Biochemie 1 Les 9

Vorige les: enzymen

Versnellen reacties door de activeringsenergie te verlagen

Vandaag: (enzym)kinetiek

Studie van de snelheid van (door enzymen gekatalyseerde) reacties

Na afloop van deze les kun je ...

... het verschil tussen (pseudo) first en second order reacties uitleggen

...uitleggen waar V_0 , V_{max} , K_M en [S] voor staan en wat deze waarden betekenen

...deze waarden berekenen m.b.v. de Michaelis Menten vergelijking

...de V_{max} en K_M bepalen m.b.v. de Lineweaver-Burk plot

...het turnover getal en de specificiteitsconstante van een enzym gekatalyseerde reactie berekenen

First order reactions

$$A \rightarrow P$$

De snelheid van deze reactie (V) kun je als volgt berekenen:

$$V = d[A]/dt = d[P]/dt$$
 (waarbij d=toename of afname)

V is dus proportioneel aan de concentratie van A:

$$V = k[A]$$

k= snelheidsconstante/ rate constant

Eenheid van k: per seconde (s⁻¹)

Second order reactions

eenheid k: per mol per seconde (M⁻¹s⁻¹)

Veel biologische reacties zijn second order reactions

Pseudo-first-order reaction:

- second order reaction die veel op een first order reaction lijkt.
- B.v. wanneer [B]>>[A] (reactie <u>lijkt</u> dan onafhankelijk van de concentratie van B)

Dus...

Snelheid van de reactie (V) is afhankelijk van:

- de concentratie van de reactanten
- de snelheidsconstante (k) (rate constant)

Enzym gekatalyseerde reacties

Enzym gekatalyseerde reacties

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$

E= enzym

S= substraat

P= product

Time \longrightarrow

Time \longrightarrow

Helemaal aan het begin van de reactie

[P] is $nog 0 \rightarrow nog geen terugreactie$

De reactievergelijking:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} E + P$$

Kan dan vereenvoudigd worden tot:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

Time \longrightarrow

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

V_o = begin snelheid (initial rate)

 V_{max} = maximale snelheid

 K_{M} = Michaelis constante

Zie volgende slides

Geïnteresseerd in de afleiding van de Michaelis Menten vergelijking? Zie appendix hoofdstuk 7 (geen tentamenstof)

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

 V_o = de "begin" snelheid van de reactie bij een bepaalde [S]. Hierbij wordt aangenomen dat [P] nog 0 is en er geen terugreactie optreedt.

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

 V_{max} = maximale snelheid

E_T staat voor 'total enzyme'

- \rightarrow snelheid wanneer <u>alle</u> enzymen (E_T) substraat gebonden zijn
- → V_{max} is dus direct <u>afhankelijk van de enzymconcentratie</u>

$$V_{max} = k_2[E]_T$$

$$V_0 = V_{max} \xrightarrow{[S]} \underbrace{K_M} \qquad E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

$$K_{M}$$
 = Michaelis constante = $\frac{k_{-1} + k_{2}}{k_{1}}$

 K_M beschrijft de eigenschappen van de enzym/substraat interactie: uniek voor elk enzym, onafhankelijk van [E]

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

Stel: de initiële reactiesnelheid is de helft van de maximale snelheid ($V_0 = V_{max}/2$)

Wat is dan de substraatconcentratie?

$$\rightarrow$$
 [S] = K_M

K_M is gelijk aan de substraatconcentratie waarbij de reactiesnelheid de helft van de maximale snelheid is.

Michaelis Menten kinetiek

Figure 7.3

Biochemistry: A Short Course, Third Edition

2015 Macmillan Education

Video over K_M en V_{max}

https://www.youtube.com/watch?v=q94TCTSXyv8

Michaelis Menten plot

• Michaelis-Menten plot wordt bepaald door het fitten van experimentele V_0 waarden voor verschillende [S] in de Michealis-Menten vergelijking

 Toen er nog geen computers beschikbaar waren kon dit ook door de vergelijking om te schrijven tot een plot met rechte lijn: de Lineweaver-burk plot

Hieruit is V_{max} en K_{M} makkelijk af te lezen

Lineweaver-Burk plot

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

$$y = m \cdot x + b$$

Lineweaver-Burk plot (afleiding)

Alleen ter informatie. De afleiding is geen tentamenstof.

$$\rightarrow$$
 y = ax + b

Lineweaver-Burk plot

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

Lineweaver-Burk plot

$$\frac{1}{V} = \frac{K_{M}}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

Oefening Lineweaver-Burk plot (1)

Voor een enzym gekatalyseerde reactie met één substraat worden Lineweaver-Burk plots getekend bij drie verschillende enzymconcentraties (roze, blauw, zwart).

Welke van de volgende drie plots verwacht je? Leg je antwoord uit.

Oefening Lineweaver-Burk plot (1)

Eén substraat, drie verschillende enzymconcentraties (blauw, roze, zwart).

Als de enzymconcentratie verandert zal V_{max} veranderen. Het snijpunt met de x-as zal daarom veranderen (want snijpunt y-as = $1/V_{max}$).

Het snijpunt met de x-as mag niet veranderen, want snijpunt x-as = $-1/K_M$ en K_M hoort onafhankelijk van [E] te zijn.

De middelste grafiek is dus de juiste grafiek.

Oefening Lineweaver-Burk plot (2)

De reactiesnelheid van een enzym (in Units/sec) wordt gemeten als functie van de substraatconcentratie. Hieronder staat de bijbehorende Lineweaver-Burk plot. Bereken de K_M en de V_{max} .

Oefening Lineweaver-Burk plot (2)

Km berekenen	Vmax berekenen
snijpunt x-as is -1/Km	snijpunt y-as = 1/Vmax
0 = 74,389x + 12,124	als x = 0
74,389x = -12,124	y = 12,124
x = -0,16	Vmax = 0,082 units/ sec
Km = -(-/0,16) = 6,25 mM	

Michaelis Menten kinetiek

Figure 7.3

Biochemistry: A Short Course, Third Edition

2015 Macmillan Education

K_{M}

- Geeft een indicatie hoeveel substraat nodig is voor een reactie
- normale [S] << K_M \rightarrow erg gevoelig voor veranderingen in [S]
 - → weinig activiteit
- normale [S] = K_M \rightarrow gevoelig voor veranderingen in [S]
 - → significante activiteit
- normale $[S] >> K_M \rightarrow \text{niet gevoelig voor veranderingen in } [S]$
 - → veel activiteit
- In biologische systemen zijn K_M waarden van enzymen vaak de normaal voorkomende concentraties van substraten

Table 7.1 $K_{\rm M}$ values of some enzymes

English	Culativata	W (BA)	
Enzyme	Substrate	<i>K_M</i> (μΜ)	
Chymotrypsin	Acetyl-L-tryptophanamide	5000	
Lysozyme	Hexa-N-acetylglucosamine	6	
β -Galactosidase	Lactose	4000	
Carbonic anhydrase	CO ₂	8000	
Penicillinase	Benzylpenicillin	50	

ble 7.1

Biochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

Stel: substraat concentratie is heel hoog

→ Alle enzymen substraat gebonden (enzym is verzadigd).

$$\rightarrow V_0 = V_{\text{max}}$$

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightarrow} E + P$$

Vorige slides:

- V_{max} is afhankelijk van de enzymconcentratie
- $V_{\text{max}} = k_2[E]_T$

 k_2 wordt ook wel k_{cat} genoemd (turnover number)

Turnover number (k_{cat})

Het "turnover number" (conversiegetal) geeft aan hoeveel substraatmoleculen een enzym kan omzetten in product-moleculen per eenheid van tijd

Het turnover number (k_{cat}) is gelijk aan k_{2} , dus:

$$V_{\text{max}} = k_{cat}[E]_T$$

en dus:

$$k_{cat} = V_{max}/[E]_{T}$$

Table 7.2 Turnover numbers of some enzymes

Enzyme	Turnover number (per second)	
Carbonic anhydrase	600,000	
3-Ketosteroid isomerase	280,000	
Acetylcholinesterase	25,000	
Penicillinase	2,000	
Lactate dehydrogenase	1,000	
Chymotrypsin	100	
DNA polymerase I	15	
Tryptophan synthetase	2	
Lysozyme	0.5	

ble 7.2

Biochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

Stel: substraat concentratie veel lager dan K_M

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

Als S<<
$$K_M$$
 dan: $V_0 = V_{max} \frac{[S]}{K_M}$

Vorige slide:
$$V_{max} = k_{cat}[E]_T$$

Dus je kunt ook zeggen:
$$V_0 = k_{cat}[E]_T \frac{[S]}{K_M}$$

Dit kun je omschrijven naar:
$$V_0 = \frac{k_{cat}}{K_M} [E]_T[S]$$
Specifie

Specificiteits constante (k_{cat}/K_{M})

- De specificiteitsconstante combineert de eigenschappen van de enzym-substraat interactie ($K_{\rm M}$) met de snelheid van omzetting ($k_{\rm cat}$)
- Voorbeeld: chymotrypsine heeft duidelijke voorkeur voor grote

restgroepen

Table 7.3 Substrate preferences of chymotrypsin

Amino acid in ester	Amino acid side chain	$k_{\rm cat}/K_{\rm M}$ (s 1 M 1)
Glycine		1.3 10 ¹
Valine	—CH ₂ —CH ₃	2.0
Norvaline	-CH ₂ CH ₂ CH ₃	3.6 10 ²
Norleucine	-CH ₂ CH ₂ CH ₂ CH ₃	3.0 10 ³
Phenylalanine	—CH ₂ —	1.0 10 ⁵

Source: Data from A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman and Company, 1999), Table 6.3.

