Lý thuyết Điều khiển tự động 1

Tính ổn định của hệ thống

Sai lệch tĩnh của hệ kín

ThS. Đỗ Tú Anh

Bộ môn Điều khiển tự động Khoa Điện, Trường ĐHBK HN

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Các định nghĩa về Ốn định

• Òn định BIBO (Bounded Input Bounded Output)

Một hệ thống được gọi là ổn định nếu khi kích thích hệ bằng tín hiệu u(t) bị chặn ở đầu vào thì hệ sẽ có đáp ứng y(t) ở đầu ra cũng bị chặn (tất cả các điểm cực của hệ đều nằm ở nửa bên trái mặt phẳng phức s).

• Biên giới ổn định (Marginal stability)

Một hệ thống đgl ở biên giới ổn định nếu có một số điểm cực nằm trên trục ảo và các điểm cực còn lại nằm ở nửa bên trái của mặt phẳng phức s.

• Ôn định Lyapunov

Một hệ thống được gọi là $\emph{on định Lyapunov}$ tại điểm cân bằng x_e nếu sau khi có một tác động tức thời đánh bật hệ ra khỏi điểm cân bằng x_e thì sau đó hệ có khả năng *tự quay về được lân cận* điểm cân bằng x_e ban đầu. Nếu hệ không những tự quay về được lân cận x_e mà còn tiến tới x_e thì hệ đgl $\emph{on định tiệm cận Lyapunov}$ tại x_e

(Điểm cân bằng là điểm mà hệ thống sẽ nằm nguyên tại đó khi không có tác động từ bên ngoài.)

Các định nghĩa về Ôn định

Lý thuyết ĐKTĐ 1

Bộ môn ĐKTĐ-Khoa Điện

Phân tích tính ổn định

• Để kiểm tra tính ổn định của một hệ LTI, ta chỉ cần kiểm tra các điểm cực của hệ, cũng chính là các nghiệm của đa thức đặc tính.

$$A(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Hệ sẽ ổn định nếu A(s) có tất cả các nghiệm đều nằm bên trái trục ảo (có phần thực âm và khác 0).

- Một số phương pháp (đại số) kiểm tra dấu các nghiệm của A(s) mà không cần giải tìm nghiệm của nó: tiêu chuẩn Routh, tiêu chuẩn Hurwitz, tiêu chuẩn Lienard-Chipart.
- Một số phương pháp (hình học) đánh giá ổn định: tiêu chuẩn Michailov, tiêu chuẩn Nyquist, tiêu chuẩn Kharitonov.

Tiêu chuẩn ổn định Routh

- Là phương pháp đại số thuận tiện để kiểm tra tính ổn định BIBO của hệ thống.
- Điều kiện cần là tất cả các hệ số $a_0, a_1, \dots a_n$ của đa thức đặc tính A(s) phải cùng dấu và khác 0.
- Đối với điều kiện cần và đủ, đầu tiên phải thành lập bảng Routh

Tiêu chuẩn ổn định Routh-Hurwitz

$$A(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

$$b_1 = \frac{a_{n-1}a_{n-2} - a_na_{n-3}}{a_{n-1}},$$

$$b_2 = \frac{a_{n-1}a_{n-4} - a_na_{n-5}}{a_{n-1}},$$

Tiêu chuẩn ổn định Routh

$$a_{n}$$
, a_{n-2} , a_{n-4} , a_{n-6} , ..., a_{n-1} , a_{n-3} , a_{n-5} , a_{n-7} , ..., a_{n-1} , a_{n-3} , a_{n-5} , a_{n-7} , ..., a_{n-1} , a_{n-2} , a_{n-3} , a_{n-2} , ..., a_{n-1} , a_{n-2} , a_{n-2} , ..., a_{n

 Tương tự, các phần tử của hàng thứ
 4 được tính toán dựa trên hai hàng ngay trước nó.

$$c_{1} = \frac{b_{1}a_{n-3} - a_{n-1}b_{2}}{b_{1}},$$

$$c_{2} = \frac{b_{1}a_{n-5} - a_{n-1}b_{3}}{b_{1}}.$$

 Các phần tử ở các hàng tiếp theo được tính toán một cách tương tự.

Tiêu chuẩn ổn định Routh

Các điều kiện cần và đủ là:

- Nếu tất cả các phần tử trong cột đầu tiên của bảng Routh đều cùng dấu và khác 0 thì tất cả các nghiệm của đa thức đặc tính A(s) đều có phần thực âm.
- Số lần đổi dấu trong cột đầu tiên bằng số các nghiệm của A(s) có phần thực dương.

$$A(s) = 2s^4 + s^3 + 3s^2 + 5s + 10$$

Từ bảng Routh ta thấy các phần tử trong cột đầu tiên đổi dấu 2 lần

- → đa thức đặc tính có hai nghiệm có phần thực dương.
- → hệ không ổn định.

Tiêu chuẩn ổn định Hurwitz

$$A(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

Các điều kiện cần và đủ là:

- Nếu tất cả các định thức Hurwitz D_i (i=1,2,...,n) đều cùng dấu và khác 0 thì tất cả các nghiệm của đa thức đặc tính A(s) đều có phần thực âm.
- Số lần đổi dấu trong dãy

$$a_0, D_1, \frac{D_2}{D_1}, \frac{D_3}{D_2}, \dots, \frac{D_n}{D_{n-1}}$$

bằng số các nghiệm của A(s) có phần thực dương.

Tiêu chuẩn ổn định Hurwitz

Tìm điều kiện cho tham số k để hệ với hàm truyền đạt sau được ổn định

$$G(s) = \frac{1}{3 + 2s + (k+2)s^2 + ks^3}$$

Áp dụng tiêu chuẩn Hurwitz với $A(s) = 3 + 2s + (k+2)s^2 + ks^3$, tức là

$$H = \begin{pmatrix} 2 & k & 0 \\ 3 & k+2 & 0 \\ 0 & 2 & k \end{pmatrix} \quad \Rightarrow \quad H_1 = 2 \; , \quad H_2 = \begin{pmatrix} 2 & k \\ 3 & k+2 \end{pmatrix} \; , \quad H_3 = \begin{pmatrix} 2 & k & 0 \\ 3 & k+2 & 0 \\ 0 & 2 & k \end{pmatrix}$$

ta được

$$D_1 = 2$$
, $D_2 = -k+4$, $D_3 = kD_2 = k(-k+4)$.

Vậy để hệ ổn định thì phải có

$$\begin{cases} -k+4>0 \\ k(-k+4)>0 \end{cases} \Leftrightarrow \begin{cases} k<4 \\ 0< k<4 \end{cases} \Leftrightarrow 0< k<4.$$

• Hệ số khuếch đại tĩnh của một hàm truyền nhận được từ việc áp dụng định lý giá trị cuối cho đáp ứng bước nhảy

$$g_{ss} = \lim_{s \to 0} s \left\{ G(s) \frac{1}{s} \right\} = \lim_{s \to 0} G(s)$$

 Xét sai lệch tĩnh của một hệ thống kín

$$e_{ss} = \lim_{t \to \infty} e(t)$$

$$E(s) = R(s) - GH(s)E(s)$$

$$E(s) = \frac{R(s)}{1 + GH(s)}$$

• Áp dụng định lý giá trị cuối

$$e_{ss} = \lim_{s \to 0} s \left\{ \frac{R(s)}{1 + GH(s)} \right\}$$

- Xét sai lệch tĩnh cho các trường hợp tín hiệu vào khác nhau, giả thiết H(s)=1
- Nếu H(s) không bằng 1, sai lệch tĩnh là sai lệch điều khiển, không phải sai lệch đầu ra

a) Với tín hiệu vào bước nhảy

$$e_{ss} = \lim_{s \to 0} s \left\{ \frac{\left(\frac{A}{s}\right)}{1 + G(s)} \right\} = \frac{A}{1 + \lim_{s \to 0} G(s)} = \frac{A}{1 + K_p}$$

Tín hiệu vào bước nhảy

$$r(t)=A$$

$$R(s)=A/s$$

Sai lệch phần trăm %sai lệch=
$$\frac{e_{ss}}{A} \times 100\% = \frac{1}{1+K_p} \times 100\%$$

b) Với tín hiệu vào dốc

$$e_{ss} = \lim_{s \to 0} \left\{ \frac{\left(\frac{A}{s^{\frac{1}{2}}}\right)}{1 + G(s)} \right\} = \frac{A}{\lim_{s \to 0} s G(s)} = \frac{A}{K_{v}}$$

Linear Simulation Results

Proposition Results

Results

Results

Results

Results

Results

Time (sec.)

Tín hiệu vào dốc

$$r(t)=At$$
 $R(s)=A/s^2$

Với tín hiệu vào parabol

$$e_{ss} = \lim_{s \to 0} \left\{ \frac{\left(\frac{A}{s^{3/2}}\right)}{1 + G(s)} \right\} = \frac{A}{\lim_{s \to 0} s^{2} G(s)} = \frac{A}{K_{a}}$$
Trong tất cả các trường hợp:

%sai lệch= $\frac{e_{ss}}{A} \times 100\%$

%sai lệch=
$$\frac{e_{ss}}{A} \times 100\%$$

Tín hiệu vào parabol

$$r(t)=At^2$$

$$R(s)=2A/s^3$$

Sai lệch tĩnh của hệ thống kín không những phụ thuộc dạng tín hiệu đầu vào mà còn phụ thuộc vào cấu trúc của hệ

Phân loại cấu trúc hệ thống

• Dạng tổng quát của hàm truyền đạt (dưới dạng điểm không-điểm cực)

$$G(s) = \frac{K(s+z_1)(s+z_2)\cdots(s+z_m)}{s^i(s+p_1)(s+p_2)\cdots(s+p_n)}$$

- Loại cấu trúc hệ thống phụ thuộc vào số điểm cực nằm tại gốc tọa độ (hay số các thành phần tích phân)
- Với $i = 0, 1, 2 \rightarrow loại 0, 1, 2$
- Với i = 0, HSKĐ tĩnh của G(s) là $g_{ss} = \frac{Kz_1z_2\cdots z_m}{p_1p_2\cdots P_n}$
- Với i=1 trở lên, $g_{ss} \rightarrow \infty$ và $e_{ss} \rightarrow 0$

Loại cấu trúc hệ thống và sai lệch tĩnh

System Type	Step Input	Ramp Input	Parabolic Input
0	$e_{ss} = \frac{A}{1 + K_p}$	$e_{ss}=\infty$	$e_{ss}=\infty$
1	$e_{ss}=0$	$e_{ss} = \frac{A}{K_v}$	$e_{ss}=\infty$
2	$e_{ss}=0$	$e_{ss}=0$	$e_{ss} = \frac{A}{K_a}$