2021 Spring MAS 365 Chapter 10: Numerical Solutions of Nonlinear Systems of Equations

Donghwan Kim

KAIST

- 10.1 Fixed Points for Functions of Several Variables
- 2 10.2 Newton's Method
- 3 10.4 Steepest Descent Techniques

System of Nonlinear Equations

A system of nonlnear equations has the form

$$f_1(x_1, x_2, \dots, x_n) = 0,$$

 $f_2(x_1, x_2, \dots, x_n) = 0,$
 \vdots \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0.$

Using vector notation, this can be simply written as

$$F(x) = 0$$

where f_1, f_2, \ldots, f_n are called the **coordinate functions** of $\mathbf{F} = (f_1, f_2, \ldots, f_n)^t$.

Chapter 10 1 / 16

Functions from \mathbb{R}^n into \mathbb{R}

Definition 1

Let f be a function defined on a set $D \subset \mathbb{R}^n$ and mapping into \mathbb{R} . The function f is said to have the **limit** L at x_0 , written

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} f(\boldsymbol{x}) = L,$$

if, given any number $\epsilon > 0$, a number $\delta > 0$ exists with

$$|f(\boldsymbol{x}) - L| < \epsilon$$

whenever $x \in D$, and

$$0<||\boldsymbol{x}-\boldsymbol{x}_0||<\delta.$$

any horm

Chapter 10 2 / 16

Functions from \mathbb{R}^n into \mathbb{R} (cont'd)

Definition 2

Let f be a function from a set $D \subset \mathbb{R}^n$ into \mathbb{R} . The function f is **continuous** at $x_0 \in D$ provided $\lim_{x \to x_0} f(x)$ exists and

$$\lim_{\boldsymbol{x}\to\boldsymbol{x}_0}f(\boldsymbol{x})=f(\boldsymbol{x}_0).$$

Moreover, f is **continuous** on a set D if f is continuous at every point of D. This concept is expressed by writing $f \in C(D)$.

Chapter 10 3 / 16

Functions from \mathbb{R}^n into \mathbb{R}^n

Definition 3

Let F be a function from $D \subset \mathbb{R}^n$ into \mathbb{R}^n of the form

$$F(x) = (f_1(x), f_2(x), \dots, f_n(x))^t,$$

where f_i is mapping from \mathbb{R}^n into \mathbb{R} for each i. We define

$$\lim_{\boldsymbol{x}\to\boldsymbol{x}_0} \boldsymbol{F}(\boldsymbol{x}) = \boldsymbol{L} = (L_1, L_2, \dots, L_n)^t,$$

if and only if $\lim_{x\to x_0} f_i(x) = L_i$, for each $i = 1, 2, \dots, n$.

• The function F is **continuous** at $x_0 \in D$ provided $\lim_{x \to x_0} F(x)$ exists and $\lim_{x \to x_0} F(x) = F(x_0)$. In addition, F is continuous on the set D if F is continuous at each x in D. This concept is expressed by writing $F \in C(D)$.

Chapter 10 4

Fixed Points in \mathbb{R}^n

Definition 4

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Chapter 10 5 / 16

Fixed Points in \mathbb{R}^n (cont'd)

Theorem 1

Let $D=\{(x_1,x_2,\ldots,x_n)^t\mid a_i\leq x_i\leq b_i, \text{ for each }i=1,2,\ldots,n\}$ for some collection of constants a_1,a_2,\ldots,a_n and b_1,b_2,\ldots,b_n . Suppose G is a continuous function from $D\subset\mathbb{R}^n$ into \mathbb{R}^n with the property that $G(x)\in D$ whenever $x\in D$. Then G has a fixed point in D.

Moreover, suppose that all the component functions of ${m G}$ have continuous partial derivatives and a constant K<1 exists with

$$\left| \frac{\partial g_i(\boldsymbol{x})}{\partial x_j} \right| \leq \frac{K}{n}, \quad \text{whenever } \boldsymbol{x} \in D,$$

for each $j=1,2,\ldots,n$ and each component function g_i . Then the fixed-point sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by an arbitrarily selected $x^{(0)}$ in D and generated by

$$\boldsymbol{x}^{(k)} = \boldsymbol{G}(\boldsymbol{x}^{(k-1)}), \quad \text{for each } k \geq 1$$

converges to the unique fixed point $oldsymbol{p} \in D$ and

$$||x^{(k)}-p||_{\infty} \leq rac{K^k}{1-K}||x^{(1)}-x^{(0)}||_{\infty}.$$
 Lihed

Chapter 10

Fixed Points in \mathbb{R}^n (cont'd)

Ex Find a fixed-point form of the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Chapter 10 7 / 16

- 1 10.1 Fixed Points for Functions of Several Variables
- 2 10.2 Newton's Method
- 3 10.4 Steepest Descent Techniques

Recall: Newton's Method in One Variable

Theorem 2

Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g'' is continuous with |g''(x)| < M on an open interval I containing p.

Then there exists a $\delta > 0$ such that, for $p_0 \in [p - \delta, p + \delta]$, the sequence defined by $p_n = g(p_{n-1})$, when $n \ge 1$, converges at least quadratically to p.

Moreover, for sufficiently large values of n,

$$|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2.$$

• We found a function ϕ with the property that

$$g(x) = x - \phi(x)f(x)$$

gives qudaratic convergence to the fixed point p of the function g.

Chapter 10 8 / 16

Newton's Method

Theorem 3

Let p be a solution of G(x) = x. suppose a number $\delta > 0$ exists with the properties:

- $\partial g_i/\partial x_j$ is continuous on $N_\delta=\{\boldsymbol{x}\mid ||\boldsymbol{x}-\boldsymbol{p}||<\delta\}$, for each $i=1,2,\ldots,n$ and $j=1,2,\ldots,n$;
- $\partial^2 g_i(\boldsymbol{x})/(\partial x_j \partial x_k)$ is continuous, and $|\partial^2 g_i(\boldsymbol{x})/(\partial x_j \partial x_k)| \leq M$ for some constant M, whenever $\boldsymbol{x} \in N_\delta$, for each $i=1,2,\ldots,n,\ j=1,2,\ldots,n$, and $k=1,2,\ldots,n$;
- $\partial g_i(\mathbf{p})/\partial x_k = 0$, for each $i = 1, 2, \dots, n$, and $k = 1, 2, \dots, n$.

Then a number $\hat{\delta} \leq \delta$ exists such that the sequence generated by $x^{(k)} = G(x^{(k-1)})$ converges quadratically to p for any choice of $x^{(0)}$, provided that $||x^{(0)} - p|| < \hat{\delta}$. Moreover,

$$||{oldsymbol x}^{(k)}-{oldsymbol p}||_{\infty} \leq rac{n^2M}{2}||{oldsymbol x}^{(k-1)}-{oldsymbol p}||_{\infty}^2, \quad ext{for each } k\geq 1.$$

Chapter 10 9

Newton's Method (cont'd)

Consider

$$G(x) = x - A(x)^{-1}F(x),$$

where $A(\boldsymbol{x}) = [a_{ij}(\boldsymbol{x})].$

• Assume that A(x) is nonsingular near a solution p of F(x)=0 and let $A(x)^{-1}=[b_{ij}(x)].$

Chapter 10 10 / 16

Newton's Method (cont'd)

• Since $g_i(\mathbf{x}) = x_i - \sum_{i=1}^n b_{ij}(\mathbf{x}) f_j(\mathbf{x})$, we have

$$\frac{\partial g_i}{\partial x_k}(\boldsymbol{x}) = \begin{cases} 1 - \sum_{j=1}^n \left(b_{ij}(\boldsymbol{x}) \frac{\partial f_j}{\partial x_k}(\boldsymbol{x}) + \frac{\partial b_{ij}}{\partial x_k}(\boldsymbol{x}) f_j(\boldsymbol{x}) \right), & i = k, \\ - \sum_{j=1}^n \left(b_{ij}(\boldsymbol{x}) \frac{\partial f_j}{\partial x_k}(\boldsymbol{x}) + \frac{\partial b_{ij}}{\partial x_k}(\boldsymbol{x}) f_j(\boldsymbol{x}) \right), & i \neq k, \end{cases}$$

11/16 Chapter 10

Jacobian Matrix

• Define the matrix J(x) by

$$J(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\boldsymbol{x}) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}) & \cdots & \frac{\partial f_2}{\partial x_n}(\boldsymbol{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\boldsymbol{x}) & \frac{\partial f_n}{\partial x_2}(\boldsymbol{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\boldsymbol{x}) \end{bmatrix}$$

Chapter 10 12 / 16

Newton's Method

Ex Find a fixed-point form of the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Chapter 10 13 / 16

- 10.1 Fixed Points for Functions of Several Variables
- 2 10.2 Newton's Method
- 3 10.4 Steepest Descent Techniques

Minimization and System of Nonlinear Equations

A system of nonlinear equations

$$f_1(x_1, x_2, \dots, x_n) = 0,$$

 $f_2(x_1, x_2, \dots, x_n) = 0,$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0,$

has a solution $\boldsymbol{x}=(x_1,x_2,\ldots,x_n)^t$ when the function g defined by

$$g(x_1, x_2, \dots, x_n) =$$

has the minimal value 0.

Chapter 10 14 / 16

The Gradient of a Function

• For $g: \mathbb{R}^n \to \mathbb{R}$, the **gradient** of g at $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$ is denoted $\nabla g(\mathbf{x})$ and defined by

$$\nabla g(\boldsymbol{x}) = \left(\frac{\partial g}{\partial x_1}(\boldsymbol{x}), \frac{\partial g}{\partial x_2}(\boldsymbol{x}), \dots, \frac{\partial g}{\partial x_n}(\boldsymbol{x})\right)^t$$

Chapter 10 15 / 16

The Gradient of a Function (cont'd)

steepest descent

ullet The **directional derivative** of g at $oldsymbol{x}$ in the direction of $oldsymbol{v}$ is defined by

$$D_{oldsymbol{v}}g(oldsymbol{x}) = \lim_{h o 0} rac{1}{h} [g(oldsymbol{x} + holdsymbol{v}) - g(oldsymbol{x})] = oldsymbol{v}^t
abla g(oldsymbol{x}).$$

ullet This measures the change in the value of the function g relative to the change in the variable in the direction of $oldsymbol{v}$.

Chapter 10 16 / 16

The Gradient of a Function (cont'd)

JE>0, J(X+ kv) < J(v) for *he(0, E) • Steepest descent method updates as

$$\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} - \alpha \nabla q(\boldsymbol{x}^{(0)}),$$

for some constant $\alpha > 0$.

Consider

$$h(\alpha) = g(\boldsymbol{x}^{(0)} - \alpha \nabla g(\boldsymbol{x}^{(0)}))$$

Chapter 10 17 / 16

wir 2.1/4

Steepest Descent Method

Ex Find a fixed-point form of the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Chapter 10 18 / 16