Calculus Fundamentals: The Integral Lecture 5

Termeh Shafie

basic idea

We are interested in calculating areas under curves

- 1. We divide the interval $a \le x \le b$ into pieces (equal length)
- 2. We build a rectangle on each piece, where the top touches the curve
- 3. We calculate the total area of the rectangles

We watch what happens as we make the division of the "strips" finer and finer...

Riemann sum

• we divide [0,1] into n equal pieces ⇒ the divisions occur at

$$0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{k-1}{n}, \frac{k}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} = 1$$

- we have n+1 points and we put a rectangle on each point
- the rectangle between $\frac{k-1}{n}$ and $\frac{k}{n}$ has height $f\left(\frac{k}{n}\right) = \frac{k}{n}$ and area of this rectangle is

$$\frac{k}{\underline{n}} \cdot \frac{1}{\underline{n}} = \frac{k}{n^2}$$

• The sum of the area of all rectangles on the interval is

of the area of all rectangles on the interval is
$$\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{k}{n^2} + \dots + \frac{n}{n^2} = \frac{1}{n^2} (1 + 2 + \dots + k + \dots + n)$$

$$= \frac{1}{n^2} \frac{n(n+1)}{2}$$

$$= \frac{1}{2} \left(\frac{n+1}{n} \right)$$

$$= \frac{1}{2} \left(1 + \frac{1}{n} \right)$$

Riemann sum

• what happens to this expression when $n \to \infty$?

$$\frac{1}{2}\left(1+\frac{1}{n}\right)\to\frac{1}{2} \text{ as } n\to\infty$$

• so as we get finer division of rectangles, the sum is approaching the exact area which is $\frac{1}{2}$

Riemann sum

Work out the area bounded by $f(x) = x^2$, the limits x = 0 and x = 1 and the x-axis (see figure)

we could do this for all functions, but there is a faster way.

area under the curve

- Let's call the curve we want to find the area under y = f(t)
- Let the area be a function of x and denote it A(x)
- If we know A(x) then we know the are that is A(b) A(a)
- I say A(x) = f'(x), do you believe me? Let's take a look...

area under the curve

- The difference A(x+h)-A(x) is the area between t=x and t=x+h• The area is rectangular (if h is small) with height f(x) and base h so area is $\approx f(x)\cdot h$

$$A(x+h) - A(x) \approx f(x) \cdot h \implies \frac{A(x+h) - A(x)}{h} \approx f(x)$$

$$\frac{A(x+h) - A(x)}{h} \to f(x) \text{ as } h \to 0$$

By the definition of the derivative, we have A'(x) = f(x)and A(x) as the antiderivative of f(x)

note: if A(x) is an antiderivative f(x) then A(x)+C for any constant C is also an antiderivative of f(x)

definite and indefinite integral

The indefinite integral of f(x) with respect to x, written as

$$\int f(x)dx = F(x) + c \qquad F'(x) = f(x)$$

The definite integral of f(x) between limits a and b with respect to x, written as

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where f(x) is called the integrand

The Fundamental Theorem of Calculus shows that differentiation and integration are inverse processes in two parts based on indefinite and definite integrals

definite and indefinite integral

example Consider $f(t)=t^2$ and let's calculate the area under $y=t^2$ between 0 and 1.

The area up to
$$x$$
 is represented by $A(x) = \int_0^x t^2 dt$ integral

We know
$$A'(x) = x^2 \implies A(x) = \frac{1}{-x^3}$$

This holds for any constant
$$C$$
: $\frac{d}{dx} \left(\frac{1}{3x^3} + C \right) = x^2$

$$dx \setminus 3x^{3} \qquad f$$
What is our C ? $A(0) = \left(\frac{1}{3(0)^{3}} + C\right) = \int_{0}^{0} t^{2} dt = 0 \implies C = 0$

Further we have
$$A(1) = \frac{1}{3}x^3 \Longrightarrow \int_0^1 t^2 dt = A(1) - A(0)$$
 where $A'(x) = x^2$

the fundamental theorem of calculus, part 1

Part 1 is based on indefinite integrals

If f(x) is continuous on an interval, and we define a function:

$$F(x) = \int_{a}^{x} f(t) dt,$$

then
$$F'(x) = f(x)$$
.

- The derivative of the indefinite integral recovers the original function
- Working with indefinite integrals:
 - → The answer should be a function + a constant of integration C
 - This expression represents all the possible antiderivatives of f(x)

the fundamental theorem of calculus, part 2

Part 2 is based on definite integrals

If F(x) is an antiderivative of a continuous function f(x), i.e., F'(x) = f(x), then:

$$f(x) dx = F(b) - F(a)$$

- This part uses definite integrals as the primary object and computes them via indefinite integrals
- Working with definite integrals:
 - Find the antiderivative F(x) of f(x)
 - ullet We don't have to worry about the constant C here since it cancels out on the RHS
 - The results can be pout in square brackets: $\int_a^b f(x)dx = [F(x)]_a^b = F(b) F(a)$
 - · Your answer is a number

example

Consider the function $f(x)=x^3$, find the integral over the interval [-1,1]

1. Write the integral
$$\int_{-1}^{1} x^3 dx$$

2. Find the antiderivative
$$\int x^3 dx = \frac{x^4}{4} + C$$

3. Apply fundamental theorem of calculus

$$\int_{-1}^{1} x^3 dx = \left[\frac{x^4}{4} \right]^{\frac{1}{2}} \implies \int_{-1}^{1} x^3 dx = \frac{(1)^4}{4} - \frac{(-1)^4}{4} \implies \int_{-1}^{1} x^3 dx = \frac{1}{4} - \frac{1}{4} = \frac{1}{4}$$

Why Is the integral zero?

The function x^3 is odd, meaning f(-x)=-f(x). For any odd function integrated over a symmetric interval [-a,a] the integral is always zero because the positive and negative contributions cancel out

area under the curve and the value of the definite integral are not always the same

some antiderivatives

function $f(x)$	antiderivative $\int f(x) dx$
f(x) = a	$\int f(x) \mathrm{d}x = ax + C$
$f(x) = ax^n$	$\int f(x) \mathrm{d}x = \frac{ax^{(n+1)}}{n+1} + C$
$f(x) = ax^{-1}$	$\int f(x) \mathrm{d}x = a \ln x + C$
$f(x) = ae^{kx}$	$\int f(x) \mathrm{d}x = \frac{1}{k} a e^{kx} + C$
$f(x) = a \cos(kx)$	$\int f(x) \mathrm{d}x = \frac{1}{k} a \sin(kx) + C$
$f(x) = a \sin(kx)$	$\int f(x) dx = -\frac{1}{k}a\cos(kx) + C$

the sum rule

As with differentiation, we also have a sum rule for integration, that is

$$\int (f(x) + g(x)) dx = \int f(x)dx + \int g(x)dx$$

"the antiderivative of a sum is the sum of the antiderivatives"

we also have that
$$\int K f(x) dx = K \int f(x) dx$$
 where K is a constant

example
$$\int (3x^4 + 2x + 5)dx = \int 3x^4 + \int 2x dx + \int 5dx$$

$$= 3 \int x^4 + 2 \int x dx + 5 \int dx$$

$$= 3 \int_0^3 x^5 + 2 \int_0^3 x^3 + 5 \int_0^3 x^5 + 2 \int_0^3$$

$$\frac{3}{4}x^5 + \frac{2}{3}x^3 + 5x + C$$
 (because integral is indefinite

the sum rule

Find the indefinite integral $\int (x^2 - 1)(x^4 + 2)dx$

Find the indefinite integral $\int \frac{x^4 + 1}{x^2} dx$

substitution

Substitution is a method to simplify integration by changing variables. For an integral of the form:

$$\int f(g(x))g'(x)\,dx$$

you substitute u = g(x), so du = g'(x)dx. This transforms the integral into:

$$\int f(g(x))g'(x) dx = \int f(u) du$$

In a sense, substitution undoes the chain rule:

- The chain rule multiplies by g'(x) during differentiation
- Substitution compensates for g'(x) during integration by replacing dx with du = g'(x)dx

substitution step by step

- 1. Choose a suitable u = u(x). Your choice should not be a constant function
- 2. Work out u'(x) and write down an expression for dx = du/u'(x). If you are considering a definite integral, work out u(a) and u(b) where a and b are the limits of the integral
- 3. Next
- replace every instance of u(x) with the letter u
- replace dx with d(u)/u'(x) and cancel
- ullet (for definite integrals only) replace a with the value u(a) and b with u(b)

- 4. If you can, work out the integral (don't forget +C if you are working with indefinite integrals)
- 5. This step only for indefinite integrals: Your antiderivative should be in terms of u. Replace every instance of u with the original function u(x).

substitution

example Consider the indefinite integral with integrand $(2x+3)^{100}$. We make the substitution

$$u = 2x + 3 \implies \frac{du}{dx} = 2$$
 i.e. $dx = \frac{1}{2}du$

and we calculate the integral as

$$\int (2x+3)^{100} dx = \int u^{100} \cdot \frac{1}{2} du$$

$$= \frac{1}{2} \int u^{100} du$$

$$= \frac{1}{200} (2x+3)^{101} + C$$

You can double check via differentiation:

$$\frac{d}{dx} \left[\frac{1}{202} (2x+3)^{101} + C \right] = \frac{101}{202} (2x+3)^{100} \cdot 2 = (2x+3)^{100}$$

exercise 4
Evaluate
$$\int_{0}^{4} \frac{1}{(x/2-4)^3} dx$$

integration by parts

Suppose we have two function u(x) and v(x). Then the product rule states

$$\frac{d}{dx}(uv) = u'v + uv'$$

Rearranging gives

$$uv' = \frac{d}{d(x)}(uv) - u'v$$

Integrating both sides gives

$$uv' = \frac{d}{d(x)}(uv) - u'v$$

$$\int uv'dx = \int \frac{d}{d(x)}(uv) - \int u'vdx$$

$$= uv - \int u'vdx$$

integration by parts

We write the rule for integration by parts as

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$
boundary integral

- Given an integral whose integrand is the product of two functions, we choose one to be u and the other to be v', from which we can calculate u' and v
- Plugging into the above equation (hopefully) leads to an easier integration

integration by parts example
Suppose we have the integrand xe^x and set u=x, $v'=1 \implies u'=1$, $v=e^x$ We now can calculate the integral as follows:

$$\int xe^{x}dx = \int uv'dx$$

$$= uv - \int u'vdx$$

$$= xe^{x} - \int e^{x}dx$$

$$= xe^{x} - e^{x} + C = e^{x}(x - 1) + C$$

Use product rule for differentiation to check the result:

$$\frac{d}{dx}[e^{x}(x-1)] = \frac{d}{dx}[e^{x}] \cdot (x-1) + e^{x} \cdot \frac{d}{dx}[x-1]$$
$$= \frac{d}{dx}[e^{x}(x-1)] = e^{x}x - e^{x} + e^{x} = e^{x}$$

integration by parts

Evaluate
$$\int_0^1 x e^x dx$$

Evaluate
$$\int_{0}^{\pi/4} 4x^2 \cos(2x) dx$$

