1. *Sea T un árbol generador de un grafo (conexo) G con raíz r, y sean V y W los vértices que están a distancia par e impar de r, respectivamente. a) Observar que si existe una arista $vw \in E(G) \setminus E(T)$ tal que $v, w \in V$ o $v, w \in W$, entonces el único ciclo de $T \cup \{vw\}$ tiene longitud impar. b) Observar también que si toda arista de $E(G) \setminus E(T)$ une un vértice de V con otro de W, entonces (V, W) es una bipartición de G y, por lo tanto, G es bipartito. c) A partir de las observaciones anteriores, diseñar un algoritmo lineal para determinar si un grafo conexo G es bipartito. En caso afirmativo, el algoritmo debe retornar una bipartición de G. En caso negativo, el algoritmo debe retornar un ciclo impar de G. Explicitar cómo es la implementación del algoritmo; no es necesario incluir el código. d) Generalizar el algoritmo del inciso anterior a grafos no necesariamente conexos observando que un grafo G es bipartito si y solo si sus componentes conexas son bipartitas.

- 1) Inicializamos los conjuntos V y W para guardar la bipartición
- 2) Hacemos DFS sobre G trackeando Z cosas para cada vértice:
 - · El nivel del arbol en el que estamos (o la distancia con la raíz): v.nivel
 - · Quién es el padre: v.padre
- 3) Al vértice r que tomamos como raíz: r.nivel ←0
- 4) Para cada vecino u de cada vértice v que visitamos:
 - · Si encontramos un backedge (v, u):
 - · Si vnivel y univel ambos son par o impar, enfonces la arista (v,u) conecta z vértices dentro de la misma partición y por lo tanto G no es bipartito. Para encontrar el ciclo Cvu, |Cvu| = ZK+1, recorremos el árbol desde v hasta u a través de los ancestros de v (utilizando la información de padres). Notar que u es un ancestro de v, y como tienen ambos la misma paridad están a un distancia zx dentro del árbol. Luego la arista (v,u) cierra el ciclo entre v y u el cual resulta con una longitud impar zx+1.
 - · Si v.nivel y univel tienen distinta paridad, encontramos un backedge bueno pues conecta z vertices que están en distintas particiones. Podemos ignorarlo pues no rompe la bipartición de G que estamos generando.
 - · Caso contrario, hay que colocar u en el árbol y visitar sus vecinos.
 - · univel + v.nivel +1
 - · u.padre < v
 - · Si u.nivel es par: V < V u { u } u } si no W < W u { u }

		amo la					bı	par	41+	o y	, te	nen	105
		IZA.T											
		los			1		 om	20N	ent	e 0	one	: X0\	