Lecture 16: 2D Discrete Operators - Part 2

logistics: - Issu in HU5 problem 2 > will fix asap

Lost time: - lutro to 2D numerics

Today: - Finish the construction of D. & G

- 2D advection matrix
- Changes from ID to 2D

Construction of Dx

If the grid was ordered x - first

Dx2 =	¥	8	Dx'

303	(606)	9.9	داړه اړ	,15 ⁻
202	(⁵ ° ⁵)	8 . 8	ku • u >	14
x' 6' :	(⁴ o ⁴)	7.3,	16 0 16	U

3 0 ³	6°°	9.9	داره رح	c ¹⁵
×2 02 ;	5 o 5	8 8	<" • " >	14
x' 6' :	(⁴ 6)	F.7 ,	(6018)	U

$$f_{s_1} = \frac{9q - 91}{\Delta \times}$$

$$f_{s_2} = \frac{9s - 92}{3 \times}$$

But Dx is also a block diagonal matrix built from Ny by Ny identity matrices

Iy = Ny by Ny ideuh' fy

Patteru:

 \Rightarrow assemble Dx^2 with tensor product $Dx^2 = Dx' \otimes Ty = kron(Dx, Ty)$

lu summary

Two Identify malries: Ix, Ix

Two ZD matrices:

Dx = krou (Dx, Iy);

Dy = krou (Ix, Dy);

Assemble Jull D:

D = [Dx, Dy]

Discrete Gradieut Hatrix

The Gx and Gy matrices can be be assembled of using tensor products from ID matrices.

Dand Ge matrices are adjonts.

G = - DT true lu interior

Need to impose natural BC's: set G=0 on ell bud faces

Mahu vector containing all bud faces

dof-f-bud = [dof-f-xmin; dof-f-xmax;

dof-f-ymin; dof-f-ymax]

zero out

G(dof-f-bud):) = 0;

We also have <u>H</u> matrix hus same structure as <u>G</u> matrix.

H = [Hy]

generate Hx2 = Hx & Iy

HTY2 = IX @ HTY

For now we leave curl C