Introdução à Inteligência Artificial e Machine Learning Exemplo Classificação

2023

- Categorização de mariposas
 - Mariposa do Imperador ou Luna
 - Exemplo de Classificação (uso de classificador)

- Alguns algoritmos usam dados brutos
 - · Imagens, sons, texto puro
- Mas é muito mais simples, se reduzirmos um fenômeno a características
 - Feature: valores que caracterizam com veracidade e utilidade os objetos que queremos classificar
 - · Outcome: labeled data, objetivo

- Para as mariposas, duas features importantes são: largura de asas e massa
- Training data
 - Para a classificação, é necessária a coleta de dados de qualidade
 - Que possam fielmente reproduzir uma população
 - Classificados por especialistas do campo
 - No caso das mariposas, equipes de entomologistas que vão a campo, coletam espécimes, mensuram e classificam
 - Caro, não é?
 - A partir dos dados brutos, são criadas as classificações e variáveis
 - · Atribuição de labels
 - Labeled Data

Labeled data

Features e outcome (ou label, ou objective)

LABELED DATA		
MASS	WINGSPAN	MOTH SPECIES (LABEL)
2.5	41	EMPEROR
3.7	36	EMPEROR
4.2	72	LUNA
3.2	27	EMPEROR
5.5	60	LUNA
5. 1	51	EMPEROR
4.0	43	EMPEROR
3.6	40	EMPEROR
8.2	75	LUNA
7.6	82	LUNA
	ı	


```
IF wingspan <= 45 THEN
    IF mass <= 0.75 THEN
        output("Emperor")
    ELSE
        output("Luna")
    END IF
    ELSE
        output("Luna")
    END IF</pre>
```


- Claro que este exemplo é simples o suficiente para ser resolvido por um humano
 - Apenas duas features e um outcome
- Mas e se tivermos 3 features?
 - E até mais features?
- E se as retas simples (ou curvas simples) não forem suficientes?
 - Como usar curvas complexas em Support Vector Machines

Support Vector Machines

- Modelos com dezenas de variáveis são considerados simples
- Modelos complexos contém centenas ou até milhares de features
 - Além das features geradas para auxiliar o processo
- Tamanho da massa de dados também é EXTREMAMENTE importante
 - Prever com somente poucas centenas de exemplos é ter certeza de erro
 - Por isso Big Data foi tão importante para ML

Obrigado

leandro@utfpr.edu.br
http://lapti.ct.utfpr.edu.br

