Московский государственный технический университет имени Н.Э.Баумана Кафедра «Системы обработки информации и управления»

ОТЧЕТ

Лабораторная работа №2 по курсу «Методы машинного обучения» « Изучение библиотек обработки данных.»

Исполнитель: Соболева Е.Д.

группа ИУ5-11М

Проверил: Гапанюк Ю.Е.

In [5]:

```
import pandas as pd
import numpy as np
pd.set_option('display.max.columns', 100)
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
# we don't like warnings
# you can comment the following 2 lines if you'd like to
import warnings
warnings.filterwarnings('ignore')
```

In [6]:

```
data = pd.read_csv('adult_data.csv')
data.head()
```

Out[6]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	١
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	١
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	١
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	1
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	l
4)	•

In [4]:

```
#1. How many men and women (sex feature) are represented in this dataset?
data['sex'].value_counts()
```

Out[4]:

Male 21790 Female 10771

Name: sex, dtype: int64

In [5]:

```
#2. What is the average age (age feature) of women?
female_data = data[data['sex'] == 'Female']
```

28.02.2020

```
2lab
In [6]:
female data['age'].mean()
Out[6]:
36.85823043357163
In [7]:
#alt
data.loc[data['sex'] == 'Female', 'age'].mean()
Out[7]:
36.85823043357163
In [8]:
#3. What is the proportion of German citizens (native-country feature)?
float((data['native-country'] == 'Germany').sum()) / data.shape[0]
Out[8]:
```

0.004207487485028101

In [9]:

```
#4-5. What are mean value and standard deviation of the age
#of those who recieve more than 50K per year (salary feature) and those who rece
ive less than 50K per year?
ages1 = data.loc[data['salary'] == '>50K', 'age']
ages2 = data.loc[data['salary'] == '<=50K', 'age']
print("The average age of the rich: {0} +- {1} years, poor - {2} +- {3} years.".
format(
    round(ages1.mean()), round(ages1.std(), 1),
    round(ages2.mean()), round(ages2.std(), 1)))
```

The average age of the rich: 44 +- 10.5 years, poor - 37 +- 14.0 yea rs.

In [10]:

```
#6. Is it true that people who receive more than 50k have at least high school e
ducation?
#(education - Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorat
e feature)
data.loc[data['salary'] == '>50K', 'education'].unique()
```

Out[10]:

```
array(['HS-grad', 'Masters', 'Bachelors', 'Some-college', 'Assoc-vo
С',
       'Doctorate', 'Prof-school', 'Assoc-acdm', '7th-8th', '12th',
       '10th', '11th', '9th', '5th-6th', '1st-4th'], dtype=object)
```

In [11]:

```
#7. Display statistics of age for each race (race feature) and each gender.
#Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo
race.
#data.groupby(['race', 'sex']).describe()
for (race, sex), sub_df in data.groupby(['race', 'sex']):
    print('Race: {0}, sex {1}'.format(race, sex))
    print(sub_df['age'].describe())
```

```
Race: Amer-Indian-Eskimo, sex Female
         119.000000
          37.117647
mean
std
          13.114991
min
          17.000000
25%
          27.000000
50%
          36.000000
75%
          46.000000
          80.000000
max
Name: age, dtype: float64
Race: Amer-Indian-Eskimo, sex Male
count
         192.000000
mean
          37.208333
std
          12.049563
min
          17.000000
25%
          28.000000
50%
          35.000000
75%
          45.000000
max
          82,000000
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex Female
         346.000000
count
mean
          35.089595
std
          12.300845
          17,000000
min
25%
          25.000000
50%
          33.000000
75%
          43.750000
          75.000000
max
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex Male
         693.000000
count
          39.073593
mean
std
          12.883944
min
          18.000000
25%
          29.000000
50%
          37.000000
75%
          46.000000
          90.000000
max
Name: age, dtype: float64
Race: Black, sex Female
         1555.000000
count
mean
           37.854019
           12.637197
std
           17.000000
min
25%
           28.000000
50%
           37.000000
75%
           46.000000
           90.000000
max
Name: age, dtype: float64
Race: Black, sex Male
         1569.000000
count
mean
           37.682600
std
           12.882612
           17.000000
min
25%
           27.000000
50%
           36.000000
75%
           46.000000
max
           90.000000
Name: age, dtype: float64
Race: Other, sex Female
```

```
109.000000
count
mean
          31.678899
std
          11.631599
          17.000000
min
25%
          23.000000
50%
          29.000000
75%
          39.000000
max
          74.000000
Name: age, dtype: float64
Race: Other, sex Male
count
         162,000000
mean
          34.654321
std
          11.355531
min
          17.000000
25%
          26,000000
          32,000000
50%
75%
          42,000000
          77.000000
max
Name: age, dtype: float64
Race: White, sex Female
         8642.000000
count
           36.811618
mean
           14.329093
std
min
           17.000000
25%
           25.000000
50%
           35.000000
75%
           46.000000
           90.000000
max
Name: age, dtype: float64
Race: White, sex Male
         19174.000000
count
mean
            39.652498
std
            13.436029
            17,000000
min
25%
            29.000000
50%
            38.000000
75%
            49.000000
            90.000000
max
Name: age, dtype: float64
```

1. Among whom the proportion of those who earn a lot(>50K) is more: among married or single men (marital-status feature)? Consider married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

In [12]:

Out[12]:

<=50K 7552 >50K 697

Name: salary, dtype: int64

```
In [13]:
```

Out[14]:

Married-civ-spouse 14976
Never-married 10683
Divorced 4443
Separated 1025
Widowed 993
Married-spouse-absent 418
Married-AF-spouse 23
Name: marital-status, dtype: int64

1. What is the maximum number of hours a person works per week (hours-per-week feature)? How many people work such a number of hours and what is the percentage of those who earn a lot among them?

In [15]:

Max time - 99 hours./week. Total number of such hard workers 85 Percentage of rich among them 29%

1. Count the average time of work (hours-per-week) those who earning a little and a lot (salary) for each country (native-country).

In [16]:

```
for (country, salary), sub_df in data.groupby(['native-country', 'salary']):
    print(country, salary, round(sub_df['hours-per-week'].mean(), 2))
```

? <=50K 40.16 ? >50K 45.55 China <=50K 37.38

Cambodia <=50K 41.42

Cambodia >50K 40.0

Canada <=50K 37.91

Canada >50K 45.64

China >50K 38.9

Columbia <=50K 38.68

Columbia >50K 50.0

Cuba <=50K 37.99

Cuba >50K 42.44

Dominican-Republic <=50K 42.34

Dominican-Republic >50K 47.0

Ecuador <=50K 38.04

Ecuador >50K 48.75

El-Salvador <=50K 36.03

El-Salvador >50K 45.0

England <=50K 40.48

England >50K 44.53

France <=50K 41.06

France >50K 50.75

Germany <=50K 39.14

Germany >50K 44.98

Greece <=50K 41.81

Greece >50K 50.62

Guatemala <=50K 39.36

Guatemala >50K 36.67

Haiti <=50K 36.33

Haiti >50K 42.75

Holand-Netherlands <=50K 40.0

Honduras <=50K 34.33

Honduras >50K 60.0

Hong <=50K 39.14

Hong >50K 45.0

Hungary <=50K 31.3

Hungary >50K 50.0

India <=50K 38.23

India >50K 46.48

Iran <=50K 41.44

Iran >50K 47.5

Ireland <=50K 40.95

Ireland >50K 48.0

Italy <=50K 39.62

Italy >50K 45.4

Jamaica <=50K 38.24

Jamaica >50K 41.1

Japan <=50K 41.0

Japan >50K 47.96

Laos <=50K 40.38

Laos >50K 40.0

Mexico <=50K 40.0

Mexico >50K 46.58

Nicaragua <=50K 36.09

Nicaragua >50K 37.5

Outlying-US(Guam-USVI-etc) <=50K 41.86

Peru <=50K 35.07

Peru >50K 40.0

Philippines <=50K 38.07

Philippines >50K 43.03

Poland <=50K 38.17

Poland >50K 39.0 Portugal <=50K 41.94 Portugal >50K 41.5 Puerto-Rico <=50K 38.47 Puerto-Rico >50K 39.42 Scotland <=50K 39.44 Scotland >50K 46.67 South <=50K 40.16 South >50K 51.44 Taiwan <=50K 33.77 Taiwan >50K 46.8 Thailand <=50K 42.87 Thailand >50K 58.33 Trinadad&Tobago <=50K 37.06 Trinadad&Tobago >50K 40.0 United-States <=50K 38.8 United-States >50K 45.51 Vietnam <=50K 37.19 Vietnam >50K 39.2 Yugoslavia <=50K 41.6 Yugoslavia >50K 49.5

In [17]:

Out[17]:

	native- country	?	Cambodia	Canada	China	Columbia	Cuba	Dominican- Republic
	salary							
	<=50K	40.164760	41.416667	37.914634	37.381818	38.684211	37.985714	42.338235
	>50K	45.547945	40.000000	45.641026	38.900000	50.000000	42.440000	47.00000C
4								>

PART 2

In [7]:

```
user_usage = pd.read_csv("user_usage.csv")
user_device = pd.read_csv("user_device.csv")
android_devices = pd.read_csv("android_devices.csv")
```

In [24]:

```
android_devices.head()
```

Out[24]:

Model	Device	Marketing Name	Retail Branding	
Smartfren Andromax AD681H	AD681H	NaN	NaN	0
FJL21	FJL21	NaN	NaN	1
Panasonic T31	T31	NaN	NaN	2
MediaPad 7 Youth 2	hws7721g	NaN	NaN	3
OC1020A	OC1020A	OC1020A	3Q	4

In [25]:

```
user_usage.head()
```

Out[25]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

In [26]:

```
user_device.head()
```

Out[26]:

	use_type_id	device	platform_version	platform	user_id	use_id	
_	2	iPhone7,2	10.2	ios	26980	22782	0
	3	Nexus 5	6.0	android	29628	22783	1
	1	SM-G903F	5.1	android	28473	22784	2
	3	iPhone7,2	10.2	ios	15200	22785	3
	1	ONE E1003	6.0	android	28239	22786	4

In [27]:

```
In [28]:
```

```
merged.head()
```

Out[28]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device
0	21.97	4.82	1557.33	22787	GT- 19505
1	1710.08	136.88	7267.55	22788	SM- G930F
2	1710.08	136.88	7267.55	22789	SM- G930F
3	94.46	35.17	519.12	22790	D2303
4	71.59	79.26	1557.33	22792	SM- G361F
4					+

In [29]:

```
print("user_usage dimensions: {}".format(user_usage.shape))
print("user_device dimensions: {}".format(user_device[['use_id', 'platform', 'de vice']].shape))
```

user_usage dimensions: (240, 4)
user device dimensions: (272, 3)

In [30]:

```
user_usage['use_id'].isin(user_device['use_id']).value_counts()
```

Out[30]:

True 159 False 81

Name: use_id, dtype: int64

In [34]:

user_usage dimensions: (240, 4)
merged dimensions: (240, 6)

Missing values: 81

In [33]:

```
merged.tail()
```

Out[33]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device
235	260.66	68.44	896.96	25008	NaN
236	97.12	36.50	2815.00	25040	NaN
237	355.93	12.37	6828.09	25046	NaN
238	632.06	120.46	1453.16	25058	NaN
239	488.70	906.92	3089.85	25220	NaN

←

In [35]:

user_device dimensions: (272, 6) merged dimensions: (272, 6) Missing values in monthly_mb: 113 Missing values in platform: 0

In [37]:

Rows in outer merge: (353, 7) No missing values: 159

In [44]:

Out[44]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform
0	21.97	4.82	1557.33	22787	android
1	1710.08	136.88	7267.55	22788	android
2	1710.08	136.88	7267.55	22789	android
3	94.46	35.17	519.12	22790	android
4	71.59	79.26	1557.33	22792	android
4					>

In [46]:

```
android_devices[android_devices.Model == 'SM-G930F']
```

Out[46]:

	manufacturer	Marketing Name	Device	Model
10381	Samsung	Galaxy S7	herolte	SM-G930F

In [47]:

 $and \verb"roid_devices[" and \verb"roid_devices". Device.str.starts \verb"with" ("GT")"]$

Out[47]:

	manufacturer	Marketing Name	Device	Model
1095	Bitmore	GTAB700	GTAB700	NID_7010
1096	Bitmore	GTAB900	GTAB900	S952
2402	Grundig	GTB1050	GTB1050	GTB 1050
2403	Grundig	GTB850	GTB850	GTB 850
2404	Grundig	TC69CA2	GTB801	GTB 801
10821	Samsung	Galaxy Y Pro	GT-B5510L	GT-B5510L
10822	Samsung	Galaxy Y Pro Duos	GT-B5512	GT-B5512
10823	Samsung	Galaxy Y Pro Duos	GT-B5512B	GT-B5512B
10824	Samsung	Galaxy Y TV	GT-S5367	GT-S5367
10979	Sharp	AQUOS SERIE mini SHV38	GTQ	SHV38

164 rows × 4 columns

In [41]:

merged.head()

Out[41]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform
0	21.97	4.82	1557.33	22787	android
1	1710.08	136.88	7267.55	22788	android
2	1710.08	136.88	7267.55	22789	android
3	94.46	35.17	519.12	22790	android
4	71.59	79.26	1557.33	22792	android
4					>

In [48]:

```
merged.groupby("manufacturer").agg({
          "outgoing_mins_per_month": "mean",
          "outgoing_sms_per_month": "mean",
          "monthly_mb": "mean",
          "use_id": "count"
})
```

Out[48]:

outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb use
-------------------------	------------------------	----------------

manufacturer				
HTC	299.842955	93.059318	5144.077955	
Huawei	81.526667	9.500000	1561.226667	
LGE	111.530000	12.760000	1557.330000	
Lava	60.650000	261.900000	12458.670000	
Lenovo	215.920000	12.930000	1557.330000	
Motorola	95.127500	65.666250	3946.500000	
OnePlus	354.855000	48.330000	6575.410000	
Samsung	191.010093	92.390463	4017.318889	1
Sony	177.315625	40.176250	3212.000625	
Vodafone	42.750000	46.830000	5191.120000	
ZTE	42.750000	46.830000	5191.120000	
4				•

Pandasql

In []:

```
import pandasql as ps
```

In [22]:

Out[22]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	device
235	260.66	68.44	896.96	NaN	None
236	97.12	36.50	2815.00	NaN	None
237	355.93	12.37	6828.09	NaN	None
238	632.06	120.46	1453.16	NaN	None
239	488.70	906.92	3089.85	NaN	None
4					>

Агрегирование

pandasql

```
In [112]:
```

Out[112]:

avg_monthly_mb platform

0	2545.485062	None
1	4221.387834	android
2	961.155000	ios

In [51]:

Out[51]:

datetime.timedelta(microseconds=28319)

pandas

In [41]:

Out[41]:

outgoing_mins_per_month outgoing_sms_per_month monthly_mb use

platform

<u> </u>				
android	201.258535	85.354586	4221.387834	22922.350
ios	366.060000	293.975000	961.155000	22920.500
4				

TIME

```
In [125]:
```

Out[125]:

0.014299607276916504

In [126]:

Out[126]:

0.007319676876068115

In [127]:

Out[127]:

0.004346024990081787

In [128]:

Out[128]:

0.01447572112083435

In [129]:

```
merge_delta = lj_ps_mean - pd_merge_mean
merge_delta
```

Out[129]:

0.009953582286834718

In [130]:

```
aggr_delta = aggr_ps_mean - pd_merge_group_mean
aggr_delta
```

Out[130]:

0.0071560442447662345

Вывод: pandasql дольше работает