Second order circuits:

- If $\omega_0^2 < 0 \rightarrow$ system is not stable
- Over-d: $\zeta > 1$;Critically-d: $\zeta = 1$; Under-d: $0 < \zeta < 1$
- If capacitance $\rightarrow \infty$ capacitor can be ignored (shortened)
- If current source = 0, it is actually disconnected

Singularity functions:

•
$$\int_a^b \varphi(\lambda)\delta(\lambda - t_0) = \int_a^b \varphi(t_0)\delta(\lambda - t_0) = \begin{cases} \varphi(t_0) \ a < t_0 < b \\ 0 \ else \end{cases}$$

- $\delta_{-1}(t) = u(t)$; $\delta_{-2}(t) = r(t) = tu(t)$
- $P_{\Delta}(t) = (u(t) (u(t-\Delta))^{\frac{1}{\Delta}}$

Laplace Transform:

- Constant's behavior: Same behavior as for constants inside integrals.
- Laplace of 1 is same as Laplace of step function
- $L^{-1}[F(s) \cdot e^{\alpha s}] = L^{-1}[F(s)]$ time shifted by $\alpha = f(t + \alpha)$
- Definition (unilateral Laplace transform) : $F(s) = \int_0^\infty f(t)e^{-st}dt$
- s = jw in the Laplace domain
- Initial Value Theorem: $\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$
- Final Value Theorem: $\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$
- Integration: $L\{\int_0^t f(\tau)d\tau\} = \frac{1}{s}F(s)$
- Time shift: $L\{f(t-\tau)\} = e^{-s\tau}F(s)$
- Frequency shift: $L\{e^{-at}f(t)\} = F(s+a)$
- Time Scaling: $L\left\{f\left(\frac{t}{a}\right)\right\} = aF(as)$
- Frequency Scaling: $L\{af(at)\} = F(\frac{s}{a})$
- Differentiation in time:

$$L\{f^{(n)}(t)\}=s^nF(s)-s^{n-1}f(0^-)-s^{n-2}f^{(1)}(0^-)-...-f^{(n-1)}(0^-)$$

• <u>Differentiation in frequency:</u> $-tf(t) \leftrightarrow \frac{dF(s)}{ds}$

Solving ODE with Laplace transform:

- Transform of a differential equation: $Y(s) = U(s) \frac{P_2(s)}{P_1(s)} \frac{Q_1(s)}{Q_2(s)}$
- The term $G(s) = \frac{P_2(s)}{P_1(s)} = \frac{\text{output}}{\text{input}}$ is called the <u>transfer function</u>.
- The response to the input is $Y(s) = \frac{P_2(s)}{P_1(s)}U(s) = G(s)U(s)$
- Transfer function: For continuous-time input signal U(s) and output Y(s), the transfer function G(s) is the linear mapping of the laplace transform of the input $U(s) = \mathcal{L}\{u(t)\}$ to the Laplace transform of the output $Y(s) = \mathcal{L}\{y(t)\}$ such that Y(s) = G(s)U(s)
- <u>Transfer function</u> = Laplace transform of the impulse response of an LTI system when initial conditions = 0
- For a sinusoidal steady state source: $V_s(\text{or }I_s) = Asin(\omega t)$, the output

would be
$$A \underbrace{|G(s)|}_{gain} \cdot \sin \left(\omega t + \underbrace{\angle G(s)}_{phase}\right)$$

Convolution:

- Define "impulse response" : if $x(t) = \delta(t)$, then y(t) = h(t) is the impulse response. General solution would be $y_{total} = ZIR + convolution$
- The <u>convolution integral</u>: $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau = \int_{-\infty}^{\infty} x(t-\tau) h(\tau) d\tau$
- $h(\tau)$ May be nonzero only at $\tau>0$, $h(t-\tau)$ can be nonzero for $t-\tau>0$. Updated lims: $y(t)=x(t)*h(t)=\int_{-\infty}^t x(\tau)h(t-\tau)d\tau=\int_0^\infty x(t-\tau)h(\tau)d\tau$
- Impulse starting at t=0, $y(t)=x(t)*h(t)=\int_0^t x(\tau)h(t-\tau)d\tau=\int_0^t x(t-\tau)h(\tau)d\tau$
- Properties:

$\circ x * h = h * x$

- $\circ (q + h) * x = q * x + h * x$
- (h * x)' = h' * x = h * x' (assuming derivative exists)
- $\circ x(t) * \delta(t) = x(t)$
- Time shift: if $y(t) = x(t) * h(t) \Rightarrow x(t) * h(t t_0) = y(t t_0)$
- Specific case: if $h(t) = \delta(t t_0) \Longrightarrow x(t) * h(t) = x(t t_0)$
- $\circ x(t) * \delta'(t) = x'(t) * \delta(t) = x'(t)$

Phasors & Sinusoidal Steady State:

- <u>Sinusoidal Steady State</u>: a state of a system with a sine input, "after a long time has passed", i.e. all Transient effects are gone.
- It will be more convenient to work with complex numbers:

$$A_m \cos(\omega t + \varphi) = Re[A_m e^{j(\omega t + \varphi)}] = Re[A_m e^{j\varphi} e^{j\omega t}]$$

- Define the <u>Phasor</u> as: $\tilde{A} \equiv A_m e^{j\varphi} \Rightarrow A_m \cos(\omega t + \varphi) = Re[\tilde{A}e^{j\omega t}]$
- Transforming differential equations into algebraic equations: $\frac{d^n}{dt^n}(A_m\cos(\omega t + \varphi)) = \frac{d^n}{dt^n}\big(Re\big[\tilde{A}e^{j\omega t}\big]\big) = \big(Re\big[(j\omega)^n\tilde{A}e^{j\omega t}\big]\big)$
- Kirchhoff's laws apply for Phasors as well
- Alternate notation: $A \angle \varphi$
- If $Re[s] < 0 \rightarrow$ system is not stable, otherwise \rightarrow stable
- If $\underline{\mathbf{feedback}}$: $H_{new} = \frac{G(s)}{G(s)\pm 1}$ (where $\pm = \mathrm{sign}$ of feedback signal??)

Impedance/Admittance:

- <u>Impedance</u>: the ratio of the voltage and the current. For sinusoidal signals: $Z_x = \frac{\tilde{V}_x}{I_c}$. <u>Admittance</u>: $Y_x = \frac{I_x}{\tilde{V}_c}$
- Since $Z_{\chi} \tilde{I}_{\chi} = \tilde{V}_{\chi}$, the voltage and current might have different phases \circ For an Inductor, current lags behind voltage by $\frac{\pi}{2}$, for capacitors it's the other way around.
- In Sinusoidal steady state, each component can be treated as a "resistor" with R = impedance. Follows ohm's law (same for Phasors). Norton & Thevinin are legal.

Power in Sinusoidal Steady State:

- For sinusoidal steady state we have:
- $V(t) = V_m \cos(\omega t + \angle V); I(t) = I_m \cos(\omega t + \angle I)$
- $P(t) = V_m I_m \cos(\omega t + \angle V) \cos(\omega t + \angle I) = \frac{1}{2} V_m I_m \cos(\angle V \angle I) + \frac{1}{2} V_m I_m \cos(2\omega t + \angle V + \angle I)$ average power time dependent power at double frequency

Coupled Inductors:

- <u>Coupled inductors</u> are such that a change in the current through one inductor results in a change of the voltage across the other.
- The coupling equations are given in formulae , M=mutual inductance
- Coupling coefficient is defined as: $k = \frac{|M|}{\sqrt{L_1 L_2}}, 0 \le k \le 1$
- $k = 0 \Rightarrow \text{no coupling}$; $k = 1 \Rightarrow \text{full coupling}$
- $\text{ At Sinusoidal Steady State we have } \begin{cases} \tilde{V_1} = j\omega L_1 \tilde{I}_1 + j\omega M \tilde{I}_2 \\ \tilde{V}_2 = j\omega M \tilde{I}_1 + j\omega L_2 \tilde{I}_2 \end{cases}$

Ideal Transformers:

- <u>Idealization assumptions</u>: No energy dissipation, No flux leakage $\Rightarrow k=1$ (full coupling), Infinite inductance: $L_1,L_2,M\to\infty$
- · Ideal transformer is LTI.
- Since there is no <u>power</u> loss, any power entering on one side will emanate from the other: $V_1(t)I_1(t)+V_2(t)I_2(t)=0$
- Ideal transformers <u>different dots</u>: $\frac{v_1}{v_2} = -\frac{n_1}{n_2} \cdot \frac{l_1}{l_2} = \frac{n_2}{n_1}$

Reflection:

- Primary: the segment with a steady state input
- Secondary: the other inductor's segment
- Reflection process: Usually reflect secondary onto primary. If the opposite reflection is desired, n_1, n_2 switch places in all reflections. New circuit is w/o the coupled inductors and is connected at those inductors' terminals.
- If Circuit is in SSS, V=RI=ZI where Z is SSS condition (impedance)

Dependent sources:

Diagram	Name	Case Identifiers	Formula for the Unknown
v.=0 (22 + v.	Current controlled Current source	$I_2 = \alpha I_1$ $V_1 = 0$	Current Ratio: $lpha = rac{I_2}{I_1}$
v, 69 v. v.	Voltage controlled Current source	$I_1 = 0$ I_2 $= g_m V_1$	Transfer Conductance $g_m = rac{I_2}{V_1}$
v ₁ =0 21 v ₂	Current controlled Voltage source	$V_1 = 0$ $V_2 = r_m I_1$	Transfer Resistance: $r_m = \frac{V_2}{I_1}$
vi \$12.00 vi	Voltage controlled Voltage source.	$I_1 = 0$ $V_2 = \mu V_1$	Voltage Ratio: $\mu = rac{V_2}{V_1}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Current controlled Current source Vi = 0 Vi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- The sources are active. They may amplify the current/voltage/power
- <u>Controlled sources may not be zeroed</u>. While using superposition/ Norton/Thevinin equivalents, only independent sources are zeroed.

Translational Mechanical Systems:

	Translational Mechanical Systems.		
	Mechanical		Electrical
Signals	V — velocity		V — voltage
	f –	force	I — current
Components	Viscous friction of with constant B, $v = \frac{1}{2}f$	or linear dashpot that obeys	Resistor that obeys $V = RI$
	$v = \frac{1}{B}J$ Spring with constant K $v = \frac{1}{k} \frac{df}{dt}$		Inductor that obeys $V = L \frac{dI}{dt}$
Mass (M) that obeys $f = M \frac{dv}{dt}$		Capacitor that satisfies $I = C \frac{dV}{dt}$	
voltage of gro	ound=0 (vou	velocity of arou	ind=0 (vou can

voltage of ground=0 (you can apply any current to grnd. and voltage remains

velocity of ground=0 (you can apply any force to ground and voltage remains 0)

Rotational Mechanical Systems:

	Mechanical	Electrical
Signals	ω — velocity	V- voltage
	au — torque	I — current
Components	Torsional friction (B),	Resistor that obeys
	$\omega = \frac{1}{B}\tau$	V = RI
	Torsional spring (K) $\omega = \frac{1}{4} \frac{d\tau}{d\tau}$	Inductor that obeys
	To slotted spring (K) $\omega = \frac{1}{k} dt$	$V = L \frac{dI}{dt}$
	Moment of inertia (/)	Capacitor that satisfies
	$\tau = J \frac{d\omega}{dt}$	$I = C \frac{dV}{dt}$

• If connected through velocity – parallel. If connected through force – series.

Electrical	Mechanical
$\sum_{node} \text{current} = 0$	$\sum_{object} forces = 0$

State space representation:

• The following set is called a state-space representation:

$$\begin{cases} \overline{x}'(t) = A\bar{x}(t) + \bar{b}u(t) \\ y(t) = \overline{cx}(t) + du(t) \\ \bar{x}(t=0) \equiv \bar{x}(0) \end{cases} \xrightarrow{\bar{x}(t)} \begin{array}{c} \bar{x}(t) & \text{State variable} \\ u(t) & \text{Input} \\ \underline{y}(t) & \text{Output} \\ A & \text{Dynamic matrix} \\ \hline A & Dynamic matrix} \\ \hline b, \bar{c}, d & \cdots \\ \hline b, \bar{c}, d & \cdots \\ \hline c & [b_0 \cdots b_{n-1}], \end{cases}$$

$$d = 0$$

$$\begin{pmatrix} x_1(0) \\ x_2(0) \\ \vdots \\ x_n(0) \end{pmatrix} = \begin{bmatrix} \bar{c} \\ \bar{c}A \\ \vdots \\ \bar{c}A^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} y(0) \\ y^{(1)}(0) \\ \vdots \\ y^{(n-1)}(0) \end{bmatrix} \xrightarrow{\text{Where } a_0, a_1 \dots \text{ are coefficents of } y \text{ when } y^n \text{ is ordered by ascending n.} \end{cases}$$

 In general case, where the input appears with derivatives, the ODE can be written as

$$y^{(n)}(t) + \sum_{k=0}^{n-1} a_k y^{(k)}(t) = \sum_{m=0}^{n-1} b_m u^{(m)}(t)$$

ullet Using linearity (or superposition), if we find the result of a simple input without derivatives $y_u(t)$, then the general solution is

$$y(t) = \sum_{m=0}^{n-1} b_m y_u^{(m)}(t)$$

• If the RHS of the ODE contains a $b_n u^{(n)}(t)$ term, then d=0 changes to $d=b_n$, and \bar{c} changes to

$$\bar{c} = [b_0, b_1, \cdots, b_{n-1}] + b_n[-a_0, -a_1, \cdots, -a_{n-1}]$$

Equivalent representations:

- Given a certain state variable $\overline{x}(t)$, we can use a transformation T to obtain a different representation. We are interested in representations where \check{A} is diagonal (assuming A has distinct eigenvalues)
- Steps to find a diagonal representation:
- 1. Find the eigenvalues of A by $\det(\lambda I A) = 0$
- 2. Find the eigenvectors of A by solving eq-n set $(\lambda_k I A) \bar{u}_k = 0$
- a. If Eigenvector can't be found due to 2 unknowns and 1 eq. express \underline{u}_k as the same component (eg. $\underline{u}_k = \begin{bmatrix} \alpha u_{k^2} \\ u_{k^2} \end{bmatrix}$) and factor out the component. The result is the basis of all eigenvectors of the eigenvalue.
- b. If a component of the eigenvector is independent, then it can be any value, but we select it to be 1 since that would be a basis for any other eigenvector of this eigenvalue.
- 3. <u>Transformation matrix</u> eigenvectors as columns $T = [u_1 \ u_2 \ ... \ u_n]$
- 4. Calculate the inverse matrix T^{-1} .

a. Matrix inverse 2x2: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

b. Matrix inverse 3x3:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{a(ei-fh)-b(di-fg)+c(dh-eg)} \begin{bmatrix} ei-fh & -(bi-ch) & bf-ce \\ -(di-fg) & ai-cg & -(af-cd) \\ dh-eg & -(ah-bg) & ae-bd \end{bmatrix}$$

5. Find the new representation, eg. $\tilde{A} \equiv \Lambda = \mathbf{T}^{-1}AT = \begin{bmatrix} \lambda_1 & \cdots & \vdots \\ \vdots & \ddots & \vdots \\ & \cdots & \lambda_n \end{bmatrix}$

State space Time Domain solution:

 $(\overline{x}'(t) = A\overline{x}(t) + \overline{b}u(t)$

• Given a system $\begin{cases} y(t) = \bar{c}\bar{x}(t) & \text{, we would like to find an} \\ \bar{x}(0) & \end{cases}$

expression for $\bar{x}(t)$ and through that we find y(t).

- (Input response?) $\bar{x}(t)$ consists of 2 parts: $\bar{x}(t) = \bar{x}_i(t) + \bar{x}_u(t)$, where: $\bar{x}_i = \Phi(t)\bar{x}(0)$ is the homogenous solution (ZIR)
- $\bar{x}_u = \int_0^t \Phi(t) \bar{b} u(t-\tau) d\tau$ is the response to the input (ZSR)
- ullet The matrix $\Phi(t)=e^{At}$ is called the transition/transfer matrix
- We can express e^{At} by finding the diagonalizing transform:

$$\Lambda, T, T^{-1}, \mathbf{\Phi}(t) = e^{At} = Te^{\Lambda t}T^{-1}, \ e^{\Lambda t} = \begin{bmatrix} e^{\lambda_1 t} & \cdots \\ \vdots & \ddots & \vdots \\ & \cdots & e^{\lambda_n t} \end{bmatrix}$$

• Properties of matrix exponent:

o For
$$t=0$$
, $e^{A0}=I$ (identity matrix)
$$\frac{d\Phi(t)}{dt}=Ae^{At} \qquad e^{ax}e^{bx}=e^{(a+b)x} \qquad e^{x}e^{-X}=I$$
o If matrices obey XY=YX. Then $e^{X}e^{Y}=e^{Y}e^{X}=e^{Y+X}$

State space Laplace Domain solution:

• Use Laplace Transforms to solve state-space equations: $L\{\bar{x}(t) = A\bar{x}(t) + \bar{b}u(t)\} \Rightarrow s\bar{x}(s) - \bar{x}(0) = A\bar{x}(s) + \bar{b}U(s)$ $\Rightarrow (sI - A)\bar{x}(s) = \bar{x}(0) + \bar{b}U(s) \Rightarrow \bar{x}(s)$ $= (sI - A)^{-1}\bar{x}(0) + (sI - A)^{-1}\bar{b}U(s)$

• Now, using $\bar{x}(s)$ we can find $\bar{Y}(s)$ using the row vector \bar{c} and adding dU(t) if $d \neq 0$:

$$Y(s) = \bar{c}(sI - A)^{-1}\bar{x}(0) + \bar{c}(sI - A)^{-1}\bar{b}U(s) + dU(s)$$
OR:

$$Y(s) = \bar{c}(sI - A)^{-1}\bar{x}(0) + G(s)U(s)$$

• The <u>transfer function</u> is $\left(\frac{\text{output}}{\text{input}}, 0 \text{ init. Cond.}\right)$

$$G(s) = \frac{Y(s)}{U(s)} = \bar{c}(sI - A)^{-1}\bar{b} + d$$

• $L\{e^{At}\} = (sI - A)^{-1}$

Diagonal representation:

o In the case that the transfer function G(s) has distinct poles, we can expand it as: $G(s)=p_0+\frac{p_1}{s-s_1}+\frac{p_2}{s-s_2}+\cdots+\frac{p_n}{s-s_n}$. Then a diagonal

representation
$$\{A, \overline{b}, \overline{c}, d\}$$
, is given by: $A = \begin{bmatrix} s_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & s_n \end{bmatrix}$; $\overline{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$

$$\overline{\boldsymbol{c}} = [c_1 \dots c_n] \; ; \; \boldsymbol{d} = p_0 \; ; \; \boldsymbol{x_0} = \begin{bmatrix} \overline{c} \\ \overline{c}A \\ \vdots \\ \overline{c}A^{n-1} \end{bmatrix}^{-1} \\ \overline{\boldsymbol{y}}(0) \; \begin{vmatrix} \boldsymbol{c}_i \cdot \boldsymbol{d}_i = p_i \text{ascend.n.} \\ \boldsymbol{c}_i \cdot \boldsymbol{d}_i = p_i \text{ascend.n.} \end{vmatrix}$$

• Two (of many) legitimate choices are:

ran	ะ เกาะ
$\left \frac{1}{2} \right ^{1}$	$= \begin{vmatrix} P_1 \\ 1 \end{vmatrix}$
$ b = : ; \overline{c} = p_1 p_n $	$\overline{\boldsymbol{b}} = \vdots $; $\overline{\boldsymbol{c}} = [1 \dots 1] \leftarrow$ canonical form
l l ₁]	$\lfloor p_n \rfloor$

Frequency response and resonance:

- For a transfer function G(s) and an input $Asin(\omega t)$, the output is : $y_{ss}(t) = A|G(j\omega)|\sin(\omega t + argG(j\omega))$
- ullet Transfer function is sometimes denoted as H instead of G.
- Since the Amplitude and phase depend on the frequency, we get a different response for each frequency
- Resonance Frequency: The frequency for which the voltage and current supplied to the circuit have the same phase. Denote as ω_0 .

Bode Plots:

- dB= $20 \log(x)$
- DC Gain means 0 frequency: $\omega = 0$
- Real Gain: = $20 \log(|Q(s)|) 20 \log(|P(s)|)$ where $G(s) = \frac{Q(s)}{P(s)}$
- Diff between real & asymptotic gain: |G(s)|
- Cutoff frequency: Where the gain is 0dB (when Bode plot intersects x-axis)
- Bode plot slope: $\frac{G(\omega_2) G(\omega_1)}{\log(\omega_2) \log(\omega_1)} \left\lfloor \frac{a_B}{\deg} \right\rfloor$
- If magnitude Bode plot doesn't start from the y-axis, unless stated otherwise assume that it comes from a very high/low value, then we have a zero/pole at the origin of order corresponding to the slope.
- Minimal phase: All poles & zeros are in the left side of the complex plane.

 Difference between
- Logarithm: $\log_b a = c \iff b^c = a$

	exact and asymptotic value @
	the cutoff frequency
Simple	+3[dB]
Zero	
Simple	-3[dB]
Pole	1
Conjugate	(1)
pair of	$-20\log_{10}\left(\frac{1}{2 \zeta }\right)$
Zeroes	(2 5)
Conjugate	(1)
pair of	$+20\log_{10}\left(\frac{1}{2 \zeta }\right)$
Poles	(2 5)

Filters:

