Langages formels - CM11

Clément AGRET clement.agret@cyu.fr

CY Cergy Paris Université

Au-delà des langages algébriques

La machine de Turing

Emulations

Thèse de Church-Turing

Hierarchie de Chomsky

Les niveaux de la Hierarchie de Chomsky

	Langages réguliers	Langages algébriques	Langages décidables
Caractérisation			
Décidable par :			
Champ d'utilisation			

Au-delà des langages algébriques

La machine de Turing

Emulations

Thèse de Church-Turing

La machine de Turing 1936

Une machine de Turing, c'est :

- un automate,
- un ruban bi-infini,
- une tête de lecture/écriture que l'on peut déplacer.

Machine de Turing : idée

Définition

Definition (Machine de Turing)

Une machine de Turing est définie par :

- A un alphabet
- ullet un symbole blanc B
- Q:
- \bullet δ :
- q₀:
- F :

Exemple: multiplication par 2

Exemple: incrémentation

Exemple: $a^n b^n$

Un simulateur

Plus fort que les langages algébriques!

- $\{a^n b^n c^n d^n : n \in \mathbb{N}\}$ non algébrique.
- Machine de Turing pour ce langage :

Au-delà des langages algébriques

La machine de Turing

Emulations

Thèse de Church-Turing

Variantes de la définition

But : montrer la <u>robustesse</u> de la notion de calculabilité par MT.

Alphabet restreint

Proposition 1: Alphabet restreint

Toute machine de Turing sur un alphabet A est simulable par une machine de Turing sur l'alphabet $A'=\{0,1\}.$

Idée de preuve :

Machines à plusieurs rubans

Definition (Machine à plusieurs rubans)

Exemple

Equivalence k rubans

Proposition 2: Alphabet restreint

Toute machine de Turing à k rubans est simulable par une machine à 1 ruban.

Au-delà des langages algébriques

La machine de Turing

Emulations

Thèse de Church-Turing

Fonction calculable

Definition

 $f: A^{\mathbb{N}} \to A^{\mathbb{N}}$ est calculable si :

- elle est totale,
- elle est calculée par une machine de Turing (qui s'arrête donc tout le temps).

Thèse de Church

Thèse de Church

Toute fonction $\underline{\text{calculable m\'ecaniquement}}$ est calculable par machine de Turing.

Au-delà des langages algébriques

La machine de Turing

Emulations

Thèse de Church-Turing

Lemme de l'étoile pour les langages algébriques

Lemme de l'étoile pour les langages algébriques

Soit L un langage algébrique. Alors il existe une constante N telle que tout mot w de longueur supérieure à N peut se décomposer en w = xuyvz tel que

- **1** |uv| > 1,
- $|uyv| \leq N$
- $\exists \forall i \in \mathbb{N}, \ xu^i yv^i z \in L.$

Quelques liens

• Une machine de Turing fabriquée en légo