Cryptographie

Concepts de la sécurité

2022 / 2023

François Goichot

- Présentation générale de la cryptographie (fonctions de base, apports et limites)
- Notion de complexité
- Fonctions de hachage
- Chiffrements symétrique (DES, AES) et asymétrique (RSA)

Table des matières

1 Bases mathématiques, 1 4 2 Système de chiffrement 5 2.1 Définition 5 2.2 Chiffrement par blocs 7 3 Chiffrement symétrique (à clé secrète) 7 3.1 Le système DES 7 3.1.1 La permutation initiale $σ_0$ 10 3.1.2 Les clés de tours 12 3.1.3 Les fonctions de chiffrement f_{K_i} 15 3.1.4 Le schéma global de chiffrement 20 3.1.5 Remarque sur le triple-DES 21 3.2 Le système AES (Advanced Encryption Standard) 22 3.2.1 Bases mathématiques, 2 22 3.2.2 AES, un peu d'histoire 23 3.2.3 Le schéma global de chiffrement 24 3.2.4 SUBBYTES 25 3.2.5 SHIFTROWS 30 3.2.6 MIXCOLUMNS 31 3.2.7 Le schéma de clés 30		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Bases mathématiques, 1 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Système de chiffrement
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Chiffrement symétrique (à clé secrète)
3.2.5 ShiftRows 30 3.2.6 MixColumns 31		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		3.2.6 MixColumns

4	Chiffrement asymétrique (à clé publique)	31
	4.1 Bases mathématiques, 3	31
	4.2 Description du système	32
	4.3 La sécurité de RSA	34
	4.4 L'efficacité de RSA	38
	4.5 Tests de primalité	36
	4.6 Sécurité de RSA, suite	40

1 Bases mathématiques, 1

- Congruences, $\mathbb{Z}/n\mathbb{Z}$
- $(\mathbb{Z}/2\mathbb{Z},+)$: interprétation logique
- Permutations d'un ensemble à n éléments

2 Système de chiffrement

2.1 Définition

Un système de chiffrement, ou cryptosystème, ou chiffrement, est la donnée de $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ vérifiant :

- \bullet P est un ensemble, ses éléments sont appelés messages en clair [plaintext]
- ullet est un ensemble, ses éléments sont appelés messages chiffrés ou cryptogrammes [cyphertext]
- \bullet \mathcal{K} est un ensemble, ses éléments sont appelés $cl\acute{e}s$ [keys]
- $\mathcal{E} = \{E_k, k \in \mathcal{K}\}$ est une famille de fonctions $E_k : \mathcal{P} \to \mathcal{C}$; ses éléments sont appelés fonctions de chiffrement [encryption functions]
- $\mathcal{D} = \{D_k, k \in \mathcal{K}\}$ est une famille de fonctions $D_k : \mathcal{C} \to \mathcal{P}$; ses éléments sont appelés fonctions de déchiffrement [decryption functions]
- à chaque clé $e \in \mathcal{K}$ on sait associer une clé $d \in \mathcal{K}$ telle que $D_d(E_e(p)) = p$ pour tout message p

Exemple (trop) facile : le chiffrement de César

$$\mathcal{P} = \mathcal{C} = \mathcal{K} = \{A, B, C \dots Z\}$$
 qu'on note \mathcal{A}

Chaque lettre est identifiée à son rang modulo 26 (A=0, B=1, etc)

À chaque clé $e \in \mathbb{Z}_{26}$, on associe

- la fonction de chiffrement $E_e: A \to A, x \mapsto x + e \mod 26$
- la fonction de déchiffrement $D_e: A \to A, x \mapsto x e$ modulo 26

donc la clé de déchiffrement d qui correspond à la clé de chiffrement e est simplement d = e

Généralisation plus intéressante, le chiffrement de Vigenère (Blaise de Vigenère, 1523 - 1596) :

 $\mathcal{P}=\mathcal{C}=\mathcal{K}=\mathcal{A}^l,\ l$ entier fixé >1 et les fonctions de chiffrement et de déchiffrement sont les mêmes que pour César mais composante par composante. « Chiffre indéchiffrable » jusqu'en 1863

2.2 Chiffrement par blocs

Définition : un cryptosystème est un chiffrement $par\ blocs$ [block cipher] si son ensemble \mathcal{P} des messages en clair et son ensemble \mathcal{C} des messages chiffrés sont tous deux égaux à l'ensemble \mathcal{A}^n des mots de longueur n sur l'alphabet \mathcal{A} , \mathcal{A} et n étant fixés tous les deux

À distinguer du chiffrement par flot, ou en continu

Théorème : les fonctions de chiffrement d'un chiffrement par blocs sont des permutations

3 Chiffrement symétrique (à clé secrète)

3.1 Le système DES

C'est un système de chiffrement par blocs, symétrique donc à clef secrète

On prend $\mathcal{P} = \mathcal{C} = \{0, 1\}^{64}$ et

$$\mathcal{K} = \left\{ (b_1, b_2, \dots, b_{64}) \in \{0, 1\}^{64} \mid \forall j = 0 \dots 7, \sum_{i=1}^{8} b_{8j+i} \equiv 1 \mod 2 \right\}$$

c'est-à-dire les mots binaires de longueur 64 tels que la somme des 8 bits de chacun des 8 octets les composant, soit impaire

Exercice : combien cela fait-il de clés possibles?

DES: Data Encryption Standard

- Développé par une équipe d'IBM dans les années 1970, adopté comme standard aux États-Unis en 1977, très largement utilisé après
- Dès 1981, certains suggèrent que la National Security Agency (NSA) serait capable de décrypter DES
- Mais ce n'est qu'en 1998 qu'une équipe de l'Electronic Frontier Foundation y parvient, par force brute
- Il reste très résistant à la cryptanalyse différentielle : des attaques à texte clair choisi c'est-à-dire que l'attaquant a la possibilité de soumettre lui-même des messages (la clé étant fixée, inconnue bien sûr de l'attaquant). Il étudie alors l'effet d'une petite variation du message d'entrée
- Le standard est abandonné en 2005. Le système reste utilisé, sous la forme du *triple DES* : trois tours de DES avec deux ou trois clés différentes

DES, schéma général

- Le cœur de DES consiste en 16 « tours » utilisant chacun une clé différente, construite à partir de la clé unique de session
- Chaque tour de chiffrement utilise des « S-boîtes » et différentes fonctions (détaillées plus loin), les mêmes à chaque tour
- Ce cœur est précédé d'une permutation des 64 bits du bloc de message en clair, et suivi de la permutation inverse
- Le seul élément non public d'une session de DES est la clé de session

DES

3.1.1 La permutation initiale σ_0

Elle est appliquée à chaque bloc p de message en clair, au tout début du chiffrement.

Et tout à la fin, on applique σ_0^{-1}

 σ_0 est définie explicitement :

voir Wikipédia (et le TP1) pour la version complète. σ_0 a deux points fixes, 22 et 43, et elle est d'ordre 6, c'est-à-dire que 6 est le plus petit entier $k \ge 1$ tel que $\sigma_0^k = \text{Id}$

Une subtilité mathématique

Quand on fait agir une permutation $\sigma \in S_n$ sur une liste d'objets (x_1, x_2, \ldots, x_n) , il faut poser

$$\sigma(x_1, x_2, \dots, x_n) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots, x_{\sigma^{-1}(n)})$$

pour qu'il soit vrai que

$$\sigma(\sigma'(x_1, x_2, \dots, x_n)) = (\sigma\sigma')(x_1, x_2, \dots, x_n)$$

Si l'on posait

$$\sigma(x_1, x_2, \dots, x_n) = (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$$

alors

$$\sigma(\sigma'(x_1, x_2, \dots, x_n)) = (\sigma'\sigma)(x_1, x_2, \dots, x_n)$$

ce qui serait bizarre

Les sources sur DES expliquent très rarement ce point

DES, suite

En fait donc, si on a le message en clair $p = p_1 p_2 \dots p_{64} \in \{0, 1\}^{64}$ alors

$$\sigma_0(p) = p_{58}p_{50}\dots p_7$$

car

$$\sigma_0^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & \dots & 62 & 63 & 64 \\ 58 & 50 & 42 & 34 & 26 & 18 & 10 & 2 & 60 & 52 & 44 & 36 & 28 & \dots & 23 & 15 & 7 \end{pmatrix}$$

3.1.2 Les clés de tours

On part d'une clé $k \in \mathcal{K}$ donc de longueur 64, et on va la « diversifier » en générant 16 clés K_1, \ldots, K_{16} chacune de longueur 48

On va utiliser $\varphi_1: \{0,1\}^{64} \to \{0,1\}^{28} \times \{0,1\}^{28}$, $k \mapsto \varphi_1(k) = (C,D)$, $C \in D$ mots binaires qui oublient certains bits de k et permutent les autres (détail p. suivante)

et $\varphi_2: \{0,1\}^{28} \times \{0,1\}^{28} \to \{0,1\}^{48}, (C,D) \mapsto \varphi_2(C,D)$, qui concatène les deux mots C et D, oublie 8 bits du résultat et permute les autres (détail p. suivante)

les fonctions φ_1 et φ_2

 φ_1 est définie par les tableaux :

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36

63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

donc si $k = k_1 k_2 ... k_{64}$, $\varphi_1(k) = (C, D)$ avec $C = k_{57} k_{49} ... k_{36}$ et $D = k_{63} k_{55} ... k_4$

et

 φ_1 est aussi notée PC1 [permuted choice 1], et φ_2 aussi notée PC2 [permuted choice 2]

 φ_2 est définie par concaténation de $(C,D) = ((c_1,\ldots,c_{28}),(d_1,\ldots,d_{28}))$ en $(b_1,\ldots b_{56})$ puis par le tableau :

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

donc
$$\varphi_2(C, D) = (b_{14}, b_{17}, \dots, b_{32})$$

Construction des clés de tours

Pour
$$i = 1, ..., 16$$
, on pose $v_i = \begin{cases} 1 & \text{si } i = 1, 2, 9, \text{ ou } 16 \\ 2 & \text{sinon} \end{cases}$

Partant de la clé de session k, on pose $(C_0, D_0) = \varphi_1(k)$ puis, pour i = 1, ..., 16, on note C_i (respectivement, D_i) l'image de C_{i-1} (respectivement D_{i-1}) par permutation circulaire des bits de v_i positions

Par exemple, si $C_2 = c_1 c_2 \dots c_{28}$, alors $C_3 = c_3 c_4 \dots c_{28} c_1 c_2$ puisque $v_3 = 2$

On pose enfin $K_i = \varphi_2(C_i, D_i)$

Les 16 clés de tours sont ainsi construites. Noter que tout part de la clé de session k, et qu'on ne peut pas calculer K_{16} sans avoir calculé toutes les clés K_i précédentes

3.1.3 Les fonctions de chiffrement f_{K_i}

Dans cette partie, on fixe K, qui est l'une des clés de tour K_i

On va construire une fonction de chiffrement f_K , qui opérera sur des *demi*-messages, donc sur $\{0,1\}^{32}$. On aura besoin de trois ingrédients :

- les 8 S-boîtes $S_i: \{0,1\}^6 \to \{0,1\}^4$
- l'expansion $E: \{0,1\}^{32} \to \{0,1\}^{48}$
- la permutation de sortie $P \epsilon S_{32}$

Les S-boîtes

Chacune des 8 S-boîtes est décrite par un tableau à 4 lignes et 16 colonnes d'entiers entre 0 et 15. Voici par exemple celui pour S_1 :

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

Pour chaque mot binaire $B = b_1 b_2 \dots b_6$,

- l'entier $(b_1b_6)_2$ (qui est entre 0 et 3) donne l'indice de ligne dans ce tableau
- l'entier $(b_2b_3b_4b_5)_2$ (qui est entre 0 et 15) donne l'indice de colonne
- on lit l'entier à l'intersection de la ligne et de la colonne, on le convertit en binaire, en ajoutant des 0 si nécessaire

on obtient ainsi $S_i(B)$

Avantage des S-boîtes : c'est non linéaire, donc efficace contre la cryptanalyse différentielle

Inconvénient : c'est opaque

L'expansion E

L'expansion $E:\{0,1\}^{32} \to \{0,1\}^{48}$ est donnée par le tableau

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

donc $E(b_1b_2...b_{32}) = b_{32}b_1b_2...b_{31}b_{32}b_1$

C'est une permutation circulaire avec répétitions, la moitié des bits apparaît deux fois

La permutation de sortie P

Avec la même convention de notation que pour σ_0 , P est donnée par le tableau

16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

 ${\cal P}$ n'a pas de point fixe, et est d'ordre 60

La construction de f_K

Pour un mot binaire R de longueur 32,

- on calcule $E(R) \oplus K$, somme bit-à-bit (somme dans $\mathbb{Z}/2\mathbb{Z}$, ou encore XOR) de deux mots binaires de longueur 48, donc de longueur 48 aussi
- on découpe ce mot en $B_1B_2...B_8$, chaque B_i étant donc de longueur 6
- avec les S-boîtes, pour chaque i on calcule $C_i = S_i(B_i)$ de longueur 4
- on concatène : $C = C_1 C_2 \dots C_8$ de longueur 32

alors $f_K(R) = P(C)$ qui est bien de longueur 32

Schéma global

3.1.4 Le schéma global de chiffrement

Partant du message en clair p,

- on découpe $p' = \sigma_0(p)$ en deux moitiés (L_0, R_0)
- pour i = 1, ..., 16, on calcule $(L_i, R_i) = (R_{i-1}, L_{i-1} \oplus f_{K_i}(R_{i-1}))$ (\star)
- après le dernier tour, on fait un dernier échange gauche-droite et on applique l'inverse de σ_0 , soit : $E_k(p) = \sigma_0^{-1}(R_{16}, L_{16})$

qui est donc le résultat final du chiffrement DES du message clair p avec la clé k

Remarque importante pour le déchiffrement : dans (\star) on a immédiatement $R_{i-1} = L_i$ et $R_i = L_{i-1} \oplus f_{K_i}(R_{i-1})$ d'où $L_{i-1} = R_i \oplus f_{K_i}(L_i)$ car + = - dans $\mathbb{Z}/2\mathbb{Z}$

Donc le déchiffrement est la même suite d'opérations que le chiffrement, en inversant simplement l'ordre des tours, et les permutations initiale et finale