

Modernizing Quality Assessment through Automation: ONDP/Division of Biopharmaceutics Automation Tool Application

Nov 16, 2018

Ho-Pi Lin, Ph.D.

Division of Biopharmaceutics, Branch III

FDA/CDER/Office of Pharmaceutical Quality (OPQ)/
Office of New Drug Products (ONDP)

Disclaimer

This presentation reflects the views of the presenter and should not be construed to represent FDA's views or policies.

www.fda.gov

Outline

- Overview: review responsibilities in the Division of Biopharmaceutics
- > Dissolution test and product quality assessment
- Automation tool for dissolution evaluation
 - ☐ Dissolution profiles comparison
 - ☐Simulation to help assess dissolution acceptance criteria
- > Summary
- Looking forward

FDA Pharmaceutical Quality One Quality Voice

Dissolution Test: Crucial in Product Quality Assessment

Applicable to multiple dosage forms:

Tablets, Capsules, Implants, Powders, inserts, suspensions, etc.

Assessment involved Dissolution profiles comparison • f2 testing	 Frequently used in Pharmaceutical Development Biowaivers 		
 for highly variable dissolution: Multivariate confidence region procedure (MVA Test) f2 bootstrapping 	 Interchangeability Evaluation Scale-up and Post-Approval Changes (SUPAC) 		
Dissolution acceptance criteria	Routine Quality ControlStability Studies		

Dissolution Profiles Comparison

Dissolution data input in Excel spreadsheet

Dissolution Profiles Comparison (Cont.)

Mean plot Red horizontal line: Q(%); Blue horizontal line: Q-15%

Name	F2-Value
RLD s RLD.batch.2	37.62
RLD Vs Test.batch.1	68.08
FLD Vs Test.batch.1.Revised	67.09
RLD Vs Test.batch.3	56.86
RLD.batch.2 Vs Test.batch.1	37.57
RLD.batch.2 Vs Test.batch.1.Revised	37.57
RLD.batch.2 Vs Test.batch.3	43.82
Test.batch.1 Vs Test.batch.1.Revised	100.00
Test.batch.1 Vs Test.batch.3	63.83
Test.batch.1.Revised Vs Test.batch.3	63.83

MEAN	1	2	4	6	8	10	12
RLD	2.83	14.08	58.17	89.42	94.92	96.42	96.42
RLD.batch.2		9.33	28.42	59.25	88	97.67	98.33
Test.batch.1	5.5	22.33	57.17	87	98.08	100.33	100.67
Test.batch.1.Revised		22.33	57.17	87	98.08	100.33	100.67
Test.batch.3		22.75	51.33	76.92	93	100.42	100.33
CV(%)	1	2	4	6	8	10	12
RLD	33.09	26.65	28.85	10.71	2.31	1.36	1.36
RLD.batch.2		33.36	27.65	26.87	8.95	1.87	1.58
Test.batch.1	35.95	15.19	15.91	11.6	4.67	1.92	2.09
Test.batch.1.Revised		15.19	15.91	11.6	4.67	1.92	2.09
Test.batch.3		7.98	7.02	12.76	12.58	1.61	1.37

Dissolution Profiles Comparison (Cont.)

Dissolution Acceptance Criteria Assessment Simulation Tool

- To visualize appropriateness of a proposed/recommended acceptance criteria
- To estimate the pass rate (as per USP guidelines) for a proposed/recommended acceptance criteria

Assumptions:

- The dissolution data of BE/clinical batch (mean and %CV) is representative
- Normal distribution of the dissolution data

Simulation Tool: Immediate release formulation

www.fda.gov

Example: IR product (BCS Class II API)

With the acceptance criterion set at "Q=80% at 20 minutes"

Pass Stage 1 (%)	Pass Stage 2 (%)	•	No. of simulations	Mean release (%)	CV (%)	Q (%)
0.00	4.00	4.2	500	77	8.4	80

With the acceptance criterion set at "Q=80% at 30 minutes"

Pass Stage 1 (%)	Pass Stage 2 (%)	•	No. of simulations	Mean release (%)	CV (%)	Q (%)
0.00	98.00	100.00	500	83	6.2	80

Simulation Tool: Extended release formulation

Summary

- OPQ/ONDP/Division of Biopharmaceutics utilizes automation to streamline, improve efficiency and homogenize the review process
- The Automation Tool provides:
 - ☐ graphical output for dissolution profiles
 - ☐ automatic statistical analyses for profiles comparison
 - ☐ simulation to help determine clinical relevant dissolution acceptance criteria

Looking Forward

Division of Biopharmaceutics in Office of New Drug Products continues to explore ways to establish the in vitro – in vivo link for pharmaceutical manufacturing quality

- G-SRS provides a comprehensive framework, where quality specifications and corresponding clinical information can be captured
- Division of Biopharmaceutics is looking for ways to leverage the power of the G-SRS framework, and develop functionalities tailored to meet the needs of quality assessment, i.e. evaluating linkage between product quality attributes and clinical performances (PK data and quality related adverse events)

Acknowledgments

(arranged alphabetically by first names)

Working group

- Barbara Scott
- Brian Connell
- Cong Wu
- Dali Zhou
- David Green
- Gerlie Gieser
- Hansong Chen
- Heng Xu
- Ho-Pi Lin
- Jie Xue

- Joan Zhao
- Mei Ou
- Min Li
- ParnaliChatterjee
- Poonam Delvadia
- Qi Zhang
- Rohit Tiwari
- Yushi Feng

Leadership team

- Angelica Dorantes
- Giuseppe Randazzo
- Kimberly Raines
- Okpo Eradiri
- Paul Seo
- Ramesh Sood
- Scott Furness

