CIS 520, Machine Learning, Fall 2021 Homework 9

Due: Tuesday, November 16th, 11:59pm Submit to Gradescope

Yixuan Meng, Zhouyang Fang

Problem 1

- 1. $p(X_1, X_2, X_3, X_4, X_5, X_6) = p(X_1) p(X_2) p(X_3 \mid X_1) p(X_4 \mid X_1, X_2) p(X_5 \mid X_3, X_4) p(X_6 \mid X_4)$
- 2. No. $p(X_3 \mid X_1) p(X_4 \mid X_1, X_2) p(X_5 \mid X_3, X_4) p(X_6 \mid X_4) \neq p(X_3) p(X_4) p(X_5 \mid X_3) p(X_6 \mid X_3)$. So this distribution is not included in the Bayesian network above.
- 3. Will be smaller.

Removing the edge means cutting one possible way for the information flow. Before removing it represent the model that direct causality exists or doesn't exist between X_3 and X_5 . However, after the removing, it can only represent that direct causality doesn't exist between X_3 and X_5 .

4. (a) True.

Both $X_1 \to X_4 \leftarrow X_2$ and $X_3 \to X_5 \leftarrow X_4$ are not active path. So they are independent.

(b) True

Both $X_1 \to X_4 \to X_2$ and $X_5 \leftarrow X_4 \to X_6$ are not active path. So they are conditionally independent given X_4 .

(c) False.

 X_6 is the descendant of X_4 . According to the last rules of active trails, $X_{i-1} \to X_i \leftarrow X_{i+1}$ and X_i or its descendant is observed, $X_1 \to X_4 \leftarrow X_2$ is an active trail. So not conditionally independent given X_6 .

(d) False.

 $X_1 \to X_4 \leftarrow X_2$ is an active trail given X_4 . Also $X_1 \to X_3 \to X_5$ is an active path. So they are not conditionally independent given X_4 .

Problem 2

- 1. Nothing to Report. Please skip.
- 2. Do you add the link(yes/no)? \mathbf{No} Steps:

В	P(B)%
Τ	70.6
F	29.4

	A	В	P(B A)%
	Т	Τ	72.7
		F	27.3
	F	Т	66.7
		F	33.3

 $|P(B) - P(B \mid A)| = 0.02 < 0.05, |P(B) - P(B \mid \sim A)| = 0.04 < 0.05. \text{ So independent. No link.}$

3. Do you add the link(yes/no)? **Yes** Steps:

$$\begin{array}{|c|c|c|c|c|} & A & P(C|A)\% \\ T & 55 \\ F & 67 \end{array}$$

$$P(C) = 0.59 \implies |P(C) - P(C |\sim A)| = 0.08$$
. Dependent. Link needed.

4. Do you add the link(yes/no)? Yes Steps:

	A	В	P(C A,B)%
	Т	Т	50
		F	67
	F	Т	75
		F	50

 $|P(C\mid A)-P(C\mid A,\sim B)|=0.12.$ Dependent. Link needed.

5. Do you add the link (yes/no)? Yes Steps:

$$P(D) = 0.41 \begin{vmatrix} A & P(D|A)\% \\ T & 45 \\ F & 33 \end{vmatrix}$$

 $\implies |P(D)-P(D\mid A)|=8\%.$ Dependent. Link needed.

6. Do you add the link(yes/no)? **Yes** Steps:

$$P(D \mid A) = 45\%$$

	A	В	P(D A,B)%
8	Т	Т	38
		F	67
	F	Т	50
		F	25

 $\implies |P(D\mid A) - P(D\mid A, B)| = 7\%$ Dependent. Link needed.

7. Do you add the link (yes/no)? Yes Steps:

$$P(D\mid A,B)=0.375$$

A	В	С	P(D A,B,C)%
	Т	Т	75
Т		F	0
1	F	Т	100
		F	0
	Т	Т	33
F		F	0
T,	F	Т	100
		F	0

 $\implies |P(D \mid A, B) - P(D \mid A, B, C)| = 0.375. \text{ Dependent. Link needed.}$

8. The final Bayes net is as follow:

