در این بخش از دو روش حلقه ای و پیدا کردن بزرگ اندازه ترین عنصر خارج قطر اصلی استفاده کردم در ادامه کد و خروجی آنها آورده شده است.

```
% Jacobi eig
function [jV, jD] = Jacobi_eig(A)
    delta = eps * norm(A, 'fro');
    jV = eye(size(A, 1));
    jD = A;
    while (off(jD) > delta)
% %
        method 1
           for p = 1:size(A, 1) - 1
%
%
               for q = p+1:size(A, 1)
                   [c, s] = symSchur2(jD, p, q);
%
                   J = eye(size(A, 1));
%
                   J(p,p) = c;
%
                   J(p,q) = s;
%
                   J(q,p) = -s;
%
                   J(q,q) = c;
%
                   jV = jV*J;
                   jD = J'*jD*J;
               end
%
           end
 % method 2
      [p,q] = find(abs(jD) == max(abs(jD - diag(diag(jD))),[],'all'), 1);
      if(p > q)
        temp = p;
         p = q;
         q = temp;
      end
      [c, s] = symSchur2(jD, p, q);
      J = eye(size(A, 1));
      J(p,p) = c;
      J(p,q) = s;
      J(q,p) = -s;
      J(q,q) = c;
                                                                   end
      jV = jV * J;
      jD = J' * jD * J;
 end
  % sort eigenvalues
  jD = diag(jD);
  for i=1:size(A, 1) - 1
      for j=1:size(A, 1) - i
          if jD(j) > jD(j+1)
              % change eigenvalues
              temp = jD(j);
              jD(j) = jD(j+1);
              jD(j+1) = temp;
              % change eigenvectors
              temp = jV(:, j);
              jV(:, j) = jV(:, j+1);
              jV(:, j+1) = temp;
                                                                   end
          end
     end
 end
```

```
% off
function out = off(A)
    out = norm(A, 'fro') ^ 2;
    for i = 1:min(size(A))
       out = out - A(i, i) ^ 2;
   end
% symSchur2
function [c, s] = symSchur2(A, p, q)
    if (A(p,q) == 0)
       c = 1;
       s = 0;
   else
        t = (A(q,q)-A(p,p))/(2*A(p,q));
        if (t >= 0)
            t_min = 1/(t+sqrt(1+t^2));
        else
            t_min = 1/(t-sqrt(1+t^2));
       c = 1/(sqrt(1+t_min^2));
       s = t_min * c;
    end
```

jD = diag(jD);

خروجی روش بزرگترین یاب برای ماتریس رندوم متقارن ۶ در ۶ و مقایسه با دستور eig (مقدار ضریب دلتا eps در نظر گرفته شد)

A =						
2.6162 1.0825 1.1256 1.7058 2.1824 2.1351	1.0825 0.8080 0.7335 0.7388 0.8688 0.7523	1.1256 0.7335 1.5408 0.8840 1.6291 1.5786	1.7058 0.7388 0.8840 1.5683 1.5897 1.4759	2.1824 0.8688 1.6291 1.5897 2.7579 2.7173	2.1351 0.7523 1.5786 1.4759 2.7173 2.7501	V =
jV = -0.1871 0.2711 -0.1071 0.1252 -0.6262 0.6872	-0.4437 0.6000 -0.4764 0.0064 0.4649 -0.0093	-0.4539 -0.2862 0.1050 0.8284 0.0298 -0.1181	-0.1239 0.5992 0.6790 0.0103 -0.2029 -0.3510	0.5717 0.2907 -0.4346 0.4268 -0.2881 -0.3670	0.4690 0.2027 0.3173 0.3403 0.5165 0.5058	0.1871 0.4437 -0.4539 0.1239 -0.5717 0.4690 -0.2711 -0.6000 -0.2862 -0.5992 -0.2907 0.2027 0.1071 0.4764 0.1050 -0.6790 0.4346 0.3173 -0.1252 -0.0064 0.8284 -0.0103 -0.4268 0.3403 0.6262 -0.4649 0.0298 0.2029 0.2881 0.5165 -0.6872 0.0093 -0.1181 0.3510 0.3670 0.5058
						0.0125 0 0 0 0 0
jD =						0 0.0945 0 0 0 0 0 0 0.3372 0 0 0 0 0 0 0.6932 0 0
0.0125	0	0	0	0	0	
0	0.0945	0	0	0	0	0 0 0 0 1.1142 0 0 0 0 0 0 9.7896
0	0	0.3372	0	0	0	0 0 0 0 9.7090
0	0	0	0.6932	0	0	Elapsed time is 0.000318 seconds.
0	0	0	0	1.1142	0	Etapsea Came as offoosas seconds!
0	0	0	0	0	9.7896	

Elapsed time is 0.003493 seconds.

خروجی روش حلقه ای برای ماتریس رندوم متقارن ۶ در ۶ و مقایسه با دستور eig (مقدار ضریب دلتا اول eps در نظر گرفته شد و پایان نیافت و در نتیجه یک مقدار بزرگتر ده به توان منفی ۴ در نظر گرفته شد. چون روش حلقوی اجرا میشود معمولا پاسخ خوب به مقدار اصلی دستور eig نزدیک میشود اما چون ابعاد ماتریس کوچک است و جستجوی بزرگترین عنصر خارج قطر اصلی خیلی هزینه ندارد، این روش کندتر از روش قبل اجرا میشود)

	2.2410	1.7245	1.5584	1.4129	0.6724	1.0010						
	1.7245	1.7096	1.3474	1.4284	0.7754	0.8631						
	1.5584	1.3474	1.9175	1.1584	0.9844	1.2506						
	1.4129	1.4284	1.1584	1.6156	0.6436	0.8670	V =					
	0.6724	0.7754	0.9844	0.6436	0.6170	0.6943	v –					
	1.0010	0.8631	1.2506	0.8670	0.6943	1.3621	-0.3365	0.1033	0.3508	0.5857	0.3985	0.5012
						_	0.4373	-0.6454	-0.2547	-0.0984	0.3395	0.4499
						_	0.3462	0.4509	-0.4325	0.2843	-0.4425	0.4617
j۷ :	=					_	-0.0928	0.4622	0.0618	-0.7216	0.2976	0.4058
							-0.7474	-0.3039	-0.4333	-0.7210	-0.2964	0.2422
	-0.3364	-0.1033	0.3508	-0.5857	-0.3985	0.5012	0.0926	-0.2520	0.6583	-0.1217	-0.5947	0.3316
	0.4373	0.6454	-0.2547	0.0984	-0.3395	0.4499	0.0920	-0.2520	0.0303	-0.1750	-0.5947	0.3310
	0.3462	-0.4509	-0.4325	-0.2843	0.4425	0.4617						
	-0.0928	-0.4622	0.0618	0.7216	-0.2976	0.4058	D =					
	-0.7474	0.3039	-0.4333	0.1217	0.2964	0.2422	U -					
	0.0926	0.2520	0.6583	0.1758	0.5947	0.3316	0.0039	0	0	0	0	0
						_	0.0039	0.1712	0	0	0	0
						_	0	0.1/12	0.3643	0	0	0
jD :	=					_	0	0	0.3043	0.5269	0	0
	0.0000						0	0	0	0.5209	1.0412	0
	0.0039	0 1712	0	0	0	0	0	0	0	0	0	7.3552
	0	0.1712	0 3643	0	0	0	U	U	U	U	U	7.3332
	0	0	0.3643	0 5260	0	0	Elapsed time	is 0 000	260 second	c		
	0	0	0	0.5269	•	0	E (absect (Till)	13 0.000.	203 Second:			
	0	0 0	0 0	0	1.0412 0	7.3552						
	v	ט	ט	U	ט	/.3332						

```
% Jacobi_svd_2sided
function [jU2, jS2, jV2] = Jacobi_svd_2sided(A)
     delta = 0.0001 * norm(A, 'fro');
    [m, n] = size(A);
jS2 = A;
                                                                                                                                                                                     ٠٢
     jU2 = eye(m);
     jV2 = eye(n);
     while (off(jS2) > delta)
          for p = 1:min(m, n)-1
for q = p+1:min(m, n)
                    [c1, s1, c2, s2] = asymSchur2(jS2, p, q);
                    J1 = eye(m);
                    J1(p,p) = c1;
J1(p,q) = s1;
J1(q,p) = -s1;
                    J1(q,q) = c1;
                    J2 = eye(n);
                    J2(p,p) = c2;
J2(p,q) = s2;
J2(q,p) = -s2;
                    J2(q,q) = c2;
                     jS2 = J1' * jS2 * J2;
                    jU2 = jU2 * J1;
jV2 = jV2 * J2;
               end
          end
          if m < n
                                                                                                     % asymSchur2
               % make all n-m end columns zero
                                                                                                     function [c1, s1, c2, s2] = asymSchur2(A, p, q)
               for p = 1:m
                    for q = m+1:n
                                                                                                            if (A(p, q) == A(q, p))
                          if jS2(p, p) == 0
                                                                                                                  c = 1;
                               c2 = 0;
                                                                                                                  s = 0;
                               s2 = 1;
                                                                                                            else
                          else
                                                                                                                 t = (A(q, p)-A(p, q))/(A(p, p)+A(q, q));
                              t = -jS2(p, q)/jS2(p, p);
c2 = 1/sqrt(1+t^2);
                                                                                                                  c = 1/(sqrt(1+t^2));
                               s2 = t*c2;
                                                                                                                  s = t*c;
                          end
                                                                                                            end
                          J2 = eye(n);
                                                                                                            temp = [c, s; -s, c] * A([p,q], [p,q]);
                         J2(p,p) = c2;
J2(p,q) = s2;
J2(q,p) = -s2;
                                                                                                            [c2, s2] = symSchur2(temp, 1, 2);
                                                                                                            c1 = c * c2 + s * s2;
                          J2(q,q) = c2;
                                                                                                            s1 = c * s2 - s * c2;
                          jS2 = jS2 * J2;
jV2 = jV2 * J2;
                    end
               end
          elseif m > n
               % make all m-n end rows zero
               for p = n + 1:m
                    for q = 1:n
                          if jS2(q, q) == 0
c1 = 0;
                                                                                 % sort vectors
                                                                                jS2 = diag(jS2);
for i = 1:min(m, n)-1
                              s1 = 1;
                          else
                                                                                      for j = 1:min(m, n)-i
                              t = -jS2(p, q)/jS2(q, q);
c1 = 1/sqrt(1+t^2);
                                                                                           if jS2(j) < jS2(j+1)
% change coef</pre>
                               s1 = t*c1;
                         end
                                                                                                temp = jS2(j);
jS2(j) = jS2(j+1);
jS2(j+1) = temp;
                          J1 = eye(m);
                          J1(p,p) = c1;
                         J1(p,q) = s1;
J1(q,p) = -s1;
                                                                                                % swap vectors

temp = jU2(:, j);

jU2(:, j) = jU2(:, j+1);

jU2(:, j+1) = temp;

temp = jV2(:, j);

iV2(:, j) = iV2(:, i+1);
                          J1(q,q) = c1;
                         jS2 = J1' * jS2;
jU2 = jU2 * J1;
                                                                                                jV2(:, j) = jV2(:, j+1);
jV2(:, j+1) = temp;
        end
end
                                                                                     end
                                                                                end
     % make all coef positive
                                                                                 temp = jS2;
    for i=1:min(m, n)

if jS2(i, i) < 0

    jS2(i, i) = -jS2(i, i);

    jU2(:, i) = -jU2(:, i);
                                                                                 jS2 = zeros(m, n);
for i=1:min(m, n)
     jS2(i, i) = temp(i);
          end
                                                                           end
```

مقایسه روش با svd در ماتریس های رندوم با ابعاد مختلف:

A =		
0.4231	0.5312	0.1265
0.6556	0.1088	0.1343
0.7229	0.6318	0.0986
jU1 =		
0.5075	0.4677	0.7237
0.4581	-0.8578	0.2330
0.7297	0.2133	-0.6496
jS1 =		
1.3173	0	0
Ð	0.3598	0
9	9	0.0598
jV1 =		
0.7915	-0.5845	-0.1785
0.5925	0.8055	-0.0107
0.1501	-0.0973	0.9839
Elapsed time	e is 0.0332	98 seconds
U =		
-0.5075	0.4677	-0.7237
-0.4581	-0.8578	-0.2330
-0.7297	0.2133	0.6496
S =		
1.3173	0	0
9	0.3598	Ð
Ø	0	0.0598
V =		
-0.7915	-0.5845	0.1785
-0.5925	0.8055	0.0107
-0.1501	-0.0973	-0.9839
Elapsed time	e is 0.0076	665 seconds

A =				
0.5578	0.6225	0.2578	0.6841	0.40
0.3134	0.9879	0.3968	0.4024	0.62
0.1662	0.1704	0.0740	0.9828	0.15
jU1 =				
0.6163	0.0604	-0.7852		
0.6619	-0.5801	0.4748		
0.4268	0.8123	0.3975		
jS1 =				
1.8911	0	0	0	
0	0.7704	0	0	
0	0	0.2365	0	
jV1 =				
0.3290	-0.0170	-0.9434	0.0160	0.03
0.5871	-0.5154	0.2032	0.3622	-0.46
0.2396	-0.2005	0.0651	-0.9319	-0.17
0.5856	0.7870	0.1883	0.0032	-0.04
0.3831	-0.2730	0.1703	0.0091	0.86
Elapsed time	is 0.016	157 second	5.	
U =				
-0.6163	0.0604	-0.7852		
-0.6618	-0.5801	0.4748		
-0.4268	0.8123	0.3975		
S =				
1.8911	0	0	0	
0	0.7704	0	0	
0	0	0.2365	0	
V =				
-0.3290	-0.0170	-0.9434	0.0139	0.03
-0.5871	-0.5154	0.2032	0.3895	-0.44
		0.0001	-0.9199	-0.22
-0.2396	-0.2005	0.0651		
	-0.2005 0.7870 -0.2730	0.1883 0.1703	0.0061	-0.04 0.86

A =					
0	.5166	0.5409	0.7486		
0	.7027	0.6797	0.1202		
0	.1536	0.0366	0.5250		
0	.9535	0.8092	0.3258		
jU1 =					
	.5199	0 5724	0.5000	0.2026	
	.4977	0.5731 -0.4200	0.6002 0.2156	0.7276	
	.1768	0.6365	-0.6161	0.4290	
			-0.4623		
jS1 =					
1	.8969	0	0		
	0	0.6718	0		
	0	0	0.1049		
	9	9	0		
jV1 =					
۵	.6777	-0.2783	-0.6806		
	.6164		0.7322		
	.4010	0.9158	0.0248		
Elaps	ed time	e is 0.027	513 seconds	5.	
	ed time	e is 0.027	613 seconds	5.	
U =					
U = -0	.5185	0.5734 -0.4202	0.6017 0.2146		
U = -0 -0 -0	.5185 .4973	0.5734 -0.4202 0.6364	0.6017 0.2146 -0.6169	-0.2007 0.7280 0.4277	
U = -0 -0 -0	.5185 .4973	0.5734 -0.4202 0.6364	0.6017 0.2146	-0.2007 0.7280 0.4277	
-0 -0 -0 -0	.5185 .4973	0.5734 -0.4202 0.6364	0.6017 0.2146 -0.6169	-0.2007 0.7280 0.4277	
U = -0 -0 -0 -0 S =	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	
-0 -0 -0 -0	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	
U = -0 -0 -0 -0 S =	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	
-0 -0 -0 -0	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	
U = -0 -0 -0 -0 -0 S = 1	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	
-0 -0 -0 -0 -0 S = 1	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	
-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995 0.6718 0	0.6017 0.2146 -0.6169 -0.4597 0 0.1049 0	-0.2007 0.7280 0.4277	
-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	.5185 .4973 .1777 .6725	0.5734 -0.4202 0.6364 -0.2995	0.6017 0.2146 -0.6169 -0.4597	-0.2007 0.7280 0.4277	

```
%% Jacobi_svd_lsided
function [jU1, jS1, jV1] = Jacobi_svd_1sided(A)
   [m, n] = size(A);
                                                                                                                             .٣
   if m <= n
       delta = 0.0001 * norm(A*A', 'fro');
       D = A';
       jV1 = eye(m);
       % Just work on m columns
       while (off(D'*D) > delta)
           for p = 1:m-1
               for q = p+1:m
                   [c, s] = orthogonalization(D(:, p), D(:, q));
                   J = eye(m);
                   J(p,p) = c;
                                                                         % orthogonalization
                   J(p,q) = s;
                                                                         function [c, s] = orthogonalization(x, y)
                   J(q,p) = -s;
                   J(q,q) = c;
                                                                              if (norm(x) == norm(y))
                   D = D * J;
                                                                                  c = 1/sqrt(2);
                   jV1 = jV1 * J;
                                                                                  s = 1/sqrt(2);
               end
                                                                              else
           end
                                                                                  t = 2*x'*y/(norm(y)^2-norm(x)^2);
       end
                                                                                   c = sqrt((1+1/sqrt(1+t^2))/2);
                                                                                   s = sqrt((1-1/sqrt(1+t^2))/2);
       % get out JU1 & JS1 from D
                                                                              end
       jS1 = zeros(n, m);
       jU1 = zeros(n, m);
       for i = 1:m
                                                                         end
           jS1(i, i) = norm(D(:, i));
           jU1(:, i) = D(:, i)/norm(D(:, i));
       % Transpose everything to get final result
       temp = jU1;
       jU1 = jV1;
       jS1 = jS1';
       jV1 = temp;
    delta = 0.0001 * norm(A'*A, 'fro');
    jV1 = eye(n);
    % Just work on n columns
                                                                         jS1 = diag(jS1);
    while (off(D'*D) > delta)
        for p=1:n-1
                                                                         for i = 1:min(m, n)-1
            for q=p+1:n
                                                                             for j = 1:min(m, n)-i
                 [c, s] = orthogonalization(D(:, p), D(:, q));
                                                                                 if jS1(j) < jS1(j+1)
                J = eye(n);
                                                                                     % change coef
                J(p,p) = c;
                                                                                      temp = jS1(j);
                J(p,q) = s;
                                                                                      jS1(j) = jS1(j+1);
                J(q,p) = -s;
                                                                                      jS1(j+1) = temp;
                J(q,q) = c;
                                                                                      % swap vectors
                D = D * J;
                                                                                      temp = jU1(:, j);
                jV1 = jV1 * J;
                                                                                      jU1(:, j) = jU1(:, j+1);
                                                                                     jU1(:, j+1) = temp;
            end
                                                                                      temp = jV1(:, j);
        end
                                                                                     jV1(:, j) = jV1(:, j+1);
    end
                                                                                      jV1(:, j+1) = temp;
    % get out JU1 & JS1 from D
    jS1 = zeros(m, n);
                                                                                 end
    jU1 = zeros(m, n);
                                                                             end
    for i = 1:n
        jS1(i, i) = norm(D(:, i));
        jU1(:, i) = D(:, i)/norm(D(:, i));
                                                                         jS1 = diag(jS1);
end
                                                                     end
```

مقایسه روش با svd در ماتریس های رندوم با ابعاد مختلف: (خروجی به فرمت Thin SVD میباشد)

	0.7505	0.5836 0.5118 0.0826	0.7196
	0.5835	0.5118	0.9962
	0.5518	0.0826	0.3545
jU1	=		
	0.6494	-0.1894	-0.7365
	0.6843	0.5682 -0.8008	0.4572
	0.3319	-0.8008	0.4985
jS1	=		
	1.8223	0	9
	0	0.3131	0
	0	0	0.1857
jV1	=		
	0.5870	-0.8065	-0.0588
	0.4152	0.3645	-0.8329
	0.6950	0.4655	0.5503
Ela	psed time	e is 0.0162	255 second
ans	=		
	0.7505	0.5836	0.7196
	0.5835	0.5118	0.9962
	0.5518	0.0826	0.3545
U =			
	-0.6491		-0.7367
	-0.6845		0.4570
		-0.5680	
	-0.3318	0.8009	0.4985
	-0.3318		0.4985
	-0.3318		0.4985 0
	-0.3318	0.8009	
	1.8223	0.8009	0
S =	-0.3318 1.8223 0 0	0.8009 0.3131	9 9
s =	-0.3318 1.8223 0 0	0.8009 0.3131	9 9
S =	1.8223 0	0.8009 0.3131 0	0 0 0.1857

```
0.8944
             0.9274
                       0.6183
                                0.1248
                                          0.8332
    0.1375
             0.9175
                       0.3433
                                0.7306
                                          0.3983
    0.3900
             0.7136
                      0.9360
                                0.6465
                                          0.7498
jU1 =
    0.6294
            -0.7107
                       0.3143
    0.4689
             0.6698
                      0.5757
    0.6197
             0.2150
                     -0.7548
151 =
   2.4921
        0
            0.7358
                      0.4344
                  0
jV1 =
    0.3488 -0.6248
                      0.1518
    0.5843
             0.1480
                      0.6471
    0.4535
            -0.0113
                      -0.7241
    0.3297
             0.7334
                      -0.0548
    0.4718
           -0.2231
                     -0.1722
Elapsed time is 0.011936 seconds.
    0.8944
             0.9274
                      0.6183
                                0.1248
                                          0.8332
    0.1375
             0.9175
                      0.3433
                                0.7306
                                          0.3983
                                          0.7498
    0.3900
             0.7136
                      0.9360
                                0.6465
   -0.6294
           -0.7107
                       0.3143
   -0.4689
             0.6698
                      0.5757
   -0.6197
             0.2150
                      -0.7548
S =
   2.4921
             0.7358
       0
                      0.4344
   -0.3488
            -0.6248
                       0.1518
                               0.5542
                                         -0.3973
  -0.5843
             0.1480
                       0.6471
                               -0.4546
                                         -0.1066
  -0.4535
                      -0.7241
                               -0.3648
            -0.0113
                                         -0.3698
                      -0.0548
                                0.5868
                                         -0.0701
   -0.3297
             0.7334
   -0.4718
            -0.2231
                      -0.1722
                                0.0939
                                          0.8301
Elapsed time is 0.000398 seconds.
```

```
0.7391
             0.2815
    0.9542
             0.2304
                       0.0476
    0.0319
             0.7111
                       0.3488
    0.6627
             0.5906
                       0.2409
jU1 =
  -0.5239
            -0.1513
                      -0.8027
   -0.4482
            -0.6282
                       0.3881
   -0.3103
             0.6710
                       0.2103
  -0.4328
             0.3633
                      -0.0356
   -0.4910
            -0.0145
                       0.3995
j$1 =
   1.8409
            0.8081
                     0.4254
jV1 =
  -0.7079
            -0.7011
                       0.0859
   -0.5612
             0.6321
                       0.5343
   -0.4289
             0.3301
                      -0.8409
Elapsed time is 0.013087 seconds.
    0.7391
             0.2815
    0.9542
             0.2304
                       0.0476
    0.0319
             0.7111
                       0.3488
             0.6246
                       0.4513
    0.6627
             0.5906
                       0.2409
   -0.5240
             0.1496
                       0.8024 -0.2433 -0.0073
   -0.4486
             0.6268
                     -0.3883
                                 0.0858
                                        -0.4977
   -0.3099
             -0.6720
                      -0.2105
                                -0.4258
                                         -0.4762
   -0.4326
            -0.3646
                       0.0353
                                 0.8226
                                          0.0449
             0.0130
                                          0.7235
   -0.4910
                      -0.3998
                               -0.2748
   1.8409
             0.8081
                      0.4254
        0
                  0
                           0
  -0.7088
            0.7001 -0.0860
   -0.4286
           -0.3306
                       0.8408
Elapsed time is 0.000328 seconds.
```