MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 19		
Standard: This student is able to C10: VectField. Analyze vector fields, including computing curl and divergence.	r o	Mark:
4/4 * reath	tempt due on:	

Find the curl and divergence of the vector field $\mathbf{F}(x,y,z) = \langle x+z^2,y+x^2,z+y^2 \rangle$. Then compute the curl and divergence of the vector field at the point $\langle 3,-2,1 \rangle$.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise 1	ype:
J#:	Quiz	
Date: 2017 July 19		
Standard: This student is able to		Mark:
C11: LineInt. Compute and apply line integrals.		
2/4	reattempt due on:	
, , , , , , , , , , , , , , , , , , ,		

Rewrite $\int_C (x+2y) ds$ as a definite integral with respect to t, where C is the circle $(x-2)^2 + (y-3)^2 = 4$. (Do not solve this integral.)

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype:
J#:	\mathbf{Quiz}	
Date: 2017 July 19		
Standard: This student is able to C12: FundThmLine. Apply the Fundamental Theorem of Line Integrals.		Mark:
1/4 * reatt	tempt due on:	

Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle 2xz, -3z, x^2 - 3y \rangle$ and C is an unknown curve that begins at $\langle 1, 1, 1 \rangle$ and ends at $\langle 2, 0, 1 \rangle$.