LECTURE 2 - SIMPLICIAL SETS

ROGER MURRAY

1. Notation

Categories will typically be sans serif (*i.e.* Top, sSet, etc.). If \mathcal{C} is an arbitrary category then we denote the set of \mathcal{C} -morphisms from objects $A, B \in \mathcal{C}$ by $\mathcal{C}(A, B)$.

2. Garbage

Recall the definition of the standard topological n-simplex as the set

$$\Delta_{\mathsf{Top}}^n := \left\{ (t_0, \cdots, t_n) \in \mathbb{R}^{n+1} \mid \sum t_i = 1 \text{ and } t_i \ge 0 \text{ for all } i \right\}$$

An alternative way of thinking of Δ_{Top}^n is as the convex hull of vertices $v_i = (0, \dots, 1, \dots, 0)$. We then have maps codegeneracy maps $s^i : \Delta_{\mathsf{Top}}^{n+1} \to \Delta_{\mathsf{Top}}^n$, and coface maps $d^i : \Delta_{\mathsf{Top}}^{n-1} \to \Delta_{\mathsf{Top}}^n$ defined by

$$s^{i}(t_{0},...,t_{n+1}) = (t_{0},...,t_{i}+t_{i+1},...,t_{n+1})$$
$$d^{i}(t_{0},...,t_{n-1}) = (t_{0},...,t_{i},0,t_{i+1},...,t_{n})$$

Clearly d^i is just the map embedding $\Delta_{\mathsf{Top}}^{n-1}$ as the i^{th} face of Δ_{Top}^n . Similarly s^i is a retration of $\Delta_{\mathsf{Top}}^{n+1}$ minus the i^{th} vertice v_i onto the face opposite v_i .

Given any topological space $X \in \mathsf{Top}$ we define the singular n-simplices of X to be the maps

$$\operatorname{Sing}(X)_n := \operatorname{\mathsf{Top}}(\Delta^n_{\operatorname{\mathsf{Top}}}, X)$$

This turns out to be an important example of something called a simplicial object. Before we can define what a simplicial object is, we must first define the *simplex category* Δ . The objects of Δ are the ordered sets $[n] = \{0, 1, \ldots, n\}$, and the morphisms $f: [m] \to [n]$ are the weakly-order-preserving (i.e. non-decreasing) functions. Similarly to above we have maps $s^i: [n+1] \to [n]$ and $d^i: [n-1] \to [n]$ given by repeating the i, and skipping i respectively. The following lemma says that these maps are the only maps we care about.

Lemma 2.0.1. Any map f in Δ is the composition of a series of d^i and s^j .

Proof sketch. If you have a map $f:[m] \to [n]$ then you have the inequality $f(0) \le f(1) \le \cdots \le f(m)$. We get unique elements of the form $g_0 < \cdots < g_k$ for $k \le \min\{m, n\}$. By composing d^0 with itself g_0 times we get a map that sends [m] to $[g_0, g_0 + 1, \ldots, g_0 + m]$. We repeat g_0 with s^0 as many times as it occurs in the sequence of f(i)s. We then simply repeat this process inductively on the g_i for $0 < i \le k$.

Definition 2.0.2. A *simplicial object* is a functor $X : \Delta^{\text{op}} \to \mathsf{Set}$. Similarly a *cosimplicial object* is a functor $X : \Delta \to \mathsf{Set}$.

References

asdasd

Date: November 25, 2019.