

SEQUENCE LISTING

<110> Genentech, Inc.
Ashkenazi, Avi
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, A.
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth, J.
Kljavin, Ivar J.
Mather, Jennie P.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350
<141> 2000-09-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> US 60/143,048
<151> 1999-07-07

<150> US 60/145,698
<151> 1999-07-26

<150> US 60/146,222
<151> 1999-07-28

<150> PCT/US99/20594
<151> 1999-09-08

<150> PCT/US99/20944
<151> 1999-09-13

<150> PCT/US99/21090
 <151> 1999-09-15

<150> PCT/US99/21547
 <151> 1999-09-15

<150> PCT/US99/23089
 <151> 1999-10-05

<150> PCT/US99/28214
 <151> 1999-11-29

<150> PCT/US99/28313
 <151> 1999-11-30

<150> PCT/US99/28564
 <151> 1999-12-02

<150> PCT/US99/28565
 <151> 1999-12-02

<150> PCT/US99/30095
 <151> 1999-12-16

<150> PCT/US99/30911
 <151> 1999-12-20

<150> PCT/US99/30999
 <151> 1999-12-20

<150> PCT/US00/00219
 <151> 2000-01-05

<160> 423

<210> 1
 <211> 1825
 <212> DNA
 <213> Homo sapiens

<400> 1

 actgcacaccc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgaccc 60
 gaccacacgac tccggggccgg agcagcacgg ccgcaggacc tggagctccg gctgcgtctt 120
 cccgcacgcg tacccgcacat ggcctgcgg cgccggccg cgctggggctt cctgcgcctt 180
 ctgcgtctgc tgccggccgc gcccggaggcc gccaagaagc cgacgccttg ccacccgtgc 240
 cgggggctgg tggacaagtt taaccagggg atggtgacca ccgcaaagaa gaacttggc 300
 ggcgggaaca cggcttggga ggaaaagacg ctgtccaaagt acgagtccag cgagattcgc 360
 ctgcgtggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcac tcagatgcta 420
 gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
 ttattcgagt ggttttgtgt gaagacactg aaagtgtgt gctctccagg aacctacgg 540
 cccgactgttc tcgcatgcac gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
 agcggagatg ggagcagaca gggcgcacggg tcctgccggt gcccacatggg gtaccaggc 660

ccgcttgca	ctgactgcac	ggacggctac	ttcagctcgc	tccggAACGA	gaccCACAGC	720
atctgcacag	cctgtgacga	gtcctgcaag	acgtgctcg	gcctgaccaa	cagagactgc	780
ggcgagtgt	aagtggctg	gggtctggac	gaggggcgc	gtgtggatgt	ggacgagtgt	840
gcggcccggc	cgccctccctg	cagcgtcg	cagtctgt	agaacgc	cggctctac	900
acgtgcgaag	agtgtgactc	cagctgtgt	ggctgcacag	gggaaggccc	aggaaactgt	960
aaagagtgt	tctctggcta	cgcggggag	cacggacagt	gtgcagatgt	ggacgagtgc	1020
tcactagcag	aaaaaacctg	tgtgaggaaa	aacgaaaact	gctacaatac	tccagggagc	1080
tacgtctgt	tgtgtcctg	cggctcgaa	gaaacggaa	atgcctgtgt	gccggccggca	1140
gaggctgaag	ccacagaagg	agaaaagcccg	acacagctgc	cctcccgcg	agacctgtaa	1200
tgtgccccac	ttacccttta	aattattcag	aaggatgtcc	cgtggaaaat	gtggccctga	1260
ggatgcgcgt	tcctgcagtg	gacagcggcg	gggagaggt	gcctgctc	taacgggtga	1320
tttcatttgc	tcccttaaac	agctgcattt	cttgggtt	cttaaacaga	cttgttatatt	1380
ttgatacagt	tcttgtaat	aaaattgacc	attgttaggt	atcaggagga	aaaaaaaaaaa	1440
aaaaaaaaaa	aaaggccgc	cgcgactcta	gagtcgac	gcagaagctt	ggccgcctatg	1500
gccaacttgc	tttattgcag	cttataatgg	ttacaataaa	agcaatagca	tcacaaattt	1560
cacaataaa	gcattttttt	cactgcattt	tagttgtgt	ttgtccaaac	tcatcaatgt	1620
atcttatcat	gtctggatcg	ggaattaatt	cgcgccagca	ccatggctg	aaataaacctc	1680
tgaaagagga	acttggtag	gtacctctg	aggcggaaaag	aaccagctgt	ggaatgtgt	1740
tcagtttaggg	tgtggaaagt	ccccaggctc	cccagcag	agaagtatgc	aagcatgc	1800
ctcaattagt	cagcaaccca	gtttt				1825

<210> 2
<211> 353
<212> PRT
<213> *Homo sapiens*

<400> 2
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu Leu
1 5 10 15

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
20 25 30

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
35 40 45

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
50 55 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu
65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala
85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
 100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys
 115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser
130 135 140

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
145 150 155 160

Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
165 170 175

Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
 180 185 190

His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
195 200 205

Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
210 215 220

Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
225 230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
 245 250 255

Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
 260 265 270

Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
 275 280 285

Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys
290 295 300

Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro
 305 310 315 320

Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala
 325 330 335

Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp
340 345 350

Lew

<210> 3
<211> 2206
<212> DNA
<213> *Homo sapiens*

<400> 3
caggtccaaac tgcacctcggttctatcgat tgaattccccggggatcctctagagatccc 60
tcgacacctgacccacgcgtccgcccaggccgggaggcgacgcgcccagccgtctaaacggg 120
aacagccctg gctgaggqagctgcagcgca gcagagtatctgacggcgccaggttgcgta 180
ggtgcggcac qaggqagttttcccqqcqacqqaqqqgtctcqaqcqacqcatcqccccqqqagga 240

gcccctcccc tggccgcgcg ctctggctct ggagcatcct cctgtgcctg ctggactgc 300
ggcgaggc cggccgcgcg caggaggaga gcctgtacccatggatcgat gtcaccagg 360
caagactact cataggattt gaagaagata tcctgattgt ttcagagggg aaaatggcac 420
ctttacaca tgatttcaga aaagcgaac agagaatgcc agctattccatgtcaatatcc 480
atccatgaa tttacctgg caagctgcag ggcaggcaga atactcttatgtcaatatcc 540
ccttgcgtc cctggataaaa ggcatcatgg cagatccaac cgtcaatgtc cctctgtgg 600
gaacagtgc tcacaaggca tcagttgttc aagttggttt cccatgtcgtt ggaaaaacagg 660
atggggtgcc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccatcc 720
tccaaacacc tcaaaatgct atcttcctta aaacatgtca acaagctgag tgcccaggcg 780
ggtgcgaaaa tggaggctt tgaatgaaa gacgcacatctg cgagtgccatgtgggttcc 840
acggacctca ctgtgagaaaa gccctttgtt ccccacatgt tatgaatgggtt ggacttttgt 900
tgactcctgg tttctgcattt tgcccacatgg gattctatgg agtgaactgt gacaaagcaa 960
actgctcaac cacctgcctt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020
ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgcgaaatg 1080
gaggtaaatg cattggtaaa agcaaatgtt aagtgttccaa aggttaccag ggagacctct 1140
gttcaaaagcc tgcgtgcgag cctggctgt gtgcacatgg aacctgcctt gacccaaaca 1200
aatgccaatg tcaagaaggt tggcatggaa gacactgcac taaaaggtac gaagccagcc 1260
tcatacatgc cctgaggcca gcaggcgccc agctcaggca gcacacgcct tcacttaaaa 1320
aggccgagga gcccgggat ccacctgtat ccaattacat ctggtaact ccgacatctg 1380
aaacgttta agttacacca agttcatagc ctttggtaac ctttcatgtg tgaatgttc 1440
aaataatgtt cattacactt aagaataactg gcctgaattt tattagctt attataaattc 1500
actgagctga tatttactct tccttttaag ttttctaagt acgtctgttag catgatggta 1560
tagattttct tggcgtgtt ctttggaca gatttataat tatgtcaattt gatcagggtta 1620
aaatttcag tggtagttt gcagatattt tcaaaaattt aatgcattt tggcgtctgg 1680
gggcagggggaa acatcagaaaa ggttaaattt ggcaaaaatg cgtaagtcac aagaattttgg 1740
atggtgcaatg taatgttgc gttacacat ttcagattttt attgtcagat atttagatgt 1800
ttgttacatt tttaaaaattt gctcttaattt tttaaaactctt caatacaata tattttgacc 1860
ttaccattat tccagagattt cagttttttt aaaaaaaaaaa ttacactgtg ttagtggcat 1920
ttaaacaata taatatattt taaacacataat gaaataggta atataatgtt tgaacttttt 1980
gcattggctt gaagcaatataat aatataattgtt aaacaaaaca cagctttac ctaataaaaca 2040
ttttatactg tttgtatgtt taaaataaaag gtgtgtgtt agtttttgg aaaaaaaaaaaa 2100
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa gggcggccgc gactcttagag tcgacactgca 2160
gaagcttggc cgccatggcc caacttggttt attgcagctt ataatgtt 2206

<210> 4

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Leu Trp Leu Trp Ser
1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
 35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65	70	75	80
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln			
85		90	95
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly			
100		105	110
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro			
115		120	125
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln			
130		135	140
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu			
145	150	155	160
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr			
165		170	175
Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys			
180		185	190
Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His			
195	200	205	
Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys			
210	215	220	
Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn			
225	230	235	240
Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys			
245		250	255
Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln			
260		265	270
Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys			
275		280	285
Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu			
290		295	300
Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys			
305	310	315	320
His Glu Pro Asn Lys Cys Gln Cys Glu Gly Trp His Gly Arg His			
325		330	335
Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala			
340		345	350

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu
355 360 365

Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp
370 375

<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 5
agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca 45

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 6
agagtgtatc tctggctacg c 21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 7
taagtccggc acattacagg tc 22

<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 8
ccccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatac 49

<210> 9
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 9
 aaagacgcat ctgcgagtgt cc 22

<210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 10
 tgctgatttc acactgctct ccc 23

<210> 11
 <211> 2197
 <212> DNA
 <213> Homo sapiens

<400> 11
 cgacgcgtg ggcgtccggc ggtcgacagag ccaggaggcg gagggcgccg ggccagccctg 60
 ggccccagcc cacacccca ccagggccca ggagccacca tggcgatg tccactgggg 120
 ctactgtgt tgctgcgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
 cgccgggagc tagcacccgg tctgcacctg cggggcatcc gggacgcggg agggccgtac 240
 tgccaggagc aggacctgtg ctgcgcggc cgtgcgcacg actgtgcctt gccctacctg 300
 ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgccttgac 360
 ttctgggact tctgcctcgg cgtgccaccc cctttcccc cgatccaagg atgtatgcat 420
 ggaggtcgta tctatccagt cttggaaacg tactggaca actgtaaacgg ttgcacctgc 480
 caggagaaca ggcgtggca tggatcc agacatgata aagccatca accaggcaa 540
 ctatggctgg caggctggga accacagcgc cttctgggc atgaccctgg atgagggcat 600
 tcgcctaccgc ctggccacca tccgcaccc ttcctcggtc atgaacatgc atgaaattta 660
 tacagtgtg aacccagggg aggtgttcc cacgccttc gaggcctctg agaagtggcc 720
 caacctgatt catgagccctc ttgaccaagg caactgtca ggctcctgg ccttctccac 780
 agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtct 840
 gtgcggccag aacctgtgt ctgtgacac ccaccacgag caggcgtgcc gcgggtggcg 900
 tctcgatgtt gcctgggtt tccctcggtc ccgggggtt gtgtctgacc actgtctacc 960
 ctctcgggc cgtgaacgag acgaggctgg ccctgcggc ccctgtatga tgcacagccg 1020
 agccatgggt cggggcaagc gccaggccac tgcccactgc cccaaacagct atgttaataa 1080
 caatgacatc taccaggatca ctccctgtcta ccgcctcggtc tccaaacgaca aggagatcat 1140
 gaaggagctg atggagaatg gccctgtcca agccctcatg gaggtgcattt aggacttctt 1200
 cctataacaag ggaggcatct acagccacac gccagtgagc cttggggaggc cagagagata 1260
 ccgcggcat gggaccact cagtcaagat cacaggatgg ggagaggaga cgctgccaga 1320

tggaaaggacg	ctcaaatact	ggactgcggc	caactcctgg	ggcccagcc	ggggcgagag	1380
gggccacttc	cgcacatcg	tgccgtgtca	tgagtgcgac	atcgagagct	tcgtgctgg	1440
cgtctggggc	cgcgtggca	tggaggacat	gggtcatcac	tgaggctgcg	ggcaccacgc	1500
ggggtccggc	ctgggatcca	ggctaagggc	cggcggaaaga	ggccccaaatg	gggcgggtgac	1560
cccagcctcg	cccgacagag	cccggggcgc	aggcgggcgc	cagggcgcta	atccccggcgc	1620
gggttccgct	gacgcagcgc	cccgcttgg	agccgcgggc	aggcgagact	ggcggagccc	1680
ccagacccccc	cagtggggac	ggggcagggc	ctggccttgg	aagagcacag	ctgcagatcc	1740
caggcctctg	gccccccac	tcaagactac	caaagccagg	acacctcaag	tctccagccc	1800
caataccccca	ccccaatccc	gtattctttt	tttttttttt	ttagacaggg	tcttgctccg	1860
ttgcccaggt	tggagtgcag	tggcccatca	gggctactg	taacctccga	ctcctgggt	1920
caagtgaccc	tcccacctca	gcctctcaag	tagctggac	tacagtgca	ccaccacacc	1980
tggctaattt	ttgtatTTT	tgtaaagagg	gggtctcac	tgtgtgccc	aggctggtt	2040
cgaactcctg	ggctcaagcg	gtccacactgc	ctccgcctcc	caaagtgcg	ggattgcagg	2100
catgagccac	tgacccccagc	cctgtattct	tattcttcag	atatttattt	ttcttttac	2160
tgttttaaaa	taaaacccaaa	gtattgataa	aaaaaaa			2197

<210> 12

<211> 164

<212> PRT

<213> Homo sapiens

<400> 12

Met	Trp	Arg	Cys	Pro	Leu	Gly	Leu	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Ala	Gly
1				5					10						15	

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Arg Glu Leu Ala
20 25 30

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
35 40 45

Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
 115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
145 150 155 160

His Asp Pro Gly

```

<210> 13
<211> 533
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (33)
<223> a, t, c or g

<220>
<221> modified_base
<222> (80)
<223> a, t, c or g

<220>
<221> modified_base
<222> (94)
<223> a, t, c or g

<220>
<221> modified_base
<222> (144)
<223> a, t, c or g

<220>
<221> modified_base
<222> (188)
<223> a, t, c or g

<400> 13
aggctccttg gcccttttc cacagcaagc ttntgcnac ccgattcggt gtctcaaatc 60
caattctctt gggcacatn acgcctgtcc ttngccccca gaacctgcgtg tcttgtacac 120
ccaccagcag cagggctgcc gegntggggcgtcgtatggt gcctgggtgg tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgccc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgccccactgc cccaacagct atgttaataa caatgacatc taccaggta ctccgtctaa 360
ccgcctcgcc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatttggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccgcggcat gggaccact cag 533

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 14

```

ttcgaggcct ctgagaagtg gccc <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 15 ggcggtatct ctctggcctc cc <210> 16 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 16 ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg <210> 17 <211> 960 <212> DNA <213> Homo sapiens <400> 17 gctgcttgcc ctgttcatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta 60 ctcctgcaaa gcccaggta gcaacgagga ctgcctgcag gtggagaact gcaccagct 120 gggggagcag tgctggaccg cgccatccg cgcagggtggc ctccctgaccc tcatacggaa 180 aggctgcaccc ttgaacttcg tggatgactc acaggactac tacgtggca agaagaacat 240 cacgtgctgt gacaccgact tggcaacgc cagcggggcc catgccctgc agccggctgc 300 cgccatccctt ggcgtgtcc ctgcactcg cctgcgtgtcc tggggacccg gccagctata 360 ggctctgggg ggccccctg cagccccacac tgggtgtggt gccccaggcc tctgtgccac 420 tcctcacaga cctggcccag tgggagcctg tctgttcc tgaggcacat cctaacgcaa 480 gtctgaccat gtatgtctgc accccctgtcc cccacccatg ccctccatg gcccctctcca 540 ggactccac ccggcagatc agctcttagtg acacagatcc gcctgcagat ggcctccca 600 accctctctg ctgctgttc catggcccaag catttcac ccttaaccct gtgctcaggc 660 acctcttccc ccaggaagcc ttccctgccc accccatcta tgacttgagc caggtctgg 720 ccgtgggtgc ccccgccaccc agcaggggac aggcactcg gagggcccaag taaaggctga 780 gatgaagtgg actgagtaga actggaggac aagagtgcac gtgagttcct gggaggtctcc 840 agagatgggg cctggaggcc tggaggaagg ggcaggcct cacattcgtg gggctccctg 900 aatggcagcc tgagcacacgc gtaggccctt aataaacacc tggatggataa gccaaaaaaaaa 960 <210> 18 <211> 189 <212> PRT <213> Homo sapiens	24 22 50 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960
---	---

<400> 18
 Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val
 1 5 10 15
 Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu
 20 25 30
 Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp
 35 40 45
 Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly
 50 55 60
 Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp
 65 70 75 80
 Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
 85 90 95
 Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser
 100 105 110
 Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala
 115 120 125
 Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe
 130 135 140
 Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe
 145 150 155 160
 Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser
 165 170 175
 Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln
 180 185

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 19

tgctgtgcta ctcctgcaaa gccc

24

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 20

tgcacaagtc ggtgtcacag cacg

24

<210> 21

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 21

agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg

44

<210> 22

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 22

cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
 gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgaggggacc agggcgccat 120
 gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
 caagcacgtg caggtcaccgc ggcgtcgcacat ctccgccacc gcccggggacc gcaacaagtt 240
 tgccaagctc atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
 gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcggaa 360
 gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg cttccagaa 420
 cggccggcac gagggtgtt tcattggcctt cacgcggcag gggcgcccccc gccaggctc 480
 ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
 gcccttcccc aaccacgccc agaaggcagaa gcagtcgag tttgtggct ccgcggccac 600
 ccgcgggacc aagcgacac ggcggccca gcccctcacc tagtctggga ggcaggggcc 660
 agcagccccct gggccgcctc cccacccctt tcccttta atccaaggac tgggctgggg 720
 tggcgggagg ggagccagat ccccgaggga ggacctcgag ggcgcgaag catccgagcc 780
 cccagctggg aaggggcagg cccgtgcccc agggccggct ggcacagtgc ccccttcccc 840
 gacgggtggc agggcccttga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
 tgccggcctc ccagccgggc tcctgaagcc cgctgaaaagg tcagcgactg aaggccttgc 960
 agacaaccgt ctggaggtgg ctgtcctcaa aatctgttcc tcggatctcc ctcagtctgc 1020
 ccccagccccc caaactcctc ctggctagac tgttagaagg gacttttgtt tgtttgtt 1080
 tttcaggaaa aaagaaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
 acgacccagg cctgcacccccc acccccaact cccagccccc gaataaaaacc atttcctgc 1200

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23
 Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu
 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met
 20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser
 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala
 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp
 65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr
 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
 100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr
 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg
 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu
 145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn
 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr
 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
 195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 24

cagtagtga gggaccaggg cggccatga

28

<210> 25

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 25
ccgggtgacct gcacgtgctt gccaa                                         24

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<220>
<221> modified_base
<222> (21)
<223> a, t, c or g

<400> 26
gcggatctgc cgcctgctca nctggtcggc catggcgccc t                                         41

<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens

<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagaggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gtccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatc ttgattttgc tggttatttt ttttttctt ttctttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
ctttttctt gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tcctggcctg ccctagtgtg tgccgcgtcg acaggaactt tgtctactgt aatgagcgaa 420
gcttgacctc agtgcctt gggatcccgg agggcgtaac cgtactctac ctccacaaca 480
accaaattaa taatgttggaa tttcctgtcag aactgcacaa tgtacagtcg gtgcacacgg 540
tctacctgtt tggcaaccaa ctggacgaat tccccatgaa ctttcccaag aatgtcagag 600
ttctccattt gcaggaaaaac aatattcaga ccatttcacg ggctgtctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatac cacagtgggg gtgaaagacg 720
ggcccttcgg ggaggctatt agcctcaaattt tggttgggtt gtctaagaat cacctgagca 780
gtgtgcctgtt tgggcttctt gtggacttgc aagagcttagt agtggatgaa aatcgaattt 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctctt gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgtt cccacccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctctattt caggacaacc agataaacc cattccttg acagcctctt 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140

```

aagggttt tgataatctc tccaacctga agcagtcac tgctcgaaat aacccttgg 1200
 ttgtgactg cagtattaa tgggtcacag aatggctcaa atatatccct tcatactcta 1260
 acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg gggatggcc gtcaggaaat 1320
 taaatatgaa tctttgtcc tgtcccacca cgaccggccg cctgcctctc ttcacccag 1380
 ccccaagtac agcttctccg accactcagc ctcccacccct ctctattcca aacccttagca 1440
 gaagctacac gcctccaact cctaccacat cgaaacctcc cacgattccct gactgggatg 1500
 gcagagaaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
 atgatacttc cattcaagtc agctggctct ctctttcac cgtatggca tacaaactca 1620
 catgggtgaa aatgggccac agtttagtag gggcatacg tcaaggagcgc atagtcagcg 1680
 gtgagaagca acacctgagc ctggtaact tagagccccg atccacctat cggattgtt 1740
 tagtgcact ggatgtttt aactaccgcg cggtagaaga caccattgt tcagaggcca 1800
 ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
 cgtcccacag catggctcc cccttctgc tggcgggctt gatcgggggc gcggtgat 1920
 ttgtgctggt ggtctgctc agcgtttt gctggcatat gcacaaaaag gggcgtaca 1980
 cctcccgaaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
 ccaagaagga caactccatc ctggagatga cagaaaccag tttcagatc gtctcctaa 2100
 ataacgatca actcctaaa ggagatttca gactgcagcc catttacacc ccaaatgggg 2160
 gcattaatta cacagactgc catatccccca acaacatgcg atactgcaac agcagcgtgc 2220
 cagacctgga gcactgccc acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
 tagactcttg agaacacact cgtgtgtgca cataaagaca cgcagattac atttgataaa 2340
 ttttacacag atgcattgtt gcatttgaat actctgtaat ttatacgggt tactatataa 2400
 tgggatttaa aaaaagtgtct atctttctt tttcaagtta attacaaaca gtttgtaac 2460
 tctttgcttt ttaaatctt 2479

<210> 28

<211> 660

<212> PRT

<213> Homo sapiens

<400> 28

Met	Gly	Leu	Gln	Thr	Thr	Lys	Trp	Pro	Ser	His	Gly	Ala	Phe	Phe	Leu
1															15

Lys	Ser	Trp	Leu	Ile	Ile	Ser	Leu	Gly	Leu	Tyr	Ser	Gln	Val	Ser	Lys
															30
20															

Leu	Leu	Ala	Cys	Pro	Ser	Val	Cys	Arg	Cys	Asp	Arg	Asn	Phe	Val	Tyr
35							40								45

Cys	Asn	Glu	Arg	Ser	Leu	Thr	Ser	Val	Pro	Leu	Gly	Ile	Pro	Glu	Gly
50								55				60			

Val	Thr	Val	Leu	Tyr	Leu	His	Asn	Asn	Gln	Ile	Asn	Asn	Ala	Gly	Phe
65					70					75					80

Pro	Ala	Glu	Leu	His	Asn	Val	Gln	Ser	Val	His	Thr	Val	Tyr	Leu	Tyr
85									90						95

Gly	Asn	Gln	Leu	Asp	Glu	Phe	Pro	Met	Asn	Leu	Pro	Lys	Asn	Val	Arg
100								105				110			

Val	Leu	His	Leu	Gln	Glu	Asn	Asn	Ile	Gln	Thr	Ile	Ser	Arg	Ala	Ala
115								120				125			

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser
 130 135 140
 Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser
 145 150 155 160
 Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
 165 170 175
 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile
 180 185 190
 Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg
 195 200 205
 Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly
 210 215 220
 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn
 225 230 235 240
 Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg
 245 250 255
 Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe
 260 265 270
 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu
 275 280 285
 Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln
 290 295 300
 Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp
 305 310 315 320
 Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly
 325 330 335
 Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu
 340 345 350
 Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Thr Pro Gly Leu Pro
 355 360 365
 Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro
 370 375 380
 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro
 385 390 395 400
 Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

405

410

415

Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val
 420 425 430

Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met
 435 440 445

Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly
 450 455 460

Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu
 465 470 475 480

Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu
 485 490 495

Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala
 500 505 510

Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser
 515 520 525

His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala
 530 535 540

Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser
 545 550 555 560

Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys
 565 570 575

Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly
 580 585 590

Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln
 595 600 605

Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu
 610 615 620

Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His
 625 630 635 640

Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu
 645 650 655

His Cys His Thr
 660

<210> 29

<211> 21

<212> DNA

卷之三

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 29
cggtctacct gtatggcaac c 21

<210> 30

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 30
gcaggacaac cagataaaacc ac 22

<210> 31

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 31
acgcagattt gagaaggctg tc 22

<210> 32

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 32
ttcacgggct gctcttgccc agctcttcaa gcttgaagag ctgcac 46

<210> 33

<211> 3449

<212> DNA

<213> Homo sapiens

<400> 33
acttggagca agcggccggcg gcggagacag aggcagaggc agaagctggg gtcggcttcc 60
cqccctccac qaqcqatccc cqcaqqqaac cqcaqccctc qaqcqaaqcqaa qaqcccccac 120

ପ୍ରକାଶକ ପତ୍ର ପରିଚୟ

gagggaagacc cgggtggctg cgccccctgcc tcgcttcccc ggcgcggccg gctgcagcct 180
tgcccctctt gctcgccctt aaaaatggaaa agatgctcgc aggctgcctt ctgctgatcc 240
tcggacagat cgtccctetc cctgcccagg ccagggagcg gtcacgtggg aggtccatct 300
ctagggccag acacgctcg acccaccccc agacggccct tctggagagt tcctgtgaga 360
acaaggcggc agacctgggtt ttcatcatg acagctctcg cagtgtcaac acccatgact 420
atgcaaaggt caaggagttc atcgtggaca tcttgcattt ctggacattt ggtctgtatg 480
tcacccgagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540
ccttcaagag gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600
gcaccatgac tgggctggcc atccagtagt ccctgaacat cgcattctca gaagcagagg 660
gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720
ctcaggactc cgtggccgag gtggctgcta aggcacggga cacggcattc ctaatcttg 780
ccattgggtt gggcaggtt gacttcaaca ccttgaagtc cattggaggt gagccccatg 840
aggaccatgt ctteccctgtt gccaatttca gccagattga gacgctgacc tccgtgtcc 900
agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960
gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacattt ctcacactgg 1020
atcagacgac ttgagaatac caggatctgt gtgcacatggaa ggaccacaaatg tttgagcage 1080
tctgtgtgaa tggccgggc tccttcgtct gccagtgta cagtggctac gcccctggctg 1140
aggatgggaa gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggtatgtgaac 1200
atgagtggtt aaatgtgtat ggcttctacc tttggcagtg ccatgaaaggaa tttgcttta 1260
acccagatgtt aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccggggctgtg 1320
agcatgatgt cgtaacacatg gaggagagct actactgccc ctgcccaccgt ggctacactc 1380
tggaccctaa tggaaaaacc tgccagccgg tggaccactg tgccacagcag gaccatggct 1440
gtgagcagct gtgtctgaac acggaggatt ccttgcgtctg ccagtgtctca gaaggcttcc 1500
tcatcaacga ggacctcaag acctgctccc gggtgattt ctgcctgtct agtgaccatg 1560
gttgtgaata ctccctgtgtc aacatggaca gatcccttgc ctgtcagtgtt cctgaggggac 1620
acgtgctccg cagogatggg aagacgtgtg caaaatttggaa ctcttgcgtct gtcggggacc 1680
acggttgtga acattcgtgt gtaagcagtg aagattcgtt tttgtgtccag tgctttgaag 1740
gttatataact ccgtgaagat gggaaaactt gcagaaggaa agatgtctgc caagctatag 1800
accatggctg tgaacacatt tttgtgtgaca gtgacgactc atacacgtgc gagtgtttgg 1860
agggattccg gctcgctgag gatggggaaac gctgcccgaag gaaggatgtc tgcaaatcaa 1920
cccaccatgg ctgccaacac attttgttataat ttttttttttccatc tgcaaatgtct 1980
cagaggatt ttttctagct gaggacggaa gacggtgcaaa gaaaatgcact gaaggcccaa 2040
ttgaccttgtt ctggatgtc gatggatcca agagttttgg agaagagaat tttgaggtcg 2100
tgaagcagtt ttttttttttccatc gatggatcca agagttttgg agaagagaat tttgaggtcg 2160
ttgggctgtct ccagatttcc acacagggtcc acacagagtt cactctgtgaa aacttcaact 2220
cagccaaaga catggaaaaa gccgtggccc acatggaaata catgggaaag ggctctatga 2280
ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa gggggccaggc 2340
cccttccac aagggtgccc agagcagcca ttgtttcac cgacggacgg gctcaggatg 2400
acgtctccga gtggccagtt aaagccaaagg ccaatggat cactatgtat gctgttgggg 2460
taggaaaaggc cattgaggag gaactacaag agattgcctc tgagcccaaca aacaagcatc 2520
tcttctatgc cgaagacttc agcacaatgg atgagataag tgaaaaactc aagaaaggca 2580
tctgtgtgaaat ttttttttttccatc gatggatcca agagttttgg agaagagaat tttgaggtcg 2640
aaacgggttcca acagccaaaca gaatctgagc cagtcacccat aaatatccaa gacctacttt 2700
cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat tttttacgg 2760
ctacacaaaaa gctttccat tcaacaaaac cttcagggaaag ccctttggaa gaaaaacacg 2820
atcaatgcaat atgtaaaaac cttataatgt tccagaaccc tgcacaaacgaa gaagtaagaa 2880
aattaacaca ggcgttagaa gaaatgacac agagaatggaa agccctggaa aatcgctga 2940
gatacagatg aagatttagaa atcgcgacac atttgcgttgc attgtatcac ggattacaat 3000
gaacgcagtg cagagccccca aagctcaggc tatttttttttcaataatgt ttttgcgttgc 3060
aacaatcagt actgagaaac ctgggttgc acagaaacaaa gacaagaagt atacactaac 3120
ttgtataat ttttttttttccatc gatggatcca agagttttgg agaagagaat ttttgcgttgc 3180
gaatgaataa gctatgcaag gtatggat ttttttttttcaataatgt gacacaactt gcttctgcct 3240
catcctgcct tagtgcac ttttttttttccatc gatggatcca agagttttgg agaagagaat ttttgcgttgc 3300

ctgtagaaca ctggccatag gaaatgctgt tttttgtac tggactttac cttgatatat 3360
 gatatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420
 ttataacaata ttaaaattca ccacttcag 3449

<210> 34
 <211> 915
 <212> PRT
 <213> Homo sapiens

<400> 34
 Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
 1 5 10 15
 Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
 20 25 30
 Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu
 35 40 45
 Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser
 50 55 60
 Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile
 65 70 75 80
 Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
 85 90 95
 Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys
 100 105 110
 Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg
 115 120 125
 His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu
 130 135 140
 Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn
 145 150 155 160
 Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser
 165 170 175
 Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe
 180 185 190
 Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
 195 200 205
 Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln
 210 215 220
 Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Leu Cys Thr Ala His

225	230	235	240
Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn Ile			
245	250	255	
Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu Asn Ser			
260	265	270	
Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met Glu Asp His			
275	280	285	
Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser Phe Val Cys Gln			
290	295	300	
Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly Lys Arg Cys Val Ala			
305	310	315	320
Val Asp Tyr Cys Ala Ser Glu Asn His Gly Cys Glu His Glu Cys Val			
325	330	335	
Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu			
340	345	350	
Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn			
355	360	365	
Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr			
370	375	380	
Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys			
385	390	395	400
Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu			
405	410	415	
Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe			
420	425	430	
Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu			
435	440	445	
Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser			
450	455	460	
Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys			
465	470	475	480
Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu			
485	490	495	
His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu			
500	505	510	

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val
 515 520 525
 Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp
 530 535 540
 Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp
 545 550 555 560
 Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575
 Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys
 580 585 590
 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys
 595 600 605
 Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser
 610 615 620
 Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile
 625 630 635 640
 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu
 645 650 655
 Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn
 660 665 670
 Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly
 675 680 685
 Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser
 690 695 700
 Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg
 705 710 715 720
 Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu
 725 730 735
 Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly
 740 745 750
 Val Gly Lys Ala Ile Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro
 755 760 765
 Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu
 770 775 780
 Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser
 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln
 805 810 815

Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu
 820 825 830

Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp
 835 840 845

Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser
 850 855 860

Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu
 865 870 875 880

Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln
 885 890 895

Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu
 900 905 910

Arg Tyr Arg
 915

<210> 35

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 35

gtgaccctgg ttgtgaatac tcc

23

<210> 36

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 36

acagccatgg tctatacgtt gg

22

<210> 37

<211> 45

<212> DNA

<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 37
 gcctgtca gtccctgaggg acacgtgctc cgcacgcgt ggaag 45

 <210> 38
 <211> 1813
 <212> DNA
 <213> Homo sapiens

 <400> 38
 ggagccgccc tgggtgtcag cggctcggt cccgcgcacg ctccggccgt cgccgcaggct 60
 cggcacctgc aggtccgtgc gtcccgccgc tggcgccct gactccgtcc cggccaggaa 120
 gggccatgtat ttccctcccg gggccccctgg tgaccaactt gctgcgggtt ttgtccctgg 180
 ggctgagtgcc cctcgcgcgc ccctcgccgg cccagctgca actgcacttg cccgccaacc 240
 ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtaacacc ttgcacgggg 300
 aggtgttttc atcccagcca tgggaggtgc cctttgtat gtggtttttc aaacagaaaag 360
 aaaaggagga tcaggtgttgc tcctacatca atggggtcac aacaaggaaaa cctggagtat 420
 ccttggctta ctccatgcgc tcccggaacc tgccctcgat gctggagggt ctccaggaga 480
 aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacacaaggc aaatcttaggg 540
 gccacagcat caaaacctta gaactcaatg tactggttcc tccagctctt ccattctgcc 600
 gtctccaggc tggcccccgt gtggggccaa acgtgaccct gagctgcacg tctccaaggaa 660
 gtaagcccgc tggcaataac cagtgggatc ggcagcttcc atccttccag acttttttg 720
 caccagcatt agatgtcatc cgtgggtctt taagcctcac caaccttccg tcttccatgg 780
 ctggagttca tggctgtcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
 tggaaagtggc cacagggcct ggagctgcag tgggtgttgg agctgttgtg ggtacccctgg 900
 ttggacttggg gttgtgttggc gggctggcc tcttgtacca ccggccggggc aaggccctgg 960
 aggagccagc caatgatatac aaggaggatg ccattgttcc ccggaccctg ccctggccca 1020
 agagctcaga cacaatctcc aagaatggc cccttcctc tgcaccccttcc gcacagagccc 1080
 tccggccacc ccatggccct cccaggcctg gtgcatttgc cccccacggcc agtctctcca 1140
 gccaggccct gccttcacca agactgcaca cgacagatgg gggccacccctt caaccaatat 1200
 ccccccattttc tgggtgggtt tcttcctctg gctttagccg catgggtgtt gtcctgtga 1260
 tgggtgcctgc ccagagtcaa gctggcttc tggatgtatgatc accccacccac tcattggcta 1320
 aaggatttgg ggtctcttcc tccctataagg gtcaccccttca gcacagagggc ctgagtcatg 1380
 ggaaagagtc acactcctga cccttagatc tctgccccca cctctttta ctgtggggaaa 1440
 accatctcag taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgg 1500
 attggggagga gcctccaccc accccctgact cctccattat aagccagctg ctgaaatttag 1560
 ctactcacca agagtggggc gcagagactt ccagtcactg agtctcccttgc gcccccttgc 1620
 tctgtacccc acccctatct aacaccaccc ttggctccca ctccagctcc ctgtattgtat 1680
 ataacctgtc aggctggctt ggttaggtt tactggggca gaggataggg aatctttat 1740
 taaaactaac atgaaaatatg tgggttttc atttgcaaat taaaataaaag atacataatg 1800
 tttgtatgaa aaa 1813

 <210> 39
 <211> 390
 <212> PRT
 <213> Homo sapiens

 <400> 39
 Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285

1	5	10	15												
Phe	Leu	Gly	Leu	Ser	Ala	Leu	Ala	Pro	Pro	Ser	Arg	Ala	Gln	Leu	Gln
			20					25					30		
Leu	His	Leu	Pro	Ala	Asn	Arg	Leu	Gln	Ala	Val	Glu	Gly	Gly	Glu	Val
	35						40					45			
Val	Leu	Pro	Ala	Trp	Tyr	Thr	Leu	His	Gly	Glu	Val	Ser	Ser	Ser	Gln
	50						55				60				
Pro	Trp	Glu	Val	Pro	Phe	Val	Met	Trp	Phe	Phe	Lys	Gln	Lys	Glu	Lys
	65				70				75			80			
Glu	Asp	Gln	Val	Leu	Ser	Tyr	Ile	Asn	Gly	Val	Thr	Thr	Ser	Lys	Pro
				85				90				95			
Gly	Val	Ser	Leu	Val	Tyr	Ser	Met	Pro	Ser	Arg	Asn	Leu	Ser	Leu	Arg
	100						105					110			
Leu	Glu	Gly	Leu	Gln	Glu	Lys	Asp	Ser	Gly	Pro	Tyr	Ser	Cys	Ser	Val
	115				120			125							
Asn	Val	Gln	Asp	Lys	Gln	Gly	Lys	Ser	Arg	Gly	His	Ser	Ile	Lys	Thr
	130					135			140						
Leu	Glu	Leu	Asn	Val	Leu	Val	Pro	Pro	Ala	Pro	Pro	Ser	Cys	Arg	Leu
	145				150			155				160			
Gln	Gly	Val	Pro	His	Val	Gly	Ala	Asn	Val	Thr	Leu	Ser	Cys	Gln	Ser
	165					170			175						
Pro	Arg	Ser	Lys	Pro	Ala	Val	Gln	Tyr	Gln	Trp	Asp	Arg	Gln	Leu	Pro
	180					185			190						
Ser	Phe	Gln	Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	Ile	Arg	Gly	Ser
	195					200			205						
Leu	Ser	Leu	Thr	Asn	Leu	Ser	Ser	Ser	Met	Ala	Gly	Val	Tyr	Val	Cys
	210				215				220						
Lys	Ala	His	Asn	Glu	Val	Gly	Thr	Ala	Gln	Cys	Asn	Val	Thr	Leu	Glu
	225				230			235				240			
Val	Ser	Thr	Gly	Pro	Gly	Ala	Ala	Val	Val	Ala	Gly	Ala	Val	Val	Gly
	245					250			255						
Thr	Leu	Val	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Leu	Val	Leu	Leu	Tyr	His
	260					265			270						
Arg	Arg	Gly	Lys	Ala	Leu	Glu	Glu	Pro	Ala	Asn	Asp	Ile	Lys	Glu	Asp
	275					280			285						

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
 290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
 305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
 325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly
 340 345 350

Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser
 355 360 365

Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser
 370 375 380

Gln Ala Gly Ser Leu Val
 385 390

<210> 40
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 40
 agggtctcca ggagaaagac tc 22

<210> 41
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 41
 attgtgggcc ttgcagacat agac 24

<210> 42
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 42		
ggccacagca tcaaaacctt agaactaat gtactggttc ctccagctcc		50
<210> 43		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 43		
gtgtgacaca gcgtgggc		18
<210> 44		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 44		
gaccggcagg cttctgct		18
<210> 45		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 45		
cagcagcttc agccaccagg agtgg		25
<210> 46		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 46		
ctgagccgtg ggctgcagtc tcgc		24
<210> 47		

<211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 47
 cgactacga ctggttttc atcatgcagg atgacacata tgtgc 45

<210> 48
 <211> 2822
 <212> DNA
 <213> Homo sapiens

<400> 48
 cgccaccact gcggccaccc ccaatgaaac gcctccgct cctagtgggt ttttccactt 60
 tggtaattt ttcctataact caaaatttgc ccaagacacc ttgtctcca aatgaaaaat 120
 gtgaaatacg caatggaaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180
 tcacaatttgc tgaagatgtat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
 ctaattgcac taacacagaa ggaagtttattt attgtatgtg tgcacatggc ttcagatcca 300
 gcagtaacca agacaggtt attactaattt atgaaaccgt ctgtatagaa aatgtgaatg 360
 caaactgcca ttttagataat gtctgtatag ctgcaaatat taataaaaact ttaacaaaaa 420
 tcagatccat aaaagaacctt gtggctttgc tacaagaatg ctatagaaaat tctgtgacag 480
 atcttcacc aacagatata attacatata tagaaatattt agctgaatca tcttcatttt 540
 tagttacaa gaacaacactt atctcagcca aggacaccct ttcttaactca actcttactg 600
 aatttgtaaa aaccgtgaat aattttgttc aaaggatattt tggtttagtt tgggacaatg 660
 tatctgtgaa tcataggaga acacatcttta caaaactcat gcacactgtt gaacaagcta 720
 cttaaggat atcccagagc ttccaaaaga ccacaggtt tgatataat tcaacggata 780
 tagctctcaa agttttttt tttgattcat ataacatgaa acatattcat cctcatatga 840
 atatggatgg agactacata aatatatttc caaagagaaa agctgcataat gattcaatg 900
 gcaatgtgc agttgcattt ttatattata agagtattgg tcctttgc ttcatcatctg 960
 acaacttctt attgaaacctt caaaattatgtt ataaattcttga agaggaggaa agagtcataat 1020
 cttcagtaat ttcaatgttca atgagctca acccaccac attatatgaa cttggaaaaaa 1080
 taacatttac attaagtcat cggaaagggtca cagataggtt taggagtctt tgcattttt 1140
 ggaattactc acctgatacc atgaatggca gctggcttc agagggtgtt gagctgacat 1200
 actcaaatttga gacccacacc tcattgcgc gtaatcacctt gacacattttt gcaattttga 1260
 tggctctgg tccttccattt ggtattaaatg attataat ttttacaagg atcaactcaac 1320
 tagaataat tatttcaacttgc atttgcatttgc ccatatgcattt ttttacccat tggttttca 1380
 gtgaaatttca aaggccagg acaacaatttca acaaaaaatctt ttgcgttagc ctatttttttgc 1440
 ctgaaattttgtt ttttcttgc gggatcaata caaaatcttca taagcttttc ttgttcaatca 1500
 ttggccggact gctacactac ttctttttttgc atggatgtgc attgaaggca 1560
 tacatctcta tctcatgtt gttttgttca tctacaacaa gggatttttgc cacaagaattt 1620
 ttttatatttttgc tggctatcttca agcccgcccg tggtagttgg attttccggca gcactaggat 1680
 acagatatttca tggcacaacc aaaaatgttttgc ggtttagcac cggaaaacaatc ttatatttggaa 1740
 gttttatatttttgc accagcatgc ctaatcatttgc ttgtttaatctt cttggcttttgc ggagtcata 1800
 tatacaaaatgtt ttttgcatttca actgcagggtt tgaaaccaga agtttagttgc ttttgcata 1860
 taaggttcttgc tggatgttca ggcctcgctt ttctgttgc ttcggccacc acctggatct 1920
 ttgggggttcttgc ccatgttgc tggatgttca ggcctcgctt ttaccttttc acagtcagca 1980
 atgcattttca gggatgttca atttttttat ttctgttgc tttatcttgc aagattcaag 2040
 aagaatatttca cagattgttca aaaaatgttca cctgttgc tggatgttca aggttaacat 2100
 agagaatgttca ggtttagttca aactgcacaa aaataaaaat tccaaatgttca ggtttagttca 2160

tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtatttaa 2220
 atcagtttt ctgttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
 tagatatact atgaaaaatc atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
 ggaaaggtaat tggttctca ggagtatat cactgcaccc aaggaaagat tttcttcata 2400
 acacgagaag tataatgatg tcctgaagga aaccactggc ttgatatttc tgtgactcgt 2460
 gttgcctttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
 cataagagaa tgaagggca gaatataaaa cagtgaaaag ggaatgataa gatgtatTTT 2580
 gaatgaactg tttttctgt agactagctg agaaattgtt gacataaaaat aaagaattga 2640
 agaaacacat ttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
 agacttctgt ttgctaaatc tgtttcttt tctaataattc taaaaaaaaaaa aaaaaggTTT 2760
 acctccacaa attgaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2820
 aa 2822

<210> 49
<211> 690
<212> PRT
<213> Homo sapiens

<400> 49
Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
1 5 10 15
Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
20 25 30
Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
35 40 45
Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
50 55 60
Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
65 70 75 80
Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Asn Gln
85 90 95
Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
100 105 110
Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
115 120 125
Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
130 135 140
Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
145 150 155 160
Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys
165 170 175
Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

180	185	190
Glu Phe Val Lys Thr Val Asn Asn Phe Val Gln Arg Asp Thr Phe Val		
195	200	205
Val Trp Asp Lys Leu Ser Val Asn His Arg Arg Thr His Leu Thr Lys		
210	215	220
Leu Met His Thr Val Glu Gln Ala Thr Leu Arg Ile Ser Gln Ser Phe		
225	230	235
Gln Lys Thr Thr Glu Phe Asp Thr Asn Ser Thr Asp Ile Ala Leu Lys		
245	250	255
Val Phe Phe Asp Ser Tyr Asn Met Lys His Ile His Pro His Met		
260	265	270
Asn Met Asp Gly Asp Tyr Ile Asn Ile Phe Pro Lys Arg Lys Ala Ala		
275	280	285
Tyr Asp Ser Asn Gly Asn Val Ala Val Ala Phe Leu Tyr Tyr Lys Ser		
290	295	300
Ile Gly Pro Leu Leu Ser Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln		
305	310	315
Asn Tyr Asp Asn Ser Glu Glu Glu Arg Val Ile Ser Ser Val Ile		
325	330	335
Ser Val Ser Met Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys		
340	345	350
Ile Thr Phe Thr Leu Ser His Arg Lys Val Thr Asp Arg Tyr Arg Ser		
355	360	365
Leu Cys Ala Phe Trp Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp		
370	375	380
Ser Ser Glu Gly Cys Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser		
385	390	395
Cys Arg Cys Asn His Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly		
405	410	415
Pro Ser Ile Gly Ile Lys Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln		
420	425	430
Leu Gly Ile Ile Ile Ser Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr		
435	440	445
Phe Trp Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys		
450	455	460

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
 465 470 475 480

Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu
 485 490 495

Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
 500 505 510

Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
 515 520 525

Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
 530 535 540

Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
 545 550 555 560

Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
 565 570 575

Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
 580 585 590

Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
 595 600 605

Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
 610 615 620

Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
 625 630 635 640

Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
 645 650 655

Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
 660 665 670

Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
 675 680 685

Leu Arg
 690

<210> 50
 <211> 589
 <212> DNA
 <213> Homo sapiens

<220>
 <221> modified_base
 <222> (61)

```

<223> a, t, c or g

<400> 50
tgaaaaacata tcctccctca tatgaatatg gatggagact acataaaat atttccaaag 60
ngaaaagccg gcatatggat tcaaattggca atgttcagt tgcatttttta tattataaga 120
gtattggtcc ctgttttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
aattctgaag aggaggaaag agtcatatct tcagtaattt cagtcataat gagctcaaac 240
ccacccacat tatatgaact tgaaaaaaata acattacat taagtcatacg aaaggtcaca 300
gataggtata ggagtctatg tggcattttt gaataactcac ctgataccat gaatggcagc 360
tggcttcag agggctgtga gctgacatac tcaaattgaga cccacacccat atgcggctgt 420
aatcaccctga cacatttgc aattttgatg tcctctggc cttccattgg tattaaagat 480
tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga 589

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 51
ggtaatgagc tccattacag 20

<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 52
ggagtagaaaa gcgcattgg 18

<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 53
cacctgatac catgaatggc ag 22

<210> 54
<211> 18
<212> DNA

```

<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 54	
cgagctcgaa ttaattcg	18
<210> 55	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 55	
ggatctcctg agtcagg	18
<210> 56	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 56	
cctagttgag tgatccttgt aag	23
<210> 57	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 57	
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcatt	50
<210> 58	
<211> 2137	
<212> DNA	
<213> Homo sapiens	
<400> 58	
gctcccagcc aagaacctcg gggccgctgc gcgggtgggg aaggttcccc gaaacccggc 60 cgctaagcga ggcctcctcc tcccgagat ccgaacggcc tgggcggggt caccggct 120	

gggacaagaa gccgcgcct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
 aggcggggtg tgagtgggtg tgcgggggg gcgaggcgtt gatcaatcc cgataagaaa 240
 tgctcggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
 cggcccgag ccggccgcgc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
 ccatcccaac ccggcactca cagccccgca ggcgcattccg gtcgcgcgc acgcctccgc 420
 acccccatcg ccggagctgc ggcgagagcc ccaggaggt gccatgcgga gcggtgtgt 480
 ggtggtccac gtatggatcc tggccgcct ctggctggcc gtggccgggc gccccctcgc 540
 ctctcgac gcccccccccc acgtgcacta cggctggggc gacccatcc gcctgcggca 600
 cctgtacacc tccggcccccc acgggctctc cagctgcctc ctgcgcattcc gtgcgcacgg 660
 cgtcggtggac tgcgcgcggg gccagagcgc gcacagttt ctggagatca aggcaagtgc 720
 tctgcggacc gtggccatca agggcgtgca cagcgtgcgg tacctctgca tggcgccgca 780
 cggcaagatg caggggctgc ttcaagtactc ggaggaagac tgtgcttcg aggaggagat 840
 ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctccgg tctccctgag 900
 cagtgccaa cagcggcagc tgatacaagaa cagaggctt cttccactt ctcatttct 960
 gcccattgtg cccatggtcc cagaggagcc tgaggaccc actggggccact tggaatctga 1020
 catgttctct tcgccccctgg agaccgacag catggaccca ttggggcttg tcaccggact 1080
 ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcgcgg gcctcttac 1140
 tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaatg aacagtcctg 1200
 agtccacgtt ctgttagct ttaggaagaaa acatctagaa gttgtacata ttcaagatgtt 1260
 tccattggca gtgccagtt ctagccaata gacttgtctg atcataacat tgtaaggctg 1320
 tagcttgccc agctgtgtcc tggggccccca ttctgctccc tcgaggttgc tggacaagct 1380
 gctgcactgt ctcagttctg cttgaataacc tccatcgatg gggactcac ttcctttgga 1440
 aaaattctta tgtcaagctg aaattctcta atttttctc atcacttccc caggagcagc 1500
 cagaagacag gcagtagtt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560
 taaatttcac tcaaccccat gtgggaattt atctatatct ctacttccag ggaccattt 1620
 cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
 ggagtagggg aagcctggag cccactcca gccctggac aacttgagaa ttccccctga 1740
 ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
 ccatctccca gcccaccacg cctctgcccc cctcacatgc ctccccatgg attggggcct 1860
 cccaggcccc ccaccttagt tcaacctgca cttctgttc aaaaatcagg aaaagaaaaag 1920
 atttgaagac cccaagtctt gtcataact tgctgtgtgg aagcagcggg ggaagaccta 1980
 gaacccttcc cccagcaattt ggtttccaa catgatattt atgagtaatt tattttgata 2040
 tgtacatctc ttatttctt acattattt tgcccccaaa ttatatttat gtatgtaaat 2100
 gaggtttgtt ttgtatatta aaatggagtt tgtttgt 2137

<210> 59
 <211> 216
 <212> PRT
 <213> Homo sapiens

<400> 59
 Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
 1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
 20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
 50 55 60

Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
 65 70 75 80

Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
 85 90 95

Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
 100 105 110

Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro
 115 120 125

Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
 130 135 140

Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
 145 150 155 160

Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
 165 170 175

Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
 180 185 190

Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
 195 200 205

Val Arg Ser Pro Ser Phe Glu Lys
 210 215

<210> 60
 <211> 26
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 60
 atccgccccag atggctacaa tgtgtta 26

<210> 61
 <211> 42
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 61
 gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta 42

<210> 62
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 62
 ccagtccggt gacaagccca aa 22

<210> 63
 <211> 1295
 <212> DNA
 <213> Homo sapiens

<400> 63
 cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgacccct 60
 cagagcagcc ggctgcggcc cccggaaat ggcgaggagg agccgcacc gcctccct 120
 gctgctgctg cgctacctgg tggctgcctt gggctatcat aaggcctatg gttttctgc 180
 cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgca 240
 aaccccaaag aagactgttt cctccagatt agagtgaaag aaactgggtc ggagtgtctc 300
 ctttgtctac tatcaacaga ctcttcagg tgattttaaa aatcqagctg agatgataqa 360
 tttcaatatac cgatcaaaaa atgtgacaag aagtgtatgcg gggaaatatac gttgtgaagt 420
 tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaaagtatt 480
 agtggctcca gcagttccat catgtgaagt acccttctt gctctgagtg gaactgtgg 540
 agagctacga tgtcaagaca aagaagggaa tccagtcct gaatacacat gtttaagga 600
 tggcatccgt ttgctagaaa atcccagact tggctcccaa agcacaaca gctcatacac 660
 aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
 atattcctgt gaagcccgca attctgttgg atatcgcagg tgcctggaa aacgaatgca 780
 agtagatgat ctcaacataa gtggcatcat agcagccgta gtatgttgg ccttagtgat 840
 ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctacttt caaaagaaac 900
 ctcttccag aagagtaatt ctctcatctaa agccacgaca atgagtgaaa atgtgcagt 960
 gtcacgcct gtaatcccag cactttggaa ggcgcggcg ggccgatcac gaggtcagga 1020
 gttctagacc agtctggcca atatggtaa accccatctc tactaaaata caaaaattag 1080
 ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcaactga 1140
 accccgggagg cggaggttgc agtgagctga gatcacgcca ctgcagtcca gcctggtaa 1200
 cagagcaaga ttccatctca aaaaataaaaa taaataaata aataaaataact gtttttacc 1260
 tgtagaattt ttacaataaa tatagcttga tattc 1295

<210> 64
 <211> 312
 <212> PRT
 <213> Homo sapiens

<400> 64
 Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
 1 5 10 15

Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
 20 25 30

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
 35 40 45

 Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
 50 55 60

 Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
 65 70 75 80

 Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
 85 90 95

 Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
 100 105 110

 Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Asp Thr Val Thr Leu
 115 120 125

 Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
 130 135 140

 Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
 145 150 155 160

 Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
 165 170 175

 Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
 180 185 190

 Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
 195 200 205

 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
 210 215 220

 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
 225 230 235 240

 Ile Ala Ala Val Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
 245 250 255

 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
 260 265 270

 Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
 275 280 285

 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
 290 295 300

 Gly Gly Ser Arg Gly Gln Glu Phe

305

310

<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 65
atcgttgtga agtttagtgcc cc

22

<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 66
acctgcgata tccaaacagaa ttg

23

<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 67
ggaagaggat acagtcaactc tggaagtatt agtggctcca gcagttcc

48

<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens

<400> 68
gacatcgag gtgggctagc actgaaaactg cttttcaaga cgaggaagag gaggagaaag 60
agaaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaaggcatgg gatttaaata ttttacttct 180
aaataaaatga attactcaat ctccatatgac catctataaca tactccacct taaaaaagta 240
catcaaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatag caattgtggc actggcactt atttcagtga agaaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat cttccatttatac aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaaggcc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagta 540

aagctgtaga taaaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttgg 600
ttacaccagg atccatttat atggaagcat ctacagtggta ttgtaatgtat ttaggtcttt 660
taactttccc agccagattt ccagctaaca cacagattct ttccttacag actaacaata 720
ttgcaaaaat tgaataactcc acagacttcc cagtaaacct tactggcttg gattttatctc 780
aaaacaattt atcttcagtc accaatatta atgtaaaaaaaaa gatgcctcag ctccttctg 840
tgtacctaga gaaaaacaaa cttactgaac tgccctgaaaa atgtctgtcc gaactgagca 900
acttacaaga actcttatatt aatcacaact tgcttctac aatttcaccc ggagccttta 960
ttggcctaca taatcttctt cgacttcattc tcaattcaaa tagattgcag atgatcaaca 1020
gtaagtggtt ttagtgcctt ccaaattctag agattctgat gattggggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaaacct cacagaaata ccagataacg ccttgggttgg actggaaaac ttagaaagca 1200
tcttttttta cgataacagg cttattaaag tacccttcatgt tgcttcaa aaagttgtaa 1260
atctcaattt tttggatcta aataaaaatc ctattaaatag aatacgaagg ggtgatttt 1320
gcaatatgct acactaaaaa gagttggggaa taaataataat gcctgagctg atttccatcg 1380
atagtcttgc tggataaac ctggcagatt taagaaaaat agaagctact aacaacccta 1440
gattgtctta cattcaccccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaaccctca 1560
aggaaatctag catacacagt aaccccatca gggtgtactg tgcattccgt tggatgaaca 1620
tgaacaaaac caacattcga ttcattggagc cagattcaact gttttggctg gaccaccctg 1680
aattccaaagg tcagaatgtt cggcaagtgc atttcaggaa catgatggaa atttgcctcc 1740
ctcttatacg tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800
ccttcactg tagagctact gcagaaccac agcctgaaat ctactggata acacccctcg 1860
gtcaaaaact cttgcctaat accctgacag acaagttcta tgccattct gagggaaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaagtggta tggatcttt ccacaagata 2040
acaatggctc ttgtatatt aaaataagag atattcaggc caattcaggta ttgggtgtct 2100
ggaaagcagaag ttctaaaatt ctcaaatcta gtgtttaatg gacaggctt gtcaagactg 2160
aaaattctca tgctgcgcaaa atgtgcctgaa taccatctga tgtcaaggta tataatctta 2220
ctcatctgaa tccatcaact gagtataaaa ttgttattga tattccacc atctatcaga 2280
aaaacagaaaa aaaatgtgta aatgtcaccacccaaagggtt gcaccctgat caaaaagagt 2340
atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccctctg gggattattt 2400
gtgtgatatg tcttatcagc tgcctcttc cagaaatgaa ctgtgatggt ggacacagct 2460
atgtgagggaa ttacttacag aaaccaaccc ttgcatttagg tgagctttat ctcctctga 2520
taaatctctg ggaagcagga aaagaaaaaa gtacatcact gaaagaaaaa gcaactgtta 2580
taggtttacc aacaaatataq tcctaaaaac caccacqaaa acctactccca aaaaatgaaac 2639

<210> 69

<211> 708

<212> PRT

<213> *Homo sapiens*

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile
1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu
20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
50 . 55 . 60

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Leu Gln Thr Asn Asn
 65 70 75 80

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
 85 90 95

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
 100 105 110

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu
 115 120 125

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu
 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe
 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu
 165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile
 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe
 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu
 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser
 225 230 235 240

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu
 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile
 260 265 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu
 275 280 285

Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala
 290 295 300

Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro
 305 310 315 320

Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu
 325 330 335

Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

340	345	350
Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn		
355	360	365
Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr		
370	375	380
Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro		
385	390	395
Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met		
405	410	415
Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu		
420	425	430
Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala		
435	440	445
Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu		
450	455	460
Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr		
465	470	475
Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys		
485	490	495
Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys		
500	505	510
Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys		
515	520	525
Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser		
530	535	540
Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr		
545	550	555
Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys		
565	570	575
Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys		
580	585	590
Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn		
595	600	605
Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn		
610	615	620

*

Asn Thr Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile
 625 630 635 640

Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp
 645 650 655

Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala
 660 665 670

Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys
 675 680 685

Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro
 690 695 700

Thr Asn Met Ser
 705

<210> 70

<211> 1305

<212> DNA

<213> Homo sapiens

<400> 70

gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaaat aatgaagaga cacatgtgtt 60
 agctgcagcc ttttgaaaaca cgcaagaagg aaatcaatacg tgtggacagg gctggAACCT 120
 ttaccacgcgt tgTTGGAGTA gatgaggaat gggCTCGTGA ttatgCTGAC attccAGCAT 180
 gaatctggta gacCTGTGTT taACCCGTTc cCTCTCCATG tGTCTCCTCC tacAAAGTT 240
 tggTCTTATG atactGTGCT ttcattCTGC cAGTAGTGT cCCAAAGGGGT gtCTTGTTC 300
 ttccTCTGGG ggTTAAATG tcACCTGTAG caATGCAAAT ctCAAGGAAA tacCTAGAGA 360
 tttCCCTCCT gaaACAGTCT tactGTATCT ggACTCCAAT cAGATCACAT ctATTCCAA 420
 tggAAATTTT aaggACCTCC atCAACTGAG agtTCTCAAC ctGTCCAAAAttggCATTGA 480
 gtttatcgat gagcatgcct tcaaaggagt agtGAAACC ttgcAGACTC tggACTTGTc 540
 cgacaatcgG attcaaaGt tgCacaaaaaa tgcCTCAAT aacCTGAAGG ccAGGCCAG 600
 aattgccaac aacCCCTGGC actGCGACTG tactCTACAG caAGTTCTGA ggAGCATGGC 660
 gtccaatcat gagacAGCCC acaACGTGAT ctgtAAAACG tccGTGTTGG atgaACATGC 720
 tggcAGACCA ttcCTCAATG ctGCCAACGA CGCTGACCTT tgtaACCTCC ctAAAAAAAC 780
 taccgattat gccatGCTGG tcaccatGTT tgGCTGGTTC actatGGTGA tctcatatGT 840
 ggtatattat gtGAGGCAAA atcAGGAGGA tgCCCGGAGA cacCTCGAAAT acttGAAATC 900
 CCTGCCAAGC aggCAGAAGA aAGCAGATGA acCTGATGAT attAGCAGCTG tggTATACTG 960
 tccAAACTGA ctgtCATTGA gaaAGAAAGA aAGTAGTTG cgATTGCACTG agAAATAAGT 1020
 ggtttacttc tcccataccat tgtaAAACATT tgAAACCTTG tattTCAGT tttttGAAT 1080
 tatGCCACTG ctGAACCTTT aacAAACACT acaACATAAA taATTTGAGT ttagGTGATC 1140
 caccCCTTAA ttgtACCCCCC gatGGTatat ttCTGAGTAA gCTACTATCT gaACATTAGT 1200
 tagatCCATC tcactATTa ataATGAAAT ttATTTTT aatttAAAAG caAAATAAAAG 1260
 cttaactttG aaccatGGGA aaaaaaaaaa aaaaaaaaaa aaaca 1305

<210> 71

<211> 259

<212> PRT

<213> Homo sapiens

<400> 71

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu
 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser
 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val
 35 40 45

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro
 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro
 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser
 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala
 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val
 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn
 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met
 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val
 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala
 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val
 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr
 210 215 220 240

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys
 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser
 245 250 255

Thr Val Val

<210> 72
 <211> 2290

<212> DNA

<213> Homo sapiens

<400> 72

accgagccga gcggaccgaa ggcgccccg agatgcagg gagcaagagg atgctggcg 60
 gggcgtgag gacatgccc agccccctcc tggctgctg gcagcccatc ctcctgctgg 120
 tgctgggctc a诶tgcgtca ggctcgccca cggctgccc gccccgctgc gagtgctccg 180
 cccaggaccg cgctgtctg tggcacccga a诶tgcttgc ggcagtcccc gagggcatcc 240
 ccacccgagac gcgcctgctg gacctaggca agaaccgcat caaaaacgctc aaccaggacg 300
 agtgcgcag ctccccac acggaggagc tggagctcaa cgagaacatc gtgagcgcgg 360
 tggagcccg cgccttcaac aacctttca acctccggac gctgggtctc cgcaagcaacc 420
 gcctgaagct catcccccta ggcgtctca ctggcctcag caacctgacc aaggcaggaca 480
 tcagcgagaa caagatcgat ttccatctgg actacatgtt tcaggacctg tacaacctca 540
 agtcaactgga ggttggcgac aatgacactcg tctacatctc tcaccgcggc ttcagcggcc 600
 tcaacagcct ggagcagctg acgctggaga aatgcaaccc gacctccatc cccaccggagg 660
 cgctgtccca cctgcacccgc ctcatcgtcc tgaggctccg gcaccccaac atcaatgcga 720
 tccggacta ctccctcaag agctgttacc gactcaaggat cttggagatc tcccactggc 780
 cctacttgga caccatgaca cccaactgccc tctacccctt caacctgacg tccctgtcca 840
 tcacacactg caatctgacc gctgtggccct acctggccgt cccgcaccta gtctatctcc 900
 gcttcctcaa ccttcctac aacccctatca gcaccattga gggctccatg ttgcattgagc 960
 tgctccggct gcaggagatc cagctggtgg gcccggcagct gcccgtggg gaggccatg 1020
 cctccggcgg cctcaactac ctgcgcgtgc tcaatgtctc tggcaaccag ctgaccacac 1080
 tggaggaatc a诶gtttccac tcgggtggca acctggagac actcatctg gactccaacc 1140
 cgctggctg cgactgtcgg ctccctgtgg tggtccggcg cccgtggcg ctcaacttca 1200
 accggcagca gcccacgtgc gccacggccc agtttgtcca gggcaaggag ttcaaggact 1260
 tccctgatgt gctactgccc aactacttca cctgcgcgg ccccccgcata cgggaccgca 1320
 aggcccagca ggtgtttgtg gacgaggggcc acacgtgca gtttgtgtc cggggcgatg 1380
 gcgaccggcc gcccgcata ccttggctct caccggaaa gcacctggc tcagccaaga 1440
 gcaatggcgc gtcacatgc ttccctgatg gcacgttgg ggtgcgtac gcccaggatc 1500
 aggacaacgg cacgtacctg tgcatcgccg ccaacgcggg cggcaacgc tccatgcgg 1560
 cccacctgca tgcgcgcagg tactcgcccc actggccca tcagcccaac aagaccttcg 1620
 cttcatctc caaccagccg ggcgaggggag aggcaacacg caccgcggc actgtgcctt 1680
 tccccttca catcaagacc ctcatcatcg ccaccatcatc gggcttcata tcttcctgg 1740
 gcttcgtctt cttctgcctg gtgcgtctgt ttctctggag cccggggcaag ggcaacacaa 1800
 agcacaacat cgagatcgag tatgtgcccc gaaagtggc cgcaggcatc agctccggcc 1860
 acgcgcggccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920
 cggcgccgg ggcaggggaa gggccctggt cgcacactgc tcaacttcata gtccttccca 1980
 ccttcctccct acccttctac acacgttctc ttctccctc cccgcctccgt cccctgtc 2040
 ccccgccag ccctcaccac ctgcctctc tctaccagga cctcagaagc ccagacctgg 2100
 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgcacga accgacacgc 2160
 ggcagagtca ataattcaat aaaaaagttt cgaactttct ctgttaacttg ggttcaata 2220
 attatggatt ttatgaaaaa ctgaaataa taaaaagaga aaaaaactaa aaaaaaaaaa 2280
 aaaaaaaaaa 2290

<210> 73

<211> 620

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

1

5

10

15

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly
 20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys
 35 40 45

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala
 50 55 60

Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys
 65 70 75 80

Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His
 85 90 95

Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro
 100 105 110

Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser
 115 120 125

Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn
 130 135 140

Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp
 145 150 155 160

Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp
 165 170 175

Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser
 180 185 190

Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr
 195 200 205

Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His
 210 215 220

Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg
 225 230 235 240

Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr
 245 250 255

Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His
 260 265 270

Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr
 275 280 285

Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly
 290 295 300

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly
 305 310 315 320

Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr
 325 330 335

Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu
 340 345 350

Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser
 355 360 365

Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg
 370 375 380

Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu
 385 390 395 400

Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro
 405 410 415

Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln
 420 425 430

Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala
 435 440 445

Asp Gly Asp Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His
 450 455 460

Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly
 465 470 475 480

Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu
 485 490 495

Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu
 500 505 510

His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr
 515 520 525

Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr
 530 535 540

Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala
 545 550 555 560

Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu
 565 570 575

Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

<pre>Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser 580 585 590 595 600 605 Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile 610 615 620</pre> <p><210> 74 <211> 22 <212> DNA <213> Artificial Sequence</p> <p><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</p> <p><400> 74 tcacacctggag cctttattgg cc</p> <p><210> 75 <211> 23 <212> DNA <213> Artificial Sequence</p> <p><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</p> <p><400> 75 ataccaggcta taaccaggct gcg</p> <p><210> 76 <211> 52 <212> DNA <213> Artificial Sequence</p> <p><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</p> <p><400> 76 caacagtaag tggtttgatg ctcttccaaa tcttagagatt ctgatgattg gg</p> <p><210> 77 <211> 22 <212> DNA <213> Artificial Sequence</p> <p><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</p>	585 590 605 610 615 620 22 23 50 52
--	--

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 78 ggaaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	•
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgttagc aatgcaaatac tcaaggaaat acctagagat ctgcctccctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgccgtt gaaagatgtt gacg	24
<210> 82	

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 82
 gactacatgt ttcaggacct gtacaacctc aagtcaactgg aggttggcga 50

<210> 83
 <211> 1685
 <212> DNA
 <213> Homo sapiens

<400> 83
 cccacgcgtc cgcaccccg cccccggctc cgaagcggct cgggggccc ctttcggta 60
 acatcgtagt ccacccctc cccatccccaa gccccgggg attcaggctc gccagcgccc 120
 agccaggggag ccggccggga agcgcgatgg gggcccccagc cgcctcgctc ctgctcctgc 180
 tcctgctgtt cgcctgctgc tggcgcccg gcggggccaa cctctcccaag gacgacagcc 240
 agccctggac atctgtatcaa acagtggtggtt ctgggtggcac cgtggtgctc aagtgc当地 300
 tgaaaagatca cgaggactca tccctgcaat ggtctaaccctc tgctcagcag actctact 360
 ttggggagaa gagagccctt cgagataatc gaattcagct gtttacctt acgc当地ccacg 420
 agctcagcat cagcatcagc aatgtggccc tggcagacga gggc当地gatc acctgctcaa 480
 tcttcactat gcctgtgcga actgccaagt ccctcgctac tggcttagga attccacaga 540
 agcccatcat cactggttat aaatcttcat tacggaaaa agacacagcc accctaaact 600
 gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
 tccacggaga accaaccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
 gctcgggtac attccagggtt accccggggg atgatgggc gagcatcgta tgctctgtga 780
 accatgaatc tctaaaggga gtcagatccatccatctca acgc当地tggaa gtttataaca 840
 caccactgc gatgattagg ccagaccctc cccatctcg tgaggccag aagctgtgc 900
 tacactgtga gggtc当地ggc aatccaggccccc cccagcagta octatgggag aaggaggc 960
 gtgtgccacc cctgaagatg acccaggaga gtgc当地ctgtatcccttctcaacaaga 1020
 gtgacagtgg cacctacggc tgc当地cagcc caagaaacat gggc当地ctac aaggctact 1080
 acaccctcaa tgttaatgac cccaggcccg tgc当地ctctc ctccagcacc taccacgcca 1140
 tc当地cggtgg gatcggtggct ttc当地ttgtt ctctgtctcatcatgctc atctc当地tt 1200
 gccc当地actt gatccggcac aaaggaaacat acctgacaca tgaggcaaaa ggctccgacg 1260
 atgctccaga cgc当地gacacg gccatcatca atgc当地aagg cggc当地gtca ggaggggacg 1320
 acaagaagga atatttcatc tagaggccgc tgc当地cttc ctgc当地ccccc cagggccct 1380
 gtggggactg ctggggccgt caccaaccgg gacttgtaca gagcaaccgc agggccgccc 1440
 ctcccgctt ctccccc当地ggcc cacccaccctc cctgtacaga atgtctgtt tgggtgc当地gt 1500
 tttgtactcg gtttggaaatg gggaggggagg agggccgggg gagggggagggttgc当地ctc 1560
 cc当地ttccgt ggcttctctg catttgggtt attattattt ttgtaaacaat cccaaatcaa 1620
 atctgtctcc aggctggaga ggc当地ggagcc ctgggggtgag aaaagcaaaa aacaaacaaa 1680
 aaaca 1685

<210> 84
 <211> 398
 <212> PRT
 <213> Homo sapiens

<400> 84

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Phe Ala
 1 5 10 15

Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
 20 25 30

Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
 35 40 45

Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
 50 55 60

Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
 65 70 75 80

Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
 85 90 95

Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
 100 105 110

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly
 115 120 125

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu
 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala
 145 150 155 160

Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro
 165 170 175

Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser
 180 185 190

Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val
 195 200 205

Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser
 210 215 220

Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp
 225 230 235 240

Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu Leu His Cys Glu Gly
 245 250 255

Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser
 260 265 270

Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe
 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn
 290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser
 305 310 315 320

Pro Val Pro Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile
 325 330 335

Val Ala Phe Ile Val Phe Leu Leu Leu Ile Met Leu Ile Phe Leu Gly
 340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys
 355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu
 370 375 380

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile
 385 390 395

<210> 85

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 85

gcttaggaatt ccacagaagg cc

22

<210> 86

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 86

aacctggaaat gtcaccgagc tg

22

<210> 87

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 87		
cctagcacag tgacgaggga cttggc		26
<210> 88		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 88		
aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc		50
<210> 89		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 89		
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt		50
<210> 90		
<211> 2755		
<212> DNA		
<213> Homo sapiens		
<400> 90		
gggggttagg gaggaaggaa tccaccccca cccccccaaa ccctttctt ctccttcct 60		
ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 120		
gctgttaatttgtatgaga tcggggatgaa attgctcgct taaaaaatgc tgctttggat 180		
tctgttgcgt gagaacgtctc ttgttttcgat cgctggaaac gttacagggg acgtttgcaa 240		
agagaagatc tgttctgca atgagataga aggggaccta cacgttagact gtaaaaaaaaa 300		
gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagtttacc atttatttct 360		
gcatggcaat tccctcactc gactttccc taatgagttc gctaactttt ataatgcgggt 420		
tagttgcac atggaaaaca atggcttgca tgaaatcggtt ccgggggctt ttctggggct 480		
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtctttc gaaagcagac 540		
ttttctgggg ctggacgatc tggaaatatct ccaggctgat ttaatttat tacgagatat 600		
agaccgggg gccttcagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660		
catcagcacc ctacctgcca acgtgttcca gtatgtgccc atcacccacc tcgacacctcg 720		
ggtaaacagg ctgaaaacgc tgccctatga ggaggcttg gagcaaattcc ctggattgc 780		
ggagatcctg cttagggata acccttggga ctgcacctgt gatctgctct ccctgaaaga 840		
atggctggaa aacattccca agaatgccct gatggcccgat gttgtctgcg aagccccac 900		
cagactgcag gttaaagacc tcaatgaaac caccgaacag gacttgcgtc ctttggaaaa 960		
ccgagtgat tctagtcctcc cggcgcccccc tgcccaagaa gagacctttg ctccctggacc 1020		
cctgccaact ctttcaaga caaatggcga agaggatcat gccacaccag ggtctgctcc 1080		

aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
agcgacgggt agetccagga acaaaccctt agtaaacagt ttacctgcct ctgggggctg 1200
cagctgcgac cacatcccag ggtcggttt aaagatgaac tgcaacaaca ggaacgttag 1260
cagcttggtc gattgaagc ccaagctctc taacgtgcag gagctttcc tacagataaa 1320
caagatccac agcatccgaa aatcgcaact tggattac aagaaccta ttctgttgg 1380
tctggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc tttggac 1440
caggtggcta tacatggata gcaattacct ggacacgctg tcccggaga aattcgcggg 1500
gctgaaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca ttctcccg 1560
cacttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgagg 1620
cctgcctgtg gacgtgttcg ctgggtctc gctctctaaa ctcagcctgc acaacaatta 1680
cttcatgtac ctccccgtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
cctccacgga aaccctggg agtgcctcg cacaattgtg ctttcaagc agtggcaga 1800
acgcttggt tccgaagtgc tcatgagcga cctcaagtgt gagacccgg tgaacttct 1860
tagaaaggat ttcatgctcc tctccaatga cgagatctgc ctcagctgt acgctaggat 1920
ctcgccacg ttaacttcgc acagtaaaaa cagcactggg ttggccgaga ccggacgca 1980
ctccaaactcc tacctagaca ccagcagggt gtccatctcg gtgttgtcc cgggactgt 2040
gctgggttt gtcacctcg cttcacctgt ggtgggcatt ctcgttta ttctgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctctcccg tccgagatta attccctaca 2160
gacagtctgt gactcttcct actggcacaa tgggcattac aacgcagatg gggccacag 2220
agtgtatgac tgggtcttc actcgctctc agactaaagac cccaaaccca ataggggagg 2280
gcagaggaa ggcgatacat cttccccac cgcaggcacc cgggggctg gaggggctg 2340
tacccaaatc cccgcgccat cagcctggat gggcataagt agataataa ctgtgagctc 2400
gcacaaccga aagggcctga ccccttactt agtccctcc ttgaaacaaa gagcagactg 2460
tggagagctg ggagagcgca gccagctcgc tctttgtga gagccctt tgacagaaaag 2520
cccagcacga ccctgctggc agaactgaca gtgcctcgc ctcggcccc ggggcctgt 2580
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640
atatctattt ttccccgtg gattagcccc gtgtggctc cctgtggct acgcaggat 2700
qqqcgattgc acgaaggcat gaatgtattt taaaataagta actttgactt ctgac 2755

<210> 91
<211> 696
<212> PRT
<213> *Homo sapiens*

```

<400> 91
Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala
          1           5           10          15

```

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
 20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn
65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu
85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His
 100 105 110
 Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125
 Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp
 130 135 140
 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile
 145 150 155 160
 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr
 165 170 175
 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu
 180 185 190
 Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu
 195 200 205
 Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys
 210 215 220
 Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val
 225 230 235 240
 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr
 245 250 255
 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro
 260 265 270
 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr
 275 280 285
 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala
 290 295 300
 Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg
 305 310 315 320
 Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala
 325 330 335
 Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly
 340 345 350
 Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala
 355 360 365
 Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp
 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn
 385 390 395 400
 Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn
 405 410 415
 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser
 420 425 430
 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn
 435 440 445
 Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro
 450 455 460
 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn
 465 470 475 480
 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu
 485 490 495
 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala
 500 505 510
 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly
 515 520 525
 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala
 530 535 540
 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr
 545 550 555 560
 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu
 565 570 575
 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His
 580 585 590
 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser
 595 600 605
 Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu
 610 615 620
 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val
 625 630 635 640
 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser
 645 650 655
 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 675	665	670
Cys Gly Ser His Ser Leu Ser Asp 690 695		
<210> 92		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 92		
gttggatctg ggcaacaata ac		
22		
<210> 93		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 93		
attgttgtgc aggctgagtt taag		
24		
<210> 94		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 94		
ggtgtggata catggatagc aattacacctgg acacgctgtc ccggg		
45		
<210> 95		
<211> 2226		
<212> DNA		
<213> Homo sapiens		
<400> 95		
agtgcactgc gtccccctgtta cccggcgcca gctgtgttcc tgaccccaga ataaactcagg 60		
gctgcacccgg gcctggcagc gtcggcaca catttcctgt cgccggctaa gggaaaactgt 120		
tggccqctqq qcggcqgqqqq qqattcttgg cagttggggg gtccgtcggg agcgagggcg 180		

ggggggaaagg gagggggaaac cgggttgggg aagccagctg tagagggcgg tgaccgcgt 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttggagcag ctctgcgtc 300
ggggcctcaag agaatgaggg cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccgggc gggggcgaac accccactgc cgaccgtgt ggctgctcg cctcgggggc 420
ctgctacagc ctgcaccacg ctaccatgaa gggcaggcg gccgaggagg cctgcacatct 480
gcgagggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgtg tgctcgct 540
cctgcgggca gcccagggc cgggaggggg ctccaaagac ctgctgttct gggtcgact 600
ggagcgcagg cgttccact gcaccctgga gaacgagcd ttgcggggtt ttcctggct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaaacg 720
ctcctgcacc gcgcggagat gcgcgtact ccaggccacc ggtgggtcg agccccgcagg 780
cttggaaaggag atgcgatgcc acctgcgcgc caacggctac ctgtcaagt accagttta 840
ggtcttgtt cctgcgcgcg gccccggggc cgctctaaac ttgagctatc ggcgcgcctt 900
ccagctgcac aggcgcgc tcgacttcag tccacctggg accgaggtga gtgcgtctg 960
ccggggacag ctccccatct cagttacttg catcgccgac gaaatcgcc ctgcgtggga 1020
caaactctcg ggcgatgtgt tgtgtccctg cccccgggagg tacctccgtg ctggcaaatg 1080
cgcagagctc cctaactgcc tagacgactt gggaggctt gcctgcgaat gtgcgtacggg 1140
cttcgagctg gggaaaggacg gccgctttg tttgaccatg gggaaaggac agccgaccct 1200
tggggggacc ggggtgccc ccaggccccc gccggccact gcaaccagcc ccgtgcgcga 1260
gagaacatgg ccaatcaggg tcgacgagaa gttggggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttccctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
tacccttcaa atgtcccttc aagccgagtc aaaggccact atcacccat cagggagcgt 1440
gatttccaag ttaattcta cgacttcctc tgccactcct caggcttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttgggtatct tgaccatgac 1560
agtactgggg cttgtcaago tctgcttca cggaaagcccc tttcccaagc caaggaagga 1620
gtctatgggc cccggggcc tggagagtga tcctgagccc gtcgtttgg gtcgcgttc 1680
tgcacattgc acaaacaatg gggtaaaatg cggggactgt gatctcgccc acagagcaga 1740
gggtgccttgc ctggcggagt cccctttgg ctctagtgtat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcaactt tgatgaaacg gggaaaccaag aggaactac 1860
ttgtgttaact gacaatttct gcagaaatcc cccttcctt aaattccct tactccactg 1920
aggagctaaa tcagaactgc acacttcctc cctgatgata gaggaagtgg aagtgcctt 1980
aggatggtga tactggggga cgggttagtg ctggggagag atatttcattt atgtttattc 2040
ggagaatttg gagaagtgtat tgaactttc aagacattgg aaacaaatag aacacaat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
cttaggatgtt attggttcga aatcccaggg aaaaaataaa aaataaaaaaa ttaaaggatt 2220
qttqat 2226

<210> 96

<211> 490

<212> PRT

<213> Homo sapiens

<400> 96

Met Arg P:

1

Gly Pro

Gly Pro Gly Gly Gly Glu His Phe Thr Ala Asp Arg Ala Gly Cys Ser
 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
35 40 45

Ara Ara Glu Glu Ala Cys Ile Leu Arg Gly Gly Ara Leu Ser Thr Val
50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly
 65 70 75 80

Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu
 85 90 95

Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly
 100 105 110

Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu
 115 120 125

Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala
 130 135 140

Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met
 145 150 155 160

Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu
 165 170 175

Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr
 180 185 190

Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro
 195 200 205

Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val
 210 215 220

Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly
 225 230 235 240

Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys
 245 250 255

Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu
 260 265 270

Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr
 275 280 285

Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg
 290 295 300

Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro
 305 310 315 320

Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln
 325 330 335

Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

340	345	350
Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala		
355	360	365
Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr		
370	375	380
Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe		
385	390	395
Ile Phe Val Ser Thr Ala Val Val Val Leu Val Ile Leu Thr Met Thr		
405	410	415
Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln		
420	425	430
Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu		
435	440	445
Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val		
450	455	460
Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu		
465	470	475
Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala		
485	490	

<210> 97
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 97
tggaaggaga tgcgatgcc a cctg

<210> 98
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 98
tgaccagtgg ggaaggacag

<210> 99		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 99		
acagagcaga gggtgcccttg		20
<210> 100		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 100		
tcagggacaa gtgggtctc tccc		24
<210> 101		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 101		
tcagggaagg agtgtgcagt tctg		24
<210> 102		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 102		
acagctcccc atctcagtta ctgcatcg ggacgaaatc ggcgctcgct		50
<210> 103		
<211> 2026		
<212> DNA		
<213> Homo sapiens		

<400> 103

```

cgacgcgtg ggattcagca gtggcctgtg gctccagag cagtcctca gggaaacta 60
agcgtcgagt cagacggcac cataatcgcc ttaaaagtg cctccgcct gccggccgcg 120
tatccccgg ctacctggc cgccccggc cggtgcgcgc gtgagaggga gcgcgcggc 180
agccgagcgc cggtgtgagc cagegtgtgc gccagtgtga gcggcggtgt gagcgcgtg 240
ggtgccggagg ggcgtgtgtc cccggcgccgc cgccgtgggg tgcaaaccac gacgtctac 300
gctgccatga ggggcgcgaa cgccctggcg ccactctgcc tgctgctggc tgccgcacc 360
cagctctcgc ggcagcagtc cccagagaga cctgtttca catgtggtgg cattttact 420
ggagagtctg gatttattgg cagtgaaggt tttccctggag tgtaccctcc aaatacgaaa 480
tgtacttggaa aaatcacagt tcccgaagga aaagtagtgc ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtccgcgtat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggcg ctctgtggc actttccggc ctggagccct tggccatgc 660
ggcaacaaga tggatgtca gatgatttct gatgccaaca cagctggcaa tggccatgc 720
ccatgttct ccgctgtga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacctt ccggctctt taaaacccccc aactggccag accgggatc ccctgcagga 840
gtcaacttggt gttggcacat ttagccccca aagaatcagc ttatagaatt aaagtttag 900
aagtttgatg tggagcggaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
gggaaagtca acgatgttag aagaatttggaa aagtattgtg gtgatagttcc acctggccca 1020
attgtgtctg agagaaatga acttcttatt cagttttat cagacttaag ttaactgca 1080
gatgggttta ttggtcacta catattcagg caaaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacatccc tggtaaccacg ggtttaaaccc acaccgtggc cttgtgtcaa 1200
caaaaagtgtaa gacggacggg gactctggag ggcaattatt gttcaagtga ctttgttatta 1260
gccggcactg ttatcacaac catcactcgc gatgggagtt tgcacgcac agtctcgatc 1320
atcaacatct acaaagaggg aaatttgggg attcagcagg cgggcaagaa catgagtgcc 1380
aggctgactg tgcgtctgcaaa gcaatgtccctt ctcctcagaa gaggtctaaa ttacattatt 1440
atgggccaag taggtgaaga tggggcggggc aaaatcatgc caaacagott tatcatgtg 1500
ttcaagacca agaattcagaa gtcctggat gccttaaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgcatt tgcctttgaa agatctatgt tctctcagta 1620
aaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atggactgg 1680
ttgactcttc acatgatgaa ggtatgagggc ctccggat gctgagggaa gttcttgcc 1740
tgctgtcaga ggagcagcta tctgattggaa aacctgcccga cttagtgccgg tgataggaag 1800
ctaaaagtgt caagcgttga cagctggaa gcgttattt atacatctt gtaaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatattata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttgc tcttcgttt 1980
tctaaatcaa tgcttaataa aatattttta aaggaaaaaaa aaaaaaa 2026

```

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1															15

Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
															30
20															

Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
35															45

Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
50															60

Val Pro Glu Gly Lys Val Val Val Leu Asn Phe Arg Phe Ile Asp Leu
 65 70 75 80

Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
 85 90 95

His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
 100 105 110

Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
 115 120 125

Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala
 130 135 140

Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg
 145 150 155 160

Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro
 165 170 175

Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu
 180 185 190

Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
 195 200 205

Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala
 210 215 220

Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val
 225 230 235 240

Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu
 245 250 255

Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu
 260 265 270

Pro Thr Thr Thr Glu Gln Pro Val Thr Thr Thr Phe Pro Val Thr Thr
 275 280 285

Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr
 290 295 300

Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly
 305 310 315 320

Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val
 325 330 335

Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

<213> Homo sapiens

<400> 108

cgacgcgtg ggcggacgcg tggcggccc acggcgcccc cgggctgggg cggtcgcttc 60
ttccctctcc gtggcctacg agggtccccca gcctggtaa agatggcccc atggccccc 120
aagggcctag tcccagctgt gctctgggc ctgcgcctt tcctaaccct cccaggac 180
atctggctcc agccctctcc acctccccag ttttctcccc cgcctcagcc ccatccgtgt 240
catacctgcc ggggactggg tgacagctt aacaaggccc tggagagaac catccgggac 300
aactttggag gtggaaacac tgcctggag gaagagaatt tgtccaaata caaagacagt 360
gagaccgcgc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgcac 420
cgccctgtgg agctgagtga ggagctggg gagagctggg gtttccacaa gcagcaggag 480
gccccggacc tcttccagtg gctgtgctca gatccctga agctctgctg ccccgccaggc 540
accttcgggc cctcctgcct tccctgtcct gggggaaacag agaggccctg cggtggtac 600
ggcagtggtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggccctgtgg ccagtgtggc ttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgtttggc ccctgtgccc gatgtcagg acctgagggaa 780
tcaaactgtt tgaatgcaaa gaagggtgg gccctgcattt acctcaagtg tgttagacatt 840
gtgagtggtg gacacagaggg agccaactgt ggagctgacc aatttgcgtt gaacactgag 900
ggctccatgt agtgcgcaga ctgtccaaag gcctgcctag gctgcattggg ggcaggccca 960
ggtcgctgtt agaagtgttag ccctggctat cagcagggtgg gctccaaagtg tctcgatgtg 1020
gtgagtggtg agacagaggt gtgtccggga gagaacaaggc agtgtgaaaa caccgaggc 1080
ggttatcgct gcatctgtgc cgagggtctac aacgcagatgg aaggcatctg tgtgaaggag 1140
cagatcccgag agtcagcagg cttcttctca gagatgacag aagacaggtt ggtgggtctg 1200
cagcagatgt tcttggcat catcatctgt gcaactggcca cgctggctgc taaggccgac 1260
ttggtgttca ccgcctatctt cattggggct gtggcggcca tgactggcta ctgggtgtca 1320
gagcgcagtg accgtgtgtt ggagggtctc atcaaggccaa gataatcgcg gccaccac 1380
gttaggaccc tccccaccca cgctgccttcc agagcttggg ctgcctctt gctggacact 1440
caggacagct tggtttattt ttgagagttt ggtaaagcacc cctacctgcc ttacagagca 1500
gcccaggatcc ccaggcccg gcaagacaagg cccctgggtt aaaaagttagc cctgaagggt 1560
gataccatga gcttttccacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agttttctt taatgggtgg tgcttagagct ttggccctgt cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gtccttcctt gccagctgca tgctgccagt tcctgttctg 1740
tgttcaccac atccccacac cccattgcca ttatattt catctcaggaa aataaaagaaa 1800
ggtcttgaa aqtaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 1838

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
1 5 10 15

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
20 25 30

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
35 40 45

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
50 55 60

Arg Asp Asn Phe Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
 65 70 75 80

Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
 85 90 95

Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
 100 105 110

Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
 115 120 125

Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
 130 135 140

Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
 145 150 155 160

Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
 165 170 175

Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys
 180 185 190

Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
 195 200 205

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro
 210 215 220

Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His
 225 230 235 240

Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys
 245 250 255

Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg
 260 265 270

Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg
 275 280 285

Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu
 290 295 300

Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln
 305 310 315 320

Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr
 325 330 335

Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala
 340 345 350

Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
 355 360 365

Met Phe Phe Gly Ile Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
 370 375 380

Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
 385 390 395 400

Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
 405 410 415

Ile Lys Gly Arg
 420

<210> 110
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 110
cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga 50

<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 111
attctgcgtg aacactgagg gc 22

<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 112
atctgcttgtt agccctcgcc ac 22

<210> 113

<211> 1616

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (1461)

<223> a, t, c or g

<400> 113

tgagaccctc ctgcaggcctt ctcaggggac agccccactc tgcctttgc tcctccaggg 60
 cagcaccatg cagccccgtt ggctctgtgg ggcactctgg gtgttgcggc tggccagccc 120
 cggggccgccc ctgaccgggg agcagctctt gggcagcctg ctgcggcagc tgcaagctaa 180
 agaggtgccccc accctggaca gggccggacat ggaggagctg gtcateccccca cccacgtgag 240
 ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagagggtt 300
 cagccagagc ttccgagagg tgccggcag gttccctggcg ttggaggcca gcacacacct 360
 gctggtgttc ggcattggagc agcggctgccc gcccacacagc gagctggtgcc aggcgtgt 420
 gcggcttc caggagccgg tcccccaaggc cgcgcgtgcac aggcacgggc ggctgtcccc 480
 gcgcagegcc cggggccggg tgaccgtcga gtggctgcgc gtccgcgcacg acggctccaa 540
 ccccacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggccctt 600
 cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgtgt 660
 gctacaggtg tcgggtcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
 ggtccgctt gcctcgcagg gggcggccagc cgggcttggg gagccccagc tggagctgca 780
 cacccctggac cttggggact atggagctca gggcagactgt gaccctgaag caccatgac 840
 cgagggcacc cgctgtgcc gccaggagat gtacattgac ctgcaggggc tgaagtggc 900
 cgagaactgg gtgctggagc ccccgccctt cctggcttat gagtgtgtgg gcacctggcg 960
 gcagcccccg gaggccctgg cttcaagtg gccgttctg gggccctcgac agtgcategc 1020
 ctccggagact gactcgctgc ccatgatcgat cagcatcaag gagggaggca ggaccaggcc 1080
 ccagggtggtc agectggcca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
 gctctgtgcca aggaggctcc agccataggg gccttagtgc gccatcgagg gacttgactt 1200
 gtgtgtgttt ctgaagtgtt cgagggttacc aggagagctg gcgatgactg aactgctgtat 1260
 ggacaaaatgc tctgtgtctt cttagtgcctt ctgaatttgc ttccctctgac aagttaaccc 1320
 acctaatttt tgcttcctcag gaatgagaat ctttggccac tggagagccc ttgctcagg 1380
 ttctctattt ttattattca ctgcactata ttctaaagcac ttacatgtgg agataactgta 1440
 acctgagggc agaaaagccca ntgtgtcatt gtttacttgt cctgtcaactg gatctgggct 1500
 aaagtccctcc accaccactc tggacctaag acctggggtt aagtgtgggt tgtcatccc 1560
 caatccagat aataaaagact ttgtaaaaca tgaataaaac acattttattt ctaaaa 1616

<210> 114

<211> 366

<212> PRT

<213> Homo sapiens

<400> 114

Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala

1

5

10

15

Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu

20

25

30

Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met

35

40

45

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu
 50 55 60

Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln
 65 70 75 80

Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr
 85 90 95

His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu
 100 105 110

Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala
 115 120 125

Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg
 130 135 140

Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr
 145 150 155 160

Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys
 165 170 175

Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg
 180 185 190

Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu
 195 200 205

Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln
 210 215 220

Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu
 225 230 235 240

Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro
 245 250 255

Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu
 260 265 270

Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe
 275 280 285

Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu
 290 295 300

Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu
 305 310 315 320

Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr
 325 330 335

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
 340 345 350

Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
 355 360 365

<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 115
aggactgcca taacttgcct g

21

<210> 116
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 116
ataggagttg aagcagcgct gc

22

<210> 117
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 117
tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc

45

<210> 118
<211> 1857
<212> DNA
<213> Homo sapiens

<400> 118
gtctgttccc aggagtccctt cggcggtgtgt tggttcagtg gcctgatcgc gatggggaca 60
 aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat tggcgatcct gttgtgtcc 120
 ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcaaat ttctgagaat 180

aatcctgtga agttgtcctg tgccctactcg ggctttctt ctccccgtgt ggagtggaaag 240
 ttgacccaag gagacaccac cagaactcggt tgctataata acaagatcac agcttcctat 300
 gaggacccggg tgaccttctt gccaactgggt atcacccatca agtccgtgac acggaaagac 360
 actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
 gtcaagctca tcgtgtttgt gcctccatcc aagccatcag ttaacatccc ctcccttgcc 480
 accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
 tacacctgggt tcaaagatgg gatagtgatg cctacaatc cccaaaagcac ccgtgccttc 600
 agcaactctt cctatgtcct gaatcccaca acaggagagc tggctttga tccctgtca 660
 gcctctgata ctggagaata cagctgtgag gcacgaaatg ggtatggac acccatgact 720
 tcaaatgctg tgccatggaa agctgtggag cggaaatgtgg ggttcatcg ggcagccgtc 780
 cttgttaaccc tgattcttctt ggaatcttgc tttttggca tctggtttgc ctatagccga 840
 ggccacttttgc acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
 agtccccgaa gtgaaggaga attcaaacag acctcgatcat tcctgggtgt agcctggtcg 960
 gctcaccgcctt atcatctgc attgcctta ctcagtgct accggactct ggccctgtat 1020
 gtctgttagtt tcacaggatg ccttatttgc tttctacacc ccacaggccc ccctacttct 1080
 tcggatgtgt ttttaataat gtcagctatg tgcccatcc tccttcatgc cctccctccc 1140
 tttccttacca ctgctgatgt gcctggaaact tttttaaagt gtttattccc catttttttgc 1200
 agggatcagg aaggaatcctt ggttatggca ttgacttccc ttctaagttag acagaaaaaa 1260
 tggcgggggtt cgccggaaatc tgcaactcaac tgcccacctg gctggcaggg atcttgaat 1320
 aggtatcttgc agcttggttc tggcttttgc ctttgcgtac tgacgaccag ggccagctgt 1380
 tctagagcgg gaatttagagg cttagagcggc tgaaatgggtt gtttgggtgat gacactgggg 1440
 tccttccatc tctggggccc actctttcttgc tttttccat gggaaatggcc actgggatcc 1500
 ctctgcctg tcttcctgaa tacaagctga ctgacattga ctgtgtctgtt gggaaatgggg 1560
 agctcttgcgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
 accgctgctc taaagaaaaag aaaactggag gctggcgcga gtggctcaccg cctgtatcc 1680
 cagaggctga ggcaggcggc tcaacctgagg tcggagttc gggatcagcc tgaccaacat 1740
 ggagaaaaaccctt tactggaaat acaaagtttgc ccaggcatgg tggtgcatgc ctgtatccc 1800
 agctgctcgtt gaggctggca acaagagcaa aactccagct caaaaaaaaaaaaaaaa 1857

<210> 119
<211> 299
<212> PRT
<213> Homo sapiens

<400> 119
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
1 5 10 15
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
35 40 45
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 55 60
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
 100 105 110
 Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
 115 120 125
 Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
 130 135 140
 Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
 145 150 155 160
 Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
 165 170 175
 Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
 180 185 190
 Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
 195 200 205
 Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
 210 215 220
 Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
 225 230 235 240
 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly
 245 250 255
 Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
 260 265 270
 Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
 275 280 285
 Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295
 <210> 120
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe
 <400> 120
 tcgcggagct gtgttctgtt tccc 24
 <210> 121
 <211> 50

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 121		
tgatcgcat ggggacaaag gcgcaggctc gagaggaaac ttttgtgcct		50
<210> 122		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 122		
acacacctgggtt caaagatggg		20
<210> 123		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 123		
taggaagagt tgctgaaggc acgg		24
<210> 124		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 124		
ttgccttact caggtgctac		20
<210> 125		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		

oligonucleotide probe

<400> 125
actcagcagt ggttagaaag 20
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens

<400> 126
cagcgcgtgg cggcgccgc tggggaca gcatgagcgg cggttggatg gcgcagggtt 60
gagcgtggcg aacaggggct ctgggcctgg cgctgctgct gtcgctcggc ctcggactag 120
gcctggaggg cgccgcggc cggctttcca ccccgcaccc tggccaggcc gcaggccccca 180
gctcaggctc gtgcccaccc accaagttcc agtgcgcac cagtggtta tgcgtgcccc 240
tcacctggcg ctgcgcacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagcc atgtacccag aaagggaat gcccaccgcgc ccctggccctc ccctgccccct 360
gcacccggcgt cagtgaactgc tctggggaaa ctgacaagaa actgcgcac tgcagccgccc 420
tggcctgcct agcaggcgag ctccgttgcg cgctgagcga tgactgcatt ccactcacgt 480
ggcgcgtgcga cggccacccca gactgtcccg actccagcga cgagctcggc tgtggAACCA 540
atgagatcct cccggaaagg gatgccacaa ccatggggcc ccctgtgacc ctggagagt 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag agtgcctccct 660
ctgtcgggaa tgccacatcc toctctgccc gagaccagtc tggagccca actgcctatg 720
gggttattgc agctgtgcg gtgctcgttca agcgcctggt caccgcaccctt ctcctccctt 780
tgtcctggct cggagcccgag gagegcctcc gcccactggg gttactggg gccatgaagg 840
agtccctgct gctgtcagaa cagaagaccc cgctgcctg aggacaagca cttgccacca 900
ccgtcactca gcccctggcg tagccggaca ggaggagagc agtgcgcgg atgggtaccc 960
gggcacacca gcccctcagag acctgagttc ttctggccac gtggaaaccc tcacccggcgc 1020
tcctgcagaa gtggccctgg agattgggg tccctggaca ctccctatgg agatccgggg 1080
agctaggatg gggaacctgc cacagccaga actgaggggc tggcccccagg cagctcccag 1140
gggtagaaac gcccctgtgc ttaagacact ccctgtgcc ccgtctgagg gtggcgatttta 1200
aagtgccttc 1210

<210> 127
<211> 282
<212> PRT
<213> Homo sapiens

<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
1 5 10 15

Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
20 25 30

Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
35 40 45

Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
50 55 60

Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
65 70 75 80

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
 85 90 95

Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
 100 105 110

Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser
 115 120 125

Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp
 130 135 140

Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp
 145 150 155 160

Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly
 165 170 175

Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser
 180 185 190

Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
 195 200 205

Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly
 210 215 220

Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala
 225 230 235 240

Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln
 245 250 255

Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu
 260 265 270

Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro
 275 280

<210> 128
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 128
 aagttccagt gccgcaccag tggc

<210> 129

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 129
ttggttccac agccgagctc gtcg                                24

<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 130
gaggaggagt gcaggattga gccatgtacc cagaaaggc aatgccacc      50

<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1837)
<223> a, t, c or g

<400> 131
cccacgcgta cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcgggggga ggaggcggag gagggaaagga agctgcata atgagaccca 120
cagactcttg caagctggat gccctctgtg gatgaaaat gtatcatgga atgaacccga 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
gactcttggc cgtgatcctg tggtttcagc tggcgctgtg ctccggccct gcacagctca 300
cggcggggtt cgtgacacctt caagtgtgtg ctgaccccg cattccccgag aatggcttca 360
ggaccccccag cggagggggtt ttctttgaag gctctgtac ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tggatgttgc gcatatataat ggaaccctag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgcccgtatc cctcaaatcg 540
aagatgctga gattcataac aagacatata gacatggaga gaagctaatac atcacttgc 600
atgaaggatt caagatccgg taccccgacc tacacaatat gtttcattt tgtcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatcttctt gagctccaga cctccccc ggtggggact gtgatcttctt 780
atcgctgctt tcccgattt aaacttgcgtt ggtctgcgtt tcttgatgtc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgccc ttgctctggaa agcccaagtc tgtccactac 900
ctccaatggt gagtcacggaa gatttcgtctt gcccacccgc gccttgcgtt gcttacaacc 960
acggaactgt ggtggagttt tactgcgttctt gtcgttgcgtt cctcaccaggc gactacaagt 1020
acatcacctg ccagttatggaa gactgggttc ttcttatca agtctactgc atcaaatcg 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaaagatt gtggcggttca 1140

```

```

cgccaaccag tggctgtcgtg gtgctgtgc tcgtcatcct ggccaggatg ttccagacca 1200
agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
tttgtgttgtt agacggcgtg cccgtcatgc tcccggtccta tgacgaagct gtgagtgccg 1320
gcttgagtgc ctttaggcccc gggtacatgg cctctgtggg ccagggtgc cccttacccg 1380
tggacgacca gagcccccca gcatacccg gtcagggga cacggacaca gccccagggg 1440
agtcaaaaac ctgtgacagc gtctcaggct ctctcgagct gctccaaagt ctgtattcac 1500
ctccccaggtg ccaagagagc acccaccctg ctccggacaa ccctgacata attgccagca 1560
cggcagagga ggtggcatcc accagccccag gcatccatca tgcccactgg gtgttgtcc 1620
taagaaaactg attgattaaa aaatttccc aagtgtcctg aagtgtctct tcaaatacat 1680
gttgatctgt ggagttgatt ccttccttc tcttggttt agacaaatgt aaacaaagct 1740
ctgatccttta aaattgttat gctgatagag tggtgaggc tggaagctt atcaagtcct 1800
gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

```

<210> 132

<211> 490

<212> PRT

<213> Homo sapiens

<400> 132

Met	Tyr	His	Gly	Met	Asn	Pro	Ser	Asn	Gly	Asp	Gly	Phe	Leu	Glu	Gln
1				5					10					15	

Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val
20 25 30

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr
35 40 45

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu
 50 55 60

Asn	Gly	Phe	Arg	Thr	Pro	Ser	Gly	Gly	Val	Phe	Phe	Glu	Gly	Ser	Val
65					70						75				80

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys
85 90 95

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser
100 105 110

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu
115 120 125

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile
130 135 140

Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn
 145 150 155 160

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile
 165 170 175

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asp Gly Tyr Val Asp

180	185	190
Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr		
195	200	205
Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys		
210	215	220
Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu		
225	230	235
Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe		
245	250	255
Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val		
260	265	270
Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr		
275	280	285
Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys		
290	295	300
Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr		
305	310	315
Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu		
325	330	335
Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His		
340	345	350
Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe		
355	360	365
Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala		
370	375	380
Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val		
385	390	395
Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr		
405	410	415
Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys		
420	425	430
Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro		
435	440	445
Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile		
450	455	460

```

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
465 470 475 480

His Ala His Trp Val Leu Phe Leu Arg Asn
485 490

<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 133
atctcctatac gctgctttcc cggtt 23

<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 134
agccaggatc gcagtaaaac tcc 23

<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 135
atttaaacctt gatgggtctg cgtatcttga gtgcttacaa aaccttatct 50

<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens

<400> 136
ccccacgcgtc cgctccgcgc cctccccccc gcctcccggtc cggtccgtcg gtggcctaga 60
gtatgtgtcg cccgcgttgc agttgtcgcg cacgccttgc cccgcgcggcc cgctccaccc 120
ccgttagcgcc cgagtgtcggt ggggcgcacc cgagtgcggc catgaggccg ggaaccgcgc 180
tacaggccgt gtcgttgttgc gtgtgtgtgg tggtgtgtcg ggccgcgcacg gggtcgctgc 240
tgatgtgcgtc ggatttggac ctcagaggag qqqcqccqgt ctqccqqqqa qqqacacaca 300

```

ggccttgtta taaaagtcat tacttccatg atacttctcg aagactgaac tttgaggaag 360
 ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtc gaagatgaac 420
 agaaaactgat agaaaagtgc attgaaaacc tcttgccatc tgatgggtac ttctggattg 480
 ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac cttagatgctt 540
 ggactgatgg cagcatatca caatttagga actggatgt ggatgagccg tcctgcggca 600
 gcgaggtctg cgtggcatg taccatcagc catggcacc cgctggcatc ggaggcccct 660
 acatgttcca gtggaatgtat gaccgggtca acatgaagaa caatttcatt tgcaaatatt 720
 ctgatgagaa accagcagtt ccttcttagag aagctgaagg tgaggaaaca gagctgacaa 780
 cacctgtact tccagaagaa acacaggaag aagatgcca aaaaacattt aaagaaaagta 840
 gagaagctgc cttgaatctg gcctacatcc taatccccag cattccccctt ctcctcctcc 900
 ttgtggtcac cacagttgtt tggtgggtt ggatctgttag aaaaagaaaa cgggagcagc 960
 cagaccctag cacaaagaag caacacacca tctggccctc tcctcaccag ggaaacagcc 1020
 cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
 ggccagacct gaagaatatt tcattccagtg tggatcgaaa agaagccact cccgatgaca 1140
 tgtcttgtga ctatgacaac atggctgtga accccatcaga aagtgggtt gtgactctgg 1200
 tgagcgtgga gaggatgtt gtgaccaatg acatttatga gttctccccca gaccaaatgg 1260
 ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
 aaactgaaac tgacaacaat ggaaaagaaaa tgataagcaa aatcctctta ttttctataa 1380
 ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440
 tccccacgac ctcctgttgg accccccacgt tttggctgtt tcctttatcc cagccagtca 1500
 tccagctgca ctttatgaga agtacacctt cccaggtctg gcacatagta gagtctcaat 1560
 aaatgtcaact tgggtgggtt tatctaactt ttaagggaca gagctttacc tggcagtgtat 1620
 aaagatgggc tggaggtt ggaaaaccac ctctgttttc cttgctctat acagcagcac 1680
 atattatcat acagacagaa aatccagaat ctttcaaag cccacatatg gtacacagg 1740
 ttggcctgtg catcgcaat ttcataatct gttttttca aagaataaaa tcaaataaaag 1800
 agcaggaaaa aaaaaa 1815

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met	Arg	Pro	Gly	Thr	Ala	Leu	Gln	Ala	Val	Leu	Leu	Ala	Val	Leu	Leu
1					5				10				15		

Val	Gly	Leu	Arg	Ala	Ala	Thr	Gly	Arg	Leu	Leu	Ser	Ala	Ser	Asp	Leu
					20				25				30		

Asp	Leu	Arg	Gly	Gly	Gln	Pro	Val	Cys	Arg	Gly	Gly	Thr	Gln	Arg	Pro
					35			40				45			

Cys	Tyr	Lys	Val	Ile	Tyr	Phe	His	Asp	Thr	Ser	Arg	Arg	Leu	Asn	Phe
					50			55				60			

Glu	Glu	Ala	Lys	Glu	Ala	Cys	Arg	Arg	Asp	Gly	Gly	Gln	Leu	Val	Ser
					65			70				75			80

Ile	Glu	Ser	Glu	Asp	Glu	Gln	Lys	Leu	Ile	Glu	Lys	Phe	Ile	Glu	Asn
					85			90				95			

Leu	Leu	Pro	Ser	Asp	Gly	Asp	Phe	Trp	Ile	Gly	Leu	Arg	Arg	Arg	Glu
					100			105				110			

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr
 115 120 125
 Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser
 130 135 140
 Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro
 145 150 155 160
 Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
 165 170 175
 Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala
 180 185 190
 Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
 195 200 205
 Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys
 210 215 220
 Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser
 225 230 235 240
 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
 245 250 255
 Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
 260 265 270
 Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
 275 280 285
 Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
 290 295 300
 Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
 305 310 315 320
 Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
 325 330 335
 Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
 340 345 350
 Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
 355 360 365
 Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
 370 375 380
 <210> 138

```

<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 138
gttcattgaa aacctcttgc catctgatgg tgacttctgg attgggctca      50

<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 139
aagccaaaga agcctgcagg aggg      24

<210> 140
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 140
cagtccaagc ataaagggtcc tggc      24

<210> 141
<211> 1514
<212> DNA
<213> Homo sapiens

<400> 141
ggggtgtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
gcattcccgtag gtccccggc acttgggggc gccccgttag ccccgccgccc cgccagaagac 120
tttgtttgc ctccctgcagg ctcAACCCGG agggcagcga gggcttacca ccatgatcac 180
tggtgtgttc agcatgcgt tttggacccc agtggcgctc ctgacactcg tggcgtaactg 240
cctgcaccag cggcggtgg ccctggccga gctgcaggag gccgatggcc agtgtccgg 300
cgaccgcagc ctgctgaagt tggaaaatggt gcaggctgt tttcgacacg gggctcgag 360
tcctctcaag cccgtccgc tggaggagca ggttagagtgg aaccccccagc tattagaggt 420
cccaaaaaaa actcagttt attacacagt caccaatcta gctgggtggc cgaaaccata 480
tttccttac gactctaat accatgagac caccctgaag gggggcatgt ttgctggca 540
gctgaccaag gtgggcattgc agcaaattgt tgcctggga gagagactga ggaagaacta 600
tgtgaaagac attcccttac ttcaccaac cttcaacccca caggaggctt ttattcggtc 660
cactaacatt tttcgaaatc tggagtccac ccgttgggtt ctggctggc tttccagtg 720

```

tcagaaagaa ggaccatca tcatccacac tcatgaagca gattcagaag tcttgttatcc 780
 caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
 tttacagcca ggaatctcg aggattgaa aaaggtgaag gacaggatgg gcattgacag 900
 tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggacaccaa 960
 cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
 cacatccttg tacatactgc ccaaggaaaga cagggaaaagt cttcagatgg cagtaggccc 1080
 attcctccac atcctagaga gcaacctgct gaaagccatg gactctgcca ctgccccca 1140
 caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
 gaccctgggg attttgacc acaaatggcc accgtttgct gttgacctga ccatggaact 1260
 ttaccagcac ctggaatcta aggagtgggt tgtgaagctc tattaccacg ggaaggagca 1320
 ggtgccgaga ggtgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380
 agtttatacc ttaagccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
 agttgaaat gaagagtaac tgatttataa aagcaggatg tggtgatttt aaaataaagt 1500
 gccttataac aatg 1514

<210> 142

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met	Ile	Thr	Gly	Val	Phe	Ser	Met	Arg	Leu	Trp	Thr	Pro	Val	Gly	Val
1							5				10				15

Leu	Thr	Ser	Leu	Ala	Tyr	Cys	Leu	His	Gln	Arg	Arg	Val	Ala	Leu	Ala
							20				25				30

Glu	Leu	Gln	Glu	Ala	Asp	Gly	Gln	Cys	Pro	Val	Asp	Arg	Ser	Leu	Leu
							35			40			45		

Lys	Leu	Lys	Met	Val	Gln	Val	Val	Phe	Arg	His	Gly	Ala	Arg	Ser	Pro
							50			55			60		

Leu	Lys	Pro	Leu	Pro	Leu	Glu	Gln	Val	Glu	Trp	Asn	Pro	Gln	Leu
							65			75			80	

Leu	Glu	Val	Pro	Pro	Gln	Thr	Gln	Phe	Asp	Tyr	Thr	Val	Thr	Asn	Leu
							85			90			95		

Ala	Gly	Gly	Pro	Lys	Pro	Tyr	Ser	Pro	Tyr	Asp	Ser	Gln	Tyr	His	Glu
							100			105			110		

Thr	Thr	Leu	Lys	Gly	Gly	Met	Phe	Ala	Gly	Gln	Leu	Thr	Lys	Val	Gly
						115			120			125			

Met	Gln	Gln	Met	Phe	Ala	Leu	Gly	Glu	Arg	Leu	Arg	Lys	Asn	Tyr	Val
						130		135			140				

Glu	Asp	Ile	Pro	Phe	Leu	Ser	Pro	Thr	Phe	Asn	Pro	Gln	Glu	Val	Phe
							145		150			155			160

Ile	Arg	Ser	Thr	Asn	Ile	Phe	Arg	Asn	Leu	Glu	Ser	Thr	Arg	Cys	Leu
							165			170			175		

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His
 180 185 190

 Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys
 195 200 205

 Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu
 210 215 220

 Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly
 225 230 235 240

 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val
 245 250 255

 Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg
 260 265 270

 Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile
 275 280 285

 Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe
 290 295 300

 Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr
 305 310 315 320

 Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val
 325 330 335

 Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp
 340 345 350

 Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu
 355 360 365

 Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val
 370 375 380

 Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn
 385 390 395 400

 Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys
 405 410 415

 Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
 420 425

<210> 143
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
 <400> 143		
ccaactacca aagctgctgg agcc		24
 <210> 144		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
 <400> 144		
gcagctctat taccacggga agga		24
 <210> 145		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
 <400> 145		
tccttcccggt ggtaatagag ctgc		24
 <210> 146		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
 <220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
 <400> 146		
ggcagagaac cagaggccgg aggagactgc ctcttacag ccagg		45
 <210> 147		
<211> 1686		
<212> DNA		
<213> Homo sapiens		
 <400> 147		
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc 60		
cttaaatttc agtcatcac cttcacctgc cttggcatg gctctgtat tctccttgat 120		
ccttgccatt tgcaccagac ctggattcct agcgcttcca tctggagtgc ggctgggtggg 180		

gggcctccac cgctgtgaag ggcggggtgga ggttggaaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgtt tgccgggagc tgggctgtgg 300
agtcgccagc ggaaccccta gtggtattt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgtctgg gcatacgatg agaacccaga 480
gagctcttc tccccagtc cagagggtgt caggctggc gacggccctg ggcattgcaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggccc gcaaagggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaaggatg cctatggccg aaaaccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc tttaggattt cccttctggg cttgggggaa agaacacctg 780
caaccatgtat gaagacacgt gggtcaatgt tgaagatccc ttgacttga gacttagttagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aaggcgtat gggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtcctc tctccctcct tcagagaccg gaaatgctat ggcctgggg ttggccgat 1020
ctggctggat aatgttcgtt gctcagggggaa ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gtcagtgtt 1140
ggtgggcattc atctaattctg ttgagtgctt gaatagaaga aaaacacaga agaaggagc 1200
atttactgtc tacatgactg catggatgtg acactgatct tcttcgtccc ttggactggg 1260
acttataactt ggtccccctg attctcaggc ctcagaggtt ggatcagaac ttacaaacatc 1320
aggtcttagtt ctcaggccat cagacatagt ttggaaactac atcaccaccc ttcctatgtc 1380
tccacattgc acacagcaga ttccccagctt ccataattgt gtgtatcaac tacttaaata 1440
cattctcaca cacacacaca cacacacaca cacacataca ccattgtcc 1500
tgtttctctg aagaactctg aaaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaatttag atataaaatt ctggtaactt tatttacaat aataaaagata gcactatgt 1680
ttcaaa 1686

<210> 148

<211> 347

<212> PRT

<213> Homo sapiens

<400> 148

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
1 5 10 15

Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
20 25 30

Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
35 40 45

Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
50 55 60

Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
 65 70 75 80

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
85 90 95

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
 100 105 110

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
 115 120 125

 Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro
 130 135 140

 Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr
 145 150 155 160

 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
 165 170 175

 Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn
 180 185 190

 Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys
 195 200 205

 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly
 210 215 220

 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp
 225 230 235 240

 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg
 245 250 255

 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn
 260 265 270

 Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly
 275 280 285

 Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly
 290 295 300

 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln
 305 310 315 320

 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr
 325 330 335

 His Gln Glu Asp Val Ala Val Ile Cys Ser Val
 340 345

 <210> 149
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 149		
ttcagctcat caccttcacc tgcc		24
<210> 150		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 150		
ggctcataca aaataccact aggg		24
<210> 151		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 151		
gggcctccac cgctgtgaag ggcgggtgga ggtggAACAG aaaggccagt		50
<210> 152		
<211> 1427		
<212> DNA		
<213> Homo sapiens		
<400> 152		
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgaccccg 60		
acccacgcgt ccgcggacgc gtggcggac gcgtggccg gctaccagga agagtctgcc 120		
gaaggtgaag gccatggact tcatacaccc cacagccatc ctgccccctgc tggccggctg 180		
cctggcgctc ttccgcctct tccggctgtc gcagtgggtg cgcggaaagg cctacctgcg 240		
aatgtgtgtg gtgggtatca caggcgccac ctcagggtctg ggcaaaagaat gtcaaaaagt 300		
cttctatgct gcgggtgtcta aactgggtgtc ctgtggccgg aatgggtggg ccctagaaga 360		
gctcatcaga gaacttaccg cttctcatgc caccaagggtg cagacacaca agccttactt 420		
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatccctgca 480		
gtgctttggc tatgtcgaca tacttgtcaa caatgtgtgg atcagctacc gtggattaccat 540		
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600		
tgccttaacg aaagcactcc tgcctccat gatcaagagg aggcaaggcc acattgtcgc 660		
catcagcgc atccaggcca agatgagcat tcctttcga tcagcatatg cagcctccaa 720		
gcacgcacc caggcttct ttgactgtct gcgtggccgag atggaaacagt atgaaattga 780		
ggtgaccgtc atcagccccg gtcacatcca caccaaccc tcgttaatg ccacacccgc 840		
ggatggatct aggtatggag ttatggacac caccacagcc caggggccgaa gcccgtgg 900		
ggtggcccag gatgttcttg ctgtgtggg gaagaagaag aaagatgtga tcctggctg 960		
cttactgcct tccttgctg ttatcttcg aactctggct cctggctct tcttcagcc 1020		
catggcctcc agggccagaa aagagcggaa atccaagaac tccttagtact ctgaccagcc 1080		

agggccaggg cagagaagca gcactcttag gcttgcctac tctacaaggg acagttgcat 1140
 ttgttgagac tttaatggag atttgtctca caagtggaa agactgaaga aacacatctc 1200
 gtgcagatct gctggcagag gacaatcaa aacgacaaca agcttcttcc caggttgagg 1260
 ggaaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320
 tctcaaacag taaaaaaaaaaa aaaaaagggc ggccgcact cttagtcga cctgcagaag 1380
 cttggccgcc atggcccaac ttgttattt cagcttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met	Asp	Phe	Ile	Thr	Ser	Thr	Ala	Ile	Leu	Pro	Leu	Leu	Phe	Gly	Cys
1															15

Leu	Gly	Val	Phe	Gly	Leu	Phe	Arg	Leu	Leu	Gln	Trp	Val	Arg	Gly	Lys
20															30

Ala	Tyr	Leu	Arg	Asn	Ala	Val	Val	Val	Ile	Thr	Gly	Ala	Thr	Ser	Gly
35															45

Leu	Gly	Lys	Glu	Cys	Ala	Lys	Val	Phe	Tyr	Ala	Ala	Gly	Ala	Lys	Leu
50															60

Val	Leu	Cys	Gly	Arg	Asn	Gly	Gly	Ala	Leu	Glu	Glu	Leu	Ile	Arg	Glu
65															80

Leu	Thr	Ala	Ser	His	Ala	Thr	Lys	Val	Gln	Thr	His	Lys	Pro	Tyr	Leu
85															95

Val	Thr	Phe	Asp	Leu	Thr	Asp	Ser	Gly	Ala	Ile	Val	Ala	Ala	Ala	Ala
100															110

Glu	Ile	Leu	Gln	Cys	Phe	Gly	Tyr	Val	Asp	Ile	Leu	Val	Asn	Asn	Ala
115															125

Gly	Ile	Ser	Tyr	Arg	Gly	Thr	Ile	Met	Asp	Thr	Thr	Val	Asp	Val	Asp
130															140

Lys	Arg	Val	Met	Glu	Thr	Asn	Tyr	Phe	Gly	Pro	Val	Ala	Leu	Thr	Lys
145															160

Ala	Leu	Leu	Pro	Ser	Met	Ile	Lys	Arg	Arg	Gln	Gly	His	Ile	Val	Ala
165															175

Ile	Ser	Ser	Ile	Gln	Gly	Lys	Met	Ser	Ile	Pro	Phe	Arg	Ser	Ala	Tyr
180															190

Ala	Ala	Ser	Lys	His	Ala	Thr	Gln	Ala	Phe	Phe	Asp	Cys	Leu	Arg	Ala
195															205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

210	215	220	
Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg 225	230	235	240
Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val Glu 245	250		255
Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val 260	265	270	
Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu 275	280	285	
Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu 290	295	300	
Arg Lys Ser Lys Asn Ser 305	310		
 <210> 154			
<211> 24			
<212> DNA			
<213> Artificial Sequence			
 <220>			
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe			
 <400> 154			
ggtgctaaac tggtgctctg tggc			
24			
 <210> 155			
<211> 20			
<212> DNA			
<213> Artificial Sequence			
 <220>			
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe			
 <400> 155			
cagggcaaga tgagcattcc			
20			
 <210> 156			
<211> 24			
<212> DNA			
<213> Artificial Sequence			
 <220>			
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe			

<400> 156
 tcatactgtt ccatctcgcc acgc
 24

<210> 157
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 157
 aatgggtgggg ccctagaaga gctcatcaga gaactcacccg ctttcatgc 50

<210> 158
 <211> 1771
 <212> DNA
 <213> Homo sapiens

<400> 158
 cccacgcgtc cgctgggtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
 aaaaaaaaaaa acacacccaa cgctcgccgc cacaagggtt atggaaatttc ttctggacat 120
 cctctgtt ctccccgttac tgatcgctgt ctccctagag tccttcgtga agcttttat 180
 tcctaagagg agaaaatcg tcaccggcga aatcggtgtt attacaggag ctgggcattgg 240
 aattgggaga ctgactgcct atgaatttgc taaaacttaaa agcaagctgg ttctctggga 300
 tataaataag catggactgg aggaaacagc tgccaaatgc aaggactgg gtgc当地 360
 tcataccccc ttgttagact gcagcaaccc agaagatatt tacagctctg caaagaaggt 420
 gaaggcagaa atggagatgt ttagtatttt agtaaataat gctgggtgt tagtctatacatc 480
 agatttgtt gctacacaag atcctcagat tgaaaagact tttgaagtt atgtacttgc 540
 acatttctgg actacaaaagg catttctcc tgcaatgc aagaataacc atggccat 600
 tgc当地 ctggtagact ctggacatgt ctgggtcccc ttcttactgg cttaactgtt 660
 aagcaagttt gctgctgtt gatttcataa aactttgaca gatgaactgg ctgc当地taca 720
 aataactgga gtc当地accaa catgtctgtg tcctaaatttc gtaaacactg gctt当地taca 780
 aaatccaatg acaagtttg gaccactct ggaacctgag gaagtggtaa acaggctgat 840
 gcatgggatt ctgactgagc agaagatgtat ttatttccat tcttctatag ct当地tttaac 900
 aacattggaa agatccccc ctgagcttt ctggcagtt taaaacgaa aaatcagtgt 960
 taagtttgc gcaacttattt gatataaaat gaaagcgc当地 taagcaccta gttt当地tga 1020
 aactgattt ccaggttttag gttgatgtca tctaatagtcc cagaatttt aatggtt当地 1080
 cttctgtttt ttctaaattt cccatttct tcaatatcat ttttgggctt ggccactt 1140
 tcatttacta ccacttgc当地 tttagccaaa agctgatttcc atatgatata aacagagaaa 1200
 tacctttaga ggtgacttta aggaaaatga agaaaagaa ccaaaaatgac tt当地ttttaaa 1260
 taatttccaa gattattttt ggc当地tacccctg aaggcttgc aaaatgttcc cccataaccgt 1320
 ttattttaaca tatatttttta tt当地tggattt cactttaattt ttgtataattt tggctt当地tctt 1380
 ttctgttctt acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
 tagtggattt tcacaatgaa tatcatgaa tctcaatggg tagggttcat cctaccatt 1500
 gccactctgt ttccctgagag atacccatca ttccaaatgcc aaacatttct gcacaggaa 1560
 gcttagaggtt gatacacgtt ttgcaagttt aaaaagcatca ctgggatttta aggagaattt 1620
 agagaatgtt cccacaaaatg gcaacttccataa taaatggatc acacttaaaa aaaaaaaaaaaa 1680
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaaa 1740
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa a a 1771

<210> 159

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile Val
1 5 10 15

Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys
 20 25 30

Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile
35 40 45

Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val
50 55 60

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys
65 70 75 80

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn
85 90 95

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
100 105 110

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp
115 . . . 120 . . . 125 . . .

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn
130 135 140

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr
145 150 155 160

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His
165 170 175

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala
180 185 190

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile
195 200 205

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly
210 215 220

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu
225 230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met
245 250 255

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile
 260 265 270

Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys
 275 280 285

Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
 290 295 300

<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 160
ggtaaggca gaaattggag atg 23

<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 161
atcccatgca tcagcctgtt tacc 24

<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 162
gctgggttag tctataacatc agatttgttt gctacacaag atcctcag 48

<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens

<400> 163
ccccacgcgtc cgccggacgcg tgggtcgact agttctagat cgccgagcggc cggccgcggc 60
tcaggggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaaggtg 120

attgtttcgc tggccctggt gatgcctggc ccctgtgatg ggctgttgc ctccctatac 180
 agaagtgtt ccatgccacc taaggagac tcaggacagc cattatttct cacccttac 240
 attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
 ctgaacatga agagttatgc cggttcctc acctgtaaata agacttacaa cagcaacctc 360
 ttcttcttgt tcttcccgac tcagatacag ccagaagatg ccccagtatgt tctctggta 420
 caggggtgggc cgggaggttc atccatgtt ggactctttg tggAACATGG gccttatgtt 480
 gtccacaagta acatgacccct gctgtacaga gacttccct ggaccacaac gctctccatg 540
 ctttacattg acaatccagt gggcacaggc ttcaGTTTA ctgtatgatac ccacggatat 600
 gcagtcaatg aggacgatgt agcacggat ttatacagtg cactaattca gttttccag 660
 atatttcctg aatataaaaa taatgacttt tatgtcaactg gggagtcttA tgccaggaaa 720
 tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
 aacctgaacg gaattgttat tggagatgga tattctgatc ccgaatcaat tataggggc 840
 tatgcagaat tcctgtacca aattggctt tggatgaga agaaaaaaaaa gtacttccag 900
 aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggttga ggccttgaa 960
 atactggata aactactaga tggcactta acaagtgate cttcttactt ccagaatgtt 1020
 acaggatgta gtaattacta taacttttgc cggcgcacgg aacctgagga tcagcttac 1080
 tatgtgaaat tttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
 tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaa 1200
 ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
 atcatcgtgg cagctccct gacagagcgc tccttgcattt gcatggactg gaaaggatcc 1320
 caggaataca agaaggcaga aaaaaaaaaa tggagatct taaaatctga cagtgaagtg 1380
 gctggttaca tccggcaagc gggtactt catcaggtaa ttattcgagg tggaggacat 1440
 attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
 aaaggatggg atccttatgt tggataaaact accttccaa aagagaacat cagaggttt 1560
 cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatctt 1620
 tcatatctgc aagattttt tcatcaataa aaattatcct tgaaacaagt gagctttgt 1680
 tttgggggg agatgttac tacaaaatta acatgagttc atgagtaaga attacattat 1740
 ttaacttaaa ggatgaaagg tatggatgtat gtgacactga gacaagatgt ataaatgaaa 1800
 ttttagggtc ttgaatagga agtttaatt tcttctaaga gtaagtggaa agtgcagttg 1860
 taacaaacaa agctgttaaca tcttttctg ccaataacag aagttggca tgccgtgaag 1920
 gtgttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggtgaagct 1980
 ataatagttt tggggaaaag attctcaaat gtataaagtc tttagaacaaa agaattctt 2040
 gaaataaaaaa tattatataat aaaagaaaa aaaaaaa 2076

<210> 164
 <211> 476
 <212> PRT
 <213> Homo sapiens

<400> 164
 Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met
 1 5 10 15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser
 20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr
 35 40 45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly
 50 55 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65	70	75	80
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Pro Ala Gln			
85	90	95	
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro			
100	105	110	
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val			
115	120	125	
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr			
130	135	140	
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser			
145	150	155	160
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala			
165	170	175	
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu			
180	185	190	
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys			
195	200	205	
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg			
210	215	220	
Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser			
225	230	235	240
Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile			
245	250	255	
Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His			
260	265	270	
Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu			
275	280	285	
Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr			
290	295	300	
Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys			
305	310	315	320
Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro			
325	330	335	
Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly			
340	345	350	

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn
370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu
385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys
405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile
 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly Gly His
435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg
450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
465 470 475

```
<210> 165
<211> 24
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 165
ttccatgccat cctaaggag actc

24

```
<210> 166
<211> 24
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 166
tggatgaggt gtgcaatggc tggc

24

```
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 167
agctctcaga ggctggtcat aggg 24

<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 168
gtcgccctt tcccaggact gaacatgaag agttatgccg gcttcctcac 50

<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens

<400> 169
cgaggcctt tccggctccg gaatggcaca tgtggaaatc ccagtcttgt tggctacaac 60
attttccct ttcttaacaa gttctaacag ctgttctaac agctagtgtat caggggttct 120
tcttgctgga gaagaaaggg ctgagggcag agcagggcac tctcaacttag ggtgaccagc 180
tcctgcctc tctgtggata acagagcatg agaaaatgtaa gagatgcagc ggagttaggt 240
gatggaaatc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagcttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccgttaggat agggaaagact gggttagtc ctaatata 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
cttaaggggc cagaaataga gatgcttgc taaaataat ttaaaaaaaaa gcaagtattt 540
tatacgatcaa aggctagaga caaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaaatgtt aataaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggaccctggg tcagggcagc ctcttgctc ctccccggaaa ttatTTTGG 720
tctgaccact ctgccttgc tttgcagaa tcatgtgagg gccaaccggg gaaggtaggg 780
cagatgagca cacacaggag ccgtctcctc accggccccc ctctcagcat ggaacagagg 840
cagccctggc cccggccct ggaggtggac agccgcctg tggtctgtct ctcagtggc 900
tgggtgctgc tggccccccc agcagccggc atgcctcagt tcaagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccagggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgat taccggcccc tcatctgtca gcccctgcgc 1140
gaagtgtca ccctcacca caatgtcaac aagctgtca tcaattgacta ctctgagaac 1200
cgcctgctgg ctgtggag cctctaccag ggggtctgca agctgtgcgc gctggatgac 1260
ctctcatcc tggtgagcc atcccacaag aaggagact acctgtccag tgtcaacaag 1320
acgggcacca tgcgtgggt gattgtgcgc tctgagggtg aggtggcaa gctcttcata 1380
ggcacggctg tggatggaa gcaggattac ttcccgaccc tgccagccg gaagctgccc 1440
cgagaccctg agtcctcagc catgctcgac tatgagactac acagcgattt tgtctcctct 1500
ctcatcaaga tcccttcaga caccctggcc ctggtctccc actttgacat cttctacatc 1560
tacgctttg ctatggggg ctttgtctac tttctcaactg tccagcccgaa gaccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacaccc cacgcacgt gcggtctgc 1680

aaggatgacc ccaagttcca ctcatacgtg tccctgccct tcggctgcac ccggcccccggg 1740
 gtggaatacc gcctcctgca ggctgcttac ctggccaagg ctggggactc actggcccag 1800
 gcctcaata tcaccagcca ggacgatgtt ctcttgcctt tccttctccaa agggcagaag 1860
 cagtatcacc acccgccccga tgactctgcc ctgtgtgcct tccctatccg ggcacatcaac 1920
 ttgcagatca aggagcgcct gcagtctgc taccaggcg aggcaacccctt ggagctcaac 1980
 tggctgctgg ggaaggacgt ccagtgcacg aaggcgccctg tccccatcgat tgataacttc 2040
 tgtggactgg acatcaacca gcccctggga ggctcaactc cagtggagggg cctgaccctg 2100
 tacaccacca gcagggacccg catgacctct gtggcctctt acgtttacaa cggctacagc 2160
 gtgggttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
 tgctccaatg ccattcacct cctcagcaaa gagtccctct tgaaaggtagt ctattgggtgg 2280
 agatttaact ataggcaact ttatttttt gggaaacaaa ggtgaaatgg ggaggttaaga 2340
 aggggttaat ttgtgactt agcttcttagc tacttcctcc agccatcagt cattgggtat 2400
 gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaaact ttaagaaggt 2460
 acatctgcaa aagcaaa 2477

<210> 170

<211> 552

<212> PRT

<213> Homo sapiens

<400> 170

Met	Gly	Thr	Leu	Gly	Gln	Ala	Ser	Leu	Phe	Ala	Pro	Pro	Gly	Asn	Tyr
1															

5

10

15

Phe	Trp	Ser	Asp	His	Ser	Ala	Leu	Cys	Phe	Ala	Glu	Ser	Cys	Glu	Gly
20															

25

30

Gln	Pro	Gly	Lys	Val	Glu	Gln	Met	Ser	Thr	His	Arg	Ser	Arg	Leu	Leu
35															

35

40

45

Thr	Ala	Ala	Pro	Leu	Ser	Met	Glu	Gln	Arg	Gln	Pro	Trp	Pro	Arg	Ala
50															

50

55

60

Leu	Glu	Val	Asp	Ser	Arg	Ser	Val	Val	Leu	Leu	Ser	Val	Val	Trp	Val
65															

65

70

75

80

Leu	Leu	Ala	Pro	Pro	Ala	Ala	Gly	Met	Pro	Gln	Phe	Ser	Thr	Phe	His
85															

85

90

95

Ser	Glu	Asn	Arg	Asp	Trp	Thr	Phe	Asn	His	Leu	Thr	Val	His	Gln	Gly
100															

100

105

110

Thr	Gly	Ala	Val	Tyr	Val	Gly	Ala	Ile	Asn	Arg	Val	Tyr	Lys	Leu	Thr
115															

115

120

125

Gly	Asn	Leu	Thr	Ile	Gln	Val	Ala	His	Lys	Thr	Gly	Pro	Glu	Glu	Asp
130															

130

135

140

Asn	Lys	Ser	Arg	Tyr	Pro	Pro	Leu	Ile	Val	Gln	Pro	Cys	Ser	Glu	Val
145															

145

150

155

160

Leu	Thr	Leu	Thr	Asn	Asn	Val	Asn	Lys	Leu	Leu	Ile	Ile	Asp	Tyr	Ser
165															

165

170

175

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys
 180 185 190

Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys
 195 200 205

Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly
 210 215 220

Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr
 225 230 235 240

Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys
 245 250 255

Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His
 260 265 270

Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala
 275 280 285

Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly
 290 295 300

Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val
 305 310 315 320

Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg
 325 330 335

Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe
 340 345 350

Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr
 355 360 365

Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser
 370 375 380

Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr
 385 390 395 400

His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala
 405 410 415

Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu
 420 425 430

Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr
 435 440 445

Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

100

450

455

460

Gln Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr
465 470 475 480

Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly
485 490 495

Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys Lys Val
500 505 510

Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys
515 520 525

Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe Asn Tyr Arg Gln
530 535 540

Leu Tyr Phe Leu Gly Glu Gln Arg
545 550

<210> 171

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 171

tggaaataccg cctcctgcag

20

<210> 172

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 172

cttctgccct ttggagaaga tggc

24

<210> 173

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 173
 ggactcactg gcccaggcct tcaatatacac cagccaggac gat 42

 <210> 174
 <211> 3106
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> modified_base
 <222> (1683)
 <223> a, t, c or g

 <400> 174
 aggctccgc gcgcggctga gtgcggactg gagtggaaac ccgggtcccc gcgcttagag 60
 aacacgcgt gaccacgtgg agcctccggc ggaggccggc ccccacgtg ggactcctgc 120
 tgctggctgt ctggggcttc ctgggtgtcc gcaggctgga ctggagcacc ctggttccctc 180
 tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggacttcc atgctggagg 240
 attccacattt ctggatcttc gggggctcca tccactattt ccgtgtgccg agggagtaact 300
 ggagggaccg cctgctgaag atgaaggcct gtggctgaa caccctcacc acctatgttc 360
 cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctggaaac ctggacctgg 420
 aggcttcgt cctgatggcc gcagagatcg ggctgtgggt gattctgcgt ccaggcccct 480
 acatctgcag tgagatggac ctgggggct tgcccaagctg gctactccaa gaccctggca 540
 tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
 ttagtgtccag ggtggtgcca ctccagtaca agcgtgggg acctatcatt gccgtgcagg 660
 tggagaatga atatggttcc tataataaaag accccgcata catggcctac gtcaagaagg 720
 cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
 gcaagggat tgtccaggga gtcttggca ccatcaactt goagtcaaca cacgagctgc 840
 agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtatggagt 900
 actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
 ttttggaaaac cgtgtctgcc attgtggacg ccggctccctc catcaacctc tacatgttcc 1020
 acggaggcac caactttggc ttcatgaatg gagccatgca ctccatgac tacaagtcag 1080
 atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
 acatgaagct tcgagacttc ttggcgtcca ttcaggcat ccctctccct ccccccacctg 1200
 accttctcc caagatgccg tatgaggccct taacgcccagt ctgtacctg tctctgtggg 1260
 acgcccctcaa gtacctgggg gagccaatca agtctgaaaa gcccacatcaac atggagaacc 1320
 tgccagtcaa tggggaaaat ggacagtctt tcgggtacat tctctatgag accagcatca 1380
 cctcgtctgg catcctcagt gcccacgtgc atgatcgaaa gcaggtgttt gtgaacacag 1440
 tatccatagg attcttggac tacaagacaa cgaagattgc tgcgtccctt atccagggtt 1500
 acaccgtgtt gaggatctt gttggagaatc gtggggcgagt caactatggg gagaatattg 1560
 atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaact 1620
 tcagaatcta tagctggat atgaagaaga gcttcttca gaggttcggc ctggacaaaat 1680
 ggnngttccct cccagaaaaca cccacattac ctgtttctt ctgggttagc ttgtccatca 1740
 gctccacgcc ttgtgacacc ttctgttgc tggagggtctt ggagaagggg gttgtattca 1800
 tcaatggcca gaaccttggta cgttacttggaa acattggacc ccagaagacg ctttacctcc 1860
 caggtccctg gttgagcagc ggaatcaacc aggtcatgt ttttgaggag acgatggcgg 1920
 gcccgtcatt acagttcactg gaaacccccc acctggcagc gaaccagtac attaagttag 1980
 cggtggcacc ccctcctgtt ggtccagtg ggagactgccc gcctccctt gacgttggc 2040
 ctgtgtggctt ctggcccacc cctcaactgca aaagcatctc cttaaatgtac aacctcagg 2100
 actgggggtt acagtctgac cctgtctcag ctcaaaaccc taagcctgca gggaaagggtg 2160
 ggtatggctt gggcctggct ttgttgc tggcttccctt acagccctgc tcttgcggc 2220
 aggctgtcgg gctgtctcta ggggtgggagc agctaatacg atcgcccagc ctttggccct 2280

cagaaaaagt gctgaaaacgt gcccttgac acggacgtcac agccctgcga gcatctgctg 2340
 gactcaggcg tgctcttgc tggttcctgg gaggcttgc cacatccctc atggccccat 2400
 tttatccccg aaatccttgg ttgttcacca gtgttagaggg tggggaaaggg gtgtctcacc 2460
 tgagctgact ttgttcttcc ttacacaacct tctgaggcctt cttgggatt ctggaaaggaa 2520
 ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
 gacaggctgg gctggagaaa cagaatcctt caccctgcgt ctcccaagt tagcaggtgt 2640
 ctctgggtt cagtggagg gacatgtgag tcctggcaga accatggcc catgtctgca 2700
 catccaggaa ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
 catgtctgca catccaggaa ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
 agccatggcc catgtctgca catccaggaa ggaggacaga aggcccagct cacatgtgag 2880
 tcctggcaga agccatggcc catgtctgca catccaggaa ggaggacaga aggcccagct 2940
 cagtggcccc cgctcccccac ccccacgccc cgaacagcag gggcagagca gccctccttc 3000
 gaagtgtgtc caagtccgca ttgagcctt gttctgggc ccagccaaac acctggcttg 3060
 ggctcaactgt cctgagttgc agtaaagcta taacttgaa tcacaa 3106

<210> 175

<211> 636

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (539)

<223> Any amino acid

<400> 175

Met	Thr	Thr	Trp	Ser	Leu	Arg	Arg	Arg	Pro	Ala	Arg	Thr	Leu	Gly	Leu
1					5							10			15

Leu	Leu	Leu	Val	Val	Leu	Gly	Phe	Leu	Val	Leu	Arg	Arg	Leu	Asp	Trp
					20				25				30		

Ser	Thr	Leu	Val	Pro	Leu	Arg	Leu	Arg	His	Arg	Gln	Leu	Gly	Leu	Gln
					35				40			45			

Ala	Lys	Gly	Trp	Asn	Phe	Met	Leu	Glu	Asp	Ser	Thr	Phe	Trp	Ile	Phe
					50			55			60				

Gly	Gly	Ser	Ile	His	Tyr	Phe	Arg	Val	Pro	Arg	Glu	Tyr	Trp	Arg	Asp
					65			70			75			80	

Arg	Leu	Leu	Lys	Met	Lys	Ala	Cys	Gly	Leu	Asn	Thr	Leu	Thr	Thr	Tyr
					85				90				95		

Val	Pro	Trp	Asn	Leu	His	Glu	Pro	Glu	Arg	Gly	Lys	Phe	Asp	Phe	Ser
					100			105				110			

Gly	Asn	Leu	Asp	Leu	Glu	Ala	Phe	Val	Leu	Met	Ala	Ala	Glu	Ile	Gly
					115			120				125			

Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ser	Glu	Met	Asp
					130			135			140				

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
 145 150 155 160
 Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp
 165 170 175
 His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro
 180 185 190
 Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp
 195 200 205
 Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile
 210 215 220
 Val Glu Leu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly
 225 230 235 240
 Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu
 245 250 255
 Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro
 260 265 270
 Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly
 275 280 285
 Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala
 290 295 300
 Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly
 305 310 315 320
 Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys
 325 330 335
 Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly
 340 345 350
 Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile
 355 360 365
 Ser Gly Ile Pro Leu Pro Pro Pro Asp Leu Leu Pro Lys Met Pro
 370 375 380
 Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu
 385 390 395 400
 Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu
 405 410 415
 Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu
 420 425 430

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His
 435 440 445

Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp
 450 455 460

Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
 465 470 475 480

Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
 485 490 495

Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
 500 505 510

Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
 515 520 525

Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
 530 535 540

Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr
 545 550 555 560

Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
 565 570 575

Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
 580 585 590

Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
 595 600 605

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
 610 615 620

Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
 625 630 635

<210> 176
 <211> 2505
 <212> DNA
 <213> Homo sapiens

<400> 176
 ggggacgcgg agctgagagg ctccgggcta gctagggtga ggggtggacg ggtcccagga 60
 cccttgtgag gtttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120
 aaggggagca aagccgggct cggccccagg ccccccaggac ctccatctcc caatgttgaa 180
 ggaatccgac acgtgacggt ctgtccgccc tctcagacta gaggagcgct gtaaacgcca 240
 tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300
 tgctgccccca ggcagacact cggtcgttcg tagtggatag ggtcatgac cggtttctcc 360
 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcgg 420

tgcttggc cgacggc ttgaagatgc gatggagcgg cctcaacgcc atacagttt 480
 atgtccctg gaactaccac gaggcacagc ctgggtcta taacttaat ggcagccgg 540
 acctcattgc ctttctgaat gaggcagtc tagcAACCT gtggcata ctgagaccag 600
 gaccttacat ctgtcagag tggagatgg ggggtctccc atcctggttt ctgcggaaac 660
 ctgaaattca tctaagaacc tcagatccag acttccttgc cgcaatggac tcctggttca 720
 aggtcttgc gcccaagata tatccatggc tttatcacaa tggggcaac atcattagca 780
 ttcaggtgga gaatgaatat gtagctaca gagcgtgtga cttcagctac atgaggcact 840
 tggctggct cttccgtca ctgttaggag aaaagatctt gcttcacc acagatggc 900
 ctgaaggact caagtgtggc tccctccggg gactctatac cactgttagat tttggccag 960
 ctgacaacat gaccAAATC tttaccctgc ttggaaatgta tgaacccat gggccattgg 1020
 taaactctga gtactacaca ggctggctgg attactggg ccagaatcac tccacacgg 1080
 ctgtgtcagc tgtaacccaa ggactagaga acatgctcaa gtgggagcc agtgtaaca 1140
 tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaaggac 1200
 gtttcctcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
 ccacacctaa gcttttgc cttcgagatg tcatcagcaa gtccagggaa gttccttgg 1320
 gaccttacc tccccccgagc cccaagatga tgcttgacc tgtgactctg cacctgggt 1380
 ggcatttact ggcttccta gacttgcTT gccccgtgg gccattcat tcaatcttc 1440
 caatgacctt tgaggctgtc aaggcaggacc atggcttcat gtgttaccga accttatatga 1500
 cccataccat ttttggccaa acaccattct ggggtccaaa taatggagtc catgaccgt 1560
 cctatgtat ggtggatggg gtgttccagg gtgttggaa gcgaaatatag agagacaaac 1620
 tattttgac gggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
 tcagcttgg gtctaacagc agtacttca agggcctgtt gaagccacca attctggggc 1740
 aaacaatct tacccagtgg atgatgttcc ctctgaaaat tgataaacctt gtgaagtgg 1800
 ggttccctt ccagttggca aaatggccat atcctcaagc tccttctggc cccacattct 1860
 actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
 ggaccaaggc ccaagtctgg atcaatgggt ttaacttggg ccgtactgg acaaagcagg 1980
 ggccacaaca gaccctctac gtgccaagat tcctgtgtt tccttagggg gccctcaaca 2040
 aaattacatt gctggacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100
 agcctatctt caatagcact agtactttgc acaggacaca tatcaattcc ctttcagctg 2160
 atacactgag tgcctctgaa ccaatggagt taagtggca ctgaaaggta ggcgggcat 2220
 ggtggctcat gcctgtatc ccagcacttt gggaggctga gacgggtggaa ttacctgagg 2280
 tcagacttc aagaccagcc tggccaaat ggtgaaaccc cgtctccact aaaaatacaa 2340
 aaattagccg ggcgtatgg tggcacctc taatccacg tacttgggag gctgagggca 2400
 ggagaattgc ttgaatccag gaggcagagg ttgcagttag tggaggttgc accactgcac 2460
 tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa 2505

<210> 177

<211> 654

<212> PRT

<213> Homo sapiens

<400> 177

Met	Ala	Pro	Lys	Lys	Lys	Leu	Ser	Cys	Leu	Arg	Ser	Leu	Leu	Leu	Pro	Leu
1																15

Ser	Leu	Thr	Leu	Leu	Pro	Gln	Ala	Asp	Thr	Arg	Ser	Phe	Val	Val	
20															30

Asp	Arg	Gly	His	Asp	Arg	Phe	Leu	Leu	Asp	Gly	Ala	Pro	Phe	Arg	Tyr
35															45

Val	Ser	Gly	Ser	Leu	His	Tyr	Phe	Arg	Val	Pro	Arg	Val	Leu	Trp	Ala
50															60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe
 65 70 75 80

Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
 85 90 95

Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala
 100 105 110

Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp
 115 120 125

Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His
 130 135 140

Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe
 145 150 155 160

Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly
 165 170 175

Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala
 180 185 190

Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu
 195 200 205

Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu
 210 215 220

Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Val Asp Phe Gly Pro
 225 230 235 240

Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro
 245 250 255

His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr
 260 265 270

Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly
 275 280 285

Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe
 290 295 300

His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly
 305 310 315 320

Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser
 325 330 335

Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

340	345	350
Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro		
355	360	365
Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu		
370	375	380
Ala Phe Leu Asp Leu Leu Cys Pro Arg Gly Pro Ile His Ser Ile Leu		
385	390	395
Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr		
405	410	415
Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val		
420	425	430
Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val		
435	440	445
Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr		
450	455	460
Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg		
465	470	475
Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro		
485	490	495
Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu		
500	505	510
Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys		
515	520	525
Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr		
530	535	540
Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly		
545	550	555
560		
Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr		
565	570	575
Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu		
580	585	590
Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu		
595	600	605
Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu		
610	615	620

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala
 625 630 635 640

Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His
 645 650

<210> 178
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 178
tggctactcc aagaccctgg catg 24

<210> 179
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 179
tggacaaaatc cccttgctca gccc 24

<210> 180
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 180
gggcattcacc gaaggcgtgg acctttatgg tgaccacctg atgtccaggg 50

<210> 181
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 181
ccagctatga ctatgtatgc cc 22

<210> 182
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 182
 tggcacccag aatggtgtt gctc 24

<210> 183
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 183
 cgagatgtca tcagcaagtt ccaggaagtt cctttggac ctttacctcc 50

<210> 184
 <211> 1947
 <212> DNA
 <213> Homo sapiens

<400> 184
 gcttgaaca cgtctgaag cccaaagttg agcatctgat tggttatgag gtatggagt 60
 gcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
 gtgttatgg ctatctgc ctctacactc tcttctggtt attcaggata ccttgaaagg 180
 aatattctt cggaaaagtc agagaagaga gcagtttag tgacattcca gatgtcaaaa 240
 acgatttgc gttccttctt cacatggtag accagtagtga ccagctatat tccaagcggt 300
 ttggtgtt cttgtcagaa gttgtgaaa ataaacttag ggaaattagt ttgaaccatg 360
 agtggacatt tggaaaactc aggacgaca tttcacgcaa cgcccaggac aagcaggagt 420
 tgcacatctgtt catgctgtcg ggggtccccg atgctgtctt tgacacctaca gacctggatg 480
 tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagattct caaatgacta 540
 acctccaaga gctccaccc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
 ttcttcgca tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
 cctgggtgta ttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
 aaaacaataa gatgatagga cttaatctc tccgagagtt gcggcacctt aagattctcc 780
 acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
 caaagtttagt cattcataat gacggcacta aactcttggt actgaacagc cttaaagaaaa 900
 tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
 tttcagct ctctaattt caagaaactgg atttaaagtca aataacatt cgcacaattt 1020
 agggaaatcat cagttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
 aaattgttac tattcctccc tctattaccc atgtcaaaaaa cttggagtca ctttatttct 1140
 ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag ttacagaaa ctcagatgct 1200
 tagatgttag ctacaacaac attcaatga ttccaataga aataggattt cttcagaacc 1260
 tgcagcattt gcatatcaact gggacacaaag tggacattct gccaaaacaa ttgtttaat 1320

gcataaaagtt gaggactttg aatctggac agaactgcat cacctcactc ccagagaaaag 1380
 ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
 cagcccgagct gggccaggtt cgatgctca agaaaagcgg gcttgttggta gaagatcacc 1500
 tttttgatac cctgccactc gaagtcaaag aggcatggaa tcaagacata aatattccct 1560
 ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcaggg acaacttcct 1620
 agattgcaag tgctcacgta caagtttata caagataatg catttttagga gtagatacat 1680
 cttttaaaat aaaacagaga ggatgcata gaggctgata gaagacataa ctgaatgttc 1740
 aatgtttgta gggtttaag tcattcattt ccaaattcatt ttttttttc ttttgggaa 1800
 agggaaaggaa aaattataat cactaatctt gttctttt aaattgttg taacttggat 1860
 gctgccgcta ctgaatgttt acaaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
 ttttcttact aaaaaaaaaaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met	Ala	Tyr	Met	Leu	Lys	Lys	Leu	Leu	Ile	Ser	Tyr	Ile	Ser	Ile	Ile
1				5					10					15	

Cys	Val	Tyr	Gly	Phe	Ile	Cys	Leu	Tyr	Thr	Leu	Phe	Trp	Leu	Phe	Arg
					20				25				30		

Ile	Pro	Leu	Lys	Glu	Tyr	Ser	Phe	Glu	Lys	Val	Arg	Glu	Glu	Ser	Ser
					35			40			45				

Phe	Ser	Asp	Ile	Pro	Asp	Val	Lys	Asn	Asp	Phe	Ala	Phe	Leu	Leu	His
					50			55			60				

Met	Val	Asp	Gln	Tyr	Asp	Gln	Leu	Tyr	Ser	Lys	Arg	Phe	Gly	Val	Phe
	65					70				75				80	

Leu	Ser	Glu	Val	Ser	Glu	Asn	Lys	Leu	Arg	Glu	Ile	Ser	Leu	Asn	His
					85				90				95		

Glu	Trp	Thr	Phe	Glu	Lys	Leu	Arg	Gln	His	Ile	Ser	Arg	Asn	Ala	Gln
					100			105			110				

Asp	Lys	Gln	Glu	Leu	His	Leu	Phe	Met	Leu	Ser	Gly	Val	Pro	Asp	Ala
					115			120			125				

Val	Phe	Asp	Leu	Thr	Asp	Leu	Asp	Val	Leu	Lys	Leu	Glu	Leu	Ile	Pro
					130			135			140				

Glu	Ala	Lys	Ile	Pro	Ala	Lys	Ile	Ser	Gln	Met	Thr	Asn	Leu	Gln	Glu
						145		150			155			160	

Leu	His	Leu	Cys	His	Cys	Pro	Ala	Lys	Val	Glu	Gln	Thr	Ala	Phe	Ser
						165			170			175			

Phe	Leu	Arg	Asp	His	Leu	Arg	Cys	Leu	His	Val	Lys	Phe	Thr	Asp	Val
						180			185			190			

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu
 195 200 205
 Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu
 210 215 220
 Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser
 225 230 235 240
 Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu
 245 250 255
 Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn
 260 265 270
 Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys
 275 280 285
 Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln
 290 295 300
 Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile
 305 310 315 320
 Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn
 325 330 335
 Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu
 340 345 350
 Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val
 355 360 365
 Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile
 370 375 380
 Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu
 385 390 395 400
 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys
 405 410 415
 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser
 420 425 430
 Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu
 435 440 445
 Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg
 450 455 460
 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465

470

475

480

Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro
 485 490 495

Phe Ala Asn Gly Ile
 500

<210> 186

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 186

cctccctcta ttacccatgt c

21

<210> 187

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 187

gaccaacttt ctctggagtg gagg

24

<210> 188

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 188

gtcactttat ttctctaaaca acaagctcgaa atccttacca gtggcag

47

<210> 189

<211> 2917

<212> DNA

<213> Homo sapiens

<400> 189

cccacgcgtc cggccttctc tctggacttt gcatttccat tcctttcat tgacaaactg 60
 actttttta tttcttttt tccatctctg ggccagcttg ggatcctagg ccgcctggg 120
 aagacatttg tgtttacac acataaggat ctgtgtttgg ggtttcttct tcctccctg 180

gcattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgct 240
gcacttatct gcctaggta atcgaagtct ttgacctcc atacagtat tatgcctgtc 300
atcgctggg gtatcctggc ggccttgct cttgtata gttgtgtgtc ctgtctttac 360
ttcaaaatac aacaacgcgtc aaaagctca aaggAACCTG aagctgtggc tgtaaaaaat 420
cacaaccagg acaagggtgtg gtggggcaag aacagccagg caaaaccat tgccacggag 480
tcttgtctg ccctgcagt cttgtaaagg tatagaatgt gtgccagtt tgattccctg 540
ccaccttgct gttgcgacat aaatgagggc ctctgagtt gaaaaaggctc cttctcaaa 600
gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtat gtgcaggcac 660
agaagaaaagg cacagctccc catcagttc atggaaaata actcaigtgcc tgctggaaac 720
cagctgctgg agatccctac agagagctc cactggggc aaccottcca ggaaggaggt 780
ggggagagag aaccctcaact gtggggatg ctgataaacc agtcacacag ctgctctatt 840
ctcacacaaa tctacccctt gcgtggctgg aactgacgtt tccctggagg tgcagaaaa 900
gctgatgtaa cacagagcct ataaaagctg tcggtcctt aggctgccc ggccttgcc 960
aaaatggagc ttgtaagaag gctcatgcca ttgaccctt taattctctc tgcggcggc 1020
gagctgacaa tggcggaggg tgaaggcaat gcaagctca cagtcaigtct aggggggtgcc 1080
aatatggcag agacccacaa agccatgatc ctgcaactca atcccaagtga gaaactgcacc 1140
tggacaatag aaagaccaga aaacaaaagc atcagaatta tctttccta tgcggcgttt 1200
gatccagatg gaagctgtga aagtggaaac attaaagtct ttgacggac ctccagcaat 1260
gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttccctgtatt tgaatcatca 1320
tccagttacat tgacgtttca aatagttact gactcagcaa gaattcaag aactgtctt 1380
gtcttctact acttcttctc tcctaacatc tctattccaa actgtggcgg ttacctggat 1440
accttggaaag gatccttcac cagccccaa tacccaaagc cgcatctgca gctggcttat 1500
tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560
ttcctagaaa tagacaaaca gtgcaattt gatTTCTTG ccatctatga tggcccttcc 1620
accaactctg gcctgattgg acaagtcgt ggccgtgtga ctcccacctt cgaatcgatc 1680
tcaaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740
gttccctaca cctcaattta tgcagaaaaac atcaacacta catctttaac ttgctctt 1800
gacaggatga gagttttat aagcaaatcc tacctagagg ctttaactc taatggaaat 1860
aacttgcac taaaagaccc aacttgcaga cccaaattat caaatgttgc ggaattttct 1920
gtcccttta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980
aatataatca cttttctgc atcctaact tctgaagtga tcaccgtca gaaacaactc 2040
cagattattg tgaagtgtga aatggacat aattctacag tggagataat atacataaca 2100
gaagatgtat taatacaaag tcaaaatgca ctgggcaat ataacaccag catggcttt 2160
tttgaatcca attcatttga aaagactata ctgtatcac catattatgt ggatttgaac 2220
caaactctt ttgttcaagt tagtctgcac acctcagatc caaatttggt ggtgtttctt 2280
gatacctgta gagcctctcc cacctctgac ttgcattctc caacctacga cctaattcaag 2340
agtggatgtat gtcgagatga aacttgcata gtttatccct tattttggaca etatgggaga 2400
ttccagttta atgcctttaa attcttgcata agtgcgtatct ctgttatct gcaagtgtaaa 2460
gttttgatgtat gtgatagcag tgaccaccag tctcgctgca atcaagggttg tgcgtccaga 2520
agcaaaacggc acatttcttc atataaaatgg aaaacagatt ccatcatagg acccattctg 2580
ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttca agcatgaaac acatgcggaa 2640
gaaactccaa accagcctt caacagtgtg catctgttt cttcatggc tctagctctg 2700
aatgtggatgtat ctgtagcgac aatcacaatgt aggcatggc taaatcaacg ggcagactac 2760
aaataccaga agtgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820
tccaggatgc caaaggaaat gctacccatgt ggctacacat attatgaata aatgaggaag 2880
qqcctgaaaat tgacacacaaq qcctgcatgt aaaaaaaaaa 2917

<210> 190
<211> 607
<212> PRT
<213> *Homo sapiens*

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser
 1 5 10 15
 Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys
 20 25 30
 Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met
 35 40 45
 Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
 50 55 60
 Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp
 65 70 75 80
 Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr
 85 90 95
 Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr
 100 105 110
 Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val
 115 120 125
 Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe
 130 135 140
 Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr
 145 150 155 160
 Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu
 165 170 175
 Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile
 180 185 190
 Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys
 195 200 205
 Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu
 210 215 220
 Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser
 225 230 235 240
 Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg
 245 250 255
 Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr
 260 265 270
 Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys
 275 280 285

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys
 290 295 300

Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val
 305 310 315 320

Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile
 325 330 335

Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val
 340 345 350

Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly
 355 360 365

His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile
 370 375 380

Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe
 385 390 395 400

Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val
 405 410 415

Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp
 420 425 430

Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser
 435 440 445

Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg
 450 455 460

Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe
 465 470 475 480

Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu
 485 490 495

Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys
 500 505 510

Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys
 515 520 525

Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg
 530 535 540

Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu
 545 550 555 560

Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

565	570	575
Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe		
580	585	590
Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr		
595	600	605
<210> 191		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 191		
tctctattcc aaactgtggc g		21
<210> 192		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 192		
tttgatgacg attcgaaggt gg		22
<210> 193		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 193		
ggaaggatcc ttcaccagcc ccaattaccc aaagccgcac cctgagc		47
<210> 194		
<211> 2362		
<212> DNA		
<213> Homo sapiens		
<400> 194		
gacggaagaa cagcgctccc gagggccgcgg gagcctgcag agaggacacgc cggcctgcgc 60		
cgggacatgc ggccccagga gctccccagg ctcgcgttcc cgttgctgtct gttgctgttg 120		
ctgctgctgc cgccgcgcgc gtgccctgcc cacagcgcca cgcgcgttgcg cccccacctgg 180		

gagtcctgg acgcccccca gctgcccgcg tggtttgcacc aggccaaagtt cggcatcttc 240
 atccactggg gagtgtttc cgtgcccagc ttccgttagcg agtggttctg gtggatttgg 300
 caaaaaggaaa agataccgaa gtatgtggaa tttatgaaaag ataattaccc tcctagttc 360
 aaatatgaag attttggacc actattaca gcaaaaatttt ttaatgccaa ccagtgggca 420
 gatattttc aggccctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
 tttaccttgtt gggggtcaga atattcggtt aactggaaatg ccatagatga ggggccccaaag 540
 agggacattt gcaaggaact tgaggttagcc attaggaaca gaactgaccc gcgttttgg 600
 ctgtactatt cccttttga atggtttcat ccgtcttcc ttgaggatga atccagttca 660
 ttccataaggc ggcaatttcc agtttctaag acattgccag agctctatga gtttagtgaac 720
 aactatcagc ctgaggttct gtggtcggat ggtgacggag gggcacccgg tcaataactgg 780
 aacagcacag gcttcttggc ctgttataat aatgaaagcc cagttcgggg cacagtagtc 840
 accaatgatc gttggggagc tggttagcatc tgtaagcatg gtggcttcta tacctgcagt 900
 gatcggtata acccaggaca tctttgcca cataaatggg aaaactgcac gacaatagac 960
 aaactgtcctt ggggctatag gaggaaagct ggaatctctg actatcttac aattgaagaa 1020
 ttggtaagc aactttaga gacagttca tgtggaggaa atcttttgcataatattggg 1080
 cccacactag atggcaccat ttctgttagtt ttggaggagc gactgaggca agtggggtcc 1140
 tggctaaaag tcaatggaga agtattttat gaaacctata cctggcgatcc ccagaatgac 1200
 actgtcaccc cagatgtgt gtacacatcc aagcctaaag aaaaatttagt ctatgccatt 1260
 tttcttaaat gggccacatc aggacagctg ttcccttggcc atcccaaagc tattctggg 1320
 gcaacagagg tgaaactact gggccatgga cagccactta actggatttcc ttggagca 1380
 aatggcatta tggtagaact gccacagcta accattcatc agatggcgatcc taaatgggc 1440
 tggctctag ccctaactaa tgtgtatctaa agtgcacgatc agtggctgtat gctgcaagtt 1500
 atgtctaagg ctaggaacta tcaggtgtct ataatttgcataatggaga aagcaatgt 1560
 aactggataa gaaaattttt tggcaggatc gccccttccc ttggccatc taaattttc 1620
 ttaaattacc catgtaaacc ttttaactct ccagtgcact ttgcattaa agtctttca 1680
 cattgattt tttccatgtg tgactcagag gtgagaattt ttgcacatc tagtagcaag 1740
 gaattggtg tattatggac cgaactgaaa atttatgtt gaagccatat ccccatgat 1800
 tatatagtt tgcatcaactt aatatggggat tttttctgg gaaatgcatt gctgtcaat 1860
 tttttttgt gccaacatca tagagtgtat ttacaaaatc cttagatggca tagcctacta 1920
 cacaccaat gtgtatggta tagactgttgc ttccctaggat acagacatc acagcatgtt 1980
 actgaataact gtaggcaata gtaacagtgg tatttgcata tcgaaacata tggaaacata 2040
 gagaaggtac agtaaaaata ctgtaaaata aatgggcac ctgtataggg cacttaccac 2100
 gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgagtgaa tgtgaaggcc 2160
 taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
 ttataaaaaa aagttttctt ttcttcattt ataaattaaac ataagtgtac tgtaacttta 2280
 caaacgtttt aatttttaaa accttttgg ctctttgttataacacttta gcttaaaaaca 2340
 taaactcatt gtgcaaatgt aa 2362

<210> 195

<211> 467

<212> PRT

<213> Homo sapiens

<400> 195

Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu
1					5				10				15	

Leu	Leu	Leu	Leu	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr
20							25				30		

Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala
								35				40		45	

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe
 50 55 60

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys
 65 70 75 80

Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro
 85 90 95

Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe
 100 105 110

Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr
 115 120 125

Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser
 130 135 140

Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp
 145 150 155 160

Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg
 165 170 175

Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu
 180 185 190

Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys
 195 200 205

Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val
 210 215 220

Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser
 225 230 235 240

Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr
 245 250 255

Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly
 260 265 270

Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro
 275 280 285

His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr
 290 295 300

Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val
 305 310 315 320

Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn
 325 330 335

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg
 340 345 350

Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr
 355 360 365

Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val
 370 375 380

Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu
 385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
 405 410 415

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn
 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu
 435 440 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr
 450 455 460

Asn Val Ile
 465

<210> 196

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 196

tggtttgacc aggccaagtt cggt

23

<210> 197

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 197

ggattcatcc tcaaggaaga gcgg

24

<210> 198

<211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 198
 aacttgcagc atcagccact ctgc 24

<210> 199
 <211> 45
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 199
 ttccgtgccc agcttcggta gcgagtggtt ctgggttgtat tggca 45

<210> 200
 <211> 2372
 <212> DNA
 <213> Homo sapiens

 <400> 200
 agcaggaaa tccggatgtc tcggtttatga agtggagcag tgagtgttag cctcaacata 60
 gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
 catctgaggt gtttccctgg ctctgaaggg gttagcacga tgccaggtg cttagccctg 180
 gtgttgcctc tcacttccat ctggaccacg aggctctgg tccaaggctc tttgcgtgca 240
 gaagagctt ccatccaggt gtcatgcaga attatggga tcacccttgt gagcaaaaag 300
 gcgaaccagc agctgaattt cacagaagct aaggaggcct gttaggctgt gggactaagt 360
 ttgccggca aggaccaagt tgaaaacagcc ttgaaagcta gcttggaaac ttgcagctat 420
 ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaacc caagtgtggg 480
 aaaaatgggg tgggtgtcct gatttggaaag gttccagtga gccgacagtt tgcagcctat 540
 tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
 gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgcacgt 660
 acctactcg tggcatcccc ttactctaca atacctgccc ctactactac tcctcctgtct 720
 ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agttttatg 780
 gaaactagca ccatgtctac agaaaactgaa ccatttggtaaaa aaaaataaagc agcattcaag 840
 aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgcattgc tctcctcttc 900
 tttggtgctg cagctggctc tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
 tttacaaca agaatcagca gaaggaaatg atcgaaacca aagttagtaaa ggaggagaag 1020
 gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaacc agaagagtcc 1080
 aagagtccaa gcaaaaactac cgtgcgatgc ctggaaactg aagtttagat gagacagaaaa 1140
 tgaggagaca cacctgaggc tggtttctt catgctccctt accctgcccc agctggggaa 1200
 atcaaaaaggc ccaaagaacc aaagaagaaa gtccaccctt gttccctaac tggaatcagc 1260
 tcaggactgc cattggacta tggagtgcac caaagagaat gccttccctc ttattgtAAC 1320
 cctgtctgga tcctatcctc ctacctccaa agcttcccac ggcccttctca gcctggctat 1380
 gtccataataa tatcccaactg ggagaaagga gtttgcaaa gtgcaaggac ctaaaacatc 1440

tcatcagtat	ccagttggtaa	aaaggcctcc	tggctgtctg	aggcttaggtg	gtttagaaagc	1500
caaggagtca	ctgagaccaa	ggctttctct	actgattccg	cagctcagac	cctttcttca	1560
gctctgaaaag	agaaaacacgt	atcccacctg	acatgtcctt	ctgagccccg	taagagcaaa	1620
agaatggcag	aaaagtttag	cccctgaaag	ccatggagat	tctcataact	tgagacctaa	1680
tctctgtaaa	gctaaaataa	agaaatagaa	caaggctgag	gatacgacag	tacactgtca	1740
gcaggggactg	taaacacaga	cagggtcaaa	gtgtttctc	tgaacacatt	gagttggaat	1800
cactgtttag	aacacacaca	cttactttt	ctggctctct	ccactgctga	tattttctct	1860
aggaaatata	cttttacaag	taacaaaaat	aaaaactctt	ataaatttct	atttttatct	1920
gagttacaga	aatgattact	aaggaagatt	actcagtaat	ttgtttaaaa	agtaataaaa	1980
ttcaacaaaac	atttgctgaa	tagctactat	atgtcaagtg	ctgtcaagg	tattacactc	2040
tgtaattgaa	tattattcct	caaaaaattg	cacatagtag	aacgctatct	ggaaagctat	2100
tttttcagt	tttgatattt	ctagcttac	tacttccaa	ctaattttt	tttttgcgt	2160
gactaatctt	attcattttc	tctaatatgg	caaccattat	aaccttaatt	tattattaac	2220
atacctaaga	agtacattgt	tacctctata	taccaaagca	cattttaaaa	gtgccattaa	2280
caaatgtatc	actagccctc	cttttccaa	caagaaggga	ctgagagatg	cagaaatatt	2340
tgtgacaaaaa	aattaaagca	tttagaaaaac	tt			2372

<210> 201

<211> 322

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile
 130 135 140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr
 145 150 155 160
 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser
 165 170 175
 Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser
 180 185 190
 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
 195 200 205
 Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala
 210 215 220
 Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu
 225 230 235 240
 Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe
 245 250 255
 Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn
 260 265 270
 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala
 275 280 285
 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro
 290 295 300
 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala
 305 310 315 320
 Glu Val

<210> 202
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic,
 oligonucleotide probe

 <400> 202
 gagctttcca tccaggtgtc atgc 24

 <210> 203
 <211> 22
 <212> DNA
 <213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 203
gtcagtgaca gtacctactc gg                                22

<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 204
tggagcagga ggagtagtag tagg                                24

<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 205
aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt   50

<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (973)
<223> a, t, c or g

<220>
<221> modified_base
<222> (977)
<223> a, t, c or g

<220>
<221> modified_base
<222> (996)
<223> a, t, c or g

<220>
<221> modified_base

```

<222> (1003)
 <223> a, t, c or g
 <400> 206
 agatggcggt cttggcacct ctaattgctc tctgttattc ggtgcgcga cttdcacat 60
 ggctcgccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120
 gaaaaactgcc gccgctctgc cacggctctgc ccacccaacg cgaagacgg aaccgcgtg 180
 actttgactg gagagaagtg gagatctga tgtttctca gtcattgtg atgatgaaga 240
 accgcagatc catcaactgtg gagcaacata taggcaacat ttcatgttt agtaaaagtgg 300
 ccaacacaat tctttcttc cgcttgata ttgcatggg cctactttac atcacactc 360
 gcatactgtt cctgtatgacg tgcaaaccctt cccttatata gggccctgag tatatcaagt 420
 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggatgg 480
 tggagttctt tgccaattgg tctaattgact gccaatcatt tgcccctatc tatgctgacc 540
 tctcccttaa atacaactgt acagggtctaa attttggaa ggtgatgtt gacgctata 600
 ctgatgttag tacgggtac aaagttagca catcaccctt caccaagcaa ctccctacc 660
 tgatcctgtt ccaaggtggc aaggaggaa tgccggcggc acagattgac, aagaaaggac 720
 gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
 tataccagcg ggccaagaaaa ctatcaaagg ctggagacaa tatccctgag gaggcgcctg 840
 tggcttcaac cccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
 actttggcag tgcttcctct cctgtcaatt ccaggcttcc tccataacca caagcctgag 960
 gctgcagcct ttnattnatg tttccctt ggctngact ggntggggca gcatgcagct 1020
 tctgattttt aagaggcatc taggaaattt tcaggcaccc tacaggaagg ctcgcctatgc 1080
 tgtggccaac tgtttactg gagcaagaaaa gagatctcat aggacggagg gggaaatgtt 1140
 ttccctccaa gcttgggtca gtgtgttaac tgcttacatcg ctattcagac atctccatgg 1200
 ttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttgggt 1260
 agaccttagat ttaaccctaa ggttaagatgc tgggtatag aacgctaaga attttcccc 1320
 aaggacttt gcttccttaa gcccttctgg ctctgtttat ggtcttcatt aaaagtataa 1380
 gcctaacttt gtgcctagtc ctaaggagaa acctttaacc acaaagtttt tattcattgaa 1440
 gacaatattg aacaaccctt tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
 actttccctt gtgtggtagg acttggagga gaaatccctt ggacttcac taaccctctg 1560
 acatactccc cacaccctt gatggcttt ccgtataaaa aagattgggaa ttccctttt 1620

<210> 207
 <211> 296
 <212> PRT
 <213> Homo sapiens

<400> 207
 Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg
 1 5 10 15

Leu	Ser	Arg	Trp	Leu	Ala	Gln	Pro	Tyr	Tyr	Leu	Leu	Ser	Ala	Leu	Leu
20								25					30		

Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly
 35 . 40 45

Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	Pro	Cys	Asp	Phe	Asp	Trp	Arg
50					55						60				

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn
 65 70 75 80

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe
 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met
 100 105 110

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys
 115 120 125

Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys
 130 135 140

Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val
 145 150 155 160

Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile
 165 170 175

Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
 180 185 190

Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val
 195 200 205

Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln
 210 215 220

Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg
 225 230 235 240

Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn
 245 250 255

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp
 260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser
 275 280 285

Asp Gly Glu Asn Lys Lys Asp Lys
 290 295

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 208

gcttggatat tcgcatggc ctac

www.ncbi.nlm.nih.gov/blast/blast.cgi

```

<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 209
tggagacaat atccctgagg                                20

<210> 210
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 210
aacagttggc cacagcatgg cagg                                24

<210> 211
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 211
ccattgtatg ggaacttagaa cgggacaaga gggtcacttg gattgtggag      50

<210> 212
<211> 1985
<212> DNA
<213> Homo sapiens

<400> 212
ggacagctcg cggccccca gagctcttagc cgtcgaggag ctgcctgggg acgtttgcc 60
tggggcccca gcctggccc ggtcacccctg gcatgaggag atgggcctgt tgctcctgg 120
cccattgctc ctgtcgcccg gctcctacgg actgcccttc tacaacggct tctactactc 180
caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
gaagctggtg gtggagacac ccgaggagac cctgttcacc taccaaaggggg ccagtgtgat 300
cctgccctgc cgctaccgct acgagccggc cctggcttcc ccggggcgtg tgcgtgtcaa 360
atggtggaaag ctgtcgagaa acggggccccc agagaaggac gtgtgggtgg ccatcgggct 420
gaggcaccgc tccttgggg actaccaagg ccgcgtgcac ctgcggcagg acaaagagca 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaaagcgg tctgggtggag ctggagctgc ggggtgtgg 600

```

ctttccttac cagtcccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
 ctgtcagag caggctgccc tggtggcctc ctttgagcag ctctccggg cctgggagga 720
 gggcctggac tggtcaacg cgggctggct gcaggatgt acggtcagt accccatcat 780
 gttgccccgg cagccctgcg gtggccagg cctggcacct ggcgtgcgaa gctacggccc 840
 cccgcacccgc cgccctgcacc gctatgtatgt attctgttgc gctactgccc tcaagggggcg 900
 ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
 ggaagatgt gccacgatcg ccaagggtggg acagctttt gccgctgga agttccatgg 1020
 cctggacccgc tgccacgctg gttggctggc agatggcagc gtcggctacc ctgtggttca 1080
 cccgcattct aactgtggc ccccaagagcc tggggtccga agctttggct tccccgacc 1140
 gcagagccgc ttgtacggtg ttactgtta ccggcagcac taggacctgg ggccctcccc 1200
 tgccgcattc cctcaactggc tggatattta ttgagtggtt cgtttccct tgggggttgg 1260
 agccattta actgtttttt tacttctcaa tttaaaatttt cttaaacat tttttacta 1320
 tttttgtaa agcaaacaga acccaatgcc tcccttgc cctggatgcc ccactccagg 1380
 aatcatgtt gtcctccctgg gccatttgcg gttttgtggg cttotggagg gttcccccgc 1440
 atccaggctg gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggcctgtct 1500
 agaatgcgcg cgggagtcgg ggcattggcgc gcacagttt ccctggccct cagcctgggg 1560
 gaagaagagg gcctccgggg cttccggcgc tgggtttgg gccttcctg cccacctcta 1620
 cttctctgtg aagccgctga ccccaigctg cccactgagg ggctagggt ggaagccagt 1680
 tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccctgt tccctttccc 1740
 ctctcggttc caaagaatct gttttgtgt catttgc tccgtttcc ctgtgtgggg 1800
 agggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1920
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1980
 aaaaaa 1985

<210> 213
 <211> 360
 <212> PRT
 <213> Homo sapiens

<400> 213
 Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
 1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
 20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
 50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
 65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
 85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

115

120

125

Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr
 130 135 140

Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu
 145 150 155 160

Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg
 165 170 175

Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala
 180 185 190

Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly
 195 200 205

Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr
 210 215 220

Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro
 225 230 235 240

Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp
 245 250 255

Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu
 260 265 270

His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu
 275 280 285

Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys
 290 295 300

Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Ala Asp Gly Ser
 305 310 315 320

Val Arg Tyr Pro Val Val His Pro His Pro Asn Cys Gly Pro Pro Glu
 325 330 335

Pro Gly Val Arg Ser Phe Gly Phe Pro Asp Pro Gln Ser Arg Leu Tyr
 340 345 350

Gly Val Tyr Cys Tyr Arg Gln His
 355 360

<210> 214

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

BOSTON UNIVERSITY LIBRARIES

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 214
tgcttcgcta ctgccctc

18

<210> 215
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 215
ttcccttgtg gggtggag

18

<210> 216
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 216
aggcgtggaa gccagttc

18

<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 217
accaggatgag gaaatgcg

18

<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 218
tgtccaaagt acacacacacct gagg

24

<210> 219
<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 219

gatgccacga tcgccaagggt gggacagctc tttgcgcgcctt ggaag

45

<210> 220

<211> 1503

<212> DNA

<213> Homo sapiens

<400> 220

ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgtgt 60
gcttctgttg ctactgaggc acggggccca ggggaagcca tccccagacg cagggccctca 120
tggccagggg agggtgcacc aggeggcccc cctgagcgac gctccccatg atgacgccc 180
cgggaacttc cagtaacgacc atgaggttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggccc tctggggcg atctggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tgcgcacac 360
gcagcagcgg cacatacggg actcgggttag cgccgcctgg gacacgtacg acacggaccg 420
cgacgggctgt gtgggttggg aggagctcgca acacgcacc tatggccact acgcgccccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgtgg ctggggacga 540
gcggcggttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
agccttcctg caccggagg agtccctca catgcgggac atcgtgattt ctgaaaccct 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tgcggatct 720
gtactcagcc gagctgggg aggaggagcc ggctgggtg cagacggaga ggcagcgtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtggg tggccactg 840
gggtctgccc cttggccagg accagccctt ggtggaaagec aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggca ggacctgacc cggcaccacg atgagctgt 1020
agcacccgccc acctgccaca gcctcagagg cccgcacaat gacccggagga gggcccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatctc 1140
ctggccctgg gctctcaggg accccctggg tggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tccctcaggta taagcaatac ctatttctga ctgagctcc 1260
cagccccagac ccagggaccc ttggcccaa gctcgtct aagaaccggcc ccaacccttc 1320
cagctccaaa tctgagcctc caccacatag actgaaaactc ccctggcccc agccctctcc 1380
tgcctggctt ggcctggac acctcccttc tgccaggagg caataaaagc cagcgcgggg 1440
accttggaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaa 1503

<210> 221

<211> 328

<212> PRT

<213> Homo sapiens

<400> 221

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Arg His

1	5	10	15
Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly			
20		25	30
Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala			
35		40	45
His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val			
50		55	60
Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Ser Gln Ala Arg Leu			
65		70	80
Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp			
85		90	95
Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg			
100		105	110
His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp			
115		120	125
Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly			
130		135	140
His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr			
145		150	160
Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp			
165		170	175
Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu			
180		185	190
His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr			
195		200	205
Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu			
210		215	220
Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Glu Pro Ala			
225		230	240
Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn			
245		250	255
Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro			
260		265	270
Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu			
275		280	285

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly
 290 295 300

Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp
 305 310 315 320

Leu Thr Arg His His Asp Glu Leu
 325

<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 222
 cgcaaggccct catggccagg

20

<210> 223
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 223
 gaaatcctgg gtaattgg

18

<210> 224
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 224
 gtgcgcggtg ctcacagctc atc

23

<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 225
 cccccctgag cgacgctccc ccatgatgac gcccacggga actt 44

 <210> 226
 <211> 2403
 <212> DNA
 <213> Homo sapiens

 <400> 226
 gggccttgc ctcccgact cgggcgcaga cgggtggatc tcgagcagg tggagcccc 60
 gggcgccggg cgggggtgcg agggatccc gacgcctcg tccctgttc ttgtcgctc 120
 ccagcctgtc tgcgtcggt ttggcgcccc cgcctcccg cggtgcgggg ttgcacaccg 180
 atcctgggtc tgcgtcgatt tgccgcggag ggcctccca gaccttagagg ggcgtggcc 240
 tggagcageg ggtcgctgtgt gtccctctc ctgcgcgg cgcggggga tccgaagggt 300
 gcggggctc gaggaggta cgcgcggggc ctccgcacc ctggccttgc cgcatttctc 360
 cctctctccc aggtgtgagc agcctatcg tcaccatgtc cgcagcctgg atcccgctc 420
 tcggcctcg tgcgtgtctg ctgcgtctgc cggggccgc gggcagcgg gggccgctc 480
 ccattgtat cacatgtttt accagaggct tggacatcg gaaagagaaa gcaagatgtcc 540
 tctgcccagg gggctgcctt cttgaggaaat tctctgtta tggaaacata gtatatgttt 600
 ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
 ctgtacagt ctatagcta cctggcggag aaaactattc ctcagtagat gccaatggca 720
 tccagtgctca aatgttttct agatgtgtc cttctttcac agtaactaaa ggcaaaaagta 780
 gtacacaggaa ggcacacagga caagcagtgtt ccacagcaca tccaccaaca ggtaaacgac 840
 taaaagaaaaac acccgagaag aaaaactggca ataaagattt taaagcagac attgcatttc 900
 tgattgtatgg aagctttat attgggcgc gccgatttaa ttacagaag aattttgtt 960
 gaaaagtggc tctaatttttgg gaaattggaa cagaaggacc acatgtggc cttgttcaag 1020
 ccagtgaaca tccccaaaata gaattttact taaaaactt acatcagcc aaagatgttt 1080
 tggggccat aaaggaaatg gtttcagag gggtaatttcaaatcagga aaaggcttga 1140
 agcataactgc tcagaaatttctc acgtggatg aagaaaaaggg atccccaaag 1200
 tgggtgggtt atttatttgc gttggcattt ctgatgcacat cgagaaagca ggcattgtgg 1260
 ccagagatgtt tgggtgtcaat gtattttagat tttctgtggc caaggcttac cctgaagaac 1320
 tggggatgtt tcagatgtc acattttggt acaaggctgtt ctgtcggaaat aatggcttct 1380
 tctcttacca catgccccaaatc tgggtggca ccacaaaata cgtaaaggctt ctggatcaga 1440
 agctgtgcac tcatgaaacaa atgatgtgc gcaagacctt ttataactca gtgaacatttgc 1500
 cctttctaat tgatggctcc agcagtgttgc gagatagcaaa tttccgcctc atgcttgc 1560
 ttgtttccaa catagccaaatc actttttggaaat ttcggacat tgggtggcaag atagctgtc 1620
 tacagtttac ttatgtatcg cgcacggagt tcagtttccat tgactatagc accaaagaga 1680
 atgtccttagc tgcgtatcaga aacatccgc atatgatgg tggaaacagctt actgggtatgc 1740
 ccatttcctt cactgttgc aatgtgttttgc ggcctataag ggagagcccc aacaagaact 1800
 tccttagataat tgatgtatcg gggcgttgc atgtatgttgc ccaaggccctt gcaatgtgtc 1860
 cacatgtatcg aggaatcaat atctttctgtt ttgggtgtggc ttgggcaccc ctggatgacc 1920
 tgaaagatgtt ggccttcaaa cgcggggatgtt ctcacgcctt cttcacaaga gagttcacag 1980
 gattagaacc aatttttttgc gatgtatcg aaggcatttgc tagagatttc ttggatccc 2040
 agcaataatgc tgcgtatcg gacaactgaa agaaaaatgtt caaggggatc cagttgttgc 2100
 attgtatgttgc cataataactgc aatgttttgc gcaatgtatcg atcagatataa aactattaa 2160
 gtatgtcaac agccatgttgc gcaatgtatcg acttccttgc ttgggtgttgc 2220
 aatttacatgtt gatgtatcg aaaaacactgc ctgaggcttcaat atatcatgg ctcttagaaa 2280
 ctcaggaaatgggatataat ttggatccc accttaagatgg tttcttaccat gctactaaa 2340
 tgtacagata tgcaatattcc atagctcaat aaaagaatctt gatacttaga ccaaaaaaaaaa 2400
 aaa 2403

<210> 227

<211> 550
<212> PRT
<213> Homo sapiens

<400> 227
Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu
1 5 10 15
Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile
20 25 30
Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val
35 40 45
Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn
50 55 60
Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg
65 70 75 80
Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro
85 90 95
Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln
100 105 110
Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser
115 120 125
Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro
130 135 140
Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys
145 150 155 160
Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile
165 170 175
Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala
180 185 190
Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln
195 200 205
Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser
210 215 220
Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly
225 230 235 240
Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe
245 250 255

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Val
 260 265 270

Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val
 275 280 285

Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro
 290 295 300

Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys
 305 310 315 320

Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp
 325 330 335

Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr
 340 345 350

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile
 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg
 370 375 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser
 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg
 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser
 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp
 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala His Asp Ala Gly Ile Thr Ile
 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met
 500 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr
 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp
 530 535 540

Phe Leu Glu Ser Gln Gln
545 550

<210> 228
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 228
tggtctcgca caccgatc 18

<210> 229
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 229
ctgctgtcca caggggag 18

<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 230
ccttgaagca tactgctc 18

<210> 231
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 231
gagatagcaa tttccgcc 18

<210> 232

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 232
ttcctcaaga gggcagcc 18

<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 233
cttggcacca atgtccgaga ttcc 24

<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 234
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg 45

<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens

<400> 235
cgccgcgctc ccgcacccgc ggcccccca ccgcgccgct cccgcacatcg cacccgcagc 60
ccggcgccct cccggcgaaa gcgagcagat ccagtcccgcc cccgcagcgca actcggtcca 120
gtcgccggcg cggctgcggg cgccagagcg agatgcagcg gcttggggcc accctgtgt 180
gctctgtgtct ggcggcgccg gtcccccacgg ccccccgcgcc cgctccgacg ggcaccccg 240
ctccagtcggaa gcccgcccg gctctcagct accccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttggagaa ctgatggagg acacgcagca caaattgcgc agcgcgggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
tacctcccag ctatcacaat gagaccaaca cagacacgaa gtttggaaat aataccatcc 480
atgtgcaccc agaaattcac aagataacca acaaccagac tggacaaatg gtctttcag 540
agacaggattat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tggcccccagg atgtactgcc agtttgccag cttccagtag acctgcagc 660
catqccqqqq ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720

gtgtctgggg tcactgcacc aaaatggcca ccagggcag caatggacc atctgtgaca 780
 accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgtccctg 840
 tgtgcacacc cctgcccgtg gagggcgagc tttgccatga ccccggccagc cggattctgg 900
 acctcatcac ctggagcta gacgcctatg gacgccttga ccgatgcct tgcacatgt 960
 gcctcctctg ccagccccac agccacagcc tgggtatgt gtgcacccg accttcgtgg 1020
 ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtcccccgt gagtatgaag 1080
 ttggcagctt catggaggag gtgcgcagg agctggagga cctggagagg agcctgactg 1140
 aagagatggc gctggggag cctgcggctg ccgcgcgtc actgctggg gggaaagaga 1200
 ttagatctg gaccaggctg tgggtatgt tgcataatgaa atagctaatt tattttccca 1260
 ggtgtgtctt ttaggcgtgg gctgaccagg cttcttcttca catcttcttc ccagtaagtt 1320
 tccctctgg cttgacacca tgagggttt tgcattttt cagctcccc aggctgttct 1380
 ccaggcttca cagtctggtg cttggagag tcaggcaggg taaaactgca ggacgagttt 1440
 gccaccctgt tccagattat tggctgctt gcctctacca gtggcagac agccgtttgt 1500
 tctacatggc tttgataatt gtttggggg aggagatggg aacaatgtgg agtctccctc 1560
 tgattggttt tggggaaatg tggagaagag tgcctgtct tgcacacatc aacctggcaa 1620
 aaatgcaaca aatgaatttt ccacgcagtt cttccatgg gcataaggtaa gctgtgcctt 1680
 cagctgttgc agatgaaatg ttctgttac cctgcattac atgtgtttat tcatccagca 1740
 gtgttgcgtca gctcctaccc ctgtgcagg gcagcatttt catatccaag atcaattccc 1800
 tctctcagca cagcctgggg aggggtcat tggctcttc gtccatcagg gatctcagag 1860
 gctcagagac tgcaagactgc ttgccaagt cacacagcta gtgaagacca gagcagttc 1920
 atctgggtgt gactctaagc tcagtgtctt ctccactacc ccacaccagg cttggtgcca 1980
 caaaaagtgc tccccaaaag gaaggagaat gggattttt ttgaggcatg cacatctgga 2040
 attaagggtca aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
 gttctcacag tggggcag ccgtccttctt aatgaagaca atgatattga cactgtccct 2160
 cttggcagt tgcatttagta actttgaaag gtatatgact gagcgttagca tacaggtaa 2220
 cctgcagaaa cagtagttt gtaattgttag ggcgaggatt ataaatgaaa tttgcaaaat 2280
 cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcaggc 2340
 tgggtgaaac atgggtttaa tatgcactg cgaacactga actctacgc actccacaaa 2400
 tgatgttttc aggtgtcatg gactgttgc accatgtatt catccagagt tcttaaagtt 2460
 taaagttgca catgattgtt taagcatgtt ttctttgagt ttaaaattat gtataaacat 2520
 aagttgcatt tagaaatcaa gcataaatca cttcaactgc aaaaaaaaaa aaaaaaaaaa 2580
 aaaaaaa 2586

<210> 236
 <211> 350
 <212> PRT
 <213> Homo sapiens

<400> 236
 Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala
 1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val
 20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn
 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
 50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Lys
 65 70 75 80

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn
 85 90 95
 Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
 100 105 110
 Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
 115 120 125
 Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Gly Arg Arg Ser
 130 135 140
 His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln
 145 150 155 160
 Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met
 165 170 175
 Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp
 180 185 190
 Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys
 195 200 205
 Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg
 210 215 220
 Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu
 225 230 235 240
 Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu
 245 250 255
 Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
 260 265 270
 Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
 275 280 285
 Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
 290 295 300
 Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu
 305 310 315 320
 Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
 325 330 335
 Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
 340 345 350

```

<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 237
ggagctgcac cccttgc                                17

<210> 238
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 238
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg                                49

<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 239
gcagagcgg gatgcagcgg ctg                                24

<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 240
ttggcagctt catggagg                                18

<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 241
cctggggcaaa aatgcaac                                18

```

<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 242
ctccagctcc tggcgcacct cctc

<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg

<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien

<400> 244
aaggaggctg ggagggaaaga ggtaagaaag gtttagagaac ctacacctaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagccccatc 100
cactctcctt ccctcccaa cacacatgtg catgtacaca cacacataca 150
cacacataca cttccctctc cttcactgaa gactcacagt cactcactct 200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggccctggcc 250
attaccccttg cagctccctt ggcttgttga gtcaaaaaaac atggggagggg 300
ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350
tgagcagatc acttgagggtc aggagttcga gaccagcctg gccaaacatgg 400
agaaacccccc atctctacta aaaatacaaa aatttagccag gagtggtggc 450
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500
gaatccagga ggcggaggat gcagtcagct gagtgcacccg ctgcactcca 550
gcctqgggtga cagaatgaga ctctgtctca aacaaacaaa cacggggagga 600

gggttagata ctgcttctct gcaacccct 650
ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700
agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccc 750
gtgtagaatg actgcctgg gagggtggtt cttggggccc tggcagggtt 800
gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850
gtgaatggtc ccctgcctg cagctccacc atgaggcttc tcgtggcccc 900
actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggcac 950
cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000
tatacgcccc gctcgcccta ccgcgaggct accactgtgg actgcaatga 1050
cctattcctg acggcagtcc ccccgccact ccccgccaggc acacagaccc 1100
tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctggc 1150
tacctggcca atctcacaga gctggacctg tcccagaaca gctttcgga 1200
tgcccgagac tgtgattcc atgcctgca ccagctgctg agcctgcacc 1250
tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300
gccagcctac aggaactcta tctcaaccac aaccagctt accgcatacg 1350
ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctaact 1400
ccaacccctt gaggggcatt gacagccgct ggtttgaat gctgcccac 1450
ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500
gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550
acctgcggga gatctccgac tatgcctgg aggggctgca aagcctggag 1600
agcctctcct tctatgacaa ccagctggcc cgggtgccc ggcgggcact 1650
ggaacaggtg cccgggctca agttccctaga cctcaacaag aacccgctcc 1700
agcgggtagg gccgggggac tttgccaaca tgctgcaccc taaggagctg 1750
ggactgaaca acatggagga gctggctcc atcgacaagt ttgcctgg 1800
gaacccccc gagctgacca agctggacat caccaataac ccacggctgt 1850
ccttcatcca ccccccgcgc tttccaccacc tgccccagat ggagaccctc 1900
atgctcaaca acaacgctt cagtgcctt caccagcaga cgggtggagtc 1950

cctgcccAAC ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000
actgtgtcat ccgctgggcc aatgccacgg gcaccctgtgt ccgcttcATC 2050
gagCCGCAAT ccaccctgtg tgccggagcct ccggacctcc agcgccTCCC 2100
ggtccgtgag gtgcCTTCC gggagatgac ggaccactgt ttgcCcCTCA 2150
tctccccACG aagcttCCCC ccaAGCCTCC aggtAGCCAG tggagAGAGC 2200
atggtgctGC attGCCGGGC actggCCGAA CCCGAACCCG agatCTACTG 2250
ggtaCTCCA gctgggCTTC gactgacACC tgCCCATGCA ggcaggAGGT 2300
accgggtgta CCCCgaggGGG accCTGGAGC tgCGGAGGGT gacAGCAGAA 2350
gaggcaggGC tataCACCTG tgtggCCAG aacCTGGTGG gggCTGACAC 2400
taagacGGTT agtGTGGTTG tgggCCGTGC ttcCTCCAG ccaggcAGGG 2450
acgaaggaca ggggCTGGAG CTCCGGGTGC aggAGACCCa CCCCTATCAC 2500
atCCTGCTAT CTTGGGTcAC CCCACCCAAc acagtGTCCA ccaACCTCAC 2550
ctggTCCAGT gcCTCCTCCC tccggggCCA gggggCCACA gctCTGGCCC 2600
gcctgeCTCG gggAACCCAC agtacaACA ttaccCGCT cttcaggCC 2650
acggagtACT gggCCTGCCT gcaagtGGCC tttgctgatG cccacACCCa 2700
gttggCTTGT gtatGGGCCA ggaccaaAGA ggCCACTTCT tgCCACAGAG 2750
ccttagggGA tcgtCCTGGG ctcattGCCA tcctggCTCT cgctgtCCtt 2800
ctcCTGGCAG ctgggCTAGC ggCCACCTT ggcACAGGCC aACCCAGGAA 2850
gggtgtgggt gggaggcggc ctctCCCTCC agcCTGGCT ttctgggCT 2900
ggagtGCCCC ttctgtCCGG gttgtgtCTG ctccCTCGT cctGCCCTGG 2950
aatCCAGGGA ggaagCTGCC cagatCCTCA gaAGGGGAGA cactgttGCC 3000
accattgtCT caaaattCTT gaagCTCAGC ctgttCTAG cagtagAGAA 3050
atcaCTAGGA ctactttTA ccaaaAGAGA agcAGTCTGG gccAGATGCC 3100
ctGCCAGGAA agggacATGG acccacGTGC ttgaggCCTG gcagCTGGC 3150
caagacAGAT ggggCTTGT ggCCCTGGGG gtgCTCTGC agcCTTGAAA 3200
aagttGCCCT tacctCCTAG ggtcacCTCT gctGCCATTc tgagGAACAT 3250

ctccaaggaa caggagggac tttggctaga gcctcctgcc tccccatctt 3300
 ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350
 ccccggtctg cacccttcc tcttctctt ctctgtacag tctcagttgc 3400
 ttgctcttgt gcctcctggg caaggctga aggaggccac tccatctcac 3450
 ctcggggggc tgccctcaat gtgggagtga ccccaagccag atctgaagga 3500
 catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550
 ggcattccga agctgactt ctataggcaa ttttgacct ttgtggagaa 3600
 atgtgtcacc tcccccaacc cgattcactc ttttctctg tttttaaaa 3650
 aataaaaata aataataaca ataaaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met	Arg	Leu	Leu	Val	Ala	Pro	Leu	Leu	Leu	Ala	Trp	Val	Ala	Gly
1		5					10					15		
Ala	Thr	Ala	Thr	Val	Pro	Val	Val	Pro	Trp	His	Val	Pro	Cys	Pro
		20					25					30		
Pro	Gln	Cys	Ala	Cys	Gln	Ile	Arg	Pro	Trp	Tyr	Thr	Pro	Arg	Ser
		35				40						45		
Ser	Tyr	Arg	Glu	Ala	Thr	Thr	Val	Asp	Cys	Asn	Asp	Leu	Phe	Leu
		50					55					60		
Thr	Ala	Val	Pro	Pro	Ala	Leu	Pro	Ala	Gly	Thr	Gln	Thr	Leu	Leu
		65					70					75		
Leu	Gln	Ser	Asn	Ser	Ile	Val	Arg	Val	Asp	Gln	Ser	Glu	Leu	Gly
		80					85					90		
Tyr	Leu	Ala	Asn	Leu	Thr	Glu	Leu	Asp	Leu	Ser	Gln	Asn	Ser	Phe
		95					100					105		
Ser	Asp	Ala	Arg	Asp	Cys	Asp	Phe	His	Ala	Leu	Pro	Gln	Leu	Leu
		110					115					120		
Ser	Leu	His	Leu	Glu	Glu	Asn	Gln	Leu	Thr	Arg	Leu	Glu	Asp	His
		125					130					135		
Ser	Phe	Ala	Gly	Leu	Ala	Ser	Leu	Gln	Glu	Leu	Tyr	Leu	Asn	His
		140					145					150		

Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser
 155 160 165
 Asn Leu Leu Arg Leu His Leu Asn Ser Asn Leu Leu Arg Ala Ile
 170 175 180
 Asp Ser Arg Trp Phe Glu Met Leu Pro Asn Leu Glu Ile Leu Met
 185 190 195
 Ile Gly Gly Asn Lys Val Asp Ala Ile Leu Asp Met Asn Phe Arg
 200 205 210
 Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Asn Leu
 215 220 225
 Arg Glu Ile Ser Asp Tyr Ala Leu Glu Gly Leu Gln Ser Leu Glu
 230 235 240
 Ser Leu Ser Phe Tyr Asp Asn Gln Leu Ala Arg Val Pro Arg Arg
 245 250 255
 Ala Leu Glu Gln Val Pro Gly Leu Lys Phe Leu Asp Leu Asn Lys
 260 265 270
 Asn Pro Leu Gln Arg Val Gly Pro Gly Asp Phe Ala Asn Met Leu
 275 280 285
 His Leu Lys Glu Leu Gly Leu Asn Asn Met Glu Glu Leu Val Ser
 290 295 300
 Ile Asp Lys Phe Ala Leu Val Asn Leu Pro Glu Leu Thr Lys Leu
 305 310 315
 Asp Ile Thr Asn Asn Pro Arg Leu Ser Phe Ile His Pro Arg Ala
 320 325 330
 Phe His His Leu Pro Gln Met Glu Thr Leu Met Leu Asn Asn Asn
 335 340 345
 Ala Leu Ser Ala Leu His Gln Gln Thr Val Glu Ser Leu Pro Asn
 350 355 360
 Leu Gln Glu Val Gly Leu His Gly Asn Pro Ile Arg Cys Asp Cys
 365 370 375
 Val Ile Arg Trp Ala Asn Ala Thr Gly Thr Arg Val Arg Phe Ile
 380 385 390
 Glu Pro Gln Ser Thr Leu Cys Ala Glu Pro Pro Asp Leu Gln Arg
 395 400 405
 Leu Pro Val Arg Glu Val Pro Phe Arg Glu Met Thr Asp His Cys

410	415	420
Leu Pro Leu Ile Ser Pro Arg Ser Phe Pro Pro Ser Leu Gln Val		
425	430	435
Ala Ser Gly Glu Ser Met Val Leu His Cys Arg Ala Leu Ala Glu		
440	445	450
Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ala Gly Leu Arg Leu		
455	460	465
Thr Pro Ala His Ala Gly Arg Arg Tyr Arg Val Tyr Pro Glu Gly		
470	475	480
Thr Leu Glu Leu Arg Arg Val Thr Ala Glu Glu Ala Gly Leu Tyr		
485	490	495
Thr Cys Val Ala Gln Asn Leu Val Gly Ala Asp Thr Lys Thr Val		
500	505	510
Ser Val Val Val Gly Arg Ala Leu Leu Gln Pro Gly Arg Asp Glu		
515	520	525
Gly Gln Gly Leu Glu Leu Arg Val Gln Glu Thr His Pro Tyr His		
530	535	540
Ile Leu Leu Ser Trp Val Thr Pro Pro Asn Thr Val Ser Thr Asn		
545	550	555
Leu Thr Trp Ser Ser Ala Ser Ser Leu Arg Gly Gln Gly Ala Thr		
560	565	570
Ala Leu Ala Arg Leu Pro Arg Gly Thr His Ser Tyr Asn Ile Thr		
575	580	585
Arg Leu Leu Gln Ala Thr Glu Tyr Trp Ala Cys Leu Gln Val Ala		
590	595	600
Phe Ala Asp Ala His Thr Gln Leu Ala Cys Val Trp Ala Arg Thr		
605	610	615
Lys Glu Ala Thr Ser Cys His Arg Ala Leu Gly Asp Arg Pro Gly		
620	625	630
Leu Ile Ala Ile Leu Ala Leu Ala Val Leu Leu Leu Ala Ala Gly		
635	640	645
Leu Ala Ala His Leu Gly Thr Gly Gln Pro Arg Lys Gly Val Gly		
650	655	660
Gly Arg Arg Pro Leu Pro Pro Ala Trp Ala Phe Trp Gly Trp Ser		
665	670	675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
680 685 690

Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu
695 700 705

Leu Pro Pro Leu Ser Gln Asn Ser
710

<210> 246
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 246
aacaaggtaa gatgccatcc tg 22

<210> 247
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 247
aaacttgcgtcg atggagacca gctc 24

<210> 248
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 248
aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249
<211> 3401
<212> DNA
<213> Homo Sapien

<400> 249
gcaagccaag gcgcgttttg agaagggtgaa gaagttccgg acccatgtgg 50

aggaggggga cattgtgtac cgccctctaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
accgcaccta ccgctgtgcc cacccccctgg ccacactctt caagatcctg 250
gcgtccttct acatcagcct agtcatacttc tacggcctca tctgcatgta 300
cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350
cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
ttcgccctca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
gcgcttcgccc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500
tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550
aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
ccctgacact gtgtttgacc tggtgagct ggaggtcctc aagctggagc 650
tgateccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700
aaggagctgt ggctctacca cacagcggcc aagattgaag cgccctgcgt 750
ggccttcctg cgcgagaacc tgcgccgcgt gcacatcaag ttcaccgaca 800
tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850
cacctgacgg gcaacctgag cgccggagaac aaccgctaca tcgtcatgca 900
cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950
taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000
ctgtccatca acaatgaggg caccaagctc atcgccctca acagcctcaa 1050
gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100
gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150
aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200
gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250
ccatccagat cggcaacctc accaacctgg agcgccctca cctgaaccgc 1300
aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350
ctacctggac ctcagccaca acaacctgac cttccctccct gccgacatcg 1400
gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgctccctc cgagacttt ccagtgcggg aagctgcggg ccctgcacct 1500
gggcaacaac gtgctgcagt cactgcctc cagggtggc gagctgacca 1550
acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600
gagctggcg agtgcact gctcaagcgc agcggcttgg tggtgaggga 1650
ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700
ctgacaagga gcaggcctga gcgaggcgg cccagcacag caagcagcag 1750
gaccgctgcc cagtcctcag gcccggaggg gcaggcttag cttctccag 1800
aactcccgga cagccaggac agcctcgcgg ctggcagga gcctggggcc 1850
gcttgtgagt caggccagag cgagaggaca gatatgtgg ggctggcccc 1900
ttttctccct ctgagactca cgtccccag ggcaagtgt tggaggag 1950
agcaagtctc aagagcgcag tatttgata atcagggct cctccctgga 2000
ggccagctct gccccagggg ctgagctgcc accagaggc ctgggaccct 2050
cacttagtt ctggatattt attttctcc atctcccacc tccttcatcc 2100
agataactta tacattcca agaaagttca gccagatgg aaggtgttca 2150
ggaaaagggtg ggctgcctt tccccctgtc cttatttagc gatgccgccc 2200
ggcatttaac acccacctgg acttcagcag agtggtcgg ggcgaaccag 2250
ccatgggacg gtcacccagc agtgcggggc tgggctctgc ggtgcggtcc 2300
acgggagago aggcctccag ctggaaaggc caggcctgga gctgcctct 2350
tcagttttt tggcagttt agtttttgt tttttttt ttatcaa 2400
aaacaatttt tttaaaaaaa aagcttgaa aatggatgt ttgggtatta 2450
aaaaaaaaaa aaaaactaa aaaaaaaaaaag acactaacgg ccagtgagtt 2500
ggagtctcag ggcagggtgg cagttccct tgagcaaagc agccagacgt 2550
tgaactgtgt ttcccttccc tggcgcagg gtgcagggtg tcttcggat 2600
ctggtgtgac ctggtccag gagttctatt tggcctggg gagggaggtt 2650
ttttgtttt tttttgggt tttttgggt tcttgggtt tttctccctcc 2700
atgtgtcttgcagggcactc atttctgtgg ctgtcggcca gagggaatgt 2750
tctggagctg ccaaggaggg aggagactcg ggtggctaa tccccggatg 2800

aacggtgctc cattgcacc tcccctcctc gtgcctgccc tgcctctcca 2850
 cgcacagtgt taaggagcca agaggagcca ctgcggccag actttgttc 2900
 cccacactcct gggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950
 ctccatcg ccctgtcgcc acctggctt tcataaagag cagacactta 3000
 gaggctggtc gggaaatgggg aggtcgcccc tgggagggca ggcgttgggt 3050
 ccaagccgggt tcccgtccct ggccctggaa gtgcacacag cccagtcggc 3100
 acctggtggc tggaaagccaa cctgcttttag atcactcggtt tccccacctt 3150
 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200
 gagtctcttg tcttaatgat tatgtccatc cgtctgtccg tccatttgg 3250
 ttttctgcgt cgtgtcattt gatataatcc tcagaaataa tgcacactag 3300
 cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350
 agactcggtc acagtatcaa ataaaaatcta taacagaaaa aaaaaaaaaa 3400
 a 3401
 <210> 250
 <211> 546
 <212> PRT
 <213> Homo Sapien
 <400> 250
 Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile
 1 5 10 15
 Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp
 20 25 30
 Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
 35 40 45
 Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe
 50 55 60
 Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
 65 70 75
 Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu
 80 85 90
 Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

EQUITY 2000

151

95	100	105
Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro 110	115	120
Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu 125	130	135
Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp 140	145	150
Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu 155	160	165
Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp 170	175	180
Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val 185	190	195
Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu 200	205	210
Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala 215	220	225
Phe Leu Arg Glu Asn Leu Arg Ala Leu His Ile Lys Phe Thr Asp 230	235	240
Ile Lys Glu Ile Pro Leu Trp Ile Tyr Ser Leu Lys Thr Leu Glu 245	250	255
Glu Leu His Leu Thr Gly Asn Leu Ser Ala Glu Asn Asn Arg Tyr 260	265	270
Ile Val Ile Asp Gly Leu Arg Glu Leu Lys Arg Leu Lys Val Leu 275	280	285
Arg Leu Lys Ser Asn Leu Ser Lys Leu Pro Gln Val Val Thr Asp 290	295	300
Val Gly Val His Leu Gln Lys Leu Ser Ile Asn Asn Glu Gly Thr 305	310	315
Lys Leu Ile Val Leu Asn Ser Leu Lys Lys Met Ala Asn Leu Thr 320	325	330
Glu Leu Glu Leu Ile Arg Cys Asp Leu Glu Arg Ile Pro His Ser 335	340	345
Ile Phe Ser Leu His Asn Leu Gln Glu Ile Asp Leu Lys Asp Asn 350	355	360

Asn	Leu	Lys	Thr	Ile	Glu	Glu	Ile	Ile	Ser	Phe	Gln	His	Leu	His
				365				370					375	
Arg	Leu	Thr	Cys	Leu	Lys	Leu	Trp	Tyr	Asn	His	Ile	Ala	Tyr	Ile
				380				385					390	
Pro	Ile	Gln	Ile	Gly	Asn	Leu	Thr	Asn	Leu	Glu	Arg	Leu	Tyr	Leu
				395				400					405	
Asn	Arg	Asn	Lys	Ile	Glu	Lys	Ile	Pro	Thr	Gln	Leu	Phe	Tyr	Cys
				410				415					420	
Arg	Lys	Leu	Arg	Tyr	Leu	Asp	Leu	Ser	His	Asn	Asn	Leu	Thr	Phe
				425				430					435	
Leu	Pro	Ala	Asp	Ile	Gly	Leu	Leu	Gln	Asn	Leu	Gln	Asn	Leu	Ala
				440				445					450	
Ile	Thr	Ala	Asn	Arg	Ile	Glu	Thr	Leu	Pro	Pro	Glu	Leu	Phe	Gln
				455				460					465	
Cys	Arg	Lys	Leu	Arg	Ala	Leu	His	Leu	Gly	Asn	Asn	Val	Leu	Gln
				470				475					480	
Ser	Leu	Pro	Ser	Arg	Val	Gly	Glu	Leu	Thr	Asn	Leu	Thr	Gln	Ile
				485				490					495	
Glu	Leu	Arg	Gly	Asn	Arg	Leu	Glu	Cys	Leu	Pro	Val	Glu	Leu	Gly
				500				505					510	
Glu	Cys	Pro	Leu	Leu	Lys	Arg	Ser	Gly	Leu	Val	Val	Glu	Glu	Asp
				515				520					525	
Leu	Phe	Asn	Thr	Leu	Pro	Pro	Glu	Val	Lys	Glu	Arg	Leu	Trp	Arg
				530				535					540	
Ala	Asp	Lys	Glu	Gln	Ala									
				545										
<210> 251														
<211> 20														
<212> DNA														
<213> Artificial Sequence														
<220>														
<223> Synthetic Oligonucleotide Probe														
<400> 251														
caacaatgag ggcacccaagc 20														
<210> 252														
<211> 24														

00000000000000000000000000000000

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 252
gatggctagg ttctggaggt tctg 24

<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 253
caacctgcag gagattgacc tcaaggacaa caacctaag accatcg 47

<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien

<400> 254
gcctgttgct gatgctgccg tgccgtactt gtcatggagc tggactgcg 50
gcgcctctccc gtcccgccgt ggttgctgct gctgccgtg ctgctggcc 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
ggcttcaggg cggtccaggc ggttctagca ctggatttg 300
gaaattgggc cccttgacag tgatctaaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tccccgtggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggt 450
tcagacatga tggttctcct gaagaccttc ttcaaggatgcc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
aagtgcact ttgcgggggt tgccttgggt gattcctgga tctccctgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700

2020-02-09

aagacaaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750
gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800
agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850
taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900
cagagccacc tagttgtct ttgtcagcgc cacgtgagac acctacaacg 950
agatgcctta agccagctca tgaatggccc catcagaaag aagctaaaaa 1000
ttattcctga gnatcaatcc tggggaggcc aggctaccaa cgtcttg 1050
aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100
gctggaggca gggatcaacg tgacgggtgt 1150
tcgttagatac catgggtcaq gaggcctggg tgcggaaact gaagtggcca 1200
gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250
taaatcttg gaaacatctg ctgggtgt 1300
tctactggat tctgaaagct ggtcatatgg ttccctctga ccaaggggac 1350
atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400
gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450
cgctgaagct gtaggaagcgc ccattcttcc ctgttatctaa ctggggctgt 1500
gatcaagaag gttctgacca gttctgcag aggataaaat cattgtctct 1550
ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagatttt 1600
taaaaaattg atttgtttt 1650
<210> 255
<211> 452
<212> PRT
<213> Homo Sapien

<400> 255
Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu
1 5 10 15
Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp
20 25 30
Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

PDB ID: 2B6D

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
50 55 60

Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
65 70 75

Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu
80 85 90

Ile Gly Pro Leu Asp Ser Asp Leu Lys Pro Arg Lys Thr Thr Trp
95 100 105

Leu Gln Ala Ala Ser Leu Leu Phe Val Asp Asn Pro Val Gly Thr
110 115 120

Gly Phe Ser Tyr Val Asn Gly Ser Gly Ala Tyr Ala Lys Asp Leu
125 130 135

Ala Met Val Ala Ser Asp Met Met Val Leu Leu Lys Thr Phe Phe
140 145 150

Ser Cys His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser
155 160 165

Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile Gly Leu Glu Leu
170 175 180

Tyr Lys Ala Ile Gln Arg Gly Thr Ile Lys Cys Asn Phe Ala Gly
185 190 195

Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser Val Leu
200 205 210

Ser Trp Gly Pro Tyr Leu Tyr Ser Met Ser Leu Leu Glu Asp Lys
215 220 225

Gly Leu Ala Glu Val Ser Lys Val Ala Glu Gln Val Leu Asn Ala
230 235 240

Val Asn Lys Gly Leu Tyr Arg Glu Ala Thr Glu Leu Trp Gly Lys
245 250 255

Ala Glu Met Ile Ile Glu Gln Asn Thr Asp Gly Val Asn Phe Tyr
260 265 270

Asn Ile Leu Thr Lys Ser Thr Pro Thr Ser Thr Met Glu Ser Ser
275 280 285

Leu Glu Phe Thr Gln Ser His Leu Val Cys Leu Cys Gln Arg His
290 295 300

Val Arg His Leu Gln Arg Asp Ala Leu Ser Gln Leu Met Asn Gly

305	310	315
Pro Ile Arg Lys Lys Leu Lys Ile Ile Pro Glu Asp Gln Ser Trp		
320	325	330
Gly Gly Gln Ala Thr Asn Val Phe Val Asn Met Glu Glu Asp Phe		
335	340	345
Met Lys Pro Val Ile Ser Ile Val Asp Glu Leu Leu Glu Ala Gly		
350	355	360
Ile Asn Val Thr Val Tyr Asn Gly Gln Leu Asp Leu Ile Val Asp		
365	370	375
Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu		
380	385	390
Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp		
395	400	405
Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn		
410	415	420
Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser		
425	430	435
Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln		
440	445	450
Gln Glu		

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tggcgcgcg cggggcgctg ctgctggcgc 50

tgcgtctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcacgtgggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250

ctcacggcgg cgcaactgctt tgaaacctat agtgaccta gtgatccctc 300

cggttggatg gtccagtttgc gccagctgac ttccatgcca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

cctcgctacc tgggaaattc accctatgac attgccttgg tgaagctgtc 450
 tgcacctgtc acctacacta aacacatcca gcccacatgt ctccaggcct 500
 ccacattga gtttgagaac cggacagact gctgggtgac tggctgggg 550
 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600
 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttccctcaagt 650
 acagtttccg caaggacatc tttggagaca tggtttgtc tggcaacgcc 700
 caaggcggga aggatgcctg cttcggtgac tcaggtggac cttggcctg 750
 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800
 gctgtggtcg gccaatcgg cccgggtgtct acaccaatat cagccaccac 850
 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900
 cccctctgg ccactactct tttccctct tctctggct ctcccactcc 950
 tggggccggt ctgagcctac ctgagccat gcagcctggg gccactgcca 1000
 agtcaggccc tggttcttctt ctgtcttgg tggtaataaaa cacattccag 1050
 ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaaa aaaaaaaaaa 1100

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met	Gly	Ala	Arg	Gly	Ala	Leu	Leu	Leu	Ala	Leu	Leu	Ala	Arg
1					5							15	

Ala	Gly	Leu	Arg	Lys	Pro	Glu	Ser	Gln	Glu	Ala	Ala	Pro	Leu	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

20					25							30	
----	--	--	--	--	----	--	--	--	--	--	--	----	--

Gly	Pro	Cys	Gly	Arg	Arg	Val	Ile	Thr	Ser	Arg	Ile	Val	Gly	Gly
35						40						45		

Glu	Asp	Ala	Glu	Leu	Gly	Arg	Trp	Pro	Trp	Gln	Gly	Ser	Leu	Arg
50							55					60		

Leu	Trp	Asp	Ser	His	Val	Cys	Gly	Val	Ser	Leu	Leu	Ser	His	Arg
65					70							75		

Trp	Ala	Leu	Thr	Ala	Ala	His	Cys	Phe	Glu	Thr	Tyr	Ser	Asp	Leu
80							85					90		

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
 95 100 105
 Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
 110 115 120
 Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
 125 130 135
 Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
 140 145 150
 Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
 155 160 165
 Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
 170 175 180
 Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
 185 190 195
 Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
 200 205 210
 Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
 215 220 225
 Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
 230 235 240
 Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val
 245 250 255
 Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val
 260 265 270
 Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met
 275 280 285
 Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu
 290 295 300
 Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val
 305 310

 <210> 258
 <211> 2427
 <212> DNA
 <213> Homo Sapien

 <400> 258
 cccacgcgtc cgccggacgacg tgggaaggac tccaaagcctg 50

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100
cgagccccga ccagcggagg acgctgcccc caggctgggt gtccctgggc 150
cgtcgccgacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200
aatgtggaa agactctcg agctggtgca ggctgtgtcg gatcccagct 250
ctcctcaata cgaaaaatac ctgaccctag agaatgtggc tbatctggtg 300
aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350
cgagccccag aagtgcatt ctgtgatcac acaggacttt ctgacttgc 400
ggctgagcat ccgacaagca gagctgctgc tccctggggc ttagtttcat 450
cactatgtgg gaggacctac gaaaacccat gtttaaggt ccccacatcc 500
ctaccagctt ccacaggcct tggcccccata tgtggacttt gtggggggac 550
tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600
gtgacaggga ctgttaggcct gcatctgggg gtaacccct ctgtgatccg 650
taagcgatac aacttgaccc cacaagacgt gggctctggc accagcaata 700
acagccaago ctgtgcccag ttccctggagc agtatttcca tgactcagac 750
ctggctcagt tcatgcccct ctccgggtggc aactttgcac atcaggcatc 800
atagccccgt gtggttggac aacagggccg gggccggggcc gggattgagg 850
ccagtctaga tgtgcagttac ctgtatgagtg ctgggtccaa catctccacc 900
tgggtctaca gtagccctgg ccggcatgag ggacaggagc ctttcctgca 950
gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000
ttagctatgg agatgatgag gactccctca gcagccgcata catccagccg 1050
gtcaacactg agctcatgaa ggctgcccgt cggggctctca ccctgctctt 1100
cgccctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150
agttccgccc taccttcct gcctccagcc cctatgtcac cacagtggga 1200
ggcacatcct tccaggaacc tttcctcata acaaatgaaa ttgttgacta 1250
tatcagtggt ggtggctca gcaatgtgtt cccacggcct tcataccagg 1300
aggaagctgt aacgaagttc ctgagctcta gcccccacct gccaccatcc 1350
agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcacttcc 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450
gaacctcgcc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500
gagcacagga tccttagtgg ccgcggccct cttggcttcc tcaacccaag 1550
gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600
atgagtcctg tctggatgaa gaggttagagg gccagggttt ctgctctgg 1650
cctggctggg atcctgtaac aggctgggg acaccaactt cccagcttt 1700
ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750
gtccccctgcc ctgaagctgg cagttcagtc ctttattctg ccctgttgg 1800
agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850
aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900
atcatactca ggtctcccta ctccctgcctt agattcctca ataagatgct 1950
gttaactagca tttttgaat gcctctccct ccgcattctca tctttctctt 2000
ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050
acttgatatt cattccccaa ttcaactgcaa ggagacctct actgtcacccg 2100
tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150
ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200
ccttacttag ctccaggtc ttaacttctc tgactactct tgtcttcctc 2250
tctcatcaat ttctgcttct tcatggaatg ctgacattca ttgctccatt 2300
tgttagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350
ctgacatctca caaccattac catctacta aataagactt tctatccaat 2400
aatgattgat acctcaaatg taaaaaa 2427

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu
1 5 10 15

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

20	25	30
Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu		
35	40	45
Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg		
50	55	60
Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln		
65	70	75
Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg		
80	85	90
Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala		
95	100	105
Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu		
110	115	120
Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Leu Pro Gly		
125	130	135
Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val		
140	145	150
Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro		
155	160	165
His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser		
170	175	180
Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly		
185	190	195
Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn		
200	205	210
Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln		
215	220	225
Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu		
230	235	240
Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala		
245	250	255
Ser Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly		
260	265	270
Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala		
275	280	285

Asn Ile Ser Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly
 290 295 300
 Gln Glu Pro Phe Leu Gln Trp Leu Met Leu Leu Ser Asn Glu Ser
 305 310 315
 Ala Leu Pro His Val His Thr Val Ser Tyr Gly Asp Asp Glu Asp
 320 325 330
 Ser Leu Ser Ser Ala Tyr Ile Gln Arg Val Asn Thr Glu Leu Met
 335 340 345
 Lys Ala Ala Ala Arg Gly Leu Thr Leu Leu Phe Ala Ser Gly Asp
 350 355 360
 Ser Gly Ala Gly Cys Trp Ser Val Ser Gly Arg His Gln Phe Arg
 365 370 375
 Pro Thr Phe Pro Ala Ser Ser Pro Tyr Val Thr Thr Val Gly Gly
 380 385 390
 Thr Ser Phe Gln Glu Pro Phe Leu Ile Thr Asn Glu Ile Val Asp
 395 400 405
 Tyr Ile Ser Gly Gly Phe Ser Asn Val Phe Pro Arg Pro Ser
 410 415 420
 Tyr Gln Glu Glu Ala Val Thr Lys Phe Leu Ser Ser Ser Pro His
 425 430 435
 Leu Pro Pro Ser Ser Tyr Phe Asn Ala Ser Gly Arg Ala Tyr Pro
 440 445 450
 Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp Val Val Ser Asn Arg
 455 460 465
 Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala Ser Thr Pro Val
 470 475 480
 Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg Ile Leu Ser
 485 490 495
 Gly Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr Gln Gln
 500 505 510
 His Gly Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu Ser
 515 520 525
 Cys Leu Asp Glu Glu Val Glu Gly Gln Gly Phe Cys Ser Gly Pro
 530 535 540
 Gly Trp Asp Pro Val Thr Gly Trp Gly Thr Pro Thr Ser Gln Leu
 545 550 555

Cys

<210> 260
<211> 1638
<212> DNA
<213> Homo Sapien

<400> 260
gccgcgcgtc ctctccggc gcccacacct gtctgagcgg cgcaaggcgc 50
cgccggccgg gcgggctgct cggcgccgaa cagtgtcggt catggcagg 100
attccagggc tcctcttct tctttttt ctgctctgtg ctgttggca 150
agttagccct tacagtgccc cctggaaacc cacttggcct gcataccgcc 200
tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250
ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300
taagggaaact ccactgccc cttacgaaga gccaagcaa tatctgtctt 350
atgaaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400
tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 450
ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcagg 500
tcagcatttt tgggaaggac ttctgtcata actacccttt ctaaacatca 550
gtgaagttat ccacgggctg caccggcacc ctgggtggcag agaagcatgt 600
cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650
cccagaagct tcgagtgccc ttcctaaagc ccaagttaa agatggtggt 700
cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaattca 750
gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaaggc 800
atgccaatga catcgccatg gattatgatt atgccttcct ggaactcaa 850
aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900
gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950
caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000
ttgctctacc agcaatgcga tgcccagcca gggggcagcg ggtctgggt 1050
ctatgtgagg atgtggaaga gacagcagca gaagtggag cgaaaaatta 1100

ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150
gatttcaacg tggctgtcag aatcactcct ctcaaatacg cccagattg 1200
ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250
ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300
ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
tgtgtgttaag gtgtcttata atctttacc tatttcttac aattgcaaga 1400
tgactggctt tactatttga aaactggttt gtgtatcata tcataatatca 1450
tttaaggcagt ttgaaggcat acttttgcatt agaaataaaaa aaaatactga 1500
tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgttttg 1550
caaactttga tttttatcc atctgaacctt gtttcaaaga tttatattaa 1600
atatttggca tacaagagat atgaaaaaaaaaaa 1638

<210> 261
<211> 383
<212> PRT
<213> Homo Sapien

<400> 261
 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu
 1 5 10 15
 Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro
 20 25 30
 Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr
 35 40 45
 Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
 50 55 60
 Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu
 65 70 75
 Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu
 80 85 90
 Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile
 95 100 105
 Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser
 110 115 120

Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser
 125 130 135
 Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe
 140 145 150
 Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val
 155 160 165
 Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly
 170 175 180
 Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu
 185 190 195
 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr
 200 205 210
 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys
 215 220 225
 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp
 230 235 240
 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro
 245 250 255
 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys
 260 265 270
 Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp
 275 280 285
 Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu
 290 295 300
 Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala
 305 310 315
 Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln
 320 325 330
 Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp
 335 340 345
 Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg
 350 355 360
 Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly
 365 370 375
 Asn Tyr Leu Asp Cys Arg Glu Gly
 380

<210> 262
<211> 1378
<212> DNA
<213> Homo Sapien

<400> 262
gcatcgccct gggtctctcg agcctgctgc ctgctccccccc gccccaccag 50
ccatggtggt ttctggagcg ccccccagcccc tgggtgggggg ctgtctcgcc 100
accttcacct ccctgctgct gctggcgtag acagccatcc tcaatgcggc 150
caggataacct gttccccccag cctgtgggaa gccccagcag ctgaaccggg 200
ttgtggcgcc cgaggacagc actgacagcg agtggccctg gatcgtgagc 250
atccagaaga atgggaccca ccactgcgcga ggttctctgc tcaccagccg 300
ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350
acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400
cgttccaga aggtgggtgt tgccctgggtg gagccccacc ctgtgtattc 450
ctggaaaggaa ggtgcctgtg cagacattgc cctggcggt ctgcagcgct 500
ccatacagtt ctcagagcgg gtcctgcca tctgcctacc tgatgcctct 550
atccacactcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600
ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650
ttcctatcat cgactcgaa gtctgcagcc atctgtactg gcggggagca 700
ggacagggac ccatcactga ggacatgctg tgtgcggct acttggaggg 750
ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800
tgacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850
gccgagcgca acaggccccgg ggtctacatc agcctctctg cgcaccgctc 900
ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950
gggggtggggc cctcaggggca ccgagccagg gctctggggc cgccgcgcgc 1000
tccttagggcg cagcgggacg cggggctcggt atctgaaagg cggccagatc 1050
cacatctgga tctggatctg cggcgccctc gggcggttc ccccgccgta 1100
aataggctca tctacactcta cctctggggg cccggacggc tgctgcggaa 1150

aggaaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200
 catcaggccc cgcccaacgg cctcatgtcc ccgcacccac gacttccggc 1250
 cccgcccccc ggccccagcg ctttgtgtataaaatgtt aatgattttt 1300
 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350
 ataaattattt tattctccaa aaaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien.

<400> 263

Met	Val	Val	Ser	Gly	Ala	Pro	Pro	Ala	Leu	Gly	Gly	Gly	Cys	Leu
1					5					10				15
Gly	Thr	Phe	Thr	Ser	Leu	Leu	Leu	Leu	Ala	Ser	Thr	Ala	Ile	Leu
					20					25				30
Asn	Ala	Ala	Arg	Ile	Pro	Val	Pro	Pro	Ala	Cys	Gly	Lys	Pro	Gln
					35					40				45
Gln	Leu	Asn	Arg	Val	Val	Gly	Gly	Glu	Asp	Ser	Thr	Asp	Ser	Glu
					50				55					60
Trp	Pro	Trp	Ile	Val	Ser	Ile	Gln	Lys	Asn	Gly	Thr	His	His	Cys
					65				70					75
Ala	Gly	Ser	Leu	Leu	Thr	Ser	Arg	Trp	Val	Ile	Thr	Ala	Ala	His
					80				85					90
Cys	Phe	Lys	Asp	Asn	Leu	Asn	Lys	Pro	Tyr	Leu	Phe	Ser	Val	Leu
					95				100					105
Leu	Gly	Ala	Trp	Gln	Leu	Gly	Asn	Pro	Gly	Ser	Arg	Ser	Gln	Lys
					110				115					120
Val	Gly	Val	Ala	Trp	Val	Glu	Pro	His	Pro	Val	Tyr	Ser	Trp	Lys
					125				130					135
Glu	Gly	Ala	Cys	Ala	Asp	Ile	Ala	Leu	Val	Arg	Leu	Glu	Arg	Ser
					140				145					150
Ile	Gln	Phe	Ser	Glu	Arg	Val	Leu	Pro	Ile	Cys	Leu	Pro	Asp	Ala
					155				160					165
Ser	Ile	His	Leu	Pro	Pro	Asn	Thr	His	Cys	Trp	Ile	Ser	Gly	Trp
					170				175					180

Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
 185 190 195

 Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
 200 205 210

 Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
 215 220 225

 Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
 230 235 240

 Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
 245 250 255

 Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
 260 265 270

 Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
 275 280 285

 Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
 290 295 300

 Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
 305 310 315

Arg Ser

<210> 264

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 264

gtccgcaagg atgcctacat gttc 24

<210> 265

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 265

gcagaggtgt ctaaggttg 19

<210> 266

<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 266
agctctagac caatgccagc ttcc 24

<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcattg 45

<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 268
gggaaattca ccctatgaca ttgcc 25

<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 269
gaatgccctg caagcatcaa ctgg 24

<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50

<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 271
gcggaagggc agaatgggac tccaaag 26

<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 272
cagccctgcc acatgtgc 18

<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 273
tactgggtgg tcagcaac 18

<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 274
ggcgaagagc agggtgagac cccg 24

<210> 275
<211> 45

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 275
gccctcatcc tctctggcaa atgcagttac agcccgagc ccgac 45

<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 276
ggcaggat tccagggtc c 21

<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 277
ggatatgaca gcaggttc 18

<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 278
tgacaatgac cgaccagg 18

<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 279
gcatcgatt gctggtagag caag 24

<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

BIOLOGICAL SEQUENCES

<223> Synthetic Oligonucleotide Probe

<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataaccgc ctccc 45

<210> 281

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 281
cgtctcgagc gtcctataca gttcccttgc ccca 34

<210> 282

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 282

tggaggggga gcgggatgct tgtctggcgc actccggggg cccccctcatg 50

tgccaggtgg a 61

<210> 283

<211> 119

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 283

ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50

gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100

atgctgtgtc ccggctact 119

<210> 284

<211> 1875

<212> DNA

<213> Homo Sapien

<400> 284

gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50

ccgctactgc tactgctggc ggccaccaca ggccccgttg gagccctcac 100

agatgaggag aaacgttga tggtgagct gcacaacctc taccgggccc 150
aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200
ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250
caaggagcgc gggcgccgag gcgagaatct gttcgccatc acagacgagg 300
gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350
tacaacctca gcgccgccac ctgcagccca ggccagatgt gcggccacta 400
cacgcaggta gtagggcca agacagagag gatcggtgt gtttcccact 450
tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500
tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550
ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600
tctgtgaacc catcggaaagc ccggaaagatg ctcaggatt gccttacctg 650
gtaactgagg ccccatcctt ccggcgact gaagcatcag actctaggaa 700
aatgggtact ctttctccc tagcaacggg gattccggct ttcttgtaa 750
cagaggtctc aggctccctg gcaaccaagg ctctgcctgc tgtggaaacc 800
caggccccaa cttccttagc aacgaaagac ccgcctcca tggcaacaga 850
ggctccaccc tgcgtaaaca ctgaggtccc ttccatTTTgcagctcaca 900
gcctgccctc cttggatgag gagccagtta cttccccaa atcgacccat 950
gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000
ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050
caagggaaact cttccccat gcccaggagg aggctgaggg tgaggctgag 1100
ttgcctcctt ccagtgaggt cttggcctca gttttccag cccaggacaa 1150
gcacgggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200
agtccctgccc caatttcccc aatacccttg ccaccgctaa tgccacgggt 1250
ggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300
caagcctagc gttgtgtcag ggctgaactc gggccctggc catgtgtggg 1350
gcctcctcctt gggactactg ctccctgcctc ctctgggttt ggctggaatc 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450
 catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500
 ggccctccgg aaggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
 atcctggagg cacaaggcct ggctggctgc gagtcagga ggccgcctga 1600
 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtccctg 1650
 ggggtggag gatttggagg agctcaactgc ctacctggcc tggggctgtc 1700
 tgcccacaca gcatgtgcgc tctccctgag tgcctgtgta gctggggatg 1750
 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800
 tgagtggggg aggcaaggac gaggaaagga aagtaactcc tgactctcca 1850
 ataaaaaacct gtccaaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met	His	Gly	Ser	Cys	Ser	Phe	Leu	Met	Leu	Leu	Leu	Pro	Leu	Leu		
1									5					10		15
Leu	Leu	Leu	Val	Ala	Thr	Thr	Gly	Pro	Val	Gly	Ala	Leu	Thr	Asp		
									20					25		30
Glu	Glu	Lys	Arg	Leu	Met	Val	Glu	Leu	His	Asn	Leu	Tyr	Arg	Ala		
									35					40		45
Gln	Val	Ser	Pro	Thr	Ala	Ser	Asp	Met	Leu	His	Met	Arg	Trp	Asp		
									50					55		60
Glu	Glu	Leu	Ala	Ala	Phe	Ala	Lys	Ala	Tyr	Ala	Arg	Gln	Cys	Val		
									65					70		75
Trp	Gly	His	Asn	Lys	Glu	Arg	Gly	Arg	Arg	Gly	Glu	Asn	Leu	Phe		
									80					85		90
Ala	Ile	Thr	Asp	Glu	Gly	Met	Asp	Val	Pro	Leu	Ala	Met	Glu	Glu		
									95					100		105
Trp	His	His	Glu	Arg	Glu	His	Tyr	Asn	Leu	Ser	Ala	Ala	Thr	Cys		
									110					115		120
Ser	Pro	Gly	Gln	Met	Cys	Gly	His	Tyr	Thr	Gln	Val	Val	Trp	Ala		
									125					130		135

Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu
 140 145 150
 Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr
 155 160 165
 Glu Pro Pro Gly Asn Val Lys Gly Lys Arg Pro Tyr Gln Glu Gly
 170 175 180
 Thr Pro Cys Ser Gln Cys Pro Ser Gly Tyr His Cys Lys Asn Ser
 185 190 195
 Leu Cys Glu Pro Ile Gly Ser Pro Glu Asp Ala Gln Asp Leu Pro
 200 205 210
 Tyr Leu Val Thr Glu Ala Pro Ser Phe Arg Ala Thr Glu Ala Ser
 215 220 225
 Asp Ser Arg Lys Met Gly Thr Pro Ser Ser Leu Ala Thr Gly Ile
 230 235 240
 Pro Ala Phe Leu Val Thr Glu Val Ser Gly Ser Leu Ala Thr Lys
 245 250 255
 Ala Leu Pro Ala Val Glu Thr Gln Ala Pro Thr Ser Leu Ala Thr
 260 265 270
 Lys Asp Pro Pro Ser Met Ala Thr Glu Ala Pro Pro Cys Val Thr
 275 280 285
 Thr Glu Val Pro Ser Ile Leu Ala Ala His Ser Leu Pro Ser Leu
 290 295 300
 Asp Glu Glu Pro Val Thr Phe Pro Lys Ser Thr His Val Pro Ile
 305 310 315
 Pro Lys Ser Ala Asp Lys Val Thr Asp Lys Thr Lys Val Pro Ser
 320 325 330
 Arg Ser Pro Glu Asn Ser Leu Asp Pro Lys Met Ser Leu Thr Gly
 335 340 345
 Ala Arg Glu Leu Leu Pro His Ala Gln Glu Glu Ala Glu Ala Glu
 350 355 360
 Ala Glu Leu Pro Pro Ser Ser Glu Val Leu Ala Ser Val Phe Pro
 365 370 375
 Ala Gln Asp Lys Pro Gly Glu Leu Gln Ala Thr Leu Asp His Thr
 380 385 390
 Gly His Thr Ser Ser Lys Ser Leu Pro Asn Phe Pro Asn Thr Ser
 395 400 405

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
 410 415 420
 Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
 425 430 435
 Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
 440 445 450
 Leu Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
 455 460

<210> 286
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 286
 tcctgcagtt tcctgatgc 19

<210> 287
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 287
 ctcatattgc acaccagtaa ttcg 24

<210> 288
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 288
 atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45

<210> 289
 <211> 3662
 <212> DNA
 <213> Homo Sapien

<400> 289
 gtaactgaag tcaggcttt catttggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgggttctc cctctgctt 100
 cttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
 caaggcaagt tccatgagcc accttcaaag cttcgagaa gtgaaactga 200
 acaacaatga attggagacc attccaaatc tgggaccagt ctggcaaat 250
 attacacttc tctccttggc tgaaaacagg attgtgaaa tactccctga 300
 acatctgaaa gagttcagt ccctgaaac tttggacctt agcagcaaca 350
 atattcaga gctccaaact gcattccag ccctacagct caaatatctg 400
 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt atttgacaa 450
 tttggccaac acactcattt tgtaaagct gaacaggaac cgaatctcag 500
 ctatcccacc caagatgtt aaactgcccc aactgcaaca tctcgaattt 550
 aaccgaaaca agattaaaaa tgttagatgga ctgacattcc aaggcattgg 600
 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650
 atggagctt ttggggctg agcaacatgg aaatttgca gctggaccat 700
 aacaaccaa cagagattac caaaggctgg cttaacggct tgctgatgct 750
 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800
 cctggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850
 ttatcaaggt tagatgattc aagcttcattt ggcctaagct tactaaatac 900
 actgcacatt gggacaaca gagtcagcta cattgctgat tggcattttcc 950
 gggggcttcc cagttaaag actttggatc tgaagaacaa tgaaatttcc 1000
 tggactattt aagacatgaa tgggttcc tctggcttgc acaaactgag 1050
 gcgactgata ctccaaggaa atcggatccg ttcttattact aaaaaagctt 1100
 tcactggttt ggtgcattt gggatcttgc acctgagtga caacgcaatc 1150
 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200
 gcatttaat acatcaagcc ttttgcgttgc tggccagctt aatggctcc 1250
 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300
 gcccatttttttcc agctgctaaa aggaagaagc attttgcttgc ttagccaga 1350

tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400
aaacacagtc ggcaataaaa gttccaatt tgagttcat ctgctcagct 1450
gccagcagca gtgattcccc aatgacttt gcttggaaaa aagacaatga 1500
actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaga 1550
gtggcgaggt gatggagtat accaccatcc ttcggctgctg cgaggtggaa 1600
tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650
atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700
ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750
gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaaggaa 1800
tgggggcaca gacttcccag ctgcacggga gagacgcattt catgtgatgc 1850
ccgaggatga cgtgttctt atcgtggatg tgaagataga ggacattggg 1900
gtatacagct gcacagctca gaacagtgtca ggaagtattt cagcaaatgc 1950
aactctgact gtcctagaaa caccatcatt tttcgccca ctgttggacc 2000
gaactgtaac caagggagaa acagccgtcc tacagtgtcat tgctggagga 2050
agccctccccc ctaaactgaa ctggacccaa gatgatagcc cattgggttgt 2100
aaccgagagg cactttttg cagcaggcaa tcagcttctg attattgtgg 2150
actcagatgt cagtgtatgtc gggaaataca catgtgagat gtctaaccacc 2200
cttggcactg agagagggaaa cgtgcgcctc agtgtgatcc ccactccaaac 2250
ctgcgactcc cctcagatga cagcccccattc gttagacgt gacggatggg 2300
ccactgtggg tgcgtgtatc atagccgtgg tttgctgtgt ggtgggcacg 2350
tcactcgtgt gggtggatcat catataccac acaaggcgga ggaatgaaga 2400
ttgcagcatt accaacacacg atgagaccaa cttgcagca gatattccctt 2450
gttatttgc atctcagggaa acgttagctg acaggcagga tgggtacgtg 2500
tcttcagaaaa gtggaaagcca ccaccagttt gtcacatctt caggtgctgg 2550
attttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600
gcagtgaago tgcgtggaa gctgccacag atctgttccct ttgtccgttt 2650
ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700

tcctttgaa acatatcata caggttgcag tcctgaccca agaacagtt 2750
 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800
 tggtcacatc cttcagaaga atcctgcgaa cggagctca gtaatatatc 2850
 gtggcattca catgtgagga agctacttaa cactagttac tctcacaatg 2900
 aaggacctgg aatgaaaaat ctgtgtctaa acaagtccctc ttttagattt 2950
 agtgcaaatac cagagccagc gtcgggtgcc tcgagtaatt ctttcatggg 3000
 taccttgaa aaagctctca ggagacactca cctagatgcc tattcaagct 3050
 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100
 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150
 agattttcag gaagaaaatac acatttgcac ctttaaacag acttttagaaa 3200
 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250
 tgagacaaa ggaaaagctt aacatactac ctcaagtgaa cttttattt 3300
 aaagagagag aatcttatgt tttttaatg gagttatgaa ttttaaaagg 3350
 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400
 aaatttttat actggaaatg atgctcatat aagaataacct ttttaaacta 3450
 ttttttaact ttgtttatg caaaaaagta tcttacgtaa attaatgata 3500
 taaatcatga ttatttatg tattttata atgccagatt tcttttatg 3550
 gaaaatgagt tactaaagca ttttaataa tacctgcctt gtaccattt 3600
 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaaatg 3650
 tgtcaatttg aa 3662

<210> 290
 <211> 1059
 <212> PRT
 <213> Homo Sapien

<400> 290
 Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His
 1 5 10 15
 Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
 20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 35 40 45
 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 50 55 60
 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 65 70 75
 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 80 85 90
 Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 95 100 105
 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 110 115 120
 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 125 130 135
 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 140 145 150
 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn
 155 160 165
 Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala
 170 175 180
 Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met
 185 190 195
 Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu
 200 205 210
 Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly
 215 220 225
 Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn
 230 235 240
 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu
 245 250 255
 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser
 260 265 270
 Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn
 275 280 285
 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser

290	295	300
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
305	310	315
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
320	325	330
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
335	340	345
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
350	355	360
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
365	370	375
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
380	385	390
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
395	400	405
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
410	415	420
Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp		
425	430	435
Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala		
440	445	450
Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser		
455	460	465
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu		
470	475	480
Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln		
485	490	495
Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu		
500	505	510
Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn		
515	520	525
His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn		
530	535	540
Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg		
545	550	555

Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 560 565 570
 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 575 580 585
 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 590 595 600
 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 605 610 615
 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 620 625 630
 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 635 640 645
 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 650 655 660
 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 665 670 675
 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 680 685 690
 Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 695 700 705
 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 710 715 720
 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 725 730 735
 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 740 745 750
 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 755 760 765
 Trp Val Val Ile Ile Tyr His Thr Arg Arg Asn Glu Asp Cys
 770 775 780
 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 785 790 795
 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 800 805 810

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 815 820 825
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 830 835 840
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 845 850 855
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 860 865 870
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 875 880 885
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 890 895 900
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 905 910 915
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 920 925 930
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 935 940 945
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu
 950 955 960
 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
 965 970 975
 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
 980 985 990
 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
 995 1000 1005
 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
 1010 1015 1020
 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
 1025 1030 1035
 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
 1040 1045 1050
 Asn Phe Gln Ser Tyr Asp Leu Asp Thr
 1055

<210> 291
 <211> 2906

<212> DNA
<213> Homo Sapien

<400> 291
ggggagagga attgaccatg taaaaggaga cttttttt tggtggtggt 50
ggctgttggg tgccttgcaa aatgaagga tgcaggacgc agcttcctcc 100
tggAACCGAA CGCAATGGAT AAACtGATTG TGCAAGAGAG AAGGAAGAAC 150
gaagctttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200
acacagggag cattcaagaa tgaataaac cagagttaga cccgcggggg 250
ttggtgtgtt ctgacataaa taaataatct taaAGCAGCT gttccctcc 300
ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350
agaaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400
gatattttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450
ggtgtggtgg tgtttcctt tcttttgaa tttcccacaa gaggagagga 500
aattaataat acatctgcaa agaaattca gagaagaaaa gttgaccgcg 550
gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600
tttgtgccta tggtgactaa aattgacgga taattgcagt tggattttc 650
ttcatcaacc tccttttt taaatttttta ttcctttgg tatcaagatc 700
atgcgtttc tcttggctt aaccacctgg atttccatct ggatgttgct 750
gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800
ataaaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850
ataggtccta gtttaacag ggcctattt gacccctgc ttgtggtgct 900
gctggctt caacttcttg tggtggctgg tctggtgccg gctcagacct 950
gccctctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgggtt 1000
cgaaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050
gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100
agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150
accattgaaa ttggggctt caatggtctg gcgAACCTCA acactctgga 1200
actcttqac aatcqtcctta ctaccatccc gaatggagct tttgtatact 1250

tgtctaaact gaaggagctc tggttgcgaa acaacccat tgaaagcatc 1300
ccttcttatg ctttaacag aattccttct ttgcgccgac tagacttagg 1350
ggaattgaaa agacttcat acatctaga aggtgcctt gaaggtctgt 1400
ccaacttgag gtatttgaac ctgccatgt gcaaccccg ggaaatccct 1450
aacctcacac cgctcataaa actagatgag ctggatctt ctggaatca 1500
tttatctgcc atcaggcctg gctcttcca gggtttgatg caccttcaa 1550
aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
gacaacccatc agtcaactgt ggagatcaac ctggcacaca ataatcta 1650
attactgcct catgacccct tcactccctt gcatcatcta gagcggatac 1700
attacatca caacccttgg aactgttaact gtgacatact gtggctcagc 1750
tggtgataa aagacatggc cccctcgaac acagcttggt gtgcccggtg 1800
taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850
attacttcac atgctatgtc ccggtgattt tggagcccc tgcagaccc 1900
aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950
cctgacatct gtatcttggg ttactccaaa tggAACAGTC atgacacatg 2000
gggcgtacaa agtgcggata gctgtgctca gtgatggta gttaaatttc 2050
acaaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100
ttccgttggg aatactactg ctccagccac cctgaatgtt actgcagcaa 2150
ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200
ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250
agtggtcgac tgggagacca ccaatgtgac cacctcttc acaccacaga 2300
gcacaaggta gacagagaaaa accttcacca tcccagtgac tgatataaac 2350
agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
tgggtttt gtggccatca cactcatggc tgcagtgtatg ctggtcattt 2450
tctacaagat gaggaagcag caccatggc aaaaccatca cgccccaaaca 2500
aggactgttggaaattattaa tgtggatgtt gagattacgg gagacacacc 2550

catggaaagc cacctgcccc tgcctgctat cgagcatgag cacctaaatc 2600
 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
 ataaaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700
 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750
 caaaaaacaa acaatcaaaa aaaaagacag tttataaaa atgacacaaa 2800
 tgactgggct aaatctactg tttcaaaaaa gtgtcttac aaaaaaaca 2850
 aaaagaaaaag aaatttattt attaaaaattt ctattgtgat ctaaaggaga 2900
 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met	Leu	Asn	Lys	Met	Thr	Leu	His	Pro	Gln	Gln	Ile	Met	Ile	Gly
1														
Pro	Arg	Phe	Asn	Arg	Ala	Leu	Phe	Asp	Pro	Leu	Leu	Val	Val	Leu
					20					25				30
Leu	Ala	Leu	Gln	Leu	Leu	Val	Val	Ala	Gly	Leu	Val	Arg	Ala	Gln
					35				40					45
Thr	Cys	Pro	Ser	Val	Cys	Ser	Cys	Ser	Asn	Gln	Phe	Ser	Lys	Val
					50				55					60
Ile	Cys	Val	Arg	Lys	Asn	Leu	Arg	Glu	Val	Pro	Asp	Gly	Ile	Ser
					65				70					75
Thr	Asn	Thr	Arg	Leu	Leu	Asn	Leu	His	Glu	Asn	Gln	Ile	Gln	Ile
					80				85					90
Ile	Lys	Val	Asn	Ser	Phe	Lys	His	Leu	Arg	His	Leu	Glu	Ile	Leu
					95				100					105
Gln	Leu	Ser	Arg	Asn	His	Ile	Arg	Thr	Ile	Glu	Ile	Gly	Ala	Phe
					110				115					120
Asn	Gly	Leu	Ala	Asn	Leu	Asn	Thr	Leu	Glu	Leu	Phe	Asp	Asn	Arg
					125				130					135
Leu	Thr	Thr	Ile	Pro	Asn	Gly	Ala	Phe	Val	Tyr	Leu	Ser	Lys	Leu
					140				145					150
Lys	Glu	Leu	Trp	Leu	Arg	Asn	Asn	Pro	Ile	Glu	Ser	Ile	Pro	Ser

155	160	165
Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly		
170	175	180
Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly		
185	190	195
Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg		
200	205	210
Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp		
215	220	225
Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln		
230	235	240
Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile		
245	250	255
Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val		
260	265	270
Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp		
275	280	285
Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His		
290	295	300
Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp		
305	310	315
Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys		
320	325	330
Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp		
335	340	345
Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro		
350	355	360
Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys		
365	370	375
Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn		
380	385	390
Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val		
395	400	405
Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp		
410	415	420

Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr
 425 430 435
 Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro
 440 445 450
 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser
 455 460 465
 Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro
 470 475 480
 Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
 485 490 495
 Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
 500 505 510
 Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
 515 520 525
 Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
 530 535 540
 Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
 545 550 555
 Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
 560 565 570
 Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
 575 580 585
 Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
 590 595 600
 Tyr Lys Ser Pro Phe Asn His Thr Thr Val Asn Thr Ile Asn
 605 610 615
 Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
 620 625 630
 Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
 635 640

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttctttcg 50

gttccctcc tgctgttgg gggcatgaaa gggcttcgcc gccggggagta 100
aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150
gagggcgggc gtgcacccctc ggctggaagt ttgtgccggg ccccgagcgc 200
gcgcggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250
gcgcgcgcgag cttccgtgcg cgccgcgcgg gttggggct gctgctgtgc 300
gcgggtgctgg ggccgcgtgg ccggtccgac agcggcggtc gcggggaaact 350
cgggcagccc tctgggttag ccgcgcgcg cccatgcgcc actacctgcc 400
gctgcctcgg ggacctgctg gactgcagtc gtaaggcgct agcgcgtctt 450
cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500
attatcttc atcaaggcaa gttccatgag ccaccttcaa agccttcgag 550
aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600
gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650
aatactccct gaacatctga aagagttca gtcccttcaa actttggacc 700
tttagcagcaa caatattca gagctccaaa ctgcatttcc agccctacag 750
ctcaaataatc tgtatctcaa cagcaaccga gtcacatcaa tggAACCTGG 800
gtatTTGAC aatttggcca acacactcct tgtgttaaag ctgaacagga 850
accgaatctc agctatccca cccaaAGATGT ttAAACTGCC ccaactgcaa 900
catctcgaat tgaaccgaaa caagattaa aatgttagatg gactgacatt 950
ccaaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000
cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050
cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100
cttgctgatg ctgcaggaac ttcatctcag cccaaatgcc atcaacagga 1150
tcagccctga tgcctggag ttctgccaga agctcagtga gctggaccta 1200
actttcaatc acttatcaag gtttagatgat tcaagcttcc ttggcctaag 1250
cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300
attgtgcctt ccgggggctt tccagttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctggct 1400
tgacaaaactg aggcgactga tactccaagg aaatcgatc cgttctatta 1450
ctaaaaaaagc cttcaactggt ttggatgcat tggagcatct agacctgagt 1500
gacaacgcaa tcatagtcttt acaaggcaat gcatttcac aaatgaagaa 1550
actgcaacaa ttgcatttaa atacatcaag cctttgtgc gattgccagc 1600
taaaaatggct cccacagtgg gtggcgaaa acaactttca gagctttgta 1650
aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcattttgc 1700
tgttagccca gatggcttg tgtgtgatga tttcccaaa cccagatca 1750
cggttcagcc agaaacacag tcggcaataa aaggtccaa tttgagttc 1800
atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttgaa 1850
aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900
tccgggcca aggtggcgag gtgatggagt ataccaccat cttcggctg 1950
cgcgaggtgg aatttgcag tgagggaaa tatcagtgtg tcataatccaa 2000
tcacttttgt tcatactact ctgtcaaagc caagcttaca gtaaatatgc 2050
ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100
atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150
ctggcagaag gatggggca cagacttccc agctgcacgg gagagacgca 2200
tgcatgtat gccccaggat gacgtttct ttatcgtgga tgtgaagata 2250
gaggacattt ggttatacag ctgcacagct cagaacagtg caggaagtat 2300
ttcagcaaat gcaactctga ctgtcctaga aacaccatca ttttgcggc 2350
caactgttgcgca ccgaactgtt accaaggag aaacagccgt cttacagtgc 2400
attgtggag gaaggccctcc ccctaaactg aactggacca aagatgatag 2450
cccattggtg gtaaccgaga ggcactttt tgcaagcaggc aatcagcttc 2500
tgattattgt ggactcagat gtcagtgtat ctggaaata cacatgtgag 2550
atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtat 2600
ccccactcca acctgcgact cccctcagat gacagcccc tcgttagacg 2650
atgacggatg ggccactgtg ggtgtcgtga tcataccgt ggtttgctgt 2700

ttataataaaa tgtgtcaatt tgaaaaaaaaaaaaaaa 4050
 aaa 4053

<210> 294
 <211> 1119
 <212> PRT
 <213> Homo Sapien

<400> 294
 Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu
 1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly
 20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
 35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys
 50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
 65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
 80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 110 115 120

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 185 190 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

215	220	225
Lys Ile Lys Asn Val Asp Gly Leu Thr	Phe Gln Gly Leu Gly Ala	
230	235	240
Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met		
245	250	255
Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu		
260	265	270
Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly		
275	280	285
Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn		
290	295	300
Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu		
305	310	315
Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser		
320	325	330
Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn		
335	340	345
Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser		
350	355	360
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
365	370	375
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
380	385	390
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
395	400	405
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
410	415	420
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
425	430	435
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
440	445	450
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
455	460	465
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
470	475	480

BDBESEED

Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp
485 490 495

Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala
500 505 510

Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser
515 520 525

Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu
530 535 540

Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln
545 550 555

Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu
560 565 570

Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn
575 580 585

His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn
590 595 600

Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg
605 610 615

Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
620 625 630

Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
635 640 645

Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
650 655 660

Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
665 670 675

Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
680 685 690

Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
695 700 705

Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
710 715 720

Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
725 730 735

Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
740 745 750

Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 755 760 765
 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 770 775 780
 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 785 790 795
 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 800 805 810
 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 815 820 825
 Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys
 830 835 840
 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 845 850 855
 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 860 865 870
 Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 875 880 885
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 890 895 900
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 905 910 915
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 920 925 930
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 935 940 945
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 950 955 960
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 965 970 975
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 980 985 990
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 995 1000 1005
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu

1010 1015 1020

Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
1025 1030 1035

Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
1040 1045 1050

Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
1055 1060 1065

Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
1070 1075 1080

Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
1085 1090 1095

His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
1100 1105 1110

Asn Phe Gln Ser Tyr Asp Leu Asp Thr
1115

<210> 295
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 295
ggaaccgaat ctcagcta 18

<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 296
cctaaactga actggacca 19

<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

700 700 700 700 700 700

<400> 297
ggctggagac actgaacct 19

<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 298
acagctgcac agctcagaac agtg 24

<210> 299

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 299
cattcccgat ataaaaattt tc 22

<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 300
gggtcttggt gaatgagg 18

<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 301
gtgcctctcg gttaccacca atgg 24

<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence

198
200 202 204 206 208 210

<220>
<223> Synthetic Oligonucleotide Probe

<400> 302
gcggccactg ttggaccgaa ctgtAACCAA gggAGAAACA gccgtcctac 50

<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 303
gcctttgaca accttcagtc actagtgg 28

<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 304
ccccatgtgt ccatgactgt tccc 24

<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 305
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45

<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 306
actccaagga aatcgatcc gttc 24

<210> 307
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 307
ttagcagctg aggatggca caac 24

<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 308
actccaagga aatcgatcc gttc 24

<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50

<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien

<400> 310

caaaacttgc gtcgcggaga gcgcggcagct tgacttgaat ggaaggagcc 50
cgagcccccgcg gagcgccagct gagactgggg gagcgccgttc ggctgtggg 100
gcgcggctcg gcccggggc gcaggcaggga agggaaagct gtggctgtgcc 150
ctgctccacg aggccgcact ggtgtgaacc gggagagccc ctgggtggtc 200
ccgtcccccta tccctccttt atatagaaac cttccacact gggaaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttcccgagttt acagattttt acagatacca aatggaaggc 350
gaggaggcag aacagcctgc ctgggtccat cagccctggc gcccaggcgc 400

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450
tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgc 500
gtgagggccc caggatttg ccgaagtggc ggccacagcc tgagccccga 550
agagaacgaa tttgcggagg aggagccggt gctggtaactg agccctgagg 600
agcccccggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt 650
tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700
gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750
tggaaaagat ctaccctgag gagctctccc ggctgcacccg gctggagaca 800
ctgaacctgc aaaacaaccc cctgacttcc cgagggctcc cagagaaggc 850
gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900
tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950
gctgccaact attcaccaa gatctatggg ctcaccccttgc gccagaagcc 1000
aaacttgagg tctgtgtacc tgacacaacaa caagctggca gacgcccggc 1050
tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100
tccagcaact tcctgcgcca cgtgcccag cacctgccgc ctgcccgtta 1150
caagctgcac ctcaagaaca acaagctggc gaagatcccc ccggggccct 1200
tcagcgagct gagcagccctg cgcgagctat acctgcagaa caactacctg 1250
actgacgagg gcctggacaa cgagaccttc tggaaagctct ccagcctggc 1300
gtacctggat ctgtccagca acaacctgtc tcgggtccca gctggctgc 1350
cgccgacccct ggtgctgctg cacttggaga agaacgccc acggagcgtg 1400
gacgcgaatg tgctgacccc catccgcagc ctggagttacc tgctgctgca 1450
cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500
tcaagcggtt gcacacggtg cacctgtaca acaacgcgtt ggagcgcgtg 1550
cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgacacaacca 1600
gatcacagggc attggcccg aagactttgc caccacctac ttccctggagg 1650
agctcaacct cagctacaac cgcatcacca gcccacaggt gcaccgcgac 1700

gccttcggca agctgcgcct gctgcgctcg ctggacctgt cgggcaacccg 1750
gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800
tcaagcgcaa tgagctggct gccttggcac gagggggcgct ggccccatg 1850
gctcagctgc gtgagctgta cctcaccaggc aaccgactgc gcagccgagc 1900
cctggggccc cgtgcctggg tggacctcgc ccattctgcag ctgctggaca 1950
tcgcccggaa tcagctcaca gagatccccg aggggctccc cgagtcaatt 2000
gagtacctgt acctgcagaa caacaagatt agtgcggtgc cggccaatgc 2050
cttcgactcc acgccccacc tcaagggat ctttctcagg tttacaaggc 2100
tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150
caggtcttgg acattgaagg caacttagag tttggtgaca tttccaaggaa 2200
ccgtggccgc ttggggaaagg aaaaggagga ggaggaagag gaggaggagg 2250
aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300
gatggaccgc cggactctt tctgcagcac acgcctgtgt gctgtgagcc 2350
ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
tcccacatga cacgggctga cacagtctca tatccccacc cttcccacg 2450
gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500
agctcagcca cacacaacta ccctccaaac caccacagtc tctgtcacac 2550
ccccactacc gctgccacgc cctctgaatc atgcagggaa gggctgccc 2600
ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650
tgcttatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700
cagccctcca aagcctatgc cacagacagc tttggccca gccagaatca 2750
gccatagcag ctcggcgctt gccctgtcca tctgtccgtc cgttccctgg 2800
agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850
ggaactcaca aaagctggct ttatttcctt tcccatccta tggggacagg 2900
agccttcagg actgctggcc tggcctggcc caccctgctc ctccaggtgc 2950
tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
caggcacttt tccaaatgggc aagcccagtg gaggcaggat gggagagccc 3050

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cctgggtgct gctgggcct tggggcagga gtgaagcaga ggtgatgggg 3100
ctgggctgag ccagggagga aggaccacgc tgcacccagg agacaccttt 3150
gttcttcagg cctgtgggg aagttccggg tgcctttatt ttttatttctt 3200
ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttggata 3250
aaaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaaa 3296

<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 311
gcattggcccg cgagactttg cc 22

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 312
gcggccacgg tccttgaaa tg 22

<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 313
tgaggaggct caacccctcaga tacaaccgca tcaccagccc acagg 45

<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien

<400> 314
gggaggggggc tccggggcgcc ggcgcggcaga cctgcgtccgg ccgcgcgcct 50
cgccgcgtgtc ctccggggagc ggcgcggcaga gcccggggcg 100

.....

gggttcctcg agactctcg aggggcgcct cccatggcg cccaccaccc 150
caacctgttc ctgcgcgccc actgcgcgtgc gccccaggac ccgctgccc 200
acatggattt tctcctggcg ctgggtctgg tatcctcgct ctacctgcag 250
gcggccgccc agttcgacgg gaggtggccc aggcaaatacg tgtcatcgat 300
tggcctatgt cggttatggtg ggaggattga ctgctgctgg ggctgggctc 350
gccagtcttg gggacagtgt cagcctgtgt gccaaaccacg atgcaaacat 400
ggtaatgta tcgggccaata caagtgcaga tgcatcctg gttatgctgg 450
aaaaacctgt aatcaagatc taaatgagtg tggcctgaag cccggccct 500
gtaagcacag gtgcataaaca acttacggca gctacaagtg ctactgtctc 550
aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600
ctccatggca aactgtcagt atggctgtga tgggttaaa ggacaaatac 650
ggtgcagtg cccatccccct ggccctgcacc tggctcctga tgggaggacc 700
tgttagatg ttgatgaatg tgctacagga aggcctcct gccctagatt 750
taggcaatgt gtcaacactt ttgggagcta catctgcaga tgtcataaag 800
gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850
gaatgctcac ttggtcagta tcagtcgcgc agcttgctc gatgttataa 900
cgtacgtggg tcctacaagt gcaaatagtaa agaaggatac cagggtgatg 950
gactgacttg tgtgtatatac ccaaaaagtta tgattgaacc ttcaggtcca 1000
attcatgtac caaaggaaaa tggtaccatt ttaaagggtg acacaggaaa 1050
taataattgg attcctgtatg ttggaaagtac ttggggccct ccgaagacac 1100
catatattcc tcctatcatt accaacaggc ctacttctaa gccaaacaaca 1150
agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200
cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250
caaccaccgg actgacaact atagcaccag ctgccagtg acctccagga 1300
gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350
agatgtgttc agtgttctgg tacacagttg taatttgac catggacttt 1400

© 2007 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450
gaccgcagcg gtggacaata tctgacagtgc tggcagccaa aagccccagg 1500
ggaaaaagct gcacgcgttgg tgctacacctc cggccgcctc atgcattca 1550
gggacctgtgc cctgtcatttc aggccacaagg tgacggggct gcactctggc 1600
acactccagg tgtttgcgag aaaacacggt gcccacggag cagccctgtgc 1650
gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700
gggctgacat caagagcgaa tcacaaagat gattaaagggttggaaaaaa 1750
agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800
agaagactga gggcaaacccattgatggtt ttcaagtata tgaagggtt 1850
gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900
caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950
ggccattgtt agaataacttc ataaaaaaaaa aagtgtgaaa atctcagtat 2000
ctctctctctt ttctaaaaaaaaa tttagataaaa atttgtctat ttaagatgg 2050
taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaa 2100
agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150
taatttggac aaggcttaat tttaggcattt ccctcttgac ctcctaattgg 2200
agagggatttggaaag agcccaccaa atgctgagct cactgaaata 2250
tctctccctt atggcaatcc tagcagtattt aaagaaaaaa ggaaactattt 2300
tattccaaat gagagtatga tggacagata ttttagtatac tcaaatgtt 2350
cctagtgtgg cggtggtttt caatgtttct tcatgtaaa ggtataagcc 2400
tttcatttgtt tcaatggatg atgtttcaga tttttttttt ttaagagat 2450
ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500
cttcgtgtgt gacaagttt cttggctgct gagaaagagt gccctgcccc 2550
acaccggcag accttcctt cacctcatca gtatgattca gtttcttta 2600
tcaattggac tctccaggt tccacagaac agtaatattt tttgaacaat 2650
aggtacaata gaaggttttc tgtcatttaa cctggtaaag gcagggctgg 2700
agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750

gtatccat tttaatggc tcatttcctt tatggtcata taactgcaca 2800
gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850
tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900
catcttgttt attatataat gtttctaaa ataaaaaaatg ttagtggttt 2950
tccaaatggc ctaataaaaa caattatgg taaataaaaa cactgttagt 3000
aat 3003

<210> 315
<211> 509
<212> PRT
<213> Homo Sapien

<400> 315
Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu
1 5 10 15
Gln Ala Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val
20 25 30
Ser Ser Ile Gly Leu Cys Arg Tyr Gly Arg Ile Asp Cys Cys
35 40 45
Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
50 55 60
Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
65 70 75
Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu
80 85 90
Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met
95 100 105
Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met
110 115 120
Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met
125 130 135
Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg
140 145 150
Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg
155 160 165

Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
 170 175 180
 Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
 185 190 195
 Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
 200 205 210
 Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
 215 220 225
 Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
 230 235 240
 Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
 245 250 255
 Ile Pro Lys Val Met Ile Glu Pro Ser Gly Pro Ile His Val Pro
 260 265 270
 Lys Gly Asn Gly Thr Ile Leu Lys Gly Asp Thr Gly Asn Asn Asn
 275 280 285
 Trp Ile Pro Asp Val Gly Ser Thr Trp Trp Pro Pro Lys Thr Pro
 290 295 300
 Tyr Ile Pro Pro Ile Ile Thr Asn Arg Pro Thr Ser Lys Pro Thr
 305 310 315
 Thr Arg Pro Thr Pro Lys Pro Thr Pro Ile Pro Thr Pro Pro Pro
 320 325 330
 Pro Pro Pro Leu Pro Thr Glu Leu Arg Thr Pro Leu Pro Pro Thr
 335 340 345
 Thr Pro Glu Arg Pro Thr Thr Gly Leu Thr Thr Ile Ala Pro Ala
 350 355 360
 Ala Ser Thr Pro Pro Gly Gly Ile Thr Val Asp Asn Arg Val Gln
 365 370 375
 Thr Asp Pro Gln Lys Pro Arg Gly Asp Val Phe Ser Val Leu Val
 380 385 390
 His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Glu
 395 400 405
 Lys Asp Asn Asp Leu His Trp Glu Pro Ile Arg Asp Pro Ala Gly
 410 415 420
 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys

425	430	435
Ala Ala Arg Leu Val Leu Pro Leu Gly Arg	Leu Met His Ser Gly	
440	445	450
Asp Leu Cys Leu Ser Phe Arg His Lys	Val Thr Gly Leu His Ser	
455	460	465
Gly Thr Leu Gln Val Phe Val Arg Lys	His Gly Ala His Gly Ala	
470	475	480
Ala Leu Trp Gly Arg Asn Gly Gly His	Trp Arg Gln Thr Gln	
485	490	495
Ile Thr Leu Arg Gly Ala Asp Ile Lys	Ser Glu Ser Gln Arg	
500	505	

<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 316
gatggttcct gctcaagtgc cctg 24

<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 317
ttgcacttgt aggacccacg tacg 24

<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 318
ctgatggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50

<210> 319
<211> 2110
<212> DNA

<213> Homo Sapien

<400> 319
cttctttgaa aaggattatc acctgatcag gttctctctg catttgc(ccc) 50
tttagattgt gaaatgtggc tcaagg(t)ctt cacaactt(c) ctttc(ctt)tg 100
caacagg(t)gc ttgctcg(gg) ctgaagg(t)ga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
ca(c)tc(c)agca tcagacatcc agatcatatg gctatttgc(g) agaccccaca 250
caatgc(cc)aa atacttactg ggctctgtga ataagtctgt ggttc(ct)gac 300
ttggaatacc aacacaagtt caccatgtg ccacccaaatg catctctgct 350
tatcaacccca ctgcagttcc ctgatgaagg caattacatc gtgaagg(t)ca 400
acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtca(c)g 450
gttgcgtgatc ctgtcacaaa gccagtgg(t)g cagattcatc ctccctctgg 500
ggctgtggag tatgtgggg(a) acatgaccct gacatgccat gtggaaagggg 550
gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600
agctccaccc actcctttc tccccaaaac aatacccttc atattgctcc 650
agtaaccaag gaagacattg ggaattacag ctgcctgg(t)g aggaaccctg 700
tcagtgaaat ggaaagtgtat atcattatgc ccatcatata ttatggaccc 750
tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaaagtgtt 800
tactgttgac cttggagagg ccacccattt tgattgttct gctgatttcc 850
atccccccaa cacctactcc tggatttagga ggactgacaa tactacatata 900
atcattaagc atggccctcg cttagaaagg(t) gcatctgaga aagtagccca 950
gaagacaatg gactatgtgt gctgtgctt caacaacata accggcaggc 1000
aagatgaaac tcatttcaca gttatcatca cttccgttagg actggagaag 1050
cttgcacaga aaggaaaatc attgtcaccc tttagcaagta taactggaat 1100
atcactat(t)ttt tgatttatat ccatgtgtct tctcttccta tggaaaaaaat 1150
atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200
gaatacagga aagctcaa(ac) atttcaggc catgaagatg ctctggatga 1250

tttcggaaata tatgaatttg ttgctttcc agatgttct ggtgtttcca 1300
ggattccaag caggctgtt ccagcctctg attgtgtatc gggcaagat 1350
ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400
agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450
ttctgaagaa acatTTAAG gaaaaacagt ggaaaagtat attaatctgg 1500
aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550
tgcagaatag aggcatTTT gcaaattgaa ctgcaggTTT ttcaGcatAT 1600
acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650
ggagagtctgt tctcatgctg acggggagaa cgaaagtgac aggggTTTCC 1700
tcataagttt tgtagaaat atctctacaa acctcaatta gttctactct 1750
acactttcac tatcatcaac actgagacta tcctgtctca cctacAAATG 1800
tggaaacttt acattgttcg atTTTCAGC agactttgtt ttattaaatt 1850
tttatttagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900
ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950
acaaaaactat gccttctttt tttttcaat caccagtagt atttttgaga 2000
agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050
tttcaaggaa agatggattc aaataaaatta ttctgttttt gctttaaaaa 2100
aaaaaaaaaa 2110

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe
35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser
 65 70 75

Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro
 80 85 90

Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu
 95 100 105

Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu
 110 115 120

Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr
 125 130 135

Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr
 140 145 150

Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg
 155 160 165

Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser
 170 175 180

Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala
 185 190 195

Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg
 200 205 210

Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile
 215 220 225

Tyr Tyr Gly Pro Tyr Gly Leu Gln Val Asn Ser Asp Lys Gly Leu
 230 235 240

Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu
 245 250 255

Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp
 260 265 270

Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro
 275 280 285

Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp
 290 295 300

Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu
 305 310 315

Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu

320	325	330
Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly		
335	340	345
Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp		
350	355	360
Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly		
365	370	375
Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His		
380	385	390
Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe		
395	400	405
Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro		
410	415	420
Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr		
425	430	435
Glu Val Ile Gln His Ile Pro Ala Gln Gln Gln Asp His Pro Glu		
440	445	450

<210> 321
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 321
gatccctgtca caaaggccagt ggtgc 25

<210> 322

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 322
cactgacagg gttcctcacc cagg 24

<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 323

ctccctctgg gctgtggagt atgtgggaa catgaccctg acatg 45

<210> 324

<211> 2397

<212> DNA

<213> Homo Sapien

<400> 324

gcaagcggcg aaatggcgcc ctccggagg ctgcagttc ccctggcagt 50

cctggtgctg ttgcttggg gtgctccctg gacgcacggg cggcggagca 100

acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150

tggatgatag aatttatgc cccgtggtgc cctgcttgc aaaatcttca 200

accggaatgg gaaagtttg ctgaatgggg agaagatctt gaggttaata 250

ttgcgaaagt agatgtcaca gaggcagccag gactgagtgg acggtttatac 300

ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350

ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400

aagagtggaa gagtattgag cccgtttcat catggttgg tccaggttct 450

gttctgatga gtagtatgtc agcaactttt cagctatcta tgtggatcag 500

gacgtgccat aactactta ttgaagacct tggattgcca gtgtgggat 550

catatactgt ttttgcattt gcaactctgt tttccggact gttatttagga 600

ctctgtatga tatttgtggc agattgcctt tgccctcaa aaaggcgcag 650

accacagcca tacccatacc cttcaaaaaa attattatca gaatctgcac 700

aacctttgaa aaaagtggag gaggaacaag aggccggatga agaagatgtt 750

tcagaagaag aagctgaaag taaaagaagga acaaacaag actttccaca 800

aatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850

cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900

aagattgatc atttgtttg gttgaagtg aactgtgact tttttgaata 950

ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaaagc actaggata caagttgaa atatgattt agcacagtat 1050
gatggtttaa atagttctct aatttttgaa aaatcggtcc aagcaataag 1100
atttatgtat atttgtttaa taataaccta tttcaagtct gagtttgaa 1150
aatttacatt tcccaagtat tgcatatttgg aggtatattaa gaagattt 1200
tttagagaaaa atatctca tttgatataa ttttctctg tttcaactgt 1250
tgaaaaaaaag aagatatttc ccataaatgg gaagttgcc cattgtctca 1300
agaaatgtgt atttcagtga caatttcgtg gtcttttag aggtatattc 1350
caaaatttcc ttgtatttt aggttatgca actaataaaa actaccttac 1400
attaatttaat tacagtttc tacacatggt aatacaggat atgctactga 1450
tttaggaagt tttaagttc atggatttct ctgttccaa acaaagttg 1500
attttcttctt gtattttct tacttactat gggttacatt ttttattttt 1550
caaattggat gataatttct tggaaacatt tttttagttt tagtaaacag 1600
tatttttttgc ttgttcaaa ctgaagttt ctgagagatc catcaaattt 1650
aacaatctgt tgtaatttaa aattttggcc actttttca gattttacat 1700
cattcttgct gaacttcaac ttgaaattgt ttttttttc tttttggatg 1750
tgaagggtgaa cattcctgat tttgtctga tgtaaaaag cttggattt 1800
ttacatttttgc aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850
caggaaaaaaag catcttcttgc tatatgtctt aaatgtattt ttgtcctcat 1900
atacagaaaag ttcttaatttgc attttacagt ctgtaatgct tgatgtttt 1950
aaataataac attttataat tttttaaaag acaaacttca tattatcctg 2000
tggttttcc tgactggtaa tattgtgtgg gatttcacag gtaaaaagtca 2050
gtaggatggaa acatttttagt gtattttac tccttaaaaga gctagaatac 2100
atagtttca ccttaaaaaga agggggaaaa tcataaatac aatgaatcaa 2150
ctgaccatata cgttagtagac aatttctgtat atgtccccctt ctttcttaggc 2200
tctgttgcgtg tgtgaatcca ttagatttac agtacgtaa tatacaagtt 2250
ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300
tttggatgtg taacttgcgtg tgccttagaa aaatatccta agcacaaaat 2350

aaacctttct aaccacttca tttaaagctga aaaaaaaaaaaa aaaaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val
1 5 10 15

Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn
20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln
50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly
80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys
110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile
125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser
140 145 150

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys
155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser
170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu
185 190 195

Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys
200 205 210

Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu

215 220 225

Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Gln Glu
230 235 240

Ala Asp Glu Glu Asp Val Ser Glu Glu Ala Glu Ser Lys Glu
245 250 255

Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
260 265 270

Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
275 280

<210> 326

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 326

tgaggtgggc aagcggcgaa atg 23

<210> 327

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 327

tatgtggatc aggacgtgcc 20

<210> 328

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 328

tgcagggttc agtcttagatt g 21

<210> 329

<211> 25

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 329
ttgaaggaca aaggcaatct gccac 25

<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 330
ggagtcttgc agttcccctg gcagtcctgg tgctgttgct ttggg 45

<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien

<400> 331
gcgagtgtcc agctgcggag acccggtata attcgtaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cctgagctgt gtgcaggccg aattttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaaggccttgc actagcaagt cagctgctga tgctgagggc 400
tacctggctc accctgtgaa tgcctacaaa ctggtaagc ggctaaacac 450
agactggcct gcgcgtggagg accttgcct gcaggactca gctgcaggtt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tggccgcctc ggcctacaat 700
gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750

gcttcatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
acctcagcta tgctgtttc cagttgggtg atctgcaccc tgccctggag 850
ctcacccgcc gcctgtctc ccttgaccca agccacgaac gagctggagg 900
gaatctcggt tactttgagc agttatttggaa ggaagagaga gaaaaaacgt 950
taacaaatca gacagaagct gagctagcaa ccccaagaagg catctatgag 1000
aggcctgtgg actacacctgcc tgagagggat gtttacgaga gcctctgtcg 1050
tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgtta 1100
ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150
gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200
gtctgatgag gaaatcgaga ggatcaaggg gatcgcaaaa cctaaacttg 1250
cacgagccac cggtcgat cccaaagacag gagtcctcac tgtcgcccagc 1300
taccgggttt cccaaagctc ctggcttagag gaagatgtatg accctgttgt 1350
ggccccagta aatcgctggta tgcagcatat cacagggtta acagtaaaga 1400
ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450
ccgcacttcg acttctctag gcgacccccc gacagcggcc tccaaacaga 1500
ggggaaatagg ttagcgacgt ttcttaacta catgagtgtatg ttagaagctg 1550
gtggtgccac cgtctccct gatctggggg ctgcaatttg gcctaagaag 1600
ggtacagctg tggctggta caacctcttg cggagcgggg aaggtgacta 1650
ccgaacaaga catgctgcct gccctgtgct tgtggctgc aagtgggtct 1700
ccaaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750
tcaacagaag ttgactgaca tcctttctg tcctccct tcctggct 1800
tcagcccatg tcaacgtgac agacacccctt gtatgttct ttgtatgttc 1850
ctatcaggct gatttttggaa gaaatgaatg tttgtctggta gcagagggag 1900
accataactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950
gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000
gttagctgtc tagcgcttag caaggtgcct ttgtacctca ggtgttttag 2050
gtgtgagatg ttccatgaa ccaaagttct gataccttgt ttacatgttt 2100

gttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150
cctaccagaa aaaaaaaaa 2168
<210> 332
<211> 533
<212> PRT
<213> Homo Sapien

<400> 332
Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val
1 5 10 15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met
20 25 30

Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys
35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser
50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val
80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu
95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg
110 115 120

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala
125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile
140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser
155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln
185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu
200 205 210

Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg
 215 220 225
 Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His
 230 235 240
 Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu
 245 250 255
 Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu
 260 265 270
 Ala Thr Pro Glu Gly Ile Tyr Glu Arg Pro Val Asp Tyr Leu Pro
 275 280 285
 Glu Arg Asp Val Tyr Glu Ser Leu Cys Arg Gly Glu Gly Val Lys
 290 295 300
 Leu Thr Pro Arg Arg Gln Lys Arg Leu Phe Cys Arg Tyr His His
 305 310 315
 Gly Asn Arg Ala Pro Gln Leu Leu Ile Ala Pro Phe Lys Glu Glu
 320 325 330
 Asp Glu Trp Asp Ser Pro His Ile Val Arg Tyr Tyr Asp Val Met
 335 340 345
 Ser Asp Glu Glu Ile Glu Arg Ile Lys Glu Ile Ala Lys Pro Lys
 350 355 360
 Leu Ala Arg Ala Thr Val Arg Asp Pro Lys Thr Gly Val Leu Thr
 365 370 375
 Val Ala Ser Tyr Arg Val Ser Lys Ser Ser Trp Leu Glu Glu Asp
 380 385 390
 Asp Asp Pro Val Val Ala Arg Val Asn Arg Arg Met Gln His Ile
 395 400 405
 Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu Gln Val Ala Asn
 410 415 420
 Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe Ser Arg
 425 430 435
 Arg Pro Phe Asp Ser Gly Leu Lys Thr Glu Gly Asn Arg Leu Ala
 440 445 450
 Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly Gly Ala Thr
 455 460 465
 Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys Gly Thr
 470 475 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
485 490 495

Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
500 505 510

Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
515 520 525

Pro Cys Gly Ser Thr Glu Val Asp
530

<210> 333
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 333
ccaggcacaa tttccaga 18

<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 334
ggacccttct gtgtgccag 19

<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 335
ggtctcaaga actcctgtc 19

<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 336
acactcagca ttgcctggta cttg 24

<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 337
gggcacatga ctgacacctgat ttatgcagag aaagagctgg tgcag 45

<210> 338
<211> 2789

<212> DNA
<213> Homo Sapien

<400> 338
gcagtattga gtttacttc ctccctttt tagtggaaaga cagaccataa 50
tcccagtgtg agtggaaattt attgtttcat ttattaccgt tttggctggg 100
ggtagttcc gacacccatca cagttgaaga gcaggcagaa ggagttgtga 150
agacaggaca atcttcttgg ggatgctggt cctggaaagcc agcgggcctt 200
gctctgtctt tggcctcatt gaccccgagg tctctggta aaactgaaag 250
cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300
cctggggcac ccacccatca gggccatcca ccatgcgact gagctccctg 350
ttggctctgc tgccggccagc gcttcccttc atcttagggc tgtctctggg 400
gtgcagccctg agcctcctgc gggtttccctg gatccagggg gagggagaag 450
atccctgtgt cgaggctgtt ggggagcgag gagggccaca gaatccagat 500
tcgagagctc ggcttagacca aagtgtatgaa gacttcaaacc cccggattgt 550
ccccctactac agggacccca acaaggcccta caagaagggtt ctcaggactc 600
ggtacatcca gacagagctg ggctccctgt agcgggttgc ggtggctgtc 650
ctgacacctcc gagctacact gtccactttg gccgtggctg tgaaccgtac 700
ggtggccat cacttccctc ggtaactcta cttcactggg cagcgggggg 750
cccgccatcc agcaggatg caggtggtgtt ctcatggga tgagcggccc 800

gcctggctca tgcagagac cctgcgccac ctccacacac actttggggc 850
cgactacgac tggttttca tcatgcagga tgacacatata gtcaggccc 900
ccccctggc agcccttgct ggccacactca gcatcaacca agacactgtac 950
ttaggccgg cagaggagtt cattggcgca ggcgagcagg cccggtaactg 1000
tcatggggc tttggctacc tgggtcacg gagtctcctg cttcgtctgc 1050
ggccacatct ggtggctgc cgaggagaca ttctcaagtgc cgtcctgac 1100
gagtggcttgc acgctgcct cattgactct ctggcgctcg gctgtgtctc 1150
acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaatagg 1200
accctgagaa ggaagggagc tcggcttcc tgagtgcctt cgccgtgcac 1250
cctgtctccg aaggtaccct catgtaccgg ctccacaaac gttcagcgc 1300
tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350
tccggAACCT gaccgtgtg acccccgaag gggaggcagg gctgagctgg 1400
cccgttggc tccctgctcc tttcacacca cactctcgct ttgaggtgt 1450
gggctggac tactcacag agcagcacac cttctcctgt gcagatgggg 1500
ctcccaagtgc cccactacag ggggctagca gggcggacgt ggtgatgcg 1550
ttggagactg ccctggagca gtcatacg gctatcagc cccgcctgcg 1600
cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650
ggggcatgga gtacaccctg gacctgctgt tgaaatgtgt gacacagcgt 1700
gggcaccggc gggccctggc tcgcagggtc agcctgctgc gccactgag 1750
ccgggtggaa atcctaccta tggcctatgt cactgaggcc acccgagtgc 1800
agctggtgct gccactcctg gtggctgaag ctgctgcagc cccggcttcc 1850
ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgt 1900
caccctgttgc tggcttacg ggcacgaga aggtggccgt ggagctccag 1950
accattttct tgggggtgaag gtcgcagcag cggagttaga ggcacggta 2000
cctggacga ggctggcctg gtcgcgtgtc cgagcagagg cccctccca 2050
ggcgcactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tcttccttac caccgtgtgg acaaggcctg ggccogaagt cctcaaccgc 2150
 tgtcgcatga atgccatctc tggctggcag gccttcttc cagtccattt 2200
 ccaggagttc aatcctgccc tgcaccaca gagatcaccc ccagggcccc 2250
 cgggggctgg ccctgacccc ccctcccctc ctggtgctga cccctcccg 2300
 ggggctcta tagggggag atttgaccgg caggcttctg cggagggctg 2350
 cttctacaac gctgactacc tggcggcccg agcccggtg gcaggtgaac 2400
 tggcaggcca ggaagaggag gaagccctgg agggctgga ggtgatggat 2450
 gtttcctcc gtttctcagg gctccaccc ttccggccg tagagccagg 2500
 gctggtgcaag aagtttccctc tgcgagactg cagccacgg ctcagtgaag 2550
 aactctacca ccgctgccc ctcagcaacc tggaggggtt agggggccgt 2600
 gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650
 gcccgccctgg gggccctaac ctcattaccc ttcccttgc tgcctcagcc 2700
 ccaggaaggg caaggcaaga tggtgacag atagagaatt gttgctgtat 2750
 tttttaata taaaatgtt attaaacatg tcttctgcc 2789

<210> 339
 <211> 772
 <212> PRT
 <213> Homo Sapien

<400> 339														
Met	Arg	Leu	Ser	Ser	Leu	Leu	Ala	Leu	Leu	Arg	Pro	Ala	Leu	Pro
1														15
Leu	Ile	Leu	Gly	Leu	Ser	Leu	Gly	Cys	Ser	Leu	Ser	Leu	Leu	Arg
				20					25					30
Val	Ser	Trp	Ile	Gln	Gly	Glu	Gly	Glu	Asp	Pro	Cys	Val	Glu	Ala
				35				40						45
Val	Gly	Glu	Arg	Gly	Gly	Pro	Gln	Asn	Pro	Asp	Ser	Arg	Ala	Arg
				50				55						60
Leu	Asp	Gln	Ser	Asp	Glu	Asp	Phe	Lys	Pro	Arg	Ile	Val	Pro	Tyr
				65				70						75
Tyr	Arg	Asp	Pro	Asn	Lys	Pro	Tyr	Lys	Lys	Val	Leu	Arg	Thr	Arg
				80				85						90
Tyr	Ile	Gln	Thr	Glu	Leu	Gly	Ser	Arg	Glu	Arg	Leu	Leu	Val	Ala

95	100	105
Val Leu Thr Ser Arg Ala Thr Leu Ser	Thr Leu Ala Val Ala Val	
110	115	120
Asn Arg Thr Val Ala His His Phe Pro Arg	Leu Leu Tyr Phe Thr	
125	130	135
Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly Met	Gln Val Val Ser	
140	145	150
His Gly Asp Glu Arg Pro Ala Trp Leu Met Ser	Glu Thr Leu Arg	
155	160	165
His Leu His Thr His Phe Gly Ala Asp Tyr Asp	Trp Phe Phe Ile	
170	175	180
Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg	Leu Ala Ala Leu	
185	190	195
Ala Gly His Leu Ser Ile Asn Gln Asp	Leu Tyr Leu Gly Arg Ala	
200	205	210
Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg	Tyr Cys His Gly	
215	220	225
Gly Phe Gly Tyr Leu Leu Ser Arg Ser	Leu Leu Leu Arg Leu Arg	
230	235	240
Pro His Leu Asp Gly Cys Arg Gly Asp	Ile Leu Ser Ala Arg Pro	
245	250	255
Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp	Ser Leu Gly Val Gly	
260	265	270
Cys Val Ser Gln His Gln Gly Gln Gln Tyr	Arg Ser Phe Glu Leu	
275	280	285
Ala Lys Asn Arg Asp Pro Glu Lys Glu Gly	Ser Ser Ala Phe Leu	
290	295	300
Ser Ala Phe Ala Val His Pro Val Ser	Glu Gly Thr Leu Met Tyr	
305	310	315
Arg Leu His Lys Arg Phe Ser Ala Leu Glu Leu	Glu Arg Ala Tyr	
320	325	330
Ser Glu Ile Glu Gln Leu Gln Ala Gln Ile Arg	Asn Leu Thr Val	
335	340	345
Leu Thr Pro Glu Gly Glu Ala Gly Leu Ser Trp	Pro Val Gly Leu	
350	355	360

000000000000000000000000

Pro Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp
365 370 375

Asp Tyr Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala
380 385 390

Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp
395 400 405

Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro
410 415 420

Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg
425 430 435

Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu Leu
440 445 450

Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg
455 460 465

Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met
470 475 480

Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu
485 490 495

Leu Val Ala Glu Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe
500 505 510

Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu
515 520 525

Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp
530 535 540

Pro Phe Leu Gly Val Lys Ala Ala Ala Glu Leu Glu Arg Arg
545 550 555

Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu Ala
560 565 570

Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro
575 580 585

Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly
590 595 600

Pro Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp
605 610 615

Gln Ala Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu
620 625 630

Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp
 635 640 645
 Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile
 650 655 660
 Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr
 665 670 675
 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu
 680 685 690
 Ala Gly Gln Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met
 695 700 705
 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val
 710 715 720
 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro
 725 730 735
 Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu
 740 745 750
 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu
 755 760 765
 Gln Glu Gln Ala Asn Ser Thr
 770
 <210> 340
 <211> 1572
 <212> DNA
 <213> Homo Sapien
 <400> 340

```

  cggagtggtg cgccaacgtg agagggaaacc cgtgcgcggc tgcgctttcc 50
  tgtccccaaag ccgttctaga cgcggaaaaa atgcttcgtg aaagcagctc 100
  cttttgaag ggtgtatgc ttggaagcat tttctgtgct ttgatcacta 150
  tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
  catcatcacc tacaagctcc taacaaagaa gatatctga aaatttcaga 250
  ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300
  ttgtaaaacc caaagatgtg agtcttgaa ctgcagtaaa ggagacttgg 350
  accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400
  
```

gttttagtca attaatatgg acacaaatga catgtggta atgatgagaa 450
 aagcttacaa atacgcctt gataagtata gagaccaata caactggtc 500
 ttccctgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550
 tttgttaaaa aaggatccat cacagcctt ctatctaggc cacactataa 600
 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650
 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700
 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750
 cagttgcct gaaatatgct ggagtatttgc cagaaaatgc agaagatgct 800
 gatggaaaag atgtatttaa taccaaattct gttggcctt ctattaaaga 850
 ggcaatgact tattccccca accaggtgtt agaaggctgt tgttcagata 900
 tggctgttac ttttaatggc ctgactccaa atcagatgca tgtgatgatg 950
 tatgggtat accgccttag ggcatttggg catatttca atgatgcatt 1000
 ggtttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050
 agcgtgaata tgatcttgtt ataggacgtg tggtgcatt attttagtta 1100
 gtaactacat atccaataaca gctgtatgtt tcttttctt ttctaatttgc 1150
 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaatggc 1200
 gggtggtttt tttcttaaaa acacatgaac attgtaaatg tggtggaaag 1250
 aagtgtttta agaataataa tttgcaaat aaactattaa taaatattat 1300
 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350
 tttgctgatt ggttaaaaaa ttttaacagg tcttttagct tctaagatatt 1400
 gcaaatgata tctctagttg tgaatttgcattt attaaagtaa aacttttagc 1450
 tgggtgttcc cttaacttct aatactgatt tatgttctaa gcctccccaa 1500
 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550
 attaaagtga aagttgaaaaa at 1572

<210> 341
 <211> 318
 <212> PRT
 <213> Homo Sapien

<400> 341

Met	Leu	Ser	Glu	Ser	Ser	Ser	Phe	Leu	Lys	Gly	Val	Met	Leu	Gly
1														15
Ser Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile														
				20					25					30
Gly His Gly Asn Arg Met His His His His His His His Leu Gln														
				35					40					45
Ala Pro Asn Lys Glu Asp Ile Leu Lys Ile Ser Glu Asp Glu Arg														
				50					55					60
Met Glu Leu Ser Lys Ser Phe Arg Val Tyr Cys Ile Ile Leu Val														
				65					70					75
Lys Pro Lys Asp Val Ser Leu Trp Ala Ala Val Lys Glu Thr Trp														
				80					85					90
Thr Lys His Cys Asp Lys Ala Glu Phe Phe Ser Ser Glu Asn Val														
				95					100					105
Lys Val Phe Glu Ser Ile Asn Met Asp Thr Asn Asp Met Trp Leu														
				110					115					120
Met Met Arg Lys Ala Tyr Lys Tyr Ala Phe Asp Lys Tyr Arg Asp														
				125					130					135
Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr Thr Phe Ala Ile														
				140					145					150
Ile Glu Asn Leu Lys Tyr Phe Leu Leu Lys Lys Asp Pro Ser Gln														
				155					160					165
Pro Phe Tyr Leu Gly His Thr Ile Lys Ser Gly Asp Leu Glu Tyr														
				170					175					180
Val Gly Met Glu Gly Gly Ile Val Leu Ser Val Glu Ser Met Lys														
				185					190					195
Arg Leu Asn Ser Leu Leu Asn Ile Pro Glu Lys Cys Pro Glu Gln														
				200					205					210
Gly Gly Met Ile Trp Lys Ile Ser Glu Asp Lys Gln Leu Ala Val														
				215					220					225
Cys Leu Lys Tyr Ala Gly Val Phe Ala Glu Asn Ala Glu Asp Ala														
				230					235					240
Asp Gly Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Ser Ile														
				245					250					255
Lys Glu Ala Met Thr Tyr His Pro Asn Gln Val Val Glu Gly Cys														

260 265 270
Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
275 280 285
Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
290 295 300
His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
305 310 315
Asp Asn Asp
<210> 342
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 342
tcccccaagcc gttctagacg cg 23

<210> 343
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 343
ctggttcttc cttgcacg 18

<210> 344
<211> 28

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 344
gcccaaatgc cctaaggcg tataaccc 28

<210> 345
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 345

gggtgtatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50

<210> 346

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 346

gggatgcagg tggtgtctca tgggg 25

<210> 347

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 347

ccctcatgtta ccggctcc 18

<210> 348

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 348

ggattctaat acgactcact atagggtctca gaaaagcgca acagagaa 48

<210> 349

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 349

ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47

<210> 350

<211> 48

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 350
ggattctaat acgactcaact atagggcggc gatgtccact ggggctac 48

<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 351
ctatgaaatt aaccctcaact aaagggacga ggaagatggg cgatgg 48

<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 352
ggattctaat acgactcaact atagggcacc cacgcgtccg gctgctt 47

<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 353
ctatgaaatt aaccctcaact aaagggacgg gggacaccac ggaccaga 48

<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 354
ggattctaat acgactcaact atagggcttg ctgcggttt tgttcctg 48

<210> 355
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 355
ctatgaaatt aaccctcaact aaagggagct gccgatccca ctggatt 48

<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 356
ggattctaat acgactcaact atagggcgga tcctggccgg cctctg 46

<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 357
ctatgaaatt aaccctcaact aaagggagcc cgggcatggc ctcagtta 48

<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 358
ggattctaat acgactcaact atagggcgaa aagatggcgaa ggaggag 47

<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 359
ctatgaaatt aaccctcaact aaagggacca aggccacaaa cgaaaaatc 48

<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 360
ggattctaat acgactcaact atagggctgt gcttcattc tgccagta 48

<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 361
ctatgaaatt aaccctcaact aaagggaggg tacaattaag gggtggat 48

<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 362
ggattctaat acgactcaact atagggcccg cctcgctcct gctcctg 47

<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 363
ctatgaaatt aaccctcaact aaagggagga ttgccgcgac cctcacag 48

<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 364

ggattctaat acgactcact atagggccccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48

<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48

<210> 367
<211> 47

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47

<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47

<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

0 0 0 0 0 0 0 0 0 0 0 0

<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcaact aaaggaaag acatgtcatc gggagtgg 48

<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 370
ggattctaat acgactcaact atagggccgg gtggaggtgg aacagaaa 48

<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 371
ctatgaaatt aaccctcaact aaaggacac agacagagcc ccatacgc 48

<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 372
ggattctaat acgactcaact atagggccag ggaaatccgg atgtctc 47

<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 373
ctatgaaatt aaccctcaact aaaggagta agggatgcc accgagta 48

<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

 <400> 374
 ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47

 <210> 375
 <211> 48
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic Oligonucleotide Probe

 <400> 375
 ctatgaaatt aaccctcact aaaggatcc caggtatga ggtccaga 48

 <210> 376
 <211> 997
 <212> DNA
 <213> Homo Sapien

 <400> 376
 cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaaagag 50
 agggagggag agaaaaaagag agagagagaaa acaaaaaacc aaagagagag 100
 aaaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
 tgcttccttt cccaaatgtt cttatggact gttgctggga tccccatcct 200
 atttctcagt gcctgtttca tcaccagatg ttttgtgaca ttctcgatct 250
 ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
 ctctcctgct acaattatgg atcagggttca gtcaagaatt gttgtccatt 350
 gaactggaa tatttcaat ccagctgcta cttctttct actgacaccca 400
 tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
 gtggttatca actcacagga ggagcaggaa ttcctttct acaagaaaacc 500
 taaaatgaga gagttttta ttggactgtc agaccaggtt gtcgagggtc 550
 agtggcaatg ggtggacggc acaccttga caaagtctct gagcttctgg 600
 gatgttaggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
 gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
 tcaatttattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750

ggaaaatctc ttaagaaca gaaggcacaa ctcaaatgtg taaaagagga 800
 agagcaagaa catggccaca cccaccgccc cacacgagaa atttgcgc 850
 tgaacttcaa aggacttcat aagtatttgt tactctgata caaataaaaa 900
 taagtagtt taaatgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 950
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 997

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met	Asn	Ser	Ser	Lys	Ser	Ser	Glu	Thr	Gln	Cys	Thr	Glu	Arg	Gly
1														
Cys	Phe	Ser	Ser	Gln	Met	Phe	Leu	Trp	Thr	Val	Ala	Gly	Ile	Pro
					20				25					30
Ile	Leu	Phe	Leu	Ser	Ala	Cys	Phe	Ile	Thr	Arg	Cys	Val	Val	Thr
					35				40					45
Phe	Arg	Ile	Phe	Gln	Thr	Cys	Asp	Glu	Lys	Lys	Phe	Gln	Leu	Pro
					50				55					60
Glu	Asn	Phe	Thr	Glu	Leu	Ser	Cys	Tyr	Asn	Tyr	Gly	Ser	Gly	Ser
					65				70					75
Val	Lys	Asn	Cys	Cys	Pro	Leu	Asn	Trp	Glu	Tyr	Phe	Gln	Ser	Ser
					80				85					90
Cys	Tyr	Phe	Phe	Ser	Thr	Asp	Thr	Ile	Ser	Trp	Ala	Leu	Ser	Leu
					95				100					105
Lys	Asn	Cys	Ser	Ala	Met	Gly	Ala	His	Leu	Val	Val	Ile	Asn	Ser
					110				115					120
Gln	Glu	Glu	Gln	Glu	Phe	Leu	Ser	Tyr	Lys	Lys	Pro	Lys	Met	Arg
					125				130					135
Glu	Phe	Phe	Ile	Gly	Leu	Ser	Asp	Gln	Val	Val	Glu	Gly	Gln	Trp
					140				145					150
Gln	Trp	Val	Asp	Gly	Thr	Pro	Leu	Thr	Lys	Ser	Leu	Ser	Phe	Trp
					155				160					165
Asp	Val	Gly	Glu	Pro	Asn	Asn	Ile	Ala	Thr	Leu	Glu	Asp	Cys	Ala
					170				175					180

Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
185 190 195

Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
200 205 210

Asn Pro Leu Asn Lys Gly Lys Ser Leu
215

<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 378
ttcagcttct gggatgtagg g 21

<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 379
tattcctacc atttcacaaa tccg 24

<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49

<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 381
gcagatttg aggacagcca cctcca 26

<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 382
ggccttgcag acaaccgt 18

<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 383
cagactgagg gagatccgag a 21

<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 384
cagctgccct tccccaaacca 20

<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 385
catcaagcgc ctctaccca 18

<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 386

cacaaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
ggccatcac agtcacct 18

<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gggatgtggtaaacacagaa ca 22

<210> 389
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 389
tgccagctgc atgctgccag tt 22

<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 390
cagaaggatgc tcccgtggaa 20

<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17

<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
gacggcatcc tcagggccac a 21

<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 393
atgtcctcca tgcccacgcg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 394
gagtgcgaca tcgagagtt 20

<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 395
ccgcagcctc agtgatga 18

<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 396
gaagagcaca gctgcagatc c 21

<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
gaggtgtcct ggctttggta gt 22

<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 398
cctctggcgc ccccaactcaa 20

<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 399
ccaggagagc tggcgatg 18

<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 400
gcaaattcag ggctcactag aga 23

<210> 401
<211> 29

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 401
cacagagcat ttgtccatca gcagttcag 29

<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 402
ggcagagact tccagtcact ga 22

<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 403
gccaagggtg gtgttagata gg 22

<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 404
caggccccct tgatctgtac ccca 24

<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 405
gggacgtgct tctacaagaa cag 23

<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 406
caggcttaca atgttatgtat cagaca 26

<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 407
tattcagagt tttccattgg cagtgcgcgt t 31

<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 408
tctacatcag cctctctgcg c 21

<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 409
cgatcttcacccaggag cg 23

<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 410

0 0 0 0 0 0 0 0 0 0 0 0

gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 411
ctccctgaat ggcagcctga gca 23

<210> 412
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 412
agtgtttat taagggccta cgct 24

<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 413
cagagcagag ggtgccttg 19

<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 414
tggcgagtc ccctttggc t 21

<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 415
ccctgttcc ctatgcata ct 22

<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 416
tcaaccctg accctttcct a 21

<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 417
ggcaggggac aagccatctc tcct 24

<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 418
gggactgaac tgccagttc 20

<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 419
gggccttaac ctcattacct tt 22

<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 420
tgtctgcctc agccccagga agg 23

<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 421
tctgtccacc atcttgcatt g 21

<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien

<400> 422
gggactacaa gccgcgcgcgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggccgcacc gcgactccgg ctctgcgcgc ggctgcctga 100
cttcttcctg ctgctgcatt tcaggggctg cctgataggg gctgtaaatc 150
tcaaataccag caatcgaacc ccagtggta aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250
gaagaaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcagggaga cttggcggt cgtgcagaaa tactgggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gcccattatc gctgtgaggt 400
cgttgctcga aatgaccgca agggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtgc acccctgtct gttagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtgc agggccaccc 550
ccggccctcac tacagctggat atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tccccagattt cgcaattctt ctttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctggggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800
gttgccttg ctgtactggc cctgatcacg ttggcatct gctgtgcata 850
cagacgtggc tacttcatca acaataaaaca ggatggagaa agttacaaga 900
acccaggaa accagatgga gttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000
agagcgcaca gagcgcacgt gcacataccct ctgctagaaa ctcctgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt gcccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcaactgagtt gggttctaa tctgtttctg 1250
gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgccccgt gctggggccct gtgaagccag catgttcacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcat cccggcgaaa acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500
tgatcggtgt tgcatgttcc attgtggaga agcttttgg atcagcattt 1550
tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600
cttgcctgag gaacctgct tgtccaacag ggtgtcagga tttaaggaaa 1650
accttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttggatt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgattt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataaacct attttttaa aaaaggtaa cttaaaggtag 1850
aagttccaag ctactagtgt taaattggaa aatataataa attaagagta 1900
ttttacccaa ggaatccctt catgaaagtt tactgtgatg ttccctttct 1950
cacacaagtt ttagccttt tcacaaggaa actcatactg totacacatc 2000
agaccatagt tgcttaggaa acctttaaaa attccagttt agcaatgtt 2050

aaatcagttt gcatcttttc aaaagaaaacc tctcaggta gctttgaact 2100
 gcctcttctt gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
 gccctcagat gtacatacac agatgccagt cagctctgg gttgcgcaca 2200
 ggcccccgg ctctagctca ctgttgctc gctgtctgcc aggaggccct 2250
 gccatccttgc ggccctggca gtggctgtgt cccagtgagc tttaactcact 2300
 tggcccttgc ttcatccagc acagctctca ggtggcact gcagggacac 2350
 tgggtgtcttc catgtacgt cccagctttg ggctctgtta acagacctct 2400
 ttttggttat ggtggctca caaaataggg ccccaatgc tattttttt 2450
 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500
 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
 cccactgttc ctcttgccca cagagaaagc acccagacgc cacaggctct 2600
 gtcgcatttc aaaacaaacc atgatggagt ggccggccagt ccagcctttt 2650
 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700
 tgaaacgcct gaatcaaaag cagtttctta attttgactt taaatttttc 2750
 atccgcccga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
 tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850
 gccgtgctgg actcaggact gaagtgtgt aaagcaagga gctgctgaga 2900
 aggagcactc cactgtgtgc ctggagaatg gctctacta ctcaccttgc 2950
 ctttcagctt ccagtgtctt gggtttttta tactttgaca gttttttttt 3000
 aattgcatac atgagactgt gttgactttt ttttagttatg tgaaacactt 3050
 tgccgcaggg cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100
 gctccctgggt gtctgctgca tggcatctg gatgcttagc atgcaagtcc 3150
 cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
 ttggggattc acgctccagc ctccttcttgc gttgtcatag tgataggta 3250
 gccttattgc cccctcttct tataccctaa aaccttctac actagtgcac 3300
 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatTTT 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
 gcctttggat gnatgttgcgt tacacagat gctacagact tgtactaaca 3500
 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550
 ccca 3554

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met	Ala	Leu	Arg	Arg	Pro	Pro	Arg	Leu	Arg	Leu	Cys	Ala	Arg	Leu
1					5			10				15		

Pro	Asp	Phe	Phe	Leu	Leu	Leu	Phe	Arg	Gly	Cys	Leu	Ile	Gly
				20				25				30	

Ala	Val	Asn	Leu	Lys	Ser	Ser	Asn	Arg	Thr	Pro	Val	Val	Gln	Glu
				35				40				45		

Phe	Glu	Ser	Val	Glu	Leu	Ser	Cys	Ile	Ile	Thr	Asp	Ser	Gln	Thr
				50				55				60		

Ser	Asp	Pro	Arg	Ile	Glu	Trp	Lys	Ile	Gln	Asp	Glu	Gln	Thr
				65				70				75	

Thr	Tyr	Val	Phe	Phe	Asp	Asn	Lys	Ile	Gln	Gly	Asp	Leu	Ala	Gly
				80				85				90		

Arg	Ala	Glu	Ile	Leu	Gly	Lys	Thr	Ser	Leu	Lys	Ile	Trp	Asn	Val
				95					100			105		

Thr	Arg	Arg	Asp	Ser	Ala	Leu	Tyr	Arg	Cys	Glu	Val	Val	Ala	Arg
				110				115				120		

Asn	Asp	Arg	Lys	Glu	Ile	Asp	Glu	Ile	Val	Ile	Glu	Leu	Thr	Val
				125				130				135		

Gln	Val	Lys	Pro	Val	Thr	Pro	Val	Cys	Arg	Val	Pro	Lys	Ala	Val
				140				145				150		

Pro	Val	Gly	Lys	Met	Ala	Thr	Leu	His	Cys	Gln	Glu	Ser	Glu	Gly
				155				160				165		

His	Pro	Arg	Pro	His	Tyr	Ser	Trp	Tyr	Arg	Asn	Asp	Val	Pro	Leu
				170				175				180		

Pro	Thr	Asp	Ser	Arg	Ala	Asn	Pro	Arg	Phe	Arg	Asn	Ser	Ser	Phe
				185				190				195		

His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
200 205 210

Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
215 220 225

Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
230 235 240

Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
245 250 255

Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
260 265 270

Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
275 280 285

Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly
290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310