Oscar/Nemo.jl: A Julia package for computer algebra

Claus Fieker, William Hart, Tommy Hofmann, Fredrik Johansson, Marek Kaluba

March 6, 2018

GAP: computational discrete algebra, group and representation theory, general purpose high level interpreted programming language.

Singular: polynomial computations, with emphasis on algebraic geometry, commutative algebra, and singularity theory.

Examples:

 Multigraded equivariant Cox ring of a toric variety over a number field

- Graphs of groups in division algebras
 - Matrix groups over polynomial rings over number field

Oscar

polymake: convex polytopes, polyhedral and stacky fans, simplicial complexes and related objects from combinatorics and geometry.

ANTIC: number theoretic software featuring computations in and with number fields and generic finitely presented rings.

Oscar components: cornerstone systems

- Gap : Group theory (discrete algebra)
- Singular : Polynomials, algebra, geometry
- Polymake : Polyhedreal geometry
- ► Antic : Algebraic number theory

Oscar components: cornerstone systems

- Gap : Group theory (discrete algebra)
- Singular : Polynomials, algebra, geometry
- Polymake : Polyhedreal geometry
- ► Antic : Algebraic number theory

AbstractAlgebra.jl : generic algorithms

- AbstractAlgebra.jl : generic algorithms
- ▶ Nemo.jl : wrappers of Flint, Arb and Antic C libraries

- AbstractAlgebra.jl : generic algorithms
- ▶ Nemo.jl : wrappers of Flint, Arb and Antic C libraries
- Hecke.jl : Algebraic number theory, class field theory

- AbstractAlgebra.jl : generic algorithms
- ▶ Nemo.jl : wrappers of Flint, Arb and Antic C libraries
- ► Hecke.jl : Algebraic number theory, class field theory
- ► Singular.jl : wrapper of the Singular kernel

- AbstractAlgebra.jl : generic algorithms
- ▶ Nemo.jl : wrappers of Flint, Arb and Antic C libraries
- ► Hecke.jl : Algebraic number theory, class field theory
- Singular.jl : wrapper of the Singular kernel
- ▶ libGap.jl : interface to Gap from Julia

- AbstractAlgebra.jl : generic algorithms
- ▶ Nemo.jl : wrappers of Flint, Arb and Antic C libraries
- ► Hecke.jl : Algebraic number theory, class field theory
- ► Singular.jl : wrapper of the Singular kernel
- ▶ libGap.jl : interface to Gap from Julia
- ▶ Polymake.jl : interface to Polymake from Julia

- AbstractAlgebra.jl : generic algorithms
- ▶ Nemo.jl : wrappers of Flint, Arb and Antic C libraries
- ► Hecke.jl : Algebraic number theory, class field theory
- ► Singular.jl : wrapper of the Singular kernel
- ▶ libGap.jl : interface to Gap from Julia
- ▶ Polymake.jl : interface to Polymake from Julia
- JuliaInterface : Access to Julia from Gap

C libraries:

► Flint - polynomials and linear algebra

C libraries:

- ▶ Flint polynomials and linear algebra
- ► Antic number field arithmetic

C libraries:

- ► Flint polynomials and linear algebra
- Antic number field arithmetic
- Arb real and complex ball arithmetic

C libraries:

- ► Flint polynomials and linear algebra
- Antic number field arithmetic
- Arb real and complex ball arithmetic

Julia libraries:

► Nemo.jl - wrappers of the C libraries

C libraries:

- ► Flint polynomials and linear algebra
- Antic number field arithmetic
- Arb real and complex ball arithmetic

Julia libraries:

- Nemo.jl wrappers of the C libraries
- AbstractAlgebra.jl generic rings and fields

C libraries:

- ► Flint polynomials and linear algebra
- Antic number field arithmetic
- Arb real and complex ball arithmetic

Julia libraries:

- Nemo.jl wrappers of the C libraries
- AbstractAlgebra.jl generic rings and fields
- Hecke.jl number fields, class field theory, algebraic number theory

Quadratic sieve integer factorisation

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation
- ► APRCL primality test

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation
- ► APRCL primality test
- Parallelised FFT

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation
- ► APRCL primality test
- Parallelised FFT
- Howell form

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation
- ► APRCL primality test
- Parallelised FFT
- Howell form
- Characteristic and minimal polynomial

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT
- Howell form
- Characteristic and minimal polynomial
- ▶ van Hoeij factorisation for $\mathbb{Z}[x]$

- Quadratic sieve integer factorisation
- ▶ Elliptic curve integer factorisation
- APRCL primality test
- Parallelised FFT
- Howell form
- Characteristic and minimal polynomial
- ▶ van Hoeij factorisation for $\mathbb{Z}[x]$
- ▶ Multivariate polynomial arithmetic over \mathbb{Z} , $\mathbb{Z}/n\mathbb{Z}$, \mathbb{Q}

Integer factorisation: Quadratic sieve

Table: Quadratic sieve timings

Digits	Pari/GP	Flint (1 core)	Flint (4 cores)
50	0.43	0.55	0.39
59	3.8	3.0	1.7
68	38	21	14
77	257	140	52
83	2200	1500	540

APRCL primality test timings

FFT: Integer and polynomial multiplication

Table: FFT timings

Words	1 core	4 cores	8 cores	
110k	0.07s	0.05s	0.05s	
360k	0.3s	0.1	0.1s	
1.3m	1.1s	0.4s	0.3s	
4.6m	4.5s	1.5s	1.0s	
26m	28s	9s	6s	
120m	140s	48s	33s	
500m	800s	240s	150s	

Characteristic and minimal polynomial

Table: Charpoly and minpoly timings

Ор	Sage 6.9	Pari 2.7.4	Magma 2.21-4	Giac 1.2.2	Flint
Charpoly	0.2s	0.6s	0.06s	0.06s	0.04s
Minpoly	0.07s	>160 hrs	0.05s	0.06s	0.04s

for 80×80 matrix over \mathbb{Z} with entries in [-20,20] and minpoly of degree 40.

Multivariate multiplication

Table: "Dense" Fateman multiply bench

n	Sage	Singular	Magma	Giac	Piranha	Trip	Flint
5	0.0063s	0.0048s	0.0018s	0.00023s	0.0011s	0.00057s	0.00023s
10	0.51s	0.11s	0.12s	0.0056s	0.029s	0.023s	0.0043s
15	9.1s	1.4s	1.9s	0.11s	0.39s	0.21s	0.045s
20	75s	21s	16s	0.62s	2.9s	2.3s	0.48s
25	474s	156s	98s	2.8s	14s	12s	2.3s
30	1667s	561s	440s	14s	56s	41s	10s

4 variables

Multivariate multiplication

Table: Sparse multiply benchmark

n	Sage	Singular	Magma	Giac	Piranha	Trip	Flint
4	0.0066s	0.0050s	0.0062s	0.0046s	0.0033s	0.0015s	0.0014s
6	0.15s	0.11s	0.080s	0.030s	0.025s	0.016s	0.016s
8	1.6s	0.79s	0.68s	0.28s	0.15s	0.10s	0.10s
10	8s	3.6s	3.0s	1.5s	0.62s	0.40s	0.48s
12	43s	14s	11s	4.8s	2.2s	2.2s	2.0s
14	173s	63s	37s	14s	6.7s	12s	7.2s
16	605s	201s	94s	39s	20s	39s	19s

5 variables

Support for Windows, Linux, Mac

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading
- Fast generics and metaprogramming

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading
- Fast generics and metaprogramming
- Maintained and popular

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading
- Fast generics and metaprogramming
- Maintained and popular
- Open source

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading
- Fast generics and metaprogramming
- Maintained and popular
- Open source
- Imperative syntax

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading
- Fast generics and metaprogramming
- Maintained and popular
- Open source
- Imperative syntax
- Garbage collected

- Support for Windows, Linux, Mac
- ▶ 64 bit integers and double precision floats
- Console/REPL mode
- Operator overloading
- Fast generics and metaprogramming
- Maintained and popular
- Open source
- ► Imperative syntax
- Garbage collected
- Easy/efficient C interop

Efficient generics

Generic

Kernel

Fast generics

Generic

Kernel

Slow generics

Efficient generics

- ▶ JIT compilation : near C performance.
- Designed by mathematically minded people.
- Open Source (MIT License).
- ► Actively developed since 2009.
- ► Supports Windows, OSX, Linux, BSD.
- ► Friendly C/Python-like (imperative) syntax.

residue rings

- residue rings
- fraction fields

- residue rings
- fraction fields
- dense univariate polynomials

- residue rings
- fraction fields
- dense univariate polynomials
- dense linear algebra

- residue rings
- fraction fields
- dense univariate polynomials
- dense linear algebra
- power series

Residue fields

- Residue fields
- Laurent series

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form
- Generic multivariate polynomials

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form
- Generic multivariate polynomials
- Capped absolute power series

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form
- Generic multivariate polynomials
- Capped absolute power series
- Permutation groups, Young tableaux, characters

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form
- Generic multivariate polynomials
- Capped absolute power series
- Permutation groups, Young tableaux, characters
- Ducos' algorithm for resultants

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form
- Generic multivariate polynomials
- Capped absolute power series
- Permutation groups, Young tableaux, characters
- Ducos' algorithm for resultants
- Rewritten documentation

- Residue fields
- Laurent series
- Generic HNF, SNF, Popov form
- Generic multivariate polynomials
- Capped absolute power series
- Permutation groups, Young tableaux, characters
- Ducos' algorithm for resultants
- Rewritten documentation
- Integration with Singular.jl

► My thesis was on computing abelian extension of number fields via modular equations:

- My thesis was on computing abelian extension of number fields via modular equations:
- ▶ Relation $P_n(A(\tau), A(n\tau)) = 0$ for modular function $A(\tau)$ and polynomial $P_n(X, Y)$, for all τ in complex upper half plane

- My thesis was on computing abelian extension of number fields via modular equations:
- ▶ Relation $P_n(A(\tau), A(n\tau)) = 0$ for modular function $A(\tau)$ and polynomial $P_n(X, Y)$, for all τ in complex upper half plane
- ightharpoonup Can specialise at certain values of au to give "small" generating polynomials for extensions of number fields

- My thesis was on computing abelian extension of number fields via modular equations:
- ▶ Relation $P_n(A(\tau), A(n\tau)) = 0$ for modular function $A(\tau)$ and polynomial $P_n(X, Y)$, for all τ in complex upper half plane
- ightharpoonup Can specialise at certain values of au to give "small" generating polynomials for extensions of number fields
- Example: Klein j-function is a modular function

- My thesis was on computing abelian extension of number fields via modular equations:
- ▶ Relation $P_n(A(\tau), A(n\tau)) = 0$ for modular function $A(\tau)$ and polynomial $P_n(X, Y)$, for all τ in complex upper half plane
- ightharpoonup Can specialise at certain values of au to give "small" generating polynomials for extensions of number fields
- Example: Klein j-function is a modular function
- Periodic with period 1, so has Fourier expansion, called a q-expansion:

- My thesis was on computing abelian extension of number fields via modular equations:
- ▶ Relation $P_n(A(\tau), A(n\tau)) = 0$ for modular function $A(\tau)$ and polynomial $P_n(X, Y)$, for all τ in complex upper half plane
- ightharpoonup Can specialise at certain values of au to give "small" generating polynomials for extensions of number fields
- Example: Klein j-function is a modular function
- Periodic with period 1, so has Fourier expansion, called a q-expansion:
- $j(au) = q^{-1} + 744 + 196884q + 21493760q^2 + \cdots$, where $q = exp(2\pi i au)$

Modular equation example

▶ For
$$n = 2$$
: $P_2(j(\tau), j(2\tau)) = 0$ for

$$P_2(X, Y) = X^3 - X^2Y2 + 1488X^2Y^2 - 162000X^2 + 1488XY^2$$

$$40773374XY + 8748000000X + Y^2 - 162000Y^2 + 8748000000Y - 1574640000000000.$$

Dedekind eta function

•
$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).$$

Dedekind eta function

- $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 q^n).$
- ▶ Not a modular function, but quotients of them are

Dedekind eta function

- $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 q^n).$
- ▶ Not a modular function, but quotients of them are
- ► Enter the Weber functions:

$$\begin{split} \mathfrak{f}(\tau) &= \frac{\eta^2(\tau)}{\eta(\tau/2)\eta(2\tau)}, \\ \mathfrak{f}_1(\tau) &= \frac{\eta(\tau/2)}{\eta(\tau)}, \\ \mathfrak{f}_2(\tau) &= \frac{\sqrt{2}\eta(2\tau)}{\eta(\tau)}. \end{split}$$

Modular equations for Weber functions

▶ Classically modular equations are computed for primes n > 2

Modular equations for Weber functions

- Classically modular equations are computed for primes n > 2
- ▶ For example, for n = 13 we have $\Phi_{13}(\mathfrak{f}(\tau), \mathfrak{f}(13\tau)) = 0$ where

$$\Phi_{13}(X,Y) = X^{14} - X^{13}Y^{13} + 13X^{12}Y^2 + 52X^{10}Y^4 + 78X^8Y^6 + 78X^6Y^8 + 52X^4Y^{10} + 13X^2Y^{12} + 64XY + Y^{14}.$$

Even degree modular equations

► Classically the theory depends on the "degree" *n* being coprime to 2

Even degree modular equations

- ► Classically the theory depends on the "degree" *n* being coprime to 2
- Modular equations of every degree exist, they are just hard to find

Even degree modular equations

- ► Classically the theory depends on the "degree" *n* being coprime to 2
- Modular equations of every degree exist, they are just hard to find
- ▶ We would like to find modular equations of even degree *n*

n=2

► Naive strategy:

 $\overline{n} = 2$

- Naive strategy:
- ▶ compute $A = f_1(\tau)$ and $B = f_1(2\tau)$ for a random τ in the upper half plane

n=2

- Naive strategy:
- ▶ compute $A = f_1(\tau)$ and $B = f_1(2\tau)$ for a random τ in the upper half plane
- ▶ Find \mathbb{Z} -linear combination of terms A^iB^j equal to zero

► The function modeta in Nemo/Arb computes the eta function in the upper half plane

- ► The function modeta in Nemo/Arb computes the eta function in the upper half plane
- We add Weber functions to Nemo, e.g.

```
function f1(x::acb)
  return divexact(modeta(x/2), modeta(x))
end
```

- ► The function modeta in Nemo/Arb computes the eta function in the upper half plane
- ▶ We add Weber functions to Nemo, e.g.

```
function f1(x::acb)
  return divexact(modeta(x/2), modeta(x))
end
```

▶ We can find small linear combinations of terms $x_{i,j} = \mathfrak{f}_1(\tau)^i \mathfrak{f}_1(2\tau)^j$ using LLL

- ► The function modeta in Nemo/Arb computes the eta function in the upper half plane
- ▶ We add Weber functions to Nemo, e.g.

```
function f1(x::acb)
  return divexact(modeta(x/2), modeta(x))
end
```

- We can find small linear combinations of terms $x_{i,j} = \mathfrak{f}_1(\tau)^i \mathfrak{f}_1(2\tau)^j$ using LLL
- ▶ We III reduce the matrix

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 & \mathcal{R}(x_{0,0}) & \mathcal{I}(x_{0,0}) \\ 0 & 1 & 0 & \dots & 0 & \mathcal{R}(x_{0,1}) & \mathcal{I}(x_{0,1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & \mathcal{R}(x_{m,n}) & \mathcal{I}(x_{m,n}) \end{pmatrix}$$

LLL reduction

```
function lindep(V::Array{acb}, bits::Int)
    n = length(V)
    W = [ldexp(s, bits) for s in V]
    M = zero_matrix(ZZ, n, n + 2)
    for i = 1:n
        M[i, i] = ZZ(1)
        M[i, n + 1] = unique_integer(floor(real(W[i]) + 0.5))
        M[i, n + 2] = unique_integer(floor(imag(W[i]) + 0.5))
    end
    L = III(M)
    return [L[1, i] for i = 1:n]
end
```

► Fails miserably: simply too many terms

- ► Fails miserably: simply too many terms
- ▶ Works if we take $(A^8)^i(B^8)^j$ instead

- Fails miserably: simply too many terms
- ▶ Works if we take $(A^8)^i(B^8)^j$ instead

Þ

$$\Phi_2(X,Y) = X^2Y + 16X - Y^2$$

Computing modular equations

```
CC = ComplexField(128)
tau = CC(rand(), abs(rand()))
A = modweber_f1(tau)^8; B = modweber_f1(2*tau)^8

vals = [A^i*B^j for i in 0:2 for j in 0:2];
C = lindep(vals, 100)

R, (x, y) = PolynomialRing(ZZ, ["x", "y"])
Phi = sum([C[3*i+j+1]*x^i*y^j for i in 0:2 for j in 0:2])
```

▶ Same polynomial $\Phi_2(X, Y)$ relates $\mathfrak{f}_1(\tau)^8$ and $\mathfrak{f}_1(2\tau)^8$ as relates $\mathfrak{f}_1(2\tau)^8$ and $\mathfrak{f}_1(4\tau)^8$.

- ▶ Same polynomial $\Phi_2(X, Y)$ relates $\mathfrak{f}_1(\tau)^8$ and $\mathfrak{f}_1(2\tau)^8$ as relates $\mathfrak{f}_1(2\tau)^8$ and $\mathfrak{f}_1(4\tau)^8$.
- ► Take the resultant of $yz^2 + 16z y^2$ and $zx^2 + 16x z^2$ and eliminate z:

- ► Same polynomial $\Phi_2(X, Y)$ relates $\mathfrak{f}_1(\tau)^8$ and $\mathfrak{f}_1(2\tau)^8$ as relates $\mathfrak{f}_1(2\tau)^8$ and $\mathfrak{f}_1(4\tau)^8$.
- ► Take the resultant of $yz^2 + 16z y^2$ and $zx^2 + 16x z^2$ and eliminate z:
- $\Phi_4(X,Y) = Y^4 X^4Y^3 32XY^3 + 240X^2Y^2 256X^3Y 4096X$

- ► Same polynomial $\Phi_2(X, Y)$ relates $\mathfrak{f}_1(\tau)^8$ and $\mathfrak{f}_1(2\tau)^8$ as relates $\mathfrak{f}_1(2\tau)^8$ and $\mathfrak{f}_1(4\tau)^8$.
- ► Take the resultant of $yz^2 + 16z y^2$ and $zx^2 + 16x z^2$ and eliminate z:
- $\Phi_4(X,Y) = Y^4 X^4Y^3 32XY^3 + 240X^2Y^2 256X^3Y 4096X$
- ▶ Is there a relation between lower powers of $\mathfrak{f}_1(\tau)$ and $\mathfrak{f}_1(4\tau)$?

- ► Same polynomial $\Phi_2(X, Y)$ relates $\mathfrak{f}_1(\tau)^8$ and $\mathfrak{f}_1(2\tau)^8$ as relates $\mathfrak{f}_1(2\tau)^8$ and $\mathfrak{f}_1(4\tau)^8$.
- ► Take the resultant of $yz^2 + 16z y^2$ and $zx^2 + 16x z^2$ and eliminate z:
- $\Phi_4(X,Y) = Y^4 X^4Y^3 32XY^3 + 240X^2Y^2 256X^3Y 4096X$
- ▶ Is there a relation between lower powers of $f_1(\tau)$ and $f_1(4\tau)$?
- ► Can proceed in the same way for degree 2*n*, but the equations are enormous!

 Another method is via Weber modular equations and some identities

- Another method is via Weber modular equations and some identities
- ▶ For example, for n = 3 Weber has:

$$f(\tau)^2 f(3\tau)^2 = f_2(\tau)^2 f_2(3\tau)^2 + f_1(\tau)^2 f_1(3\tau)^2$$

- Another method is via Weber modular equations and some identities
- ▶ For example, for n = 3 Weber has:

$$\mathfrak{f}(\tau)^2 \mathfrak{f}(3\tau)^2 = \mathfrak{f}_2(\tau)^2 \mathfrak{f}_2(3\tau)^2 + \mathfrak{f}_1(\tau)^2 \mathfrak{f}_1(3\tau)^2$$

Can use the identities

$$\mathfrak{f}(\tau)^2\mathfrak{f}_1(\tau)^2\mathfrak{f}_2(\tau)^2=2$$

and

$$\mathfrak{f}_2(\tau)^2 = 2/\mathfrak{f}_1(2\tau)^2$$

to yield:

- Another method is via Weber modular equations and some identities
- ▶ For example, for n = 3 Weber has:

$$\mathfrak{f}(\tau)^2 \mathfrak{f}(3\tau)^2 = \mathfrak{f}_2(\tau)^2 \mathfrak{f}_2(3\tau)^2 + \mathfrak{f}_1(\tau)^2 \mathfrak{f}_1(3\tau)^2$$

Can use the identities

$$\mathfrak{f}(\tau)^2\mathfrak{f}_1(\tau)^2\mathfrak{f}_2(\tau)^2=2$$

and

$$\mathfrak{f}_2(\tau)^2 = 2/\mathfrak{f}_1(2\tau)^2$$

to yield:

$$\frac{\mathfrak{f}_1(2\tau)^2\mathfrak{f}_1(6\tau)^2}{\mathfrak{f}_1(\tau)^2\mathfrak{f}_1(3\tau)^2} = \frac{4}{\mathfrak{f}_1(2\tau)^2\mathfrak{f}_1(6\tau)^2} + \mathfrak{f}_1(\tau)^2\mathfrak{f}_1(3\tau)^2.$$

► Can use a similar method to generate modular equations for degree 2n for all odd n

- Can use a similar method to generate modular equations for degree 2n for all odd n
- Can even generate a modular equation of degree 4:

- Can use a similar method to generate modular equations for degree 2n for all odd n
- Can even generate a modular equation of degree 4:

$$\mathfrak{f}_1(\tau)^8\mathfrak{f}_1(2\tau)^2\mathfrak{f}_1(4\tau)^4 + 8\mathfrak{f}_1(\tau)^4 - \mathfrak{f}_1(2\tau)^6\mathfrak{f}_1(4\tau)^4 = 0.$$

- Can use a similar method to generate modular equations for degree 2n for all odd n
- ► Can even generate a modular equation of degree 4:

$$\mathfrak{f}_1(\tau)^8\mathfrak{f}_1(2\tau)^2\mathfrak{f}_1(4\tau)^4+8\mathfrak{f}_1(\tau)^4-\mathfrak{f}_1(2\tau)^6\mathfrak{f}_1(4\tau)^4=0.$$

Which can be rewritten:

$$\frac{\mathfrak{f}_{1}(\tau)^{4}}{\mathfrak{f}_{1}(2\tau)^{2}} + \frac{8}{\mathfrak{f}_{1}(2\tau)^{4}\mathfrak{f}_{1}(4\tau)^{4}} = \frac{\mathfrak{f}_{1}(2\tau)^{2}}{\mathfrak{f}_{1}(\tau)^{4}}.$$

▶ Next logical case is degree 12 modular equation

- ▶ Next logical case is degree 12 modular equation
- Let's define:

$$B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(6\tau)^2}, \ A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(12\tau)^2}.$$

- Next logical case is degree 12 modular equation
- Let's define:

$$B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(6\tau)^2}, \ A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(12\tau)^2}.$$

No luck with existing methods

- ▶ Next logical case is degree 12 modular equation
- Let's define:

$$B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(6\tau)^2}, \ A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(12\tau)^2}.$$

- No luck with existing methods
- Idea: try to find modular equations between A, B² or A, B⁴ or A², B or A⁴, B or A², B², etc.

- Next logical case is degree 12 modular equation
- Let's define:

$$B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(6\tau)^2}, \ A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(12\tau)^2}.$$

- No luck with existing methods
- Idea: try to find modular equations between A, B² or A, B⁴ or A², B or A⁴, B or A², B², etc.
- ▶ We get the modular equation

$$B^{12} + 14B^6 + 8B^3 + 1 = B^9 \left(\frac{B^2}{A^4} + 16 \frac{A^4}{B^2} \right).$$

- Next logical case is degree 12 modular equation
- Let's define:

$$B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(6\tau)^2}, \ A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(12\tau)^2}.$$

- No luck with existing methods
- Idea: try to find modular equations between A, B² or A, B⁴ or A², B or A⁴, B or A², B², etc.
- ▶ We get the modular equation

$$B^{12} + 14B^6 + 8B^3 + 1 = B^9 \left(\frac{B^2}{A^4} + 16 \frac{A^4}{B^2} \right).$$

▶ Now there's enough data to guess at a general pattern.

General pattern for degree 4n

Define

$$A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(4n\tau)^2}, \quad B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(2n\tau)^2}.$$

General pattern for degree 4n

Define

$$A = \frac{\mathfrak{f}_1(\tau)^2}{\mathfrak{f}_1(4n\tau)^2}, \quad B = \frac{\mathfrak{f}_1(2\tau)^2}{\mathfrak{f}_1(2n\tau)^2}.$$

 \triangleright Search for linear combinations of A^kB^l where

$$(8n-2)k + (4n-4)l \equiv m \pmod{24}$$
,

for fixed m.

Degree 20 modular equation

▶ For degree 20, n = 5

Degree 20 modular equation

- ▶ For degree 20, n = 5
- ▶ Look for combinations $A^k B^l$ where

$$38k + 16l \equiv m \pmod{24}$$
, for fixed m

Degree 20 modular equation

- For degree 20, n = 5
- ▶ Look for combinations $A^k B^l$ where

$$38k + 16l \equiv m \pmod{24}$$
, for fixed m

The smallest equation we find is

$$B^{18} + 2B^{15} + 255B^{12} - 580B^{9} + 255B^{6} - 30B^{3} + 1 =$$

$$256A^{8}B^{11} - 256A^{4}B^{7} - 16\frac{B^{11}}{A^{4}} + \frac{B^{19}}{A^{8}}$$

```
CC = ComplexField(1000)
tau = CC(rand(), abs(rand()))
A = modweber f1(tau)^2/modweber f1(20*tau)^2
B = modweber f1(2*tau)^2/modweber f1(10*tau)^2
pairs = [p for p in ]
   Iterators filter (x-) mod(38*x[1]+16*x[2], 24) == 0,
       (k, l) for k in 0:24 for l in 0:24)]
vals = [A^k * B^l \text{ for } (k, l) \text{ in pairs }];
C = lindep(vals, 400)
Phi = sum(C[i]*x^pairs[i][1]*y^pairs[i][2]
    for i in 1:length(pairs))
```

lacktriangle Check identities for many random au

- lacktriangle Check identities for many random au
- Can check q-series identities

- ightharpoonup Check identities for many random au
- Can check q-series identities
- Need Puiseux series

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).$$

- ightharpoonup Check identities for many random au
- Can check q-series identities
- Need Puiseux series

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).$$

Nemo has Laurent series

- lacktriangle Check identities for many random au
- Can check q-series identities
- Need Puiseux series

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).$$

- Nemo has Laurent series
- Could just scale all exponents by factor of 24

- lacktriangle Check identities for many random au
- Can check q-series identities
- Need Puiseux series

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).$$

- Nemo has Laurent series
- Could just scale all exponents by factor of 24
- Chose to implement simple generic Puiseux series

The Puiseux series types

```
mutable struct PuiseuxSeriesRing{T <: RingElement} <: Ring
   laurent ring::Ring
end
mutable struct PuiseuxSeries{T <: RingElement} <: RingElem
   data::LaurentSeries{T}
   scale::Rational{Int}
   parent:: PuiseuxSeriesRing{T}
   function PuiseuxSeries{T}(d::LaurentSeries{T},
          scale::Rational{Int}) where T <: RingElement
      new{T}(d, scale)
  end
end
```

Must implement the AbstractAlgebra.jl Ring interface

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ► Constructors, e.g. R(), R(123)

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ▶ Constructors, e.g. R(), R(123)
- zero, one, iszero, isone

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ▶ Constructors, e.g. R(), R(123)
- zero, one, iszero, isone
- canonical_unit

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ► Constructors, e.g. R(), R(123)
- zero, one, iszero, isone
- canonical_unit
- show (for printing) + helpers

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ▶ Constructors, e.g. R(), R(123)
- zero, one, iszero, isone
- canonical_unit
- show (for printing) + helpers
- arithmetic operations, comparison operators

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ► Constructors, e.g. R(), R(123)
- zero, one, iszero, isone
- canonical_unit
- show (for printing) + helpers
- arithmetic operations, comparison operators
- powering, (exact) quotient

- Must implement the AbstractAlgebra.jl Ring interface
- parent_type, elem_type, base_ring, parent
- isdomain_type, isexact_type
- hash, deepcopy
- ► Constructors, e.g. R(), R(123)
- zero, one, iszero, isone
- canonical_unit
- show (for printing) + helpers
- arithmetic operations, comparison operators
- powering, (exact) quotient
- in-place operators

Verifying the *q*-series identities

```
R, q = PuiseuxSeriesRing(ZZ, 1000, "q")  \begin{aligned} &\text{eta\_qexp}(q) = \text{prod}(1 - \text{q^n for n} = 1:50)*\text{q^(1//24)} \\ &\text{f1}(q) = \text{divexact}(\text{eta\_qexp}(\text{q^(1//2)}), \text{ eta\_qexp}(q)) \end{aligned}   A = \text{divexact}(\text{f1}(\text{q})^2, \text{f1}(\text{q^12})^2) \\ B = \text{divexact}(\text{f1}(\text{q^2})^2, \text{f1}(\text{q^6})^2)   A^8*(B^18 + 2B^15 + 255B^12 - 580B^9 + 255B^6 - 30B^3 + 1 - 256A^8*B^11 + 256A^4*B^7) \\ &+ 16A^4*B^11 - B^19 = 0
```

Improvements

Scale Laurent series according to gaps between nonzero terms

Improvements

- Scale Laurent series according to gaps between nonzero terms
- Puiseux series store only denominator of exponents

Improvements

- Scale Laurent series according to gaps between nonzero terms
- Puiseux series store only denominator of exponents
- lacktriangle Use Flint's fast polynomial arithmetic for Laurent series over $\mathbb Z$

Improvements'

- Scale Laurent series according to gaps between nonzero terms
- Puiseux series store only denominator of exponents
- Use Flint's fast polynomial arithmetic for Laurent series over Z
- ► Faster eta function *q*-series

Thank You

http://nemocas.org/