

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, C07K 14/705, 16/28, A61K 38/17		A2	(11) International Publication Number: WO 00/18912 (43) International Publication Date: 6 April 2000 (06.04.00)		
(21) International Application Number: PCT/EP99/06991		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).			
(22) International Filing Date: 21 September 1999 (21.09.99)					
(30) Priority Data: 60/101,706 25 September 1998 (25.09.98) US					
(71) Applicant (for all designated States except US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).					
(72) Inventors; and		Published			
(75) Inventors/Applicants (for US only): SCHMITZ, Gerd [DE/DE]; Turmstrasse 15a, D-93161 Sinzing (DE). KLUCKEN, Jochen [DE/DE]; Silberne Fischgasse 13, D-93047 Regensburg (DE).		Without international search report and to be republished upon receipt of that report.			
(74) Common Representative: BAYER AKTIENGESELLSCHAFT; D-51368 Leverkusen (DE).					
(54) Title: ATP BINDING CASSETTE GENES AND PROTEINS FOR DIAGNOSIS AND TREATMENT OF LIPID DISORDERS AND INFLAMMATORY DISEASES					
(57) Abstract					
Modulation of the activity of transmembrane proteins belonging to the ATP binding cassette (ABC) transporter protein family which are etiologically involved in cholesterol driven atherogenic processes and inflammatory diseases like psoriasis, lupus erythematoses and others provides therapeutic means to treat such diseases. Furthermore, detection of herein identified ABC transporter proteins of their respective biochemical activities involved in such atherogenic and inflammatory processes provides diagnostic means for clinical application of diagnosis and monitoring of dyslipidemias, atherosclerosis or inflammatory diseases like psoriasis and lupus erythematoses.					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

ATP binding cassette genes and proteins for diagnosis and treatment of lipid disorders and inflammatory diseases

Background of the invention

5

Reverse cholesterol transport mediated by HDL provides a "protective" mechanism for cell membrane integrity and foam cell formation and cellular cholesterol is taken up by circulating HDL or its precursor molecules. The precise mechanism of reverse cholesterol transport however is currently not fully understood and the mechanism of cellular cholesterol efflux and transfer from the cell surface to an acceptor-particle, such as HDL, is yet unclear. Certain candidate gene products have been postulated playing a role in the process of reverse cholesterol transport [1]. Apolipoproteins (e.g. ApoA-I, ApoA-IV), lipid transfer proteins (e.g. CETP, PLTP) and enzymes (e.g. LCAT, LPL, HL) are essential to exchange cholesterol and phospholipids in lipoprotein-lipoprotein and lipoprotein-cell interactions. Different plasma membrane receptors, such as SR-BI [2; 3], HB1/2 [4], and GPI-linked proteins (e.g. 120 kDa and 80 kDa) [5] as well as the sphingolipid rich microdomains (Caveolae, Rafts) of the plasma membrane have been implicated being involved in the process of reverse cholesterol transport and the exchange of phospholipids. How these membrane-microdomains are organized is in the current focus of interest for the identification of therapeutic targets. In recent studies SR-BI function as receptor for uptake of HDL into the liver and steroidogenic tissues could be demonstrated and the effectivity of this process is highly dependent on the phospholipid environment [2].

25

Cholesterol and phospholipid homeostasis in monocytes/macrophages and other cells involved in the atherosclerotic process is a critical determinant in atherosclerotic vessel disease. The phagocytic function of macrophages in host defense, tissue remodelling, uptake and lysosomal degradation of atherogenic lipoproteins and membrane fragments or other lipid containing particles has to be balanced by effective release mechanisms to avoid foam cell formation. HDL mediated reverse

- 2 -

cholesterol transport, supported by endogenous ApoE and CETP synthesis and secretion provides an effective mechanism to release excessive cholesterol from macrophages and other vascular cells.

- 5 Alternatively, reduced cholesterol and triglyceride/fatty acid absorption by intestinal mucosa cells as well as increased lipid secretion from hepatocytes into the bile will lower plasma lipids and the concentration of atherosclerotic lipoproteins.

Summary of the invention

10

New cholesterol responsive genes were identified with differential display method in human monocytes from peripheral blood that were subjected to macrophage differentiation and cholesterol loading with acetylated LDL and subsequent deloading with HDL₃.

15

In an initial screen ABCG1 (ABC8), a member of the rapidly growing family of ABC (ATP-Binding Cassette) transport systems, that couple the energy of ATP hydrolysis to the translocation of solutes across biological membranes, was identified as a cholesterol sensitive switch. ABCG1 is upregulated by M-CSF dependent phagocytic differentiation but expression is massively induced by cholesterol loading and almost completely set back to differentiation dependent levels by HDL₃.

20

25

In a more detailed analysis 37 already characterised ABC members and 8 Fragment - sequences (Table 2) were analysed in monocyte/macrophage cells by RT-PCR (linear range) for differentiation dependent changes and cholesterol sensitivity.

Among the 45 tested ABC-transporter genes 18 of the characterized ABC transporters and 2 of the Fragment -sequence based ABC-transporters are cholesterol sensitive (Example 4).

30

The cholesterol sensitive ABC-transporter are named according to the new ABC-

nomenclature and listed in Table 3 with the new and the old designations, respectively.

5 The most sensitive gene was ABCG1. ABCG1 is the human homologue of the drosophila white gene. Sequencing of the promoter of ABCG1 (Example 7) shows important transcription factor binding sites relevant for phagocytic differentiation and lipid sensitivity.

10 Antisense treatment of macrophages during cholesterol loading and HDL₃-mediated deloading clearly identified ABCG1 as a cholesterol transporter and the efflux of choline-containing phospholipids (phosphatidylcholine, sphingomyelin) was also modulated. Northern- and Western-blot analysis provided further support that inhibition of cholesterol transport is associated with lower ABCG1 mRNA expression and ABCG1 protein levels (Example 5).

15

Considerable evidence was derived from energy transfer experiments (Example 3) that ABCG1 in the cell membrane is in a regulated functional cooperation (e.g. cell differentiation, activation, cholesterol loading and deloading) with other membrane receptors that have either transport- (e.g. LRP-LDL receptor related protein) or signalling- and adhesion-function (e.g. integrins, integrin associated proteins) which is also supported by sequence homology of extracellular domains as well as other parts of the ABCG1 sequence. For example the protein sequence of the region of the third extracellular loop of ABCG1, i.e. aminoacid residues 580 through 644, shares homology with fibronectin (aa 317-327), integrin β 5 (aa 538-547), RAP (aa 119-127), LRP (aa 2874-2894), apoB-100 precursor (aa 4328-4369), glutathion-S-transferase (aa 54-78) and glucose transporter (aa 371-380). Sequence comparison of all cholesterol sensitive transporters indicates this as a general principle of ABC transporter function and regulation.

30 Among the other cholesterol sensitive genes ABCA1 (ABC1) was further characterized. ABCA1 was identified in the mouse as an IL-1 β transporter

involved also in apoptotic cell processing. We show here, by RT-PCR (Table 2) and confirmation by Northern analysis, based on the newly detected human ABCA1 cDNA sequence (Example 6), that ABCA1 follows the same regulation as ABCG1.

5 Moreover, the ABCA1-knockout mice (ABCA1^{-/-}) show massively reduced levels of serum lipids and lipoproteins. The expression of ABCA1 in mucosa cells of the small intestine and the altered lipoprotein metabolism in ABCA1^{-/-} mice allows the conclusion that ABCA1 plays a major role in intestinal absorption and translocation of lipids into the lymph-system

10 Analysis of genetic defects that affect macrophage cholesterol homeostasis identified dysregulated ABCA1 as a gene locus involved in the HDL-deficiency syndrome (Tangier-Disease). This disease is associated with hypertriglyceridemia and splenomegaly.

15 Another as yet not described HDL-deficiency syndrome associated with early onset of coronary heart disease and psoriasis showed a dysregulation of the chromosome 17 associated ABC-sequences (ABCC4 (MRP3); ABCC3 (MRP3); ABCA5 (Fragment 90625); ABCA6 (Fragment 155051) :17q21-24). This points to an 20 association with the predicted gene locus for psoriasis at chromosome 17.

A recently sequenced human ABC-transporter (ABCA8, Example 9) shows high homology to ABCA1 and also belongs to the group of cholesterol sensitive ABC-transporter.

25 ABCC5 (MRP5, sMRP) is a member of the MRP-subfamily among which ABCC2 (MRP2, cMOAT) was characterized as the hepatocyte canalicular membrane transporter that is involved in bilirubin glucuronide secretion [9] and identified as the 30 gene locus for Dubin-Johnson Syndrome [10] a disorder associated with mild chronic conjugated hyperbilirubinemia.

Furthermore, the identification of ABCA1 as a transporter for IL-1 β identifies this gene as a candidate gene for treatment of inflammatory diseases including rheumatoid arthritis and septic shock. The cytokine IL-1 β is a broadly acting proinflammatory mediator that has been implicated in the pathogenesis of these

5

diseases.

Moreover, we could demonstrate, that glyburide as an inhibitor of IL-1 β secretion inhibits not only Caspase I mediated processing of pro-IL-1 β and release of mature IL-1 β but simultaneously inhibits ceramide formation from sphingomyelin mediated by neutral sphingomyelinase and thereby releases human fibroblasts from G₁-phase cell cycle arrest. These data provide a further mechanism indicative for a function of ABCA1 in signalling and cellular lipid metabolism.

Autoimmune disorders that are associated with the antiphospholipid syndrome (e.g.

15

lupus erythematoses) can be related to dysregulation of B-cell and T-cell function, aberrant antigen processing, or aberrations in the asymmetric distribution of membrane phospholipids. ABC-transporters are, besides their transport function, candidate genes for phospholipid translocases, floppases and scramblases that regulate phospholipid asymmetry (outer leaflet: PC+SPM; inner leaflet: PS+PE) of biological membranes [11]. There is considerable evidence for a dysregulation of the analysed ABC-transporters in patient cells. We conclude that these ABC-cassettes are also candidate genes for a genetic basis of antiphospholipid syndromes such as in Lupus erythematoses.

20

In summary, the ABC genes ABCG1, ABCA1 and the other cholesterol-sensitive ABC genes as specified herein, can be used for diagnostic and therapeutic applications as well as for biochemical or cell-based assays to screen for pharmacologically active compounds which can be used for treatment of lipid disorders, atherosclerosis or other inflammatory diseases. Thus it is an objective of the present invention to provide assays to screen for pharmacologically active compounds which can be used for treatment of lipid disorders, atherosclerosis or

30

other inflammatory diseases. Further the invention provides tools to identify modulators of these genes and gene products. These modulators can be used for the treatment of lipid disorders, atherosclerosis or other inflammatory diseases or for the preparation of medicaments for treatment of lipid disorders, atherosclerosis or other inflammatory diseases. The medicaments comprise besides the modulator acceptable and usefull pharmaceutical carriers.

Abbreviations

aa	Amino acid
ABC	ATP-binding cassette
ABCA#	ATP-binding cassette, sub-family A (ABC1), member #
ABCB#	ATP-binding cassette, sub-family B (MDR/TAP), member #
ABCC#	ATP-binding cassette, sub-family C (CFTR/MRP), member #
ABCD#	ATP-binding cassette, sub-family D (ALD), member #
ABCE#	ATP-binding cassette, sub-family E (OABP), member #
ABCF#	ATP-binding cassette, sub-family F (GCN20), member #
ABCG#	ATP-binding cassette, sub-family G (WHITE), member #
ABCR	Homo sapiens rim ABC transporter
AcLDL	Acetylated LDL
ADP1	ATP-dependent permease
ALDP	Adrenoleukodystrophy protein
ALDR	Adrenoleukodystrophy related protein
ApoA	Apolipoprotein A
ApoE	Apolipoprotein E
ARA	Anthracycline resistance associated protein
AS	Antisense
ATP	Adenosine triphosphate
CETP	Cholesteryl ester transfer protein
CFTR	Cystic fibrosis transmembrane conductance regulator
CGT	ceramide glucosyl transferase
CH	Cholesterol
cMOAT	Canalicular multispecific organic anion transporter
dsRNA	Double stranded RNA
Fragment	Gen Fragment
FABP	plasma membrane fatty acid binding protein

FACS	Fluorescence activated cell sorter
FATP	intracellular fatty acid binding protein
FCS	foetal calf serum
FFA	free fatty acids
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GCN20	protein kinase that phosphorylates the alpha-subunit of translation initiation factor 2
GPI	Glycosylphosphatidylinositol
HaCaT	keratinocytic cell line
HDL	High density lipoprotein
HL	Hepatic lipase
HlyB	haemolysin translocator protein B
HMT1	yeast heavy metal tolerance protein
HPTLC	High performance thin layer chromatography
IL	Interleukin
LCAT	Lecithin:cholesterol acyltransferase
LDL	Low density lipoprotein
LPL	Lipoprotein lipase
LRP	LDL receptor related protein
MDR	Multidrug resistance
MRP	Multidrug resistance-associated protein
PC	Phosphatidylcholine
PE	Phosphatidylethanolamin
PL	Phospholipid
PLTP	Phospholipid transferprotein
PMP	peroxisomal membrane protein
PS	Phosphatidylserine
RNA	Ribonucleic acid
RT-PCR	Reverse transcription – polymerase chain reaction
SDS	Sodium dodecyl sulfate

SL	Sphingolipid
sMRP	Small form of MRP
SPM	Sphingomyelin
SR-BI	Scavenger receptor BI
SUR	Sulfonylurea receptor
TAP	Antigen peptide transporter
TG	Triglycerides
TSAP	TNF-alpha stimulated ABC protein
UTR	untranslated region

References cited

1. FIELDING CJ, FIELDING PE: Molecular physiology of reverse cholesterol transport. *J.Lipid Res.* 1995, 36:211-228.
- 5 2. JI Y, JIAN B, WANG N, SUN Y, MOYA ML, PHILLIPS MC, ROTHBLAT GH, SWANEY JB, TALL AR: Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. *J.Biol.Chem.* 1997, 272:20982-20985.
- 10 3. JIAN B, DE LA LLERA-MOYA M, JI Y, WANG N, PHILLIPS MC, SWANEY JB, TALL AR, ROTHBLAT GH: Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. *J.Biol.Chem.* 1998, 273:5599-5606.
- 15 4. MATSUMOTO A, MITCHELL A, KURATA H, PYLE L, KONDO K, ITAKURA H, FIDGE N: Cloning and characterization of HB2, a candidate high density lipoprotein receptor. Sequence homology with members of the immunoglobulin superfamily of membrane proteins. *J.Biol.Chem.* 1997, 272:16778-16782.
- 20 5. NION S, BRIAND O, LESTAVEL S, TORPIER G, NAZIH F, DELBART C, FRUCHART JC, CLAVEY V: High-density-lipoprotein subfraction 3 interaction with glycosylphosphatidylinositol-anchored proteins. *Biochem.J.* 1997, 328:415-423.
- 25 6. CROOP JM, TILLER GE, FLETCHER JA, LUX ML, RAAB E, GOLDENSON D, SON D, ARGINIEGAS S, WU RL: Isolation and characterization of a mammalian homolog of the *Drosophila* white gene. *Gene* 1997, 185:77-85.
7. CHEN H, ROSSIER C, LALIOTI MD, LYNN A, CHAKRAVARTI A, PERRIN G, ANTONARAKIS SE: Cloning of the cDNA for a human homologue of the *Drosophila* white gene and mapping to chromosome 21q22.3. *Am J Hum Genet* 1996, 59:66-75.

8. SAVARY S, DENIZOT F, LUCIANI M, MATTEI M, CHIMINI G: Molecular cloning of a mammalian ABC transporter homologous to *Drosophila* white gene. *Mamm Genome* 1996, 7:673-676.

9. ELFERINK RP, TYTGAT GN, GROEN AK: Hepatic canalicular membrane 5 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. *FASEB J.* 1997, 11:19-28.

10. WADA M, TOH S, TANIGUCHI K, NAKAMURA T, UCHIUMI T, KOHNO K, YOSHIDA I, KIMURA A, SAKISAKA S, ADACHI Y, KUWANO M: Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. *Hum Mol Genet* 1998, 7:203-207.

11. ZWAAL R.F., SCHROIT AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. *Blood* 1997, 89:1121-1132.

12. FRUH K, AHN K, DJABALLAH H, SEMPE P, VAN ENDERT PM, TAMPE R, PETERSON PA, YANG Y: A viral inhibitor of peptide transporters for antigen presentation. *Nature* 1995, 375:415-418.

13. ALLIKMETS R, GERRARD B, HUTCHINSON A, DEAN M: Characterization 15 of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. *Hum Mol Genet* 1996, 5:1649-1655.

14. SENIOR AE, GADSBY DC: ATP hydrolysis cycles and mechanism in P-glycoprotein and ABCC7 (CFTR) [In Process Citation]. *Semin Cancer Biol.* 1997, 8:143-150.

15. HIGGINS CF: ABC transporters: from microorganisms to man. *Annu Rev Cell Biol.* 1992, 8:67-113:67-113.

20 16. DEAN M, ALLIKMETS R: Evolution of ATP-binding cassette transporter genes. *Curr Opin Genet Dev.* 1995, 5:779-785.

17. GOTTESMAN MM, PASTAN I: Biochemistry of multidrug resistance mediated by the multidrug transporter. *Annu Rev Biochem.* 1993, 62:385-427:385-427.

18. MOSSER J, LUTZ Y, STOECKEL ME, SARDE CO, KRETZ C, DOUAR AM, LOPEZ J, AUBOURG P, MANDEL JL: The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. *Hum. Mol. Genet.* 1994, 3:265-271.
- 5 19. BASU SK, GOLDSTEIN JL, BROWN MS: Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. *J Biol Chem* 1978, 253:3852-3856.
- 10 20. LIANG P, PARDEE AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [see comments]. *Science* 1992, 257:967-971.
- 15 21. PIETZSCH A, BÜCHLER C, ASLANIDIS C, SCHMITZ G: Identification and characterization of a novel monocyte/macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. *Biochem Biophys Res Commun* 1997, 235:4-9.
22. LOHMANN J, SCHICKLE H, BOSCH TC: REN display, a rapid and efficient method for nonradioactive differential display and mRNA isolation. *Biotechniques* 1995, 18:200-202.
23. VIRCA GD, NORTHEMANN W, SHIELS BR, WIDERA G, BROOME S: Simplified northern blot hybridization using 5% sodium dodecyl sulfate. *Biotechniques* 1990, 8:370-371.
- 20 24. CHIRGIN JM, PRZYBYLA AE, MACDONALD RJ, RUTTER WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. *Biochemistry* 1979, 18:5294-5299.
- 25 25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. Protein meaABCC8 (SUR)ement with the folin phenol reagent. *J Biol Chem* 1951, 265-275. 1951. (GENERIC) Ref Type: Generic
26. BLIGH EG, DYER WJ: A rapid method of total lipid extraction and purification. *Can J Biochem Phys* 1959, 37:911-917.

- 13 -

27. ROGLER G, TRÜMBACH B, KLIMA B, LACKNER KJ, SCHMITZ G: HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. *Arterioscler Thromb Vasc Biol* 1995, 15:683-690.

Description of the Figures

Figures 1 to 5 are showing nucleotide and protein sequences described in this application. The sequences are repeated in the sequence listing.

5

Description of Tables:**Table 1:**

10 Levels of RNA transcripts of ABCG1 (ABC8), ABCA1 (ABC1) and ABCA8 in human tissues were determined by Northern blot analysis of a multiple tissue dot-blot (Human RNA MasterBlot. Clontech Laboratories, Inc., CA, USA). The relative amount of expression is indicated by different numbers of filled circles.

Table 2:

15 The expression pattern of ABC-transporters in monocytes, monocyte derived macrophages (3 days cultivated monocytes in serum free Macrophage-SFM medium containing 50 ng/ml M-CSF), AcLDL incubated monocytes (3 days with 100 µg/ml) followed by HDL₃ (100 µg/ml) incubated monocytes is shown. Expressed genes are tested for cholesterol sensitivity by semiquantitative PCR.
20 For known ABC-Transporter the chromosomal location and the transported molecules are also presented.

Table 3:

25 Disorders, that are associated with ABC-transporters are shown. The chromosomal location is indicated and the relevant accession number in OMIN (Online Mendelian Inheritance in Man).

Table 4:

Expression of ABC-Transporters in HaCaT keratinocytic cells during differentiation

30

ATP binding cassette genes and proteins for diagnosis and treatment of lipid disorders and inflammatory diseases

Background of the invention

5

Reverse cholesterol transport mediated by HDL provides a "protective" mechanism for cell membrane integrity and foam cell formation and cellular cholesterol is taken up by circulating HDL or its precursor molecules. The precise mechanism of reverse cholesterol transport however is currently not fully understood and the mechanism of cellular cholesterol efflux and transfer from the cell surface to an acceptor-particle, such as HDL, is yet unclear. Certain candidate gene products have been postulated playing a role in the process of reverse cholesterol transport [1]. Apolipoproteins (e.g. ApoA-I, ApoA-IV), lipid transfer proteins (e.g. CETP, PLTP) and enzymes (e.g. LCAT, LPL, HL) are essential to exchange cholesterol and phospholipids in lipoprotein-lipoprotein and lipoprotein-cell interactions. Different plasma membrane receptors, such as SR-BI [2; 3], HB1/2 [4], and GPI-linked proteins (e.g. 120 kDa and 80 kDa) [5] as well as the sphingolipid rich microdomains (Caveolae, Rafts) of the plasma membrane have been implicated being involved in the process of reverse cholesterol transport and the exchange of phospholipids. How these membrane-microdomains are organized is in the current focus of interest for the identification of therapeutic targets. In recent studies SR-BI function as receptor for uptake of HDL into the liver and steroidogenic tissues could be demonstrated and the effectivity of this process is highly dependent on the phospholipid environment [2].

20

25

Cholesterol and phospholipid homeostasis in monocytes/macrophages and other cells involved in the atherosclerotic process is a critical determinant in atherosclerotic vessel disease. The phagocytic function of macrophages in host defense, tissue remodelling, uptake and lysosomal degradation of atherogenic lipoproteins and membrane fragments or other lipid containing particles has to be balanced by effective release mechanisms to avoid foam cell formation. HDL mediated reverse

30

- 2 -

cholesterol transport, supported by endogenous ApoE and CETP synthesis and secretion provides an effective mechanism to release excessive cholesterol from macrophages and other vascular cells.

- 5 Alternatively, reduced cholesterol and triglyceride/fatty acid absorption by intestinal mucosa cells as well as increased lipid secretion from hepatocytes into the bile will lower plasma lipids and the concentration of atherosclerotic lipoproteins.

Summary of the invention

10

New cholesterol responsive genes were identified with differential display method in human monocytes from peripheral blood that were subjected to macrophage differentiation and cholesterol loading with acetylated LDL and subsequent deloading with HDL₃.

15

In an initial screen ABCG1 (ABC8), a member of the rapidly growing family of ABC (ATP-Binding Cassette) transport systems, that couple the energy of ATP hydrolysis to the translocation of solutes across biological membranes, was identified as a cholesterol sensitive switch. ABCG1 is upregulated by M-CSF dependent 20 phagocytic differentiation but expression is massively induced by cholesterol loading and almost completely set back to differentiation dependent levels by HDL₃.

25 In a more detailed analysis 37 already characterised ABC members and 8 Fragment - sequences (Table 2) were analysed in monocyte/macrophage cells by RT-PCR (linear range) for differentiation dependent changes and cholesterol sensitivity.

Among the 45 tested ABC-transporter genes 18 of the characterized ABC transporters and 2 of the Fragment -sequence based ABC-transporters are cholesterol sensitive (Example 4).

30

The cholesterol sensitive ABC-transporter are named according to the new ABC-

nomenclature and listed in Table 3 with the new and the old designations, respectively.

5 The most sensitive gene was ABCG1. ABCG1 is the human homologue of the drosophila white gene. Sequencing of the promoter of ABCG1 (Example 7) shows important transcription factor binding sites relevant for phagocytic differentiation and lipid sensitivity.

10 Antisense treatment of macrophages during cholesterol loading and HDL₃-mediated deloading clearly identified ABCG1 as a cholesterol transporter and the efflux of choline-containing phospholipids (phosphatidylcholine, sphingomyelin) was also modulated. Northern- and Western-blot analysis provided further support that inhibition of cholesterol transport is associated with lower ABCG1 mRNA expression and ABCG1 protein levels (Example 5).

15 Considerable evidence was derived from energy transfer experiments (Example 3) that ABCG1 in the cell membrane is in a regulated functional cooperation (e.g. cell differentiation, activation, cholesterol loading and deloading) with other membrane receptors that have either transport- (e.g. LRP-LDL receptor related protein) or signalling- and adhesion-function (e.g. integrins, integrin associated proteins) which is also supported by sequence homology of extracellular domains as well as other parts of the ABCG1 sequence. For example the protein sequence of the region of the third extracellular loop of ABCG1, i.e. aminoacid residues 580 through 644, shares homology with fibronectin (aa 317-327), integrin β 5 (aa 538-547), RAP (aa 119-127), LRP (aa 2874-2894), apoB-100 precursor (aa 4328-4369), glutathion-S-transferase (aa 54-78) and glucose transporter (aa 371-380). Sequence comparison of all cholesterol sensitive transporters indicates this as a general principle of ABC transporter function and regulation.

30 Among the other cholesterol sensitive genes ABCA1 (ABC1) was further characterized. ABCA1 was identified in the mouse as an IL-1 β transporter

involved also in apoptotic cell processing. We show here, by RT-PCR (Table 2) and confirmation by Northern analysis, based on the newly detected human ABCA1 cDNA sequence (Example 6), that ABCA1 follows the same regulation as ABCG1.

5 Moreover, the ABCA1-knockout mice (ABCA1^{-/-}) show massively reduced levels of serum lipids and lipoproteins. The expression of ABCA1 in mucosa cells of the small intestine and the altered lipoprotein metabolism in ABCA1^{-/-} mice allows the conclusion that ABCA1 plays a major role in intestinal absorption and translocation of lipids into the lymph-system

10 Analysis of genetic defects that affect macrophage cholesterol homeostasis identified dysregulated ABCA1 as a gene locus involved in the HDL-deficiency syndrome (Tangier-Disease). This disease is associated with hypertriglyceridemia and splenomegaly.

15 Another as yet not described HDL-deficiency syndrome associated with early onset of coronary heart disease and psoriasis showed a dysregulation of the chromosome 17 associated ABC-sequences (ABCC4 (MRP3); ABCC3 (MRP3); ABCA5 (Fragment 90625); ABCA6 (Fragment 155051) :17q21-24). This points to an
20 association with the predicted gene locus for psoriasis at chromosome 17.

A recently sequenced human ABC-transporter (ABCA8, Example 9) shows high homology to ABCA1 and also belongs to the group of cholesterol sensitive ABC-transporter.

25 ABCC5 (MRP5, sMRP) is a member of the MRP-subfamily among which ABCC2 (MRP2, cMOAT) was characterized as the hepatocyte canalicular membrane transporter that is involved in bilirubin glucuronide secretion [9] and identified as the gene locus for Dubin-Johnson Syndrome [10] a disorder associated with mild chronic
30 conjugated hyperbilirubinemia.

5

Furthermore, the identification of ABCA1 as a transporter for IL-1 β identifies this gene as a candidate gene for treatment of inflammatory diseases including rheumatoid arthritis and septic shock. The cytokine IL-1 β is a broadly acting proinflammatory mediator that has been implicated in the pathogenesis of these

10

Moreover, we could demonstrate, that glyburide as an inhibitor of IL-1 β secretion inhibits not only Caspase I mediated processing of pro-IL-1 β and release of mature IL-1 β but simultaneously inhibits ceramide formation from sphingomyelin mediated by neutral sphingomyelinase and thereby releases human fibroblasts from G₂-phase cell cycle arrest. These data provide a further mechanism indicative for a function of ABCA1 in signalling and cellular lipid metabolism.

15

Autoimmune disorders that are associated with the antiphospholipid syndrome (e.g. lupus erythematoses) can be related to dysregulation of B-cell and T-cell function, aberrant antigen processing, or aberrations in the asymmetric distribution of membrane phospholipids. ABC-transporters are, besides their transport function, candidate genes for phospholipid translocases, floppases and scramblases that regulate phospholipid asymmetry (outer leaflet: PC+SPM; inner leaflet: PS+PE) of biological membranes [11]. There is considerable evidence for a dysregulation of the analysed ABC-transporters in patient cells. We conclude that these ABC-cassettes are also candidate genes for a genetic basis of antiphospholipid syndromes such as in Lupus erythematoses.

20

25

30

In summary, the ABC genes ABCG1, ABCA1 and the other cholesterol-sensitive ABC genes as specified herein, can be used for diagnostic and therapeutic applications as well as for biochemical or cell-based assays to screen for pharmacologically active compounds which can be used for treatment of lipid disorders, atherosclerosis or other inflammatory diseases. Thus it is an objective of the present invention to provide assays to screen for pharmacologically active compounds which can be used for treatment of lipid disorders, atherosclerosis or

- 6 -

other inflammatory diseases. Further the invention provides tools to identify modulators of these genes and gene products. These modulators can be used for the treatment of lipid disorders, atherosclerosis or other inflammatory diseases or for the preparation of medicaments for treatment of lipid disorders, atherosclerosis or other inflammatory diseases. The medicaments comprise besides the modulator acceptable and usefull pharmaceutical carriers.

Abbreviations

aa	Amino acid
ABC	ATP-binding cassette
ABCA#	ATP-binding cassette, sub-family A (ABC1), member #
ABCB#	ATP-binding cassette, sub-family B (MDR/TAP), member #
ABCC#	ATP-binding cassette, sub-family C (CFTR/MRP), member #
ABCD#	ATP-binding cassette, sub-family D (ALD), member #
ABCE#	ATP-binding cassette, sub-family E (OABP), member #
ABCF#	ATP-binding cassette, sub-family F (GCN20), member #
ABCG#	ATP-binding cassette, sub-family G (WHITE), member #
ABCR	Homo sapiens rim ABC transporter
AcLDL	Acetylated LDL
ADP1	ATP-dependent permease
ALDP	Adrenoleukodystrophy protein
ALDR	Adrenoleukodystrophy related protein
ApoA	Apolipoprotein A
ApoE	Apolipoprotein E
ARA	Anthracycline resistance associated protein
AS	Antisense
ATP	Adenosine triphosphate
CETP	Cholesteryl ester transfer protein
CFTR	Cystic fibrosis transmembrane conductance regulator
CGT	ceramide glucosyl transferase
CH	Cholesterol
cMOAT	Canalicular multispecific organic anion transporter
dsRNA	Double stranded RNA
Fragment	Gen Fragment
FABP	plasma membrane fatty acid binding protein

FACS	Fluorescence activated cell sorter
FATP	intracellular fatty acid binding protein
FCS	foetal calf serum
FFA	free fatty acids
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GCN20	protein kinase that phosphorylates the alpha-subunit of translation initiation factor 2
GPI	Glycosylphosphatidylinositol
HaCaT	keratinocytic cell line
HDL	High density lipoprotein
HL	Hepatic lipase
HlyB	haemolysin translocator protein B
HMT1	yeast heavy metal tolerance protein
HPTLC	High performance thin layer chromatography
IL	Interleukin
LCAT	Lecithin:cholesterol acyltransferase
LDL	Low density lipoprotein
LPL	Lipoprotein lipase
LRP	LDL receptor related protein
MDR	Multidrug resistance
MRP	Multidrug resistance-associated protein
PC	Phosphatidylcholine
PE	Phosphatidylethanolamin
PL	Phospholipid
PLTP	Phospholipid transferprotein
PMP	peroxisomal membrane protein
PS	Phosphatidylserine
RNA	Ribonucleic acid
RT-PCR	Reverse transcription – polymerase chain reaction
SDS	Sodium dodecyl sulfate

SL	Sphingolipid
sMRP	Small form of MRP
SPM	Sphingomyelin
SR-BI	Scavenger receptor BI
SUR	Sulfonylurea receptor
TAP	Antigen peptide transporter
TG	Triglycerides
TSAP	TNF-alpha stimulated ABC protein
UTR	untranslated region

References cited

1. FIELDING CJ, FIELDING PE: Molecular physiology of reverse cholesterol transport. *J.Lipid Res.* 1995, 36:211-228.
- 5 2. JI Y, JIAN B, WANG N, SUN Y, MOYA ML, PHILLIPS MC, ROTHBLAT GH, SWANEY JB, TALL AR: Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. *J.Biol.Chem.* 1997, 272:20982-20985.
- 10 3. JIAN B, DE LA LLERA-MOYA M, JI Y, WANG N, PHILLIPS MC, SWANEY JB, TALL AR, ROTHBLAT GH: Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. *J.Biol.Chem.* 1998, 273:5599-5606.
- 15 4. MATSUMOTO A, MITCHELL A, KURATA H, PYLE L, KONDO K, ITAKURA H, FIDGE N: Cloning and characterization of HB2, a candidate high density lipoprotein receptor. Sequence homology with members of the immunoglobulin superfamily of membrane proteins. *J.Biol.Chem.* 1997, 272:16778-16782.
- 20 5. NION S, BRIAND O, LESTAVEL S, TORPIER G, NAZIH F, DELBART C, FRUCHART JC, CLAVEY V: High-density-lipoprotein subfraction 3 interaction with glycosylphosphatidylinositol-anchored proteins. *Biochem.J.* 1997, 328:415-423.
- 25 6. CROOP JM, TILLER GE, FLETCHER JA, LUX ML, RAAB E, GOLDENSON D, SON D, ARGINIEGAS S, WU RL: Isolation and characterization of a mammalian homolog of the *Drosophila* white gene. *Gene* 1997, 185:77-85.
7. CHEN H, ROSSIER C, LALIOTI MD, LYNN A, CHAKRAVARTI A, PERRIN G, ANTONARAKIS SE: Cloning of the cDNA for a human homologue of the *Drosophila* white gene and mapping to chromosome 21q22.3. *Am J Hum Genet* 1996, 59:66-75.

8. SAVARY S, DENIZOT F, LUCIANI M, MATTEI M, CHIMINI G: Molecular cloning of a mammalian ABC transporter homologous to Drosophila white gene. *Mamm Genome* 1996, 7:673-676.
9. ELFERINK RP, TYTGAT GN, GROEN AK: Hepatic canalicular membrane 5 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. *FASEB J.* 1997, 11:19-28.
10. WADA M, TOH S, TANIGUCHI K, NAKAMURA T, UCHIUMI T, KOHNO K, YOSHIDA I, KIMURA A, SAKISAKA S, ADACHI Y, KUWANO M: Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. *Hum Mol Genet* 1998, 7:203-207.
11. ZWAAL R.F., SCHROIT AJ: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. *Blood* 1997, 89:1121-1132.
12. FRUH K, AHN K, DJABALLAH H, SEMPE P, VAN ENDERT PM, TAMPE R, PETERSON PA, YANG Y: A viral inhibitor of peptide transporters for antigen presentation. *Nature* 1995, 375:415-418.
13. ALLIKMETS R, GERRARD B, HUTCHINSON A, DEAN M: Characterization 15 of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. *Hum Mol Genet* 1996, 5:1649-1655.
14. SENIOR AE, GADSBY DC: ATP hydrolysis cycles and mechanism in P-glycoprotein and ABCC7 (CFTR) [In Process Citation]. *Semin Cancer Biol*. 1997, 8:143-150.
15. HIGGINS CF: ABC transporters: from microorganisms to man. 20 *Annu Rev Cell Biol*. 1992, 8:67-113;67-113.
16. DEAN M, ALLIKMETS R: Evolution of ATP-binding cassette transporter genes. *Curr Opin Genet Dev*. 1995, 5:779-785.
17. GOTTESMAN MM, PASTAN I: Biochemistry of multidrug resistance mediated by the multidrug transporter. *Annu Rev Biochem*. 1993, 62:385-30 427:385-427.

18. MOSSER J, LUTZ Y, STOECKEL ME, SARDE CO, KRETZ C, DOUAR AM, LOPEZ J, AUBOURG P, MANDEL JL: The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. *Hum. Mol. Genet.* 1994, 3:265-271.
- 5 19. BASU SK, GOLDSTEIN JL, BROWN MS: Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. *J Biol Chem* 1978, 253:3852-3856.
- 10 20. LIANG P, PARDEE AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [see comments]. *Science* 1992, 257:967-971.
21. PIETZSCH A, BÜCHLER C, ASLANIDIS C, SCHMITZ G: Identification and characterization of a novel monocyte/macrophage differentiation-dependent gene that is responsive to lipopolysaccharide, ceramide, and lysophosphatidylcholine. *Biochem Biophys Res Commun* 1997, 235:4-9.
- 15 22. LOHMANN J, SCHICKLE H, BOSCH TC: REN display, a rapid and efficient method for nonradioactive differential display and mRNA isolation. *Biotechniques* 1995, 18:200-202.
23. VIRCA GD, NORTHEMANN W, SHIELS BR, WIDERA G, BROOME S: Simplified northern blot hybridization using 5% sodium dodecyl sulfate. *Biotechniques* 1990, 8:370-371.
- 20 24. CHIRGWIN JM, PRZYBYLA AE, MACDONALD RJ, RUTTER WJ: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. *Biochemistry* 1979, 18:5294-5299.
- 25 25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. Protein meaABCC8 (SUR)ement with the folin phenol reagent. *J Biol Chem* 193, 265-275. 1951. (GENERIC) Ref Type: Generic
26. BLIGH EG, DYER WJ: A rapid method of total lipid extraction and purification. *Can J Biochem Phys* 1959, 37:911-917.

- 13 -

27. ROGLER G, TRÜMBACH B, KLIMA B, LACKNER KJ, SCHMITZ G: HDL-mediated efflux of intracellular cholesterol is impaired in fibroblasts from Tangier disease patients. *Arterioscler Thromb Vasc Biol* 1995, 15:683-690.

Description of the Figures

Figures 1 to 5 are showing nucleotide and protein sequences described in this application. The sequences are repeated in the sequence listing.

5

Description of Tables:

Table 1:

10 Levels of RNA transcripts of ABCG1 (ABC8), ABCA1 (ABC1) and ABCA8 in
human tissues were determined by Northern blot analysis of a multiple tissue dot-blot
(Human RNA MasterBlot. Clontech Laboratories, Inc.. CA, USA). The relative
amount of expression is indicated by different numbers of filled circles

Table 2:

15 The expression pattern of ABC-transporters in monocytes, monocyte derived macrophages (3 days cultivated monocytes in serum free Macrophage-SFM medium containing 50 ng/ml M-CSF), AcLDL incubated monocytes (3 days with 100 µg/ml) followed by HDL₃ (100 µg/ml) incubated monocytes is shown. Expressed genes are tested for cholesterol sensitivity by semiquantitative PCR.

20 For known ABC-Transporter the chromosomal location and the transported molecules are also presented.

Table 3:

25 Disorders, that are associated with ABC-transporters are shown. The chromosomal location is indicated and the relevant accession number in OMIN (Online Mendelian Inheritance in Man).

Table 4:

Expression of ABC-Transporters in HaCaT keratinocytic cells during differentiation

30

Table 1

<i>Tissue</i>	ABCG1 (ABC8)	ABCA1 (ABC1)
Adrenal gland	•••••	•••
Thymus	•••••	••
Lung	•••••	•••
Heart	•••	••
Skeletal	••	•
Brain	•••	••
Spleen	••••••	••
Lymphnode	•••	•
Pancreas	•	•
Placenta	•••••	•••••
Colon	••	•
Small intestine	••	•••••
Prostate	••	•
Testis	•	•
Ovary	••	•
Uterus	•	••
Mammary gland	••	•
Thyroid gland	••	••
Kidney	••	•
Liver	•••	•••
Bone marrow	•	•
Peripheral leukocytes	•	•
<i>Fetal tissue</i>		
Fetal brain	•	••
Fetal liver	•	••••
Fetal spleen	••	•••
Fetal thymus	••	••
Fetal lung	••	•••

Table 2: Cholesterol dependent gene regulation of human ABC transporters

Gene	chromosomal localization	peripheral blood monocytes	3 days old M-CSF MØ	cholesterol loading (acLDL)	cholesterol deloading (HDL3)	transported molecules
ABCG1 (ABC8)	21q22.3	+	↑	↑↑	↓↓	cholesterol / choline PL
ABCA1 (ABC1)	9q22-31	+	↑	↑↑	↓↓	cholesterol / IL-1Ø
ABCC5 (MRP5)	3q25-27	+	↑	↑↑	↓	
ABCD1 (ALDP, ALD)	Xq28	+	↑	↑	↓	very long chain fatty acids
ABCA5 (est90625)	17q21-25	+	↑	↑	↓	
ABCB11 (BSEP, SPGP)	2q24	+	↑	↑↑	↓	bile acids
ABCA8 (ABC-new)		+	+	↑	↓	
ABCC2 (MRP2)	10q23-24	+	+	↑	↓	bilirubin glucuronide
ABCB6 (est45597)	2q33-36	+	+	↑	↓	
ABCI1 (MRP1)	16p13.12	+	↓	↑	↓	eicosanoids
ABCA3 (ABC3)	16p13.3	+	↑	↑	nr	
est1133530		+	↑	↑	nr	
ABCB4 (MDR3)	7q21	+	↑	↓	↑	phosphatidylcholine
ABCG2 (est157481,ABCP)	4q22-23	+	↑	↓	↑	
ABCC4 (MRP4)	13q31	+	↑	↓	↑	
ABCB9 (est122234)	12q24	+	↑	↓	↑	
ABCD2 (ALDR)	12q11	+	↓	↓	↑	very long chain fatty acids
ABCB1 (MDR1)	7q21	+	+	↓	↑	phospholipids,amphiphiles
ABCA6 (est155051)	17q21	+	↑	↓	nr	
est640918		+	↑	↓	nr	
ABCD4 (P70R)	14q24.3	+	↑	nr	nr	
ABCA2 (ABC2)	9q34	+	↑	nr	nr	
ABCF2 (est133090)	7q35-36	+	↑	nr	nr	
ABCB7 (ABC7)	Xq13.1-3	+	↑	nr	nr	iron
ABCF1 (ABC50,TSAP)	6p21.33	+	↑	nr	nr	
ABCC6 (MRP6)	16p13.11	+	↓	nr	nr	
ABCB5 (est422562)	7p14	+	↓	nr	nr	
ABCC3 (MRP3)	17q11-21	+	nr	nr	nr	
ABCA4 (ABCR)	1p22	+	nr	nr	nr	retinoids, lipofuscin
ABCB2 (TAPI)	6p21.3	+	nr	nr	nr	peptides
ABCB3 (TAP2)	6p21.3	+	nr	nr	nr	peptides

Gene	chromosomal localization	peripheral blood monocytes	3 days old M-CSF MØ	cholesterol loading (acLDL)	cholesterol deloading (HDL3)	transported molecules
ABCF3 (est201864)	3q25.1-2	+	nr	nr	nr	
ABCB8 (est328128)	7q35-36	+	↑	nr	nr	
ABCE1 (OABP)	4q31	+	↑	nr	nr	
ABCB10 (est20237)	1q32	+	↑	nr	nr	
est698739		+	↑	nr	nr	
ABCC10 (est182763)	6p21	+	nr	nr	nr	
ABCC7 (CFTR)	7q31	∅	∅	∅	∅	ions
ABCC8 (SUR-1)	11p15.1	∅	∅	∅	∅	
ABCD3 (PMP70)	1p21-22	∅	∅	∅	∅	
Huwhite2		∅	∅	∅	∅	
est1125168		∅	∅	∅	∅	
est1203215		∅	∅	∅	∅	
est168043		∅	∅	∅	∅	
est990006		∅	∅	∅	∅	

+ = expressed

∅ = not expressed

nr=not regulated

↑ = upregulated

↓ = downregulated

half (hs) or full size (fs) transporter as deduced from the mRNA size

Table 3

<i>Disorders</i>	<i>Genomic location</i>	<i>Associated gene</i>	<i>OMIM-acc.nr.</i>
<i>Metabolic disorders:</i>			
Cystic fibrosis	7q31.3	ABCC7 (CFTR)	219700
Dubin Johnson syndrome (mild chronic conjugated hyperbilirubinemia)	10q24	ABCC2 (CMOAT)	237500
Progressive familial intrahepatic cholestasis type III (PIFC3)	7q21.1	ABCB4 (MDR3)	602347
<i>Blyler disease (PFIC2)</i>	<i>2q24</i>	<i>ABCB11 (BSEP, sPGP)</i>	<i>601847</i>
Familial persistent hyperinsulinemic hypoglycemia	11p15.1	ABCC8 (SUR-1)	601820
IDDM	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	222100
<i>Neuronal disorders:</i>			
Adrenoleukodystrophy	12q11	ABCD2 (ALDR)	300100
Zellweger's syndrome	1p22-21	ABCD3 (PMP70)	214100
Multiple Sclerosis	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	126200
X-linked Sideroblastic anemia with spinocerebellar ataxia	Xq13.1-3	ABCB7 (ABC7)	301310
Menkes disease (altered homeostasis of metals)	Xq13	ABCB7 (ABC7)	309400
<i>Immune/Hemostats disorders:</i>			
Herpes simplex virus infection [12]	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	
Behcet's syndrome	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	109650
Bare lymphocyte syndrome type I	6p21.3	ABCB2 (TAP1)/ABCB3 (TAP2)	209920
Scott syndrome	7q21.1	ABCB1 (MDR1)	262890
<i>Retinal dystrophies:</i>			
Fundus flavi maculatus with macular dystrophy	1p13-21	ABCA4 (ABCR)	601691
Juvenile Stargardt disease	1p13-21	ABCA4 (ABCR)	248200
Age-related macular degeneration	1p13-21	ABCA4 (ABCR)	153800
Cone-rod dystrophy	1p13-21	ABCA4 (ABCR)	600110
Retinitis pigmentosa	1p13-21	ABCA4 (ABCR)	601718

<i>Diseases with evidence for involvement of ATPcassettes/translocases and floppases/80)</i>		<i>Assumed gene</i>	
BRIC (Benign recurrent intrahepatic obstructive jaundice)	18	Assumed	243300
Psoriasis	17q11-12 17q21-24	ABCA5 (Fragment 90625) ABCC3 (MRP3)	602723 177900 601454
Lupus erythematoses – Antiphospholipid Syndrome		Translocase Flippase	152700
PFIC(Prog. Fatal familial intrahepatic choestasis) PFIC1	18q21-22	ATP Transporters	211600
<i>Neurological disorders mapped to gene locus of ABCG1 (ABC8)</i>			
Autosomal bipolar affective disorder	21q22.3	ABCG1 (ABC8)	125480
Autosomal recessive non-syndromic deafness	21q22.3	ABCG1 (ABC8)	601072
Down Syndrome (ABC-8 may be a candidate for the Brushfield spots – mottled, marble or speckled irides frequently seen in Down-Syndrome)	21q22.3	ABCG1 (ABC8)	190685
Linkage to phosphofructokinase (liver type)	21q22		171860
HDL-deficiency syndromes, Gen responsible for Tangier Disease	9q31	ABCA1 (ABC1)	205400

Table 4: Expression of ABC-Transporters in HaCaT keratinocytic cells during differentiation

Gene	chrom. localisation	initial expression	differentiation dependent expression	known or putative molecules transported
ABCG1 (ABC8)	21 q22.3	+++++	↑	cholesterol choline-PL
ABCC3 (MRP3)	17 q11-q12	+++++	↑	
ABCA8	19 p13	+++++	↑	
ABCC1 (MRP1)	16 p13	+++++	↗ ↘ (max. day 2)	PGA ₂ , LTC ₄ DNP-SG
ABCD4 (PMP69, P70R)	14 q24	+++++	↗ ↘ (max. day 2.4)	
ABCC2 (MRP2)	10 q24	+++	↗ ↘ (max. day 2)	bilirubin glucuronide
ABCA3 (ABC3)	16 p13	+	↗ ↘ (max. day 4.6)	
ABCA5 (ABCR)	1 p21	+	↗ ↘ (max. day 4)	retinoid, lipofuscin
ABCA1 (ABC1)	9 q22-q31	+	↗ ↘ (max. day 6)	
ABCC6 (MRP6)	16 p13.11	+	↗ ↘ (max. day 4)	
ABCC4 (MRP4)	13 q31	++++	↗ ↘ (max. day 2.4)	
ABCA2	9 q34	++++	↗ ↘ (max. day 6)	
ABCC5 (MRP5, SMRP)	3 q27	+++++	↗ ↘ (max. day 2.4)	

ABCB6 (est45597)	2	+++++	↗ ↘ (max. day 2.4)	
ABCB7 (ABC7)	X q13.1-3	+++++	↗ ↘ (max. day 4)	irons
TAP1 (ABCB1)	6 p21.3	+++++	↗ ↘ (max. day 4.6)	peptides
TAP2 (ABCB2)	6 p21.3	+++++	↗ ↘ (max. day 2.4)	
ABCB8 (est328128)	7 q35-36	+++++	↗ ↘ (max day 2)	
EST640918	17 q24	+	↗ ↘ (max day 4)	
ABCC7 (CFTR)	7 q31	+++	↗ ↘ (max day 4)	
ABCB10 (est20237)	1 q32	+++	↗ ↘ (max. day 2)	
ABCF1 (TSAP)	6 p21.33	+++++	↓	
ABCC10 (est182763)	1 q32	+++++	↓	
ABCE1 (OABP)	4 q31	+++++	↓	
EST698739	17 q24	+++++	↓	
ABCF2 (est133090)	7 q35-q36.	+++++	↓	
ALD (ABCD1,ALDP)	X q28	-+++	↓	VLCFA
ABCA5 (est90625)	17 q21-q24	+++	↓	
ABCB5 (est422562)	7 p14	+++	↓	
ABCB9 (est122234)	12 q24-q _{ter}	++	↓	
ABCD2 (ALDR)	12 q11	+	↓	VLCFA
ABCF3 (est201864)	3 q25.1-2	+++++	↓	
ABCG2 (ABC15.ABCP)	4 q22-q23	++++	↓	
EST1133530	4 p16ptcr	+++++	↓	

Huwhite	11 q23	+++++	↓	
ABCA6 (est155051)	17 q21	++	↓	
BSEP (ABCB11,sPGP)	2 q24	+	↓↑ (max day 6)	
ABCB4 (MDR3)	7 q21	not expressed		phosphatidyl-choline
ABCD3 (PMP70)	1 p22	not expressed		
ABCB1 (MDR1)	7 q21	not expressed		phospholipids amphiphiles
EST168043	2 p15-16	not expressed		
EST990006	17 q24	not expressed		
ABCC8(SUR1)	11 p15.1	not expressed		

+: relative expression n.d.: not determined

↑: upregulated ↓: downregulated ↗ ↘: biphasic expression

Description of specific embodiments**Candidate gene identification during cholesterol loading and deloading of human monocyte derived macrophages**

5

In order to discover genes that are involved in the cholesterol loading and/or deloading in vitro assays were set up. Particularly, gene expression in human blood derived monocytes and macrophages elicited by cholesterol and its physiological transport formulation, i.e. various low density lipoprotein (LDL) particle species like 10 AcLDL, was studied.

10

Elutriated human monocytes were cultivated in M-CSF containing but serum free macrophage medium supplemented with AcLDL (100 µg protein/ml medium) for three days, followed by cholesterol depletion replacing AcLDL by HDL₃ (100 µg 15 protein/ml medium) for twelve hours. Differential display screening for new candidate genes, regulated by cholesterol loading/deloading, was performed (Example 1).

15

Identification of a new cholesterol sensitive gene

20

ABCG1 (ABC8) was discovered as a novel cholesterol sensitive gene. ABCG1 belongs to the ATP binding cassette (ABC) transporter gene family. ABCG1 was recently published as the human analogue of the drosophila white gene [6-8].

25

The gene is strongly upregulated by AcLDL-mediated cholesterol loading, and almost completely downregulated by HDL₃ mediated-cholesterol deloading, as confirmed by Northern blot (Example 2). Northern blot analysis of mRNA from human monocyte-derived macrophages obtained from the peripheral blood probands clearly show upregulation of ABCG1 mRNA formation upon AcLDL incubation. In sharp contrast, ABCG1 mRNA expression was decreased in such 30 macrophages upon incubation with HDL₃ containing medium.

ABCG1 expression in cholesterol loaded and deloaded cells after four days pre-differentiation

5 For effective cholesterol loading monocytes must be differentiated to phagocytic-macrophage like cells. During this period scavenger receptors are upregulated and promote AcLDL uptake leading to cholestryl ester accumulation. After four days preincubation period we have incubated the cells for one, two and three days with AcLDL (100 µg/ml) to show cholestryl ester accumulation. After two days of
10 loading we deloaded the cells with HDL₃ for 12 hours, 24 hours and 48 hours, respectively. ABCG1 is time dependently upregulated during the AcLDL loading period and downregulated by HDL₃ deloading (Examples 2 and 3) In order to confirm time dependent increase of ABCG1 mRNA expression after AcLDL challenge in human monocyte derived macrophages, Nothern blot analyses for
15 ABCG1 mRNA quantification were made, RNA samples from the macrophages were harvested at day zero and day four as controls and mRNA samples were taken one, two, and three days after AcLDL treatment of macrophages, which started at day four. A dramatic increase of ABCG1 mRNA content of the macrophages could be detected from day five through day seven by Nothern blot analyses.

20

This regulation shows the same pattern as changes of cellular cholestryl ester content (Example3). Cholesterol ester accumulation starts in monocyte-derived macrophages upon AcLDL stimulation from a base level below 5 nmol/mg cell protein at day four up to 120 nmol/mg cell protein at day seven (i.e. three days after
25 AcLDL application).

Tissue expression

Besides cholesterol loaded macrophages ABCG1 is prominently expressed in brain,
30 spleen, lung, placenta, adrenal gland, thymus and fetal tissues (Table 1).

Chromosomal location and associated genes and diseases

The ABCG1 gene maps to human chromosome 21q 22.3. Also localized in this region 21q 22.3 are the following genes: integrin β 2 (CD18), brain specific polypeptide 19, down syndrome cell adhesion molecule, dsRNA specific adenosine deaminase, cystathionine β synthase, collagen VI alpha-2, collagen XVIII alpha-1, autosomal recessive deafness, and amyloid beta precursor.

This chromosomal region is in close proximity to other regions involved in Down syndrome, autosomal dominant bipolar affective disorder, and autosomal recessive non-syndromic deafness.

Extracellular loop of ABCG1 (ABC8) for antibody generation

The putative structure of the hydrophobic transmembrane region of ABCG1 shows 6 transmembrane spanning domains, and 3 extracellular loops, two of them are 9- and 8-amino acids-long, respectively, while the third one is 66-amino acids-long.

The larger one of the two intracellular loops consists of 30 amino acids. Similarity-survey in protein databases for homologies the 3rd extracellular loop (IIIex) with other genes resulted in the identification of fibronectin, integrin β 5, RAP, LRP (LDL receptor related protein) apo-lipoprotein B 100 precursor protein, glutathion S-transferase and glucose transporter.

A polyclonal antiserum was generated against the 3rd extracellular loop (IIIex) of ABCG1 in order to perform flow cytometric analysis, energy transfer experiments and Western-blotting (see Example 3). In the amino acid sequence of ABCG1 the 3rd extracellular loop (IIIex) comprises 66 amino acids from amino acid 580 through 644. The peptide fragment for antibody generation comprises the amino acid residues 613 through 628 of ABCG1 polypeptide. ABCG1 obviously interacts with endogenous sequence motifs with other membrane receptors

involved in transport (e.g. LRP, RAP), signalling and adhesion (e.g. integrins, integrin associated proteins) as a basis of ABCG1-function and regulation. Moreover sequence comparisons of all ABC-transporters listed in Table 3 indicates functional cooperation with other membrane receptors as a general principle of the whole gene family.

Subfamily-Analysis

- Evolutionary relationship studies with the whole ABC transporter family have shown
10 that ABCG1 (ABC8) forms a subfamily together ABCG2 (est157481) and this subfamily is closely related to the full-size transporters ABCA1 (ABC1), ABCA2 (ABC2), ABCA3 (ABC3), ABCA4 (ABCR) and the half-size transporter ABCF1 (TSAP).
- 15 Recent studies by Allikmets et al. have identified 21 new genes as ABC transporters by expressed sequence tags database search [13].

General description of the ABC transporter family

- 20 The ATP-binding cassette (ABC) transporter superfamily contains some of the most functionally diverse proteins known. Most of the members of the ABC family (also called traffic ATP-ases) function as ATP-dependent active transporters (Table 3). The typical functional unit consists of a pair of ATP-binding domains and a set of transmembrane (TM) domains. The TM-domains determine the specificity for the type of molecule transported, and the ATP-binding domains provide the energy to move the molecule through the membrane [14; 15]. The variety of substrates handled by different ABC-transporters is enormous and ranges from ions to peptides. Specific transporters are found for nutrients, endogenous toxins, xenobiotics, peptides, aminoacids, sugars, organic/inorganic ions, vitamins, steroid hormones and
25 drugs [16; 17].
- 30

ABC-transporter associated diseases

The search for human disease genes (Table 3) provided a number of previously undiscovered ABC proteins [16]. The best characterized disease caused by a mutation in an ABC transporter is cystic fibrosis (ABCC7 (CFTR)). Inherited disorders of peroxisomal metabolism as Adrenoleukodystrophy and Zellweger's syndrome also show alterations in ABC transporters. They are involved in peroxisomal beta-oxidation, necessary for very long chain fatty acid metabolism [18].

10 **Antisense against ABCG1 inhibits cholesterol efflux to HDL,**

Since ABCG1 is a cholesterol sensitive gene and other ABC transporters are known to be involved in certain lipid transport processes, the question arises whether ABCG1 plays a role in transport of cholesterol, phospholipids, fatty acids or glycerols. Therefore antisense experiments were performed to test the influence of ABCG1 on lipid loading and deloading. The inhibition of ABCG1 with specific antisense oligonucleotides decreased the efflux of cholesterol and phosphatidyl-choline to HDL. (Example 5)

20 **Other cholesterol sensitive ABC transporter**

Cloning and sequencing of the human ABCA1 (ABC1) provided the information to characterize ABCA1 for cholesterol sensitivity, and tissue distribution (Example 6). Another cholesterol sensitive human ABC transporter (ABCA8) has been cloned and sequenced (Example 8)

Characterization of the ABCG1 promoter region

The ABCG1 promoter has the characteristic binding sites for transcription factors that are involved in the differentiation of monocytes into phagocytic macrophages. The cholesterol sensitivity of the expression of ABCG1 is represented by the transcription factor pattern that is relevant for phagocytic differentiation (Example 7).

Examples**Example 1****5 Identification of cholesterol loading and deloading candidate genes****Monocyte isolation and cell culture**

Monocytes were obtained from peripheral blood of healthy normolipidemic volunteers by leukapheresis and purified by counterflow elutriation. Purity of isolated monocytes was >95% as revealed by FACS analysis. 10x10⁶ monocytes were seeded into 100 mm² diameters cell culture dishes under serum free conditions in macrophage medium for 12 hours in a humidified 37°C incubator maintained with a 5% CO₂, 95% air atmosphere. After 12 hours medium containing unattached cells was replaced by fresh macrophage medium supplemented with 50 ng/ml human recombinant M-CSF (this medium is the standard medium for any further incubations).

Isolation of lipoproteins and preparation of AcLDL

Lipoproteins were prepared from human plasma from healthy volunteer donors by standard sequential ultracentrifugation methods in a Beckman L-70 ultracentrifuge equipped with a 70 Ti rotor at 4°C to obtain LDL ($d=1,006$ to 1,063 g/ml) and HDL₃ ($d=1,125$ to 1,21 g/ml). All densities were adjusted with solid KBr. Lipoprotein fractions are extensively dialyzed with phosphate-buffered saline (PBS) containing 5 mM EDTA. The final dialysis step was in 0,15 mol/L NaCl in the absence of EDTA. Lipoproteins were made sterile by filtration through a 0.45 µm (pore-size) sterile filter (Sartorius).

LDL was acetylated by repeated addition of acetic anhydride followed by dialysis against PBS [19]. Modified LDL showed enhanced mobility on agarose gel electrophoresis.

Incubation of monocyte-macrophages with AcLDL and HDL₃

After 12 hours of preincubation cells were grown in the presence or absence (control) of 100 µg protein /ml AcLDL for further 3 day in medium. Then, the incubation 5 medium was replaced with fresh medium and incubated with or without the addition of HDL₃ (100 µg/ml) for another 12 hours.

Differential display

Differential display screening was performed for new candidate genes that are 10 regulated by cholesterol loading/delowering as described [20; 21]. In brief, 0,2 µg of total RNA isolated from monocytes at various incubations was reverse transcribed with specific anchored oligo-dT primers, using a commercially available kit (GeneAmp RNA PCR Core Kit, Perkin Elmer, Germany). The oligo-dT primers used had two additional nucleotides at their 3' end consisting of an invariable A at the 15 second last position (3'-end) and A, C, G or T at the last position to allow a subset of mRNAs to be reverse transcribed. Here, a 13-mer oligo-dT (T101: 5'T11AG-2') was used in a 20-µl reaction at 2,5 µM concentration. One tenth of the cDNA was amplified in a 20-µl PCR reaction using the same oligo-dT and an arbitrary 10-mer upstream primer (D20 5'-GATCAATCGC-3'), 2,5 µM each, using 2,5 units of TAQ 20 DNA Polymerase and 1.25 mM MgCl₂. Amplification was for 40 cycles with denaturation at 94°C for 30 sec, annealing at 41°C for 1 min and elongation at 72°C for 30 sec with a 5 min extension at 72°C following the last cycle. All PCR reactions were carried out in a Perkin Elmer 9600 thermocycler (Perkin Elmer, Germany). 25 PCR-products were separated on ready to use 10% polyacrylamide gels with a 5% stacking gel (CleanGel Large-10/40 ETC, Germany) under non-denaturating conditions using the Multiphor II electrophoresis apparatus (Pharmacia, Germany). The DNA fragments were visualized by silverstaining of the gel as previously described [22].

Cloning and sequencing of differentially expressed cDNAs

cDNA bands of interest were cut out of the gel and DNA was isolated by boiling the gel slice for 10 min in 20 µl of water. A 4 µl aliquot was used for the following PCR-reaction in a 20µl volume. The cDNA was reamplified using the same primer set and 5 PCR conditions as above, except, that the final dNTP concentration was 1mM each. Reamplified cDNAs were cloned in the pUC18-vector using ABCC8 (SUR)eClone-Kit (Pharmacia), sequenced on an automated fluorescence DNA sequencer using the AutoRead Sequencing Kit (Pharmacia, Germany) and used as probes for Northern blot analysis [23].

10

Example 2**Northern Blot analyses of monocytes and macrophages after 3 days AcLDL incubation followed by 12 hours HDL₃ incubation**

15 Elutriated monocytes were incubated with AcLDL (100 µg/ml medium) for 2.5 days or differentiated for the same time without the addition of AcLDL as control. ABCG1 (ABC8) expression is 4 times stronger upregulated with AcLDL incubation than in differentiated monocytes .After the AcLDL incubation period cells were washed and incubated with HDL₃ for the next 12 hours or with medium alone as 20 control. ABCG1 expression is almost completely downregulated by HDL3 incubation and only moderately decreased in control incubation as confirmed by Northern blot. For effective cholesterol loading monocytes must be differentiated to macrophage like cells. During this period scavenger receptors are upregulated and promote AcLDL uptake leading to cholestryly ester accumulation. To differentiated the cells prior to AcLDL-dependent cholesterol loading, we cultured the cells for four days in 25 standard medium. At day four, cells were washed and incubated with AcLDL (100µg/ml medium) or in the absence of AcLDL as control for further one, two and three days to load the cells with cholesterol. At each timepoint cells were lysed with 0.1 % SDS and lipid was extracted as described in materials and methods and cellular cholestryly ester was determined by HPTLC-separation. Cells were loaded time 30

dependently up to 120 nmol/mg cell protein after 3 days AcLDL loading, whereas in unloaded cells no cholesteryl ester accumulation could be observed.

To distinguish HDL₃ dependent and independent cholesterol efflux cells were pulsed 5 with AcLDL (100 µg/ml) for three days with the coincubation of ¹⁴C-cholesterol (1,5 µCi/ml medium). Cells were washed and deloaded with HDL₃ (100 µg/ml) for 12 hours, 24 hours and 48 hours, respectively. Cells were incubated without the addition of exogenous lipid-acceptors as a control. After chase period the content of ¹⁴C-cholesterol was determined in the medium and in the cells by liquid scintillation as 10 described in material and methods. The efflux of cholesterol is expressed in percent of cellular DPMs of total DPMs (counts in the cells plus medium) With HDL₃ the efflux is faster and more intense, than the efflux without the addition of HDL₃, as an endogenous lipid acceptor. After 12 hours cellular cholesterol content was reduced to 15 68 % with HDL₃-dependent deloading, and 86 % in HDL₃-independent deloading. After 48 hours only 35 % of loaded ¹⁴C-cholesterol was observed in the cells treated with HDL₃. In contrast, 70 % of loaded ¹⁴C-cholesterol was found in untreated cells

In AcLDL pulsed cells the RNA-expression of ABCG1 is upregulated whereas no 20 upregulation appears in the cells that were not loaded with AcLDL. Cells that were loaded for two days with AcLDL were deloaded with HDL₃ for 12, 24 and 48 hours (12h; 24h; 48h), and in the absence of exogenous lipid acceptors. The RNA-expression is downregulated again, in HDL₃ treated cells more intense than in cells treatet without any exogenous lipid acceptor.

25 **Materials:**

Macrophage medium (Macrophage-SFM) was obtained from Gibco Life Technologies, Germany. Human recombinant M-CSF was obtained from Genzyme Diagnostics, Germany, and antisense phosphorothioate oligonucleotides were supplied by Biognostics, Germany. All other chemicals were purchased from Sigma. Nylon 30 membranes and a³²P-dCTP were obtained from Amersham, Germany. ¹⁴C-

cholesterol and 3H-choline chloride from NEN, Germany, and cell culture dishes are Becton Dickinson, Germany

Isolation of total RNA and northern blotting

5 Total RNA was isolated at each time-point, before and after AcLDL incubation, and after HDL₃ incubation, respectively. Washed cells were solubilized in guanidine isothiocyanate followed by sedimentation of the extract through cesium chloride [24]. For Northern analysis, 10 µg/lane of total RNA samples were fractionated by electrophoresis in 1,2% agarose agarose gel containing 6% formaldehyde and blotted
10 onto nylon membranes (Schleicher & Schüll, Germany). After crosslinking with UV-irradiation (Stratalinker model 1800, Stratagene, USA), the membranes were hybridized with a cDNA probe for ABCG1 (ABC8). Hybridization and washing conditions were performed as recommended by the manufacturer of the membrane.

15 **Example 3**

Westernblot analysis of monocytes and macrophages after cholesterol loading and deloading

20 Protein expression of ABCG1 (ABC8) is upregulated in AcLDL-loaded and down-regulated in HDL₃-deloaded monocyte-derived macrophages. Western blotting with a peptide antibody against ABCG1 as described in materials and methods is performed with 40 µg of total protein for each lane of SDS-PAGE. ABCG1-protein expression is shown in freshly isolated monocytes (day zero) and in differentiated monocytes (day four). From day four to day seven (5d; 6d; 7d) monocyte-derived macrophages
25 were loaded with AcLDL or without AcLDL as control. AcLDL loaded cells from day 6 (6d) were deloaded with HDL₃ for 12, 24, and 48 hours and without exogenous added HDL lipid-acceptor. AcLDL increases the protein-expression, whereas HDL₃ decreases the expression to normal levels again.

Protein isolation and determination

At each timepoint cells were lysed with 0.1% SDS and the protein content was determined by the method of Lowry et al. [25].

5 **Generation of ABCG1 specific antibodies**

ABCG1 specific peptide antibodies were generated by immunization of chickens and rabbits with a synthetic peptide (Fa. Pineda, Berlin). The peptide sequence was chosen from the extracellular domain exIII amino acid residues 613-628 of ABCG1 comprising the amino acids REDLHCDIDETCHFQ (see sequence listing ID No. 10 53). After 58 days of immunization western blotting was performed with 1:1000 diluted serum and 1:10000 secondary peroxidase labelled antibody.

Electrophoresis and immunoblotting

SDS-polyacrylamide gelectrophoresis was performed with 40 μ g total cellular 15 protein per lane. Proteins were transferred to Immobilon as reported. Transfer was confirmed by Coomassie Blue staining of the gel after the electroblot. After blocking for at least 2 hours in 5% nonfat dry milk the blot was washed 3 times for 15 minutes in PBS. Antiserum generated as described was used at 1:1000 dilution in 5% nonfat dry milk in PBS. The blot was incubated for 1 hour. After 4 times washing with PBS 20 at room-temperature a secondary peroxidase-labelled rabbit anti chicken IgG-antibody (1:10000 diluted, Sigma) was incubated in 5% nonfat dry milk in PBS for 1 hour. After 2 times washing with PBS, detection of the immune complexes was carried out with the ECL Western blot detection system (Amersham International PLC, UK).

25

Fluorescence resonance energy transfer:

Monocytes were labelled with the specific antibodies for 15 minutes on ice, one antibody is labelled by biotin, the other one is labelled by phycoerythrin. After 30 washing the cells were incubated with a Cy5-conjugated streptavidin for another 15 minutes.

Distances between antibody labelled proteins on the cell surface is measured by energy transfer with a FACScan (Becton Dickinson). Following single laser excitation at 488 nm the Cy5 specific emmission represents an indirect excitation of Cy5 dependent on the proximity of the PE-conjugated antibody. The relative transfer efficiency was calculated following standardisation for the intensity of PE and Cy5 labelling and nonspecific overlap of fluorescence based on dual laser excitation and comparison to separately stained control samples.

Example 4

10

Cholesterol sensitivity of ABCG1 (ABC8) and other members of the ABC-transporter family

The influence of cholesterol loading and deloading on other members of the ABC-family was also investigated to find out the potential second half-size ABC transporter.

Further analysis has been performed to examine the expression pattern of all human ABC transporters in monocytes and monocyte derived macrophages as well as in cholesterol loaden and deloaden mononuclear phagocytes.

20

The experiments were performed by RT-PCR with cycle-variation to compare the expression in the quantitative part of the distinct PCR. Primer sets were generated from the published sequences of the ABC-transporters. A RT-PCR with GAPDH primers was used as control.

25

Several ABC-transporters are also cholesterol sensitive which further supports the function of ABC-transporters in cellular lipid trafficking (Table 2).

Semi-quantitative RT-PCR

30

All known ABC-transporters are tested for AcLDL/HDL₃ sensitive regulation of expression using RT-PCR with cycle-variation to compare the expression in the

quantitative part of the distinct PCR. 1 µg of total RNA was used in a 40 µl reverse transcription reaction, using the Reverse Transkription System (Promega, Corp. WI, USA). Aliquots of 5 µl of this RT-reaction was used in 50µl PCR reaction. After denaturing for 1,5 min at 94°C, 35 or less cycles of PCR were performed with
5 92,3°C for 44s, 60,8°C for 40s (standard annealing temperature differs in certain primer-combinations), 71,5°C for 46s followed by a final 5-min extension at 72°C. The Primer sets were generated from the published sequences of the ABC-transporters. A RT-PCR with primers specific for GAPDH was performed as control.

10 The expression pattern of ABC-transporters in monocytes, monocyte derived macrophages (3 days cultivated monocytes in serum free macrophage-SFM medium containing 50 ng/ml M-CSF), AcLDL incubated monocytes (3 days with 100 µg/ml) followed by HDL₃ (100 µg/ml) incubated monocytes is shown in Table 2. Expressed genes are tested for cholesterol sensitivity by semi-quantitative PCR.
15 **Example 5:**

Functional analyses of the cholesterol sensitive ABCG1 (ABC8) transporter gene by antisense oligonucleotide experiments

Antisense experiments were conducted in order to address the question, that beyond being regulated by cholesterol loading and deloading ABCG1 is directly involved in
20 lipid loading and deloading processes.

In various experiments antisense oligonucleotides decreased the efflux of cholesterol and phosphatidylcholine to HDL₃. During the loading period with AcLDL the cells were coincubated with 17 different antisense oligonucleotides. To measure the efflux of cholesterol and phospholipids the cells were pulsed in the loading period with 1,5
25 µCi/ml ¹⁴C-cholesterol and 3µCi/ml ³H-choline chloride. The medium was changed and during the chase period cells were incubated with or without HDL₃ for 12 hours. The ¹⁴C-cholesterol and ³H-choline content in the medium and in the cell lysate was measured and the efflux was determined in percent of total ¹⁴C-cholesterol and ³H-choline loading.

The most effective antisense oligonucleotide (AS Nr.2) inhibited cholesterol and phospholipids efflux relative to cells that were treated with control antisense (AS control). A dose dependent decrease in cholesterol efflux of 16,79% (5nmol AS) and 32,01% (10 nmol AS) could be shown, respectively.

5 **Antisense incubation**

To inhibit the induction of ABCG1 cells were treated with three different antisense oligonucleotides targeting ABCG1 or one scrambled control-antisense oligonucleotide during the AcLDL-incubation period.

10 **Determination of cholesterol and phosphatidylcholine efflux from monocytes in dependency of antisense oligonucleotide treatment**

To measure the efflux of cholesterol and phospholipids the cells were pulsed in addition to AcLDL-incubation with 1,5 µCi/ml ¹⁴C-cholesterol and 3µCi/ml ³H-choline chloride. The medium was changed and in chase period the cells were incubated with or without HDL₃ for 12 hours. Lipid extraction was performed
15 according to the method of Bligh and Dyer [26]. The ¹⁴C-cholesterol and ³H-choline content in the medium and in the cell lysate was measured by liquid scintillation counting and the efflux was determined in percent of total ¹⁴C-cholesterol and ³H-choline loading as described [27]

20 **Computer analyses**

DNA and protein sequence analyses were conducted using programs provided by HUSAR, Heidelberg, Germany: <http://genius.embnet.dkfz-heidelberg.de:8080>.

Example 6**Complete cDNA sequence of the human ATP binding cassette transporter 1 (ABCA1 (ABC1)) and assessing the cholesterol sensitive regulation of ABCA1 mRNA expression**5 **cDNA Cloning and Primary Protein Structure**

We have cloned a 6880-bp cDNA containing the complete coding region of the human ABCA1 gene (Figure 8) The open reading frame of 6603 bp encodes a 2201-amino acid protein with a predicted molecular weight of 220 kDa. This protein displays a 94% identity on the amino acid level in an alignment with mouse ABCA1
10 and can therefore be considered as the human ortholog.

Tissue Distribution of ABCA1 mRNA Expression

In order to examine the tissue-specific expression of ABCA1 a multiple tissue RNA master blot containing poly A⁺ RNA from 50 human tissues was carried out. Northern Blot analysis demonstrates the presence of a ABCA1 specific signal in all
15 tissues. It is mostly prominent in adrenal gland, liver, lung, placenta and all fetal tissues examined so far (Table 1). The weakest signals are found in kidney, pancreas, pituitary gland, mammary gland and bone marrow.

Sterol Regulation of ABCA1 mRNA Expression

In order to determine the regulation of ABCA1 in monocytes/macrophages during
20 cholesterol loading/depletion Northern Blot analysis was performed. The cloned 1000-bp DNA fragment derived from PCR amplification of RNA from five day differentiated monocytes with primers ABCA1 3622f (CGTCAGCACTCTGATGGCCTG-3') and ABCA1 4620r (TCTCTGCTATCTCCAACCTCA-3') was hybridized to Northern Blots containing
25 RNA of differentially cultivated monocytes (figure 12) As can be seen in lanes one to five, the ABCA1 mRNA is increased during in vitro differentiation of freshly isolated monocytes until day five. Longer cultivation results in a total loss of

expression. When the cells were incubated in the presence of AcLDL to induce sterol loading (lanes 6-8) beginning at day four, a much stronger accumulation of mRNA can be detected in comparison to control cells (lanes 2-5). When these cells were cultured with HDL₃ as cholesterol acceptor for 12h, 24h and 48h (lanes 9-11) the ABCA1 signal significantly decreases with respect to control cells incubated in the absence of HDL₃ (lanes 12-14). Taken together, these results indicate that ABCA1 is a sterol-sensitive gene which is induced by cholesterol loading and downregulated by cholesterol depletion.

Cell culture.

Peripheral blood monocytes were isolated by leukapheresis and counterflow elutriation (19JBC). To obtain fractions containing >90% CD 14 positive mononuclear phagocytes, cells were pooled and cultured on plastic Petri dishes in macrophage SFM medium (Gibco BRL) containing 25 U/ml recombinant human M-CSF (Genzyme) for various times in 5% CO₂ in air at 37°C. The cells were incubated in the absence (differentiation control) or presence of AcLDL (100 µg/ml) to induce sterol loading. Following this incubation the cells were cultured in fresh medium supplemented with or without HDL₃ (100 µg/ml) for additional times in order to achieve cholesterol efflux from the cells to its acceptor HDL₃.

Preparation of RNA and Northern blot analysis.

Total cellular RNA was isolated from the cells by guanidium isothiocyanate lysis and CsCl centrifugation (Chirgwin). The RNA isolated was quantitated spectrophotometrically and 15 µg samples were separated on a 1.2% agarose-formaldehyde gel and transferred to a nylon membrane (Schleicher & Schüll). After crosslinking with UV-irradiation (Stratalinker model 1800, Stratagene), the membranes were hybridized with a 1000 bp DNA fragment derived from PCR amplification with primers ABCA1 3622f and ABCA1 4620r, stripped and subsequently hybridized with a human β-actin probe. In order to determine the tissue-specific expression of ABCA1 a multiple tissue RNA master blot containing

poly A⁺ RNA from 50 human tissues was purchased from Clontech. The probes were radiolabeled with [γ -³²P]dCTP (Amersham) using the Oligolabeling kit from Pharmacia. Hybridization and washing conditions were performed following the method described previously (Virca).

5 cDNA cloning of human ABCA1

Based on sequence information of mouse ABCA1 cDNA we designed primers for RT-PCR analysis in order to amplify the human ABCA1 (ABC1) cDNA. Approximately 1 μ g of RNA from five day differentiated mononuclear phagocytes was reverse transcribed in a 20 μ l reaction using the RNA PCR Core Kit from Perkin 10 Elmer. An aliquot of the cDNA was used in a 100 μ l PCR reaction performed with AmpliTaq Gold (Perkin Elmer) and the following primer combinations: (primer names indicate the position in the corresponding mouse cDNA sequence):

mABC1-144f (5'-CAAACATGTCAGCTGTTACTGGA-3') and

mABC1-643r (5'-TAGCCTTGCAAA-AATACCTTCTG-3'),

15 *mABC1-1221f* (5'-GTTGGAAAGATTCTCTATAACACCTG-3') and

mABC1-1910r (5'-CGTCAGCACTCTGATGATGGCCTG-3').

mABC1-3622f (5'-TCTCTGCTATCTCCAACCTCA-3') and

mABC1-4620r (5'-ACGTCTTCACCAGGTAATCTGAA-3'),

mABC1-5056f (5'-CTATCTGTGTCATCTTGCGATG-3') and

20 *mABC1-5857r* (5'-CGCTTCCTCCTATAAGATCTTGGT-3'),

mABC1-6093f (5'-AAGAGAGCATGTGGA-GTTCTTG-3') and

mABC1-7051r (5'-CCCTGTAATGGAATTGTGTTCTC-3').

hABC1-540f (5'-AACCTTCTCTGGGTTCCGTATC-3') and

hABC1-1300r (5'-AGTCCTGGAA-GGTCTTGTTCAC-3').

25 *hABC1-1831f* (5'-GCTGACCCCTTGAGGACATGCG-3') and

hABC1-3701r (5'-ATAGGTCAAGCTCATGCCCTATGT-3'),

hABC1-4532f (5'-GCTGCC-TCCTCCACAAAGAAAAC-3') and

hABC1-5134r (5'-GCTTGCTGACCCGCTCC-TGGATC-3'),

hABC1-5800f (5'-GAGGCCAGAACATGACATCTTAGAA-3') and

hABC1-6259r (5'-CTTGACAACACTTAGGGCACAAAT-3').

5

All PCR products were cloned into the pUC18 plasmid vector and the nucleotide sequences were determined on a Pharmacia ALFexpress sequencer using the dideoxy chain-termination method and fluorescent dye-labeled primers.

10

Example 7

Identification of the 5'end of ABCG1

We could partially prove the 5'-end of ABCG1 published by Chen [7] that differs from the 5'-end published by Croop [6] obtained from the mRNA of human

15

monocytes/macrophages using a 5' RACE approach. In detail the sequence according to Chen et al. downstream of position 25 was in agreement with our own data. In contrast, our identified sequence differs from the one reported by Chen [7] and Croop [6] at a site upstream of position 25 (Chen [7]). The sequence SEQ ID NO: 32 shows the newly identified 5'-end followed by the sequence published by Chen [7] from

20

position 25.

Molecular cloning and characterisation of the ABCG1 5'UTR

We identified several fragments by screening of a λ phage library which contained a

25

total of app. 3 kb of the 5' UTR upstream sequence of the human ABCG1 gene. The

sequence that comprises the 5'UTR and part of exon 1 (described above) are given in SEQ ID NO: 54.

The promoter activity of this sequence was proven by luciferase reporter gene assays in transiently transfected CHO cells.

- 5 Putative transcription factor binding sites within the promoter region with the highest likelihood ratio for the matched sequence as deduced from the TransFac database, GFB, Braunschweig, Germany. Multiple binding sites for SP-1, AP-1, AP-2 and CCAAT-binding factor (C/EBP family) are present within the first 1 kb of the putative promoter region.
- 10 Additionally, a transcription factor binding site involved in the regulation of apolipoprotein B was identified.

Example 8

15

Characterization of the human ABCA8 full length cDNA

20 The putative ABCA8 coding sequence is app. 6.5 kb in size. We successfully cloned and sequenced a 1kb segment of the human ABCA8 cDNA that encodes the putative second nucleotide binding site of the mature polypeptide (the sequence is shown in the sequence listing). The nucleotide sequence exhibits a 73% homology with the known human ABCA1 (ABC1) cDNA sequence.

25 We identified an alternative transcript in the cloned 1 kb coding region which consists of a 72 bp segment (see sequence listing). Genomic analysis of this region revealed that the alternative sequence is identical with a complete intron suggesting that the alternative mRNA is generated by intron retention. The retained intron introduces a preterminal stop codon and thus may code for a truncated ABCA8 variant.

ABCA8 also shows a cholesterol sensitive regulation of the mRNA expression (Table 2).

5 Tissue expression of ABCA8 is shown in table 1.

Example 9

10 **Characterisation of the regulation of ABC transporter during differentiation of keratinocytic cells (HaCaT)**

Differentiation of epidermal keratinocytes is accompanied by the synthesis of specific lipids composed mainly of sphingolipids (SL), free fatty acids (FFA), cholesterol (CH), and cholesterol sulfate, all involved in the establishment of the epidermal permeability barrier. The skin and, in particular, the proliferating layer of the epidermis is one of the most active sites of lipid synthesis in the entire organism. Cholesterol synthesis in normal human epidermis is LDL-independent, and circulating cholesterol levels do not affect the cutaneous de novo cholesterol synthesis. Fully differentiated normal human keratinocytes lack LDL receptors or its expression is very low, whereas in the normal human epidermis only basal cells express LDL receptors.

25 During keratinocyte differentiation a shift from polar glycerophospholipids to neutral lipids (FFA, TG) and also a replacement of short chain FFA by long chain highly saturated FFA is observed. The most important lipids for the barrier function of the skin are sphingolipids that account for one third of the lipids in the cornified layer, and consist of a large ceramide fraction as a result of glucosylceramide degradation by intercellular glycosidases and de novo synthesis of ceramide.

30 Glucosylceramide is synthesized intracellularly and stored in lamellar bodies and glucosylceramide synthase expression was found up-regulated during the differentiation of human keratinocytes.

5 Cholesterol sulfate is formed by the action of cholesterol sulfotransferase during keratinocyte differentiation . Cholesterol sulfate and the degrading enzyme steroid sulfatase are present in all viable epidermal layers, with the highest levels in the stratum granulosum. The gradient of cholesterol sulfate content across the stratum corneum (from inner to outer layers), and progressive desulfation of cholesterol sulfate regulate cell cohesiveness and normal stratum corneum keratinization and desquamation, respectively. Cholesterol sulfate induces transglutaminase 1 and the coordinate regulation of both factors is essential for normal keratinization .

10

The final step in lipid barrier formation involves lamellar body secretion and the subsequent post-secretory processing of polar lipids into their nonpolar lipid products through the action of hydrolytic enzymes that are simultaneously released (β -glucocerebrosidase, phospholipases, steroid sulfatase, acid sphingomyelinase). 15 Disruption of the permeability barrier results in an increased cholesterol, fatty acid, and ceramide synthesis in the underlying epidermis. It has been shown that mRNA levels for the key enzymes required for cholesterol, fatty acid, and ceramide synthesis increased rapidly after artificial barrier disruption .

20

Currently the lipid transport systems in keratinocytes are poorly characterized. Several fatty acid transport related proteins have been identified in keratinocytes: plasma membrane fatty acid transport proteins (FATPs) and intracellular fatty acid binding proteins (FABPs), most of them exhibiting high affinity for essential fatty acids. The expression of epidermal FABPs is up-regulated in hyperproliferative and 25 inflammatory skin diseases, during keratinocyte differentiation and barrier disruption

30

Based on our data on macrophages, we propose several ABC transporters as putative candidates for cellular lipid export in keratinocytes. We have examined the expression of all known ABC transporters during HaCaT cells differentiation. The human HaCaT cell line has a full epidermal differentiation capacity. Keratinocytes grown in

vitro as a monolayer at low calcium concentration (< 0.1 mM) can be differentiated by increasing calcium concentration in the culture medium (1-2 mM). We cultured HaCaT cells as a monolayer in calcium-free RMPI (Gibco) medium mixed with standard Ham's F12 medium at a ratio 3:1 supplemented with 10% chelex-treated FCS, Penicillin and Streptomycin. The final concentration of calcium in above medium was 0.06 mM. When the cells reached confluence (usually on 5th day of the culture), calcium concentration was enhanced up to the level of 1.2 mM. The cells were seeded at a density of $2 \times 10^5 / \text{cm}^2$ in 60 mm culture dishes. The culture medium was replaced every two day and the cells were harvested after 24 h, 48h h, 4 d, 6 da, 10 8 d and 10 d in culture, respectively. Total RNA from HaCaT cells was isolated using the isothiocyanate/cesium chloride-ultracentrifugation method.

The expression of all known human ABC transporters was examined during HaCaT cell differentiation (24 h, 48 h, 4 d, 6 d, 8 d, 10d, respectively) using a semi-quantitative RT-PCR approach (Table 6). The primer sets were generated from the published sequences of the ABC-transporters. Primers specific for GAPDH were used as a control. As a marker of keratinocyte differentiation CGT (ceramide glucosyl transferase) gene expression was assessed. Three of the transporters examined, ABCB1 (MDR1), ABCB4 (MDR3), ABCD3 (PMP70), were not expressed. ABCC6 (MRP6), ABCA1 (ABC1),ABCD2 (ALDR and ABCB9 (est122234) were expressed at low levels (Table 6)

Most of the other transporters exhibited a biphasic expression pattern or were downregulated during keratinocyte differentiation. There was, however, a high expression of ABCG1 (ABC8), ABCA8 (new) and ABCC3 (MRP3) indicative for their involvement in terminal keratinocyte lipid secretion for cholesterol, FFAs and ceramide-backbone lipids.. The two peroxisomal ABC transporters, ABCD2 (ALDR) and ABCD1 (ALDP) that mediate the transport of very long chain fatty acids into peroxisomes were initially expressed at relatively low levels and subsequently downregulated during differentiation. This is in agreement with the replacement of

short chain fatty acids by very long chain fatty acids during keratinocyte differentiation.

Example 10:

- 5 Sequencing of ABCA1 cDNA and genomic structure in five families of patients with Tangier disease revealed different mutations in the ABCA1 gene locus. These patients have different mutations at different positions in the ABCA1 gene, that result in changes in the protein structure of ABCA1. Family members that are heterozygous for these mutations show lowered levels of serum HDL, whereas the
10 homozygote patients have extremely reduced HDL serum levels.

Claims:

1. A polynucleotide comprising a member selected from the group consisting of:

- 5 (a) a polynucleotide encoding the polypeptide as set forth in SEQ ID NO:2;
- (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
- (c) a polynucleotide fragment of the polynucleotide of (a) or (b).

10

2. The polynucleotide of claim 1 wherein the polynucleotide is DNA.

3. A vector containing one or more of the polynucleotides of claim 1 and 2.

15 4. A host cell containing the vector of claim 3.

5. A process for producing a polypeptide comprising: expressing from the host cell of claim 4 the polypeptide encoded by said DNA.

20 6. A polypeptide selected from the group consisting of

- (a) a polypeptide having the deduced amino acid sequence of SEQ ID NO:2 and fragments, analogs and derivatives thereof, and
- (b) a polypeptide comprising amino acid 1 to amino acid 2201 of SEQ ID NO:2.

25

7. An antibody capable to bind to the polypeptide of claim 6.

8. A diagnostic kit for the detection of the polypeptide of claim 6.

30

9. Use of a polypeptides encoded by a polynucleotide comprising a member selected from the group consisting of:

- 5 (a) a polynucleotide as set forth in SEQ ID NO:1, 3, 4 and 6 to 31;
 (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
 (c) a polynucleotide fragment of the polynucleotide of (a) or (b)

in an assay for for detecting modulators of said polypeptides.

10

10: Modulator of a polypeptides encoded by a polynucleotide comprising a member selected from the group consisting of:

- 15 (a) a polynucleotide as set forth in SEQ ID NO:1, 3, 4 and 6 to 31;
 (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
 (d) a polynucleotide fragment of the polynucleotide of (a) or (b)

11. A pharmaceutical comprising the modulator of claim 10

20

12. An assay for detecting polypeptides encoded by a polynucleotide comprising a member selected from the group consisting of:

- 25 (a) a polynucleotide as set forth in SEQ ID NO:1, 3, 4 and 6 to 32 and 54;
 (b) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a); and
 (c) a polynucleotide fragment of the polynucleotide of (a) or (b)

Figure 1

2588 GA TCAATCGCAT TCATTTAAG AAATTATAACC TTTTTAGTAC TTGCTGAAGA
 2641 ATGATTCAAGG GTAAATCACA TACTTTGTT AGAGAGGCCA GGGGTTAAC CCGAGTCACC
 2701 CAGCTGGTCT CATAACATAGA CAGCACTTGT GAAGGATTGA ATGCAGGTTC CAGGTGGAGG
 2761 GAAGACGTGG ACACCATCTC CACTGAGCCA TGAGACATT TTTAAAAGCT ATACACAAAAA
 2821 TTGTGAGAAG ACATTGGCCA ACTCTTCAA AGTCTTCTT TTTCCACGTG CTTCTTATTT
 2881 TAAGCGAAAT ATATTGTTG TTTCTTCCTA AAAAAAAA 2890

Figure 2

1 CAAACATGTCAGCTGTTACTGGAAGTGGCCTGGCCTCTATTTATCTCCTGATCCTGATC 60
 61 TCTGTTGGCTGAGCTACCCACCCCTATGAACACATGAATGCCATTTCAAATAAGCC 120
 121 ATGCCCTCTGCAGGAACACTCCTGGGTCAGGGATTATCTGTAATGCCAACACCCC 180
 1 M P S A G T L P W V Q G I I C N A N N P 20
 181 TGTTTCCGTTACCCGACTCCTGGGAGGGCTCCGGAGTTGTTGGAAACTTAAACAAATCC 240
 21 C F R Y P T P G E A P G V V G N F N K S 40
 241 ATTGTGGCTCGCCTGTTCTCAGATGCTGGAGGCTTCTTTATACAGCCAGAAAGACACC 300
 41 I V A R L F S D A R R L L L Y S Q K D T 60
 301 AGCATGAAGGACATGCGCAAAGTTCTGAGAACATTACAGCAGATCAAGAAATCCAGCTCA 360
 61 S M K D M R K V L R T L L Q Q I K K S S S 80
 361 AACTTGAAGGCTTCAAGATTTCTGGACAATGAAACCTCTCTGGGTCCTGTATCAC 420
 81 N L K L Q D F L V D N E T F S G F L Y H 100
 421 AACCTCTCTCCCAAAGTCTACTGTGGACAAGATGCTGAGGGCTGATGTCATTCTCCAC 480
 101 N L S L P K S T V D K M L R A D V I L H 120
 481 AAGGTATTTTGCAAGGCTACCAAGTTACATTGACAAGTCTGTGCAATGGATCAAAATCA 540
 121 K V F L Q G Y Q L H L T S L C N G S K S 140
 541 GAAGAGATGATTCAACTGGTGACCAAGAAGTTCTGAGCTTGAGGCCATCCAAGGGAG 600
 141 E E M I Q L G D Q E V S E L C G L P R E 160
 601 AAACTGGCTGCAGCAGAGCGAGTACTCGTTCCAACATGGACATCCTGAAGCCAATCCTG 660
 161 K L A A A E R V L R S N M D I L K P I L 180
 661 AGAACACTAAACTCTACATCTCCCTCCCGAGCAAGGAGCTGGCGAAGCCACAAAAACA 720
 181 R T L N S T S P F P S K E L A E A T K T 200
 721 TTGCTGCATAGTCTGGACTCTGGCCAGGAGCTGTCAGCATGAGAAGCTGGAGTGAC 780
 201 L L H S L G T L A Q E L F S M R S W S D 220
 781 ATGCGACAGGAGGTGATGTTCTGACCAATGTGAACAGCTCCAGCTCCTCCACCAAATC 840
 221 M R Q E V M F L T N V N S S S S S S T Q I 240
 841 TACCAAGGCTGTGCTCGTATTGTCTGCGGGCATCCGAGGGAGGGGGCTGAAGATCAAG 900
 241 Y Q A V S R I V C G H P E G G G L K I K 260
 901 TCTCTCAACTGGTATGAGGACAACAACAAAGCCCTTTGGAGGCAATGGCACTGAG 960
 261 S L N W Y E D N N Y K A L F G G N G T E 280

961 GAAGATGCTGAAACCTTCTATGACAACCTACAACCTCCTACTGCAATGATTGATGAAG 1020
 281 E D A E T F Y D N S T T P Y C N D L M K 300
 1021 AATTGGAGTCTAGCCTCTTCCCGCATTATCTGGAAAGCTCTGAAGCCGCTGCTCGTT 1080
 301 N L E S S P L S R I I W K A L K P L L V 320
 1081 GGGAAAGATCCTGTATAACACCTGACACTCCAGCCACAAGGCAGGTATGGCTGAGGTGAAC 1140
 321 G K I L Y T P D T P A T R Q V M A E V N 340
 1141 AAGACCTTCAGGAACCTGGCTGTGTTCCATGATCTGGAAGGCATGTGGGAGGAACTCAGC 1200
 341 K T F Q E L A V F H D L E G M W E E L S 360
 1201 CCCAAGATCTGGACCTTCATGGAGAACAGCCAAGAAATGGACCTTGCCGGATGCTGTTG 1260
 361 P K I W T F M E N S Q E M D L V R M L L 380
 1261 GACAGCAGGGACAATGACCACTTTGGGAACAGCAGCTGGATGGCTTAGATTGGACAGCC 1320
 381 D S R D N D H F W E Q Q L D G L D W T A 400
 1321 CAAGACATCGTGGCGTTTGGCCAAGCACCCAGAGGATGTCCAGTCCAGTAATGGTTCT 1380
 401 Q D I V A F L A K H P E D V Q S S N G S 420
 1381 GTGTACACCTGGAGAGAAGCTTCACCGAGACTAACCGAGGAATCCGGACCATACTCGC 1440
 421 V Y T W R E A F N E T N Q A I R T I S R 440
 1441 TTCATGGAGTGTCAACCTGAACAAAGCTAGAACCCATAGAACAGAAGTCTGGCTCATC 1500
 441 F M E C V N L N K L E P I A T E V W L I 460
 1501 AACAAAGTCCATGGAGCTGGATGAGAGGAAGTCTGGCTGGTATTGTGTTCACTGGA 1560
 461 N K S M E L L D E R K F W A G I V F T G 480
 1561 ATTACTCCAGGCAGCATTGAGCTGCCCATCATGTCAAGTACAAGATCCGAATGGACATT 1620
 481 I T P G S I E L P H H V K Y K I R M D I 500
 1621 GACAATGTGGAGAGGACAAATAAAATCAAGGATGGGTACTGGGACCCCTGGCCTCGAGCT 1680
 501 D N V E R T N K I K D G Y W D P G P R A 520
 1681 GACCCCTTGAGGACATGGGTACGCTGGGGGGCTCGCCTACTTGCAGGATGTGGTG 1740
 521 D P F E D M R Y V W G G F A Y L Q D V V 540
 1741 GAGCAGGCAATCATCAGGGTGTGACGGGCACCGAGAAGAAAATGGTGTCTATATGCAA 1800
 541 E Q A I I R V L T G T E K K T G V Y M Q 560
 1801 CAGATGCCCTATCCCTGTTACGTTGATGACATCTTCTGCGGGTGATGAGCCGGTCAATG 1860
 561 Q M P Y P C Y V D D I F L R V M S R S M 580
 1861 CCCCTCTTCATGACGCTGGCTGGATTACTCAGTGGCTGTGATCAAGGGCATCGTG 1920
 581 P L F M T L A W I Y S V A V I I K G I V 600
 1921 TATGAGAAGGAGGCACGGCTGAAAGAGACCATGGGATCATGGGCTGGACAACAGCATE 1980
 601 Y E K E A R L K E T M R I M G L D N S I 620
 1981 CTCTGGTTAGCTGGTTCAATTAGTAGCCTCATTCTCTTGTGAGCCGCTGGCTGCTA 2040
 621 L W F S W F I S S L I P L L V S A G L L 640
 2041 GTGGTCATCCTGAAGTTAGGAAACCTGCTGCCCTACAGTGTGATCCCAGCGTGGTGTTC 2100
 641 V V I L K L G N L L P Y S D P S V V F V 660

 2101 TTCCCTGTCCGTGTTGCTGTGGTGACAATCCTGCAGTGCTCCTGATTAGCACACTCTTC 2160

661 F L S V F A V V T I L Q C F L I S T L F 680
 2161 TCCAGAGCCAACCTGGCAGCAGCCTGTGGGGCATCATCTACTTCACGCTGTACCTGCC 2220
 681 S R A N L A A A C G G I I Y F T L Y L P 700
 2221 TACGT CCT GT GT GG CAT GG CAGG ACT AC GT GGG CTT CA C ACT CA AG AT CT TC GCT AGC 2280
 701 Y V L C V A W Q D Y V G F T L K I F A S 720
 2281 CTGCTGTCTCCTGTGGCTTTGGGTTGGCTGTGAGTACTTGCCCTTTGAGGAGCAG 2340
 721 L L S P V A F G F G C E Y F A L F E E Q 740
 2341 GGCATTGGAGTGCAGTGGACAACCTGTTGAGAGTCCTGTGGAGGAAGATGGCTCAAT 2400
 741 G I G V Q W D N L F E S P V E E D G F N 760
 2401 CTCACCACCTCGGTCTCCATGATGCTGTTGACACCTCCCTATGGGTGATGACCTGG 2460
 761 L T T S V S M M L F D T F L Y G V M T W 780
 2461 TACATTGAGGCTGCTTCCAGGCCAGTACGGATTCCCAGGCCCTGGTATTTCCCTGC 2520
 781 Y I E A V F P G Q Y G I P R P W Y F P C 800
 2521 ACCAAGTCCTACTGGTTGGCGAGGAAAGTGAAGAAGAGCACCCCTGGTCCAACCAG 2580
 801 T K S Y W F G E E S D E K S H P G S N Q 820
 2581 AAGAGAATATCAGAAATCTGCATGGAGGAGGAACCCACCCACTTGAAGCTGGCGTGTCC 2640
 821 K R I S E I C M E E E P T H L K L G V S 840
 2641 ATTCAAGAACCTGGTAAAAGTCTACCGAGATGGATGAAGGTGGCTGTCGATGGCCTGGCA 2700
 841 I Q N L V K V Y R D G M K V A V D G L A 860
 2701 CTGAATTTTATGAGGCCAGATCACCTCCCTGGCCACAATGGAGCGGGGAAGACG 2760
 861 L N F Y E G Q I T S F L G H N G A G K T 880
 2761 ACCACCATGTCAATCCTGACCGGGTTGTTCCCCCGACCTGGCACCCTACATCCTG 2820
 881 T T M S I L T G L F P P T S G T A Y I L 900
 2821 GGAAAAGACATTGCTCTGAGATGAGCACCATCCGGCAGAACCTGGGGTCTGTCCCCAG 2880
 901 G K D I R S E M S T I R Q N L G V C P Q 920
 2881 CATAACGTGCTGTTGACATGCTGACTGTCGAAGAACACATCTGGTTCTATGCCGCTTG 2940
 921 H N V L F D M L T V E E H I W F Y A R L 940
 2941 AAAGGGCTCTCTGAGAACGACGTGAAGGCGGAGATGGAGCAGATGGCCCTGGATGTTGGT 3000
 941 K G L S E K H V K A E M E Q M A L D V G 960
 3001 TTGCCATCAAGCAAGCTGAAAAGCAAACAGCCAGCTGTCAGGTGGAATGCAAGAGAAAG 3060
 961 L P S S K L K S K T S Q L S G G M Q R K 980
 3061 CTATCTGTGGCTTGGCTTGTCGGGGATCTAAGGTTGTCATTCTGGATGAACCCACA 3120
 981 L S V A L A F V G G S K V V I L D E P T 1000
 3121 GCTGGTGTGGACCCCTACTCCCGCAGGGGAATATGGGAGCTGCTGCTGAAATACCGACAA 3180
 1001 A G V D P Y S R R G I W E L L L K Y R Q 1020
 3181 GGCGCACCATTATTCTCTACACACCACATGGATGAAGCGGACGTCCTGGGGACAGG 3240
 1021 G R T I I L S T H H M D E A D V L G D R 1040
 3241 ATTGCCATCATCTCCATGGGAAGCTGTGCTGTGGCTCCCTGTTCTGAAGAAC 3300
 1041 I A I I S H G K L C C V G S S L F L K N 1060
 3301 CAGCTGGGAACAGGCTACTACCTGACCTTGGTCAAGAAAGATGTGGAATCCTCCCTCAGT 3360

1061 Q L G T G Y Y L T L V K K D V E S S L S 1080
 3361 TCCTGCAGAAACAGTAGTACACTGTGTCATACTGAAAAAGGAGGACAGTGTTCAG 3420
 1081 S C R N S S S T V S Y L K K E D S V S Q 1100
 3421 AGCAGTTCTGATGCTGGCTGGCAGCGACCATGAGAGTGACACGCTGACCATGATGTC 3480
 1101 S S D A G L G S D H E S D T L T I D V 1120
 3481 TCTGCTATCTCCAACCTCATCAGGAAGCATGTGTCGAAGCCGGCTGGTGGAAAGACATA 3540
 1121 S A I S N L I R K H V S E A R L V E D I 1140
 3541 GGGCATGAGCTGACCTATGTGCTGCCATATGAAGCTGCTAAGGAGGGAGCCTTGTGGAA 3600
 1141 G H E L T Y V L P Y E A A K E G A F V E 1160
 3601 CTCTTCATGAGATTGATGACCGGCTCTCAGACCTGGCATTCTAGTTATGGCATCTCA 3660
 1161 L F H E I D D R L S D L G I S S Y G I S 1180
 3661 GAGACGACCTGGAAGAAATATTCTCAAGGTGGCGAACAGAGAGTGGGTGGATGCTGAG 3720
 1181 E T T L E E I F L K V A E E S G V D A E 1200
 3721 ACCTCAGATGGTACCTGCCAGCAAGACGAAACAGGCGGCCCTCGGGACAAGCAGAGC 3780
 1201 T S D G T L P A R R N R R A F G D K Q S 1220
 3781 TGTCTCGCCCGTTCACTGAAGATGATGCTGCTGATCCAAATGATTCTGACATAGACCCA 3840
 1221 C L R P F T E D D A A D P N D S D I D P 1240
 3841 GAATCCAGAGAGACAGACTGCTCAGTGGATGGATGGCAAAGGGTCTACCAAGGTGAAA 3900
 1241 E S R E T D L L S G M D G K G S Y Q V K 1260
 3901 GGCTGGAAACTTACACAGAACAGTTGTGGCCCTTTGTGGAAGAGACTGCTAATTGCC 3960
 1261 G W K L T Q Q Q F V A L L W K R L L I A 1280
 3961 AGACGGAGTCGAAAGGATTTTGCTCAGATTGTCTTGCCTGCTGTGTTGCTGCATT 4020
 1281 R R S R K G F F A Q I V L P A V F V C I 1300
 4021 GCCCTTGTGTTCACGCTGATCGTGCACCCCTTGGCAAGTACCCCAGCCTGGAACTTCAG 4080
 1301 A L V F S L I V P P F G K Y P S L E L Q 1320
 4081 CCCTGGATGTACAACGAACAGTACACATTGTCAGCAATGATGCTCCTGAGGACACGGGA 4140
 1321 P W M Y N E Q Y T F V S N D A P E D T G 1340
 4141 ACCCTGGAACTCTTAAACGCCCTCACCAAGACCCCTGGCTCGGGACCCGCTGTATGGAA 4200
 1341 T L E L L N A L T K D P G F G T R C M E 1360
 4201 GGAAACCAATCCCAGACACGCCCTGCCAGGCAGGGAGGAAGAGTGGACCACTGCCCA 4260
 1361 G N P I P D T P C Q A G E E E W T T A P 1380
 4261 GTTCCCCAGACCATCATGGACCTCTTCCAGAATGGAACTGGACAATGCAGAACCCCTCA 4320
 1381 V P Q T I M D L F Q N G N W T M Q N P S 1400
 4321 CCTGCATGCCAGTGTAGCAGCGACAAATCAAGAAGATGCTGCCTGTGTCCCCCAGGG 4380
 1401 P A C Q C S S D K I K K M L P V C P P G 1420
 4381 GCAGGGGGCTGCCCTCCACAAAGAAAACAAACTGCAGATATCCTCAGGACCTG 4440
 1421 A G G L P P P Q R K Q N T A D I L Q D L 1440
 4441 ACAGGAAGAAACATTTCGGATTATCTGGTAAGACGTATGTGCAGATCATAGCAAAAGC 4500
 1441 T G R N I S D Y L V K T Y V Q I I A K S 1460
 4501 TTAAAGAACAGATCTGGTGAATGAGTTAGGTATGGCGGCTTCCCTGGGTGTCAGT 4560

1461 L K N K I W V N E F R Y G G F S L G V S 1480
 4561 AATACTCAAGCAGTCCCTCCGAGTCAGAAAGTTAATGATGCCACCAAACAAATGAAGAAA 4620
 1481 N T Q A L P P S Q E V N D A T K Q M K K 1500
 4621 CACCTAAAGCTGGCCAAGGACAGTCTGCAGATCGATTCTCAACAGCTTGGGAAGATTT 4680
 1501 H L K L A K D S S A D R F L N S L G R F 1520
 4681 ATGACAGGACTGGACACCAGAAATAATGTCAGGTGTGGTTCAATAACAAGGGCTGGCAT 4770
 1521 M T G L D T R N N V K V W F N N K G W H 1540
 4741 GCAATCAGCTTTCTGAATGTCATCAACAATGCCATTCTCCGGGCCAACCTGCAAAAG 4800
 1541 A I S S F L N V I N N A I L R A N L Q K 1560
 4801 GGAGAGAACCCTAGCCATTATGGAATTACTGCTTCATCCCCTGAATCTCACCAAG 4860
 1561 G E N P S H Y G I T A F N H P L N L T K 1580
 4861 CAGCAGCTCTCAGAGGTGGCTCCGATGACCACATCAGTGGATGTCCTGTGTCATCTGT 4920
 1581 Q Q L S E V A P M T T S V D V L V S I C 1600
 4921 GTCATCTTGCAATGTCCTCGTCCCAGCCAGCTTGTGATTCCTGATCCAGGAGCGG 4980
 1601 V I F A M S F V P A S F V V F L I Q E R 1620
 4981 GTCAGCAAAGCAAAACACCTGCAGTTCATCAGTGGAGTGAAGCCTGTCATCTACTGGCTC 5040
 1621 V S K A K H L Q F I S G V K P V I Y W L 1640
 5041 TCTAATTTGTCTGGATATGTCATTACGTTGTCCTGCCACACTGGTCATTATCATC 5100
 1641 S N F V W D M C N Y V V P A T L V I I I 1660
 5101 TTCATCTGCTTCCAGCAGAAAGTCCTATGTGTCCTCCACCAATCTGCCTGTGCTAGCCCTT 5160
 1661 F I C F Q Q K S Y V S S T N L P V L A L 1680
 5161 CTACTTTGCTGTATGGGTGGTCAATCACACCTCTCATGTACCCAGCCTCCTTGTGTT 5220
 1681 L L L Y G W S I T P L M Y P A S F V F 1700
 5221 AAGATCCCCAGCACAGCCTATGTGGTGGTCAACCTCTCATGTACCCAGCCTCCTTGTGTT 5280
 1701 K I P S T A Y V V L T S V N L F I G I N 1720
 5281 GGCAGCGTGGCCACCTTGTGCTGGAGCTGTCACCGACAATAAGCTGAATAATATCAAT 5340
 1721 G S V A T F V L E L F T D N K L N N I N 1740
 5341 GATATCCTGAAGTCGTGTTCTGATCTTCCCACATTTTGCCTGGACGAGGGCTCATC 5400
 1741 D I L K S V F L I F P H F C L G R G L I 1760
 5401 GACATGGTAAAAACCAGGCAATGGCTGATGCCCTGGAAAGGTTGGGGAGAATCGCTTT 5460
 1761 D M V K N Q A M A D A L E R F G E N R F 1780
 5461 GTGTCACCATTATCTTGGGACTTGGTGGACGAAACCTCTGCCTGGCGTGGAAAGGG 5520
 1781 V S P L S W D L V G R N L F A M A V E G 1800
 5521 GTGGTGTCTTCCTCATTACTGTTCTGATCCAGTACAGATTCTCATCAGGCCAGACCT 5580
 1801 V V F F L I T V L I Q Y R F F I R P R P 1820
 5581 GTAAATGCAAAGCTATCTCCTCTGAATGATGAAGATGAAGATGTGAGGCGGGAAAGACAG 5640
 1821 V N A K L S P L N D E D E D V R R E R Q 1840
 5641 AGAATTCTGATGGTGGAGGCCAGAATGACATCTAGAAATCAAGGAGTTGACGAAGATA 5700
 1841 R I L D G G Q N D I L E I K E L T K I 1860
 5701 TATAGAAGGAAGCGGAAGCCTGCTGTTGACAGGATTGCGTGGGCATTCCCTGGTGAG 5760

1861 Y R R K R K P A V D R I C V G I P P G E 1880
 5761 TGCTTGGGCTCCTGGAGTTAATGGGGCTGGAAAATCATCAA
CTTCAGATGTTAACAC 5820
 1881 C F G L L G V N G A G K S S T F K M L T 1900
 5821 GGAGATACTGGTACAGAGGAGATGCTTCCTAACAGAA
TAGTATCTTATCAAAC 5880
 1901 G D T T V T R G D A F L N R N S I L S N 1920
 5881 ATCCATGAAGTACATCAGAACATGGCTACTGCCCTCAG
TTGATGCCATCACAGAGCTG 5940
 1921 I H E V H Q N M G Y C P Q F D A I T E L 1940
 5941 TTGACTGGGAGAGAACACGTGGAGTTCTTGCCCTTTGAG
AGGAGTCCCAGAGAAAGAA 6000
 1941 L T G R E H V E F F A L L R G V P E K E 1960
 6001 GTTGGCAAGGTTGGTGAGTGGCGATTGGAAACTGGGC
CTCGTGAAGTATGGAGAAAAA 6060
 1961 V G K V G E W A I R K L G L V K Y G E K 1980
 6061 TATGCTGGTAACTATAGTGGAGGCAACAAACGCAAG
CTCTACAGCCATGGCTTGATC 6120
 1981 Y A G N Y S G G N K R K L S T A M A L I 2000
 6121 GGCGGGCCTCCTGGTGTGTTCTGGATGAACCCACCAC
AGGCATGGATCCAAAGCCGG 6180
 2001 G G P P V V F L D E P T T G M D P K A R 2020
 6181 CGGTTCTGTGGAATTGTCCTAACAGTGTCAAGGAGGG
GAGATCAGTAGTGCTTACA 6240
 2021 R F L W N C A L S V V K E G R S V V L T 2040
 6241 TCTCATAGTATGGAAGAATGTGAAGCTCTTGCA
TAGGATGGCAATCATGGTCAATGGA 6300
 2041 S H S M E E C E A L C T R M A I M V N G 2060
 6301 AGGTTCAGGTGCCTTGGCAGTGTCCAGCATCTAAAAA
ATAGGTTGGAGATGGTTATACA 6360
 2061 R F R C L G S V Q H L K N R F G D G Y T 2080
 6361 ATAGTTGTACGAATAGCAGGGTCCAACCCGGAC
TGAAGCCTGTCCAGGATTCTTGG 6420
 2081 I V V R I A G S N P D L K P V Q D F F G 2100
 6421 CTTGCATTCCTGGAAAGTGTCCAAAAGAGAACAC
CGGAACATGCTACAATACCAAGCTT 6480
 2101 L A F P G S V P K E K H R N M L Q Y Q L 2120
 6481 CCATCTCATTATCTCTGGCCAGGATATT
CAGCATCCTCTCCAGAGCAAAAGCGA 6540
 2121 P S S L S S L A R I F S I L S Q S K K R 2140
 6541 CTCCACATAGAAGACTACTCTGTTCTCAGACA
ACACTTGACCAAGTATTGTGAACTTT 6600
 2141 L H I E D Y S V S Q T T L D Q V F V N F 2160
 6601 GCCAAGGACCAAGTGTGATGACCACTTAAAAGAC
CTCTCATTACACAAAAACAGACA 6660
 2161 A K D Q S D D H L K D L S L H K N Q T 2180
 6661 GTAGTGGACGTTGCAGTTCTCACATCTTCTAC
AGGATGAGAAAGTGAAGAAAGCTAT 6720
 2181 V V D V A V L T S F L Q D E K V K E S Y 2200
 6721 GTATGAAGAACCTGTTCATACGGGGTGGCTGAA
AGTAAAGAGGGACTAGACTTCC 6780
 2201 V *
 6781 GCACCATGTGAAGTGTGAGAAAAGAGCCAGAAG
TTGATGTGGAAAGAAGTAAACTG 6840
 6841 GATACTGTACTGATACTATTCAATGCAATTCAATG 6880

Figure 3

5' 1 GTACCCCCCT TGCCTGGTTG ATCCTCAGGG TTCTACTTAG AATGCCTCGA

51 AAAGTCTTGG CTGGACACCC ATGCCAGTC TTTCTGCAGG GTCCCATTGG
101 GGTTAACCTT CTCATTCAT CCCATGTGAA CCAGGCCAGG CCCATCAGGG
151 TTTGGCAACC CCCTGATGCA GTGGTTGCTG CCAGGTGACA GGAGCAAGCC
201 TGCAGCTGCT GGGGGGCCAT GCAGAGACAG CCTGCCAGAG GGGAGACCAC
251 CTGGGGAGGC CAGAGCCGTG GAGACAGCAA GAGACCAGGG GCTGAGGACA
301 GAGTAGTACA GGTCTTGGT CCCAGTAGTC CTGAAACCAC TGCACCTCGA
351 ACCTTCTGT ACTTAGCTTA AGCCAGTTGG AGTTTCTGTC CTTTACAACC
401 AAGAGCCTTG ATAGGAATGG GGTCTGTGC TACGCTACTG TTGGCTTCTT
451 TCCCGATCGG GCGCTGGAGG GGAACACAGC AGTGAUTACA GTGGGATGCT
501 TACTCGGTGC TGGGCATGCT AGAAAAGTGCT TGCCATGCCT TATTCCCAC
551 GTGGTGGGGA TTTTGACCC ACCTGTACAG ACAGATAAGT GAGGACCCCTT
601 TTCACCTTAT CCTGCAACAG AAAATCCAGC AGCCAAAGCC ACAAAGGGCC
651 CAGCATAGCA TCTTCCCTCT CTGACTTCAT CCTCACGCTC CACACACCAT
701 CCCCCCTGGCC ATTCCCAGCA GCCCAGTAAG CACTGCCCTCA CACTTCCAGT
751 TCCGGACCAG CCAGGATGGC CAGGCTGGAT GGGGGCCATC CACCGGCTGA
801 AGCCAATTGC CTATTCTCGA GCTGAAGGTG AATCAATCCC GCATAAAATCT
851 TCGGGCAGAG AACTNGGGTG GGGGGTAGAA GAGGGGGAAAT GTCTAGAAGG
901 AAATTCTGGG GCACATTCCCT GGAAAGTGAGG AGGATGGATA TTGGACAGAA
951 ATTATGTCAAT TGCAGGCACC CTCACTTGCC CTGGCCACAT GGACAGTTCC
1001 TCCCCGGCTG TGTTCCGNNGC CTCCCTCTCGT GCTCCAGGGC CTGTCTGTT
1051 CTGGAGCGAG ATGGGTCCCA GGGCTGGCA CCAGTCCCCA TCTCCAGCCA
1101 TCAGGCACCTT TCCTCTCTGT GTTTTGGCGT AAACACNTCC CTAGGTTTGT
1151 GGATCTGAAT CCTCTTCCCA ACACACTCAA GCTTGCTGG GCCTCCCTGC
1201 AGTGTATGTT TAAGGCACCA CACAGCCTCC AAGGCCTGGC ACCCGGGCAG
1251 TGGCCACCTG GTAAACACAG CAGTCAGATT TCCTCATTTC AGCCAAGTGT
1301 AAAATCAAGG TAATGGATCT ACNCTTTTT TTTTNTNTTT TTTCCAGGGG
1351 GNTNNNTTTT TTTGAGACG GAGTCTCACT CTGTCANCCC CGGTCTGGAG
1401 TGCAGTGGCT CAATCTGGC TCANCTGGCA AGCTCCGCCT CCCAGGTTCA
1451 TGCCATTCTC CTGCCCTCAGC CTACATAGTA GCTGGGACTA CAGGTGCCCG
1501 CCACCACACC TAGCTAATTT TTTGTATTT TAGTAGAGAC GGGGTTTCAT
1551 CATGTTAGGCC AGGATGGTCT CGATCTCCTG ACCTCCAAA GTGGTGGAG
1601 TTACAGGTGT GAGCCACTGC GCNCCGGCTG GATGACTCTT GAGACAACAC
1651 CATTCAAGACA AAGGCAAGGC CTCCCACCTTA AACTCATAAC CGTGTCTCCT
1701 TTCTCTCCTT CGATTGAGC GGCTGAATTT GGTACAGTC ATCTGACCTG
1751 TGGGTGTGAA NGTCCACCTG CCTGGCATAA AAAGCTGTGC CTCCTTCTA
1801 GGTGAGGAGA AAGAGAGAGA CCTGGCTCAT CTGAGGTGTG GTTGGGAGGG
1851 GGGACCCAGG TGTGCTGGAA ATGAAAAGAA ATGCATTCCCT GTTTTTCGT
1901 CCCAACATGC AAACAACCTGA ACAAAAGCAT TAGGGCCTGA GACTGGGAGT
1951 AAAGAATTCC TTGTACCCAT GGATACCAGG AAATGGCCCC ACTTATATAT
2001 AATAAGGGCT TTAGAGATGC TGGACCATCT GATATTCCAG CCTGGGGCCA
2051 CATGGGAGTG TGCCCTGGTG TTATTCTTA TACAGTTCCA TGAACATGGC
2101 TCTGGAAACA CCTCTGTCTG CAGAAAATGA GGCTTTCTT TTTTGTTCG

2151 GGGGTGAACA GAGGGCAGAG GCCTGGCAT CTTCACTCAG CACCCCTTTG
 2201 TAACCCAGCA CTTAGCACCA TGGCTGGCGC ACAGCAATGT CACATGTGTG
 2251 AGTGCACACG ATGCCTCACT GCCAGGGTC ACCCCACACC GGTGCTGTTG
 2301 GGGCGTTGG AGTGGTTATC TCTTCTTAG TCCTCAAGCT CCTACCTGGC
 2351 AGAGAGCTGC CAAACACCGT CGGGGTGGGG TGGGCGGGAA GGGAAAGAAC
 2401 AGCAGCAAGA AAGAAGCCCC CTGGCCCTCA CTCTCCCTCC CTGGACGCC
 2451 CCTCTTCGAC CCCATCACAC AGCCGCTTGA GCCTTGAGN CAGTGGATT
 2501 CCGAGCCTGG GAACCCCCGG CGTCTGTCCC GGTGTCCCCC GCAGCCTCAC
 2551 CCNCGTGCTG GCCCAGCCCC CGCGAGTTCG GGACCCGGGG TTTCCGGGGT
 2601 GGCAGGGGGT TCCCATGCCG CCTGCGAGGC CTCGGCTCGG GCCGCTCCCG
 2651 GAACCTGCAC TTCAGGGGTCTG CTGGTCCGCG GCCCCCAGCA GGAGCAAAAC
 2701 AAGAGCACCGC GCACCTGCCG GCCCGCCCGC CCCCTTGGTG CGGGCCAATC
 2751 GCGCGCTCGG GGCGGGTCTG GGCGCGCTGG AACCAAGAGCC GGAGCCGGAT
 2801 CCCAGCCGGA GCCCAAGCGC AGCCCGCACC CGCGCAGCG GCTGAGCCGG
 2851 GAGCCAGCGC AGCCTCGGCC CGCAGCTCA AGCCTCGTCC CGGCCGCCNG
 2901 CCGCCGCACG CCGCCGCCGC CGCCCCCGGG GCATGGCTGT CTGATGGCCG

EXON1/INTRON 1

2951 CTTTCTCGGT CGGCACCGCC ATGGTGAGTG AGCGCATCCT TCGTCCGCCG
 3001 GGAACGGTTT TATTTCAAG GAGAGCAGGA AACACACAAA GACTCGCAAG
 3051 CTCGACCTGA CACCCCTCCC AGGAGCGCGT CCTCTGGGGC GCTGACCCAG
 3101 GGGCACCTTA GAGTGGCGCC CGGCTCCGAT CGCTGCCCT NNCCCTCCG
 3151 CCAGGGCCAC CTGGGAGCCT CGGGGATGCC CCTTGCACCG GCAGAGNGCA
 3201 CGGACTAGGT GGAGGGGNCC GGGATTGGGG CGGGGGGCAG NCAGTTGCC
 3251 TACAAGTTGG ACCGATGGCC TTGACCTGAT GGCTTCTGGG CGGGGGCGT
 3301 GGGGAGCTGG GGACCCGGAG CGCACTGGG ACTGGGGAGG GGCCGCAGCT
 3351 TGGGCCGGAG GGAAGAGGGG ACTTGAAGAA GGGGAGCCCC GCGCGCGCG
 3401 CTGTGGGCTT GGGGACCGGG GACTTCTCGC GCCATCCCCA GGAACGCCAG
 3451 GCAAGGTCTG GGGAAACAAAA GAGGAAGCTG CCCCAAGAGA GCCGGAGCTC
 3501 GACTGNACTC CC 3'

Figure 4

5'

1 CTTGGTGCCG CATGCATCGT GGTGCTCATC TTTCTGGCCT TCCAGCAGAG
 51 GGCATATGTG GCCCCTGCCA ACCTGCCTGC TCTCCTGCTG TTGCTACTAC
 101 TGTATGGCTG GTGCGATCACA CCGCTCATGT ACCCAGCCTC CTTCTTCTTC
 151 TCCGTGCCCA GCACAGCCTA TGTGGTGCTC ACCTGCATAA ACCTCTTTAT
 201 TGGCATCAAT GGAAGCATGG CCACCTTGT GCTTGAGCTC TTCTCTGATC
 251 AGAAGCTGCA GGAGGTGAGC CGGATCTGA AACAGGTCTT CCTTATCTTC
 301 CCCACTCTG CTTGGGCCGG GGGCTTATTG ACATGGTGCG GNAACCAGGC
 351 CATGGCTGAT GCCTTTGANC CCTTGGAAA AAGGCAGTTC AAGTACCTG

401 NCTTGGAAAGG TGGCGGAAGA ACCTTTGGC ATGGGAACAG GGCCCCTTT
451 CCTTCTCTTC ACACTANTGT TCAAGCACCG AAGCCAACTC NTGCCACAAG
501 CCCAGGTAAG GTCTCTGCCA CTCCCTGGAGA GAGACGAGGA TGTAGCCCC
551 GAACGGGAGC GGGTGGTCCA AGGAGCCACC CAGGGGGATG TGTTGGTGCT
601 GAGGAACTTG ACCAAGGTAT ACCGTGGCA GAGGATGCCA GCTGTTGACC
651 GCTTGTGCCT GGGGATTCCC CCTGGTGAGT GTTTGGGCT GCTGGGTGTG
701 AACGGAGCAG GGAAGACGTC CACGTTTCGC ATGGTGACGG GGGACACATT
751 GGCCAGCAGG GGCGAGGCTG TGCTGGCAGG CCACAGCGGG CCCGGGAACC
801 CAGTGTGCGC ACCTCNAGGG CAGGCNCAGC GTGGCCCGGG AACCCAGTGC
851 TGCGCACCTA AGCATGGGAT ACTGCCCTNA ATCCGATGCC ATCTTGAGC
901 TGCTGACGGG CCGCGAGCAC CTGGAGCTGC TTGCGCCCT GCGCGGTGTC
951 CCGGAGGCC C AGGTTGCCA NACCGNTGGC TCGGGCCTGG CGCGTCTGGG
1001 ACTCTCATGG TACGCAGACC GGCCTGCAGG CACCTACAGG AACCTGCCCG
1051 GGCGGCCGCT CGAGCCNTA NNTGAAGTA 3'

Figure 4b

...CTCCTGCCAC AGTTAGTGAG GTCTATGGAG AGGGTGGCAG GGGCCAAGGA
CCTACTTTAA GCCCACAGAT ATTCTGTCCC CAGGCCAGG GTGAGGTCTC...

Figure 5

CDNA-sequences of lipid sensitive Genes:

ABCB9, ABCA6, ABCC4, ABCA1, ABCD2, ABCB1, ABCB4, ABCC2, ABCD1, ABCC1, ABCB6, ABCB11, ABCG2, ABCC5, ABCA5, ABCG1, ABCA3

ABCB9 GENBANK:U66676

GCCAATGNACGGTTCATCATGGAACTCCAGGACGGTACAGCACAGAGACAGGGAGA
 AGGGCGCCAGCTGTCAGGTGGCAGAACGCAGCGGTGGCATGCCNGGCTCTGGTGC
 GGAACCCCCCAGTCCTCATCCTGGATGAAGCCACCAGCGCTTGGATGCCAGAGCGAGT
 ATCTGATCCAGCAGGCCATCCATGGCAACCTGTCAGAACACCGTACTCATCATCGCG
 CACCGGCTGAGCACCGTGGAGCACCGCACCTCATTGGTGCTGGACAAGGGCCGCGTA
 GTGCAGCAGGGCACCCACCAGCAGCTTGCTGCCAGGGCGGGCTTTACGGCAAGCTN
 GTTGCAGCGGCAGATGTGGGTTCAAGGCCAGACTTCACAGCTGCCACAACGAGCC
 TGTAGCCAACGGGTACAAGGCCATGGGGCCCTCCCTGCCCTGGCAGAGGAC
 CGGGTGCCTGCCCTGGCAGATGTGCCACGGAGGTTCCAGCTGCCCTACCGAGGCCAGGC
 CTGCAGCACTGAAAGACGCCATGCCATGTCCCATGATCACCGCTNTGCAATCTTGCCCC
 TGGTCCCTGCCCTTCCCAGGGCACTCTTACCCNNCTGGGGATGTCCAAGAGCATA
 GTCCCTCTCCCCATACCCCTCCAGAGAACGGGCTTCCCTGTCCGGAGGGAGACACGGGAA
 CGGGATTTCCGTCTCCCTCTTGCCAGCTGTGAGCTGGCCAGGGCGGGTAGGGAG
 CGTGGAGGGCATCTGCTGCCATTGCCGCTGCCATCTAAGCCAGTCTCACTGTGACC
 ACACGAAACCTCAACTGGGGAGTGAGGAGCTGCCAGGTCTGGAGGGGCCCTCAGGTGCC
 CCCAGCCCCGGCACCCAGCTTCCCTCGTCAATCAACCCCTGGCTGGCAGCCGCCCTC
 CCCACACCGCCCCCTGTGCTCTGCTGTGGAGGCCACGTGGACCTTCATGAGATGCATT
 CTCTTCTGTCTTGGTGGAGGGATGGTGCAAAGCCCAGGATCTGGCTTGCCAGAGGTT
 GCAACATGTTGAGAGAACCCGGTCAATAAGTGTACTACCTTTACCCCT

ABCA6 GENBANK:U66680

TCTTAGATGAGAAACCTGTTATAATTGCCAGCTGTACACAAAGAAATATGCAGGCCAGA
 AGAAAAGTTGCTTTCAAAGAGGAAGAACGAAATAGCAGCAAGAAATATCTCTTCTGTG
 TTCAAGAAGGTGAAATTTGGGATTGCTAGGACCCAATGGTGCTGGAAAAAGTTCATCTA
 TTAGAAATGATACTGGGATCACAAAGCCAATGCTGGAGAGGTGGAACGTAAAGGCTGCA
 GTTCAGTTTGGGCCACCTGGGTACTGCCCTCAAGAGAACGTGCTGTGGCCATGCTGA
 CGTTGAGGGAACACCTGGAGGTGTATGCTGCCGTCAAGGGCTCAGGAAAGCGGACGCGA
 GGCTGCCATCGCAAGATTAGTGAGTGCTTCAAACCTGCATGAGCAGCTGAATGTTCTG
 TGCAGAAATTAAACAGCAGGAATCACGAGAAAGTTGTGTTTGTGCTGAGCCTCCTGGAA
 ACTCACCTGCTTGCTCCTGGATGAACCATCTACGGGATAACCCACAGGGCAGCAGCA
 AATGTTGGCAGGCAATCCAGGCAGTCGTTAAAACACAGAGAGAGGGTGTCCCTGACCA
 CCCATAACCTGGCTGAGGCCAGCCTGTGACCGTGTGGCCATCATGGTGTCTGGAA
 GGCTTAGATGCATTGGCTCCATCCAACACCTGAAAAACAAACTTGGCAAGGATTACATTC
 TAGAGCTAAAAGTGAAGGAAACGTCTCAAGTGACTTTGGTCCACACTGAGATTCTGAAGC

TTTTCCCACAGGCTGCAGGGCAGGAAAGGTATTCCTCTTGTAAACCTATAAGCTGCC
 GTGGCAGACGTTACCCCTATCACAGACCTTCACAAATTAGAAGCAGTGAAAGCATAA
 CTTAACCTGGAAGAATACAGCCTTCTCCAGTGCACACTGGANAAGGTNTCCTTANAAC
 CTTCCCTAAANAAACAGGAAGTTAGGAAATTTGAATGAAAANNACCNCCCCCCTCATTC
 AGGTGGAACCTTAAACCTCAAACCTAGTAATTTTGTGATCTCCTATAAAACTTATG
 TTTATGTAATAATTAAAGTATGTTAATTTAAAGATCATTAAAATTAACATCAGGT
 ATATTTGTAAATTAGTTAACAAATACATAAAATTAAAATTATTCTTCTCTCAAACA
 TAGGGGTGA TAGCAAACCTGTGATAAAGGCAATACAAAATTTAGTAAAGTCACCCAAAG
 AGTCAGGCACGGGTATTGTGGAAATAAAACTATATAAACTTAA

ABCC4 GENBANK: U66682

ATGGATAAGTTATACTAGTGTGGCACATGGCGCATGTATAGATATACTAGGAGGACC
 TAGTTGTATTCCTTGTATGAAAAGCGTCCCTGGTACTACAATAAGTCTTCGTGAAAGG
 AGTGTAACTCTAACAAACAACACTCAGGAAAGTATTTGAAAAGAATACTGGATAAGGAAAAAA
 CCTGCAGCTACTCCTGCTATTCAGACATTGCCTACAAGTGGTTGGTGTGGTCTGTG
 GCTGTGGCCGTGATTCCCTGGATCGCAATACCCCTGGTCCCTGGAAATCATTTCATT
 TTTCTCGGCGATATTTTGAAACGTCAAGAGATGTGAAGGCCCTGGAAATCTACAAGT
 GAGTATGGAAACTCGGGTTGGTAGACATGCTAGCTAGTTCCATTATGCCATAAATT
 ACAGAGACCCCTGAAATTGGCAGACTCTGTCTTCCAGAATTCTCTAACATTAGGTAA
 TTGAACGTATTGGCATTATGAATCATTGTGTCCTAGAGCATGTGGATTGATAGCCT
 GCAACGTGTAACTTGCATTGGATAAGGAAGGAGTGAAGGCCATATGGGGAGTAATAT
 TCTACAGGAATGTCAGCACTGTGAAGACAGGGACTC

ABCA1 Acc.Nr.: AJ012376 GENBANK: HSA012376

CAAACATGTCAGCTGTTACTGGAAGTGGCCTGGCCTATTTATCTTCTGATCCTGATC
 TCTGTTGGCTGAGCTACCCACCTATGAACAAACATGAATGCCATTTCAAATAAGCC
 ATGCCCTCTGCAGGAACACTTCCCTGGGTCAGGGATTATCTGTAATGCCAACACCC
 TGTTCCGTTACCGACTCCTGGGGAGGCTCCGGAGTTGGAAACTTAAACAATCC
 ATTGTGGCTGCCCTGTTCTCAGATGCTCGGAGGCTTCTTATACAGCCAGAAAGACACC
 AGCATGAAGGACATGCCAAAGTCTGAGAACATTACAGCAGATCAAGAAATCCAGCTCA
 AACCTGAAGCTTCAGAAGTTCTGGTGACATGAAACCTCTGGGTTCTGTATCAC
 AACCTCTCTCCAAAGTCTACTGTGGACAAGATGCTGAGGGCTGATGTCATTCTCCAC
 AAGGTATTTTGCAAGGCTACCAAGTTGACAAGTCTGTGCAATGGATCAAATCA
 GAAGAGATGATTCAACTTGGTGACCAAGAAGTTCTGAGCTTGTGGCCTACCAAGGGAG
 AAACCTGGCTGCAGCAGAGCGAGTACTTCGTTCCAACATGGACATCCTGAAGCCAATCCTG
 AGAACACTAAACTCTACATCTCCCTCCCGAGCAAGGAGCTGGCGAAGCCACAAAAACA
 TTGCTGCATAGTCTGGGACTCTGGCCAGGAGCTGTCAGCATGAGAAGCTGGAGTGAC
 ATGCCACAGGAGGTGATGTTCTGACCAATGTGAACAGCTCCAGCTCCTCCACCCAAATC
 TACCAAGGCTGTGTCGTATTGTCTGCGGGCATCCGAGGGAGGGGGCTGAAGATCAAG
 TCTCTCAACTGGTATGAGGACAACAACATACAAAGCCCTTTGGAGGCAATGGCACTGAG

GAAGATGCTGAAACCTTCTATGACAACCTACAACCTCCTACTGCAATGATTTGATGAAG
AATTGGAGCTAGTCCTCTTCCCGCATTATCTGGAAAGCTCTGAAGCCGCTGCTCGTT
GGGAAGATCCTGTATACACCTGACACTCCAGGCCACAAGGCAGGTATGGCTGAGGTGAAC
AAGACCTCCAGGAACCTGGCTGTGTTCCATGATCTGGAAGGCATGTGGGAGGAACCTCAGC
CCCAAGATCTGGACCTTCATGGAGAACAGCCAAGAAATGGACCTTGTCGGATGCTGTTG
GACAGCAGGGACAATGACCACTTTGGAACAGCAGTTGGATGGCTTAGATTGGACAGCC
CAAGACATCGTGGCGTTTGCCAGCACCAGAGGATGTCCAGTCCAGTAATGGTTCT
GTGTACACCTGGAGAGAACGTTCAACGAGACTAACCAAGGCAATCCGGACCATACTCGC
TTCATGGAGTGTCAACCTGAACAAAGCTAGAACCCATAGCAACAGAACAGTCTGGCTCATC
AACAAAGTCCATGGAGCTGGATGAGAGGAAGTTCTGGCTGGTATTGTGTTCACTGGA
ATTACTCCAGGCAGCATGAGCTGCCCATCATGTCAAGTACAAGATCCGAATGGACATT
GACAATGTGGAGAGGACAAATAAAATCAAGGATGGGACTGGGACCCCTGGCCTCGAGCT
GACCCCTTGAGGACATCGCGTACGTCTGGGGGGCTCGCCTACTTGCAAGGATGTGGTG
GAGCAGGCAATCATCAGGGTGCTGACGGCACCGAGAAGAAAATGGTGTCTATATGCAA
CAGATGCCCTATCCCTGTTACGTTGATGACATCTTCTGCGGGTGTGAGCCGGTCAATG
CCCTCTTCATGACGCTGGCTGGATTTACTCAGTGGCTGTGATCATCAAGGGCATCGTG
TATGAGAAGGAGGCACGGCTGAAAGAGACCATGCGGATCATGGGCTGGACAACAGCATT
CTCTGGTTTAGCTGGTTCATTAGTAGCCTCATTCTCTTGTGAGCGCTGGCCTGCTA
GTGGTCATCCTGAAGTTAGGAAACCTGCTGCCCTACAGTGTACCCAGCGTGGTGTTC
TTCCCTGTCCGTGTTGCTGTGGTACAATCCTGCAGTGTCTCCTGATTAGCACACTCTC
TCCAGAGCCAACCTGGCAGCAGCCTGTGGGGCATCATCTACTTCACGCTGTACCTGCC
TACGTCTGTGTGGCATGGCAGGACTACGTGGCTTCACACTCAAGATCTCGCTAGC
CTGCTGTCTCTGTGGCTTTGGGTTGGCTGTGAGTACTTGCCCTTTTGAGGAGCAG
GGCATTGGAGTGCAGTGGGACAACCTGTTGAGAGTCCTGTGGAGGAAGATGGCTTCAAT
CTCACCACTCGGTCTCCATGATGCTGTTGACACCTTCCTATGGGCTGATGACCTGG
TACATTGAGGCTGTCTTCCAGGCCAGTACGGAATTCCCAGGCCCTGGTATTTCTTGC
ACCAAGCCTACTGGTTGGCGAGGAAAGTGTGAGAGAACGCCACCCACTTGAAGCTGGCGTGTCC
AAGAGAATATCAGAAATCTGCATGGAGGAGGAACCCACCCACTTGAAGCTGGCGTGTCC
ATTCAAACTGGTAAAGTCTACCGAGATGGGATGAAGGTGGCTGTCGATGGCCTGGCA
CTGAATTTATGAGGGCCAGATCACCTCCTGGCCACAATGGAGCGGGGAAGACG
ACCACCATGTCAATCCTGACCGGGTGTCCCCCGACCTCGGGCACCGCTACATCCTG
GGAAAAGACATCGCTCTGAGATGAGCACCATCCGGCAGAACCTGGGGTCTGTCCCCAG
CATAACGTGCTGTTGACATGCTGACTGTCGAAGAACACATCTGGTTCTATGCCCGCTTG
AAAGGGCTCTGAGAACACGTGAAGGCAGGAGATGGAGCAGATGGCCCTGGATGTTGGT
TTGCCATCAAGCAAGCTGAAAAGCAAAACAGCCAGCTGTCAGGTGGAAATGCAGAGAAAG
CTATCTGTGGCCTTGGCCTTGTCGGGGATCTAAGGTTGTCATTCTGGATGAACCCACA
GCTGGTGTGGACCCCTACTCCGCAGGGAAATATGGGAGCTGCTGCTGAAATACCGACAA
GGCCGCACCAATTATTCTCTACACACCATGGATGAAGCGGACGTCCCTGGGGACAGG
ATTGCCATCATCTCCATGGGAAGCTGTGCTGTGGCCTCCCTGTTCTGAAGAAC

CAGCTGGAACAGGCTACTACCTGACCTTGGTCAAGAAAGATGTGAATCCTCCCTCAGT
TCCTGCAGAAACAGTAGTAGCACTGTGTCAACCTGAAAAAGGAGGACAGTGTTCTCAG
AGCAGTTCTGATGCTGGCTGGCAGCACCAGTGAGAGTGACACGCTGACCATCGATGTC
TCTGCTATCTCCAACCTCATCAGGAAGCATGTGTCTGAAGCCCGCTGGTGGAAAGACATA
GGGCATGAGCTGACCTATGTGCTGCCATATGAAGCTGCTAAGGAGGGAGCCTTGTGGAA
CTCTTCATGAGATTGATGACCGGCTCTCAGACCTGGCATTCTAGTTATGGCATCTCA
GAGACGACCCCTGGAAGAAATATTCTCAAGGTGGCGAAGAGAGTGCGGATGCTGAG
ACCTCAGATGGTACCTGCCAGCAAGACGAAACAGGCCGGCTTCGGGGACAAGCAGAGC
TGTCTCGCCCGTTCAGTAAGATGATGCTGCTGATCCAAATGATTCTGACATAGACCCA
GAATCCAGAGAGACAGACTTGCTCAGTGGATGGATGCCAAAGGGCCTACAGGTGAAA
GGCTGGAAACTTACACAGCAACAGTTGTGGCCCTTTGTGGAAGAGACTGCTAATTGCC
AGACGGAGTCGAAAGGATTTTGCTCAGATTGTCTGCCAGCTGTGTTGTCTGCATT
GCCCTTGTGTTAGCCTGATCGTGCCACCCCTTGGCAAGTACCCCAGCCTGGAACCTCAG
CCCTGGATGTACAACGAACAGTACACATTGTCAGCAATGATGCTCCTGAGGACACGGGA
ACCCCTGGAACCTTAAACGCCCTCACCAAAGACCCCTGGCTCGGGACCCGCTGTATGGAA
GGAAACCCAAATCCCAGACACGCCCTGCCAGGCAGGGGAGGAAGAGTGACCAACTGCCCA
GTTCCCCAGACCATCATGGACCTCTCCAGAAATGGGAACCTGGACAAATGCAAGAACCCCTCA
CCTGCATGCCAGTGTAGCAGCAGAAAATCAAGAAGATGCTGCCGTGTGTCCCCCAGGG
GCAGGGGGCTGCCCTCCACAAAGAAAACACTGCAGATATCCTTCAGGACCTG
ACAGGAAGAAACATTGCGATTATCTGGTAAGACGTATGTGCAGATCATGCCAAAGC
TTAAAGAACAGATCTGGGTGAATGAGTTAGGTATGCCGGCTTCCCTGGGTGTCACT
AATACTCAAGCACTCCCTCCAGTCAAGAAGTTAATGATGCCACCAAACAAATGAAGAAA
CACCTAAAGCTGCCAAGGACAGTCTGCAGATCGATTCTCAACAGCTTGGGAAGATT
ATGACAGGACTGGACACCCAGAAATAATGTCAAGGTGTGGTTCAATAACAAGGGCTGGCATT
GCAATCAGCTTTCCCTGAATGTCAACAAATGCCATTCTCCGGGCAACCTGCAAAG
GGAGAGAACCCATTATGGAATTACTGCTTCATCCCTGAATCTCACCAAG
CAGCAGCTCTCAGAGGTGGCTCCGATGACCACATCAGTGGATGCCCTGTGTCCATCTGT
GTCATTTGCAATGTCCTCGTCCCAGCCAGCTTGTGCTATTCCCTGATCCAGGAGCGG
GTCAGCAAAGCAAAACACCTGCAGTTCACTGAGTGAAGCCTGTCACTACTGGCTC
TCTAATTTGCTGGATATGTGAATTACGTTGCCACACTGGTCATTATCATC
TTCATCTGCTTCCAGCAGAAGTCTATGTGTCCTCCACCAATCTGCCGTGCTAGCCCTT
CTACTTTGCTGTATGGGTGGTCAATCACACCTCTCATGTACCCAGCCTCCCTGTGTT
AAGATCCCCAGCACAGCCTATGTGGTGTCACTGAGCTGTTCAACGACAATAAGCTGAATAATATCAAT
GGCAGCGTGGCACCTTGTGCTGGAGCTGTTCAACGACAATAAGCTGAATAATATCAAT
GATATCCTGAAGTCCGTGTTCTGATCTCCACATTGGCTGGGACGAGGGCTCATC
GACATGGTAAAAACCAAGGCAATGGCTGATGCCCTGGAAAGGTTGGGGAGAATCGCTT
GTGTCACCATTATCTGGGACTTGGTGGAGCAAACCTCTCGCCATGGCCGTGGAAAGGG
GTGGTGTCTTCCCTCATTACTGTTCTGATCCAGTACAGATTCTCATCAGGCCAGACCT
GTAAATGCAAAGCTATCTCCCTGAATGATGAAGATGTGAGGCGGGAAAGACAG

AGAATTCTGATGGTGGAGGCCAGAACATGACATCTTAGAAATCAAGGAGTTGACGAAGATA
TATAGAAGGAAGCGGAAGCCTGCTGTTGACAGGATTTGCGTGGGCATTCCCTGGTGAG
TGCTTGGCTCCTGGAGTTAATGGGGCTGGAAAATCATCAACTTCAGATGTTAAC
GGAGATACCACTGTTACCAGAGGGAGATGCTTCCTAACAGAAATAGTATCTTATCAAAC
ATCCATGAAGTACATCAGAACATGGCTACTGCCCTCAGTTGATGCCATCACAGAGCTG
TTGACTGGGAGAGAACACGTGGAGTTCTTGCCTTTGAGAGGGAGTCCCAGAGAAAGAA
GTTGGCAAGGTTGGTGAGTGGCGATCGGAAACTGGCCTCGTGAAGTATGGAGAAAAAA
TATGCTGGTAACTATAGTGGAGGCCAACAAACGCAAGCTCTACAGCCATGGCTTGATC
GGCGGGCCTCCTGTGGTGGATGAAACCCACCAAGGCATGGATCCCAAAGCCCCGG
CGGTTCTTGTGGAATTGTGCCCTAAGTGTGTCAGGAGGGAGATCAGTAGTGCTTACA
TCTCATAGTATGGAAGAACATGTGAAGCTCTTGCACTAGGATGGCAATCATGGTCAATGGA
AGGTTCAAGGTGCCCTGGCAGTGTCCAGCATCTAAAAAAATAGGTTGGAGATGGTTATACA
ATAGTTGTACGAATAGCAGGGTCCAACCCGGACCTGAAGCCTGTCAGGATTTCTTGG
CTTGCATTTCTGGAAGTGTCCAAAAGAGAACACCGGAACATGCTACAAATACCAGCTT
CCATCTCATTATCTCTGCCAGGATATTCAGCATCCTCTCCAGAGCAAAAGCGA
CTCCACATAGAAGACTACTCTGTTCTCAGACAACACTGACCAAGTATTTGTGAACCTT
GCCAAGGACCAAAGTGTGACCACTTAAAGACCTCTCATTACACAAAAACAGACA
GTAGTGGACGTTGCAAGTCTCACATCTTCTACAGGATGAGAAAGTGAAGAAAGCTAT
GTATGAAGAATCTGTTCATACGGGGTGGCTGAAAGTAAGAGGGACTAGACTTCTT
GCACCATGTGAAGTGTGAGAAAAGAGCCAGAACAGTTGATGTGGAGAAAGTAAACTG
GATACTGTACTGATACTATTCAATGCAATGCAATTCAATG
ABCD2 Acc. Nr. : AJ000327 GENBANK : HSALDR

AAAACACAAACAGTGGAGAGAACACGCTGCATACTATGGGACGCTGTAGGACTTTCTAAAA
CATTGCTGGGGATTTCTGTGAAGCATGATCTTAAACGAATTCTTTGGAGGCCGGTT
TGGGTAACTGGAAAATGACACATATGCTAAATGCAGCAGCTGATCGAGTGAATGGACC
AGATCGAGTGCTGCTAAGAGGGCTGCCCTGCTGGCTGCGGATATGCTCTGAAAACC
CTCTATCCCATCATTGGCAAGCGTTAAAGCAATCTGCCACGGGAAGAAAAAGCAGCA
GCTTACCCCTGCTGCAAGAGAACACAGAAATACTGCATTGCACCGAGACCATTGTAAAAA
CCTTCGCCTGGAGTGAATGCAGATTCTCAAACAGCTACTAGAACCTCGGAAATTTG
TTTCCAAAATTTGTGACCACTGAAACAGGGTGGCTCTGCCCTGCACTCAGTGGCTCTAATC
TCAAGAACCTTCTTCTATCTATGTGGCTGGCTGGATGGAAAATCGTAAAAGCATT
GTGGAAAAGAAGCCTCGGACTTTCATCATCAAATTAAATCAAGTGGCTTATGATTGCCATC
CCTGCTACCTCGTCAACAGTGCATAAGGTACCTGGAATGCAAATTGGCTTGGCCTTC
AGAACTCGCCTAGTAGACCAACGCCTATGAAACCTATTTACAAATCAGACTTATTATAAA
GTGATCAATATGGATGGAGGCTGGCAAACCCCTGACCAATCTTACGGAGGATATTATG
ATGTTCTCCCAATCTGTGGCTCAATTGTATTCAAATCTGACCAACCTATTTAGATGTA
ATGCTGACCTCCTATACACTCATTCAAACAGCTACATCCAGAGGGAGCAAGCCCAATTGGG
CCCACCCCTACTAGCAGGACTTGTGGTGTATGCCACTGCTAAAGTGTAAAAGCCTGTTCT
CCCAAATTGGCAAACCTGGTGGCAGAGGAAGCACATAGAAAAGGCTATTGCGGTATGTG

CACTCGAGAATTATGCCAATGTAGAAGAAATTGCCTTTACAGAGGACATAAGGTAGAA
ATGAAACAACTTCAGAAAAGTTACAAAGCTTAGCAGATCAGATGAACCTCATTTATCC
AAACGTTGTGGTACATCATGATAGAACAGTCCTGATGAAGTATGTTGGAGCAGCAGT
GGACTAATTATGGTGGCTATACCTATTATCAGTCAACTGGCTTGAGATGGTGAGGAT
GGCCAAAAGCAAGTTATGGTTAGTGAACGGACAGAAGCCTTACCACTGCTCGAAATTAA
CTGGCCTCTGGAGCTGATGCTATTGAAAGGATTATGTCTTCATACAAAGAGGTCACTGAA
TTAGCAGGCTACACTGCTCGAGTGTACAATATGTTTGGGTCTTGATGAAGTAAAAAGA
GGCATTATAAGAGAACTGCTGTCAATTCAAGAATCTGAAAGCCATAGCAAGAATGGAGCT
AAGGTAGAATTACCTCTCAGTGACACATTGCAATTAAAGGAAAGTTATTGATGTGGAT
CACGGAATTATTTGTGAAAATGTTCCCATAATTACACCAGCAGGAGAAGTGGTGGCTTCC
AGGCTAAACTTCAAAGTAGAAGAAGGAATGCATCTTGATAACTGGTCCCAATGGTTGT
GGGAAAAGTTCTCTCTCAGAATTCTAAGTGGCTCTGGCCTGTGTATGAAGGAGTCCTC
TATAAACACCACCTCCTCAACATATGTTTATATTCCACAAAGGCCATATATGCTCTTGG
AGTCTCGGGATCAAGTCATTTACCCCTGATTCACTGGATGATATGCATGATAAAGGTTAT
ACAGACCAAGATCTGGAACGTATCCTACACAATGTCCATCTCTATCACATAGTTCAAAGA
GAAGGAGGATGGGATGCTGTTATGGACTGGAAAGATGTCCGTGTCAGGAGGGAAAAGCAA
AGAATGGGATGGCTCGTATGTTTATCATAAAACAAAATATGCCCTGCTGGATGAATGT
ACCAGTGCTGTCAGCATTGATGTCAAAGGAAAGATATTCAAGGCTGCAAAAGGGGCTGGA
ATTTCCCTACTGTCTATAACACACAGACCTCTCTTGAAACATGGATACTGCTATCCGTTGACA
CAGTTGATGGTAAGGAGGTTGGCGCTTGAAACAATTGGATACTGCTATCCGTTGACA
TTGAGTGAAGAAAACAAAAGCTAGAATCTCAGCTAGCTGGAAATTCCAAAATGCAGCAG
AGACTCAATGAACATGTAAAATTTGGAGAAGACTCAGTGCTGAAAACAATTAAAAT
GAAGATGAGACATCTTAAATTGTTGACATATTTAAAAGTTAATTATTAGATAAAGG
CTCAAAGACATTCTGTTACTGCATGAAGTATGTTAAGCTAAGCAGAGAGAAAAAGG
CAGCAAGACATGTTTATAAGATTTAGCTTAAGGAAGTATATGATCTGACTTTGAGA
AGAAAATAAACAAATGCATTATGTAAGGTCACTCATTATGACTTAACTAATTCTAGTG
AAGGCCTAATGCACTTGTAAAACAGGATTTCTAGGTGAATTCCGTGATGAATACCAAGATT
TACTATGTATATGTGGTGTCTGAAAGTTCTAACAAACATGGCAATATTCTGGAAATG
AAACAAGTTATAACTGAGCACCATTGGGTTGATACCAAGTGCATAAGATTCAAACATTG
AGTGACATTAGTCCATTATGGTTGATATTAGTTAATACCTAGAATTCAAATTGATT
ATTGCTAGTGGCCAACCTAAACCTGTACAAAATAGCTGACAGTTTATAACTAATTCAAT
ATAAAAAATTGTTAATGGCATTGTTGAAAGAAAAAGCATGGCTAAATGTATCAAAT
GCCNTATTTTAAATTGGACTTTAACAGCTTAAAGGATCTGAGGGCATATAACAAATTAAATT
TAGTACAATCTTAAATATTTAATAAAATCCTTCAATTAAAAGAGAATTGCCAATAC
AGAAAAGGAGTCCAAACAATGTCTCAACCTGATAATTCCCTAGCAGAATTACCTATT
GCAACTTCTGTTAGAAATACACAGCTGTTTTGCCCCAAGGATGAGTCTACATT
AGAACTGCAATGGTATAAGGAACCTAACGGATTCTGAGAAATCATAGTAATAACATACATT
GGAATAGTACTTTATAATTACAATCCCCATTACATCATTACCTTAATGTTGAGGAC
AATGTTTGAACAAACTATTTCTACTTTGCTTTGAGAAAATTGACACTCAGAC

TTGCCCTAATCATGCAC TTTACTTAAGGAAAGATCGAGAAATCAAATGAAGTTCTCCTGA
CTCTCTGGTTAGTGCCTTTGTTATTATCCTTAAATCAAACGGGCTATAATAGCAA
TAAAAGTTAGACGAAGTGTAGAAAATAAAATAATTCATAATGTTAAAAAAAAAAAA
AAAAAAA

ABCB1 Acc. Nr. M14758 GENBANK: HUMMDR1

CCTACTCTATTCA GATATTCCAGATTCCCTAAAGATTAGAGATCATTCTCATTCTCCT
AGGAGTACTCACTTCAGGAAGCAACCAGATAAAAGAGAGGTGCAACGGAACCCAGAACAT
TCCTCCTGGAAATTCAACCTGTTCGCAGTTCTCGAGGAATCAGCATTCA GTCAATCCG
GGCCGGGAGCAGTCATCTGTGGTGAGGCTGATTGGCTGGCAGGAACAGCGCCGGGC GT
GGGCTGAGCACAGCGCTCGCTCTTGCCACAGGAAGCCTGAGCTCATTGAGTAGCG
GCTCTCCAAGCTCAAAGAACAGAGGCCGCTGTTCGTTCCCTTAGGTCTTCCACTAA
AGTCGGAGTATCTTCTTCAAGATTACAGCTTGGTGGCCGTTCAAGGAGCGCGAGGT
CGGGATGGATCTTGAAGGGGACCGCAATGGAGGAGCAAAGAAGAAGAAACTTTTTAAACT
GAACAATAAAAGTGAAGAAAGATAAGAACGAAAGAACCAACTGTCA GTGTATTTCAAT
GTTTCGCTATTCAAATTGGCTTGACAAGTTGATATGGTGGTGGAACTTGGCTGCCAT
CATCCATGGGCTGGACTCCTCTCATGATGCTGGTGGAGAAATGACAGATATCTT
TGCAAATGCAGGAAATTAGAAGATCTGATGTCAAACATCACTAATAGAAGTGAATATCAA
TGATACAGGGTTCTCATGAATCTGGAGGAAGACATGACCAGGTATGCCATTATTACAG
TGGAATTGGTGCCTGGGTGCTGGTGCCTACATTCA GGTTCA TTTGGTGCCTGGC
AGCTGGAAGACAAATACACAAAATTAGAAAAGCTTTTCTGCTATAATGCGACAGGA
GATAGGCTGGTTGATGTGCACGATGTTGGGAGCTTAACACCCGACTTACAGATGATGT
CTCTAAGATTAATGAAGTTATTGGTGCACAAATTGGAATGTTCTTCAGTCAATGGCAAC
ATTTTCACTGGTTTATAGTAGGATTACACGTGGTGGAAAGCTAACCTTGATTTT
GGCCATCAGTCTGTTCTGGACTGTCAGCTGCTGTCTGGCAAAGATACTATCTTCA TT
TACTGATAAAAGAACTCTTAGCGATGCAAAGCTGGAGCAGTAGCTGAAGAGGTCTTGGC
AGCAATTAGAACTGTGATTGCA TTGGAGGACAAAAGAAAGAACCTGAAAGGTACAACAA
AAATTAGAAGCTAAAAGAATTGGATAAAAGAAAGCTATTACAGCCAATATTCAT
AGGTGCTGCTTCTGCTGATCTATGCATCTTATGCTCTGGCCTCTGGTATGGGACCAC
CTTGGCCTCTCAGGGGAATATTCTATTGACAAGTACTCACTGTATTCTTCTGTATT
AATTGGGCTTTAGTGTGGACAGGCATCTCAAGCATTGAAGCATTGCAAATGCAAG
AGGAGCAGCTTATGAAATCTCAAGATAATTGATAATAAGCCAAGTATTGACAGCTATT
GAAGAGTGGGCACAAACCAGATAATTAGGAAATTGGAATTCAAGAAATGTTCACTT
CAGTTACCCATCTGAAAAGAAGTTAAGATCTGAAGGGCCTGAACCTGAAGGTGCAGAG
TGGGCAGACGGTGGCCCTGGTGGAAACAGTGGCTGTGGGAAGAGGACACAACAGTCCAGCT
GATGCCAGAGGCCTATGACCCACAGAGGGATGGTCAGTGTGATGGACAGGATATTAG
GACCATAAATGTAAGGTTCTACGGGAAATCATTGGTGTGGTGAGTCAGGAACCTGTATT
GTTTGCCACACGATAGCTGAAAACATTGCTATGGCCGTGAAAATGTCACCATGGATGA
GATTGAGAAAGCTGTCAAGGAAGCCAATGCCTATGACTTTATCATGAAACACTGCCCTCATAA
ATTTGACACCCCTGGTTGGAGAGAGAGAGGGGCCAGTTGAGTGGTGGCAGAACAGGAG

CGCCATTGCACGTGCCCTGGTCGAACCCAAGATCCTCCTGCTGGATGAGGCCACGTC
AGCCTGGACACAGAAAGCGAAGCAGTGGTCAGGTGGCTCTGGATAAGGCCAGAAAAGG
TCGGACCACCATGTGATAGCTCATCGTTGTCTACAGTCGAATGCTGACGTCATCGC
TGGTTCGATGATGGAGTCATTGTGGAGAAAGGAAATCATGATGAACTCATGAAAGAGAA
AGGCATTTACTCAAACCTGTACAATGCAGACAGCAGGAAATGAAGTTGAATTAGAAAA
TGCAGCTGATGAATCCAAAAGTGAATTGATGCCTTGAAATGTCTCAAATGATTCAAG
ATCCAGTCTAATAAGAAAAAGATCAACTCGTAGGAGTGTCCGTGGATCACAGCCAAAGA
CAGAAAGCTTAGTACCAAGAGGCTCTGGATGAAAGTATACCTCCAGTTCCCTTTGGAG
GATTATGAAGCTAAATTTAACCTGAATGCCCTTATTTGTTGGTGTATTTGTGCCAT
TATAAAATGGAGGCCTGCAACCAGCATTGCAATAATATTTCAAAGATTATAGGGGTTTT
TACAAGAATTGATGATCCTGAAACAAAACGACAGAATAGTAACCTGTTTCACTATTGTT
TCTAGCCCTTGGAAATTATTCCTTATTACATTTCCCTCAGGGTTTCACATTTGGCAA
AGCTGGAGAGATCCTCACCAAGGGCTCCGATACATGGTTTCCGATCCATGCTCAGACA
GGATGTGAGTTGGTTGATGACCCCTAAAACACCACTGGAGCATTGACTACCAGGCTCGC
CAATGATGCTGCTCAAGTAAAGGGGCTATAGGTTCCAGGCTGCTGTAATTACCCAGAA
TATAGCAAATCTGGACAGGAATAATTATCCTTCATCTATGGTTGGCAACTAACACT
GTTACTCTTAGCAATTGTACCCATCATTGCAATAGCAGGAGTTGAAATGAAAATGTT
GTCTGGACAAGCACTGAAAGATAAGAAAGACTAGAAGGTGCTGGGAAGATCGCTACTGA
AGCAATAGAAAACCTCCGAACCGTTGTTCTTGACTCAGGAGCAGAAGTTGAACATAT
GTATGCTCAGAGTTGCAGGTACCATACAGAAACTCTTGAGGAAAGCACACATCTTGG
AATTACATTTCCCTCACCCAGGCAATGATGTATTTCCATGCTGGATGTTCCGGTT
TGGAGCCTACTTGGTGGCACATAACTCATGAGCTTGAGGATGTTCTGTTAGTATTTTC
AGCTGTTGTCTTGGTGCCATGGCCGTGGGCAAGTCAGTCATTGCTCCTGACTATGC
CAAAGCCAAAATATCAGCAGCCCACATCATGATCATTGAAAAAAACCCCTTGATTGA
CAGCTACAGCACGGAAGGCCATAATGCCAACACATTGAAAGGAAATGTCACATTTGGTGA
AGTTGTATTCAACTATCCCACCCGACCGGACATCCCAGTGCTTCAGGGACTGAGCCTGG
GGTGAAGAAGGGCCAGACGCTGGCTCTGGTGGCAGCAGTGGCTGTGGGAAGAGCACAGT
GGTCAGCTCCTGGAGCGGTTCTACGACCCCTGGCAGGGAAAGTGCTGCTTGATGGCAA
AGAAATAAAGCGACTGAATGTTAGTCAGTGGCTCCGAGCACACCTGGCAGTGTCCCAGGA
GCCCATCCTGTTGACTGCAGCATTGCTGAGAACATTGCCATGGAGACAAACAGCCGGGT
GGTGTCAAGGAAGAGATCGTGAGGGCAGCAAAGGAGGCCAACATACATGCCCTCATCGA
GTCACTGCCATAAAATATGCACTAAAGTAGGAGACAAAGGAACATCAGCTCTCTGGTGG
CCAGAAACAAACGCATTGCCATAGCTCGTGCCTTGTAGACAGCCTCATATTTGCTTTT
GGATGAAGCCACGTCAGCTCTGGATACAGAAAGTGAAGGGTTGCCAAGAAGCCCTGGA
CAAAGCCAGAGAAGGCCACCTGCATTGTGATTGCTCACCGCCTGTCACCATCCAGAA
TGCAGACTTAATAGTGGTGTTCAGAATGGCAGAGTCAGGAGCATGGCAGCAGCA
GCTGCTGGCACAGAAAGGCATCTATTTCAATGGTCAGTGTCCAGGCTGGAACAAAGCG
CCAGTGAACCTGACTGTATGAGATGTTAAATACTTTTAATATTTGTTAGATATGACA
TTTATTCAAAGTTAAAGCAAACACTTACAGAATTATGAAGAGGTATCTGTTAACATTT

CCTCAGTCAAGTTCAGAGTCTTCAGAGACTTCGTAATTAAAGGAACAGAGTGAGAGACAT
CATCAAGTGGAGAGAAATCATAGTTAAACTGCATTATAAATTATAACAGAATTAAAG
TAGATTAAAAGATAAAATGTGTATTGGTTATTTCCATTGGACTGTAACG
ACTGCCCTGCTAAAAGATTATAGAAGTAGCAAAAAGTATTGAAATGTTGCATAAGTGT
CTATAATAAAACTAAACTTCATGTG

ABCB4 Acc. Nr.: M23234 GENBANK: HUMMDR3

CCTGCCAGACACCGCGAGGTTCGAGGCTGAGATGGATCTTGAGGCAGCAAAGAACGGAA
CAGCCTGGCGCCCCACGAGCGGGAGGGCAGTTGAACCTGGCATCAGCAGCAAACAAA
AAAGGAAAAAAACGAAGACAGTGAAAATGATTGGAGTATTAACATTGTTCGATACTCCG
ATTGGCAGGATAAAATTGTTATGTCGCTGGTACCATCATGCCATAGCTCACGGATCAG
GTCTCCCCCTCATGATGATAGTATTGGAGAGATGACTGACAAATTGTTGATACTGCAG
GAAACTCTCCCTTCCAGTGAACCTTCCTGCGCTGCTAAATCCAGGCAAATTCTGG
AAGAAGAAATGACTAGATATGCATATTACTACTCAGGATTGGGTGCTGGAGTTCTGTTG
CTGCCATATACAAGTTCATTTGGACTTTGGCAGCTGGTCGACAGATCAGGAAATTAA
GGCAGAAGTTTTTCATGCTATTCTACGACAGGAAATAGGATGGTTGACATCAATGACA
CCACTGAACCTCAAACGGCTAACAGATGACATCTCCAAAATCAGTGAAGGAATTGGTG
ACAAGGTTGGAATGTTCTTCAAGCAGTAGCCACGTTTGCAGGATTGATACTGGGAT
TCATCAGAGGATGGAAGCTCACCTTGTGATAATGCCATCAGCCCTATTCTAGGACTCT
CTGCAGCCGTTGGCAAAGATACTCTCGGCATTTAGTGACAAAGAAACTAGCTGCTTATG
CAAAAGCAGGCCGTGGCAGAAGAGGCTCTGGGGCCATCAGGACTGTGATAGCTTCTG
GGGGCCAGAACAAAGAGCTGGAAAGGTATCAGAAACATTAGAAAATGCCAAAGAGATTG
GAATTAAAAAGCTATTCAGCAAACATTCCATGGTATTGCCTCTGTTAATATATG
CATCATATGCACTGGCCTCTGGTATGGATCCACTCTAGTCATATCAAAGAATATACTA
TTGGAAATGCAATGACAGTTTTTCAATCTAATTGGAGCTTCAGTGTGATCTTGTG
CTGCCCATGTATTGATGCTTTGCCATGCAAGAGGAGCAGCATATGTGATCTTGTG
TTATTGATAATAATCCTAAAATTGACAGTTTCAGAGAGAGGACACAAACCAGACAGCA
TCAAAGGAAATTGGAGTCAATGATGTTCACTTTCTACCCCTCTCGAGCTAACGTCA
AGATCTGAAGGGCTCAACCTGAAGGTGCAGAGTGGCAGACGGTGGCCCTGGTTGGAA
GTAGTGGCTGTTGGAAAGAGCACAACGGTCCAGCTGATACAGAGGCTCTATGACCTGATG
AGGGCACAATTAACATTGATGGCAGGATATTAGGAACCTTAATGTAACACTATCTGAGGG
AAATCATTGGTGTGGTGAAGTCAGGAGCCGGTGTGTTTCCACCACAATTGCTGAAATA
TTTGTATGCCGTGAAATGTAACCATGGATGAGATAAAGAAAGCTGTCAAAGAGGCCA
ACGCCCTATGAGTTATCATGAAATTACCAACAGAAATTGACACCCCTGGTTGGAGAGAG
GGGCCAGCTGAGTGGTGGCAGAACAGAGGATGCCATTGCACGTGCCCTGGTTGCC
ACCCCAAGATCCTCTGCTGGATGAGGCCACGTCAGCATTGGACACAGAAAGTGAAGCTG
AGGTACAGGCAGCTCTGGATAAGGCCAGAGAAGGCCGACCACCAATTGTGATAGCACACC
GACTGTCTACGGTCCGAAATGCAGATGTCATCGCTGGTTGAGGATGGAGTAATTGTGG
AGCAAGGAAGCCACAGCGAACTGATGAAGAAGGAAGGGGTGTACTTCAAACTGTCAACA
TGCAGACATCAGGAAGCCAGATCCAGTCAGAAGAATTGAACTAAATGATGAAAAGGCTG

CCACTAGAA TGGCCCCAATGGCTGGAAATCTGCCATTAGGCATTCTACTCAGAAAA
 ACCTTAAAATTCACAAATGTGTCAGAAGAGCCTGATGTGGAAACCGATGGACTTGAAG
 CAAATGTGCCACCAGTGTCTTCTGAAGGTCTGAAACTGAATAAAACAGAATGGCCCT
 ACTTTGTCGTGGAACAGTATGTGCCATTCCAATGGGGGCTTCAGCCGGCATTTCA
 TCATATTCTCAGAGATCATAGCGATTTGGACCAGGGATGATGCAGTGAAGCAGCAGA
 AGTGCAACA TATTCTCTTGATTTCTTATTCTGGAAATTATTCTTTTACTTTCT
 TCCTTCAGGGTTTACGTTGGAAAGCTGGCGAGATCCTCACCAAGAAGACTGCAGTCAA
 TGGCTTTAAAGCAATGCTAAGACAGGACATGAGCTGGTTGATGACCATAAAACAGTA
 CTGGTGCACTTCTACAAGACTTGCCACAGATGCTGCCAAGTCCAAGGAGGCCACAGGAA
 CCAGGGTGGCTTAATTGCACAGAATATAGCTAACCTGGAACTGGTATTATCATATCAT
 TTATCTACGGTGGCAGTTAACCTATTGCTATTGAGCTGGTCCAATTATTGCTGTGT
 CAGGAATTGTTGAAATGAAATTGTTGGCTGGAAATGCCAAAAGAGATAAAAAGAACTGG
 AAGCTGCTGGAAAGATTGCAACAGAGGCAATAGAAAATATTAGGACAGTTGTCTTGA
 CCCAGGAAAGAAAATTGAATCAATGTATGTTGAAAATTGTATGGACCTTACAGGAATT
 CTGTCAGGACACACATCTATGAAATTACTTTAGTATCTCACAAAGCATTATGTATT
 TTCCTATGCCGGTTGTTGATTGGTCATATCTCATTGTGAATGGACATATGCGCT
 TCAGAGATGTTATTCTGGTGTCTGCAATTGTATTGGTCAGTGGCTCTAGGACATG
 CCAGTTCATTTGCTCCAGACTATGCTAAAGCTAACGCTGTCTGCAGCCCACTTATTG
 TGTTGAAAGACAACCTCTGATTGACAGCTACAGTGAAGAGGGGCTGAAGCCTGATAAAT
 TTGAAGGAAATATAACATTAATGAAGTCGTGTTCAACTATCCCACCCGAGCAAACGTGC
 CAGTGCCTCAGGGGCTGAGCCTGGAGGTGAAGAAAGGCCAGACACTAGCCCTGGTGGCA
 GCAGTGGCTGTGGGAAGAGCACGGTGGTCCAGCTCCTGGAGCGGTCTACGACCCCTTGG
 CGGGGACAGTGCCTCTCGATGGTCAAGAACGAAAGAAACTCAATGTCCAGTGGCTCAGAG
 CTCAACTCGGAATCGTGTCTCAGGAGCCTATCCTATTGACTGCAAGCATTGCCGAGAATA
 TTGCTATGGAGACAACAGCCGGTTGTATCACAGGATGAAATTGTGAGTGCAGCCAAAG
 CTGCCAACATACATCCTTCATCGAGACGTTACCCACAAATATGAAACAAGAGTGGAG
 ATAAGGGACTCAGCTCTCAGGAGGTCAAAAACAGAGGATTGCTATTGCCAGCCCTCA
 TCAGACAACCTCAAATCCTCTGTTGGATGAAAGCTACATCAGCTCTGGACTGAAAGTG
 AAAAGGGTGTCCAAGAACGCCCTGGACAAGGCCAGAGAAGGCCAGCTGCATTGTGATTG
 CTCACCGCCTGTCACCATCCAGAATGCAGACTTAATAGTGGTGTTCAGAAATGGGAGAG
 TCAAGGAGCATGGCACGCATCAGCAGCTGCTGGCACAGAAAGGCATCTATTTCATGG
 TCAGTGTCCAGGGCTGGGACACAGAACTTATGAACTTTGCTACAGTATTTTAAATA
 AATTCAAATTATTCTACCCATT

ABCC2 Acc. Nr. : U49248 GENBANK: HSU49248

AGGATAATTCTGTTCCACTTCTTGATGAAACAAGTAAAGAAGAAACACAAATCAT
 ATTAATAGAAGAGTCTCGTTCCAGACGCAGTCCAGGAATCATGCTGGAGAAAGTTCTGCA
 ACTCTACTTTGGAAATTCTCATTCTGGACAGTCCGGAGGCAGACCTGCCACTTGT
 TTGAGCAAACGTGTTCTGGTGTGGATTCCCTGGCTTCCATGGCTCCTGGCCCCCTGGC
 AGCTTCTCCACGTGTATAAAATCCAGGACCAAGAGATCCTCTACCAACAAACTCTATCTT

CTAAGCAGGTATCGTGGTTCTTATTCTAGCAGCCATAGAGCTGGCCCTGTAC
TCACAGAAGACTCTGGACAAGCCACAGTCCCTGCTGTTGATATACCAATCCAAGCCTCT
ACCTAGGCACATGGCTCCTGCTTTGCTGATCCAATACAGCAGACAATGGTGTACAGA
AAAACCTGGTCTGCTCCCTATTCTGGATTCTCGATACTCTGTGGCACTTCCAAT
TTCAGACTCTGATCCGGACACTCTTACAGGGTGACAATTCTAATCTAGCCTACTCCTGCC
TGTTCTCATCTCCTACGGATTCCAGATCCTGATCCTGATCTTCAGCATTTCAGAAA
ATAATGAGTCATCAAATAATCCATCATCCATAGCTTCATTCTGAGTAGCATTACCTACA
GCTGGTATGACAGCATCATTCTGAAAGGCTACAAGCGCCTCTGACACTCGAGGATGTCT
GGGAAGTTGATGAAGAGATGAAAACCAAGAACATTAGTGAGCAAGTTGAAACGCACATGA
AGAGAGAGCTGCAGAAAGCCAGGGGGCACTCCAGAGACGGCAGGAGAAGAGCTCCCAGC
AGAACTCTGGAGCCAGGCTGCCTGGCTGACAAGAAATCAGAGTCAAAGCCAAGATGCC
TTGTCCTGGAAGATGTTGAAAAGAAAAAGAAGTCTGGACCAAAAAAGATGTTCAA
AATCCTGGTTGATGAAGGCTCTGTTAAAACCTTCTACATGGTGCTCCTGAAATCATTCC
TACTGAAGCTAGTGAATGACATCTTCACGTTGTGAGTCCTCAGCTGCTGAAATTGCTGA
TCTCCTTGCAAGTGACCGTGACACATATTGTTGATGGATATCTCTGTGCAATCCTCT
TATTCACTGCGGCTCTCATTCACTGCTTTCTGCCTCAGTGTATTTCAACTGTGCTTCA
AGCTGGGTGTAAAAGTACGGACAGCTATCATGGCTTCTGTATATAAGAAGGCATTGACCC
TATCCAACCTGGCCAGGAAGGAGTACACCGTTGGAGAAACAGTGAACCTGATGTCTGTGG
ATGCCCAAGCTCATGGATGTGACCAACTCATGCACATGCTGTTCAAGTGTCTTAC
AGATTGTCTTATCTATCTTCTTCTATGGAGAGAGTTGGGACCCCTCAGTCTTAGCAGGTG
TTGGGGTGATGGTGCTTGTAAATCCAATTATGCGATACTGTCCACCAAGAGTAAGACCA
TTCAGGTCAAAAATATGAAGAATAAAGACAAACGTTAAAGATCATGAATGAGATTCTTA
GTGGAATCAAGATCCTGAAATATTTGCTGGAACCTTCATTCAAGAGACCAAGTACAAA
ACCTCCGGAAAGAAAGAGCTCAAGAACCTGCTGGCCTTACTCAACTACAGTGTGTAGTAA
TATTGTCCTCCAGTTAACTCCAGTCCTGGTATCTGTGGTCACATTTCCTGTTATGTCC
TGGTGGATAGCAACAATATTTGGATGCACAAAAGGCCTCACCTCCATTACCTCTTCA
ATATCCTGCGTTCCCTGAGCATGCTCCCATGATGATCTCCTCCATGCTCCAGGCCA
GTGTTCCACAGAGCGGCTAGAGAAGTACTTGGGAGGGGATGACTGGACACATCTGCCA
TTCGACATGACTGCAATTGACAAAGCCATGCACTGTTCTGAGGCCTCCTTACCTGGG
AACATGATTGGAAAGCCACAGTCCGAGATGTGAACCTGGACATTATGGCAGGCCAACTTG
TGGCTGTGATAGGCCCTGTCGGCTCTGGAAATCCTCCTGATATCAGCCATGCTGGAG
AAATGGAAAATGTCCACGGGCACATCACCATCAAGGGCACCACGGCTATGTCCCACAGC
AGTCCTGGATTCAAATGGCACCATAAAGGACAACATCCTTTGGAACAGAGTTAATG
AAAAGAGGTACCAAGCAAGTACTGGAGGCCTGTGCTCTCCAGACTTGGAAATGCTGC
CTGGAGGGAGATTGGCTGAGATTGGAGAGAAGGGTATAAAATCTTAGTGGGGTCAGAAGC
AGCAGGATCAGCCTGGCCAGAGCTACCTACCAAAATTAGACATCTATCTTAGATGACC
CCCTGTCTGCAGTGGATGCTCATGTAGGAAAACATATTTAATAAGGTCTGGGCCCCA
ATGGCCTGTTGAAAGGCAAGACTCGACTCTTGGTTACACATAGCATGCACTTCTCCTC
AAGTGGATGAGATTGTAGTTCTGGGAATGGAACAATTGTAGAGAAAGGATCCTACAGTG

CTCTCCTGGCCAAAAAGGAGAGTTGCTAAGAACATCTGAAGACATTCTAACAGACATACAG
GCCCTGAAGAGGAAGGCCACAGTCCATGATGGCAGTGAAGAACAGACGATGACTATGGGC
TGATATCCAGTGTGGAAGAGATCCCCGAAGATGCGAGCTCCATAACCAGAGAACAGAGA
ACAGCTTCGTCGAACACTTAGCCGAGTTCTAGGTCCAATGGCAGGCATCTGAAGTCCC
TGAGAAAACCTCTGAAAACCTCGGAATGTGAATAGCCTGAAGGAAGAACGAAAGAACAG
AAGGACAAAAACTAATTAAGAAGGAATTCAAGAACACTGGAAAGGTGAAGTTCTCCATCT
ACCTGGAGTACCTACAAGCAATAGGATTGTTTCGATATTCTCATCATCCTTGCGTTG
TGATGAATTCTGTGGCTTTATTGGATCCAACCTCTGGCTCAGTGCTTGACCAGTGACT
CTAAAATCTTCAATAGCACCGACTATCCAGCATCTCAGAGGGACATGAGAGTTGGAGTCT
ACGGAGCTCTGGGATTAGCCCAGGTATATTGTGTTCATAGCACATTCTGGAGTGCCT
TTGGTTTCGTCATGCATCAAATATCTTGACACAAGCAACTGCTGAACAATATCCTTCGAG
CACCTATGAGATTTTGACACAAACACCCACAGGCCGATTGTGAACAGGTTGCCGGCG
ATATTCACAGTGGATGACACCCCTGCCTCAGTCCTGCGCAGCTGGATTACATGCTTCC
TGGGGATAATCAGCACCCCTGTGATCTGCATGGCACTCCCTGTCTCACCATCATCG
TCATTCCTCTGGCATTATTTATGTATCTGTTCAGATGTTTATGTGTCTACCTCCCGCC
AGCTGAGGCGTCTGGACTCTGTGACCGAGGTCCCCAATCTACTCTCACTTCAGCGAGACCG
TATCAGGTTGCCAGTTATCCGTGCCCTTGAGCACCAGCAGCGATTCTGAAACACAATG
AGGAGAGGATTGACACCAACCAGAAATGTGTTCTGGATCACCTCCAACAGGTGGC
TTGCAATTGCCCTGGAGCTGGTGGAACCTGACTGTCTTCTTTCAGCCTTGATGATGG
TTATTTATAGAGATACCCCTAAGTGGGACACTGTTGGCTTGTTCTGTCCAATGCACTCA
ATATCACACAAACCCCTGAACCTGGCTGGTGGAGGATGACATCAGAAATAGAGACCAACATTG
TGGCTGTTGAGCGATAACTGAGTACACAAAAGTGGAAAATGAGGCACCCCTGGGTGACTG
ATAAGAGGCCTCCGCCAGATTGGCCCAGCAAAGGCAAGATCCAGTTAACAAACTACCAAG
TGGCGTACCGACCTGAGCTGGATCTGGCCTCAGAGGGATCACTTGACATCGGTAGCA
TGGAGAAGATTGGTGTGGTGGCAGGACAGGGACTGGAAAGTCATCCCTCACAAACTGCC
TCTTCAGAACATTAGAGGCTGCCGGTGGTCAAGATTATCATTGATGGAGTAGATATTGCTT
CCATTGGGCTCCACGACCTCCGAGAGAACGCTGACCATCATCCCCCAGGACCCCATCCTGT
TCTCTGGAAGCCTGAGGATGAATCTGACCCCTTCAACAAACTACTCAGATGAGGAGATT
GGAAGGCCTGGAGCTGGCTCACCTCAAGTCTTGTGGCCAGCCTGCAACTTGGTTAT
CCCACGAAGTTACAGAGGCTGGCAACCTGAGCATAGGCCAGAGGCAGCTGCTGTGCC
TGGCAGGGCTCTGCTTGGAAATCCAAGATCCTGGCCTGGATGAGGCCACTGCTGCC
TGGATCTAGAGACAGAACCTCATTGAGACGACCATCCAAAAGAGTTGCCACTGCA
CAGTGATCACCACGCCACAGGCTGCATACCATCATGGACAGTGACAAGGTAATGGTCC
TAGACAAACGGGAAGATTATAGAGTACGGCAGCCCTGAAGAACCTGCTACAAATCCCTGGC
CCTTTACTTATGGCTAAGGAAGCTGGCATTGAGAACAGCAGCACAAAATTCTAGC
AGAAGGCCCATGGTTAGAAAAGGACTATAAGAATAATTCTTATTTAATTTTATTTT
TATAAAATACAGAACATACACAAAAGTGTGATAAAATGTACGTTTAAAAAAGGATAAG
TGAACACCCATGAACCTACTACCCAGGTTAAGAAAATAATGTCACCAGGTACTTGAGAA
ACCCCTCGATTGCTACCTCGATCGTACTTCCTTGCTACCCACCCCTCCCAGGGACAACC

ACTGTCCCTGAATTCACGATAATTATTCCCTTGCCCTTCATTTCTGTTTATCACCTTG
TATGTATCTTAAACAACATATACCCCTTTACTTATGTAAATGGACTGACTCATACTG
CATACATCTTCTATGACTTGATTCTTTGTTCAATATTATATCTGAGATTCACTCCATGGT
GATGCAAATAGGTGCATTATTTTTCACTGCTCTGTAGTCTGGCATTGTATGAATACA
GCACAATGTATCAGTTAATATTGGGGATCATTAGCATTATTCTCAGGTTTAAAAAT
TATAAGCAGTACTACTATGG

ABCD1 Acc.Nr.: Z21876 GENBANK: HSXLALDA

GGGGACGGACGCCCTGGTGCCCCGGGGAGGGCGCCACCGGGGGAGGAGGAGGAGGAGA
AGGTGGAGAGGAAGAGACGCCCTCTGCCGAGACCTCTCAAGGCCCTGACCTCAGGG
CCAGGGCACTGACAGGACAGGAGAGCCAAGTTCCACTTGGGCTGCCGAAGAGGCCG
CGACCCCTGGAGGGCCCTGAGCCCACCGCACAGGGCCCAAGCACCCGGGGCCTA
AAGCGACAGTCTCAGGGGCCATCGCAAGGTTCCAGTTGCCCTAGACAACAGGCCAGGGT
CAGAGCAACAATCCTTCAGCCACCTGCCCTCAACTGCTGCCCAAGGCACCAGCCCCAGTC
CCTACGCCAGCCAGGTGACATGCCGGTGCTCTCCAGGGCCCGGCCCTGGCGGG
GGAACACGCTGAAGCGCACGGCGTGCCTGGCCCTGCCGCGCTATGGAGCCCACAAAG
TCTACCCCTTGGTGCAGCCAGTGCCCTGCCAGTGCCTGGCCCGGCCAGGGTCTTCAGGCGCCGCCGG
AGCCCACGCAGGAGGCCCTCCGGGTGCGGGCGCCAAAGCTGGCATGAACCGGGTATTCC
TGCAGCGGCTCCTGTGGCTCCTGCCAGTGCCTGGCTGCTGTTCCCCGGGTCTGTGCCGGAGACGG
GGCTGCTGGCCCTGCACCGCCCTGGTGAGCCGACCTTCCCTGTCGGTGTATGTGG
CCCGCCTGGACGGAAGGCTGGCCCGCTGCATGCCCGCAAGGACCCGCCGGCTTTGGCT
GGCAGCTGCTGCAGTGGCTCCTCATGCCCTCCCTGCTACCTTGTCAACAGTGCATCC
GTTACCTGGAGGGCCAAGTGGCCCTGTCGTTCCGCAGCCGTCTGGTGGCCACGCCCTACC
GCCCTACTTCTCCAGCAGACCTACTACCGGGTCAGCAACATGGACGGCGGCTCGCA
ACCCCTGACCAAGTCTGACGGAGGACGTGGTGGCCTTGGCCCTCTGTGGCCACCTCT
ACTCCAACCTGACCAAGCCACTCCTGGACGTGGCTGTGACTTCCATACCCCTGCTTCCGG
CGGCCCGCTCCCGTGGAGGCCAACGCCCTGCCCTGCCATGCCCGGCCCTGTGGTGT
TCCTCACGCCAACGTGCTGCCCTTCGCCCAAGTTGGAGCTGGTGGCAGAGG
AGGCAGCGGGAGGAAGGGGAGCTGCCTACATGCACTCCGTGTGGTGGCCAAGTCCGGAGG
AGATCGCCTCTATGGGGCCATGAGGTGGAGCTGGCCCTGCTACAGCGCTCCTACCAAGG
ACCTGGCCTCGCAGATCAACCTCATCCTTCTGGAACGCCCTGTGGTATGTTATGCTGGAGC
AGTTCTCATGAAGTATGTGTGGAGCGCCTGGCCCTGCTATGGTGGCTGTCCCCATCA
TCACTGCCACTGGCTACTCAGAGTCAGATGCAGAGGCCGTGAAGAAGGCAGCCCTGGAAA
AGAAGGAGGAGGAGCTGGTGAGCGAGCGCACAGAACCTCACTATTGCCGCAACCTCC
TGACAGCGGCTGCAGATGCCATTGAGCGGATCATGTCGCGTACAAGGAGGTGACGGAGC
TGGCTGGCTACACAGCCGGGTGCACGAGATGTTCCAGGTATTTGAAGATGTTCAAGCC
GTCACCTCAAGAGGCCAGGGAGCTAGAGGACGCTCAGGCCGGGTCTGGGACCATAGGCC
GGTCTGGTGTCCGTGTGGAGGGCCCTGAAGATCCGAGGCCAGGTGGTGGATGTGGAAC
AGGGGATCATCTGCGAGAACATCCCCATCGTCAGGCCCTCAGGAGAGGTGGTGGTGGCCA
GCCTCAACATCAGGGTGGAGGAAGGCATGCATCTGCTCATCACAGGCCCAATGGCTCG

GCAAGAGCTCCCTGTTCCGGATCCTGGGTGGGCTCTGGCCCACGTACGGTGGTGTGCTCT
ACAAGCCCCCACCCAGCGCATGTTCTACATCCCGCAGAGGCCCTACATGTCTGTGGCT
CCCTGCGTGACCAGGTATCTACCCGGACTCAGTGGAGGACATGCAAAGGAAGGGCTACT
CGGAGCAGGACCTGGAAGCCATCCTGGACGTCGTGCACCTGCACCACATCCTGCAGCGGG
AGGGAGGTTGGGAGGCTATGTGTACTGGAAGGACGTCCCTGTCGGGTGGCGAGAACAGA
GAATCGGCATGGCCCGCATGTTCTACACAGGCCAAGTACGCCCTCCTGGATGAATGCA
CCAGCGCCGTGAGCATCGACGTGGAAGGCAAGATCTTCCAGGCCAGGACGCAGCGGC
TTGCCCTGCTCTCCATCACCCACCGGCCCTCCCTGTGAAATACCAACACACTTGCTAC
AGTTCGATGGGGAGGGCGGCTGGAAGTTCGAGAAGCTGGACTCAGCTGCCCGCCTGAGCC
TGACGGAGGAGAACGAGCGGGCTGGAGCAGCAGCTGGCGGGATTCCAAGATGCAGCGGC
GCCTCCAGGAGCTCTGCCAGATCCTGGCGAGGCCGTGGCCCGAGCGCATGTGCCGCCAC
CTAGCCCGCAAGGCCCTGGTGGCCTCCAGGGTGCCTCCACCTGACACAAACCGTCCCCGGC
CCCTGCCCGCCCCCAAGCTGGATCACATGAAGGAGAACGAGCACCCACCCATGCACG
CACCCCGCCCCCTGCATGCCCTGGCCCTCCTCCTAGAAAACCCCTTCCCGCC

ABCC1 Acc.Nr.: L05628 GENBANK: HUMMRPX

CCAGGGCGGCCGTTGCGGGCCCCGGGCCCGGCTCCCTGCGCCGCCGCCGCCGCCGCC
GCCGCCGCCGCCGCCGCCAGCGCTAGCGCCAGCAGCCGGCCCGATCACCCGCCGCCGG
TGCCCCGCCGCCGCCGCCAGCAACCGGGCCCGATCACCCGCCGCCGGTGGCCGCC
CGCCCCGCCACCGGCATGGCGCTCCGGGTTCTGCAGGCCGATGGCTCCGACCCGCT
CTGGGACTGGAATGTCACGTGGAATACCAAGCAACCCGACTTCACCAAGTGCCTTCAGAA
CACGGTCCTCGTGTGGGTGCTTGTACCTCTGGCCTGTTCCCTTCAACTTCT
CTATCTCTCCGACATGACCGAGGCTACATTCAAGATGACACCTCTCAACAAAACCAAAAC
TGCCTGGGATTTTGCTGTGGATCGTCTGCTGGCAGACCTCTACTCTTCTGGGA
AAGAAGTCGGGGCATATTCTGGCCCCAGTGTCTGGTCAGCCAACTCTTGGGAT
CACACCGCTGCTTGCTACCTTTTAATTCAAGCTGGAGAGGAGGAAGGGAGTTCAAGTCTC
AGGGATCATGCTCACTTCTGGCTGGTAGCCCTAGTGTGTGCCCTAGCCATCCTGAGATC
CAAATTATGACAGCCTAAAAGAGGATGCCAGGTGGACCTGTTCTGACATCACTTT
CTACGTCTACTTTCCCTCTTACTCATTCAAGCTCGTCTGCTGTTCTCAGATCGCTC
ACCCCTGTTCTCGGAAACCATCCACAGACCCATACTCCCTGCCAGAGTCCAGCGCTTCTT
CCTGTCGAGGATCACCTCTGGTGGATCACAGGGTTGATTGTCGGGCTACCGCCAGCC
CCTGGAGGGCAGTGACCTCTGGCCTAAACAAGGAGGACACGTGCGAACAGTCGTGCC
TGTTTGGTAAAGAACTGGAAGAAGGAATGCCAAGACTAGGAAGCAGCCGGTGAAGGT
TGTGTACTCCTCCAAGGATCCTGCCAGCCGAAAGAGAGAGTTCCAAGGTGGATGCGAATGA
GGAGGTGGAGGCTTGATCGTCAAGTCCCCACAGAAGGAGTGGAACCCCTCTGTAA
GGTGTATACAAGACCTTGGCCCTACTTCTCATGAGCTTCTTCAAGGCCATCCA
CGACCTGATGATGTTCCGGGCCAGATCTAAAGTTGCTCATCAAGTCTGGAATGA
CACGAAGGCCAGACTGGCAGGGCTACTTCTACACCGTGTGCTGTTGTCACTGCC
CCTGCAGACCCCTCGTGTGCTGCCAGTACTTCCACATCTGCTCGTCAAGGGCATGAGGAT
CAAGACCGCTGTCATTGGGCTGTCTATCGGAAGGCCCTGGTATCACCAATTCAAGGCCAG

AAAATCCTCACGGTCGGGAGATTGTCAACCTCATGTCTGTGGACGCTCAGAGGTTCAT
GGACTTGGCCACGTACATTAACATGATCTGGTCAGCCCCCTGCAAGTCATCCTTGCTCT
CTACCTCCTGTGGCTGAATCTGGGCCCTTCCGCTGGCTGGAGTGGCGGTGATGGTCCT
CATGGTGCCTCGAACATGCTGTGATGGCGATGAAGACCAAGACGTATCAGGTGGCCCACAT
GAAGAGCAAAGACAATCGGATCAAGCTGATGAACGAAATTCTCAATGGATCAAAGTGCT
AAAGCTTTATGCCTGGGAGCTGGCATTCAAGGACAAGGTGCTGGCCATCAGGCAGGAGGA
GCTGAAGGTGCTGAAGAAGTCTGCCTACCTGTCAAGCGTGGGCACCTCACCTGGGTCTG
CACGCCCTTCTGGTGGCCTTGTGCACATTGCCGTACGTGACCATTGACGAGAACAA
CATCCTGGATGCCAGACGCCCTCGTGTCTTGGCCTTGTCAACATCCTCCGGTTCC
CCTGAACATTCTCCCCATGGTCATCAGCAGCATCGTGCAGGCGAGTGTCTCCCTCAAACG
CCTGAGGATCTTCTCCTCCCAGGAGACTGGAAACCTGACAGCATCGAGCGACGGCTGT
CAAAGACGGGGGGCACGAACAGCATCACCGTGAGGAATGCCACATTCACCTGGGCCAG
GAGCGACCCCTCCCACACTGAATGGCATCACCTCTCATCCCCGAAGGTGCTTGGTGGC
CGTGGTGGGCCAGGTGGCTCGGAAAGTCGTCCCTGCTCTCACCCCTCTGGCTGAGAT
GGACAAAGTGGAGGGCACGTGGTATCAAGGGCTCCGTGGCTATGTGCCACAGCAGGC
CTGGATTCAAAATGATTCTCTCCGAGAAAACATCCTTTGGATGTCAGCTGGAGGAACC
ATATTACAGGTCCGTATACTGGCTGTGCCCCCTCCAGACCTGGAAATCCTGCCAG
TGGGGATCGGACAGAGATTGGCGAGAAGGGCGTGAACCTGTCTGGGCCAGAAGCAGCG
CGTAGGCCTGGCCGGCGTGTACTCCAACGCTGACATTACCTCTCGATGATCCCCCT
CTCAGCAGTGGATGCCATGTGGAAAACACATCTTGAAAATGTGATTGCCCAAGGG
GATGCTGAAGAACAAAGACCGGATCTGGTACGCACAGCATGAGCTACTTGCCGCAGGT
GGACGTACATCGTCATGAGTGGCGGCAAGATCTCTGAGATGGGCTCCTACCAAGGAGCT
GCTGGCTCGAGACGGCCCTCGCTGAGTTCCCTGCGTACCTATGCCAGCACAGAGCAGGA
GCAGGATGCAAGGGAGAACGGGTCACGGCGTCAAGGGTCCAGGGAGGAAGCAAAGCA
AATGGAGAATGGCATGCTGGTACGGACAGTGCAGGGAGCAACTGCAGAGACAGCTCAG
CAGCTCCTCCCTATACTGGGACATCAGCAGGCACCAACAGCACCGCAGAACTGCA
GAAAGCTGAGGCCAAGAAGGAGGAGACCTGGAAGCTGATGGAGGTGACAAAGGCGCAGAC
AGGGCAGGTCAAGCTTCCGTGTACTGGACTACATGAAGGCCATGGACTCTTCATCTC
CTTCCTCAGCATCTCCCTTCTGTGTAACCATGTGTCGCCGCTGGCTTCAACTATTG
GCTCAGCCTCTGGACTGATGACCCATCGTCAACGGACTCAGGAGCACACGAAAGTCCG
GCTGAGCGTCTATGGAGCCCTGGGATTTACAAGGGATGCCGTGTTGGCTACTCCAT
GGCCGTGTCATCGGGGATCTGGCTTCCCGCTGCTGCACGTGGACCTGCTGCACAG
CATCCTGCCGTACCCATGAGCTTCTTGAGCGGACCCCCAGTGGGAACCTGGTGAACCG
CTTCTCCAAGGAGCTGGACACAGTGGACTCCATGATCCGGAGGTCAATCAAGATGTTCAT
GGGCTCCCTGTTCAACGTCAATTGGCGCTGCATCGTTATCCTGCTGGCCACGCCATCGC
CGCCATCATCCTGCCCTTGGCCTCATCTACTTCTCGTCCAGAGGTTCTACGTGGC
TTCCCTCCGGCAGCTGAAGGCCCTCGAGTCGGTCAGCCGCTCCCCGGTCTATTCCCATTT
CAACGAGACCTTGCTGGGGTCAGCGTCATTGAGCCTCGAGGAGCAGGAAGCGCTTCAT
CCACCAGAGTGAAGGTGGACGAGAACCGAGAACGCCATTACCCAGCATCGTGGC

CAACAGGTGGCTGGCCGTGCGGCTGGAGTGTGTTGAACTGCATCGTCTGTTGCTGC
 CCTGTTGCGGTGATCTCCAGGCACAGCCTCACTGCTGGCTGGATGTCATCTGAAATGGA
 TTACTCATTCAGGTACCACGTACTGAACGGCTGGCTGGATGTCATCTGAAATGGA
 AACCAACATCGTGGCCGTGGAGAGGCTAAGGAGTATTCAAGAGACTGAGAAGGAGGCC
 CTGGCAAATCCAGGAGACAGCTCCGCCAGCAGCTGGCCCAGGTGGCCAGTGGAAATT
 CCGGAACTACTGCCTGCGCTACCGAGAGGACCTGGACTTCGTTCTCAGGCACATCAATGT
 CACGATCAATGGGGAGAAAAGGTGGCATCGTGGGGCGGACGGGAGCTGGAAAGTCGTC
 CCTGACCCGGCTTATTCGGATCAACGAGTCTGCCAAGGAGAGATCATCATCGATGG
 CATCAACATCGCCAAGATCGGCCTGCACGACCTCCGCTCAAGATCACCATCATCCCCCA
 GGACCCGTGTTGTTGGGTTCCCTCCGAATGAACCTGGACCCATTCCAGCAGTACTC
 GGATGAAGAAGTCTGGACGTCCTGGAGCTGGCCCACCTGAAGGACTTCGTTGTCAGCCCT
 TCCTGACAAGCTAGACCATGAATGTGCAGAAGGCGGGAGAACCTCAGTGTGGCAGCG
 CCAGCTTGTGCCTAGCCGGCCCTGCTGAGGAAGACGAAGATCCTTGTGGATGA
 GGCCACGGCAGCCGTGGACCTGGAAACGGACGACCTCATCCAGTCCACCATCCGGACACA
 GTTCGAGGACTGCACCGTCCCTCACCATCGCCCAACGGCTCAACACCATCATGGACTACAC
 AAGGGTATCGTCTTGGACAAAGGAGAAATCCAGGAGTACGGCCCTCATCGGACCTCCT
 GCAGCAGAGAGGTCTTTCTACAGCATGGCAAAGACGCCGGCTTGGTGTGAGCCCGAGA
 GCTGGCATATCTGGTCAGAACTGCAGGGCTATAATGCCAGCGCCAGGGAGGAGTCAGTA
 CCCCTGGTAAACCAAGCCCTCCCAACTGAAACCAAACATAAAACCAAACAGACAAC
 CAAAACATATTCAAAGCAGCAGCCACCGCCATCCGGTCCCTGCCTGGAACTGGCTGTGA
 AGACCCAGGAGAGACAGAGATGCGAACCAAC

ABCB6 GENBANK: AF070598

CCTTCCTGTGGATCCGGGTGCAGCAGTTCACGTCTCGCGGGTGGAGCTGCTCATCTTCT
 CCCACCTGCACGAGCTCTCACTGCGCTGGCACCTGGGGCGCCGACAGGGAGGTGCTGC
 GGATCGCGGATCGGGCACATCCAGTGTCAACAGGGCTGCTCAGCTACCTGGTGTCAATG
 TCATCCCCACGCTGGCCGACATCATCATTGGCATCATCTACTTCAGCATGTTCTTCAACG
 CCTGGTTGGCCTCATGGTGTCTGTGCATGAGTCTTACCTCACCCGACCATTTG
 TCACTGAGTGGAGAACCAAGTTCGTCGTGCTATGAACACACAGGGAGAACGCTACCCGG
 CACGAGCAGTGGACTCTCTGCTAAACTCGAGACGGTGAAGTATTACACGCCGAGAGTT
 ACGAAGTGGAACGCTATCGAGAGGCCATCATCAAATATCAGGGTTGGAGTGGAAAGTCGA
 GCGCTTCACTGGTTTACTAAATCAGACCCAGAACCTGGTGAATTGGCTGGCTCCCTCG
 CGGGCTCCCTGCTTGGCATACTTGTCACTGAGCAGAAGCTACAGGTTGGGACTATG
 TGCTCTTGGCACCTACATTATCAGCTGTACATGCCCTCAATTGGTTGGCACCTACT
 ACAGGGATGATCCAGACCAACTTCATTGACATGGAGAACATGTTGACTTGCTGAAAGAGG
 AGACAGAAGTGAAGGGACCTTCCCTGGAGCAGGGCCCTTCGCTTCAGAAGGGCCGTATTG
 AGTTTGAGAACGTGCACCTCAGCTATGCCGATGGCGGGAGACTCTGCAGGACGTGTCTT
 TCACTGTGATGCCTGGACAGACACTGCCCTGGTGGGCCATCTGGGGCAGGGAAAGAGCA

CAATTTGCGCCTGCTGTTGCTTACGACATCAGCTCTGGCTGCATCCGAATAGATG
GGCAGGACATTCACAGGTGACCCAGGCCTCTCTCCGGTCTCACATTGGAGTTGTGCC
AAGACACTGTCCTCTTAATGACACCACGCCGACAATATCCGTTACGGCCGTGTCACAG
CTGGGAATGATGAGGTGGAGGCTGCTGCTCAGGCTGCAGGCATCCATGATGCCATTATGG
CTTCCCTGAAGGGTACAGGACACAGGTGGCGAGCGGGGACTGAAGCTGAGCGCGGGG
AGAACGAGCGCGTCGCCATTGCCCGACCATCCTCAAGGCTCCGGCATCATTGCTGG
ATGAGGCAACGTCAAGCCTGGATAACATCTAATGAGAGGGCATCCAGGCTCTGGCCA
AAGTCTGTGCCAACCGCACCACTCGTAGTGGCACACAGGCTCTCAACTGTGGTCAATG
CTGACCAGATCCTCGTCATCAAGGATGGCTGCATCGTGGAGAGGGGACGACACGAGGCTC
TGTTGCCCCGAGGTGGGGTGTATGCTGACATGTGGCAGCTGCAGCAGGGACAGGAAGAAA
CCTCTGAAGACACTAACCGCAGACCATGGAACGGTACAAAAAGTTGGCCACTCC
TCAAAGACTAACCCAGAAGGGATAAGATGTGTCTCCTTCCCTGGCTTATTCATCCTG
GTCTTGGGTATGGTCTAGCTATGGTAAGGGAAAGGGACCTTCCGAAAAACATCTTT
GGGAAATAAAATGTGGACTGTGAAAAAAAAAAAAAAAAAAAAA
ABCB11 GENBANK: AF091582

GAATGATGAAAACCGAGGTTGGAAAAGGTTGTGAAACCTTTAATCTCCACAGTGGAGT
CCATTATTCCTCTGGCTTCCCAAATTCAATTACACAGGTCGTTGGCTGTGGTTGCA
ATTACCATGTCGACTCAGTAATTCTCGAAGTATAAGAAATTGGAGAGGAGAATGAT
GGTTTGAGTCAGATAAAATCATATAATAATGATAAGAAATCAAGGTTACAAGATGAGAAG
AAAGGTGATGGCGTTAGAGTTGGCTTCTTCATTGTTGGTTTCTTCATCAACTGAC
ATTTGGCTGATTTGTGGGAAGTTGTGCATTCTCCATGGAATAGCCCAGCCAGGC
GTGCTACTCATTTGGCACATGACAGATGTTTATTGACTACGACGTTGAGTTACAA
GAACCTCCAGATTCCAGGAAAAGCATGTGTGAATAACACCATTGTATGGACTAACAGTCC
CTCAACCAGAACATGACAAATGGAACACGTTGTGGTTGCTGAACATCGAGAGCGAAATG
ATCAAATTTGCCAGTTACTATGCTGGAATTGCTGTCGAGTACTTATCACAGGATATATT
CAAATATGCTTGGTCATTGCCAGCTCGTCAAGATACAGAAAATGAGAAAATTTAC
TTTAGGAGAAATAATGAGAATGAAATAGGTTGGTTGACTGCAATTCACTGGGGGAGCTG
AATACAAGATTCTCTGATGATATTAATAAAATCAATGATGCCATAGCTGACCAAAATGCC
CTTTCAATTAGCGCATGACCTCGACCATCTGTGGTTCTGTGGATTGGGATTTCAAGGGT
TGGAAACTGACCTGGTATTATTCTGTCAGCCCTCTCATTGGGATTGGAGCAGCCACC
ATTGGTCTGAGTGTGTCAGTTACGGACTATGAGCTGAAGGCCTATGCCAAAGCAGGG
GTGGTGGCTGATGAAGTCATTCAATGAGAACAGTGGCTGCTTTGGTGGTGGAGAAA
AGAGAGGTTGAAAGGTATGAGAAAATCTGTGTTGCCAGCGTTGGGAATTAGAAA
GGAATAGTGATGGGATTCTTACTGGATTGCTGTTGCTCATCTTTGTGTTATGCA
GTGGCCTCTGGTACGGCTCCACACTGTCCTGGATGAAGGAGAATATACACCAAGGAACC
CTTGTCCAGATTTCTCAGTGTCAAGTAGGAGCTTAAATCTGGCAATGCCTCTCCT
TGTTGGAAGCCTTGCAACTGGACGTGCAGCAGCCACCAGCATTTGAGACAATAGAC
AGGAAACCCATCATTGACTGCATGTCAGAAGATGGTTACAAGTTGGATCGAATCAAGGGT
GAAATTGAATTCCATAATGTGACCTTCCATTATCCTTCCAGACCAGAGGTGAAGATTCTA

- 27/42 -

AATGACCTCAACATGGTCATTAAACCAGGGAAATGACAGCTCTGGTAGGACCCAGTGGAA
GCTGGAAAAAGTACAGCACTGCAACTCATTAGCGATTCTATGACCCCTGTGAAGGAATG
GTGACCGTGGATGCCATGACATTGCTCTCTAACATTAGCTGGCTTAGAGATCAGATT
GGGATAGTGGAGCAAGAGCCAGTTCTGTTCTACCACCATTGCAGAAAATATCGCTAT
GGCAGAGAAGATGCAACAATGGAAGACATAGTCCAAGGCTGCCAAGGAGGCCAATGCCTAC
AACTTCATCATGGACCTGCCACAGCAATTGACACCCTTGGAGAAGGAGGCCAG
ATGAGTGGTGGCCAGAAACAAAGGGTAGCTATGCCAGAGCCCTCATCGAAATCCAAAG
ATTCTGCTTTGGACATGCCACCTCAGCTCTGGACAATGAGAGTGAAGGCCATGGTGCAA
GAAGTGTGAGTAAGATTAGCATGGCACACAATCATTAGCTGCTCATCGCTTGTCT
ACGGTCAGAGCTGCAGATAACCATCATTGGTTTGAACATGGCACTGCAGTGGAAAGAGGG
ACCCATGAAGAATTACTGAAAGGAAAGGTGTTACTTCACTCTAGTGAACCTTGAAAGC
CAGGGAAATCAAGCTCTTAATGAAGAGGACATAAAGGATGCAACTGAAGATGACATGCTT
GCGAGGACCTTAGCAGAGGGAGCTACCAGGATAGTTAAGGGCTCCATCCGGCAACGC
TCCAAGTCTCAGCTTCTTACCTGGTCACGAACCTCCATTAGCTGTTGAGATCATAAG
TCTACCTATGAAGAAGATAGAAAGGACAAGGACATTCTGTGCAGGAAGAAGTTGAACCT
GCCCGAGTTAGGAGGATTCTGAAATTCACTGCTCCAGAAATGCCCTACATGCTGGTAGGG
TCTGTGGGTGCAGCTGTGAACGGACAGTCACACCCCTGTATGCCCTTTTATTCAAGGCCAG
ATTCTGGGACTTTTCAATTCTGTATAAAGAGGAACAAAGGTACAGATCAATGGTGTG
TGCCTACTTTTAGCAATGGCTGTATCTCTTCAACCAATTCTACAGGGATAT
GCCCTTGCTAAATCTGGGAGCTCCTAACAAAAAGGCTACGTAATTTGGTTCAAGGGCA
ATGCTGGGCAAGATATTGCCCTGGTTGATGACCTCAGAAATGCCCTGGAGCATTGACA
ACAAGACTTGTACAGATGCTCCAAAGTTCAAGGGCTGCCGGCTCAGATGGGATG
ATAGTCAATTCTCACTAACGTCACTGTGGCATGATCATTGCCCTCTCCTTAGCTGG
AAGCTGAGCCTGGTCATCTGTGCTTCTTCCCCCTTCTGGCTTATCAGGAGGCCACACAG
ACCAGGATGTTGACAGGATTGCCCTCTCGAGATAAGCAGGCCCTGGAGATGGTGGGACAG
ATTACAAATGAAGCCCTCAGTAACATCCGACTGTTGCTGAAATTGGAAAGGAGAGGCCGG
TTCATTGAAGCACTTGAGACTGAGCTGGAGAAGCCCTCAAGACAGGCCATTCAAGAAAGCC
AATATTTCAGGATTCTGCTTGCCTTGCCCAGTGCATCATGTTATTGCAATTCTGCT
TCCTACAGATATGGAGGTTACTTAATCTCAAATGAGGGCTCATTCACTGCTATGTGTT
AGGGTGATCTCTGCAGTTGACTGAGTCAACAGCTCTGGAGAGGCCCTCTTACACC
CCAAGTTATGCAAAAGCTAAAATATCAGCTGCACGCTTTTCACTGCTGGACCGACAA
CCCCCAATCAGTGATACAAATACTGCAGGTGAAAATGGACAACCTCCAGGGGAAGATT
GATTTGTTGATTGAAATTACATATCCTCTCGACCTGACTCGCAAGTTCTGAATGGT
CTCTCAGTGTGATTAGTCCAGGGCAGACACTGGCGTTGTTGGAGCAGTGGATGTGGC
AAAAGCACTAGCATTCACTGTTGGAAACGTTCTATGATCCTGATCAAGGGAAAGGTGATG
ATAGATGGTCATGACAGCAAAAGTAAATGTCCAGTTCCCTCGCTCAAACATTGAAATT
GTTTCCAGGAACCAGTGTGTTGCCTGTAGCATAATGGACAATATCAAGTATGGAGAC
AACACCAAAAGAAATTCCCATGGAAAGAGTCATAGCAGCTGCAAAACAGGCTCAGCTGCAT
GATTTGTCATGTCATCCCAGAGAAATATGAAACTAACGTTGGGTCCAGGGGTCTCAA

CTCTCTAGAGGGGAGAAACAACGCATTGCTATTGCTCGGCCATTGTACGAGATCCTAAA
 ATCTTGCTACTAGATGAAGCCACTTCTGCCTTAGACACAGAAAGTAAAAGACGGTGCAG
 GTTGCTCTAGACAAAGCCAGAGAGGGTCGGACCTGCATTGTCATTGCCATCGCTTGCC
 ACCATCCAGAACGCAGATATCATTGCTGTATGGCACAGGGGTGGTATTGAAAAGGGG
 ACCCATGAAGAACTGATGGCCAAAAAGGAGCCTACTACAAACTAGTCACCACGGATCC
 CCCATCAGTTGACCCAATGCAAGAATCTCAGACACACATGACGCACCAGTTACAGGGTT
 GTTTTAAAGAAAAAAACAATCCCAGCACGAGGGATTGCTGGATTGTTTTCTTAAA
 GAAGAATNTNNNTATTTACTTTACNNNCNTTCTACATCGGAATCCAANCTAATT
 CTAATGGCCTTCCATAATAATTCTGCTTAGATGTGTATACAGAAAATGAAAGAAACTAG
 GGTCCATGTGAGGGAAAACCAATGTCAAGTGGCAGCTCAGCCACCACTCAGTGCTTCTC
 TGTGCAGGAGCCAGTCCTGATTAATATGTGGATTAGTGAGACATCAGGGAGTAAGTGA
 CACTTGAACCTCCTCAAGGACAGAGAACTGTCTTCATTTTGAAACCTCGGTGTACACA
 GAGGCCGGTCTGTAACAGGCAATCAACAAACGTTCTTGAGCTAGACCAAGGTCAAGATT
 GAAAAGAACAGAAGGACTGAAGACCAAGCTGTGTTCTTAACTAAATTGTCTTCAGTG
 AAACCAAGCTTCCCTCATCTCTAAGGCTAAGGATAGGGAAAGGGTGGATGCTCTCANGCT
 GAGGGAGGCANAAAGGGAAAGTATTANCATGAGCTTCCANTTAGGGCTGTTGATTTATG
 CTTTAACCTCANANTGAGTGTAGGGTGGTGANCTA

ABCG2 GENBANK:AF103796

TTTAGGAACGCACCGTGCACATGCTTGGTGGTCTTGTTAAGTGGAAACTGCTGCTTCTAGA
 GTTTGTTGGAAGGTCCCCGGTGAECTCATCCCAACATTACATCCTTAATTGTTAAAGCGC
 TGCCCTCGAGCGCACGCATCCTGAGATCCTGAGCCTTGGTTAAGACCGAGCTCTATTAA
 GCTGAAAAGATAAAAACCTCTCCAGATGTCTTCAGTAATGTCGAAGTTTTATCCCAGTG
 TCACAAGGAAACACCAATGGCTCCCGCGACAGTTCCAATGACCTGAAGGCATTTACT
 GAAGGAGCTGTGTTAAGTTTCATAACATCTGCTATCGAGTAAACTGAAGAGTGGCTT
 CTACCTTGTGAAAACCAAGTTGAGAAAGAAATTATCGAATATCAATGGGATCATGAAA
 CCTGGTCTCAACGCCATCCTGGGACCCACAGGGTGGAGGCAAATCTCGTTATTAGATGTC
 TTAGCTGCAAGGAAAGATCCAAGTGGATTATCTGGAGATGTTCTGATAAAATGGAGCACCG
 CGACCTGCCAATTCAAATGTAATTCAAGGTTACGTGGTACAAGATGATGTTGTGATGGGC
 ACTCTGACGGTGAGAGAAAACCTACAGTTCTCAGCAGCTCTCGGCTTGCAACAACTATG
 ACGAATCATGAAAAACGAACGGATTAACAGGGTCATTGAAGAGTTAGGCTGGATAAA
 GTGGCAGACTCCAAGGTTGGAACTCAGTTATCCGTGGTGTGCTGGAGGAGAAAGAAAA
 AGGACTAGTATAGGAATGGAGCTTATCACTGATCCTCCATCTGTCCTGGATGAGCT
 ACAACTGGCTTAGACTCAAGCACAGCAAATGCTGCTTTGCTCCTGAAAAGGATGCT
 AAGCAGGGACGAACAACTCATCTTCTCCATTCACTCAGCCTCGATATTCCATCTCAAGTTG
 TTTGATAGCCTCACCTTATTGGCCTCAGGAAGACTTATGTTCCACGGGCCTGCTCAGGAG
 GCCTGGGATACTTGAATCAGCTGGTATCACTGTAAGGCCTATAATAACCCCTGCAGAC
 TTCTCTGGACATCATTAAATGGAGATTCCACTGCTGTCGCTTAAACAGAGAAGAAGAC
 TTTAAAGCCACAGAGATCATAGAGCCTTCCAAGCAGGATAAGCCACTCATAGAAAAATT
 GCGGAGATTTATGTCAACTCCTCCTACAAAGAGACAAAAGCTGAATTACATCAACTT

TCCGGGGGTGAGAAGAAGAAGAAGATCACAGTCTCAAGGAGATCAGCTACACCACCTCC
 TTCTGTCAACTCAGATGGGTTCCAAGCGTCATTCAAAAACCTGCTGGTAATCCC
 CAGGCCTCTATAGCTCAGATCATTGTCACAGTCGTACTGGACTGGTTATAGGTGCCATT
 TACTTGGCTAAAAAAATGATTCTACTGGAATCCAGAACAGAGCTGGGTTCTCTTC
 CTGACGACCAACCAGTGTTCAGCAGTGTTCAGCCGTGGAACCTTTGTGGTAGAGAAG
 AAGCTCTTACATGAATACATCAGCGGA TACTACAGAGTGTCA TCTTATTCCTTGGAA
 AAAC TGTTATCTGATTATTACCCATGAGGATGTTACCAAGTATTATATTACCTGTATA
 GTGTACTTCATGTTAGGATTGAAGCCAAAGGCAGATGCCCTCTCGTTATGATGTTACC
 CTTATGATGGTGGCTTATT CAGCCAGTTCCATGGCACTGCCATAGCAGCAGGTCAAGAGT
 GTGGTTCTGTAGCAACACTTCTCATGACCATCTGTTTGTTATGATGATTTTCA
 GGTCTGTTGGTCAATCTCACACCATTGCATCTGGCTGTCA TGGCTTCAGTACTTCAGC
 ATTCCACGATATGGATTACGGCTTGCAGCATAATGAATTTGGACAAAACCTCTGC
 CCAGGACTCAATGCAACAGGAAACAATCCTGTA ACTATGCAACATGTA CTTGGCGAAGAA
 TATTTGGTAAAGCAGGGCA TCGATCTCTCACCCCTGGGCTTGTGGAAGAATCACGTGGCC
 TTGGCTTGTATGATTGTTATTTCTCACAAATTGCCTACCTGAAATTGTTATTCCTTAA
 AAATATTCTAAATTCCCCTTAATTCA GTATGATTATCCTCACATAAAAAGAAC
 TTTGATTGAAGTATTCAATCAAGTTTTTGTGTTCTGTTCCCTGCCATCACACTG
 TTGCA CAGCAGCAATTGTTAAAGAGATACATTTAGAAATCACAAACAACTGAATTAA
 AACATGAAAGAACCCAAAGACATCATGTATCGCATATTAGTTAATCTCCTCAGACAGTAAC
 CATGGGGAAAGAAATCTGGTCTAATTATTAATCTAAAAAGGAGAATTGAATTCTGGAAA
 CTCCCTGACAAGTTATTACTGTCTGGCATTGTTCTCATCTTAAATGAATAGGTA
 GGTTAGTAGCCCTTCAGTCTTAATACTTTATGATGCTATGGTTGCCATTATTAATATA
 TGACAAATGTATTAATGCTATACTGGAAATGTA AAAATTGAAATATGTTGGAAAAAGAT
 TCTGTTATAGGGTAAAAAAAGCCACCGGTGATAGAAAAAAATCTTTTGATAAGCAC
 ATTAAAGTTAATAGAACTT

ABCC5 GENBANK: AF104942

CCGGGCAGGTGGCTCATGCTCGGGAGCGTGTTGAGCGGTGGCGGGTTGTCTGGAGC
 AGGGGCGCAGGAATTCTGATGTGAAACTAACAGTCTGTGAGCCCTGGAACCTCCGCTCAG
 AGAAGATGAAGGATATCGACATAGGAAAAGAGTATATCATCCCCAGTCCTGGGTATAGAA
 GTGTAGGGAGAGAACCGACCTCTGGACCGCACAGAGACCGTGAAGATTCAAGTTCA
 GGAGAACTCGACCGTTGGAATGCCAAGATGCCTGGAAACAGCAGCCGAGGCCGAGGGCC
 TCTCTTGTATGCCTCCATGCATTCTCAGCTCAGAACATCTGGATGAGGAGCATCCCAAGG
 GAAAGTACCATCATGGCTTGAGTGCCTGAAAGCCCACCGGACTACTTCAAACACCCAGC
 ACCCAGTGGACAATGCTGGCTTTTCTGTATGACTTTCTGGCTTCTCTCTGG
 CCCGTGTGGCCACAAGAAGGGGGAGCTCTCAATGGAAGACGTGTGGCTCTGTCCAAGC
 ACGAGTCTTGTACGTGAAC TGCAAGAAGACTAGAGAGACTGTGGCAAGAACAGCTGAATG
 AAGTTGGGCCAGACGCTGCTCCCTGCGAAGGGTTGTGGATCTCTGCCGCACCGGC
 TCATCCTGTCCATCGTGTGCCGTGATGATCACGCAGCTGGCTGGCTTCAGTGGACCAGCCT
 TCATGGTAAACACCTCTGGAGTACCCAGGCAACAGAGTCTAACCTGCAGTACAGCT

TGTTGTTAGTGCCTGGGCCTCCTGACGGAAATCGTCGGTCTTGGCGCTTGCACTGA
CTTGGGCATTGAATTACCGAACCGGTGTCCGCTTGCGGGGGCCATCTAACCATGGCAT
TTAAGAAGATCCTTAAGTAAAGAACATTAAGAGAAATCCCTGGGTGAGCTCATCAACA
TTTGCTCCAACGATGGGAGAGAAATGTTGAGGCAGCAGCCGTTGGCAGCCTGCTGGCTG
GAGGACCCGTTGCCATCTTAGGCATGATTATAATGTAATTATTCTGGGACCAACAG
GCTTCTGGGATCAGCTTTTATCCTCTTTACCCAGCAATGATGTTGCATCACGGC
TCACAGCATATTCAGGAGAAAATGCGTGGCCACGGATGAACGTGTCCAGAAGATGA
ATGAAGTTCTTACTTACATTAATTTATCAAATGTATGCCCTGGTCAAAGCATTTC
AGAGTGTCAAAAATCCCGAGGAGGAGCGCTGGATATTGGAAAAAGCCGGGTACTTCC
AGGGTATCACTGTGGGTGGCTCCATTGTGGTGGTATTGCCAGCGTGGTACCTTCT
CTGTTCAATGACCCTGGGCTTCGATCTGACAGCAGCACAGGCTTCACAGTGGTGACAG
TCTTCAATTCCATGACTTTGCTTGAAAGTAACACCGTTTCAGTAAAGTCCCTCTCAG
AAGCCTCAGTGGCTGTTGACAGATTAAGAGTTGTTCTAATGGAAGAGGTTCACATGA
TAAAGAACAAACAGCCAGTCCTCACATCAAGATAGAGATGAAAAATGCCACCTGGCAT
GGGACTCCTCCCCTCCAGTATCCAGAACCTCGCCAGCTGACCCCCAAAATGAAAAAAG
ACAAGAGGGCTTCCAGGGCAAGAAAGAGAAGGTGAGGCAGCTGCAGCGACTGAGCAGC
AGGCGGTGCTGGCAGAGCAGAAAGGCCACCTCCTGGACAGTGACGAGCGGGCCAGTC
CCGAAGAGGAAGAAGGCAAGCACATCCACCTGGCACCTGCGCTTACAGAGGACACTGC
ACAGCAGTCGATCTGGAGATCCAAGAGGGTAAACTGGTGGATCTGCGCAGTGTGGAA
GTGGAAAAACCTCTCTCATTCAGCCATTTAGGCCAGATGACGCTCTAGAGGGCAGCA
TTGCAATCAGTGGAACCTCGTTATGTGGCCAGCAGGCTGGATCCTCAATGCTACTC
TGAGAGACAACATCCTGTTGGAAAGGAATATGATGAAGAAAGATACAACCTGTGCTGA
ACAGCTGCTGCCTGAGGCCTGACCTGGCATTCTCCAGCAGCAGCTGACGGAGATTG
GAGAGCGAGGGCCAACCTGAGCGGTGGCAGCGCCAGAGGATCAGCCTTGGGGCCT
TGTATAGTGACAGGAGCATCTACATCCTGGACGACCCCTCAGTGCCTTAGATGCCATG
TGGGCAACCACATCTCAATAGTGCTATCCGAAACATCTCAAGTCCAAGACAGTTCTGT
TTGTTACCCACAGTTACAGTACCTGGTGTACTGTGATGAAGTGATCTCATGAAAGAGG
GCTGTATTACGAAAGAGGCACCCATGAGGAACGTGATGAATTAAATGGTACTATGCTA
CCATTTAATAACCTGTTGCTGGAGAGACACCGCCAGTTGAGATCAATTAAAAAGG
AAACCAAGTGGTCACAGAAGAAGTCACAAGACAAGGGCTAAAACAGGATCAGTAAAGA
AGGAAAAAGCAGTAAAGCCAGAGGAAGGGCAGCTGTGAGCTGAAAGAGAAAGGGCAGG
GTTCACTGCCCTGGTCAGTATATGGTGTCTACATCCAGGCTGCTGGGGCCCTTGGCAT
TCCTGGTTATTATGCCCTTTCATGCTGAATGTAGGCAGCACCGCTTCAGCACCTGGT
GGTTGAGTTACTGGATCAAGCAAGGAAGCGGGAACACCAACTGTGACTCGAGGGAACGAGA
CCTCGGTGAGTGACAGCATGAAGGACAATCCTCATATGCAGTACTATGCCAGCATCTACG
CCCTCTCCATGGCAGTCATGCTGATCCTGAAAGCCATTGAGGAGTTGTCTTGTCAAGG
GCACGCTGCGAGCTTCCCTCCGGCTGCATGACGAGCTTCCGAAGGGATCCTCGAAGGCC
CTATGAAGTTTTTGACACGACCCCCACAGGGAGGATTCTCAACAGGTTTCAAAGACA
TGGATGAAGTTGACGTGCGGCTGCCGTTCCAGGCCAGATGTTCATCCAGAACGTTATCC

TGGTGTCTTCTGTGTGGGAATGATCGCAGGAGTCTTCCGTGGTCCTGTGGCAGTGG
GGCCCCCTTGTCATCCTCTTTCACTGCACATTGTCTCCAGGGCCTGATTGGGAGC
TGAAGCGTCTGGACAATATCACGCAGTCACCTTCTCCTCCCACATCACGCCAGCATA
AGGGCCTTGCCACCATCCACGCCAACAAATAAGGGCAGGAGTTCTGCACAGATA
AGCTGCTGGATGACAACCAAGCTCTTTTTTGTACGTGTGCATGCCGGTGGCTGG
CTGTGCGGCTGGACCTCATCAGCATGCCCTCATCACCACCGGGCTGATGATCGTTC
TTATGCACGGGAGATTCCCCCAGCCTATGCCGGTCTGCCATCTTATGCTGTCCAGT
TAACGGGCTGTTCCAGTTACGGTCAACTGGCATCTGAGACAGAAGCTGATTAC
CGGTGGAGAGGATCAATCACTACATTAAGACTCTGCTCTTGGAAAGCACCTGCCAGA
AGAACAAAGGCTCCCTCCCCTGACTGGCCCCAGGAGGGAGAGGTGACCTTGAGAAC
AGATGAGGTACCGAGAAAACCTCCCTTGTCTAAAGAAAGTATCCTCACGATCAAAC
CTAAAGAGAAGATTGGCATTGTGGGGCGGACAGGATCAGGAAGTCCTCGCTGGGATGG
CCCTCTTCCGCTGGTGGAGTTATCTGGAGGCTGCATCAAGATTGATGGAGTGAGA
GTGATATTGGCCTTGCCGACCTCCGAAAGCAAACCTCTATCATTCCCTCAAGAGCCGG
TGTTCACTGGCACTGTCAGATCAAATTGGACCCCTCAACCAGTACACTGAAGACC
TTTGGGATGCCCTGGAGAGGACACACATGAAAGAATGTATTGCTCAGTACCTCTGA
TTGAATCTGAAGTGTGGAGAATGGGATAACTCTCAGTGGGGGAACGGCAGCTCTG
GCATAGCTAGAGCCCTGCTCCGCCACTGTAAGATTCTGATTTAGATGAAGGCCACAG
CCATGGACACAGAGACAGACTTATTGATTCAAGAGACCATCCGAGAACGATTGCA
GTACCATGCTGACCATTGCCATGCCCTGCACACGGTTCTAGGCTCCGATAGGATTATGG
TGCTGGCCAGGGACAGGTGGTGGAGTTGACACCCATCGGTCTCTGTCCAACGACA
GTTCCCGATTCTATGCCATGTTGCTGCTGCAGAGAACAGGTCGCTGTCAAGGGCTG
TCCTCCCTGGTACGAAGTCTCTTCTTAGAGCATTGCCATTCCCTGCCTGGGCGGG
CCCCTCATCGCGTCTCCACCGAAACCTTGCCTTCTCGATTTATCTTCTGCACAGCA
GTTCCGGATTGGCTTGTGTTCACTTTAGGGAGAGTCATATTTGATTATTGTATTT
ATTCCATATTGTAACAAAATTAGTTGTTCTTAATTGCACTCTAAAGGTTCA
GGGAACCGTTATTATAATTGTATCAGAGGCCTATAATGAAGCTTATACGTGAGCTATA
TCTATATATAATTCTGTACATAGCCTATATTACAGTAAAATGTAAGCTGTTATTTA
TATTAAAATAAGCACTGTGCTAATAACAGTGCATATTCTTCTATCATTGTTACAGT
TTGCTGTACTAGAGATCTGGTTTGCTATTAGACTGTAGGAAGAGTAGCATTCTATT
CTCTAGCTGGTGGTTACGGTGCACGGTTCTGGGTGTCACAGGAAAGACGTGTGGCA
ATAGGGGCCCTCCGACAGCCCCCTGCGCCCTCCCCACAGCCGCTCCAGGGGTGGCTG
GAGACGGGTGGCGGCTGGAGACCATGCGAGAGCGCCGTGAGTTCTCAGGGCTCTGC
CTGTCTGGTGTCACTTACTGTTCTGTCAGGAGAGCAGCGGGGCGAAGCCCAGGCC
TTTCACTCCCTCCATCAAGAAATGGGATCACAGAGACATTCTCCAGGCCGGGAGTT
TTTCCCTGCCTTCTTCTTTGCTGTTCTAAACAAGAATCAGTCTATCCACAGAGAG
TCCCACGCTCAGGTTCCATGGCTGGCACTGCACAGAGCCTCCAGCTCCAAGAC
GTTGGTTCCAAGCCCTGGAGCCAAGTGTGCTTTGAGGTGGCACTTTTCAATTGC
ATTCCACACCTCCACAGTTCAGTGGCAGGGCTCAGGATTCGTGGTCTGTTCTT

CTCACCGCAGTCGTCGCACAGTCTCTCTCTCTCCCCTCAAAGTCTGCAACTTAAG
CAGCTCTTGCTAATCAGTGTCTCACACTGGCGTAGAAGTTTGACTGTAAAGAGACCT
ACCTCAGGTTGCTGGTTGCTGTGTGGTTGGTGTGTTCCCGCAAACCCCTTGTGCTGT
GGGGCTGGTAGCTCAGGTGGCGTGGTCACTGCTGTATCAGTTGAATGGTCAGCGTTGC
ATGTCGTGACCAACTAGACATTCTGTCGCCCTAGCATGTTGCTGAACACCTTGTGGAAG
CAAAAATCTGAAAATGTGAATAAAATTATTTGGATTTGTAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

ABCA5 Acc. Nr.: AF000148 GENBANK: HSAF000148

GCCAGAGGCCTCTAACGGCTTATGCTCTTGCTGTGAGGGGCCTCAGCTCTGAC
CAATCTGGTCTCGTGTGGTCATTAGCATGGCTTCGTGAGACAGATAACAGCTTTGCTC
TGGAAAGAACTGGACCTGCGAAAAGGCAAAGATTGCTTTGTGGTGGAACTCGTGTGG
CCTTTATCTTATTTCTGGTCTTGATCTGGTTAAGGAATGCCAACCCGCTCTACAGCCAT
CATGAATGCCATTTCCCCAACAGGCATGCCCTCAGCAGGAATGCTGCCGTGGCTCCAG
GGGATCTTCTGCAATGTGAACAATCCCTGTTCAAAGCCCCACCCAGGAGAATCTCCT
GGAATTGTGTCAAACTATAACAACCTCCATCTGGCAAGGGTATATCGAGATTTCAAGAA
CTCCTCATGAATGCACCAGAGAGCCAGCACCTGGCCGTATTTGGACAGAGCTACACATC
TTGTCCAATTCAATGGACACCCCTCCGACTCACCCGGAGAGAATTCGAGGAAGAGGAATA
CGAATAAGGGATATCTTGAAGAGATGAAGAAACACTGACACTATTCTCATTAAAAACATC
GGCCTGTCTGACTCAGTGGCTACCTCTGATCAACTCTCAAGTCCGTCCAGAGCAGTTC
GCTCATGGAGTCCCGGACCTGGCGCTGAAGGACATGCCCTGCAGCGAGGCCCTGGAG
CGCTTCATCATCTTCAGCCAGAGACGCAGGGCAAAGACGGTGCCTATGCCCTGTGCTCC
CTCTCCCAGGGCACCCACAGTGGATAGAAGACACTCTGTATGCCAACGTGGACTTCTTC
AAGCTCTTCCGTGTGCTCCCACACTCCTAGACAGCCCTCTCAAGGTATCAATCTGAGA
TCTTGGGAGGAATATTATCTGATATGTCACCAAGAATTCAAGAGTTATCCATGGCCG
AGTATGCAGGACTTGTGTGGGTGACCAGGCCCTCATGCAGAATGGTGGTCCAGAGACC
TTTACAAAGCTGATGGCATCCTGCTGACCTCCTGTGTGGCTACCCGAGGGAGGTGGC
TCTCGGGTGTCTCCTCAACTGGTATGAAGACAATAACTATAAGGCCCTTCTGGGATT
GACTCCACAAGGAAGGATCCTATCTATTCTTATGACAGAAGAACACATCCTTTGTAAT
GCATTGATCCAGAGCCTGGAGTCATACTTAAACAAAATCGCTGGAGGGCGGCAAAG
CCTTGCTGATGGGAAAAATCCTGTACACTCCTGATTCACCTGCAGCACGAAGGATACTG
AAGAATGCCAACTCAACTTTGAAGAACTGGAACACGTTAGGAAGTGGTCAAAGCCTGG
GAAGAAGTAGGGCCCCAGATCTGGTACTTCTTGACAAACAGCACACAGATGAACATGATC
AGAGATAACCTGGGGAACCCAACAGTAAAAGACTTTGAAATAGGCAGCTGGTGAAGAA
GGTATTACTGCTGAAGCCATCCTAAACTCCTCTACAAGGCCCTCGGGAAAGCCAGGCT
GACGACATGGCCAACCTCGACTGGAGGGACATATTAAACATCACTGATCGCACCCCTCCGC
CTGGTCAATCAATACCTGGAGTGCTGGCTGGATAAGTTGAAAGCTACAATGATGAA
ACTCAGCTCACCCAACGTGCCCTCTCTACTGGAGGAAACATGTTCTGGGCCGGAGTG
GTATTCCCTGACATGTATCCCTGGACCAGCTCTTACCCACCCACGTGAAGTATAAGATC
CGAATGGACATAGACGTGGTGGAGAAAACCAATAAGATTAAGACAGGTATTGGGATTCT

GGTCCCAGAGCTGATCCCGTGGAAAGATTCCGGTACATCTGGGGCGGGTTGCCTATCTG
CAGGACATGGTTGAACAGGGGATCACAGGAGCCAGGTGCAGGCAGGCTCCAGTTGGA
ATCTACCTCCAGCAGATGCCCTACCCCTGCTCGTGGACGATTCTTCATGATCATCCTG
AACCGCTGTTCCCTATCTTCATGGTGCTGGCATGGATCTACTCTGTCTCCATGACTGTG
AAGAGCATCGTCTTGGAGAAGGGAGTTGCGACTGAAGGAGACCTTGAAAATCAGGGTGTG
TCCAATGCAGTGATTGGTGTACCTGGTCTGGACAGCTCTCCATCATGTCGATGAGC
ATCTTCCTCCTGACGATATTCAATGCAAGAATCCTACATTACAGCGACCCATTG
ATCCTCTTCCTGTTCTTGGCTTCTCCACTGCCACCATCATGCTGTGCTTCTGCTC
AGCACCTCTTCTCCAAGGCCAGTCGGCAGCAGCCTGTAGTGGTGTCACTTATTCACC
CTCTACCTGCCACACATCCTGTGCTCGCCTGGCAGGACCGCATGACCGCTGAGCTGAAG
AAGGCTGTGAGCTTACTGTCTCCGGTGGCATTGGATTTGGACTGAGTACCTGGTTCGC
TTTGAAGAGCAAGGCCCTGGGCTGCAGTGGAGCAACATCGGGAACAGTCCCACGGAAGGG
GACGAATTCAAGCTTCTGCTGTCCATGCAGATGATGCTCCTTGATGCTGTCTATGGC
TTACTCGCTTGGTACCTTGATCAGGTGTTCCAGGAGACTATGGAACCCCACCTCCTTGG
TACTTCTTCTACAAGAGTCGTATTGGCTTGGCGGTGAAGGGTGTCAACCAGAGAAGAA
AGAGCCTGGAAAAGACCGAGCCCCTAACAGAGGAAACGGAGGATCCAGAGCACCCAGAA
GGAATACACGACTCCTCTTGAACGTGAGCATCCAGGGTGGTCTGGGTATGCGTG
AAGAATCTGGTAAAGATTTTGAGCCCTCCGGCCAGCTGTGGACCGTCTGAACATC
ACCTTCTACGAGAACAGATCACCGCATTCTGGGCCACAATGGAGCTGGAAAACCACC
ACCTTGTCCATCCTGACGGGTCTGTTGCCACCAACCTCTGGACTGTGCTCGTTGGGGGA
AGGGACATTGAAACCAGCCTGGATGCAGTCCGGCAGAGCCTGGCATGTGTCACAGCAC
AACATCCTGTTCCACCACCTCACGGTGGCTGAGCACATGCTGTTCTATGCCAGCTGAAA
GGAAAGTCCCAGGAGGAGGCCAGCTGGAGATGGAAGCCATGTTGGAGGACACAGGCCTC
CACCACAAGCGGAATGAAGAGGCTCAGGACCTATCAGGTGGCATGCAGAGAAAGCTGTG
GTTGCCATTGCCCTTGTGGAGATGCCAAGGTGGTATTCTGGACGAACCCACCTCTGGG
GTGGACCCCTACTCGAGACGCTCAATCTGGATCTGCTCCTGAAGTATCGCTCAGGCAGA
ACCATCATGTCCACTCACCACTGAGGAGGCCACTCTGGGACCCGATTGCC
ATCATTGCCAGGGAAAGGCTCTACTGCTCAGGCACCCACTCTCCTGAAGAACTGCTTT
GGCACAGGCTTGTACTTAACCTTGGTGCAGAAGATGAAAAACATCCAGAGCCAAGGAAA
GGCAGTGAGGGACCTGCAGCTGCTCGTCAAGGGTTCTCCACCACTGTCAGCCCAC
GTCGATGACCTAACTCCAGAACACAAGTCCTGGATGGGATGTAATGAGCTGATGGATGTA
GTTCTCCACCATGTTCCAGAGGCAAAGCTGGTGGAGTGCATTGGTCAAGAACTTATCTTC
CTTCTCCAAATAAGAAACTCAAGCACAGAGCATATGCCAGCCTTTCAGAGAGCTGGAG
GAGACGCTGGCTGACCTTGGTCTCAGCAGTTGGATTCTGACACTCCCTGGAAGAG
ATTTTCTGAAGGTCACGGAGGATTCTGATTCAAGGACCTCTGTTGGGGTGGCGCTCAG
CAGAAAAGAGAAAACGTCAACCCCCGACACCCCTGCTTGGGTCCAGAGAGAAGGCTGGA
CAGACACCCAGGACTCCAATGTCTGCTCCCCAGGGCGCCGGCTGCTCACCCAGAGGGC
CAGCCTCCCCAGAGCCAGAGTGCCTCAGGCCCCAGCTCAACACGGGGACACAGCTGGTC
CTCCAGCATGTGCAGGCGCTGCTGGTCAAGAGATTCCAACACACCAATCCGCAGCCACAAG

GAACCTCCGGCGCAGATCGTGCCTCCGGCTACCTTGTTGGCTCTGATGCTTCT
ATTGTTATCCCTCCTTTGGCGAATACCCCGCTTGACCCCTCACCCCTGGATATATGGG
CAGCAGTACACCTTCTTCAGCATGGATGAACCAGGCAGTGAGCAGTCACGGTACTTGCA
GACGTCCCTGAATAAGCCAGGCTTGGCAACCGCTGCCTGAAGGAAGGGTGGCTTCCG
GAGTACCCCTGTGGCAACTCAACACCCCTGGAAGACTCCTCTGTGTCCCCAAACATCACC
CAGCTGTTCCAGAAGCAGAAATGGACACAGGTCAACCCCTCACCATCCTGCAGGTGCAGC
ACCAGGGAGAACGTCACCATGCTGCCAGAGTGCCCCGAGGGTGCCGGGGCCTCCGCC
CCCCAGAGAACACAGCGCAGCACGAAATTCTACAAGACCTGACGGACAGGAACATCTCC
GACTCTTGGTAAAAACGTATCCTGCTCTTATAAGAACAGCTTAAAGAGCAAATTCTGG
GTCAATGAACAGAGGTATGGAGGAATTCCATTGGAGGAAAGCTCCAGTCGTCCCCATC
ACGGGGAAGCACTTGTGGTTTAAGCGACCTTGGCCGGATCATGAATGTGAGCGGG
GGCCCTATCACTAGAGAGGCCTCTAAAGAAATTACCTGATTTCTTAAACATCTAGAAACT
GAAGACAACATTAAGGTGTGGTTAATAACAAAGGCTGGCATGCCCTGGTCAGCTTCTC
AATGTGGCCCACAACGCCATCTACGGGCCAGCCTGCCTAAGGACAGGAGCCCCGAGGAG
TATGGAATCACCGTCATTAGCCAACCCCTGAACCTGACCAAGGAGCAGCTCTCAGAGATT
ACAGTGCTGACCAACTTCAGTGGATGCTGTGGTGCCTCTGTGTGATTTCTCCATGTCC
TTCGTCCCAGCCAGCTTGTCTTATTGATCCAGGAGCAGGTGAACAAATCCAAGCAC
CTCCAGTTATCAGTGGAGTGAGCCCCACCACTACTGGGTGACCAACTTCCCTGGGAC
ATCGTAATTATTCCGTGAGTGCTGGGCTGGTGGTGGCATCTCATCGGGTTTCAGAAG
AAAGCCTACACTCTCCAGAAAACCTTCTGCCCTGTGGCACTGCTCCTGCTGTATGGA
TGGGGGTCACTCCATGATGTACCCAGCATCTTCTGTGGTGGCATGTCCCCAGCACAGCC
TATGTGGCTTATCTGTGCTATCTGTTCTGCTGGGCTGGTGGTGGCATCTGACCTTGCAC
ATCTTGGAAATTATTGAGAATAACCGGACGCTGCTCAGGTTCAACGCCGTGCTGAGGAAG
CTGCTCATTGTCTCCCCACTTCTGCCTGGCCGGGGCCTCATGGACCTTGCACGTGAGC
CAGGCTGTGACAGATGTCTATGCCGGTTGGTGGAGGAGCACTCTGCAAATCCGTTCCAC
TGGGACCTGATGGGAAGAACCTGTTGCCATGGTGGTGGAGGGGTGGTGTACTTCCTC
CTGACCCCTGCTGGTCCAGGCCACTTCTCCCTCCCAATGGATTGCCAGGCCACTAAG
GAGCCCATTGTTGATGAAGATGATGTGGCTGAAGAAAGACAAAGAATTATTACTGGT
GGAAATAAAACTGACATCTTAAGGCTACATGAACTAACCAAGATTATCCGGGACCTCC
AGCCCAGCAGTGGACAGGCTGTGTCGGAGTTGCCCTGGAGAGTGCTTGGCCTCCTG
GGAGTGAATGGTGCAGGGCAAAACACCCACATTCAAGATGCTCACTGGGGACAACACAGTG
ACCTCAGGGGATGCCACCGTAGCAGGCAAGAGTATTTAACCAATATTCGAAGTCCAT
CAAATATGGCTACTGTCTCAGTTGATGCAATCGATGAGCTGCTCACAGGACGAGAA
CATCTTACCTTATGCCGGCTCGAGGTGTACCGAGCAGAACAGAAATCGAAAAGGTTGCA
AACTGGAGTATTAAGAGCCTGGGCTGACTGTCTACGCCAGTGCCTGGCTGGCACGTAC
AGTGGGGCAACAAGCGGAAACTCTCCACAGCCATCGCACTCATTGGCTGCCACCGCTG
GTGCTGCTGGATGAGCCCACCAACAGGGATGGACCCAGGCACGCCATGCTGTGGAAC
GTCATCGTGAGGCATCATCAGAGAACGGAGGGCTGTGGTCTCACATCCCCACAGCATGGAA
GAATGTGAGGCAGTGTGTACCCGGCTGGCATCATGGTAAAGGGCGCCTTCGATGTATG

GGCACCATTCAAGCATCTCAAGTCAAATTGGAGATGGCTATATCGTCACAATGAAGATC
 AAATCCCCGAAGGACGACCTGCTTCCTGACCTGAACCCGTGGAGCAGTTCTCCAGGGGG
 AACTCCCAGGCAGTGTGCAGAGGGAGAGGCACATAAACATGCTCCAGTTCCAGGTCTCC
 TCCTCCTCCCTGGCGAGGATCTTCAGCTCCTCTCCCACAAGGACAGCCTGCTCATC
 GAGGAGTACTCAGTCACACAGACCAACTGGACCAGGTGTTGTAATTTGCTAAACAG
 CAGACTGAAAGTCATGACCTCCCTTGACCCCTCGAGCTGCTGGAGCCAGTCGACAAGCC
 CAGGACTGATCTTCACACCGTTCTGCAGCCAGAAAGGAACCTGGGCAGCTGGA
 GGCGCAGGAGGCTGTGCCCATATGGTCATCCAAATGGACTGGCCAGCGTAAATGACCCCA
 CTGCAGCAGAAAACAAACACACGAGGAGCATGCAGCGAATTCAAGAAAGAGGTCTTCAGA
 AGGAAACCGAAACTGACTTGCTCACCTGGAACACCTGATGGTGAAACCAAACAAATACAA
 AATCCTCTCCAGACCCAGAAACTAGAAACCCGGCCATCCCACTAGCAGCTTGGCCT
 CCATATTGCTCTCATTCAGCAGATCTGCTTTCTGCATGTTGTCTGTGTCTGCGT
 TGTGTGTGATTTCATGGAAAAATAAAATGCAAATGCACTCATCACAAAAAAAAAAAAAA
 AAA

ABCG1 Acc. Nr.: U34919 GENBANK: HSU34919

GAATTCCGGGATGTGGAACGGTCGCAGGAGGCTGCTACAAGCCCCATGAGCAAGGCTGTT
 CCCACTGACAGAGCTTCCCAGGATGACAGAGAGTGCCTCTGCCTCTGGGGTGTGCT
 AGCCTACGAGGGCAATCGTAAGGCGAATGTCACTGAAAGAACACAAGTGTCCCTAAACA
 TGGACTATCTGGGCTTCTAGTGCTGAAATTCTCCCACCTCCACTGCCACTTCCATT
 ATATAAAAAACACAGTTGTTCATGTTTGTCTTACTGTTTTCTTGTGTTTTGTT
 AAGAATGCATTCAATTATTCAAATGTTTATGTTAGAATACTCAGGCATTGCGTGGATG
 AGGTGGTGTCCAGCAACATGGAGGCCACTGAGACGGACCTGCTGAATGGACATCTGAAA
 AAGTAGATAATAACCTCACCGAAGGCCAGCGCTCTCCCTGCCTCGGAGGGCAGCTG
 TGAACATTGAATTCAAGGGACCTTCCTATTGGCTCTGAAGGACCTGGTGGAGGAAGA
 AAGGATACAAGACCCCTCTGAAAGGAATTCCGGGAAGTCCACGCTGATGAACATCCTGGCTGGATA
 GGGAGACGGGCATGAAGGGGCCGTCCTCATCAACGGCTGCCCGGACCTGCGCTGCT
 TCCGGAAAGGTGTCTGCTACATCATGCAGGATGACATGCTGCTGCCCATCTCACTGTG
 AGGAGGCCATGATGGTGTGGCACATCTGAAGCCTCAGGAGAAGGATGAAGGCAGAAGGG
 AAATGGTCAAGGAGATACTGACAGCGCTGGCTTGCTGCTTGCGCCAACACCGGGACCG
 GGAGCCTGTCAGGTGGTCAGCGCAAGCGCTGCCATCGCGCTGGAGCTGGTGAACAACC
 CTCCAGTCATGTTCTCGATGAGGCCACCAGCGGCTGGACAGCGCTCTGCTTCCAGG
 TGGTCTGCTGATGAAAGGGCTCGCTCAAGGGGGTCGCTCCATCATTTGCACCATCCACC
 AGCCCAGCGCCAAACTCTCGAGCTTGCACCGAGCTTACGTCCTGAGTCAAGGACAAT
 GTGTGTACCGGGAAAAGTCTGCAATCTGTGCCATATTGAGGGATTTGGGTCTGAAC
 GCCCAACCTACCAACCAACCGAGATTTGTCAAGGGGGTCGCTCCATCATCCGGCGAGTACGGTG
 ATCAGAACAGTCGGCTGGTGAGAGCGGTTGGGAGGGCATGTGTACTCAGACCACAAGA
 GAGACCTCGGGGGTGTGATGCCGAGGTGAACCCCTTTCTTGGCACCGGCCCTGTAAGAGG
 TAAAGCAGACAAAACGATTAAGGGTTGAGAAAGGACTCCTCGTCCATGGAAGGCTGCC

ACAGCTTCTGCCAGCTGCCTCACGCAGTTCTGCATCCTCTTCAAGAGGACCTTCCTCA
 GCATCATGAGGGACTCGGTCTGACACACCTGCGCATCACCTCGCACATTGGGATCGGCC
 TCCTCATTGGCCTGCTGTACTTGGAATCGGAACGAAGCCAAGAAGGTCTTGAGCAACT
 CGGGCTTCCTCTTCTCCATGCTGTTCTCATGTTCGCGGCCCTCATGCCACTGTT
 TGACATTTCCCCTGGAGATGGGAGTCTTCTTCGGAACACCTGAACACTGGTACAGCC
 TGAAGGCCTACTACCTGGCCAAGACCATGGCAGACGTGCCCTTCAGATCATGTTCCAG
 TGGCCTACTGCAGCATCGTGTACTGGATGACGTCGACGCCGTGGCACGCCGTGGCCTTG
 TGCTGTTGCCGCGCTGGGACCATGACCTCCCTGGTGGCACAGTCCCTGGGCTGCTGA
 TCGGAGCCGCTCCACGTCCCTGCAGGTGGCACTTCTGGGGCCAGTGACAGCCATCC
 CGGTGCTCCTGTTCTGGGGTCTCGTCAGCTCGACACCACCCACGTACCTACAGT
 GGATGTCCTACATCTCCTATGTCAGGTATGGGTTCGAAGGGTCACTCCTCCATCTATG
 GCTTAGACCGGAAAGATCTGCACTGTGACATCGACGAGACGTGCCACTTCAGAAGTCGG
 AGGCCATCCTGCCGGAGCTGGACGTGGAAAATGCCAAGCTGTACCTGGACTTCATCGTAC
 TCGGGATTTCTTCATCTCCCTCCGCTCATGCCATTGGCTCAGGTACAAAATCC
 GGGCAGAGAGGTAAAACACCTGAATGCCAGGAAACAGGAAGATTAGACACTGTGGCCAG
 GGCACGTCTAGAATCGAGGAGGCAAGCCTGTGCCGACCGACGACAGAGACTCTTCTG
 ATCCAACCCCTAGAACCGCGTTGGGTTGTGGGTGTCCTCGTCAGCCACTCTGCCAG
 CTGGGTTGGATCTTCTCTCCATTCCCTTTCTAGCTTAACTAGGAAGATGTAGGCAGAT
 TGGTGGTTTTTTTTTTAAACATACAGAATTAAATACCACAACTGGGGCAGAATT
 TAAAGCTGCAACACAGCTGGTATGAGAGGCTCCTCAGTCAGCTGCCCTTAGCACCA
 GGCACCGTGGGTCTGGATGGGAACTGCAAGCAGCTCTCAGCTGATGGCTGCGCAGTC
 AGATGTCCTGGTGGCAGAGAGTCCGAGCATGGAGCGATTCCATT
ABCA3 Acc. Nr: U78735 GENBANK: HSU78735
 CCGCCCCGGCGCCAGGCTCGGTGCTGGAGAGTCATGCCGTGAGCCCTGGCACCTCCT
 GATGTCCTGCCAGGTACGGTGTCCAAACCTCAGGGTTGCCCTGCCACTCCAGAGG
 CTCTCAGGCCCAACCCGGAGCCCTCTGCGGAGCCGCCCTCCCTGGCCAGTTCCCA
 GTAGTCCTGAAGGGAGACCTGCTGTGGAGCCTTCTGGGACCCAGCCATGAGTGTGG
 AGCTGAGCAACTGAACCTGAAACTCTTCACTGTGAGTCAGGAGGCTTCCGACATG
 AAGGACGCTGAGCGGGAGGACTCCTCTGCCCTGAGCTGAGTCAGGAGCAGCACC
 AGGGCTCTCTAGACTGCCCTCCATGCCCTCCCTGCCCTCCAGGACAGAGCAGC
 CACGTCTGCACACCTGCCCTCTTACACTCAGTTCAAGCAGCTTCTCCATT
 TGCGGGTTGCAGCGCTACTTGAACCTACTCAGACCCACTACTCTCTAGCAGCACTGG
 CGTCCCTTCAGCAAGACGATGGCTGTGCTCAGGAGCTGGCGCTCCCTGGAAAGAA
 CTACACCCCTGCAGAAGCGGAAGGTCTGGTACGGTCCCTGGAACTCTCCCTGCCATTGCT
 GTTCCCTGGGATCCTCATCTGGCTCCGTTGAAGATTAGTCGGAAAATGTGCCCAACGC
 CACCATCTACCCGGGCCAGTCCATCCAGGAGCTGCCCTGTTCTCACAGTGACGCTGCCAAGACCGTCAC
 AGGAGACACCTGGGAGCTTGCCTACATCCCTCTCACAGTGACGCTGCCAAGACCGTCAC
 TGAGACAGTGCAGGGCACTTGTATCAACATGCGAGTGCAGCGGCTTCCCTCCGAGAA
 GGACTTGTAGGACTACATTAGGTACGACAACGTCTCGTCAGCGTGTGGCCCGTGGT

CTTCGAGCACCCCTCAACCACAGCAAGGAGCCCCTGCCGCTGGCGGTGAAATATCACCT
ACGGTTCAAGTACACACCGGAGAAATTACATGTGGACCCAAACAGGCTCCTTTCTGAA
AGAGACAGAAGGCTGGCACACTACTTCCCTTTCCCGTTTCCAAACCCAGGACCAAG
GGAACATAACATCCCCGTATGGCGAGAACCTGGGTACATCCGGGAAGGCTCCTGGCGT
GCAGCATGCTGTGGACCGGGCATCATGGAGTACCATGCCATGCCGCCACACGCCAGCT
GTTCCAGAGACTGACGGTGACCATCAAGAGGTTCCGTACCCGCCGTTCATCGCAGACCC
CTTCCTCGTGGCCATCCAGTACCAAGCTGCCCTGCTGCTGCTGCTCAGCTTCACCTACAC
CGCGCTCACCAATTGCCGTGCTCGTGCAGGAGAAGGAAAGGAGGCTGAAGGAGTACAT
GCGCATGATGGGGCTCAGCAGCTGGCTGCACTGGAGTGCCTGGTCCCTTGTCTTCC
CTTCCTCCTCATGCCGCCCTCCTCATGACCCCTGCTCTTGTGTCAAGGTGAAGCCAAA
TGTAGCCGTGCTGTCCCGCAGCGAACCCCTCCCTGGTGCTGCCCTCCTGCTGTGCTTC
CATCTCTACCATCTCCTTCAGCTTCATGGTCAGCACCTCTTCAGCAAAGCCAACATGGC
AGCAGCCTTCGGAGGCTCCTCTACTTCTCACCTACATCCCCACTTCTTCGTGGCCCC
TCGGTACAACGGATGACTCTGAGCCAGAACGCTCTGCCCTGCCCTGTCTAATGTC
CATGGCAATGGGAGGCCAGCTCATTGGAAATTGAGGGCAGAACGGCATGGCATCCAGTG
GCGAGACCTCCTGAGTCCCGTCAACGTGGACGACGACTTCTGCTTCGGCAGGTGCTGG
GATGCTGCTGCTGGACTCTGTGCTCTATGCCCTGGTGACCTGGTACATGGAGGCCGTCTT
CCCAGGGCAGTTCGCGTGCCTCAGCCCTGGTACTTCTCATCATGCCCTCCTATTGGTG
TGGGAAGCCAAGGGCGGTTGCAGGGAAGGAGGAAGAACAGACTGACCCCGAGAAAGCACT
CAGAAACGAGTACTTGAAGCCGAGCCAGAGGACCTGGTGGCGGGGATCAAGATCAAGCA
CCTGTCCAAGGTGTTCAAGGGTGGGAAATAAGGACAGGGCGGCCGTCAAGAACCTGAACCT
CAACCTGTACGAGGGACAGATCACCGTCTGCTGGGCCACAACGGTGCCGGGAAGACCA
CACCCCTCTCCATGTCACAGGTCTTTCCCCCACCAGTGGACGGGCATACATCAGCG
GTATGAAATTCCCAGGACATGGTCAGATCCGAAGAGCCTGGCCTGTGCCCGCAGCA
CGACATCCTGTTGACAACCTGACAGTCGAGAGCACCTTATTCTACGCCAGCTGAA
GGGCCTGTCACGTCAAGAAGTGCCTGAAGAAGTCAAGCAGATGCTGCACATCATGGCCT
GGAGGACAAGTGGAACTCACGGAGCCGTTCTGAGGGGGGATGAGGCGCAAGCTCTC
CATCGGCATGCCCTCATCGCAGGCTCCAAGGTGCTGATACTGGACGCCACCTCGGG
CATGGACGCCATCTCAGGAGGGCCATCTGGGATCTTCTCAGGGCAGAAAAGTACCG
CACCATCGTGCCTGACCACCCACTTCATGGACGAGGCTGACCTGCTGGAGACCGCATCGC
CATCATGGCCAAGGGGGAGCTGCAGTGCTGCCAGGCGACTGCAACCGGAAGACATCTC
CCAGCTGGTCCACCACCGTGCCTGACGCCAGCGCTGGAGAGCAGCGCTGGGGCCAGCT
GTCTTCATCCTTCCCAGAGAGAGCACGCACAGGTTGAAGGTCTTTGCTAAACTGGA
GAAGAAGCAGAAAGAGCTGGGCATTGCCAGCTTGGGCATCCATCACCACCATGGAGGA
AGTCTTCCTTGGGTGGGAAGCTGGTGGACAGCAGTATGGACATCCAGGCCATCCAGCT
CCCTGCCCTGCAGTACCAAGCACGAGAGGCGGCCAGCGACTGGCTGTGGACAGCAACCT
CTGTGGGGCCATGGACCCCTCCGACGGCATTGGAGCCCTCATCGAGGAGGAGCGCACCGC
TGTCAAGCTAACACTGGCTGCCCTGCACGCCAGCAATTCTGGGCATGTTCTGAA

GAAGGGCCGCATACTGGCGCAGTGGAAAATGGTGGCGGCACAGGTCTGGTGCCTCT
GACCTGCGTCACCCCTGGCCCTCCTGGCCATCAACTACTCCTCGGAGCTCTCGACGACCC
CATGCTGAGGCTGACCTGGCGAGTACGGCAGAACCGTCGTGCCCTCTCAGTTCCCGG
GACCTCCCAGCTGGGTCAAGCAGCTGTCAAGACATCTGAAAGACGCACTGCAGGGCTGAGGG
ACAGGGAGCCCCCGGAGGTGCTCGGTGACCTGGAGGAGTTCTGATCTTCAGGGCTTCTGT
GGAGGGGGGGCGGGCTTTAATGAGCGGTGCCTTGTGGCAGCGTCCTCAGAGATGTGGGAGA
GCGCACGGTCAACGCCCTGTTCAACAACCAGGCGTACCACTCTCCAGCCACTGCCCT
GGCGCTCGTGGACAACCTCTGTTCAAGCTGCTGTGCCCTCACGCCCTCATTGTGGT
CTCCAACCTCCCCCAGCCCCGGAGCGCCCTGCAGGCTGCCAAGGACCAAGTTAACGAGGG
CCGGAAGGGATTGACATTGCCCTCAACCTGCTCTGCCATGGCATTCTGGCCAGCAC
GTTCTCCATCCTGGCGGTCAAGCGAGAGGGCCGTGCAGGCCAAGCATGTGCAGTTGTGAG
TGGAGTCCACGTGGCCAGTTCTGGCTCTGTGCTGTGTTGGGACCTCATCTCCTTCC
CATCCCCAGTCTGCTGCTGGTGGTGTAAAGGCCCTCGACGTGCGTGCCCTCACCGCG
GGACGGCCACATGGCTGACACCCCTGCTGCTGCCCTGCTCACGGCTGGGCCATCATCCC
CCTCATGTACCTGATGAACCTCTTCTTGGGGCGGCCACTGCCAACACGAGGCTGAC
CATCTTCAACATCCTGTCAGGCATGCCACCTCCTGATGGTCACCATCATGCGCATCCC
AGCTGTAAAACGGAAGAACCTTCAAAACCCCTGGATCACGTGTTCTGGTGTGCCAA
CCACTGTCTGGGGATGGCAGTCAGCAGTTCTACGAGAAACTACGAGACGCGGAGGTACTG
CACCTCCTCCGAGGTGCCGCCACTACTGCAAGAAATATAACATCCAGTACCAAGGAGAA
CTTCTATGCCTGGAGCGCCCCGGGGTGGCCGGTTGTGGCCTCCATGGCCGCTCAGGG
GTGCGCCTACCTCATCCTGCTCTTCCATCGAGACCAACCTGCTTCAGAGACTCAGGGG
CATCCTCTGCCCTCCGGAGGAGGCGGACACTGACAGAAATTATACACCCGGATGCCCTGT
GCTTCTGAGGACCAAGATGTAGCGGACGAGAGGACCCGCATCCTGGCCCCAGCCGG
CTCCCTGCTCCACACACCTGATTATCAAGGAGCTCTCAAGGTGTACGAGCAGCGGGT
GCCCTCCTGGCCGTGGACAGGCTCTCCCTCGCGGTGCAGAAAGGGAGTGCTTCGGCCT
GCTGGCTTCAATGGAGCCGGAAAGACCACGACTTTCAAAATGCTGACCGGGGAGGAGAG
CCTCACTTCTGGGGATGCCCTTGTGCGGGGTACAGAAATCAGCTCTGATGTCGGAAAGGT
GCGGCAGCGGATCGGCTACTGCCCGCAGTTGATGCCCTGCTGGACCATGACAGGCCG
GGAGATGCTGGTCATGTACGCTCGCTCCGGGATCCCTGAGCGCCACATCGGGGCTG
CGTGGAGAACACTCTGCGGGCCTGCTGCTGGAGGCCACATGCCAACAGCTGGTCAGGAC
GTACAGTGGTGGTAACAAGCGGAAGCTGAGCACCGGCATGCCCTGATGGAGAGCCTGC
TGTGATCTTCTGGACGAGCCGTCCACTGGCATGGACCCGTGGCCGGCGCTGCTTTG
GGACACCGTGGCACGAGCCCGAGAGTCTGGCAAGGCCATCATCACCTCCCACAGCAT
GGAGGAGTGTGAGGCCCTGTGCACCCGGCTGCCATCATGGTGCAGGGCAGTTCAAGTG
CCTGGGAGCCCGAGCACCTCAAGAGCAAGTTGGCAGCGGCTACTCCCTGCCGGCAA
GGTGCAGAGTGAAGGGAAACAGGAGGCGTGGAGGAGTTCAAGGCCCTGTTGAC
CTTTCCAGGCAGCGTCCCTGGAGATGAGCACCAAGGCATGGTCCATTACCACTGCCGG
CCGTGACCTCAGCTGGCGAAGGTTTCGGTATTCTGGAGAAAGCCAAGGAAAAGTACGG
CGTGGACGACTACTCCGTGAGCCAGATCTCGCTGGAACAGGTCTTCTGAGCTTCGCCA

CCTGCAGCCGCCACCGCAGAGGAGGGCGATGAGGGGTGGCGGCTGTCTGCCATCAGG
 CAGGGACAGGACGGCAAGCAGGGCCCATCTTACATCCTCTCTCCAAGTTATCTCAT
 CCTTATTAAATCACTTTCTATGATGGATATGAAAAATTCAAGGCAGTATGCACA
 GAATGGACGAGTGCAGCCCAGCCCTCATGCCAGGATCAGCATGCGATCTCCATGTCTG
 CATACTCTGGAGTTCACTTTCCAGAGCTGGGGCAGGCCGGGAGTCTGCGGGCAAGCTC
 CGGGGTCTCTGGGTGGAGAGCTGACCCAGGAAGGGCTGCAGCTGAGCTGGGGTTGAATT
 TCTCCAGGACTCCCTGGAGAGAGGACCCAGTGACTTGTCCAAGTTACACACGACACTA
 ATCTCCCCTGGGAGGAAGCGGGAAAGCCAGGTGAACGTAGCGAGGCCAGGC
 CGCCAGGAATGGACCATGCAGATCACTGTCACTGGAGGGAAAGCTGCTGACTGTGATTAGG
 TGCTGGGTCTTAGCGTCCAGCGCAGCCCAGGGCATCCTGGAGGCTCTGCTCCCTTAGG
 GCATGGTAGTCACCGCGAAGCCGGCACCGTCCCACAGCATCTCCTAGAACGAGCCGGCA
 CAGGAGGGAAAGGTGCCAGGCTCGAACGCAGTCTGTGTTCCAGCACTGCACCCCTCAGGAA
 GTCGCCCGCCCCAGGACACGCAGGGACCACCCCTAACGGCTGGGTGGCTGTCTCAAGGACA
 CATTGAATACGTTGTGACCATCCAGAAAATAATGCTGAGGGACACAAAAAAAAAAAA
 AAAAAAAAAA

Fragment 640918

1 GAGATCCTGAGGCTTTCCCCCAGGCTGCTCAGCAGGAAAGGTTCTCCTCCCTGATGGTC
 61 TATAAGTTGCCTGTTGAGGATGTGCGACCTTATCACAGGCTTCTCAAATTAGAGATA
 121 GTTAAACAGAGTTTCGACCTGGAGGAGTACAGCCTCTCACAGTCTACCCCTGGAGCAGGTT
 181 TTCCTGGAGCTCTCCAAGGAGCAGGAGCTGGGTGATCTTGAAGAGGACTTTGATCCCTCG
 241 GTGAAGTGGAAACTCCTCCTGCAGGAAGAGCCTAAAGCTCCAAATACCCCTATATCTTTC
 301 TTTAATCCTGTGACTCTTAAAGATAATATTTATAGCCTTAATATGCCTTATATCAGA
 361 GGTGGTACAAATGCATTTGAAACTCATGCAATAATTATC

Fragment 698739

1 GCTCTCACACAGAGATTTGAAGCTTTCCCACAGGCTGTTGGCAGGAAAGATATTCC
 61 TCTTTAATGGCGTATAAGTTACCTGTGGAGGATGTCCACCCCTCTATCTGGGCCCTTTTC
 121 AAGTTAGAGGCATGAAACAGACCTCAACCTGGAGGAATACAGCCTCTCAGGCTACC
 181 TTGGAGCAGGTATTCTAGAACTCTGTAAAGAGCAGGAGCTGGAAATGTTGATGATAAA
 241 ATTGATACAAACAGTTGAATGGAAACTTCTCCCACAGGAAGACCCCTAAATGAAGAACCT
 301 CCTAACATTCAATTTAGGTCTACTACATTGTTAGTTCCATAATTCTACAAGAATGTT
 361 TCCTTTACTTCAGTTAACAAAGAAAATTTAAATAAACATTCAATAATGATTACAGTT
 421 TTCATTTTAAATTTAGGATGAAGGAAACAAGGAAATATAGGAAAGTAGTAGACAA
 481 AATTAACAAAATCAGACATGTTATTCACTCCCAACATGGGTCTATTTGTGCTAAAAAT
 541 AATTTAAAAATCATAACAATATTAGGTTGGTTATCG

Fragment 990006

1 GTGGAAGATGTGCAACCTTACGCCAAGCTTCTCAAATTAGAGAAGGTTAACAGAGC
 61 TTTGACCTAGAGGAGTACAGCCTCTCACAGTCTACCCCTGGAGCAGGTTCTGGAGCTC
 121 TCCAAGGAGCAGGAGCTGGGTGATTTGAGGAGGATTTGATCCCTCAGTGAAGTGGAAAG

181 CTCCTCCCCAGGAAGAGCCTAAACCCAAATTCTGTGTTCTGTTAAACCCGTGGT
 241 TTTTTTAAATACATTATTTATAGCAGCAATGTTCTATTTTAGAAACTATATTATA

Fragment 1133530

1 TTTTCAGTTG CATGTAATAAC CAAGAAATCG AATTGTTTC CGGTTCTTAT
 51 GGGAAATTGTT AGCAATGCC TTATTGGAAT TTTTAACCTTC ACAGAGCTTA
 101 TTCAAATGGA GAGCACCTTA TTTTTCTGTG ATGACATAGT GCTGGATCTT
 151 GTTTTATAG ATGGGTCCAT ATTTTGTTG TTGATCACAA ACTGCATTTC
 201 TCCTTATATT GGCATAAGCA GCATCAGTGA TTATT

Fragment 1125168

CTGGATT

TGCTCTGCGG CAAGACCCGC GCCACCAGCG GCAGTATCCA GTTCGACGGC
 CAGGAACCTGA CCAAAATGCG CGAATACAAC ATCGTGCAGG CCGGGGTAGG
 GCGCAAGTTT CAGAACCCGT CGATCTACGA AAACCTCACG GTGTTTAAA
 ACCTTGAGAT GTCTTATCCG GCTGGCGCA AGGTCTGGGG TGCGCTGTTT
 TTCAAGCGCA ATGCCAGGT GGTGGCGCGG GTCGAG

Fragment 1203215

1 ATCGCCGATA TCTCCCCCTTC GGGCTGCGGC AAGAGCACCT TCCTGAAAGT
 51 GCTCGCCGGG TTCTATGCC TGGACACCGG GCGCTTCAGG ATCAACGGCC
 101 AGGCGATGCG GCATTTCGGT TTGCGCTCGT ACCGCCAGAG CGTGGCCTAT
 151 GTCACGGCCC ACGACGAGAT CATGCCGGG ACGGTGATCG AGAACATCCT
 201 GATGGACAGC GACCCGCTGG ACGGCACGGG TTTGCAGAGC TGTGTCGAGC
 251 AGGCCGGTT GCTGGAAAGC ATCCTGAAAC TGAGCAATGG CTTCAATACC
 301 TTGCTCGGAC CCATGGCGT GCAATTGTCC TCGGGCCAGA AGCAACGCCT
 351 GTTGATCGCC CGGGGTGAC GC

Fragment 168043

1 AAAACCAAAG ATTCTCCTGG AGTTTCTCT AAACTGGGTG TTCTCCTGAG
 51 GAGAGTTGAC AAGAAACTTG GTGAGAAATA AGCTGGCAGT GATTACGCGT
 101 CTCCCTCAGA ATCTGATCAT GGGTTGTTTC CTCTTTCT TCGTTCTGCG
 151 GGTCCGAAGC AATGTGCTAA AGGGTGCTAT CCAGGACCGC GTAGGTCTCC
 201 TTTACCAGTT TGTGGCGGCC ACCCGTACA CAGGCATGCT GAACGCTGTG
 251 AATCTGTTTC CCGTGCTGCG AGCTGTCAGC A

Huwhite2

1 ATGGCCGTGA CGCTGGAGGA CGGGGCGGAA CCCCCTGTGC TGACCAACGCA
 51 CCTGAAGAAG GTGGAGAACCC ACATCACTGA AGCCCAGCGC TTCTCCCACC
 101 TGCCCAAGCG CTCAGCCGTG GACATCGAGT TCGTGGAGCT GTCCTATTCC
 151 GTGCAGGGAGG GGCCTGCTG GCGAAAAGG GGTTATAAGA CCCTTCTCAA
 201 GTGCCTCTCA GGTAAATTCT GCGCCGGGA GCTGATTGGC ATCATGGGCC
 251 CCTCAGGGGC TGGCAAGTCT ACATTGATGA ACATCTTGGC AGGATACAGG
 301 GAGTCTGGAA TGAAGGGGCA GATCCTGGTT AATGGAAGGC CACGGGAGCT

351 GAGGACCTTC CGCAAGATGT CCTGCTACAT CATGCAAGAT GACATGCTGC
401 TGCCGCACCT CACGGTGGTG GAAGCCATGA TGGTCTCTGC TAACCTGAAT
451 CTTACTGAGA ATCCCAGATGT GAAAAACGAT CTCGTGACAG AGATCCTGAC
501 GGCACGGGC CTGATGTCGT GCTCCCACAC GAGGACAGCC CTGCTCTCG
551 GCGGGCAGAG GAAGCGTCTG GCCATCGCCC TGGAGCTGGT CAACAACCCG
601 CCTGTCATGT TCTTTGATGA GCCCACCAGT GGTCTGGATA GCGCCTCTTG
651 TTTCCAAGTG GTGTCCCTCA TGAAGTCCCT GGCACAGGGG GGCGTACCA
701 TCATCTGCAC CATCCACCAAG CCCAGTGCCA AGCTCTTGA GATGTTTGAC
751 AAGCTCTACA TCCTGAGCCA GGGTCAGTGC ATCTTCAAAG GCGTGGTCAC
801 CAACCTGATC CCCTATCTAA AGGGACTCGG CTTGCATTGC CCCACCTACC
851 ACAACCCGGC TGACTTCAGT GAGTGGGGGT CTGTTGCCTC TGGCGAGTAT
901 GGACACCTGA ACCCCATGTT GTTCAGGGCT GTGCAGAATG GGCTGTGCGC
951 TATGGCTGAG AAGAAGAGCA GCCCTGAGAA GAACGAGGTC CCTGCCCAT
1001 GCCCTCCTTG TCCTCCGGAA GTGGATCCCA TTGAAAGCCA CACCTTGCC
1051 ACCAGCACCC TCACACAGTT CTGCATCCTC TTCAAGAGGA CCTTCCTGTC
1101 CATCCTCAGG GACACGGTCC TGACCCACCT ACGGTTCATG TCCCACGTGG
1151 TTATTGGCGT GCTCATGGC CTCCTCTACC TGCATATTGG CGACGATGCC
1201 AGCAAGGTCT TCAACAAACAC CGGCTGCCTC TTCTTCTCCA TGCTGTTCC
1251 CATGTTCGCC GCCCTCATGC CAACTGTGCT CACCTTCCCC TTAGAGATGG
1301 CGGTCTTCAT GAGGGAGCAC CTCAACTACT GGTACAGCCT CAAAGCGTAT
1351 TACCTGGCCA AGACCATGGC TGACGTGCC CTTCAAGGTGG TGTGTCCGGT
1401 GGTCTACTGC AGCATTGTGT ACTGGATGAA CGGCCAGCCC GCTGAGACCA
1451 GCCGCTTCCT GCTCTTCTCA GCCCTGGCCA CGGCCACCGC CTTGGTGGCC
1501 CAATCTTGG GGCTGCTGAT CGGAGCTGCT TCCAACTCCC TACAGGTGGC
1551 CACTTTGTG GGCCCAGTTA CCGCCATCCC TGTCCCTTGT TTCTCCGGCT
1601 TCTTTGTCAG CTTCAAGACC ATCCCCACTT ACCTGCAATG GAGCTCCTAT
1651 CTCTCCTATG TCAGGTATGG CTTTGAGGGT GTGATCCTGA CGATCTATGG
1701 CATGGAGCGA GGAGACCTGA CATGTTAGA GGAACGCTGC CGGTTCCGGG
1751 AGCCACAGAG CATCCTCCGA GCGCTGGATG TGGAGGATGC AAAGCTCTAC
1801 ATGGACTTCC TGGTCTTGGG CATCTTCTTC CTAGCCCTGC GGCTGCTGGC
1851 CTACCTTGTG CTGCCTTACC GGGTCAAGTC AGAGAGATAG AGGCTTGGCC
1901 CAGCCTGTAC CCCAGCCCC GCAGCAGGAA GCCCCCAGTC CCAGCCCTTT
1951 GGGACTGTG TANCTCTATA CACTGGGCA CTGGTTCTG GCGGGGCTAT
2001 CCTCTCCTCC CTTGGCTCCT CCACAGGCTG GCTGTGGAC TGGCCTCCCA
2051 GCCTGGGCTC TGGGAGTGGG GGCTCCAACC CTCCCCACTA TGCCCAAGGAG
2101 TCTTCCCAAG TTGATGCGGT TTGTAGCTC CTCCCTACTC TCTCCAACAC
2151 CTGCATGCAA AGACTACTGG GAGGCTGCTG CCTCCTTCCT GCCCATGGCA
2201 CCCTCCTCTG CTGTCTGCCT GGGAGCCCTA GGCTCTCTAT GGCCCCACTT
2251 ACAACTGA

Fragment 20237

1 TTTAAGGATT TCAGCCTTTC CATTCCGTCA GGATCTGTCA CGGCAC TGGGT TGGCCCAAGT
61 GGTTCTGGCA AATCAACAGT GCTTCACTC CTGCTGAGGT TGTACGACCC TGCTTCTGGA
121 ACTATTAGTC TTGATGGCCA TGACAATCCG TCAGCTAAAC CCAGTGTGTG GCTGAGATCC
181 AAAATTGGGA CAGTCAGTCA GGAACCCATT TTGTTTCTT GCTCTATTGC TGAGAACATT
241 GCTTATGGTG CTGATGACCC TTCCCTCTGTG ACCGCTGAGG AAATCCAGAG AGTGGCTGAA
301 GTGGCCAATG CAGTGGCTTC TCCGGAAATT CCCCCAAGGT TCAACACTGT GGTTGGAGAA
361 AAGGGTGTTC TCCTCTCAGG TGGGCAGAAA CAGCGGATTG CGATTGCCCG TGCTCTGCTA
421 AAGAATCCC AAAATTCTTCT CCTAGATGAA GCAACCAGTG CGCTGGATGC CGAAAATGAG
481 TACCTTGTTC AAGAAGCTCT AGATCGCCTG ATGGATGGAA GAACGGTGT AGTTATTGCC
541 CATAGCCTGT CCACCATTAA GAATGCTAAT ATGGTTGCTG TTCTTGACCA AGGAAAATT
601 ACTGAATATG GAAAACATGA AGAGCTGCTT TCAAAACCAA ATGGGATATA CAGAAAACTA
661 ATGAACAAAC AAAGTTTAT TTCAGCATAA GGAAGCAATT ACTGGTAAAC AATATGAGAC
721 TTTAATGCAA AACAGTGTG CGAAAAAAA CTCAGAGACT ATGAAATACA TAAACCATAT
781 ATCAAGTTAT TTGAAAAATA CCTATTTTT CCAAAGTGTG

SEQUENCE LISTING

<110> Bayer AG

<120> ATP binding cassette genes and proteins for diagnosis
and treatment of lipid disorders and inflammatory
diseases

<130> ATP binding cassette genes and protein

<140>

<141>

<150> 101706

<151> 1998-09-25

<160> 54

<170> PatentIn Ver. 2.0

<210> 1

<211> 6880

<212> DNA

<213> Human

<220>

<223> cDNA of ABCA1 (ABC1)

<400> 1

caaacatgtc agctgttact ggaagtggcc tggcctctat ttatcttcct gatcctgatc 60
tctgttcggc tgagctaccc accctatgaa caacatgaat gccattttcc aaataaagcc 120
atgcctctg caggaacact tccttgggtt caggggatta tctgtaatgc caacaacccc 180
tgtttccgtt acccgactcc tggggaggct cccggagttg ttggaaactt taacaaatcc 240
attgtggctc gcctgttctc agatgctcg aggcttcattt tatacagcca gaaagacacc 300
agcatgaagg acatgcgcaa agttctgaga acattacagc agatcaagaa atccagctca 360
aacttgaagc ttcaagattt cctgggtggac aatgaaaacct tctctgggtt cctgtatcac 420

aacctctctc tcccaaagtc tactgtggac aagatgctga gggctgatgt cattctccac 480
aaggtaaaaa tgcaaggcta ccagttacat ttgacaagtc tgtgcaatgg atcaaaatca 540
gaagagatga ttcaacttgg tgaccaagaa gtttctgagc tttgtggcct accaagggag 600
aaactggctg cagcagagcg agtacttcgt tccaacatgg acatcctgaa gccaaatcctg 660
agaacactaa actctacatc tcccttcccc agcaaggagc tggccgaagc cacaaaaaca 720
ttgctgcata gtcttgggac tctggcccag gagctgttca gcatgagaag ctggagtgac 780
atgcgacagg aggtgatgtt tctgaccaat gtgaacagct ccagctcctc cacccaaatc 840
taccaggctg tgtctcgtat tgtctgcggg catcccgagg gagggggggct gaagatcaag 900
tctctcaact ggtatgagga caacaactac aaagccctct ttggaggcaa tggcactgag 960
gaagatgctg aaaccttcta tgacaactct acaactcctt actgcaatga tttgatgaag 1020
aatttggagt ctagtcctct ttcccgatt atctggaaag ctctgaagcc gctgctcggt 1080
ggaaagatcc tgtatacacc tgacactcca gccacaaggc aggtcatggc tgaggtgaac 1140
aagaccttcc aggaactggc tgtgttccat gatctggaaag gcatgtggg qgaactcagc 1200
cccaagatct ggacattcat ggagaacagc caagaaatgg accttgtccg gatgctgttq 1260
gacagcaggg acaatgacca ctttgggaa cagcagttgg atggcttaga ttggacagcc 1320
caagacatcg tggcggtttt ggccaagcac ccagaggatg tccagttccag taatggttct 1380
gtgtacacct ggagagaagc tttcaacgag actaaccagg caatccggac catatctcgc 1440
ttcatggagt gtgtcaacct gaacaagcta gaaccatag caacagaagt ctggctcattc 1500
aacaagtcca tggagctgct ggatgagagg aagttctggg ctggatttgt gttcactgga 1560
attactccag gcagcattga gctccccat catgtcaagt acaagatccg aatggacatt 1620
gacaatgtgg agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct 1680
gaccctttg aggacatgcg gtacgtctgg gggggcttcg cctacttgca ggtatgtgg 1740
gagcaggcaa tcatcagggt gctgacgggc accgagaaga aaactgggt ctatatgcaa 1800
cagatgccct atccctgtta cgttgatgac atcttctgc ggggtgatgag ccggtaatg 1860
cccctttca tgacgctggc ctggatttac tcagtggtcg tcatcatcaa gggcatcgt 1920
tatgagaagg agcacggct gaaagagacc atgcggatca tgggcctgga caacagcatc 1980
ctctggttta gctggttcat tagtagcctc attccttttc ttgtgagcgc tggcctgcta 2040
gtggcatcc tgaagttagg aaacctgctg ccctacagtg atcccacggt ggtgtttgtc 2100
ttcctgtccg tgggtgtgt ggtgacaatc ctgcagtgct tcctgattag cacactttc 2160
tccagagcca acctggcagc agcctgtggg ggcattcatct acttcacgct gtacactgccc 2220
tacgtcctgt gtgtggcatg gcaggactac gtgggcttc cactcaagat cttcgctagc 2280
ctgctgtctc ctgtggctt tgggtttggc tgtgagttact ttggcccttt tgaggagcag 2340
ggcattggag tgcagtggga caacctgttt gagagtccgt tggaggaaga tggcttcaat 2400
ctcaccactt cggctccat gatgctgttt gacacccatc tctatgggt gatgacctgg 2460
tacattgagg ctgtctttcc aggccagttac ggaattccca ggcctggta tttcccttgc 2520
accaagtccct actgggtttgg cgaggaaagt gatgagaaga gccaccctgg ttccaaccag 2580
aagagaatat cagaaatctg catggaggag gaacccaccc acttgaagct gggcgtgtcc 2640

attcagaacc tggtaaaaagt ctacccgagat gggatgaagg tggctgtcga tggcctggca 2700
ctgaatttt atgagggcca gatcacctcc ttccctggcc acaatggagc ggggaagacg 2760
accaccatgt caatcctgac cgggttgttc ccccccacct cgggcaccgc ctacatcctg 2820
ggaaaagaca ttgcgtctga gatgagcacc atccggcaga acctgggggt ctgtccccag 2880
cataacgtgc tgtttgacat gctgactgtc gaagaacaca tctggttcta tgcccgttg 2940
aaagggtct ctgagaagca cgtgaaggcg gagatggagc agatggccct ggtgttgg 3000
ttgccatcaa gcaagctgaa aagcaaaaca agccagctgt caggtggaat gcagagaaag 3060
ctatctgtgg ctttggcctt tgcggggga tctaaggtt tcattctgga tgaacccaca 3120
gctggtgtgg acccttactc ccgcaggggaa atatggagc tgctgctgaa ataccgacaa 3180
ggccgcacca ttattctctc tacacaccac atggatgaag cggacgtcct gggggacagg 3240
attgccatca tctcccatgg gaagctgtgc tgcgtggct cctccctgtt tctgaagaac 3300
cagctggaa caggctacta cctgaccttgc gtcaagaaag atgtggaatc ctccctcagt 3360
tcctgcagaa acagtagtag cactgtgtca tacctgaaaa aggaggacag tggttctcag 3420
agcagttctg atgctggcct gggcagcgcac catgagagtgc acacgctgac catcgatgtc 3480
tctgctatct ccaacctcat caggaagcat gtgtctgaag cccggctgg 3540
gggcattgagc tgacctatgt gctccatat gaagctgcta aggaggagc ctttgtggaa 3600
ctctttcatg agattgatga ccggctctca gacctggca tttctagtt tggcatctca 3660
gagacgaccc tggaaagaaat attcctcaag gtggccgaag agagtgggggt ggtgtgtgag 3720
acctcagatg gtaccttgcc agcaagacga aacaggcggg ctttcggggca aacgcagac 3780
tgtcttcgccc cggtcactga agatgatgtc gctgatccaa atgattctga catagaccca 3840
gaatccagag agacagactt gtcagtgaa atggatggca aagggtccta ccaggtgaaa 3900
ggctggaaac ttacacagca acagtttg 3960
agacggagtc gggaaaggatt ttttgctcag attgtcttgc cagctgtgtt tgtctgcatt 4020
gcccctgtgt tcagcctgat cgtgccaccc tttggcaagt accccagcct ggaacttcag 4080
ccctggatgt acaacgaaca gtacacattt gtcagcaatg atgctctga ggacacgggaa 4140
accctggAAC tcttaaacgc cctcaccaaa gaccctggct tcgggaccccg ctgtatggaa 4200
ggaaacccaa tcccagacac gcccctgcccag gcaggggagg aagagtggac cactgccccca 4260
gttccccaga ccatcatgga cctcttccag aatgggaact ggacaatgca gaacccttca 4320
cctgcatgcc agttagcag cgacaaaatc aagaagatgc tgccctgtgt tccccccagg 4380
gcaggggggc tgccctctcc acaaagaaaa caaaacactg cagatatcct tcaggacactg 4440
acaggaagaa acatttcgga ttatctgggt aagacgtatg tgcaaatcat agccaaaagc 4500
ttaaagaaca agatctgggt gaatgagttt aggtatggcg gctttccct ggggtgtcagt 4560
aataactcaag cacttcctcc gagtcaagaa gttaatgatg ccaccaaaca aatgaagaaa 4620
cacctaaagc tggccaagga cagttctgca gatcgatttc tcaacagctt gggaaagattt 4680
atgacaggac tggacaccag aaataatgtc aaggtgtgg tcaataacaa gggctggcat 4740
gcaatcagct ctttcctgaa tgtcatcaac aatgccattc tccggggccaa cctgcaaaag 4800
ggagagaacc ctagccatta tggaaattact gctttcaatc atccctgaa tctcaccaag 4860

cagcagctct cagagggtggc tccgatgacc acatcagtgg atgtccttgt gtccatctgt 4920
gtcatcttg caatgtcctt cgtcccagcc agctttgtcg tattcctgat ccaggagcgg 4980
gtcagcaaag caaaacacct gcagttcatc agtggagtga agcctgtcat ctactggctc 5040
tctaattttg tctggatata gtcatttttgc ttgtccctg ccacactggt cattatcatc 5100
ttcatctgtc tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt 5160
ctactttgc tgtatgggtg gtcaatcaca cctctcatgt acccagcctc ctttgtgttc 5220
aagatccccca gcacagccta tgtggtgctc accagcgtga acctcttcat tggcattaat 5280
ggcagcgtgg ccacacccat gctggagctg ttcaccgaca ataagctgaa taatatcaat 5340
gatatcctga agtccgtgtt cttgatcttc ccacatttt gcctgggacg agggctcatc 5400
gacatggtga aaaaccaggc aatggctgat gccctggaaa ggtttgggaa gaatcgctt 5460
gtgtcaccat tatcttggga cttggggaa cgaaacctct tcgcccattggc cgtggaaagg 5520
gtgggtttct tcctcattttc tgttctgatc cagtttttttgc ttttttttttgc ttttttttttgc 5580
gtaaatgcaa agtatctcc tctqaatgtat gaagatggaa atgtggggcg ggaaagacag 5640
agaattcttgc atgggtggagg ccagaatgtac atcttagaaa tcaaggagtt gacgaagata 5700
tatagaagga agcggaaagcc tgctgttgac aggatttgcg tggcattcc tcctggtgag 5760
tgctttgggc tcctgggagt taatggggct ggaaaatcat caactttcaa gatgttaaca 5820
ggagatacca ctgttaccag aggagatgtt ttcccttaaca gaaatagtat ctatcaaacc 5880
atccatgaag tacatcagaa catgggtcac tgccctcactt ttgtatgccat cacagagctg 5940
ttgactggga gagaacacgt ggagttctt gccccttgc gaggagttccc agagaaaagaa 6000
gttggcaagg ttggtgagtg ggcgatttcgg aaactgggccc tcgtgaagta tggagaaaaaa 6060
tatgctggta actatagtgg aggcaacaaa cgcaagctct ctacagccat ggctttgtac 6120
ggcgggcctc ctgtgggttt tctggatgaa cccaccacag gcatggatcc caagccccgg 6180
cggttcttgtt ggaatttgtgc ccttaagtgtt gtcaaggagg ggagatcagt agtgcattaca 6240
tctcatagta tggagaatgt tgaagctttt tgcacttagga tggcaatcat ggtcaatgg 6300
aggttcaggt gccttggcag tgtccagcat ctaaaaaata ggtttggaga tggttataaca 6360
atagttgtac gaatagcagg gtccaaaccccg gacctgaagc ctgtccagga tttctttgg 6420
cttgcatttc ctggaagtgt tccaaaagag aaacaccggc acatgctaca ataccagctt 6480
ccatcttcatttcat tatcttctctt ggccaggata ttcagcatcc tctcccagag caaaaagcga 6540
ctccacatag aagactactc tggttctcag acaacacttgc accaagtattt tgtgaacttt 6600
gccaaggacc aaagtgtatga tgaccactta aaagacctct cattacacaa aaaccagaca 6660
gtagtggacg ttgcagttctt cacatctttt ctacaggatg agaaaagtgaa agaaaagctat 6720
gtatgaagaa tcctgttcat acgggggtggc tgaaagtaaa gagggacttag actttccctt 6780
gcaccatgtg aagtgttggtg gagaaaagag ccagaagttg atgtggaaag aagtaaaactg 6840
gatactgtac tgatactattt caatgcaatg caattcaatg 6880

<210> 2

<211> 2201

<212> PRT

<213> Human

<220>

<223> Peptide sequence of ABCA1 (ABC1)

<400> 2

Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn
1 5 10 15

Ala Asn Asn Pro Cys Phe Arg Tyr Pro Thr Pro Gly Glu Ala Pro Gly
20 25 30

Val Val Gly Asn Phe Asn Lys Ser Ile Val Ala Arg Leu Phe Ser Asp
35 40 45

Ala Arg Arg Leu Leu Leu Tyr Ser Gln Lys Asp Thr Ser Met Lys Asp
50 55 60

Met Arg Lys Val Leu Arg Thr Leu Gln Gln Ile Lys Lys Ser Ser Ser
65 70 75 80

Asn Leu Lys Leu Gln Asp Phe Leu Val Asp Asn Glu Thr Phe Ser Gly
85 90 95

Phe Leu Tyr His Asn Leu Ser Leu Pro Lys Ser Thr Val Asp Lys Met
100 105 110

Leu Arg Ala Asp Val Ile Leu His Lys Val Phe Leu Gln Gly Tyr Gln
115 120 125

Leu His Leu Thr Ser Leu Cys Asn Gly Ser Lys Ser Glu Glu Met Ile
130 135 140

Gln Leu Gly Asp Gln Glu Val Ser Glu Leu Cys Gly Leu Pro Arg Glu
145 150 155 160

Lys Leu Ala Ala Ala Glu Arg Val Leu Arg Ser Asn Met Asp Ile Leu
165 170 175

Lys Pro Ile Leu Arg Thr Leu Asn Ser Thr Ser Pro Phe Pro Ser Lys
180 185 190

Glu Leu Ala Glu Ala Thr Lys Thr Leu Leu His Ser Leu Gly Thr Leu
195 200 205

Ala Gln Glu Leu Phe Ser Met Arg Ser Trp Ser Asp Met Arg Gln Glu
210 215 220

Val Met Phe Leu Thr Asn Val Asn Ser Ser Ser Ser Thr Gln Ile
225 230 235 240

Tyr Gln Ala Val Ser Arg Ile Val Cys Gly His Pro Glu Gly Gly
245 250 255

Leu Lys Ile Lys Ser Leu Asn Trp Tyr Glu Asp Asn Asn Tyr Lys Ala
260 265 270

Leu Phe Gly Gly Asn Gly Thr Glu Glu Asp Ala Glu Thr Phe Tyr Asp
275 280 285

Asn Ser Thr Thr Pro Tyr Cys Asn Asp Leu Met Lys Asn Leu Glu Ser
290 295 300

Ser Pro Leu Ser Arg Ile Ile Trp Lys Ala Leu Lys Pro Leu Leu Val
305 310 315 320

Gly Lys Ile Leu Tyr Thr Pro Asp Thr Pro Ala Thr Arg Gln Val Met
325 330 335

Ala Glu Val Asn Lys Thr Phe Gln Glu Leu Ala Val Phe His Asp Leu
340 345 350

Glu Gly Met Trp Glu Glu Leu Ser Pro Lys Ile Trp Thr Phe Met Glu

355 360 365
Asn Ser Gln Glu Met Asp Leu Val Arg Met Leu Leu Asp Ser Arg Asp
370 375 380

Asn Asp His Phe Trp Glu Gln Gln Leu Asp Gly Leu Asp Trp Thr Ala
385 390 395 400

Gln Asp Ile Val Ala Phe Leu Ala Lys His Pro Glu Asp Val Gln Ser
405 410 415

Ser Asn Gly Ser Val Tyr Thr Trp Arg Glu Ala Phe Asn Glu Thr Asn
420 425 430

Gln Ala Ile Arg Thr Ile Ser Arg Phe Met Glu Cys Val Asn Leu Asn
435 440 445

Lys Leu Glu Pro Ile Ala Thr Glu Val Trp Leu Ile Asn Lys Ser Met
450 455 460

Glu Leu Leu Asp Glu Arg Lys Phe Trp Ala Gly Ile Val Phe Thr Gly
465 470 475 480

Ile Thr Pro Gly Ser Ile Glu Leu Pro His His Val Lys Tyr Lys Ile
485 490 495

Arg Met Asp Ile Asp Asn Val Glu Arg Thr Asn Lys Ile Lys Asp Gly
500 505 510

Tyr Trp Asp Pro Gly Pro Arg Ala Asp Pro Phe Glu Asp Met Arg Tyr
515 520 525

Val Trp Gly Gly Phe Ala Tyr Leu Gln Asp Val Val Glu Gln Ala Ile
530 535 540

Ile Arg Val Leu Thr Gly Thr Glu Lys Lys Thr Gly Val Tyr Met Gln
545 550 555 560

Gln Met Pro Tyr Pro Cys Tyr Val Asp Asp Ile Phe Leu Arg Val Met
565 570 575

Ser Arg Ser Met Pro Leu Phe Met Thr Leu Ala Trp Ile Tyr Ser Val
580 585 590

Ala Val Ile Ile Lys Gly Ile Val Tyr Glu Lys Glu Ala Arg Leu Lys
595 600 605

Glu Thr Met Arg Ile Met Gly Leu Asp Asn Ser Ile Leu Trp Phe Ser
610 615 620

Trp Phe Ile Ser Ser Leu Ile Pro Leu Leu Val Ser Ala Gly Leu Leu
625 630 635 640

Val Val Ile Leu Lys Leu Gly Asn Leu Leu Pro Tyr Ser Asp Pro Ser
645 650 655

Val Val Phe Val Phe Leu Ser Val Phe Ala Val Val Thr Ile Leu Gln
660 665 670

Cys Phe Leu Ile Ser Thr Leu Phe Ser Arg Ala Asn Leu Ala Ala Ala
675 680 685

Cys Gly Gly Ile Ile Tyr Phe Thr Leu Tyr Leu Pro Tyr Val Leu Cys
690 695 700

Val Ala Trp Gln Asp Tyr Val Gly Phe Thr Leu Lys Ile Phe Ala Ser
705 710 715 720

Leu Leu Ser Pro Val Ala Phe Gly Phe Gly Cys Glu Tyr Phe Ala Leu
725 730 735

Phe Glu Glu Gln Gly Ile Gly Val Gln Trp Asp Asn Leu Phe Glu Ser
740 745 750

Pro Val Glu Glu Asp Gly Phe Asn Leu Thr Thr Ser Val Ser Met Met
755 760 765

Leu Phe Asp Thr Phe Leu Tyr Gly Val Met Thr Trp Tyr Ile Glu Ala
770 775 780

Val Phe Pro Gly Gln Tyr Gly Ile Pro Arg Pro Trp Tyr Phe Pro Cys
785 790 795 800

Thr Lys Ser Tyr Trp Phe Gly Glu Glu Ser Asp Glu Lys Ser His Pro
805 810 815

Gly Ser Asn Gln Lys Arg Ile Ser Glu Ile Cys Met Glu Glu Pro
820 825 830

Thr His Leu Lys Leu Gly Val Ser Ile Gln Asn Leu Val Lys Val Tyr
835 840 845

Arg Asp Gly Met Lys Val Ala Val Asp Gly Leu Ala Leu Asn Phe Tyr
850 855 860

Glu Gly Gln Ile Thr Ser Phe Leu Gly His Asn Gly Ala Gly Lys Thr
865 870 875 880

Thr Thr Met Ser Ile Leu Thr Gly Leu Phe Pro Pro Thr Ser Gly Thr
885 890 895

Ala Tyr Ile Leu Gly Lys Asp Ile Arg Ser Glu Met Ser Thr Ile Arg
900 905 910

Gln Asn Leu Gly Val Cys Pro Gln His Asn Val Leu Phe Asp Met Leu
915 920 925

Thr Val Glu Glu His Ile Trp Phe Tyr Ala Arg Leu Lys Gly Leu Ser
930 935 940

Glu Lys His Val Lys Ala Glu Met Glu Gln Met Ala Leu Asp Val Gly

945 950 955 960
Leu Pro Ser Ser Lys Leu Lys Ser Lys Thr Ser Gln Leu Ser Gly Gly
965 970 975

Met Gln Arg Lys Leu Ser Val Ala Leu Ala Phe Val Gly Gly Ser Lys
980 985 990

Val Val Ile Leu Asp Glu Pro Thr Ala Gly Val Asp Pro Tyr Ser Arg
995 1000 1005

Arg Gly Ile Trp Glu Leu Leu Leu Lys Tyr Arg Gln Gly Arg Thr Ile
1010 1015 1020

Ile Leu Ser Thr His His Met Asp Glu Ala Asp Val Leu Gly Asp Arg
1025 1030 1035 1040

Ile Ala Ile Ile Ser His Gly Lys Leu Cys Cys Val Gly Ser Ser Leu
1045 1050 1055

Phe Leu Lys Asn Gln Leu Gly Thr Gly Tyr Tyr Leu Thr Leu Val Lys
1060 1065 1070

Lys Asp Val Glu Ser Ser Leu Ser Ser Cys Arg Asn Ser Ser Ser Thr
1075 1080 1085

Val Ser Tyr Leu Lys Glu Asp Ser Val Ser Gln Ser Ser Ser Asp
1090 1095 1100

Ala Gly Leu Gly Ser Asp His Glu Ser Asp Thr Leu Thr Ile Asp Val
1105 1110 1115 1120

Ser Ala Ile Ser Asn Leu Ile Arg Lys His Val Ser Glu Ala Arg Leu
1125 1130 1135

Val Glu Asp Ile Gly His Glu Leu Thr Tyr Val Leu Pro Tyr Glu Ala
1140 1145 1150

Ala Lys Glu Gly Ala Phe Val Glu Leu Phe His Glu Ile Asp Asp Arg
1155 1160 1165

Leu Ser Asp Leu Gly Ile Ser Ser Tyr Gly Ile Ser Glu Thr Thr Leu
1170 1175 1180

Glu Glu Ile Phe Leu Lys Val Ala Glu Glu Ser Gly Val Asp Ala Glu
1185 1190 1195 1200

Thr Ser Asp Gly Thr Leu Pro Ala Arg Arg Asn Arg Arg Ala Phe Gly
1205 1210 1215

Asp Lys Gln Ser Cys Leu Arg Pro Phe Thr Glu Asp Asp Ala Ala Asp
1220 1225 1230

Pro Asn Asp Ser Asp Ile Asp Pro Glu Ser Arg Glu Thr Asp Leu Leu
1235 1240 1245

Ser Gly Met Asp Gly Lys Gly Ser Tyr Gln Val Lys Gly Trp Lys Leu
1250 1255 1260

Thr Gln Gln Gln Phe Val Ala Leu Leu Trp Lys Arg Leu Leu Ile Ala
1265 1270 1275 1280

Arg Arg Ser Arg Lys Gly Phe Phe Ala Gln Ile Val Leu Pro Ala Val
1285 1290 1295

Phe Val Cys Ile Ala Leu Val Phe Ser Leu Ile Val Pro Pro Phe Gly
1300 1305 1310

Lys Tyr Pro Ser Leu Glu Leu Gln Pro Trp Met Tyr Asn Glu Gln Tyr
1315 1320 1325

Thr Phe Val Ser Asn Asp Ala Pro Glu Asp Thr Gly Thr Leu Glu Leu
1330 1335 1340

Leu Asn Ala Leu Thr Lys Asp Pro Gly Phe Gly Thr Arg Cys Met Glu
1345 1350 1355 1360

Gly Asn Pro Ile Pro Asp Thr Pro Cys Gln Ala Gly Glu Glu Glu Trp
1365 1370 1375

Thr Thr Ala Pro Val Pro Gln Thr Ile Met Asp Leu Phe Gln Asn Gly
1380 1385 1390

Asn Trp Thr Met Gln Asn Pro Ser Pro Ala Cys Gln Cys Ser Ser Asp
1395 1400 1405

Lys Ile Lys Lys Met Leu Pro Val Cys Pro Pro Gly Ala Gly Gly Leu
1410 1415 1420

Pro Pro Pro Gln Arg Lys Gln Asn Thr Ala Asp Ile Leu Gln Asp Leu
1425 1430 1435 1440

Thr Gly Arg Asn Ile Ser Asp Tyr Leu Val Lys Thr Tyr Val Gln Ile
1445 1450 1455

Ile Ala Lys Ser Leu Lys Asn Lys Ile Trp Val Asn Glu Phe Arg Tyr
1460 1465 1470

Gly Gly Phe Ser Leu Gly Val Ser Asn Thr Gln Ala Leu Pro Pro Ser
1475 1480 1485

Gln Glu Val Asn Asp Ala Thr Lys Gln Met Lys Lys His Leu Lys Leu
1490 1495 1500

Ala Lys Asp Ser Ser Ala Asp Arg Phe Leu Asn Ser Leu Gly Arg Phe
1505 1510 1515 1520

Met Thr Gly Leu Asp Thr Arg Asn Asn Val Lys Val Trp Phe Asn Asn
1525 1530 1535

Lys Gly Trp His Ala Ile Ser Ser Phe Leu Asn Val Ile Asn Asn Ala

1540

1545

1550

Ile Leu Arg Ala Asn Leu Gln Lys Gly Glu Asn Pro Ser His Tyr Gly
1555 1560 1565

Ile Thr Ala Phe Asn His Pro Leu Asn Leu Thr Lys Gln Gln Leu Ser
1570 1575 1580

Glu Val Ala Pro Met Thr Thr Ser Val Asp Val Leu Val Ser Ile Cys
1585 1590 1595 1600

Val Ile Phe Ala Met Ser Phe Val Pro Ala Ser Phe Val Val Phe Leu
1605 1610 1615

Ile Gln Glu Arg Val Ser Lys Ala Lys His Leu Gln Phe Ile Ser Gly
1620 1625 1630

Val Lys Pro Val Ile Tyr Trp Leu Ser Asn Phe Val Trp Asp Met Cys
1635 1640 1645

Asn Tyr Val Val Pro Ala Thr Leu Val Ile Ile Ile Phe Ile Cys Phe
1650 1655 1660

Gln Gln Lys Ser Tyr Val Ser Ser Thr Asn Leu Pro Val Leu Ala Leu
1665 1670 1675 1680

Leu Leu Leu Tyr Gly Trp Ser Ile Thr Pro Leu Met Tyr Pro Ala
1685 1690 1695

Ser Phe Val Phe Lys Ile Pro Ser Thr Ala Tyr Val Val Leu Thr Ser
1700 1705 1710

Val Asn Leu Phe Ile Gly Ile Asn Gly Ser Val Ala Thr Phe Val Leu
1715 1720 1725

Glu Leu Phe Thr Asp Asn Lys Leu Asn Asn Ile Asn Asp Ile Leu Lys
1730 1735 1740

Ser Val Phe Leu Ile Phe Pro His Phe Cys Leu Gly Arg Gly Leu Ile
1745 1750 1755 1760

Asp Met Val Lys Asn Gln Ala Met Ala Asp Ala Leu Glu Arg Phe Gly
1765 1770 1775

Glu Asn Arg Phe Val Ser Pro Leu Ser Trp Asp Leu Val Gly Arg Asn
1780 1785 1790

Leu Phe Ala Met Ala Val Glu Gly Val Val Phe Phe Leu Ile Thr Val
1795 1800 1805

Leu Ile Gln Tyr Arg Phe Phe Ile Arg Pro Arg Pro Val Asn Ala Lys
1810 1815 1820

Leu Ser Pro Leu Asn Asp Glu Asp Glu Asp Val Arg Arg Glu Arg Gln
1825 1830 1835 ~1840

Arg Ile Leu Asp Gly Gly Gln Asn Asp Ile Leu Glu Ile Lys Glu
1845 1850 1855

Leu Thr Lys Ile Tyr Arg Arg Lys Arg Lys Pro Ala Val Asp Arg Ile
1860 1865 1870

Cys Val Gly Ile Pro Pro Gly Glu Cys Phe Gly Leu Leu Gly Val Asn
1875 1880 1885

Gly Ala Gly Lys Ser Ser Thr Phe Lys Met Leu Thr Gly Asp Thr Thr
1890 1895 1900

Val Thr Arg Gly Asp Ala Phe Leu Asn Arg Asn Ser Ile Leu Ser Asn
1905 1910 1915 1920

Ile His Glu Val His Gln Asn Met Gly Tyr Cys Pro Gln Phe Asp Ala
1925 1930 1935

Ile Thr Glu Leu Leu Thr Gly Arg Glu His Val Glu Phe Phe Ala Leu
1940 1945 1950

Leu Arg Gly Val Pro Glu Lys Glu Val Gly Lys Val Gly Glu Trp Ala
1955 1960 1965

Ile Arg Lys Leu Gly Leu Val Lys Tyr Gly Glu Lys Tyr Ala Gly Asn
1970 1975 1980

Tyr Ser Gly Gly Asn Lys Arg Lys Leu Ser Thr Ala Met Ala Leu Ile
1985 1990 1995 2000

Gly Gly Pro Pro Val Val Phe Leu Asp Glu Pro Thr Thr Gly Met Asp
2005 2010 2015

Pro Lys Ala Arg Arg Phe Leu Trp Asn Cys Ala Leu Ser Val Val Lys
2020 2025 2030

Glu Gly Arg Ser Val Val Leu Thr Ser His Ser Met Glu Glu Cys Glu
2035 2040 2045

Ala Leu Cys Thr Arg Met Ala Ile Met Val Asn Gly Arg Phe Arg Cys
2050 2055 2060

Leu Gly Ser Val Gln His Leu Lys Asn Arg Phe Gly Asp Gly Tyr Thr
2065 2070 2075 2080

Ile Val Val Arg Ile Ala Gly Ser Asn Pro Asp Leu Lys Pro Val Gln
2085 2090 2095

Asp Phe Phe Gly Leu Ala Phe Pro Gly Ser Val Pro Lys Glu Lys His
2100 2105 2110

Arg Asn Met Leu Gln Tyr Gln Leu Pro Ser Ser Leu Ser Ser Leu Ala
2115 2120 2125

Arg Ile Phe Ser Ile Leu Ser Gln Ser Lys Lys Arg Leu His Ile Glu

2130

2135

2140

Asp Tyr Ser Val Ser Gln Thr Thr Leu Asp Gln Val Phe Val Asn Phe
2145 2150 2155 2160

Ala Lys Asp Gln Ser Asp Asp His Leu Lys Asp Leu Ser Leu His
2165 2170 2175

Lys Asn Gln Thr Val Val Asp Val Ala Val Leu Thr Ser Phe Leu Gln
2180 2185 2190

Asp Glu Lys Val Lys Glu Ser Tyr Val
2195 2200

<210> 3

<211> 1130

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB9

<400> 3

gccaatgnca cggtttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
agggcgcccc gctgtcaggt ggccagaagc agcgggtggc catggccng gctctggtgc 120
ggAACCCCCC agtcctcatc ctggatgaag ccaccagcgc tttggatgcc gagagcgagt 180
atctgatcca gcaggccatc catggcaacc tgtcagaagc acacggtaact catcatcgcg 240
caccggctga gcaccgtgga gcacgcgcac ctcattgtgg tgctggacaa gggccgcgta 300
gtgcagcagg gcacccacca gcagcttgct tgccccaggg cggctttta cggcaagctn 360
gttgcagcgg cagatgtggg gtttcaaggc cgcagacttc acagctggcc acaacgagcc 420
tgttagccaac gggtcacaag gcctgatggg gggccccctcc ttgcggcggt ggcagaggac 480
ccgggtgcctg cctggcagat gtgcccacgg aggtttccag ctgcccattacc gagcccaggc 540
ctgcagcact gaaagacgac ctgccatgtc ccatgatcac cgcttntgca atcttgcctcc 600
tggtccctgc cccattccca gggcactctt accccnnct gggggatgtc caagagcata 660
gtcctctccc cataccctc cagagaaggg gttccctgt ccggagggag acacggggaa 720
cgggattttc cgctctccc tcttgcagc tctgtgagtc tggccagggc ggtagggag 780

cgtggagggc atctgtctgc caattgccccg ctgccaatct aagccagtct cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggaggggc ctcaggtgcc 900
cccagcccg cacccagctt tcgcccctcg tcaatcaacc cctggctggc agccgcctc 960
cccacacccg cccctgtgct ctgctgtctg gaggccacgt ggaccttcat gagatgcatt 1020
ctcttctgtc tttggtggn gggatggtgc aaagcccagg atctggcttt gccagaggtt 1080
gcaacatgtt gagagaaccc ggtcaataaa gtgtactacc tcttaccctt 1130

<210> 4

<211> 1304

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA6

<400> 4

tcttagatga gaaacctgtt ataattgcca gctgtctaca caaagaatat gcaggccaga 60
agaaaagttg ctttcaaag aggaagaaga aaatagcagc aagaaatatc tctttctgtg 120
ttcaagaagg tcaaattttg ggattgctag gacccaatgg tgctggaaaa agttcatcta 180
ttagaatgtat atctgggatc acaaagccaa ctgctggaga gttggaaactg aaaggctgca 240
gttcagttt gggccacctg gggtactgcc ctcaagagaa cgtgctgtgg cccatgctga 300
cgttgagggaa acacctggag gtgtatgctg ccgtcaaggg gctcagggaa gcggacgcga 360
ggctcgccat cgcaagatta gtgagtgcctt tcaaactgca tgagcagctg aatgttccctg 420
tgcagaaattt aacagcagga atcacgagaa agttgtgttt tggctgagc ctccctggaa 480
actcacctgt ctgctcctg gatgaaccat ctacggccat aaccccacag ggcagcagca 540
aatgttggca ggcaatccag gcagtcgtta aaaacacaga gagaggtgtc ctccctgacca 600
cccataaccc ggctgaggcg gaagccttgt gtgaccgtgt ggcacatcatg gtgtctggaa 660
ggcttagatg cattggctcc atccaaacacc taaaaaacaa acttggcaag gattacattc 720
tagagctaaa agtgaaggaa acgtctcaag tgacttttgtt ccacactgag attctgaagc 780
ttttccaca ggctgcaggg cagggaaaggat attcctctt gttAACCTT aagctgcccc 840
gtggcagacg ttaccctct atcacagacc tttcacaaat tagaagcagt gaaagcataa 900
cttaacctg gaagaataca gccttctcc agtgcacact gganaaggtn tccttanaac 960
cttcctaaan aacaggaagt tagggaaattt tgaatggaaa nnnacccccc cccctcattc 1020
aggtggaaacc ttaaaacctc aaaccttagta attttttgtt gatctccttat aaaacttatg 1080
tttatgtaa taattaatag tatgtttaat tttaaagatc atttaaaatt aacatcaggt 1140
atattttgtta aatttagtta acaaatacat aaattttaaa attattcttc ctctcaaaca 1200
taggggtgat agcaaaccctg tgataaaggc aatacAAAat attagtaaag tcacccaaag 1260

agt caggcac tgggtattgt ggaaataaaa ctatataaac tt aa

1304

<210> 5

<211> 65

<212> PRT

<213> Human

<220>

<223> Partial peptide sequence of ABCG1 (ABC8)

<400> 5

Val Ser Phe Asp Thr Ile Pro Thr Tyr Leu Gln Trp Met Ser Tyr Ile

1

5

10

15

Ser Tyr Val Arg Tyr Gly Phe Glu Gly Val Ile Leu Ser Ile Tyr Gly

20

25

30

Leu Asp Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe

35

40

45

Gln Lys Ser Glu Ala Ile Leu Arg Glu Leu Asp Val Glu Asn Ala Lys

50

55

60

Leu

65

<210> 6

<211> 4864

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC2 (MRP2)

<400> 6

atagaagagt cttcgttcca gacgcagtcc aggaatcatg ctggagaagt tctgcaactc 60

tacttttgg aattcctcat tcctggacag tccggaggca gacctgccac tttgtttga 120
gcaaactgtt ctggtgtgga ttcccctggg cttcctatgg ctcctggccc cctggcagct 180
tctccacgtg tataaatcca ggaccaagag atcctctacc accaaaactct atcttgctaa 240
gcaggtattc gttgggtttc ttcttattct agcagccata gagctggccc ttgtactcac 300
agaagactct ggacaagcca cagtcctgc tgttcgatata accaatccaa gcctctacct 360
aggcacatgg ctccctggtt tgctgatcca atacagcaga caatggtgc tacagaaaaa 420
ctccctggttc ctgtccctat tctggattct ctcgatactc tgtggcacct tccaatttca 480
gactctgatc cgacactct tacagggtga caattcta at ctagcctact cctgcctgtt 540
cttcatctcc tacggattcc agatcctgat cctgatctt tcagcatttt cagaaaataa 600
tgagtcatca aataatccat catccatagc ttcatccctg agtagcatta cctacagctg 660
gtatgacagc atcattctga aaggctacaa gcgtcctctg acactcgagg atgtctggga 720
agttgatgaa gagatgaaaaa ccaagacatt agtgagcaag tttgaaacgc acatgaagag 780
agagctgcag aaagccaggc gggcactcca gagacggcag gagaagagct cccagcagaa 840
ctctggagcc aggctgcctg gcttgaacaa gaatcagagt caaagccaag atgccttgc 900
cctggaagat gttgaaaaga aaaaaaaagaa gtctgggacc aaaaaagatg ttccaaaatc 960
ctggttgatg aaggctctgt tcaaaaactt ctacatggc ctccctgaaat cattcctact 1020
gaagctagtg aatgacatct tcacgttgt gagtcctcag ctgctgaaat tgctgatctc 1080
cttgcaagt gaccgtgaca catatggat gattggatat ctctgtgcaa tcctcttatt 1140
caactgcggct ctcattcagt cttctgcct tcagtgttat ttccaaactgt gcttcaagct 1200
gggtgtaaaaa gtacggacag ctatcatggc ttctgtatata aagaaggcat tgaccctatc 1260
caacttggcc aggaaggagt acaccgttgg agaaacagtg aacctgatgt ctgtggatgc 1320
ccagaagctc atggatgtga ccaacttcat gcacatgctg tggtcaagtg ttctacagat 1380
tgtcttatct atcttcttcc tatggagaga gttgggaccc tcagtcttag caggtgttgg 1440
ggtagcaac aatattttgg atgcacaaaaa ggccttcacc tccattaccc tcttcaatat 1500
cctgcgcctt cccctgagca tgcttccat gatgatctcc tccatgctcc aggccagtgt 1560
ttccacagag cggctagaga agtacttggg aggggatgac ttggacacat ctgccattcg 1920
acatagctgc aatttgaca aagccatgca gtttctgag gcctccttta cctggaaaca 1980
tgattcggaa gccacagtcc gagatgtgaa cctggacatt atggcaggcc aacttgc 2040
tgtgataggc cctgtcggtc ctggaaatc ctccctgata tcagccatgc tggagaaat 2100
ggaaaatgtc cacgggcaca tcaccatcaa gggcaccact gcctatgtcc cacagcagtc 2160
ctggattcag aatggcacca taaaggacaa catcctttt ggaacagagt ttaatgaaaa 2220
gaggtaccag caagtactgg aggcctgtgc tctcctccca gacttggaaa tgctgcctgg 2280

aggagatttg gctgagattt gagagaaggg tataaatctt agtgggggtc agaagcagcg 2340
gatcagcctg gccagagcta cctaccaaaa tttagacatc tatcttctag atgaccccc 2400
gtctgcagtg gatgctcatg tagaaaaaca tattttaat aaggtcttgg gccccaatgg 2460
cctgttggaa ggcaagactc gactcttgg tacacatagc atgcacttcc ttccctcaagt 2520
ggatgagatt gtagttcttgg ggaatggAAC aattgttagAG aaaggatcCT acagtgcTCT 2580
cctggccaaa aaaggagagt ttgctaagaa tctgaagaca tttctaagAC atacaggccc 2640
tgaagaggAA gcccAGTCC atgatggcAG tgaAGAAGAA gcAGATGACT atgggctgat 2700
atccagtgtg gaagagatCC ccGAAGATGC agcCTCCATA accatgAGAA gagAGAACAG 2760
cttcgtcga acacttagCC gcAGTTCTAG gtccAATGGC aggcatCTGA agtccCTGAG 2820
aaactcCTTG aaaACTCGGA atgtGAATAG CCTGAAGGAA gacGAAGAAC tagtGAAAGG 2880
acaaaaaACTA attaAGAAGG aattCATAGA aactGGAAAgt gtGAAGTTCT ccatCTACCT 2940
ggagtaccta caagCAATAG gattGTTTC gatattCTTC atcatCCTTG cgTTGTGAT 3000
gaattCTGTG ctTTTATTG gatCCAACCT ctggCTCAGt gcttggACCA gtGACTCTAA 3060
aatCTTCAAT agcACCGACT atCCAGCAtC tcAGAGGGAC atGAGAGTTG gAGTCTACGG 3120
agCTCTGGGA ttagCCCAAG gtatTTGT gttCATAGCA catttCTGGA gtGCCTTGG 3180
tttCGTCCAT gcatCAAATA tcttgcacAA gcaACTGCTG aacaATATCC ttcgAGCACC 3240
tatgagattt tttgacacAA cacCCACAGG ccggattGTG aacAGGTTG ccggcGATAT 3300
ttccacAGTG gatgacACCC tgcCTCAGTC ctTGCGCACG tggattACAT gcttCCTGGG 3360
gataatCAGC accCCTGTCA tgatCTGcat ggCCACTCCT gtcttCACCA tcatCGTcat 3420
tcctCTTGGC attatTTATG tatCTGTTCA gatgtTTAT gtGtCTACCT cccGCCAGCT 3480
gaggcGTCTG gactCTGTCA ccaggTCCCC aatCTACTCT cactTCAGCG agaccGTATC 3540
aggTTTGCCTA gttatCCGTG ccttTGAGCA ccAGCAGCGA tttCTGAAAC acaatGAGGT 3600
gaggattGAC accaACCAGA aatGTGTCTT ttCCCTGGATC acCTCCAACA ggtggCTTGC 3660
aattcGCCTG gagCTGGTTG ggaACCTGAC tGtCTTCTT tcAGCCTTGA tGatGGTTAT 3720
ttatAGAGAT accCTAAGTG gggACACTGT tggCTTGTt ctGtCCAATG cactCAATAT 3780
cacacAAACC ctGAACtGGC tggTGAGGAT gacATCAGAA atAGAGACCA acattGTGGC 3840
tGTTGAGCGA ataACTGAGT acacAAAGT ggAAATGAG GCACCCtGGG tGACTGATAA 3900
gaggCCTCCG ccAGATTGGC ccAGCAAAGG caAGATCCAG ttAAACAAct accaAGtGCG 3960
gtaccGACCT gagCTGGATC tggCTCTAG agggATCACT tGtGACATCG tGAGCATGGA 4020
gaagattGGT gtGGTGGGCA ggACAGGAGC tggAAAGTCA tCCCTCACCA actGCCTCTT 4080
cagaatCTTA gaggCTGCCG tggTCAGAT tatCATTGAT ggAGTAGATA ttGCTTCCAT 4140
tggGCTCCAC gacCTCCGAG agaAGCTGAC catCATCCCC caggACCCCA tcctGTTCTC 4200
tggAAAGCTG aggATGAATC tcGACCCCTT CAACAACtAC tCAGATGAGG agattTGAA 4260
ggCCTTGGAG ctggCTCACC tcaAGTCTT tGtGGCCAGC ctGCAACTTG gttatCCCA 4320
cgaAGGTACA gaggCTGGTG gcaACCTGAG catAGGCCAG aggCAGCTGC tGtGCTGGG 4380
caggGCTCTG ctTCGGAAAT ccaAGATCCT ggtCCTGGAT gaggCCACTG ctGCGGTGGA 4440
tctAGAGACA gacaACCTCA ttcAGACGAC catCCAAAAC gagttCGCCC actGCACAGT 4500

gatcaccatc gcccacaggc tgcacaccat catggacagt gacaaggtaa tggccctaga 4560
caacgggaag attatacgt gcggcagccc tgaagaactg ctacaaatcc ctggaccctt 4620
ttactttatg gctaaggaag ctggcattga gaatgtgaac agcacaaaat tctagcagaa 4680
ggccccatgg gtttagaaaag gactataaga ataatttctt atttaatttt attttttata 4740
aaatacagaa tacatacataaa agtgtgtata aaatgtacgt tttaaaaaag gataagtgaa 4800
caccatgaa cctactaccc aggttaagaa aataaatgtc accaggtact tgaaaaaaaaa 4860
aaaaa 4864

<210> 7

<211> 4646

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB1 (MDR1)

<400> 7

cctactctat tcagatattc tccagattcc taaagattag agatcatttc tcattctcct 60
aggagtactc acttcaggaa gcaaccagat aaaagagagg tgcaacggaa gccagaacat 120
tcctcctgga aattcaacct gtttcgcagt ttctcgagga atcagcattc agtcaatccg 180
ggccggggagc agtcatctgt ggtgaggctg attggctggg caggaacagc gccggggcgt 240
gggctgagca cagcgcttcg ctctcttgc cacaggaagc ctgagctcat tcgagtagcg 300
gctcttcaa gctcaaagaa gcagaggccg ctgttcggtt cctttaggtc tttccactaa 360
agtcggagta tcttcttcca agatttcacg tcttggtggc cgttccaagg aqcgcgaggt 420
cgggatggat cttgaagggg accgcaatgg aggagcaaag aagaagaact tttttaact 480
gaacaataaa agtggaaaaag ataagaagga aaagaaacca actgtcagtg tattttcaat 540
gtttcgctat tcaaattggc ttgacaagtt gtatatggtg gtggaaactt tggctgccat 600
catccatggg gctggacttc ctctcatgat gctgggttt ggagaaatga cagatatctt 660
tgcaaatgca ggaaatttag aagatctgat gtcaaacatc actaatagaa gtgatataa 720
tgatacaggg ttcttcatga atctggagga agacatgacc aggtatgcct attattacag 780
tggaaatttgt gctgggggtgc tgggtgctgc ttacattcag gttcatttt ggtgcctggc 840
agctggaaaga caaatacaca aaattagaaa acagttttt catgctataa tgcgacagga 900
gtataggctgg ttgtatgtgc acgatgtgg ggagcttaac acccgactta cagatgtgt 960
ctctaagatt aatgaagtta ttgggtgacaa aattggaatg ttctttcagt caatggcaac 1020
attttcact gggtttatag taggatttac acgtgggtgg aagctaacc ttgtgatttt 1080
ggccatcagt cctgttcttg gactgtcagc tgctgtctgg gcaaagatac tatcttcatt 1140
tactgataaa gaactcttag cgtatgcaaa agctggagca gtagctgaag aggtcttggc 1200

agcaattaga actgtgattt cattggagg aaaaaaaa gaaacttggaa ggtacaacaa 1260
aaattttagaa gaagctaaaa gaattgggat aaagaaagct attacagcca atatttctat 1320
aggtgctgct ttcctgctga tctatgcatt ttatgtctg gccttctggat atgggaccac 1380
cttggccctc tcaggggaaat attctattgg acaagtactc actgtattct tttctgtatt 1440
aattggggct ttttagtggta gacaggcatc tccaagcattt gaagcatggaa caaatgcaag 1500
aggagcagct tatgaaatct tcaagataat tgataataag ccaagtattt acagctattc 1560
gaagagtggg cacaaaccag ataataattaa gggaaatttgaattcagaa atgttcactt 1620
cagttaccca tctcgaaaag aagtttaagat cttgaaggc ctgaacctga aggtgcagag 1680
tgggcagacg gtggccctgg ttggaaacag tggctgtggg aagagcacaa cagtcagct 1740
gatgcagagg ctctatgacc ccacagaggg gatggtcagt gttgatggac aggatattt 1800
gaccataaaat gtaaggttt tacggaaat cattgggttg gtgagtcagg aacctgtatt 1860
gtttgccacc acgatagctg aaaacattcg ctatggccgt gaaaatgtca ccatggatga 1920
gattgagaaaa gctgtcaagg aagccaatgc ctatgacttt atcatgaaac tgccctataa 1980
atttgacacc ctgggtggag agagagggc ccagttgagt ggtgggcaga agcagaggat 2040
cgccattgca cgtggccctgg ttcgcaaccc caagatcctc ctgctggatg aggccacgtc 2100
agccttggac acagaaagcg aagcagtggt tcaggtggct ctggataagg ccagaaaagg 2160
tcggaccacc attgtgatag ctcatcgaaa gtctacagtt cgtaatgtcg acgtcatcgc 2220
tggtttcgat gatggagtc ttgtggagaa aggaaatcat gatgaactca tgaaagagaa 2280
aggcatttac ttcaaacttg tcacaatgca gacagcagga aatgaagttt aattagaaaa 2340
tgcagctgat gaatccaaaa gtgaaatttga tgccctggaa atgtcttcaa atgattcaag 2400
atccagtcta ataagaaaaa gatcaactcg taggagtgtc cgtggatcac aagcccaaga 2460
cagaaagctt agtaccaaag aggctctgga tgaaagtata cctccagttt cctttggag 2520
gattatgaag ctaaattttaa ctgaatggcc ttattttgtt gttgggttat tttgtgccat 2580
tataaatggc ggcctgcaac cagcatttgc aataatattt tcaaagatta taggggtttt 2640
tacaagaattt gatgatcctg aaacaaaacg acagaatagt aacttggttt cactattgtt 2700
tctagccctt ggaatttattt cttttattac attttccctt cagggtttca catttggcaa 2760
agctggagag atcctcacca agcggctccg atacatggtt ttccgatcca tgctcagaca 2820
ggatgtgagt tgggttgatg accctaaaaa caccactgga gcattgacta ccaggctcgc 2880
caatgtgct gctcaagttt aagggctat aggttccagg cttgctgtaa ttacccagaa 2940
tatagcaaattt cttgggacag gaataattat atccttcattc tatgggtggc aactaacact 3000
gttactctta gcaattgtac ccatcattgc aatagcagga gttgttggaa tgaaaatgtt 3060
gtctggacaa gcactgaaag ataagaaaaga actagaaggt gctggaaaga tcgctactga 3120
agcaatagaa aacttccgaa ccgttggttt tttgactcag gagcagaatgtt ttgaacat 3180
gtatgtcag agtttgcagg taccatacag aaacttggat aggaaagcac acatcttgg 3240
aattacattt tccttcaccc aggaatgtt gtattttcc tatgctggat gtttccgggtt 3300
tggagcctac ttgggtggcactt aaaaactcat gagcttggat gatgttctgt tagtattttc 3360
agctgttgc ttgggtggcactt aaaaactcat gagcttggat gatgttctgt tagtattttc 3420

caaagccaaa atatcagcag cccacatcat catgatcatt gaaaaaaccc ctttgattga 3480
cagctacagc acggaaggcc taatgccgaa cacattggaa ggaaatgtca catttggta 3540
agttgtatcc aactatccca cccgaccgga catcccagtgc ttccaggac tgagcctgga 3600
ggtgaagaag ggccagacgc tggctctggc gggcagcagt ggctgtgggaa agagcacagt 3660
ggtccagctc ctggagcgtt tctacgaccc cttggcaggg aaagtgtgc ttgtatggcaa 3720
agaaataaaag cgactgaatg ttcaagtggct ccgagcacac ctgggcacatcg tgccatccagga 3780
gccccatctg tttgactgca gcattgctga gaacattgcc tatggagaca acagccgggt 3840
ggtgtcacag gaagagatcg tgagggcagc aaaggaggcc aacatacatg ctttcattcga 3900
gtcaactgcct aataaatata gcactaaagt aggagacaaa ggaactcagc tctctgggtgg 3960
ccagaaacaa cgcattgcca tagctcgtgc cttgtttaga cagcctcata ttttgctttt 4020
ggatgaagcc acgtcagctc tggatacaga aagtgaaaag gttgtccaaag aagccctgga 4080
caaagccaga gaaggccgca cctgcattgt gattgctcac cgcctgtcca ccatccagaa 4140
tgcagactta atagtgggtt ttcagaatgg cagagtcaag gagcatggca cgcattcagca 4200
gctgctggca cagaaaggca tctattttc aatggtcagt gtccaggctg gaacaaagcg 4260
ccagtgaact ctgactgtat gagatgttaa atactttta atatttggat agatatgaca 4320
tttattcaaa gttaaaagca aacacttaca gaattatgaa gaggtatctg ttaacattt 4380
cctcagtc当地 gttcagagtc ttcagagact tcgtaattaa aggaacagag tgagagacat 4440
catcaagtgg agagaaatca tagttttaac tgcattataa attttataac agaattaaag 4500
tagattttaa aagataaaaat gtgtatattt gtttatattt tcccatgg actgttaactg 4560
actgccttgc taataagatta tagaagttagc aaaaagtatt gaaatgttg cataaaagtgt 4620
ctataataaa actaaacttt catgtg 4646

<210> 8

<211> 864

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCD2 (ALDR)

<400> 8

aaatggacca gatccgggtgc tgctaagagg gctgcctgcc tggggctgc ggcataatgct 60
ctgaaaaccc tctatcccat cattggcaag cgtttaaagc aatctggcca cgggaagaaa 120
aaagcagcag cttaccctgc tgcagagaac acagaaatac tgcattgcac cgagaccatt 180
tgtgaaaaac cttcgccctgg agtgaatgca gatttcttca aacagctact agaacttcgg 240
aaaattttgt ttccaaaact tgtgaccact gaaacagggt ggctctgcct gcactcagtgc 300
gctctaattt caagaacattt tctttcttcatc tatgtggctg gtctggatgg aaaaatcgtg 360

aaaagcattg tggaaaagaa gcctcgact ttcatcatca aattaatcaa gtggcttatg 420
attgccatcc ctgctacctt cgtcaacagt gcaataaggt accttggaatg caaattggct 480
ttggccttca gaactcgct agtagaccac gcctatgaaa cctatttac aaatcagact 540
tattataaag tgatcaatat ggatggagg ctggcaaacc ctgaccaatc tcttacggag 600
gatattatga tggctccca atctgtggct cacttgtatt ccaatctgac caaacctatt 660
tttagatgtaa tgctgaccc tcatacactc attcaaactg ctacatccag aggagcaagc 720
ccaattggc ccaccctact agcaggactt gtggtgatg ccactgctaa agtgtaaaa 780
gcctgttctc ccaaatttgg caaactggtg gcagaggaag cacatagaaa aggctattg 840
cggtatgtgc actcgagaat tata 864

<210> 9

<211> 2750

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCD1 (ALDP)

<400> 9

gcggacggac gcgcctggtg ccccggggag gggcgccacc gggggaggag gaggaggaga 60
aggtggagag gaagagacgc cccctctgcc cgagacctct caaggccctg acctcagggg 120
ccagggcact gacaggacag gagagccaag ttccctccact tgggctgccc gaagaggccg 180
cgacccttga gggccctgag cccaccgcac cagggccccc agcaccaccc cgggggccta 240
aagcgacagt ctcaggggcc atcgcaaggt ttccagttgc cttagacaaca ggcccgagg 300
cagagcaaca atccttccag ccacctgcct caactgctgc cccaggcacc agccccagtc 360
cctacgcggc agccagccca ggtgacatgc cggtgctctc cagggccccc ccctggcg 420
ggaacacgct gaagcgacag gccgtgctcc tggccctcgc ggcctatgga gcccacaaag 480
tctaccctt ggtgcgccag tgcctggccc cggccagggg tcttcaggcg cccgccgggg 540
agcccacgca ggaggcctcc ggggtcgccg cggccaaagc tggcatgaac cgggtattcc 600
tgcagcggct cctgtggctc ctgcggctgc tggcccccgg ggtcctgtgc cggagacgg 660
ggctgctggc cctgcactcg gccgccttgg tgagccgcac cttcctgtcg gtgtatgtgg 720
cccgcccttga cggaaaggctg gcccgtgca tcgcccccaa ggacccgcgg gctttggct 780
ggcagctgct gcagtggctc ctcatcgccc tccctgtac cttcgtcaac agtgcacatcc 840
gttaccttggaa gggccaaactg gcccgtcg tccgcagccg tctggtgccc cacgcctacc 900
gcctctactt ctcccagcag acctactacc gggtcagcaa catggacggg cggcttcgca 960
accctgacca gtctctgacg gaggacgtgg tggccttgc ggcctctgtg gcccacctct 1020
actccaacct gaccaagcca ctcctggacg tggctgtgac ttcctacacc ctgcattcggg 1080

cggccccgtc ccgtggagcc ggcacagcct ggccctcgcc catcgccggc ctcgtggtgt 1140
tcctcacggc caacgtgctg cgggccttct cgcccaagtt cggggagctg gtggcagagg 1200
aggcgcgccg gaagggggag ctgcgctaca tgcactcgcg tgtggtgccc aactcgagg 1260
agatcgccctt ctatggggc catgaggtgg agctggccct gctacagcgc tcctaccagg 1320
acctggcctc gcagatcaac ctcatccttc tggAACgcct gtggtatgtt atgctggagc 1380
agttcctcat gaagtatgtg tggagcgcct cgggcctgct catggtggt gtcccccata 1440
tcactgccac tggctactca gagtcagatg cagaggccgt gaagaaggca gccttggaaa 1500
agaaggagga ggagctggtg agcgagcgc aagaagcctt cactattgcc cgcaacctcc 1560
tgacagcggc tgcaagatgcc attgagcgg a tcatgtcg tcgtacaaggag gtgacggagc 1620
tggctggcta cacagcccg gtgcacgaga tggcccaagg atttgaagat gttcagcgct 1680
gtcacttcaa gaggcccagg gagctagagg acgctcaggc ggggtctggg accataggcc 1740
ggtctggtgt ccgtgtggag ggccccctga agatccgagg ccaggtggtg gatgtggAAC 1800
aggggatcat ctgcgagaac atccccatcg tcacgcctc aggagaggtg gtggtgccca 1860
gcctcaacat caggggtggag gaaggcatgc atctgctcat cacaggcccc aatggctgca 1920
gcaagagctc cctgttccgg atcctgggtg ggctctggcc cacgtacggt ggtgtgctct 1980
acaagcccc accccagcgc atgttctaca tcccgcagag gccctacatg tctgtggct 2040
ccctgcgtga ccaggtgatc tacccggact cagtgagga catgcaaagg aagggtact 2100
cggagcagga ccttggaaagcc atcctggacg tcgtgcacct gcaccacatc ctgcagcggg 2160
agggaggttggaggctatg tgtgactgga aggacgtcct gtcgggtggc gagaagcaga 2220
gaatcggcat ggcccgcatg ttctaccaca gggccaagta cgccctcctg gatgaatgca 2280
ccagcggcgt gagcatcgac gtggaaaggca agatcttcca ggcggccaag gacgcgggca 2340
ttggccctgct ctccatcacc caccggccct ccctgtggaa ataccacaca cacttgctac 2400
agttcgatgg ggagggcgcc tggaaagttcg agaagctgga ctcaagctgcc cgcctgagcc 2460
tgacggagga gaagcagcgg ctggagcagc agctggcgcc cattcccaag atgcagcggc 2520
gcctccagga gctctgccag atcctggcg aggccgtggc cccagcgcatt gtgcccggcac 2580
ctagccccca aggccctgggt ggccctccagg gtgcctccac ctgacacaac cgtccccggc 2640
ccctgccccgg cccccaagct cggatcacat gaaggagaca gcagcaccca cccatgcacg 2700
caccggcccc ctgcatgcct ggccctcct cctagaaaaac cttccccggcc 2750

<210> 10

<211> 5011

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC1 (MRP1)

<400> 10

ccaggcggcg ttgcggcccc ggccccggct ccctgcgccc cggccgccc cgccgccc 60
gccgcccgcg cggccgcccag cgctagcgcc aqcgacccggg cccgatcacc cgccgcccgg 120
tgcccgcgc cggccgccc agcaaccggg cccgatcacc cgccgcccgg tgcccgcgc 180
cgccgccc accggcatgg cgctccgggg cttctgcagc gccgatggct ccgacccgct 240
ctgggactgg aatgtcacgt ggaataccag caacccgac ttcaccaagt gctttcagaa 300
cacggtcctc gtgtgggtgc cttgtttta cctctgggcc tgtttcccct tctacttcct 360
ctatctctcc cgacatgacc gaggctacat tcagatgaca cctctcaaca aaacccaaaac 420
tgccttggga ttttgctgt ggatcgtctg ctgggcagac ctcttctact ctttctggga 480
aagaagtccg ggcattttcc tggcccccagt gtttctggtc agcccaactc tcttggcat 540
caccacgctg cttgctaccc ttttaattca gctggagagg aggaaggagg ttcagtcttc 600
agggatcatg ctcactttct ggctggtagc cctagtgtgt gccctagcca tcctgagatc 660
caaaattatg acagccttaa aagaggatgc ccaggtggac ctgtttcggt acatcacatt 720
ctacgtctac tttccctct tactcattca gtcgtctg tccctgtttct caqatcgctc 780
accctgttc tcggaaacca tccacgaccc taatccctgc ccagagtcca gcgcttcctt 840
cctgtcgagg atcaccttct ggtggatcac agggttgatt gtccggggct accgcccagcc 900
cctggagggc agtgcacctt ggtccttaaa caaggaggac acgtcgaaac aagtcgtgcc 960
tgttttgta aagaactgga aqaaggaatg cgccaaagact aggaagcagc cggtgaaggt 1020
tgtgtactcc tccaaggatc ctgcccagcc gaaagagagt tccaagggtgg atgcgaatga 1080
ggaggtggag gctttgatcg tcaagtcccc acagaaggag tggaaaccctt ctctgtttaa 1140
ggtgttatac aagaccttgc ggcctactt cctcatgagc ttcttcttca aggccatcca 1200
cgacctgatg atgtttccg ggccgcagat cttaaagtttgc ctcataatgt tcgtgaatga 1260
cacgaaggcc ccagactggc agggctactt ctacaccgtg ctgctgttttgc tcaactgcctt 1320
cctgcagacc ctcgtgctgc accagtactt ccacatctgc ttcgtcagtg qcatgaggat 1380
caagaccgct gtcattgggg ctgtctatcg gaaggccctg gtgatcacca attcagccag 1440
aaaatccccc acggtcgggg agattgtcaa cctcatgtct gtggacgcctc agaggttcat 1500
ggacttggcc acgtacatta acatgatctg gtcagccccctt ctcataatgtca tccttgcctt 1560
ctacctcctt tggctgaatc tggcccttc cgtcctggct ggagtggcgg tggatggctt 1620
catggtgcggc gtcaatgctg tggatggcgat gaagaccaag acgtatcagg tggcccacat 1680
gaagagcaaa gacaatcgga tcaagctgtat gaacgaaatt ctcaatggga tcaaagtgtct 1740
aaagctttat gcctgggagc tggcattcaa ggacaagggtg ctggccatca ggcaggagga 1800
gctgaagggtg ctgaagaatgt ctgcctaccc gtcagccgtg ggcaccttca cctgggtctg 1860
cacgcctttt ctggtggcct tggatggctt tggatggctt tggatggctt 1920
catcctggat gcccagacag ctttcgtgtc tttggcccttgc ttcaacatcc tccgggtttcc 1980
cctgaacatt ctccccatgg tcatcagcag catcgtgcag gcgagtgtct ccctcaaacg 2040
cctgaggatc tttctctccc atgaggagct ggaacctgac agcatcgagc gacggccctgt 2100
caaagacggc gggggcacga acagcatcac cgtgaggaat gccacattca cctggccag 2160

gagcgaccct cccacactga atggcatcac cttctccatc cccgaagggtg ctttggggc 2220
cgtggggc cagggtggct gcggaaagtc gtccctgctc tcagccctct tggctgagat 2280
ggacaaagtg gagggggcacf tggctatcaa gggctccgtg gcctatgtgc cacagcaggc 2340
ctggatttag aatgattctc tccgagaaaa catcctttt ggatgtcagc tggaggaacc 2400
atattacagg tccgtatac aggccctgtgc cctcctccca gacctggaaa tcctgcccag 2460
tggggatcgg acagagattg gcgagaaggg cgtgaacctg tctgggggcc agaagcagcg 2520
cgtgagcctg gcccgcccg tgtactccaa cgctgacatt tacctcttcg atgatcccct 2580
ctcagcagtg gatgccccatg tggaaaaca catcttgaa aatgtgattg gccccaaagg 2640
gatgctgaag aacaagacgc ggatcttggt cacgcacagc atgagctact tgccgcaggt 2700
ggacgtcatc atcgtcatga gtggcggcaa gatctctgag atgggctcct accaggagct 2760
gctggctcga gacggcgct tcgctgagtt cctgcgtacc tatgccagca cagagcagga 2820
gcaggatgca gaggagaacg gggtcacggg cgtcagcggt ccagggaaagg aagcaaagca 2880
aatggagaat ggcatgctgg tgacggacag tgcaagggaaag caactgcaga gacagctcag 2940
cagctccctcc tcctatagtg gggacatcag caggcaccac aacagcaccg cagaactgca 3000
gaaagctgag gccaagaagg aggagacctg gaagctgatg gaggctgaca aggccgcagac 3060
agggcaggc aagctttccg tgtactggga ctacatgaag gccatcgacatc tcttcatctc 3120
cttcctcagc atcttcctt tcatgtgtaa ccatgtgtcc gcgcgtggctt ccaactattg 3180
gctcagcctc tggactgatg accccatcgt caacggact caggagcaca cgaaagtccg 3240
gctgagcgtc tatggagccc tggcatttc acaaggatc gccgtgtttg gctactccat 3300
ggccgtgtcc atcggggggta tcttggcttc ccgcgtgtctg cacgtggacc tgctgcacag 3360
catcctgcgg tcacccatga gcttcttga gcggaccccc agtggaaacc tggtaaccg 3420
cttctccaag gagctggaca cagtggactc catgatcccg gaggtcatca agatgttcat 3480
gggctccctg ttcaacgtca ttggcgtctg catcgatc ctgcgtggca cgcccatcgc 3540
cgccatcatc atcccgcccc ttggcctcat ctacttcttc gtccagaggt tctacgtggc 3600
ttcctcccg cagctgaagc gcctcgagtc ggtcagccgc tccccggctt attccattt 3660
caacgagacc ttgctgggg tcagcgtcat tcgagccttc gaggagcagg agcgcttcat 3720
ccaccagagt gacctgaagg tggacgagaa ccagaaggcc tattacccca gcatcggtgc 3780
caacaggtgg ctggccgtgc ggctggagtg tggggcaac tgcacatgttc tggtgtgc 3840
cctgtttgcg gtatctcca ggcacagcct cagtgcgtgc ttggggcc tctcagtg 3900
ttactcattt caggtcacca cgtacttgcgatc ctggctgttt cggatgtcat ctgaaatgg 3960
aaccacatc gtggccgtgg agaggctcaa ggagtattca gagactgaga aggaggcgcc 4020
ctggcaacatc caggagacag ctccggccag cagctggccc caggtggggcc gagtggaaatt 4080
ccggaactac tgctcgct accgagagga cctggacttc gttctcaggc acatcaatgt 4140
cacgatcaat gggggagaaa aggtcggcat cgtggggccg acgggagctg ggaagtcgtc 4200
cctgaccctg ggcttatttc ggtcaacga gtctgcgaa ggagagatca tcatcgatgg 4260
catcaacatc gccaagatcg gcctgcacga cctccgttc aagatcacca tcatccccca 4320
ggaccctgtt ttgtttcgg gttccctccg aatgaacctg gaccattca gccagtaactc 4380

ggatgaagaa gtctggacgt ccctggagct ggcccacctg aaggacttcg tgcagccct 4440
 tcctgacaag ctagaccatg aatgtgcaga aggccgggag aacctcagtg tcggcagcg 4500
 ccagcttgtg tgccctagccc gggccctgct gaggaagacg aagatccttg tggatga 4560
 ggccacggca gccgtggacc tggaaacgga cgacctcatc cagtccacca tccggacaca 4620
 gttcgaggac tgcaccgtcc tcaccatcgc ccaccggctc aacaccatca tggactacac 4680
 aagggtgatc gtctggaca aaggagaaat ccaggagtac ggcgc(ccat cgacactct 4740
 gcagcagaga ggtctttct acagcatggc caaagacgcc ggcttgggtg gagccccaga 4800
 gctggcatat ctggtcagaa ctgcagggcc tatatgccag cccccagggg ggagtca 4860
 cccctggtaa accaagcctc ccacactgaa accaaaacat aaaaaccaaaa cccagacaac 4920
 caaaaacatat tcaaaggcagc agccaccgccc atccggtccc ctgcctggaa ctggctgtga 4980
 agacccagga gagacagaga tgcgaaccac c 5011

<210> 11

<211> 3924

<212> DNA

<213> Human.

<220>

<223> human cDNA of ABCB4 (MDR3)

<400> 11

cctgccagac acgcgcgagg ttgcaggctg agatggatct tgaggcggca aagaacggaa 60
 cagcctggcg ccccacgagc gcggaggcg actttgaact gggcatcaqc agcaaacaaa 120
 aaaggaaaaa aacgaagaca gtgaaaatga ttggagtatt aacattgttt cgatactccg 180
 attggcagga taaattgttt atgtcgctgg gtaccatcat gccatagct cacggatcg 240
 gtctccccct catgatgata gtattggag agatgactga caaatttgc gatactgcag 300
 gaaacttctc ctttccagtg aactttcct tgtcgctgct aaatccaggg aaaattctgg 360
 aagaagaaaat gactagatata gcatattact actcaggatt gggtgctgga gttcttgc 420
 ctgcctatat acaagttca ttttggactt tggcagctgg tcgacagatc aggaaaatta 480
 ggcagaagtt ttttcatgct attctacgac aggaaatagg atggtttgac atcaatgaca 540
 ccactgaact caatacgcgg ctaacagatg acatctccaa aatcagtgaa ggaattggtg 600
 acaagggtgg aatgttcttt caagcagtag ccacgtttt tgcaggattc atagtggat 660
 tcatcagagg atggaagctc acccttgtga taatggccat cagccctatt ctaggactct 720
 ctgcagccgt ttggccaaag atactctcg catttagtga caaagaacta gctgcttatg 780
 caaaagcagg cgccgtggca gaagaggctc tggggccat caggactgtg atagcttcg 840
 ggggcccagaa caaagagctg gaaaggtatc agaaacattt agaaaatgcc aaagagattg 900
 gaattaaaaa agctatttca gcaaacattt ccatgggtat tgcccttcctg ttaatatatg 960

catcatatgc actggccttc tggtatggat ccactctagt catatcaaaa gaatatacta 1020
ttggaaatgc aatgacagtt ttttttcaa tcctaattgg agcttcagt gttggccagg 1080
ctgccccatg tattgatgct tttgccaatg caagaggagc agcatatgtg atcttgata 1140
ttattgataa taatcctaaa attgacagtt tttcagagag aggacacaaaa ccagacagca 1200
tcaaaggaa tttggagttc aatgatgttc acttttctta cccttctcg a gctaacgtca 1260
agatcttga a gggcctcaac ctgaaggtgc agagtggca gacggtggcc ctgggtggaa 1320
gtatgtggctg tggaaagagc acaacggtcc agctgataca gaggctctat gaccctgtg 1380
agggcacaat taacattgtat gggcaggata ttaggaactt taatgtaaac tatctgaggg 1440
aaatcattgg tgggtgagt caggagccgg tgctgtttc caccacaatt gctgaaaata 1500
tttggatgg ccgtggaaat gtaaccatgg atgagataaa gaaagctgtc aaagaggcca 1560
acgcctatga gtttatcatg aaattaccac agaaatttga caccctgggtt ggagagagag 1620
gggcccagct gagtggtggg cagaagcaga gatatcgccat tgacacgtgcc ctgggtcgca 1680
accccaagat ccttctgctg gatgaggcca cgatcagcatt ggacacagaa agtgaagctg 1740
aggtacaggc agctctggat aaggccagag aaggccggac caccattgtg atagcacacc 1800
gactgtctac ggtccgaaat gcagatgtca tcgctgggtt tgaggatgga gtaatgtgg 1860
agcaaggaag ccacagcgaa ctgatgaaga aggaagggggt gtacttcaaa cttgtcaaca 1920
tgcagacatc aggaagccag atccagtcag aagaatttga actaaatgtat gaaaaggctg 1980
ccactagaat ggccccaat ggctggaaat ctcgcctatt taggcattct actcagaaaa 2040
accttaaaaaa ttcacaaatg tgtcagaaga gccttgatgt gggaaaccat ggacttgaag 2100
caaatgtgcc accagtgtcc tttctgaagg tcctgaaact gaataaaaca gaatggccct 2160
actttgtcgt gggAACAGTA tgtgccattt ccaatgggg gcttcagccg gcattttcag 2220
tcatattctc agagatcata gcgattttt gaccaggcga tgatgcagtg aagcagcaga 2280
agtcaacat attctctttt attttcttat ttctggaaat tatttctttt tttactttct 2340
tccttcaggg tttcacgttt gggAAAGCTG gcgagatcct caccagaaga ctgcggtcaa 2400
tggctttaa agcaatgcta agacaggaca tgagctgggt tgatgaccat aaaaacagta 2460
ctggcact ttctacaaga cttgccacag atgctgccc agtccaagga gccacaggaa 2520
ccagggttggc ttaattgca cagaatatacg ctaaccttgg aactggatt atcatatcat 2580
ttatctacgg ttggcagttt accctattgc tattagcagt tggttccatt attgctgtgt 2640
caggaattgt tgaaatgaaa ttgttggctg gaaatgccaa aagagataaa aaagaactgg 2700
aaagctgtgg aaagattgca acagaggcaa tagaaaatat taggacagtt gtgtctttga 2760
cccaggaaag aaaattgaa tcaatgtatg ttgaaaaatt gtatggacct tacaggaatt 2820
ctgtgcagaa ggcacacatc tatggaatta cttttagtat ctcacaagca tttatgtatt 2880
tttcctatgc cggttgtttt cgatttggtg catatctcat tgtgaatgga catatgcgt 2940
tcagagatgt tattctggtg ttttctgcaa ttgttattgg tgcaatggct ctggacatg 3000
ccagttcatt tgctccagac tatgctaaag ctaagctgtc tgcaagccac ttattcatgc 3060
tgtttggaaag acaacctctg attgacagct acagtgaaga ggggctgaag cctgataaat 3120
ttgaaggaaa tataacattt aatgaagtcg tggtaacta tcccacccga gcaaacgtgc 3180

cagtgcgtca ggggctgagc ctggaggtga agaaaggcca gacactagcc ctgggtggca 3240
gcagtggctg tggaaagagc acgggtggcc agctcctgg a cgcgttctac gacccttgg 3300
cggggacagt gcttcgtat ggtcaagaag caaagaaact caatgtccag tggctcagag 3360
ctcaactcg aatcggtgtc caggagccta tcctatttga ctgcagcatt gccgagaata 3420
ttgcctatgg agacaacagc cgggttgat cacaggatga aattgtgagt gcagccaaag 3480
ctgccaacat acatccttc atcgagacgt taccccacaa atatgaaaca agagtggag 3540
ataaggggac tcagctctca ggaggtcaaa aacagaggat tgctattgcc cgagccctca 3600
tcagacaacc tcaaattcctc ctgttggatg aagctacatc agctctggat actgaaagt 3660
aaaaggttgt ccaagaagcc ctggacaaag ccagagaagg ccgcacctgc attgtgattg 3720
ctcaccgcct gtccaccatc cagaatgcag acttaatagt ggtgtttcag aatggagag 3780
tcaaggagca tggcacgcat cagcagctgc tggcacagaa aggcatctat tttcaatgg 3840
tcagtgtcca ggctgggaca cagaacttat gaactttgc tacagtatat tttaaaaata 3900
aattcaaattt attctaccca tttt 3924

<210> 12

<211> 1725

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB6

<400> 12

ctttcctgtg gatccgggtg cagcagttca cgtctcgccg qgtggagctg ctcatcttct 60
cccacctgca cgagctctca ctgcgtggc acctggggcg ccgcacaggg gaggtgctgc 120
ggatcgcgga tcggggcaca tccagtgtca cagggctgct cagctacctg gtgtcaatg 180
tcatccccac gctggccgac atcatcattt gcatcatcta cttcagcatg ttctcaacg 240
cctggtttgg cctcatttgtt ttcctgtca tgagtcttta cctcaccctg accattgtgg 300
tcactgagt gagaaccaag tttcgctgtg ctatgaacac acaggagaac gctacccggg 360
cacgagcagt ggactctctg ctaaacttcg agacggtgaa gtattacaac gccgagagtt 420
acgaagtggc acgctatcga gaggccatca tcaaataatca gggtttggag tggaaagtca 480
gcgccttact ggtttacta aatcagaccc agaacctggt gattgggctc gggctcctcg 540
ccggctccct gctttgcgca tactttgtca ctgagcagaa gctacaggtt gggactatg 600
tgctctttgg cacctacatt atccagctgt acatgcccct caattggttt ggcacctact 660
acaggatgtt ccagaccaac ttcattgaca tggagaacat gtttgacttg ctgaaagagg 720
agacagaagt gaaggacctt cctggagcag ggcccttcg ctttcagaag ggccgtattg 780
agtttgagaa cgtgcacttc agctatgccc agtggcgaaa gactctgcag gacgtgtctt 840

tcactgtgat gcctggacag acacttgccc tggtgggccc atctggggca gggaaagagca 900
caattttcg cctgctgtt cgcttctacg acatcagctc tggctgcac tcgaatagatg 960
ggcaggacat ttcacaggtg acccaggcct ctctccggc tcacattgga gttgtgcccc 1020
aagacactgt cctcttaat gacaccatcg ccgacaatat ccgttacggc cgtgtcacag 1080
ctgggaatga tgaggtggag gctgctgctc aggctgcagg catccatgat gccatttatgg 1140
ctttccctga aggttacagg acacaggtgg gcgagcgggg actgaagctg agcggcgggg 1200
agaagcagcg cgtcgcccatt gccccacca tcctcaaggc tccgggcac tcattctgg 1260
atgaggcaac gtcagcgctg gatacatcta atgagaggc catccaggct tctctggca 1320
aagtctgtgc caaccgcacc accatcgtag tggcacacag gctctcaact gtggtaatg 1380
ctgaccagat cctcgtcattc aaggatggct gcatcggtt gaggggacga cacgaggctc 1440
tgttgtcccg aggtgggtg tatgctgaca tgtggcagct gcagcaggga caggaagaaa 1500
cctctgaaga cactaaggcct cagaccatgg aacggtgaca aaagtttggc cacttccctc 1560
tcaaagacta acccagaagg gaataagatg tgtctccctt ccctggctta tttcatcctg 1620
gtcttgggt atggtgctag ctatggtaag ggaaaggac ctttccgaaa aacatctttt 1680
ggggaaataa aaatgtggac tgtaaaaaaa aaaaaaaaaa aaaaa 1725

<210> 13

<211> 4776

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCB11

<400> 13

aatgatgaa aaccgagggtt ggaaaagggtt gtgaaacctt ttaactctcc acagtggagt 60
ccattatttc ctctggcttc ctcaaattca tattcacagg gtcgttggct gtgggttgca 120
attaccatgt ctgactcagt aattcttcga agtataaaga aatttggaga ggagaatgat 180
gttttggat cagataaaatc atataataat gataagaaat caaggttaca agatgagaag 240
aaaggtgatg gcgttagagt tggcttcttt caattgttcc gttttcttc atcaactgac 300
atttggctga tggttgtggg aagtttggat gcatttctcc atgaaatagc ccagccaggc 360
gtgctactca ttttggcac aatgacagat gtttttattt gactacgacgt tgagttacaa 420
gaactccaga ttccaggaaa agcatgtgt aataacacca ttgtatggac taacagttcc 480
ctcaaccaga acatgacaaa tggAACACGT tgggggttgc tgaacatcga gagcgaatg 540
atcaaatttgc ccagttacta tgctggatt gctgtcgcag tacttatacac aggatataatt 600
caaatatgtt tttgggtcat tgccgcagct cgtcagatac agaaaatgag aaaatttac 660
tttaggagaa taatgagaat ggaaataggg tggtttgact gcaattcagt gggggagctg 720

aataacaagat tctctgatga tattaataaa atcaatgatg ccatagctga ccaaatggcc 780
ctttcattc agcgcatgac ctcgaccatc tgtggttcc tggtggatt tttcaggggt 840
tggaaactga ccttggttat tatttctgtc agccctctca ttgggatgg agcagccacc 900
attggctctga gtgtgtccaa gttacggac tatgagctga aggctatgc caaagcaggg 960
gtggtggtcg atgaagtcat ttcataatg agaacagtgg ctgctttgg tggtgagaaa 1020
agagaggttg aaaggtatga gaaaaatctt gtgtcgccc agcgttgggg aattagaaaa 1080
ggaatagtga tgggattctt tactggattc gtgtgggtgc tcatactttt gtgttatgca 1140
gtggccttct ggtacggctc cacacttgtc ctggatgaag gagaatatac accaggaacc 1200
cttgtccaga ttttcctcag tgtcatagta ggagctttaa atcttggcaa tgcctctcct 1260
tgtttggaaag ccttgcaac tggacgtgca gcagccacca gcattttga gacaatagac 1320
aggaaaccca tcattgactg catgtcagaa gatggttaca agttggatcg aatcaagggt 1380
gaaattgaat tccataatgt gacccatcat tataccttcca gaccagaggt gaagattcta 1440
aatgaccta acatggtcat taaaccagg gaaatgacag ctctggtagg acccagtgg 1500
gctggaaaaaa gtacagcact gcaactcatt cagcgattct atgaccctg tgaaggaatg 1560
gtgaccgtgg atggccatga cattcgctc cttAACATTc agtggcttag agatcagatt 1620
gggatagtgg agcaagagcc agttctgttc tctaccacca ttgcagaaaa tattcgctat 1680
ggcagagaag atgcaacaat ggaagacata gtccaaagctg ccaaggaggc caatgcctac 1740
aacttcatca tggacctgcc acagcaattt gacacccttgg ttggagaagg aggaggccag 1800
atgagtggtg gccagaaaaca aaggtagct atcgccagag ccctcatccg aaatcccaag 1860
attctgcttt tggacatggc cacctcagct ctggacaatg agagtgaagc catggtgcaa 1920
gaagtgcgtga gtaagattca gcatggcac acaatcattt cagttgtca tcgcttgc 1980
acggtcagag ctgcagatac catcatttgtt tttgaacatg gcactgcagt ggaaagaggg 2040
acccatgaag aattactgga aaggaaaggt gtttacttca ctctagtgac tttqcaaagc 2100
cagggaaatc aagctttaa tgaagaggac ataaaggatg caactgaaga tgacatgctt 2160
gcgaggacct ttagcagagg gagtaccatg gatagttaa gggcttccat ccggcaacgc 2220
tccaagtctc agctttctta cctggcgtcac gaacccatcat tagctgttgt agatcataag 2280
tctacctatg aagaagatag aaaggacaag gacattcctg tgcaggaaga agttgaacct 2340
gccccagtttta ggaggattct gaaattcagt gctccagaat ggccttacat gctggtaggg 2400
tctgtgggtg cagctgtgaa cgggacagtc acacccttgc atgcctttt attcagccag 2460
attcttggga cttttcaat tcctgataaa gaggaacaaa ggtcacagat caatggtg 2520
tgcctacttt ttgttagcaat gggctgtgtca tctctttca cccaaatttct acagggatat 2580
gcctttgcta aatctggga gtcctaaaca aaaaggctac gtaaatttgg tttcagggca 2640
atgctggggc aagatattgc ctggtttgc gacccatgaa atagccctgg agcattgaca 2700
acaagacttgc ctacagatgc ttcccaagtt caagggctg ccggctctca gatcggatg 2760
atagtcaatt ctttcactaa cgtcactgtg gccatgatca ttgccttctc ctttagctgg 2820
aagctgagcc tggcatctt gtgtttttcc cccttcttgg ctttatcagg agccacacag 2880
accaggatgt tgacaggatt tgcctctcga gataagcagg ccctggagat ggtggacag 2940

attacaaatg aagccctcag taacatccgc actgttgctg gaattggaaa ggagaggcgg 3000
ttcattgaag cactttagac tgagctggag aagcccttca agacagccat tcagaaagcc 3060
aatatttacg gattctgctt tgccttgcc cagtgcata tcgttattgc gaattctgct 3120
tcctacagat atggagggtta cttaatctcc aatgaggggc tccatattcag ctatgtgttc 3180
agggtgatct ctgcagttgt actgagtgca acagcttttgaagagcctt ctcttacacc 3240
ccaagttatg caaaagctaa aatatcagct gcacgcttttcaactgct ggaccgacaa 3300
cccccaatca gtgtatacaa tactgcaggt gaaaaatggg acaacttcca ggggaagatt 3360
gattttgtt attgtaaatt tacatatcct tctcgacctg actcgcaagt tctgaatgg 3420
ctctcagtgt cgattagtcc agggcagaca ctggcggttg ttgggagcag tggatgtggc 3480
aaaagacta gcattcagct gttggAACGT ttctatgatc ctgatcaagg gaaggtgatg 3540
atagatggtc atgacagcaa aaaagtaaat gtccagttcc tccgctcaaa cattggaatt 3600
gtttcccagg aaccagtgtt gttgcctgt agcataatgg acaatataa gatggagac 3660
aacaccaaag aaattcccat ggaaagagtc atagcagctg caaaacaggc tcagctgcac 3720
gattttgtca tgtcactccc agagaaatat gaaactaacg ttgggtccca ggggtctcaa 3780
ctctctagag gggagaaaca acqcattgctt attgctcggg ccattgtacg agatcctaaa 3840
atcttgctac tagatgaagc cacttctgcc tttagacacag aaagtgaaaa gacgggtgcag 3900
gttgctctag acaaagccag agagggtcgg acctgcatttgcatttgcac 3960
accatccaga acgcggatat cattgctgatc atggcacagg ggggtgtat tgaaaagggg 4020
accatgaag aactgtatggc ccaaaaagga gcctactaca aactagtcac cactggatcc 4080
cccatcagtt gacccaatgc aagaatctca gacacacatg acgcaccagt tacaggggtt 4140
gtttttaaag aaaaaaaca tcccagcactg agggattgtt gggattgttt tttctttaaa 4200
gaagaatntn nntatttac ttttacnnnc ntttcctac atcggaatcc aanctaattt 4260
ctaattggcct tccataataa ttctgcttta gatgtgtata cagaaaatga aagaaactag 4320
ggtccatgtg agggaaaacc caatgtcaag tggcagctca gccaccactc agtgcctctc 4380
tgtgcaggag ccagtcctga ttaatatgtg ggaatttagtg agacatcagg gagtaagtga 4440
cacttgaac tcctcaagga cagagaactg tcttcattt ttgaaccctc ggtgtacaca 4500
gaggcgggtc tgtaacaggc aatcaacaaa cgtttcttga gctagaccaa ggtcagattt 4560
aaaaagaaca gaaggactga agaccagctg tggttctttaa ctaaatttgc tttcaagtgc 4620
aaaccagctt ctttcatttc taaggctaa gataggaaa ggggtggatg ctctcangct 4680
gagggaggca naaaggggaaa gtattancat gagctttcca nttagggctg ttgatttatg 4740
ctttaacttc anantgagtg taggggtgtg anncta 4776

<210> 14

<211> 5838

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC5 (MRP5)

<400> 14

ccgggcaggt ggctcatgct cgggagcgtg gttgagcggc tggcgccgtt gtccctggagc 60
aggggcgcag gaattctgtat gtgaaaactaa cagtctgtga gcccttggAAC ctccgctcag 120
agaagatgaa ggatatcgac ataggAAAAG agtataatcat ccccagtccG gggtatAGAA 180
gtgtgagggA gagaaccAGC acttctggGA cgcacAGAGA ccgtGAAGAT tccaAGTTCA 240
ggagaACTCG accGTTGGAA tgccaAGATG CCTTGGAAAC AGCAGCCCAGA gcccAGGGCC 300
tctctcttGA tgcctccatG cattctcAGC tcagaatCCT ggatgaggAG catcccaagg 360
gaaagtacca tcatggcttG agtgctctGA agccccatCCG gactacttCC aaacaccAGC 420
acccagtGGA caatgctGGG CTTTTTCTT gtatgacttt ttcgtggctt tcttctctGG 480
cccgtgtGGC ccacaAGAAG ggggagctct caatggAAAGA cgtgtggctt ctgtccaAGC 540
acgagtcTTc tgacgtGAAC tgcAGAAAGAC tagAGAGACT gtggcaAGAA gagctGAATG 600
aagtTgggCC agacgctGCT tccctgcGAAG gggTTgtGTG gatcttctGC cgCACCAAGG 660
tcatcctgtc catcgTgtc ctgatgatca cgcaGCTGGC tggcttcAGT ggaccAGCCT 720
tcatggtgaa acacctcttG gagtataACC aggcaACAGA gtctaACCTG cagtacAGCT 780
tgttgttagt gctgggcCTC ctcctgacGG aaatcgTgcG gtcttggctG cttgcactGA 840
cttgggcatt gaattaccGA accGGTGTCC gcttgcGGGG ggccatCCTA accatGGCAT 900
ttaagaAGAT ccttaAGTTA aagaACATTa aagAGAAATC cctgggtGAG ctcatcaACA 960
tttgcTCCAA cgatgggcAG agaatgtttG aggcaGcAGC cgTTGGcAGC ctgctggctG 1020
gaggaccCGT tgTTGCCATC ttAGGcatGA tttataatgt aattattctG ggaccaACAG 1080
gcttcctGGG atcagctGTT tttatcctct ttTaccCAGC aatgatGTT gcatCACGGC 1140
tcacAGCATA ttTCAGGAGA aaatgcgtGG ccGCCACGGA tgaACgtGTC cagaAGATGA 1200
atgaAGTTCT tacttacatt aaatttatCA aaatgtatGC ctgggtCAAa gcattttCTC 1260
agagtGTTCA aaaaatCCGC gaggaggAGC gtcggatatt ggaaaaAGCC gggtaCTTCC 1320
agggtatcac tgTgggtGtG gctcccattG tggtggtgat tgccAGcGTG gtgacCTtCT 1380
ctgttcatat gaccctGGGc ttGatCTGA cagcAGcACA ggcttCACA gtggTGACAG 1440
tcttcaattc catgactttt gctttgaaAG taacaccGTT ttcaGtAAAG tccctctcAG 1500
aagcctcagt ggctgttGAC agatTTAAGA gtttGTTCT aatGGAAGAG gttcacatGA 1560
taaagaACAA accAGCCAGT cctcacatCA agatAGAGAT gaaaaatGCC accttggcat 1620
gggactcCTC ccactccAGT atccAGAACT cgccccAGCT gacCCCCAAA atgaaaaAAAG 1680
acaAGAGGGC ttccAGGGGc aagAAAGAGA aggtGAGGcA gctgcAGcGC actgAGcATC 1740
aggcGGTGTGCT ggcAGAGcAG aaaggCCACC tcctcctGGA cagtGacGAG cggcccAGTC 1800
ccGAAGAGGA agaAGGcAAG cacatCCACC tggGCCACCT gCGCTTACAG aggacACTGC 1860
acagcatcGA tctggagATC caAGAGGGTA aactgggttGG aatctgcGGC agtGtGGGAA 1920
gtggaaaaAC ctctctcatt tcagccattt tagGCCAGAT gacGCTTCTA gagggcAGcA 1980

ttgcaatcag tggaaccttc gcttatgtgg cccagcaggc ctggatcctc aatgctactc 2040
tgagagacaa catcctgttt ggaaaggaat atgatgaaga aagataacaac tctgtgctga 2100
acagctgctg cctgaggcct gacctggcca ttcttcccag cagcgacctg acggagattg 2160
gagagcgagg agccaacctg agcggtggc agcgccagag gatcagcctt gcccgccct 2220
tgtatagtga caggagcata tacatcctgg acgaccctt cagtgccta gatgcccatt 2280
tgggcaacca catcttcaat agtgctatcc ggaaacatct caagtccaaag acagttctgt 2340
ttgttaccca ccagttacag tacctggttg actgtatgaa agtgcatttc atgaaagagg 2400
gctgtattac ggaaagaggc acccatgagg aactgtatgaa tttaaatggt gactatgcta 2460
ccatTTTaa taacctgttg ctgggagaga caccgcagt tgagatcaat tcAAAAAagg 2520
aaaccagtgg ttcacagaag aagtccaaag acaagggtcc taaaacagga tcagtaaaga 2580
aggaaaaagc agtaaagcca gaggaaggc agcttgatgca gctggaagag aaagggcagg 2640
gttcagtgcc ctggtcagta tatggtgtct acatccaggc tgctggggc cccttggcat 2700
tcctggttat tatggccctt ttcatgctga atgttaggcag caccgccttc agcacctgg 2760
ggttgagttt ctggatcaag caaggaagcg ggaacaccac tgtgactcga gggAACGAGA 2820
cctcggtgag tgacagcatg aaggacaatc ctcataatgca gtactatgcc agcatctacg 2880
ccctctccat ggcagtcatg ctgatcctga aagccattcg aggagttgtc tttgtcaagg 2940
gcacgctgctg agttccctcc cggctgcattg acgagcttt ccgaaggatc cttcgaagcc 3000
ctatgaagtt tttgacacg acccccacag ggaggattct caacaggttt tccaaagaca 3060
tggatgaagt tgacgtgcgg ctgcccccc agggcgagat gttcatccag aacgttatcc 3120
tgggtttctt ctgtgtgggaa atgatgcag gagtcttccc gtggttcctt gtggcagtgg 3180
ggccccttgcatcctt tcagtcctgc acattgtctc cagggcctgc attcgggagc 3240
tgaagcgtct ggacaatatc acgcagtcac cttccctctc ccacatcactg tccagcatac 3300
agggccttgc caccatccac gcctacaata aaggcgagga gtttctgcac agataaccagg 3360
agctgctgga tgacaaccaa gtcctttt ttttgtttac gtgtgcgtatg cggtggctgg 3420
ctgtgcggct ggacctcattc agcatgcggc tcattcaccac cacggggctg atgatcggtc 3480
ttatgcacgg gcagattccc ccagcctatg cgggtctcgc catctctt gctgtccagt 3540
taacggggct gttccagttt acggtcagac tggcatctga gacagaagct cgattcacct 3600
cggtggagag gatcaatcac tacattaaga ctctgtcctt ggaagcacct gccagaatta 3660
agaacaaggc tccctccc gactggcccc aggagggaga ggtgacctt gagaacgcag 3720
agatgaggtt ccgagaaaac ctcccttgc tcctaaagaa agtacccctt acgatcaaac 3780
ctaaagagaa gattggcatt gtggggcgga caggatcagg gaagtcctcg ctggggatgg 3840
cccttcccg tctgggtggag ttatctggag gctgcattca gattgatgga gtgagaatca 3900
gtgatatatgg ctttgcgcac ctccgaagca aactctctat cattcctcaa gagccggc 3960
tgttcagtgg cactgtcaga tcaaattgg accccttcaa ccagtacact gaagaccaga 4020
tttggatgc cctggagagg acacacatga aagaatgtat tgctcagcta cctctgaaac 4080
ttgaatctga agtgatggag aatggggata acttctcagt gggggAACGG cagctctgt 4140
gcatacgtag agccctgctc cgccactgta agattctgat ttttagatgaa gccacagctg 4200

ccatggacac agagacagac ttattgattc aagagaccat ccgagaagca tttgcagact 4260
gtaccatgct gaccattgcc catcgccctgc acacggttct aggctccgat aggattatgg 4320
tgctggccca gggacagggtg gtggagtttgc acaccccatc ggtccttctg tccaacgaca 4380
gttcccattt ctatgccatg tttgctgctg cagagaacaa ggtcgctgtc aagggtgtac 4440
tcctccctgt tgacgaagtc tcttttctt agagcattgc cattccctgc ctggggcggg 4500
ccccctcatcg cgtcctcccta ccgaaacattt gcctttctg atttttatctt tcgcacagca 4560
gttccggatt ggcttgttg tttcactttt agggagagtc atattttgtat tattgtat 4620
attccatatt catgtaaaca aaatttagtt tttgttctta attgcactct aaaaggttca 4680
gggaaccgtt attataattt ttcagagggc ctataatgaa gctttatacg tgttagctata 4740
tctatatata attctgtaca tagcctatat ttacagtgaa aatgtaaatgt gtttatttta 4800
tattaaaaata agcaactgtgc taataacagt gcataattcct ttctatcatt tttgtacagt 4860
ttgctgtact agagatctgg ttttgcattt agactgttagg aagagtagca tttcatttctt 4920
ctctagctgg tggtttacgg gtgcagggtt ttctgggtgtt ccaaaggaag acgtgtggca 4980
atagtgggcc ctccgacagc cccctctgcc gcctcccccac agccgctcca ggggtggctg 5040
gagacgggtg ggcggctgga gaccatgcag agcgcgtga gttctcagggtt ctcctgcctt 5100
ctgtcctgggt gtcacttact gtttctgtca ggagagcagc ggggcgaagc ccaggccccct 5160
tttcactccc tccatcaaga atggggatca cagagacatt cctccgagcc ggggagtttc 5220
tttcctgcct tcttctttt gctgttgcattt ctaaacaaga atcagtctat ccacagagag 5280
tcccactgcc tcagggttcctt atggctggcc actgcacaga gctctccagc tccaaagac 5340
gttggttcca agccctggag ccaactgctg ctttttgcagg tggcactttt tcatttgcct 5400
attccccacac ctccacagtt cagtgccagg gtcaggatt tcgtgggtct gtttccctt 5460
ctcacccgcag tcgtcgacaca gtctctctctt ctctctcccc tccaaagtctg caactttaag 5520
cagctcttgc taatcagtgt ctccacactgg cgtagaagtt tttgtactgt aaagagac 5580
acctcagggtt gctgggtgct gtgtggtttq gtgtgttccc gcaaaccccc tttgtgtgt 5640
ggggctggta gctcaggtgg gcgtggtcac tgctgtcatc agttgaatgg tcagcggtgc 5700
atgtcgtgac caactagaca ttctgtcgcc ttagcatgtt tgctgaacac cttgtggaa 5760
caaaaatctg aaaatgtgaa taaaattatt ttggattttg taaaaaaaaaaa aaaaaaaaaaa 5820
aaaaaaaaaaa aaaaaaaaaa 5838

<210> 15

<211> 7323

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA5

<400> 15

gccagaggcg ctcttaacgg cgtttatgtc ctttgctgtc tgaggggcct cagctctgac 60
caatctgtc ttcgtgttgt cattagcatg ggcttcgtga gacagataca gctttgctc 120
tggagaact ggaccctgctg gaaaaggcaa aagattcgct ttgtggtgtga actcgtgtgg 180
cctttatctt tatttctgtt cttgtatctgg ttaaggaatg ccaacccgct ctacagccat 240
catgaatgcc atttccccaa caaggcgatg ccctcagcag gaatgctgccc gtggctccag 300
gggatctct gcaatgtgaa caatccctgt tttcaaagcc ccaccccagg agaatctcct 360
ggaattgtgt caaactataa caactccatc ttggcaaggg tatatcgaga ttttcaagaa 420
ctcctcatga atgcaccaga gagccagcac cttggccgtt tttggacaga gctacacatc 480
ttgtcccaat tcattggacac cctccggact cacccggaga gaattgcagg aagaggaata 540
cgaataaggg atatcttgaa agatgaagaa acactgacac tatttctcat taaaaacatc 600
ggcctgtctg actcagtgtt ctaccttctg atcaactctc aagtccgtcc agagcagtcc 660
gctcatggag tcccgacact ggcgctgaag gacatcgccct gcagcgaggc cctccctggag 720
cgcttcatca tcttcagcca gagacgcggg gcaaagacgg tgcgctatgc cctgtgtcc 780
ctctcccaagg gcaccctaca gtggatagaa gacactctgt atGCCAACGT ggacttcttc 840
aagctcttcc gtgtgcttcc cacactccca gacagccgtt ctcaaggat caatctgaga 900
tcttggggag gaatattatc tgatatgtca ccaagaattc aagagtttat ccattcgccg 960
agtatgcagg acttgctgtg ggtgaccagg cccctcatgc agaatggtg tccagagacc 1020
tttacaaagc tcatggccat cctgtctgac ctccctgtgtg gctaccccgaa gggaggtggc 1080
tctcgggtgc tctccctcaa ctggatagaa gacaataact ataaggcctt tctggggatt 1140
gactccacaa ggaaggatcc tatctattct tatgacagaa gaacaacatc cttttgtaat 1200
gcattgatcc agagcctgga gtcaaattct ttaaccaaaa tcgcttggag ggcggcaaag 1260
cctttgtga tggaaaaat cctgtacact octgattcac ctgcagcacg aaggatactg 1320
aagaatgcca actcaacttt tgaagaactg gaacacgtt ggaagtttgtt caaagcctgg 1380
gaagaagtag ggccccagat ctggacttc tttgacaaca gcacacagat gaacatgatc 1440
agagataccc tggggAACCC aacagtaaaa gacttttga ataggcagct tggtaagaa 1500
ggtattactg ctgaagccat cctaaacttc ctctacaagg gccctcgga aagccaggct 1560
gacgacatgg ccaacttcga ctggaggacatatttaca tcactgatcg caccctccgc 1620
ctggtaatc aatacctgga gtgcttggc ctggataagt ttgaaagcta caatgatgaa 1680
actcagctca cccaaacgtgc cctctctcta ctggaggaaa acatgttctg ggccggagtg 1740
gtattccctg acatgtatcc ctggaccacg tctctaccac cccacgtgaa gtataagatc 1800
cgaatggaca tagacgttgtt ggagaaaacc aataagatta aagacaggtt ttgggattct 1860
ggtcccagag ctgatccgtt ggaagatttc cggatcatct gggcggggtt tgcctatctg 1920
caggacatgg ttgaacaggg gatcacaagg agccaggtgc aggccggaggc tccagttgg 1980
atctacctcc agcagatgcc ctaccctgc ttcgtggacg attctttcat gatcatctg 2040
aaccgctgtt tccctatctt catggtgctg gcatggatct actctgtctc catgactgtg 2100
aagagcatcg tcttggagaa ggagttgcga ctgaaggaga ctttgaaaaa tcaggggtgtc 2160

tccaatgcag tgatttggtg tacctggttc ctggacagct tctccatcat gtcgatgagc 2220
atttccctcc tgacgatatt catcatgcat gtaagaatcc tacattacag cgaccattc 2280
atcctcttcc tggcttctcc actgccacca tcatgctgtg ctttctgctc 2340
agcacccattct tctccaaggc cagtctggca gcagcctgta gtgggtgtcat ctatccacc 2400
ctctacactgc cacacatcct gtgcttcgccc tggcaggacc gcatgaccgc tgagctgaag 2460
aaggctgtga gcttactgtc tccgggtggca tttggatttg gcactgagta cctgggtcgc 2520
tttgaagagc aaggcctggg gctgcagtgg agcaacatcg ggaacagtcc cacggaaggg 2580
gacgaattca gcttcctgtc gtccatgcat atgatgtcc ttgatgctgc tgtctatggc 2640
ttactcgctt ggtaccttga tcaggtgttt ccaggagact atggAACCCC acttccttgg 2700
tactttcttc tacaagagtc gtattggctt ggcgggtgaag ggtgttcaac cagagaagaa 2760
agagccctgg aaaagaccga gccctctaaca gaggaaacgg aggatccaga gcacccagaa 2820
ggaatacactg actccttctt tgaacgtgag catccagggt gggttcctgg ggtatgcgtg 2880
aagaatctgg taaagatttt tgagccctcc ggccggccag ctgtggaccc tctgaacatc 2940
accttctacg agaaccagat caccgcattc ctggggccaca atggagctgg gaaaaccacc 3000
accttgcctca tcctgacggg tctgttgcca ccaacccctg ggactgtgct cggtggggga 3060
agggacattg aaaccagcct ggatgcagtc cggcagagcc ttggcatgtg tccacagcac 3120
aacatcctgt tccaccaccc cacgggtggct gagcacatgc tttctatgc ccagctgaaa 3180
ggaaagtccc aggaggaggc ccagctggag atggaaagcca tggggagga cacaggcctc 3240
caccacaagc ggaatgaaga ggctcaggac ctatcaggtg gcatgcagag aaagctgtcg 3300
gttgcatttgc ctttgtggg agatgccaag gtgggttattc tggacgaacc cacctctggg 3360
gtggaccctt actcgagacg ctcaatctgg gatctgtcc tgaagtatcg ctcaggcaga 3420
accatcatca tgtccactca ccacatggac gaggccgacc tccttggggga ccgcattgcc 3480
atcattgccc agggaaaggct ctactgctca ggcacccac tttcttgcggaa gaaactgcttt 3540
ggcacaggct tgtacttaac cttgtgtgcgc aagatgaaaa acatccagag ccaaaggaaa 3600
ggcagtgagg ggacctgcag ctgctcgct aagggtttct ccaccacgtg tccagccac 3660
gtcgatgacc taactccaga acaagtcctg gatggggatg taaatgagct gatggatgta 3720
gttctccacc atgttccaga ggcaagctg gtggagtgc tgggtcaaga acttatcttc 3780
cttcttccaa ataagaactt caagcacaga gcatatgcca gcctttcag agagctggag 3840
gagacgctgg ctgaccccttgg tctcagcagt tttggaaattt ctgacactcc cctggaaagag 3900
attttctga aggtcacgga ggattctgat tcaggaccc tttttgcggg tggcgctcag 3960
cagaaaaagag aaaacgtcaa cccccgacac ccctgcttgg gtcccaagaga gaaggctgga 4020
cagacacccccc aggactccaa tgtctgtcc ccaggggcgc cggctgctca cccagaggc 4080
cagcctcccc cagagccaga gtgcccaggc ccgcagctca acacggggac acagctggtc 4140
ctccagcatg tgcaggcgct gctggtcaag agattccaaac acaccatccg cagccacaag 4200
gacttccttgg cgccagatcg tctcccgct acctttgtgt ttttggctct gatgctttct 4260
attgttatcc ctccctttgg cgaataccccc gctttgaccc ttcacccctg gatatatggg 4320
cagcagtaca cttcttcag catggatgaa ccaggcagtg agcagttcac ggtacttgca 4380

gacgtcctcc tgaataagcc aggcttggc aaccgctgcc tgaaggaagg gtggcttccg 4440
gagtaccctt gtggcaactc aacaccctgg aagactcctt ctgtgtcccc aaacatcacc 4500
cagctgttcc agaaggcagaa atggacacag gtcaaccctt caccatcctg caggtgcagc 4560
accagggaga agtcacccat gctgccagag tgccccgagg gtgccggggg cctcccgccc 4620
ccccagagaa cacagcgcag cacgaaatt ctacaagacc tgacggacag gaacatctcc 4680
gacttcttgg taaaaacgta tcctgcttt ataagaagca gcttaaagag caaattctgg 4740
gtcaatgaac agaggtatgg aggaatttcc attggagggaa agtcccagt cgtccccatc 4800
acggggaaag cacttgttgg gttttaagc gacctggcc ggatcatgaa tgtgagcggg 4860
ggccctatca ctagagaggc ctctaaagaa atacctgatt tccttaaaca tctagaaact 4920
gaagacaaca ttaagggtgt gtttaataac aaaggctggc atgcccgtt cagcttctc 4980
aatgtggccc acaacgccc catcgggccc agcctgccta aggacaggag ccccgaggag 5040
tatggaatca ccgtcattag ccaaccctg aacctgacca aggagcagct ctcagagatt 5100
acagtgtga ccacttcagt ggatgtgtg gttccatct gtgtgatttt ctccatgtcc 5160
ttcgtcccag ccagctttgt ccttatttg atccaggagc gggtaacaa atccaagcac 5220
ctccagtttca tcagtggagt gagccccacc acctactggg tgaccaactt cctctggac 5280
atcgtgaatt attccgttag tgctggctg gtggtggca tcttcatcggtt gttcagaag 5340
aaagcctaca cttctccaga aaacccctt gcccttggg cactgctcct gctgtatgga 5400
tggcggtca ttccatgtatgtt gtaaccagca tccttcctgt ttgatgtccc cagcacagcc 5460
tatgtggctt tatcttgc taatctgttc atcggcatca acagcagtgc tattaccttc 5520
atcttggaat tatttgagaa taacccggacg ctgctcaggt tcaacgcccgt gctgaggaag 5580
ctgctcatttgc tttccccca cttctgcctg ggccggggcc tcattgaccc tgcactgagc 5640
caggctgtga cagatgtcta tgcccggtt ggtgaggagc actctgcaaa tccgttccac 5700
tgggacctga ttgggaagaaa cctgtttgcc atgggtggg aagggggtgg gtacttcctc 5760
ctgaccctgc tggccagcg ccacttccttc ctctcccaat ggattgccga gcccactaag 5820
gagccccatttgc ttgatgtgaa tgatgtgtg gctgaagaaaa gacaaagaat tattactgg 5880
ggaaataaaaa ctgacatctt aaggctacat gaactaacca agatttatcc gggcacctcc 5940
agcccagcag tggacaggct gtgtgtcgga gttcgccctg gagagtgcattt tggcctcctg 6000
ggagtgaatg gtccggcaa aacaaccaca ttcaagatgc tcactggggca aacacagtg 6060
acctcagggg atgccaccgt agcaggcaag agtattttaa ccaatatttc tgaagtccat 6120
caaaatatgg gctactgtcc tcagtttgc gcaatcgatg agtgcacccat aggacgagaa 6180
catcttacc ttatgcccc gcttcaggt gtaccagcag aagaaatcga aaaggttgca 6240
aactggagta ttaagagcct gggctgact gtctacgccc actgcctggc tggcacgtac 6300
agtggggca acaagcggaa actctccaca gccatcgac tcattggctg cccaccgctg 6360
gtgctgctgg atgagccac cacagggatg gaccccccagg cacgcccgt gctgtggaaac 6420
gtcatcgatgc gcatcatcg agaagggagg gctgtggtcc tcacatcccc cagcatggaa 6480
gaatgtgagg cactgtgtac ccggctggcc atcatggtaa agggcgccct tcgatgtatg 6540
ggcaccatttgc agcatctcaa gtccaaattt ggagatggct atatcgatgc aatgaagatc 6600

aaatccccga aggacgacct gcttcctgac ctgaaccctg tggagcagtt cttccagggg 6660
aacttcccag gcagtgtgca gagggagagg cactacaaca tgctccagtt ccaggtctcc 6720
tcctcctccc tggcgaggat cttccagctc ctcctctccc acaaggacag cctgctcatc 6780
gaggagtaact cagtcacaca gaccacactg gaccaggtgt ttgtaaattt tgctaaaacag 6840
cagactgaaa gtcatgacct ccctctgcac cctcgagctg ctggagccag tcgacaagcc 6900
caggactgat cttcacacc gttcgttcct gcagccagaa aggaactctg ggcagctgga 6960
ggcgcaggag cctgtgccca tatggtcatc caaatggact ggccagcgta aatgacccca 7020
ctgcagcaga aaacaaaacac acgaggagca tgcagcgaat tcagaaagag gtcttcaga 7080
agggaaaccga aactgacttg ctcacctgga acacctgatg gtgaaaccaa acaaatacaa 7140
aatccttctc cagaccccaag aactagaaac cccgggcat cccactagca gctttggcct 7200
ccatattgct ctcatttcaa gcagatctgc ttttctgcat gtttgtctgt gtgtctgcgt 7260
tgtgtgtgat ttcatggaa aaataaaatg caaatgcact catcacaaaa aaaaaaaaaa 7320
aaa 7323

<210> 16

<211> 2930

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCG1 (ABC8)

<400> 16

gaattccggc ttcttcctaa aaaatgtctg atggccgctt tctcggtcgg caccgccatg 60
aatgccagca gttactctgc agagatgacg gagcccaagt cggtgtgtgt ctcgggtggat 120
gaggtgggtgt ccagcaacat ggaggccact gagacggacc tgctgaatgg acatctgaaa 180
aaagtagata ataacctcac ggaagcccaag cgcttctcct cttgcctcg gagggcagct 240
gtgaacattg aattcaggga ctttcctat tcgggtcctg aaggaccctg gtggaggaag 300
aaaggataca agaccctcct gaaaggaatt tccgggaagt tcaatagtgg tgagttggtg 360
gccattatgg gtccttcgg ggccggaaag tccacgctga tgaacatcct ggctggatac 420
agggagacgg gcatgaaggg ggccgtcctc atcaacggcc tgccccggga cctgcgtgc 480
ttccggaaagg tgtcctgcta catcatgcag gatgacatgc tgctgccgca tctcactgtg 540
caggaggcca tcatgggtgc ggcacatctg aagcttcagg agaaggatga aggccagaagg 600
gaaatggtca aggagatact gacagcgctg ggcttgctgt cttgcgccaa cacgcggacc 660
gggagcctgt caggtggtca ggcacagcgc ctggccatcg cgctggagct ggtgaacaac 720
cctccagtc ttttcgtca tgagcccacc agcggcctgg acagcgccctc ctgcttccag 780
gtggtctcgc tcatggaaagg gtcgctcaa gggggtcgtccatcatttt caccatccac 840

cagccccagcg ccaaactctt cgagctgttc gaccagcttt acgtcctgag tcaaggacaa 900
tgtgtgtacc gggggaaaagt ctgcaatctt gtgccatatt tgagggattt gggctctgaac 960
tgcccaacctt accacaaccc agcagattt gtcatggagg ttgcacccgg cgagtacgg 1020
gatcagaaca gtcggctggt gagagcgggt cggggaggca tgtgtgactc agaccacaag 1080
agagacctcg ggggtgatgc cgaggtgaac cttttcttt ggcaccggcc ctctgaagag 1140
gtaaagcaga caaaacgatt aaaggggttg agaaaggact cctcgtccat ggaaggctgc 1200
cacagcttct ctgccagctg cctcacgcag ttctgcattcc tcttcaagag gacccctc 1260
agcatcatga gggactcggt cctgacacac ctgcgcata cctcgacat tgggatcg 1320
ctcctcattt gcctgctgta cttggggatc gggAACGAAA ccaagaaggt cttgagcaac 1380
tccggcttcc tcttcttctc catgctgttc ctcatgttc cggccctcat gcctactgtt 1440
ctgacatttc ccctggagat gggagtctt cttcggaaac acctgaacta ctggtagc 1500
ctgaaggcct actacctggc caagaccatq gcagacgtgc ctttcagat catgttccc 1560
gtggcctact gcagcatcgt gtactggatq acgtcgcagc cgtccgacgc cgtgcgctt 1620
gtgctgtttt cccgcgtggg caccatgacc tccctggtgg cacagtccct gggcctgctg 1680
atcggagccg cctccacgtc cctgcagggtg gccacttgc tggggccagt gacagccatc 1740
ccggtgctcc ttttcgcgg gttttcgac agcttcgaca ccatccccac gtacctacag 1800
tggatgtcct acatctccta tgtcaggat gggttcgaag gggtcattct ctccatctat 1860
ggcttagacc gggaaagatct gcactgtgac atcgacgaga cgtgccactt ccagaagtcg 1920
gaggccatcc tgcgggagct ggacgtggaa aatgccaagc tgtacctgga cttcatcgta 1980
ctcgggattt ttttcatctc cttccgcctc attgcattt tggcctctag gtacaaaatc 2040
cgggcagaga gttaaaacac ctgaatgcca ggaaacagga agattagaca ctgtggccga 2100
gggcacgtct agaatcgagg aggcacgcgt gtgcccggacc gacgacacag agactcttct 2160
gatccaaaccc ctagaacccgc gttgggtttt tgggtgtctc gtgcgtcagcc actctgc 2220
gctgggttgg atcttctctc catccccctt tctagcttta acttaggaaga tgttaggcaga 2280
ttgggtggttt tttttttttt tttaacatac agaattttaa ataccacaac tggggcagaa 2340
tttaaagctg caacacagct ggtgatgaga ggcttcctca gtccagtcgc tccttagcac 2400
caggcaccgt gggctctgga tggggaaactg caagcagcct ctcagctgat ggctgcacag 2460
tcagatgtct ggtggcagag agtccgagca tggagcgtt ccattttatg actgttgc 2520
ttcacatttt catcttcttta aggtgtgtct ctttccat gagaagtcat ttttgc 2580
caaaagtcga tcaatcgcat tcatttaag aaattatacc ttttttagtac ttgtgaaga 2640
atgattcagg gtaaatcaca tactttgttt agagaggcga ggggttaac ccgagtcacc 2700
cagctggctc catacataga cagcacttgt gaaggattga atgcaggttc caggtggagg 2760
gaagacgtgg acaccatctc cactgagcca tgcagacatt tttaaaagct atacacaaaa 2820
ttgtgagaag acattggcca actcttcaa agtcttctt tttccacgtc cttcttattt 2880
taagcggaaat atattgtttt tttcttcata aaaaaaaaaa aaaaaaaaaa 2930

<211> 400

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 17

gagatcctga ggctttccc ccaggctgct cagcaggaaa ggtttcctc cctgatggtc 60
tataagttgc ctgttgagga tgtgcgacct ttatcacagg ctttcttcaa attagagata 120
gttaaacaga gtttcgaccc ggaggagttc agcctctcac agtctaccct ggagcaggtt 180
ttcctggagc tctccaagga gcaggagctg ggtgatctt aagaggactt tgatccctcg 240
gtgaagtgg aactcctcct gcaggaagag ctttaaagct ccaaatacc tataatcttc 300
ttaaatcctg tgactcttt aaagataata ttttatagcc ttaatatgcc tataatcaga 360
ggtgttacaa aatgcattt aactcatgc aataattatc 400

<210> 18

<211> 235

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 18

ttttcagttg catgtaatac caagaaatcg aattgttttc cggttcttat gggaaattgtt 60
agcaatgccc ttatttggaaat ttttaacttc acagagctt aatcaaatttgg aagcacctt 120
tttttcgtg atgacatagt gctggatctt ggtttatag atgggtccat atttttgttg 180
ttgatcacaa actgcatttc tccttatatt ggcataagca gcatcagtga ttatt 235

<210> 19

<211> 636

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCC4 (MRP4)

<400> 19

atggataagt ttatactagt gttggcacat ggccgcacatgt atagatatac taggaggacc 60
tagttgtatt ccttgttatga aaaagcgtcc ctggtaactac aataagtctt tcgtgaaagg 120
agtgtaatcc taacaacaac tcaggaaagt attttgaaaaa gaataactgga taaggaaaaaa 180
cctgcagcta ctccctgctat ttcaagacat tgcctacaag tggttggtgt ggtctctgtg 240
gctgtggccg tgattccttg gatcgcaata cccttgggttc cccttggaaat cattttcatt 300
tttcttcggc gatattttt ggaaacgtca agagatgtga agcgccctgga atctacaagt 360
gagtagatggaa actcgggttg gtatagacat gctagctagt ttccatattt gccataaatt 420
acagagaccc cctgaaaattc ggcagactct gtcttccaga atttctctaa cattaggtaa 480
ttgaacgtat tggccattat gaatcattgt gtcccttaga gcatgtggaa ttgatagcct 540
gcaacgtgta actttgcatt tggataaagg aaggagtgaa ggccatatgg ggagtaatat 600
tctacaggaa tgtcagcact gtgaagacag ggactc 636

<210> 20

<211> 2911

<212> DNA

<213> Human

<220>

<223> human cDNA of ABCA8 (ABC-new)

<400> 20

cgggngagca cgtctgggttc tatgggcggc tgaagggtct gagtgccgct gtagtgggcc 60
ccgagcagga ccgtctgctg caggatgtgg ggctggctc caagcagagt gtgcagactc 120
gccacctctc tggtggatgt caacggaagc tgcgtggc cattgcctt gtggcggct 180
cccaagttgt tatcctggac gacctacgg ctggcgtgga tcctgcttcc cgccgcggta 240
tttggagct gctgctcaaacc taccgagaag gtcgcacgct gatcctctcc acccaccacc 300
tggatgaggc agagctgctg ggagaccgtg tggctgtggt ggcaagggtggc cgcttgtgct 360
gctgtggctc cccactcttc ctgcggcgtc acctgggctc cggtactac ctgacgctgg 420
tgaaggcccgc cctgcccctg accaccaatg agaaggctga cactgacatg gagggcagtg 480
tggacaccag gcaggaaaaag aagaatggca gccaggcag cagagtcggc actcctcagc 540
tgctggccct ggtacagcac tgggtccccq gggcacggct ggtggaggag ctgccacacg 600
agctggtgct ggtgctgccc tacacgggtg cccatgacgg cagttcgcc acactttcc 660
gagagctaga cacgcggctg gcggagctga ggctactgg ctacggatc tccgacacca 720
gcctcgagga gatcttcctg aaggtggtg aggagtgtgc tgcggacaca gatatggagg 780
atggcagctg cggcagcac ctatgcacag gcattgctgg cctagacgta accctgcggc 840

tcaagatgcc gccacaggag acagcgctgg agaacgggga accagctggg tcagccccag 900
agactgacca gggctctggg ccagacgccc tggccgggt acagggctgg gcactgaccc 960
gccagcagct ccaggccctg cttctcaagc gctttctgct tgcccgccgc agccgcccgc 1020
gcctgttcgc ccagatcgta ctgcctgccc tcttgcggg cctggccctc gtgttcagcc 1080
tcatcggtgcc tccttcggg cactaccgg ctctgcggct cagtcccacc atgtacggtg 1140
ctcagggtgc cttcttcagt gaggacgccc caggggaccc tggacgtgcc cggtcgctcg 1200
aggcgctgct gcaggaggca ggactggagg agccccca gcaagcatagc tcccacaggt 1260
tctcggcacc agaagttcct gctgaagtgg ccaaggtctt ggccagtggc aactggaccc 1320
cagagtctcc atccccagcc tgccagtgt a gccagccgg tgcccgccgc ctgctgccc 1380
actgcccggc tgcagctggt ggtccccctc cgccccaggc agtgcacggc tctgggaaag 1440
tggttcagaa cctgacaggc cggaacctgt ctgacttcctt ggtcaagacc tacccgcgcc 1500
tgggtgcgcca gggcctgaag actaagaagt gggtaatga ggtcaaggtac ggaggcttct 1560
cgctgggggg ccgagaccca ggcctgcctt cgggccaaga gttgggcccgc tcagtgagg 1620
agttgtgggc gctgctgagt cccctgcctg gccccccctc cgaccgtgtc ctgaaaaacc 1680
tcacagcctg ggctcacagc ctggacgctc aggacagtct caagatctgg ttcaacaaca 1740
aaggctggca ctccatggtg gccttgcata accgagccag caacgcaatc ctccgtgctc 1800
acctgcccccc aggcggggcc cgcacgccc acagcatcac cacactcaac caccccttga 1860
acctcaccaa ggagcagctg tttgaggctg cattgatggc ctccctgggt gacgtcctcg 1920
tctccatctg tgtggctttt gccatgtcct ttgtccggc cagcttcaactt cttgtcctca 1980
ttgaggagcg agtcacccga gccaagcacc tgcagctcat ggggggcctg tccccaccc 2040
tctactggct tggcaacttt ctctggaca tgtgttaacta cttggtgcca gcatgcatcg 2100
tggtgctcat cttctggcc ttccagcaga gggcatatgt gggccctgccc aacctgcctg 2160
ctctcctgct gttgctacta ctgtatggct ggtcgatcac accgctcatg tacccagcct 2220
ccttcttctt ctccgtgccc agcacagcct atgtgggtgct cacctgcata aacctctta 2280
ttggcatca tggaagcatg gcccacccgg tgcttgagct cttctctgat cagaagctgc 2340
aggagggtgag cccggatctt aaacagggtct tccttatctt ccccccacttc tgcttggcc 2400
gggggcttat tgacatggtg cggAACCGGG ccatggctga tgcccttgag cgcttggag 2460
acaggcagtt ccagtcaccc ctgcgtggg aggtggtcgg caagaacctc ttggccatgg 2520
tgatacaggg gccccttcc cttctttca cactactgct gcagcaccga agccaactcc 2580
tgccacagcc cagggtgagg tctctgcccac tcctgggaga ggaggacgag gatgtagccc 2640
gtgaacggga gccccgggtc caaggagcca cccaggggga tgtgttgggt ctgaggaact 2700
tgaccaaggt ataccgtggg cagaggatgc cagctgtga ccgttgtgc ctggggattc 2760
ccccctggta agtgttttgg gctgctgggt gtgaacggag cagggaaagac gtccacgttt 2820
cgcatggta cgggggacac attggccagc agggggcggagg ctgtgctggc aggccacagc 2880
gggccccggga acccagtgtg cgacacccna g 2911

<211> 100

<212> DNA

<213> Human

<220>

<223> human Intron-Sequence of ABCA8 (ABC-new)

<400> 21

ctcctgccac agttagtgag gtctatggag agggtggcag gggccaaggaa cctactttaa 60
gccccacagat attctgtccc caggcccagg gtgaggtctc 100

<210> 22

<211> 15

<212> DNA

<213> Human

<400> 22

tgcgcaccga gaaaag 15

<210> 23

<211> 372

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 23

atcgccgata tctcccttc gggctgcggc aagagcacct tcctgaaagt gctcgccggg 60
ttctatgccc tggacaccgg gcgcgttcagg atcaacggcc aggcatgcg gcatttcgg 120
ttgcgcgtcg accgccagag cgtggctat gtcacggccc acgacgagat catcgccggg 180
acggtgatcg agaacatcct gatggacagc gacccgctgg acggcacggg tttgcagagc 240
tgtgtcgagc aggccgggtt gctggaaagc atcctgaaac tgagcaatgg cttcaataacc 300
ttgctcgacccatggcgt gcaattgtcc tcggggccaga agcaacgcct gttgatcgcc 360
cggggtcgac gc 372

<210> 24

<211> 281

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 24

aaaaccaaag attctcctgg agttttctct aaactgggtg ttctcctgag gagagttgac 60
aagaaaacttg gtgagaaaata agctggcagt gattacgcgt ctcccttcaga atctgatcat 120
gggtttgttc ctccctttct tcgttctgcg ggtccgaagc aatgtgctaa agggtgctat 180
ccaggaccgc gtaggtctcc tttaccagtt tgtgggcgcc accccgtaca caggcatgct 240
gaacgctgtg aatctgtttc ccgtgctgcg agctgtcagc a 281

<210> 25

<211> 2258

<212> DNA

<213> Human

<220>

<223> human cDNA of Huwhite2

<400> 25

atggccgtga cgctggagga cggggcgaa ccccctgtgc tgaccacgca cctgaagaag 60
gtggagaacc acatcaactga agcccagcgc ttctcccacc tgcccaagcg ctcagccgtg 120
gacatcgagt tcgtggagct gtcctattcc gtgcgggagg ggccctgctg gcgaaaaagg 180
ggttataaga cccttctcaa gtgcctctca ggtaaattct gccgcccggga gctgattggc 240
atcatgggcc cctcaggggc tggcaagtct acattcatga acatcttggc aggatacagg 300
gagtctggaa tgaaggggca gatcctggtt aatggaaggc cacggagct gaggaccttc 360
cgcaagatgt cctgctacat catgcaagat gacatgctgc tgccgcacct cacgggtttg 420
gaagccatga tggctctgc taacctgaat cttactgaga atccccatgt gaaaaacgt 480
ctcgtgacag agatcctgac ggcactggc ctgatgtcgt gctcccacac gaggacagcc 540
ctgctctctg gcgggcagag gaagcgtctg gccatcgccc tggagctggc caacaacccg 600
cctgtcatgt tctttgatga gcccaccagt ggtctggata ggcgccttgc tttccaagtg 660
gtgtccctca tgaagtccct ggcacagggg ggccgtacca tcattctgcac catccaccag 720
cccagtgcac agctcttga gatgttgac aagctctaca tcctgagccca gggtcagtgc 780
atcttcaaag gcgtggtcac caacctgatc ccctatctaa agggactcgg cttgcattgc 840

cccacctacc acaacccggc tgacttcagt gagtgggggt ctgttgcctc tggcgagtat 900
ggacacctga accccatgtt gttcagggtc gtgcagaatg ggctgtgcgc tatggctgag 960
aagaagagca gcccgtgagaa gaacgaggc cctgccccat gcccctccttgc tcctccggaa 1020
gtggatccca ttgaaagcca caccttgcc accagcaccc tcacacagtt ctgcattcctc 1080
ttcaagagga ccttcctgtc catcctcagg gacacgggtcc tgacccacact acggttcatg 1140
tcccacgtgg ttattggcgt gtcattcggc ctccctctacc tgcatattgg cgacgatgcc 1200
agcaaggtct tcaacaacac cggctgcctc ttcttctcca tgctgttcct catgttcgcc 1260
gccctcatgc caactgtgct cacccccc tttagagatgg cggctttcat gagggagcac 1320
ctcaactact ggtacagcct caaagcgtat tacctggcca agaccatggc tgacgtgccc 1380
tttcaggtgg tgtgtccggc ggtctactgc agcattgtgt actggatgaa cggccagccc 1440
gctgagacca gcccgttcct gctcttctca gcccctggcca cggccaccgc cttgggtggcc 1500
caatcttgg ggctgctgat cggagctgct tccaaactccc tacaggtggc cactttgtg 1560
ggcccagttt ccgcctatccc tgccttcgt ttctccggct tcttgcgtt cttcaagacc 1620
atccccactt acctgcaatg gagctcctat ctctcctatg tcaggtatgg ctttgagggt 1680
gtgatcctga cgatctatgg catggagcga ggagacctga catgtttaga ggaacgctgc 1740
ccgttccggg agccacagag catccctccga gcgctggatg tggaggatgc caagctctac 1800
atggacttcc tggcttggg catcttcttc ctgccttcggc ggctgctggc ctaccttgc 1860
ctgcgttacc gggtaagtc agagagataq aggcttgcct cggcctgtac cccagccct 1920
gcagcaggaa gccccccagtc ccagcccttt gggactgttt tanctctata cacttggca 1980
ctgggttcctg gcggggctat cctctcctcc ctggcttcct ccacaggctg gctgtcggac 2040
tgcgttccca gcctgggctc tggagtgaaa ggctccaacc ctccccacta tgcccaggag 2100
tcttcccaag ttgatggcgt ttgttagcttc ctccctactc tctccaacac ctgcattgcaa 2160
agactactgg gaggctgctg ctccttcctt gcccattggca ccctcctctg ctgtctgcct 2220
gggagcccta ggctctctat ggccccacta acaactga 2258

<210> 26

<211> 820

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 26

ttaaggatt tcagcctttc cattccgtca ggatctgtca cggcactggc tggcccaagt 60
ggttctggca aatcaacagt gctttcactc ctgctgaggt tgtacgaccc tgcttctgaa 120
actattagtc ttgatggcca tgacaatccg tcagctaaac ccagtgtgtg gctgagatcc 180

aaaattggga cagtca ggaacccatt ttgtttctt gctctattgc tgagaacatt 240
gcttatggtg ctgatgaccc ttcctctgtg accgctgagg aaatccagag agtggctgaa 300
gtggccaatg cagtggcttc tccggaattt cccccaaggt tcaacactgt gggtggagaa 360
aagggtgttc tcctctcagg tgggcagaaa cagcggattg cgattgcccq tgctctgcta 420
aagaatccca aaattcttct cctagatgaa gcaaccagtg cgctggatgc cgaaaatgag 480
taccttggtc aagaagctct agatcgctg atggatggaa gaacggtgtt agttattgcc 540
catagcctgt ccaccattaa gaatgcta atgggtgctg ttcttgacca aggaaaaatt 600
actgaatatg gaaaacatga agagctgctt tcaaaaacca atgggatata cagaaaacta 660
atgaacaaac aaagtttat ttcagcataa ggaagcaatt actggtaaac aatatgagac 720
ttaatgcaa aacagtgttg cgaaaaaaaaa ctcagagact atgaaataca taaaccatat 780
atcaagttat ttgaaaaata cctatTTT ccaaagtgtg 820

<210> 27

<211> 575

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 27

gctctccaca cagagatttt gaagctttc ccacaggctg cttggcagga aagatattcc 60
tcttaatgg cgtataagtt acctgtggag gatgtccacc ctctatctcg ggccttttc 120
aagtttagagg cgatgaaaca gaccttcaac ctggaggaat acagcctctc tcaggctacc 180
ttggagcagg tattcttaga actctgtaaa gagcaggagc tggaaatgt tcatgataaa 240
attgatacaa cagttgaatg gaaacttctc ccacaggaag accctaaaaa tgaagaacct 300
cctaacattc aatTTtaggt cctactacat tggtagttc cataattcta caagaatgtt 360
tcctttact tcagttaca aaagaaaaca tttataaaac attcaataat gattacagtt 420
ttcattttta aaaatTTagg atgaaggaaa caaggaaata tagggaaaag tagtagacaa 480
aattaacaaa atcagacatg ttattcatcc ccaacatggg tctatTTgt gctaaaaat 540
aatttaaaaaa tcatacaata ttaggttggt tatcg 575

<210> 28

<211> 300

<212> DNA

<213> Human

<220>

<223> human cDNA

<400> 28

gtggaagatg tgcaaccttt agccaaagct ttcttcaaatt tagagaaggtaaaacagagc 60
tttgaccttag aggagtacag cctctcacag tctaccctgg agcagggtttt cctggagctc 120
tccaaggagc aggagctggg tgattttag gaggatttg atccctcagt gaagtggaaag 180
ctccctcccccc aggaagagcc taaaaccccc aaattctgtg ttcctgtta aaccctgttgt 240
tttttttaaa tacattttt tttatagcag caatgttcta ttttttagaaa ctatattata 300

<210> 29

<211> 2719

<212> DNA

<213> Human

<220>

<220>

<223> human cDNA of ABCG2

<400> 29

tttaggaacg caccgtgcac atgcttggtg gtcttggtaa gtggaaactg ctgctttaga 60
gtttgttgg aagggtccggg tgactcatcc caacatttac atcccttaatt gttaaagcgc 120
tgcctccgag cgacacgcac tcgagatcct gagccttgg ttaagaccga gctctattaa 180
gctgaaaaga taaaaactct ccagatgtct tccagtaatg tccaaggttt tatcccagtg 240
tcacaaggaa acaccaatgg cttcccgcg acagtttcca atgacctgaa ggcatttact 300
gaaggagctg tgttaagttt tcataacatc tgctatcgag taaaactgaa gagtggcttt 360
ctaccttgc gaaaaccagt tgagaaagaa atattatcga atatcaatgg gatcatgaaa 420
cctggctctca acgccatcct gggaccacaca ggtggaggca aatttcggtt attagatgtc 480
ttagctgcaa ggaaagatcc aagtggatta tctggagatg ttctgataaa tggagcaccg 540
cgacctgcca atttcaaattg taattcaggt tacgtggtag aagatgtgt tgtgatgggc 600
actctgacgg tgagagaaaa cttacagttc tcagcagctc ttccggcttgc aacaactatg 660
acgaatcatg aaaaaaacga acggattAAC agggtcattg aagagttgg tctggataaa 720
gtggcagact ccaagggtgg aactcagttt atccgtggtg tgtctggagg agaaagaaaa 780
aggactagta taggaatgga gcttatcaat gatccttcca tcttgcctt ggatgagcct 840
acaactggct tagactcaag cacagcaaatt gctgtccttt tgctcctgaa aaggatgtct 900
aagcagggac gaacaatcat cttctccatt catcagcctc gatattccat cttcaagttg 960

tttgatagcc tcaccttatt ggcctcagga agacttatgt tccacggcc tgctcaggag 1020
gccttggat actttgaatc agctggttat cactgtgagg cctataataa ccctgcagac 1080
ttcttcttgg acatcattaa tggagattcc actgctgtgg cattaaacag agaagaagac 1140
tttaaagcca cagagatcat aggccttcc aagcaggata agccactcat agaaaaattt 1200
gcggagattt atgtcaactc ctccttctac aaagagacaa aagctgaatt acatcaactt 1260
tccgggggtg agaagaagaa gaagatcaca gtcttcaagg agatcagcta caccacctcc 1320
ttctgtcatc aactcagatg ggtttccaag cgttcattca aaaacttgcg gggtaatccc 1380
caggcctcta tagctcagat cattgtcaca gtcgtactgg gactggttat aggtgccatt 1440
tactttggc taaaaaatga ttctactgga atccagaaca gagctgggt tctcttcttc 1500
ctgacgacca accagtgttt cagcagtgtt tcagccgtgg aactctttgt ggttagagaag 1560
aagctttca tacatgaata catcagcgga tactacagag tgtcatctta tttccttgg 1620
aaactgttat ctgattttatt acccatgagg atgttaccaa gtattatatt tacctgtata 1680
gtgtacttca tggtaggatt gaagccaaag gcagatgcct tcttcgttat gatgttacc 1740
cttatgatgg tggcttattc agccagttcc atggcactgg ccatagcagc aggtcagagt 1800
gtggtttctg tagcaacact tctcatgacc atctgttttgc tgtttatgt gatttttca 1860
ggctgttgtgg tcaatctcac aaccattgca tcttggctgt catggcttca gtacttcagc 1920
attccacgat atggatttac ggcttgcag cataatgaat ttttggaca aaacttctgc 1980
ccaggactca atgcaacacgg aaacaatcct tgtaactatg caacatgtac tggcgaagaa 2040
tatttggtaa agcagggcat cgatctctca ccctgggct tggtaagaa tcacgtggcc 2100
ttggcttgc tgattgttat tttcctcaca attgcctacc taaaattgtt atttcttaaa 2160
aaatattctt aaatttcccc ttaattcagt atgatttac ctcacataaa aaagaagcac 2220
tttgattgaa gtattcaatc aagttttttt gttgtttct gttcccttgc catcacactg 2280
ttgcacagca gcaattgttt taaagagata cattttaga aatcacaaca aactgaatta 2340
aacatgaaag aacccaagac atcatgtatc gcatattatg taatctcctc agacagtaac 2400
catggggaaag aaatctggtc taatttatta atctaaaaaa ggagaattga attctggaaa 2460
ctcctgacaa gttattactg tctctggcat ttgtttcctc atctttaaaa tgaataggt 2520
ggttagtagc ctttcagtct taatacttta tgatgctatg gtttgcatt attaatata 2580
tgacaaatgt attaatgcta tactggaaat gtaaaattga aaatatgtt gaaaaaagat 2640
tctgtcttatt agggtaaaaaa aagccaccgg tgatagaaaa aaaaatcttt tgataagcac 2700
attaaagttt atagaactt

2719

<210> 30
<211> 6491
<212> DNA
<213> Human

<220>

<223> human cDNA of ABCA3 (ABC3)

<400> 30

ccgccccggc gcccaggctc ggtgctggag agtcatgcct gtgagccctg ggacacccct 60
gatgtcctgc gaggtcacgg tgttccaaa cctcagggtt gccctgcccc actccagagg 120
ctctcaggcc ccaccccgga gccctctgtg cggagccgcc tcctcctggc cagttcccc 180
gtagtcctga agggagacct gctgtgtgga gcctcttctg ggacccagcc atgagtgtgg 240
agctgagcaa ctgaacctga aactcttcca ctgtgagtca aggaggctt tccgcacatg 300
aaggacgctg agcgggaagg actcctctct gcctgcagtt gtagcgagtg gaccaggcacc 360
aggggctctc tagactgccc ctcctccatc gcctccctg cctctccagg acagagcagc 420
cacgtctgca cacctcgccc tctttacact cagtttcag agcacgttcc tcctatttcc 480
tgcgggttgc agcgcctact tgaacttact cagaccaccc acttctctag cagcactggg 540
cgtcccttcc agcaagacga tggctgtgtc caggcagctg gcgcctctcc tctggaagaa 600
ctacaccctg cagaagcgga aggtcctggt gacggccttg gaactcttcc tgccattgct 660
gtttcctggg atcctcatct ggctccgctt gaagattcag tcggaaaaatg tgcccaacgc 720
caccatctac ccggggccagt ccatccagga gctgcctctg ttcttcaccc tccctccgccc 780
aggagacacc tgggagcttgc cctacatccc ttctcacagt gacgctgcca agaccgtcac 840
tgagacagtgc cgcaggccac ttgtgatcaa catgcgagtgc cgcggcttcc cctccgagaa 900
ggacttttag gactacatta ggtacgacaa ctgctcgcc agcgtgctgg ccggccgtgg 960
cttcgagcac cccttcaacc acagcaagga gcccctgccc ctggcgggtga aatatcacct 1020
acggttcagt tacacacgga gaaattacat gtggacccaa acaggctcct tttcctgaa 1080
agagacagaa ggctggcaca ctacttccct tttcccgctt ttcccaaacc caggaccaag 1140
ggaactaaca tcccctgatg gcggagaacc tgggtacatc cgggaaggct tcctggccqt 1200
gcagcatgct gtggaccggg ccatcatgga gtaccatgcc gatgccgcca cacgccagct 1260
gttccagaga ctgacggtgaa ccatcaagag gttcccgta ccggccgttca tcgcagaccc 1320
cttcctcgta gccatccagt accagctgcc cctgctgctg ctgctcagct tcacccatcac 1380
cgcgctcacc attgcccgtg ctgtcgtaa ggagaaggaa aggaggctga aggagtacat 1440
gcgcatgatg gggctcaga gctggctgca ctggagtgcc tggttccctt tgttttccct 1500
cttcctccctc atcgccgcct cttcatgac cctgctcttc tgtgtcaagg tgaagccaaa 1560
tgtagccgtg ctgtcccgca gcgaccctc cctgggtgtc gcctccctgc tgtgttcgc 1620
catctctacc attccttca gttcatggt cagcacccctc tttagcaaa ccaacatggc 1680
agcagccctc ggaggcttcc tctacttctt cacctacatc ccctacttct tcgtggccccc 1740
tcggtacaac tggatgactc tgagccagaa gctctgctcc tgccctctgt ctaatgtcgc 1800
catggcaatg ggagcccagc tcattggaa atttgaggcg aaaggcatgg gcatccagtg 1860
gcgagacccctc ctgagtcggc tcaacgtgga cgacgacttc tgcttcgggc aggtgctggg 1920
gatgctgctg ctggactctg tgctctatgg cctgggtgacc tggtacatgg aggccttcc 1980
cccagggcag ttcggcgtgc ctcaacctg gtacttcttc atcatgcctt cctattgggtg 2040

tgggaagcca agggcggttg caggaaagga ggaagaagac agtgaccccg agaaagcact 2100
cagaaaacgag tactttgaag ccgagccaga ggacctggtg gcggggatca agatcaagca 2160
cctgtccaag gtgttcaggg tggaaataa ggacagggcg gccgtcagag acctgaacct 2220
caacctgtac gagggacaga tcaccgtcct gctgggccac aacggtgccg ggaagaccac 2280
caccctctcc atgctcacag gtctcttcc ccccaccagt ggacgggcat acatcagcgg 2340
gtatgaaatt tcccaggaca tggttcagat ccggaagagc ctgggcctgt gcccgcagca 2400
cgacatcctg tttgacaact tgacagtcgc agagcacctt tatttctacg cccagctgaa 2460
gggcctgtca cgtcagaagt gccctgaaga agtcaagcag atgctgcaca tcacatggcct 2520
ggaggacaag tggaaactcac ggagccgctt cctgagcggg ggcattgaggc gcaagctctc 2580
catcggcatac gccctcatcg caggctccaa ggtgctgata ctggacgagc ccacctcggt 2640
catggacgccc atctccagga gggccatctg ggatcttcctt cagcggcaga aaagtgaccg 2700
caccatcgta ctgaccaccc acttcatgga cgaggctgac ctgctggag accgcatacg 2760
catcatggcc aagggggagc tqcagtqctg cgggtcctcg ctgttcctca agcagaaata 2820
cggtgccggc tatcacatga cgctggtaa ggagccgcac tgcaacccgg aagacatctc 2880
ccagctggtc caccaccacg tgcccaacgc cacgctggag agcagcgcgt gggccgagct 2940
gtcttcatc cttcccagag agagcacgca caggttgaa ggtctctttt ctaaaactgga 3000
gaagaagcag aaagagctgg gcattgccag ctttggggca tccatcacca ccatggagga 3060
agtcttcctt cgggtcggga agctggtgga cagcagtatg gacatccagg ccatccagct 3120
ccctgcctcg cagtaccacg acgagaggcg cgccagcgcac tgggtgtgg acagcaacct 3180
ctgtggggcc atggacccct ccgacggcat tggagccctc atcgaggagg agcgcaccgc 3240
tgtcaagctc aacactgggc tcgcccgtca ctgccagcaa ttctgggcca tgttcctgaa 3300
gaaggccgca tacagctggc gcgagtggaa aatggtgccg gcacaggctcc tggtgcctct 3360
gacctgcgtc accctggccc tcctggccat caactactcc tcggagctct tcgacgacccc 3420
catgctgagg ctgaccccttgg gcgagttacgg cagaaccgtc gtgccttct cagttcccg 3480
gacctcccag ctgggtcagc agctgtcaga gcatctgaaa gacgcactgc aggctgaggg 3540
acaggagccc cgcgagggtgc tcggtgaccc ggaggagttc ttgatcttca gggcttctgt 3600
ggaggggggc ggcttaatg agcggtgcct tgggtgcagcg tccttcagag atgtggaga 3660
gcgcacggtc gtcacgcct tggtaaccaa ccaggcgtac cactctccag ccactgcct 3720
ggccgtcgtg gacaaccttc tggtaagct gctgtgcggg cctcacgcct ccattgtgg 3780
ctccaacttc cccccagcccc ggagcgcct gcaggctgcc aaggaccagt ttaacgaggg 3840
ccggaaggga ttgcacattc ccctcaaccc gctttcgcc atggcattct tggccagcac 3900
gttctccatc ctggcggtca gcgagaggcg cgtgcaggcc aagcatgtgc agtttgtgag 3960
tggagttccac gtggccagtt tctggctctc tgctctgtc tgggacctca tctccttcct 4020
catccccagt ctgctgtgc tgggtgggtt taaggccctc gacgtgcgtg cttcacgcg 4080
ggacggccac atggctgaca ccctgctgct gctcctgctc tacggctggg ccattcatccc 4140
cctcatgtac ctgatgaact tcttcttcctt gggggcgccc actgcctaca cgaggctgac 4200
catttcaac atcctgtcag gcatcgccac cttcctgtatg gtcaccatca tgcgcatccc 4260

agctgtaaaa ctggaagaac tttccaaaac cctggatcac gtgttctgg tgctgccaa 4320
ccactgtctg gggatggcag tcagcagttt ctacgagaac tacgagacgc ggaggtactg 4380
cacctcctcc gaggtcgccc cccactactg caagaaatat aacatccagt accaggagaa 4440
cttctatgcc tggagcgccc cgggggtcgg ccggtttgc gcctccatgg ccgcctcagg 4500
gtgcgcctac ctcatacctgc tcttcctcat cgagaccaac ctgcttcaga gactcagggg 4560
catcctctgc gccctccgga ggaggcggac actgacagaa ttatacaccc ggtgcctgt 4620
gttcctgag gaccaagatg tagcggacga gaggaccgc atcctggccc ccagcccgga 4680
ctccctgctc cacacaccc tacattatcaa ggagctctcc aagggttacg agcagcgggt 4740
gccccctcctg gccgtggaca ggctctccct cgcgggtcag aaaggggagt gcttcggcct 4800
gctgggcttc aatggagccg ggaagaccac gactttcaaa atgctgaccg gggaggagag 4860
cctcacttct gggatgcct ttgtcgaaaa tcacagaatc agctctgtatc tcggaaaggt 4920
gcggcagcgg atcggctact gcccqtagtt ttagtgccttg ctggaccaca tgacaggccg 4980
ggagatgtg gtcatgtacg ctcggctccg gggcatccct gagcgcacaca tcggggcctg 5040
cgtggagaac actctgcggg gcctgctgt ggagccacat gccaacaagc tggtcaggac 5100
gtacagtgtt ggttacaacaagc ggaagctgag caccggcatc gccctgtatc gagagcctgc 5160
tgtcatcttc ctggacgagc cgtccactgg catggacccc gtggcccgcc gcctgctttg 5220
ggacaccgtg gcacgagccc gagagtctgg caaggccatc atcatcacct cccacagcat 5280
ggaggagtgt gaggccctgt gcacccggct ggccatcatg gtgcaggggc agttcaagt 5340
cctgggcagc ccccagcacc tcaagagcaa gttcggcagc ggctactccc tgcggccaa 5400
ggtgcagagt gaaggggcaac aggaggcgct ggaggagttc aaggccttc tgacactgac 5460
ctttccaggc agcgtcctgg aagatgagca ccaaggcatg gtccattacc acctgcggg 5520
ccgtgaccc agctggcgaa aggtttcgg tattctggag aaagccaagg aaaagtacgg 5580
cgtggacgac tactccgtga gccagatctc gctggAACAG gtcttcctga gcttcggccaa 5640
cctgcagccg cccaccgcag aggagggcg atgaggggtg gcccgtgtct cccatcagg 5700
cagggacagg acgggcaagc agggcccatc ttacatcctc tctctccaag tttatctcat 5760
cctttatTT taatcacttt tttctatgtat ggatatgaaa aattcaaggc agtatgcaca 5820
gaatggacga gtgcagccca gcccctcatgc ccaggatcatc catgcgcacac tccatgtctg 5880
catactctgg agttcaactt cccagagctg gggcaggccg ggcagtctgc gggcaagctc 5940
cggggctctt gggtggagag ctgacccagg aagggtcgca gctgagctgg gggttgaatt 6000
tctccaggca ctccctggag agaggaccca gtgacttgc caagtttaca cacgacacta 6060
atctccctg gggaggaagc gggaaGCCAG ccaggttcaa ctgtagcggag gccccccaggc 6120
cgccaggaat ggaccatgca gatcactgtc agtggagggaa agctgctgac tgtgattagg 6180
tgctgggtc ttagcgtcca ggcgcagcccg gggccatccct ggaggctctg ctccctttagg 6240
gcatggtagt caccgcgaag ccgggcacccg tcccacagca tctccttagaa gcagccggca 6300
caggagggaa ggtggccagg ctcgaagcag tctctgtttc cagcactgca ccctcaggaa 6360
gtcgcccgcc ccaggacacg cagggaccac cctaaggct gggtggctgt ctcaaggaca 6420
cattgaatac gttgtgacca tccagaaaat aaatgctgag gggacacaaa aaaaaaaaaa 6480

aaaaaaaaaa a

6491

<210> 31

<211> 2923

<212> DNA

<213> Human

<220>

<223> human genomic DNA of 5'-UTR of ABCG1

<400> 31

ttgcctggtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgccagt ctttctgcag ggtcccattg gggtaaacct tctcatttca tcccatgtga 120
accaggccag gccccatcagg gtttggcaac cccctgatgc agtgggtgt gccaggtgac 180
aggagcaagc ctgcagctgc tgaaaaaacccttgcagagaca gcctgccaga ggggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggctttgg tcccaatgtt cctgaaaccca ctgcactccg aacctttctg tacttagctt 360
aagccagttt gatgtttctgt ctttacaac caagaggcctt gataggaatg gggtccctgt 420
ctacgctact gttggcttct ttcccgatcg ggcgctggag gggAACACAG cagtgactac 480
agtggatgc ttactcggtt ctggcatgc tagaaagtgc ttgccatgcc ttatttccca 540
cgtggggggg attttgaccc cacctgtaca gacagataag tgaggaccctt tttcacctta 600
tcctgcaaca gaaaatccag cagccaaagc caacaaggc ccagcatagc atctccctc 660
tctgacttca tcctcacgtt ccacacacca tccccctggc cattcccagc agcccgat 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctgga tggggccat 780
ccaccggctg aagccaaattt cctattctcg agctgaaggt gaatcaatcc cgataaaatc 840
ttcgggcaga gaactngggt ggggggtaga agagggggaa tgtctagaag gaaattctgg 900
ggcacattcc tggaaagttag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcaattgc cctggccaca tggacagttc ctccccggct gtgttccng cctccctctg 1020
tgctccaggg cctgtctgtt cctggagcga gatgggtccc agggctggc accagtcccc 1080
atctccagcc atcaggcaact ttccctctcg tgttttggcg taaacacntc cctaggtttg 1140
tggatctgaa tcctttcccc aacacactca agctttgttgc ggcctccctg cagtgtatgt 1200
ttaaggcacc acacagccctc caaggcctgg caccgggca gtggccaccc ggtaaacaca 1260
gcagtcagat ttccctcattt cagccaaatgt taaaatcaag gtaatggatc tacnctttt 1320
tttttnntt ttttccaggg ggntnnttt ttttgagac ggagtctcac tctgtcancc 1380
ccggtctgga gtgcagtggc tcaatctcg ctcancgttgc aagctccgccc tcccaagggtt 1440
atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgttattt ttagtagaga cggggtttca tcatgttagc caggatggtc 1560

tcgatctcct gacccccc aa agtgggtggg ttacagggtgt gagccactgc gccccggctgg 1620
atgactcttg agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccttc gattttagcg gctgaatttg gttacagtca tctgacctgt 1740
gggtgtgaag tccacactgcc tggcataaaa agctgtgcct cctttctagg tgaggagaaa 1800
gagagagacc tggtcatct gaggtgtggt tgggaggggg gacccaggtg tgctggaaat 1860
aaaaagaaaat gcattcctgt tttcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattccttg tcaccatgga taccagaaaa tggccccact 1980
tatataataat aagggtttt aagatgctgg accatctgat attccagcct ggggccacat 2040
gggagtgtgc cctgggttta ttccttatac agttccatga acatggctct ggaaacacct 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacagag ggcagaggcc 2160
tgggcattttt cactcagcac ccctttgtaa cccagcactt agcaccatgg ctggcgcaca 2220
gcaatgtcac atgtgtgagt gcacacgatg cctcactgcc aggggtcacc ccacaccgg 2280
gctgttgggg gcgttggagt ggttatctct tcttttgtcc tcaagctcct acctggcaga 2340
gagctgccc acaccgtcg ggtgggggtgg gcgggaaggg aagaagcagc agcaagaaaag 2400
aagccccctg gcctcactc tccctccctg gacgccccctt ctgcacccatc acacacagc 2460
cgcttggcc ttggagnca gttttcccg agcctggaa ccccccggcgt ctgtcccggt 2520
gtccccccca gcctcaccn cgtgctggcc cagccccccgc gagttcgggaa cccgggggtt 2580
ccgggggtggc aggggggttcc catgcccctc gcgaggcctc ggctcgggccc gctcccgaa 2640
cctgcacttc aggggtcctg gtccggccgc cccagcagga gcaaaacaag agcacgcgca 2700
cctgcccggcc cgcccccccc cttgggtggcc gccaatcgcg cgctcggggc ggggtcgggc 2760
gcgctggAAC cagagccgga gccggatccc agccggagcc caagcgcaqc ccgcaccccg 2820
cgccagcggct gagccgggag ccagcgcagc ctcggccccc cagctcaagc ctcgtccccg 2880
ccggccgcgc cgcaacgcgc cggccggccccc cccggggcat ggc 2923

<210> 32

<211> 13

<212> DNA

<213> Human

<220>

<223> human DNA of 5'-end of ABCG1 cDNA

<400> ..

ccggggcatg gcc

13

<210> 33

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 33

cgtcagcaact ctgatgatgg cctg

24

<210> 34

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 34

tctctgctat ctccaaacctc a

21

<210> 35

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 35

caaacatgtc agctgttact gga

23

<210> 36

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 36

tagccttgca aaaataacctt ctg

23

<210> 37

<211> 25

<212> DNA

<213> Human

<220>

<223> Primer

<400> 37

gttggaaaga ttctctatac acctg

25

<210> 38

<211> 24

<212> DNA

<213> Human

<220>

<223> Primer

<400> 38

cgtcagcact ctgatgatgg cctg

24

<210> 39

<211> 21

<212> DNA

<213> Human

<220>

<223> Primer

<400> 39

tctctgctat ctccaacctc a

21

<210> 40
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 40
acgtcttcac caggtaatct gaa

23

<210> 41
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 41
ctatctgtgt catctttgcg atg

23

<210> 42
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 42
cgcttcctcc tatagatctt ggt

23

<210> 43
<211> 23
<212> DNA

<213> Human

<220>

<223> Primer

<400> 43

aagagagcat gtggagttct ttg

23

<210> 44

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 44

ccctgtatgc aatttgtgtt ctc

23

<210> 45

<211> 22

<212> DNA

<213> Human

<220>

<223> Primer

<400> 45

aaccttctct gggttcctgt at

22

<210> 46

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 46

agttcctgga aggtcttgg cac

23

<210> 47

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 47

gctgaccctt ttgaggacat gcg

23

<210> 48

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 48

ataggtcagc tcatgcccta tgt

23

<210> 49

<211> 23

<212> DNA

<213> Human

<220>

<223> Primer

<400> 49

gctgcctcct ccacaaaagaa aac

23

<210> 50
<211> 24
<212> DNA
<213> Human

<220>
<223> Primer

<400> 50
gctttgctgaa cccgctcctg gatc

24

<210> 51
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 51
gaggccagaa tgacatctta gaa

23

<210> 52
<211> 23
<212> DNA
<213> Human

<220>
<223> Primer

<400> 52
cttgacaaca ctttagggcac aat

23

<210> 53
<211> 15
<212> PRT
<213> Human

<220>

<223> amino acid residues 613-628 of ABCG1

<400> 53

Arg Glu Asp Leu His Cys Asp Ile Asp Glu Thr Cys His Phe Gln
1 5 10 15

<210> 54

<211> 2923

<212> DNA

<213> Human

<220>

<223> human genomic DNA of 5'-UTR of ABCG1

<400> 54

ttgcctggtt gatcctcagg gttctactta gaatgcctcg aaaagtcttg gctggacacc 60
catgcccagt ctttctgcag ggtccattg gggtaacct tctcatttca tcccatgtga 120
accaggccag gcccatcagg gtttgcaac cccctgatgc agtggttgct gccaggtgac 180
aggagcaagc ctgcagctgc tgaaaaacca tgcagagaca gcctgccaga gggagacca 240
cctggggagg ccagagccgt ggagacagca agagaccagg ggctgaggac agagtagtac 300
aggtctttgg tcccagtagt cctgaaacca ctgcactccg aacctttctg tacttagctt 360
aagccagttg gagttctgt ccttacaac caagagcctt gataggaatg gggtcctgtg 420
ctacgctact gttggcttct ttcccgatcg ggctggag gggAACACAG cagtgactac 480
agtggatgc ttactcggtg ctggcatgc tagaaagtgc ttgccatgcc ttattcccc 540
cgtggggggg attttgcacc cacctgtaca gacagataag tgaggaccct tttcacctta 600
tcctgcaaca gaaaatccag cagccaaagc caacaaggc ccagcatagc atctccctc 660
tctgacttca tcctcacgct ccacacacca tccccctggc cattcccgac agcccagtaa 720
gcactgcctc acacttccag ttccggacca gccaggatgg ccaggctgga tggggccat 780
ccaccggctg aagccaaattg cctattctcg agctgaaggt gaatcaatcc cgccataaatc 840
ttcgggcaga gaactngggt ggggggtaga agagggggaa tgtctagaag gaaattctgg 900
ggcacattcc tggaaagttag gaggatggat attggacaga aattatgtca ttgcaggcac 960
cctcacttgc cctggccaca tggacagttc ctccccggct gtgttccgng cctcctctcg 1020
tgctccaggc cctgtctgtt cctggagcga gatgggtccc agggctggc accagtcacc 1080
atctccagcc atcaggcact ttccctctcg tgtttggcg taaacacntc cctaggtttg 1140

tggatctgaa tcctcttccc aacacactca agctttgctg ggccctccctg cagtgtatgt 1200
ttaaggcacc acacagcctc caaggcctgg cacccgggca gtggccacct ggtaaacaca 1260
gcagtcagat ttccctcattt cagccaagtg taaaatcaag gtaatggatc tacnctttt 1320
tttttntntt ttttccaggg ggntnnttt ttttgagac ggagtctcac tctgtcancc 1380
ccggtctgga gtgcagtggc tcaatctcg 3' ctcancgtgc aagctccgcc tcccaagggttc 1440
atgccattct cctgcctcag cctacatagt agctggact acaggtgccc gccaccacac 1500
ctagctaatt ttttgtattt ttagtagaga cggggttca tcatgttagc caggatggtc 1560
tcgatctcct gacctcccaa agtgggtggaa ttacaggtgt gagccactgc gcccggctgg 1620
atgactcttgc agacaacacc attcagacaa aggcaaggcc tcccacttaa actcataacc 1680
gtgtctcctt tctctccttc gattttagcg gctgaatttgc gttacagtca tctgacactgt 1740
gggtgtgaag tccacctgccc tggcataaaaa agctgtgcct cctttctagg tgaggagaaa 1800
gagagagacc tggctcatct gaggtgtggt tgggaggggg gacccaggtg tgctggaaat 1860
gaaaagaaaat gcattcctgt ttttgcgtccc aacatgcaaa caactgaaca aaagcattag 1920
ggcctgagac tgggagtaaa gaattccttg tcaccatgg taccaggaaa tggccccact 1980
tatataataat aagggttttta gagatgctgg accatctgat attccagcct ggggccacat 2040
gggagtggtgc cctgggtgtta ttccctatac agttccatga acatggctct ggaaacacct 2100
ctgtctgcag aaaatgaggc ttttctttt ttgttcgggg gtgaacagag ggcagaggcc 2160
tgggcattttt cactcagcac cccttgcataa cccagcactt agcaccatgg ctggcgacaca 2220
gcaatgtcac atgtgtgagt gcacacgtg cctcaactgc aggggtcacc ccacaccgg 2280
gctgttgggg gcgttggagt gtttatctct tcttttagtcc tcaagctcctt acctggcaga 2340
gagctgccccca acaccgtcgg ggtgggggtgg gcgggaaggg aagaagcagc agcaagaaag 2400
aagccccctg gccctcactc tccctccctg gacgccccctt ctgcaccccc atcacacagc 2460
cgcttggagcc ttggagncaag tggatttccg agcctggaa ccccccggcgt ctgtcccggt 2520
gtccccccgca gcctcacccn cgtgctggcc cagccccccgc gagttcggga cccgggggttt 2580
ccgggggtggc aggggggttcc catggccctt gcggaggcctt ggctcggggc gctcccgaa 2640
cctgcacttc aggggtcctt gtccgcgc cccagcagga gcaaaacaag agcacgcgc 2700
cctgcccggcc cggccggcccc cttgggtggc gccaatcgcc cgctcggggc ggggtcgggc 2760
gcgcgtggaaac cagagccggaa gccggatccc agccggagcc caagcgcagc ccgcaccccg 2820
cgcagcggct gagccgggag ccagcgcagc ctcggccccg cagctcaagc ctcgtccccc 2880
ccgcccggcgc cgccacggcgc cggccggcc cccggggcat ggc 2923