UM 204: QUIZ 2 Jan. 19, 2024

Duration. 15 minutes

Maximum score. 10 points

You are not allowed to assume the existence of the ordered field of real numbers.

Problem. Let $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ be two <u>equivalent</u> sequences of rational numbers. Show that $\{a_n\}_{n\in\mathbb{N}}$ is \mathbb{Q} -Cauchy if and only if $\{b_n\}_{n\in\mathbb{N}}$ is \mathbb{Q} -Cauchy.

Suppose $\{a_n\}$ is a \mathbb{Q} -Cauchy sequence. Let $\varepsilon > 0$. Then, there is an $N_1 \in \mathbb{N}$ such that

$$(1) |a_n - a_m| < \varepsilon/3, \quad \forall n, m \ge N_1.$$

By the equivalence of the two sequences, there is an $N_2 \in \mathbb{N}$ such that

$$(2) |a_n - b_n| < \varepsilon/3, \quad \forall n \ge N_2.$$

Let $N = \max\{N_1, N_2\}$, then by (1) and (2), for all $m, n \geq N$,

$$|b_n - b_m| \le |b_n - a_n| + |a_n - a_m| + |a_m - b_m| < \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, $\{b_n\}$ is \mathbb{Q} -Cauchy.

Switching the roles of $\{a_n\}$ and $\{b_n\}$, we also obtain the converse.