Коваленко В.Е. каф. ПрЭ 2021г. ОЭиЭ.

Лекция 3 Транзисторы.

Биполярныетранзисторы. Схему включения диодов транзисторов. Выпрямители. Основные характеристики, условно графические обозначения полупроводниковых приборов.

Биполярный транзистор

Биполярный транзистор — это полупроводниковый прибор, состоящий из трех чередующихся областей полупроводника с различным типом

Рис. Биполярный транзистор n-p-n- типа: а- принцип действия; б- условное обозначение

Переход между эмиттером и базой называют первым или эмитерным переходом. Переход между базой и коллектором называют вторым или коллекторным переходом.

К переходу БЭ прикладывают прямое напряжение $E_{\rm БЭ}$, под действием которого электроны n-области эмиттера устремляются в базу, создавая ток эмиттера. Концентрацию примесей в эмиттере делают во много раз больше, чем в базе, а саму базу по возможности тоньше. Поэтому лишь незначительная часть (1...5%) «испущенных» эмиттером электронов рекомбинируют с дырками базы. Большая же часть электронов, миновав узкую (доли микрона) область базы, «собирается» коллекторным напряжением $E_{\rm k}$, представляющим обратное напряжение для перехода БК, и, устремясь к плюсу внешнего источника $E_{\rm k}$, создает коллекторный ток, протекающий по нагрузке $R_{\rm H}$.

Электроны, рекомбинировавшие с дырками базы, составляют ток базы $I_{\rm E}$. Ток коллектора, таким образом, определяется током эмиттера за вычетом тока базы:

$$I_{\rm K}=I_{\rm 9}-I_{\rm E}=\alpha I_{\rm 9},$$

 $\alpha = 0,95...0,98$ — коэффициент передачи тока эмиттера.

Конструктивно изготавливают так структуру что бы большее число носителей проходило в коллектор (транзистор n-p-n- типа)т. о. коэффициент передачи тока эмиттера стремиться к единице.

Рис. 6 Биполярный транзистор p-n-p-транзистор а— принцип действия; условное обозначение

Различают три режима работы транзистора:

- 1) режим отсечки когда оба перехода закрыты;
- 2) режим насыщения оба перехода открыты;
- 3) Рабочих режима различают два:
 - а) прямой рабочий режим первый открыт, второй закрыт;
 - б) инверсный режим первый закрыт, второй открыт.

Схема с общей базой

$$U_{\scriptscriptstyle \rm KB} = E_{\scriptscriptstyle \rm K} - U_{\scriptscriptstyle \rm BMX} = E_{\scriptscriptstyle \rm K} - I_{\scriptscriptstyle \rm K} R_{\scriptscriptstyle \rm H}.$$

Для оценки работы транзистора и его усилительных свойств в различных схемах включения, принято характеризовать его свойства коэффициентами усиления и значением входного сопротивления. Различают три вида коэффициентов усиления:

Коэффициент усиление по току $K_I = \Delta I_{Bblx} / \Delta I_{Bx}$ Коэффициент усиление по напряжению $K_U = \Delta U_{Bblx} / \Delta U_{Bx}$ Коэффициент усиление по мощности $K_P = K_I K_U$

Для схемы с общей базой входной ток это ток эмиттера, а входное напряжение это напряжение эмиттер база. Выходной ток это ток коллектора, выходное напряжение это напряжение на нагрузке Rн. Величина входного сопротивления определяется как отношение изменения входного напряжения к изменению входного тока: $R_{\rm Bx} = \Delta U_{\rm B\,x}/\Delta I_{\rm Bx}$. Входное сопротивление любого усилителя приводит к искажению входного сигнала. Любой реальный источник сигнала обладает

некоторым внутренним сопротивлением и при подключении его к усилителю образуется делитель напряжения, состоящий из внутреннего сопротивления источника и входного сопротивления усилителя. Поэтому чем выше входное сопротивление усилителя, тем большая часть сигнала будет выделяться на этом сопротивлении и усиливаться и тем меньшая его часть будет падать на внутреннем сопротивлении самого источника.

Так как коэффициент передачи тока эмиттера определяется как $\alpha = \mathbf{I}_{K}/\mathbf{I}_{\Im}$, то с учетом того, что для схемы с ОБ ток эмиттера является входным током, а ток коллектора — выходным, коэффициент усиления по току будет равен:

$$K_{IB} = \Delta I_{Bix} / \Delta I_{Bx} = \Delta I_K / \Delta I_{3} = 0.95...0.99$$

(Индекс «Б» в обозначении K_{IB} показывает, что коэффициент характеризует работу схемы с ОБ.)

Так как входным напряжением является прямое для эмиттерного перехода напряжение $U_{\text{ЭБ}}$, а входным током — ток эмиттера, то входное сопротивление определится как

$$R_{\text{\tiny BXB}} = \Delta U_{\text{\tiny BX}} / \Delta I_{\text{\tiny BX}} = \Delta U_{\text{\tiny BB}} / \Delta I_{\text{\tiny B}};$$

и составляет обычно единицы — десятки Ом. Очевидно, что чем мощнее транзистор, тем больше будет ток эмиттера и тем меньше его входное сопротивление.

Коэффициент усиления по напряжению в схеме с ОБ равен:

$$K_{U\!S} = \frac{\Delta U_{_{\rm BLIX}}}{\Delta U_{_{\rm BX}}} = \frac{\Delta I_{_{\rm BLIX}} R_{_{\!\! H}}}{\Delta I_{_{\rm BX}} R_{_{\!\! BXS}}} \approx \frac{R_{_{\!\! H}}}{R_{_{\!\! BXS}}},$$

т. е. определяется соотношением сопротивлений нагрузки и входного. Таким образом, коэффициент K_{UE} может достигать 1000.

Коэффициент усиления по мощности определяется как произведение коэффициентов усиления по току и напряжению:

$$K_{Pb} = K_{Ib}K_{Ub} = \alpha \frac{R_{H}}{R_{axb}} \approx \frac{R_{H}}{R_{axb}}$$

таким образом, он тоже определяется соотношением сопротивлений. Так как коэффициент усиления схемы с ОБ по току K_{IB} оказывается меньше единицы, она применения не нашла.

Схема с общим эмиттером

Схема с общим эмиттером (ОЭ) представлена на рис.

Транзистор NPN этой схеме работает так же, как и в схеме с ОБ. Характерным признаком схемы с ОЭ является то, что нагрузка располагается в коллекторной

Рис. 1.11. Схема включения транзистора с общим эмиттером (a); типовое изображение в схемах (б)

Для схемы с ОЭ, входным сигналом является ток базы и напряжение между базой и эмиттером, а выходными величинами — коллекторный ток I_K и напряжение на нагрузке $U_{\text{вых.}} = I_{\text{к}} \, R_{\text{н}}$.

Транзистор в схеме с ОЭ характеризуется коэффициентом передачи тока

$$\beta = \Delta I_{K}/\Delta I_{B}$$

имеющим значения β =10... 100, который связан с коэффициентом а для схемы с ОБ соотношением:

$$\beta = \frac{\alpha}{1-\alpha}$$

Коэффициент в называют коэффициентом передачи тока базы.

Оценим значения коэффициентов усиления схемы с ОЭ (их обозначают индексом «Э»).

Выходным током, как и в схеме с ОБ, является ток I_{κ} , протекающий по нагрузке, а входным током (в отличие от схемы с ОБ) — ток базы $1_{\rm E}$, и коэффициент усиления по току схемы с ОЭ равен

$$K_{I9} = \frac{\Delta I_{\text{BMX}}}{\Delta I_{\text{BX}}} = \frac{\Delta I_{\text{K}}}{\Delta I_{\text{B}}} = \beta.$$

При α = 0,98 K_{I3} =0,98/ (1 — 0,98) = 50, т.е. нескольким десяткам, что многократно превосходит аналогичный коэффициент у схемы с ОБ. Коэффициент усиления по напряжению в схеме с ОЭ соизмерим с таким же коэффициентом у схемы с ОБ:

$$K_{U3} = \frac{\Delta U_{\text{BMX}}}{\Delta U_{\text{BX}}} = \frac{\Delta I_{\text{K}} R_{\text{H}}}{\Delta I_{\text{B}} R_{\text{BX}}} = \beta \frac{R_{\text{H}}}{R_{\text{BX}}}$$

По коэффициенту усиления по мощности схема с ОЭ за счет значительно большего коэффициента усиления по току также многократно превосходит схему с ОБ:

$$K_{P9} = K_{U9} K_{P9} = \beta^2 \frac{R_{H}}{R_{H}}$$

и зависит от коэффициента передачи тока базы и отношения сопротивления нагрузки к входному сопротивлению.

Входное сопротивление в схеме с ОЭ также значительно выше, чем в схеме с ОБ, так как в схеме с ОЭ входным током является ток базы, а в схеме с ОБ — во

много раз больший ток эмиттера:

$$R_{\rm ax} = \frac{\Delta U_{\rm E3}}{\Delta I_{\rm E}}$$

Величина входного сопротивления в схеме с ОЭ составляет сотни ом. Благодаря отмеченным свойствам схема с ОЭ нашла очень широкое применение.

Схема с общим коллектором

В схеме с общим коллектором (ОК) нагрузка включена не в цепь коллектора, а в цепь эмиттера. Входным в этой схеме является напряжение между базой и корпусом, а выходным — между эмиттером и корпусом (рис.).

Чтобы транзистор мог работать в активном режиме, необходимо, чтобы входное напряжение в этой схеме было выше напряжения на нагрузке на величину напряжения на U_{53} :

$$U_{\text{\tiny BMX}} = U_{\text{\tiny BMX}} + U_{\text{\tiny E3}}.$$

В связи с этим значения входных напряжений в схеме с ОК оказываются в сотни раз больше, чем в схемах с ОБ и ОЭ.

Другой особенностью схемы с ОК является отсутствие усиления по напряжению. Как видно из схемы, $U_{\text{вых}}$ отличается от U_{Bx} на падение напряжения $U_{\text{БЭ}}$, которое при открытом транзисторе составляет доли вольт.

Поэтому схема с ОК получила название «эмиттерный повторитель». Коэффициент усиления по напряжению схемы с ОК

$$K_{\nu\kappa} \approx 1.$$

Оценим усилительные свойства схемы. Входным током по-прежнему является ток базы ${\bf I_{\rm F}}$ Поэтому коэффициент усиления по току с учетом того, что $\beta = \Delta {\bf I_K} / \Delta {\bf I_{\rm F}}$, равен:

$$K_{K} = \frac{\Delta I_{3}}{\Delta I_{5}} = \frac{\Delta I_{K} + \Delta I_{5}}{\Delta I_{5}} = \frac{\Delta I_{K}}{\Delta I_{5}} + 1 = \beta + 1,$$

Оценим величину входного сопротивления схемы с ОК. Входное напряжение для схемы складывается из небольшого падения напряжения на база—эмиттером переходе и падения напряжения на нагрузке, а входным

током является ток базы. Поэтому

$$R_{\rm BX} = \frac{\Delta U_{\rm BX}}{\Delta I_{\rm BX}} = \frac{\Delta U_{\rm BB} + \Delta I_{\rm B} R_{\rm H}}{\Delta I_{\rm B}}.$$

Поскольку напряжение U_{E9} значительно меньше напряжения на нагрузке, им можно пренебречь. Тогда, учитывая взаимосвязь между током эмиттера и током базы $1_9 = \beta 1_6$, величина входного сопротивления запишется как

$$R_{\rm BX} \approx \frac{\beta \Delta I_{\rm B} R_{\rm H}}{\Delta I_{\rm B}} \approx \beta R_{\rm H} \ .$$

Таким образом, входное сопротивление схемы с ОК многократно превосходит входное сопротивление схем с ОЭ и ОБ и составляет десятки кОм.

Благодаря отмеченным свойствам эмиттерный повторитель используют в качестве выходного каскада устройств для усиления сигнала по мощности, когда усиление его по напряжению уже достигнуто предыдущими каскадами. Схема с ОК обеспечивает усиление по мощности т.е. в десятки раз.

$$K_{PK} = K_{UK} K_{JK} \approx (\beta + 1)1 \approx \beta$$

Выходной каскад предназначен для отдачи заданной мощности в нагрузку, сопротивление которой тоже задано. Так как мощность поступает от источника питания усилителя через выходной каскад, его КПД должен быть высоким, иначе устройство будет неэкономичным, а габаритные размеры (поверхность охлаждения) раздутыми для отвода выделяющейся в каскаде теплоты. Если у входных каскадов нелинейность транзистора не оказывает влияния ввиду малости усиливаемых сигналов, то у выходных каскадов диапазон изменения сигнала большой и нелинейность транзистора необходимо учитывать. С этой целью строят так называемую передаточную характеристику. Передаточная характеристика — это зависимость выходного тока каскада (тока коллектора или эмиттера) от входного напряжения. В ней учитываются нелинейность входной и выходной характеристик транзистора и изменения напряжения, падающего на самом транзисторе в зависимости от выходного тока.

Параметры основных схем включение транзисторов.

Параметр	Схема ОЭ	Схема ОБ	Слеми ОК
k,	Десятки — сотни	Немного меньше еди- ницы	Десятки — сотни
k _u	Десятки — сотни	Десятки — сотни	Немного меньше единицы
k p	Сотни — десятки тысяч	Десятки — сотни	Десятки — сотни
R _{BX}	Сотни ом — единицы килоом	Единицы — десятки ом	Десятки — сотни кило- ом
R _{Bых}	Единицы — десятки килоом	Сотни килоом – едини- цы мегаом	Сотни ом — единицы килоом
Φ азовый сдвиг между $U_{ m BMX}$ и $U_{ m BX}$	180°	0	0

Входные и выходные характеристики схемы с ОЭ

Работу схемы обычно описывают с помощью входных и выходных характеристик транзистора в той или иной схеме включения. Для схемы с ОЭ входная характеристика — это зависимость входного тока от напряжения на входе схемы, т. е. $I_{\mathcal{E}} = f(U_{\mathcal{E}})$ при фиксированных значениях напряжения коллектор — эмиттер $(U_{\mathcal{E}}) = const$).

Рис.. Выходные (a) и входная (б) характеристики транзистора в схеме с общим эмиттером

Выходные характеристики — это зависимости выходного тока, т. е. тока коллектора, от падения напряжения между коллектором и эмиттером транзистора $I_K = f(U_{E\ni})$ при токе базы $I_E = const.$

Входная характеристика по существу повторяет вид характеристики диода при подаче прямого напряжения (рис. б). С ростом напряжения U_{E3} входная характеристика будет незначительно смещаться вправо. Прямая на графиках носит название нагрузочной и строится по точкам короткого замыкания и холостого хода используя источник ЭДС и сопротивления колектора.

Входные и выходные характеристики схемы с ОБ

Для схемы с ОБ входная характеристика — это зависимость входного тока от напряжения на входе схемы, т. е. $I_9 = f(U \ni E)$ при фиксированных значениях напряжения коллектор — эмиттер ($U_{KE} = const$).

Выходные характеристики — это зависимости выходного тока, т. е. тока коллектора, от падения напряжения между коллектором и базой транзистора $I_K = f(U_{KB})$ при токе базы $I_3 = const.$

Рис. Вольтамперные характеристики транзистора в схеме с ОБ

Как видно зависимости похожи на характеристики с ОЭ. В выходных только имеется участок с отрицательным напряжением.

Пример графического анализа усиления транзистора используя входные и выходные характеристики.

Рис. Графический анализ режима усиления транзистора.

Справа приведен графики входного тока базы(синусоиды тока) при разных рабочих точках A,B,C.

И слева форма выходного тока коллектора(синусоиды тока) для этих точек. Видно что при смещения в точках В и С появляются искажения.

Различаюм в зависимости от выбора рабочей точки транзистора несколько режимов работы усилителей. Это режимы A,B,C и D. Остановимся более подробно на режимах A и B. Режим C и D это режимы свойственные для работы соответственно генераторов и цифровых ключей.

Режим А — это режим, при котором исходная рабочая точка располагается

примерно на середине линейного участка характеристики

Но КПД каскада составляет лишь 20—30%, нелинейные искажения минимальны

 ${\sf Peжим}\ {\sf B}$ — это режим, при котором исходная рабочая точка совпадает с началом координат

КПД достигает 60—70%,

форма усиливаемого сигнала слишком искажена.

Рис. Режимы работа усилительного каскада: a — режим B : δ — режим

Пример реализации усилителя в режиме B, это двухтактный эмиттерный повторитель. В схеме два транзистора с разной полярностью каждый из которых усиливает лишь одну часть полуволны. За счёт того что смещение на транзисторы подано близко к нулю, при отсутствии сигнала потребление будет отсутствовать или мало. Отсюда и высокое КПД работы этого режима.

Рис. Двухтактный эмиттерный повторитель.

Математические модели биполярного транзистора

Приведем пример простейшей математической модели биполярного транзистора - модель Эберса—Молла c двумя источниками. На схеме указаны зависимости источников тока $i'_{_{\mathcal{S}}}$ и $i'_{_{\mathcal{K}}}$.

Используя первый закон Кирхгофа, можно записать:

$$i_{3} = i_{3s} \cdot \left(e^{\frac{u_{6s}}{\varphi_{T}}} - 1\right) - \alpha_{\text{CT I}} \cdot i_{\kappa s} \cdot \left(e^{\frac{u_{6\kappa}}{\varphi_{T}}} - 1\right),$$

$$i_{\kappa} = \alpha_{\rm ct} \cdot i_{\rm gs} \cdot \left(e^{\frac{u_{69}}{\varphi_T}} - 1\right) - i_{\kappa s} \cdot \left(e^{\frac{u_{6\kappa}}{\varphi_T}} - 1\right).$$