1.图像特征

2.扩散模型

- 2.1 概念
- 2.2 DDPM理解
 - 2.2.1 前向过程 (扩散过程)
 - 2.2.2 逆向过程
 - 2.2.3 模型设计-Unet
- 2.3 stable diffusion框架

3.经典网络resnet18和resnet101

- 4.残差网络和信息瓶颈
 - 4.1 提出背景
 - 4.2 残差块(Residual block)
 - 4.3 瓶颈块(Bottleneck block)

1.图像特征

特征	含义	检测算法
角点 (Corner)	图像中具有明显变化的位置,通常 是图像中两个或多个边缘相交的地 方。具有旋转不变性和光照不变性 和视角不变性	Harris角点检测、Shi-Tomasi角点检测、 FAST角点检测、ORB角点检测等
边缘 (Edges)	图像中明显的亮度变化区域,标识物体边界的线段。	如Canny边缘检测
区域 (Blob)	图像中具有相对均一的局部区域,与周围区域有明显的对比度差异。	检测算法如Laplacian of Gaussian (LoG) 和Difference of Gaussian (DoG)
颜色特征	描述图像中的颜色分布和色彩信息。	包括颜色直方图、颜色矩和颜色梯度等。
轮廓曲度 (Contour curvature)	在曲线上某一点的曲率大小,用于描述曲线在该点的弯曲程度。轮廓曲率反映了曲线在该点的局部形状特征。	常用的计算曲线曲率的方法包括数值法和微分几何法
纹理特征 (Texture)	纹理是图像中重复或规律的局部结 构,描述了物体的细节特征。	常用的纹理特征包括灰度共生矩阵 (GLCM)、局部二值模式(LBP)、方向 梯度直方图(HOG)等。
形状特征	表示物体的整体形状,也可以用于 描述物体的局部形状。	
空间关系特征	图像分割中的多个目标之间的相互的空间位置或相对方向关系。可以分为两类:相对/绝对空间位置信息。	一种是首先对图像进行分割,划分出区域,然后根据这些区域提取图像特征;另一种方法将图像均匀地划分为子块,然后对每个子块提取特征

2.扩散模型

2.1 概念

机器学习中,扩散模型或扩散概率模型是一类潜变量模型,是用变分估计训练的**马尔可夫链**。扩散模型的目标是通过对数据点在**潜空间**(latent sapce)中的扩散方式进行建模,来学习数据集的潜结构。计算机视觉中,这意味着通过学习逆扩散过程训练神经网络,使其能对叠加了高斯噪声的图像进行去噪。应用:图像去噪、图像修复、超分辨率成像、图像生成等等【摘自wiki百科-扩散模型】

马尔可夫链: <u>状态空间</u>中经过从一个状态到另一个状态的转换的<u>随机过程</u>。该过程要求具备"无记忆"的性质: 下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。

隐空间(latent sapce): 为了找到模式(pattern) 而学习数据特征并且简化数据表示。

扩散模型是在2015年提出的,其动机来自非平衡态热力学

图像生成领域最常见生成模型有: GAN(生成对抗网络)和VAE(变分自编码器)

2020年,DDPM(Denoising Diffusion Probabilistic Model)被提出,被称为扩散模型(Diffusion Model),同样可用于图像生成。【DDPM论文地址】

2022年底,Stability AI发布文本生成图像模型 Stable Diffusion 的最新版本,其生成的图像达到商用级别。

2.2 DDPM理解

简单来说,扩散模型包含两个过程: **前向扩散过程**和**反向生成过程**,前向扩散过程是对一张图像逐渐添加高斯噪音直至变成**随机噪音**,而反向生成过程是**去噪音过程**,我们将从一个随机噪音开始逐渐去噪音直至生成一张图像,这也是我们要求解或者训练的部分。

2.2.1 前向过程 (扩散过程)

前向过程

前向过程是加噪的过程,前向过程中图像 x_t 只和上一时刻的 x_{t-1} 有关, 该过程可以视为马尔科夫过程, 满足:

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

$$q(x_t|x_{t-1}) = N(x_t, \sqrt{1-eta_t}x_{t-1}, eta_t I)$$

其中不同t的 eta_t 是预先定义好的逐渐衰减的,可以是Linear,Cosine等,满足 $eta_1 < eta_2 < \ldots < eta_T$ 。

根据以上公式,可以通过重参数化采样得到 x_t 。 $\epsilon \sim N(0,I)$, $lpha_t = 1 - eta_t$

$$\overline{lpha}_t = \Pi_{i=1}^T lpha_i$$

经过推导,可以得出 x_t 与 x_0 的关系:

$$q(x_t|x_0) = N(x_t; \sqrt{\overline{lpha}_t}x_0, (1-\overline{lpha}_t)I)$$

2.2.2 逆向过程

逆向过程

逆向过程是去噪的过程,如果得到逆向过程 $q(x_{t-1}|x_t)$,就可以通过随机噪声\$ x_T \$逐步还原出一张图像。DDPM使用神经网络 $p_{\theta}(x_{t-1}|x_t)$ 拟合逆向过程 $q(x_{t-1}|x_t)$ 。

$$q(x_{t-1}|x_t,x_0)=N(x_{t-1}| ilde{\mu_t}(x_t,x_0), ilde{eta_t}I)$$
,可以推导出:

$$p_{ heta}(x_{t-1}|x_t) = N(x_{t-1}|\mu_{ heta}(x_t,t),\Sigma_{ heta}(x_t,t))$$

DDPM论文中不计方差,通过神经网络拟合均值 $\mu_{ heta}$,从而得到 x_{t-1} ,

$$\mu_{ heta} = rac{1}{\sqrt{lpha_t}}(x_t - rac{1-lpha_t}{\sqrt{1-\overline{lpha_t}}}\epsilon_{ heta(x_t,t)})$$

因为 t 和 x_t 已知,只需使用神经网络拟合 $\epsilon_{\theta(x_t,t)}$

2.2.3 模型设计-Unet

扩散模型的核心就在于训练噪音预测模型。DDPM所采用的模型是一个基于residual block和attention block的**U-Net模型**。

U-Net属于encoder-decoder架构,其中encoder分成不同的stages,每个stage都包含下采样模块来降低特征的空间大小(H和W),然后decoder和encoder相反,是将encoder压缩的特征逐渐恢复。U-Net在decoder模块中还引入了**skip connection**,即concat了encoder中间得到的同维度特征,这有利于网络优化。DDPM所采用的U-Net每个stage包含**2个residual block**,而且部分stage还加入了**self-attention模块**增加网络的全局建模能力。 另外,扩散模型其实需要的是T个噪音预测模型,实际处理时,可以增加一个**time embedding**(类似transformer中的position embedding)来将timestep编码到网络中,从而只需要训练一个共享的U-Net模型。

参考https://www.zhihu.com/guestion/545764550

2.3 stable diffusion框架

如下图:

①②为训练部分:

- 使用 AutoEncoderKL 自编码器将图像 Image 从 pixel space 映射到 latent space, 学习图像的隐式表达
- 使用 FrozenCLIPEmbedder 文本编码器对 Prompt 提示词进行编码,生成embedding 表示
- 对图像的隐式表达进行不断加噪进行前向扩散过程(Diffusion Process),之后对加噪后的图像调用 UNetModel 对噪声进行预估; UNetModel 同时接收图像的隐式表达 latent image 以及文本 embedding context,在训练时以 context 作为 condition,使用 Attention 机制来更好的学习文本与图像的匹配关系
- 扩散模型输出噪声 ϵ_{θ} ,计算和真实噪声之间的误差作为 Loss,通过反向传播算法更新 UNetModel模型的参数,注意这个过程中 AutoEncoderKL 和 FrozenCLIPEmbedder 中的参数不会被更新。

②③是生成部分:

- 使用 FrozenCLIPEmbedder 文本编码器对 Prompt 提示词进行编码,生成embedding 表示
- 随机产出的噪声 Noise,利用训练好的 UNetModel 模型,按照 DDPM/DDIM/PLMS 等算法迭代 T 次,将噪声不断去除,恢复出图像的 latent 表示;
- 使用 AutoEncoderKL 对图像的 latent 表示进行 decode(解码),最终恢复出 pixel space 的图像

参考https://zhuanlan.zhihu.com/p/613337342

3.经典网络resnet18和resnet101

resnet18、resnet101训练cifar10 (对比:效率、精度、资源占用)

训练loss与score对比(紫色为resnet18, 橙色为resnet101):

	resnet18	resnet101
资源占用	1739MiB / 4096MiB	2656MiB / 4096MiB
100轮总用时	1.747 h	5.563 h
平均每轮用时	62.9 s	200.2 s

4.残差网络和信息瓶颈

4.1 提出背景

传统的深度神经网络存在梯度消失和梯度爆炸等问题,导致网络深度增加时难以训练。

$$x \xrightarrow{w1} h1 \xrightarrow{w2} h2 \xrightarrow{w3} h3$$

$$f(x) = h(x) \qquad h3 = ((x * w1) * w2) * w3$$

反向传播的时候,对参数链式求导,导数连乘中,如果有一个参数接近0,则梯度消失。网络越深,梯度消失的可能性越大。

残差网络(ResNet):通过引入残差块(residual block)来解决梯度消失和梯度爆炸等问题。残差块包含了跳跃连接,即将输入直接添加到残差块的输出,形成残差连接。这样,网络可以通过直接学习残差来适应更复杂的映射关系,而不仅仅是学习原始的映射。

$$x \xrightarrow{w1} h1 \xrightarrow{w2} h3$$

$$f(x) = h(x) + x$$

$$h3 = (((x * w1 + x) * w2 + (x * w1 + x))) * w3 +$$

$$((x * w1 + x) * w2 + (x * w1 + x))$$

4.2 残差块(Residual block)

残差块因为在forward()函数的最后需要将输入x和学习到的残差F(x)相加,所以这两个张量的尺寸应该是完全一致的

代码实现:

```
# CHW不变

class ResidualBlock(nn.Module):
    def __init__(self, c):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=c, kernel_size=3,

stride=1, padding=1)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=c, out_channels=c, kernel_size=3,

stride=1, padding=1)

def forward(self, x):
    out = self.conv1(x)
    out = self.relu(out)
    out = self.relu(out)
    out = self.conv2(out)
    return self.relu(out + x)
```

```
class ResNetV1(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,
stride=1)
        self.relu1 = nn.ReLU()
        self.resnet_block1 = ResidualBlock(32)
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3,
stride=1)
        self.relu2 = nn.ReLU()
        self.resnet_block2 = ResidualBlock(64)
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3,
stride=1)
    def forward(self, x):
       out = self.relu1(self.conv1(x))
        out = self.resnet_blcok1(out)
        out = self.relu2(self.conv2(out))
        out = self.resnet_blcok2(out)
        out = self.conv3(out)
        return out
```

4.3 瓶颈块(Bottleneck block)

在ResNet中,瓶颈结构用于减少网络中的参数数量和计算量,同时提高网络的表示能力。1x1的卷积层起到了降维整合信息和升维的作用,3x3的卷积层用于学习特征。

代码实现:

```
import torch.nn.functional as F
from torch import nn
# 信息瓶颈:核心是操作通道
class BottleneckBlock(nn.Module):
   def __init__(self, c):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=c // 4,
kernel_size=1)
        self.conv2 = nn.Conv2d(in_channels=c // 4, out_channels=c // 4,
kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(in_channels=c // 4, out_channels=c,
kernel_size=1)
    def forward(self, x):
        out = F.relu(self.conv1(x))
        out = F.relu(self.conv2(out))
        out = F.relu(self.conv3(out))
        return F.relu(out + x)
class ResNetV2(nn.Module):
   def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,
stride=1)
        self.relu1 = nn.ReLU()
        self.bottleneck_block1 = BottleneckBlock(32)
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3,
stride=1)
        self.relu2 = nn.ReLU()
        self.bottleneck_block2 = BottleneckBlock(64)
        self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3,
stride=1)
    def forward(self, x):
        out = self.relu1(self.conv1(x))
        out = self.bottleneck_block1(out)
        out = self.relu2(self.conv2(out))
        out = self.bottleneck_block2(out)
        out = self.conv3(out)
        return out
```