The Power of the Noisy Channel: Unsupervised End-to-End Task-Oriented Dialogue with LLMs O

Brendan King and Jeffrey Flanigan 1

University of California, Santa Cruz {bking2, jmflanig}@ucsc.edu 1

Abstract 2

Training task-oriented dialogue systems typi- 2 cally requires turn-level annotations for interacting with their APIs: e.g. a dialogue state and the system actions taken at each step. These an- 2 notations can be costly to produce, error-prone, 2 and require both domain and annotation ex- 2 pertise. With advances in LLMs, we hypothe- 2 size unlabelled data and a schema definition are 2 sufficient for building a working task-oriented dialogue system, completely unsupervised. Us- 2 ing only (1) a well-defined API schema (2) a set of unlabelled dialogues between a user and 2 agent, we develop a novel approach for infer- 2 ring turn-level annotations as latent variables 2 using a noisy channel model. We iteratively improve these pseudo-labels with expectation-2 maximization (EM), and use the inferred labels 2 to train an end-to-end dialogue agent. Evaluat- 2 ing our approach on the MultiWOZ benchmark, 2 our method more than doubles the dialogue suc- 2 cess rate of a strong GPT-3.5 baseline. 1

1 Introduction 3

Task-oriented dialogue systems, which use APIs 4 to complete tasks on behalf of users, have been a 4 longstanding challenge within conversational AI. 4 Recent advances in large language models (LLMs) 4 have further stimulated interest in task-oriented 4 systems and LLMs which can use APIs as tools. 4 To facilitate API use, successful task-oriented dia-4 logue systems usually employ a modular approach: 4 predicting a dialogue state which includes argu-4 ments to API calls, and dialogue acts for planning 4 an appropriate response, before finally producing 4 a natural language reply. Training such systems 4 typically requires expert annotation of these struc- 4 tured intermediates for every dialogue turn. Even in 4 settings where human-human dialogues are abun- 4 dantly available, the high cost and expertise re- 4

Our code will be available at https://github.com/jlab-2nlp/nc_latent_tod 2

Figure 1: An overview of our unsupervised dialogue problem. We assume 1) unlabelled goal-oriented dialogues between a user and agent and 2) a well-defined schema S with APIs suitable for fulfilling goals. We infer the unseen interactions between the agent and API, and use this to produce an end-to-end dialogue agent.

quired to annotate the dialogues poses a significant 4 hurdle to system development. 4

Recent work has shown that LLMs can accomplish a broad set of useful tasks without any structured labels for a task (Brown et al., 2020). These include 'zero-shot' approaches to task-oriented dialogue sub-tasks such as Dialogue State Tracking (DST) (Hu et al., 2022; King and Flanigan, 2023; Heck et al., 2023), intent detection (Pan et al., 2023), grounded response generation (Li et al., 2023b), and even zero-shot end-to-end dialogue systems (Hudeček and Dusek, 2023). Still, existing approaches generally do not perform well enough for real-world use, and none are able to make effective use of in-domain unlabelled dialogues.

We ask: can we use existing unlabelled dialogues (without any labels or API calls annotated) along with an API specification, to build a working dialogue agent, without needing an expert to annotate data? This addresses a common real-world scenario. Many high value dialogue tasks are currently carried out by human agents, who interface a user with some software system. These conversations can be recorded and transcribed, and the

API(s) supporting the agent typically have well-7 formed specifications. However, annotating the 7 API calls and system acts needed for aligning the 7 two is time consuming and requires annotation ex-7 pertise. In lieu of this, 'zero-shot' systems have 7 been proposed, but these still require an expert to annotate a 'formatting example' (Hu et al., 2022; 7 King and Flanigan, 2023), or a more detailed 'pol-7 icy skeleton' (Zhang et al., 2023). 7

We instead propose the following setting: we assume an API schema definition S, and plenty 8 of available human-human dialogues in natural 8 language, but no annotations on these dialogues 8 (Fig. 1). To the best of our knowledge, we are the first to consider this setting. We demonstrate that one can develop a conversational agent for the API schema in this setting without any assistance from an expert annotator. Our contributions are as 8 follows: 8

- We construct an end-to-end task-oriented dialogue agent with an LLM solely from unla- 9 belled dialogues and an API definition, without any turn-level labels or supervision from 9 de-lexicalized utterances. 9
- We accomplish this by inferring all the pseudolabels necessary (API calls, system actions) 9 to train a traditional end-to-end dialogue sys- 9 tem from unlabelled dialogues, using prompts of which are automatically generated from the API schema. 9
- We propose a noisy-channel 'code-to-text' re- 9 ranking method, which is instrumental to our pseudo-label quality and final system. 9
- We devise a novel Hard-EM (Dempster et al., o 1977) approach which uses predictions as incontext examples for the LLM, and addition- 9 ally as data for iteratively fine-tuning a final o model. 9

Preliminaries 10

A task-oriented dialogue consists of turns of utterances between a user and an agent which interfaces 11 accomplish a task. Typically the system response 11 utterance follows the user's utterance. We denote 11 u_t as the user's utterance at turn t, and r_t as the

gives names and descriptions for all arguments supported in each API, as well as the possible values 11 any categorical arguments may take (Rastogi et al., 11 2020). This is analogous to standardized formats 11 for API documentation, many of which could be 11 easily converted to a schema definition. 11

Task-oriented systems require some method for 12 interacting with the APIs in S. Modular approaches 12 use a Dialogue State Tracking (DST) module, 12 which predicts a belief state b_t : a collection of arguments to API call(s) needed to satisfy the user's 12 goal. A belief state is commonly represented with 12 a set of slot-value pairs: 12

$$b_t = \{(s_1, v_1), (s_2, v_2), ...(s_n, v_n)\}$$
 13

For example, if a user says 'I'm looking for a restau- 14 rant south of town', a DST system might produce 14 the belief state {(restaurant-area, south)}, which 14 can be used to query a restaurant API. We assume 14 zero labeled belief states and infer them from unlabelled dialogues using the space of possible states 14 supported by the schema definition \mathcal{S} . 14

We also make use of system dialogue acts to 15 structure our agent's communicative intents with a 15 policy module. Given a dialogue state and context 15 for a turn t, the policy predicts set of dialogue acts to be communicated in the system response r_t . For instance, the policy might determine that we should ask the user to narrow their search to 15 a price range: $A_t = \{\text{Request(restaurant-area=?)}\}$. 15 An appropriate system response might be: "Sure, 15 are you looking for a particular price range?" Like 15 belief states, we assume zero supervised examples 15 of A_t and infer them from unlabelled dialogues. 15

Method Overview 16

We treat the turn-level labels needed for training an end-to-end dialogue system as a latent vari- 18 ables, and infer them from unlabelled dialogues. 18 We assume only the fully-lexicalized sequence of 18 user and system utterances $u_1, r_1, ... u_T, r_T$, and 18 the schema $\mathcal S$ defining the system's capabilities, 18 which defines the space of valid dialogue state and 18 act labels. Importantly, our prompts are automati- 18 cally generated from the API schema. 18

In §4, we outline our noisy-channel prompting 19 the user with a programmable system or API to 11 method for inferring the turn-level labels necessary for training our dialogue agent. We give an 19 overview of the latent variables we infer in Fig. 2. 19 We assume we cannot query the APIs or observe 19 system's response. We assume the APIs supported 11 results while labeling dialogues offline, as the obby the system are defined in a schema S, which $\frac{1}{11}$ tained API results may have changed. In § 5, we $\frac{1}{19}$

Figure 2: An overview of the latent variables annotated in our unsupervised labeling process which are used to train 17 the dialogue model. Our DST Module (§4.1) infers the API call(s) with arguments at each turn, from which we can derive the dialogue state change. Our DAT or Act Tagging module (§4.2) predicts the dialogue acts communicated in the observed system response, which can be used to infer de-lexicalized responses for training a response generator. 17

train a complete dialogue agent by fine-tuning on 19 prompts derived from our inferred pseudo-labels.

Inferring Latents via Noisy Channel 20

In this section, we present our method for inferring 21 latent annotations for the dialogue states $b_1...b_T$ and dialogue acts $A_1...A_T$ for each dialogue turn t given only the unlabelled user and system utter- $\frac{1}{2}$ ances $(u_1, r_1, u_2, r_2, ...u_T, r_T)$. To do this, we devise a noisy-channel prompting approach for DST 21 and dialogue act tagging (DAT) using StarCoder 21 4.2 (Li et al., 2023a), a code-based LLM. First, we use according to a noisy-channel model, in which we prove their quality using Hard-EM (Dempster et al., 21 1977) (§4.5). 21

4.1 Inferring API Calls and Dialogue State 22

the prior system response r_{t-1} , the current user ut- 23 terance u_t , and the previous belief state prediction b_{t-1} . We then extract a dialogue state change Δb_t 23 from the arguments to the call, and compute the 23 next dialogue state as $b_t = \Delta b_t + b_{t-1}$. While used 23 offline here, this DST method is causal with respect 23 to dialogue inputs and is the same as our method 23 in online inference. 23

Inferring System Acts 24

a text-to-code prompt to infer the API call(s) made 21 For inferring system acts, we use a similar text-to-25 by the system in each dialogue, and build the di-21 code prompt for predicting the set of dialogue acts 25 alogue state from inferred API call arguments ($\{ | z_1| A_t \text{ communicated in a given system response } r_t | z_5 \}$ 4.1). We use a similar text-to-code prompt to infer 21 See Fig. 5b in App. A for an example of our prompt. 25 the latent act(s) communicated in each agent re- 2 We define each act our system could take in the 25 sponse, so that we can reverse-engineer an agent's 21 prompt instructions. For input from each turn, we 25 policy (§ 4.2). For both tasks, we find much bet 21 find best performance when conditioning only on 25 ter performance when re-ranking latent predictions $|z_1|$ the response to tag, r_t . For our set of supported acts, $|z_5|$ we use a subset of the universal dialogue acts pro- 25 condition the observed utterance on a predicted la- 21 posed in Paul et al. (2019), where some acts such 25 tent in a code-to-text prompt (§ 4.3). Finally, we 21 as "Inform" or "Offer" may use slots defined in S. 25 leverage the in-context learning ability of LLMs 21 For example, an agent choosing to offer to book 25 by re-using our predictions as exemplars (§ 4.4). 21 a user at a hotel named 'acorn guest house' might 25 Given these initial pseudo-labels, we iteratively im- 21 be represented as Offer(hotel_name='acorn guest| 25 house'). See App. C for our complete dialogue 25 act set. Importantly, we use the schema definition 25 S and our act set to validate each act prediction, 25 removing predicted keys which do not belong to $S_{1,25}$ We prompt the LLM with a text-to-code prompt 23 or acts which are not in the set. For example, the 25 for inferring the latent dialogue state as an API 23 'text' key is not valid for a 'ThankYou' act, so a pre- 25 call. Fig. 5a in App. A gives an example of our 23 diction of "ThankYou(text='thanks, have a good 25 prompt. We generate a prompt enumerating the 23 day')" would be normalized to only "ThankYou()". 25 intents available in the schema S as APIs callable $\frac{1}{23}$ Using the inferred system acts, we use a rule-based $\frac{1}{25}$ by our agent. Following Hu et al. (2022), we pre- 23 method to delexicalize the system responses for 25 dict the appropriate function call conditioned on 23 training the response generator (Fig. 2, right). 25

4.3 Noisy Channel LLM Prompting 26

We find that a noisy channel prompting method 27 (Min et al., 2022) significantly the quality of our inferred dialogue states and acts. Here we describe noisy channel prompting using a simple example, and then describe its application to dialogue state tracking and system act tagging. 27

A typical prompt for machine reading compre- 28 hension might be: 28

```
<Optional in-context examples (c)> 29
Passage: <Passage (z)> 29
Question: <Question (x)> 29
Answer: 29
```

Given this prompt of the in-context examples 30 c, passage z, question x, an answer y completion 30 is found with the language model by maximizing 30 or sampling from Pr(y|x,z,c). We call this the 30 direct prompt. 30

The "noisy channel" prompt is: 31

```
<Optional in-context examples (c)> 32
Passage: <Passage (z)> 32
Answer: <Answer (y)> 32
Question: \langle Question(x) \rangle 32
```

where the likelihood of the question now depends on the answer. To use the noisy channel LLM prompt, and then pick the best output answer yPr(x|y,z,c)Pr(y|z,c), or only the conditional 33 Pr(x|y,z,c), following Min et al. (2022). 33

To apply this method to inferring dialogue states, 34 While the labels we produce in § 4.1-§ 4.4 can 39 we first sample a set of possible belief state changes using top-p sampling (Holtzman et al., 2020) from the direct DST prompt, and then pick the best dialogue state according to the noisy channel prompt (see Fig. 3). We use an analogous procedure for inferring system acts. For DST, we find scoring with the joint Pr(x|y,z,c)Pr(y|z,c) to perform best for act tagging. 34

4.4 Retrieval-Augmented In-context Learning 35

To leverage the in-context learning abilities of 36 LLMs, we retrieve from a pool of examples from 36 our predictions. Because we assume no labeled ex- 36 amples, this pool starts with zero examples and is 36

```
In the latter case, the prior Pr(y|z,c) is uniformly \frac{1}{2}
the k samples from the direct prompt. 33
```

```
Direct DST Prompt
esponse = agent.handle_turn(
belief_state=BeliefState(attraction=dict(
                                     name='byard art')),
    last_system_utterance="byard art is at 344 oxford " + \
                                  "street, anything else?",

need a taxi to king station
    user utterance="Vac
                                т
    user_utterance= yes, I need a taxt to king station , user_intent=[agent.book_taxi(destination='king station')]
esponse = agent.handle turn(
    belief_state=BeliefState(attraction=dict(
   name='byard art')),
last_system_utterance="byard art is at 344 oxford " + \
   "street, anything else?", user_intent=[agent.book_taxi(destination='king station')]
```

user utterance=

Figure 3: Instances from our 'direct' and 'noisy channel' 37 prompts for DST. Best viewed in color. After sampling a DST completion from the 'direct' prompt, we score it by the likelihood of the input user utterance conditioned on it in the 'noisy channel' prompt. 37

for in-context learning from this pool using an unsupervised dense retriever, with examples ranked 36 by embedding cosine distance. We use k = 8 and k=6 for DST, DAT respectively. For retriever in 36 puts, we use $(b_{t-1} \cdot r_{t-1} \cdot u_t)$ and $(u_t \cdot r_t)$ for DST and DAT respectively, where · indicates concate- 36 nation. Applied naively, this in-context learning 36 approach can suffer a majority label bias (Zhao 36 et al., 2021). We adjust for biases introduced in the initially small example pool by 1) not using prompt, we first sample k samples from the direct 33 any in-context examples until we have a minimum $\frac{1}{36}$ of n = 32 examples in the pool and 2) using our 36 according to the noisy channel prompt probabil- 33 API schema S to require at least 4 distinct labels 36 ity. One can choose to score the joint probabil- 33 in each set of in-context examples. Our algorithm 36 ity of the answer followed by the question, i.e. 33 for producing initial pseudo-labels is in App. D. 36

4.5 Refining the Labels with Hard-EM 38

³⁴ be used directly for training an end-to-end dia-39 logue system, we find their quality can be improved 39 through expectation-maximization (Dempster et al., 39 ³⁴1977). For every dialogue turn in our dataset, our 39 initial pseudo-labels provide the expected dialogue 39 state and system dialogue acts according to our 39 zero-shot system. We then jointly fine-tune an 39 best, and scoring with the conditional Pr(x|y,z,c) 34 LLM as a noisy-channel DST & DAT system to 39 maximize the likelihood of these expected labels. 39 We use smaller version of our prompted LLM, Star-30 Coder 3B (Li et al., 2023a). 39 For each turn, we derive (prompt, completion) 40 pairs for 'direct' text-to-code and 'channel' code-

We use MPNet (Song et al., 2020), available on Hugging-46 filled incrementally. We retrieve up to k examples $\frac{1}{36}$ face as sentence-transformers/all-mpnet-base-v2 $\frac{1}{36}$

> We consider two dialogue state change labels to be distinct 36 if they update different slots, and two act labels to be distinct 36 if they embody different acts or different slots 36

sampling the 'channel' prompts so that there is a 2:1 40 improves performance. 40

After fine-tuning, the model can be used to produce improved pseudo-labels by re-labeling each dialogue, using the same noisy-channel inference methods. Following this, we can repeat the finetuning process. This train and re-label process can be repeated for any number of iterations, though we find a single re-labeling is sufficient. 41

End-to-End System 42

Following (Su et al., 2022), we utilize a multi-task 43 there is a 2:1 ratio of 'channel' to 'direct' instances state tracker, policy, and response generator. 43

For the DST sub-task, we again use both 'direct' and 'channel' (prompt, completion) pairs. 44 This allows us to use the same noisy-channel infer- 44 We conduct unsupervised end-to-end dialogue ence method presented in §4. 44

code prompt where we simply condition on the ten thousand multi-domain task-oriented dialogues k=5 most recent utterances in the dialogue history: $H_t = (u_{t-2}, r_{t-2}, u_{t-1}, r_{t-1}, u_t)$. The completion 45 the fully lexicalized, unlabelled dialogues from the is the current turn's system acts A_t , which will be training set to build our system, and evaluate on used to ground the next response r_t . We do not the test set. First, we demonstrate the value of our decode an act prediction at inference time: 45

$$\hat{A}_t = \underset{A_t \in \mathcal{V}^*}{\operatorname{argmax}} P(f_{\text{prompt}}(H_t)))$$

Response Generation For Response Generation, 47 we condition on the turn's observed system and $_{47}$ **6.1** diction A_t). The completion is the observed system code the response: 47

$$\frac{\hat{r}_t = \underset{|A_t \in \mathcal{V}^*|}{\operatorname{argmax}} P(f_{\text{prompt}}(r_{t-1}, u_t, A_t)))}{|A_t \in \mathcal{V}^*|} \frac{1}{46}$$

Following prior works, we predict delexicalized 49

to-text DST and DAT modules, as defined in \[\] and name. For example, instead of generating "The angle of the angle of t 4. We then combine and shuffle these pairs into a 40 phone number for acorn guest house is 555-5309" 49 single training set for joint fine-tuning. For efficient 40 directly, we would predict "The phone number for 49 training, we shorten our prompts by removing in- 40 the [hotel_name] is [hotel_phone]", where values 49 context examples as well as the function definitions 40 could be filled in. Importantly, we never presume 49 used in the in-context learning setting. We find up- 40 access to gold delexicalized responses. Instead, we 49 use our predicted acts, e.g. "Inform(name='acorn 49 ratio of 'channel' to 'direct' instances for training 40 guest house', phone='555-8309')", to delexicalize 49 the observed response for training. 49

End-to-end Training For each turn, we derive 50 (prompt, completion) pairs for 'direct' and 'chan-50 nel' DST, and direct Policy, and Response Genera-50 tion prompts. We then combine and shuffle these 50 pairs into a single training set for joint fine-tuning. 50 For efficient training, we shorten our prompts by re- 50 moving in-context examples as well as the function 50 definitions used in the in-context learning setting. 50 We find up-sampling the 'channel' prompts so that 50 fine-tuning method for training a single LLM as a 43 for training improves performance. Finally, we 50 complete dialogue system, consisting of a dialogue 43 fine-tune StarCoder 3B using cross-entropy loss 50 and AdamW with default hyperparameters. 50

Experiments 52

(E2E) and dialogue state tracking (DST) experi-53 ments on the MultiWOZ 2.2 dataset (Zang et al., 51 Policy For the Policy sub-task, we use a text-to-45 2020; Budzianowski et al., 2018), containing over 51 45 crowd-sourced in a wizard-of-oz setup. We use use a noisy-channel variant for Policy, and greedily 45 approach in an end-to-end dialogue evaluation, following prior works on task-oriented dialogue (§ 6.1). Second, we conduct a dialogue state tracking evaluation to more carefully evaluate the quality of 53 our pseudo-annotations ($\S6.2$). 53

End-to-End (E2E) Experiments 54

user utterances (r_{t-1}, u_t) and our policy's act pre- 47 In E2E experiments, we use our complete system 55 47 to both predict API call arguments and generate 55 response r_t . We also do not use a noisy-channel 47 a next system response in natural language. We 55 variant for response generation, and greedily de-47 evaluate our generated responses with Inform rate, 55 Success rate, and BLEU, as well as a Combined 55 score of 0.5(Inform + Success) + BLEU, follow- 55 ing prior works. We provide details on these metrics in App. B. 55

We compare our approach to the previous stateresponses, where values for slots in the system 49 of-the-art unsupervised methods, a GPT-3.5 zero-56 response are replaced with placeholders for the slot 49 shot baseline (Hudeček and Dusek, 2023), and 56

Model	Schema?	Labels?	Dialogues?	Inform	Success	BLEU	Combined 74	61	93
Supervised Results 74 61 93									
PPTOD (Su et al., 2022)	✓	✓	✓	82.6	72.2	18.2	95.6 61	74	93
DiactTOD (Wu et al., 2023)	✓	✓	✓	89.5	84.2	17.5	104.4 61		93
Our (supervised)	✓	✓	✓	67.9	61.7	14.6	79.4 7 4	61	93
	Zero-Shot w	ith Forma	tting Example	e(s) 39	90 43				
SGP-TOD-GPT3.5 (Zhang et al., 2023)	✓	Few (‡)	Х	82.0	72.5	9.22	86.5 61	74	93
	Fully l	J nsupervi s	ed Results 12	24 74	61				
Sees gold delexicalized conversation his	tory 74 (61 93							
LLaMa [†]	✓	Х	Х	-	4	1.61	- 74	61	93
GPT 3.5 Turbo [†]	✓	Х	Х	44.8	31.2	3.3	41.3 61	74	93
Sees only fully-lexicalized dialogues 74	61 9	3							
GPT 3.5 Turbo (– gold delex.)	✓	Х	Х	40.7	26.7	3.7	37.4 61	74	93
Ours (StarCoder 15B - no EM)	✓	Х	Х	50.0	19.6	3.2	38 74		93
Ours (StarCoder 3B - w/ EM)	✓	Х	✓	78.1	68.3	13.6	86.8 74	61	93

Table 1: Unsupervised end-to-end results in MultiWOZ 2.2. (†) indicates models from Hudeček and Dusek (2023). 61 Results for LLaMa are from Hudeček and Dusek (2023), which does not report the Inform rate. (‡) SGP-TOD 61 uses a prompt with both a formatting example and a "Policy Skeleton", which contains an additional 10-20 handcrafted instances of the correct system acts and response for an input user utterance or returned DB result. For 61 fairer comparison in our fully unsupervised setting, we re-run the GPT 3.5 baseline without the supervision of 61 de-lexicalized responses provided in the conversation history (– gold delex.). Despite far fewer parameters, we find 61 substantial improvements in our methods which leverage unlabelled dialogues 61

SGP-TOD (Zhang et al., 2023). Where possible, 56 we report results for both the original approach 56 and modifications required to fit our fully unsu- 56 pervised setting. For reference, we also run our 56 own method in the fully-supervised setting. We 56 train a model using the procedure in $\S 5$ using the 56 annotations sourced from crowd-workers in the 56 MultiWOZ 2.2 corpus (Budzianowski et al., 2018; 56 Zang et al., 2020), rather than the pseudo-labels 56 predicted in § 4. We also compare with existing supervised approaches as a reference point. We 56 include DiactTOD (Wu et al., 2023), which to our 56 knowledge is the supervised state-of-the-art, and PPTOD (Su et al., 2022), which uses a multi-task Γ5 encoder-decoder models (Raffel et al., 2020). 56

6.2 DST Experiments 57

We conduct multi-domain DST experiments on the 58 StarCoder 15B for clearer comparison. 60 MultiWOZ Dataset in order to evaluate the qual- 58 ity of our pseudo-annotations. We use our DST 58 7 Module to predict and evaluate only latent dialogue 58 unseen API calls. 58

details are available in App. B. 59

With One Formatting Example 53				
IC-DST (StarCoder 15B)	24.58 51			
RefPyDST (StarCoder 15B)	17.17 51			
IC-DST (Codex)	35.02 51			
RefPyDST (Codex)	40.88 51			
Fully Unsupervised 48				
				
IC-DST (StarCoder 15B)	15.66 48			
IC-DST (StarCoder 15B) RefPyDST (StarCoder 15B)	13.88 48			
IC-DST (StarCoder 15B)				

Table 2: Joint Goal Accuracy (JGA) of our method's dialogue state predictions and zero-shot baselines

56 et al., 2022), which re-frames DST as text-to-SQL, 60 fine-tuning approach similar to our own in §5, for 56 and RefPyDST which re-frames DST as text-to-60 python (King and Flanigan, 2023). By default, both of these works use OpenAI Codex (Chen et al., 60 2021), and we apply their prompting approaches to 60

Results 62

states, which collect the arguments required for 58 E2E Performance We present E2E results for 63 our unsupervised dialogue agent in Table 1. We 63 Following prior works, we evaluate DST perfor 59 find that our method achieves state-of-the-art per-63 mance with joint-goal accuracy (JGA), or whether 59 formance in our fully unsupervised setting, more 63 a given dialogue state is completely accurate. More 59 than doubling the Success Rate and Combined 63 score of the GPT 3.5 Turbo baseline of Hudeček 63 We compare to our ChatGPT 3.5 Turbo baseline 60 and Dusek (2023). When we remove the supervi-63 (Hudeček and Dusek, 2023), as well as prior zero- 61 sion of delexicalization for fairer comparison (— 63 shot DST methods. These include IC-DST (Hu 60 gold delex.), we find even greater improvement 63

across all end-to-end metrics. As discussed in § 63 9, SGP-TOD uses both a supervised formatting 63 example and a 'Policy Skeleton', containing additional supervision for Policy and Response Generation. With no implementation publicly avail- 63 able, we were unable to run a modified version of their experiments without this supervision for 63 fair comparison. Despite a less-supervised setting, our method is able to perform comparably, 63 even slightly out-performing SGP-TOD in Com- 63 bined score. Remarkably, our unsupervised EM 63 approach also outperforms the supervised variant of our model due to improvements in Inform and 63 Success rate, suggesting the Dialogue acts we infer 63 Figure 4: Combined score (0.5(Inform + Success) + 66 are of high quality. 63

DST Performance Our DST results are shown in 64 Table 2. Where possible, we distinguish between 64 'zero-shot' results which include a hand-engineered 64 formatting example, and the same method applied 64 without the formatting example. We find that 64 our method significantly outperforms our GPT 3.5 64 Table 3: Number of discovered contaminated turns per proach performs nearly as well as the best method 64 using OpenAI Codex with a supervised formatting 64 example, using less than 10% of the parameters 64 8 at any time (175B vs. 15B). When applying the 64 with and without a formatting example. 64

eling and the value of iterative re-labeling in our 65 EM approach. We compare our proposed system 65 greedily sampling from its 'direct' variant, at both 65 tasks. 68 labeling and end-to-end inference time. We plot 65 and greedy ablation, and that our noisy-channel 65 available for analysis. 69 inference methods are important to dialogue suc- 65 goal accuracy are in App. E. 65

able to run experiments for IC-DST or RefPyDST without a 64 formatting example on the original Codex model 64

BLEU) vs. the number of steps of expectationmaximization in our Noisy Channel method vs. a 66 Greedy Ablation. '0' is zero-shot inference 66

Task	Turns	Correct	Authentic 61
Act Tagging	42	21	5 61
DST	42	36	19 61

Turbo baseline by 26% joint goal accuracy. Our ap- 64 task, as well as the number which are correct or verified 66 as being in the MultiWOZ dataset. 66

Contamination Analysis 67

IC-DST and RefPyDST prompting methods to Star- 64 Evaluation of unsupervised methods, such as ours, 68 Coder, our method significantly outperforms both, 64 that use LLMs has the potential issue of task contamination, where supervised examples are seen 68 in pretraining data (Li and Flanigan, 2024). Inclu-Ablations In Fig. 4, we conduct an ablation to 65 sion of supervised examples of the task in LLM 68 evaluate both the impact of our noisy channel mod- 65 pretraining data would render the model no longer 68 unsupervised and the evaluation potentially biased: 68 tasks for which the training data has been seen may 68 to one in which each module is replaced by only 65 have a higher performance than truly unsupervised 68

To address this issue, we quantify the presence 69 our Combined end-to-end performance across it- 65 of contamination in LLM pre-training data, and 69 erations of EM, with '0' indicating our zero-shot 65 then estimate the potential impact on our results. system. We find that EM improves our end-to-end 65 Fortunately, the StarCoder family of models that we performance in both our noisy-channel approach 65 use has the complete pre-training corpus publicly 69

We conduct an exhaustive search for supervised 71 cess, with a 30 and 33 point improvement over our 65 pairs of our dialogue subtasks in the StarCoder pre-71 greedy baseline with 1 and 2 EM steps, respectively. 65 training data using a semi-automated search with 71 Ablations across Inform, Success, BLEU, and joint 65 manual review. Details of our search procedure are 71 in App. F. We find no complete dialogues with 71 supervised labels. We do find 42 turns labeled with 71 Due to the deprecation of OpenAI Codex, we were un- 64 act tagging, and 42 turns labeled with DST in the 71

pre-training corpus, categorized in Table 3.7 consider a (x,y) pair to be 'Correct' if the state change/dialogue act y is actually correct for the utterance x, and to be 'Authentic' if the (x, y) pair is found verbatim in the MultiWOZ corpus.8 Astonishingly, we find half of the found Act Tagging 71 supervision hurts performance, and does not explain the pairs are incorrect, and could possibly mislead a pre-trained model if the model learned from them. 71 We also find that less than half of the turns are au- 71 thentic for either task, and find a number of them derive from Github issues discussing problems with 71 dialogue simulators. 71

Additionally, we estimate the degree to which 72 the contamination we discover could exaggerate expected performance of our method on an unseen schema, by using contaminated (x, y) pairs as incontext examples. 72

In Table 4, we compare our zero-shot prompt, 73 which receives no examples of any kind, with a 73 'contaminated' variant which uses k=3 in-context $\frac{73}{2}$ trieves the most relevant contaminated fragments 73 from a pool using the dense retrieval approach described in § 4.4. These are inserted as a triple-73 quoted string block, so that the prompt remains syn- $\frac{1}{73}$ sumes delexicalized system responses $r_1...r_{t-1}$ in tactically valid python. By leaving contaminated 73 the conversation history as input, where entities are than providing guidance on input/output formatting. 73 of supervision about the entities and their attributes Surprisingly, we find including this supervision via 73 contaminated fragments hurts performance, indiingful supervision for our task. Further, the substantial gains in our noisy-channel EM approach 73 suggest our method is doing more than simply eliciting schema-specific knowledge memorized in pretraining. 70

Related Work 75

Zero-shot Dialogue A few recent works have proposed zero-shot approaches to dialogue prob- 76 lems using LLMs. Hu et al. (2022) and (King 76 and Flanigan, 2023) propose DST methods which 76

The average dialogue length in MultiWOZ is 13.9 turns. 71 Put together, the set of contaminated turns would be roughly 71 the length of 6 dialogues 71

⁸A 'Correct' pair might arise from printing training data, and an incorrect pair from discussion of a failure case. 71

⁹Ideally, one would pre-train an identical StarCoder model on a corpus without contamination, this is computationally 72 impractical. Additionally, we are not aware of any available 72 LLM that can be verified as not contaminated for this task. 72

Method	Inform	Success	BLEU	Combined 74
Ours (zero-shot)	49.0	15.0	3.0	35.0 74
Ours (k=3 contam ex.)	44.5	14.0	3.8	33.1 74
Ours (Full EM)	80.5	69.0	13.7	88.5 74

Table 4: Performance comparison when we include contaminated in-context examples. We find including this 71 strong performance of our noisy-channel EM approach 70

prompt code based LLMs in a text-to-SQL or text-76 to-program format, respectively. These methods rely on prompts tailored to the schema and the use of a supervised 'formatting' example, which requires annotation expertise. Zhang et al. (2023) 76 extends this approach to end-to-end task-oriented 76 dialogue by adding a policy prompter for GPT 3.5. 76 In addition to a formatting example, their policy 76 prompt requires a hand-crafted 'policy-skeleton' 76 consisting of examples of the appropriate system 76 act and reply in response to different user utter-76 examples derived from contamination in the pre- 73 ances or database results. Our approach differs in 76 training corpus. The 'contaminated' model re- 73 that we require zero labeled examples of any kind 76 Hudeček and Dusek (2023) propose a zero-shot 76 end-to-end method for prompting instruction-tuned 76 LLMs like GPT 3.5. However, this method preexamples in their original format, we test whether 73 replaced with placeholders. Producing these inputs 76 their inclusion elicits memorized knowledge rather 73 requires ground-truth annotations and gives a form 76 within a dialogue (see Table 1 for a comparison for GPT 3.5 Turbo with and without delex supervicating that these examples do not provide mean- 73 sion). In contrast, we only assume fully-lexicalized 76 dialogues, which do not provide this supervision 76 and require no human annotation. We adapt the 76 method of Hudeček and Dusek (2023) to use lexicalized dialogues as inputs, and use this approach 76 as our baseline. Chung et al. (2023) propose an 77 end-to-end method which prompts GPT-4 for interactions with a knowledge base before producing 76 a response, however it generalizes poorly to the 76 multi-domain setting. 76

> Semi-supervised TOD Some works propose 77 semi-supervised approaches to end-to-end task-77 oriented dialogue. Zhang et al. (2020) propose an 78 end-to-end sequence-to-sequence model where the 77 dialogue state is a latent variable. Liu et al. (2021a) 77 adapt this approach for use with pre-trained language models, fine-tuning GPT-2. While successful, these approaches require a non-trivial amount 77 of supervised data. Other semi-supervised works 77

also evaluate their method in an unsupervised set- 77 References 93 ting (Jin et al., 2018; Liu et al., 2023). However, these works also assume delexicalized training dialogues, which requires ground-truth annotation and 77 gives a form a supervision to the model. 77

Noisy channel and re-ranking methods A few 78 previous works have utilized noisy channel meth-78 ods for task-oriented dialogue or prompting meth- 78 ods. Liu et al. (2021b) pre-train a noisy channel for 78 task-oriented dialogues as a sequence to sequence 78 model, however their method requires significant labelled training data. Min et al. (2022) propose 78 Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang noisy channel prompting for few-shot classifica-78 tion tasks, which inspires our generalization to the 78 generative setting. 78

10 Conclusion 79

We present a novel approach for constructing an 80 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming end-to-end task-oriented dialogue system by lever- 80 aging pre-trained language models to infer labels 80 from unlabeled dialogues. 80

11 Limitations 81

Data contamination in LLM pre-training poses a 82 hurdle for accurate benchmarking across NLP, and 82 particularly for unsupervised methods. In an ideal-82 ized setting, there would be a suitably strong task-82 oriented dialogue benchmark that could be verified as not belonging to the pre-training corpus of each 82 new and more capable LLM. This is not the case 82 for our setting or for many others, and warrants 82 careful attention from the NLP community. For our setting, we were able to properly define problem- 82 atic contamination and search for it in our LLM's pre-training corpus, thanks to the open release of the pre-training data. We found limited contamina-82 tion and demonstrated that the contamination we 82 found was not helpful in eliciting task knowledge 82 that might have been memorized in pre-training.

All experiments in this paper were conducted on pre-existing public dialogue corpora, col-83 lected explicitly for training task-oriented dialogue agents with the knowledge of all participants (Budzianowski et al., 2018). Our use of the Star-83 Coder model also falls within the terms of it's Re-83 sponsible AI License. It is important that subsequent applications of our method also adhere to any 83 fair-use policies governing collected dialogues or 83 transcripts. 83

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 108 Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 108 Neelakantan, Pranav Shyam, Girish Sastry, Amanda 108 Askell, Sandhini Agarwal, Ariel Herbert-Voss, 108 Gretchen Krueger, Tom Henighan, Rewon Child, 108 Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 108 Clemens Winter, Christopher Hesse, Mark Chen, Eric 108 Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 108 Jack Clark, Christopher Berner, Sam McCandlish, 108 Alec Radford, Ilya Sutskever, and Dario Amodei. 108 2020. Language Models are Few-Shot Learners. 108 arXiv:2005.14165 [cs]. ArXiv: 2005.14165. 108

109 Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Osman, and Milica Gašić. 2018. Multiwoz - a large-109 scale multi-domain wizard-of-oz dataset for task-109 oriented dialogue modelling. In Proceedings of the 109 2018 Conference on Empirical Methods in Natural 109 Language Processing (EMNLP). 109

Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, 110 Greg Brockman, Alex Ray, Raul Puri, Gretchen 110 Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 110 try, Pamela Mishkin, Brooke Chan, Scott Gray, 110 Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 110 Kaiser, Mohammad Bavarian, Clemens Winter, 110 Philippe Tillet, Felipe Petroski Such, Dave Cum- 110 mings, Matthias Plappert, Fotios Chantzis, Eliza- 110 beth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 110 William Saunders, Christopher Hesse, Andrew N. 110 Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 110 Morikawa, Alec Radford, Matthew Knight, Miles 110 Brundage, Mira Murati, Katie Mayer, Peter Welin- 110 der, Bob McGrew, Dario Amodei, Sam McCandlish, 110 Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. ArXiv:2107.03374 [cs]. 110

82 Willy Chung, Samuel Cahyawijaya, Bryan Wilie, 111 Holy Lovenia, and Pascale Fung. 2023. Instruct- 111 TODS: Large Language Models for End-to-End Task-Oriented Dialogue Systems. ArXiv:2310.08885 [cs].

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. 112 Maximum likelihood from incomplete data via the 112 em algorithm. Journal of the Royal Statistical Society. 112 Series B (Methodological), 39(1):1–38. 112

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato 113 Vukovic, Shutong Feng, Christian Geishauser, Hsien- 113 chin Lin, Carel van Niekerk, and Milica Gasic. 2023. 113 ChatGPT for zero-shot dialogue state tracking: A 113 solution or an opportunity? In Proceedings of the 113 61st Annual Meeting of the Association for Compu- 113 tational Linguistics (Volume 2: Short Papers), pages 113 936–950, Toronto, Canada. Association for Compu-113 tational Linguistics. 113

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and			122
Yejin Choi. 2020. The Curious Case of Neural Text	114	Yi Huang, and Junlan Feng. 2021a. Varia-	
Degeneration. ArXiv:1904.09751 [cs]. 114		tional Latent-State GPT for Semi-Supervised Task-	
		Oriented Dialog Systems. ArXiv:2109.04314 [cs]. 12	22
	115	i Liu Lai Vu Laura Dimall and Dhil Dlungam	400
Noah A. Smith, and Mari Ostendorf. 2022. In-	110	i Liu, Lei Yu, Laura Rimell, and Phil Blunsom.	
Context Learning for Few-Shot Dialogue State Track-	115	2021b. Pretraining the Noisy Channel Model for	123
ing. Number: arXiv:2203.08568 arXiv:2203.08568	115	Task-Oriented Dialogue. Transactions of the Associ-	
[cs]. 115		ation for Computational Linguistics, 9:657–674. 123	
	O	ing-Bin Liu, Shi-Zhu He, Cao Liu, Kang Liu, and	124
Vojtěch Hudeček and Ondrej Dusek. 2023. Are large	116	Jun Zhao. 2023. Unsupervised Dialogue State Track-	
language models all you need for task-oriented dia-	116	ing for End-to-End Task-Oriented Dialogue with a	
logue? In Proceedings of the 24th Meeting of the	116	Multi-Span Prediction Network. Journal of Com-	
Special Interest Group on Discourse and Dialogue,	116	puter Science and Technology, 38(4):834–852. 124	127
pages 216–228, Prague, Czechia. Association for			
Computational Linguistics. 118	Se		125
W. T. W T. 771 1 D. H.			125
Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen			125
Chen, Shangsong Liang, Yihong Zhao, and Dawei			125
Yin. 2018. Explicit State Tracking with Semi-			125
Supervision for Neural Dialogue Generation. In <i>Pro-</i>			125
ceedings of the 27th ACM International Conference		sociation for Computational Linguistics. 125	
on Information and Knowledge Management, pages	117	omáš Nekvinda and Ondřej Dušek. 2021. Shades of	400
1403–1412. ArXiv:1808.10596 [cs]. 117	110	BLEU, flavours of success: The case of MultiWOZ.	
D 1 IV: 11 CC EI : 2022 D:		In Proceedings of the 1st Workshop on Natural Lan-	120
Brendan King and Jeffrey Flanigan. 2023. Diverse		guage Generation, Evaluation, and Metrics (GEM)	
retrieval-augmented in-context learning for dialogue		2021), pages 34–46, Online. Association for Compu-	
state tracking. In Findings of the Association for		tational Linguistics. 126	120
Computational Linguistics: ACL 2023, pages 5570–	118_	tational Enguistics. 120	
5585, Toronto, Canada. Association for Computa-	11 W	Venbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che,	127
tional Linguistics. 116		and Libo Qin. 2023. A Preliminary Evaluation	127
Changmao Li and Jeffrey Flanigan. 2024. Task Con-	440	of ChatGPT for Zero-shot Dialogue Understanding.	127
tamination: Language Models May Not Be Few-Shot	119	Publisher: arXiv Version Number: 1. 127	
Anymore. Proceedings of the AAAI Conference on		and David Dahad Carl and Dilah Haldani Tiin 2010	
Artificial Intelligence, 38(16):18471–18480. 119	11301	hachi Paul, Rahul Goel, and Dilek Hakkani-Tür. 2019.	
[1111]tetta 1111ettigenee, 50(10):10+71 10+00.		Towards Universal Dialogue Act Tagging for Task-Oriented Dialogues. In <i>Proc. Interspeech 2019</i> ,	
Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas	120	pages 1453–1457. 128	128
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc		pages 1433–1437. 128	
Marone, Christopher Akiki, Jia LI, Jenny Chim,	12 C	olin Raffel, Noam Shazeer, Adam Roberts, Katherine	129
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,	120	Lee, Sharan Narang, Michael Matena, Yanqi Zhou,	129
	120	Wei Li and Dater I Liu 2020 Exploring the Lim	120
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-	1/1/	Wei Li, and Peter J. Liu. 2020. Exploring the Lim-	129
podo Monteno, Medias Gonder, Ming Ho Tee, Lo	120	its of Transfer Learning with a Unified Text-to-Text	129
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-	120	its of Transfer Learning with a Unified Text-to-Text Transformer. <i>arXiv:1910.10683 [cs, stat]</i> . ArXiv:	129
	120	its of Transfer Learning with a Unified Text-to-Text	129
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-	120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. <i>arXiv:1910.10683 [cs, stat]</i> . ArXiv: 1910.10683.	129 129
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,	120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,	129 129 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,	120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards	129 129 130 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Naday	120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The	129 129 130 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey	120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683. 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings	129 129 130 130 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,	120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683. 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence,	129 129 130 130 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-	120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683. 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings	129 129 130 130 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130	129 129 130 130 130 130
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Per-	129 129 130 130 130 130 131
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha,	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and	129 129 130 130 130 130 131
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Star-	120 120 120 120 120 120 120 120 120 12(K) 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Per-	129 129 130 130 130 130 131
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on</i>	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131	129 129 130 130 130 130 131 131 131
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on Machine Learning Research</i> . Reproducibility Certifi-	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683. 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131 ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta,	129 129 130 130 130 130 131 131 131
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on</i>	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131 ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task	129 130 130 130 130 130 131 131 131 132
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on Machine Learning Research</i> . Reproducibility Certification. 120	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683. 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131 ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task pre-training for plug-and-play task-oriented dialogue	129 130 130 130 130 131 131 131 132 132 132
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on Machine Learning Research</i> . Reproducibility Certification. 120	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131 ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task pre-training for plug-and-play task-oriented dialogue system. In Proceedings of the 60th Annual Meet-	129 129 130 130 130 130 131 131 131 132 132 132
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on Machine Learning Research</i> . Reproducibility Certification. 120	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683. 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131 ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task pre-training for plug-and-play task-oriented dialogue system. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics	129 129 130 130 130 130 131 131 131 132 132 132 132
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries. 2023a. Starcoder: may the source be with you! <i>Transactions on Machine Learning Research</i> . Reproducibility Certification. 120	120 120 120 120 120 120 120 120 120 120	its of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 1910.10683] 129 bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards Scalable Multi-Domain Conversational Agents: The Schema-Guided Dialogue Dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689–8696. 130 aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet: Masked and Permuted Pre-training for Language Understanding. ArXiv:2004.09297 [cs]. 131 ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task pre-training for plug-and-play task-oriented dialogue system. In Proceedings of the 60th Annual Meet-	129 129 130 130 130 130 131 131 131 132 132 132 132 132

Qingyang Wu, James Gung, Raphael Shu, and Yi Zhang. 2023. DiactTOD: Learning generalizable latent dialogue acts for controllable task-oriented dialogue systems. In Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 255–267, Prague, Czechia. Association for Computational Linguistics. 133

134 A dialogue is considered Informed if the most re-Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong Chen. 2020. MultiWOZ 2.2: A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, tional Linguistics. 134

Xiaoying Zhang, Baolin Peng, Kun Li, Jingyan Zhou, and Helen Meng. 2023. SGP-TOD: Building task bots effortlessly via schema-guided LLM prompting. gapore. Association for Computational Linguistics.

Yichi Zhang, Zhijian Ou, Min Hu, and Junlan Feng. 2020. A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9207–9219, Online. Association for Computational Linguistics. 136

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improving few-shot performance of language models. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 12697–12706. PMLR. 137

Prompt Examples 109

Fig. 5 provides abridged instances of our direct 85 prompts for DST and for Act Tagging. Fig. 5a 85 shows our prompt for inferring API call(s) or changes to the dialogue state from an unlabelled di- 8 alogue, as detailed in §4.1. Our prompts use python keyword arguments to provide the input variables for a given sub-task, and to prompt the LLM for the next variable of interest. Using the arbitrary ordering of keyword arguments in Python function calls, our 'channel' prompts simply re-order the arguments in order to score the likelihood of the user's utterance given the predicted state change. Fig. 5b provides a similar abridged instance of our direct prompt for tagging dialogue acts in an unla-85 belled dialogue. Here, we simply condition on the 85 observed system response r_t . 85

13**B** Metric Details 107

13 End-to-End (E2E) Dialogue Metrics 13 sure end-to-end dialogue performance using the 88 Inform rate, Success rate, and BLEU, following 88 prior works, using the automatic evaluation provided by Nekvinda and Dušek (2021).¹⁰ 88

ently mentioned result for each domain meets the 89 user's goal constraints, and is considered Success-13 ful if it is Informed and all values for requested slots 89 13 are presented to the user. For example, if a user 89 pages 109–117, Online. Association for Computaa cheap hotel in the east part of town?', the dialogue 89 would be Informed if we refer them to a hotel that 80 is actually in the cheap price range and in the east, 80 and Successful if we additionally provide the phone 89 In Findings of the Association for Computational 13 number, as requested. BLEU is computed against a 89 Linguistics: EMNLP 2023, pages 13348–13369, Sin- 13 single reference response, and the Combined score is 0.5(Inform + Success) + BLEU. 89

> **Dialogue State Tracking Metrics** Following 90 prior works, we evaluate DST performance with 90 joint-goal accuracy (JGA): for a turn x_t , a dialogue q_0 state prediction \hat{y}_t is considered correct only if all 90 glot names and values match the gold annotation 90 state y_t . We again use the evaluation provided in 90Nekvinda and Dušek (2021). Following their work, 90 we accept fuzzy matches for non-categorical string 90 13 values, such as the name of a restaurant or hotel, 90 13 using the fuzzywuzzy library and a fuzz ratio of 90 $0.95.^{11}$ 90

Dialogue Acts 107

Following Paul et al. (2019), we use a universal set 93 of dialogue acts for managing our agents commu- 92 nicative intents. We omit some acts for simplicity 92 and to reduce the context length required to enu- 92 merate them in a prompt. Table 5 lists each act and 92 a description. Since our dialogue set is not directly 92 comparable to prior works, we do not directly eval- 92 uate act tagging or policy accuracy. Instead, acts 92 serve only as an intermediate representation for 92 planning responses in our end-to-end system. 92

Offline Labeling Algorithm 04

85 Algorithm 1 gives our algorithm for pseudo- 95 85 labeling of unlabelled dialogues. 95

¹⁰https://github.com/Tomiinek/MultiWOZ_Evaluation 90 11https://pypi.org/project/fuzzywuzzy/ 90

Act	Description (as used in our prompt) 74 61 107
Inform(x=y)	Provide information. 74 61 107
Offer(x=y)	System provides an offer or suggestion based on results. 74 61 107
Confirm(x=y)	Seek confirmation of something. 74 61 107
Affirm(x=y)	Express agreement or confirmation. 74 61 107
Negate(x=y)	User or System denies or negates. 74 61 107
NotifySuccess(x=y)	Notify of a successful action or result. 74 61 107
NotifyFailure(x=y)	Notify of an error or failure. 74 61 93
Acknowledge	Acknowledge. 13 46 48
Goodbye	Goodbye. 13 46 48
Greeting	Greeting. 13 46 48
ThankYou	ThankYou. 13 46 48
RequestAlternatives	Ask for other options, alternatives, or any additional user goals. 74 61 107
Request(x=?)	Ask for specific information or action. 74 61 93

107

107

107

```
Algorithm 1 Our algorithm for initial pseudo-labeling of unlabelled dialogues in \mathcal{D}_{train}
  1: procedure INITIALOFFLINELABEL(\mathcal{D}_{train}, \theta_{ret}, \theta) 93
             \mathcal{P} \leftarrow \emptyset 96
                                                                                                                            > Initialize example pool 96
            \mathcal{B} \leftarrow []
                                                                                       ▶ Store predictions by dialogue id and turn index 96
            for t = 0 to \max_{d \in \mathcal{D}_{train}} |d| do
                                                                                                                 \triangleright d_{id} is dialogue ID 96
                   for all (d_{id}, u_t, r_{t-1}, r_t) in \mathcal{D}_{train} do
                        \hat{b}_{t-1} \leftarrow \mathcal{B}[d_{id}][t-1] \text{ or } \emptyset
                                                                                                                                 \triangleright Fetch \hat{b}_{t-1} if known 96
                        \hat{b}_t \leftarrow \text{OFFLINEDST}(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t)
                        \hat{A}_t \leftarrow \text{OFFLINEACTTAG}(\mathcal{P}, \theta_{ret}, u_t, r_t)
                        \mathcal{P} \leftarrow \mathcal{P} \cup \{(r_{t-1}, u_t, r_t, \hat{b}_t, \hat{A}_t)\}
                                                                                             ▶ Add in-context example for future labeling 96
                  end for 96
 10:
            end for 96
 12: end procedure 96
 13: procedure OfflineDST(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t)
                                                                                                       \triangleright Retrieve up to k in-context examples 107
            \mathcal{E}_k \leftarrow \theta_{ret}(\hat{b}_t \cdot r_{t-1} \cdot u_t, \mathcal{P})
            \underline{\mathcal{C} \leftarrow \Delta b_t \underset{\text{top-p}}{\sim} P(f_{\text{prompt}}(\mathcal{E}_k, \hat{b}_{t-1}, r_{t-1}, u_t))}
                                                                                                                       Sample w/ 'direct' prompt
 15:
            \Delta \hat{b}_t \leftarrow \operatorname{argmax} \mathcal{B}(u_t | f_{\text{prompt}}(\mathcal{E}_k, \hat{b}_{t-1}, r_{t-1}, \Delta b_t))
 16:
                                                                                                                   ⊳ Re-rank w/ 'channel' prompt 96
 17:
            return \hat{b}_{t-1} + \Delta \hat{b}_t 93
 18: end procedure 93
 19: procedure OfflineActTag(\mathcal{P}, \theta_{ret}, u_t, r_t) 93
                                                                                                       \triangleright Retrieve up to k in-context examples _{93}
            \mathcal{E}_k \leftarrow \theta_{ret}(u_t \cdot r_t, \mathcal{P})
            \mathcal{C} \leftarrow A_t \sim (P(f_{\text{prompt}}(\mathcal{E}_k, r_t)))
                                                                                                                       Sample w/ 'direct' prompt
            return argmax P_3(\mathcal{E}_k, A_t, r_t)
                                                                                                                   Re-rank w/ 'channel' prompt 93
 23: end procedure 93
```

```
lass DialogueAgent:
  class Taxi(Entity):
                                                                                              Parameters:
        book taxis to travel between places
       Parameters:
            devels:
leave_at: (str) leaving time of taxi
destination: (str) destination of taxi
departure: (str) departure location of taxi
arrive_by: (str) arrival time of taxi
       pass
  __name__ == '__main__':
agent = DialogueAgent()
                                                                                           lass Request(Act):
   # Provide the call matching the user's intent in this context
   <in-context exemplars from self-predictions may go here>
   response = agent.handle_turn(
    belief_state=BeliefState(attraction=dict())
                                            name='bvard art'.
                                             type="museum
        last system utterance="byard art is at 344 oxford " + \
       "street, anything else?",
user_utterance="Yes, I need a taxi to king station"
        user_intent=[agent.book_taxi(destination='king station
```

```
service in schema, with informable + requestable slots
          leave_at: (str) leaving time of taxi
destination: (str) destination of taxi
departure: (str) departure location of
arrive_by: (str) arrival time of taxi
          type: (str) car type of the taxi phone: (str) phone number of the taxi
 a class for each of the acts supported in our system>
lass Inform(Act):

"""Provide information."""

entity: Entity = None
    """Ask for specific information or action."""
values: List[str] = None
    __name__ == __matn__ :
agent = DialogueAgent()
    # Provide the dialogue acts matching the observed system response
    <in-context exemplars from self-predictions may go here>
    response = agent.handle_turn(
system_response="Ok, wher
                                          where will you be departing from?",
          system_acts=[Request(values=['departure'])]
```

(a) Our 'direct' DST prompt with italicized completion

(b) Our 'direct' act tagging prompt, with italicized completion 88

Figure 5: Abridged prompt and completion examples from our in-context learning approach to initial labelling for 86 DST and DAT (Act Tagging), best viewed in color. Key-word arguments are used to include variables from the turn 86 context and to prefix the completion 86

Further results across EM Steps 97

Contamination Search & Result Details 102

Procedure 103

Here we expand on our ablations in § 7, which evaluates our method with and without our proposed noisy-channel prompting across iterations of expectation-maximization (EM). In Fig. 6, we break down the performance gains we observed in our 'Combined' metric into Inform rate, Success rate, and BLEU, where Combined 0.5(Inform + Success) + BLEU. '0' iterations of EM indicates our zero-shot prompting system, without any in-context examples or EM. We find that EM substantially improves performance in all cases, and particularly for our noisy-channel prompting approach. We find the noisy channel prompting approach improves performance on all metrics, with the most substantial gains over the greedy baseline in Inform and Success rates. This suggests that within our algorithm, noisy-channel inference may be particularly important when inferring the system's dialogue acts in order to reverseengineer an accurate policy. 98

In Fig. 7, we analyze dialogue state tracking 99 prompting approach improves the accuracy of our go of EM when compared to a greedy, direct prompting approach. 99

98 We detail our method for finding instances of task 104 contamination within the StarCoder pre-training 104 set. We are particularly interested in supervised 104 pairs (x, y) where y belongs to our schema of interest S, for any of the dialogue sub-tasks used 104in our system. We devise a method for searching 104 the complete pre-training corpus for contaminated 104 98 (x, y) pairs, where x is an utterance we might observe from either the system or user, and y is the 104 latent dialogue state change or dialogue act sup- 104 porting S. For each utterance x from either the 104 system or user, we collect all documents from the 104 pre-training corpus which contain the complete 104 utterance. We use the elastic search index pro- 104 vided for the StarCoder pre-training data, which 104 accounts for differences in capitalization, punctuation, and interrupting white-space. 12 Following 104 this, we search matching documents for keywords 104 from y (e.g. slot names and values) to determine $_{104}$ which of these documents may plausibly contain a 104 supervised label and warrant manual review. For 104 performance across iterations of EM using Joint 99 dialogue states, these are the slot names and values, 104 Goal Accuracy (JGA). We find our noisy-channel of discarding extremely generic keywords like 'name'. 104 For act tags, these are the act names, slots, and valdialogue state tracking predictions across iterations 99 ues. We then consider a document to need manual 104

> 104 https://github.com/bigcode project/search/blob/main/index.py 104

Figure 6: Breaking down Combined = 0.5(Inform + Success) + BLEU into components Inform Rate, Success Rate, and BLEU across iterations of EM between our proposed noisy-channel approach and a greedy ablation, which omits noisy-channel prompting at inference time and when labeling dialogue states & system acts in the expectation step. We find improvement across all components, and particularly our Inform and Success Rates 100

Figure 7: Joint Goal Accuracy (JGA) of our inferred API call(s)/Dialogue states across iterations of EM. We find improved dialogue state tracking performance when using our noisy-channel method at inference time and when labeling dialogue states offline in the expectation step for training, compared to a greedy direct prompting approach 101

review if 40% or more of the keywords are found in	
the 500 characters before or after a matching x in a	
document. Finally, we hand-check the remaining	104
documents and extract contaminated (x, y) pairs.	104

F.2 Examples 105

Table 6 contains examples of contamination dis-	106
covered in our search process, and the type of doc-	106
ument in which they were found. Notably, none	106
of the examples found closely match our output	106
formatting. 106	

Contaminated Input	Contaminated Output	Sub-Task	Source 13
I need a restaurant to dine	restaurant- 13	DST	Jupyter Notebook 13
at in Cambridge on my 13	inform« <name===chiquito< td=""><td>13</td><td></td></name===chiquito<>	13	
upcoming trip . I need 13	restaurant bar 13		
info about chiquito 13			
restaurant bar restaurant . 1	3		
i would like to book a 5 13	" <sob> hotel area = 13</sob>	DST	Python 17
star, or closest to it, in 13	east, stars = 5 , type = 13		
the east part of town 13	hotel <eob> <sob> 13</sob></eob>		
please . 14	hotel area = east, stars = 13	3	
	5 restaurant area = east 13		
	<eob>" 13</eob>		_
[Syst] the train id is 13	[SYS_DA] 13	Act Tagging	Github Issue 17
tr8292 and the price is 13	train-inform-leave-tr8292 1	3	
16.50 pounds. 13	[SYS_DA] 13		
	train-inform-ticket-16.50 1	B	
	pounds 13		

Table 6: Example inputs and outputs in contaminated documents from each task, discovered in the StarCoder pre-training corpus. We include the source type of each document 61