Def. Niech G będzie grafem prostym. Przez *kolorowanie wierzchołków* rozumiemy takie etykietowanie elementów V(G) liczbami naturalnymi, że sąsiednie wierzchołki otrzymują różne liczby (kolory, etykiety).

Def. Liczba chromatyczna grafu G jest to najmniejsza liczba k taka, że istnieje pokolorowanie G za pomocą k kolorów i jest oznaczana symbolem $\chi(G)$.

Przykład Optymalne (zużywające minimalną liczbę kolorów) pokolorowania grafów C_5 , W_6 , K_5 .

Uwaga Problem wyznaczania liczby chromatycznej jest w ogólności NPtrudny. Zatem, w praktyce użyteczne są oszacowania.

Def. Kliką grafu G nazywamy jego podgraf pełny.

Lemat Prawdziwe jest następujące oszacowanie dolne:

$$\chi(G) \geq \omega$$
,

gdzie ω jest rozmiarem maksymalnej kliki grafu G.

Uwaga Powyższe oszacowanie ma dwie wady:

- ω jest parametrem trudnym do wyliczenia. Ze związku $\frac{n^2}{n^2 2m} \le \omega$ otrzymujemy oszacowanie mniej dokładne, lecz łatwe do obliczenia.
- różnica pomiędzy $\chi(G)$ a ω może być dowolnie duża, na co przykładem są grafy Mycielskiego.

Tw. Dla dowolnego grafu o maksymalnym stopniu wierzchołka Δ zachodzi oszacowanie $\chi(G) \leq \Delta + 1$.

Dowód: Przeprowadzimy indukcję względem *n*.

- Jeśli n = 1, to nierówność oczywiście zachodzi.
- Zakładamy, że twierdzenie jest prawdziwe dla pewnego n > 0.
- Dowodzimy przypadek, gdy graf G ma n+1 wierzchołków. Usuńmy z G dowolny wierzchołek v. Dla grafu G-v z założenia indukcyjnego mamy: $\chi(G-v) \leq \Delta+1$. Wierzchołek v ma w grafie G co najwyżej Δ sąsiadów, więc jeden spośród $\Delta+1$ kolorów jest dla v dostępny, co pozwala uzyskać pokolorowanie G za pomocą co najwyżej $\Delta+1$ barw.

Tw (**Brooks, 1941**) Istnieją dwie klasy grafów, dla których $\chi(G) = \Delta + 1$: grafy pełne oraz cykle o nieparzystej liczbie wierzchołków.

Wniosek Jeśli $G \neq K_n$ oraz $\Delta \geq 3$, to $\chi(G) \leq \Delta$.

Uwaga Oszacowanie $\chi(G) \leq \Delta$ może być bardzo niedokładne, zwłaszcza dla gwiazd, dla których $\chi(K_{1,s}) = 2$ oraz $\Delta(K_{1,s}) = s$.

Tw. Dla grafu G o m krawędziach zachodzą oszacowania:

$$\chi(G) \le \sqrt{2m} + 1,$$
 $\chi(G) \le \lambda + 1,$

gdzie λ jest długością najdłuższej drogi w grafie G.

Uwaga Pierwsze z powyższych oszacowań może być niedokładne, gdyż dla grafów pełnych dwudzielnych $K_{k,k}$ różnica

$$\sqrt{2k^2} + 1 - \chi(G) = \sqrt{2k} - 1$$

może przyjmować dowolnie dużą wartość.

Uwaga Drugie z oszacowań jest niedokładne dla ścieżki P_n , dla której $\chi(P_n) = 2$ oraz $\lambda(P_n) = n - 1$.

Kolorowanie grafów planarnych

Tw. Każdy graf planarny jest 6-barwny.

Dowód: Zastosujemy indukcję względem liczby wierzchołków grafu.

- Jeśli n = 1, to twierdzenie jest oczywiście prawdziwe.
- Zakładamy, że własność zachodzi dla wszystkich (*n*–1)-wierzchołkowych grafów planarnych.
- Niech G będzie grafem planarnym o n wierzchołkach. Wiemy, że G posiada co najmniej jeden pąk v (wierzchołek o stopniu mniejszym lub równym 5). Po usunięciu v mamy (n 1)-wierzchołkowy graf planarny G v, do którego stosujemy założenie indukcyjne otrzymując jego 6-pokolorowanie. Wierzchołek v ma w G co najwyżej 5 sąsiadów, więc jeden z sześciu kolorów będzie dla v dostępny. Stąd G jest 6-barwny.

Kolorowanie grafów planarnych

Tw. (Heawood, 1890) Każdy graf planarny jest 5-barwny.

Dowód: Podobnie jak w poprzednim twierdzeniu, stosujemy indukcję względem n. Jeśli wyznaczymy (z zał. ind.) 5-pokolorowanie G - v (gdzie v jest pąkiem) i wierzchołek v jest incydentny z co najwyżej 4 kolorami, to twierdzenie zachodzi. W przeciwnym wypadku rozważamy 2 sytuacje (kolory 1 - czerwony, 2 - zielony, 3 - niebieski, 4 - fioletowy):

Przypadek 1:

- •Wierzchołki o kolorach 1,3 (sąsiedzi v) należą do różnych składowych grafu indukowanego przez wierzchołki o kolorach 1,3 (w całym grafie G v)
- •Wtedy zamieniamy kolory 1 i 3 w składowej zawierającej wierzchołek o kolorze 1 (sąsiedni z *v*)
- •v otrzymuje kolor 1

Kolorowanie grafów planarnych

Dowód (c.d.):

Przypadek 2:

- •Wierzchołki o kolorach 1,3 (sąsiedzi *v*) wraz z *v* tworzą cykl w *G*
- •Wtedy w składowej spójności zawierającej sąsiada *v* o kolorze 2 możemy zamienić kolory 2 i 4
- •v otrzymuje kolor 2

Tw. (Appel, Haken + komputer, 1976) Każdy graf planarny jest 4-barwny.

Algorytmy przybliżone

Przez A(G) oznaczmy liczbę kolorów, którą algorytm A używa podczas kolorowania grafu G. Wyróżniamy następujące parametry, uwzględniane podczas opisu algorytmu przybliżonego A:

- 1) Złożoność obliczeniowa.
- 2) Funkcja dobroci zdefiniowana jako:

 $A(n) = \max\{ A(G)/\chi(G) : G \text{ ma } n \text{ wierzchołków } \}.$ Najgorszą możliwą funkcją dobroci jest A(n)=n, najlepszą zaś A(n)=1.

- 3) Najmniejszy dość trudny graf najmniejszy graf G, dla którego algorytm <u>może</u> użyć więcej kolorów niż $\chi(G)$.
- 4) Najmniejszy trudny graf najmniejszy graf G, dla którego algorytm musi użyć więcej kolorów niż $\chi(G)$.

Algorytm sekwencyjny

Algorytm sekwencyjny S można opisać następująco:

- Uporządkuj w dowolny sposób wierzchołki grafu G $v_1,...,v_n$.
- Koloruj wierzchołki zachłannie zgodnie z przyjętą permutacją

Własności:

- 1) algorytm statyczny kolejność wierzchołków ustalona na początku nie zmienia się podczas realizacji algorytmu
- 2) Ścieżka P_4 jest najmniejszym dość trudnym grafem
- 3) Graf trudny nie istnieje
- 4) Funkcja dobroci jest liniowa. Jej oczekiwana wartość wynika z oszacowania: $S(G) \le (2 + \varepsilon) \chi(G)$
- 5) Złożoność O(n + m)

Algorytm *LF*

Algorytm *LF* (largest first) można opisać następująco:

- Uporządkuj wierzchołki grafu G nierosnąco według stopni $v_1,...,v_n$.
- Koloruj wierzchołki zachłannie zgodnie z przyjętą permutacją

Własności:

- 1) algorytm statyczny kolejność wierzchołków ustalona na początku nie zmienia się podczas realizacji algorytmu
- 2) Ścieżka P_6 jest najmniejszym dość trudnym grafem:

Kolejność wierzchołków: v_2 , v_5 , v_3 , v_4 , v_1 , v_6 .

Algorytm *LF*

Własności algorytm *LF* (c.d.):

3) najmniejszym trudnym grafem do kolorowania jest "koperta", która jest grafem 3-barwnym, natomiast *LF* zużywa czterech kolorów:

"Koperta" wraz z oznaczonymi stopniami wierzchołków

- a) Szeregujemy wierzchołki stopnia 4
- b) Kolorujemy te wierzchołki
- c) W każdym przypadku wybór wierzch. stopnia 3 jest symetryczny
- d) We wszystkich przyp. wymagany kolor nr 4

Algorytm *LF*

Własności algorytm *LF* (cd.):

4) funkcja dobroci to O(n). Zdefiniujmy k-ty graf Johnsona J_k jako $K_{k,k} - M$, gdzie $M = \{\{u_i, v_i\}: u_i \in V_1(K_{k,k}), v_i \in V_2(K_{k,k})\}$. Przykład grafu J_4 pokazuje rysunek (wraz z pokolorowaniem utworzonym przez algorytm LF).

 $\chi(J_k)=2$, gdyż grafy Johnsona są dwudzielne. Dla permutacji wierzchołków $u_1,\,v_1,\,u_2,\,v_2,\,\dots$, $u_k,\,u_k$ algorytm LF używa k kolorów.

Stąd
$$\frac{LF(J_k)}{\chi(J_k)} = \frac{n/2}{2} = \frac{n}{4}$$

Algorytm SL

Algorytm *SL* (smallest last) składa się z dwóch etapów:

- 1) faza redukcji grafu: znajdujemy wierzchołek o minimalnym stopniu i usuwamy go z grafu (powtarzamy dopóki graf nie jest pusty).
- 2) kolorujemy wierzchołki zachłannie w kolejności ustalonej w poprzednim kroku, zaczynając od wierzchołków usuwanych później.

Własności:

- Algorytm statyczny
- Złożoność algorytmu: O(n+m)
- Funkcja dobroci jest liniowa
- Przypadki pozytywne: drzewa, cykle, grafy jednocykliczne, kola, grafy Mycielskiego, grafy Johnsona, grafy planarne

Algorytm SL

Własności (cd.):

- Przypadki półpozytywne: grafy planarne (za pomocą sześciu kolorów w czasie O(n))
- Przypadki negatywne: grafy dwudzielne, grafy Colemana-Moore'a

Algorytm SL

Własności algorytmu (cd.):

• Najmniejszym dość trudnym grafem jest "pryzma"

Permutacja: a b f e c d

• Najmniejszym trudnym grafem jest ,,pryzmatoid":

Algorytm SLF

Algorytm *SLF* (saturacyjny LF) można opisać następująco:

while istnieją niepokolorowane wierzchołki do begin

znajdź wierzchołek o maksymalnym stopniu spośród

wierzchołków o maksymalnym stopniu nasycenia;

pokoloruj znaleziony wierzchołek zachłannie;

end

Uwaga *Stopień nasycenia* wierzchołka to ilość różnych kolorów incydentnych z tym wierzchołkiem.

- Przypadki pozytywne: grafy dwudzielne (w tym drzewa i grafy Johnsona), cykle, koła, kaktusy
- Przypadki negatywne: grafy trójdzielne

Algorytm SLF

Własności algorytmu:

•Złożoność: $O(m \log n)$

•Najmniejszy dość trudny graf:

•Najmniejszy trudny graf:

Pozostałe wierzchołki mogą być kolorowane w dowolnej kolejności, co zawsze prowadzi do użycia czwartego koloru.

Kolorowanie krawędzi

Def. Funkcja $c:E(G) \rightarrow \{1,...,k\}$ jest k-pokolorowaniem krawędziowym grafu G, o ile dla każdej pary sąsiednich krawędzi e i e' zachodzi $c(e) \neq c(e')$. Najmniejsze k, dla którego istnieje krawędziowe k-pokolorowanie nazywamy *indeksem chromatycznym* grafu G i oznaczamy symbolem $\chi'(G)$

Uwaga Pokolorowanie wierzchołków oznaczało rozbicie V na zbiory niezależne, natomiast pokolorowanie krawędzi k kolorami jest rozbiciem grafu na k skojarzeń.

Uwaga Problem kolorowania krawędzi jest równoważny kolorowaniu wierzchołków grafu krawędziowego.

Przykład $\chi'(G) = 2$ dla ścieżek i cykli parzystych $\chi'(G) = 3$ dla drzew binarnych o $\Delta > 2$ i cykli nieparzystych

Oszacowania dolne

Tw. Zachodzi oszacowanie $\Delta \leq \chi'(G)$

Dowód: Wynika stąd, iż wszystkie krawędzie incydentne z tym samym wierzchołkiem muszą otrzymać parami różne kolory.

Tw. Zachodzi oszacowanie $\lceil m/t \rceil \le \chi'(G)$, gdzie t jest rozmiarem maksymalnego skojarzenia.

Dowód:

- Niech będzie dane pewne pokolorowanie grafu G.
- Zauważmy, że każdy z k kolorów jest przydzielony co najwyżej t krawędziom grafu G.
- Redukujemy graf, usuwając krawędzie o pewnym ustalonym kolorze.
- W każdym takim kroku usuniemy co najwyżej t krawędzi, co oznacza, że musimy wykonać co najmniej $\lceil m/t \rceil$ powyższych kroków, aby zredukować graf do grafu pustego.
- Ilość kroków jest równa ilości kolorów, co kończy dowód.

Oszacowania górne

Tw. $\chi'(G) \leq \max\{\Delta, \lfloor \deg(u) + \deg(v) + \deg(w)/2 \rfloor\}$, gdzie maksimum jest obliczane względem wszystkich dróg elementarnych długości 2.

Tw (Shannon, 1949). $\chi'(G) \leq 3\Delta/2$

Tw (**Vizing, 1964**). $\chi'(G) \leq \Delta + \mu$, $gdzie \mu$ jest maksymalnym zwielokrotnieniem krawędzi w grafie, tzn. μ jest największą liczbą k taką, że występuje para wierzchołków połączonych k krawędziami.

Uwaga

- Dla dużych wartości parametru μ i specyficznych grafów (np. dwuwierzchołkowych), oszacowanie Vizing'a jest słabsze od oszacowania Ore'go.
- Dla $\mu = 1$ oszacowanie Vizing'a jest bardzo dokładne jako, że $\chi'(G) \ge \Delta$.

Tw. Vizinga

Wniosek Dla grafów prostych G zachodzi $\Delta \leq \chi'(G) \leq \Delta + 1$.

Uwaga

- Grafy, dla których $\chi'(G) = \Delta$ nazywamy grafami *klasy* 1. Przykłady to grafy dwudzielne, pełne o parzystej liczbie wierzchołków, planarne o $\Delta \geq 8$, nieparzystego rzędu z gwiazdą spinającą.
- Grafy *klasy* 2, to takie, dla których $\chi'(G) = \Delta + 1$. Przykładami są nieparzyste cykle, pełne nieparzystego rzędu, regularne nieparzystego rzędu.

Uwaga Grafów klasy 1 jest znacznie więcej. Np. spośród 112 grafów rzędu 6, tylko 3 są klasy 2.

Algorytm NC

Algorytm w każdym kroku wybiera dowolną krawędź i przydziela jej najniższy kolor, spośród kolorów, które nie zostały użyte do pokolorowania krawędzi sąsiednich.

Własności:

- Złożoność algorytmu to $O(m\Delta)$
- Najmniejszym dość trudnym grafem jest ścieżka P_5
- Najmniejszy trudny graf nie istnieje
- Algorytm jest 2-przybliżony, tzn. $NC(G) < 2\chi'(G)$. Uzasadnienie: Jeśli algorytm NC koloruje pewną krawędź $e = \{u, v\}$, to w najgorszym przypadku są $\deg(u) + \deg(v) - 2$ zabronione kolory dla e. Oznacza to, że kolor przydzielony e jest nie większy niż $\deg(u) + \deg(v) - 1$. Stad: $NC(G) \le \max\{ \deg(u) + \deg(u) - 1 : \{u, v\} \in E(G) \}$

Stad:
$$NC(G) \le \max\{ \deg(u) + \deg(u) - 1 : \{u, v\} \in E(G) \}$$

 $\le 2 \Delta - 1 < 2 \Delta \le 2\chi'(G).$

Algorytm NTL

Def. Kolor *brakujący dla wierzchołka* v grafu G to kolor, który nie został przydzielony żadnej krawędzi incydentnej do v. M(v) oznacza zbiór wszystkich kolorów brakujących dla v.

Def. Dla każdego wierzchołka v ustalamy pewien jego kolor brakujący m(v). $Wachlarzem\ F$ przy wierzchołku v rozpoczynającym się krawędzią $\{v,w_0\}$ nazywamy taki ciąg krawędzi $\{v,w_0\}$, $\{v,w_1\}$,..., $\{v,w_s\}$, że $\{v,w_i\}$ ma przydzielony kolor $m(w_{i-1})$, i>0. Liczba s to rozpiętość wachlarza.

Uwaga Jeśli wybrana krawędź $\{u,v\}$ nie jest pokolorowana, to każdy z wierzchołków u,v ma przynajmniej dwa kolory brakujące.

Algorytm NTL

Nazwa metody pochodzi od pierwszych liter nazwisk jej twórców (Nishizeki, Terada, Leven)

```
Procedure AlgorytmNTL( G )
begin
  if \Delta(G) \leq 2 then koloruj optymalnie trawersując ścieżki i cykle;
  else begin
     q := \Delta(G) + 1; G' := (V(G), \emptyset);
     for każda e \in E(G) do begin
        G' := G' + e;
        if e = \{u, v\} nie może otrzymać wspólnego koloru brakującego
           w u i v then
           Recolor(u, v);
        koloruj e;
     end
  end
end
```

Procedura Recolor

- zamierzamy pokolorować krawędź {u,v};
- wyznaczamy maksymalny wachlarz F (t.ż. w_0 =u) przy wierzchołku v
- przypadek 1: $m(w_s) \in M(v)$, gdzie s to rozpiętość wachlarza
 - wówczas kolorujemy krawędź $\{v, w_i\}$ barwą $m(w_i)$ dla każdego i=1,...,s.
- przypadek 2: $m(w_i) \notin M(v)$
 - niech P będzie ścieżką w grafie G zaczynającą się w w_s złożoną z krawędzi pokolorowanych barwami m(v) i $m(w_s)$
 - przypadek 2a: P nie osiąga wierzchołka v: wówczas zamieniamy kolory znajdujące się na ścieżce, $\{v, w_s\}$ otrzymuje kolor m(v) i pozostałe krawędzie $\{v, w_i\}$ otrzymują kolory $m(w_i)$;
 - przypadek 2b: P osiąga v: niech w_j , gdzie $j \in \{0,...,s-2\}$ będzie wierzchołkiem takim, że $m(w_{j-1})=m(w_s)$. Ścieżka P kończy się w wierzchołku w_j . Zmieniamy kolory wachlarza tak, że krawędź $\{v,w_i\}$ otrzymuje kolor $m(w_i)$ dla i< j-1. Zamieniamy kolory na ścieżce P i ostatecznie malujemy $\{v,w_{j-1}\}$ kolorem m(v).