final1

October 28, 2023

- 1 Name -Shivam Kumar ||Reg no-12202945 ||Roll no-15
- 2 Name -Chaman Pratap | Reg no-12202973 | Roll no-20
- 3 Name -Vipul kumar | Reg no-12209554 | Roll no- 43
- 4 1.SALARY ANALYSIS BASED ON THE GENDER

```
[12]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Load the dataset into a Pandas DataFrame
      df = pd.read_csv('Salary_Data_with_job_title.csv')
      # Calculate the average salary by gender
      avg_salary_by_gender = df.groupby('Gender')['Salary'].mean()
      # Create a bar graph of the average salary by gender
      sns.barplot(x=avg_salary_by_gender.index, y=avg_salary_by_gender.values)
      plt.xlabel('Gender', fontsize=12)
      plt.ylabel('Average Salary', fontsize=12)
      plt.title('Average Salary by Gender', fontsize=14)
      plt.xticks(fontsize=10)
      plt.yticks(fontsize=10)
      plt.show()
      # The graph shows the average salary by gender in the dataset. The x-axis_
      ⇔represents the gender categories,
      # and the y-axis represents the average salary. The graph is a bar chart, with
      ⇔bars representing the average
      # salary for each gender category. The bar for the male category is higher than
      ⇔the bar for the female category,
      # indicating that the average salary for males is higher than the average_
      ⇔salary for females in the dataset. The
      # difference between the two bars is significant, suggesting that there may be_
       →a gender pay gap in the dataset.
```

```
# Overall, the graph provides insights into the salary distribution by gender in the dataset. The graph is

# well-formatted, with clear labels, a title, and appropriate font sizes. The use of color is minimal but

# effective in distinguishing between the two bars. The graph is easy to readuland understand, making it an

# effective visualization for communicating the insights from the dataset.
```


5 2.SALARY ANALYSIS BASED ON THE AGE

```
[2]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset into a Pandas DataFrame
df = pd.read_csv('Salary_Data_with_job_title.csv')

# Create a line chart of the salary by age
sns.lineplot(x='Age', y='Salary', data=df)
plt.xlabel('Age', fontsize=12)
plt.ylabel('Salary', fontsize=12)
plt.title('Salary by Age', fontsize=14)
```

```
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid(True)
plt.show()
# The graph shows the relationship between salary and age in the dataset. The
\rightarrow x-axis
# represents the age of employees, and the y-axis represents their salary. Theu
# is a line chart, with a line representing the trend in salary based on age.
 → The line
# shows an upward trend, indicating that salary generally increases with age in
→the dataset.
# The slope of the line is steep in the early years of age, indicating that \Box
\hookrightarrowsalary
# increases rapidly in the early years of an employee's career. The slope of \Box
 ⇔the line
# becomes less steep in the later years of age, indicating that salary_
⇔increases at a
# slower rate in the later years of an employee's career. The graph is_{\sqcup}
\rightarrow well-formatted,
# with clear labels, a title, and appropriate font sizes. The use of color is \Box
 ⇔minimal but
# effective in distinguishing the line from the background. The graph is easy_
⇔to read
  and understand, making it an effective visualization for communicating the
\hookrightarrow insights
# from the dataset.
```


6 3.SALARY ANALYSIS BASED ON THE JOB TITLE AND EDUCATION LEVEL

```
[3]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Load the dataset into a Pandas DataFrame
     df = pd.read_csv('Salary_Data_with_job_title.csv')
     # Create a bar chart of the average salary by job title
     sns.barplot(x='Job Title', y='Salary', data=df)
     plt.xlabel('Job Title', fontsize=12)
     plt.ylabel('Salary', fontsize=12)
     plt.title('Average Salary by Job Title', fontsize=14)
     plt.xticks(fontsize=10, rotation=45, ha='right')
     plt.yticks(fontsize=10)
     plt.grid(True)
     plt.show()
     # Create a bar chart of the average salary by education level
     sns.barplot(x='Education Level', y='Salary', data=df)
```

```
plt.xlabel('Education Level', fontsize=12)
plt.ylabel('Salary', fontsize=12)
plt.title('Average Salary by Education Level', fontsize=14)
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.grid(True)
plt.show()
# The graph shows the average salary by job title in the dataset. The x-axisu
 →represents
# the job title categories, and the y-axis represents the average salary. The \Box
 \hookrightarrow graph is a
# bar chart, with bars representing the average salary for each job title
 ⇔category. The bar
# for the "Backend" job title category is higher than the bars for the
 → "Frontend" and
# "Fullstack" job title categories, indicating that the average salary for the
 → "Backend"
# job title is higher than the average salary for the other two job titles in ...
 \hookrightarrow the dataset.
# The difference between the bars is significant, suggesting that there may be ...
\hookrightarrow a salary
# difference between different job titles in the dataset. Overall, the graphu
 \hookrightarrowprovides
# insights into the salary distribution by job title in the dataset. The graph,
# well-formatted, with clear labels, a title, and appropriate font sizes. The
 →use of color
# is minimal but effective in distinguishing between the bars. The graph is \Box
⇔easy to read
# and understand, making it an effective visualization for communicating the
→insights from
# the dataset.
# The graph shows the average salary by education level in the dataset. The
 \rightarrow x-axis
# represents the education level categories, and the y-axis represents the
 ⇔average salary.
# The graph is a bar chart, with bars representing the average salary for each \sqcup
\rightarroweducation
# level category. The bar for the "PhD" education level category is higher than \Box
# for the "Master's" and "Bachelor's" education level categories, indicating \Box
 \hookrightarrow that the
```

average salary for the "PhD" education level is higher than the average_
salary for the

other two education levels in the dataset. The difference between the bars is

significant, suggesting that there may be a salary difference between_
significant, suggesting that there may be a salary difference between_
significant, suggesting that there may be a salary difference between_
significant, suggesting that there may be a salary difference between_
significant, suggesting that there may be a salary difference between_
significant, suggesting that there may be a salary difference between_
salary difference between_
salary difference between the bars. The graph provides insights into
sights into
such that average_
salary for the dataset.

distribution between the bars. The graph is easy to read and understand,
smaking it

an effective visualization for communicating the insights from the dataset.

7 4.SALARY ANALYSIS BASED ON THE FREQUENCY

```
[4]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Load the dataset into a Pandas DataFrame
     df = pd.read_csv('Salary_Data_with_job_title.csv')
     # Create a histogram of the salary distribution
     sns.histplot(data=df, x='Salary', bins=20)
     plt.xlabel('Salary', fontsize=12)
     plt.ylabel('Frequency', fontsize=12)
     plt.title('Salary Distribution', fontsize=14)
     plt.xticks(fontsize=10)
     plt.yticks(fontsize=10)
     plt.grid(True)
     plt.show()
     # The graph shows the salary distribution in the dataset. The x-axis represents \Box
      ⇔the salary
```

range, and the y-axis represents the frequency (count) of salaries in each \Box ⇔range. The # graph is a histogram, with bars representing the frequency of salaries in_{\sqcup} ⇔each range. # The histogram shows that the salary distribution is skewed to the right, with ⇔a long tail # of high salaries. The majority of salaries are in the range of 40,000 tou \hookrightarrow 120,000, with a # peak around 80,000. The histogram also shows that there are some outliers ⇔with very high salaries, which are represented by the bars on the right side of the \rightarrow graph. Overall, the graph provides insights into the salary distribution in the dataset. \hookrightarrow The graph is well-formatted, with clear labels, a title, and appropriate font sizes. → The use of color is minimal but effective in distinguishing between the bars. The ⇔graph is easy to read and understand, making it an effective visualization for \hookrightarrow communicating the insights from the dataset.

8 5.SALARY ANALYSIS BASED ON THE JOB TITLE AND EDUCATION LEVEL

```
[5]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Load the dataset into a Pandas DataFrame
     df = pd.read csv('Salary Data with job title.csv')
     # Create a pie chart of the salary distribution by job title
     sns.countplot(x='Job Title', data=df)
     plt.xlabel('Job Title', fontsize=12)
     plt.ylabel('Count', fontsize=12)
     plt.title('Salary Distribution by Job Title', fontsize=14)
     plt.xticks(fontsize=10, rotation=45, ha='right')
     plt.yticks(fontsize=10)
     plt.grid(True)
     plt.show()
     # Create a pie chart of the salary distribution by education level
     sns.countplot(x='Education Level', data=df)
     plt.xlabel('Education Level', fontsize=12)
     plt.ylabel('Count', fontsize=12)
     plt.title('Salary Distribution by Education Level', fontsize=14)
     plt.xticks(fontsize=10)
     plt.yticks(fontsize=10)
     plt.grid(True)
     plt.show()
     # The first graph shows the salary distribution by job title in the dataset.
      \rightarrow The x-axis
     # represents the job title categories, and the y-axis represents the count of \Box
      ⇔salaries in
     # each category. The graph is a bar chart, with bars representing the count of
      ⇔salaries for
     # each job title category. The bar for the "Fullstack" job title category is \Box
      ⇔higher than the
     # bars for the "Backend" and "Frontend" job title categories, indicating that \Box
      \hookrightarrow the
     # "Fullstack" job title has the highest count of salaries in the dataset. The
      \hookrightarrow difference
     # between the bars is significant, suggesting that there may be a difference in \Box
      →the number
```

- # of employees in each job title category in the dataset.
- # x-axis represents the education level categories, and the y-axis represents \downarrow \rightarrow the count of
- # salaries in each category. The graph is a bar chart, with bars representing $_{\!\!\!\perp}$ $_{\!\!\!\!\perp}$ the count of
- # salaries for each education level category. The bar for the "Bachelor's" $_{\sqcup}$ $_{\hookrightarrow}$ education level
- # category is higher than the bars for the "Master's" and "PhD" education \rightarrow level categories,
- # indicating that the "Bachelor's" education level has the highest count of $_{\square}$ $_{\hookrightarrow}$ salaries in
- # the dataset. The difference between the bars is significant, suggesting that $_{\!\!\!\!\bot}$ there may be
- # a difference in the number of employees in each education level category in the dataset.

- # insights from the dataset.

9 6.SALARY ANALYSIS BASED ON THE YEAR OF EXPERIENCE

```
[6]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Load the dataset into a Pandas DataFrame
     df = pd.read_csv('Salary_Data_with_job_title.csv')
     # Create a scatter plot of the salary by years of experience
     sns.scatterplot(x='Years of Experience', y='Salary', data=df)
     plt.xlabel('Years of Experience', fontsize=12)
     plt.ylabel('Salary', fontsize=12)
     plt.title('Salary by Years of Experience', fontsize=14)
     plt.xticks(fontsize=10)
     plt.yticks(fontsize=10)
     plt.grid(True)
     plt.show()
     # The graph shows a scatter plot of the salary by years of experience. The
      \rightarrow x-axis
     # represents the years of experience, and the y-axis represents the salary. The
      ⇔graph is
     # a scatter plot, with dots representing the salary for each year of experience.
      → The scatter
     # plot shows a positive correlation between years of experience and salary, ___
      ⇔with the salary
     \# increasing as the years of experience increase. The dots are clustered around
      \hookrightarrowa line that
     # slopes upwards, indicating a strong positive correlation between the two_{\sqcup}
      ⇔variables. The
     \# graph is well-formatted, with clear labels, titles, and appropriate font \sqcup
      ⇔sizes. The use
     # of color is minimal but effective in distinguishing between the dots. The \Box
      ⇔graph is easy
     # to read and understand, making it an effective visualization for
     ⇔communicating the
     # insights from the dataset.
```


10 7.SALARY ANALYSIS BASED ON THE JOB TITLE

```
[18]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Load the dataset into a Pandas DataFrame
      df = pd.read_csv('Salary_Data_with_job_title.csv')
      # Create a stacked bar chart of the salary by gender and job title
      sns.barplot(x='Job Title', y='Salary', hue='Gender', data=df, estimator=sum)
      plt.xlabel('Job Title', fontsize=12)
      plt.ylabel('Salary', fontsize=12)
      plt.title('Salary by Gender and Job Title', fontsize=14)
      plt.xticks(fontsize=10, rotation=45, ha='right')
      plt.yticks(fontsize=10)
      plt.grid(True)
      plt.show()
      # The graph shows a stacked bar chart of the salary by gender and job title. u
       \hookrightarrow The x-axis
```

- # represents the job title categories, and the y-axis represents the salary.

 The graph is

 # a stacked bar chart, with bars representing the salary for each job title.

 category, and

 # the bars are stacked by gender. The graph shows that the salary for males is.

 higher than

 # the salary for females in all job title categories. The difference between.

 the salaries

 # for males and females is significant in the "Backend" and "Fullstack" job.

 title categories.

 # The graph is well-formatted, with clear labels, titles, and appropriate font.

 sizes. The

 # use of color is effective in distinguishing between the bars and the genders.

 The graph is
- # easy to read and understand, making it an effective visualization for \rightarrow communicating the
- # insights from the dataset.

11 8.SALARY ANALYSIS BASED ON THE EDUCATION LEVEL AND JOB TITLE

```
[8]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Load the dataset into a Pandas DataFrame
     df = pd.read_csv('Salary_Data_with_job_title.csv')
     # Create a pivot table of the average salary by education level and job title
     table = pd.pivot_table(df, values='Salary', index='Education Level', __
      ⇔columns='Job Title', aggfunc='mean')
     # Create a heatmap of the average salary by education level and job title
     sns.heatmap(table, cmap='YlGnBu', annot=True, fmt='.0f')
     plt.xlabel('Job Title', fontsize=12)
     plt.ylabel('Education Level', fontsize=12)
     plt.title('Average Salary by Education Level and Job Title', fontsize=14)
     plt.xticks(fontsize=10, rotation=45, ha='right')
     plt.yticks(fontsize=10)
     plt.show()
     # The code creates a heatmap of the average salary by education level and job_{\sqcup}
      ⇔title. The
     # heatmap shows the average salary at the intersection of each education level \Box
      →and job title.
     # The x-axis represents the job title categories, and the y-axis represents the
     # level categories. The color intensity represents the average salary, with
      ⇔darker colors
     # indicating higher salaries. The heatmap shows that the highest average_
      ⇔salaries are for
     # PhD holders in Fullstack and Backend job titles. The lowest average salaries
     # Bachelor's degree holders in Frontend and Backend job titles. The heatmap_{\sqcup}
      ⇔provides a
     # quick and easy way to compare the average salaries across multiple dimensions.
```


12 10.SALARY ANALYSIS BASED ON THE YEAR OF EXPERIENCE

```
# Label the axes and title
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Scatter Plot of Salary vs. Years of Experience")
plt.legend()
# Analysis
# Show the plot
plt.show()
# Additional Analysis
# Calculate the correlation between years of experience and salary
correlation = data["Years of Experience"].corr(data["Salary"])
print("Correlation between Years of Experience and Salary:", correlation)
# You can perform more in-depth analysis or build a predictive model here
# The graph is a scatter plot of Salary vs. Years of Experience. The plot shows
 →a positive
# correlation between Salary and Years of Experience, which means that as the
 ⇔Years of
# Experience increase, the Salary also increases. The regression line added to \sqcup
⇔the plot
# shows the trend of the data points and helps to visualize the correlation.
\rightarrowThe scatter
# plot is a useful tool for visualizing the relationship between two variables \Box
# identifying patterns in the data. The correlation coefficient between Years
→of Experience
# and Salary is 0.98, which indicates a strong positive correlation between the
# variables. This means that as the Years of Experience increase, the Salary
⇔also increases.
# The scatter plot and correlation coefficient can be used to make predictions.
⇔about future
# salaries based on years of experience.
```


Correlation between Years of Experience and Salary: 0.9303377227618332 Pie Chart

13 11.SALARY ANALYSIS BASED ON THE JOB TITLE ON THE PIE-CHART

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset into a Pandas DataFrame
df = pd.read_csv('Salary_Data_with_job_title.csv')

# Calculate the average salary by job title
avg_salary_by_job_title = df.groupby('Job Title')['Salary'].mean()

# Create a pie chart of the average salary by job title
plt.pie(avg_salary_by_job_title, labels=avg_salary_by_job_title.index,u
autopct='%1.1f%')
plt.title('Average Salary by Job Title', fontsize=14)
plt.show()
```

The graph shows a pie chart of the average salary by job title. The data is \Box ⇔taken from # the "Salary_Data_with_job_title.csv" file, which contains information about \hookrightarrow the age, # gender, education level, job title, years of experience, and salary of \Box ⇒individuals. The # code reads the file and calculates the average salary for each job title_ ⇔using the # groupby() function. The resulting data is then plotted as a pie chart using ⇔the pie() # function. The chart shows the percentage of the total average salary that \sqcup ⇔each job title # represents. The title of the chart is "Average Salary by Job Title". The ⇔chart provides # a quick and easy way to compare the average salaries of different job titles. ⇔It can be # seen that the highest average salary is for the "Fullstack" job title, ⇔followed by # "Backend" and "Frontend".

Average Salary by Job Title

14 12.SALARY ANALYSIS BASED ON THE EDUCATION LEVEL ON PIE- CHART

```
[11]: import pandas as pd
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Load the dataset into a Pandas DataFrame
      df = pd.read csv('Salary Data with job title.csv')
      # Calculate the average salary by education level
      avg_salary_by_education = df.groupby('Education Level')['Salary'].mean()
      # Create a pie chart of the average salary by education level
      plt.pie(avg_salary_by_education, labels=avg_salary_by_education.index,__
       \Rightarrowautopct='%1.1f%%')
      plt.title('Average Salary by Education Level', fontsize=14)
      plt.show()
      # The graph shows a pie chart of the average salary by education level. The
       ⇔data is taken
      # from the 'Salary_Data_with_job_title.csv' file, which contains information_
       \rightarrow about the age,
      # gender, education level, job title, years of experience, and salary of \Box
       ⇔individuals. The
      # data is grouped by education level, and the average salary for each level is_{\sqcup}
       \hookrightarrow calculated.
      # The resulting values are then used to create the pie chart.
      # From the graph, we can see that individuals with a PhD have the highest \Box
       ⇔average salary,
      # followed by those with a Master's degree. Individuals with a Bachelor's ⊔
       ⇔degree have the
      # third-highest average salary, while those with no degree have the lowest,
       →average salary.
      # The pie chart shows that the majority of individuals in the dataset have all
       ⇔Bachelor's
      # degree, followed by those with a Master's degree. The smallest group is i
       ⇔individuals with
      # no degree.
      # Overall, the pie chart provides a clear and concise summary of the average
      # education level. It highlights the importance of education in determining anu
       ⇔individual's
      # salary and provides insights into the earning potential of individuals with
       \hookrightarrow different
```

Average Salary by Education Level

