TRIGONOMETRY

The Pythagorean Theorem

Advanced Understanding

PROVING THE PYTHAGOREAN THEOREM

In the lesson, we saw the *Pythagorean Theorem*, but we didn't see **why** we should believe it's true.

PROVING THE PYTHAGOREAN THEOREM

In the lesson, we saw the *Pythagorean Theorem*, but we didn't see **why** we should believe it's true.

Let's prove it!

PROVING THE PYTHAGOREAN THEOREM

In the lesson, we saw the *Pythagorean Theorem*, but we didn't see **why** we should believe it's true.

Let's prove it!

(So many ways to prove: what follows is just one of many.)

PROOF: PYTHAGOREAN THEOREM — SET-UP

Proof — ANIMATION DUMMY

PROOF: PYTHAGOREAN THEOREM

PROOF: PYTHAGOREAN THEOREM

$$\angle + \angle = 90^{\circ}$$

$$\angle + \angle = 90^{\circ}$$

$$\angle + \angle = 90^{\circ}$$

$$\angle + \angle = 90^{\circ}$$

 $A_{\mathsf{big}\,\square}$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} +$$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} + A_{\text{small}\,\square}$$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} + A_{\text{small}\,\square}$$

$$A_{\text{big}\,\square} \ = \ 4 \cdot A_{\triangle} + A_{\text{small}\,\square}$$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} + A_{\text{small}\,\square}$$

$$A_{\text{big}\,\square} = 4 \cdot A_{\triangle} + A_{\text{small}\,\square}$$

$$(a+b)^2 =$$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} + A_{\text{small}\,\square}$$

$$A_{\text{big}\,\square} = 4 \cdot A_{\triangle} + A_{\text{small}\,\square}$$

$$(a+b)^2 = 4 \cdot \left(\frac{1}{2}a \cdot b\right) +$$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} + A_{\text{small}\,\square}$$

$$A_{\text{big}\,\square} = 4 \cdot A_{\triangle} + A_{\text{small}\,\square}$$

$$(a+b)^2 = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^2$$

Take a breather, Tiger.

This slide is just to say that we're going to re-walk the previous part with blank space on the left. You'll start talking again after the area equation finishes being written out with c^2 .

You'll trim all the dead air, natch.

Proof: Pythagorean Theorem — Area

 $A_{\mathsf{big}\,\square}$

Proof: Pythagorean Theorem — Area

$$A_{\mathsf{big}\,\square} = A_{\mathsf{all}\,\triangle\mathsf{s}} \,+\,$$

$$A_{\text{big}\,\square} = A_{\text{all}\,\triangle s} + A_{\text{small}\,\square}$$

$$egin{align*} A_{ ext{big}\,\square} &= oldsymbol{A}_{ ext{all}\,\triangle s} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ A_{ ext{big}\,\square} &= oldsymbol{4} \cdot oldsymbol{A}_{igtriangle} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ \end{align*}$$

$$egin{align*} oldsymbol{A}_{ ext{big}\,\square} &= oldsymbol{A}_{ ext{all}\,\triangle s} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ oldsymbol{A}_{ ext{big}\,\square} &= oldsymbol{4} \cdot oldsymbol{A}_{igtter} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ \end{align*}$$

$$(a + b)^2 =$$

Proof: Pythagorean Theorem — Area

$$egin{align*} oldsymbol{A}_{ ext{big}\,\square} &= oldsymbol{A}_{ ext{all}\,\triangle ext{s}} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ oldsymbol{A}_{ ext{big}\,\square} &= oldsymbol{4} \cdot oldsymbol{A}_{igtter} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ \end{align*}$$

$$(a+b)^2 = 4 \cdot \left(\frac{1}{2}a \cdot b\right) +$$

Proof: Pythagorean Theorem — Area

$$egin{align*} oldsymbol{A}_{ ext{big}\,\square} &= oldsymbol{A}_{ ext{all}\,\triangle ext{s}} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ oldsymbol{A}_{ ext{big}\,\square} &= oldsymbol{4} \cdot oldsymbol{A}_{igtter} \,+\, oldsymbol{A}_{ ext{small}\,\square} \ \end{align*}$$

$$(a+b)^2 = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^2$$

$$(a+b)^2 = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^2$$

$$(a+b)^2 = 4 \cdot (\frac{1}{2}a \cdot b) + c^2$$

 $(a+b)(a+b) = 2ab + c^2$

PROOF: PYTHAGOREAN THEOREM — ALGEBRA

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$
$$(a+b)(a+b) = 2ab + c^{2}$$
$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$
$$(a+b)(a+b) = 2ab + c^{2}$$
$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$
$$a^{2} + 2ab + b^{2} = 2ab + c^{2}$$

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$

$$(a+b)(a+b) = 2ab + c^{2}$$

$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$

$$a^{2} + 2ab + b^{2} = 2ab + c^{2}$$

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$

$$(a+b)(a+b) = 2ab + c^{2}$$

$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$

$$a^{2} + 2ab + b^{2} = 2ab + c^{2}$$

$$a^{2} + b^{2} = c^{2}$$

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$

$$(a+b)(a+b) = 2ab + c^{2}$$

$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$

$$a^{2} + 2ab + b^{2} = 2ab + c^{2}$$

$$a^{2} + b^{2} = c^{2}$$

PROOF: PYTHAGOREAN THEOREM — ALGEBRA

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$

$$(a+b)(a+b) = 2ab + c^{2}$$

$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$

$$a^{2} + 2ab + b^{2} = 2ab + c^{2}$$

$$a^{2} + b^{2} = c^{2}$$

This logic would work for any right triangle.

$$(a+b)^{2} = 4 \cdot \left(\frac{1}{2}a \cdot b\right) + c^{2}$$

$$(a+b)(a+b) = 2ab + c^{2}$$

$$a^{2} + ab + ba + b^{2} = 2ab + c^{2}$$

$$a^{2} + 2ab + b^{2} = 2ab + c^{2}$$

$$a^{2} + b^{2} = c^{2}$$

This logic would work for any right triangle. Therefore it must be the case that $a^2 + b^2 = c^2$ for all right triangles.

DEAD AIR

Take a breather, Tiger.

The next few slides are all animation ready slides, but not so useful for doing VO. As such, you should skip forward six slides until you reach

$$a^2 + b^2 > c^2$$

After that, take a breath, and get ready to start again. You'll be talking about how we can "go farther" with the **Pythagorean Converse**.

Consider a right triangle:

$$a^2 + b^2 = c^2$$

Consider a right triangle:

$$a^2 + b^2 = c^2$$

What would happen if we "stretched" out c a bit?

What would happen if we "stretched" out *c* a bit?

$$a^2 + b^2 < c^2$$

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$

What would happen if "shrank" c down some?

What would happen if "shrank" c down some?

$$a^2 + b^2 > c^2$$

Consider a right triangle:

$$a^2 + b^2 = c^2$$

Consider a right triangle:

$$a^2 + b^2 = c^2$$

What would happen if we "stretched" out c a bit?

What would happen if we "stretched" out *c* a bit?

$$a^2 + b^2 < c^2$$

$$a^2 + b^2 = c^2$$

$$a^2 + b^2 = c^2$$

What would happen if "shrank" c down some?

What would happen if "shrank" c down some?

$$a^2 + b^2 > c^2$$

$$a^2 + b^2 = c^2 \iff$$
Right triangle

$$a^2 + b^2 = c^2 \iff$$
 Right triangle $a^2 + b^2 < c^2 \iff$ Obtuse triangle

$$a^2 + b^2 = c^2 \iff \text{Right triangle}$$

 $a^2 + b^2 < c^2 \iff \text{Obtuse triangle}$
 $a^2 + b^2 > c^2 \iff \text{Acute triangle}$

$$a^2 + b^2 = c^2 \iff$$
 Right triangle $a^2 + b^2 < c^2 \iff$ Obtuse triangle $a^2 + b^2 > c^2 \iff$ Acute triangle

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 :

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 : $a^2 + b^2 \quad ?? \quad c^2$

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 :

$$a^2 + b^2$$
 ?? c^2
 $5^2 + 6^2$?? 8^2

a=5 b=6 c=8

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 :

$$a^2 + b^2$$
 ?? c^2
 $5^2 + 6^2$?? 8^2
 $25 + 36$?? 64

a=5 c=8 b=6

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 :

$$5^2 + 6^2$$
 ?? 8^2 $25 + 36$?? 64

 $a^2 + b^2$?? c^2

PYTHAGOREAN CONVERSE WITH INEQUALITIES — EXAMPLE

a=5 b=6

c=8

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 :

$$a^{2} + b^{2} < c^{2}$$

 $5^{2} + 6^{2} < 8^{2}$
 $25 + 36 < 64$
 $61 < 64$

PYTHAGOREAN CONVERSE WITH INEQUALITIES — EXAMPLE

Identify the longest side (c).

Compare $a^2 + b^2$ with c^2 :

$$a^{2} + b^{2} < c^{2}$$

 $5^{2} + 6^{2} < 8^{2}$
 $25 + 36 < 64$

Thus the triangle is obtuse.

The converse of the Pythagorean theorem seems reasonable, but in math we want **proof**!

The converse of the Pythagorean theorem *seems* reasonable, but in math we want proof!

Let's prove it!

REMINDER OF PYTHAGOREAN CONVERSE

Converse of Pythagorean Theorem

If we have a triangle where

$$a^2 + b^2 = c^2,$$

REMINDER OF PYTHAGOREAN CONVERSE

Converse of Pythagorean Theorem

If we have a triangle where

$$a^2+b^2=c^2,$$

Then it's a right triangle.

Given: $a^2 + b^2 = c^2$

Construct another triangle:

Pythagorean Theorem on new triangle:

$$a^2 + b^2 = x^2$$

Given: $a^2 + b^2 = c^2$

Construct another triangle:

Pythagorean Theorem on new triangle:

$$a^2 + b^2 = x^2$$

Use substitution:

Given: $a^2 + b^2 = c^2$

Construct another triangle:

Pythagorean Theorem on new triangle:

$$a^2 + b^2 = x^2$$

Use substitution:

Given: $a^2 + b^2 = c^2$

Construct another triangle:

Pythagorean Theorem on new triangle:

$$a^2 + b^2 = x^2$$

Use substitution: $c^2 = x^2$

Given: $a^2 + b^2 = c^2$

Construct another triangle:

Pythagorean Theorem on new triangle:

$$a^2 + b^2 = x^2$$

Use substitution: $c^2 = x^2 \implies c = x$

We now know that c = x.

We now know that c = x. Thus, by SSS Congruence, the triangles must be congruent to each other.

We now know that c = x.

Thus, by SSS Congruence, the triangles must be congruent to each other.

Therefore the original triangle must have a right angle as well.

THANKS FOR WATCHING!

Watch the rest of the videos on this topic!

www.chipmunkmath.com

Creative Commons: © () () () ()
Open source, available on GitHub ()
Details at chipmunkmath.com