

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME	Fuzzil Hamid		
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/31
Paper 3 Pure Math	nematics 3 (P3)		May/June 2019
			1 hour 45 minutes
Candidates answer	r on the Question Paper.		
Additional Materials	s: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

© UCLES 2019

1	
Х	

Use the trapezium rule with 3 intervals to estimate the value of

$\int_0^3 \left 2^x - 4 \right \mathrm{d}x.$	[3]

2

Showing all necess correct to 2 decim	ssary working, solve the equation $ln(2x - 3) = 2 ln$ and places.	$\ln x - \ln(x - 1)$. Give your answer
	$\ln(2x-3) = 2\ln\left(\frac{x}{x-1}\right)$	
	$2\alpha - 3 = \left(\frac{\alpha}{\alpha - 1}\right)^2$	
	(x-1)	
	$2.2 - 3 = \frac{x^2}{(x-1)^2}$	
	$\frac{2\alpha-3}{(\alpha-1)(\alpha-1)}$	
	$2x-3=x^2$	
	$2x - 3 = \frac{x^2}{x^2 - 2x + 1}$	
	(2-2×1)(2x-3)= x2	
	223-32°-427-62 x 22 - 3	= X ²
	$2x^2 - 8x^2 - 4x - 3 = 0$	

der-	3 ~ 2 +	Bur bac	Ldu 7 - 3	542 Ju.
 οc	3 x2 +	L 4 - 7	Te .	L
 	32 ² 4	342 1 6	ay dy	34-34 de
 	3622 4	y2)-1=	3 l y ² - 2	2 xy) dy
 <u>d</u>	y = 3x2+	3y 2_1		Q
 d	x 3(y=	22y)		
 	3(1) ²	<u>+ 3(9)-1</u> 9 - 2(3))		
 \w	1 = <u>3 +</u>	<u>27 - 1</u>		
 	<u>2</u>	1		
 •••••				

į,	(. 3
D not	1	
1		= 3
Jamo	tona+ton45	
	1-ton a ton	145)
		= 3
ton Q	(ton Q + 1)	
	(1-tomo)	
	1-tono	<u>, </u>
ton o	tan 0+1	
<u>tan0+1</u>	- (ton a-iton o	<u>1) _ 3</u>
***************************************	$-(ton Q-ton^2Q)$ $im^2Q+ton Q$	
toro	+1-ton0+tan	$n^2 o = 3 tan^2 o + 3 tan 6$
	ton20 + 3 to	$m^{\alpha} - 1 = 0$
40000		+ 0 - 1.70 0 771
ton0=0.281		ton0 = -1.780776 180-ton-(1.780776)
Q = 15.7	<u> </u>	- 360 - Jan (190776
	<u>o</u> r	- 360 - Jan (T 180 116
		- (10 2
		= (19.3)

5 (i) Differentiate
$$\frac{1}{\sin^2 \theta}$$
 with respect to θ .

dx		
	2 Cos O	
	5230	

	- 2 600	×	
	Sind	sin ² 0	
_	- 2 lot	loset ² 0	

		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

(ii) The variables x and θ satisfy the differential equation

$$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$$

for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 4 when $\theta = \frac{1}{6}\pi$. Solve the differential equation, obtaining an expression for x in terms of θ .

•	octana de = -	cosec² o do	
	x dx =		
)) tono	

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{650 \text{ da}}{2500}$$

$$= \frac{\cos \alpha}{\sin^3 \alpha} d\alpha + \sin \alpha$$

ZMP

1 20	= -\f-2
<u></u>	y C
\ v ²	٦-2-
1 x2	- <u> </u>
, N2	
<u> </u>	25in 2
1/4)	1 .
د (۱) 2	2 x 1 + C
	4
0	
	······································
<u>-</u>	5
	Γ , ,1
<u> </u>	$\frac{1}{2\sin^2\theta}$
) / ————————————————————————————————————	75m20
~ = \begin{align*} \(\begin{align*} \text{A} & A	2- 10
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u> </u>

6	(i)	By first expanding $\sin(2x + x)$, show that $\sin 3x = 3\sin x - 4\sin^3 x$.	[4]
		Sin2xles x + Cos2x Sin2l	
		2 Sing (ast or + (1-2 Sin 22) Sin 26	
		$2 \sin x (1 - \sin^2 x) + \left[\sin x - 2 \sin^3 x \right]$	
		25m2-25in32 + 5in2 - 25in32	
		32m2-4 Sm2	•••••
			•••••
			· • • • • • • • • • • • • • • • • • • •
			· • • • • • • • • • • • • • • • • • • •
			•••••
			,
			· • • • • • • • • • • • • • • • • • • •
			•
			•••••
			· • • • • • •

(ii)	Hence, showing all necessary working, find the exact value of \int_0^{∞}	$\sin^3 x \mathrm{d}x. \tag{4}$

7

The diagram shows the curves $y = 4\cos\frac{1}{2}x$ and $y = \frac{1}{4-x}$, for $0 \le x < 4$. When x = a, the tangents to the curves are perpendicular.

(i)	Show that $a = 4 - \sqrt{(2\sin\frac{1}{2}a)}$.	[4]
	$r: \frac{dy}{dx} = -2 \sin \frac{1}{2}x + r: \frac{dy}{dx} = -(4-x)^{\frac{1}{2}}$	()
	$\frac{\partial y}{\partial x} = \frac{1}{(4-x)^2}$	••••
	$\frac{dy}{dx} = -2 \sin \frac{1}{2}x + \frac{1}{2} \sin \frac{1}{2} = \frac{(4-x)^{2}}{2}$ $\frac{dy}{dx} = -\frac{1}{2} \sin \frac{1}{2} = \frac{(4-x)^{2}}{2}$ $\frac{(4-x)^{2}}{2} = -\frac{(4-a)^{2}}{2}$	
		••••
	$\int_{2}^{2} \sin \frac{\alpha}{2} = 4 - \alpha$	
	$\alpha = 4 - \sqrt{2\sin \frac{1}{2}} \alpha$	
		••••
		••••
		••••

	•••••			3	••••••
LHS RHS	 5		LHS		RHS
2 7 2.1	7 0		2	۷	
批	in.	is a change in	sign fr	<u>₩2.</u>	5 3
		on the equation in part (i) to define the following to find the continuous to find the cont	etermine a corre	ct to 3 o	
places. Give the result o	of each i	on the equation in part (i) to diteration to 5 decimal places. $4 - \sqrt{2 \sin(4x)}$			[3
places. Give the result o	of each i	iteration to 5 decimal places. $4 - \sqrt{2} \sin(\frac{4\pi}{2})$			[3
places. Give the result o	of each i	iteration to 5 decimal places. $4 - \sqrt{2} \sin(\frac{4\pi}{2})$ $2 \cdot 10272$			[3
places. Give the result o	of each i	iteration to 5 decimal places. $4 - \sqrt{2} \sin\left(\frac{4\pi}{2}\right)$ $2 \cdot 10272$ $2 \cdot 60285$			[3
places. Give the result o	each i	iteration to 5 decimal places. $4 - \sqrt{2} \sin(\frac{4\pi}{2})$ $2 \cdot 70272$ $2 \cdot 60285$ $2 \cdot 61152$			[3
places. Give the result o	la =	iteration to 5 decimal places. $4 - \sqrt{25in(\frac{4n}{2})}$ $2 \cdot 7.0272$ $2 \cdot 6.02.85$ $2 \cdot 6.11.52$ $2 \cdot 6.1070$			[3
places. Give the result o	each i	iteration to 5 decimal places. $4 - \sqrt{2} \sin(\frac{4\pi}{2})$ $2 \cdot 70272$ $2 \cdot 60285$ $2 \cdot 61152$			[3

8 Let
$$f(x) = \frac{16 - 17x}{(2 + x)(3 - x)^2}$$
.

(i) Express f(x) in partial fractions. [5]

 $\frac{\left(1-\frac{17x}{2+x}\right)^{2}}{\left(2+x\right)\left(3-x\right)^{2}} = \frac{A}{\left(2+x\right)} + \frac{B}{\left(3-x\right)^{2}}$

16-17x = A(3-x)(3-x) + B(2+x)(3-x) + C(2+x)

 $0 \qquad A-B = 0$

@ 9A+6B+2C= 16

3 -6A + B+C = -17

fron 0, B=A —

Sub 9 into 3 - 6 B + B + C = - 17

c = 5B-17 — ©

Sub 9 and 4 into 2

9B+6B+2(9B-17)=16

15B+10B-34 = 16

B = 2

A = 2 and C = -7

 $\frac{2}{2+1}$, $\frac{2}{3-1}$, $\frac{7}{(3-1)^2}$

(ii)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 . [5]
	$2(2+x)^{-1}+2(3-x)^{-1}-7(3-x)^{-2}$
	$2 \cdot 2^{-1} \left(1 + \frac{x}{2}\right)^{-1} + 2 \cdot 3^{-1} \left(1 - \frac{x}{3}\right)^{-1} - 7 \cdot 3^{-2} \left(1 - \frac{x}{3}\right)^{-2}$
[(Nx)	$(-1)(-2)(-\frac{\pi}{2})^2$ $2\left[(-1)(-2)(-\frac{\pi}{2})\right]$ $7\left[(-2)(-\frac{\pi}{2}), (-2)(-3)(-\frac{\pi}{2})\right]$
1+(-)(-2)-	$+\frac{(-1)(-2)(\frac{\pi}{3})^2}{2!} + \frac{2}{3} \left[1 + (-1)(-\frac{\pi}{3}) + \frac{(-1)(-2)(-\frac{\pi}{3})}{2!} \right] - \frac{7}{9} \left[1 + (-2)(-\frac{\pi}{3}) + \frac{(-2)(-3)(-\frac{\pi}{3})}{2!} \right]$
	$\left(1 - \frac{1}{2} \frac{1}{4} + \frac{1}{4} \frac{x^2}{3}\right) + \frac{2}{3} \left(1 + \frac{1}{3} \frac{x}{4} + \frac{1}{4} \frac{x^2}{3}\right) - \frac{7}{9} \left(1 + \frac{2}{3} \frac{x}{3} + \frac{1}{3} \frac{x^2}{3}\right)$
	(24/3(39)9(33)
	$\frac{1 - \frac{1}{2}x + \frac{1}{4}x^2 + \frac{2}{3} + \frac{2}{3}x + \frac{2}{3}x^2 + \frac{2}{27}x^2}{9} = \frac{14}{27}x - \frac{7}{27}x^2$
	2 4 3 A 27 A 27 27
	$\frac{8}{9}$ $\frac{43}{54}$ $\frac{7}{108}$ $\frac{2}{108}$
	9 54 108

9

The diagram shows a set of rectangular axes Ox, Oy and Oz, and four points A, B, C and D with position vectors $\overrightarrow{OA} = 3\mathbf{i}$, $\overrightarrow{OB} = 3\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = \mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$.

Find the equation of the plane BCD , giving your answer in the form $ax + by + cz = d$. [6]
*

© UCLES 2019 9709/31/M/J/19

			K	X	
	•••••	•••••		/	••••••
			•••••	••••	
		••••••			
••••••					••••••
		•••••			•••••
					••••••
•••••		••••••	· • • • • • • • • • • • • • • • • • • •	•••••	••••••
			,		•••••
					••••••
•				•	

10	Throughout this	auestion	the use	of a	calculator	is not	permitted.
10	I III oughout tills	question	uic usc	UI U	carcarator	is iiu	permittee.

The complex number $(\sqrt{3})$ + i is denoted by u.

(i) Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact or otherwise state the exact values of the modulus and argument of u^4	
$W = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$	
0= tan-1 (1/3)= 1/2	
.: u= 2 e ⁵ i	
$u^{4} = \left(2e^{\frac{\pi}{6}i}\right)^{4}$	
= 24 e 6 x 4	
= 16 e ^{3xi}	
$mod of u^4 = 1b$	
$argot u^{\dagger} = \frac{2}{3}I$	

(ii) Verify that u is a root of the equation $z^3 - 8z + 8\sqrt{3} = 0$ and state the other complex root of this equation.

[5]

 $\frac{(2+2\sqrt{3})}{2\sqrt{3}+2j+6i+2\sqrt{3}}(-1)$ $2\sqrt{3}+8i-2\sqrt{3}$

8i other root= \(\si_3\)-i 8i-8\(\si_3\)+8\(\si_3\)=0 8i-8\(\si_3\)-8i+8\(\si_3\)=0

0 = 0 Shown

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - u| \le 2$ and $\text{Im } z \ge 2$, where Im z denotes the imaginary part of z.

© UCLES 2019

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.		

BLANK PAGE

© UCLES 2019 9709/31/M/J/19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019 9709/31/M/J/19

(b) A buffer solution is to be made using 1.00 moldm ⁻³ ethanoic acid, CH ₃ CO ₂ H, and 1.00 moldm ⁻³ sodium ethanoate, CH ₃ CO ₂ Na. Calculate to the nearest 1 cm ³ the volumes of each solution that would be required to make 100 cm ³ of a buffer solution with pH5.50 Clearly show all steps in your working. K _a (CH ₃ CO ₂ H) = 1.79 × 10 ⁻⁵ moldm ⁻³
[H+]= 10-5.5 = 3.162 × 10-6 moldin-3
Vol of acid = α , : mol of acid = α =
: rel of CH3(00 Na=0.1-x, : melotsatt = 1(0.1-x)=0.1-x
$K_{\alpha}(CH_{3}LO_{2}H) = H^{+}J(CH_{3}COON_{\alpha}) = \frac{3\cdot162\times10^{-6}\times\frac{0\cdot1-32}{6T}}{2} = 1\cdot79\times10^{-5}$ CH_3COOH $\frac{x}{0}$
= 3.162710-4-3.162×10-6x=179×10-52
2.1062 x 10-5 x = 3.162 x 10-7 x = 1.5 x 10-2 = 15m3
volot (42/00Na = 100-15:85an3