肥工业大 学 试 卷 (A)

2017~2018 学年第_一_学期 课程代码	1400091B		· <u>与数理统计</u> 学分 <u>3</u>	_ 课程性质:必修
专业班级(教学班)	考试日期_	2018. 1. 17	命题教师_ 集体	系(所或教研室
一. 填空题 (每小题 3 分,共 15 分)			(D) 若在 α = 0.05	下拒绝 H_0 ,则在 $\alpha = 0.0$
1. 设随机事件 $A 与 B$ 相互独立,且 $P(B) = 0.5$, $P(A - A) = 0.5$	$B)=0.3$, $\mathbb{M}P(B)$	-A) = 0.2		
2. 设随机变量 X 与 Y 相互独立,且均服从区间 $[0,3]$ 上的均匀分布,则 $P\{\max(X,Y) \le 1\} =$			三. (本题满分 12 分) 设某人赴外地出差参加开 其概率分别为 0.1, 0.2, 0.4, 0.3, 且采用此 0.03, 0.015, 0.01, 0.01. (1) 求此人出席会议即	
3. 设 $X_1, X_2 \cdots X_m$ 为来自二项分布总体 $B(n, p)$ 的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本			问此人最有可能乘坐的交	通工具是什么? 说明理由
方差,若 $\overline{X} + kS^2$ 为 np^2 的无偏估计量,则 $k = $			四. (本题满分 14 分) 设随机变量 <i>X</i> 的概率密度 <i>y</i>	
4. 设随机变量 X 服从泊松分布 $P(3)$,则由切比雪夫不等式估计 $P\{ X-EX <2\}\geq$ $\frac{1}{4}$			$F(x)$; (2) 求 $P\{X < 2\}$; (3) 求随机变量 $Y = X$	
5. 已知总体 X 服从正态分布 $\mathbf{N}(\mu,\sigma^2)$, μ,σ^2 均未知,已知样本容量为 9 ,样本均值为 $x=m$,			五.(本题满分 14 分) 设	大二维随机变量 (X,Y) 的职
样本方差为 $s^2 = 4$,则 μ 的置信度为 95% 的置信区间是				$f(x,y) = \begin{cases} \frac{9y^2}{x} \\ 0, \end{cases}$
$(i \exists u_{0.05} = a, u_{0.025} = b, t_{0.05}(8) = c, t_{0.025}(8) = d, t_{0.05}(9) = l, t_{0.025}(9) = k).$			(1) 式(V V) 的边缘概念	
二.选择题 (每小题 3 分,共 15 分) <i>cbcda</i>				区密度 $f_X(x), f_Y(y)$; (2)
1. 设 A, B 为随机事件,且 $P(B) > 0, P(A B) = 1$,则必有			六.(本题满分 14 分) 设 	\mathbb{E} 随机变量 X,Y 的概率分 \mathbb{E}
(A) $P(A \cup B) > P(A)$ (B) $P(A \cup B)$ (C) $P(A \cup B) = P(A)$ (D) $P(A \cup B)$			$P\{X=1\}=\frac{2}{3}, \exists X = 3$	Y 的相关系数 $\rho_{xy} = \frac{1}{2}$.
2. 设随机变量 $X \sim N(\mu, \sigma^2)$ $(\sigma > 0)$, 记 $p = P\{X \le \mu - 1\}$	$+\sigma^2$ },则()		$P{X = 1, Y = 1} = \frac{5}{9}$	
(A) p 随着 μ 的增加而增加 (B) p 随着 σ 的 (C) p 随着 μ 的增加而减少 (D) p 随着 σ 的			七. (本题满分 12 分)	设总体 X 的概率密度为
3. 设随机变量 X,Y 独立同分布,且 X 的分布函数为 $F(x)$,则Z=min{X,Y	()的分布函数为().		
(A) $F^2(x)$ (B) $F(x)F(y)$	()]		X_1, X_2, \dots, X_n 是来自总	体 X 的简单随机样本.(1
(C) $1-[1-F(x)]^2$ (D) $[1-F(x)][1-F(x)]$		2)1 ()	估计量 $\hat{\lambda}_L$.	
4. 设随机变量 X , Y 不相关,且 $EX = 2$, $EY = 1$, $DX = 3$, (A) -3 (B) 3 (C) -5	则 $E[X(X+Y-$ (D)5	<i>2</i>)]= ().	八.(本题满分 4 分) 设	X_1, X_2, X_3 为来自正态总 4
5. 在正态总体的假设检验中,显著性水平为 $lpha$,则下列结论正确的是().			服从何种分布?给出理由. t (1)	

(A) 若在 $\alpha = 0.05$ 下接受 H_0 ,则在 $\alpha = 0.01$ 下必接受 H_0 (B) 若在 $\alpha = 0.05$ 下接受 H_0 ,则在 $\alpha = 0.01$ 下必拒绝 H_0 (C) 若在 $\alpha = 0.05$ 下拒绝 H_0 ,则在 $\alpha = 0.01$ 下必接受 H_0 (D) 若在 $\alpha = 0.05$ 下拒绝 H_0 ,则在 $\alpha = 0.01$ 下必拒绝 H_0

命题教师 集体 系(所或教研室)主任审批签名

三.(**本题满分 12 分**) 设某人赴外地出差参加开会时,有乘坐汽车、火车、飞机和动车四种交通方式, 其概率分别为0.1,0.2,0.4,0.3,且采用此四种交通方式时,出席会议迟到的概率依次为 0.03, 0.015, 0.01, 0.01. (1) 求此人出席会议时迟到的概率; (2) 若已知此人出席会议时已经迟到, 问此人最有可能乘坐的交通工具是什么?说明理由. 0.013,飞机

考试形式: 闭卷

四. (本题满分 14 分) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{x}, \ 1 \le x \le e \\ , \ (1)$ 求随机变量 X 的分布函数

F(x); (2) 求 $P\{X < 2\}$; (3) 求随机变量 Y = X - 1 的分布函数 G(y).

五. (本题满分 14 分) 设二维随机变量(X,Y) 的联合概率密度为

$$f(x,y) = \begin{cases} \frac{9y^2}{x}, & 0 < x < 1, & 0 < y < x, \\ 0, & \text{ 其他.} \end{cases}$$

(1) 求(X,Y)的边缘概率密度 $f_X(x), f_Y(y)$; (2) 判断 X = Y的独立性; (3)求概率 $P\{X > 2Y\}$.

六. (本题满分 14 分) 设随机变量 X,Y 的概率分布相同,已知 X 的概率分布为 $P\{X=0\}=\frac{1}{3}$,

 $P\{X=1\}=\frac{2}{3}$, 且 X 与 Y 的相关系数 $\rho_{XY}=\frac{1}{2}$. (1) 求 (X,Y) 的联合分布律; (2) 求 $P\{X+Y\leq 1\}$.

$$P\{X=1, Y=1\} = \frac{5}{9}$$

七. (本题满分 12 分) 设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, x > 0, \\ 0, & \text{其中参数 } \lambda \ (\lambda > 0) \, \, \text{未知,} \end{cases}$

 X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本. (1) 求参数 λ 的矩估计量 $\hat{\lambda}_M$; (2) 求参数 λ 的最大似然 估计量 $\hat{\lambda}_L$.

八.(本题满分 4 分)设 X_1, X_2, X_3 为来自正态总体 $N(0, \sigma^2)$ 的简单随机样本,问统计量 $Y = \frac{X_1 - X_2}{\sqrt{2}|X_3|}$ 服从何种分布?给出理由. t(1)