The Influence of Bilingualism on Statistical Word Learning

Matilde E SIMONETTI¹, Iring KOCH¹, Megan G LORENZ², Tanja C ROEMBKE¹ ¹ RWTH Aachen University, Germany | ² Augustana College, USA

Introduction

Bilinguals are often thought to be better at learning novel words than monolinguals.

The results of our ongoing meta-analysis are in line with an overall bilingual advantage (g = -0.18; 95 % CI -0.32 to -0.04, $I^2 = 26.92$ %), though results vary widely, with some studies indicating a general benefit and others showing advantages only in specific conditions.

In particular with statistical word learning, contrasting results were

- A general bilingual advantage (Aguasvivas et al., 2024; Escudero et al., 2016),
- A specific bilingual advantage (Poepsel & Weiss, 2016; Crespo et al., 2023),
- A monolingual advantage (Crespo & Kaushanskaya, 2021),
- No difference at all (Benitez et al., 2016; Li & Benitez, 2023).

However, the studies varied in population (types of bilinguals, age), stimuli, and exact learning paradigm (type and number of mappings), and most of them had few participants.

Mutual exclusivity bias

Show me the DAX

Definition: the tendency to assume that an object can have only one linguistic label (e.g., Markman and Wachtel, 1988).

Previous research has shown that bilingual children **relax** their use of the mutual exclusivity bias (e.g., Kalashnikova et al., 2015).

These findings suggest that bilinguals should outperform monolinguals when complex mappings are to be learned, consistent with a specific bilingual advantage (Poepsel & Weiss, 2016).

Current Experiment

Participants

- 100 English Monolinguals
- 100 English-German Bilinguals

Using the optional stopping practice, we stopped at 200 (our maximum) usable participants (Rouder, 2014).

Procedure

Paradigm: Cross-Situational Statistical Learning (CSSL)

If a word and its meaning baseline probability of co-occurring, this information can be used across situations to learn the correct mappings.

Participants had to select an object on each trial

Accuracy

The current study aims to clarify whether one's language group (monolingualism vs bilingualism) impacts statistical word learning.

There are different types of mappings:

- Simple (1:1) mapping: 1 word mapping onto 1 object
- Complex (1:2) mapping: 1 word mapping onto 2 objects (c.f., interlingual homographs/false friends)

MASSET 1:2 Mapping

1:1 Mapping

Hypotheses:

- H1: It will be harder to acquire 1:2 than 1:1 mappings.
- H2: Bilinguals will outperform monolinguals only in 1:2 but not 1:1 mappings (Poepsel & Weis, 2016). Consistent with a specific bilingual advantage.

Results: Accuracy

Participants in general learnt words quite well (M = .71, SD = .46) and scored significantly above chance (chance level = .333, t(199) = 27.22, p <

Bilinguals (M = .65, SD = .48; t(99) = 15.09, p < .001) and Language Group Monolinguals (M = .76, SD = monolingual .44; t(99) = 27.17, p < .001were able to learn better than chance level.

We **found** a main effect of:

- Block
- $(\beta = 0.44, SE = 0.02, z = 23.57,$ BF > 1000)
- Mapping type
- $(\beta = 0.50, SE = 0.09, z = 5.82, BF)$ >1000)
- As predicted, participants were generally better at learning 1:1 than 1:2 mappings.

We did **not** find an **interaction** of mapping type and language group $(\beta = -0.13, SE = 0.07, z = -1.83, BF = 0.93)$, with the BF indicating that results are inconclusive.

Instead the main effect of language group had a BF greater than 3 $(\beta = -0.66, SE = 0.14, z = -4.77, BF = 9559.11).$

Against our predictions, Monolinguals learned words overall better than Bilinguals regardless of the mapping type.

Trial-by-trial Analyses

Definition

In these so-called trial-by-trial analyses, accuracy on a current trial is predicted by characteristics or behaviors on previous trials with the same word or objects.

In particular we will explore if learning can be **predicted by**:

Last-target accuracy

Participants are more likely to be correct on a current trial (Trial 0) if they were **also correct** the last time they encountered the same word (Trial -4).

Last-competitor accuracy

Participants are more likely to be correct on a current trial (Trial 0) if they had selected the **correct referents** for the **competitor** objects the last time they were the target object (Trial -2).

Last-competitor accuracy can be seen as a measure of the **mutual** exclusivity bias.

Hypotheses:

- **H3**: Accuracy on the current trial will be higher if participants were also accurate on the preceding trial with the same word.
- (e.g., Roembke & McMurray, 2016)
- H4: The use of the mutual exclusivity bias will be lower for bilinguals than monolinguals.
- H5: The use of the mutual exclusivity bias will be lower for 1:2 than 1:1 mappings.

Results: Trial-by-trial Analyses

We found a **BF greater than 3** for the interaction of last-target accuracy and target-count (β = 0.24, SE = 0.03, z = 7.34, BF > 1000).

We found **inconclusive** results for the interaction of last-competitor accuracy and language group (β = 0.05, SE = 0.07, z = 0.74, BF = 1.00).

We also found an **inconclusive** result for the interaction of **last-competitor**

accuracy and **mapping type** (β = 0.15, SE = 0.08, z = 2.03, BF = 1.51).

Discussion

We were able to confirm that 1:1 mappings are easier to learn than 1:2.

However, we could **not** confirm the **specific bilingual advantage** found by Poepsel and Weiss (2016).

→Our results are instead in line with a **general monolingual advantage**.

Other word learning studies that found a **monolingual** word learning advantage found it in babies or children (e.g., Rocha-Hidalgo et al., 2021).

Only **one** other **statistical** word **learning** study found a general monolingual advantage (Crespo & Kaushanskaya, 2021).

Adding our result to our metaanalysis, the bilingual advantage ceased to be significant.

Trial-by-trial analyses highlighted that a relaxation of the mutual exclusivity bias was not encountered neither by bilinguals nor with 1:2 mappings.

Conclusion:

We can conclude that (if existing) bilingual cognitive advantages are highly population-, task- and setting-specific.

References

The present study is accepted as a Stage 1 Registered Report:

Simonetti, M.E., Lorenz, M. G., Koch, I., & Roembke, T.C., The influence of bilingualism on statistical word learning: A registered report. PCI:RR. https://osf.io/8n5gh Aguasvivas, J. A., Cespón, J., & Carreiras, M. (2024). Does bilingual experience influence statistical language

learning? Cognition, 242, 105639. https://doi.org/10.1016/j.cognition.2023.105639 Benitez, V. L., Yurovsky, D., & Smith, L. B. (2016). Competition between multiple words for a referent in

cross-situational word learning. Journal of Memory and Language, 90, 31–48. https://doi.org/10.1016/j.jml.2016.03.004

Crespo, K., & Kaushanskaya, M. (2021). Is 10 better than 1? The effect of speaker variability on children's cross-situational word learning. Language Learning and Development, 17(4), 397–410. https://doi.org/10.1080/15475441.2021.1906680

Crespo, K., Vlach, H., & Kaushanskaya, M. (2023). The effects of bilingualism on children's cross-situational word learning under different variability conditions. *Journal of Experimental Child Psychology*, 229, 105621. https://doi.org/10.1016/j.jecp.2022.105621 Escudero, P., Mulak, K. E., Fu, C. S. L., & Singh, L. (2016). More limitations to monolingualism: Bilinguals

outperform monolinguals in implicit word learning. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01218 Kalashnikova, M., Mattock, K., & Monaghan, P. (2015). The effects of linguistic experience on the flexible use of mutual exclusivity in word learning. *Bilingualism: Language and Cognition*, *18*(4), 626–638.

https://doi.org/10.1017/S1366728914000364 Li, Y., & Benitez, V. L. (2023). Lexical tone as a cue in statistical word learning from bilingual input.

Bilingualism: Language and Cognition, 1-15. https://doi.org/10.1017/S1366728923000858 Markman, E. M., & Wachtel, G. F. (1988). Children's use of mutual exclusivity to constrain the meanings of

words. Cognitive Psychology, 20(2), 121-157. https://doi.org/10.1016/0010-0285(88)90017-5 Poepsel, T. J., & Weiss, D. J. (2016). The influence of bilingualism on statistical word learning. *Cognition*, 152, 9-19. https://doi.org/10.1016/j.cognition.2016.03.001

Rocha-Hidalgo, J., Feller, M., Blanchfield, O. A., Kucker, S. C., & Barr, R. F. (2021). Patterns of mutual exclusivity and retention: A study of monolingual and bilingual 2-year-olds. Infancy, 26(6), 1011-1036 https://doi.org/10.1111/infa.12432

Roembke, T. C., & McMurray, B. (2016). Observational word learning: Beyond propose-but-verify and associative bean counting. Journal of Memory and Language, 87, 105-127. https://doi.org/10.1016/j.jml.2015.09.005 Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. *Psychonomic Bulletin & Review, 21*(2), 301-308. https://doi.org/10.3758/s13423-014-0595-4

