

Description

The NCE15P25JI uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =-150V,I_D =-25A

 $R_{\text{DS(ON)}}\!<\!135\text{m}\Omega \textcircled{0} V_{\text{GS}}\!\!=\!\!-10V \quad (\text{Typ.=}120\text{mR})$

 $R_{DS(ON)}$ <160m Ω @ V_{GS} =-4.5V (Typ.=131mR)

- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

Portable equipment and battery powered systems

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25P15-T1	VSM25P15	TO-251	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-150	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-25	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	-17	А	
Pulsed Drain Current	I _{DM}	-140	А	
Maximum Power Dissipation	P _D	160	W	
Derating factor		1.3	W/°C	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	,T _{STG} -55 To 150		

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R _{θJc}	0.8	°C/W	
---	------------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics			•				
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-150	-155	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-150V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±10	μΑ	
On Characteristics (Note 3)			•				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-1.5	-1.9	-3	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	120	135	mΩ	
Diam-Source On-State Resistance		V _{GS} =-4.5V, I _D =-20A	-	131	160		
Forward Transconductance	g FS	V _{DS} =-5V,I _D =-20A	5	-	-	S	
Dynamic Characteristics (Note4)			•				
Input Capacitance	C _{lss}	75,474 974	-	7650	-	PF	
Output Capacitance	C _{oss}	V_{DS} =-75V, V_{GS} =0V, F=1.0MHz	-	148	-	PF	
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	131	-	PF	
Switching Characteristics (Note 4)			•				
Turn-on Delay Time	t _{d(on)}		-	17	-	nS	
Turn-on Rise Time	t _r	V_{DD} =-75 V , I_{D} =-20 A	-	80	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =9.1 Ω	-	45	-	nS	
Turn-Off Fall Time	t _f		-	65	-	nS	
Total Gate Charge	Qg	\/ 75\/ L 00A	-	137	-	nC	
Gate-Source Charge	Q _{gs}	V _{DS} =-75V,I _D =-20A, V _{GS} =-10V	-	25	-	nC	
Gate-Drain Charge	Q _{gd}	V _{GS} =-10V	-	28	-	nC	
Drain-Source Diode Characteristics			•				
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-25A	-	-	-1.2	V	
Diode Forward Current (Note 2)	Is	-	-	-	-25	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-25A	-	90	-	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	105	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=-75V,VG=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

(V) 30 20 25 50 75 100 125 150 175 T_C Case Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance