# UberShuffle: Faster Distributed Learning via Erasure Coded Data Shuffling

Jichan Chung (KAIST), Kangwook Lee (KAIST), Ramtin Pedarsani (UC Santa Barbara), Dimitris Papailiopoulos (UW Madison), and Kannan Ramchandran (UC Berkeley)



### 1. Data shuffling for statistical efficiency Data-shuffling significantly improves statistical efficiency: [Recht et al., MPC'13] ---Without shuffling —Without shuffling —Without shuffling ---Without shuffling ··· With shuffling With shuffling ·· With shuffling ··· With shuffling 0.08 0.55 0.25 0.06 **Epochs Epochs Epochs** Classification, synthetic Regression, synthetic Classification, real Regression, real UCI machine learning repository: SpamBase (classification), wine quality (regression) $10^{-7}$ PSGD converges faster when data is shuffled $10^{-25}$ more frequently. Matrix Completion, synthetic Regression, synthetic We use PSGD for Classification and Regression, and distributed SGD algorithm introduced in JELLYFISH [Recht et al., MPC'13] for Matrix Completion 2. Coded shuffling [1] Lee et al., NIPS MLSYS 2015, [2] Li et al., 2015 [1] Additional storage and broadcast channel Uncoded → Lower bandwidth for data shuffling! Coded ([2] Additional computation → Lower shuffle bandwidth for MR) Theorem: q = the number of data points n = the number of workers $\alpha$ , size of storage $\alpha$ = the fraction of the data matrix that can be cached at each worker → Coded shuffling achieves: $W_1$ $A_1$ $A_2$ i.e., the coded shuffling can reduce the communication overhead by a factor of $\alpha n$ . However, the theorem assumes: q grows to infinity perfect broadcast channel **Uncoded Shuffling** Coded Shuffling



## 4. UberShuffle

Coded Shuffling's **strict asymptotic requirement** → not optimal in practice!





→ UberShuffle approaches the asymptotic result much faster!

### 5. Experimental Results

- Implemented using OpenMPI with C
- Runs Coded Shuffling / UberShuffle using Multicast
- EC2: 20 m3.xlarge workers + 1 m3.2xlarge master

Shuffling time: up to **47.2**% ↓ Training time: up to 32.1%  $\downarrow$ 

