Lab Worksheet

ชื่อ-นามสกุล____นายพิรัชย์ ชัยรัตน์____รหัสนศ.___663380223-3_____Section___1__

Lab#7 - White-box testing

วัตถุประสงค์การเรียนรู้

- 1. ผู้เรียนสามารถออกแบบการทดสอบแบบ White-box testing ได้
- 2. ผู้เรียนสามารถวิเคราะห์ปัญหาด้วย Control flow graph ได้
- 3. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Line coverage ได้
- 4. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Block coverage ได้
- 5. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch coverage ได้
- 6. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Condition coverage ได้
- 7. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch and Condition coverage ได้

โจทย์: CLUMP COUNTS

Clump counts (https://codingbat.com/prob/p193817) เป็นโปรแกรมที่ใช้ในการนับการเกาะกลุ่มกันของข้อมูลภายใน Array โดยการเกาะกลุ่มกันจะนับสมาชิกใน Array ที่อยู่ติดกันและมีค่าเดียวกันตั้งแต่สองตัวขึ้นไปเป็นหนึ่งกลุ่ม เช่น

$$[1, 2, 2, 3, 4, 4] \rightarrow 2$$

$$[1, 1, 2, 1, 1] \rightarrow 2$$

$$[1, 1, 1, 1, 1] \rightarrow 1$$

ชอร์สโค้ดที่เขียนขึ้นเพื่อนับจำนวนกลุ่มของข้อมูลที่เกาะอยู่ด้วยกันอยู่ที่

https://github.com/ChitsuthaCSKKU/SOA/tree/2025/Assignment/Lab7 โดยที่ nums เป็น Array ที่ใช้ในการสนับสนุน การนับกลุ่มของข้อมูล (Clump) ทำให้ nums เป็น Array ที่จะต้องไม่มีคาเป็น Null และมีความยาวมากกว่า 0 เสมอ หาก nums ไม่เป็นไปตามเงื่อนไขที่กำหนดนี้ โปรแกรมจะ return ค่า 0 แทนการ return จำนวนกลุ่มของข้อมูล

แบบฝึกปฏิบัติที่ 7.1 Control flow graph

จากโจทย์และ Source code ที่กำหนดให^{*} (CountWordClumps.java) ให^{*}เขียน Control Flow Graph (CFG) ของเมธอด countClumps() จากนั้นให**้**ระบุ Branch และ Condition ทั้งหมดที่พบใน CFG ให**้**ครบถ้วน

ตอบ

Lab instruction

Branch: 1->2, 1->3, 3->2, 3->4, 6->7, 6->8, 8->9, 8->11, 9->10, 9->11, 11->12, 11->13

CP353201 Software Quality Assurance (1/2568) Lab instruction

Condition: 1, 3, 6, 8, 9, 11

แบบฝึกปฏิบัติที่ 7.2 Line Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Line coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุบรรทัดที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่ำ Line coverage

ตอบ

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
TC01	null	0	Line No.:6, 7
TC02	[1,1,3,3]	2	Line No.:6, 10, 11, 12, 14, 15, 16, 17, 20, 21, 22, 25
			Line No.:
			Line No.:

Line coverage =
$$\left(\frac{Number\ of\ executed\ lines}{Total\ number\ of\ lines}\right) x\ 100 = \left(\frac{13}{13}\right) x\ 100$$

= 100%

แบบฝึกปฏิบัติที่ 7.3 BLOCK COVERAGE

1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Block coverage = 100%

Lab instruction

- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Block ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่ำ Block coverage

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
TC03	null	0	Block:1, 2
TC04		0	Block:1, 3, 2
TC05	[1,1,3,3]	2	Block:1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 12,
			7
			Block:

Block coverage =
$$\left(\frac{blocks\ covered}{Total\ no.of\ blocks}\right)x\ 100 = \left(\frac{13}{13}\right)x\ 100$$

= 100%

แบบฝึกปฏิบัติที่ 7.3 Branch Coverage

- 4. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Branch coverage = 100%
- 5. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Branch ที่ถูกตรวจสอบทั้งหมด
- 6. แสดงวิธีการคำนวณค่ำ Branch coverage

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
TC06	null	0	Path:1 -> 2
			Branch: 1 -> 2
TC07		0	Path:1 -> 3 -> 2

Lab instruction

			Branch: 1 -> 3, 3 -> 2
TC08	[1,1,3,3]	2	Path: 1 -> 3 -> 4 -> 5 -> 6 -> 8 -> 9 -
			> 10 -> 11 -> 13 -> 6 -> 8 -> 11 -> 12
			-> 13 -> 6 -> 8 -> 9 -> 10 -> 11 -> 13
			-> 6 -> 7
			Branch: 1 -> 3, 3 -> 4, 6 -> 8, 8 -> 9,
			9 -> 10, 11 -> 13 , 8 -> 11, 11 -> 12, 6
			-> 7
TC09	[2,2,2]	1	Path: 1 -> 3 -> 4 -> 5 -> 6 -> 8 -> 9 -
			> 10 -> 11 -> 13 -> 6 -> 8 -> 9 -> 11 -
			> 13 -> 6 -> 7
			Branch: 1 -> 3, 3 -> 4, 6 -> 8, 8 -> 9,
			9 -> 10, 11 -> 13, 9 -> 11, 6 -> 7
			Path:
			Branch:
			Path:
			Branch:
			Path:
			Branch:
			Path:
			Branch:

Lab instruction

Branch coverage =
$$\left(\frac{branch\ covered}{Total\ no.of\ branches}\right) x\ 100 = \left(\frac{12}{12}\right) x\ 100$$

= 100 %

แบบฝึกปฏิบัติที่ 7.4 Condition Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Condition coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Condition ที่ถูกตรวจสอบทั้งหมด เช่น Condition A = T และ Condition B = F
- 3. แสดงวิธีการคำนวณค่ำ Condition coverage

ตอบ

Test Case No.	Input(s)	Expected Result(s)	Path and Condition
TC10	null	0	Path: 1 -> 2
			Condition: 1
TC11	0	0	Path: 1 -> 3 -> 2
			Condition: 1, 3
TC12	[1,1,3,3]	2	Path: 1 -> 3 -> 4 -> 5 -> 6 -> 8 -> 9 -
			> 10 -> 11 -> 13 -> 6 -> 8 -> 11 -> 12
			-> 13 -> 6 -> 8 -> 9 -> 10 -> 11 -> 13
			-> 6 -> 7
			Condition: 1, 3, 6, 8, 9, 11

Lab instruction

TC13	[2,2,2]	1	Path: 1 -> 3 -> 4 -> 5 -> 6 -> 8 -> 9 - > 10 -> 11 -> 13 -> 6 -> 8 -> 9 -> 11 - > 13 -> 6 -> 7 Condition: 1, 3, 6, 8, 9, 11

Condition coverage =
$$\left(\frac{condition\ covered}{Total\ no.of\ conditions}\right)x\ 100 = \left(\frac{6}{6}\right)x\ 100$$

= 100%

แบบฝึกปฏิบัติที่ 7.5 Branch and Condition Coverage (C/DC coverage)

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบให้ได้ C/DC coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path, Branch, และ Condition ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่ำ C/DC coverage

Lab instruction

4. เขียนโค้ดสำหรับทดสอบตามกรณีทดสอบที่ออกแบบไว้ด้วย JUnit และบันทึกผลการทดสอบ

<u>ตอบ</u>

Test Case	Input(s)	Expected Result(s)	Actual Result(s)	Path, Branch, and
No.				Condition
TC14	null	0	0	Path:1 -> 2
			Pass/Fail: Pass	Branch: 1 -> 2
				Condition: 1
TC15		0	0	Path:1 -> 3 -> 2
			Pass/Fail: Pass	Branch: 1 -> 3, 3 -> 2
				Condition: 1, 3
TC16	[1,1,3,3]	2	2	Path: 1 -> 3 -> 4 -> 5 -> 6
			Pass/Fail: Pass	-> 8 -> 9 -> 10 -> 11 -> 13
				-> 6 -> 8 -> 11 -> 12 -> 13
				-> 6 -> 8 -> 9 -> 10 -> 11 -
				> 13 -> 6 -> 7
				Branch: 1 -> 3, 3 -> 4, 6 ->
				8, 8 -> 9, 9 -> 10, 11 ->
				13 , 8 -> 11, 11 -> 12, 6 ->
				7
				Condition: 1, 3, 6, 8, 9, 11

Lab instruction

TC17	[2,2,2]	1	1	Path: 1 -> 3 -> 4 -> 5 -> 6
			Pass/Fail: Pass	-> 8 -> 9 -> 10 -> 11 -> 13
				-> 6 -> 8 -> 9 -> 11 -> 13 -
				> 6 -> 7
				Branch: 1 -> 3, 3 -> 4, 6 ->
				8, 8 -> 9, 9 -> 10, 11 -> 13,
				9 -> 11, 6 -> 7
				Condition: 1, 3, 6, 8, 9, 11
			Pass/Fail:	
			Pass/Fail:	
			Pass/Fail:	
			Pass/Fail:	
			Pass/Fail:	

C/DC coverage =
$$\left(\frac{condition\ covered + branch\ covered}{Total\ no.of\ condition\ and\ no.of\ branchess}\right) x\ 100 = \left(\frac{6+12}{6+12}\right) x\ 100$$

$$=\left(\frac{18}{18}\right)x\ 100$$

= 100%