# Class9: Candy Analysis Mini Project

Alice (PID: A16799081)

## Import data

```
candy_file <- "candy-data.txt"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

|              | choco | olate | fruity   | caramel | peanut | tyalmondy | nougat  | crispedr | ricewafer |
|--------------|-------|-------|----------|---------|--------|-----------|---------|----------|-----------|
| 100 Grand    |       | 1     | 0        | 1       |        | 0         | 0       |          | 1         |
| 3 Musketeers |       | 1     | 0        | 0       |        | 0         | 1       |          | 0         |
| One dime     |       | 0     | 0        | 0       |        | 0         | 0       |          | 0         |
| One quarter  |       | 0     | 0        | 0       |        | 0         | 0       |          | 0         |
| Air Heads    |       | 0     | 1        | 0       |        | 0         | 0       |          | 0         |
| Almond Joy   |       | 1     | 0        | 0       |        | 1         | 0       |          | 0         |
|              | hard  | bar   | pluribus | sugarpe | ercent | priceper  | cent wi | npercent |           |
| 100 Grand    | 0     | 1     | C        | )       | 0.732  | 0         | .860    | 66.97173 |           |
| 3 Musketeers | 0     | 1     | C        | )       | 0.604  | 0         | .511    | 67.60294 |           |
| One dime     | 0     | 0     | C        | )       | 0.011  | 0         | .116    | 32.26109 |           |
| One quarter  | 0     | 0     | C        | )       | 0.011  | 0         | .511    | 46.11650 |           |
| Air Heads    | 0     | 0     | C        | )       | 0.906  | 0         | .511    | 52.34146 |           |
| Almond Joy   | 0     | 1     | C        | )       | 0.465  | 0         | .767    | 50.34755 |           |

### **Data exploration**

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

```
There are 85 candy types in the dataset.
```

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

[1] 38

How many chocolate candies are in the dataset?

```
sum(candy$chocolate)
```

[1] 37

#### My favourite candy

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Kit Kat",]$winpercent
```

- [1] 76.7686
  - Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

- [1] 76.7686
  - Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

#library("skimr")
#skim(candy)

skimr::skim(candy)

Table 1: Data summary

| Name                   | candy |
|------------------------|-------|
| Number of rows         | 85    |
| Number of columns      | 12    |
| Column type frequency: |       |
| numeric                | 12    |
| Group variables        | None  |

### Variable type: numeric

| skim_variable n_ | _missingcom | plete_ra | ntmenean | $\operatorname{sd}$ | p0    | p25   | p50   | p75   | p100  | hist |
|------------------|-------------|----------|----------|---------------------|-------|-------|-------|-------|-------|------|
| chocolate        | 0           | 1        | 0.44     | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| fruity           | 0           | 1        | 0.45     | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| caramel          | 0           | 1        | 0.16     | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| peanutyalmondy   | 0           | 1        | 0.16     | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| nougat           | 0           | 1        | 0.08     | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| crispedricewafer | 0           | 1        | 0.08     | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| hard             | 0           | 1        | 0.18     | 0.38                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| bar              | 0           | 1        | 0.25     | 0.43                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| pluribus         | 0           | 1        | 0.52     | 0.50                | 0.00  | 0.00  | 1.00  | 1.00  | 1.00  |      |
| sugarpercent     | 0           | 1        | 0.48     | 0.28                | 0.01  | 0.22  | 0.47  | 0.73  | 0.99  |      |
| pricepercent     | 0           | 1        | 0.47     | 0.29                | 0.01  | 0.26  | 0.47  | 0.65  | 0.98  |      |
| winpercent       | 0           | 1        | 50.32    | 14.71               | 22.45 | 39.14 | 47.83 | 59.86 | 84.18 |      |

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

Chocolate, fruity, caramel, peanutyalmondy, nougat, crispedricewafer, hard, bar, pluribus are all either 0 or 1 values.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}? 0 stands for FALSE and 1 stands for TRUE.

Q8. Plot a histogram of winpercent values

## Histogram of candy\$winpercent



```
library(ggplot2)

ggplot(candy) +
  aes(winpercent) +
  geom_histogram()
```

`stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.



```
ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins = 7)
```



Q9. Is the distribution of winpercent values symmetrical?

No.

Q10. Is the center of the distribution above or below 50%?

```
summary(candy$winpercent)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

It's below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

- first find all chocolate candies
- find their winpercent values
- calculate the mean of these values
- then do the same for fruity candies and compare their means

```
chocolate.inds <- candy$chocolate == 1
chocolate.win <- candy[chocolate.inds,]$winpercent
mean(chocolate.win)</pre>
```

```
[1] 60.92153
  fruit.inds <- candy$fruity == 1</pre>
  fruit.win <- candy[fruit.inds,]$winpercent</pre>
  mean(fruit.win)
[1] 44.11974
another approach:
  mean(candy$winpercent[as.logical(candy$chocolate)])
[1] 60.92153
  mean(candy$winpercent[as.logical(candy$fruity)])
[1] 44.11974
Chocolate candies are higher ranked than fruity candies.
     Q12. Is this difference statistically significant?
  t.test(chocolate.win, fruit.win)
    Welch Two Sample t-test
data: chocolate.win and fruit.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
     Q13. What are the five least liked candy types in this set?
```

q10. What are the five reasonined early types in this set.

The order function returns the indices that make the input sorted.

## $\verb| head(candy[order(candy$winpercent),], n=5|)|$

|              |       | chocolate  | fruity | caran        | nel j | peanutyalm | nondy | nougat  |              |
|--------------|-------|------------|--------|--------------|-------|------------|-------|---------|--------------|
| Nik L Nip    |       | 0          | 1      |              | 0     |            | 0     | 0       |              |
| Boston Baked | Beans | 0          | 0      |              | 0     |            | 1     | 0       |              |
| Chiclets     |       | 0          | 1      |              | 0     |            | 0     | 0       |              |
| Super Bubble |       | 0          | 1      |              | 0     |            | 0     | 0       |              |
| Jawbusters   |       | 0          | 1      |              | 0     |            | 0     | 0       |              |
|              |       | crispedrio | ewafer | ${\tt hard}$ | bar   | pluribus   | sugar | percent | pricepercent |
| Nik L Nip    |       |            | 0      | 0            | 0     | 1          |       | 0.197   | 0.976        |
| Boston Baked | Beans |            | 0      | 0            | 0     | 1          |       | 0.313   | 0.511        |
| Chiclets     |       |            | 0      | 0            | 0     | 1          |       | 0.046   | 0.325        |
| Super Bubble |       |            | 0      | 0            | 0     | 0          |       | 0.162   | 0.116        |
| Jawbusters   |       |            | 0      | 1            | 0     | 1          |       | 0.093   | 0.511        |
|              |       | winpercent | ;      |              |       |            |       |         |              |
| Nik L Nip    |       | 22.44534   |        |              |       |            |       |         |              |
| Boston Baked | Beans | 23.41782   | ?      |              |       |            |       |         |              |
| Chiclets     |       | 24.52499   | )      |              |       |            |       |         |              |
| Super Bubble |       | 27.30386   | 5      |              |       |            |       |         |              |
| Jawbusters   |       | 28.12744   | :      |              |       |            |       |         |              |

Q14. What are the top 5 all time favorite candy types out of this set?

## $\label{tail(candy[order(candy$winpercent),], n=5)} \\$

|                           | chocolate  | fruity   | caram  | el j | peanutyaln | nondy | nougat  |
|---------------------------|------------|----------|--------|------|------------|-------|---------|
| Snickers                  | 1          | 0        |        | 1    |            | 1     | 1       |
| Kit Kat                   | 1          | 0        |        | 0    |            | 0     | 0       |
| Twix                      | 1          | 0        |        | 1    |            | 0     | 0       |
| Reese's Miniatures        | 1          | 0        |        | 0    |            | 1     | 0       |
| Reese's Peanut Butter cup | 1          | 0        |        | 0    |            | 1     | 0       |
|                           | crispedrio | cewafer  | hard   | bar  | pluribus   | sugai | percent |
| Snickers                  |            | 0        | 0      | 1    | 0          |       | 0.546   |
| Kit Kat                   |            | 1        | 0      | 1    | 0          |       | 0.313   |
| Twix                      |            | 1        | 0      | 1    | 0          |       | 0.546   |
| Reese's Miniatures        |            | 0        | 0      | 0    | 0          |       | 0.034   |
| Reese's Peanut Butter cup |            | 0        | 0      | 0    | 0          |       | 0.720   |
|                           | priceperce | ent winp | percen | t    |            |       |         |
| Snickers                  | 0.6        | 351 76   | 6.6737 | 8    |            |       |         |
| Kit Kat                   | 0.8        | 511 76   | 3.7686 | 0    |            |       |         |
| Twix                      | 0.9        | 906 81   | 1.6429 | 1    |            |       |         |

```
Reese's Miniatures 0.279 81.86626
Reese's Peanut Butter cup 0.651 84.18029
```

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```



Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
ggsave("mybarplot.png", height = 10)
```

Saving 5.5 x 10 in image

## **Adding color**

```
my_cols=rep("tan4", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```



Figure 1: image\_B&W



Q17. What is the worst ranked chocolate candy?

Reese's Peanut Butter cup

Q18. What is the best ranked fruity candy?

Starburst

#### **Pricepercent**

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning in geom\_text(col = my\_cols, size = 3.3, max.overlaps = 5): Ignoring unknown parameters: `max.overlaps`



There are too many labels in this plot; let's use ggrepel to solve the problem.

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3, max.overlaps=20)
```

Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider increasing max.overlaps



Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

#### Tootsie Roll Midgies

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Nik L Nip, Nestle Smarties, Ring pop, Mr Good Bar, and Hershey's special dark. Nik L Nip is the least popular.

## 5 Exploring the correlation

```
library(corrplot)
```

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>



Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruit

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar

### Principal component analysis

Do we need to scale the data before PCA?

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

#### Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369 PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

```
plot(pca$x[,1], pca$x[,2], col = my_cols, pch=16)
```



Making a ggplot version of this figure:

```
my_data <- cbind(candy, pca$x[,1:3])
head(my_data)</pre>
```

```
chocolate fruity caramel peanutyalmondy nougat crispedricewafer
100 Grand
                             0
                     1
                                     1
3 Musketeers
                     1
                             0
                                                     0
                                                                              0
                                                            1
One dime
                     0
                             0
                                     0
                                                     0
                                                            0
                                                                              0
One quarter
                     0
                             0
                                     0
                                                     0
                                                            0
                                                                              0
Air Heads
                     0
                             1
                                     0
                                                     0
                                                            0
                                                                              0
Almond Joy
                     1
                             0
                                     0
                                                     1
                                                            0
                                                                              0
             hard bar pluribus sugarpercent pricepercent winpercent
100 Grand
                              0
                                       0.732
                                                     0.860
                                                             66.97173 -3.8198617
                    1
3 Musketeers
                    1
                                       0.604
                                                             67.60294 -2.7960236
                0
                              0
                                                     0.511
One dime
                    0
                              0
                                       0.011
                                                     0.116
                0
                                                             32.26109 1.2025836
One quarter
                    0
                              0
                                       0.011
                                                     0.511
                                                             46.11650 0.4486538
                0
Air Heads
                              0
                                                     0.511
                0
                    0
                                       0.906
                                                             52.34146 0.7028992
Almond Joy
                    1
                              0
                                       0.465
                                                     0.767
                                                             50.34755 -2.4683383
                    PC2
                                PC3
100 Grand
             -0.5935788 -2.1863087
3 Musketeers -1.5196062 1.4121986
One dime
              0.1718121 2.0607712
One quarter
              0.4519736 1.4764928
Air Heads
             -0.5731343 -0.9293893
              0.7035501 0.8581089
Almond Joy
  ggplot(my_data) +
    aes(PC1, PC2, label=rownames(my_data)) +
    geom_point(col=my_cols) +
    geom_text_repel(col=my_cols)
```

Warning: ggrepel: 48 unlabeled data points (too many overlaps). Consider increasing max.overlaps



#### Make this a bit nicer



#library(plotly)
#ggplotly(p)

How to the original variables contribute to out PCs? for this we look at the loadings component of our results object i.e. the pca\$rotation object.

## head(pca\$rotation)

|                  | PC1         | PC2         | PC3         | PC4          | PC5         |
|------------------|-------------|-------------|-------------|--------------|-------------|
| chocolate        | -0.4019466  | 0.21404160  | 0.01601358  | -0.016673032 | 0.06603585  |
| fruity           | 0.3683883   | -0.18304666 | -0.13765612 | -0.004479829 | 0.14353533  |
| caramel          | -0.2299709  | -0.40349894 | -0.13294166 | -0.024889542 | -0.50730150 |
| peanutyalmondy   | -0.2407155  | 0.22446919  | 0.18272802  | 0.466784287  | 0.39993025  |
| nougat           | -0.2268102  | -0.47016599 | 0.33970244  | 0.299581403  | -0.18885242 |
| crispedricewafer | -0.2215182  | 0.09719527  | -0.36485542 | -0.605594730 | 0.03465232  |
|                  | PC6         | PC7         | PC8         | PC9          | PC10        |
| chocolate        | -0.09018950 | -0.08360642 | -0.4908486  | -0.151651568 | 0.10766136  |
| fruity           | -0.04266105 | 0.46147889  | 0.3980580   | -0.001248306 | 0.36206250  |
| caramel          | -0.40346502 | -0.44274741 | 0.2696345   | 0.019186442  | 0.22979901  |
| peanutyalmondy   | -0.09416259 | -0.25710489 | 0.4577145   | 0.381068550  | -0.14591236 |
| nougat           | 0.09012643  | 0.36663902  | -0.1879396  | 0.385278987  | 0.01132345  |
| crispedricewafer | -0.09007640 | 0.13077042  | 0.1356774   | 0.511634999  | -0.26481014 |

```
PC11 PC12
chocolate 0.1004528 0.69784924
fruity 0.1749490 0.50624242
caramel 0.1351582 0.07548984
peanutyalmondy 0.1124428 0.12972756
nougat -0.3895447 0.09223698
crispedricewafer -0.2261562 0.11727369
```

```
res <- as.data.frame(pca$rotation)

ggplot(res) +
  aes(PC1, reorder(rownames(res), PC1)) +
  geom_col()</pre>
```



Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruit, pluribus, and hard are picked up by PC1 in the positive direction. These make sense to me because these characteristics usually appear together in a candy product.