STAT5010 Advanced Statistical Inference

Fall 2023

Lecture 4: Cramér-Rao Information Bound

Lecturer: Tony Sit Scribe: Cheukhei Chan and Yang Boyu

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 UMVUE

Q: Suppose we have δ_1 and δ_2 as UMVUEs for $g_1(\theta)$ and $g_2(\theta)$ respectively. Is $\delta_1 + \delta_2$ an UMVUE for $g_1(\theta) + g_2(\theta)$?

Theorem 4.1 (Characterization of UMVUEs; TPE 2.1.7) Let $\Delta = \{\delta : E(\delta^2) < \infty\}$. Then $\delta_0 \in \Delta$ is UMVU for $g(\theta) = E(\delta_0)$ if and only if $E(\delta_0(\theta)U) = 0$ for every $U \in \mathcal{U} = \{U : E(U) = 0\}$

Proof:

If δ_0 is a UMVUE, let's consider $\delta_{\lambda} = \delta_0 + \lambda U$ for $\lambda \in \mathbb{R}$ and $U \in \mathcal{U}$. Since δ_0 has minimal variance,

$$Var(\delta_{\lambda}) = Var(\delta_{0}) + \lambda^{2}Var(U) + 2\lambda cov(\delta_{0}, U)$$

 $\geq Var(\delta_{0})$

Consider the quadratic form $q(\lambda) = \lambda^2 Var(U) + 2\lambda \operatorname{cov}(\delta_0, U)$.

The form q has the roots $\lambda = 0$ and $2\text{cov}(\delta_0, U)/\text{var}(U)$.

If the roots are distinct, then the form must be negative at some point, which would violate the inequality above.

Hence, $2\text{cov}(\delta_0, U)/\text{var}(U) = 0$ in which case, $E(U\delta_0) = cov(\delta_0, U) = 0$.

To prove the converse result, we assume that $E(U \delta_0) = 0 \ \forall \ U \in \mathcal{U}$ and consider any δ unbiased for $g(\theta)$. It follows that $\delta - \delta_0 \in \mathcal{U}$, so $E(\delta_0(\delta - \delta_0)) = 0$. This implies that $E(\delta_0 \delta) = E(\delta_0^2)$ and subtracting $E(\delta_0)E(\delta)$ on both sides, we obtain

$$Var(\delta_0) = cov(\delta_0, \delta) \le \sqrt{Var(\delta_0)Var(\delta)}$$
 by $Cauchy - Schwarz inequality$. Hence, $Var(\delta_0) = cov(\delta_0, \delta) \le \sqrt{Var(\delta_0)Var(\delta)}$

 δ_0) $\leq Var(\delta)$ for any arbitrary unbiased estimator δ and δ_0 . Hence, δ_0 is an UMVUE for $g(\theta)$.

To answer the question, \forall U \in U, $E((\delta_1 + \delta_2)U) = E(\delta_1 U) + E(\delta_2 U) = 0$ (δ_1 , δ_2 : UMVUEs) $\Rightarrow \delta_1 + \delta_2$ is a UMVUE for $g_1(\theta) + g_2(\theta)$

4.2 Variance Bound and Information

Recall $Cov(X,Y) \le \sqrt{Var(X)Var(Y)}$

Given this inequality, if δ is an unbiased estimator for $g(\theta)$ and ψ is an arbitrary random variable, then

$$Var_{\theta}(\delta) \ge \text{Cov}^2 \theta(\delta, \psi) / \text{Var}_{\theta}(\psi) \quad \{*\}$$

If we manage to find a suitable ψ so that the bound is meaningful in the sense that $Cov_{\theta}(\delta, \psi)$ is the same for all δ that are unbiased for $g(\theta)$.

Let $P = \{P_{\theta} : \theta \in \Theta\}$ be a dominated family with densities $P_{\theta} : \theta \in \Theta \in \mathbb{R}$. To begin, $E_{\theta+\Delta}(\delta) - E\theta(\delta)$ gives the same value $g(\theta + \Delta) - g(\theta)$ for any unbiased δ . Hence, Δ must be chosen so that $\theta + \Delta \in \Theta$.

Next, we write $E_{\theta+\Delta}(\delta) - E_{\theta}(\delta)$ as a covariance under $P\theta$. This step involves the use of likelihood ratio. We assume here that $P\theta + \Delta(x) = 0$ whenever $P_{\theta}(x) = 0$

Define $L(x) = P_{\theta+\Delta}(x)/P_{\theta}(x)$, where $P\theta(x) \neq 0$ and L(x) = 1 otherwise.

We have

$$L(x)P_{\theta}(x) = \frac{P_{\theta+\Delta}(x)}{P_{\theta}(x)}P_{\theta}(x) = P_{\theta+\Delta}(x)$$
 a.s. P .

and so, for any function h integrable under $P_{\theta+\Delta}$, we have

$$E_{\theta+\Delta}h(X) = \int hP_{\theta+\Delta}d\mu = \int hLP_{\theta}d\mu = E_{\theta}(L(X)h(X))$$

Take h = 1, $E_{\theta}(L(X)) = 1$ because $E_{\theta}(L(X)) = \int \frac{P_{\theta+\Delta}(x)}{P_{\theta}(x)} P_{\theta}(x) dx = \int P_{\theta+\Delta}(x) dx = 1$

Take $h = \delta, E_{\theta+\Delta}(\delta) = E_{\theta}(L\delta)$. So if we define $\psi(x) = L(x) - 1$, we can see that

$$E_{\theta}(\psi(X)) = E_{\theta}(L(X) - 1) = 1 - 1 = 0$$

and

$$E_{\theta+\Lambda}(\delta) - E_{\theta}(\delta) = E_{\theta}(L\delta) - E_{\theta}(\delta) = E_{\theta}(\psi\delta)$$

As a result,

$$Cov_{\theta}(\delta, \psi) = g(\theta + \Delta) - g(\theta)$$

for any unbiased estimator δ . With this particular choice of ψ , the inequality (*) can be rewritten as

$$Var_{\theta}(\delta) = \frac{\{g(\theta + \Delta) - g(\theta)\}^2}{Var_{\theta}(\psi)} = \frac{\{g(\theta + \Delta) - g(\theta)\}^2}{E_{\theta}(\frac{P_{\theta + \Delta}(x)}{P_{\theta}(x)} - 1)^2}, \quad (**)$$

which is known as the Hammersley-Chapman-Robbins Inequality. Under suitable regularity conditions, we can show that

$$\frac{\lim_{\Delta \to 0} \left\{ \frac{g(\theta + \Delta) - g(\theta)}{\Delta} \right\}^2}{\lim_{\Delta \to 0} E_{\theta} \left(\frac{\{P_{\theta + \Delta}(x) - P_{\theta}(x)\}/\Delta}{P_{\theta}(x)} \right)^2} \to \frac{(g'(\theta)^2)}{E(\frac{\theta(x)}{P_{\theta}(x)})^2} \quad (***)$$

The denominator on the RHS of (***) is known as Fisher information, denoted as $I(\theta)$ and is given by

$$I(\theta) = E_{\theta} \left(\frac{\partial log P_{\theta}(x)}{\partial \theta}\right)^{2}$$

With enough regularity conditions to interchange integration and differentiation,

$$0 = \frac{\partial}{\partial \theta}(1) = \frac{\partial}{\partial \theta} \int P_{\theta}(x) d\mu(x) = \int \frac{\partial}{\partial \theta} P_{\theta}(x) d\mu(x)$$

$$= \int \frac{\partial log P_{\theta}(x)}{\partial \theta} P_{\theta}(x) d\mu(x) = E_{\theta}(\frac{\partial log P_{\theta}(x)}{\partial \theta})$$

and so,

$$I(\theta) = E_{\theta} \left(\frac{\partial log P_{\theta}(x)}{\partial \theta}\right)^{2} - \left(E_{\theta} \left(\frac{\partial log P_{\theta}(x)}{\partial \theta}\right)\right)^{2} = Var_{\theta} \left(\frac{\partial log P_{\theta}(x)}{\partial \theta}\right).$$

Furthermore, since

$$\int \frac{\partial^2 log P_{\theta}(x)}{\partial \theta^2} d\mu(x) = E_{\theta}(\frac{\partial^2 P_{\theta}(x)/\partial \theta^2}{P_{\theta}(x)}) = 0$$

We can see that

$$\frac{\partial^2 log P_{\theta}(x)}{\partial \theta^2} = \frac{\partial^2 P_{\theta}(x)/\partial \theta^2}{P_{\theta}(x)} - (\frac{\partial log P_{\theta}(x)}{\partial \theta})^2$$

$$\Longrightarrow I(\theta) = -E_{\theta}(\frac{\partial^2 log P_{\theta}(x)}{\partial \theta^2})$$

Therefore,

$$Var_{\theta}(\delta) \ge \frac{\{g'(\theta)\}^2}{I(\theta)}, \ \theta \in \Theta$$

Theorem 4.2 Let $P = \{P_{\theta} : \theta \in \Theta\}$ be a dominated family with Θ and open set in \mathbb{R} and densities P_{θ} differentiable with respect to θ . If $E_{\theta}(\psi) = 0$ and $E_{\theta}(\delta^2) < \infty$, then

$$Var_{\theta}(\delta) \ge \frac{\{g'(\theta)\}^2}{I(\theta)}, \ \theta \in \Theta.$$

This result is called the Cramér-Rao / Information Bound.

Example 4.2.1 Let \mathcal{P} be a one-parameter exponential family in canonical form and density p_{η} given by

$$p_{\eta} = exp(\eta T(x) - A(\eta))h(x),$$

then

$$\frac{\partial \log p_{\eta}(x)}{\partial \eta} = T(x) - A'(\eta).$$

By the previous results, we have

$$I(\eta) = Var_{\eta}(T(x) - A'(\eta)) = Var_{\eta}(T(x)) = A''(\eta).$$

If the family is parameterised instead by $\mu = A'(\eta) = \eta \mathbb{T}(\mathbb{X})$, then

$$A''(\eta) = I(\mu)(A''(\eta))^2,$$

Example 4.2.2 Suppose X us ab absolutely continuous random variable with density f. The family of distributions $\mathcal{P} = \{P_{\theta} : \theta \in \mathbb{R}\}$ with P_{θ} the distribution of $\theta + \epsilon$ is called a location family.

$$\int g(x)dP_{\theta}(x) = \mathbb{E}\theta(g(X))$$

$$= \mathbb{E}_{\theta}(g(\theta + \epsilon))$$

$$= \int g(\theta + \epsilon)f(\epsilon)d\epsilon$$

$$= \int g(x)f(x - \theta)dx.$$

So P_{θ} has the density $p_{\theta} = f(x - \theta)$. The corresponding Fisher information for the family is

$$I(\theta) = \mathbb{E}_{\theta} \left(\frac{\partial \log f(X - \theta)}{\partial \theta} \right)^{2}$$
$$= \mathbb{E}_{\theta} \left(-\frac{f'(X - \theta)}{f(X - \theta)} \right)^{2}$$
$$= \mathbb{E} \left(\frac{f'(\epsilon)}{f(\epsilon)} \right)^{2}$$
$$= \int \frac{\{f'(x)\}^{2}}{f(x)} dx \perp \!\!\! \perp \theta.$$

So, for the location families, $I(\theta)$ is constant with respect to θ .

If two (or more) independent vectors are observed, then the total Fisher information is the sum of the Fisher information provided by the individual observations.

Suppose X and Y are independent, and that X has density p_{θ} and Y has density q_{θ} . The Fisher information from X and Y are respectively

$$I_X(\theta) = Var_{\theta}(\frac{\partial \log p_{\theta}(X)}{\partial \theta}),$$

and

$$I_Y(\theta) = Var_{\theta}(\frac{\partial \log q_{\theta}(Y)}{\partial \theta}).$$

$$\begin{split} I_{X,Y}(\theta) &= Var_{\theta}(\frac{\partial \log \left\{p_{\theta}(X)q_{\theta}(Y)\right\}}{\partial \theta}) \\ &= Var_{\theta}(\frac{\partial \log p_{\theta}(X)}{\partial \theta} + \frac{\partial \log q_{\theta}(Y)}{\partial \theta}) \\ &= Var_{\theta}(\frac{\partial \log p_{\theta}(X)}{\partial \theta}) + Var_{\theta}(\frac{\partial \log q_{\theta}(Y)}{\partial \theta}) \\ &= I_{X}(\theta) + I_{Y}(\theta). \end{split}$$

$$\Rightarrow \text{If } X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} P_{\theta}, I_X(\theta) = I_{X_1}(\theta + \cdots + I_{X_n}(\theta)) = nI_{X_1}(\theta).$$

$$\Rightarrow Var_{\theta}(\delta) \ge \frac{g'(\theta)}{nI(\theta)}$$

4.3 Multi-parameter Cramer-Rao Inequality

Suppose the following conditions hold:

- 1. $\Theta \subseteq \mathbb{R}^k$ is an open set,
- 2. $\{P_{\theta}: \theta \in \Theta\}$ have common support I,
- 3. $\frac{\partial p_{\theta}(X)}{\partial \theta_i}$ exists, $\forall i = 1, \dots, k, x \in I$ and is finite,

4.
$$\frac{\partial \int_x p_{\theta}(x) d\mu}{\partial \theta_i} = \int_x \frac{\partial p_{\theta}(x)}{\partial \theta_i} d\mu, \forall i = 1, \dots, k,$$

5.
$$\frac{\partial \int_x \delta(x) p_{\theta}(x) d\mu}{\partial \theta_i} = \int_x \delta(x) \frac{\partial p_{\theta}(x)}{\partial \theta_i} d\mu, \forall i = 1, \dots, k$$

Define the $k \times k$ information matrix $I(\theta)$ by

$$I_{ij}(\theta)_{i,j=1,\dots,k}, \text{with} I_{ij}(\theta) = \mathbb{E}_{\theta}\left(\frac{\partial \log p_{\theta}(X)}{\partial \theta_i} \frac{\partial \log p_{\theta}(X)}{\partial \theta_i}\right)$$

Specially, if $k = 1, I_{11} = \mathbb{E}_{\theta}(\frac{\partial \log p_{\theta}(X)}{\partial \theta})^2$. Assume that $I(\theta)$ is finite and positive definite, then

$$Var_{\theta}(\delta(X)) \ge \alpha^T I(\theta)^{-1} \alpha, \text{ with } \alpha_i = \frac{\partial g(\theta)}{\partial \theta}.$$

Proof: Let $\psi_i(X) = \frac{\partial \log p_{\theta}(X)}{\partial \theta_i}$, then

$$\mathbb{E}_{\theta}(\psi_{i}(X)) = \int_{x} \left(\frac{\partial \log p_{\theta}(x)}{\partial \theta_{i}}\right) p_{\theta}(x) d\mu(x)$$

$$= \int_{x} \frac{\frac{\partial p_{\theta}(x)}{\partial \theta_{i}}}{p_{\theta}(x)} p_{t} heta(x) d\mu$$

$$= \int_{x} \frac{\partial p_{\theta}(x)}{\partial \theta_{i}} d\mu$$

$$= \frac{\partial \int_{x} p_{\theta}(x) d\mu}{\partial \theta_{i}} = 0$$

Fix a non-zero vector (a_1, \dots, a_k) . Then $\mathbb{E}_{\theta}(\sum_{i=1}^k a_i \psi_i(X)) = 0$. Claim: $Var(\sum_{i=1}^k a_i \psi_i(X)) = a^T I(\theta) a$.

$$Var(\sum_{i=1}^{k} a_i \psi_i(X)) = \sum_{ij} a_i a_j Cov(\psi_i(X), \psi_j(X))$$
$$= \sum_{ij} a_i a_j \mathbb{E}(\psi_i(X) \psi_j(X))$$
$$= \sum_{i,j} a_i a_j I_{ij}(\theta)$$
$$= a^T I(\theta) a.$$

Finally,

$$Cov(\delta(X), \sum_{i=1} k a_i \psi_i(X)) = \sum_{i=1} k a_i Cov(\delta(X), \psi_i(X))$$

$$= \sum_{i=1} k a_i \mathbb{E}(\delta(X) \psi_i(X))$$

$$= \sum_{i=1} k a_i \int_x \delta(x) \frac{\partial \log p_{\theta}(x)}{\partial \theta_i} p_{\theta}(x) d\mu$$

$$= \sum_{i=1} k a_i \int_x \delta(x) \frac{\partial p_{\theta}(X)}{\partial \theta_i} dx$$

$$= \sum_{i=1} k a_i \frac{\partial \int_x \delta(x) p_{\theta}(x) d\mu}{\partial \theta_i}$$

$$= \sum_{i=1} k a_i \alpha_i(\theta).$$

By Cauchy-Schwarz inequality,

$$Var(\delta(X))Var(\sum_{i=1} ka_i\psi_i(X)) \ge Cov(\sum_{i=1} ka_i\psi_i(X), \delta(X)),$$

 \Rightarrow

$$Var(\delta(X)) \ge \sup_{a \ne 0} \frac{(\sum_{i=1} k a_i \alpha_i(\theta))^2}{a^T I(\theta) a} = \alpha^T I(\theta)^{-1} \alpha.$$

Example 4.3.1 Suppose $X_1, \dots, X_n \overset{i.i.d.}{\sim} N(\mu, \sigma^2), \mu \in \mathbb{R}$, and $\sigma^2 > 0$. We want to estimate $g_1(\mu, \sigma^2) = \mu$ and $g_2(\mu, \sigma^2) = \sigma^2$. Look at only unbiased estimators.

Claim 1: $\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X_n})^2$ is UMVUE for σ^2 , $\overline{X_n}=\frac{1}{n}\sum_{i=1}^{n}X_i$.

Proof:

- 1. $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ is complete and sufficient.
- 2. $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X_n})^2$ is a function of $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$. This is because $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X_n}) = \sum_{i=1}^{n} X_i^2 n\overline{X_n}^2$.
- 3. $\frac{1}{\sigma^2} \sim \chi_{n-1}^2 \Rightarrow \mathbb{E}(\frac{1}{n-1}\frac{1}{n}\sum_{i=1}^n (X_i \overline{X_n})^2) = \frac{\sigma^2}{n-1}(n-1) = \sigma^2$

Claim 2: $\overline{X_n}$ is UMVNE for μ . $\mathbb{E}(\overline{X_n} - \mu)^2 = \sigma^2/n$. Note that $\mathbb{E}(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X_n})^2/(n-1) - \sigma^2) = Var(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X_n})^2/(n-1)) = \frac{2(n-1)\sigma^4}{(n-1)^2} = \frac{2\sigma^4}{(n-1)}$.

$$\log p_{\mu,\sigma^2}(X) = -\frac{n}{2}\log \sigma^2 - \sum_{i=1}^n \frac{(X_i - \mu)^2}{2 \sim^2} + C_n,$$
$$\frac{\partial \log p_{\theta}(X)}{\partial \mu} = \sum_{i=1}^n \frac{X_i - \mu}{\sigma^2},$$

$$\begin{split} \frac{\partial^2 \log p_{\theta}(X)}{\partial \mu^2} &= -\frac{n}{\sigma^2}, \\ \frac{\partial \log p_{\theta}(X)}{\partial \sigma^2} &= -\frac{n}{\sigma^2} + \sum_{i=1}^n \frac{(X_i - \mu)^2}{2\sigma^4} \\ \frac{\partial^2 \log p_{\theta}(X)}{\partial (\sigma^2)^2} &= \frac{n}{\sigma^4} - \sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^6} \\ \frac{\partial^2 \log p_{\theta}(X)}{\partial \mu \partial \sigma^2} &= -\sum_{i=1}^n \frac{X_i - \mu}{\sigma^4} \end{split}$$

Therefore, the Fisher information matrix is

$$\begin{split} I &= \begin{pmatrix} \frac{n}{\sigma^2} & 0 \\ 0 & \frac{n}{2\sigma^4} \end{pmatrix} \\ I_{22} &= -\frac{n}{2\sigma^4} + \mathbb{E}(\sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^6}) = -\frac{n}{2\sigma^4} + \frac{n\sigma^2}{\sigma^6} = \frac{n}{2\sigma^4} \\ \Rightarrow \mathit{CRLB for } \mu = \begin{pmatrix} 1 & 0 \end{pmatrix} I^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{I_{11}} = \frac{\sigma^2}{n}. \\ \Rightarrow \mathit{CRLB for } \sigma^2 = \begin{pmatrix} 0 & 1 \end{pmatrix} I^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{I_{22}} = \frac{2\sigma^4}{n}. \end{split}$$