A New Nearby Galaxy Table*

DAVID M. FRENCH, BART P. WAKKER¹

¹Department of Astronomy, University of Wisconsin - Madison

ABSTRACT

We present an all-sky catalog of galaxies in the $cz \leq 10,000~{\rm km\,s^{-1}}~{\rm redshift}$ range. We have sourced published data available through the NASA Extragalactic Database (NED), the NASA/IPAC Infrared Science Archive (IRSA), the Third Reference Catalogue of Bright Galaxies (RC3), and the Tully (2015) 2MASS galaxy group catalog. We have taken steps to homogenize the data by converting diameter measurements to 2MASS values, and employing outlier rejection to choose representative values for position angle, inclination, redshift-independent distance, and B-band magnitude.

Keywords: IGM, CGM, galaxies

1. INTRODUCTION

Galaxy catalogs are at once somewhat outdated in the age of the internet and massive online accessibility, yet still frustratingly necessary. The ideal solution of an all-sky and all-object online database containing homogenized information has not been completely realized, even as the NASA Extragalactic Database (NED)¹, Vizier², SIMBAD³ and others fulfill some of these requirements. Each of these databases offer slightly different sets of information on their objects, and there is often no straightforward way for extracting all the parameters needed. For example, there is no way to return the diameters of all known galaxies in a particular redshift range. Furthermore, comparing and choosing between disparate measurements of common galaxy parameters (e.g., diameter, inclination, magnitude, distance, etc.) is not trivial when a large sample is required. The need for a simple, highly complete lookup nearby galaxy catalog remains.

In an effort to study the circumgalactic medium (CGM) around galaxies in the nearby universe we require just such a galaxy dataset, with a high degree of completeness and homogeneity. To this end we have constructed a catalog of galaxies within the redshift range $cz \leq 10,000~{\rm km\,s^{-1}}$. All of the data included here is publicly available through the NASA Extragalactic Database (NED), the NASA/IPAC Infrared Science Archive (IRSA), the Third Reference Catalogue of Bright Galaxies (RC3; Corwin et al. 1994), and the Tully (2015) 2MASS Galaxy Group Catalog. We have endeavored in various ways to create a single, homogeneous catalog. The largest effort on this front revolved

around deriving consistent linear and angular galaxy diameters. While we originally began compiling this data base as a tool to aid in the matching of galaxies to absorption detected in background QSO spectra, we hope that it can prove useful to the community at large.

In Section 2 we discuss our data retrieval methods and handling of distance and velocity measurements. In Section 3, we provide explanation and details for each galaxy attribute included in the catalog (i.e., the data columns). We discuss caveats and limitations in Section 4. Throughout this catalog we have adopted the cosmology $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_{\rm m} = 0.27$, and $\Omega_{\Lambda} = 0.73$.

2. DATA

2.1. Data Retrieval

All data contained in this catalog except for extinction, RC3 parameters, and group membership were retrieved from NED. These data were retrieved from NED in a two-step process. First, we used the NED "Search By Parameters" service to retrieve all objects with classification type "Galaxies (G)" and heliocentric velocity $\leq 10,000~{\rm km\,s^{-1}}$. Because of a 10,000 object retrieval cap imposed by NED, this step was completed in 14 separate redshift steps. Next, we used the retrieved list of object names to query NED for more detailed information than is available through the initial search. We completed this query using a suite of custom Python scripts which retrieve the object's XML VOTable, which contains all object information and measurements contained in NED.

We then retrieved the Galactic dust extinction (E(B-V)) estimates produced by Schlafly & Finkbeiner (2011) toward each object from the Galactic Dust Reddening and Extinction service hosted by the NASA/IPAC In-

¹ https://ned.ipac.caltech.edu/

² http://vizier.u-strasbg.fr/

³ http://simbad.u-strasbg.fr/simbad/

frared Science Archive (IRSA) ⁴. Again, this took several steps because of the 20,000 row limit imposed by the Table Upload mode offered by IRSA. Group information (membership; 3.45, number of members; 3.46, and group distance; 3.47) for each galaxy was taken from Tully (2015) 2MASS galaxy group catalog. Finally, we also include the galaxy type (3.41), position angle (3.44), apparent major isophotal diameter (3.42), and major-to-minor axis ratio (3.43) from the Third Reference Catalogue of Bright Galaxies (RC3; Corwin et al. 1994) for all overlapping galaxies.

2.2. Completeness

The galaxy dataset contains 130,819 objects, and includes data from SDSS, 2MASS, 2dF, 6dF, RC3, and many other, smaller surveys. Figure 2 shows the number of objects coming from each of these major survevs as a function of heliocentric velocity (Vhel). Our criteria for including a galaxy in this dataset is only a published redshift which places the galaxy in the $cz \le 10,000 \,\mathrm{km}\,\mathrm{s}^{-1}$ velocity range. This restriction leads to a completeness limit of $B \lesssim 18.7$ mag, or $\sim 0.2L_*$, at $cz = 10,000 \text{ km s}^{-1}$, and progressively better towards lower velocities (see Figure 1). This limit will vary depending on which major surveys include a particular region of the sky. The major contributor is whether or not SDSS data is available, which begins around cz = 5,000 ${\rm km}\,{\rm s}^{-1}$. Figure 1 is split into 4 velocity bins to illustrate this. Our data is complete down to $\sim 0.1 L_*$ in the first bin, 0 < cz < 2,500 km s⁻¹. At slightly higher velocity, $2500 \le cz \le 6000 \text{ km s}^{-1}$, the completeness falls to barely better than $\sim 1.0L_*$ as we move past the near and well studied galaxies, but have yet to reach the footprint of deep all sky surveys. SDSS data becomes available in the last two bins, spanning $6000 \le cz \le 10,000 \text{ km s}^{-1}$, and correspondingly completeness remains high down to the SDSS limits of $B \lesssim 18.7$ mag, or $\sim 0.2L_*$ at $cz = 10,000 \text{ km s}^{-1}$.

2.3. Distances & Velocities

A redshift-independent distance estimate is available for 17361 objects, which corresponds to 13.3% of all objects in the catalog. For these objects bestDist (3.23) is set to the median of all available redshift-independent distance estimates, and $e_bestDist$ (3.24) is set to the published observational error for this median value. If no error is available, $e_bestDist$ is instead set to the standard deviation of all available redshift-independent distance measurements. When only a redshift is available, we set bestDist equal to the Hubble law distance as calculated with $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$, and $e_bestDist$ equal to 10% of the resulting distance estimate. At very low redshift, the uncertainty in this estimate is dominated by deviations from the Hubble Flow due to, e.g.,

Figure 1. Distribution of L/L_* values for all galaxies in the dataset. Black vertical lines highlight 1, 0.5, 0.1, 0.05 and 0.01 L_* . The turnoff in the distribution for each region reveals the corresponding completeness. We are complete to almost $0.01L_*$ out to $2500~{\rm km\,s^{-1}}$, $0.5L_*$ between $2500 \le cz \le 5000~{\rm km\,s^{-1}}$, $0.1L_*$ between $6000 \le cz \le 8000~{\rm km\,s^{-1}}$, and $0.3L_*$ $8000 < cz < 10000~{\rm km\,s^{-1}}$.

the Local Group, and at larger distances the uncertainty in H_0 becomes dominant. The distance error for any particular galaxy is difficult to ascertain, but at 10% error should contain the true 1σ error across our full redshift range. All galaxies with zero or negative Vhel have bestDist set to 1 Mpc, and $e_bestDist$ to 0.5 Mpc.

3. THE CATALOG

The following section describes the contents of each column in the order it appears in the catalog. Null values are marked in one of three ways. Columns containing strings have the null value of 'x', those containing integers have null value '-99', and those containing floating point entries have null value '-99.99'.

3.1. Name

Our preferred name for the galaxy. The ordering is as follows: NGC, IC, MRK, UGC, UGCA, PHL, 3C, SBS,

⁴ http://irsa.ipac.caltech.edu/applications/DUST/

Figure 2. Number of objects included from the major sources 2MASS (solid-black), SDSS (dashed-red), 2dF (solid-gold-crosses), 6dF (dot-dashed-green), RC3 (dotted-diamond-blue) and all other sources (solid-grey) plotted as a function of heliocentric velocity.

MCG, ESO, TON, TONS, PGC, PG, PB, FGC, HS, HE, KUG, IRAS, RX, CGCG, KAZ, FCC, FAIRALL, HOLM, IZw, IIZw, IIIZw, IVZw, VZw, VIZw, VIIZw, VIIIZw, IRAS, IRASF, KISS, KISSR, FBQS, LBQS, PKS, SDSS, VCC, 2MASS, 2DF, 6DF, HIPASS, 2MASX.

If none of these are available, we adopt the NED preferred name.

3.2. NEDname

The preferred name for the galaxy in the NED database.

3.3. z

The NED-preferred redshift for the galaxy.

3.4. RAdeg

Equatorial right ascension coordinate in degrees (J2000.0 epoch).

3.5. DEdeg

Equatorial declination coordinate in degrees (J2000.0 epoch).

3.6. RAh

Equatorial right ascension hour coordinate (J2000.0 epoch).

3.7. RAm

Equatorial right ascension minute coordinate (J2000.0 epoch).

3.8. RAs

Equatorial right ascension second coordinate (J2000.0 epoch).

$3.9. \ DE$ -

Equatorial declination coordinate sign (J2000.0 epoch).

3.10. DEd

Equatorial declination degree coordinate (J2000.0 epoch).

3.11. *DEm*

Equatorial declination minute coordinate (J2000.0 epoch).

Figure 3. Position of all galaxies with flag = 0 (see 3.49 below) plotted in Aitoff projection and colored according to heliocentric velocity.

$3.12.\ DEs$

Equatorial declination second coordinate (J2000.0 epoch).

$3.13. \; GLON$

Galactic longitude coordinate.

3.14. *GLAT*

Galactic latitude coordinate.

3.15. Vhel

Heliocentric radial velocity in ${\rm km\,s^{-1}}$ units. As done by NED, we do not make any relativistic correction to these velocities.

$3.16. \ vcorr$

Virgocentric flow-corrected velocity. Following Huchra & Geller (1982); Geller & Huchra (1983), this corresponds to a 300 km s⁻¹ velocity toward $R.A.=186^{\circ}.7833$, $decl.=12^{\circ}.9333$.

3.17. distvcorr

Distance calculated from *vcorr* with a Hubble constant of $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

$3.18. RID_mean$

Mean redshift-independent distance from the NED-D catalog (Tully et al. 2009). This is the arithmetic mean of the available measurements and therefore does not correspond to any single measurement in particular.

$3.19. RID_median$

Median redshift-independent distance from the NED-D catalog. This is not the arithmetic median of the set, but rather the published distance value *closest* to the median. The method used for this distance estimate is given by *distIndicator* (Section 3.50).

3.20. *RID_std*

Standard deviation of all redshift-independent distance measurements.

$3.21. RID_min$

Minimum published redshift-independent distance.

$3.22. RID_max$

Maximum published redshift-independent distance.

$3.23.\ best Dist$

Our chosen best distance estimate. bestDist is equal to RID_median when a redshift-independent distance is available, and otherwise defaults to distructr.

$3.24.\ e_bestDist$

The error on bestDist. $e_bestDist$ is equal to RID_std when a redshift-independent distance is available. Otherwise, $e_bestDist$ is set to 10% of distvcorr when vcorr > 0, and 50% of distvcorr if vcorr < 0.

$3.25. MajDiam_ang$

Major axis diameter in units of arcsec. We have homogenized the galaxy data beyond the steps taken by

NED by normalizing diameter measurements to 2MASS K-band values. Most galaxies in NED have measures of inclination, position angle and diameter available in several different bands, so in order to make more meaningful comparisons we choose one band for all measurements. We chose 2MASS values for this because it is an all-sky survey, and represents a large fraction of available galaxy data. Physical galaxy diameters are derived from 2MASS K_s "total" angular diameter measurements and galaxy distances. 2MASS K_s "total" diameter estimates are surface brightness extrapolation measurements and were derived by the 2MASS team as

$$r_{tot} = r' + a(\ln(148)^b),$$
 (1)

where r_{tot} is defined as the point where the surface brightness extends to 5 disk scale lengths, r' is the starting point radius (> 5" - 10" beyond the nucleus, or core influence), and a and b are Sersic exponential function scale length parameters ($f = f_0 \exp{(-r/a)^{(1/b)}}$, see Jarrett et al. 2003 for a full description). Approximately 50% of all the galaxies have this 2MASS K_s "total" diameter. Of the remainder, 20% have SDSS diameters, 3% have diameters from other surveys, and 27% have no published diameter.

For galaxies with multiple published measurements from different facilities, we have derived linear fits in order to convert between them. The orthogonal distance regression (ODR) algorithm as implemented by the Fortran code ODRPACK (and the Python wrapped version included in the Scipy package) was used to derive these best fits and their associated errors. ODR, compared to the more common linear regression algorithm, assumes errors in both x- and y-coordinates and thus minimizes the orthogonal distance between both dependent and independent data and the fit. We then ranked the available surveys in order of goodness of fit to 2MASS values. The fits for each survey are listed in Table 1.

A significant fraction of galaxies have irregular, incomplete, or otherwise suspect diameter data as published in NED. For example, some have 2MASS K_s "total" diameters available, but the published axis ratio is either greater than 1, or otherwise significantly deviates from that found in other surveys. Furthermore, often our highest ranking diameter survey has incomplete data (such as a missing axis ratio or position angle measurement). For our purposes we want to choose a single, representative value for each parameter. Our method for choosing this value is as follows: 1) we choose the highest ranking diameter measurement available, and choose the largest major-axis diameter value when multiple are available from the same facility, 2) we choose the highest ranking axes ratio, preferentially selecting the value from the measurement chosen in (1), but rejecting a ratio = 1 when the average ratio of all measurements is less than 1, 3) we choose the highest ranking position angle measurement, again preferentially selecting the value included in (1).

Finally, we check to see if our initial choices are outliers using a version of the Iglewicz-Hoaglin Method, a median absolute deviation algorithm (Iglewicz & Hoaglin 1993). Through trial-and-error we set our outlier thresholds at 14.0 for major axis diameters, 3.5 for position angles, and 2.0 for axis ratios. Smaller threshold values indicate a stricter outlier rejection. If our initial choice of any of these values is flagged as an outlier, we choose the next highest-ranking, non-outlier value. The decision of diameter, ratio and position angle for each galaxy is included in the diameter_key (3.38), ratio_key (3.39), and pa_key (3.40) columns.

$3.26. \ MinDiam_ang$

Minor axis diameter in units of arcsec. See 3.25 for a complete discussion.

$3.27.\ e_MajDiam_ang$

Major axis diameter error. This error is purely a result of the 1σ fit error to K_s (2MASS) values, and thus does not take into account any observational errors.

$3.28.~e_MinDiam_ang$

Minor axis diameter error. This error is purely a result of the 1σ fit error to K_s (2MASS) values, and thus does not take into account any observational errors.

3.29. MajDiam

Linear major axis diameter in units of kpc, calculated using bestDist. See 3.25 for a complete discussion.

$3.30.\ MinDiam$

Linear minor axis diameter in units of kpc, calculated using bestDist. See 3.25 for a complete discussion.

$3.31. e_MajDiam$

Linear major axis diameter error. This error is purely a result of the 1σ fit error to K_s (2MASS) values, and thus does not take into account any observational errors.

$3.32.~e_MinDiam$

Linear minor axis diameter error. This error is purely a result of the 1σ fit error to K_s (2MASS) values, and thus does not take into account any observational errors.

$3.33. R_{-}vir$

Virial radius estimate calculated as

$$log R_{vir} = 0.69 log D + 1.24.$$
 (2)

This follows the parametrization of Stocke et al. (2013) relating a galaxy's luminosity to its virial radius, combined with the Wakker & Savage (2009) empirical relation between diameter and luminosity (see Wakker et al. 2015 and references therein for further details).

Source Name	Table Key	m	b	Diameter Total	Ratio Total	P.A. Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
K_s (2MASS "Total")	K_2mass_tot	N/A	N/A	62945	53778	57990
K_s (LGA/2MASS "total")	$K_{lga2mass_tot}$	N/A	N/A	593	497	553
K_s (2MASS isophotal)	K_2mass_iso	1.765 ± 0.003	1.31 ± 0.06	371	0	0
POSS1 103a-O	poss_103a-O	0.87 ± 0.01	17.60 ± 0.35	3466	5151	1513
POSS1 103a-E	$poss_103a-E$	1.05 ± 0.04	26.22 ± 1.98	121	341	1
ESO-LV "Quick Blue" IIa-O	eso-lv	0.81 ± 0.02	-9.73 ± 1.37	1442	4858	3167
r (SDSS Isophotal)	r_sdss_iso	1.03 ± 0.01	0.84 ± 0.17	26802	19726	25004
RC3 D ₋ 0 (blue)	$rc3_d0$	1.04 ± 0.01	-1.29 ± 0.58	277	0	0
RC3 D ₋ 25, R ₋ 25 (blue)	$rc3_dr_25$	1.11 ± 0.01	-3.09 ± 0.60	1	278	139
r (SDSS Petrosian)	r_sdss_pet	4.73 ± 0.03	3.38 ± 0.21	869	0	0
r (SDSS de Vaucouleurs)	r_sdss_dev	2.70 ± 0.04	15.64 ± 0.22	51	12302	7107
R (Kron-Cousins)	R_kron_cousins	1.47 ± 0.14	-35.89 ± 14.41	0	0	3
ESO-Uppsala "Quick Blue" IIa-O	eso_upp	1.06 ± 0.02	-13.39 ± 1.38	181	180	132

Table 1. Summary of Survey Usage and Fits

NOTE—Diameter fits in order of preference. (1) The source name of the data given by NED. (2) The corresponding source key given in the catalog. (3), (4) The slope and y-intercept of the ODR best fit with errors. (5), (6), (7) The total number of diameters, diameter ratios, and position angles coming from each source.

Figure 4. Relationship between absolute B-band magnitude and physical diameter for all galaxies with available data. Data are in grey, and a least-squares fit is shown in blue. The function form of this fit is $M = a \log_{10}(D) + b$, with fit parameters $a = -4.696 \pm 0.01$ and $b = -12.963 \pm 0.01$.

 $3.34.\ inc$

Galaxy inclination calculated simply as inc $\cos^{-1}(MinDiam/MajDiam)$ in units of degrees.

Galaxy inclination calculated assuming a finite disk thickness following Heidmann et al. (1972a):

$$\cos(i) = \sqrt{\frac{q^2 - q_0^2}{1 - q_0^2}},\tag{3}$$

where q is the ratio of minor to major axes and q_0 is the minimum disk thickness. We set $q_0 = 0.2$ for all galaxies. This value is a compromise, as some galaxies (e.g., Sc type) will have intrinsic q_0 closer to ~ 0.13

3.35. adjustedInc

(e.g., see **REFERENCE**), while highly bulged galaxies will have larger q_0 . However, as morphologies are only available for a subset of galaxies, a generic inclination correction fit our needs for homogeneity. The result is that very thin galaxies will be slightly biased towards higher inclination and vice-versa with thicker galaxies.

3.36. $e_{-}inc$

Inclination error derived from the error in major and minor axes fits (see 3.25). Measurement errors for diameters, axis-ratios, and position angles are inconsistently reported in NED, so this value only captures the additional error introduced by converting non-2MASS diameters. For consistency, we set 2MASS diameter errors uniformly at 5%.

3.37. PA

Position angle in units of degrees. When multiple PA measurements are available for a given target, we choose the highest ranking measurement as outlined in 3.25.

$3.38. diam_key$

The chosen source of our diameter value. Published diameters are converted to an equivalent 2MASS K_s "total" value following the fits given in Table 1.

3.39. ratio_key

The chosen source of our diameter axis-ratio value. This is used to calculate the minor axis diameters and inclinations (see Table 1).

$3.40. pa_key$

The chosen source of our position angle value (see Table 1).

$3.41.~RC3_type$

Galaxy morphology as published in the Third Reference Catalog of Bright Galaxies (RC3; see Table 2 in Section 3.3.a, page 15, of the printed RC3; Corwin et al. 1994). Galaxies not included in RC3 are marked 'x'.

3.42. RC3_d25

The RC3 apparent major isophotal diameter measured at the 25th magnitude surface-brightness level, in units of B-mag per arcsecond (see Section 3.4.a, page 21, of Volume I of the printed RC3; Corwin et al. 1994).

3.43. RC3_r25

The RC3 ratio of the major to minor axis isophotal diameter, converted from decimal logarithm to a straight ratio in order to match the units of $ratio_key$ (see Section 3.4.b, page 26, of Volume I of the printed RC3; Corwin et al. 1994).

3.44. *RC3-pa*

The RC3 position angle in units of degrees (see Section 3.5.a, page 30, of Volume I of the printed RC3; Corwin et al. 1994).

$3.45. group_num$

Group designation number taken from the Tully (2015) group catalog.

$3.46. \quad group_mem$

Number of members in this galaxy group taken from the Tully (2015) group catalog.

$3.47. \ group_dist$

Distance to the galaxy group, taken from the Tully (2015) group catalog.

3.48. *MType*

Morphological type as homogenized by NED. We have removed extraneous space characters, and then replaced the individual spaces with underscore characters.

3.49. flag

A flag to help identify suspected issues with a galaxy. For most objects flag = 0. If, however, we suspect an object to be a star we set flaq = 1. Our criteria for this is as follows: 1) if an object has $Vhel < 500 \text{ km s}^{-1}$, no diameter measurement, and no MType available, 2) if MType is found to match any of our exclude morphologies. Our full exclude list is the following: [':', '0.9', '0.92', '14.247', '14.632', '14.728', '14.818', '14.998', '14', '15.159', '15.171', '15.242', '15.341', '15.458', '15.79', '15.819', '16.281', '16.200', '16.201', ' '16.309', '16.348', '16.394', '16.556', '16.736', '16.764', '16.783', '16.981', '16', '17.012', '17.039', '17.441', '17.597', '2_compacts', '2_or_3?_spirals', '2_S0_galaxies', '2_S0_pec_galaxies', '2_SB0?_pec_galaxies', '2_Spec?', '2_spirals', '2_symm.sp.arms', '2E', '2MASS_Extended_Ver.2', '3_S0_galaxies', 'A-star', 'A', 'A0', 'A3_HII', 'AGN:', 'AGN?', 'AGN', 'AGN+SF', 'AGN1', 'AGN2', 'ALG', 'Amorphous', 'B...', 'B', 'bright_near*', 'Cand._glob._cluster', 'Candidate_AGN', 'Candidate_PN', 'Carbon', 'D', 'DAstar', 'DA:', 'DA', 'DA-auto', 'DA+M:;_Cand._QSO', 'DA+M:', 'DA+M', 'DANS?', 'DANS?_Sbrst', 'DANS', 'DANS_WR?', 'DBA', 'DC:', 'DGTO', 'DISRPTD', 'DISTRBD', 'DQ;_Cand._QSO', 'DQ:', 'DSa', 'F', 'F2', 'F6-F8:Candidate_WD', 'High_vel._cloud', 'K1', 'K4-K5; Candidate_WD', 'M', 'M_star', 'M_Star', 'M0', 'M0V', 'M1', 'M3-M4', 'O', 'Opt.var.', 'Planetary, 'Planetary?', 'Planetary_nebula', 'PN:', 'PN?', 'Point_Src_[SDSS]', 'Possible_*Cl', 'Possible_star', 'star:', 'star?', 'star?', 'stellar-like', 'stellar:', 'stellar', or_galaxy', 'M-star'

Secondly, we set flag = 2 if the velocity implied by RID_median (i.e., $RID_median * H_0$) differs from Vhel by more than 1500 km s⁻¹. If flag = 2, it may be wise to use distvcorr instead of bestDist. There is no overlap between flag types, so no possible stars (flag = 1) objects have a redshift-independent distance available.

$3.50.\ distIndicator$

A key indicating which method was used to measure the redshift-independent distance for this galaxy. Table 2 shows the keys and their corresponding full names as compiled in the NED-D distance catalog. This key corresponds only to the RID_median value.

Key	Distance Indicator	Key	Distance Indicator
AGB	AGB	MagEn	Magnetic energy
AGNtl	AGN time lag	Mag	Magnitude
Bstar	B Stars	Maser	Maser
BCG	BCG	MassM	Mass Model
BH	Black Hole	Miras	Miras
BLLum	BL Lac Luminosity	Novae	Novae
BSG	Blue Supergiant	OBstr	OB Stars
Brstr	Brightest Stars	OrMec	Orbital Mech.
Cstar	Carbon Stars	PAGB	PAGB Stars
Ceph	Cepheids	PNLF	PNLF
CMD	CMD	propM	Proper Motion
dCO	CO ring diameter	QS	Quasar spectrum
Dsigm	D-Sigma	Radio	Radio Brightness
Scuti	Delta Scuti	RClum	Red Clump
Diam	Diameter	DRing	Ring Diameter
dwEll	Dwarf Ellipticals	RRLyr	RR Lyrae
Dwarf	Dwarf Galaxy Diameter	RSV	RSV Stars
EclBi	Eclipsing Binary	RV	RV Stars
FJ	Faber-Jackson	SDorS	S Doradus Stars
FGLR	FGLR	SBF	SBF
GLens	G Lens	SGRB	SGRB
GCFP	GC FP	SNIa	SNIa
GCKJK	GC K vs. (J-K)	SNIIo	SNII optical
GCrad	GC radius	SNIIr	SNII radio
GCLF	GCLF	SNIas	SNIa SDSS
GCSBF	GC SBF	Stat	Statistical
gamma	GeV TeV ratio	Sosie	Sosies
GSGD	Grav. Stability Gas. Disk	subDw	Subdwarf fitting
GRB	GRB	SXPS	SX Phe Stars
HIod	H I + optical distribution	SZ	SZ effect
HIILF	HII LF	Terti	Tertiary
$_{ m dHII}$	HII region diameter	TRGB	TRGB
HB	Horizontal Branch	TFest	Tully est
IRAS	IRAS	TF	Tully-Fisher
Jet	Jet Proper Motion	CepII	Type II Cepheids
LHbs	$L(H \beta)-\sigma$	WD	White Dwarfs
LSB	LSB galaxies	WR	Wolf-Rayet
Mstar	M Stars		

Table 2. Distance indicators and associated keys. Full descriptions can be found here https://ned.ipac.caltech.edu/Library/Distances/distintro.html

$3.51. \ lum Class$

Luminosity class as assigned by NED. Roman numerals between I, II, III, IV, and V designate galaxies in order of decreasing luminosity in an analogous fashion to the standard stellar luminosity classes.

3.52. E(B-V)

Galactic mean dust extinction in the direction of each galaxy from Schlafly & Finkbeiner (2011). MORE?

3.53. Bmag

The median B-band magnitude. For each galaxy we retrieved all B-band and SDSS g, r, and z measurements. Direct B-band measurements are available for $\sim 30\%$ of galaxies, and a large fraction of the remaining objects have SDSS magnitudes. We convert SDSS magnitudes to B-band via B=g+0.39(g-r)+0.21 (Jester et al. 2005). Per SDSS DR12 guidelines, we preferentially selected SDSS petrosian magnitudes when available, followed by model and cmodel values if petrosian was not available. We then selected the min, max and median B-band values when more than one was available for inclusion in the final data product. SDSS-converted B-band values are included as a separate estimate.

$3.54. Bmag_key$

The source name corresponding to our chosen value of Bmag.

3.55. $Bmag_max$

The brightest B-band magnitude available in NED for this object. See 3.53 for details.

$3.56. \ Bmag_max_key$

The source name corresponding to $Bmag_max$.

$3.57. \; Bmaq_min$

The dimmest B-band magnitude available in NED for this object. See 3.53 for details.

$3.58. \ Bmag_min_key$

The source name corresponding to the value of $Bmag_min$.

$3.59. \ Bmag_sdss$

SDSS g and r-band measurements converted to B-band via B = g + 0.39(g - r) + 0.21 (Jester et al. 2005). See 3.53 for details.

$3.60. \ gmag_sdss$

The SDSS g-band magnitude used in the $Bmag_sdss$ calculation.

$3.61. \ rmag_sdss$

The SDSS r-band magnitude used in the $Bmag_sdss$ calculation.

$3.62. \ zmaq_sdss$

SDSS z-band magnitude used in the $Bmag_sdss$ calculation.

$3.63.\ Lstar_med$

The L/L_* ratio calculated using Bmag and bestDist. We compute luminosity in units of L_* for each of the min, median, max and SDSS B-band values as follows:

$$\frac{L}{L_*} = 10^{-0.4(M_{\rm B} - M_{\rm B_*})},\tag{4}$$

where $M_{\rm B}$ is the galaxy absolute magnitude, calculated using the *bestDist* distance estimate as described above. We adopted the CfA galaxy luminosity function by (Marzke et al. 1994), which sets $B_* = -19.57$.

3.64. e_Lstar_med

 $Lstar_med$ error calculated with e_Bmag and $e_bestDist$.

$3.65. \ Lstar_max$

The L/L_* ratio calculated using B_max and $bestDist + e_bestDist$ following Eq. 4.

3.66. e_Lstar_max

 $Lstar_max$ error calculated with e_Bmag_max and $e_bestDist$.

$3.67. \ Lstar_min$

The L/L_* ratio calculated using B_min and bestDist - $e_bestDist$ following Eq. 4.

3.68. e_Lstar_min

 $Lstar_min$ error calculated with e_Bmag_min and $e_bestDist$.

$3.69.\ Lstar_sdss$

The L/L_* ratio calculated using $Bmag_sdss$ and bestDist following Eq. 4.

3.70. e_Lstar_sdss

 $Lstar_sdss$ error calculated with $e_bestDist$ and Jester et al. (2005) conversion errors.

3.71. alt Names

The NED list of alternative object names for this galaxy with spaces removed. In the main catalog we have included only NGC, IC, UGC, SDSS, and 2MASS names in this column. The associated alternative names catalog contains the full list. Note that our preferred name, Name, and NEDname will only appear in the altNames list if they match these same criteria.

4. LIMITATIONS & FUTURE

This catalog is not meant to be entirely robust or comprehensive - rather it's purpose is to present a common batch of parameters for nearby galaxies in a easily retrievable and machine-readable manner. We have nonetheless endeavored to provide reasonable error estimates on all derivations and for as many observed quantities as possible.

Some caveats:

- 1. This is not the result of a targeted survey or observing program, so it's coverage and completeness is inherently non-uniform. We have endeavored to quantify this non-uniformity in Section 2.2.
- 2. The quality of the data and observational errors are difficult to determine. We present this dataset as more of a convenient "quick-look" directory than a scientifically rigorous data product.

This catalog will soon be made available online as a searchable SQL database, and downloadable in csv and ascii-fixed-width formats. Please contact the authors for details.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Corwin, Jr., H. G., Buta, R. J., & de Vaucouleurs, G. 1994, AJ, 108, 2128

Geller, M. J., & Huchra, J. P. 1983, ApJS, 52, 61

Huchra, J. P., & Geller, M. J. 1982, ApJ, 257, 423

Iglewicz, B., & Hoaglin, D. 1993, How to Detect and Handle Outliers, ASQC basic references in quality control (ASQC Quality Press)

Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525 Jester, S., Schneider, D. P., Richards, G. T., et al. 2005, AJ, 130, 873

Marzke, R. O., Huchra, J. P., & Geller, M. J. 1994, ApJ, 428, 43

Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103Stocke, J. T., Keeney, B. A., Danforth, C. W., et al. 2013, ApJ, 763, 148

Tully, R. B. 2015, AJ, 149, 171

Tully, R. B., Rizzi, L., Shaya, E. J., et al. 2009, AJ, 138, 323Wakker, B. P., Hernandez, A. K., French, D. M., et al. 2015, ApJ, 814, 40

Wakker, B. P., & Savage, B. D. 2009, ApJS, 182, 378