Examenul național de bacalaureat 2025 Proba E. c)

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q = \frac{b_4}{b_3} = 2$, unde q este rația progresiei geometrice	2p
	$b_1 = \frac{b_3}{q^2}$, deci $b_1 = \frac{40}{4} = 10$	3p
2.	f(x) = 0 are două soluții reale distincte, deci $4 - 4m > 0$	3 p
	$m \in (-\infty, 1)$	2p
3.	$3^x + 6 \cdot 3^x = 63$, deci $3^x = 9$	3p
	x = 2	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Cum $10^2 \le n^2 \le 31^2$, obținem 22 de cazuri favorabile, deci $p = \frac{22}{90} = \frac{11}{45}$	3p
5.	$\overrightarrow{CB} = \frac{1}{2} \overrightarrow{AB} \text{si} \overrightarrow{AB} = 6\overrightarrow{i} + 2\overrightarrow{j}$	3p
	$\overrightarrow{OD} = 3\overrightarrow{i} + \overrightarrow{j}$, deci punctul <i>D</i> are coordonatele (3,1)	2p
6.	DC = 8, $BD = 6$	3p
	$BC = 14 \text{ și } \mathcal{A}_{\Delta ABC} = \frac{BC \cdot AD}{2} = \frac{14 \cdot 8}{2} = 56$	2p

SUBIECTUL al II-lea (30 de puncte)

	$A(0) = \begin{pmatrix} 0 & 1 & 0 \\ 3 & 1 & -2 \\ 1 & -3 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 0 \\ 3 & 1 & -2 \\ 1 & -3 & 0 \end{vmatrix} = $ $= 0 - 2 + 0 - 0 - 0 - 0 = -2$	2p 3p
b)	$\det(A(a)) = \begin{vmatrix} a & 1 & -a \\ 3 & 1 & -2 \\ 1 & -3 & a \end{vmatrix} = a^2 + a - 2, \text{ pentru orice număr real } a$ $\det(A(a)) = 0 \Leftrightarrow a = -2 \text{ sau } a = 1, \text{ deci sistemul de ecuații are soluție unică dacă și numai}$	2p
	$\operatorname{dac\check{a}} \ a \in \mathbb{R} \setminus \{-2,1\}$	3p
c)	Pentru $a=1$, soluțiile sistemului de ecuații sunt $(\alpha,\alpha+1,2\alpha)$, cu $\alpha\in\mathbb{C}$	2p
	$\alpha_1 + 1 = \alpha_2$ și $2\alpha_1 = \alpha_2 + 1$, de unde obținem $\alpha_1 = 2$ și $\alpha_2 = 3$, deci soluțiile sunt $(2,3,4)$ și $(3,4,6)$	3 p

2.a)	$1*4 = \sqrt{1\cdot 4} + \frac{1}{\sqrt{1\cdot 4}} + \frac{1+4}{2} - 2 =$	3p
	$=2+\frac{1}{2}+\frac{5}{2}-2=3$	2p
b)	$x * x = \frac{2x^2 - 2x + 1}{x}$, pentru orice $x \in M$	2p
	$\frac{2x^2-2x+1}{x}=1$, deci $2x^2-3x+1=0$, de unde obținem $x=\frac{1}{2}$ sau $x=1$, care convin	3p
c)	$x * y = \frac{\left(\sqrt{xy} - 1\right)^2}{\sqrt{xy}} + \frac{x + y}{2} \ge \frac{x + y}{2}, \text{ pentru orice } x, y \in M$	3р
	Pentru $x, y \in [1, +\infty)$, rezultă $\frac{x+y}{2} \ge 1$, deci $x * y \in [1, +\infty)$, de unde obținem că $[1, +\infty)$ este parte stabilă a mulțimii M în raport cu legea de compoziție "*"	2p

SUBIECTUL al III-lea

(30 de puncte)

	•	
1.a)	$f'(x) = \frac{2(x+2) - (2x-2)}{(x+2)^2} + \frac{x}{x+2} \cdot \frac{x - (x+2)}{x^2} =$	3p
	$= \frac{6}{(x+2)^2} - \frac{2}{x(x+2)} = \frac{4(x-1)}{x(x+2)^2}, \ x \in (0,+\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{2x - 2}{x + 2} + \ln \frac{x + 2}{x} \right) = 2 + 0 = 2$	3p
	Dreapta de ecuație $y = 2$ este asimptota orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f'(x) = 0 \Leftrightarrow x = 1$; pentru orice $x \in (0,1]$, $f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$ și, pentru orice $x \in [1,+\infty)$, $f'(x) \ge 0$, deci f este crescătoare pe $[1,+\infty)$	2p
	$\lim_{x \to 0} f(x) = +\infty, \ f(1) = \ln 3, \ f \text{ este continuă și, cum } 1 < \ln 3 < 2, \text{ obținem } n = 0 \text{ sau } n = 1$	3p
2.a)	$\int_{-1}^{2} (2x^{2} + 1) f(x) dx = \int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big _{-1}^{2} =$	3 p
	$=\frac{8}{3} - \left(-\frac{1}{3}\right) = 3$	2p
b)	$\int_{0}^{2} \sqrt{f(x)} dx = \int_{0}^{2} \frac{x}{\sqrt{2x^{2} + 1}} dx = \frac{1}{2} \int_{0}^{2} \frac{(2x^{2} + 1)'}{2\sqrt{2x^{2} + 1}} dx = \frac{1}{2} \sqrt{2x^{2} + 1} \Big _{0}^{2} =$	3 p
	$=\frac{3}{2}-\frac{1}{2}=1$	2p
c)	$I_n = \int_0^1 x^n (2 + e^{-x}) dx, (n+1)I_n - I_{n+1} = \int_0^1 ((n+1)x^n - x^{n+1}) (2 + e^{-x}) dx =$	2p
	$=2x^{n+1}\begin{vmatrix}1-\frac{2x^{n+2}}{n+2}\end{vmatrix} + \int_0^1 \left(x^{n+1}e^{-x}\right)^n dx = 2 - \frac{2}{n+2} + x^{n+1}e^{-x}\begin{vmatrix}1-\frac{2(n+1)}{n+2} + \frac{1}{e}\\ 0 - \frac{2(n+1)}{n+2} + \frac{1}{e}\end{vmatrix}, \text{ pentru orice}$	3 p
	număr natural nenul <i>n</i>	