Doughty Design

TEST REPORT ADDENDUM TO 98667-11

MarqMetrix RF Module Model: METRIX01

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (DTS 2400-2483.5 MHz)

Report No.: 98667-11A

Date of issue: November 22, 2016

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	
FCC Part 15 Subpart C	8
15.247(a)(2) 6dB Bandwidth	
15.247(b)(3) Output Power	
15.35(c) Duty Cycle Correction Factor	18
15.247(e) Power Spectral Density	21
15.247(d) RF Conducted Emissions & Band Edge	26
15.247(d) Radiated Emissions & Band Edge	33
15.207 AC Conducted Emissions	70
Supplemental Information	79
Measurement Uncertainty	79
Emissions Test Details	70

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Doughty Design Joyce Walker

7344 31st Ave SW

CKC Laboratories, Inc.

Seattle, WA 98126

5046 Sierra Pines Drive

Mariposa, CA 95338

REPRESENTATIVE: Chris Doughty Project Number: 98667

DATE OF EQUIPMENT RECEIPT: August 29, 2016

DATE(S) OF TESTING: August 29 -31, 2016 and October 31, 2016

Revision History

Original: Testing of the MarqMetrix RF Module Model: METRIX01 to FCC Part 15 Subpart C Section(s) 15.207 & 15.247.

Addendum A: The addendum is to correct calculations that were based on an incorrect antenna gain. The antenna gain of 0.7dBi was changed to 1.1dBi.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve 27 B

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 80 Report No.: 98667-11A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drvie SE Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Ī	Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Ī	Bothell	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

Page 4 of 80 Report No.: 98667-11A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	Description	Modifications	Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	Output Power	NA	Pass
15.247(e)	Power Spectral Density	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions		
None		

Page 5 of 80 Report No.: 98667-11A

EQUIPMENT UNDER TEST (EUT)

During testing numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
MarqMetrix RF Module	Doughty Design	METRIX01	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Coordinator Test Board	Doughty Design	3247Rev3	NA
AC Adapter	NorthPada	LA-520WF	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
MarqMetrix RF Module	Doughty Design	METRIX01	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Coordinator Test Board	Doughty Design	3247Rev3	NA
AC Adapter	NorthPada	LA-520WF	NA
5 dBi Antenna	SparkFun	WRL-00558	NA

Configuration 3

Equipment Tested:

Device	Manufacturer	Model #	S/N
MarqMetrix RF Module	Doughty Design	METRIX01	NA

Support Equipment:

Device	Manufacturer	Model #	S/N
Coordinator Test Board	Doughty Design	3247Rev3	NA
AC Adapter	HTC	TC U250	NA
5 dBi Antenna	SparkFun	WRL-00558	NA

Page 6 of 80 Report No.: 98667-11A

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Radio Module
Type of Wideband System:	Zigbee 802.15.4
Operating Frequency Range:	2405-2475MHz
Modulation Type(s):	DSSS
Maximum Duty Cycle:	38%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral or RSMA External
Nominal Input Voltage:	2.7-3.6VDC (3.0V Nominal)
Firmware / Software used for Test:	Firmware 1.00

Page 7 of 80 Report No.: 98667-11A

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

	Test Setup/Conditions						
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson				
Test Method:	ANSI C63.10 (2013), Test Date(s): 8/29/2016						
	KDB 558074 v03r05 (April 8, 2016)						
Configuration:	1						
Test Setup:	Frequency Range: 2405-2475MHz						
	Frequency tested: 2405, 2445, 2475N	ЛHz					
	Firmware power setting: Max Power						
	EUT Firmware: 1.00						
	Protocol /MCS/Modulation: DSSS						
	Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi						
	Duty Cycle: 100% (Test Mode)						
	Test Mode: Continuously transmitting						
	Test Setup: The EUT is transmitting through a temporary antenna connector and is						
	attached directly to the spectrum and	alyzer.					
	Modifications Added: None						

Environmental Conditions					
Temperature (ºC)	21	Relative Humidity (%):	40		

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02673	Spectrum Analyzer	Agilent	E4446A	10/12/2015	10/12/2017	
P05747	Attenuator	Pasternack	PE7004-20	1/29/2016	1/29/2018	
P06678	Cable	Astrolab	32026-29801- 29801-144	9/18/2014	9/18/2016	

	Test Data Summary								
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results				
2405	1	DSSS	1600	≥500	Pass				
2445	1	DSSS	1595	≥500	Pass				
2475	1	DSSS	1603	≥500	Pass				

Page 8 of 80 Report No.: 98667-11A

Plots

Low Channel

Middle Channel

High Channel

Test Setup Photo

15.247(b)(3) Output Power

Test Data Summary - Voltage Variations							
Frequency (MHz)	Modulation / Ant Port	tion / Ant Port VMinimum VNominal (dBm) (dBm)		V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
2405	DSSS	16.7	17.3	17.4	0.6		
2445	DSSS	16.3	16.8	17.4	0.6		
2475	DSSS	16.1	16.7	17.5	0.8		

Note: Test performed using operational mode with the highest output power, representing worst case.

The conducted measurements were recorded in dBuV and converted into dBm using a conversion factor for known system impedance of 50 ohms.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

Parameter	Value
V _{Nominal} :	3.0VDC
V _{Minimum} :	2.7VDC
V _{Maximum} :	3.6VDC

Power Output Test Data Summary - RF Conducted Measurement									
Measuremen	Measurement Option: RBW > DTS Bandwidth								
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results				
2405	DSSS	Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi	17.3	≤30	Pass				
2445	DSSS	Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi	16.8	≤30	Pass				
2475	DSSS	Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi	16.7	≤30	Pass				

Note: The conducted measurements were recorded in dBuV and converted into dBm using a conversion factor for known system impedance of 50 ohms.

Page 12 of 80 Report No.: 98667-11A

Plots

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 98667 Date: 8/29/2016
Test Type: Maximized Emissions Time: 13:56:06
Tested By: Michael Atkinson Sequence#: 3

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 21°C Humidity: 40% Pressure: 103.3kPa

Frequency Range: 2405-2475MHz Frequency tested: 2405, 2445, 2475MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum

analyzer.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 15 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 3 Date: 8/29/2016 15.247(b) Power Output (2400-2483.5 MHz DTS) Test Distance: None None

* Average Readings Software Version: 5,03.02

O Peak Readings

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T2	ANP05747	Attenuator	PE7004-20	1/29/2016	1/29/2018
T3	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	st Distance	e: None		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	dΒμV	dB	Ant
1	2404.420M	102.0	+0.0	+20.0	+2.3		+0.0	124.3	137.0	-12.7	None
2	2444.420M	101.5	+0.0	+20.0	+2.3		+0.0	123.8	137.0	-13.2	None
3	2474.400M	101.4	+0.0	+20.0	+2.3		+0.0	123.7	137.0	-13.3	None

Test Setup Photo

15.35(c) Duty Cycle Correction Factor

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
03530	RF Powerhead	ETS	7002-006	3/31/2015	3/31/2017	

Test Data Summary						
Antenna Port	Operational Mode	Measured On Time (mS / Pobs)	Calculated DCCF (dB)			
1	Worst Case Message	0.38	-8.4			

Observation Period, Pobs is the duration of the pulse train or maximum 100mS

Measured results are calculated as follows:

$$\textit{On Time} = \left(\sum_{\textit{Bursts}} \textit{RF Burst On Time} + \sum_{\textit{Control}} \textit{Control Signal On time} \right) \bigg|_{P_{obs} \, (\max 100 ms)}$$

Measured Values:

Parameter	Value
Observation Period (Pobs):	100ms
Number of RF Bursts / Pobs::	20
On time of RF Burst:	Varies: 1.75-1.98mS
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	38mS

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$DCCF = 20 \cdot Log\left(\frac{On\ Time}{P_{obs}}\right)$$

Note: Worst case of 100ms window reported. Investigated a longer sample time initially to find worst 100ms message.

Page 18 of 80 Report No.: 98667-11A

Duty Cycle Correction Factor Test Data

Test Setup Photo

15.247(e) Power Spectral Density

	PSD Test Data Summary - RF Conducted Measurement										
Measurement M	Measurement Method: PKPSD										
Frequency (MHz) Modulation (Measured Limit (MHz) Results											
2405	DSSS	0.51	≤8	Pass							
2445	DSSS	1.91	≤8	Pass							
2475	DSSS	1.51	≤8	Pass							

Note: The conducted measurements were recorded in dBuV and converted into dBm using a conversion factor for known system impedance of 50 ohms.

Plots

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)
Work Order #: 98667 Date: 8/29/2016
Test Type: Maximized Emissions Time: 15:29:41
Tested By: Michael Atkinson Sequence#: 5

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 21°C Humidity: 40% Pressure: 103.3kPa

Frequency Range: 2405-2475MHz Frequency tested: 2405, 2445, 2475MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum

analyzer.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 23 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 5 Date: 8/29/2016 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS) Test Distance: None None

- Readings

O Peak Readings

× QP Readings

* Average Readings

▼ Ambient

Software Version: 5.03.02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T1	ANP05747	Attenuator	PE7004-20	1/29/2016	1/29/2018
T2	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		

Meas	surement Data:	Reading listed by margin.				Test Distance: None					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
	1 2444.538M	86.6	+20.0	+2.3			+0.0	108.9	115.0	-6.1	None
	2 2474.623M	86.2	+20.0	+2.3			+0.0	108.5	115.0	-6.5	None
	3 2405.415M	85.2	+20.0	+2.3			+0.0	107.5	115.0	-7.5	None

Test Setup Photo

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 98667 Date: 8/30/2016
Test Type: Maximized Emissions Time: 08:45:31
Tested By: Michael Atkinson Sequence#: 12

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 21°C Humidity: 40% Pressure: 103.3kPa

Frequency Range: 2405-2475MHz Frequency tested: 2405, 2445, 2475MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum

analyzer.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 26 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 12 Date: 8/30/2016 15.247(d) Conducted Spurious Emissions Test Distance: None None

- Readings QP Readings
- Ambient
- 1 15.247(d) Conducted Spurious Emissions
- O Peak Readings * Average Readings Software Version: 5.03.02

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T1	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		
T2	ANP06242	Attenuator	54A-10	3/28/2016	3/28/2018
T3	ANP06243	Attenuator	54A-10	3/9/2016	3/9/2018
	ANP05747	Attenuator	PE7004-20	1/29/2016	1/29/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Tes	st Distan	ce: None		
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	24748.950	-54.1	+7.8	+10.0	+9.9		+0.0	-26.4	-2.7	-23.7	None
	M								High		
2	24052.600	-55.2	+7.7	+10.1	+9.9		+0.0	-27.5	-2.7	-24.8	None
2	24032.000 M	-33.2	+/./	+10.1	⊤9.9		+0.0	-27.3	-2.7	-24.8	None
	IVI								Low		
3	24452.150	-55.3	+7.8	+10.1	+9.9		+0.0	-27.5	-2.7	-24.8	None
	M	00.0	,,,	1011	,,,		0.0	_,			1,0110
									Mid		
4	7425.250M	-57.2	+4.1	+9.9	+9.8		+0.0	-33.4	-2.7	-30.7	None
									High		
5	7214.900M	-57.4	+4.0	+9.9	+9.8		+0.0	-33.7	-2.7	-31.0	None
									Low		
6	2483.800M	-55.9	+2.3	+9.8	+9.8		+0.0	-34.0	-2.7	-31.3	None
									High		
7	7337.150M	-58.6	+4.1	+9.9	+9.8		+0.0	-34.8	-2.7	-32.1	None
									Mid		
8	9900.950M	-59.8	+4.8	+9.8	+9.8		+0.0	-35.4	-2.7	-32.7	None
									High		
9	9778.900M	-59.9	+4.8	+9.9	+9.8		+0.0	-35.4	-2.7	-32.7	None
									Mid		
10	9619.250M	-60.2	+4.7	+10.0	+9.8		+0.0	-35.7	-2.7	-33.0	None
									Low		
11	4951.800M	-60.5	+3.3	+9.9	+9.8		+0.0	-37.5	-2.7	-34.8	None
									High		
12	4889.850M	-61.0	+3.3	+9.9	+9.8		+0.0	-38.0	-2.7	-35.3	None
									Mid		
13	4810.500M	-61.2	+3.2	+9.9	+9.8		+0.0	-38.3	-2.7	-35.6	None
									Low		
14	861.400M	-61.5	+1.4	+9.8	+9.8		+0.0	-40.5	-2.7	-37.8	None
15	360.200k	-60.1	+0.0	+9.8	+9.7		+0.0	-40.6	-2.7	-37.9	None
16	259.480M	-61.7	+0.7	+9.8	+9.7		+0.0	-41.5	-2.7	-38.8	None

Band Edge

	Band Edge Summary									
Limit applied: Max Power/100kHz - 20dB.										
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results						
2400.0	DSSS	-26.8	<-2.7	Pass						
2483.5	DSSS	-39.3	<-2.7	Pass						

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 98667 Date: 8/30/2016
Test Type: Maximized Emissions Time: 08:45:31
Tested By: Michael Atkinson Sequence#: 12

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: 2405-2475MHz Frequency tested: Band Edge Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is transmitting through a temporary antenna connector and is attached directly to the spectrum

analyzer.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 29 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 12 Date: 8/30/2016 15.247(d) Conducted Spurious Emissions Test Distance: None None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T1	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		
T2	ANP06242	Attenuator	54A-10	3/28/2016	3/28/2018
T3	ANP06243	Attenuator	54A-10	3/9/2016	3/9/2018
	ANP05747	Attenuator	PE7004-20	1/29/2016	1/29/2018

Measi	Measurement Data:		Reading listed by margin.			Test Distance: None					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	2400.000M	-48.7	+2.3	+9.8	+9.8		+0.0	-26.8	-2.7	-24.1	None
									Low BE		
2	2483.500M	-61.2	+2.3	+9.8	+9.8		+0.0	-39.3	-2.7	-36.6	None
									High BE		

Band Edge Plots

Test Setup Photo

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 98667 Date: 8/31/2016
Test Type: Maximized Emissions Time: 11:40:39
Tested By: Michael Atkinson Sequence#: 2

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Temperature: 24°C Humidity: 36% Pressure: 102.3kPa

Frequency Range: 2405-2475MHz Frequency tested: 2405, 2445, 2475MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is top of foam table, transmitting through External 5dBi antenna. Both antenna polarities and

X, Y, Z EUT axes investigated. Only worst case reported.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 33 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 2 Date: 8/31/2016 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Para+Perp

- Readings QP Readings
- Ambient 1 - 15.247(d) / 15.209 Radiated Spurious Emissions
- O Peak Readings * Average Readings Software Version: 5,03,02

Test Equipment:

	• • • • • • • • • • • • • • • • • • • •				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T5	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T6	AN03116	High Pass Filter	11SH10-00313	2/6/2015	2/6/2017
T7	AN01467	Horn Antenna-	3115	8/12/2015	8/12/2017
		ANSI C63.5			
		Calibration			
T8	ANP06124	Attenuator	18N-6	5/8/2015	5/8/2017
Т9	AN02741	Active Horn	AMFW-5F-	1/14/2015	1/14/2017
		Antenna	12001800-20-		
			10P		
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T10	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		
T11	AN02742	Active Horn	AMFW-5F-	1/14/2015	1/14/2017
		Antenna	18002650-20-		
			10P		
T12	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T13	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T14	ANP05360	Cable	RG214	12/1/2014	12/1/2016
T15	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T16	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T17	ANP05505	Attenuator	NAT-6	3/31/2016	3/31/2018

	rement Data:	R	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17								
	MHz	dΒμV	dB	dB	dB	dB	Table		dBμV/m	dB	Ant
1	7426.510M	43.1	+0.0	+1.3	+4.8	-34.7	+0.0	52.3	54.0	-1.7	H+V
	Ave		+0.6	+0.7	+36.5	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	7426.510M	51.9	+0.0	+1.3	+4.8	-34.7	+0.0	61.1	54.0	+7.1	H+V
			+0.6	+0.7	+36.5	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
3	7336.471M	40.1	+0.0	+1.2	+4.7	-34.6	+0.0	48.9	54.0	-5.1	H+V
	Ave		+0.6	+0.7	+36.2	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	7336.450M	48.9	+0.0	+1.2	+4.7	-34.6	+0.0	57.7	54.0	+3.7	H+V
			+0.6	+0.7	+36.2	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
5	12377.350	53.1	+0.0	+1.6	+6.4	+0.0	+0.0	47.8	54.0	-6.2	H+V
	M		+0.0	+0.0	+0.0	+0.0					
			-13.3	+0.0	+0.0	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	4808.920M	41.7	+0.0	+0.9	+4.3	-34.2	+0.0	46.7	54.0	-7.3	H+V
	Ave		+0.5	+0.8	+32.7	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	4808.930M	49.7	+0.0	+0.9	+4.3	-34.2	+0.0	54.7	54.0	+0.7	H+V
			+0.5	+0.8	+32.7	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
	10000 100		+0.0					4 - 2	7.1 0		** **
8	12022.400	51.6	+0.0	+1.5	+6.4	+0.0	+0.0	46.3	54.0	-7.7	H+V
	M		+0.0	+0.0	+0.0	+0.0			т		
			-13.2	+0.0	+0.0	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
	10007.050	£1.5	+0.0	. 1 . 7		100	10.0	46.3	7.4.0		TT - T 7
9		51.5	+0.0	+1.5	+6.6	+0.0	+0.0	46.3	54.0	-7.7	H+V
	M		+0.0	+0.0	+0.0	+0.0			V (.1		
			-13.3	+0.0	+0.0	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

10 249.993M	41.2	+0.0	+0.2	+0.0	+0.0	+0.0	36.8	46.0	-9.2	Para+
QP		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+1.5	+1.0	-27.0	+13.8					
		+6.1								
11 9901.950M	33.2	+0.0	+1.3	+6.1	-35.1	+0.0	44.8	54.0	-9.2	H+V
Ave		+0.8	+1.3	+37.2	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
A 0001 0201 f	12.2	+0.0	.1.2	1.6.1	25.1		540	5.4.0		TT - T7
^ 9901.920M	43.3	+0.0	+1.3	+6.1	-35.1	+0.0	54.9	54.0	+0.9	H+V
		+0.8	+1.3	+37.2	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
12 7212 44714	26.0	+0.0	11.2	14.6	245	10.0	111	<i>5</i> 4 0	0.6	11 17
13 7213.447M	36.0	+0.0	+1.2	+4.6	-34.5 +0.0	+0.0	44.4	54.0	-9.6	H+V
Ave		$+0.6 \\ +0.0$	$+0.8 \\ +0.0$	$+35.7 \\ +0.0$	$^{+0.0}$			Low		
		$+0.0 \\ +0.0$	+0.0 +0.0	+0.0 +0.0	$^{+0.0}$					
		$+0.0 \\ +0.0$	+0.0	+0.0	+0.0					
^ 7213.490M	46.7	+0.0	+1.2	+4.6	-34.5	+0.0	55.1	54.0	+1.1	H+V
/213.490WI	40.7	+0.6	+0.8	+35.7	+0.0	+0.0	33.1	Low	⊤1.1	Π⊤V
		+0.0 +0.0	+0.8	+0.0	+0.0			LOW		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	10.0	10.0	10.0					
15 4888.955M	38.6	+0.0	+0.9	+4.4	-34.2	+0.0	43.7	54.0	-10.3	H+V
Ave	30.0	+0.5	+0.8	+32.7	+0.0	10.0	75.7	Mid	-10.5	11 · V
7110		+0.0	+0.0	+0.0	+0.0			MIG		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	. 0.0	. 0.0	. 0.0					
^ 4889.000M	47.0	+0.0	+0.9	+4.4	-34.2	+0.0	52.1	54.0	-1.9	H+V
1009.000111	17.0	+0.5	+0.8	+32.7	+0.0	. 0.0	32.1	Mid	1.,	11.
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
17 1789.800M	42.2	+0.0	+0.5	+2.5	-35.1	+0.0	42.8	54.0	-11.2	H+V
		+0.3	+0.0	+26.7	+5.7					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
18 4948.975M	37.3	+0.0	+0.9	+4.4	-34.2	+0.0	42.4	54.0	-11.6	H+V
Ave		+0.5	+0.7	+32.8	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4948.975M	46.5	+0.0	+0.9	+4.4	-34.2	+0.0	51.6	54.0	-2.4	H+V
		+0.5	+0.7	+32.8	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

										,
20 1160.200M	44.9	+0.0	+0.4	+2.0	-36.8	+0.0	40.7	54.0	-13.3	H+V
		+0.3	+0.0	+24.2	+5.7					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
21 134.800M	37.8	+0.0	+0.1	+0.0	+0.0	+0.0	30.2	43.5	-13.3	Para+
QP		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+1.2	+0.6	-27.6	+12.0					
12400015	41.0	+6.1	. 0. 1	. 0. 0	. 0 0	. 0. 0	22.5	12.5	0.0	ъ .
^ 134.800M	41.3	+0.0	+0.1	+0.0	+0.0	+0.0	33.7	43.5	-9.8	Para+
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+1.2	+0.6	-27.6	+12.0					
22 2225 250	40.7	+6.1	. 0 0	. 0 0	. 0 0	. 0. 0	40.0	7.4.0	12.0	****
23 22279.370	49.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	54.0	-13.8	H+V
M		+0.0	+0.0	+0.0	+0.0			II: _1.		
		+0.0	+7.4	-16.7	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
24 250 20014	26.0	+0.0	10.2	100	100	+0.0	21.6	46.0	-14.4	D
24 250.200M	36.0	$+0.0 \\ +0.0$	+0.2 +0.0	+0.0	$^{+0.0}_{+0.0}$	+0.0	31.6	46.0	-14.4	Para+
		+0.0 +0.0	$^{+0.0}$	$^{+0.0}_{+0.0}$	$^{+0.0}$					
		+0.0	+1.0	-27.0	+13.8					
		+6.1	11.0	-27.0	113.6					
25 19806.730	44.8	+0.1	+0.0	+0.0	+0.0	+0.0	38.4	54.0	-15.6	H+V
M	77.0	+0.0	+0.0	+0.0	+0.0	10.0	30.7	34.0	-13.0	11 · V
171		+0.0	+6.9	-13.3	+0.0			High		
		+0.0	+0.0	+0.0	+0.0			mgn		
		+0.0	. 0.0	. 0.0	. 0.0					
26 9620.810M	26.1	+0.0	+1.5	+6.1	-35.0	+0.0	38.2	54.0	-15.8	H+V
Ave	20.1	+0.8	+1.3	+37.4	+0.0	. 0.0	30.2	Low	12.0	11.
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 9620.810M	38.7	+0.0	+1.5	+6.1	-35.0	+0.0	50.8	54.0	-3.2	H+V
		+0.8	+1.3	+37.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
28 22011.930	47.0	+0.0	+0.0	+0.0	+0.0	+0.0	37.9	54.0	-16.1	H+V
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.4	-16.5	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
29 19242.470	44.4	+0.0	+0.0	+0.0	+0.0	+0.0	37.9	54.0	-16.1	H+V
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+6.8	-13.3	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

20	10550 520	42.0	ΙΛΛ	100	100	ι Ο Ο	100	27.5	540	165	11 + 37
30	19559.530	43.8	+0.0	+0.0	+0.0	+0.0	+0.0	37.5	54.0	-16.5	H+V
	M		+0.0	+0.0	+0.0	+0.0			M: 1		
			+0.0	+6.9 +0.0	-13.2	+0.0			Mid		
			$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0					
21	9781.367M	25.8	+0.0	+1.4	+6.1	-35.1	+0.0	37.5	54.0	-16.5	11+37
		23.8	+0.0	+1.4	+37.3	+0.0	+0.0	37.3	Mid	-10.3	H+V
	Ave		+0.7	+0.0	+0.0	+0.0 +0.0			IVIIU		
			+0.0 +0.0	+0.0	+0.0 +0.0	+0.0 +0.0					
			+0.0	10.0	10.0	10.0					
^	9781.367M	36.3	+0.0	+1.4	+6.1	-35.1	+0.0	48.0	54.0	-6.0	H+V
	7/01.30/W	30.3	+0.7	+1.3	+37.3	+0.0	10.0	70.0	Mid	-0.0	11 · V
			+0.0	+0.0	+0.0	+0.0			Wild		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	. 0.0	. 0.0	. 0.0					
33	14853.000	51.5	+0.0	+1.8	+7.8	+0.0	+0.0	46.9	92.0	-45.1	H+V
	M	51.5	+0.0	+0.0	+0.0	+0.0	0.0		, 2.0	10.1	-1. 1
			-14.2	+0.0	+0.0	+0.0			High		
			+0.0	+0.0	+0.0	+0.0			8		
			+0.0								
34	24743.930	47.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.9	92.0	-49.1	H+V
	M		+0.0	+0.0	+0.0	+0.0					
			+0.0	+7.8	-12.4	+0.0			High		
			+0.0	+0.0	+0.0	+0.0			C		
			+0.0								
35	17321.650	43.1	+0.0	+2.0	+8.8	+0.0	+0.0	42.2	92.0	-49.8	H+V
	M		+0.0	+0.0	+0.0	+0.0					
			-11.7	+0.0	+0.0	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
36	16831.300	42.3	+0.0	+2.1	+8.6	+0.0	+0.0	41.7	92.0	-50.3	H+V
	M		+0.0	+0.0	+0.0	+0.0					
			-11.3	+0.0	+0.0	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
37		45.3	+0.0	+1.8	+7.8	+0.0	+0.0	40.8	92.0	-51.2	H+V
	M		+0.0	+0.0	+0.0	+0.0			3 61 4		
			-14.1	+0.0	+0.0	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
20	24440.222	45.5	+0.0					40.4	02.0	F1 (TT - T 7
38	24449.330	45.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	92.0	-51.6	H+V
	M		+0.0	+0.0	+0.0	+0.0			3 C 1		
			+0.0	+7.8	-12.9	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
20	24055 400	16.2	+0.0	100	100	10.0	10.0	40.2	02.0	£1.0	TT : 3.7
39	24055.400	46.2	+0.0	+0.0	+0.0	+0.0	+0.0	40.2	92.0	-51.8	H+V
	M		+0.0	+0.0	+0.0	+0.0			Low		
			+0.0	+7.7	-13.7	+0.0			Low		
			$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0					
			10.0								

40 14432.850	44.7	+0.0	+1.8	+7.7	+0.0	+0.0	39.9	92.0	-52.1	H+V
M		+0.0	+0.0	+0.0	+0.0					
		-14.3	+0.0	+0.0	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
41 17118.150	40.5	+0.0	+2.1	+8.6	+0.0	+0.0	39.3	92.0	-52.7	H+V
M		+0.0	+0.0	+0.0	+0.0					
		-11.9	+0.0	+0.0	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
42 21637.870	47.0	+0.0	+0.0	+0.0	+0.0	+0.0	38.4	92.0	-53.6	H+V
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.3	-15.9	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
43 102.700M	47.4	+0.0	+0.1	+0.0	+0.0	+0.0	38.2	92.0	-53.8	Para+
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+1.2	+0.6	-27.7	+10.5					
		+6.1								
44 874.900M	30.2	+0.0	+0.3	+0.0	+0.0	+0.0	37.5	92.0	-54.5	Para+
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+2.4	+2.0	-27.5	+24.0					
		+6.1								
45 51.255M	49.5	+0.0	+0.1	+0.0	+0.0	+0.0	37.3	92.0	-54.7	Para+
QP		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.6	+0.4	-27.9	+8.5					
		+6.1								
^ 51.300M	52.3	+0.0	+0.1	+0.0	+0.0	+0.0	40.0	92.0	-52.0	Para+
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.6	+0.4	-27.9	+8.4					
		+6.1								
47 749.700M	31.7	+0.0	+0.3	+0.0	+0.0	+0.0	37.2	92.0	-54.8	Para+
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+2.2	+1.8	-27.9	+22.9					
		+6.2								
48 600.400M	33.1	+0.0	+0.3	+0.0	+0.0	+0.0	35.8	92.0	-56.2	Para+
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+2.1	+1.6	-28.1	+20.6					
		+6.2	. 1.0	20.1	20.0					
		. 0.2								

10	- 00 4003 5										_
49	500.400M	33.0	+0.0	+0.3	+0.0	+0.0	+0.0	33.3	92.0	-58.7	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+2.0	+1.4	-28.1	+18.6					
			+6.1								
50	375.300M	32.3	+0.0	+0.3	+0.0	+0.0	+0.0	30.5	92.0	-61.5	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+1.8	+1.2	-27.5	+16.3					
			+6.1								
51	16.745k	61.2	+0.0	+0.0	+0.0	+0.0	-80.0	-4.1	92.0	-96.1	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+14.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
52	22.083M	14.5	+0.0	+0.0	+0.3	+0.0	-40.0	-17.5	92.0	-109.5	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+7.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
53	308.100k	41.3	+0.0	+0.0	+0.0	+0.0	-80.0	-29.1	92.0	-121.1	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+9.6					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	,,,							
L			3.0								

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions (AVG)

Work Order #: 98667 Date: 8/31/2016
Test Type: Maximized Emissions Time: 11:26:33
Tested By: Michael Atkinson Sequence#: 1

Tested By: Michael Atkinson Seq Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Temperature: 24°C Humidity: 36% Pressure: 102.3kPa

Frequency Range: 2405-2475MHz Frequency tested: 2405, 2445, 2475MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is top of foam table, transmitting through Internal 1.1dBi Antenna. Both antenna polarities

and X, Y, Z EUT axes investigated. Only worst case reported.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 42 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 1 Date: 8/31/2016 15.247(d) / 15.209 Radiated Spurious Emissions (AVG) Test Distance: 3 Meters H+V

- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- Ambient

Software Version: 5.03.02

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions (AVG)

TEST Equip	Jillette.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T5	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T6	AN03116	High Pass Filter	11SH10-00313	2/6/2015	2/6/2017
T7	AN01467	Horn Antenna-	3115	8/12/2015	8/12/2017
		ANSI C63.5			
		Calibration			
T8	ANP06124	Attenuator	18N-6	5/8/2015	5/8/2017
Т9	AN02741	Active Horn	AMFW-5F-	1/14/2015	1/14/2017
		Antenna	12001800-20-		
			10P		
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T10	ANP06678	Cable	32026-29801-	9/18/2014	9/18/2016
			29801-144		
T11	AN02742	Active Horn	AMFW-5F-	1/14/2015	1/14/2017
		Antenna	18002650-20-		
			10P		
T12	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T13	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T14	ANP05360	Cable	RG214	12/1/2014	12/1/2016
T15	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T16	AN01994	Biconilog Antenna	CBL6111C	3/11/2016	3/11/2018
T17	ANP05505	Attenuator	NAT-6	3/31/2016	3/31/2018

	rement Data:			ted by ma					e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17								
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	7426.483M	43.9	+0.0	+1.3	+4.8	-34.7	+0.0	53.1	54.0	-0.9	H+V
	Ave		+0.6	+0.7	+36.5	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
2	7426.510M	41.7	+0.0	+1.3	+4.8	-34.7	+0.0	50.9	54.0	-3.1	H+V
	Ave		+0.6	+0.7	+36.5	+0.0			High		
			+0.0	+0.0	+0.0	+0.0			S		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	7426.483M	51.3	+0.0	+1.3	+4.8	-34.7	+0.0	60.5	54.0	+6.5	H+V
		-	+0.6	+0.7	+36.5	+0.0		-	High	-	
			+0.0	+0.0	+0.0	+0.0			8		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
4	7333.394M	40.3	+0.0	+1.2	+4.7	-34.6	+0.0	49.1	54.0	-4.9	H+V
	Ave		+0.6	+0.7	+36.2	+0.0	0.0	.,,,	Mid	,	'
	11.0		+0.0	+0.0	+0.0	+0.0			1,110		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	. 0.0	. 0.0						
^	7333.480M	49.4	+0.0	+1.2	+4.7	-34.6	+0.0	58.2	54.0	+4.2	H+V
			+0.6	+0.7	+36.2	+0.0			Mid		
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
6	12022.400	51.4	+0.0	+1.5	+6.4	+0.0	+0.0	46.1	54.0	-7.9	H+V
	M		+0.0	+0.0	+0.0	+0.0					
			-13.2	+0.0	+0.0	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
7	9897.930M	33.7	+0.0	+1.3	+6.1	-35.1	+0.0	45.3	54.0	-8.7	H+V
	Ave		+0.8	+1.3	+37.2	+0.0			High		
			+0.0	+0.0	+0.0	+0.0			-		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	9897.930M	42.9	+0.0	+1.3	+6.1	-35.1	+0.0	54.5	54.0	+0.5	H+V
			+0.8	+1.3	+37.2	+0.0			High		
			+0.0	+0.0	+0.0	+0.0			C		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
9	12222.350	49.6	+0.0	+1.5	+6.6	+0.0	+0.0	44.4	54.0	-9.6	H+V
	M		+0.0	+0.0	+0.0	+0.0					
			-13.3	+0.0	+0.0	+0.0			Mid		
						٥.٠			-		
			+0.0	+0.0	+0.0	+0.0					

10 7216.450M	35.6	+0.0	+1.2	+4.6	-34.5	+0.0	44.0	54.0	-10.0	H+V
Ave	33.0	+0.6	+0.8	+35.7	+0.0	10.0	44.0	Low	-10.0	11 · V
Ave		+0.0	+0.0	+0.0	+0.0			LOW		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	. 0.0	. 0.0	. 0.0					
^ 7216.450M	45.8	+0.0	+1.2	+4.6	-34.5	+0.0	54.2	54.0	+0.2	H+V
,		+0.6	+0.8	+35.7	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
12 4810.984M	38.4	+0.0	+0.9	+4.3	-34.2	+0.0	43.4	54.0	-10.6	H+V
Ave		+0.5	+0.8	+32.7	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4811.070M	46.2	+0.0	+0.9	+4.3	-34.2	+0.0	51.2	54.0	-2.8	H+V
		+0.5	+0.8	+32.7	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
14 1776.000M	42.3	+0.0	+0.5	+2.5	-35.2	+0.0	42.8	54.0	-11.2	H+V
		+0.3	+0.0	+26.7	+5.7					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
15 12272 500	47.7	+0.0	11.6	165	100	100	12.5	540	11.5	TT + 3.7
15 12372.500	47.7	+0.0	+1.6	+6.5	+0.0	+0.0	42.5	54.0	-11.5	H+V
M		+0.0 -13.3	$+0.0 \\ +0.0$	$^{+0.0}$	+0.0			ILab		
		+0.0	$^{+0.0}$	+0.0 +0.0	$^{+0.0}$			High		
		+0.0	10.0	10.0	10.0					
16 4889.142M	36.2	+0.0	+0.9	+4.4	-34.2	+0.0	41.3	54.0	-12.7	H+V
Ave	30.2	+0.5	+0.8	+32.7	+0.0	10.0	41.5	Mid	12.7	11. 1
1110		+0.0	+0.0	+0.0	+0.0			11114		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 4889.070M	45.3	+0.0	+0.9	+4.4	-34.2	+0.0	50.4	54.0	-3.6	H+V
		+0.5	+0.8	+32.7	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
18 9617.787M	29.0	+0.0	+1.5	+6.1	-35.0	+0.0	41.1	54.0	-12.9	H+V
Ave		+0.8	+1.3	+37.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 9617.787M	41.0	+0.0	+1.5	+6.1	-35.0	+0.0	53.1	54.0	-0.9	H+V
		+0.8	+1.3	+37.4	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

20 1050.000M	45.2	+0.0	+0.4	+1.9	-37.3	+0.0	40.3	54.0	-13.7	H+V
		+0.2	+0.0	+24.2	+5.7					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
21 4950.970M	35.1	+0.0	+0.9	+4.4	-34.2	+0.0	40.2	54.0	-13.8	H+V
Ave		+0.5	+0.7	+32.8	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
4071.06016	44.0	+0.0	. 0. 0	. 4 4	242	. 0. 0	40.2	7.4.0	4.7	TT : T7
^ 4951.060M	44.2	+0.0	+0.9	+4.4	-34.2	+0.0	49.3	54.0	-4.7	H+V
		+0.5	+0.7	+32.8	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
22 124 00014	27.2	+0.0	.0.1	100	100	100	20.6	12.5	12.0	TT 37
23 134.800M QP	37.2	$^{+0.0}_{+0.0}$	$+0.1 \\ +0.0$	$^{+0.0}_{+0.0}$	$^{+0.0}_{+0.0}$	+0.0	29.6	43.5	-13.9	H+V
Ųг		+0.0 +0.0	$^{+0.0}$	+0.0 +0.0	+0.0 +0.0					
		+1.2	+0.6	-27.6	+12.0					
		+6.1	+0.6	-27.0	±12.0					
^ 134.800M	44.2	+0.1	+0.1	+0.0	+0.0	+0.0	36.6	43.5	-6.9	H+V
134.000101	44.2	+0.0	+0.1	+0.0	+0.0	10.0	30.0	43.3	-0.9	11 · V
		+0.0	+0.0	+0.0	+0.0					
		+1.2	+0.6	-27.6	+12.0					
		+6.1	10.0	27.0	112.0					
25 9777.814M	28.0	+0.0	+1.4	+6.1	-35.1	+0.0	39.7	54.0	-14.3	H+V
Ave	20.0	+0.7	+1.3	+37.3	+0.0	. 0.0	37.7	Mid	11.5	11.
11.0		+0.0	+0.0	+0.0	+0.0			1,110		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
^ 9777.814M	40.9	+0.0	+1.4	+6.1	-35.1	+0.0	52.6	54.0	-1.4	H+V
		+0.7	+1.3	+37.3	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
27 22279.430	48.5	+0.0	+0.0	+0.0	+0.0	+0.0	39.2	54.0	-14.8	H+V
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.4	-16.7	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
28 19803.200	45.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.0	54.0	-15.0	H+V
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+6.9	-13.3	+0.0			High		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
29 19556.400	44.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.3	54.0	-15.7	H+V
M		+0.0	+0.0	+0.0	+0.0			3.61.4		
		+0.0	+6.9	-13.2	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								

30	19238.117	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	37.6	54.0	-16.4	H+V
1	M		+0.0	+0.0	+0.0	+0.0					
1			+0.0	+6.8	-13.3	+0.0			Low		
1			+0.0	+0.0	+0.0	+0.0					
2.1	14052 000	71.	+0.0	. 1. 0	.7.0	. 0. 0	. 0. 0	47.0	00.0	42.0	TT . T7
31	14852.900	51.6	+0.0	+1.8	+7.8	+0.0	+0.0	47.0	90.0	-43.0	H+V
Ī	M		+0.0 -14.2	+0.0 +0.0	$+0.0 \\ +0.0$	$^{+0.0}$			High		
Ī			+0.0	+0.0 +0.0	$^{+0.0}$	+0.0 +0.0			High		
1			+0.0 +0.0	+0.0	+0.0	+0.0					
32	54.200M	56.8	+0.0	+0.1	+0.0	+0.0	+0.0	43.8	90.0	-46.2	H+V
<i>J2</i>	34.200IVI	30.0	+0.0	+0.0	+0.0	+0.0	10.0	43.0	70.0	70.2	11. 1
Ī			+0.0	+0.0	+0.0	+0.0					
1			+0.6	+0.4	-27.9	+7.7					
			+6.1	***	_,,,	, , ,					
33	16838.300	44.0	+0.0	+2.1	+8.6	+0.0	+0.0	43.3	90.0	-46.7	H+V
1	M		+0.0	+0.0	+0.0	+0.0					
			-11.4	+0.0	+0.0	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
34	24744.830	47.8	+0.0	+0.0	+0.0	+0.0	+0.0	43.2	90.0	-46.8	H+V
1	M		+0.0	+0.0	+0.0	+0.0					
1			+0.0	+7.8	-12.4	+0.0			High		
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
35	17321.300	43.5	+0.0	+2.0	+8.8	+0.0	+0.0	42.6	90.0	-47.4	H+V
	M		+0.0	+0.0	+0.0	+0.0			*** 1		
			-11.7	+0.0	+0.0	+0.0			High		
			$^{+0.0}_{+0.0}$	+0.0	+0.0	+0.0					
36	14426.850	47.4	+0.0	+1.8	+7.7	+0.0	+0.0	42.6	90.0	-47.4	H+V
30	M	4/.4	+0.0	+0.0	+0.0	+0.0	10.0	42.0	90.0	-4/.4	11 · V
	141		-14.3	+0.0	+0.0	+0.0			Low		
			+0.0	+0.0	+0.0	+0.0			DOW		
			+0.0	0.0	0.0	0.0					
37	749.700M	35.2	+0.0	+0.3	+0.0	+0.0	+0.0	40.7	90.0	-49.3	H+V
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+2.2	+1.8	-27.9	+22.9					
			+6.2								
38	624.600M	37.4	+0.0	+0.3	+0.0	+0.0	+0.0	40.5	90.0	-49.5	H+V
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+2.1	+1.6	-28.1	+21.0					
	15110 :=:		+6.2						0.7.7		
39	17118.450	41.6	+0.0	+2.1	+8.6	+0.0	+0.0	40.4	90.0	-49.6	H+V
	M		+0.0	+0.0	+0.0	+0.0			3.61.1		
			-11.9	+0.0	+0.0	+0.0			Mid		
			+0.0 +0.0	+0.0	+0.0	+0.0					

40 24459.730	45.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	90.0	-49.6	H+V
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+7.8	-12.9	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
41 53.710M	52.6	+0.0	+0.1	+0.0	+0.0	+0.0	39.7	90.0	-50.3	H+V
QP		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.6	+0.4	-27.9	+7.8					
12 21010 122		+6.1					•			
42 24049.133	45.4	+0.0	+0.0	+0.0	+0.0	+0.0	39.4	90.0	-50.6	H+V
M		+0.0	+0.0	+0.0	+0.0			_		
		+0.0	+7.7	-13.7	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0					
42 14666 050	42.7	+0.0	.10	17.0	100	10.0	20.2	00.0	5 0.0	TT : 3.7
43 14666.950	43.7	+0.0	+1.8	+7.8	+0.0	+0.0	39.2	90.0	-50.8	H+V
M		+0.0	+0.0	+0.0	+0.0			Mid		
		-14.1	+0.0	+0.0	+0.0			Mid		
		$^{+0.0}$	+0.0	+0.0	+0.0					
44 106.600M	47.0		+0.1	+0.0	+0.0	+0.0	38.2	90.0	-51.8	H+V
44 106.600001	47.0	$+0.0 \\ +0.0$	$^{+0.1}$	$^{+0.0}$	+0.0 +0.0	+0.0	38.2	90.0	-31.8	Π±V
		+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0					
		+1.2	+0.6	-27.7	+10.9					
		+6.1	10.0	-27.7	110.9					
45 22007.300	47.2	+0.1	+0.0	+0.0	+0.0	+0.0	38.1	90.0	-51.9	H+V
M	47.2	+0.0	+0.0	+0.0	+0.0	10.0	36.1	90.0	-31.9	11 · V
IVI		+0.0	+7.4	-16.5	+0.0			Mid		
		+0.0	+0.0	+0.0	+0.0			MIG		
		+0.0	10.0	10.0	10.0					
46 21645.667	46.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	90.0	-52.0	H+V
M	40.0	+0.0	+0.0	+0.0	+0.0	10.0	30.0	70.0	-32.0	11 · V
171		+0.0	+7.3	-15.9	+0.0			Low		
		+0.0	+0.0	+0.0	+0.0			Low		
		+0.0	. 0.0	. 0.0	. 0.0					
47 874.900M	30.3	+0.0	+0.3	+0.0	+0.0	+0.0	37.6	90.0	-52.4	H+V
17 071.500191	50.5	+0.0	+0.0	+0.0	+0.0	. 0.0	57.0	, 0.0	52.1	11. 1
		+0.0	+0.0	+0.0	+0.0					
		+2.4	+2.0	-27.5	+24.0					
		+6.1								
48 500.400M	33.5	+0.0	+0.3	+0.0	+0.0	+0.0	33.8	90.0	-56.2	H+V
		+0.0	+0.0	+0.0	+0.0					•
		+0.0	+0.0	+0.0	+0.0					
		+2.0	+1.4	-28.1	+18.6					
		+6.1		-						
49 105.700M	37.1	+0.0	+0.1	+0.0	+0.0	+0.0	28.2	90.0	-61.8	H+V
	•	+0.0	+0.0	+0.0	+0.0		- '		-	
		+0.0	+0.0	+0.0	+0.0					
		+1.2	+0.6	-27.7	+10.8					
		+6.1								
L		•								

50	821.800k	34.8	+0.0	+0.0	+0.1	+0.0	-40.0	4.7	90.0	-85.3	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+9.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
51	61.423k	55.0	+0.0	+0.0	+0.0	+0.0	-80.0	-14.6	90.0	-104.6	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+10.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
52	22.141M	16.0	+0.0	+0.0	+0.3	+0.0	-40.0	-16.0	90.0	-106.0	Para+
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+7.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Band Edge

		Band Ed	lge Summary		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
2390.0 (Peak)	DSSS	External Monopole 5dBi	48.6	<74	Pass
2400.0 (Peak)	DSSS	External Monopole 5dBi	67.9	<112.0	Pass
2483.5 (Peak)	DSSS	External Monopole 5dBi	58.5	<74	Pass
2390.0 (Ave)	DSSS	External Monopole 5dBi	37.6	<54	Pass
2400.0 (Ave)	DSSS	External Monopole 5dBi	55.1	<92	Pass
2483.5 (Ave)	DSSS	External Monopole 5dBi	46.6	<54	Pass

		Band Ed	lge Summary		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
2390.0 (Peak)	DSSS	Integral Chip 1.1dBi	45.9	<74	Pass
2400.0 (Peak)	DSSS	Integral Chip 1.1dBi	62.9	<110.0	Pass
2483.5 (Peak)	DSSS	Integral Chip 1.1dBi	54.2	<74	Pass
2390.0 (Average)	DSSS	Integral Chip 1.1dBi	35.0	<54	Pass
2400.0 (Average)	DSSS	Integral Chip 1.1dBi	51.7	<90	Pass
2483.5 (Average)	DSSS	Integral Chip 1.1dBi	28.8	<54	Pass

Page 51 of 80 Report No.: 98667-11A

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions (PEAK)

Work Order #: 98667 Date: 10/31/2016
Test Type: Maximized Emissions Time: 13:59:50
Tested By: Michael Atkinson Sequence#: 2

Tested By: Michael Atkinson Seque Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Temperature: 24°C Humidity: 36% Pressure: 102.3kPa

Frequency Range: 2405-2475MHz Frequency tested: Band Edge Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is top of foam table, transmitting through External 5dBi antenna. Both antenna polarities and

X, Y, Z EUT axes investigated. Only worst case reported.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 52 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 2 Date: 10/31/2016 15.247(d) / 15.209 Radiated Spurious Emissions (PEAK) Test Distance: 3 Meters H+V

- Readings
- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
- Software Version: 5.03.02
- 1 15.247(d) / 15.209 Radiated Spurious Emissions (PEAK)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T2	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T3	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T4	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T5	AN01467	Horn Antenna-	3115	8/12/2015	8/12/2017
		ANSI C63.5			
		Calibration			
T6	ANP06124	Attenuator	18N-6	5/8/2015	5/8/2017
T7	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T8	AN38% DCCF	Test Data	_	10/28/2016	10/28/2018
		Adjustment			

Meas	urement Data:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 2483.500M	52.2	+0.6	+2.9	-34.5	+0.4	+0.0	46.6	54.0	-7.4	H+V
	Ave		+27.7	+5.7	+0.0	-8.4			BE AVG		
,	^ 2483.500M	64.1	+0.6	+2.9	-34.5	+0.4	+0.0	58.5	74.0	-15.5	H+V
			+27.7	+5.7	+0.0	-8.4			BE PEAK		
3	3 2390.000M	43.4	+0.6	+2.8	-34.6	+0.4	+0.0	37.6	54.0	-16.4	H+V
	Ave		+27.7	+5.7	+0.0	-8.4			BE AVG		
,	^ 2390.000M	54.4	+0.6	+2.8	-34.6	+0.4	+0.0	48.6	74.0	-25.4	H+V
			+27.7	+5.7	+0.0	-8.4			BE PEAK		
4	5 2655.000M	33.8	+0.7	+3.0	-34.5	+0.4	+0.0	29.1	54.0	-24.9	H+V
	Ave		+28.4	+5.7	+0.0	-8.4			BE AVG		
,	^ 2655.000M	45.5	+0.7	+3.0	-34.5	+0.4	+0.0	40.8	74.0	-33.2	H+V
			+28.4	+5.7	+0.0	-8.4			BE PEAK		
	7 2400.000M	60.9	+0.6	+2.8	-34.6	+0.4	+0.0	55.1	92.0	-36.9	H+V
	Ave		+27.7	+5.7	+0.0	-8.4			BE AVG		
/	^ 2400.000M	73.7	+0.6	+2.8	-34.6	+0.4	+0.0	67.9	112.0	-44.1	H+V
			+27.7	+5.7	+0.0	-8.4			BE PEAK		

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions (PEAK)

Work Order #: 98667 Date: 10/31/2016
Test Type: Maximized Emissions Time: 13:46:59
Tested By: Michael Atkinson Sequence#: 1

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Temperature: 24°C Humidity: 36% Pressure: 102.3kPa

Frequency Range: 2405-2475MHz Frequency tested: Band Edge Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is top of foam table, transmitting through Internal 1.1dBi Antenna. Both antenna polarities

and X, Y, Z EUT axes investigated. Only worst case reported.

Modifications Added: None

Test Method: ANSI C63.10 (2013) and KDB 558074 v03r05 (April 8, 2016)

Page 55 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 1 Date: 10/31/2016 15.247(d) / 15.209 Radiated Spurious Emissions (PEAK) Test Distance: 3 Meters H+V

- Readings

- O Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.02

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions (PEAK)

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T2	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T3	AN03540	Preamp	83017A	4/30/2015	4/30/2017
T4	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T5	AN01467	Horn Antenna-	3115	8/12/2015	8/12/2017
		ANSI C63.5			
		Calibration			
T6	ANP06124	Attenuator	18N-6	5/8/2015	5/8/2017
	AN02673	Spectrum Analyzer	E4446A	10/12/2015	10/12/2017
T7	AN38% DCCF	Test Data		10/28/2016	10/28/2018
		Adjustment			

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2483.500M	48.1	+0.6	+2.9	-34.5	+0.4	+0.0	42.5	54.0	-11.5	H+V
	Ave		+27.7	+5.7	-8.4				BE AVG		
^	2483.500M	59.8	+0.6	+2.9	-34.5	+0.4	+0.0	54.2	74.0	-19.8	H+V
			+27.7	+5.7	-8.4				BE PEAK		
3	2390.000M	40.8	+0.6	+2.8	-34.6	+0.4	+0.0	35.0	54.0	-19.0	H+V
	Ave		+27.7	+5.7	-8.4				BE AVG		
^	2390.000M	51.7	+0.6	+2.8	-34.6	+0.4	+0.0	45.9	74.0	-28.1	H+V
			+27.7	+5.7	-8.4				BE PEAK		
5	2655.000M	33.5	+0.7	+3.0	-34.5	+0.4	+0.0	28.8	54.0	-25.2	H+V
	Ave		+28.4	+5.7	-8.4				BE AVG		
^	2655.000M	46.4	+0.7	+3.0	-34.5	+0.4	+0.0	41.7	74.0	-32.3	H+V
			+28.4	+5.7	-8.4				BE PEAK		
7	2400.000M	57.5	+0.6	+2.8	-34.6	+0.4	+0.0	51.7	90.0	-38.3	H+V
	Ave		+27.7	+5.7	-8.4				BE AVG		
^	2400.000M	68.7	+0.6	+2.8	-34.6	+0.4	+0.0	62.9	110.0	-47.1	H+V
			+27.7	+5.7	-8.4				BE PEAK		

Band Edge Plots

External Antenna

Internal Antenna

Test Setup Photos

External Antenna

< 1GHz

> 1GHz

X Axis

Y Axis

Z Axis

Internal Antenna

< 1GHz

> 1GHz

X Axis

Y Axis

Z Axis

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.207 AC Mains - Average

Work Order #: 98667 Date: 8/30/2016
Test Type: Conducted Emissions Time: 10:55:41

Tested By: Michael Atkinson Sequence#: 7

Software: EMITest 5.03.02 115V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 3

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Temperature: 23°C Humidity: 39% Pressure: 102.0kPa

Frequency Range: 2405-2475MHz Frequency tested: 0.15-30MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is transmitting through external antenna. AC Adapter is connected to AC mains through

LISN.

Modifications Added: None Test Method: ANSI C63.10 (2013)

Page 70 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 7 Date: 8/30/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz Line

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T1	AN02611	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
T5	AN01492	50uH LISN-Line	3816/2NM	8/5/2015	8/5/2017
	AN01492	50uH LISN-Neutral	3816/2NM	8/5/2015	8/5/2017

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dΒ	Table	dΒμV	dΒμV	dB	Ant
1	437.950k	33.9	+0.2	+0.0	+0.0	+9.1	+0.0	43.8	47.1	-3.3	Line
			+0.6								
2	427.470k	34.0	+0.2	+0.0	+0.0	+9.1	+0.0	43.9	47.3	-3.4	Line
			+0.6								
3	432.810k	33.7	+0.2	+0.0	+0.0	+9.1	+0.0	43.6	47.2	-3.6	Line
			+0.6								
4	150.000k	37.3	+2.9	+0.0	+0.0	+9.1	+0.0	51.2	56.0	-4.8	Line
			+1.9								
5	388.129k	32.8	+0.1	+0.0	+0.0	+9.1	+0.0	42.6	48.1	-5.5	Line
			+0.6								
6	377.092k	32.9	+0.1	+0.0	+0.0	+9.1	+0.0	42.7	48.3	-5.6	Line
			+0.6								
7	556.484k	29.8	+0.2	+0.0	+0.0	+9.1	+0.0	39.6	46.0	-6.4	Line
			+0.5								
8	204.914k	35.6	+0.2	+0.0	+0.0	+9.1	+0.0	46.2	53.4	-7.2	Line
			+1.3								
9	576.743k	28.8	+0.2	+0.0	+0.1	+9.1	+0.0	38.7	46.0	-7.3	Line
			+0.5								
10	677.437k	26.9	+0.2	+0.0	+0.1	+9.1	+0.0	36.7	46.0	-9.3	Line
			+0.4								
11	629.963k	26.6	+0.2	+0.0	+0.1	+9.1	+0.0	36.5	46.0	-9.5	Line
			+0.5								
12	315.677k	30.2	+0.1	+0.0	+0.0	+9.1	+0.0	40.2	49.8	-9.6	Line
			+0.8								

13	4.422M	26.7	+0.1	+0.0	+0.1	+9.1	+0.0	36.4	46.0	-9.6	Line
			+0.4								
14	228.290k	30.4	+0.2	+0.0	+0.0	+9.1	+0.0	40.8	52.5	-11.7	Line
			+1.1								
15	12.280M	22.9	+0.1	+0.0	+0.2	+9.1	+0.0	32.8	50.0	-17.2	Line
			+0.5								
16	517.779k	16.7	+0.2	+0.0	+0.0	+9.1	+0.0	26.5	46.0	-19.5	Line
	Ave		+0.5								
^	517.779k	35.3	+0.2	+0.0	+0.0	+9.1	+0.0	45.1	46.0	-0.9	Line
			+0.5								
18	419.994k	12.7	+0.2	+0.0	+0.0	+9.1	+0.0	22.6	47.4	-24.8	Line
	Ave		+0.6								
^	419.993k	34.5	+0.2	+0.0	+0.0	+9.1	+0.0	44.4	47.4	-3.0	Line
			+0.6								
20	28.880M	13.4	+0.2	+0.0	+0.3	+9.1	+0.0	23.5	50.0	-26.5	Line
			+0.5								

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA. 98021 • 1-800-500-4EMC

Customer: **Doughty Design**

Specification: 15.207 AC Mains - Average

EMITest 5.03.02

Work Order #: 98667 Date: 8/30/2016
Test Type: Conducted Emissions Time: 11:03:01

Tested By: Michael Atkinson Sequence#: 8

Equipment Tested:

Software:

Device Manufacturer Model # S/N
Configuration 3

115V 60Hz

Support Equipment:

Device Manufacturer Model # S/N
Configuration 3

Test Conditions / Notes:

Temperature: 23°C Humidity: 39% Pressure: 102.0kPa

Frequency Range: 2405-2475MHz Frequency tested: 0.15-30MHz Firmware power setting: Max Power

EUT Firmware: 1.00

Protocol /MCS/Modulation: DSSS

Antenna type and Gain: Integral Chip Antenna 1.1dBi or External Antenna Monopole 5dBi

Duty Cycle: 100% (Test Mode)

Test Mode: Continuously transmitting

Test Setup: The EUT is transmitting through external antenna. AC Adapter is connected to AC mains through

LISN.

Modifications Added: None Test Method: ANSI C63.10 (2013)

Page 74 of 80 Report No.: 98667-11A

Doughty Design WO#: 98667 Sequence#: 8 Date: 8/30/2016 15.207 AC Mains - Average Test Lead: 115V 60Hz Return

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	8/25/2015	8/25/2017
T1	AN02611	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018
	AN01492	50uH LISN-Line	3816/2NM	8/5/2015	8/5/2017
T5	AN01492	50uH LISN-Neutral	3816/2NM	8/5/2015	8/5/2017

Measurement Data: Reading listed by margin.				Test Lead: Return							
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	503.869k	34.0	+0.2	+0.0	+0.0	+9.1	+0.0	43.8	46.0	-2.2	Retur
			+0.5								
2	491.774k	33.8	+0.2	+0.0	+0.0	+9.1	+0.0	43.6	46.1	-2.5	Retur
			+0.5								
3	428.360k	34.7	+0.2	+0.0	+0.0	+9.1	+0.0	44.5	47.3	-2.8	Retur
			+0.5								
4	433.112k	34.5	+0.2	+0.0	+0.0	+9.1	+0.0	44.4	47.2	-2.8	Retur
			+0.6								
5	423.020k	34.4	+0.2	+0.0	+0.0	+9.1	+0.0	44.3	47.4	-3.1	Retur
			+0.6								
6	416.255k	34.3	+0.2	+0.0	+0.0	+9.1	+0.0	44.2	47.5	-3.3	Retur
			+0.6								
7	564.950k	32.9	+0.2	+0.0	+0.0	+9.1	+0.0	42.7	46.0	-3.3	Retur
			+0.5								
8	454.279k	32.4	+0.2	+0.0	+0.0	+9.1	+0.0	42.2	46.8	-4.6	Retur
			+0.5								
9	390.799k	33.4	+0.1	+0.0	+0.0	+9.1	+0.0	43.2	48.0	-4.8	Retur
			+0.6								
10	385.993k	32.7	+0.1	+0.0	+0.0	+9.1	+0.0	42.5	48.1	-5.6	Retur
			+0.6								
11	605.470k	30.1	+0.2	+0.0	+0.1	+9.1	+0.0	39.9	46.0	-6.1	Retur
			+0.4								
12	614.541k	29.9	+0.2	+0.0	+0.1	+9.1	+0.0	39.7	46.0	-6.3	Retur
			+0.4								
13	632.684k	29.4	+0.2	+0.0	+0.1	+9.1	+0.0	39.2	46.0	-6.8	Retur
			+0.4								
14	837.000k	28.2	+0.2	+0.0	+0.1	+9.1	+0.0	38.0	46.0	-8.0	Retur
			+0.4								
15	156.260k	35.6	+0.7	+0.0	+0.0	+9.1	+0.0	47.2	55.7	-8.5	Retur
			+1.8								
16	3.523M	27.5	+0.1	+0.0	+0.1	+9.1	+0.0	37.2	46.0	-8.8	Retur
			+0.4								
17	191.300k	32.9	+0.2	+0.0	+0.0	+9.1	+0.0	43.6	54.0	-10.4	Retur
			+1.4								
18	224.020k	30.1	+0.2	+0.0	+0.0	+9.1	+0.0	40.5	52.7	-12.2	Retur
<u> </u>			+1.1								

19	524.910k	22.4	+0.2	+0.0	+0.0	+9.1	+0.0	32.2	46.0	-13.8	Retur
I	Ave		+0.5								
^	524.910k	36.2	+0.2	+0.0	+0.0	+9.1	+0.0	46.0	46.0	+0.0	Retur
			+0.5								
21	519.291k	21.7	+0.2	+0.0	+0.0	+9.1	+0.0	31.5	46.0	-14.5	Retur
I	Ave		+0.5								
^	519.291k	36.7	+0.2	+0.0	+0.0	+9.1	+0.0	46.5	46.0	+0.5	Retur
			+0.5								
23	498.427k	18.9	+0.2	+0.0	+0.0	+9.1	+0.0	28.7	46.0	-17.3	Retur
I	Ave		+0.5								
^	498.426k	35.2	+0.2	+0.0	+0.0	+9.1	+0.0	45.0	46.0	-1.0	Retur
			+0.5								
25	9.558M	22.6	+0.1	+0.0	+0.2	+9.1	+0.0	32.5	50.0	-17.5	Retur
			+0.5								
26	509.310k	15.9	+0.2	+0.0	+0.0	+9.1	+0.0	25.7	46.0	-20.3	Retur
I	Ave		+0.5								
^	509.310k	37.0	+0.2	+0.0	+0.0	+9.1	+0.0	46.8	46.0	+0.8	Retur
			+0.5								
28	29.120M	17.1	+0.2	+0.0	+0.3	+9.1	+0.0	27.1	50.0	-22.9	Retur
			+0.4								

Test Setup Photo

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

Page 79 of 80 Report No.: 98667-11A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 80 of 80 Report No.: 98667-11A