Optimization Methods (CS1.404), Spring 2024 Lecture 18

Naresh Manwani

Machine Learning Lab, IIIT-H

March 18th, 2024

Characterization of Local Minima in Constrained **Optimization**

Theorem

Let \mathcal{X} be a nonempty set in \mathbb{R}^n and $\mathbf{x}^* \in \mathcal{X}$ be a local minimum of fover \mathcal{X} . Then $\mathcal{F}(\mathbf{x}^*) \cap \mathcal{D}(\mathbf{x}^*) = \phi$.

- $\mathbf{x}^* \in \mathcal{X}$ is a local minima if $\Rightarrow \mathcal{F}(\mathbf{x}^*) \cap \mathcal{D}(\mathbf{x}^*) = \phi$.
- Consider any $\mathbf{x} \in \mathcal{X}$ and assume $f \in \mathbb{C}^2$. Then $\nabla f(\mathbf{x})^T \mathbf{d} < 0$ implies there exists $\delta > 0$ such that $f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x}), \ \forall \alpha \in (0, \delta)$. Such **d** is a descent direction ($\mathbf{d} \in \mathcal{D}(\mathbf{x})$).
- Let $\tilde{\mathcal{D}}(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \nabla f(\mathbf{x})^T \mathbf{d} < 0 \}$, then $\tilde{\mathcal{D}}(\mathbf{x}) \subset \mathcal{D}(\mathbf{x})$.

Naresh Manwani OM March 18th, 2024

Active Constraint

- Consider the problem min $f(\mathbf{x})$ such that $h_j(\mathbf{x}) \leq 0, \ j = 1 \dots l$, $\mathbf{x} \in \mathbb{R}^n$.
- Assume $h_j \in \mathbb{C}^2$, $j = 1 \dots I$.
- Let $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^n \mid h_j(\mathbf{x}) \leq 0, j = 1 \dots l\}.$
- An inequality constraint $h_j(\mathbf{x}) \leq 0$ is said to be active at \mathbf{x}^* if $h_j(\mathbf{x}^*) = 0$. It is inactive if $h_j(\mathbf{x}^*) < 0$.
- Set of active constraints $A(\mathbf{x}) = \{j \in \{1, \dots, l\} \mid h_j(\mathbf{x}) = 0\}.$

Figure: At \mathbf{x}_A , h_2 and h_3 are active. At \mathbf{x}_B , h_4 is active. At \mathbf{x}_C , no constraint is active.

Characterization of Feasible Directions

Lemma

For any $\mathbf{x} \in \mathcal{X}$, we have

$$\tilde{\mathcal{F}}(\mathbf{x}) = \{\mathbf{d} \in \mathbb{R}^n \mid \nabla h_j(\mathbf{x})^T \mathbf{d} < 0, j \in \mathcal{A}(\mathbf{x})\} \subseteq \mathcal{F}(\mathbf{x}).$$

ОМ

Necessary Condition for Local Minima

- Consider the problem min $f(\mathbf{x})$ such that $h_j(\mathbf{x}) \leq 0, \ j = 1 \dots l, \ \mathbf{x} \in \mathbb{R}^n$.
- Let $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^n \mid h_j(\mathbf{x}) \leq 0, j = 1 \dots l\}.$
- $\tilde{\mathcal{D}}(\mathbf{x}) = \{\mathbf{d} \in \mathbb{R}^n \mid \nabla f(\mathbf{x})^T \mathbf{d} < 0\} \subseteq D(\mathbf{x}).$
- $\tilde{\mathcal{F}}(\mathbf{x}) = \{\mathbf{d} \in \mathbb{R}^n \mid \nabla h_j(\mathbf{x})^T \mathbf{d} < 0, j \in \mathcal{A}(\mathbf{x})\} \subseteq \mathcal{F}(\mathbf{x}).$
- $\mathbf{x}^* \in \mathcal{X}$ is a local minima if $\Rightarrow \mathcal{F}(\mathbf{x}^*) \cup \mathcal{D}(\mathbf{x}^*) = \phi$. Which implies $\tilde{\mathcal{F}}(\mathbf{x}) \cap \tilde{\mathcal{D}}(\mathbf{x}) = \phi$.
- $\tilde{\mathcal{F}}(\mathbf{x}) \cap \tilde{\mathcal{D}}(\mathbf{x}) = \phi$ is only necessary. If this condition is satisfied for \mathbf{x}^* , then it does not mean that \mathbf{x}^* is a local minima.

Examples: Necessary Condition for Local Minima

- **Example 1:** Consider optimization problem min $x_1^2 + x_2^2$ such that $(x_1 + x_2 1)^3 \le 0$ and $x_1, x_2 \ge 0$.
 - Here, $h_1(x_1, x_2) = (x_1 + x_2 1)^3$, $h_2(x_1, x_2) = -x_1$, $h_3(x_1, x_2) = -x_2$
 - Consider a point $\mathbf{x}_A=(a,b)\in\mathbb{R}^2$ such that a+b=1 and a>0,b>0.
 - We can see that $\nabla h_1(\mathbf{x}_A) = \mathbf{0}$. Thus, $\tilde{\mathcal{F}}(\mathbf{x}_A) = \{\mathbf{d} \mid \nabla h_1(\mathbf{x}_A)^T \mathbf{d} < 0\} = \phi$.
 - Here, \mathbf{x}_A is not a local minima but $\tilde{\mathcal{F}}(\mathbf{x}_A) \cup \tilde{\mathcal{D}}(\mathbf{x}_A) = \phi$.
- **Example 2:** Consider optimization problem min $x_1^2 + x_2^2$ such that $(x_1 + x_2 1) \le 0$ and $x_1, x_2 \ge 0$.
 - Here, $h_1(x_1, x_2) = (x_1 + x_2 1)$, $h_2(x_1, x_2) = -x_1$, $h_3(x_1, x_2) = -x_2$
 - Consider a point $\mathbf{x}_A = (a, b) \in \mathbb{R}^2$ such that a + b = 1 and a > 0, b > 0.
 - We can see that $\nabla h_1(\mathbf{x}_A) = [1 \ 1]^T$. Thus, $\tilde{\mathcal{F}}(\mathbf{x}_A) = \{\mathbf{d} \mid \nabla h_1(\mathbf{x}_A)^T \mathbf{d} < 0\} = \{\mathbf{d} \mid d_1 + d_2 < 0\} \neq \phi$.
 - Here, \mathbf{x}_A is not a local minima because $\tilde{\mathcal{F}}(\mathbf{x}_A) \cup \tilde{\mathcal{D}}(\mathbf{x}_A) \neq \phi$.

Naresh Manwani OM March 18th, 2024

Examples: Necessary Condition for Local Minima

Example 3: Consider optimization problem min $x_1^2 + x_2^2$ such that $(x_1 + x_2 - 1) = 0$.

- Here, $h_1(x_1, x_2) = (x_1 + x_2 1), h_2(x_1, x_2) = -x_1 x_2 + 1$
- Consider a point $\mathbf{x}_A = (a, b) \in \mathbb{R}^2$ such that a + b = 1.
- Thus, $\tilde{\mathcal{F}}(\mathbf{x}_A) = \{\mathbf{d} \mid \nabla h_1(\mathbf{x}_A)^T \mathbf{d} < 0, \ \nabla h_2(\mathbf{x}_A)^T \mathbf{d} < 0\} = \phi.$
- This does not guarantee that x_A is a local minima.
- The above Necessary Condition for Local Minima is only applicable when there are inequality constraints.
- It is not applicable when there are equality constraints.

Necessary Condition for Local Minima

- Consider the problem min $f(\mathbf{x})$ such that $h_i(\mathbf{x}) \leq 0, j = 1 \dots l$, $\mathbf{x} \in \mathbb{R}^n$.
- Let $\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n \mid h_i(\mathbf{x}) < 0, \ j = 1 \dots l \}.$
- $\tilde{\mathcal{D}}(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \nabla f(\mathbf{x})^T \mathbf{d} < 0 \} \subseteq D(\mathbf{x}).$
- $\tilde{\mathcal{F}}(\mathbf{x}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \nabla h_i(\mathbf{x})^T \mathbf{d} < 0, j \in \mathcal{A}(\mathbf{x}) \} \subseteq \mathcal{F}(\mathbf{x}).$
- $\mathbf{x}^* \in \mathcal{X}$ is a local minima if $\tilde{\mathcal{F}}(\mathbf{x}) \cap \tilde{\mathcal{D}}(\mathbf{x}) = \phi$.

• Let
$$A = \begin{bmatrix} \nabla f(\mathbf{x}^*) \\ \nabla h_{j_1}(\mathbf{x}^*) \\ \vdots \\ \nabla h_{j_k}(\mathbf{x}^*) \end{bmatrix}$$
 assuming that there are k active constraints h_i, \dots, h_k .

• Then $\mathbf{x}^* \in \mathcal{X}$ is a local minima if $\{\mathbf{d} \in \mathbb{R}^n \mid A\mathbf{d} < \mathbf{0}\} = \phi$.

Naresh Manwani OM March 18th, 2024

Farkas Lemma

Lemma

Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. Then, exactly one of the two systems has a solution:

- **1** $A\mathbf{x} \leq \mathbf{0}, \ \mathbf{c}^T\mathbf{x} > 0 \text{ for some } \mathbf{x} \in \mathbb{R}^n$
- ② $A^T \mathbf{y} = \mathbf{c}, \ \mathbf{y} \geq \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$

Gordon's Theorem

- **1** $A\mathbf{x} < \mathbf{0}$ for some $\mathbf{x} \in \mathbb{R}^n$
- **2** $A^T \mathbf{y} = 0, \ \mathbf{y} \geq \mathbf{0}$ for some $\mathbf{y} \in \mathbb{R}^m$

Fritz-John Condition for Local Minima

- $\mathbf{x}^* \in \mathcal{X}$ is a local minima if $\{\mathbf{d} \in \mathbb{R}^n \mid A\mathbf{d} < \mathbf{0}\} = \phi$.
- Using Gordon's Theorem, $\exists \lambda_0 \geq 0$ and $\lambda_j \geq 0$, $j \in \mathcal{A}(\mathbf{x}^*)$, not all λ 's zero, such that

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{j \in \mathcal{A}(\mathbf{x}^*)} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$

• Define $\lambda_j = 0, \ \forall j \notin \mathcal{A}(\mathbf{x}^*)$. Then the above condition is same as

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_j h_j(\mathbf{x}^*) = 0; \quad j = 1, \dots, l$$
$$\lambda_j \ge 0; \quad j = 0, 1, \dots, l$$

Issues with Fritz-John Condition

- A major drawback of the Fritz-John conditions is in the fact that they allows λ_0 to be zero.
- The case $\lambda_0=0$ is not particularly informative since condition. In this case, Fritz-John condition becomes

$$\sum_{j\in\mathcal{A}(\mathbf{x}^*)}\lambda_j\nabla h_j(\mathbf{x}^*)=\mathbf{0}$$

- This means that the gradients of the active constraints are linearly dependent.
- This condition has nothing to do with the objective function.
- This implies that there can be many points which satisfy Fritz-John condition which are not local minima.

Next we will see how KKT condition can overcome this issue.

Naresh Manwani OM March 18th, 2024 11

Regular Point

Definition

A point $\mathbf{x}^* \in \mathcal{X}$ is said to be regular point if the gradient vectors $\nabla h_j(\mathbf{x}^*), \ j \in \mathcal{A}(\mathbf{x}^*)$, are linearly independent. Then, $\sum_{j \in \mathcal{A}(\mathbf{x}^*)} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$ only if $\lambda_j = 0, \ \forall j \in \mathcal{A}(\mathbf{x}^*)$.

Lemma

Consider min $f(\mathbf{x})$ such that $h_j(\mathbf{x}) \leq 0$, $j = 1 \dots l$, $\mathbf{x} \in \mathbb{R}^n$. If \mathbf{x}^* is a regular point and a local minima, then $\lambda_0 \neq 0$.

Proof:

ullet If x^* is a regular point and local minima, then Frtiz-John optimality condition implies,

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{j \in \mathcal{A}(\mathbf{x}^*)} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}.$$

- Let $\lambda_0 = 0$. Then, $\sum_{j \in \mathcal{A}(\mathbf{x}^*)} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$, making gradients of the active constraints linearly dependent.
- ullet However, this contradicts that ${f x}^*$ is a regular point. Thus, $\lambda_0
 eq 0$. Bitting a point of the second point

KKT Optimality Conditions: First Order

KKT Optimality Conditions of First Order

Consider the problem min $f(\mathbf{x})$ such that $h_j(\mathbf{x}) \leq 0, \ j = 1 \dots l$, $\mathbf{x} \in \mathbb{R}^n$. Assume that $\mathbf{x}^* \in \mathcal{X}$ to be a regular point and \mathbf{x}^* is a local minima. Then there exist λ_i $j = 1 \dots l$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_j h_j(\mathbf{x}^*) = 0; \quad j = 1, \dots, l$$
$$\lambda_j \ge 0; \quad j = 1, \dots, l$$

- These are first order KKT necessary conditions.
- KKT point: $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$, where $\boldsymbol{\lambda}^* = [\lambda_1^* \ \lambda_2^* \ \dots \ \lambda_I^*]^T$.

Lagrangian Function

Lagrangian function is represented as:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \nabla f(\mathbf{x}) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x})$$

KKT Conditions imply

$$\begin{split} &\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*,\boldsymbol{\lambda}^*)=0\\ &\lambda_j^*\geq 0;\ j=1\dots I\quad (\lambda's \ \text{are called Lagrange multipliers.})\\ &\lambda_j^*h_j(\mathbf{x}^*)=0;\ j=1\dots I\quad \text{(Complementary slackness conditions.)}\\ &\lambda_j^*=0;\ \forall j\in\mathcal{A}(\mathbf{x}^*) \end{split}$$

- Note that for active constraints, $\lambda_j^* h_j(\mathbf{x}^*) = 0$ because $h_j(\mathbf{x}^*) = 0$. Thus, λ_j^* can be zero or greater than zero.
- For non-active constraints, $h_j(\mathbf{x}^*) < 0$. Thus, $\lambda_j^* h_j(\mathbf{x}^*) = 0$ implies $\lambda_j^* = 0$.

14

Example 1

$$\begin{aligned} & \min_{x_1, x_2} & x_1^2 + x_2^2 \\ & s.t. & h_1: & x_1 + x_2 \ge 1 \\ & h_2: & x_2 \le 1 \end{aligned}$$

Case 1:

- Let h_1 and h_2 both are active constraints. $\mathbf{z} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- At this point both h_1 and h_2 are active. Thus, $\lambda_1^* \geq 0$ and $\lambda_2^* \geq 0$.
- $\mathcal{L} = x_1^2 + x_2^2 + \lambda_1^*(x_2 1) + \lambda_2^*(1 x_1 x_2)$
- $\nabla f(\mathbf{z}) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, $\nabla h_2(\mathbf{z}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\nabla h_1(\mathbf{z}) = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$.
- $\bullet \ \nabla \mathcal{L} = \mathbf{0} \text{ implies } \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \lambda_1^* \begin{pmatrix} -1 \\ -1 \end{pmatrix} + \lambda_2^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$
- This results in $\lambda_1^*=0$ and $\lambda_2^*=-2$. Thus, $\mathbf{z}=\begin{pmatrix} 0\\1 \end{pmatrix}$ is not a local minima.

Example 1: Continue

Case 2:

- Assume constraint h_1 is active and h_2 is inactive. Thus, $x_1 + x_2 = 1$ and $x_2 < 1$ at the solution.
- This implies $\lambda_2^* = 0$.
- KKT condition results $\nabla f(\mathbf{x}^*) + \lambda_1^* \nabla h_1(\mathbf{x}^*) = \mathbf{0}$.
- Which results in $\begin{pmatrix} 2x_1^* \\ 2x_2^* \end{pmatrix} + \lambda_1^* \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- This means $2x_1^* \lambda_1^* = 0$, $2x_2^* \lambda_1^* = 0$ and $x_1^* + x_2^* = 1$.
- This results in $x_1^*=x_2^*=0.5$ and $\lambda_1^*=1$ and $\lambda_2^*=0$.
- $x_1^* = x_2^* = 0.5$ is a KKT point at which $f(\mathbf{x}^*) = 0.5$.

Example 1: Continue

Case 3:

- Assume constraint h_1 is inactive and h_2 is active. Thus, $x_1 + x_2 > 1$ and $x_2 = 1$ at the solution.
- This implies $\lambda_1^* = 0$.
- KKT condition results $\nabla f(\mathbf{x}^*) + \lambda_2^* \nabla h_2(\mathbf{x}^*) = \mathbf{0}$.
- Which results in $\begin{pmatrix} 0 \\ 2 \end{pmatrix} + \lambda_2^* \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- This means $\lambda_2^* = -2$, which is not a feasible solution.

Thus, $x_1^* = x_2^* = 0.5$ is the minima.

Finding KKT Point

Consider the minimization problem.

min
$$f(\mathbf{x})$$

 $s.t.$ $h_j(\mathbf{x}) \leq \mathbf{0}$
 $\mathbf{x} \in \mathbb{R}^n$

- At a local minimum, active set is unknown.
- Need to investigate all possible active sets for finding KKT points.

Is KKT Point Always Optimal?

KKT Point may not be optimal always. See the example below.

- Consider min $-x^2$ such that $x \le 0$.
- $\mathcal{L}(x,\lambda) = -x^2 + \lambda x$
- $\frac{\partial \mathcal{L}}{\partial x} = 0 \Rightarrow -2x + \lambda = 0$
- At x^* , the constraint is active. Thus, $x^* = 0$.
- $\frac{\partial \mathcal{L}(x^*, \lambda^*)}{\partial x} = 0 \Rightarrow \lambda^* = 0.$
- (0,0) is a KKT point.
- However, $-x^2$ is unbounded in $x \le 0$ and $x^* = 0$ is not a local minimum.

