Αναφορά δεύτερου μέρους εργασίας Οργάνωσης υπολογιστών

Ιωαννίδης Χρήστος 2018030006

Το παρόν project υλοποιήθηκε με την χρήση του Xillinx ISE 13.4

Γενικές πληροφορίες:

- Ολα τα Modules που ζητούνται από το Multi Cycle έχουν υλοποιηθεί και φαίνεται να παρουσιάζουν την επιθυμητή λειτουργικότητα.
- Δεν έχει υλοποιηθεί το κομματι με το pipelining.
- Στα Modules δεν έχει χρησιμοποιηθεί η εντολή after που προσομοιώνει την καθυστέρηση ενός σήματος στο υλικό του επεξεργαστή.
- Εφόσον μας ζητήθηκε να έχουμε την μνήμη εκτός του Module PROCESSOR_MC δημιουργήθηκε το Module PROCESSOR_MC_MEM έτσι ώστε να μπορέσουν να γίνουν δοκιμές πάνω στο πρόγραμμα του πρώτου μέρους και του δικου μου προγράμματος. Πάνω σε αυτό το module έχει δημιουργηθεί και το testbench.
- Κατα την προσομοίωση η μνημη διαβάζει το αρχειο rom.data το οποίο περιέχει το πρόγραμμα του πρώτου μέρους,για να διαβάζει το άλλο πρόγραμμα πρέπει να γίνει αντικατάσταση στον κώδικα της μνήμης με το αρχείο rom1.data.

Σημεία που χρήζουν προσοχή:

Έχει γίνει μια μικρή διόρθωση μέσα στο IFSTAGE στο σήμα PC_Immed το οποίο είχε παραληφθεί να πολλαπλασιαστεί *4 πριν μπει στον αθροιστή +4 ο οποίος εν τέλη καταλήγει στο PC με αποτέλεσμα οι εντολές Branch να μην έχουν την επιθυμητή λειτουργία.

Παρακάτω παρουσιάζεται ο κώδικας πριν και μετα.

ПРІМ

Multi-Cycle

- Για την υλοποίηση του επεξεργαστή πολλαπλών κύκλων προστέθηκαν 5 καταχωρητές στο datapath(RF_A,RF_B,ALU_OUT,INSTR,MEM_DATA) ενώ χρειάστηκε άλλος ένας για την αποθήκευση του State μέσα στο Control_MC_FINAL.
- Το Control του πρώτου μέρους τροποποιήθηκε σε FSM προκειμένου να μπορέσει να υλοποιήσει την επιθυμητή λειτουργικότητα. Η κωδικοποίηση των καταστάσεων παρουσιάζεται στο διάγραμμα παρακάτω. Επιπλέον προστέθηκε ένα ακόμα σήμα εξόδου το οποίο λειτουργεί ώς Enable για τον καταχωρητή Instruction του Datapath.

Παρακάτω παρουσιάζεται το διάγραμμα καταστάσεων της FSM

CONTROL_MC_STATE_DIAGRAM

Στο Παρακάτω Block Diagram παρουσιάζεται μια χονδρική απεικόνιση του συνολικού κυκλώματος με τα κυριότερα Modules και σήματα καθώς και οι επιμέρους συνδέσεις τους.

Στην εικόνα φαίνονται ευκρινώς όλα τα σήματα με την χρήση μεγέθυνσης

Multi-Cycle Diagram

Multi-Cycle Προγραμμα TESTBENCH

1100000000001010000000000001000	addi r5,r0,8
1100000000001100000000000000111	addi r6,r0,7
1000000101001110011000000110001	sub r5,r7,r6 (8-7=1)
1000000101001110011000000110010	and r5,r7,r6
100000010100000000000000111010	sll r5
11001100000000111010101111001101	ori r3,r0,ABCD
011111000000001100000000000000100	sw r3,4(r0)
001111001010101011111111111111100	lw r10,-4(r5)
000011000001000000000000000000000000000	lb r16,4(r0)
1000000101000100100000000110101	nand r4,r10,r16
000001001010010100000000000000000000000	bne r5,r5,8
111111000000000111111111111111	b -2
110000000000001000000000000000000000000	addi r1,r0,1

Simulation screenshot

Στην εικόνα φαίνονται ευκρινώς όλα τα σήματα με την χρήση μεγέθυνσης

