A FRAMEWORK FOR DEFINING COMPUTATIONAL HIGHER-ORDER LOGICS

Ali Assaf September 28, 2015

École Polytechnique & Inria Paris

4-color theorem

4-color theorem

Coq

4-color theorem

Coq

Kepler conjecture

4-color theorem

Coq

Kepler conjecture

HOL Light

Independent proof checking?

- Is it trustworthy?
- Is it expressive?
- Is it efficient?

$$\Gamma \vdash_{\mathcal{L}} A \iff \Sigma_{\mathcal{L}}, \llbracket \Gamma \rrbracket \vdash \llbracket A \rrbracket$$

• First-order logic (FOL) [Hilbert and Ackermann 1928]

•
$$\Sigma = f : n_f, \ldots, p : n_p, \ldots, A, \ldots$$

$$\Gamma \vdash_{\mathcal{L}} A \iff \Sigma_{\mathcal{L}}, \llbracket \Gamma \rrbracket \vdash \llbracket A \rrbracket$$

- First-order logic (FOL) [Hilbert and Ackermann 1928]
- · Higher-order logic (HOL) [Church 1940]
 - Binders using simply-typed λ -calculus
 - $\Sigma = f : \tau, \ldots, A, \ldots$
 - Used in Isabelle, λ Prolog

$$\Gamma \vdash_{\mathcal{L}} A \iff \Sigma_{\mathcal{L}}, \llbracket \Gamma \rrbracket \vdash \mathsf{M} : \llbracket A \rrbracket$$

- First-order logic (FOL) [Hilbert and Ackermann 1928]
- · Higher-order logic (HOL) [Church 1940]
- $\lambda\Pi$ -calculus (LF, $\lambda\Pi$, λP) [Harper et al. 1987]
 - Proof terms using dependently-typed λ -calculus
 - $\Sigma = f : A, \dots$
 - · Used in Automath, Twelf

$$\Gamma \vdash_{\mathcal{L}} A \iff \Sigma_{\mathcal{L}}, \llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$

- First-order logic (FOL) [Hilbert and Ackermann 1928]
- · Higher-order logic (HOL) [Church 1940]
- $\lambda\Pi$ -calculus (LF, $\lambda\Pi$, λP) [Harper et al. 1987]
- $\lambda\Pi$ -calculus modulo ($\lambda\Pi R$) [Cousineau and Dowek 2007]
 - Computation using rewriting
 - $\Sigma = f : A, \dots, f \vec{M} \mapsto N, \dots$
 - Used in DEDUKTI

THE $\lambda\Pi$ -CALCULUS MODULO REWRITING

$$\lambda$$
-calculus + dependent types + rewriting
$$x \mid \lambda X^A . M \mid M N \mid \mathsf{Type} \mid \Pi X^A . B$$

THE $\lambda\Pi$ -CALCULUS MODULO REWRITING

$$\lambda$$
-calculus + dependent types + rewriting $x \mid \lambda X^A . M \mid M N \mid \text{Type} \mid \Pi X^A . B$

Evaluation: β -reduction and rewrite rules

Example

$$\mathcal{R} = \begin{cases} x + 0 & \longmapsto & x \\ x + S(y) & \longmapsto & S(x) + y \end{cases}$$

THE $\lambda\Pi$ -CALCULUS MODULO REWRITING

$$\lambda$$
-calculus + dependent types + rewriting $x \mid \lambda X^A . M \mid M N \mid \text{Type} \mid \Pi X^A . B$

Evaluation: β -reduction and rewrite rules

Example

$$\mathcal{R} = \begin{cases} x + 0 & \longmapsto & x \\ x + S(y) & \longmapsto & S(x) + y \end{cases}$$

Typing: modulo β -reduction and rewrite rules

$$\frac{\Gamma \vdash M : A \qquad \dots \qquad A \equiv_{\beta \mathcal{R}} B}{\Gamma \vdash M : B} \text{ CONV}$$

Smaller encodings

Smaller encodings

Encodings of more powerful theories

Pure type systems [Cousineau and Dowek 2007]

$$\Gamma \vdash_{\mathcal{P}} \mathit{M} : \mathit{A} \implies \Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\lambda \Pi R} \llbracket \mathit{M} \rrbracket : \llbracket \mathit{A} \rrbracket$$

Calculus of constructions (CC), higher-order logic (HOL), ...

Smaller encodings

Encodings of more powerful theories

• Pure type systems [Cousineau and Dowek 2007]

$$\Gamma \vdash_{\mathcal{P}} M : A \implies \Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\lambda \Pi R} [M] : \llbracket A \rrbracket$$

Calculus of constructions (CC), higher-order logic (HOL), ...

Inductive types [Boespflug and Burel 2012]

Smaller encodings

Encodings of more powerful theories

• Pure type systems [Cousineau and Dowek 2007]

$$\Gamma \vdash_{\mathcal{P}} M : A \implies \Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\lambda \Pi R} [M] : \llbracket A \rrbracket$$

Calculus of constructions (CC), higher-order logic (HOL), ...

Inductive types [Boespflug and Burel 2012]

HOL and Coq?

$$\exists M. \; \Gamma \vdash M : A \;\; \Longrightarrow \;\; \exists M'. \; \Sigma, [\![\Gamma]\!] \vdash M' : [\![A]\!]$$

This is not enough!

$$\exists M. \; \Gamma \vdash M : A \;\; \Longrightarrow \;\; \exists M'. \; \Sigma, [\![\Gamma]\!] \vdash M' : [\![A]\!]$$

This is not enough!

$$\exists M. \; \Gamma \vdash M : A \; \Longleftrightarrow \; \exists M'. \; \Sigma, [\![\Gamma]\!] \vdash M' : [\![A]\!]$$

$$\exists M. \; \Gamma \vdash M : A \implies \exists M'. \; \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket$$

$$\llbracket A \rrbracket \; = \; \top$$

$$\llbracket M \rrbracket \; = \; \top \text{-intro}$$

$$\exists M. \; \Gamma \vdash M : A \iff \exists M'. \; \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket$$

$$\exists M. \ \Gamma \vdash M : A \implies \Sigma, \llbracket \Gamma \rrbracket \vdash \mathsf{T-intro} : \mathsf{T} \quad \checkmark$$

$$\llbracket A \rrbracket \ = \ \mathsf{T}$$

$$\llbracket M \rrbracket \ = \ \mathsf{T-intro}$$

$$\exists M. \ \Gamma \vdash M : A \iff \exists M'. \ \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket$$

Cumulative universes

- Intuitionistic type theory (ITT)
- Calculus of inductive constructions (CIC)

$$\overline{\Gamma \vdash \mathsf{Type}_i : \mathsf{Type}_{i+1}} \qquad \qquad \mathsf{Type}_1 \in \mathsf{Type}_2 \in \mathsf{Type}_3 \in \cdots$$

Cumulative universes

- Intuitionistic type theory (ITT)
- Calculus of inductive constructions (CIC)

$$\overline{\Gamma \vdash \mathsf{Type}_i : \mathsf{Type}_{i+1}} \qquad \qquad \mathsf{Type}_1 \in \mathsf{Type}_2 \in \mathsf{Type}_3 \in \cdots$$

$$\Gamma \vdash A : \mathsf{Type}_i$$

$$\overline{\Gamma \vdash A : \mathsf{Type}_{i+1}}$$

 $\mathsf{Type}_1 \subseteq \mathsf{Type}_2 \subseteq \mathsf{Type}_3 \subseteq \cdots$

CONTRIBUTIONS

Prove that the embedding is conservative

$$\Gamma \vdash M : A \iff \Sigma, \llbracket \Gamma \rrbracket \vdash \llbracket M \rrbracket : \llbracket A \rrbracket$$

• Extend the embedding to cumulative systems

$$\mathsf{Type}_0 \subseteq \mathsf{Type}_1 \subseteq \mathsf{Type}_2 \subseteq \cdots$$

 Implement the translation of the proofs of HOL, Coq, and Matita into Dedukti

PURE TYPE SYSTEMS

 $x \mid \lambda x^{A} . M \mid M N \mid s \mid \Pi x^{A} . B$

PURE TYPE SYSTEMS

$$x \mid \lambda x^{A} . M \mid M N \mid s \mid \Pi x^{A} . B$$

Typing: parameterized by a specification (S, A, R)

- \cdot \mathcal{S} set of sorts (a.k.a. universes)
- $\boldsymbol{\cdot} \ \mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$
- · $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$

$$(s_1, s_2) \in \mathcal{A}$$

$$\vdash s_1 : s_2$$

$$\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash B : s_2 \qquad (s_1, s_2, s_3) \in \mathcal{R}$$

$$\Gamma \vdash \Pi x^A \cdot B : s_3$$

PURE TYPE SYSTEMS

$$X \mid \lambda X^A . M \mid M N \mid S \mid \Pi X^A . B$$

Typing: parameterized by a specification (S, A, R)

- S set of sorts (a.k.a. universes)
- \cdot $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$
- · $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$

$$(s_1, s_2) \in \mathcal{A}$$

$$\vdash s_1 : s_2$$

$$\Gamma \vdash A : s_1 \qquad \Gamma, x : A \vdash B : s_2 \qquad (s_1, s_2, s_3) \in \mathcal{R}$$

$$\Gamma \vdash \Pi x^A \cdot B : s_3$$

Example (Induction principle in the calculus of constructions)

$$\Pi p^{(\mathbb{N} \to \mathsf{Prop})} \cdot p \cdot 0 \to (\Pi n^{\mathbb{N}} \cdot p \cdot n \to p \cdot (\mathsf{S} \cdot n)) \to \Pi n^{\mathbb{N}} \cdot p \cdot n$$

LIMITATIONS OF $\lambda\Pi$

Traditional embeddings in $\lambda\Pi$ do not preserve reduction:

$$M \longrightarrow M' \implies [M] \longrightarrow [M']$$

LIMITATIONS OF $\lambda\Pi$

Traditional embeddings in $\lambda\Pi$ do not preserve reduction:

$$M \longrightarrow M' \implies [M] \longrightarrow [M']$$

Example

$$\left[\left(\lambda x^{\mathsf{C}} \, . \, x\right) y\right] \; = \; \mathsf{app}\left[\mathsf{C}\right]\left[\mathsf{C}\right]\left(\mathsf{lam}\left[\mathsf{C}\right]\left[\mathsf{C}\right]\left(\lambda x^{\left[\!\left[\mathsf{C}\right]\!\right]} \, . \, x\right)\right) \, y \; \not\longrightarrow \; y$$

LIMITATIONS OF $\lambda\Pi$

Traditional embeddings in $\lambda\Pi$ do not preserve equivalence:

$$M \equiv M' \implies [M] \equiv [M']$$

Example

$$\left[\left(\lambda x^{\mathsf{C}} \, . \, x\right) y\right] \; = \; \mathsf{app}\left[\mathsf{C}\right]\left[\mathsf{C}\right]\left(\mathsf{lam}\left[\mathsf{C}\right]\left[\mathsf{C}\right]\left(\lambda x^{\left[\!\left[\mathsf{C}\right]\!\right]} \, . \, x\right)\right) \, y \; \not\longrightarrow \; y$$

LIMITATIONS OF $\lambda\Pi$

Traditional embeddings in $\lambda\Pi$ do not preserve equivalence:

$$M \equiv M' \implies [M] \equiv [M']$$

Example

$$\left[\left(\lambda x^{C}.x\right)y\right] = \operatorname{app}\left[C\right]\left[C\right]\left(\operatorname{lam}\left[C\right]\left[C\right]\left(\lambda x^{\mathbb{C}^{\mathbb{D}}}.x\right)\right)y \not\longrightarrow y$$

This is a problem for computational systems:

$$\frac{\Gamma \vdash A \qquad A \equiv B}{\Gamma \vdash B} \text{ Conv}$$

LIMITATIONS OF $\lambda\Pi$

Traditional embeddings in $\lambda\Pi$ do not preserve equivalence:

$$M \equiv M' \implies [M] \equiv [M']$$

Example

$$[(\lambda x^{C}.x)y] = app[C][C](lam[C][C](\lambda x^{[C]}.x))y \rightarrow y$$

This is a problem for computational systems:

$$\frac{\Gamma \vdash A \qquad A \equiv B}{\Gamma \vdash B} \text{ CONV}$$

- Calculus of constructions (CC) X
- Intuitionistic type theory (ITT)
- Calculus of inductive constructions (CIC) X

$$\begin{bmatrix} X \end{bmatrix} & = & X \\ [M N] & = & [M] [N] \\ [\lambda X^A . M] & = & \lambda X^{\llbracket A \rrbracket} . [M]$$

$$\begin{bmatrix} s \end{bmatrix} & = U_s \\ \begin{bmatrix} \Pi X^A \cdot B \end{bmatrix} & = \Pi X^{\llbracket A \rrbracket} \cdot \llbracket B \end{bmatrix}$$

```
 \begin{bmatrix} X \end{bmatrix} & = & X \\ [M N] & = & [M] [N] \\ [\lambda X^A . M] & = & \lambda X^{\llbracket A \rrbracket} . [M] \\ [S] & = & U_S \\ [\Pi X^A . B] & = & \pi_{S_1, S_2} [A] (\lambda X : \llbracket A \rrbracket . [B])   \llbracket S \rrbracket & = & U_S \\ \llbracket \Pi X^A . B \rrbracket & = & \Pi X^{\llbracket A \rrbracket} . \llbracket B \rrbracket
```

```
 \begin{bmatrix} X \end{bmatrix} & = & X \\ [M N] & = & [M] [N] \\ [\lambda X^A . M] & = & \lambda X^{\llbracket A \rrbracket} . [M] \\ [S] & = & U_S \\ [\Pi X^A . B] & = & \pi_{S_1, S_2} [A] (\lambda X : \llbracket A \rrbracket . [B])   \llbracket S \rrbracket & = & U_S \\ \llbracket \Pi X^A . B \rrbracket & = & \Pi X^{\llbracket A \rrbracket} . \llbracket B \rrbracket \\ \llbracket M \rrbracket & = & T_S [M]
```

```
 \begin{bmatrix} [M \ N] \\ [\lambda x^{A} \cdot M] \end{bmatrix} = \begin{bmatrix} [M] \ [N] \\ = \lambda x^{\llbracket A \rrbracket} \cdot [M] 
[s] = u_s
 [\Pi X^A . B] = \pi_{S_1,S_2} [A] (\lambda X : [A] . [B])
 [s] = U_s
\llbracket \Pi X^A . B \rrbracket = \Pi X^{\llbracket A \rrbracket} . \llbracket B \rrbracket
 \llbracket M \rrbracket = T_s [M]
T_{s_2} U_{s_1} \qquad \qquad \mapsto \qquad U_{s_1}
T_{S_2}(\pi_{S_1,S_2} a b) \mapsto \Pi x^{T_{S_1} a} . T_{S_2}(b x)
```

PRESERVATION OF TYPING [COUSINEAU AND DOWEK 2007]

Theorem (Preservation of typing)

$$\Gamma \vdash M : A \implies \Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$$

PRESERVATION OF TYPING [COUSINEAU AND DOWEK 2007]

Theorem (Preservation of equivalence)

$$M \equiv M' \implies [M] \equiv [M']$$

Theorem (Preservation of typing)

$$\Gamma \vdash M : A \implies \Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$$

PRESERVATION OF TYPING [COUSINEAU AND DOWEK 2007]

Theorem (Preservation of reduction)

$$M \rightarrow^+ M' \implies [M] \rightarrow^+ [M']$$

Theorem (Preservation of equivalence)

$$M \equiv M' \implies [M] \equiv [M']$$

Theorem (Preservation of typing)

$$\Gamma \vdash M : A \implies \Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$$

Question:

$$\exists M. \ \Gamma \vdash M : A \iff \exists M'. \ \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket ?$$

Question:

$$\exists M. \ \Gamma \vdash M : A \iff \exists M'. \ \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket ?$$

$$I = \lambda \alpha^{\mathsf{Type}} \cdot \lambda \mathsf{X}^{\alpha} \cdot \mathsf{X}$$

Question:

$$\exists M. \; \Gamma \vdash M : A \; \Longleftrightarrow \; \exists M'. \; \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket \; ?$$

$$I = \lambda \alpha^{\mathsf{Type}} \cdot \lambda \mathsf{X}^{\alpha} \cdot \mathsf{X}$$

Question:

$$\exists M. \ \Gamma \vdash M : A \iff \exists M'. \ \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket ?$$

$$I = \lambda \alpha^{\mathsf{Type}} \cdot \lambda \mathsf{X}^{\alpha} \cdot \mathsf{X}$$

$$\vdash_{\mathsf{U}^-} \mathit{I} : \Pi \alpha^\mathsf{Type} . \alpha \to \alpha$$

Question

$$\exists M. \ \Gamma \vdash M : A \iff \exists M'. \ \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket ?$$

$$I = \lambda \alpha^{\mathsf{Type}} \cdot \lambda x^{\alpha} \cdot x$$

$$\vdash_{\mathsf{U}^-} \mathit{I} : \Pi \alpha^\mathsf{Type} . \, \alpha \to \alpha$$

$$\Sigma_{\mathrm{HOL}} \vdash_{\mathrm{AIIR}} [\mathit{I}] : \Pi \alpha^{\mathrm{U_{Type}}} . \top \alpha \rightarrow \top \alpha$$

Question

$$\exists M. \ \Gamma \vdash M : A \iff \exists M'. \ \Sigma, \llbracket \Gamma \rrbracket \vdash M' : \llbracket A \rrbracket ?$$

$$I = \lambda \alpha^{\text{Type}} \cdot \lambda x^{\alpha} \cdot x$$

$$\vdash_{\mathsf{U}^-} \mathit{I} : \Pi \alpha^\mathsf{Type} . \alpha \to \alpha$$

ALERT

 $\exists M. \vdash_{U^{-}} M: \bot !$

ALERT

$$\exists M. \vdash_{U^{-}} M: \bot !$$

$$\exists \mathsf{M}.\ \Sigma_{\mathsf{HOL}} \vdash_{\lambda \Pi \mathsf{R}} \mathsf{M} : \llbracket \bot \rrbracket \ ?$$

Given:
$$\Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\scriptscriptstyle \lambda\Pi} \mathsf{M} : \llbracket \mathsf{A} \rrbracket$$

Given:
$$\Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\scriptscriptstyle \lambda\Pi} \mathit{M} : \llbracket \mathit{A} \rrbracket$$

- 1. Every well-typed term normalizes
- 2. Every normal term is the translation of a proof

Given:
$$\Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\scriptscriptstyle \lambda\Pi} \mathit{M} : \llbracket \mathit{A} \rrbracket$$

- 1. Every well-typed term normalizes
- 2. Every normal term is the translation of a proof

Get:
$$\Gamma \vdash_{\mathcal{P}} N' : A$$

Given:
$$\Sigma_{\mathcal{P}}$$
, $\llbracket \Gamma \rrbracket \vdash_{\text{ATTR}} M : \llbracket A \rrbracket$

- 1. Every well-typed term normalizes
- 2. Every normal term is the translation of a proof

Get:
$$\Gamma \vdash_{\mathcal{P}} N' : A$$

Given:
$$\Sigma_{\mathcal{P}}$$
, $[\![\Gamma]\!] \vdash_{\scriptscriptstyle \lambda\Pi R} M : [\![A]\!]$

- 1. Every well-typed term normalizes?
- 2. Every normal term is the translation of a proof

Get:
$$\Gamma \vdash_{\mathcal{P}} N' : A$$

RELATIVE NORMALIZATION

Preservation of computation:

$$M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow \cdots$$

$$[M_1] \longrightarrow [M_2] \longrightarrow [M_3] \longrightarrow \cdots$$

RELATIVE NORMALIZATION

Preservation of computation:

$$M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow \cdots$$

$$[M_1] \longrightarrow [M_2] \longrightarrow [M_3] \longrightarrow \cdots$$

Proving strong normalization for [M] is at least as hard as for M!

CC[∞]? Brrr...

RELATIVE NORMALIZATION

Preservation of computation:

$$M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow \cdots$$

$$[M_1] \longrightarrow [M_2] \longrightarrow [M_3] \longrightarrow \cdots$$

Proving strong normalization for [M] is at least as hard as for M!

CC[∞]? Brrr...

Idea: reduce only what is necessary

Relative normalization

If $\Sigma_{\mathcal{P}}$, $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ then $\exists M'$ such that $M \longrightarrow^* [M']$ and $\Gamma \vdash M' : A$.

REDUCIBILITY

Proof case:

$$\frac{\Sigma, \llbracket \Gamma \rrbracket \vdash M : \Pi X^B \cdot C \qquad \Sigma, \llbracket \Gamma \rrbracket \vdash N : B}{\Sigma, \llbracket \Gamma \rrbracket \vdash M \, N : \llbracket A \rrbracket} \qquad \text{where } C \left\{ x \backslash N \right\} = \llbracket A \rrbracket$$

20

REDUCIBILITY

Proof case:

$$\frac{\Sigma, \llbracket \Gamma \rrbracket \vdash M : \Pi x^B \cdot C \qquad \Sigma, \llbracket \Gamma \rrbracket \vdash N : B}{\Sigma, \llbracket \Gamma \rrbracket \vdash M \, N : \llbracket A \rrbracket} \qquad \text{where } C\{x \backslash N\} = \llbracket A \rrbracket$$

Need a stronger induction!

Definition

Reducibility relation

$$\Vdash M:C$$

such that

CONSERVATIVITY

Theorem (Reducibility)

$$\Sigma_{\mathcal{P}}, \Delta \vdash_{\lambda \Pi R} \mathsf{M} : \mathsf{C} \implies \Delta \Vdash_{\mathcal{P}} \mathsf{M} : \mathsf{C}$$

CONSERVATIVITY

Theorem (Reducibility)

$$\Sigma_{\mathcal{P}}, \Delta \vdash_{\lambda \Pi R} M : \mathsf{C} \implies \Delta \Vdash_{\mathcal{P}} M : \mathsf{C}$$

Theorem (Conservativity)

$$\Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\lambda \Pi R} M : \llbracket A \rrbracket \ \implies \ \exists M'. \ M \longrightarrow^* \llbracket M' \rrbracket \ \land \ \Gamma \vdash_{\mathcal{P}} M' : A$$

CONSERVATIVITY

Theorem (Reducibility)

$$\Sigma_{\mathcal{P}}, \Delta \vdash_{\lambda \Pi R} M : C \implies \Delta \Vdash_{\mathcal{P}} M : C$$

Theorem (Conservativity)

$$\Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\lambda\Pi R} M : \llbracket A \rrbracket \ \implies \ \exists M'.\ M \longrightarrow^* [M'] \ \land \ \Gamma \vdash_{\mathcal{P}} M' : A$$

Equivalence of type inhabitation √

$$\exists M'. \ \Gamma \vdash_{\mathcal{P}} M' : A \iff \exists M'. \ \Sigma_{\mathcal{P}}, \llbracket \Gamma \rrbracket \vdash_{\lambda \Pi R} M : \llbracket A \rrbracket$$

 \cdot Soundness of the embedding \checkmark

$$\nexists M. \Sigma_{HOL}, \vdash_{\lambda\Pi R} M : \llbracket \bot \rrbracket$$

SUMMARY

- Have a general embedding of pure type systems in the $\lambda\Pi$ -calculus modulo rewriting
- The embedding preserves typing and computation
- Proved that it is **conservative** using relative normalization

SUMMARY

- Have a general embedding of pure type systems in the $\lambda\Pi$ -calculus modulo rewriting
- The embedding preserves typing and computation
- Proved that it is **conservative** using relative normalization
 - · Works for all normalizing systems: System F, CC, HOL, ...

SUMMARY

- Have a general embedding of pure type systems in the $\lambda\Pi$ -calculus modulo rewriting
- The embedding preserves typing and computation
- · Proved that it is **conservative** using relative normalization
 - · Works for all normalizing systems: System F, CC, HOL, ...
 - Works for all **non-normalizing** systems: U, U $^-$, $\lambda*$, ...

CHALLENGES OF CUMULATIVITY

$$\frac{\Gamma \vdash \mathsf{A} : \mathsf{Type}_i}{\Gamma \vdash \mathsf{A} : \mathsf{Type}_{i+1}} \qquad \mathsf{Type}_1 \subseteq \mathsf{Type}_2 \subseteq \mathsf{Type}_3 \subseteq \cdots$$

CHALLENGES OF CUMULATIVITY

$$\frac{\Gamma \vdash \textit{A} : \mathsf{Type}_i}{\Gamma \vdash \textit{A} : \mathsf{Type}_{i+1}} \qquad \mathsf{Type}_1 \subseteq \mathsf{Type}_2 \subseteq \mathsf{Type}_3 \subseteq \cdots$$

· No uniqueness of types

$\vdash \mathsf{Type}_0 : \mathsf{Type}_1 \quad \mathsf{and} \quad \vdash \mathsf{Type}_0 : \mathsf{Type}_2$

CHALLENGES OF CUMULATIVITY

$$\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash A : \mathsf{Type}_{i+1}} \qquad \mathsf{Type}_1 \subseteq \mathsf{Type}_2 \subseteq \mathsf{Type}_3 \subseteq \cdots$$

· No uniqueness of types

$\vdash \mathsf{Type}_0 : \mathsf{Type}_1 \quad \mathsf{and} \quad \vdash \mathsf{Type}_0 : \mathsf{Type}_2$

· Principal types...

CHALLENGES OF CUMULATIVITY

$$\frac{\Gamma \vdash \textit{A} : \mathsf{Type}_i}{\Gamma \vdash \textit{A} : \mathsf{Type}_{i+1}} \qquad \mathsf{Type}_1 \subseteq \mathsf{Type}_2 \subseteq \mathsf{Type}_3 \subseteq \cdots$$

· No uniqueness of types

Example

$$\vdash \mathsf{Type}_0 : \mathsf{Type}_1 \quad \mathsf{and} \quad \vdash \mathsf{Type}_0 : \mathsf{Type}_2$$

· Principal types not preserved by reduction

Example

$$\vdash \quad (\lambda x^{\mathsf{Type}_2} \cdot x) \; \mathsf{Type}_0 \quad : \quad \mathsf{Type}_2$$

$$\downarrow_\beta \\ \vdash \quad \quad \mathsf{Type}_0 \qquad : \quad \mathsf{Type}_1$$

Idea: use explicit casts

$$\frac{\Gamma \vdash \quad \textit{A} : \mathsf{Type}_{\textit{i}}}{\Gamma \vdash \uparrow_{\textit{i}} \textit{A} : \mathsf{Type}_{\textit{i}+1}}$$

Idea: use explicit casts

$$\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash \uparrow_i A : \mathsf{Type}_{i+1}}$$

 U_i : U_{i+1}

 $\pi_i : \Pi a^{U_i} . \Pi b^{(T_i a \rightarrow U_i)} . U_i$

$$\begin{array}{ccc} T_{i+1}\,u_i & \longmapsto & U_i \\ T_i\left(\pi_i\,a\,b\right) & \longmapsto & \Pi x^{T_i\,a}\,.\,T_i\left(b\,x\right) \end{array}$$

Idea: use explicit casts

$$\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash \uparrow_i A : \mathsf{Type}_{i+1}}$$

 $u_i : U_{i+1}$

 $\pi_i : \Pi a^{U_i} . \Pi b^{(T_i a \rightarrow U_i)} . U_i$

 \uparrow_i : $U_i \to U_{i+1}$

$$\begin{array}{ccc} T_{i+1} \, u_i & \longmapsto & U_i \\ T_i \left(\pi_i \, a \, b \right) & \longmapsto & \Pi x^{T_i \, a} \, . \, T_i \left(b \, x \right) \end{array}$$

Idea: use explicit casts

$$\frac{\Gamma \vdash A : \mathsf{Type}_{i}}{\Gamma \vdash \uparrow_{i} A : \mathsf{Type}_{i+1}}$$

$$\mathsf{u}_{i} : \mathsf{U}_{i+1}$$

$$\pi_{i} : \Pi a^{\mathsf{U}_{i}} . \Pi b^{(\mathsf{T}_{i} a \to \mathsf{U}_{i})} . \mathsf{U}_{i}$$

$$\uparrow_{i} : \mathsf{U}_{i} \to \mathsf{U}_{i+1}$$

$$\mathsf{T}_{i+1} \, \mathsf{u}_{i} \longmapsto \mathsf{U}_{i}$$

$$\mathsf{T}_{i} (\pi_{i} a b) \longmapsto \Pi x^{\mathsf{T}_{i} a} . \mathsf{T}_{i} (b x)$$

$$\mathsf{T}_{i+1} (\uparrow_{i} a) \longmapsto \mathsf{T}_{i} a$$

Idea: use explicit casts (Martin-Löf 1984)

$$\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash \uparrow_i A : \mathsf{Type}_{i+1}}$$

 U_i : U_{i+1}

 $\pi_i : \Pi a^{U_i} . \Pi b^{(\mathsf{T}_i \, a \rightarrow U_i)} . U_i$

 \uparrow_i : $U_i \rightarrow U_{i+1}$

$$\begin{array}{cccc} \mathsf{T}_{i+1} \, \mathsf{u}_i & \longmapsto & \mathsf{U}_i \\ \mathsf{T}_i \, (\pi_i \, a \, b) & \longmapsto & \Pi x^{\mathsf{T}_i \, a} \, . \, \mathsf{T}_i \, (b \, x) \\ \mathsf{T}_{i+1} \, (\uparrow_i \, a) & \longmapsto & \mathsf{T}_i \, a \end{array}$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_i \qquad \Gamma, x : A \vdash B : \mathsf{Type}_i}{\Gamma \vdash \Pi x^A \cdot B : \mathsf{Type}_i}$$

$$\frac{\Gamma \vdash \Pi x^A \cdot B : \mathsf{Type}_{i+1}}{\Gamma \vdash \Pi x^A \cdot B : \mathsf{Type}_{i+1}}$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_i \qquad \Gamma, x : A \vdash B : \mathsf{Type}_i}{\Gamma \vdash \Pi x^A \cdot B : \mathsf{Type}_i}$$
$$\Gamma \vdash \Pi x^A \cdot B : \mathsf{Type}_{i+1}$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash A : \mathsf{Type}_{i+1}} \qquad \frac{\Gamma, x : A \vdash B : \mathsf{Type}_i}{\Gamma, x : A \vdash B : \mathsf{Type}_{i+1}}$$

$$\Gamma \vdash \Pi x^A \cdot B : \mathsf{Type}_{i+1}$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_{i} \qquad \Gamma, x : A \vdash B : \mathsf{Type}_{i}}{\Gamma \vdash \Pi x^{A} \cdot B : \mathsf{Type}_{i}}$$

$$\frac{\Gamma \vdash \Pi x^{A} \cdot B : \mathsf{Type}_{i}}{\Gamma \vdash \Pi x^{A} \cdot B : \mathsf{Type}_{i+1}}$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_{i}}{\Gamma \vdash A : \mathsf{Type}_{i+1}} \qquad \frac{\Gamma, x : A \vdash B : \mathsf{Type}_{i}}{\Gamma, x : A \vdash B : \mathsf{Type}_{i+1}} \qquad \pi_{i+1} \left(\uparrow_{i} A\right) \left(\lambda x . \uparrow_{i} B\right)$$

$$\Gamma \vdash \Pi x^{A} . B : \mathsf{Type}_{i+1}$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_{i} \qquad \Gamma, x : A \vdash B : \mathsf{Type}_{i}}{\Gamma \vdash \Pi x^{A} \cdot B : \mathsf{Type}_{i+1}} \qquad \qquad \uparrow_{i} (\pi_{i} A (\lambda x \cdot B))$$

$$\not\equiv \qquad \qquad \qquad \downarrow \qquad$$

INCOMPLETENESS OF NAIVE CASTS

Counter-example

In the context

```
p: Type<sub>1</sub> \rightarrow Type<sub>1</sub>,

f: \Pi c^{\text{Type}_0} \cdot p c \rightarrow \bot,
```

 $g : \Pi a^{\mathsf{Type}_1} . \Pi b^{\mathsf{Type}_1} . p (\Pi x^a . b)$

a, b: Type $_0$,

we have

$$f(\Pi x^a . b) (g a b) : \bot$$

INCOMPLETENESS OF NAIVE CASTS

Counter-example

In the context

```
\begin{array}{lll} p & : & \mathsf{U}_{\mathsf{Type_1}} \to \mathsf{U}_{\mathsf{Type_1}}, \\ f & : & \mathsf{\Pi} c^{\mathsf{U}_{\mathsf{Type_0}}} \cdot p \ c \to \bot, \\ g & : & \mathsf{\Pi} a^{\mathsf{U}_{\mathsf{Type_1}}} \cdot \mathsf{\Pi} b^{\mathsf{U}_{\mathsf{Type_1}}} \cdot p \ \big(\pi_{\mathsf{Type_1}} \ a \ (\lambda x \cdot b)\big) \\ a, b & : & \mathsf{U}_{\mathsf{Type_1}}, \end{array}
```

we have

$$f(\pi_0 a(\lambda x.b)) (g(\uparrow_0 a)(\uparrow_0 b)) \not= \bot X$$

Counter-example

In the context

```
\begin{array}{rcl} p & : & \mathsf{U}_{\mathsf{Type_1}} \to \mathsf{U}_{\mathsf{Type_1}}, \\ f & : & \mathsf{\Pi} c^{\mathsf{U}_{\mathsf{Type_0}}} \cdot p \ c \to \bot, \\ g & : & \mathsf{\Pi} a^{\mathsf{U}_{\mathsf{Type_1}}} \cdot \mathsf{\Pi} b^{\mathsf{U}_{\mathsf{Type_1}}} \cdot p \ \big(\pi_{\mathsf{Type_1}} \ a \ (\lambda x \cdot b)\big) \\ a, b & : & \mathsf{U}_{\mathsf{Type_1}}, \end{array}
```

we have

$$\begin{array}{ccccc} f(\pi_0 \, a \, (\lambda x \, . \, b)) & : & \mathsf{T}_1 \, (p \, (\uparrow_0 \, (\pi_0 \, a \, (\lambda x \, . \, b)))) & \rightarrow & \bot \\ & & & & \neq \\ g \, (\uparrow_0 \, a) \, (\uparrow_0 \, b) & : & \mathsf{T}_1 \, (p \, (\pi_1 \, (\uparrow_0 \, a) \, (\lambda x \, . \, \uparrow_0 \, b))) \end{array}$$

Need: uniqueness of the representation of types as terms

Need: uniqueness of the representation of types as terms

Solution: add equations

$$\pi_{i+1} (\uparrow_i a) (\lambda x . \uparrow_i (b x)) \equiv \uparrow_i (\pi_i a (\lambda x . b x))$$

Need: uniqueness of the representation of types as terms

Solution: add rewrite rules

$$\pi_{i+1} (\uparrow_i a) (\lambda x . \uparrow_i (bx)) \longrightarrow \uparrow_i (\pi_i a (\lambda x . bx))$$

Need: uniqueness of the representation of types as terms

Solution: add rewrite rules

$$\pi_{i+1} (\uparrow_i a) (\lambda x . \uparrow_i (bx)) \longmapsto \uparrow_i (\pi_i a (\lambda x . bx))$$

Requires higher-order rewriting [Saillard 2015]

Theorem (Preservation of substitution)

$$[M \{ X \backslash N \}] \equiv [M] \{ X \backslash [N] \}$$

Theorem (Preservation of substitution)

$$[M \{x \backslash N\}] \equiv [M] \{x \backslash [N]\}$$

Theorem (Preservation of equivalence)

$$M \equiv N \implies [M] \equiv [N]$$

Theorem (Preservation of substitution)

$$[M\{x\backslash N\}] \equiv [M]\{x\backslash [N]\}$$

Theorem (Preservation of equivalence)

$$M \equiv N \implies [M] \equiv [N]$$

Theorem (Preservation of typing)

$$\Gamma \vdash M : A \implies \Sigma, [\![\Gamma]\!] \vdash [M] : [\![A]\!]$$

SUMMARY

- Extended the embedding to systems with cumulativity by using explicit casts
- Added equations to guarantee uniqueness of term representation
- · Can be adapted to impredicative universes (Prop)

Holide

https://www.rocq.inria.fr/deducteam/Holide/

· HOL In DEdukti

HOL4 HOL Light HOL Zero ProofPower Isabelle/HOL

Holide

https://www.rocq.inria.fr/deducteam/Holide/

- · HOL In DEdukti
- \cdot Using the <code>OpenTheory</code> format

Holide

https://www.rocq.inria.fr/deducteam/Holide/

- · HOL In DEdukti
- \cdot Using the <code>OpenTheory</code> format
- Translation of the standard library

	Compressed size (KB)		Time (s)	
	OpenTheory	Dedukti	Translation	Verification
Total	1702	4877	40	22

https://gforge.inria.fr/projects/coqine/

· COQ IN dEdukti

- COQ IN dEdukti
- Version 1.0 by Boespflug and Burel (2012)
 - · Inductive types, modules \checkmark
 - Type : Type X

- COQ IN dEdukti
- Version 1.0 by Boespflug and Burel (2012)
 - · Inductive types, modules \checkmark
 - Type : Type X
- · Version 2.0
 - Type $_i$: Type $_{i+1}$ \checkmark

- COQ IN dEdukti
- · Version 1.0 by Boespflug and Burel (2012)
 - Inductive types, modules √
 - Type : Type X
- · Version 2.0
 - Type_i : Type_{i+1} √
 - Universe polymorphism X
 - Anonymous fixpoints X
 - Functors X

- COQ IN dEdukti
- Version 1.0 by Boespflug and Burel (2012)
 - · Inductive types, modules \checkmark
 - Type : Type X
- · Version 2.0
 - Type_i : Type_{i+1} √
 - Universe polymorphism X
 - Anonymous fixpoints X
 - Functors X
- · Interoperability with HOL (A. & Cauderlier 2015)

https://gforge.inria.fr/projects/krajono/

· Matita in Dedukti

https://gforge.inria.fr/projects/krajono/

- · Matita in Dedukti
- · Features:
 - No universe polymorphism ✓
 - · No anonymous fixpoints \checkmark
 - No modules ✓

https://gforge.inria.fr/projects/krajono/

- · Matita in Dedukti
- Features:
 - No universe polymorphism ✓
 - · No anonymous fixpoints \checkmark
 - No modules ✓
 - Proof irrelevance X

https://gforge.inria.fr/projects/krajono/

- · Matita in Dedukti
- · Features:
 - · No universe polymorphism \checkmark
 - · No anonymous fixpoints \checkmark
 - No modules √
 - Proof irrelevance X
- Translation of the arithmetics library

	Compiled size (KB)		Time (s)	
	Matita	Dedukti	Matita	Dedukti
Total	3120	11955	438	1412

LESSONS LEARNED

- There is a wide gap between theory and practice
- It can be very hard to obtain usable proof objects
- We need support for well-specified proof formats
 - · OPENTHEORY [Hurd 2011]
 - L∃∀N [De Moura 2015]

SUMMARY

- Using the $\lambda\Pi$ -calculus modulo as a logical framework for independent proof checking and proof interoperability
- Embedding of computational higher-order logics that is sound and complete
- Implementation of automated proof translations: HOL, CoQ, and MATITA

PERSPECTIVES

Translations

- Functors (Coq)
- · Local fixpoints (Coq)
- Universe polymorphism (Coq)
- Proof irrelevance (Matita)
- Intersection type systems?

PERSPECTIVES

Translations

- Functors (Coq)
- Local fixpoints (Coq)
- Universe polymorphism (Coq)
- Proof irrelevance (Matita)
- Intersection type systems?

Interoperability

Gotta catch ém all!

Gotta catch ém all!

THANK YOU!

Gotta catch émall!

BIBLIOGRAPHY I

Ali Assaf and Raphaël Cauderlier.

Mixing HOL and Coq in Dedukti (Extended Abstract).

In Proceedings of PXTP, 2015.

Ali Assaf.
A calculus of constructions with explicit subtyping.
In Proceedings of TYPES, 2014.

Ali Assaf.

Conservativity of embeddings in the lambda-Pi calculus

modulo rewriting.

In Proceedings of TLCA, 2015.

BIBLIOGRAPHY II

Henk Barendregt.

Lambda calculi with types.

Oxford University Press, 1992.

Denis Cousineau and Gilles Dowek.

Embedding pure type systems in the λΠ-calculus modulo.

In Proceedings of TLCA, 2007.

Robert Harper, Furio Honsell, and Gordon Plotkin.

A framework for defining logics.

Journal of the ACM, 1993.

Per Martin-Löf and Giovanni Sambin.

Intuitionistic type theory.

Bibliopolis Naples, 1984.