

Part 04. [Chapter 2-1] Feature Store 기초

1 Feature Engineering 과 ML Pipeline

and merge

Feature 란?

Feature 는 관심 현상에 대해 개별적으로 측정 가능한 속성 또는 특징으로, Machine Learning Model 의 입력값이다.

and transform

Feature Engineering 과 **ML Pipeline**

Feature 의 필요성

ML Model 이 잘 동작하기 위해서는 많은 데이터 뿐만 아니라 잘 정의된 다양한 종류의 Feature 들이 필요합니다

네비게이션 ML Model 에 필요한 Feature 들

- ▷ 운전자 정보
- ▷ 지도 데이터
- ▷ 주유소/식당 등의 상점 정보
- ▷ 주행 이력
- ⊳통행료
- ▷ 무료/유료 도로
- ▷ 요일별 차이

Feature Vector

원본 데이터를 Feature Engineering 을 통해 가공하여 Model 이 사용할 수 있는 Feature Vector 로 변환한다. 1

Feature Engineering 과 ML Pipeline

고객 정보

아이디	varchar
나이	int(3)
거주 도시	varchar
가입일	datetime

거래 내역

아이디	varchar
거래 일시	datetime
거래액	decimal
할인 쿠폰 코드	varchar

장바구니 정보

아이디	varchar
거래ID	Int(11)
물폼 ID	decimal
할인 쿠폰 코드	varchar

우수 회원

아이디	varchar
구독 아이디	decimal
가입일	datetime

Feature Engineering (1)

Feature 들은 보통 여러 데이터들을 가공하여 만들어지게 된다. 그리고 이렇게 만들어진 Feature 들이 JOIN 등을 거쳐 학습에 필요한 데이터로 완성된다. 1

Feature Engineering 과 ML Pipeline

고객 정보

아이디	varchar
나이	int(3)
거주 도시	varchar
가입일	datetime

거래 내역

아이디	varchar
거래 일시	datetime
거래 ID	Int(11)
할인 쿠폰 코드	varchar

장바구니 정보

아이디	varchar
장바구니 ID	Int(11)
거래ID	decimal
할인 쿠폰 코드	varchar

Feature A

아이디	가입일	월간 접속률	할인 상품 구매율	접속 시 구매 비율
Α	20210101000000	0.21	0.4	0.52
В	20210201000000	0.32	0.23	0.31
С	20210301000000	0.45	0.87	0.72

Feature B

거래ID	장바구니 생성일	아이디	할인 쿠폰 보유	구매 여부		
10001	20210901000000	А	True	True		
10002	20211001000000	В	False	False		
10003	20211101000000	С	True	True		

월간 접속률	할인 상품 구매율	접속 시 구매 비율	할인 쿠폰 보유	구매 여부
0.21	0.4	0.52	True	True
0.32	0.23	0.31	False	False
0.45	0.87	0.72	True	True

모델 학습

이러한 모델을 가지고 있을 때 새로운 고객이 장바구니에 담은 경우실제 구매를 할 가능성을 예측 할 수 있게 된다. 그렇다면 이러한 Feature 들은 어디서 추출해야 할까? 1

Feature Engineering 과 ML Pipeline

DevOps

DevOps 는 개발 과정의 자동화를 말합니다.

ML Pipeline 에서도 DevOps 에서의 Code 변경처럼 데이터 변경 시에 자동화된 단계를 시작해야 합니다. 1.

Feature Engineering 과 ML Pipeline

T Feature Engineering 과 ML Pipeline

Feature Pipeline

데이터 엔지니어들이 생성하는 Feature Engineering 은 각각 다른 대기 시간으로 실행될 것 입니다.

그러나 같은 데이터를 두고도 데이터 엔지니어들은 각자 다른 관점으로 Feature Engineering 을 수행할 것이므로 일정한 Feature Pipeline 이 필요합니다. 1

Feature Engineering 과 ML Pipeline

	Build		Run
Apps	Development	ြေငံ္ခြဲ DevOps Pipeline	Production
Models	Model Training	Amaz <u>on SageMaker</u> Kubeflow MLOps Pipeline	(A) Model Serving
Features / Data	Spork Spork Feature Engineering	Feature Store!	Feature Serving

Part 04. [Chapter 2-1] Feature Store 기초

Feature Store 란? Feature Store 는 모델 훈련과 배포 과정의 중복을 줄이기 위해 생겨난 관리형 플랫폼 입니다.

2Feature Store 필요성

Ad-hoc Scripts And Jobs

Shared Feture Pipelines

Feature Store

MLOps with a Feature Store

1) 데이터 원천의 종류에 따라 지원되는 데이터 변형이 다르다.

2Feature Store 필요성

	데이터 웨어하우스 (예: Snowflake)	트랜잭션 데이터 (예: MySQL)	실시간 데이터 (예: Kafka)	예측 요청 데이터
데이터 양	전체 이력	최근 이력	실시간	현재
데이터 빈도	일/시간 단위	0.1~1초 단위	0.1~1초 단위	현재

지원되는 변형

매우 큰 크기 Batch 단위 '	의 변형		
작은 크기의 Batch 단위 I	의 변형		
시계열 변형	d		
간단한 변형			

Feature 추출과 제공의 어려움

2) App 이 필요한 시간 안에 Feature 를 제공하지 못한다.

3) Batch, 실시간 데이터, 예측 요청 데이터를 한 번에 처리하는 것이 매우 어렵다.

4) 데이터 누수에 의해 훈련/제공 데이터의 차이가 발생한다

Feature 데이터 생성을 위해서 대부분의 경우 데이터 엔지니어를 필요로 한다.

해결책) 데이터 사이언티스트가 직접 Feature Store 를 통해 운영에 필요한 Feature 들을 배포하게 된다

데이터 관리 어려움

표준화되지 않은 데이터로 다양한 ML모델 각각 원천 데이터를 이용해 모델 생성을 하게 되면 여러 분석 시스템에서 데이터를 중복 사용하여 관리가 어렵게 된다.

2Feature Store 필요성

- 데이터 원천으로부터의 연결이 끊기게 된다.
- 실행 가능한 Feature 들의 분포가 급격히 바뀐다.
- 데이터 품질 신뢰도가 떨어진다.

Feature Store 를 통해 급격한 데이터 분포 변화를 막고, 데이터 품질 신뢰를 얻을 수 있다

Feature Store 를 통해 여러 문제점들을 해결할 방안이 마련될 수 있다.

2Feature Store 필요성

문제 상황

- 1. Feature 의 추출과 제공의 어려움으로 인해…
- 1) 데이터 원천의 종류에 따라 지원되는 데이터 변형이 다르다
- 2) App 이 필요한 시간 안에 Feature 를 제공하지 못한다.
- 3) Batch, 실시간 데이터, 예측 요청 데이터를 한 번에 처리하는 것이 매우 어렵다.
- 4) 데이터 누수에 의해 훈련/제공 데이터의 차이가 발생한다
- 2. Feature 데이터 생성을 위해서 대부분의 경우 데이터 엔지니어를 필요로 한다
- 3. 다양한 ML모델 각각 원천 데이터를 이용해 모델 생성을 하게 되면 여러 분석 시스템에서 데이터를 중복 사용하여 관리가 어렵게 된다.
- 4. 데이터에 이슈가 생기면 운영에 배포된 모델 서비스가 중지되어 버린다.

해결 방안

- 1. Feature Store 를 통해 필요한 모든 데이터로부터 feature 를 추출하고 제공한다
- 2. 데이터 사이언티스트가 직접 Feature Store 를 통해 운영에 필요한 Feature 들을 배포하게 된다
- 3. Feature Store 를 사용하여 Feature 들을 데이터 자산의 하나로 관리가능해진다.
- 4. Feature Store 를 통해 급격한 데이터 분포 변화를 막고, 데이터 품질 신뢰를 얻을 수 있다

Part 04. [Chapter 2-1] Feature Store 기초

3 Feature Store 활용 사례 알아보기

Feature Stores For ML

국내에서의 적은 관심과 다르게 해외 기업에는 많은 활용 사례가 존재한다. Feature Stores for ML(<u>https://www.featurestore.org/</u>) 에서 다양한 정보를 얻을 수 있다.

Feature **Feature Store** Milestones Stores for ML **DECEMBER APRIL** THE FIRST global feature store LOGICAL CLOCKS meetup launches the managed version of **FEBRUARY IGUAZIO SEPTEMBER DECEMBER** Hopsworks on AWS launches its feature LOGICAL CLOCKS JUNE **TECTON** store **UBER** LOGICAL CLOCKS announces RonDB **FEBRUARY** ITERATIVE.AI introduces the introduces AWS receives USD 35M as the managed **KASKADA** Hopsworks, the first concept of feature investment to receives USD 20M announces the Online Feature Store open source feature launches a stores with to develop a develop a feature Sagemaker Feature for Hopsworks Michelangelo store Feature Store feature store Store store 2018 2019 2021 2020 2017 JUNE **JANUARY JANUARY** MAY **OCTOBER** MARCH **NOVEMBER** GO-JEK **AIRBNB** FEATURESTORE.ORG DATABRICKS THE FIRST TECTON SPLICE MACHINE presents its launches Feast becomes a launches a Feature releases a preview **Feature Store** is launched by PhD feature store at contributor to the Summit Students at KTH version of its Feature Store the Spark+Al Feast platform Store University MOLECULA Summit LOGICAL CLOCKS GOOGLE raises USD 17.6M announces availability announces general to develop a availability of the of Hopsworks on feature store Vertex Feature Store Azure DOOR DASH ALTERYX discusses using Redis announces a built-in as in-house feature feature store store ABACUS.AI raises USD 22M to develop a feature store

3

이미지 출처 : Feature Store for ML

Feature Store 활용 사례 알아보기

사례 1) Uber

Uber Eats 의 배달 시간 예측 ML 모델 서비스

3Feature Store 활용 사례

알아보기

이미지 출처 : Uber blog (<u>https://eng.uber.com/michelangelo-machine-learning-platform/</u>)

자료 출처 : Global Feature Store Meetup #7 (https://www.youtube.com/watch?v=n_V3RYFg5Zo/)

자료 출처 : Global Feature Store Meetup #6 (<u>https://youtu.be/2RRcOO_Nvvs</u>)

자료 출처 : Global Feature Store Meetup #6 (https://youtu.be/2RRcOO_Nvvs)

Online Load Workflow

3Feature Store활용 사례알아보기

자료 출처 : Global Feature Store Meetup #6 (<u>https://youtu.be/2RRcOO_Nvvs</u>)