Pain Classification on EEG and Tabular Data

Ivan Iliash, Carlos Llano, and Felix Hsieh

Results

Mean ROC-AUCs (4-fold cross-validation)		Baseline	EEG	EE	G+Tabular	
	СВР	0.49	0.53		0.52	
	Fibromyalgia	0.62	0.95		0.95	
	various	0.43	0.72	0.72 0.71		
Ablation Study - AUC (EEG frequency bands)			СВР	Fibro	Various	
	delta (1-4Hz)		0.31	0.66	0.68	
	theta (4-8Hz)		0.46	0.78	0.75	
	alpha (8-12Hz)		0.41	0.62	0.56	
	beta (12-30Hz)		0.25	0.69	0.50	
	gamma (30-100	Hz)	0.48	0.82	0.78	

Conclusion / Main Findings

- Theta and Gamma are important frequencies bands for pain classification.
- Tabular data use shows no improvements, which requires further exploration with complete datasets or additional features.
- High confidence for Fibromyalgia classification caused by clear patterns in the EEG data (strong oscillations).
- Signal data augmentations applied to EEG can help when dealing with a small dataset.

References

[1] Ta Dinh, S., Nickel, M. M., Tiemann, L., May, E. S., Heitmann, H., Hohn, V. D., Edenharter, G., Utpadel-Fischler, D., Tölle, T. R., Sauseng, P., Gross, J., & Ploner, M. (2019). Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain, 160(12), 2751–2765. https://doi.org/10.1097/j.pain.0000000000001666 [2] Chen, D., Zhang, H., Kavitha, P. T., Loy, F. L., Ng, S. H., Wang, C., Phua, K. S., Tjan, S. Y., Yang, S. Y., & Guan, C. (2022). Scalp EEG-Based Pain Detection Using Convolutional Neural Network. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society, 30, 274–285. https://doi.org/10.1109/TNSRE.2022.3147673