Group actions on models

G. A. M. Polymath

ABSTRACT. A set is *strongly generic* if the intersection of any finitely many of its translation is generic. To demostrate the convenience of this notion I use it for a short proof of (a generalization of) Newelski's theorem on the diamter of the Lascar graph, see Theorem 12.

Theorem 14 shows that the condition *strongly generic* = *generic* is roboust. It might be of some interest (it is reminiscent of *forking* = *dividing*). Is it worth investigating?

Section 5 is incomplete. I would like to recover in a natural way the classical theory of stable groups – but something does not add up.

The connections with topological dynamics are commented at the end of the notes.

1. The two perspectives on the invariance of types

This section I review well-known matter and set the terminology.

Below $\Delta \subseteq L_{xz}(\mathcal{U})$, $\mathfrak{X} \subseteq \mathcal{U}^x$, and $\mathfrak{Z} \subseteq \mathcal{U}^z$ are some arbitrary nonempty sets (at some point we will require that \mathfrak{X} and \mathfrak{Z} are type-definable). We write $L_{\Delta}(\mathfrak{Z})$ for the set of formulas $\theta(x)$ that are Boolean combination of formulas $\varphi(x;b)$ for some $\varphi(x;z) \in \Delta$ and some $b \in \mathfrak{Z}$. Such formulas a called Δ -formulas. A Δ -definable set is a set of the form $\theta(\mathcal{U}^x)$ for some Δ -formula $\theta(x)$. Subsets of $L_{\Delta}(\mathfrak{Z})$ are called Δ -types. We write $S_{\Delta}(\mathfrak{Z})$ for the set of complete Δ -types with parameters in \mathfrak{Z} . Beware that there may be other parameters hidden ion Δ). When convenient, we may assume that complete types only contain the formulas $\varphi(x;b)$ for $\varphi(x;z) \in \Delta$ or negations thereof.

1 Assumption Let *G* be a group that acts on \mathfrak{X} and on \mathfrak{Z} from the left. We require that for every $\varphi(x;z) \in \Delta$ the set $\varphi(\mathfrak{X};\mathfrak{Z})$ is invariant under the action of *G*.

Let $\mathcal{D} \subseteq \mathcal{U}^z$. We say that \mathcal{D} is invariant under the action of G, or G-invariant, if $\mathcal{D} \cap \mathcal{Z}$ is fixed setwise by G. Yet in other words, if

is1.
$$a \in \mathcal{D} \leftrightarrow ga \in \mathcal{D}$$
 for every $a \in \mathcal{Z}$ and every $g \in G$.

A formula is invariant if the set it defines is invariant. We say that $p(x) \subseteq L(\mathcal{U})$ is invariant under the action of G, or G-invariant, if for every formula $\varphi(x;z) \in L$

t1.
$$\varphi(x;a) \in p \Leftrightarrow \varphi(x;ga) \in p$$
 for every $a \in \mathbb{Z}$ and every $g \in G$.

It should be evident that invariant under the action of $\operatorname{Aut}(U/A)$ coincides with invariant over A and Lascar invariant over A coincides with invariant under the action of $\operatorname{Autf}(U/A)$.

We have just defined invariance using the subsets of \mathcal{Z} (externally) defined by p. Now we discuss invariance using the subsets of \mathcal{X} that are in p.

An immediate consequence of Assumption 1 is that any *G*-translate of a Δ -definable set is again Δ -definable. In particular for every Δ -formula $\vartheta(x; \bar{b})$ and every $g \in G$

$$g[\vartheta(\mathbf{X};\bar{b})] = \vartheta(\mathbf{X};g\bar{b}).$$

Therefore $p(\mathbf{x}) \subseteq L_{\Delta}(\mathcal{Z})$ is invariant if

 $p(x) \vdash x \in \mathcal{D} \iff p(x) \vdash x \in g\mathcal{D}$ for every Δ -definable $\mathcal{D} \subseteq \mathcal{U}^x$ and $g \in G$, where by $p(x) \vdash x \in \mathcal{D}$ we understand $\vartheta(\mathfrak{X}) \subseteq \mathcal{D}$ for some $\vartheta(x)$ that is conjunction of formulas in p(x).

A set $\mathcal{D} \subseteq \mathcal{X}$ is **generic** under the action of G, or G-generic for short, if finitely many G-translates of \mathcal{D} cover \mathcal{X} ; we say n-G-generic if $\leq n$ translates suffices. Dually, we say that \mathcal{D} is **persistent** under the action of G, or G-persistent for short, if the intersection of any finitely many G-translates of \mathcal{D} is nonempty; we say n-G-persistent when the request is limited to $\leq n$ translates. We will drop reference to G when it is clear from the context.

The same properties may be attributed to formulas (as these are identified with the set they define). When these properties are attributed to a type p(x), we understand that they hold for every conjunction of formulas in p(x).

The terminology is mine. In [1] the authors write *quasi-non-dividing* for *persistent* when $G = \operatorname{Aut}(\mathcal{U}/A)$.

2 Example If $p(x) \subseteq L(\mathcal{U})$ is finitely satisfiable in A then p(x) is persistent (in any $\mathfrak{X} \supseteq A^x$) under the action of $\operatorname{Aut}(\mathcal{U}/A)$. In fact, the same $a \in A^x$ that satisfies $\varphi(x)$ also satisfies every $\operatorname{Aut}(\mathcal{U}/A)$ -translate of $\varphi(x)$.

Notation: for $\mathfrak{D} \subseteq \mathfrak{U}^x$ and $H \subseteq G$ we write $H \mathfrak{D}$ for $\{h\mathfrak{D} : h \in H\}$.

In this notes many proofs require some juggling with negations.

- 3 Fact (Assume 1) The following are equivalent
 - 1. D is not generic
 - 2. $\neg \mathbb{D}$ is persistent.

Proof. Immediate by spelling out the definitions

- 1. there are no finite $H \subseteq G$ such that $\mathfrak{X} \subseteq \cup H\mathfrak{D}$.
- 2. $\emptyset \neq \mathfrak{X} \cap (\cap H \neg \mathfrak{D})$ for every finite $H \subseteq G$.

- **4 Theorem** (Assume 1) Let $p(x) \in S_{\Delta}(\mathcal{Z})$ be finitely satisfiable in \mathfrak{X} . Then the following are equivalent
 - 1. p(x) is invariant
 - 2. p(x) \vdash x ∈ \mathbb{D} for every generic Δ -definable set \mathbb{D}
 - 3. p(x) is persistent.

Proof. 1 \Rightarrow 2. Let $H \subseteq G$ be finite such that $\mathfrak{X} \subseteq \cup H \mathcal{D}$. Then $p(x) \vdash x \in \cup H \mathcal{D}$. By completeness, $p(x) \vdash x \in h\mathcal{D}$ for some $h \in H$. Finally, by invariance, $p(x) \vdash x \in \mathcal{D}$.

2⇒3. Let \mathfrak{D} be defined by a conjunction of formulas in p(x). If \mathfrak{D} is not persistent then, by Fact 3, $\neg \mathfrak{D}$ is generic. By 2, $p(x) \vdash x \notin \mathfrak{D}$, a contradiction.

3⇒1. If p(x) is not invariant then, by completeness, $p(x) \vdash \varphi(x;b) \land \neg \varphi(x;gb)$ for some $g \in G$. Clearly $\varphi(x;b) \land \neg \varphi(x;gb)$ is not persistent as it is inconsistent with its g-translate.

- 5 Remark In the theorem above, 2 and 3 can be replaced by
 - 2'. p(x) ⊢ $x \in \mathcal{D}$ for every 2-generic Δ -definable set \mathcal{D}
 - 3'. p(x) is 2-persistent.

The theorem yields an immediate necessary condition for the existence of an invariant global Δ -type.

- **6 Corollary** (Assume 1) If there exists an invariant global Δ-type then for every Δ-definable set $\mathfrak D$
 - 1. \mathcal{D} and $\neg \mathcal{D}$ cannot be both generic
 - 2. if \mathcal{D} is generic than it is persistent.

Proof. By Fact 3, 1 and 2 are equivalent; 1 is an immediate consequenc of 2 of Theorem 4. \Box

The following theorem gives a necessary and sufficient condition for the existence of global invariant Δ -type. Ideally, we would like to prove that every persistent Δ -type extends to a global persitent type. Unfortunately this is not true – we need a stronger property. A Δ -definable set $\mathbb D$ is hereditarely persistent if every finite cover of $\mathbb D$ by Δ -definable sets contains a persistent set. A type is hereditarely persistent if every conjunction of formulas in the type is hereditarely persistent.

The terminology is provisional. In [1] a related property is called *quasi-non-forking*.

- **7 Theorem** (Assume 1) Let $q(x) \subseteq L(\mathcal{U})$. Then the following are equivalent
 - 1. q(x) extends to an invariant type $p(x) \in S_{\Delta}(\mathcal{Z})$ finitely satisfiable in X
 - 2. q(x) is hereditarely persistent.

Proof. $1\Rightarrow 2$. Let $\vartheta(x)$ be a conjunction of formulas in q(x). Suppose $\mathcal{C}_1, \ldots, \mathcal{C}_n$ cover $\vartheta(\mathcal{U}^x)$ and pick p(x) as in 1. By completeness, $p(x) \vdash x \in \mathcal{C}_i$ for some i. Then, by Theorem 4, $\neg \mathcal{C}_i$ is not generic. Therefore, by Fact 3, \mathcal{C}_i is persistent.

2 \Rightarrow 1. Let p(x) be maximal among the Δ-types that contain q(x) and are such that $\vartheta(\mathcal{U}^x)$ is hereditarely persistent for every $\vartheta(x)$ that is conjunction of formulas

in p(x). We claim that p is a complete Δ -type. Suppose for a contradiction that $\vartheta(x)$, $\neg \vartheta(x) \notin p$. By maximality there is some formula $\psi(x)$, a conjunction of formulas in p(x) and some $\mathcal{C}_1, \ldots, \mathcal{C}_n$ that cover both $\psi(\mathcal{U}^x) \cap \vartheta(\mathcal{U}^x)$ and $\psi(\mathcal{U}^x) \setminus \vartheta(\mathcal{U}^x)$ and such that no \mathcal{C}_i is persistent. As $\mathcal{C}_1, \ldots, \mathcal{C}_n$ cover $\psi(\mathcal{U}^x)$ this is a contradiction. It is only left to show that p(x) is finitely satisfiable in \mathcal{X} and invariant. Finite satisfiability follows from persistency. From completeness and Theorem 4 we obtain invariance.

2. Strong genericity

Unfortunatelly, genericy is not preserved under intersection. To obtain closure under intersection, we need to push the concept to a higher level of complexity.

A set $\mathcal{D} \subseteq \mathcal{U}^x$ is strongly generic if for every finite $H \subseteq G$ the set $\cap H \mathcal{D}$ is generic. Dually, we say that \mathcal{D} is weakly persistent if for some finite $H \subseteq G$ the set $\cup H \mathcal{D}$ is persistent. Again, the same properties may be attributed to formulas and types.

8 Lemma (Assume 1) The intersection of strongly generic sets is strongly generic.

Proof. We may assume that all sets mentioned below are subsets of \mathfrak{X} . Let \mathfrak{D} and \mathfrak{C} be strongly generic and let $K \subseteq G$ be an arbitrary finite set. It suffices to prove that $\mathfrak{B} = \cap K (\mathfrak{C} \cap \mathfrak{D})$ is generic. Clearly $\mathfrak{B} = \mathfrak{C}' \cap \mathfrak{D}'$, where $\mathfrak{C}' = \cap K \mathfrak{C}$ and $\mathfrak{D}' = \cap K \mathfrak{D}$. Note that \mathfrak{C}' and \mathfrak{D}' are both strongly generic. In particular $\mathfrak{X} = \cup H \mathfrak{D}'$ for some finite $H \subseteq G$. Now, from

$$\begin{array}{rcl}
\cup H \, \mathbb{B} &=& \cup H \big[\mathfrak{C}' \, \cap \, \mathfrak{D}' \big] \\
\cup H \, \mathbb{B} &\supseteq & \cup H \big[\big(\cap H \, \mathfrak{C}' \big) \, \cap \, \mathfrak{D}' \big] \\
&=& \big(\cap H \, \mathfrak{C}' \big) \, \cap \, \big(\cup H \, \mathfrak{D}' \big) \\
&=& \cap H \, \mathfrak{C}'
\end{array}$$

As \mathfrak{C}' is strongly generic, $\cap H \mathfrak{C}'$ is generic. Therefore $\cup H \mathfrak{B}$ is also generic. The genericity of \mathfrak{B} follows.

9 Corollary (Assume 1) Let $q(x) = \{\vartheta(x) \in L_{\varphi}(\mathcal{U}) : \vartheta(x) \text{ strongly generic}\}$. Then q(x) is finitely satisfiable in \mathcal{X} , strongly generic, and invariant.

Proof. Strong genericity is an immediate consequence of Lemma 8. Finite satisfiability follows easily from genericity. As for invariance, note that any translate of a strongly generic formula is also strongly generic.

10 Corollary (Assume 1) Let q(x) be as in Corollary 9. Let $p(x) \subseteq L(\mathcal{U})$ be such that $p(x) \cup q(x)$ is finitely satisfied in \mathcal{X} . Then p(x) is weakly persistent.

Proof. Let $\vartheta(x) \in p$. As q(x) is finitely satisfiable in $\vartheta(U^x)$, we cannot have that $\neg \vartheta(x)$ is strongly generic. From Fact 3, we obtain that $\neg \vartheta(U^x)$ non strongly generic is equivalent to $\vartheta(x)$ weakly persistent.

3. The diameter of a Lascar type

Recall that $\mathcal{L}(a/A)$, the Lascar strong type of $a \in \mathcal{U}^x$, is the union of a chain of type-definable sets of the form $\{x: d_A(a,x) \leq n\}$. In this section we prove that $\mathcal{L}(a/A)$ is type-definable (if and) only this chain is finite. In other words, only if the connected component of a in the Lascar graph has finite diameter. It is convenient to address the problem in more general terms.

Assume $G \subseteq Aut(\mathcal{U})$. Let $K \subseteq G$ be a set of generators that is

- 1. symmetric i.e. it contains the unit and is closed under inverse
- 2. conjugancy invariant i.e. $g K g^{-1} = K$ for every $g \in G$

Assume G acts transitively on X i.e., Ga = X for every $a \in X$. We define a discrete metric on X. For $a,b \in X$ let d(a,b) be the minimal n such that $a \in K^nb$. This defines a metric which is G-invariant by 2. The diameter of a set $C \subseteq X$ is the supremum of d(a,b) for $a,b \in C$.

We are interested in sufficient conditions for \mathfrak{X} to have finite diameter. The notions introduced in Section 2 offer some hint.

11 Proposition If X has a weakly persistent subset of finite diameter, then X itself has finite diameter.

Proof. Let $\mathcal{C} \subseteq \mathcal{X}$ be a weakly persistent set of diameter n. Let $H \subseteq G$ be finite such that $\cup H$ \mathcal{C} is persistent. We claim that also $\cup H$ \mathcal{C} has finite diameter. Let $a \in \mathcal{C}$ be arbitrary. Let m be larger than d(ha,ka) for all $h,k,\in H$. Now, let hb and kc, for some $h,k,\in H$ and $b,c\in \mathcal{C}$, be two arbitrary elements of $\cup H$ \mathcal{C} . As $h\mathcal{C}$ and $k\mathcal{C}$ have the same diameter of \mathcal{C} ,

$$d(hb, kc) \leq d(hb, ha) + d(ha, ka) + d(ka, kc)$$

$$\leq n + m + n.$$

This proves that \cup H \mathfrak{C} has finite diameter. Therefore, without loss of generality, we may assume that \mathfrak{C} itself is persistent.

By the transitivity of the action, any two elements of \mathfrak{X} are of the form ha, ka for some $h, k \in G$ and some $a \in \mathfrak{C}$. By percistency, there are $c \in \mathfrak{C} \cap h\mathfrak{C}$ and $d \in \mathfrak{C} \cap k\mathfrak{C}$. Then

$$d(ha, ka) \leq d(ha, c) + d(c, d) + d(d, ka)$$

$$< n + n + n.$$

Therefore the diameter of \mathfrak{X} does not exceed 3n.

12 Theorem Suppose that \mathfrak{X} and the sets $\mathfrak{X}_n = K^n a$, for some $a \in \mathfrak{X}$, are type-definable. Then \mathfrak{X} has finite diameter.

Proof. By Proposition 11, it suffices to prove that X_n is weakly persistent. Define

$$q(x) = \{\vartheta(x) \in L(\mathcal{U}) : \vartheta(x) \text{ strongly generic}\}.$$

By Corollary 10, with L for L_{φ} , it suffices to prove that for some n the type q(x) is finitely satisfied in \mathfrak{X}_n . Suppose not. Let $\psi_n(x) \in q$ be a formula that is not satisfied in \mathfrak{X}_n . The type $p(x) = \{\psi_n(x) : n \in \omega\}$ is finitely satisfied in \mathfrak{X} . Then p(x) has a

realization in \mathfrak{X} . As this realization belongs to some \mathfrak{X}_n we contradict the definition of $\psi_n(x)$.

13 Example Let $K \subseteq \operatorname{Aut}(\mathcal{U}/A)$ be the set of automorphisms that fix a model containing A. Then the group G generated by K is $\operatorname{Autf}(\mathcal{U}/A)$ and $G \cdot a = \mathfrak{X}$ is $\mathcal{L}(a/A)$. Then d(a,b) concides with the dinstance in the Lascar graph. It is not difficult to see that the sets $K^n \cdot a$ are type definable. Then from Theorem 12 it follows that $\mathcal{L}(a/A)$ is type definable (if and) only if it has a finite diameter.

4. A simplified landscape

Under suitable assumptions – e.g. the sability of $\varphi(x;z)$ – some of the notions introduced above coalesce and we are left with cleaner theory. We prove the following theorem.

- **14 Theorem** (Assume 1) The following are equivalent
 - 1. persistent Δ -definable sets are hereditarely persistent
 - 2. generic Δ -definable sets are strongly generic
 - 3. generic Δ -definable sets are closed under intersection
 - 4. weakly persisent Δ -definable sets are persistent.

Proof. $1\Rightarrow 2$. It suffices to prove that generic sets are closed under intersection. Let \mathbb{C} and \mathbb{D} be generic Δ -definable sets. Suppose for a contradiction that $\mathbb{C}\cap\mathbb{D}$ is not generic. By 1 and Theorem 7 there is an invariant global Δ -type p(x) containing $x\in \neg\mathbb{C}\cup \neg\mathbb{D}$. By completeness either $p(x)\vdash x\in \neg\mathbb{C}$ or $p(x)\vdash x\in \neg\mathbb{D}$. This is a contradiction because, by Theorem 4, $p(x)\vdash x\in \mathbb{C}$ and $p(x)\vdash x\in \mathbb{D}$.

2⇔3⇔4. Clear.

4⇒1. Let $q(x) = \{\vartheta(x) \in L_{\varphi}(\mathfrak{U}) : \vartheta(x) \text{ generic}\}$. By 2 this is the same type defined in Corollary 10. Therefore, any completion of q(x) is, by 4, persistent. Let \mathfrak{D} be a persistent Δ-definable set. By Theorems 4 and 7 it suffices to show that \mathfrak{D} is consistent with q(x). Suppose not, then $q(x) \vdash x \in \neg \mathfrak{D}$. Therefore, by 3, $\neg \mathfrak{D}$ is generic. This is a contradiction by Fact 3.

- **15 Remark** Assume the equivalent conditions in Theorem 14. Then there is a unique maximal generic type $q(x) \subseteq L_{\Delta}(\mathcal{Z})$. Moreover the following are equivalent for every $p(x) \in S_{\Delta}(\mathcal{Z})$
 - 1. p(x) is persistent (equivalently, invariant)
 - 2. p(x) extends q(x).

In particular, invariant global types exist.

5. Definable groups

In this section we work as always under Assumption 1 but we further specify G and Δ . We set $G = \mathbb{Z}$ and require that \mathbb{Z} and \mathbb{X} are type-definable over A. We assume that the group operations and the group action are definable over A. We use the symbol \cdot for both the group multiplication and the group action. Clearly, \mathbb{Z} also acts on itself by left multiplication.

In this section we deal with the actions of two groups: \mathcal{Z} and $\operatorname{Aut}(\mathcal{U}/A)$. Generic and persistent only refer to the action of \mathcal{Z} . We will be explicit about invariance.

Let $\psi(x;y) \in L(A)$. We write $\varphi(x;z;y)$ for the formula $\psi(z^{-1} \cdot x;y)$. In this section Δ contains the formulas $\varphi(x;z;a)$ where a ranges over some given $\mathcal{Y} \subseteq \mathcal{U}^y$ that is invariant over A. Note that $\varphi(\mathcal{X};\mathcal{Z};a)$ is \mathcal{Z} -invariant for every a. Therefore the above G and Δ are compatible with Assumption 1.

Let 1 be the identity of \mathcal{Z} which, for simplicity, we think as a constant of L. Clearly, $\varphi(\mathfrak{X};g;a) = g \cdot \varphi(\mathfrak{X};1;a)$.

16 Fact There are some formulas $\gamma(y)$, $\pi(y) \in L(A)$ such that, for every $a \in \mathcal{Y}$ and every $g \in \mathcal{Z}$

$$\gamma(a) \Leftrightarrow \varphi(x;g;a)$$
 is generic

$$\pi(a) \Leftrightarrow \varphi(x;g;a)$$
 is persistent.

Similar claims holds for $\neg \varphi(x; g; a)$.

Proof. As $\varphi(x;g;a)$ is generic/persistent if and only if $\varphi(x;1;a)$, we can replace g by 1. By an easy argument of compactness, there is an n such that if $\varphi(x;1;a)$ is generic then it is also n-generic. Then

$$\gamma(y) = \exists z_1, \dots, z_n \ \forall x \bigvee_{i=1}^n \varphi(x; z_i; y)$$

The other claims follow easily.

An immediate consequence is that $\operatorname{Aut}(\mathcal{U}/A)$ maps generic/persistent sets of the form $\varphi(\mathfrak{X};g;a)$ to generic/persistent sets of the same form.

17 Fact Let $p(x) \in S_{\Delta}(\mathbb{Z})$ be persistent – equivalently, \mathbb{Z} -invariant. Then p(x) is invariant over A.

Proof. We may assume that p(x) only contain the formulas $\varphi(x;b)$ for $\varphi(x;z) \in \Delta$ or negations thereof. As p(x) is \mathbb{Z} -invariant, $\varphi(x;g;a) \in p \Leftrightarrow \varphi(x;1;a) \in p$. Then, as $\varphi(x;1;a) \leftrightarrow \varphi(x;1;fa)$ for every $f \in \operatorname{Aut}(\mathbb{U}/A)$, invariance over A follows. \square

18 Assumption Assume that the three equivalent conditions in Theorem 14 hold for $G = \mathcal{Z}$, X, and Δ introduced in this section.

Under Assumption 18 the types $p(x) \in S_{\Delta}(\mathbb{Z})$ that extend the maximal generic type q(x), see Remark 15, are invariant under the action of both \mathbb{Z} and $\operatorname{Aut}(\mathbb{U}/A)$

6. Notes and references

Connnections with topological dynamics are mentioned everywhere but I ignored them until the very last. I just realized that *persistent* = *thick* and that *weakly persistent* = *piecewise syndetic*. Of course, *generic* = *syndetic*. The notion of *hereditarely persistent* may also have an analogon in topological dynamics, but could not find it yet.

[1] Artem Chernikov and Itay Kaplan, Forking and dividing in NTP_2 theories, J. Symbolic Logic 77 (2012), 1–20.