Introduction to Machine Learning CS182

Lu Sun

School of Information Science and Technology ShanghaiTech University

Feb. 21, 2022

Today:

- Linear Methods for Regression II
 - Ridge Regression
 - The Lasso
 - Discussion

Readings:

- The Elements of Statistical Learning (ESL), Chapter 3
- Pattern Recognition and Machine Learning (PRML), Chapter 3

Introduction

- Subset selection
 - retain a subset of the predictors, and discard the rest
 - accuracy and interpretation
 - discrete process
 - > variable are either retained or discarded
 - high variance
- Shrinkage methods
 - continuous process
 - > don't suffer much from high variability
 - □ ridge regression, lasso, ...

Linear Methods for Regression

--- Ridge Regression

- Shrink the regression coefficients
 - impose a penalty on the size

P1
$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \left(\sum_{j=1}^{p} \beta_j^2 \right) \right\}_{\bullet}$$

- the larger the value of λ , the greater the amount of shrinkage
- the coefficients are shrunk toward zero
- An equivalent expression

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

P2

subject to
$$\sum_{j=1}^{p} \beta_j^2 \le t,$$

• One-to-one correspondence between λ and t

- Squared ℓ_2 -norm on β $\|\beta\|_2^2 = \beta^T \beta = \sum_{i=1}^p \beta_i^2$
- Other possible constraints?

• Equivalence between P1 and P2

P1:
$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

P2:
$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2}$$
, s. t. $\|\beta\|_{2}^{2} \le t$

- Goal: $\forall \lambda, \exists t \geq 0$: $\hat{\beta} = \tilde{\beta}$ (Step 1)
- $\forall t, \exists \lambda \ge 0 \colon \hat{\beta} = \tilde{\beta} \text{ (Step 2)}$

Proof:

- Step 1: assume that P1 is solved $-X^{T}(\mathbf{y} \mathbf{X}\hat{\beta}) + \lambda \hat{\beta} = 0$
- Lagrange form of P2

$$L(\beta, \mu) = \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \mu(\|\beta\|_{2}^{2} - t)$$

• KKT conditions

1.
$$\nabla_{\beta} L(\tilde{\beta}, \tilde{\mu}) = 0$$
 \Longrightarrow $-X^{T}(\mathbf{y} - \mathbf{X}\hat{\beta}) + \tilde{\mu}\tilde{\beta} = 0$

- $2. \qquad \widetilde{\mu}\left(\left\|\widetilde{\beta}\right\|_{2}^{2}-t\right)=0$
- 3. $\tilde{\mu} \geq 0$
- $4. \qquad \left\| \tilde{\beta} \, \right\|_2^2 \le t$

• Thus,

□ if

$$t = \left\| \hat{\beta} \right\|_2^2$$

□ Then

$$\tilde{\mu} = \lambda$$
, $\tilde{\beta} = \hat{\beta}$

- Satisfy the KKT conditions.
- Step 2: conversely, assume that P2 is solved
- The optimal solution $(\tilde{\beta}, \tilde{\mu})$ must satisfies KKT conditions. Therefore, let $\lambda = \tilde{\mu}$, we always have $\hat{\beta} = \tilde{\beta}$.

Strong duality holds for P2:

 $(\tilde{\beta}, \tilde{\mu})$ is the optimal solution of P2

 $(\tilde{\beta}, \tilde{\mu})$ satisfies KKT conditions

Important notes

- ridge solutions are not equivalent under scaling of inputs
 standardize the inputs before solving it
- the intercept β_0 should be left out of the penalty term

Ex. 3.5
$$\rightarrow$$
 once $x_{ij} - \bar{x}_j$, β_0 is estimated by $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$

- the rest parameters are estimated by the centered data
- Henceforth we assume the data has been standardized
 - \mathbf{x} has p rather than p+1 columns

Prediction?

Standardization

$$x' = \frac{x - \bar{x}}{\sigma}$$

• Ridge regression in matrix form

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

$$\hat{\beta}^{ridge} = \operatorname{argmin}_{\beta} \operatorname{PRSS}(\lambda, \beta) = \operatorname{argmin}_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \underline{\lambda} \|\beta\|_{2}^{2}$$

• We can rewrite PRSS(λ, β) as follows

$$PRSS(\lambda, \beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{T}\beta$$
$$= \mathbf{y}^{T}\mathbf{y} - \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{X}\beta + \beta^{T}\mathbf{X}^{T}\mathbf{X}\beta + \lambda \beta^{T}\beta$$

• Differentiating PRSS(λ, β) w.r.t. β

$$\frac{\partial PRSS(\lambda, \beta)}{\partial \beta} = -2\mathbf{X}^T \mathbf{y} + 2(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_p)\beta = \mathbf{0}$$

• The closed form solution $\hat{\beta}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^T \mathbf{y}$ • rank $(\mathbf{I}_p) = p$ • make the problem nonsingular,

- even if rank(X) < p

 $x_i^T \beta$

Additional insight into ridge regression

• Singular value decomposition (SVD)

$$\mathbf{U}^T\mathbf{U} = \mathbf{I}_p, \mathbf{V}^T\mathbf{V} = \mathbf{I}_p \qquad \mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

- $\mathbf{U} \in \mathbb{R}^{N \times p}$: its columns span the column space (\mathbb{R}^N) of \mathbf{X}
- $\mathbf{V} \in \mathbb{R}^{p \times p}$: its columns span the row space (\mathbb{R}^p) of \mathbf{X}
- $\mathbf{D} \in \mathbb{R}^{p \times p}$: diagonal matrix $(d_1 \ge d_2 \ge \cdots \ge d_n \ge 0)$
- Singular values of **X**
- if $\exists d_i = 0$, **X** is singular

Least squares

$$\mathbf{X}\hat{eta}^{\mathrm{ls}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

$$= \mathbf{U}\mathbf{U}^T\mathbf{y},$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \mathbf{u}_j^T\mathbf{y}$$
The *j*-th column of **U**

Ridge regression

$$\mathbf{X}\hat{\beta}^{\text{ridge}} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$$

$$= \mathbf{U}\mathbf{D}(\mathbf{D}^2 + \lambda \mathbf{I})^{-1}\mathbf{D}\mathbf{U}^T\mathbf{y}$$

$$= \sum_{j=1}^{p} \mathbf{u}_j \underbrace{\frac{d_j^2}{d_j^2 + \lambda}}_{\mathbf{I}_j^T\mathbf{Y}_j} \bullet \text{ shrinkage factor} \bullet \text{ smaller } d_j \text{ leads to}$$

a larger shrinkage

- Prostate cancer example
 - μ #training(N) = 67, #testing=30
 - #variables(p)=8
 - ridge coefficient estimates
- Effective degree of freedom

$$df(\lambda) = \sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda} \in (0, p]$$

$$\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{T}, \mathbf{V}^{T}\mathbf{V} = \mathbf{I}_{p}$$

$$df(\lambda) = \operatorname{Tr}\left(\mathbf{X}(\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{T}\right)$$

$$= \operatorname{Tr}\left(\mathbf{U}\mathbf{D}(\mathbf{D}^{2} + \lambda \mathbf{I}_{p})^{-1}\mathbf{D}\mathbf{U}^{T}\right)$$

$$= \sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda}$$

Trace equals to sum of eigenvalues

- Prostate cancer example
 - #training(N) = 67, #testing=30
 - \neg #variables(p)=8
 - ridge coefficient estimates
- Effective degree of freedom

$$df(\lambda) = \sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda} \in (0, p]$$

□ $\lambda \to 0$, df(λ) = p — no regularization □ $\lambda \to \infty$, df(λ) $\to 0$

Linear Methods for Regression

--- The Lasso

Shrinkage Methods – The Lasso

The lasso estimate:

model complexity

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \underbrace{\sum_{j=1}^{p} |\beta_j|}_{j=1} \right\} \cdots \qquad \|\beta\|_1 = \sum_{j=1}^{p} |\beta_j|$$

- \Box the ℓ_2 ridge penalty is replaced by ℓ_1 lasso penalty.
- \square no closed-form solution (ℓ_1 penalty is nondifferentiable)
- Or equivalently,

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \quad \text{if } t = \frac{1}{2} \|\hat{\beta}^{ls}\|_1, \hat{\beta}^{ls} \text{ is shrunk}$$

$$\text{about 50\% on average}$$

$$\text{subject to } \sum_{i=1}^{p} |\beta_i| \leq t.$$

 \square making t sufficiently small \rightarrow some coefficients equal to 0

- if $t \ge \|\hat{\beta}^{ls}\|_1$, $\hat{\beta}^{lasso} = \hat{\beta}^{ls}$

Shrinkage Methods – The Lasso

• The lasso in matrix form

$$\hat{\beta}^{lasso} = \operatorname{argmin}_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

- Prostate cancer example
- The standardized parameter

$$\begin{split} s &= t / \left\| \hat{\beta}^{ls} \right\|_1 \in (0,1] \\ & = s = 1, \hat{\beta}^{lasso} = \hat{\beta}^{ls} \\ & = s \to 0, \hat{\beta}^{lasso} \to 0 \\ & = s \in (0,1), \hat{\beta}^{lasso}_j \in (0,\hat{\beta}^{ls}_j), \forall j \end{split}$$

Shrinkage Methods – The Lasso Least squares cavol cavol Ridge Lasso regression weight pgg45 Coefficients Coefficients 0.0 gleason gleason age $df(\lambda) \in (0, p]$ $s \in (0,1]$ 0.2 0.4 0.6 8.0 1.0

Difference: the lasso profiles hit zero, while those for ridge do not.

15

$df(\lambda) = 5$				
Term	LS	Ridge	Lasso	
lcavol	0.680	0.420	0.533	
lizai ch+	U 283	U 938	0.160	

Testing set

_~L	0.200	0.000	
gleason	-0.021	0.040	
pgg45	0.267	0.133	
Test Error	0.521	0.492	0.479
Std Error	0.179	0.165	0.164

- Biased linear methods achieved a better var-bias trade-off
- CV is usually time-consuming
 - e.g. given $s \in [0.1:0.1:1]$, we need to train the lasso by $10 \times 10 = 100$ times in 10-fold CV.

Linear Methods for Regression

--- Discussion

Orthonormal case $(\mathbf{X}^T\mathbf{X} = \mathbf{I}_p)$

- Best-subset
 - hard-thresholding
 - discontinuity
- Ridge regression
 - proportional shrinkage
- Lasso
 - soft-thresholding

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{eta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{\beta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$

Orthonormal case $(\mathbf{X}^T\mathbf{X} = \mathbf{I}_p)$

- Least squares $\hat{\beta}^{ls} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{y}$
- Ridge regression $\hat{\beta}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^T \mathbf{y}$ $= \frac{1}{1+\lambda} \mathbf{X}^T \mathbf{y} = \frac{1}{1+\lambda} \hat{\beta}^{ls}$
- Best subset $\hat{\beta}_{j}^{bs} = \mathbf{x}_{j}^{T}\mathbf{y}, \quad \forall j$

• Lasso

$$\begin{aligned} \text{PRSS}(\beta, \lambda) &= \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{1} \\ &= \frac{1}{2} \mathbf{y}^{T} \mathbf{y} - \beta^{T} \mathbf{X}^{T} \mathbf{y} + \frac{1}{2} \beta^{T} \mathbf{X}^{T} \mathbf{X}\beta + \lambda \|\beta\|_{1} \\ &= \frac{1}{2} \mathbf{y}^{T} \mathbf{y} - \beta^{T} \hat{\beta}^{ls} + \frac{1}{2} \beta^{T} \beta + \lambda \|\beta\|_{1} \end{aligned}$$

- Minimizing PRSS(β , λ) is equivalent to $\min_{\beta_j} \frac{1}{2} \beta_j^2 \hat{\beta}_j^{ls} \beta_j + \lambda |\beta_j|, \quad \forall j$
- Signs of $\hat{\beta}_j$ and $\hat{\beta}_j^{ls}$ must be the same.

$$\hat{\beta}_j > 0 \to \hat{\beta}_j = \hat{\beta}_j^{ls} - \lambda$$

$$\hat{\beta}_j \leq 0 \rightarrow \hat{\beta}_j = \hat{\beta}_j^{ls} + \lambda$$

•
$$\hat{\beta}_j^{lasso} = \text{sign}(\hat{\beta}_j^{ls})(|\hat{\beta}_j^{ls}| - \lambda)_+$$

Ridge and Lasso in the Bayes framework

• Suppose a Gaussian conditional distribution

$$\Pr(Y|X,\beta) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{Y - X^T\beta}{\sigma})^2)$$

$$Pr(Y|X,\beta) = \mathcal{N}(X^T\beta,\sigma^2)$$

• Log-likelihood
$$\ell(\beta) = \ln \Pr(\mathbf{y}|\mathbf{X}, \beta)$$

$$= \sum_{i=1}^{N} \ln \Pr(y_i|x_i, \beta)$$

$$= \sum_{i=1}^{N} \log(2\pi) - N \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - x_i^T \beta)^2$$
Constant

Maximum a posterior (MAP)

Posterior

$$\hat{\beta} = \operatorname{argmax}_{\beta} \Pr(\beta | \mathbf{X}, \mathbf{y}) = \operatorname{argmax}_{\beta} \frac{\Pr(\mathbf{y} | \mathbf{X}, \beta) \Pr(\mathbf{y} | \mathbf{X}, \beta)}{\Pr(\mathbf{X}, \mathbf{y})}$$

Likelihood

Irrelevant with β

Posterior ∝ Likelihood × Prior

Ridge and Lasso in the Bayes framework

MLE:
$$\hat{\beta}^{MLE} = \operatorname{argmax}_{\beta} \Pr(\mathbf{y}|\mathbf{X}, \beta)$$
 Least squares

MAP: $\hat{\beta}^{MAP} = \operatorname{argmax}_{\beta} \Pr(\mathbf{y}|\mathbf{X}, \beta) \Pr(\beta)$ Ridge & Lasso

- Ridge regression
 - MAP with a prior $\Pr(\beta) = \mathcal{N}(\beta|0, \frac{1}{\lambda}\mathbf{I}_p)$ Gaussian distribution $\hat{\beta}^{ridge} = \operatorname{argmax}_{\beta} \ln(\Pr(\mathbf{y}|\mathbf{X}, \beta)\Pr(\beta))$ $= \operatorname{argmax}_{\beta} \ln\left(\prod_{i=1}^{N} \mathcal{N}(y_i|x_i^T\beta, \sigma^2) \times \mathcal{N}(\beta|0, \frac{1}{\lambda}\mathbf{I}_p)\right)$
- Lasso
 - MAP with a prior $\Pr(\beta) = \frac{\lambda}{2} e^{-\lambda \|\beta\|_1}$ Laplacian distribution $\hat{\beta}^{lasso} = \operatorname{argmax}_{\beta} \ln \left(\prod_{i=1}^{N} \mathcal{N}(y_i | x_i^T \beta, \sigma^2) \times \frac{\lambda}{2} e^{-\lambda \|\beta\|_1} \right)$

Generalization of Ridge and Lasso

• Consider the criterion $(q \ge 0)$

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\} \quad \begin{array}{l} \bullet \quad q = 0, \text{ best subset} \\ \bullet \quad q = 1, \text{ lasso} \\ \bullet \quad q = 2, \text{ ridge regression} \end{array} \right.$$

Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

Generalization of Ridge and Lasso

• Consider the criterion $(q \ge 0)$

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\} \quad \begin{array}{c} \bullet \quad q = 0, \text{ best subset} \\ \bullet \quad q = 1, \text{ lasso} \\ \bullet \quad q = 2, \text{ ridge regression} \end{array} \right.$$

- $q \in (1,2)$: a compromise between lasso and ridge regression
 - $\mid \beta_j \mid^q$ is differentiable at $0 \rightarrow$ hard to set $\beta_j = 0, \forall j$
- Elastic-net

$$\min_{\beta} \sum_{i=1}^{N} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha)|\beta_j|)$$

- $-\ell_2$ shrinks the coefficients of correlated predictors

