3.5 Multi-Dimensional Scaling (MDS) 3.5.1 Motivation.

Clearwater	Daytona Beach	Ft. Lauderdale	Gainesville	Jacksonville
0	159	247	131	197
159	0	230	97	89
247	230	0	309	317
131	97	309	0	68
197	89	317	68	0
		159 0 247 230 131 97	159 0 230 247 230 0 131 97 309	159 0 230 97 247 230 0 309 131 97 309 0

The scaling produces a graph like the one below.

Perception of Color in human vision

MDS: a method to find a configuration of pts in d-dim space that preserves the pointuise dissimilarities.

Setting: Criven n sample pts with painwise distances, need to find artificial features' so that the pts can be represented as $x^{(i)}$, $x^{(i)}$, $x^{(i)}$ and $x^{(i)}$ are $x^{(i)}$ and $x^{(i)}$ are $x^{(i)}$.

Remark: As shifts of pts do not change partitive distances, without loss of generality (WLOG), we assume $x^{(i)}$, $x^{(i)}$ are centered, i.e. $u = \frac{1}{n} \sum_{i=1}^{n} x^{(i)} = 0$.

3.5.2 Theory

Suppose we have found the features $x = {x_1 \choose x_1} \in \mathbb{R}^d$ so that the sample pts can be represented as $x^{(i)} = x^{(n)}$ (and we centered). Form:

Sample matrix: $X = \begin{pmatrix} x^{(1)} & x^{(2)} \end{pmatrix}$

haeruel moothx: $K \stackrel{\text{def}}{=} X^T X = \begin{pmatrix} -x^{(i)} \\ -x^{(i)} \end{pmatrix} \begin{pmatrix} x^{(i)} \\ x^{(i)} \end{pmatrix}$

square distance matrix: D with $D_{ij} = ||x^{(i)} - x^{(j)}||^2$

Remark: (1) As $x^{(1)} - x^{(n)}$ are certered, $X \cdot 1 = \left(\begin{array}{c} x^{(1)} \\ x^{(1)} \end{array} \right) \left(\begin{array}{c} x^{(1)} \\ \vdots \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^{(1)} \\ x^{(1)} + x^{(1)} \end{array} \right) = \left(\begin{array}{c} x^{(1)} + x^$

where $1 = (1) \in \mathbb{R}^n$.

(2) K is sym,
$$K_{ij} = x^{(i)} \cdot x^{(j)}$$
, and $K \cdot 1 = x^{T}(x \cdot 1) = 0$.

(3)
$$D$$
 is sym, $D_{ij} = 0$ $i = 1, \dots, n$

Frist, we investigate the relation between Kand D.

Criven K, we have:

$$D = \|x^{(i)} - x^{(j)}\|^2 = (x^{(i)} - x^{(j)})^T (x^{(i)} - x^{(j)})$$

matrix multiple $x^{(i)} = x^{(i)} + x^{(i)} - x^{(i)} + x^{(i)}$

$$= \underbrace{\chi^{(i)} \chi^{(i)}}_{=\chi^{(i)}, \chi^{(i)}} - 2\underbrace{\chi^{(i)} \chi^{(j)}}_{=\chi^{(i)}, \chi^{(j)}} + \underbrace{\chi^{(j)} \chi^{(j)}}_{=\chi^{(j)}, \chi^{(j)}}$$

def of K