Multi-View Visual Question Answering with Active Viewpoint Selection

Yue Qiu 1,2, Yutaka Satoh 2,1, Ryota Suzuki 2, Kenji Iwata 2, Hirokatsu Kataoka 2 ¹University of Tsukuba, ²National Institute of Advanced Industrial Science and Technology

Motivation

- Visual Question Answering:
- > A vision and language multi-modal task that aims at answering a given question regarding the content of a provided image.
- Conventional single view VOA:
- > less ability to recognize geometrical information, so that they tend to fail to count or decide spatial relationship.
- > less ability to determine blind space for working in highly-occluded realworld environments.

Introduction

- A multi-view VOA framework with viewpoint selection
- ➤ A DNN archtecture incorporating VQA, Scene Representation and Viewpoint selection modules
- Results:
 - Keeps performance against VOA using all
 - Reduces trivial observation largely
 - Applicable on both CG and Real Images
 - Run time: 0.035 sec / VOA sample on average

Approach

Approach 1: View pooling + FiLM (VQA Backbone) Approach 2: Scene Representation Network + FiLM

- View pooling : max/average pooling for integrating multiview image features.
- Scene Representation Network : CVAE-based structure for representing 3D scene and rendering images from guery viewpoint.
- > FiLM : Feature-wise Linear Modulation.

Approach 3: Scene Representation Network + Viewpoint Selection Network + FiLM

- Viewpoint Selection Network (Deep Q-learning Network based) :
- ✓ Input: Observed scene representation, question feature
- ✓ Output: Next observation viewpoint.
- ✓ Reward: Based on VOA accuracy and trajectory length.

Dataset

CG Dataset:

- ✓ Image generation: Place objects on blender scene. Photograph from multiple observation viewpoint.
- Question generation: Generated automatically from function programs based on scene information.

Real Dataset:

- Image generation: Real photograph
- Question generation : Generated from function program.

Experiments

Example results of SRN FiLM VS on Multi-view-CLEVR 12views CG dataset

Results on Multi-view-CLEVR 12views CG

Methods	Overall accuracy	Spati Exist	al-related Query color	Noi Exist	n-spatial Query color	Average used viewpoints
SRN_FiLM	97.37%	94.20%	98.20%	99.03%	98.11%	12
SRN_FiLM_VS	97.11%	95.27%	96.90%	99.03%	97.25%	2.98

Effect of viewpoint selection

Methods (viewpoint numbers)	Overall accuracy	Methods
SRN_FiLM_Random (3 views) SRN_FiLM_Equal (3 views) SRN_FiLM_VS (2.98 views)	81.39% 82.90% 97.11 %	SRN_FiLM SRN_FiLM

Methods		Accuracy	Used	Viewpoii	nts

Results on Multi-view-CLEVR 4views CG

270 degrees

Methods	Accuracy	Used Viewpoints	
SRN_FiLM SRN_FiLM_VS	97.67% 97.64%	4 2.02	

Example results on Multi-view-CLEVR 12views Real dataset

Default view

Question 1 : Are there any small blue objects? (no) SRN FiLM (Fine-tuning): no SRN FiLM VS (Fine-tuning): no

SRN FiLM (Fine-tuning): yes

SRN FiLM VS (Fine-tuning): yes

Question 3: There is a blue sphere; are there any blocks behind it? (yes)

Question 2: The large sphere is what color? (blue) SRN FiLM (Fine-tuning): purple SRN FiLM VS (Fine-tuning); blue

Question 4: What color is the cube behind the big purple cube? (green) SRN FiLM (Fine-tuning): blue SRN FiLM VS (Fine-tuning); purple

Results on Multi-view-CLEVR 4views Real

Methods	Fine-tuning SRN FiLM		Accuracy
SRN_FiLM SRN_FiLM SRN_FiLM SRN_FiLM SRN_FiLM_VS SRN_FILM_VS	- - - - -	- √ - √	67.88% 76.14% 77.30% 82.62% 66.82% 79.99%
SRN_FiLM_VS SRN_FiLM_VS	√ ✓	- - -	91.56% 94.01 %

References

Question Answering with Active Viewpoint Selection. Sensors 2020, 20, 2281

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh, Vga; Visual question answering. In Proceedings of the IEEE international conferen on computer vision (ICCV), 2015.

[3] Yue Qiu, Yutaka Satoh, Ryota Suzuki, and Hirokatsu Kataoka. Incorporating 3d information into

visual question answering. In International Conference on 3D Vision (3DV), 2019. [4] Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos, Marta Garnelo

Neural scene representation and rendering. Science, 2018.

reasoning with a general conditioning layer. In Thirty-Second AAAI Conference on Artificial Intelligen

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra and Martin Riedmiller. Playing atari with deep reinforcement learning. In Advances in Neural

[7] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017.

