

Outline

- Latent variable interactions
- Moderated logistic regression
- $\bullet\,$ Effect size for conditional process analysis

Latent Variable Interactions

When we have two observed variables interacting to predict a latent variable, our job is easy:

- Construct the product term of the observed focal and moderator variables
- 2. Use the observed focal, moderator, and interaction variables to predict the latent DV

If we want to model moderation when at least on of the predictors is latent, things get more difficult.

- If the moderator is observed and discrete, we can use multiple group modeling
- If the moderator is continuous and/or latent, then we need fancier methods

Two basic approaches:

- 1. Methods based on products of manifest variables
- 2. Methods based on directly estimating the products of latent variables

Estimating Products of Latent Variables

We can directly estimate the interaction between two latent variables with the *latent moderated structural equations* (LMS) method.

- Introduced by Klein, Moosbrugger, Schermelleh-Engel, and Frank (1997) and formalized by Klein and Moosbrugger (2000)
- Currently only available in Mplus (via the Xwith command).
- Uses numerical integration to estimate the unobserved latent interaction term

Estimating Products of Latent Variables

LMS STRENGTHS:

- Tends to perform the best out of all available methods
- No need to pre-process the data by manually computing product terms
- Pretty easy to implement if you have Mplus (see users guide for examples).

LMS WEAKNESSES:

- Only available in one (proprietary) software package
- Numerical integration is very slow and precludes calculation of most fit indices
- LMS does not work with categorical observed moderators

Computing Interaction Indicators

The alternative to the LMS-type approach is to create observed product terms and directly use those terms as indicators of the interaction construct.

- Naively indicating an interaction construct with the raw product terms is probably sub-optimal
- Collinearity among the interaction indicators and the raw items can cause estimation problems
- From a modeling perspective, we'd like to interpret out final model holistically

Two recommended approaches:

- 1. Orthogonalization through residual centering (Little, Boyaird, & Widaman, 2006).
- 2. Double mean centering (Lin, Wen, Marsh, & Lin, 2010).

Orthogonalization

Say we want to estimate the moderated effect of Z on the $X \to Y$ effect, where X, Y, and Z are latent variables indicated by $\{x_1, x_2, x_3\}$, $\{y_1, y_2, y_3\}$, and $\{z_1, z_2, z_3\}$, respectively.

Orthogonalization is performed by:

- 1. Construct all possible product terms: $\{x_1z_1, x_1z_2, x_1z_3, x_2z_1, x_2z_2, x_2z_3, x_3z_1, x_3z_2, x_3z_3\}.$
- Regress each product term onto all observed indicators of X and Z:

$$\widehat{x_1 z_1} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + \beta_4 z_1 + \beta_5 z_2 + \beta_6 z_3$$

$$\widehat{x_2 z_1} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + \beta_4 z_1 + \beta_5 z_2 + \beta_6 z_3$$

$$\vdots$$

$$\widehat{x_3 z_3} = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_2 x_3 + \beta_4 z_1 + \beta_5 z_2 + \beta_6 z_3$$

Orthogonalization

3. Calculate each product term's residual:

$$\delta_{x1z1} = x_1 z_1 - \widehat{x_1 z_1}$$

$$\delta_{x1z1} = x_2 z_1 - \widehat{x_2 z_1}$$

$$\vdots$$

$$\delta_{x3z3} = x_3 z_3 - \widehat{x_3 z_3}$$

4. Use these residuals to indicate a latent interaction construct as represented in the following figure.

Orthogonalization


```
library(lavaan)
dat1 ← readRDS("../data/lecture12Data.rds")
mod1 ← "
fX =~ x1 + x2 + x3
fZ =~ z1 + z2 + z3
fY =~ y1 + y2 + y3
"
out1 ← cfa(mod1, data = dat1, std.lv = TRUE)
summary(out1)
```

lavaan (0.5-20) converged normally after	17 iterations
Number of observations	500
Estimator	ML
Minimum Function Test Statistic	41.021
Degrees of freedom	24
P-value (Chi-square)	0.017
Parameter Estimates:	
Information	Expected

Standard Errors				Standard
Latent Variables:				
	Estimate	Std.Err	Z-value	P(> z)
fX = \sim				
x1	0.671	0.044	15.407	0.000
x2	0.661	0.043	15.226	0.000
x3	0.702	0.045	15.481	0.000
fZ =∼				
z1	0.738	0.048	15.343	0.000
z2	0.734	0.048	15.157	0.000
z3	0.718	0.046	15.601	0.000
fY = \sim				
y 1	0.787	0.045	17.614	0.000
у2	0.729	0.045	16.325	0.000
у3	0.761	0.043	17.797	0.000
Covariances:				
	Estimate	Std.Err	Z-value	P(> z)
fX ~				
fΖ	0.232	0.058	3.987	0.000
fY	0.827	0.033	25.310	0.000
fZ ~~				

fY	0.156	0.057	2.739	0.006	
Variances:					
	Estimate	Std.Err	Z-value	P(> z)	
x1	0.510	0.042	11.998	0.000	
x2	0.514	0.042	12.141	0.000	
х3	0.550	0.046	11.938	0.000	
z1	0.523	0.052	10.141	0.000	
z2	0.546	0.052	10.443	0.000	
z 3	0.461	0.048	9.706	0.000	
у1	0.492	0.044	11.185	0.000	
у2	0.545	0.044	12.253	0.000	
у3	0.444	0.040	11.007	0.000	
fΧ	1.000				
fΖ	1.000				
fY	1.000				


```
chisq df pvalue cfi tli rmsea srmr
41.021 24.000 0.017 0.987 0.981 0.038 0.026
```


lavaan (0.5-20) converged normally after	22 iterations
Number of observations	500
Estimator	ML
Minimum Function Test Statistic	41.021
Degrees of freedom	24
P-value (Chi-square)	0.017
Parameter Estimates:	
Information	Expected

Standard Errors				Standard
Latent Variables:				
	Estimate	Std.Err	Z-value	P(> z)
fX = \sim				
x1	0.671	0.044	15.407	0.000
x2	0.661	0.043	15.226	0.000
x3	0.702	0.045	15.481	0.000
fZ =∼				
z1	0.738	0.048	15.343	0.000
z2	0.734	0.048	15.157	0.000
z3	0.718	0.046	15.601	0.000
fY = \sim				
y1	0.442	0.044	10.079	0.000
у2	0.409	0.041	9.877	0.000
у3	0.427	0.042	10.099	0.000
Regressions:				
	Estimate	Std.Err	Z-value	P(> z)
fY \sim				
fΧ	1.488	0.190	7.820	0.000
fΖ	-0.066	0.090	-0.732	0.464

Covariances:					
	Estimate	Std.Err	Z-value	P(> z)	
fX ∼					
fZ	0.232	0.058	3.987	0.000	
Variances:					
	Estimate	Std.Err	Z-value	P(> z)	
x1	0.510	0.042	11.998	0.000	
x2	0.514	0.042	12.141	0.000	
x3	0.550	0.046	11.938	0.000	
z1	0.523	0.052	10.141	0.000	
z2	0.546	0.052	10.443	0.000	
z 3	0.461	0.048	9.706	0.000	
у1	0.492	0.044	11.185	0.000	
у2	0.545	0.044	12.253	0.000	
у3	0.444	0.040	11.007	0.000	
fX	1.000				
fΖ	1.000				
fY	1.000				


```
chisq df pvalue cfi tli rmsea srmr
41.021 24.000 0.017 0.987 0.981 0.038 0.026
```



```
predDat \( as.matrix(dat1[ , -grep("y", colnames(dat1))])
dat2 ← dat1
## Construct product terms:
x1z1 \leftarrow with(dat2, x1*z1)
x1z2 \leftarrow with(dat2, x1*z2)
x1z3 \leftarrow with(dat2, x1*z3)
x2z1 \leftarrow with(dat2, x2*z1)
x2z2 \leftarrow with(dat2, x2*z2)
x2z3 \leftarrow with(dat2, x2*z3)
x3z1 \leftarrow with(dat2, x3*z1)
x3z2 \leftarrow with(dat2. x3*z2)
x3z3 \leftarrow with(dat2, x3*z3)
## Residualize the product terms:
dat2$x1z1R \leftarrow lm(x1z1 \sim predDat)$resid
dat2$x1z2R \leftarrow lm(x1z2 \sim predDat)$resid
dat2$x1z3R \leftarrow lm(x1z3 \sim predDat)$resid
dat2$x2z1R \leftarrow lm(x2z1 \sim predDat)$resid
dat2$x2z2R \leftarrow lm(x2z2 \sim predDat)$resid
dat2$x2z3R \leftarrow lm(x2z3 \sim predDat)$resid
dat2$x3z1R \leftarrow lm(x3z1 \sim predDat)$resid
dat2$x3z2R \leftarrow lm(x3z2 \sim predDat)$resid
dat2$x3z3R \leftarrow lm(x3z3 \sim predDat)$resid
```



```
mod3 ← "
fX = \sim x1 + x2 + x3
fZ = \sim z1 + z2 + z3
fY = \sim y1 + y2 + y3
fXZ = x1z1R + x1z2R + x1z3R +
x2z1R + x2z2R + x2z3R +
x3z1R + x3z2R + x3z3R
fY \sim fX + fZ + fXZ
fX \sim fZ
fX \sim 0*fXZ
f7. \sim 0*fX7
x1z1R \sim x1z2R + x1z3R + x2z1R + x3z1R
x1z2R \sim x1z3R + x2z2R + x3z2R
x1z3R \sim x2z3R + x3z3R
x2z1R \sim x2z2R + x2z3R + x3z1R
x2z2R \sim x2z3R + x3z2R
x2z3R \sim x3z3R
```



```
x3z1R \sim x3z2R + x3z3R

x3z2R \sim x3z3R

"
out3 \leftarrow sem(mod3, data = dat2, std.lv = TRUE)

summary(out3)
```

lavaan (0.5-20) converged normally after	3 iterations
Number of observations	500
Estimator	ML
Minimum Function Test Statistic	74.899
Degrees of freedom	113
P-value (Chi-square)	0.998
Parameter Estimates:	
Information	Expected
Standard Errors	Standard
Latent Variables:	
Estimate Std.Err Z-val	lue P(> z)

fX = \sim					
x1	0.670	0.043	15.424	0.000	
x2	0.660	0.043	15.256	0.000	
x3	0.704	0.045	15.569	0.000	
fZ =∼					
z1	0.738	0.048	15.342	0.000	
z2	0.734	0.048	15.156	0.000	
z3	0.718	0.046	15.602	0.000	
fY = \sim					
у1	0.396	0.046	8.545	0.000	
у2	0.369	0.044	8.441	0.000	
у3	0.383	0.045	8.558	0.000	
fXZ =∼					
x1z1R	0.361	0.053	6.833	0.000	
x1z2R	0.427	0.056	7.615	0.000	
x1z3R	0.432	0.053	8.190	0.000	
x2z1R	0.558	0.056	9.914	0.000	
x2z2R	0.616	0.062	10.008	0.000	
x2z3R	0.520	0.057	9.153	0.000	
x3z1R	0.516	0.059	8.805	0.000	
x3z2R	0.626	0.063	10.007	0.000	
x3z3R	0.521	0.058	8.936	0.000	

Regressions:			_	54:1-15	
	Estimate	Std.Err	Z-value	P(> z)	
fY ∼					
fΧ	1.658	0.239	6.930	0.000	
fZ	-0.074	0.099	-0.750	0.453	
fXZ	0.488	0.120	4.049	0.000	
Covariances:					
Covariances.	Fatimata	Std.Err	7 1	D(>1-1)	
c w	Estimate	Std.Eff	Z-value	P(> Z)	
fX ∼					
fZ	0.232	0.058	3.987	0.000	
fXZ	0.000				
fZ ∼					
fXZ	0.000				
x1z1R \sim					
x1z2R	0.273	0.032	8.397	0.000	
x1z3R	0.309	0.033	9.358	0.000	
x2z1R	0.232	0.031	7.566	0.000	
x3z1R	0.235	0.032	7.376	0.000	
x1z2R ∼					
x1z3R	0.231	0.032	7.243	0.000	
x2z2R	0.211	0.035	5.982	0.000	
x3z2R	0.250	0.041	6.163	0.000	

x1z3R \sim					
x2z3R	0.213	0.030	7.010	0.000	
x3z3R	0.213	0.034	6.312	0.000	
x2z1R \sim					
x2z2R	0.247	0.043	5.787	0.000	
x2z3R	0.252	0.040	6.368	0.000	
x3z1R	0.233	0.033	7.103	0.000	
$x2z2R \sim$					
x2z3R	0.304	0.043	7.086	0.000	
x3z2R	0.199	0.040	5.018	0.000	
x2z3R ∼					
x3z3R	0.139	0.030	4.570	0.000	
x3z1R ∼					
x3z2R	0.212	0.041	5.116	0.000	
x3z3R	0.260	0.040	6.454	0.000	
x3z2R ∼					
x3z3R	0.157	0.041	3.846	0.000	
Variances:					
	Estimate	Std.Err	Z-value	P(> z)	
x1	0.511	0.042	12.093	0.000	
x2	0.514	0.042	12.221	0.000	
x3	0.548	0.046	11.977	0.000	

z1	0.523	0.052	10.142	0.000	
z2	0.546	0.052	10.444	0.000	
z3	0.461	0.048	9.704	0.000	
y1	0.495	0.043	11.398	0.000	
у2	0.542	0.044	12.334	0.000	
у3	0.444	0.040	11.179	0.000	
x1z1R	0.743	0.050	14.912	0.000	
x1z2R	0.754	0.055	13.682	0.000	
x1z3R	0.694	0.050	13.824	0.000	
x2z1R	0.641	0.057	11.332	0.000	
x2z2R	0.708	0.067	10.575	0.000	
x2z3R	0.671	0.056	12.009	0.000	
x3z1R	0.736	0.060	12.310	0.000	
x3z2R	0.724	0.070	10.277	0.000	
x3z3R	0.707	0.060	11.823	0.000	
fX	1.000				
fΖ	1.000				
fY	1.000				
fXZ	1.000				


```
round(fitMeasures(out3)[c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr")], 3)
```

```
        chisq
        df
        pvalue
        cfi
        tli
        rmsea
        srmr

        74.899
        113.000
        0.998
        1.000
        1.015
        0.000
        0.020
```



```
fZ Slope SE Wald p
[1,] -1 1.169652 0.1572049 7.440306 0
[2,] 0 1.657530 0.0979130 16.928605 0
[3,] 1 2.145409 0.1426381 15.040921 0
```

Matched Pair Variation

If you are willing to assume exchangeable indicators (i.e., essential tau equivalence), then you don't need to compute all possible interaction terms.

The so-called *matched pair* strategy suggests constructing only three product variables (when each first order construct has three indicators).

• Each product variable is simply constructed from paired indicators of the two first-order constructs:

$$x_1 z_1 = x_1 \times z_1$$
$$x_2 z_2 = x_2 \times z_2$$
$$x_3 z_3 = x_3 \times z_3$$


```
mod4 \leftarrow "
fX = \sim x1 + x2 + x3
fZ = \sim z1 + z2 + z3
fY = \sim y1 + y2 + y3
fXZ = \sim x1z1R + x2z2R + x3z3R
fY \sim fX + fZ + fXZ
fX \sim fZ
fX \sim 0*fXZ
f7. \sim 0*fX7
011t.4 ←
    sem(mod4, data = dat2, std.lv = TRUE, meanstructure =
         TRUE)
summary(out4)
```


(0.5-20)	converged no	rmally af	ter 29 i	iterations	
r of obse	ervations			500	
ator				ML	
ım Functi	on Test Stat	istic		45 602	
		15010			
				0.650	
er Estima	ites:				
mation				Expected	
ard Error	·s			Standard	
Variables	::				
	Estimate	Std.Err	Z-value	P(> z)	
	0.670	0.043	15.422	0.000	
	0.660	0.043	15.256	0.000	
	0.703	0.045	15.565	0.000	
	0.738	0.048	15.342	0.000	
	r of obse ator um Functi es of fre ue (Chi-s er Estima nation ard Error	r of observations ator um Function Test States of freedom ue (Chi-square) er Estimates: mation ard Errors Variables: Estimate 0.670 0.660 0.703	r of observations ator um Function Test Statistic es of freedom ue (Chi-square) er Estimates: mation ard Errors Variables: Estimate Std.Err 0.670 0.043 0.660 0.043 0.703 0.045	r of observations ator um Function Test Statistic es of freedom ue (Chi-square) er Estimates: mation ard Errors Variables: Estimate Std.Err Z-value 0.670 0.043 15.422 0.660 0.043 15.256 0.703 0.045 15.565	Actor ML As Function Test Statistic 45.602 As of freedom 50 As (Chi-square) 0.650 As Estimates: Mation Expected Standard Wariables: Estimate Std.Err Z-value P(> z) 0.670 0.043 15.422 0.000 0.660 0.043 15.256 0.000 0.703 0.045 15.565 0.000

z2	0.734	0.048	15.156	0.000	
z 3	0.718	0.046	15.602	0.000	
fY =∼					
y 1	0.391	0.047	8.263	0.000	
y2	0.365	0.045	8.170	0.000	
y3	0.379	0.046	8.273	0.000	
fXZ =∼					
x1z1R	0.365	0.057	6.378	0.000	
x2z2R	0.639	0.077	8.319	0.000	
x3z3R	0.501	0.066	7.563	0.000	
Regressions:					
	Estimate	Std.Err	Z-value	P(> z)	
fY ~					
fX	1.676	0.248	6.756	0.000	
fΖ	-0.075	0.100	-0.750	0.453	
fXZ	0.516	0.134	3.836	0.000	
Covariances:					
	Estimate	Std.Err	Z-value	P(> z)	
fX ∼					
fZ	0.232	0.058	3.987	0.000	
fXZ	0.000				

fZ ∼					
fXZ	0.000				
Intercepts:					
	Estimate	Std.Err	Z-value	P(> z)	
x1	-0.011	0.044	-0.250	0.803	
x2	-0.033	0.044	-0.762	0.446	
x3	-0.027	0.046	-0.594	0.552	
z1	0.035	0.046	0.765	0.444	
z2	0.040	0.047	0.868	0.386	
z3	0.028	0.044	0.640	0.522	
y 1	0.022	0.047	0.461	0.645	
y2	0.055	0.046	1.192	0.233	
у3	0.067	0.045	1.484	0.138	
x1z1R	-0.000	0.042	-0.000	1.000	
x2z2R	-0.000	0.046	-0.000	1.000	
x3z3R	0.000	0.044	0.000	1.000	
fΧ	0.000				
fΖ	0.000				
fΥ	0.000				
fXZ	0.000				

	Estimate	Std.Err	Z-value	P(> z)	
x1	0.511	0.042	12.089	0.000	
x2	0.514	0.042	12.217	0.000	
x3	0.548	0.046	11.975	0.000	
z1	0.523	0.052	10.142	0.000	
z2	0.546	0.052	10.444	0.000	
z3	0.461	0.048	9.704	0.000	
y 1	0.495	0.043	11.379	0.000	
у2	0.541	0.044	12.324	0.000	
у3	0.445	0.040	11.187	0.000	
x1z1R	0.728	0.055	13.249	0.000	
x2z2R	0.673	0.093	7.268	0.000	
x3z3R	0.729	0.069	10.499	0.000	
fX	1.000				
fZ	1.000				
fY	1.000				
fXZ	1.000				


```
chisq df pvalue cfi tli rmsea srmr
45.602 50.000 0.650 1.000 1.004 0.000 0.019
```

```
fitMeasures(out3)[c("aic", "bic")]
```

```
aic bic 22134.09 22378.54
```

```
fitMeasures(out4)[c("aic", "bic")]
```

```
aic bic 15754.44 15923.02
```



```
probeOut4 \leftarrow probe2WayRC(fit = out4, \\ nameX = c("fX", "fZ", "fXZ"), \\ nameY = "fY", \\ modVar = "fZ", \\ valProbe = c(-1, 0, 1) \\ ) \\ probeOut4\$SimpleSlope
```

```
fZ Slope SE Wald p
[1,] -1 1.160686 0.16865988 6.881816 0
[2,] 0 1.676276 0.09909026 16.916660 0
[3,] 1 2.191866 0.15282623 14.342213 0
```

Double Mean Centering

Using the same problem setup as above, we could perform double mean centering by:

1. Mean center every indicator of X and Z:

$$x_1^c = x_1 - \bar{x}_1$$

$$\vdots$$

$$z_1^c = z_1 - \bar{z}_1$$

$$\vdots$$

2. Use the centered indicators to construct all possible product terms: $\{x_1^c z_1^c, x_1^c z_2^c, x_1^c z_3^c, x_2^c z_1^c, x_2^c z_2^c, x_2^c z_3^c, x_3^c z_1^c, x_3^c z_2^c, x_3^c z_3^c\}$.

Double Mean Centering

3. Mean center each product term:

$$(x_1 z_1)^c = x_1^c z_1^c - \overline{x_1^c z_1^c} (x_1 z_2)^c = x_1^c z_2^c - \overline{x_1^c z_2^c} \vdots (x_3 z_3)^c = x_3^c z_3^c - \overline{x_3^c z_3^c}$$

4. Use the mean centered indicators of X and Z, and the "double mean centered" product terms to specify the latent interaction model as represented in the following figure.

Double Mean Centering


```
dat3 ← data.frame(lapply(dat1, scale, scale = FALSE))
tmpDat ← data.frame(
    x1z1 = with(dat3, x1*z1),
    x1z2 = with(dat3, x1*z2),
    x1z3 = with(dat3, x1*z3),
    x2z1 = with(dat3, x2*z1),
    x2z2 = with(dat3, x2*z2).
    x2z3 = with(dat3, x2*z3),
    x3z1 = with(dat3, x3*z1),
    x3z2 = with(dat3, x3*z2),
    x3z3 = with(dat3. x3*z3)
dat3 \leftarrow data.frame(dat3,
                   lapply(tmpDat, scale, scale = FALSE)
```



```
mod5 \leftarrow "
fX = \sim x1 + x2 + x3
fZ = \sim z1 + z2 + z3
fY = \sim y1 + y2 + y3
fXZ = \sim x1z1 + x1z2 + x1z3 +
        x2z1 + x2z2 + x2z3 +
        x3z1 + x3z2 + x3z3
fY \sim fX + fZ + fXZ
fX \sim fZ
x1z1 \sim x1z2 + x1z3 + x2z1 + x3z1
x1z2 \sim x1z3 + x2z2 + x3z2
x1z3 \sim x2z3 + x3z3
x2z1 \sim x2z2 + x2z3 + x3z1
x2z2 \sim x2z3 + x3z2
x2z3 \sim x3z3
x3z1 \sim x3z2 + x3z3
x3z2 \sim x3z3
```



```
"
out5 ← sem(mod5, data = dat3, std.lv = TRUE)
summary(out5)
```

```
lavaan (0.5-20) converged normally after 51 iterations
 Number of observations
                                                    500
 Estimator
                                                     MT.
                                                134.186
 Minimum Function Test Statistic
                                                    111
 Degrees of freedom
 P-value (Chi-square)
                                                  0.066
Parameter Estimates:
 Information
                                               Expected
 Standard Errors
                                               Standard
Latent Variables:
                   Estimate Std.Err Z-value P(>|z|)
 fX = \sim
                               0.043 15.555 0.000
                      0.673
   x 1
```


x2	0.659	0.043	15.260	0.000	
x3	0.702	0.045	15.569	0.000	
fZ =∼					
z1	0.738	0.048	15.360	0.000	
z2	0.734	0.048	15.154	0.000	
z3	0.718	0.046	15.597	0.000	
fY = \sim					
y1	0.386	0.048	8.009	0.000	
y2	0.359	0.045	7.925	0.000	
y3	0.373	0.047	8.018	0.000	
fXZ = \sim					
x1z1	0.367	0.053	6.902	0.000	
x1z2	0.434	0.056	7.715	0.000	
x1z3	0.441	0.053	8.300	0.000	
x2z1	0.550	0.056	9.788	0.000	
x2z2	0.616	0.062	9.970	0.000	
x2z3	0.519	0.057	9.115	0.000	
x3z1	0.504	0.059	8.604	0.000	
x3z2	0.628	0.063	10.039	0.000	
x3z3	0.535	0.059	9.128	0.000	
Regressions:					
	Estimate	Std.Err	Z-value	P(> z)	

fY \sim					
fΧ	1.757	0.270	6.515	0.000	
fΖ	-0.111	0.105	-1.062	0.288	
fXZ	0.557	0.141	3.962	0.000	
Covariances:					
	Estimate	Std.Err	Z-value	P(> z)	
fX \sim					
fΖ	0.232	0.058	3.987	0.000	
x1z1 ∼					
x1z2	0.274	0.033	8.339	0.000	
x1z3	0.309	0.033	9.239	0.000	
x2z1	0.240	0.031	7.675	0.000	
x3z1	0.240	0.032	7.471	0.000	
x1z2 ∼					
x1z3	0.232	0.032	7.217	0.000	
x2z2	0.218	0.036	6.031	0.000	
x3z2	0.250	0.041	6.128	0.000	
x1z3 ∼					
x2z3	0.214	0.031	6.939	0.000	
x3z3	0.211	0.034	6.115	0.000	
x2z1 ∼					
x2z2	0.245	0.042	5.794	0.000	

x2z3	0.257	0.039	6.530	0.000	
x3z1	0.242	0.033	7.310	0.000	
x2z2 ∼					
x2z3	0.307	0.043	7.181	0.000	
x3z2	0.202	0.040	5.007	0.000	
x2z3 ∼					
x3z3	0.137	0.031	4.403	0.000	
x3z1 ∼					
x3z2	0.218	0.041	5.271	0.000	
x3z3	0.260	0.040	6.416	0.000	
x3z2 ∼					
x3z3	0.156	0.041	3.787	0.000	
fX \sim					
fXZ	-0.087	0.067	-1.297	0.195	
fZ ∼					
fXZ	0.040	0.066	0.613	0.540	
Variances:					
	Estimate				
x1			12.086		
x2		0.042			
x3	0.550		12.075		
z1	0.522	0.052	10.122	0.000	

z2	0.547	0.052	10.457	0.000	
z3	0.462	0.047	9.724	0.000	
у1	0.495	0.043	11.391	0.000	
у2	0.542	0.044	12.336	0.000	
у3	0.444	0.040	11.188	0.000	
x1z1	0.752	0.051	14.893	0.000	
x1z2	0.757	0.056	13.619	0.000	
x1z3	0.698	0.051	13.693	0.000	
x2z1	0.659	0.057	11.657	0.000	
x2z2	0.726	0.068	10.733	0.000	
x2z3	0.679	0.056	12.086	0.000	
x3z1	0.751	0.060	12.594	0.000	
x3z2	0.727	0.071	10.291	0.000	
x3z3	0.705	0.061	11.585	0.000	
fX	1.000				
fZ	1.000				
fY	1.000				
fXZ	1.000				


```
chisq df pvalue cfi tli rmsea srmr
134.186 111.000 0.066 0.993 0.991 0.020 0.030
```

```
out5.2 ←
    sem(mod5, data = dat3, std.lv = TRUE, meanstructure =
        TRUE)
probeOut5 ← probe2WayMC(fit = out5.2,
        nameX = c("fX", "fZ", "fXZ"),
        nameY = "fY",
        modVar = "fZ",
        valProbe = c(-1, 0, 1)
        )
probeOut5$SimpleSlope
```

```
fZ Slope SE Wald p
[1,] -1 1.200206 0.1940921 6.183693 0
[2,] 0 1.757342 0.1049521 16.744230 0
[3,] 1 2.314478 0.1546000 14.970750 0
```



```
mod6 \leftarrow "
fX = \sim x1 + x2 + x3
fZ = \sim z1 + z2 + z3
fY = \sim y1 + y2 + y3
fXZ = x1z1 + x2z2 + x3z3
fY \sim fX + fZ + fXZ
fX \sim fZ
011t6 ←
     sem(mod6, data = dat3, std.lv = TRUE, meanstructure =
         TRUE)
summary (out6)
```


lavaan (0.	5-20) d	converged no	rmally af	ter 29 i	iterations	
Number o	f obser	rvations			500	
Estimato	r				ML	
Minimum	Functio	n Test Stat	istic		61.353	
Degrees	of free	edom			48	
P-value	(Chi-sc	quare)			0.093	
Parameter	Estimat	es:				
Informat	ion				Expected	
Standard	Errors	\$			Standard	
Latent Var	iables:					
		Estimate	Std.Err	Z-value	P(> z)	
fX = \sim						
x 1		0.673	0.043	15.578	0.000	
x2		0.661	0.043	15.324	0.000	
x3		0.700	0.045	15.519	0.000	
fZ =∼						
z1		0.739	0.048	15.386	0.000	

z2	0.733	0.048	15.130	0.000	
z3	0.718	0.046	15.605	0.000	
fY =∼					
y 1	0.375	0.051	7.383	0.000	
y2	0.349	0.048	7.318	0.000	
y3	0.363	0.049	7.389	0.000	
fXZ =∼					
x1z1	0.379	0.057	6.599	0.000	
x2z2	0.616	0.073	8.404	0.000	
x3z3	0.522	0.066	7.900	0.000	
Regressions:					
	Estimate	Std.Err	Z-value	P(> z)	
fY \sim					
fΧ	1.833	0.303	6.041	0.000	
fZ	-0.137	0.112	-1.222	0.222	
fXZ	0.629	0.169	3.714	0.000	
Covariances:					
	Estimate	Std.Err	Z-value	P(> z)	
fX ∼					
fZ	0.231	0.058	3.984	0.000	
fXZ	-0.111	0.072	-1.544	0.123	

fZ ∼					
fXZ	0.064	0.071	0.901	0.368	
Intercepts:					
_	Estimate	Std.Err	Z-value	P(> z)	
x1	0.000	0.044	0.000	1.000	
x2	0.000	0.044	0.000	1.000	
x3	-0.000	0.046	-0.000	1.000	
z1	-0.000	0.046	-0.000	1.000	
z2	-0.000	0.047	-0.000	1.000	
z3	0.000	0.044	0.000	1.000	
y 1	-0.000	0.047	-0.000	1.000	
y2	-0.000	0.046	-0.000	1.000	
y3	0.000	0.045	0.000	1.000	
x1z1	0.000	0.042	0.000	1.000	
x2z2	0.000	0.047	0.000	1.000	
x3z3	0.000	0.045	0.000	1.000	
fX	0.000				
fZ	0.000				
fY	0.000				
fXZ	0.000				
Variances:					

	Estimate	Std.Err	Z-value	P(> z)	
x1	0.506	0.042	12.088	0.000	
x2	0.513	0.042	12.281	0.000	
x3	0.553	0.046	12.134	0.000	
z1	0.520	0.052	10.089	0.000	
z2	0.549	0.052	10.503	0.000	
z 3	0.461	0.047	9.722	0.000	
y1	0.494	0.043	11.374	0.000	
у2	0.542	0.044	12.339	0.000	
у3	0.444	0.040	11.189	0.000	
x1z1	0.729	0.056	13.102	0.000	
x2z2	0.720	0.087	8.321	0.000	
x3z3	0.719	0.070	10.215	0.000	
fΧ	1.000				
fΖ	1.000				
fY	1.000				
fXZ	1.000				


```
chisq df pvalue cfi tli rmsea srmr
61.353 48.000 0.093 0.991 0.987 0.024 0.026
```

```
fitMeasures(out5)[c("aic", "bic")]
```

```
aic bic
22197.38 22450.25
```

```
fitMeasures(out6)[c("aic", "bic")]
```

```
aic bic
15774.19 15951.20
```



```
probeOut6 \leftarrow probe2WayMC(fit = out6, \\ nameX = c("fX", "fZ", "fXZ"), \\ nameY = "fY", \\ modVar = "fZ", \\ valProbe = c(-1, 0, 1) \\ ) \\ probeOut6$SimpleSlope
```

```
fZ Slope SE Wald p
[1,] -1 1.204548 0.2303323 5.229609 0
[2,] 0 1.833131 0.1120757 16.356193 0
[3,] 1 2.461715 0.1713437 14.367117 0
```

Orthogonalization vs. Double Mean Centering

Orthogonalization and double mean centering tend to behave comparably, but each has its own strengths:

- When X and Z are bivariate normally distributed, both methods produce the same results.
- As X and/or Z stray from normality, orthogonalization produces biased estimates of the interaction effect, but double mean centering does not.
- Orthogonalization ensures that the latent XZ is perfectly independent of X and Z.
 - The X and Z parameters can be directly interpreted, without any conditioning

[1] -9.790839e-14

```
##
## Use semTools to double mean center:
dat3.2 \( \sim \text{indProd}(\text{data} = \text{dat1},
\text{var1} = c("x1", "x2", "x3"),
\text{var2} = c("z1", "z2", "z3"),
\text{match} = FALSE,
\text{doubleMC} = TRUE)
sum(\text{dat3}[, -c(1:9)] - \text{dat3.2}[, -c(1:9)])
```

[1] 0

Other Things

Moderation in logistic regression:

- Nothing special
- Just include the product term as a predictor
- Make sure to keep track of the weird "multiplicative change in log-odds" interpretation of your coefficients

Other Things

Moderation in logistic regression:

- Nothing special
- Just include the product term as a predictor
- Make sure to keep track of the weird "multiplicative change in log-odds" interpretation of your coefficients

Effect size for conditional process analysis:

- We don't know
- I could not find any work directly addressing the issue
- Fully and partially standardized indirect effects seem like they should still work
- κ^2 and the various flavors of R^2 aren't so clear-cut.

References

- Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. *Psychometrika*, 65(4), 457–474.
- Klein, A., Moosbrugger, H., Schermelleh-Engel, K., & Frank, D. (1997). A new approach to the estimation of latent interaction effects in structural equation models. *SoftStat*, 97, 479–486.
- Lin, G.-C., Wen, Z., Marsh, H. W., & Lin, H.-S. (2010).
 Structural equation models of latent interactions:
 Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation Modeling, 17(3), 374–391.
- Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. *Structural Equation Modeling*, 13(4), 497–519.