6 Lecture 6

6.1 Transpose of a linear transformation continued

Proposition 6.1. Let $T, S : V \to W$ be linear transformations. Then $(T+S)^t = T^t + S^t$ $(cT)^t = cT^t$.

Proposition 6.2. Let $T: V \to W$ and $S: W \to U$ be linear transformations. Then

$$(ST)^t = T^t S^t.$$

Proof. Let $\varphi \in U^*$ and $v \in V$. Then $(ST)^t(\varphi)(v) = \varphi(ST(v)) = \varphi(S(T(v))) = S^t(\varphi)(T(v)) = T^t(S^t(\varphi))(v) = (T^tS^t)(\varphi)(v)$. Hence $(ST)^t(\varphi) = (T^tS^t)(\varphi)$ for any $\varphi \in U^*$. We get $(ST)^t = T^tS^t$.

Proposition 6.3. Let $P = [\operatorname{id}]_{\beta}^{\gamma}$ be the change of basis matrix from γ to β . Then the change of basis matrix from β^* to γ^* is P^t . And we have for any $\varphi \in V^*$, $[\varphi]_{\beta^*} = P^t[\varphi]_{\gamma^*}$.

Proof. By Proposition 5.30, we have $[\mathrm{id}]_{\gamma^*}^{\beta^*} = [\mathrm{id}^t]_{\gamma^*}^{\beta^*} = ([\mathrm{id}]_{\beta}^{\gamma})^t = P^t$. The rest of the proposition follows from Lemma 5.12.

Remark 6.4. By Lemma 5.12, for $v \in V$ we have $[v]_{\gamma} = P[v]_{\beta}$ which is the opposite of the change of basis. Thus vectors are also called contravariant vectors. However, for a linear function $\varphi \in V^*$, the coordinate change satisfies $[\varphi]_{\beta^*} = P^t[\varphi]_{\gamma^*}$ which aligns with the change of basis of V. So linear functions are also called covariant vectors. Physicists use how components transform under a change of basis to define vectors and covectors (linear functions). This distinction is also important in differential geometry; see, for example, [1].

6.2 Double dual space

The dual space V^* consists of linear functions on V. If $\varphi \in V^*$, then φ maps a vector $v \in V$ to a scalar $\varphi(v) \in F$. The double dual space V^{**} is the dual space of V^* . If $\lambda \in V^{**}$, then λ maps a linear function $\varphi \in V^*$ to a scalar $\lambda(\varphi) \in F$.

Example 6.5. Let $V = F^3$ and $\psi_1, \psi_2, \psi_3 \in V^*$ be $\psi_1(x_1, x_2, x_3)^t = x_1, \psi_2(x_1, x_2, x_3)^t = x_1 + x_2$ and $\psi_3(x_1, x_2, x_3)^t = x_1 + x_2 + x_3$. We define $\lambda \in V^{**}$ as $\lambda(\varphi) = \varphi(1, 1, 1)^t$ for any $\varphi \in V^*$ which is the evaluation of a linear function at the vector $(1, 1, 1)^t$. Then $\lambda(\psi_1) = \psi_1(1, 1, 1)^t = 1$, $\lambda(\psi_2) = \psi_2(1, 1, 1)^t = 2$ and $\lambda(\psi_3) = \psi_3(1, 1, 1)^t = 3$. This λ is one element in V^{**} . In fact for any $v \in V$, we can define $J(v) \in V^{**}$ by $J(v)(\varphi) = \varphi(v)$ which is the evaluation of φ at $v \in V$. For example J(0) is the zero vector in V^{**} since $J(0)(\varphi) = \varphi(0) = 0$ by linearity of φ . This is true for any $\varphi \in V^*$ and hence J(0) is the zero function on V^* i.e. the zero vector in V^{**} . Theorem 6.7 shows that J(v) for some $v \in V$ are all possible form of vectors that can appear in V^{**} .

Lemma 6.6. Let V be a finite-dimensional vector space over a field F. Then $\dim V = \dim V^* = \dim V^{**}$.

Proof. We apply the fact $\dim W = \dim W^*$ to $W = V^*$ and get $\dim V^* = \dim V^{**}$. Since $\dim V = \dim V^*$, we have the lemma.

Theorem 6.7 (Double dual isomorphism). Let V be a finite-dimensional vector space over a field F. Define the evaluation map $J: V \to V^{**}$, $J(v)(\varphi) = \varphi(v)$ for $\varphi \in V^*$. Then J is a linear isomorphism.

Proof. First we show that J is well-defined, that is we show that $J(v) \in V^{**}$ for any $v \in V$. We need to show that J(v) is a linear function on V^{*} . Let $\phi, \psi \in V^{*}$, $c \in F$. Then $J(v)(\varphi + \psi) = (\varphi + \psi)(v) = \varphi(v) + \psi(v) = J(v)(\varphi) + J(v)(\psi)$. And $J(v)(c\varphi) = c\varphi(v) = cJ(v)(\varphi)$.

Next we check linearity of J. For $v,w\in V, c\in F$, and $\varphi\in V^*$ we have $J(v+w)(\varphi)=\varphi(v+w)=\varphi(v)+\varphi(w)=J(v)(\varphi)+J(w)(\varphi)=(J(v)+J(w))(\varphi)$. In the last equality, we used the definition of the sum of two linear functions on V^* , J(v) and J(w). Thus J(v+w)=J(v)+J(w). And $J(cv)(\varphi)=\varphi(cv)=c\varphi(v)=cJ(v)(\varphi)$. Hence J(cv)=cJ(v). Therefore, J is linear.

Next we show injectivity of J. Suppose J(v)=0. Then for every $\varphi\in V^*$, $J(v)(\varphi)=\varphi(v)=0$. If $v\neq 0$, we can extend v to be a basis v,v_2,\ldots,v_n and let $\varphi=\varphi_1$ be the first linear function in the dual basis $(\varphi_1,\ldots,\varphi_n)$. Then $\varphi(v)=1$ while $\varphi(v_i)=0$ for $i\geq 2$. Thus we have $\varphi\in V^*$ with $\varphi(v)\neq 0$. This is a contradiction. Thus v=0, and J is injective.

Finally by Lemma 6.6 dim $V = \dim V^{**}$, by Corollary 4.16 an injective linear map $V \to V^{**}$ is automatically surjective. Therefore J is an isomorphism.

Remark 6.8. If V is infinite dimensional, then J is in general an injective map and not necessarily an isomorphism. When it is an isomorphism, V is called *reflexive* and such spaces are important in Functional Analysis cf. [2].

Remark 6.9. Unlike the coordinates isomorphism ϕ_{β} which requires a choice of a basis of V, the isomorphism J is naturally defined out of the structure of dual spaces and is independent of a choice of a basis V. Thus we call J the natural isomorphism between V and V^{**} and we regard $V = V^{**}$. In category theory, the idea of being natural can be mathematically defined and in that language, "J is a component of a natural transformation from the identity functor to the double dual functor." This is not required in this course.

Proposition 6.10. Let $T: V \to W$ be a linear transformation. Then $T^{tt} \circ J_V = J_W \circ T$. That is

$$V \xrightarrow{T} W$$

$$J_{V} \downarrow \qquad \downarrow J_{W}$$

$$V^{**} \xrightarrow{T^{tt}} W^{**}$$

Thus if we think of J as the natural identification, then $T^{tt} = T$.

Proof. Let $v \in V$ and let $\varphi \in W^*$. We compute both sides applied to $\varphi \in W^*$. For the left-hand side we have $T^{tt}(J_V(v))(\varphi) = J_V(v)(T^t(\varphi)) = T^t(\varphi)(v) = \varphi(T(v))$. For

the right-hand side, $J_W(T(v))(\varphi) = \varphi(T(v))$. Thus $J_W(Tv)(\varphi) = T^{tt}(J_V(v))(\varphi)$, for all $\varphi \in W^*$. Hence $J_W(T(v)) = T^{tt}(J_V(v))$ for any $v \in V$. Therefore, $T^{tt} \circ J_V = J_W \circ T$. \square

6.3 Annihilators

Definition 6.11. For a subspace $W \subseteq V$, the **annihilator** of W is defined by $W^{\perp} = \{\varphi \in V^* : \varphi(w) = 0 \text{ for any } w \in W\}$ which is the set of all linear functions on V which vanish on W.

Proposition 6.12. Let $\pi: V \to V/W$ be the canonical projection. Then $\pi^t: (V/W)^* \to V^*$ is injective and im $\pi^t = W^{\perp}$. In particular, $W^{\perp} \cong (V/W)^*$ and dim $W^{\perp} = \dim V - \dim W$.

Proof. Suppose $\pi^t(\varphi) = 0$ for some $\varphi \in (V/W)^*$. Then for all $x \in V$, $0 = \pi^t(\bar{\varphi})(x) = \varphi(\pi(x)) = \varphi(x+W)$. Hence, $\bar{\varphi} = 0$. Thus $\ker(\pi^t) = \{0\}$ and π^t is injective.

Let $\varphi \in (V/W)^*$. Then for any $w \in W$, $\pi^t(\varphi)(w) = \varphi(w+W) = \varphi(0+W) = 0$. Therefore, $\pi^t(\varphi) \in W^{\perp}$, and so $\operatorname{im}(\pi^t) \subset W^{\perp}$.

Let $\varphi \in V^*$ such that $\varphi \in W^{\perp}$, i.e., $\varphi(w) = 0$ for all $w \in W$. Define a functional $\tilde{\varphi}: V/W \to F$ by $\tilde{\varphi}(x+W) = \varphi(x)$. We must check that $\tilde{\varphi}$ is well-defined: If x+W = x'+W, then $x-x' \in W$, so x=x'+w for some $w \in W$. Then $\tilde{\varphi}(x+W) = \varphi(x) = \varphi(x') + \varphi(w) = \varphi(x') + 0 = \varphi(x') = \tilde{\varphi}(x'+W)$. Thus, $\tilde{\varphi}$ is well-defined.

Linearity of $\tilde{\varphi}$ follows from the linearity of φ .

Now, for all $x \in V$, $\pi^t(\tilde{\varphi})(x) = \tilde{\varphi}(x+W) = \varphi(x)$. Hence, $\varphi = \pi^t(\tilde{\varphi})$. Thus so every element of W^{\perp} lies in the image of π^t , and therefore $\operatorname{im}(\pi^t) = W^{\perp}$.

By the first isomorphism theorem Theorem 4.13, $\bar{\pi^t}: (V/W)^* \to W^{\perp}$ is an isomorphism. So $(V/W)^* \cong W^{\perp}$ and $\dim W^{\perp} = \dim (V/W)^* = \dim V/W = \dim V - \dim W$.

Corollary 6.13. $W^{\perp \perp} = J(W) = W$

Proof. For any $\varphi \in W^{\perp}$ and $v \in W$, we have $J(v)(\varphi) = \varphi(v) = 0$. Thus $J(W) \subset W^{\perp \perp}$. By Proposition 6.12, $\dim W^{\perp \perp} = \dim V^* - \dim W^{\perp} = \dim V - (\dim V - \dim W) = \dim W$. Since J is an isomorphism, $\dim J(W) = \dim W = \dim W^{\perp \perp}$. Thus by Lemma 2.17, $J(W) = W^{\perp \perp}$.

Remark 6.14. There is a intuitive way to think of the dual space as the mirror of V. The fact that $V^{**} = V$ means if you take the mirror twice, you get back to yourself. If you have a subspace $W \subset V$, then its mirror is W^* (strictly speaking it consists of $\varphi \in W^*$ extended by 0 to all of V, see Homework 6). And W^{\perp} is the complement of W^* in V^* . So taking W^{\perp} is taking the complement of the mirror of W. The fact that $W^{\perp \perp} = W$ is saying that if you take complement and mirror twice then you get back to W.

Theorem 6.15. Let $T: V \to W$ be a linear transformation. Then

- (i) $\ker T^t = (\operatorname{im} T)^{\perp}$
- (ii) $\ker T = (\operatorname{im} T^t)^{\perp}$
- (iii) im $T^t = (\ker T)^{\perp}$
- (iv) im $T = (\ker T^t)^{\perp}$

Remark 6.16. In particular, if $T: V \to V$ is a linear transformation, then T is injective if and only if T^t is surjective. T is surjective if and only if T^t is injective.

Proof. Since for a subspace $W \subset V$ we have $W^{\perp \perp} = W$, (i) and (iv) are equivalent by taking \perp . Similarly, (ii) and (iii) are equivalent. Moreover (ii) is exactly (i) applied to the operator T^t using $T^{tt} = T$ from Proposition 6.10. So we only need to prove (i).

Let $\varphi \in (\operatorname{im} T)^{\perp}$. Then $\varphi(T(v)) = 0$ for all $v \in V$. Since $T^{t}(\varphi)(v) = \varphi(T(v)) = 0$, we have $T^{t}(\varphi) = 0$ i.e. $\varphi \in \ker(T^{t})$. Thus $(\operatorname{im} T)^{\perp} \subset \ker T^{t}$.

Let $\varphi \in \ker(T^t)$. Then $T^t(\varphi) = 0$. That is for any $v \in V$, $0 = T^t(\varphi)(v) = \varphi(T(v))$. Hence $\varphi \in (\operatorname{im} T)^{\perp}$. Thus $\ker T^t \subset (\operatorname{im} T)^{\perp}$.

Corollary 6.17. Let $T: V \to W$ be a linear transformation and $T^t: W^* \to V^*$ be its transpose. Then we have rank $T^t = \operatorname{rank} T$. In matrix language, we have rank $A^t = \operatorname{rank} A$ for any $A \in M_{m \times n}(F)$.

Proof.
$$\operatorname{rank}(T^t) = \dim \operatorname{im} T^t = \dim (\ker T)^{\perp} = \dim V^* - \dim \ker T = \dim V - (\dim V - \dim \operatorname{im} T) = \dim \operatorname{im} T = \operatorname{rank} T.$$

Remark 6.18. We define rank A as dim im L_A which is the dimension of the span of columns of A and thus this is also called the column rank of A. rank A^t is the dimension of the span of rows of A and hence named row rank. The last conclusion the the corollary is also referred to as "row rank = column rank".

6.4 Linear systems and Gaussian elimination

Definition 6.19. The **preimage** of a set $Y \subset W$ under T to be $T^{-1}(Y) = \{x \in V : T(x) \in Y\}$. For example $\ker T = T^{-1}(0)$.

A system of linear equation is of the form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

In matrix notation, the equation above is written as Ax = b where $A \in M_{m \times n}(F)$, $x \in F^n$ and $b \in F^m$. In the language of preimage, finding solutions to Ax = b is finding the preimage $L_A^{-1}(b)$.

Lemma 6.20. For any $y \in \operatorname{im} T$, either $T^{-1}(y) = \emptyset$ or there is $x \in V$ such that T(x) = y and $T^{-1}(y) = x + \ker T$.

Proof. If $y \notin \operatorname{im} T$, then $T^{-1}(y) = \emptyset$.

If $y \in \text{im } T$, then there is $x \in V$ such that T(x) = y. For any $x' \in V$ such that T(x') = y, we have T(x' - x) = T(x') - T(x) = y - y = 0. Thus $x' \in x + \ker T$. On the other hand, if $x' \in x + \ker T$, then $x' - x \in \ker T$ and T(x') = T(x) + T(x' - x) = y + 0 = y. Thus $T^{-1}(y) = x + \ker T$.

This gives the structure for the preimage $L_A^{-1}(b)$ being either \emptyset or $x + \ker A$ for some $x \in F^n$ such that Ax = b. We would like to to develop an algorithm to explicitly find this preimage. So we would need to consider the following problems.

- 1. Given $A \in M_{m \times n}(F)$, find a basis for ker A, i.e., all solutions to Ax = 0.
- 2. Determine if $b \in \text{im } A$ or Ax = b has a solution.
- 3. If a solution exists, find a specific x such that Ax = b.

The starting point of the algorithm is the following simple lemma.

Lemma 6.21. Let $P \in M_{m \times m}(F)$ be invertible. Then Ax = 0 if and only if PAx = 0 and Ax = b if and only if PAx = Pb.

Definition 6.22. An **elementary row operation** on a matrix A is one of the following operations, each corresponding to multiplying A on the left by an appropriate **elementary matrix**.

(i) Swap rows i and j of $A: A \mapsto P_{ij}A$

(ii) Multiply row i by $\lambda \neq 0$: $A \mapsto D_i(\lambda)A$

$$D_i(\lambda) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & \lambda & & \\ & & & \ddots & \\ & & & 1 \end{pmatrix} \quad \begin{array}{c} \vdots \\ \text{row } i \\ \vdots \\ \vdots \\ \end{array}$$

(iii) Replace row i with row $i + \lambda \cdot \text{row } j: A \mapsto E_{ij}(\lambda)A$

Remark 6.23. If we multiply the elementary matrix to the right of A then we are performing an elementary column operation:

 $A \mapsto AP_{ij}$: swaps column i and column j of A

 $A \mapsto AD_i(\lambda)$: multiply a column i by λ

 $A \mapsto AE_{ij}(\lambda)$: replace column j with column $j + \lambda \cdot \text{column } i$

Definition 6.24. Let A be a matrix. We now describe a systematic procedure for solving linear systems by row reduction, known as **Gaussian elimination**.

- 1. **Pivot selection:** Start with the leftmost column that contains a nonzero entry. Choose a nonzero entry in this column as the *pivot*. If necessary, interchange rows so that the pivot is at the top of the remaining submatrix.
- 2. **Normalize pivot:** Multiply the pivot row by a nonzero scalar so that the pivot entry becomes 1.
- 3. **Eliminate below pivot:** For each row below, subtract a suitable multiple of the pivot row so that all entries below the pivot are 0.
- 4. **Move right and down:** Restrict to the submatrix obtained by ignoring the pivot row and all columns to its left. Repeat steps (1)–(3) until no further pivots can be chosen.
- 5. Eliminate above pivot: Use row operations to eliminate all nonzero entries above the pivot, we obtain the row reduced echelon form (RREF).

Definition 6.25. A matrix is in row reduced echelon form (RREF) if

- (i) All zero rows, if any, are at the bottom.
- (ii) In each nonzero row, the first nonzero entry (called a **pivot**) appears to the right of the pivot in the row above.
 - (iii) Each pivot equals 1.
 - (iv) Each pivot is the only nonzero entry in its column.

The non-pivot columns are called **free variables**.

References

- [1] Lee JM. Introduction to smooth manifolds. 2003 Springer New York.
- [2] Brezis H. Functional analysis, Sobolev spaces and partial differential equations. New York: Springer; 2011.