METU EE7566 Electric Drives in Electric and Hybrid Electric Vehicles

Emine Bostanci

Office: C-107

Content

- 1. Vehicle requirements
- 2. Vehicle movement
- 3. Vehicle resistances
- 4. Dynamic equation
- 5. Maximum tractive force
- 6. Powertrain tractive effort
- 7. Vehicle performance
 - Maximum speed
 - Gradeability
 - Acceleration time (0-100km/h, 60-100km/h)
- 8. Braking
- 9. Fuel Economy
 - Driving cycles

Vehicle Requirements

- 1. Performance
- Maximum speed on flat (level) road
- Gradeability: highest grade a vehicle can ascend maintaining a particular speed
- Acceleration time (0-100 km/h, 60-100 km/h)
- Drivability
- Lateral dynamics
- Vertical dynamics
- Range: Especially important for electric vehicles
- Charging duration: Especially important for electric vehicles
- 2. Emissions
- 3. Comfort
- 4. Security
- 5. Initial cost and fuel economy
- 6. Exterior and interior design
- 7. Visibility of the external environment

Forces Acting on a Vehicle

Source: K. Reif (Ed.), "Brakes, Brake Control and Driver Assistance Systems Function, Regulation and Components", 2014

- Vertical forces
- Lateral forces
- Longitudinal forces
- Yaw (change of direction) forces

Vertical Axis

BOSE Active Suspension comparison

Forces Acting on a Vehicle

Source: K. Reif (Ed.), "Brakes, Brake Control and Driver Assistance Systems Function, Regulation and Components", 2014

Only **longitudinal** forces are considered in the following analysis.

- Aerodynamic drag
- Rolling friction
- Grading resistance
- Tractive force
- Braking force

Vehicle is assumed to a rigid body.

Longitudinal Vehicle Movement

Vehicle mass multiplied by mass factor δ that represents the effect of rotating masses

Net Tractive Force

$$F_{\text{tot}}(t) = \sum_{i} F_{i}(t) = M \frac{dv(t)}{dt}$$

$$F_{\text{tot}}(t) = F_t - F_r - F_{load}$$

 F_t : Tractive force, it can be positive or negative.

 F_r : Friction force like aerodynamic windage and other mechanical friction. This component always directed against the direction of motion.

 F_{load} : This is the sum of all load forces that produce the useable mechanical work and therefore represents function of the application. This can be the mass of the elevator car. In vehicle applications friction can also be considered as a part of the load force like rolling and aerodynamic friction in vehicles.

$$\sum_{i} F_{i}(t) > 0 \& v > 0$$
: Acceleration

$$\sum_{i} F_{i}(t) < 0 \& v > 0$$
: Deceleration

$$\sum_{i} F_{i}(t) = 0$$
: Constant speed

Vehicle Resistances

- 1. Rolling resistance, F_r
- 2. Aerodynamic drag, F_w
- 3. Grading resistance, F_g

$$\Sigma F_t - \Sigma F_{rt} = \delta M \frac{dV}{dt}$$

$$\Sigma F_{rt} = F_r + F_w + F_g$$

Vehicle Resistance – Rolling Resistance

Produced by deformation processes which occur where the tire is in contact with the road.

Depending on the tire and road characteristics tire and/or ground deforms and that causes asymmetric distribution of ground reaction forces.

Weight acting on tire-ground surface (normal load)

Effective radius

$$F_r = f_r \, Mg \, \cos(\alpha)$$

 a/r_d : Coefficient of rolling resistance

Tire deflection and rolling resistance on a (a) hard and (b) soft road surface

Vehicle Resistance – Rolling Resistance

Produced by deformation processes which occur where the tire is in contact with the road.

$$F_r = f_r \, Mg \, cos(\alpha)$$

Rolling resistance coef. on concrete road (hard surface) can be estimated by the following equation for speeds up to 128 km/h:

$$f_r = f_0 + f_s \left(\frac{V}{100}\right)^{2.5}$$

$$f_r = 0.01 \left(1 + \frac{V}{100} \right)$$

- Turbulent air flow around vehicle body (85%) Shape drag
- Friction of air over vehicle body (12%) Skin drag
- Vehicle component resistance, from radiators, air vents and pipes under vehicle (3%)

Aerodynamic tractive effort in N

Density of air, typical value is 1.25kg/m³

Coefficient of aerodynamic drag

Aerodynamic idea shape:

A teardrop of aspect ratio 2.4 with C_d =0.04

Vahiala	Tuno	Coefficient of Aerodymanic Resistance
Vehicle Type		Coefficient of Aerodymanic Resistance
	Open convertible	0.5–0.7
	Van body	0.5–0.7
	Ponton body	0.4–0.55
	Wedge-shaped body; headlamps and bumpers are integrated into the body, covered underbody, optimized cooling air flow	0.3–0.4
	Headlamp and all wheels in body, covered underbody	0.2-0.25
600	K-shaped (small breakway section)	0.23
	Optimum streamlined design	0.15–0.20
Trucks, road trains Buses Streamlined buses Motorcycles		0.8–1.5 0.6–0.7 0.3–0.4 0.6–0.7

Indicative drag coefficients for different body shapes

	CHEVROLET VOLT	MERCEDES- BENZ CLA250	NISSAN LEAF SL (2012)	TESLA MODEL S P85 (2012)	TOYOTA PRIUS
VEHICLE			_		
BASE PRICE PRICE AS TESTED DIMENSIONS	\$34,995 \$35,995	\$30,825 \$35,855	\$38,100 \$38,290	\$93,390 \$100,520	\$29,245 \$33,408
LENGTH WIDTH HEIGHT WHEELBASE	177.1 inches 70.4 inches 56.6 inches 105.7 inches	182.3 inches 70.0 inches 56.6 inches 106.3 inches	175.0 inches 69.7 inches 61.0 inches 106.3 inches	196.0 inches 77.3 inches 56.5 inches 116.5 inches	176.4 inches 68.7 inches 58.7 inches 106.3 inches
WEIGHT	3766 pounds	3374 pounds	3353 pounds	4785 pounds	3180 pounds
C/D WIND TUNNEL TEST RESULTS					
DRAG COEFFICIENT	0.28	0.30	0.32	0.24	0.26
FRONTAL AREA	23.7 square feet	23.2 square feet	24.5 square feet	25.2 square feet	23.9 square feet
DRAG AREA (CD X FRONTAL AREA)	6.7 square feet	7.0 square feet	7.8 square feet	6.2 square feet	6.2 square feet
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH	6.7 square feet 84 pounds	7.0 square feet 88 pounds	7.8 square feet 97 pounds	6.2 square feet 77 pounds	6.2 square feet 78 pounds
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH	84 pounds 16 hp	88 pounds 16 hp	97 pounds 18 hp	77 pounds 14 hp	78 pounds 14 hp
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH	84 pounds 16 hp	88 pounds	97 pounds	77 pounds	78 pounds
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH FRONT-AXLE LIFT @ 70 MPH	84 pounds 16 hp	88 pounds 16 hp	97 pounds 18 hp	77 pounds 14 hp	78 pounds 14 hp
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH FRONT-AXLE LIFT	84 pounds 16 hp 45 hp -15 pounds	88 pounds 16 hp 48 hp	97 pounds 18 hp 53 hp	77 pounds 14 hp 42 hp	78 pounds 14 hp 42 hp
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH FRONT-AXLE LIFT @ 70 MPH REAR-AXLE LIFT	84 pounds 16 hp 45 hp -15 pounds	88 pounds 16 hp 48 hp 46 pounds	97 pounds 18 hp 53 hp -12 pounds	77 pounds 14 hp 42 hp 23 pounds	78 pounds 14 hp 42 hp -4 pounds
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH FRONT-AXLE LIFT @ 70 MPH REAR-AXLE LIFT	84 pounds 16 hp 45 hp -15 pounds	88 pounds 16 hp 48 hp 46 pounds 44 pounds	97 pounds 18 hp 53 hp -12 pounds 11 pounds ERO STARS DRAG COEFFIC	77 pounds 14 hp 42 hp 23 pounds 17 pounds	78 pounds 14 hp 42 hp -4 pounds 17 pounds
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH FRONT-AXLE LIFT @ 70 MPH REAR-AXLE LIFT	84 pounds 16 hp 45 hp -15 pounds	88 pounds 16 hp 48 hp 46 pounds 44 pounds REFERENCE A 1996 GM EVI	97 pounds 18 hp 53 hp -12 pounds 11 pounds ERO STARS DRAG COEFFIC 0.21*	77 pounds 14 hp 42 hp 23 pounds 17 pounds	78 pounds 14 hp 42 hp -4 pounds 17 pounds
(CD X FRONTAL AREA) DRAG FORCE @ 70 MPH AERO POWER @ 70 MPH AERO POWER @ 100 MPH FRONT-AXLE LIFT @ 70 MPH REAR-AXLE LIFT	84 pounds 16 hp 45 hp -15 pounds	88 pounds 16 hp 48 hp 46 pounds 44 pounds	97 pounds 18 hp 53 hp -12 pounds 11 pounds ERO STARS DRAG COEFFIC 0.21* 6HT 0.30	77 pounds 14 hp 42 hp 23 pounds 17 pounds	78 pounds 14 hp 42 hp -4 pounds 17 pounds

Source: https://www.teslamotors.com/sites/default/files/blog attachments/the-slipperiest-car-on-the-road.pdf

C _d	Car	Year
0.24	Tesla Model S	2012
0.24	Tesla Model X	2015
0.24	Toyota Prius	2016
0.212*	Tatra T77A	1935
0.21	Tesla Model 3	2017
0.195	General Motors EV1	1996
0.189	Volkswagen XL1	2013
0.07	Nuna, World Solar Challenge winner	2001–2007
0.0512	Ecorunner V (ShellEco- marathon) Prototype	2015

How is the aerodynamic drag reduced in electrified vehicles?

Source: https://www.teslamotors.com/sites/default/files/blog_attachments/the-slipperiest-car-on-the-road.pdf

Vehicle Resistance – Grading Resistance

Gravitational force acting on the vehicle

Dynamic Equation

$$\delta M \frac{dV}{dt} = \left(F_{tf} + F_{tr}\right) - \left(F_{rf} + F_{rr} + F_{\omega} + F_{g}\right)$$
Rolling resistive force of rear tires
Rolling resistive force of front tires

Tractive force of rear tires

Tractive force of front tires

Dynamic Equation

$$\delta M \frac{dV}{dt} = (F_{tf} + F_{tr}) - (F_{rf} + F_{rr} + F_{\omega} + F_{g})$$
Rolling resistive force of rear tires

Rolling resistive force of front tires

Tractive force of rear tires

Tractive force of front tires

$$F_r = f_r Mg \cos(\alpha)$$

$$F_w = \frac{1}{2} \rho A_f C_d (V + V_w)^2$$

$$F_g = Mg \sin(\alpha)$$

Dynamic Equation

$$\delta M \frac{dV}{dt} = (F_{tf} + F_{tr}) - (F_{rf} + F_{rr} + F_{\omega} + F_{g})$$
Rolling resistive force of front tires
Rolling resistive force of front tires

Tractive force of rear tires

Tractive force of front tires

$$F_r = f_r Mg \cos(\alpha)$$

$$F_w = \frac{1}{2} \rho A_f C_d (V + V_w)^2$$

$$F_q = Mg \sin(\alpha)$$

Maximum Tractive Effort

The maximum tractive effort on the driven wheel is limited by the lowest of:

- The longitudinal force that the adhesive capability between the tire and ground can supply
- The maximum torque that the engine (ICE or electric machine) can supply

Maximum tractive effort depends on:

- Vertical load on the traction wheels
- Adhesive capability

$$F_{tf} = \mu W_f$$
 $F_{tr} = \mu W_r$ Vertical load

Tractive effort coefficient

Load Transfer

Tractive effort depends on vertical load distribution among axels.

Normal loads on the front and rear axels are:

$$W_{f} = \frac{1}{L} \left\{ L_{b} M_{v} g cos(\alpha) - h_{g} \left(F_{g} + M \frac{dv}{dt} \right) - h_{w} F_{w} \right\}$$

$$W_{r} = \frac{1}{L} \left\{ L_{a} M_{v} g cos(\alpha) + h_{g} \left(F_{g} + M \frac{dv}{dt} \right) + h_{w} F_{w} \right\}$$

 $M_v = \delta M$ and h_w is the center of application of F_w

We can further simply the equations by assuming $h_w = h_a$

Maximum Tractive Effort

Tractive effort coefficient μ depends on:

Effective radius

• Ground and tire characteristics

 $s = \left(1 - \frac{V}{r\omega}\right) x 100\% = \left(1 - \frac{r_d}{r}\right) x 100\%$

Radius of free wheeling tire

Average Values of Tractive Effort Coefficient on Various Roads

Surface	Peak Values, μ_p	Sliding Values, μ_s	
Asphalt and concrete (dry)	0.8-0.9	0.75	
Concrete (wet)	0.8	0.7	
Asphalt (wet)	0.5 - 0.7	0.45 - 0.6	
Grave	0.6	0.55	
Earth road (dry)	0.68	0.65	
Earth road (wet)	0.55	0.4 - 0.5	
Snow (hard packed)	0.2	0.15	
Ice	0.1	0.07	

Maximum Tractive Effort

Vehicle road speed km/h	Tire condition	Dry road	Wet road (depth of water 0.2 mm)	Heavy rain (depth of water 1 mm)	Puddles (depth of water 2 mm)	lcy (black ice)
50	new	0.85	0.65	0.55	0.5	0.1
	worn out	1	0.5	0.4	0.25	and below
90	new	0.8	0.6	0.3	0.05	
	worn out	0.95	0.2	0.1	0.0	
130	new	0.75	0.55	0.2	0	
	worn out	0.9	0.2	0.1	0	

Tractive effort coefficient, μ , for tires in various conditions of wear, on various road conditions and at various speeds

Power Train Tractive Effort

Torque on the wheels $T_w = i_g i_0 \eta_t T_p$ Torque output of plant *Gear ratio of final drive

*Gear ratio of transmission

Tractive force Speed wheels in rpm $F_t = \frac{T_w}{r_d} \qquad \qquad n_w = \frac{n_p}{i_g i_0}$

Longitudinal speed $V = \frac{\pi \, n_w r_d}{30} \, (\text{m/s})$

Each pair of gears: 95–97%

Bearing and joint: 98–99%

Direct gear: 90% Other gear: 85%

Clutch: 99%

^{*}Gear ratio is defined as the radio of n_p/n_w or T_w/T_p

Power Train Tractive Effort – Torque Output of Plant

Ideal required performance characteristics:

Speed

Internal combustion engine (ICE):

Why we need multi-speed gearboxes?

The proportion of shaded area, i.e. the proportion of impossible driving states, is significantly smaller when an output converter is used, and the power potential of the engine can be better applied.

https://www.quora.com/Why-do-electric-engines-have-a-wider-torque-range

2018 Golf R Technical Specifications

Golf R

4Motion permanent all-wheel-drive system			
	Manual	DSG	
1st	3.36	3.19	
2nd	2.09	2.75	
3rd	1.48	1.9	
4th	1.09	1.04	
5th	1.1	0.79	
6th	0.91	0.86	
7th	-	0.66	
Reverse	3.99	2.9	
Final I	4.24	4.47	
Final II	3.27	3.3	

https://newspress-vwusamedia.s3. amazonaws.com/documents%2 Foriginal%2 F8665-2018 Volkswagen Golf RTechnical Specifications.pdf

Power Train Tractive Effort – Torque Output of Plant

Ideal required performance characteristics:

Power Torque Cruising Speed

Electric machine:

Power Train Tractive Effort: ICE vs. EM

Source:

 $https://www.google.com/search?q=efficiency+of+ice\&source=lnms\&tbm=isch\&sa=X\&ved=0\\ahUKEwjK2MirkPjMAhUFSSYKHRCcDYcQ_AUIBygB\&biw=1920\&bih=955\#imgrc=dflHwMEna1vZTM%3A$

Vehicle Performance

- 1. Maximum speed
- 2. Gradeability
- 3. Acceleration time (0-100km/h, 60-100km/h)

Vehicle Performance - Maximum Speed of a Vehicle

The maximum speed of a vehicle is defined as the constant cruising speed that the vehicle can develop with full power plant load (full throttle of the engine or full power of the motor) on a flat road.

 α =0 deg at maximum speed calculation

$$F_t = \frac{T_p i_g i_o \eta_t}{r_d} = Mg f_r \cos(\alpha) + \frac{1}{2} \rho A_f C_d(V)^2 + Mg \sin(\alpha)$$

Vehicle Performance - Gradeability

Gradeability is usually defined as the grade (or grade angle) that the vehicle can overcome at a certain constant speed, for instance, the grade at a speed of 100 km/h (60 mph).

Gradability is measured either in degrees or percentage. A 45 degrees gradient is equivalent to 100 per cent.

Tractive force

$$\alpha$$
>0 deg at V = const.

$$F_t = \frac{T_p i_g i_0 \eta_t}{r_d} = Mg f_r \cos(\alpha) + \frac{1}{2} \rho A_f C_d(V)^2 + Mg \sin(\alpha)$$

Vehicle Performance - Gradeability

Gradeability is usually defined as the grade (or grade angle) that the vehicle can overcome at a certain constant speed, for instance, the grade at a speed of 100 km/h (60 mph).

How much gradeability do we need?

45% is really steep!

Vehicle Performance - Acceleration Performance

The acceleration performance of a vehicle is usually described by its acceleration time and the distance covered from zero speed to a certain high speed (zero to 96 km/h or 60 mph, for example) on level ground.

$$a = \frac{dV}{dt} = \frac{F_t - F_r - F_w}{\delta M} = \frac{\frac{T_p i_g i_0 \eta_t}{r_d} - Mg f_r - \frac{1}{2} \rho A_f C_d(V)^2}{\delta M}$$

For a conventional car:

 $\delta = 1 + \frac{J_{\omega}}{M_{\rm m} r_{\rm d}^2}$ Moment of inertia of wheels

Vehicle mass multiplied by mass factor δ that represents the effect of rotating masses

For a car with electric motor, we must also consider moment of inertia of electric motor (J_p) .

$$\delta = 1 + \frac{J_{\omega}}{M_{v}r_{d}^{2}} + \frac{(i_{g}i_{0})^{2}J_{p}}{M_{v}r_{d}^{2}}$$

Vehicle Performance - Acceleration Performance

The acceleration performance of a vehicle is usually described by its acceleration time and the distance covered from zero speed to a certain high speed (zero to 96 km/h or 60 mph, for example) on level ground.

$$a = \frac{dv}{dt} = \frac{F_t - F_r - F_w}{\delta M} = \frac{\frac{T_p i_g i_0 \eta_t}{r_d} - Mgf_r - \frac{1}{2} \rho A_f C_d(V)^2}{\delta M}$$

 $\succ T_p$ is a function of vehicle speed.

Vehicle Performance - Acceleration Performance

The acceleration performance of a vehicle is usually described by its acceleration time and the distance covered from zero speed to a certain high speed (zero to 96 km/h or 60 mph, for example) on level ground.

$$a = \frac{dv}{dt} = \frac{F_t - F_r - F_w}{\delta M} = \frac{\frac{T_p i_g i_0 \eta_t}{r_d} - Mg f_r - \frac{1}{2} \rho A_f C_d(V)^2}{\delta M}$$

Acceleration ta =
$$\int_{v_1}^{v_2} \frac{\delta M}{T_p i_g i_0 \eta_t} \frac{\delta M}{-Mg f_r - \frac{1}{2} \rho A_f C_d(V)^2} dv$$

$$S_{a} = \int_{v_{1}}^{v_{2}} \frac{\delta MV}{T_{p}i_{g}i_{0}\eta_{t}} \frac{\delta MV}{-Mgf_{r} - \frac{1}{2}\rho A_{f}C_{d}(V)^{2}} dv$$

 $\succ T_p$ is a function of vehicle speed. \rightarrow Numeric calculations!

Vehicle Performance - Acceleration Performance

	CHEVROLET VOLT	MERCEDES- BENZ CLA250	NISSAN LEAF SL (2012)	TESLA MODEL S P85 (2012)	TOYOTA PRIUS
VEHICLE					
BASE PRICE PRICE AS TESTED DIMENSIONS	\$34,995 \$35,995	\$30,825 \$35,855	\$38,100 \$38,290	\$93,390 \$100,520	\$29,245 \$33,408
LENGTH WIDTH HEIGHT WHEELBASE WEIGHT	177.1 inches 70.4 inches 56.6 inches 105.7 inches 3766 pounds	182.3 inches 70.0 inches 56.6 inches 106.3 inches 3374 pounds	175.0 inches 69.7 inches 61.0 inches 106.3 inches 3353 pounds	196.0 inches 77.3 inches 56.5 inches 116.5 inches 4785 pounds	176.4 inches 68.7 inches 58.7 inches 106.3 inches 3180 pounds
POWERTRAIN					
POWERTRAIN	DOHC 1.4-liter inline-4 + AC electric motor, CVT	turbocharged DOHC 2.0-liter inline-4, 7-speed dual- clutch automatic	AC electric motor, single-speed drive	AC electric motor, single-speed drive	DOHC 1.8-liter inline-4 + AC electric motor, CVT
POWER HP @ RPM TORQUE LB-FT @ RPM DRIVEN WHEELS	84 @ 4800 (engine) 271 @ 0 (motor) front	208 @ 5500 258 @ 1250 front	107 @ 10,000 187 @ 0 front	416 @ 8600 443 @ 0 rear	98 @ 5200 (engine) 153 @ 0 (motor) front
PERFORMANCE					
0-60 MPH 1/4-MILE @ MPH TOP SPEED	8.8 sec 16.7 sec @ 85 101 mph (governor limited)	6.3 sec 14.9 sec @ 95 133 mph (governor limited)	10.2 sec 17.7 sec @ 78 94 mph (governor limited)	4.6 sec 13.3 sec @ 104 134 mph (redline limited)	10.0 sec 17.6 sec @ 79 115 mph (drag limited)
EPA CITY/HWY	35/40 mpg Performance results from C/D, November 2011.	26/38 mpg Performance results from C/D, December 2013.	126/101 MPGe Performance results from C/D, March 2014.	88/90 MPGe Performance results from C/D, January 2013.	51/48 mpg Performance results from C/D, July 2009.

Source: https://www.teslamotors.com/sites/default/files/blog attachments/the-slipperiest-car-on-the-road.pdf

Braking

(a) Braking torque and braking force (b) Relationship between braking torque and braking force

- ➤ How the axel loads are going to change during braking?
- Discuss the braking performance of front and rear wheels.

Braking

(a) Braking torque and braking force (b) Relationship between braking torque and braking force

Braking torque Adhesive coef. of tireground contact $F_b = \frac{T_b}{r_d} \qquad F_{bmax} = \mu W$ Braking force Max. braking force

The antilock braking system (ABS) prevents wheels from locking up.

- ➤ This system employs speed sensors to detect the wheel rotating speed.
- ➤ When a wheel lockup is detected, the braking pressure control system reduces the pressure and brings the wheel back to its rotation.

Summary of Longitudinal Forces on a Vehicle

Resistances

- Rolling resistance
- Aerodynamic resistance
- Grading resistance

Tractive force Braking force

Content

- 1. Vehicle requirements
- 2. Vehicle movement
- 3. Vehicle resistances
- 4. Dynamic equation
- 5. Maximum tractive force
- 6. Powertrain tractive effort
- 7. Vehicle performance
 - Maximum speed
 - Gradeability
 - Acceleration time (0-100km/h, 60-100km/h)
- 8. Braking
- 9. Fuel Economy
 - Driving cycles

Fuel Economy

Fuel consumption in liter per 100 km travelling distance → liters/100 km OR

Mileage per gallon fuel consumption → miles/gallon (mpg)

Factors effecting fuel economy:

- 1. Internal combustion engine and/or electric motor efficiency characteristics
- 2. Gear number and ratios
- 3. Transmission efficiency
- 4. Vehicle resistance (shape, weight and tire characteristics)
- 5. Vehicle speed
- 6. Operating conditions (terrain, wind, outside temperature, loads and exterior loading such as bikes)

Fuel Economy – Operating Points of internal Combustion Engine (ICE)

Engine power output $P_{\rm e}$ in kW:

$$P_{e} = \frac{v}{1000 \, n_{t}} \, \left(f_{r} \, Mg \, cos(\alpha) + \frac{1}{2} \rho A_{f} C_{d} (V + V_{w})^{2} + Mg \, sin(\alpha) + \delta M \frac{dV}{dt} \right)$$
Resultant efficiency

Resistances

Acceleration

Engine rotational speed n_e in rpm:

$$n_e = \frac{v}{r_d} i_g i_0 \frac{60}{2\pi}$$
 Specific fuel cons. in g/kWh

Time rate of fuel consumption:
$$Q_{fr} = \frac{P_e g_e}{1000 \gamma_f} \frac{1}{3600} \; (l/sec)$$

Mass density in kg/l

Total fuel consumption within S at v:

$$Q_{s} = \frac{P_{e}g_{e}}{1000 \, \gamma_{f}} \frac{1}{3600} \frac{S}{v} \, (l)$$

Fuel Economy – Gear Number and Ratios

Improved fuel economy:

Higher gear ratios or continuous variable transmission (CVT)

Fuel economy characteristics of a typical vehicle at constant speed

- ➤ The parameters of the transmission, especially gear number and gear ratios, have a considerable influence on the fuel economy.
- ➤ These parameters should be selected such that the engine will operate close to its fuel optimum region.

Basic techniques to reduce vehicle resistances:

1. Light weight design: Reduces rolling, grading and acceleration resistance

Material	Density ρ (kg/m ³)	Fracture stress σ (MPa)	Young's Modulus E (GPa)	Strength to mass σ/ρ	Rigidity to mass E/ρ
Mild steel	7850	465	207	0.059	0.026
Stainless steel, FSM 1	7855	980	185	0.125	0.024
Aluminium alloy (DTD 5050B)	2810	500	71	0.178	0.025
Magnesium alloy (AX 31) (DTD 742)	1.780	185	45	0.104	0.025
Carbon fibre reinforced plastic, 58% unidirectional fibres by volume in epoxy resin	1500	1050	189	0.70	0.126
Glass reinforced plastic (GRP), 80% uniaxial glass by weight in polyester resin	2000	1240	48.2	0.62	0.024

Comparison of material properties

Source: Larminie, J. and Lowry J., "Electric Vehicle Technology Explained", 2nd edition, John Wiley & Sons, 2012

Multi-material frame to reduce weight

Carbon fiber reinforced polymer monocoque

Rollover

crash tubes

https://www.greencarcongress.com/2013/06/xl1-20130624.html

Basic techniques to reduce vehicle resistances:

- 1. Light weight design: Reduces rolling, grading and acceleration resistance
- 2. High efficiency tires: Lower rolling resistance

Rolling resistance values for passenger tire samples, 1982 to 2005

Source: http://onlinepubs.trb.org/onlinepubs/sr/sr286.pdf

Basic techniques to reduce vehicle resistances:

- 1. Light weight design: Reduces rolling, grading and acceleration resistance
- 2. High efficiency tires: Lower rolling resistance
- 3. Good aerodynamic design: Reduces aerodynamic resistance
 - Shape optimization
 - Exchange wing mirrors with cameras
 - Close the bottom of the car

Fuel Economy – Operating Conditions

Additional load: A/C

Toyota Corolla fuel consumption versus steady state cruising speed

Source: Huff, S., West, B., and Thomas, J., "Effects of Air Conditioner Use on Real-World Fuel Economy," SAE Technical Paper 2013-01-0551, 2013, doi:10.4271/2013-01-0551.

Exterior loading: Roof bike rack

2013 Honda Accord (4-cyl.)	MPG @ 105 km/h		
No rack	5.6 l/100km		
Empty rack	6.4 l/100km		
Empty rack and wind deflector	6.7 l/100km		
Rack with two bikes and deflector	8.7 l/100km		

Source:

http://www.consumerreports.org/cro/news/2013/07/tests-show-bike-racks-can-ruin-your-mileage/index.htm

Fuel Economy – Driving Cycles

<u>Driving cycle:</u> Driving routines, *cycles* or *schedules*, that specify vehicle speed for each point in time during the laboratory tests

- A realistic and practical test of emissions and fuel economy
- Electrified vehicles: All above and range

	U.S.A.	Europa		Japan		World
•	FTP 72/75 (1978) Urban and highway	• NEDC (1970 and 1997)	•	10-15 Mode (1983)	•	WLTP (2015)
•	US06/US03 (2008)		•	JC08 (2008)		

Fuel Economy – Driving Cycles in U.S.A

FTP 75 Highway

Fuel Economy – Driving Cycles in U.S.A

	FTP 75 Urban <i>City</i>	FTP 75 Highway Highway	US06 High Speed	US03 <i>A/C</i>	FTP 75 Urban Cold Temp
Trip Type	Low speeds in stop- and-go urban traffic	Free-flow traffic at highway speeds	Higher speeds; harder acceleration & braking	A/C use under hot ambient conditions	City test w/ colder outside temp.
Top Speed	56 mph	60 mph	80 mph	54.8 mph	56 mph
Average Speed	21.2 mph	48.3 mph	48.4 mph	21.2 mph	21.2 mph
Max. Acc.	3.3 mph/sec	3.2 mph/sec	8.46 mph/sec	5.1 mph/sec	3.3 mph/sec
Distance	11 mi.	10.3 mi.	8 mi.	3.6 mi.	11 mi.
Time	31.2 min.	12.75 min.	9.9 min.	9.9 min.	31.2 min.
Stops	23	None	4	5	23
Idling time	18% of time	None	7% of time	19% of time	18% of time
Engine Startup*	Cold	Warm	Warm	Warm	Cold
Lab temperature				95 °F	20 °F
Vehicle A/C	Off	Off	Off	On	Off

Fuel Economy – Driving Cycles in Europa

NEDC: New European Driving Cycle

- 4 x ECE-15 European City Cycle
- EUDC European Urban Driving Cycle

Criticism:

- Inability to represent real-life driving
- Cycle beating: to optimize engine emission performance to the corresponding operating points of the test cycle

Sources: https://www.dieselnet.com/standards/cycles/ece_eudc.php https://en.wikipedia.org/wiki/New_European_Driving_Cycle

Characteristics	FTP 75	NEDC	
Distance	17.7028 km	10.9314 km	
Total time	1872 s	1180 s	
Idle time	18 %	23 %	
Avg. speed (incl. stops)	34.12 km/h	33.35 km/h	
Avg. speed (excl. stops)		43.10 km/h	
Maximum speed	90 km/h	120 km/h	
Avg. acc.	1.5 m/s ²	0.506 m/s ²	

Fuel Economy – Driving Cycles in Japan

Characteristics	FTP 75	JC08	
Distance	17.7028 km	8.171 km	
Total time	1872 s	1204 s	
Idle time	18 %	29.7%	
Avg. speed (incl. stops)	34.12 km/h	34.8 km/h	
Avg. speed (excl. stops)		24.4 km/h	
Maximum speed	90 km/h	81.6 km/h	
Avg. acc.	1.5 m/s ²		

Source: https://www.dieselnet.com/standards/cycles/jp_jc08.php

Fuel Economy –Worldwide Harmonized Light Vehicles Test Procedures (WLTP)

Criticism:

- Still unrealistically slow
 Cycle: 0-30mph (~50kph) time is 15 seconds
 Most western European drivers accelerate 0-30mph (~50kph) in 5 to 10 seconds
- No hill climbing

https://en.wikipedia.org/wiki/Worldwide_harmonized_Light_vehicles_Test_Procedures

Fuel Economy –Worldwide Harmonized Light Vehicles Test Procedures (WLTP)

Characteristics	NEDC	FTP 75	WLTP
Distance	10.9314 km	17.7028 km	23.262 km
Total time	1180 s	1872 s	1800 s
Idle time	23 %	18 %	13.4 %
Avg. speed (incl. stops)	33.35 km/h	34.12 km/h	46.5 km/h
Avg. speed (excl. stops)	43.10 km/h		53.8 km/h
Maximum speed	120 km/h	90 km/h	131.3 km/h
Avg. acc.	0.506 m/s ²	1.5 m/s ²	1.6 m/s ²

Fuel Economy – Driving Cycles Frequently Operating Points

Fuel economy and engine operating points in EPA FTP75 overlapped on engine fuel consumption characteristics map

Urban drive cycle

Highway drive cycle

Links

Anti-lock Brake System ABS:

https://www.youtube.com/watch?v=hwwXukJaTlM

How electronic stability control works:

https://www.youtube.com/watch?v=MCRLKRluk1w

Automobile News:

https://www.autonews.com/

More Videos:

Wings and Spoilers; Lift and Drag | How It Works

The Differences Between Understeer & Oversteer And How To Combat Them

Advertisement of the week:

VW Golf 5 mit DSG Werbung

Textbooks:

Reading Assignment: Chapter 2: Vehicle Fundamentals of Ehsani, M. and Gao, Y. and Emadi, A., "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", 2nd Edition, CRC Press LLC, 2009.

- Ehsani, M. and Gao, Y. and Emadi, A., "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", 2nd Edition, CRC Press LLC, 2009.
- Larminie, J. and Lowry J., "Electric Vehicle Technology Explained", 2nd edition, John Wiley & Sons, 2012.
- Mi, C. and Masrur, M. A. and Gao, D. W., "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, May 23, 2011.