Aufgabe 1:

Erstelle für die Funktion $f(x) = -0.5(x+1)^2 + 2.5$ eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.

	Scheitelpunkt	Symmetrieachse	Nullstellen	Öffnung	Form
f_1					
f_2					
f_3					

Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = -3x^2 - 2$$

Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.

$$f_1(x) = -4(x+2)^2 + 1$$

$$f_2(x) = \frac{4x^2}{3} - 1$$
$$f_3(x) = 2x^2 - 1$$

$$f_2(x) = 2x^2 - 1$$

$$f_4(x) = -(x+1)^2 - 2$$

Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a)
$$f_1(x) = 2(x+1)^2 - 2$$

a)
$$f_1(x) = 2(x+1)^2 - 2$$
 c) $f_3(x) = -(x+2)^2 + 1$ e) $f_5(x) = 3(x-2)^2 - 2$

e)
$$f_5(x) = 3(x-2)^2 - 2$$

b)
$$f_2(x) = -3(x-2)^2 - 1$$

b)
$$f_2(x) = -3(x-2)^2 - 1$$
 d) $f_4(x) = -(x-1)^2 + 1$

f)
$$f_6(x) = (x+1)^2 - 1$$

Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a)
$$f_1(x) = x^2 + 1$$

c)
$$f_3(x) = x^2 + 4x + 1$$

e)
$$f_5(x) = -2x^2$$

b)
$$f_2(x) = x^2 - 4x + 4$$

d)
$$f_4(x) = x^2 + 2$$

f)
$$f_6(x) = x^2 - 2x - 2$$