Microprocessors

LECTURE 3B

INTEL X86 MEMORY ADDRESSING MODES

ENG. WILSON JAVIER PEREZ HOLGUIN

Modelo de programación de los procesadores Intel Registros del Procesador

Modelo de programación de los procesadores Intel Registros del Procesador

EFLAGs

- S Indicates a Status Flag
- C Indicates a Control Flag
- X Indicates a System Flag

Reserved bit positions. DO NOT USE. Always set to values previously read.

Modos de Direccionamiento de Memoria en la Familia Intel x86

4

Modo Real

- ✓ Usado en los procesadores Intel 8086 8088
- Primer MB de memoria
- Mecanismo sencillo pero inseguro
- ✓ Todos los procesadores Intel x86 inician en este modo

2. Modo Protegido

- ✓ Usado en los procesadores Intel 80286 y posteriores
- Permite acceso a direcciones arriba del primer MB de memoria
- Mecanismo mas complejo pero permite la protección de memoria
- Soporte de hardware para memoria virtual
- Mejora multitarea

- Una dirección física de memoria se encuentra directamente mediante un registro de segmento y uno de desplazamiento:
 - ▼ Dirección Física = Segmento*10H + Desplazamiento

Características

- Nativo de MS-DOS
- Cada segmento es de 64KB
- ▼ Un programa puede usar desde 1 segmento (.COM) hasta 4 o 6 (.EXE)
- Este modo usa 20 bits de direcciones, por lo que funciona en el primer MB de memoria
- ➤ Usa 2 registros de 16 bits, uno de segmento y uno de desplazamiento
- Existen diferentes parejas de registros de segmento y desplazamiento (ver tablas siguientes)

Parejas de segmento y desplazamiento en Modo Real (Implícitos de los µP 8086-80286)

Segmento	Desplazamiento
CS	IP
SS	SP o BP
DS	BX, DI, SI o un numero de 16 bits
ES	DI para instrucciones de cadenas

Parejas de segmento y desplazamiento en Modo Real (Implícitos de los µP 80386-80486)

Segmento	Desplazamiento
CS	EIP
SS	ESP o EBP
DS	EAX, EBX, ECX, EDX, EDI, ESI, un numero de 8 o de 32 bits
ES	EDI para instrucciones de cadenas
FS	No implicito
GS	No implicito

• Ejemplo:

➤ Para acceder a un segmento de código, asumiendo que:

$$CS = 2300H$$

$$IP = 0210H$$

2300:0210

Dirección Física = 2300<u>0</u>H + 0210H = 23210H

• Ejemplo:

Para acceder a un segmento de código, asumiendo que:

$$CS = 2300H$$

$$IP = 0210H$$

2300:0210

Dirección Física = $2300_{0}^{0}H + 0210H = 23210H$

Esto equivale a realizar un corrimiento de 4 bits a la izquierda del dato 2300 H

Memoria

2300 H

ΙP

0210 H

Segmento de Código 64 KB

Ventajas

- Mecanismo sencillo de direccionamiento
- x Se tiene control total de la CPU (ventaja pero también es un riesgo)

Problemas

- Solapamiento de segmentos
- No hay control sobre el acceso a los segmentos
- No hay protección de memoria (ni de nosotros mismos)
- x Solo 1 MB de memora
- Los compiladores modernos no generan código para modo real, por esto debemos emplear *assembler* para trabajar en este modo.

- Este modo de direccionamiento aparece junto con los microprocesadores Intel 80286.
- En modo protegido el acceso a una posición de memoria en el sistema involucra un complejo mecanismo basado en el uso de selectores y descriptores.

- Este modo de direccionamiento aparece junto con los microprocesadores Intel 80286.
- En modo protegido el acceso a una posición de memoria en el sistema involucra un complejo mecanismo basado en el uso de selectores y descriptores.

Se guarda dentro de un registro de segmento

- Este modo de direccionamiento aparece junto con los microprocesadores Intel 80286.
- En modo protegido el acceso a una posición de memoria en el sistema involucra un complejo mecanismo basado en el uso de selectores y descriptores.

Grupo de 8 bytes almacenados en una tabla (global o local) ubicada en memoria

Características.

- Se puede acceder a mucho mas que el primer MB de memoria
- x La mayoría de los S.O. actuales como Windows y Linux corren en modo protegido
- ➤ Usa 32 bits de direcciones, por lo tanto puede manejar segmentos de 4GB (cada uno).

- En modo protegido aparecen algunas nuevas funcionalidades
 - Espacio de memoria extendido y protegido
 - Funcionalidades destinadas a facilitar un ambiente multi-tarea
 - Esquema de paginación
 - x Modo 8086 virtual
 - Se puede operar en Modo Real al deshabilitar estas mejoras (compatibilidad hacia atrás)

- Existen cuatros niveles de privilegio
 - Numerados del 0 al 3 (a mayor número menores privilegios)
 - Se restringe el acceso a memoria de datos, código, etc
 - Se restringe el acceso a instrucciones

Ejm: ¿ A que segmento se accede en Modo Protegido si DS: 8A00 ?

Segmento: DS Desplazamiento: 0x8A00

2. Modo Protegido Selector

2. Modo Protegido Descriptores

6

0

7

5

3

Descriptor of 80286

7	0000000	0000000			
5	Access rights byte	Base (B23- B16)			
3	Base (B15- B0)				
1	Limit (L15- L0)				

Descriptor of 80386 and above

Base (B31- B24)	G	D	0	A V	Limit (L19- L16)	6
Access rights byte Base (B23- B16)			4			
Base (B15- B0)				2		
Limit (L15- L0)				0		

G → Granularity bit

G = 0 The limit ranges from 1 Byte and 1 Mega Byte

G = 1 The limit ranges from 4 KB and 4 GB

AV → Specifies whether the segment is available

AV = 0 The segment is not available

AV = 1 The segment is available

 $D \rightarrow$ Indicates whether the processor access 16-bit or 32-bit instructions (for 80386 and above)

D = 0 16-bit Instructions (8086-80286 compatibility)

D = 1 32-bit Instructions

2. Modo Protegido Byte de Derechos de Acceso

2. Modo Protegido Registros Invisibles para el Programa

Modo Real vs Modo Protegido

Diferencias entre los Modos de Direccionamiento de Memoria

	MODO REAL	MODO PROTEGIDO
Memoria disponible	1 MB	Toda (o 4GB por tarea con mecanismo de paginación)
Privilegios	Todo el mundo puede hacer todo	4 niveles de privilegio (0-3)
Interrupciones	Llamada a subrutina	Interrupciones, Trap o Task Gate Con privilegios
Instrucciones	Todas	Subconjunto, según privilegio

GRACIAS POR SU ATENCIÓN!

