Name: GAO MENGQI Personal code: 10721987

Task 1 Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickness to be 13 mm)

(1) Changing the gas:

By changing the gas filled in the gap from air to argon, the U of the center of the glass decreases from $2.8 \frac{W}{\text{m}^2 \text{ K}}$ to $2.7 \frac{W}{\text{m}^2 \text{ K}}$, which means the U decreases 4.57%.

By changing the gas filled in the gap from air to krypton, the U of the center of the glass decreases from $2.8 \frac{W}{m^2 \ K}$ to $2.6 \frac{W}{m^2 \ K}$, which means the U decreases 7.14%.

(2) Adding an extra pane:

The U of the center of the glass decreases from $2.8 \frac{W}{\text{m}^{2} \text{ K}}$ to $1.8 \frac{W}{\text{m}^{2} \text{ K}}$, which means the U decreases 35.71%.

(3) Using a low emissivity coating:

When the glass surfaces are coated with a film that has an emissivity of 0.1,

The U of the center of the glass decreases from $1.8 \frac{W}{\text{m}^2 \text{ K}}$ to $1 \frac{W}{\text{m}^2 \text{ K}}$, which means the U decreases 35.71%.

Task 2 Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed $14.4 \, \text{m}^2$ on the west, fixed $3.6 \, \text{m}^2$ on the south and an operable $3.6 \, \text{m}^2$ on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

						Р	IACENZ	ZA, Italy						WMO#:	160840	
Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Annual He	eating and H	umidificati	on Design C	onditions												
Outdoor	Heatin	Humidification DP/MCDB and HR						Coldest month WS/MCDB				MCWS/PCWD		1		
Coldest Month	Heatin	ng DB		99.6%		99%			0.4%		1	1% to 99		6% DB		
WOHUT	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1
Annual Co	ooling, Dehu	midificatio	n, and Enth	alpy Design	Conditions	5										
Hottest	Hottest		Cooling DB/MCWB						Evaporation WB/MCDB					MCWS/PCWD		(1)
Month	Month		4%	19		2%		0	1.4%	1	%	2	%	to 0.4		
WOHILI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)	
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	12

Table 13 Fenestration Solar Load Factors FF, Exposure Multifamily Single Family Detached North 0.27 0.44 Northeast 0.21 0.43 0.31 0.56 Southeast 0.37 0.54 South 0.47 0.53 0.58 0.61 Southwest 0.65 West Northwest Horizontal

Table 10 Peak Irradiance, W/m ²										
		Latitude								
Exposure	20°	25°	30°	35°	40°	45°	50°	55°	60°	
North	E_D	125	106	92	84	81	85	96	112	136
	E_d	128	115	103	93	84	76	69	62	55
	E_t	253	221	195	177	166	162	164	174	191
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361
	E_d	177	169	162	156	151	147	143	140	137
	E_t	637	618	599	581	563	546	529	513	498
East/West	E_D	530	543	552	558	560	559	555	547	537
	E_d	200	196	193	190	189	188	187	187	187
	E_t	730	739	745	748	749	747	742	734	724
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517
	E_d	204	203	203	204	205	207	210	212	215
	E_t	485	531	572	609	641	670	695	715	732
South	E_D	0	60	139	214	283	348	408	464	515
	E_d	166	193	196	200	204	209	214	219	225
	E_t	166	253	335	414	487	557	622	683	740
Horizontal	E_D	845	840	827	806	776	738	691	637	574
	E_d	170	170	170	170	170	170	170	170	170
	E.	1015	1010	997	976	946	908	861	807	744

$$\Delta T_{\text{cooling}} = 31.9 - 24 = 7.9$$
°C

$$\Delta T_{heating} = 20 - (-4.8) = 24.8$$
°C

The cooling load of the fixed window on the west:

$$A=14.4 \text{ m}^2$$

$$CF_{window_{west(Heat\ Transfer)}} = U_{window_{west}} (\Delta T_{\text{cooling}} - 0.46DR)$$

$$= 2.84 \times (7.9 - 0.46 \times 11.9) = 6.89 \frac{W}{m^2}$$

$$CF_{window_{west(Irradiation)}} = PXI \times SHGC \times IAC \times FF_S$$

$$Q_{window_{west}} = CF_{window_{west}} \times A_{window_{west}}$$

=
$$[CF_{window_{west(Heat\ Transfer)}} + CF_{window_{west(Irradiation)}}] \times A_{window_{west}}$$

= $(6.89 + 747 \times 0.54 \times 1 \times 0.56) \times 14.4 = 3352.1 \text{ W}$

The heating load of the fixed window on the west:

$$Q_{window_{west}} = \ HF_{window_{west}} \times A_{window_{west}}$$

$$= U_{window_{west}} \times \Delta T_{\text{cooling}} \times A_{window_{west}}$$

$$= 2.84 \times 24.8 \times 14.4 = 1014.2 \text{ W}$$

When the frame are to be aluminium,

$$U_{window_{west}} = 3.61 \frac{W}{\text{m}^2 \text{ K}}$$
 , $HAGC = 0.56$

$$CF'_{window_{west(Heat\ Transfer)}} = U'_{window_{west}}(\Delta T_{\text{cooling}} - 0.46DR)$$

$$= 3.61 \times (7.9 - 0.46 \times 11.9) = 8.76 \frac{W}{m^2}$$

$$Cooling\ Load: {Q'}_{window_{west}} = \ {CF'}_{window_{west}} \times A_{window_{west}}$$

$$= [CF'_{window_{west(Heat\ Transfer)}} + CF'_{window_{west(Irradiation)}}] \times A_{window_{west}}$$

$$= (8.76 + 747 \times 0.54 \times 1 \times 0.56) \times 14.4 = 3499.5 \text{ W}$$

$$Heating\ Load: {Q'}_{window_{west}} = \ H{F'}_{window_{west}} \times A_{window_{west}}$$

$$= U'_{window_{west}} \times \Delta T_{\text{heating}} \times A_{window_{west}}$$

$$= 3.61 \times 24.8 \times 14.4 = 1289.2 \text{ W}$$

The cooling load of the fixed window on the south:

$$A=3.6 \text{ m}^2$$

$$CF_{window_{south(Heat\ Transfer)}} = U_{window_{south}} (\Delta T_{cooling} - 0.46DR)$$

$$= 2.84 \times (7.9 - 0.46 \times 11.9) = 6.89 \frac{\text{W}}{\text{m}^2}$$

$$CF_{window_{south(Irradiation)}} = PXI \times SHGC \times IAC \times FF_S$$

$$Q_{window_{south}} = CF_{window_{south}} \times A_{window_{south}}$$

$$= [CF_{window_{south(Heat\ Transfer)}} + CF_{window_{south(Irradiation)}}] \times A_{window_{south}}$$

$$= (6.89 + 557 \times 0.54 \times 1 \times 0.47) \times 3.6 = 553.7 \text{ W}$$

The heating load of the fixed window on the south:

$$Q_{window_{south}} = HF_{window_{south}} \times A_{window_{south}}$$

$$= U_{window_{south}} \times \Delta T_{\text{heating}} \times A_{window_{south}}$$

$$= 2.84 \times 24.8 \times 3.6 = 253.6 \text{ W}$$

When the frame are to be aluminium,

$$U_{window_{south}} = 3.61 \frac{W}{m^2 \text{ K}}$$
, $HAGC = 0.56$

$$CF'_{window_{south(Heat\ Transfer)}} = U'_{window_{south}}(\Delta T_{cooling} - 0.46DR)$$

$$= 3.61 \times (7.9 - 0.46 \times 11.9) = 8.76 \frac{\text{W}}{\text{m}^2}$$

$$Cooling\ Load: {Q'}_{window\ south} = \ {CF'}_{window\ south} \times A_{window\ south}$$

$$= [\mathit{CF'}_{window}{}_{south(Heat\;Transfer)} + \mathit{CF'}_{window}{}_{south(Irradiation)}] \times A_{window}{}_{south}$$

$$= (8.76 + 557 \times 0.54 \times 1 \times 0.47) \times 3.6 = 559.3 \text{ W}$$

$$Heating\ Load:\ {Q'}_{window\ south} =\ H{F'}_{window\ south} \times A_{window\ south}$$

$$= U'_{window_{west}} \times \Delta T_{\text{heating}} \times A_{window_{west}}$$

$$= 3.61 \times 24.8 \times 3.6 = 322.3$$
W

The cooling load of the operable window on the south:

$$A=3.6 \text{ m}^2$$

$$CF_{window_{south(Heat\ Transfer)}} = U_{window_{south}} (\Delta T_{cooling} - 0.46DR)$$

$$= 2.87 \times (7.9 - 0.46 \times 11.9) = 6.96 \frac{\text{W}}{\text{m}^2}$$

$$CF_{window_{south(Irradiation)}} = PXI \times SHGC \times IAC \times FF_S$$

$$Q_{window_{south}} = CF_{window_{south}} \times A_{window_{south}}$$

$$= [CF_{window_{south(Heat\ Transfer)}} + CF_{window_{south(Irradiation)}}] \times A_{window_{south}}$$

$$= (6.96 + 557 \times 0.46 \times 1 \times 0.47) \times 3.6 = 458.6 \text{ W}$$

The heating load of the operable window on the south:

$$Q_{window_{south}} = HF_{window_{south}} \times A_{window_{south}}$$

$$= U_{window_{south}} \times \Delta T_{\text{heating}} \times A_{window_{south}}$$

$$= 2.87 \times 24.8 \times 3.6 = 256.2 \text{ W}$$

When the frame are to be aluminium,

$$U_{window_{south}} = 4.62 \frac{W}{\text{m}^2 \text{ K}}$$
, $HAGC = 0.55$

$$CF'_{window_{south(Heat\ Transfer)}} = U'_{window_{south}}(\Delta T_{cooling} - 0.46DR)$$

$$= 4.62 \times (7.9 - 0.46 \times 11.9) = 11.21 \frac{W}{m^2}$$

Cooling Load:
$$Q'_{window_{south}} = CF'_{window_{south}} \times A_{window_{south}}$$

$$= [CF'_{window_{south(Heat\ Transfer)}} + CF'_{window_{south(Irradiation)}}] \times A_{window_{south}}$$

$$= (11.21 + 557 \times 0.55 \times 1 \times 0.47) \times 3.6 = 558.7 \text{ W}$$

$$Heating\ Load:\ Q'_{window\ south} =\ HF'_{window\ south} \times A_{window\ south}$$

$$= U'_{window_{west}} \times \Delta T_{\text{heating}} \times A_{window_{west}}$$

$$= 4.62 \times 24.8 \times 3.6 = 412.5$$
W