Bachelor of Applied Science in Computer Engineering

Algorithm Analysis and Design DSAL 3001

Assignment #11 25 marks 20 %

21/03/2022

Name		Student ID	
1.	Give a formal definition for Big O.		[2 marks]
2.	Use that definition to show that $8n + 5$ is $O(n)$.		[5 marks]

3.	Algo	Algorithm doEx (A, n)				
		Input an array X of n integers				
		$t \leftarrow 0$				
		for $i \leftarrow 0$ to $n-1$ do				
		$t \leftarrow t + A[0]$				
		for $j \leftarrow 1$ to i do				
		$t \leftarrow t + A[j]$				
		B[i] = t				
		return t				
	i.	What does the above algorithm do? Give a high level statement that a non-				
		programmer can easily understand. [5 marks]				
	ii.	Give a big O characterization of this algorithm. Clearly show how you arrive at				
		your answer, showing any working if necessary.				
		[5 marks]				
4.	i.	An array has 2000 items in sorted order. How many comparisons are required if a				
		linear search is carried out on the array before it can be determined that the search				
		target is not present in the array. [3 marks]				

If this number is increased to 4000, how many compariso	ns will then be required [3 marks]
	If this number is increased to 4000, how many compariso