CS578 Statistical Machine Learning Lecture 12

Jean Honorio Purdue University

(based on slides by Tommi Jaakkola, MIT CSAIL)

Today's topics

- Generative probabilistic modeling
 - conditional Gaussian classifiers
- Maximum likelihood estimation
- Classification and decision boundary

Training/test data generation

 We assume that the training (and test) examples are drawn as samples (generated) from some unknown distribution

$$(\underline{x}, y) \sim P(\underline{x}, y)$$

Training/test data generation

 We assume that the training (and test) examples are drawn as samples (generated) from some unknown distribution

$$(\underline{x}, y) \sim P(\underline{x}, y) = P(\underline{x})P(y|\underline{x}) = P(\underline{x}|y)P(y)$$

• We can always think of these samples (\underline{x}, y) as having been generated in two steps: first y, then \underline{x} given y

$$y \sim P(y), \ \underline{x} \sim P(\underline{x}|y)$$

Training/test data generation

The two approaches

There are two broad approaches to classification problems:

Discriminative (so far)

- model = a set of classifiers
- choose f that classifies
 training examples well
- label new inputs \underline{x} based on y = f(x)

Generative (preview)

- model = a set of distributions $P(\underline{x}, y; \theta)$ for any θ
- choose $P(\underline{x},y;\hat{\theta})$ such that training examples are likely samples from this distribution
- label new inputs \underline{x} as y where y maximizes $P(\underline{x}, y; \hat{\theta})$

• The label selection is simply a biased coin flip (Bernoulli distribution) indicator function: $\delta(a,b)=1$ if a=b $\delta(a,b)=0$ if $a\neq b$

$$P(y;\theta) = q^{\delta(y,1)}(1-q)^{\delta(y,-1)}$$

where q is included in θ (parameters that define the full distribution)

• We can use simple spherical Gaussian models for the class-conditional distributions \underline{x} and $\underline{\mu}$, are

$$\begin{split} P(\underline{x}|y;\theta) &= N(\underline{x};\, \underline{\mu}_y, \sigma_y^2 I) \\ &= \frac{1}{(2\pi\sigma_y^2)^{d/2}} \exp\left\{-\frac{1}{2\sigma_y^2} \|\underline{x} - \underline{\mu}_y\|^2\right\} \end{split} \text{ d-dimensional vectors}$$

We can also use full Gaussian models

$$P(\underline{x}|y;\theta) = N(\underline{x}; \, \underline{\mu}_y, \Sigma_y)$$

$$= \frac{1}{(2\pi)^{d/2} |\Sigma_y|^{1/2}} \exp\left\{-\frac{1}{2}(\underline{x} - \underline{\mu}_y)^T \Sigma_y^{-1} (\underline{x} - \underline{\mu}_y)\right\}$$

Generative modeling: estimation

Our parameterized Gaussian model is

$$P(\underline{x}, y; \theta) = P(\underline{x}|y; \theta)P(y; \theta) = N(\underline{x}; \mu_y, \sigma_y^2 I) q^{\delta(y, 1)} (1 - q)^{\delta(y, -1)}$$

• We find parameters $\theta = (\underline{\mu}_{+1}, \underline{\mu}_{-1}, \sigma_{+1}^2, \sigma_{-1}^2, q)$ that maximize the log-likelihood of the training data (examples and labels)

$$l(D; \theta) = \sum_{i=1}^{n} \log P(\underline{x}_i, y_i; \theta) = \sum_{i=1}^{n} \left[\log P(\underline{x}_i | y_i; \theta) + \log P(y_i; \theta) \right]$$

See Lecture 11, slide 20

Our parameterized Gaussian model is

$$P(\underline{x}, y; \theta) = P(\underline{x}|y; \theta)P(y; \theta) = N(\underline{x}; \mu_y, \sigma_y^2 I) q^{\delta(y, 1)} (1 - q)^{\delta(y, -1)}$$

• We find parameters $\theta = (\underline{\mu}_{+1}, \underline{\mu}_{-1}, \sigma_{+1}^2, \sigma_{-1}^2, q)$ that maximize the log-likelihood of the training data (examples and labels)

$$l(D; \theta) = \sum_{i=1}^{n} \log P(\underline{x}_i, y_i; \theta) = \sum_{i=1}^{n} \left[\log P(\underline{x}_i | y_i; \theta) + \log P(y_i; \theta) \right]$$
$$= \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right] +$$

Our parameterized Gaussian model is

$$P(\underline{x}, y; \theta) = P(\underline{x}|y; \theta)P(y; \theta) = N(\underline{x}; \mu_y, \sigma_y^2 I) q^{\delta(y, 1)} (1 - q)^{\delta(y, -1)}$$

• We find parameters $\theta = (\underline{\mu}_{+1}, \underline{\mu}_{-1}, \sigma_{+1}^2, \sigma_{-1}^2, q)$ that maximize the log-likelihood of the training data (examples and labels)

$$\begin{split} l(D;\theta) &= \sum_{i=1}^n \log P(\underline{x}_i,y_i;\theta) = \sum_{i=1}^n \left[\log P(\underline{x}_i|y_i;\theta) + \log P(y_i;\theta) \right] \\ &= \sum_{i=1}^n \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right] + \\ &+ \sum_{i=1}^n \left[\delta(y_i,1) \log q + \delta(y_i,-1) \log(1-q) \right] \\ & \qquad \qquad \text{indicator} \end{split}$$

function

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\frac{\partial}{\partial q}l(D;\theta) = \frac{\sum_{i=1}^{n} \delta(y_i, 1)}{q} - \frac{\sum_{i=1}^{n} \delta(y_i, -1)}{1 - q} = 0$$

See Lecture 11, slide 23

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\begin{split} \frac{\partial}{\partial q} l(D;\theta) = & \frac{\sum_{i=1}^n \delta(y_i,1)}{q} - \frac{\sum_{i=1}^n \delta(y_i,-1)}{1-q} = 0 \\ \Rightarrow & \hat{q} = \frac{1}{n} \sum_{i=1}^n \delta(y_i,1) \quad \text{fraction of points labeled +I} \end{split}$$

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\frac{\partial}{\partial \mu_y} l(D;\theta) =$$
 See Lecture II, slide 23

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\frac{\partial}{\partial \mu_y} l(D; \theta) = \sum_{i=1}^n \delta(y, y_i) \frac{1}{\sigma_y^2} (\underline{x}_i - \mu_y) = 0$$

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\begin{split} \frac{\partial}{\partial \mu_y} l(D;\theta) &= \sum_{i=1}^n \delta(y,y_i) \frac{1}{\sigma_y^2} (\underline{x}_i - \mu_y) = 0 \\ \Rightarrow \hat{\mu}_y &= \frac{1}{\sum_{i=1}^n \delta(y,y_i)} \sum_{i=1}^n \delta(y,y_i) \, \underline{x}_i \quad \text{average of points in class y} \end{split}$$

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\frac{\partial}{\partial \sigma_y^2} l(D; \theta) = \sum_{i=1}^n \delta(y, y_i) \left[-\frac{d}{2\sigma_y^2} + \frac{1}{2\sigma_y^4} ||\underline{x}_i - \hat{\mu}_y||^2 \right] = 0$$

See Lecture 11, slide 23

$$l(D; \theta) = \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi\sigma_{y_i}^2) - \frac{1}{2\sigma_{y_i}^2} ||\underline{x}_i - \mu_{y_i}||^2 \right]$$
$$+ \sum_{i=1}^{n} \left[\delta(y_i, 1) \log q + \delta(y_i, -1) \log(1 - q) \right]$$

$$\frac{\partial}{\partial \sigma_y^2} l(D; \theta) = \sum_{i=1}^n \delta(y, y_i) \left[-\frac{d}{2\sigma_y^2} + \frac{1}{2\sigma_y^4} ||\underline{x}_i - \hat{\mu}_y||^2 \right] = 0$$

$$\Rightarrow \hat{\sigma}_y^2 = \frac{1}{d \sum_{i=1}^n \delta(y, y_i)} \sum_{i=1}^n \delta(y, y_i) ||\underline{x}_i - \hat{\mu}_y||^2$$

average per dimension squared error in class y

Generative modeling: classification

Decision boundary

- Given \underline{x} , predict the label (+1 or -1) with highest probability
 - Predict label y = +1 if $P(y = 1 | \underline{x}; \hat{\theta}) > P(y = -1 | \underline{x}; \hat{\theta})$

by conditional probability
$$\frac{P(\underline{x},y=1;\hat{\theta})}{P(\underline{x};\hat{\theta})} > \frac{P(\underline{x},y=-1;\hat{\theta})}{P(\underline{x};\hat{\theta})}$$
 equivalent to
$$P(x,y=1;\hat{\theta}) > P(x,y=-1;\hat{\theta})$$

- Predict label y = -1 if $P(x, y = 1; \hat{\theta}) < P(x, y = -1; \hat{\theta})$
- The decision boundary is the set of \underline{x} for which we do not know what label (+1 or -1) to predict

$$P(\underline{x}, y = 1; \hat{\theta}) = P(\underline{x}, y = -1; \hat{\theta})$$

or
$$\frac{P(\underline{x}, y = 1; \hat{\theta})}{P(\underline{x}, y = -1; \hat{\theta})} = 1$$
 or
$$\log \frac{P(\underline{x}, y = 1; \hat{\theta})}{P(\underline{x}, y = -1; \hat{\theta})} = 0$$

Decision boundary

ullet The resulting decision boundary corresponds to all \underline{x} such that

$$\log \frac{P(\underline{x}, y = 1; \hat{\theta})}{P(\underline{x}, y = -1; \hat{\theta})} = \log \frac{P(y = 1; \hat{\theta})}{P(y = -1; \hat{\theta})} + \log \frac{P(\underline{x}|y = 1; \hat{\theta})}{P(\underline{x}|y = -1; \hat{\theta})}$$

$$= \log \frac{\hat{q}}{1 - \hat{q}} - \frac{d}{2} \log(\frac{\hat{\sigma}_{+1}^2}{\hat{\sigma}_{-1}^2})$$

$$- \frac{1}{2\hat{\sigma}_{+1}^2} ||\underline{x} - \hat{\mu}_{+1}||^2 + \frac{1}{2\hat{\sigma}_{-1}^2} ||\underline{x} - \hat{\mu}_{-1}||^2$$

$$= 0$$

• This is linear in \underline{x} if $\hat{\sigma}_{+1}^2 = \hat{\sigma}_{-1}^2$ (otherwise quadratic)

Decision boundary

 This is very close to the optimal since the data were generated from two Gaussians with the same variance

Probability predictions

 The model also permits us to evaluate probabilities over the possible class labels such as

$$P(y=1|\underline{x};\hat{\theta}) = \frac{P(\underline{x},y=1;\hat{\theta})}{\sum_{y'\in\{-1,1\}} P(\underline{x},y';\hat{\theta})}.$$

the denominator is: $P(\underline{x};\theta)$