Zadanie 04.1

Mając wartości funkcji $f(x) = lg_2(x + 2)$ w postaci tabeli:

	() () 1
X	$f(x) = lg_2(x+2)$
-1,50	-1.00
-1,00	0.00
0,00	1.00
1,00	1.58
3,00	2.32
6,00	3.00

- a) Napisz program w C++, który wyznaczy w postaci stablicowanej przybliżone wartości wielomianu $W_5(x)$ od $W_6(-1,50)$ do $W_5(6,00)$ z krokiem Δx =0,5 (wykorzystaj interpolację wielomianową Lagrange'a) oraz wartości dokładne uzyskane z wykorzystaniem funkcji bibliotecznej logarytmu naturalnego
- b) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu

Zadanie 04.2

- a) Narysuj schemat blokowy i napisz program w C++ do rozwiązania równania $\sin x \frac{1}{2}x = 0$, którego pierwiastek leży w przedziale $\left[\pi/2, \pi\right]$
- b) Znajdź pierwiastek tego równania za pomocą wybranej metody siecznych dla zadanej dokładności eps=0,001. Warunek końca obliczeń $f(x_n) < eps$
- c) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu, program powinien drukować kolejne przybliżenia pierwiastka równania

Zadanie 04.3

a) Narysuj schemat blokowy i napisz program w C++, który oblicza wartość całki oznaczonej postaci:

$$\int_{0}^{1} \frac{1}{\cos^2 x} dx$$

za pomocą wzoru Simpsona tak, aby błąd był mniejszy niż 10^{-5} i porównywał ją z wartością dokładną wyznaczoną analitycznie

b) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu

Zadanie 04.4

Dana jest funkcja f(x) o stabelaryzowanych wartościach:

i	x_i	f_i
0	-1	-3
1	0	0
2	1	1
3	2	3

- a) Wyznacz współczynniki a i b funkcji aproksymującej (w sensie metody najmniejszych kwadratów) postaci: F(x) = a * x + b
- **b)** Napisz program w C++, który wykona tablicowanie wyznaczonej funkcji F(x) w przedziale wartości x = [-1, 3] z zadanym krokiem $\Delta x = 0.2$
- c) Wykonaj obliczenia i załącz wyniki w postaci zrzutu ekranu
- d) Wykorzystując pakiet Excel sporządź wykres otrzymanej funkcji F(x) oraz nanieś w postaci punktów wartości danych tj. (x_i, f_i)