

High Voltage Isolated Differential Probe

EE314: EDL Project Evaluation 2

Team Members:

Shashi prabha 200020043

Mouli Venkata Prakash 200020027

Devi Prasad 200020022

Project Supervisor

Prof. Dr.Abhijit Kshirsagar Dept. of Electrical Engineering IIT Dharwad

Project Timeline

A. First Evaluation

- 1. Study of existing solutions
- 2. Requirement Building / Spec freeze
- 3. High-level system Design by 27/Jan 2023

B. <u>Second Evaluation</u>

- 4. Simulation
- 5. Prototyping
- 6. PCB design by 17/Feb 2023

C. Third Evaluation

- 7. Prototyping and Assembling
- 8. Integration 17/March 2023

D. Final Evaluation

- 9. Testing and Calibration
- 10. Bugs and Fixing
- 11. Final PoC System Demonstration 10/April 2023

Wish specifications:

- Voltage Range: 0-600V
- Impedance: 10MΩ
- Bandwidth: DC-5MHz
- Common Mode Rejection Ratio (CMRR): > 65dB
- Signal Noise Ratio (SNR): > 65dB
- Isolation Voltage Rating: 1000V
- Input Connector: Banana jack type
- Output Connector: BNC
- Operating Temperature: 10°C to 50°C
- Power Source: External

System Block diagram

Circuit Schematic

Stages:

Input attenuator(voltage divider)(attenuation 1/2000) isolation amplifier (AMC1301 IC) (bandwidth=1MHz) differential amplifier inverting amplifier (for gain correction) inverting amplifier (for offset correction)

Input Attenuator Stage

Attenuation: 1/2000

High voltage Input

Output after Attenuator

Isolated Amplifier Stage AMC1301

gain: 8

Vdd: -0.3 to 7V

Input voltage range: 330mV (calculated by simulations)

Specs

```
GBWP —1000 kHz

CMRR —92 dB

Operating Temperature —(-40 to 125 c)

VDD — (-0.3 to 7) V

Input Voltage Range — (GND1 – 6) to (VDD+ 0.5)
```

Input and **Output** of Isolation amplifier

AC analysis for Sinusoidal

Right-Click to set up phase/group delay plotting parameters

Signal Conditioning

IC (LF356)

Differential amplifier: making output

single ended

Inverting amplifier: used for trimming of

gain and offset correction

Output after differential amplifier vs output after Isolated amplifier

Trimming Values Required for gain and offset correction

Frequency (Hz)	Gain (dB)	Trimming Values (Ohm)
1-1000	-48.14	51k (+75)
1000-10k	-48.14	51k (+75 to +107)
10k-50k	-48.1548.71	51k(+107 to 900)
50k-63k	-48.1548.71	52k (+403)
63k-80k	-48.1548.71	53k (+203)
80k-100k	-48.1548.71	54k (+544)
100k-126k	-49	56k (+777)
126k -158k	-49	60k (+654)
158k- 200k	-50	68k (+300)
200k-250k	-50 to -54	1M (+9k)
250k-500k	-54 to -90	6M (+57k to +542k)
500k-1M	-98 to -114	31M (+494k to 323k)

PCB schematic diagram

Symbol: Footprint Assignments IC1 -AMC1301SDWV : AMC1301SDWV:SOIC127P1150X280-8N IC2 -LF356MX NOPB : LF356MX NOPB:SOIC127P600X175-8N LF356MX NOPB : LF356MX_NOPB:SOIC127P600X175-8N IC3 -IC4 -LF356MX NOPB : LF356MX NOPB:SOIC127P600X175-8N J1 -Conn Coaxial : R124426123:R124426123 Conn 01x03 Male : Connector PinHeader 2.54mm:PinHeader 1x03 P2.54mm Vertical Conn 01x02 Male : Connector PinHeader 2.54mm:PinHeader 1x02 P2.54mm Vertical Conn 01x02 Male : Connector PinHeader 2.54mm: PinHeader 1x02 P2.54mm Vertical J5 -Conn Coaxial : R124426123:R124426123 1k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 10 R1 -0.25Meg : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder R2 -0.25Meg : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 12 R3 -0.25Meg : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 13 R5 -0.25Meg : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 14 0.25Meg : Resistor SMD:R 0805_2012Metric_Pad1.20x1.40mm_HandSolder 15 R6 -0.25Meg : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 0.25Meg : Resistor_SMD:R_0805_2012Metric_Pad1.20x1.40mm_HandSolder 17 R8 -0.25Meg : Resistor SMD:R 0805_2012Metric_Pad1.20x1.40mm_HandSolder 18 R9 -19 R10 -50k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 50k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 20 R11 -R12 -50k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 21 50k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder R13 -R14 -50k : Resistor_SMD:R_0805_2012Metric_Pad1.20x1.40mm_HandSolder R15 -75k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 50k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder R16 -50k : Resistor_SMD:R_0805_2012Metric Pad1.20x1.40mm_HandSolder 26 R17 -50k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder R18 -R19 -100k : Resistor SMD:R 0805 2012Metric Pad1.20x1.40mm HandSolder 0.1Meg : Resistor_SMD:R_0805_2012Metric_Pad1.20x1.40mm_HandSolder R20 -SW1 -SW SPST : 3362P-1-102LF:3362P 1 SW SPST : 3362P-1-102LF:3362P 1 31 SW2 -32 SW3 -SW SPST : 3362P-1-102LF:3362P 1 SW4 -SW SPST : 3362P-1-102LF:3362P 1 34 trim1 -50k : DS04-254-2-01BK-SMT:DS04254201BKSMT 35 trim2 -50k : DS04-254-2-01BK-SMT:DS04254201BKSMT

Footprints used in PCB Design

PCB Design

3D model of PCB Design

Future Work

Third Evaluation

Prototyping and Assembling Integration 17/March 2023

