MATH 1600 Linear Algebra — Winter 2020

Tutorial 5 - Wednesday

- 1. Let $\mathbf{v}_1 = \langle 1, -2, 0 \rangle$, $\mathbf{v}_2 = \langle 0, 1, 2 \rangle$, $\mathbf{v}_3 = \langle 5, -6, 8 \rangle$, $\mathbf{w}_1 = \langle \sqrt{2}, -\sqrt{2}, -2 \rangle$, $\mathbf{w}_2 = \langle 2, 1, 6 \rangle$, $\mathbf{w}_3 = \langle 2, -1, 6 \rangle$ be vectors in \mathbb{R}^3 .
 - (a) Which of the vectors $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}_3)$ lie in the span of $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.
 - (b) Write each \mathbf{w}_i that lies in the span of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 .
 - (c) Are $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 linearly independent?
 - (d) Find scalars $a_1, a_2, a_3 \in \mathbb{R}$ such that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = 0$ and not all the scalars are zero.
- 2. Choose four distinct vectors in \mathbb{R}^3 and show that they are linearly dependent.
- $(1, \sigma, \circ) + 2(\sigma, 1, \sigma) + (1, \sigma, \sigma, 1) = (1, 2, 3).$ 3. Let $\mathbf{v}_1 = \langle 1, -1, 2 \rangle$, $\mathbf{v}_2 = \langle 5, -4, -7 \rangle$, $\mathbf{v}_3 = \langle -4, 3, 7 \rangle$ and $\mathbf{b} = \langle -4, 3, k \rangle$. For which values of k does \mathbf{b} belong to the span of $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 ? -21 = 1+5+
- 4. Show that the vectors $\langle 1, 1, 0 \rangle$, $\langle 1, 2, 3 \rangle$ and $\langle 2, 1, -1 \rangle$ span \mathbb{R}^3 .
- 5. Consider the following vectors in \mathbb{R}^4 : $\mathbf{w}_1 = \langle 1, 1, 0, -1 \rangle, \mathbf{w}_2 = \langle 2, 2, 4, 0 \rangle, \mathbf{w}_3 = \langle 1, 2, 9 \rangle, \mathbf{w}_4 = \langle 4, 10, 14, 6 \rangle.$ Determine whether the vectors $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4\}$ are linearly independent. If \mathbf{w}_0 , determine the largest subset of these vectors which is linearly independent. awithout cong = ~4
- 6. Compute the following.
 - (a) $(\sqrt{3}+2i)+5i$. 2 [2+]
 - (b) (2+i)-(1-6i). 2 1+73
 - (c) (10+3i)(i). 2 くナいう
 - (d) $(2+i)^2$ ~ 4+2i-1 = 3+2i

 - (e) $\frac{1+i}{1-i}$ = $\frac{(1+i)(1+i)}{(1-i)(1+i)}$ = $\frac{2i}{2}$ = i. (f) Express in polar form the complex numbers $-2\sqrt{3} 2i$ and 2i.
 - (g) Solve for x: (2+i)x = 1 + 2i.

- =-4·(全+之1)=-4·しいる音+もらかを)
 - =2.(いる豆+isin豆).