ASSIGNMENT – 3 Python Programming

Assignment Date	06-10-2022
Student Name	Ms . Jeyakaleeswari M
Student Roll Number	923819104016
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package

Solution:

```
import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

Question-2:

2. Loading the Dataset

Solution:

```
df = pd.read_csv("abalone.csv")
df
```

Output:

-	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	м	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	м	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	м	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12
4177 rd	ows × !	9 columns	•						

3. Visualizations

Question-3:

3.1 Univariate Analysis

Solution:

sns.displot(df.Sex)

Output:

3.2 Bi-Variate Analysis

Solution:

df.plot.line()

Output:

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c81d866d0>

3.3 Multi - Variate Analysis

Solution:

```
sns.lmplot("Diameter","Length", df, hue="Length", fit_reg=False);
```

Output:

4. Perform descriptive statistics on the dataset.

Question-4:

Solution:

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("abalone.csv")
pd.isnull(data["Sex"])
```

Output:

```
0 False
1 False
2 False
3 False
4 False
4 False
4172 False
4173 False
4174 False
4175 False
4176 False
Name: Sex, Length: 4177, dtype: bool
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Rings"] = np.where(df["Rings"] >10, np.median,df["Rings"])
df["Rings"]
```

Output:

Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

```
pd.get_dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]
).head()
```

Output:

	Diameter	Height	wnoie weight	Snuckea weight	viscera weight	Snell weight	Rings	Length_F	Length_I	Length_M	 Sex_0.745	Sex_0.75	Sex_0.755	Sex_0.76	Sex_0.765	Sex_0.77	Sex_0.775	Sex_0.78	Sex_0.8
0	0.365	0.095	0.5140	0.2245	0.1010	0.150	<function at<br="" median="">0x7f6c9fd64cb0></function>	0	0	1	 0	() 0	0	0	0	0	0	0
1	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0	0	1	 0	0	0	0	0	0	0	0	0
2	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	0	0	 0	() 0	0	0	0	0	0	0
3	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	0	1	0	() 0	0	0	0	0	0	0
4	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	0	1	0	 0	() 0	0	0	0	0	0	0
5 rov	/s × 144 co	lumns																	

Question-8:

8. Split the data into dependent and independent variables

8.1 Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
```

Output:

```
[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
...
['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
['F' 0.625 0.485 ... 1.0945 0.531 0.261]
['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values
print(Y)
```

Output:

```
[<function median at 0x7f6c9fd64cb0> 7 9 ... 9 10
<function median at 0x7f6c9fd64cb0>]
```

Question-9:

9. Scale the independent variables

Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
```

```
df[["Length"]] = scaler.fit_transform(df[["Length"]])
print(df)
```

Output:

```
Sex Length Diameter Height Whole weight Shucked weight \
0 M 0.513514 0.365 0.095 1.3514 0.365 0.095 0.2255 1 M 0.371622 0.265 0.090 0.2255 2 F 0.614865 0.420 0.135 0.6770 3 M 0.493243 0.365 0.125 0.5160 4 I 0.344595 0.255 0.080 0.2050 1.3516 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.2050 0.205
                                                                                                                                                                                                                    0.2245
                                                                                                                                                                                                                      0.0995
                                                                                                                                                                                                                      0.2565
                                                                                                                                                                                                                      0.2155
                                                                                                                                                                                                                      0.0895
                                                                                                                                                                                                                 0.3700
                                                                                                                                                                                                                      0.4390
                                                                                                                                                      1.1760
 4174 M 0.709459 0.475 0.205
                                                                                                                                                                                                                      0.5255
 4175
                        F 0.743243
                                                                                  0.485
                                                                                                              0.150
                                                                                                                                                               1.0945
                                                                                                                                                                                                                       0.5310
 4175 F 0.743243 0.485 0.150
4176 M 0.858108 0.555 0.195
                                                                                                                                                               1.9485
                                                                                                                                                                                                                       0.9455
                       Viscera weight Shell weight
 0
                                              0.1010 0.1500 <function median at 0x7f6c9fd64cb0>
                                                 0.0485
 1
                                                                                                   0.0700
                                                                                              0.2100
 2
                                                 0.1415
                                                 0.1140
                                                                                                  0.1550
                                                                                                                                                                                                                                                           10
                                                 0.0395
                                                                                                                                                                                                                                                             7
                                                                                                  0.0550
 4172
                                             0.2390
                                                                                             0.2490 <function median at 0x7f6c9fd64cb0>
 4173
                                               0.2145
                                                                                               0.2605
                                                                                                                                                                                                                                                          10
                                                                                                 0.3080
 4174
                                                 0.2875
 4175
                                                  0.2610
                                                                                                   0.2960
                                                 0.3765
 4176
                                                                                                   0.4950 <function median at 0x7f6c9fd64cb0>
 [4177 rows x 9 columns]
```

Question-10:

10. Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Sex']).copy()
y = df['Sex']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

Output:

```
(3341, 8)
(3341,)
(418, 8)
(418,)
(418, 8)
(418,)
(None, None)
```

11.Build the Model

```
test_size = 0.33
seed = 7
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random state=seed)
```

12.Train the model

 X_{train}

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4131	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x7f6c9fd64cb0="" at="" median=""></function>
3204	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2622	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x7f6c9fd64cb0="" at="" median=""></function>
2114	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4
1422	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x7f6c9fd64cb0="" at="" median=""></function>
1372	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x7f6c9fd64cb0="" at="" median=""></function>
919	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6
2550	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5
537	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7
1220	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7
2798 rd	ows × 8 colu	mns						

y_train

13.Test the model:

X_test

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x7f6c9fd64cb0="" at="" median=""></function>
					***	•••		
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<function 0x7f6c9fd64cb0="" at="" median=""></function>

1379 rows × 8 columns

y_test

```
1157 F
1125 M
2053 M
3591 F
455 M
...
3150 F
3037 M
2050 M
1690 M
253 F
Name: Sex, Length: 1379, dtype: object
```

14.Measure the performance using Metrics

```
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
X_train = [5, -1, 2, 10]
y_test = [3.5, -0.9, 2, 9.9]
print ('R Squared =',r2_score(X_train, y_test))
print ('MAE =',mean_absolute_error(X_train, y_test))
print ('MSE =',mean_squared_error(X_train, y_test))
```

```
R Squared = 0.9656060606060606
MAE = 0.424999999999993
MSE = 0.56749999999999
```