全国信息学奥林匹克竞赛(NOIP2018)模拟赛

提高组

(选手务必仔细内容本页内容)

一、题目概况

中文题目名称	平抛	数字虫	最小路径
英文题目与子目录名	horizontal	bug	path
可执行文件名	horizontal	bug	path
输入文件名	horizontal.in	bug.in	path.in
输出文件名	horizontal.out	bug.out	path.out
每个测试点时限	1秒	1秒	1秒
测试点数目	20	20	20
每个测试点分值	5	5	5
附加样例文件	有	有	有
结果比较方式	浮点数比较(Special Judge)		全文比较(过滤文
			末空格及行尾空
			格)
题目类型	传统	传统	传统
运行内存上限	256MB	256MB	256MB

二、提交源程序文件名

对于 C++语言	horizontal.cpp	bug.cpp	path.cpp
对于 C 语言	horizontal.c	bug.c	path.c
对于 pascal 语言	horizontal.pas	bug.pas	path.pas

三、编译命令(不含任何优化开关)

对于 C++语言	g++ -o horizontal	g++ -o bug bug.cpp -	g++ -o path path.cpp -
	horizontal.cpp -lm	lm	lm
对于 C 语言	gcc -o horizontal	gcc -o bug bug.cpp -	gcc -o path path.cpp -
	horizontal.cpp -lm	lm	lm
对于 pascal 语言	fpc horizontal.pas	fpc bug.pas	fpc path.pas

注意事项:

- 1. 文件名(程序名和输入出文件)必须使用英文小写。
- 2. C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 全校统一测评采用的机器配置为: CPU Intel Core i5-7200U @2.71GHz,内存 4GB,上述时限以此配置为准
- 4. 只提供 Linux 格式附加样例文件。
- 5. 特别提示: 测评在 NOI Linux 下进行。

1.平抛

(horizontal.cpp/c/pas)

【问题描述】

一质点从一定高度水平抛出,经过一系列圆形挡板的干扰,最终落在低地面上。挡板分为两种类型:类型1只改变质点的速度方向,不改变质点的速度大小;类型2只改变质点的速度大小,不改变质点的速度方向。当质点与挡板接触时,其竖直方向上的分速度将立即变为零,水平方向上的分速度不变;与此同时,挡板将立即移动,使圆心位于质点与挡板接触的位置。你需要计算质点落地(质点的高度等于零时落地)时的位置、速度。

【输入】

第一行,三个个实数 x_0 、 y_0 、 z_0 ,表示质点的初始位置。-1000 $\leq x_0$ 、 $y_0 \leq$ 1000,0 $< z_0$ \leq 1000

第二行,两个实数 v_x 、 v_y ,表示质点初始时在x、y方向上的分速度。-1000 $\leq v_x$ 、 $v_y \leq$ 1000。

第三行,一个整数 n,表示挡板的数量。

接下来 n 行,每行包含四个实数x、y、z、r,分别表示挡板的位置、半径;之后是一个整数 t,表示挡板的类型,之后是一个实数d,当 t=1 时,d表示速度方向的该变量, $d \in (0,2\pi)$;当 t=2 时,d表示速度大小的该变量, $d \in [-10^3,10^3]$ 。保证所有挡板不相交。-1000 $\leq x$ 、y、 $r \leq 1000$, $0 < z \leq 1000$ 。

【输出】

第一行,两个个实数,表示质点落地的位置(x,y)。

第二行,三个实数,表示质点落地时的速度(用x, y, z方向的分速度表示,负号表示与坐标轴正方向相反)。

如果小球在某一瞬间速度小于 10⁻³,则只输出 "Error"(不含引号)。

【输入输出样例】

horizontal1.in	horizontal1.out
0.0 0.0 10.0	-1.7979695 -0.0000000
1.0 0.0	1.0000000 0.0000000 1.9798990
3	
2.0 0.0 5.1 3.0 1 3.141592654	
3.2 5.0 5.2 0.3 2 -5.0	
-3.0 0.0 0.2 1.0 2 -2.0	
horizontal2.in(见选手目录)	horizontal2.out(见选手目录)
horizontal3.in(见选手目录)	horizontal3.out(见选手目录)

【子仟务】

测试点	n	其他性质 1	其他性质 2
1	0	无	有
2	0	无	无
3	1	有	有
4	1	有	无
5	≤50	有	有
6~9	≤500	有	有
10~12	≤1000	有	有
13、14	≤10000	无	有

15、16	≤10000	无	无
17~20	≤100000	无	无

其他性质 1: 保证各个挡板的高度(z 坐标)不同

其他性质 2: 保证质点的 y 坐标始终为 0

对于每一个测试点:

与答案的差的绝对值 (按误差最大的数字计算)	得分
≤10 ⁻³	5
≤10 -²	4.5
≤10 ⁻¹	3
≤1	1
>1	0

【提示】

重力加速度 g=9.8m/s² 题目中的坐标系如图所示:

2.数字虫

(bug.cpp/c/pas)

【问题描述】

在一个广场上散布着一些数字。每个数字由 1~5 组成,且小于 10⁵⁰⁰。一只小虫从其中任意一个数字出发,途径所有数字,最终回到原来的数字。小虫每从一个数字爬行到另一个数字都会有一定代价,收获的大小被定义为两个数字的相似度除以它们间的距离,除起点外,同一个数字不能重复经过。请你计算小虫获得最小的代价。

为了计算两个数字的相似度,我们添加若干个 0 使两个数字长度相等,在每一格位置,两个数字匹配的相似度如下表所示:

	0	1	2	3	4	5	
0	-100	-1	-2	-8	-16	-32	
1	-1	6	-2	-4	-1	-2	
2	-2	-2	7	2	3	-7	
3	-8	-4	2	8	1	5	
4	-16	-1	3	1	9	2	•
5	-32	-2	-7	5	2	15	

按照这种规则 123、32 可以变化为 123、302,相似度=-4-2+2=-4,当然也可以变化为 123、032,这样计算出的相似度为 3,或者变化为 1230、0032,算得的相似度同样是 3。事实上,其他变化得到的相似度均不大于 3。由于同样两个数字经过不同的变化得到的相似度不同,我们规定,两个数字的相似度为所有变化中最大的相似度。这样,两个由 1~5 组成的数字的相似度是唯一确定的。我们还规定,任何两个数字之间的相似度大于等于 0,于是 1、2 之间的相似度等于 0,而不是-1。

【输入】

第一行,一个整数 n,表示数字的个数。

接下来 n 行,每行包含一个整数 m 和两个实数 x,y,表示数字的值和数字的位置,保证两个数字不在同一个位置。

【输出】

一个浮点数,表示小虫的最小代价。

【输入输出样例】

bug1.out
26.1213203436
bug2.out
0.0291401702
bug3.out(见选手目录)
bug4.out(见选手目录)

样例1说明:

第 1、2 个数字间的收获为 3÷1=3

第 2、3 个数字间的收获为 3÷ $\sqrt{2}$ =2.1213203436

第 1、3 个数字间的收获为 21÷1=21

【子任务】

测试点	n	m	х,у
1、2	≤ 3	≤10 ¹⁰	-100≤x,y≤100
3、4、5	≤ 5		
6、7	≤ 3	≤10 ³⁰	
8、9、10	≪5	≤10 ³⁰	
11、12	≤10	≤10 ¹⁰	
13、14、15	≤10	≤10 ¹⁰⁰	
16~20	≤16	≤10 ⁵⁰⁰	

对于每一个测试点:

与答案的差的绝对值	得分
≤10 -6	5
≤10-5	4.5
≤10 ⁻⁴	4
≤10 ⁻³	3
≤10 -²	2
≤10 -1	1
>10-1	0

3.最小路径

(path.cpp/c/pas)

【问题描述】

我们非常熟悉图论中的"最短路径",这里的最短的意思是边的权重和最小,假如我们改变一下条件,规定两个点之间的"最小路径"为两个点之间的所有路径中,边的权重的最大值最小的路径。

给定一张图和一系列询问,对于每一个询问,请回答询问中的两个点之间的最小路径。

【输入】

第一行,两个整数,n、p,表示节点的数量和边的数量。

接下来 p 行,每行包含三个整数,s、t、r,表示点 s、点 t 之间存在一条权重为 r 的无向边。

第 p+2 行,一个整数 q,表示询问的个数。

接下来q行,每行有两个整数f、g,表示询问点f、点g间的最小路径。

【输出】

对于每一条询问,输出一行,含一个整数,最小路径中权重最大的边的大小。如果两个点之间无法互相到达,输出-1。

【输入输出样例】

path1.in	path1.out
6 6	6
125	6
143	5
5 4 6	
262	
5 3 7	
3 6 10	
3	
15	
51	
6 4	
path2.in(见选手目录)	path2.out(见选手目录)
path3.in(见选手目录)	path3.out(见选手目录)

样例说明:

询问一: 1->4->5 询问二: 5->4->1 询问三: 6->2->1->4

【子任务】

测试点	n	р	q	其他约束条件
1、2	≤100	≤200	≤1000	无
3~5	≤10000	≤50000	≤10	无
6、7	≤1000	≤2000	≤100	无
8、9	≤10000	≤50000	≤30000	图退化成一条链
10、11	≤10000	≤50000	≤1000	图中存在某个节点,与其
				他节点通过一条边直接相
				连
12~15	≤10000	≤50000	≤10000	保证图是联通的
16~20	≤10000	≤50000	≤30000	无

1≤r≤10⁸。