

LEARNING PROGRESS REVIEW

Week 13

Entropy Team

DAFTAR ISI

1.

Communication and Presentation Skill

Presentation tips and data storytelling

2.

Evaluation Metrics and Hyperparameter Tuning

Confusion matrix, cross validation, grid search

3.

Advanced Machine Learning

Feature selection and explainable AI

COMMUNICATION AND PRESENTATION SKILL

Presentation tips and data storytelling

Public Speaking

- Orang lain umumnya memahami apa yang kita katakan
- Agar orang lain mau mendengarkan kita, itu yang menjadi tantangan
- Oleh sebab itu, konten dalam public speaking kebanyakan merupakan unsur psikologis dibanding unsur teknis
- Tips dalam public speaking
 - Percaya diri, anggap diri sendiri sebagai orang yang paling memahami materi yang akan kita sampaikan
 - Jangan sampaikan persis seperti apa yang tertulis pada slide

Presentation Tips

- Buat presentasi yang sederhana
- Hindari penggunaan animasi yang tidak diperlukan
- Perhatikan penggunaan jenis font
- Perhatikan warna, sesuaikan dengan tema perusahaan atau client
- Sesuaikan konten dengan pendengar
- Buat alur presentasi yang jelas

Valuable Insight

- Banyak perusahaan yang kesulitan mengubah data yang banyak menjadi insight yang berguna
- Tidak peduli tools apa yang kita gunakan, yang penting adalah bagaimana cara kita menggunakannya
- Akan tetapi, tools yang bagus juga memiliki keunggulan tersendiri

Valuable Insight

Langkah agar kita mendapatkan insight yang berguna

- Kenali calon audience
- Tentukan tujuan yang jelas
- Tentukan data yang akan digunakan
- Tentukan cara menyampaikan cerita
- Gunakan feedback untuk perbaikan di kemudian hari

Data Storytelling

Langkah untuk menyampaikan cerita dengan data

- Pahami konteks
- Gunakan jenis visualisasi yang sesuai
- Hilangkan bagian dari visualisasi yang tidak penting
- Highlight bagian yang ingin dijadikan fokus utama
- Berpikirlah seperti designer
- Sampaikanlah cerita yang menarik

EVALUATION METRICS AND HYPERPARAMETER TUNING

Confusion matrix, cross validation, grid search

Regression Case

Metrics yang umum digunakan untuk menilai performa model regresi:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (R^2)

Regression Case

Model regresi dikatakan bagus jika:

- Nilai MAE, MSE, atau RMSE relatif rendah
- Nilai R-squared mendekati 1

Classification Case

Metrics yang umum digunakan untuk menilai performa model klasifikasi:

- Confusion matrix
- Accuracy
- Precision
- Recall
- F1 score
- ROC AUC curve

Confusion Matrix

Prediction

		Positive	Negative
Actual	Positive	True Positive	False Negative
	Negative	False Positive	True Negative

- Confusion matrix adalah tabel yang berisikan kelompok hasil prediksi
- Dalam confusion matrix, terdapat 2 jenis error
 - Type 1 (false positive)
 - Type 2 (false negative)

Confusion Matrix

Dari confusion matrix, kita dapat menghitung beberapa metrics seperti:

- Accuracy, yaitu kemampuan model untuk memprediksi nilai positif (true positive) dan negatif (true negative) secara tepat
- **Precision**, yaitu kemampuan model untuk memprediksi nilai positif dan meminimalkan *false positive*
- Recall, yaitu kemampuan model untuk memprediksi nilai positif dan meminimalkan false negative
- F1 score, yaitu rata-rata antara precision dan recall

ROC – AUC Curve

- Sumbu dari grafik ROC dan AUC terbentuk dari nilai true positive rate (TPR) dan false positive rate (FPR)
- Model klasifikasi dikatakan bagus jika:
 - ROC mendekati pojok kiri atas
 - AUC mendekati 1

Cross Validation

Langkah melakukan cross validation:

- Pecah dataset menjadi training set dan testing set
- Pada training set, ubah sebagian data menjadi validation set
- Validation set digunakan untuk menguji apakah model sudah sesuai harapan atau belum
- Testing set digunakan untuk pengujian akhir

K-Fold Cross Validation

Grid Search

Pseudocode Hyperparameter_One = [a, b, c] Hyperparameter_Two = [x, y, z]

- Grid search merupakan salah satu metode untuk mencari hyperparameter yang terbaik
- Secara konsep, grid search akan membuat beragam model dengan semua kombinasi hyperparameter yang telah ditentukan
- Setelah proses grid search selesai, model dengan nilai terbaik dapat dilihat hyperparameter-nya

ADVANCED MACHINE LEARNING

Feature selection and explainable AI

Feature Selection

- Manfaat melakukan feature selection:
 - Mengurangi beban komputasi
 - Mengurangi data redundant
 - Mengurangi overfitting
 - Mengurangi kompleksitas model
 - Umumnya meningkatkan performa model
- **Contoh** metode *feature selection*:
 - Filter method
 - Wrapper method
 - Embedded method

Filter Method

- Pada filter method, feature selection dilakukan dengan menggunakan metode uji statistik
- Contoh uji statistik pada scikit-learn:
 - ANOVA
 - Chi-square
 - Mutual information

Wrapper Method

- Pada wrapper method, feature selection dilakukan dengan membuat beberapa model berdasarkan kombinasi feature
- Contoh wrapper method:
 - Forward selection
 - Backward elimination
 - Recursive feature elimination (RFE)

Embedded Method

- Pada embedded method, feature selection dapat dilakukan oleh algoritma model itu sendiri
- Model yang dapat digunakan yaitu model yang memiliki atribut feature importance atau koefisien
- Contoh model yang dapat digunakan:
 - Lasso regression
 - Ridge regression
 - Decision tree

Explainable Al

- SHAP (SHapley Additive exPlanations) adalah salah satu metode untuk menginterpretasikan hasil prediksi dari model
 - SHAP dapat digunakan untuk mengetahui **pengaruh** dari setiap **feature** terhadap hasil prediksi

THANKS

Entropy Team

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**