

Depletion Mode MOSFET

IXTT16N20D2 IXTH16N20D2

 $V_{DSX} = 200V$ $I_{D(on)} \ge 16A$

 $R_{DS(on)} \leq 80m\Omega$

N-Channel

Symbol	Test Conditions	Maximum F	Ratings
V _{DSX}	T _{_i} = 25°C to 150°C	200	V
V _{DGX}	$T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	200	V
V _{GSX}	Continuous	±20	V
V _{GSM}	Transient	±30	V
P_{D}	T _C = 25°C	695	W
T		- 55 +150	°C
T _{.IM}		150	°C
T _{stg}		- 55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.
Weight	TO-268	4	g
	TO-247	6	g

TO-247 (IXTH)	
G D	D (Tab)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Features

- Normally ON Mode
- International Standard Packages
- Molding Epoxies Meet UL 94 V-0 Flammability Classification

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Audio Amplifiers
- Start-up Circuits
- Protection Circuits
- Ramp Generators
- Current Regulators
- Active Loads

Symbol Test Conditions $(T_J = 25^{\circ}C, Unless Otherwise Specified)$			Chara Min.	cteristic Typ.	Values Max.	
BV _{DSX}	$V_{GS} = -5V, I_{D} = 250\mu A$		200			V
V _{GS(off)}	$V_{DS} = 25V, I_{D} = 4mA$		- 2.0		- 4.5	V
I _{GSX}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
DSX(off)	$V_{DS} = V_{DSX}, V_{GS} = -5V$	T _J = 125°C			5 100	μ Α μ Α
R _{DS(on)}	$V_{GS} = 0V, I_D = 8A, Note 1$				80	mΩ
I _{D(on)}	$V_{GS} = 0V, V_{DS} = 25V, \text{ Note 1}$		16			Α

2 - Drain

		acteristic Typ.	Values Max.		
g _{fs}		$V_{DS} = 20V, I_{D} = 8A, \text{ Note 1}$	7	12	S
C _{iss})			5500	pF
C _{oss}	}	$V_{GS} = -10V, V_{DS} = 25V, f = 1MHz$		1360	pF
\mathbf{C}_{rss}	J			607	pF
t _{d(on)})	Resistive Switching Times		46	ns
t _r		· ·		130	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = \pm 5V, V_{DS} = 100V, I_{D} = 8A$		270	ns
t _f	J	$R_{\rm g} = 3.3\Omega$ (External)		135	ns
Q _{g(on)})			208	nC
\mathbf{Q}_{gs}	}	$V_{GS} = \pm 5V, V_{DS} = 100V, I_{D} = 8A$		28	nC
\mathbf{Q}_{gd}	J			110	nC
R _{thJC}		TO 047		0.01	0.18 °C/W
R _{thCS}		TO-247		0.21	°C/W

Safe-Operating-Area Specification

		Characteristic Values			
Symbol	Test Conditions	Min.	Тур.	Max.	
SOA	$V_{DS} = 200V, I_{D} = 2.1A, T_{C} = 75^{\circ}C, tp = 5s$	420		W	

Source-Drain Diode

Symbol	Test Conditions	Chara	acteristic	: Values
$(T_J = 25)$	°C, Unless Otherwise Specified)	Min.	Тур.	Max.
V _{SD}	$I_F = 16A, V_{GS} = -10V, Note 1$		0.8	1.3 V
t _{rr}	$I_{E} = 8A, -di/dt = 100A/\mu s$		265	ns
I _{RM}	$V_{\rm R} = 100 \text{V}, V_{\rm RS} = -10 \text{V}$		14.3	A
\mathbf{Q}_{RM}) V _R = 100V, V _{GS} = -10V		1.9	μC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Terminals: 1 - Gate 3 - Source

Dim.	Milli	imeter	Inc	hes
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-268 Outline

Terminals: 1 - Gate 2 - Drain 3 - Source 4 - Drain

MY2	INCH	IES .	MILLIN	METERS
21M	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
A1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
b	.045	.057	1.15	1.45
b2	.075	.083	1.90	2.10
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.488	.500	12.40	12.70
Е	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5.45	BSC
Н	.736	.752	18.70	19.10
L	.094	.106	2.40	2.70
L1	.047	.055	1.20	1.40
L2	.039	.045	1.00	1.15
L3	.010	BSC 0.25 BSC		BSC
L4	.150	.161	3.80	4.10

IXYS Reserves the Right to Change Limits, Test Conditions, $\$ and $\$ Dimensions.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Forward-Bias Safe Operating Area

Fig. 16. Forward-Bias Safe Operating Area

Fig. 17. Maximum Transient Thermal Impedance

