Методы машинного обучения. Обучение без учителя: поиск ассоциативных правил

Воронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.v.vorontsov@yandex.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-23-24 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 2 апреля 2024

Методы обучения без учителя (unsupervised learning)

Выявление структуры данных на основе сходства:

- кластеризация (clustering) и квантизация (quantization)
- оценивание плотности распределения (density estimation)
- одноклассовая классификация (anomaly detection)

Преобразование признакового пространства:

- метод главных компонент (principal components analysis)
- автокодировщики (autoencoders)
- многомерное шкалирование (multidimensional scaling)
- матричные разложения (matrix factorization)
- тематическое моделирование (topic modeling)

Поиск взаимосвязей в данных или синтез учителя:

- частичное обучение (semi-supervised learning)
- поиск ассоциативных правил (association rule learning)
- самостоятельное обучение (self-supervised learning)

Содержание

- 📵 Задачи поиска ассоциативных правил
 - Определения и обозначения
 - Прикладные задачи
 - Связь с логическими закономерностями
- Алгоритм APriory
 - Этап 1: поиск частых наборов
 - Этап 2: выделение ассоциативных правил
 - Развитие алгоритмов индукции ассоциативных правил
- ③ Эффективные алгоритмы: FP-Growth, TopMine
 - Этап 1: построение префиксного FP-дерева
 - Этап 2: поиск частых наборов по FP-дереву
 - Алгоритм поиска коллокаций в текстах

Определения и обозначения

X — пространство объектов $X^{\ell} = \{x_1, \dots, x_{\ell}\} \subset X$ — обучающая выборка $\mathscr{F} = \{f_1, \dots, f_n\}, \ f_j \colon X \to \{0,1\}$ — бинарные признаки (items)

Каждому подмножеству $\varphi\subseteq\mathscr{F}$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), \quad x \in X$$

Если arphi(x)=1, то «признаки из arphi совместно встречаются у x»

Частота встречаемости (поддержка, support) φ в выборке X^ℓ

$$\nu(\varphi) = \frac{1}{\ell} \sum_{i=1}^{\ell} \varphi(x_i)$$

Если $\nu(\varphi)\geqslant \delta$, то «набор φ частый» (frequent itemset) Параметр δ — минимальная поддержка, MinSupp

Определения и обозначения

Определение

Ассоциативное правило (association rule) $\varphi \to y$ — это пара непересекающихся наборов $\varphi, y \subseteq \mathscr{F}$ таких, что: 1) наборы φ и у совместно часто встречаются,

$$\nu(\varphi \cup y) \geqslant \delta;$$

2) если встречается φ , то часто встречается также и y,

$$\nu(y|\varphi) \equiv \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \geqslant \varkappa.$$

 $\nu(y|\varphi)$ — значимость (confidence) правила.

Параметр δ — минимальная поддержка, MinSupp.

Параметр \varkappa — минимальная значимость, MinConf.

Классический пример

Анализ рыночных корзин (market basket analysis) [1993]

признаки — товары (предметы, items) объекты — чеки (транзакции)

 $f_j(x_i)=1$ означает, что в i-м чеке оплачен товар j.

Пример: «если куплен хлеб φ , то будет куплено и молоко y с вероятностью $\nu(y|\varphi)=60\%$; причём оба товара покупаются совместно с вероятностью $\nu(\varphi\cup y)=2\%$ ».

Возможные применения:

- оптимизировать размещение товаров на полках
- формировать персональные рекомендации
- планировать рекламные кампании (промо-акции)
- более эффективно управлять ценами и ассортиментом

Классический пример: «пиво с памперсами»

Data Mining — процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных, доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности (Григорий Пятецкий-Шапиро, 1992)

Пример 2 — из области анализа текстов

Поиск частотных n-грамм в текстовых коллекциях признаки — слова (после лемматизации или стемминга) объекты — n-граммы — n-ки слов, идущих друг за другом $f_j(x_i)=1$ означает, что слово j входит в n-грамму x_i Ассоциативное правило предсказывает, какое слово y может идти после n-1 предыдущих φ или какое слово y может находиться в окружении φ (skip-gram) Пример: «пусть бегут неуклюже» с вероятностью 99%

Возможные применения:

- построение языковых моделей для генерации текста;
- выделение *коллокаций n*-грамм, встречающихся значимо чаще, чем при случайном независимом сочетании слов,
- словосочетаний грамматически связанных коллокаций,
- *терминов* словосочетаний, означающих единое понятие

Ассоциативные правила — это логические закономерности

Определение

Предикат $\varphi(x)$ — логическая закономерность класса $c \in Y$

$$\mathsf{Supp}(\varphi) = \frac{p(\varphi)}{\ell} \geqslant \delta; \qquad \mathsf{Conf}(\varphi) = \frac{p(\varphi)}{p(\varphi) + n(\varphi)} \geqslant \varkappa$$

$$p(arphi) = \# ig\{ x_i \in X^\ell \colon arphi(x_i) = 1 \ \text{и} \ y(x_i) = c ig\} \quad +$$
 примеры класса с $n(arphi) = \# ig\{ x_i \in X^\ell \colon arphi(x_i) = 1 \ \text{и} \ y(x_i) \neq c ig\} \quad -$ примеры класса с

Для «arphi o y» возьмём целевой признак $y(x) = \bigwedge_{f \in y} f(x)$. Тогда

$$\nu(\varphi \cup y) \equiv \mathsf{Supp}_1(\varphi) \geqslant \delta; \quad \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \equiv \mathsf{Conf}_1(\varphi) \geqslant \varkappa$$

Вывод: различия двух определений — чисто терминологические

Два этапа построения правил. Свойство антимонотонности

Поскольку $\varphi(x) = \bigwedge_{f \in \varphi} f(x)$ — конъюнкция, имеет место

свойство антимонотонности:

для любых $\psi, \varphi \subset \mathscr{F}$ из $\varphi \subset \psi$ следует $\nu(\varphi) \geqslant \nu(\psi)$.

Следствия:

- lacktriangle если ψ частый, то все его подмножества $\varphi \subset \psi$ частые.
- $oldsymbol{Q}$ если $oldsymbol{arphi}$ не частый, то все наборы $\psi\supset oldsymbol{arphi}$ также не частые.
- **3** $\nu(\varphi \cup \psi) \leqslant \nu(\varphi)$ для любых φ, ψ .

Два этапа поиска ассоциативных правил:

- поиск частых наборов (многократный просмотр транзакционной базы данных).
- выделение ассоциативных правил (простая эффективная процедура в оперативной памяти).

Алгоритм APriory (основная идея — поиск в ширину)

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \varkappa = \text{MinConf};
выход: R = \{(\varphi, y)\} — список ассоциативных правил;
множество всех частых исходных признаков:
 G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
для всех j = 2, ..., n
     множество всех частых наборов мощности j:
      G_i := \{ \varphi \cup \{f\} \mid \varphi \in G_{i-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
    если G_i = \emptyset то
      выход из цикла по j;
R := \varnothing:
для всех \psi \in G_i, j = 2, \ldots, n
 AssocRules (R, \psi, \varnothing);
```

Выделение ассоциативных правил

Этап 2. Простой рекурсивный алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.

```
функция AssocRules (R, \varphi, y)
    вход: (\varphi, y) — ассоциативное правило;
    выход: R — список ассоциативных правил;
    для всех f \in \varphi: \mathrm{id}_f > \max_{g} (\mathsf{чтобы} \ \mathsf{uзбежать} \ \mathsf{повторов} \ y)
         \varphi' := \varphi \setminus \{f\}; \quad y' := y \cup \{f\};
         если \nu(y'|\varphi') \geqslant \varkappa то
             добавить ассоциативное правило (\varphi', y') в список R;
          если |\varphi'| > 1 то
           AssocRules (R, \varphi', y');
```

 id_f — порядковый номер признака f в $\mathscr{F} = \{f_1, \dots, f_n\}$

Модификации алгоритмов индукции ассоциативных правил

- Более эффективные структуры данных для быстрого поиска частых наборов
- Поиск правил по случайной подвыборке объектов при пониженных δ, \varkappa , затем отбор правил на полной выборке
- Иерархические алгоритмы, учитывающие иерархию признаков (например, товарное дерево)
- Учёт времени: инкрементные и декрементные алгоритмы

Другие, но похожие задачи:

- Поиск последовательных шаблонов в клиентских транзакциях (sequential pattern mining)
- Поиск в текстах высокочастотных n-грамм, коллокаций или терминов (automatic term extraction)
- Учёт информации о клиентах (рекомендательные системы)

Префиксное \overline{P} -дерево (\overline{FP} - frequent pattern). Пример.

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	υс	ца	ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	_	С	d	е	-	-	dcae
-	b	_	d	_	-	-	d b
-	b	С	d	_	-	-	d b c
-	b	С	_	_	-	-	bс
a	b	_	d	_	-	-	dba
-	b	_	d	е	-	-	d b e
-	b	С	_	е	_	g	Ъсе
-	_	С	d	_	f	-	dс
a	b	-	d	-	_	_	dba

(корень v_0 не показан)

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $u(f) \geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	ри	ца	, ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	bс
a	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
_	b	С	-	е	-	g	b c e
-	-	С	d	-	f	_	d c
a	b	-	d	-	-	-	d b a

(корень v₀ не показан)

d: 8
b: 7
c: 5
a: 4
e: 3

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $u(f) \geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	ри	ца	, ℓ	10	слова	
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	bс
a	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	_	С	d	-	f	-	d c
a	b	-	d	-	-	-	d b a

(корень v₀ не показан)

d: 8
b: 7
c: 1
a: 4
e: 3
приментия б. д. но настые

при $\delta=rac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	ри	ца	, ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	-	_	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	Ъс
а	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	_	С	d	-	f	-	d c
a.	b	-	d	-	-	-	d b a

при $\delta=rac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	υс	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	-	-	dcae
-	b	_	d	_	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	_	-	-	b c
a.	b	_	d	_	-	-	d b a
-	b	_	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	_	С	d	-	f	_	d c
a	h	_	d	_	_	_	d b a

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атן	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	_	С	d	е	_	_	dcae
-	b	_	d	_	_	_	d b
-	b	С	d	_	_	_	dbc
-	b	С	-	-	-	-	bс
а	b	-	d	-	-	-	d b a
-	b	-	d	е	-	-	d b e
-	b	С	-	е	_	g	ъсе
_	_	С	d	_	f	-	d c

b: 7 b: 2 b: 1 c: 1 c: 1

(корень v_0 не показан)

при $\delta=\frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $u(f) \geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

м	атլ	эи	ца,	ℓ	=	10	слова
a	-	_	d	_	f	_	d a
a	_	С	d	е	_	-	dcae
-	b	_	d	_	_	-	d b
-	b	С	d	_	_	-	dbc
-	b	С	_	_	_	-	Ъс
a	b	_	d	_	_		d b a
			_			_	u b a
-	b	-	d	е	_	_	d b e
-					-	- g	
-	b	С	d	е		- 60 -	d b e

при $\delta=\frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f \in \mathscr{F}$: $\nu(f) \geqslant \delta$ по убыванию $\nu(f)$.

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца	ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	bс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	-	С	d	-	f	-	d c
	-	_	- 1	_			d b a

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	эи	ца,	, ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	_	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	bс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	bсе
-	-	С	d	-	f	-	d c
а	b	_	d	_	_	_	d b a

 $(корень <math>v_0$ не показан)

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	υс	ца	, ℓ	=	10	слова
a	-	-	d	-	f	_	d a
a	_	С	d	е	-	-	dcae
-	b	_	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	_	-	-	-	bс
a	b	_	d	-	-	-	dba
-	b	_	d	е	-	-	d b e
-	b	С	_	е	_	g	Ъсе
-	_	С	d	-	f	-	d c
a.	b	-	d	-	-	_	d b a

при $\delta=rac{3}{\ell}$ признаки f, g не частые

Упорядочим все признаки $f\in \mathscr{F}\colon
u(f)\geqslant \delta$ по убыванию u(f).

Каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

М	атլ	υс	ца	ℓ	=	10	слова
a	-	-	d	-	f	-	d a
a	_	С	d	е	-	-	dcae
-	b	_	d	_	-	-	d b
-	b	С	d	_	-	_	dbc
-	b	С	_	_	-	_	bс
a	b	_	d	_	-	_	dba
-	b	_	d	е	-	_	dbe
-	b	С	_	е	-	g	Ъсе
-	_	С	d	_	f	_	d c
a	b	_	d	_	-	_	d b a

при $\delta = \frac{3}{\ell}$ признаки f, g не частые

В каждой вершине v дерева T задаётся тройка $\langle f_v, c_v, S_v \rangle$:

- ullet признак $f_{v} \in \mathscr{F}$;
- ullet множество дочерних вершин $S_{
 u}\subset T$;
- ullet счётчик поддержки $c_v = \ell
 u(arphi_v)$ набора $arphi_v = \{f_u \colon u \in [v_0, v]\}$, где $[v_0, v]$ путь от корня дерева v_0 до вершины v.

Обозначения:

$$V(T,f) = \{v \in T : f_v = f\}$$
 — все вершины признака (уровня) f . $C(T,f) = \sum_{v \in V(T,f)} c_v$ — сумма счётчиков поддержки признака f .

Свойства FP-дерева T, построенного по всей выборке X^{ℓ} :

- \bigcirc $\frac{1}{\ell}C(T,f)=\nu(f)$ поддержка признака f.
- $oldsymbol{0}$ T содержит информацию о $u(\varphi)$ всех частых наборов φ .

FP-дерево содержит информацию о всех частых наборах

Как по FP-дереву найти $\nu(\varphi)$ для произвольного набора φ :

- lacktriangle выделить пути $[v_0,v]$, содержащие все признаки из arphi
- \bigcirc суммировать c_{v} нижних вершин всех таких путей

Пример: $\varphi=\{\text{``c''},\text{``e''}\}$, две записи, два пути, $\nu(\varphi)=\frac{2}{\ell}$:

матрица, $\ell=10$	слова
a d - f -	d a
a - c d e	dcae
- b - d	d b
- b c d	dbc
- b c	bс
ab-d	dba
- b - d e	dbe
- b c - e - g	bсе
cd-f-	d c
ab-d	dba

Алгоритм FP-growth

```
вход: X^{\ell} — обучающая выборка;
выход: FP-дерево T; \langle f_v, c_v, S_v \rangle для всех вершин v \in T;
упорядочить признаки f \in \mathscr{F}: \nu(f) \geqslant \delta по убыванию \nu(f);
ЭТАП 1: построение FP-дерева T по выборке X^{\ell}
для всех i:=1,\ldots,\ell
    v := v_0:
    для всех f \in \mathscr{F} таких, что f(x_i) = 1, по убыванию \nu(f)
         если нет дочерней вершины u \in S_v: f_u = f то
            создать новую вершину u; S_v := S_v \cup \{u\};
          f_u := f; \quad c_u := 0; \quad S_u := \varnothing;
       c_u := c_u + 1; \quad v := u;
ЭТАП 2: рекурсивный поиск частых наборов по FP-дереву Т
\mathsf{FP}-find(T, \emptyset, \emptyset);
```

Этап 2: рекурсивный поиск частых наборов по FP-дереву

FP-find (T, φ, R) находит по FP-дереву T все частые наборы, содержащие *частый набор* φ , и добавляет их в список R.

Две идеи эффективной реализации FP-find:

- 1. Вместо T достаточно передать условное FP-дерево $T|\varphi$, это FP -дерево, порождаемое подвыборкой $\big\{x_i\in X^\ell\colon \varphi(x_i)=1\big\}$
- 2. Будем добавлять в φ только те признаки, которые находятся выше в FP-дереве. Так мы переберём все подмножества $\varphi\subseteq\mathscr{F}.$

Пример:
$$\varphi = \{\text{"c"}, \text{"e"}\}$$
 признаки для добавления в $\varphi = \{\text{"c"}, \text{"e"}\}$ признаки, из которых выбиралось $\varphi = \{\text{"c"}, \text{"e"}\}$ признаки признак

Этап 2: рекурсивный поиск частых наборов по FP-дереву

```
функция FP-find (T, \varphi, R)
вход: FP-дерево T, частый набор \varphi, список наборов R;
выход: добавить в R все частые наборы, содержащие \varphi;
для всех f \in \mathscr{F} \colon V(T, f) \neq \varnothing по уровням снизу вверх
если C(T, f) \geqslant \ell \delta то
добавить частый набор \varphi \cup \{f\} в список R;
T' := T|f — условное FP-дерево;
найти по T' все частые наборы, включающие \varphi и f:
FP-find (T', \varphi \cup \{f\}, R);
```

Условное FP-дерево T' = T|f можно построить быстро, используя только FP-дерево T и не заглядывая в выборку.

Условное FP-дерево

Пусть FP-дерево T построено по подвыборке $U\subseteq X^\ell$.

Опр. Условное FP-дерево (conditional FP-tree) T' = T|f — это FP-дерево, порождаемое подвыборкой $\left\{x_i \in U \colon f(x_i) = 1\right\}$, из которого удалены все вершины признака f и ниже.

Пример: CFP-дерево T | "e"

Быстрое построение условного FP-дерева T'=T|f|

```
вход: FP-дерево T, признак f \in \mathscr{F};
  выход: условное FP-дерево T' = T|f;
1 оставить в дереве только вершины на путях
   из вершин v признака f снизу вверх до корня v_0:
   T' := \bigcup [v, v_0];
         v \in V(T,f)
2 поднять значения счётчиков c_{\nu}
   от вершин v \in V(T', f) снизу вверх по правилу
   c_u := \sum c_w для всех u \in T';
\mathbf{3} удалить из T' все вершины признака f;
```

В дереве T' = T|f остаются только признаки выше f, т.к. в момент вызова FP-find все наборы, содержащие признаки ниже f, уже просмотрены.

Эффективность алгоритма FPGrowth

Зависимость \log_{10} времени работы алгоритма от MinSupp в сравнении с другими алгоритмами (на данных census).

Нижние кривые — две разные реализации FP-growth.

Christian Borgelt. An Implementation of the FP growth Algorithm. 2005.

Задача автоматического выделения терминов

Термин — фраза (*n*-грамма) со следующим набором свойств:

- высокая частотность (frequency): много раз встречается в коллекции;
- контактная сочетаемость слов (collocation):
 состоит из слов, неслучайно часто встречающихся вместе;
- полнота (completeness):
 является максимальной по включению цепочкой слов;
- синтаксическая связность (syntactic connectedness):
 является грамматически корректным словосочетанием;
- тематичность (topicality):
 часто встречается в узком подмножестве тем.

Сумма технологий для ATE (Authomatic Term Extraction): TopMine 1 2 3 + UDPipe 1 + PTM 5

Алгоритм TopMine: определения и основные идеи

- $C(a_1,\ldots,a_k)$ хэш-таблица частот k-грамм, $a_i\in W$, $C(w)=n_w$ для всех униграмм $w\in W\colon n_w\geqslant \varepsilon_1$
- ullet $arepsilon_k$ пороговое значение частоты частых k-грамм
- $A_{d,k}$ множество позиций i в документе d, с которых начинаются все частые k-граммы:

$$C(w_{d,i},\ldots,w_{d,i+k-1})\geqslant \varepsilon_k$$

• Свойство антимонотонности:

$$C(a_1,\ldots,a_k)\geqslant C(a_1,\ldots,a_k,a_{k+1})$$

ullet Основной шаг алгоритма: для всех $i=1,\dots,n_d$ если $(i\in A_{d,k})$ и $(i+1\in A_{d,k})$ то $++C(w_{d,i},\dots,w_{d,i+k})$

Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R. Voss, Jiawei Han. Scalable Topical Phrase Mining from Text Corpora. VLDB, 2015.

Алгоритм TopMine: быстрый поиск всех частых k-грамм

```
вход: коллекция D, пороги \varepsilon_k;
выход: хэш-таблица частот C(a_1, \ldots, a_k), k = 1, \ldots, k_{\text{max}};
C(w) := n_w для всех w \in W;
A_{d,0} := \{1,\ldots,n_d\};
для k := 1, ..., k_{max}
   для всех d \in D
   оставить только частые k-граммы: C(a_1,\ldots,a_k)\geqslant \varepsilon_k;
```

Преимущество алгоритма: линейная память и скорость.

Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R. Voss, Jiawei Han. Scalable Topical Phrase Mining from Text Corpora. VLDB, 2015.

Алгоритм TopMine: отбор фраз по частоте и полноте

Итеративное слияние фраз с понижением значимости α .

 p_u — оценка вероятности встретить фразу u p_{uv} — оценка вероятности встретить фразу uv

Критерии: SignificanceScore
$$= \frac{p_{uv} - p_u p_v}{\sqrt{p_{uv}}}$$
 или $\mathsf{PMI} = \log \frac{p_{uv}}{p_u p_v}$

Резюме в конце лекции

- Поиск ассоциативных правил обучение без учителя.
- Ассоциативное правило (по определению) почти то же самое, что логическая закономерность.
- Простые алгоритмы типа APriory вычислительно неэффективны на больших данных.
- FP-growth один из самых эффективных алгоритмов поиска ассоциативных правил.
- Для практических приложений используются его инкрементные и/или иерархические обобщения.
- Поиск коллокаций в текстах похожая задача, но ищем подпоследовательности, а не подмножества