Sphinx Packets

Decentralized Header Construction

Aurélien Chassagne

February 18, 2025

Aurélien Chassagne Sphinx Packets February 18, 2025 1/16

990

Schema overview

3/16

Desired properties

Generic properties

- Correctness: schema works without adversary
- Compactness: Minimal overhead
- **Efficiency**: Easy and fast to compute (e.g. XOR, hash, exponentiation,...)

4/16

Aurélien Chassagne Sphinx Packets February 18, 2025

Desired properties

- Generic properties
 - Correctness: schema works without adversary
 - Compactness: Minimal overhead
 - **Efficiency**: Easy and fast to compute (e.g. XOR, hash, exponentiation,...)
- Depends on the mixnode
 - Forward / reply Undistinguishibility: Cannot distinguish forward from reply packet
 - Replay attack resistant:: Cannot reused previous packet

4/16

Aurélien Chassagne Sphinx Packets February 18, 2025

Desired properties

- Generic properties
 - Correctness: schema works without adversary
 - Compactness: Minimal overhead
 - **Efficiency**: Easy and fast to compute (e.g. XOR, hash, exponentiation,...)
- Depends on the mixnode
 - Forward / reply Undistinguishibility: Cannot distinguish forward from reply packet
 - Replay attack resistant:: Cannot reused previous packet
- Depends on the header
 - Integrity: Maximum size path
 - Wrap-resistance: Unable to increase the intial path
 - Unlinkability: Cannot link incoming and outgoing packet from a mixnode

Original schema

My schema

Aurélien Chassagne Sphinx Packets February 18, 2025 5/16

 n_1 γ_1 n_2 γ_2 n_3 γ_3 IP

200

12 / 16

Aurélien Chassagne Sphinx Packets February 18, 2025 13/16

Main problem: Decentralizing a Hash?

Main problem: Decentralizing a Hash?

 Need homomorphic properties to split computation and aggregate results.

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).
- Exploring homomorphic encryption as an alternative.

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).
- Exploring homomorphic encryption as an alternative.
 - RSA
 - ② ElGamal
 - 3 Paillier

Aurélien Chassagne Sphinx Packets February 18, 2025 14 / 16

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).
- Exploring homomorphic encryption as an alternative.
 - 1 RSA
 - 2 ElGamal
 - 3 Paillier

$$\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = (g^{m_1} r_1^n) (g^{m_2} r_2^n) \mod n^2$$

$$= g^{m_1 + m_2} (r_1 r_2)^n \mod n^2$$

$$= \mathcal{E}(m_1 + m_2).$$

Problem: Mix of different operations... order matters!

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).
- Exploring homomorphic encryption as an alternative.
 - 1 RSA
 - 2 ElGamal

$$\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = (g^{r_1}, m_1 \cdot h^{r_1})(g^{r_2}, m_2 \cdot h^{r_2})$$
$$= (g^{r_1 + r_2}, (m_1 \cdot m_2)h^{r_1 + r_2})$$
$$= \mathcal{E}(m_1 \cdot m_2)$$

3 Paillier

Limitation: Increase ciphertext size...

14 / 16

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).
- Exploring homomorphic encryption as an alternative.
 - RSA

$$\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = m_1^e m_2^e \mod n$$

= $(m_1 m_2)^e \mod n$
= $\mathcal{E}(m_1 \cdot m_2)$

- **ElGamal**
- Paillier

Main problem: Decentralizing a Hash?

- Need homomorphic properties to split computation and aggregate results.
- Secure homomorphic hash seems impractical (no promising solutions found).
- Exploring homomorphic encryption as an alternative.
 - RSA
 - 2 ElGamal
 - 3 Paillier

Selected solution: RSA for integrity tag

NB: s_i is different for each TTP but RSA required the same e... Thus, create a new shared secret s_i' common to all TTP

Since we use **RSA** for integrity tag γ_i

 Aurélien Chassagne
 Sphinx Packets
 February 18, 2025
 15 / 16

Since we use **RSA** for integrity tag γ_i

$$\mathcal{E}(m_1)\cdot\mathcal{E}(m_2) = m_1^e m_2^e \mod n$$

= $(m_1 m_2)^e \mod n$
= $\mathcal{E}(m_1 \cdot m_2)$

Since we use **RSA** for integrity tag γ_i

$$\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = m_1^e m_2^e \mod n$$

$$= (m_1 m_2)^e \mod n$$

$$= \mathcal{E}(m_1 \cdot m_2)$$

Modular multiplication of integrity tags gives integrity tag of headers' modular product.

Aurélien Chassagne Sphinx Packets February 18, 2025 15 / 16

Since we use **RSA** for integrity tag γ_i

$$\mathcal{E}(m_1) \cdot \mathcal{E}(m_2) = m_1^e m_2^e \mod n$$

$$= (m_1 m_2)^e \mod n$$

$$= \mathcal{E}(m_1 \cdot m_2)$$

Modular multiplication of integrity tags gives integrity tag of headers' modular product.

Thus, header elements must be combined via modular multiplication rather than XOR.

15 / 16

• Current Challenge: Overflow issues

Aurélien Chassagne Sphinx Packets February 18, 2025 16 / 16

- Current Challenge: Overflow issues
- Handling these issues is challenging.
 It may lead to information loss
 (further research is required).

Aurélien Chassagne Sphinx Packets February 18, 2025 16 / 16

- Current Challenge: Overflow issues
- Handling these issues is challenging.
 It may lead to information loss
 (further research is required).
- Proposed solution: Simplify by dividing data into small chunks and processing each chunk modulo its size.

