Obliczenia naukowe Lista 1

Dominik Kaczmarek, nr albumu 261757

24 października 2022

Spis treści

1		ooznanie arytmetyki
		Opis problemu
	1.3	Wyniki
	1.4	Wnioski
2		on maszynowy Kahana
		Opis problemu
		Rozwiązanie
		Wyniki i Interpretacja
	2.4	Wnioski
3		nieszczenie liczb zmiennopozycyjnych
		Opis problemu
		Rozwiązanie
		Wyniki i interpretacja
	3.4	Wnioski
4		dwracalność dzielenia
	4.1	Opis problemu
		Rozwiązanie
		Wyniki
	4.4	Wnioski
5	Ilocz	yn skalarny
		Opis problemu
		Rozwiązanie
		Wyniki
	5.4	Wnioski
6		bliżenie funkcji
		Opis problemu
		Rozwiązanie
		Wyniki i Interpretacja
	6.4	Wnioski
7		bliżenie pochodnej
		Opis problemu
		Rozwiązanie
	7.3	Wyniki
	7.4	Wnioski

1 Rozpoznanie arytmetyki

1.1 Opis problemu

Napisanie programu, który przy użyciu iteracji obliczy:

- a) macheps (epsilon maszynowy), czyli najmniejszą liczbę taką, że fl(1.0 + macheps) > 1.0
- b) eta (liczba maszynowa), czyli najmniejszą liczbę taką, że fl(eta) > 0.0
- c) MAX, czyli największą liczbę dla danej precyzji

dla wszystkich dostępnych typów zmiennopozycyjnych **Float16**, **Float32**, **Float64** zgodnych ze standardem IEEE 754. Otrzymane wyniki należy póżniej porównać:

- a) macheps z wartościami zwracanymi przez funkcje **eps**(Float16), **eps**(Float32), **eps**(Float64), oraz z danymi zawartymi w pliku nagłówkowym float.h dowolnej instalacji języka C.
- b) eta z wartościami zwracanymi przez funkcje: $\mathbf{nextfloat}(Float16(0.0))$, $\mathbf{nextfloat}(Float32(0.0))$, $\mathbf{nextfloat}(Float64(0.0))$, oraz z MIN_{sub}
- c) MAX z wartościami zwracanymi przez funkcje: $\mathbf{floatmax}(Float16)$, $\mathbf{floatmax}(Float32)$, $\mathbf{floatmax}(Float64)$, oraz z danymi zawartymi w pliku nagłówkowym $\mathbf{float.h}$ dowolnej instalacji języka C lub z danymi z wykładu.

1.2 Rozwiązanie

W każdym algorytmie zaczynamy od przypisaniu zmiennej x wartości 1.0 (Float16(1), Float32(1), Float64(1)). Następnie w pętli wykonujemy na zmiennej x następujące operacje:

- a) macheps dzielimy x/2 dopóki spełniony jest warunek 1+x/2>1.0. Po wyjściu z pętli x=macheps.
- b) eta dzielimy x/2 dopóki x/2 > 0.0. Po wyjściu z pętli x = eta.
- c) MAX mnożymy $2 \cdot x$ dopóki $2 \cdot x < \infty$. Po wyjściu z pętli wiemy że $2 \cdot x = \infty$, ale wciąż $x \neq MAX$. Tworzymy nową zmienną pomocniczą y = x. Teraz dzielimy y/2 i pod x przypisujemy x = x + y dopóki $x < \infty$. Dopiero po zakończeniu tej pętli otzrymamy x = MAX.

Programy wyznaczające szukane wartości znajdują się w pliku z1.jl.

1.3 Wyniki

typ	macheps	eps(typ)	float.h
Float16	0.000977	0.000977	
Float32	$1.1920929 \cdot 10^{-7}$	$1.1920929 \cdot 10^{-7}$	$1.192093 \cdot 10^{-7}$
Float64	$2.220446049250313 \cdot 10^{-16}$	$2.220446049250313 \cdot 10^{-16}$	$2.220446 \cdot 10^{-16}$

Tabela 1: Zestawienie obliczonych macheps z wynikami zwracanymi przez funkcję eps oraz danymi z biblioteki ${\tt float.h}$

typ	eta	nextfloat(typ(0.0))	MIN_{sub}
Float16	$6.0 \cdot 10^{-8}$	$6.0 \cdot 10^{-8}$	_
			$1.4 \cdot 10^{-45}$
Float64	$5.0 \cdot 10^{-324}$	$5.0 \cdot 10^{-324}$	$4.9 \cdot 10^{-324}$

Tabela 2: Zestawienie obliczonego eta z wbudowaną funckją nextfloat(typ(0.0)) oraz wartościami MIN_{sub} (podane na wykładzie).

typ	MAX	floatmax(typ)	float.h
Float16	$6.55 \cdot 10^4$	$6.55 \cdot 10^4$	
Float32	$3.4028235 \cdot 10^{38}$	$3.4028235 \cdot 10^{38}$	$3.402823 \cdot 10^{38}$
Float64	$1.7976931348623157 \cdot 10^{308}$	$1.7976931348623157 \cdot 10^{308}$	$1.797693 \cdot 10^{308}$

Tabela 3: Zestawienie obliczonego MAX z wynikami zwracanymi przez funkcję floatmax(typ) oraz danymi z biblioteki float.h.

typ	floatmin(typ)	MIN_{nor}
	$1.1754944 \cdot 10^{-38}$	$1.2 \cdot 10^{-38}$
Float64	$2.2250738585072014 \cdot 10^{-308}$	$2.2 \cdot 10^{-308}$

Tabela 4: Zestawienie obliczonego MAX z wynikami zwracanymi przez funkcję floatmax(typ) oraz danymi z biblioteki float.h.

1.4 Wnioski

- Wyniki otrzymane z iteracyjnych algorytmów pokrywają się z wartościami zwracanymi przez funkcje wbudowane w język Julia.
- Komputer nie jest w stanie przedstawić wszytskich liczb rzeczywistymi
- Im większa odległość od zera maszynowego tym mniej liczb znajduje się między pobliski liczbami całkowitymi
- \bullet Porównując etaz MIN_{sub} widzimy, że zgadza się tylko rząd wielkości
- floatmin(typ) zwraca najmniejszą bezwzględną liczbę dla zadanego typu
- \bullet Porównując floatmin(typ) z MIN_{nor} widzimy, że zgadza się tylko rząd wielkość
- \bullet etai nextfloat(typ(0.0))mają postać zdenormalizowaną, natomiast floatmin(typ)zwraca wartość znormalizowaną
- $macheps = 2 \cdot \epsilon$

2 Epsilon maszynowy Kahana

2.1 Opis problemu

Obliczenie wyrażenia $3 \cdot (4/3 - 1) - 1$ dla wszystkich dostępnych typów zmiennopozycyjnych **Float16**, **Float32**, **Float64** i sprawdzenie czy pokrywa się z epsilonem maszynowym odpowiednich arytmetyk.

2.2 Rozwiazanie

Używamy funkcji one(typ) do uzykania liczby 1 każdego z zadanych typów zmiennopozycyjnych. Następnie obliczamy wyrażenie $3 \cdot (4/3 - 1) - 1$ dla każdego typu.

Programy wyznaczające szukane wartości znajdują się w pliku z2.jl.

2.3 Wyniki i Interpretacja

typ	macheps Kahana	eps(typ)
Float16	-0.0009765625	0.0009765625
Float32	$1.1920929 \cdot 10^{-7}$	$1.1920929 \cdot 10^{-7}$
Float64	$-2.220446049250313 \cdot 10^{-16}$	$2.220446049250313 \cdot 10^{-16}$

Tabela 5: Zestawienie obliczonego macheps Kahana dla różnych typów wraz z poprawnymi wartościami.

Wartości bezwzględne wyników uzyskanych za pomocą obliczeń zgadzają się z poprawnymi epsilonami maszynowymi. Ujemne wyniki spowodowane są parzystością mantysy typów i faktem, że w tym wypadku w rozwinięciu dwójkowym liczby 4/3 na ostatniej pozycji mantysy znajduje się 0, a więc zgodnie z zasadą "round to even" liczba zaokrąglana jest z niedomiarem, co przy dalszych obliczeniach daje wynik ujemny.

2.4 Wnioski

Przez skończoną dokładność reprezentacji, niektóre równania dające w normalnej arytmetyce 0, w naszym przypadku zwracają wyniki różne od 0.

3 Rozmieszczenie liczb zmiennopozycyjnych

3.1 Opis problemu

Sprawdzić eksperymentalnie w języku Julia, że w arytmetyce Float64 (arytmetyce double w standarcie IEEE 754) liczby zmiennopozycyjne są równomiernie rozmieszczone w [1,2) z krokiem $\delta=2^{-52}$. Sprawdzić jak rozmieszczone są liczby zmiennopozycyjne w przedziale $[\frac{1}{2},1)$, jak w przedziale [2,4) i jak mogą być przedstawione dla rozpatrywanego przedziału.

3.2 Rozwiązanie

- a) Przedział [1,2) Mając $\delta = 2^{-52}$ dla każdego $k = 1, 2, ..., 2^{52} 1$ liczymy wartość $x = 1 + k\delta$ i przedstawiamy x w postaci bitowej używając funkcji bitstring(x).
- b) Przedział [2,4) Korzystjąc z intuicji powiększamy deltę dwukrotnie (bo przedział [2,4) znajduje się dalej od zera niż [1,2)), czyli $\delta=2^{-51}$. Robimy to samo co w punkcie a) tylko dla $\delta=2^{-51}$.
- c) Przedział $[\frac{1}{2},1)$ Analogicznie, korzystjąc z intuicji tym razem pomniejszamy deltę dwukrotnie (bo przedział $[\frac{1}{2},1)$ znajduje się bliżej zera niż [1,2)), czyli $\delta=2^{-53}$. Robimy to samo co w punkcie a) tylko dla $\delta=2^{-53}$.

3.3 Wyniki i interpretacja

$\left[\frac{1}{2},1\right] \qquad \qquad \delta = 2^{-53}$
001111111111000000000000000000000000000
001111111111000000000000000000000000000
001111111111000000000000000000000000000
001111111111000000000000000000000000000
:
001111111110111111111111111111111111111
001111111111111111111111111111111111111
001111111110111111111111111111111111111
001111111110111111111111111111111111111
[-,-]
001111111111100000000000000000000000000
001111111111100000000000000000000000000
001111111111100000000000000000000000000
001111111111100000000000000000000000000
:
 001111111111111111111111111111111111
001111111111111111111111111111111111111
001111111111111111111111111111111111111
001111111111111111111111111111111111111
$[2,4] \qquad \delta = 2^{-51}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
010000000000000000000000000000000000000
010000000000000000000000000000000000000
010000000000000000000000000000000000000

010000000001111111111111111111111111111
010000000001111111111111111111111111111
010000000001111111111111111111111111111
010000000001111111111111111111111111111

Tabela 6: Prezentacja bitowa wybranych liczb w danych przedziałach.

Dzięki funkcji bitstring(x) możemy zauważyć, że przy inkrementacji zmiennej k w każdej z rubryk inkrementuje się wartość mantysy. Fakt, że sąsaidujące wiersze różnią się dokładnie o 1 mówi nam, że intuicja z mnożeniem lub dzieleniem bazowej $\delta = 2^{-52}$ (machepsu) była poprawna.

3.4 Wnioski

W arytmetyce **Float64** w każdym z przedziałów postaci $[2^k, 2^{k+1})$ dla $k \in \mathbb{C}$, znajduje się dokładnie 2^{52} liczb. Im większa odległość od zera maszynowego tym mniej liczb znajduje się w przedziałach postaci [k, k+1)

4 Nieodwracalność dzielenia

4.1 Opis problemu

Znaleźć eksperymentalnie w arytmetyce Float64 dwie liczby:

- a) x takiego, że $x \in (1,2) \land x \cdot (1/x) \neq 1$
- b) x takiego, że $x > 0 \land x \cdot (1/x) \neq 1$

4.2 Rozwiązanie

- a) Zaczynając od x = Float64(1) zwiększamy x korzystjąc z funkcji nextfloat(x) do momentu kiedy $x \cdot (1/x) \neq 1$
- b) Zaczynając od x = Float64(0) zwiększamy x korzystjąc z funkcji nextfloat(x) do momentu kiedy $x \cdot (1/x) \neq 1$

4.3 Wyniki

- b) Najmniejsza znaleziona liczba to x = $5.0 \cdot 10^{-324}$ $x \cdot \frac{1}{x} = \infty$

4.4 Wnioski

Zadanie pokazuje, że działania arytmetyczne na liczbach zmiennopozycyjnych mogą generować błędy związane z zaokrąglaniem wyliczonych wartości. Nawet z pozoru proste rachunki mogą dać nieprawidłowe wyniki. Użytkownik powinien maksymalnie upraszczać swoje algorytmy w celu zminimalizowania szansy wystąpienia błędu.

5 Iloczyn skalarny

5.1 Opis problemu

Obliczenie iloczynu skalarnego danych wektorów x i y z wykorzystaniem czterech różnych algorytmów sumowania dla typów Float32 i Float64.

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

Algorytmy do sprawdzenia:

- a) "w przód": $\sum_{i=1}^{n} x_i y_i$
- b) "w tył": $\sum_{i=n}^{1} x_i y_i$
- c) dodanie dodatnich liczb w porządku od największej do najmniejszej oraz ujemnych w porządku od najmniejszej do największej, a następnie dodanie do siebie obliczonych sum częściowych
- d) metoda przeciwna do sposobu $\boldsymbol{\mathcal{I}}$

5.2 Rozwiązanie

Programy zawierające powyższe algorytmy znajdują się w pliku z5. j1.

5.3 Wyniki

typ	a	b	c	d
Float32	-0.4999443	-0.4543457	-0.5	-0.5
Float64	$1.0251881368296672 \cdot 10^{-10}$	$-1.5643308870494366 \cdot 10^{-10}$	0.0	0.0

Tabela 7: Iloczyn skalarny danych wektorów, wyliczony każdym z podanych algorytmami

Rzeczywisty iloczyn skalarny x i y wynosi $-1.00657107000000 \cdot 10^{-11}$. Żaden z otrzymanych wyników nie pasuje do prawidłowej wartości. Najbliższy do oryginału wynik dało zastosowanie algorytmu a) z arytmetyką Float64.

5.4 Wnioski

Eksperyment pokazał, że kolejność wykonywanych obliczeń drastycznie wpływa na otrzymywany wynik. Przy sumowaniu dwóch liczb z których jedna jest znacząco większa od drugiej, ta większa pochłania mniejszą przez wynik staje się mniej dokładny.

6 Przybliżenie funkcji

6.1 Opis problemu

Obliczenie w arytmetyce Float64 wartości dwóch funkcji

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

dla kolejnych wartości $x = 8^{-1}, 8^{-2}, 8^{-3} \dots$

6.2 Rozwiązanie

Iteracja po kolejnych potęgach ósemki i liczenie wartości f i g dla każdej z nich. Programy znajdują się w pliku ${\tt z6.j1}$.

6.3 Wyniki i Interpretacja

Z analizy matematycznej wiemy, że funkcje f i g są sobie równe i dla $x \in 8^{-1}, 8^{-2}, \dots, 8^{-8}$ ich wartości są rzeczywiście zbliżone. Jednak dla $x < 8^{-8}$ funkcja f zaczęła zwracać wartość 0.0, podczas gdy funkcja g jeszcze dla $x = 8^{-178}$ pokazuje wartość różną od zera $(1.6 \cdot 10^{-322})$. Różnice stanowi fakt, że w funkcji f odejmujemy 1 od pierwiastka $\sqrt{x^2+1}$ przez co f operuje na wartościach bardzo bliskich 0, co z kolei powoduje utratę cyfr znaczących.. Funkcja g nie generuje takiego błędu przez co jest dużo bardziej dokładna niż funkcja f.

x	f(x)	g(x)
8^{-1}	0.0077822185373186414	0.0077822185373187065
8^{-2}	0.00012206286282867573	0.00012206286282875901
8^{-3}	$1.9073468138230965 \cdot 10^{-6}$	$1.907346813826566 \cdot 10^{-6}$
8^{-4}	$2.9802321943606103 \cdot 10^{-8}$	$2.9802321943606116 \cdot 10^{-8}$
:	:	:
8-8	$1.7763568394002505 \cdot 10^{-15}$	$\begin{array}{c} \cdot \\ 1.7763568394002489 \cdot 10^{-15} \end{array}$
8-9	0.0	$2.7755575615628914 \cdot 10^{-17}$
•	:	<u>:</u>
8^{-176}	0.0	$6.4758 \cdot 10^{-319}$
8^{-177}	0.0	$1.012 \cdot 10^{-320}$
8^{-178}	0.0	$1.6 \cdot 10^{-322}$
8^{-179}	0.0	0.0

Tabela 8: Wartości funkcji f i g dla kolejnych argumentów.

6.4 Wnioski

Obliczenia należy wykonywać w ten sposób, aby liczba cyfr znaczących przy kolejnych działaniach różniła się jak najmnniej. Pozwoli to uniknąć szybkiej kumulacji utarty dokładności.

7 Przybliżenie pochodnej

7.1 Opis problemu

Mając funkcję

$$f(x) = \sin x + \cos 3x$$

obliczyć przybliżone wartości pochodnej f w punkcie $x_0 = 1$ ze wzoru

$$\tilde{f}'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$$

przy $h \to 0$ i porównać je wynikami matematycznie wyznaczonej pochodnej

$$f'(x) = \cos(x) - 3 \cdot \sin(3x)$$

Obliczyć błąd $|f'(x_0) - \tilde{f}'(x_0)|$ dla $h = 2^{-n}$ $(n = 0, 1, 2, \dots, 54)$.

7.2 Rozwiązanie

Program znajduje się w pliku z7.jl

7.3 Wyniki

Wyniki obliczeń dla poszczególnych wartości h przedstawiono poniżej (Tabela 9). Początkowo zmniejszanie wartości h przynosi oczekiwane skutki i błędy w liczeniu przybliżonej pochodnej są mniejsze, najdokładniejszy wynik uzyskano dla $h=2^{-28}$. Dalsze zmniejszanie h nie poprawiło jednak dokładności obliczeń, wręcz przeciwnie, błędy zaczęły z powrotem rosnąć.

7.4 Wnioski

Przy prowadzeniu obliczeń należy wystrzegać się liczb bardzo bliskich zeru.

h	$\tilde{f}'(1)$	$ f'(1) - \tilde{f}'(1) $	1+h
2^{0}	2.0179892252685967	1.9010469435800585	2.0
2^{-1}	1.8704413979316472	1.753499116243109	1.5
:	:	:	:
2^{-16}	0.11700383928837255	$\begin{array}{c} \cdot \\ 6.155759983439424 \cdot 10^{-5} \end{array}$	1.0000152587890625
2^{-17}	0.11697306045971345	$3.077877117529937 \cdot 10^{-5}$	1.0000076293945312
:	:	<u>:</u>	:
2^{-27}	0.11694231629371643	$3.460517827846843 \cdot 10^{-8}$	1.0000000074505806
2^{-28}	0.11694228649139404	$4.802855890773117 \cdot 10^{-9}$	1.0000000037252903
2^{-29}	0.11694222688674927	$5.480178888461751 \cdot 10^{-8}$	1.0000000018626451
:	:	<u>:</u>	:
2^{-36}	0.116943359375	$1.0776864618478044 \cdot 10^{-6}$	1.000000000014552
2^{-37}	0.1169281005859375	$1.4181102600652196 \cdot 10^{-5}$	1.000000000007276
:	:	:	:
2^{-52}	-0.5	0.6169422816885382	1.0000000000000000000000000000000000000
2^{-53}	0.0	0.11694228168853815	1.0
2^{-54}	0.0	0.11694228168853815	1.0

Tabela 9: Wartości funkcji f i g dla kolejnych argumentów.