57 = 1 1663, 9 1. 17

N93-28174

ROBUST CONTROL FOR UNCERTAIN STRUCTURES

MIT Space Engineering Research Center

Joel Douglas

Michael Athans

Massachusetts Institute of Technology

July 1, 1991 (SERC Symposium)

C-3

APPROACH

- Assume full-state feedback
- Try to guarantee stability and performance robustness of classical LQR design
- Guaranteed stability
- Reasonable guaranteed robustness (gain and phase margin properties)
- Apply to benchmark problem to see interesting properties

ROBUST LQR FORMULAS

• Standard LQR design when there is no uncertainty

$$J = \int_0^\infty (x^T(t)Q_0x(t) + \rho u^T(t)u(t))dt$$

$$PA_0 + A_0^T P + Q_0 - \frac{1}{\rho} PBB^T P = 0$$

• Apply Petersen-Hollot bounds to derive robust Riccati Equa-

$$A=A_0+\sum\limits_{i=1}^p q_i E_i \;\; |q_i| \leq 1$$

$$E_i = l_i n_i^T$$
 $L = [l_1 \ l_2 \ l_3 \dots];$ $N = [n_1 \ n_2 \ n_3 \dots]$

$$PA_0 + A_0^T P + (Q_0 + \gamma NN^T) - P(\frac{1}{\rho}BB^T - \frac{1}{\gamma}LL^T)P = 0$$

• Control

$$G = \frac{1}{\rho}B^TP \qquad u = -Gx$$

MISMATCHED LQR DESIGN

RLQR DESIGN

INTERPRETATIONS OF RLQR DESIGN

• Equivalent to an optimal design where we minimize the cost functional

$$J = \int_0^\infty (x^T(t)Q_0x(t) + x^T(t)\gamma NN^Tx(t) + x^T(t)\frac{1}{\gamma}PLL^TPx(t) + \rho u^T(t)u(t))dt$$

 $-\beta d^T\!(t)d(t)$

 $-x^{T}(t)Q_{0}x(t)$ is the state weighting

energy of an uncertain spring (or rate of dissipation for a $x^{T}(t)NN^{T}x(t)$ has been shown to be uncertain potential damper)

 $x^T(t)PLL^TPx(t)$ is an equivalent \mathcal{H}_{∞} term.

known uncertain energy and worst case disturbance arising ullet Parameter γ is therefore a tradeoff between minimizing unfrom forces due to parameter errors.

K=1.625

DISTURBANCE REJECTION

• Does the RLQR controller reject disturbances?

• Add a white noise disturbance at the output

• Apply both mismatched LQR and RLQR designs

MISMATCHED LQR DESIGN

RLQR DESIGN

THREE-MASSES, TWO UNCERTAIN SPRINGS

PERFORMANCE COMPARISONS: RLQR (LEFT) VS MISMATCHED LQR (RIGHT)

RLQR TRANSIENTS: 2-SPRING SYSTEM

 $K_1 = .5$, $K_2 = 1.25$

MISMATCHED LQR TRANSIENTS: 2-SPRING SYSTEM

 $K_1 = .5$, $K_2 = 1.25$

CONCLUSIONS

- RLQR design is a full state method
- Guarantees stability as well as some robustness
- Interesting energy interpretations
- Understanding underlying fundamentals will help us when we extend to output feedback