J.VANI SUMEDHA - 23MSD7018

PROJECT TITLE: LSTM WITH WEATHER FORECASTING DATA

Report of the project explained below

TASK-1:DATA PROCESSING

Step-1:Loading the Data

import pandas as pd

df=pd.read_csv("/content/Weather Data.csv")
df

_										
→	Date/Time	Temp_C	Dew Point Temp_C	Rel Hum_%	Wind Speed_km/h	Visibility_km	Press_kPa	Weather		
0	1/1/2012 0:00	-1.8	-3.9	86	4	8.0	101.24	Fog		
1	1/1/2012 1:00	-1.8	-3.7	87	4	8.0	101.24	Fog		
2	1/1/2012 2:00	-1.8	-3.4	89	7	4.0	101.26	Freezing Drizzle,Fog		
3	1/1/2012 3:00	-1.5	-3.2	88	6	4.0	101.27	Freezing Drizzle,Fog		
4	1/1/2012 4:00	-1.5	-3.3	88	7	4.8	101.23	Fog		
8779	12/31/2012 19:00	0.1	-2.7	81	30	9.7	100.13	Snow		
8780	12/31/2012 20:00	0.2	-2.4	83	24	9.7	100.03	Snow		
8781	12/31/2012 21:00	-0.5	-1.5	93	28	4.8	99.95	Snow		
8782	12/31/2012 22:00	-0.2	-1.8	89	28	9.7	99.91	Snow		
8783	12/31/2012 23:00	0.0	-2.1	86	30	11.3	99.89	Snow		
8784 rd	8784 rows × 8 columns									

Step-2:Understanding the Data

df.shape

→ (8784, 8)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 8784 entries, 0 to 8783 Data columns (total 8 columns): # Column Non-Null Count Dtype -----8784 non-null 8784 non-null 0 Date/Time object Temp_C 2 Dew Point Temp_C 8784 non-null 3 Rel Hum_% 8784 non-null int64 Wind Speed_km/h 8784 non-null int64 5 Visibility_km 8784 non-null float64 Press_kPa 8784 non-null float64 Weather 8784 non-null object dtypes: float64(4), int64(2), object(2)

memory usage: 549.1+ KB

df.describe()

df.isnull().sum()

df.columns

Step-3:Normalizing the data

colrmd=df.drop(['Date/Time','Weather'],axis=1)

colrmd

	Temp_C	Dew Point Temp_C	Rel Hum_%	Wind Speed_km/h	Visibility_km	Press_kPa
0	-1.8	-3.9	86	4	8.0	101.24
1	-1.8	-3.7	87	4	8.0	101.24
2	-1.8	-3.4	89	7	4.0	101.26
3	-1.5	-3.2	88	6	4.0	101.27
4	-1.5	-3.3	88	7	4.8	101.23
8779	0.1	-2.7	81	30	9.7	100.13
8780	0.2	-2.4	83	24	9.7	100.03
8781	-0.5	-1.5	93	28	4.8	99.95
8782	-0.2	-1.8	89	28	9.7	99.91
8783	0.0	-2.1	86	30	11.3	99.89
8784 rd	ows × 6 co	olumns				

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
norm_data=scaler.fit_transform(colrmd)
norm_df=pd.DataFrame(norm_data,columns=colrmd.columns)
```

norm_df

→ ▼		Temp_C	Dew Point Temp_C	Rel Hum_%	Wind Speed_km/h	Visibility_km	Press_kPa
	0	0.381883	0.465028	0.829268	0.048193	0.162162	0.606852
	1	0.381883	0.468809	0.841463	0.048193	0.162162	0.606852
	2	0.381883	0.474480	0.865854	0.084337	0.079002	0.610114
	3	0.387211	0.478261	0.853659	0.072289	0.079002	0.611746
	4	0.387211	0.476371	0.853659	0.084337	0.095634	0.605220
	8779	0.415631	0.487713	0.768293	0.361446	0.197505	0.425775
	8780	0.417407	0.493384	0.792683	0.289157	0.197505	0.409462
	8781	0.404973	0.510397	0.914634	0.337349	0.095634	0.396411
	8782	0.410302	0.504726	0.865854	0.337349	0.197505	0.389886
	8783	0.413854	0.499055	0.829268	0.361446	0.230769	0.386623
	8784 rc	ws × 6 colu	mns				

```
df['Date/Time'] = pd.to_datetime(df['Date/Time'])
df['date']=df['Date/Time'].dt.date
df['time']=df['Date/Time'].dt.time
df['month']=df['Date/Time'].dt.month

df=df.drop(['Date/Time'],axis=1)

date_time_df = df[['date','time','month','Weather']]
final_df = pd.concat([date_time_df, norm_df], axis=1)
final_df
```

	4.4.	****		Maathan	T C	Davi Daint Tama C	D-1 11 9/	Hånd Coasad lou/b	1/2 - 2 h 2 1 2 ±	Dunne IrDa
	date	тіте	month	Weather	Temp_C	Dew Point Temp_C	Kel Hum_%	wina Speea_km/n	VISIDILITY_KM	Press_KPa
0	2012-01-01	00:00:00	1	Fog	0.381883	0.465028	0.829268	0.048193	0.162162	0.606852
1	2012-01-01	01:00:00	1	Fog	0.381883	0.468809	0.841463	0.048193	0.162162	0.606852
2	2012-01-01	02:00:00	1	Freezing Drizzle,Fog	0.381883	0.474480	0.865854	0.084337	0.079002	0.610114
3	2012-01-01	03:00:00	1	Freezing Drizzle,Fog	0.387211	0.478261	0.853659	0.072289	0.079002	0.611746
4	2012-01-01	04:00:00	1	Fog	0.387211	0.476371	0.853659	0.084337	0.095634	0.605220
877	2012-12-31	19:00:00	12	Snow	0.415631	0.487713	0.768293	0.361446	0.197505	0.425775
878	2012-12-31	20:00:00	12	Snow	0.417407	0.493384	0.792683	0.289157	0.197505	0.409462
878	2012-12-31	21:00:00	12	Snow	0.404973	0.510397	0.914634	0.337349	0.095634	0.396411
878	2 2012-12-31	22:00:00	12	Snow	0.410302	0.504726	0.865854	0.337349	0.197505	0.389886
878	3 2012-12-31	23:00:00	12	Snow	0.413854	0.499055	0.829268	0.361446	0.230769	0.386623
8784	rows × 10 colu	mns								
4										

Step-4:Feature Engineering

```
11/10/24, 5:02 PM
                                                                                      DL PROJECT ASSIGNMENT.ipynb - Colab
                     'Freezing Rain, Snow Grains', 'Snow, Blowing Snow', 'Freezing Fog',
                     'Haze', 'Rain, Fog', 'Drizzle, Fog', 'Drizzle',
                     'Freezing Drizzle, Haze', 'Freezing Rain, Haze', 'Snow, Haze', 'Snow, Fog', 'Snow, Ice Pellets', 'Rain, Haze', 'Thunderstorms, Rain Showers', 'Thunderstorms, Heavy Rain Showers',
                     'Thunderstorms, Rain Showers, Fog', 'Thunderstorms',
                     'Thunderstorms, Rain, Fog',
                     'Thunderstorms, Moderate Rain Showers, Fog', 'Rain Showers, Fog',
                     'Rain Showers, Snow Showers', 'Snow Pellets', 'Rain, Snow, Fog',
                     'Moderate Rain, Fog', 'Freezing Rain, Ice Pellets, Fog',
                     'Drizzle,Ice Pellets,Fog', 'Drizzle,Snow', 'Rain,Ice Pellets', 'Drizzle,Snow,Fog', 'Rain,Snow Grains', 'Rain,Snow,Ice Pellets', 'Snow Showers,Fog', 'Moderate Snow,Blowing Snow'], dtype=object)
     from sklearn.preprocessing import LabelEncoder
     le = LabelEncoder()
     wtr_encoded=le.fit_transform(final_df['Weather'])
     wtr_encoded_df=pd.DataFrame(wtr_encoded,columns=['Weather'])
     wtr encoded df
      \overline{2}
                    Weather
               0
                            7
               1
               2
                            9
               3
                            9
                            7
               4
             8779
                           35
             8780
                           35
             8781
                           35
             8782
                           35
             8783
                           35
            8784 rows × 1 columns
     final_df = final_df.drop('Weather', axis=1)
     final_df=pd.concat([final_df,wtr_encoded_df],axis=1)
     final_df
      \overline{\Sigma}
```

} →	date	time	month	Temp_C	Dew Point Temp_C	Rel Hum_%	Wind Speed_km/h	Visibility_km	Press_kPa	Weather
0	2012-01-01	00:00:00	1	0.381883	0.465028	0.829268	0.048193	0.162162	0.606852	7
1	2012-01-01	01:00:00	1	0.381883	0.468809	0.841463	0.048193	0.162162	0.606852	7
2	2012-01-01	02:00:00	1	0.381883	0.474480	0.865854	0.084337	0.079002	0.610114	9
3	2012-01-01	03:00:00	1	0.387211	0.478261	0.853659	0.072289	0.079002	0.611746	9
4	2012-01-01	04:00:00	1	0.387211	0.476371	0.853659	0.084337	0.095634	0.605220	7
									•••	
8779	2012-12-31	19:00:00	12	0.415631	0.487713	0.768293	0.361446	0.197505	0.425775	35
8780	2012-12-31	20:00:00	12	0.417407	0.493384	0.792683	0.289157	0.197505	0.409462	35
8781	2012-12-31	21:00:00	12	0.404973	0.510397	0.914634	0.337349	0.095634	0.396411	35
8782	2012-12-31	22:00:00	12	0.410302	0.504726	0.865854	0.337349	0.197505	0.389886	35
8783	2012-12-31	23:00:00	12	0.413854	0.499055	0.829268	0.361446	0.230769	0.386623	35
8784 rc	ows × 10 colur	mns								

Y TASK-2:EXPLORATORY DATA ANALYSIS

```
import matplotlib.pyplot as plt
import seaborn as sns

df['Temp_C'].hist(bins=30)
plt.title('Temperature Distribution')
plt.xlabel('Temperature (°C)')
plt.ylabel('Frequency')
plt.show()
```


sns.heatmap(norm_df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()

#need to learn all the variables.

```
plt.scatter(df['Temp_C'], df['Dew Point Temp_C'])
plt.title('Temperature vs Dew Point')
plt.xlabel('Temperature (°C)')
plt.ylabel('Dew Point (°C)')
```

plt.show()

TASK-3:MODEL BUILDING

```
from sklearn.preprocessing import MinMaxScaler
# Select relevant columns for modeling
features = final_df[['Temp_C', 'Dew Point Temp_C', 'Rel Hum_%', 'Wind Speed_km/h',
                 'Visibility_km', 'Press_kPa']]
target = final_df['Temp_C'] # Predict future temperature
\mbox{\# Scale} the features and target between 0 and 1
scaler = MinMaxScaler(feature_range=(0, 1))
features_scaled = scaler.fit_transform(features)
target_scaled = scaler.fit_transform(target.values.reshape(-1, 1))
import numpy as np
def create_sequences(data, target, time_steps=30):
    X, y = [], []
    for i in range(len(data) - time_steps):
       X.append(data[i:i + time_steps])
        y.append(target[i + time_steps])
    return np.array(X), np.array(y)
```

Step-1:Train-Test Splitting

Step-2:Model implementation

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# Define the LSTM model
model = Sequential()
model.add(LSTM(64, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dropout(0.2))
model.add(LSTM(64, return sequences=False))
model.add(Dropout(0.2))
model.add(Dense(1)) # Output layer to predict temperature
🚁 /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument
       super().__init__(**kwargs)
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
# Summary of the model
model.summary()
→ Model: "sequential_1"
       Layer (type)
                                               Output Shape
                                                                                      Param #
                                               (None, 30, 64)
       1stm_2 (LSTM)
                                                                                       18,176
       dropout_2 (Dropout)
                                               (None, 30, 64)
                                                                                            0
       1stm_3 (LSTM)
                                               (None, 64)
                                                                                       33,024
       dropout_3 (Dropout)
                                               (None, 64)
                                                                                            0
       dense_1 (Dense)
                                               (None, 1)
                                                                                           65
      Total params: 51,265 (200.25 KB)
      Trainable params: 51,265 (200.25 KB)
history = model.fit(X_train, y_train, epochs=10, batch_size=32,
                    validation_data=(X_test, y_test))
     Epoch 1/10
     219/219 -
                                - 10s 30ms/step - loss: 0.0253 - val_loss: 0.0024
     Enoch 2/10
     219/219 -
                                - 10s 29ms/step - loss: 0.0046 - val_loss: 0.0019
     Epoch 3/10
     219/219 -
                                 - 11s 34ms/step - loss: 0.0037 - val_loss: 0.0012
     Epoch 4/10
     219/219 -
                                 - 6s 28ms/step - loss: 0.0032 - val_loss: 0.0013
     Epoch 5/10
     219/219 -
                                 - 8s 35ms/step - loss: 0.0030 - val_loss: 0.0010
     Epoch 6/10
     219/219
                                 - 10s 34ms/step - loss: 0.0027 - val_loss: 9.2015e-04
     Epoch 7/10
     219/219 -
                                 - 6s 29ms/step - loss: 0.0024 - val_loss: 8.9483e-04
     Epoch 8/10
                                 - 12s 38ms/step - loss: 0.0023 - val_loss: 7.2724e-04
     219/219 -
     Enoch 9/10
     219/219 -
                                 - 10s 35ms/step - loss: 0.0020 - val_loss: 7.1227e-04
     Epoch 10/10
                                - 9s 29ms/step - loss: 0.0020 - val_loss: 6.8572e-04
     219/219
# Predict on the test set
y_pred = model.predict(X_test)
<del>5</del>▼ 55/55 −
                              - 2s 20ms/step
# Inverse transform the scaled predictions and actual values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test)
```

Step-3:Evaluating the model

```
from sklearn.metrics import mean_absolute_error, mean_squared_error,r2_score
mae=mean_absolute_error(y_test_inverse,y_pred_inverse)
mse=mean_squared_error(y_test_inverse,y_pred_inverse)
r2=r2_score(y_test_inverse,y_pred_inverse)
print("Mean Absolute Error:", mae)
print("Mean Squared Error:", mse)
print("R-squared:", r2)
Mean Absolute Error: 0.019757552029139272
Mean Squared Error: 0.0006857224193425398
     R-squared: 0.9576572264676144
# Plot the actual vs predicted temperatures
plt.plot(y test inverse, label='Actual Temperature')
plt.plot(y_pred_inverse, label='Predicted Temperature')
plt.legend()
plt.title('Actual vs Predicted Temperature')
plt.show()
₹
                          Actual vs Predicted Temperature
       0.8
                                                        Actual Temperature
                                                        Predicted Temperature
```


features_scaled

```
array([[0.38188277, 0.46502836, 0.82926829, 0.04819277, 0.16216216, 0.60685155], [0.38188277, 0.46880907, 0.84146341, 0.04819277, 0.16216216, 0.60685155], [0.38188277, 0.47448015, 0.86585366, 0.08433735, 0.07900208, 0.61011419], ..., [0.40497336, 0.51039698, 0.91463415, 0.3373494, 0.0956341, 0.39641109], [0.41030195, 0.5047259, 0.86585366, 0.3373494, 0.1975052, 0.38988581], [0.41385435, 0.49905482, 0.82926829, 0.36144578, 0.23076923, 0.38662316]])
```

▼ TASK-4:FORECASTING FOR THE NEXT 30 DAYS

```
# Use the last 30 days of data to predict the next 30 days
last_30_days = features_scaled[-30:]

# Reshape to fit the LSTM input format
last_30_days = last_30_days.reshape(1, 30, features_scaled.shape[1])
```

```
# Forecast the next 30 days
forecast = model.predict(last 30 days)
                        ---- 0s 23ms/step
forecast
→ array([[0.40327495]], dtype=float32)
# Inverse transform the forecasted values
forecast_inverse = scaler.inverse_transform(forecast)
print(forecast_inverse)
→ [[0.40327495]]
# Inverse transform the forecasted value
forecast_actual = scaler.inverse_transform(forecast)
print(f'Forecasted Temperature: {forecast_actual[0][0]:.2f} °C')
Forecasted Temperature: 0.40 °C
forecast_30_days = [] # Store predictions
for _ in range(30):
   # Predict the next day's temperature
   next_pred = model.predict(last_30_days) # Shape: (1, 1)
   # Inverse transform to get the actual temperature
   temp_pred_actual = scaler.inverse_transform(
        np.concatenate([next_pred, np.zeros((1, 5))], axis=1)
   )[0][0] # Get temperature only
   forecast 30 days.append(temp pred actual) # Store forecast
   # Scale the new prediction for input
    # Create a new input array for the next prediction
   temp_pred_scaled = scaler.transform([[temp_pred_actual] + [0] * 5]) # 1D array with 6 features
   # Update input data by shifting the window forward
   last_30_days = np.append(last_30_days[:, 1:, :], temp_pred_scaled[np.newaxis, :, :], axis=1)
# Print the 30-day forecast
print("30-Day Forecasted Temperatures:", forecast_30_days)
# Original forecasted values (scale as needed, here multiplying by 100)
forecasted_temps = [0.4040361, 0.41888714, 0.42003602, 0.40593693, 0.38047856,
                   0.34877962, 0.31535512, 0.28358227, 0.25568527, 0.23289368,
                   0.21565293, 0.20390755, 0.19721927, 0.19487998, 0.1960852,
                   0.19998297, 0.20564243, 0.21226214, 0.21915692, 0.22580981,
                   0.23182373, 0.23693654, 0.24099943, 0.24395283, 0.24585399,
                   0.24679923, 0.24696437, 0.24650863, 0.24560252, 0.2444095]
# Convert values to degrees (e.g., by multiplying by 100)
forecasted_temps_degrees = [temp * 100 for temp in forecasted_temps]
# Create DataFrame with column name "30-Day Forecasted Temperature"
df_forecast = pd.DataFrame(forecasted_temps_degrees, columns=['30-Day Forecasted Temperature'])
# Display DataFrame
print(df_forecast)
₹
         30-Day Forecasted Temperature
                             40,403610
                             41.888714
     1
     2
                             42.003602
                             40.593693
     3
     4
                             38.047856
                             34.877962
     6
                             31,535512
                             28.358227
     7
                             25.568527
```

9	23.289368
10	21.565293
11	20.390755
12	19.721927
13	19.487998
14	19.608520
15	19.998297
16	20.564243
17	21.226214
18	21.915692
19	22.580981
20	23.182373
21	23.693654
22	24.099943
23	24.395283
24	24.585399
25	24.679923
26	24.696437
27	24.650863
28	24.560252
29	24.440950

Start coding or generate with AI.

REPORT OF THE PROJECT

Let's understand each of the tasks and steps implemented....

TASK-1:DATA PROCESSING

- 1. We have imported the dataset from Kaggle website that has one year data from Jan to Dec 2012.
- 2. The dataset has around 8000 rows and 8 columns.
- The columns are Date/Time,Temp_C,Dew Point Temp_C,Rel Hum_%,Wind Speed_km/h, Visibility_km,Press_kPa,Weather.
- The 'Weather'column has around 50 unique values which are Fog', 'Freezing Drizzle,Fog', 'Mostly Cloudy', 'Cloudy', 'Rain', 'Rain Showers', 'Mainly Clear', 'Snow Showers', 'Snow', 'Clear', 'Freezing Rain,Fog', 'Freezing Rain' etc...
- 3. We imported the dataset and performed the preprocessing tasks.
- 4. We checked for the null/missing values.
- 5. We removed the unecessary columns for the normalization of the data.
- 6. We extracted month and time column from the 'date/time' column.
- 7. We encoded the Weather column with numbers to make it easy to understand.
- 8. Finally, we made the final dataframe ready for the next steps.

TASK-2:EXPLORATORY DATA ANALYSIS

- 1. We want to analysis different relationships between the data.
- 2. So, we used different plots and charts to map the relation between the data.
- 3. In the data, we used histograms, scatter plots and correlation plots to identify the relation between the data.

LSTMs are a type of recurrent neural network (RNN) that uses memory cells and gates to store and update past information. This allows them to learn long-term dependencies in a sequence of data.LSTM models can provide accurate and precise weather forecasts, even over long periods of time. They can also help to model complex weather phenomena.By design, LSTMs are known to store data for a long time. This method is employed when analyzing time-series data, making predictions, and categorizing data.

TASK-3: MODEL BUILDING

- 1. We build the LSTM model on the weather data to forecast the weather for next 30 days.
- 2. We initiated with the train-test split as 80-20% of the data.
- 3. We further defined the LSTM model along with the dropout layers for the regularization.
- We have around 51,000 trainable parameters.
- 5. We next trained and fit the model for the data.
- 6. Through the metrcis, we evaluated the model using R2,MSE,MAE.
- 7. The metrics MSE,MAE showed the least error after testing the test.
- 8. R2 is used to determine how well a model fits data and predicts future outcomes.
- 9. The R2 value gave the value of 95% indicating a best fit for the data.
- 10. We have plotted between traing and validation loss.
- 11. Further, we have plotted between actual temperature and the predicted temperature.

TASK-4: FORECASTING THE WEATHER

- 1. We have considered the last 30 days data to forecast the next days using the model.
- 2. We have rescaled the data to send as input to the model.
- 3. We next sent the data into model to predict.
- 4. We need to get the original values since we get the values as inverse values from the model.
- 5. For the forecasting,
- · Created an array to store predictions.
- · Scale the new prediction for input.
- · Create a new input array for the next prediction.
- · Update input data by shifting the window forward.
- · finally,printed the final output for next 30 days.
- 2. At the ned, we created a dataframe to show the next 30 days forecast of the weather.

Overfitting issues and strategies to handle them.

- LSTMs are well-suited for processing sequences of data with long-range dependencies. They can capture information from earlier time steps and remember it for a more extended period, making them effective for tasks like natural language processing (NLP) and time series analysis.
- · LSTMs address the vanishing gradient problem, which is a common issue in training deep networks, particularly RNNs.
- LSTMs have been instrumental in many fields, including NLP, speech recognition, and time series forecasting, due to their ability to capture complex sequential patterns.

But still,

- LSTMs are susceptible to overfitting when there is insufficient training data. Regularization techniques like dropout can help mitigate this issue
- · LSTMs have several hyperparameters to tune, such as the number of LSTM units, the learning rate, and the sequence length.

Some of the stratergies to handle the overfittings in the LSTMS:

- 1. Reduce Model Complexity: We can decrease the number of LSTM units and reduce the number of layers.
- 2. Use Dropout Regularization: Adding dropout (typically between 20-50%) after LSTM layers can help prevent the network from becoming too reliant on any one node.

- 3. Increase Training Data: If possible, increase the amount of data available for training. More data helps the model generalize better.
- 4. Batch Normalization: This can help the model learn a more stable pattern, leading to better generalization.
- 5. Reduce Learning Rate:Slower training can lead to a more generalized model. Consider using a learning rate scheduler to decrease it over epochs.

These are some of the techniques that lead to reduction in the overfitting for the model. Hence, this concludes the project.

Double-click (or enter) to edit