

$f_{1}^{\#2}$	0	0	0	0	0	0	0	
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0	
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0	
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0	
$\omega_{1}^{\#2}{}_{+}$	$\frac{\sqrt{2} t_2}{3}$	\$\frac{t2}{3}	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0	
	$\omega_{1}^{\#1} + \alpha^{\beta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_1^{\#1} + ^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{lpha}$	$f_{1}^{\#2} +^{\alpha}$	

$\tau_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}{}_{lpha}\;\sigma_{1^-}^{\#2}{}_{lpha}$.	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3 i \sqrt{2} k}{(3+k^2)^2 t_2}$	0	0	0	0
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_1^{\#_2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} \dagger^\alpha$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#^2} + ^{\alpha}$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\sigma_{1^{-}}^{\#2\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#1\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3
$\sigma_{2^{-}}^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total #:	35

 $k^2 r_2 + t_2$

 $f_2^{\#_1} + ^{\alpha\beta}$

 $\frac{\text{Unitarity conditions}}{r_2 < 0 \&\& t_2 > 0}$

(No massless particles)