

1 = [0-c]

CS 422: Data Mining Vijay K. Gurbani, Ph.D., Illinois Institute of Technology

Lecture: Introduction to Artificial Neural Networks

CS 422 vgurbani@iit.edu

 Hidden layers are needed if the data must be separated using a non-linear boundary.

 Hidden layers are needed if the data must be separated using a non-linear boundary.

- Major difference between ANN and Perceptron is inclusion of hidden layers.
 - Consider the solution to the XOR problem in a FFNN:

- Major difference between ANN and Perceptron is inclusion of hidden layers.
 - Universal Approximation Theorem for Neural Networks: A FFNN with a single hidden layer containing an arbitrary number of neurons can **approximate** any **continuous** function on compact subsets of \mathbb{R}^n (Cybenko 1989).
 - The theorem was also proved for arbitrary number of hidden layers, each containing a limited number of neurons (Lu et al. 2017).
 - Hidden layers can represent arbitrary complex decision boundaries.

 Generalizes the concept of a single-neuron perceptron to the more complex architecture of nodes capable of learning non-linear decision boundaries.

- Three kinds of neural networks:
 - Feed forward neural networks

- General neural networks for classification, regression, etc.
- Convolutional neural networks
 - Excel at image recognition.
- Recurrent neural networks
 - Excel at language tasks.

- Hidden nodes learn latent representation (features useful for class boundaries).
- First hidden layer captures simpler features (since it receives the predictors as input).
- Subsequent hidden layers hone into specific patterns of the data to extract features.
- So, what does a neuron do?

f(.) is an activation function. You have seen this before ...

. . .