Разнобой 2

Задача 1. Известно, что сумма а) двух; б) трёх; в) десяти неотрицательных чисел равна 10. Найдите максимально возможную величину их произведения.

Задача 2. Пусть $n = p_1^{n_1} p_2^{n_2} \dots p_m^{n_m}$, где p_1, p_2, \dots, p_m — различные простые числа. а) С помощью формулы включений-исключений найдите количество натуральных чисел, не превосходящих n, и имеющие с n общий делитель (запись может быть не компактной).

б) Докажите, что $\varphi(n) = p_1^{n_1} p_2^{n_2} \dots p_m^{n_m} (1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \dots (1 - \frac{1}{p_m}).$

Задача 3. Дан квадрат ABCD. Найдите ГМТ точек X таких, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$.

Задача 4. Докажичто, что если а) $\frac{a}{b} = \frac{c}{d}$, то $\frac{a+c}{b+d} = \frac{a}{b}$; б) $\frac{a}{b} = \frac{a+c}{b+d}$, то $\frac{c}{d} = \frac{a}{b}$.

Задача 5. Докажите неравенство $\frac{x}{x^2+y+z}+\frac{y}{x+y^2+z}+\frac{z}{x+y+z^2}\geq 1$ для $0\leq x,y,z\leq 1$

Задача 6. В корзине лежат $n \times k$ шариков, покрашенных в k цветов. Докажите, что их можно так разложить в k коробок по n штук, что в каждой коробке будут находиться шарики не более двух цветов.

 ${f 3a}$ дан треугольник ABC и точка D. Прямая AD пересекает BC в точке X. Докажите, что ${S_{ADB} \over S_{ADC}} = {S_{XDB} \over S_{XDC}}.$

Задача 8. Теорема Чевы. На сторонах AB, BC и CA треугольника ABC взяты соответственно точки C_1 , A_1 , B_1 . Докажите, что отрезки AA_1 , BB_1 и CC_1 пересекаются в одной точке тогда и только тогда, когда $\frac{AB_1}{B_1C} \cdot \frac{CA_1}{A_1B} \cdot \frac{BC_1}{C_1A} = 1$.

Задача 9. Парк в плане представляет из себя равносторонний треугольник, разбитый н 49 меньших равносторонних треугольников (см. рисунок). Вершины всех треугольников — пункты, стороны — дорожки. Петя и Вася играют, гуляя вместе. Сначал Петя выбирает пункт старта. Далее на каждом

шаге они выбирают дорожку, по которой идут от текущего пункта к следующему, где ещё не были. Дорожки выбирают по очереди, начинает Вася. Кто не может выбрать дорожку, тот проиграл. Кто из них сможет всегда выигрывать, как бы не играл соперник?