

Lesson 4

CUBE OF BINOMIALS

MATH 8 - QUARTER 1

Cube of a Binomial

To cube a binomial, multiply the binomial by itself twice. The cube of a binomial can take on two cases:

Case 1:
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Case 2:
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

In both scenarios, the cube of a binomial contains four terms. The first and last terms are always the cubes of the individual terms in the binomial (a³ and b³). The middle two terms involve the product of both terms of the binomial, with coefficients of 3.

However, in Case 1 (a + b)³, all terms are positive, while in Case 2 (a - b)³, the terms containing odd powers of b are negative. For these cases, the pattern yields a four-term polynomial that represents the cube of the original binomial.

Cube of a Binomial

To cube a binomial, multiply the binomial by itself twice. The cube of a binomial can take on two cases:

Case 1:
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Case 2:
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Remember:

- 1. The first term is always a³ in both cases.
- 2. The second term is $3a^2b$ in Case 1, but $-3a^2b$ in Case 2.
- 3. The third term is 3ab² in both cases.
- 4. The last term is b^3 in Case 1, but $-b^3$ in Case 2.

This pattern allows us to quickly expand the cube of any binomial without having to multiply it out step by step each time.

Cube of a Binomial Formula

We can also use the **FOIL method** and **distributive property** to multiply binomials:

$$(a + b)^{3} = (a + b)(a + b)(a + b)$$

$$= (a + b)(a + b)(a + b)$$

$$= (a^{2} + ab + ab + b^{2})(a + b)$$

$$= (a^{2} + 2ab + b^{2})(a + b)$$

$$= (a^{2} + 2ab + 2a^{2}b + 2ab^{2} + ab^{2} + b^{3})$$

After combining like terms, the result is:

$$= a^3 + 3a^2b + 3ab^2 + b^3$$

Cube of a Binomial Formula

We can also use the FOIL method and distributive property to multiply binomials:

Examples:

1.
$$(x + 2)^3$$

 $(x + 2)^3 = (x + 2)(x + 2)(x + 2)$

$$= (x + 2)(x + 2)(x + 2)$$

$$= (x^2 + 2x + 2x + 4)(x + 2)$$

$$= (x^2 + 4x + 4)(x + 2)$$

$$= x^3 + 4x^2 + 4x + 2x^2 + 8x + 8$$

$$= x^3 + 6x^2 + 12x + 8$$

$$(x + 2)^{3} = (x + 2)(x + 2)(x + 2)$$

$$= (x + 2)(x + 2)(x + 2)$$

$$= (x + 2)(x + 2)(x + 2)$$

$$= (x^{2} + 2x + 2x + 4)(x + 2)$$

$$= (x^{2} + 4x + 4)(x + 2)$$

$$= (x^{2} + 4x + 4)(x + 2)$$

$$= (x^{3} + 4x^{2} + 4x + 2x^{2} + 8x + 8)$$

$$= (2x - 1)(2x - 1)(2x - 1)$$

$$= (4x^{2} - 2x - 2x + 1)(2x - 1)$$

$$= (4x^{2} - 4x +$$

Geometrical Representation

The cube of a binomial $(a + b)^3$ can be visualized as a large cube with side length (a + b). This cube can be decomposed into smaller cubes and rectangular prisms, each corresponding to a term in the algebraic expansion.

- 1. Large cube (a³):
 - This represents the first term of the expansion.
 - \circ It has dimensions a \times a \times a.
- 2. Three identical rectangular prisms (3a²b):
 - These represent the second term of the expansion.
 - \circ Each has dimensions a \times a \times b.
 - There are three of these because they can be placed on three faces of the large cube.

Geometrical Representation

The cube of a binomial $(a + b)^3$ can be visualized as a large cube with side length (a + b). This cube can be decomposed into smaller cubes and rectangular prisms, each corresponding to a term in the algebraic expansion.

- 2. Three identical rectangular prisms (3ab²):
 - These represent the third term of the expansion.
 - \circ Each has dimensions a \times b \times b.
 - Again, there are three of these, fitting along three edges of the cube.
- 3. Small cube (b³):
 - This represents the last term of the expansion.
 - \circ It has dimensions b \times b \times b.
 - It fits in the corner where the three smaller rectangular prisms meet.

Let us look at the following worked examples.

Direction: Expand the following terms.

1.
$$(3y + 2)^3$$

Remember:

- The first term is always a³ in both cases.
 The second term is 3a²b in Case 1, but -3a²b in Case 2.
- 3. The third term is 3ab² in both cases.
- 4. The last term is b³ in Case 1, but -b³ in Case 2.

Solution: Here, a = 3y and b = 2, so

1.
$$a^3 = (3y)^3 = 27y^3$$

2. $3a^2b = 3(3y)^2(2) = 54y^2$
3. $3ab^2 = 3(3y)(2)^2 = 36y$
4. $b^3 = 2^3 = 8$

Answer: Then, we now have $27y^3 + 54y^2 + 36y + 8$

Let us look at the following worked examples.

Direction: Expand the following terms.

1.
$$(3y + 2)^3$$

Solution:

Using Distributive Property of Multiplication $(3y + 2)^3 = (3y + 2)(3y + 2)(3y + 2)$

First
$$= (3y + 2)(3y + 2)(3y + 2)$$

$$= (9y^{2} + 6y + 6y + 4)(3y + 2)$$

$$= (9y^{2} + 12y + 4)(3y + 2)$$

$$= 27y^{3} + 36y^{2} + 12y + 18y^{2} + 24y + 8$$

Answer:
$$27y^3 + 54y^2 + 36y + 8$$

Let us look at the following worked examples.

Direction: Expand the following terms.

2.
$$(x - 5)^3$$

Remember:

- The first term is always a³ in both cases.
 The second term is 3a²b in Case 1, but -3a²b in Case 2.
- 3. The third term is 3ab² in both cases.
- 4. The last term is b³ in Case 1, but -b³ in Case 2.

Solution: Here, a = x and b = 5, so

1.
$$a^3 = x^3$$

2.
$$-3a^2b = -3x^2(5) = -15x^2$$

3. $3ab^2 = 3x(5)^2 = 75x$
4. $-b^3 = -(5)^3 = -125$

3.
$$3ab^2 = 3x(5)^2 = 75x$$

4.
$$-b^3 = -(5)^3 = -125$$

Answer: Then, we now have $x^3 - 15x^2 + 75x - 125$

Let us look at the following worked examples.

Direction: Expand the following terms.

2.
$$(x - 5)^3$$

Solution:

Using Distributive Property of Multiplication

$$(x-5)^3 = (x-5)(x-5)(x-5)$$

First
$$= (x - 5)(x - 5)(x - 5)$$

$$= (x^{2} - 5x - 5x + 25)(x - 5)$$

$$= (x^{2} - 10x + 25)(x - 5)$$

$$= x^{3} - 10x^{2} + 25x - 5x^{2} + 50x - 125$$

$$x^3 - 15x^2 + 75x - 125$$