

Inteligência Artificial

Representação do Conhecimento

Prof. Dr^a. Andreza Sartori <u>asartori@furb.br</u>

Documentos Consultados/Recomendados

- Barros, F.; Prudêncio, R. Introdução aos Agentes
 Inteligentes. http://www.cin.ufpe.br/~in1116/IAI-2016/
- COPPIN, Ben. Inteligência artificial. Rio de Janeiro: LTC, 2013.
- KLEIN, Dan; ABBEEL, Pieter. Intro to Al. UC Berkeley. Disponível em: http://ai.berkeley.edu.
- LIMA, Edirlei Soares. Inteligência Artificial. PUC-Rio, 2015.
- RUSSELL, Stuart J. (Stuart Jonathan); NORVIG, Peter.
 Inteligência artificial. Rio de Janeiro: Campus, 2013. 1021 p.

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos especiais

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos especiais

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

3.1. Agentes Lógicos

3.2. Representação do Conhecimento

3.2.1 Lógica de Primeira Ordem

3.3. Sistemas Especialistas

Introdução

 Humanos possuem conhecimento e raciocinam sobre este conhecimento.

- Exemplos:
 - "Pedro viu a jóia e a desejou."
 - "Pedro lançou a pedra contra a janela e a quebrou."

Introdução

 Aspecto fundamental do comportamento inteligente é que ele é condicionado pelo conhecimento que um agente tem sobre seu mundo.

 Para a Inteligência Artificial, ter conhecimento específico é importante para a resolução de problemas complexos.

Agente Racional Ideal

Para cada sequência de **percepções** possíveis deve-se selecionar uma **ação** que espera-se que venha a maximizar sua **medida de desempenho**, dada a evidência fornecida pela **sequência** de percepções e por qualquer **conhecimento interno do agente**.

Conhecimento

Dados:

- Conjunto de caracteres numéricos e/ou alfanubéticos que não possuem significado associado
 - Ex. 15, m6, west, 100.

Informação:

- Dados organizados
- Tem significado
 - Ex: 01, 03, 05, 06, 07, 09, 10 (meses)

Conhecimento:

- Conjunto de informações, com suas propriedades e relações
- Ex: Médico ao diagnosticar uma doença em um paciente.
 Informações que estão no cérebro do médico = conhecimento

Como Representar o Conhecimento?

Componentes Principais dos Sistemas Baseados em Conhecimento

Base de conhecimento (BC)

- É formada por um conjunto de **sentenças** expressadas através de uma **Linguagem de Representação de Conhecimento**.
 - Através da representação lógica das sentenças.
- Exemplo:
 - S1. Todos os animais respiram;
 - S2. Todos os gatos são animais;

Mecanismo de Inferência

- Derivação de novas sentenças a partir de sentenças antigas (extraidas da BC).
 - Dada S1 e S2, podemos deduzir que: Todos os gatos respiram.

Lógica

Lógica

- É um veículo fundamental para a representação do conhecimento.
- O conceito foi inicialmente apresentado por Aristóteles.
- "Pode ser entendida como a ciência que estuda os princípios e os métodos que permitem estabelecer as condições de validade e invalidade dos argumentos." (BISPO; CASTANHEIRA; SOUZA FILHO, 2011, p. xi).

"Todo homem é mortal"

"Sócrates é um homem"

"Logo, Sócrates é mortal"

Todo X é Y. Z é X. Portanto, Z é Y.

Alguns Tipos de Lógica

- Lógica proposicional: representa a estrutura das sentenças usando conectivos lógicos ("e", "ou", "não", "se...então", "se e somente se").
- Lógica de primeira ordem: (ou lógica de predicados) é elaborada em torno de <u>objetos e relações</u>.
- Lógica temporal: descreve regras e símbolos para representar e raciocinar sobre proposições qualificadas em termos do tempo. Os fatos são válidos em momentos particulares e esses momentos estão ordenados.
 - Ex: Eu estou sempre com fome.
- Lógica difusa: trabalha com o conceito de graus de verdade entre 0 e 1.
 - Ex: algo é 30% quente, 25% morno e 45% frio
- Etc....

Conceitos de Lógica

- Sintaxe: especifica todas as sentenças que são bemformadas.
 - Exemplo na aritmética:
 - √ x+y=4
 - × x4y+=
- Semântica: especifica o significado das sentenças. Define a verdade de cada sentença com relação a cada "mundo possível".
 - Exemplo:
 - a sentença "x+y=4" é verdadeira em um mundo no qual x=2 e y=2, mas é falsa em um mundo em que x=1 e y=1.

Conceitos de Lógica

- Modelo: um "mundo possível".
 - "m é modelo de a" indica que a sentença a é verdadeira no modelo m.

- Consequência lógica: utilizada quando uma sentença decorre logicamente de outra.
 - Notação: a ⊨ b (b é uma consequência lógica de a).
 - x+y=4 tem como consequência lógica a sentença 4= x+y
 - Pode ser aplicada para derivar conclusões, ou seja, para conduzir inferência lógica.

Base de conhecimento:

Nada em [1,1]; Brisa em [2,1]; Regras do mundo de Wumpus;

O agente está interessado em:

Saber se os quadrados [1,2],

[2,2] e [3,1] contém poços.

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

Possíveis modelos:

$$2^3 = 8$$

Possíveis Modelos

- A Base de Conhecimento (BC) é falsa em modelos que contradizem o que o agente sabe.
 - Há apenas 3 modelos em que a base de conhecimento é verdadeira.

- Considerando a possível conclusão:
 - α^1 = "não existe nenhum poço em [1,2]"

Em todo modelo no qual a BC é
verdadeira, α¹ também é verdadeira.

1,4	2,4	3,4	4,4
l .	1		1
ı			
ı			
1,3	2,3	3,3	4,3
1,0	2,0	0,0	17,0
ı			
ı			
1,2	2,2	3,2	4,2
1,2	P?	0,2	7,2
ı			
ок			
1,1	2,1 A	3,1 P?	4,1
	A	r.	
v	В		
ок	ок		

É possivel afirmar que $BC \models \alpha^1$

Não existe nenhum poço em [1,2]

- Considerando a possível conclusão:
 - α^2 = "não existe nenhum poço em [2,2]"

1,4	2,4	3,4	4,4
l			
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
	P?		
ок			
1,1	2,1 A	3,1 P?	4,1
v	B		
ок	ок		

É possivel afirmar que BC ⊭ α²

Em alguns modelos em que BC é verdadeira, α_2 é falsa. O agente **não pode concluir que não existe** nenhum poço em [2,2] **nem se existe** um poço em [2,2].

Inferência Lógica

- O exemplo anterior:
 - Ilustra a consequência lógica.
 - Mostra como a consequência lógica pode ser aplicada para produzir inferência lógica (derivar conclusões).
 - Este algoritmo de inferência é denomidado: verificação de modelos (model checking).
 - Numera todos os possíveis modelos para checar se α é verdadeira em todos os modelos onde a BC é verdadeira.

Como representar o Conhecimento?

- Lógica Proposicional
- Lógica de Primeira Ordem
- Outras linguagens lógicas

Lógica Proposicional

Lógica Proposicional

- Lógica simples.
- A sentenças são formadas por conectivos:
 - "e", "ou", "se-então", "se e somente se".
- É necessário definir:
 - Sintaxe (sentenças válidas).
 - Semântica (modo pelo qual a verdade das sentenças é determinada).
 - Consequência lógica (relação entre uma sentença e outra que decorre dela).
 - Algoritmo para inferência lógica.

O que são Proposições?

 Uma Proposição é qualquer frase afirmativa na qual se pode decidir se ela é falsa ou verdadeira, porém não ambos.

Proposições	Não são Proposições		
 Paraguai e Brasil são países limítrofes. 	 Onde você mora? 8-16 		
 Blumenau é a capital do Brasil. 4 x 3 = 3 x 4 Vou ao cinema se e somente se conseguir dinheiro. 	3. Escreva um verso.4. Triângulo equilátero.		

Sintaxe da Lógica Proposicional

Proposições:

Simples (Atômica)	Composta
Apenas uma proposição	Combinação de uma ou mais proposições simples por meio de elementos chamados operadores ou conectivos.
Ex.: José é careca.	Ex.: José é careca e Pedro é estudante.

- É representado por letras chamadas Símbolos Proposicionais:
 P, Q, R, S, P1, Q1, R1, S1, P2, Q2, R2, S2,
 - I[P] = José é careca.
 - I[Q] = Pedro é estudante.
 - I[(P ∧ Q)] = José é careca e Pedro é estudante.

Conectivos Proposicionais ou Operadores Lógicos

Implicação Lógica

• $\underline{\alpha}$ implica logicamente em $\underline{\beta}$ ($\alpha = \beta$) se e somente se β é verdadeira quando α for verdadeira.

- $P \rightarrow Q$
 - Se P é verdade então Q também é verdade.
 - Exemplo:
 - Se está chovendo então as ruas estão molhadas.

Exercício:

- A = Rosas são vermelhas.
- B = Violetas são azuis.
- C = Açúcar é doce.
- 1. Formalize o enunciado (notação simbólica):
 - Rosas são vermelhas apenas se violetas não forem azuis e se açúcar for amargo.
- 2.Transcreva para o português a fórmula: C ∧ (~A ↔ B)

Exercício: Resposta

- A = Rosas são vermelhas.
- B = Violetas são azuis.
- C = Açúcar é doce.

1. Formalize o enunciado (notação simbólica):

- Rosas são vermelhas apenas se violetas não forem azuis e se açúcar for amargo.
 - (~B ∧ ~C) → A

2.Transcreva para o português a fórmula: C ∧ (~A ↔ B)

 Açúcar é doce, mas as rosas não são vermelhas se e somente se as violetas são azuis.

Exercício:

Sejam **J**, **G**, **T** as seguintes sentenças (proposições):

- J Jogadores estão cansados.
- G Goleiro faz uma boa defesa.
- T Time vence o jogo.

Escreva as proposições compostas a seguir em notação simbólica.

- a) Se os jogadores estiverem descansados, o time vencerá o jogo.
- b) O time vencerá o jogo apenas se os jogadores estiverem descansados e o goleiro fizer uma boa defesa.

c) Uma condição suficiente para o time ganhar o jogo é o goleiro fazer uma boa defesa ou os jogadores estarem descansados.

Exercício:

Sejam **J**, **G**, **T** as seguintes sentenças (proposições):

- J = Jogadores estão cansados.
- **G** = Goleiro faz uma boa defesa.
- T = Time vence o jogo.

Escreva as proposições compostas a seguir em notação simbólica.

- a) Se os jogadores estiverem descansados, o time vencerá o jogo.
- Resposta: ¬J → T
- b) O time vencerá o jogo apenas se os jogadores estiverem descansados e o goleiro fizer uma boa defesa.
- Resposta: (¬J ∧ G) → T
- c) Uma condição suficiente para o time ganhar o jogo é o goleiro fazer uma boa defesa ou os jogadores estarem descansados.
- Resposta: (G $\vee \neg J$) $\rightarrow T$

Semântica em Lógica Proposicional

- Descreve como calcular o valor verdade de qualquer sentença com base em um mesmo modelo.
- É necessário definir como calcular a verdade de sentenças atômicas e como calcular a verdade de sentenças formadas com cada um dos cinco conectivos (¬, ∧, ∨, →, ↔).

Sentenças atômicas:

Verdadeiro é verdadeiro e falso é falso em todo modelo.

Sentenças complexas:

 As regras em cada conectivo são resumidas em uma tabelaverdade.

Tabela Verdade das Proposições

Para os cinco conectivos lógicos apresentados, teremos:

Р	Q	¬P	P∧Q	P ∨ Q	$P \rightarrow Q$	$P \leftrightarrow Q$
V	V	F	V	V	V	V
V	F	F	F	V	F	F
F	V	V	F	V	V	F
F	F	V	F	F	V	V

Assim, I[P ∧ Q] = V, se I[P] = V e I[Q] = V.

Exercício:

Determine a interpretação (I) das fórmulas abaixo:

- a) **I**[¬P]
- b) I[P ∧ Q], quando I[P] = V e I[Q] = V
- c) $I[P \lor Q]$, quando I[P] = F e I[Q] = F
- d) $I[P \rightarrow Q]$, quando I[P] = F
- e) $I[P \leftrightarrow Q]$, quando $I[P] \neq I[Q]$

Exercício:Resposta

- Determine a interpretação (I) das fórmulas abaixo:
- a) I [¬P] :
 se I[P] = V, então I[¬P] = F; se I[P] = F, então I[¬P] = V
- b) I [P ∧ Q], quando I[P] = V e I[Q] = Vv
- I [P \times Q], quando I[P] = F e I[Q] = F
 F
- d) $I[P \rightarrow Q]$, quando I[P] = F
- e) $I[P \leftrightarrow Q]$, quando $I[P] \neq I[Q]$

Exemplo: O Mundo de Wumpus

Exemplo: Mundo de Wumpus

 Vocabulário de símbolos proposicionais:

- Seja P_{i,j} verdadeiro se existe poço em [i , j]
- Seja B_{i,j} verdadeiro se existe brisa em [i , j]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1	2,1 A	3,1 P?	4,1
V	В		
ок	ок		

Exemplo: Mundo de Wumpus

Base de Conhecimento:

R1: ¬P_{1,1}

Não há poço em [1,1].

R2:
$$B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1})$$

R3: $B_{2,1} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Um quadrado tem uma brisa se e somente se existe um poço em um quadrado vizinho (todos os quadrados devem ser declarados).

R4: ¬B_{1,1}

R5: B_{2,1}

Percepções adquiridas pelo agente do mundo em que ele se encontra.

1,2	2,2 P?	3,2
ок		
1,1	2,1 A	3,1 P?
v	В	
oĸ	ок	

Inferência - Mundo de Wumpus

- Inferência: derivação de novas sentenças a partir de sentenças antigas.
- **Objetivo**: decidir se BC $\models \alpha$ para alguma sentença α . Exemplo: $P_{2,2}$ é permitida?
- Algoritmo: enumerar todos os modelos e verificar se α é verdadeira em todo modelo no qual BC é verdadeira.
 - Símbolos proposicionais relevantes para este modelo:

$$B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}$$

7 símbolos → 2⁷=128 modelos possíveis

1,2	2,2 P?	3,2
ок		
1,1	2,1 A	3,1 P?
v	В	
oĸ	ок	

Tabela Verdade – Mundo de Wumpus

B _{1,1}	B _{2,1}	P _{1,1}	P _{1,2}	P _{2,1}	P _{2,2}	P _{3,1}	R1	R2	R3	R4	R5	ВС
F	F	F	F	F	F	F	V	V	V	V	F	F
F	F	F	F	F	F	\	V	V	F	V	F	F
:	:	:	:	:	:		:	:	:	:	:	:
F	V	F	F	F	F	F	V	V	F	V	V	F
F	V	F	F	F	F	V	V	V	V	V	V	V
F	\ \	F	F	F	V	F	V	V	V	V	V	V
F	V	F	F/	F	\ v /	\	>	V	V	V	V	\
F	V	F	F	V	F	F	V	F	F	V	V	F
:	•••	••	:	:		••	••	:	••	:	:	:
V	V	V	V	V	V	V	F	V	V	F	V	F

- Em três desses modelos toda a base de conhecimento é verdadeira.
- Nesses três modelos, ¬P_{1,2} é verdadeira. Dessa maneira conclui-se que não existe poço em [1,2].
- P_{2,2} é verdadeira em dois dos três modelos e falsa em um.
- Assim, não podemos dizer ainda se existe um poço em [2,2].

1,2	2,2 P?	3,2
0K 1,1 V 0K	2,1 A B OK	3,1 P?

Equivalências

• Duas sentenças α e β implicam logicamente ($\alpha \models \beta$) se são verdadeiras no mesmo conjunto de modelos.

$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$	comutatividade de ∧
$(\alpha \vee \beta) \equiv (\beta \vee \alpha)$	comutatividade de V
$(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$	associatividade de ∧
$(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$	associatividade de V
$\neg \neg \alpha \equiv \alpha$	eliminação de dupla negação
$(\alpha \to \beta) \equiv (\neg \beta \to \neg \alpha)$	contraposição
$(\alpha \to \beta) \equiv (\neg \alpha \lor \beta)$	eliminação de implicação
$(\alpha \leftrightarrow \beta) \equiv ((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha))$	eliminação de bicondicional
$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$	de Morgan
$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$	de Morgan
$(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$	distributividade de ∧ sobre ∨
$(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$	distributividade de ∨ sobre ∧

Padrões de Raciocínio em Logica Proposicional

- Modus Ponens: A partir de uma implicação e a premissa da implicação, pode-se inferir a conclusão.
 - Premissa: (WumpusAdiante ∧ WumpusVivo) → Atirar.
 - Premissa: (WumpusAdiante \(\times \) WumpusVivo)
 - Conclusão: Atirar
- Eliminação da Conjunção: De uma conjunção, pode-se inferir qualquer um dos conjuntores.
 - Premissa: (WumpusAdiante \(\times \) WumpusVivo)
 - Conclusão: WumpusAdiante
 - Conclusão: WumpusVivo
- Eliminação da Disjunção: De uma disjunção, se um dos disjuntores é falso, então pode-se inferir que o outro é verdadeiro.
 - Premissa: (WumpusAdiante v WumpusVivo)
 - Premissa: ¬(WumpusVivo)
 - · Conclusão: WumpusAdiante

$$\alpha \rightarrow \beta, \alpha$$

 $\frac{\alpha \wedge \beta}{\alpha}$

 α

De Volta ao Mundo de Wumpus

Base de Conhecimento:

R1: ¬P_{1,1}

Não há poço em [1,1].

R2: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

R3: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Um quadrado tem uma brisa se e somente se existe um poço em um quadrado vizinho (todos os quadrados devem ser declarados).

R4: ¬B_{1,1}

R5: B_{2,1}

Percepções adquiridas pelo agente do mundo em que ele se encontra.

Questão:

Baseado neste conhecimento (BC)

$$BC \models P_{1,2}$$
?

$$BC \models P_{22}$$
?

Como Provar que ¬P_{1,2} no mundo de Wumpus

• Eliminação bicondicional em R2:

R2:
$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

R6:
$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

• Eliminação de "e" em R6:

R7:
$$(P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$$

De uma conjunção, pode-se inferir qualquer um dos conjuntores.

• Contraposição (($\alpha \to \beta$) $\equiv (\neg \beta \to \neg \alpha)$) em **R7**:

R8:
$$\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1})$$

Modus Ponens (R4 + R8)

R9:
$$\neg(P_{1,2} \lor P_{2,1})$$

A partir de uma implicação e a premissa da implicação, pode-se inferir a conclusão.

Regra de Morgan (¬(α∨β) ≡ (¬α∧¬β)) em R9:
 R10: ¬P_{1,2} ∧¬P_{2,1}

• Nem [1,2] nem em [2,1] tem um poço.

1,2	2,2 P?	3,2
ок		
1,1	2,1 A	3,1 P?
v	В	
OK	ок	

Limitações da Lógica Proposicional

- A aplicação de uma sequência de regras de inferências para derivar uma conclusão é chamado de prova lógica.
- A lógica proposicional é simples demais para representar alguns problemas do mundo real.
- Em problemas complexos pode ser necessário a utilização de um número muito grande de sentenças para a criação de um agente realmente inteligente.

Exercício:

Formalize os argumentos abaixo na linguagem da Lógica Proposicional usando as letras indicadas para cada proposição.

- B: O programa é bom.
- N: O programa passa no horário nobre.
- A: O público assiste.
- G: O público gosta.
- D: A audiência é alta.
- C: A propaganda é cara.
- a) Se o programa é bom e passa no horário nobre, então o público assiste. Se o público assiste, então a audiência é alta. O programa passa no horário nobre. Portanto, se o programa é bom, então a audiência é alta.

Exercício: Resposta

Formalize os argumentos abaixo na linguagem da Lógica Proposicional usando as letras indicadas para cada proposição.

- B: O programa é bom.
- N: O programa passa no horário nobre.
- A: O público assiste.
- G: O público gosta.
- D: A audiência é alta.
- C: A propaganda é cara.
- a) Se o programa é bom e passa no horário nobre, então o público assiste. Se o público assiste, então a audiência é alta. O programa passa no horário nobre. Portanto, se o programa é bom, então a audiência é alta.
- Resposta: (B ∧ N) → A, A → D, N | B → D

Exercício:

Formalize os argumentos abaixo na linguagem da Lógica Proposicional usando as letras indicadas para cada proposição.

- B: O programa é bom.
- N: O programa passa no horário nobre.
- A: O público assiste.
- G: O público gosta.
- D: A audiência é alta.
- C: A propaganda é cara.
- b) Se o programa é bom ou passa no horário nobre, o público assiste. Se o público assiste e gosta, então a audiência é alta. Se a audiência é alta, a propaganda é cara. O programa passa no horário nobre, mas a propaganda é barata. Logo, o público não gosta do programa.

Exercício: Resposta

Formalize os argumentos abaixo na linguagem da Lógica Proposicional usando as letras indicadas para cada proposição.

- B: O programa é bom.
- N: O programa passa no horário nobre.
- A: O público assiste.
- G: O público gosta.
- D: A audiência é alta.
- C: A propaganda é cara.
- b) Se o programa é bom ou passa no horário nobre, o público assiste. Se o público assiste e gosta, então a audiência é alta. Se a audiência é alta, a propaganda é cara. O programa passa no horário nobre, mas a propaganda é barata. Logo, o público não gosta do programa.

Resposta: (B \vee N) \rightarrow A, (A \wedge G) \rightarrow D, D \rightarrow C, N \wedge \sim C |- \sim G