Pharmacologic targets:

- •mAch (M1R, M3R)
- •adrenoceptors (α , β)
- PG receptors
- •5HT receptors
- Histamin receptors
- •L-type Ca²⁺ channels
- •K+channels
- AT receptors
- ANF receptors GC!
- •NO (vessels) sGC!
- PDE-inhibitors

Σ:

- contraction
 - •cAMP↓, Ca²⁺↑
- relaxation
 - •cAMP↑, cGMP↑

Physiologic neuroendocrine regulation of the uterinal tone

- pacemaker cells fundus (myometrium)
- regular, rhythmic, coordinated, spontaneous myometrium contractions (fundus → cervix)
- changes during the menstrual cycle and pregnancy!
- endocrine and autonomic control
 - estrogen
 - progesteron
 - oxytocin
 - prostaglandins
 - uterinal adrenerg system β_2 (relax) and α (contract)
- menstrual cycle
 - weak → stronger
- pregnancy
 - early: estrogen + progesterone → hyperpolarization
 - labor: (fetal) cortisol↑ → estrogen/progesterone↑ (placenta) / oxytocin ?

Endocrine regulation of uterinal tone (motility) in pregnancy

Estrogen

- membrane depolarisation (myometrium)
- oxytocin R ↑
- αR sensitivity ↑
- endogenous PG synthesis ↑ in decidual cells
- gap junction ↑

Progesterone

- membrane-stabilising effect (myometrium)
- oxytocin R ↓
- βR number ↑ and sensitivity ↑
- endogenous PG synthesis ↓

Cardiotocography recording - oxytocin

Cardiotocography of a case of oxytocin-induced uterine hyperstimulation. **Hypertonic uterine contractions resulted in fetal bradycardia.** After stopping the oxytocin infusion for 9 mins, the fetal bradycardia recovered.

Drugs that stimulate the uterus (uterotonics)

oxytocin

- natural peptide hormone (9 AA nonapeptide)
- ergometrin / ergotamin
 - ergot alkaloids (origin: fungus Claviceps purpurea)

prostaglandins

- PGF_{2a}, PGE₂, PGI₂

Clinical use of uterotonics

Indications:

- labor induction (delivery, abortus)
- labor stimulation, enhancement (inertia uteri)
- 3rd (placentar) stage induction
- prevention and therapy of postpartum haemorrhage (tonic)
 - i.v. application
 - monitoring! (CTG)

Contraindications:

- rupture of uterus
- placenta praevia
- abruption of placenta

Difference in action between oxytocin and ergometrin

Oxytocin

- $O\chi V \sigma \ TO KO \sigma \approx \text{sharp childbirth / sudden delivery}$
- Synthesis, storage
 - hypothalamus (supraoptic/paraventricular nucleus)
 - neurohypophysis
- Structure
 - 9 AA, (6 circular)
 - ADH (Leu→Arg; Arg→IsoLeu)
 - structural resemblence!!!
- Pharmacokinetics
 - iv. infusion
 - $-t_{1/2} \approx 5 \text{ min}$

Oxytocin

Effect

- Oxytocin R (ic. Ca²⁺↑) → uterus contraction↑
- myoepithelial cell contraction↑ ("milk let down")
- role in mating and parenting benavior

Clinical use

- 500ml dextrose + 5IU oxytocin (10IU/I)
- in high doses → tonic uterus contraction
- Th: stimulating/augmenting labor 1st, 2nd stage
 - 2-3 IU (1IU=0,5 mg)
- Dg.: estimating placentar reserve HR (before terminus)
- Th.: 3rd stage / prevent postpartum haemorrhage
 - 5-10 IU

Oxytocin

- adverse effects:
 - hypotension, tachycardia (CAVE: halothane RR↓)
 - rupture of uterus
 - electrolyte disturbances (ADH-resembl.!)
 - water retention
- oxytocin receptor antagonists
 - atosiban (Tractocile, Antocin)
 - for tocolysis
 - eppelsiban
 - in development
 - for prevention of premature ejaculation in man)

Ergot alkaloids

- several alkaloids (Claviceps purpurea)
 - ergotism: gangraena, abortus, psychosis (hallucination)
 - 5-HT, α , D receptors

St Anthony's fire

Ergot alkaloids (ergometrin)

- uterus contraction / vasoconstriction
 - in low doses: 个 rhytmic, regular, phasic
 - in large doses: 个 TONIC, CONSTANT
- action depends on the contractile state
 - contracted (normal after delivery) → little effect
 - relaxed → strong contraction → reduced bleeding
- clinical indication: postpartum hemorrhage
 - ergometrin (Methergin) 0.2 mg im./iv.
 - ergotamin (Ergam) 3x20 drops po. / 0.15-0.6 mg im.

Ergot alkaloids (ergometrin)

- adverse effects
 - nausea, vomiting (D₂ CTZ)
 - vasoconstriction and ↑ blood pressure
 - headache, blurred vison
 - angina pectoris
 - necrosis in extremities (with overdose)

Prostaglandins

- PGF_{2α}, PGE₂, PGI₂ (prostacyclin)
 - endogenous prostaglandin-synthesis
 - endometrium-myometrium
 - 2nd phase of menstrual cycle (luteal phase)
 - uterinal tone (motility): frequency个, amplitude个, cervix dilation
 - in every period of gestation!
 - sensitivity is increasing
 - before terminus: placenta

Prostaglandin synthesis can be ...

stimulated:

- Ca²⁺
- platelet activating faktor (PAF)
- β-agonists
- estrogene
- TGF-α
- cortisol
- EGF
- IL-1 (αés β)
- lipopolisacharides
- TNF
- CRH, ACTH

inhibited:

- lipocortin
- progesterone
- interferon α
- chorial phospholipase A2 inhibitor (lipocortin VII)

Prostaglandins

- uterinal tone frequency个, amplitude个, cervix dilation个
 - in every phase of gestation
 - misoprostol (Cytotec 200) as abortive (see therapy of gasric ulcer)
- th.: stimulating /induction of labor, induction of abortus
- clinical use
 - local-gel (Prepidil-PGE₂), ProstinE₂ (dinoprostone)
 - Prostin E₂ –PGE₂ analogue (dinoprostone) injection
 - sulproston (Nalador) injection postpartum haemorrhagia
- adverse effects
 - headache
 - GIT (nausea, vomitus)
 - bronchospasm, chest pain
- contraindication
 - asthma bronchiale
 - epilepsy

Tocolytics

- β-sympathomimetics
 - salbutamol (Brycanil) 10 μg/min iv. (8-12h / max 48 h)
 - terbutaline
 - ritodrine
 - prevent premature labour (22-33 weeks)
 - delay delivery → glucocorticoid → ↓ RDS
- atosiban (Tractocile, Antosin)
 - oxytocin receptor antagonist
- MgSO₄
 - MoA: bivalent cation
 - β-sensitivity ↑
 - th.:
 - 4-6 g/15-20 min i.v. bolus, 2-5 g/h i.v.
 - clinical use: VT (torsade de pointes)
 - antidote: Ca²⁺ gluconate
- NSAIDs
 - indometacin: 50-75mg/day p.o.
 - th.: only before 28. gestation week
 - N.B.: early closure of ductus arteriosus (Botallo)
- Minor use:
 - Ca2+ channel blockers
 - Metilxanthines
 - Anxiolytics
 - Ethanol

Tocolytics

- Ca²⁺ channel blockers
 - mechanism of action:
 - blocking L-type Ca²⁺ channels-DHP (nifedipin)
 - efficacy↑
 - a.e.: "flushing", headache, tachycardia
 - th.: not recommended (fetal distress, pulmonary edema)
- methylxanthines
 - aminophylline
 - cAMP PDE-inhibition
 - th.: temporary effect
 - side effect profile ↑
- ethanol
 - hypophyseal oxytocin release ↓
 - direct relaxing effect
- anxiolytic drugs
 - sedative, anxiolytic effect
 - diazepam, promethazine

Smooth muscle relaxants

- papaverine
 - opium alkaloid (but isoquinoline ring structure)
 - blocking VGCC, inhibiting PDE II, III, IV
 - smooth muscle effect in
 - GIT, biliary tract
 - urogenital tract
 - respiratory system
 - cardiovascular effect
 - (-) chronotrop effect
 - ectopic focus ↑
 - vasodilatation (RR↓)
 - a. pulmonalis, cerebral art. dilation (pulm. emb., migrain)
 - analgetic, sedative effect (high doses)
 - PPB个
 - 50-100 mg i.v, i.m. (CAVE: bradycardia, AV-block, ES, VF)
 - p.o.: (8 cg) slow absorption \rightarrow ethaverin, moxaverin

Smooth muscle relaxants

- drotaverine (No-Spa)
 - higher potency than papaverine
 - higher oral bioavail.
 - -4-12 cg
 - Combinations: diclophenac, ibuprofen
- pinaverine (Dicetel)
 - VGCC blocker
 - GIT, urogenital specific

Other GI spasmolytics

- caroverine, mebeverine (Duspatalin® caps. OTC)
 - effect:
 - VG Ca²⁺-channel blockade + others
 - p.o., good absorption
 - GIT, biliary tract
 - th.:
 - caroverine: 20-40mg
 - mebeverine: 150-200 mg
- trimebutine
 - effect
 - antimuscarine + peripheral agonist of μ , κ and δ receptors
 - th.: IBS

General characteristics

- peptides with effects on
 - vascular smooth muscle
 - other cells/tissues (neurotransmission, kidney etc.)
- classification
 - vasoconstrictors
 - angiotensin, endothelins, NPY, vasopressin
 - vasodilators
 - bradykinin, ANP, BNP, CGRP, VIP
 - mixed
 - substance P

General characteristics

- cell surface receptors, mostly G-protein coupled
- parenteral adminstration (sc.)
- variable clinical significance
 - e.g. angiotensin system ↔ endothelins, CGRP

Peptide	Properties
Angiotensin II (ANGII)	↑ IP ₃ , DAG via AT ₁ G protein-coupled receptors. Constricts arterioles, increases aldosterone secretion
Bradykinin	↑ IP ₃ , DAG, cAMP, NO. Dilates arterioles, increases capillary permeability, stimulates sensory nerve endings
Natriuretic peptides (ANP, BNP)	↑ cGMP via ANP _A receptors. Dilate vessels, inhibit aldosterone secretion and effects, increase glomerular filtration
Calcitonin gene-related peptide (CGRP)	An extremely potent vasodilator; causes hypotension and reflex tachycardia
Endothelins	↑ IP ₃ , DAG via G protein-coupled ET _A and ET _B receptors. Synthesized in vascular endothelium. Constrict most vessels and contract other smooth muscle
Neuropeptide Y	Causes vasoconstriction and stimulates the heart. Effects mediated in part by IP ₃
Substance P, neurokinins	Act on neurokinin receptors (NK_1 , NK_2 , NK_3). Dilate arterioles, contract veins and intestinal and bronchial smooth muscle, cause diuresis; substance P is a transmitter in sensory pain neurons
Vasoactive intestinal peptide (VIP)	↑ cAMP via G protein-coupled receptors VPAC1 and VPAC2. Dilates vessels, relaxes bronchi and intestinal smooth muscle

ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; DAG, diacylglycerol; P₃, inositol trisphosphate.

Angiotensin and its antagonists

effects

- arteriolar vasoncontriction
- aldosterone ↑
- norepinephrine release ↑
 (AT₁R)
- cardiac remodeling
- clinical use: antagonists
 - ACE inhibitors (e.g. captopril, enalapril etc.)
 - ATR blockers (e.g. losartan, valsartan etc.)
 - renin inhibitor (aliskiren)
 - inhibitors of renin release (βblockers)

Vasopeptidase inhibitors

- blocks neutral endopeptidase 24.11 and ACE
 - natriuretic peptides ↑
 - angiotensin II ↓
- effects
 - vasodilation, ↓ vasoconstr, Na excretion ↑ → TPR
 ↓, blood pressure ↓
- omapatrilat
- no clinical approval
 - agioedema, cough

Bradykinin

- B₁ and B₂ receptors
- potent vasodilator
- role in
 - inflamm., edema, pain, salivation
- no clinical use but
 - see ACE inhibitors
 - hereditary angioedema
 - ecallantide
 - kallikrein inhibitor
 - icatibant
 - B₂ receptor antagonist

Natriuretic peptides

- ANP, BNP (atria), CNP
- effects
 - guanylyl cyclase $\uparrow \rightarrow cGMP \uparrow \rightarrow vasodil$.
 - GFR \uparrow / \downarrow Na reabs. / renin \downarrow
- clinical role
 - congestive heart failure
 - BNP plasma cc. ≈ severity
 - nesiritide recombinant BNP
 - used in: acute heart failure iv. inf.
 - toxicity: hypotension, renal damage

Endothelins

- produced by endothelial cells
 - autocrin / paracrin
 - variations: ET-1 / ET-2 / ET-3 receptors: ET_A / ET_B
 - long lasting vasoconstriction
- clinical relevance
 - ET receptor antagonists
 - bosentan (nonsel) / ambrisentan (ET_A)
 - pulmonary hypertension (oral / in mild cases)

Neurokinins (substance P)

- NK₁ and NK₂ receptors CNS and periphery
- mixed vascular effect
 - arteriolar dilation ↔ vein contraction (GI and airway too)
- other roles
 - local hormone in GI
 - pain
 - capsaicin depletes substance P
 - approved for: topical use arthritic joints, post-herpetic neuralgia
 - nausea, vomiting
 - aprepitant NK1 antagonist
 - delayed emesis associated with cancer chemotherapy

Vasopressin (ADH)

- V₁ and V₂ receptors
 - $-V_{1a}$ vasoconstriction / V_{1b} release of ACTH
 - $-V_2$ antidiuretic effects (aquaporin channels)
- agonist
 - desmopressin (V₂)
 - clinical use: pituitary diabetes insipidus / von Willebrand disease (extrarenal V_2 → release of factor \uparrow)
- antagonists
 - conivaptan V_{1a} and V_{2}
 - tolvaptan V₂
 - used in hyponatremia
 - older: demeclocycline, also see lithium

VIP, CGRP, NPY

- no current clinical role
- VIP
 - in CNS and PNS and GI / neurotransmitter
 - vasodilation
- CGRP
 - thyroid, smooth muscle
 - cotransmitter
 - vasodilation → hypotension → reflex tachycardia
 - role in migraine ?
 - oral antagonist would be nice
- NPY
 - vasoconstrictor, cotransmitter
 - CNS: hypotension, hypothermia, feeding 个