PROBLEM 1

max Z = 2x1 + 20x2 - 10x3

2x1 + 20x2 + 4x3 <= 15

6x1 + 20x2 + 4x3 = 20

x1,x2,x3>=0 ve tamsayı olduğuna göre optimal tablosu verilmiş olan problemi kesme düzlemi algoritmasıyla çözünüz.

Z	X1	X2	Х3	S1	A1	71
	0	0	14	1	М	15
X2	0	1	0.2	0.075	-0.025	0.625
X1	1	0	0	-0.25	0.25	1.25

0.625=X2+0.2X3+0.075S1

-0.625=S4-0.2X3-0.075S1 (CUT 1)

Z	X1	X2	Х3	S1	S4	
	0	0	14	1	0	15
X2	0	1	0.2	0.075	0	0.625
X1	1	0	0	-0.25	0	1.25
S4	0	0	-0.2	-0.075	1	-0.625
		7		W		

Z	X1	X2	X3	S1	S4	
	0	0	11.3	0	13.3	6.67
X2	0	1	0	0	-3.33	0
X1	1	0	0.67	1	-13.3	3.3
S1	0	0	2.67	0	13.3	8.3

-0.33=S5-0.67X3-0.67S3 (CUT 2)

			,				
Z	X1	X2	X3	S1	S3	S4	
	0	0	0	0	2	17	1
X2	0	1	0	0	1	0	0
X1	1	0	0	0	-4	1	3
S1	0	0	0	1	-16	4	7
Х3	0	0	1	0	1	-1.5	0.5

-0.5=S5-0.5S4(CUT 3)

Z	X1	X2	Х3	S1	S3	S4	S5	-16
	0	0	0	0	2	0	34	0
X2	0	1	0	0	-4	0	0	2
X1	1	0	0	0	-16	0	2	3
S1	0	0	0	1	1	0	8	2
Х3	0	0	1	0	0	1	-3	1

X1=2,X2=0,X3=2 MAX Z=-16

Problem 1 Lingo Çözümü

max = 2*x1 + 20*x2 - 10*x3;

2*x1 + 20*x2 + 4*x3 <= 15;

6*x1 + 20*x2 + 4*x3 = 20;

@GIN(X1);

@GIN(X2);

@GIN(X3);

END

PROBLEM 2

Enb z=8x1+5x2

9x1+5x2=<45

x1+x2=<6

X1,X2>=0 ve tamsayı optimal çözüm tablosu verilmiş olan problemi kesme düzlemi yöntemiyle çözünüz.

	<i>x</i> 1	<i>x</i> 2	S1	S2	
	0	0	0.75	1.25	41.25
<i>x</i> 1	1	0	0.25	-1.25	3.75
<i>x</i> 2	0	1	-0.25	2.25	2.25

-0.75=s3-0.25s1-0.75s2

Iteration-1						
В	<i>x</i> 1	<i>x</i> 2	S 1	S2	<i>S3</i>	Z=41.25
Z	0	0	0.75	1.25	0	
<i>x</i> 1	1	0	0.25	-1.25	0	3.75
x2	0	1	-0.25	2,25	0	2.25
S3	0	0	-0.25	(-0.75)	1	-0.75
			-3	-1.6667↑		

Iteration-2			70			
	<i>x</i> 1	<i>x</i> 2	S ₁	S2	S3	
Z	8	5	0.3333	0	1.6667	40
<i>x</i> 1	1	0	0.6667	0	-1.6667	8
x2	0		-1	0	3	5
S2	0	0	0.3333	1	-1.3333	0

X1=5 x2=0 Max z=40

Problem 2 Lingo Çözümü

max=8*x1+5*x2;

9*x1+5*x2<=45;

x1+x2≤**=**6

@qin(x1):

@gin(x2); end

PROBLEM 3

MAX z = 2 x1 + x2

5 x1 + 2 x2 <= 8

x1+ x2 <= 3

x1, x2 . 0; x1 tamsayı optimal tablosu verilmiş olan problemi kesme düzlemi algoritmasıyla çözünüz.

	<i>x</i> 1	<i>x</i> 2	S1	S2	
Z	2	1	0.3333	0.3333	3.6667
<i>x</i> 1	1	0	0.3333	-0.6667	0.6667
<i>x</i> 2	0	1	-0.3333	1.6667	2.3333

0.6667=x1+0.3333s1-0.6667s2

0.6667=x1+0.3333s1+(-1+0.3333)

-0.6667=s3-0.33333s1-0.33333s2 (cut 1)

	<i>x</i> 1	x2	<i>S</i> 1	S2	<i>S3</i>	
z	0	0	0	0	1	3
<i>x</i> 1	1	0	0	-1	1	2
<i>x</i> 2	0	1	0	2	-1	1
S1	0	0	1	1	-3	0

X1=0,x2=3 max z=3

PROBLEM 3 LİNGO ÇÖZÜMÜ

```
MAX = 2 *x1+ x2;

5 *x1 + 2 *x2 <= 8;

x1+ x2<= 3;

@gin(x1);

@gin(x2);
```

Slobal optimal solution fou							
Objective value:	ind.	3.000000				Lingo 18.0 Solver	Status (Linga)
Objective value: Objective bound:		3.000000				Lingo 16.0 Solvel	
infeasibilities:		0.000000			Solver Status		Variables
xtended solver steps:		0			Model Class:	PILP	Total: 2 Nonlinear: 0
otal solver iterations:		0			State:	Global Opp	
lapsed runtime seconds:		0.04				GIODEI OPE	integers: 2
odel Class:		PILP			Objective:	3	Constraints
					Infeasibility:		Total: 3
otal variables:	2				Iterations:		Nonlinear: 0
onlinear variables:	0 2				iterations:		Nonzeros
nteger variables:	2				Extended Solver	Status	Total: 6
otal constraints:	3				Solver Type:	Branda	Nonlinear: 0
onlinear constraints:	0						
					Best Obj:		Generator Memory Used (K)
otal nonzeros:	6				Obj Bound:	3	23
onlinear nonzeros:	0				Steps:		1
							Elapsed Runtime (hh:mm:ss)
					Active:		00:00:00
	Variable	Value	Reduced Cost				
	X1	1.000000	-2.000000				sterrupt Solver Close
	X2	1.000000	-1.000000		Update Interval:	2 <u>I</u> r	iterrupi o diVer Liose
	Row	Slack or Surplus	Dual Price		4		
	1	3.000000	1.000000				
	2	1.000000	0.000000				
	3	1.000000	0.000000	_			
				44			
			0				
			0				
			0				
			705				
			10				
			10				
			100				
		, C					
		ر ر د					
		S					
		S					
		S					
		S					
		S					
	<i>L</i> ,	S					
	4	S					
	4	S					
	4	S					
	<<	S					
	<	S					
	\	S					
	\$	S					
	\$	S					
	\$	S					
	\	S					
	\$	S					