Homework 3

Parallel Distributed Num Algorithms

Name: Saurabh Kumar <u>UIN:</u> 926009924

1. Parallelization with OpenMP.

Ans:.

1.1 Parallelized functions Code:

Ans: The modified code is submitted on ecampus

1.2 SpeedUp/Efficiency Calculations:

Ans:

For Function LU:

threads	Execution time (secs)	Speedup	Efficiency	
1	778 secs	1	1	
2	378 secs	2.1	1.05	
4	202 secs	3.9	.98	
10	176 secs	4.4	0.44	
20	104 secs	7.5	0.37	

For Function solve_L:

р	Execution time (secs)	Speedup	Efficiency
1	.68	1	1
2	.37	1.8	.9
4	.32	2.1	.53
10	.98	.69	0.06
20	1.1	.62	0.03

For Function solve_U:

р	Execution time (secs)	Speedup	Efficiency	
1	.67	1	1	
2	.38	1.8	.9	
4	.29	2.3	.58	
10	.87	.77	0.07	
20	1.02	.66	0.03	

For Function matvec:

Could not parallelize this function. Tried out some combinations but it kept inducing error in my results.

For Function saxpy:

р	Execution time (secs)	Speedup	Efficiency	
1	1.9073e-05	1	1	
2	2.0981e-05	.91	.46	
4	1.8120e-05	1.1	.26	
10	5.0712e-04	.04	0.004	
20	2.8791e-03	.006	.0003	

For Function norm:

р	Execution time (secs)	Speedup	Efficiency
1	7.2002e-05	1	1
2	3.4094e-05	2.1	1.05

4	4.7922e-05	1.5	.38
10	6.3400e-03	.011	0.0011
20	1.4591e-04	.5	0.025

2. Strategy for exploiting shared caches

Ans 2.1:

In order to exploit shared caches, I have tried to use the openmp pragma directive proc_bind. It is an openMp clause to control the thread binding for a team of threads in a parallel region. I have used the close affinity policy in proc_bind to take advantage of the shared cache machine architecture.

Ans 2.2 The comparison of run time, speed and efficiency with / without my strategy is as follows:

threads	Execution time without (secs)	Speedup without		Execution time with (secs)		Efficiency with
1	778 secs	1	1	760 secs	1	1
2	378 secs	2.1	1.05	350 secs	2.2	1.1
4	202 secs	3.9	.98	250 secs	3	.75
10	176 secs	4.4	0.44	300 secs	2.5	.25

20	104 secs	7.5	0.37	270 secs	2.8	.14

Steps to Run:

I have uploaded a shell script called run.sh. Please run this script using the following command after logging into ada.

This script will compile the source code and do a batch submission on ada.

Command to run:

→ ./run.sh