Problem set 4 Due Sunday February 16 at 11pm

Exercise 4.1 (10 points). Let X be any set, let and $d: X \times X \to \mathbb{R}$ be the discrete metric, defined by

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

for all $x, y \in X$.

- (1) Prove that, with this distance function, *X* is a metric space.
- (2) For any $x \in X$, what is $N_{\epsilon}(x)$ when $\epsilon = \frac{1}{2}$, 1, and 2?
- (3) Which subsets of *X* are open? Which are closed?

Exercise 4.2 (6 points; Rudin 2.5). Construct a bounded set of real numbers with exactly three limit points (using the standard metric on \mathbb{R}). (You need not prove carefully what the limit points are; it is sufficient to give the set, give bounds for the set, and state what are the limit points.)

Exercise 4.3 (24 points; Rudin 2.9). Let E be a subset of a metric space. Define the *interior* of E, denoted E° , to be the set of all interior points of E.

- (1) Prove that E° is always open.
- (2) Prove that *E* is open if and only if $E^{\circ} = E$.
- (3) Prove that, if *G* is an open subset of *E*, then $G \subset E^{\circ}$.
- (4) Prove that the complement of E° is the closure of the complement of E.
- (5) Do E and \overline{E} always have the same interiors?
- (6) Do E and E° always have the same closures?