

Gegenüberstellung lineares Wachstum – exponentielles Wachstum

lineares Wachstum					exponentielles Wachstum				
Eine Grö	iße wäch	hst in dei	rselben		Eine Größe wächst in derselben Zeit-				
Zeitspanne immer um denselben Wert m					spanne immer um denselben Faktor a.				
(d.h., de	rselbe W	ert wird	addiert).						
Die Steig	gung ist	überall g	leich.		Die Steigung ist erst ganz schwach, dann immer				
					stärker und übersteigt schließlich das menschliche				
					Vorstellungsvermögen.				
					Für jede noch so stark steigende ganzrationale				
					Funktion gilt: es gibt immer irgendeine Stelle, ab				
					der die Exponentialfunktion noch stärker steigt				
					und sich nicht mehr einholen lässt.				
x	0	1	2	3	\boldsymbol{x}	0	1	2	3
f(x)	b	m+b	2m+b	3m+b	f(x)	С	c⋅a	a·b²	a⋅b³
+m Ú +m Ú +m Ú					•aÛ •aÛ •aÛ				
Dabei bezeichnet b den y-Achsen-					Dabei bezeichnet a den Anfangswert (und				
abschnitt und m die Steigung.					y-Achsenabschnitt), c die Basis der				
					Exponentialfunktion (also den Verviel-				
					fachungsfaktor in einer "Zeiteinheit").				
Differenzengleichheit: $f(x+1) - f(x) = m$					Quotientengleichheit: $\frac{f(x+1)}{f(x)} = a$				

Anwendungsbeispiel 1: Zinseszinsrechnung

Aufgabe: Ein Kapital von 2000 € wird zu 4,5% verzinst. Wie hoch ist das Guthaben

nach 8 Jahren?

Bezeichnung: K(x): Kapital nach x Jahren; Funktionsgleichung: $K(x) = 2000 \cdot 1,045^{x}$.

Gesucht: K(8)

 $K(8)=2000 \cdot 1,045^{8} = 2844,20.$

A.: Nach 8 Jahren ist das Guthaben auf 2844,20 € angewachsen.

Beispiel: Berechnung des Restbuchwerts bei (<u>geometrisch degressiver</u> Abschreibung: hier

Anwendungsbeispiel 2: radioaktiver Zerfall

Radioaktives Iridium-195 zerfällt so schnellt, dass bereits nach einer Stunde ca. 24,21% zerfallen sind. Wenn in einem Labor 3 Mengeneinheiten (ME) Iridium-195 hergestellt werden, welche Menge ist dann nach 2,5 Stunden noch vorhanden? Bezeichnung: I(x): Menge an Iridium-195 nach x Stunden.

Funktionsgleichung: $I(x)=3\cdot 0.7579 \times (Da von 100\% nach 1 Stunde 24,21 \% zerfallen sind, bleiben 100%-24,21% = 75,79% = 75,79/100 = 0,7579 übrig.)$

Gesucht: I(2,5)

 $I(2,5)=3\cdot 0.7579^{2,5}\approx 1.5.$

A: Nach 2,5 Stunden sind noch 1,5 ME Iridium-195 vorhanden. (Bemerkung: Das ist genau die Hälfte der ursprünglichen Menge. Die Halbwertszeit von Iridium-195 beträgt demnach 2,5 Stunden.)

Berechnung der Basis a:

Anwendungsbeispiel 3:

Eine Bakterienkultur von anfangs 2800 Bakterien vermehrt bei optimalen Wachstumsbedingungen innerhalb eines Tages auf 716800. Stellen Sie das entsprechende Wachstumsgesetz (also die Funktionsgleichung) auf, wobei B(x) die Bakterienanzahl nach x Stunden ist.

 $B(x) = 2800 a^{x}$.

Gesucht: a.

 $B(12) = 2800 \text{ a}^{24} = 716800 \mid :2800$

 \Leftrightarrow a ²⁴ = 256 | ²⁴ $\sqrt{}$ (keine negative Lösung, da a >0 sein muss.)

 \Leftrightarrow a \approx 1,2599

 $B(x) = 2800 \cdot 1,2599 \times$

Beispiel: Berechnung des Zinssatzes: hier

