# **Linear Support Vector Machine**

#### **Kernel Methods**

B. Michel

Ecole Centrale de Nantes

#### Introduction

- Support Vector Machine (SVM) are popular methods in Machine Learning.
- SVMs are particularly well suited for classification of complex but small- or medium-sized datasets.
- SVM algorithm is quite versatile: it also supports linear (and nonlinear) regression.
- SVM can be generalized to solve nonlinear problems: kernel methods.

#### **Outline**

- Linear Support Vector Machine
- Peature Maps and Kernels
- Kernel SVM Classifier
- 4 Kernel Methods

### Separating hyperplane

- A dataset  $(x_i, y_i)_{i=1...n}$ , where  $y_i = \pm 1$  and  $x_i \in \mathbb{R}^d$ .
- The data set is linearly separable if we can find an hyperplane H of  $\mathbb{R}^d$  that perfectly (and strictly) separates the two sets  $\{i \mid y_i = 1\}$  and  $\{i \mid y_i = -1\}$ :



- $x \in H \Leftrightarrow \langle w, x \rangle + b = 0$ , where  $w \in \mathbb{R}^d$  and  $b \in \mathbb{R}$ .
- We say that H is a separating hyperplane.

(ロ) (部) (注) (注) 注 り(0)

#### Margin

• Note that for any c > 0:

$${x \mid \langle w, x \rangle + b = 0} = {x \mid (cw)'x + (cb) = 0}.$$

• Canonical Hyperplane: rescale the parameters w and b such that  $\min_{i=1...n} |\langle w, x_i \rangle + b| = 1$ .



• The (geometric) margin is given by  $\frac{1}{\|w\|}$ .

- The data point is strictly linearly separable if
  - we can find  $w \in \mathbb{R}^p$  and  $b \in \mathbb{R}$  such that  $\min_{i=1...n} |\langle w, x \rangle + b| = 1$ .
  - ▶ label y is given by  $sign(\langle w, x \rangle + b)$  and thus  $y_i(\langle w, x_i \rangle + b) \ge 1$ ,  $i = 1 \dots n$ .

### Large margin classification



- The (geometric) margin is given by  $\frac{1}{\|w\|}$ : to be maximized.
- Labels:  $y(\langle w, x \rangle + b) \ge 1$ : constraint
- Optimization problem for large margin classification (Primal Problem):

$$egin{aligned} \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} & rac{1}{2} \|w\|_2^2 \ & ext{subject to} & g_i(w,b) := 1 - y_i(\langle w, x_i 
angle + b) \leq 0, \ i = \dots n \end{aligned}$$

 QP problem: optimizing a quadratic function of several variables subject to linear constraints.

#### **Duality in Optimization**

- Given a constrained optimization problem (primal problem), by considering its Lagrangian function, it is possible to express a different but closely related problem, called its dual problem.
- The solution to the dual problem typically gives a lower bound to the solution of the primal problem.
- Under some conditions it can even have the same solutions as the primal problem and SVM problem meet these conditions.

#### **Dual problem for SVM**

B. Michel

After considering the Lagrangian for SVM, we find the **dual problem** for SVM is

$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \quad \text{s.t.} \quad \alpha_i \geq 0 \text{ and } \sum_{i=1}^n \alpha_i y_i = 0.$$

- Dual problem is also a QP problem.
- Formulation in terms of the **inner products**  $\langle x_i, x_j \rangle$
- Only depends on the support vectors such that  $\alpha_i > 0$ .
- The solution  $\alpha$  gives the **final classifier**

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

Kernel methods

8/33

### **Dual problem vs Primal problem**

Question: Why considering the dual problem when fitting SVM?

Final classifier

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

- Efficient computation of the final classifier.
  - Solving the **primal** problem gives the optimal w, not the  $\alpha_i$ 's. If the dimension is **large** the computation of  $\langle w, x \rangle$  can be **expensive**.
  - Solving the **dual** problem gives  $\alpha$ , and  $\sum_{i=1}^{n} \langle x, x_i \rangle$  can be very **efficiently** calculated if there are only **few** support vectors.
- Alternative inner products.

Formulation in terms of the inner products  $\langle x_i, x_j \rangle$  opens to door generalization to **kernel methods**.

#### From hard margin linear SVM ...

Question: What is the strong assumption we made until now?

#### From hard margin linear SVM ...

Question: What is the strong assumption we made until now?

The data point is separable if we can solve the optimization problem

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|^2$$
 subject to  $y_i(\langle w, x_i \rangle + b) \geq 1, \ i = \dots n.$ 



Datasets that are linearly separable are not really challenging ...

### ...to soft margin linear SVM

Replace the constraints

$$y_i(\langle w, x_i \rangle + b) \geq 1$$

by the relaxed ones:

$$y_i(\langle w, x_i \rangle + b) \geq 1 - \xi_i$$

• slack variables :  $\xi_1, \ldots, \xi_n \geq 0$ .





we also want to keep the slack variables small.

### Soft margin linear SVM

#### Relaxed optimization problem:

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, \, b \in \mathbb{R}, \, \xi \in \mathbb{R}^n} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(\langle w, x_i \rangle + b) \geq 1 - \xi_i \quad \text{ and } \quad \xi_i \geq 0, \, i = \dots n \end{aligned}$$



C makes a balance between the geometric **soft** margin and the amplitude of the slack variables.

Question: How can we choose C in practice?

#### **Dual formulation**

• We find a similar dual formulation (with an additional constraint)

$$\begin{split} \max_{\alpha \in \mathbb{R}_+^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \\ \text{subject to} \quad 0 \leq \alpha_i \leq \frac{C}{} \quad \text{and} \quad \sum_{i=1}^n \alpha_i y_i = 0. \end{split}$$

- QP problem.
- Formulation in terms of the inner products  $\langle x_i, x_j \rangle$
- Only depends on the support vectors  $(\alpha_i > 0)$
- The solution  $\alpha$  gives the final classifier

$$x \mapsto \operatorname{sign}\left(\langle w, x \rangle + b\right) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

### Hinge loss formulation of soft margin linear SVM

- Let  $f_{w,b}(x) = \langle w, x \rangle + b$ .
- Hinge loss  $\ell(u, v) = \max(0, 1 uv)$ .
- The primal problem

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \, \xi \in \mathbb{R}^n} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t.} \quad y_i f_{w,b}(x_i) \ge 1 - \xi_i, \, \xi_i \ge 0$$

can be rewritten as

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_{w,b}(x_i))$$

$$= \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \ell(y_i, f_{w,b}(x_i))$$

 Soft margin linear SVM corresponds to (regularized) Empirical Risk Minimization with hinge loss on the family of linear classifiers.

#### **Exercice**

Check that using the hinge loss makes sense for classification : compare  $\ell(y_i, f_{w,b}(x_i))$  with  $\mathbb{1}_{y_i \neq \text{sign}(f_{w,b}(x_i))}$  for different values of  $y_i$  and  $f_{w,b}(x_i)$ .

#### **Outline**

- Linear Support Vector Machine
- Peature Maps and Kernels
- 3 Kernel SVM Classifier
- 4 Kernel Methods

#### Limitations of linear sym

• Many datasets are not even close to being linearly separable:



[source: openclassroom]

- One approach to handling nonlinear datasets is to add more features, such as polynomial features.
- Consider a feature map  $\Phi: \mathbb{R}^d \mapsto \mathcal{F}$  high-dimensional (implicit) feature space that adds all these new features.

### **Polynomial mapping**

The XOR (exclusive OR) operator:



[source: Mohri]

- ullet cannot be linearly separated in  $\mathbb{R}^2$
- solved by the so-called polynomial mapping or order 2  $\Phi:\mathbb{R}^2\mapsto\mathbb{R}^6$

$$\Phi(x_1,x_2) = (x_1^2,x_2^2,\sqrt{2}x_1x_2,\sqrt{2}x_1,\sqrt{2}x_2,1)$$

i.e. the images of the four points by  $\Phi$  can be linearly separated in  $\mathbb{R}^6$ .

## **Polynomial mapping**

The mapping

$$\Phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$$

satisfies

$$\begin{array}{rcl} \langle \Phi(x), \Phi(x') \rangle_{\mathbb{R}^{6}} & = & (x_{1}x'_{1} + x_{2}x'_{2} + 1)^{2} \\ & = & (1 + \langle x, x' \rangle_{\mathbb{R}^{2}})^{2} =: K(x, x') \\ & = & \langle \Phi(x), \Phi(x') \rangle_{\mathbb{R}^{6}}. \end{array}$$

 More generally, the polynomial kernel of degree q is defined for c > 0 by

$$K(x,x') := (c + \langle x,x' \rangle)^q$$

for some convenient polynomial mapping  $\boldsymbol{\Phi}$  (which can be determined).

 Note that computing Φ and then taking the inner product is more expensive that computing the kernel directly.

### Kernels as pairwise comparisons

- An other situation where we define kernels is for studying complex objects on a space  $\mathcal X$  which is not necessary endowed with a metric.
- For many settings, we know how to construct a **comparison** function K on  $\mathcal{X}^2$  (e.g. images, words, texts, trees, graphs ...)
- Examples of kernels:
  - ▶  $K(x, x') = \exp(-cd(x, x'))$  where c > 0 and d is a pseudo distance on  $\mathcal{X}$ . When d is the norm on  $\mathbb{R}^p$ , K is the **Gaussian kernel**.
  - ► Kernels on string data with n-grams and suffix trees : compare the strings by means of the substrings they contain.
  - ▶ An example of kernel between graphs is the **random walk kernel**: performs random walks on two graphs simultaneously and counts the number of paths that were produced by both walks.
  - ▶ Motif kernels on genetic sequences.



#### Positive definite kernel

#### **Definition**

A function  $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is said to be a positive definite (p.d.) kernel if

- K is symmetric,
- for any  $N \in \mathbb{N}$ ,  $x_1, \ldots, x_N \in \mathcal{X}^N$ , the similarity matrix  $[K(x_i, x_j)]$  is definite positive: for any  $a = (a_1, \ldots, a_N)' \in \mathbb{R}^N$ , we have

$$a'[K(x_i,x_j)]a = \sum_{i,j} a_i a_j K(x_i,x_j) \ge 0.$$

The matrix  $[K(x_i, x_i)]_{i,j=1...N}$  is the **Gram matrix** of  $x_1, ..., x_N$ .

#### Feature map and kernels



[J.P. Vert]

• In  $\mathbb{R}^d$ : let  $\mathcal{X}$  be a set and  $\Phi: \mathcal{X} \to \mathbb{R}^d$ . Then the function  $K: \mathcal{X}^2 \to \mathbb{R}$  defined as follows is p.d.:

$$\forall (x, x') \in \mathcal{X}, \ K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathbb{R}^d}.$$

#### Feature map and kernels



[J.P. Vert]

More generally :

#### Theorem (Aronszajn, 1950)

K is a p.d. kernel on  $\mathcal X$  if and only if there exists an Hilbert space  $(\mathcal F, \langle \cdot, \cdot \rangle_{\mathcal F})$  and a mapping  $\Phi: \mathcal X \to \mathcal F$  such that

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{F}}.$$

A **Hilbert space** is a **vector space** equipped with an **inner product** that induces a distance function for which the space is a **complete** metric space. Here, think of  $\mathcal{F}$  as a "nice" functional space.

### Feature map and kernels



[J.P. Vert]

More generally :

#### Theorem (Aronszajn, 1950)

K is a p.d. kernel on  $\mathcal X$  if and only if there exists an Hilbert space  $(\mathcal F,\langle\cdot,\cdot\rangle_{\mathcal F})$  and a mapping  $\Phi:\mathcal X\to\mathcal F$  such that

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{F}}.$$

 $\mathcal{F}$  is call a reproducing kernel Hilbert space (RKHS). In short:

•  $\forall x \in \mathcal{X}, K_x := K(\cdot, x) \in \mathcal{F}$ 

 $x \to K_x$  is a possible mapping

 $\bullet \ \forall f \in \mathcal{F} \ , \ \langle f, K(\cdot, x) \rangle_{\mathcal{F}} = f(x)$ 

Reproducing property

## Example of kernels on $\mathbb{R}^d$

• Linear kernel on  $\mathbb{R}^d$ :

$$K(x,y) = \langle x,y \rangle_{\mathbb{R}^d}$$

• Polynomial kernel of degree q on  $\mathbb{R}^d$ :

$$K(x,y) = (1+\langle x,y \rangle_{\mathbb{R}^d})^q$$

Its mapping contains all the monomials of degree less than q of the coordinates of x.

• Gaussian kernel or Radial Basis Function (RBF) kernel  $\mathbb{R}^d$ :

$$K(x,y) = \exp(-c\|x - y\|^2)$$

#### Motivations for Kernel Methods on RKHS

- Kernel trick: Any algorithm defined on finite-dimensional vectors that can be expressed only in terms of pairwise inner products can be applied to (potentially) infinite-dimensional vectors in the feature space of a p.d. kernel by replacing each inner product evaluation by a kernel evaluation.
- Representer Theorems: Statistical learning problems can often be written as an optimization problem of the form

$$\min_{f \in \mathcal{F}} c(f(x_1), \dots, f(x_n)) + \lambda \|f\|_{\mathcal{F}}^2$$
 (1)

where c measures the fit of f to a given problem and  $\Omega$  is strictly increasing. The so-called **Representer Theorems** show that any solution of (1) on the RKHS associated to K admits a representation of the form:

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i).$$

#### **Outline**

- Linear Support Vector Machine
- Peature Maps and Kernels
- Kernel SVM Classifier
- **4** Kernel Methods

#### **Kernel SVM Classifier: Primal problem**

Primal problem for linear SVM classifier (hinge loss ℓ):

$$\min_{\mathbf{w}\in\mathbb{R}^d,\,b\in\mathbb{R}}\quad \frac{1}{2}\|\mathbf{w}\|_2^2+C\sum_{i=1}^n\ell\left(\mathbf{y}_i,\langle\mathbf{x}_i,\mathbf{w}\rangle+b\right)$$

Label prediction is given by  $x \mapsto \operatorname{sign}(\langle x, w \rangle + b)$ .

#### **Kernel SVM Classifier: Primal problem**

Primal problem for linear SVM classifier (hinge loss ℓ):

$$\min_{\boldsymbol{w} \in \mathbb{R}^d, \, b \in \mathbb{R}} \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^n \ell\left(y_i, \langle x_i, \boldsymbol{w} \rangle + b\right)$$

Label prediction is given by  $x \mapsto \text{sign}(\langle x, w \rangle + b)$ .

• Let  $\Phi: \mathcal{X} \to \mathcal{F}$  be a feature map associated to a p.d. kernel K on  $\mathcal{X}$ . Replacing  $x_i$  by  $\Phi(x_i)$  in the primal gives the problem

$$\min_{\boldsymbol{w}\in\mathcal{F},\,b\in\mathbb{R}}\quad\frac{1}{2}\|\boldsymbol{w}\|_{\mathcal{F}}^2+C\sum_{i=1}^n\ell\left(y_i,\langle\Phi(x_i),\boldsymbol{w}\rangle_{\mathcal{F}}+b\right)$$

• Label prediction for  $\Phi(x)$ , and thus for x, is given by

$$x \mapsto \operatorname{sign}(\langle \Phi(x), w \rangle_{\mathcal{F}} + b)$$
.

• For the Primal problem we need to know  $\Phi(x)$  and  $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ .

B. Michel Kernel methods 25/33

#### **Kernel Classifier: Dual problem**

Dual problem for linear SVM classifier:

$$\begin{aligned} & \max_{\alpha \in \mathbb{R}^n} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \\ & \text{subject to} & 0 \leq \alpha_i \leq C \quad \text{ and } \quad \sum_{i=1}^n \alpha_i y_i = 0. \end{aligned}$$

Dual label prediction is given by

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b)$$

$$= \operatorname{sign}\left(\langle x, \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \rangle + b\right)$$

$$= \operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \alpha_{i} \langle x, x_{i} \rangle + b\right)$$

#### **Kernel Classifier: Dual problem**

Dual problem for kernel SVM classifier:

$$\begin{aligned} \max_{\alpha \in \mathbb{R}^n} \quad & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle \Phi(\textbf{\textit{x}}_i), \Phi(\textbf{\textit{x}}_j) \rangle_{\mathcal{F}} \\ &= \max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \textbf{\textit{K}}(\textbf{\textit{x}}_i, \textbf{\textit{x}}_j) \\ \text{subject to} \quad & 0 \leq \alpha_i \leq \textbf{\textit{C}} \quad \text{ and } \quad \sum_{i=1}^n \alpha_i y_i = 0. \end{aligned}$$

Label prediction for  $\Phi(x)$ , and thus for x, is given by

$$x \mapsto \operatorname{sign}\left(\sum_{i=1}^{n} y_{i}\alpha_{i}\langle\Phi(x_{i}),\Phi(x)\rangle_{\mathcal{F}} + b\right)$$

$$= \operatorname{sign}\left(\sum_{i=1}^{n} y_{i}\alpha_{i}K(x_{i},x) + b\right)$$

• For a classification problem on  $\mathcal{X}$  we consider a p.d. K.

- For a classification problem on  $\mathcal{X}$  we consider a p.d. K.
- For this kernel there exists a (non linear) mapping  $\Phi$  into a RKHS  $\mathcal{F}_K$ . We consider the classification problem in this RKHS.
  - i.e. we push x on  $\mathcal{F}$  by  $\Phi$
  - ► This feature map can be seen as an non linear transformation of the features (≈ featuring)



[J.P. Vert]

- For a classification problem on  $\mathcal{X}$  we consider a p.d. K.
- For this kernel there exists a (non linear) mapping  $\Phi$  into a RKHS  $\mathcal{F}_K$ . We consider the classification problem in this RKHS.
- We consider and solve the (QP) Dual Kernel SVM problem

$$\begin{aligned} & \max_{\alpha \in \mathbb{R}^n} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j K(x_i, x_j) \\ & \text{subject to} & 0 \leq \alpha_i \leq C \quad \text{ and } \quad \sum_{i=1}^n \alpha_i y_i = 0. \end{aligned}$$

- For a classification problem on  $\mathcal{X}$  we consider a p.d. K.
- For this kernel there exists a (non linear) mapping  $\Phi$  into a RKHS  $\mathcal{F}_K$ . We consider the classification problem in this RKHS.
- We consider and solve the (QP) Dual Kernel SVM problem

$$\begin{split} \max_{\alpha \in \mathbb{R}^n} \quad & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j K(x_i, x_j) \\ \text{subject to} \quad & 0 \leq \alpha_i \leq C \quad \text{ and } \quad & \sum_{i=1}^n \alpha_i y_i = 0. \end{split}$$

• Kernel trick : the problem now only depends on the  $K(x_i, x_j)'s$  (Gram Matrix).

- For a classification problem on  $\mathcal{X}$  we consider a p.d. K.
- For this kernel there exists a (non linear) mapping  $\Phi$  into a RKHS  $\mathcal{F}_K$ . We consider the classification problem in this RKHS.
- We consider and solve the (QP) Dual Kernel SVM problem

$$\max_{\alpha \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$
 subject to  $0 \le \alpha_i \le C$  and  $\sum_{i=1}^n \alpha_i y_i = 0$ .

- Kernel trick : the problem now only depends on the  $K(x_i, x_j)'s$  (Gram Matrix).
- Representation: the solution only depends on the support vectors:

$$x \mapsto \operatorname{sign}\left(\sum_{i=1}^n \alpha_i y_i K(x, x_i) + b\right)$$

B. Michel

#### **Outline**

- Linear Support Vector Machine
- Peature Maps and Kernels
- 3 Kernel SVM Classifier
- Wernel Methods

#### **Kernel Methods: linear methods in RKHS**



### **Kernel Ridge Regression**

- Regression setting  $y_i \in \mathbb{R}$  and  $x_i \in \mathcal{X}$  (not necessary  $\mathbb{R}^p$ ).
- Let  $\Phi: \mathcal{X} \to \mathcal{F}$  be a feature map for the kernel K.
- Kernel ridge regression: find the optimal linear combination of features to predict Y:

$$\operatorname{argmin}_{w \in \mathcal{F}} \sum_{i=1}^{n} (y_i - \langle w, \Phi(x_i) \rangle_{\mathcal{F}})^2 + \lambda \|w\|^2.$$

By the representer theorem, the solution is a function of the form

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i \Phi(\mathbf{x}_i)$$

with  $\hat{\alpha} = (\mathbf{K} + \lambda I_n)^{-1} \mathbf{y}$  where  $\mathbf{K}_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle_{\mathcal{F}}$ .

• Finally, the prediction at x is given by

$$\hat{y} = \langle \hat{w}, \Phi(x) \rangle_{\mathcal{F}} = \sum_{i=1}^{n} \alpha_i K(x_i, x).$$



#### **Kernel PCA**

- Multidimensional scaling of a matrix of pairwise distances is a dimension reduction method.
- It finds a configuration of points in  $\mathbb{R}^d$  that matches as well as possible with the pairwise distances.
- Why not doing PCA in the feature space ? Because we can't compute projection of the (unknown)  $\Phi(x_i)$ .



- MDS : diagonalization of the Gram matrix in the feature space ( = Kernel matrix)
- Kernel PCA = Kernel MDS

### Take home message (1)

- Kernel methods provide complex non-linear decision functions.
- There exists "kernel versions" of any standard problem in statistical learning (regression, classification, clustering, dimension reduction ...)
- Representer Theorem: the solution lives in a subspace of dimension n, which can lead to efficient algorithms although the RKHS itself can be of infinite dimension.
- Solving a problem in the dual benefits from the kernel trick.
- We can use any p.d. kernel, but choosing the kernel is not always easy (combination of kernels ...).
- Well-founded methods: Vapnik-Tchervonenkis on RKHSpaces.

#### Take home message (2)

- Optimization: solutions of kernel method problems are given by Quadratic Programming solvers (nonlinear programming): interior point, active set, augmented Lagrangian, conjugate gradient, gradient projection ... (not presented in this lecture)
- Traditional kernel methods are computationally expensive when n is large because of computations on the (n × n) Gram matrix K.
   But many answers to this problem in the literature.