## Introduction to Computational Quantum Mechanics: Application-based Learning with Python

Braden M. Weight
Department of Physics and Astronomy
University of Rochester

April 10, 2023

## **Contents**

| 1 | Python and Environments      | 3 |
|---|------------------------------|---|
| 2 | Types of Variables in Python | 4 |
| 3 | Numerical Calculus           | 6 |
|   | 3.1 Differentiation          | 6 |
|   | 3.2 Root-finding Algorithms  | 8 |

## Chapter 1

# **Python and Environments**

No assignment here.

## Chapter 2

## Types of Variables in Python

1. Write a program that to evaluate  $e^x$  with x = -5.5 using a Taylor series,

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \mathcal{O}(x^4),$$
 (2.1)

for orders 0, 1, 2, 3, 4, 5, 10, and 100. Note that  $e^x \approx 1 + x$  is the first-order expansion. How quickly does the result converge to the exact result? At what order, can you achieve an accuracy of 1% or better (% Error =  $(x_{\rm Approx} - x_{\rm exact})/x_{\rm exact}$ ))? Make a plot of the result with respect to the expansion order. For plotting, see example below.

2. The  $N \times N$  discrete Fourier transform matrix is defined by,

$$W = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1\\ 1 & \gamma & \gamma^2 & \gamma^3 & \cdots & \gamma^{N-1}\\ 1 & \gamma^2 & \gamma^4 & \gamma^6 & \cdots & \gamma^{2(N-1)}\\ 1 & \gamma^3 & \gamma^6 & \gamma^9 & \cdots & \gamma^{3(N-1)}\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \gamma^{N-1} & \gamma^{2(N-1)} & \gamma^{3(N-1)} & \cdots & \gamma^{(N-1)(N-1)} \end{bmatrix},$$
(2.2)

where  $\gamma = e^{-2\pi i/N}$ .

- (a) Use Numpy to construct the  $4 \times 4$  matrix and save to a file using the 'np.savetxt()' function.
- (b) Write a function to accept an integer N and output the corresponding  $N \times N$  array for the discrete Fourier transform.



Figure 2.1: Generated from the code "example\_plot.py".

```
# This is an example for plotting a quadratic function
import numpy as np
import matplotlib
matplotlib.use('Agg') # This is required for the NDSU cluster...not sure why
from matplotlib import pyplot as plt

X = np.arange(0,100+10,10)
Y = 0.1 * X**2
plt.plot(X,Y,"-o",c="black",label="Y(x) = $\frac{X^2}{4}$")
plt.plot(X,np.ones(len(X))*Y[-1],"--",c="black",label="Y(x) = $\frac{X^2}{4}$")
plt.xlim(X[0],X[-1])
plt.ylim(0)
plt.xlabel("X-Axis",fontsize=15)
plt.ylabel("Y-Axis",fontsize=15)
plt.title("This is the title",fontsize=15)
plt.savefig("example_plot.jpg", dpi=300)
```

### Chapter 3

### **Numerical Calculus**

#### Differentiation 3.1

1. Using the function,

$$f(x) = x^{\sin(x)}, \quad x \in (1, 10),$$
 (3.1)

plot the function f(x) and its first derivative f'(x). Use WolframAlpha [https://www.wolframalpha.com] (or Mathematica) to find the analytic result. The syntax is "D[f(x), x]" in both WolframAlpha and Mathematica. Plot the error between the numerical and analytical results for the first derivative using the forward difference and central difference formulas.

2. The central difference formula can be extended to two dimensions and can be written

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x + \Delta x, y) - f(x - \Delta x, y)}{2\Delta x} + \mathcal{O}(\Delta x^2)$$
(3.2)

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+\Delta x,y) - f(x-\Delta x,y)}{2\Delta x} + \mathcal{O}(\Delta x^2) 
\frac{\partial f(x,y)}{\partial y} \approx \frac{f(x,y+\Delta y) - f(x,y-\Delta y)}{2\Delta y} + \mathcal{O}(\Delta y^2)$$
(3.2)

$$\frac{\partial f(x,y)}{\partial x^2} \approx \frac{f(x+\Delta x,y) - 2f(x,y) + f(x-\Delta x,y)}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$
 (3.4)

$$\frac{\partial x^2}{\partial f(x,y)} \approx \frac{\Delta x^2}{\partial y^2} \approx \frac{f(x,y+\Delta y) - 2f(x,y) + f(x,y-\Delta y)}{\Delta y^2} + \mathcal{O}(\Delta y^2)$$
(3.5)

$$\frac{\partial f(x,y)}{\partial x \partial y}\Big|_{jk} \approx \frac{f_{j+1,k+1} - f_{j+1,k} - f_{j,k+1} + 2f_{j,k} - f_{j-1,k} - f_{j,k-1} - f_{j-1,k-1}}{2\Delta x \Delta y} + \mathcal{O}(\Delta x^2 \Delta y^2) \tag{3.6}$$

for the first and second derivatives. Note that I switched from  $x + \Delta x$  notation to j+1 notation to allow the final equation to sit on one line. Make sure you convince yourself that they mean the same thing. In fact, the final notation is more common when discussing numerical evaluation of functions and their derivatives.

3.1. DIFFERENTIATION

7

Consider the following function of two variables x and y,

$$f(x,y) = x^2 + y^2 (3.7)$$

Plot the following set of 1D functions calculated numerically alongside the analytic result.

$$g_1(x) = f(x, y = 1),$$
 (3.8)

$$g_2(y) = f(x = 1, y),$$
 (3.9)

$$g_3(x) = \frac{\partial f(x,y)}{\partial x}|_{y=1},\tag{3.10}$$

$$g_4(y) = \frac{\partial f(x,y)}{\partial y}|_{x=1},\tag{3.11}$$

$$g_5(x) = \frac{\partial f(x, y)}{\partial x \partial y}|_{y=1}$$
 (3.12)

Note: the solution to this problem will be five, separate plots, each with two curves (numerical and analytic results).

#### 3.2 Root-finding Algorithms

1. Use the Newton-Raphson Secant method to find the non-trivial roots (i.e., non-zero roots) of

$$f(x) = x^2 - 150x + 5000. (3.13)$$

Plot the convergence ( $|f(x_n) - f(x_{\text{EXACT}})|$ ) as a function of the number of iteration steps n for each of the two roots.