segundo parcial

Tiempo: 2 horas.

Justifique todas sus respuestas.

Puede usar sus apuntes de clase y tareas. No puede usar el libro.

El examen es sobre 100 puntos. Sí, ya sé que suman 105...

- 1. (15 puntos) Considere una pirámide regular con base cuadrada; sus cinco caras de dimensión 2 determinan un arreglo de cinco (hiper)planos en \mathbb{R}^3 . Encuentre el poset de intersecciones, el polinomio característico y el número de regiones de este arreglo.
- 2. (15 puntos) Sea \mathcal{B}_n el siguiente arreglo de hiperplanos en \mathbb{R}^n :

$$x_i = 0$$
 $(1 \le i \le n),$
 $x_i - x_j = 0$ $(1 \le i < j \le n),$
 $x_i + x_j = 0$ $(1 \le i < j \le n).$

Calcule el polinomio característico de \mathcal{B}_n .

- 3. (15 puntos) Demuestre que una matroide M es uniforme (es decir, $M \cong U_{m,n}$ para algunos enteros $1 \leq m \leq n$) si y sólo si su polinomio de Tutte $T_M(x,y)$ no contiene ningún monomio de la forma x^iy^j con $i,j \geq 1$.
- 4. (15 puntos) Calcule el polinomio de Jones del nudo de la figura:

- 5. (25 puntos)
 - (a) Sea M=(E,r) una matroide y sean $A,B\subseteq E$ tales que $A\cup B=E$ y $A\cap B=\emptyset$. Demuestre que $M=(M|A)\oplus (M|B)$ si y sólo si r(M)=r(A)+r(B).
 - (b) Demuestre que M^* es conexa si y sólo si M es conexa.
- 6. (20 puntos)
 - (a) Demuestre que todos los lados de un politopo matroidal tienen longitud $\sqrt{2}$.
 - (b) Demuestre que el ángulo que forman dos lados cualesquiera de un politopo matroidal es igual a 0° , 60° , 90° , 120° o 180° .
 - (Pista. Calcule de dos formas distintas el producto punto entre los vectores determinados por los dos lados.)
 - (c) Describa todos los polígonos (de dimensión 2) que son politopos matroidales.

mucha suerte,