Discrete Mathematics CSE 121: Homework 5

In every proof/derivation clearly state your assumptions and give details of each step.

- 1. Let $f_1(x)$ and $f_2(x)$ be functions from the set of real numbers to the set of positive real numbers. Show that if $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$, where g(x) is a function from the set of real numbers to the set of positive real numbers, then $f_1(x) + f_2(x)$ is $\Theta(g(x))$. Is this still true if $f_1(x)$ and $f_2(x)$ can take negative values?
- 2. Show that nlogn is O(logn!).
- 3. The number of multiplications of entries used to multiply a $p \times q$ matrix and a $q \times r$ matrix is pqr. What is the best order to form the product ABCD if A, B, C, and D are matrices with dimensions 30×10 , 10×40 , 40×50 , and 50×30 , respectively?
- 4. Show that isomorphism of simple graphs is an equivalence relation.
- 5. The converse of a directed graph G = (V, E), denoted by G^{conv} , is the directed graph (V, F), where the set F of edges of G^{conv} is obtained by reversing the direction of each edge in E. Show that if G and H are isomorphic directed graphs, then the converses of G and H are also isomorphic.
- 6. Does the graph in Figure 1 have a Hamilton path? If so, find such a path. If it does not, give an argument to show why no such path exists.
- 7. Devise an algorithm for constructing Euler paths in directed graphs.
- 8. Extend Dijkstra's algorithm for finding the length of a shortest path between two vertices in a weighted simple connected graph so that the length of a shortest path between the vertex a and every other vertex of the graph is found.

Figure 1: