Gravitation & Cosmology — ASTR-4240 General Relativity — PHYS-4961

Class 4 Spacetime Physics

Exercise (20 pts)

1. (10 pts) — Write out all of the components of the tensor

$$L^{\mu\nu} \equiv x^{\mu} p^{\nu} - x^{\nu} p^{\mu}, \tag{1}$$

where x^{μ} and p^{μ} are the position and 4-momentum of a point particle with rest mass m and ordinary velocity \mathbf{u} . Use ordinary units, i.e., do not set c = 1.

2. (10 pts) — Do any of the components of $L^{\mu\nu}$ describe a familiar physical quantity? Which ones and what is the quantity?

Solution

1. The tensor has Cartesian components

$$L^{\mu\nu} = \begin{pmatrix} 0 & -\gamma mc (x - u_x t) & -\gamma mc (y - u_y t) & -\gamma mc (z - u_z t) \\ \gamma mc (x - u_x t) & 0 & \ell_z & -\ell_y \\ \gamma mc (y - u_y t) & -\ell_z & 0 & \ell_x \\ \gamma mc (z - u_z t) & \ell_y & -\ell_x & 0 \end{pmatrix}, \quad (2)$$

where

$$\ell \equiv \mathbf{x} \times \mathbf{p}.\tag{3}$$

2. Yes: ℓ is the orbital angular momentum of the particle.