L#5. Problem Solving Tools and Program Design in Computer Programming: The Repetition Structure

Problems with Solutions Requiring Repetition

Summer 2015

Repetition

What if we need to repeat several lines of an algorithm over and over?

Que aburrido prof: ¿solo da vueltas?

Program length?

Example: Write a small program that will display the numbers 1 - 100.

For so a simple task you would need one hundred lines. It must be another way.

it's one!!

PRINT 1
PRINT 2
PRINT 3
PRINT 4
PRINT 5

• • •

• • •

• • •

PRINT 99

PRINT 100

Without knowledge of repetition, You would most likely write a program that uses individual lines of code that print out each number.

A LOOP STRUCTURE in pseudocode:

SET x=1
WHILE x<=100
PRINT "x=", x
ADD x=x+1

Mientras la condicion sea cierta las instrucciones de adentro se repiten

"WHILE" indicates that a certain chunk of code will be repeated (within the loop or indented code) as long as the condition ("x <= 100") is true. Once this condition becomes false, e.g., when x = 101, we skip to the **next** line after the indentation, after the loop.

I am PITO the

python and love

pseudocode

While loop:

For loop:

WHILE & FOR loops:

While loop:

SET x=1
WHILE x<=100
PRINT "x=", x
ADD x=x+1

For loop:

FOR x=1 to 100, Step 1
PRINT "x=", x

FOR indicates that a certain chunk of code will be repeated (indented code) from the initial up to the final value of x, jumping by Step. After the last iteration at x = 100, we skip to the **next** line after the indentation, after the loop.

Iteration Decomposition: Identifying the need of a loop

For example, see if you can determine which of the following problems might be best solved using a loop:

- A. Solving the equation $y=2x^2 + x + 5$ for all x between 5 and 10, in steps of 1.
- B. Summing entered integers until the user keys -1
- C. The user enters in the current year and then his/her birth year. Your program computes the user's age. Perform this task again for several friends.

Iteration Decomposition: Paper and Pencil

Solving the equation $y=2x^2 + x + 5$ for all x between 5 and 10

First, be sure you can solve it by paper and pencil?

Next 3 slides shows the development of a loop with a flowchart and pseudocode.

Start

x=5

x<=10?

 $y=2*x^2+x+5$

print x,y

x=x+1

End

yes

no

Final Flowchart and Pseudocode

Solving the equation $y=2x^2 + x + 5$ for all x between 5 and 10

SET x **←**5 **WHILE** x <= 10 **COMPUTE** y **←**2*x^2 + x + 5 **PRINT** x, y **ADD** x **←** x+1

Discuss

- Cycles or iterations
- Number of cycles
- Sequence of statements
- Arrows or equal sign in pseudocode
- Do I have always to develop the iteration process?

Solving the equation $y=2x^2 + x + 5$ for all x between 5 and 10

This is another algorithm for the same purpose


```
SET x ← 4
LOOP WHILE x <= 9
ADD x ← x+1
COMPUTE y ← 2*x^2 + x + 5
PRINT x,y
```

Iteration Decomposition

The skill you need to acquire is how you solve the problem by **breaking it down into steps** that are so simple that you can understand and the computer can execute them.

For a problem that needs iteration (i.e., loops, repetition). First solve a few instances of the problem by hand and think about what you did to find the partial solution. For example if the task is computing a table, compute few rows of the table by hand and repeat this process until you have computed the whole table.

Trace Tables

- A technique used to test algorithms to make sure that no logical errors occur.
- Construct a table
 - Follow the development of each variable by writing it as heading for each row or column in a table.
 - Each row or column represents a variable or statement in the code and they should follow the sequence
 - This include input, output, and intermediate variables
- Follow the code flow and looping sequence by tracing the variable changes within the code.

Trace Table

Develop a trace table for the following code:

```
SET x = 5

WHILE x <= 10

COMPUTE y=2*x^2 + x + 5

PRINT x,y

ADD x=x+1
```

EXCEL

Paper & pencil (or Excel)

	D	E	F	G	Н		
31	iter	Х	x<=10?	у	print x,y	x=x+1	
32	none	5					G33=2*E32^2+E32+5
33	1		TRUE	60	5,60	6	H33 =E32&","&G33
34	2		TRUE	83	6,83	7	I33=E32+1
35	3		TRUE	110	7,110	8	G34==2*I33^2+I33+5
36	4		TRUE	141	8,141	9	I34=I33+1
37	5		TRUE	176	9,176	10	
38	6		TRUE	215	10,215	11	
39	EXIT		FALSE				

Trace Table

Same problem, different algorithm:
SET x to 4

WHILE x <= 9

ADD x=x+1

COMPUTE $y=2*x^2 + x + 5$

PRINT x,y

EXCEL

Paper and pencil, or Excel?

	D	E	F	G	Н	I	
31	iter	x	x<=9?	x=x+1	у	print x,y	
32	none	4					
33	1		TRUE	5	60	5,60	G33=E32+1
34	2		TRUE	6	83	6,83	H33=2*G33^2+G33
35	3		TRUE	7	110	7,110	I33 =G33&","&H33
36	4		TRUE	8	141	8,141	
37	5		TRUE	9	176	9,176	
38	6		TRUE	10	215	10,215	
39	EXIT		FALSE				

Suggested Exercise

Hands on: Now, on your own, design the programs for the recommended exercises: A, B, and C, through the steps:

- Iteration decomposition
- Trace table
- Flowcharting
- Pseudocode

Synthesis of Tools for (Programming) Problem Solving

Decomposition with IPO diagrams

Decomposition
Condition/Action or Cursory

Decompose the looping by reviewing the iteration sequence

Programming Structures

Flowcharting

Sketches

Pseudocode

Top down design