Ansteuerung der Verbraucher per Tastendruck oder einem Digital System (z.B. Selectrix)

Inhaltsverzeichnis

1	Darstellung der PushButton Funktion	1
2	Variablen	1
3	Parameter der PushButton Funktion	2
4	Ansteuerung der TastenLED	2
5	Einbindung des Digital Systems	3
6	Besonderheiten	4
7	Eine Wechselschaltung	5
8	Anwendung für eine Weiche und ein Entkupplungsgleis	6

1 Darstellung der PushButton Funktion

Funktionsweise der PushButton Funktion anhand eines Beispiels für die Herzstück-Polarisierung und gleichzeitige Servo-Ansteuerung

Info: Für die PushButton Funktion bitte den Expertenmodus aktivieren

SwitchB (B= Board) bedeutet, dass hier ein Taster der PushButton Platine oder ein Taster am Anlagenrand verwendet wird . SwitchB1 für den ersten- ,SwitchB2 für den zweiten Taster usw.

2 Variablen

Bei dieser Push Button Aktion werden drei Namen verwendet

- a) SwitchB1 ist der Name für den ersten-, SwitchB2 für den zweiten Taster usw.
- b) Taster_A Diese Push Button Funktion erzeugt die Variablen Taster_A_0 und Taster_A _1
- c) Slot_X Slot_X, hier für 10 "Verbraucher" Slot_1 bis Slot_10, wobei in diesem Beispiel für Slot_1 Herz_und_Servo1 und für Slot_2 Herz_und_Servo2 verwendet wird

Wichtig ist, dass die Variablen erst definiert werden müssen, bevor diese verwendet werden.

3 Parameter der PushButton Funktion

Der erste Taster wird in Spalte D (Channel oder Name) der Excel Tabelle SwitchB1 genannt.

SwitchB1

Die gewählte Funktion in Spalte K: PushButton_0_1(#InCh, Taster_A_0, 1, 1, 0, 0, 0) erzeugt zwei Variablen eine 0 und eine 1.

Bemerkung: Es gibt auch Funktionen, die mehrere Variablen erzeugen

Der Name der Variablen vor der 0 bzw.1 steht in der Zeile unterhalb von SwitchB1.

Der Name der Variable ist in diesem Beispiel Taster_A. Als Name könnte auch gleich der Name des Verbrauchers sein. z.B. PushB Andreaskreuz.

Die Variable *Taster_A_0* ist bei ausgeschalteter Funktion und *Taster_A_1* bei eingeschalteter Funktion **aktiv**.

Beim Auswählen dieser PushButton Funktion werden folgende Parameter eingetragen

Taster_A_0	Zielvariable 1
1	Zustände rotieren [0 / 1]
1	Verwende Zustand 0 beim rotieren [0 / 1]
0	Abschalten durch langes drücken [0 / 1]
0	Optionale Zähler Parameter
0	Abschaltzeit

Einige Erklärungen der Parameter

Parameter Zielvariable 1: Name der o.g. gewählte Variablen Taster_A mit der Endung _0 Parameter Zustände rotieren: Wenn dies auf 1 steht, kann mit einem weiteren Druck auf den Button zum nächsten Zustand gewechselt bzw. weiter geschaltet werden.

4 Ansteuerung der TastenLED

Für die LED neben dem Taster auf der Tasterplatine oder der LED, die in einem Taster eingebaut ist, wird die Routine : Const(#LED, C1, #InCh, 20, 150) verwendet.

Es wird ROT (C1-1) für die erste, Grün (C2-2) für die zweite und Blau (C3-3) für die dritte TasterLED genommen. Für die vierte TasterLED beginnt es wieder mit Rot.(C1-1). Das sind jeweils die drei Kanäle des WS2811 Chips.

Die Helligkeiten können von 0 bis 255 angegeben werden.

Der LED Kanal für die TasterLEDs ist 1

In diesem Beispiel ist bei Aktivierung die Helligkeit 150 und bei Deaktivierung 20. Somit zeigt die Helligkeit der TastenLED, ob der Verbraucher aktiviert ist.

Beispiel für die ersten 5 Taster der PushButton Platine

SwitchB1	Herz_und_Servo1	1	1	PushButton_0_1(#InCh, Taster_A_0, 1, 1, 0, 0, 0)		
Taster_A_1	Taster LED dauer	Taster LED dauer an		Const(#LED, C1, #InCh, 10, 150)	1-0	C1-1
SwitchB2	Herz_und_Servo2	1	2	PushButton_0_1(#InCh, Taster_B_0, 1, 1, 0, 0, 0)		
Taster_B_1				Const(#LED, C2, #InCh, 10, 150)	1-0	C2-2
SwitchB3	Baustellenlicht	1	3	PushButton_0_1(#InCh, Taster_C_0, 1, 1, 0, 0, 0)		
Taster_C_1				Const(#LED, C3, #InCh, 20, 150)	1-0	C3-3
SwitchB4	Gaslicht	1	4	PushButton_0_1(#InCh, Taster_D_0, 1, 1, 0, 0, 0)		
Taster_D_1				Const(#LED, C1, #InCh, 20, 150)	1-1	C1-1
SwitchB5	RGB Ampel	1	5	PushButton_0_1(#InCh, Taster_E_0, 1, 1, 0, 0, 0)		
Taster_E_1				Const(#LED, C2, #InCh, 20, 150)	1-1	C2-2

5 Einbindung des Digital Systems

Damit die Verbraucher auch mit dem Digitalsystem aktiviert werden können, wird eine Logic Funktion verwendet.

Info: Für die Logic Funktion bitte den Expertenmodus aktivieren

z.B. Logic(Slot_3, #InCh OR Taster_C_1) für

Baustellenlicht							
Andreaskreuz							
House_Room_warm							

Dabei ist die erste Variable der Channel /Name (Spalte D) für die Verbraucheraktion In diesem Beispiel wurde als dritte Variable Slot_3 gewählt.

Für die zweite Variable wird der Channel/ Name für die dritte TasterLED, hier TasterC_1 genommen. #InCh steht hierbei als Bezeichner für die Adresse aus der Spalte D und E.

In den Zeilen mit Herz_und_Servo1 und Herz_und_Servo2 bzw. Slot_3 bis Slot_10 werden in den Spalten K die gewünschten Verbraucher letztendlich ausgewählt.

In diesem Beispiel wird bei Selectrix mit der Adresse 10 und mit dem Bit 3 geschaltet.

10	3	AnAus	3	Selectrix/ Taster-03	Logic(Slot_3, #InCh OR Taster_C_1)										
•					•										
Adress	Adressen des Digital Systems für alle Verbraucher														
10	1	AnAus	1	Selectrix/ Taster-01	<pre>Logic(Herz_und_Servo1, #InCh OR Taster_A_1)</pre>										
10	2	AnAus	2	Selectrix/ Taster-02	<pre>Logic(Herz_und_Servo2, #InCh OR Taster_B_1)</pre>										
10	3	AnAus	3	Selectrix/ Taster-03	Logic(Slot_3, #InCh OR Taster_C_1)										
10	4	AnAus	4	Selectrix/ Taster-04	Logic(Slot_4, #InCh OR Taster_D_1)										
10	5	AnAus	5	Selectrix/ Taster-05	Logic(Slot_5, #InCh OR Taster_E_1)										
10	6	AnAus	6	Selectrix/ Taster-06	Logic(Slot_6, #InCh OR Taster_F_1)										
10	7	AnAus	7	Selectrix/ Taster-07	Logic(Slot_7, #InCh OR Taster_G_1)										
10	8	AnAus	8	Selectrix/ Taster-08	Logic(Slot_8, #InCh OR Taster_H_1)										
11	1	AnAus	1	Selectrix/ Taster-09	<pre>Logic(Slot_9, #InCh OR Taster_I_1)</pre>										
11	2	AnAus	2	Selectrix/ Taster-10	Logic(Slot_10, #InCh OR Taster_J_1)										

Sollen **mehrere** Verbraucher mit **einer** Taste- bzw. Digitaleingabe aktiviert werden, wird die Variable **mehrmals** eingetragen.

Slot_3	Baustellenlicht	3	ConstrWarnLightRGB6(#LED, #InCh, 5, 255, 100 ms, 0 ms, 500 ms)	0-4				
Slot_3	Andreas	3	AndreaskrRGB(#LED, #InCh)					
Slot_3	House_warm	3	House(#LED, #InCh, 1, 1, ROOM_WARM_W)	0-12				

6 Besonderheiten

Herz_und_Servo1	Herz _1 (pc)	1	// Activation: BinaryBin_InCh_to_TmpVar(#InCh, 1)PatternT1(#LED,12	0-1	C1-2
Herz_und_Servo2	Herz _2 (pc)	2	// Activation: BinaryBin_InCh_to_TmpVar(#InCh, 1)PatternT1(#LED,13	0-1	C3-4
Herz_und_Servo1	Servo_rot (pc)	2	// Activation: BinaryBin_InCh_to_TmpVar(#InCh, 1)PatternT1(#LED,28	0-3	C1-1
Herz_und_Servo2	Servo_gruen (pc)	1	// Activation: Binary	0-3	C2-2
			Bin_InCh_to_TmpVar(#InCh, 1)		
			PatternT1(#LED,29,SI_LocalVar,1,0,255,0,0,10 sek,20,0,200,0		
			.0.63.128.63)		

Hier wird für eine Herzstück Polarisierung und gleichzeitiger Servoansteuerung eine mit dem Pattern Konfigurator erstellte Funktion verwendet.

 $https://wiki.mobaledlib.de/anleitungen/selectrix/servo_und_herzstueck\#servosteuerung_und_herzstueck#servosteuerung_und_herzs$

Zwei Relais werden alternativ geschaltet, verwendbar z.B. für einen Weichenspulenantrieb

Slot_7	Relay 1 und 2 (pc)	7	// Activation: BinaryBin_InCh_to_TmpVar(#InCh, 1)PatternT1	0-32	C1-2
Slot_8	Relay 3 und 4 (pc)	7	// Activation: BinaryBin_InCh_to_TmpVar(#InCh, 1)PatternT1	0-32	C3-4
Slot_9	Relay 5 und 6 (pc)	7	// Activation: BinaryBin InCh to TmpVar(#InCh, 1)PatternT1	0-33	C2-3

Mit der *Const* Funktion kann auch ein einzelnes Relais geschaltet werden.

Mit dieser Programmierung können die Verbraucher entweder mit dem Digitalsystem ODER mit den Tastern aktiviert werden. Wird ein Verbraucher mit der Taste aktiviert, kann das Digital System diesen leider nicht wieder ausschalten.

7 Eine Wechselschaltung

Hierzu wurde das Beispiel von der Konfiguration oben modifiziert

10	3	Tast	Selectrix/ Taster-03			Logic(SX_OR_Taster3, #InCh OR SwitchB3)
SX_OR_Taster3			Baustellenlicht	1	3	PushButton_w_LED_BL_0_1(#LED, C3, #InCh, Slot_3_0, 1, 1, 1, 0, 0, 127, 31)
Slot_3_1			Baustellenlicht		3	ConstrWarnLightRGB6(#LED, #InCh, 5, 255, 100 ms, 0 ms, 500 ms)
Slot_3_1						AndreaskrRGB(#LED, #InCh)
Slot_3_1						House(#LED, #InCh, 1, 1, ROOM_WARM_W)

Mit dieser Wechselschaltung gibt es einen Zustand, bei dem die Verbraucher mit Selectrix aktiviert werden. Das Bit x (hier3) bleibt aber gleich 1, wenn mit dem Taster der/die Verbraucher ausgeschaltet wird/werden. Das entspricht einer Wechselschaltung in der Wohnung.

Für eine optimale Lösung müsste die MLL den Zustand auf den Bus zurückschreiben können. Dies ist derzeit noch nicht in der MLL integriert.

Es ist nur mit der Tast - Tast und nicht mit der AN/Aus AnAus Funktion möglich, denn
mit AN/Aus wird die Led nur 1 Sekunde eingeschaltet und das Bit darf nicht mehr gesetzt sein, wenn
man mit den Tastern ein – und ausschalten möchte.

Man muss sich halt entscheiden, ob man mit dem Digitalsystem ODER mit den Tastern schalten möchte.

8 Anwendung für eine Weiche und ein Entkupplungsgleis

Mit der Push Button Platine soll eine Weiche und ein Entkupplungsgleis geschalten werden

Zur Ansteuerung werden s.g. Channel Relay Module verwendet

Zur Weichenansteuerung wird ein Zwei Channel Relay Module zum Umschalten der Weiche, und für das Entkupplungsgleis wird ein Ein Channel Relay Module verwendet.

Dabei wird bei jedem Relais der Schließer, bezeichnet als NO (normally open) benutzt.

Ein WS2811 mit den drei Ausgängen R G B steuert die Module.

Die Ausgänge R G des WS28811 gehen jeweils an den IN1 bzw. IN2 Eingang des Zwei Channel Relay Modules. Der dritte Ausgang B des WS2811 wird mit dem Eingang IN des Ein Channel Relay Modules verbunden.

An die Mittenkontakte der Relais wird eine Leitung der Versorgungsspannung angeschlossen. Die zweite Leitung der Versorgungsspannung geht direkt an die Weiche bzw. an das Entkupplungsgleis.

Bei Minitrix wird das weiße Kabel mit den Mittenkontakten verbunden. Bei Märklin das gelbe Kabel.

Die Schaltleitungen der Weiche, bei Minitrix das grüne und das gelbe Kabel, werden jeweils an den Schließer NO (normally open) des Relais angeschlossen. Bei Märklin die blauen Kabel.

Mit dieser Push Button Platine Routine wird zuerst der Taster bestimmt.

SwitchB5	W	Veiche 1	4	_	Taster unbeleuchtet, 1 Funkt	PushButton_0_1(#InCh,	Taster_E_0,	1, 1,	0, 0,	, 0)
Taster_E_1					LED einstellbar	Const(#LED, C2, #InCh	, 20, 150)			

Wahl der Push Button Funktion hier: PushButton_0_1(#InCh, Taster_E_0, 1, 1, 0, 0, 0)

Zu beachten ist hier die Zielvariable , diese ist hier Taster_E_0

Mit dieser Push Button Funktion wird die kleine Huckepack Platine für Tastern und LEDs verwendet.

Diese kleine Platine ist ein Anhängsel der 300 PushButton Platine. Im Bild rechte Seite

Bei Verwendung von z.B. Tastern mit RGBLEDs muss eine andere PushButton Routine angewandt werden.

Damit die Relais auch mit dem Digitalsystem aktiviert werden sollen gibt es eine

Logische Verknüpfung für das Digitalsystem

10	5	AnAus 5	Selectrix/ Taster-05	Weiche	D Logische Verknüpfung	Logic(Slot_5, #InCh OR Taster_E_1)
10	6	Tast	Selectrix/ Taster-06	Entkuppler	D-Logische Verknüpfung	Logic(Slot_6, #InCh OR Taster_F_1)

Das Entkupplungsgleis wird als Taster definiert, damit mit jedem Tastendruck die Aktion ausgeführt wird.

Und zum Schluss die Verbraucher hier eben die Weiche und das Entkupplungsgleis.

Slot_5		Weiche	4		Muster Pattern_Configurator	<pre>// Activation: BinaryBin_InCh_to_TmpVar(#InCh, 1);</pre>
Slot_6		Entkuppler	4	8	Mono-Flop	MonoFlop(Entkuppler, #InCh, 500)
Entkuppler					LED einstellbar	Const(#LED, C3, #InCh, 0, 255)

Die Ansteuerung der Weiche wurde ein im Pattern Generator erstelle Funktion übernommen

Zur Ansteuerung des Entkupplungsgleis wird ein Mono Flop mit einer selbst gewählten Variablen Entkuppler und eine Const LED-Funktion verwendet.

Die verwendete Excel-Datei ist in Github verfügbar.

Vielen Dank an Hardi und Dominik für die Hilfe bei der Programmierung und Beschreibung

a.hein 30. Okt. 2021