

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

DEPARTMENT OF

ELECTRONICS & COMMUNICATION ENGINEERING

Date	11 JULY 2023	Maximum Marks	50						
Course Code	22ES24C	Duration	90 Min						
Sem	II Semester	Test-1							
PRINC	PRINCIPLES OF ELECTRONICS ENGINEERING								

Sl. No.	Questions	M	BT	CO
1a.	Draw the circuit diagram of a Full wave Bridge rectifier circuit with filter and explain its operation along with suitable waveforms.	6	2	1
b.	In an amplifier, the output power is 1.5 watts at 2 kHz and 0.3 watt at 20 Hz, while the input power is constant at 10 mW. Calculate the difference in decibel gain between 20 Hz to 2 kHz.	4	2	2
2a.	In a Zener regulator circuit, Design the value of R so that circuit performs satisfactorily under all the given conditions. Given $Pd(max) = 6W$ Izmin =10mA, $Vz=12V$ Vin varies from 22V to 28V R _L varies from 50 Ω to 500 Ω .	6	3	3
b.	Bring out any four differences between Avalanche breakdown and Zener breakdown.	4	1	2
3a.	A full wave bridge rectifier using ideal diodes is supplied from the secondary of a 10:1 transformer, whose primary is connected to 220V, 50Hz main supply. The output of the rectifier is connected to a load resistance of 220Ω in parallel with a capacitor filter C. Calculate the value of C required so that the ripple factor is 3%. Also determine: i) The dc output voltage ii) The peak to peak ripple voltage iii) The load regulation	6	3	3
b.	Write a brief note on the three regions of operation of a bipolar junction transistor.	4	2	1
4a.	Three stages are cascaded with 0.05V _{P-P} providing 150 V _{P-P} output. If the voltage gain of first stage is 20 and the input to the third stage is 15 V _{P-P} . Find the following. i) Overall gain in dB. ii) Voltage gain of 2 nd and 3 rd stages.	6	2	3
L.	iii) Voltage gain of each stage in dB.	1	2	2
b. 5a.	Explain the working principle of LED and Photodiode.	4 6	2	1
Ja.	Draw the circuit diagram of a single stage RC coupled amplifier. With the	U	1	1

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

	help of frequency response, discuss the effect of capacitors in each region.			
b.	Draw the block diagram of a regulated DC power supply and explain the	4	1	2
	function of each block.			

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars		CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	16	16	18	-	14	24	12	-	-	-

Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Odd Sem)

DEPARTMENT OF									
	Electronics and Communication Engineering								
Date	25/02/2023	Maximum Marks	60						
Course Code	22ES14	Duration	120 Mins						
Sem	I Semester	CI	E2						
ELEMENTS OF ELECTRONICS ENGINEERING									

Instructions to candidates:

- Part A must be answered within the first two pages of manuscript. i.
- ii. Assume the suitable data for missing values

l l	PART-A	M	ВТ	CO
1	The Slew rate of an Op-Amp is 3V/µsec with a peak value of voltage as 2V.	1	2	2
1	Calculate the maximum output frequency so that the output is not distorted.	1		2
2	If one of the input to a 2-input EX-NOR gate is connected to 0, then it can be used	1	1	1
2	to	1	1	1
3	The canonical sum of product form of the function $y(A,B) = A + B$ is	1	2	2
4	Prove that $AB + BC + B\bar{C} = AB + C$	1	3	2
5	The gain of a voltage follower is	1	1	1
6	An op-Amp has a differential gain of 86dB and Common mode gain of 20dB. The	1	2	3
Ü	CMRR in dB is		_	
7	The minimum number of NAND gates required to realize XOR gates is	1	2	1
8	State the necessary and sufficient conditions to obtain sustained oscillations	2	1	1
9	In a 3 variable K-map, if all the cells contain 1's then the output is	1	1	1
	PART-B	•		
1.a	Explain the operation of RC phase shift oscillator with a neat diagram and also	6	2	2
	mention the gain equation.			
b	Prove that the stability of the gain of an amplifier improves with negative feedback	4	3	2
	by a factor $(1+A\beta)$ where A is the open loop gain of the amplifier and β is the			
	feedback factor.			
2a	Simplify the logic expression using K map and implement the logic circuit using	6	4	3
	NAND Gate.			
	$F = \sum m(0,1,2,3,5,7,8,9,10,12,13)$			
2b	List at least four important characteristics of an ideal op-amp and indicate their	4	1	1
	typical values for a general purpose commercial op—amp.			
3a	Simplify the following expressions:	5	3	2
	i. $Y = (A + B)(A + \overline{B})(\overline{A} + B)$			
	ii. $Y = XY + XYZ + XY\overline{Z} + \overline{X}YZ$			
b	Design an adder circuit using an op-amp to obtain an output expression.	5	4	4
	$V_0=2(0.1 \text{ V}_1+0.5 \text{ V}_2+20 \text{ V}_3)$ where V_1 , V_2 , V_3 are the inputs. Assume the value of			
	feedback resistor as $10K\Omega$.			
4a	Define Slew rate and CMRR with necessary expressions	4	1	1
b	An amplifier has a gain of 50 dB. The bandwidth of 250KHz, distortion of 12%, an	6	4	3
	input impedance of $30K\Omega$, and an output impedance of $2K\Omega$. If the voltage series			
	negative feedback of 2.9% is given to this amplifier, calculate the gain, input			
	impedance, output impedance, bandwidth, and distortion of the amplifier with			
	negative feedback.			

Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Odd Sem)

5a	Write the truth table for SUM and CARRYOUT of a full adder. From the truth table, obtain the logic expressions for the same and then realize the full adder using 2 half adders.	6	3	3
5b	Draw the circuit of an inverting amplifier and explain the working of the same with	4	3	3
	suitable expressions			

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

	Parti	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks Distribution	Quiz	Max Marks	5	4	1	-	5	4	1	-	-	-
	Test	Max Marks	8	15	22	5	8	6	19	17	-	-

Course Code: 22ES14C

Course Title: Principles of Electronics Engineering Semester: I

SCHEME & SOLUTION

Sl.No	Solution with Mark split-up	Marks
		allotted
1	$SR = \frac{dV_o}{dt} \ volts/\mu \sec$	01
	$SR = f_{max} 2 \prod V_{m}$ $F = 238.7 \text{KHz}$	
2	Not	01
3	AB + AB' + A'B.	01
4	$AB + BC + \bar{B}C = AB + C$ $AB + C(B + \bar{B}) = AB + C$	01
5	1	01
6	$CMRR = \frac{A_d}{A_c}$	01
	4.3dB	_
7	4	01
8	 The loop gain is equal to one in absolute magnitude, which means that βA =1 The phase shift through the loop is either zero or an integer multiple ∠βA=2πn,n=0,1,2, 	02
9	1	01

S1.	Solution with Mark split-up	Marks
No.		

	This shows that mag	gnitude of the rel	ative change in gain $\left \frac{dA_f}{A_c} \right $ is reduced by the	
	factor βA compared	to that without f	feedback $\left(\left \frac{dA}{A}\right \right)$.	
2.a	00 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	01 11 1 3 1 1 5 1 7 1 1 13 15 1 9 11 1 9 11 $B\bar{D} + A\bar{C} + \bar{A}$	10 6 B D 14 A C D D D D	4+2
2.b	Parameter	Ideal	Typical or Practical Value	4
	Voltage Gain	∞	2*105	
	Output Impedance	0	75Ω	
	Input Impedance	∞	2ΜΩ	
	Input Offset	0	2mV	
	CMRR Slave Pata	∞	90dB	
	Slew Rate Bandwidth	∞ ∞	0.5V/us 1MHz	
	PSRR	_∞	30μV/V	
	Input Bias	0	80nA	
į	Current			
	To mention any Four		(1 D)(1 E)(1 -)	2.5
3.a		Y	$= (A+B)(A+\bar{B})(\bar{A}+B)$	2.5
		Y	$= AB$ $= XY + XYZ + XY\bar{Z} + \bar{X}YZ$	2.5
		1	Y = Y[X + Z]	
3.b	$V_o = \left[\frac{R_f}{R_1}V_1 + \frac{R_f}{R_1}\right]$	$\frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3$		1 3
	$R_1 = 50 \text{K}\Omega, R_2 = 10 \text{K}$	Ω and $R_3=250$	Ω	
	Design			1
4.a	slew rate is the m	aximum rate at	which amplifier output can change in volts per	2

	microsecond (V/microsecond)	
	$SR = \frac{\Delta V_o}{\Delta t} \qquad V/\mu s \qquad \text{with } t \text{ in } \mu s$	
	Common Mode Rejection Ratio(CMRR): It is defined as "The ratio of differential voltage gain to common-mode voltage gain". $CMRR = \frac{A_d}{A_c}$	2
4.b	Gain=50/(1+1.45)=20.408 Input impedance=30K*(1+1.45)=73.5KΩ Output impedance=2K/(1+1.45)=816.32Ω Bandwidth=250K*2.45=612.5KHz Distortion of the amplifier with negative feedback=4.89%	6
5.a	Inputs	2
	0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1	
	1 0 1 1 0 1 1 0 1 0 1 1 1 1 1	
	Sum= $\overline{A} \overline{B} \operatorname{Cin} + \overline{A} \operatorname{B} \overline{Cin} + A \overline{B} \overline{Cin} + A \operatorname{BCin}$ = $\overline{A} [\overline{B} \operatorname{Cin} + \operatorname{B} \overline{Cin}] + A [\overline{B} \overline{Cin} + \operatorname{BCin}]$ = $\overline{A} [\operatorname{B} \oplus \operatorname{Cin}] + A [\overline{B} \oplus \overline{Cin}]$ = $A \oplus \operatorname{B} \oplus \operatorname{Cin}$	2
	$Carry = \overline{A}BCin+A\overline{B}Cin+AB\overline{Cin}+ABCin$ $= \overline{A}BCin+A\overline{B}Cin+AB(\overline{Cin}+Cin)$ $= \overline{A}BCin+A\overline{B}Cin+AB$ $= \overline{A}BCin+A(\overline{B}Cin+B)$	2
	= ABCin+AB+ACin = B(ACin+A)+ACin =B(A+Cin)+ACin =AB+BCin+ACin	

Signature (Digital) of course handling faculty

- 1. Dr. Abhay Deshpande
- 2. Dr. Sahana B
- 3. Prof. Sowmya Nag
- 4. Dr. Saba
- 5. Prof. Sindhu