Homework #3

1.) Design a single cell - 1 bit carry propagate (Ripple Carry Maker) hall adder.

a Generate the truth table

	INPUTS			OUTPUTS		1
	Ax	Bx	CIN	Sx	Cour	
6	0	0	0	0	0	
4'	0	0	l	1	0	
45	0	1	0	(0	
3	0	1	1	0	1	
44	1	0	0	1	0	
4.2	1	0	1	0	1	
46	1	1	0	0	1	
4.3	1	1	1	1	1	

(b) Using K-map, determine the logical expression for carry out (c-out) and sum(s)

Sx = Ax Bx CEN + Ax Bx CEN + Ax Bx CEN + Ax Bx CDN

Sx = Ax @ Bx @ Czw

COUT = Ax Bx CIN + Ax Bx CIN + Ax Bx CIN + Ax Bx CIN

COUT = AXCEN + AXBX + BXCEN

@ Based on the logical expression, ereate the schematic diagram for that adder

- 2.) Design a 1 bit, 2 to 1 multiplexer (Mar). Outpute 4 when 5=0; K when 5=1.
 - @ Generate the truth table

Selector	Inpu	it	Output
5	К	Y	*
0	0	0	0
0	0	1	1
0	1	0	0
0	l	1	l
1	0	0	0
1	0	(0
	1	0	
1	·	·	1

(b) Using K-map, determine the logical expression for output

r = 3xy + 5xy + sxy + sxy

2/24	00	01	11	10
0		I	D	
1			I	D

@ Based on the logical expression, create the schematic diagram for Mux

