Не обошла стороной вычислительная математика и дифференциальные уравнения! Сегодня на уроке мы познакомимся с основами *приближённых вычислений* в этом разделе математического анализа, после чего перед вами приветливо распахнутся толстые-претолстые книги по теме. Ибо вычислительная математика стороной диффуры ещё как не обошла =)

Перечисленные в заголовке методы предназначены для *приближённого* нахождения решений **дифференциальных уравнений**, **систем ДУ**, и краткая постановка наиболее распространённой задачи такова:

Рассмотрим дифференциальное уравнение первого порядка y' = f(x, y), для которого требуется найти *частное решение*, соответствующее начальному условию $f(x_0) = y_0$. Что это значит? Это значит, нам нужно найти функцию $y^* = f(x)$ (предполагается её существование), которая удовлетворяет данному дифф. уравнению, и график которой проходит через точку $M(x_0; y_0)$.

Но вот незадача — переменные в уравнении y' = f(x, y) разделить невозможно. Никакими известными науке способами. А если и возможно, то получается неберущийся интеграл. Однако частное-то решение существует! И здесь на помощь приходят методы приближенных вычислений, которые позволяют с высокой (а зачастую с высочайшей) точностью «сымитировать» функцию $y^* = f(x)$ на некотором промежутке.

Идея методов Эйлера и Рунге-Кутты состоит в том, чтобы заменить фрагмент графика $y^* = f(x)$ ломаной линией, и сейчас мы узнаем, как эта идея реализуется на практике. И не только узнаем, но и непосредственно реализуем =) Начнём с исторически первого и самого простого метода. ...Вы хотите иметь дело со сложным дифференциальным уравнением? Вот и я тоже не хочу:)

Найти частное решение дифференциального уравнения $y' + 2y = x^2$, соответствующее начальному условию y(0) = 1, методом Эйлера на отрезке [0; 1] с шагом h = 0, 1. Построить таблицу и график приближённого решения.

Разбираемся. Во-первых, перед нами обычное **линейное уравнение**, которое можно решить стандартными способами, и поэтому очень трудно устоять перед соблазном сразу же найти точное решение:

 $y^* = \frac{3}{4}e^{-2x} + \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4}$ – желающие могут выполнить проверку и убедиться, что данная функция удовлетворяет начальному условию y(0) = 1 и является корнем уравнения $y' + 2y = x^2$.

Что нужно сделать? Нужно найти и построить *поманую*, которая приближает график функции $y^* = \frac{3}{4}e^{-2x} + \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4}$ на промежутке [0;1]. Поскольку длина этого промежутка равна единице, а шаг составляет h=0,1, то наша *поманая* будет состоять из 10 отрезков: $M_0M_1, M_1M_2, M_2M_3, ..., M_9M_{10}$

причём, точка $M_0(x_0; y_0) = M_0(0; 1)$ уже известна — она соответствует начальному условию y(0) = 1. Кроме того, очевидны «иксовые» координаты других точек: $M_1(0,1; y_1), M_2(0,2; y_2), M_3(0,3; y_3), ..., M_9(0,9; y_9), M_{10}(1; y_{10})$

Осталось найти $y_1, y_2, y_3, ..., y_9, y_{10}$. Никакого **дифференцирования** и **интегрирования** — только сложение и умножение! Каждое следующее «игрековое» значение получается из предыдущего по простой *рекуррентной* формуле: $y_{i+1} = y_i + h \cdot f(x_i; y_i)$

Представим дифференциальное уравнение $y' + 2y = x^2$ в виде y' = f(x, y): $y' = x^2 - 2y$

Таким образом: $f(x, y) = x^2 - 2y$

«Раскручиваемся» от начального условия y(0) = 1:

$$x_0 = 0$$
, $y_0 = 1$
 $f(x_0; y_0) = f(0; 1) = 0^2 - 2 \cdot 1 = -2$
 $hf(x_0; y_0) = 0.1 \cdot (-2) = -0.2$

Понеслось:

$$\begin{aligned} x_1 &= 0.1, \quad y_1 = y_0 + hf(x_0; y_0) = 1 - 0.2 = 0.8 \\ f(x_1; y_1) &= f(0.1; 0.8) = (0.1)^2 - 2 \cdot 0.8 = 0.01 - 1.6 = -1.59 \\ hf(x_1; y_1) &= 0.1 \cdot (-1.59) = -0.159 \\ x_2 &= 0.2, \quad y_2 = y_1 + hf(x_1; y_1) = 0.8 - 0.159 = 0.641 \\ f(x_2; y_2) &= f(0.2; 0.641) = (0.2)^2 - 2 \cdot 0.641 = 0.04 - 1.282 = -1.242 \\ hf(x_2; y_2) &= 0.1 \cdot (-1.242) = -0.1242 \end{aligned}$$

$$x_3 = 0.3$$
, $y_3 = y_2 + hf(x_2; y_2) = 0.641 - 0.1242 = 0.5168$ и так далее — до победного конца.

Результаты вычислений удобно заносить в таблицу:

i	x_i	y_i	$f(x_i; y_i)$	$hf(x_i; y_i)$
0	0	1	-2	-0,2
1	0,1	0,8	-1,59	-0,159
2	0,2	0,641	-1,242	-0,1242
3	0,3	0,5168	-0,944	-0,0944
4	0,4	0,42244	-0,685	-0,0685
5	0,5	0,35395	-0,458	-0,0458
6	0,6	0,30816	-0,256	-0,0256
7	0,7	0,28253	-0,075	-0,0075
8	0,8	0,27502	0,09	0,009
9	0,9	0,28402	0,242	0,0242
10	1	0,30821	0,3836	0,03836

А сами вычисления автоматизировать в Экселе – потому что в математике важен не только победный, но ещё и быстрый конец:)

Усовершенствованный метод Эйлера

Рассмотрим тот же самый пример: дифференциальное уравнение $y' = x^2 - 2y$, частное решение, удовлетворяющее условию y(0) = 1, промежуток [0;1] и его разбиение на 10 частей (k=0,1- длина каждой части).

Цель усовершенствования состоит в том, чтобы приблизить «красные квадратики» ломаной $M_0\,M_1\,M_2\,M_3...\,M_9\,M_{10}$ к соответствующим «зелёным точкам» точного решения

$$y^{\bullet} = \frac{3}{4}e^{-2x} + \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4}$$

И идея модификации такова: отрезки $M_0M_1, M_1M_2, M_2M_3, ..., M_9M_{10}$ должны быть параллельны *касательным*, которые проведены к графику функции $y^* = f(x)$ **не на левых краях**, а «посерединке» интервалов разбиения. Что, естественно, улучшит качество приближения.

Алгоритм решения работает в том же русле, но формула, как нетрудно догадаться, усложняется:

$$y_{i+1} = y_i + \Delta y_i$$
, где $\Delta y_i = hf\left(x_i + \frac{h}{2}; y_i + \frac{h}{2}f(x_i; y_i)\right)$

Плясать вновь начинаем от частного решения $x_0 = 0$, $y_0 = 1$ и сразу же находим 1-й аргумент «внешней» функции:

$$x_0 + \frac{h}{2} = 0 + \frac{0.1}{2} = 0.05$$

Далее следуют уже знакомые по предыдущему параграфу вычисления $f(x_0; y_0) = f(0; 1) = 0^2 - 2 \cdot 1 = -2$, после чего можно рассчитать 2-й аргумент «внешней»

функции:
$$y_0 + \frac{h}{2}f(x_0; y_0) = 1 + 0.05 \cdot (-2) = 1 - 0.1 = 0.9$$
.

Теперь находим нашего «монстра», который на поверку оказался не таким уж и страшным – обратите внимание, что это ТА ЖЕ функция $f(x, y) = x^2 - 2y$, вычисленная в другой точке:

$$f\left(x_0 + \frac{h}{2}; y_0 + \frac{h}{2}f(x_0; y_0)\right) = f(0,05; 0,9) = (0,05)^2 - 2 \cdot 0,9 = 0,0025 - 1,8 = -1,7975$$

Умножаем результат на шаг разбиения:

$$\Delta y_0 = hf\left(x_0 + \frac{h}{2}; y_0 + \frac{h}{2}f(x_0; y_0)\right) = 0.1 \cdot (-1,7975) = -0,17975$$

Таким образом: $y_1 = y_0 + \Delta y_0 = 1 - 0,17975 = 0,82025$

Алгоритм заходит на второй круг, не поленюсь, распишу его подробно:

рассматриваем пару $x_1 = 0.1$; $y_1 = 0.82025$ и находим 1-й аргумент «внешней» функции:

$$x_1 + \frac{h}{2} = 0.1 + 0.05 = 0.15$$

Рассчитываем $f(x_1; y_1) = f(0,1; 0,82025) = (0,1)^2 - 2 \cdot 0,82025 = 0,01 - 1,6405 = -1,6305$ и находим её 2-й аргумент: $y_1 + \frac{h}{2} f(x_1; y_1) = 0,82025 + 0,05 \cdot (-1,6305) = 0,738725$

Вычислим значение:

$$f\left(x_1 + \frac{h}{2}; y_1 + \frac{h}{2}f(x_1; y_1)\right) = f(0,15; 0,738725) = (0,15)^2 - 2 \cdot 0,738725 = -1,45495$$

и его произведение на шаг:

$$\Delta y_1 = 0.1 \cdot (-1.45495) = -0.145495$$

Таким образом: $y_2 = y_1 + \Delta y_1 = 0,82025 - 0,145495 = 0,674755$

Далее рассматриваем пару $x_2 = 0.2$; $y_2 = 0.674755$ и т.д.

Вычисления разумно провести в Экселе (растиражировав формулы по той же схеме – см. видеоролик выше), а результаты свести в таблицу:

i	x_i	y_t	$x_t + \frac{h}{2}$	$f(x_i; y_i)$	$y_i + \frac{h}{2}f(x_i; y_i)$	$f\left(x_i + \frac{h}{2}; y_i + \frac{h}{2}f(x_i; y_i)\right)$	Δy_i
0	0	1	0,05	-2	0,9	-1,7975	-0,17975
1	0.1	0,82025	0,15	-1,6305	0,738725	-1,45495	-0,145495
2	0,2	0,674755	0.25	-1,30951	0,609280	-1,156059	-0.115606
3	0,3	0,559149	0,35	-1,028298	0,507734	-0,892968	-0,089297
4	0,4	0,469852	0.45	-0,779705	0,430867	-0.659234	-0,065923
5	0,5	0,403929	0,55	-0,557858	0,376036	-0,449572	-0.044957
6	0,6	0,358972	0.65	-0,357943	0,341074	-0,259649	-0,025965
7	0.7	0,333007	0.75	-0.176014	0.324206	-0,085912	-0.008591
8	0,8	0,324416	0.85	-0,008831	0.323974	0.074552	0.007455
9	0.9	0,331871	0.95	0.146259	0.339184	0,224133	0.022413
10	1	0.354284	1.05	0.291432	0,368856	0.364789	0.036479

Числа целесообразно округлять до 4-5-6 знаков после запятой. Нередко в условии той или иной задачи есть **прямое указание**, с какой точностью следует проводить округление. Я подровнял сильно «хвостатые» значения до 6 знаков.

Классический метод Рунге-Кутты 4-го порядка

Его цель добиться ещё бОльшего приближения «красных квадратиков» к «зелёным точкам». Вы спросите, куда ещё ближе? Во многих, в частности физических, исследованиях бывает ПРИНЦИПИАЛЬНО важен 10-й, а то и 50-й **точный** знак после запятой. Нет, такой точности можно достичь и простым методом Эйлера, но на СКОЛЬКО частей придётся разбить промежуток [0, 1]?! ...Хотя с современными вычислительными мощностями это не проблема – тысячи кочегаров китайского космического корабля гарантируют!

И, как правильно подсказывает заголовок, при использовании метода Рунге-Кутты **на каждом шаге** нам придётся вычислить значение функции $f(x, y) = x^2 - 2y$ **4 раза** (в отличие от двукратного вычисления в предыдущем параграфе). Но задача эта вполне и вполне подъёмная если нанять китайцев. Каждое следующее «игрековое» значение получается из предыдущего — ловим формулы:

$$y_{i+1} = y_i + \Delta y_i$$
, где $\Delta y_i = \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$, где:

$$k_1 = f(x_i; y_i)$$

$$k_2 = f\left(x_i + \frac{h}{2}; y_i + \frac{hk_1}{2}\right)$$

$$k_3 = f\left(x_i + \frac{h}{2}; y_i + \frac{hk_2}{2}\right)$$

$$k_4 = f(x_i + h, y_i + hk_3)$$

Готовы? Ну тогда начинаем:))

$$x_0 = 0, y_0 = 1$$

$$k_1 = f(x_0; y_0) = f(0; 1) = 0^2 - 2 \cdot 1 = -2$$

$$k_2 = f\left(x_0 + \frac{h}{2}; y_0 + \frac{hk_1}{2}\right) = f\left(0 + \frac{0.1}{2}; 1 + \frac{0.1 \cdot (-2)}{2}\right) = f(0.05; 0.9) = (0.05)^2 - 2 \cdot 0.9 = -1.7975$$

$$k_3 = f\left(x_0 + \frac{h}{2}; y_0 + \frac{hk_2}{2}\right) = f\left(0,05; 1 + \frac{0,1 \cdot (-1,7975)}{2}\right) = f\left(0,05; 0,9101\right) = (0,05)^2 - 2 \cdot 0,9101 = -1,81775$$

$$k_4 = f(x_0 + h, y_0 + hk_3) = f(0 + 0.1; 1 + 0.1 \cdot (-1.81775)) = f(0.1; 0.818225) = (0.1)^2 - 2 \cdot 0.818225 = -1.62645$$

$$\Delta y_0 = \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) = \frac{0.1}{6} \cdot (-2 + 2 \cdot (-1.7975) + 2 \cdot (-1.81775) - 1.62645) \approx -0.180949$$

Таким образом:

$$y_1 = y_0 + \Delta y_0 \approx 1 - 0,180949 = 0,819051$$

Первая строка запрограммирована, и я копирую формулы по образцу:

i	x_i	y_i	k_i	k_2	k_3	k_4	Δy_i
0	0	1	-2	-1,7975	-1,81775	-1,62645	-0,180949
1	0,1	0,819051	-1,628102	-1,452792	-1,470323	-1,304037	-0,146306
2	0,2	0,672745	-1,305489	-1,152440	-1,167745	-1,021940	-0,116130
3	0,3	0,556615	-1,023229	-0,888406	-0,901889	-0,772852	-0,089611
4	0,4	0,467004	-0,774007	-0,654106	-0,666096	-0,550788	-0,066087
5	0,5	0,400917	-0,551834	-0,444150	-0,454919	-0,350850	-0,045014
6	0,6	0,355903	-0,351806	-0,254126	-0,263894	-0,169028	-0,025948
7	0,7	0,329955	-0,169911	-0,080419	-0,089369	-0,002037	-0,008525
8	0,8	0,321430	-0,002860	0,079926	0,071648	0,152811	0,007552
9	0,9	0,328982	0,152037	0,229333	0,221604	0,297716	0,022527
10	1	0,351509	0,296983	0,369784	0,362504	0,434482	0,036601

Не думал, что так быстро разделаюсь с методом Рунге-Кутты =)

4 Метод Эйлера с пересчетом.

Метод Эйлера с пересчетом является, в общем случае, несколько более точным, чем просто метод Эйлера.

Будем рассматривать задачу Коши, сформулированную в предыдущем разделе. Если известно значение решения y(x) и требуется вычислить значение y(x+h) можно воспользоваться формулой

$$y(x+h) = y(x) + \int_{0}^{h} y'(x+t)dt.$$
 (13)

Воспользовавшись формулой прямоугольников и заменив интеграл в правой части на величину hy'(x), получим

$$y(x+h) \approx y(x) + hy'(x)$$
.

Поскольку y'(x) = f(x, y(x)), будем иметь

$$y(x+h) \approx y(x) + hf(x, y(x)).$$

Обозначая $x = x_i$ и $x + h = x_{i+1}$ получим расчетную формулу метода Эйлера.

Для получения более точной расчетной формулы нужно точнее аппроксимировать интеграл в правой части (13). Воспользовавшись формулой трапеции получим

$$y(x+h) \approx y(x) + \frac{h}{2}(y'(x) + y'(x+h, y(x+h)).$$

или

$$y(x+h) \approx y(x) + \frac{h}{2}(f(x,y(x)) + f(x+h,y(x+h))).$$

В результате будем иметь расчетную формулу

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_{i+1}, y_{i+1})).$$
(14)

В некоторых случаях это уравнение может быть разрешено относительно y_{i+1} . Чаще же явным образом выразить из этого уравнения y_{i+1} невозможно, поэтому преобразуем формулу (14). Заменим y_{i+1} в правой части на величину y_{i+1}^* вычисленную по формуле Эйлера

$$y_{i+1}^* = y_i(x) + h(f(x_i, y_i)).$$

Полученные соотношения определяют пару формул метода Эйлера с тересчетом

$$y_{i+1}^* = y_i(x) + h(f(x_i, y_i))$$

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_{i+1}, y_{i+1}^*)).$$
(15)

Надо отметить, что построенный таким образом алгоритм имеет погрешность порядка $O(h^2)$.