Bayesian Modelling Workshop

ASSIGNMENT – 2 EB-5103 ADVANCED BUSINESS ANALYTICS

<u>Submitted By: -</u>

- 1. Praman Shukla (A0163239A)
- 2. Prashant Jain(A0163380J)
- 3. Praveen Tiwari(A0163322R)
- 4. Li Meiyao (A0163379U)
- 5. Pooja Gupta (A0163281J)

Table of Contents

TABLE OF CONTENTS	
I. ➤ Bayesian Network	2
II. ➤ Dataset Description & Procedural Flowchart	2
III. ➤ Data preparation	3
IV. Data Discretization	6
V. ➤ Naïve Bayes Model (NB)	9
VI. ➤ Tree Augmented Naïve Model (TAN)	12
VII. ➤ Exploratory Analysis Summary	15
VIII. ➤ Comparative Analysis And Conclusion	17
IX. ➤ References	17
<u>List of Figures: -</u>	
Figure 1: Procedural Flow Chart	3
Figure 2: Correlation between numerical variables (easy interpretation)	
Figure 3: Chi-Sq test in Rstudio	
Figure 4: Naive Bayes Model	9
Figure 5: Cross Validation using 5-fold technique	10
Figure 6: Cross validation utilized in Genie	10
Figure 7: Naive Bayes Accuracy	10
Figure 8: Naive Bayes Confusion Matrix	11
Figure 9: ROC Curve for Naive Bayes	11
Figure 10: Naive Bayes Calibration curve	12
Figure 11: TAN Model	13
Figure 12: TAN Accuracy results	
Figure 13: TAN Confusion Matrix	
Figure 14: ROC Curve for TAN	
Figure 15: Calibration results for TAN	
Figure 16: Exploratory analysis - 1	
Figure 17: Exploratory analysis - 2	
Figure 18: Exploratory analysis - 3	16
<u>List of tables: -</u>	
Table 1. Data Set Description	2
Table 2: Binning details tabulated	6

> BAYESIAN NETWORK

A **Bayesian network**, Bayes network, belief network, Bayes (IAN) model or probabilistic directed acyclic graphical model is a **probabilistic graphical model** (a type of statistical model) that represents a set of random variables and their conditional dependencies via a directed acyclic graph (**DAG**).

Naive Bayes (NB) and Tree Augmented Naive Bayes (TAN) are probabilistic graphical models used for modelling huge datasets involving lots of uncertainties among its various interdependent feature sets. The **instances** are described using a set of variables called **attributes**. A **Naive Bayes** model assumes that all the **attributes** of an instance are **independent** of each other given the class of that instance.

Whereas in the **TAN** model, every **attribute** is **dependent** on its **class** and one other **attribute** from the **feature** set. Since this model incorporates the **dependencies** among the attributes, it is **more realistic** than a **Naive Bayes** model. This project analyses the performance of these two models on Vehicle safety dataset [1].

> DATASET DESCRIPTION & PROCEDURAL FLOWCHART

The dataset was collected from Bayesia website, containing 21 variables and more than 20,000 observations. Out of these 21 variables, two of them (WHEELBAS & ORIGAVTW) were converted into a calculated field GV_FOOTPRINT and amongst the rest of the attributes, 13 are numerical variables and 6 are categorical variables.

Table 1. Data Set Description

S.No.	Name	Description	Variable type	Data Type
1.	GV_CURBWGT	Vehicle curb weight	Explanatory	Numerical
2.	GV_DVLAT	Lateral component of Delta V	Explanatory	Numerical
3.	GV_DVLONG	Longitudinal component of Delta V	Explanatory	Numerical
4.	GV_ENERGY	Energy absorption	Explanatory	Numerical
5.	GV_LANES	Number of Lanes	Explanatory	Numerical
6.	GV_MODELYR	Vehicle model year	Explanatory	Numerical
7.	GV_OTVEHWGT	Weight of the other vehicle	Explanatory	Numerical
8.	GV_SPLIMIT	Speed limit	Explanatory	Numerical
9.	GV_WGTCDTR	Truck weight code	Explanatory	Categorical
10.	OA_AGE	Age of Occupant	Explanatory	Numerical
11.	OA_BAGDEPLY	Air Bag System Deployed	Explanatory	Categorical
12.	OA_HEIGHT	Height of Occupant	Explanatory	Numerical
13.	OA_MAIS	Maximum known Occupant	Response	Categorical
14.	OA_MANUSE	Manual belt system use	Explanatory	Categorical
15.	OA_SEX	Occupant's Sex	Explanatory	Categorical
16.	OA_WEIGHT	Occupant's Weight	Explanatory	Numerical
17.	VE_GAD1	Deformation Location	Explanatory	Categorical
18.	VE_PDOF_TR	Clock Direction for Principal Direction of Force	Explanatory	Numerical
19.	GV_FOOTPRINT	Vehicle Footprint	Explanatory	Numerical
20.	GV_CURBWGT	Vehicle curb weight	Explanatory	Numerical
21.	OA_BMI	Body Mass Index (Weight/Height²)	Calculated Explanatory	Numerical

The Overview of **Procedural Flowchart** that has been followed in this project is shown below: -

Figure 1: Procedural Flow Chart

> DATA PREPARATION

1. Dealing with Missing values

a. Filling up missing Values in Numerical variables with R-package "mice"

To proceed further, all the missing values were replaced with imputed values using 'mice' package in R. MICE stands for Multivariate Imputation by Chained Equations. It generates multiple imputations for incomplete multivariate data by Gibbs sampling. A small piece of code has been written in R to implement imputation on numerical data.

Table 3 shown below summarizes the **key statistical indicators** of the attributes that have been imputed. The **Original dataset** and **Imputed dataset** have the almost the **same Mean, Median** and **standard deviation** after imputation.

Table 2: Comparison of Statistical indicators before and after Imputation

		Original Dataset				Imputed	d Dataset		
			Standard				Standard		
S. No	Variables	Rows	Mean	Deviation	Median	Rows	Mean	Deviation	Median
1	GV_CURBWGT	20204	1617.26	393.57	1530	20247	1618.31	394.58	1530
2	GV_DVLAT	14049	0.04	13.02	0	20247	0.71	12.58	0
3	GV_DVLONG	14049	-14.76	17.66	-15	20247	-13.88	18.66	-14

4	GV_ENERGY	14049	505.24	645.74	306	20247	503.85	663.98	298
5	GV_LANES	20244	3.28	1.36	3	20247	3.28	1.36	3
6	GV_MODELYR	20247	2003.62	2.77	2003	20247	2003.62	2.77	2003
7	GV_OTVEHWGT	18147	1630.16	411.35	1550	20247	1633.02	413.75	1550
8	GV_SPLIMIT	20016	40.73	11.24	40	20247	40.73	11.25	40
9	OA_AGE	20190	40.17	17.37	37	20247	40.17	17.37	37
10	OA_HEIGHT	17508	170.84	10.75	170	20247	170.82	10.69	170
11	OA_MAIS	19203	0.91	1.04	1	20247	0.91	1.04	1
12	OA_MANUSE	19774	0.88	0.32	1	19774	0.88	0.32	1
13	OA_WEIGHT	17599	78.72	19.64	77	20247	78.71	19.74	77
14	VE_ORIGAVTW	20014	154.75	7.66	154	20247	154.72	7.76	154
15	VE_WHEELBAS	20238	281	28.72	272	20247	280.99	28.72	272
16	VE_PDOF_TR	18298	152.62	67.51	135	20247	152.34	67.03	135
17	GV_FOOTPRINT	20010	4.36	0.64	4.19	20247	4.36	0.64	4.2

After this imputation, dataset contains **20,247 observations** without any missing value in Numerical variables. This final dataset that has been used for further analytical operations.

b. Missing Values in Categorical variables

There are some small number of missing values in three of the Categorical variables as shown below in Table 2 which have been removed from analysis.

Table 3: Missing values in Categorical variables

Variable	Number of Missing values	Action
VE_GAD1	789	Removed in TAN
OA_SEX	234	Removed in TAN
OA_MAIS (class)	1044	Removed from dataset

After removing the missing values from class variables OA_MAIS, the dataset is **left with** 19,203 observations to finally work on. This implies working with almost 95% of the original dataset.

2. Correlation check of Numerical variables

The second step is to analyse the **multi-collinearity effects** in between the numerical variables and **eliminate the highly-correlated** variables from the analysis of **Naïve Bayes**. Data analysis tool in Excel has been used to compute the correlation matrix using **Pearson's coefficient** (Table 4) and for better interpretation, the results have been compiled in a correlation chart as depicted in Figure 2. It was found that the following pairs of variables are strongly correlated:

Table 4: Correlation between numerical variables (1-7)

	GV_CURBWGT	GV_DVLAT	GV_DVLONG	GV_ENERGY	GV_LANES	GV_OTVEHWGT	GV_SPLIMIT
GV_CURBWGT	1.000	0.008	0.011	0.091	0.008	0.027	0.051
GV_DVLAT	0.008	1.000	-0.003	-0.056	-0.114	0.001	-0.053
GV_DVLONG	0.011	-0.003	1.000	-0.277	-0.001	0.020	-0.019
GV_ENERGY	0.091	-0.056	-0.277	1.000	-0.028	0.092	0.124
GV_LANES	0.008	-0.114	-0.001	-0.028	1.000	-0.007	0.092
GV_OTVEHWGT	0.027	0.001	0.020	0.092	-0.007	1.000	0.066

GV_SPLIMIT	0.051	-0.053	-0.019	0.124	0.092	0.066	1.000
OA_AGE	0.085	0.027	0.044	-0.007	-0.021	0.007	-0.009
OA_HEIGHT	0.155	0.009	-0.017	0.051	-0.002	-0.001	0.038
OA_WEIGHT	0.155	0.022	0.001	0.050	-0.013	0.004	0.031
VE_ORIGAVTW	0.764	0.017	0.023	0.083	0.006	0.033	0.040
VE_WHEELBAS	0.768	0.007	-0.009	0.111	0.001	0.031	0.057
VE_PDOF_TR	-0.032	-0.448	0.583	0.004	0.080	0.044	0.154
GV_FOOTPRINT	0.819	0.011	0.000	0.110	0.003	0.033	0.056

Table 5: Correlation between numerical variables (8-14)

	OA_AGE	OA_HEIGHT	OA_WEIGHT	VE_ORIGAVTW	VE_WHEELBAS	VE_PDOF_TR	GV_FOOTPRINT
GV_CURBWGT	0.085	0.155	0.155	0.764	0.768	-0.032	0.819
GV_DVLAT	0.027	0.009	0.022	0.017	0.007	-0.448	0.011
GV_DVLONG	0.044	-0.017	0.001	0.023	-0.009	0.583	0.000
GV_ENERGY	-0.007	0.051	0.050	0.083	0.111	0.004	0.110
GV_LANES	-0.021	-0.002	-0.013	0.006	0.001	0.080	0.003
GV_OTVEHWGT	0.007	-0.001	0.004	0.033	0.031	0.044	0.033
GV_SPLIMIT	-0.009	0.038	0.031	0.040	0.057	0.154	0.056
OA_AGE	1.000	-0.041	0.130	0.111	0.079	-0.002	0.092
OA_HEIGHT	-0.041	1.000	0.489	0.132	0.180	-0.004	0.176
OA_WEIGHT	0.130	0.489	1.000	0.144	0.184	-0.003	0.183
VE_ORIGAVTW	0.111	0.132	0.144	1.000	0.701	-0.024	0.852
VE_WHEELBAS	0.079	0.180	0.184	0.701	1.000	-0.030	0.969
VE_PDOF_TR	-0.002	-0.004	-0.003	-0.024	-0.030	1.000	-0.030
GV_FOOTPRINT	0.092	0.176	0.183	0.852	0.969	-0.030	1.000

Figure 2: Correlation between numerical variables (easy interpretation)

The results of **correlation matrix** show that the following pair of variables have **high correlation**:

- GV_CURBWGT and GV_FOOTPRINT
- GV FOOTPRINT, VE ORIGAVTW and VE WHEELBAS
- OA_HEIGHT and OA_WEIGHT

Based on these results, we can safely take only GV_CURBWGT out of all these GV_CURBWGT, GV_FOOTPRINT, VE_ORIGAVTW and VE_WHEELBAS variables for analysis using Naïve Bayes where independence of variables is an assumption but not in TAN where dependencies among the attributes are incorporated in the model itself. Also, because of evident correlation, OA_HEIGHT and OA_WEIGHT variables are transformed into a single calculated variable OA_BMI which signifies Body Mass Index. The formula used for calculating BMI is: -

$$BMI = \frac{Weight}{(Height)2}$$

> DATA DISCRETIZATION

1. Binning using Genie

Before proceeding with classification using Bayesian networks, if the dataset has attributes that are **continuous valued**, then those attributes are first **discretized** and then used by the classifier. The method used to discretize the data in this project is called **equal width binning** or **equal width partitioning** using **Genie Discretization tool**.

Table 2: Binning details tabulated

Variable	Datatype	No. of Bins	Binning Methodology
OA_BAGDEPLY	Categorical	2	Already categorized in dataset
GV_WGTCDTR	Categorical	3	Already categorized in dataset
OA_SEX	Categorical	2	Already categorized in dataset
VE_GAD1	Categorical	4	Already categorized in dataset
OA_MANUSE	Categorical	2	Already categorized in dataset
OA_MAIS	Categorical	4	Intuitive, divided into 4 injury levels
GV_MODELYR	Numerical	5	Intuitive, uniform distribution of years
GV_CURBWGT	Numerical	5	Equal width binning
GV_DVLAT	Numerical	5	Equal width binning
GV_DVLONG	Numerical	4	Equal width binning
GV_ENERGY	Numerical	4	Equal width binning
GV_LANES	Numerical	3	Intuitive, division of lanes
GV_OTVEHWGT	Numerical	4	Equal width binning
GV_SPLIMIT	Numerical	5	Equal width binning
OA_AGE	Numerical	7	Intuitive, uniform distribution of age
OA_HEIGHT	Numerical	5	Intuitive, uniform distribution of height
OA_WEIGHT	Numerical	7	Intuitive, uniform distribution of Weight
VE_ORIGAVTW	Numerical	-	Redundant variable
VE_WHEELBAS	Numerical	-	Redundant variable
VE_PDOF_TR	Numerical	6	Equal width binning
GV_FOOTPRINT	Numerical	6	Equal width binning
OA_BMI	Numerical	3	Intuitive, 3 categories of people

The details of binning process of different numerical variables is described below:

OA_MAIS (Class Variable)

Four different bins are created intuitively for the given variable. The probability of death has been kept in mind while classifying the MAIS into bins, the details have been summarized below: -

- Minor injury: Class 0 and Class 1 (negligible probability of death)
- Moderate Injury: Class 2 and Class 3 (less probability of death (1-10%))
- Severe Injury: Class 4 and Class 5 (medium probability of death (5-50%))
- Death: Class 6 (No chance of Survival)

GV MODELYR

Separate bins are created for cars manufactured before 2002 and after 2008. The cars manufactured between 2002 to 2008 are uniformly distributed at an interval span of two years.

s1_below_2002 s2_2002_2004	s3_2004_2006	s4_2006_2008	s5_2008_up
----------------------------	--------------	--------------	------------

GV CURBWGT

Equal width binning algorithm. Separate bins are created for vehicle weighing below 1000 Kg and above 2500 kg. The vehicle weighing between 1000 kg to 2500 kg are uniformly distributed at an interval of 500 Kg.

GV_DVLAT

The given variable tells about the Lateral component of Delta V. We followed the original distribution of dataset and applied equal width binning algorithm. Lateral component of Delta V having negative and positive values of 30 are distributed into separate bins. Three bins are created for values ranging from -30 Kmph to 30 kmph which are uniformly distributed at intervals of 20Kmph.

s1 below n30	s2 n30 n10	s3 n10 10	s4 10 30	s5_30_up
31 0010 11 1100	32 1100 1110	30 1110 10	37 10 00	30 00 00

GV DVLONG

The given variable tells about the longitudinal component of Delta V. We followed the original distribution of dataset and applied equal width binning algorithm. Longitudinal component of Delta V having negative and positive values of 25 are distributed into separate bins. Two bins are created for the values ranging from -25 Kmph to 25 kmph which are uniformly distributed at an interval of 25 Kmph.

s1 below n25	60 m0E 0	s3 0 25	s4 25 up
ST DEIOW 1123	SZ 1125 U	1 83 0 23	1 S4 Z5 UD

GV_ENERGY

The given variable tells about the energy absorption. We followed the original distribution of dataset and applied equal width binning algorithm. Three bins are created for values ranging from 0 to 1500. All the values above 1500 are created in a different bin.

s1_below_500 s2_500_1000 s3_1000_1500 s4_1500_
--

GV LANES

The given variable tells the number of lanes present. Binning was done and record was distributed into three categories. The first bin contains the records having less than three lanes generally for roadways and small city roads. The second bin contain the records having three to five lanes generally state Highways. The last bin is created where we have more than five lanes. These are generally the expressway and major highways.

c1 bolow 2	c2 3 5	c2 5 up
s1_below_3	s2_3_5	s3_5_up

GV_OTVEHWGT

The given variable tells about the weight of the other vehicle during crash. We followed the original distribution of dataset and applied equal width binning algorithm. Vehicles weighing below 1250Kg and above 2250Kg are created in separate bins and rest other records are uniformly distributed at an equal width of 500.

s1_below_1250	s2_1250_1750	s3_1750_2250	s4_2250_up
---------------	--------------	--------------	------------

GV_SPLIMIT

This variable explains the speed limit of the vehicle. We followed the original distribution of dataset and applied equal width binning algorithm. Two bins were created for speed less than 30mph and greater than 60 mph. Other speed values were equally distributed with the interval of 10 mph.

s1 below 30	s2 30 40	s3 40 50	s4 50 60	s5 60 up
	32_00_40	30_40_00	37_30_00	30_00_0p

OA_AGE

This variable defines the age of the occupant during the crash. As with other continuous variables, age was also binned into 7 groups using equal width binning system taking the original distribution of the variable into account. Two separate bins were created for age groups below 20 and above 70. Other values were equally binned with the interval of 10 years

s1 below 20	s2 20 30	s3 30 40	s4 40 50	c5 50 40	s6 60 70	s7 70 up
31_DEIOW_20	32_20_30	53_30_40	S4_4U_5U	S5_5U_6U	S6_6U_/U	3/_/U_UD

OA_BMI

This column, which was calculated using the occupant's weight and height, was binned into 3 categories based on the information from BMI Chart. The category <20 was under weight, 20<BMI<35 was the normal range and >35 were categorised under overweight.

s1 below 20	s2 20 35	s3 35 up
31_201011_ 2 0	3 <u></u> _0	30_00_0p

VE_PDOF_TR

This variable describes the clock direction for principle direction of force. Measured in angles, in the confines of collision reconstruction, the PDOF is used to describe the direction of the force that was applied to the vehicle during the collision. Separate bins were created for values below 50 and above 300. The original distribution of the variable was considered and 6 bins were formed using the equal width distribution algorithm.

s1_below_50	s2 50 100	s3_100_160	s4_160_220	s5_220_300	s6 300 un
31_200011	32_00_100	30_100_100	J	30_220_000	, 30_000_0p

2. Checking correlation using RStudio

Two of suspected variables, both of which are related to the direction of impact were subjected to Chi-square test to find out the correlation. The results are shown in the figure below.

Pearson's Chi-squared test

data: CarCrash\$VE_PDOF_TR and CarCrash\$VE_GAD
X-squared = 29557, df = 12, p-value < 2.2e-16</pre>

Figure 3: Chi-Sq test in Rstudio

It can be inferred that variables VE_GAD1 and VE_PDOF_TR are highly correlated and both are signifying the direction of impact. So, out of these two variables, only one can be used for Naïve Bayes modelling. Here we choose VE_GAD1 which directly tells the direction of impact from four directions (Left, Right, Front and Centre).

➤ NAÏVE BAYES MODEL (NB)

The Naive Bayes model is a special form of Bayesian network. This model is mainly used for classification problems. The important feature of Naive Bayes model is that, it has very strong independence assumptions. The final dataset **after imputation** and **binning** is used for modelling [1].

a. Naïve Model

Naïve Base Model is created using **Genie** software. The option **Learn New Network** is used for learning new network like **Naïve Bayes** or **TAN**.

Class variable: OA MAIS

Predictors: All variables except for the correlated variables.

The Naïve Bayes network is shown below: -

Figure 4: Naive Bayes Model

b. Training set and Test set – K fold cross validation

In a k-fold cross validation, the original data set is divided into k equal parts. Out of those k-parts, one part of the dataset is used for validation or testing and the remaining k-1 parts are used for training the classifier. This process is then repeated k-times and each of the parts is used as testing data, exactly once.

The advantage of this method is that it ensures each instance in the dataset is used both, as a training and testing sample and every instance is used exactly once as a testing sample.

Here, 5-fold cross validation has been used as shown in figure below: -

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
--------	--------	--------	--------	--------

Complete Data

Test	Training	Training	Training	Training
Training	Test	Training	Training	Training
Training	Training	Test	Training	Training
Training	Training	Training	Test	Training
Training	Training	Training	Training	Test

Figure 5: Cross Validation using 5-fold technique

The figure given below explains 95% confidence interval has been used and the results are summarized as given in the section below.

Figure 6: Cross validation utilized in Genie

c. Accuracy: Overall accuracy being **83.51%** while the accuracy of individual classes has been shown in the figure below.

Figure 7: Naive Bayes Accuracy

d. Confusion Matrix: The model can predict the minor injuries and moderate injury with good accuracy and has low accuracy for predicting deaths.

Figure 8: Naive Bayes Confusion Matrix

e. ROC curves

The **receiving operating characteristic** is a measure of classifier performance. Using the proportion of positive data points that are correctly considered as positive and the proportion of negative data points that are mistakenly considered as positive, a graph is generated that shows the trade-off between the rate at which something is predicted correctly with the rate of something predicted incorrectly. The ROC curve for the **Naïve Bayes** model has been shown in Figure below.

Figure 9: ROC Curve for Naive Bayes

f. Calibration curves

The calibration curves for all the four classes of OA_MAIS variables are very close to ideal calibration curve and have different regions of good and bad calibration results.

Figure 10: Naive Bayes Calibration curve

TREE AUGMENTED NAÏVE MODEL (TAN)

The **Naive Bayes** model discussed in the previous section, encodes incorrect independence assumptions that, given the class label, the attributes are independent of each other. But in the real world, the attributes of any system are mostly correlated and the case as in Naive Bayes rarely happens. Despite such incorrect independent assumptions, the Naive Bayes model seems to perform well. So, if the model also considers the correlations between the attributes, then the classification accuracy can be improved [1].

a. TAN Model

TAN Model is also created using **Genie** software. The option **Learn New Network** is used for learning new network like **Naïve Bayes** or **TAN**.

Class variable: OA MAIS

Predictors: All variables along with the correlated variables. Missing values in categorical variables as shown in Table 3 have been removed from the analysis.

The TAN network is shown below: -

Figure 11: TAN Model

b. Training set and Test set – K fold cross validation

The same concept which has been used in Naïve Bayes has been used for cross validation in TAN also.

c. Accuracy: Overall accuracy 83.64% while the accuracy of individual classes has been shown in the figure below.

Figure 12: TAN Accuracy results

There is slight improvement in the overall accuracy of TAN model as compared to Naïve Bayes model.

d. Confusion Matrix

The confusion matrix results are somewhat similar to Naïve Bayes with the difference in MAIS_6 prediction results. The model is not able to classify the death class, but the accuracy to class the other three classes is improved as compared to Naïve Bayes.

Figure 13: TAN Confusion Matrix

e. ROC curves

The ROC curves have slightly better AUC values for the different classes of OA_MAIS as compared to Naïve Bayes.

Figure 14: ROC Curve for TAN

f. Calibration curves

The calibration curves for all the four classes of OA_MAIS variables are very close to ideal calibration curve and have different regions of good and bad calibration results.

Figure 15: Calibration results for TAN

EXPLORATORY ANALYSIS SUMMARY

• While trying to explore the network using GV_CURBWGT, OA_BMI and OA_AGE as shown in figure 16 below, it was found that for an Old person driving a heavy vehicle, if the BMI of the Old person is normal then his probability of death (MAIS_6) is low. But, if the BMI is high or very low, then the probability of death is high.

Figure 16: Exploratory analysis - 1

• While trying to explore the network using GV_CURBWGT, GV_LANES and GV_SPLIMIT as shown in figure 17 below, it was found that on a 6 lane road, if the vehicle has lower speed and higher speed then the probability of death rate (MAIS_6) is high and when the speed is medium then probability of death is low.

Figure 17: Exploratory analysis - 2

• While trying to explore the network using VE_GAD1, GV_SPLIMIT and GV_MODELYR as shown in figure 18 below, it was found that whenever vehicle is at high speed and the impact is from the left i.e. from the driver side, then if the vehicle is of old model than the probability of death is low and if the vehicle is of new model than the probability of death is high. This suggests that vehicles made these days are not rugged and robust as far safety of driver is concerned.

Figure 18: Exploratory analysis - 3

> COMPARATIVE ANALYSIS AND CONCLUSION

The comparative analysis on the performance of TAN and NB models shows that, the TAN model outperforms NB in this vehicle safety dataset. Even if there are some correlations between the variables in the dataset, the accuracy results of the NB model are close to the TAN model. This implies that, considering the correlations between the variables in a system, would lead to better performance. But we also need to take into consideration the complexity of the model. The NB model is very simple and less complex with almost the same accuracy results.

Thus, in this project, by **adding** one level of **dependency** among the **attributes** has given **better accuracy** results for this dataset. Hence, by increasing the level of **interaction** among the **attributes** we can achieve **performance gains**.

> REFERENCES

[1] Padmanaban, Harini, "Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models" (2014). Master's Projects. Paper 356.