Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Convolutional Neural Networks

Computer vision

Computer Vision Problems

Image Classification

Object detection

Deep Learning on large images

Convolutional Neural Networks

Edge detection example

Computer Vision Problem

Andrew Ng

Vertical edge detection

103x1 + 1x1 +2+1 + 0x0 + 5x0 +7x0+1x+ +8x-1+2x-1=-5

3	0	1	2	7-0	4
1	5	8	9	3	1
2	1	2	5	1	3
01	1	3	1	7	8 ⁻¹
4	2	1	6	2	8
2	4	5	2	3	9

-5	-4	0	8	
-10	-2	2	3	
0	-2	-4	-7	
-3	-2	-3(-16	
4x4				

Vertical edge detection

1					
10	10	10	0	O	0
10	10	10	0	0	0
10	10	10	0	0/	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
		6 2			

	<u>U</u>	
	0	<u>-1</u>
1	0	-1
1	0	-1
	3×3	

<u> </u>					
0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
14x4					

*

Convolutional Neural Networks

More edge detection

Vertical edge detection examples

0	30	30	0			
0	30	30	0			
0	30	30	0			
0	30	30	0			

→	

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Andrew Ng

Vertical and Horizontal Edge Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

	1	1	1
	0	0	0
	-1	-1	-1
•			

Learning to detect edges

1	0	-1		
1	0	-1		
1	0	-1		
^				

3	0	垣	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Giviing more wts to central row.

7	0	N
lo	Q	10
ω)	-3

Schor Filter

Andrew Ng

Convolutional Neural Networks

Padding

Padding is done to make convolve out image to be of the same size as that of the input imag. We pad

Valid and Same convolutions

"Valid": $n \times n \rightarrow \frac{f+1}{4} \times n-f+1$ $6 \times 6 \rightarrow \frac{f+1}{4} \times n-f+1$

'Same": Pad so that output size is the <u>same</u> as the input size.

final ouput image start ((n+2p-f)/s + 1)

deeplearning.ai

Convolutional Neural Networks

Strided convolutions

Strided convolution

Andrew Ng

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

2	3	7 ⁵	4	6	2
69	6°	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A \times B) \times C = A \times (B \times C)$$

convolving volume with a 3D filter, but we get only a 2D result volume as the

Convolutional Neural Networks

Convolutions over volumes

Convolutions on RGB images

Convolutions on RGB image

Multiple filters

You see below in 280 waala example that no matter what the size of the input is, as long as long we are using a 10 filters, we will only ne

Convolutional Neural Networks

One layer of a convolutional network

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer l is a convolution layer:

```
f^{[l]} = \text{filter size } f \times f \text{ filter}
                                  p^{[l]} = padding
                                   s^{[l]} = \text{stride}
                              n_c^{[l]} = number of filters
→ Each filter is: $ The x has a larger than the second se
                                    Activations: 0 -> 1 + × 1 + 1 + 1.
                                    Weights: fth xfth ncti-13 x ncti-13
                                  bias: nc - (1,1,1,0,41) ~ #f:(tes is layer l.
```

Input: Output: ATU) -> M × NH × NW × NC nc x n H x N w So what we did below is we took 39 x 39 x 3 image and ckomputed 1960 featurs of it

Convolutional Neural Networks

A simple convolution network example

Example ConvNet

Types of layer in a convolutional network:

```
Convolution (CONV) ←
Pooling (POOL) ←
Fully connected (FC) ←
```


Convolutional Neural Networks

Pooling layers

DEon eto reduce size of t, to reduce the fompurtatiriion and to spped up the process of thrr

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Pooling layer: Average pooling

1 ;	3	2	1	
2	9	1	1	3
1 4	4	2	3	
5	6	1	2	

5=7

Summary of pooling

Hyperparameters:

f: filter size
s: stride
$$f=2, s=2$$

$$f=3, s=2$$

Max or average pooling

$$N_{H} \times N_{W} \times N_{C}$$

$$N_{H} - f + 1$$

$$\times N_{C}$$

Convolutional Neural Networks

Convolutional neural network example

(LeNet-5) Neural network example CONVZ POOLS pool (SNV) Marpuol 28×28×6 10×10×16 32232436 0,1,2,....9 NH, NW (120,400) (170)

CONU-POOL-CONV-POOL-EC-EC- EC- SOFTMAX

Andrew Ng

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{tol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	608 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	3216 🥌
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48120 7
FC4	(84,1)	84	10164
Softmax	(10,1)	10	850

Advantages are: Parameterer sharing and sparsity of connections. Very le

deeplearning.ai

__Convolutional Neural Networks

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J