)
- 4) Simplifica potencias con la Ley de Exponentes
- 5) Reagrupa números simplificados

Potencias comunes

x^y	2	3	4	5	6	7	8	9	10
2	4	8	16	32	64	128	256	512	1024
3	9	27	81	243	729	2187	6561	19683	59049
4	16	64	256	1024	4096	16384	65536	262144	1048576
5	25	125	625	3125	15625				
6	36	216	1296	7776	46656				
7	49	343	2401	16807	117649				
8	64	512	4096	32768	262144				
9	81	729	6561	59049	531441				
10	100	1000	10000	100000	1000000				

Raíces comunes

$\sqrt[y]{a} = x$	2	3	4	5
2	$\sqrt{4}=2$	$\sqrt[3]{8} = 2$	$\sqrt[4]{16} = 2$	$\sqrt[5]{32} = 2$
3	$\sqrt{9}=3$	$\sqrt[3]{27} = 3$	$\sqrt[4]{81} = 3$	$\sqrt[5]{243} = 3$
4	$\sqrt{16} = 4$	$\sqrt[3]{64} = 4$	$\sqrt[4]{256} = 4$	$\sqrt[5]{1024} = 4$
5	$\sqrt{25} = 5$	$\sqrt[3]{125} = 5$	$\sqrt[4]{625} = 5$	$\sqrt[5]{3125} = 5$
6	$\sqrt{36} = 6$	$\sqrt[3]{216} = 6$	$\sqrt[4]{1296} = 6$	$\sqrt[5]{7776} = 6$
7	$\sqrt{49} = 7$	$\sqrt[3]{343} = 7$	$\sqrt[4]{2401} = 7$	$\sqrt[5]{16807} = 7$
8	$\sqrt{64} = 8$	$\sqrt[3]{512} = 8$	$\sqrt[4]{4096} = 8$	$\sqrt[5]{32768} = 8$
9	$\sqrt{81} = 9$	$\sqrt[3]{729} = 9$	$\sqrt[4]{6561} = 9$	$\sqrt[5]{59049} = 9$
10	$\sqrt{100} = 10$	$\sqrt[3]{1000} = 10$	$\sqrt[4]{10000} = 10$	$\sqrt[5]{100000} = 10$

$$\sqrt{12}$$
 1)
= $\sqrt{4 * 3}$ 3)
= $\sqrt{4} * \sqrt{3}$ 4)
= $2 * \sqrt{3} = 2\sqrt{3}$ 5)

$$\sqrt{48}$$
 1)
= $\sqrt{16 * 3}$ 3)
= $\sqrt{16} * \sqrt{3}$ 4)
= $4 * \sqrt{3} = 4\sqrt{3}$ 5)

$$\sqrt{45}$$
 1)
= $\sqrt{9} * 5$ 3)
= $\sqrt{9} * \sqrt{5}$ 4)
= $3 * \sqrt{5} = 3\sqrt{5}$ 5)

$$\sqrt{1200}$$
 1)
= $\sqrt{400 * 3}$ 3)
= $\sqrt{400} * \sqrt{3}$ 4)
= $20 * \sqrt{3} = 20\sqrt{3}$ 5)

$$\sqrt[3]{324}$$
= $\sqrt[3]{27 * 12}$
= $\sqrt[3]{27} * \sqrt[3]{12}$
= $\sqrt[3]{27} * \sqrt[3]{12}$
= $3 * \sqrt[3]{12} = 3\sqrt[3]{12}$
5)

$$\sqrt[4]{800}$$
 1)
= $\sqrt[4]{16 * 50}$ 3)
= $\sqrt[4]{16} * \sqrt[4]{50}$ 4)
= $2 * \sqrt[4]{50} = 2\sqrt[4]{50}$ 5)

	Normal	Rápidos
Pros	Procedimiento claro	Rápido de realizar Procedimiento largo
Contras	Lento de realizar Procedimiento largo	Requiere saberse las potencias de memoria

Necesitas un número que sea resultado de una potencia **cuadrada** y divisor de **45**

$$9 = 3^2$$

Necesitas un número que sea resultado de una potencia **a la cuarta** y divisor de **800**

$$16 = 2^4$$

Ejercicios

Simplifica las siguientes raíces

Muestra tu procedimiento usando cualquiera de los dos métodos

$$\sqrt{8} = 2\sqrt{2}$$

$$\sqrt{117} = 3\sqrt{13}$$

$$\sqrt{360} = 6\sqrt{10}$$

$$\sqrt{567} = 9\sqrt{7}$$

$$\sqrt[3]{384} = 4\sqrt[3]{6}$$

$$\sqrt[4]{1250} = 5\sqrt[4]{2}$$

$$\sqrt[5]{576} = 2\sqrt[5]{18}$$

Normalmente usamos calculadora para sacar raíces, pero si las descomponemos en números más pequeños, entonces podemos memorizarlas y calcularlas mentalmente

$$\sqrt{8} = 2.82842712 \dots$$

¿Y si memorizamos mejor la raíz cuadrada de 2?

$$\sqrt{8} = 2\sqrt{2} = 2 * 1.41421356 \dots = 2.82842712 \dots$$

$$\sqrt{2} = 1.41421356 \dots$$

$$\sqrt{2} = 1.414$$

$$\sqrt{3} = 1.732$$

$$\sqrt{5} = 2.236$$

$$\sqrt{6} = 2.449$$

$$\sqrt{7} = 2.645$$

$$\sqrt{10} = 3.162$$

$$\sqrt{11} = 3.316$$

$$\sqrt{13} = 3.605$$

$$\sqrt{14} = 3.741$$

$$\sqrt{15} = 3.873$$

$$\sqrt{17} = 4.123$$

$$\sqrt{19} = 4.359$$

Si memorizas los primeros 4 dígitos de las raíces enteras más pequeñas, entonces puedes calcular raíces más grandes mentalmente con simple multiplicación y obtener resultados de manera confiable

$$\sqrt[3]{2} = 1.26$$

$$\sqrt[3]{3} = 1.442$$

$$\sqrt[3]{4} = 1.587$$

$$\sqrt[3]{5} = 1.71$$

$$\sqrt[3]{6} = 1.817$$

$$\sqrt[3]{7} = 1.913$$

$$\sqrt[4]{2} = 1.189$$

$$\sqrt[4]{3} = 1.316$$

$$\sqrt[4]{5} = 1.495$$

$$\sqrt[4]{6} = 1.565$$

$$\sqrt[4]{7} = 1.626$$

$$\sqrt[4]{8} = 1.682$$

Si memorizas los primeros 4 dígitos de las raíces enteras más pequeñas, entonces puedes calcular raíces más grandes mentalmente con simple multiplicación y obtener resultados de manera confiable

$$\sqrt{48} = 6.9282 \dots$$
 $\sqrt{48} = 4\sqrt{3} = 4 * 1.732 = 6.928$
 $\sqrt{8} = 2.82842 \dots$
 $\sqrt{8} = 2\sqrt{2} = 2 * 1.414 = 2.828$
 $\sqrt{180} = 13.4164 \dots$
 $\sqrt{180} = 6\sqrt{5} = 6 * 2.236 = 13.416$
 $\sqrt{54} = 7.34846 \dots$
 $\sqrt{54} = 3\sqrt{6} = 3 * 2.449 = 7.347$
 $\sqrt{250} = 15.8114 \dots$
 $\sqrt{250} = 5\sqrt{10} = 5 * 3.162 = 15.810$
 $\sqrt{567} = 23.81176 \dots$
 $\sqrt{567} = 9\sqrt{7} = 9 * 2.645 = 23.805$

Operaciones con raíces (\pm)

$$a\sqrt[y]{x} + b\sqrt[y]{x} = (a+b)\sqrt[y]{x}$$

$$a\sqrt[y]{x} - b\sqrt[y]{x} = (a - b)\sqrt[y]{x}$$

$$2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$$

SÍ se pueden sumar

$$\sqrt{2} + \sqrt{3} =$$

NO se pueden sumar, tienen una base distinta

$$\sqrt[3]{2} + \sqrt[4]{2} =$$

NO se pueden sumar, tienen una potencia distinta

Operaciones con raíces (±)

$$\sqrt{3} + \sqrt{3} = 2\sqrt{3}$$

$$4\sqrt{5} - 2\sqrt{5} = 2\sqrt{5}$$

$$6\sqrt{7} - 2\sqrt{7} + \sqrt{2} = 4\sqrt{7} + \sqrt{2}$$

$$5\sqrt{11} + 3\sqrt{11} + \sqrt[3]{4} - 3\sqrt[3]{4} = 8\sqrt{11} - 2\sqrt[3]{4}$$

$$4\sqrt{2} + 3\sqrt{6} - 3\sqrt{2} + 5\sqrt{6} = (4\sqrt{2} - 3\sqrt{2}) + (3\sqrt{6} + 5\sqrt{6})$$

$$= \sqrt{2} + 8\sqrt{6}$$

Operaciones con raíces (±)

$$\sqrt{2} + \sqrt{8} = \sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$$

Uno pensaría que estos dos términos no se pueden sumar, ¡pero en realidad sí!

$$\sqrt{8} = \sqrt{4 * 2} = \sqrt{4} * \sqrt{2} = 2 * \sqrt{2} = 2\sqrt{2}$$

Si simplificas raíz de 8, entonces terminará en base 2, y ahora sí se puede sumar

$$3\sqrt{3} + \sqrt{12} = 3\sqrt{3} + 2\sqrt{3} = 5\sqrt{3}$$
$$\sqrt{12} = \sqrt{4 * 3} = \sqrt{4} * \sqrt{3} = 2 * \sqrt{3} = 2\sqrt{3}$$

Operaciones con raíces (\pm)

$$\sqrt{45} + \sqrt{80} = 3\sqrt{5} + 4\sqrt{5} = 7\sqrt{5}$$

$$\sqrt{45} = \sqrt{9 * 5} = \sqrt{9} * \sqrt{5} = 3 * \sqrt{5} = 3\sqrt{5}$$

$$\sqrt{80} = \sqrt{16 * 5} = \sqrt{16} * \sqrt{5} = 4 * \sqrt{5} = 4\sqrt{5}$$

$$\sqrt{24} + \sqrt{600} = 2\sqrt{6} + 10\sqrt{6} = 12\sqrt{6}$$

$$\sqrt{24} = \sqrt{4 * 6} = \sqrt{4} * \sqrt{6} = 2 * \sqrt{6} = 2\sqrt{6}$$

$$\sqrt{600} = \sqrt{100 * 6} = \sqrt{100} * \sqrt{6} = 10 * \sqrt{6} = 10\sqrt{6}$$

$$\sqrt{12} + \sqrt{48} = 6\sqrt{3}$$

$$\sqrt{10} + \sqrt{490} = 8\sqrt{10}$$

$$\sqrt{63} + \sqrt{567} = 12\sqrt{7}$$

$$\sqrt[3]{5} + \sqrt[3]{40} = 3\sqrt[3]{5}$$

$$3\sqrt[3]{9} + \sqrt[3]{72} = 5\sqrt[3]{9}$$

Operaciones con raíces (x÷)

$$\sqrt[y]{a} * \sqrt[y]{b} = \sqrt[y]{ab}$$

$$a * \sqrt[y]{b} = a \sqrt[y]{b}$$

$$\frac{\sqrt[y]{a}}{\sqrt[y]{b}} = \sqrt[y]{\frac{a}{b}}$$

$$\sqrt{2} * \sqrt{3} = \sqrt{2 * 3} = \sqrt{6}$$

$$3*\sqrt{2}=3\sqrt{2}$$

$$\frac{\sqrt{20}}{\sqrt{2}} = \sqrt{\frac{20}{2}} = \sqrt{10}$$

$$\sqrt{3} * \sqrt[3]{2} = {\color{red} \text{NO}}$$
 se pueden multiplicar o dividir raíces que tengan potencias distintas

Operaciones con raíces (×÷)

$$\sqrt{3} * \sqrt{6} = \sqrt{3 * 6} = \sqrt{18} = 3\sqrt{2}$$

$$\sqrt{7} * \sqrt{5} = \sqrt{7 * 5} = \sqrt{35}$$

$$\sqrt[3]{4} * \sqrt[3]{9} = \sqrt[3]{4 * 9} = \sqrt[3]{36}$$

$$\sqrt[3]{10} * \sqrt[3]{25} = \sqrt[3]{10 * 25} = \sqrt[3]{250} = 5\sqrt[3]{2}$$

$$\sqrt[4]{12} * \sqrt[4]{24} = \sqrt[4]{12 * 24} = \sqrt[4]{288} = 2\sqrt[4]{18}$$

Operaciones con raíces (x÷)

$$\frac{\sqrt{20}}{\sqrt{2}} = \sqrt{\frac{20}{2}} = \sqrt{10}$$

$$\frac{\sqrt{54}}{\sqrt{3}} = \sqrt{\frac{54}{3}} = \sqrt{18} = 3\sqrt{2}$$

$$\frac{\sqrt[3]{128}}{\sqrt[3]{4}} = \sqrt[3]{\frac{128}{4}} = \sqrt[3]{32} = 2\sqrt[3]{4}$$

$$\sqrt{10} * \sqrt{20} = 10\sqrt{2}$$

$$8*\sqrt{12}=16\sqrt{3}$$

$$9 * \sqrt{45} * \sqrt{6} = 81\sqrt{30}$$

$$\frac{\sqrt{360}}{\sqrt{6}} = \sqrt{\frac{360}{6}} = 2\sqrt{15}$$

Operaciones con raíces (x^y)

$$\left(\sqrt[y]{a}\right)^x = \sqrt[y]{a^x}$$

$$(\sqrt[n]{a})^n = a$$

$$\sqrt[y]{\sqrt[x]{a}} = \sqrt[xy]{a}$$

$$\left(\sqrt[3]{2}\right)^4 = \sqrt[3]{2^4}$$

$$\left(\sqrt{2}\right)^2 = 2$$

$$\sqrt[3]{\sqrt[4]{5}} = \sqrt[12]{5}$$

Operaciones con raíces (x^y)

$$\left(\sqrt{2}\right)^5 = \sqrt{2^5} = \sqrt{32} = 4\sqrt{2}$$

$$\left(\sqrt{3}\right)^3 = \sqrt{3^3} = \sqrt{27} = 3\sqrt{3}$$

$$(\sqrt{6})^4 = \sqrt{6^4} = \sqrt{1296} = 36$$

$$\left(\sqrt{7}\right)^2 = \sqrt{7^2} = 7$$

$$\left(\sqrt[3]{10}\right)^3 = \sqrt[3]{10^3} = 10$$

Operaciones con raíces (x^y)

$$\sqrt[3]{\sqrt{10}} = \sqrt[3*2]{10} = \sqrt[6]{10}$$

$$\sqrt[6]{\sqrt[3]{13}} = \sqrt[6*3]{13}$$

$$\sqrt[5]{\sqrt[4]{7}} = \sqrt[5*4]{7}$$

$$(\sqrt{5})^{3} = 5\sqrt{5}$$

$$(\sqrt[3]{6})^{7} = 36\sqrt{6}$$

$$(\sqrt[5]{20})^{5} = 20$$

$$\sqrt[6]{\sqrt[7]{13}} = \sqrt[42]{13}$$

Transformar una fracción de tal forma que su denominador tenga un **número entero** en vez de una **raíz**

$$\frac{6}{\sqrt{2}} = \frac{6}{1.414 \dots} = NO \qquad \frac{\sqrt{2}}{5} = \frac{1.414 \dots}{5} = SI$$

En una fracción, el **denominador** no debería ser un **número irracional**, puesto que los decimales infinitos dificulta el cálculo de la fracción

Método general:

- 1) Multiplica la fracción por una fracción que conste del complemento del denominador en el numerador y denominador
- 2) Multiplica y simplifica las fracciones

$$\frac{6}{\sqrt{2}} = \frac{6}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{6\sqrt{2}}{(\sqrt{2})^2} = \frac{6\sqrt{2}}{2} = 3\sqrt{2}$$
1)

Raíces cuadradas (potencia igual a 2):

$$\frac{a}{b\sqrt{c}} = \frac{a}{b\sqrt{c}} * \frac{\sqrt{c}}{\sqrt{c}} = \frac{a\sqrt{c}}{b(\sqrt{c})^2} = \frac{a\sqrt{c}}{bc}$$

Raíces con potencia mayor o igual a 3:

$$\frac{a}{b\sqrt[n]{c^m}} = \frac{a}{b\sqrt[n]{c^m}} * \frac{\sqrt[n]{c^{n-m}}}{\sqrt[n]{c^{n-m}}} = \frac{a\sqrt[n]{c^{n-m}}}{b\sqrt[n]{c^n}} = \frac{a\sqrt[n]{c^{n-m}}}{bc}$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{\left(\sqrt{3}\right)^2} = \frac{\sqrt{3}}{3}$$

$$\frac{2}{\sqrt{5}} = \frac{2}{\sqrt{5}} * \frac{\sqrt{5}}{\sqrt{5}} = \frac{2\sqrt{5}}{\left(\sqrt{5}\right)^2} = \frac{2\sqrt{5}}{5}$$

$$\frac{4}{\sqrt{6}} = \frac{4}{\sqrt{6}} * \frac{\sqrt{6}}{\sqrt{6}} = \frac{4\sqrt{6}}{\left(\sqrt{6}\right)^2} = \frac{4\sqrt{6}}{6} = \frac{2\sqrt{6}}{3}$$

$$\frac{7}{2\sqrt{2}} = \frac{7}{2\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{7\sqrt{2}}{2\sqrt{4}} = \frac{7\sqrt{2}}{2*2} = \frac{7\sqrt{2}}{4}$$

$$= \frac{7}{\sqrt{8}} * \frac{\sqrt{8}}{\sqrt{8}} = \frac{7\sqrt{8}}{8} = \frac{7 * 2\sqrt{2}}{8} = \frac{14\sqrt{2}}{8} = \frac{7\sqrt{2}}{4}$$

$$\frac{9}{4\sqrt{3}} = \frac{9}{4\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{9\sqrt{3}}{4\sqrt{9}} = \frac{9\sqrt{3}}{12} = \frac{3\sqrt{3}}{4}$$

Puedes racionalizar una raíz **independientemente** de si está **simplificada** o no

$$\frac{1}{\sqrt[3]{2}} = \frac{1}{\sqrt[3]{2}} * \frac{\sqrt[3]{2^{3-1}}}{\sqrt[3]{2^{3-1}}} = \frac{\sqrt[3]{2^2}}{\sqrt[3]{2^3}} = \frac{\sqrt[3]{4}}{2}$$

$$\frac{6}{\sqrt[4]{27}} = \frac{6}{\sqrt[4]{3^3}} * \frac{\sqrt[4]{3^{4-3}}}{\sqrt[4]{3^{4-3}}} = \frac{6\sqrt[4]{3}}{\sqrt[4]{3^4}} = \frac{6\sqrt[4]{3}}{3} = 2\sqrt[4]{3}$$

$$\frac{3}{7\sqrt[5]{4}} = \frac{3}{7\sqrt[5]{2^2}} * \frac{\sqrt[5]{2^{5-2}}}{\sqrt[5]{2^{5-2}}} = \frac{3\sqrt[5]{2^3}}{7\sqrt[5]{2^5}} = \frac{3\sqrt[5]{8}}{7*2} = \frac{3\sqrt[5]{8}}{14}$$

$$\frac{2}{\sqrt{10}} = \frac{\sqrt{10}}{5}$$

$$\frac{7}{4\sqrt{6}} = \frac{7\sqrt{6}}{24}$$

$$\frac{5}{\sqrt[3]{12}} = \frac{5\sqrt[3]{144}}{12}$$

Racionalización (Binomios)

Si el denominador es un **binomio** (es decir, tiene 2 valores) y uno de ellos es una **raíz**, entonces tenemos que racionalizar por su **conjugado**

Binomio	Conjugado
$\sqrt{a} + \sqrt{b}$	$\sqrt{a} - \sqrt{b}$
$\sqrt{a} - \sqrt{b}$	$\sqrt{a} + \sqrt{b}$
$-\sqrt{a} + \sqrt{b}$	$-\sqrt{a}-\sqrt{b}$
$-\sqrt{a}-\sqrt{b}$	$-\sqrt{a} + \sqrt{b}$

$$(a+b)(a-b) = a^2 - b^2$$

El conjugado de un binomio es el mismo con el signo **opuesto** (véase la tabla)

$$\frac{1}{\sqrt{3} + \sqrt{2}} = \frac{1}{\sqrt{3} + \sqrt{2}} * \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{\left(\sqrt{3}\right)^2 - \left(\sqrt{2}\right)^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2}$$
$$= \frac{\sqrt{3} - \sqrt{2}}{1} = \sqrt{3} - \sqrt{2}$$

$$\frac{2}{\sqrt{5} - \sqrt{3}} = \frac{2}{\sqrt{5} - \sqrt{3}} * \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{2(\sqrt{5} + \sqrt{3})}{(\sqrt{5})^2 - (\sqrt{3})^2} = \frac{2(\sqrt{5} + \sqrt{3})}{5 - 3}$$

$$= \frac{2(\sqrt{5} + \sqrt{3})}{2} = \sqrt{5} + \sqrt{3}$$

$$\frac{3}{\sqrt{6} - \sqrt{2}} = \frac{3}{\sqrt{6} - \sqrt{2}} * \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{3(\sqrt{6} + \sqrt{2})}{(\sqrt{6})^2 - (\sqrt{2})^2} = \frac{3(\sqrt{6} + \sqrt{2})}{6 - 2}$$
$$= \frac{3(\sqrt{6} + \sqrt{2})}{4} = \frac{3\sqrt{6} + 3\sqrt{2}}{2}$$

$$\frac{\sqrt{2}}{\sqrt{2} + \sqrt{5}} = \frac{\sqrt{2}}{\sqrt{2} + \sqrt{5}} * \frac{\sqrt{2} - \sqrt{5}}{\sqrt{2} - \sqrt{5}} = \frac{\sqrt{2}(\sqrt{2} - \sqrt{5})}{(\sqrt{2})^2 - (\sqrt{5})^2} = \frac{2 - \sqrt{10}}{2 - 5}$$

$$=\frac{2-\sqrt{10}}{-3}=-\frac{2-\sqrt{10}}{3}$$

$$\frac{9}{\sqrt{6} + \sqrt{3}} = 3(\sqrt{6} - \sqrt{3})$$

$$\frac{2}{-\sqrt{5}-\sqrt{11}} = \frac{\sqrt{5}-\sqrt{11}}{8}$$

$$\frac{\sqrt{2} + \sqrt{3}}{\sqrt{3} + \sqrt{6}} = -\frac{\sqrt{6} - 2\sqrt{3} + 3 - 3\sqrt{2}}{3}$$

¡Gracias por ver la presentación!

Raylog M

RaylogVT

RaylogVT

RaylogVT

