Machine Learning & Data Mining @ NulEEE

Tree Based Methods and Random Forests

Miguel Sandim & Paula Fortuna

0 - Intro

	Attributes					Class or DV	
	crim ‡	zn ‡	indus ‡	chas ‡	nox [‡]	medv [‡]	
1	0.00632	18.0	2.31	0	0.538	24.0	
2	0.02731	0.0	7.07	0	0.469	21.6	
3	0.02729	0.0	7.07	0	0.469	34.7	
4	0.03237	0.0	2.18	0	0.458	33.4	
5	0.06905	0.0	2.18	0	0.458	36.2	
6	0.02985	0.0	2.18	0	0.458	28.7	
7	0.08829	12.5	7.87	0	0.524	22.9	
8	0.14455	12.5	7.87	0	0.524	27.1	
9	0.21124	12.5	7.87	0	0.524	16.5	Instanc

0 - Intro

What is?

- Root
- Internal nodes
- External nodes leafs

Regression Trees

- We divide the predictor space that is, the set of possible values for X1, X2, ..., Xp - into J distinct and nonoverlapping regions, R1, R2, ..., RJ.
- For every observation that falls into the region Rj, we make the same prediction, which is simply the **mean** of the response values for the training observations in Rj.

Regression Trees

How to divide?

Regression Trees

- Goal Minimize RSS = $\sum_{i}^{J} \sum_{j} (y_i \hat{y}_{R_j})^2$ j = 1 $i \in R_j$ mean response within the jth box

np problem -> we use a top-down **greedy** approach instead

total number of boxes

In each iteration for each attribute we see what is the best cut point where:

$$R_1(j,s) = \{X | X_j < s\}$$
 and $R_2(j,s) = \{X | X_j \ge s\}$

minimize:
$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Regression Trees

- How do we know we have reached a leaf?
 - We can limit the number of instances in each leaf to a minimum (e. g. 5)

Regression Trees

From chart to decision rules to trees

• Years is the most important predictor.

Problems

- The process of making the tree is likely to overfit the data
 - because the resulting tree might be too complex, the solution is...
- Pruning
 - Cost complexity pruning use a parameter Q
 - ∘ For each value of α there corresponds a subtree T \subset T0 such that:

$$\sum_{m=1}^{|T|} \sum_{i: \ x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$
 number of leafs of tree T

- \circ When α = 0, then the subtree T will simply be equal to T0.
- \circ However, as α increases, there is a price to pay for having a tree with many leafs.

Pruning

Algorithm

- Build the tree (stop when have a minimum number of instances in leafs).
- Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- Use K-folds to decide the best α, based on MSE.
- Return the tree that corresponds to the chosen value of α .

Pruning

Classification Trees

- Similar to regression trees.
- Qualitative dependent variables:
 - Instead of the mean, we use the most commonly occurring class of training in the region to which it belongs.
 - Also interested in the class **proportions** among the leaf.

Classification Trees

- How to evaluate the model?
 - Error Rate

$$E = 1 - \max_{k} (\hat{p}_{mk})$$

Gini Impurity

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Cross entropy

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

Classification Trees

 $-2\sum_{m}\sum_{k}n_{mk}\log\hat{p}_{mk}$

deviance (reported in summary)

Residual mean deviance

$$-2\sum_{m}\sum_{k}n_{mk}\log\hat{p}_{mk}$$

 $n-|T_0|$

VS. Linear Regression Models

- It depends.
- If the relationship is linear an approach such as linear regression will outperform a method such as a regression tree.
- If instead there is a highly non-linear and complex relationship, then decision trees may outperform classical approaches.

Advantages

- Easy to understand.
- Explained graphically.
- Can handle qualitative predictors.

Disadvantages

- Do not have the same level of predictive accuracy.
- Non-robusts. Small changes in data can cause changes in the model. !!!!!

Methods to improve predictive performance

Bagging

- Bootstrap, aggregation, or bagging, is a general-purpose procedure.
- Take many training sets from the population, build a separate prediction model using each training set, and average the resulting predictions.
- Reduces variance by averaging a set of observations.
- o Particularly useful and frequently used in the context of decision trees.

Random forests

 Random forests provide an improvement over bagged trees by way of a random small tweak that decorrelates the trees.

Boosting

 Boosting works in a similar way, except that the trees are grown sequentially: each tree is grown using information from previously grown trees.

Random forests

Decision Tree

Some Algorithms

MIEIC

- C4.5 (J48 in Weka)
- COBWEB

Others

REPtrees

Final session topics

- Data preprocessing (e. g. missing values, outliers)
- How to choose a family of algorithms?
- How to evaluate if an algorithm is working
- Overfitting & underfitting
- Validation Methods K-folds