eMasters in **Communication Systems** Prof. Aditya Jagannatham

Elective Module: Advanced ML Techniques

Chapter 4

Support Vector Machines

Classification

- Classification is an important tool in ML.
 - Determines to which class an observation belongs

Binary Classification

- Binary Classification
 - ⇒ 2 CLASSES

Binary Classification

- Binary Classification
 - ⇒ 2 Classes

Binary Classification

- Binary Classification
 - ⇒ 2 Classes

Applications

- Image segmentation
 - Classify pixels as belonging to Background & Foreground.

Applications

- Image segmentation
 - Classify pixels as belonging to foreground or background

- Linear classifier corresponds to a Mymphile in N dimensions
 - Easy to determine and analyse!

- Compute
- Linear classifier corresponds to a hyperplane in N dimensions
 - Easy to determine and analyse!

 $a_1 \chi_1 + a_2 \chi_2 + \cdots + a_N \chi_N = b$

• General structure of a linear classifier

$$a_1x_1+a_2x_2y_0$$
 is $a_1x_1+a_2x_2=b$ $a_1x_1+a_2x_2=b$ $a_1x_1+a_2x_2+\cdots+a_Nx_N>b$ $a_1x_1+a_2x_2+\cdots+a_Nx_N>b$ halfspace. Halfspace.

• General structure of a linear classifier is is $C_0: \bar{\mathbf{a}}^T \bar{\mathbf{x}} \geq k$ $C_1:\bar{\mathbf{a}}^T\bar{\mathbf{x}} < b$

Disease detection

Linear classifier

- How to determine the linear classifier
- Consider the training set

$$\frac{M \text{ points}}{\overline{\chi}_{1}, \overline{\chi}_{2}, \dots, \overline{\chi}_{M}} \in C_{0}. \text{ Training data }.$$

$$\overline{\chi}_{M+1}, \overline{\chi}_{M+2}, \dots, \overline{\chi}_{2M} \in C_{1}$$

M points.

Mpoints. Co

- How to determine the linear classifier
- Consider the training set

$$\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, \dots, \bar{\mathbf{x}}_M \in C_0$$
 $\bar{\mathbf{x}}_{M+1}, \bar{\mathbf{x}}_{M+2}, \dots, \bar{\mathbf{x}}_{2M} \in C_1$

M points.

• The classifier can be trained as

• Need to determine \bar{a} and b that characterize the linear classifier

• The <u>classifier</u> can be trained as

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 0, 1 \le i \le M$$
 $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le 0, M + 1 \le i \le 2M$

• Need to determine \bar{a} and b that characterize the linear classifier

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 0, 1 \le i \le M$$

 $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le 0, M + 1 \le i \le 2M$

What is the problem with this formulation?

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 0, 1 \le i \le M$$
 $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le 0, M + 1 \le i \le 2M$

• The above problem has a trivial solution!

$$\bar{\mathbf{a}} = 0$$
 and $b = 0$

$$a = 0$$
 $b = 0$
Trivial Solution

Therefore, problem has to be modified

To avoid trivial Solution

Modified optimization problem C_{∞}

• The modified optimization problem is

• The modified optimization problem is

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1, 1 \le i \le M$$

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1, M + 1 \le i \le 2M$$

- Determines two <u>Parallel hyperplanes</u>.
- Separates both classes by a Sub

- Determines two parallel hyperplanes
- Separates both classes by a slab

• The width of the slab is termed the MRGIN

• Best classifier <u>Maximuze the Margin</u>
between the two classes

Maximum
Margin
Maximum
Maxim
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum

- The width of the slab is termed the margin
- Best classifier maximizes the margin between the two classes

$$||\bar{a}|| = \sqrt{\alpha_1^2 + \alpha_2^2 + \cdots + \alpha_N^2}$$

 How to determine the margin between two hyperplanes?

$$\overline{A}^{T}\overline{z} = C_{1}$$

$$\overline{A}^{T}\overline{z} = C_{2}$$

Distance =
$$\frac{|C_1 - C_2|}{\|\Delta\|}$$

• How to determine the margin between two hyperplanes?

$$\mathbf{\bar{a}}^T \mathbf{\bar{x}} = c_1$$
 $\mathbf{\bar{a}}^T \mathbf{\bar{x}} = c_2$

Distance between the two hyperplanes is

Distance between the two hyperplanes is

$$|c_1 - c_2|$$
 $|\bar{\mathbf{a}}|$

Example

What is the distance between the

Consider the two hyperplanes

Consider the two hyperplanes

$$C_0: \bar{\mathbf{a}}^T \bar{\mathbf{x}} = 1 - \mathbf{b}$$

$$C_0: \bar{\mathbf{a}}^T \bar{\mathbf{x}} = 1 - \mathbf{b}$$

$$C_1: \bar{\mathbf{a}}^T \bar{\mathbf{x}} = -1 - \mathbf{b}$$

Negative Hyperplane

 Distance between the hyperplanes or the margin is

Maximum margin classifier

• The problem to determine classifierwex with maximum margin is $\sqrt{\alpha_1^2 + \alpha_2^2 + \cdots + \alpha_N^2}$

min
$$||\bar{a}||$$
.

S.t. $||\bar{a}||$ $||\bar{a}||$

Maximum margin classifier

• The problem to determine classifier objective with maximum margin is

with
$$\frac{\mathbf{max|mum margin}}{\mathbf{max}}$$
 is $\mathbf{max} = \frac{\mathbf{z}}{\|\mathbf{a}\|_2}$ with $\mathbf{a}\|_2$ with $\mathbf{z} = \mathbf{z}$ and $\mathbf{z} = \mathbf{z}$ with $\mathbf{z} = \mathbf{z}$ and $\mathbf{z} = \mathbf{z}$ with $\mathbf{z} = \mathbf{z}$ and $\mathbf{z} = \mathbf{z$

Support vector machine

- The above problem is convex and can be readily solved
- This classifier is termed a Support Vector Machine (SVM)

Efficiently:

• When the points are not meny separable Classification Ω × 0 5

When the points are not <u>linearly</u>
 <u>separable</u>

One can employ an approximate

classifier

Tolevale Some classification error

• Since the points are not <u>linearly</u>
<u>separable</u> one needs to tolerate some
error

• The Approximate Classifier minimizes the Classification Error

• The Approximate Classifier minimizes the classification error

Lve hyperplane

Approximate classifier U; > 0 } lack has to be non-negative.

• Mathematically this can be represented

as

Mathematically this can be represented

as

 $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1 - u_i, 1 \le i \le M$ $\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1 + v_i, M + 1 \le i \le 2M$

• $u_i \ge 0$, $v_i \ge 0$, are (S|ack) Variables

- Relutation - Deviation

Approximate classifier Extent to which they punchat sla $u_i \ge 0, v_i \ge 0$, are slack variables 1) erate some Classification error DET Classifier 2 Ihere are some points in margin. × 0

Linearprogram

• Hence, the 'SOFT' classifier problem is given as minimize total Slack

 $\bar{a}^T \bar{\chi}_{i} + b \leq -|+V_{i}, i = M+1,..., 2M$

Incar classification constraints. Convex optimization ordless.

Hence, the <u>'SOFT' classifier</u> problem is

given as

$$\min \sum_{i=1}^{N} u_i + \sum_{i=1}^{N} v_i$$

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \ge 1 - u_i, 1 \le i \le M$$

$$\bar{\mathbf{a}}^T \bar{\mathbf{x}}_i + b \le -1 + v_i, M + 1 \le i \le 2M/$$

$$u_i \ge 0, v_i \ge 0$$

Instructors may use this white area (14.5 cm / 25.4 cm) for the text. Three options provided below for the font size.

Font: Avenir (Book), Size: 32, Colour: Dark Grey

Font: Avenir (Book), Size: 28, Colour: Dark Grey

Font: Avenir (Book), Size: 24, Colour: Dark Grey

Do not use the space below.