

Kavi Chikkappa, Harutyun Hakobyan, Hemant Sathian, Alexander G. Sonyey

INTRODUCTION

- Diabetes affects over 450 million people
- One in two people with diabetes don't know they have diabetes
- Many serious health complications
- We chose to predict possibility of having diabetes

DATASET USED

- Dataset obtained from the cloud-based repository, Mendeley Data.
- Dataset consists of the medical information of 1,000 Iraqi patients from two Iraqi hospitals.
- Attributes in the dataset pertain to the tendency of diabetes in a patient such as:
 - Age
 - Gender
 - Creatinine Ratio
 - HBA1C (Hemoglobin A1C)

PROCEDURE

01DATA PROCESSING

- Cleaning Data
- Checking Residuals
- Finding Correlations

02 DATA SHUFFLING

 Randomly choosing testing and training dataset

03 TRAINING

 Train a chosen model on training dataset

Test trained model testing dataset

05

EVALUATION

- Check for overfitting
- Discuss findings and accuracy of results

- CORRELATION TEST
- LOGISTIC REGRESSION
- RESIDUAL ANALYSIS
- K-NEAREST NEIGHBOR
- CLASSIFICATION TREE/RANDOM FOREST

KEY ISSUES:

- 3 default outcomes, need to be reduced to 2
 - Y (has diabetes)
 - N (does not have diabetes)
 - P (predicted to have diabetes)
- Predicted patients were labelled as not having diabetes
- Mislabelled Data
- Skewed Response

MISLABELLED AND IMBALANCED DATA

MISLABELLED AND IMBALANCED DATA

EXCLUDING DATA POINTS

- We removed all patients aged 55 and above for random forest
- Too frequent diabetes in this age group so it hurt our prediction capabilities
- Leaving them out let us predict more accurately for the random forest

PAIRS SCATTER PLOT

UNUSUAL DATA

 60 people in the sample had an unusual relationship between the presence of VLDL and TG

CORRELATION MATRIX

CORRELATION VLDL > 5

Urea

LOGISTIC REGRESSION

- Prediction of a binomial discrete outcome (in this case, having diabetes or not having diabetes)
- Uses a transformation of the least squares linear regression formula to obtain predictions

MODEL BUILDING

Who should be included in model building?

- Old people and young people or just young people?
 - Usage of Stratified Sampling followed by Best Subsets Regression
 - Build these models first with old and young people (not of age 55), and then just young people
- 40/60 training-test split, stratified based on age

```
stratified_sample <- diabetes_without55 %>%
   group_by(CLASS) %>%
   mutate(num_rows=n()) %>%
   sample_frac(0.4, weight=num_rows)
test <- anti_join(diabetes_without55, stratified_sample, by = 'row_num')
```



```
coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -51.13099
                        16.37375
              0.03523
                         0.02176
                                           0.10541
HbA1c
              1.53075
                         0.46641
                                   3.282
cho1
              0.88844
                         0.36198
TG
              1.32823
                         0.52473
              1.45540
                         0.52569
                                   2.769
                                           0.00563 **
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Confusion Matrix (testing split)

Confusion Matrix and Statistics Reference Prediction 51 11 1 11 387 Accuracy: 0.9522

Confusion Matrix (all data)

Area under the curve: 0.9878


```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -31.5142
                        9.3015 -3.388 0.000704 ***
            -0.1999
                        0.1613 -1.239 0.215292
Urea
HbA1c
             1.9606
                        0.5629
                                3.483 0.000495 ***
             0.5958
                        0.3877 1.537 0.124354
             0.9072
                        0.3229
                                2.809 0.004963 **
BMI
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Confusion Matrix (testing split)

Confusion Matrix and Statistics Reference Prediction 0 1 0 48 7 1 14 44 Accuracy: 0.8142

Confusion Matrix (all data)

Area under the curve: 0.8734

MODEL BUILDING

Set with older and younger people had better predictive capabilities on its test sample and it was a better choice. Both models return relatively low misclassification rates on the entire dataset.

- Best model returned after looping the best subset method 50 times resulted in a misclassification rate of 0.0201 on the test dataset:
 - Class ~ HbA1c* + Chol*+ TG + LDL +GenderM + BMI* *=p value less than 0.05

Older + Younger Sample:

- Average AUC of 0.987 on test sample
- Average Misc. Rate of 0.040 on test sample
- Average Misc. Rate of 0.029 on full dataset

Younger Sample:

- Average AUC of 0.913 on test sample
- Average Misc. Rate of 0.162 on test sample
- Average Misc. Rate of 0.034 on full dataset

VALIDATION ON MODEL

Model Chosen: HbA1c + Chol + BMI

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -30.6343    7.4827   -4.094    4.24e-05    ***

HbA1c    1.3372    0.3420    3.910    9.22e-05    ***

Chol    0.5510    0.2669    2.065    0.03896    *

BMI    0.8840    0.2696    3.280    0.00104    **

---
```


	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	57	17
Predicted Diabetic	5	381

AUC

Entire Dataset aside from Pre-Predicted Individuals

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	93	23
Predicted Diabetic	10	821

Young Individuals (<51)

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	81	23
Predicted Diabetic	10	73

Older Individuals (≥51)

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	12	0
Predicted Diabetic	0	748

Pre-Predicted Individuals

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	0	13
Predicted Diabetic	0	40

GRAPH

K FOLDS CROSS VALIDATION

Process:

- Generate 5 best models using best subsets and full dataset (without predicted)
- Split dataset into 10 folds, evaluate all models on each fold
- Return model with lowest cross-validation errors

```
best.logmodel <-
  qlmulti(CLASS ~ AGE + Urea + Cr + HbA1c + Chol + TG + HDL + LDL + Gender + BMI, data = diabetes_edit,
          level = 1.
                                  # No interaction considered
          method = "h",
                                  # Exhaustive approach
          crit = "aic",
                                  # AIC as criteria
                               # Keep 5 best models
          confsetsize = 5,
          plotty = F, report = F, # No plot or interim reports
          fitfunction = "glm",
                                  # alm function
         family = binomial)
                                  # binomial family for logistic regression
print(best.logmodel@formulas[1]) #model 1
print(best.logmodel@formulas[2]) #model 2
print(best.logmodel@formulas[3]) #model 3
print(best.logmodel@formulas[4]) #model 4
print(best.logmodel@formulas[5]) #model 5
```


5 BEST MODELS AND ERRORS

5 Best Models:

- Diabetes ~ HbA1c + Chol + TG + Gender + BMI
- Diabetes ~ HbA1c + Chol + TG + BMI
- Diabetes ~ HbA1c + Chol + TG + HDL + Gender + BMI
- Diabetes ~ HbA1c + Chol + TG + LDL + Gender + BMI
- Diabetes ~ Age + HbA1c + Chol + TG + LDL + Gender + BMI

Respective Results:

• **Model 1**: 0.1412 **Model 2**: 0.1372 **Model 3**: 0.1433

• **Model 4:** 0.1421 **Model 5**: 0.1437

MODEL 2

Diabetes ~ HbA1c + Chol + TG + BMI

```
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -34.7587
                      4.8510
                              -7.165 7.76e-13 ***
HbA1c
            1.4322
                      0.2321
                               6.170 6.85e-10
cho1
         0.9399 0.2205 4.263 2.01e-05
            0.8982 0.1501 5.984 2.18e-09
BMI
            0.9177
                       0.2763
                               3.322 0.000894 ***
TG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```


AUC

Area under the curve: 0.9945

Entire Dataset aside from Pre-Predicted Individuals

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	92	13
Predicted Diabetic	11	831

Younger Individuals (<51)

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	81	13
Predicted Diabetic	10	83

Older Individuals (≥51)

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	11	0
Predicted Diabetic	1	748

Pre-Predicted Individuals

	Actually Not Diabetic	Actually Diabetic
Predicted Not Diabetic	0	13
Predicted Diabetic	0	40

GRAPH

K-NEAREST NEIGHBOR PLOT

K-NEAREST NEIGHBOR PLOT

```
##Generate a random number that is 90% of the total number of rows in dataset.
ran <- sample(1:nrow(Age.55.above), 0.9 * nrow(Age.55.above))
##the normalization function is created
nor < -function(x) \{ (x -min(x))/(max(x)-min(x)) \}
##Run nomalization on first 4 coulumns of dataset because they are the predictors
iris norm \leftarrow as.data.frame(lapply(Age.55.above[,-c(1,2,3,14)], nor))
##extract training set
iris train <- iris norm[ran,]</pre>
##extract testing set
iris test <- iris norm[-ran,]</pre>
##extract 5th column of train dataset because it will be used as 'cl' argument in knn function.
iris target category <- Age.55.above[ran,14]</pre>
##extract 5th column if test dataset to measure the accuracy
iris test category <- Age.55.above[-ran,14]</pre>
##load the package class
library(class)
##run knn function
pr <- knn(iris train,iris test,cl=iris target category,k=3)</pre>
##create confusion matrix
tab <- table(pr,iris test category)</pre>
##this function divides the correct predictions by total number of predictions that tell us how accurate teh mode
l is.
accuracy <- function(x){sum(diag(x)/(sum(rowSums(x)))) * 100}
accuracy(tab)
```


CLASSIFICATION TREE

RANDOM FOREST

RANDOM TREE

- We found 2 models within the scatter plot
- Determined that VLDL > 5 has a high correlation with multiple predictors
- Logistic Regression was affected heavily by the imbalance of the data but for predictive purposes was still extremely effective
- K-nearest neighbor was used to predict but didn't do a good job as expected
- Random forest was used which gave us a good error rate
- We can predict diabetes status with 0.022% error rate

CITATIONS

- Center for Disease Control and Prevention. (2021, December 16). What is diabetes?
 Retrieved May 9, 2022, from https://www.cdc.gov/diabetes/basics/diabetes.html
- Mayo Clinic Staff. (2021, January 20). Type 2 diabetes. Retrieved May 9, 2022, from https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/symptoms-causes/syc-20351193
- Rashid, Ahlam (2020), "Diabetes Dataset", Mendeley Data, V1, doi: 10.17632/wj9rwkp9c2.1
- Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., . . . Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. doi:10.1016/j.diabres.2019.107843
- Sharma, A. (2020, May 12). Decision Tree vs. Random Forest which algorithm should you use? Retrieved May 9, 2022, from https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorith m/

