

Probleemstelling

Joppe De Jonghe, Juha Carlon

Waarover gaat het?

- Netwerk-fout op training data ⇒ kostfunctie
- De kostfunctie wordt verkleind door het netwerk te trainen
 (⇒ netwerk presteert beter op training data)
- Algoritmes om deep neural networks te trainen: SGD
- Parameter keuzes voor het trainen van het netwerk
 - Aantal iteraties
 - Stap-grootte
 - Batch-grootte
- Uiteindelijk is goede generalisatie het doel

Observatie

- Stochastic gradient descent
- Beide foto's: 10^6 iteraties, batch = 1
- Stap-grootte beinvloedt generalisatie

Vraagstelling

- Andere metaparameter?
- Hoe sensitief is het resultaat?

Hoe beïnvloeden veranderingen in metaparameters van het trainingsalgoritme de generalisatie performantie en generalisatie sensitiviteit van een neuraal netwerk?

Waarom belangrijk?

METAPARAMETERS ZIJN DEEL VAN DE ONTWERPKEUZE METAPARAMETERS DRAGEN BIJ AAN PERFORMANTIE

INVLOED ANALYSEREN KAN LEIDEN TOT BETERE ONTWERPKEUZES

Hoe aanpakken?

Metaparameters

- Simpele vormen gebruiken voor classificatie
- Driehoek, cirkel, ster
- Verschillende waarden voor metaparameters

STAP-GROOTTE

0.05 0.15 0.25 0.35

BATCH-GROOTTE

1 10 100 500

Andere (meta)parameters constant houden

Sensitiviteit

- Vertrekken van trainingsset D1
- 1 datapunt van D1 perturberen
- Geeft dataset D2

Hoe resultaten met elkaar vergelijken?

- Ruimte van mogelijke datapunten klein
- Datapunt-rooster opstellen
- Maat voor generalisatie = % van rooster dat correct is geclassificeerd

Vragen?

