Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 10 martie 2018

SOLUŢII ŞI BAREME ORIENTATIVE-CLASA a 7-a Varianta 2

Problema 1. Arătați că oricare ar fi numărul natural nenul n, numărul $\sqrt{n + \left[\sqrt{n} + \frac{1}{2}\right]}$ este irațional.

(Am notat cu [a] partea întreagă a numărului real a.)

Gazeta Matematică

Soluție. $\left[\sqrt{n} + \frac{1}{2}\right] = k$, k număr natural, $k \le \sqrt{n} + \frac{1}{2} < k + 1$
$k - \frac{1}{2} > 0$
$(k-\frac{1}{2})^2 < n < (k+\frac{1}{2})^2$
$k^2 + \frac{1}{4} \le n + k < k^2 + 2k + \frac{1}{4}$
$k^2 < n + \left[\sqrt{n} + \frac{1}{2}\right] < (k+1)^{\frac{7}{2}}$
numărul din enunț este irațional

Problema 2. Determinați perechile de numere întregi (a, b) care au proprietatea că $a^2 + 2b^2 + 2a + 1$ este divizor al lui 2ab.

Soluție. $(0,b)$ și $(a,0)$ sunt soluții pentru orice a,b întregi
(a,b) este soluție dacă și numai dacă $(a,-b)$ este soluție,
reducere la cazul $ab > 0$
$a^2 + 2b^2 + 2a + 1 \le 2ab$
$(a-2b)^2 + (a+2)^2 \le 2 \dots 1$ punct
$ a+2 \le \sqrt{2}, a-2b \le \sqrt{2}, a \in \{-3, -2, -1\},$
$(a,b) \in \{(-3,-2); (-3,-1); (-1,-1)\}$ (după verificări)
$S_1 = \{(-3, -2); (-3, -1); (-1, -1); (-3, 2); (-3, 1); (-1, 1)\},\$
$S_2 = \{(a,0) a \in \mathbb{Z}\} \cup \{(0,b) b \in \mathbb{Z}\}, S = S_1 \cup S_2 \dots 1 \text{ punct}$

Problema 3. Fie dreptunghiul ABCD şi punctele arbitrare $E \in (CD)$ şi $F \in (AD)$. Perpendiculara din punctul E pe dreapta FB intersectează dreapta BC în punctul P şi perpendiculara din punctul F pe dreapta EB intersectează dreapta AB în punctul Q. Să se arate că punctele P, D şi Q sunt coliniare.

Problema 4. Fie triunghiul ABC cu $m(\widehat{A})=80^\circ$ şi $m(\widehat{C})=30^\circ$. Considerăm punctul M interior triunghiului ABC astfel încât $m(\widehat{MAC})=60^\circ$ şi $m(\widehat{MCA})=20^\circ$. Dacă N este intersecția dreptelor BM şi AC să se arate că (MN) este bisectoarea unghiului \widehat{AMC} .

Soluţie.

$AM \cap BC = \{D\}, AD \perp BC, BE \perp CM, M \in (EC), BE \cap AM = \{A'\},\$
$\triangle BAA'$ isoscel $(m(\widehat{ABA'}) = m(\widehat{AA'B}) = 10^{\circ}) \dots 1$ punct
Fie A'' cu $\triangle BCA''$ echilateral, CA bisectoarea unghiului $\widehat{BCA''}$
CA mediatoarea lui $[BA'']$, A egal depărtat de B și A'' ,
$\triangle BAA''$ isoscel $(m(\widehat{ABA''}) = m(\widehat{AA''B}) = 10^{\circ})$
$\triangle BAA' \equiv \triangle BAA''$ (U.L.U), $BA' = BA''$ punct
$\triangle BDA' \equiv \triangle BEC$ (I.U.), $BD = BE$,
B se află pe bisectoarea lui $m(\widehat{AMC})$