Computing Methods for Physics 22 June 2021

You must submit your exam by **Tuesday**, **Jun 22**, **at 13:00** following the instruction at http://www.roma1.infn.it/people/rahatlou/index.php?link=Didattica&sublink=cmp/exams

Jets and Particles with Composite Pattern

The goal of the exercise is to implement the composite pattern for jets with tracks and neutrals. You need to implement the classes depicted in the figure below.

- Particle must be an abstract class
- Implement appropriate constructor(s) for each class
- Particle must have the following methods
 - mass () returning the invariant mass of the object properly implemented for each class

- p4 () returning the 4-momentum
 - · You can use tour own 4-vector class or use the ROOT TLorentzVector
- pt() returning the transverse momentum of the object
- make sure the methods behave properly for each sub-class
- Jet must have the proper function add() to behave as a composite object Additional classes and methods are not necessary but if implemented will be evaluated.

You can test your code by creating

- A Jet object j1 made of 2 Track objects t1 and t2
- A Jet object j2 made of a Track t3, a Neutral n1, and j1

I recommend choosing the momenta for the objects in such a way that you can easily compute the invariant mass and transverse momentum and compare with the implemented functions.

Evaluation will be based on: successful compilation, separation of the code in header and source files, correct use of C++ syntax, return type and arguments of functions, choice of data members and interface for each class, unnecessary void functions, use of unnecessary C features, and correct mathematical and physical operations.

You have to submit the implementation for the four classes in the diagram as well as a test application (app.cc).