ODEs lineales de segundo orden

Erwin Kreyszig, Matemáticas Avanzadas para Ingeniería, Vol. 1, Tercera edición, Limusa, 1979.

ODE lineales de primer orden

Una ODE de primer orden es lineal si puede escribirse como

$$y' + f(x)y = r(x)$$

La característica distintiva es que es lineal en y y en y', mientras que f y r pueden ser funciones cualesquiera en x.

La función f(x) es el coeficiente de la ecuación.

Si $r(x) \equiv 0$, se dice que la ecuación es homogénea; de otra manera es no homogénea.

Sea la ecuación lineal homogénea de primer orden (con coeficiente constante f(x) = k)

$$y' + ky = 0$$

Usando el método de separación de variables se encuentra la solución general:

$$\frac{1}{y}y' = -k$$

$$\frac{dy}{v} = -kdx$$

$$\int \frac{dy}{y} = \int -k \ dx + c$$

$$\ln y = -kx + c$$

$$y = e^{-kx+c}$$

$$y = ce^{-kx}$$

ODE lineales de segundo orden

Una ODE de segundo orden es lineal si puede escribirse en la forma

$$y'' + f(x)y' + g(x)y = r(x)$$

Las funciones f(x) y g(x) se llaman coeficientes de la ecuación.

Ecuaciones homogéneas

Si una solución de una ecuación homogénea se multiplica por cualquier constante, la función resultante también es una solución. La suma de dos soluciones también es una solución.

Ecuaciones homogéneas con coeficientes constantes

Para ecuaciones de la forma

$$y'' + ay' + by = 0$$

parece natural conjeturar, recordando el caso de primer orden, que

$$y = e^{\lambda x}$$

puede ser una solución si se elige el valor apropiado para λ.

Substituyendo

$$y' = \lambda e^{\lambda x}$$

$$v'' = \lambda^2 e^{\lambda x}$$

se obtiene la ecuación característica

$$p(\lambda) = \lambda^2 + a\lambda + b = 0$$

Esta ecuación puede tener

- 1. Dos raíces reales distintas
- 2. Dos raíces complejas conjugadas
- 3. Una raíz doble

Raíces reales distintas λ_1 y λ_2

La solución general de la ODE es la combinación lineal de las dos soluciones linealmente independientes

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

Raíces complejas conjugadas $p \pm iq$

Tiene un gran interés practico obtener soluciones reales a partir de las soluciones exponenciales complejas. Para eliminar las partes imaginarias se aplican las fórmulas de Euler

$$y_1 = e^{(p+iq)x} = e^{px}e^{iqx} = e^{px}(\cos(qx) + isen(qx))$$

$$y_2 = e^{(p-iq)x} = e^{px}e^{-iqx} = e^{px}(\cos(qx) - isen(qx))$$

y se escogen cuidadosamente dos soluciones

$$\frac{1}{2}(y_1 + y_2) = e^{px} \cos{(qx)}$$

$$\frac{1}{2i}(y_1 - y_2) = e^{px}\operatorname{sen}(qx)$$

Las dos funciones de los segundos miembros son reales y, dado que son combinaciones lineales de y_1 y y_2 , se tiene que son soluciones de la ecuación original. Además, como son linealmente independientes la solución general correspondiente es

$$y(x) = e^{px}(A\cos(qx) + B\sin(qx))$$

donde A y B son constantes arbitrarias.

Si consideramos ahora que a=0 y b= ω^2 , la ecuación es

$$y'' + \omega^2 y = 0$$

y su solución general es

$$y(x) = A\cos(\omega x) + B\sin(\omega x)$$

Aplicando la fórmula de la suma para el coseno

$$y(x) = C \cos(\omega x - \delta)$$
 $(C = \sqrt{A^2 + B^2}, \tan(\delta) = B/A)$

Raiz doble λ

Este caso se presenta si y sólo si el discriminante es cero. Usando el método de variación de parámetros se encuentra la solución general

$$y(x) = (c_1 + c_2 x)e^{\lambda x}$$

Ecuaciones no homogéneas con coeficientes constantes - Coeficientes indeterminados

Una solución general de la ecuación no homogénea puede obtenerse sumando a la solución general de la ecuación homogénea cualquier solución y_p de la no homogénea que no contenga constantes arbitrarias.

Una manera sencilla de obtener esta solución y_p , aplicable solo a ciertas ecuaciones lineales con coeficientes contantes, es el método de coeficientes indeterminados. "Adivinamos" la forma de y_p (que incluye coeficientes indeterminados), substituimos en la ecuación y encontramos los valores de los coeficientes.

Ejemplo:

$$y'' + 4y = 8x^2$$

Intentamos

$$y_p = Kx^2 + Lx + M$$

entonces

$$y_p^{\prime\prime} = 2K$$

Substituyendo

$$2K + 4(Kx^2 + Lx + M) = 8x^2$$

Igualando coeficientes se tiene

$$K = 2, L = 0, M = -1$$

Y finalmente

$$y_p = 2x^2 - 1$$

Por lo tanto, una solución general a la ecuación non homogénea es

$$y = A\cos 2x + B\sin 2x + 2x^2 - 1$$

Ecuaciones homogéneas de orden n con coeficientes constantes

El método para solucionar ecuaciones de segundo orden puede extenderse a una ecuación lineal de orden n

$$y^{n} + a_{n-1}y^{n-1} + \dots + a_{1}y' + a_{0}y = 0$$

Substituyendo $y=e^{\lambda x}$ y sus derivadas se obtiene la ecuación característica

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0 = 0$$

Si esta ecuación tiene n raíces distintas $\lambda_1,...,\lambda_n$, entonces la solución general es

$$y = \sum_{i=1}^{n} c_i e^{\lambda_i x}$$

Si existen raíces λ de multiplicidad m, entonces $e^{\lambda x}$, $xe^{\lambda x}$, ..., $x^{m-1}e^{\lambda x}$ son m soluciones linealmente independientes que corresponden a esa raíz.