Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный технический университет»

Факультет	Электроники и вычислительной техники	
Кафедра	Системы автоматизированного проектирования и поискового	
конструиро	вания	

пояснительная записка

к курсовому проекту	
сциплинарный курсовой пр	ооект
Александрович	
кта)	
(подпись, дата)	(инициалы и фамилия)
(инициалы и фамилия)	
(инициалы и фамилия	
(инициалы и фамилия)	
ата полписания) (инипи	алы и фамилия)
	(инициалы и фамилия) ———————————————————————————————————

Волгоград 2016г.

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Волгоградский государственный технический университет»

Факультет	Электроники и вы	числительной техники	
Направление	(специальность) Инс	формационное и програ	аммное обеспечение
автоматизиров	ванных систем		
Кафедра	Системы автомати	зированного проектиро	вания и поискового
конструирова	Р ИН		
Дисциплина _	Междисциплина	рный курсовой проект	
			Утверждаю
		Зав. кафелрой САПР	и ПК В. А. Камаев
			2016г.
		· · · · · · · · · · · · · · · · · · ·	
	3	АДАНИЕ	
		урсовой проект	
Группы	Чечеткин Илья Алек (фамилия, имя, САПР-1.1п	отчество)	
Утверждена п	риказом от «» _	2016	г. №
2. Срок предс	тавления работы (пр	ооекта) к защите «>	> 20 г.
3. Постановка	а задачи		
4. Пото виден	и запання //	2016г.	
	и задания «»		
г уководитель	работы (проекта) _	(подпись, дата)	(инициалы и фамилия)
Задание прин	ял к исполнению	(-r)/	(¬
		(подпись, дата)	(инициалы и фамилия)

ОГЛАВЛЕНИЕ

1	Введение	4
2	Описание решаемых задач	6
3	Результат анализа и систематизации информации	7
4	Структура магистерской работы	8
5	Описание прототипа	9
6	Заключение	10
7	Приложение	11
	7.1 Прототип	11
	7.2 Псевдокод алгоритма K-Means	12
	7.3 Псевлокод алгоритма Mean Shift	12

1 ВВЕДЕНИЕ

Актуальность. В настоящее время формирование маршрутов в городской среде осуществляется на основе положений, заложенных в городской план развития. Эта информация, как правило, достаточно устаревшая и не учитывает предпочтения жителей. На основе полученных данных о предпочтениях жителей, представленных в виде множества начальных и конечных точек маршрута требуется разработать эффективный метод кластеризации предпочтений жителей города по перемещению.

Цель работы – разработка метода кластеризации предпочтений жителей для минимизации дискомфорта перемещения в городе.

Теоретический этап – рассмотрение информации по существующим алгоритмам; составление теоретической базы проекта и систематизация полученных знаний; составление технического задания.

Практический этап – реализация системы на основе теоретической базы, составленной ранее с использованием технического задания.

Финальный этап – внедрение готового продукта, получение обратной информации и исправление ошибок.

Теоретические задачи:

- разработка алгоритма кластеризации;
- разработка метода учета географических особенностей местности;
- разработка критериев для оценки качества кластеризации.

Практические задачи:

- генерация исходных данных;
- реализация разработанных алгоритмов и методов;
- построение полученных результатов на карте;
- оценка качества кластеризации.

Понятийный аппарат

- **Кластер** объединение нескольких однородных элементов, которое может рассматриваться как самостоятельная единица, обладающая определенными свойствами.
- Предпочтение пара узлов с определенными координатами и идентификатором пользователя.
- Node (узел) точка с указанными координатами и тегами.
- **Tag (тег)** пары «ключ значение».
- Дискомфорт совокупный параметр, определяющий время перемещения из начального узла в конечный.
- Центроид центр тяжести фигуры (геометрический центр).
- Метрика функция, определяющая расстояние в метрическом пространстве.
- **Framework (фреймворк)** программная платформа, определяющая структуру программной системы; программное обеспечение, облегчающее разработку и объединение разных компонентов большого программного проекта.
- **OpenStreetMap (OSM)** некоммерческий веб-картографический проект по созданию силами сообщества участников-пользователей Интернета подробной свободной и бесплатной географической карты мира.
- **Project OSRM** фреймворк для вычисления кратчайших путей в графе дорог. Разработан для использования с картографическим сервисом OSM.

Объект исследования – предпочтения жителей города, выраженные в географических координатах.

Предмет исследования – методы кластеризации предпочтений жителей.

2 ОПИСАНИЕ РЕШАЕМЫХ ЗАДАЧ

В данной работе рассматриваются к решению следующие задачи:

- 1. разработка механизма генерации исходных данных, которые представляют собой исходные и конечные пункты ежедневных маршрутов;
- 2. реализация метода кластеризации точек маршрутов, охватывающих все исходные данные;
- 3. оценка качества кластеризации;
- 4. отображение результатов метода кластеризации на карте.

Первая задача заключается в создании псевдореалистичных данных для замены отсутствующих реальных на данный момент. Они нужны для работы над последующими задачами как некий приближенный аналог.

Вторая задача заключается в разработке метода кластеризации предпочтений, генерирует оптимальный список кластеров, основываясь на данных об отправных и конечных пунктах маршрутов. Кластеры не должны иметь определенной формы, а количество людей в кластерах должно усредняться, то есть метод подразумевает разделение и слияние кластеров в процессе кластеризации. Так же метод подразумевает использование метрики, основанной на построении маршрутов между точками на карте OSM. На текущем этапе используется алгоритм Mean Shift для кластеризации исходных данных, метрика разработана с использованием фреймворка OSRM. В дальнейшем планируется внедрение метрики маршрутов в работу алгоритма кластеризации, возможно, разработка нового метода кластеризации или метрики.

Третья задача заключается в разработке критериев, по которым можно будет оценить качество проделанной кластеризации. Также предоставить данную информацию пользователю и модулю кластеризации для последующей оптимизации.

Четвертая задача заключается в разработке web-инструмента для отображения и редактирования проделанной кластеризации.

Псевдокод текущий алгоритмов представлен в Приложении (7.2, 7.3).

3 РЕЗУЛЬТАТ АНАЛИЗА И СИСТЕМАТИЗАЦИИ ИНФОРМАЦИИ

Среди различных источников информации мной была выделена следующая литература:

Воронцов К. В. Машинное обучение. http://www.machinelearning.ru/ Курс лекций, охватывающий множество современных алгоритмов и проблем классификации и кластеризации. Алгоритмы рассмотрены очень подробно, ко многим приведены псевдокоды. В лекциях предоставлена информация по эффективности, производительности и сложности различных алгоритмов и методов классификации и кластеризации.

Mean Shift Clustering.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TUZEL1/MeanShift.pdf Статья, описывающая один алгоритмов кластеризации данных: Mean Shift. В ней предоставлена обширная информация по его работе и методах, на которых он основан.

Mean Shift: A Robust Approach Toward Feature Space Analysis. https://courses.csail.mit.edu/6.869/handouts/PAMIMeanshift.pdf Статья, рассматривающая применение алгоритма Mean Shift при анализе изображений. В ней дана исчерпывающая информация по его работе, применениям, достоинствам и недостаткам. Даны наглядные примеры работы алгоритма в различных условиях и для различных целей. Также приведен довольно большой список источников информации.

D. Allard, G. Guillot. Clustering geostatical data.

http://people.compute.dtu.dk/gigu/article_capetown.pdf

Статья, описывающая методы кластеризации геостатических данных. Рассмотрен вопрос близости объектов, приведены некоторые алгоритмы кластеризации и их сравнение на тестовой выборке, а также результаты работы алгоритмов на разных выборках. Было выделено два критерия проделанной кластеризации: «будущность» (likelihood) и «дисперсия» (variance). Подробно рассмотрены алгоритмы ЕМ и ЕС-М.

4 СТРУКТУРА МАГИСТЕРСКОЙ РАБОТЫ

- 1. Введение
 - Актуальность
 - Цели, задачи
 - Ожидаемый результат
- 2. Введение в проблему кластеризации
 - Анализ предметной области
 - Состояние современных исследований
 - Требования к методам
- 3. Метод кластерищации
 - Общее описание
 - Схематическое представление
 - Идея метода
 - Подробное описание
- 4. Испытание и обоснование эффективности предлагаемых подходов
 - Проектирование ПО
 - Методика проведения экспериментаДанные

 - Критерии
 - Методика
 - Проведение эксперимента и описание результатов
 - Обсуждение результатов
 - Интеграция
- 5. Заключение
- 6. Список используемой литературы
- 7. Приложение

5 ОПИСАНИЕ ПРОТОТИПА

Прототип включает в себя два модуля:

- пользовательский интерфейс;
- инструмент для кластеризации данных о предпочтении жителей.

Пользовательский интерфейс представляет из себя карту, на которой будут отображаться данные о предпочтениях и полученные различными методами кластеры. Каждый из кластеров можно будет выбирать и получать по нему подробную информацию: метод кластеризации, оценку качества кластеризации, приписанные кластеру точки.

Инструмент для кластеризации данных – приложение, которое получая на вход данные о предпочтениях жителей будет генерировать набор кластеров и передавать данные в пользовательский интерфейс.

Примерный вид интерфейса и ссылка на прототип в Приложении 7.1.

6 ЗАКЛЮЧЕНИЕ

Конечным результатом будет инструмент, который дает возможность на основе данных о предпочтении жителей найти скопления пунктов отправления и прибытия, на основе которых в дальнейшем будет строиться сеть маршрутов городского транспорта.

7 ПРИЛОЖЕНИЕ

7.1 Прототип

Представление Web UI:

Реализованный алгоримм: https://github.com/vstu-cad-stuff/clustering
Текущая реализация: http://vstu-cad-stuff.github.io/clustering/

7.2 Псевдокод алгоритма K-Means

- 1. Генерирование начального распределения центроидов
- 2. итерация = 0
- 3. ПОВТОРЯТЬ
- 4. Рассчет принадлежности всех точек центроидам
- 5. Рассчет нового положения центроидов
- 6. Сдвиг центроидов
- 7. итерация += 1
- 8. **ПОКА** разница между рассчитанным положением и текущим не равна 0 и пока количество итераций не достигло максимума
- 9. ВЫВОД центроиды

7.3 Псевдокод алгоритма Mean Shift

- 1. Генерирование начального распределения центроидов
- 2. ПОВТОРЯТЬ
- 3. Определение соседних точек к центроидам
- 4. Определение среднего веса соседних точек к центроидам
- 5. Рассчет нового положения центроидов
- 6. Сдвиг центроидов
- 7. **ПОКА** разница между рассчитанным положением и текущим не будет равна 0
- 8. ВЫВОД центроиды