法律声明

- □本课件包括演示文稿、示例、代码、题库、视频和声音等内容,小象学院和主讲老师拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意及内容,我们保留一切通过法律手段追究违反者的权利。
- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

聚类(下)

本次目标

- □理解密度聚类并能够应用于实践
 - DBSCAN
 - DensityPeak密度最大值聚类
- □掌握谱聚类的算法
 - 考虑谱聚类和PCA的关系
- □半监督LPA算法
 - 社区发现

密度聚类方法

- □ 密度聚类方法的指导思想是,只要样本点的密度大于禁阈值,则将该样本添加到最近的簇中。
- □ 这类算法能克服基于距离的算法只能发现"类圆形"(凸)的聚类的缺点,可发现任意形状的聚类, 且对噪声数据不敏感。但计算密度单元的计算复杂 度大,需要建立空间索引来降低计算量。
 - DBSCAN
 - 密度最大值算法

DBSCAN算法

- □ DBSCAN(Density-Based Spatial Clustering of Applications with Noise)
- □一个比较有代表性的基于密度的聚类算法。 与划分和层次聚类方法不同,它将簇定义为 密度相连的点的最大集合,能够把具有足够 高密度的区域划分为簇,并可在有"噪声" 的数据中发现任意形状的聚类。

DBSCAN算法的若干概念

- □ 对象的ε-邻域:给定对象在半径ε内的区域。
- □ 核心对象:对于给定的数目m,如果一个对象的ε-邻域至少包含m个对象,则称该对象为核心对象。
- □ 直接密度可达:给定一个对象集合D,如果p是在q 的ε-邻域内,而q是一个核心对象,我们说对象p从 对象q出发是直接密度可达的。
- □如图ε=1cm, m=5, q是一个核心对象, 从对象q出发到对象p是直接密度可达的。

DBSCAN算法的若干概念

- □ 密度可达:如果存在一个对象链 $p_1p_2...p_n$, $p_1=q$, $p_n=p$, 对 p_i ∈ D, $(1 \le i \le n)$, p_{i+1} 是从 p_i 关于 ϵ 和加直接密度可达的,则对象p是从对象q关于 ϵ 和加密度可达的。
- □ 密度相连:如果对象集合D中存在一个对象O,使得对象p和q是从O关于ε和m密度可达的,那么对象p和q是关于ε和m密度相连的。
- □ 簇:一个基于密度的簇是最大的密度相连对象的集合。
- □ 噪声:不包含在任何簇中的对象称为噪声。

DBSCAN算法

- □ DBSCAN算法流程:
 - 如果一个点p的ε-邻域包含多于m个对象,则创建一个p作 为核心对象的新簇;
 - 寻找并合并核心对象直接密度可达的对象;
 - 没有新点可以更新簇肘,算法结束。
- □ 有上述算法可知:
 - 每个簇至少包含一个核心对象;
 - 非核心对象可以是簇的一部分,构成 了簇的边缘(edge);
 - 包含过少对象的簇被认为是噪声。

Code

```
def density_cluster(data):
   # 计算核心对象
   m = len(data)
                # 样本数目
   sim = [[] for i in range(m)] * m # sim[i]:第i个样本的近邻
   r2 = r * r
   for i in range(m): # 距离
       print i
       for j in range(m):
           if distance2(data[i], data[j]) < r2:</pre>
              sim[i].append(j)
   # 根据核心对象合并
   uf = uf_init(m) # 并查集初始化
   for i in range(m):
       if len(sim[i]) > kernel_num: # i是核心对象
           for j in sim[i]:
              uf_union(uf, i, j)
   # 计算并查集的每个对象所属类型
   types = {}
   t = 0
   for i in range(m):
       c = uf_find(uf, i)
       if not types.has_key(c):
           if c != i or len(sim[i]) > kernel_num: # 去除孤立点
              t += 1
              types[c] = t
   # 根据字典映射关系, 计算每个样本所属的簇
   cluster = [0] * m
   for i in range(m):
       c = uf_find(uf, i)
       if (c != i) or (len(sim[i]) > kernel_num):
           if len(sim[i]) > kernel_num: # 是核心对象
              cluster[i] = types[c]
           else:
              cluster[i] = k+types[c]
   return cluster
```


密度最大值聚类

- □ 密度最大值聚类是一种简洁优美的聚类算法,可以识别各种形状的类簇,并且参数很容易确定。
- □ 定义:局部密度ρi

$$\rho_i = \sum_j \chi(d_{ij} - d_c), \quad \sharp \Phi, \quad \chi(x) = \begin{cases} 1 & x < 0 \\ 0 & otherwise \end{cases}$$

- d_c 是一个截断距离, ρ_i 即到对象i的距离小于 d_c 的对象的个数。由于该算法只对 ρ_i 的相对值敏感, 所以对 d_c 的选择是稳健的, 一种推荐做法是选择 d_c , 使得平均每个点的邻居数为所有点的1%-2%
- □ 定义:高局部密度点距离δi

局部密度的其他定义

□ 截断值: $\dot{\rho}_{i} = \sum_{i} \chi \left(d_{ij} - d_{c} \right), \quad \sharp + , \quad \chi(x) = \begin{cases} 1 & x < 0 \\ 0 & otherwise \end{cases}$

□ 高斯核相似度:

□ 高斯核相似度:
$$\rho_i = \sum_{j \in I_S \setminus \{i\}} \exp \left(-\left(\frac{d_{ij}}{d_c}\right)^2\right)$$
 □ K近邻均值:

$$\rho_{i} = \frac{1}{K} \sum_{i=1}^{K} d_{ij}, \quad \sharp \Phi, \quad d_{i1} > d_{i2} > \Lambda \quad d_{iK} > d_{i,K+1} > \Lambda$$

高局部密度点距离

- \square 高局部密度点距离 $\delta_i = \min_{j:
 ho_j>
 ho_i} ig(d_{ij}ig)$
- □ 在密度高于对象i的所有对象中,到对象i最近的距离,即高局部密度点距离。
- □ 对于密度最大的对象,设置 δ_i =max(d_{ij})(即:该问题中的无穷大)。
 - 只有那些密度是局部或者全局最大的点才会有远 大于正常值的高局部密度点距离。

簇中心的识别

- \square 那些有着比较大的局部密度 ρ_i 和很大的高密 距离 δ_i 的点被认为是簇的中心;
- □ 高密距离δ_i较大但局部密度ρi较小的点是异常点;
 - 确定簇中心之后,其他点按照距离已知簇的中心最近进行分类
 - □ 注:也可按照密度可达的方法进行分类。

DensityPeak与决策图Decision Graph

□ 左图是所有点在二维空间的分布,右图是以ρ为横坐标,以δ为纵坐标绘制的决策图。可以看到,1和10两个点的ρ_i和δ_i都比较大,作为簇的中心点。26、27、28三个点的δ_i也比较大,但是ρ_i较小,所以是异常点。

边界和噪声的重认识

- □ 在聚类分析中,通常需要确定每 个点划分给某个簇的可靠性:
- 0.0100 0.000000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0
- □ 在该算法中,可以首先为每个簇定义一个边界区域 (border region),亦即划分给该簇但是距离其他簇的 点的距离小于dc的点的集合。然后为每个簇找到其边界区域的局部密度最大的点,令其局部密度为ρh。
- □ 该簇中所有局部密度大于ρh的点被认为是簇核心的一部分(亦即将该点划分给该类簇的可靠性很大),其余的点被认为是该类簇的光晕(halo),亦即可以认为是噪声。
 - 注:关于可靠性问题,在EM算法中仍然会有相关涉及。

A图为生成数据的概率分布, B, C二图为分别从该分布中生成了4000, 1000个点. D, E分别是B, C两组数据的决策图(decision tree), 可以看到两组数据都只有五个点有比较大的ρi 和很大的δi. 这些点作为类簇的中心, 在确定了类簇的中心之后, 每个点被划分到各个类簇(彩色点), 或者是划分到类簇光晕(黑色点). F图展示的是随着抽样点数量的增多, 聚类的错误率在逐渐下降, 说明该算法是鲁棒的.

不同数据下密度最大值聚类的效果

$$r(i,k) \leftarrow s(i,k) - \max_{k' \text{ s.t. } k' \neq k} \{a(i,k') + s(i,k')\}$$

Affinity Propagation $a(i,k) \leftarrow \min \left\{ 0, r(k,k) + \sum_{i'\text{s.t. } i' \notin \{i,k\}} \max \{0, r(i',k)\} \right\}$

Code

互联网新技术在线教育领航者

```
def affinity propagation(data, factor):
                               # m样本个数, n样本维度
   m, n = data.shape
   s = np.zeros((m, m))
   for i in np.arange(m):
       for j in np.arange(i+1, m):
           s[i][j] = s[j][i] = -((data[i] - data[j]) ** 2).sum()
    p = factor*np.median(s)
                               # 自聚类因子
   print p
   for i in np.arange(m):
       s[i][i] = p
   r = np.zeros((m, m))
                           # r(i,k):i 对k的依赖度
   a = np.zeros((m, m))
                         # a(i,k):k度i的适合度
                          # 迭代次数
   times = 100
                           # 阻尼因子
    lamda = 0.5
   cluster = np.zeros(m, dtype=np.int)
    center = {}
    for tt in np.arange(times):
       for i in np.arange(m):
           for k in np.arange(m):
               a s = None # a s:a+s
               for t in np.arange(m):
                   if t != k:
                       if (a_s is None) or (a_s < a[i][t] + s[i][t]):
                           a_s = a[i][t] + s[i][t]
               r[i][k] = lamda * (s[i][k] - a s) + (1-lamda)*r[i][k]
       for i in np.arange(m):
           for k in np.arange(m):
               if k == i: # a[i][i]单独计算
                   continue
               r_s = r[k][k]
                                 # sum(r[:k])
               for t in np.arange(m):
                   if (t != i) and (t != k):
                       r s += max(r[t][k], 0)
                       \# r_s += r[t][k]
               a[i][k] = lamda * min(0, r s) + (1-lamda)*a[i][k]
           # 计算a[i][i]
           r s = 0
           for t in np.arange(m):
               if t != i:
                   r_s += max(r[t][i], 0)
                   \# r s += r[t][i]
           a[i][i] = lamda * r s + (1-lamda)*a[i][i]
```

AP算法调参

复习: 实对称阵的特征值是实数

$$\overline{x}^{T}(Ax) = \overline{x}^{T}(Ax) = \overline{x}^{T}\lambda x = \lambda \overline{x}^{T}x$$

$$\overline{x}^{T}(Ax) = (\overline{x}^{T}A^{T})x = (A\overline{x})^{T}x = (\overline{\lambda}\overline{x})^{T}x = \overline{\lambda}\overline{x}^{T}x$$

□ 从而

$$\lambda \overline{x}^T x = \overline{\lambda} \overline{x}^T x \Longrightarrow (\lambda - \overline{\lambda}) \overline{x}^T x = 0$$

 $\overline{x}^T x = \sum_{i=1}^n \overline{x_i} x_i = \sum_{i=1}^n \left| x_i \right|^2 \neq 0$

所以 $\lambda - \overline{\lambda} = 0 \Rightarrow \lambda = \overline{\lambda}$

实对称阵不同特征值的特征向量正交

- \square 令实对称矩阵为A,其两个不同的特征值 $\lambda_1\lambda_2$ 对应的特征向量分别是 $\mu_1\mu_2$;
 - λ₁λ₂ μ₁μ₂都是实数或是实向量。

$$\begin{cases} A\mu_{1} = \lambda_{1}\mu_{1} \\ A\mu_{2} = \lambda_{2}\mu_{2} \Rightarrow \mu_{1}^{T} \underline{A}\mu_{2} = \mu_{1}^{T} \underline{\lambda_{2}\mu_{2}} \end{cases}$$

$$\Rightarrow (A^{T}\mu_{1})^{T}\mu_{2} = \lambda_{2}\mu_{1}^{T}\mu_{2} \Rightarrow (\underline{A}\mu_{1})^{T}\mu_{2} = \lambda_{2}\mu_{1}^{T}\mu_{2}$$

$$\Rightarrow (\underline{\lambda_{1}\mu_{1}})^{T}\mu_{2} = \lambda_{2}\mu_{1}^{T}\mu_{2}$$

$$\Rightarrow \lambda_{1}\mu_{1}^{T}\mu_{2} = \lambda_{2}\mu_{1}^{T}\mu_{2}$$

$$\Rightarrow \lambda_{1}\mu_{1}^{T}\mu_{2} = \lambda_{2}\mu_{1}^{T}\mu_{2}$$

$$\xrightarrow{\lambda_{1} \neq \lambda_{2}} \mu_{1}^{T}\mu_{2} = 0$$

谱和谱聚类

- □ 方阵作为线性算子,它的所有特征值的全体 统称方阵的谱。
 - 方阵的谱半径为最大的特征值
 - 矩阵A的谱半径: (A^TA)的最大特征值
- □ 谱聚类是一种基于图论的聚类方法,通过对 样本数据的拉普拉斯矩阵的特征向量进行聚 类,从而达到对样本数据聚类的目的。

谱分析的整体过程

- □ 给定一组数据 $X_1, X_2, ... X_n$, 记任意两个点之间的相似度("距离"的减函数)为 S_{ij} =< xi, xj>, 形成相似度图(similarity graph): G=(V,E)。如果 X_i 和 X_j 之间的相似度 S_{ij} 大于一定的阈值,那么,两个点是连接的,权值记做 S_{ij} 。
- □接下来,可以用相似度图来解决样本数据的聚类问题:找到图的一个划分,形成若干个组(Group),使得不同组之间有较低的权值,组内有较高的权值。

若干概念

- □ 无向图G=(V,E)
- 口 邻接矩阵 $W=(w_{ij})_{i,j=1,...,n}$
- □ 顶点的度di → 度矩阵D(对角阵)

$$d_i = \sum_{j=1}^n w_{ij}$$

若干概念

□ 子图A的指示向量

$$1_A = (f_1, \dots, f_n)' \in \mathbb{R}^n$$

$$f_i = 1 \text{ if } v_i \in A$$

$$f_i = 0 \text{ otherwise}$$

□ A和B是图G的不相交子图,则定义子图的连接权:

$$W(A, B) := \sum_{i \in A, j \in B} w_{ij}$$

相似度图G的建立方法

- □ 全连接图: 距离越大,相似度越小 高斯相似度 $s(x_i, x_j) = \exp\left(\frac{-\|x_i x_j\|^2}{2\sigma^2}\right)$ □ ε近邻图
 - 给定参数ε/如何选择ε?
 - 图G的权值的均值
 - □ 图G的最小生成树的最大边
- k近邻图(k-nearest neighbor graph)
 - 若vi的k最近邻包含vj, vj的k最近邻不一定包含vi: 有向图
 - 忽略方向的图,往往简称"k近邻图"
 - 两者都满足才连接的图, 称作"互k近邻图(mutual)"

相似度图G的举例

- □ ε近邻图: ε=0.3, "月牙部分"非常紧的连接了,但"高斯部分"很多都没连接。当数据有不同的"密度"时,往往发生这种问题。
- □ k近邻图:可以解决数据存在不同密度时有些无法连接的问题, 甚至低密度的"高斯部分"与高密度的"月牙部分"也能够连接。同时,虽然两个"月牙部分"的距离比较近,但k近邻还可以把它们区分开。
- □ 互k近邻图: 它趋向于连接相同密度的部分,而不连接不同密度的部分。这种性质介于E近邻图和k近邻图之间。如果需要聚类不同的密度,这个性质非常有用。
- □ 全连接图:使用高斯相似度函数可以很好的建立权值矩阵。但 缺点是建立的矩阵不是稀疏的。
- □ 总结: 首先尝试使用k近邻图。

拉普拉斯矩阵及其性质

□ 拉普拉斯矩阵: L=D-W

$$f^{T}Lf = f^{T}Df - f^{T}Wf = \sum_{i=1}^{n} d_{i}f_{i}^{2} - \sum_{i,j=1}^{n} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_{i}f_{i}^{2} - 2\sum_{i,j=1}^{n} f_{i}f_{j}w_{ij} + \sum_{j=1}^{n} d_{j}f_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i} - f_{j})^{2}$$

□ L是对称半正定矩阵,最小特征值是0,相应的特征 向量是全1向量。

拉普拉斯矩阵的定义

- □ 计算点之间的邻接相似度矩阵W
 - 若两个点的相似度值越大,表示这两个点越相似;
 - 同时,定义 $W_{ii}=0$ 表示 V_i,V_i 两个点没有任何相似性(无穷远)
- □ W的第i行元素的和为Vi的度。形成顶点度对角阵D
 - d;;表示第i个点的度
 - 除主对角线元素, D其他位置为0
- \square 未正则的拉普拉斯矩阵: L=D-W
- ·则及音狂斯矩阵 $-rac{1}{2}\cdot L\cdot D^{rac{1}{2}}=I-D^{rac{1}{2}}\cdot W\cdot D^{rac{1}{2}}$ 对称拉普拉斯矩阵 $L_{sym}=D^{rac{1}{2}}\cdot L\cdot D^{rac{1}{2}}=I-D^{rac{1}{2}}\cdot W\cdot D^{rac{1}{2}}$ □ 正则拉普拉斯矩阵

 - 随机游走拉普拉斯矩阵 $L_{rw}=D^{-1}L=I-D^{-1}W$
 - □ Random walk

谱聚类算法: 未正则拉普拉斯矩阵

- □ 输入: n个点 $\{p_i\}$, 簇的数目k
 - 计算n×n的相似度矩阵W和度矩阵D;
 - 计算拉普拉斯矩阵L=D-W;
 - 计算L的前k个特征向量 $u_1,u_2,...,u_k$;
 - 将k个列向量 $u_1,u_2,...,u_k$ 组成矩阵 $U,U \in \mathbb{R}^{n \times k}$;
 - 对于i=1,2,...,n,令 $y_i \in R^k$ 是U的第i行的向量;
 - 使用k-means 算法将点 $(y_i)_{i=1,2,...,n}$ 聚类成簇 $C_1,C_2,...C_k$;
 - 输出簇 $A_1,A_2,...A_k$, 其中, $Ai=\{j|y_j\in Ci\}$

谱聚类算法: 随机游走拉普拉斯矩阵

- □ 输入: n个点{p_i}, 簇的数目k
 - 计算n×n的相似度矩阵W和度矩阵D;
 - 计算正则拉普拉斯矩阵L_{rw}=D-1(D-W);
 - 计算 L_{rw} 的前k个特征向量 $u_1,u_2,...,u_k$;
 - 将k个列向量 $u_1,u_2,...,u_k$ 组成矩阵 $U,U \in \mathbb{R}^{n \times k}$;
 - 对于i=1,2,...,n,令 $y_i \in R^k$ 是U的第i行的向量;
 - 使用k-means 算法将点 $(y_i)_{i=1,2,...,n}$ 聚类成簇 $C_1,C_2,...C_k$;
 - 输出簇 $A_1,A_2,...A_k$, 其中, $Ai=\{j|y_j\in Ci\}$

谱聚类算法:对称拉普拉斯矩阵

- □ 输入: n个点{p_i}, 簇的数目k
 - 计算n×n的相似度矩阵W和度矩阵D;
 - 计算正则拉普拉斯矩阵L_{svm}=D^{-1/2}(D-W) D^{-1/2};
 - 计算 L_{sym} 的前k个特征向量 $u_1,u_2,...,u_k$;
 - 将k个列向量u₁,u₂,...,u_k组成矩阵U, U∈R^{n×k};
 - 对于i=1,2,...,n,令 $y_i \in \mathbb{R}^k$ 是U的第i行的向量;
 - 对于i=1,2,...,n,将 $y_i \in \mathbb{R}^k$ 依次单位化,使得 $|y_i|=1$;
 - 使用k-means 算法将点 $(y_i)_{i=1,2,...,n}$ 聚类成簇 $C_1,C_2,...C_k$;
 - 输出簇A₁,A₂,...A_k,其中,Ai={j|y_i∈Ci}

一个实例

Code

```
def spectral_cluster(data):
    lm = laplace_matrix(data)
    eg_values, eg_vectors = linalg.eig(lm)
    idx = eg_values.argsort()
    eg_vectors = eg_vectors[:, idx]

m = len(data)
    eg_data = [[] for x in range(m)]
    for i in range(m):
        eg_data[i] = [0 for x in range(k)]
        for j in range(k):
              eg_data[i][j] = eg_vectors[i][j]
    return k_means(eg_data)
```

```
def laplace_matrix(data):
     m = len(data)
     W = [[] for \times in range(m)]
     for i in range(m):
         w[i] = [0 \text{ for } x \text{ in } range(m)]
     nearest = [0 for x in range(neighbor)]
     for i in range(m):
         zero list(nearest)
         for j in range(i+1, m):
             w[i][j] = similar(data, i, j)
             if not is_neighbor(w[i][j], nearest):
                 w[i][j] = 0
             w[j][i] = w[i][j] #对称
         w[i][i] = 0
     for i in range(m):
         s = 0
         for j in range(m):
             s += w[i][j]
         if s == 0:
             print "矩阵第", i, "行全为0"
             continue
         for j in range(m):
             w[i][j] /= s
             w[i][j] = -w[i][j]
         w[i][i] += 1 #单位阵主对角线为1
     return w
```

聚类效果

−200

进一步思考

- □ 谱聚类中的K如何确定? $k^* = \arg\max |\lambda_{k+1} \lambda_k|$
- □ 最后一步K-Means的作用是什么?
 - 目标函数是关于子图划分指示向量的函数,该向量的值根据子图划分确定,是离散的。该问题是NP的,转换成求连续实数域上的解,最后用K-Means算法离散化。
- □ 未正则/对称/随机游走拉普拉斯矩阵,首选哪个?
 - 随机游走拉普拉斯矩阵
- □ 谱聚类可以用切割图/随机游走/扰动论等解释。

随机游走和拉普拉斯矩阵的关系

- □图论中的随机游走是一个随机过程,它从一个顶点跳转到另外一个顶点。谱聚类即找到图的一个划分,使得随机游走在相同的簇中停留而几乎不会游走到其他簇。
- □ 转移矩阵:从顶点vi跳转到顶点vj的概率正 比于边的权值wij

$$p_{ij} = w_{ij} / d_i \qquad P = D^{-1}W$$

标签传递算法

- □对于部分样本的标记给定,而大多数样本的标记未知的情形,是半监督学习问题。
- □标签传递算法(Label Propagation Algorithm, LPA),将标记样本的标记通过一定的概率传递给未标记样本,直到最终收敛。

Code

```
def label_propagation(data, a):
     p = transition_matrix(data)
     m = len(data)
     n = len(data[0])
     for times in range(100):
         for i in range(a, m):
             j = calc_label(p, i)
             label = data[j][n-1]
             if label > 0:
                 data[i][n-1] = label
def calc_label(p, i):
     n = len(p[i])
     k = random.random() # k \in [0,1)
     r = n-1
     for j in range(n):
         if p[i][j] > k:
             r = i
             break
     return r
```

```
def transition matrix(data):
     m = len(data)
     p = [[] for x in range(m)]
     for i in range(m):
         p[i] = [0 \text{ for } x \text{ in } range(m)]
     nearest = [0 for x in range(neighbor)]
     for i in range(m):
         zero_list(nearest)
         for j in range(i+1, m):
             p[i][j] = similar(data, i, j)
             if not is_neighbor(p[i][j], nearest):
                 p[i][j] = 0
             p[j][i] = p[i][j] #对称
         p[i][i] = 0
     for i in range(m):
         s = 0
         for j in range(m):
             s += p[i][j]
         if s == 0:
             print "矩阵第", i, "行全为0"
             continue
         for j in range(m):
             p[i][j] /= s
             if j != 0:
                 p[i][j] += p[i][j-1]
     return p
```

标签传递过程

初始	1	10
20	30	40

参考文献

- ☐ Alex Rodriguez, Alessandro Laio. Clustering by fast search and find of density peak. Science. 2014
- □ Ulrike von Luxburg. *A tutorial on spectral clustering*. 2007
- □ Lang K. *Fixing two weaknesses of the spectral method*. Advances in Neural Information Processing Systems 18, 715–722. MIT Press, Cambridge, 2006
- □ Bach F, Jordan M. *Learning spectral clustering*. Advances in Neural Information Processing Systems 16 (NIPS). 305–312. MIT Press, Cambridge,2004
- R.J.G.B. Campello, D. Moulavi, A. Zimek and J. Sander Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection, ACM Trans. on Knowledge Discovery from Data, Vol 10, 1 (July 2015), 1-51.

我们在这里

- □ http://wenda.ChinaHadoop.c.
 - 视频/课程/社区
- □ 微博
 - @ChinaHadoop
 - @邹博_机器学习
- □ 微信公众号
 - 小象学院
 - 大数据分析挖掘

感谢大家!

恳请大家批评指正!