第 31 章

固有値とスペクトル分解

対称行列の固有ベクトルの正規直交化

n 次対称行列 A の固有値を $\lambda_1,\ldots,\lambda_n$ とする 対称行列の場合、異なる固有値に対する固有ベクトルは互いに直交する

n 個の固有値に重複するものがあると、重複する固有値に対しては対応する固有ベクトルも 重複することになる

しかし、それらの任意の線型結合も同じ固有値に対する固有ベクトルとなるので、それらを グラム・シュミットの直交化法によって、互いに直交するように選ぶことができる

この結果、対称行列の固有ベクトル $\{u_1,\ldots,u_n\}$ を正規直交系となるように選ぶことができ、これは \mathbb{R}^n の正規直交基底となる

対称行列のスペクトル分解

固有値と固有ベクトルの関係式

 $A\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i \quad (\boldsymbol{u}_i \neq \boldsymbol{0})$

は、A が正規直交基底 $\{m{u_1},\dots,m{u_n}\}$ をそれぞれ $\lambda_1m{u_1},\dots,\lambda_nm{u_n}$ に写像することを意味する

よって、theorem~14.2「正規直交基底による表現行列の展開」より、A は次のように表される

$$A = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} + \dots + \lambda_n \boldsymbol{u}_n \boldsymbol{u}_n^{\top}$$

このように、対称行列は、その固有値と固有ベクトルによって表すことができ、この式をスペクトル分解あるいは固有値分解と呼ぶ

北 theorem 31.1 - 対称行列のスペクトル分解

n 次対称行列 A は、その固有値と固有ベクトルによって表すことができる

$$A = \sum_{i=1}^n \lambda_i oldsymbol{u}_i oldsymbol{u}_i^ op$$

ここで、 λ_i は固有値、 $oldsymbol{u}_i$ は対応する固有ベクトルの正規直交系である

各 $m{u}_im{u}_i^{\mathsf{T}}$ は、各固有ベクトル $m{u}_i$ の方向($m{A}$ の主軸)への射影行列であるよって、スペクトル分解とは、

A を各主軸方向への射影行列の線形結合で表す

ものである

このことから、対称行列による空間の変換は、

- 1. 各点を主軸方向に射影する
- 2. それを固有値倍する
- 3. それらをすべての主軸にわたって足し合わせる

という操作の結果と解釈することができる

単位行列のスペクトル分解

単位行列 Ε も対称行列の一種である

単位行列の固有値はすべて 1 であるので、単位行列のスペクトル分解は次のように表される

$${m E} = \sum_{i=1}^n {m u}_i {m u}_i^ op$$

対称行列のランクと固有値

n 次対称行列 A の列の任意の線形結合

$$c_1 \boldsymbol{a}_1 + \cdots + c_n \boldsymbol{a}_n = \begin{pmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = A \boldsymbol{c}$$

を考える

A の n 個の固有値のうち、0 でないものの個数を r とすれば、theorem~31.1「対称行列のスペクトル分解」による A のスペクトル分解の式において、 $\lambda_{r+1},\ldots,\lambda_n=0$ とおいて、

$$Ac = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} \boldsymbol{c} + \dots + \lambda_r \boldsymbol{u}_r \boldsymbol{u}_r^{\top} \boldsymbol{c}$$
$$= \lambda_1 (\boldsymbol{u}_1^{\top} \boldsymbol{c}) \boldsymbol{u}_1 + \dots + \lambda_r (\boldsymbol{u}_r^{\top} \boldsymbol{c}) \boldsymbol{u}_r$$

すなわち、A の列の任意の線形結合は、互いに直交する $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r$ の線形結合で書ける

theorem 14.1「直交系の線型独立性」より、互いに直交するベクトルは線型独立であることから、

- a_1, \ldots, a_n の張る部分空間(線形結合の集合)の次元は r である
- \bullet n 本の列のうち、r 本しか線型独立ではない

ということがいえる

theorem 9.4 「階数と線型独立な列ベクトルの最大個数」より、行列 A の n 本の列の うち、線型独立なものの個数を A のランクあるいは階数というので、次のことがいえる

♣ theorem 31.2 - 対称行列における階数と非零固有値の個数

A を対称行列とするとき、rank(A) は、A の非零の固有値の個数に等しい

A は対称行列であるから、行についても同じことがいえる

スペクトル分解による対称行列の対角化

スペクトル分解の式を用いることで、対称行列の対角化について簡潔に議論できるように なる

対称行列 A のスペクトル分解の式

$$A = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^{\top} + \dots + \lambda_n \boldsymbol{u}_n \boldsymbol{u}_n^{\top}$$

は、次のように書き換えられる

$$A = \begin{pmatrix} \lambda_1 \boldsymbol{u}_1 & \cdots & \lambda_n \boldsymbol{u}_n \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1^\top \\ \vdots \\ \boldsymbol{u}_n^\top \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1^\top \\ \vdots \\ \boldsymbol{u}_n^\top \end{pmatrix}$$

$$= U \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^\top$$

ここで、

$$U = \begin{pmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_n \end{pmatrix}$$

は、theorem 20.7「ユニタリ行列の列ベクトルの直交正規性」より、列が正規直交系をなすことから直交行列である

そして、U が直交行列であれば、theorem~20.8「直交行列の転置不変性」より、その転置 U^{T} も直交行列である

それゆえ、直交行列の行も正規直交系をなす

A の式の両辺に左から U^{T} 、右から U をかけると、

$$U^{\top}AU = U^{\top}U \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} U^{\top}U$$

直交行列の定義 $U^{T}U = E$ より、

$$U^{\top}AU = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

として、対称行列 A は、直交行列 U によって対角化できることがわかる

対称行列の逆行列

[Todo 1:]

.....

Zebra Notes

Туре	Number
todo	1