CS221 Section 3: Search

DP, UCS and A*

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Uniform Cost Search

Idea: In UCS, we find the shortest cost to a node by using the fact we already know the shortest path to a set of nodes.

Recall: We have the following three sets

- Explored Set: contains nodes we know the path length to
- Frontier Set: contains nodes that are neighbors of those in the explored set, but we don't know their costs yet
- Unexplored Set: Nodes in the graph we haven't encountered

In the following graph, find the costs to reach each node given that we start on

node **a**.

Explored

[a:0]

Frontier

[b:0+1,e:0+2,c:0+3]

Unexplored

We start with node **a**. We add all neighbors of **a** to the frontier. Note: [a : 0] means it takes 0 cost to get to node a.

Explored

[a:0, **b:1**]

Frontier

[c:1+1, e:0+2]

Unexplored

In the frontier, **b** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **b** to the frontier, updating costs to reach some nodes if necessary (we updated **c**).

Explored

[a:0,b:1,c:2]

Frontier

[e:0+2, d:2+1]

Unexplored

In the frontier, **c** has the lowest cost (ties broken alphabetically here). Thus, we can add it to the explored set. We add all neighbors of **c** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2]

Frontier

[d:2+1, f:2+1, h:2+3]

Unexplored

In the frontier, **e** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **e** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3]

Frontier

[f:2+1, g:3+1, h:2+3]

Unexplored

In the frontier, **d** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **d** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3,f:3]

Frontier

[g:3+1, h:3+1]

Unexplored

In the frontier, **f** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **f** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3,f:3,g:4]

Frontier

[h:3+1]

Unexplored

In the frontier, **g** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **f** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3,f:3,g:4,

h:4]

Frontier

Unexplored

In the frontier, **h** has the lowest cost. Thus, we can add it to the explored set. There are no more nodes in the frontier, so we are done.

Uniform Cost Search

Algorithm: uniform cost search [Dijkstra, 1956]-

Add $s_{
m start}$ to **frontier** (priority queue)

Repeat until frontier is empty:

Remove s with smallest priority p from frontier

If $\mathbf{IsEnd}(s)$: return solution

Add s to explored

For each action $a \in Actions(s)$:

Get successor $s' \leftarrow \operatorname{Succ}(s, a)$

If s' already in explored: continue

Update **frontier** with s' and priority $p + \mathrm{Cost}(s,a)$

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Problem

There exists N cities, conveniently labelled from 1 to N.

There are roads connecting some pairs of cities. The road connecting city **i** and city **j** takes **c(i,j)** time to traverse. However, one can only travel from a city with smaller label to a city with larger label (i.e. each road is one-directional).

From city **1**, we want to travel to city **N**. What is the shortest time required to make this trip, given the additional constraint that we should visit more odd-labeled cities than even labeled cities?

Example

Best path is [1, 3, 4, 5] with cost 16.

[1, 2, 4, 5] has cost 14 but visits equal number of odd and even cities.

State Representation

Key idea: state-

A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.

State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have visited thus far: **#odd**, **#even**

State Representation: (current_city, #odd, #even)

Total number of states: $O(N^3)$

Can We Do Better?

Check if all the information is really required

We store **#odd** and **#even** so that we can check whether **#odd** - **#even** > 0 at (N, **#odd**, **#even**)

Why not store #odd - #even directly instead?

(current_city, #odd - #even) -- O(N²) states

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider DP and UCS.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges

Since we have a DAG and all edges are positive, both work! We already went through UCS, so we solve this with DP.

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Solving the Problem: Dynamic Programming

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

If s has no successors, we set it as undefined

Visiting

Successors

Completed

Regular Graph

rtogular Graph	Otato Orapii	
2 1 1 3 3	1, 1	
(0	:(-(1/ -)	

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$$

Visiting

Successors

Completed

Regular Graph

Cache	
Key	Value

Rogalai Grapii	Otate Orapii	
2 1 1 4 7 5	1, 1	
	:f loCool(o)	

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$$

Visiting Successors

Completed

Regular Granh

Regulai Graph	State Graph	
2 1 1 4 7 5	5 1,1 3 3,2	
(0	:(I-C I/ -)	

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$$

3

Visiting

Successors

Completed

Regular Graph

State Graph

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Cache Key Value

Visiting Successors Completed

Regular Graph

FutureCost(s)	$\int 0$		$if \; IsGoal(s)$
$FutureCost(s) = \epsilon$	$\min_{a \in Actions(s)} [Cost(s, a)]$) + FutureCost(Succ(s,a))]	otherwise

Cache Value Key

Visiting Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache Key Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache Key Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache Key Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key Value	

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Key Value

Cache

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13

Visiting

Successors

Completed

Regular Graph

State Graph

Ca	Cache	
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13

Visiting

Successors

Completed

Regular Graph

State Graph

Ca	Cache	
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞

Visiting

Successors

Completed

Regular Graph

 $\mathsf{FutureCost}(s) = \langle$

State Graph

$\begin{cases} 0 \\ \min_{a \in Actions(s)} [Cost(s, a)] \end{cases}$) + FutureCost(Succ(s,a))]	if $IsGoal(s)$ otherwise

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	

Visiting Successors

Completed

Regular Graph

State Graph

Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	8
(2, 0)	14

Cache

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14

Visiting

Successors

Completed

Regular Graph

State Graph

(5, 0)	٥
(4, -1)	o
(2, 0)	1

Cache

Key

(5, 1)

(4, 0)

(3, 1)

Value

0

13

Visiting

Successors

Completed

Regular Graph

State Graph

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	

Visiting

Successors

Completed

Regular Graph

State Graph

Ca	Cache	
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14
(5, 2)	0

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14
(5, 2)	0
(4, 1)	7

Visiting

Successors

Completed

Regular Graph

State Graph

Cache		
Key Value		
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	
(5, 2)	0	
(4, 1)	7	
(3, 2)	13	

Visiting

Successors

Completed

Regular Graph

State Graph

FuturaCast(a) —	$\int 0$		$if \; IsGoal(s)$
FutureCost(s) = c	$\min_{a \in Actions(s)} [Cost(s, a)]$) + FutureCost(Succ(s,a))]	otherwise

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	
(5, 2)	0	
(4, 1)	7	
(3, 2)	13	
(1, 1)	16	

Visiting

Successors

Completed

Regular Graph

State Graph

FutureCost(s)	(0	$if \; IsGoal(s)$
$FutureCost(s) = \langle$	$\begin{cases} 0 \\ \min_{a \in Actions(s)} [Cost(s, a) + FutureCost(Succ(s, a))] \end{cases}$	otherwise

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	
(5, 2)	0	
(4, 1)	7	
(3, 2)	13	
(1, 1)	16	

Improve UCS: A* Search

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

A* Search

- We want to avoid wasted effort (to go from SF to LA, we probably don't want to end up looking at roads to Seattle, for example).
- To do this, we can use a heuristic to estimate how far is left until we reach our goal.
- The heuristic must be optimistic. It must underestimate the true cost. Why?

Recap of A* Search

- Modify the cost of edges and run UCS on the new graph
 - \circ Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) h(s)
- h(s) is a heuristic that is our estimate of FutureCost(s)
- If h(s) is consistent then the modified edge weights will return min cost path
- You can find a good consistent h by performing relaxation
- If c is min cost on original graph, c' is min cost on modified graph, then c' = c + h(s_goal) - h(s_start)

Relaxation

A good way to come up with a reasonable heuristic is to solve an easier (less constrained) version of the problem

For example, we can remove the constraint that we visit more odd cities than even cities.

h(s) = h((i, d)) = length of shortest path from city i to city N

Note on Relaxation

The main point of relaxation is to attain a problem that **can** be solved more efficiently.

In our case, the modified shortest path problem has O(N) states instead of O(N^2) can thus can be solved more efficiently

Checking consistency

- Cost(s, a) + h(Succ(s, a)) h(s) ≥ 0 (Triangle Inequality)
 - \circ Suppose s = (i, d) and Succ(s, a) = (j, d')
 - Note that $h((i, d)) h((j, d')) \le c(i, j) = Cost(s, a)$
- h((N, d)) = 0

How to compute h?

We can reverse the direction of all edges, and then perform UCS starting from city 1, and our goal state is city 5.

This takes O(n log n) time, where n is the number of states whose distance to city N is no farther than the distance of city 1 to city N

city	1	2	3	4	5
h	14	9	13	7	0

Modified State Graph

(1, 1): 0

Explored: Frontier:

(2, 0): 5 + 9

(3, 2): 3 + 13

Explored:

(1, 1): 0

(2, 0):5

Frontier:

(3, 2): 3 + 13

(3, 1): 6 + 13

(4, -1): 7 + 7

Explored: Frontier:

(1, 1): 0

(2, 0):5

(4, -1): 7

(3, 2): 3 + 13

(3, 1): 4 + 13

(5, 0): 7 + 7

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

(5, 0): 14

Frontier:

(3, 2): 3 + 13

(3, 1): 4 + 13

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

(5, 0): 14

(3, 2):3

Frontier:

(3, 1): 3 + 13

(4, 1): 9 + 7

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

(5, 0): 14

(3, 2):3

(4, 1): 9

Frontier:

(3, 1): 3 + 13

(5, 2): 16 + 0

Explored: Frontier: (1, 1): 0 (3, 1): 3 + 13

(2, 0):5

(4, -1): 7

(5, 0): 14

(3, 2):3

(4, 1): 9

(5, 2): 16

STOP!

Comparison of States visited

UCS		UCS(A*)		
Explored: (1, 1): 0 (3, 2): 3 (2, 0): 5 (3, 1): 6 (4, -1): 7 (4, 1): 9 (4, 0): 12 (5, 0): 14	Frontier: (5, 1) : 19	Explored: (1, 1): 0 (2, 0): 0 (4, -1): 0 (5, 0): 0 (3, 2): 2 (4, 1): 2 (5, 2): 2	Frontier: (3, 1): 3	
(5, 2) : 16				

Summary

- States Representation/Modelling
 - make state representation as compact as possible, remove unnecessary information
- DP
 - underlying graph cannot have cycles
 - visit all reachable states, but no log overhead
- UCS
 - actions cannot have negative cost
 - visit only a subset of states, log overhead
- A*
 - ensure that relaxed problem can be solved more efficiently