Formal Languages and Abstract Machines Take Home Exam 2

Nazir Bilal Yavuz 2099471

1 Context-Free Grammars

(10 pts)

a) Give the rules of the Context-Free Grammars to recognize strings in the given languages where $\Sigma = \{a, b\}$ and S is the start symbol.

$$L(G) = \{ w \mid w \in \Sigma^*; \ |w| \ge 3;$$
 the first and the second from the last symbols of w are the same \} (2/10 \text{ pts})

$$S \to A \mid Abb$$
$$A \to aA \mid bA \mid a \mid b$$

$$L(G) = \{ w \mid w \in \Sigma^*; \text{ the length of w is odd} \}$$
 (2/10 pts)

$$\begin{array}{c} S \rightarrow Aa \mid Ab \\ A \rightarrow Aaa \mid Aab \mid Aba \mid Abb \mid e \end{array}$$

 $L(G) = \{ w \mid \ w \in \Sigma^*; \ n(w,a) = 2 \cdot n(w,b) \} \text{ where } n(w,x) \text{ is the number of } x \text{ symbols in } w \text{ (3/10 pts)} \}$

$$\begin{array}{l} A \rightarrow BBa \mid BaB \mid aBB \mid e \\ B \rightarrow bS \mid Sb \end{array}$$

b) Find the set of strings recognized by the CFG rules given below:

(3/10 pts)

$$\begin{split} S &\to X \mid Y \\ X &\to aXb \mid A \mid B \\ A &\to aA \mid a \\ B &\to Bb \mid b \\ Y &\to CbaC \\ C &\to CC \mid a \mid b \mid \varepsilon \end{split}$$

$$a^*b^* \mid (a|b)^* \ ba \ (a|b)^*$$

2 Parse Trees and Derivations

(20 pts)

Given the CFG below, provide parse trees for given sentences in **a** and **b**.

```
S \rightarrow NP VP  
VP \rightarrow V NP | V NP PP  
PP \rightarrow P NP  
NP \rightarrow N | D N | NP PP  
V \rightarrow wrote | built | constructed  
D \rightarrow a | an | the | my  
N \rightarrow John | Mary | Jane | man | book | automata | pen | class  
P \rightarrow in | on | by | with
```

a) Jane constructed automata with a pen

(4/20 pts)

b) my book in the man built a Jane by a pen

(4/20 pts)

Given the CFG below, answer \mathbf{c} , \mathbf{d} and \mathbf{e}

c) Provide the left-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

d) Provide the right-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

e)	Are the derivations in \mathbf{c} and \mathbf{d} in the same similarity class?	(4/20 pts)
	Yes, because one of them precedes the other.	

3 Pushdown Automata

(30 pts)

a) Find the language recognized by the PDA given below

(5/30 pts)

where the transition $((q_i, \alpha, \beta), (q_j, \gamma))$ is represented as:

answer here ...

b) Design a PDA to recognize language $L = \{x^n y^{m+n} x^m \mid n, m \ge 0; n, m \in \mathbb{N}\}$ (5/30 pts)

answer here ...

c) Design a PDA to recognize language $L = Do$ not use multi-symbol push/pop operation Simulate the PDA on strings xxy (with only tion) with transition tables.	ns in your transitions.	
answer here		

	and L as $L' = \{ w \mid w \in L; w = 4n + 2 \text{ for } n \in \mathbb{N} \}$ s also a CFL by constructing an automaton for L' in te	
automaton that recognizes L .	, and a CIL by combinationing an automation for L in te	
answer here		

Closure Properties 4

(20 pts)

Let L_1 and L_2 be context-free languages which are not regular, and let L_3 be a regular language. Determine whether the following languages are necessarily CFLs or not. If they need to be context-free, explain your reasoning. If not, give one example where the language is a CFL and a counter example where the language is not a CFL.

a)
$$L_4 = L_1 \cap (L_2 \setminus L_3)$$
 (10/20 pts)

No.

 $L_2 - L_3 = L_2 \cap L_3'$ since $(L_3)'$ is regular because regular languages are closed under complement and intersection of them is context free.

 $L_1 \cap L_3$ not certainly context free. $L_1 = q^k z^k x^l$ and $L_2 - L_3 = z^k x^k$

b)
$$L_5 = (L_1 \cap L_3)^*$$
 (10/20 pts)

Yes.

All regular languages are subset of context-free so that $L_1 \cap L_3$ is also context-free. Context-free languages are closed under Kleene Star so that L_5 is CFL.

5 Pumping Theorem

(20 pts)

a) Show that $L = \{a^n m^n t^i \mid n \le i \le 2n\}$ is not a Context Free Language using Pumping Theorem for CFLs.

(10/20 pts)

```
uvxyz = aammtt and vxy = aam \rightarrow uv^2xy^2z = aaammmtt \rightarrow n > i so that this language is not Context-Free.
```

b) Show that $L = \{a^n b^{2n} a^n \mid n \in \mathbb{N} + \}$ is not a Context Free Language (10/20 pts) using Pumping Theorem for CFLs.

```
uvxyz = abba and vxy = abb \rightarrow uv^2xy^2z = aabbba \rightarrow n = 2, 2n = 3, n = 1 so that this language is not Context-Free.
```

6 CNF and CYK

(not graded)

a) Convert the given context-free grammar to Chomsky Normal Form.

$$\begin{split} S &\to XSX \mid xY \\ X &\to Y \mid S \\ Y &\to z \mid \varepsilon \end{split}$$

answer here		

b) Use the grammar below to parse the given sentence using Cocke–Younger–Kasami algorithm. Plot the parse trees.

 $S \to NP\ VP$ $VP \rightarrow book \mid include \mid prefer$ $S \rightarrow X1 VP$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $X2 \rightarrow Verb NP$ $S \to Verb\ NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $S \rightarrow X2 PP$ $S \to Verb PP$ $PP \rightarrow Prep NP$ $S \rightarrow VP PP$ $Det \rightarrow that \mid this \mid the \mid a$ $NP \rightarrow I \mid she \mid me \mid Houston$ Noun \rightarrow book | flight | meal | money $\mathrm{NP} \to \mathrm{Det}\ \mathrm{Nom}$ $Verb \rightarrow book \mid include \mid prefer$ $Nom \rightarrow book \mid flight \mid meal \mid money$ $Aux \rightarrow does$ $Nom \rightarrow Nom Noun$ $\operatorname{Prep} \to \operatorname{from} \mid \operatorname{to} \mid \operatorname{on} \mid \operatorname{near} \mid \operatorname{through}$ $Nom \rightarrow Nom PP$

book the flight through Houston

7 Deterministic Pushdown Automata

(not graded)

Provide a DPDA to recognize the given languages, the DPDA must read its entire input and finish with an empty stack.

\mathbf{a}	$a^*bc \cup$	a^nb^nc
<u>u</u>	$u \circ c \circ$	$u \circ c$

answer here		
answer here		

answer here			