1. Let A be
$$M \times N$$
 matrix having elements: $A_{i,j} = i 2^{j}$

(for $i \in 1...M$, $j \in 1...N$)

So the outer product of a and b is:

 $A = ab' = \begin{bmatrix} 2 & 2 & \cdots & 2 \end{bmatrix}$

Let A be
$$M \times N$$
 matrix having elements:

(a) Let $\alpha = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, $b = \begin{bmatrix} \frac{2}{2^2} \\ \frac{1}{2} \end{bmatrix}$

 $= \begin{bmatrix} 1 \times 2 & 1 \times 1^{2} & \cdots & 1 \times 2^{n} \\ 2 \times 2 & 2 \times 2^{3} & \cdots & 2 \times 2^{n} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 1 \times 2 & 1 \times 2^{2} & \cdots & 1 \times 2^{n} \end{bmatrix}$

Thus, Matrix A is an outer product ab

 $A = \text{reshape}(\left[\dot{z} * 2.^{1}\dot{j} \text{ for } j \text{ in } 1: N \text{ for } i \text{ in } 1: M\right], (M,N))$

(b) One-line Julia expression for creating A:

2. Determinant properties:

0 det $(A) = det(A^T)$ for $A \in R^{AKN}$ O det (AB) = det (A) det (B) for A, B $\in \mathbb{R}^{nm}$ Therefore, we have: $det(AA^T) = det(A) det(A^T)$ by (2) = det(A) det(A) by (0) $= det(A)^2$

If A is orthogonal, the AAT = I by the definition of orthogonal matrix Thus, $\det(AA^T) = \det(I)$ $\therefore \det (A)^2 = 1$

:. det (A) = | or -1

The possible values of det (A) is 1 or -1

3.(a) Prove that
$$\det(I - xy') = I - y'x$$
 for $x, y \in F^N$

Proof:

First, decomposing as lower upper and upper-lower gives

 $\begin{pmatrix} x & y' \\ x & I \end{pmatrix} \Rightarrow \begin{pmatrix} x & y' \\ x & I \end{pmatrix} \cdot \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \begin{pmatrix} x & y' \\ x & I \end{pmatrix} = \det(x & x & 1) \cdot \det(x & x' & 1) \cdot \det(x & x' & 1) = \det(x & x' & 1) \cdot \det(x & x' & 1) \cdot \det(x & x' & 1) = \det(x & x' & 1) \cdot \det(x & x' & 1) \cdot \det(x & x' & 1) = \det(x & x' & 1) \cdot \det(x & x' & 1) \cdot \det(x & x' & 1) = \det(x & x' & 1) \cdot \det(x & x' & 1) = \det(x & x' & 1) \cdot \det(x &$

=
$$\det(\frac{1}{x}, \frac{2}{1}) \cdot \det(\frac{1}{y}, \frac{y'}{1-xy'})$$
 by the determinant properties

= $\det(\frac{1}{y}, \frac{y'}{1-xy'})$

=
$$det(1)$$
 $det(I-xy')$ Since $1 \in F^{|x|}$ is invertible,

det(
$$\begin{bmatrix} A & B \end{bmatrix}$$
) = det(A) det(D-(A⁻¹B)
if A & F^{NXN} is invertible)

if A e FAXA is invertible) $\det(RHS) = \det(\begin{pmatrix} 1 - y'x & y' \\ 0 & x \end{pmatrix})\begin{pmatrix} 1 & 2 \\ x & 1 \end{pmatrix})$

=
$$det(\frac{1-y'x}{x}) det(\frac{1}{x})$$
 by the determinant property
= $I \cdot (1-y'x) \cdot 1$
= $1-y'x$

Thus,
$$\det(I - xy') = 1 - y'x$$

0 when $\lambda \neq 0$ $\det (\lambda I_{N} - xy') = \det (\lambda (I_{N} - \frac{xy'}{x'}))$ $= \det ((\lambda I_{N})(I_{N} - \frac{xy'}{x'})) \text{ when } \lambda \neq 0$ $= \det (\lambda I_{N}) \det (I_{N} - \frac{xy'}{x'}) \text{ by the determinant}$ $= \lambda^{N} \det (I_{N}) \cdot \det (I_{N} - \frac{xy'}{x'}) \text{ properties}$ $= \lambda^{N}$. $(1 - \frac{\sqrt{X}}{\lambda})$ by problem (a) $= \lambda^{N-} \lambda^{N-1} (y'x)$ \bigcirc when $\lambda = 0$

 $det(\lambda I_N - \times y') = det(- \times y')$

Since xy' has rank I and it is singular for n>1

When
$$\lambda \neq 0$$

$$\det(\lambda \mathbf{I} - xy') = \lambda^{N} - \lambda^{N-1}(y'x) = 0$$

$$\therefore \lambda^{N} - \lambda^{N-1}y'x = 0$$

$$\lambda'' = \lambda'' y' x$$

$$\lambda = y' x$$

and x = 0 is the other eigenvalues

(d) When matrix
$$xy' \in F^{N \times N}$$
 is not equal to zero, find the eigenvalues of matrix xy' $|xy' - \lambda I_N| = 0$

 $\det(xy'-\lambda I_N)=0$

by the question (c):
$$\lambda = y'x \quad \text{is the eigenvalues of the matrix } xy'$$

4.

(a)
$$A, B \in P^{N \times N}$$

Tr($AA + BB$) = $\sum_{i=1}^{N} (A \Omega_{ii} + B b_{ii})$ by the definition of trace

= $\sum_{i=1}^{N} (A \Omega_{ii}) + \sum_{i=1}^{N} (B b_{ii})$

Tr(AB) = & ABii

$$= \alpha_{11}b_{11} + \alpha_{12}b_{21} + \alpha_{13}b_{31} + \cdots + \alpha_{1n}b_{n1} + \alpha_{21}b_{12} + \alpha_{22}b_{22} + \alpha_{23}b_{32} + \cdots + \alpha_{2n}b_{n2} + \alpha_{2n}b_{$$

= (AB), + (AB), + ... + (AB)mm anbu + an by + aus by + ... + an bu + a21 b12 + a22 b22 + a23 b32 + .. + a2n bn2 +

= 2 Tr(A) + B Tr(B)

= $\lambda(\frac{N}{2}\alpha_{ii}) + \beta(\frac{N}{2}\beta_{ii})$ (b) Let $A \in F^{M \times N}$ and $B \in F^{N \times M}$ so that $AB \in F^{M \times N}$ and $BA \in F^{M \times N}$ and

 $= \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ji}$

= \$ 5 bji aij

b11 a11 + + b, m am +

baiain + · · · + bam ama

 $= (BA)_{11} + (BA)_{22} + \dots + (BA)_{nn}$

= 5 BAii = Tr(BA) 4. (C) $S \in \mathbb{R}^{N \times N}$ is S = -S By the definition of $S \in \mathbb{R}^{N \times N}$ is $S \in \mathbb$

Thus Tr(S) = 0And we also can prove in this way, $Tr(S) = Tr(S^T)$ by the def of transpose = Tr(-S) by the def of skew-symmetric = -Tr(S) by part (a) Tr(S) = -Tr(S) 2 Tr(S) = 0

2 Tr(S) = 0 Trcs) = 0(d) A counterexample to show that if Tr(s) = 0, then $s \in \mathbb{R}^{N \times N}$ show - symmetric

let s be [0] o 7

Tr(S) = 0; however, $S^{7} \neq -S$, S is not shew-symmetric (e) $A = \frac{1}{2} \begin{bmatrix} 2\cos^2(\theta) & \sin(2\theta) \\ \sin(2\theta) & 2\sin^2(\theta) \end{bmatrix}$

Let $v = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$: $vv' = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ [$\cos \theta \sin \theta$]

 $= \begin{bmatrix} \cos^3(\theta) & \cos\theta\sin\theta \\ \cos\theta\cdot\sin\theta & \sin^3(\theta) \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} 2\cos^2(\theta) & \sin(2\theta) \\ \sin(2\theta) & 2\sin^2(\theta) \end{bmatrix}$ = **A**

4(e) contione....

Then, we compute
$$A^2$$
:

$$A^2 = (vv')(vv')$$

$$= v \cdot (v'v) \cdot v'$$

$$= v \cdot [\cos\theta \sin\theta] \left[\sin\theta\right] \cdot v'$$

$$= v \cdot (\cos^2\theta + \sin^2\theta) \cdot v'$$

$$= v \cdot v'$$

$$= v \cdot v'$$

$$= A$$

$$\therefore A \text{ is idem potent for all } \theta.$$

6. (a)
$$A = \begin{bmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix}$$
 Find the eigenvalues of A .

Start with $\begin{vmatrix} A - \lambda I \end{vmatrix} = 0$ which is $\begin{vmatrix} 6 & 16 \\ -1 & -4 \end{bmatrix} = 0$

$$\begin{vmatrix} \begin{bmatrix} 6 - \lambda & 16 \\ -1 & -4 - \lambda \end{bmatrix} = 0$$

$$(6-\lambda)(-4-\lambda)+16=0$$

$$-24-6\lambda+4\lambda+\lambda^2+16=0$$

$$\lambda^2-2\lambda-8=0$$

$$(\lambda-4)(\lambda+2)=0$$

$$\lambda^{2}-2\lambda-8=0$$

$$(\lambda-4)(\lambda+2)=0$$

$$\lambda=4 \text{ or } -2$$

$$\Lambda = 4 \text{ or } -2$$
.'. there are two eigenvalues 4 and -2

b.

(b)
$$\det(A) = \det(\begin{bmatrix} b & ub \end{bmatrix}$$

$$= -24 + 10b$$

$$= -8$$

$$Tr(A) = 6 - 4$$

$$= 2$$

$$The product of two eigenvalues of A:
$$4 \times (-2) = -8 \quad \text{which is the same as olet CA}$$$$

The sum of two eigenvolves of A:

4+ (-2) = 2 Which is the same as Tr(A)

(4)

```
In [3]: 1 using LinearAlgebra
In [13]:
         1 A = [6 16; -1 -4]
Out[13]: 2×2 Matrix{Int64}:
         6 16
-1 -4
In [14]: 1 lambda, V = eigen(A)
          2 display(lambda)
         3 display(V)
         2-element Vector{Float64}:
         -2.0
           4.0
         2×2 Matrix{Float64}:
         -0.894427
                     0.992278
           0.447214 -0.124035
In [16]:
         1 display(V' * V)
          2
         2×2 Matrix{Float64}:
          1.0
               -0.94299
          -0.94299 1.0
 In [ ]: 1 #The eigenvectors (columns of V ) are not orthogonal
```

Pewrite
$$y = \sum_{i=1}^{n} \frac{f^{2}}{f^{2}} \times i^{*}$$
 Ary x_{i} where $A \in F^{N \times N}$ and $x \in C^{N}$

Let $x = \begin{bmatrix} x_{i} \\ x_{i} \end{bmatrix}$

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ A_{2n} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 $A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ A_{21} & \cdots & A_{2n} \\ \vdots & \cdots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{bmatrix}$

$$= \sum_{i=1}^{\infty} (Ai(X_i + Ai2)^2)$$

$$= \sum_{i=1}^{\infty} (Ai(X_i + Ai2)^2)$$

$$= \times_{1}^{*} A_{11} \times_{1} + \times_{1}^{*} A_{12} \times_{2} + \cdots + \times_{1}^{*} A_{1n} \times_{n} + \times_{2}^{*} A_{21} \times_{1} + \times_{2}^{*} A_{21} \times_{2} + \cdots + \times_{2}^{*} A_{2n} \times_{n} + \times_{2}^{*}$$

$$= \times' \mathbb{A} \times$$

8.

Let the motifix V be $[v_1, u_2, ..., u_m]$ Let the matrix V be $[v_1, v_2, ..., v_n]$ (a) When M < N: $A = U \le V'$ $A = V \le V'$ $A = V \le V'$ $A = V \le V'$ MXN (Since M<N, there ove N-M diagonals are zeros)

 $A = \int_{i=1}^{N} \int_{i=1}^{N} V_{i1} V_{i2} \int_{i=1}^{N} V_{i2} V_{i2} \int_{i=1}^{N} \int_{i=1}^$

(b) Suppose
$$M > N$$

$$A = \bigcup_{i=1}^{N} \bigcup_{$$

: The maximum number of outer-product is min (M, N)

11.

Vectors u,v,x,y,2 are all in RN compute 2*u****

(a) z*((n'*v)*(x'*y))

is the most efficient way to compute.

の v'*v: N multiplication operations

② x' * y: N multiplication operations
③ (u'**v) * (x'**y): | * operations
(Since u'** v and x * y both are a number)
④ 2 * (····): N multiplication operations

:. Total multiplication operations: N+N+1+N=3N+1

12.

Since
$$U_i, U_1, \dots, U_k \in F$$
 are unitary matrices, we have $U_i'U_i = U_i U_i' = I$ for $i \in I \dots k$

$$(U_{1}U_{2}...U_{k})(U_{1}U_{2}...U_{k})' = (U_{1}U_{2}...U_{k})(U_{k}')...U_{2}'U_{1}')$$

$$= U_{1}U_{2}...(U_{k}U_{k}')...U_{2}'U_{1}'$$

$$= U_{1}U_{2}...(U_{k}U_{k}')...U_{2}'U_{1}'$$

$$= U_{1}U_{2}...(U_{k}U_{k}')...U_{2}'U_{1}'$$

$$= U_1 U_2 \cdots I \cdots U_2 U_1'$$