Aluno(a)______Data_____

A Solução desta Avaliação deve ser enviada como um arquivo.pdf para labsdg@hotmail.com

1- Simplificar cada uma das funções abaixo, indicando, **passo-a-passo**, o Teorema usado. Desenhar o circuito digital da função simplificada com o mínimo de portas lógicas:

$$F1 = \overline{B}C\overline{D} + \overline{A + B + \overline{C}D\overline{E}}$$

$$F2 = \overline{A}C(\overline{\overline{A}BD}) + A\overline{B}C + \overline{A}B\overline{C}\overline{D}$$

2- Obter a equação simplificada de cada função representada graficamente abaixo. **Uma** usando os **Maxtermos** e a **outra** os **Mintermos**. Desenhar o circuito de cada função simplificada com o mínimo de portas lógicas.

$$F3 = \begin{bmatrix} \bar{c}\bar{D} & \bar{c}D & \bar{c}D & \bar{c}\bar{D} \\ \bar{A}\bar{B} & 1 & 1 & 0 & 1 \\ \bar{A}\bar{B} & 1 & 1 & 0 & 0 \\ A\bar{B} & 0 & 0 & 0 & 1 \\ A\bar{B} & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$F4 = \begin{bmatrix} \bar{c}\bar{D} & \bar{c}D & cD & c\bar{D} \\ \bar{A}\bar{B} & 1 & 0 & 1 & 1 \\ \bar{A}B & 1 & 1 & 1 & 1 \\ AB & 0 & 0 & 0 & 0 \\ A\bar{B} & 0 & 0 & 1 & 1 \end{bmatrix}$$

- 3- As notações A_1A_0 e B_1B_0 representam números binários que podem ter qualquer valor (00,01,10,11) e são as entradas de um circuito digital que tem uma saída que é nível alto quando os números A e B são exatamente iguais (A=B) e outra saída que é nível alto quando A>B. Desenvolver todas as etapas de projeto deste circuito digital, com o mínimo de portas lógicas.
- 4- Considere que tem um dispositivo com quatro entradas e duas saídas \mathbf{Z}_1 e \mathbf{Z}_0 . A saída \mathbf{Z}_0 é ativada sempre que houver pelo menos duas entradas também ativadas. \mathbf{Z}_1 é ativada quando pelo menos duas das entradas estão desativadas. Desenvolver todas as etapas de projeto deste circuito digital, com o mínimo de portas lógicas.

1.1
$$a(b + c) = ab + ac$$

2.1 $a + ab = a$
3.1 $ab + a\overline{b} = a$
4.1 $a + \overline{a}b = a + b$
5.1 $ab + \overline{a}c + bc = ab + \overline{a}c$
5.2 $(a + b)(\overline{a} + c)(b + c) = (a + b)(\overline{a} + c)$
6.1 $ab + \overline{a}c = (a + c)(\overline{a} + b)$
6.2 $(a + b)(\overline{a} + c) = ac + \overline{a}b$