

Intelligent Systems

Chapter 1: Organisation

Winter Term 2019 / 2020

Prof. Dr.-Ing. habil. Sven Tomforde
Institute of Computer Science / Intelligent Systems group

Before we start...

Language:

Which language?

Curriculum:

- Which semester?
- Which programme (Bachelor / Master)?
- Everybody studying computer science?
- For Masters: Which Bachelor do you hold? From which university?
- Any prior knowledge or experiences in intelligent systems / Organic or Autonomic Computing / machine learning?

About this Chapter

Content

- Motivation
- Intelligent Systems group
- Organisational issues
- Train of thoughts for the lecture
- Further readings

Goals

- Understand the schedule and organisation of the lecture
- Get details on lecturers and contact information
- Know which topics and goals are followed by the lecture

Agenda

- Motivation
- Intelligent Systems group
- Organisational issues
- Train of thoughts for the lecture
- Further readings

Motivation

Christian-Albrechts-Universität zu Kiel

Traffic Control

- Spatially distributed intersections
- Signalisation and coordination

World Wide Web

- Spatially distributed computers/information/services
- Data exchange/access/manipulation

Electric Grid

- Spatially distributed prosumers
 - Stability of the shared network

Distributed systems consisting of various autonomous subsystems are everywhere!

Challenges for Intelligent Systems

Christian-Albrechts-Universität zu Kiel

Examples of application scenarios

Christian-Albrechts-Universität zu Kiel

Traffic control

Internet of things

Energy / smart grid

Surveillance networks

Agenda

- Motivation
- Intelligent Systems group
- Organisational issues
- Train of thoughts for the lecture
- Further readings

Intelligent Systems

"What is an Intelligent System?"

A computer system that:

- achieves a certain performance even ...
 - in time-variant environments
 - in emergent situations
- which is self-adapting and
- improves its own behaviour over time.

Intelligent Systems (2)

What is an "intelligent system"?

- An "intelligent computer system" is able to improve its own performance.
- Alternatively: It is at least able to maintain an acceptable goal achievement if unexpected events or other disturbances and uncertainties occur.
- This typically requires that the system is able to autonomously assess its own performance (utility, goal achievement).
- Basis for such a continuous assessment is an ongoing observation, analysis and evaluation of sensor signals at runtime – especially in terms of state analysis, prediction of behaviour, and detection of anomalies.
 - → Autonomous behaviour based on learning!

Team

Intelligent Systems group

- Prof. Dr.-Ing. Sven Tomforde
- NN (secretary)
- Simon Reichhuber, M.Sc. (research assistant)
- Torge Storm (lab engineer)
- Ghassan Al-Falouji (external PhD student, OTH Regensburg)
- Michael Meyer (external PhD student, Astyx GmbH)
- Martin Goller (external PhD student, freelancer)
- Ferdinand von Tüllenburg (external PhD student, Salzburg Research)

Research

Research statement

- Goal: development and establishment of intelligent systems and their integration into current teaching (lectures, seminars and internships).
- Focus of the research group:
 - Design and implementation of intelligent, distributed systems that can automatically adapt to changing conditions through learning ability and self-organisation.
 - Means: Development and testing of novel methods in the field of autonomous learning, i.e. independent, opportunistic learning at runtime without (or with only minor, highly efficient) user interaction.
 - The conceptual work is complemented by application-oriented projects in order to demonstrate the practicability of the developed methods.

Research (2)

Part 1: Design of intelligent systems

- Architectures of intelligent systems
- Transfer of design decisions to the systems themselves and into the runtime
- Integration of machine learning techniques, security/safety methods, and self-organisation schemes
- Interwoven system structures and self-integration processes of autonomous (sub-)systems

Research (3)

Part 2: Autonomous learning

- Methods for learning at runtime without / with only limited external intervention (of the user)
 - Reinforcement learning (learning from feedback, comparison of observed and expected conditions) based on utility functions
 - Anomaly detection
 - Transfer learning
 - Active learning (actively querying an oracle for knowledge)
 - Collaborative learning

Research (4)

Part 3: Data analysis

- Modelling (representation) and similarity measurement
- Time series segmentation and event detection
- Time series with technical origin (e.g., sensor signals)
- Real-time constraints
- Forecasting, classification, clustering, anomaly detection, ...

Research (5)

Part 4: Trust and security

- Techniques for detecting attacks and assessing conspicuous conditions
- Methods for establishing computational trust among autonomous subsystems
- Trust-based system organisation
- Methods for detecting mutual influences
- Security-oriented communication protocols and self-organisation schemes

Research (6)

Christian-Albrechts-Universität zu Kiel

Part 5: Applications

Traffic control and management

Data communication networks

Smart Grid

Internet of things

Surveillance networks

Intelligent devices

Teaching

Courses of the group in the current term:

- Intelligent Systems (4+2, in English)
- Computational Intelligence (4+2, in German)
- Bachelor Seminar "Self-Organised Systems"
- Master Seminar "Deep Learning" (together with Koch/Nowotka)

Courses planned for the next term:

- Autonomous Learning (2+2+2, in English)
- tba

Thesis

You are invited to apply for a topics for:

- Bachelor thesis
- Master thesis
- Project work
- •

Our concept is:

- Topics are defined in cooperation with students, including their preferences
- Participate in current research projects
- Participate in scientific publication process if wanted

We also have open positions for HiWis – just ask!

Agenda

- Motivation
- Intelligent Systems group
- Organisational issues
- Train of thoughts for the lecture
- Further readings

Course "Intelligent Systems"

- Teaching method:
 - 4 units lecture
 - 2 units excercises
- Persons:
 - Lecturer: Prof. Dr.-Ing. Sven Tomforde st@informatik.uni-kiel.de
 - Exercises: Simon Reichhuber, M.Sc. sir@informatik.uni-kiel.de

Schedule

Appointments:

- Lecture:
 - Wednesdays, 10:15 to 11:45
 - Thursdays, 12:15 to 13:45
- Exercises:
 - Tuesdays, 14:15 to 15:45

Materials

- Slides and work sheets in OpenOlat
- Password is "INS-2019", deadline is October 31st
- Please sign up there (changes in schedule, etc)

Concept of the module

- You will get an overview of many different models and methods of intelligent systems.
- The aim is an introduction with "sufficient" mathematics.
- Focus on linking ideas with formalisation. Means: No continuous, stringent, mathematical notation.
- Course provides tools, methods and best practises for many use cases in further study and practice.
- You will receive the basics and the tools to improve this on your own.
- Course is designed as a lecture with interactive elements (demos, videos, interactions - YOU).

Chapters

Each chapter follows the same structure:

- Goals and contents of the chapter
- Introduction and motivation
- Contents
- Summary
- Further literature and references (literature references for specific elements from the unit)

Chapters (ctd.)

Further information about the chapters:

- Slides that invite interaction are marked with a different background colour.
- Used images are either drawn from e.g. Wikimedia Commons (for licensing reasons) or self-drawn. In the first case, the source is mentioned.
- This is version 1 of the slides; empirical observations suggest that the probability of correctness is ≈1, but < 1. Please report errors by email. A corrected version will then be made available to everyone.
- Some of the slide sets are based on the version by Prof. Sick (Uni Kassel), Prof. Müller-Schloer (Leibniz Uni Hannover), and Dr. Rudolph (Uni Augsburg / AUDI)

Interaction

Interaction slides

- 1.Binary questions:
 - Who grew up in Kiel?
 - Who grew up in maximum distance of ~20 km from Kiel?
 - Who grew up in Schleswig-Holstein?
- 2. Questions with short answers:
 - Where do you come from?
- 3.Interactions in groups / pairs:
 - What did you do in your summer vacation (if you want to tell us)?
- 4. Open plenary discussions
 - Which is the best programming language / IDE? Why?

Whenever you see the orange boxes, you're asked to become active!

Exercises

Exercises

- Goal:
 - Repeat and intensify content of the lecture
 - Also used for exam preparation
- Follows the lecture
- Check schedule, we may switch / adapt to conditions
- Content:
 - Worksheets
 - Programming tasks
 - Comparison of concepts based on reading articles

Lecture

Depending on the particular topic, suitable open source or freely available software tools are used to provide support. Examples include:

- Wolfram Alpha (http://www.wolframalpha.com)
- Jupyter-Notebooks with iPyhton (http://jupyter.org/)
- Netlogo (https://ccl.northwestern.edu/netlogo/)

A reference to the corresponding tools or the corresponding URL can be found in the slides / task sheets.

Exam

Requirements for participation

- None
- Besides an inherent motivation to work on intelligent systems and machine learning!

Contents

All topics discussed in lecture and corresponding exercises / lab

Type

- Either oral exam (duration: 25 minutes) or written exam (duration: 90 minutes)
- Date will be announced as soon as possible

Agenda

- Motivation
- Intelligent Systems group
- Organisational issues
- Train of thoughts for the lecture
- Further readings

Train of thoughts

The "storyline" of the lecture

- Motivation
 - Complexity in technical systems
 - Current trends and problems
- General idea of intelligent systems
 - Learning from nature
 - Mastering complexity by means of self-organised order
- How to design intelligent systems?
 - Architectural concept of an individual system
 - Organisation of several autonomous subsystems
- Gathering data
 - Sensor-based systems

Train of thoughts (2)

Christian-Albrechts-Universität zu Kiel

The "storyline" of the lecture (ctd.)

- Data "handling"
 - Pre-processing
 - Feature extraction
 - Feature selection
 - Feature transformation
- Learning
 - Clustering
 - Classification
 - Evaluation

Train of thoughts (3)

The "storyline" of the lecture (ctd.)

- System analysis
 - Complexity is mastered by self-organised order = emergence
 - Self-organisation means autonomy, goal-oriented behaviour and runtime adaptation
 - Overall goal is to achieve robustness
 - Quantification of these system properties
- Engineering of intelligent systems
 - Based on initial design concepts
 - Basic techniques and methods for controlling intelligent systems
 - Modelling conditions in intelligent systems
 - Learning from feedback
 - Acting in shared environments: mutual influences
 - Optimisation
 - Collaboration

Related domains

You may have heard of...

- Multi-agent systems
- Proactive Computing
- Autonomic Computing
- Control theory
- Autonomous learning
- Complex adaptive systems
- Collective systems
- Self-adaptive and self-organised systems
- ...

Organisation

Preliminary outline of the lecture:

- Chapter 1: Organisation
- Chapter 2: Introduction
- Chapter 3: Design of Intelligent Systems
- Chapter 4: Pre-processing
- Chapter 5: Representation
- Chapter 6: Similarities of time series data
- Chapter 7: Segmentation
- Chapter 8: Clustering
- Chapter 9: Classification
- Chapter 10: Anomalies

Organisation (2)

Preliminary outline of the lecture (ctd.):

- Chapter 11: Evaluation
- Chapter 12: Self-organised order
- Chapter 13: Quantification of system properties
- Chapter 14: Model learning
- Chapter 15: Learning from feedback
- Chapter 16: Mutual influences
- Chapter 17: Optimisation
- Chapter 18: Collaboration

... but, well, that is the *current* plan....

Agenda

Christian-Albrechts-Universität zu Kiel

- Motivation
- Intelligent Systems group
- Organisational issues
- Train of thoughts for the lecture
- Further readings

Further readings

Christian-Albrechts-Universität zu Kiel

First part of the lecture is based on the book on "Pattern Classification"

 Duda, Richard O., Peter E. Hart, and David G. Stork: "Pattern classification", John Wiley & Sons, 2012, ISBN: 978-0471056690

All mentioned books will be available in the computer science library of CAU.

Further readings (2)

Second part of the lecture is based on the current book on "Organic Computing"

 Christian Müller-Schloer and Sven Tomforde: Organic Computing

 Technical Systems for Survival in the Real World, Birkhäuser
 Verlag, Basel, 2018, ISBN 978-3319684765

Further readings (3)

Further sources:

- Christian Müller-Schloer, Hartmut Schmeck, Theo Ungerer (eds.):
 Organic Computing A Paradigm Shift for Complex Systems,
 Birkhäuser Verlag, Basel, 2011, ISBN 978-3034801294
- Rolf Würtz (ed.): Organic Computing (Understanding Complex Systems), Springer Verlag Berlin, 2008, ISBN 978-3540776567
- Thomas Mitchell: Machine Learning, The McGraw-Hill Companies, 1997, ISBN 978-0071154673
- Philippe Lalanda, Julie McCann, Ada Diaconescu: Autonomic Computing – Principles, Design and Implementation, 2013, Springer Verlag, ISBN 978-1447150060
- Ethem Alpaydin: Introduction to Machine Learning (Adaptive Computation and Machine Learning). The Mit Press, 3rd revised edition, 2014. ISBN: 978-0262028189.

End

• Questions....?