ASSIGNMENT- 4

CUSTOMER SEGMENTATION ANALYSIS

Assignment Date	28 October 2022
Student	Aswin.R
Name	
Student Roll	731719104004
Number	
Maximum	2 Marks
Marks	

Importing the libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

Loading the dataset: Input:

df = pd.read_csv('Mall_Customers.csv') df

	Custome	erID Ge	ender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39	
1	2	Male	21	15	81	
2	3	Female	20	16	6	
3	4	Female	23	16	77	
4	5	Female	31	17	40	
195	196	Female	35	120	79	
196	197	Female	45	126	28	
197	198	Male	32	126	74	
198	199	Male	32	137	18	
199	200	Male	30	137	83	
200	rows \times 5	column	S			

Encoding Categorical Columns

Input:

from sklearn.preprocessing import LabelEncoder le
= LabelEncoder()
df['Gender'] = le.fit_transform(df['Gender']) df

Output:

	Customerl	D Gen	der Ag	e Annu	al Income (k\$	Spending Score (1-100)	Cluster
0	1 1	19	15.00	39	2		
1	2 1	21	15.00	81	2		
2	3 0	20	16.00	6	2		
3	4 0	23	16.00	77	2		
4	5 0	31	17.00	40	2		
•••							
195	196	0	35	120.00	79 3		
196	197	0	45	126.00	28 1		
197	198	1	32	126.00	74 3		
198	199	1	32	60.55	18 1		
199	200	1	30	60.55	83 3		

 $200 \text{ rows} \times 6 \text{ columns}$

Visualizations

Univariate Analysis

Input: plt.hist(df['Age'])

```
(array([31., 19., 34., 29., 16., 26., 15., 10., 6., 14.]),
array([18., 23.2, 28.4, 33.6, 38.8, 44., 49.2, 54.4, 59.6, 64.8, 70.]),
```


Input:

plt.hist(df['Annual Income (k\$)'])

Output:

Input:

plt.hist(df['Spending Score (1-100)']) Output:

```
(array([16., 20., 10., 17., 35., 37., 11., 24., 14., 16.]),
array([ 1. , 10.8, 20.6, 30.4, 40.2, 50. , 59.8, 69.6, 79.4, 89.2, 99. ]),
)
```


Input: sns.countplot(df['Gender'])

Output:

Bi-Variate Analysis

Input:

sns.scatterplot(df['Annual Income (k\$)'], df['Spending Score (1-100)']) **Output:**

Input: sns.barplot(df['Gender'], df['Age'])

Input: sns.heatmap(df.corr(), annot = True) Output:

Multi-variate Analysis

Input: sns.pairplot(df)

output:

Descriptive Statistics

Input: df.info()

Output:

RangeIndex: 200 entries, 0 to 199 Data

columns (total 5 columns):

#	Column	Nor	n-Null Count	Dtype			
0	CustomerID	200	non-null	int64			
1	Gender	200	non-null	int64			
2	Age	200	non-null	int64			
3	Annual Income (k\$)	200	non-null	int64	4	Spending Score	(1-
	100) 200 non-null	int64	dtypes: int	64(5) m	emory	usage: 7.9 KB	

Input: df.describe()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	0.440000	38.850000	60.560000	50.200000

std	57.879185	0.497633	13.969007	26.264721	25.823522
min	1.000000	0.000000	18.000000	15.000000	1.000000
25%	50.750000	0.000000	28.750000	41.500000	34.750000
50%	100.500000	0.000000	36.000000	61.500000	50.000000
75%	150.250000	1.000000	49.000000	78.000000	73.000000
max	200.000000	1.000000	70.000000	137.000000	99.000000

Input:

df.skew()

Output:

 CustomerID
 0.000000

 Gender
 0.243578

 Age
 0.485569

 Annual Income (k\$)
 0.321843

Spending Score (1-100) -0.047220 dtype:

float64

Input:

df.kurt()

Output:

 CustomerID
 -1.200000

 Gender
 -1.960375

 Age
 -0.671573

 Annual Income (k\$)
 -0.098487

Spending Score (1-100) -0.826629 dtype:

float64

Input:

df.corr()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835	

Gender	0.057400	1.000000	0.060867	0.056410	-0.058109
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	0.056410	-0.012398	1.000000	0.009903
Spending Score (1-100) Input: df.var() Output:	0.013835	-0.058109	-0.327227	0.009903	1.000000
CustomerID Gender Age Annual Income (Spending Score float64	. ,	195.13 689.83	17638 33166	/pe:	
<pre>Input: df.std() Output: CustomerID Gender</pre>		57.8791 0.4976			

13.969007 Age Annual Income (k\$) 26.264721 Spending Score (1-100) 25.823522 dtype:

float64

Checking for missing values

Input:

df.isna().sum()

Output:

CustomerID 0 Gender 0 Age Annual Income (k\$) 0
Spending Score (1-100) 0 dtype:

Input:

df.isna().sum().sum()

Output:

0 **Input:**

df.duplicated().sum()

Output:

Finding & Handling Ouliers

Input:

```
quantile = df.quantile(q = [0.25, 0.75])
quantile Output:
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)		
0.25	50.75	0.0	28.75	41.5	34.75		
0.75	150.25	1.0	49.00	78.0	73.00		
<pre>Input: IQR = quantile.iloc[1] - quantile.iloc[0] IQR Output: CustomerID</pre>							
floa	t64 ut:			38.25 dtype: (1.5 *IQR) upp	er		

Output:

CustomerID	299.500
Gender	2.500
Age	79.375
Annual Income (k\$)	132.750
Spending Score (1-100)	130.375
dtype: float64 Input:	
<pre>lower = quantile.iloc[0]</pre>	- (1.5* IQR)
lower Output:	
CustomerID	-98.500
Gender	-1.500
Age	-1.625
Annual Income (k\$)	-13.250
Spending Score (1-100)	-22.625
dtype: float64	f.mean()
Output:	
CustomerID	100.50
Gender	0.44
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	50.20
dtype: float64 Input:	
<pre>df['Annual Income (k\$)']</pre>].max()
Output:	
137	
Input:	
sns.boxplot(df['Custome	rID'])

Input: sns.boxplot(df['Gender']) Output:

Input: sns.boxplot(df['Age']) Output:

Input: sns.boxplot(df['Annual Income (k\$)']) Output:

df['Annual Income (k\$)'] = np.where(df['Annual Income (k\$)'] > 132.750, 60.55, df['Annual Income (k\$)']) sns.boxplot(df['Annual Income (k\$)'])

Input: df['Annual Income (k\$)'].max() Output: 126.0

Input: sns.boxplot(df['Spending Score (1100)']) Output:

Scaling the data

Input:

from sklearn.preprocessing import StandardScaler
ss = StandardScaler().fit_transform(df) ss

```
array([[-1.7234121 , 1.12815215, -1.42456879, -1.78843062, -0.43480148],
[-1.70609137, 1.12815215, -1.28103541, -1.78843062, 1.19570407],
       [-1.68877065, -0.88640526, -1.3528021, -1.74850629, -1.71591298],
       [-1.67144992, -0.88640526, -1.13750203, -1.74850629, 1.04041783],
       \hbox{\tt [-1.6541292\ ,\ -0.88640526,\ -0.56336851,\ -1.70858195,\ -0.39597992],}
       [-1.63680847, -0.88640526, -1.20926872, -1.70858195, 1.00159627],
       [-1.61948775, -0.88640526, -0.27630176, -1.66865761, -1.71591298],
       [-1.60216702, -0.88640526, -1.13750203, -1.66865761, 1.70038436],
       [-1.5848463 , 1.12815215, 1.80493225, -1.62873328, -1.83237767],
        [-1.56752558, \ -0.88640526, \ -0.6351352 \ , \ -1.62873328, \ \ 0.84631002] \, , \\
       [-1.55020485, 1.12815215, 2.02023231, -1.62873328, -1.4053405],
       [-1.53288413, -0.88640526, -0.27630176, -1.62873328, 1.89449216],
       [-1.5155634, -0.88640526, 1.37433211, -1.58880894, -1.36651894],
       [-1.49824268, -0.88640526, -1.06573534, -1.58880894, 1.04041783],
       [-1.48092195, 1.12815215, -0.13276838, -1.58880894, -1.44416206],
       [-1.46360123, 1.12815215, -1.20926872, -1.58880894, 1.11806095],
       [-1.4462805, -0.88640526, -0.27630176, -1.5488846, -0.59008772],
       [-1.42895978, 1.12815215, -1.3528021, -1.5488846, 0.61338066],
       [-1.41163905, 1.12815215, 0.94373197, -1.46903593, -0.82301709],
       \hbox{\tt [-1.39431833, -0.88640526, -0.27630176, -1.46903593, 1.8556706],}
       [-1.3769976, 1.12815215, -0.27630176, -1.42911159, -0.59008772],
       [-1.35967688, 1.12815215, -0.99396865, -1.42911159, 0.88513158],
       [-1.34235616, -0.88640526, 0.51313183, -1.38918726, -1.75473454],
       [-1.32503543, 1.12815215, -0.56336851, -1.38918726, 0.88513158],
        [-1.30771471, -0.88640526, \ 1.08726535, -1.26941425, -1.4053405 \ ], 
       [-1.29039398, 1.12815215, -0.70690189, -1.26941425, 1.23452563],
       [-1.27307326, -0.88640526, 0.44136514, -1.26941425, -0.7065524],
       [-1.25575253, 1.12815215, -0.27630176, -1.26941425, 0.41927286],
       [-1.23843181, -0.88640526, 0.08253169, -1.22948991, -0.74537397],
       [-1.22111108, -0.88640526, -1.13750203, -1.22948991, 1.42863343],
       [-1.20379036, 1.12815215, 1.51786549, -1.18956557, -1.7935561],
       [-1.18646963, -0.88640526, -1.28103541, -1.18956557, 0.88513158],
       [-1.16914891, 1.12815215, 1.01549866, -1.06979256, -1.7935561],
       [-1.15182818, 1.12815215, -1.49633548, -1.06979256, 1.62274124],
       [-1.13450746, -0.88640526, 0.7284319, -1.06979256, -1.4053405],
       [-1.11718674, -0.88640526, -1.28103541, -1.06979256, 1.19570407],
       [-1.09986601, -0.88640526, 0.22606507, -1.02986823, -1.28887582],
       [-1.08254529, -0.88640526, -0.6351352, -1.02986823, 0.88513158],
       [-1.06522456, -0.88640526, -0.20453507, -0.91009522, -0.93948177],
        [-1.04790384, \ -0.88640526, \ -1.3528021 \ , \ -0.91009522, \ \ 0.96277471] \, , \\
       [-1.03058311, -0.88640526, 1.87669894, -0.87017088, -0.59008772],
       [-1.01326239, 1.12815215, -1.06573534, -0.87017088, 1.62274124],
       [-0.99594166, 1.12815215, 0.65666521, -0.83024654, -0.55126616],
       [-0.97862094, -0.88640526, -0.56336851, -0.83024654, 0.41927286],
       \hbox{\tt [-0.96130021, -0.88640526, 0.7284319, -0.83024654, -0.86183865],}
       [-0.94397949, -0.88640526, -1.06573534, -0.83024654, 0.5745591],
       [-0.92665877, -0.88640526, 0.80019859, -0.79032221, 0.18634349],
       [-0.90933804, -0.88640526, -0.85043527, -0.79032221, -0.12422899],
       [-0.89201732, -0.88640526, -0.70690189, -0.79032221, -0.3183368],
       [-0.87469659, -0.88640526, -0.56336851, -0.79032221, -0.3183368],
```

```
[-0.84005514, 1.12815215, -0.41983513, -0.71047353, 0.38045129],
       [-0.82273442, -0.88640526, -0.56336851, -0.6705492, 0.14752193],
       [-0.80541369, 1.12815215, 1.4460988, -0.6705492, 0.38045129],
       [-0.78809297, -0.88640526, 0.80019859, -0.6705492, -0.20187212],
       [-0.77077224, 1.12815215, 0.58489852, -0.6705492, -0.35715836],
       [-0.75345152, -0.88640526, 0.87196528, -0.63062486, -0.00776431],
       [-0.73613079, 1.12815215, 2.16376569, -0.63062486, -0.16305055],
       [-0.71881007, -0.88640526, -0.85043527, -0.55077619, 0.03105725],
      [-0.70148935, 1.12815215, 1.01549866, -0.55077619, -0.16305055],
      [-0.68416862, 1.12815215, 2.23553238, -0.55077619, 0.22516505],
       [-0.6668479, 1.12815215, -1.42456879, -0.55077619, 0.18634349],
        [-0.64952717, -0.88640526, \ 2.02023231, -0.51085185, \ 0.06987881], 
       [-0.63220645, -0.88640526, 1.08726535, -0.51085185, 0.34162973],
       [-0.61488572, 1.12815215, 1.73316556, -0.47092751, 0.03105725],
       [-0.597565 , 1.12815215 , -1.49633548 , -0.47092751 , 0.34162973],
       [-0.58024427, -0.88640526, 0.29783176, -0.47092751, -0.00776431],
       [-0.56292355, -0.88640526, 2.091999, -0.47092751, -0.08540743],
       [-0.54560282, 1.12815215, -1.42456879, -0.47092751, 0.34162973],
      [-0.5282821 , -0.88640526 , -0.49160182 , -0.47092751 , -0.12422899],
      [-0.51096138, 1.12815215, 2.23553238, -0.43100318, 0.18634349],
      [-0.49364065, -0.88640526, 0.58489852, -0.43100318, -0.3183368],
       [-0.47631993, -0.88640526, 1.51786549, -0.39107884, -0.04658587],
        [-0.4589992 \ , \ -0.88640526, \ \ 1.51786549, \ -0.39107884, \ \ 0.22516505] \, , \\
      [-0.44167848, 1.12815215, 1.4460988, -0.23138149, -0.12422899],
      [-0.42435775, 1.12815215, -0.92220196, -0.23138149, 0.14752193],
      [-0.40703703, -0.88640526, 0.44136514, -0.23138149, 0.10870037],
      [-0.3897163 , 1.12815215, 0.08253169, -0.23138149, -0.08540743],
       [-0.37239558, \ -0.88640526, \ -1.13750203, \ -0.23138149, \ \ 0.06987881], 
      [-0.35507485, -0.88640526, 0.7284319, -0.23138149, -0.3183368],
      [-0.33775413, 1.12815215, 1.30256542, -0.23138149, 0.03105725],
      [-0.3204334, 1.12815215, -0.06100169, -0.23138149, 0.18634349],
       [-0.30311268, \quad 1.12815215, \quad 2.02023231, \quad -0.23138149, \quad -0.35715836], 
        [-0.28579196, \ -0.88640526, \ \ 0.51313183, \ -0.23138149, \ -0.24069368], 
      [-0.26847123, -0.88640526, -1.28103541, -0.23138149, 0.26398661],
       [-0.25115051, 1.12815215, 0.65666521, -0.23138149, -0.16305055],
      [-0.23382978, -0.88640526, 1.15903204, -0.11160848, 0.30280817],
       [-0.21650906, -0.88640526, -1.20926872, -0.11160848, 0.18634349],
       [-0.19918833, -0.88640526, -0.34806844, -0.07168415, 0.38045129],
      [-0.18186761, -0.88640526, 0.80019859, -0.07168415, -0.16305055],
      [-0.16454688, -0.88640526, 2.091999, -0.03175981, 0.18634349],
      [-0.14722616, 1.12815215, -1.49633548, -0.03175981, -0.35715836],
       \hbox{\tt [-0.12990543, ~ 1.12815215, ~ 0.65666521, ~ 0.00816453, -0.04658587],}
       [-0.11258471, -0.88640526, 0.08253169, 0.00816453, -0.39597992],
       [-0.09526399, -0.88640526, -0.49160182, 0.00816453, -0.3183368],
[-0.07794326, 1.12815215, -1.06573534, 0.00816453, 0.06987881], [-
0.06062254, -0.88640526, 0.58489852, 0.00816453, -0.12422899],
                                                                       [ -
0.04330181, -0.88640526, -0.85043527, 0.00816453, -0.00776431],
       [-0.02598109, 1.12815215, 0.65666521, 0.04808886, -0.3183368],
       [-0.00866036, 1.12815215, -1.3528021, 0.04808886, -0.04658587],
      [0.00866036, -0.88640526, -1.13750203, 0.0880132, -0.35715836],
       [0.02598109, -0.88640526, 0.7284319, 0.0880132, -0.08540743],
       [ 0.04330181, 1.12815215, 2.02023231, 0.0880132 , 0.34162973],
   [0.06062254, 1.12815215, -0.92220196, 0.0880132, 0.18634349],
      [ 0.07794326, 1.12815215, 0.7284319 , 0.0880132 , 0.22516505],
       [ 0.09526399, -0.88640526, -1.28103541, 0.0880132 , -0.3183368 ],
       [0.11258471, -0.88640526, 1.94846562, 0.12793754, -0.00776431],
        \hbox{\tt [0.12990543, 1.12815215, 1.08726535, 0.12793754, -0.16305055], } 
       [0.14722616, 1.12815215, 2.091999, 0.12793754, -0.27951524],
```

[-0.85737587, -0.88640526, 0.7284319, -0.71047353, 0.06987881],

```
[ 0.18186761, 1.12815215, 1.87669894, 0.12793754, 0.06987881],
        \hbox{\tt [ 0.19918833, -0.88640526, -1.42456879, 0.12793754, 0.14752193], } 
       [ 0.21650906, -0.88640526, -0.06100169, 0.16786187, -0.3183368 ],
       [0.23382978, 1.12815215, -1.42456879, 0.16786187, -0.16305055],
      [0.25115051, -0.88640526, -1.49633548, 0.20778621, -0.08540743],
       [0.26847123, -0.88640526, -1.42456879, 0.20778621, -0.00776431],
        \hbox{\tt [0.28579196,-0.88640526,1.73316556,0.20778621,-0.27951524],} 
      [0.30311268, -0.88640526, 0.7284319, 0.20778621, 0.34162973],
      [\ 0.3204334\ ,\ -0.88640526,\ 0.87196528,\ 0.28763488,\ -0.27951524],
      [0.33775413, -0.88640526, 0.80019859, 0.28763488, 0.26398661],
      [0.35507485, 1.12815215, -0.85043527, 0.28763488, 0.22516505],
      [0.37239558, -0.88640526, -0.06100169, 0.28763488, -0.39597992],
      [ 0.3897163 , -0.88640526, 0.08253169, 0.36748356, 0.30280817],
      [ 0.40703703, 1.12815215, 0.010765 , 0.36748356, 1.58391968],
      [0.42435775, -0.88640526, -1.13750203, 0.40740789, -0.82301709],
      [0.44167848, -0.88640526, -0.56336851, 0.40740789, 1.04041783],
        \hbox{\tt [ 0.4589992 , 1.12815215, 0.29783176, 0.44733223, -0.59008772], } 
      [0.47631993, 1.12815215, 0.08253169, 0.44733223, 1.73920592],
      [ 0.49364065, 1.12815215, 1.4460988 , 0.44733223, -1.52180518],
      [ 0.51096138, 1.12815215, -0.06100169, 0.44733223, 0.96277471],
      [ 0.5282821 , 1.12815215, 0.58489852, 0.44733223, -1.5994483 ],
      [ 0.54560282, 1.12815215, 0.010765 , 0.44733223, 0.96277471],
       \hbox{\tt [0.56292355, -0.88640526, -0.99396865, 0.48725657, -0.62890928],} 
      [ 0.58024427, -0.88640526, -0.56336851, 0.48725657, 0.80748846],
      [\ 0.597565\ ,\ 1.12815215,\ -1.3528021\ ,\ 0.5271809\ ,\ -1.75473454],
      [0.61488572, -0.88640526, -0.70690189, 0.5271809, 1.46745499],
        \hbox{\tt [ 0.63220645, -0.88640526, 0.36959845, 0.5271809, -1.67709142], } 
       \hbox{\tt [ 0.64952717, 1.12815215, -0.49160182, 0.5271809, 0.88513158], } 
      [ 0.6668479 , 1.12815215, -1.42456879, 0.56710524, -1.56062674],
      [0.68416862, -0.88640526, -0.27630176, 0.56710524, 0.84631002],
      [0.70148935, -0.88640526, 1.30256542, 0.60702958, -1.75473454],
      [ 0.71881007, 1.12815215, -0.49160182, 0.60702958, 1.6615628 ],
      [0.73613079, -0.88640526, -0.77866858, 0.64695391, -0.39597992],
      [ 0.75345152, -0.88640526, -0.49160182, 0.64695391, 1.42863343],
      [0.77077224, 1.12815215, -0.99396865, 0.68687825, -1.48298362],
      [ 0.78809297, 1.12815215, -0.77866858, 0.68687825, 1.81684904],
      [ 0.80541369, 1.12815215, 0.65666521, 0.68687825, -0.55126616],
      [ 0.82273442, -0.88640526, -0.49160182, 0.68687825, 0.92395314],
      [ 0.84005514, -0.88640526, -0.34806844, 0.72680259, -1.09476801],
      [0.85737587, 1.12815215, -0.34806844, 0.72680259, 1.54509812],
       [ 0.87469659, 1.12815215, 0.29783176, 0.72680259, -1.28887582],
       [ 0.89201732, 1.12815215, 0.010765 , 0.72680259, 1.46745499],
[ 0.90933804, -0.88640526, 0.36959845, 0.72680259, -1.17241113], [
0.92665877, -0.88640526, -0.06100169, 0.72680259, 1.00159627],
0.94397949, -0.88640526, 0.58489852, 0.72680259, -1.32769738],
       [0.96130021, -0.88640526, -0.85043527, 0.72680259, 1.50627656],
       [0.97862094, 1.12815215, -0.13276838, 0.72680259, -1.91002079],
     \hbox{\tt [ 0.99594166, -0.88640526, -0.6351352 , 0.72680259, 1.07923939], } \\
    [ 1.01326239, 1.12815215, -0.34806844, 0.72680259, -1.91002079],
       [ 1.03058311, -0.88640526, -0.6351352 , 0.72680259, 0.88513158],
   [1.04790384, -0.88640526, 1.23079873, 0.76672692, -0.59008772],
       [1.06522456, -0.88640526, -0.70690189, 0.76672692, 1.27334719],
       [ 1.08254529, 1.12815215, -1.42456879, 0.8465756 , -1.75473454],
       [ 1.09986601, -0.88640526, -0.56336851, 0.8465756 , 1.6615628 ],
       [ 1.11718674, 1.12815215, 0.80019859, 1.00627294, -0.93948177],
       [1.13450746, -0.88640526, -0.20453507, 1.00627294, 0.96277471],
       [ 1.15182818, 1.12815215, 0.22606507, 1.04619728, -1.17241113],
       [ 1.16914891, -0.88640526, -0.41983513, 1.04619728, 1.73920592],
```

[0.16454688, 1.12815215, 1.94846562, 0.12793754, -0.08540743],

```
[ 1.18646963, -0.88640526, -0.20453507, 1.08612162, -0.90066021],
      [ 1.20379036, 1.12815215, -0.49160182, 1.08612162, 0.49691598],
       \hbox{\tt [ 1.22111108, \ 1.12815215, \ 0.08253169, \ 1.08612162, \ -1.44416206], } 
      [ 1.23843181, 1.12815215, -0.77866858, 1.08612162, 0.96277471],
      [ 1.25575253, 1.12815215, -0.20453507, 1.08612162, -1.56062674],
      [ 1.27307326, 1.12815215, -0.20453507, 1.08612162, 1.62274124],
      [ 1.29039398, -0.88640526, 0.94373197, 1.12604595, -1.44416206],
      [ 1.30771471, -0.88640526, -0.6351352 , 1.12604595, 1.38981187],
      [ 1.32503543, 1.12815215, 1.37433211, 1.12604595, -1.36651894],
      [ 1.34235616, 1.12815215, -0.85043527, 1.12604595, 0.72984534],
      [ 1.35967688, 1.12815215, 1.4460988 , 1.32566764, -1.4053405 ],
      [ 1.3769976 , 1.12815215, -0.27630176, 1.32566764, 1.54509812],
      [ 1.39431833, -0.88640526, -0.13276838, 1.48536498, -0.7065524 ],
      [ 1.41163905, -0.88640526, -0.49160182, 1.48536498, 1.38981187],
      [ 1.4462805 , -0.88640526, -0.70690189, 1.52528932, 1.46745499],
      [ 1.46360123, -0.88640526, 0.15429838, 1.56521366, -0.43480148],
      [ 1.48092195, 1.12815215, -0.6351352 , 1.56521366, 1.81684904], [ 1.49824268, -0.88640526, 1.08726535, 1.64506233, -1.01712489],
      [ 1.5155634 , 1.12815215, -0.77866858, 1.64506233, 0.69102378],
      [ 1.53288413, -0.88640526, 0.15429838, 1.724911 , -1.28887582],
      [ 1.55020485, -0.88640526, -0.20453507, 1.724911 , 1.35099031],
      [ 1.56752558, -0.88640526, -0.34806844, 1.724911 , -1.05594645],
      [ 1.5848463 , -0.88640526, -0.49160182, 1.724911 , 0.72984534],
      [ 1.60216702, 1.12815215, -0.41983513, 2.12415437, -1.63826986],
      [ 1.61948775, -0.88640526, -0.06100169, 2.12415437, 1.58391968],
      [ 1.63680847, -0.88640526, 0.58489852, 2.40362473, -1.32769738],
      [ 1.6541292 , -0.88640526, -0.27630176, 2.40362473, 1.11806095],
      [ 1.67144992, -0.88640526, 0.44136514, 2.64317075, -0.86183865],
      [ 1.68877065, 1.12815215, -0.49160182, 2.64317075, 0.92395314],
      [1.70609137, 1.12815215, -0.49160182, 0.03012291, -1.25005425],
[ 1.7234121 , 1.12815215, -0.6351352 , 0.03012291, 1.27334719]])
```

Clustering Algorithm

Input:

```
from sklearn.cluster import KMeans
TWSS = [] k = list(range(2,9)) for
i in k:
  kmeans = KMeans(n clusters = i , init = 'k-means++')
kmeans.fit(df)
 TWSS.append(kmeans.inertia)
TWSS Output:
 [381507.64738523855,
 268062.55433747417,
 191550.08627670942,
 153777.55391034693,
 119166.15727643928,
 101239.32626154403,
 85744.90139221892]
Input: plt.plot(k, TWSS,
'ro--') Output:
```


model = KMeans(n_clusters = 4)

Input: model.fit(df) Output:

KMeans(n_clusters=4)

Input: mb =

pd.Series(model.labels_)
df['Cluster'] = mb df

	CustomerID	Gender	Age	Annu	Annual Income (k\$)		Spending Score (1-100)			0)	Cluster	
				0		1	1		19	15.00	39	2
				1		2	1		21	15.00	81	2
	CustomerID	Gender	Age	Annu	al Incom	e (l	(\$)	Spe	nding Sco	ore (1-10	0)	Cluster
				2		3	0		20	16.00	6	2
				3		4	0		23	16.00	77	2
				4		5	0		31	17.00	40	2
195	196	0	3	35	120.00	7	9	3				
196	197	0	4	15	126.00	2	8	1				

197	198	1	32	126.00	74	3
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	3

 $200 \text{ rows} \times 6 \text{ columns}$