

#### **Revision Notes**

#### **Class 9 Maths**

## Chapter 10 - Heron's Formula

#### **Area of Triangle:**

- Area of a triangle when height is known is given by  $Area = \frac{1}{2} \times base \times height$
- For example: Let a triangle ABC



In the triangle ABC height is 4cm and base is 3cm Therefore, area of triangle ABC is given by

Area = 
$$\frac{1}{2}$$
 × base × height  
Area =  $\frac{1}{2}$  × 3×4

 $Area = 6cm^2$ 

- This formula can be used to find the area of the right-angle triangle, equilateral triangle and isosceles triangle.
- But when it is difficult to find the height of the triangle like in the case of scalene triangle, we use heron's formula for calculating the area of triangle

# Area of Triangle – by Heron's Formula:

• **Heron's formula** for calculating the area of triangle was given by mathematician Heron around 60 CE



• Area of triangle by heron's formula is given by  $Area = \sqrt{s(s-a)(s-b)(s-c)}$ 

Where, a,b,c are the sides of triangle and s is semi-perimeter of triangle

- Semi perimeter of triangle is the half of perimeter of triangle and is given by  $s = \frac{a+b+c}{2}$
- Heron's Formula is very helpful where it is not possible to find the height of triangle.
- For example: Let a triangle ABC



Sides of triangles are

$$a = 24cm$$

$$b = 40cm$$

$$c = 32cm$$

Perimeter of triangle is given by

Perimeter = 
$$a + b + c$$

Perimeter = 
$$24 + 40 + 32$$

Semi perimeter is given by

$$s = \frac{perimeter}{2}$$

$$s = \frac{96}{2}$$

$$s = 48cm$$

Now, area of triangle is given by

Area = 
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Area = 
$$\sqrt{48(48-24)(48-40)(48-32)}$$

Area = 
$$\sqrt{48(24)(8)(16)}$$

Class IX Maths <u>www.vedantu.com</u> 2



Area = 
$$\sqrt{147456}$$
  
Area =  $384$ cm<sup>2</sup>

### Area of Quadrilateral using Heron's Formula:

- A quadrilateral can be divided into two triangular parts by joining one of its diagonals
- And then with help of Heron's Formula we can find the area of two triangular parts
- Then by adding them we can get the area of the quadrilateral.
- For example: Let a rhombus ABCD



Area of triangle ABD is given by

$$Area_1 = \sqrt{s(s-a)(s-b)(s-c)}$$

Here, 
$$a = 100 \text{cm}, b = 100 \text{cm}, c = 160 \text{cm}$$

And semi perimeter is

$$s = \frac{a+b+c}{2}$$

$$s = \frac{100+100+160}{2}$$

$$s = \frac{360}{2}$$

$$s = 180 \text{cm}$$

$$\therefore \text{Area}_1 = \sqrt{s(s-a)(s-a)}$$

$$\therefore Area_1 = \sqrt{s(s-a)(s-b)(s-c)}$$

Area<sub>1</sub> = 
$$\sqrt{180(180-100)(180-100)(180-160)}$$



$$Area_1 = \sqrt{180(80)(80)(20)}$$

Area<sub>1</sub> = 
$$\sqrt{23040000}$$

$$Area_1 = 4800 cm^2$$

Now, area of triangle BCD is given by

Area<sub>2</sub> = 
$$\sqrt{s(s-a)(s-b)(s-c)}$$

Here, 
$$a = 100 \text{cm}, b = 100 \text{cm}, c = 160 \text{cm}$$

And semi perimeter is

$$s = \frac{a+b+c}{2}$$

$$s = \frac{100 + 100 + 160}{2}$$

$$s = \frac{360}{2}$$

$$s = 180cm$$

$$\therefore Area_2 = \sqrt{s(s-a)(s-b)(s-c)}$$

Area<sub>2</sub> = 
$$\sqrt{180(180-100)(180-100)(180-160)}$$

$$Area_2 = \sqrt{180(80)(80)(20)}$$

Area<sub>2</sub> = 
$$\sqrt{23040000}$$

$$Area_2 = 4800 cm^2$$

$$\therefore$$
 Area of ABCD = Area<sub>1</sub> + Area<sub>2</sub>

Area of ABCD = 
$$9600 \text{cm}^2$$