Grundbegriffe und Schreibweisen

Yoan Tchorenev, Julian Hackenberg

2. Oktober 2022

Inhaltsverzeichnis

1	Log	çik	1
	1.1	Begriffe	1
	1.2	Terme	2
	1.3	Beweise	2
2	Mei	ngenlehre	3
	2.1	Begriffe	3
	2.2	Operationen auf Mengen	5
3	Fun	aktionen	6
	3.1	Begriffe	6
	3.2	Umkehrfunktion	7
		3.2.1 Potenzfunktion	8
		3.2.2 Exponentialfunktionen	8
4	Zah	ılen	9
	4.1	Sprachunterschiede	9
	4.2	natürliche Zahlen	9
	4.3	Ganze Zahlen	10
	4.4	Primzahlen	11
	4.5	Teilbarkeit	11
	4.6	ggT und kgV	11

		4.6.1 mit Primfaktorisierung	12
		4.6.2 Euklidischer Algorithmus	12
	4.7	Rationale Zahlen	13
	4.8	Reelle Zahl	14
	4.9	Additionssysteme	15
	4.10	Positionssysteme	16
		4.10.1 Umrechnung	16
5	Rec	hnen	16
	5.1	Summe & Produkt	16
	5.2	Vereinigung & Schnitt	18
	5.3	Potenzgesetze	18
	5.4	Fakultäten	19
	5.5	Binomialkoeffizient	19
	5.6	Umformungen von Termen	20
		5.6.1 Faktorisieren	21
	5.7	Proportionalität	21
		5.7.1 Prozentrechnung	22
	5.8	Gleichungen	22

1 Logik

1.1 Begriffe

Aussage: Eine Aussage ist eine Formel oder ein sprachliches Gebilde dem genau ein Wahrheitswert zugeordnet werden kann.

Warheitswerte Genau der Eine oder der Andere

${f F}$ alsch	\mathbf{W} ahr
0	1
\perp	T
\mathbf{L} ow	\mathbf{H} igh

Aussagevariable A,B,C etc. stehen für eine Aussage

Junktoren (Verknüpfer)

Negation
$$\neg A$$
 "nicht", "NOT", auch: A, \bar{A}, A'

$$\begin{array}{c|c}
A & \neg A \\
\hline
0 & 1 \\
1 & 0
\end{array}$$
 Mathematisch: $\neg A = (A+1) \bmod 2$

Konjunktion $A \wedge B$ "A und B", "AND", auch $A \cdot B$, AB

A	В	$A \wedge B$	Mathematisch:	$A \wedge B = A \cdot B$
0	0	0	Kommutativ:	$A \wedge B \equiv B \wedge A$
0	1	0	Assoziativ:	$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$
1	0	0	Idempotent:	$A \wedge A \equiv A$
1	1	1	$A \land \bot \equiv \bot$	$A \wedge \top \equiv A$
	A 0 0 1 1	A B 0 0 0 0 1 1 0 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 0 1 0 0 Kommutativ: Assoziativ: Idempotent:

Disjunktion $A \vee B$ "A oder B" (inklusiv), "OR"

Α	В	$A \vee B$	Mathematisch:	$A \vee B = \min(A + B; 1)$
0	0	0	Kommutativ:	$A \vee B \equiv B \vee A$
0	1	1	Assoziativ:	$A \lor (B \lor C) \equiv (A \lor B) \lor C$
1	0	1	Idempotent:	$A \lor A \equiv A$
1	1	1	$A \lor \bot \equiv A$	$A \lor \top \equiv \top$

Kontravalenz $A\dot{\vee}B$ "entweder A, oder B" (exklusiv), "XOR", auch: $A\oplus B$

Α	В	$A\dot{\vee}B$	Mathematisch:	$A\dot{\lor}B = (A+B) \bmod 2$
0	0	0	Kommutativ:	$A\dot{\vee}B \equiv B\dot{\vee}A$
0	1	1	Assoziativ:	$A\dot{\vee}(B\dot{\vee}C) \equiv (A\dot{\vee}B)\dot{\vee}C$
1	0	1	¬ Idempotent:	$A\dot{\vee}A\equiv\bot$
1	1	0	$A\dot{\lor}\bot \equiv A$	$A\dot{\lor}\top \equiv \neg A$

Konditional $A \Rightarrow B$ "wenn A dann B" auch "Subjunktion", "Implikation", "IMPLY"

Α	B	$A \Rightarrow B$	A	В	$A \Rightarrow B \equiv \neg A \lor B$
0	0	1	Prämisse	Konklusion	Mathematisch: $A \Rightarrow B =$
0	1	1	Voraussetzung	Konsequenz	$\min((A+1) \bmod 2 + B; 1)$
1	0	0	hinreichende	notwendige	
1	1	1			

Eigenschaften $A \Rightarrow \bot \equiv \neg A$; $A \Rightarrow \top \equiv \top$; $\bot \Rightarrow A \equiv \top$; $\top \Rightarrow A \equiv A$

Kontraposition $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Abtrennungsregel $(A \land (A \Rightarrow B)) \Rightarrow B$

Kettenschluss $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$

Bikonditional $A \Leftrightarrow B$ "A genau dann, wenn B", "XNOR", auch "Äquivalenz" \equiv

A	В	$A \Leftrightarrow B$	Mathematisch:	$A \Leftrightarrow B = (A + B + 1) \bmod 2$
0	0	1		$A \Leftrightarrow B \equiv B \Leftrightarrow A$
0	1	0		$A \Leftrightarrow (B \Leftrightarrow C) \equiv (A \Leftrightarrow B) \Leftrightarrow C$
1	0	0	¬ Idempotent:	
1	1	1	$A \Leftrightarrow \bot \equiv \neg A$	$A \Leftrightarrow \bot \equiv A$

1.2 Terme

Tautologie Ein Term W heißt Tautologie, wenn er nur den Wahrheitswert 1 hat.

Äquivalenz Zwei aussagenlogische Terme W und V heißen logisch äquivalent

$$W \equiv V$$

wenn sie gleichen Wahrheitswert haben. Zwei Terme W und V sind genau dann logisch äquivalent, wenn der Term $W \Leftrightarrow V$ Tautologie ist.

Klammern Regeln:

- Außenklammern können weggelassen werden
- Die stärke der Zeichen ist konventionell: $\neg > \land > \lor$. D.h.:

$$\neg A \lor B \land C \equiv (\neg A) \lor (B \land C)$$

• \land und \lor sind distributiv zueinander:

$$A \wedge (A \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$
$$A \vee (A \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

• \wedge ist distributiv über $\dot{\vee}$:

$$A \wedge (B\dot{\lor}C) \equiv (A \wedge B)\dot{\lor}(A \wedge C)$$

De-Morganische Gesetze

$$\overline{A \wedge B} \equiv \overline{A} \vee \overline{B}$$

$$\overline{A \vee B} \equiv \overline{A} \wedge \overline{B}$$

1.3 Beweise

Aussageform Haben die Form einer Aussage, enthalte aber Variablen.

$$3 + x = 5$$
; $A(x)$; $B(x; y)$

• werden zu Aussagen, wenn die Variablen belegt werden. Für die Variablen ist ein eingrenzender Grundbereich vorzugeben. Z. B.: $x \in \mathbb{N}$

• Wie Aussagen kann man Aussageformen miteinander Verknüpfen (mit Junktoren) und man erhält neue Aussageformen.

Quantoren Außer der Belegung der Variablen mit Werten, gibt es noch andere Möglichkeiten aus einer Aussageform eine Aussage zu machen. Ein Grundbereich M muss vorgegeben sein.

"Für alle x aus M gilt A(x)"

Für alle $x \in \mathbb{N}$ gilt 3 + x = 5 (falsche Aussage) kurz mit Allquantor \forall :

$$(\forall x \in \mathbb{N}) \ 3 + x = 5$$

"Es existiert ein x aus M mit A(x)"

Es existiert (mindestens) ein $x \in \mathbb{N}$ mit 3+x=5 (wahre Aussage) kurz mit Existenzquantor \exists :

$$(\exists x \in M) \ 3 + x = 5$$

"Es existiert höchsten ein x aus M mit A(x)"

$$(\forall x)(\forall y) \ (A(x) \land A(y) \Rightarrow x = y)$$

"Es existiert genau ein x aus M mit A(x)"

$$(\exists!x)A(x) \equiv ((\exists x)A(x)) \land ((\forall x)(\forall y) \ (A(x) \land A(y) \Rightarrow x = y))$$

2 Mengenlehre

2.1 Begriffe

Georg Cantor (1845-1918)

Cantors naive Mengendefinition Unter einer Menge verstehen wir eine Zusammenfassung von wohldefinierten Objekten m unserer Anschauung oder unseres Denkens welche die Elemente von M genannt werden, zu einem einheitlichen Ganzen.

Schreibweise

- $m \in M$ (m ist Element von M)
- $m \notin M$ (m ist nicht Element von $M, \neg m \in M$)

Mengendarstellung verschiedene Möglichkeiten:

• allgemein mittels Eigenschaft E(m) (Aussageform) $A = \{m|E(m)\}$ bzw.

$$A = \{m \in M | E(m)\} = \{m | m \in M \land E(m)\}$$

• explizit für Menge mit wenigen endlich vielen Elementen:

$$A = \{a, b, c\}$$

Problem Man darf nicht alle möglichen Zusammenfassungen bilden. Z. B.: die Menge aller Mengen die sich nicht selbst enthalten:

$$R = \{M | M \not\in M\}$$
$$R \in R \Leftrightarrow R \not\in R \equiv \bot$$

Lösung Axiomatischer Aufbau der Mengenlehre

Extensionalitätsaxiom Zwei Mengen A und B sind genau dann gleich, wenn sie dieselben Elemente haben:

$$A = B \Leftrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)$$

Leere Menge $\emptyset = \{x | x \neq x\} = \{\}$

Einermenge $A = \{a\}, A = \{x | x = a\}, A \neq a$

Zweiermenge $A = \{a; b\}, A = \{x | (x = a \lor x = b) \land a \neq b\}$

andere Mengen

- $\mathbb{N} = \{0; 1; 2; 3; \dots\}$ natürliche Zahlen
- $\mathbb{Z} = \{\ldots; (-1); 0; 1; \ldots\}$ ganze Zahlen
- $\bullet \ \mathbb{Q}$ rationale Zahlen
- \bullet \mathbb{R} reelle Zahlen
- C komplexe Zahlen

Betrag Anzahl der Elemente in der Menge (bei endlichen Mengen)

Teilmenge $A \subseteq B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B)$

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$
$$A \subseteq B \land B \subseteq A \Rightarrow A = B$$

Echte Teilmenge $A \subset B$ oder $A \subsetneq B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B) \land A \neq B$

disjunkt Die Mengen A und Bheißen disjunkt (elementfremd) wenn: $A\cap B=\emptyset$

Kardinalität Mächtigkeit

gleichmächtig Zwei Mengen A; B heißen gleich mächtig, wenn es eine bijektive Funktion $f: A \longrightarrow B$ gibt.

$$A \sim B \Leftrightarrow (\exists f : A \longrightarrow B)$$

 $A \sim B \land B \sim C \Rightarrow A \sim C$

endlich Menge A heißt endlich, wenn $|A| \in \mathbb{N}$

abzählbar unendlich Eine Menge A heißt abzählbar unendlich, wenn

$$\mathbb{N} \sim A \wedge \exists f : \mathbb{N} \longrightarrow A \text{ (bijektiv)}$$

nicht abzählbar unendlich Meine Menge heißt nicht abzählbar unendlich, wenn sie weder endlich noch abzählbar unendlich ist.

Potenzmengen $M \nsim \mathcal{P}(M)$

Beweis: Angenommen es gäbe eine bijektive Funktion $f: A \longrightarrow \mathcal{P}(M)$ und

$$A = \{x \in M | x \not\in f(x)\} \subset M$$

Wir nehmen an dass $(\exists x \in M) \ f(x) = A$

- wenn $x \in f(x)$ dann $x \notin A$ wegen $x \notin f(x)$. Widerspruch da: $x \notin A = x \notin f(x)$
- wenn $x \notin f(x)$ dann $x \in A$ wegen $x \in M$. Widerspruch da: $x \notin A = x \notin f(x)$

2.2 Operationen auf Mengen

Vereinigung $A \cup B = \{x | x \in A \lor x \in B\}$

$$|A \cup B| = |A| + |B \setminus A|$$
$$= |B| + |A \setminus B|$$

Durchschnitt $A \cap B := \{x | x \in A \land x \in B\}$

$$|A \cap B| = |A| - |A \setminus B|$$
$$= |B| - |B \setminus A|$$

Mengendifferenz $A \setminus B = \{x | x \in A \land x \notin B\}$

symmetrische Differenz $A\Delta B = (A \setminus B) \cup (B \setminus A)$

$$|A\Delta B| = |A \setminus B| + |B \setminus A|$$

Potenzmengen $\mathcal{P}(A) := \{B | B \subseteq A\}; |\mathcal{P}(A)| = 2^{|A|}$

ungeordnets Paar $\{a,b\} = \{c,d\} \Rightarrow (a=c \land b=d) \lor (a=d \land b=c)$

geordnetes Paar $\{a,b\} = \{c,d\} \Rightarrow a = c \land b = d \text{ (Das geht!)}$

Mengenprodukt $A \times B = \{(a, b) | a \in A \land b \in B\}$ (nicht Kommutativ, (strenggenommen) nicht assoziativ)

$$(A \times B) \times C \neq A \times (B \times C)$$
$$((a, b), c) \neq (a, (b, c))$$

Gegeben sein

$$A = \{1, 2\}$$
$$B = \{a, b, c\}$$

dann ist:

$$A \times B = \{(1, a), (2, a)(1, b)(2, b), (1, c)(2, c)\}\$$

$$|A \times B| = |A| \cdot |B|$$

3 Funktionen

Funktionen sind im wesentlich Zuordnungen.

3.1 Begriffe

Definition Zur Definition einer Funktion f braucht man drei Dinge

- Menge A, der Definitionsbereich von f, $A = D_f$
- Menge B, der Wertevorrat von f, $B = W_f$
- Eine Zuordnung, die jedem $a \in A$ genau ein Element $b \in B$ zuordnet Schreibweise: b = f(a) bzw. $a \longmapsto f(a)$ Mathematisch wird diese Zuordnung gegeben durch eine Menge von geordneten Paaren

$$Graph(f) = \{(a, f(a)) | a \in A\} \subseteq A \times B$$

mit den Eigenschaften:

- $(\forall a \in A)(\exists b \in B) (a; b) \in Graph(f) (Vollständigkeit)$
- $-(\forall a \in A)(\forall b_1, b_2 \in B) \ (a; b_1); (a; b_2) \in Graph(f) \Rightarrow b_1 = b_2 \ (Eindeutigkeit)$

Schreibweise

$$f: A \longrightarrow B$$
 , $a \longmapsto f(a) = \cdots$
 $D_f \quad W_v$ Graph

Bild Die Menge aller Funktionswerte von f. $\{f(a)|a\in A\}=\{b\in B|(\exists a\in A)b=f(a)\}\subseteq B$

surjektiv $(\forall b \in B)(\exists a \in A) \ f(a) = b$

Für jedes Element in B existiert (mindestens) ein Urbild in A. Für jede rein surjektive Abbildung gilt:

injektiv $(\forall a_1, a_2 \in A)(a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2))$

Für jede zwei Elemente in A gilt, dass wenn sie verschieden voneinander sind, dann auch ihre Funktionswerte von f verschieden sind. Also hat jedes Element in B höchstens ein Urbild. Für jede rein injektive Abbildung gilt:

bijektiv surjektiv \land injektiv: $(\forall b \in B)(\exists! a \in A) \ f(a) = b$

Für jedes Element in B existiert genau ein Urbild in A. Für jede bijektive Abbildung gilt:

$$|A| = |B|$$

Identitätsfunktion $id_A: A \longrightarrow A, a \longmapsto a \text{ z.B. } f(x) = x$

Komposition $f: A \longrightarrow B; g: B \longrightarrow C$

$$(g \circ f) : A \longrightarrow C, a \longmapsto g(f(a))$$

$$f: A \longrightarrow B \Rightarrow f = f \circ id_A = id_A \circ f$$

 $f(a) = f(id_A(a)) = id_A(f(a))$

3.2 Umkehrfunktion

Umkehrbarkeit (im engeren sinne) $f: A \longrightarrow B$

$$\leftrightarrow (\exists g : B \longrightarrow A)g \circ f = id_A \land f \cdot g = id_B$$
$$(\forall a \in A) \ g(f(a)) = a$$
$$(\forall b \in B) \ f(g(b)) = b$$

Die Funktion $g: B \longrightarrow A$ heißt dann Umkehrfunktion von f, geschrieben $g = f^{-1}$.

$$f^{-1} \neq (f)^{-1}$$

Satz: Eine Funktion $f:A\longrightarrow B$ ist genau dann umkehrbar (i.e.s), wenn sie bijektiv ist.

Umkehrbarkeit in der Analysis Eine Funktion $f:A\longrightarrow B$ heißt Umkehrbar, wenn die zugehörige Funktion $f:A\longrightarrow \operatorname{Bild}(f)$ umkehrbar ist. Satz: Eine Funktion $f:A\longrightarrow B$ ist genau dann umkehrbar (i.w.s), wenn sie injektiv ist.

3.2.1 Potenzfunktion

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto x^n$$

quadratisch

 $f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto x^2$

 $f^{*-1}: \mathbb{R}_0^+ \longrightarrow \mathbb{R}, \ x \longmapsto \sqrt{x}$

kubisch

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto x^3$$

 $f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \sqrt[3]{x}$

3.2.2 Exponentialfunktionen

 $f: \mathbb{R} \longrightarrow \mathbb{R}^+, \ x \longmapsto b^x \mid b \in \mathbb{R}^+ \setminus \{1\}$ $f*^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}, \ x \longmapsto \log_2(x)$ y

4 Zahlen

4.1 Sprachunterschiede

	deutsch	US-Englisch
10^{6}	Million	million
10^{9}	Milliarde	billion
10^{12}	Billion	trillion
10^{15}	Billiarde	quadrillion
10^{18}	Trillion	quintillion

4.2 natürliche Zahlen

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

unendlichkeits Axiom Es gibt unendliche Mengen

Peano-Axiome 5 Stück:

- $0 \in \mathbb{N}$, null ist eine natürliche Zahl
- es gibt eine Nachfolgerfunktion $s: \mathbb{N} \longrightarrow \mathbb{N}$
- s ist injektiv
- $0 \notin Bild(s)$, Null ist nicht Nachfolger einer natürlichen Zahl
- Für jede Menge $M \subseteq \mathbb{N}$ gilt:

$$(0 \in \mathbb{N} \land (\forall n \in \mathbb{N})(n \in M \Rightarrow s(n) \in M)) \Rightarrow M = \mathbb{N}$$

Modifikation: steht $M \subseteq \mathbb{N}$ kann man das auch als Eigenschaft $E_M(n)$ ausdrücken.

$$E_M(n) \Leftrightarrow n \in M$$

Vollständige Induktion am Beispiel für einen Beweis der Gaußschen Summenformel

Induktionsvoraussetzung Die Annahme: $A(n) \Leftrightarrow 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ Induktionsanfang Der Beweis, dass der Anfang gültig ist: A(1) = 1Induktionsbehauptung Das Einsetzen von (n+1) für n:

$$A(n+1) \Leftrightarrow 1 + \dots + n + (n+1) = \frac{(n+1)((n+1)+1)}{2}$$

Induktionsschritt Zeigen, dass aus der Induktionsvoraussetzung

$$A(n) \Leftrightarrow 1 + \dots + n = \frac{n(n+1)}{2}$$

die Induktionsbehauptung

$$A(n+1) \Leftrightarrow 1 + \dots + n + (n+1) = \frac{(n+1)((n+1)+1)}{2}$$

folgt. In diesem speziellen Fall:

$$A(n+1) \Leftrightarrow 1 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= \frac{(n+1)((n+1)+1)}{2}$$

Addition $m \in \mathbb{N}$; m fest

$$m + 0 := m$$
$$m + s(n) := s(m + n)$$

(rekursive (induktive) Definition für m+n)

$$m \cdot 0 := 0$$
$$m \cdot s(n) := m + s(m+n)$$

4.3 Ganze Zahlen

 $\begin{array}{c} \textbf{Motivation} \ \ \mathbb{Z} \coloneqq \{0,1,-1,2,-2\dots\} \ (\text{abz\"{a}hlbar}) \\ x+1=0 \quad \text{ist nicht l\"{o}sbar in } \mathbb{N} \\ x+a=0 \quad \text{man nimmt zu jeder Zahl } a \in \mathbb{N} \ \text{eine Gegenzahl } -a \\ \text{L\"{o}sung f\"{u}r} \ x+a=0 \ \ (\text{Ausnahme: } a=0, \ \text{denn } -0=0) \\ \end{array}$

Operationen +; -; \cdot

spezielle Elemente 0, 1

lineare Ordnung <; \leq ; >; \geq

Gesetze $(\forall a \in \mathbb{Z})$ gilt:

	Addition	Multiplikation
	a+0=a	$a \cdot 1 = a$
Kommutativ	a + b = b + a	$a \cdot b = b \cdot a$
Assoziativ	(a+b) + c = a + (b+c)	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
	a + (-a) = 0	

Ring-Identitäten: $a \cdot (b+c) = a \cdot b + a \cdot c$

Betrag
$$|a| = \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

Division Es sein $a; m \in \mathbb{Z} | m \ge 1$ dann gibt es $q \in \mathbb{Z}$ mit $a = q \cdot m + r$ und $0 \le r < m$. q; r sind eindeutig bestimmt

4.4 Primzahlen

Teiler $a; b \in \mathbb{Z}$

a ist ein Teiler von b, geschrieben $a \mid c$, falls $(\exists c \in \mathbb{Z})$ $a \cdot c = b$

Jede ganze Zahl b ist teilbar durch: 1, -1, b , -b. Diese heißen die trivialen Teiler von b. Eigenschaften:

$$\begin{array}{l} a \mid 0; \ a \mid 0 \\ a \mid b \wedge b \mid c \Rightarrow a \mid b \\ a \mid b \Rightarrow a \mid (-b), (-a) \mid b, (-a) \mid (-b) \\ a; b \geq 1 \wedge a \mid b \Rightarrow a < b \end{array}$$

Primzahl Eigenschaften:

- Eine ganze Zahl $p \in \mathbb{Z}$ heißt Primzahl, wenn $p \geq 2$ und p nur triviale Teiler hat.
- Jede ganze Zahl $b \ge 2$ hat mindesten einen Primitiver.
- Es gibt unendlich viele Primzahlen. Beweis durch Widerspruch

$$|\mathbb{P}| \in \mathbb{N}$$

n sei die Anzahl aller Primzahl, und alle Primzahlen seien in der Menge \mathbb{P} . Man bilde $b=\prod_{p\in\mathbb{P}}+1$. Dann ist $b\geq 2$ und laut Hilfssatz hat b einen Primteiler, dieser sei q.

Damit hat man eine Primzahl $q \notin \mathbb{P}$ gefunden. Daraus folgt, dass die Konstruktion $\mathbb{P} = \{p_1; \ldots; p_n\} | n \in \mathbb{N}$ nicht alle Primzahlen enthalten kann.

- Der kleinste Teiler einer Zahl $b \in \mathbb{N} | b \ge 2$ ist eine Primzahl.
- Der kleinste Primteiler p einer Zahl $a \in \mathbb{Z}; \ a \geq 2; \ a \notin \mathbb{P}$ ist $p \leq \sqrt{a}$

Fundamentalsatz der Arithmetik Jede Zahl $b \geq 2$ lässt sich als Produktion von Primzahlen darstellen (Primfaktorisierung). Vorkommende Primzahlen und ihre Anzahl sind bis auf Reihenfolge eindeutig bestimmt.

4.5 Teilbarkeit

```
a \in \mathbb{Z}, \ a \geq 2, \ a = (z_{n-1}z_{n-2} \dots z_1z_0)

2 \Leftrightarrow z_0 \text{ gerade}

3 \Leftrightarrow \text{Quersumme durch 3 teilbar}

4 \Leftrightarrow (z_1z_0)_{10} \text{ durch 4 teilbar}
```

 $5 \Leftrightarrow z_0 \in \{0; 1\}$

 $6 \Leftrightarrow \operatorname{durch} 2 \text{ und } 3 \text{ teilbar}$

 $7 \Leftrightarrow \dots$

 $8 \Leftrightarrow (z_2 z_1 z_0)_{(10)} \text{ durch } 8 \text{ teilbar}$

 $9 \Leftrightarrow \text{quersumme durch } 9 \text{ teilbar}$

10 \Leftrightarrow durch 2 und 5 teilbar bzw. $z_0 = 0$

4.6 ggT und kgV

Sein $a; b \in \mathbb{Z}$

Ein gemeinsamer Teiler von a und b ist eine Zahl $t \in \mathbb{N}$ mit $t \mid a$ und $t \mid b$. Abkürzung: ggt(a; b).

Ein gemeinsames vielfaches von a und b ist ein $s \in \mathbb{Z}$ mit $a \mid s$ und $b \mid s$. Abkürzung: kgv(a;b).

4.6.1 mit Primfaktorisierung

$$a \dots p^m$$
; $a \dots p^n$
 $ggT(a;b) \quad p^{\min(m;n)}$; $kgV(a;b) \quad p^{\max(m;n)}$
 $m+n = \min(m;n) + \max(m;n) \Rightarrow a \cdot b = ggt(a;b) \cdot kgv(a;b)$
 $a = 5940 = 2^2 \cdot 3^3 \cdot 5 \cdot 11$
 $b = 11760 = 2^4 \cdot 3 \cdot 5 \cdot 7$

4.6.2 Euklidischer Algorithmus

- Es sein $a_1; a_2 \in \mathbb{Z}, a_1 > a_2 \ge 1$
- Division mit Rest: $a_1 = q_2a_2 + a_3$ mit $0 \le a_3 < a_2$
- Sei g gem. Teiler von a_1 und a_2 , $a_1 q_2 \cdot a_2 = a_3 \Rightarrow g$ gem. Teiler von a_2 und a_3
- Sei g gem. Teiler von a_2 und a_3 , $a_1 = q_2 \cdot a_2 + a_3 \Rightarrow g$ gem. Teiler von a_1 und a_2
- $\bullet \Rightarrow \operatorname{ggT}(a_1; a_2) = \operatorname{ggT}(a_2; a_3)$
- $a_n = q_{n+1}a_{n+1} + 0 \Rightarrow ggT(a_n; a_{n+1}) = ggT(a_1, a_2) = a_{n+1}$

Beispiel: ggT(851, 2183); a = 2183; $a_2 = 851$

$$2183 = 2 \cdot 851 + 481$$

$$851 = 1 \cdot 481 + 370$$

$$481 = 1 \cdot 370 + 111$$

$$370 = 3 \cdot 111 + 37$$

$$111 = 3 \cdot 37$$

ggT(851; 2183) = 37

- Es gibt die darstellung $ggT(a_1; a_2) = s \cdot a_1 + t \cdot a_2$ mit $s; t \in \mathbb{Z}$
- $a; c \in \mathbb{Z}$ heißen Teilerfremd wenn ggT(a; b) = 1
- Sei $t \mid a \cdot b$ und a; t teilerfremd $\Rightarrow t \mid b$
- Sei $p \in \mathbb{P}$ und $p \mid a \cdot b \Rightarrow p \mid a \vee p \mid b$ denn:

Fall 1 $p \mid a$ Ausdruck wahr

Fall 2
$$p \nmid a \Rightarrow ggT(p; a) = 1$$

4.7 Rationale Zahlen

Problem $a \nmid a$, $a \cdot x = a$ nicht lösbar in \mathbb{Z}

Lösung nehmen $\frac{a}{b}$ hinzu. $\mathbb{Q} := \{\frac{a}{b} | a; b \in \mathbb{Z} \land b \neq 0\}$ außerdem: $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$. Eine rationale Zahl entspricht also einer Menge von Brüchen, die als selbe Zahl, betrachtet werden.

Also $\frac{a}{b} = \frac{a \cdot t}{b \cdot t}$ denn $a \cdot b \cdot t = a \cdot t \cdot b$. Jede rationale Zahl entspricht genau einem unkürzbaren Bruch $\frac{a}{b}$ mit ggT(a;b) = 1 und $b \ge 1$.

Einbettung: $\mathbb{Z} \ni z \longmapsto \frac{z}{1} \in \mathbb{Q}$, dann gilt $\mathbb{Z} \subset \mathbb{Q}$

 \mathbb{Q} unendlich, $\mathbb{N} \sim \mathbb{Q}$, \mathbb{Q} abzählbar: wir sortieren a+b nach $\frac{a}{b}$

$$\begin{array}{ccccc} a+b=1 & & \frac{0}{1} \\ a+b=2 & \frac{0}{2} & \frac{1}{1} \\ a+b=3 & \frac{0}{3} & \frac{1}{2} & \frac{2}{1} \end{array}$$

Operationen

$$\frac{a}{b} + \frac{c}{d} := \frac{ad + bc}{bd}$$

$$\frac{a}{b} - \frac{c}{d} := \frac{ad - bc}{bd}$$

$$q = \frac{a}{b}; \ a \neq ; \ b \not 0$$

$$q^{-1} = \frac{b}{a}$$

$$q \cdot q^{-1} = \frac{ab}{ab} = 1$$

$$\frac{c}{d} : \frac{a}{b} := \frac{c}{d} \left(\frac{a}{b}\right)^{-1}$$

Bruchstrich entspricht Division Division ist nicht assoziativ

$$q:v:s\neq q:(v:s)$$

Identitäten Gleichungen der form $qx = r \ (q; r \in \mathbb{Q}); \ q \neq 1$ sind nach x für $x \in \mathbb{Q}$ lösbar:

$$x = r \cdot q^{-1}$$

 $(x + y) + z = x + (x + 1)$ $(xy)z = x(yz)$
 $x + y = y + x$ $xy = yx$
 $x + 0 = x$ $x * 1 = x$
 $x + (-x) = 0$ xx^{-1} wenn $x \neq 0$
 $x - y = x + (-y)$ $x : y = xy^{-1}$
 $x(y + z) = xy + xz$

 $\mathbb Q$ ist ein Körper. Die Elemente in $\mathbb Q$ haben eine lineare Ordnung. Die Zahlen liegen dicht auf dem Zahlenstrahl

4.8 Reelle Zahl

 \mathbb{R} ist nicht abzählbar unendlich.

Problem Es gibt keine rationale Zahl $q \in \mathbb{Q}$ mit $q^2 = 2$

Annahme Es gibt $q \in \mathbb{Q}$ mit $q^2 = 2$. Damit gibt es $a; b \in \mathbb{Z}$ mit $q = \frac{a}{b}, a; b \ge 1$, $\operatorname{ggT}(a; b) = 1$

$$q^{2} = \left(\frac{a}{b}\right)^{2} = 2$$

$$\frac{a}{b} = 2$$

$$a^{2} = 2b^{2}$$

$$\Rightarrow 2 \mid a^{2}$$

$$\Rightarrow 2 \mid a$$

$$\Rightarrow (\exists a_{0} \in \mathbb{Z}) \ a = 2a_{0}$$

$$\Rightarrow (2a_{0})^{2} = 2b^{2}$$

$$\Rightarrow 4a_{0}^{2} = 2b^{2}$$

$$\Rightarrow 2a_{0}^{2} = b^{2}$$

$$\Rightarrow 2 \mid b^{2}$$

$$\Rightarrow 2 \mid b$$

Aber ggT(a; b) = 1

unendlicher Dezimalbruch d besteht aus 3 Dingen (Tripel)

- Vorzeichen: + oder (bzw. +1, -1)
- natürlich Zahl $d_0 \in \mathbb{N}$
- Folge von Dezimalziffern $(f: \mathbb{N}^+ \longrightarrow \{0; 1; 2; \dots; 9\})$

Schreibweise: $d = \pm d_0, d_1 d_2 d_3 \dots$

 $\mathbb D$: Menge aller unendlichen Dezimalbrüche ist nicht $\mathbb R$. Lineare Ordnung \leq auf $\mathbb D$, lexikographisch

periodischer Dezimalbruch d periodisch \Leftrightarrow $(\exists k \geq 0)(\exists l \geq 1)(\forall i > k)$ $d_i = d_{i+l}$ l, also mit kleinstmöglicher Periodenlänge z.B. $5,72\overline{13}$

abbrechender Dezimalbruch z. B. $102,53\overline{0} = 102,53$

unmittelbarer Nachfolger 9-er ende z.B. $2,1\overline{9} = 2,2$

Definition Menge der reellen Zahlen $\mathbb{R} = \{\pm d | \pm d \text{ ist unendlicher Dezimalbruch mit zusatzvereinbarungen: } -0 = +0 \text{ und } 0, \overline{9} = 1\}$

Rationale Zahlen in den Reelen

abbrechend
$$d_0, d_1 d_2 \dots d_k \longmapsto d_0 + \frac{d_1}{10} + \frac{d_2}{100} + \dots + \frac{d_k}{10^k}$$

beliebig $e_0, e_1 e_2 \dots e_{k+1} \dots \longmapsto$ k-te Näherung $e_0, e_1 e_2 \dots e_k$

Umrechnung $\mathbb D$ nach $\mathbb Q$

$$x = 3,1\overline{72}$$

$$10^{2}x = 317,2\overline{72}$$

$$10^{2}x - x = 317,2\overline{72} - 3,1\overline{72} = 317,2 - 3,1$$

$$(10^{2} - 1)x = 314,1$$

$$990x = 3141$$

$$x = \frac{3141}{990}$$

$$x = \frac{349}{110}$$

Supremum und Infimum Sei $A \subseteq \mathbb{R}$; $A \neq \emptyset$. $s \in \mathbb{R}$ heißt obere Schranke wenn $(\forall a \in A)$ $a \leq s$ und untere schranke wenn $(\forall a \in A)$ $s \leq a$. Wenn für A eine obere Schranke existiert, dann heißt A nach oben beschränkt. Wenn für A eine untere Schranke existiert, dann heißt A nach unten beschränkt. A heißt beschränkt, wenn A nach oben und unten beschränkt ist. s heißt Supremum von A, $s = \sup(A)$, wenn s obere Schranke für A ist und $(\forall s' \in \mathbb{R})$ $s' \leq s \Rightarrow s'$ ist keine obere Schranke. s heißt Infimum von s in s untere Schranke für s ist und s untere Schranke für s ist und s ist und s ist und in s ist keine untere Schranke.

Satz: Wenn $A \subseteq \mathbb{R}$; $A \neq \emptyset$, A nach oben beschränkt $\Rightarrow (\exists s \in \mathbb{R})s = \sup(A)$ Analog dazu das Infimum. In \mathbb{Q} gilt das nicht.

Operationen Bezüglich + und \cdot gelten dieselben Identitäten wie in \mathbb{Q} . \mathbb{R} bilden einen Körper.

Adiition
$$d + e := \sup\{d^{[k]} + e^{[k]} | k \in \mathbb{N}^+\}$$

normalized scientific notation $6,674 \cdot 10^{-11}$

Intervall

$$[a;b] = \{x|a \le x \le b\}$$

 $[a;b] = \{x|a < x < b\}$

erweiterte reele Zahlen $+\infty$ und $-\infty$ (keine reellen Zahlen) $\mathbb{R}^+ = (0; \infty)$, $\mathbb{R}_0^+ = [0; \infty)$. In gewisser Weise und ganz vorsichtig kann man mit $\pm \infty$ rechnen.

irrational $x \in \mathbb{R}$; $x \notin \mathbb{Q}$ z. B.: x = 0, 10100100010000

algebraisch genau dann wenn, eine Nullstelle eines Polynoms mit ganzzahligen Koeffizienten.

transzendent also nicht algebraisch $e; \pi$

4.9 Additionssysteme

"Strichliste (mit Abkürzungen)"

Z.B.: 5 = |||| = |||| oder römische Ziffern:

Großbuchstaben	I	V	X	L	С	D	M
Wert	1	5	10	50	100	500	1000

4.10 Positionssysteme

- Basis $B, B \in \mathbb{N}, B >= 2$
- Ziffern für 0 bis B-1. Jede Ziffer ein Zeichen.
- Zahl = ... $z_2B^2 + z_1B^1 + z_0B^0 + z_{-1}B^{-1}$...

4.10.1 Umrechnung

Polynom
$$(z_{n-1}B^{n-1}z_{n-2}B^{n-2}\dots z_1B^1z_0B^0)_{(B)}$$

zu kleinere Basis Fortgesetzte ganzzahlige Division mit Rest $217_{(10)}$ zur Basis 3

$$\begin{array}{cccc} 217 & 1 & & & \\ 72 & 0 & & & \\ 24 & 0 & & & \\ 8 & 2 & 217_{(10)} = 22001_{(3)} \\ & 2 & 2 & & \\ & 0 & 0 & & \end{array}$$

zu größerer Basis mit Horner-Schema zum Dezimalsystem:

Ziffern	2	2	0	0	1	
B=3	0	6	24	72	216	Addition \downarrow dann Multiplikation \nearrow mit B
	2	8	24	72	217	

Wenn die Zielbasis eine Potenz der Ursprungsbasis ist, können $\log_{B_U}(B_Z)$ Stellen direkt zusammengefasst werden:

$$(1000\ 0111\ 0001\ 1111)_{(2)} = (?)_{(16)}$$

Hier können jeweils $\log_2(16) = 4$ Stellen zusammengefasst werden:

B=2	1000	0111	0001	1111
B = 10	8	7	1	15
B=16	8	7	1	F

5 Rechnen

5.1 Summe & Produkt

Summe: stilisiertes großes Sigma

$$\sum_{i=n}^{n} f(i) = \begin{cases} f(m) + f(m+1) + \dots + f(n) & \text{falls } n \ge m \\ 0 & \text{sonst} \end{cases}$$

Summe aller Elemente i in einer Menge I

$$\sum_{i \in I}$$

Produkt: stilisiertes großes pi

$$\prod_{i=m}^{n} f(i) = \begin{cases} f(m) \cdot f(m+1) \cdot \dots \cdot f(n) & \text{falls } n \ge m \\ 1 & \text{sonst} \end{cases}$$

Produkt aller Elemente i in einer Menge I

$$\prod_{i\in I}$$

i Laufvariable / Indexvariable, kann umbenannt werden, vorausgesetzt die neue Bezeichnung kommt noch nicht vor.

$$\sum_{i=m}^{n} f(i) = \sum_{j=m}^{n} f(j)$$
$$\prod_{i=m}^{n} f(i) = \prod_{j=m}^{n} f(j)$$

m Laufanfang

- n Laufende
- $i; m; n \in \mathbb{Z}$
- Indexverschiebung: Laufbeginn und -ende können modifiziert werden.

$$\sum_{i=m}^{n} f(i) = \sum_{i=m+k}^{n+k} f(i-k)$$
$$\prod_{i=m}^{n} f(i) = \prod_{i=m+k}^{n+k} f(i-k)$$

$$1+3+4+\cdots+(2n-3)+(2n-1) = \sum_{i=1}^{n} (2i-1)$$
$$= \sum_{i=3}^{n+2} (2(i-2)-1)$$
$$= \sum_{i=0}^{n-1} (2(i+1)-1)$$

• Auseinandernehmen:

$$\sum_{i=m}^{n} (f(i) + g(i)) = \sum_{i=m}^{n} (f(i)) + \sum_{i=m}^{n} (g(i))$$

• Ausklammern

$$\sum_{i=m}^{n} (a \cdot f(i)) = a \sum_{i=m}^{n} f(i)$$

Beispiele:

$$\sum_{i=1}^{n} (2i - 1) = \sum_{i=1}^{n} (2i) - \sum_{i=1}^{n} (1) = 2 \sum_{i=1}^{n} (i) - n$$
$$\sum_{i=1}^{100} (3i - 4) = 3 \sum_{i=1}^{100} (i) - 400$$

• Doppelsummen

$$\sum_{i=m}^{n} \sum_{j=a}^{b} f(i;j) = \sum_{j=a}^{b} \sum_{i=m}^{n} f(i;j)$$

5.2 Vereinigung & Schnitt

$$\bigcup_{i=m}^{n} A(i) = \begin{cases} A(m) \cup A(m+1) \cup + \dots + \cup A(n) & \text{falls } m \leq n \\ \emptyset & \text{sonst} \end{cases}$$

$$\bigcap_{i=m}^{n} A(i) = \begin{cases} A(m) \cap A(m+1) \cap + \dots + \cap A(n) & \text{falls } m \leq n \\ \mathbb{M} & \text{sonst} \end{cases}$$

5.3 Potenzgesetze

• $x \in \mathbb{R}$; $x^0 = 1$ auch $0^0 = 1$

• $x \in \mathbb{R}; \ x \neq 0; \ n = -1; \ x^{-1} \coloneqq \frac{1}{x} \ 0^{-1}$ nicht definiert

• $x \in \mathbb{R}; \ a \neq 0; \ n = -m; \ m \in \mathbb{N}^+; \ x^{-m} = \frac{1}{x^m} = (x^{-1})^m$

• $x \in \mathbb{R}; \ x \ge 0; \ m \in \mathbb{N}^+; \ x^{\frac{1}{m}} \coloneqq \sqrt[m]{x}$

• $x \in \mathbb{R}; \ x > 0; \ m \in \mathbb{N}^+; \ x^{-\frac{1}{m}} \coloneqq (x^{-1})^{\frac{1}{m}} = \left(\frac{1}{x}\right)^{\frac{1}{m}} = \sqrt[m]{\frac{1}{x}} = \frac{1}{\sqrt[m]{x}}$

• $x \in \mathbb{R}$; $x \ge 0$; $m; n \in \mathbb{N}^+$; $x^{\frac{n}{m}} := (\sqrt[m]{x})^n = \sqrt[m]{x^n}$

• $x \in \mathbb{R}$; x > 0; $m; n \in \mathbb{N}^+$; $m^{-\frac{n}{m}} \coloneqq \frac{1}{x^{\frac{n}{m}}} = \sqrt[m]{\frac{1}{x^n}} = \left(\frac{1}{\sqrt[m]{x}}\right)^n$

• $x \in \mathbb{R}$; x > 0; $(x \ge 0 \text{ falls } \alpha > 0)$; $\alpha \in \mathbb{R}$; x^{α} als Grenzwert $x^{\alpha_k} = \lim_{k \to \infty} \alpha_k = \alpha$; $\alpha \in \mathbb{Q}$

$$\exp(z) = e^z = \sum_{i=0}^{\infty} \frac{z^i}{i!}$$

Voraussetzung : $x \in \mathbb{R}$; x > 0; $\alpha; \beta \in \mathbb{R}$

$$x^{\alpha+\beta} = x^{\alpha} \cdot x^{\beta}$$

$$x^{\alpha \cdot \beta} = (x^{\alpha})^{\beta} = (x^{\beta}) \alpha$$

$$x^{-\alpha} = \frac{1}{x^{\alpha}}$$

$$x^{0} = 1; \ x^{1} = x; \ x^{-1} = \frac{1}{x}$$

$$(x \cdot y)^{\alpha} = x^{\alpha} \cdot y^{\beta}$$

$$x^{y^{z}} = x^{(y^{z})}$$
Wurzel = $\sqrt[m]{x}$

$$\sqrt[m]{x} = x^{\frac{1}{m}}$$

$$\sqrt[m]{\sqrt[n]{x}} = \left(x^{\frac{1}{n}}\right)^{\frac{1}{m}} = x^{\frac{1}{m \cdot n}} = x^{\frac{n}{n} \cdot \sqrt[n]{x}}$$

$$\sqrt[m]{x^{n}} = \left(\sqrt[m]{x}\right)^{n} = x^{\frac{n}{m}}$$

$$\sqrt[n]{x} = x$$

$$\sqrt[m]{x} \cdot \sqrt[n]{x} = x^{\frac{1}{m}} \cdot x^{\frac{1}{n}} = x^{\frac{1}{n} + \frac{1}{m}} = x^{\frac{m+n}{m-n}} = x^{\frac{m+n}{m-n}} = x^{\frac{m+n}{m-n}}$$

5.4 Fakultäten

• Fakultät $0! \coloneqq 1; \ (n+1)! = n!(n+1)$ wächst sehr schnell.

$$(n \ge 1) \ n! = \prod_{i=1}^{n} i$$

- Kombinatorische Bedeutung: Anzahl der Anordnungen von n Gegenständen in einer Reihe.
- Näherung durch Stirling-Formel:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

• Näherung durch Bill Gosper

$$n! \approx \sqrt{2\pi n + \frac{\pi}{3}} \left(\frac{n}{e}\right)^n$$

5.5 Binomialkoeffizient

 $n \in \mathbb{N}; m \in \mathbb{N}; \ \binom{n}{k}$ gelesen "n über m
" $n < m \Rightarrow \binom{n}{m} = 0 \ n \geq m \Rightarrow \binom{n}{0} = 1, \ \binom{n}{1} = n, \ \binom{n}{n} = n$

$$\binom{n}{m} = \frac{n(n-1)\cdots(n-m-1)}{1\cdot 2\cdot 3\dots m} = \frac{n!}{m!(n-m)!}$$
$$\binom{n}{m} = \binom{n}{n-m}$$

Jeweils m viele Faktoren, da sich der Rest wegkürzt. z.b:

$$\binom{4}{2} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1} = \frac{12}{2} = 6; \ \binom{5}{3} = \binom{5}{2} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$$

Kombinatorische Bedeutung: Anzahl der m-elementigen Teilmengen einer n-elementigen Menge

$$\binom{n}{m} + \binom{n}{m+1} = \binom{n+1}{m+1}$$

$$\binom{n}{m} + \binom{n}{m+1} = \frac{n!}{m!(n-m)!} + \frac{n!}{(m+1)!(n-m-1)!} = \frac{n!(m+1) + n!(n-m)}{(m+1)!(n-m)!} = \frac{(n+1)!}{(m+1)!((n+1) - (m+1))!}$$

Pascalsches Dreieck:

Binomialsatz

$$(a+n)^n = \sum_{m=0}^n \binom{n}{m} a^{n-m} b^m = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + b^n$$

5.6 Umformungen von Termen

Erklärung: Ein (Funktions-)Term ist ein "vernünftig" aufgebauter Ausdruck zur Berechnung einer Funktion.

Terme könne aus folgendem bestehen

- ullet Zeichen für Variablen und Parameter $x;\ y;\ z;\ a;\ b$
- Zahlen, Konstanten
- Operationen
- Funktionszeichen exp; sin; cos;
- \bullet technische Zeichen (;); {;}, [,]

Funktionsbezeichnung: f; f(x); f(x;y) Wir bezeichnen Terme ähnlich wie Funktionen. Aber: Ein Term definiert eine Funktion aber nicht umgekehrt.

<u>Ziel:</u> Möglichst einfache Terme für eine Funktion finden. Zu einem Term f(x) gehört ein maximaler Definitionsbereich (auch natürlicher Definitionsbereich). Das ist die größte Teilmenge $D \in \mathbb{R}$, für die alle Teilterme von f definiert sind. Dieser DB kann eventuell weiter eingeschränkt werden. Bezeichnungen für den Definitionsbereich: D_f ; DBb(f), D

Beispiel: $f(x) = \frac{x^2 - x - 6}{x + 2}$ $D_f = \mathbb{R} \setminus \{-2\}$

$$f(x) = \frac{(x-3)(x+2)}{x+2} = x-3 \quad |x \neq -2|$$

5.6.1 Faktorisieren

Binomische Formeln

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a-b)(a+b) = a^2 - b^2$$

Summenformel

•
$$(1-x)(1+x+x^2+\cdots+x^n)=1-x^{n+1}$$

•
$$(x-1)(1+x+x^2+\cdots+x^n)=x^{n+1}-1$$

Distributivgesetze

•
$$a(a+b) = ab + ac$$

$$\bullet (a+b)(c+d) = ac + ad + bc + bd$$

Vieta
$$(x - a)(x - b) = x^2 - (a + b)x + ab$$

Wurzel aus Nenner $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

$$\frac{2+\sqrt{3}}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{2-\sqrt{3}} \cdot \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{4+4\sqrt{3}+3}{4-3} = 7+4\sqrt{3}$$

5.7 Proportionalität

Größe

- \bullet Bezeichnung X, z.B. Fahrstrecke
- zugehörige Wertemenge, hier stets $X \in \mathbb{R}$ (notfalls runden mit Verstand)
- eventuell mit Einheit, schreibweise $x \in X$
- \bullet Zwei Größen x; Y i.a. nicht unabhängig.
- $E \subseteq X \times Y$

- X und Y heißen proportional, $X \sim Y$, wenn $(\exists c)$ $(x; y) \in E \Leftrightarrow \frac{x}{y} = c$ z.B. Fahrstrecke \sim Benzinverbrauch
- X und Y heißen umgekehrt proportional, $x \sim \frac{1}{Y}$, wenn $(\exists c)$ $(x; y) \in E \Leftrightarrow x \cdot y = c$. Z. B.: Arbeiteranzahl $\sim \frac{1}{\text{Arbeitszeit}}$
- $X \sim Y$; $(x_1; y_1)$; $(x_2; y_2) \in E \Rightarrow \frac{x_1}{y_1} = c = \frac{x_2}{y_2}$
- $X \sim \frac{1}{V}$; $(x_1; y_1)$; $(x_2; y_2) \in E \Rightarrow x_1 \cdot y_1 = c = x_2 \cdot y_2$
- mehr als zwei Größen: Für die Zerlegung von 7,2t brauchen 14 Arbeiter 8h. Wie viele Arbeiter braucht man, um 6t in 8 h zu zerlegen. Proportionalitätsbeziehung zwischen

$$E \subseteq X \times Y \times Z : (x; y; z) \in E$$

$$(\exists i_x; i_y; i_z \in \{-1; 1\})(\exists c) \ (x; y; z) \in E \Leftrightarrow x^{i_x} y^{i_y} z^{i_z} = c$$

$$A \sim S; \ A \sim \frac{1}{T}$$

$$\frac{14z \cdot 8h}{7.2t} = c = \frac{a \cdot 8h}{6t} \Rightarrow a = \frac{6t}{7.2t} \cdot \frac{8h}{8h} \cdot 14z \approx 12z$$

5.7.1 Prozentrechnung

- Spezialfall der Proportionalität
- Zwei größen:
 - Prozente
 - andere Größe
- $1\% = \frac{1}{100}$
- $1\%_0 = \frac{1}{1000}$
- Grundwert G = 100%, Prozentwert W = p%

$$\frac{G}{100\%} = \frac{W}{p\%}$$

5.8 Gleichungen

$$f(x) = g(x)$$

Lösungsmenge $\mathbb{L} = \{x \in D_f \cap D_g | f(x) = g(x)\}$ explizit angeben.

 $\ddot{\mathbf{A}}$ quivalenete Umformung ändert \mathbb{L} nicht. Zwei gleichungen heißen äquivalent wenn ihre Lösungsmengen gleich sind.

$$f(x) = g(x) \Leftrightarrow \widetilde{f}(x) = \widetilde{g}(x)$$

nichtäquivalente Umformungen Folgerungen $f(x) = g(x) \Rightarrow \widetilde{f}(x) = \widetilde{g}(x)$, d.h. $\mathbb{L} \subseteq \widetilde{\mathbb{L}}$ Probe!

$$x-2=3$$
 $\mathbb{L} = \{5\}$
 $(x-2)^2 = 3^2$ $\mathbb{L} = \{-1; 5\}$

spezielle Umformungen t(x) sei ein weiterer Term mit $D_f \cap D_g \subseteq D_f$

$$f(x) = g(x) \Leftrightarrow f(x) + t(x) = g(x) + t(x)$$

$$f(x) = g(x) \Leftrightarrow f(x) \cdot t(x) = g(x) \cdot t(x) \text{ falls } t(x) \neq 0$$

$$f(x) = g(x) \Leftrightarrow \frac{f(x)}{t(x)} = \frac{g(x)}{t(x)} \text{ falls } t(x) \neq 0$$

$$h: D_h \longrightarrow \mathbb{R}$$
 Funktion, $f[D_f \cap D_g] \cup g[D_f \cap D_g] \subseteq D_h$

$$f(x) = g(x) \Rightarrow h(f(x)) = h(g(x))$$

Ist h insbesondere umkehrbar (injektiv), dann gilt

$$f(x) = g(x) \Leftrightarrow h(f(x)) = h(g(x))$$

Lineare Gleichungen ax + b = 0 $a \neq 0$

$$\Leftrightarrow ax = -b$$

$$\Leftrightarrow x = \frac{-b}{a}$$

$$\frac{7x + 91}{17x + 221} = 11 \qquad | \cdot (17x + 221)$$

$$\Leftrightarrow 7x + 91 = 11 \cdot (17x + 221)$$

$$\Leftrightarrow 7x + 91 = 187x + 2431$$

$$\Leftrightarrow 0 = 180x + 2340 \quad | -2340$$

$$\Leftrightarrow 180x = -2340 \quad | : 180$$

$$\Leftrightarrow x = -13$$

$$\mathbb{D} = 17x + 221 \neq 0$$
$$x \notin \mathbb{D}$$

Gleichung mit Beträgen $|a| = \sqrt{a^2}$

$$\begin{aligned} |a| &\geq 0 & |a| &= 0 \Leftrightarrow a &= 0 \\ |a \cdot b| &= |a| \cdot |b| & \frac{|a|}{|b|} &= \left| \frac{a}{b} \right| \\ |a + b| &\leq |a| + |b| & ||a| - |b|| \leq |a - b| \end{aligned}$$

•
$$|f(x)| = c$$

- falls $c < 0$, so $\mathbb{L} = \emptyset$
- falls $c \ge 0$: $|f(x)| = c \Leftrightarrow f(x) = c \lor f(x) = -c$; $\mathbb{L} = \mathbb{L}_1 \cup \mathbb{L}_2$

•
$$|f(x)| = |g(x)| \Leftrightarrow f(x)^2 = g(x)^2$$

•
$$|f(x)| = |g(x)| \Leftrightarrow \left| \frac{f(x)}{g(x)} \right| = 1 \Leftrightarrow \frac{f(x)}{g(x)} = 1 \lor \frac{f(x)}{g(x)} = -1$$

Allgemein: Vollständige Fallunterscheidung

$$|x-1|+|x+1|=10$$
 Fall 1 $x-1\geq 0;\ x+1\geq 0 \Leftrightarrow x\geq 1;\ x\geq -1\Leftrightarrow x>1$

$$(x-1) + (x+1) = 10$$

 $2x = 10$
 $x = 5$
 $\mathbb{L}_1 = \{5\}$

$$-(x-1) + (x+1) = 10$$
$$2 = 10$$
$$\mathbb{L}_3 = \emptyset$$

Fall 4
$$x - 1 < 0$$
; $x + 1 < 0 \Leftrightarrow x < 1$; $x < -1 \Leftrightarrow x < -1$

$$-(x-1) + (-(x+1)) = 10$$

 $-2x = 10$
 $x = -5$
 $\mathbb{L}_1 = \{-5\}$

$$\mathbb{L} = \mathbb{L}_1 \cup \mathbb{L}_2 \cup \mathbb{L}_3 \cup \mathbb{L}_4 = \{-5; 5\}$$

Quadratische Funktionen