Limiti – Forme indeterminate

• Tipi di forme indeterminate

Per risolvere queste forme indeterminate bisogna applicare varie tecniche (mostrate in seguito).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(≠ 1) 0·±∞ (≠ 0)	+∞ -∞ (≠ 0)	0° (≠ 1)	1 ^{±∞} (≠ 1)	$\pm \infty^0 \ (\neq 1)$
--	------------------	-------------	----------	-----------------------	---------------------------

• Calcolo dei limiti in forma indeterminata – metodo classico

Tipo	Forma indeterminata del tipo "differenza di infiniti": $\lim_{x\to\pm\infty}polinomio=[+\infty-\infty]$
Soluzione	Raccolgo massimo grado
Passaggi	Metto in evidenza l'incognita di grado massimo Ricalcolo il limite tenendo conto dei segni
Esempio	$\lim_{x \to +\infty} 2x^3 - x^2 + 3 = [\dots] = [+\infty - \infty] \to$ $\to \lim_{x \to +\infty} x^3 \cdot \left(2 - \frac{1}{x} + \frac{3}{x^3}\right) = (+\infty)^3 \cdot \left(2 - \frac{1}{+\infty} + \frac{3}{+\infty^3}\right) = +\infty \cdot (2 - 0 + 0) = +\infty \cdot 2 = +\infty$

Tipo	Forma indeterminata del tipo "rapporto di infiniti": $\lim_{x\to\pm\infty}\frac{polinomio}{polinomio}=\left[\frac{\pm\infty}{\pm\infty}\right]$
Soluzione	Raccolgo massimo grado a numeratore e a denominatore
Passaggi	1) Metto in evidenza al numeratore e al denominatore le rispettive incognite di grado massimo 2) semplifico dove possibile, e ricalcolo il limite tenendo conto dei segni
Esempio	$\lim_{x \to +\infty} \frac{x+2}{2x^2 - 5} = [\dots] = \left[\frac{+\infty}{+\infty}\right] \to \\ \to \lim_{x \to +\infty} \frac{x \cdot \left(1 + \frac{2}{x}\right)}{x^2 \cdot \left(2 - \frac{5}{x^2}\right)} = \lim_{x \to +\infty} \frac{1 \cdot \left(1 + \frac{2}{x}\right)}{x^1 \cdot \left(2 - \frac{5}{x^2}\right)} = \frac{1 + \frac{2}{+\infty}}{(+\infty) \cdot \left(2 - \frac{5}{(+\infty)^2}\right)} = \frac{1 + 0}{(+\infty) \cdot (2 - 0)} = \frac{1}{+\infty} = 0$

Tipo	Forma indeterminata del tipo "rapporto di zeri": $\lim_{x \to x_0} \frac{polinomio}{polinomio} = \left[\frac{0}{0}\right]$
Soluzione	Scompongo
Passaggi	Cerco delle scomposizioni da applicare a numeratore e denominatore Semplifico, e ricalcolo il limite tenendo conto dei segni
Esempio	$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = [\dots] = \begin{bmatrix} 0 \\ \overline{0} \end{bmatrix} \to$ $\to \lim_{x \to 1} \frac{(x + 1) \cdot (x - 1)}{x - 1} = \lim_{x \to 1} \frac{(x + 1) \cdot (x - 1)}{x - 1} = \lim_{x \to 1} (x + 1) = (1) + 1 = 2$

Tipo	Forma indeterminata del tipo "differenza di radici": $\lim_{x\to\pm\infty} \sqrt[n]{A} - \sqrt[n]{B} = [+\infty - \infty]$
Soluzione	Scompongo con la differenza di quadrati (se n=2) o differenza di cubi (se n=3)
Passaggi	1) Mi riscrivo per le radici la formula della differenza di quadrati (se n=2) o di cubi (se n=3) Se $\sqrt[3]{}$: So che $(A - B) \cdot (A + B) = (A^2 - B^2) \Rightarrow (\sqrt{A} - \sqrt{B}) \cdot (\sqrt{A} + \sqrt{B}) = (A - B)$ Se $\sqrt[3]{}$: So che $(A - B) \cdot (A^2 + AB + B^2) = (A^3 - B^3) \Rightarrow (\sqrt[3]{A} - \sqrt[3]{B}) \cdot ((\sqrt[3]{A})^2 + \sqrt[3]{AB} + (\sqrt[3]{B})^2) = (A - B)$ 2) Mi riporto a quella formula (ad esempio moltiplicando e dividendo per il fattore mancante) 3) Sviluppo i calcoli, semplifico dove possibile, e ricalcolo il limite tenendo conto dei segni
Esempio	$\lim_{x \to +\infty} \sqrt{3x+1} - \sqrt{x} = [\dots] = [+\infty - \infty] \to$ $\to \lim_{x \to +\infty} \sqrt{3x+1} - \sqrt{x} = \lim_{x \to +\infty} (\sqrt{3x+1} - \sqrt{x}) \cdot \left(\frac{\sqrt{3x+1} + \sqrt{x}}{\sqrt{3x+1} + \sqrt{x}}\right) = \lim_{x \to +\infty} \frac{(3x+1) - (x)}{\sqrt{3x+1} + \sqrt{x}} =$ $\lim_{x \to +\infty} \frac{2x+1}{\sqrt{3x+1} + \sqrt{x}} = \frac{2(+\infty) + 1}{\sqrt{3(+\infty)} + \sqrt{+\infty}} = \left[\frac{+\infty}{+\infty}\right] \to applico \ il \ metodo \ per \ risolvere \ \left[\frac{+\infty}{+\infty}\right] \to$ $\to \lim_{x \to +\infty} \frac{2x+1}{\sqrt{3x+1} + \sqrt{x}} = \lim_{x \to +\infty} \frac{x \cdot \left(2 + \frac{1}{x}\right)}{\sqrt{x} \cdot \left(\frac{(\sqrt{3x+1})}{\sqrt{x}} + 1\right)} = \lim_{x \to +\infty} \frac{\sqrt{x} \cdot \left(2 + \frac{1}{x}\right)}{1 \cdot \left(\sqrt{\frac{3x+1}{x}} + 1\right)} =$ $= \lim_{x \to +\infty} \frac{\sqrt{x} \cdot \left(2 + \frac{1}{x}\right)}{\left(\sqrt{\frac{3x}{x} + \frac{1}{x}} + 1\right)} = \lim_{x \to +\infty} \frac{\sqrt{x} \cdot \left(2 + \frac{1}{x}\right)}{\sqrt{3+1} + 1} =$ $= \frac{\sqrt{+\infty} \cdot (2+0)}{\sqrt{3+0} + 1} = \frac{\sqrt{+\infty} \cdot (2)}{\sqrt{3+1^2}} = \frac{\sqrt{+\infty} \cdot (2)}{\sqrt{4}} = \frac{\sqrt{+\infty}}{2} = +\infty$

• Forme indeterminate risolvibili con i limiti notevoli

Tipo	Forma indeterminata del tipo "esponenziale": $\lim_{x\to\pm\infty}f(x)^{g(x)}=[1^{\pm\infty}] \ , \ [0^0] \ , \ [\pm\infty^0]$
Soluzione	$\lim_{x \to \pm \infty} f(x)^{g(x)} = e^{\lim_{x \to \pm \infty} [g(x) \cdot \ln(f(x))]}$
Passaggi	1) Applico le proprietà dei logaritmi: Sostituisco $f(x)^{g(x)}$ con $e^{g(x) \cdot \ln(f(x))}$ Ovvero: $f(x)^{g(x)} = e^{qualcosa \ che \ faccia \ uscire \ f(x)^{g(x)}} = e^{\ln(f(x)^{g(x)})} = e^{g(x) \cdot \ln(f(x))}$ 2) Provo a ricondurmi ad un limite notevole
Esempio	$\lim_{x \to 0} \left(\frac{x}{1+x}\right)^{x} = \left(\frac{0}{1+0}\right)^{0} = [0^{0}] \to Riscrivo\ come\ \lim_{x \to 0} e^{\ln\left(\left(\frac{x}{1+x}\right)^{x}\right)} = \lim_{x \to 0} e^{x \cdot \ln\left(\left(\frac{x}{1+x}\right)\right)} \to$ $e^{0 \cdot \ln\left(\frac{0}{1+0}\right)} = e^{0 \cdot \ln(0)} = e^{[0 \cdot (-\infty)]} \to So\ che\ \lim_{x \to x_0} g\left(f(x)\right) = g\left(\lim_{x \to x_0} f(x)\right) \to$ $e^{\lim_{x \to 0} \left(\frac{x}{1+x}\right)^{x}} \to Mi\ calcolo\ il\ limite\ dell'esponente \to \lim_{x \to 0} \left(x \cdot \ln\left(\left(\frac{x}{1+x}\right)\right)\right) = [0 \cdot (-\infty)]$ $Opzione\ 1: Limite\ notevole \to \lim_{x \to 0} \left(x \cdot \ln\left(\left(\frac{x}{1+x}\right)\right)\right) = \lim_{x \to 0} (x \cdot (1^{-1})) = 0$ $Opzione\ 2: Applico\ il\ metodo\ per\ la\ forma\ [0 \cdot (-\infty)] \to \lim_{x \to 0} \left(x \cdot \ln\left(\left(\frac{x}{1+x}\right)\right)\right) = 0$ $\to Sostituisco\ il\ valore\ trovato\ nel\ limite\ originale \to \lim_{x \to 0} e^{0} = 1$

• Forme indeterminate risolvibili usando De L'Hopital

Tipo	Forma indeterminata del tipo "prodotto di zero e infinito": $\lim \bigl(f(x)\cdot g(x)\bigr) = [0\cdot \pm \infty]$
Soluzione	De L'Hopital
Passaggi	Sapendo che $a \cdot b = \frac{a}{\frac{1}{b}}$ (Esempio: $2 \cdot 3 = \frac{2}{\frac{1}{3}}$) 1) Sostituisco $f(x) \cdot g(x)$ con $\frac{f(x)}{\frac{1}{g(x)}}$, in modo da portarmi alla forma $\begin{bmatrix} \frac{0}{0} \end{bmatrix}$ o $\begin{bmatrix} \frac{\infty}{\omega} \end{bmatrix}$ 2) Applico De L'Hopital
Esempio	$\lim_{x \to 0} \left(x \cdot \ln\left(\frac{x}{1+x}\right) \right) = 0 \cdot \ln\left(\frac{0}{1+0}\right) = 0 \cdot \ln(0) = [0 \cdot (-\infty)] \to$ $\to Riscrivo\ come\ \lim_{x \to 0} \left(\frac{\ln\left(\frac{x}{1+x}\right)}{\left(\frac{1}{x}\right)}\right) \to applico\ De\ L'Hopital \to D\left(\ln\left(\frac{x}{1+x}\right)\right) = \frac{1}{x \cdot (x+1)} \to$ $D\left(\frac{1}{x}\right) = -\frac{1}{x^2} \to \lim_{x \to 0} \left(\frac{\frac{1}{x \cdot (x+1)}}{-\frac{1}{x^2}}\right) \to \lim_{x \to 0} \left(\frac{1}{x \cdot (x+1)} \cdot \left(-\frac{x^2}{1}\right)\right) \to \lim_{x \to 0} \left(\frac{-x}{(x+1)}\right) = \frac{-0}{0+1} = 0$

• Ordini di grandezza (per il calcolo dei limiti con il confronto degli infiniti)

Dalla più piccola alla più grande:

Formula	Tipo di funzione
0(a)	F. costante
$O(\log_a(x))$	F. logaritmica
$O(\sqrt[a]{x})$	F. radice
<i>O(x)</i>	F. lineare
$O(x \cdot \log_a(x))$	F. semi-lineare
$O(x^a)$	F. polinomiale
$O(a^x)$	F. esponenziale
O(x!)	F. fattoriale

Esempio						
Con a=2	x=2	x=4	x=8	x=16	x=32	x=64
f(x)=2	2	2	2	2	2	2
$f(x) = \log_2(x)$	1	2	3	4	5	6
$f(x) = \sqrt[2]{x}$	1,41	2	2,82	4	5,65	8
f(x) = x	2	4	8	16	32	64
$f(x) = x \cdot \log_2(x)$	2	8	24	64	160	384
$f(x) = x^2$	4	16	64	256	1024	4096
$f(x) = 2^x$	4	16	256	65.536	4,29 · 10 ⁹	1,84 · 10 ¹⁹
f(x) = x!	2	24	40.320	2,09 · 10 ¹³	2,63 · 10 ³⁵	1,26 · 10 ⁸⁹

• Calcolo dei limiti in forma indeterminata – metodo con confronto degli infiniti

Questo metodo è applicabile solo nei limiti per $x \to \pm \infty$.

Se usato con disattenzione può causare facilmente errori, quindi usarlo come ultima risorsa.

NB: il prof Pisani non accetta questo tipo di risoluzione.

Tipo	Forma indeterminata del tipo "differenza di infiniti": $\lim_{x \to \pm \infty} polinomio = [+\infty - \infty]$
Passaggi	Applico la teoria degli infiniti: Il limite per $x \to \pm \infty$ di un polinomio dipende dal monomio di grado massimo (che arriva "più rapidamente" ad infinito). Quindi: Sostituisco il limite L con un limite L' contenente solo il monomio di grado massimo.
Esempio	Esempio risolvibile sia col metodo classico sia col confronto degli infiniti: $\lim_{x \to +\infty} 2x^3 - x^2 + 3 \to Per \ x \to +\infty, (2x^3 - x^2 + 3) \sim (2x^3) \to \lim_{x \to +\infty} 2x^3 = (+\infty)^3 = +\infty$ Esempio "problematico" col metodo classico, per cui conviene usare il confronto degli infiniti: $\lim_{x \to +\infty} (x^6 - 6^x) \to Per \ x \to +\infty, (x^6 - 6^x) \sim (-6^x) \to \lim_{x \to +\infty} (-6^x) = -\infty$

Tipo	Forma indeterminata del tipo "rapporto di infiniti": $\lim_{x \to \pm \infty} \frac{polinomio}{polinomio} = \begin{bmatrix} \pm \infty \\ \pm \infty \end{bmatrix}$
Passaggi	Applico la teoria degli infiniti: Il limite per $x \to \pm \infty$ di un rapporto fra polinomi dipende dal polinomio di grado maggiore (che arriva "più rapidamente" ad infinito). Quindi: Sostituisco il limite L con un limite L' contenente i monomi di grado massimo di Num. e Denom.
Esempio	Esempio con O(N) > O(D) (ovvero numeratore di grado superiore al denominatore) $\lim_{x \to +\infty} \frac{4x^5 - 3x + 2}{2x^2 + 4} \cong \lim_{x \to +\infty} \frac{+4x^5}{+2x^2} = \lim_{x \to +\infty} \frac{4x^3}{2} = +\infty$ Esempio con O(N) = O(D) $\lim_{x \to -\infty} \frac{3x^2 - x + 2}{4x - 2x^2 - 1} \cong \lim_{x \to -\infty} \frac{+3x^2}{-2x^2} = -\frac{3}{2}$ Esempio con O(N) < O(D) $\lim_{x \to +\infty} \frac{5x^3 - 3x + 1}{2x^4 + 4} \cong \lim_{x \to +\infty} \frac{+5x^3}{+2x^4} = \lim_{x \to +\infty} \frac{5}{2x} = \frac{5}{2 \cdot (+\infty)} = 0$