9.4 Closures of Relations

Zhang Yanmei

ymzhang@bupt.edu.cn

QQ: 11102556

College of Computer Science & Technology

Beijing University of Posts & Telecommunications

Closures of Relations

Definition

■ The *closure*(闭包) of a relation *R* with respect to property *P* is the relation obtained by adding the *minimum number of ordered pairs* to *R* to obtain property *P*.

• 3 elements:

- \blacksquare R_1 contains R
- \blacksquare R_1 possesses the property P
- If R_2 contains R and possesses the property P, then R_2 contains R_1

Closures of Relations

- In terms of the digraph representation of *R*
 - To find the *reflexive closure*
 - add loops.
 - To find the *symmetric closure*
 - add arcs in the opposite direction.
 - To find the *transitive closure*
 - if there is a path from a to b, add an arc from a to b.

Reflexive Closure

Theorem:

- Let *R* be a relation on A.
- The *reflexive closure* of R, denoted $\mathbf{r}(R)$, is $R \cup \Delta$.

Method:

- Add loops to all vertices on the digraph representation of R.
- Put 1's on the diagonal of the connection matrix of *R*.

Symmetric closure

Theorem

- Let R be a relation on A.
- The *symmetric closure* of R, denoted $\mathbf{s}(R)$, is the relation $R \cup R^{-1}$.
- $R^{-1} = \{(b,a) \mid (a,b) \in R\}$

Theorem

- R is symmetric
 - If and only if
- $R = R^{-1}$

 Note: in digraph of a symmetric relation, use undirected edges instead of arcs

Paths

- Suppose that R is a relation on a set A. A path of length n in R from a to b is a finite sequence $\pi : a, x_1, x_2, ..., x_{n-1}, b$, beginning with a and ending with b, such that
 - $a R x_1, x_1 R x_2, ..., x_{n-1} R b$

- π_1 : 1, 2, 5, 4, 3 is a path of length 4 from vertex 1 to vertex 3
- π_2 : 1, 2, 5, 1 is a path of length 3 from vertex 1 to itself
- π_3 : 2, 2 is a path of length 1 from vertex 2 to itself

Some definitions

- A path that begins and ends at the same vertex is called a cycle.
- R^n : $x R^n y$ means that there is a path of length n from x to y in R.
 - $R^{n}(x)$
- R^{∞} : $x R^{\infty} y$ means that there is some path in R from x to y.
 - $R^{\infty}(x)$
- The relation R^{∞} is sometimes called the *connectivity relation* for R.

- Let $A = \{1, 2, 3, 4, 5, 6\}$
- R is shown as in figure

- Let $A = \{a, b, c, d, e\}$
 - $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}.$
- Compute (a) R^2 ; (b) R^{∞}

Solution

 $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}.$

Theorem

If R is a relation on $A = \{a_1, a_2, ..., a_n\}$, then

$$M_{R^2} = M_R \odot M_R$$

$$M_{R^2} = M_R \odot M_R \triangleq (M_R)_{\odot}^2$$

Proof

- Let $M_R = [m_{ij}]$ and $M_{R^2} = [n_{ij}]$.
 - the *i*, *j*th element of $M_R \otimes M_R$ is equal to 1
 - m_{ik} = 1 and m_{kj} = 1 for some k, $1 \le k \le n$.
- By definition of the matrix M_R
 - $a_i R a_k$ and $a_k R a_i$
 - $a_i R^2 a_j$, and so $n_{ij} = 1$.
- Therefore
 - position i, j of $M_R \otimes M_R$ is equal to 1
 - $n_{ij} = 1.$
- $\bullet \quad \text{So } \mathbf{M}_R \otimes \mathbf{M}_R = \mathbf{M}_{R^2}$

QED

- Let $A = \{a, b, c, d, e\}$
 - $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}.$
- Compute *R*²

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example cont.

Theorem

■ For $n \ge 2$ and R a relation on a finite set A, we have

$$M_{R^n} = M_R \odot M_R \odot \cdots \odot M_R$$
 (*n* factors)
 $\triangleq (M_R)_{\odot}^n$

Proof by induction

- Let P(n) be the assertion that the statement holds for an integer $n \ge 2$.
- Basis Step: P(2) is true by Theorem 1.

Induction Step

- Consider the matrix $M_{R^{k+1}}$. Let $M_{R^{k+1}} = [x_{ij}]$, $M_{R^k} = [y_{ij}]$, and $M_R = [m_{ij}]$
- If $x_{ij} = 1$, we must have a path of length k + 1 from a_i to a_j .
- If we let a_s be the vertex that this path reaches just before the last vertex a_j , then there is a path of length k from a_i to a_s and a path of length 1 from a_s to a_i .
- Thus $y_{is} = 1$ and $m_{sj} = 1$, so $M_{R^k} \odot M_R$ has a 1 in position i, j.
- similarly, if $M_{R^k} \odot M_R$ has a 1 in position i, j, then $x_{ij} = 1$.
- So

$$M_{R^{k+1}} = M_{R^k} \odot M_R$$

Induction Step

$$\therefore$$
 P(k): $M_{R^k} = M_R \odot \cdots \odot M_R$ (k factors)

$$\therefore M_{R^{k+1}} = M_{R^k} \odot M_R = (M_R \odot M_R \odot \cdots \odot M_R) \odot M_R$$

hence

$$P(k+1): M_{R^{k+1}} = M_R \odot \cdots \odot M_R \odot M_R (k+1 \text{ factors})$$

- is true.
- Thus by the principle of mathematical induction, P(n) is true for all n

QED

The reachability relation

- Let R be a relation on a set A that has n elements, The *reachability relation* R^* consists of the pairs (a,b) such that there is a path of length at least one from a to b in R.
 - $x R^* y$ if and only if $x R^{\infty} y$

$$R^* = \bigcup_{n=1}^{\infty} R^n.$$

Composition of paths

- Let
 - π_1 : $a, x_1, x_2, \dots, x_{n-1}, b$
 - π_2 : $b, y_1, y_2, \dots, y_{m-1}, c$
- The composition of π_1 and π_2 is the path
 - $\pi_2 \circ \pi_1: a, x_1, x_2, \dots, x_{n-1}, b, y_1, y_2, \dots, y_{m-1}, c$
 - Note the order of composition!

 Consider the relation whose digraph is given in Figure and the paths

Transitive closure

The transitive closure of a relation R is the smallest transitive relation containing R.

- Also recall R is transitive iff R^n is contained in R for all n
- Hence, if there is a path from x to y then there must be an arc from x to y, or (x, y) is in R.

Useful Results for Transitive Closure

Theorem:

• If $A \subseteq B$ and $C \subseteq B$, then $A \cup C \subseteq B$.

Theorem:

• If $R \subseteq S$ and $T \subseteq U$ then $R \circ T \subseteq S \circ U$.

Corollary:

• If $R \subseteq S$ then $R^n \subseteq S^n$

Useful Results for Transitive Closure

Theorem:

- If R is transitive then so is R^n
- Trick proof: Show $(R^n)^2 = (R^2)^n \subset R^n$

Theorem:

- If $R^k = R^j$ for some j > k, then $R^{j+m} = R^n$ for some $n \ge j$.
- We don't get any new relations beyond R^{j} .

Theorem

Let R be a relation on a set A. then R^{∞} is the transitive closure of R.

$$t(R) = R^{\infty} = R \cup R^{2} \cup R^{3} \cup \dots = \bigcup_{i=1}^{\infty} R^{i}$$

- Proof: we must show that R^{∞}
 - 1) is a transitive relation
 - \blacksquare 2) contains R
 - 3) is the smallest transitive relation which contains *R*

Proof of Part 1)

- Suppose (x, y) and (y, z) are in R^{∞} . Show (x, z) is in R^{∞} .
 - By definition of R^{∞} , (x, y) is in R^m for some m and (y, z) is in R^n for some n.
 - Then (x, z) is in $R^n \circ R^m = R^{m+n}$ which is contained in R^∞ .
 - Hence, R^{∞} must be transitive.

Proof of Part 2)

Easy from the definition of R^{∞}

Proof of Part 3)

- Now suppose S is any transitive relation that contains R, show S contains R^{∞} (that is R^{∞} is the smallest such relation).
- $R \subseteq S$ so $R^2 \subseteq S^2 \subseteq S$ since S is transitive
- Therefore $R^n \subseteq S^n \subseteq S$ for all n. (why?)
- Hence S must contain R^{∞} since it must also contain the union of all the powers of R.

• Q. E. D.

• In fact, we need only consider paths of length n or less.

- Let
 - $A=\{1, 2, 3, 4\}$
 - $R=\{(1,2),(2,3),(3,4),(2,1)\}$
- Find the transitive closure of R.

$$(M_R)_{\odot}^2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = (M_R)_{\odot}^4 = (M_R)_{\odot}^6 = \dots$$

$$(M_R)_{\odot}^3 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = (M_R)_{\odot}^5 = (M_R)_{\odot}^7 = \dots$$

$$M_{R^{\infty}} = M_R \vee (M_R)_{\odot}^2 \vee (M_R)_{\odot}^3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem

Let A be a set with |A|=n, and let R be a relation on A. Then

$$R^{\infty} = \bigcup_{i=1}^{n} R^{i} = R \cup R^{2} \cup \cdots \cup R^{n}$$

Proof

$$R^{\infty} = \bigcup_{i=1}^{\infty} R^{i} = R \cup R^{2} \cup R^{3} \cup \cdots$$
$$? = \bigcup_{i=1}^{n} R^{i} = R \cup R^{2} \cup \cdots \cup R^{n}$$

- The equality will hold, if, for $k \le n < m$, we have
 - $R^m \subseteq R^k$
 - $(a,b) \in R^m \to (a,b) \in R^k$

- Let a and b be A and suppose that $a, x_1,$ $x_2, ..., x_{m-1}, b$ is a path of length m from a to b in R
 - $(a, x_1) \in R$
 - $(x_1, x_2) \in R$

 - $(x_{m-1}, b) \in R$

- There are m+1 elements in the path, but we have only n distinct elements in A.
 - So, there must be some same vertex in the path, say $x_i = x_j = c$, i < j
 - $(a, x_1) \in R$
 - $(x_1, x_2) \in R$
 - **...**
 - $(x_{i-1}, x_i) \in R$
 - $(x_i, x_{i+!}) \in R$
 - ...
 - $(x_{j-1}, x_j) \in R$
 - $(x_j, x_{j+1}) \in R$
 - ...
 - $(x_{m-1},b) \in R$
- The red edges form a cycle in the path, we get a new path by deleting the cycle

- $(a, x_1) \in R$
- $(x_1, x_2) \in R$
- ...
- $(x_{i-1}, x_i) \in R$
- $(x_j, x_{j+1}) \in R$
- . . .
- $(x_{m-1}, b) \in R$

- A path from a to b $(x_i = x_j = c)$
 - $a, x_1, x_2, ..., x_{i-1}, c, x_{j+1}, ..., x_{m-1}, b$
- The length is k = m j + i.
- The process can continue until $k \le n$, so we have
 - $R^m \subset R^k$
 - $\forall m \ (m > n \land (a, b) \in R^m \to \exists k \ (k \le n \land (a, b) \in R^k))$
- Therefore

$$R^{\infty} = \bigcup_{i=1}^{n} R^{i} = R \cup R^{2} \cup \cdots \cup R^{n}$$

QED

OFPOSTSAND

ALGORITHM 1 A Procedure for Computing the Transitive Closure.

procedure transitive closure (M_R : zero-one $n \times n$ matrix)

 $A := M_R$

 $\mathbf{B} := \mathbf{A}$

for i := 2 to n

 $A := A \odot M_R$

 $\mathbf{B} := \mathbf{B} \vee \mathbf{A}$

return B{**B** is the zero-one matrix for R^* }

Some definitions

- Let
 - $A = \{a_1, a_2, ..., a_n\}$
 - \blacksquare R be a relation on A
- Interior vertices
 - $a, x_1, x_2, ..., x_i, b$

Some definitions

- W_k : a Boolean matrix, for $1 \le k \le n$
 - W_k has a 1 in position i, j
 - If and only if
 - there is a path from a_i to a_j in R whose interior vertices, if any, come from the set $\{a_1, a_2, ..., a_k\}$
- What about W_0 W_n ?
 - $\bullet \quad \text{Let } W_0 = W_R$
 - $W_n = W_R^{\infty}$
 - $W_0, W_1, W_2, \dots, W_n$

- Procedure
 - begin with the matrix of R, and
 - compute each matrix W_k from the previous matrix W_{k-1} , and,
 - reach W_R^{∞} in n steps,

- Suppose
 - $W_k = [t_{ij}]$
 - $W_{k-1} = [s_{ij}]$
- If $t_{ij} = 1$, then there must be a path from a_i to a_j whose interior vertices come from the set $\{a_1, a_2, ..., a_k\}$.
 - Whether a_k is an interior vertex ?
 - Two cases

- a_k is not an interior vertex
 - then all interior vertices must actually come from the set $\{a_1, a_2, ..., a_{k-1}\}$
 - so $s_{ij} = 1$.
- a_k is an interior vertex
 - Assume a_k appears only once (why?)
 - Two subpaths
 - a_i to a_k and a_k to a_j
 - $s_{ik} = 1$ and $s_{kj} = 1$

- The basis for Warshall's Algorithm
 - $t_{ij} = 1$
 - If and only if
 - either
 - $S_{ij} = 1$
 - $s_{ik} = 1$ and $s_{kj} = 1$

• *Step1*:

• First transfer to W_k all 1's in W_{k-1} .

■ *Step2*:

- List the locations $p_1, p_2, ...,$ in column k of W_{k-1} , where the entry is 1
- List the locations $q_1, q_2, ...,$ in row k of W_{k-1} , where the entry is 1

Step3:

• Put 1's in all the positions p_i , q_j of W_k (if they are not already there)

Example (1)

- Let
 - $A=\{1, 2, 3, 4\}$
 - $R=\{(1,2),(2,3),(3,4),(2,1)\}$
- Find the transitive closure of R.

Example

$$W_{0} = \begin{bmatrix} \underline{0} & \underline{1} & \underline{0} & \underline{0} \\ \underline{1} & 0 & 1 & 0 \\ \underline{0} & 0 & 0 & 1 \\ \underline{0} & 0 & 0 & 0 \end{bmatrix} = M_{R}, \quad W_{1} = \begin{bmatrix} 0 & \underline{1} & 0 & 0 \\ \underline{1} & \underline{1} & \underline{1} & \underline{0} \\ \underline{1} & \underline{1} & \underline{1} & \underline{0} \\ 0 & \underline{0} & 0 & 1 \\ \underline{0} & \underline{0} & 0 & 0 \end{bmatrix}$$

$$W_2 = \begin{bmatrix} 1 & 1 & \frac{1}{2} & 0 \\ 1 & 1 & \frac{1}{2} & 0 \\ 0 & \underline{0} & \underline{0} & \frac{1}{2} \\ 0 & 0 & \underline{0} & 0 \end{bmatrix},$$

$$W_3 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{vmatrix} = W_4 = W^{\infty}$$

```
Algorithm Warshall

CLOSURE←MAT

For k = 1 thru N

For i = 1 thru N

For j = 1 thru N

CLOSURE[i,j]←CLOSURE[i,j]

∨(CLOSURE[i,k]∧CLOSURE[k,j])

End of Algorithm Warshall
```

Analysis

- Complexity of Algorithm
 - Warshall
 - n^3
 - $M_{\mathbf{R}}^{\infty} = M_{\mathbf{R}} \vee (M_{\mathbf{R}})_{\odot}^{2} \vee ... \vee (M_{\mathbf{R}})_{\odot}^{n}$
 - n^4

homework

- § 9.4
 - **20**, 22, 28