

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-5

Nome: Luiz Gustavo Caobianco

No processamento de bebidas, a aplicação de um determinado conservante é efetuada em função da combinação de 04 variáveis reais, definidas por x_1 (teor de água), x_2 (grau de acidez), x_3 (temperatura) e x_4 (tensão superficial). Sabe-se que existem apenas três tipos de conservantes que podem ser aplicados, os quais são categorizados por tipo A, B e C. A partir destas variáveis, realizam-se ensaios em laboratório para especificar que tipo de conservante deve ser aplicado em determinada bebida.

Por intermédio de 148 desses ensaios experimentais, a equipe de engenheiros e cientistas resolveu aplicar uma rede perceptron multicamadas como classificadora de padrões, a fim de que esta identifique qual conservante será aplicado em determinado lote de bebida. Por questões operacionais da própria linha de produção, utilizar-se-á aqui uma rede perceptron com três saídas, conforme apresentado na figura abaixo.

A padronização para a saída, representando o conservante a ser aplicado, ficou definida da seguinte forma:

Tipo de Conservante	y_1	y_2	y_3
Tipo A	1	0	0
Tipo B	0	1	0
Tipo C	0	0	1

Utilizando os dados de treinamento apresentados no Anexo, execute o treinamento de uma rede perceptron multicamadas (04 entradas, 15 neurônios na camada escondida e 03 saídas) que possa classificar, em função apenas dos valores medidos de x_1 , x_2 , x_3 e x_4 (já normalizados), qual o

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

tipo de conservante que deverá ser aplicado em determinada bebida. Para tanto, faça as seguintes atividades:

1. Execute cinco treinamentos da rede perceptron multicamadas ilustrada na Figura 1, por meio do algoritmo de aprendizagem *backpropagation*, inicializando-se todas as matrizes de pesos com valores aleatórios entre 0 e 1. Utilize a função de ativação logística para todos os neurônios, taxa de aprendizado $\eta = 0.1$ e precisão $\epsilon = 10^{-6}$. Meça também o tempo de processamento envolvido com cada um desses treinamentos.

Treinamento	Tempo de Execução(em ms)	Épocas
T1	970	678
T2	632	504
Т3	523	314
T4	393	259
T5	847	823

2. Dado que o problema se configura como um típico processo de classificação de padrões, implemente a rotina que faz o pós-processamento das saídas fornecidas pela rede (números reais) para números inteiros. Utilize o critério do arredondamento simétrico, isto é:

$$y_i^{\text{pós}} = \begin{cases} 1, \text{ se } y_i \ge 0.5 \\ 0, \text{ se } y_i < 0.5 \end{cases}$$
, utilizado apenas no pós-processamento do conjunto de teste.

3. Para cada um dos cinco treinamentos, faça então a validação aplicando o conjunto de teste fornecido na tabela abaixo. Forneça a taxa de acerto (%) entre os valores desejados e os valores fornecidos pela rede (após o pós-processamento) em relação a todas as amostras de teste.

Resposta: As tabelas para cada um dos treinamentos estão abaixo. O número 0,000000 contido em algumas células significa que valores menores que este foram encontrados, e arredondados para padronizar a exibição dos mesmos.

Treinamento 1:

Amostra	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	d_1	d_2	d_3	Y ₁ pós	Y ₂ pós	Y ₃ pós	y_1	y_2	<i>y</i> ₃
1	0.8622	0.7101	0.6236	0.7894	0	0	1	0	0	1	0,000001	0,046981	0,940794
2	0.2741	0.1552	0.1333	0.1516	1	0	0	1	0	0	0,925427	0,091666	0,000000
3	0.6772	0.8516	0.6543	0.7573	0	0	1	0	0	1	0,000000	0,160191	0,842008
4	0.2178	0.5039	0.6415	0.5039	0	1	0	0	1	0	0,000488	0,998708	0,000016
5	0.7260	0.7500	0.7007	0.4953	0	0	1	0	0	1	0,000000	0,216334	0,791032
6	0.2473	0.2941	0.4248	0.3087	1	0	0	1	0	0	0,918043	0,087112	0,000000
7	0.5682	0.5683	0.5054	0.4426	0	1	0	0	1	0	0,000005	0,991765	0,005632
8	0.6566	0.6715	0.4952	0.3951	0	1	0	0	1	0	0,000001	0,894540	0,113439
9	0.0705	0.4717	0.2921	0.2954	1	0	0	1	0	0	0,920086	0,088820	0,000000
10	0.1187	0.2568	0.3140	0.3037	1	0	0	1	0	0	0,923792	0,090933	0,000000
11	0.5673	0.7011	0.4083	0.5552	0	1	0	0	1	0	0,000001	0,849619	0,162123
12	0.3164	0.2251	0.3526	0.2560	1	0	0	1	0	0	0,922566	0,089443	0,000000
13	0.7884	0.9568	0.6825	0.6398	0	0	1	0	0	1	0,000000	0,164321	0,839495
14	0.9633	0.7850	0.6777	0.6059	0	0	1	0	0	1	0,000000	0,116170	0,878346
15	0.7739	0.8505	0.7934	0.6626	0	0	1	0	0	1	0,000000	0,123862	0,872170
16	0.4219	0.4136	0.1408	0.0940	1	0	0	1	0	0	0,921526	0,090157	0,000000
17	0.6616	0.4365	0.6597	0.8129	0	0	1	0	0	1	0,000001	0,093456	0,881554
18	0.7325	0.4761	0.3888	0.5683	0	1	0	0	1	0	0,000003	0,980044	0,016713
				Taxa de /	Acert	o (%	6): 1 (00%					

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

Treinamento 2:

Amostra	<i>X</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X ₄	d_1	d_2	d_3	Y ₁ pós	Y ₂ pós	Y ₃ pós	y_1	y_2	y_3
1	0.8622	0.7101	0.6236	0.7894	0	0	1	0	0	1	0,029233	0,002058	0,997767
2	0.2741	0.1552	0.1333	0.1516	1	0	0	1	0	0	0,999906	0,045793	0,000000
3	0.6772	0.8516	0.6543	0.7573	0	0	1	0	0	1	0,016922	0,001330	0,998397
4	0.2178	0.5039	0.6415	0.5039	0	1	0	0	1	0	0,024740	0,893356	0,084310
5	0.7260	0.7500	0.7007	0.4953	0	0	1	0	0	1	0,023371	0,004559	0,991678
6	0.2473	0.2941	0.4248	0.3087	1	0	0	1	0	0	0,999177	0,013774	0,000000
7	0.5682	0.5683	0.5054	0.4426	0	1	0	0	1	0	0,015513	0,891003	0,126967
8	0.6566	0.6715	0.4952	0.3951	0	1	0	0	1	0	0,017600	0,867534	0,131656
9	0.0705	0.4717	0.2921	0.2954	1	0	0	1	0	0	0,999684	0,015060	0,000000
10	0.1187	0.2568	0.3140	0.3037	1	0	0	1	0	0	0,999861	0,037361	0,000000
11	0.5673	0.7011	0.4083	0.5552	0	1	0	0	1	0	0,016442	0,875131	0,133393
12	0.3164	0.2251	0.3526	0.2560	1	0	0	1	0	0	0,999708	0,029429	0,000000
13	0.7884	0.9568	0.6825	0.6398	0	0	1	0	0	1	0,023692	0,000802	0,998514
14	0.9633	0.7850	0.6777	0.6059	0	0	1	0	0	1	0,016136	0,002879	0,997105
15	0.7739	0.8505	0.7934	0.6626	0	0	1	0	0	1	0,016829	0,001145	0,998739
16	0.4219	0.4136	0.1408	0.0940	1	0	0	1	0	0	0,999769	0,019118	0,000000
17	0.6616	0.4365	0.6597	0.8129	0	0	1	0	1	0	0,008557	0,949290	0,241763
18	0.7325	0.4761	0.3888	0.5683	0	1	0	0	1	0	0,014243	0,910039	0,164030
	·	·		Taxa de A	Acert	o (%): 94	1,5%					

Treinamento 3:

Amostra	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	d_1	d_2	d_3	Y ₁ pós	Y ₂ pós	Y ₃ pós	y_1	y_2	y_3
1	0.8622	0.7101	0.6236	0.7894	0	0	1	0	0	1	0,000682	0,251137	0,823519
2	0.2741	0.1552	0.1333	0.1516	1	0	0	1	0	0	0,994830	0,055470	0,000003
3	0.6772	0.8516	0.6543	0.7573	0	0	1	0	0	1	0,000750	0,308971	0,777915
4	0.2178	0.5039	0.6415	0.5039	0	1	0	0	1	0	0,005999	0,601155	0,148385
5	0.7260	0.7500	0.7007	0.4953	0	0	1	0	0	1	0,001029	0,471900	0,626831
6	0.2473	0.2941	0.4248	0.3087	1	0	0	1	0	0	0,911680	0,197983	0,000042
7	0.5682	0.5683	0.5054	0.4426	0	1	0	0	1	0	0,002463	0,630222	0,323419
8	0.6566	0.6715	0.4952	0.3951	0	1	0	0	1	0	0,001857	0,628304	0,389799
9	0.0705	0.4717	0.2921	0.2954	1	0	0	1	0	0	0,950659	0,154221	0,000022
10	0.1187	0.2568	0.3140	0.3037	1	0	0	1	0	0	0,984814	0,090285	0,000007
11	0.5673	0.7011	0.4083	0.5552	0	1	0	0	1	0	0,001863	0,624033	0,401800
12	0.3164	0.2251	0.3526	0.2560	1	0	0	1	0	0	0,965379	0,130813	0,000016
13	0.7884	0.9568	0.6825	0.6398	0	0	1	0	0	1	0,000629	0,244300	0,826409
14	0.9633	0.7850	0.6777	0.6059	0	0	1	0	0	1	0,000635	0,237728	0,832576
15	0.7739	0.8505	0.7934	0.6626	0	0	1	0	0	1	0,000593	0,220018	0,847511
16	0.4219	0.4136	0.1408	0.0940	1	0	0	1	0	0	0,967217	0,127933	0,000014
17	0.6616	0.4365	0.6597	0.8129	0	0	1	0	0	1	0,001193	0,468672	0,622093
18	0.7325	0.4761	0.3888	0.5683	0	1	0	0	1	0	0,002253	0,606327	0,373722
	<u> </u>	·	<u> </u>	Taxa de /	Acer	to (%	6): 1	00%					

Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

Treinamento 4

Amostra	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	$d_{_1}$	d_2	d_3	Y ₁ pós	Y ₂ pós	Y ₃ pós	y_1	y_2	y_3
1	0.8622	0.7101	0.6236	0.7894	0	0	1	0	0	1	0,000653	0,385800	0,708391
2	0.2741	0.1552	0.1333	0.1516	1	0	0	1	0	0	0,889154	0,159442	0,000027
3	0.6772	0.8516	0.6543	0.7573	0	0	1	0	0	1	0,000650	0,386816	0,707951
4	0.2178	0.5039	0.6415	0.5039	0	1	0	0	0	0	0,047666	0,301292	0,013123
5	0.7260	0.7500	0.7007	0.4953	0	0	1	0	0	1	0,000646	0,389199	0,706091
6	0.2473	0.2941	0.4248	0.3087	1	0	0	1	0	0	0,835561	0,225352	0,000037
7	0.5682	0.5683	0.5054	0.4426	0	1	0	0	0	1	0,001356	0,376682	0,509274
8	0.6566	0.6715	0.4952	0.3951	0	1	0	0	0	1	0,000727	0,392001	0,670270
9	0.0705	0.4717	0.2921	0.2954	1	0	0	1	0	0	0,846146	0,211415	0,000035
10	0.1187	0.2568	0.3140	0.3037	1	0	0	1	0	0	0,846403	0,216005	0,000034
11	0.5673	0.7011	0.4083	0.5552	0	1	0	0	0	1	0,000704	0,394336	0,675640
12	0.3164	0.2251	0.3526	0.2560	1	0	0	1	0	0	0,839454	0,223874	0,000036
13	0.7884	0.9568	0.6825	0.6398	0	0	1	0	0	1	0,000659	0,383117	0,709772
14	0.9633	0.7850	0.6777	0.6059	0	0	1	0	0	1	0,000659	0,383086	0,709756
15	0.7739	0.8505	0.7934	0.6626	0	0	1	0	0	1	0,000657	0,383827	0,709422
16	0.4219	0.4136	0.1408	0.0940	1	0	0	1	0	0	0,856017	0,200300	0,000034
17	0.6616	0.4365	0.6597	0.8129	0	0	1	0	0	1	0,000674	0,393433	0,688609
18	0.7325	0.4761	0.3888	0.5683	0	1	0	0	0	1	0,001353	0,375579	0,511553
				Taxa de A	certo	(%)): 72	,22%					

Treinamento 5

Amostra	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	d_1	d_2	d_3	Y ₁ pós	Y ₂ pós	Y ₃ pós	y_1	y_2	y_3
1	0.8622	0.7101	0.6236	0.7894	0	0	1	0	0	1	0,000032	0,000091	0,999931
2	0.2741	0.1552	0.1333	0.1516	1	0	0	1	0	0	0,996273	0,055627	0,000000
3	0.6772	0.8516	0.6543	0.7573	0	0	1	0	0	1	0,000025	0,000067	0,999957
4	0.2178	0.5039	0.6415	0.5039	0	1	0	0	1	0	0,004161	0,909078	0,062661
5	0.7260	0.7500	0.7007	0.4953	0	0	1	0	0	1	0,000444	0,115995	0,913053
6	0.2473	0.2941	0.4248	0.3087	1	0	0	1	0	0	0,981142	0,035613	0,000000
7	0.5682	0.5683	0.5054	0.4426	0	1	0	0	1	0	0,002323	0,889005	0,127667
8	0.6566	0.6715	0.4952	0.3951	0	1	0	0	1	0	0,002078	0,884487	0,145175
9	0.0705	0.4717	0.2921	0.2954	1	0	0	1	0	0	0,987779	0,041458	0,000000
10	0.1187	0.2568	0.3140	0.3037	1	0	0	1	0	0	0,994326	0,054038	0,000000
11	0.5673	0.7011	0.4083	0.5552	0	1	0	0	1	0	0,002067	0,884291	0,146082
12	0.3164	0.2251	0.3526	0.2560	1	0	0	1	0	0	0,990741	0,046061	0,000000
13	0.7884	0.9568	0.6825	0.6398	0	0	1	0	0	1	0,000021	0,000056	0,999968
14	0.9633	0.7850	0.6777	0.6059	0	0	1	0	0	1	0,000027	0,000074	0,999951
15	0.7739	0.8505	0.7934	0.6626	0	0	1	0	0	1	0,000021	0,000054	0,999970
16	0.4219	0.4136	0.1408	0.0940	1	0	0	1	0	0	0,989140	0,042907	0,000000
17	0.6616	0.4365	0.6597	0.8129	0	0	1	0	1	0	0,001434	0,719385	0,326407
18	0.7325	0.4761	0.3888	0.5683	0	1	0	0	1	0	0,002216	0,887188	0,134787
				Taxa de A	cert	o (%): 9 4	,5 %					

- 4. Explique qual foi o motivo de se realizar cinco treinamentos para uma mesma configuração topológica de rede perceptron multicamadas.
 - Resposta: É necessário que sejam feitos diversos treinamentos com a mesma topologia para avaliar a validade da topologia escolhida para a classificação do problema apresentado. Isto significa que, ao ser escolhido uma seguinte topologia, esta deve ser testada diversas vezes. Caso o erro apresentado em diversos treinamentos de uma rede com uma certa topologia ainda seja inaceitável, deve-se trocar a topologia escolhida e repetir o processo de treinamento.
- 5. Para o melhor dos cinco treinamentos realizados acima, trace o respectivo gráfico dos valores de erro quadrático médio (EQM) em função de cada época de treinamento.

Gráfico do Erro Quadrático Médio

