

MACHINE LEARNING Recommender systems

Référent module : Théo Trouillon

Objectifs

A l'issue de ce module, vous serez capable de :

- Implémenter, entraîner et évaluer un modèle de recommandation par factorisation de matrice avec la librairie Keras
- Produire des recommandations d'items pour des utilisateurs à partir de notes attribuées à un sous ensemble de ces items (des films dans le cas étudié)
- Visualiser les représentations (embeddings) des items produites par le modèle
- Réutiliser ces représentations pour d'autres tâches, comme classifier les items

Pré-requis

- Programmation en Python
- Bases d'algèbre linéaire
- Bases de machine learning (regression et classification)

Projet : Factorisation de matrice pour recommander des films (1 jour)

Modalités

- Travail en autonomie
- Production individuelle

Compétences

- Maîtriser les bases de la librairie Keras
- Recommander des items aux utilisateurs
- Visualiser et interpréter les représentations vectorielles des items
- Réutiliser ces représentations vectorielles dans un problème de classification

Consignes

• Ouvrir et compléter le notebook

Ressources

- Matrix Factorization techniques for Recommender Systems, Koren (2009) https://www.inf.unibz.it/~ricci/ISR/papers/ieeecomputer.pdf
- Hands on Machine Learning with scikit-learn and tensorflow: https://drive.google.com/file/d/1t0rc3x5YQBgLXVLET6BzR4jn5vzMl_m0/viewps=sharing
- The movieLens dataset: <u>https://grouplens.org/datasets/movielens/</u>
- Keras Functional API doc:
 https://keras.io/guides/functional_api/

Livrables

☐ Le notebook rempli