PaSt 1 – Cvičení 11 2022-05-09, 10:40

1. Volíme uniformně náhodně bod z polokruhu o poloměru 1 se středem v počátku a v horní polorovině. Naše volby jsou uniformně náhodné, tedy pravděpodobnost zásahu libovolné oblasti je úměrná jejímu obsahu. Označme X a Y souřadnice vybraného bodu.

- a) Najděte sdruženou hustotu $f_{X,Y}$.
- b) Najděte marginální hustotu f_Y a spočtěte pomocí ní $\mathbb{E}[Y]$.
- c) Pro kontrolu spočtěte $\mathbb{E}[Y]$ přímo pomocí pravidla naivního statistika.
- 2. Metrový klacek zlomíme v uniformně náhodném bodě a necháme si levý kus, jehož délku označme Y. V něm opět vybereme uniformně náhodný bod, ve kterém klacek zlomíme a necháme si levý kus, jehož délku označíme X.
 - a) Najděte sdruženou hustotu $f_{X,Y}$. Pomozte si podmíněnou hustotou $f_{X|Y}$.
 - b) Najděte marginální hustotu f_X .
 - c) Pomocí f_X spočtěte $\mathbb{E}[X]$.
 - d) Spočtěte $\mathbb{E}[X]$ pomocí vztahu $X = Y \cdot \frac{X}{Y}$.
- 3. Nechť X je náhodná veličina s hustotou

$$f_X(x) = \begin{cases} \frac{x}{4} & \text{pro } 1 < x \le 3, \\ 0 & \text{jinak.} \end{cases}$$

Označme A jev $\{X \ge 2\}$.

- a) Spočtěte $\mathbb{E}[X]$, $\Pr[A]$, $f_{X|A}$ a $\mathbb{E}[X \mid A]$.
- b) Označme $Y = X^2$. Spočtěte $\mathbb{E}[Y]$ a Var[Y]
- 4. Chceme počítat obsah kruhu samplováním. Vygenerujeme náhodný bod v jednotkovém čtverci, tj. obě souřadnice vygenerovaného bodu jsou rozdělené podle $\mathcal{U}(0,1)$. Nechť X_i je indikátor jevu "i-tý vygenerovaný bod je uvnitř kružnice vepsané čtverci".
 - a) Určete $\mathbb{E}[X_i]$ a $Var[X_i]$.
 - b) Nechť $S_n = \frac{1}{2}(X_1 + \cdots + X_n)$. Spočtěte $\mathbb{E}[S_n]$ a $Var[S_n]$.
 - c) Pro jaké nčekáte, že výsledek bude správný na jedno desetinné místo? Co na dvě, tři, \dots ?

 $\underline{\text{PaSt } 1 - \text{Cvičen\'i } 11} \\ \underline{\text{2022-05-09, } 10\text{:}40}$

Volíme uniformně náhodně bod z polokruhu o poloměru 1 se středem v počátku a v horní polorovině.
 Naše volby jsou uniformně náhodné, tedy pravděpodobnost zásahu libovolné oblasti je úměrná jejímu obsahu. Označme X a Y souřadnice vybraného bodu.

- a) Najděte sdruženou hustotu $f_{X,Y}$.
- b) Najděte marginální hustotu f_Y a spočtěte pomocí ní $\mathbb{E}[Y]$.
- c) Pro kontrolu spočtěte $\mathbb{E}[Y]$ přímo pomocí pravidla naivního statistika.
- Metrový klacek zlomíme v uniformně náhodném bodě a necháme si levý kus, jehož délku označme Y.
 V něm opět vybereme uniformně náhodný bod, ve kterém klacek zlomíme a necháme si levý kus, jehož délku označíme X.
 - a) Najděte sdruženou hustotu $f_{X,Y}$. Pomozte si podmíněnou hustotou $f_{X|Y}$.
 - b) Najděte marginální hustotu f_X .
 - c) Pomocí f_X spočtěte $\mathbb{E}[X]$.
 - d) Spočtěte $\mathbb{E}[X]$ pomocí vztahu $X = Y \cdot \frac{X}{Y}$.
- 3. Nechť X je náhodná veličina s hustotou

$$f_X(x) = \begin{cases} \frac{x}{4} & \text{pro } 1 < x \le 3, \\ 0 & \text{jinak.} \end{cases}$$

Označme A jev $\{X \geq 2\}$.

- a) Spočtěte $\mathbb{E}[X]$, $\Pr[A]$, $f_{X|A}$ a $\mathbb{E}[X \mid A]$.
- b) Označme $Y = X^2$. Spočtěte $\mathbb{E}[Y]$ a Var[Y]
- 4. Chceme počítat obsah kruhu samplováním. Vygenerujeme náhodný bod v jednotkovém čtverci, tj. obě souřadnice vygenerovaného bodu jsou rozdělené podle $\mathcal{U}(0,1)$. Nechť X_i je indikátor jevu "i-tý vygenerovaný bod je uvnitř kružnice vepsané čtverci".
 - a) Určete $\mathbb{E}[X_i]$ a $Var[X_i]$.
 - b) Nechť $S_n = \frac{1}{2}(X_1 + \cdots + X_n)$. Spočtěte $\mathbb{E}[S_n]$ a $Var[S_n]$.
 - c) Pro jaké n čekáte, že výsledek bude správný na jedno desetinné místo? Co na dvě, tři, \dots ?