Math Facts

1 Logarithms

1.1 Definitions

If b and n are positive numbers with $b \neq 1$,

$$\log_b(n) = k \text{ iff } b^k = n$$

$$\log_b(x) = \log_b(y)$$
 iff $x = y$

$$\log_b^i(x) = (\log_b(x))^i$$

$$\log(x) = \log_{10}(x)$$

$$\ln(x) = \log_e(x)$$

$$\lg(x) = \log_2(x)$$

1.2 Logarithmic Identities

$$\log_b(x^a) = a \cdot \log_b(x)$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

$$\log_b(b) = 1$$

$$\log_b(1) = 0$$

$$\log_b(b^n) = n$$

$$\log_b(x) = \frac{\log_c(x)}{\log_c(b)}$$

$$\log_b\left(\frac{1}{x}\right) = -\log_b(x)$$

$$\log_b(x) = \frac{1}{\log_x(b)}$$

$$x^{\log_b(y)} = y^{\log_b(x)}$$

$$b^{\log_b(x)} = x$$

1.3 Iterated Log Functions

Let $\lg^{(i)}$ be defined as follows:

$$\lg^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ \lg\left(\lg^{(i-1)}(n)\right) & \text{if } i > 0 \end{cases}$$

Then the iterated log function (read as "log star n") is defined as

$$\lg^*(n) = \min\left\{i \ge 0 \mid \lg^{(i)}(n) \le 1\right\}$$

2 Limits

$$\begin{split} &\lim_{n \to \infty} \left(f(n) + g(n) \right) = \lim_{n \to \infty} \left(f(n) \right) + \lim_{n \to \infty} \left(g(n) \right) \\ &\lim_{n \to \infty} \left(f(n) - g(n) \right) = \lim_{n \to \infty} \left(f(n) \right) - \lim_{n \to \infty} \left(g(n) \right) \\ &\lim_{n \to \infty} \left(f(n) \cdot g(n) \right) = \lim_{n \to \infty} \left(f(n) \right) \cdot \lim_{n \to \infty} \left(g(n) \right) \\ &\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = \frac{\lim_{n \to \infty} \left(f(n) \right)}{\lim_{n \to \infty} \left(g(n) \right)} \\ &\lim_{n \to \infty} x = a \\ &\lim_{x \to a} (mx + b) = ma + b \\ &\lim_{x \to b} b = b \\ &\lim_{x \to a} (k \cdot f(x)) = k \cdot \lim_{x \to a} (f(x)) \end{split}$$

3 Exponents

$$a^{0}=1$$

$$a^{1}=a$$

$$0^{0}=\text{undefined}$$

$$a^{-m}=\frac{1}{a^{m}}$$

$$a^{m}\cdot a^{n}=a^{m+n}$$

$$(ab)^{m}=a^{m}b^{m}$$

$$(a^{m})^{n}=a^{mn}$$

$$\frac{a^{m}}{a^{n}}=a^{m-n} \text{ if } m>n$$

$$\frac{a^{m}}{a^{n}}=\frac{1}{a^{m-n}} \text{ if } n>m$$

$$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$$

$$b^{\frac{p}{q}}=\left(\sqrt[q]{b}\right)^{p}\equiv\sqrt[q]{b^{p}} \quad \text{for } b>0 \text{ and } p \text{ and } q \text{ integers with } q>0$$

4 Summations

4.1 Identities

If $a_1, a_2, a_3, \ldots, a_n$ and $b_1, b_2, b_3, \ldots, b_n$ are sequences, and c is a constant, then for every positive integer n,

$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i$$

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

$$\sum_{i=1}^{n} (a_i - b_i) = \sum_{i=1}^{n} a_i - \sum_{i=1}^{n} b_i$$

$$\sum_{i=1}^{n} (a_i + c) = \sum_{i=1+c}^{n+c} a_i$$

4.2 Closed Forms

$$\sum_{i=1}^{n} c = cn$$

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} n = n^2$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

$$\sum_{i=1}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1},$$
 This is the Geometric Sequence.

$$\sum_{i=1}^{n} (n-i) = \frac{n(n-1)}{2}$$

5 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} , and a contradiction \mathbf{c} , the following logical equivalences hold:

1. Commutative laws: $p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$

2. Associative laws: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

3. Distributive laws: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \quad p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

4. Identity laws: $p \wedge \mathbf{t} \equiv p$ $p \vee \mathbf{c} \equiv p$

5. Negation laws: $p \vee {}^{\sim}p \equiv \mathbf{t}$ $p \wedge {}^{\sim}p \equiv \mathbf{c}$

6. Double negative law: ${}^{\sim}({}^{\sim}p) \equiv p$

7. Idempotent laws: $p \wedge p \equiv p$ $p \vee p \equiv p$

8. Universal bound law: $p \lor \mathbf{t} \equiv \mathbf{t}$ $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws: $(p \land q) \equiv p \lor q$ $(p \lor q) \equiv p \land q$

10. Absorption law: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

11. Negations of t and c: $^{\sim}$ t \equiv c $^{\sim}$ c \equiv t

12. Division into cases: $p \lor q \to r \equiv (p \to r) \land (q \to r)$

13. Implication as or: $p \to q \equiv \sim p \lor q$

14. Negating a conditional: $\sim (p \to q) \equiv p \land \sim q$

15. Contrapositive: $p \rightarrow q \equiv \sim q \rightarrow \sim p$

16. iff as implications: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

6 Sets

A set is a collection of objects, called elements. The elements must be distinct (each element can appear in the set only once). A set may have a finite or an infinite number of elements. The order of the elements doesn't matter.

6.1 Symbols and Terms

```
a \in A
                              a is an element of set A.
a \not\in A
                              a is not an element of set A.
                              The set with elements a_1, a_2, \ldots, a_n.
\{a_1, a_2, \ldots, a_n\}
\{x \in D \mid condition\}
                              The set of all elements x in D that satisfy the condition.
\mathbb{R},\mathbb{R}^-,\mathbb{R}^+,\mathbb{R}^{nonneg}
                              Set of all real numbers, negative reals, positive reals, and nonnegative reals.
\mathbb{Z},\mathbb{Z}^-,\mathbb{Z}^+,\mathbb{Z}^{nonneg}
                              Set of all integers, negative integers, positive integers, and nonnegative integers.
\mathbb{Q},\mathbb{Q}^-,\mathbb{Q}^+,\mathbb{Q}^{nonneg}
                              Set of rational numbers, negative rationals, positive rationals, and nonnegative rationals.
                              Set of natural numbers. \mathbb{N} = \{1, 2, \ldots\}.
W
                              Set of whole numbers. \mathbb{W} = \{0, 1, \ldots\}.
                              Set of binary digits. \mathbb{Z}_2 = \{0, 1\}.
\mathbb{Z}_2
                              The number of elements in A; The cardinalty of A.
|A|
A \subset B
                              A is a proper subset of B. Equivalently B \supset A.
A\subseteq B
                              A is a subset of B. Equivalently B \supseteq A.
A \not\subset B
                              A is a not a proper subset of B. Equivalently B \supset A.
A \not\subseteq B
                               A is not a subset of B. Equivalently B \not\supseteq A.
A\supset B
                              A is a proper superset of B. Equivalently A \subset B.
A \supset B
                              A is a superset of B. Equivalently B \subseteq A.
A \not\supset B
                              A is a not a proper superset of B. Equivalently B \not\subset A.
A \not\supseteq B
                              A is not a superset of B. Equivalently B \not\subseteq A.
A = B
                              A equals B.
A \neq B
                              A does not equal B.
A \cup B
                              A union B.
A \cap B
                              A intersect B.
A - B
                              The difference of A minus B. An alternate notation for difference is A \setminus B.
A^c
                              The complement of A. An alternate notation is \overline{A} or A'.
(x,y)
                              Ordered pair.
(x_1,x_2,\ldots,x_n)
                              n-tuple.
A \times B
                              The Cartesian product of A and B.
A_1 \times A_2 \times \ldots \times A_n
                              The Cartesian product of A_1, A_2, \dots A_n.
                              The empty set. An alternate notation for the empty set is \emptyset or \{\}.
\mathscr{P}(A)
                              The power set of A.
Disjoint
                              A and B are disjoint if A \cap B = \emptyset.
                              A_1, A_2, \dots A_n are pairwise disjoint if, for every pair A_i and A_j, A_i \cap A_j = \emptyset.
Pairwise Disjoint
```

6.2 Selected Examples

6.2.1 Set Definitions and Cardinality

We can define a set simply by listing its elements:

 $A_1 = \{2, 3, 4, 5, 6\}.$

 $A_2 = \{2, 4, 6\}.$

 $A_3 = \{3, 5, 7\}.$

 $A_4 = \{4, 5, 6, 7, 8, 9\}.$

Sets can containing anything, not just numbers:

 $A_5 = \{Dalek, Tardis, Sonic Screwdriver, Cybarman\}.$

Instead of listing every element, we can use notation with a condition:

 $A_6 = \{x \in \mathbb{Z}^+ \mid x \le 6 \text{ and } x \text{ is even} \} \text{ is the set } \{2,4,6\}.$

 $A_7 = \{x \in \mathbb{Z} \mid x \text{ is even}\}\$ is the set of all even integers.

 $A_8 = \{x \in \mathbb{N} \mid x \le 1,000,000,000\}$ is the set of all counting numbers up to one billion.

Since the number 2 is an element of set A_1 , we say $2 \in A_1$.

Since Bow Tie is not a member of set A_5 , we say Bow Tie $\notin A_5$.

We can see that there are 5 elements in A_1 . We write this as $|A_1| = 5$.

Similarly $|A_2| = 3$, $|A_3| = 3$, $|A_4| = 6$, $|A_5| = 4$, $|A_6| = 3$, $|A_7| = \infty$, and $|A_8| = 1,000,000,000$. Also, since the empty set contains no elements, $|\emptyset| = 0$.

6.2.2 Comparing Two Sets

Proper Subset

 $A \subset B$ means every element in A is also in B, and there is at least one element in B that is not in A. Using the above sets, we have $A_2 \subset A_1$. However, $A_2 \not\subset A_4$ because $2 \in A_2$ but $2 \not\in A_4$. Also, $A_2 \not\subset A_6$ because, while every element in A_2 is in A_6 , there is no element in A_6 that is not in A_2 .

Subset

 $A \subseteq B$ means every element in A is also in B. We still have $A_2 \subseteq A_1$, but now we also have $A_2 \subseteq A_6$. Also, the empty set is a subset of every set. In other words, for any set $A, \emptyset \subseteq A$.

Set Equality

A = B means A and B have exactly the same elements. This is often expressed as $A \subseteq B$ and $B \subseteq A$. Using the above sets we have:

 $A_2 = A_6$

 $\mathbb{N}=\mathbb{Z}^+$

 $\mathbb{W} = \mathbb{Z}^{nonneg}$

6.2.3 Creating New Sets from Old

Union

 $A \cup B$ is the set containing every element that is in A or in B. So:

 $A_1 \cup A_2 = \{2, 3, 4, 5, 6\}.$

 $A_1 \cup A_3 = \{2, 3, 4, 5, 6, 7\}.$

Inersection

 $A \cap B$ is the set containing every element that is in A and in B. So:

$$A_1 \cap A_2 = \{2, 4, 6\}.$$

$$A_1 \cap A_3 = \{3\}.$$

$$A_2 \cap A_3 = \emptyset.$$

Set Difference

A-B is the set containing all elements that are in A but not in B. You can think of this as starting out with the elements of A and removing everything that is also in B.

$$A_1 - A_2 = \{3, 5\}.$$

$$A_2 - A_1 = \hat{\emptyset}.$$

$$A_4 - A_7 = \{5, 7, 9\}.$$

 $\mathbb{Z}^{nonneg} - \mathbb{Z}^+ = \{0\}.$

$$\mathbb{Z}^{nonneg} - \mathbb{Z}^+ = \{0\}$$

Complement

If set A is a subset of a universal set U, then A^c is the set of all elements in U that are not in A. So if the universal set for A_1 is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then $A_2^c = \{1, 3, 5, 7, 8, 9, 10\}$.

Cartesian Product

 $A \times B$ is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

$$A_2 \times A_3 = \{(2,3), (2,5), (2,7), (4,3), (4,5), (4,7), (6,3), (6,5), (6,7)\}$$

Notice that $|A \times B| = |A| \cdot |B|$.

Power Sets

 $\mathcal{P}(A)$ is the set containing all subsets of A.

Note,
$$|\mathscr{P}(A)| = 2^{|A|}$$

6.3 Set Identities

Let all sets referred to below be subsets of a universal set U.

1. Commutative laws: $A \cap B = B \cap A$ $A \cup B = B \cup A$

2. Associative laws: $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

3. Distributive laws: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

4. Identity laws: $A \cap U = A$ $A \cup \emptyset = A$

5. Complementation laws: $A \cup A^c = U$ $A \cap A^c = \emptyset$

6. Double complement law: $(A^c)^c = A$

7. Idempotent laws: $A \cap A = A$ $A \cup A = A$

8. De Morgan's laws: $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

9. Universal bound law: $A \cup U = U$ $A \cap \emptyset = \emptyset$

10. Absorption law: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

11. Complements of U and \emptyset : $U^c = \emptyset$ $\emptyset^c = U$

12. Set Difference $A - B = A \cap B^c$

7 Graphs

A graph G = (V, E) consists of an ordered pair of sets, V and E. The **vertex set** V is a non-empty set of objects called **vertices**. The **edge set** $E = \{\{u, v\} \mid u, v \in V\}$ is a set of unordered pairs of vertices, called **edges**. The vertex set of G can be written as V(G) and the edge set of G can be written as E(G).

The number of vertices in G is called the **order** of G. The order of a graph is commonly denoted as n.

The number of edges in G is called the **size** of G. The size of a graph is commonly denoted as m.

A *simple graph* is a graph that does not have any self-loops or parallel edges.

A *complete graph* on n vertices, denoted K_n , is a simple graph with n vertices whose set of edges contains exactly one edge for each pair of distinct vertices.

A graph is k edge connected if there does not exist a set of k edges whose removal disconnects the graph. The maximum edge connectivity of a given graph is the smallest degree of any vertex, since deleting these edges disconnects the graph.

A graph is k vertex connected (or simply k-connected) if there does not exist a set of k vertices whose removal disconnects the graph.

A **complete bipartite graph** on (m, n) vertices, denoted $K_{m,n}$, is a simple graph with vertices u_1, u_2, \ldots, u_m and v_1, v_2, \ldots, v_n that satisfies the following properties:

```
\forall i, k = 1, 2, ..., m \text{ and } \forall j, l = 1, 2, ..., n,
```

- 1. there is an edge from each vertex u_i to each vertex v_i
- 2. there is not an edge from any vertex u_i to any other vertex u_k
- 3. there is not an edge from any vertex v_i to any other vertex v_l

A simple graph is *planar* if it can be drawn in the plane with no intersecting edges.

A **Delauney Triangulation** is a triangulation win which for each $\triangle uvw$ the circumcircle disk(u, v, w) does not contain any other vertices. The Delauney triangulation is a triangulation with the smallest possible edge length.

A *Gabriel graph*, denoted GG(V) contains an edge $\{u, v\}$ iff the disk with diameter \overline{uv} contains no other vertices.

A relative neighborhood graph, denoted RNG(V), is a graph in which $\{a,b\} \in E$ iff $\forall c \in V, ||ac|| \ge ||ab||$ or $||bc|| \ge ||ab||$. In other words, no vertices lie in the intersection of the disks centered at a and b.

If $\{u, v\}$ is an edge of G, then u and v are **adjacent vertices** in G. u and v are then called **neighbors** in G. Edge $\{u, v\}$ is **incident** to vertex u and to vertex v.

Distinct edges that share a common vertex are *adjacent edges*.

A graph H is a **subgraph** of graph G iff $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. This is denoted as $H \subseteq G$.

A graph H is a **proper subgraph** of graph G iff $H \subseteq G$ and either $V(H) \subset V(G)$ or $E(H) \subset E(G)$. This is denoted as $H \subset G$.

A graph H is a **spanning subgraph** of graph G iff $H \subseteq G$ and V(H) = V(G).

A subset of vertices $F \subseteq V(G)$ gives rise to the graph $\langle F \rangle$, called the **subgraph of** G **induced by** F. The vertices in the induced subgraph are $V(\langle F \rangle) = F$. The edges are $E(\langle F \rangle) = \{\{u,v\} \mid u,v \in F \text{ and } \{u,v\} \in E(G)\}$. To emphasize it is an induced subgraph of G, $\langle F \rangle$ is often written as G[F].

A subset of edges $X \subseteq E(G)$ defines the graph $\langle X \rangle$, called the **subgraph of** G **induced by** X. The edges in $\langle X \rangle$ are given by $E(\langle X \rangle) = X$. The vertices are given by $V(\langle X \rangle) = \{u \mid \{u,v\} \in X \text{ or } \{v,u\} \in X\}$. To emphasize it is an induced subgraph of G, $\langle X \rangle$ is often written as G[X].

A directed graph G = (V, E) consists of an ordered pair of sets, V and E. The vertex set V is a non-empty set of objects called vertices. The edge set $E = \{(u, v) \mid u \in V \text{ and } v \in V\}$ is a set of ordered pairs of vertices.