Expt 7 – Instrumentation Amplifiers

```
Sep 24, 2021 (Friday)
EE 230 Analog Circuits Lab
Joseph John
2021-22/I
```

Summary

- A) Introduction
 - Single-Opamp Difference Amplifiers (problems)
- B) Three-Opamp Instrumentation Amplifiers
- C) TL 084 Quad Opamps based Instrumentation Amplifier
- D) INA 128 Instrumentation Amplifier
- E) Loadcell and its Interfacing using Instrumentation Amplifiers

Single-Opamp Difference Amplifier

- Major Features
- Uses differential input signals
- Works as a difference amp if $(R_4/R_3 = R_2/R_1)$
- $A_d = V_{out}/(V_A V_B) = R_4/R_3$
- $A_{cm} = 0$ (ideally)
- CMRR = A_d/A_{cm} (ideally ∞)

Problems of Single-Opamp Difference Amplifiers

Problems

- Difficult to change Ad
- Limited A_d

Limited differential input resistance

Limited CMRR (due to poor A_{cm})

B) Three-Opamp Instrumentation Amplifiers

Major features

Very high input resistance

Easy to change A_d

$$A_d = V_{out}/(V_2-V_1)$$

= $(R_4/R_3) [1+ (2R_2/R_1)]$

- Possible to have high Ad
- High CMRR

C) TL 084 Quad Opamps based Instrumentation Amplifier

TL 084 JFET Input Opamps

- Input offset voltage: 3 mv (typ)
- Input bias current: 20 pA
- CMRR: 86 dB
- Slew rate: 16 V/ μs
- GB product: 4 MHz

TL 084

- Circuit schematics (for each amplifier)
- Active loads
 - Used in all Opamps and other Linear ICs

Three-Opamp Instrumentation Amplifier using TL084

$$-Vcc = -15V$$

Measurement of the Common-mode Voltage Gain, A_{cm}

Circuit values:

$$+Vcc = +15 V, -Vcc = -15 V,$$

$$R_1 = R_2 = 10 \text{ k}\Omega$$

$$R_3 = 1 k\Omega$$
, and

 R_4 (connected to the inverting input of Opamp 3) = 100 k Ω ;

 R_4 (connected to the non-inverting input of Opamp 3) = 91 k Ω + 10 k Ω (Pot).

$$V_1 = V_2 = 10 \sin \omega t V$$

A_{cm} measurement

$$V_1 = V_2 = 10 \sin \omega t V$$

(20 Vp-p)

Vout: 680 mV

Acm = 0.034 (too high)

Measurement of the Differential Voltage Gain, Ad

Circuit values:

$$+Vcc = +15 V, -Vcc = -15 V,$$

$$R_1 = R_2 = 10 \text{ k}\Omega$$

$$R_3 = 1 k\Omega$$
, and

 R_4 (connected to the inverting input of Opamp 3) = 100 k Ω ;

 R_4 (connected to the non-inverting input of Opamp 3) : adjusted for the lowest A_{cm}

$$V_1 = 0$$
, $V_2 = 10 \sin \omega t \, mV$

A_d measurement

 $V_1 = 0$

 $V_2 = 10 \sin \omega t \, mV$

(20 mV p-p)

Vout: 6.5 Vp-p

Ad = 6.52/0.02= 326

(As per design: 300)

D) INA 128 Instrumentation Amplifier

- A popular INA
- Applications:
 - Bridge amplifier
 - Thermocouple amplifier
 - RTD sensor amplifier
 - Medical instrumentation
 - Data acquisition
 - Low offset voltage: 50 μV maximum
 - Low drift: 0.5 μV/°C maximum
 - Low Input Bias Current: 5 nA maximum
 - High CMR: 120 dB minimum

A_d measurement

$$V_1 = 0$$

 $V_2 = 10 \sin \omega t \, mV$
(20 mV p-p)
Vout : 5.68 Vp-p

$$Ad = 5.68/0.02$$

= 284

Measured CMRR:

$$(284/5x10^{-4}) = 568,000$$
 or 115 dB

E) Loadcell and its Interfacing – using Instrumentation Amplifiers

- Load Cell
- A commonly used sensor for measuring weight/pressure.

 Uses a full-bridge strain gage network (i.e. a Wheatstone bridge made of four strain gages)

Source: Sec 4-2, Sensor Signal Conditioning – Bridge Circuits, Walt Kester

Output voltage sensitivity and linearity of constant voltage drive bridge configurations

Source: Sec 4-2, Sensor Signal Conditioning – Bridge Circuits, Walt Kester

Strain Gages

- Strain Gages
 - 120 Ω, 350 Ω, 3500 Ω
- Weigh-Scale Load Cells: 350 to 3500 Ω

Strain gages (Source: Internet)

Loadcell for Weight Measurement

- Output of Loadcell interface circuit:
- Comparison -INA128 vs TL084 based Instrumentation Amplifier