### Examenul național de bacalaureat 2021 Proba E, d) **FIZICA**

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
   B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
  Timpul de lucru efectiv este de trei ore.

# A. MECANICĂ

Testul 7

Se consideră accelerația gravitațională  $g = 10 \text{m/s}^2$ .

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Unitatea de măsură a randamentului unui plan înclinat poate fi scrisă în forma:

**a.** 
$$kg \frac{m}{s^2}$$

**b.** N⋅m

$$\mathbf{d.} \ \frac{\mathsf{J} \cdot \mathsf{s}^2}{\mathsf{kg} \cdot \mathsf{m}^2} \tag{3p}$$

2. Un corp alunecă pe o suprafată, coeficientul de frecare la alunecare fiind  $\mu$ . Viteza relativă a corpului fată de suprafață este  $\vec{v}$ , iar forța de apăsare normală a corpului pe suprafață este  $\vec{N}$ . Conform legilor frecării, expresia vectorială corectă a forței de frecare la alunecare este:

**a.** 
$$\overrightarrow{F_f} = \mu \overrightarrow{N}$$

**b.** 
$$\vec{F}_f = \mu N \frac{\vec{V}}{V}$$

**c.** 
$$\vec{F}_f = -\mu N \frac{\vec{V}}{V}$$

$$\mathbf{d.} \ \overrightarrow{F_f} = -\mu \overrightarrow{N}$$
 (3p)

**a.**  $\overrightarrow{F_f} = \mu \overrightarrow{N}$  **b.**  $\overrightarrow{F_f} = \mu N \frac{\overrightarrow{V}}{V}$  **c.**  $\overrightarrow{F_f} = -\mu N \frac{\overrightarrow{V}}{V}$  **d.**  $\overrightarrow{F_f} = -\mu \overrightarrow{N}$  (3p) **3.** Un elev cu masa m = 50 kg se află într-un lift care, în timpul coborârii, încetinește. Modulul accelerației liftului este  $a = 1 \text{ m/s}^2$ . Forța de apăsare exercitată de elev asupra podelei liftului are valoarea de:

**a.** 550 N

- **b.** 500 N
- **c.** 450 N
- **d.** 400 N

- (3p)
- 4. Un corp este aruncat vertical în sus, de pe sol, în câmp gravitațional uniform. Interacțiunea cu aerul se neglijează. Graficul care poate reprezenta dependența corectă a energiei potențiale gravitaționale de înălțimea *h* la care se află corpul, în raport cu nivelul de lansare, este:









- 5. Un corp își mărește viteza în timp ce se deplasează între două puncte aflate la aceeași înălțime, sub actiunea unei forte de tractiune. Variatia energiei cinetice a corpului este egală cu:
- a. lucrul mecanic efectuat de greutate
- b. lucrul mecanic efectuat de forța de tracțiune, luat cu semn schimbat
- c. lucrul mecanic efectuat de rezultanta fortelor care actionează asupra corpului, luat cu semn schimbat
- d. lucrul mecanic efectuat de rezultanta forțelor care acționează asupra corpului

#### (3p)

# II. Rezolvați următoarea problemă:

(15 puncte)

În sistemul mecanic din figura alăturată cele două fire inextensibile și de masă neglijabilă sunt trecute peste scripeți fără frecări și lipsiți de inerție. Masele celor trei corpuri sunt  $m_1 = m_2 = 500 \, \text{g}$ , respectiv  $m_3 = 1,0 \, \text{kg}$ .

Coeficientul de frecare la alunecare între corpul de masă  $m_2$  și suprafața orizontală este  $\mu = 0,2$ . Determinați:

- a. valoarea accelerației sistemului;
- **b.** valoarea tensiunii din firul de legătură dintre corpurile  $m_1$  și  $m_2$ ;
- **c.** valoarea forței de apăsare în axul scripetelui  $S_2$ ;
- **d.** valoarea vitezei corpului  $m_1$  la momentul t = 0.5 s de la pornirea sa din repaus. Considerați că distanțele la care se află corpurile față de scripeți, respectiv podea sunt suficient de mari pentru ca în timpul mișcării corpurile să nu întâlnească niciun obstacol.



#### III. Rezolvaţi următoarea problemă:

Un corp cu masa m = 0.5 kg este aruncat vertical în sus cu viteza  $v_0 = 20$  m/s. Considerați că mișcarea se desfășoară în câmp gravitațional uniform, interacțiunea cu aerul este neglijabilă, iar energia potențială gravitatională este nulă în punctul din care este aruncat corpul. Determinați:

- a. energia potentială maximă pe care o poate avea corpul în timpul miscării;
- b. înălțimea la care energia potențială este egală cu cea cinetică;
- **c.** valoarea impulsului mecanic al corpului în momentul în care energia potențială este egală cu f = 64% din energia mecanică totală;
- d. intervalul de timp după care corpul revine în punctul de lansare.

# Examenul național de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

   Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
  Timpul de lucru efectiv este de trei ore.

# B. ELEMENTE DE TERMODINAMICĂ

Testul 7

Se consideră: numărul lui Avogadro  $N_A = 6,02 \cdot 10^{23} \text{mol}^{-1}$ , constanta gazelor ideale  $R = 8,31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ . Între parametrii de stare ai gazului ideal într-o stare dată există relația:  $p \cdot V = vRT$ .

## I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.

- 1. Raportul dintre lucrul mecanic efectuat de un motor termic pe durata unui ciclu complet și căldura primită de la sursa caldă în același interval de timp este  $\eta = 0.25$ . Motorul cedează sursei reci căldura  $|Q_c| = 360 \, \mathrm{J}$ . Căldura primită de la sursa caldă este egală cu:
- a. 270 J
- **b.** 450 J
- **c.** 480 J
- **d.** 1440 J

(3p)

**2.** O cantitate dată de gaz ideal monoatomic  $(C_v = 1,5R)$  este supusă proceselor reprezentate în coordonate p-V în figura alăturată. Transformarea 1-2 este o destindere izobară de la volumul  $V_1$  la volumul  $V_2 = 2V_1$ , iar 2-3 este o destindere izotermă până la volumul  $V_3 = eV_2$  (e = 2,71). Raportul dintre variația energiei interne în transformarea 1-2și lucrul mecanic schimbat de gaz cu mediul exterior în transformarea 2 - 3 este:



- **a.** 1
- **c.** 0,75

- (3p)
- 3. Într-o transformare izobară, variația energiei interne a unei cantități date de gaz ideal este:
- **b.**  $\Delta U = vR\Delta T$
- **c.**  $\Delta U = \nu C_P \Delta T$
- **d.**  $\Delta U = \nu C_V \Delta T$
- (3p)

- 4. Energia internă a unei cantități constante de gaz ideal creste în cursul unei:
- a. comprimări izoterme
- b. comprimări adiabatice
- c. destinderi adiabatice
- d. destinderi izoterme

- (3p)
- 5. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, expresia a cărei unitate de măsură în S.I. este aceeași cu cea a capacității calorice este:
- **b.** *p* ⋅ *V*
- $\mathbf{d}. R \cdot T$

(3p)

## II. Rezolvați următoarea problemă:

(15 puncte)

Într-o butelie de volum  $V=16,62\,\mathrm{L}$  se află heliu, considerat gaz ideal,  $(\mu_{He}=4\,\mathrm{g/mol})$  la temperatura  $t_1 = 7$ °C. Manometrul atașat buteliei indică presiunea  $p_1 = 14$  bar. Gazul din butelie este încălzit lent până în momentul în care temperatura sa devine  $T_2 = 1,5T_1$ . Din acest moment temperatura rămâne constantă, iar robinetul buteliei se deschide astfel încât din butelie începe să iasă gaz până când presiunea indicată de manometru devine  $p_3 = 16$  bar . Cunoscând că 1 bar =  $10^5$  Pa ,determinați:

- a. masa de gaz din butelie în starea initială;
- b. densitatea gazului în starea inițială;
- c. presiunea indicată de manometru înainte de deschiderea robinetului;
- **d**. fracțiunea f din masa inițială de oxigen din butelie care părăsește butelia.

# III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate de gaz biatomic  $(C_v = 2.5R)$  parcurge transformarea ciclică ABCDA reprezentată în coordonate p-V în figura alăturată. Presiunea gazului în starea A este  $p_A = 2.10^5$  Pa, iar volumul ocupat este  $V_A = 20$  L. Lucrul mecanic total schimbat de gaz cu mediul exterior în decursul unui ciclu este  $L_{total} = 16 \text{ kJ}$ .

- a. Calculați valoarea presiunii gazului în starea B.
- **b.** Calculati căldura primită de gaz în timpul unui ciclu.
- c. Determinati randamentul unui motor termic ideal care ar functiona între temperaturile extreme atinse de gaz în decursul transformării.
- **d.** Reprezentați grafic transformarea în coordonate V-T.



# Examenul național de bacalaureat 2021 Proba E, d)

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
   B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
  Timpul de lucru efectiv este de trei ore.

# C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Testul 7

#### I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Două fire conductoare sunt confecționate din același material. Dacă raportul lungimilor celor două fire este  $\ell_1/\ell_2 = 4$ , iar raportul diametrelor secțiunilor transversale este  $d_1/d_2 = 8$ , atunci între rezistențele electrice ale celor două fire există relația:
- **a.**  $R_1 = 16R_2$
- **b.**  $R_2 = 4R_1$
- **c.**  $R_1 = 4R_2$
- **d.**  $R_2 = 16R_1$

(3p)

- 2. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin raportul  $\frac{W}{I^2R}$  este:
- a. V

 $\mathbf{d}$ .  $\Omega$ 

(3p)

- 3. O baterie este conectată la bornele unui consumator. Puterea furnizată de baterie circuitului exterior este maximă. În această situație randamentul circuitului este:
- **a.**  $50\sqrt{3}\%$
- **b.** 75%
- **c.** 50%
- **d.**  $\frac{75}{\sqrt{3}}\%$

(3p)

- 4. În figura alăturată este reprezentată schema unui circuit care conține un bec, o baterie și două comutatoare  $K_1$  și  $K_2$ . Pozițiile comutatoarelor corespunzătoare cărora becul va lumina sunt:
- **a.**  $K_1$  în poziția a, iar  $K_2$  în poziția d
- **b.**  $K_1$  în poziția c, iar  $K_2$  în poziția b
- **c.**  $K_1$  în poziția c, iar  $K_2$  în poziția d
- **d.**  $K_1$  în poziția b, iar  $K_2$  în poziția d

(3p)

- 5. Notațiile fiind cele utilizate în manualele de fizică, dependența de temperatură a rezistivității electrice a metalelor este:
- **a.**  $\rho = \frac{\rho_0}{\alpha \cdot t}$
- **b.**  $\rho = \frac{\rho_0}{(1+\alpha t)}$  **c.**  $\rho = \rho_0 \cdot \alpha \cdot t$  **d.**  $\rho = \rho_0 (1+\alpha t)$

(3p)

## II. Rezolvați următoarea problemă:

(15 puncte)

Pentru circuitul din figura alăturată se cunosc: tensiunile electromotoare ale generatoarelor  $E_1 = 10 \text{ V}, E_2 = 22 \text{ V}, \text{ rezistențele lor interioare } r_1 = r_2 = 1 \Omega$  și valorile rezistențelor rezistorilor  $R_2$  =6 $\Omega$  și  $R_3$  =3 $\Omega$ . Ampermetrul indică I =2A, iar voltmetrul ideal  $(R_V \to \infty)$  conectat la bornele rezistorului  $R_1$  indică

 $U_1 = 4 \text{ V}$  . Determinați:





- **a.** valoarea rezistenței electrice a rezistorului  $R_1$ ;
- **b.** valoarea rezistenței electrice a ampermetrului  $R_{\Delta}$ ;
- **c.** intensitatea curentului electric prin rezistorul  $R_3$ ;
- d. noua indicatie a ampermetrului dacă se inversează polaritatea generatorului 1.

#### III. Rezolvaţi următoarea problemă:

O baterie cu tensiunea electromotoare  $E = 24 \,\mathrm{V}$  și rezistența interioară  $r = 5 \,\Omega$ alimentează un circuit electric conform schemei reprezentate în figura alăturată. Rezistoarele conectate în circuit au rezistențele electrice:  $R_1 = R_4 = 47\Omega$  și  $R_2 = R_3 = 23\Omega.$ 



- a. Determinați randamentul circuitului electric.
- **b**. Calculati puterea totală furnizată de baterie.
- c. Calculati energia electrică consumată de rezistorul având rezistenta electrică R<sub>2</sub>  $\hat{t} = 10 \text{ min}$ .
- **d.** Se conectează intre punctele B și D un voltmetru ideal  $(R_V \to \infty)$ . Se înlocuiește rezistorul având rezistența  $R_3$  cu un alt rezistor având rezistența electrică  $R_5$ . Se constată că indicația voltmetrului este zero. Determinați valoarea rezistenței electrice  $R_{\scriptscriptstyle 5}$



# Examenul national de bacalaureat 2021 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

   Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.
  Timpul de lucru efectiv este de trei ore.

D. OPTICĂ Testul 7

Se consideră viteza luminii în vid  $c = 3.10^8$  m/s.

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I a mărimii fizice exprimată prin produsul  $h \cdot \lambda^{-1}$  este:
- **a.** m·s<sup>-1</sup>
- **b.** s⋅m<sup>-1</sup>
- **c.** J·s<sup>-1</sup>·m
- **d.** J·s·m<sup>-1</sup>

(3p)

- 2. O lentilă convergentă formează, pentru un obiect real aflat, față de lentilă, la o distanță mai mare decât dublul distantei focale, o imagine:
- a. reală si mărită
- **b.** reală si micsorată
- c. virtuală si mărită
- d. virtuală și micșorată

(3p)

3. Energia cinetică maximă a electronilor extrasi prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată. Valoarea constantei Planck, calculată din acest grafic, este de aproximativ:



- **a.**  $3.3 \cdot 10^{-19} \text{J} \cdot \text{s}$
- **b.**  $3.3 \cdot 10^{-34} \text{J} \cdot \text{s}$
- **c.**  $6.6 \cdot 10^{-19} \text{J} \cdot \text{s}$
- **d.**  $6.6 \cdot 10^{-34} \text{ J} \cdot \text{s}$
- **4.** O rază de lumină se propagă în aer si cade sub un unghi de incidentă  $i = 60^{\circ}$  pe fata superioară a unei lame cu fete plane si paralele. Lama are grosimea de 6mm si este confectionată dintr-un material transparent cu indice de refracție  $n=1,73 (\simeq \sqrt{3})$ . Deplasarea razei emergente față de raza incidentă, la trecerea prin lama cu fețe plan-paralele are valoarea de aproximativ:
- **a.** 2,5mm
- **b.** 3,5mm
- **c.** 4,5mm
- **d.** 5,5 mm
- (3p)
- 5. O lentilă plan-concavă se află în aer și are convergența  $C = -2 \text{ m}^{-1}$  și raza de curbură a feței sferice R. O lentilă biconcavă simetrică, din acelasi material, având suprafetele sferice cu aceeasi rază de curbură R, are convergența:
- **a.**  $-1 \text{ m}^{-1}$
- **b.**  $-2 \text{ m}^{-1}$
- $c. -3 \text{ m}^{-1}$
- **d.**  $-4 \text{ m}^{-1}$

### II. Rezolvaţi următoarea problemă:

(15 puncte)

Un obiect liniar luminos este plasat în fața unei lentile subțiri, convergente, L1. Obiectul este perpendicular pe axa optică principală, iar distanta dintre obiect si lentilă este de 12cm. Imaginea virtuală a obiectului este de patru ori mai mare decât obiectul.

- a. Calculați distanța focală a lentilei.
- b. Realizați un desen în care să evidențiați construcția imaginii prin lentilă, pentru obiectul considerat, în situația descrisă de problemă.
- **c**. Lentila  $L_1$ , împreună cu o altă lentilă subțire  $L_2$ , formează un sistem optic centrat. Se constată că, dacă distanța dintre lentile este d = 12cm, orice rază de lumină care intră în sistemul optic paralel cu axa optică principală, iese din sistem tot paralel cu axa optică principală. Calculați convergența lentilei  $L_2$ .
- d. Calculați mărirea liniară transversală dată de sistemul optic descris la punctul c, în situația în care razele de lumină care provin de la obiect intră în sistemul optic prin lentila  $L_1$ .

## III. Rezolvati următoarea problemă:

(15 puncte)

Distanța dintre fantele unui dispozitiv Young este  $2\ell = 5.5 \cdot 10^{-4} \, \text{m}$ , iar ecranul de observație se află la distanta  $D = 165 \,\mathrm{cm}$  de paravanul cu fante. Dispozitivul Young este amplasat în aer  $(n \cong 1)$ . Lungimea de undă a radiatiei monocromatice emise de sursa de lumină este  $\lambda = 400\,\text{nm}$ . Determinati:

- a. frecventa radiatiei utilizate:
- b. valoarea interfranjei măsurate pe ecranul de observare a dispozitivului Young:
- c. distanta dintre maximele de ordinul 1 situate de o parte si de cealaltă a maximului central;
- d. deplasarea franjei centrale dacă una din fantele dispozitivului este acoperită cu o lama transparentă cu grosimea  $h = 25 \,\mu\text{m}$  confectionată dintr-un material cu indicele de refractie n = 1.36.