

Continuous Assessment Test 2 October 2023

		Continuous Ass	essment Test	2	October 2023
Programme		B.Tech. CSE & Specialization	Semester		Fall 2023-24
riogramme			Code		BCSE308L
Course	:	Computer Networks	Slot	:	F2 + TF2
Faculty	:	Dr. Pradcep Kumar TS, Dr.T.Subbulakshmi, Dr. Muthumanikandan V	Class Nbr	:	CH2023240100688, CH2023240100687, CH2023240101172
Time	1:	1 1/2 Hours	Max. Marks	:	50

Answer all Questions

Identify the flow control mechanisms from the following frame and acknowledgement 1. order and draw individual flow diagrams for all the three flows along with description F - Frames A - Acknowledgements

Flowl - Fl Al F2 A2 F3 A3 F4 A4 F5 F5 A5

Flow 2 - F1 A1 F2 A2 F3 A3 F4 F5 A5 F6 A6 F7 F8 A8 F4 F4 F4 A4 F7 F7 A7

Flow 3 - F1 A1 F2 A2 F3 A3 F4 F5 A5 F6 A6 F7 F8 A8 F4 A4 F5 A5 F6 A6 F7 F8 A8

Consider the frame sending time is 3 sec and the acknowledgement time is 2 sec. Assume any other relevant values

- Calculate the total time required to send all the above frames in every flow control
- Calculate the extra time taken by the frames in every flow control mechanism if the timer waits for one more see and then resends the frame for maximum of three times if the ack is not received
- If every 4th packet being transmitted is lost and if we have to send 8 packets then calculate the number of transmissions required individually from sender and 2. 10 receiver required for (i) Go-Back-N protocol and (ii) Stop and Wait protocol.
- You are a network administrator responsible for subnetting an IP address space for a medium-sized organization. Your organization has been assigned the IP Classful address 3. block 202.168.10.0/24, and you need to create subnets to accommodate the following requirements:
 - 1. Subnet A: 100 hosts.
 - 2. Subnet B: 50 hosts.
 - 3. Subnet C: 30 hosts.
 - 4. Subnet D: 20 hosts.

Design a subnetting scheme for the organization that efficiently utilizes the IP address space and meets the specified requirements. Provide the following details for each subnet:

- The subnet mask.
- The range of valid IP addresses within the subnet.
- The network and broadcast addresses.
- The total number of IP addresses in the subnet.

10

Page 1 of 2

- 4. Consider the organization has some computers to assign with IPs and the ISP has allocated the classful addressing IP 181.244.0.0. The student needs to use the notation 181.244.0.0/18 to further divide them into subnets within the organization. Find the following
 - The IP address of the 30th Computer in the third subnet and the subnet mask for the third subnet
 - The IP address of the 200th Computer in the second subnet and the number of hosts in the second network
 - The first usable IP address of the fourth network and the special / broadcast address of the fourth network
 - 5. Consider the third block of the class C addressing is used for Private addresses and mapped to the Public IPs with the first block of Class B with the appropriate NAT table for packet transfer within and outside an organization. Draw the NAT table with a minimum of 5 entries.

Reg. No.:

Name

Continuous Assessment Test II - October 2023

Programme	: B.Tech. (CSE)	Semester	:	Fall'23-24
Course	Computer Networks	Code	:	BCSE308L
	Computer Networks	Slot	:	C2+TC2
Faculty	Dr. Deepa Nivetika, Dr. Neelanarayanan V, Dr. Kanchana Devi V	Class Nbr	:	C112023240100901 ₄ CH2023240100902 CH2023240101181
Time	: 90 Minutes	Max. Marks	:	50

Answer ALL the questions

Marks Q.No. Sub. Questions Sec. Imagine Station A has sent a 7 bit data word 1100011 using single bit error detection and correction technique and Station B has received a Codeword parity to show the codeword received from Station A. Also, prove that there is no error in 10 the received code word. Consider 210.16.215.0/25 is one of the address allotted to an organisation. The organisation has four departments A, B, C and D. Total number of addresses allotted to department A is 32, B is 32, C is 32 and D is 32. i. Specify the subnet mask. [1 Mark] 10 i. Specify the subnet address for each department. [3 Marks] ii. Specify the host address range for each department. [3 Marks] iii. Specify the broadcast address for each department. [3 Marks] Frames are generated at node A and sent to node C through node B. Between A and B sliding window protocol is used with a window size of 3. Between B and C stop and wait 10 is used. Show the method of transmission that takes place between the nodes in diagramatic representation. List out the merits and demerits of two protocols. Consider the given figure. Three stations want to transmit their information using common transmission medium without any collision. But, during data transmission collision happens as shown in the given figure. Collision Frame 1.1 Frame 1.2 Time

10

the collision. [4 Marks]

Suggest an alternative protocol which can reduce the rate of collision with a help of detection mechanism. Elucidate the same in detail with a diagram. [6 Marks]

Consider the given Autonomous System (AS) with A to F routers. Each router in the AS send their records to their neighbor routers. Each router will update their routing tables upon receiving the records. Identify and explain the routing and show the final routing table of all the routers A, B, C, D, E and F.

Continuous Assessment Test(CAT) - II - APRIL 2024

Programme	;	B.Tech (CSE)	Semester	Winter Semester 2023-24
Course Code & Course Title		BCSE308L - Computer Networks	Class Number	CH2023240501838 CH2023240501847 CH2023240501840 CH2023240503359
Faculty	:	Dr. Kanchana Devi V, Dr. Karmel A, Dr. Anusha K, Prof. Priyanka Mishra	Slot	D2+TD2
Duration	:	90 minutes	Max. Mark	50

Answer all questions

	Sub	Thiswer all questions							
Q. No	Sec.								
	i)	Description Identify the quitable	Marks						
V.	ii)	Identify the suitable number of redundant bits required for a Hamming code error correction technique for detecting the errors in 7 bits data word. Discuss the same with appropriate reasoning, why other number of redundant bits are not suitable. [3 Marks] Compute the Code Word for the given Data Word 1110110 using Hamming Code Technique. [7 Marks]							
		Hamming Code Technique. [7 Marks] Consider the initial Link State B							
		Consider the initial Link State DataBase (LSBD) table of a network given below.							
		ISRD A D C							
		A O B E F G							
		\mathbf{B} 1 0 1 ∞ 5 ∞							
. 2/	1	C $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $							
1		\mathbf{p}	(10)						
	1	E 2 2 2 3	(10)						
	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
		$G \infty \infty \alpha 4 1 2 0 $							
		Find the shortest path in the least cost tree to reach A to G using that							
		routing approach							
3		Consider the given figure. Three devices want to transmit their information using common transmission medium without any collision. But, during data transmission collision happens as shown in the given figure.							
3.		FRAME Common Character FRAME FRAME FRAME FRAME FRAME FRAME	(10)						
		Frances Affected Dy Coffision Time							

	i)	Find out the type of the protocol used in the above figure. Also, state the reason for the collision. [4 Marks]				
	ii)	Suggest an alternative protocol which can reduce the rate of collision.				
	,	Elucidate the same in detail with a diagram. [6 Marks]				
	i)	Find the Class, Network ID and Host ID for the below given IP addresses:				
	, ,	a. 127.10.55.120 [1 Marks]				
19		b. 201.23.0.160 [1 Marks]				
(3)		6. 201.25.0.100 [1 Marks]				
(!/	ii)	Consider the given Gaura Identify 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		Consider the given figure. Identify and explain the technique which helps				
		the Host B to inform the host A of any frames lost or damaged in transmission.				
		Suggest an alternative technique with neat diagram for the same				
		purpose. [4 Marks].				
		Highlight the differences between both the techniques. [4 Marks]				
1		Host B				
74.		Data O	(10)			
			` /			
7	1	Dota 1				
(-)	1	Data 2				
	1					
	- 1	NAK2				
		Data 2				
1	- 1	NCK3				
1	- 1	Data 3				
1		Data 4				
		Data 5				
		The Service provider granted a block of addresses starting with				
		162.35.10.0/16 to the VIT. Assume that education institute is having three				
		branches so it needs to create 3 subnets as follows,				
1		The Vellore VIT branch with 100 addresses				
	0.50	The Chennai branch with 70 addresses				
3)		The AP branch with 35 addresses	(10)			
4	i)	Help the administrator to design the sub networks with the slash notation				
		for each subnet [8 Marks]				
	ii)	Find out how many addresses are still available after these allocations				
	**/	[2 Marks]				

		All the best ************************************				

Continuous A

Pro	701	Assessment Test (C	CAT) – II - AP	K	2024
Programme	:	B.Tech (Computer Science and Engineering)	Semester	1	Winter 2023-2024
Course Code & Course Title	:	BCSE308L Computer networks	Class Number	:	CH2023240501649 CH2023240501656 CH2023240501661
Faculty	:	Dr Neclanarayanan Dr Punitha K Dr Swaminathan A	Slot	:	E2+TE2
Duration	:	One and Half Hours (90 Minutes)	Max. Mark		50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Use statistical tables supplied from the exam cell as necessary
- Use graph sheets supplied from the exam cell as necessary
- Only non-programmable calculator without storage is permitted

Answer all questions

Assume fixed-length bit-strings of length 9 where only some bit-string sequences are allowable in the encoding scheme. Assume that the bit-strings in blue are the allowed codewords and those in gray are the ones that aren't. The following diagram elucidates the assumption. 000111111

001111111 011111111 111111111

2

3

10

- What is the hamming distance of this encoding scheme? i.
- Is the encoding scheme efficient? Justify your answer.
- ii. How many bit flips can be detected?
- How many bit flips can be corrected?
- [4 Marks]
 - [2 Marks]

[2 Marks]

- [2 Marks]
- An ISP is granted a block of addresses starting with 190.100.0.0/16. The ISP needs to distribute these addresses to three groups of customers as follows:
 - The first group has 64 customers; each needs 256 addresses
 - The second group has 128 customers; each needs 128 addresses
 - The third group has 128 customers; each needs 64 addresses
 - Design the sub-blocks and find out how many addresses are still available after these d. allocations

A router has the following entries in the routing table:

Address / Mask	Next hop
135.46.0.0/22	Interface 0
135.46.60.0/22	Interface I
192.53.40.0/23	Router 1
Default	Router 2

10

What does the router do, if a packet with the following destination address arrives?

- 135.46.63.10
- b. 135.46.57.14
- 135.46.52.2
- d. 192.53.40.7
- 192.53.56.7

Consider two links, (A,B) and (B,C), with propagation delays of d1 and d2, respectively. 10 4 Assume that host A sends M packets to host C using a sliding window flow control protocol with a window of size W. How much does it take to send all packets from A to C when the flow control protocol is a) [5 Marks] implemented end-to-end between A and C? How much does it take to send all packets from A to C when the flow control protocol is implemented on each link instead of end-to-end? [5 Marks] 10

For the following network, 5

an empty routing tree generated by Dijkstra's algorithm for node A (to every other node) is shown below. Fill in the missing nodes and indicate the order that each node was added and its associated cost.

**********All the best *********

Reg. No.:

Name

Continuous Assessment Test II - March 2023

	(disting	Semester	: Winter'22-23
mme	: B. Tech (CSE and its Specializations)	Code	: BCSE308L
e	Computer Networks	Slot	: G2+TG2
iy	: Dr. PRASAD M Dr. AMRIT PAL Prof. SAHAYA BENI PRATHIBA Dr. S A AMUTHA JEEVAKUMARI Prof. NOEL JEYGAR ROBERT V Dr. RENJITH	Class Nbr	CH2022235001301 C112022235001271 C112022235001268 CH2022235000944 CH2022235001270 CH2022235001302 CH2022235000943
	Prof. RAJESH KUMAR : 90 Minutes	Max. Marks	: 50

Answer ALL the questions

Sub. Sec. Questions

Marks

Consider streams of 32 bits 11110100 00101111 01001001 10101100 need to be transmitted from a sender to a receiver. Equal size sections are used to transmit the data and the redundant bits. Illustrate the complete transmission process for the abovementioned bit stream using checksum.

Suppose you want to send an 8-bit data sequence 10110101 over a communication channel using a Hamming code with even parity.

- A. Determine the number of parity bits required to create a Hamming code for this message. [1 Mark]
 - B. Calculate the Hamming code for the message, including the parity bits. [2 Marks]
 - C. Suppose that during transmission, a bit is flipped from 1 to 0 or 0 to 1. Calculate the received message and determine the bit that was flipped in transmission. [2 Marks]
 - D. Use the Hamming code to correct the error in the received message and retrieve the original message. [2 Marks]
- What are some practical applications of the Hamming code in modern computing and communication systems? How might these applications be affected by advances in technology and changes in user needs? [3 Marks]

16

Two neighbouring nodes P and Q use a Selective Repeat ARQ protocol with window size 9. Frames 0, 1, 2, 3, 4 and 5 are sent. For each of the following separate scenarios, discuss the significance of the receiving of,

a. An ACK 5 [2 marks]

10

10

10

- b. An ACK 3 [2 marks]
- e. ANAK 2 [2 marks]
- d. ANAK 4 [2 marks]
- e. An ACK 6 [2 marks]

As ISP is granted a block of addresses starting with 10.0.0.0/8. The ISP needs to distribute these addresses to four groups of customers as follows:

- VIT research centre has 64 centres; each centre has 512 addresses
- VIT engineering has 32 branches; each branch needs 1024 addresses
- VIT law has 16 divisions; each division has 512 addresses
- VIT arts and science have 32 branches; each branch has 256 addresses
- Design the subblocks and give the details for each subblock. [8 Marks]
- Find out how many addresses are still available after these allocations. [2 Marks] ii.
- In an IPv4 datagram, the value of the total length field is (00A0)16 and the value of i. the header length (HLEN) is (5)16. How many bytes of the payload are being carried by the datagram? [4 Marks]
- In an IPv4 datagram, the value of the header-length (IILEN) field is (6)16. How ii. many bytes of options have been added to the packet? [4 Marks]
- A datagram is carrying 1024 bytes of data. If there is no option information, find iii. the value of the header length field. Also, calculate the value of the total length field. [2 Marks]