EXAMEN TRAITEMENT DU SIGNAL - 1SN

Jeudi 16 janvier 2020 (8h30-9h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 (4 points)

On considère un signal aléatoire x(t) défini par

$$x(t) = \exp\left[j(2\pi f t + \phi)\right]$$

où f est une variable aléatoire de densité p(f) et ϕ est une phase constante appartenant à l'intervalle $]0,2\pi[$.

- 1. Exprimer la moyenne du signal x(t) en fonction de ϕ et de la transformée de Fourier inverse de p(f). Le signal x(t) est-il stationnaire ? Calculer la moyenne de x(t) dans les deux cas suivants
 - f est uniforme sur l'intervalle $[f_0 \Delta f, f_0 + \Delta f]$, où f_0 et Δf sont des constantes telles que $f_0 > \Delta f$
 - la densité de probabilité de f est gaussienne autour de la fréquence f_0 , i.e.,

$$p(f) = \exp[-\pi (f - f_0)^2], \quad f \in \mathbb{R}.$$

2. Calculer la fonction d'autocorrélation et la densité spectrale de puissance de x(t) dans le cas où f est uniforme sur l'intervalle $[f_0 - \Delta f, f_0 + \Delta f]$ avec $f_0 > \Delta f$.

Exercice 2 (3 points)

Un signal aléatoire x(t) stationnaire de moyenne nulle et de densité spectrale de puissance $s_x(f)$ doit être transmis dans un canal représenté par un bruit additif stationnaire b(t) de moyenne nulle et de densité spectrale de puissance $s_b(f)$. Afin d'améliorer le rapport signal sur bruit, on introduit un filtre à l'émission appelé filtre de préaccentuation de transmittance $H_p(f)$ et de réponse impulsionnelle $h_p(t)$. Afin de compenser l'effet de ce filtre, on introduit dans le récepteur un filtre appelé filtre de désaccentuation de transmittance $H_d(f)$ et de réponse impulsionnelle $h_d(t)$. Le système général est représenté ci-dessous

Figure 1: Système de préaccentuation/désaccentuation.

- 1. Déterminer la puissance du signal y(t) notée P_y en fonction de $H_p(f)$ et de $s_x(f)$.
- 2. Quelle relation doit-il y avoir entre $H_p(f)$ et $H_d(f)$ pour que la sortie du système s'écrive s(t) = x(t) + w(t) avec $w(t) = b(t) * h_d(t)$, où * désigne le produit de convolution. On supposera que cette relation est vérifiée dans la suite de cet exercice.

3. On admet que le filtre $H_d(f)$ minimisant la puissance de w(t) pour une puissance $P_y = P_0$ donnée est tel que

$$|H_d(f)|^2 = \sqrt{\lambda \frac{s_x(f)}{s_b(f)}}$$

avec $\lambda > 0$. En utilisant la relation $P_y = P_0$, exprimer $\sqrt{\lambda}$ en fonction de P_0 , $s_x(f)$ et $s_b(f)$.

4. En déduire le module carré de la transmittance du filtre de désaccentuation $|H_d(f)|^2$ en fonction de P_0 , $s_x(f)$ et $s_b(f)$.

Exercice 3 (4 points)

On considère un filtre non-linéaire qui transforme un signal aléatoire X(t) en un signal aléatoire Y(t) tel que

$$Y(t) = X(t) - kX^3(t)$$

On supposera dans cet exercice que X(t) est un signal Gaussien stationnaire de moyenne nulle et de fonction d'autocorrélation $R_X(\tau)$. On rappelle que pour un tel processus, la loi du couple $(U,V)=[X(t),X(t-\tau)]$ est gaussienne de densité de probabilité

$$f(u,v) = \frac{1}{2\pi\sqrt{\det\Sigma}} \exp\left[-\frac{1}{2}(u,v)\Sigma^{-1}(u,v)^T\right]$$

où $(u,v) \in \mathbb{R}^2$ et où Σ est la matrice de covariance du couple (U,V) définie par

$$\Sigma = \begin{pmatrix} \operatorname{var}(U) & \operatorname{cov}(U, V) \\ \operatorname{cov}(U, V) & \operatorname{var}(V) \end{pmatrix}$$

- 1. Exprimer les éléments de Σ en fonction de $R_X(\tau)$ et $R_X(0)$. Exprimer l'autocorrélation du signal Y(t) en fonction de la loi de $(U,V)=[X(t),X(t-\tau)]$ et en déduire qu'elle ne dépend que de $R_X(\tau)$ et $R_X(0)$.
- 2. Déterminer la fonction d'autocorrélation de Y(t) en fonction de celle de X(t) et d'une constante additive notée C.

Rappel : on pourra utiliser l'expression de fonction d'autocorrélation de la sortie du quadrateur (déterminée en cours)

$$E\left[X^{2}(t)X^{2}(t-\tau)\right]=2R_{X}^{2}\left(\tau\right)+R_{X}^{2}\left(0\right)$$

3. On rappelle que les moments d'un signal Gaussien de moyenne nulle X(t) vérifient la relation suivante

$$m_{2n} = E\left[X^{2n}(t)\right] = \left[(2n-1)(2n-3) \times ... \times 5 \times 3 \times 1\right] R_X^n(0)$$

En déduire la valeur de C.

Transformée de Fourier

$$X(f) = \int_{\mathbb{R}} x(t) e^{-i2\pi f t} dt \qquad x(t) = \int_{\mathbb{R}} X(f) e^{i2\pi f t} df$$

	H	
x(t) réelle paire	\rightleftharpoons	X(f) réelle paire
x(t) réelle impaire	\rightleftharpoons	X(f) imaginaire pure impaire
x(t) réel		$\begin{cases} \operatorname{Re} \{X(f)\} \text{ paire} \\ \operatorname{Im} \{X(f)\} \text{ impaire} \\ X(f) \text{ pair} \\ \operatorname{arg} \{X(f)\} \text{ impaire} \end{cases}$
ax(t) + by(t)	\rightleftharpoons	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval		
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$		
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$		

Série de Fourier		
$x(t) = \sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons X(f) = \sum_{n \in \mathbb{Z}} c_n \delta(f - n f_0)$		
avec $c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-i2\pi n f_0 t} dt$		

	T.F.	
1	\rightleftharpoons	$\delta\left(f\right)$
$\delta\left(t\right)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0\right)$
$\delta (t - t_0)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\sum_{k \in \mathbb{Z}} \delta\left(t - kT\right)$	\rightleftharpoons	$\frac{1}{T} \sum_{k \in \mathbb{Z}} \delta \left(f - \frac{k}{T} \right)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$\frac{2a}{a^2+4\pi^2f^2}$
$e^{-\pi t^2}$	\rightleftharpoons	$\frac{\frac{2\alpha}{a^2+4\pi^2f^2}}{e^{-\pi f^2}}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2 \left(\pi B t\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

$$\Lambda_T(t) \text{ est de support égal à } 2T$$
et on a $\Pi_T(t) * \Pi_T(t) = T \Lambda_T(t)$

$$\text{si } t \neq 0 \qquad \text{of } \int \delta(t) dt = 1$$

$$\delta(t) = \begin{cases} 0 \text{ si } t \neq 0 \\ +\infty \text{ si } t = 0 \end{cases} \text{ et } \int_{\mathbb{R}} \delta(t) dt = 1$$

$$\delta(t - t_0) f(t) = \delta(t - t_0) f(t_0)$$

$$\delta(t - t_0) * f(t) = f(t - t_0)$$