FCC ID: 2AAOYH870BT

FCC PART 15 SUBPART C MEASURMENT AND TEST REPORT

For

Mitek Corp

1 Mitek Plaza Winslow, IL 61089

E.U.T.: Watertight Stereo Receiver built for the Outdoors

Model Name: H-870

Brand Name: MTX Audio

FCC ID: 2AAOYH870BT

Report Number: NTC1412766F

Test Date(s): December 24, 2014 to January 16, 2015

Report Date(s): January 16, 2015

Prepared by

Dongguan Nore Testing Center Co., Ltd.

Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong, China

Tel: +86-769-22022444

Fax: +86-769-22022799

Prepared By

Approved & Authorized Signer

Rose Hu / Engineer

Sunm LV/Q.A. Director

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Dongguan Nore Testing Center Co., Ltd. The test results referenced from this report are relevant only to the sample tested.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1412766F FCC ID: 2AAOYH870BT

Table of Contents

1. GE	NERAL INFORMATION	4
1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	4
1.2	RELATED SUBMITTAL(S) / GRANT (S)	5
1.3		
1.4	EQUIPMENT MODIFICATIONS	5
1.5	SUPPORT DEVICE	5
1.6	TEST FACILITY AND LOCATION	6
1.7	SUMMARY OF TEST RESULTS	6
2. SY	STEM TEST CONFIGURATION	7
2.1	EUT CONFIGURATION	7
2.2	SPECIAL ACCESSORIES	7
2.3	DESCRIPTION OF TEST MODES	7
2.4	EUT Exercise	7
3. RA	DIATED EMISSION TEST	8
3.1	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	8
3.2	MEASUREMENT PROCEDURE	9
3.3	LIMIT	9
3.4	MEASUREMENT RESULTS	11
4. CH	IANNEL SEPARATION TEST	14
4.1	MEASUREMENT PROCEDURE	14
4.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
4.3	MEASUREMENT RESULTS	14
5. 200	DB BANDWIDTH	20
5.1	MEASUREMENT PROCEDURE	20
5.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
5.3	MEASUREMENT RESULTS	20
6. HO	PPING CHANNEL NUMBER	26
6.1	MEASUREMENT PROCEDURE	26
6.2	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	26
6.3	MEASUREMENT RESULTS	26
7. TIN	ME OF OCCUPANCY (DWELL TIME)	28
7.1	MEASUREMENT PROCEDURE	28
7.2	MEASUREMENT RESULTS	28
8. MA	AXIMUM PEAK OUTPUT POWER	34
8.1	MEASUREMENT PROCEDURE	34

8.2	MEASUREMENT RESULTS	34
9. BAN	ID EDGE	40
9.1	MEASUREMENT PROCEDURE	40
	LIMIT	
	MEASUREMENT RESULTS	
10. AN	TENNA APPLICATION	47
10.1	ANTENNA REQUIREMENT	47
10.2	MEASUREMENT RESULTS	47
11. CO	NDUCTED SPURIOUS EMISSIONS	48
11.1	MEASUREMENT PROCEDURE	48
11.2.	MEASUREMENT RESULTS	48
12 TF	ST FOLIPMENT LIST	51

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test

This device is a Watertight stereo receiver with BT, FM, USB playing and AUX IN functions, it's powered by DC 12V battery. For more details features, please refer to User's Manual.

Manufacturer : HASDA Electric Ltd.

Address : No.4, Xianglong street, Changlong Village,

Huangjiang town, Dongguan City, Guangdong

Province, China

Power Supply : DC 12V Battery

Model name : H-870

BT Version : 2.1+EDR

Frequency: : 2402-2480MHz

Modulation : GFSK, $\pi/4$ -DQPSK, 8DPSK

Number of Channel : 79

Channel space : 1MHz

Antenna Type : PCB

Antenna Gain : 0 dBi (declared by manufacturer)

Note : None

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AAOYH870BT filing to comply with Section 15.247 of the FCC Part 15 (2014), Subpart C Rule.

1.3 Test Methodology

The radiated emission measurement was performed according to the procedures in ANSI C63.4 (2009) and DA 00-705. Radiated emission measurement was performed in semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

None

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

1.6 Test Facility and Location

Listed by FCC, August 02, 2011 The Certificate Registration Number is 665078. Listed by Industry Canada, July 01, 2011 The Certificate Registration Number is 9743A.

Dongguan NTC Co., Ltd.

(Full Name: Dongguan Nore Testing Center Co., Ltd.)

Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong, China (Full Name: Building D, Gaosheng Science & Technology Park, Zhouxi Longxi Road, Nancheng District, Dongguan, Guangdong, China.

1.7 Summary of Test Results

FCC Rules	Description Of Test	Result
§15.247(a)(1)	Channel Separation test	Compliant
§15.247(a)(1)	20dB Bandwidth	Compliant
§15.247(a)(1)(iii)	Hopping Channel Number	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(b)	Max Peak output Power test	Compliant
§15.247(d)	Band edge test	Compliant
§15.207 (a)	AC Power Conducted Emission	N/A see note
§15.247(d),§15.209, §15.205	Radiated Emission	Compliant
§15.203	Antenna Requirement	Compliant
§15.247(d)	Conducted Spurious Emission	Compliant

Note: Due to this EUT is powered by battery only, the AC Power Conducted Emission is not applicable.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Special Accessories

Not available for this EUT intended for grant.

2.3 Description of test modes

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and normal mode is programmed. The Lowest, middle and highest channel were chosen for testing, and all packets DH1, DH3 and DH5 mode in all modulation type GFSK, $\pi/4$ -DQPSK, 8DPSK were tested.

2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

FCC ID: 2AAOYH870BT

3. Radiated Emission Test

3.1 Test SET-UP (Block Diagram of Configuration)

3.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz

3.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

3.2 Measurement Procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- e. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

For 30MHz to 1GHz:

Sept the spectrum analyzer as: RBW=120kHz, VBW=300kHz, Detector=Quasi-Peak

For Above 1GHz:

Set the spectrum analyzer as: RBW=1MHz, VBW=3MHz, Detector=Peak. Set the spectrum analyzer as: RBW=1MHz, VBW=10Hz, Detector=Peak.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band	Lovol	Desclution Dendwidth	Video Dendwidth
(MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
Above 1000	Average	1 MHz	10 Hz

3.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark : (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

3.4 Measurement Results

Operation Mode: TX (the worst case GFSK, Lowest channel)
Frequency Range: 9KHz~1GHz Temperature: 21 °C
Test Result: PASS Humidity: 48 %
Measured Distance: 3m Test By: Sance

Test Date: December 25, 2014

Freq.	Ant.Pol.	Reading	Factor	Emission	Limit	Margin	Note
		Level		Level	3m		
(MHz)	H/V	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
47.4600	V	33.80	-13.50	20.30	40.00	-19.70	QP
71.7100	V	39.05	-17.95	21.10	40.00	-18.90	QP
167.7400	V	43.79	-17.89	25.90	43.50	-17.60	QP
191.9900	V	46.11	-16.51	29.60	43.50	-13.90	QP
121.1800	Н	37.68	-14.18	23.50	43.50	-20.00	QP
191.9900	Н	45.71	-13.51	32.20	43.50	-11.30	QP

Other emissions are lower than 10dB below the allowable limit.

Note: (1) Emission Level= Reading Level + Factor

- (2) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (3) Measurement uncertainty: ±3.4dB
- (4) Loop antenna used for the emission below 30MHz.
- (5) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

Modulation: GFSK (the worst case)

Frequency Range: 1-25GHz Test Date: December 25, 2014

Test Result: PASS Temperature: 21 °C Measured Distance: 3m Humidity: 48 %

Test By: Sance

Freq. (MHz)	Ant.Pol. (H/V)	Rea Level(•	Factor (dB/m)	Emissio (dBı			t 3m V/m)	Maı (d	•
(IVITIZ)	(PK	AV	(ub/III)	PK	AV	PK	AV	PK	AV
			Oper	ation Mo	de: TX M	lode (Lo	w)			
4804	V	48.59	35.14	14.63	63.22	49.77	74.00	54.00	-10.78	-4.23
7206	V	42.02	26.42	20.68	62.70	47.10	74.00	54.00	-11.30	-6.90
4804	Н	46.95	34.76	14.63	61.58	49.39	74.00	54.00	-12.42	-4.61
7206	Н	40.37	26.58	20.68	61.05	47.26	74.00	54.00	-12.95	-6.74
			Ope	ration Mo	ode: TX N	ode (Mi	d)			
4882	V	48.32	35.79	14.97	63.29	50.76	74.00	54.00	-10.71	-3.24
7323	V	43.64	29.42	20.91	64.55	50.33	74.00	54.00	-9.45	-3.67
4882	Н	45.29	35.82	14.97	60.26	50.79	74.00	54.00	-13.74	-3.21
7323	Н	40.32	27.64	20.91	61.23	48.55	74.00	54.00	-12.77	-5.45
			Oper	ation Mo	de: TX M	ode (Hig	gh)			
4960	V	46.71	35.09	15.30	62.01	50.39	74.00	54.00	-11.99	-3.61
7440	V	41.00	28.08	21.16	62.16	49.24	74.00	54.00	-11.84	-4.76
4960	Н	44.03	34.07	15.30	59.33	49.37	74.00	54.00	-14.67	-4.63
7440	Н	40.59	25.39	21.16	61.75	46.55	74.00	54.00	-12.25	-7.45

Note: (1) All Readings are Peak Value and AV.

- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (4) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty: ±3.7dB.
- (6) Horn antenna used for the emission over 1000MHz.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

4. Channel Separation test

4.1 Measurement Procedure

Minimum Hopping Channel Carrier Frequency Separation, FCC Rule 15.247(a)(1):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable, and using the MARKER and Max-Hold function to record the separation of two adjacent channels.

4.2 Test SET-UP (Block Diagram of Configuration)

4.3 Measurement Results

Modulation: GFSK, $\pi/4$ -DQPSK, 8DPSK

RBW: 100KHz VBW: 300KHz

Packet: DH5 Spectrum Detector: PK

Test By: Sance Test Date: Dec. 25, 2014

Temperature : 21 $^{\circ}$ Humidity : 48 $^{\circ}$

Test Result: PASS

Channel number	Channel	Separation Read	Separation Limit				
Charmer number		•	•				
	frequency (MHz)	Value (KHz)	(KHz)				
		GFSK					
Lowest	2402	1005	>880				
Middle	2441	1000	>875				
Highest	2480	1000	>880				
	π	/4-DQPSK					
Lowest	2402	1000	>836.7				
Middle	2441	1005	>833.3				
Highest	2480	1005	>824.0				
8DPSK							
Lowest	2402	1005	>862				
Middle	2441	1005	>814				
Highest	2480	1000	>846				

FCC ID: 2AAOYH870BT

GFSK Lowest Channel

Date: 25.DEC.2014 10:51:15

GFSK Middle Channel

Date: 25.DEC.2014 10:52:36

FCC ID: 2AAOYH870BT

GFSK Highest Channel

Date: 25.DEC.2014 10:54:37

π/4-DQPSK Lowest Channel

Date: 25.DEC.2014 10:56:08

Report No.: NTC141276
FCC ID: 2AAOYH870BT

π/4-DQPSK Middle Channel

Date: 25.DEC.2014 10:58:18

$\pi/4$ -DQPSK Highest Channel

Date: 25.DEC.2014 10:59:44

Report No.: NTC141276
FCC ID: 2AAOYH870BT

8DPSK Lowest Channel

Date: 25.DEC.2014 11:01:28

8DPSK Middle Channel

Date: 25.DEC.2014 11:02:55

FCC ID: 2AAOYH870BT

8DPSK Highest Channel

Date: 25.DEC.2014 11:04:26

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

5. 20dB Bandwidth

5.1 Measurement Procedure

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a)(1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

5.2 Test SET-UP (Block Diagram of Configuration)

5.3 Measurement Results

Refer to attached data chart.

Modulation: GFSK, $\pi/4$ -DQPSK, 8DPSK

RBW: 30KHz VBW: 100KHz Packet: DH5 Spectrum Detector: PK

Test By: Sance Test Date: Dec. 25, 2014

Temperature : 21 $^{\circ}$ Humidity : 48 $^{\circ}$

Test Result: PASS

Channel frequency (MHz)	20dB Down BW(kHz)
GF	SK
2402	880
2441	875
2480	880
π/4-D	QPSK
2402	1255
2441	1250
2480	1236
8DI	PSK
2402	1293
2441	1221
2480	1269

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

GFSK Lowest Channel

Date: 25.DEC.2014 10:44:25

GFSK Middle Channel

Date: 25.DEC.2014 10:45:11

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

GFSK Highest Channel

Date: 25.DEC.2014 10:45:44

π/4-DQPSK Lowest Channel

Date: 25.DEC.2014 10:46:36

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

π/4-DQPSK Middle Channel

Date: 25.DEC.2014 10:47:09

$\pi/4\text{-DQPSK}$ Highest Channel

Date: 25.DEC.2014 10:47:41

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

8DPSK Lowest Channel

Date: 25.DEC.2014 10:48:12

8DPSK Middle Channel

Date: 25.DEC.2014 10:48:46

Report No.: NTC1412760 FCC ID: 2AAOYH870BT

8DPSK Highest Channel

Date: 25.DEC.2014 10:49:19

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

6. Hopping Channel Number

6.1 Measurement Procedure

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a)(1)(iii):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, and the spectrum analyzer set to MAX HOLD readings were taken for 3-5 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

6.2 Test SET-UP (Block Diagram of Configuration)

EUT	Spectrum Analyzer
E01	Spectrum Analyzer

6.3 Measurement Results

Modulation GFSK, $\pi/4$ -DQPSK, 8DPSK

RBW: 100KHz VBW: 300KHz

Packet: DH5 Spectrum Detector: PK

Test By: Sance Test Date: Dec. 25, 2014

Temperature : 21 $^{\circ}$ C Humidity : 48 $^{\circ}$

Test Result: PASS

Hopping Channel Frequency Range	Number of Hopping Channels	Limit
2402-2480	79	≥15

The worst case: GFSK

FCC ID: 2AAOYH870BT

GFSK

Date: 25.DEC.2014 12:17:58

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

7. Time of Occupancy (Dwell Time)

7.1 Measurement Procedure

Average Channel Occupancy Time, FCC Ref:15.247(a)(1)(iii):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. The spectrum analyzer center frequency was set to one of the known hopping channels. The Sweep was set to 10 ms, the SPAN was set to Zero SPAN. The time duration of the transmissions so captured was measured with the Marker Delta function

7.2 Measurement Results

The maximum number of hopping channels in 31.6s (0.4s/Channel x 79 Channel)

Refer to attached data chart.

Modulation : GFSK, $\pi/4$ -DQPSK, 8DPSK

RBW: 1MHz VBW: 3MHz Spectrum Detector: PK Test By: Sance Test Date: Dec. 25, 2014 Temperature: 21° C Test Result: PASS Humidity: 48°

Packet	Frequency (MHz)	Result (msec)	Limit (msec)				
		GFSK					
DH1	2441	0.429 (ms)*(1600/(2*79))*31.6=137.3	400				
DH3	2441	1.691 (ms)*(1600/(4*79))*31.6=270.6	400				
DH5	2441	2.933 (ms)*(1600/(6*79))*31.6=312.9	400				
		π/4-DQPSK					
2-DH1	2441	0.425 (ms)*(1600/(2*79))*31.6=136.0	400				
2-DH3	2441	1.699 (ms)*(1600/(4*79))*31.6=271.8	400				
2-DH5	2441	2.933 (ms)*(1600/(6*79))*31.6=312.9	400				
	8DPSK						
3-DH1	2441	0.425 (ms)*(1600/(2*79))*31.6=136.0	400				
3-DH3	2441	1.691 (ms)*(1600/(4*79))*31.6=270.6	400				
3-DH5	2441	2.945 (ms)*(1600/(6*79))*31.6=314.1	400				

FCC ID: 2AAOYH870BT

Date: 25.DEC.2014 11:07:26

GFSK DH3

Date: 25.DEC.2014 11:08:45

Report No.: NTC1412760 FCC ID: 2AAOYH870BT

Date: 25.DEC.2014 11:09:50

π/4-DQPSK 2-DH1

Date: 25.DEC.2014 11:10:52

FCC ID: 2AAOYH870BT

$\pi/4$ -DQPSK 2-DH3

Date: 25.DEC.2014 11:11:36

π/4-DQPSK 2-DH5

Date: 25.DEC.2014 11:12:20

FCC ID: 2AAOYH870BT

8DPSK 3-DH1

Date: 25.DEC.2014 11:13:18

8DPSK 3-DH3

Date: 25.DEC.2014 11:14:02

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1412766F FCC ID: 2AAOYH870BT

8DPSK 3-DH5

Date: 25.DEC.2014 11:14:40

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

8. MAXIMUM PEAK OUTPUT POWER

8.1 Measurement Procedure

Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm. Cable loss was considered during this measurement.

8.2 Measurement Results

Refer to attached data chart.

Modulation : GFSK, $\pi/4$ -DQPSK, 8DPSK

RBW: 3MHz VBW: 3MHz

Spectrum Detector: PK Test Date: Dec. 25, 2014

Test By: Sance Temperature : 21 $^{\circ}$ C Test Result: PASS Humidity : 48 $^{\circ}$

Channel Frequency (MHz)	Cable Loss dB	Peak Power output(mW)	Peak Power output(dBm)	Peak Power Limit(dBm)	Pass/Fail
GFSK					
2402.00	1.5	3.34	5.24	30	PASS
2441.00	1.5	3.30	5.18	30	PASS
2480.00	1.5	3.23	5.09	30	PASS
π/4-DQPSK					
2402.00	1.5	2.64	4.22	21	PASS
2441.00	1.5	2.49	3.97	21	PASS
2480.00	1.5	2.29	3.60	21	PASS
8DPSK					
2402.00	1.5	2.73	4.36	21	PASS
2441.00	1.5	2.62	4.19	21	PASS
2480.00	1.5	2.45	3.89	21	PASS

Report No.: NTC141276
FCC ID: 2AAOYH870BT

GFSK Lowest Channel

Date: 25.DEC.2014 11:16:03

GFSK Middle Channel

Date: 25.DEC.2014 11:16:23

Report No.: NTC141276
FCC ID: 2AAOYH870BT

GFSK Highest Channel

Date: 25.DEC.2014 11:16:41

π/4-DQPSK Lowest Channel

Date: 25.DEC.2014 11:17:44

Report No.: NTC141276
FCC ID: 2AAOYH870BT

π/4-DQPSK Middle Channel

Date: 25.DEC.2014 11:18:03

$\pi/4\text{-DQPSK}$ Highest Channel

Date: 25.DEC.2014 11:18:30

FCC ID: 2AAOYH870BT

8DPSK Lowest Channel

Date: 25.DEC.2014 11:19:27

8DPSK Middle Channel

Date: 25.DEC.2014 11:19:46

FCC ID: 2AAOYH870BT

8DPSK Highest Channel

Date: 25.DEC.2014 11:20:01

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

9. Band Edge

9.1 Measurement Procedure

Out of Band Conducted Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. The resolution bandwidth is set to 100KHz, and the video bandwidth set to 300KHz.

9.2 Limit

15.247(d)In any 100KHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.3 Measurement Results

Please see below test table and plots.

For Radiated Emission The worst case: GFSK

Freq. (MHz)	Ant.Pol. (H/V)	Reading Level(dBuV)		Factor (dB/m)	Emission Level (dBuV)		Limit 3m (dBuV/m)		Margin (dB)	
		PK	AV	(ub/III)	PK	AV	PK	AV	PK	AV
2396.760	Н	40.06	26.82	8.07	48.13	34.89	74.00	54.00	-25.87	-19.11
2397.400	V	40.17	26.82	8.09	48.26	34.91	74.00	54.00	-25.74	-19.09
2483.770	Н	40.35	26.11	8.37	48.72	34.48	74.00	54.00	-25.28	-19.52
2493.170	V	39.99	26.05	8.39	48.38	34.44	74.00	54.00	-25.62	-19.56

Note: (1) Emission Level= Reading Level + Factor

(2) Factor= Antenna Gain + Cable Loss – Amplifier Gain

(3) Horn antenna used for the emission over 1000MHz.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

For RF Conducted

GFSK Lowest Channel

Date: 25.DEC.2014 11:22:46

FCC ID: 2AAOYH870BT

GFSK Highest Channel

Date: 25.DEC.2014 11:23:45

Date: 25.DEC.2014 11:24:29

FCC ID: 2AAOYH870BT

π/4-DQPSK Lowest Channel

Date: 25.DEC.2014 11:26:07

Date: 25.DEC.2014 11:27:45

FCC ID: 2AAOYH870BT

$\pi/4\text{-DQPSK}$ Highest Channel

Date: 25.DEC.2014 11:29:59

Date: 25.DEC.2014 11:30:36

FCC ID: 2AAOYH870BT

8DPSK Lowest Channel

Date: 25.DEC.2014 11:33:58

Date: 25.DEC.2014 11:35:51

FCC ID: 2AAOYH870BT

Date: 25.DEC.2014 11:38:26

Date: 25.DEC.2014 11:39:42

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

10. Antenna Application

10.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

10.2 Measurement Results

The antenna is integrated on the main PCB and no consideration of replacement, and the best case gain of the antenna is 0dBi. So, the antenna is consider meet the requirement.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

11. Conducted Spurious Emissions

11.1 Measurement Procedure

Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband.

11.2. Measurement Results

Please refer to following plots, the worst case (GFSK) was shown.

Report No.: NTC1412766F FCC ID: 2AAOYH870BT

Lowest Channel

Date: 25.DEC.2014 11:43:21

Note: Sweep points=30001pts

Middle Channel

Date: 25.DEC.2014 11:43:51

Note: Sweep points=30001pts

FCC ID: 2AAOYH870BT

Highest Channel

Date: 25.DEC.2014 11:44:40

Note: Sweep points=30001pts

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1412766F FCC ID: 2AAOYH870BT

12. Test Equipment List

Description	Manufacturer	Model Number	Serial Number	Characteristics	Calibration Date	Calibration Due Date
Test Receiver	Rohde & Schwarz	ESCI7	100837	9KHz~7GHz	Nov. 24, 2014	Nov. 23, 2015
Antenna	Schwarzbeck	VULB9162	9162-010	30MHz~7GHz	Nov. 27, 2014	Nov. 26, 2015
Positioning Controller	UC	UC 3000	N/A	0~360°, 1-4m	N/A	N/A
Color Monitor	SUNSPO	SP-140A	N/A	N/A	N/A	N/A
Single Phase Power Line Filter	SAEMC	PF201A-32	110210	32A	N/A	N/A
3 Phase Power Line Filter	SAEMC	PF401A-200	110318	200A	N/A	N/A
DC Power Filter	SAEMC	PF301A-200	110245	200A	N/A	N/A
Cable	Huber+Suhner	CBL2-NN-1M	22390001	9KHz~7GHz	Nov. 08, 2014	Nov. 07, 2015
Cable	Huber+Suhner	CIL02	N/A	9KHz~7GHz	Nov. 08, 2014	Nov. 07, 2015
RF Cable	Huber+Suhner	SF-104	MY16559/4	9KHz~25GHz	Mar. 08, 2014	Mar. 07, 2015
Power Amplifier	HP	HP 8447D	1145A00203	100KHz~1.3GHz	Nov. 08, 2014	Nov. 07, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-372	15GHz~26.5GHz	Oct.24, 2014	Oct.23, 2015
Horn Antenna	Com-Power	AH-118	071078	1GHz~18GHz	Nov. 06, 2014	Nov. 05, 2015
Loop antenna	Daze	ZA30900A	0708	9KHz~30MHz	Oct.11, 2014	Oct.10, 2015
Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	20Hz~26.5GHz	Sep. 02, 2014	Sep. 01, 2015
Pre-Amplifier	Agilent	8449B	3008A02964	1GHz~26.5GHz	Nov. 04, 2014	Nov. 03, 2015
L.I.S.N.	Rohde & Schwarz	ENV 216	101317	9KHz~30MHz	Nov. 08, 2014	Nov. 07, 2015