What is graph?

- A Graph in the data structure can be termed as a data structure consisting of data that is stored among many groups of edges (paths) and vertices (nodes), Which are interconnected.
- Graph data structure (V, E) is structured with a collection of Nodes and Edges.

Example:

V = Vertices = { A, B, C}

E = Edges = { AB, BC, AC} = { BA, CB, CA} Graph, $G \equiv (V, E)$

Different types of Graph

Undirected

Weighted

Unweighted

Bipartite graph

complete oipartite graph

Scanned with CamScanner

Degree of a vertex:

Degree of Vertex $A \equiv 3$ Degree of Vertex $B \equiv 2$ Degree of Vertex $C \equiv 2$ Degree of Vertex $D \equiv 3$

Total degree = 10 = 2 * 5

= 2 * Total Number of edges

A vertex with degree 1 is called an end vertex

Degree-sum formula

If we add up the degree of all the vertices in a (finite) graph, the result is twice the number of the edges in the graph

Finite graph:

Vertex and edge are finite sets.

Infinite graph

Infinite number of vertices and edges

Vertex = A, B, C, D= 4

Edges = AB, AC, CD,

Scanned with CamScanner

A graph representation is a technique to store graph into the

memory of computer.

Two ways

- Adjacency matrix

- Adjacency list

Adjacency Matrix:

	0	1	2	3	4	
0	0	1	1	1	0	
1	0	0	0	1	1	
2-	0	0	0	1	0	1
3	0	0	0	0	1	
4	0	0	0	0	0	1

Adjacency list:

Adjacency structure or neighborhood relationship or graph representation

Graph Traversal Algorithms

- Breadth First Search (BFS)
- Depth First search (DFS)

Example:

Procedure DFS (G, start)

stack = start

Visited + Empty

while stack + Empty

U = stack

if v is not visited

Display U

Visited (v

for all non-visited adjacents u of u

Stack ← U

end for

end if

end while

return Visited

> End Procedure

stack . Visited A) < start

v ← stack	Display	v Visited	Non-visited Adjacents stack & U	ing
V='A'	A	AIII		
v='c'	, c	AC	U = { A, D, E} Stack BD E	
V='E'	E	ACE] u={x, D, F} stack BDBP	

u = { # }

u= {o,d, y} stack BBB

ACEFDB u={d,x} \times

X X Topological Ordering:

L - Empty list that will contain the sorted elements Site Set of all nodes that with no incoming edge while Set is not empty do

remove a node m from set add n to L

for each node n with an edge e from m to n do remove edge e from the graph if n has no other incoming edges then insert n into Set

endif

end for

end while

if graph has edges then return error (graph has at least one cycle)

return L (a topologically sorted error) ese

Example:

