Now we consider the most general case, where (after completing the square to remove cross terms and linear terms) we have $Ax^2+By^2+Cz^2=J$ and $A,B,C\neq 0$.

First consider the case where A,B,C have the same sign:

Example: Describe and sketch the set satisfying $x^2 + y^2 + z^2 = 1$.

 $z^2+y^2+z^2=(length of position vector)^2$ So $z^2+y^2+z^2=1$ describes all points of distance 1 from the origin

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 1, Page 27 of 35

Example: Describe and sketch the set satisfying $x^2 + y^2 + 4z^2 = 4$.

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 1, Page 28 of 35

Example: Describe and sketch the set satisfying $z^2 = x^2 + y^2$ (i.e. J = 0).

cross-sections:

$$\chi = 0: \chi^2 = y^2$$

z=y or z=-y.

$$Z = E$$
: $C^2 = x^2 + y^2$ circle of radius C

Regions bounded by surfaces and inequalities

Example: Describe and sketch the larger region bounded by $\frac{1}{4}x^2 + y^2 + z^2 = 1$

and $z=-\frac{1}{5}$, and describe it using inequalities.

plane.

There are 2 regions bounded by the ellipsoid and the plane: inside the ellipsoid and above/below the plane,

The larger region is inside the ellipsoid and above the plane.

Another way to tell the signs of the inequalities (< or >): we know from the sketch that (0,0,0) is in our region.

At (0,0,0): 4×2+y2+z2=0 <1 and z=0

points: $(\pm 2,0,0)$ $(0,\pm 1,0)$ $(0,0,\pm 1)$

x

Degenerate cases

Example: Describe and sketch the set satisfying $x^2 + y^2 + z^2 + 1 = 0$.

This is never satisfied, because the left hand side is a sum of squares, so it cannot be negative.

So this equation describes the empty set.

y

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 1, Page 34 of 35

Example: Describe and sketch the set in \mathbb{R}^3 satisfying $x^2-y^2=0$.

$$(x+y)(x-y)=0$$

1+y=0 or x-y=0

- union of two planes through the origin, with normals (1,1,0) and (1,-1,0)

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 1, Page 35 of 35