Tnum < AND, OR xor AND > Proof

2.24.21

- a) Let A be the set of concrete values represented by tnum a.
- b) Let a_{and} , a_{or} represent functions that perform bitwise AND and bitwise OR, respectively, on all members of set A:

$$A = \{a_1, a_2, a_3, ..., a_n\}$$

$$a_{and} = a_1 \wedge a_2 \wedge a_3 \wedge ... \wedge a_n$$

$$a_{or} = a_1 \vee a_2 \vee a_3 \vee ... \vee a_n$$

- c) Definition of well formed tnum: a.value \land a.mask = 0
- d) Definition of thum membership: $x \in a \iff x \land \neg a.mask = a.value$
- e) Observations:
 - 1. If all members of set A contain 1 in the *i*th bit, then a_{and} will return 1 in the *i*th bit. This corresponds to the known 1's in the tnum.
 - 2. If all members of set A contain 0 in the *i*th bit, then a_{or} will return 1 in the *i*th bit. This corresponds to the known 0's in the tnum.
 - 3. Any 1 in the *i*th bit of the resulting bitvector $a_{or} \oplus a_{and}$ corresponds to uncertain bits in the tnum. Let $a_{uncertain} = a_{or} \oplus a_{and}$ (where \oplus represents bitwise xor)
 - 4. Any 1 in the *i*th bit of the resulting bitvector $\neg(a_{or} \oplus a_{and})$ corresponds to certain bits in the tnum. Let $a_{certain} = \neg(a_{or} \oplus a_{and})$

Claim: a.value = a_{and} , a.mask = $a_{or} \oplus a_{and}$

Proof of soundness: First, we can show that our claim produces a well formed thum in the following way:

a.value
$$\wedge$$
 a.mask = 0
= $a_{and} \wedge (a_{or} \oplus a_{and}) = 0$
= $(a_{and} \wedge a_{or}) \oplus (a_{and} \wedge a_{and}) = 0$
= $(a_{and} \wedge a_{or}) \oplus (a_{and} \wedge a_{and}) = 0$
= $a_{and} \oplus a_{and} = 0$

*note that, by definition, $a_{and} \subseteq a_{or}$ which implies that $a_{and} \wedge a_{or} = a_{and}$.

Let A_k be an arbitrary member of A and $A_k[i]$ denote the *i*th bit of member A_k . Now, using a case analysis, we show that all members of A are represented by the tnum $\langle a_{and}, a_{or} \oplus a_{and} \rangle$ by satisfying the definition of tnum membership:

$$A_i \wedge \neg a.mask = a.value$$

= $A_k \wedge \neg (a_{or} \oplus a_{and}) = a_{and}$
= $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$

- 1) $A_k[i] = 0$. This implies that $a_{and}[i] = 0$ since a_{and} will capture any 0 in the *i*th of a member of A if such exists. Thus the bitwise operation $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$ holds regardless of the value of $a_{certain}[i]$.
- 2) $A_k[i] = 1$ and $a_{and}[i] = 1$. In this case the the *i*th bit must be a certain 1 since it is contained by a_{and} . This implies that $a_{certain}[i] = 1$, which means that $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$ must also be true.
- 3 $A_k[i] = 1$ and $a_{and}[i] = 0$. In this case, the 1 in the *i*th bit is uncertain since it is not present in a_{and} which implies that $a_{certain} = 0$. Thus, $A_k[i] \wedge a_{certain}[i] = a_{and}[i]$ must hold in this case as well.

Proof of maximal precision: