Grado en Física, Curso 2021-2022 Mecánica Estadística

Examen Final 17 de Enero 2022

- 1. (2 puntos) El núcleo de los átomos de una cierta red cristalina tiene spin s=1. De acuerdo con la mecánica cuántica, cada núcleo puede estar en uno de los tres estados de proyección de spin m=-1,0,1. La energía del núcleo dependerá de la orientación relativa de su campo eléctrico interno con el spin, de tal forma que sabemos: i) Para m=0, el núcleo está en su estado fundamental, que tomamos como $E=E_0$; ii) para $m=\pm 1$, el núcleo está en un estado excitado, en ambos casos con la misma energía $E=E_0+\epsilon$.
 - (a) Considerando el sistema como un sistema clásico de N partículas no interactuantes, calcula la contribución nuclear a la energía media del sólido en función de la temperatura.
 - (b) Obtén la contribución a la entropía del sólido y discute los límites de baja y alta temperatura ($\epsilon \ll kT$ y $\epsilon \gg kT$).
- 2. (3 puntos) Considera una partícula libre no relativista en una caja cúbica de arista L y volumen $V=L^3$. Cada componente del vector número de onda $\vec{k}=(k_x,k_y,k_z)$ esta cuantizado según $k_i=\frac{2\pi}{L}n_i$.
 - (a) Escribe la expresión de la energía en función del volumen $\epsilon_r(V)$ de un estado cuántico r, caracterizado por los números cuánticos (n_x, n_y, n_z) .
 - (b) Considerando el número de ocupación de las estadísticas clásica, Fermi-Dirac y Bose-Einstein, explica cómo calcularías la energía media del sistema en cada caso.
 - (a) Obtén la contribución a la presión de la partícula en el estado r, (P_r) , en función de ϵ_r y V.
 - (d) Obtén la presión media del gas ideal en función de la energía media y el volumen. Comenta cómo depende el resultado del tipo de estadística utilizado (NB, FD, BE).
 - (e) Razona porqué el resultado obtenido es distinto del que se obtiene para fotones $\langle P \rangle = \frac{1}{3} \frac{\langle E \rangle}{V}$.

NAXMEL

 (3 puntos) En el modelo de Debye, que describe el comportamiento termodinámico de sólidos tenemos que:

$$\ln Z = \beta N \eta - \int_0^\infty \ln \left(1 - e^{-\beta \hbar \omega} \right) \sigma(\omega) d\omega$$

donde $\beta=1/kT,~\eta$ es una constante que define la energía del estado fundamental (la energía de ligadura por átomo en un sólido a temperatura cero) y

$$\sigma(\omega) = \begin{cases} \frac{3V}{2\pi^2 c_s^3} \omega^2 & \omega \le \omega_D \\ 0 & \omega > \omega_D \end{cases}$$

 $\mathrm{con}~\omega_D$ denotando la frecuencia de Debye y c_s la velocidad del sonido.

(a) Obtén la frecuencia de Debye a partir de la normalización

$$\int_0^\infty \sigma(\omega)d\omega = 3N$$

(el factor 3 tiene en cuenta los modos normales de los fonones en 3D.) y expresa el volumen en función de $N,\,c_s$ y $\omega_D.$

Obtén la energía media y exprésala en función de la integral

$$D(y) = \frac{3}{y_0^2} \int_0^y \frac{x^3}{e^x - 1} \quad \mathbf{J} \mathbf{x}$$

donde hemos introducido las variables adimensionales $x=\beta\hbar\omega$ y $y=\beta\hbar\omega_D.$

- Calcula la energía media en el límite de alta temperatura $kT\gg\hbar\omega_D$ y comenta el resultado.
- 4. (2 puntos) Una pequeña piedrecita de masa m se mueve bajo la acción de la gravedad en un entorno en el que colisiona frecuentemente con otras piedras. El tiempo medio entre colisiones sufridas por el cuerpo es τ , y consideramos solamente el movimiento en la dirección vertical z.
 - (a) ¿Cuál es la distancia media l que viaja la partícula entre colisiones si suponemos que la componente z de la velocidad es igual a cero después de cada colisión?
 - (b) Calcula la probabilidad de que la partícula se desplace una distancia mayor que l entre dos colisiones.