

Reg. Number:

Continuous Assessment Test(CAT) – I /II - JAN 2024

Programme	:	B.Tech (ECE/ECM/EVD)	Semester	:	WS 2023-24
Course Code & Course Title	:	BECE102L Digital System Design	Class Number	:	CH2023240501131 CH2023240501151
Faculty	:	Dr A Anita Angeline & . Dr A Prathiba	Slot	:	D1 +TD1
Duration	:	90 Minutes	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted

Answer all questions			
Q. No	Sub Sec.	Description	Marks
		 a) For F1 = x(ȳz + yz), determine F1. b) Simplify F2 = ABCD + ĀBD + ABCD c) Determine the functionality of the Static CMOS implementation depicted in Fig. 1, and identify the path output for A=1; B=C=D=0 	
1.		A C C OUT B C OUT Fig.1	[10]
2.	f	Derive the circuit consisting only of two-input NAND gates for the function $f(x_1, x_2, x_3, x_4) = \sum m(0, 1, 2, 3, 4, 6, 8, 9, 12)$. Assume that the input variables are available in both incomplemented and complemented forms.	[10]

	Design the hardware depicted in Fig.2, using Verilog HDL code and write the testbench for the schematic (top module).	[10]
3.	$d_0 \xrightarrow{d_0} 0 \xrightarrow{MUX 0} Z_0$ $d_1 \xrightarrow{d_1} 0 \xrightarrow{MUX 1} Z_1$ $d_2 \xrightarrow{d_3} 1 \xrightarrow{MUX 1} Z_1$ $S_0 \xrightarrow{I} 1 \xrightarrow{I} 1 \xrightarrow{I} 1 \xrightarrow{I} 1$ Fig.2	
4.	 a) Considering A0, A1, B0, B1 as single bit data, configure a circuit to implement F3 = (A1+B1) + (A0+B0) using appropriate adders and justify your design. b) Considering W, X, Y. Z as single bit data, design a digital circuit to implement F4 = WXYZ + 1 using appropriate gates and adder units and justify your design. 	[10]
5.	Implement the Boolean function $F4 = \sum (0,2,5,7,11,14)$ using 8 X1 multiplexer.	[10]