

planetmath.org

Math for the people, by the people.

quadratic space

Canonical name QuadraticSpace
Date of creation 2013-03-22 15:05:55
Last modified on 2013-03-22 15:05:55

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 14

Author CWoo (3771)
Entry type Definition
Classification msc 15A63
Classification msc 11E88

Synonym non-degenerate quadratic space

Related topic QuadraticForm Related topic QuaternionAlgebra

Defines norm form

Defines isomorphic quadratic spaces
Defines isometric quadratic spaces
Defines generalized quaternion algebra

Defines regular quadratic space

A quadratic space (over a field) is a vector space V equipped with a quadratic form Q on V. It is denoted by (V,Q). The dimension of the quadratic space is the dimension of the underlying vector space. Any vector space admitting a bilinear form has an induced quadratic form and thus is a quadratic space.

Two quadratic spaces (V_1, Q_1) and (V_2, Q_2) are said to be *isomorphic* if there exists an isomorphic linear transformation $T: V_1 \to V_2$ such that for any $v \in V_1$, $Q_1(v) = Q_2(Tv)$. Since T is easily seen to be an isometry between V_1 and V_2 (over the symmetric bilinear forms induced by Q_1 and Q_2 respectively), we also say that (V_1, Q_1) and (V_2, Q_2) are isometric.

A quadratic space equipped with a regular quadratic form is called a regular quadratic space.

Example of a Qudratic Space. The Generalized Quaternion Algebra. Let F be a field and $a, b \in \dot{F} := F - \{0\}$. Let H be the algebra over F generated by i, j with the following defining relations:

- 1. $i^2 = a$,
- 2. $j^2 = b$, and
- 3. ij = -ji.

Then $\{1, i, j, k\}$, where k := ij, forms a basis for the vector space H over F. For a direct proof, first note $(ij)^2 = (ij)(ij) = i(ji)j = i(-ij)j = -ab \neq 0$, so that $k \in F$. It's also not hard to show that k anti-commutes with both i, j: ik = -ki and jk = -kj. Now, suppose 0 = r + si + tj + uk. Multiplying both sides of the equation on the right by i gives 0 = ri + sa + tji + uki. Multiplying both sides on the left by i gives 0 = ri + sa + tij + uik. Adding the two results and reduce, we have 0 = ri + sa. Multiplying this again by i gives us 0 = ra + sai, or 0 = r + si. Similarly, one shows that 0 = r + tj, so that si = tj. This leads to two equations, sa = tij and sa = tji, if one multiplies it on the left and right by i. Adding the results then dividing by 2 gives sa = 0. Since $a \neq 0$, s = 0. Therefore, 0 = r + si = r. Same argument shows that t = u = 0 as well.

Next, for any element $\alpha = r + si + tj + uk \in H$, define its conjugate $\overline{\alpha}$ by r - si - tj - uk. Note that $\alpha = \overline{\alpha}$ iff $\alpha \in F$. Also, it's not hard to see that

- $\overline{\overline{\alpha}} = \alpha$,
- $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$,

$$\bullet \ \overline{\alpha\beta} = \overline{\beta}\overline{\alpha},$$

We next define the norm N on H by $N(\alpha) = \alpha \overline{\alpha}$. Since $\overline{N(\alpha)} = \overline{\alpha} \overline{\overline{\alpha}} = \overline{\alpha} \overline{\alpha} = \alpha \overline{\alpha} = N(\alpha)$, $N(\alpha) \in F$. It's easy to see that $N(r\alpha) = r^2 N(\alpha)$ for any $r \in F$.

Finally, if we define the trace T on H by $T(\alpha) = \alpha + \overline{\alpha}$, we have that $N(\alpha + \beta) - N(\alpha) - N(\beta) = T(\alpha \overline{\beta})$ is bilinear (linear each in α and β).

Therefore, N defines a quadratic form on H (N is commonly called a $norm\ form$), and H is thus a quadratic space over F. H is denoted by

$$\left(\frac{a,b}{F}\right)$$
.

It can be shown that H is a central simple algebra over F. Since H is four dimensional over F, it is a quaternion algebra. It is a direct generalization of the quaternions \mathbb{H} over the reals

$$\left(\frac{-1,-1}{\mathbb{R}}\right)$$
.

In fact, every quaternion algebra (over a field F) is of the form $\left(\frac{a,b}{F}\right)$ for some $a,b\in F$.