Introduction to Recurrent Neural Nets

Matt Smart January 2020

Feed-Forward Neural Nets

- Clear input to output direction
- Each layer transforms its input and passes it forward

 Objective functions built on output alone; don't typically track the intermediate layers

Recurrent Neural Nets

- Nodes pass information to and from each other as a connected graph
- No prescribed input to output direction
- Objective functions built around the RNN dynamics (trajectories, steady state distribution)

Feed-Forward Neural Nets

Universal Approximation Theorem

Comes in various forms. Roughly:

Any smooth function $f(x): \mathbb{R}^n \to \mathbb{R}$ can be approximated to arbitrary accuracy by a FFNN with a single hidden layer, i.e.

$$F(\mathbf{x}) = \sum v_i \sigma(\mathbf{w}_i^T \mathbf{x} + b_i)$$

so that
$$\forall x \in \mathbb{R}^n$$

$$|F(x) - f(x)| < \epsilon$$

Recurrent Neural Nets

RNN generalization of UAT

Many variants. An early one: Theorem 2 of *Funahashi and Nakamura, 1993*

Any continuous-time, smooth dynamical system $\frac{dx}{dt} = F(x)$ can be approximated (i.e., its trajectories) to arbitrary accuracy by a continuous-time RNN of the form

$$\tau \frac{d\mathbf{x}}{dt} = -\mathbf{x} + \mathbf{W}\sigma(\mathbf{x}) + \mathbf{h}$$

RNNs as dynamical systems

- An input vector $x_0 \in \mathbb{R}^n$ represents an initial condition for the nodes
- The nodes can take discrete or continuous values and update according to the RNN weights
 - Many possible update schemes
 - View state as particle in \mathbb{R}^n whose evolution defines a trajectory $x(t) \in \mathbb{R}^n$
 - The time steps can alternatively be discrete $\{x_0, x_1, ..., x_t, ...\}$
- Well-behaved (non-diverging) RNNs converge to "attractors"
 - The set of initial points which converge to a given attractor defines its "basins of attraction"
 - The set of basins of attraction partition the state space \mathbb{R}^n
- The attractors can be simple fixed points, more complicated (e.g. limit cycle), or chaotic

RNN state

$$\boldsymbol{x} = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$$

Attractor landscape concept for fixed point RNNs

Viewing RNNs as FFNNs

- Unfolding view is well defined for deterministic fixed-point attractor networks
 - Architecture: "infinitely deep" layers which are all identical
 - Fixed-point convergence can be approximated with finitely many layers (i.e. truncate)
 - However, not well defined for e.g. chaotic dynamical systems
- There is an alternative FFNN interpretation of general non-divergent RNNs
 - Corresponding FFNN is one which partitions the state space into basins of attraction
 - The hidden layers in this case need not be identical train a "vanilla" FFNN to learn basins
 - Didn't check if this is in the literature -- does it have any advantage over unfolding view?
 - Note the correspondence goes both ways (FFNN can be viewed as attractor RNNs)

Examples of RNNs

"Pure" RNNs + variants	Specialized RNNs + variants	
Continuous Time Sigmoidal Networks (CTSN) Use: Reproduce a deterministic dynamical	Long Short-Term Memory (LSTM) Use: Learn sequential data (e.g. text)	
system Boltzmann Machine (BM) Use: Model probability distributions, such	 Gated Recurrent Units (GRUs) Analogous to the LSTM unit, but with fewer parameters 	
as steady state of stochastic dyn. sys.	Niche RNNs	
 Ising Model Hopfield network Restricted Boltzmann Machine (RBM) Deep belief network (stacked RBMs) 	Reservoir Computing• Echo-state network• Liquid state machine	

Boltzmann Machines

- Same as Ising model when the nodes are boolean: $x^i \in \{+1, -1\}$
 - The edges J_{ij} are symmetric
 - The dynamics are generally *stochastic*
- BMs fall under "energy based models" in the ML literature
 - The dynamics have a Lyapunov function constructed from a Hamiltonian

$$H(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^T\mathbf{J}\mathbf{x} - \mathbf{b}^T\mathbf{x}$$

• Prototypical problem:

- Given M samples $\{x_i\}$ from the steady state distribution $p_{data}(x)$
- Find $\theta = \{J, b\}$ which maximize

$$L = \sum_{i} \ln p_{BM}(\boldsymbol{x}_{i} | \boldsymbol{\theta})$$

Example uses

- Stochastic model reconstruction (e.g. "learning a Hamiltonian")
- Generative modelling

Issue: training is difficult

- Computing $p_{BM}(x|\theta)$ is expensive
- Involves huge sum (2ⁿ terms) $Z = \sum e^{-H(x)}$ at each training step

Restricted Boltzmann Machines

- Dynamics: sequential (parallelized) updates of each layer
- 4 main RBM sub-classes:
 - \boldsymbol{v} boolean, \boldsymbol{h} boolean (most common)
 - \boldsymbol{v} boolean, \boldsymbol{h} cts (equiv. to Hopfield BM)
 - v cts, h boolean
 - \boldsymbol{v} cts, \boldsymbol{h} cts ("unstable"? –Hinton 2012)
- Possible to exactly transform BM to RBM using a Hubbard-Stratonovich transformation

- Training RBMs is much faster
 - The hidden nodes h are independent given the visible nodes v (vice-versa)
 - This dramatically reduces the number of terms needed at each step of ML gradient ascent
 - ML approximations used in practice, e.g. (Contrastive divergence, Hinton, 2002)
- RBMs are the building block for "Deep belief networks"
 - Greedily trained stack of RBMs
 - Describe hierarchical features in data
 - Hinton, 2006
- RBMs are universal approximators of discrete distributions
 - Bengio, 2007

Long short-term memory (LSTM) networks

- Historic difficulties in training generic RNNs, especially for sequential input data
 - Standard training uses backprop after unfolding the RNN to an approximate, finite FFNN
 - Two common, separate problems: Gradient can vanish or explode during training
 - See [Bengio et al. 2013. On the difficulty of training Recurrent Neural Networks.]
- LSTM developed to better apply RNNs to sequences.
 - Heuristically targets the vanishing gradient problem in generic RNN training
 - Original ref. Schmidhuber et al., 1997 (many variants since then)
- LSTM architecture appears convoluted, but is one of the most successful building blocks for sequence prediction, generation

Vanilla RNN

Let \mathbf{x}^t be the input vector at time t, N be the number of LSTM blocks and M the number of inputs. Then we get the following weights for an LSTM layer:

- Input weights: \mathbf{W}_z , \mathbf{W}_i , \mathbf{W}_f , $\mathbf{W}_o \in \mathbb{R}^{N \times M}$
- Recurrent weights: \mathbf{R}_z , \mathbf{R}_i , \mathbf{R}_f , $\mathbf{R}_o \in \mathbb{R}^{N \times N}$
- Peephole weights: $\mathbf{p}_i, \, \mathbf{p}_f, \, \mathbf{p}_o \in \mathbb{R}^N$
- Bias weights: \mathbf{b}_z , \mathbf{b}_i , \mathbf{b}_f , $\mathbf{b}_o \in \mathbb{R}^N$

Then the vector formulas for a vanilla LSTM layer forward pass can be written as:

$$\begin{split} &\bar{\mathbf{z}}^t = \mathbf{W}_z \mathbf{x}^t + \mathbf{R}_z \mathbf{y}^{t-1} + \mathbf{b}_z \\ &\mathbf{z}^t = g(\bar{\mathbf{z}}^t) & block input \\ &\bar{\mathbf{i}}^t = \mathbf{W}_i \mathbf{x}^t + \mathbf{R}_i \mathbf{y}^{t-1} + \mathbf{p}_i \odot \mathbf{c}^{t-1} + \mathbf{b}_i \\ &\bar{\mathbf{i}}^t = \sigma(\bar{\mathbf{i}}^t) & input gate \\ &\bar{\mathbf{f}}^t = \mathbf{W}_f \mathbf{x}^t + \mathbf{R}_f \mathbf{y}^{t-1} + \mathbf{p}_f \odot \mathbf{c}^{t-1} + \mathbf{b}_f \\ &\mathbf{f}^t = \sigma(\bar{\mathbf{f}}^t) & forget gate \\ &\mathbf{c}^t = \mathbf{z}^t \odot \bar{\mathbf{i}}^t + \mathbf{c}^{t-1} \odot \mathbf{f}^t & cell \\ &\bar{\mathbf{o}}^t = \mathbf{W}_o \mathbf{x}^t + \mathbf{R}_o \mathbf{y}^{t-1} + \mathbf{p}_o \odot \mathbf{c}^t + \mathbf{b}_o \\ &\mathbf{o}^t = \sigma(\bar{\mathbf{o}}^t) & output gate \\ &\mathbf{y}^t = h(\mathbf{c}^t) \odot \mathbf{o}^t & block output \end{split}$$

Re-drawing the figure...

Current timestep

Previous timestep

Input vector

RNN state vector

RNN "cell" vector $---- C_{t-1}$

Let x^t be the input vector at time t, N be the number of LSTM blocks and M the number of inputs. Then we get the following weights for an LSTM layer:

• Input weights: \mathbf{W}_z , \mathbf{W}_i , \mathbf{W}_f , $\mathbf{W}_o \in \mathbb{R}^{N \times M}$

• Recurrent weights: \mathbf{R}_z , \mathbf{R}_i , \mathbf{R}_f , $\mathbf{R}_o \in \mathbb{R}^{N \times N}$

• Peephole weights: $\mathbf{p}_i, \, \mathbf{p}_f, \, \mathbf{p}_o \in \mathbb{R}^N$

• Bias weights: \mathbf{b}_z , \mathbf{b}_i , \mathbf{b}_f , $\mathbf{b}_o \in \mathbb{R}^N$

Dynamics

Four LSTM "Gates"

$$z_{t} = \tanh(W^{z}x_{t} + R^{z}y_{t-1})$$

$$i_{t} = \sigma(W^{i}x_{t} + R^{i}y_{t-1} + p^{i} \odot c_{t-1})$$

$$f_{t} = \sigma(W^{f}x_{t} + R^{f}y_{t-1} + p^{f} \odot c_{t-1})$$

$$o_{t} = \sigma(W^{o}x_{t} + R^{o}y_{t-1} + p^{o} \odot c_{t})$$

"Cell state"

$$c_t = z_t \odot i_t + f_t \odot c_{t-1}$$

"RNN state"

$$y_t = \tanh(c_t) \odot o_t$$

Remarks

- LSTMs are often said to "perform better" than generic RNNs for "most tasks"
- However, recall the dynamical system approximation theorem for RNNs. Denote the LSTM state as x = [y, c]. Since LSTM is a dynamical system, there exists W, h, τ such that its continuous time evolution is approximated by

$$\tau \frac{dx}{dt} = -x + W\sigma(x) + h$$

- Important note: The above only works in the absence of input (I think)
- Extra: [von Brecht, Laurent, 2016] claim to show that LSTM (and GRU) input-less dynamics follow chaotic attractors, and propose an analogous but stable architecture

Some RNN use cases

- "I want to model a deterministic dynamical system"
 - Use a continuous time RNN
 - Generative use: believable trajectories

- "I want to model a probability distribution / extract features"
 - Use an RBM or Deep RBM
 - Generative use: believable samples
- "I want to model sequential data (e.g. text, speech)"
 - Use an LSTM / LSTM variant
 - Generative use: believable text, music, etc.

Some Refs

BM and RBM

- Hinton. 2012. A Practical Guide to Training Restricted Boltzmann Machines.
- Salakhutdinov, Hinton. 2009. Deep Boltzmann Machines.
- Le Roux, Bengio. 2007. Representational Power of Restricted Boltzmann Machines and Deep Belief Networks.
- Bengio, Simard, Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult.
- Bengio et al. 2013. On the difficulty of training recurrent neural networks.

LSTM

- Schmidhuber site: http://people.idsia.ch/~juergen/lstm/
- Google blog: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Schmidhuber et al. 2017. LSTM: A Search Space Odyssey.

Misc

- Funahashi, Nakamura. 1992. Approximation of dynamical systems by continuous time recurrent neural networks.
- Laurent, Brecht. 2016. A recurrent neural network without chaos

Reviews

- Mehta et al. 2018. A high-bias, low-variance introduction to Machine Learning for physicists.
- Bengio, Courville, Vincent. 2014. Representation Learning: A Review and New Perspectives.
- Tanaka et al. 2019. Recent advances in physical reservoir computing: A review.

SciNet LSTM Slides

Long Short Term Memory networks, memory cells

Notes about LSTM memory cells

Some notes about these memory cells.

- The 'input node' is a standard input node. These typically use a tanh activation function, though others can be used.
- How much of the input is added to the 'internal state' is controlled by the 'input gate.'
- The 'forget gate' controls how much of the internal state we're keeping, based on the input.
- The 'output gate' controls how much of the internal state is output.
- The internal state is put through a tanh function before output. This is optional, and is only done to put the output in the same range (-1 to 1) as a typical hidden layer. Some implementations use other functions such as rectifier linear units.

Notes about LSTMs

Some notes about LSTMs in networks.

- Each 'memory cell' is treated like a single neuron in a hidden layer. Typically there are many such cells in such a layer.
- In the Keras implementation of LSTMs, not only is the output of a single LSTM cell
 concatenated to its input, the output of all the LSTM cells in the layer are concatenated
 to the input.
- These networks are trained in the usual way, using Stochastic Gradient Descent and Backpropagation, as with other neural networks.
- These have been used in language translation, voice recognition, handwriting analysis, next-letter prediction, and many many other applications.

LSTM example

One common application of LSTMs is text prediction. Let's use an LSTM network to create a recipe.

- We will use the recipe data set, which is a text file containing 4869 recipes.
- We take the recipe data set, as a single file, and analyse it to find all unique words.
- We then one-hot-encode the words in the data set using our word list.
- We then break the data set into 50-word one-hot-encoded chunks ("sentences").
- We will then train the network:
 - the input will be the 50-word-encoded chunks.
 - the target will be the next word in the data set.
- Once the network is trained we can feed the network a random sentence as a seed, and it will use that sentence to generate new words, until we have a new recipe.

One-hot encoding

One way of portraying sentences is one-hot encoding. In this representation, all words are given an index in a vector of length num_words. The word gets a '1' when the word occurs and a '0' when it doesn't. The sentence then consists of an array of sentence_length rows and num_words columns.

Consider the sentence "The dog is in the dog crate."

The number of unique words is 5. Each word gets its own index: {the: 0, dog: 1, is: 2, in: 3, crate: 4}.

The sentence above can then be represented by the matrix to the right, with dimensions (sentence_length, num_words).

[1	0	0	0	0
0	1		0	0
0	0	1	0	0
0	0	0	1	0
1	0	0	0	0
0	1	0	0	0
0	0	0	0	$1_$

Our LSTM network

The network is simple:

- The input has dimensions (sentence_length, n_words)
- sentence_length = 50
- n_words = number of unique words in the data.
- The LSTM layer has 256 nodes.
- The output layer is fully-connected, of length n_words.

LSTM example, learning code, continued


```
g = shelve.open("data/recipes.shelve")
g["sentence_len"] = sentence_len
g["n_words"] = n_words
g["encoding"] = encoding
g["decoding"] = decoding
g.close()
model = km.Sequential()
model.add(kl.LSTM(256,
 input_shape = (sentence_len, n_words)))
```

```
model.add(kl.Dense(n_words, activation = 'softmax'))
model.compile(loss = 'categorical_crossentropy',
 optimizer = 'sgd', metrics = ['accuracy'])
fit = model.fit(x, y, epochs = 200,
 batch_size = 128, verbose = 2)
model.save('data/recipes.model.h5')
```