Universidad de Panamá

Facultad de informática, electrónica y comunicación

Escuela de informática

Licenciatura de ingeniería en informática

Lab 2

Modelado y Simulación

Profesor:

Ayax Mendoza

Curso:

Modelos y simulación

Autor:

Yaravis Cedeño / 8-999-2453

Fecha de entrega:

2 de octubre 2024

LABORATORIO 1 MODELADO Y SIMULACIÓN

INTRODUCCIÓN

Este informe presenta el desarrollo de un laboratorio enfocado en la aplicación de técnicas de simulación discreta para modelar y evaluar sistemas de colas, manufactura y servicios. A lo largo del proceso, se utilizarán distribuciones probabilísticas comunes, como las distribuciones exponenciales, normales, triangulares y uniformes, para simular y analizar diferentes escenarios. Los ejercicios propuestos permitirán la implementación de modelos de simulación utilizando el software Arena y otros entornos, abordando casos prácticos como sistemas de atención bancaria, concursos de inscripción y líneas de ensamblaje. Los resultados obtenidos proporcionarán información valiosa sobre el rendimiento de los sistemas en cuanto a tiempos de espera, utilización de recursos y eficiencia.

EJERCICOS PROPUESTOS

Ejercicio 1

Se considera la llegada de usuarios a un locutorio, para realizar una llamada, el tiempo entre llegada de clientes obedece a una distribución exponencial con media de 5 minutos. Los clientes pueden realizar una llamada con un tiempo de distribución exponencial con media de 7 minutos. Una vez que son atendidos los clientes pasan a retirarse del Centro de Atención al cliente. Simular por 480 min. (8horas).

Paso 1: Configurar la llegada de clientes Inserta un módulo que represente la llegada de los clientes. Configura el tiempo de llegada entre ellos utilizando una distribución exponencial con un promedio de 5 minutos.

Imagen 1

Configuración de la llegada de clientes

Paso 2: Configurar el proceso de servicio Inserta un módulo que represente el proceso de atención al cliente. Configura el tiempo de servicio usando distribución exponencial con media de 7 minutos.

Configuración de proceso de atención al cliente

Paso 3: Configurar la salida Utiliza un módulo que indique que los clientes salen del sistema después de ser atendidos (dispose) y completar su transacción.

Configuración de la asignación del dispose a salida de los clientes

Paso 4: Para especificar el tiempo de simulación, seleccione en el menú RUN >> SETUP >> REPLICATION PARAMETERS>> REPLICATION LENGTH >> 8, y en la especificar en las unidades de tiempo horas.

Imagen 4

Configuración de duración de tiempo de la simulación

Paso 5: Asignación de imágenes

• Clientes:

- 1. Haz doble clic en el módulo de llegada de clientes.
- 2. En la ventana de propiedades, selecciona la pestaña "Animate".
- 3. Busca el campo "Entity Picture" y elige "Person" u otra imagen de la lista para representar a los clientes que llegan en el botón de open abre la carpeta de peoples.

Imagen 5

Animar con imágenes de personas

Locutorio

- 1. Haga doble clic en el módulo Process (locutorio).
- 2. Para la imagen personalizada, haz clic en el botón "Resource" y carga la imagen desde tu computadora al dar click en el botón de "add" de la derecha y pega la imagen y cierra la pestaña automáticamente queda la imagen añadida, luego añade la imagen a los 4 estados (ldle, busy, inactive, failed).

Imagen 6

Configuración de la animación para el locutorio.

Paso 6: Ejecución de la simulación con el modelo sin errores, selecciona "Go" en el menú RUN. Arena iniciará la simulación y mostrará en tiempo real cómo los clientes ingresan, son atendidos y salen del sistema.

Imagen 7 Ejecución de la simulación

Ejercicio 2

Considere que cierto grupo de estudiantes deciden participar en un concurso de artes, en el cual se abrieron inscripciones para dos tipos de diciplinas: el dibujo y la escultura. Se conoce que la llegada de los participantes obedece a una distribución exponencial de media 7 minutos, por

registros anteriores se conoce que en un 90% los estudiantes se inscribió en el curso de dibujo y el resto en escultura; el proceso de inscripción de los participantes en el área de dibujo toma un tiempo aproximado a una distribución triangular de parámetros (3,5,10) minutos y en el proceso de inscripción en escultura es de un tiempo normal de media 15 minutos y desviación estándar de 5 minutos. Evalúe el sistema si se conoce que existen secretarias para cada una de las disciplinas.

Imagen 1

Configuración de la llegada de Participantes

Imagen 2

Configuración de la decisión de 90% a dibujo y el resto a escultura

Imagen 3

Configuración del Proceso de dibujo

Imagen 4

Configuración del Proceso de Escultura

Imagen 5

Salida de participantes con un dispose

Imagen 6 *Ejecución de la simulación*

Por sugerencias de los usuarios, se ha evaluado el aperturar el curso de Música, evalúe el sistema, sabiendo que pueden inscribirse 20% de los de pintura a música (es decir pintura quedaría con 70%), y que, además, existe una posibilidad de 30% además que los alumnos que se inscribieron en pintura, también se inscriban en música. El tiempo de inscripción para esta disciplina corresponde a una distribución uniforme entre 4 y 10 minutos. Se desea conocer el número de inscritos por disciplina. evalúe que secretaria, de las dos que inscriben en las otras disciplinas se haría cargo de la inscripción de la nueva disciplina.

Imagen 7

Decisión Para tomar 20% de los de dibujo a música.

Decisión Para la posibilidad de 30% de los que estudian dibujo también se inscriban en música.

Imagen 9

Configuración del proceso Música.

Imagen 10

Ejecución de la simulación

Ejercicio 3

Un banco tiene 3 estaciones de servicio: El primero atiende las operaciones de depósitos y retiros de dinero que realizan los clientes; la segunda estación de servicio es para atender las solicitudes de financiamiento personal y la última es para atención de microempresa. Los clientes llegan al banco, exponencialmente con media de 3.5minutos Los clientes que llegan al banco a realizar operaciones de depósitos o retiros de dinero son atendidos exponencialmente con una media de 4,5 minutos, mientras que los otros clientes son atendidos en razón a un mínimo 5 y máximo de 15 minutos en forma uniforme (financiamiento personal y atención microempresa). Por estudios realizados se sabe que los clientes que llegan a realizar operaciones de dinero es un 70% de los clientes, el 15% para financiamientos y el restante para consultas de microempresa. (En caso de las estaciones, las líneas de espera son independientes y cada estación cuenta con 2 servidores con igual probabilidades de uso) Implemente un modelo de simulación y en base a la información obtenida, determine:

- Número de Personal Atendido en cada estación
- Eficiencia de las Estaciones:
- Tiempos promedios de Atención
- Tiempo de Simulación 2000 minutos

Solución:

Imagen 11

Configuración en el create de llegada de clientes

Se considera en el decide N-way by chance. Por estudios realizados se sabe que los clientes que llegan a realizar operaciones de dinero es un 70% de los clientes, el 15% para financiamientos y el restante para consultas de microempresa.

Imagen 12

Decisión entre procesos

Imagen 13

Proceso de depósito y retiro

Imagen 14

Proceso de financiamiento personal

Proceso de microempresa

Imagen 16

Configuración de duración de la simulación

Añadimos un gráfico de animación PLOT en la pestaña anímate un chart=plot

Imagen 17

Gráfico añadido en pantalla

Se procede a ingresar las series de los datos.

Pasos para ingresar Datos para la serie

Serie 1

Reemplazar Name : Nro Clientes Operaciones

Expresion: NQ(oper_pagos_y_retiros.queue)

Serie 2

Reemplazar Name : Asesor Financiamiento

Expresion: NQ(financiamiento.queue)

Serie 3

Reemplazar Name : Asesor Micromepresa

Expresion: NQ(microempresa.queue)

Parametros de Grafico: Axes >> Scale >> Maxinum == 2000

Majorincrement === 100

Imagen 18

Configuración de las 3 serie del grafico

Imagen 19

Configuración para valores en el eje x y

Imagen 20

Ejecución de la simulación

En el gráfico podemos apreciar que, en el Servicio de Operaciones de Pagos y Retiros, se presenta la mayor cola.

Ejercicio 4

En un proceso de ensamblaje de bicicletas en el cual se procesan aproximadamente 600 bicicletas diarias. El área de ensamblado consta básicamente de dos operaciones ensamblaje e inspección, estas son ensambladas por un operario que demora aproximadamente UNIF (10,20) minutos, luego son inspeccionadas por otro operario que demora un TRIA (3,5,8) para determinar si son devueltas, necesitan un ajuste adicional o están correctas (listas para la venta). El ajuste lo realiza otro operario que demora UNIF (5,10) minutos. Estadísticamente el resultado de la inspección es la siguiente:

Resultado de la inspección	Probabilidad	Valor Acumulado de la probabilidad		
Son devueltas	5%	5%	0.05	
ajuste adicional	20%	25%	0.25	
Correctas	75%	100%	1.0	

Si el costo de ensamble determina un costo es de \$10 por bicicleta y el de Ajuste incrementa este costo a razón de \$5 más, Además se conoce que las bicicletas llegan al área de ensamblado paquetes de seis, en forma uniforme entre 30 y 50 minutos. ¿Cuál sería el costo de ensamblaje Total y Costo de ensamblaje promedio de una bicicleta que termine en ventas?

Solución:

Imagen 21Creación de la llegada de bicicletas

Proceso de ensamblado, primer operario

Imagen 23

Proceso de inspección, operario 2

Imagen 24

Proceso de ajuste, operario 3

Utilizaremos asignaciones para determinar el costo de las bicicletas.

Imagen 25

Asignación para el costo total de ensamble

Imagen 26

Asignación para cantidad de bici ajustadas

Imagen 27

Cálculo por unidad

Imagen 28

Decisión para devueltas, ajuste adicional y correctas

Creamos campos de variables, contadores en tiempo real.

Imagen 29

Conteo de bicicletas ajustadas y correctas

Imagen 30

Contador de bicicletas devueltas

Imagen 31

Conteo de costo total de ensamble y costo unitario

Ejecución del sistema

Ejercicio 5

Un banco piensa abrir una ventanilla de servicio en automóvil para clientes. La gerencia estima que los clientes llegan a una tasa de 12 por hora, distribuido exponencialmente. El tiempo que necesita el cajero para atender a un cliente también está distribuido exponencialmente con media de tres minutos. Simular el sistema para la llegada de 20 clientes y encuentre:

- a) La utilización del cajero
- b) El número promedio en la cola
- c) Numero promedio en el sistema
- d) Tiempo promedio de espera en la cola
- e) Tiempo promedio de espera en el sistema (incluyendo el servicio)

Imagen 33

Create de la llegada de clientes

Contador para los clientes y captura la hora actual como hora de llegada (tnow)

Imagen 35

Proceso del cajero y su tiempo de actividad

Imagen 36

Asignación que captura la hora actual como hora de Finalización del servicio

Record que registra el tiempo promedio en el sistema.

Imagen 38

Creación de file para colocar la dirección del archivo y el área antes seleccionada.

Imagen 39

ReadWrite para escribir la salida en un archivo de Excel.

Imagen 39

Ejecución de la simulación

Imagen 40

Resultados en Excel y summary en bloc de notas

A	В	L	U	LAB2_EJER5: Bloc de notas					
Nro cliente	T_LLEGADA	T_FIN_SER	Tiempo en Sistema	Archivo Edición Formato Ver Ayuda	TALLY VAR	TABLEC			
					TALLT VAIL	TABLES			
1	0.00	0.022	0.02	Identifier	Average	Half Width	Minimum	Maximum	Observations
2	4.15	0.003	4.16						
3	7.40	0.006	7.40	T.PROM EN SISTEMA	139.80	(Insuf)	.00000	287.97	20
4	9.08	0.040	9.12	clientes.VATime clientes.NVATime	.05316	(Insuf) (Insuf)	.00301	.18264	20 20
5	43.35	0.092	43.44	clientes.WaitTime	.00000	(Insuf)	.00000	.00000	20
6	66.38	0.086	66.47	clientes.TranTime clientes.OtherTime	.00000	(Insuf) (Insuf)	.00000	.00000	20 20
7	68.08		68.08	clientes.JotnerIlme clientes.TotalTime CAJEROS.Queue.WaitingTime	.05316	(Insuf)	.00301	.18264	20
8	105.31	0.038	105.35		.00000	(Insuf)	.00000	.00000	20
9	112.88	0.010	112.89		DISCRETE-CHANGE	VARIABLES			
10	117.11			-					
11	119.50			Identifier	Average	Half Width	Minimum	Maximum	Final Value
12	144.21								
13	215.46			clientes.WIP Cajero.NumberBusy	.00369	(Insuf) (Insuf)	.00000	1.0000	.00000
14	231.82			Cajero.Numberousy Cajero.NumberScheduled Cajero.Utilization CAJEROS.Queue.NumberInQueue	1.0000	(Insuf)	1.0000	1.0000	1.0000
15	235.21				.00369	(Insuf) (Insuf)	.00000	1.0000	.00000
16	235.42			CASENOS.Queue.Numberinqueue	.00000	(111501)	.00000	.00000	.00000
17	253.28				OUTPUTS				
18	268.69			Identifier	Value				
19	270.82			- <u></u>					
20	287.98			clientes.NumberIn	20.000				
∠0	207.90	0.079	200.00	clientes.NumberOut Cajero.NumberSeized Cajero.ScheduledUtilization	20.000				
	139.81	0.0532	139.86		20.000 .00369				
	135.01	0.0332	139.00	<					

SE PUDO OBSERVAR EN LOS RESULTADOS DE AMBAS PARTES EL TIEMPO TOTAL O FINAL DE SERVICIO ES EL MISMO DE 0.0532.

a) La utilización del cajero: 0.00369

b) El número promedio en la cola: 0.0000

c) Numero promedio en el sistema: 139.80

d) Tiempo promedio de espera en la cola:0.0000

e) Tiempo promedio de espera en el sistema (incluyendo el servicio): 0.0532

Ejercicio 6

Se trata de evaluar el Peso total de unas partes que llegan al área de despacho de un almacén al cabo de una hora. Se sabe que las partes llegan al área bajo una distribución uniforme (2,4) minutos y que el peso de cada parte está entre un mínimo de 5 y un máximo de 10 kg. (Distribución uniforme, valor entero).

Create de la llegada de las partes

Create			×
Name:		Entity Type:	
Llegada de partes			/
Time Between Arriv	als		
Type:	Expression:	Units:	
Expression	∨ UNIF(2, 4)	∨ Minutes ∨	/
Entities per Arrival:	Max Arrivals:	First Creation:	
1	Infinite	0.0	
Comment:			
	ОК	Cancel Help	

Imagen 42

Asignación para el peso unitario por pieza y el peso total de las piezas

Imagen 43

Record registra el peso promedio del total de las piezas.

Variables para la visualización del peso total y unitario.

Imagen 45

Configuración para la llegada de las piezas al cabo de una hora.

Imagen 46

Ejecución de la simulación

Ejercicio 7

Con los datos del ejercicio anterior, se conoce que en el área de despacho almacén se separan las partes con pesos mayores a 8 Kg en otro almacén, calcule el número de partes seleccionados.

Imagen 47

Creación del proceso del despachador de almacén

Imagen 48

Decisión para dividir las piezas >=8 kg a otro almacén

Imagen 49

Record para registrar el numero de piezas mayores a 8 kg.

Añadimos otro dispose para almacén 2

Imagen 51

Ejecución del sistema

Ejercicio 8

Simular el proceso de inspección de los partes de televisores HD. Los tiempos entre llegadas de los mismos sigue una distribución uniforme entre 3.5 y 7.5 minutos. La inspección lleva un tiempo que se distribuye según una Uniforme entre 2 y 7 minutos. Tras la inspección, si se detecta algún fallo (ocurre el 15% de las veces), se envía a ser ajustado tras lo cual vuelve a ser inspeccionado. El ajuste lleva un tiempo uniforme entre 20 y 40 minutos. Cuando un televisor pasa la inspección (a la primera o tras varios ajustes), se envía a la sección de empaquetado donde se forman paquetes de 12 unidades, el tiempo de empaquetado es Exponencial con media de 3 minutos. Modelar el sistema y Simular el Sistema por 100 horas.

Imagen 52

Create de la llegada de los televisores

Imagen 53

Proceso de inspección con el tiempo uniforme de 2,7

Imagen 54

Segundo proceso ajuste uniforme 20,40

Batch para unir en grupo de 12 las televisiones

Imagen 56

Proceso de empaquetado en cajas de 12 unidades

Imagen 57

Asignación de tiempo de la simulación

Ejecución de la simulación del sistema

Ejercicio 9

Con respecto al ejemplo anterior, suponga que al llegar a almacén estos se desempaquetan y se forman paquetes de 3 unidades. Modele el sistema.

Imagen 59

Añadimos un separate para separa el paquete de 12 unidades

Imagen 60

Creamos un batch para volver a agrupar las teles en 3

Proceso de desempaquetado y empaquetado

Imagen 62

Actualización del batch del lab anterior a temporary

Imagen 63

Ejecución del sistema

Ejercicio 10

En una empresa de Fabricación de piezas existen 1 torno y 1 taladradora en el área de producción. Según la información suministrada se fabrican dos tipos de piezas (A y B). Los tiempos de procesado en minutos de cada pieza se muestran en la siguiente tabla:

Piezas	Taladradora	Torno
Α	Constante(3)	Uniforme(2,3)
В	-	Uniforme(1,2)

Se sabe además que el tiempo entre llegada de cada pieza tipo A es de 11 minutos y el de los de tipo B sigue una exponencial de media 7 minutos. Luego estas dos piezas son ingresan al proceso de ensamble para formar una pieza C. El ensamblaje es realizado por una maquina ensambladora y que demora un tiempo constante de 2 minutos. Simular la fabricación de piezas tipo A y B y la pieza final C por un periodo de 2000 minutos.

Imagen 64

Create de llegada de la pieza A

Imagen 65

Create de la llegada de la pieza B

Asignación para las variables de la pieza A que utilizaremos en el torno en la sincronización

Imagen 67

Asignación de variables de la pieza B para el torno y la sincronización

Imagen 68

Proceso taladrador con su tiempo constante de 3

Proceso de torno

Imagen 69

Decisión para Distribuir las partes

Imagen 70

Proceso de ensamble de las piezas A y B para creación de pieza C

Tiempo de duración del proceso 2000 minutos.

Run Setup		×			
Run Speed	Establish replication-related options for the current model. Settings include the number of	^			
Run Control	simulation replications to be run, the length of the replication, the start date and time of the				
Reports	imulation, warm-up time length, time units, and the type of initialization to be performed between eplications.				
Project Parameters	Replication Parameters				
Replication Parameters	Number of Replications: 1				
Array Sizes	Start Date and Time: unes . 30 de septiembre de 2024 5:27:48 p. m.				
Arena Visual Designer	Warm-up Period: 0.0 Hours				
	Replication Length: 2000 Minutes				
	Hours Per Day: 24				
	Terminating Condition:				
	Base Time Units: Minutes V				

Imagen 72

Ejecución de la simulación

CONCLUSIÓN

Al concluir la realización de los 10 ejercicios propuestos, se logró adquirir un conocimiento significativo en el uso de la simulación discreta para analizar y optimizar distintos sistemas de colas, manufactura y servicios. También, se comprendió cómo aplicar diversas distribuciones probabilísticas (exponencial, triangular, normal y uniforme) para modelar procesos reales, lo cual permitió identificar patrones de comportamiento y cuellos de botella en diferentes escenarios. El uso del software de simulación facilitó la creación de modelos precisos y la evaluación del rendimiento en sistemas bancarios, procesos de inscripción, líneas de ensamblaje y producción, entre otros.

En general, esta experiencia ha permitido reforzar las habilidades de análisis, modelado y toma de decisiones en contextos operativos complejos, evidenciando la utilidad de la simulación discreta como herramienta para la optimización y mejora continua de procesos en diversos sectores.