

ASSIGNMENT 1 FRONT SHEET

Qualification	BTEC Level 5 HND Diploma in Computing		
Unit number and title	Unit 9: Software Development Life Cycle		
Submission date	4 August 2020	Date Received 1st submission	4 August 2020
Re-submission Date	August 11, 2020	Date Received 2nd submission	August 14, 2020
Student Name	Bạch Tuấn Anh	Student ID	GCH18768
Class	GCH0718	Assessor name	

Student declaration

I certify that the assignment submission is entirely my own work and I fully understand the consequences of plagiarism. I understand that making a false declaration is a form of malpractice.

Student's signature	Ank
---------------------	-----

Grading grid

P1	P2	P3	P4	M1	M2	D1	D2

☐ Summative Feedback:		☐ Resubmission F	eedback:
Grade:	Assessor Signature:		Date:
Internal Verifier's Commen	nts:		
Signatura & Datas			
Signature & Date:			

Table of Contents

I.	INTRO	DUCTION	
II.	SDLC I	MODEL	4
1	SDI	C Model Selection Four suitable model for project	,
	. 30L 1.1.	Waterfall model	
	1.2.	V-model	
	1.3.	Agile SDLC Model	
	1.4.	Spiral model	
	1.5.	Prototyping model	
	1.6.	Appropriate Development Methodology	
2	_	OOSE THE SDLC MODEL THAT APPLIES TO TUNE SOURCE	
III.	RISI	K MANAGEMENT	11
1	. Risk	AND RISK MANAGEMENT	11
2	. THE	RISK MANAGEMENT APPROACH	11
IV.	FEA	SIBILITY STUDY	
1	Dun	POSE OF FEASIBILITY STUDY	1.5
2		LYING FEASIBILITY	
2	. APP 2.1.	Definition	
	2.2.	Applying Feasibility Criteria to the Project	
2		HNICAL SOLUTIONS	
3	. 1EC	Custom Development	
	3.2.	Packaged Software	
	3.3.	Outsourcing	
	3.4.	Evaluate solutions	
٧.	CONC	LUSION	
RFFI	FRENCE	ς .	

Table Of Figure

Figure 1. Waterfall mode (Dennis 2014)	5
Figure 2. V-mode (Denins)	
Figure 3. Agile model (Dennis, 2014)	
FIGURE 4. SPIRAL MODEL (DENNIS, 2014)	
FIGURE 5. PROTOTYPING MODEL (DENNIS, 2014)	
Figure 6. Methodology (Dennis, 2014)	
FIGURE 7. RISK MANAGEMENT APPROACH (SOMMERVILLE, 2011)	12

I. Introduction

Tune Source is a music company and they have relationships with three music industries: Megan Taylor, Phil Cooper and John Margolis. Currently, Tune Source has a website that helps customers find and buy CDs hosted by a service provider (ISP). Tune Source is trying to launch a website to help customers choose more when buying to increase sales of the company. Currently our company is cooperating with Tune Source to implement the project. And below will be a report on our SDLC model used for Tune Sources. Our report below includes descriptions of the SDLC model, the SDLC model related to the project, and the method of risk management. Discuss feasibility studies and selection of technical solutions for Tune Source.

II. SDLC Model

1. SDLC Model Selection Four suitable model for project

1.1. Waterfall model

According to (Dennis, 2014) Waterfall - is a layered SDLC model, in which the development process looks like a flow, gradually moving through the stages of analysis, projection, implementation, testing, implementation and support. This SDLC model involves gradual implementation of every phase altogether. This process is strictly documented and predefined with features expected for every stage of this software development life cycle model.

Figure 1. Waterfall mode (Dennis 2014)

Advantages	Disadvantages
Simple waterfall model, easy to understand and easy	Cannot go back if there is a problem with the previous
to use.	step
Easy project management	High risk and uncertainty
The project are developed step by step	The design part is shown at the end of the final stage only.
Key points in the development cycle are easily identified	Not suitable for long-term projects
Easily classify and prioritize tasks	The progress of the stage is hard to measure while it is still in development
	Integration is done at the end, without giving the option of predetermining the problem

1.2. V-model

According to (Dennis, 2014) The V-shaped SDLC model is an extension of the classic waterfall model and it is based on the relevant testing phase for all stages of development. This is a very strict model and the next phase only starts after the previous period. This is also called online verification and verification model. Each stage has current process control, to ensure that the transition to the next stage is possible.

Figure 2. V-mode (Denins)

Advantages	Disadvantages
Every phase of the V-shaped model has rigorous	Lack of flexibility
results for easy control	
Testing and verification takes place in the early	Not good choice for small projects
stages	
Good for small projects where requirements are	Relatively big risk
static and clear	

1.3. Agile SDLC Model

According to (Dennis, 2014) Agile development is a group of programming methods focused on rationalizing SDLC. Most of the models and aerial documents have been removed; Instead, face-to-face communication is preferred. A project that emphasizes simple, iterative application development, where each iteration is a complete software project, including planning, requirements analysis, design, coding, testing, and testing, experience and document

Figure 3. Agile model (Dennis, 2014)

Advantage	Disadvantage
People and interactions are emphasized rather	Difficulties in measuring costs in the end because
than processes and tools.	of permanent changes.
The project is divided into short iterations and	The team should be highly professional and
transparency	customer oriented.
Risks are minimized by a flexible change process	New requirements may conflict with existing
	architecture.
Quick release of the first product version	With all modifications and changes, it is likely that
	the project will exceed the expected time.

1.4. Spiral model

According to (Dennis, 2014) Spiral model - is an SDLC model, combining architecture and prototyping in stages. It is a combination of iterative and cascading SDLC models with significant emphasis in risk analysis. The main problem of the spiral model - is determining the right time to take one step into the next stage. The proposed preliminary time frames are the solution to this problem. The transition to the next stage is carried out according to the plan, even if the work in the previous stage has not been performed. The plan was introduced based on statistical data, received in previous projects even from the personal developer experience.

Figure 4. Spiral model (Dennis, 2014)

Each loop in the spiral is divided into four areas:

- Goals to set specific goals for that stage of the project are identified.
- · Assess and minimize risks
- Development and validation After a risk assessment, a development model for the system was chosen.
- Planning The project is reviewed and the decision is made to continue with the next cycle.

Advantages	Disadvantages
Easily track projects and effective monitoring	The project is costly because it involves analyzing
processes.	many expensive risks.
The plan is close to reality.	Inefficient and successful for small projects.
Eliminate errors during project development.	

The complete model is converged from the	
advantages of other models.	

1.5. Prototyping model

According to (Dennis, 2014) The prototyping model is a system development method, in which a prototype is built, tested, and then repeated as needed until an acceptable result can be developed. The prototype is usually not a complete system and many details are not built in the prototype. The goal is to provide a system with overall functionality.

Figure 5. Prototyping model (Dennis, 2014)

Throwaway prototyping: This approach is used to develop systems or parts of systems where the development team has no system knowledge. Quick and dirty prototypes are built, verified by customers and thrown away. This process continues until a satisfactory prototype is built.

System prototyping: Prototypes are built not thrown away but evolved over time. The block diagram of the prototype model is shown in the image below. The concept of prototyping also leads to rapid prototyping and spiral modeling.

Advantages	Disadvantages
Users actively participate in development	Lead to the implementation and then repair of
	system construction.
The errors can be detected much earlier.	n fact, this method can increase the complexity of
	the system because the scope of the system may
	go beyond the original plan.

Faster user feedback is available resulting in better solutions.	Problem analysis is incomplete
Confusing or confusing functions can be identified	

1.6. Appropriate Development Methodology

Above, we introduced and discussed four SDLC models, each with its own advantages and disadvantages. Therefore, project managers should have a suitable method choice for their projects. Choosing an appropriate method for a project requires an appropriate development method.

Usefulness in Developing Systems	Waterfall	Parallel	V-Model	Iterative	System Prototyping	Throwaway Prototyping	Agile Development
With unclear user requirements	Poor	Poor	Poor	Good	Excellent	Excellent	Excellent
With unfamiliar technology	Poor	Poor	Poor	Good	Poor	Excellent	Poor
That are complex	Good	Good	Good	Good	Poor	Excellent	Poor
That are reliable	Good	Good	Excellent	Good	Poor	Excellent	Good
With short time schedule	Poor	Good	Poor	Excellent	Excellent	Good	Excellent
With schedule visibility	Poor	Poor	Poor	Excellent	Excellent	Good	Good

Figure 6. Methodology (Dennis, 2014)

2. Choose the SDLC model that applies to Tune Source

After analyzing, reviewing the project's criteria and defining a model for the project, we applied the Waterfall model because it will help us sequentially implement the stages of the project without having to Worry too much about changes in the project process. The waterfall model meets almost all the criteria of the Tune Source project application. After analyzing the advantages and disadvantages of the waterfall model, we can see that the model is suitable for this project.

Advantages and disadvantages of waterfall model with FitOn

Advantages	Disadvantages
Simple, easy to understand and apply waterfall	Changing requirements in the project process will
model for Tune Source.	be a major challenge to the development of the
	system in the development process.

The requirements for the Tune Source project are	Errors in the system will cause many problems that
clear, so the project can be implemented step by	affect the development of the project and slow
step without having to worry about system	down the development progress of the project.
changes.	
The waterfall model has few constraints, thus	
saving costs for the project.	

III. Risk Management

1. Risk and risk management

According to (Dennis, 2014) Risk management is the process of identifying risks, assessing and minimizing risks so that risks from risks are minimal. In the IT industry, risk management is a very important part.

❖ Some common risks specific to the project

Risk	Description							
Specification delays	Specifications of essential interfaces are not							
	available on schedule							
Size underestimate	The size of the system has been underestimated							
CASE tool underperformance	CASE tools, which support the project, do not							
	perform as anticipated.							
Technology change	The underlying technology on which the system is							
	built is superseded by new technology.							

2. The risk management approach

According to (Sommerville, 2011) The risk management process is an iterative process that continues throughout the project.

Figure 7. Risk management approach (Sommerville, 2011)

- **Identify risks**: Identify risks that may occur during project, product and business development or after project completion.
- Risk analysis: Assess and analyze the risks that may occur in the project, the consequences of these risks.
- **Risk planning**: Planning to address risks and provide ways to overcome the risks, or minimize its impact on the project.
- **Risk monitoring**: Regularly assess and test the risks that may occur and have your plans in place to minimize risks and modify these as you learn more about risks.

With the identified risks

After identifying the potential and probable risks during the project development process, the project development team will evaluate and analyze in detail when the risks will occur at each level. It may happen. Next, the group will devise a number of plans to come up with solutions to promptly address the risks occurring during project implementation. This process will reduce the process of risk caused and retain the project development process and effective productivity of the team and not be delayed by unexpected risks that may occur.

IV. Feasibility Study

1. Purpose of Feasibility Study

According to (Dennis, 2014) Feasibility analysis is the process of determining whether a project should be implemented. Feasibility analysis includes techniques to assess three areas: technical feasibility, economic feasibility and organizational feasibility

2. Applying Feasibility

2.1. Definition

According to (Dennis, 2014) Technical feasibility analysis is, in essence, a technical risk analysis that strives to answer the question: "Can we build it?".

Economic feasibility is determined by identifying costs and benefits associated with the system, assigning values to them, calculating future cash flows, and measuring the financial worthiness of the project.

The final feasibility analysis issue is the organizational feasibility of the system: how well the system ultimately will be accepted by its users and incorporated into the ongoing operations of the organization.

2.2. Applying Feasibility Criteria to the Project.

Technical feasibility

Standard	Quotation	Risk assessment
Risks associated with accessing and familiarizing music download applications	 The marketing party has no experience in online registration business model: medium high risk There are many similar websites: high risk. 	Moderately high
Risk regarding familiarity with the technology	 IT department has experience in operating website: low risk Consulting is always available: low risk. 	Moderately low
Infrastructure compatibility	The digital and internet era is everywhere: low risk.ISP can expand operations: low risk.	Moderately low
The project size	 Group of 10 or fewer: low-risk medium. Enterprise user participation: high average risk. The project time frame is somewhat important: medium risk 	Medium
	Total	Medium Low

Economic Feasibility

Benefit of economic	Guess	Risk assessment
Profit yielded	- ROI over 3 years: 280%, increase -> high profitability - NPV over 3 years: \$4,180,431, increase -> profitable - Break-even occurs after 0.17 years, short time ->Short time	Moderately high
Intangible Costs and Benefits	 Customer satisfaction Place in the online music download market, improve the brand image of the group 	Low
	Total	Medium high

Organizational Feasibility

Organizational risk	Guess	Risk
The support from the leadership	The top executives of the company have a strong interest in the project.Highly qualified marketing director	Very Low
User feedback	- It is expected that users will appreciate the presence of TS.	Low
	Total	Low

Conclusion about the feasibility of the project

After project analysis and evaluation, the feasibility of the project after its completion and development is extremely strong. Technical development during project implementation, pricing and management are conducive to project development and productivity.

3. Technical solutions

3.1. Custom Development

According to (Dennis, 2014) Assuming that custom development or building a new system from scratch is the best way to create a system. Here, the company wants to be closely linked with the existing CD-based Web sales system, so the project needs complex programs that require multiplication. Everyone, FitOn

wants an environment built with technology and designed with modern techniques. Consequently, building a new system is a very effective method to meet this requirement.

The risks associated with building and developing a system from scratch can be quite high and risky and there is no guarantee that the project will always succeed.

3.2. Packaged Software

According to (Dennis, 2014) There are thousands of commercial software programs that have been written to serve many purposes. Therefore, multi-purpose development companies often use written packaging software instead of developing their own applications. Using packaged software will be installed quickly. Packaged software will often be a combination of multiple supply specialists created.

3.3. Outsourcing

According to (Dennis, 2014) Hiring an external vendor or developer to create a system will consume very little internal resources for the project. The pay model is much cheaper. Outsourcing can have many benefits for the new system. However, we will have to compromise on confidentiality of important information by creating a new system in the hands of others.

3.4. Evaluate solutions

	· - ·	I			I	I _		I		
Eval	Rela	Custom	Score(Weigh	Developm	Scor	Weight	Packaged	Scor	We
uati	tive	develop	15)	ted	ent of	е	ed	software	e(ight
on	Imp	ment		Score	staff skills,	(15)	score	product	15)	ed
Crite	orta	using C			design and			from FPT		sco
ria	nce(website			company		re
	Wei				managem					
	ght)				ent using					
	,				HTML,CSS					
					and PHP					
Tech										
nical										
issu										
es										
Inte	15	There is	3	45	Ability to	4	60	The	5	75
	13		3	43	1	4	00	current)	/3
grati		no			improve					
on		possibilit			the			system		
with		y of			existing			must work		
exist		matching			system			with a		
ing		the						third party		
syst		existing						to be able		
ems		system						to manage		
								the data		

								and design the website appropriat ely		
Expe rienc e with prod uct	10	No experien ce using C	1	10	IT departme nt has much knowledg e in data managem ent and digital music download	5	50	Have a lot of experienc e about the product	5	50
Dev elop new skills desir ed for the entir e syst em	15	None	1	15	Continue to develop data managem ent and distributio n skills	3	45	None	1	15
Econ omic issu es										
Cost	25	It costs a lot to train the team: \$ 1,000 to develop the skills	1	25	- 500\$ for develop skill.	5	125	700\$ initial charge	2	50
Payb ack time	15	1,3 year	1	15	1 year	2	30	6 months	3	45

Orga nizat ional										
Dem onst rate d prod uct in mar ket	15	Program used by other retail music compani es	5	75	Program used by other retail music companies	5	75	Program used by other retail music companies	5	75
Cust omiz able inter face	5	No	1	5	Easy to do	5	25	No	1	5
Tota I	100			190			410			315

After analyzing and comparing three system development solutions for Tune Source. The results show that the project development score for Tune Source in HTML is much higher than software package and C language development. Therefore, Web development for Tune Source with HTML, CSS and PHP is the most reasonable and helps the project. complete faster.

V. Conclusion

The above is a report on SDLC models and risk management during project implementation and development and is suitable for the Tune Source project. Discuss feasibility studies and choose solutions and techniques to develop and accelerate the success of the project

References

Dennis. (2014). Systems Analysis and Design. In I. Hoboken: John Wiley & Sons, 6th ed.

Sommerville. (2011). In B. Addison-Wesley., Software engineering (p. 9th ed).