Bank Loan Case Study

Final Project-2

Description:

Imagine you're a data analyst at a finance company that specializes in lending various types of loans to urban customers. Your company faces a challenge: some customers who don't have a sufficient credit history take advantage of this and default on their loans. Your task is to use Exploratory Data Analysis (EDA) to analyze patterns in the data and ensure that capable applicants are not rejected.

Drive Link:

https://drive.google.com/drive/folders/1Z1QcPLbcxUQAfgoFf1kwwFI7V4RHSRQX?usp=sharing

Loom Video Link:

https://www.loom.com/share/f1f623cda9284ae5afdff4499654efc2?sid=d9059c0d-f9b4-4eb9-9941-0021056215ef

Data Analytics Tasks:

A. Identify Missing Data and Deal with it Appropriately: As a data analyst, you come across missing data in the loan application dataset. It is essential to handle missing data effectively to ensure the accuracy of the analysis.

Task: Identify the missing data in the dataset and decide on an appropriate method to deal with it using Excel built-in functions and features.

Hint: Utilize Excel functions like COUNT, ISBLANK, and IF to identify missing data. Consider using functions like AVERAGE or MEDIAN for imputation or other appropriate methods available in Excel.

Graph suggestion: Create a bar chart or column chart to visualize the proportion of missing values for each variable.

B. Identify Outliers in the Dataset: Outliers can significantly impact the analysis and distort the results. You need to identify outliers in the loan application dataset.

Task: Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Hint: Utilize Excel functions like QUARTILE, IQR, and conditional formatting to identify potential outliers. Consider applying thresholds or business rules to determine if the outliers are valid data points or require further investigation.

Graph suggestion: Create box plots or scatter plots to visualize the distribution of numerical variables and highlight the outliers.

Oversile 1	112500
Quartile 1	112500
Quartile 3	202500
Inter Quartile Range	90000
Lower limit	-22500
Upper Limit	337500

C. Analyze Data Imbalance: Data imbalance can affect the accuracy of the analysis, especially for binary classification problems. Understanding the data distribution is crucial for building reliable models.

Task: Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

Hint: Utilize Excel functions like COUNTIF and SUM to calculate the proportions of each class. Compare the class frequencies to assess data imbalance.

Graph suggestion: Create a pie chart or bar chart to visualize the distribution of the target variable and highlight the class imbalance.

D. Perform Univariate, Segmented Univariate, and Bivariate

Analysis: To gain insights into the driving factors of loan default, it is important to conduct various analyses on consumer and loan attributes.

Task: Perform univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the target variable using Excel functions and features.

Hint: Utilize Excel functions like COUNT, AVERAGE, MEDIAN, and statistical functions for descriptive analysis. Utilize Excel features like filters, sorting, and pivot tables for segmented and bivariate analysis.

Graph suggestion: Create histograms, bar charts, or box plots to visualize the distributions of variables. Create stacked bar charts or grouped bar charts to compare variable distributions across different scenarios. Create scatter plots or heatmaps to visualize the relationships between variables and the target variable.

										65.0															
										SEG	IVIENTE	יואט ט	VARIATE	ANALY	515										_
	TARGET	_		(T . D	OFT	4.0	D. 10		DE-		0.00								
INCOME BINS 🖫	0		1							IAR	GEI	AΡ	PLIC/	ANIS	PER	KINC	:OM	FRIL	12				- 0	= 1	
∃ Group1		282686	#####																				-0	-1	
25K-50K		4174	343						7																
50K-75K		17849	1526					0	43837																
75K-100K		36450	3356				36450	39860	4			295													
100K-125K		39860	3841				364	(1)		31685		37													
125K-150K		43837	4053							316	190														
150K-175K		31685	2978		MIS	_					27														
175K-200K		27190	2454		APPLICANTS	17849																			
200K-225K		37595	3202		PPI	11								11846											
225K-250K		6814	526		-								6814	=======================================	_	42		01							
250K-275K		11846	887		4174	1526	3356	3841	4053	2978	2454	3202			4000	6342	1987	4282	80	1696	2933			929	
275K-300K		4000	306		343	15		(1)	7	2	77	m	526	887	306	410	135	4 255	1180	169	28	114	296 16	25:	
300K-325K		6342	410			~	~	~	~	~	~	~		~		~	~	~			~	~		d)	
325K-350K		1987	135		-20	-75	5K-100K	125	5K-150K	172	200K	225K	250K	275K	300K	325	350K	375	5K-400K	425K	450K	475K	500K	apove	
350K-375K		4282	255		Group 1 25K-50K	50K-75K	5K-	Group1 100K-125K	SK-	150K-175K	- X-	200K-	5K-	250K-	*	300K-325K	岺	350K-375K	2K-	400K-	2K-	450K-	475K-	and a	
375K-400K		1180	85		up1	ъ 1	117	1 10	1 12	1 15	117	1 20	1 22	1 25	1 27	1 30	1 32	1 35	137	140	1 42	145	147	S ar	
400K-425K		1696	115		Groi	Group1	Group17	dno	Group1	Group1.	oup1	Group1	oup1	oup1	oup1	Group1	Group1	Group1	Group137	Group1	Group1 42	oup1,	Group1.	5 Lac	
425K-450K		2933	180				5	Ē	Ē	Ğ	5	Ğ	ğ	d.	Gr	Ē	Ē	Ğ	ğ	ΞĒ	Ğ	J.S	- B	p13	
450K-475K		114	11																					Group1	
475K-500K		296	16											INCON	1E BINS									9	
5 Lacs and above		2556	146												IL DING										J
																									1

E. Identify Top Correlations for Different Scenarios: Understanding the correlation between variables and the target variable can provide insights into strong indicators of loan default.

Task: Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other cases) and identify the top correlations for each segmented data using Excel functions.

Hint: Utilize Excel functions like CORREL to calculate correlation coefficients between variables and the target variable within each segment. Rank the correlations to identify the top indicators of loan default for each scenario.

Graph suggestion: Create correlation matrices or heatmaps to visualize the correlations between variables within each segment. Highlight the top correlated variables for each scenario using different colors or shading.

CORRELATION FOR APPLICANTS WITH PAYMENT MADE ON TIME													
	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	REGION_POPULATION_RELATIVE	DAYS_BIRTH(Years)	DAYS_EMPLOYED (Years)	DAYS_ID_PUBLISH(Years)	REGION_RATING_CLIENT					
CNT_CHILDREN	1	0.027397188	0.003081225	-0.024362658	-0.336966484	-0.245174065	0.028750653	0.022842107					
AMT_INCOME_TOTAl	0.027397188	1	0.34279945	0.167850636	-0.062609158	-0.140392466	-0.022896393	-0.186573418					
AMT_CREDIT	0.003081225	0.34279945	1	0.100603799	0.047377831	-0.070104314	0.00146417	-0.103336744					
REGION_POPULATION_RELATIVE	-0.024362658	0.167850636	0.100603799	1	0.025244113	-0.007197856	0.001070788	-0.539004783					
DAYS_BIRTH(Years)	-0.336966484	-0.062609158	0.047377831	0.025244113	1	0.626113878	0.271314395	-0.002332327					
DAYS_EMPLOYED (Years)	-0.245174065	-0.140392466	-0.07010431	-0.007197856	0.626113878	1	0.27666316	0.038327694					
DAYS_ID_PUBLISH(Years)	0.028750653	-0.022896393	0.00146417	0.001070788	0.271314395	0.27666316	1	0.00899835					
REGION_RATING_CLIENT	0.022842107	-0.186573418	-0.10333674	-0.539004783	-0.002332327	0.038327694	0.00899835	1					

CORRELATION FOR APPLICANTS WITH PAYMENT DIFFICULTIES													
	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	REGION_POPULATION_RELATIVE	DAYS_BIRTH(Years)	DAYS_EMPLOYED (Years)	DAYS_ID_PUBLISH(Years)	REGION_RATING_CLIENT					
CNT_CHILDREN	1	0.004795787	-0.00167496	-0.0319749	-0.259108666	-0.192863828	0.032298597	0.040680482					
AMT_INCOME_TOTAL	0.004795787	1	0.038131435	0.009134586	-0.003096245	-0.014977396	0.004214856	-0.021486257					
AMT_CREDIT	-0.001674961	0.038131435	1	0.069161087	0.135316369	0.001930183	0.05232898	-0.059192754					
REGION_POPULATION_RELATIVE	-0.0319749	0.009134586	0.069161087	1	0.048190366	0.015531849	0.015536882	-0.443235509					
DAYS_BIRTH(Years)	-0.259108666	-0.003096245	0.135316369	0.048190366	1	0.582185148	0.252862836	-0.033927932					
DAYS_EMPLOYED (Years)	-0.192863828	-0.014977396	0.001930183	0.015531849	0.582185148	1	0.229090254	0.003489989					
DAYS_ID_PUBLISH(Years)	0.032298597	0.004214856	0.05232898	0.015536882	0.252862836	0.229090254	1	-0.001397237					
REGION_RATING_CLIENT	0.040680482	-0.021486257	-0.05919275	-0.443235509	-0.033927932	0.003489989	-0.001397237	1					

Approach: I followed a structured approach to analyze the loan application dataset.
First, I conducted data preprocessing to handle missing values, identify outliers, and
address data imbalance. Then, I performed univariate, segmented univariate, and
bivariate analyses to understand the relationships between customer attributes, loan
attributes, and loan default likelihood. Finally, I identified top correlations for different
scenarios to uncover strong indicators of loan default.

- **Tech-Stack Used:** Microsoft Excel 2022: Used for data analysis, visualization, and statistical calculations. Google Drive: Used to store and share project documents and reports.
- Insights: Through EDA, I gained valuable insights into the factors influencing loan
 default. I observed that customers with payment difficulties tend to have specific
 attributes such as late payment history and higher debt-to-income ratios. Additionally,
 I discovered correlations between certain customer attributes (e.g., credit score,
 income level) and the likelihood of default.
- **Result**: The project provided valuable insights into the drivers of loan default, enabling the company to make informed decisions about loan approval. By understanding the key factors behind loan default, the company can mitigate risks and improve the accuracy of loan approval processes.