Distributed Learning and You

Ruksi Laine

@ruk_si

https://valohai.com

@valohaiai

Me? Hi, I'm Ruksi.

Machine Learning Engineer https://ruk.si
@ruk_si

@valohaiai

Scale Drives Deep Learning Process

Scale Makes Everything Slow

Scale Drives Deep Learning Process

Scale Makes Everything Slow

Scale Drives Deep Learning Process

Scale Makes Everything Slow

Scale Drives Deep Learning Process

Scaling Efficiency

Deep Learning is Innately Sequential

Two Main Branches of Distributed Learning

Model Parallelization

Model Parallelization

Model Parallelization

Model Parallelization

Synchronize weights θ to train models fast.

Model Parallelization

Synchronize weights θ to train models fast.

Partition a model to build huge models.

Model Parallelization

Synchronize weights θ to train models fast.

Partition a model to build huge models.

Synchronize weights θ to train models fast.

Model Parallelization

Partition a model to build huge models.

device model

some training data

a lot of training data

a lot of training data

Data Parallelization

devi evice device model mc el del

Model Parallelization

The Brief History of Distributed Learning

Shared Training Loop

Shared Training Loop

Shared Training Loop

Locking Updates

Lock-free Updates

(The Hogwild)

Notation

Usually

worker count == number of GPUs

Each server has limited network bandwidth.

(Parameter Server Cluster)

(Parameter Server Cluster)

Synchronous Allreduce

Synchronous Allreduce

Butterfly Allreduce

- Worker 1
- Worker 2 1
- Worker 3 ²
- Worker 4 3
- Worker 5 4
- Worker 6 5
- Worker 7 6
- Worker 8 7

Butterfly **-**∇(θ) Allreduce

Ring Allreduce

Ring Allreduce

Ring Allreduce

HGROVDE

/ALOHAI

Hierarchical Allreduce

Hierarchical Allreduce

1. Setup

2. Local ReduceScatter

3. Global Allreduce

4. Local Gather

Tools

Sources and Further Reading

<u>HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent</u> Feng Niu, Benjamin Recht, Christopher Ré, Stephen J. Wright

<u>Large Scale Distributed Deep Networks</u>
Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, et al.

<u>Bandwidth Optimal All-reduce Algorithms for Clusters of Workstations</u> Pitch Patarasuk, Xin Yuan

Slim Fly: A Cost Effective Low-Diameter Network Topology Maciej Besta, Torsten Hoefler

<u>Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour</u> Priya Goyal, Piotr Dollar, , Ross Girshick, et al.

<u>Horovod: Distributed Deep Learning in 5 Lines of Python</u> Uber Open Summit 2018

<u>Distributed TensorFlow Documentation</u> TensorFlow

Thank You! and Q&A

Ruksi Laine
@ruk_si
Machine Learning Engineer
@valohaiai
https://valohai.com/

