EE315 - Electronics Laboratory

Experiment - 5 Simulation MOSFET Characteristics and Small Signal Amplifier

Preliminary Work

1. The inverter in Figure 1 utilizes an N-channel enhancement-mode MOSFET with the parameters $K_n = 50 \text{ mA/V}^2$ and $V_{TN} = 2.0 \text{ V}$. Find the MOSFET drain current i_D when $v_{in} = 3.0 \text{ V}$ and $v_{in} = 3.5 \text{ V}$. Plot the v_{in} - v_{out} transfer characteristics of the inverter.

Equations for the N-channel MOSFET are given below.

$$i_{\rm D} = {\rm K}_{\rm n} (v_{\rm GS} - {\rm V}_{\rm TN})^2$$
 (in SAT region: $v_{\rm DS} \ge v_{\rm GS} - {\rm V}_{\rm TN}$)
 $i_{\rm D} = {\rm K}_{\rm n} [2(v_{\rm GS} - {\rm V}_{\rm TN})v_{\rm DS} - v_{\rm DS}^2]$ (in triode=non-SAT region: $v_{\rm DS} < v_{\rm GS} - {\rm V}_{\rm TN}$)

2. Consider the MOSFET amplifier in Figure 2 with the parameters K_n = 50 mA/V² and V_{TN} = 2.0 V. Determine the resistor values to obtain roughly I_D = 10 mA and to set V_D roughly midway between V_{DD} and V_G .

Hint: Set the approximate voltage gain $A_V \approx R_D/R_S$ between 4.0 and 5.0 while the drain-to-source bias voltage is $V_{DS} \approx (V_{DD} - V_{SS})/2$.

Figure 2

Procedure

- **1.a)** Build the inverter circuit given in Figure 1 using R_D = 100 Ω and V_{DD} = 10 V. Place a MOSFET using "nmos" symbol and select the MOSFET part number **BSS145**.
- **1.b)** Use a ramp function (PULSE(0 5 0 10m 1u 1m)) as v_{in} that rises from 0 V to 5 V in 10 ms and set simulation time to 10 ms. Run simulation and display $v_{in} = v_{GS}$, $v_{out} = v_{DS}$ and $i_{RD} = i_{D}$ on the waveform window. Determine the v_{GS} threshold voltage V_{TN} and the drain current coefficient K_n based on the waveform plots.

$$V_{TN} = K_n =$$

1.c) Measure the drain current i_D for v_{in} = **3.0 V** and v_{in} = **3.5 V** on the plotted waveforms and fill in the following table. Calculate the drain current i_D again based on V_{TN} and K_n found above.

	i_D calculatedin preliminarywork	<i>i</i> _D measured on the plotted waveforms	i_D calculated based on V_{TN} and K_n above
$v_{\rm in}$ = 3.0 V			
$v_{\rm in}$ = 3.5 V			

- **2.a)** Build the circuit in Figure **3** and apply an input ramp function as v_{in} that rises from **0 V** to **10 V**.
- **2.b)** Run simulation and display v_{in} , $v_{GS} = v_G v_S$, $v_{DS} = V_{DD} v_S$ and $i_{RS} = i_D$ on the waveform window. Verify that the values on drain current waveform can be calculated based on the V_{TN} and K_n values found above.

2.c) Explain the linearized behavior of the drain current i_D as a function of the input voltage v_{in} .

Hint: Write i_D as a function of v_{in} and describe the feedback mechanism (if v_{in} rises then $i_{RS} = i_D$ increases $\Rightarrow v_S$ rises $\Rightarrow v_{GS}$ decreases $\Rightarrow i_{RS} = i_D$ decreases).

3.a) Build the circuit in Figure **4** using the resistor values you calculated in the preliminary work. Set $v_{\rm in}$ to obtain a **1 kHz** sinusoidal source with **1 Vpeak** amplitude.

3.b) Run simulation and display v_{in} , v_{out} , v_D and $i_{RD} = i_D$ on the waveform window. Check the DC voltage at v_D and if necessary, adjust the resistor values to obtain a sinusoidal output without any clipping. If you changed any of the resistors, then explain why it was necessary.

Measure the output voltage and calculate the voltage gain.

$$V_{out} = A_v =$$

3.c) Connect a **100 k\Omega** resistor between the input voltage source and the coupling capacitor, C_{ci} . Measure the voltage gain and use the results from step **3.b** to deduce the amplifier input resistance, R_{in} .

$$R_{in} =$$

3.d) Measure the output resistance, **R**_{out}, of the amplifier.

$$R_{out} =$$

3.e) Calculate R_{in} and R_{out} of the amplifier according to the circuit components and explain any deviations from the measured R_{in} and R_{out} .