

Topic Assessment Form

UMAI	-	111.
Proj	ICCI.	117.

[24-25J-193]

1. Topic (12 words max)

AI and Data-Driven Agriculture Platform	

2. Research group the project belongs to

Software Systems & Technologies (SST)

3. Research area the project belongs to

Machine	Learning	(ML)
---------	----------	------

4. If a continuation of a previous project:

Project ID	
Year	

5. Brief description of the research problem including references (200 – 500 words max) – references not included in word count.

In today's rapidly evolving technological landscape, agriculture faces significant challenges that threaten both productivity and sustainability. These challenges include fluctuating market prices, unpredictable weather patterns, and the increasing need for sustainable crop management practices. Farmers often struggle with making informed decisions due to the lack of accurate, real-time data on market trends, crop growth rates, and viable alternatives. Traditional methods of market price prediction and crop management are often inadequate, failing to consider the complex interplay of various factors such as soil moisture, weather conditions, and market demand and supply dynamics.

Furthermore, unpredictable weather patterns and climate change exacerbate the uncertainty in farming, leading to inconsistent yields and financial instability for farmers. There is also a pressing need for sustainable farming practices that not only enhance productivity but also ensure long-term soil health and environmental conservation.

This research focuses on addressing these challenges by targeting a specific farm that grows multiple crops. The aim is to develop a comprehensive, data-driven solution that provides farmers with accurate predictions and actionable insights, enabling them to choose the best crops for their land based on various factors, including soil moisture. By integrating diverse data sources and employing advanced machine learning algorithms, the system will offer precise market price forecasts, predict crop growth rates, and suggest optimal crop rotations. This approach is crucial for improving agricultural efficiency, ensuring food security, and supporting sustainable farming practices in the face of dynamic environmental and market conditions.

Topic Assessment Form

6. Brief description of the nature of the solution including a conceptual diagram (250 words max)

The proposed solution is a comprehensive AI-driven platform designed to support farmers by predicting market trends, identifying potential crises, and suggesting alternative crops. The platform consists of four main components:

- 1. **Growth Rate Prediction**: By analyzing environmental data, weather patterns, and historical crop performance, this component predicts the growth rate of a crop, considering weather, fertilizer information, and soil moisture as input parameters. The inclusion of soil moisture as a key parameter adds a novel aspect, enhancing the accuracy and relevance of the predictions to real-world farming conditions.
- 2. **Market Price Prediction**: Using historical data and machine learning algorithms, this module forecasts future market prices for various crops, helping farmers plan their planting and selling strategies. By integrating soil moisture data alongside traditional factors such as historical prices, weather conditions, soil health, seasonality, and market demand and supply, the model provides more precise and contextually relevant predictions.
- 3. **Crop Rotation Suggestion**: With the output from the market price and success rate predictions from the aforementioned modules combined with additional factors such as the previous crops that were grown in the field and other historical data, this module makes suggestions for the most optimal crop/set of crops that can be grown adhering to crop rotation principles in order to preserve soil quality while also maximizing profit.
- 4. **Agri Assist**: This component serves as an intuitive and interactive platform for farmers, offering a seamless user experience. It enables farmers to effortlessly engage with the system by asking questions, seeking advice, and receiving tailored recommendations. Leveraging advanced AI and machine learning algorithms, AgriAssist provides real-time, personalized guidance on various farming activities. By understanding and analyzing the unique needs of each farmer, AgriAssist ensures that users receive actionable insights and a customized roadmap to optimize their agricultural practices and enhance crop growth.

A conceptual diagram of the system shows the interaction between these components, illustrating how data flows from user inputs and external sources into the prediction algorithms and back to the user via the AI chatbot.

Topic Assessment Form

7. Brief description of specialized domain expertise, knowledge, and data requirements (300 words max)

The development of this AI-driven agricultural platform requires specialized expertise in several domains:

Artificial Intelligence and Machine Learning: Knowledge of AI and ML is crucial for developing the prediction algorithms used in market price forecasting, growth rate calculation, and alternative crop suggestions. Expertise in natural language processing is also necessary for creating an effective AI chatbot.

Agricultural Science: Understanding agricultural practices, crop biology, and environmental factors is essential for accurate data analysis and prediction. Collaboration with agricultural experts will ensure the platform's recommendations are practical and relevant.

Data Science and Analytics: The platform relies on large datasets, including historical crop prices, weather data, and environmental conditions. Proficiency in data collection, cleaning, and analysis is required to build reliable prediction models.

Software Development: Developing a user-friendly interface for the AI chatbot and integrating the various components of the system require strong software engineering skills. Knowledge in web and mobile development is also necessary for creating accessible platforms for farmers.

User Experience Research: Understanding the needs and behaviors of farmers is critical for designing an intuitive and effective user interface. This involves conducting user interviews, surveys, and usability testing.

Data requirements include historical market prices, weather data, soil conditions, crop yields, and other relevant agricultural information. Access to this data can be obtained through governmental agricultural databases, research institutions, and collaborations with local farming communities. Ensuring data accuracy and reliability is paramount for the success of the prediction models.

Topic Assessment Form

8. Objectives and Novelty

Main Objective

The primary objective of this research is to develop a comprehensive, data-driven AI prediction platform for agriculture that equips both farmers and agriculture officers with accurate, timely, and actionable insights. This platform aims to predict future market prices of crops, assess the growth rate rates of different crops, and suggest viable alternative crops when necessary. Additionally, it will offer a user-friendly interface, including an intelligent assistant for farmer interactions and a notification system to alert users about critical agricultural information. By providing these features, the system will enable informed decision-making, optimize agricultural practices, and enhance overall productivity and sustainability in farming.

Member Name	Sub Objective	Tasks	Novelty
Dissanayake D M A P	Intelligent, Interactive	• Data Collection:	 Personalized
	Assistant : Provides	Gather	Real-Time
	personalized guidance and	comprehensive	Guidance:
	answers to common	data on various	Delivers tailored
	agricultural questions.	agricultural topics,	agricultural
		including crop	advice using
	 Advanced 	management, pest	advanced natural
	Algorithms:	control, soil	language
	Utilizes natural	health, weather	processing and
	language	conditions, and	machine learning
	processing and	best farming	algorithms.
	machine learning	practices. This	• Dynamic
	for tailored	information will	Interaction:
	advice.	form the	Provides
	 Comprehensive 	knowledge base	interactive,
	Farming	for the assistant.	personalized

Support: O		recommendations
advice on cr	rop Language	on crop
managemen		management,
control, soil	Integration:	pest control, soil
health, and o	other Implement	health, and other
farming practices	ctices. advanced NLP	farming
 Knowledge 	and algorithms to	practices.
Best Practic	ces: enable the	 Intelligent
Ensures acc	ess to assistant to	Escalation
a wealth of	understand and	Mechanism:
agricultural	respond to farmer	Directs complex
knowledge a	and queries accurately	queries to
best practice	es. and contextually.	agriculture
• Informed	• Machine	officers or
Decision-	Learning Model	experts,
Making:	Training : Train	enhancing
Empowers	machine learning	reliability and
farmers to n	nake models using the	effectiveness.
informed	collected data to	 Continuous
decisions an	nd provide	Learning:
enhance cro	<u> </u>	Learns from user
productivity		interactions and
sustainabilit	y. and solutions	feedback,
	based on specific	continually
	user inputs and	refining
	conditions.	recommendations
	• UI/UX Design:	and expanding its
	Design and	knowledge base.
	implement a user-	
	friendly web and	
	mobile application	

Ţ	
	interface that
	adheres to UI/UX
	principles,
	ensuring a
	seamless and
	intuitive user
	experience for
	farmers.
	Real-time
	Assistance:
	Develop
	functionalities for
	real-time
	interaction,
	allowing farmers
	to receive
	immediate
	answers and
	advice on various
	agricultural issues.
	• Escalation
	Protocol: Create a
	mechanism for
	escalating
	complex queries
	to agriculture
	officers or experts
	when the assistant
	cannot provide
	adequate
	information.
	imormation.

Jagoda H S	• Data-Driven	 Feedback Mechanism: Integrate a feedback option within the assistant to collect user suggestions and problems, providing valuable insights for continuous improvement and refinement of the system. Data Visualization:	• Predictive Model
	Recommendations: Provide users with recommendations on	Combine outputs from the market price prediction and success	Configuration: Forecasts potential profits and yields of

- the most suitable crops to grow based on current conditions and inputs.
- Analysis of
 Predictions: Analyze
 outputs from the
 market price
 prediction and success
 rate prediction
 components to assess
 the suitability of
 initially selected
 crops.
- Crop Rotation
 Suggestion: Suggest
 crops that adhere to
 crop rotation
 principles and
 maximum
 profitability upon user
 prompt.
- Context-Sensitive
 Factors: Consider
 soil moisture, weather
 conditions, previous
 crops, and other
 relevant factors in
 recommendations.
- **Profitability and Resilience**: Ensure

- rate prediction modules, along with additional relevant data such as soil health, previous harvest, and available alternatives.
- Development:
 Develop and implement algorithms that analyze the combined data to identify the most suitable crops that can lead to an optimum yield.
- Design: Create an intuitive interface that presents alternative crop suggestions to the user in a clear and actionable manner.
- Feedback
 Mechanism: Integrate
 a feedback option to
 collect user input on
 the effectiveness of
 the suggested crop
 rotations, enabling

- user-determined crops.
- Comprehensive
 Analysis: Uses
 aforementioned
 forecasts, historical
 data and other data
 made available in the
 session log to make a
 selection among the
 crops that can be
 considered.
- Integration with Crop Rotation
 Suggestion Engine:
 Suggests best possible crop rotation under existing conditions such that the suggested crops adhere to crop rotation principles while also maximizing profit.
- Recommendations:
 Incorporates factors
 such as soil moisture,
 weather conditions,
 and market trends for

Sewwandi P B	suggested crops are likely to be more profitable and resilient. • Tailored Solutions: Deliver the most effective and sustainable crop options tailored to farmers' specific circumstances.	continuous improvement of the recommendation algorithms. Continuous Learning: Implement machine learning techniques to refine the prediction models over time based on user feedback and new data, ensuring the system remains accurate and relevant.	accurate and relevant suggestions. • Comprehensive
Semmana B	Development: Develop a system to predict the growth rate of crops by analyzing various factors. • Key Factors Analysis: Analyze weather conditions, fertilizer usage, and soil moisture data. • Notification System: Notify farmers and agriculture officers	web crawlers to extract data from agricultural reports and integrate this with historical yield data, soil moisture data, weather conditions, and fertilizer usage information. Model Development: Implement ARIMA for trend analysis, BP network for non-linear	Data Integration: Incorporates soil moisture data, weather conditions, fertilizer usage, historical yield information, and uses additional soil moisture data as a novelty. Advanced Machine Learning Techniques: Utilizes

ERSITY		
about potential growth rates. • Advanced Machine Learning Models: Integrate advanced machine learning models for accurate predictions. • Improved Crop Yield and Quality: Assist in improving crop yield and quality through optimized practices. • Novel Parameter Inclusion: Incorporate soil moisture as a key parameter, adding precision and relevance to real-world farming conditions.	relationships, and RNN for sequential dependencies to develop a robust predictive model for crop growth rates. Training and Validation: Train the models using historical data and optimize them for accuracy, ensuring reliable predictions of crop growth rates under varying conditions. Growth Rate Detection: Develop algorithms to analyze predictions and detect potential growth rates, considering the integrated data from various sources. Report Generate: Generate a report system for farmers and agriculture officers about	a hybrid modeling approach combining ARIMA, BP network, and RNN for robust predictions. • Context-Sensitive Predictions: Provides highly accurate and relevant predictions tailored to specific farming conditions.
1	1	

		predicted growth rates.	
Priyankara S A D S A	 Comprehensive System Develop a system that accurately forecasts future market prices of crops. Advanced Data Collection: Utilize advanced data collection techniques to gather diverse data sources. Machine Learning Algorithms: Analyze data using machine learning algorithms. Diverse Data Sources: Incorporate historical market prices, weather conditions, soil health, seasonality, crop health, and soil moisture data. Precise and Reliable Predictions: Provide 	Data Collection: Use web crawlers to extract relevant market data from various online sources, including agricultural websites, market reports, and social media. Integrate this data with historical market prices, weather conditions, soil health, crop health, and soil moisture data. Data Preprocessing: Clean and preprocess the collected data to ensure accuracy and consistency, preparing it for effective use in predictive modeling. Model Development: Implement ARIMA for initial time series analysis, BP network for capturing non-	 Expanded Predictive Parameters: Incorporate a broader range of factors, including soil moisture, historical price data, weather data, seasonality, market demand and supply for more accurate predictions. Advanced Data Collection: Use web crawlers to continuously update data from diverse online sources, ensuring real-time, comprehensive datasets. Hybrid Modeling Approach: Combine ARIMA, BP network, and RNN methods to leverage their strengths,
	I I Calculation I TO VIGO	Tor captaring non	mon suonguis,

KNOWLEDGE UNIVERSITI			
	precise and reliable price predictions. Informed Decision-Making: Enable farmers to make informed decisions about planting and selling strategies. Novel Parameter Inclusion: Include soil moisture as an additional parameter to enhance the accuracy of predictions. Profitability and Sustainability: Ensure that farmers can optimize their profitability and sustainability in agricultural practices.	linear relationships, and RNN for understanding sequential dependencies in time- series data. • Model Training and Validation: Train and validate the models using historical data, optimizing parameters to achieve high accuracy in predictions. • Feature Selection: Identify and incorporate critical parameters that influence market prices, including soil moisture as a novel parameter. Additionally, use historical price data, weather data, seasonality, and market demand and supply. Employ feature selection techniques to determine the most	resulting in robust and accurate market price predictions. • Adaptive Learning: Implement adaptive mechanisms to improve model accuracy over time with new data, ensuring sustained performance in dynamic market conditions.

	significant factors affecting market prices.	
--	--	--

Topic Assessment Form

9. Supervisor checklist

a)	Does the chose project?		topic possess a co	omprehensive scope	e suitable for a final-year
b)	Does the proportion Yes No		exhibit novelty?		
c)	Do you believe Yes No		e the capability to	successfully execut	e the proposed project?
d)	Do the propose Yes No		ectives reflect the	students' areas of sp	pecialization?
e)	Supervisor's Ev	valuation a	and Recommendat	on for the Research	n topic:
10. Super	visor details				
		Title	First Name	Last Name	Signature
Supe	rvisor				
Co-S	upervisor				
Exter	rnal Supervisor				
Sumi	mary of external	superviso	r's (if any) experie	ence and expertise	

IT4010 - Research Project - 2024

Topic Assessment Form

This part is to be filled by the Topic Screening Panel members.

Acceptable: Mark/Select as necessary	
Topic Assessment Accepted	
Topic Assessment Accepted with minor changes (should be	
followed up by the supervisor)*	
Topic Assessment to be Resubmitted with major changes*	
Topic Assessment Rejected. Topic must be changed	
* Detailed comments given below	
Comments	
Member's Name	Signature
Member's Name	Signature
, Member's Name	Signature
Member's Name	Signature
Member's Name	Signature
Member's Name	Signature
Member's Name	Signature
Member's Name	Signature
Member's Name	Signature
Member's Name	Signature
Member's Name	Signature

*Important:

1. According to the comments given by the panel, make the necessary modifications and get the approval by the **Supervisor** or the **Same Panel**.

Topic Assessment Form

2. If the project topic is rejected, identify a new topic, and follow the same procedure until the topic is approved by the assessment panel.