

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Tarea 02: Complejidad de Algoritmos

ALUMNOS:

Castañon Maldonado Carlos Emilio Nepomuceno Escarcega Arizdelcy Lizbeth

PROFESOR

María de Luz Gasca Soto

AYUDANTES

Brenda Margarita Becerra Ruíz Enrique Ehecatl Hernández Ferreiro (Link)

ASIGNATURA

Análisis de Algoritmos

1 Sea Π un problema. El desempeño computacional en el peor de los casos para Π es $O(n^2)$ y también es $\Omega(n \log_2 n)$.

Sea \mathcal{A} un algoritmo que soluciona Π . ¿Cuáles de las siguientes afirmaciones resultan consistentes con la información sobre Π ?

Justifique su respuesta.

- a) \mathcal{A} tiene en el peor caso complejidad $O(n^3)$. Sea f(n) la función de complejidad del algoritmo \mathcal{A} . Como f(n) es $O(n^2)$, implica que existen dos constantes c, k tal que $c \in \mathbb{R}$ y $k \in \mathbb{N}$, tal que $f(n) \leq cn^2$ para todo $n \geq k$, como $cn^2 \leq cn^3$ para todo $n \geq k$ entonces, tenemos que: $f(n) \leq cn^2 \leq cn^3$ para todo $n \geq k$, por lo que, $f(n) \leq cn^3$ para todo $n \geq k$. Por lo tanto f(n) es $O(n^3)$.
- b) \mathcal{A} tiene en el peor caso complejidad O(n). Por el inciso anterior, sabemos que $f(n) \leq cn^2$, además también sabemos que existen dos constantes c', k' tal que para todo $n \geq k$ $f(n) \geq c' n \log(n)$, entonces tenemos que $c' n \log(n) n \leq f(n) \leq c(n^2)$. Por lo tanto f(n) no puede ser O(n).
- c) \mathcal{A} tiene en el peor caso complejidad $\Theta(n \log n)$. Para que f(n) sea $\Theta(n \log(n))$ tiene que pasar que f(n) sea $\Omega(n \log(n))$ y f(n) se $O(n \log(n))$, pero f(n) no necesariamente está en $O(n \log(n))$, por que f(n) representa la complejidad en el peor de los casos y esta es $O(n^2)$.
- d) \mathcal{A} tiene en el peor caso complejidad $\Theta(n^2)$. Para que f(n) sea $\Theta(n^2)$ tiene que pasar que f(n) sea $O(n^2)$ y f(n) tiene que ser $\Omega(n^2)$, pero f(n) no necesariamente va a ser $\Omega(n^2)$, porque al estár f(n) en $\Omega(n\log(n))$, quiere decir que f(n) toma tiempo al menos $n\log(n)$, por lo tanto f(n) no es $\Theta(n^2)$.
- 2 Supongamos que un algoritmo \mathcal{A} se ejecuta en el peor de los casos con tiempo f(n) y el algoritmo \mathcal{B} toma tiempo g(n), en el peor caso.

Responda las siguientes preguntas con sí, no o tal vez y justifica formalmente tu respuesta. ¿Es \mathcal{B} más rápido que \mathcal{A} , para toda n mayor que alguna n_o a) ... si $g(n) \in \Omega(f(n) \log n)$?

Nota: podemos afirmar que cf(n) < cf(n)log(n) para todo $c \in \mathbb{R}^+$ y n > 1.

Si g(n) es $\Omega(f(n)log(n))$ entonces significar que existe algún $c \in \mathbb{R}^+$ tal que $g(n) \geq cf(n)log(n)$ para todo $n \geq k$ para algún $k \in \mathbb{N}$, entonces g(n) > cf(n), por lo que el algoritmo \mathcal{A} es más rápido.

- b) ... si $g(n) \in \Theta(f(n) \log n)$? Como $c_1, c_2 \in \mathbb{R}^+$ tal que $c_1 f(n) log(n) \leq g(n) \leq c_2 f(n) log(n)$ para todo $n \geq k$ para algún $k \in \mathbb{N}$, entonces $g(n) > c_1 f(n)$. Por lo tanto el algoritmo \mathcal{A} es más rápido.
- 3 Considera los siguientes ciclos anidados:

- a) Determina el desempeño computacional T(n) de los ciclos anidados.
 - Primero consideremos que el peor de los casos para el while interno es cuando j = 1 y, considerando que $n = 2^x$, tenemos que este ciclo se ejecuta x veces para que j > n, porque en cada iteración multiplicamos a j por 2, por lo que $x = log_2(n)$ (donde x representa las iteraciones del ciclo interior).
 - Ahora consideremos el primer while, este se ejecuta cuando i > 0, notemos que si n > 0 este ciclo nunca va a acabar, ya que si $n = 2^x$ podemos dividir esto entre 2 hasta llegar a i = 1, pero notemos que si seguimos dividiendo, nunca vamos a llegar a 0 por lo que este ciclo se ejecutará infinitamente, por lo tanto el desempeño computacional es ∞ .
- b) Si en el código anterior cambiamos la asignación $i \leftarrow i/2$ por $i \leftarrow i$ div 2, ¿Cuál sería el desempeño computacional T(n) del proceso? **Justifica** Para facilitar las operaciones aritméticas, en ambos incisos, puedes suponer que n es potencia de 2.

Como el ciclo interno no fue modificado este mantiene el desempeño computacional anterior o sea en el peor de los casos realiza $log_2(n)$ operaciones. Ahora siguiendo el razonamiento del inciso anterior el desempeño computacional del primer ciclo es $log_2(n)$, porque a diferencia del insiso anterior este sí acaba ya que al llegar a i = 1 el resultado de realizar la operación i div 2 es 0, por lo que el ciclo terminaría, como $n = 2^x$ este ciclo se ejecuta x veces donde $x = log_2(n)$, entonces, el desempeño computacional es

$$T(n) = \sum_{i=1}^{\log_2(n)} (\log_2(n) - i) = (\log_2(n) * (\log_2(n) + 1))/2$$

Lo cual tiende a $(log_2(n))^2$.

4 Proporciona un algoritmo (código) cuyo desempeño computacional sea $\Theta(n^3 \log n)$. Debes usar operaciones básicas, **no** debes usar procesos. **Justifica** formalmente que tu algoritmo alcanza el tiempo pedido.

```
def algoritmo_De_Majora(arr):
n = len(arr)
result = 0
for i in range(n):
    for j in range(n):
        for k in range(n):
            for _ in range(int(math.log(n, 2))):
                  result += arr[i] * arr[j] * arr[k]
return result
```

Empezando desde del bucle mas profundo, el cual es for _ in range(int(math.log(n, 2))):, podemos notar que este por definicion tiene complejidad logarítmica $O(\log n)$ debido al logaritmo base 2 con el que vamos a operar a n (además de que esto también sucede por que es la operación aritmética de mayor jerarquía en este bucle), el siguiente bucle, el cual es for k in range(n):, podemos observar que tiene una complejidad de O(n) porque itera desde 0 hasta n-1, hasta este momento la complejidad es de $O(n) * O(\log n)$, siguiendo con el siguiente bucle el cual es for j in range(n):, podemos darnos cuenta que este también cuenta con una complejidad de O(n), ya que se comporta igual al bucle anterior a el, con esto tendremos hasta el momento una complejidad de $O(n) * O(n) * O(\log n)$, con esto pasaremos a nuestro ultimo bucle el cual es for i in range(n):, a lo que podemos notar que nuevamente este tendrá una complejidad de O(n), quedándonos por definicion que nuestro código tiene complejidad de O(n) * O(n)

Ahora, utilizando la definicion de O y de Ω , si tenemos una f(n), g(n) y O(g(n)) en las que si $f(n) \in O(g(n))$, entonces g(n) es una cota superior para f(n), esto implica que f(n) no crece mas rápido que g(n), por ende si f(n) está acotada superiormente por $O(n^3 \log n)$ también está acotada superiormente por $O(n^3 \log n)$, por lo tanto $f(n) \in \Omega(n^3 \log n)$.

Y recordando que para que algo pertenezca a la complejidad de Θ , este debe también pertenecer a O y a Ω , podemos decir con toda certeza que el algoritmo tiene complejidad $\Theta(n^3 \log n)$.

5 Considera las siguientes funciones de complejidad:

Usando la definición formal de O, Ω, Θ , o y ω así como las relaciones estar contenido, \subset , y ser igual, =, ordenar las funciones de complejidad dadas en términos de $O, \Theta, y \Omega$.

a)
$$n^2/\log n$$
 b) $n^{\log n}$ c) $n^{2.75}$ d) $n^2 \log 3^n$ e) 4^n f) $6n^3 - 3n^2 + 2^{n+2}$ g) $3^2 * n!$ h) $2^{2n} * n^{2n}$ i) $(3n^2 - 2n + 8)^4$ j) $(7n - 1)!$

6 Usando la definición de O y Ω , para los siguientes incisos, demuestra formalmente, si $g(n) \in O(f(n))$ o si $g(n) \in \Omega(f(n))$.

a)
$$g(n) = 2^n$$
 $f(n) = 5^{\log n}$

Antes de comenzar notemos que por las propiedades de los logaritmos tenemos que: $f(n) = 5^{\log n} = n^{\log 5}$

$$g(n) \in O(f(n))$$

Si $g(n) \in O(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que 2n esté acotada superiormente por $c*n^{log5}$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$

 $2n \le 1 * n^{log5}$

A lo que podemos observar que es verdadero, ya que 2n es siempre menor o igual a n^{log5} cuando $n \geq 1$.

$$g(n) = 2n \in O(f(n))$$

$$g(n) \in \Omega(f(n))$$

Si $g(n)\Omega(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que 2n esté acotada inferiormente por $c*n^{log5}$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$

 $2n \ge 1 * n^{log5}$

A lo que podemos observar que es verdadero, ya que 2n es siempre mayor o igual a n^{log5} cuando $n \ge 1$.

$$g(n) = 2n \in \Omega(f(n))$$

b)
$$g(n) = n^2 / \log n$$
 $f(n) = n(\log n)^2$

$$g(n) \in O(f(n))$$

Si $g(n) \in O(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que $n^2/\log n$ esté acotada superiormente por $c * n(\log n)^2$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 2$ $n^2/\log n \le 1 * n(\log n)^2$

A lo que podemos observar que es verdadero, ya que $n^2/\log n$ es siempre menor o igual a $n(\log n)^2$ cuando $n \ge 2$.

$$g(n) = n^2 / \log n \in O(f(n))$$

c)
$$g(n) = \log^3(n)$$
 $f(n) = n^{0.5}$

$$g(n) \in O(f(n))$$

Si $g(n) \in O(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que $\log^3(n)$ esté acotada superiormente por $c * n^{0.5}$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$ $\log^3(n) \le 1 * n^{0.5}$

A lo que podemos observar que es verdadero, ya que el crecimiento de $\log^3(n)$ es menor que el de $n^{0.5}$ cuando $n \ge 1$.

$$g(n) = \log^3(n) \in O(f(n))$$

d)
$$q(n) = n!$$
 $f(n) = 2^n$

$$g(n) \in O(f(n))$$

Si $g(n) \in O(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que n! esté acotada superiormente por $c*2^n$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 4$ $n! < 1 * 2^n$

A lo que podemos observar que es verdadero, ya que el crecimiento de n! es mas lento que el de 2^n cuando $n \ge 4$.

$$g(n) = n! \in O(f(n))$$

e)
$$g(n) = 3^n$$
 $f(n) = 2^n$

$$g(n) \in O(f(n))$$

Si $g(n) \in O(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que 3^n esté acotada superiormente por $c*2^n$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$ $3^n < 1 * 2^n$

A lo que podemos observar que es falso, y que por ende la cota superior que buscábamos no existe.

$$\therefore g(n) = 3^n \notin O(f(n))$$

f)
$$g(n) = \log 3^n$$
 $f(n) = \log 2^n$

$$g(n) \in \Omega(f(n))$$

Si $g(n)\Omega(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que $n^2/\log n$ esté acotada inferiormente por $c * n(\log n)^2$ para todo n mayor o igual a n_0 .

Entonces si tenemos $c = \frac{1}{2}$ y $n_0 = 2$ $n^2/\log n \ge \frac{1}{2} * n(\log n)^2$

A lo que podemos observar que es verdadero, ya que $n^2/\log n$ es siempre mayor o igual a $\frac{1}{2} * n(\log n)^2$ cuando $n \ge 2$.

$$\therefore g(n) = n^2 / \log n \in \Omega(f(n))$$

$$g(n) \in \Omega(f(n))$$

Si $g(n)\Omega(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que $\log^3(n)$ esté acotada inferiormente por $c*n^{0.5}$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$ $\log^3(n) \ge 1 * n^{0.5}$

A lo que podemos observar que es verdadero, ya que $\log^3(n)$ es siempre mayor o igual a $n^{0.5}$ cuando n > 2.

$$g(n) = \log^3(n) \in \Omega(f(n))$$

$$g(n) \in \Omega(f(n))$$

Si $g(n)\Omega(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que n! esté acotada inferiormente por $c * 2^n$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 4$ $n! > 1 * 2^n$

A lo que podemos observar que es verdadero, ya que n! es siempre mayor o igual a 2^n cuando $n \ge 4$.

$$g(n) = n! \in \Omega(f(n))$$

$$g(n) \in \Omega(f(n))$$

Si $g(n)\Omega(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que 3^n esté acotada inferiormente por $c * 2^n$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$ $3^n > 1 * 2^n$

$$3'' \ge 1 * 2''$$

A lo que podemos observar que es verdadero, ya que 3^n es siempre mayor a 2^n .

$$g(n) = 3^n \in \Omega(f(n))$$

$$g(n) \in O(f(n))$$

Si $g(n) \in O(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que $\log 3^n$ esté acotada superiormente por $c*2^n$ para todo n mayor o igual a n_0 .

Entonces si tenemos c = 1 y $n_0 = 1$

$$\log 3^n \le 1 * 2^n$$

Simplificamos

$$n \log 3 \le 2^n$$

A lo que podemos observar que es verdadero, ya que el crecimiento de $n \log 3$ es mas lento que el crecimiento de 2^n .

$$g(n) = \log 3^n \in O(f(n))$$

$$g(n) \in \Omega(f(n))$$

Si $g(n)\Omega(f(n))$, entonces debe haber una constante positiva c y un valor de n_0 tal que $\log 3^n$ esté acotada inferiormente por $c*2^n$ para todo n mayor o igual a n_0 .

Entonces si tenemos
$$c = \frac{1}{\log 3}$$
 y $n_0 = 1$

$$\log 3^n \ge \frac{1}{\log 3} * 2^n$$

$$\log 3^n \ge \frac{1}{\log 3} * 2^n$$
 Simplificamos
$$n \log 3 \ge \frac{1}{\log 3} * 2^n$$

A lo que podemos observar que es verdadero, ya que el crecimiento de $n\log 3$ es mayor que el crecimiento de $\frac{1}{\log 3} * 2^n$

$$g(n) = \log 3^n \in \Omega(f(n))$$