### RULE LEARNING

Minería de Datos: Preprocesamiento y clasificación

### Descripción

#### Temario:

- Modelos no lineales.
- Árboles de Decisión. Multiclasificadores.
- Descomposición de problemas multiclase.
- Aprendizaje de Reglas.
- Máquinas soporte vectorial (SVM).
- Preprocesamiento de Datos.

#### Bibliografía:

- "An Introduction to Statistical Learning with Applications in R", Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, Springer, 2013.
- "Introduction to Data Mining", Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson, 2013.
- "Foundations of Rule Learning", Johannes Fürnkranz, Dragan Gambergerm Nada Lavrac, Springer, 2012.
- "Data Preprocessing in Data Mining". Salvador García, Julián Luengo, Francisco Herrera, Springer, 2015.
- Relacionado con: Introducción a la Programación para Ciencia de Datos e Introducción a la Ciencia de Datos

### Descripción

#### Temario:

- Modelos no lineales.
- Árboles de Decisión. Multiclasificadores.
- Descomposición de problemas multiclase.
- Aprendizaje de Reglas.
- Máquinas soporte vectorial (SVM).
- Preprocesamiento de Datos.

#### Bibliografía:

- "An Introduction to Statistical Learning with Applications in R", Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, Springer, 2013.
- "Introduction to Data Mining", Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson, 2013.
- "Foundations of Rule Learning", Johannes Fürnkranz, Dragan Gambergerm Nada Lavrac, Springer, 2012.
- "Data Preprocessing in Data Mining". Salvador García, Julián Luengo, Francisco Herrera, Springer, 2015.
- Relacionado con: Introducción a la Programación para Ciencia de Datos e Introducción a la Ciencia de Datos

### Learning Rules

- If-then rules in logic are a standard representation of knowledge that have proven useful in expert-systems and other AI systems.
- Rules are fairly easy for people to understand and therefore can help provide insight and comprehensible results for human users.
- Methods for automatically inducing rules from data have been shown to build more accurate expert systems than human knowledge engineering for some applications.
- Rule-learning methods have been extended to first-order logic to handle relational (structural) representations.

### Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition)  $\rightarrow y$ 
  - where
    - Condition is a conjunctions of attributes
    - y is the class label
  - LHS: rule antecedent or precondition
  - RHS: rule consequent
  - Examples of classification rules:
    - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
    - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No</li>

### Rule-based Classifier (Example)

| Name          | Blood Type | Give Birth | Can Fly | Live in Water | Class      |
|---------------|------------|------------|---------|---------------|------------|
| human         | warm       | yes        | no      | no            | mammals    |
| python        | cold       | no         | no      | no            | reptiles   |
| salmon        | cold       | no         | no      | yes           | fishes     |
| whale         | warm       | yes        | no      | yes           | mammals    |
| frog          | cold       | no         | no      | sometimes     | amphibians |
| komodo        | cold       | no         | no      | no            | reptiles   |
| bat           | warm       | yes        | yes     | no            | mammals    |
| pigeon        | warm       | no         | yes     | no            | birds      |
| cat           | warm       | yes        | no      | no            | mammals    |
| leopard shark | cold       | yes        | no      | yes           | fishes     |
| turtle        | cold       | no         | no      | sometimes     | reptiles   |
| penguin       | warm       | no         | no      | sometimes     | birds      |
| porcupine     | warm       | yes        | no      | no            | mammals    |
| eel           | cold       | no         | no      | yes           | fishes     |
| salamander    | cold       | no         | no      | sometimes     | amphibians |
| gila monster  | cold       | no         | no      | no            | reptiles   |
| platypus      | warm       | no         | no      | no            | mammals    |
| owl           | warm       | no         | yes     | no            | birds      |
| dolphin       | warm       | yes        | no      | yes           | mammals    |
| eagle         | warm       | no         | yes     | no            | birds      |

R1: (Give Birth = no)  $\wedge$  (Can Fly = yes)  $\rightarrow$  Birds

R2: (Give Birth = no)  $\land$  (Live in Water = yes)  $\rightarrow$  Fishes

R3: (Give Birth = yes)  $\land$  (Blood Type = warm)  $\rightarrow$  Mammals

R4: (Give Birth = no)  $\land$  (Can Fly = no)  $\rightarrow$  Reptiles

R5: (Live in Water = sometimes) → Amphibians

### Rule Coverage and Accuracy

• A rule *r* covers an instance **x** if the attributes of the instance satisfy the condition of the rule

```
R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
```

R2: (Give Birth = no)  $\land$  (Live in Water = yes)  $\rightarrow$  Fishes

R3: (Give Birth = yes)  $\land$  (Blood Type = warm)  $\rightarrow$  Mammals

R4: (Give Birth = no)  $\land$  (Can Fly = no)  $\rightarrow$  Reptiles

R5: (Live in Water = sometimes)  $\rightarrow$  Amphibians

| Name         | Blood Type | Give Birth | Can Fly | Live in Water | Class |
|--------------|------------|------------|---------|---------------|-------|
| hawk         | warm       | no         | yes     | no            | ?     |
| grizzly bear | warm       | yes        | no      | no            | ?     |

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

### Rule Coverage and Accuracy

 The quality of a classification rule can be evaluated using the measures:

### Coverage of a rule:

 Fraction of records that satisfy the antecedent of a rule

### Accuracy of a rule:

 Fraction of records that satisfy both the antecedent and consequent of a rule

| Tid | Refund | Marital<br>Status | Taxable Income | Class |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |

(Status=Single) → No

Coverage = 40%, Accuracy = 50%

### How does Rule-based Classifier Work?

R1: (Give Birth = no)  $\land$  (Can Fly = yes)  $\rightarrow$  Birds

R2: (Give Birth = no)  $\land$  (Live in Water = yes)  $\rightarrow$  Fishes

R3: (Give Birth = yes)  $\land$  (Blood Type = warm)  $\rightarrow$  Mammals

R4: (Give Birth = no)  $\land$  (Can Fly = no)  $\rightarrow$  Reptiles

R5: (Live in Water = sometimes) → Amphibians

| Name          | Blood Type | Give Birth | Can Fly | Live in Water | Class |
|---------------|------------|------------|---------|---------------|-------|
| lemur         | warm       | yes        | no      | no            | ?     |
| turtle        | cold       | no         | no      | sometimes     | ?     |
| dogfish shark | cold       | yes        | no      | yes           | ?     |

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

### Characteristics of Rule-Based Classifier

### Mutually exclusive rules

- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule

### Exhaustive rules

- Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
- Each record is covered by at least one rule

### From Decision Trees To Rules



#### **Classification Rules**

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive
Rule set contains as much information as the
tree

### Rules Can Be Simplified



| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |

Initial Rule: (Refund=No)  $\land$  (Status=Married)  $\rightarrow$  No

Simplified Rule: (Status=Married) → No

### Effect of Rule Simplification

- Rules are no longer mutually exclusive
  - A record may trigger more than one rule
  - Solution?
    - Ordered rule set
    - Unordered rule set use voting schemes
- Rules are no longer exhaustive
  - A record may not trigger any rules
  - Solution?
    - Use a default class

### Ordered Rule Set

- Rules are rank ordered according to their priority
  - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
  - It is assigned to the class label of the highest ranked rule it has triggered
  - If none of the rules fired, it is assigned to the default class

```
R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
```

R2: (Give Birth = no)  $\land$  (Live in Water = yes)  $\rightarrow$  Fishes

R3: (Give Birth = yes)  $\land$  (Blood Type = warm)  $\rightarrow$  Mammals

R4: (Give Birth = no)  $\land$  (Can Fly = no)  $\rightarrow$  Reptiles

R5: (Live in Water = sometimes) → Amphibians

| Name   | Blood Type | Give Birth | Can Fly | Live in Water | Class |
|--------|------------|------------|---------|---------------|-------|
| turtle | cold       | no         | no      | sometimes     | ?     |

### Rule Ordering Schemes

- Rule-based ordering
  - Individual rules are ranked based on their quality
- Class-based ordering
  - Rules that belong to the same class appear together

### **Rule-based Ordering**

```
(Refund=Yes) ==> No
```

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

### **Class-based Ordering**

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

### **Building Classification Rules**

#### Direct Method:

- Extract rules directly from data
- e.g.: RIPPER, CN2, FOIL, ...

#### Indirect Method:

- Extract rules from other classification models (e.g. decision trees, neural networks, etc).
- e.g: C4.5rules

### Direct Method: Sequential Covering

 A set of rules is learned one at a time, each time finding a single rule that covers a large number of positive instances without covering any negatives, removing the positives that it covers, and learning additional rules to cover the rest.

Let *P* be the set of positive examples Until *P* is empty do:

Learn a rule *R* that covers a large number of elements of *P* but no negatives.

Add R to the list of rules.

Remove positives covered by R from P

- This is an instance of the greedy algorithm for minimum set covering and does not guarantee a minimum number of learned rules.
- Minimum set covering is an NP-hard problem and the greedy algorithm is a standard approximation algorithm.
- Methods for learning individual rules vary.

































### Aspects of Sequential Covering

- Rule Growing
- Instance Elimination
- Rule Evaluation
- Stopping Criterion
- Rule Pruning

### Rule Growing

Two common strategies



## Strategies for Learning a Single Rule

### Top Down (General to Specific):

- Start with the most-general (empty) rule.
- Repeatedly add antecedent constraints on features that eliminate negative examples while maintaining as many positives as possible.
- Stop when only positives are covered.

### Bottom Up (Specific to General)

- Start with a most-specific rule (e.g. complete instance description of a random instance).
- Repeatedly remove antecedent constraints in order to cover more positives.
- Stop when further generalization results in covering negatives.

































## Strategies for Learning a Single Rule



#### Strategies for Learning a Single Rule

- Which is better top-down or bottom-up search?
  - Bottom-up is more subject to noise, e.g. the random seeds that are chosen may be noisy.
  - Top-down is wasteful when there are many features which do not even occur in the positive examples (e.g. text categorization).

## Rule Growing (Examples)

#### CN2 Algorithm:

- Start from an empty conjunct: {}
- Add conjuncts that minimizes the entropy measure: {A}, {A,B}, ...
- Determine the rule consequent by taking majority class of instances covered by the rule

#### RIPPER Algorithm:

- Start from an empty rule: {} => class
- Add conjuncts that maximizes FOIL's information gain measure:
  - R0: {} => class (initial rule)
  - R1: {A} => class (rule after adding conjunct)
  - Gain(R0, R1) = t [ log (p1/(p1+n1)) log (p0/(p0 + n0)) ]
  - where t: number of positive instances covered by both R0 and R1
    - p0: number of positive instances covered by R0
    - n0: number of negative instances covered by R0
    - p1: number of positive instances covered by R1
    - n1: number of negative instances covered by R1

#### **Instance Elimination**

- Why do we need to eliminate instances?
  - Otherwise, the next rule is identical to previous rule
- Why do we remove positive instances?
  - Ensure that the next rule is different
- Why do we remove negative instances?
  - Prevent underestimating accuracy of rule
  - Compare rules R2 and R3 in the diagram



#### Rule Evaluation

Metrics:

• Accuracy 
$$= \frac{n_c}{n}$$

• Laplace 
$$= \frac{n_c + 1}{n + k}$$

$$\cdot \text{ M-estimate} = \frac{n_c + kp}{n + k}$$

*n*: Number of examples covered by the rule

 $n_c$ : Number of positive examples covered by rule

k: Number of classes

*p* : Prior probability for the positive class

## Stopping Criterion and Rule Pruning

- Stopping criterion
  - Compute the gain
  - If gain is not significant, discard the new rule

#### Rule Pruning

- Similar to post-pruning of decision trees
- Reduced Error Pruning:
  - Remove one of the conjuncts in the rule
  - Compare error rate on validation set before and after pruning
  - If error improves, prune the conjunct

#### Summary of Direct Method

- Grow a single rule
- Remove Instances from rule
- Prune the rule (if necessary)
- Add rule to Current Rule Set
- Repeat

#### Learning a Single Rule in FOIL

- Top-down approach originally applied to firstorder logic (Quinlan, 1990).
- Basic algorithm for instances with discretevalued features:

Let *A*={} (set of rule antecedents)

Let *N* be the set of negative examples

Let P the current set of uncovered positive examples

Until N is empty do

For every feature-value pair (literal)  $(F_i = V_{ij})$  calculate  $Gain(F_i = V_{ii}, P, N)$ 

Pick literal, L, with highest gain.

Add L to A.

Remove from *N* any examples that do not satisfy *L*.

Remove from *P* any examples that do not satisfy *L*.

Return the rule:  $L_1 \wedge L_2 \wedge ... \wedge L_n \rightarrow Positive$ 

#### Foil Gain Metric

- Want to achieve two goals
  - Decrease coverage of negative examples
    - Measure increase in percentage of positives covered when literal is added to the rule.
  - Maintain coverage of as many positives as possible.
    - Count number of positives covered.

Define Gain(L, P, N)

Let p be the subset of examples in P that satisfy L.

Let n be the subset of examples in N that satisfy L.

Return:

$$|p|*[log_2(|p|/(|p|+|n|)) - log_2(|P|/(|P|+|N|))]$$

## Sample Disjunctive Learning Data

| Example | Size   | Color | Shape    | Category |
|---------|--------|-------|----------|----------|
| 1       | small  | red   | circle   | positive |
| 2       | big    | red   | circle   | positive |
| 3       | small  | red   | triangle | negative |
| 4       | big    | blue  | circle   | negative |
| 5       | medium | red   | circle   | negative |

#### Propositional FOIL Trace

**New Disjunct:** 

SIZE=BIG Gain: 0.322

SIZE=MEDIUM Gain: 0.000 SIZE=SMALL Gain: 0.322 COLOR=BLUE Gain: 0.000 COLOR=RED Gain: 0.644

COLOR=GREEN Gain: 0.000 SHAPE=SQUARE Gain: 0.000 SHAPE=TRIANGLE Gain: 0.000

SHAPE=CIRCLE Gain: 0.644
Best feature: COLOR=RED

dest leature. COLOR-RED

SIZE=BIG Gain: 1.000

SIZE=MEDIUM Gain: 0.000 SIZE=SMALL Gain: 0.000

SHAPE=SQUARE Gain: 0.000

SHAPE=TRIANGLE Gain: 0.000

SHAPE=CIRCLE Gain: 0.830

**Best feature: SIZE=BIG** 

Learned Disjunct: COLOR=RED & SIZE=BIG

#### Propositional FOIL Trace

**New Disjunct:** 

SIZE=BIG Gain: 0.000

SIZE=MEDIUM Gain: 0.000 SIZE=SMALL Gain: 1.000 COLOR=BLUE Gain: 0.000 COLOR=RED Gain: 0.415

COLOR=GREEN Gain: 0.000 SHAPE=SQUARE Gain: 0.000

SHAPE=TRIANGLE Gain: 0.000

SHAPE=CIRCLE Gain: 0.415
Best feature: SIZE=SMALL

COLOR=BLUE Gain: 0.000 COLOR=RED Gain: 0.000

COLOR=GREEN Gain: 0.000 SHAPE=SQUARE Gain: 0.000 SHAPE=TRIANGLE Gain: 0.000

SHAPE=TRIANGLE Gain: 0.00
SHAPE=CIRCLE Gain: 1.000
Best feature: SHAPE=CIRCLE

Learned Disjunct: SIZE=SMALL & SHAPE=CIRCLE

Final Definition: COLOR=RED & SIZE=BIG v SIZE=SMALL & SHAPE=CIRCLE

#### Rule Pruning in FOIL

- Prepruning method based on minimum description length (MDL) principle.
- Postpruning to eliminate unnecessary complexity due to limitations of greedy algorithm.

```
For each rule, R
For each antecedent, A, of rule
If deleting A from R does not cause
negatives to become covered
then delete A
For each rule, R
If deleting R does not uncover any positives
(since they are redundantly covered by other rules)
then delete R
```

# RIPPER (Repeated Incremental Pruning to Produce Error Reduction)

- For 2-class problem, choose one of the classes as positive class, and the other as negative class
  - Learn rules for positive class
  - Negative class will be default class
- For multi-class problem
  - Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
  - Learn the rule set for smallest class first, treat the rest as negative class
  - Repeat with next smallest class as positive class

#### **RIPPER**

- Growing a rule:
  - Start from empty rule
  - Add conjuncts as long as they improve FOIL's information gain
  - Stop when rule no longer covers negative examples
  - Prune the rule immediately using incremental reduced error pruning
  - Measure for pruning: v = (p-n)/(p+n)
    - p: number of positive examples covered by the rule in the validation set
    - n: number of negative examples covered by the rule in the validation set
  - Pruning method: delete any final sequence of conditions that maximizes v

#### RIPPER

#### Building a Rule Set:

- Use sequential covering algorithm:
  - Finds the best rule that covers the current set of positive examples.
  - Eliminate both positive and negative examples covered by the rule.
- The stopping condition:
  - each time a rule is added to the rule set, compute the new description length,
  - stop adding new rules when the new description length is d bits longer than the smallest description length obtained so far,
  - or when there are no more positive examples.

```
Ripper(Pos, Neg, k)
  RuleSet ← LearnRuleSet(Pos,Neg)
  For k times
     RuleSet ← OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
  RuleSet \leftarrow \emptyset
  DL ← DescLen(RuleSet,Pos,Neg)
                                          DL: description length of
                                              the rule base
  Repeat
     Rule \leftarrow LearnRule(Pos,Neg)
                                                The description length of a rule base
     Add Rule to RuleSet
                                                = (the sum of the description lengths
                                                   of all the rules in the rule base)
     DL' ← DescLen(RuleSet, Pos, Neg)
                                                + (the description of the instances
     If DL'>DL+64
                                                   not covered by the rule base)
       PruneRuleSet(RuleSet, Pos, Neg)
       Return RuleSet
     If DL' < DL DL \leftarrow DL'
       Delete instances covered from Pos and Neg
  Until Pos = \emptyset
  Return RuleSet
```

#### RIPPER: Postprocess the rules

- Optimize the rule set:
  - For each rule r in the rule set

    R
    - Consider 2 alternative rules:
      - Replacement rule (r\*): grow new rule from scratch
      - Revised rule(r'): add conjuncts to extend the rule r
    - Compare the rule set for r
      against the rule set for r\*
      and r'
    - Choose rule set that minimizes MDL principle

```
PruneRuleSet(RuleSet,Pos,Neg)
  For each Rule ∈ RuleSet in reverse order
    DL ← DescLen(RuleSet, Pos, Neg)
    DL' ← DescLen(RuleSet-Rule, Pos, Neg)
    IF DL'<DL Delete Rule from RuleSet
  Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)
  For each Rule ∈ RuleSet
      DL0 ← DescLen(RuleSet,Pos,Neg)
     DL1 ← DescLen(RuleSet-Rule+
       ReplaceRule(RuleSet, Pos, Neg), Pos, Neg)
     DL2 ← DescLen(RuleSet-Rule+
       ReviseRule(RuleSet,Rule,Pos,Neg),Pos,Neg)
     If DL1=min(DL0,DL1,DL2)
       Delete Rule from RuleSet and
         add ReplaceRule(RuleSet, Pos, Neg)
      Else If DL2=min(DL0,DL1,DL2)
       Delete Rule from RuleSet and
         add ReviseRule(RuleSet,Rule,Pos,Neg)
  Return RuleSet
```

#### **Indirect Methods**



#### Indirect Method: C4.5rules

- Extract rules from an unpruned decision tree
- For each rule, r:  $A \rightarrow y$ ,
  - consider an alternative rule r': A' → y where A' is obtained by removing one of the conjuncts in A
  - Compare the pessimistic error rate for r against all r's
  - Prune if one of the r's has lower pessimistic error rate
  - Repeat until we can no longer improve generalization error

#### Indirect Method: C4.5rules

- Instead of ordering the rules, order subsets of rules (class ordering)
  - Each subset is a collection of rules with the same rule consequent (class)
  - Compute description length of each subset
    - Description length = L(error) + g L(model)
    - g is a parameter that takes into account the presence of redundant attributes in a rule set (default value = 0.5)

#### Example

| Name          | Give Birth | Lay Eggs | Can Fly | Live in Water | Have Legs | Class      |
|---------------|------------|----------|---------|---------------|-----------|------------|
| human         | yes        | no       | no      | no            | yes       | mammals    |
| python        | no         | yes      | no      | no            | no        | reptiles   |
| salmon        | no         | yes      | no      | yes           | no        | fishes     |
| whale         | yes        | no       | no      | yes           | no        | mammals    |
| frog          | no         | yes      | no      | sometimes     | yes       | amphibians |
| komodo        | no         | yes      | no      | no            | yes       | reptiles   |
| bat           | yes        | no       | yes     | no            | yes       | mammals    |
| pigeon        | no         | yes      | yes     | no            | yes       | birds      |
| cat           | yes        | no       | no      | no            | yes       | mammals    |
| leopard shark | yes        | no       | no      | yes           | no        | fishes     |
| turtle        | no         | yes      | no      | sometimes     | yes       | reptiles   |
| penguin       | no         | yes      | no      | sometimes     | yes       | birds      |
| porcupine     | yes        | no       | no      | no            | yes       | mammals    |
| eel           | no         | yes      | no      | yes           | no        | fishes     |
| salamander    | no         | yes      | no      | sometimes     | yes       | amphibians |
| gila monster  | no         | yes      | no      | no            | yes       | reptiles   |
| platypus      | no         | yes      | no      | no            | yes       | mammals    |
| owl           | no         | yes      | yes     | no            | yes       | birds      |
| dolphin       | yes        | no       | no      | yes           | no        | mammals    |
| eagle         | no         | yes      | yes     | no            | yes       | birds      |

#### C4.5 versus C4.5rules versus RIPPER



#### C4.5 versus C4.5 rules versus RIPPER

#### C4.5 and C4.5 rules:

|               |                   | <b>Amphibians</b> | <b>Fishes</b> | Reptiles | Birds | Mammals |
|---------------|-------------------|-------------------|---------------|----------|-------|---------|
| <b>ACTUAL</b> | <b>Amphibians</b> | 2                 | 0             | 0        | 0     | 0       |
| CLASS         | Fishes            | 0                 | 2             | 0        | 0     | 1       |
|               | Reptiles          | 1                 | 0             | 3        | 0     | 0       |
|               | Birds             | 1                 | 0             | 0        | 3     | 0       |
|               | Mammals           | 0                 | 0             | 1        | 0     | 6       |

#### RIPPER:

|               |                   | PREDICTED CLASS   |        |          |       |         |
|---------------|-------------------|-------------------|--------|----------|-------|---------|
|               |                   | <b>Amphibians</b> | Fishes | Reptiles | Birds | Mammals |
| <b>ACTUAL</b> | <b>Amphibians</b> | 0                 | 0      | 0        | 0     | 2       |
| CLASS         | Fishes            | 0                 | 3      | 0        | 0     | 0       |
|               | Reptiles          | 0                 | 0      | 3        | 0     | 1       |
|               | Birds             | 0                 | 0      | 1        | 2     | 1       |
|               | Mammals           | 0                 | 2      | 1        | 0     | 4       |

#### Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees