Matrix Theory (EE5609) Assignment 11

Utkarsh Shashikant Surwade

Abstract

This document provides solutions to ugc problems Download all python codes from

https://github.com/utkarshsurwade/ Matrix_Theory_EE5609/tree/master/codes

and latex-tikz codes from

https://github.com/utkarshsurwade/ Matrix_Theory_EE5609/tree/master/Assignment11

1 Problem

Let \boldsymbol{A} be a real symmetric matrix. Then we can conclude that

- 1. A does not have 0 as an eigenvalue
- 2. All eigenvalues of **A** are real
- 3. If A^{-1} exists, then A^{-1} is real and symmetric
- 4. A has at least one positive eigenvalue

2 Solution

Options	Solutions
1.	Let us consider A as follows:
	$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
	Eigenvalues corresponding to A are,
	$\begin{vmatrix} \mathbf{A} - \lambda \mathbf{I} \end{vmatrix} = 0$
	$\implies \begin{pmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{pmatrix} = 0$ $\implies \lambda(\lambda - 2) = 0$
	$\therefore \lambda_1 = 0, \lambda_2 = 2$
2.	Therefore symmetric matrix A can have 0 as an eighenvalue. Let v be an eigenvector with respect to eigenvalue λ for matrix A where $\mathbf{v} \neq 0$ and
۷.	
	$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ $\implies \mathbf{v}^H \mathbf{A} \mathbf{v} = \mathbf{v}^H (\lambda \mathbf{v}) = \lambda \mathbf{v}^H \mathbf{v}$
	\rightarrow v A v $-$ v λ v where H denotes Hermitian conjugation. Taking Hermitian transpose, we get
	$(\lambda \mathbf{v}^H \mathbf{v})^H = (\mathbf{v}^H \mathbf{A} \mathbf{v})^H$
	$\therefore \overline{\lambda} \mathbf{v}^H \mathbf{v} = \mathbf{v}^H \mathbf{A}^H \mathbf{v} = \mathbf{v}^H \mathbf{A} \mathbf{v}$
	$\therefore (\lambda - \overline{\lambda})\mathbf{v}^H\mathbf{v} = 0$
	since $\mathbf{v} \neq 0$, $\therefore \lambda - \overline{\lambda} = 0$
	$\therefore \lambda = \overline{\lambda} \text{ is real}$
	Hence eigenvalues of a Hermitian matrix(in particular real symmetric matrix) are real.
	Since $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$
	$\therefore (\mathbf{A}^{-1}\mathbf{A})^T = \mathbf{I}^T$
3.	$\implies (\mathbf{A}^T)(\mathbf{A}^{-1})^T = \mathbf{I}$
	Since $\mathbf{A}^T = \mathbf{A}$
	$\therefore \mathbf{A}(\mathbf{A}^{-1})^T = \mathbf{I}$
	$\therefore \mathbf{A}^{-1} = (\mathbf{A}^{-1})^T$
	Since A is real and the inverse of a matrix is unique, therefore A^{-1} is real and symmetric.
4.	Let us consider A as follows:
	$\mathbf{A} = \begin{pmatrix} -6 & 2\\ 2 & -9 \end{pmatrix}$
	Eigenvalues corresponding to A are,
	$\left \mathbf{A} - \lambda \mathbf{I}\right = 0$
	$\implies \begin{pmatrix} -6 - \lambda & 2 \\ 2 & -9 - \lambda \end{pmatrix} = 0$
	$\implies (\lambda + 5)(\lambda + 10) = 0$
	$\therefore \lambda_1 = -5, \lambda_2 = -10$
	Therefore symmetric matric A can have all negative eigenvalues.