- 1. Naszkicuj na wykresie hiperpłaszczyznę separującą określoną wzorem $x_1 + 2x_2 3 = 0$. Dorysuj również hiperpłaszczyzny określone wzorem: $x_1 + 2x_2 3 = 1$ oraz $x_1 + 2x_2 3 = -2$. Zaznacz na wykresie punkty dla których $x_1 + 2x_2 3 > 0$.
- 2. Naszkicuj poniższe obserwacje na płaszczyźnie, a następnie:
 - zaznacz hiperpłaszczyznę separującą klasy o największym marginesie,
 - podaj wzór na tę hiperpłaszczyznę,
 - nanieś na wykres kierunek wektora wag.

x_1	x_2	У
1	1	+1
3	2	+1
1	4	+1
2	4	-1
5	1	-1
6	3	-1
5	5	-1
5	4	-1

- 3. W zależności od liczby wymiarów d, jaka jest minimalna liczba obserwacji w zbiorze danych, aby można było określić unikalną hiperpłaszczyznę o maksymalnym marginesie?
- 4. Oblicz odległość poniższej obserwacji z klasy -1 do hiperpłaszczyzny określonej przez w=[-4,3] i b=-2. $\frac{x_1}{2} \frac{x_2}{3} \frac{y}{|-1|}$
- 5. Podaj wzór na wartość marginesu określonej hiperpłaszczyzny separującej o danym wektorze w i b.
- 6. Zdefiniuj problem optymalizacyjny (hard) SVM dla danych liniowoseparowalnych. Przyjmij następujący zbiór uczący:

x_1	x_2	у
-1	7	+1
2	3	-1
4	2	+1

7. Zdefiniuj problem optymalizacyjny (soft) SVM dla następującego zbioru uczącego:

x_1	x_2	У
-1	7	+1
2	3	-1
4	2	+1

- 8. Jaka jest interpretacja wartości współczynników Lagrange'a w formulacji dualnej problemu SVM? Odpowiedź uzasadnij odwołując się do warunków KKT.
- 9. W formulacji dualnej problemu SVM optymalizowane są zmienne, które zwykle oznaczamy jako α_i i nie są to wagi. W jaki sposób zatem znajdowana jest hiperpłaszczyzna separująca?
- 10. Przekształć problem (soft) SVM do problemu bez ograniczeń. Jakie są podobieństwa i różnice pomiędzy klasyfikatorem regresji logistycznej a klasyfikatorem SVM?

