多元-04-2020270026

2020270026 王姿文 3/22/2021

1.

```
已知(X,Y)是二随机变量,(x_i,y_i),i=1,\ldots,n是其样本,S=\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}),下证E(S)=Cov(X,Y): S=\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) ⇒ (n-1)S=\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) = \sum_{i=1}^nx_iy_i-\sum_{i=1}^nx_i\bar{y}-\sum_{i=1}^ny_i\bar{x}+n\bar{x}\bar{y} = \sum_{i=1}^nx_iy_i-\frac{\sum_{i=1}^nx_i\sum_{i=1}^ny_i}{n}-\frac{\sum_{i=1}^ny_i\sum_{i=1}^nx_i}{n}+\frac{\sum_{i=1}^nx_i\sum_{i=1}^ny_i}{n} = \sum_{i=1}^nx_iy_i-\frac{\sum_{i=1}^nx_i\sum_{i=1}^ny_i}{n} (n-1)E(S)=E(\sum_{i=1}^nX_iY_i)-\frac{1}{n}E(\sum_{i=1}^nX_i\sum_{i=1}^nY_i) = nE(XY)-\frac{1}{n}[nE(XY)+n(n-1)E(X)E(Y)] = (n-1)[E(XY)-E(X)E(Y)] = (n-1)Cov(X,Y) ⇒ E(S)=Cov(X,Y)
```

2.

数据来自Kaggle:World Happiness Report (https://www.kaggle.com/unsdsn/world-happiness),描述不同国家的幸福指数,此处任意挑选2016的数据来绘制简单的探索性资料分析。

Country	Region	Happiness_Rank	Happiness_Score	Lower_Confidence_Interval	Upper_Confidence_Interval	Economy_GDP	Family	Health	Freedom	Trust_Government_Corruption	Generosity	Dystopia_Residual
Denmark	Western Europe	1	7.526	7.460	7.592	1.44178	1.16374	0.79504	0.57941	0.44453	0.36171	2.73939
Switzerland	Western Europe	2	7.509	7.428	7.590	1.52733	1.14524	0.86303	0.58557	0.41203	0.28083	2.69463
Iceland	Western Europe	3	7.501	7.333	7.669	1.42666	1.18326	0.86733	0.56624	0.14975	0.47678	2.83137
Norway	Western Europe	4	7.498	7.421	7.575	1.57744	1.12690	0.79579	0.59609	0.35776	0.37895	2.66465
Finland	Western Europe	5	7.413	7.351	7.475	1.40598	1.13464	0.81091	0.57104	0.41004	0.25492	2.82596
Canada	North America	6	7.404	7.335	7.473	1.44015	1.09610	0.82760	0.57370	0.31329	0.44834	2.70485

取其中 Economy_GDP ~ Dystopia_Residual 的连续型变量,一共七个变量,下图为七个变量间的**scatter plot**和**density plot**。可以看出分布虽有些偏态,但都是正态的形状。

接着以曼哈顿距离和卡方来绘制广义QQ plot,确实是有偏态但基本符合正态。

Mahalanobis distance vs. chi-square quantiles

做正态转换后的结果符合正态。

```
z <- qnorm(pchisq(mah, 7))
shapiro.test(z)</pre>
```

```
##
## Shapiro-Wilk normality test
##
## data: z
## W = 0.96819, p-value = 0.001096
```

以下无论用哪个检验也都分显著符合正态分布,检验结果搭配一开始绘制的图,确实符合正态分布。

```
d <- t(as.matrix(happy_con[,5:11]))
mvnormtest::mshapiro.test(d)</pre>
```

```
##
## Shapiro-Wilk normality test
##
## data: Z
## W = 0.95187, p-value = 0.00003113
```

```
mvShapiroTest::mvShapiro.Test(as.matrix(happy_con[,5:11]))
```

```
##
## Generalized Shapiro-Wilk test for Multivariate Normality by
## Villasenor-Alva and Gonzalez-Estrada
##
## data: as.matrix(happy_con[, 5:11])
## MVW = 0.95442, p-value < 0.000000000000022</pre>
```