

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

ЗАДАЧА 15

Модель раннего обнаружения неисправностей промышленного оборудования

1. Термины и определения:

Предиктивное ТОиР (predictive maintenance)	Предиктивное техническое обслуживание с упором на прогнозирование отказов и принятие мер, в зависимости от состояния оборудования, для предотвращения отказа или ухудшения характеристик.
Неисправности	Неисправности из перечня М1, М3
MI	Отказы с простоями оборудования
M3	Неисправности без простоя

2. Актуальность задачи

Объектами для реализации в рамках «хакатона» выбраны эксгаустеры на агрегатах ЧерМК ПАО «Северсталь»:

- 1. КОМПЛЕКС АГЛОМАШИНА №4
- 2. КОМПЛЕКС АГЛОМАШИНА №5
- 3. КОМПЛЕКС АГЛОМАШИНА №6
- 4. КОМПЛЕКС АГЛОМАШИНА №7
- 5. КОМПЛЕКС АГЛОМАШИНА №8
- 6. КОМПЛЕКС АГЛОМАШИНА №9

Эксгаустер является критически важным компонентом комплекса агломашины - его неплановая остановка приводит к остановке агломашины и, как следствие, к потерям из-за недовыпуска продукции.

Основной причиной остановок эксгаустера является износ ротора. Износ зависит от различных факторов и поэтому его срок службы непостоянен. Заблаговременное прогнозирование превышения предельно допустимых параметров позволит провести замену ротора в плановые остановки агломашины на обслуживание, что позволит исключить (или значительно снизить) внеплановые простои.

3. Постановка задачи

Создание прототипа системы предиктивной аналитики (СПА), предназначенной для:

- 1. Наиболее полного и своевременного обнаружения скрытых дефектов в оборудовании, оценки возможности повышения уровня надежности эксплуатации оборудования за счет внедрения автоматизированной системы, основанной на применении методов предиктивной аналитики.
- 2. Сокращение времени простоев оборудования вследствие сокращения непредвиденных остановок по причине развивающихся дефектов
- 3. Увеличение коэффициента технической готовности технологического оборудования вследствие своевременной диагностики и технического обслуживания.
- 4. Повышение эффективности технического обслуживания и ремонта оборудования вследствие предиктивного прогнозирования сбоев в работе оборудования на основании анализа данных в режиме реального времени.
- 5. Повышение качества и снижение сроков ремонта оборудования вследствие своевременного заказа запасных частей на основе предиктивного анализа состояния оборудования.

В рамках задачи требуется реализовать действующий прототип системы предиктивной аналитики, способной прогнозировать неисправности промышленного оборудования.

Основные требования к прогнозной способности моделей на историческом тестовом датасете:

- 1. Определить наличие или отсутствие неисправности М1 на заданных интервалах тестовой выборки (временные ряды сигналов на тесте имеют искусственные пропуски).
- 2. Определять периоды, когда были любые неисправности М3 (аномальный режим работы техместа) на протяжении всего тестового интервала.
- 3. Определить время до простоя М1 с максимально возможным горизонтом для каждой точки временного ряда тестовой выборки и указать вероятное значение времени до наступления отказа оборудования.
- 4. Краткое описание оборудования

Эксгаустер — это центробежный нагнетатель, основной задачей которого в агломерационном производстве является просос воздуха через слой шихты, лежащей на колосниковой решётке агломерационной машины.

Основные узлы эксгаустера:

- Ротор
- Электродвигатель
- Корпус
- Подшипник опорно-упорный
- Подшипник опорный
- Электроаппаратура
- Кожух муфты

Характеристики:

- Объемная производительность, отнесенная к условиям всасывания, м3/мин- 8000
- Разность между абсолютными статическими конечным и начальным давлениями, мм вод.ст. (кПа)- 1290 (12,6)
- Начальная температура газа, ° С- 150
- Начальное давление газа, кгс/см2 (кПа) 0,95 (93.1)
- Потребляемая мощность, кВт- 1980
- Мощность электродвигателя, кВт- 2500

Общий вид эксгаустера

5. Требования к решению

- **5.1.** В качестве программных средств для реализации модели можно использовать любые методы построения моделей, которые позволят воспроизвести построение модели из исходного кода и результаты прогнозирования (предпочтительно на языке python).
- **5.2.** Участники получают обучающую выборку с историческими данными (временные ряды сигналов, событий о неисправностях, перечень наименований сигналов) и тестовую выборку (временные ряды сигналов, наименования сигналов).
- **5.3.** Участники должны разработать веб-сервис, состоящий из модулей:
 - Модуль визуализации и выдачи прогнозов о неисправностях и прогнозе даты поломки (отказа) оборудования.
 - Модуль расчета и визуализации оценки точности моделей, находящихся в эксплуатации.
- **5.4.** Используя полученные данные, Участники генерируют модели на тренировочной выборке сигналов, показывают результаты работы данных моделей во времени (ускоренно, на исторических данных как тренировочного, так и тестового набора данных), визуализируют расчет и метрики точности, в соответствии с требованиями настоящего ТЗ и формируют экспорт файла csv с предсказаниями неисправностей на тестовой выборке в соответствующем формате (см. приложение 2).
- **5.5.** Для решения задачи №3 для каждого техместа требуется предоставить временной ряд с разметкой, содержащей прогнозируемое время до наступления неисправности (М1).

5.6. По окончанию выполнения задания Участниками, проводится оценка удобства интерфейса веб-сервиса, полнота исполненного функционала, точность моделей и их фактическая способность выполнять прогнозирование неисправностей и отказов за максимально больший горизонт времени. Методика и критерии оценки изложены в Приложении №1.

5.7. Требования к функциям системы

- **5.7.1.** Отслеживание состояния оборудования в реальном времени, при различных режимах функционирования оборудования и его узлов на основе анализа совокупных изменений значений технологических параметров. В рамках хакатона подразумевается симуляция на исторических данных;
- **5.7.2.** Осуществление в режиме «реального времени» (на историческом периоде) сравнительного анализа отклонений текущих изменений значений параметров состояния оборудования от значений его нормального и работоспособного состояния;
- **5.7.3.** Автоматическое оповещение пользователей о соответствии/несоответствии текущего состояния работы агрегатов штатному режиму функционирования;
- **5.7.4.** В случае несоответствия штатному режиму осуществлять классификацию неисправности с указанием проблемного элемента (отдельной части, узла) агрегатов и определение наступления момента отказа оборудования;
- **5.7.5.** Формирование необходимой отчетности о текущем состоянии агрегатов с указанием параметров, которые отклоняются от нормальных значений и возможных зарождающихся дефектов агрегатов;

- **5.7.6.** Для реализации вышеуказанного функционала СПА должна иметь как минимум следующие возможности:
- **5.7.6.1.** Сбор исторических данных для создания моделей предиктивной диагностики. Должна поддерживаться загрузка информации как минимум из локальных источников, предоставленных Участникам;
- **5.7.6.2.** Тестирование предиктивных моделей оборудования;
- **5.7.6.3.** Хранение данных исторических и текущих данных оборудования, необходимых для построения и выполнения предиктивных моделей;
- **5.7.6.4.** Автоматическое уведомления персонала о появлении предупреждения посредством электронной почты или иных способов электронной коммуникации.
- **5.7.6.5.** Иметь в своем составе средства логирования результатов работы моделей и оповещения пользователей;
- **5.7.6.6.** Возможность модификации количества и структуры предиктивных моделей оборудования (иерархия)
- **5.7.6.7.** Иметь архитектуру, допускающую возможность расширения в рамках возможного последующего тиражирования.

5.8. Требования к тестированию предиктивных моделей на этапе внедрения и эксплуатации:

СПА должна генерации иметь возможность и проведения тестирования предиктивных моделей, которое заключается в анализе результатов работы предиктивных моделей исторических на эксплуатационных данных с целью подтверждения частоты определения скрытых дефектов в оборудовании, а также в подтверждении возможности заблаговременного определения предиктивными моделями описанных в техническом задании неисправностей.

5.9. Требования к функционированию предиктивных моделей

В СПА должна быть реализована функция выполнения предиктивных моделей оборудования. Результатом выполнения должно являться периодическое последовательное выполнение алгоритма прогнозирования неисправности. Режим работы СПА постоянный, обеспечивающий функционирование моделей и оповещение в круглосуточном режиме (24/7).

5.10. Требования к хранению предиктивных моделей

В СПА должна быть реализована функция хранения предиктивных моделей и полученных с помощью их функционирования результатов - предупреждений о развивающихся неисправностях.

5.11. Требования к мониторингу результатов работы системы

В СПА должна быть реализована возможность наблюдения результатов работы в виде графического интерактивного интерфейса и формирование отчетов в популярных форматах (например pdf).

6. Возможный пользовательский путь

- 6.1. Модуль визуализации и выдачи прогнозов о неисправностях
- **6.1.1.** Пользователь оператора или диспетчер системы мониторинга оборудования или любой специалист цеха в производстве.
- **6.1.2.** У пользователя есть визуальная информация о текущем состоянии контролируемого оборудования. Требований к визуальной части не устанавливается, за исключением того, что пользовательский интерфейс должен быть удобным для восприятия информации.
- **6.1.3.** Визуальная часть позволяет отслеживать состояние интересующего оператора оборудования и перемещает фокус оператора на проблемный объект контроля в случае ухудшения прогноза его «здоровья»

- **6.1.4.** Элемент интерфейса, в котором происходит динамическая визуализация состояния оборудования имеет возможность оценить время до отказа оборудования и возможный период его простоя.
- **6.1.5.** Функционал модуля позволяет автоматизированную отчетность о прогнозе деградации оборудования всем подписантам на данный сервис. Предполагается, что, как и в интерфейсе модуля, так и в сообщениях (по email), при возникновении проблемы со «здоровьем» оборудования будет визуализироваться (отправляться) диагностика, имеющая, как минимум поля:
 - Наименование оборудования (локализация оборудования на котором есть проблема);
 - Пользовательское описание предупреждения (описание вероятного дефекта);
 - Прогнозная дата отказа;

6.2. Модуль оценки точности моделей

6.2.1. Модуль оценки точности функционально в виде виджета встроен в элементы интерфейсов для оценки точности моделей.

7. Требования к презентации

7.1. Формат презентации pdf/pptx

7.2. Обязательные разделы:

- краткое обоснование выбора метода решения,
- указание используемых технологий,
- достигнутые результаты за время конкурса

8. Требования к сопроводительной документации

8.1. Формат pdf/docx

8.2. Обязательные разделы:

- инструкция по запуску/разворачиванию сервиса;
- технологический стек решения;
- описание работы и взаимодействия с моделью;
- возможный потенциал решения в будущем;
- ссылки на доп. материал.

9. Источники данных

Участник должен самостоятельно выбрать наиболее релевантные технологические сигналы из доступного перечня сигналов АСУТП оборудования для построения предиктивной модели и обеспечения наиболее качественного прогноза неисправностей.

Перечень предоставляемых файлов:

- X_train.parquet тренировочная выборка;
- y_train.parquet таргет тренировочной выборки;
- X_test.parquet тестовая выборка;
- test_intervals.xlsx список интервалов с пропущенными значениями (в рамка задачи №1 из п.3);
- messages.xlsx дополнительная информация по неисправностям в тренировочной выборке (описание, тип простоя, длительность простоя и т.д.).

Подробнее структура данных представлена в Приложении 1.

10. Требования к сдаче решения

- **10.1.** Предоставить результат достигнутой точности модели согласно Приложения №2.
- **10.2.** Предоставить ссылку на MVP (прототип) системы для демонстрации работы
 - 10.3. Ссылку на общедоступный репозиторий с исходным кодом.
 - 10.4. Ссылку на сопроводительную документацию.
 - **10.5**. Ссылку на презентацию решения.

11. Критерии оценки (промежуточные и финальные)

11.1. Подход коллектива к решению задачи.

Полнота реализованных требований, изложенных в п.5 «Требования к решению» настоящего ТЗ

11.2. Техническая реализация.

Технические показатели разработанных моделей применяются к результатам ретроспективного анализа на тестовой выборке. Методика оценки качества моделей представлена в Приложении 2

11.3. Соответствие решения поставленной задаче.

- соответствие функционала пункту 5.7 настоящего ТЗ;
- фактическая способность выполнять прогнозирование неисправностей и отказов за максимально больший горизонт времени.

11.4. Эффективность решения в рамках поставленной задачи

- максимальное количество корректно предсказанных неисправностей на тестовой выборке;
- скорость работы сервиса;

• удобства интерфейса веб-сервиса.

11.5. Выступление на питч-сессии:

- убедительность и информативность;
- лаконичные и аргументированные ответы;
- соответствие регламенту выступления.

Приложение №1

- Формат структуры тренировочной выборки (X_train и y_train)
- M1 отказы с простоями оборудования (1 если событие происходит в момент времени)
- M3 неисправности без простоя (2 если событие происходит в момент времени)
- IDTM_N Признак неисправности (М1 и М3) по техническому месту N (таргет)
- IDS_N Значение сигнала N

DateTime	IDS_1	IDS_2	 IDS_N	IDTM_1	 IDTM_N
01.01.2020 0:00	0.25	0.75	 0.75	0	 0
01.01.2020 0:01	0.26	0.76	 0.76	0	 0
01.01.2020 0:02	0.27	0.77	 0.11	0	 0
01.01.2020 0:03	0.28	0.78	 0.54	0	0
01.01.2020 0:04	0.29	0.79	 0.119	0	0
01.01.2020 0:05	0.30	0.80	 0.184	0	0
01.01.2020 0:06	0.31	0.81	 0.249	0	0
01.01.2020 0:07	0.32	0.82	 0.314	0	0
01.01.2020 0:08	0.33	0.83	 0.379	0	0
01.01.2020 0:09	0.34	0.84	 0.444	2	2
			 	0	 0
01.01.2020 10:02	0.27	0.75	 0.15	0	 0
01.01.2020 10:03	0.20	0.78	 0.16	0	 0
01.01.2020 10:03	0.20	0.71	 0.01	0	 0
01.01.2020 10:02	0.27	0.75	 0.15	0	0
01.01.2020 10:02	0.20	0.78	 0.16	0	0
01.01.2020 10:02	0.20	0.71	 0.01	2	2
01.01.2020 10:02	0.27	0.75	 0.15	2	2
01.01.2020 10:02	0.20	0.78	 0.16	2	2
01.01.2020 10:02	0.20	0.71	 0.01	2	2
01.01.2020 10:02	0.27	0.75	 0.15	2	2
01.01.2020 10:02	0.20	0.78	 0.16	1	 1
01.01.2020 10:02	0.20	0.71	 0.01	1	 1
01.01.2020 10:02	0.27	0.75	 0.15	1	 1

В наборе сигналов тестовой выборки (X_test.parquet) присутствуют интервалы с пропущенными значениями. Список интервалов предоставлен в отдельном файле (test_intervals.xlsx). Для этих интервалов необходимо предсказать наличие неисправности. В случае предсказанной неисправности, определить тип и время начала развития и наступления неисправности.

Формат списка с интервалами (test_intervals.xlsx):

	start	finish	tm
0	2022-09-10 23:26:41	2022-09-11 01:25:58	NaN
1	2022-01-09 06:57:35	2022-01-09 08:30:54	NaN
2	2022-09-25 14:07:45	2022-09-25 15:35:51	NaN
3	2022-04-03 09:29:12	2022-04-03 10:58:54	NaN
4	2022-09-09 13:23:11	2022-09-09 14:24:22	NaN
	•••	•••	
76	2023-02-12 10:11:52	2023-02-12 11:40:53	NaN
77	2022-06-11 09:44:06	2022-06-11 11:31:58	NaN
78	2022-01-21 17:28:44	2022-01-21 19:16:22	NaN
79	2022-11-20 02:54:35	2022-11-20 04:24:06	NaN
80	2022-07-29 11:06:38	2022-07-29 12:36:52	NaN

Формат структуры тестовой выборки (X_test.parquet):

DateTime	IDS_1	IDS_2	 IDS_N
01.01.2022 0:00	0.25	0.75	 0.75
01.01.2022 0:01	0.26	0.76	 0.76
01.01.2022 0:02	0.27	0.77	 0.11
01.01.2022 10:02	0.27	0.75	 0.15
01.01.2022 10:03	0.20	0.78	 0.16
01.01.2022 10:03	0.20	0.71	 0.01

Приложение №2

Методика оценки результата

- По задаче №1 результаты оцениваются по метрике F1-score по заполненной форме списка интервалов в качестве теста для М1.
- По задаче №2 результаты оцениваются проверкой совпадения предсказанного периода неисправности М3 для каждого техместа* с фактическим периодом неисправности М3 по следующей формуле:

$$J = \frac{TP}{TP + FN + FP}$$
, где

ТР – сумма моментов времени, верно определенных как МЗ

FP – сумма моментов времени, ошибочно определенных как M3

FN – сумма моментов времени, ошибочно определенных как не M3

^{*} кейсы с малым количеством М3 могут быть исключены из оценки данной метрики

3. В задаче № 3 предсказанное время до наступления М1 оценивается по взвешенной метрике WRMSE для каждого техместа в соответствии с формулой:

$$WRMSE = \sqrt{\sum_{i=1}^{n} \frac{w_i(\hat{x}_i - x_i)^2}{n}}$$

 $w_{i} = rac{1}{lpha t_{i}}$, где t_{i} - фактическое время до наступления отказа М1

для момента времени, соответствующего i, – коэффициент масштабирования штрафа по времени

 $x_{_{i}}$ – фактическое время до отказа для момента времени і;

 \hat{x}_{i}^{-} прогнозное время до отказа для момента времени і.=га0ти

Итоговая метрика WRMSE усредняется по всем техместам.

Метрика WRMSE оценивается на максимальном горизонте прогнозирования в месяц от момента наступления M1.

В процессе оценки целесообразности определенных подходов в прогнозировании, подходы к оценке метрик могут быть скорректированы.

Формат представления результата для задачи 2 и задачи 3

	Задача для тестовой выборки					
	Задание 2	Задание 3				
	Определить периоды, когда были неисправности МЗ для каждого техместа (такж рядов будет N)	Спротноги роветь время до наступления M1 (c)				
DateTime	M3	M1				
01.01.2020 0:00	0	3600				
01.01.2020 0:01	0	3590				
01.01.2020 0:02	0	3580				
01.01.2020 0:03		3570				
01.01.2020 0:04	2	3560				
01.01.2020 0:05	2	3550				
01.01.2020 0:06		3540				
01.01.2020 0:07	2	3530				
01.01.2020 0:08	2	3520				
01.01.2020 0:09	2	3510				
01.01.2020 10:02	2	3300				
01.01.2020 10:03	2	3290				
01.01.2020 10:03	2	3280				
01.01.2020 10:02	2	3270				
01.01.2020 10:02	2	3260				
01.01.2020 10:02	2	3250				
01.01.2020 10:02	2	3240				
01.01.2020 10:02		3230				
01.01.2020 10:02	0	3220				
01.01.2020 10:02	0	3210				
01.01.2020 10:02	0	3200				
01.01.2020 10:02	0	3190				
01.01.2020 10:02	0	3180				