ShipinskyKS 26122024-165922

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=2.74+3.54\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
3.2	0.474	177.9	9.002	68.2	0.048	57.5	0.227	-98.8
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
5.4	0.498	155.4	5.213	45.9	0.078	51.7	0.191	-121.1
6.5	0.514	143.5	4.342	35.0	0.094	45.3	0.171	-138.2
8.6	0.597	125.7	3.137	14.6	0.122	33.5	0.142	154.5

Найти точку (см. рисунок 2), соответствующую s_{11} на частоте 3.2 ГГц.

Рисунок 2 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5	0.578	147.3	3.740	60.7	0.070	57.0	0.254	-48.4
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
1.7	0.588	141.1	3.289	55.7	0.078	55.5	0.250	-52.1
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
1.9	0.598	135.5	2.940	50.9	0.086	53.9	0.245	-55.7
2.0	0.602	132.6	2.781	48.5	0.090	53.2	0.244	-57.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.3	0.622	124.8	2.418	41.6	0.101	50.6	0.236	-64.8
2.4	0.629	122.1	2.313	39.3	0.105	49.7	0.234	-67.3
2.5	0.637	119.8	2.216	37.1	0.109	48.7	0.231	-69.8

и частоты $f_{\scriptscriptstyle {
m H}}=1.8$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle {
m B}}=2.2$ $\Gamma\Gamma$ ц. **Найти** модуль s_{22} в дБ на частоте $f_{\scriptscriptstyle {
m H}}.$

- 1) -12.2 дБ
- 2) 9.8 дБ
- 3) -4.5 дБ
- 4) -21.7 дБ

Задан двухполюсник на рисунке 3, причём R1 = 203.96 Ом.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок4— Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать undexc выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
6.6	0.521	145.5	4.145	34.5	0.093	42.1	0.182	-139.9
6.8	0.526	143.2	4.011	32.5	0.096	41.3	0.173	-143.0
7.0	0.531	141.0	3.882	30.4	0.098	40.6	0.166	-146.5
7.2	0.536	139.1	3.761	28.6	0.101	39.9	0.155	-150.0
7.4	0.542	137.1	3.645	26.7	0.103	39.2	0.145	-153.9
7.6	0.550	135.4	3.539	24.8	0.106	38.3	0.137	-159.7
7.8	0.561	133.8	3.443	22.8	0.110	37.2	0.132	-167.3
8.0	0.573	132.2	3.352	20.7	0.113	36.2	0.129	-175.3
8.2	0.582	130.6	3.247	18.7	0.115	34.6	0.133	175.1
8.4	0.592	129.0	3.146	16.5	0.118	33.1	0.141	166.3
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8

и частоты $f_{\mbox{\tiny H}}=7$ ГГц, $f_{\mbox{\tiny B}}=8.4$ ГГц.

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 2.7 дБ
- 2) 1.8 дБ
- 3) 0.9 дБ
- 4) 0.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.498	-127.2	20.607	101.3	0.029	50.5	0.443	-64.4
2.0	0.480	-151.2	13.871	86.5	0.036	50.8	0.324	-78.0
2.7	0.479	-167.3	10.300	75.8	0.044	51.5	0.272	-91.3
3.4	0.485	-178.3	8.159	67.6	0.052	51.6	0.252	-101.4
4.1	0.492	172.5	6.767	59.9	0.060	51.0	0.238	-108.3
4.8	0.505	164.7	5.744	52.4	0.069	49.2	0.222	-116.9
5.5	0.502	158.5	4.950	45.8	0.079	48.0	0.208	-122.2
6.2	0.513	150.4	4.426	38.7	0.089	44.0	0.192	-132.8
7.2	0.536	139.1	3.761	28.6	0.101	39.9	0.155	-150.0

и частоты $f_{\mbox{\tiny H}}=2$ ГГц, $f_{\mbox{\tiny B}}=7.2$ ГГц.

Найти обратные потери по входу на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 3.2 дБ
- 2) 10.8 дБ
- 3) 6.4 дБ
- 4) 5.4 дБ