## Лекция №4

# Модель мониторинга утечек информации

Под мониторингом понимают определённую систему наблюдения, оценки и прогноза состояния и развития различных процессов и явлений.



Мониторинг – это постоянный сбор информации, наблюдения и контроль за объектом включающий процедуры анализа риска измерения параметров сигнала способных нести конфиденциальную информацию.

## Структура модели комплексной системы мониторинга



Территориальные зоны возможных несанкционированных действий



Для несанкционированного получения информации необходимо одновременное наступление таких событий:

- Нарушитель может получить доступ в ответственную зону;
- Во время пребывания нарушителя в зоне в ней может появляться (существовать) определенный канал несанкционированного получения информации;

- Канал несанкционированного получения информации, которой появился, может быть доступным нарушителям определенной категории;
- В канале не санкционированного получения информации в момент доступа к нему нарушителя может находиться защищаемая информация.

### Количественная оценка уязвимости

Методологические подходы к оценки уязвимости информации:

- Эмпирический;
- Теоретический;
- Теоретико-эмпирический.

Исходная посылка при разработке моделей:

- С одной стороны, при нарушении защищенности информации наносится некоторый ущерб
- С другой, обеспечение защиты информации сопряжено с расходованием средств. Полная ожидаемость стоимость защиты может быть выражена сумой расходов на защиту и потерь от её нарушения.



# Эмпирический подход

На основе длительного сбора и обработки данных о реальных проявлениях угроз информации и о размерах того ущерба, который при этом имел место, чисто эмпирически путём устанавливаются зависимости между потенциально возможных ущербом и коэффициентами, характеризующими частоту проявления соответствующей угрозы и значения имевшего при её проявлении размера ущерба.

Для того чтобы воспользоваться данным подходом необходимо знать(или уметь определять):

- Ожидаемы потери при нарушении защищенности информации
- А во-вторых, зависимость между уровнем защищенности и средствами, затрачиваемыми на защиту информации.
- Для определения уровня затрат, обеспечивающих требуемый уровень защищенности информации необходимо знать:
  - 1. Полный перечень угроз информации
  - 2. Потенциальную опасность для информации каждой из угроз и, в-третьих, размеры затрат, необходимых для нейтрализации каждой из угроз.
- Поскольку оптимальное решение вопроса о целесообразном уровне затрат на защиту состоит в том, что этот уровень должен быть равным уровню ожидаемых потерь при нарушении защищенности, достаточно определить только уровень потерь.

#### Эмпирический подход (методика IBM)

Эмпирическая зависимость ожидаемых потерь от і-й угрозы информации:

$$R_i = 10^{S_i + V_i - 4},$$

(4 – магический коэффициент из опыта)

Где R<sub>і</sub> – материальный ущерб по данному каналу;

S<sub>і</sub> – коэффициент, характеризующий возможную частоту возникновения і-ой угрозы

V<sub>i</sub>- коэффициент, характеризующий значение возможного ущерба при возникновении i-ой угрозы.

возникновении і-ой угрозы.

Общие потери по всем возможным каналам утечки информации:

 $R = SUM[i=0..n](R_i)$ 

где R – общие потери.

| Nº | Ожидаемая частота появления угрозы | Коэффициент<br>(Si) |
|----|------------------------------------|---------------------|
| 1  | почти никогда                      | 0                   |
| 2  | 1 раз в 1000 лет                   | 1                   |
| 3  | 1 раз в 100 лет                    | 2                   |
| 4  | 1 раз в 10 лет                     | 3                   |
| 5  | 1 раз в год                        | 4                   |
| 6  | 1 раз в месяц                      | 5                   |
| 7  | 2 раза в неделю                    | 6                   |
| 8  | 3 раза в день                      | 7                   |

| Nº | Значение возможного ущерба при появлении угрозы | Коэффициент<br>(Vi) |
|----|-------------------------------------------------|---------------------|
| 1  | 1                                               | 0                   |
| 2  | 10                                              | 1                   |
| 3  | 100                                             | 2                   |
| 4  | 1000                                            | 3                   |
| 5  | 10000                                           | 4                   |
| 6  | 100000                                          | 5                   |
| 7  | 1000000                                         | 6                   |
| 8  | 10000000                                        | 7                   |

## Систем передачи информации



## Основные принципы построение защиты:

- Необходимо строить вокруг объекта защиты постоянно действующий замкнутый контур (оболочку) защиты;
- Свойство преграды, составляющие защиту, должны по возможности соответствовать ожидаемой квалификации и осведомленности нарушителя;
- Для входа в систему законного пользователя необходима переменная секретная информация, известная только ему;
- Итоговая прочность защитного контура определяется его слабейшим звеном;
- При наличии нескольких законных пользователей следует обеспечить разграничение их доступа к информации в соответствии с полномочиями и выполняемыми функциями, реализуя, таким образом, принцип наименьшей осведомленности каждого пользователя с целью сокращения возможного ущерба.

## Вероятностная модель оценки защищенности по территориальным зонам

Поток случайных событий – это поток угроз и он имеет интенсивность лямбда\*т. На достаточно маленьких промежутках она стремится к константе



- Состояние S<sub>0</sub> в помещении (на объекте) отсутствуют реальные каналы утечки (КУ), но имеется некоторое множество потенциально возможных КУ;
- Состояние S<sub>1</sub> на объекте(в помещении возник или специально организован КУ информации и осуществляется перехват циркулирующей на объекте информации;
- Состояние  $S_2$  каналу утечки информации каким-либо образом обнаружен, но он ещё не устранён и продолжает функционировать.
- Переход объекта(помещения) в состояние возможен только после устранения службой безопасности канала утечки информации.

## Применение теоретико-эмпирического подхода – СМО



 $\lambda$  – Интенсивность создания

v – Интенсивность выявления

 $\mu$  – Интенсивность блокировки

t<sub>so</sub> - среднее время создания канала утечки

t<sub>obn</sub> - среднее время обнаружения

tы – среднее блокировки

Уравнения Колмогорова составляют систему Обыкновенных Дифференциальных Уравнений, которую решают операторным методом с помощью преобразования Лапласа



Оценка уязвимости информации по базовым показателям

Вероятность несанкционированного получения информации нарушителем k-ой категории по j-му каналу несанкционированного получения информацц в l-ой зоне i-го структурного компонента информационной системы.

$$\left[\mathbf{P}_{ijkl}\right] = \mathbf{P}_{ikl}^{\mathbf{I}} \mathbf{P}_{ijl}^{\mathbf{H}} \mathbf{P}_{ijkl}^{\mathbf{\Pi}} \mathbf{P}_{ijl}^{\mathbf{3}}$$

Базовый показатель уязвимости информации:

$$\mathbf{P}_{ikl}^{E} = 1 - \prod_{l=1}^{5} \left[ 1 - \mathbf{P}_{ijkl} \right] = 1 - \prod_{l=1}^{5} \left[ 1 - \mathbf{P}_{ikl}^{H} \mathbf{P}_{ijl}^{H} \mathbf{P}_{ijkl}^{H} \mathbf{P}_{ijl}^{3} \right]$$

РД<sub>ikl</sub> – это вероятность доступа нарушителя k-ой категории в зону l i-го компонента информационной системы.

Р<sup>н</sup><sub>іјі</sub>- это вероятность наличия(проявления) j-го канала несанкционированного получения информации в l-ой зоне i-го компонента ИС.

 $\mathsf{P}^{\Pi_{ijkl}}$  –  $\Pi$ - вероятность поступления(прорыва) нарушителя k-ой категории j-го канала зоны l i-го компонента ИС.

Р<sup>3</sup><sub>іј</sub>-3 – вероятность наличия защищаемой информации в j-ом канале несанкционированном получении информации в зон l i-го компонента ИС.

Вероятность несанкционированного получения информации в одном компоненте ИС одним злоумышленником одной категории и по одному каналу называется базовым показателем уязвимости информации.

Поисковые технические устройства:

Детекторы поля – простейшие поисковые устройства. которые необходим для поиска радиоизлучающих подслушивающих устройств.

Нелинейные локаторы – предназначены для выявления и локализации негласно установленные электронных средств съема информации. Предназначен для поиска электронных устройств. содержащих полупроводниковые компоненты. Применяется для обследования легких строительных конструкций, мебели и предметов интерьера.

Поисковые комплексы – предназначены для проведения различных работ по выявлению технических каналов утечки информации. Многофункциональное поисковое устройство ST 131 «Пиранья II» предназначено для проведения мероприятий по обнаружению и определению местоположения специальных технических средств негласного получения информации и выявления естественных и искусственно созданных каналов утечки информации.

Блокираторы беспроводной связи предназначены для блокирования работы устройств несанкционированного получения информации, работающих в стандартах сетей сотовой связи и в стандартах Bluetooth и WiFi.

Принцип работы заключается в генерации помех в заданном частотном диапазоне.

Системы постановки виброакустический и акустических помех предназначена для противодействия специальным средствам несанкционированного съема информации. использующим в качестве канала утечки перегородки и пр.