Part I: Moving towards a sustainable fisheries framework for BC herring: data, models & alternative assumptions.

Part II: Stock assessment and management advice for BC Herring stocks (2011/2012)

Steven Martell, Jake Schweigert, Jaclyn Cleary, Vivian Haist

University of British Columbia martell.steve@gmail.com

August 26, 2011

Contents

- Sustainable Fisheries Framework
 - HCAM Review
 - Harvest Control Rule
 - Precautionary Approach
- 2 Part
 - Analytical Methods
 - Input Data
 - Model description
 - Simulation testing
 - SOG Comparison
 - Spawning biomass in major areas
 - Discussion

June 2010: HCAM Review Workshop

Terms of Reference (paraphrased)

- ullet Herring spawn index, is q=1 assumption appropriate?
- HCR, should CUTOFF change in concert with B₀ updates?
- What is the best way to parameterize natural mortality?
- Are the priors appropriate and is uncertainty appropriately reflected in assessments?
- Preference for selectivity/availability parameterization.
- Should stock assessments be conducted on a risk-neutral or risk-averse basis?
- Appropriate assumptions for an operating model (MSE).

Terms of Reference (paraphrased)

- Herring spawn index, is q = 1 assumption appropriate?
- HCR, should CUTOFF change in concert with B₀ updates?
- What is the best way to parameterize natural mortality?
- Are the priors appropriate and is uncertainty appropriately reflected in assessments?
- Preference for selectivity/availability parameterization.
- Should stock assessments be conducted on a risk-neutral or risk-averse basis?
- Appropriate assumptions for an operating model (MSE).

- **①** Assumption that q = 1 was inappropriate.
- Output
 © CUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating B_0 and B_{MSY} is appropriate.
- **(a)** Recruitment variation σ_R should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- 6 Science advice should be risk neutral.

The model parameterization of q could potentially have the single greatest effect on estimation of management parameters, and as such further investigation is recommended.

- ① Assumption that q = 1 was inappropriate.
- OUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating B_0 and B_{MSY} is appropriate.
- ⓐ Recruitment variation σ_R should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- 6 Science advice should be risk neutral.

If the intention is that the CUTOFF represents $25\%~B_0$ then it should be updated in conjunction with stock assessment updates.

- ① Assumption that q = 1 was inappropriate.
- 2 CUTOFFS can be fixed or updated annually.
- **3** A model based approach to estimating B_0 and B_{MSY} is appropriate.
- ① Recruitment variation σ_R should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.

Estimates of MSY based reference points are sensitive to the assumed form of the recruitment model and allocation to gears with different selectivities.

- ① Assumption that q = 1 was inappropriate
- 2 CUTOFFS can be fixed or updated annually.
- (a) A model based approach to estimating B_0 and B_{MSY} is appropriate.
- **3** Recruitment variation σ_R should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral

Note that MLE estimates of σ_R are biased; values from the joint posterior distribution are unbiased.

- ① Assumption that q = 1 was inappropriate.
- 2 CUTOFFS can be fixed or updated annually.
- ② A model based approach to estimating B_0 and B_{MSY} is appropriate.
- **a** Recruitment variation σ_R should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.

- ① Assumption that q = 1 was inappropriate.
- 2 CUTOFFS can be fixed or updated annually.
- ③ A model based approach to estimating B_0 and B_{MSY} is appropriate.
- ⓐ Recruitment variation σ_R should be estimated within the model.
- Issues regarding estimation of selectivity, natural mortality and q should be explored.
- Science advice should be risk neutral.

- CUTOFF set at $0.25 B_0$ (last updated in 1996).
- 20% exploitation rate.
- Forecast based on poor, average, good recruitment.

Figure: HCR for herring stocks.

Harvest Strategy Compliant with Precautionary Approach

Figure: Fisheries management framework consistent with a precautionary approach.

Key elements for the new framework

Reference points

- Limit Reference Point (LRP) & Upper Stock Reference (USR) requires knowledge of stock productivity and population scale.
- Removal Rate requires knowledge of stock productivity.
- MSY-based reference points require a priori allocation to different gears.

Risk & Decision making

 Onus on being able to reliably determine stock status (informative data).

Contents

- Sustainable Fisheries Framework
 - HCAM Review
 - Harvest Control Rule
 - Precautionary Approach
- Part I
 - Analytical Methods
 - Input Data
 - Model description
 - Simulation testing
 - SOG Comparison
 - Spawning biomass in major areas
 - Discussion

Part I

•000000000000000

The input data for $^{i}SCA_{M}$ is the same as HCAM:

- Catch by gear,
- Spawn survey index,
- Age-composition data for all gears,
- Empirical weight-at-age data.

Integrated Statistical Catch Age Model ('SCAM)

- The model is based on a statistical catch-age framework first developed by Fournier and Archibald (1982).
- Flexible options for modelling selectivity, natural mortality, & survey catchability.
- Integrated framework: joint estimation of policy parameters (e.g., reference pionts).
- Model is implemented in AD Model Builder ADMB Project (2009), and the source code is maintained at: http://code.google.com/p/iscam-project/

Assumptions I

Error distributions

- ullet Observation errors in catch are lognormal & σ is known.
- Errors in spawn survey are lognormal & σ is unknown.
- Recruitment deviations are lognormal & σ is unknown.
- Age-composition residuals follow a multivariate-logistic distribution.

Selectivity

- Seine gears: asymptotic and time invariant.
- Gillnet gear: parametric logistic function with weight anomalies as a covariate.

Assumptions II

Structural assumptions

- Age-2 recruitment with a Beverton-Holt model.
- Fishing & natural mortality occur simultaneously (Baranov catch equation).
- Natural mortality is age-independent.
- Natural mortality can vary over time (random walk, $\sigma = 0.1$).
- 100% of the total mortality occurs before spawning.
- Fecundity is proportional to mature biomass.

Equilibrium & MSY-based reference points

- ullet B_o is based on average M and average fecundity-at-age.
- B_{MSY} is based on average (M) and fecundity in terminal year.

Objective function

Major components of the objective function

- Likelihoods for data.
- 2 Likelihoods for structural assumptions.
- Openation Phased penalties to ensure regular solution.
- Prior densities for model parameters.

Likelihoods for data

- Normal density functions for:
 - catch residuals (log-scale) with fixed σ^2 ,
 - spawn survey residuals (log-scale) with estimated σ^2 .

- Multivariate logistic function for age-composition evaluated at the conditional MLE of σ^2 .
 - age-proportions < 2% are pooled into adjacent age class.

Likelihoods for data

- Normal density functions for:
 - catch residuals (log-scale) with fixed σ^2 ,
 - spawn survey residuals (log-scale) with estimated σ^2 .

- Multivariate logistic function for age-composition evaluated at the conditional MLE of σ^2 .
 - ullet age-proportions < 2% are pooled into adjacent age class.

Structural Assumptions

Stock-recruitment

$$\ln \ell = n \ln(\tau) + \frac{\sum_{t} \delta_{t}^{2}}{2\tau^{2}},$$

$$\delta_{t} = \ln(N_{2,t}) - \ln(f(SB_{t}))$$

Natural mortality (random walk)

$$M_{t+1} = M_t \exp(\varphi_t)$$

$$\ln \ell = n \ln(\sigma) + \frac{\sum_{t=2}^{T} (\varphi_t - \varphi_{t-1})^2}{2\sigma^2}$$

Structural Assumptions

Stock-recruitment

$$\ln \ell = n \ln(\tau) + \frac{\sum_{t} \delta_{t}^{2}}{2\tau^{2}},$$

$$\delta_{t} = \ln(N_{2,t}) - \ln(f(SB_{t}))$$

Natural mortality (random walk)

$$M_{t+1} = M_t \exp(\varphi_t)$$

$$\ln \ell = n \ln(\sigma) + \frac{\sum_{t=2}^{T} (\varphi_t - \varphi_{t-1})^2}{2\sigma^2}$$

Phased Penalties

• Mean fishing mortality rate:

$$\ln(\sigma_{\bar{F}}) + \frac{(\ln(\bar{F}) - \ln(0.2))^2}{2\sigma_{\bar{F}}^2}, \quad \sigma_{\bar{F}}^{(1-3)} = 0.05, \quad \sigma_{\bar{F}}^{(4)} = 2.0$$

Deviations in average recruitment:

$$\ln(\sigma_{\omega}) + \frac{\sum_{t} \omega_{t}^{2}}{2\sigma_{\omega}^{2}}, \quad \sigma_{\omega}^{(1-3)} = 0.0707, \quad \sigma_{\omega}^{(4)} = 2.0$$

$$\ln(\sigma_{\omega}) + \frac{\sum_{t} \ddot{\omega}_{t}^{2}}{2\sigma_{\omega}^{2}}, \quad \sigma_{\omega}^{(1-3)} = 0.0707, \quad \sigma_{\omega}^{(4)} = 2.0$$

Phased Penalties

Mean fishing mortality rate:

$$\ln(\sigma_{\bar{F}}) + \frac{(\ln(\bar{F}) - \ln(0.2))^2}{2\sigma_{\bar{F}}^2}, \quad \sigma_{\bar{F}}^{(1-3)} = 0.05, \quad \sigma_{\bar{F}}^{(4)} = 2.0$$

• Deviations in average recruitment:

$$\ln(\sigma_{\omega}) + \frac{\sum_{t} \omega_{t}^{2}}{2\sigma_{\omega}^{2}}, \quad \sigma_{\omega}^{(1-3)} = 0.0707, \quad \sigma_{\omega}^{(4)} = 2.0$$

$$\ln(\sigma_{\ddot{\omega}}) + \frac{\sum_{t} \ddot{\omega}_{t}^{2}}{2\sigma_{\ddot{\omega}}^{2}}, \quad \sigma_{\ddot{\omega}}^{(1-3)} = 0.0707, \quad \sigma_{\ddot{\omega}}^{(4)} = 2.0$$

Priors I

Table: Prior distributions for key model parameters.

Parameter	Distribution	P1	P2
$ln(R_0)$	Uniform	-5.0	15
Steepness	Beta	10.0	4.925373
Natural mortality $(In(M))$	Normal	-0.7985077	0.2
Rbar	Uniform	-5.0	15
Rinit	Uniform	-5.0	15
Variance ratio (ho)	Beta	17.08696	39.0559
Precision	Gamma	25.0	28.75
Survey $ln(q)$	Normal	-0.569	0.274

Priors II

Figure: Prior densities for leading model parameters.

Simulation testing

Estimation performance with perfect information.

Simulation testing

Estimation performance with perfect information.

Simulation testing

Estimation performance with perfect information.

Precision & Bias

Bias ratios for key model parameters based on 50 simulated data sets.

Precision & Bias

Bias ratios for key model parameters based on 50 simulated data sets.

Objective: set up ${}^{i}SCA_{M} \sim HCAM \& compare$.

- Likelihood for age-comps.
- Pooling of age-proportions less than 2% into adjacent cohort.
- Conditional MLE for survey q.
- Estimation of total variance and variance partitioning parameter (ϑ, ρ) .
- Prior for steepness ($h \sim \text{Beta in } ^i \text{SCA}_M$)

Objective: set up ${}^{i}SCA_{M} \sim HCAM \& compare$.

- Likelihood for age-comps.
- Pooling of age-proportions less than 2% into adjacent cohort.
- Conditional MLE for survey q.
- Estimation of total variance and variance partitioning parameter (ϑ, ρ) .
- Prior for steepness ($h \sim \text{Beta in } ^i \text{SCA}_{\text{M}}$)

Objective: set up i SCA_M \sim HCAM & compare.

- Likelihood for age-comps.
- Pooling of age-proportions less than 2% into adjacent cohort.
- Conditional MLE for survey q.
- Estimation of total variance and variance partitioning parameter (ϑ, ρ) .
- Prior for steepness ($h \sim \text{Beta in } ^i \text{SCA}_M$)

Objective: set up ${}^{i}SCA_{M} \sim HCAM \& compare$.

- Likelihood for age-comps.
- Pooling of age-proportions less than 2% into adjacent cohort.
- Conditional MLE for survey q.
- Estimation of total variance and variance partitioning parameter (ϑ, ρ) .
- Prior for steepness ($h \sim \text{Beta in } ^i \text{SCA}_M$)

SOG Spawning biomass

Figure: Total biomass at the start of the year, spawning biomass after fishing. HCAM (2010) spawning biomass shown in red.

SOG Spawning biomass

Figure: Observed and predicted spawn survey data for surface (black) and dive (red) surveys.

Spawning biomass in HG

Spawning biomass in PRD

Spawning biomass in CC

Spawning biomass in SOG

- Slight bias in MSY reference points and steepness; likely due to lack of contrast in simulated data.
- Despite differences between assessment platforms there is a remarkable correspondence in spawning biomass estimates.
- Significant differences in:
 - weighting of age-composition data,
 - pooling of age-composition samples (<2%),
 - ullet conditional MLE for dive survey q with a very informative prior,
 - prior for steepness.
- MSY based reference points require unbiased estimates of selectivity parameters, and allocation of catch to each gear must be established a priori.

- Slight bias in MSY reference points and steepness; likely due to lack of contrast in simulated data.
- Despite differences between assessment platforms there is a remarkable correspondence in spawning biomass estimates.
- Significant differences in:
 - weighting of age-composition data,
 - pooling of age-composition samples (<2%),
 - ullet conditional MLE for dive survey q with a very informative prior,
 - prior for steepness.
- MSY based reference points require unbiased estimates of selectivity parameters, and allocation of catch to each gear must be established a priori.

- Slight bias in MSY reference points and steepness; likely due to lack of contrast in simulated data.
- Despite differences between assessment platforms there is a remarkable correspondence in spawning biomass estimates.
- Significant differences in:
 - weighting of age-composition data,
 - pooling of age-composition samples (<2%),
 - ullet conditional MLE for dive survey q with a very informative prior,
 - prior for steepness.
- MSY based reference points require unbiased estimates of selectivity parameters, and allocation of catch to each gear must be established a priori.

- Slight bias in MSY reference points and steepness; likely due to lack of contrast in simulated data.
- Despite differences between assessment platforms there is a remarkable correspondence in spawning biomass estimates.
- Significant differences in:
 - weighting of age-composition data,
 - pooling of age-composition samples (<2%),
 - ullet conditional MLE for dive survey q with a very informative prior,
 - prior for steepness.
- MSY based reference points require unbiased estimates of selectivity parameters, and allocation of catch to each gear must be established a priori.

Bibliography

ADMB Project (2009). 2009 AD Model Builder: Automatic Differentiation Model Builder. Developed by David Fournier and freely available from admb-project.org.

Fournier, D. and Archibald, C. (1982). A general theory for analyzing catch at age data. *Canadian Journal of Fisheries and Aquatic Sciences*, 39(8):1195–1207.

