Math 107H

Topics for the third exam

(Technically, everything covered on the <u>first two</u> exams <u>plus</u>...)

Chapter 7: Techniques of integration

Partial fractions

rational function = quotient of polynomials

Idea: integrate by writing function as sum of simpler functions

Procedure: $f(x) = \frac{p(x)}{q(x)}$

- (0): make sure degree(p) < degree(q); do long division if it isn't
- (1): factor q(x) into linear and irreducible quadratic factors
- (2): group common factors together as powers
- (3a): for each group $(x-a)^n$ add together: $\frac{a_1}{x-a} + \cdots + \frac{a_n}{(x-a)^n}$
- (3b): for each group $(ax^2 + bx + c)^n$ add together: $\frac{a_1x + b_1}{ax^2 + bx + c} + \dots + \frac{a_nx + b_n}{(ax^2 + bx + c)^n}$
- (4) set f(x) = sum; solve for the 'undetermined' coefficients put sum over a common denomenator (=q(x)); set numerators equal. always works: multiply out, group common powers, set coeffs of the two

polynomials equal Ex: x + 3 = a(x - 1) + b(x - 2) = (a + b)x + (-a - 2b); 1 = a + b, 3 = -a - 2blinear term $(x - a)^n$: set x = a, will allow you to solve for a coefficient if n > 2, take derivatives of both sides! set x = a, gives another coeff.

Ex:
$$\frac{x^2}{(x-1)^2(x^2+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+1} = \frac{A(x-1)(x^2+1) + B(x^2+1) + (Cx+D)(x-1)^2}{(x-1)^2(x^2+1)} = \dots$$

L'Hôpital's Rule

indeterminate forms: limits which 'evaluate' to 0/0; e.g. $\lim_{x\to 0} \frac{\sin x}{x}$

LR# 1: If f(a) = g(a) = 0, f and g both differentiable near a, then

i... f(x)

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Other indeterminate forms: $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 0^0 , 1^∞ , ∞^0

LR#2: if
$$f, g \to \infty$$
 as $x \to a$, then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Other cases: try to turn them into 0/0 or ∞/∞ ;

in the last three cases, do this by taking logs, first

Improper integrals

usual idea: $\int_a^b f(x) dx = F(b) - F(a)$, where F'(x) = f(x)

Problems: $a = -\infty$, $b = \infty$; f blows up at a or b or somewhere in between integral is "improper"; usual technique doesn't work. Solution to this:

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx \qquad \text{(similarly for } a = -\infty)$$
(blow up at a)
$$\int_{a}^{b} f(x) dx = \lim_{r \to a^{-}} \int_{r}^{b} f(x) dx \quad \text{(similarly for blowup at } b \text{ (or both!)})$$
(blows up at c (b/w a and b))
$$\int_{a}^{b} f(x) dx = \lim_{r \to c^{-}} \int_{a}^{r} f(x) dx + \lim_{s \to c^{+}} \int_{s}^{b} f(x) dx$$

The integral <u>converges</u> if (all of the) limit(s) are finite

Comparison: $0 \le f(x) \le g(x)$ for all x;

if
$$\int_{a}^{\infty} g(x) dx$$
 converges, so does $\int_{a}^{\infty} f(x) dx$

Limit comparison: $f, g \ge 0$, $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$, $L \ne 0, \infty$, then

$$\int_a^\infty f(x) dx$$
 and $\int_a^\infty g(x) dx$ either both converge or both diverge

Chapter 8: Infinite sequences and series

§1: Limits of sequences of numbers

A sequence is: a string of numbers; a function $f: \mathbf{N} \to \mathbf{R}$; write $f(n) = a_n$ $a_n = n$ -th term of the sequence

Basic question: convergence/divergence

$$\lim_{n \to \infty} a_n = L \text{ (or } a_n \to L) \text{ if }$$

eventually all of the a_n are always as close to L as we like, i.e.

for any $\epsilon > 0$, there is an N so that if $n \geq N$ then $|a_n - L| < \epsilon$

Ex.: $a_n = 1/n$ converges to 0; can always choose $N=1/\epsilon$

 $a_n = (-1)^n$ diverges; terms of the sequence never settle down to a <u>single</u> number

If a_n is increasing $(a_{n+1} \ge a_n$ for every n) and bounded from above $(a_n \le M$ for every n, for some M), then a_n converges (but not necessarily to M!) limit is smallest number bigger than all of the terms of the sequence

Limit theorems for sequences

Idea: limits of sequences are a lot like limits of functions

If
$$a_n \to L$$
 and $b_n \to M$, then $(a_n + b_n \to L + M \quad (a_n - b_n) \to L - M \quad (a_n b_n) \to LM$, and $(a_n/b_n) \to L/M$ (provided M , all b_n are $\neq 0$)

Squeze play theorem: if $a_n \le b_n \le c_n$ (for all n large enough) and $a_n \to L$ and $c_n \to L$, then $b_n \to L$

If $a_n \to L$ and $f: \mathbf{R} \to \mathbf{R}$ is continuous at L, then $f(a_n) \to f(L)$

if $a_n = f(n)$ for some function $f: \mathbf{R} \to \mathbf{R}$ and $\lim_{x \to \infty} f(x) = L$, then $a_n \to L$

(allows us to use L'Hopital's Rule!)

Another basic list: (x = fixed number, k = konstant)

$$\frac{1}{n} \to 0 \qquad k \to k \qquad \qquad x^{\frac{1}{n}} \to 1$$

$$n^{\frac{1}{n}} \to 1 \qquad (1 + \frac{x}{n})^n \to e^x \qquad \frac{x^n}{n!} \to 0$$

$$x^n \to \left\{ 0, \text{ if } |x| < 1 ; 1, \text{ if } x = 1 ; \text{ diverges, otherwise } \right\}$$

Infinite series

An infinite series is an infinite sum of numbers

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$
 (summation notation)

n-th term of series = a_n ; N-th partial sum of series = $s_N = \sum_{n=1}^{N} a_n$

An infinite series **converges** is the sequence of partial sums $\begin{cases} s_N \\ s_{N-1} \end{cases}$ converges

We may start the series anywhere: $\sum_{n=0}^{\infty} a_n, \sum_{n=1}^{\infty} a_n, \sum_{n=3437}^{\infty} a_n, \text{ etc. } ;$

convergence is unaffected (but the number it adds up to is!)

Ex. geometric series: $a_n = ar^n$; $\sum_{n=0}^{\infty} a_n = \frac{a}{1-r}$

if |r| < 1; otherwise, the series diverges.

Ex. Telescoping series: partial sums s_N 'collapse' to a simple expression

E.g.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right); s_N = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} - \left(\frac{1}{N+1} + \frac{1}{N+2} \right) \right)$$

n-th term test: if $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$

So if the *n*-th terms **don't** go to 0, then $\sum_{n=1}^{\infty} a_n$ diverges

Basic limit theorems: if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, then

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \qquad \sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} (ka_n) = k \sum_{n=1}^{\infty} a_n$$

Truncating a series: $\sum_{n=1}^{\infty} a_n = \sum_{n=N}^{\infty} a_n + \sum_{n=1}^{N-1} a_n$

Comparison tests

Again, think $\sum_{n=1}^{\infty} a_n$, with $a_n \geq 0$ all n

Convergence depends only on partial sums s_N being **bounded** One easy way to determine this: **compare** series with one we **know** converges or diverges

Comparison test: If $b_n \geq a_n \geq 0$ for all n (past a certain point), then

if
$$\sum_{n=1}^{\infty} b_n$$
 converges, so does $\sum_{n=1}^{\infty} a_n$; if $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} b_n$

(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

More refined: Limit comparison test: a_n and $b_n \geq 0$ for all $n, \frac{a_n}{h} \rightarrow L$

If $L \neq 0$ and $L \neq \infty$, then $\sum a_n$ and $\sum b_n$ either **both** converge or **both** diverge

If
$$L = 0$$
 and $\sum b_n$ converges, then so does $\sum a_n$
If $L = \infty$ and $\sum b_n$ diverges, then so does $\sum a_n$

If
$$L = \infty$$
 and $\sum b_n$ diverges, then so does $\sum a_n$

(Why? eventually $(L/2)b_n \le a_n \le (3L/2)b_n$; so can use comparison test.)

Ex:
$$\sum 1/(n^3-1)$$
 converges; L-comp with $\sum 1/n^3$ $\sum n/3^n$ converges; L-comp with $\sum 1/2^n$ $\sum 1/(n \ln(n^2+1))$ diverges; L-comp with $\sum 1/(n \ln n)$

$$\sum n/3^n$$
 converges; L-comp with $\sum 1/2^n$

$$\sum 1/(n \ln(n^2+1))$$
 diverges; L-comp with $\sum 1/(n \ln n)$

The integral test

Idea:
$$\sum_{n=1}^{\infty} a_n \text{ with } a_n \geq 0 \text{ all } n, \text{ then the partial sums}$$

 $\{s_N\}_{N=1}^{\infty}$ forms an increasing sequence;

so converges exactly when bounded from above

If (eventually) $a_n = f(n)$ for a decreasing function $f:[a,\infty)\to \mathbb{R}$, then

$$\int_{a+1}^{N+1} f(x) \, dx \le s_N = \sum_{n=a}^{N} a_n \le \int_{a}^{N} f(x) \, dx$$

so
$$\sum_{n=a}^{\infty} a_n$$
 converges exactly when $\int_a^{\infty} f(x) dx$ converges

Ex:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges exactly when $p > 1$ (p-series)

The ratio and root tests

A series
$$\sum a_n$$
 converges absolutely if $\sum |a_n|$ converges.
If $\sum |a_n|$ converges then $\sum a_n$ converges

If
$$\sum |a_n|$$
 converges then $\sum a_n$ converges

Previous tests have you compare your series with something else (another series, an improper integral); these tests compare a series with itself (sort of)

Ratio Test:
$$\sum a_n$$
, $a_n \neq 0$ all n ; $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$

If
$$L < 1$$
 then $\sum a_n$ converges absolutely

If
$$L > 1$$
, then $\sum a_n$ diverges
If $L = 1$, then try something else!

If
$$L = 1$$
, then try something else

Root Test:
$$\sum a_n$$
, $\lim_{n\to\infty} |a_n|^{1/n} = L$

If
$$L < 1$$
 then $\sum a_n$ converges absolutely

If
$$L > 1$$
, then $\sum a_n$ diverges

If
$$L = 1$$
, then $\overline{\text{try}}$ something else!

Ex:
$$\sum \frac{4^n}{n!}$$
 converges by the ratio test $\sum \frac{n^5}{n^n}$ converges by the root test

Power series

Idea: turn a series into a function, by making the terms a_n depend on x replace a_n with $a_n x^n$; series of powers

$$\sum_{n=0}^{\infty} a_n x^n = \text{power series centered at } 0$$

$$\sum_{n=0}^{\infty} a_n (x-a)^n = \text{power series centered at } a$$

Big question: for what x does it converge? Solution from ratio test

$$\left| \frac{a_{n+1}}{a_n} \right| = L$$
, set $R = \frac{1}{L}$

then
$$\sum_{n=0}^{\infty} a_n (x-a)^n$$
 converges absolutely for $|x-a| < R$

diverges for
$$|x - a| > R$$
; $R = \text{radius of convergence}$

Ex.:
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
; conv. for $|x| < 1$

Why care about power series?

Idea: partial sums
$$\sum_{k=0}^{n} a_k x^k$$
 are polynomials;

if
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, then the poly's make good approximations for f

Differentiation and integration of power series

Idea: if you diff. or int. each term of a power series, you get a power series which is the deriv. or integral of the original one.

If
$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
 has radius of conv R ,

then so does
$$g(x) = \sum_{n=1}^{\infty} na_n(x-a)^{n-1}$$
, and $g(x) = f'(x)$

and so does
$$g(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-a)^{n+1}$$
, and $g'(x) = f(x)$

Ex:
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, then $f'(x) = f(x)$, so (since $f(0) = 1$) $f(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Ex.:
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, so $-\ln(1-x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ (for $|x| < 1$)

Ex:.
$$\arctan x = \int \frac{1}{1 - (-x^2)} dx = \int \sum_{n=0}^{\infty} (-x^2)^n dx =$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} \qquad \text{(for } |x| < 1)$$

Taylor series

Idea: start with function f(x), find power series for it.

If
$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$$
, then (term by term diff.)

$$f^{(n)}(a) = n!a_n \; ; \; \text{SO} \; a_n = \frac{f^{(n)}(a)}{n!}$$

Starting with f, define
$$P(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
,

the Taylor series for f, centered at a.

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$
, the *n*-th Taylor polynomial for f .

Ex.:
$$f(x) = \sin x$$
, then $P(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$

Big questions: Is f(x) = P(x)? (I.e., does $f(x) - P_n(x)$ tend to 0?) If so, how well do the P_n 's approximate f? (I.e., how small is $f(x) - P_n(x)$?)

Error estimates

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

means that the value of f at a point x (far from a) can be determined just from the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property, one that we wouldn't ordinarily expect to be true. The amazing thing is that it often is:

$$P(x,a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \; ; \; P_n(x,a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (k-a)^n \; ;$$

 $R_n(x,a) = f(x) - P_n(x,a) = n - \text{th remainder term} = \text{error in using } P_n \text{ to approximate } f$

Taylor's remainder theorem : estimates the size of $R_n(x, a)$

If f(x) and all of its derivatives (up to n+1) are continuous on [a,b], then

$$f(b) = P_n(b, a) + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$$
, for some c in $[a, b]$

i.e., for each
$$x$$
, $R_n(x,a) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$, for some c between a and x

so if
$$|F^{(n+1)}(x)||leq M$$
 for every x in $[a,b]$, then $|R_n(x,a)| \leq \frac{M}{(n+1)!}(x-a)^{n+1}$ for every x in $[a,b]$

Ex.:
$$f(x) = \sin x$$
, then $|f^{(n+1)}(x)| \le 1$ for all x , so $|R_n(x,0)| \le \frac{|x|^{n+1}}{(n+1)!} \to 0$ as $n \to \infty$

so
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

Similarly,
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Use Taylor's remainder to estimate values of functions:

$$e^{x} = \sum_{n=0}^{\infty} \frac{(x)^{n}}{(n)!}, \text{ so } e = e^{1} = \sum_{n=0}^{\infty} \frac{1}{(n)!}$$

$$|R_{n}(1,0)| = \frac{f^{(n+1)}(c)}{(n+1)!} = \frac{e^{c}}{(n+1)!} \le \frac{e^{1}}{(n+1)!} \le \frac{4}{(n+1)!}$$
since $e < 4$ (since $\ln(4) > (1/2)(1) + (1/4)(2) = 1$)
(Riemann sum for integral of $1/x$)
so since $\frac{4}{(13+1)!} = 4.58 \times 10^{-11},$

$$e = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \dots + \frac{1}{13!}, \text{ to } 10 \text{ decimal places.}$$

Other uses: if you know the Taylor series, it tells you the values of the derivatives at the center.

Ex.:
$$e^x = \sum_{n=0}^{\infty} \frac{(x)^n}{(n)!}$$
, so $xe^x = \sum_{n=0}^{\infty} \frac{(x)^{n+1}}{(n)!}$, so

15th deriv of xe^x , at 0, is 15!(coeff of x^{15}) = $\frac{15!}{14!}$ = 15

Substitutions: new Taylor series out of old ones

Ex.
$$\sin^2 x = \frac{1 - \cos(2x)}{2} = \frac{1}{2} (1 - \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!}$$

$$= \frac{1}{2} (1 - (1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \cdots)$$

$$= \frac{2x^2}{2!} - \frac{2^3 x^4}{4!} + \frac{2^5 x^6}{6!} - \frac{2^7 x^8}{8!} + \cdots$$

Integrate functions we can't handle any other way:

Ex.:
$$e^{x^2} = \sum_{n=0}^{\infty} \frac{(x)^2 n}{(n)!}$$
, so
$$\int e^{x^2} dx = \sum_{n=0}^{\infty} \frac{(x)^{2n+1}}{n!(2n+1)}$$