

Collision Monitoring for a Mobile Manipulator

Software Development Project 9th March, 2021

Urvashi Negi Zain Ul Haq Sreenivasa Hikkal Venugopala

Supervised by: Djordje Vukcevic

Contents

- Introduction
 - Background
 - Objectives/Project goals
 - Requirements
- Design Details
 - Collision Monitoring and Avoidance
 - Modeling of Robot Base for Distance Calculation
 - o Distance Calculation using Box as a Geometric Primitive for Collision Avoidance with Base
- Implementation Details
- Project Management
- Conclusion
- References

Introduction

Background

- An existing implementation exists for collision monitoring and avoidance system based on "Biologically-inspired technique" for a fixed manipulator arm [1].
- The implementation consists of 3 different aspects:
 - 1. Distance monitoring with all the links of a manipulator arm
 - 2. Potential field computations based on distance from the obstacles
 - 3. Controller capable of avoiding collisions in real time
- Implementation:
 - 1. C++
 - ROS

^[1] A. Gomez, S. Parra and B. Penfold, "Implementation of biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance", 2020.

Objectives/Project Goals

- Understand the existing implementation of collision monitoring for a mobile manipulator.
 - o Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance, H. Hoffmann et al., 2009 [1].
 - Real-Time Obstacle Avoidance for Manipulators and Mobile Robots, O. Khatib, 1990 [2].
- Check for the scope of improvement in the existing code.
- Extend existing implementation to achieve collision monitoring for a mobile base of a robot.

Requirements

- 1. Understand the existing implementation of collision monitoring library.
 - i. Literature survey.
 - ii. Familiarize with C++ and ROS.
 - iii. Understand the use cases, mathematics behind the implementation.
- 2. Check for scope of improvement.
 - i. Setup runtime environment of existing library and understand the code implementation.
 - ii. Modeling of other shapes.
- 3. Extension of existing implementation to achieve collision monitoring for a mobile base of a robot.
 - i. Setup runtime environment for mobile base.
 - ii. Connect existing library with mobile base environment.
 - iii. Extend computations in the existing library to:
 - 1. Perform distance calculations between the base and arm, and other obstacles.
 - 2. Compute potential field based on the above mentioned distances.
 - 3. Compute necessary control commands for avoiding collisions.
 - iv. Verify the functionality with various test cases.
 - v. Check for scope of improvement.

DMP: Dynamic Movement Primitive CLIK: Closed Loop Inverse Kinematics

Design Details

Collision Monitoring and Avoidance

- 1. The obstacle avoidance algorithm present in existing library is based on calculating vector fields around obstacles and goals present in the environment.
- 2. The vector field calculation is a function of distance calculations between colliding objects.

Fig 1: Visualization of vector field, image referenced from [6]

Collision Monitoring and Avoidance: Potential Field

The potential field is determined by a steering angle that helps to steer away from the obstacles

Fig 2: Steering angle calculation

• In [2], the authors show a result of implementation of collision avoidance by vector field generation, as shown below.

Fig 3: Visualization of vector field and collision avoidance.

Base Obstacle Detection

- Control technique requires information about the obstacles for each time step in order to make robot avoid those while performing the motion.
- To find the distance between colliding objects, they are modelled as different geometric 3D shape primitives.
- This provides simple methods of geometric calculations to calculate distances in real time.

Fig 4: Visualization of Distance calculations between primitives.

Modeling of Robot Base for Distance Calculation

- 1. The robot base is modelled using AABB [5] geometric primitive. Because:
 - a. Can bound almost all the base design for different real world model due to axis aligned 3D spatial spread
 - b. Representation is easy, requires only two points (min and max) for representation in algorithm.
 - Provides cheap distance calculation methods for collision tests

Fig 5: AABB [5] modeling of robot base

Fig 6: Modeling and visualization of primitives.

Distance Calculation using Box as a Geometric Primitive for Collision Avoidance with Base

Obstacle detection - (Box - Capsule)

Fig 7: Visualization of Distance calculations between box and capsule.

GJK [4] algorithm for distance calculation with Box

- Gilbert-Johnson-Keerthi distance algorithm is a method of determining the minimum distance between two convex sets.
- To find the distance between colliding objects, they are modelled as different geometric 3D shape primitives.
- This provides simple methods of geometric calculations to calculate distances in real time.

Fig 4: GJK algorithm for collision detection Reference from [https://blog.hamaluik.ca/posts/building-a-collision-engine-part-1-2d-gjk-collision-detection/]

Collision detection algorithm for 3D Box (AABB)

Collision detection algorithm for 3D Box (AABB)

Implementation Details

Implementation Details (Arm - Base)

- Robot base modelling as an obstacle for the arm manipulator
- Control for collision avoidance implementation of manipulator arm with base using vector field approach.
- ROS simulation modelling for demonstration of proof of concept.

Implementation Details (Base - Obstacles)

- Implementation of robot base controller for collision monitoring and avoidance.
- Narko description is used along with kinova arm for modeling and simulating the robot.
- Implementation of PID controller and two wheel differential drive for robot movement.
- Distance calculations between the base and the obstacles in workspace.
- ROS simulation modelling for demonstration of proof of concept.
- Due to imperfect computations, the control algorithm is buggy.

Fig 7: Visualization of wrong movement generation due to calculation errors.

Project Management

Project Management - Milestones and Timeline

Conclusion

Challenges:

- ROS implementation
- Algorithm approach for 3D Box and integration with existing library

Achievements:

- Successful integration of collision monitoring and avoidance of manipulator arm with base
- Extension of collision monitoring library for mobile robots
- Added a 3D box shape to the library for collison monitoring and avoidance

Future Improvements:

- Optimisation of self collision monitoring
- Implementation of mobile base collision with other obstacles in environment

References

- [1] A. Gomez, S. Parra and B. Penfold, "Implementation of biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance", 2020.
- [2] H. Hoffmann, P. Pastor, D. Park and S. Schaal, "Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance," 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 2587-2592, doi: 10.1109/ROBOT.2009.5152423.
- [3] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots. Autonomous robot vehicles", 1990 Springer-Verlag, Berlin, Heidelberg, 396–404.
- [4] E. G. Gilbert, D. W. Johnson and S. S. Keerthi, "A fast procedure for computing the distance between complex objects in three-dimensional space," in IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp. 193-203, April 1988, doi: 10.1109/56.2083.
- [5] AABB 3DCollisions https://gdbooks.gitbooks.io/ 3dcollisions/content/Chapter1/aabb.html, Accessed on 03/07/2021
- [6] Rostami, S.M.H., Sangaiah, A.K., Wang, J. et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm. J Wireless Com Network 2019, 70 (2019). https://doi.org/10.1186/s13638-019-1396-2

Thank You