

### **General information**

### Designation

Ochroma spp. (MD) L

#### **Tradenames**

FLEXICORE, CONTOURKORE, PRO-BALSA

#### Typical uses

Cores for sandwich structures; model building; floatation; insulation;

### **Composition overview**

### **Compositional summary**

| Cellulose/Hemicellulose/Lignin/12%H2O |                 |   |
|---------------------------------------|-----------------|---|
| Material family                       | Natural         |   |
| Base material                         | Wood (tropical) |   |
| Renewable content                     | 100             | % |

## **Composition detail (polymers and natural materials)**

| Wood | 100 | % |
|------|-----|---|
|      |     |   |

#### **Price**

| Price                 | * 3.04 | - | 4.88 | USD/lb   |
|-----------------------|--------|---|------|----------|
| Price per unit volume | * 32.3 | - | 64   | USD/ft^3 |

## **Physical properties**

| Density          | 0.00614 | - | 0.00759 | lb/in^3 |
|------------------|---------|---|---------|---------|
| Relative density | 0.1     | - | 0.15    |         |
| Cells/volume     | 8.19e6  | - | 1.64e7  | /in^3   |
| Anisotropy ratio | 10      | - | 30      |         |

## **Mechanical properties**

| Young's modulus                        | 0.609    | - | 0.754  | 10^6 psi |
|----------------------------------------|----------|---|--------|----------|
| Yield strength (elastic limit)         | * 1.65   | - | 2.03   | ksi      |
| Tensile strength                       | 2.32     | - | 3.63   | ksi      |
| Elongation                             | * 1.03   | - | 1.26   | % strain |
| Compressive strength                   | 1.23     | - | 1.81   | ksi      |
| Compressive stress @ 25% strair        | 1.09     | - | 1.31   | ksi      |
| Flexural modulus                       | 0.493    | - | 0.609  | 10^6 psi |
| Flexural strength (modulus of rupture) | 2.61     | - | 3.19   | ksi      |
| Shear modulus                          | * 0.045  | - | 0.0551 | 10^6 psi |
| Shear strength                         | * 0.464  | - | 0.566  | ksi      |
| Bulk modulus                           | * 0.0116 | - | 0.0145 | 10^6 psi |
|                                        |          |   |        |          |



| Poisson's ratio                          | * 0.35   | - | 0.4    |                  |
|------------------------------------------|----------|---|--------|------------------|
| Shape factor                             | 5.5      |   |        |                  |
| Hardness - Vickers                       | * 0.35   | - | 0.43   | HV               |
| Hardness - Brinell                       | * 9.3    | - | 11.3   | НВ               |
| Hardness - Janka                         | * 78.7   | - | 96.7   | lbf              |
| Fatigue strength at 10^7 cycles          | * 0.783  | - | 0.957  | ksi              |
| Mechanical loss coefficient (tan delta)  | * 0.0122 | - | 0.015  |                  |
| Densification strain                     | 0.65     | - | 0.75   |                  |
| Differential shrinkage (radial)          | * 0.05   | - | 0.06   | %                |
| Differential shrinkage (tangential)      | * 0.07   | - | 0.09   | %                |
| Radial shrinkage (green to oven-dry)     | * 3.2    | - | 7      | %                |
| Tangential shrinkage (green to oven-dry) | 4        | - | 4.8    | %                |
| Volumetric shrinkage (green to oven-dry) | 6.8      | - | 8.3    | %                |
| Work to maximum strength                 | * 0.157  | - | 0.192  | ft.lbf/in^3      |
| Impact & fracture properties             |          |   |        |                  |
| Fracture toughness                       | 0.455    | - | 0.546  | ksi.in^0.5       |
| Thermal properties                       |          |   |        |                  |
| Glass temperature                        | 171      | - | 216    | F                |
| Maximum service temperature              | 248      | - | 284    | F                |
| Minimum service temperature              | * -99.4  | - | -9.4   | F                |
| Thermal conductivity                     | * 0.052  | - | 0.0693 | BTU.ft/hr.ft^2.¶ |
| Specific heat capacity                   | 0.396    | - | 0.408  | BTU/lb. F        |
|                                          | * 1.11   | _ | 6.11   | µstrain/℉        |

| Electrical resistivity                       | * 2.36e13 | - | 7.87e13 | μohm.in |
|----------------------------------------------|-----------|---|---------|---------|
| Dielectric constant (relative permittivity)  | * 2.45    | - | 3       |         |
| Dissipation factor (dielectric loss tangent) | * 0.021   | - | 0.026   |         |
| Dielectric strength (dielectric breakdown)   | 123       | - | 124     | V/mil   |

## **Magnetic properties**

| Magnetic type | Non-magnetic |
|---------------|--------------|
|---------------|--------------|

## **Optical properties**

| Transparency | Opaque |
|--------------|--------|
|--------------|--------|

### **Critical materials risk**

## **Durability**



| Water (fresh)           | Limited use      |
|-------------------------|------------------|
| Water (salt)            | Limited use      |
| Weak acids              | Limited use      |
| Strong acids            | Unacceptable     |
| Weak alkalis            | Limited use      |
| Strong alkalis          | Unacceptable     |
| Organic solvents        | Acceptable       |
| Oxidation at 500C       | Unacceptable     |
| UV radiation (sunlight) | Good             |
| Flammability            | Highly flammable |

# Primary production energy, CO2 and water

| Embodied energy, primary production | * 4.99e3 | - | 5.5e3  | BTU/lb  |
|-------------------------------------|----------|---|--------|---------|
| CO2 footprint, primary production   | * 0.574  | - | 0.633  | lb/lb   |
| Water usage                         | * 1.84e4 | - | 2.03e4 | in^3/lb |

## Processing energy, CO2 footprint & water

| Coarse machining energy (per unit wt removed) | * 427    | - | 472    | BTU/lb |
|-----------------------------------------------|----------|---|--------|--------|
| Coarse machining CO2 (per unit wt removed)    | * 0.0745 | - | 0.0823 | lb/lb  |
| Fine machining energy (per unit wt removed)   | * 2.43e3 | - | 2.69e3 | BTU/lb |
| Fine machining CO2 (per unit wt removed)      | * 0.424  | - | 0.469  | lb/lb  |
| Grinding energy (per unit wt removed)         | * 4.66e3 | - | 5.15e3 | BTU/lb |
| Grinding CO2 (per unit wt removed)            | * 0.813  | - | 0.899  | lb/lb  |

## Recycling and end of life

| Recycle                            | ×        |   |        |        |
|------------------------------------|----------|---|--------|--------|
| Recycle fraction in current supply | 8.55     | - | 9.45   | %      |
| Downcycle                          | ✓        |   |        |        |
| Combust for energy recovery        | ✓        |   |        |        |
| Heat of combustion (net)           | * 8.49e3 | - | 9.16e3 | BTU/lb |
| Combustion CO2                     | * 1.69   | - | 1.78   | lb/lb  |
| Landfill                           | ✓        |   |        |        |
| Biodegrade                         | ✓        |   |        |        |

### **Notes**

#### Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

### Links

| ProcessUniverse |  |  |
|-----------------|--|--|
| Reference       |  |  |



Page 4 of 4



Shape