Derivadas direccionales. Guía de clase. Com 02. 15/4

DERIVADA DIRECCIONAL DE UNA FUNCIÓN ESCALAR DE DOS VARIABLES INDEPENDIENTES (x, y), RESPECTO DEL VECTOR UNITARIO \vec{v}

Introducción geométrica

Se tiene una función escalar con dominio en el plano xy

$$f\colon U\subseteq\mathbb{R}^2 o\mathbb{R}$$
 U es un conjunto abierto no vacío $z=f(x,y)$ $(x_0,y_0)\in U$ $ec v=(v_1,v_2)$ $con \|ec v\|=1$

Recta en el plano en forma vectorial o paramétrica

Ecuación vectorial o paramétrica de la recta en el plano que pasa por el punto (x_0, y_0) en la dirección del vector $\vec{v} = (v_1, v_2)$

$$R: \vec{r}(t) = (x_0, y_0) + t(v_1, v_2) = (x_0 + v_1 t, y_0 + v_2 t) = (x(t), y(t)) \text{ con } t \in \mathbb{R}$$

Nótese que en esta ecuación $\vec{r}(0)=(x_0,y_0)$, punto de cálculo de la derivada direccional.

Derivada direccional

Primeramente se compone $r \operatorname{con} f$, esto es:

Para que esta derivada siga siendo una razón de cambio por unidad de desplazamiento sobre la recta dirección, es que le pediremos a \vec{v} que sea un vector unitario.

$$f \circ \vec{r}(t) = f(\vec{r}(t)) = f(x(t), y(t)) = f(x_0 + v_1 t, y_0 + v_2 t)$$

De esta manera, si $t \neq 0$, $f(\vec{r}(t))$ es la función incrementada un Δt sobre la recta R (recta dirección) a partir de (x_0, y_0) .

Entonces Δz resulta:

$$\Delta z = f(x(t), y(t)) - \underbrace{f(x_0, y_0)}_{f(r(0))} = f(x_0 + v_1 t, y_0 + v_2 t) - f(x_0, y_0)$$

De esta manera el cociente entre los incrementos Δz y Δt , es:

$$\frac{\Delta z}{\Delta t} = \frac{f(x_0 + v_1 t, y_0 + v_2 t) - f(x_0, y_0)}{\Delta t} = m_{S\vec{v}}$$

Aplicando ahora el límite para $\Delta t \rightarrow 0$, queda ($\Delta t = t - t_0 = t$, $t_0 = 0$):

$$\lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(x_0 + v_1 t, y_0 + v_2 t) - f(x_0, y_0)}{\Delta t} = m_{T\vec{v}}$$

Si este límite existe, lo llamaremos la derivada direccional de f respecto del vector \vec{v} en el punto (x_0, y_0) , se lo denota como:

$$f'_{\vec{v}}(x_0, y_0) = f_{\vec{v}}(x_0, y_0) = \frac{\partial f}{\partial \vec{v}}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + v_1 t, y_0 + v_2 t) - f(x_0, y_0)}{t}$$

Nota: si el vector \vec{v} no cumple con la condición de ser unitario y $\vec{v} \neq \vec{0}$, entonces se procede a su normalización antes de aplicarlo en una derivada direccional.

Recuérdese que a un vector no nulo se lo normaliza dividéndolo por su módulo o norma, esto es:

$$\frac{\vec{v}}{\|\vec{v}\|}$$
, es un versor, siendo $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$

Método práctico

$$\begin{split} f_{\vec{v}}(x_0,y_0) &= \lim_{t \to 0} \frac{f(x_0 + v_1 \, t, y_0 + v_2 \, t) - f(x_0,y_0)}{t} \text{ indeterminación del tipo } \frac{0}{0} \\ f_{\vec{v}}(x_0,y_0) &= \lim_{t \to 0} \frac{f(x_0 + v_1 \, t, y_0 + v_2 \, t) - f(x_0,y_0)}{t} \\ &\stackrel{L'H}{\cong} \lim_{t \to 0} \frac{\frac{d}{dt} f(x_0 + v_1 \, t, y_0 + v_2 \, t) - \frac{d}{dt} f(x_0,y_0)}{\frac{d}{dt} t} \\ &\lim_{t \to 0} \frac{\frac{d}{dt} f(x_0 + v_1 \, t, y_0 + v_2 \, t) - 0}{1} = \lim_{t \to 0} \frac{d}{dt} f(x_0 + v_1 \, t, y_0 + v_2 \, t) \end{split}$$

Si no hay indeterminación y existe el límite anterior, nos queda

$$\left(\frac{d}{dt}f(x_0 + v_1 t, y_0 + v_2 t)\right)_{t=0} = f_{\vec{v}}(x_0, y_0)$$

Derivamos respecto de la variable "t" la función f(r(t)) = h(t)

Ejemplo

$$f(x,y) = 3x^2 - xy + y^3$$
$$(x_0, y_0) = (1,1)$$
$$\vec{v} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

$$R: r(t) = (x_0, y_0) + t \; (v_1, v_2) = (x_0 + v_1 \; t, y_0 + v_2 \; t) = \left(x(t), y(t)\right) \; \; \text{con} \; \; t \in \mathbb{R}$$

$$r(t) = \left(\underbrace{1 + \frac{\sqrt{2}}{2}t}_{x}, \underbrace{1 + \frac{\sqrt{2}}{2}t}_{y}\right) = \left(x(t), y(t)\right)$$

$$f(r(t)) = 3\left(1 + \frac{\sqrt{2}}{2}t\right)^2 - \left(1 + \frac{\sqrt{2}}{2}t\right)\left(1 + \frac{\sqrt{2}}{2}t\right) + \left(1 + \frac{\sqrt{2}}{2}t\right)^3 = h(t)$$

$$f_{\vec{v}}(x_0, y_0) = \left(\frac{d}{dt}f(x_0 + v_1 t, y_0 + v_2 t)\right)_{t=0}$$

$$\frac{d}{dt}f\big(r(t)\big)$$

Finalmente

$$\left(\frac{d}{dt}f(r(t))\right)_{t=0} = f_{\vec{v}}(x_0, y_0)$$