

FIG. 1

Fig. 2

Efficiency = $25\% * (S_t/S_i) (S_i/S_r) =$
 - Assuming all reflected energy is spreading over a half-sphere
 - Assuming target absorbs 75% of the insertion energy
 - Assuming laser target be a 20 diameter ball

 St: Target area as beam capacity, with $D_t = 120\text{cm}$.

 St': Target area when striking over a real obstacle, with $D_t' = 27.65\text{cm}$.

 S_i: optical len area, with $D_l = 2.5\text{cm}$.

 S_r: area that reflected wave cover, assuming to be half sphere
 with $D = 180\text{ Meters}$.

$$S_t = \pi R^2$$

$$= \pi (0.60^{*2})$$

$$= 1.13 (\text{ Square Meter})$$

F16 2A

Fig 3

(1) When $V_f' = (V_d / dt)/dt < 20m/s^{**3}$, timer starts and t_1 is recorded.

(2) Record V_r and a at this time.

$$V_r = dR/dt = 18 \text{ } dV_e/dt = V_d$$

(3) When $V_f = 0$ again, timer stops and t_2 recorded..

(4) Find T_s

$$T_s = t_2 - t_1$$

(5) Determine Q

$$Q = T_s - \infty / \omega_{\text{Scanner}}$$

(6) Find T_c (Time to Collision occurring)

$$T_c = R / V_r$$

(7) Quotient factors for Collision Judgement

(8) Set $L = 1$ if $Q = 0$ and $L = 0$ if $Q = 0$

$$(a) M = 1 \text{ if } T_c < 0; \text{ and } M = 0 \text{ if } T_c > 0$$

Set $N = 1$ if ABS of $R/V_r < 2$, and $N = 0$ if ABS of $R/V_r > 1.5$

$$(b) K = L * M * N$$

(9) $K = 1$, Collision will occur and immediate braking required;

$K = 0$; No collision will occur shortly, no braking control action required.

Notes 1: When laser scanning beam (the front of the wave bundle) sweeps from AB to BC, which represents the relative speed at this case.

Note 2: Mechanical control is based on judgement on above logic sequence.

Note 3: With scanner continuously sweeping, all parts of any obstacle will detected and treated.

Note 4: This is the fundamental model algorithm, for detail and practical , please refer to table 6: Signal Process and Operation Time

500

530

540

550

555

560

570

7165

Fig. 6

Fig 7

