

Computer Architecture CSE313/CSE 3313

Assignment 2

Section: C

Submitted to:

Anik Mazumder

Lecturer

Department of CSE

Submitted by:

Mahin Mahmud

ID: 011 212 150

a. number of block
$$s = \frac{2^{10}}{2 \times 2^2} = 2^7$$

Block address =
$$\left[\frac{6}{8}\right] = 0$$

Block number = $0\%.2^{7} = 0$

$$(0x8) - (0x8+8-1)$$

0- 7 (copied)

: - W(5)

Block address =
$$\left[\frac{11}{8}\right] = 1$$
Block number = 1%. $2^{7} = 1$

Block address =
$$\frac{31}{8}$$
] = 3
Block number = 3%. 27 = 3
 $[3X8] - [3X8 + (8-1)]$
24 - 31 (copied)
mis)

1027.

Block address =
$$\left[\frac{1027}{8}\right] = 128$$

Block number = $128\%2^{7} = 0$
 $1024 - 1031$ (peoplaced)

Miss

5:

Block address:
$$\begin{bmatrix} \frac{5}{8} \end{bmatrix} = 0$$

Block number: $\begin{bmatrix} \frac{5}{8} \end{bmatrix} = 0$

O - 7 (replaced)

Miss

12:

the state of the s

4

:. of set =
$$m + 2 = 3$$

tag bits = $16 - (n + m + 2) = 16 - 7 + 1 + 2$
= 6 bits

6: Block address =
$$\left[\frac{6}{32}\right] = 0$$
Block number = 0%. $2^7 = 0$

11. Black address =
$$\left|\frac{11}{32}\right| = 0$$

31: Dlock address =
$$\left\lfloor \frac{31}{32} \right\rfloor = 0$$

Block number = 0%. $z^2 = 0$

Block address =
$$\left[\frac{1027}{32}\right] = 32$$

Block number = $327.2^7 = 32$
 $1024 - 1055$ (Miss and copied)

5.

Plack address =
$$\left(\frac{5}{32}\right) = 0$$

Block number = 0 %. $2^{7} = 0$
 $0 - 31$ (Hit)

1032:

Block address =
$$\left(\frac{1032}{32}\right) = 32$$

Block number = $32 \%. 2^7 = 32$
 $1029 - 1055$ (Hit)

12:

Block address =
$$\left(\frac{12}{32}\right) = 0$$

Block number = $0 \times 2^7 = 0$
 $0 - 31$ (Hit)

4:

Block address =
$$\left(\frac{4}{32}\right) = 0$$

Miss note =
$$\frac{2}{8} = \frac{1}{4}$$

Miss note for 2 words per block = $\frac{1}{8} = \frac{3}{4}$

we have reduced miss rate.

2.No. Answer

a) bits for index, m= 32 + .. numbers of blacks = 232 bits for offset = 18 m = 18 - 2 = 16· · bytes per block = 2 16 x 4 = 2 18

actual size of cache = 2" x 2" x 32 + 64-(n+m+z)+1] = 2 x [2 x 32 + 64 - (32+16+2)+1] $= 2^{32} (2^{23} + 15)$ bits

$$= \frac{2^{32}(2^{23}+15)}{2^{23}} + RB$$

$$= 2^{9}(2^{23}+15) + RB$$

$$= 4 \times 2 \cdot 2^{9} \times 10^{9} + RB$$

by specific and specific and specific

now share standing they made you