AC áramkörök

Miért használunk váltóáramot?

Miért használunk váltóáramot?

- Generátor: alternátor
- Transzformátor
- Energia átvitel: $P = I^2R$

Hátrány:

- Frekvencia szinkronizáció
- AC veszélyesebb!

Nuclear power plant containment structure transmission lines steam electric turbine generator control rods pressure vessel nonradioactive steam generator water vapour warm condenser water warm moist air water water condenser spray water pump water cool condenser water cool water basin cooling tower nuclear reactor intake from lake or river © 2013 Encyclopædia Britannica, Inc.

Váltóáram előállítása: Atomerőmű

AC Voltage

Turbine shaft turns generator Coils Rotor Magnet Power cable CURRENT CURRENT Power cable Shaft STEAM Magnet

Paks

Váltakozó áram és feszültség

$$U(t) = U_0 \sin(\omega t)$$

$$I(t) = I_0 \sin(\omega t - \varphi)$$

Sorba kapcsolt RLC áramkör

Sorba kapcsolt RLC áramkör

AC áram teljesítménye

Transzformátor

(a) Vasmagos transzformátor N₁ menetű primér tekercséhez AC feszültségforrás csatlakozik. A szekundér tekercs N₂ menetű.

(b) A vasmagos transzformátor áramköri jelölése. (légmagos transzformátorok esetében a függőleges vonalakat nem húzzuk be.)