List of Figures

2.1	The Standard Model summarizing the properties of elementary par-	
	ticles and their forces of interaction	8
2.2	The fundamental Feynman rules for different processes of quantum	
	chromodynamics	13
2.3	Evolution of three fundamental coupling constants : the strong cou-	
	pling constant α_S , the weak coupling constant α_w and the electro-	
	magnetic coupling constant α_e	14
2.4	Feynman diagrams of leading-order (LO), next-to-leading order	
	(NLO) and next-to-next-to-leading order (NNLO) processes in quan-	
	tum chromodynamics	16
2.5	Running of the strong coupling constant evolved at the energy scale	
	Q as a function of Q	19
2.6	Schematic illustration of the factorization theorem in a collision of	
	two protons	21
2.7	Illustration of the hadronization process in Lund string model	23
2.8	A proton-proton collision involving the main hard scattering process	
	along with the low momentum transfer underlying event (UE) con-	
	tributions	24
2.9	Formation of a jet in a proton-proton collision	25
2.10	Illustration of infrared and collinear unsafe behaviour of jet algorithms.	27

xviii LIST OF FIGURES

2.11	The clustering of particles into jets using different jet algorithms	30
3.1	An overview of the different experiments of the Large Hadron Collider	
	(LHC), a complex particle accelerator and collider located at CERN.	33
3.2	The integrated luminosity delivered by stable beams to CMS during	
	proton-proton collisions	36
3.3	In a proton-proton collision, the particles produced from the hard	
	interaction are clustered into a jet. The hard interaction corresponds	
	to the main vertex. The particles produced in the interactions other	
	than the hard one, form a pileup jet	37
3.4	The three dimensional view of the CMS detector along with its sub-	
	detector components	39
3.5	Front view of the CMS detector along with its various components	40
3.6	The right-handed coordinate system used by the CMS detector	41
3.7	A longitudinal view of the CMS detector is shown in the $y\hbox{-}z$ plane	42
3.8	A longitudinal view of the inner tracking system is shown in rz plane.	43
3.9	A geometric view of one quarter of the electromagnetic calorimeter	
	(ECAL) in y - z plane	45
3.10	Longitudinal section of one quarter of the hadronic calorimeter	
	(HCAL) in r - η plane	47
3.11	A longitudinal view of the CMS muon system showing the location	
	of the three gaseous particle detectors	51
3.12	Work flow of the L1 trigger system consisting of local, regional and	
	global components	52
3.13	Architecture of the CMS Data Acquisition (DAQ) system	55
3.14	The schematic overview of the CMS computing grid	56

4.1	The comparison between Monte Carlo (MC) simulations generated by	
	event generators and the real data produced by the particle collisions	
	and observed in the detectors	60
4.2	The Particle Flow (PF) algorithm is used by the CMS to identify and	
	reconstruct the particles. The PF converts the sub-detector measure-	
	ments back to physical particle objects	67
4.3	Formation of jets in a proton-proton collision at different levels	69
4.4	A schematic diagram of the factorized jet energy corrections (JEC)	70
5.1	Trigger efficiencies turn-on curves for the single jet HLT trigger paths.	79
5.2	Missing transverse energy fraction of the total transverse energy per	
	event in the data and simulated Monte Carlo events	81
5.3	The fractions of jet constituents for different types of PF candidates	
	for inclusive 2-jet events	83
5.4	The fractions of jet constituents for different types of PF candidates	
	for inclusive 3-jet events	84
5.5	The jet ID efficiency is studied as a function of $H_{\mathrm{T},2}/2$ with tag-and-	
	probe technique using dijet event topologies and it always exceeds	
	99%	85
5.6	Number of reconstructed vertices before and after the pileup reweight-	
	ing	87
5.7	Comparison of differential cross-sections for the data with simulated	
	events and CT10-NLO theory predictions	88
5.8	Comparison of the cross-section ratio for the data with simulated	
	events and CT10-NLO theory predictions	88
5.9	Fitting of the jet energy resolution distribution as a function of $H_{\rm T,2}/2$.	92

 Σ LIST OF FIGURES

5.10	Comparison of jet energy resolution calculated using Crystal Ball fit		
	function and Gaussian fit function		93
5.11	Jet energy resolution (JER) is shown as a function of Gen $H_{\mathrm{T},2}/2.$.		93
5.12	Additional unfolding uncertainty		94
5.13	Fitted CT10-NLO spectrum of differential cross-section as a function		
	of $H_{\mathrm{T},2}/2$		99
5.14	The response matrices are derived using the Toy Monte Carlo and		
	forward smearing method		100
5.15	Left: The ratio of cross-sections for inclusive 3-jet to that of 2-jet		
	events as a function of $H_{\mathrm{T},2}/2$. Right : The response matrix is derived		
	using the Toy Monte Carlo and forward smearing method, for the		
	cross-section ratio R_{32}		101
5.16	Closure test of the unfolding technique		102
5.17	Reco differential cross-section distributions unfolded with the re-		
	sponse matrices	•	103
5.18	The measured differential cross-sections as well as the cross-section		
	ratio R_{32} are unfolded as a function of $H_{\mathrm{T},2}/2$ using the response		
	matrices derived using the Toy Monte Carlo and forward smearing		
	method	•	104
5.19	The fractional statistical uncertainties of the unfolded data are com-		
	pared with those of the measured one		106
5.20	The unfolding procedure introduces the correlations of the statistical		
	uncertainty through bin migrations		107
5.21	Experimental uncertainties from different sources affecting the mea-		
	surement of cross-sections and the cross-section ratio		111
6.1	The k-factors using five different PDF sets		116

6.2	The nonperturbative (NP) corrections are presented as a function of
	$H_{\mathrm{T},2}/2$
6.3	The electroweak (EW) corrections as a function of $H_{\rm T,2}/2$ 119
6.4	Ratio of the data over theory obtained using the CT10-NLO PDF set. 120
6.5	The systematic theoretical uncertainties affecting the cross-section
	measurement and the cross-section ratio
6.6	Comparison of the measured differential inclusive 2-jet and 3-jet event
	cross-sections as a function of $H_{\mathrm{T},2}/2$ to theoretical predictions 125
6.7	Cross-section ratio as a function of $H_{\mathrm{T},2}/2$ calculated from data in
	comparison to that from NLO pQCD predictions obtained using the
	CT10-NLO PDF set
6.8	Ratio of the data over theory using the CT10-NLO PDF set 127 $$
6.9	Ratio of the data over the predictions from Monte Carlo simulations. 128
7.1	Ratio of the measured inclusive 2-jet differential cross-section to the-
	ory predictions using different PDF sets
7.2	Ratio of the measured inclusive 3-jet differential cross-section to the-
	ory predictions using different PDF sets
7.3	Ratio of the measured cross-section ratio to theory predictions using
	different PDF sets
7.4	The running $\alpha_S(Q)$ as a function of the energy scale Q
9.1	The arrangement of Silicon Photo-Multipliers (SiPMs) on the Mount-
	ing Board (MB)
9.2	The breakdown voltage (BV) is estimated using LED method and its
	variation is shown over time for 18 channels of one readout module
	(RM)

xxii LIST OF FIGURES

9.3	The relative variation of the SiPM gain is presented over time for a
	single RM with 18 channels. The gain is stable over a time from the
	middle of February to the beginning of March in 2014 and the relative
	variation of the gain lies within 2%
9.4	The distribution of the relative variations in gain for all the installed
	SiPMs is fitted with a Gaussian function. It has a width of only 0.5
	% and all gain variations are within $3%$
9.5	μ TCA crate showing the different slots
9.6	A test-stand designed to monitor the working of Power Mezza-
	nines/Auxiliary Power Mezzanines (PMs/APMs) through stability
	tests
9.7	A test-stand installed at Department of Physics, Panjab University,
	Chandigarh to perform the stability tests for monitoring the working
	of Power Mezzanines/Auxiliary Power Mezzanines (PMs/APMs) 158
A.1	The fractional jet energy correction (JEC) uncertainties from indi-
	vidual sources (Part I)
A.2	The fractional jet energy correction (JEC) uncertainties from indi-
	vidual sources (Part II)
A.3	The fractional jet energy correction (JEC) uncertainties from indi-
	vidual sources (Part III)