:HORIzontal Command Subsystem

:HORizontal:SCALe

Syntax

:HORIzontal:SCALe <scale_value>

:HORIzontal:SCALe?

Description

Set the scale of the main time base.

Parameter

Name	Type	Range	Default Value
<scale_value></scale_value>	Discrete	Please refer to Explanation	

Explanation: Default to set the main time base.

time base gear:

{5.0ns|10.0ns|20.0ns|50.0ns|100ns|200ns|500ns|1.0us|2.0us|5.0us|10us|20us|50us|
100us|200us|500us|1.0ms|2.0ms|5.0ms|10ms|20ms|50ms|100ms|200ms|500ms|1.0s|2.0s|
5.0s|10s|20s|50s|100s|200s|500s|1000s}

Return Format

The query returns the horizontal scale in character string.

Example

The command below sets the horizontal scale of channel 1 to 200us/div.

:HORizontal:SCALe 200us

The query below returns "200us"...

:HORizontal:SCALe?

:HORizontal:OFFSet

Syntax

:HORizontal:OFFset <value>

:HORizontal:OFFset?

Description

Set the Horizontal offset of the time base.

Parameter

Name	Type	Range	Default Value
<value></value>	Integer	Please refer to Explanation (indicating the number of	0
		grids to move horizontally)	U

Return Format

The query returns the offset in character string.

Explanation

If the current main time base is 500 us/div, and the horizontal offset is 2 div, then the horizontal offset time is 1.000 ms.

Example

The command below sets the horizontal offset of channel1 to 1 div.

:HORIzontal:OFFset 1

The query returns horizontal offset div.

If the current main time base is 500 us/div, and the horizontal offset time is 1.000 ms, the query below returns "2".

Query current channel waveform offset value

:HORizontal:OFFSet?

:ACQuire Command Subsystem

:ACQuire:MODe

Syntax

:ACQuire :MODe <type>

:ACQuire :MODe?

Description

Set the acquisition mode of the oscilloscope.

Parameter

Name	Туре	Range	Default Value
<type></type>	Discrete	{SAMPle PEAK}	SAMP

Return format

The query returns "SAMPle", "AVERage" or "PEAK".

Example

The command below selects the average acquisition mode.

:ACQuire:MODE AVERage

The query below returns "AVERage".

:ACQuire:MODE?

:ACQuire :DEPMem <mdep>

Syntax

:ACQuire :DEPMem <mdep>

:ACQuire :DEPMem?

Description

Set the number of waveform points that the oscilloscope can store in a single trigger sample.

Parameter

Name	Type	Range	Default Value
<mdep></mdep>	Discrete	{4K 8K}	4K

Return format

The query returns the actual number of points (integer).

Example

The command below sets the memory depth to "4K".

:ACQuire :DEPMEM 4K

The query below returns the actual number of points, for example "4K".

:ACQuire :DEPMEM?

:CH Command Subsystem

:CH<n>:DISPlay

Syntax

:CH<n>:DISPlay <bool>
:CH<n>:DISPlay?

Description

Turn the display of the channel on or off.

Parameter

Name	Type	Range	Default Value
<n></n>	Discrete	{1 2}	1
<bool></bool>	Bool	{OFF ON}	OFF

Return Format

The query returns "OFF" or "ON".

Example

The command below turns the display of channel 1 on.

:CH1:DISPlay ON

The query returns "ON".

:CH1:DISPlay?

:CH<n>:COUPling

Syntax

:CH<n>:COUPling <coupling>

:CH<n>:COUPling?

Description

Set the coupling mode of the channel to "AC", "DC" or "GND".

Parameter

Name	Туре	Range	Default Value
<n></n>	Discrete	{1 2}	1
<coupling></coupling>	Discrete	{AC DC GND}	DC

Return Format

The query returns "AC", "DC" or "GND".

Example

The command below sets the input coupling mode of channel 1 to "DC".

:CH1:COUPling DC

The query returns "DC".

:CH1:COUPling?

:CH<n>:PROBe

Syntax

:CH<n>:PROBe <atten>

:CH<n>:PROBe?

Description

Set the attenuation ratio of the probe.

Parameter

Name	Туре	Range
<n></n>	Discrete	{1 2}
<atten></atten>	Discrete	{1X 10X 100X 1000X}

Return Format

The query returns the attenuation ratio of the probe.

Example

The command below sets the attenuation ratio of the probe connected to channel1 to 10.

:CH1:PROBe 10X

The query returns "10X".

:CH1:PROBe?

:CH<n>:SCALe

Syntax

:CH<n>:SCALe <scale>

:CH<n>:SCALe?

Description

Set the vertical scale of the specified waveform display.

Parameter

Name	Туре	Range	
<n></n>	Discrete	{1 2}	
		X1	{10.0mV 20.0mV 50.0mV 100mV 200mV 500mV 1.00V 2.00V
	Discrete		5.00V 10.0V}
		X10	{100mV 200mV 500mV 1.00V 2.00V 5.00V 10.0V 20.0V 50.0
<scale></scale>			V 100V}
<scale></scale>		X100	{1.00V 2.00V 5.00V 10.0V 20.0V 50.0V 100V 200V 500V 1.0
			0kV}
		X1000	{10.0V 20.0V 50.0V 100V 200V 500V 1.00kV 2.00kV 5.00kV
			10.0kV}

Explanation

The attenuation ratio of the probe should be considered when setting the parameter. E.g., the attenuation ratio of the probe is $10X_{\circ}$ if you want to set the vertical scale as 100mv_{\circ} the command is:CH<n>:SCALe 100mV_{\circ}

Return Format

The guery returns the vertical scale in character string.

Example

The command below sets the vertical scale of channel 1 to 1V/div.

:CH1:SCALe 1 or 1v

The query returns "1v".

:CH1:SCALe?

:CH<n>:OFFSet

Syntax

:CH<n>:OFFSet <offset>

:CH<n>:OFFSet?

Description

Set the vertical offset of the specified waveform display.

Parameter

Name	Type	Range	Default Value
<n></n>	Discrete	{1 2}	None
<offset></offset>	Integer	-200 to 200	0

Return Format

The query returns the offset div value in Integer.

Example

The command below sets the vertical offset of channel 1 to 1 div.

:CH1:OFFSet 1

The query below returns 1.

:CH1:OFFSet?

:Data Command Subsystem

Because of the huge size of the data get from Dada command, there are 4 bytes in the returned data to indicate the size of the returned data.

:DATa:WAVe:SCReen:HEAD?

Syntax

:DATa:WAVe:SCReen:HEAD?

Description

Get the file header of the screen waveform data file.

Return Format

The query returns a piece of text in JSON format.

Example

The command below return a piece of text as the following sample:

 $\label{thm:problem:} $$ \{"timebase": \{"scale":"1.0ms", "hoffset":0\}, "sample": \{"fullscreen":1520, "slowmove":-1, "datale n":1520, "samplerate": (500ks/s)", "type": "sample", "depmem": "10k"\}, "channel": [\{"name": "ch1", "display": "on", "coupling": "ac", "probe": "10x", "scale": "5.00mv", "offset": 50, "frequence": 0, "in verse": "off"\}, {"name": "ch2", "display": "on", "coupling": "ac", "probe": "10x", "scale": "10.0mv", "offset": 45, "frequence": 0, "inverse": "off"\}], "datatype": "screen", "runstatus": "auto", "trig": {"mode": "single", "type": "edge", "items": {"channel": "ch1", "level": "32.0mv", "edge": "rise", "coupling": "dc", "holdoff": "100ns"}, "sweep": "auto"}}.$

:DATa:WAVe:SCReen:CH<x>?

Syntax

:DATa:WAVe:SCReen:CH<x>?

Parameter

Name	Type	Range	Default Value
<x></x>	Discrete	{CH1 CH2}	无

Description

Get the screen waveform data of the specified channel.

Return format

The query returns the screen waveform data of the specified channel.

Explanation

The data point is recorded as 8-bit, a point uses two bytes, little-endian byte order.

Example

Reading flow of the screen waveform data:

:DATa:WAVe:SCReen:HEAD? :DATa:WAVe:SCReen:CH1? :DATa:WAVe:SCReen:CH2?

:TRIGger Command Subsystem

:TRIGger:STATus?

Syntax

:TRIGger: STATus?

Description

Query the current trigger status.

Parameter

Type	Range	Default Value	Туре
Value	Discrete	{AUTo READy TRIG SCAN STOP }	None

Return Format

The query returns the current trigger status.

Example

:TRIGger: STATus?

The query below returns "AUTO".

:TRIGger:SINGle

:TRIGger:SINGle:SOURce

Syntax

:TRIGger:SINGle:SOURce <source>

:TRIGger:SINGle:SOURce?

Description

Select the source of SINGle EDGE trigger.

Parameter

Name	Туре	Range	Default Value
<source/>	Discrete	{CH1 CH2}	CH1

Return Format

The query returns "CH1" \ "CH2" \.

Example

The command below selects "CH2" as the source of SINGle EDGE trigger.

:TRIGger:SINGle:SOURce CH2
The query below returns "CH2" .
:TRIGger:SINGle:SOURce?

:TRIGger:SINGle:COUPling

Syntax

:TRIGger:SINGle:COUPling <coupling>

:TRIGger:SINGle:COUPling?

Description

Select the coupling mode under SINGle EDGE trigger.

Parameter

Name	Туре	Range	Default Value
<coupling></coupling>	离散型	{DC AC}	DC

Return Format

The query returns "DC" \ "AC" \

Example

The command below selects "AC" as the coupling mode of SINGle EDGE trigger.

:TRIGger:SINGle:COUPling AC The query below returns "AC". :TRIGger:SINGle:COUPling?

:TRIGger:SINGle:EDGe

Syntax

:TRIGger:SINGle::EDGe: <slope>

:TRIGger:SINGle::EDGe ?

Description

Select the slope of SINGle EDGE trigger.

Parameter

Name	Type	Range	Default Value
<slope></slope>	Discrete	{RISE FALL}	RISE

Return Format

The query returns "RISE"OR"FALL".

Example

The command below selects "FALL" as the slope under SINGle EDGE trigger.

:TRIGger:SINGle:SLOPe FALL

The query below returns "FALL".

:TRIGger:SINGle:SLOPe?

:TRIGger:SINGle:EDGe:LEVel

Syntax

:TRIGger:SINGle::EDGe:LEVel <level>

:TRIGger:SINGle::EDGe:LEVel?

Description

Set the trigger level under SINGle EDGE trigger.

Parameter

Name	Туре	Unit	Default Value
<level></level>	Character string	uv, mv, v	无

Return Format

The query returns the trigger level in character string.

Example

he command below sets the trigger level of SINGle EDGE trigger in CH1 to 25mv.

:TRIGger:SINGle:SOURce CH1;

:TRIGger:SINGle::EDGe:LEVel 25mv

The query returns "25mv".

:TRIGger:SINGle::EDGe:LEVel?

:TRIGger:SINGle:SWEep <mode>

Syntax

:TRIGger:SINGle:SWEep < mode>

:TRIGger:SINGle:SWEep?

Description

Select the trigger mode.

Parameter

Name	Туре	Range	Default Value
<mode></mode>	Discrete	{AUTO NORMal SINGle}	AUTO

Return Format

The query returns the current trigger mode.

Example

The command below selects normal as trigger mode.

:TRIGger:SINGle:SWEEp NORMal

The query below returns "NORMal".

:TRIGger:SINGle:SWEEp?

:MEASUrement Command Subsystem

:MEASurement:DISPlay

Syntax

:MEASurement:DISPlay <bool>

:MEASurement:DISPlay?

Description

Turn the display of measurement on or off.

Parameter

Name	Type	Range	Default Value
<bool></bool>	Bool	{OFF ON}	OFF

Return Format

The query returns "ON" or "OFF".

Example

The command below turns the display of measurement on.

:MEASurement:DISPlay ON

The query returns "ON" $_{\circ}$

:MEASurement:DISPlay?

:MEASurement:CH<n>:<items>

Syntax

:MEASurement:CH<n>:<items>?

Description

Get the value of the channel measurement item.

Note: The inter-channel parameters are not included.

Parameter

Name	Type	Range	Default Value
<n></n>	Discrete	{1 2}	1
<itoms></itoms>	Discrete	{MAX MIN PKPK VAMP AVERage	
<items></items>		PERiod FREQuency}	

Parameter list

Items(Voltage) notation		Items (Time)	notation
MAX	Maximum	PERiod	Period
MIN Minimum		FREQuency	Frequency
PKPK	Peak-to-peak		
VAMP	Amplitude		
AVERage Average			

Example

he query below returns all the measurement values of CH1

:MEASurement:CH1:PERiod?

AG SCPI commands

:FUNCtion Command Subsystem

:FUNCtion

Syntax

:FUNCtion < waveform >

:FUNCtion?

Description

Set/query the waveform function for current channel when using the arbitrary function generator.

Parameter

Name	Туре	Range	Default
			Value
		{SINE SQUare RAMP PULSe AmpALT	
<wave></wave>	Discrete	AttALT StairDn tairUD StairUp	
		Besselj Bessely Sinc}	

Return Format

The query returns <waveform> for current channel in character string.

Explanation

For the multi-channel generator, this command work on the current selected channel by default. If you want to set other channels, you need to switch channel first (refer to the command :CHANnel, such as :CHANnel:CH2).

Example

:FUNCtion RAMP

:FUNCtion?

:FUNCtion:FREQuency

Syntax

:FUNCtion:FREQuency < frequency >

:FUNCtion:FREQuency?

Description

Set/query the output frequency of current channel when using the arbitrary function generator.

Parameter

<frequency>, floating point number that represents the frequency, in Hz.

Return Format

The query returns the frequency I in character string

Example return: 1.000000e+04

Explanation

This command is not available when the waveform is DC or noise

Example

The command below sets the output frequency of current channel to 10 kHz

:FUNCtion:FREQuency 10000

Query the waveform frequency value of the current channel

:FUNCtion:FREQuency?

:FUNCtion:PERiod

Syntax

:FUNCtion:PERiod < period >

:FUNCtion:PERiod?

Description

Set/query the output period of current channel when using the arbitrary function generator.

Parameter

<period>, floating point number that represents the period, in seconds.

Return Format

The query returns the output period of current channel in scientific notation.

Example return: 1.000000e-04

Explanation

This command is not available when the waveform is DC or noise.

Example

The command below sets the output period of current channel to 10 μ s.

:FUNCtion:PERiod 1e-5

Query the waveform period value of the current channel

:FUNCtion:PERiod?

:FUNCtion:AMPLitude

Syntax

:FUNCtion:AMPLitude < amplitude >

:FUNCtion:AMPLitude?

Description

Set/query the amplitude (PK-PK) of output function for current channel when using the arbitrary function generator.

Parameter

<amplitude>, floating point number, in Vpp.

Return Format

The query returns the amplitude of current channel in scientific notation.

Example return: 1.000000e+00

Explanation

This command is not available when the waveform is DC.

Example

The command below sets the amplitude of current channel to 1.5 Vpp.

:FUNCtion:AMPLitude 1.5

The query below returns the amplitude of current channel.

:FUNCtion:AMPLitude?

:FUNCtion:OFFSet

Syntax

:FUNCtion:OFFSet < offset >

:FUNCtion:OFFSet?

Description

Set/query the offset of output function for current channel when using the arbitrary function generator.

Parameter

<offset>, floating point number, in V.

Return Format

The query returns the offset of output function for current channel in scientific notation.

Example return: 0.000000e+00

Example

The command below sets the offset for current channel to 1 V.

:FUNCtion:OFFSet 1

Query current channel waveform offset value

:FUNCtion:OFFSet?

:FUNCtion:HIGHt

Syntax

:FUNCtion:HIGHt <high level>

:FUNCtion:HIGHt?

Description

Set/query the high level of output function for current channel when using the arbitrary function generator.

Parameter

<high level>, floating point number, in V.

Return Format

The query returns the high level of output function for current channel in scientific notation. Example return: 5.000000e-01

Example

The command below sets the high level for current channel to 1 V.

:FUNCtion:HIGHt 1

Query the high-level voltage value of the current channel waveform

:FUNCtion:HIGHt?

:FUNCtion:LOW

Syntax

:FUNCtion:LOW <low level>

:FUNCtion:LOW?

Description

Set/query the low level of output function for current channel when using the arbitrary function generator.

Parameter

low level>, floating point number, in V.

Return Format

The query returns the low level of output function for current channel in scientific notation. Example return: -5.000000e-01

Example

The command below sets the low level for current channel to -1 V.

:FUNCtion:LOW -1

The query below returns the low level for current channel.

:FUNCtion:LOW?

:FUNCtion:SYMMetry

Syntax

:FUNCtion: SYMMetry < symmetry >

:FUNCtion: SYMMetry?

Description

Set/query the symmetry of ramp waveform as a percentage for current channel when using the arbitrary function generator.

Parameter

<symmetry>, integer that represents the symmetry, in %.

Return Format

The query returns the symmetry of ramp waveform for current channel in floating point number.

Example return: 50.0

Example

The command below sets the symmetry of ramp waveform for current channel to 60%.

:FUNCtion:RAMP:SYMMetry 60

The query below returns the symmetry of ramp waveform for current channel.

:FUNCtion:RAMP:SYMMetry?

:FUNCtion:WIDTh

Syntax

:FUNCtion: WIDTh < width >

:FUNCtion: WIDTh?

Description

Set/query the pulse width for current channel when using the arbitrary function generator.

Parameter

<width>, floating point number, in seconds.

Return Format

The query returns the pulse width for current channel in scientific notation.

Example return: 2.000000e-04

Example

The command below sets the pulse width for current channel to 20 μ s.

:FUNCtion:PULSe:WIDTh 2e-5

The query below returns the pulse width for current channel.

:FUNCtion:PULSe:WIDTh?

:FUNCtion: DTYCycle

Syntax

:FUNCtion:PULSe:DTYCycle < duty cycle >

:FUNCtion:PULSe:DTYCycle?

Description

Set/query the duty cycle of the pulse waveform as a percentage for current channel when using the arbitrary function generator.

Parameter

<duty cycle>, floating point number, in %.

Return Format

The query returns the duty cycle of the pulse waveform for current channel in floating point number.

Example return: 25.0

Example

The command below sets the duty cycle of the pulse waveform for current channel to 30%.

:FUNCtion:PULSe:DTYCycle 30

The query below returns the duty cycle of the pulse waveform for current channel.

:FUNCtion:PULSe:DTYCycle?

:FUNCtion:LOAD

Syntax

:FUNCtion:LOAD <bool>

:FUNCtion:LOAD?

Parameter

Return Format

Return <bool> string

The <bool> string returned by the query is such as: OFF

:CHANnel Command Subsystem

:CHANnel

Syntax

:CHANnel <bool>

:CHANnel?

Description

Set/query the current channel when using the arbitrary function generator.

Parameter

<bool>Bool data type
ON/OFF, Or 1/0

Return Format

Return <bool> string

The <bool> string returned by the query is such as: OFF

Example

:CHANnel ON

Set the output status of channel 1 to on

:CHANnel?

Set the output status of channel 1 to off