Vytěžování dat

Filip Železný

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA)

18. března 2009

Z minulé přednášky

Připomínka klasifikačního příkladu

Příjmy (p)	Rok narození (n)	Úvěr (u)
vysoké	1969	splácí
nízké	1974	nesplácí
střední	1940	problémy
nízké	1985	problémy

Cílová veličina je Úvěr.

Klasifikace dle nejbližšího souseda

- Metoda, která nevyžaduje odhad pravděpodobností.
- Předpoklad: umíme spočítat podobnost dvou datových instancí
- Zde $p, n \in N$, $u \in \{\text{splácí}, \text{problémy}, \text{nesplácí}\}$

Klasifikace dle nejbližšího souseda

- Zde podobnost např. $(p_1 p_2)^2 + (n_1 n_2)^2$
- (Eukleidovský prostor).
- Zařazujeme do třídy nejpodobnější instance.

Separační křivky

Po částech lineární

Separační křivky

Po částech lineární

Separace tříd

Lineárně omezené oblasti

Separace tříd

Lineárně omezené oblasti

Separace tříd

Lineárně omezené oblasti

Klasifikace dle k nejbližších sousedů

Zařazujeme do třídy převládající mezi *k* nejpodobnějšími instancemi.

Trénovací a skutečná chyba klasifikátoru

Trénovací chyba

Podíl instancí v datech chybně klasifikovaných klasifikátorem sestrojeným z těchto dat (tzv. trénovacích dat).

Skutečná chyba

Pravděpodobnost chybné klasifikace určená pravděpodobnostním rozdělením, z něhož jsou vybírána trénovací data. Totéž, co střední hodnota rizika při použití ztrátové funkce L_{01} :

$$\sum_{x} r_{u|p}(y,x) \cdot P_p(x)$$

Jaké k je nejlepší?

Experiment: generovaná data [Hastie et al.: Elements of Statistical Learning]

k=1 Nulová trénovací chyba, přesto klasifikace odlišná od optimálníightarrow

Dle maximální aposteriorní pravděpodobnosti (optimální)

k=15Malá náchylnost k
šumu, přesto
klasifikace odlišná od \leftarrow optimální

Jaké k je nejlepší?

Experiment: generovaná data [Hastie et al.: Elements of Statistical Learning]

Separace složitá, "kostrbatá"

Separace jednoduchá, regulární

Jaké k je nejlepší?

Experiment: generovaná data [Hastie et al.: Elements of Statistical Learning]

Separace složitá, "kostrbatá"

Separace jednoduchá, regulární

Povolíme-li složitou separaci,

- snadněji dosáhneme nízké trénovací chyby
- trénovací chyba méně vypovídá o skutečné chybě ("přeučení")

Trénovací vs. skutečná chyba

- Typický průběh chyb pro k=m (počet dat), $m-1,\ldots 1$
- Trénovací chyba není dobrým odhadem skutečné chyby!

Klasifikace dle etalonů

- Metoda nevyžadující přístup ke všem instancím při klasifikaci.
- Pro každou třídu je definován etalon.

Klasifikace dle etalonů

- Etalon má minimální průměrnou vzdálenost k instancím třídy.
- Vybírán z trénovacích dat, nebo z celého oboru hodnot (zde p, n).

Klasifikace dle etalonů

- Etalony jsou jednoduchým nepravděpodobnostním modelem dat.
- Při klasifikaci nových dat již nepoužíváme stará data, ale model.

Lineární separace

Etalony: lineární separace, chyby na trénovací množině

Lineární separace

Šlo by to bez chyb, třídy jsou lineárně separabilní.

Lineární separace

Místo etalonů hledejme modely přímo ve formě separačních přímek. **Příznaky musí být reálné veličiny** (až do konce přednášky) Tedy např. *p* je příjem v Kč.

Hledáme parametry a, b, c rovnice přímky.

Hledáme parametry a, b, c rovnice přímky.

Skalární součin

Nechť

$$\vec{\alpha} = (a, b, c, \ldots)$$
 $\vec{\beta} = (m, n, o, \ldots)$

Definujeme:

$$\vec{\alpha} * \vec{\beta} = a \cdot m + b \cdot n + c \cdot o + \dots$$

Pro každý příklad klienta třídy splácí s příznaky p_i , n_i :

$$\vec{w} * \vec{x}_i > 0$$

kde
$$\vec{w} = (a, b, c)$$
, $\vec{x}_i = (p_i, n_i, 1)$, $i = 1 \dots 5$.

Pro každý příklad klienta třídy problémy s příznaky p_i , n_i :

$$\vec{w} * \vec{x_i} < 0$$

kde
$$\vec{w} = (a, b, c)$$
, $\vec{x}_i = (p_i, n_i, 1)$, $i = 1...7$.

Pro každý příklad klienta třídy problémy s příznaky p_i , n_i :

$$\vec{w} * \vec{x}_i > 0$$

kde
$$\vec{w} = (a, b, c)$$
, $\vec{x}_i = (-p_i, -n_i, -1)$, $i = 1...7$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からで

Hledáme řešení soustavy

$$\vec{w} * \vec{x}_i > 0$$

$$i = 1 ... 12$$

Chybová funkce

Nechť E je množina příkladů nesprávně klasifikovaných přímkou \vec{w} . Nechť

$$e(\vec{w}) = \sum_{\vec{x}_i \in E} -\vec{w} * \vec{x}_i$$

 $e(\vec{w}) \ge 0$ vždy a $e(\vec{w}) = 0$, jsou-li všechny příklady klasifikovány správně.

Chybová funkce

Hledáme tedy minimum funkce

$$e(\vec{w}) = \sum_{\vec{x}_i \in E} -\vec{w} * \vec{x}_i$$

mezi všemi $\vec{w} \in R^3$

Gradient

Směr největšího vzrůstu funkce $f(\vec{lpha})$ proměnné $\vec{lpha}=(lpha_1,lpha_2,\dots)$

$$\nabla f(\vec{\alpha}) = \left(\frac{\partial f(\vec{\alpha})}{\partial \alpha_1}, \frac{\partial f(\vec{\alpha})}{\partial \alpha_2}, \dots\right)$$

Filip Železný (ČVUT)

V každém kroku $k = 1, 2, \ldots$:

$$\vec{w}(k+1) = \vec{w}(k) - \eta \cdot \nabla e(\vec{w}(k))$$

 $\eta \in R$ je velikost kroku

$$abla e(\vec{w}) =
abla \sum_{x_i \in E} -\vec{w} * \vec{x_i} = \sum_{x_i \in E} -\vec{x_i}$$

19 / 29

$$\nabla e(\vec{w}) = \nabla \sum_{x_i \in E} -\vec{w} * \vec{x_i} = \sum_{x_i \in E} -\vec{x_i}$$

V každém kroku $k = 1, 2 \dots$ tedy:

$$\vec{w}(k+1) = \vec{w}(k) + \eta \cdot \sum_{x_i \in E} \vec{x_i}$$

19 / 29

Filip Železný (ČVUT) Vytěžování dat 18. března 2009

$$\nabla e(\vec{w}) = \nabla \sum_{x_i \in E} -\vec{w} * \vec{x_i} = \sum_{x_i \in E} -\vec{x_i}$$

V každém kroku $k = 1, 2 \dots$ tedy:

$$\vec{w}(k+1) = \vec{w}(k) + \eta \cdot \sum_{x_i \in E} \vec{x_i}$$

Varianta s proměnnou velikostí kroku:

$$\vec{w}(k+1) = \vec{w}(k) + \eta(k) \cdot \sum_{x_i \in E} \vec{x_i}$$

$$\nabla e(\vec{w}) = \nabla \sum_{x_i \in E} -\vec{w} * \vec{x_i} = \sum_{x_i \in E} -\vec{x_i}$$

V každém kroku $k = 1, 2 \dots$ tedy:

$$\vec{w}(k+1) = \vec{w}(k) + \eta \cdot \sum_{x_i \in E} \vec{x_i}$$

Varianta s proměnnou velikostí kroku:

$$\vec{w}(k+1) = \vec{w}(k) + \eta(k) \cdot \sum_{x_i \in E} \vec{x_i}$$

Aby $\lim_{k\to\infty} \vec{w}(k)$ konvergovala, určíme $\eta(k)$ tak, aby

$$\lim_{k\to\infty}\eta(k)=0$$

Perceptronový algoritmus

```
Input: \vec{w}, \eta(.), \theta
Output: \vec{w}
repeat
\begin{vmatrix} k \leftarrow k + 1 \\ \vec{w} \leftarrow \vec{w} + \eta(k) \sum_{\vec{x}_i \in E} \vec{x}_i \\ \text{until } |\eta(k) \sum_{\vec{x}_i \in E} \vec{x}_i| < \theta ;
return \vec{w}
```


Perceptron

Rovnice v grafické představě

Základ modelu umělého neuronu

Vyšší dimenze

- Příklady dosud dvourozměrné (příznaky p, n)
- Ve vyšších dimenzích stejné principy
- Tři příznaky: místo přímky hledáme

Vyšší dimenze

- Příklady dosud dvourozměrné (příznaky p, n)
- Ve vyšších dimenzích stejné principy
- Tři příznaky: místo přímky hledáme separační rovinu

Více příznaků: hledáme tzv. nadrovinu (hyperrovinu)

Více tříd

- Dosud: klasifikace mezi dvěma třídami. Možnosti pro 3 a více tříd?
- "1 proti všem": T nadrovin pro T tříd, každá odděluje jednu od ostatních.
 - Problém: jak rozhodnout při klasifikaci, pokud "vyhraje" více než 1 třída?
- Dvojice: T(T-1)/2 nadrovin pro T tříd, každá odděluje jeden pár tříd.
 - ▶ Problém: vznikají oblasti nejjednoznačnosti →

• Řešení pomocí diskriminačních funkcí mimo rozsah přednášky.

Lineárně neseparabilní třídy

Možnosti

- Spokojit se s nenulovou trénovací chybou
- Separovat nelineárně

Rozšíření báze

Převádí **nelineární** separaci na **lineární** separaci ve **vyšším rozměru**.

- K množině příznaků (p, n) přidáme součiny do s-tého stupně.
- Pro s = 2 nová množina (p, n, o, q, r), kde

$$o = p \cdot p = p^{2}$$

$$q = p \cdot n$$

$$r = n \cdot n = n^{2}$$

Např. perceptronem obdržíme separující nadrovinu v 5D:

$$a \cdot p + b \cdot n + c \cdot o + d \cdot q + e \cdot r + f$$

• tj. separující polynom stupně 2 zpět ve 2D:

$$c \cdot p^2 + e \cdot n^2 + d \cdot p \cdot n + a \cdot p + b \cdot n + f$$

◆□▶◆□▶◆≣▶◆≣▶ ■ 少९○

Kvadratická separace

• Pokud by trénovací chyba nekonvergovala k nule ani s kvadratickou separací, můžeme dále rozšířovat bázi na $s=3,4,\ldots$

Separace polynomem vyššího řádu

• V čem je nebezpečí zvyšování s?

Trénovací vs. skutečná chyba

- Typický průběh chyby pro vzrůstající stupeň separačního polynomu
- Přeučení
- Srovnejte s podobnou analogickou závislostí u klasifikace dle sousedů

