NISQ+: Boosting quantum computing power by approximating quantum error correction

Yichao Yu

Ni Group

Apr. 26, 2020

1/12

Stabilizer operators

Stabilizer operators

Error and stabilizer

Error and stabilizer

Qubit state: $X|\psi\rangle = |\psi\rangle$ Error: σ_a^z

3/12

Error and stabilizer

Qubit state:
$$X|\psi\rangle = |\psi\rangle$$

Error: σ_a^z

$$X\sigma_a^z|\psi\rangle = -\sigma_a^z X|\psi\rangle = -\sigma_a^z|\psi\rangle$$

3/12

$$Z = \prod_{i=a,b,c,d} \sigma_i^z$$

$$Z = \prod_{i=a,b,c,d} \sigma_i^z$$

a	b	С	d	ancilla	$\langle Z \rangle$
$\overline{0\rangle}$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	1
$1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	1>	-1
$1\rangle$	$ 1\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	1
$\overline{1\rangle}$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	1>	-1
$1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$	1

$$\begin{array}{c|c} -H & & H \\ -H & & H \end{array} = \begin{array}{c|c} -H & & \\ -H & & -H \end{array}$$

$$Z = \prod_{i=a,b,c,d} \sigma_i^z$$

i=a,b,c,d

Syndrome

Syndrome

Benign ambiguity

Benign ambiguity

Benign ambiguity

Real ambiguity

Minimal number of qubits required to form a logical error.

9/12

Minimal number of qubits required to form a logical error. i.e. system size.

Minimal number of qubits required to form a logical error. i.e. system size.

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Minimal number of qubits required to form a logical error. i.e. system size.

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Minimal number of qubits required to form a logical error. i.e. system size.

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Minimal number of qubits required to form a logical error. i.e. system size.

- More redundancy
- Less logical error (assuming independent/local single physical qubit error)
- More processing power required

Scaling

Scaling

Algorithm

Algorithm

- Hardware decoding
- Low power
- High speed

- Hardware decoding
- Low power
- High speed

- Hardware decoding
- Low power
- High speed

Hardware	decoding

- Low power
- High speed

Code Distance	Max (ns)	Average (ns)
3	3.74	0.28
5	9.28	0.72
7	14.2	2.00
9	19.2	3.81

Hardware	decoding

- Low power
- High speed

Code Distance	Max (ns)	Average (ns)
3	3.74	0.28
5	9.28	0.72
7	14.2	2.00
9	19.2	3.81

Power concumption

3.78 mW for code distance 9.

