Ех. Пример мультиномиальной теоремы:

$$(x+y+z)^4 = 1(x^4+y^4+z^4) + 4(xy^3+xz^3+x^3y+yz^3+y^3z+yz^3) + 6(x^2y^2+y^2z^2+x^2z^2) + 12(xyz^2+xy^2z+x^2yz)$$

Доказательство:

$$(x_1+\cdots+x_r)^n=\sum_{\substack{i_j\in [r]\\j\in [n]}}x_{i_1}^1\cdot\cdots\cdot x_{i_n}^1=\sum_{\substack{i_j\in [r]\\j\in [n]}}x_1^{k_1}\cdot\cdots\cdot x_r^{k_r},$$
 где k_t – количество x с индексом t в одночлене $(k_t=|\{j\in [n]|i_j=t\}|)$

Получается мультиномиальный коэффициент $\binom{n}{k_1,\ldots,k_r}$ будет равен количество способов поставить k_1 единиц в индексы в $x_{i_1}^1\cdot\dots\cdot x_{i_n}^1,\,k_2$ двоек в индексы и так далее

У нас есть $\binom{n}{k_1}$ способов поставить единицу в индексы в одночлен, $\binom{n-k_1}{k_2}$ способов

$$\begin{pmatrix} n \\ k_1, \dots, k_r \end{pmatrix} = \begin{pmatrix} n \\ k_1 \end{pmatrix} \begin{pmatrix} n - k_1 \\ k_2 \end{pmatrix} \dots \begin{pmatrix} n - k_1 - \dots - k_{r-1} \\ k_r \end{pmatrix} = [n - k_1 - \dots - k_r = 0] =$$

$$\frac{n!}{k_1!(n - k_1)!} \frac{(n - k_1)!}{k_2!(n - k_1 - k_2)!} \dots \frac{(n - k_1 - \dots - k_{r-1})!}{k_r!0!} = \frac{n!}{k_1! \dots k_r!}$$

• Перестановка мультимножества Σ^* (Permutations of a multiset Σ^*)

$$\Sigma^* = \{ \triangle^1, \triangle^2, \square, \star \} = (\Sigma, r) \quad r : \Sigma \to \mathbb{N}_0 \quad n = |\Sigma^*| = 4 \quad s = |\Sigma| = 3$$

$$Nota.$$
 $\begin{cases} \Delta^1, \Delta^2, \square, \bigstar \\ \Delta^2, \Delta^1, \square, \bigstar \end{cases}$ считаются равными перестановками

$$|P^*(\Sigma^*,n)| = \frac{n!}{r_1!\dots r_s!} = \binom{n}{r_1,\dots,r_s}$$
 — количество перестановок мультимножества, где r_i — количество i -ого элемента в мультимножестве

• k-комбинация бесконечного мультимножества (k-combinations of infinite multiset) – такое субмультимножество размера k, содержащее элементы из исходного мультимножества. При этом соблюдается, что количество какого-либо элемента r_i в исходном мультимножестве не больше размера комбинации k

$$\Sigma^* = \{ \infty \cdot \triangle, \infty \cdot \square, \infty \cdot \star, \infty \cdot \not \exists \}^* \quad n = |\Sigma^*| = \infty$$

$$\Sigma = \{ \triangle, \square, \star, \not \exists \} \quad s = |\Sigma| = 4$$

Ex. 5-комбинация: $\{\Delta, \star, \Box, \star, \Box\}$

Разделяем на группы по Σ палочками:

$$\triangle \square \square \star \star$$

Заменяем элементы на точечки – нам уже не так важен тип элемента, потому что мы знаем из разделения:

(другой
$$Ex. \bullet \bullet \bullet \bullet \parallel \bullet = \{4 \cdot \triangle, 1 \cdot \cancel{A}\}$$
)

Получается всего k точечек и s-1 палочек, всего k+s-1 объектов. Получаем мультимножество $\{k\cdot \bullet, (s-1)\cdot \mid\}$ (Star and Bars method)

Получаем количество перестановок этого мультимножества: $\frac{(k+s-1)!}{k!(s-1)!} = \binom{k+s-1}{k,s-1} =$

$$\binom{k+s-1}{k} = \binom{k+s-1}{s-1}$$

что и является количеством возможных k-комбинаций бесконечного мультимножества

• Слабая композиция (Weak composition) неотрицательного целого числа n в k частей – это решение (b_1, \ldots, b_k) уравнение $b_1 + \cdots + b_k = n$, где $b_i \ge 0$

$$|\{$$
слабая композиция n в k частей $\}| = \binom{n+k-1}{n,k-1}$

Для решения воспользуемся аналогичным из доказательства мультиномиальной теоремы приемом:

$$n = 1 + 1 + 1 + \dots + 1$$

Поставим палочки:

$$n = 1 + 1 \left| 1 \right| \dots + 1$$

Получаем задачу поиска количеств k-комбинаций в мультимножестве: $\{n \cdot 1, (k-1) \cdot | \}$;

получаем
$$\binom{n+k-1}{n,k-1}$$

• Композиция (Composition) – решение для $b_1+\cdots+b_k=n$, где $b_i>0$

$$|\{$$
композиция n в k частей $\}|=egin{pmatrix} n-k+k-1\\ n-k,k-1 \end{pmatrix}$

Мы знаем, что одну единичку получит каждая b_i , поэтому мы решаем это как слабую композицию для n-k в k частей

• Число композиций *n* в некоторой число частей (Number of all compositions into some number of positive parts)

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}$$

Пусть
$$t = k - 1$$
, тогда $\sum_{t=0}^{n-1} \binom{n-1}{t} = 2^{n-1}$

ullet Разбиения множества (Set partitions) — множество размера k непересекающихся непустых подмножеств

$$Ex.\ \{1,2,3,4\}, n=4, k=2
ightarrow$$
 [разбиение в 2 части] $ightarrow$ $\{\{1\},\{2,3,4\}\},$ $\{\{1,2\},\{3,4\}\},$ $\{\{1,2\},\{2,3\},\{4\}\},$ $\{\{1,4\},\{2,3\}\},$ $\{\{2\},\{1,3,4\}\},$ $\{\{3\},\{1,2,4\}\}$

 $|\{$ разбиение n элементов в k частей $\}|=egin{cases} n \\ k \end{bmatrix}=S_k^{II}(n)=S(n,k)$ — число Стирлинга второго рода

Для примера выше число Стирлинга $S(4,2) = \begin{cases} 4 \\ 2 \end{cases} = 7$

Согласно Википедии для формулы Стирлинга есть формула: $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k+j} \binom{k}{j} j^n$

• Формула Паскаля (Pascal's formula)

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• **Рекуррентное отношение** для чисел Стирлинга (Recurrence relation for Stirling⁽²⁾ number):

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$$

Возьмем какое-либо разбиение для n-1 элементов на k частей, тогда возможны два случая:

- 1. В k-ое множество нет ни одного элемента, тогда мы обязаны в него положить наш n-ый элемент по определению, количество перестановок будет равно ${n-1 \brace k-1} \cdot 1$
- 2. В k-ом множестве уже есть элементы, тогда все множества будут заполнены и у нас будет выбор из k множеств, куда положить k-ый элемент, то есть $k \cdot {n-1 \brace k}$

Эти два случая независимы, поэтому получаем $\binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$

• Число Белла (Bell number) – количество всех неупорядоченных разбиений множества размера n

Число Белла вычисляется по формуле: $B_n = \sum_{m=0}^n S(n,m)$

ullet Целочисленное разбиение (Integer partition) — решение для $a_1+\cdots+a_k=n$, где

 $a_1 \ge a_2 \ge \cdots \ge a_k \ge 1$

p(n,k) — число целочисленных разбиений n в k частей

$$p(n) = \sum_{k=1}^{n} p(n,k)$$
 – число всех разбиений для n

$$Ex. 5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$$