Week 9_Qureshi, Nahid

QUESTION 1

Use a weather forecast website, and utilize the psychometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

The weather today in Piacenza Sunday, December 08 2019													
	05:00	07:00	10:00	14:00	18:00	7:00 pm	21:00						
	400	400											
	Fog	Fog	PartlyCloud	Cloud	Cloud	Cloud	Cloud						
Effective temperature	4 ° C	4 ° C	7 ° C	9 ° C	8 ° C	8 ° C	7 ° C						
Perceived temperature	3 ° C	4 ° C	6 ° C	9 ° C	8 ° C	8 ° C	7 ° C 0 mm						
Rainfall	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm							
Humidity	99 %	100 %	92 %	86 %	92 %	94 %	95 %						
Atmospheric pressure	1021 hPa	1021 hPa	1021 hPa	1019 hPa	1017 hPa	1017 hPa	1016 hPa						

Time: 21:00

The relative humidity ϕ = 95%

The total air pressure P= 1016 hPa, i.e. 101.6 kPa

The temperature in kelvin scale T=230 K

The humidity ratio i.e. the absolute humidity =0.00575

The web bulb temperature T_{wb} = 6.5°C

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{P_v}{P - P_v} = 0.00575$$

$$P_v = .930 \ kPa$$

$$\phi = \frac{m_v}{m_g} = 95\%$$

for ideal gases : $m = \frac{PV}{R_{sp.}T}$, for water vapour $R_{sp.} = 0.4615$

introduce the pressure of water vapor P_v = .9306 kPa and define the volume of aula a is V, here we have:

$$m_v = \frac{.930 * V}{0.4615 * (279.65)} = 7.206 * 10^{-3} V$$

Calculate the maximum water vapor m_g

$$m_g = \frac{m_v}{95\%} = 7.585 * 10^{-3} V$$

QUESTION 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

	BRINDISI, Italy													WMO#:	163200		
	Lat	40.65N	Long:	17.95E	Elev	: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual Heating and Humidification Design Conditions																
															DOLLID	1	
	Coldest Heating DB			Humidification DP/MCDB and HR 99.6% 99%				Coldest month WS/MCDB 0.4% 1%					MCWS/PCWD to 99.6% DB				
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	ws	MCDB	ws	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	'	
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Cooling, Dehumidification, and Enthalpy Design Conditions																
	Hottest	Hottest Month		.4%	Cooling DB/MCWB			Evaporation WB/MCDB 0.4% 1%				2% MCWS		PCWD	ĺ		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB U.	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	ĺ
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	i
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific	ation DP/N	MCDB and HF	2		Enthalpy/MCDB Houn						1		
		0.4%		D-G17G111G111	1%		2%						1% 2%			8 to 4 &	i
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
Extreme Annual Design Conditions																	
	Extr	eme Annual	WS	Extreme Extreme Annual DB Max Mean Standard deviation			n-Year Return Period Values of Extreme n=5 years n=10 years n=20 years						n=50		ĺ		
	1% 2.5% 5%		WB	Min	Max	Min	Max	Min	Max	Min	years Max	Min	years Max	Min	years Max		
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

ANSWER

Internal gains

The sensible cooling load from internal gains

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

The latent cooling load from internal gains

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

Infiltration,

a house with a good construction quality , unit leakage area $A_{ul}=1.4\frac{cm^2}{m^2}$

Exposed surface= Wall area + roof area

$$A_{es} = 200 + 144 = 344 m^2$$

 $A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 cm^2$

The cooling design temperature $T_{cooling}$ = 24°C and

heating design temperature $T_{heating} = 20$ °C

$$\Delta T_{cooling} = 31.1^{\circ}\text{C} - 24^{\circ}\text{C} = 7.1^{\circ}\text{C} = 7.1\text{K}$$

$$\Delta T_{heating} = 20$$
°C - (-4.1)°C = 24.1 °C = 24.1K

From table
$$IDF_{heating} = 0.073 \frac{L}{s.cm^2}$$

$$IDF_{cooling} = 0.033 \frac{L}{s. cm^2}$$

Infilteration airflow rate,

$$Q_i = A_L IDF$$

where

 A_L = building effective leakage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient $C_D = 1$, cm²

IDF = infiltration driving force, $L/(s \cdot cm^2)$

$$\dot{Q}_{infiltration_{heating}} = A_L \times IDF = 481.6 * 0.073 = 35.157 \frac{L}{s}$$

$$\dot{Q}_{infiltration_{cooling}} = A_L \times IDF = 481.6 * 0.033 = 15.893 \frac{L}{s}$$

The required ventilation flow rate

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

where

 Q_v = required ventilation flow rate, L/s

 A_{cf} = building conditioned floor area, m²

 N_{br} = number of bedrooms (not less than 1)

$$\dot{Q}_v = 0.05 A_{cf} + 3.5 (N_{br} + 1) = .05*200+3.5*2 = 17 \frac{L}{s}$$

$$\dot{Q}_{i-v,heating} = \dot{Q}_{infiltration_{heating}} + \dot{Q}_v = 35.157 \frac{L}{s} + 17 \frac{L}{s} = 52.157 \frac{L}{s}$$

$$\dot{Q}_{i-v,cooling} = \dot{Q}_{infiltration_{cooling}} + \dot{Q}_v = 15.893 \frac{L}{s} + 17 \frac{L}{s} = 32.893 \frac{L}{s}$$

Given
$$C_{sensible} = 1.23$$
 , $C_{latent} = 3010$, $\Delta\omega_{Cooling} = 0.0039$

$$\begin{split} \dot{q}_{inf-ventilation_{cooling_{sensible}}} &= C_{sensible} \, \dot{Q}_{i-v,cooling} \, \Delta T_{Cooling} = 1.23 \, *32.893 \, *7.1 = 287.25 \, W \\ \dot{q}_{inf-ventilation_{cooling_{latent}}} &= C_{latent} \, \dot{Q}_{i-v,cooling} \, \Delta \omega_{cooling} = 3010 \, *32.893 \, *0.0039 = 386.13 \, W \\ \dot{q}_{inf-ventilation_{heatingg_{sensible}}} &= C_{sensible} \, \dot{Q}_{i-v,heating} \, \Delta T_{heating} = 1.23 \, *52.157 \, *24.1 = 1546.09 \, W \end{split}$$