Introduction to Scientific Computing

Matrices

What is a matrix?

What is a matrix?

A 2D matrix consists of rows and columns

What is the size of this matrix?

Ans:

Basic Array-related Operators

•Operator []

- Used to create arrays, data organized in rows and columns each having the same size (vectors, matrices)
- ·Rows are formatted using ',' or ' '
- Columns are formatted using ';'

•Operator :

Used to create arrays of large size & evenly spaced data

Creating arrays

Creating a one-dimensional array (vector)

Vectors with constant spacing

Vectors in general

```
My_variable = [first second, ..., last]
A = [1 3 0 -2 5 6 10];
```


Creating arrays (cont.)

Creating a two-dimensional array (matrix)

```
A = [1 \ 2 \ 3; \ 4 \ 5 \ 6];
```

Using built-in functions

```
zeros, ones, and eye commands A = ones(2,5); A = zeros(2,3); A = eye(3);
```

- •Transpose operator ' (e.g., A')
- •Rows become columns and columns become rows
- •An m x n matrix results in an n x m matrix
- ·A column vector results in a row vector
- •Expressions used to initialize arrays can include algebraic operations and (all or portions of) previously defined arrays

```
a = [0 \ 13*2];

b = [a(2) \ 13 \ a];
```


Accessing matrix indices

Specific values from a matrix can be accessed by specifying the <u>row</u> and <u>column</u> location using subscripts

$$A = \begin{bmatrix} 1 & 5 & 9 \\ 2 & 4 & 8 \\ 3 & 6 & 7 \end{bmatrix}$$

What is the result of specifying A(3,1)?

Ans:

Accessing matrix indices

Matrix indices may also be accessed using a single subscript ("unwound") - in this case elements are evaluated starting in the upper left hand corner and down each column

$$A = \begin{bmatrix} 1^{1} & 5^{4} & 9^{7} \\ 2^{2} & 4^{5} & 8^{8} \\ 3^{3} & 6^{6} & 7^{9} \end{bmatrix}$$

Subarrays

Selecting subsets of rows and columns as separate arrays

- Array addressing using a colon (:)
- Vectors

•Function end = highest value of corresponding dimension

```
a = [1 2 3 4 5 6 7 8 9]; a(7:end) is [7 8 9] and a(end) is 9
```

•This function can return different values within the same expression

```
b = [1 2 3 4; 5 6 7 8; 9 10 11 12]; b(2:2:end, 2:end) is [6 7 8]
```


Manipulating/creating Arrays

- Adding elements (expanding)
- Deleting elements
- Built-in functions for arrays

length(v)	number of elements
size(A)	returns [m, n] where m and n are the size of A
reshape(A,m,n)	rearrange A to have m rows and n columns
diag(v)	creates square matrix with elements on the diagonal
diag(A)	creates vector from the diagonal elements

Resizing Arrays

·Arrays are resized automatically on assignment

A(end+1) = 5

%automatically adds one more element to the array

Deleting rows or columns from an array

A(:,2) = [] %deletes column 2 from A

·Arrays can be concatenated to form larger arrays

$$A = [B C; D E]$$

Accessing matrix indices

Often, the diagonal elements of a vector are important for engineering applications (ex. normal stresses from a stress tensor)

How would one specify the diagonal elements of matrix A?

Ans:
$$a = [A(1,1) \ A(2,2) \ A(3,3)]$$

or $a = A(1:4:9)$
or $a = diag(A)$

Strings

·An array of characters typed between single quotes (')

```
- 'ad ef'
 - 'CSCSI0040'
 - 'Ruth Simmons'
 - '99.99% pure'
 - 'Exclaiming text!'
 - 'text with a quote' in it'
·char built-in function
```

```
My string = char('string 1','string 2','string 3')
```

Work with strings

lower; isspace; isletter; ...

Matrix Math - Addition/Subtraction,

- Multiplication,
 - Division,

Array Math,

Array Operations

- •General rules for addition and subtraction with arrays of any nominal dimensions
- ·Scalars may be added to any array the scalar value is added to all elements of the array
- •Arrays may be added to arrays the arrays must have the <u>same dimensions</u> and elements in correlated positions are summed

(1) Scalars may be added to any array - the scalar value is added to all elements of the array (scalar expansion)

$$A = \left[\begin{array}{cc} 1 & 5 \\ 2 & 3 \end{array} \right]$$

$$b=2$$

$$b+A=2+\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2+1 & 2+5 \\ 2+2 & 2+3 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 7 \\ 4 & 5 \end{bmatrix}$$

Scalar expansion – automatically applied by MATLAB

(2) Arrays may be added and subtracted so long as they have the same dimensions – subtraction occurs on an index-by-index basis

$$A = \left[\begin{array}{rrrr} 1 & 5 & 9 \\ 2 & 4 & 8 \\ 3 & 6 & 7 \end{array} \right]$$

$$B = \begin{bmatrix} 6 & 2 & 3 \\ 9 & 5 & 8 \\ 5 & 0 & 2 \end{bmatrix}$$

$$A+B = \begin{bmatrix} 7 & 7 & 12 \\ 11 & 9 & 16 \\ 8 & 6 & 9 \end{bmatrix}$$

Say we define the following array

$$A = [1 \ 2; \ 3 \ 4]$$

What is the result of B = A + 2 ?

$$B = [3 \ 4; 5 \ 6]$$

What is the result of $B = A + [3 \ 4]$?

Error: matrix dimensions must agree

What is the result of $B = A + [3 \ 4; 5 \ 6]$?

$$B = [4 6; 8 10]$$

Element-by-Element Operations

·Array operations, array sizes must agree

- Addition (+) and subtraction (-)
- Multiplication (.*) and division (./)
- Exponentiation (.^)

•Functions applied over arrays (sin, log,...)

• When the argument (input) of a built-in function is an array (vector or matrix), the operation defined by the function is performed on each element of the array

Useful for evaluating a function

$$y = x^2 - 4x$$

$$y = \frac{z^3 + 5z}{4z^2 - 10}$$

Matrix / array multiplication

(1) Matrices and arrays may be multiplied by a scalar – MATLAB treats the scalar as an array of the same size as the N-dimensional array being multiplied

$$a=2$$

$$B = \left[\begin{array}{cc} 1 & 4 \\ 3 & 2 \end{array} \right]$$

$$a*B = A.*B = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}.*\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 6 & 4 \end{bmatrix}$$

Scalar expansion

Matrix multiplication

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \\ A_{41} & A_{42} & A_{43} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix}$$

$$\mathbf{A} * \mathbf{B} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} & A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \\ A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} & A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} \\ A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31} & A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32} \\ A_{41}B_{11} + A_{42}B_{21} + A_{43}B_{31} & A_{41}B_{12} + A_{42}B_{22} + A_{43}B_{32} \end{bmatrix}$$

$$4 \times 3$$

$$3 \times 2$$

$$4 \times 3$$

$$\mathbf{A} * \mathbf{B} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} & A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \\ A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} & A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} \\ A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31} & A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32} \\ A_{41}B_{11} + A_{42}B_{21} + A_{43}B_{31} & A_{41}B_{12} + A_{42}B_{22} + A_{43}B_{32} \\ & \mathbf{4x2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 3 \\ 2 & 6 & 1 \\ 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 1 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} (1 \cdot 5 + 4 \cdot 1 + 3 \cdot 2) & (1 \cdot 4 + 4 \cdot 3 + 3 \cdot 6) \\ (2 \cdot 5 + 6 \cdot 1 + 1 \cdot 2) & (2 \cdot 4 + 6 \cdot 3 + 1 \cdot 6) \\ (5 \cdot 5 + 2 \cdot 1 + 8 \cdot 2) & (5 \cdot 4 + 2 \cdot 3 + 8 \cdot 6) \end{bmatrix} = \begin{bmatrix} 15 & 34 \\ 18 & 32 \\ 43 & 74 \end{bmatrix}$$

Array operators (.* versus *)

•Say we define the following array/matrix

$$A = [1 \ 2; \ 3 \ 4]$$

•What is the result of B = A*[1 2; 3 4]?

$$B = [7 \ 10; \ 15 \ 22]$$

(aka "matrix product" or "matrix multiplication")

•What is the result of B = A.*[1 2; 3 4] ?

$$B = [1 \ 4; \ 9 \ 16]$$

(aka "array multiplication", element by element multiplication)

Vector Multiplication

One row vector and a column vector

- row X column = scalar (dot)

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1b_1 + a_2b_2 + a_3b_3$$

– column X row = matrix

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}$$

•Cross product, special operation (cross)

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \times \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} (a_2b_3 - a_3b_2) & (a_3b_1 - a_1b_3) & (a_1b_2 - a_2b_1) \end{bmatrix}$$

Matrix division

·Identity matrix I

Square (n x n) matrix of zeros with 1s on diagonal

$$\begin{bmatrix} 7 & 3 & 8 \\ 4 & 11 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 8 \\ 4 & 11 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 7 & 3 & 8 \\ 4 & 11 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 8 \\ 4 & 11 & 5 \end{bmatrix}$$

$$\mathbf{AI} = \mathbf{IA} = \mathbf{A}$$

·Inverse of a matrix

- $-\mathbf{B}$ is the inverse of \mathbf{A} if $\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B} = \mathbf{I}$
- inv function or raise to -1 power
- matrix must be square and... invertible

Matrix division

·Left division

- Solve **AX = B** where **X** and **B** are column vectors.
- Multiply on the left both sides by inverse of ${\bf A}$

$$A^{-1}AX = A^{-1}B$$

- Left hand side is then

$$A^{-1}AX = IX = X$$

- Solution of AX = B is

$$X = A^{-1}B$$

- In MATLAB

$$X = A \setminus B$$

Matrix division

·Right division

- Solve XC = D where X and D are row vectors.
- Multiply on the right both sides by inverse of C

$$X \cdot C \cdot C^{-1} = D \cdot C^{-1}$$

 $X = D \cdot C^{-1}$

- In MATLAB

$$X = D/C$$

<u>L9.m</u>

Example Solving Three Linear Equations

·Elimination of variables: Gaussian Elimination

$$\begin{cases}
4x-2y+6z=8 \\
2x+8y+2z=4 \\
6x+10y+3z=0
\end{cases}$$

Form AX = B

$$\begin{bmatrix} 4 & -2 & 6 \\ 2 & 8 & 2 \\ 6 & 10 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix}$$

Form XC = D

$$\begin{bmatrix} 4 & -2 & 6 \\ 2 & 8 & 2 \\ 6 & 10 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 0 \end{bmatrix} \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 4 & 2 & 6 \\ -2 & 8 & 10 \\ 6 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x & y & z \\ -2 & 8 & 10 \\ 6 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x & y & z \\ -2 & 8 & 10 \\ -2 & 8 & 10 \end{bmatrix} = \begin{bmatrix} 8 & 4 & 0 \end{bmatrix}$$

$$y = 0.292$$

L9.m

Transposing arrays

The transpose function reflects a matrix over its <u>main diagonal</u>, which corresponds to the relationship

$$\left[A^{T}\right]_{ij} = \left[A\right]_{ji}$$

What are the transposed matrices for the following examples?

Transposing arrays

What is the transpose of the following vector?

$$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T \longrightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$$

Array Operations, Built-in Arrays, Sparse Arrays, Array Size,

Array Sums, Array Products, Array Concatenation

- •MATLAB permits array rotations using the rot90 and flipping of matrices using fliplr, flipud, and flipdim
- •This capability is especially useful when interacting with combinations of images and arrays as the vertical axis of images is inverted from that of user-defined matrices

MATLAB's built-in spine image

Matrix of randomly generated numbers

Note: the vertical indices are inverted in the "image" Images will have to be flipped in order to interact with matrices of numbers

Code used to generate the images on the previous page

```
figure(1)
load('spine','X','map')
imagesc(X)
colormap(map)
set(gca,'FontSize',20)
set(gcf,'Color','w')
xlabel('Index')
ylabel('Index')
```

```
figure(2)
rndArr = rand(367,490);
surface(rndArr)
set(gca,'FontSize',20)
set(gcf,'Color','w')
xlabel('Index')
ylabel('Index')
axis tight
colormap('gray')
shading interp
```

Examples of rotating and flipping arrays:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 6 \\ 2 & 5 \\ 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

rot90, fliplr, and flipud, require 2D matrices - but flipdim can take arrays of any dimension

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 & 11 & 12 \\ 7 & 8 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$\text{flipdim}(A, 2)$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \end{bmatrix} \begin{bmatrix} 9 & 8 & 7 \\ 12 & 11 & 10 \end{bmatrix}$$

Rotating and flipping arrays

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

Built-in matrices

- •MATLAB includes a lot of pre-defined matrices that may be scaled to fit your needs
- ·Generally, there are two ways to specify the dimensions of the matrices
- A single dimension (n) creates an n x n square matrix
- Two dimensions (n, m) create a n x m matrix
- Some pre-defined matrices support N-dimensional arrays (ex. rand (m, n, p) and randi (m, n, p))

Built-in matrices

zeros(3)
$$\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

ones
$$(2,3)$$
 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Equal row and column sums, only permits an n x n matrix, n>2

Built-in matrices

eye (3)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Identity matrix

Matrices with random values

rand (2, 3, 5) and randi (10, 3, 5, 4)

Try these out!

- •Sparse matrices are useful in situations such as:
- Search algorithms
- Atomistics
- Stress / strain mapping and FEM
- In such cases, a sparse matrix may be defined to reduce memory load and speed calculations
- •Sparse matrices are defined by a list of elements containing non-zero elements while all other elements are assumed to be zero

- •Consider a sparse matrix of dimensions 1000 $\, \mathrm{x} \,$ 2000 elements that correlates to 2 million data points
- •Assume that this matrix contains non-zero values at the following indices (3,4) = 15, (100,1500) = 5, and (1000,2000) = 9
- ·This matrix may be established using a conventional matrix subscripts

```
A = zeros(1000, 2000);
A(3,4) = 15;
A(100, 1500) = 5;
A(1000, 2000) = 9;
```


•This matrix could also be established using a sparse matrix via the following

```
A = sparse([3,100,1000],...
[4,1500,2000],...
[15,5,9],1000,2000);
```

•The original (full) matrix A could also be converted to a sparse matrix via the following

```
A = sparse(A);
```


The sparse matrix offers considerable savings for memory and computation time

Matrix type	Memory (MB)	Time to compute A.^2 (ms)
Full	15.2	4
Sparse	0.015	0.04

Array size

- ·You can now create a lot of beautiful arrays of differing shapes and sizes, but you will often need to know the size of the array you working with
- •MATLAB offers several methods to determine array size
- size (A) yields all of the dimensions of the array in order of typical dimensional specifications (row, column, page, etc.)
- length (A) returns the largest dimension
- numel (A) returns the total number of elements in the array

Array size

Consider the following array

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{bmatrix}$$

What would the following return?

numel(A)

General / built-in array functions

·As was the case with vectors - many built-in MATLAB functions operate on any N-dimensional arrays element by element

·Assume A is a 100 x 200 matrix

- tan (A) yields a 100 x 200 matrix containing the value of the tangent at each index location of A
- •The same holds true for most of the common, built-in MATLAB functions (ex. abs(A), sin(A), log10(A))

•N-dimensional arrays may be summed across any of the dimensions or the entire array

·For an N-dimensional array

- •The sum along the Nth dimension may be invoked using sum(A, N), where N is the dimension number
- •The sum of all of the array may be output by nesting N number of sum calls (ex. sum (sum (A)) for a 2D matrix) the sum starts with the innermost dimension for the most highly nested sum call

Consider the following 3D array

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

What is the result of calling sum (A)?

$$\begin{bmatrix} 2 & 2 & 2 \\ & & [4 & 4 & 4] \\ & & [6 & 6 & 6] \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

What is the result of calling sum (sum (A))?

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

What is the result of calling sum (sum (sum (A)))?

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

What is the result of calling sum (A, 3)?

$$\begin{bmatrix} 6 & 6 & 6 \\ 6 & 6 & 6 \end{bmatrix}$$

Cumulative sums

cumsum() sums cumulatively along a vector or some dimension of an array
 unless a dimension is specified, it works on the first non-singleton dimension

```
cumsum([1 2 3 4 5]);
yields [1, 3, 6, 10, 15]

cumsum([1 2 3; 4 5 6]);
yields [1 2 3; 5 7 9]
```


Product

 prod() calculates the product of array elements along the first nonsingleton dimension

```
x(:,:,1) = [1 2 3; 4 5 6];

x(:,:,2) = [6 5 4; 3 2 1];

y = prod(x)

y(:,:,1) = [4, 10, 18] and

y(:,:,2) = [18, 10, 4]
```

Product

What does the following return?

```
x(:,:,1) = [1 2 9];

x(:,:,2) = [3 2 1];

y = prod(x)

yields y(:,:,1) = 18 and y(:,:,2) = 6
```

Cumulative product

• cumprod () calculates the cumulative product of array elements along the first non-singleton dimension

```
x(:,:,1) = [1; 2; 3];

x(:,:,2) = [2; 2; 2];

y = cumprod(x)

yields y(:,:,1) = [1; 2; 6]

and y(:,:,2) = [2; 4; 8]
```