SCELP: Low delay audio coding with noise shaping based on spherical vector quantization

Coding of Audiovisual Contents

Miquel Oller Oliveras, Alvaro Scherk Fontanals Barcelona, November 3, 2017

Table of Contents:

Pràctica 1: Tècniques de Mesura

Objectius

- Aprendre a mesurar pressions i velocitats en un fluid
- Calcular pèrdues de càrrega lineals i singulars
- Estudiar com varien les línies de càrrega i piezomètriques d'un Venturi

Elements de mesura

./img/P1/Piezo.PNG

• Tub piezomètric:

./img/P1/columna.PNG

- Manòmetre líquid de columna inclinada:
- Manòmetre metàl·lic:
- Transductor de pressió:

Elements de mesura

Sonda de Prandtl:

./img/P1/prand2.PNG

$$\frac{P_2}{\gamma} + z_2 + \frac{c_2^2}{2g} = \frac{P_3}{\gamma} + z_3 + \frac{c_3^2}{2g} + \Delta h_{23}$$

$$\Delta z = 0 \qquad c_3 = 0 \qquad \Delta h_{23} = 0$$

Pèrdues de càrrega

Pèrdues de càrrega lineals

Dades:

L [m]	D [m]	$\Delta z[m]$
0,8	0,026	0

Mesures:

$$\frac{P_1-P_2}{\gamma}=6,5~mm_cH_2O=5,417~m_cAire$$

$$Q = 19 \, \frac{\mathsf{m}^3}{\mathsf{h}} = \frac{19}{3600} = \, \frac{\mathsf{m}^3}{\mathsf{s}} \qquad \qquad c = \frac{Q}{A} = \frac{19}{3600 \cdot \frac{\pi \cdot 0,026^2}{4}} = 9,94 \, \frac{\mathsf{m}}{\mathsf{s}}$$

Pèrdues de càrrega lineals

Per Bernoulli:

$$\frac{P_1}{\gamma} + z_1 + \frac{c_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{c_2^2}{2g} + \Delta h_{12}$$

Pel tram lineal $z_1 = z_2$, D constant $\rightarrow c$ constant:

$$\frac{P_1 - P_2}{\gamma} = \Delta h_{12}$$

Per Darcy - Weisbach:

$$\Delta h = \lambda \cdot \frac{L}{D} \cdot \frac{c^2}{2g} = \frac{P_1 - P_2}{\gamma}$$

$$\lambda = \frac{2 \cdot D \cdot \frac{P_1 - P_2}{\gamma}}{L \cdot c^2} = \frac{2 \cdot 0,026 \cdot 5,417}{0.8 \cdot 9.94^2} = 0,00356$$

Pèrdues de càrrega singulars

Mesures en m_{cAire} ,

Colze	$\frac{P_1-P_2}{\gamma}$ $[m_{cAire}]$	Δz [m]	$\Delta h_{tot}[m_{cAire}]$
180°	2,083	0,08	2,003
135°	0,833	0,09	0,743
90°	2,083	0,145	1,938

Pèrdues de càrrega singulars

$$\frac{P_1}{\gamma} + z_1 + \frac{c_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{c_2^2}{2g} + \Delta h_{12} + \Delta h_s$$

$$D = cte \rightarrow c = cte, \text{i considerant } h_{tot} = h_{12} + h_s,$$

$$\frac{P_1}{\gamma} + z_1 = \frac{P_2}{\gamma} + z_2 + \Delta h_{tot} \qquad \longrightarrow \qquad \Delta h_{tot} = \frac{P_1 - P_2}{\gamma} - \Delta z$$

$$\Delta h_s = \Delta h_{tot} - \Delta h_l \qquad \qquad \mathcal{K} = \frac{2 \cdot g \cdot \Delta h_s}{c^2}$$

Tenim una bifurcació, mesurem velocitat amb sonda Prantdl,

$$c[m/s] \cong 4 \cdot \sqrt{(h_b - h_a)[mm_c H_2 O]}$$

Pèrdues de càrrega singulars

Colze	Δh_{tot} [mcAire]	$h_b - h_a$ [mmcAigua]	c [m/s]	<i>L</i> [m]	D [m]	Δh_I [mcAire]	Δh_S [mcAire]	K
180°	2,003	2	5,66	0,2	0,026	0,0447	1,9583	1,199
135°	0,743	2	5,66	0,2	0,026	0,0447	0,698	0,428
90°	1,938	3	6,93	0,2	0,026	0,067	1,871	0,764

Tal i com era d'esperar, $K_{180^{\circ}} \geq K_{90^{\circ}} \geq K_{135^{\circ}}$.

Sonda Prantdl,

 $D_A = 70cm$

$$\Delta h = 9mm_c H_2 O \rightarrow c_A = 12 \frac{m}{s}$$

$$\rightarrow \qquad Q = 12 \cdot \frac{\pi \cdot 0.07^2}{4} = 0,0462 \frac{m^3}{s}$$

Punt	1	5	8
$\frac{\Delta P}{\gamma}$ [mm _c H2O]	30	-85	15

Cota piezomètrica =
$$\frac{P}{\gamma} + z = \frac{P}{\gamma}$$

Cota de càrrega = $\frac{P}{\gamma} + z + \frac{c^2}{2g} = \frac{P}{\gamma} + \frac{c^2}{2g}$

$$c = \frac{Q}{A} = \frac{Q}{\frac{\pi \cdot D^2}{4}}$$

Punt	1	5	8
D [mm]	95,8	38,7	89,8
c [m/s]	6,407	39,260	7,2916
$\frac{P}{\gamma}$ [mcAire]	25	-70,83	12,5
Piezomètrica	25	-70,83	12,5
Càrrega	27,09		15,21

Pràctica 2: Simulació

Fluidodinàmica

Repàs Teòric

 $./{\tt img/P3/teoCL.PNG}$

Desprendiment de la Capa Límit

./img/P3/2.PNG

Desprendiment de la Capa Límit

./img/P3/3.PNG

Visualització de la capa límit

./img/P3/capa_limit.PNG

Visualització de la capa límit: Perfil de velocitats

 $./{\tt img/P3/capa_limit2.PNG}$

Visualització de la capa límit: Perfil de velocitats

 $./{\tt img/P3/capa_limit3.PNG}$

Visualització del les línies de corrent

 $./{\tt img/P3/stream_function.PNG}$

Visualització del les línies de corrent

 $./{\tt img/P3/stream_function2.PNG}$

Visualització de les pressions

 $./{\tt img/P3/presins.PNG}$

Pràctica 3: Anàlisi Simulatori

Visualització de la velocitat 0°

./img/P4/v0.PNG

Visualització de la velocitat 0°

./img/P4/v00.PNG

Visualització de la velocitat 0°

./img/P4/v000.PNG

Visualització de la pressió 0°

./img/P4/p0.PNG

Visualització de la velocitat 5°

./img/P4/v5.PNG

Visualització de la velocitat 5°

./img/P4/v55.PNG

Visualització de la velocitat 5°

./img/P4/v555.PNG

Visualització de la pressió 5°

./img/P4/p5.PNG

Visualització de la velocitat 10°

 $./{\tt img/P4/v10.PNG}$

./img/P4/v1010.PNG

./img/P4/v101010.PNG

Visualització de la pressió 10°

./img/P4/p10.PNG

./img/P4/v15.PNG

./img/P4/v1515.PNG

./img/P4/v151515.PNG

./img/P4/v15151515.PNG

Visualització de la pressió 15°

./img/P4/p15.PNG

./img/P4/v18.PNG

./img/P4/v1818.PNG

./img/P4/v181818.PNG

 $./{\tt img/P4/v18181818.PNG}$

Visualització de la pressió 18°

./img/P4/p18.PNG

Animació:

Gràfics coeficients: c_L

Gràfics coeficients: c_D

SCELP: Low delay audio coding with noise shaping based on spherical vector quantization

Coding of Audiovisual Contents

Miquel Oller Oliveras, Alvaro Scherk Fontanals Barcelona, November 3, 2017

