Bewijzen - Inleveropgave 4

B.H.J. van Boxtel

12 Oktober 2022 - Week 41

Gegeven is het volgende lemma:

Lemma 1. Zij $m, n \in \mathbb{Z}$ en p een priemgetal. Als $p \mid mn$, dan geldt dat $p \mid m$ of $p \mid n$.

Ook gegeven is de volgende relatie R op \mathbb{Z} , voor gehele getallen a en b door de voorwaarde dat a R b dan en slechts dan als b - a deelbaar is door zowel p als q.

(a). Theorem 1. R is een equivalentierelatie.

Om te laten zien dat R een equivalentierelatie is, moeten we laten zien dat R reflexief, symmetrisch en transitief is.

• Claim 1. R is reflexief. In andere woorden er geldt a R a.

Bewijs.

We weten dat $q \mid 0$.

Dus $q \mid a - a$.

Ook weten we dat $p \mid 0$.

Dus $p \mid a - a$.

Dus a R a.

Dus R is reflexief.

• Claim 2. R is symmetrisch. Dat wil zeggen a R b impliceert b R a.

Bewijs.

Neem aan a R b.

Volgens de definitie van R geldt dan $q \mid b - a$.

Dus b-a is te schrijven als b-a=kq voor een $k\in\mathbb{Z}$.

Dus a - b = -kq.

Dus $q \mid a - b$.

Volgens de definitie van R geldt $p \mid b - a$.

Dus b-a is te schrijven als b-a=mp voor een $m \in \mathbb{Z}$.

Dus a - b = -kp.

Dus $p \mid a - b$.

Dus $q \mid a - b$ en $p \mid a - b$, dus b R a.

We zien dat b R a volgt uit a R b, dus R is symmetrisch.

• Claim 3. R is transitief. Dat wil zeggen dat wanneer a R b en b R c, dan a R c.

Bewijs.

Neem aan a R b en b R c. Vanuit de definitie van R volgt dan dat q een deler is van b - a, en dat q een deler is van c - b.

Dus b-a is te schrijven als b-a=kq met $k \in \mathbb{Z}$.

En c-b is te schrijven als c-b=mq met $m\in\mathbb{Z}$.

Wanneer we deze twee vergelijkingen bij elkaar optellen, vinden we dat c - a = q(k + m).

Omdat $(k+m) \in \mathbb{Z}$, geldt nu dus dat $q \mid c-a$.

Vanuit de definitie van R volgt ook dat p een deler is van b-a, en dat p een deler is van c-b.

Dus b-a is te schrijven als b-a=np met $n \in \mathbb{Z}$.

En c-b is te schrijven als c-b=lp met $l\in\mathbb{Z}$.

Wanneer we deze twee vergelijkingen bij elkaar optellen, vinden we dat c - a = p(n + l).

Omdat $(n+l) \in \mathbb{Z}$, geldt nu dus dat $p \mid c-a$.

Dus omdat $q \mid c - a$ en $p \mid c - a$, geldt a R c.

Dus a R b en b R c impliceert a R c.

Dus R is transitief.

Dus R is een equivalentierelatie.

(b). **Theorem 2.** De relatie a R b geldt dan en slechts dan als $a \equiv b \pmod{pq}$.

Dit is een biconditionele implicatie, dus de implicatie moet allebei de kanten op gelden. Eerst bewijs ik de implicatie van links naar rechts, dat wil zeggen a R b impliceert $a \equiv b \pmod{pq}$.

Bewijs.

Neem aan a R b.

Dan geldt vanuit de definitie van R dat $p \mid b - a$ en $q \mid b - a$.

Omdat p en q priemgetallen zijn, kunnen dit geen delers van elkaar zijn. Omdat geldt $p \mid b-a$ én $q \mid b-a$, kunnen we b-a schrijven als b-a=kpq voor een $k \in \mathbb{Z}$.

Dus $b - a \equiv 0 \pmod{pq}$ en $b \equiv a \pmod{pq}$.

Om het bewijs van **Theorem 2.** af te maken, bewijzen we nu de implicatie de andere kant op. Dat wil zeggen $a \equiv b \pmod{pq}$ impliceert a R b.

Bewijs.

Neem aan $a \equiv b \pmod{pq}$.

Dus $a - b \equiv 0 \pmod{pq}$.

Dus $b - a \equiv 0 \pmod{pq}$.

Dus $pq \mid b - a$.

Dan kunnen we -a schrijven als b-a=kpq voor een $k\in\mathbb{Z}$.

Dus $p \mid b - a$ en $q \mid b - a$.

(c). **Theorem 3.** De verzameling van equivalentieklassen van R is gelijk aan \mathbb{Z}_{pq} .

Bewijs.

Volgens **Theorem 2.** geldt aRb dan en slechts dan als $a \equiv b \pmod{pq}$. Dit betekent dat een getal b alleen equivalent kan zijn aan a dan en slechts dan als b congruent is aan $a \pmod{pq}$. Dus alle getallen in de equivalentie-klassen van R met representant a, zitten ook in de equivalentieklassen van de getallen \pmod{pq} met representant a. Ook geldt dat alle getallen in de equivalentieklassen van de getallen \pmod{pq} met representant a in de equivalentieklassen van R met representant a zitten. Dus de verzameling van equivalentieklassen van R is gelijk aan \mathbb{Z}_{pq} .