Algorithm Design and Analysis Dynamic Programming II 11/2/2022

Knapsack Problem

The Knapsack Problem

Input: A knapsack of size W > 0 (integer) n different indivisible items item i has weight $w_i > 0$ and value $v_i > 0$ (ints)

Goal: Fill the knapsack (without overloading) so as to maximize the total value

Item	Weight Volue	Value Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Item	Weight	Value Weight
1	1	1
2	6	2
3	18	5 ∫
4	22	6
5	28	7

Optimal: {3, 4} with value 40

Item	\ Weigh t Vawe	Value Weight
1	1	1
→ 2	6	2
3	18	5
4	22	6
≯ 5	28	[7]

Optimal: {3, 4} with value 40

Greedy: Pick repeatedly the item with largest $\frac{v_i}{w_i}$ ratio

$$\{5,2,1\} \Rightarrow 35$$

Item	Weight	Value
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Optimal : {3, 4} with value 40

Greedy: Pick repeatedly the item with largest $\frac{v_i}{w_i}$ ratio

 $\{5, 2, 1\} => value 35 ! Not optimal$

De Show that greedy can be arbitrarily bad.

OPT[i]: Optimal solution considering the items $\{1,2,3,\cdots i\}$ and knapsack of size W

OPT[i] : Optimal solution considering the items $\{1,2,3,\cdots i\}$ and knapsack of size W

Case I: item i is not part of the solution OPT[i] => OPT[i-I] = OPT [i]

OPT[i] : Optimal solution considering the items $\{1,2,3,\cdots i\}$ and knapsack of size W

```
Case I: item i is not part of the solution OPT[i] => OPT[i-I] = OPT [i]
```

Case II: item i is part of the solution OPT[i]

OPT[i] : Optimal solution considering the items $\{1,2,3,\cdots i\}$ and knapsack of size W

```
Case I: item i is not part of the solution OPT[i] => OPT[i-I] = OPT [i]
```

- Case II: item i is part of the solution OPT[i]
- Inclusion of i does not mean that we need to reject item i-1
- But, we also cannot reduce to OPT[i-1] We need to pack as much value as possible in a knapsack of size $W-w_i$

```
OPT[i] Optimal solution considering the items \{1,2,3,\cdots i\} and knapsack of size W

Case I: item i is not part of the solution OPT[i]

=> OPT[i-I] = OPT [i]
```

Case II: item i is part of the solution OPT[i]

- Inclusion of i does not mean that we need to reject item i-1.
- But, we also cannot reduce to OPT[i-I] We need to pack as much value as possible in a knapsack of size $W-w_i$

Moral of the Story: One parameter not enough to capture the problem!

DP: Structure of the Optimal (Second Attempt)

OPT[i, w] : Optimal solution considering the items $\{1,2,3,\cdots i\}$ and knapsack of size w for all i = 0, 1, 2, n, w = 0, 1, 2, ..., w opt (n, w)Smaller subgroblems

Case I: item i is not part of OPT[i, w]OPT[i, w] = OPT[i-1, w]OPT[i, w] = OPT[i-1, w]Case II: item i is part of OPT[i, w] = $OPT[i-1, W-W_i] + \mathcal{V}_i$ $OPT[i, W] = OPT[i-1, W-W_i] + \mathcal{V}_i$ Base case: OPT[0, w] = 0 + w= 0, 1, 2, ..., W.

Recursive (with Memoization) Algorithm

```
M[i, w]: 2-D Array of size n \times W, initialize to -I
                         (n+1) × (W H)
Knap (i, w)
 If M[i, w] == \text{---} walld Return M[i, w]
    If (i == 0)
       M[i,w] = 0 [base case]
    else if (w_i > w)
       M[i, w] = \operatorname{Knap}(i - 1, w)
    else
       M[i, w] = \max\{\operatorname{Knap}(i-1, w),
                         Knap(i-1, w-w_i) + v_i
 Return M[i, w]
```

Dynamic Programming Algorithm

```
M[i, w]: 2-D Array of size n \times W
Knap (n, W)
  for w = 0 to W
M[0, w] = 0
Ruse case
  for i = 1 to n
                                                      opt(i, w)
for old i,

for old i,

All u=0,...W
    for w = 0 to W
        if (w_i > w)
           M[i,w] = M[i-1,w]
        else
           M[i, w] = \max\{M[i - 1, w],
                            M[i-1, w-w_i] + v_i\}
  Return M[n, W]
```


Runtime Discussion

```
M[i, w] : 2-D Array of size n \times W
Knap (n, W)
  for w = 0 to W O(W)

M[0, w] = 0
  for i = 1 to n
     for w = 0 to W
       if (w_i > w)
          M[i,w] = M[i-1,w]
                                                      O(nW)
        else
          M[i, w] = \max\{M[i - 1, w],
                          M[i-1, w-w_i] + v_i
  Return M[n, W]
```

There are essentially two loops: outer one running for n iterations and the inner one running for W iterations. Inside, there is only 4 operations