

Do DYES KILL Liquid Crystal Ordering?

NANO 604 Jon and Sahad

Motivations, simulation rationale, results, and next steps

Background – Liquid Crystal Phases

[1]

Background - Dichroic Dyes [2]

- Dichroic dyes only absorb light that is polarized parallel to one of their axes.
- This orientation-dependent absorption makes these dyes useful for applications such as **liquid crystal displays** [3].
- Dichroic dyes can also be used to measure the order of a liquid crystal.
 - The absorption of a dye dissolved in a liquid crystal gives information about the alignment of the dye molecules and thus of the liquid crystal in which it's dissolved.

Simulation Goal

We know that dichroic dyes are used to measure the order parameter of a liquid crystal, but <u>does the inclusion</u> <u>of dichroic dyes affect the order of the liquid crystal being measured?</u>

Objective: Investigate the effect of dichroic dyes on the order parameter of a liquid

<u>Implementation</u>: introducing small concentrations of <u>perylene</u> (main constituent of many dyes [3]) into the bulk phase of a common liquid crystal, 4-Cyano-4'-pentylbiphenyl (<u>5CB</u>). Perylene was chosen due to availability of force field parameters.

Particle Models

5CB [5]

Prolate Ellipsoid

5 Å x 5 Å x 15.5 Å

Mass = 249.4 g/mol

Perylene [6, 7]

Oblate Ellipsoid

8.2 Å x 10.4 Å x 3.3 Å

Mass = 252.3 g/mol

LAMMPS: atom_style ellipsoid → stores shape, quaternion, and angular momentum

Initial Configuration

- Real units used to match parameters to those in literature
- Particles initially placed 15.5 Å apart (largest ellipsoid diameter)
 - Simple cubic lattice so all particles are initially equidistant
- Box dimensions set to 10 x 10 x 10
 - 1000 particles; reasonable compromise between sample size and simulation speed
 - Fractions of perylene: 0.001, 0.01, 0.025, 0.05, 0.075, and 0.1 (all tested with four random seeds)
- Periodic boundary conditions in all dimensions
 - We are simulating a segment of a bulk solution
- Initial temperature set to 298 K (within 5CB's nematic range [8])
 - Initial distribution set to be **Gaussian**; closer to Maxwell-Boltzmann than a uniform distribution

Conclusions

Gay-Berne (GB) Potential [9]

$$U(\mathbf{A}_1,\mathbf{A}_2,\mathbf{r}_{12}) = U_r(\mathbf{A}_1,\mathbf{A}_2,\mathbf{r}_{12},\gamma) \cdot \eta_{12}(\mathbf{A}_1,\mathbf{A}_2,v) \cdot \chi_{12}(\mathbf{A}_1,\mathbf{A}_2,\mathbf{r}_{12},\mu)$$

- $U_r=4\epsilon(arrho^{12}-arrho^6)$ $arrho=rac{\sigma}{h_{12}+\gamma\sigma}$
- Commonly <u>used to model ellipsoidal particles</u> in literature
- pair_style parameters:
 - gamma = shift for potential minimum (typically 1)
 - upsilon = exponent for eta orientation-dependent energy function
 - o mu = exponent for chi orientation-dependent energy function
 - cutoff = global cutoff distance for interactions
- We used the following:
 - gamma, upsilon = 1 (from literature references) [5-7]
 - o mu = 2 (from literature references) [5-7]
 - o cutoff = 18 Å; smallest cutoff with negligible energy drift
 - Neighbor list built by binning with skin thickness = 2.6 Å

Initialization/Particle Definition

Gay-Berne (GB) Potential

Pair coefficients needed in LAMMPS:

- $\varepsilon = \text{well depth (energy units)}$
- σ = minimum effective particle radii (distance units)
- $\varepsilon_{i,a}$ = relative well depth of type I for side-to-side interactions
- $\varepsilon_{i,b}$ = relative well depth of type I for face-to-face interactions
- $\varepsilon_{i,c}$ = relative well depth of type I for end-to-end interactions
- $\epsilon_{i,a}$ = relative well depth of type J for side-to-side interactions
- ε_{ih} = relative well depth of type J for face-to-face interactions
- $\varepsilon_{i,c}$ = relative well depth of type J for end-to-end interactions
- cutoff (distance units); optional

• • • 5CB [5]

- ε = 3.6 kcal/mol; Increased to match perylene (originally 0.475 kcal/mol, but literature model included point charges)
- $\sigma = 2.5 \text{ Å}$
- $\varepsilon_{i,a} = 1$
- $\varepsilon_{i,b} = 1$
- $\varepsilon_{i.c} = 0.2$
- $\varepsilon_{i,a} = 1$
- $\varepsilon_{j,b} = 1$
- $\varepsilon_{j,c} = 0.2$

Perylene [6.7]

• ε = 3.6 kcal/mol; doubled from literature value to encourage alignment over shorter runs

- $\sigma = 1.65 \text{ Å}$
- $\varepsilon_{i,a} = 1$

Initialization/Particle Definition

- $\varepsilon_{i,b} = 1$
- $\bullet \quad \epsilon_{i,c} = 0.19$
- $\varepsilon_{i,a} = 1$
- $\varepsilon_{ih} = 1$
- $\bullet \quad \epsilon_{\rm j,c} = 0.19$

• • • Mix [5-7]

 ε = 3.6 kcal/mol; in.ellipse.gayberne used highest value from the two species

- $\sigma = 2.075$ $\circ (\sigma_{5CB} + \sigma_{perylene})/2$
- $\varepsilon_{i,a} = 1$
- $\varepsilon_{i,b} = 1$
- $\varepsilon_{i,c} = 0.2$
- $\varepsilon_{i,a} = 1$
- $\varepsilon_{j,b} = 1$
- $\varepsilon_{j,c} = 0.19$

Timestep and Integration Method

- Timestep = 1 fs
 - Allows us to run reasonably long simulations in a dense system
 - Simulation appears to be stable at this timstep (energy conservation will be discussed)
- Integration method: Störmer-Verlet time integration algorithm (default) [11]

$$x(t + \Delta t) = x(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^{2}$$
$$v(t + \Delta t) = v(t) + \frac{1}{2}(a(t) + a(t + \Delta t))\Delta t$$

Thermostats and Barostats

Our runs consisted of the following steps:

Description	Time (fs)	Code
Pressurization to achieve target density	12,500	fix 1 all npt/asphere temp 298 298 100 iso 21.57 150 1000 & mtk no pchain 0 tchain 1
Hold at final pressure to equilibrate	12,500	fix 1 all npt/asphere temp 298 298 100 iso 150 150 1000 & mtk no pchain 0 tchain 1
NVT run at 298 K to analyze order parameter	105,000	fix 1 all nvt/asphere temp 298 298 100
NVE run for error check	10,000	fix 1 all nve/asphere

The default Nose-Hoover thermostat and barostat were used.

Error Checks, Steady-State, and Particle Alignment

Error Check

- As previously discussed, every run ended with 10,000 fs in NVE to confirm energy conservation.
 - Cutoff increased from 15.5 Å to 18 Å to avoid energy drift

Error Check

- As previously discussed, every run ended with 10,000 fs in NVE to confirm energy conservation.
 - Cutoff increased from 15.5 Å to 18 Å to avoid energy drift

Steady State Check

- Stability confirmed by comparing velocity profiles to Maxwell-Boltzmann (MB) distribution
- Quite similar to MB at start of NVT stage (25,000 fs); others equilibrated soon after.
- 40,000 fs chosen as starting point for measurements to ensure steady state.

Particle Ordering

Screenshots from 40,000 fs for various perylene concentrations:

0.1%

Introduction

5%

1%

7.5%

2.5%

10%

Particle Ordering

Screenshots from 130,000 fs (end of NVT) for various perylene concentrations:

0.1%

Introduction

5%

1%

7.5%

2.5%

Measurements – Order Parameter

We analyzed the ordering of the ellipsoidal particles using the **nematic order parameter** for the 5CB particles:

$$S = \langle P_2(\cos\theta) \rangle = \left\langle \frac{3\cos^2\theta - 1}{2} \right\rangle_{[12]}$$

- θ = angle between long molecular axis and the director, which represents the direction of global order in the system
- 1 =all prolates facing one direction; $-\frac{1}{2} =$ completely ordered oblate ellipsoids
- Developed Python code for calculating S using particle simulation library [13]

Measurements – Order Parameter

- Highest ordering achieved at .025 perylene Optimal π - π stacking at this fraction
- Beyond .025, π - π stacking inhibits global order
- Trend is maintained throughout simulation
- Expected overall downward trend (Resembles S versus Temperature plot of nematogen)

Simulation/Measurements

Large standard deviation suggests absence of nematic phase (perhaps due to perylene's comparable dimensions)

Conclusions

- Examined if dichroic dyes adversely affect order parameter (S) of Liquid Crystals
- Developed a drift-minimized, steady-state simulation to measure order vs. dye fraction
- Simulation drift ≤ 1 kCal/mol/10,000 fs; velocity profile matches Maxwell-Boltzmann distribution
- Small dye fractions increase order; larger fractions destroy ordering and the LC phase
 - Perhaps due to comparable dimensions between dye and LC
 - Overall order parameter trend did not reflect expected results

Potential Improvements

Longer simulations

Introduction

- Increase timestep
- Run for more timesteps
- Tweak potentials to observe nematic phase and decrease error bars
- More accurate model of 5CB (e.g., chain flexibility, incorporating point charges since polar)
- Optimize parameters to run at 1 atm (i.e., more realistic conditions)
- Incorporate models for other perylene-based dyes
- Attempt energy minimization during run

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

References

- [1] I. Dierking and S. Al-Zangana, "Lyotropic liquid crystal phases from anisotropic nanomaterials," Nanomaterials, vol. 7, no. 10, Oct. 2017, doi: 10.3390/NANO7100305.
- [2] P. J. Collings, B. R. Ratna, and R. Shashidhar, "Order parameter measurements of dichroic dyes dissolved in smectic liquid crystals that tilt without layer contraction," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 67, no. 2 Pt 1, p. 8, 2003, doi: 10.1103/PHYSREVE.67.021705.
- [3] E. Mykowska and D. Bauman, "Perylene-like Dyes in liquid crystalline media," Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, vol. 51, no. 7, pp. 843-850, 1996, doi: 10.1515/ZNA-1996-0708.
- [4] P. Kumar, Neeraj, S. W. Kang, S. H. Lee, and K. K. Raina, "Analysis of dichroic dye-doped polymer-dispersed liquid crystal materials for display devices," Thin Solid Films, vol. 520, no. 1, pp. 457-463, Oct. 2011, doi: 10.1016/J.TSF.2011.06.038.
- [5] C. Zannoni, "Nanoparticles Effects in Liquid Crystals (NELC)-AFRL/RX ST Dr. Bunning DISTRIBUTION A: Distribution approved for public release," May 2019, Accessed: Dec. 03, 2022. [Online]. Available: https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll
- [6] R. Berardi, C. Fava, and C. Zannoni, "A Gay-Berne potential for dissimilar biaxial particles," Chem Phys Lett, vol. 297, no. 1-2, pp. 8-14, Nov. 1998, doi: 10.1016/S0009-2614(98)01090-2.
- [7] B. J. Boehm and D. M. Huang, "A simple predictor of interface orientation of mesogenic fluids and its implications for organic semiconductors," Soft Matter, vol. 18. no. 9. Feb. 2022.
- [8] C. Zannoni, "Liquid crystals and their computer simulations," p. 15, Jul. 2022.
- [9] "pair_style gayberne command — LAMMPS documentation." https://docs.lammps.org/pair_gayberne.html (accessed Dec. 03, 2022).
- [10] A. Calderón-Alcaraz, J. Munguía-Valadez, S. I. Hernández, A. Ramírez-Hernández, E. J. Sambriski, and J. A. Moreno-Razo, "A Bidimensional Gay-Berne Calamitic

Fluid: Structure and Phase Behavior in Bulk and Strongly Confined Systems," Front Phys, vol. 8, p. 668, Mar. 2021, doi: 10.3389/FPHY.2020.622872/BIBTEX.

- "Verlet Integration · Arcane Algorithm Archive." https://www.algorithm-archive.org/contents/verlet_integration/verlet_integration.html (accessed Dec. 03, 2022). [11]
- [12] A. A. Joshi, J. K. Whitmer, O. Guzmán, N. L. Abbott, and J. J. de Pablo, "Measuring liquid crystal elastic constants with free energy perturbations," Soft Matter, vol. 10, no. 6, pp. 882-893, Jan. 2014, doi: 10.1039/C3SM51919H.
- [13] "freud.order.Nematic — freud 2.12.0 documentation," Readthedocs.io, 2022.
- https://freud.readthedocs.io/en/latest/gettingstarted/examples/module_intros/order.Nematic.html (accessed Dec. 05, 2022).