Variants of FCM for brain MRI segmentation

CS 736 Project

Modhugu Rineeth 170070049

Amey Gohil 170100019

Variants of FCM

In this project, we have implemented Fuzzy-C-Means and its 4 variants in reference to the research paper "Fuzzy C-mean based brain MRI segmentation algorithms" by M. A. Balafar.

Data used is the same as in Assignment 2 - assignment Segment Brain.mat

Variants implemented

- 1. FCM_S
- 2. FCM_S1
- 3. FCM_EN
- 4. FGFCM
- 5. FRFCM

Algorithms

FCM

Given

- Data = $\{ y_i \}$, j = 1,...,N
- Number of clusters = K (known / fixed)

Memberships

- u_{ik} = membership (non-negative) of j-th point in k-th cluster
- For each datum, over all classes k, memberships uik sum to 1

Objective function to be minimized

- Penalize distance of datum j from mean of class k
- Weight penalty based on membership u_{jk}

$$\sum_{j=1}^{N} \sum_{k=1}^{K} u_{jk}^{q} (y_j - c_k)^2$$

q > 1: free parameter controling fuzziness of clusters/memberships

Constraints

$$\forall j, \sum_{k} u_{jk} = 1$$

• Positivity constraint on memberships gets satisfied automatically

FCM_S

 Modification to the standard FCM by incorporating neighborhood information in the objective function

$$J_q = \sum_{i=1}^n \sum_{j=1}^m u_{ij}^q d(x_i, \theta_j) + \frac{\alpha}{N_R} \sum_{i=1}^n \sum_{j=1}^m u_{ij}^q \sum_{r \in N_i} d(x_r, \theta_j) \qquad ||x_r - v_i||^2$$

where d is distance between data xi and centre of the cluster j, θj and u is the fuzzy membership of data xi to cluster with centre θj . q specifies the degree of fuzziness in the clustering and α is the weight of neighborhood information. NR is the number of neighbors in a window around xi, Ni is the set of neighbors and xr represents the neighbor of xi

- Optimization done following the same method as described in class using method of Lagrange multipliers and performing alternate minimization.
- Shortcoming of FCM_S is that the neighbor term is computed in iteration which is time consuming

FCM_S1

- Proposed by Chen and Zhang
- Modification to the FCM_S algorithm's objective function to overcome FCM-S shortcoming

$$J_{q} = \sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij}^{q} d(x_{i}, \theta_{j}) + \alpha \sum_{i=1}^{n} \sum_{j=1}^{m} u_{ij}^{q} d(\bar{x}_{i}, \theta_{j}) \qquad ||\bar{x}_{k} - v_{i}||^{2}$$

where \bar{x}_i is the average of neighbors of pixel xi

 Optimization done following the same method as described in class using method of Lagrange multipliers and performing alternate minimization

FCM_EN

- Proposed by Szilágyi
- Modification to input data in order to speed up clustering process
- Linearly-weighted sum image of the original image and its average image used as the input image for clustering $c \ N$

$$S_i = \frac{1}{1+\beta} (X_i + \beta \bar{X}_i) \qquad J_m = \sum_{i=1}^c \sum_{k=1}^N u_{ik}^m ||x_k - v_i||^2$$

where β is the weight of neighborhood information

 Optimization done following the same method as described in class using method of Lagrange multipliers and performing alternate minimization

FGFCM

- Proposed by Cai et al.
- Improvement to FCM_EN in order to overcome shortcomings in adapting the common crucial parameter β.
- Input image used for clustering is generated as

$$\xi_{i} = \frac{\sum_{j \in N_{i}} S_{ij} x_{j}}{\sum_{j \in N_{i}} S_{ij}} \qquad S_{ir} = \begin{cases} S_{s_ir} * S_{g_ij}, & i \neq r \\ 0, & i = r \end{cases}$$

$$S_{s_ir} = \exp\left(\frac{-\max(|x_{i} - x_{r}|, |y_{i} - y_{r}|)}{\beta_{s}}\right) \quad S_{g_ir} = \exp\left(\frac{-||I_{i} - I_{r}||^{2}}{\beta_{g} * \sigma_{i}^{2}}\right) \quad \sigma_{i} = \sqrt{\frac{\sum_{r \in N_{i}} ||I_{i} - I_{r}||^{2}}{|N_{i}|}}$$

where rth pixel is a neighbor of pixel xi; (xr, yr) is rth neighbor pixel, βs is the weight of spatial information; li is grey value of the pixel xi and lr is that of rth neighbor

 Optimization done following the same method as described in class using method of Lagrange multipliers and performing alternate minimization

FRFCM based on morphological reconstruction

Objective function is

$$J_m = \sum_{l=1}^{q} \sum_{k=1}^{c} \gamma_l u_{kl}^m \|\xi_l - v_k\|^2$$

- This is performed on gray level histogram to save computational time, hence gamma_l.
- u_kl is fuzzy membership of gray value l

$$\xi = R^C(f)$$

• Difference between this and others is that image is reconstructed by morphological reconstruction

FRFCM based on morphological reconstruction

• MR is able to preserve object contour and remove noise without knowing the noise type in advance.

$$R_f^{\delta}(g) = \delta_f^{(i)}(g),$$

$$R_f^{\varepsilon}(g) = \varepsilon_f^{(i)}(g),$$

$$\delta_f^{(1)}(g) = \delta(g) \wedge f$$

$$\delta_g^{(i)}(f) = \delta(\delta^{(i-1)}(g)) \wedge f$$

$$\varepsilon_f^{(1)}(g) = \varepsilon(g) \vee f, \ \varepsilon_g^{(i)}(f) = \varepsilon(\varepsilon^{(i-1)}(g)) \vee f$$

$$R^{C}(f) = R_{R_{f}^{\delta}(\varepsilon(f))}^{\varepsilon} \left(\delta \left(R_{f}^{\delta} \left(\varepsilon(f) \right) \right) \right)$$

FRFCM based on morphological reconstruction

- f is original image, g is marker image, delta is dilation operation and epsilon is erosion operation.
- After optimizing, we get graylevel memberships and means. Using means and image data we can get original memberships.
- A median filter is used in membership matrix to computational time.

Results | Test Image 1

Original Image and Noisy Image

FCM | Objective Function vs Iterations

FCM | Segmentation

• MSE = 579.4981

FCM_S | Objective Function vs Iterations

FCM_S | Segmentation

• MSE = 159.6948

FCM_S1 | Objective Function vs Iterations

FCM_S1 | Segmentation

• MSE = 151.2929

FCM_EN | Objective Function vs Iterations

FCM_EN | Segmentation

• MSE = 0.5691

FGFCM | Objective Function vs Iterations

FGFCM | Segmentation

• MSE = 3.3623

FRFCM | Segmentation

• MSE = 11

Segmentation

Original

Noisy

FCM MSE 579

FCM_S 159 FCM_S1 151 FCM_EN 0.56

FRFCM 3.3

FGFCM 11

Results | Test Image 2

Original Image and Noisy Image

FCM | Objective Function vs Iterations

FCM | Segmentation

• MSE = 582.6100

FCM_S | Objective Function vs Iterations

FCM_S | Segmentation

• MSE = 139.7833

FCM_S1 | Objective Function vs Iterations

FCM_S1 | Segmentation

• MSE = 133.4468

FCM_EN | Objective Function vs Iterations

FCM_EN | Segmentation

• MSE = 23.3744

FGFCM | Objective Function vs Iterations

FGFCM | Segmentation

• MSE = 1.8561

FRFCM | Segmentation

• MSE = 4

Segmentation

Original

Noisy

FCM MSE 582

FCM_S 139 FCM_S1 133 FCM_EN 23.3

FRFCM 1.85 FGFCM 4

Results | Brain Image

Original Image and Noisy Image

FCM | Objective Function vs Iterations

FCM | Segmentation

• MSE = 242.6889

FCM_S | Objective Function vs Iterations

FCM_S | Segmentation

• MSE = 147.5855

FCM_S1 | Objective Function vs Iterations

FCM_S1 | Segmentation

• MSE = 141.1271

FCM_EN | Objective Function vs Iterations

FCM_EN | Segmentation

• MSE = 109.7403

FGFCM | Objective Function vs Iterations

FGFCM | Segmentation

• MSE = 131.9464

FRFCM | Segmentation

• MSE = 212

Segmentation

Original

Noisy

FCM MSE 242

FCM_S 147

FCM_S1 141

FCM_EN 109

FGFCM 131

FRFCM 212

Thank You

Prof. Suyash P. Awate