Aleksandar Gajić

Određivanje raspodele supernovih tipa Ia u spiralnim galaksijama u odnosu na galaktičku ravan

Cili ovog rada je određivanje raspodele supernovih u odnosu na galaktičku ravan, uz pretpostavku da su supernove sa najmanjom ekstincijom ispred galaksije, tj. odvojene od galaktičkog diska bliže nama, a one sa najvećom ekstincijom iza galaksije, te da svetlost prolazi kroz celu širinu galaksije i trpi najveću ekstinciju. Pretpostavlja se da je materija u galaksijama homogena. Kako je slabljenje svetlosti koja prolazi kroz homogenu materiju proporcijalno dužini puta koju prolazi kroz nju, to nam omogućava da na osnovu ekstincije odredimo položaj u odnosu na galaktičku ravan. Dobijeni rezultati ukazuju da je raspodela supernovih po ekstinciji u magnitudama Gausova, sa maksimumom na 0.97 magnitude. Nažalost, zbog malog broja supernovih koje su ostale nakon selekcije, nije bila moguća precizna statistička obrada podataka. Problem kod supernovih je što su one snimane samo u jednom, najčešće, B filteru.

Uvod

Supernove tipa Ia nastaju u tesnim dvojnim sistemima, kada materija sa primarne komponente (crvenog džina) pretače na sekundarnu (belog patuljka). Beli patuljci imaju prečnik reda veličine Zemljinog, a masu približnu masi Sunca, što ove zvezde čini veoma gustim. Kada crveni džin pređe Rošovu granicu materija počinje da prelazi na belog patuljka formirajući akrecioni disk i nakon što masa belog patuljka pređe čandrasekarovu granicu on počinje da kolapsira, pri čemu dolazi do eksplozije, koja se naziva supernova tipa Ia. Upravo zbog toga što supernove tipa Ia nastaju od zvezda približno iste mase, one imaju ujednačenu luminoznost, što ih čini

standardnim svećama. Ove supernove se nalaze uglavnom u spiralnim galaksijama. Dvojni sistemi se tokom evolucije mogu znatno udaljiti od molekularnih oblaka u kojima su nastali, a proučavanje supernovih tipa Ia omogućava da saznamo koliki put ti sistemi prolaze tokom evolucije.

Metod

Podaci korišćeni u projektu su prvenstveno preuzeti sa Sternberg Astronomical Institutete) kataloga (u daljem tekstu SAI) i NASA/IPAC Extragalactic Databasee) baze podataka (u daljem tekstu NED). Potrebni podaci koje nudi SAI katalog su: rektascenzija i deklinacija galaksije i supernove, inklinacija galaksije, crveni pomak i prividna magnituda, a Coordinate Transformation and Galactic Extinction Calculator) na sajtu NED-a nudi se mogućnost da se izračuna ekstincija u Mlečnom putu za zadate koordinate. Najpre su iz kataloga izdvojene supernove Ia, posmatrane u B filteru.

Slika 1. Model izračunavanja udaljenosti supernove od centra galaksije

Figure 1. Model of determination of distance from supernova to center of the galaxy

Aleksandar Gajić (1991), Beograd, Vodovodska 64a, učenik 3. razreda Tehničke škole u Beogradu

MENTOR: Ivan Milić, student astrofizike na Matematičkom fakultetu u Beogradu Ugaono rastojanje između centra galaksije i supernove ρ računato je prema formuli (vidi sliku 1):

$$\rho = \sqrt{\cos \delta^2 \cdot \Delta \alpha^2 + \Delta \delta^2} \tag{1}$$

gde je δ deklinacija, $\Delta\alpha$ razlika rektascenzija i $\Delta\delta$ razlika deklinacija supernove i jezgra galaksije.

Udaljenost galaksije računata je Hablovim zakonom:

$$d = \frac{z \cdot c}{H_0} \tag{2}$$

gde je z crveni pomak, a H_0 Hablova konstanta za čiju vrednost je uzeta $H_0 = 74.2 \pm 3.6$.

Rastojanje između supernove i jezgra galaksije u Mpc računato je formulom:

$$r = \frac{\rho \cdot d}{\cos i} \tag{3}$$

gde je i inklinacija galaksije.

Za vrednost apsolutne magnitude uzima se $M_{\rm B} = -19.6 \pm 0.2$ Koristeći apsolutnu magnitudu i

moduo rastojanja izračunata je prividna magnituda bez uračunatih ekstincija prema formuli:

$$m_r = M - 5 + 5\log d \tag{4}$$

gde je m_r računata magnituda, a d udaljenost galaksije u pc.

Zatim je izračunata ekstincija u matičnoj galaksiji supernove tako što je od prividne magnitude preuzete iz kataloga oduzeta računata magnituda i ekstincija u Mlečnom putu izražena u magnitudama, pa je sve to podeljeno kosinusom inklinacije kako bi se model sveo na takav u kome je inklinacija 0°.

$$a = \frac{m - m_r - a_{mw}}{\cos i} \tag{5}$$

gde je a ekstincija u matičnoj galaksiji, a a_{mw} ekstincija u mlečnom putu.

Odabir podataka

Kako bi formula 5 bila važeća odbacuju se sve galaksije sa inklinacijom većom od 70°. Odbacuju se i supernove sa udaljenostima u odnosu na jezgro

Tabela 1. Izdvojene supernove

Supernova	Galaksija	i	Z	r [kpc]	m	a_{mw}	d [Mpc]	m_r	а		
1983R	IC1731	55	0.011679	3.59870	14.0	0.354	47.1870	13.7691	-0.2146180	±	2.17980
1974J	NGC7343	38	0.024912	10.70070	16.0	0.623	100.6530	15.4141	-0.0470806	±	1.58663
1993ag	PGC648636	55	0.070999	15.71180	18.3	0.585	286.8590	17.6883	0.0465500	±	2.17980
1961P	UGC02069	54	0.012598	15.11390	14.3	0.236	50.9001	13.9336	0.2218500	±	2.12711
1991ag	IC4919	51	0.014223	10.23990	14.7	0.273	57.4656	14.1970	0.3654740	±	1.98672
1994C	MCG+08-15-023	19	0.050193	8.23548	17.8	0.422	202.7960	16.9353	0.4682090	±	1.32233
19900	MCG+03-44-003	49	0.030664	3.95515	16.6	0.392	123.8930	15.8652	0.5225140	±	1.90575
1996bl	PGC1392929	28	0.036001	4.31536	17.0	0.307	145.4560	16.2137	0.5428410	±	1.41603
1992bp	PGC869197	49	0.079001	3.75967	18.5	0.145	319.1900	17.9202	0.6627450	±	1.90575
1993O	PGC679349	53	0.051999	12.18590	17.8	0.327	210.0930	17.0121	0.7658500	±	2.07752
2006iq	PGC1380172	28	0.078934	9.45613	19.0	0.330	318.9190	17.9184	0.8512400	±	1.41603
1994S	NGC4495	65	0.015177	5.06480	14.8	0.092	61.3201	14.3380	0.8754950	±	2.95842
1990af	PGC340526	31	0.050301	7.86249	17.9	0.140	203.2330	16.9400	0.9566390	±	1.45862
1991ad	PGC1537863	52	0.069998	4.81050	18.5	0.183	282.8150	17.6575	1.0712100	±	2.03080
1993B	PGC662260	48	0.069001	10.18040	18.8	0.433	278.7870	17.6264	1.1068100	±	1.86852
1989V	PGC1405421	21	0.060998	4.14669	18.8	0.231	246.4520	17.3587	1.2964100	±	1.33924
1991ay	PGC2167368	24	0.050034	6.17945	18.5	0.383	202.1540	16.9284	1.3010800	±	1.36861
1992bs	PGC132177	54	0.063377	6.94923	18.3	0.081	256.0640	17.4417	1.3224200	±	2.12711
1992V	PGC041858	38	0.046233	9.51575	18.0	0.147	186.7970	16.7568	1.3911000	±	1.58663
1992P	IC3690	68	0.025249	13.30820	16.1	0.100	102.0140	15.4433	1.4860900	±	3.33759
1992bh	PGC376039	56	0.045001	4.01561	17.7	0.125	181.8190	16.6982	1.5679700	±	2.23587
1993H	ESO445-066	35	0.024246	7.51402	17.0	0.322	97.9618	15.3553	1.6147200	±	1.52631
1992R	MCG+10-24-007	59	0.052326	8.73978	18.0	0.076	211.4140	17.0257	1.7441400	±	2.42756
1992ac	MCG+10-24-007	59	0.052326	3.77866	18.0	0.076	211.4140	17.0257	1.7441400	±	2.42756
1996C	MCG+08-25-047	58	0.026998	12.93360	16.6	0.054	109.0810	15.5887	1.8065000	±	2.35939
1994Q	PGC059076	66	0.029477	6.13264	17.0	0.100	119.0970	15.7795	2.7548500	±	3.07394
1995E	NGC2441	28	0.011557	5.63678	16.8	0.454	46.6941	13.7463	2.9443400	±	1.41603
1993ab	NGC1164	39	0.013931	4.31396	18.0	0.783	56.2858	14.1520	3.9439200	±	1.60881
1992K	ESO269-057	53	0.010273	6.37976	16.3	0.407	41.5063	13.4906	3.9919200	±	2.07752

galaksije manjim od 3 kpc i većim od 15 kpc. zbog toga što su unutar jezgra odnosno izvan granica galaksije respektivno. Zbog velike greške kod primene Hablovog zakona, odstranjene su i sve galaksije sa crvenim pomakom manjim od 0.01.

Ovako dobijen izbor supernovih dat je u tabeli 1.

Rezultati

U tabeli 1 su prikazane izdvojene supernove, sortirane po ekstinciji u matičnoj galaksiji. Pretpostavlja se da ekstremne vrednosti ekstincije u matičnoj galaksiji od oko 4 magnitude potiču zbog velike greške pri računanju udaljenosti galaksije koja verovatno nastaje usled velikog sopstvenog kretanja koje posmatrana galaksija ima, pa zbog toga ni magnituda supernove računata preko modula rastojanja ne može biti precizno određena. Ove ekstremne vrednosti se zbog toga odbacuju.

Plotovanjem ekstincija u matičnoj galaksiji sa uračunatom greškom, u kumulativnu funkciju dobijamo grafik sa slike 2.

Ovaj grafik pretvoren je u histogram (slika 3.) koji je u rasponu od –0.6 do 3 magnitude a za korak podele je uzeto 0.4 magnitude. Nakon toga je histogram fitovan Gausovom krivom čiji je maksimum na 0.97 magnitude.

Slika 2. Kumulativna funkcija ekstincije u matičnoj galaksiji

Figure 2. Cumulative function of extinction in mother galaxy

Slika 3. Histogram ekstincije fitovan Gausovom krivom

Figure 3. Histogram of extinction fitted with a Gauss curve

Diskusija i zaključak

Metoda korišćena u ovom radu se pokazala veoma nepreciznom. Najveći problem bilo je računanje udaljenosti matične galaksije, kao i mali broj supernovih za statističku obradu. Greška kod računanja udaljenosti galaksije je svedena na maksimum 30%, pod pretpostavkom da galaksije nemaju veće sopstveno od 1000 km/s, tako što su odbačene sve galaksije sa radialnom brzinom manjom od 3000 km/s. Uticaj na ukupnu grešku imaju i greške pri računanju Hablove konstante i kalibrisanju apsolutne magnitudesupernove.

Mane u samoj postavci metode su sledeće: model predviđa homogenu raspodelu materije u galaksiji, što svakako nije slučaj. Udaljenost supernove od jezgra matične galaksije je veoma nepouzdana, jer u njoj figurira udaljenost matične galaksije, pa ne možemo biti sigurni da li smo zaista izdvojili supernove na udaljenosti između 3 i 15 kpc. Pretpostavka da se supernova nalazi u ravni galaksije ne može biti podržana statistčkom obradom, zbog malog broja supernovih koje zadovoljavaju postavljene kriterijume.

Na žalost većina supernovih je posmatrana samo u B filteru. Da postoje podaci u V filteru, moglo bi se uraditi poređenje B-V magnituda i tim putem dobiti ekstincije. U budućnosti bi mogla da se vrše opširnija posmatranja, kako bi bilo više podataka za obradu, a samim tim i mogućnost bolje metode.

Eventualno popravljanje ove metode moglo bi se ogledati u drugačijem modelu – nehomogene galaksije, ali ostaje pitanje kako bi to uticalo na rezultat.

Literatura

Branch D. 1992. Type Ia supernovae as standard candles. *Annual Reviews of Astronomy and Astrophysics*, **30**: 359.

NASA/IPAC Extragalactic Database. Dostupno na: http://nedwww.ipac.caltech.edu/

Riess A., Macri L., Casertano S., Sosey M., Lampeitl H. Ferguson H. C. *et al.* 2009. A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder. *Astrophysical Journal*, **699**: 539.

Tsvetkov D. Yu. Pavlyuk N. N., Bartunov O. S., Pskovskij Yu. Sternberg Astronomical Institute Supernova Catalogue. Dostupno na: http://sai.msu.su/sn/sncat

Aleksandar Gajić

Determination of Supernova Type Ia Distribution in Spiral Galaxies With Regard to Galactic Plane

The goal of the project is determination of supernova distribution with regard to the galactic plane, supposing that supernovas with the least extinction are in front of the galaxy (separated from the galactic disc closer to us), and the ones with the most extinction behind the galaxy, so that the light goes through the entire depth of the galaxy and suffers the most extinction. It is supposed that the mater in the galaxies is homogenic. Since the descendance of the light going through the homogenic mater is proportional to the distance that it travels, it allows us to determine the position with regard to galactic plane based on extinction. Achieved results imply that the distribution of the supernovas by the extinction is Gaussian, with the maximum at 0.97 magnitude. Unfortunately, because of the low number of supernovas that remained after the selection, a precise statistical analysis of the data was not possible. The problem with supernovas is that they were recorded just through a single, most often, B filter.