Contents

1	Ten	nplate	2			
2	Sea 2.1	rch Ternary Search	2 2			
3	Sequences 3					
	3.1	Max/Min subsegment	3			
		3.1.1 Max/Min submatrix	3			
4	Alg	ebra	4			
	4.1	All divisors	4			
	4.2	Primality test	4			
	4.3	Binary exponentiation	5			
	4.4	Greatest common divisor	5			
		4.4.1 Least common multiple	5			
		4.4.2 Extended Euclides Algorithm	5			
	4.5	Linear Diophantine Equations	6			
		4.5.1 Any solution	6			
	4.6	Integer Factorization	6			
		4.6.1 Pollard's Rho	6			
	4.7	Fast Fourier Transform	7			
		4.7.1 Polynomial Multiplication	8			
5	Graphs 9					
	5.1	DFS	9			
	5.2	BFS	9			
		5.2.1 Shortest path on unweighted graph	10			
	5.3	Flood Fill	11			
	5.4	Topological Sort (Directed Acyclic Graph)	11			
		5.4.1 DFS Variation	11			
		5.4.2 Kahn's Algorithm	12			
	5.5	Bipartite Graph Check (Undirected Graph)	12			
	5.6	Cycle Check (Directed Graph)	13			
	5.7	Dijkstra	13			
6	Dvi	namic Programming	14			
	$\frac{-3}{6.1}$	Coin Change	14			
		6.1.1 Canonicality check	15			
	6.2	Knapsack	16			
	6.3	LIS	17			
	6.4	Travelling Salesman Problem	18			

7	Ma	th Formulas	19
	7.1	Sum of an arithmetic progression	19
	7.2	Permutation with repeated elements	19
	7.3	Check if is geometric progression	19
	7.4	Bitwise equations	19
	7.5	Cube of Binomial	19
		7.5.1 Sum of Cubes	19
		7.5.2 Difference of Cubes	19
	7.6	Binomial expansion	19
8	Fac	ts	20
	8.1	XOR	20
		8.1.1 Self-inverse property	20
		8.1.2 Identity element	20
		8.1.3 Commutative	20
		8.1.4 Associative	20

1 Template

```
#include <bits/stdc++.h>
   using namespace std;
  using 11 =
                          long long;
  #define vll
                          vector<11>
  #define vvll
                          vector <vll>>
                          pair<11, 11>
  #define pll
  #define vpll
                          vector <pll>
  #define vvpll
                          vector < vpll >
  #define endl '\n'
  #define all(xs)
                          xs.begin(), xs.end()
11
  #define found(x, xs) (xs.find(x) != xs.end())
```

2 Search

2.1 Ternary Search

 $O(\log n)$

Function f(x) is unimodal on an interval [l, r]. Unimodal means: the function strictly increases first, reaches a maximum, and then strictly decreases OR the function strictly decreases first, reaches a minimum and then strictly decreases

```
double ternary_search(double 1, double r) {
    double eps = 1e-9; // error limit
    while(r - 1 > eps) {
        double m1 = 1 + (r-1) / 3;
}
```

```
double m2 = r - (r-1) / 3;
5
             double f1 = f(m1);
             double f2 = f(m2);
             if(f1 < f2)</pre>
10
11
                 1 = m1;
             else
12
                 r = m2;
14
15
        return f(1);
16
17
```

3 Sequences

3.1 Max/Min subsegment

O(n)

```
11 kadane(const vll &a) {
        ll n = a.size();
        ll ans = a[0], ans_l = 0, ans_r = 0;
        11 \text{ sum} = 0, \text{ minus_pos} = -1;
        for (11 r = 0; r < n; ++r) {</pre>
             sum += a[r];
             if (sum > ans) {
                 ans = sum;
10
                 ans_l = minus_pos + 1;
11
                 ans_r = r;
            }
13
            if (sum < 0) {</pre>
                 sum = 0;
                 minus_pos = r;
16
            }
17
18
19
        return ans;
20
```

3.1.1 Max/Min submatrix

 $O(nm^2)$

```
for(ll i=0; i<m; i++) {
    vll r(n+1, 0);

for(ll j=i; j<m; j++) {
        for(ll k=0; k<n; k++)
            r[k] += a[k][j];

ans = max(ans, kadane(n, r));
}

return ans;
}
</pre>
```

4 Algebra

4.1 All divisors

 $O(\sqrt{n})$

```
vll divisors(ll n) {
  vll divs;
  for (ll i = 1; 1LL * i * i <= n; i++) {
    if (n % i == 0) {
        divs.push_back(i);
        if (i != n / i) {
            divs.push_back(n / i);
        }
        }
     }
    }
}
return divs;
}</pre>
```

4.2 Primality test

 $O(\sqrt{n})$

```
bool isPrime(ll n)

if (n!=2 && n % 2==0)
    return false;

for(ll d=3; d*d <= n; d+=2)

if (n % d==0)
    return false;</pre>
```

```
10 }
11 return n >= 2;
13 }
```

4.3 Binary exponentiation

 $O(\log n)$

```
1  ll binpow(ll a, ll b) {
        ll res = 1;
        while (b > 0) {
            if (b & 1)
                res = res * a;
            a = a * a;
            b >>= 1;
        }
        return res;
    }
}
```

4.4 Greatest common divisor

 $O(\log \min(a, b))$

4.4.1 Least common multiple

```
1  ll lcm(ll a, ll b) {
2    return a / gcd(a, b) * b;
3  }
```

4.4.2 Extended Euclides Algorithm

4.5 Linear Diophantine Equations

 $O(\log \min(a, b))$

4.5.1 Any solution

4.6 Integer Factorization

4.6.1 Pollard's Rho

 $O(\sqrt[4]{n}\log n)$

```
/**
       @param a first multiplier
       @param b second multiplier
       @param mod
       @return a * b mod n (without overflow)
       @brief Multiplies two numbers >= 10^18
       Time Complexity: O(log b)
   11 mult(11 a, 11 b, 11 mod) {
       11 result = 0;
10
       while (b) {
11
           if (b & 1)
               result = (result + a) % mod;
13
           a = (a + a) \% mod;
14
           b >>= 1;
```

```
16
       return result;
17
   }
18
19
   /**
20
       @param x first multiplier
21
       @param c second multiplier
22
       @param mod
23
       Oreturn f(x) = x^2 + c \mod (mod)
24
       Obrief Polynomial function chosen for pollard's rho
25
       Time Complexity: 0(1)
27
   11 f(11 x, 11 c, 11 mod) {
28
       return (mult(x, x, mod) + c) % mod;
29
30
31
   /**
32
       @param n number that we want to find a factor p
       @param x0 number where we will start
       Oparam c constant in polynomial function
35
       Oreturn fac
36
       Obrief Pollard's Rho algorithm (works only for composite
37
         numbers)
       if (g==n) try other starting values
       Time Complexity: O(n^{(1/4)} \log n)
39
40
   ll rho(ll n, ll x0=2, ll c=1) {
41
       11 x = x0;
42
       11 y = x0;
43
       11 g = 1;
44
       while (g == 1) {
45
           x = f(x, c, n);
           y = f(y, c, n);
47
           y = f(y, c, n);
48
            g = gcd(abs(x - y), n);
49
50
       return g;
51
```

4.7 Fast Fourier Transform

 $O(n \log n)$

```
using cd = complex < double >;
const double PI = acos(-1);

/**
    * @param a vector that we want to transform
    * @param invert inverse fft or not
```

```
Obrief apply fft or inverse fft to a vector
       Time Complexity: O(n log n)
   */
9
   void fft(vector<cd> &a, bool invert) {
10
        11 n = a.size();
11
       if (n == 1)
12
            return;
14
       vector < cd > a0(n / 2), a1(n / 2);
       for (11 i = 0; 2 * i < n; i++) {</pre>
16
            a0[i] = a[2*i];
            a1[i] = a[2*i+1];
18
       }
19
       fft(a0, invert);
20
       fft(a1, invert);
21
        double ang = 2 * PI / n * (invert ? -1 : 1);
23
       cd w(1), wn(cos(ang), sin(ang));
24
        for (11 i = 0; 2 * i < n; i++) {</pre>
            a[i] = a0[i] + w * a1[i];
26
            a[i + n/2] = a0[i] - w * a1[i];
27
            if (invert) {
                a[i] /= 2;
29
                a[i + n/2] /= 2;
            }
31
            w *= wn;
32
33
   }
34
```

4.7.1 Polynomial Multiplication

```
/**
       Oparam a first polynomial coefficients
       Oparam b second polynomial coefficients
       Oreturn product of two polynomials
       Obrief Multiplies two polynomials
       Time Complexity: O(n log n)
   vll multiply(vll const& a, vll const& b) {
9
       vector < cd > fa(a.begin(), a.end()), fb(b.begin(), b.end()
           );
       11 n = 1;
       while (n < a.size() + b.size())</pre>
11
           n <<= 1;
12
       fa.resize(n);
13
14
       fb.resize(n);
15
       fft(fa, false);
16
```

```
fft(fb, false);
17
        for (11 i = 0; i < n; i++)</pre>
18
            fa[i] *= fb[i];
19
        fft(fa, true);
20
21
        vll result(n, 0);
22
        for (11 i = 0; i < n; i++) {</pre>
23
            result[i] += round(fa[i].real());
24
            if(result[i] >= 10) {
                 result[i+1] += result[i] / 10;
                 result[i] %= 10;
            }
29
        return result;
30
31
```

5 Graphs

5.1 DFS

```
O(n+m)
```

```
void dfs(ll at, ll n ,vpll adj[], bool visited[]) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
}
```

5.2 BFS

```
O(n+m)
```

```
visited[nex]=true;
q.push(nex);

{

cout << q.front() << '\n';
q.pop();
}
</pre>
```

5.2.1 Shortest path on unweighted graph

O(n+m)

```
vll solve(ll s, ll n, vll adj[]) {
       bool visited[n] = {0};
2
       visited[s] = true;
3
       queue <11> q;
       q.push(s);
6
       vll prev(n, -1);
       while (!q.empty())
            vll neighbours = adj[q.front()];
10
            for(auto nex: neighbours) {
11
                if(!visited[nex]) {
12
                     visited[nex]=true;
13
                     q.push(nex);
14
                     prev[nex] = q.front();
15
                }
16
            }
17
            q.pop();
18
19
20
       return prev;
21
   }
22
   vll reconstructPath(ll s, ll e, vll prev) {
24
       vll path;
25
        for(ll i=e; i!=-1; i=prev[i])
26
            path.push_back(i);
27
28
       reverse(path.begin(), path.end());
29
30
        if(path[0]==s)
31
            return path;
32
        else {
33
            vll place;
34
            return place;
35
       }
```

5.3 Flood Fill

```
O(n+m)
```

```
int dir_y[] = {};
   int dir_x[] = {};
   int ff(int i, int j, char c1, char c2) {
       if ((i < 0) || (i >= n)) return 0;
       if ((j < 0) || (j >= m)) return 0;
       if (grid[i][j] != c1) return 0;
       int ans = 1;
9
       grid[i][j] = c2;
10
11
       for (int d = 0; d < 8; ++d)</pre>
12
           ans += floodfill(i+dir_y[d], j+dir_x[d], c1, c2);
14
       return ans;
15
   }
16
```

5.4 Topological Sort (Directed Acyclic Graph)

5.4.1 DFS Variation

O(n+m)

```
void dfs(ll at, ll n ,vpll adj[], bool visited[], vll &ts) {
   if(visited[at])
      return;

visited[at] = true;

vpll neighbours = adj[at];
for(auto nex: neighbours)
   dfs(nex.first, n, adj, visited);
ts.push_back(at); // Only change
}
```

5.4.2 Kahn's Algorithm

```
priority_queue<11, v11, greater<11>> pq;
   for(ll at=0; at<n; at++)</pre>
                                     // Push all sources of
       connected components in graph
       if(in_degree[at] == 0)
           pq.push(at);
5
   while(!pq.empty()) {
6
       11 at = pq.top(); pq.pop();
       vll neighbors = adj[at];
       for(auto nex: neighbors) {
           in_degree[nex]--;
10
           if(in_degree[nex]>0) continue;
11
           pq.push(nex);
       }
  }
14
```

5.5 Bipartite Graph Check (Undirected Graph)

O(n+m)

```
bool isBipartite(ll s, ll n, vll adj[]) {
       queue <11> q;
       q.push(s);
       vll color(n, -1); color[s]=0;
       bool flag = true;
       while (!q.empty())
6
       {
            vll neighbours = adj[q.front()];
            for(auto nex: neighbours) {
                if(color[nex] == -1) {
10
                    color[nex] = 1-(color[q.front()]);
11
12
                    q.push(nex);
                }
                else if(color[nex] == color[q.front()]) {
14
                    flag = false;
15
                    break;
                }
            }
18
            q.pop();
19
20
21
22
       return flag;
   }
```

5.6 Cycle Check (Directed Graph)

O(n+m)

```
enum { UNVISITED = -1, VISITED = -2, EXPLORED=-3};
2
   void cycleCheck(ll at, ll n ,vll adj[], int visited[], ll
3
      dfs_parent[]) {
       visited[at] = EXPLORED;
       vll neighbours = adj[at];
       for(auto nex: neighbours) {
           if(visited[nex] == UNVISITED) {
               // Tree edges (part of the DFS spanning tree)
               dfs_parent[nex] = at;
               cycleCheck(nex, n, adj, visited);
           }
           else if(visited[nex] == EXPLORED) {
13
               if(nex == dfs_parent[at]) {
14
                    // Trivial cycle
                    // Do something
16
               }
17
               else {
                    // Non trivial cycle - Back Edge ((u, v)
19
                       such that v is the ancestor of node u but
                        is not part of the DFS tree)
                    // Do something
20
21
           else if(visited[nex] == VISITED) {
               // Forward/Cross edge ((u, v) such that v is a
25
                   descendant but not part of the DFS tree)
               // Do something
26
27
28
30
       visited[at] = VISITED;
31
32
```

5.7 Dijkstra

 $O(n\log n + m\log n)$

```
void dijkstra(ll s, vll & d, vll & p) {
    d.assign(n, LLONG_MAX);
    p.assign(n, -1);

d[s] = 0;
```

```
priority_queue<pl1, vpl1, greater<pl1>> q;
6
       q.push({0, s});
       while (!q.empty()) {
            11 v = q.top().second;
9
            11 d_v = q.top().first;
10
            q.pop();
11
            if (d_v != d[v])
                continue;
13
14
            for (auto edge : adj[v]) {
15
                11 to = edge.first;
                11 len = edge.second;
17
18
                if (d[v] + len < d[to]) {</pre>
19
                     d[to] = d[v] + len;
20
                     p[to] = v;
21
                     q.push({d[to], to});
22
                }
23
24
            }
       }
25
   }
26
```

6 Dynamic Programming

6.1 Coin Change

O(nm)

```
/**
    * @brief Calculates the minimum number of coins required to
        make a target amount using dynamic programming (
       memoization).
    st @param m The target amount of money to reach.
    * @param cs Coins
    st Creturn The minimum number of coins needed to sum up to '
    */
6
   ll coin_change(ll m, const vll &cs)
7
8
       if (m == 0)
9
           return 0;
10
11
       if (st[m] != -1)
           return st[m];
13
14
       auto res = oo;
15
       for (auto c : cs)
           if (c <= m)
17
               res = min(res, coin_change(m - c, cs) + 1);
18
```

```
19     return st[m] = res;
20     }
```

6.1.1 Canonicality check

 $O(n^3)$

```
st ©brief Makes change for a given amount using a greedy
        approach.
    st Assumes the coin denominations 'xs' are sorted in
        descending order.
4
   vll greedy(ll x, ll N, const vll &xs)
5
6
       vll res(N, 0);
       for(11 i=0; i<N; i++)</pre>
            auto q = x / xs[i];
            x -= q*xs[i];
11
            res[i] = q;
13
14
       return res;
15
   }
16
17
18
    st ©brief Calculates the total monetary value of a given
19
        combination of coins.
   ll value(const vll &M, ll N, const vll &xs)
21
22
       ll res=0;
23
       for(ll i=0; i<N; i++)</pre>
24
            res += M[i]*xs[i];
       return res;
   }
27
28
29
    st Cbrief Finds the smallest amount of money for which the
30
        greedy algorithm fails
    \boldsymbol{\ast} to produce an optimal solution (i.e., the minimum number
31
        of coins).
    * This is based on a known algorithm for testing if a coin
32
        system is "canonical".
33
   ll min_counterexample(ll N, const vll &xs)
34
   {
35
       if(N <= 2)</pre>
36
```

```
return -1;
37
38
        11 ans=oo;
39
40
        for(11 i=N-2; i>=0; --i) {
41
            auto g = greedy(xs[i]-1, N, xs);
42
43
            vll M(N, 0);
44
45
            for(11 j=0; j<N; ++j)</pre>
46
                 M[j] = g[j] + 1;
48
                 auto w = value(M, N, xs);
49
                 auto G = greedy(w, N, xs);
50
51
                 auto x = accumulate(M.begin(), M.end(), 0);
52
                 auto y = accumulate(G.begin(), G.end(), 0);
53
54
                 if(x < y)
                     ans = min(ans, w);
56
57
                M[j]--;
58
            }
59
60
61
        return ans == oo ? -1 : ans;
62
63
```

6.2 Knapsack

O(nm)

```
/**
    * @brief Finds the maximum sum possible of the knapsack
2
    * Can solve subset sum problem (change max to logic OR)
3
    */
4
   pair<11, vll> knapsack(11 M, const vpll &cs)
5
       ll N = cs.size() - 1; // Elements start at 1
       for(ll i=0; i<=N; i++)</pre>
9
            st[i][0] = 0;
10
       for(11 m=0; m<=M; m++)</pre>
12
            st[0][m] = 0;
14
       for(ll i=1; i<=N; i++)</pre>
16
            for(11 m = 1; m <= M; m++)</pre>
17
```

```
18
                 st[i][m] = st[i-1][m];
19
                 ps[i][m] = 0;
20
                 auto [w, v] = cs[i];
21
22
                 if(w \le M \&\& st[i-1][m-w] + v > st[i][m])
23
24
                     st[i][m] = st[i-1][m-w] + v;
25
                     ps[i][m] = 1;
26
                 }
27
            }
        }
29
30
        // Elements recuperation
31
        11 m = M;
32
        vll is;
33
34
        for(ll i=N; i>=1; --i)
35
36
            if(ps[i][m])
37
            {
38
                 is.push_back(i);
39
                 m -= cs[i].first;
40
            }
        }
42
43
        reverse(is.begin(), is.end());
44
45
        return {st[N][M], is};
46
   }
47
```

6.3 LIS

 $O(n \log n)$

```
11 lis(vll const& a) {
       11 n = a.size();
2
       const ll INF = 1e9;
       vll d(n+1, INF);
       d[0] = -INF;
5
6
       for (11 i = 0; i < n; i++) {</pre>
            11 1 = upper_bound(d.begin(), d.end(), a[i]) - d.
                begin();
            if (d[1-1] < a[i] && a[i] < d[1])</pre>
                d[1] = a[i];
10
       }
11
12
       ll ans = 0;
13
```

```
for (ll l = 0; l <= n; l++) {
    if (d[l] < INF)
        ans = l;
}
return ans;
}</pre>
```

6.4 Travelling Salesman Problem

 $O(N^22^N)$

```
#include <bits/stdc++.h>
   using namespace std;
   int totalCost(int mask, int curr, int n,
                   vector < vector < int >> & cost, vector < vector < int >>
                        &memo) {
        if (mask == (1 << n) - 1) {</pre>
            return cost[curr][0];
9
10
        if (memo[curr][mask] != -1)
11
            return memo[curr][mask];
12
        int ans = INT_MAX;
14
15
        for (int i = 0; i < n; i++) {</pre>
16
            if ((mask & (1 << i)) == 0) {</pre>
17
                 ans = min(ans, cost[curr][i] +
                            totalCost((mask | (1 << i)), i, n,
                                cost, memo));
            }
21
22
23
        return memo[curr][mask] = ans;
24
   }
25
26
   int tsp(vector<vector<int>> &cost) {
27
        int n = cost.size();
28
        vector < vector < int >> memo(n, vector < int > (1 << n, -1));</pre>
29
30
        return totalCost(1, 0, n, cost,
                           memo);
   }
33
```

7 Math Formulas

7.1 Sum of an arithmetic progression

$$S_n = \frac{n}{2}(a_1 + a_n)$$

7.2 Permutation with repeated elements

$$P_n = \frac{n!}{n_1! n_2! \dots n_k!}$$

7.3 Check if is geometric progression

$$a_i^2 = a_{i-1}a_{i+1}$$

7.4 Bitwise equations

$$a|b=a\oplus b+a\&b$$

$$a \oplus (a \& b) = (a|b) \oplus b$$

$$(a\&b)\oplus(a|b)=a\oplus b$$

$$a+b=a|b+a\&b$$

$$a+b=a\oplus b+2(a\&b)$$

$$a - b = (a \oplus (a \& b)) - ((a|b) \oplus a)$$

$$a - b = ((a|b) \oplus b) - ((a|b) \oplus a)$$

$$a - b = (a \oplus (a \& b)) - (b \oplus (a \& b))$$

$$a - b = ((a|b) \oplus b) - (b \oplus (a\&b))$$

7.5 Cube of Binomial

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

7.5.1 Sum of Cubes

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

7.5.2 Difference of Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

7.6 Binomial expansion

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

8 Facts

8.1 XOR

8.1.1 Self-inverse property

To cancel a XOR, you can XOR again the same value because $a\oplus a=0,$ so $(value\oplus a)\oplus a=value$

8.1.2 Identity element

 $a \oplus 0 = a$

8.1.3 Commutative

 $a \oplus b = b \oplus a$

8.1.4 Associative

 $(a \oplus b) \oplus c = a \oplus (b \oplus c)$