AR(2) Model with ($\phi_2 < 0$) demonstrating Oscillatory Behaviour

AR(2) Model With Oscillatory Behavour. ($\phi_2 < 0$)

The behavior of the two AR(2) processes can be explained by examining their respective coefficients and their effect on the time series dynamics:

1. AR(2) Process with Coefficients (0.5, -0.4):

Equation:

$$Y_t = 0.5 \cdot Y_{t-1} - 0.4 \cdot Y_{t-2} + e_t$$

Key Observations:

Moderate Oscillatory Behavior:

- The negative $\phi_2 = -0.4$ introduces oscillations in the time series, with values alternating around the mean.
- The oscillations are moderate because $\phi_1 = 0.5$ is not too large, and the influence of past values decays relatively quickly.

Stability:

• The process is **stable** because the coefficients satisfy the stability condition:

$$\phi_2 > -1, \quad \phi_1 + \phi_2 < 1, \quad \phi_1 - \phi_2 < 1$$

Here:
$$-0.4 > -1$$
 $0.5 + (-0.4) = 0.1 < 1$ and $0.5 - (-0.4) = 0.9 < 1$

Behavior:

- The oscillations decay over time, meaning the process eventually reverts to the mean.
- The persistence is moderate, with past values influencing the current value for a few time steps before fading.

Overall:

- This process introduces oscillatory behavior while remaining stable and moderately persistent.
- It is a good choice if you want to observe oscillations without excessive persistence.

2. AR(2) Process with Coefficients (0.2, -0.7)

Equation:

$$Y_t = 0.2 \cdot Y_{t-1} - 0.7 \cdot Y_{t-2} + e_t$$

Stronger Oscillatory Behavior:

- The larger negative $\phi_2 = -0.7$ results in **stronger oscillations**, with more pronounced alternations around the mean.
- The smaller $\phi_1=0.2$ means the influence of the most recent past value (Y_{t-1}) is weaker, while the second lag (Y_{t-2}) dominates the dynamics.

Stability:

• The process is also **stable** because the coefficients satisfy the stability condition:

$$\phi_2 > -1, \quad \phi_1 + \phi_2 < 1, \quad \phi_1 - \phi_2 < 1$$

Here:
$$-0.7 > -1$$
 $0.2 + (-0.7) = -0.5 < 1$ and $0.2 - (-0.7) = 0.9 < 1$

Behavior:

- The oscillations are more persistent compared to (0.5, -0.4), as the larger magnitude of ϕ_2 causes the influence of past values to decay more slowly.
- The process takes longer to revert to the mean, and the oscillations are more pronounced.

Overall:

- This process introduces stronger and more persistent oscillatory behavior.
- It is a good choice if you want to emphasize oscillations and persistence in the time series.

Comparison of (0.5, -0.4) and (0.2, -0.7)

Aspect	Process 1 $(0.5, -0.4)$	Process 2 (0.2, -0.7) Strong	
Oscillatory	Moderate		
Behavior			
Persistence	Moderate	High	
Stability	Stable	Stable	
Effect of Past	Balanced influence of $Y_{t-1} \$ and	Dominated by \$	
	Y_{t-2} \$	Y_{t-2} \$	
Mean Reversion	Faster	Slower	
Fluctuations	Smaller and decaying	Larger and more	
		persistent	

Comparison with Non-Oscillatory Cases

Let's compare these oscillatory processes to the non-oscillatory cases:

Aspect	Non-Oscillatory $(0.4, 0.1)$	Non-Oscillatory $(0.7,0.29)$	Oscillatory $(0.5, -0.4)$	Oscillatory $(0.2, -0.7)$
Oscillatory Behavior	None	None	Moderate	Strong

Aspect	Non- Oscillatory $(0.4, 0.1)$	Non-Oscillatory $(0.7, 0.29)$	Oscillatory $(0.5, -0.4)$	Oscillatory $(0.2, -0.7)$
Persistence	Weak	Strong	Moderate	High
Stability	Stable	Stable	Stable	Stable
Effect of	Short-lived	Long-lasting	Moderate	Dominated by \$
Past	memory	memory	memory	$Y_{t-2} $ \$
Mean	Faster	Slower	Moderate	Slow
Reversion				
Fluctuations	Small and smooth	Larger and more persistent	Alternating and decaying	Alternating and persistent

Conclusion:

Both options are better for demonstrating oscillatory behavior. The choice depends on whether you want **moderate** or **strong oscillations**.

- **Process 1:** If you want moderate oscillations with faster mean reversion use \$ (0.5, -0.4) \$. This process is stable, introduces oscillations, and has moderate persistence.
- **Process 2**: If you want stronger oscillations with slower mean reversion use \$ (0.2, -0.7) \$. This process emphasizes oscillatory behavior and persistence, making it more suitable for scenarios where past values have a prolonged influence.