Norm

Tuan Nguyen

Ngày 24 tháng 12 năm 2020

Overview

Linear mapping

Transformation matrix

Basis change

Image and Kernel

Norm

Dot product

Inner product

Symmetric, Positive Definite Matrix

Length

Angle

Orthogonality

Projection

Rotation

Linear mapping

For vector spaces V, W , a linear mapping $\Theta:V\to W$ is called a linear mapping (or vector space homomorphism/ linear transformation) if:

$$\forall x, y \in V, \forall \alpha, \beta : \Theta(\alpha x + \beta y) = \alpha \Theta(x) + \beta \Theta(y)$$

The mapping $\Theta: \mathbb{R}^2 \to \mathbb{C}, \Theta(x) = x_1 + ix_2$ is a homomorphism.

Linear mapping (cont.)

Consider a linear mapping $\Theta: V \to W$, where V, W can be arbitrary sets. Then Θ is called:

- ▶ Injective if $x, y \in V : \Theta(x) = \Theta(y) \Rightarrow x = y$.
- ▶ Surjective if $\Theta(V) = W$.
- Bijective if it is injective and surjective.

Special cases of linear mappings between vector spaces \boldsymbol{V} and \boldsymbol{W} :

- ▶ Isomorphism: $\Theta: V \to W$ linear and bijective
- ▶ Endomorphism: $\Theta: V \rightarrow V$ linear
- lackbox Automorphism: $\Theta:V o V$ linear and bijective

Coordinates

Consider a vector space V and an ordered basis $B = (b_1, ..., b_n)$ of V . For any $x \in V$ we obtain a unique representation (linear combination)

$$x = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$$

of x with respect to B. Then $\alpha_1,...,\alpha_n$ are the coordinates of x with respect to B, and the vector

$$\alpha = \begin{bmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{bmatrix}$$

is the coordinate vector/coordinate representation of \boldsymbol{x} with respect to the ordered basis B.

Coordinates (cont.)

Hình 1: Different coordinate representations of a vector x

Coordinates (cont.)

Hình 2: Different coordinate representations of a vector x

What is the coordinate of x in base (b_1, b_2) ?

Transformation matrix

Consider vector spaces V; W with corresponding (ordered) bases B = $(b_1, ..., b_n)$ and C = $(c_1, ..., c_m)$. Moreover, we consider a linear mapping $\Theta: V \to W$. For $j \in \{1, ..., n\}$:

$$\Theta(b_j) = \sum_{i=1}^m \alpha_{ij} c_j$$

is the unique representation of $\Theta(b_j)$ with respect to C. Then, we call the matrix $A_{\theta} \in \mathbb{R}^{m \times n}$, whose elements are given by:

$$A_{\theta}(i,j) = \alpha_{ij}$$

the transformation matrix of Θ (with respect to the ordered bases B of V and and C of W).

If \hat{x} is the coordinate vector of $x \in V$ with respect to B and \hat{y} the coordinate vector of $y = \Theta(x) \in W$ with respect to C, then:

$$\hat{y} = A_{\theta} \hat{x}$$

Transformation matrix (cont.)

- (a) Original data.
- (b) Rotation by 45°.
 - (c) Stretch along the (d) horizontal axis.
- (d) General linear mapping.

We consider three linear transformations of a set of vectors in \mathbb{R}^2 with the transformation matrices

$$\boldsymbol{A}_1 = \begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix} \; , \; \boldsymbol{A}_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \; , \; \boldsymbol{A}_3 = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix} \; .$$

Hình 3: Linear transformation of vector

Basis change

For a linear mapping $\Theta: V \to W$, ordered bases: $B = (b_1,...,b_n)$; $\tilde{B} = (\tilde{b_1},...,\tilde{b_n})$ of V and C $= (c_1,...,c_m)$; $\tilde{C} = (\tilde{c_1},...,\tilde{c_m})$ of W , and a transformation matrix A_Θ of Θ with respect to B and C, the corresponding transformation matrix $\tilde{A_\Theta}$ with respect to the bases \tilde{B} and \tilde{C} is given as:

$$\tilde{A_{\Theta}} = T^{-1}A_{\Theta}S$$

Here, $S \in \mathbf{R}^{n \times n}$ is the transformation matrix of id_V that maps coordinates with respect to \tilde{B} onto coordinates with respect to B, and $T \in \mathbf{R}^{m \times m}$ is the transformation matrix of id_W that maps coordinates with respect to \tilde{C} onto coordinates with respect to C.

Basis change (cont.)

Hình 4: Change basis

Basis change (cont.)

Consider a linear mapping $\Theta:\mathbb{R}^3\to\mathbb{R}^4$ whose transformation matrix is

$$A_{\Theta} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ 3 & 7 & 1 \\ -1 & 2 & 4 \end{bmatrix}$$

with respect to the standard bases

$$B = \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right), C = \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

$$\tilde{B} = (\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}), \tilde{C} = (\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix})$$

Image and Kernel

For $\Theta:V\to W$, we define the kernel/null space

$$\ker(\Theta) := \Theta^{-1}(0_W) = \{ v \in V : \Theta(v) = 0_W \}$$

and the image/range

$$Im(\Theta) := \Theta(V) = \{ w \in W | \exists v \in V : \Theta(v) = w \}$$

We also call V and W also the domain and codomain of Θ respectively.

- ▶ It always holds that $\Theta(0_V) = 0_W$ and, therefore, $0_V \in \ker(\Theta)$. In particular, the null space is never empty.
- ▶ $\mathsf{Im}(\Theta) \subseteq W$ is a subspace of W , and $\mathsf{ker}(\Theta) \subseteq V$ is a subspace of V

Image and Kernel (cont.)

Hình 5: Illustration of image and kernel

Image and Kernel (cont.)

Null Space and Column Space: Let us consider $A \in \mathbb{R}^{m \times n}$ and a linear mapping $\Theta : \mathbb{R}^m \to \mathbb{R}^n, x \to Ax$.

- For A = $[a_1, ..., a_n]$, where a_i are the columns of A, we obtain $Im(\Theta)$ = $\{Ax : x \in \mathbb{R}^n\} = \{\sum_{i=1}^n x_i a_i : x_1, ..., x_n \in \mathbb{R}^n\} = span[a_1, ..., a_n] \subseteq \mathbb{R}^m$
- $ightharpoonup \operatorname{rk}(A) = \dim(\operatorname{Im}(\Theta))$
- ▶ The kernel/null space $\ker(\Theta)$ is the general solution to the homogeneous system of linear equations Ax = 0 and captures all possible linear combinations of the elements in \mathbb{R}^n that produce $0 \in \mathbb{R}^m$.

The mapping:

$$\Theta: \mathbb{R}^4 \to \mathbb{R}^2, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \to \begin{bmatrix} 1 & 2 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$$

Determine $Im(\Theta)$, $Ker(\Theta)$

Norm

A norm on a vector space V is a function

$$\|\cdot\|: V \to R, x \to \|x\|$$

which assigns each vector x its length ||x||, such that for all $\lambda \in \mathbb{R}$ and $x,y \in \mathbb{R}$ the following hold:

- $\|\lambda x\| = |\lambda| \|x\|$
- $\|x + y\| \le \|x\| + \|y\|$
- $\|x\| \geqslant 0, \|x\| = 0 \Leftrightarrow x = 0$

Hình 6: Triangle inequality

Norm (cont.)

For $x \in \mathbb{R}^n$, we define:

- ▶ Manhattan Norm (I_1) : $||x||_1 := \sum_{i=1}^n |x_i|$
- ▶ Euclidean Norm (I_2): $||x||_2 := \sqrt{\sum_{i=1}^n x_i^2}$

Hình 7: Example of l_1, l_2 norm

Dot product

For $x, y \in \mathbb{R}^n$, the scalar product/dot product of two vectors x, y:

$$x^T y = \sum_{i=1}^n x_i y_i$$

Inner product

19 / 35

A bilinear mapping Ω is a mapping with two arguments, and it is linear in each argument, i.e., when we look at a vector space V then it holds that for all $x,y,z\in V,\lambda,\psi\in\mathbb{R}$ that:

$$\Omega(\lambda x + \psi y, z) = \lambda \Omega(x, z) + \psi \Omega(y, z)$$

$$\Omega(x, \lambda y + \psi z) = \lambda \Omega(x, y) + \psi \Omega(x, z)$$

Let V be a vector space and bilinear mapping $\Omega: V \times V \to \mathbb{R}$:

- $ightharpoonup \Omega$ is symmetric if $\Omega(x,y) = \Omega(y,x)$ for all $x,y \in V$
- $ightharpoonup \Omega$ is positive definite if

$$\forall x \in V/\{0\} : \Omega(x,x) > 0, \Omega(0,0) = 0$$

Inner product (cont.)

Let V be a vector space and $\Omega: V \times V \to \mathbb{R}$ be a bilinear mapping that takes two vectors and maps them onto a real number. Then:

▶ A positive definite, symmetric bilinear mapping $\Omega: V \times V \to \mathbb{R}$ is called an inner product on V. We typically write $\langle x, y \rangle$ instead of $\Omega(x, y)$.

Dot product is the most common inner product, but inner product probably is not dot product. For example:

$$\langle x, y \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2$$

Symmetric, Positive Definite Matrix

21 / 35

A symmetric matrix $A \in \mathbb{R}^{m \times n}$ that satisfies

$$\forall x \in V/\{0\} : x^T A x > 0(1)$$

is called symmetric, positive definite, or definite just positive definite. If only \geqslant holds in (1), then A is called symmetric, positive semidefinite.

Are the following matrix positive definite:

$$A_1 = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}, A_2 = \begin{bmatrix} 9 & 6 \\ 6 & 3 \end{bmatrix}$$

Properties:

- ► Kernel (null space) of A consists only 0.
- ▶ The diagonal elements a_{ii} of A are positive because $a_{ii} = e_i^T A e_i$

Length

The length of vector x is defined as:

$$||x|| := \sqrt{\langle x, x \rangle}$$

For example, let us take $x = [1, 1]^T$

If we use dot product as inner product $\|x\| = \sqrt{1^2 + 1^2} = \sqrt{2}$ Let choose different inner product

$$\langle x, y \rangle = x^{T} \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix} y = x_{1}y_{1} - \frac{1}{2}(x_{1}y_{2} + x_{2}y_{1}) + x_{2}y_{2}$$

$$\Rightarrow ||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_{1}^{2} - x_{1}x_{2} + x_{2}^{2}} = 1$$

 \Rightarrow x is shorter in this inner product than with dot product.

Angle

 ω is the angle between two vectors x, y is defined as:

$$cos(\omega) = \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

For example, $x = [1, 1]^T$, $y = [1, 2]^T \in \mathbb{R}^2$ and we ues dot product as inner product:

$$cos(\omega) = \frac{x^T y}{\|x\| \|y\|} = \frac{3}{\sqrt{10}}$$

Hình 8: Angle ω between vectors x and y

Orthogonality

Two vectors x and y are orthogonal if and only if $\langle x,y\rangle=0$, and we write $x\perp y$. If additionally $\|x\|=\|y\|=1$, i.e., the vectors are unit vectors, then x and y are orthonormal.

For example, $x = [1, 1]^T$, $y = [-1, 1]^T \in \mathbb{R}^2$, if we use dot product as inner product:

$$\langle x, y \rangle = x^T y = 0 \Rightarrow cos(\omega) = 0 \Rightarrow \omega = 90^\circ$$

Hình 9: orthogonal vector

Orthogonal matrix

A square matrix $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if and only if its columns (rows) are orthonormal so that

$$AA^T = I_n = A^T A$$

which implies that $A^T = A^{-1}$

Remark:

► The length of a vector x is not changed when transforming it using an orthogonal matrix A:

$$||Ax||^2 = (Ax)^T (Ax) = x^T A^T Ax = x^T x = ||x||^2$$

► The angle betweet vector x and y is not changed when transforming them using an orthogonal matrix A:

$$\cos(\omega) = \frac{\langle Ax, Ay \rangle}{\|Ax\| \|Ay\|} = \frac{(Ax)^T (Ax)}{\sqrt{(Ax)^T (Ax)(Ay)^T (Ay)}} = \frac{x^T y}{\|x\| \|y\|}$$

It means orthogonal matrix A preserves both angles and distances

Orthonormal Basis

26 / 35

Consider an n-dimensional vector space V and a basis $b_1,...,b_n$ of V . If

$$\langle b_i, b_j \rangle = 0 \text{ if } i \neq j$$
 (1) $\langle b_i, b_i \rangle = 1$

for all i, j = 1,...,n then the basis is called an orthonormal basis (ONB). If only (1) is satisfied, then the basis is called an orthogonal basis.

In \mathbb{R}^2 , the vectors:

$$b_1=rac{1}{\sqrt{2}}egin{bmatrix}1\\1\end{bmatrix}, b_2=rac{1}{\sqrt{2}}egin{bmatrix}-1\\1\end{bmatrix}$$

Are they orthogonal/orthogonal basis?

Orthogonal Complement

Consider a D-dimensional vector space V and an M-dimensional subspace U \subseteq V. Then its orthogonal complement U^{\perp} is a (D - M)-dimensional orthogonal subspace of V and contains all vectors in V that are orthogonal to every complement vector in U, $U \cap U^{\perp} = \{0\}$.

Hình 10: Orthogonal complement of two dimensional space

Projection

Let V be a vector space and U \subseteq V a subspace of V . A linear mapping $\pi:V\to U$ is called a projection if $\pi^2=\pi\circ\pi=\pi$

Projection onto one-dimensional subspaces (lines) The line is a one-dimensional subspace $U \subseteq \mathbb{R}^n$ spanned by b. When we project $x \in \mathbb{R}^n$ onto U, we seek the vector $\pi_U(x)$ that is closest to x.

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \mathbf{b} .

Properties of the projection $\pi_U(x)$

- ► The projection $\pi_U(x)$ is closest to x, where "closest" implies that the distance $\|x \pi_U(x)\|$ is minimal $\Rightarrow \pi_U(x) x$ from $\pi_U(x)$ to x is orthogonal to $U \Rightarrow \langle \pi_U(x) x, b \rangle = 0$
- $\blacktriangleright \pi_U(x) \in U \Rightarrow \pi_U(x) = \lambda b$

We find λ

$$\langle x - \pi_U(x), b \rangle = 0 \Leftrightarrow \langle x - \lambda b, b \rangle = 0 \Leftrightarrow \langle x, b \rangle = \lambda \langle b, b \rangle$$

$$\Leftrightarrow \lambda = \frac{\langle x, b \rangle}{\langle b, b \rangle} = \frac{\langle b, x \rangle}{\|b\|^2}$$

If we choose inner product as dot product

$$\lambda = \frac{\langle b, x \rangle}{\|b\|^2} = \frac{b^T x}{\|b\|^2} \Rightarrow \pi_U(x) = \frac{b^T x}{\|b\|^2} b$$

If
$$||b|| = 1 \Rightarrow \lambda = b^T x$$

We find transforation matrix P_{π}

$$\pi_U(x) = \frac{b^T x}{\|b\|^2} b = \frac{bb^T}{\|b\|^2} x$$
$$\Rightarrow P_{\pi} = \frac{bb^T}{\|b\|^2}$$

The projection matrix P_{π} projects any vector $x \in \mathbb{R}^n$ onto the line through the origin with direction b

Projection onto general subspaces

we look at orthogonal projections of vectors $x \in \mathbb{R}^n$ onto lower-dimensional subspaces $U \subseteq \mathbb{R}^n$ with $\dim(U) = m > 1$

Hình 11: Projection onto 2d space

Assume that $(b_1, ..., b_m)$ is an ordered basis of U. We have:

$$\pi_U(x) = \sum_{i=1}^m \lambda_i b_i = B\lambda$$

where $B = [b_1, ..., b_m] \in \mathbb{R}^{n \times m}, \lambda = [\lambda_1, ..., \lambda_m]^T \in \mathbb{R}^m, x - \pi_U(x)$ is orthogonal to $U \Rightarrow x - \pi_U(x)$ is orthogonal to $b_1, ..., b_m$

$$\langle b_1, x - \pi_U(x) \rangle = 0$$

• • •

$$\langle b_m, x - \pi_U(x) \rangle = 0$$

With $\pi_U(x) = B\lambda$, we can write as:

$$\langle b_1, x - B\lambda \rangle = 0$$
...
 $\langle b_m, x - B\lambda \rangle = 0$

$$\Rightarrow \begin{bmatrix} b_1^T \\ \dots \\ b_n^T \end{bmatrix} [x - B\lambda] = 0 \Leftrightarrow B^T (x - B\lambda) = 0 \Leftrightarrow B^T B\lambda = B^T x$$

Since $b_1,...,b_m$ are a basis of U and, therefore, linearly independent $=>B^TB\in\mathbb{R}^{m\times m}$ is regular and can be inverted. This allows us to solve for the coefficients:

$$\lambda = (B^T B)^{-1} B^T x \Rightarrow \pi_U(x) = B(B^T B)^{-1} B^T x$$

Rotation

A rotation is a linear mapping that rotates a plane by an angle θ about the origin, For a positive angle $\theta > 0$, we rotate in a counterclockwise direction. Transformation matrix:

$$R(\theta) = [\Theta(e_1), \Theta(e_2)] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Hình 12: Rotation in \mathbb{R}^2

