CAP 2. COMPRESSÃO DE DADOS MULTIMÍDIA

Aula 1: Necessidades e Princípios da Compressão

INE5431 Sistemas Multimídia

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Cap 3. Compressão de Dados Multimídia

Conteúdo:

- Necessidade de compressão
- Entropia: Teorema da codificação da fonte
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), (A)DPCM
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

Técnicas de compressão são essenciais para as aplicações multimídia, devido

- ao grande requisito de espaço para armazenamento de dados multimídia
- ao fato que a largura de banda da rede e de dispositivos de armazenamento pode não permitir a transmissão de dados multimídia de alta qualidade em tempo-real sem compressão

Requisitos de espaço para armazenamento

Aplicações	Requisitos de Armazenamento (MBytes)
Livro de 500 páginas	1
100 imagens monocr.	7
100 imagens coloridas	100
1h de áudio qual. telefone	28,8
1h de Áudio-CD	635
1h Vídeo qual. VHS	24300
1h TV	97000
1h HDTV	389000

• É necessária a utilização de técnicas de compressão de dados multimídia para viabilizar o armazenamento

Requisitos de largura de banda

Aplicações	Taxa de bits (Kbps)
CD-Audio	1.411
DAT	1.536
Telefone Digital	64
Radio digital, long play DAT	1.024
DVD	249.600
SDTV	486.600
HDTV	2.986.000

- Transmissão de som de qualidade CD não compactado
 - é possível em redes locais
 - 10, 100, 1000 Mbps
 - o redes de media e longa distância depende da taxa de upload
- Transmissão de vídeo de qualidade televisão
 - o incompatível com qualquer rede local e transmissão em WAN

Pequena largura de banda dos dispositivos de armazenamento

- Dispositivo de armazenamento deveria ter uma taxa de 186,6 MB/s para apresentar um vídeo em tempo real de 1920x1080 pixeis a 24 bits por pixel e 30 fps
 - USB 1.1 12Mbps => 1,5 MB/s
 - USB 2 480Mbps => 60 MB/s
 - HDD => 80MB/s a 160MB/s
 - SSD => 200MB/s a 550MB/s (permitiria apresentar o vídeo em tempo-real)
- Compactação da mídia permite a redução dos requisitos de taxa de bits na transferência da unidade de armazenamento

Conclusão

- É necessário compactação afim de armazenar, apresentar e transmitir informações multimídia
 - técnicas de compressão modernas reduzem os requisitos de armazenamento e portanto os requisitos de largura de banda da rede e do dispositivo de armazenamento

Teorema de Shannon

Estabelece os limites da compressão de dados

Informação (amostra de áudio, pixel de imagem, etc.) deve ser codificadas para fins de transmissão e armazenamento

- Representada por um número de símbolos
- Eficiência do codificador: uso de uma menor quantidade de símbolos médios possíveis

Dado um alfabeto com s símbolos, quantos bits (n) são necessários para codificá-los?

R:
$$n = \lceil \log_2 s \rceil \Leftrightarrow 2^n = s$$

• Ex.: Se precisamos representar 200 símbolos, é necessário $\log_2(200)=7,64 => 8$ bits.

Verdadeiro se...

- Não for conhecida a distribuição de probabilidades...
- Se a probabilidade da ocorrência de cada símbolo for idêntica (distribuição uniforme)

Shannon (1948) definiu uma medida chamada de entropia, definida como:

• Seja um alfabeto $X = \{x_1, x_2, ..., x_n\}$, cujos símbolos apresentam probabilidades de ocorrência $P = \{p_1, p_2, ..., p_n\}$, a entropia H(X) é definida como:

$$H(X) = \sum_{i=1}^{n} p_i \times \log_2\left(\frac{1}{p_i}\right)$$

Entropia é a média da quantidade de dados mínima para representar a informação

Base 2 fornece o resultado em bits, ou shannons...

A entropia do lance de uma moeda é de 1 bit ($p_{cara} = p_{coroa} = 0.5$) H(x) = (0,5*log₂(1/0,5) +0,5*log₂(1/0,5))= 1

Outro exemplo de cálculo da entropia:

- Alfabeto X = $\{x_1, x_2, x_3, x_4\}$, cujos símbolos apresentam probabilidades de ocorrência P = $\{0.5, 0.3, 0.1, 0.1\}$, qual é a entropia H(X) ?
 - H(x) = (0.5*log2(1/0.5) + 0.3*log2(1/0.3) + 0.1*log2(1/0.1) + 0.1*log2(1/0.1))
 - H(x) = 1,68 (quantidade de bits média)
- Considere um arquivo de 100 destes símbolos
 - Representando 2 bits por símbolo
 - Total de bits: 2*10= 200 bits
 - Número de bits médio: 200/100 = 2
 - Uma alternativa de representação: x_1 = 0; x_2 = 10; x_3 = 110; x_4 = 111
 - Total de bits: 50*1+30*2+10*3+10*3 = 170 bits
 - Número de bits médio: 170/100 = 1,7 bits

Princípios da Compressão de Dados

Fatores explorados pelas técnicas de compressão

- Redundância de dados
- Propriedades da percepção humana

Redundância de Dados

- Representação de dados multimídia
 - áudio digital é uma série de valores amostrados
 - imagem é uma matriz de valores amostrados (píxels)
 - vídeo é uma sequência de imagens apresentadas em certa taxa
- Amostras vizinhas não são inteiramente diferentes
 - valores vizinhos são de algum modo relacionados (redundância)
- Remoção da redundância não altera o significado do dado

Princípios da Compressão de Dados

Redundância em áudio digital

- Amostragens adjacentes são similares:
 - próximo valor pode ser previsto baseado no(s) valor(es) anterior(es)
 - Técnicas de compressão: Codificação preditiva
 - Exemplo ilustrativo:
 - Original (amostras de 8bits)
 - 23, 24, 26, 25, 27 (8*5 = 40 bits)
 - Compactado com função de predição:
 - $a_i = a_{i-1} + erro$
 - No exemplo: 23, +1, +2, -1, +2
 - Amplitude dos erros é bem menor que o valor da amostra e pode ser codificado com menos bits
 - Codificando com 4 bits, o tamanho reduziria para: 8 + 4*4 = 24 bits

Princípios de Compressão: Redundância

Redundância em imagem digital

- Amostras vizinhas são similares
 - chamada de redundância espacial
 - removida utilizando técnicas de codificação preditiva ou outras

22	23	24
21	21	22

22	+1	+1
-1	0	+1

Princípios de Compressão: Redundância

Redundância em vídeo digital

- Vídeo é uma sequência de imagens
 - · imagens tem redundância espacial
- Imagens vizinhas são normalmente similares
 - redundância temporal
 - removida utilizando técnicas de codificação preditiva ou outras

Princípios de Compressão: Percepção Humana

Humanos não são perfeitos

- Não percebemos todas as informações sonoras e visuais
- Podem tolerar alguma perda de informação sem afetar a efetividade da comunicação
 - versão compactada não necessita representar exatamente a informação original

Algumas informações são mais importantes para a percepção humana que outras

- Técnicas de compressão podem remover informações desnecessárias
 - áudios mascarados, intensidade luminosas/cor

Pontos Importantes

Teorema da codificação da fonte

• Entender a Entropia

Princípios da compressão

- Redundância de dados
- Limitações da percepção humana