

A Study of Graph Analytics for Massive Datasets on Distributed Multi-GPUs

<u>Vishwesh Jatala</u>^{1,2}, Roshan Dathathri^{1,3}, Gurbinder Gill^{1,3}, Loc Hoang^{1,3}, V. Krishna Nandivada^{4,5}, and Keshav Pingali^{1,3}

¹The University of Texas at Austin, USA ²vishwesh.jatala@austin.utexas.edu ³{loc,roshan,gill,pingali}@cs.utexas.edu

⁴Indian Institute of Technology Madras, India ⁵nvk@iitm.ac.in

Motivation

Data Growth!

- Clueweb is ~ 1 TB42.5 B edges
- Limited GPU Memory
 - NVIDIA P100 has16 GB memory

Distributed Multi-GPUs

Study of Graph Analytics on Distributed GPUs

Limitations of Prior Studies

Customized for few applications Scalable BFS [Pan et al. IPDPS'18]

Focused only for CPUs
Partitioning study [Gill et al. PVLDB'18]

Restricted for single GPUs
Graph survey [Shi et al.Comput.'18]

Not exhaustive

[Gluon PLDI'18, Lux PVLDB'17]

Contributions of Our Study

Shows impact of partitioning, computation, and communication

Analyzes massive graphs using state-of-the-art D-IrGL

Provides key suggestions for designers

Identifies scope for improvements

Distributed Graph Analytics

Evaluated Techniques in The Study

Partitioning

CuSP [Hoang et al. IPDPS'19]

- Incoming Edge Cut^{1,2} (IEC)
- Outgoing Edge Cut^{2,3} (OEC)
- Cartesian Vertex Cut^{2,4} (CVC)
- Hybrid Vertex Cut⁵ (HVC)

Computation

- Thread/Warp/CTA

 Distribution^{3,6,7} (TWC)
 - Adaptive Load
 Balancer (ALB)⁸

Synchronization

- Execution Model
 - Bulk-Synchronous
 Parallel^{1,2,9} (BSP)
 - Bulk-Asynchronous
 Parallel¹⁰ (BASP)
- Communication
 - Update-Only²
 - All-Shared¹

¹Lux PVLDB'17, ²Gluon PLDI'18, ³Gunrock IPDPS'17, ⁴Boman et al. SC'13, ⁵PowerLyra EuroSys' 15, ⁶IrGL OOPSLA'16, ⁷Merill et al. PPOPP'12, ⁸Jatala et al. Arxiv'19, ⁹Valiant CACM'90, ¹⁰Gluon-Async PACT'19,

Experimental Setup

Hardware

Bridges Supercomputer
32 (machines) * 2 (NVIDIA P100 GPUs)

Benchmarks

bfs, sssp, cc, pagerank, and kcore

Frameworks

D-IrGL and Lux (Distributed Multi-GPU Frameworks)

Inputs

Inputs (Medium)	V	ΙΕΙ	Input (Large)	V	ΙΕΙ
twitter50	51 M	1,963 M	clueweb12	978 M	42.5 B
friendster	66 M	1,806 M	uk14	788 M	47.6 B
uk07	106 M	3,739 M	wdc14	1725 M	64.4 B

Results: Computation and Synchronization

Variant	Optimizations
Var1	TWC + All Shared + Sync
Var2	ALB + All Shared + Sync
Var3	ALB + Update Only + Sync
Var4 (default)	ALB + Update Only + Async

All variants (even Lux) use same partitioning policy (IEC).

Analyzing Computation and Synchronization

64 GPUs

Host-device time is significant

Asynchronous behavior should be throttled

Analyzing Partitioning Schemes

- CVC outperforms other schemes on 16 or more GPUs
 - fewer communication partners

Ronchmar	Partitio	uk07	uk07 on 32 GPUs			uk14 on 64 GPUs		
Dencimal	KI al titio	"Static D	Static Dynamic Memory		Static Dynamic Memory			
bfs	CVC	1.15	1.17	1.15		1.11	1.14	
	HVC	1.10	1.20	1.08	1.40	1.38	1.38	
	IEC	1.00	1.14	1.04	1.00	1.31	1.08	
	OEC	1.00	1.20	1.02	1.00	1.24	1.03	
cc	CVC	1.03	1.18	1.05	1.12	110	1.13	
	HVC	1.09	1.30	1.08	1.11	1.34	1.11	
	IEC	1.00	1.27	1.02	1.00	1.24	1.04	
	OEC	1.00	1.29	1.02	1.00	1.22	1.04	
pagerank	CVC	1.16	1.04	1.15	1.15	1.02	1.14	
	IEC	1.00	1.09	1.04	1.00	1.09	1.08	
	OEC	1.00	1.10	1.03	1.00	1.08	1.04	

- Static load imbalance not correlated to dynamic load imbalance
- Static load imbalance is correlated to memory usage
 - Critical for GPUs due to limited memory

Conclusion

- Detailed analysis of distributed multi-GPU graph analytics
- Lessons:
 - CVC is crucial for scaling
 - Static load balance is important for GPUs
- Scope for Improvements:
 - Reduce host-device communication time through GPUDirect
 - Control asynchrony in Bulk-Asynchronous execution

Please contact authors for any questions. Thank you!

