RATTRAPAGE

7 juin 2017

[durée : 3 heures]

/ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Barycentres)

Soient \mathcal{E} un plan affine réel, et $\mathcal{R} = (A, B, C)$ un repère affine. On désigne par $(\alpha, \beta, \gamma)_{\mathcal{R}}$ le point dont les coordonnées barycentriques 1 sont (α, β, γ) dans ce repère.

a) Déterminer la nature et les paramètres de l'ensemble

$$\mathcal{D} = \{ (1, \beta, -\beta)_{\mathcal{R}} \mid \beta \in \mathbb{R} \}.$$

Le représenter sur un dessin.

b) Soit $(a,b,c) \in \mathbb{R}^3$ un triplet de nombres. On considère l'application

$$\phi_{a,b,c}: \quad \mathcal{E} \longrightarrow \mathbb{R}$$

$$(\alpha,\beta,\gamma)_{\mathcal{R}} \longmapsto a\alpha + b\beta + c\gamma$$

- (i) Montrer que $\phi_{a,b,c}$ est une application affine.
- (ii) Montrer que $\phi_{a,b,c}$ est constante si et seulement si $(a,b,c) \in \Delta$, où $\Delta = \{(\lambda,\lambda,\lambda) \mid$ $\lambda \in \mathbb{R}$ est la droite vectorielle « diagonale » de \mathbb{R}^3 .
- (iii) En déduire que l'ensemble $\mathcal{D}_{a,b,c} = \{(\alpha,\beta,\gamma)_{\mathcal{R}} \mid a\alpha + b\beta + c\gamma = 0\}$ est une droite si et seulement si $(a, b, c) \notin \Delta$. Que peut-on dire de $\mathcal{D}_{a,b,c}$ dans le cas où $(a, b, c) \in \Delta$?
- c) Soient M_1 , M_2 et M_3 trois points de \mathcal{E} . Notons $(\alpha_i, \beta_i, \gamma_i)$ les coordonnées barycentriques de M_i , pour i = 1, 2, 3, dans le repère $\mathcal{R} = (A, B, C)$.
 - (i) Décomposer les vecteurs $\overrightarrow{M_1M_2}$ et $\overrightarrow{M_1M_3}$ dans la base \overrightarrow{AB} , \overrightarrow{AC} de $\overrightarrow{\mathcal{E}}$.
 - (ii) Montrer que M_1 , M_2 et M_3 sont alignés si et seulement si $\begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} = 0$.
 - (iii) En déduire que si $M_1 \neq M_2$, la droite $\langle M_1, M_2 \rangle$ est définie dans le repère \mathcal{R} par une équation de la forme $a\alpha + b\beta + c\gamma = 0$, avec $(a, b, c) \in \mathbb{R}^3 \setminus \Delta$.
- d) Trouver un triplet (a, b, c) tel que $\mathcal{D}_{a,b,c}$ soit la médiane du triangle ABC issue de A.

^{1.} On rappelle que $\alpha + \beta + \gamma = 1$.

Exercice 2 (Géométrie du plan complexe)

Soit ABCD le rectangle du plan complexe dont les sommets A,B et D ont pour affixes respectives 0,1 et i. On considère le triangle équilatéral BFC construit à l'extérieur du rectangle ABCD, ainsi que le triangle équilatéral DEC construit à l'intérieur du rectangle ABCD.

- a) Déterminer les affixes des points E et F.
- b) Montrer que A, E et F sont alignés.
- c) Déterminer l'affixe du point G qui est l'intersection des segments [BC] et [EF].
- d) Donner l'expression analytique de l'homothétie de centre G qui envoie A sur F.

Exercice 3 (Isométries dans \mathbb{R}^3)

On se place dans l'espace affine euclidien \mathbb{R}^3 .

a) On considère les deux matrices

$$\frac{1}{9} \begin{pmatrix} -1 & -8 & 4 \\ -8 & -1 & -4 \\ 4 & -4 & -7 \end{pmatrix} \qquad \text{et} \qquad \frac{2}{9} \begin{pmatrix} -1 & -8 & 4 \\ -8 & -1 & -4 \\ 4 & -4 & -7 \end{pmatrix}.$$

Laquelle de ces deux matrices est la matrice d'une isométrie de \mathbb{R}^3 ?

Pour la suite de l'exercice, on note M cette matrice de $O(\mathbb{R}^3)$, ainsi que l'application linéaire qu'elle définit.

- b) Décrire M en détail (nature, paramètres).
- c) Soit $T_{\vec{v}}$ la translation de vecteur $\vec{v}=(1,1,0)$. Quelle est la nature de l'application composée $T_{\vec{v}}M$?
- d) Soit S la symétrie orthogonale par rapport au plan d'équation $\{2x 2y + z = 1\}$. Quels sont la nature et les paramètres de l'application composée MS?

Exercice 4 (Coniques)

On considère l'ensemble

$$\mathcal{E} = \{(x,y) \in \mathbb{R}^2 \mid (x+y-1)^2 + 2(x-y)^2 = 4\}.$$

- a) Montrer que \mathcal{E} est une ellipse.
- b) Déterminer les coordonnées du centre de \mathcal{E} , ainsi que les rayons.
- c) Déterminer les axes de symétrie de \mathcal{E} et donner les expressions analytiques des symétries par rapport à ces axes.
- d) Déterminer les coordonnées des foyers de \mathcal{E} .