GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: April 19, 2005, 23:16:46; Search time 20871 Seconds

(without alignments)

11663.984 Million cell updates/sec

Title: US-10-032-256A-1

Perfect score: 5024

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 4708233 segs, 24227607955 residues

Total number of hits satisfying chosen parameters: 9416466

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: GenEmbl:*

1: qb ba:*

2: gb htg:*

3: gb in:*

4: gb om:*

5: gb_ov:*

6: gb_pat:*

7: gb_ph:*

8: gb_pl:*

9: gb_pr:*

10: gb_ro:*

11: gb_sts:*

12: gb_sy:*

13: gb_un:*

14: gb_vi:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1 2	5024 4821.6	100.0	5024 5026		AF167987 AF055919	AF167987 Mus muscu AF055919 Mus muscu

С	3	3299.8	65 7	149947	10	AC133505	AC133505 Mus muscu
C	4	2142	42.6	2142	6	AX754694	AX754694 Sequence
	5	2138.8	42.6	2142	6	AX754695	AX754695 Sequence
	6	1861.8		247180	2	AC108663	AC108663 Rattus no
	7	1750	34.8	7385	9	HSA271722	AC100003 Ractus no AJ271722 Homo sapi
	8	1714.6	34.1	2145	6	AX056395	AX056395 Sequence
			27.8	1923	_		
_	9	1394.8			6	CQ731710	CQ731710 Sequence
С	10	869		193142	2	AC113861	AC113861 Rattus no
	11	847.6		274928	2	AC114717	AC114717 Rattus no
	12	769	15.3	2931	5	BC084068	BC084068 Xenopus l
	13	765.8	15.2	2931	5	AY318877	AY318877 Xenopus 1
	14	704.4	14.0	2499	5	AY318878	AY318878 Xenopus l
	15	522.2		181254	9	AL954201	AL954201 Pan trogl
	16	522.2		197872	9	AL954202	AL954202 Pan trogl
	17	510.6	10.2	63402	9	AP000260	AP000260 Homo sapi
	18	510.6		100000	9	AP000099	AP000099 Homo sapi
	19	510.6		100000	9	AP000175	AP000175 Homo sapi
С	20	510.6		144857	9	AP000036	AP000036 Homo sapi
	21	510.6		340000	9	AP001712	AP001712 Homo sapi
	22	482.2	9.6	656	6	CQ054560	CQ054560 Sequence
	23	482.2	9.6	656		CQ055015	CQ055015 Sequence
	24	482.2	9.6	656	6	CQ055055	CQ055055 Sequence
	25	482.2	9.6	656	6	CQ073803	CQ073803 Sequence
	26	482.2	9.6	656	6	CQ074272	CQ074272 Sequence
	27	482.2	9.6	656	6	CQ074313	CQ074313 Sequence
	28	482.2	9.6	656	6	CQ104692	CQ104692 Sequence
	29	482.2	9.6	656	6	CQ105166	CQ105166 Sequence
	30	482.2	9.6	656	6	CQ105207	CQ105207 Sequence
	31	482.2	9.6	656	6	CQ143397	CQ143397 Sequence
	32	482.2	9.6	656	6	CQ143861	CQ143861 Sequence
	33	482.2	9.6	656	6	CQ143902	CQ143902 Sequence
	34	482.2	9.6	656	6	CQ178890	CQ178890 Sequence
	35	482.2	9.6	656	6	CQ179340	CQ179340 Sequence
	36	482.2	9.6	656	6	CQ179380	CQ179380 Sequence
	37	482.2	9.6	656	6	CQ203234	CQ203234 Sequence
	38	482.2	9.6	656	6	CQ203701	CQ203701 Sequence
	39	482.2	9.6	656	6	CQ203742	CQ203742 Sequence
	40	482.2	9.6	656	6.	CQ226598	CQ226598 Sequence
	41	482.2	9.6	656	6	CQ227065	CQ227065 Sequence
	42	482.2	9.6	656	6	CQ227106	CQ227106 Sequence
	43	482.2	9.6	656	6	CQ264740	CQ264740 Sequence
	44	482.2	9.6	656	6	CQ265212	CQ265212 Sequence
	45	482.2	9.6	656	6	CQ265253	CQ265253 Sequence

ALIGNMENTS

RESULT 1 AF167987

LOCUS AF167987 5024 bp mRNA linear ROD 23-FEB-

2000

DEFINITION Mus musculus hormonally upregulated neu tumor-associated kinase

(Hunk) mRNA, complete cds.

ACCESSION AF167987

VERSION AF167987.1 GI:7021318

```
KEYWORDS
SOURCE
            Mus musculus (house mouse)
  ORGANISM Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
               (bases 1 to 5024)
 AUTHORS
            Gardner, H.P., Wertheim, G.B., Ha, S.I., Copeland, N.G., Gilbert, D.J.,
            Jenkins, N.A., Marquis, S.T. and Chodosh, L.A.
  TITLE
            Cloning and characterization of Hunk, a novel mammalian
            SNF1-related protein kinase
            Genomics 63 (1), 46-59 (2000)
  JOURNAL
            20130113
  MEDLINE
   PUBMED
            10662544
REFERENCE
               (bases 1 to 5024)
  AUTHORS
            Gardner, H.P., Wertheim, G.B.W., Ha, S.I., Copeland, N.G.,
            Gilbert, D.J., Jenkins, N.A., Marquis, S.T. and Chodosh, L.A.
  TITLE
            Direct Submission
            Submitted (11-JUL-1999) Molecular and Cellular Engineering,
  JOURNAL
            University of Pennsylvania, 612 BRBII, 421 Curie Blvd.,
            Philadelphia, PA 19104-6160, USA
FEATURES
                     Location/Qualifiers
                     1. .5024
     source
                      /organism="Mus musculus"
                      /mol_type="mRNA"
                      /strain="FVB"
                      /db xref="taxon:10090"
                      /chromosome="16"
                      /map="linked to App, Tiaml and Erg"
                      /dev stage="day 14 embryo"
                      1. .5024
     gene
                      /gene="Hunk"
     CDS
                      72. .2216
                      /gene="Hunk"
                      /note="serine/threonine protein kinase"
                      /codon start=1
                      /product="hormonally upregulated new tumor-associated
                      kinase"
                      /protein id="AAF35282.1"
                      /db xref="GI:7021319"
```

/translation="MPAAAGDGLLGEPAAPGGDGGAEDTTRPAAACEGSFLPAWVSGV SRERLRDFQHHKRVGNYLIGSRKLGEGSFAKVREGLHVLTGEKVAIKVIDKKRAKKDT YVTKNLRREGQIQQMIRHPNITQLLDILETENSYYLVMELCPGGNLMHKIYEKKRLDE AEARRYIRQLISAVEHLHRAGVVHRDLKIENLLLDEDNNIKLIDFGLSNCAGILGYSD PFSTQCGSPAYAAPELLARKKYGPKIDVWSIGVNMYAMLTGTLPFTVEPFSLRALYQK MVDKAMNPLPTQLSTGAVNFLRSLLEPDPVKRPNIQQALANRWLNENYTGKVPCNVTY PNRISLEDLSPSVVLHMTEKLGYKNSDVINTVLSNRACHILAIYFLLNKKLERYLSGK SDIODSICYKTOLYOIEKCRATKEPYEASLDTWTRDFEFHAVQDKKPKEQEKRGDFLH

RPFSKKLDKNLPSHKQPSPSLITQLQSTKALLKDRKASKSGFPDKDSFVCRNLFRKTS DSNCVASSSMEFIPVPPPRTPRIVKKLEPHQPGPGSASILPKEEPLLLDMVRSFESVD REDHIELLSPSHHYRILSSPVSLARRNSSERTLSQGLLSGSTSPLQTPLHSTLVSFAH

EEKNSPPKEEGVCSPPPVPSNGLLQPLGSPNCVKSRGRFPMMGIGQMLRKRHQSLQPS SERSLDASMSPLQPIAPSSLSFDMADGVKGQC"

polyA_signal 4980..4985 /gene="Hunk"

ORIGIN

```
100.0%; Score 5024; DB 10;
 Query Match
                                  Length 5024;
                100.0%; Pred. No. 0;
 Best Local Similarity
                     0; Mismatches
 Matches 5024; Conservative
                                0;
                                   Indels
                                         0;
                                            Gaps
0;
       Qy
         Db
       61 GAGCGAGCGCGATGCCGGCAGCGGCGGGGGACGGGCTCTTGGGCGAGCCGGCGCACCGG 120
Qу
         61 GAGCGAGCGCGATGCCGGCAGCGGGGGGGCGGGCTCTTGGGCGAGCCGGCGCACCGG 120
Db
      121 GGGGCGATGGAGGCGGGGGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCC 180
Qy
         121 GGGGCGATGGAGGCGGGGGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCC 180
Db
      181 TGCCCGCCTGGGTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGC 240
Qу
         181 TGCCCGCCTGGGTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGC 240
Db
      241 GCGTGGGCAACTACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGC 300
Qу
         241 GCGTGGGCAACTACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGC 300
Db
      301 GCGAGGGGCTGCACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAA 360
Qу
         301 GCGAGGGGCTGCACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAA 360
Db
      361 GAGCCAAGAAAGACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGGCAGATCCAGCAGA 420
Qу
         361 GAGCCAAGAAAGACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGGCAGATCCAGCAGA 420
Db
      421 TGATCCGACACCCCAACATCACACGCTCCTGGACATCTTGGAGACAGAGAACAGCTACT 480
Qу
         Db
      481 ACCTGGTCATGGAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAAC 540
Qy
         481 ACCTGGTCATGGAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAAC 540
Db
      541 GGTTGGATGAAGCCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACC 600
Qу
         Db
      541 GGTTGGATGAAGCCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACC 600
```

Qу	601	TGCACCGTGCGGGGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAG 660
Db	601	TGCACCGTGCGGGGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAG 660
Qу	661	ACAATAATATCAAGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACT 720
Db	661	ACAATAATATCAAGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACT 720
Qу	721	CGGATCCATTCAGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCA 780
Db	721	CGGATCCATTCAGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCA 780
Qу	781	GGAAGAAATATGGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGC 840
Db	781	GGAAGAAATATGGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGC 840
QУ	841	TGACGGGGACCCTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGA 900
Db	841	TGACGGGGACCCTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGGCTCTGTATCAGAAGA 900
Qу	901	TGGTGGACAAAGCAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTC 960
ĎЬ	901	TGGTGGACAAAGCAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTC 960
Qу 1020	961	TGCGCTCCTCGTGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGA
Db 1020	961	
Qy 1080	1021	ATCGCTGGTTGAATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACA
Db 1080	1021	
Qy 1140	1081	GGATTTCTTTGGAAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCT
Db 1140	1081	
Qy 1200	1141	ATAAGAACAGTGACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCA
Db 1200	1141	
Qу 1260	1201	TCTACTTCCTGTTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAG
Db 1260	1201	
Qу	1261	ATAGCATCTGCTACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGC

	1320		
	Db 1320	1261	ATAGCATCTGCTACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGC
	Qy 1380	1321	CCTATGAGGCCTCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATA
	Db 1380	1321	
	Qy 1440	1381	AAAAGCCCAAAGAACAAGAAAAAAAGAGGTGATTTTCTCCACCGTCCGT
	Db 1440	1381	
	Qy 1500	1441	TGGACAAGAACCTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGA
	Db 1500	1441	
	Qу 1560	1501	GTACCAAAGCCCTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATT
	Db 1560	1501	
	Qy 1620	1561	CCTTCGTCTGCCGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCTT
	Db 1620	1561	
	Qy 1680	1621	CCATGGAATTCATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGC
	Db 1680	1621	
	Qy 1740	1681	CACACCAACCAGGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGG
	Db 1740	1681	
	Qy 1800	1741	ATATGGTACGCTCCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTT
	Db 1800	1741	
	Qy 1860	1801	CTCACCATTATAGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGA
	1000		

.

Db 1860	1801	$\tt CTCACCATTATAGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGA$.
Qy 1920	1861	GGACACTCTCCCAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATT
Db 1920	1861	
Qу 1980	1921	CCACGCTGGTCTCTTTTGCCCACGAAGAAAAGAACAGCCCCCCGAAAGAGGGGGGTGTGT
Db 1980	1921	
Qy 2040	1981	GTTCACCGCCTCCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTG
Db 2040	1981	
Qy 2100	2041	TGAAGAGCAGGGGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACC
Db 2100	2041	
Qy 2160	2101	AGAGCCTGCAGCCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCA
Db 2160	2101	
Qy 2220	2161	TAGCCCCCTCCAGCCTCTCCTTTGACATGGCCGACGGTGTCAAGGGCCAGTGTTAACCTG
Db 2220	2161	
Qy 2280	2221	GGATGGCAAGATTCTGGGTCTCTGTGAGGACAGCCACGGAACAGAGCTCCACACAGGCAG
Db 2280	2221	
Qy 2340	2281	GCACCAGGGCATGGGTGAACAACCTCACGGGAGCATCCTTTATŢCTTTTATACCTGCCAC
Db 2340	2281	
Qy 2400	2341	ACAAAGTCCCACGCTTGTATCAGCTGAAGTCCACACTCAAAGTCCACGCACTTACTT
Db 2400	2341	

Qy 2460	2401	GACCCTCTGAGACGCTGCCACTAGGGGGGGGGGGGGGGG
Db 2460	2401	
Qy 2520	2461	TTCCAGCCTGAGATTTTCTTTGCTATCACCAATCACTGAGCCCTCTCCAGGATCCCCTCA
Db 2520	2461	TTCCAGCCTGAGATTTTCTTTGCTATCACCAATCACTGAGCCCTCTCCAGGATCCCCTCA
Qy 2580	2521	GTGGGCTCAGAGCTAAAAACCACCCCCCATCTGCTGGGCCAATCAGATTTCCAGACTGG
Db 2580	2521	
Qу 2640	2581	TACCAGGTTGTCCCTCCCCTCTCTGTGTGTCTCTCACAGTTCTGTAACTGACCGTCA
Db 2640	2581	
Qy 2700	2641	GTGGTCAGTTACAGTCTCACGCGGACGTGCCACTCGCTGGTAAGGACGTTCACCCAACCT
Db 2700	2641	
Qу 2760	2701	AGGGATCCCTCTACAGAGGGAAGCAACCCTCCTTTCCCTAACAGTGAGTCCCCACAGAGT
Db 2760	2701	
Qy 2820	2761	GCTGAGTCACAGTGCTGGACCGGGAGGAAGATGGGATGG
Db 2820	2761	
Qy 2880	2821	CCAGCAGCGAGAACCCAGGAGGAAGACGAAGACTCAAACGCTCATTCCTGTGCAACGTTT
Db 2880	2821	
Qy 2940	2881	TGACAGATTTTTCTTTCCTCTTTTTTTTCCCCTGACCTTTTCTTTTTTGGGTTGA
Db 2940	2881	
Qy	2941	AACTTGCTGAGGATTGAACGAACTTGTCCAAAGAGATCTTTCTT

•

3000 Db	
3000 Qy 3060	3001 TTAAATTTTTTTTTAAAGACAGGGTCTCATTAAGTAGCCCAAGCTGGCTTCAAACTCAT
Db 3060	
Qy 3120	3061 GATCCTCCTGCCTCAGCCTCCAAAGTGCTGAGATTACAAGTATATACCCGTGTCTGGCTC
Db 3120	
Qy 3180	3121 AAAATAGCAATTCAAAAACAAAAACTAGTTGGCCAGATGAAAAGTAGTTTTACCAAATTC
Db 3180	
Qy 3240	3181 ACGTGTTTTTTTTTTTCTGAGAGGCTGCAGCTCAGATGGCCAAAAAGCTGGCAACAGGAG
Db 3240	
Qy 3300	3241 GACCACAGTGGCCTGCCTAAGGGATAGTAGCCTAGCCATCCTGTGTTTATACCGTG
Db 3300	
Qу 3360	3301 GCAGCAGCAGAAGGCATAGAACTTAGCTCCAGATGGCTCTGGAGAGAGA
Db 3360	
Qy 3420	3361 TAAAGCAGAGTTGAGACAGCAAGAAGCAGGGAATTCGCTGTGTCATGCTGTTCTGCCGTG
Db 3420	
Qу 3480	3421 GTTAGAACTTAGCTGTTCTGCTGGGAGCTAGGAGCAGGCTTGCCGCCCCCTGGGAACACG
Db 3480	
Qy 3540	3481 CTCACAAGACGGTTCGTCCCCAAAGGAAACAGTGCCCCCCAAACAGGCTTTCAGTCCACT

• •

Db 3540	3481	CTCACAAGACGGTTCGTCCCCAAAGGAAACAGTGCCCCCCAAACAGGCTTTCAGTCCACT
Qу 3600	3541	CTGTAATCTGCACCTTCCCCTCCAGGATTGAACCAAAGATGCATTTCCGGTTTTGTGACT
Db 3600	3541	
Qу 3660	3601	GTGCCACTCTGTGTGTCTCTTGTGGAACCTGGTGTTGTCTGATCCTGTCCGGCTGGCGCT
Db 3660	3601	
Qy 3720	3661	GGATGGAGGACTGTCTCTGTGTGCATCGTGGGCCCTGGTACTTAGCAGAGGACAAAGGGT
Db 3720	3661	
Qy 3780	3721	${\tt ACTGTTGTCAGGAGGGGAAGACTTGGCACGGGCTGGACCACAGTTAGTT$
Db 3780	3721	
Qy 3840	3781	GAACAGCTCAGAATCTTCTGGTCTTTGACTATTTCAGATGGGGTCAGAGACCAGAGCTGT
Db 3840	3781	
Qу 3900	3841	AGCCAGGAAGCCAGGTTCATCATCTTGGTCCATCGATTCTAAAGTGGGCAAATTTCTGTG
Db 3900	3841	
Qу 3960	3901	ACGTCACAAAGCCGGCCTTTGCCAGTGAGGGCTGAGACACAGTACAACTGCCTCTCATTT
Db 3960	3901	
Qy 4020	3961	ACTGGTGGCAGGCGGCTTCCTTTGGCCTCTCAGAGCTCTGACTGA
Db 4020	3961	
Qy 4080	4021	GGATTTGGCTGACCCTGGAAGAAAGCTGCTCTAGTCCTGGCTGAATTTGGTAAGACCTGG
Db 4080	4021	

		•
Qy 4140	4081	ACTACTTAAACCTTAGGGAGGGACTGACTCCCTCCCGAGGACCCATTACAGGAGGAGGCC
Db 4140	4081	
Qy 4200	4141	AGGCTTTTCTCCCAGAGCTGATGGTGTTCTTCATTCAGCATGGCTTCCGTTCAGCTCCCA
Db 4200	4141	
Qу 4260	4201	GGACTTGACACTGAAAATAGAACTCTTTAAGCAGAGAGAAGAGAGAG
Db 4260	4201	
Qy 4320	4261	GCTCCCCGTATTTGATGTGACGTGTTTGAGCTTTTGACGGGTGAAGAGTCCTTTTAAAAGA
Db 4320	4261	
Qy 4380	4321	${\tt TAACTGCCAGCTGCAGGCATCTGGCTCTGCAAAGCTGGTAGGATGTGTACCTGTGTACTG}$
Db 4380	4321	
Qy 4440	4381	TGCCCGCCCCTTTCTCCTAGCCCTTTATGTCTTTTTCTGACTGTTTGCTTTTCTCGTAT
Db 4440	4381	
Qy 4500	4441	GTATGTGTGCCTGTTGGTGCGAGCCTGTGGAGAAAGAGTCTCCCATCCTTCAAATGCT
Db 4500	4441	
Qy 4560	4501	TCGAGAACAGCGTCAGATGTACAACTAGTTTGCCTGCGTTGCTACTGGTACCTTGGACTC
Db 4560	4501	
Qy 4620	4561	TGAACTCAGGTTACCCACCTGAGTCCTCAGTAGGCAGTGGACCCATTGAGAGGCAAATGA
Db 4620	4561	
Qу	4621	GAACAGGAGGAGACAAGCTGTGTTCTGGGGCGCACATAAACACCTGACAGACGAGTCTA

.

.

4680						
Db 4680	462					
Qy 4740	468	1 GGAAACCGCGTGAAAGAAGAAATGTTAAATTCTTTATTGTTTTATTATATTTATATGGAA				
Db 4740	468					
Qy 4800	474	1 AATGTGGCTATCCTTTTGTTAAGTGCAGAGTGTATTGTCTGTTTGACCCATGACTGTCCT				
Db 4800	474					
Qy 4860	480	1 TCATGAATGAGTCTTTGCCTGTGATTCTAGTCAGCCTGTGGCTACTGATGGGAACGGCCG				
Db 4860	480					
Qy 4920	486	1 ATCTGTCATCATGTGAAGTCCAGGAGGAAGAATCTATTTTAGTCATACGATTTGGTCATG				
Db 4920	486					
Qy 4980	492	AGTAAGGACTATATTTATGTCACCACTATTGAATATATGTACTTTTATAATGGCTGTGAA				
Db 4980	492					
Qy	498	1 ATACACTTTTTCCTCACAAAAAAAAAAAAAAAAAAAAA				
Db .	498	1 ATACACTTTTCCTCACAAAAAAAAAAAAAAAAAAAAAA				
RESULT 2 AF055919 LOCUS 1999 DEFINITION	ON	AF055919 5026 bp mRNA linear ROD 28-APR- Mus musculus putative serine/threonine protein kinase MAK-V (Mak-				
ACCESSION VERSION	1	mRNA, complete cds. AF055919 AF055919.2 GI:4699897				
KEYWORDS SOURCE ORGANIS		(us musculus (house mouse) (us musculus				
REFERENCE AUTHORS	Ε	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 1 (bases 1 to 5026) Korobko, I.V., Kabishev, A.A. and Kiselev, S.L.				

```
TITLE
            Identification of the new protein kinase specifically transcribed
            in mouse tumors with high metastatic potential
            Dokl. Akad. Nauk. 354 (4), 554-556 (1997)
  JOURNAL
  MEDLINE
           97396592
   PUBMED 9273061
               (bases 1 to 5026)
REFERENCE 2
  AUTHORS Korobko, I.V.
            Direct Submission
  TITLE
            Submitted (26-MAR-1998) Laboratory of Cancer Molecular Genetics,
  JOURNAL
            Institute of Gene Biology, Russian Academy of Sciences, 34/5
            Vavilov Str., Moscow 117334, Russia
REFERENCE
               (bases 1 to 5026) ·
           3
  AUTHORS
           Korobko, I.V.
  TITLE
            Direct Submission
  JOURNAL
            Submitted (28-APR-1999) Laboratory of Cancer Molecular Genetics,
            Institute of Gene Biology, Russian Academy of Sciences, 34/5
            Vavilov Str., Moscow 117334, Russia
            Sequence update by submitter
  REMARK
            On Apr 28, 1999 this sequence version replaced gi:3659508.
COMMENT
                     Location/Qualifiers
FEATURES
     source
                     1. .5026
                     /organism="Mus musculus"
                     /mol type="mRNA"
                     /strain="A/Sn"
                     /db xref="taxon:10090"
                     /cell line="adenocarcinoma VMR-Liv"
                     /tissue type="mammary gland"
                     /note="high metastatic potential"
                     1. .5026
     gene
                     /gene="Mak-v"
                     60. .2204
     CDS
                     /gene="Mak-v"
                     /codon start=1
                     /product="putative serine/threonine protein kinase MAK-V"
                     /protein id="AAC61489.1"
                     /db xref="GI:3659509"
```

/translation="MPAAAGDGLLGEPAAPGGDGGAEDTTRPAAACEGSFLPAWVSGV
SRERLRDFQHHKRVGNYLIGSRKLGEGSFAKVREGLHVLTGEKVAIKVIDKKRAKKDT
YVTKNLRREGQIQQMIRHPNITQLLDILETENSYYLVMELCPGGNLMHKIYEKKRLDE
AEARRYIRQLISAVEHLHRAGVVHRDLKIENLLLDEDNNIKLIDFGLSNCAGILGYSD
PFSTQCGSPAYAAPELLARKKYGPKIDVWSIGVNMYAMLTGTLPFTVEPFSLRALYQK
MVDKAMNPLPTQLSTGAVNFLRSLLEPDPVKRPNIQQALANRWLNENYTGKVPCNVTY
PNRISLEDLSPSVVLHMTEKLGYKNSDVINTVLSNRACHILAIYFLLNKKLERYLSGK
SDIQDSICYKTQLYQIEKCRATKEPYEASLDTWTRDFEFHAVQDKKPKEQEKRGDFLH
RPFSKKLDKNLPSHKQPSPSLITQLQSTKALLKDRKASKSGFPDKDSFVCRNLFRKTS
DSNCVASSSMEFIPVPPPRTPRIVKKLEPHQPGPGSASILPKEEPLLLDMVRSFESVD

${\tt REDHIELLSPSHHYRILSSPVSLARRNSSERTLSQGLLSGSTSPLQTPLHSTLVSFAH}$

EEKNSPPKEEGVCSPPPVPSNGLLQPLGSPNCVKSRGRFPMMGIGQMLRKRHQSLQPS SERSLDASMSPLQPTAPSSLSFDMADGVKGQC"

misc feature

243. .1019 /gene="Mak-v"

/note="encodes putative catalytic domain"

ORIGIN

	96.0%; Score 4821.6; DB 10; Length 5026; Similarity 98.8%; Pred. No. 0; 0; Conservative 0; Mismatches 29; Indels 31; Gaps	
Qy 13	AGGGCAGCCCGGGAGCCGGAGGAGGAGCGGGGGGGGGG	
Db 1	AGGGCAGCCCGGGAGCGGAGGAGGAGCGGAGCGAGCGAG	ł
Qy 73	TGCCGGCAGCGGCGGGGACGGGCTCTTGGGCGAGCCGGCGCACCGGGGGGCGATGGAG 13.	2
Db 61	TGCCGGCAGCGGGGGACGGGCTCTTGGGCGAGCCGGCGCACCGGGGGGCGATGGAG 12	0
Qy 133	GCGCGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCCTGCCCGCCTGGG 19	2
Db 121	GCGCGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCCTGCCCGCCTGGG 18	0
Qy . 193	TGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGCGCGTGGGCAACT 25	2
Db 181	TGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGCGCGTGGGCAACT 24	0
Qy 253	ACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGCGCGAGGGGCTGC 31	.2
Db 241	ACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGCGCGAGGGGCTGC 30	0
Qy 313	ACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAAG	2
Db 301	ACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAAG 36	0
Qy 373	ACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGCAGATCCAGCAGATGATCCGACACC 43	32
Db 361	ACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGCAGATCCAGCAGATGATCCGACACC 42	0:
Qy 433	CCAACATCACACAGCTCCTGGACATCTTGGAGACAGAGAACAGCTACTACCTGGTCATGG 49	2
Db 421	CCAACATCACACAGCTCCTGGACATCTTGGAGACAGAGAACAGCTACTACCTGGTCATGG 48	0 (
Qy 493	AGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAAG 55	2
Db 481	AGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAAG 54	0
Qy 553	CCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACCTGCACCGTGCGG 61	.2
Db 541	CCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACCTGCACCGTGCGG 60	0
Qy 613	GGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAGACAATAATATCA 67	12

Db	60Í		660
Qу	673	AGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACTCGGATCCATTCA	732
Db	661	AGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACTCGGATCCATTCA	720
Qу	733	GCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATATG	792
Db	721	GCACACAGTGTGGCAGCCCTGCCTATGCTGCCCAGAACTGCTTGCCAGGAAGAAATATG	780
Qу	793	GCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACCC	852
Db	781	GCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACCC	840
Qy	853	TACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAAG	912
Db	841	TACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAAG	900
Qу	913	CAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCCCC	972
Db	901	CAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCTCC	960
Qy 1032	973	TGGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGAATCGCTGGTTGA	
Db 1020	961		
Qy 1092	1033	${\tt ATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACAGGATTTCTTTGG}$	•
Db 1080	1021		
Qy 1152	1093	AAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGTG	
Db 1140	1081	AAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGTG	
Qy 1212	1153	ACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTCCTGT	
Db 1200	1141		
Qy 1272	1213	TGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGCATCTGCT	
Db 1260	1201		
Qy 1332	1273	ACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGCCCTATGAGGCCT	

Db 1320	1261	ACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGCCCTATGAGGCCT
Qy 1392	1333	CCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATAAAAAGCCCAAAG
Db 1380	1321	
Qy 1452	1393	AACAAGAAAAAAGAGGTGATTTTCTCCACCGTCCGTTTTCCAAGAAGTTGGACAAGAACC
Db 1440	1381	
Qy 1512	1453	TGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGAGTACCAAAGCCC
Db 1500	1441	
Qy 1572	1513	TGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATTCCTTCGTCTGCC
Db 1560	1501	
Qy 1632	1573	GCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCTTCCATGGAATTCA
Db 1620	1561	
Qy 1692	1633	TCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGCCACCAACCA
Db 1680	1621	
Qy 1752	1693	GGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGGATATGGTACGCT
Db 1740	1681	
Qy 1812	1753	CCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTTCTCACCATTATA
Db 1800	1741	
Qy 1872	1813	GGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGAGGACACTCTCCC
Db 1860	1801	

Qy 1932	1873	AGGGGCTGCTGCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATTCCACGCTGGTCT
Db 1920	1861	
Qy 1992	1933	CTTTTGCCCACGAAGAAAAGAACAGCCCCCCGAAAGAGGGGGGTGTGTTCACCGCCTC
Db . 1980	1921	
Qy 2052	1993	CCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTGTGAAGAGCAGGG
Db 2040	1981	
Qy 2112	2053	GACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACCAGAGCCTGCAGC
Db 2100	2041	
Qy 2172	2113	CTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCATAGCCCCCTCCA
Db 2160	2101	
Qy 2232	2173	GCCTCTCCTTTGACATGGCCGACGGTGTCAAGGGCCAGTGTTAACCTGGGATGGCAAGAT
Db 2220	2161	
Qy 2292	2233	TCTGGGTCTCTGTGAGGACAGCCACGGAACAGAGCTCCACACAGGCAGCACCAGGGCAT
Db 2280	2221	
Qy 2352	2293	GGGTGAACAACCTCACGGGAGCATCCTTTATTCTTTTATACCTGCCACACAAAGTCCCAC
Db 2340	2281	
Qy 2410	2353	GCTTGTATCAGCTGAAGTCCACACTCAAAGTCCACGCACTTACTTAGGGACCCTCTGA
Db 2400	2341	
Ov	2411	GACGCTGCCACTAGGGGGAGGGGGAGGGGGGAGACTGTGGGAATCACACCTTCCAGCCTG

2470		
Db . 2460	2401	GACGCTGCGACTAGGGGGAGGGGGGGGGGGGGGGGGGGG
Qy 2528	2471	AGATTTTCTTTGCTATCACCAATCACTGAGCCCTCTCCAGGATCCCCTCAGTGGGCTC
Db 2520	2461	
Qy 2588	2529	AGAGCTAAAAACCACCCCCATCTGCTGGGCCAATCAGATTTCCAGACTGGTACCAGGT
Db 2580	2521	
Qy 2648	2589	TGTCCCTCCCCTCTCTGTGTGTCTCTCACAGTTCTGTAACTGACCGTCAGTGGTCAG
Db 2640	2581	
Qy 2708	2649	TTACAGTCTCACGCGGACGTGCCACTCGCTGGTAAGGACGTTCACCCAACCTAGGGATCC
Db 2700	2641	TTACAGTCTCACGCGGACGTGCCACTCGCTGGTAAGGACGTTCACCCAACCTAGGGATCC
Qy 2768	2709	CTCTACAGAGGGAAGCAACCCTCCTTTCCCTAACAGTGAGTCCCCACAGAGTGCTGAGTC
Db 2760	2701	
Qy 2828	2769	ACAGTGCTGGACCGGGAGGAAGATGGGATGGCGCCTCAGGACAGAGATGGAACCCAGCAGC
Db 2820	2761	
Qy 2885	2829	GAGAACCCAGGAGGAAGACGCTCAAACGCTCATTCCTGTGCAACGTTTTGACA
Db 2880	2821	
Qy 2945	2886	GATTTTCTTTCCTCTCTTTTTTCCCCCTGACCTTTTCTTCTTTTTTGGGTTGAAACTT
Db 2937	2881	
Qу 3005	2946	GCTGAGGATTGAACGAACTTGTCCAAAGAGATCTTTCTTT

.

Db 2997	2938	GCTGAGGATTGAACGAACTTGTCCAAAGAGATCTTTCTTT
Qy 3060	3006	TTTTTTTTTAAAGACAGGGTCTCATTAAGTAGCCCAAGCTGGCTTCAAACTCAT
Db 3057	2998	
Qy 3120	3061	GATCCTCCTGCCTCAGCCTCCAAAGTGCTGAGATTACAAGTATATACCCGTGTCTGGCTC
Db 3117	3058	
Qy 3180	3121	AAAATAGCAATTCAAAAAACAAAAACTAGTTGGCCAGATGAAAAGTAGTTTTACCAAATTC
Db 3177	3118	
Qy 3231	3181	ACGTGTTTTTGTTTTTCTGAGAGGCTGCAGCTCAGATGGCCAAAAAAGCTGG
Db 3237	3178	
Qy 3291	3232	CAACAGGAGGACCACAGTGGCCTGCCTAAGGGATAGTAGCCTAGCCATCCTGTGTT
Db 3297	3238	
Qy 3351	3292	TATACCGTGGCAGCAGCAGAAGGCATAGAACTTAGCTCCAGATGGCTCTGGAGAGAGA
Db 3357	3298	
Qy 3411	3352	AAGGATTCTTAAAGCAGAGTTGAGACAGCAAGAAGCAGGGAATTCGCTGTCATGCTGT
Db 3417	3358	
Qy 3471	3412	TCTGCCGTGGTTAGAACTTAGCTGTTCTGCTGGGAGCTAGGAGCAGGCTTGCCGCCCCCT
Db 3477	3418	
Qy 3531	3472	GGGAACACGCTCACAAGACGGTTCGTCCCCAAAGGAAACAGTGCCCCCCAAACAGGCTTT
Db 3537	3478	

Qy 3591	3532	CAGTCCACTCTGTAATCTGCACCTTCCCCTCCAGGATTGAACCAAAGATGCATTTCCGGT
Db 3597	3538	
Qy 3651	3592	TTTGTGACTGTGCCACTCTGTGTGTCTCTTGTGGAACCTGGTGTTGTCTGATCCTGTCCG
Db 3657	3598	
Qy 3711	3652	GCTGGCGCTGGATGGAGGACTGTCTCTGTGTGCATCGTGGGCCCTGGTACTTAGCAGAGG
Db 3717	3658	
Qy 3771	3712	ACAAAGGGTACTGTTGTCAGGAGGGGAAGACTTGGCACGGGCTGGACCACAGTTAGTT
Db 3777	3718	
Qy 3831	3772	GAAGTTATGGAACAGCTCAGAATCTTCTGGTCTTTGACTATTTCAGATGGGGTCAGAGAC
Db 3837	3778	
Qy 3891	3832	CAGAGCTGTAGCCAGGAAGCCAGGTTCATCATCTTGGTCCATCGATTCTAAAGTGGGCAA
Db 3897	3838	
Qy 3951	3892	ATTTCTGTGACGTCACAAAGCCGGCCTTTGCCAGTGAGGGCTGAGACACAGTACAACTGC
Db 3956	3898	
Qy 4011	3952	CTCTCATTTACTGGTGGCAGGCGGCTTCCTTTGGCCTCTCAGAGCTCTGACTGA
Db 4016	3957	
Qy 4071	4012	AGAGAACACGGATTTGGCTGACCCTGGAAGAAAGCTGCTCTAGTCCTGGCTGAATTTGGT
Db 4076	4017	
Qу	4072	${\tt AAGACCTGGACTACTTAAACCTTAGGGAGGGACTGACTCCCTCC$

4131		
Db 4136	4077	AAGACCTGGACTACTTAAACTTTAGGGAGGGACTGACTCCCTCC
Qy 4191	4132	GAGGAGGCCAGGCTTTTCTCCCAGAGCTGATGGTGTTCTTCATTCA
Db 4196	4137	
Qy 4251	4192	CAGCTCCCAGGACTTGACACTGAAAATAGAACTCTTTAAGCAGAGAGAG
Db 4256	4197	
Qy 4311	4252	TCCACAGACGCTCCCCGTATTTGATGTGACGTGTTTGAGCTTTGACGGGTGAAGAGTCCT
Db 4316	4257	
Qy 4371	4.312	TTTAAAAGATAACTGCCAGCTGCAGGCATCTGGCTCTGCAAAGCTGGTAGGATGTGTACC
Db 4376	4317	
Qy 4431	4372	TGTGTACTGTGCCCGCCCCCTTTCTCCTAGCCCTTTATGTCTTTTTCTGACTGTTTGCTT
Db 4436	4377	
Qy 4491	4432	TTCTCGTATGTATGTGTGCCTGTTGGTGCGAGCCTGTGGAGAAAGAGTCTCCCATCCT
Db 4496	4437	
Qy 4551	4492	TCAAATGCTTCGAGAACAGCGTCAGATGTACAACTAGTTTGCCTGCGTTGCTACTGGTAC
Db 4556	4497	
Qy 4611	4552	CTTGGACTCTGAACTCAGGTTACCCACCTGAGTCCTCAGTAGGCAGTGGACCCATTGAGA
Db 4616	4557	
Qy 4671	4612	GGCAAATGAGAACAGGAGGAGACAAGCTGTGTTCTGGGGCGCACATAAACACCTGACAG

-

4676	4017	GGCAAATGAGAACAGGAGAGACAAGCTGTGTTCTGGGGGCGCACATAAACACCTGACAG
Qy 4731	4672	ACGAGTCTAGGAAACCGCGTGAAAGAAGAAATGTTAAATTCTTTATTGTTTTATTATATT
Db 4736	4677	
Qy 4791	4732	${\tt TATATGGAAAATGTGGCTATCCTTTTGTTAAGTGCAGAGTGTATTGTCTGTTTGACCCAT}$
Db 4796	4737	TATACGGAAAATGTGGCTATCCTTTTGTTAAGTGCAGAGTGTATTATCTGTTTGACCCAT
Qy 4846	4792	GACTGTCCTTCATGAATGAGTCTTTGCCTGTGATTCTAGTC-AGCCTGTGGCTACT
Db 4856	4797	
Qy 4906	4847	GATGGGAACGGCCGATCTGTCATCATGTGAAGTCCAGGAGGAAGAATCTATTTTAGTCAT
Db 4916	4857	
Qy 4965	4907	${\tt ACGA-TTTGGTCATGAGTAAGGACTATATTTATGTCACCACTATTGAATATATGTACTTT}.$
Db 4976	4917	
Qу	4966	TATAATGGCTGTGAAATACACTTTTTCCTCACAAAAAAAA
Db	4977	TATAATGGCTGTGAAATACACTTTTTCCTCACAAAAAAAA

·

.

.

us-10-032-256a-1.rng

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on:

April 19, 2005, 23:13:42; Search time 2427 Seconds

(without alignments)

12254.133 Million cell updates/sec

Title:

US-10-032-256A-1

Perfect score:

5024

Sequence:

Scoring table:

IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

searched:

4390206 seqs, 2959870667 residues

Total number of hits satisfying chosen parameters:

8780412

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database:

N_Geneseq_16Dec04:* geneseqn1980s:* geneseqn1990s:* geneseqn2000s:* geneseqn2001as:* geneseqn2001bs:* geneseqn2002as:* geneseqn2002bs:* geneseqn2003as:* geneseqn2003bs:* 10: geneseqn2003cs:* genesegn2003ds:* 11: geneseqn2004as:* 12: geneseqn2004bs:* 13:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		%				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	2142	42.6	2142	8	AAL60328	Aal60328 Centrosom
2	2138.8	42.6	2142	8	AAL60327	Aal60327 Centrosom
3	1750	34.8	7385	4	AAH72843	Aah72843 Human cer
4	1714.6	34.1	2145	4	AAF44660	Aaf44660 Novel pro
5	1714.6	34.1	2145	12	ADI29358	Adi29358 Human MAR
6	484.2	9.6	675	12	ACH87498	Ach87498 Human gen
7	482.2	9.6	656	4	AAI19670	Aai19670 Probe #96
8	482.2	9.6	656	4	AAI20180	Aai20180 Probe #10
9	482.2	9.6	656	4	AAI20139	Aai20139 Probe #10
10	482.2	9.6	656	4	ABA65209	Aba65209 Human foe

```
us-10-032-256a-1.rng
         482.2
                   9.6
                           656
                                                                   Aba64696 Human foe
                                     ABA64696
         482.2
482.2
                   9.6
   12
                           656
                                     ABA65168
                                                                   Aba65168 Human foe
                                     AAI45339
   13
                   9.6
                           656
                                                                   Aai45339 Probe #14
   14
         482.2
                   9.6
                           656
                                 4
                                     AAI45380
                                                                   Aai45380 Probe #14
         482.2
482.2
482.2
                           656
656
   15
                                                                   Aai44865 Probe #13
                   9.6
                                     AAI44865
   16
17
                   9.6
                                                                   Aba46816 Human bre
                                     ABA46816
                   9.6
                           656
                                     ABA47283
                                                                   Aba47283 Human bre
   18
                                     ABA47324
         482.2
                   9.6
                           656
                                                                   Aba47324 Human bre
   \bar{19}
         482.2
                   9.6
                           656
                                     ABA31820
                                                                   Aba31820 Probe #10
                                                                   Aba32310 Probe #10
   20
         482.2
                   9.6
                           656
                                 4
                                     ABA32310
   21
22
23
                                                                   Aba32270 Probe #10
                   9.6
                                     ABA32270
         482.2
                           656
                                 4
         482.2
                   9.6
                           656
                                 4
                                     AAK38862
                                                                   Aak38862 Human bon
                   9.6
                           656
                                                                   Aak39367 Human bon
         482.2
                                     AAK39367
   24
         482.2
                   9.6
                           656
                                 4
                                     AAK39326
                                                                   Aak39326 Human bon
   25
         482.2
                   9.6
                           656
                                 4
                                     AAK13626
                                                                   Aak13626 Human bra
   26
                   9.6
         482.2
                           656
                                 4
                                     AAK13586
                                                                   Aak13586 Human bra
   27
         482.2
                   9.6
                           656
                                 4
                                                                   Aak13131 Human bra
                                     AAK13131
   28
         482.2
                   9.6
                           656
                                 4
                                                                   Abs38447 Human liv
                                     ABS38447
   29
30
                           656
656
         482.2
                                                                   Abs38914 Human liv
                   9.6
                                 4
                                     ABS38914
         482.2
                   9.6
                                 4
                                     ABS38955
                                                                   Abs38955 Human liv
                   9.6
                           656
   31
         482.2
                                     AAI05884
                                                                   Aai05884 Probe #58
   32
         482.2
                   9.6
                           656
                                                                   Aai05389 Probe #53
                                     AAI05389
   33
         482.2
                   9.6
                           656
                                     AAI05844
                                                                   Aai05844 Probe #58
   34
                   9.6
                           656
                                 6
                                                                   Abs13454 Human gen
         482.2
                                     ABS13454
   35
         482.2
482.2
                   9.6
                           656
                                 6
                                     ABS12943
                                                                   Abs12943 Human gen
   36
37
                   9.6
7.9
                                                                   Abs13413 Human gen
Aai22604 Probe #12
                                     ABS13413
                           656
                                 6
                                 4
                            528
         395.8
                                     AAI22604
C
                   7.9
   38
         395.8
                            528
                                 4
                                     ABA67679
                                                                   Aba67679 Human foe
C
   39
         395.8
                   7.9
                            528
                                 4
                                     AAI47896
                                                                   Aai47896 Probe #16
C
                   7.9
                                                                   Aba49766 Human bre
                            528
                                 4
C
   40
         395.8
                                     ABA49766
                   7.9
                                 4
   41
         395.8
                            528
                                     ABA34746
                                                                   Aba34746 Probe #13
C
                   7.9
   42
                                 4
         395.8
                            528
                                     AAK41838
                                                                   Aak41838 Human bon
C
   43
         395.8
                   7.9
                            528
                                 4
                                                                   Aak16096 Human bra
c
                                     AAK16096
   44
                            528
C
         395.8
                                 4
                                     ABS41434
                                                                   Abs41434 Human liv
         395.8
                            528
                                     AAI08280
                                                                   Aai08280 Probe #82
```

ALIGNMENTS

```
RESULT 1
AAL60328
     AAL60328 standard; DNA; 2142 BP.
ID
XX
AC
     AAL60328;
XX
     27-AUG-2003 (first entry)
DT
XX
     Centrosome-associated kinase Mak V wild-type DNA.
DE
XX
     Centrosome-associated kinase; cell cycle progression; therapy; enzyme;
KW
KW
     cytostatic; Mak V; gene; ds.
XX
     Unidentified.
os
XX
     WO2003038078-A2.
PΝ
XX
     08-MAY-2003.
PD
XX
     31-OCT-2002; 2002WO-GB004940.
PF
XX
     02-NOV-2001: 2001GB-00026415.
PR
XX
```

```
us-10-032-256a-1.rng
    (UYWA-) UNIV WARWICK.
PA
XX
PΙ
    Stott D, Seung-Woon S, Craig GM;
XX
DR'
    WPI; 2003-441358/41.
XX
    New centrosome-associated kinase with decreased or no kinase activity,
PT
    useful for identifying inhibitors or activators of cell cycle
PT
    progression, for use in manufacturing a treatment for uncontrolled cell
PT
PT
    cycle progression.
XX
    Disclosure; Page 16-17; 23pp; English.
PS
XX
    The invention relates to centrosome-associated kinase with decreased or no kinase activity useful for identifying inhibitors or activators of cell cycle progression. The invention is useful for identifying an
CC
CC
CC
    inhibitor or activator of cell cycle progression, which is useful in manufacturing a medicament for treating uncontrolled cell cycle
CC
CC
    progression. The present sequence is centrosome-associated kinase Mak V
CC
    wild-type DNA
CC
XX
    Sequence 2142 BP; 532 A; 620 C; 576 G; 414 T; 0 U; 0 Other;
SQ
                        42.6%; Score 2142; DB 8; Length 2142; 100.0%; Pred. No. 0;
 Best Local Similarity
                              0; Mismatches
 Matches 2142; Conservative
                                               0; Indels
                                                            0: Gaps
                                                                       0:
          72 ATGCCGGCAGCGGGGGGGCGGGCTCTTGGGCGAGCCGGCGCACCGGGGGGGCGATGGA 131
Qy
             1 ÁTGCCGGCÁGCGGCGGGGÁCGGGCTCTTGGGCGAGCCGGCGCGCACCGGGGGGCGATGGA 60
Db
         132 GGCGCGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCCTGCCCGCCTGG 191
Qy
             61 GGCGCGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCCTGCCCGCCTGG 120
Db
         192 GTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGCGCGTGGGCAAC 251
Qy
             121 GTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGCGCGTGGGCAAC 180
Db
         252 TACCTCATCGGCAGGAGGAGCTGGGAGAGGGCTCCTTCGCCAAGGTGCGCGAGGGGCTG 311
Qy
             181 TACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGCGCGAGGGGCTG 240
Db
         312 CACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAA 371
Qy
              241 CACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAA 300
Db
         372 GACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGCAGATCCAGCAGATGATCCGACAC 431
Qy
         301 GÁCACCTÁCGTCÁCCAAAAACCTGCGTCGAGAGGGGCAGATCCAGCAGATGATCCGACAC 360
Db
         432 CCCAACATCACAGCTCCTGGACATCTTGGAGACAGAGAACAGCTACTACCTGGTCATG 491
Qy
             361 CCCAACATCACACAGCTCCTGGACATCTTGGAGACAGAACAGCTACTACCTGGTCATG 420
Db
         492 GAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAA 551
Qy
             421 GAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAA 480
Db
         552 GCCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACCTGCACCGTGCG 611
Qy
```

Db

		us-10-032-256a-1.rng	
Qy		GGGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAGACAATAATATC	
Db		GGGGTGGTTCACAGAGACTTGAAGATAGAGAAATTTGCTACTAGATGAAGACAATAATATC	
Qy - '		AAGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACTCGGATCCATTC	
Db		AÁGCTGÁTTGÁCTTTGÁCTTGÁGCAÁCTGTGCÁGGGÁTCCTÁGGTTÁCTCGGÁTCCÁTTC AGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATAT	
Qy Db -		AGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATAT	
Qy		GGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACC	
Dp			
Qy		CTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAA	911
Db	781	CTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAA	
Qy	912	GCAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCTC	971
Db	841		900
Qy	972	CTGGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGAATCGCTGGTTG	1031
Db	901	ctggaaccagacctgtgaagaccgaatatccagcaagcgctggcgaatcgctggttg	960
Qy		AATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACAGGATTTCTTTG	
Db		AATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACAGGATTTCTTTG	
Qy		GAAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGT	
Db		GÁAGACCTGÁGTCCCÁGCGTGGTGCTGCÁCATGÁCTGÁAÁAAGCTGGGCTATAAGAACAGT	
Qy Dh		GACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTCCTG	
Db Ov		TTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGCATCTGC	
Qy Db			
Qy		TACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGCCCTATGAGGCC	: 1331
Db	1201	TACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGCCCTATGAGGCC	1260
Qy	1332	TCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATAAAAAGCCCAAA	1391
Db	1261	TCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATAAAAAGCCCAAA	1320
Qy	1392	GAACAAGAAAAAAGAGGTGATTTTCTCCACCGTCCGTTTTCCAAGAAGTTGGACAAGAAC	1451
Db	1321	GAACAAGAAAAAAGAGGTGATTTTCTCCACCGTCCGTTTTCCAAGAAGTTGGACAAGAAC	1380
Qy	1452	CTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGAGTACCAAAGCC	1511
Db		CTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGAGTACCAAAGCC	1440
Qy		CTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATTCCTTCGTCTGC	
Db	1441	CTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATTCCTTCGTCTGC	1500

us-10-032-256a-1.rng

Qy	1572 CGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCCATGGAATTC 1631
Dp	1501 CGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCCATGGAATTC 1560
Qy	1632 ATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGCCACCAACCA
DP	1561 ATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGCCACACCAACCA
Qy	1692 GGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGGATATGGTACGC 1751
Dp	1621 GGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGGATATGGTACGC 1680
Qy	1752 TCCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTTCTCACCATTAT 1811
Db	1681 tcctttgagtctgtggatcgagagaccacatagaactgctgtccccttctcaccattat 1740
Qy	1812 AGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGAGGACACTCTCC 1871
Dp	1741 ÁGGÁTCCTGÁGCTCGCCTGTGÁGCCTGGCTÁGGÁÁTTCTÁGTGÁGÁGÁGÁ
Qy	1872 CAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATTCCACGCTGGTC 1931
Db	1801 CAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATTCCACGCTGGTC 1860
Qy	1932 TCTTTTGCCCACGAAGAAAGAACAGCCCCCCGAAAGAGGGGGGGTGTGTGT
Db	1861 ŤĊŤŤŤŤĠĊĊĊÁĊĠÁÁĠÁÁÁÁĠÁÁĊÁĠĊĊĊĊĊĠÁÁAGÁĠĠĠĠĠĠĠĠĠĠ
Qy	1992 CCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTGTGAAGAGCAGG 2051
Db	1921 CCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTGTGAAGAGCAGG 1980
Qy	2052 GGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACCAGAGCCTGCAG 2111
Db	1981 GGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACCAGAGCCTGCAG 2040
Qy	2112 CCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCCATAGCCCCCTCC 2171
Db	2041 CCTTCCTCAGAGAGATCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCCATAGCCCCCTCC 2100
Qy	2172 AGCCTCTCTTTGACATGGCCGACGGTGTCAAGGGCCAGTGT 2213
Dp	2101 AGCCTCTCTTGACATGGCCGACGGTGTCAAGGGCCAGTGT 2142

us-10-032-256a-1.rnpb

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on:

April 20, 2005, 05:51:28 ; Search time 2639 Seconds

(without alignments) 11549.510 Million cell updates/sec

Title:

US-10-032-256A-1

Perfect score:

5024

Sequence:

Scoring table:

IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched:

5622541 seqs, 3033355566 residues

Total number of hits satisfying chosen parameters:

11245082

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database :

Published_Applications_NA:*

/cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:*

/cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/PCT_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US06_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US06_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US07_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/PCTUS_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US08_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US08_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US09A_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US09B_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US09C_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US10A_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10B_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10D_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10D_PUBCOMB.seq:* 9: 10: 11:

13: 14:

15: /cgn2_6/ptodata/1/pubpna/US10D_PUBCOMB.seq:* 16: 17:

/cgn2_6/ptodata/1/pubpna/US10E_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10F_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:* 18: 19:

20:

/cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:* 21: /cgn2_6/ptodata/1/pubpna/US60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	484.2	9.6	675	16	US-10-029-386-20693	Sequence 20693, A

```
us-10-032-256a-1.rnpb
                  482.2
482.2
482.2
         2
                                         9.6
                                                         656
                                                                            US-09-864-761-17140
                                                                                                                                            Sequence 17140, A
Sequence 17590, A
Sequence 17630, A
Sequence 20066, A
Sequence 224, App
Sequence 72, Appl
Sequence 389, App
Sequence 186, App
Sequence 3290, Ap
Sequence 326, App
Sequence 807, App
Sequence 849, App
Sequence 17591, A
Sequence 17631, A
                                                                                                                                              Sequence 17140, A
                                                                     9 US-09-864-761-17590
9 US-09-864-761-17630
9 US-09-864-761-20066
9 US-09-764-868-224
                                                         656
528
482
482
482
474
470
459
                                         9.6
                                         9.6
                                        7.9
7.5
                   395.8
c
         6
                   377.2
                                                                     11 US-09-764-875-72
                   377.2
                                        7.5
7.5
                                                                     11 US-09-764-875-389
         8
                   377.2
                                        7.5
                                                                     17
                                                                             US-10-242-355-186
         9
                   377.2
                                        6.9
                                                                     9
                                                                             US-09-864-761-3290
c
       10
                        345
                  338.8
272.6
272.6
                                                                            US-09-864-761-326
US-09-864-761-807
US-09-864-761-849
                                                                     9
       11
                                         5.4
       12
                                                         459
                                         5.4
       13
                                                                                                                                             Sequence 17591, A
Sequence 17631, A
Sequence 325, App
Sequence 6982, Ap
Sequence 19069, A
Sequence 19070, A
Sequence 19070, A
Sequence 19070, A
Sequence 519, App
Sequence 808, App
Sequence 850, App
Sequence 850, App
Sequence 8714, Ap
Sequence 5028, Ap
Sequence 9772, Ap
Sequence 6306, Ap
                                                         297
                                                                            US-09-864-761-17591
       14
                        229
                                         4.6
       15
                        229
                                         4.6
                                                         297
                                                                     9
                                                                            US-09-864-761-17631
                                                         457
                  194.4
                                                                     9 US-09-864-761-325
       16
                                         3.9
                                                                     16 US-10-029-386-6982
18 US-10-363-345A-19069
18 US-10-363-345A-19070
19 US-10-363-483A-19069
                  180
174.8
       17
                                         3.6
                                                         502
                                                       1205
1205
1205
       18
                                         3.5
                                        3.5
3.5
                   174.8
       19
c
       20
                   174.8
                                                    1205
56153
472
472
                                                                     19 US-10-363-483A-19070
17 US-10-221-714A-519
9 US-09-864-761-808
                                        3.5
3.5
                   174.8
c
       21
       22
                   174.8
       23
24
                                                                     9
9
                   171.2
                                         3.4
                                                                             US-09-864-761-850
                   171.2
                                         3.4
                                                                     17 US-10-424-599-3569
17 US-10-425-114-8714
18 US-10-739-930-5028
17 US-10-425-114-9772
17 US-10-425-114-6306
                                                       1975
1975
       25
                        155
                                         3.1
       26
27
                        155
                                         3.1
                                                       2110
                   148.8
                                         3.0
       28
                   148.6
                                                       1317
                                         3.0
       29
                   148.6
                                         3.0
                                                       2022
                                                                                                                                                Sequence 6306, Ap
                                                                    17 US-10-425-114-6306

18 US-10-425-115-101612

9 US-09-864-761-426

17 US-10-425-114-35453

9 US-09-864-761-10591

17 US-10-424-599-3567

17 US-10-425-114-2343

18 US-10-425-115-128036
                                                                                                                                              Sequence 101612,
Sequence 426, App
Sequence 35453, A
       30
                  148.2
                                         2.9
                                                       2150
                                         2.9
                                                         466
       31
                   146.8
                                                       1770
474
2073
2138
2922
1933
1945
       32
33
                   146.6
                                         2.9
                  145.4
143.8
                                        2.9
                                                                                                                                               Sequence 10591, A
                                        2.9
                                                                                                                                                Sequence 3567, Ap
Sequence 2343, Ap
       34
       35
                   143.6
                                                                                                                                           Sequence 2343, Ap
Sequence 128036,
Sequence 3580, Ap
Sequence 28167, A
Sequence 27212, A
Sequence 27212, A
Sequence 17225, A
Sequence 154128,
Sequence 3482, Ap
Sequence 29601, A
       36
                   143.6
                                         2.9
                                                                     17 US-10-425-113-126036
17 US-10-425-114-3580
17 US-10-425-114-28167
18 US-10-425-115-28948
9 US-09-864-761-27212
9 US-09-864-761-20252
9 US-09-864-761-17225
                                        2.9
       37
                   143.4
                                                                     17
       38
                   143.4
                                         2.9
                                                       2124
237
249
       39
                   143.4
                                        2.9
       40
                        143
                                         2.8
                                         2.8
       41
                        143
                                                         189
      42
                   142.8
                                                                     18 US-10-425-115-154128
9 US-09-864-761-3482
                                         2.8
                                                       2044
       43
                   142.4
                   141.8
                                         2.8
       44
                                                        453
                                                                    17 US-10-425-114-29601
                   141.6
                                         2.8
                                                       1812
                                                                                                                                             Sequence 29601. A
```

ALIGNMENTS

```
RESULT 1
US-10-029-386-20693
; Sequence 20693, Application US/10029386
; Publication No. US20030194704A1
; GENERAL INFORMATION:
; APPLICANT: Penn, Sharron G.
; APPLICANT: Rank, David R.
; APPLICANT: Hanzel, David K.
; TITLE OF INVENTION: HUMAN GENOME-DERIVED SINGLE EXON NUCLEIC ACID PROBES USEFUL FOR GENE
; TITLE OF INVENTION: EXPRESSION ANALYSIS TWO
; FILE REFERENCE: AEOMICA-X-2
; CURRENT APPLICATION NUMBER: US/10/029,386
; CURRENT FILING DATE: 2001-12-20
```

```
us-10-032-256a-1.rnpb
  NUMBER OF SEQ ID NOS: 34288
  SOFTWARE: Annomax Sequence Listing Engine vers. 1.1
 SEQ ID NO 20693
   LENGTH: 675
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
   OTHER INFORMATION: MAP TO APOUTT12.1
   OTHER INFORMATION: EXPRESSED IN HEART, SIGNAL = 2.8
   OTHER INFORMATION: EXPRESSED IN BONE MARROW, SIGNAL = 2.8
   OTHER INFORMATION: EXPRESSED IN BOINE MARROW, SIGNAL - 2.0 OTHER INFORMATION: EXPRESSED IN FETAL LIVER, SIGNAL = 2.3 OTHER INFORMATION: EXPRESSED IN ADULT LIVER, SIGNAL = 2.5 OTHER INFORMATION: EXPRESSED IN PLACENTA, SIGNAL = 3.1 OTHER INFORMATION: EXPRESSED IN BRAIN, SIGNAL = 2.7 OTHER INFORMATION: EXPRESSED IN HELA, SIGNAL = 1.8 OTHER INFORMATION: NT HIT: gi14780177, EVALUE 0.00e+00 OTHER INFORMATION: SWISSEDOT HIT: P57058 EVALUE 1.00e-100
   OTHER INFORMATION: SWISSPROT HIT: P57058, EVALUE 1.00e-109
   OTHER INFORMATION: EST_HUMAN HIT: BF529471.1, EVALUE 0.00e+00
us-10-029-386-20693
                     9.6%; Score 484.2; DB 16; Length 675; 83.6%; Pred. No. 3.9e-127;
 Query Match
 Best Local Similarity
 Matches 549; Conservative
                             0; Mismatches 108;
                                                 Indels
                                                          0:
                                                             Gaps
                                                                    0:
        1556 AGATTCCTTCGTCTGCCGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTC 1615
Qy
            18 AGATTCCTTTGGCTGCCGCAATATTTTCCGCAAAACCTCAGATTCCAATTGTGTGGCTTC 77
Db
       .1616 TTCTTCCATGGAATTCATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACT 1675
Qy
            78 TTCTTCCATGGAGTTCATCCCCGTGCCACCGCCCAGGACCCCGAGGATTGTGAAGAAACC 137
Db
        1676 AGAGCCACCAACCAGGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCT 1735
Qy
             138 GGÁGCCCCATCAGCCÁGGGCCCGGÁÁGCACTGGCÁTCCCCCACAÁGGÁÁGÁCCCCCTGAT 197
Db
        1736 GCTGGATATGGTACGCTCCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTC 1795
Qy
            198 GCTGGÁCÁTGGTGCGCTCCTTCGÁGTCTGTGGÁTCGCGÁCGACCÁCGTÁGAAGTGCTGTC 257
Db
        1796 CCCTTCTCACCATTATAGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAG 1855
Qy
             258 TCCCTCTCATCACTACAGGATTCTGAACTCCCCGGTCAGCTTGGCTCGCAGAAATTCCAG 317
Db
        1856 TGAGAGGACACTCTCCCAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACT 1915
Qy
             318 CGAGAGGACGCTGTCCCCGGGTCTGCCATCCGGAAGCATGTCGCCTCTCCATACTCCTTT 377
Db
        Qy
             Db
Qy
        1976 TGTGTGTTCACCGCCTCCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAA 2035
              438 CCTGTGTTGCCCACCTCCGGTTCCCAGCAATGGCCCCATGCAGCCTCTGGGGAGCCCCAA 497
Db
        2036 CTGTGTGAAGAGCAGGGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCG 2095
Qy
             498 TTGTGTGAAAAGCCGAGGCCGGTTCCCTATGATGGGCATCGGACAGATGTTAAGGAAGCG 557
Db
        2096 GCACCAGAGCCTGCAGCCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCA 2155
Qy
             Db
         558 CCATCAGAGTCTGCAGCCATCTGCAGATAGGCCCCTGGAGGCCAGCCTGCCCCCACTGCA 617
```

us-10-032-256a-1.rnpb

Qy	2156 GCCCATAGCCCCCTCCAGCCTCTCCTTTGACATGGCCGACGGTGTCAAGGGCCAGTG 2212
•	.
Db	618 GCCCTAGCCCTGTGAACCTTGCCTTTGACATGGCCGATGGGGTCAAGACCCAGTG 674

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: April 19, 2005, 23:17:42; Search time 14801 Seconds

(without alignments)

12920.403 Million cell updates/sec

Title: US-10-032-256A-1

Perfect score: 5024

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched: 34239544 segs, 19032134700 residues

Total number of hits satisfying chosen parameters: 68479088

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : EST:*

1: gb_est1:*

2: gb_est2:*

3: gb_htc:*

4: gb est3:*

5: gb est4:*

6: gb_est5:*

7: gb_est6:*

8: gb_gss1:*

9: gb gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

R	esult		% Query							
	No.	Score	Match	Length	DB 	ID	Description			
	1	785.2	15.6	791	5	BU056886	BU056886 UI-M-F00-			
	2	783.4	15.6	851	6	CB845007	CB845007 M2PN-0573			
	3	781	15.5	852	5	BQ180567	BQ180567 UI-M-EX0-			
	4	779.4	15.5	864	6	CA325070	CA325070 UI-M-FY0-			
	5	770	15.3	771	6	CB249687	CB249687 UI-M-EX0-			
	6	769.4	15.3	775	6	CA316433	CA316433 UI-M-FW0-			
	7	759	15.1	810	6	CB518393	CB518393 UI-M-GH0-			
	8	753.2	15.0	805	7	CF729648	CF729648 UI-M-HD0-			

	9	748	14.9	760	7	CK635586	CK635586	UI-M-HNO-
	10	737	14.7	768	5	BQ770004		UI-M-FIO-
	11	732.8	14.6	736	6	CB245694	CB245694	UI-M-FY0-
	12	725.2	14.4	730	7	CO432726	CO432726	UI-M-HXO-
	13	723	14.4	735	6	CA328675	CA328675	UI-M-FY0-
	14	721.6	14.4	809	4	BI456696	BI456696	603172171
	15	714.6	14.2	746	7	CN457776	CN457776	UI-M-HNO-
	16	712.4	14.2	715	7	CN531867	CN531867	UI-M-HQ0-
	17	711.2	14.2	724	6	CD351138	CD351138	UI-M-FY0-
	18	703.4	14.0	716	7	CN456014	CN456014	UI-M-HNO-
	19	703	14.0	703	7	CF733065	CF733065	UI-M-HB0-
	20	700.6	13.9	708	5	BM945579	BM945579	UI-M-EMO-
	21	699.4	13.9	732	7.	CO429800	CO429800	UI-M-HXO-
	22	698.4	13.9	770	6	CB526563	CB526563	UI-M-FY0-
	23	692.4	13.8	717	6	BY741170	BY741170	BY741170
	24	684	13.6	684	5	BQ444125	BQ444125	UI-M-EXO-
	25	683	13.6	862	6	CB204649	CB204649	AGENCOURT
	26	681.4	13.6	684	7	CF741692	CF741692	UI-M-HB0-
	27	679.4	13.5	693	5	BQ442075	BQ442075	UI-M-EXO-
	28	678.8	13.5	682	7	CN694047	CN694047	E0345C04-
	29	677.6	13.5	721	5	BU609323 ·	BU609323	UI-M-FR0-
	30	661	13.2	945	2	BF577874	BF577874	602092184
C	31	654.8	13.0	676	7	CO043684		UI-M-EXO-
	32	653.4	13.0	658	7	CN526322		UI-M-HNO-
	33	652.4	13.0	701	6	CB058030	CB058030	NISC_js11
	34	650.6	12.9	757	6	CA511170	CA511170	UI-R-FJ0-
	35	644	12.8	760	2	BF163408		601771773
	36	639.4	12.7	642	7	CF739350	CF739350	UI-M-HD0-
	37	634.6	12.6	952	5	BU504020		AGENCOURT
	38	634.4	12.6	636	7	CF901214		A0325D06-
	39	625.2	12.4	630	7	CO434600		UI-M-HX0-
	40	624.8	12.4	639	7	CF734578		UI-M-HB0-
	41	624.6	12.4	688	5	BU613918		UI-M-FR0-
	42	617.4	12.3	678	7	CF734744		UI-M-HBO-
	43	614.4	12.2	616	7	CN702563		E0463H09-
	44	604	12.0	898	4	BI731620		603353048
	45	602	12.0	647	7	CN532251	CN532251	UI-M-HQ0-

ALIGNMENTS

```
BU056886
            BU056886
LOCUS
                                     791 bp
                                               mRNA
                                                       linear
                                                                EST 26-AUG-2002
DEFINITION
           UI-M-F00-bzz-h-14-0-UI.rl NIH BMAP F00 Mus musculus cDNA clone
            IMAGE: 6412861 5', mRNA sequence.
ACCESSION
            BU056886
VERSION
            BU056886.1 GI:22496963
            EST.
KEYWORDS
SOURCE
            Mus musculus (house mouse)
  ORGANISM Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
REFERENCE
            1 (bases 1 to 791)
 AUTHORS
            NIH-MGC http://mgc.nci.nih.gov/.
  TITLE
            National Institutes of Health, Mammalian Gene Collection (MGC)
```

RESULT 1

```
JOURNAL
           Unpublished (1999)
COMMENT
           Contact: Robert Strausberg, Ph.D.
           Email: cgapbs-r@mail.nih.gov
           Tissue Procurement: Dr. Jim Lin, University of Iowa
            cDNA Library preparation: Dr. M. Bento Soares, University of Iowa
            cDNA Library Arrayed by: Dr. M. Bento Soares, University of Iowa
            DNA Sequencing by: Dr. M. Bento Soares, University of Iowa
            Clone Distribution: MGC clone distribution information can be
           found through the I.M.A.G.E. Consortium/LLNL at:
           http://image.llnl.gov
            This clone was contributed by the Brain Molecular Anatomy Project
           (BMAP)
           Seq primer: pYX-5.
FEATURES
                   Location/Qualifiers
    source
                   1. .791
                   /organism="Mus musculus"
                   /mol type="mRNA"
                   /strain="C57BL/6"
                   /db xref="taxon:10090"
                   /clone="IMAGE: 6412861"
                   /tissue type="whole brain"
                   /dev stage="embryo 12.5dpc"
                   /lab host="DH10B (T1 phage resistant)"
                   /clone lib="NIH BMAP FOO"
                   /note="Organ: Brain; Vector: pYX- Asc; Site_1: EcoR I;
                   Site 2: Not I; The library was constructed according
                   Bonaldo, Lennon and Soares, Genome Research, 6:791-806,
                   1996. Denatured RNA was size fractionated on a 1% agarose
                   gel. First strand cDNA synthesis was primed with oligo-dT
                   primer containing a Not I site. Double strand cDNA was
                   size selected according to mRNA size fraction, ligated
                   with EcoR I adaptor, digested with NotI and then cloned
                   directionally into pYX-Asc vector. The library tag
                   sequence located between the Not I site and the polyA tail
                   is TGAGAGACC. This library was created for the University
                   Iowa Brain Anatomy Project (BMAP): 'Gene Discovery in the
                   Developing Mouse Nervous System', supported by National
                   Institute of Mental Health (NIMH), Hemin Chin, Ph.D.,
                   program coordinator."
ORIGIN
                        15.6%; Score 785.2; DB 5;
 Query Match
                                                   Length 791;
                        99.5%; Pred. No. 1.3e-176;
 Best Local Similarity
                              0; Mismatches
                                                            0; Gaps
 Matches 787; Conservative
                                               4:
                                                   Indels
                                                                        0;
         509 CAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAAGCCGAGGCCCGCAGATA 568
Qy
             1 CAACCTCATGCACAAGATCTACGAAAAGAACGGTTGGATGAAGCCGAGGCCCGCAGATA 60
Db
         569 CATCCGGCAACTCATCTCTGCGGTGGAACACCTGCACCGTGCGGGGGTGGTTCACAGAGA 628
Qу
             Db
          61 CATCCGGCAACTCATCTCTGCGGTGGAACACCTGCACCGTGCGGGGGTGGTTCACAGAGA 120
         629 CTTGAAGATAGAGAATTTGCTACTAGATGAAGACAATAATATCAAGCTGATTGACTTTGG 688
Qу
             121 CTTGAAGATAGAGAATTTGCTACTAGATGAAGACAATAATATCAAGCTGATTGACTTTGG 180
```

Db

QУ	689	CTTGAGCAACTGTGCAGGGATCCTAGGTTACTCGGATCCATTCAGCACACAGTGTGGCAG	748
Db	181	CTTGAGCAACTGTGCAGGGATCCTAGGTTACTCGGATCCATTCAGCACACAGTGTGGCAG	240
Qу	749	CCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATATGGCCCCAAAATTGATGT	808
Db	241	CCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATATGGCCCCAAAATTGATGT	300
Qу	809	CTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACCCTACCTTTCACTGTGGA	868
Db	301	CTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACCCTACCTTTCACTGTGGA	360
Qу	. 869	GCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAAGCAATGAATCCCCTGCC	
Db	361	GCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAAGCAATGAATCCCCTGCC	
Qу	929	GACCCAGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCTCGGAACCAGACCCTGT	988
Db	421	GACCCAGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCTCC	480
Qу	. 989	GAAGAGGCCGAATATCCAGCAAGCGCTGGCGAATCGCTGGTTGAATGAGAATTACACTGG	1048
Db	481	GAAGAGCCGAATATCCAGCAAGCGCTGGCGAATCGCTGGTTGAATGAGAATTACACTGG	540
Qу	1049	AAAGGTGCCCTGCAATGTCACCTATCCCAACAGGATTTCTTTGGAAGACCTGAGTCCCAG	1108
Db	541	AAAGGTGCCCTGCAATGTCACCTATCCCAACAGGATTTCTTTGGAAGACCTGAGTCNCAG	600
Qу	1109	CGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGTGACGTCATCAACACGGT	1168
Db	601	CGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGTGACGTCATCAACACGGT	660
Qу	1169	GCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTCCTGTTGAACAAGAAACTTGA	1228
Db	. 661	GCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTCCTGGTTGACAAGAAACTTGA	720
Qу	1229	GCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGCATCTGCTACAAGACCCAGCTCTA	1288
Db	721	GCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGCATCTGCTACAAGACCCAGCTCTA	780
Qу	1289	CCAGATAGAGA 1299	
Db	781	CCAGATAGAGA 791	

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame plus n2p model Run on: April 20, 2005, 09:58:04; Search time 312 Seconds (without alignments) 12455.668 Million cell updates/sec Title: US-10-032-256A-1 Perfect score: 9026 . Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0, Fgapext 7.0 Delop 6.0 , Delext 2105692 segs, 386760381 residues Searched: Total number of hits satisfying chosen parameters: 4211384 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+ n2p.model -DEV=xlh Q=/cgn2 1/USPTO spool/US10032256/runat 19042005 181218 13540/app query.fasta 1.5 -DB=A Geneseq 16Dec04 -QFMT=fastan -SUFFIX=n2p.rag -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10032256 @CGN 1 1 366 @runat 19042005 181218 13540 -NCPU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 A Geneseq 16Dec04:* Database : 1: geneseqp1980s:* 2: geneseqp1990s:* 3: geneseqp2000s:* 4: geneseqp2001s:* 5: geneseqp2002s:* 6: geneseqp2003as:*

Pred. No. is the number of results predicted by chance to have a

7: geneseqp2003bs:* geneseqp2004s:*

8:

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		8				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
	2722	41 2	714		77020754	20754 Control
1	3722 3476	41.2 38.5	714 714	6 4	AAO29754 AAB65633	Aao29754 Centrosom
2 3			714	8	ADI29240	Aab65633 Novel pro Adi29240 Human MAR
	3476	38.5	218	4		
4	983	10.9	218	4	AAM13906	Aam13906 Peptide #
5 6	983	10.9	218	4	AAM14403	· Aam14403 Peptide #
	983	10.9			ABB32851	Abb32851 Peptide #
7	983	10.9	218	4 4	ABB33351 AAM26312	Abb33351 Peptide #
8	983	10.9	218			Aam26312 Peptide #
9	983	10.9	218	4	AAM26816	Aam26816 Peptide #
10	983	10.9	218	4	ABB27681	Abb27681 Human pep
11	983	10.9	218	4	ABB28176	Abb28176 Human pep
12	983	10.9	218	4	ABB18811	Abb18811 Protein #
.13	983	10.9	218	4	ABB18333	Abb18333 Protein #
14	983	10.9	218	4	AAM66037	Aam66037 Human bon
15	983	10.9	218	4	AAM66530	Aam66530 Human bon
16	983	10.9	218	4	AAM53654	Aam53654 Human bra
17	983	10.9	218	4	AAM54137	Aam54137 Human bra
18	983	10.9	218	4	ABG47703	Abg47703 Human liv
19	983	10.9	218	4	ABG48198	Abg48198 Human liv
20	983	10.9	218	4	AAM01649	Aam01649 Peptide #
21	983	10.9	218	4	AAM02130	Aam02130 Peptide #
22	983	10.9	218	5	ABG36182	Abg36182 Human pep
23	983	10.9	218	5	ABG35685	Abg35685 Human pep
24	761	8.4	157	4	AAM99769	Aam99769 Human exc
25	761	8.4	157	4	AAU17272	Aau17272 Novel sig
26	761	8.4	157	4	AAU87152	Aau87152 Novel cen
27	761	8.4	157	4	AAU87469	Aau87469 Novel cen
28	761	8.4	157	4	AAM42584	Aam42584 Human kid
29	761	8.4	157	7	ADB93980	Adb93980 Human nov
30	761	8.4	157	8	ADI54784	Adi54784 Novel hum
31	761	8.4	157	8	ADI54467	Adi54467 Novel hum
32	651	7.2	744	5	AAE19049	Aae19049 Human PAR
33	651	7.2	761	6	ABP96068	Abp96068 Human pro
34	649.5	7.2	729	2	AAW37158	Aaw37158 Human Twe
35	649.5	7.2	729	4	AAB65628	Aab65628 Novel pro
36	649.5	7.2	729			Aae33552 Human mic
37	649.5	7.2	729	7.		Adc34765 Human C-T
38	649.5	7.2	729	7	ADG91724	Adg91724 Human mic
39	649.5	7.2	729	8	ADI29234	Adi29234 Human MAR
40	.649.5	7.2	729	8	ADI29438	Adi29438 Human MAR
41	646.5	7.2	795	5	AAE19052	Aae19052 Human PAR
42	646.5	7.2	795	5	AAE16258	Aael6258 Human kin
43	646.5	7.2	795	6	AAE33551	Aae33551 Human mic
44	646.5	7.2	795	7	ADG91723	Adg91723 Human mic
45	646.5	7.2	795	8	ADQ88278	Adq88278 Human 138

```
RESULT 1
AA029754
ID
     AAO29754 standard; protein; 714 AA.
XX
AC
     AA029754;
XX
DT
     27-AUG-2003 (first entry)
XX
DE
     Centrosome-associated kinase Mak V (K91R) mutant protein.
XX
KW
     Centrosome-associated kinase; cell cycle progression; therapy; enzyme;
KW
     cytostatic; Mak V; gene; mutant; mutein.
XX
os
     Unidentified.
XX
FH
                     Location/Qualifiers
     Key
FT
     Misc-difference 91
                     /note= "Wild-type Lys is substituted with Arg"
FT
XX
     WO2003038078-A2.
PN
XX
     08-MAY-2003.
PD
XX
PF
     31-OCT-2002; 2002WO-GB004940.
XX
PR
     02-NOV-2001; 2001GB-00026415.
XX
     (UYWA-) UNIV WARWICK.
·PA
XX
PΙ
     Stott D, Seung-Woon S, Craig GM;
XX
DR
     WPI; 2003-441358/41.
     N-PSDB; AAL60327.
DR
XX
     New centrosome-associated kinase with decreased or no kinase activity,
PT
     useful for identifying inhibitors or activators of cell cycle
PΤ
PT
     progression, for use in manufacturing a treatment for uncontrolled cell
PT
     cycle progression.
XX
     Claim 2; Page 14-16; 23pp; English.
PS
XX
CC
     The invention relates to centrosome-associated kinase with decreased or
     no kinase activity useful for identifying inhibitors or activators of
CC
CC
     cell cycle progression. The invention is useful for identifying an
CC
     inhibitor or activator of cell cycle progression, which is useful in
     manufacturing a medicament for treating uncontrolled cell cycle
CC
     progression. The present sequence is centrosome-associated kinase Mak V
CC
CC
     mutant protein
XX
SQ
     Sequence 714 AA;
Alignment Scores:
Pred. No.:
                                                       714
                         3.29e-297
                                        Length:
                                        Matches:
                                                       713
                         3722.00
Score:
                                        Conservative:
Percent Similarity:
                         100.00%
                                                       1
                                        Mismatches:
                                                       0
Best Local Similarity: 99.86%
                                        Indels:
Query Match:
                         41.24%
```

DB: 6 Gaps: 0

US-10-032-256A-1 (1-5024) x AAO29754 (1-714)

QУ	72	ATGCCGGCAGCGGGGGACGGGCTCTTGGGCGAGCCGGCGCACCGGGGGGCGATGGA	131
Db	1	MetProAlaAlaGlyAspGlyLeuLeuGlyGluProAlaAlaProGlyGlyAspGly	20
Qу	132	GGCGCGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCCTGCCCGCCTGG	191
Db	21	GlyAlaGluAspThrThrArgProAlaAlaAlaCysGluGlySerPheLeuProAlaTrp	40
Qу	192	GTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGCGCGTGGGCAAC	251
Db	41	ValSerGlyValSerArgGluArgLeuArgAspPheGlnHisHisLysArgValGlyAsn	60
Qу	252	TACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGCGCGAGGGGCTG	311
Db	61	TyrLeuIleGlySerArgLysLeuGlyGluGlySerPheAlaLysValArgGluGlyLeu	80.
Qу	312	CACGTGCTGACGGGAGAAAGGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAA	371
Db	81	HisValLeuThrGlyGluLysValAlaIleArgValIleAspLysLysArgAlaLysLys	100
Qу	372	GACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGCAGATCCAGCAGATGATCCGACAC	431
Ďр	101	AspThrTyrValThrLysAsnLeuArgArgGluGlyGlnIleGlnGlnMetIleArgHis	120
Qу	432	CCCAACATCACAGGCTCCTGGACATCTTGGAGACAGAGAACAGCTACTACCTGGTCATG	491
Db	121	ProAsnIleThrGlnLeuLeuAspIleLeuGluThrGluAsnSerTyrTyrLeuValMet	140
Qу	492	GAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAA	551
Db	141	GluLeuCysProGlyGlyAsnLeuMetHisLysIleTyrGluLysLysArgLeuAspGlu	160
QУ	552	GCCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACCTGCACCGTGCG	611
Db	161	AlaGluAlaArgArgTyrIleArgGlnLeuIleSerAlaValGluHisLeuHisArgAla	180
Qу	612	GGGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAGACAATAATATC	671
Db	181	GlyValValHisArgAspLeuLysIleGluAsnLeuLeuLeuAspGluAspAsnAsnIle	200
Qy	672	AAGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACTCGGATCCATTC	731
Db	201	LysLeuIleAspPheGlyLeuSerAsnCysAlaGlyIleLeuGlyTyrSerAspProPhe	220
Qу	732	AGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATAT	791
Db	221	SerThrGlnCysGlySerProAlaTyrAlaAlaProGluLeuLeuAlaArgLysLysTyr	240
Qу	792	GGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACC	851
Db	241	GlyProLysIleAspValTrpSerIleGlyValAsnMetTyrAlaMetLeuThrGlyThr	260
Qу	852	CTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGATGGTGGACAAA	911

Db	261		280
Qу	912	GCAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCTC	971
Db	281		300
QУ	972	CTGGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGAATCGCTGGTTG	1031
Db	301		320
Qy	1032	AATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACAGGATTTCTTTG	1091
Db	321		340
Qу	1092	GAAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGT	1151
Db	341		360
Qу	1152	GACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTCCTG	1211
Db	361		380
Qy	1212	TTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGCATCTGC	1271
Db	381	LeuAsnLysLysLeuGluArgTyrLeuSerGlyLysSerAspIleGlnAspSerIleCys	400
Qу	1272	TACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGCCCTATGAGGCC	1331
Db	401		420
Qу	1332	TCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATAAAAAGCCCAAA	1391
Db	421	SerLeuAspThrTrpThrArgAspPheGluPheHisAlaValGlnAspLysLysProLys	440
Qу	1392	GAACAAGAAAAAAGAGGTGATTTTCTCCACCGTCCGTTTTCCAAGAAGTTGGACAAGAAC	1451
Db	441	GluGlnGluLysArgGlyAspPheLeuHisArgProPheSerLysLysLeuAspLysAsn	460
Qу	1452	CTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGAGTACCAAAGCC	1511
Db	461	LeuProSerHisLysGlnProSerProSerLeuIleThrGlnLeuGlnSerThrLysAla	480
Qy	1512	CTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATTCCTTCGTCTGC	1571
Db	481	LeuLeuLysAspArgLysAlaSerLysSerGlyPheProAspLysAspSerPheValCys	500
Qу	1572	CGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCCATGGAATTC	1631
Db	501		520
Qу	1632	ATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGCCACCAACCA	1691
Db	521		540
Qу	1692	GGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGGATATGGTACGC	1751

.

•

מע	541	GIYPROGIYSERALASERITELEUPROLYSGIUGIUPROLEULEULEUASPMETVALARG	560
Qy	1752	TCCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTTCTCACCATTAT	1811
Db	561	SerPheGluSerValAspArgGluAspHisIleGluLeuLeuSerProSerHisHisTyr	580
Qy	1812	AGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGAGGACACTCTCC	1871
Db .	581	ArgIleLeuSerSerProValSerLeuAlaArgArgAsnSerSerGluArgThrLeuSer	600
Qy	1872	CAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATTCCACGCTGGTC	1931
Db	601		620
Qу	1932	TCTTTTGCCCACGAAGAAAGAACAGCCCCCCGAAAGAGGGGGGTGTGTTCACCGCCT	1991
Db	621		640
Qу	1992	CCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTGTGAAGAGCAGG	2051
Db	641		660
Qу	2052	GGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACCAGAGCCTGCAG	2111
Db .	661		680
Qу	2112	CCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCATAGCCCCCTCC	2171
Db	681		700
Qy	2172	AGCCTCTCCTTTGACATGGCCGACGGTGTCAAGGGCCAGTGT 2213	
Db	701		

.

•

.

.

us-10-032-256a-1.n2p.rapb

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model April 20, 2005, 16:33:04; Search time 268.5 Seconds Run on: (without alignments)
12438.215 Million cell updates/sec US-10-032-256A-1 Title: Perfect score: 9026 Sequence: Scoring table: BLOSUM62 Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext 7.0 7.0 Delop 6.0 , Delext searched: 1421835 segs, 332370683 residues Total number of hits satisfying chosen parameters: 2843670 Minimum DB seq length: 0
Maximum DB seq length: 2000000000 Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Command line parameters: -MODEL=frame+_n2p.model -DEV=xlh -Q=/cgn2_1/USPTO_spoo1/US10032256/runat_19042005_181221_13651/app_query.fasta_1.5191 -DB=Published_Applications_AA -QFMT=fastan -SUFFIX=n2p.rapb -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10032256_@CGN_1_1_361_@runat_19042005_181221_13651 -NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100
-LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7 Published_Applications_AA:* Database : /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US06_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:* /cgn2_6/ptodata/1/pubpaa/USU/_NEW_PUB.pep."
/cgn2_6/ptodata/1/pubpaa/PCTUS_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09A_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09A_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09B_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:* 8: 10: 11: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:* 12: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:* 13: /cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10D_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:* 14: **15:** 16:

us-10-032-256a-1.n2p.rapb
18: /cgn2_6/ptodata/1/pubpaa/US11_NEW_PUB.pep:*
19: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*
20: /cgn2_6/ptodata/1/pubpaa/US60_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		%			30111711123	
Result		Query				
No.	Score		Length	DR	ID	Description
1	983	10.9	218	9	US-09-864-761-33631	Sequence 33631, A
5	983	10.9	218	Š	us-09-864-761-34109	Sequence 34109, A
- -	761	8.4	157	9	US-09-764-868-837	Sequence 837, App
ă	761	8.4	157	11	us-09-764-875-670	Sequence 670, App
Ś	761	8.4	157	11	us-09-764-875-987	Sequence 987, App
2 3 4 5 6	761	8.4	157	15	us-10-242-355-506	Sequence 506, App
ž	651	7.2	744	9	us-09-919-585-3	Sequence 3, Appli
8	649.5	7.2	729	14	US-10-142-356-11	Sequence 11, Appl
ğ	649.5	7.2	729	14	US-10-195-101-33	Sequence 33, Appl
10	649.5	7.2	729	14	US-10-161-565-26	Sequence 26, Appl
11	648	7.2	825	15	US-10-425-114-54516	Sequence 54516, A
12	646.5	7.2	795	. 9	US-09-919-585-12	Sequence 12, Appl
1 <u>3</u>	646.5	7.2	795	14	US-10-142-356-9	Sequence 9, Appli
$\overline{14}$	646.5	7.2	795	14	US-10-161-565-25	Sequence 25, Appl
15	646.5	7.2	795	15	US-10-311-034-4	Sequence 4, Appli
16	646.5	7.2	795	17	us-10-753-267-120	Sequence 120, App
17	644.5	7.1	793	14	US-10-195-101-32	Sequence 32, Appl
18	642.5	7.1	769	15	US-10-363-616-403	Sequence 403, App
19	640	7.1	752	9	US-09-835-081-2	Sequence 2, Appli
20	640	7.1	752	15	US-10-258-106-16	Sequence 16, Appl
21	640	7.1	752	15	us-10-276-645-7	Sequence 7, Appli
22	639.5	7.1	779	8	US-08-817-832B-31	Sequence 31, Appl
23	639.5	7.1	779	15	us-10-440-435-31	Sequence 31, Appl
24	638.5	7.1	787	16	US-10-618-941-76	Sequence 76, Appl
25	638	7.1	745	14	US-10-195-101-36	Sequence 36, App]
26	638	7.1	745	14	us-10-161-565-24	Sequence 24, Appl
27	638	7.1	745	15	us-10-260-708-79	Sequence 79, Appl
28	637.5	7.1	713	14	us-10-161-565-27	Sequence 27, Appl
29	636	7.0	724	15	US-10-276-645-5	Sequence 5, Appli
30	636	7.0	752	16	US-10-618-941-79	Sequence 79, Appl
31	634.5	7.0	698	15	US-10-016-248-22	Sequence 22, Appl
32	633	7.0	744	9	US-09-835-081-4	Sequence 4, Appli
33	632.5	7.0	688	15	US-10-276-645-8	Sequence 8, Appli
34	629.5	7.0	660	15	US-10-276-645-6	Sequence 6, Appli
35	626.5	6.9	703	15	US-10-016-248-70	Sequence 70, Appl
36	624.5	6.9	688	14	US-10-161-565-28 US-10-161-565-29	Sequence 28, Appl
37	624.5 624	6.9 6.9	688 722	14 8	US-08-817-832B-32	Sequence 29, Appl Sequence 32, Appl
38	624	6.9	722	15	US-10-440-435-32	Sequence 32, Appl
39 40	624 624	6.9	776	15	US-10-440-433-32 US-10-366-288-6	Sequence 6, Appli
40	623	6.9	667	15	US-10-300-288-0 US-10-016-248-74	Sequence 74, Appl
42	623	6.9	722	15	US-10-010-248-74 US-10-274-194-4	Sequence 4, Appli
43	623	6.9	722	16	US-10-274-134-4 US-10-760-407-4	Sequence 4, Appli
44	622	6.9	724	9	US-09-919-585-9	Sequence 9, Appli
45	621.5	6.9	691	9	US-09-919-585-6	Sequence 6, Appli
7.7	021.3	0.5	031	,	00 00 010 000	sequence of Appin

```
us-10-032-256a-1.n2p.rapb
us-09-864-761-33631
 Sequence 33631, Application US/09864761
  Patent No. US20020048763A1
  GENERAL INFORMATION:
  APPLICANT: Penn, Sharron G.
APPLICANT: Rank, David R.
                Hanzel, David K.
   APPLICANT:
   APPLICANT:
                Chen, Wensheng
   TITLE OF INVENTION: HUMAN GENOME-DERIVED SINGLE EXON NUCLEIC ACID PROBES USEFUL
FOR
   TITLE OF INVENTION: GENE EXPRESSION ANALYSIS BY MICROARRAY
   FILE REFERENCE: Aeomica-X-1
   CURRENT APPLICATION NUMBER: US/09/864,761
   CURRENT FILING DATE:
                           2001-05-23
   PRIOR APPLICATION NUMBER: US 60/180,312
   PRIOR FILING DATE: 2000-02-04
   PRIOR APPLICATION NUMBER: US 60/207,456
   PRIOR FILING DATE: 2000-05-26
   PRIOR APPLICATION NUMBER: US 09/632,366
   PRIOR FILING DATE: 2000-08-03
   PRIOR APPLICATION NUMBER: GB 24263.6
   PRIOR FILING DATE: 2000-10-04
   PRIOR APPLICATION NUMBER: US 60/236,359
   PRIOR FILING DATE: 2000-09-27
   PRIOR APPLICATION NUMBER: PCT/US01/00666
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00667
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00664
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00669
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00665 PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00668
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00663
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00662
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00661
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: PCT/US01/00670
   PRIOR FILING DATE: 2001-01-30
   PRIOR APPLICATION NUMBER: US 60/234,687
   PRIOR FILING DATE: 2000-09-21
   PRIOR APPLICATION NUMBER: US 09/608,408
   PRIOR FILING DATE: 2000-06-30
   PRIOR APPLICATION NUMBER: US 09/774,203
   PRIOR FILING DATE: 2001-01-29
   NUMBER OF SEQ ID NOS: 49117
   SOFTWARE: Annomax Sequence Listing Engine vers. 1.1
  SEQ ID NO 33631
LENGTH: 218
    TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
    OTHER INFORMATION: MAP TO APO00260.1
    OTHER INFORMATION: EXPRESSED IN BT474, SIGNAL = 3.2
    OTHER INFORMATION: EXPRESSED IN HELA, SIGNAL = 3.8
OTHER INFORMATION: EXPRESSED IN ADULT LIVER, SIGNAL = 3.3
OTHER INFORMATION: EXPRESSED IN BRAIN, SIGNAL = 5
OTHER INFORMATION: EXPRESSED IN PLACENTA, SIGNAL = 4.1
```

```
us-10-032-256a-1.n2p.rapb
   OTHER INFORMATION: EXPRESSED IN BONE MARROW, SIGNAL = 4.9
   OTHER INFORMATION: EXPRESSED IN HBL100, SIGNAL = 3.8
   OTHER INFORMATION: EXPRESSED IN FETAL LIVER, SIGNAL = 3.8
OTHER INFORMATION: EXPRESSED IN LUNG, SIGNAL = 5.4
OTHER INFORMATION: EXPRESSED IN HEART, SIGNAL = 4.2
OTHER INFORMATION: EXPRESSED IN HEART, SIGNAL = 4.2
OTHER INFORMATION: EXPRESSED IN HEART, SIGNAL = 4.2
   OTHER INFORMATION: SWISSPROT HIT: P08461, EVALUE 1.00e+00
   OTHER INFORMATION: EST_HUMAN HIT: BF529471.1, EVALUE 2.00e-87
ÚS-09-864-761-33631
Alignment Scores:
                   1.51e-56
                                            218
Pred. No.:
                                Length:
                   983.00
                                            184
Score:
                                Matches:
                   92.20%
                                            17
Percent Similarity:
                                Conservative:
Best Local Similarity:
                   84.40%
                                Mismatches:
                                            17
                   10.89%
                                Indels:
                                            0
Query Match:
                                            0
                                Gaps:
us-10-032-256A-1 (1-5024) x us-09-864-761-33631 (1-218)
       1560 TCCTTCGTCTGCCGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCT 1619
Qy
                  1 SerPheGlyCysArgAsnIlePheArgLysThrSerAspSerAsnCysValAlaSerSer 20
Db
       1620 TCCATGGAATTCATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAG 1679
Qy
         Db
       1680 CCACACCAACCAGGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTG 1739
Qу
                                           111
         41 ProHisGlnProGlyProGlySerThrGlyIleProHisLySGluAspProLeuMetLeu 60
Db
       Qy
Db
       1800 TCTCACCATTATAGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAG 1859
Qy
           81 SerHisHisTyrArgIleLeuAsnSerProValSerLeuAlaArgArgAsnSerSerGlu 100
Db
       1860 AGGACACTCTCCCAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCAT 1919
Qy
        Db
       1920 TCCACGCTGGTCTCTTTTGCCCACGAAGAAAAGAACAGCCCCCCGAAAGAGAGGGTGTG 1979
Qy
              121 ProthrLeuvalserPheAlaHisGluAspLysAsnSerProProLysGluGluGlyLeu 140
Db
       1980 TGTTCACCGCCTCCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGT 2039
Qy
           141 CysCysProProProValProSerAsnGlyProMetGlnProLeuGlySerProAsnCys 160
Db
       2040 GTGAAGAGCAGGGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCAC 2099
Qy
        Db
       2100 CAGAGCCTGCAGCCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCC 2159
Qy
            181 GlnSerLeuGlnProSerAlaAspArgProLeuGluAlaSerLeuProProLeuGlnPro 200
Db
       Qy
Db
```

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame plus n2p model

Run on: April 20, 2005, 15:00:38; Search time 77.5 Seconds

(without alignments)

12474.659 Million cell updates/sec

Title: US-10-032-256A-1

Perfect score: 9026

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

Searched: 283416 segs, 96216763 residues

Total number of hits satisfying chosen parameters: 566832

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+ n2p.model -DEV=xlh

Q=/cgn2_1/USPTO_spool/US10032256/runat_19042005_181219_13561/app_query.fasta_1.5

-DB=PIR 79 -QFMT=fastan -SUFFIX=n2p.rpr -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0

-UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45

-DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -THR MIN=0 -ALIGN=15 -MODE=LOCAL

-OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000

-USER=US10032256 @CGN 1 1 124 @runat 19042005 181219 13561 -NCPU=6 -ICPU=3

-NO MMAP -LARGEQUERY -NEG SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG

-DEV TIMEOUT=120 -WARN TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6

-FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database: PIR 79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

No. Score	_ ,		8				
1 640 7.1 745 2 G01025 serine/threonine p 2 637.5 7.1 713 2 S27966 probable serine/th 3 601.5 6.7 1192 Z 178611 probable serine/th 4 600 6.6 774 2 148609 probable serine/th 5 594.5 6.6 1246 2 G89287 protein H39E23.1 [6 594 6.6 726 Z T33998 hypothetical prote 8 591.5 6.6 891 Z 740503 protein kinase kin 9 589.5 6.5 891 Z A38903 protein kinase kin 10 574 6.4 504 Z T10449 probable serine/th 11 573.5 6.4 798 Z JC7500 qik protein kinase 1 - 12 565 6.3 512 Z T52633 serine/threonine-s 13 564.5 6.3 651 Z T52633 serine/threonine-s 14 562.5 6.2 1398 Z T13741 hypothetical prote 15 554 6.1 511 A56009 serine/threonine-s 16 548.5 6.1 633 I A26030 serine/threonine-s 17 547 6.1 453 Z G86141 protein T25K16.13 18 545.5 6.0 622 I S44859 serine/threonine-s 19 543.5 6.0 502 Z T7415 probable serine/th 20 543.5 6.0 512 I JC1446 serine/threonine-s 21 543 6.0 552 I A53621 [hydroxymethylglut 22 542 6.0 552 I A53621 [hydroxymethylglut 24 540.5 6.0 576 Z T50259 probable serine/th 24 540.5 6.0 576 Z T50259 probable serine/th 25 535 5.9 602 Z T50259 probable serine/th 26 531.5 5.9 445 Z T50490 serine/threonine-s 27 533 5.9 1147 Z S64930 serine/threonine-s 28 531.5 5.9 445 Z T50802 serine/threonine-s 29 531 5.9 510 Z T04145 serine/th 30 527.5 5.8 441 Z G84667 probable serine/th 31 527.5 5.8 441 Z G84667 probable serine/th 32 525 5.8 473 I S59941 serine/threonine-s 33 527.5 5.8 441 Z G84667 probable serine/th 34 525 5.8 512 Z T07788 probable serine/th 35 517.5 5.7 440 Z T10415 probable serine/th 36 515.5 5.7 5.8 441 Z G84667 probable serine/th 37 514.5 5.7 489 Z T09903 serine/threonine-s 38 515.5 5.7 5.8 441 Z G84667 probable serine/th 39 510.5 5.7 421 Z E96522 hypothetical prote 39 510.5 5.7 421 Z E96522 hypothetical prote 40 510.5 5.7 421 Z E96522 hypothetical prote 40 510.5 5.7 421 Z E96522 hypothetical prote 40 510.5 5.7 421 Z E96522 hypothetical protein kinase AK2 40 510.5 5.6 402 Z T14736 probable serine/th 40 510.5 5.7 421 Z E96522 hypothetical prote 40 505.5 5.6 440 Z T14736 probable serine/th				Length	DB	מז	Description
2 637.5 7.1 713 2 S27966 probable serine/th 3 601.5 6.7 1192 2 T18611 probable serine/th 4 600 6.6 774 2 I48609 probable serine/th 5 594.5 6.6 1246 2 689287 protein H39g23.1 [6 594 6.6 726 2 T33998 hypothetical prote 8 591.5 6.6 891 2 T40503 protein Kinase ling 5 594.5 6.5 891 2 A38903 protein kinase ling 5 594.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.5 891 2 A38903 protein kinase ling 5 595.5 6.4 798 2 JC7500 qik protein chic 5 595.5 6.2 1398 2 T13741 hypothetical prote 5 595.5 6.0 622 1 S4859 serine/threonine-s 5 595.5 6.0 622 1 S4859 serine/threonine-s 1 5 543.5 6.0 622 1 S4859 serine/threonine-s 1 5 543.5 6.0 622 1 S4859 serine/threonine-s 1 5 543.5 6.0 512 1 JC1446 serine/th 5 543.5 6.0 512 1 JC1446 serine/th 5 543.5 6.0 512 1 JC1446 serine/threonine-s 1 5 543.5 5.9 602 2 T07415 probable serine/th 1 5 545.5 5.9 602 2 T07415 probable serine/th 1 5 545.5 5.9 5.9 602 2 T07415 probable serine/th 1 5 545.5 5.9 5.9 602 2 T07415 probable serine/th 1 5 545.5 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9							
3 601.5 6.7 1192 2 T18611 probable serine/th 4 600 6.6 774 2 148609 probable serine/th 5 594.5 6.6 1246 2 G89287 protein H39E23.1 [6 594 6.6 726 2 T33998 hypothetical prote 7 592 6.6 562 2 T29858 hypothetical prote 8 591.5 6.6 891 2 T40503 protein kinase kin 9 589.5 6.5 891 2 A38903 protein kinase kin 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein - chic 12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 502 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 535 5.9 602 2 S72513 FOG2 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 probable serine/th 27 533 5.9 1147 2 S64930 serine/threonine- y 28 531.5 5.9 445 2 T0903 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 28 531.5 5.9 445 2 T0903 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 20 531 5.9 5.8 441 2 C84667 probable serine/th 21 527.5 5.8 441 2 T09903 serine/threonine p 22 525 5.8 473 1 S59941 serine/threonine-s 23 525 5.8 473 1 S59941 serine/threonine-s 24 508.5 5.6 502 1 A4361 serine/threonine-s 25 503.5 5.7 440 2 T14735 probable serine/th 26 515.5 5.7 513 1 S60303 serine/threonine-s 27 533 5.9 147 2 S64930 serine/threonine-s 28 531.5 5.7 5.8 441 2 C84667 probable serine/th 29 531 5.9 5.0 502 1 A4361 serine/threonine-s 20 525 5.8 473 1 S59941 serine/threonine-s 21 543 55.5 5				745		G01025	serine/threonine p
4 600 6.6 774 2 148609 probable serine/th 5 594.5 6.6 1246 2 689287 protein H39E23.1 [6 594 6.6 726 2 T33998 hypothetical prote 8 591.5 6.6 891 2 T40503 protein kinase kin 9 589.5 6.5 891 2 A38903 protein kinase l 1 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein chic serine/th 562.5 6.2 1398 2 T13741 hypothetical prote 1 565 6.3 512 2 T52633 serine/threonine-s 1 564.5 6.2 1398 2 T13741 hypothetical prote 1 554 6.1 511 1 A56009 serine/threonine-s 1 548.5 6.1 633 1 A26030 serine/threonine-s 1 548.5 6.1 633 1 A26030 serine/threonine-s 1 547 6.1 453 2 G86141 protein T25K16.13 1 S43.5 6.0 504 2 T07415 probable serine/threonine-s 1 543.5 6.0 504 2 T07415 probable serine/threonine-s 1 543.5 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/threonine-s 25 535 5.9 602 2 T50259 probable serine/threonine-s 26 533.5 5.9 602 2 T50259 probable serine/threonine-s 27 533 5.9 114 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 20 545 5.8 441 2 C84667 probable serine/threonine-s 20 55 5.8 441 2 C84667 probable serine/threonine-s 20 55 5.8 441 2 C84667 probable serine/threonine-s 20 55 5.5 5.8 441 2 C84667 probable serine/threonine-s 20 55 5.8 512 2 T07788 probable serine/threonine-s 20 55 5.8 512 2 T07788 probable serine/threonine-s 20 55 5.8 512 2 T07788 probable serine/threonine-s 20 55 5.5 5.7 513 1 S60303 serine/threonine-s 20 55 5.5 5.7 513 1 S60303 serine/threonine-s 20 55 5.5 5.6 540 2 T44361 serine/threonine-s 20 55 5.5 5.6 540 2 T44361 serine/threonine-s 20 55 5.6 540 2 T44361 serine/threonine-s 20 55 5.6	;	2 637.5					probable serine/th
5 594.5 6.6 1246 2 G89287 protein H39E23.1 [6 594 6.6 726 2 T33998 hypothetical prote 7 592 6.6 562 2 T29858 hypothetical prote 8 591.5 6.6 891 2 T40503 protein kinase kin 9 589.5 6.5 891 2 A38903 protein kinase lin 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein - chic 12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69E3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S4859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 504 2 T07415 probable serine/th 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T09903 serine/threonine-s 29 531 5.9 5.0 2 T07415 serine/threonine-s 28 531.5 5.9 445 2 T09903 serine/threonine-s 29 531 5.9 5.0 2 T07415 probable serine/th 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 449 2 T09903 serine/threonine-s 38 517.5 5.7 449 2 T09903 serine/threonine-s 39 510.5 5.7 421 2 T49820 probable serine/th 39 510.5 5.7 421 2 T49820 probable serine/th 30 515.5 5.7 421 2 T49820 probable serine/th 30 515.5 5.7 421 2 T49820 probable serine/th 31 509.5 5.6 440 2 T14736 probable serine/th 32 505.5 5.6 440 2 T14736 probable serine/th 33 505.5 5.6 442 2 B90100 SNF1-related kinase							probable serine/th
6 594 6.6 726 2 T33998 hypothetical prote 7 592 6.6 562 2 T29858 hypothetical prote 8 591.5 6.6 891 2 T40503 protein kinase kin 9 589.5 6.5 891 2 A38903 protein kinase 1 - 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein - chic serine/th 12 565 6.3 512 2 T52633 serine/threonine-s 565 6.3 512 2 T52633 serine/threonine-s 566 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 548.5 6.1 6.3 31 A26030 serine/threonine-s 16 548.5 6.1 6.3 31 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 552 1 A53621 hydroxymethylglut 22 542 6.0 552 1 A53621 hydroxymethylglut 22 542 6.0 552 1 A53621 hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 28 531.5 5.9 445 2 T09903 serine/threonine-s 28 531.5 5.9 5.9 445 2 T09903 serine/threonine-s 28 531.5 5.7 449 2 T04145 serine/threonine-s 28 531.5 5.7 531 1 S60303 serine/threonine-s 29 531 5.9 530 2 T04145 serine/threonine-s 27 533 5.9 530 2 T04145 serine/threonine-s 28 531.5 5.7 449 2 T0462 protein kinase - m 27 27 27 27 27 27 27 27 27 27 27 27 27			6.6		2	148609	probable serine/th
7 592 6.6 562 2 T29858 hypothetical prote 8 591.5 6.6 891 2 T40503 protein kinase kin 9 589.5 6.5 891 2 A38903 protein kinase kin 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein chic serine/th 11 573.5 6.4 798 2 JC7500 qik protein chic 12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/threonine-s 17 547 6.0 512 1 JC1446 serine/threonine-s 17 543 6.0 552 1 A53621 [hydroxymethylglut 122 542 6.0 552 1 A53621 [hydroxymethylglut 123 541 6.0 480 2 A86427 probable serine/threonine-s 18 540.5 6.0 576 2 T41587 probable serine/th 124 540.5 6.0 576 2 T41587 probable serine/th 125 535 5.9 672 2 T50259 probable serine/th 126 533.5 5.9 672 2 T50259 probable serine/th 126 533.5 5.9 672 2 T50259 probable serine/th 126 533.5 5.9 672 2 T50259 probable serine/th 127 533 5.9 1147 2 S64930 serine/threonine-s 18 531.5 5.9 445 2 T09903 serine/threonine-s 18 531.5 5.9 445 2 T09903 serine/threonine-s 18 531.5 5.9 445 2 T09903 serine/threonine-s 18 527.5 5.8 441 2 C84667 probable serine/th 18 525 5.8 473 1 S59941 serine/threonine-s 18 531.5 5.7 440 2 T14735 probable serine/th 18 525 5.8 481 2 I49072 protein kinase - m 18 505.5 5.7 421 2 T44202 protein kinase - m 18 505.5 5.7 421 2 T44361 probable serine/th 18 505.5 5.7 421 2 T44361 probable serine/th 18 505.5 5.7 421 2 T44361 probable serine/th 18 505.5 5.6 472 2 B90100 SNF-related protein kinase AK2 hypothetical protein kinase AK2					2	G89287	protein H39E23.1 [
8 591.5 6.6 891 2 T40503 protein kinase kin 9 589.5 6.5 891 2 A38903 protein kinase 1 - 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein - chic serine/threonine-s 565 6.3 512 2 T52633 serine/threonine-s 565 6.3 512 2 T52633 serine/threonine-s 564.5 6.3 651 2 S52244 p695g3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 548.5 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S48859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/threonine-s 21 543 6.0 504 2 T07415 probable serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 535 5.9 672 2 T50259 probable serine/threonine-s 25 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 21 55.8 441 2 C84667 probable serine/threonine-s 21 55.5 5.8 441 2 C84667 probable serine/threonine-s 25 5.8 535 5.9 510 2 T04145 serine/threonine-s 25 535 5.9 510 2 T04145 serine/threonine-s 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T09903 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 21 525 5.8 481 2 I49072 protein kinase - m 24 525 5.8 512 2 T07788 probable serine/threonine-s 24 545 55.5 5.7 513 1 S60303 serine/threonine-s 25 5.8 512 2 T07788 probable serine/threonine-s 27 514.5 5.7 421 2 T48202 protein kinase - m 2704ble serine/threonine-s 27 514.5 5.7 421 2 T48202 protein kinase - M2 508.5 5.6 440 2 T14736 probable serine/threonine-s 27 508.5 5.6 440 2 T14736 probable serine/threonine-s 27 508.5 5.6 440 2 T14736 probable serine/th 44 508.5 5.6 472 2 B90100 SNF-related prote 44 505.5 5.6 505 505 505 505 505 505 505 505 5			6.6			т33998	hypothetical prote
9 589.5 6.5 891 2 A38903 protein kinase 1 - 10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein chic 12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 512 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein yea 31 527.5 5.8 441 2 C84667 probable serine/th 32 525 5.8 512 2 T07788 probable serine/th 33 517.5 5.7 440 2 T14735 probable serine/th 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 421 2 T4802 protein kinase - m 37 514.5 5.7 440 2 T14735 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 40 505.5 5.6 440 2 T14736 probable serine/th 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase							
10 574 6.4 504 2 T10449 probable serine/th 11 573.5 6.4 798 2 JC7500 qik protein - chic 12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 504 2 T07415 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-p 29 531 5.9 510 2 T04145 serine/threonine-p 30 529 5.9 445 2 T50802 serine/threonine-p 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 T49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T09903 serine/threonine-s 38 510.5 5.7 480 2 T04145 serine/threonine-s 39 510.5 5.7 480 2 T04145 serine/threonine-s 31 527.5 5.8 481 2 T49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 protein kinase - m 38 513 5.7 887 2 T20941 hypothetical prote 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.6 440 2 T14736 probable serine/th 41 509.5 5.6 440 2 T14736 probable serine/th							
11 573.5 6.4 798 2 JC7500 qik protein - chic 12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69Bg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 502 1 JC1446 serine/threonine-s 19 543.5 6.0 502 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 24 540.5 6.0 576 2 T405259 probable serine/th 25 533.5 5.9 602 2 S72513 FOG2 protein - yea 25 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 21 525 5.8 441 2 C84667 probable protein k 25 5.8 481 2 T49972 probable serine/threonine-s 27 533 5.9 510 2 T04145 serine/threonine-s 28 51.5 5.8 441 2 C84667 probable protein k 32 525 5.8 481 2 T49972 protein kinase - m 24 525 5.8 51.5 5.7 489 2 T04862 probable serine/threonine-s 27 513 51.5 5.7 489 2 T04862 probable serine/threonine-s 28 515.5 5.7 513 1 S60303 serine/threonine-s 28 515.5 5.7 489 2 T04862 probable serine/th 38 510.5 5.7 421 2 T48202 protein kinase - m 24 508.5 5.6 440 2 T14735 probable serine/th 38 510.5 5.7 421 2 T48202 protein kinase - m 24 508.5 5.6 502 1 A41361 serine/threonine-s 24 508.5 5.6 502 1 A41361 serine/threonine-s 24 508.5 5.6 502 1 A41361 serine/threonine-s 24 508.5 5.6 440 2 T14736 probable serine/th 2508.5 5.6 440 2 T14736 p							=
12 565 6.3 512 2 T52633 serine/threonine-s 13 564.5 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G66141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 504 2 T07415 probable serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 533.5 5.9 602 2 S72513 probable serine/th 26 533.5 5.9 602 2 S72513 probable serine/th 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein kinase - m 34 525 5.8 481 2 I49072 protein kinase - m 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 40 510.5 5.7 421 2 E96522 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 472 2 B90100 SNF-related kinase							<u>-</u>
13 564.5 6.3 651 2 S52244 p69Eg3 protein - A 14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 512 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 481 2 I49072 protein kinase - m 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase - M 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 472 2 B90100 SNF-related kinase							
14 562.5 6.2 1398 2 T13741 hypothetical prote 15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 34 525 5.8 512 2 T07788 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/th 43 508.5 6.6 502 1 A41361 serine/th 43 508.5 6.6 502 1 A41361 serine/th 43 508.5 6.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508.5 5.6 440 2 T14736 probable serine/th 44 505.5 5.6 472 2 B90100 SNF-related kinase							
15 554 6.1 511 1 A56009 serine/threonine-s 16 548.5 6.1 6.3 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 512 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 A53621 [hydroxymethylglut 23 541 6.0 480 2 A866427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 149072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 472 2 B90100 SNF-related kinase							
16 548.5 6.1 633 1 A26030 serine/threonine-s 17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/threonine-s 21 543 6.0 512 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A66427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 572513 F062 protein - yea 27							
17 547 6.1 453 2 G86141 protein T25K16.13 18 545.5 6.0 622 1 S44859 serine/threonine-s 19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 512 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable serine/th 26 533.5 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-s 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T094862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase							
18 545.5 6.0 622 1 S44859 19 543.5 6.0 504 2 T07415 20 543.5 6.0 504 2 T07415 21 543 6.0 552 1 JC1446 22 542 6.0 552 1 A53621 23 541 6.0 480 2 A86427 24 540.5 6.0 576 2 T41587 25 535 5.9 672 2 T50259 27 533 5.9 672 2 T50259 27 533 5.9 1147 2 S64930 28 531.5 5.9 445 2 T50802 29 531 5.9 510 2 T04145 30 529 5.9 445 2 T509903 31 527.5 5.8 441 2 C84667 32 525 5.8 473 1 S59941 33 525 5.8 481 2 I49072 34 525 5.8 512 2 T07788 35 517.5 5.7 440 2 T14735 35 510.5 5.7 421 2 E96522 40 510.5 5.7 421 2 E96522 41 505.5 5.8 505 506 746 2 S62365 42 505.5 5.6 472 2 B90100 SNF-related kinase							
19 543.5 6.0 504 2 T07415 probable serine/th 20 543.5 6.0 512 1 JC1446 serine/threonine-s 21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable carbon ca 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 41 509.5 5.6 440 2 T14736 probable serine/th 29 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 440 2 T14736 probable serine/th 25 508.5 5.6 440 2 T14736 probable serine/							
20 543.5 6.0 512 1 JC1446 21 543 6.0 552 1 A53621 [hydroxymethylglut							
21 543 6.0 552 1 A53621 [hydroxymethylglut 22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable carbon ca 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 440 2 T14736 probable serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/threonine-s 508.5 5.6 440 2 T14736 probable serine/threonin							The state of the s
22 542 6.0 552 1 S51025 [hydroxymethylglut 23 541 6.0 480 2 A86427 probable serine/th 24 540.5 6.0 576 2 T41587 probable carbon ca 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 441 2 C84667 probable protein kinase - m 34 525 5.8 481 2 149072 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th							
23 541 6.0 480 2 A86427 probable serime/th 24 540.5 6.0 576 2 T41587 probable carbon ca 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine-p 29 531 5.9 510 2 T04145 serine/threonine-p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 471 2 S59941 serine/threonine-s 33 525 5.8 481 2 1749072 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
24 540.5 6.0 576 2 T41587 probable carbon ca 25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 E96522 hypothetical prote 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase							
25 535 5.9 672 2 T50259 probable serine/th 26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine-p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.6 502 1 A41361 serine/th 41 509.5 5.6 502 1 A41361 serine/th 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase 44 505.5 5.6 472 2 B90100 SNF-related kinase							
26 533.5 5.9 602 2 S72513 FOG2 protein - yea 27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase 444 505.5 5.6 472 2 B90100 SNF-related kinase							_
27 533 5.9 1147 2 S64930 serine/threonine-s 28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase							
28 531.5 5.9 445 2 T50802 serine/threonine p 29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase							
29 531 5.9 510 2 T04145 serine/threonine p 30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
30 529 5.9 445 2 T09903 serine/threonine-s 31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 E96522 hypothetical prote 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s <							-
31 527.5 5.8 441 2 C84667 probable protein k 32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							-
32 525 5.8 473 1 S59941 serine/threonine-s 33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related kinase <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
33 525 5.8 481 2 I49072 protein kinase - m 34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
34 525 5.8 512 2 T07788 probable serine/th 35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
35 517.5 5.7 440 2 T14735 probable serine/th 36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
36 515.5 5.7 513 1 S60303 serine/threonine-s 37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
37 514.5 5.7 489 2 T04862 probable serine/th 38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
38 513 5.7 887 2 T20941 hypothetical prote 39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
39 510.5 5.7 421 2 T48202 protein kinase AK2 40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
40 510.5 5.7 421 2 E96522 hypothetical prote 41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
41 509.5 5.6 502 1 A41361 serine/threonine-s 42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
42 508.5 5.6 440 2 T14736 probable serine/th 43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
43 508 5.6 746 2 S62365 SNF1-related prote 44 505.5 5.6 472 2 B90100 SNF-related kinase							
44 505.5 5.6 472 2 B90100 SNF-related kinase							SNF1-related prote
45 503 5.6 469 2 B84644 probable protein k	4		5.6	472	2	B90100	SNF-related kinase
	4	5 503	5.6	469	2	B84644	probable protein k

RESULT 1

G01025 serine/threonine protein kinase - human C; Species: Homo sapiens (man)

```
C;Date: 21-Dec-1996 #sequence revision 06-Jun-1997 #text change 16-Aug-2004
C; Accession: G01025
R; Navarro, E.
submitted to the EMBL Data Library, April 1996
A: Reference number: H00564
A; Accession: G01025
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-745 <NAV>
A; Cross-references: UNIPROT:Q15524; UNIPROT:Q96HB3; EMBL:X97630; NID:g1310674
C; Superfamily: protein kinase homology
F;18-271/Domain: protein kinase homology <KIN>
Alignment Scores:
Pred. No.:
                       1.57e-19
                                      Length:
                                                     745
                       640.00
                                      Matches:
                                                     195
Score:
Percent Similarity:
                       46.21%
                                      Conservative:
                                                     122
                                                     225
Best Local Similarity:
                       28.43%
                                      Mismatches:
Query Match:
                       7.09%
                                      Indels:
                                                     144
                                                     28
DB:
                                      Gaps:
US-10-032-256A-1 (1-5024) x G01025 (1-745)
          222 GACTTCCAGCACCACAAGCGCGTGGGCAACTACCTCATCGGCAGCAGGAAGCTGGGAGAG 281
Qу
                         - 111
                                  :::||||||
                                                :::
                                                          :::
           12 AspGluGlnProHis-----IleGlyAsnTyrArgLeu---LeuLysThrIleGlyLys 28
Db
          282 GGCTCCTTCGCCAAGGTGCGCGAGGGGCTGCACGTGCTGACGGGAGAAAAGGTAGCTATC 341
Qу
              | | | | : : : | | | | | | | | | | | | : : : : : : | | | | | | | | : : :
           29 GlyAsnPheAlaLysValLysLeuAlaArgHisIleLeuThrGlyLysGluValAlaVal 48
Db
          342 AAGGTCATCGATAAGAAAAGAGCCAAGAAAGACACCTACGTCACCAAAAACCTGCGTCGA 401
Qу
              111:::111111111
                              :::
                                              :::
Db
           49 LysIleIleAspLysThrGlnLeuAsnSerSerSer-----LeuGlnLysLeuPheArg 66
          402 GAGGGGCAGATCCAGCAGATGATCCGACACCCCAACATCACACAGCTCCTGGACATCTTG 461
Qy
                           . . . . . . . . .
                                        :::|||
                    :::111
           67 GluValArqIleMetLysValLeuAsnHisProAsnIleValLysLeuPheGluValIle 86
Db
          462 GAGACAGAACAGCTACTACCTGGTCATGGAGCTGTGTCCTGGTGGCAACCTCATGCAC 521
Qy
              11111111
                         :::
                                111111
           87 \  \, \textbf{GluThrGluLysThrLeuTyrLeuValMetGluTyrAlaSerGlyGlyGluValPheAsp} \  \, 106
Db
          522 AAGATCTACGAAAAGAAACGGTTGGATGAAGCCGAGGCCCGCAGATACATCCGGCAACTC 581
Qу
                                111:::
                                       111
                                              111111:::
                 :::
          107 TyrLeuValAlaHisGlyArgMetLysGluLysGluAlaArgAlaLysPheArgGlnIle 126
Db
          582 ATCTCTGCGGTGGAACACCTGCACCGTGCGGGGGTGGTTCACAGAGACTTGAAGATAGAG 641
Qу
              :::||||||||||||
                                             127 ValSerAlaValGlnTyrCysHisGlnLysPheIleValHisArgAspLeuLysAlaGlu 146
Db
          642 AATTTGCTACTAGATGAAGACAATAATATCAAGCTGATTGACTTTGGCTTGAGCAACTGT 701
Qy
                               111
                                     111111111:::
                                                   147 AsnLeuLeuLeuAspAlaAspMetAsnIleLysIleAlaAspPheGlyPheSerAsn--- 165
Db
          702 GCAGGGATCCTAGGTTACTCGGATCCATTCAGCACACAGTGTGGCAGCCCTGCCTATGCT 761
Qy
```

::: :::

4 1 1 1 1 1 1 1 1 1 1 1

 \mathbf{I}

Db	166	GluPheThrPheGlyAsnLysLeuAspThrPheCysGlySerProProTyrAla	183	
Qу	762	GCGCCAGAACTGCTTGCCAGGAAGAATATGGCCCCAAAATTGATGTCTGGTCAATA	818	
Db	184		203	
Qу	819	GGCGTGAACATGTATGCCATGCTGACGGGGACCCTACCTTTCACTGTGGAGCCTTTCAGC	878	
Db	204	::: ::::::: ::: ::: ::: GlyValIleLeuTyrThrLeuValSerGlySerLeuProPheAspGlyGlnAsn	221	
Qу	879	CTGAGGGCTCTGTATCAGAAGATGGTGGACAAAGCAATGAATCCCCTGCCGACCCAGCTC	938	
Db	222	LeuLysGluLeuArgGluArgValLeuArgGlyLysTyrArgIleProPheTyrMet	240	
Qу	939	TCCACAGGGGCCGTCAACTTTCTGCGCTCCCTCCTGGAACCAGACCCTGTGAAGAGGCCG	998	
Db	241	SerThrAspCysGluAsnLeuLeuLysLysPheLeuIleLeuAsnProSerLysArgGly	260	
Qу	999	AATATCCAGCAAGCGCTGGCGAATCGCTGGTTGAATGAGAATTACACTGGAAAGGTGCCC ::::: ::: ::: :::	1058	
Db	261	ThrLeuGluGlnIleMetLysAspArgTrpMetAsnValGlyHisGluAsp	277	
Qy .	1059	TGCAATGTCACCTATCCCAACAGGATTTCTTTGGAAGACCTGAGTCCCAGCGTGGTG	1115	
Db	278	AspGluLeuLysProTyrValGluPro	286	
Qу	1116	CTGCACATGACTGAAAAGCTGGGCTATAAGAAC ::: ::	1148	
Db	287	${\tt LeuProAspTyrLysAspProArgArgThrGluLeuMetValSerMetGlyTyrThrArg}$	306	
Qу	1149	AGTGACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTC ::::::	1208	
Db	307	${\tt GluGluIleGlnAspSerLeuValGlyGlnArgTyrAsnGluValMetAlaThrTyrLeu}$	326	
Qy .		CTGTTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGC		
Db	327	LeuLeuGlyTyrLysSerSerGluLeuGluGlyAspThr	339	
Qу		ATCTGCTACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGCCCTAT		
Db	340	IleThrLeuLysProArgPro	346	
Qу	1326	GAGGCCTCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAG	1376	
Db	347	${\tt SerAlaAspLeuThrAsnSerSerAlaGlnPheProSerHisLysValGlnArgSerVal}$	366	
Qу	1377	GATAAAAAGCCCAAAGAACAAGAAAAAAGAGGTGATTTTCTCCAC	1421	
Db	367	${\tt SerAlaAsnProLysGlnArgArgPheSerAspGlnAlaGlyProAlaIleProThrSer}$	386	
Qу	1422	CGTCCGTTTTCCAAGAAGTTGGACAAGAACCTGCCTTCTCACAAACAGCCATCGCCCTCG ::: :::	1481	
Db	387	AsnSerTyrSerLysLysThrGlnSerAsnAsnAlaGluAsnLysArgProGlu	404	
Qу	1482	CTGATCACACAGCTCCAGAGTACCAAAGCCCTGCTCAAAGACAGGAAGGCCTCCAAGTCA ::: :::::: :::	1541	
Db	405	GluAspArgGluSerGlyArgLys	412	

Qy 1542	${\tt GGCTTCCCCGACAAAGATTCCTTCGTCTGCCGCAATCTTTTCCGAAAAACCTCTGATTCC}$	1601
Db 412		412
Qy 1602	AATTGTGTGGCTTCTTCCATGGAATTCATCCCTGTCCCACCTCCCAGGACACCAAGG	1661
Db 413	ValProAlaSerProLeuProGly	426
. Qy 1662	ATTGTAAAGAAACTAGAGCCACCAACCAGGGCCGGGAAGTGCCAGCATCCTC::::::: :::	1715
Db 427	LeuGluArgLysLysThrThrProThrProSerThrAsnSerValLeuSerThr	444
Qy 1716	CCCAAGGAAGAGCCCCTGCTGCTGGATATGGTACGCTCCTTTGAGTCT	1763
Db 445	SerThrAsnArgSerArgAsnSerProLeuLeuGluArgAlaSerLeuGlyGlnAlaSer	464
Qy 1764	GTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTTCTCACCATTATAGGATCCTG ::: :: ::: :::	1820
Db 465	$Ile {\tt GlnAsnGlyLysAspSerLeuThrMetProGlySerArgAlaSerThrAlaSerAla}$	484
Qy 1821	AGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGAGGACACTCTCCCAGGGGCTG	1880
Db 485	SerAlaGlyValSerAlaAlaArgProArgGlnHisGlnLysSer	499
Qy 1881	CTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATTCCACGCTGGTCTCTTTTGCC :::	1940
Db 500	MetSerGlySerValHisPro	506
Qy 1941	CACGAAGAAAAGAACAGCCCCCGAAAGAGGGGGGTGTGTTCACCGCCTCCCGTTCCC ::::::	2000
Db 507	AsnLysAlaSerGlyLeuProProThrGluSerAsnCysGluValProArgProSer	525
Qy 2001	AGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTGTGAAGAGCAGGGGA	2054
Db 526	Thr Ala ProGln Arg Val ProVal Ala Ser ProSer Ala His Asn Ile Ser Ser Gly	545
. Qy 2055	CGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACCAGAGCCTGCAGCCT	2114
Db 546	-GlyAlaPro-AspArgThrAsnPheProArgGlyValSerSerArgSerThrP	563
Qy 2115	TCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCATA	2162
Db 563	heHisAlaGlyGlnLeuArgGlnValArgAspGlnGlnAsnLeuProTyrGlyValT	582
Qy 2163	GCCCCTCCAGCCT 2176 ::	
Db 582	hrProAlaSerPro 586	

.

us-10-032-256a-1.n2p.rup

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - protein search, using frame_plus_n2p model

April 20, 2005, 10:10:28; Search time 394 Seconds Run on:

(without alignments)

13059.319 Million cell updates/sec

Title: US-10-032-256A-1

Perfect score: 9026

Sequence:

Scoring table: BLOSUM62

Xgapop 10.0 , Xgapext 0.5 Ygapop 10.0 , Ygapext 0.5 Fgapop 6.0 , Fgapext 7.0 Delop 6.0 , Delext 7.0

1612378 seas, 512079187 residues Searched:

Total number of hits satisfying chosen parameters: 3224756

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Command line parameters:

-MODEL=frame+_n2p.model -DEV=xlh

-Q=/cgn2_1/USPTO_spoo1/US10032256/runat_19042005_181219_13547/app_query.fasta_1.5191

-DB=UniProt_03 -QFMT=fastan -SUFFIX=n2p.rup -MINMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -OUTFMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=2000000000 -USER=US10032256_@CGN_1_1_477_@runat_19042005_181219_13547 -NCPU=6 -ICPU=3 -NO_MMAP -LARGEQUERY -NEG_SCORES=0 -WAIT -DSPBLOCK=100 -LONGLOG -DEV_TIMEOUT=120 -WARN_TIMEOUT=30 -THREADS=1 -XGAPOP=10 -XGAPEXT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

UniProt_03:* Database:

> 1: uniprot_sprot:* uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	3720	41.2	714	1	HUNK_MOUSE	O88866 mus musculu
2	3482	38.6	714	2	Q68UT7	Q68ut7 pan troglod
3	3476	38.5	714	1	HUNK_HUMAN	P57058 homo sapien
4	2222.5	24.6	691	2	Q6VZ18	Q6vz18 xenopus lae
5	2004	22.2	626	2	Q6VZ17	Q6vz17 xenopus lae

```
us-10-032-256a-1.n2p.rup
                            279
792
771
                 14.2
7.7
7.2
                                                                           Q68ut6 pan troglod
Q6int7 xenopus lae
Q69zi7 mus musculu
        1284
                                        Q68UT6
         691
                                        06INT7
 8
         648
                                        Q69ZI7
                   7.2
                             795
752
793
752
 9
                                       Q9P0L2
                                                                           Q9p012 homo sapien
       646.5
                                       Q8CIP4
10
         646
                                                                           Q8cip4 mus musculu
11
       644.5
                   7.1
                                       008678
                                                                           008678 rattus norv
12
         640
                   7.1
                                       MRK4_HUMAN
                                                                           Q96134 homo sapien
13
                             745
         638
                   7.1
                                        Q15524
                                                                           Q15524 homo sapien
                   7.0
7.0
7.0
14
                             797
         636
                                        Q8VHF0
                                                                           Q8vhf0 rattus norv
                                        Q9JKE4
                                                                           Q9jke4 mus musculu
Q9jke5 mus musculu
Q8ng37 homo sapien
Q8vhj5 mus musculu
15
                             729
         634
         633
16
                             744
                                       Q9JKE5
17
                   7.0
                             752
         632
                                       Q8NG37
                                   222221
18
         632
                   7.0
                             795
                                       Q8VHJ5
                             888
778
19
         631
                   7.0
                                        Q8BR95
                                                                           Q8br95 mus musculu
20
         629
                   7.0
                                        Q96HB3
                                                                           Q96hb3 homo sapien
21
                             755
722
       628.5
                   7.0
                                       Q7KZI7
                                                                           Q7kzi7 homo sapien
                   7.0
7.0
22
23
24
25
26
27
         628
                                       Q6PDR4
                                                                           Q6pdr4 mus musculu
         628
627
                            780
776
                                                                           Q804t1 xenopus lae
                                        Q804T1
                                                                           P27448 homo sapien
                                       MRK3_HUMAN
                   6.9
      625.5
625.5
                   6.9
                             942
                                                                           Q8mvw9 haemonchus
                                       Q8MVW9
                   6.9
                           1066
                                        08MVX0
                                                                           Q8mvx0 haemonchus
                   6.9
                             722
                                        008679
         623
                                                                           008679 rattus norv
                                                                           Q96rg0 homo sapien
Q7zy17 xenopus lae
Q8qgv3 xenopus lae
Q9y2k2 homo sapien
Q68a18 homo sapien
28
                   6.9
                             691
                                   222222222
       621.5
                                        Q96RG0
         620
29
                   6.9
                             776
                                        Q7ZYL7
                           785
1371
30
         620
                   6.9
                                        Q8QGV3
31
       619.5
                   6.9
                                        Q9Y2K2
32
       618.5
                   6.9
                             719
                                       Q68A18
33
34
35
36
      618.5
617.5
                   6.9
                             993
                                        Q7KRK4
                                                                           Q7krk4 drosophila
                   6.8
                           1098
                                        Q7KRK7
                                                                           Q7krk7 drosophila
                                        Q802W0
                                                                           0802w0 brachydanio
       614.5
                   6.8
                             722
                   6.7
6.7
6.7
                                                                           Q8mvx2 haemonchus
Q804t2 xenopus lae
Q8mvx1 haemonchus
         608
                             966
                                        Q8MVX2
                             725
37
         607
                                        Q804T2
38
       606.5
                             834
                                        Q8MVX1
                                                                           Q17368 caenorhabdi
                   6.7
                           1096
39
         606
                                        Q17368
40
                   6.7
                           1189
                                        06PHV1
                                                                           Q6phv1 brachydanio
         602
41
                   6.7
                                                                           Q17346 caenorhabdi
       601.5
                           1192
                                        Q17346
42
                                   2
                           1192
                                                                           Q9tw45 caenorhabdi
                   6.7
                                        Q9TW45
       601.5
                                   1 2
                                       MRK2_MOUSE
075271
43
         600
                   6.6
                             774
                                                                           Q05512 mus musculu
                                                                           075271 homo sapien
       598.5
44
                             462
                   6.6
45
                           1187
                                                                           Q6nsm8 brachydanio
         598
                   6.6
                                        Q6NSM8
```

```
RESULT 1
HUNK_MOUSE
       HUNK_MOUSE
                              STANDARD;
                                                      PRT;
                                                                714 AA.
ID
       088866;
AC
       16-OCT-2001 (Rel. 40, Created)
16-OCT-2001 (Rel. 40, Last sequence update)
05-JUL-2004 (Rel. 44, Last annotation update)
DT
DT
DT
       Hormonally up-regulated neu tumor-associated kinase (EC 2.7.1.37)
DE
        (Serine/threonine-protein kinase MAK-V).
DE
       Name=Hunk; Synonyms=Makv;
Mus musculus (Mouse).
GN
os
       Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC.
0C
ox
       NCBI_TaxID=10090;
RN
        [1]
       SEQUENCE FROM N.A.
STRAIN=A/SN; TISSUE=Mammary gland;
RP
RC
       MEDLINE=97396592; PubMed=9273061;
Korobko I.V., Kabishev A.A., Kiselev S.L.;
RX
RA
```

```
us-10-032-256a-1.n2p.rup
       "Identification of the new protein kinase specifically transcribed in
RT
       mouse tumors with high metastatic potential.";
RT
      Dokl. Akad. Nauk SSSR 354:554-556(1997).
RL
       [2]
RN
RP
       SEQUENCE FROM N.A.
       STRAIN=FVB; TISSUE=Mammary gland;
RC
      MEDLINE=20130113; PubMed=10662544; DOI=10.1006/geno.1999.6078;
RX
       Gardner H.P., Wertheim G.B.W., Ha S.I., Copeland N.G., Gilbert D.J.,
RA
       Jenkins N.A., Marquis S.T., Chodosh L.A.;
RA
       "Cloning and characterization of Hunk, a novel mammalian SNF1-related
RT
      protein kinase.";
Genomics 63:46-59(2000).
RT
RL
       -!- CATALYTIC ACTIVITY: ATP + a protein = ADP + a phosphoprotein.
CC
       -!- SIMILARITY: Belongs to the Ser/Thr protein kinase family. SNF1
CC
\mathsf{CC}
           subfamily.
CC
       This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
       between the Swiss Institute of Bioinformatics and the EMBL outstation
\mathsf{CC}
      the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC
CC
CC
       or send an email to license@isb-sib.ch).
CC
CC
      EMBL; AF055919; AAC61489.1; -.
EMBL; AF167987; AAF35282.1; -.
HSSP; Q63450; 1A06.
MGD; MGI:1347352; Hunk.
InterPro; IPR011009; Kinase_like.
InterPro; IPR000719; Prot_kinase.
DR
DR
DR
DR
DR
DR
       InterPro; IPR008271; Ser_thr_pkin_AS.
DR
       InterPro; IPR002290; Ser_thr_pkinase.
 DR
      Pfam; PF00069; Pkinase; 1.
ProDom; PD000001; Prot_kinase; 1.
SMART; SM00220; S_TKC; 1.
PROSITE; PS00107; PROTEIN_KINASE_ATP; 1.
PROSITE; PS50011; PROTEIN_KINASE_DOM; 1.
 DR
 DR
 DR
 DR
 DR
       PROSITE; PS00108; PROTEIN_KINASE_ST; 1.
DR
       ATP-binding; Serine/threonine-protein kinase; Transferase.
 KW
                                          Protein kinase.
                       62
                              320
 FT
       DOMAIN
                                          ATP (By similarity). ATP (By similarity).
       NP_BIND
                       68
                               76
 FT
                               91
 FT
       BINDING
                       91
                                          Proton acceptor (By similarity). T -> I (in Ref. 2).
                              186
       ACT_SITE
                     186
 FT
       CONFLICT
                     697
                              697
 FT
                    714 AA; 79602 MW; D35A53E7A8D9BD1F CRC64;
 SQ
       SEQUENCE
 Alignment Scores:
                              2.42e-206
                                                Length:
                                                                   714
 Pred. No.:
                              3720.00
                                                                   713
 Score:
                                                Matches:
                              99.86%
                                                Conservative:
                                                                   0
 Percent Similarity:
                              99.86%
                                                                   1
 Best Local Similarity:
                                                Mismatches:
                              41.21%
                                                Indels:
                                                                   0
 Query Match:
                                                                   0
                                                Gaps:
 DB:
 US-10-032-256A-1 (1-5024) x HUNK_MOUSE (1-714)
              Qy
               Db
             132 GGCGCGGAGACACGACCAGGCCGGCGGCGGCGGCGGGGAAGTTTCCTGCCCGCCTGG 191
 Qy
              . Dp
```

us-10-032-256a-1.n2p.rup

```
Qy
Db
   252 TACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGCGCGAGGGGCTG 311
Qy
    Db
    312 CACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAA 371
Qy
    Db
   Qy
Db
   Qy
Db
    492 GAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAACGGTTGGATGAA 551
Qy
    Db
    Qy
Db
   Qy
Db
    Qy
Db
    732 AGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCAGGAAGAAATAT 791
Qy
    Db
    792 GGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGCTGACGGGGACC 851
Qy
    Db
    Qy
Db
    912 GCAATGAATCCCCTGCCGACCCAGGCTCTCCACAGGGGCCGTCAACTTTCTGCGCTCCCTC 971
Qy
    Db
    972 CTGGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGAATCGCTGGTTG 1031
Qy
    Db
   Qy
Db
   1092 GAAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCTATAAGAACAGT 1151
Qy
```

Db	341	us-10-032-256a-1.n2p.rup GluAspLeuSerProSerValValLeuHisMetThrGluLysLeuGlyTyrLysAsnSer	360
Qy		GACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCATCTACTTCCTG	
Db	361		380
Qy	1212	TTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAGATAGCATCTGC	1271
Db	381	LeuAsnLysLysLeuGluArgTyrLeuSerGlyLysSerAspIleGlnAspSerIleCys	400
Qy	1272	TACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCCCAAGGAGCCCTATGAGGCC	1331
Db	401	TyrLysThrGlnLeuTyrGlnIleGluLysCysArgAlaThrLysGluProTyrGluAla	420
Qy		TCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATAAAAAGCCCAAA	1391
Db	421		440
Qy		GAACAAGAAAAAAGAGGTGATTTTCTCCACCGTCCGTTTTCCAAGAAGTTGGACAAGAAC	
Db		GluGlnGluLysArgGlyAspPheLeuHisArgProPheSerLysLysLeuAspLysAsn	
Qy		CTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGAGTACCAAAGCC	
Db		LeuProSerHisLysGlnProSerProSerLeuIleThrGlnLeuGlnSerThrLysAla	
Qy		CTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATTCCTTCGTCTGC	
Db		LeuLeuLysAspArgLysAlaSerLysSerGlyPheProAspLysAspSerPheValCys CGCAATCTTTTCCGAAAAACCTCTGATTCCAATTGTGTGGCTTCTTCTCCATGGAATTC	
Qy Db			
Qy		ATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGCCACCAACCA	
Db	521		540
Qy	1692	GGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGGATATGGTACGC	1751
Db	541		560
Qy	1752	TCCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTTCTCACCATTAT	1811
Db	561	SerPheGluSerValAspArgGluAspHisIleGluLeuLeuSerProSerHisHisTyr	580
Qy	1812	AGGATCCTGAGCTCGCCTGTGAGCCTCGTAGGAATTCTAGTGAGAGGACACTCTCC	1871
Dβ	581		600
Qy	1872	CAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATTCCACGCTGGTC	1931
Db	601	ĠlnĠlyLeuLeuserĠlyserThrserProLeuĠlnThrProLeuHisserThrLeuVal	620
Qy	1932	TCTTTTGCCCACGAAGAAAAGAACAGCCCCCCGAAAGAGGGGGGTGTGTTCACCGCCT	1991
Dp	621	serPheAlaHisGluGluLysAsnSerProProLysGluGluGlyValCysSerProPro	640
Qy	1992	CCCGTTCCCAGTAATGGCCTCCTGCAGCCTCTGGGGAGCCCCAACTGTGTGAAGAGCAGG	2051
Db			
Qy	2052	${\tt GGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACCAGAGCCTGCAG}$	2111

		us-10-032-256a-1.n2p.rup	
Db	661	us-10-032-256a-1.n2p.rup	680
Qy	2112	CCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCCATAGCCCCCTCC	2171
Db	681		700
Qy		AGCCTCTCTTTGACATGGCCGACGGTGTCAAGGGCCAGTGT 2213	
Db	701		

us-10-032-256a-1.rni

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

April 19, 2005, 23:19:57; Search time 745 Seconds Run on:

(without alignments) 11034.435 Million cell updates/sec

US-10-032-256A-1 Title:

Perfect score: 5024

Sequence:

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

1202784 seqs, 818138359 residues Searched:

Total number of hits satisfying chosen parameters: 2405568

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: Issued_Patents_NA:*

/cgn2_6/ptodata/1/ina/5A_COMB.seq:*
/cgn2_6/ptodata/1/ina/5A_COMB.seq:*
/cgn2_6/ptodata/1/ina/6A_COMB.seq:*
/cgn2_6/ptodata/1/ina/6B_COMB.seq:*
/cgn2_6/ptodata/1/ina/PCTUS_COMB.seq:*
/cgn2_6/ptodata/1/ina/pcTUS_COMB.seq:* 3: 4:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		%				
Result	5	Query			TD.	Dan aud und au
No.	Score	Match	Length 			Description
1	157.8	3.1	279	4	US-09-621-976-14904	Sequence 14904, A
2	136.6	2.7	2175	4	US-09-984-890-1	Sequence 1, Appli
3	136.6	2.7	2175	4	US-10-274-194-1	Sequence 1, Appli
4	136.6	2.7	2224	4	US-09-949-016-2384	Sequence 2384, Ap
5	136.6	2.7	2224	4	us-09-949-016-2385	Sequence 2385, Ap
6	136.6	. 2.7	2950	4	us-09-949-016-1546	Sequence 1546, Ap
7	136.6	2.7	2950	4	US-09-949-016-1547	Sequence 1547, Ap
8	122.8	2.4	1647	3	US-09-101-146-44	Sequence 44, Appl
9	121.4	2.4	2499	4	us-09-949-016-5704	Sequence 5704, Ap
10	119.8	2.4	2104	3	US-09-313-930-1	Sequence 1, Appli
11	119.8	2.4	2104	4	US-09-023-655-1191	Sequence 1191, Ap
12	114.2	2.3	3609	4	us-09-799-875-6	Sequence 6, Appli
13	114.2	2.3	5983	4	US-09-799-875-4	Sequence 4, Appli
14	110.6	2.2	2274	4	US-09-772-647-3	Sequence 3, Appli
15	108.8	2.2	2899	4	US-09-774-528-112	Sequence 112, App
16	105.4	2.1	1539	4	US-09-633-328B-1	Sequence 1, Appli
17	101.8	2.0	1442	4	US-09-949-016-1590	Sequence 1590, Ap

```
us-10-032-256a-1.rni
                                    1442
                                                                                                   Sequence 1591, Ap
         101.8
                         2.0
                                              4 US-09-949-016-1591
                                              4 US-09-949-016-4303
19
         101.6
                         2.0
                                    1863
                                                                                                   Sequence 4303, Ap
                                                                                                   Sequence 1, Appli
Sequence 3, Appli
Sequence 1004, Ap
Sequence 1, Appli
                                                   US-09-256-465-1
US-09-167-322-3
US-09-023-655-1004
                         2.0
20
         100.4
                                    1599
21
22
23
                         2.0
         100.4
                                    1599
                                    1599
         100.4
         100.4
                                                    US-09-930-181-1
                         2.0
                                    2908
                         2.0
2.0
2.0
24
25
                                                   US-10-003-690-1
           99.4
                                    2980
                                                                                                   Sequence 1, Appli
                                                                                                  Sequence 1, Appin
Sequence 1454, Ap
Sequence 70, Appl
Sequence 138, App
Sequence 1, Appli
Sequence 1206, Appli
                                                   US-09-016-434-1454
                                    1480
           98.2
26
27
           98.2
                                    2181
                                              4 US-09-417-197-70
                         2.0
                                    2184
                                                   US-09-417-197-138
           98.2
                         2.0
2.0
2.0
28
29
30
           98.2
98.2
98.2
                                              2 US-09-212-771-1
3 US-09-091-058-1
                                    2610
                                    2610
                                              4 US-09-023-655-1206
4 US-09-590-740-1
                                    2610
                                                                                                  Sequence 1, Appli
Sequence 1147, Ap
 31
           98.2
                         2.0
                                    2610
 32
33
34
           97.8
                         1.9
                                    2169
                                              4 US-09-016-434-1147
                                                                                                   Sequence 1, Appli
           96.6
                                              4 US-09-691-861A-1
                         1.9
                                    1104
                                                                                                  Sequence 1, Appli
Sequence 26, Appl
                                              2 US-08-459-448A-26
           96.6
                         1.9
                                    4162
                                             2 US-U8-459-448A-26

3 US-08-459-595A-26

3 US-08-459-504B-26

3 US-09-547-422-26

4 US-09-988-462-26

1 US-07-951-715A-26
 35
36
37
38
                                    4162
           96.6
                         1.9
                                    4162
4162
4162
4162
           96.6
                         1.9
                         1.9
           96.6
                         1.9
           96.6
 39
                         1.9
           96.6
                                                                                              Sequence 26, Appl
Sequence 3, Appli
Sequence 28248, A
Sequence 12475, A
Sequence 4, Appli
Sequence 4, Appli
 40
           96.6
                         1.9
                                    4165
                                             4 US-09-691-861A-3
 41
                         1.9
                                    9862
           96.6
                                            4 US-09-270-767-28248
4 US-09-270-767-12475
4 US-09-579-664B-4
4 US-10-355-975A-4
                                    727
1371
 42
           96.4
                         1.9
 43
           96.4
                         1.9
           96.4
                         1.9
                                    2902
 44
           96.4
                         1.9
                                    2902
```

```
RESULT 1
US-09-621-976-14904
; Sequence 14904, Application US/09621976; Patent No. 6639063
GENERAL INFORMATION:
   APPLICANT: Dumas Milne Edwards, J.B.
   APPLICANT: Jobert, S.
APPLICANT: Giordano, J.Y.
TITLE OF INVENTION: ESTs and Encoded Human Proteins.
FILE REFERENCE: GENSET.054PR2
   CURRENT APPLICATION NUMBER: US/09/621,976
CURRENT FILING DATE: 2000-07-21
NUMBER OF SEQ ID NOS: 19335
  SOFTWARE: Patent.pm
SEQ ID NO 14904
LENGTH: 279
     TYPE: DNA
; ORGANISM: Homo sapiens US-09-621-976-14904
  Query Match 3.1%; Score 157.8; DB 4; Length 279; Best Local Similarity 79.3%; Pred. No. 5.5e-32; Matches 226; Conservative 0; Mismatches 52; Indels 7
                                                                          Indels 7; Gaps
                                                                                                          3:
            4731 TTATATGGAAAATGTGGCTATCCTTTTGTTAAGTGCAGAGTGTATTGTCTGTTTGACCCA 4790
Qy
                 Db
            4791 TGACTGTCCTTCATGAATGAGTCTTTGCCTGTGATTCTAGTCAGCCTGTGGCTACTGATG 4850
Qy
```

Db	60	us-10-032-256a-1.rn1 TGACTGTCTTCCTCAGTCTGTGCCTGTGATTCCAGTCACCCTGTAGTTACTGACA 114	4
Qy	4851	GGAA-CGGCCGATCTGTCATCATGTGAAGTCCAGGAGGAAGAATCTATTTTAGTCATACG 490	9
Db	115	GAAATTGACTGGACTGTCATTGTGTGAAGTCTAGGAGGAAATGTCCATTTTAATTGTATG 174	4
Qy	4910	ATTTGGTCATGAGTAAGGACTATATTTATGTCACCACTATTGAATATATGTACTTTTATA 496	59
Db	175	ATTTGGTCATAAGTAAGGACTATATTTATGTCACCATTATTAGATATATGTACTTTT.GTA 234	4
Qy	4970	ATGGCTGTGAAATACACTTTTTCCTCACAAAAAAAAAAA	
Db	235	ATGACTGTGAAATACACTTTTCCCTCACTAAAAAAAAAA	

us-10-032-256a-1.rnpm

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

April 19, 2005, 23:22:33; Search time 17388 Seconds Run on:

(without alignments) 11795.202 Million cell updates/sec

US-10-032-256A-1 Title:

Perfect score: 5024

Sequence:

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

45554873 segs, 20411521753 residues Searched:

Total number of hits satisfying chosen parameters: 91109746

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

33:

Maximum Match 100%

Listing first 45 summaries

Database : Pending_Patents_NA_Main:*

/cgn2_6/ptodata/1/pna/PCTUS1_COMB.seq:* /cgn2_6/ptodata/1/pna/PCTUS2_COMB.seq:* /cgn2_6/ptodata/1/pna/PCTUS_COMB.seq:* /cgn2_6/ptodata/1/pna/US06_COMB.seq:* /cgn2_6/ptodata/1/pna/US07_COMB.seq:* /cgn2_6/ptodata/1/pna/US080_COMB.seq:* /cgn2_6/ptodata/1/pna/US081_COMB.seq:*/cgn2_6/ptodata/1/pna/US082_COMB.seq:* /cgn2_6/ptodata/1/pna/US083_COMB.seq:*
/cgn2_6/ptodata/1/pna/US084_COMB.seq:*
/cgn2_6/ptodata/1/pna/US085_COMB.seq:*
/cgn2_6/ptodata/1/pna/US086_COMB.seq:*
/cgn2_6/ptodata/1/pna/US087_COMB.seq:* 10: 11: 12: 13: /cgn2_6/ptodata/1/pna/US088_COMB.seq:* /cgn2_6/ptodata/1/pna/US089_COMB.seq:* 14: 15: /cgn2_6/ptodata/1/pna/US090_COMB.seq:* 16: /cgn2_6/ptodata/1/pna/US091_COMB.seq:*
/cgn2_6/ptodata/1/pna/US092A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US092B_COMB.seq:*
/cgn2_6/ptodata/1/pna/US093A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US093B_COMB.seq:* 17: 18: 19: 20: 21: /cgn2_6/ptodata/1/pna/US094_COMB.seq:* 22: /cgn2_6/ptodata/1/pna/USU94_COMB.seq:*
/cgn2_6/ptodata/1/pna/USU95B_COMB.seq:*
/cgn2_6/ptodata/1/pna/USU95B_COMB.seq:*
/cgn2_6/ptodata/1/pna/USU95C_COMB.seq:*
/cgn2_6/ptodata/1/pna/USU95A_COMB.seq:*
/cgn2_6/ptodata/1/pna/USU96B_COMB.seq:*
/cgn2_6/ptodata/1/pna/USU96B_COMB.seq:* 23: 24: 25: 26: 27: 28: /cgn2_6/ptodata/1/pna/US096C_COMB.seq:* 29: /cgn2_6/ptodata/1/pna/US096D_COMB.seq:*
/cgn2_6/ptodata/1/pna/US096E_COMB.seq:*
/cgn2_6/ptodata/1/pna/US097A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US097B_COMB.seq:* 30: 31:

```
us-10-032-256a-1.rnpm
       /cgn2_6/ptodata/1/pna/US097C_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US098A_COMB.seq:*
35:
36:
       /cgn2_6/ptodata/1/pna/US098B_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US098C_COMB.seq:*
/cgn2_6/ptodata/1/pna/US098D_COMB.seq:*
/cgn2_6/ptodata/1/pna/US099A_COMB.seq:*
37:
38:
39:
40:
       /cgn2_6/ptodata/1/pna/US099B_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US099C_COMB.seq:*
41:
42:
       /cgn2_6/ptodata/1/pna/US099D_COMB.seq:*
43:
       /cgn2_6/ptodata/1/pna/US099E_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US099F_COMB.seq:*
44:
45:
       /cgn2_6/ptodata/1/pna/US099G_COMB.seq:*
/cgn2_6/ptodata/1/pna/US100A_COMB.seq:*
46:
47:
       /cgn2_6/ptodata/1/pna/US100B_COMB.seq:*
48:
       /cgn2_6/ptodata/1/pna/US101A_COMB.seq:*
49:
       /cgn2_6/ptodata/1/pna/US101B_COMB.seq:*
50:
       /cgn2_6/ptodata/1/pna/US102A_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US102B_COMB.seq:*
/cgn2_6/ptodata/1/pna/US103A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US103B_COMB.seq:*
/cgn2_6/ptodata/1/pna/US104A_COMB.seq:*
51:
52:
53:
54:
55:
       /cgn2_6/ptodata/1/pna/US104B_COMB.seq:*
56:
       /cgn2_6/ptodata/1/pna/US105A_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US105B_COMB.seq:*
57:
       /cgn2_6/ptodata/1/pna/US106A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US107A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US107B_COMB.seq:*
/cgn2_6/ptodata/1/pna/US107C_COMB.seq:*
58:
59:
60:
61:
62:
       /cgn2_6/ptodata/1/pna/US107D_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US108A_COMB.seq:*
63:
       /cgn2_6/ptodata/1/pna/US108B_COMB.seq:*
64:
       /cgn2_6/ptodata/1/pna/US109A_COMB.seq:*
/cgn2_6/ptodata/1/pna/US109B_COMB.seq:*
/cgn2_6/ptodata/1/pna/US109C_COMB.seq:*
/cgn2_6/ptodata/1/pna/US10_COMB.seq:*
65:
66:
67:
68:
69:
       /cgn2_6/ptodata/1/pna/US6000_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US6001_COMB.seq:*
70:
71:
       /cgn2_6/ptodata/1/pna/US6002_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US6003_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6004_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6005_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6006_COMB.seq:*
72:
73:
74:
75:
       /cgn2_6/ptodata/1/pna/US6007_COMB.seq:*
76:
       /cgn2_6/ptodata/1/pna/US6008_COMB.seq:*
77:
       /cgn2_6/ptodata/1/pna/US6009_COMB.seq:*
78:
79:
       /cgn2_6/ptodata/1/pna/US6010_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US6011_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6012_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6013_COMB.seq:*
80:
81:
82:
83:
       /cgn2_6/ptodata/1/pna/US6014_COMB.seq:*
       /cgn2_6/ptodata/1/pna/us6015_comB.seq:*
84:
85:
       /cgn2_6/ptodata/1/pna/US6016_COMB.seq:*
86:
       /cgn2_6/ptodata/1/pna/US6017_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US6018_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6019_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6020_COMB.seq:*
87:
88:
89:
       /cgn2_6/ptodata/1/pna/US6021_COMB.seq:*
90:
91:
       /cgn2_6/ptodata/1/pna/US6022_COMB.seq:*
92:
       /cgn2_6/ptodata/1/pna/US6023A_COMB.seq:*
93:
       /cgn2_6/ptodata/1/pna/US6023B_COMB.seq:*
       /cgn2_6/ptodata/1/pna/US6024_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6025_COMB.seq:*
94:
95:
96:
       /cgn2_6/ptodata/1/pna/US6026_COMB.seq:*
```

```
us-10-032-256a-1.rnpm
        /cgn2_6/ptodata/1/pna/US6027_COMB.seq:*
97:
       /cgn2_6/ptodata/1/pna/US6028_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6029_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6030_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6031_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6032_COMB.seq:*
98:
99:
100:
101:
102:
         /cgn2_6/ptodata/1/pna/US6033_COMB.seq:*
103:
         /cgn2_6/ptodata/1/pna/US6034_COMB.seq:*
104:
105:
         /cgn2_6/ptodata/1/pna/US6035_COMB.seq:*
         /cgn2_6/ptodata/1/pna/US6036_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6037_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6038_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6039_COMB.seq:*
106:
107:
108:
109:
         /cgn2_6/ptodata/1/pna/US6040_COMB.seq:*
110:
         /cgn2_6/ptodata/1/pna/US6041_COMB.seq:*
111:
         /cgn2_6/ptodata/1/pna/US6042_COMB.seq:*
112:
113:
         /cgn2_6/ptodata/1/pna/US6043_COMB.seq:*
         /cgn2_6/ptodata/1/pna/US6044_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6045_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6046_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6047_COMB.seq:*
114:
115:
116:
117:
         /cgn2_6/ptodata/1/pna/US6048_COMB.seq:*
118:
         /cgn2_6/ptodata/1/pna/US6049_COMB.seq:*
119:
         /cgn2_6/ptodata/1/pna/US6050_COMB.seq:*
120:
         /cgn2_6/ptodata/1/pna/US6051_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6052_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6053_COMB.seq:*
/cgn2_6/ptodata/1/pna/US6054_COMB.seq:*
121:
122:
123:
124:
125:
         /cgn2_6/ptodata/1/pna/US6055_COMB.seq:*
         /cgn2_6/ptodata/1/pna/US6056_COMB.seq:*
126:
         /cgn2_6/ptodata/1/pna/US6057_COMB.seq:*
127:
         /cgn2_6/ptodata/1/pna/US6058_COMB.seq:*
128:
129:
         /cgn2_6/ptodata/1/pna/US6059_COMB.seq:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Resul No	_	% Query Match	Length	DB	ID	Description
1 1 1 1 1 1	1 5024 2 4821.6 3 3575.4 4 3575.4 5 1754.2 6 1751.6 7 1751 8 1751 9 1750 0 1750 0 1750 2 1714.6 3 1506.4 1506.4 1506.4 1040.2 766.8 733 9733	100.0 96.0 71.2 71.2 34.9 34.9 34.8 34.8 34.8 34.1 30.0 20.7 20.7 215.3 14.6 14.6	5024 5026 3641 3641 2826 7385 7385 7385 7385 7385 7257 7257 1343 1996 1872 1872	46 62 48 106 46 115 65 120 33 49 62 44 115 48 106 87 23 23	US-10-032-256A-18 US-60-452-680-11295 US-10-932-349-1369 US-60-500-337-1369 US-09-732-630-4120 US-10-170-235-33817 US-10-756-149-1579 US-09-979-167-40 US-60-452-680-11294 US-10-170-235-32765 US-10-144-771-20325	Sequence 1, Appli Sequence 2502, Ap Sequence 15940, A Sequence 18, Appl Sequence 11295, A Sequence 1369, Ap Sequence 1369, Ap Sequence 4120, Ap Sequence 33817, A Sequence 33817, A Sequence 11294, A Sequence 20325, A Sequence 20325, A Sequence 251, App Sequence 31, Appl

```
us-10-032-256a-1.rnpm
                 10.2 142692
10.2 142692
10.2 1748349
9.7 546
                                        US-10-932-349-19459
       510.8
                                   65
                                                                              Sequence 19459, A
22
23
       510.8
                                   120
                                         US-60-500-337-19459
                                                                               Sequence 19459, A
                                        US-09-947-914-48
US-09-963-353-207
US-10-375-682-207
US-10-029-386-20693
                                                                             Sequence 48, Appl
Sequence 207, App
Sequence 207, App
       510.6
                                    41
24
25
         487
                                   44
                   9.7
                            546
                                   53
         487
                                                                              Sequence 20693, A
       484.2
                   9.6
                            675
26
                                   46
                   9.6
                                        PCT-US01-00663-13551
                                                                            Sequence 13551, A
27 .
       482.2
                            656
                            656
656
                                                                             Sequence 14025, A
       482.2
28
                   9.6
                                        PCT-US01-00663-14025
       482.2
                   9.6
                                                                             Sequence 14066, A
29
                                        PCT-US01-00663-14066
                                        US-09-864-761-17140
US-09-864-761-17590
US-09-864-761-17630
US-10-182-993-13122
30
       482.2
                   9.6
                            656
                                                                              Sequence 17140, A
                            656
656
656
                                                                              Sequence 17590, A
Sequence 17630, A
                   9.6
31
       482.2
                                   37
32
33
                                    37
       482.2
                   9.6
                   9.6
                                                                              Sequence 13122, A
                                   49
       482.2
                                         US-10-182-993-13577
                                                                              Sequence 13577, A
34
       482.2
                   9.6
                                   49
                                                                              Sequence 13617, A
                            656
656
35
       482.2
                   9.6
                                   49
                                         US-10-182-993-13617
                                         US-10-182-995-10286
                                                                              Sequence 10286, A
36
37
                   9.6
                                   49
       482.2
       482.2
                   9.6
                            656
                                   49
                                         US-10-182-995-10736
                                                                              Sequence 10736, A
                                         US-10-182-995-10776
US-10-182-997-9603
US-10-182-997-10072
                                                                              Sequence 10776, A
Sequence 9603, Ap
Sequence 10072, A
38
                            656
                                   49
       482.2
                   9.6
                            656
656
656
39
40
       482.2
                   9.6
                                   49
       482.2
                   9.6
                                   49
                   9.6
                                         US-10-182-997-10113
                                                                              Sequence 10113, A
41
       482.2
                                   49
                                                                              Sequence 5380, Ap
42
       482.2
                   9.6
                                   49
                                         US-10-182-998-5380
                                                                              Sequence 5835, Ap
43
       482.2
                   9.6
                            656
                                   49
                                         US-10-182-998-5835
                                   49
                                         US-10-182-998-5875
                                                                              Sequence 5875, Ap
                            656
44
       482.2
                   9.6
                   9.6
                                         US-10-203-134-13419
                                                                              Sequence 13419, A
45
       482.2
                            656
                                    50
```

```
RESULT 1
US-10-032-256A-1
 Sequence 1, Application US/10032256A
 GENERAL INFORMATION:
  APPLICANT: CHODOSH, Lewis A
  APPLICANT: GARDNER, Heather P
  TITLE OF INVENTION: HORMONALLY UP-REGULATED, NEU-TUMOR-ASSOCIATED KINASE
  FILE REFERENCE: 22253-70421
  CURRENT APPLICATION NUMBER: US/10/032,256A CURRENT FILING DATE: 2002-05-21
  PRIOR APPLICATION NUMBER: 60/257,073 PRIOR FILING DATE: 2000-12-21
  NUMBER OF SEQ ID NOS: 18
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 1
   LENGTH: 5024
   TYPE: DNA
   ORGANISM: Murinae gen. sp.
US-10-032-256A-1
                        100.0%; Score 5024; DB 46; Length 5024; 100.0%; Pred. No. 0; tive 0; Mismatches 0; Indels 0;
 Query Match
 Best Local Similarity
                                                            0:
                                                                Gaps
                                                                       0:
 Matches 5024: Conservative
           1 GCAGGAGGAGCCAGGGCAGCCCGGGAGCCGGAGGAGGAGCGCGCGGAGCGCGGGAGCC 60
Qy
             Db
          61 GAGCGAGCGCGATGCCGGCAGCGGGGGGGGCGCTCTTGGGCGAGCCGGCGCACCGG 120
Qy
             61 GAGCGAGCGCGATGCCGGCAGCGGCGGGGGACGGGCTCTTGGGCGAGCCGGCGCACCGG 120
Db
         121 GGGGCGATGGAGGCGGGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCC 180
Qy
```

us-10-032-256a-1.rnpm Db 121 GGGGCGATGGAGGCGGGGGGAGGACACGACCAGGCCGGCGGCGGCCTGCGAGGGAAGTTTCC 180 181 TGCCCGCCTGGGTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGC 240 Qy 181 TGCCCGCCTGGGTGAGCGGCGTGTCCCGCGAGCGGCTCCGGGACTTCCAGCACCACAAGC 240 Db 241 GCGTGGCAACTACCTCATCGGCAGCAGGAAGCTGGGAGAGGGCTCCTTCGCCAAGGTGC 300 Qy 241 GCGTGGGCÁACTACCTCATCGGCAGCÁGGÁÁGCTGGGAGAGGCTCCTTCGCCÁÁGGTGC 300 Db 301 GCGAGGGGCTGCACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAA 360 Qy 301 GCGAGGGGCTGCACGTGCTGACGGGAGAAAAGGTAGCTATCAAGGTCATCGATAAGAAAA 360 Db 361 GAGCCAAGAAAGACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGGCAGATCCAGCAGA 420 Qy 361 GAGCCAAGAAAGACACCTACGTCACCAAAAACCTGCGTCGAGAGGGGGGCAGATCCAGCAGA 420 Db 421 TGATCCGACACCCCAACATCACACAGCTCCTGGACATCTTGGAGACAGAGAACAGCTACT 480 Qy 421 TGATCCGACACCCCAACATCACACACCTCCTGGACATCTTGGAGACAGAGAACAGCTACT 480 Db 481 ACCTGGTCATGGAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAAC 540 Qy 481 ACCTGGTCATGGAGCTGTGTCCTGGTGGCAACCTCATGCACAAGATCTACGAAAAGAAAC 540 Db 541 GGTTGGATGAAGCCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACC 600 Qy Db 541 GGTTGGATGAAGCCGAGGCCCGCAGATACATCCGGCAACTCATCTCTGCGGTGGAACACC 600 601 TGCACCGTGCGGGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAG 660 Qy Db 601 TGCACCGTGCGGGGGTGGTTCACAGAGACTTGAAGATAGAGAATTTGCTACTAGATGAAG 660 661 ACAATAATATCAAGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACT 720 Qy 661 ACAATAATATCAAGCTGATTGACTTTGGCTTGAGCAACTGTGCAGGGATCCTAGGTTACT 720 Db 721 CGGATCCATTCAGCACACAGTGTGGCAGCCCTGCCTATGCTGCGCCAGAACTGCTTGCCA 780 Qy 721 CGGÁTCCÁTTCÁGCÁCACAGTGTGGCÁGCCCTGCCTÁTGCTGCGCCÁGÁACTGCTTGCCÁ 780 Db 781 GGAAGAAATATGGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGC 840 Qy 781 GGAAGAAATATGGCCCCAAAATTGATGTCTGGTCAATAGGCGTGAACATGTATGCCATGC 840 Db 841 TGACGGGGACCCTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGA 900 Qу 841 TGACGGGGACCCTACCTTTCACTGTGGAGCCTTTCAGCCTGAGGGCTCTGTATCAGAAGA 900 Db 901 TGGTGGACAAAGCAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTC 960 Qу 901 TGGTGGACAAGCAATGAATCCCCTGCCGACCCAGCTCTCCACAGGGGCCGTCAACTTTC 960 Db 961 TGCGCTCCTCGGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGA 1020 Qy 961 TGCGCTCCTCGGAACCAGACCCTGTGAAGAGGCCGAATATCCAGCAAGCGCTGGCGA 1020 Db 1021 ATCGCTGGTTGAATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACA 1080 Qy 1021 ATCGCTGGTTGAATGAGAATTACACTGGAAAGGTGCCCTGCAATGTCACCTATCCCAACA 1080 Db

us-10-032-256a-1.rnpm 1081 GGATTTCTTTGGAAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCT 1140 Qy 1081 GGATTTCTTTGGAAGACCTGAGTCCCAGCGTGGTGCTGCACATGACTGAAAAGCTGGGCT 1140 Db 1141 ATAAGAACAGTGACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCA 1200 Qy 1141 ATAAGAACAGTGACGTCATCAACACGGTGCTCTCCAACCGCGCCTGCCACATCCTGGCCA 1200 Db 1201 TCTACTTCCTGTTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAG 1260 Qy 1201 TCTACTTCCTGTTGAACAAGAAACTTGAGCGCTATTTGTCAGGGAAATCAGATATCCAAG 1260 Db 1261 ATAGCATCTGCTACAAGACCCAGCTCTACCAGATAGAGAAGTGCAGAGCCACCAAGGAGC 1320 Qy 1261 ATAGCATCTGCTÁCAAGACCCAGCTCTÁCCAGATAGAGAAGTGCAGAGCCACCAAGGAGC 1320 Db 1321 CCTATGAGGCCTCCCTGGATACCTGGACGAGGGACTTTGAATTCCATGCTGTGCAGGATA 1380 Qy 1321 CCTÁTGÁGGCCTCCCTGGÁTÁCCTGGÁCGÁGGGÁCTTTGÁÁTTCCÁTGCTGCÁGGÁTÁ 1380 Db Qy Db 1441 TGGACAAGAACCTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGA 1500 Qy 1441 TGGACAAGAACCTGCCTTCTCACAAACAGCCATCGCCCTCGCTGATCACACAGCTCCAGA 1500 Db 1501 GTACCAAAGCCCTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATT 1560 Qy 1501 GTACCAAAGCCCTGCTCAAAGACAGGAAGGCCTCCAAGTCAGGCTTCCCCGACAAAGATT 1560 Db Qy Db 1621 CCATGGAATTCATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGC 1680 Qy 1621 CCATGGAATTCATCCCTGTCCCACCTCCCAGGACACCAAGGATTGTAAAGAAACTAGAGC 1680 Db 1681 CACACCAACCAGGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGG 1740 Qу 1681 CACACCAACCAGGGCCGGGAAGTGCCAGCATCCTCCCCAAGGAAGAGCCCCTGCTGCTGG 1740 Db 1741 ATATGGTACGCTCCTTTGAGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTT 1800 Qy 1741 ÁTÁTGGTÁCGCTCCTTTGÁGTCTGTGGATCGAGAGGACCACATAGAACTGCTGTCCCCTT 1800 Db 1801 CTCACCATTATAGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGA 1860 Qy 1801 CTCACCATTATÁGGATCCTGAGCTCGCCTGTGAGCCTGGCTCGTAGGAATTCTAGTGAGA 1860 Db 1861 GGACACTCTCCCAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATT 1920 Qy 1861 GGACACTCTCCCAGGGGCTGCTGTCCGGAAGTACCTCACCTCTCCAAACTCCACTGCATT 1920 Db 1921 CCACGCTGGTCTCTTTTGCCCACGAAGAAAAGAACAGCCCCCCGAAAGAGGGGGGTGTGT 1980 Qy 1921 CCACGCTGGTCTCTTTTGCCCACGAAGAAAAGAACAGCCCCCCGAAAGAGGGGGGTGTGT 1980 Db Qy Db

us-10-032-256a-1.rnpm

Qy	2041 TGAAGAGCAGGGGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACC 2100
Db	2041 TGAAGAGCAGGGGACGGTTCCCCATGATGGGCATCGGACAGATGCTGAGGAAGCGGCACC 2100
Qy	2101 AGAGCCTGCAGCCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCA 2160
Db	2101 AGAGCCTGCAGCCTTCCTCAGAGAGGTCCCTGGACGCCAGCATGTCCCCTCTGCAGCCCA 2160
Qy	2161 TAGCCCCTCCAGCCTCTCCTTTGACATGGCCGACGGTGTCAAGGGCCAGTGTTAACCTG 2220
Db	2161 TAGCCCCCTCCAGCCTCTCCTTTGACATGCCCGACGGTGTCAAGGGCCAGTGTTAACCTG 2220
Qy	2221 GGATGGCAAGATTCTGGGTCTCTGTGAGGACAGCCACGGAACAGAGCTCCACACAGGCAG 2280
Db	2221 GGATGGCAAGATTCTGGGTCTCTGTGAGGACAGCCACGGAACAGAGCTCCACACAGGCAG 2280
Qy	2281 GCACCAGGGCATGGGTGAACAACCTCACGGGAGCATCCTTTATTCTTTTATACCTGCCAC 2340
Db	2281 ĠĊĀĊĊĀĠĠĠĊĀŤĠĠĠŤĠĀĀĊĀĀĊĊŤĊĀĊĠĠĠĀĠĊĀŤĊĊŤŤĀŤŤĊŤŤŤĀŤĀĊĊŤĠĊĊĀĊ 2340
Qy	2341 ACAAAGTCCCACGCTTGTATCAGCTGAAGTCCACACTCAAAGTCCACGCACTTACTT
Db	2341 ÁCAAÁGTCCCÁCGCTTGTÁTCÁGCTGAÁGTCCÁCÁCTCÁAÁGTCCÁCGCÁCTTÁCTTÁGG 2400
Qy	2401 GACCCTCTGAGACGCTGCCACTAGGGGGAGGGGGGGGGG
Db	2401 GÁCCCTCTGÁGÁCGCTGCCÁCTÁGGGGGGÁGGGGGGGGGG
Qy	2461 TTCCAGCCTGAGATTTTCTTTGCTATCACCAATCACTGAGCCCTCTCCAGGATCCCCTCA 2520
Db	2461 TTCCAGCCTGAGATTTTCTTTGCTATCACCAATCACTGAGCCCTCTCCAGGATCCCCTCA 2520
Qy	2521 GTGGGCTCAGAGCTAAAAACCACACCTCCATCTGCTGGGCCAATCAGATTTCCAGACTGG 2580
Db	2521 GTGGGCTCAGAGCTAAAAACCACACCTCCATCTGCTGGGCCAATCAGATTTCCAGACTGG 2580
Qy	2581 TACCAGGTTGTCCCTCCCCTCCTCTGTGTGTCTCTCACAGTTCTGTAACTGACCGTCA 2640
Db	2581 TACCAGGTTGTCCCTCCCCTCTCTGTGTGTCTCTCACAGTTCTGTAACTGACCGTCA 2640
Qy	2641 GTGGTCAGTTACAGTCTCACGCGGACGTGCCACTCGCTGGTAAGGACGTTCACCCAACCT 2700
Db	2641 GTGGTCAGTTACAGTCTCACGCGGACGTGCCACTCGCTGGTAAGGACGTTCACCCAACCT 2700
Qy -!	2701 AGGGATCCCTCTACAGAGGGAAGCAACCCTCCTTTCCCTAACAGTGAGTCCCCACAGAGT 2760
Db	2701 AGGGATCCCTCTACAGAGGGAAGCAACCCTCCTTTCCCTAACAGTGAGTCCCCACAGAGT 2760
Qy	2761 GCTGAGTCACAGTGCTGGACCGGGAGGAAGATGGGATGG
Db	2761 GCTGAGTCACAGTGCTGGACCGGGAGGAAGATGGGATGG
Qy	2821 CCAGCAGCAGAACCCAGGAGGAAGACGAAGACTCAAACGCTCATTCCTGTGCAACGTTT 2880
Db	2821 CCAGCAGCAGAACCCAGGAGGAAGACGAAGACTCAAACGCTCATTCCTGTGCAACGTTT 2880
Qy	2881 TGACAGATTTTTCTTTCCTCTTTTTTTTCCCCTGACCTTTTCTTTTTTGGGTTGA 2940
Db	2881 TGACAGATTTTTCTTTCCTCTTTTTTTCCCCTGACCTTTTTTTT
Qy	2941 AACTTGCTGAGGATTGAACGAACTTGTCCAAAGAGATCTTTCTT

us-10-032-256a-1.rnpm Db 3001 TTAAATTTTTTTTTAAAGACAGGGTCTCATTAAGTAGCCCAAGCTGGCTTCAAACTCAT 3060 Qy 3001 TTAAATTTTTTTTTAAAGACAGGGTCTCATTAAGTAGCCCAAGCTGGCTTCAAACTCAT 3060 Db 3061 GATCCTCCTGCCTCAGCCTCCAAAGTGCTGAGATTACAAGTATATACCCGTGTCTGGCTC 3120 Qy 3061 GATCCTCCTGCCTCAGCCTCCAAAGTGCTGAGATTACAAGTATATACCCGTGTCTGGCTC 3120 Db 3121 AAAATAGCAATTCAAAAACAAAACTAGTTGGCCAGATGAAAAGTAGTTTTACCAAATTC 3180 Qy 3121 AAAATAGCAATTCAAAAACAAAACTAGTTGGCCAGATGAAAAGTAGTTTTACCAAATTC Db 3181 ACGTGTTTTTGTTTTTCTGAGAGGCTGCAGCTCAGATGGCCAAAAAGCTGGCAACAGGAG 3240 Qy 3181 ACGTGTTTTTGTTTTTCTGAGAGGCTGCAGCTCAGATGGCCAAAAAGCTGGCAACAGGAG 3240 Db 3241 GACCACAGTGGCCTGCCTAAGGGATAGTAGCCTAGCCATCCTGTGTTTATACCGTG 3300 Qy Db 3241 GACCACAGTGGCCTGCCTAAGGGATAGTAGCCTAGCCATCCTGTGTTTATACCGTG Qy Db 3361 TAAAGCAGAGTTGAGACAGCAAGAAGCAGGGAATTCGCTGTGTCATGCTGTTCTGCCGTG 3420 Qy 3361 TÁÁÁGCÁGÁGTTGÁGÁCÁGCÁÁGÁÁGCÁGGGÁÁTTCGCTGTGTCÁTGCTGTTCTGCCGTG 3420 Db 3421 GTTAGAACTTAGCTGTTCTGCTGGGAGCTAGGAGCAGGCTTGCCGCCCCCTGGGAACACG 3480 Qy 3421 GTTÁGÁÁCTTÁGCTGTTCTGCTGGGÁGCTÁGGÁGCAGGCTTGCCGCCCCTGGGÁÁCÁCG 3480 Db 3481 CTCACAAGACGGTTCGTCCCCAAAGGAAACAGTGCCCCCCAAACAGGCTTTCAGTCCACT 3540 Qy 3481 CTCACAAGACGGTTCGTCCCCAAAGGAAACAGTGCCCCCAAACAGGCTTTCAGTCCACT 3540 Db 3541 CTGTAATCTGCACCTTCCCCTCCAGGATTGAACCAAAGATGCATTTCCGGTTTTGTGACT 3600 Qy 3541 CTGTAATCTGCACCTTCCCCTCCAGGATTGAACCAAAGATGCATTTCCGGTTTTGTGACT 3600 Db 3601 GTGCCACTCTGTGTGTCTTTGTGGAACCTGGTGTTGTCTGATCCTGTCCGGCTGGCGCT 3660 Qy 3601 GTGCCACTCTGTGTGTCTCTTGTGGAACCTGGTGTTGTCTGATCCTGTCCGGCTGGCGCT 3660 Db 3661 GGATGGAGGACTGTCTCTGTGTGCATCGTGGGCCCTGGTACTTAGCAGAGGACAAAGGGT 3720. Qy 3661 GGATGGAGGACTGTCTCTGTGTGCATCGTGGCCCCTGGTACTTAGCAGAGGACAAAGGGT Db Qy Db 3781 GAACAGCTCAGAATCTTCTGGTCTTTGACTATTTCAGATGGGGTCAGAGACCAGAGCTGT 3840 Qy 3781 GÁÁCÁGCTCÁGÁÁTCTTCTGGTCTTTGÁCTÁTTTCAGÁTGGGGTCÁGÁGACCAGAGCTGT 3840 Db 3841 AGCCAGGAAGCCAGGTTCATCATCTTGGTCCATCGATTCTAAAGTGGGCAAATTTCTGTG 3900 Qy 3841 ÁGCCÁGGÁÁGCCÁGGTTCÁTCATCTTGGTCCÁTCGÁTTCTÁÁÁGTGGGCÁÁATTTCTGTG 3900 Db Qy 3901 ACGTCACAAAGCCGGCCTTTGCCAGTGAGGGCTGAGACACAGTACAACTGCCTCTCATTT 3960

us-10-032-256a-1.rnpm Db 3901 ACGTCACAAAGCCGGCCTTTGCCAGTGAGGGCTGAGACACAGTACAACTGCCTCTCATTT 3960 Qy Db 4021 GGATTTGGCTGACCCTGGAAGAAGCTGCTCTAGTCCTGGCTGAATTTGGTAAGACCTGG 4080 Qy 4021 GGATTTGGCTGACCCTGGAAGAAAGCTGCTCTAGTCCTGGCTGAATTTGGTAAGACCTGG 4080 Db 4081 ACTACTTAAACCTTAGGGAGGGACTGACTCCCTCCCGAGGACCCATTACAGGAGGAGGCC 4140 Qy 4081 ACTACTTAAACCTTAGGGAGGGACTGACTCCCTCCCGAGGACCCATTACAGGAGGAGGCC 4140 Db Qy 4141 AGGCTTTTCTCCCAGAGCTGATGGTGTTCTTCATTCAGCATGGCTTCCGTTCAGCTCCCA 4200 4141 ÁGGCTTTTCTCCCÁGAGCTGATGGTGTTCTTCATTCÁGCATGGCTTCCGTTCÁGCTCCCÁ 4200 Db Qy 4201 GGÁCTTGÁCACTGÁAAATAGAACTCTTTAAGCAGAGAGAGAGGAGAACCATCCACAGAC 4260 Db 4261 GCTCCCCGTATTTGATGTGACGTGTTTGAGCTTTGACGGGTGAAGAGTCCTTTTAAAAGA 4320 Qу 4261 GCTCCCGTATTTGATGTGACGTGTTTGAGCTTTGACGGGTGAAGAGTCCTTTTAAAAGA 4320 Db 4321 TAACTGCCAGCTGCAGGCATCTGGCTCTGCAAAGCTGGTAGGATGTGTACCTGTGTACTG 4380 Qy Db 4321 TAACTGCCAGCTGCAGGCATCTGGCTCTGCAAAGCTGGTAGGATGTGTACCTGTGTACTG 4380 4381 TGCCCGCCCCTTTCTCCTAGCCCTTTATGTCTTTTTCTGACTGTTTTGCTTTTCTCGTAT 4440 Qy Db 4381 TGCCCGCCCCTTTCTCCTAGCCCTTTATGTCTTTTTCTGACTGTTTTGCTTTTCTCGTAT 4441 GTATGTGTGCCTGTTGGTGCGAGCCTGTGGAGAAAGAGTCTCCCATCCTTCAAATGCT 4500 Qy 4441 GTATGTGTGCCTGTGTTGGTGCGAGCCTGTGGAGAAAGAGTCTCCCATCCTTCAAATGCT 4500 Db 4501 TCGAGAACAGCGTCAGATGTACAACTAGTTTGCCTGCGTTGCTACTGGTACCTTGGACTC 4560 Qy 4501 TCGÁGÁÁCÁGCGTCÁGÁTGTÁCÁÁCTÁGTTTGCCTGCGTTGCTÁCTGGTÁCCTTGGÁCTC 4560 Db 4561 TGAACTCAGGTTACCCACCTGAGTCCTCAGTAGGCAGTGGACCCATTGAGAGGCAAATGA 4620 Qy 4561 TGAACTCAGGTTACCCACCTGAGTCCTCAGTAGGCAGTGGACCCATTGAGAGGCAAATGA 4620 Db 4621 GAACAGGAGGAGACAAGCTGTGTTCTGGGGCGCACATAAACACCTGACAGACGAGTCTA 4680 Qy 4621 GAACAGGAGGGAGACAAGCTGTGTTCTGGGGCGCACATAAACACCTGACAGACGAGTCTA 4680 Db 4681 GGAAACCGCGTGAAAGAAGAAATGTTAAATTCTTTATTGTTTTATTATATTTATATGGAA 4740 Qy 4681 GGAAACCGCGTGAAAGAAGAAATGTTAAATTCTTTATTGTTTTATTATATTATATGGAA 4740 Db 4741 AATGTGGCTATCCTTTTGTTAAGTGCAGAGTGTATTGTCTGTTTGACCCATGACTGTCCT 4800 Qу 4741 AATGTGGCTATCCTTTTGTTAAGTGCAGAGTGTATTGTCTGTTTGACCCATGACTGTCCT 4800 Db 4801 TCATGAATGAGTCTTTGCCTGTGATTCTAGTCAGCCTGTGGCTACTGATGGGAACGGCCG 4860 Qy Db 4801 TCATGAATGAGTCTTTGCCTGTGATTCTAGTCAGCCTGTGGCTACTGATGGGAACGGCCG 4860

	us-10-032-256a-1.rnpm
Qy	4861 ATCTGTCATCATGTGAAGTCCAGGAGGAAGAATCTATTTTAGTCATACGATTTGGTCATG 4920
Db	4861 ÁTCTGTCÁTCÁTGTGÁÁGTCCÁGGÁGGÁÁGÁÁTCTÁTTTTÁGTCÁTÁCGÁTTTGGTCÁTG 4920
Qy	4921 AGTAAGGACTATATTTATGTCACCACTATTGAATATATGTACTTTTATAATGGCTGTGAA 4980
DP	4921 ÁGTÁÁGGÁCTÁTÁTTTÁTGTCÁCCÁCTÁTTGÁÁTÁTÁTÁT
Qy	4981 ATACACTTTTTCCTCACAAAAAAAAAAAAAAAAAAAAA
Db	

us-10-032-256a-1.rnpn

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

April 20, 2005, 00:03:12; Search time 1402 Seconds Run on:

(without alignments) 5636.860 Million cell updates/sec

Title: US-10-032-256A-1

Perfect score: 5024

Sequence:

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

9167033 segs, 786512495 residues Searched:

Total number of hits satisfying chosen parameters: 18334066

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : Pending_Patents_NA_New:*

> /cgn2_6/ptodata/1/pna/PCT_NEW_COMB.seq:* /cgn2_6/ptodata/1/pna/PCT_NEW_COMB.seq2:* /cgn2_6/ptodata/1/pna/PCT_NEW_COMB.seq2:*
> /cgn2_6/ptodata/1/pna/US06_NEW_COMB.seq:*
> /cgn2_6/ptodata/1/pna/US07_NEW_COMB.seq:*
> /cgn2_6/ptodata/1/pna/US08_NEW_COMB.seq:*
> /cgn2_6/ptodata/1/pna/US10_NEW_COMB.seq:*
> /cgn2_6/ptodata/1/pna/US10_NEW_COMB.seq2:*
> /cgn2_6/ptodata/1/pna/US11_NEW_COMB.seq2:* 9: /cgn2_6/ptodata/1/pna/US11_NEW_COMB.seq2:*
> /cgn2_6/ptodata/1/pna/US11_NEW_COMB.seq3:*
> /cgn2_6/ptodata/1/pna/US60_NEW_COMB.seq:* 10: 11: 12:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		%				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	171.2	3.4	472	10	US-11-060-756-1385	Sequence 1385, Ap
2	171.2	3.4	472	10	US-11-060-756-5657	Sequence 5657, Ap
3	155	3.1	1975	2	PCT-US04-42316-17	Sequence 17, Appl
4	148.8	3.0	2110	2	PCT-US04-42316-25	Sequence 25, Appl
5	148.6	3.0	2022	2	PCT-US04-42316-15 .	Sequence 15, Appl
6	142.4	2.8	1993	2	PCT-US04-42316-9	Sequence 9, Appli
7	142.4	2.8	2023	2	PCT-US04-42316-13	Sequence 13, Appl
8	141.6	2.8	1885	2	PCT-US04-42316-19	Sequence 19, Appl
9	140	2.8	1838	2	PCT-US04-42316-23	Sequence 23, Appl
10	138.6	2.8	600	10	us-11-060-756-1783	Sequence 1783, Ap
11	138.6	2.8	600	10	US-11-060-756-1784	Sequence 1784, Ap

```
us-10-032-256a-1.rnpn
                                600
                                                                                         Sequence 6055, Ap
       138.6
                                              US-11-060-756-6055
                      2.8
13
       138.6
                                600
                                        10
                                              US-11-060-756-6056
                                                                                        Sequence 6056, Ap
                                             PCT-US04-42316-50
US-60-660-590-61
14
          131
                               1766
                                                                                       Sequence 50, Appl
                      2.6
                      2.6
                                                                                       Sequence 61, Appl
Sequence 87, Appl
Sequence 1, Appli
Sequence 62, Appl
                               3226
4917
15
       130.8
                                             US-10-204-639-87
16
       130.8
17
       129.4
                      2.6
                               1563
                                             PCT-US04-42316-1
                     2.6
18
19
       129.2
                               3609
                                        12
                                              US-60-660-590-62
                               4723
       127.4
                                              US-60-646-841-19
                                                                                        Sequence 19, Appl
20
                    2.5
                               1235
       124.4
                                             PCT-US04-42316-32
                                                                                       Sequence 32, Appl
                     2.4
2.4
2.4
                                                                                       Sequence 3, Appli
21
22
23
24
25
26
27
       122.8
                               2524
                                             PCT-US04-42316-3
                                                                                       Sequence 5, Appli
Sequence 40, Appl
Sequence 2300, Ap
Sequence 7, Appli
Sequence 36, Appl
       122.8
                               2530
                                             PCT-US04-42316-5
        121.2
                               2083
                                             PCT-US04-42316-40
                      2.4
                               2959
                                             PCT-US04-42360-2300
       120.6
       119.6
                               1700
                                             PCT-US04-42316-7
                      2.4
       119.2
                      2.4
                               1840
                                             PCT-US04-42316-36
                               2986
756
       118.2
                                             US-10-524-979-1
                                                                                        Sequence 1, Appli
                                                                                       Sequence 5, Appli
Sequence 42, Appl
Sequence 21, Appl
Sequence 138, App
Sequence 38, Appl
                     2.3
2.2
2.2
2.2
28
29
30
31
       113.2
                                             US-10-524-979-5
                               2449
2470
       111.8
                                             PCT-US04-42316-42
       109.8
                                             PCT-US03-27894-21
US-10-955-054A-138
                               2501
        109.8
32
33
                      2.2
                               1124
                                             PCT-US04-42316-38
       109.6
                                                                                       Sequence 38, Appl
Sequence 44, Appl
Sequence 57, Appl
Sequence 720, App
Sequence 4992, Ap
Sequence 36, Appl
Sequence 1665, Ap
Sequence 8107, Ap
Sequence 8107, Ap
          103
                     2.1
                               1788
                                             PCT-US04-42316-44
34
35
           102
                               3010
                                             PCT-US04-23309-57
                     2.0
                               1400
        100.8
                                        10
                                             US-11-060-756-720
36
                               1400
                                             US-11-060-756-4992
        100.8
                                             PCT-US04-23309-36
PCT-US04-23309-16
                      2.0
                               2729
37
         99.8
                               4836
         98.8
38
         98.4
                      2.0
                                             US-10-472-963-1665
39
                              13361
                                        10 US-11-060-756-3835
40
         98.2
                      2.0
                               1400
41
42
                               1400
                                              US-11-060-756-8107
         98.2
                      2.0
                                        10
                                        7 US-10-488-292-1
7 US-10-259-740A-1
7 US-10-259-740A-3
10 US-11-059-535-2112
                                                                                       Sequence 1, Appli
Sequence 1, Appli
Sequence 3, Appli
Sequence 2112, Ap
                               3437
         98.2
                      2.0
43
         96.6
                     1.9
                               1104
         96.6
95.2
                      1.9
                               9862
44
                      1.9
                               1402
```

```
RESULT 1
US-11-060-756-1385
; Sequence 1385, Application US/11060756
; GENERAL INFORMATION:
; APPLICANT: Wyeth
; APPLICANT: Mounts, William Martin
; TITLE OF INVENTION: Nucleic Acid Arrays for Monitoring Expression Profiles of Drug
; TITLE OF INVENTION: Target Genes
; FILE REFERENCE: AM101083 (031896-042000)
; CURRENT APPLICATION NUMBER: US/11/060,756
; CURRENT FILING DATE: 2005-02-18
; NUMBER OF SEQ ID NOS: 303284
; SOFTWARE: PatentIn version 3.2
; SEQ ID NO 1385
; LENGTH: 472
; TYPE: DNA
; ORGANISM: Homo sapiens
US-11-060-756-1385

Query Match 3.4%; Score 171.2; DB 10; Length 472;
Best Local Similarity 87.0%; Pred. No. 4.3e-21;
Matches 188; Conservative 0; Mismatches 28; Indels 0; Gaps 0;
```

		u5-10-032-230a-1. MpH	
Qy	331	GGTAGCTATCAAGGTCATCGATAAGAAAAGAGCCAAGAAAGA	0
Db	257	GGTGGCCATAAAAGTCATTGATAAGAAGAGAGCCAAAAAGGACACCTATGTCACCAAAA 31	6
Qy	391	CCTGCGTCGAGAGGGGCAGATCCAGCAGATGATCCGACACCCCAACATCACACAGCTCC 45	0
Db	317	CCTGCGGCGAGAGGGTCAGATCCAGCAGATGATCCGCCACCCCAATATCACTCAGCTCC 37	6
Qy	451	GGACATCTTGGAGACAGAGAACAGCTACTACCTGGTCATGGAGCTGTGTCCTGGTGGCA 51	0
Db	377	TGATATTTTAGAAACGGAAAACAGCTACTACCTGGTCATGGAGCTGTGCCCTGGGGGCA 43	6
Qy	511	CCTCATGCACAAGATCTACGAAAAGAAACGGTTGG 546	
Db	437	 CCTGATGCACAAGATCTATGAGAAGAAGCGGCTGG 472	