PARTE A

1. La derivata della funzione $(\sin(x))^{\cos(\pi x)}$ nel punto x=1/2 vale

A: N.A. B:
$$\pi \sin(1/2)^{\cos(\pi/2)} \sin(\pi/2)$$
 C: $+\infty$ D: $-\pi \log \left(\sin\left(\frac{1}{2}\right)\right)$ E: $\pi \log \left(\frac{\pi}{2}\right)$

2. La funzione $f(x):[0,2\pi]\to\mathbb{R}$ definita da $f(x)=\sqrt{1+\sin(x)}$ è

A: iniettiva B: surgettiva C: derivabile almeno una volta D: N.A. E: negativa o nulla

3. La serie di potenze

$$\sum_{n=2}^{\infty} \frac{\arctan(n)}{3n + 4n^2} x^n$$

risulta convergente per

A:
$$|x| < 1$$
 B: $x = 0$ C: N.A. D: $-1 \le x \le 1$ E: \mathbb{R}

4. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : e^{-x^2} > \frac{1}{e}\}$$

valgono

A: N.A. B:
$$\{-1, N.E., 1, N.E.\}$$
 C: $\{1/e, 1/e, e, e\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{1, 1, +\infty, N.E.\}$

5. Il minimo della funzione $f(x) = 1 + |\tan(x)| e^{\sqrt[4]{1+x^2}}$ su (-1,1) è

A: N.A. B: N.E. C: 0 D: 1 E:
$$1 + \tan(\pi/4) |e^{\sqrt[4]{1+\pi^2/16}}$$

6. Il limite

$$\lim_{x \to 0} \frac{e^x - 1 - \sin(x)}{\sin(x)\tan(x)}$$

vale

A: 1 B: 0 C:
$$+\infty$$
 D: N.A. E: $1/2$

7. L'integrale

$$\int_{2}^{+\infty} \frac{1}{x^2 - 3x} \, dx$$

vale

A:
$$\log(3/2)$$
. B: N.A. C: $\log(2/3)$ D: 0 E: 1

8. L'integrale

$$\int_2^3 \frac{2x}{1-x^2} \, dx$$

vale

A:
$$\log(3/8)$$
 B: N.A. C: $\log(8/3)$ D: N.E. E: $\arctan(3) - \arctan(2)$

9. Data y soluzione del problema di Cauchy $\left\{ \begin{array}{ll} y'=xy \\ y(0)=1 \end{array} \right.$ allora y(1) vale

A: 0 B: e C: N.A. D: N.E. E:
$$\sqrt{e}$$

10. Trovare il modulo del numero complesso $z \cdot \overline{w}$ dove $z = 2e^{i\pi}$ e w = 1 + i

A:
$$2 + 2i$$
 B: 2 C: $2\sqrt{2}$ D: N.A. E: $\sqrt{5}$

16 febbraio 2017

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

16 febbraio 2017

(Cognome)	(Nome)	(Numero di matricola)

ABCDE

1	0	\bigcirc	\bigcirc	•	0	
2	0		\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	•	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	\bigcirc	•	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8	0		\bigcirc	\bigcirc	\bigcirc	
9	0		\bigcirc	\bigcirc	\bigcirc	
10	0	\bigcirc	\bigcirc	•	\bigcirc	

16 febbraio 2017

(Cognome)	(Nome)	(Numero di matricola)

ABCDE

	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	\bigcirc	\bigcirc	•	
0	\bigcirc	\bigcirc	•	\bigcirc	
0	\bigcirc	0	\bigcirc	•	
0	\bigcirc	\bigcirc	\bigcirc	•	
0	\bigcirc	\bigcirc	\bigcirc	•	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

16 febbraio 2017

(Cognome)	(Nome)	(Numero di matricola)

ABCDE

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	•	
3	•	\bigcirc	\bigcirc	\bigcirc	0	
4	0	•	\bigcirc	\bigcirc	\bigcirc	
5	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc		\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	•	
8	0	\bigcirc	\bigcirc	•	\bigcirc	
9	0	•	0	\bigcirc	0	
10						

16 febbraio 2017

PARTE B

- 1. a) Si studi la funzione $f(x) = |x^3|e^{-x}$ per x > 0, individuando in particolare i punti di massimo e minimo locale e assoluto.
 - b) Si studi al variare di $k \in \mathbb{R}$ il numero di soluzioni di

$$ke^x = |x^3|.$$

Soluzione. a) La funzione si può scrivere come

$$f(x) = \left\{ \begin{array}{ll} x^3 e^{-x}, & x \geq 0 \\ -x^3 e^{-x}, & x < 0 \end{array} \right.$$

e si ha immediatamente che f(x)>0 per $x\neq 0$ e f(0)=0. Inoltre $\lim_{x\to +\infty}f(x)=0$ e $\lim_{x\to -\infty}f(x)=-\infty$. Per la derivata prima abbiamo

$$f'(x) = \begin{cases} (3-x)x^2e^{-x}, & x > 0\\ (x-3)x^2e^{-x}, & x < 0 \end{cases}.$$

La funzione risulta anche derivabile in zero con f'(0) = 0. Inoltre la funzione è decrescente fino a zero, crescente fino al punto x = 3 e di nuovo decrescente per x > 3, quindi in x = 0 abbiano un minimo locale e in x = 3 un massimo locale di valore $f(3) = \frac{27}{e^3}$. Per la derivata seconda abbiamo

$$f''(x) = \begin{cases} (x^2 - 6x + 6)xe^{-x}, & x > 0\\ -(x^2 - 6x + 6)xe^{-x}, & x < 0 \end{cases},$$

- e la funzione in zero è derivabile anche una seconda volta con f''(0) = 0. Dall'espressione della derivata segue che la funzione ha un flesso per $x = 3 \sqrt{3}$ e uno in $x = 3 + \sqrt{3}$.
- b) Per trovare il numero di soluzioni basta vedere quante soluzioni ammette $|x^3|e^{-x}=k$. Dallo studio di funzione segue immediatamente che il numero di soluzioni è : nessuna per k<0; una per k=0: tre per $0< k<27/e^3$; due per $k=27/e^3$; una per $k>27/e^3$.
- 2. a) Si consideri, per $n \in \mathbb{N}$, il problema di Cauchy

$$\begin{cases} y''(x) = x^n \\ y(0) = 0 & \text{e} \quad y'(0) = 1. \end{cases}$$

Chiamata $y_n(x)$ la soluzione, si calcoli, al variare di n

$$\lim_{n\to+\infty}y_n(1/2).$$

Figura 1: grafico approssimativo di $f(x) = |x^3|e^{-x}$

b) Si trovi la soluzione del problema di Cauchy

$$\begin{cases} y''(x) = x^{-2} \\ y(1) = 0 & \text{e} \quad y'(1) = 1. \end{cases}$$

Soluzione. a) Integrando una volta si ottiene che $y_n' = \frac{x^{n+1}}{n+1} + c_1$ e integrando una seconda volta si ha $y_n = \frac{x^{n+2}}{(n+1)(n+2)} + c_1x + c_2$ e sostituendo le condizioni iniziali si ottiene che $y_n = \frac{x^{n+2}}{(n+1)(n+2)} + x$. Quindi

$$\lim_{n \to \infty} y_n \left(\frac{1}{2} \right) = \lim_{n \to \infty} \frac{1}{2^{n+2} (n*2)(n+1)} + \frac{1}{2} = \frac{1}{2}.$$

- b) Procedendo come prima si ha $y_n' = -\frac{1}{x} + c_1$ e $y_n = -\log(x) + c_1x + c_2$. Imponendo le condizioni iniziali si ottiene $y_n = 2x \log(x) 2$.
- 3. Studiare, al variare di a>0 la convergenza dell'integrale

$$\int_0^5 \frac{x^2 - 3ax + 2a^2}{x^2 - 1} \, dx.$$

Se esistono valori di a per cui l'integrale risulta convergente, calcolarne il valore.

Soluzione. a) L'integrando si può scrivere come $\frac{(x-a)(x-2a)}{(x-1)(x+1)}$. Se $a \neq 1, 1/2$ allora vicino a x=1 si ha che

$$\frac{x^2 - 3ax - 2a^2}{x^2 - 1} \sim \frac{1}{x - 1},$$

che diverge. Se invece a=1 o a=1/2 il denominatore si semplifica e la funzione risulta limitata in [0,5], dunque integrabile. Quindi l'integrale è convergente se e solo se a=1 o a=1/2.

b) Per a = 1 si ha

$$\int_0^5 \frac{x-2}{x+1} dx = \int_0^5 \left(1 - \frac{3}{x+1}\right) dx = \left[x - 3\log|x + 1|\right]_0^5 = 5 - 3\log(6).$$

In modo del tutto analogo per a = 1/2 si ottiene

$$\int_0^5 \frac{x - 1/2}{x + 1} dx = \int_0^5 \left(1 - \frac{3}{2} \frac{1}{x + 1} \right) dx = 5 - \frac{3}{2} \log(6).$$

4. Data la funzione

$$f(x) = \sin\left(\frac{\pi}{2x}\right)$$
 $x \in]1/100, 1].$

sia A l'insieme dei punti di massimo relativo e B l'insieme dei punti di minimo relativo. Calcolare

$$\#A - \#B$$
.

Soluzione. Con la sostituzione x=1/t, si scopre che il problema è equivalente a calcolare la differenza tra il numero di massimi e il numero dei minimi locali della funzione $g(t)=\sin\left(\frac{\pi}{2}t\right)$ per $t\in]1,100[$. Sappiamo che i massimi relativi si ottengono quando $\frac{\pi}{2}t=\frac{\pi}{2}+2k\pi$, ovvero per t=1+4k e che i minimi relativi si ottengono quando $\frac{\pi}{2}t=\frac{3\pi}{2}+2k\pi$, ovvero per t=3+4k. Quanti di questi punti stanno in]1,100[? Per k=0 nessun punto appartiene all'intervallo. Per $k=1,\ldots,24$ entrambi i punti stanno nell'intervallo, mentre per $k\geq 25$ nessun punto appartiene all'intervallo considerato. Quindi #A-#B=0.