Multicast Routing Papers: DVMRP and MOSPF

Computer Networks Dr. Jorge A. Cobb

Bridges and Extended LANs

- LANs have physical limitations (e.g., 2500m)
- Bridges connect two or more LANs together.
- They are transparent to hosts (does not change packets in any way)
 - Bridges see <u>all messages</u> in its attached LANs
 - Copy message from one LAN to another if necessary

Learning Bridges

- Forward messages only when necessary (without modifying the message in any way).
- Maintain a forwarding table
 - Often incomplete (initially empty!)
 - Learn table entries based on source address of messages seen.
 - If destination is not on table, forward over all other ports

Learning Bridges

- I sends a message to Z
- Bridge "learns" I comes from port 3
 - I is added to the table
 - Z is unknown
 - bridge copies the message over BOTH port 1 and port 2

- Z sends a message to I (e.g. some reply)
- Bridge "learns" Z comes from port 2
 - Z is added to the table
 - bridge copies the message ONLY over port 3 (I is already in the table)

Example: Learning Bridges

Example: Learning Bridges

Assume initially all bridges forwarding tables are empty

- Host I sends data message to Host J:
 - This data message is broadcasted to every LAN. Why? Because no one knows where J is!
 - Due to which, every bridge learns about host I location and creates forwarding table entry for Host I.

Example: Learning Bridges M N $I \rightarrow J$ l→J l→J l→J K P Bridge Host LAN

Example: Learning Bridges

- Host J then sends data message to Host I:
 - ♦ Since all bridges have an entry for host I, message goes only through Host J \rightarrow B₇ \rightarrow B₈ \rightarrow B₃ \rightarrow B₂ \rightarrow B₁ \rightarrow Host I
 - Only these bridges have now an entry for Host J.
 - All other nodes do not, e.g., B₄ does not forwarding table entry for Host J.
 - Note that from now on (until the lifetimes expire) all data messages between Host I and Host J go only through the LANs on the path from Host I to Host J.

Example: Learning Bridges

Example: Learning Bridges(cont)

Host K sends a data message to Host J:

- The nodes seeing this data message are B₄ B₅ B₆ B₃ B₈ B₇
- only these nodes learn Host K location.
- Host k packet has been broadcast in a limited fashion.

Example: Learning Bridges

Spanning Tree Algorithm

Problem: loops

- Bridges run a distributed spanning tree algorithm
 - Logically delete certain bridges to have a spanning tree
 - We will assume we have a spanning tree

Multicast Routing in Datagram Internetworks and Extended LANs

S. Deering and D. Cheriton

ACM Transactions on Computer Systems
1990

Efficient multicast in Extended LANs

- How to do efficient multicast in Extended LANs? (I.e. in LANs with bridges) (NOT IP !!!!)
- A simple way: bridges propagate multicast (and broadcast) packets across every segment of the extended LAN
 - Way too inefficient, especially for multicast applications with sparsely located receivers

How to do multicast efficienty in Extended LANs?

How to locate receivers

- If bridges know which interface leads to members of a given group, they will forward the packets on those interfaces only
 - Remember, we have a tree
 - There is only one path from the bridge to each receiver.
- <u>But</u>, in general, how do bridges learn which interface leads to individual hosts?
 - When a packet arrives from a host, bridge records the (source-host addr, interface, age) into a table
 - What about receivers?
 - Receivers don't send data!

How to locate receivers (contd)

- We want to forward multicast packets only over LANs leading to receivers
- To learn the location of receivers, we force receivers (i.e., group members) to periodically transmit a membership-report
- A member (receiver) of a group G periodically sends a membership-report of the form:
 - LAN source address = G,
 - LAN destination address = "ALL-BRIDGES" multicast address.

Bridge Multicast Table

Arrow indicates where group members are located

- Multicast table at each bridge has the following row for each multicast group: (muticast addr, (outgoing interface, age), (outgoing interface, age), ...)
- A bridge receiving a repot records the incoming interface of the report as an outgoing interface for group G
- It then forwards the report <u>over all of its interfaces</u> in the extended LAN (why
 over all interfaces? I.e., why a broadcast?)

Single Spanning-Tree Multicast Routing

- Bridge algorithm (summary)
 - If source address is a mcast group address (i.e. a report),
 - record arriving interface as an outgoing-interface with an age of zero for this moast address
 - and forward to all other interfaces.
 - Periodically increment age of outgoing interface
 - when *age=expiry threshold*, delete this outgoing-interface info from the table's entry
 - if no outgoing-interfaces remain, delete the entire entry
 - If a packet arrives with a multicast destination address
 - forward a copy on every outgoing-interface recorded in the table entry (if any) excluding the arriving interface

Another example

- •Arrows indicate the location of the group member
- Membership reports are forwarded over all links of a bridge

G = group G member (receiver)

What if a host at E sends a msg to group G? What if a host at A sends a msg to group G?

Suppressing Membership Reports

- An efficiency improvement to suppress unnecessary membership reports
 - Hosts send membership-reports as (G,G)
 - This suppresses #membership reports to 1 per report interval per LAN segment
 - because all other group members (hosts) on the same LAN segment heard the first membership-report (G,G), and will not send a report
 - Bridge, on receiving a pkt with address (G,G) (bridges receive ALL packets, remember?)
 - changes it to (G, all-bridges) and forwards to other interfaces
 - why?

Why change the destination?

- Assume member r1 sends a membership report (G,G) over Lan A
- Assume the bridge forwards it as (G,G) over Lan B
- This will suppress the membership report of r2
- The bridge will never know there is a group member in Lan B
- This problem is avoided by the bridge changing the message to (G, "all-bridges)

Done with extended LANS (bridges)

FORGET about bridges (until the exam ☺)

 Now we do IP multicast over multiple LANs (across IP routers)

Distance Vector Multicast Routing

- How to support multicast routing in a distance-vector environment? (this is general enough for ANY unicast routing protocol)
- Compute a spanning (i.e. broadcast) tree across all the links
 - prune it to become a multicast tree
- Specifically, a source-based shortest path spanning trees
 - Tree is <u>rooted at the source site</u>
 - It corresponds to <u>shortest path from each receiver to the source</u>
 - Main assumption is path symmetry (links have the same costs in both directions)
- Observation:

Every shortest-path multicast tree rooted at the sender is a subtree of a single shortest-path spanning (i.e. broadcast) tree rooted at this sender

Broadcast Trees and Multicast Trees in Point-to-Point Networks

Network

Broadcast Tree

Multicast Tree

S = source (host) node, also root of tree

R = receiver

For any router U, parent(U,S) = next-hop(U,S) = V

Reverse Path Flooding (RPF) algorithm (broadcast in point-to-point networks)

- This is not a standard protocol, is just a general method to do broadcast.
- When a router receives a broadcast packet from source S
 - If the packet arrives via the next-hop router to S
 - Then,
 - Forward the packet to all outgoing interfaces (except the incoming one, of course)
 - Otherwise
 - Throw the packet away

Example

- •Which of all three copies will be forwarded by t?
- Note: each router <u>forwards each packet only once</u> (why?)
- Router needs to know the shortest path back to S
 - •Given by the distance vector routing algorithm

Internetworks (review)

- A multicast packet sent by a source host S will have
 - LAN source: LAN address of S
 - LAN destination: LAN multicast address for group G
 - IP source: IP address of S
 - IP destination: IP multicast address for group G
- Routers do not modify the IP src or dst addresses
- Routers send the packet over the LAN with
 - LAN source: LAN address of router
 - LAN destination: LAN multicast address for group G
- All routers "listen" (receive a copy) of all LAN packets addressed to any multicast group.
- Original RPF is designed for <u>point-to-point</u> links
- In the Internet we typically have <u>multi-access LANs</u> (e.g. Ethernet)
 - There are many routers per LAN

A problem with original RPF

- When multi-access (shared) links (Ethernet) are used between routers, two problems arise
- Problem 1: multiple copies of the packet is sent on the shared link
 - Multiple routers are attached to the same LAN (Ethernet)
 - Waste of bandwidth on the link & waste of router resources
 - We want only one copy to be sent per LAN
- Problem 2: identifying the parent on the tree
 - In RPF, routers only accept a broadcast packet from the next router on the path back to S.
 - If there are multiple routers on the next-hop-LAN, from which to accept?
 - If we solve problem 1, we automatically solve problem 2.
 - Why? A packet is accepted if it comes from the LAN of its next-hop, regardless of which router sent it.

Reverse Path Broadcasting (RPB)

- Objective: eliminates duplicate broadcasts on shared links in RPF
- Each router R must determine, for each neighboring LAN λ,
 - Is λ the parent of R on the tree?
 - Is λ a child of R on the tree?

Is LAN λ the parent of R on the tree?

- R accepts multicasts only from the LAN λ where its next-hop router to S is located.
- Note, the next-hop router to S may not be the router that places the multicasts from S on λ .
 - Nonetheless, R accepts the multicast.

Is LAN λ a child of R on the tree?

- Identify a single "parent" router for each LAN w.r.t. S
 - For the LAN S is attached to, S is considered the parent
 - Otherwise, the router with min distance to S is the parent
 - In case of tie, router w/ lowest IP address is the parent

In RPB:

x, y and z learn that only x should inject packets into LAN a

z forwards any multicast from S coming from LAN a

What if:

- x and y have the same cost to S
- IP(x) < IP(Y) i.e. x injects multicast packets into LAN a
- routing table at z for S points to y and not x
- is there a problem here?

Observations

- How to identify min distance router to S? (i.e. parent of LAN)
 - Routers exchange distance vector records with each other
 - Therefore, each router independently (on its own) finds if it is the parent of each of its neighboring LANs

- ANY host, on ANY LAN, at ANY moment can send a multicast (or broadcast) message
 - I.e., the router must ALWAYS know its parent LAN and who are its children LANs regardless of where the source is.

Overhead

- Being always prepared requires that routers add a children bitmap to each routing table entry (i.e. each destination LAN could be a possible source LAN S)
 - the bit-map for "destination" S has one bit for each incident link λ
 - Bit (S,λ) is set, if λ is a child link (i.e. if I am the parent of this link) for broadcasts originating from S

Example

Unicast routing table at U

Dest	NxtHop	Cost	ChildMap
P	X	5	01110
Q	Y	2	01000
• •	•		
S	V	2	01011

We take advantage that we already have a unicast routing table with an entry per LAN and who tells us who the next hop (parent) is.

Pruning the Tree

- Both RPF and RPB are broadcast algorithms!
- To provide shortest path multicast delivery from source S to group members, broadcast tree of S must be pruned back to reach only links with receivers

(small detour) Why not do membership reports?

- Recall multicast in extended LANs?
 - We had one tree
 - Each receiver of a group G would broadcast a membership report along the tree
 - All bridges would learn the direction of the receivers.
- Can we do the same here?
- We have N trees, where N is the number of LANs (subnets)
 - each LAN could be the root of one tree
- Each receiver of group G would have to send a membership report on each of these trees.
 - The overhead is N times!
 - Too costly

What do we do?

 We will prune the broadcast tree of RPB into a multicast tree

We will do so in several stages.

Truncated Reverse-Path Broadcast (TRPB)

- An alternative in which only non-member leaf LANs are deleted from each broadcast tree
 - A router truncates a child link if
 - no router uses this link to receive multicast messages from the source (i.e., it is a leaf link)
 - No host is a group member on this link (LAN)

Leaf Truncation example

- At L, L truncates the lower LAN in the figure if
 - if C does not accept multicast messages from this LAN (we are assuming C uses the top LAN as next hop)
 - no host is a group member on this link (LAN)

Algorithm Implementation.

- If a multicast packet (S, G) arrives from the next-hop-link for S,
 - forward a copy of the packet on all child links for S,
 - except leaf links (no other router receives from this link) that have no members of G
- To implement this, we need two things:
 - The router needs to learn if the child link is a leaf link
 - I.e. If no other router uses this link to receive messages from the group.
 - The router also needs to know if no host group members are on this link.
- We tackle each of these in turn.

Leaf Link or not?

- Distance vectors tell me the distance from routers on this link to S, but not if I am their next hop.
- However, if DV with split-horizon and poisoned-reverse is used then
 - If <u>at least one router</u> gives me a distance of infinity then it uses my LAN as the next hop
 - I.e., the link is not a leaf link
 - The link is a leaf link if no router gives me a distance of infinity.

Leaf Bitmaps

- Leaf pruning requires that routers add a *leaf* bitmap to each routing table entry (i.e. for each possible source)
 - the leaf bit-map for routing table entry S has one bit for each incident link λ
 - bit for (S,λ) is set, if λ is a leaf link of this router for multicasts originating from S

Receivers on a Link?

- (Paper ©) Hosts send a membership report message over their LAN using the mcast group address as the destination (all hosts group members listen to this, and only one report is sent per interval)
 - Real Life: use IGMP protocol.
- Routers maintains a table with one entry per link (LAN)
 - The entry contains a bit-map field, link-groups, with one bit per (active-group,link)
 - Bit (G,λ) is set if members of group G are on link λ

Overview of "bitmaps" required

- For each possible source LAN S and each link λ,
 - Is λ a child link of the router on the broadcast tree of S?
 - Is λ a leaf link of the router on the broadcast tree of S?
 - Both of these are
 - obtained via the DV routing algorithm (the second one via split horizon with poisoned reverse)
 - stored along the unicast routing table
- For each link λ and active group G,
 - Does λ have any members of G?
 - Obtained via membership reports (IGMP)

Reverse Path Multicasting (RPM)

- Prune shortest path multicast tree as follows
 - First packet for (S,G) is forwarded to everyone on the truncated shortest path broadcast tree according to TRPB
 - Leaf routers (i.e., <u>all</u> child links are leafs) with no attached members send non-membership report (NMR) to the parent router on the LAN.
 - If a router receives NMR from all of its children routers (how do you know who these are?)
 and itself has no directly attached members,
 - then it also sends NMR to its parent router on the tree.

NMR expiration

- NMR reports include an age field,
 - when it expires data flows all the way to leaves again and gets re-pruned back
- Routers remember NMR reports that they sent
 - When a new host joins G, they send a cancellation message to undo the effect of NMR

Pros and Cons

- Reverse path multicasting, when used with distance vector routing, is known as distance-vector multicast routing protocol (DVMRP)
- Advantages: good when there are many receivers, since multicast messages are initially flooded to the entire network.
- Disadvantages
 - Bad if there are few receivers
 - Again, the first multicast messages are sent throughout the network unnecessarily.
 - Routers need to remember the "prune" state, i.e. they need to maintain state even when there are no receivers below them on the tree
 - The path from source to receiver may not be optimal if the cost of links is not bi-directional.

Link-State Multicast Routing

- This is covered in the book.
- Extend OSPF MOSPF
 - Send group membership information in OSPF link state advertisement (LSA) messages
 - I.e., each router learns the entire set of receivers, and their location.
 - Each router can (when necessary) compute the minimum cost path from every source to the current set of receivers of the multicast group.

Routers A and B mention in their LSA that they have receivers in their adjacent LANs.

Hence, C can recreate the above picture in detail.

C computes the shortest path tree from S(G) to the receivers Each link is tagged with its distance to the closest R(G)

How do you know who are the sources?

- You could precompute, for every group G, a tree for every source (LAN) S
- This is way too expensive
- Instead, use caching

MOSPF Cache

- The cache has entries of the following form:
 - (S, G, iif, MHV)
 - MHV is a VECTOR with an entry per output link (i.e. a list of pairs (λ,min-hops))
 - For each link, this vector contains the minimum number of hops needed to reach a group member via the link
 - If a link does not reach a group member (not on tree) use infinity for # hops.
 - If a packet is received from S to G from the iif,
 - The packet is sent over all links such that the time-to-live of the packet is at least the link's entry in min-hops
- If no cache-entry of (S,G) compute the tree on the fly (incurring delay)
- Cache entries are not timed-out, they are just flushed out if new ones are needed (or when the network graph changes)

Which of X, Y, Z, compute the tree? Same question, but the receiver at B does not exist.