FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

School of Industrial and Management Engineering, Korea University

Lee Kyung Yoo

Contents

- * Research Purpose
- FixMatch
- Experiments
- Conclusion

Research Purpose

- * FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (NeurIPS, 2020)
 - Google research에서 연구된 논문이며, 2022년 08월 26일 기준으로 1,075회 인용됨

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

Kihyuk Sohn* David Berthelot* Chun-Liang Li Zizhao Zhang Nicholas Carlini
Ekin D. Cubuk Alex Kurakin Han Zhang Colin Raffel
Google Research
{kihyuks,dberth,chunliang,zizhaoz,ncarlini,
cubuk,kurakin,zhanghan,craffel}@google.com

Abstract

Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. This domain has seen fast progress recently, at the cost of requiring more complex methods. In this paper we propose FixMatch, an algorithm that is a significant simplification of existing SSL methods. FixMatch first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 – just 4 labels per class. We carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. The code is available at https://github.com/google-research/fixmatch.

Research Purpose

- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (NeurIPS, 2020)
 - 기존 방법론들은 성능 고도화를 위해 주요 기법들을 추가 및 혼합하는 방향으로 발전
 - 이는 지나치게 정교한 loss term과 조정하기 어려운 수많은 hyperparameter를 사용하는 형태
 - ▶ 알고리즘이 점점 더 복잡해지는 한계를 지님

Research Purpose

- * FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (NeurIPS, 2020)
 - FixMatch는 이러한 복잡한 메커니즘들을 결합하는 트렌드를 역행하고자 함
 - Consistency regularization과 pseudo labeling 두 기법 만을 결합한 간단한 구조로 구성
 - ▶ 기존 방법론 대비 가장 우수한 성능을 보임

❖ Background - (1) Consistency regularization

- 이미지에 가해진 약간의 변형에도 레이블 값은 변하지 않는다는 점 이용
 - ▶ 고양이 이미지에 아래와 같이 변형을 가해도 "고양이"라는 레이블은 변하지 않음
- 하나의 unlabeled data에 여러 변형을 통해 augmented data 생성
- Labeled data를 통해 학습된 모델에 통과시켜, 각각의 예측 확률 분포를 동일하게 만들도록 학습

❖ Background - (2) Pseudo labeling

- Labeled data를 통해 학습된 모델에 통과시켜, unlabeled data의 레이블 값을 예측
- 예측값들 중 가장 높은 확률에 해당하는 값으로 새로운 레이블 부여 = pseudo-labeled data
 - ▶ 확률이 사전에 정의한 threshold를 넘을 경우에만 pseudo-labeled data로 사용
- Pseudo-labeled data와 기존 labeled data를 가지고 모델을 최종 학습시킴

Overall framework

- Step 1. labeled data에 대해 weak augmentation 적용 후, 모델 학습
- Step 2. unlabeled data에 대해 weak augmentation 적용 후, 모델에 통과시켜 얻어낸 예측값을 기반으로 pseudo-label 생성
- Step 3. 동일한 unlabeled data에 대해 strong augmentation 적용 후, 모델에 통과시켜 얻어낸 예측값과 앞서 생성한 pseudo-label이 비슷해지도록 학습

Loss function

• Supervised loss (labeled data)

$$\ell_s = \frac{1}{B} \sum_{b=1}^{B} H(p_b, p_m(y \mid \alpha(x_b)))$$

 $\checkmark p_b$: label (one-hot vector)

 $\checkmark p_m$: weakly augmented data \supseteq | prediction probability

• Unsupervised loss (unlabeled data)

$$\ell_{u} = \frac{1}{\mu B} \sum_{b=1}^{\mu B} \mathbb{1}(\max(q_{b}) \ge \tau) H(\hat{q}_{b}, p_{m}(y \mid \mathcal{A}(u_{b})))$$

 $\checkmark q_b$: weakly augmented data prediction probability $/ \hat{q}_b$: pseudo-label (one-hot vector)

 $\checkmark p_m$: strongly augmented data \bigcirc | prediction probability

Total loss

$$\ell_s + \lambda_u \ell_u$$

Unsupervised loss의 영향력을 결정하는 값으로, FixMatch에서는 threshold 덕분에 따로 조절 X

⇒ 학습을 진행할수록 FixMatch 내 threshold를 넘는 unlabeled data가 초반보다 많아질 것

❖ Augmentation in FixMatch

- 본 논문에서 설정한 augmentation 기법은 크게 weak / strong augmentation으로 나누어 적용
- Weak augmentation: Standard flip-and-shift
 - ➤ Horizontal flip with probability 50%
 - Randomly translate up to 12.5% vertically & horizontally
- Strong augmentation : AutoAugment
 - RandAugment, CTAugment
 - RandAugment, CTAugment 적용 후 반드시 Cutout을 다시 적용
 - MixUp 혹은 Adversarial perturbations와 같은 기법으로 대체 가능

- Results (CIFAR-10, CIFAR-100, SVHN)
 - Labeled data의 서로 다른 5개의 folds를 학습할 때 mean과 variance를 측정
 - Labeled data가 40개 밖에 없는 극한의 상황에서도 FixMatch가 타 모델 대비 우수한 성능을 보임
 - 그러나, CIFAR-100에서는 FixMatch가 ReMixMatch보다 성능이 더 좋지 않은 경우가 발생함
 - ➤ 모든 클래스에 대해 동일한 확률을 방출하도록 하는 Distribution Alignment를 적용하면 성능이 ReMixMatch보다 더 좋아짐을 확인

	CIFAR-10			CIFAR-100			SVHN		
Method	40 labels	250 labels	4000 labels	400 labels	2500 labels	10000 labels	40 labels	250 labels	1000 labels
П-Model	_	54.26±3.97	14.01±0.38	_	57.25±0.48	37.88±0.11	_	18.96±1.92	7.54±0.36
Pseudo-Labeling	-	49.78 ± 0.43	16.09 ± 0.28	-	57.38 ± 0.46	36.21 ± 0.19	-	20.21 ± 1.09	9.94 ± 0.61
Mean Teacher	-	32.32 ± 2.30	9.19 ± 0.19	-	53.91 ± 0.57	35.83 ± 0.24	-	3.57 ± 0.11	3.42 ± 0.07
MixMatch	47.54 ± 11.50	11.05 ± 0.86	6.42 ± 0.10	67.61 ± 1.32	39.94 ± 0.37	28.31 ± 0.33	42.55 ± 14.53	3.98 ± 0.23	3.50 ± 0.28
UDA	29.05 ± 5.93	8.82 ± 1.08	4.88 ± 0.18	59.28 ± 0.88	33.13 ± 0.22	24.50 ± 0.25	52.63 ± 20.51	5.69 ± 2.76	2.46 ±0.24
ReMixMatch	19.10 ± 9.64	5.44 ±0.05	4.72 ± 0.13	44.28 ± 2.06	27.43 ±0.31	23.03 ± 0.56	3.34 ± 0.20	2.92 ± 0.48	2.65 ± 0.08
FixMatch (RA)	13.81±3.37	5.07 ±0.65	4.26 ±0.05	48.85±1.75	28.29±0.11	22.60 ±0.12	3.96 ±2.17	2.48 ±0.38	2.28 ±0.11
FixMatch (CTA)	11.39 ±3.35	5.07 ±0.33	4.31 ±0.15	49.95 ± 3.01	28.64 ± 0.24	23.18±0.11	7.65 ± 7.65	2.64 ±0.64	2.36 ±0.19
		CIFAR-10			CIFAR-100			SVHN	
Method	40 labels	250 labels	4000 labels	400 labels	2500 labels	10000 labels	40 labels	250 labels	1000 labels
Supervised (RA)	64.01±0.76	39.12±0.77	12.74±0.29	79.47±0.18	52.88±0.51	32.55±0.21	52.68±2.29	22.48±0.55	10.89 ± 0.12
Supervised (CTA)	64.53 ± 0.83	41.92 ± 1.17	13.64 ± 0.12	79.79 ± 0.59	54.23 ± 0.48	35.30 ± 0.19	43.05 ± 2.34	15.06 ± 1.02	7.69 ± 0.27

* Wide ResNet-28-2 for CIFAR-10, SVHN/Wide ResNet-28-8 for CIFAR-100

- Ablation study (CIFAR-10)
 - Pseudo labeling에서 사용하는 threshold를 여러 값으로 조정하며 실험 → thresholding 영향 분석
 - Threshold 값이 커질수록 error rate가 작아지는 경향
 - ▶ 이를 통해, unlabeled data의 양보다는 질이 모델 성능에 더 중요함을 확인 가능

*: : FixMatch의 lower bound 성능

- **❖** Ablation study (CIFAR-10)
 - Sharpening에서 사용하는 temperature를 여러 값으로 조정하며 실험 → sharpening 영향 분석
 - ➤ Temperature와 threshold 값을 바꾸면서 실험한 결과 모두 FixMatch(Temperature = 0)의 성능 미만
 - ▶ 단순 thresholding을 이용한 pseudo labeling이 sharpening보다 더 좋은 효과를 보임

*: : FixMatch의 lower bound 성능

- **❖** Barely supervised learning (CIFAR-10)
 - FixMatch의 한계를 검증하기 위해, 클래스당 하나의 random example만을 가지도록 설정한 후 실험
 - 총 4개의 데이터셋 생성 후, 각각의 데이터셋에 대해 4번씩 실험
 - 예측 결과, 48.58%~85.32%의 성능에 해당하는 큰 변동성을 보임
 - ▶ 이는 random example의 quality에 기인했다고 저자는 서술
 - ➤ 각 클래스를 제일 잘 나타내는 대표 이미지들을 뽑아 실험한 결과, 중앙값이 78%인 성능 달성

Figure 2: FixMatch reaches 78% CIFAR-10 accuracy using only above 10 labeled images.

Conclusion

Conclusion

- Consistency regularization과 pseudo labeling을 결합하여 semi-supervised learning 방법론을 단순화
- 검증된 augmentation 기법들 또한 두 SSL 기법 못지 않게 우수한 성능에 기여
- 방대한 ablation study를 기반으로, 간단한 모델이 어떻게 SOTA를 달성할 수 있었는지에 대해 상세히 서술한 점이 인상적이었음

Reference

- Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., ... & Li, C. L. (2020). Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Advances in neural information processing systems, 33, 596-608.
- http://dsba.korea.ac.kr/seminar/?mod=document&uid=248
- https://2-chae.github.io/category/2.papers/29

Thank you