1 Беззнаковые целые числа

Чтобы найти 6-разрядную двоичную форму целого числа без знака N (где 0 <= N < 64), мы многократно проверяем, соответствуют ли степени двойки (от 2^5 до 2^0) числу N, вычитая, когда они совпадают, и ставя "1", или ставя "0", если совпадают нет.

1.1 Примеры

• $N = 0_{10}$

$$0 \div 2^5 (= 32) = 0 \Rightarrow 0_{10} = 000000_2$$

• $N = 13_{10}$

$$13 \div 2^{5} (= 32) = 0 \quad (0 \cdot 2^{5} = 0)$$

$$13 \div 2^{4} (= 16) = 0 \quad (0 \cdot 2^{4} = 0)$$

$$13 \div 2^{3} (= 8) = 1 \quad (1 \cdot 2^{3} = 8)$$

$$5 \div 2^{2} (= 4) = 1 \quad (1 \cdot 2^{2} = 4)$$

$$1 \div 2^{1} (= 2) = 0 \quad (0 \cdot 2^{1} = 0)$$

$$1 \div 2^{0} (= 1) = 1 \quad (1 \cdot 2^{0} = 1)$$

$$13_{10} = 001101_{2}$$

• $N = 24_{10}$

$$24 \div 2^{5} (= 32) = 0 \quad (0 \cdot 2^{5} = 0)$$

$$24 \div 2^{4} (= 16) = 1 \quad (1 \cdot 2^{4} = 16)$$

$$8 \div 2^{3} (= 8) = 1 \quad (1 \cdot 2^{3} = 8)$$

$$0 \div 2^{2} (= 4) = 0 \quad (0 \cdot 2^{2} = 0)$$

$$0 \div 2^{1} (= 2) = 0 \quad (0 \cdot 2^{1} = 0)$$

$$0 \div 2^{0} (= 1) = 0 \quad (0 \cdot 2^{0} = 0)$$

$$24_{10} = 011000_{2}$$

• $N = 63_{10}$ Поскольку $63_{10} = 2^6 - 1$, все биты равны 1:

$$63_{10} = 111111_2$$

1.2 Примеры

В 6-битном представлении с дополнительным знаком:

• Неотрицательные числа преобразуются так же, как и в случае с беззнаковыми числами (просто нужно убедиться, что они помещаются в 6 бит).

- Отрицательные числа требуют:
 - (1) записи двоичной формы модуля числа,
 - (2) инверсии всех битов (дополнение до единицы), затем
 - (3) прибавления 1.

 16_{10}

$$16_{10} \div 2^5 (=32) = 0$$
, $16 \div 2^4 (=16) = 1$, $\dots \Rightarrow 16_{10} = 010000_2$

 -2_{10}

$$d2_{10} = 000010_2$$
 Инвертируем биты $\Rightarrow 111101_2$ Прибавляем $1 \Rightarrow 111110_2$

 -31_{10}

$$31 = 00011111_2$$
 (но используем только 6 бит) $\Rightarrow 011111_2$

 -32_{10}

32 не помещается в 5 бит, но в 6 битах это 100000_2 .

2 Преобразование 6-битных двоичных чисел в десятичные

Рассматриваются как беззнаковое (unsigned), так и dononhumeльные (two's complement) представления.

Беззнаковая формула: Value =
$$\sum_{i=0}^{5} b_i \cdot 2^i$$

Формула дополнительного кода: Value =
$$-b_5 \cdot 2^5 + \sum_{i=0}^4 b_i \cdot 2^i$$

Для каждого 6-битного числа:

• 000101:

Беззнаковое
$$= 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 = 1 + 4 = 5$$

Знаковое (старший бит $= 0$) $= 5$

• 101011:

Беззнаковое =
$$1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 32 + 8 + 2 + 1 = 43$$

Знаковое =
$$-1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = -32 + 11 = -21$$

• 111111:

Знаковое =
$$-32 + 31 = -1$$

• 100000:

Беззнаковое =
$$1 \cdot 32 + 0 = 32$$

Знаковое =
$$-32 + 0 = -32$$

3 Преобразование десятичных в 8-битные шестнадцатиричные

Чтобы получить 8-разрядную шестнадцатеричную форму, надо преобразовать десятичную систему счисления в двоичную (до 8 разрядов), затем сгруппировать каждый элемент (4 бита) и преобразуйте каждый элемент в отдельную шестнадцатеричную цифру.

• 7_{10} :

$$7_{10} = 00000111_2 \Rightarrow 0x07$$

• 240₁₀:

$$240_{10} = 11110000_2 \Rightarrow 0xF0$$

• 171₁0:

$$171_{10} = 10101011_2 \Rightarrow 0xAB$$

• 126₁₀

$$126_{10} = 011111110_2 \Rightarrow 0x7E$$

4 Преобразование из шестнадцатиричной в 8битную двоичную

Каждая шестнадцатеричная цифра преобразуется в 4-разрядный двоичный код. Например, $3=0011,\, C=1100$ и т.д.

• 0x3C:

$$3_{16} = 0011_2, C_{16} = 1100_2 \Rightarrow 00111100_2$$

• 0x7E:

$$7_{16} = 0111_2, E_{16} = 1110_2 \Rightarrow 011111110_2$$

• 0*xFF*:

$$F_{16} = 1111_2 \Rightarrow 111111111_2$$

• 0xA5:

$$A_{16} = 1010_2, \, 5_{16} = 0101_2 \Rightarrow 101001101_2$$

5 Negate двоичных чисел

Чтобы negate 8-битное двоичное значение b, мы переворачиваем все биты и добавляем 1.

 \bullet 0x3C:

$$3C_{16} = 00111100_2 \Rightarrow = 11000011_2, +1 = 11000100_2$$

 \bullet 0x7E:

$$7E_{16} = 011111110_2 \Rightarrow = 10000001_2, +1 = 10000010_2$$

• 0xFF:

$$FF_{16} = 111111111_2 \Rightarrow = 00000000_2, +1 = 00000001_2$$

• 0*xA*5:

$$A5_{16} = 101001101_2 \Rightarrow = 010110010_2, +1 = 010110011_2$$

6 $Big-Endian\ vs.\ Little-Endian(0xDEADBEEF)$

Конвертация Endian'a описывает, как многобайтовые данные хранятся в памяти:

• Big - Endian:

The most significant byte (MSB) is stored at the lowest memory address.

Byte order:
$$\underbrace{DE}_{MSB}$$
 | AD | BE | \underbrace{EF}_{LSB}

• Little - Endian:

The least significant byte is stored at the lowest memory address.

Byte order:
$$\underbrace{DE}_{LSB}$$
 | AD | BE | \underbrace{EF}_{MSB}

7 Преобразование десятичных значений в 5битные двоичные значения и дополнение их знаковыми и нулевыми битами до 8-битных двоичных значений.

Convert the given decimal numbers to 5-bit two's complement (if negative) or pure binary (if positive). Then:

• Sign Extention:

For negative values, fill the higher bits with 1.

• Zero Extention:

For non-negative values, fill the higher bits with 0.

- 7_{10} : $7 = 00111_2(5 - bit)$. $Sign - extend \Rightarrow 00000111_2(8 - bit)$
- 15_{10} : $15 = 01111_2(5 - bit) \Rightarrow Extended = 00001111_2$
- -16_{10} : $16_{10} = 10000_2(5 bits)$. $Flip = 01111_2$, $+1 \Rightarrow 10000$. $Extend(negative) = 11110000_2$
- -5_{10} : $5_{10} = 00101_2(5 - bit)$. $Flip = 11010_2$, $+1 \Rightarrow 11011$. $Extend(negative) = 11111011_2$

8 Преобразование пар десятичных чисел в 4битные двоичные и их сложение

We convert each decimal to 4-bit representation, then add.

• Unsigned: 7 + 9:

$$7_{10} = 0111_2$$
 $9_{10} = 1001_2$

$$0111_2 + 1001_2 = 10000_2$$

5 bits if there is no any space

• **Signed:** 4 + (-5):

$$4_{10} = 0100_2 \quad -9_{10} = 1011_2$$

$$0100_2 + 1011_2 = 1111_2$$

In 4-bit two's complement, 1111_2 represents 1, which is the correct result for 4 + (-5) = -1.