MTH1102D Calcul II

Chapitre 9, section 1: Les champs vectoriels

Champs vectoriels

Introduction

- Champs vectoriels en 2 et 3 dimensions.
- Exemples de champs vectoriels.

Conventions et notation

• Un élément de \mathbb{R}^n peut être vu comme un *point* avec n coordonnées un *vecteur* de dimension n

Conventions et notation

- Un élément de \mathbb{R}^n peut être vu comme un *point* avec n coordonnées un *vecteur* de dimension n
- Notation :

```
un point sera noté en gras : \mathbf{x} un vecteur sera noté avec une flèche : \vec{v}
```

Conventions et notation

- Un élément de Rⁿ peut être vu comme un point avec n coordonnées un vecteur de dimension n
- Notation :

```
un point sera noté en gras : \mathbf{x} un vecteur sera noté avec une flèche : \vec{v}
```

• En pratique, on identifiera points et vecteurs :

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \longleftrightarrow \vec{\mathbf{x}} = x_1 \vec{e_1} + x_2 \vec{e_2} + \dots + x_n \vec{e_n}.$$

Définition

Un **champ vectoriel** (ou **champ de vecteurs**) dans \mathbb{R}^n est une fonction vectorielle

$$\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$$

qui associe à chaque point $\mathbf{x} \in \mathbb{R}^n$ un vecteur $\vec{F}(\mathbf{x})$ de dimension n.

Définition

Un **champ vectoriel** (ou **champ de vecteurs**) dans \mathbb{R}^n est une fonction vectorielle

$$\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$$

qui associe à chaque point $\mathbf{x} \in \mathbb{R}^n$ un vecteur $\vec{F}(\mathbf{x})$ de dimension n.

On écrit un champ vectoriel générique

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$$
 deux dimensions

Définition

Un **champ vectoriel** (ou **champ de vecteurs**) dans \mathbb{R}^n est une fonction vectorielle

$$\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$$

qui associe à chaque point $\mathbf{x} \in \mathbb{R}^n$ un vecteur $\vec{F}(\mathbf{x})$ de dimension n.

On écrit un champ vectoriel générique

$$\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$$
 deux dimensions

ou

$$\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$$
 trois dimensions

Exemple : Représentons graphiquement le champ vectoriel $\vec{F}(x,y) = y \ \vec{i} - x \ \vec{j}$

$$\vec{F}(x,y) = y\,\vec{i} - x\,\vec{j}$$

Exemple : Représentons graphiquement le champ vectoriel $\vec{F}(x,y) = y \ \vec{i} - x \ \vec{j}$

$$\vec{F}(x,y) = y\,\vec{i} - x\,\vec{j}$$

$$\vec{F}(0,0) = \vec{0}$$

$$\vec{F}(x,y) = y\,\vec{i} - x\,\vec{j}$$

$$\vec{F}(0,0) = \vec{0}$$

$$\vec{F}(0,0) = \vec{0}$$
 $\vec{F}(1,0) = -\vec{j}$

$$\vec{F}(x,y) = y\,\vec{i} - x\,\vec{j}$$

$$\vec{F}(0,0) = \vec{0}$$

$$\vec{F}(0,0) = \vec{0}$$

 $\vec{F}(1,0) = -\vec{j}$

 $\vec{F}(0,1) = \vec{i}$

$$\vec{F}(0,1) = i$$

$$\vec{F}(x,y) = y\,\vec{i} - x\,\vec{j}$$

$$\vec{F}(0,0) = \vec{0}$$

$$\vec{F}(1,0) = -\vec{j}$$

$$\vec{F}(0,1) = \vec{i}$$

$$\vec{F}(1,1) = \vec{i} - \vec{j}$$

$$\vec{F}(x,y) = y\,\vec{i} - x\,\vec{j}$$

Exemple : La force gravitationnelle exercée par une masse M à l'origine sur un objet de masse m au point \mathbf{x} est

$$\vec{F}(\mathbf{x}) = -\frac{mMG}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

où $G \approx 6.7 \times 10^{-11}$ est la constante de gravitation.

Exemple : La force gravitationnelle exercée par une masse M à l'origine sur un objet de masse m au point $\mathbf x$ est

$$\vec{F}(\mathbf{x}) = -\frac{mMG}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

où $G \approx 6.7 \times 10^{-11}$ est la constante de gravitation.

Exemple : La force gravitationnelle exercée par une masse M à l'origine sur un objet de masse m au point \mathbf{x} est

$$\vec{F}(\mathbf{x}) = -\frac{mMG}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

où $G \approx 6.7 \times 10^{-11}$ est la constante de gravitation.

• $\vec{F}(\mathbf{x}) = -\frac{\text{cste}}{||\vec{\mathbf{x}}||^3} \vec{\mathbf{x}}$ donc la force s'exerce selon la droite reliant m et M.

Exemple : La force gravitationnelle exercée par une masse M à l'origine sur un objet de masse m au point $\mathbf x$ est

$$\vec{F}(\mathbf{x}) = -\frac{mMG}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

où $G \approx 6.7 \times 10^{-11}$ est la constante de gravitation.

- $\vec{F}(\mathbf{x}) = -\frac{\text{cste}}{||\vec{\mathbf{x}}||^3} \vec{\mathbf{x}}$ donc la force s'exerce selon la droite reliant m et M.
- $||\vec{F}(\mathbf{x})|| = \frac{\text{cste}}{||\vec{\mathbf{x}}||^3} ||\vec{\mathbf{x}}|| = \frac{\text{cste}}{||\vec{\mathbf{x}}||^2} \text{ donc la}$ force est inversement proportionnelle au carré de la distance.

Exemple : La force gravitationnelle exercée par une masse M à l'origine sur un objet de mass m au point $\mathbf x$ est

$$\vec{F}(\mathbf{x}) = -\frac{mMG}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

où $G \approx 6.7 \times 10^{-11}$ est la constante de gravitation.

• Explicitement :

$$\vec{F}(x,y,z) = \frac{-mMG}{(x^2 + y^2 + z^2)^{3/2}} \left(x \, \vec{i} + y \, \vec{j} + z \, \vec{k} \right)$$

Exemple : La force gravitationnelle exercée par une masse M à l'origine sur un objet de mass m au point $\mathbf x$ est

$$\vec{F}(\mathbf{x}) = -\frac{mMG}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

où $G \approx 6.7 \times 10^{-11}$ est la constante de gravitation.

• Explicitement :

$$\vec{F}(x, y, z) = \frac{-mMG}{(x^2 + y^2 + z^2)^{3/2}} (x \vec{i} + y \vec{j} + z \vec{k})$$

• Le champ électrique est de la même forme :

$$\vec{F}(\mathbf{x}) = -\frac{qQ\epsilon}{||\vec{\mathbf{x}}||^3}\,\vec{\mathbf{x}}$$

Exemple : Champ électrique autour d'un dipôle.

Source:

http://web.mit.edu/8.02t/www/802TEAL3D/visualizations/guidedtour/Tour.htm

Exemple : Étude du transfert de chaleur dans un panneau solaire.

Source:

http://www.cham.co.uk/casestudies/CCS_HeatTransfer_in_SolarPanel.pdf

Exemple : Vitesse du vent dans la baie de San Francisco le 1er mars 2010 à 18h00.

Résumé

• Définition de champ vectoriel en 2 et 3 dimensions.

Résumé

- Définition de champ vectoriel en 2 et 3 dimensions.
- Exemples de champs vectoriels.