Diffusion Models Beat GANs on Image Synthesis

김기웅

kwkim02@g.skku.edu

CV Core

2024/11/05

Contents

- Introduction
- Background
- Classifier Guidance
- Results
- Limitations

Introduction

Introduction

- Only GAN can be conditional with class input
 - → Conditional diffusion model
- GAN's benefit : trade off diversity and fidelity
 - → bring it to diffusion models

Score-Matching

Score = Gradient of log(pdf)
=
$$\nabla_x log p(x)$$

Score based Generative Model through SDE

Classifier Guidance

Classifier Guidance

Overview

Training Classifier

- CNN based model
- Input noisy image with timestep embedding
- Predict class of given image

Conditional Sampling for DDPM

Conditional Sampling for DDPM

$$p_{\theta,\phi}(x_t|x_{t+1},y) = Zp_{\theta}(x_t|x_{t+1})p_{\phi}(y|x_t)$$

noise

noi

$$p_{\theta}(x_t|x_{t+1}) = \mathcal{N}(\mu, \Sigma)$$

$$\log p_{\theta}(x_t|x_{t+1}) = -\frac{1}{2}(x_t - \mu)^T \Sigma^{-1}(x_t - \mu) + C$$

classifier

$$\log p_{\phi}(y|x_{t}) \approx \log p_{\phi}(y|x_{t})|_{x_{t}=\mu} + (x_{t} - \mu) \nabla_{x_{t}} \log p_{\phi}(y|x_{t})|_{x_{t}=\mu}$$
$$= (x_{t} - \mu)\underline{g} + C_{1}$$

$$\log(p_{\theta}(x_{t}|x_{t+1})p_{\phi}(y|x_{t})) \approx -\frac{1}{2}(x_{t} - \mu)^{T} \Sigma^{-1}(x_{t} - \mu) + (x_{t} - \mu)g + C_{2}$$

$$= -\frac{1}{2}(x_{t} - \mu - \Sigma g)^{T} \Sigma^{-1}(x_{t} - \mu - \Sigma g) + C_{3}$$

$$= \log p(z) + C_{4}, z \sim \mathcal{N}(\mu + \Sigma g, \Sigma)$$

Conditional Sampling for DDPM

$$\log(p_{\theta}(x_t|x_{t+1})p_{\phi}(y|x_t)) = \log p(z) + C_4, z \sim \mathcal{N}(\mu + \Sigma g, \Sigma)$$

$$g = \nabla_{x_t} \log p_{\phi}(y|x_t)$$

Noise

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \, \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```


Conditional Sampling for DDIM

 Stochastic diffusion process cannot be applied to deterministic sampling methods like DDIM.

$$\nabla_{x_t} \log(p_{\theta}(x_t) p_{\phi}(y|x_t)) = \nabla_{x_t} \log p_{\theta}(x_t) + \nabla_{x_t} \log p_{\phi}(y|x_t)$$
$$= -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \underbrace{\epsilon_{\theta}(x_t)}_{+} + \underbrace{\nabla_{x_t} \log p_{\phi}(y|x_t)}_{+}$$

Noise prediction model

Score of classifier

Conditional Sampling for DDIM

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model $\epsilon_{\theta}(x_t)$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow sample from \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do \hat{\epsilon} \leftarrow \epsilon_{\theta}(x_t) - \sqrt{1 - \bar{\alpha}_t} \, \nabla_{x_t} \log p_{\phi}(y|x_t) x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \left( \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \hat{\epsilon}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\epsilon} end for return x_0
```

Scaling Classifier Gradients

						trade off		
Conditional	Guidance	Scale	FID	sFID	IS	Precision	Recall	
×	X		26.21	6.35	39.70	0.61	0.63	
×	✓	1.0	33.03	6.99	32.92	0.56	0.65	
×	✓	10.0	12.00	10.40	95.41	0.76	0.44	
✓	X		10.94	6.02	100.98	0.69	0.63	
✓	✓	1.0	4.59	5.25	186.70	0.82	0.52	
✓	✓	10.0	9.11	10.93	283.92	0.88	0.32	

trada off

Table 4: Effect of classifier guidance on sample quality. Both conditional and unconditional models were trained for 2M iterations on ImageNet 256×256 with batch size 256.

Scaling Classifier Gradients

Figure 3: Samples from an unconditional diffusion model with classifier guidance to condition on the class "Pembroke Welsh corgi". Using classifier scale 1.0 (left; FID: 33.0) does not produce convincing samples in this class, whereas classifier scale 10.0 (right; FID: 12.0) produces much more class-consistent images.

Result

Result

SOTA image Synthesis

Figure 6: Samples from BigGAN-deep with truncation 1.0 (FID 6.95, left) vs samples from our diffusion model with guidance (FID 4.59, middle) and samples from the training set (right).

Result

Comparision to Upsampling

Limitation

Limitation

 Slower than GAN at sampling time (multiple denoising step)

- Limited to labeled dataset
 - → no effective strategy for trading off diversity and fidelity

