DVAT-Projekt Verkehrszählung

Bewegungsanalyse mit der Hough-Transformation

André Betz

Inhalt:

- Problemstellung
- bisheriger Ansatz
- Generierung von Binärbildern
- Hough-Transformation
- Zeitreihendarstellung

Problemstellung:

- Standort der Kamera

- unterschiedlicheWitterungsbedingungen
- Verdeckung von Objekten

Bisheriger Ansatz:

- Differenzbild vom
 Hintergrundbild
- häufigster Farbwert entspricht
 Hintergrund
- Abhängig von
 Witterungseinflüssen und
 Helligkeitsschwankungen
- Farbwert muß über langen
 Zeitraum ermittelt werden

Generierung von Binärbildern: Sobelfilter

$$g_y(x, y) = a_y * I(x, y)$$
$$g_x(x, y) = a_x * I(x, y)$$
$$S = \sqrt{g_x^2 + g_y^2}$$

$$a_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad a_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$a_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

Euklidischer Abstand

Generierung von Binärbildern: Sobelfilter

Graustufenbild

 $g_y(x,y)$

(

 $g_x(x,y)$

Hough-Transformation:

- alle Randpunkte, die zur Struktur (Objekt) gehören werden im Transformationsraum abgebildet
- Transformationsraum (Hough-Raum) wird durch ein Akkumulatorarray repräsentiert
- je mehr Punkte zu einer Struktur gehören, desto deutlicher wird dies im Akkumulator sichtbar
- Maximum in den Akkumulatorzellen enthält die Parameter des gesuchten Objektes

André Betz 10 5 2001

Hough-Transformation: Geradengleichung

Geradengleichung 1:

$$y(x): y = m \cdot x + t$$

 $\Leftrightarrow t(m): t = y - m \cdot x$

Geradengleichung 2:

$$t(\alpha): t = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

Hessche Normalform

Hough-Transformation: Transformation 1

$$t(m) = y - m \cdot x$$

$$t_1(m) = 7 - m \cdot 3$$

$$t_2(m) = 6 - m \cdot 1$$

$$t_3(m) = 5 - m \cdot 2$$

$$t_4(m) = 1 - m \cdot 0$$

m	-2	-1	0	1	2
t1	13	10	7	4	1
t2	8	7	6	5	4
t3	9	7	5	3	1
t4	1	1	1	1	1

$$y(x) = 2 \cdot x + 1$$

Parameterraum									
7	0	2	1	0	0				
6	0	0	1	0	0				
5	0	0	1	1	0				
4	0	0	0	1	1				
3	0	0	0	1	0				
2	0	0	0	0	0				
1	1	1	1	1	3				
0	0	0	0	0	0				
-1	0	0	0	0	0				
	-2	-1	0	1	2	→ n			

Hough-Transformation: Transformation 2

André Betz, 10.5.2001

Seite 10

Hough-Transformation: Transformation 2

Hough-Transformation: Endpunkte

- Rechteck entlang der Linie bewegen
- Punkte im Rechteck werden aufsummiert
- Summe fällt am Ende der Linie stark ab
- Schwellwert geeignet festlegen
- mit Startpunkt und Endpunkt die Linie ins Originalbild einzeichnen
- übereinstimmende Pixel aus dem Parameterraum herausrechnen

Bewegungsanalyse: Zeit-Weg-Bilder

Bewegungsanalyse: Zeit-Weg-Schnittbild

Bewegungsanalyse: Hough-Transformation

Winkel der Geraden ergibt Geschwindigkeit des Objektes

Beurteilung:

+ ergibt Orts- und Geschwindigkeitsparameter

+ hohe Robustheit

- große Anzahl von Bildern zur Auswertung

- Rechenaufwand steigt für kompletten 3d-Raum