Lengoaiak, Konputazioa eta Sistema Adimendunak

3. gaiko lehenengo zatia: AFD, AFED eta ε -AFED-en diseinua Bilboko IITUE 1,6 puntu

2014-11-27

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 a-z hasi, a-z bukatu eta aa azpikatea duten hitzez eratutako lengoaia (0,250 puntu)

a sinboloaz hasi, a sinboloaz bukatu eta gainera aa azpikatea duten hitzez eratutako L_1 lengoaia. Adibidez, abbaaba, aababa, aaca, aa eta aaaaa hitzak L_1 lengoaiakoak dira baina aac, acbba, bbccc, a, bbbb eta ε hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w| \ge 2 \land w(1) = a \land w(|w|) = a \land \exists u, v(u \in A^* \land v \in A^* \land w = uaav) \}$$

1.2 a-z hasi edo a-z bukatu edo aa azpikatea duten hitzez eratutako lengoaia (0,250 puntu)

a sinboloaz hasi edo a sinboloaz bukatu edo aa azpikatea duten hitzez eratutako L_2 lengoaia. Hitz bakoitzak baldintza horietako bat edo gehiago bete ditzake. Adibidez, accc, bbaab, bcba, aaca, aa, a eta aaaaa hitzak L_2 lengoaiakoak dira baina bacb, cbabab, bbccc, bbbb eta ε hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land |w| \ge 1 \land (w(1) = a \lor w(|w|) = a \lor \exists u, v(u \in A^* \land v \in A^* \land w = uaav)) \}$$

2 Automata finitu ez deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

3 ε trantsizioak dituzten automata finitu ez deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

4 Konputazio deterministen garapena (0,100 puntu)

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, abba)$
- 2. $\delta^*(q_0, acca)$
- 3. $\delta^*(q_0, aa)$
- 4. $\delta^*(q_0, abc)$
- 5. $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\nu^*(r_0, aba)$
- 2. $\nu^*(r_0, aaa)$
- 3. $\nu^*(r_0, caaa)$

4.
$$\nu^*(r_0, cca)$$

5.
$$\nu^*(r_0,\varepsilon)$$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

E

- 1. $\lambda^*(s_0, abca)$
- 2. $\lambda^*(s_0, aaa)$
- 3. $\lambda^*(s_0, abb)$
- 4. $\lambda^*(s_0, a)$
- 5. $\lambda^*(s_0, \varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

AFD honi dagokion δ trantsizio funtzioa honako taula honen bidez adieraz daiteke:

δ	a	b	c
q_0	q_1	q_2	q_3
q_1	q_1	q_4	q_5
q_2	q_8	q_2	q_6
q_3	q_8	q_9	q_3
q_4	q_8	q_4	q_7
q_5	q_8	q_9	q_5
q_6	q_8	q_9	q_6
q_7	q_8	q_9	q_7
q_8	q_8	q_9	q_{10}
q_9	q_8	q_9	q_{10}
q_{10}	q_8	q_9	q_{10}