

Carrera:

Ingeniería Mecatrónica

Materia:

Robótica

Reporte:

Manipulador RoRR: Matriz Jacobiana de Velocidad

Alumno:

Salgado Ojeda Carlos Daniel 06/634

Catedratico:

M.C. Armando Valdéz Reyes

Lugar y Fecha:

Mexicali, BC a 29 de Noviembre del 2010

Índice general

1.	Matríz Jacobiana de Velocidad		1
	1.1.	Introducción	1
	1.2.	Parámetros DH	1
	1.3.	Matriz de Transformación Total	1
	1.4.	Vectores de Posición	2
	1.5.	Matriz Jacobiana enlace 3	2
	1.6.	Matriz Jacobiana enlace 2	3
	1.7.	Matriz Jacobiana enlace 1	3
	1.8.	Conclusiones	4

1 Matríz Jacobiana de Velocidad

1.1. Introducción

En robótica, un jacobiano es la relación de velocidad angular con la velocidad cartesiana de un manipulador.

1.2. Parámetros DH

$$d_1 = 11.3cm$$

$$a_2 = 9.7cm$$

$$a_3 = 15.6cm$$

1.3. Matriz de Transformación Total

$$T_3^0 = \left[\begin{array}{cccc} C_1 \left[C_{23} \right] & C_1 \left[-S_{23} \right] & S_1 & C_1 \left[C_{23} a_3 + C_2 a_2 \right] \\ S_1 \left[S_{23} \right] & S_1 \left[-S_{23} \right] & -C_1 & S_1 \left[S_{23} a_3 + S_2 a_2 \right] \\ S_{23} & C_{23} & 0 & a_3 S_{23} + a_2 S_2 + d_1 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

1.4. Vectores de Posición

$$\begin{bmatrix} X_3 \\ Y_3 \\ Z_3 \end{bmatrix} = \begin{bmatrix} C_1 [C_{23}a_3 + C_2a_2] \\ S_1 [S_{23}a_3 + S_2a_2] \\ a_3 S_{23} + a_2 S_2 + d_1 \end{bmatrix}$$

$$\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} a_2 C_1 C_2 \\ a_2 C_2 S_1 \\ a_2 S_2 + d_1 \end{bmatrix}$$

$$\begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ d_1 \end{bmatrix}$$

1.5. Matriz Jacobiana enlace 3

Si la defición de Jacobiano es

$$J = \frac{\delta x}{\delta \theta}$$

Y la posición del enlace 3 es

$$\begin{bmatrix} X_3 \\ Y_3 \\ Z_3 \end{bmatrix} = \begin{bmatrix} C_1 [C_{23}a_3 + C_{2}a_2] \\ S_1 [S_{23}a_3 + S_{2}a_2] \\ a_3S_{23} + a_2S_2 + d_1 \end{bmatrix} = \begin{bmatrix} a_3C_1C_{23} + a_2C_1C_2 \\ a_3S_1S_{23} + a_2S_1S_2 \\ a_3S_{23} + a_2S_2 + d_1 \end{bmatrix}$$

Entonces

$$J_{3} = \begin{bmatrix} \frac{\delta X_{3}}{\delta \theta_{1}} & \frac{\delta X_{3}}{\delta \theta_{2}} & \frac{\delta X_{3}}{\delta \theta_{3}} \\ \frac{\delta Y_{3}}{\delta \theta_{1}} & \frac{\delta Y_{3}}{\delta \theta_{2}} & \frac{\delta Y_{3}}{\delta \theta_{3}} \\ \frac{\delta Z_{3}}{\delta \theta_{1}} & \frac{\delta Z_{3}}{\delta \theta_{2}} & \frac{\delta Z_{3}}{\delta \theta_{3}} \end{bmatrix}$$

$$J_3 = \begin{bmatrix} -a_3S_1C_{23} - a_2S_1C_2 & -a_3C_1S_{23} - a_2C_1S_2 & -a_2C_1S_{23} \\ a_3C_1S_{23} + a_2C_1S_2 & a_3S_1C_{23} + a_2S_1C_2 & a_2S_1C_{23} \\ 0 & a_3C_{23} + a_2C_2 & a_3C_{23} \end{bmatrix}$$

1.6. Matriz Jacobiana enlace 2

Su posición

$$\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} a_2 C_1 C_2 \\ a_2 C_2 S_1 \\ a_2 S_2 + d_1 \end{bmatrix}$$

Entonces

$$J_2 = \begin{bmatrix} \frac{\delta X_2}{\delta \theta_1} & \frac{\delta X_2}{\delta \theta_2} \\ \frac{\delta Y_2}{\delta \theta_1} & \frac{\delta Y_2}{\delta \theta_2} \\ \frac{\delta Z_2}{\delta \theta_1} & \frac{\delta Z_2}{\delta \theta_2} \end{bmatrix} = \begin{bmatrix} -a_2 S_1 C_2 & -a_2 C_1 S_2 \\ a_2 C_1 C_2 & -a_2 S_1 S_2 \\ 0 & a_2 C_2 \end{bmatrix}$$

1.7. Matriz Jacobiana enlace 1

Posicion

$$\begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ d_1 \end{bmatrix}$$

Su jacobiano es

$$J_1 = \begin{bmatrix} \frac{\delta X_1}{\delta \theta_1} \\ \frac{\delta Y_1}{\delta \theta_1} \\ \frac{\delta Z_1}{\delta \theta_1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

No existe el jacobiano para la primer unión, ya que no hay velocidades angulares.

1.8. Conclusiones

El jacobiano de un manipulador relaciona el vector de velocidades de uniones a la velocidad del cuerpo del efector final. Ésto es muy útil para trabajar con velocidades obtenidas desde un acelerómetro.