

Module: Biophysique Basé sur: Le cours

- -> Ce résumé est un complément de cours, il contient suffisamment d'informations, mais ne remplace pas le polycopié du professeur.
- -> Merci d'envoyer toutes vos remarques via l'adresse mail suivante : mahdikettani1@gmail.com
- -> Bon courage et bonne lecture!

Auteur : Kettani El Mahdi, étudiant de la promotion médecine 2019

اللهم أستودعك ما قرأت و ما حفظت و ما تعلمت، فرده عند حاجتي إليه، إنك على كل شيء قدير

LUMIÈRE LASER

1) Définition:

- -> Laser : amplification de la lumière par émission stimulée de radiation
- -> Une matière stimulée par une énergie émet de la lumière

2) L'absorption:

- -> Atome non excité => état fondamental Eo = énergie la plus faible
- -> Atome excité avec source d'énergie, il absorbe les électrons => état excité E1
- -> Plus la trajectoire électronique est loin du noyau, plus l'énergie augmente
- -> On peut quantifier les niveaux d'énergie par la quantité d'énergie nécessaire pour transférer $1e^-$ à un niveau sup

3) Émission spontanée :

- -> L'énergie absorbé se transforme en lumière (photons) après quelques nanosecondes
- -> L'énergie du photon émis est égale à l'énergie absorbée. $\frac{E_{photon}}{E_{photon}} = h \times v = E2 E1$
- -> La direction de l'émission des photons est aléatoire

4) Émission stimulée :

-> Atome excité par une énergie E1, et on le restimule par une énergie égale à la 1^{ère} (c 'est à dire E1) => Il retourne donc à l'état fondamental et émet simultanément 2 photons E1 en phase et dans la même direction (E1 dupliquée)

5) Production des rayons laser :

-> Un photon incident peut soit être absorbé par un atome de faible énergie soit désexciter un atome déjà excité

a) Pompage:

- -> On fait augmenter le nombre d'atomes excité pour favoriser l'émission stimulée
- -> Proportions d'atomes entre E2 et E1 : $N2 = N1 \times e^{\frac{-E2-E}{K \times T}}$
- -> A l'équilibre thermodynamique, plus d'atomes à l'état fondamental que d'atomes excités
- -> Pour réaliser le pompage, on apporte une énergie extérieure :
- Énergie optique
- Énergie chimique
- Énergie électrique

source d'énergie extérieure

b) Amplification:

- -> Pour obtenir des rayons laser de grande E, on procède à l'amplification
- -> L'amplification : la multiplication du pompage et de l'émission stimulée
- -> Méthode :
- Dans une cavité optique cylindrique dont les bases sont 2 miroirs, avec l'un d'entre eux qui est semi-transparent
- L'amplification commence par une émission spontanée de quelques photons
- Chaque photon émis au contact du miroir sera réfléchi et devient incident et en produit 2 autres etc.
- Lorsque le faisceau lumineux // est suffisamment intense, il traverse le miroir semi-transparent : faisceau laser
- -> La cavité optique joue le rôle d'amplificateur mais aussi de filtre : car elle ne permet le passage que d'ondes

parfaitement //, en phase et avec fréquence tel que $v = f = \frac{K \times C}{2L}$

6) Caractéristiques de laser :

- -> Photons de même énergie : même λ => Lumière monochromatique => Absorbance dans une couleur spécifique
- -> Émis en phase : optimisation de l'énergie
- -> Peuvent être extrêmement puissants
- -> Lumière directive : Faisceau // => Fluence élevée

-> Exemple de fluence :

- Fluence d'une lampe : 100W : 0,2 mW/cm2
- Fluence d'un laser de 100W avec r = 2mm : 800 mW/cm2

7) Types de laser:

-> Laser à solides :

- Verre ou cristaux, mauvais conducteur électrique
- Dopés avec des ions aux propriétés laser
- Emet surtout dans le rouge et l'infrarouge
- Emet en continue ou de manière impulsionnelle
- Exemple: Rubis (694 nm), YAG (1064 nm)

-> Laser à gaz :

- La matière à excité est un gaz contenu dans un tube en verre ou en céramique
- Faisceau émis très cohérent et de fréquence très pure
- Exemple : Argon (λ = 500nm)

-> Laser à liquide :

- Colorant organique
- Emission continue ou discontinu selon le mode de pompage
- Les fréquences peuvent augmenter ou diminuer à l'aide d'un prisme ou d'un filtre optique
- Peut émettre de l'ultra-violet UV -> l'infrarouge IR, selon le colorant utilisé

8) Mécanismes d'action du laser :

Effets	Effet	Effet	Effet
thermiques	photochimique	photodynamique	photomécanique
-> Localisé :	-> Absorption de	-> On injecte un	-> Densité et puissance très élevée
42 – 45°C	l'onde émise par	produit photo	
Quelques dizaines de minutes	molécule spécifique	sensibilisant et	-> Production d'ondes de chocs
Apoptose		on l'éclaire à	destructrices par :
	Fluence faible =>	l'aide d'une	 Expansion, contraction et
-> Coagulation :	réaction	lumière	implosion des bulles de vapeur =>
50 – 80°C	photochimique	adéquate (λ)	accumulation de chaleur sans
Quelques secondes			diffusion thermique => bulle
Nécrose (sans destruction	Fluence élevé =>	-> Libération de	gazeuse
immédiate du tissu)	rupture de liaisons	produits toxiques	 Ionisation des atomes de la
Dénaturation des protéines et	chimiques ou	pour la cellule	matière
du collagène	production de	ciblée	
	radicaux libres		-> Si le tissu est mou => Arrachement
-> Volatilation :			-> Si le tissu est solide => Rupture
Supérieur à 100°C			
1/10 de seconde			
Tissu part en fumé			
Rebord cicatrisant par			
nécrose de coagulation			

9) Applications médicales :

- -> Ophtalmologie : (Laser, argon, YAG, Excimer, Femtoseconde...) : Rétinopathie diabétique, Décollement rétine, Cataracte secondaire, Glaucome, Resurface cornée, Découpe volet cornéen
- -> Dermatologie : (Laser YAG, à colorant, à rubis) : Effacement tatouage, Suppression tâche de naissance, Épilation
- -> Urologie : (Lasers pulsés) : fragmentation de calculs urétéraux
- -> Oncologie : (Laser thermique et photo dynamique...)
- -> Chirurgie dentaire : Photo ablation de caries