GRF-II Document d'étude

Nicholas Langevin 24 février 2019

- Les produits dérivés
- Forwards et autres options

Introduction aux duits dérivés

Produits dérivés Contrat entre 2 parties qui fixe les flux financiers futurs fondé sur ceux de l'actif sous-jacent S.

Étapes d'une transaction

- 1. l'acheteur et le vendeur se trouve (sur un marché quelquonque)
- 2. on définit les obligations de chaques parties (i.e. actif à livrer, date d'échéance, prix, etc.. Note: il y a souvent un intermédiaire (clearing house) qui intervient.
- 3. La transaction a lieu et les obligations sont remplies par chaque parties
- 4. Les registres de propriétés sont mis à jour.

Transaction gré-à-gré transaction sans intermédiaire ou à l'extérieur de la bourse. Plusieurs raisons peuvent justifier ce type de transaction:

- > Ce sont souvent de grosses transaction. On peut donc économiser sur les frais de transaction.
- > On peut combiner (sur une même transaction) plusieurs micro-transaction et plusieurs types d'actifs.

Valeur notionelle définition exacte à valider

Origine des marchés de produits dérivés Après 1971, le président Nixon a vouli défaire le standard de l'or (qui a causé de l'hyperinflation dans plusieurs pays) pour plutôt laisser le libremarché fixer la valeur des devise de chaque pays.

Rôle des marchés financiers Partage du risque et diversification des risques.

Utilité des produits dérivés

- > Gestion des risques
- > Spéculation
- > Réduction des frais de transaction
- > Arbitrage réglementaire

Bid-Ask Spread Correspond à la marge que le teneur de marché (market maker) conserve. En l'absence d'arbitrage, on aura Ask - Bid > 0

Ask prix le plus haut que quelqu'un est prêt à payer pour le sous-jacent

Bid prix le plus bas que quelqu'un est prêt à payer pour le sous-jacent

1. AV veut dire accumulated value.

pro- Terminologie

market order ordre au marché : on achète et vend selon les prix Bid Ask actuels.

limit order Ordre limite : on achète le sousjacent si Ask < k ou on vend le sousjacent si Bid > k.

Stop Loss ordre de vente stop : on veut limiter sa perte si un sous-jacent perd énormément de valeur. Donc, on va vendre le sous-jacent si $Bid \le k$.

Long On se considère en position longue sur le sous-jacent si notre stratégie nous permet de bénéficier d'une hausse du sousjacent.

Short On se considère en position longue sur le sous-jacent si notre stratégie nous permet de bénéficier d'une baisse du sousjacent.

Type de risques

Risque de défaut à préciser Risque de rareté à préciser

Introduction Forwards et aux options

Pour chaque stratégie qu'on voit dans le cours, on peut calculer

Premium Il s'agit des cashflow à t = 0 (si positif, il s'agît d'un coût; si négatif, il s'agît d'une compensation).

Payoff Valeur à l'échéance t = T, i.e. les Cashflow au temps t = T.

Profit = $Payof f - AV(Premium)^{1}$

 r_f taux sans risque. Parfois exprimé comme une force d'intérêt r continue.

S Sous-jacent (peut être une action, une devise,

 S_0 valeur actuelle du sous-jacent S.

 S_T valeur du sous-jacent S au temps t = T.

 $F_{0,T}$ Prix forward du sous-jacent au temps T, qu'on définit comme

$$F_{0,T} = S_0 (1 + r_f)^T$$

 $F_{0,T}^P$ Prix d'un forward prépayé, i.e. on débourse $F_{0,T}^P$ à t=0 et on reçoit le sousjacent à t = T, alors

 $F_{0,T}^P = F_{0,T}(1+r_f)^T$

illustration graphique:

Achat ferme et emprunt On utilise parfois la lettre S pour désigner dans stratégie l'action de faire un achat ferme (i.e. acheter et se faire livrer le sous-jacent à t = 0) et B pour désigner un dépôt/emprunt (qu'on exprime comme une obligation zéro-coupon).

Call(K,T)

Contrat qui permet au détenteur de se procurer S au prix K à l'échéance T. position longue dans le sous-jacent

$$\begin{aligned} & \textit{Premium} = C(K,T) \\ & \textit{Payoff} = \begin{cases} 0 & , S_T \leq K \\ S_T - K & , S_T > K \end{cases} \end{aligned}$$

Put(K,T)

Contrat qui permet au détenteur de vendre S au prix K à l'échéance T. position courte dans le sous-jacent

$$\begin{aligned} & Premium = P(K,T) \\ & Payoff = \begin{cases} K - S_T & , S_T \leq K \\ 0 & , S_T > K \end{cases} \end{aligned}$$

Forward synthétique

On peut créer un Forward synthétique 2 de façon (en combinant d'autres transactions) :

> Forward = Stock - BondForward = Call(K, T) - Put(K, T)

Stratégie de couverture

Floor

On achète S en se protégant contre une baisse trop importante du sous-jacent (position

$$Floor = Stock + Put(K, T)$$

$$Premium = S_0 + P(K, T) > 0$$

$$Payoff = \begin{cases} K, S_T \le K \\ S_T, S_T > K \end{cases}$$

Cap

On vend à découvert S en se protégant contre une hausse trop importante du sous-jacent (car il faudra éventuellement le racheter!). Position courte.

$$Premium = C(K, T) - S_0 < 0$$

$$Payoff \begin{cases} -S_T & , S_T \le K \\ -K & , S_T > K \end{cases}$$

$$Payoff = Profit$$

Cap = Call(K, T) - Stock

Bull Spread

Combinaison de 2 Call (ou 2 Put) pour spéculer sur un marché haussier. Avec $K_1 < K_2$, on a

Avec option d'achat

$$Bull(Call) = Call(K_1, T) - Call(K_1, T)$$

$$Premium = C(K_{1}, T) + Call(K_{2}, T) > 0$$

$$Payoff = \begin{cases} 0 &, S_{T} \leq K_{1} \\ S_{T} - K_{1} &, k_{1} < S_{T} \leq K_{2} \\ K_{2} - K_{1} &, S_{T} > K_{2} \end{cases}$$

Avec option de vente

$$Bull(Put) = Put(K_1, T) - Put(K_2, T)$$

$$Premium = P(K_1, T) - P(K_2, T) < 0$$

$$Payoff = \begin{cases} K_1 - K_2 & , S_T \le K_1 \\ K_2 - S_T & , K_1 < S_T \le K_2 \\ 0 & , S_T > K_2 \end{cases}$$

Bear Spread

Combinaison de 2 Call ou 2 Put pour spéculer sur un marché baissier.

Avec option d'achat

$$Bear(Call) = -Bull(Call)$$

$$= Call(K_2, T) - Call(K_1, T)$$

$$Premium = C(K_2, T) - C(K_1, T) < 0$$

$$Profit = \begin{cases} 0 & , S_{T} \le K_{1} \\ K_{1} - S_{T} & , K_{1} < S_{T} \le K_{2} \end{cases}$$
 Collar
$$-(K_{2} - K_{1}) & , S_{T} > K_{2}$$
 La prime

Avec option de vente

$$Bear(Put) = -Bull(Put)$$

$$= Put(K_2, T) - Put(K_1, T)$$

$$Premium = P(K_2, T) - P(K_1, T) > 0$$

$$Profit = \begin{cases} K_2 - K_1 & , S_T \le K_1 \\ K_2 - S_T & , K_1 < S_T \le K_2 \\ 0 & , S_T > K_2 \end{cases}$$

$$Pavoff$$

Ratio Spread

Cette stratégie est une combinaison un peu sur mesure (on ne peut pas nécessairement dire si elle est longue ou courte). On achète n options d'achat à un prix d'exercice K_1 et on en vend mà un prix d'exercice K_2 . ²

$$\begin{aligned} RatioSpread &= nCall(K_1,T) - mCall(K_2,T) \\ Premium &= nC(K_1,T) - mC(K_2,T) \\ Payoff &= \dots \end{aligned}$$

Box Spread

Cette stratégie réplique l'achat d'une obligation zéro-coupon, en impliquant 2 option d'achat et

2. On peut faire cette stratégie avec des options de vente aussi.

2 options de vente.

$$BoxSpread = Bull(Call) + Bear(Put)$$

$$= Call(K_1, T) - Call(K_2, T)$$

$$+ Put(K_2, T) - Put(K_1, T)$$

$$Premium = C(K_1, T) - C(K_2, T)$$

$$+ P(K_2, T) - P(K_1, T) > 0$$

$$Payof f = K_2 - K_1, \forall S_T$$

La prime initiale du Collar peut être soit positive ou négative (dépendant du strike price).

$$Collar = Put(K_1, T) - Call(K_2, T)$$

$$Premium = P(K_1, T) - C(K_2, T)$$

$$Payoff = \begin{cases} K_1 - S_T & , S_T \le K_1 \\ 0 & , K_1 < S_T \le K_2 \\ K_2 - S_T & , S_T > K_2 \end{cases}$$

Stock Covered by Collar

- > On effectue la même stratégie qu'un Collar, en ayant initialement le sous-jacent S. Position longue dans le sous-jacent.
- > Cette stratégie reproduit les flux monétaires d'un Bull Spread, alors

$$\begin{aligned} BullSpread &= Collar + Stock \\ &= Put(K_1, T) - Call(K_2, T) + Stock \\ Premium &= P(K_1, T) - C(K_2, T) + S_0 > 0 \end{aligned}$$

$$Payoff = \begin{cases} K_1 & , S_T \leq K_1 \\ S_T & , K_1 < S_T \leq K_2 \\ K_2 & , S_T > K_2 \end{cases}$$

Straddle

Stratégie pour spéculer sur la volatilité du sousjacent S autour du point K.

$$Straddle = Put(K, T) + Call(K, T)$$

 $Premium = P(K, T) + C(K, T) > 0$

$$Payoff = \begin{cases} K - S_T & , S_T \le K \\ S_T - K & , S_T > K \end{cases}$$

Strangle

Même genre de stratégie que le strangle, on spécule sur la volatilité du sous-jacent à l'extérieur de l'intervalle $[K_1, K_2]$:

$$Strangle = Put(K_1, T) + Call(K_2, T)$$
$$Premium = P(K_1, T) + C(K_2, T) > 0$$

$$Payoff = \begin{cases} K_1 - S_T & , S_T \le K_1 \\ 0 & , K_1 < S_T \le K_2 \\ S_T - K_2 & , S_T > K_2 \end{cases}$$

en limitant nos pertes à
$$-(K_2 - K_1)$$
:

$$Butterfly = Strangle - Straddle(K_2)$$

$$= Put(K_1, T) - Put(K_2, T)$$

$$- Call(K_2, T) + Call(K_3, T)$$

$$Premium = P(K_1, T) - P(K_2, T)$$

$$- C(K_2, T) + C(K_3, T) < 0$$

$$Payoff = \begin{cases} K_1 - K_2 & , S_T \le K_1 \\ S_T - K_2 & , K_1 < S_T \le K_2 \\ K_2 - S_T & , K_2 < S_T \le K_3 \\ K_2 - K_3 & , S_T > K_3 \end{cases}$$

Note De façon générale (plusieurs combinaisons sont possibles), on a

Asymetric Butterfly Spread

- > Comme le Ratio Spread, il est possible de faire une stratégie sur mesure en achetant n Bull Spread et en achetant m Bear Spread en respectant les 3 prix d'exercices $K_1 < K_2 < K_3$.
- > Si on désire avoir un BFS qui a un profit nul pour $S_T < K_1$ et $S_T > K_3$, alors on trouve n et m tel que

$$\frac{n}{m} = \frac{K_3 - K_2}{K_2 - K_1}$$

5 Forwards et Futures

9 Put-Call Parity

définition de base :

$$C(K, T) - P(K, T) = F_{0,T} - K(1 + r_f)^T$$

dans le cas où l'action verse des dividendes :

$$C(K, T) - P(K, T) = S_0 - PV(Div) - K(1 + r_f)^T$$

= $S_0 e^{-\delta T} - K e^{-rT}$

Dans le cas où le sous-jacent en question est une devise étrangère (DÉ) qu'on achète avec notre devise locale (DD) :

Butterfly Spread (BFS)

On combine un $Straddle(K_2)$ et un $Strangle(K_1, K_3)$ pour spéculer sur la nonvolatilité du sous-jacent autour de K_2 , mais