# Contractibility of space of stability conditions on $\mathbb{P}^2$ via global dimension function

Wanmin Liu
Uppsala University

**Geometry and Mathematical Physics Seminar, USTC**June 2020

Joint work with Yu-Wei Fan (UC Berkeley), Chunyi Li (U. Warwick) and Yu Qiu (Tsinghua U.) arXiv:2001.11984

### Part I. Motivation

 $\mathcal{D}$ : a triangulated category. For example,

- ▶  $\mathcal{D}(X) = \mathcal{D}^b(\mathsf{Coh}(X))$  for smooth projective variety X over  $\mathbb{C}$ ;
- ▶  $\mathcal{D}(Q) = \mathcal{D}^b(\text{Rep}(Q))$  for quiver Q.

 $\mathsf{Stab}(\mathcal{D})$ : Bridgeland stability manifold on  $\mathcal{D}$ .

It is a complex manifold.

 $\mathsf{Stab}^\dagger(\mathcal{D})$ : the principal connected component.

### Conjecture

 $\mathsf{Stab}^\dagger(\mathcal{D})$  is contractible. More ambitious,  $\mathsf{Stab}(\mathcal{D})$  is contractible.

### Known cases of the Conjecture for $\mathcal{D} = \mathcal{D}(X)$ or $\mathcal{D}(Q)$

- ▶ smooth projective curves [Okada 06, Bridgeland 07, Macrì 07].
- ► K3 surfaces with Picard rank one [Bayer-Bridgeland 17].
- ▶ local  $\mathbb{P}^1$  [Ishii-Ueda-Uehara 10]; local  $\mathbb{P}^2$  [Bayer-Macrì 11].
- $ightharpoonup \mathbb{P}^2$  [Li 17].
- ▶ Abelian surfaces [Bridgeland 08] and Abelian threefolds with Picard rank one [Bayer-Macrì-Stellari 16].
- ▶ ADE Dynkin quiver [Qiu-Woolf 18] and some new classes of examples [August-Wemyss 19].
- ► Calabi–Yau-3 affine type *A* quiver [Qiu 16].
- acyclic triangular quiver [Dimitrov-Katzarkov 16].
- ▶ wild Kronecker quiver [Dimitrov-Katzarkov 19].
- **.**..

The proofs in each case are quite different.

### New idea via gldim

Ikeda and the fourth-named author [Qiu 18, Ikeda-Qiu 18] introduce the global dimension function gldim on  $Stab(\mathcal{D})$ ,

$$\mathsf{gldim}\colon \mathsf{Stab}(\mathcal{D})\to \mathbb{R}_{\geq 0}\cup\{+\infty\},$$

which sends  $\sigma = (Z, \mathcal{P}) \in \mathsf{Stab}(\mathcal{D})$  to

$$\mathsf{gldim}\,\sigma=\mathsf{gldim}\,\mathcal{P}\coloneqq \mathsf{sup}\{\phi_2-\phi_1\mid \mathsf{Hom}(\mathcal{P}(\phi_1),\mathcal{P}(\phi_2))\neq 0\}.$$

Such a function is

- continuous,
- ▶ invariant under the natural left action by  $Aut(\mathcal{D})$  and the right action of  $\mathbb{C}$ ,

and thus descends to a continuous function

$$\mathsf{gldim}\colon\operatorname{\mathsf{Aut}}(\mathcal{D})\backslash\operatorname{\mathsf{Stab}}(\mathcal{D})/\mathbb{C}\to\mathbb{R}_{\geq 0}\cup\{+\infty\}.$$

### Philosophy: stability manifold contracts along the values of the global dimension function.

- (i) The infimum of gldim on  $\operatorname{Stab}(\mathcal{D})$  (or the principal component of it) should be considered as the global dimension  $\operatorname{gd} \mathcal{D}$  of the category  $\mathcal{D}$ .
- (ii) If the subspace  $\operatorname{gldim}^{-1}(\operatorname{gd} \mathcal{D})$  is non-empty, then it is contractible. Moreover,  $\operatorname{gldim}^{-1}([\operatorname{gd} \mathcal{D},x))$  contracts to  $\operatorname{gldim}^{-1}(\operatorname{gd} \mathcal{D})$  for any real number  $\operatorname{gd} \mathcal{D} < x$ .
- (iii) When  $\operatorname{gldim}^{-1}(\operatorname{gd} \mathcal{D})$  is empty,  $\operatorname{gldim}^{-1}(\operatorname{gd} \mathcal{D}, x)$  contracts to  $\operatorname{gldim}^{-1}(\operatorname{gd} \mathcal{D}, y)$  for any real number  $\operatorname{gd} \mathcal{D} < y < x$ .

Note that for a Calabi–Yau category, the global dimension function is constant. If the global dimension function gldim is not constant, it sheds some lights on why  $Stab(\mathcal{D})$  should be contractible.

### Main Theorem

The above philosophy is true for the projective plane  $\mathbb{P}^2$ .

#### Main Theorem

Consider the global dimension function

$$\mathsf{gldim}\colon\operatorname{\mathsf{Stab}}^\dagger(\mathbb{P}^2)\to\mathbb{R}_{\geq 0}$$

on the principal component  $\operatorname{Stab}^{\dagger}(\mathbb{P}^2)$  of the space of stability conditions on the bounded derived category  $\mathcal{D}^b(\operatorname{Coh}\mathbb{P}^2)$  of coherent sheaves on  $\mathbb{P}^2$ . Then  $\operatorname{gd}(\mathcal{D}(\mathbb{P}^2))=2$ ,

- ightharpoonup gldim Stab $^{\dagger}(\mathbb{P}^2)=[2,\infty)$ ,
- ▶ the subspace gldim<sup>-1</sup>[2, x) contracts to gldim<sup>-1</sup>(2), for any  $x \ge 2$ ,
- the subspace  $\operatorname{gldim}^{-1}(2)$  is contractible and is contained in  $\operatorname{\overline{Stab}}^{\operatorname{Geo}}(\mathbb{P}^2)$ , where  $\operatorname{Stab}^{\operatorname{Geo}}(\mathbb{P}^2)$  consists of geometric stability conditions.

### Part II: What is $Stab(\mathcal{D})$ ?

#### Definition

A *slicing*  $\mathcal{P}$  is a collect. of subcategories  $\mathcal{P}(\phi) \subset \mathcal{D}$  for  $\phi \in \mathbb{R}$  s.t.

- $\triangleright \mathcal{P}(\phi)[1] = \mathcal{P}(\phi + 1),$
- ightharpoonup if  $\phi_1 > \phi_2$  and  $A_i \in \mathcal{P}(\phi_i)$ , then  $\operatorname{Hom}(A_1, A_2) = 0$ ,
- ▶ for all  $E \in \mathcal{D}$  there are real numbers  $\phi^+(E) := \phi_1 > \ldots > \phi_m =: \phi^-(E)$ , and objects  $E_i \in \mathcal{D}$  for  $i = 1, \ldots, m$ , and a collection of triangles



where  $A_i \in P(\phi_i)$ .

Let  $\mathcal{A}:=\mathcal{P}((0,1])$  to be the extension closure of the subcategories  $\{\mathcal{P}(\phi):\phi\in(0,1]\}$ , we get the heart of a bounded t-structure. So a slicing is  $\mathbb{R}$ -indexed refinement of  $\mathbb{Z}$ -indexed t-structure of  $\mathcal{D}$ .



#### Definition

A stability condition  $\sigma = (Z, P)$  on  $\mathcal{D}$  consists of

- ▶ a group homomorphism  $Z \colon K(\mathcal{D}) \to \mathbb{C}$  (called the *central charge*, where  $K(\mathcal{D})$  is the Grothendieck group) and
- ightharpoonup a slicing  $\mathcal P$

satisfying

- (compatibility)  $\forall 0 \neq E \in \mathcal{P}(\phi) \implies Z(E) \in \mathbb{R}_{>0} \cdot e^{\sqrt{-1}\pi\phi}$
- (support property)

$$C_{\sigma}:=\inf\left\{rac{|Z((E))|}{\|E\|}\,:\,0
eq E\in\mathcal{P}(\phi),\phi\in\mathbb{R}
ight\}>0.$$

There is an equivalent definition by using  $\sigma = (Z, A)$  with

$$\mathcal{A}=\mathcal{P}((0,1]).$$
 Denote  $\phi(E):=\arg(Z(E))/\pi$ , then

- ▶ (Positivity)  $0 \neq E \in \mathcal{A} \implies \phi(E) \in (0,1]$ ,
- ▶  $0 \neq E \in \mathcal{A}$  is Z-semistable if any nonzero  $F \subset E$  admits  $\phi(F) \leq \phi(E)$ ,
- ▶ for  $\phi \in (0,1]$ ,  $\mathcal{P}(\phi) = \langle E \in \mathcal{A} \text{ is } Z\text{-semistable of phase } \phi \rangle$ .

### **Examples**

Let C be a smooth projective curve and let  $A := \operatorname{Coh}(C)$  and  $Z(E) := -\operatorname{deg}(E) + \sqrt{-1}\operatorname{rank}(E)$  for  $E \in A$ . Then  $\sigma = (Z, A)$  is a Bridgeland stability condition.



### Definition: Stab $(\mathcal{D})$

Let Stab  $(\mathcal{D})$  be the *set* of all Bridgeland stability conditions on  $\mathcal{D}$ . It can be equipped with the *coarsest topology* s.t. for any  $E \in \mathcal{D}$ , the maps  $(Z,\mathcal{P}) \mapsto Z(E)$ ,  $(Z,\mathcal{P}) \mapsto \phi^+(E)$  and  $(Z,\mathcal{P}) \mapsto \phi^-(E)$  are continuous.

### Group actions

There are two natural group actions on Stab  $(\mathcal{D})$ :

- ightharpoonup a left action by Aut  $(\mathcal{D})$ ,
- ▶ a right action by the universal cover  $\widetilde{\mathsf{GL}}^+(2,\mathbb{R})$  of  $\mathsf{GL}^+(2,\mathbb{R})$ .

### Bridgeland's deformation theorem

The forgetful map  $\mathcal{Z}$ :  $\operatorname{Stab}(\mathcal{D}) \to \operatorname{Hom}(K(\mathcal{D}),\mathbb{C})$  given by  $(Z,\mathcal{P}) \mapsto Z$  is a local homeomorphism. In particular, assume that  $K(\mathcal{D})$  is of finite rank, then  $\operatorname{Stab}(X)$  is a complex manifold of dimension  $\operatorname{rank}(K(\mathcal{D}))$ .

### **Part III: What is** Stab ( $\mathbb{P}^2$ )?

It is a complex manifold of dimension 3. We don't know whether it is connected or not.

Conjecture [Li 17]: Stab ( $\mathbb{P}^2$ ) is connected.

We know a connected component  $\operatorname{Stab}^{\dagger}(\mathbb{P}^2)$  that containing geometric Bridgeland stability conditions. Recall that a  $\sigma \in \operatorname{Stab}(X)$  is called *geometric* if all if all skyscraper sheaves are  $\sigma$ -stable of the same phase. Denote the set of all geometric stability conditions by  $\operatorname{Stab}^{\operatorname{Geo}}(X)$ .

Theorem [Li 17]:  $\mathsf{Stab}^{\dagger}(\mathbb{P}^2) = \mathsf{Stab}^{\mathsf{Geo}}(\mathbb{P}^2) \bigcup \mathsf{Stab}^{\mathsf{Alg}}(\mathbb{P}^2)$ .

- ▶ We will give the definition of  $Stab^{Alg}(\mathbb{P}^2)$  soon.
- ▶ The final goal is to compute the global dimension function gldim on  $\operatorname{Stab}^{\dagger}(\mathbb{P}^2)$  (see Propositions A & B below) and to show that  $\operatorname{Stab}^{\dagger}(\mathbb{P}^2)$  contracts along the values of gldim.

### Geometric stability condition $\sigma_{s,q}$

Reduced Chern characters  $\{1, \frac{\mathrm{ch_1}}{\mathrm{ch_0}}, \frac{\mathrm{ch_2}}{\mathrm{ch_0}}\}$ -plane

For  $E \in \mathcal{D}$ , we can identify  $\operatorname{ch}_1(E)$  as a number, and we have  $\operatorname{ch}(E) = (\operatorname{ch}_0(E), \operatorname{ch}_1(E), \operatorname{ch}_2(E)) \in \mathbb{R}^3$ , and its reduced Chern character in  $\{1, \frac{\operatorname{ch}_1}{\operatorname{ch}_0}, \frac{\operatorname{ch}_2}{\operatorname{ch}_0}\}$ -plane. By abuse of notations, we also denote the reduced Chern character by E. For example,

- line bundle  $\mathcal{O}(p)$  will be the point  $(1, p, \frac{p^2}{2})$ ,
- ▶ the tangent bundle  $T_{\mathbb{P}^2}$  will be the point  $(1, \frac{3}{2}, \frac{3}{4})$ .

#### Definition

Define 
$$\sigma_{s,q}:=(Z_{s,q},\mathcal{A})$$
 with  $\mathcal{A}=\mathsf{Coh}_{\#s}\coloneqq \langle \mathsf{Coh}_{\leq s}[1],\mathsf{Coh}_{>s} \rangle$  and

$$Z_{s,q}(E) \coloneqq (-\operatorname{ch}_2(E) + q \cdot \operatorname{ch}_0(E)) + i(\operatorname{ch}_1(E).H - s \cdot \operatorname{ch}_0(E)).$$



$$Coh^{>2} = \langle E \in CPV(h_2) | \mathcal{N}(E) > 2 \rangle$$

$$\mathcal{N} = \frac{cV'(-)H}{cV'(-)H}$$

### A fractal curve: the Le Potier Curve $C_{\mathrm{LP}}$

### Dyadic integers and exceptional bundles

An object  $E \in \mathcal{D}$  is called exceptional if  $\operatorname{Hom}(E, E[k]) = 0$  for  $k \neq 0$ ;  $= \mathbb{C}$  for k = 0. There is a one-to-one correspondence between the dyadic integers  $\frac{p}{2^m}$   $(p \in \mathbb{Z} \text{ and } m \in \mathbb{Z}_{\geq 0})$  and exceptional bundles  $E(\frac{p}{2^m})$ . For example,  $E(p) = \mathcal{O}(p)$ ,  $E(\frac{3}{2}) = T_{\mathbb{P}^2}$ ,  $E(\frac{p}{2^m} + 1) = E(\frac{p}{2^m}) \otimes \mathcal{O}(1)$ .

Three points  $E^+$ ,  $e^l$ ,  $e^r$  associated to  $E = E(\frac{p}{2^m})$ 

In the  $\{1, \frac{ch_1}{ch_0}, \frac{ch_2}{ch_0}\}$ -plane, we define

$$E^+ := \{\chi(E, -) = 0\} \cap \{\chi(-, E) = 0\},\$$

$$\mathbf{e}' \coloneqq \{\chi(E, -) = 0\} \cap \Delta_{\frac{1}{2}}, \quad \mathbf{e}' \coloneqq \{\chi(-, E) = 0\} \cap \Delta_{\frac{1}{2}},$$

where  $\Delta_a$  is the parabola  $\frac{1}{2}\left(\mathrm{ch}_1/\mathrm{ch}_0\right)^2-\left(\mathrm{ch}_2/\mathrm{ch}_0\right)=a$ .

$$\mathbf{C}_{\mathrm{LP}} \coloneqq \coprod_{\{E = E(\frac{p}{2m}) \mid \, \rho \in \mathbb{Z}, \, m \in \mathbb{Z}_{\geq 0}\}} \left(\overline{E^+ e^I} \cup \overline{E^+ e^r}\right) \coprod \{\mathsf{Cantor \ pieces \ of \ } \Delta_{\frac{1}{2}}\}.$$

### Illustration in reduced char. plane



## **Geometric stability conditions** $\mathsf{Stab}^\mathsf{Geo}(\mathbb{P}^2)$

### Lemma [Bayer-Macrì 11]

The  $\mathrm{GL}^+(2,\mathbb{R})$  acts freely on  $\mathsf{Stab}^\mathsf{Geo}(\mathbb{P}^2)$  with quotient

$$\mathsf{Stab}^\mathsf{Geo}(\mathbb{P}^2)/\widetilde{\mathrm{GL}^+(2,\mathbb{R})} \cong \mathsf{Geo}_{\mathrm{LP}},$$

where the region  $\mathsf{Geo}_{\mathrm{LP}} \coloneqq \{(1,s,q) \in \underbrace{\{1,\frac{\mathsf{ch}_1}{\mathsf{ch}_0},\frac{\mathsf{ch}_2}{\mathsf{ch}_0}\}}_{\mathsf{F}}-\mathsf{plane} \mid (1,s,q)$  is above  $\mathsf{C}_{\mathrm{LP}}$  and not on line segment  $\overline{\mathit{EE}^+}$  for any exceptional bundle  $\mathit{E}\}$ .



### gldim **on** Stab Geo $\mathbb{P}^2$

### Proposition A

Let  $\sigma = \sigma_{s,q}$  be a geometric stability condition in the region  $\Delta_{<0}$  on the  $\{1,\frac{\text{ch}_1}{\text{ch}_2},\frac{\text{ch}_2}{\text{ch}_2}\}$ -plane. Then

gldim 
$$\sigma_{s,q}=2$$
.

#### Proof.

The Serre duality is the isomorphism

Now skyscraper sheaf  $\mathcal{O}_x$  is  $\sigma$ -stable and

$$\mathsf{Hom}(E,F) = \mathsf{Hom}(F,\mathbb{S}(E))^*, \quad \mathbb{S} \coloneqq (-) \otimes \mathcal{O}_{\mathbb{P}^2}(-3)[2].$$

 $\begin{aligned} &\operatorname{Hom}(\mathcal{O}_{x},\mathcal{O}_{x}[2]) = \operatorname{Hom}(\mathcal{O}_{x}[2],\mathcal{O}_{x}[2])^{*} = \mathbb{C}. \text{ Since } \\ &\phi(\mathcal{O}_{x}[2]) - \phi(\mathcal{O}_{x}) = 2, \text{ so gldim } \sigma_{s,q} \geq 2. \end{aligned}$  We need to show gldim  $\sigma_{s,q} \leq 2$ . Let E, F be  $\sigma$ -stable with  $0 < \phi(E) < \phi(F) - 2 \leq 1, \operatorname{ch}_{0}(E) \neq 0$ , and  $\sigma$  is *left* to E, we could show  $\operatorname{Hom}(E, F) = 0$ .

# **Algebraic stability conditions** $\mathsf{Stab}^{\mathsf{Alg}}(\mathbb{P}^2)$

#### Definition

We call an ordered set of exceptional objects  $\mathcal{E} = \{E_1, E_2, E_3\}$  exceptional triple on  $\mathcal{D}^b(\mathbb{P}^2)$  if  $\mathcal{E}$  is a full strong exceptional collection of coherent sheaves on  $\mathcal{D}^b(\mathbb{P}^2)$  i.e.

$$\operatorname{Hom}(E_i, E_j[k]) = 0$$
 for any  $i > j$  and for all  $k \in \mathbb{Z}$ ;  
 $\operatorname{Hom}(E_i, E_j[k]) = 0$ , for  $k \neq 0$  and for all  $i, j$ .

The exceptional triples have been classified by Gorodentsev and Rudakov. Up to a cohomological shift, the exceptional triples are labeled by  $\{\frac{p-1}{2^m}, \frac{p}{2^m}, \frac{p+1}{2^m}\}$  or their mutations  $\{\frac{p}{2^m}, \frac{p+1}{2^m}, \frac{p-1}{2^m} + 3\}$ ,  $\{\frac{p+1}{2^m} - 3, \frac{p-1}{2^m}, \frac{p}{2^m}\}$ .

### Proposition [Macrì 07]

Let  $\mathcal{E}$  be an exceptional triple on  $\mathcal{D}^b(\mathbb{P}^2)$ . For any positive real numbers  $m_1$ ,  $m_2$ ,  $m_3$  and real numbers  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$  such that:

$$\phi_1 < \phi_2 < \phi_3$$
, and  $\phi_1 + 1 < \phi_3$ ,

there is a unique stability condition  $\sigma = (Z, P)$  such that

- **1**. each  $E_j$  is stable with phase  $\phi_j$ ;
- $2. Z(E_j) = m_j e^{i\pi\phi_j}.$

#### Definition

Given an exceptional triple  $\mathcal{E}=\{E_1,E_2,E_3\}$  on  $\mathcal{D}^b(\mathbb{P}^2)$ , we write  $\Theta_{\mathcal{E}}$  as the space of all stability conditions above. We denote

$$\mathsf{Stab}^\mathsf{Alg}(\mathbb{P}^2) \coloneqq \bigcup_{\mathcal{E} \; \mathsf{exc} \; \mathsf{triples}} \Theta_{\mathcal{E}}$$

and call the elements of it as the algebraic stability conditions.

# **Glue:** $\Theta^{\sf Geo}_{\mathcal{E}} \coloneqq \Theta_{\mathcal{E}} \cap \mathsf{Stab}^{\sf Geo}(\mathbb{P}^2)$

For an exceptional triple  $\mathcal{E} = \{E_1, E_2, E_3\}$ , Li [Li 17] shows

$$\Theta^{\mathsf{Geo}}_{\mathcal{E}} = \widetilde{\mathrm{GL}^{+}(2,\mathbb{R})} \cdot \mathsf{MZ}_{\mathcal{E}}.$$

Define some subsets of  $\Theta_{\mathcal{E}}$  as follows.

- $\qquad \qquad \boldsymbol{\Theta}^{\mathrm{Pure}}_{\mathcal{E}} \coloneqq \{ \sigma \in \boldsymbol{\Theta}_{\mathcal{E}} \mid \phi_2 \phi_1 \geq 1 \text{ and } \phi_3 \phi_2 \geq 1 \};$
- $\blacktriangleright \ \Theta^{\text{left}}_{\mathcal{E}, E_3} := \{ \sigma \in \Theta_{\mathcal{E}} \mid \phi_2 \phi_1 < 1 \text{ and } E_3(3) \text{ is not } \sigma\text{-stable} \};$
- $\qquad \qquad \boldsymbol{\Theta}^{\mathrm{right}}_{\mathcal{E}, \mathcal{E}_1} := \{ \sigma \in \Theta_{\mathcal{E}} \mid \phi_3 \phi_2 < 1 \text{ and } \mathcal{E}_1(-3) \text{ is not } \sigma\text{-stable} \}.$

#### Lemma

Given exceptional triples  $\mathcal E$  and  $\mathcal E'$  on  $\mathcal D^b(\mathbb P^2)$  with the same  $E_3=E_3'=E$ , then  $\Theta^{\mathrm{left}}_{\mathcal E,E_3}=\Theta^{\mathrm{left}}_{\mathcal E',E_3'}$ . We denote this subspace by  $\Theta^{\mathrm{left}}_{E_3}$ .

In a similar way, we define the subspace  $\Theta_{\mathcal{E}_1}^{\mathrm{right}} := \Theta_{\mathcal{E}, \mathcal{E}_1}^{\mathrm{right}}$ .

Similarly, denote  $\Theta_{\mathcal{E}_3}^- = \Theta_{\mathcal{E},\mathcal{E}_3}^- = \Theta_{\mathcal{E}}(\phi_2 - \phi_1 < 1) \setminus \Theta_{\mathcal{E}}^{\mathsf{Geo}};$ 

$$\Theta_{E_1}^+ = \Theta_{\mathcal{E}, E_1}^+ = \Theta_{\mathcal{E}}(\phi_3 - \phi_2 < 1) \setminus \Theta_{\mathcal{E}}^{\mathsf{Geo}}.$$

#### Lemma.

$$\bullet \ \Theta_{E_3}^{\mathrm{left}} = \Theta_{E_3}^- \coprod \widetilde{\mathrm{GL}^+(2,\mathbb{R})} \cdot \mathsf{MZ}_{E_3}',$$

$$\blacktriangleright \ \Theta^{\mathrm{right}}_{E_1} = \Theta^+_{E_1} \coprod \widetilde{\mathrm{GL}^+(2,\mathbb{R})} \cdot \mathsf{MZ}^r_{E_1},$$

$$\blacktriangleright \ \Theta_{\mathcal{E}} \setminus (\Theta_{\mathcal{E}_1}^{\mathrm{right}} \cup \Theta_{\mathcal{E}_3}^{\mathrm{left}} \cup \Theta_{\mathcal{E}}^{\mathrm{Pure}}) = \mathrm{GL}^+(2,\mathbb{R}) \cdot \mathsf{MZ}_{\mathcal{E}}^c,$$

### **Picture**

$$\lim_{\epsilon \to 0} \overline{E_{\epsilon}E_{3}} = \{\chi(-, E_{1}) = 0\}$$



### gldim **on** $\Theta_{\mathcal{E}}$

The Serre functor on  $\mathcal{D}(\mathbb{P}^2)$  is given by  $\mathbb{S}:=(-)\otimes\mathcal{O}_{\mathbb{P}^2}(-3)[2]$ . The right and left mutations of an object F with respect to an exceptional object E are defined by

$$\mathsf{R}_{\mathit{E}}(F) := \mathsf{Cone}\left(F \xrightarrow{\mathrm{ev}} E \otimes \mathsf{Hom}(F, E)^*\right)[-1],$$

$$\mathsf{L}_{\mathit{E}}(F) := \mathsf{Cone}\left(E \otimes \mathsf{Hom}(E, F) \xrightarrow{\mathrm{ev}} F\right).$$

### Proposition B

The value of the global dimension function  $gldim(\sigma) =$ 

$$\begin{cases} 2, & \text{when } \sigma \in \Theta_{\mathcal{E}} \setminus \left(\Theta_{E_1}^{\mathrm{right}} \cup \Theta_{E_3}^{\mathrm{left}} \cup \Theta_{\mathcal{E}}^{\mathrm{Pure}}\right); \\ \phi(\mathsf{R}_{E_1}(\mathbb{S}E_1)) - \phi_1, & \text{when } \sigma \in \Theta_{E_1}^{\mathrm{right}}; \\ \phi_3 - \phi(\mathsf{L}_{E_3}(\mathbb{S}^{-1}E_3)), & \text{when } \sigma \in \Theta_{\mathcal{E}}^{\mathrm{left}}; \\ \phi_3 - \phi_1, & \text{when } \sigma \in \Theta_{\mathcal{E}}^{\mathrm{Pure}}. \end{cases}$$

Proposition A + Proposition B  $\implies$  Main Theorem.

# Thank you!