Topological large fields, their generic expansions to differential fields and transfer results.

Pablo Cubides (Université de Caen) Françoise Point (FNRS-FRS, UMons)

Konstanz, October 3rd 2018.

Outline of the talk

- dp-minimal fields with a generic derivation,
- Transfer results: elimination of imaginaries, continuous definable functions, open core,
- Applications to dense pairs,
- Further directions.

dp-minimal fields

Definition

A theory T is not dp-minimal if there is a model \mathcal{M} of T, $a_{ij} \in M$ and uniformly unary definable sets $X_i, Y_j \subseteq M$, $i, j \in \mathbb{N}$, such that $a_{ij} \in X_{i'} \leftrightarrow i = i'$, $a_{ij} \in Y_{j'} \leftrightarrow j = j$.

A structure is dp-minimal if its theory is.

Examples of dp-minimal fields

Let $\mathbf{K} := (K, +, \cdot, -, 0, 1)$.

- \bullet (K, <) an ordered real-closed field, ie a model of RCF [o-minimal theory]
- (K, v) a non-trivially valued algebraically closed field, respectively of ACVF [C-minimal theory],
- (K, v) a *p*-adically closed valued field of rank *d*, respectively of $p\mathrm{CF}_d$ [*p*-minimal theory]
- (K, <, v) an ordered valued real-closed field, respectively of RCVF [weakly o-minimal theory].

and more...

dp-minimal fields

Theorem (Johnson)

If $\mathcal{K} := (K, +, \cdot, 0, 1, \cdots)$ is an expansion of an infinite field with a dp-minimal theory but not strongly minimal, then \mathcal{K} can be endowed with a non-discrete Hausdorff definable field topology, namely \mathcal{K} has a uniformly definable basis of neighbourhoods of zero compatible with the field operations, etc \cdots

Moreover, Johnson shows that any definable subset of \mathcal{K} has finite boundary and every infinite definable set has non-empty interior (so \mathcal{K} eliminates \exists^{∞}).

Furthermore, the topology on K is induced either by a non-trivial valuation or an absolute value.

Correspondences

Now for a dp-minimal field \mathcal{K} , we will describe a generalisation of a cell decomposition theorem due to L. Mathews (for certain topological fields).

Definition

Let E, F be two definable subsets of K^n , then a correspondence f is a definable subset graph(f) of $E \times F$ such that

$$0 < |\{y \in F : (x,y) \in graph(f)\}| < \infty, \text{forall } x \in E.$$

A correspondence f is an m-correspondence if for all $x \in E$, $|\{y \in F : (x,y) \in graph(f)\}| = m$.

dp-minimal fields-definable sets

Let X be a A-definable subset of K^n with A a subset of K, then:

Theorem (Simon-Walsberg)

There a finitely many A-definable subsets X_i with $X = \bigcup X_i$ such that X_i is the graph of a A-definable continuous m-correspondence $f: U_i \rightrightarrows K^{n-d}$, where U_i is a A-definable open subset of K^d , for some $0 \le d \le n$.

Conventions: if d = 0, $f : K^0 \rightrightarrows K^{n-d}$, then graph(f) is identified with a finite set and if d = n, $f : U \rightrightarrows K^0$, graph(f) is identified with U (an open subset of K^n).

Note that when ${\rm acl}={\rm dcl},$ we may replace "correspondence" by the graph of a definable function.

dp-minimal fields-dimension

Let K be a dp-minimal field and let X be a A-definable subset of K^n . We have several notions of dimensions:

- the topological dimension:
- let $X \subseteq K^n$, then $\dim(X) := \max\{\ell : \text{ there is a projection } \pi : K^n \to K^\ell \text{ such that } \pi(X) \text{ has non-empty interior}\}.$
- the acl-dimension (acl-dim), defined as follows: acl-dim(\bar{u}/A) := $\min\{\ell: \text{ there is a subtuple } \bar{d} \text{ of } \bar{u} \text{ of length } \ell \text{ such that } \bar{u} \in \text{acl}(A,\bar{d})\}$. Then acl-dim(X/A) := $\max\{\text{acl-dim}(\bar{u}/A): \bar{u} \in X\}$. Note that it is not assumed that acl has the exchange.

dp-minimal fields-dimension

Theorem (Simon-Walsberg)

Then
$$\dim(X) = \operatorname{acl} - \dim(X) (= dp - rank(X)).$$

Let $fr(X) := \overline{X} \setminus X$, where \overline{X} denotes the closure of X.

Theorem (Simon-Walsberg)

 $\dim(fr(X)) < \dim(X).$

dp-minimal fields with a generic derivation

From now on, $\mathcal{K}:=(K,+,-,\cdot,0,1,\cdots)$ denote a dp-minimal field of characteristic 0 and assume that \mathcal{K} is not strongly minimal. Furthermore, we will assume that:

- ullet the language ${\cal L}$ is a relational expansion of the ring (field) language and every relation and its complement is the union of an algebraic set and an open subset.
- \bullet The theory ${\cal T}$ of ${\cal K}$ admits quantifier elimination in the language ${\cal L}.$

Examples

Let \mathcal{L} be the language of fields. Let div be a binary relation.

- Let $\mathcal{L}_{<} := \mathcal{L} \cup \{<\}$, then RCF admits quantifier elimination (Tarski),
- **②** Let $\mathcal{L}_{div} := \mathcal{L} \cup \{div\}$, then ACVF admits quantifier-elimination (Robinson).
- **○** Let $\mathcal{L}_{<,div} := \mathcal{L}_{<} \cup \{div\}$, then RCVF admits quantifierelimination (Cherlin-Dickmann).
- Let $\mathcal{L}_p := \mathcal{L} \cup \{div, c_1, \cdots, c_d, P_n; n \geq 1\}$, then $p\mathrm{CF}_d$ admits quantifier elimination in \mathcal{L}_p (Macintyre, Prestel-Roquette).

In all the above cases, the relations and their complements satisfy the hypothesis to be the union of an open set with an algebraic set.

dp-minimal fields with a generic derivation-some notation:

We consider the *generic* expansion of \mathcal{K} with a derivation δ , namely we put no a priori continuity assumptions on δ . Denote by $\mathcal{L}_{\delta} := \mathcal{L} \cup \{\delta\}$ and \mathcal{T}_{δ} the \mathcal{L}_{δ} -theory $\mathcal{T} \cup \{\delta \text{ is a derivation }\}$.

For $a \in K$ and $m \ge 0$, we let

$$\delta^m(a)$$
 denote the m^{th} -derivative of $a,\ m\geq 1$, with $\delta^0(a)=a,$
$$\mathrm{Jet}_m(a)=\bar{\delta}^m(a)=(\delta^0(a),\delta^1(a),\delta^2(a),\ldots,\delta^m(a)), \text{ and}$$
 for $X\subset K$, $\mathrm{Jet}_m(X)=\{\bar{\delta}^m(a):\ a\in X\}.$

dp-minimal fields with a generic derivation-some notation:

By assumption on \mathcal{L} , any \mathcal{L}_{δ} -term t(x) with $x=(x_1,\ldots,x_n)$, is equivalent, modulo the theory of differential fields, to an \mathcal{L} -term $t^*(\bar{\delta}^{m_1}(x_1),\cdots,\bar{\delta}^{m_n}(x_n))$ for some $(m_1,\cdots,m_n)\in\mathbb{N}^n$.

So with any \mathcal{L}_{δ} -quantifier-free formula $\varphi(x)$, we may associate an equivalent \mathcal{L}_{δ} -formula $\varphi^*(\bar{\delta}^m(x))$, $m \in \mathbb{N}$, (modulo the theory of differential fields) where φ^* is a \mathcal{L} -quantifier-free formula which arises by uniformly replacing every occurrence of $\delta^m(x_i)$ by a new variable y_i^m in φ with the following choice for the order of variables $\varphi^*(y_1^0, \cdots, y_1^m, \cdots, y_n^0, \cdots, y_n^m)$. So we get

$$\varphi(x_1,\ldots,x_n) \Leftrightarrow \varphi^*(\bar{\delta}^m(x_1),\ldots,\bar{\delta}^m(x_n)).$$

Scheme (DL)

Let T as before, $\mathcal{K} \models T$ and $\chi(x, \bar{y})$ be an \mathcal{L} -formula such that for any $\bar{a} \subset K$, $\chi(K, \bar{a})$ is an open neighbourhood of 0 in K. Set $T_{\delta}^* := T_{\delta} \cup (DL)$, where (DL) is the following list of axioms:

Let
$$\bar{a}:=\left(\bar{a}_{1},\cdots,\bar{a}_{n}\right)\,\bar{a}_{i}\subset\mathcal{K}$$
, $1\leq i\leq n$, $n\geq1$, set

$$W_{\bar{a}} := \chi(K, \bar{a}_1) \times \cdots \times \chi(K, \bar{a}_n).$$

 \mathcal{K} satisfies (DL) if for every $n \geq 1$, for every differential polynomial $f(X) \in \mathcal{K}\{X\}$, with $f(X) = f^*(X, \delta(X), \dots, \delta^n(X))$ and for any $\bar{a} \subset \mathcal{K}$, we have:

$$\exists \bar{\alpha} \Big((f^*(\bar{\alpha}) = 0 \land s_f^*(\bar{\alpha}) \neq 0) \Rightarrow \Big(\exists z \big(f(z) = 0 \land s_f(z) \neq 0 \land (\bar{\delta}(z) - \bar{\alpha}) \in W_{\bar{a}} \big) \Big).$$

Axiomatisation of differential t-large e.c. topological fields of characteristic 0

Under the further hypothesis, called t-large—it adapts in this topological setting the property of largeness (Pop)-, the theory T_{δ}^* is consistent and axiomatizes the class of existentially closed models of T_{δ} . In this particular setting, we get:

Theorem (Guzy-P)

Let T be a dp-minimal theory of t-large \mathcal{L} -fields of characteristic 0, admitting quantifier elimination.

Then T_{δ}^* is the model-completion of T_{δ} and admits quantifier elimination.

The above theorem was stated for a larger class of topological fields.

Examples

- We obtain for the theory T_{δ}^* :
 - CODF = RCF_{δ}^* in case T = RCF,
 - ② $RCVF_{\delta}^*$ in case T = RCVF (an expansion of CODF),

 - lacktriangledown $\mathrm{ACVF}_{0,0}^*_\delta$ in case $\mathcal{T}=\mathrm{ACVF}_{0,0}$ (an expansion of DCF_0),

First properties (direct consequences of the axiomatisation)

Using the fact that T_{δ}^* admits q.e. (and the forgetful functor), one can observe:

- (Guzy-P.) If T is NIP, then T_{δ}^* is NIP.
- (Chernikov, 2015) If T is distal, then T_{δ}^* is distal.

Let $\mathcal{K} \models \mathcal{T}_{\delta}^*$ and denote by $\mathcal{C}_{\mathcal{K}}$ its subfield of constants.

Using the axiomatisation (respectively the geometrical axiomatisation), two observations:

- Then C_K is dense in K.
- (Brouette, Cousins, Pillay, P.-in case \mathcal{L} is the language of rings-) Then $C_K \models \mathcal{T}$.

So we get an elementary pair (K, C_K) of models of T.

Order of a definable set

Since T^*_{δ} admits quantifier elimination, every \mathcal{L}_{δ} -definable set $X \subseteq K^n$ is of the form $\mathrm{Jet}_m^{-1}(Y)$ for some quantifier-free \mathcal{L} -definable set $Y \subseteq K^{(m+1)n}$.

Definition (Order)

Let $X \subseteq K^n$ be an \mathcal{L}_{δ} -definable set. The *order of* X, denoted by o(X), is the smallest integer m such that $X = \operatorname{Jet}_m^{-1}(Y)$ for some \mathcal{L} -definable set $Y \subseteq K^{(m+1)n}$.

Open core

Property (*): For any $X \subseteq K^n$ \mathcal{L}_{δ} -definable non-empty subset, there is an integer $m \geq o(X)$ and an \mathcal{L} -definable set $Z \subseteq K^{(m+1)n}$ such that

- $x \in X$ if and only if $\operatorname{Jet}_m(x) \in Z$ and

Note that equivalently in Property (\star) one can require that m = o(X).

Open core-continued

Lemma (C-P)

Property (\star) is equivalent to: T^*_{δ} has \mathcal{L} -open core.

 (\Rightarrow) one shows that given an \mathcal{L}_{δ} -definable set X, its closure \overline{X} is \mathcal{L} -definable.

Claim: $\overline{X} = \pi(\overline{Z})$, where Z has the property (\star) and π is the projection sending each block of (m+1) coordinates to its first coordinate.

Open core-continued

 (\Leftarrow) Conversely, if the theory \mathcal{T}^*_{δ} has \mathcal{L} -open core, then:

take $Y\subset \mathcal{K}^{(o(X)+1)n}$ be an \mathcal{L} -definable set such that $X=\operatorname{Jet}_{o(X)}^{-1}(Y)$.

Set $Z := Y \cap \overline{\operatorname{Jet}_{o(X)}(X)}$. Since $\overline{\operatorname{Jet}_{o(X)}(X)}$ is both closed and \mathcal{L}_{δ} -definable, it is \mathcal{L} -definable (T^*_{δ} has open core).

So the set Z is \mathcal{L} -definable. Since

$$\operatorname{Jet}_{o(X)}(X) \subseteq Z \subseteq \overline{\operatorname{Jet}_{o(X)}(X)},$$

both properties (1) and (2) are easily shown.

Elimination of imaginaries

Let $\mathcal G$ be a collection of sorts of $\mathcal L^{eq}$. We let $\mathcal L^{\mathcal G}$ denote the restriction of $\mathcal L^{eq}$ to the home sort together with the new sorts in $\mathcal G$ and their respective quotient maps.

Theorem (C-P)

Suppose that T admits elimination of imaginaries in $\mathcal{L}^{\mathcal{G}}$. If T^*_{δ} has \mathcal{L} -open core, then T^*_{δ} admits elimination of imaginaries in $\mathcal{L}^{\mathcal{G}}_{\delta}$.

We follow an argument of Marcus Tressl to show EI on CODF.

Elimination of imaginaries

Proof:

Fix a model K of T^*_{δ} and let $X \subseteq K^n$ be a non-empty \mathcal{L}_{δ} -definable set.

We will show that X has an \mathcal{L}_{δ} -code in $\mathcal{G}(K)$, namely, there is a tuple $e \in \mathcal{G}(K)$ such that for all $\sigma \in \operatorname{Aut}_{\mathcal{L}_{\delta}}(K)$

$$\sigma(X) = X$$
 if and only if $\sigma(e) = e$.

Observation 1: every \mathcal{L} -definable set has an \mathcal{L}_{δ} -code in $\mathcal{G}(K)$.

$$\widetilde{X} := \operatorname{Jet}_{o(X)}^{-1}(\overline{\operatorname{Jet}_{o(X)}(X)}).$$

By the open core assumption, $\overline{\operatorname{Jet}_{o(X)}(X)}$ is \mathcal{L} -definable. We proceed by induction on $\dim(\overline{\operatorname{Jet}_{o(X)}(X)})$.

Elimination of imaginaries

Conditional to having \mathcal{L} -open core, we obtain the following corollaries:

- For T = RCF, yet another proof that CODF admits elimination of imaginaries in the language of differential fields.
- For $T=\operatorname{ACVF}$, $T=\operatorname{RCVF}$ and $T=p\operatorname{CF}$, a proof that T^*_δ has elimination of imaginaries in the language $\mathcal{L}^{\mathcal{G}}_\delta$ where \mathcal{G} corresponds to the so called *geometric sorts* (by the corresponding results of Haskell-Hrushovski-Macpherson, Mellor and Hrushovski-Martin-Rideau respectively).

Continuous definable functions and open core

Theorem (C-P)

Assume that $\operatorname{acl}_{\mathcal{L}}=\operatorname{dcl}_{\mathcal{L}}$ (finite Skolem functions) for models of T. Let $X\subseteq K^n$ be an \mathcal{L} -definable set and $f:X\to K$ be a continuous \mathcal{L}_{δ} -definable function. Then f is \mathcal{L} -definable.

COROLLARY

 CODF has \mathcal{L} -open core.

Continuous definable functions and open core

Let $\mathcal{L}_{\mathrm{RCVF}}$ and $\mathcal{L}_{p\mathrm{CF}_d}$ be the languages in which RCVF and $p\mathrm{CF}_d$ eliminate quantifiers respectively. Let \mathcal{L}_{Γ} be the 2-sorted language

$$\begin{split} &(\mathcal{K},\mathcal{L}) \\ &\left\{ (\Gamma \cup \{\infty\}, \mathcal{L}_{oag}) & \text{if } \mathcal{L} := \mathcal{L}_{\mathrm{RCVF}} \\ &(\Gamma \cup \{\infty\}, \mathcal{L}_{\mathsf{Pres}}) & \text{if } \mathcal{L} := \mathcal{L}_{p} \mathrm{CF}_{d} \\ &v \colon \mathcal{K} \to \Gamma \cup \{\infty\}. \end{split} \right.$$

Let $\mathcal{L}_{\Gamma,\delta}$ be the extension of \mathcal{L}_{Γ} in which we replace \mathcal{L} by \mathcal{L}_{δ} in the valued field.

Theorem (C-P)

Let T be RCVF or pCF_d . Let K be a model of T^*_δ . Then the $\mathcal{L}_{\Gamma,\delta}$ theory of K has quantifier elimination.

Continuous definable functions and open core

Corollary (C-P)

Let T be RCVF or pCF_d . Let K be a model of T^*_δ . Then every $\mathcal{L}_{\Gamma,\delta}$ -definable subset $X\subseteq \Gamma\cup\{\infty\}$ is \mathcal{L}_{Γ} -definable.

Theorem (C-P)

Assume that $\operatorname{acl}_{\mathcal{L}}=\operatorname{dcl}_{\mathcal{L}}$ (finite Skolem functions) for models of T. Let $X\subseteq K^n$ be an \mathcal{L} -definable set and $f:X\to \Gamma\cup\{\infty\}$ be a continuous $\mathcal{L}_{\Gamma,\delta}$ -definable function. Then f is \mathcal{L}_{Γ} -definable.

Corollary (C-P)

 RCVF_{δ}^* and pCF_{δ}^* have \mathcal{L} -open core.

Let $\mathcal{L}^2 := \mathcal{L} \cup \{P\}$ where P is a new unary predicate P. Let \mathcal{T}^2 be the \mathcal{L}^2 -theory of dense elementary pairs (K, F).

Recall that if K is a model of T_{δ}^* , then (K, C_K) is a model of T^2 .

Assume from now that T is geometric.

Theorem (van den Dries/Berenstein-Vassiliev/Fornasiero/....)

The theory T^2 is complete.

COROLLARY (C-P)

Every model (K, F) of T^2 has an \mathcal{L}^2 -elementary extension (K^*, F^*) such that K^* is a model of T^*_{δ} with constant field $C_{K^*} = F^*$.

COROLLARY (C-P)

Assume that \mathcal{T}_δ has open core. Then \mathcal{T}^2 has $\mathcal{L}\text{-open}$ core.

COROLLARY (Boxall-Hieronymi/Fornasiero)

If T is RCF, RCVF or pCF, then T^2 has \mathcal{L} -open core.

Theorem (Hieronymi, Nell)

Let T be an o-minimal theory extending the theory of ordered abelian groups. Then the theory T^2 is not distal.

Question: (Simon) Does T^2 admit a distal expansion?

Theorem (Nell)

Let F be an ordered field, A be an ordered F-vector space and B a dense subspace. Let $\mathcal L$ denote the language of ordered F-vector spaces. Then, the $\mathcal L^2$ -theory of (A,B) has a distal expansion.

Theorem (Chernikov)

Assume that T is distal. Then T_{δ}^* is distal.

Let \mathcal{T}^2_δ be the \mathcal{L}^2_δ -theory extending \mathcal{T}^*_δ by the axiom

$$\forall x (P(x) \leftrightarrow \delta(x) = 0),$$

i.e., P is interpreted as the constant field.

Corollary (C-P)

The theory T_{δ}^2 is a distal expansion of T^2 .

In particular, the theories of dense pairs of real-closed fields, dense pairs of p-adically closed fields and dense pairs of real closed valued fields admit a distal expansion.

Further directions

Let K be a model of T_{δ}^* .

- Show that if $f: X \rightrightarrows K$ is a continuous \mathcal{L}_{δ} -definable correspondence and $X \subseteq K^n$ is \mathcal{L} -definable, then f is \mathcal{L} -definable.
- Develop the formalism of T^*_{δ} when T is a theory in a multisorted language. This might provide a way to deal with valued fields such as $\mathbb{C}(\!(X)\!)$ and $\mathbb{R}(\!(X)\!)$.
- Extend this formalism to some dp-minimal expansions of fields.

Thank you for your attention.