ใบงานประกอบการทดลอง เรื่อง วงจรกรองสัญญาณ

ชื่อ นามสกุล <u> </u>	รหัสนิสิต <u> 6430133721</u>	ตอนเรียนที่ <u>1</u> กลุ่มที่ <u>8</u>
ชื่อ นามสกุล <u>จักังตั้ ศริกานนท์</u> ชื่อ นามสกุล <u>จักกัง</u> โมภา	รหัสนิสิต <u> 6430043921</u> รหัสนิสิต <u> 643003117</u>	
, , ,	ลายเซ็นอาจารย์ผู้ตรวจ	

การทดลองที่ 1: วงจรขยายแบบอินสตรูเมนเตชันที่ใช้ออปแอมป์ 3 ตัว

ให้ออกแบบและสร้างวงจรขยายแบบอินสตรูเมนเตชัน ที่ใช้ออปแอมป์ 3 ตัว กำหนดให้ วงจรขยาย แบบอินสตรูเมนเตชัน มีอัตราขยาย เท่ากับ 5

- ใช้แรงดันอ้างอิง เท่ากับ 0 โวลต์
- แรงดันของแหล่งจ่าย กำหนดให้มีค่าเท่ากับ ±9 V
- ค่าความต้านทานที่ใช้ในวงจร สามารถเลือกใช้ได้ คือ ค่า 10 k Ω 500 k Ω^{***}
- ไอซีของออปแอมป์ที่ใช้ในการทดลองกำหนดให้ คือ TL064

รูปที่ 2: วงจรที่ใช้ในการทดลองเพื่อวัดอัตราขยายผลต่าง

้บันทึกค่าความต้านทานที่ได้ออกแบบไว้ เทียบกับค่าความต้านทานจริงที่ได้จากการวัดด้วยมัลติมิเตอร์***

ตัวต้านทาน	ค่าที่ออกแบบไว้ (kΩ)	ค่าที่วัดด้วยมัลติมิเตอร์ ($k\Omega$)
R	20	19.52, 19.50
R_g	10	9.76
R_1	20	19.72
R_2	20	19.62
R_3	20	19.67
R_4	20	20.00

หมายเหตุ ตัวต้านทาน R ที่ใช้ในวงจร ให้ระบุค่าทั้งสองตัว คั่นด้วยเครื่องหมายจุลภาค ","

การวัดอัตราขยายผลต่าง

ต่อวงจรขยายแบบอินสตรูเมนเตชันลงบน breadboard เมื่อต่อเรียบร้อย ตรวจสอบว่า วงจรทำงาน ถูกต้อง ให้วัดค่าอัตราขยายผลต่างโดยใช้วงจรในรูปที่ 2 <u>ด้วยการป้อนสัญญาณไซน์ ความถี่ 1000 Hz จาก เครื่องกำเนิดสัญญาณ (Function generator) ซึ่งมีค่ายอดตามที่กำหนดไว้ในตาราง แล้วใช้ดิจิทัล ออสซิลโลสโคปวัดค่ายอดของแรงดันขาเข้า v_{in} และแรงดันขาออก v_{out} บันทึกค่าที่ได้จากการทดลองลงใน ตาราง</u>

หมายเหตุ ให้สังเกตค่ายอดของแรงดันขาเข้าที่เป็นบวก เทียบกับ ค่ายอดของแรงดันขาออกที่เป็นบวก ให้ สังเกตค่ายอดของแรงดันขาเข้าที่เป็นลบ เทียบกับ ค่ายอดของแรงดันขาออกที่เป็นลบ

(V_p)	-2	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0
v_{out} (V_p)	-8.8	- 8.6	- 8.4	-7.32	-6.27	- 5,23	-4.26	-3.22	- 2.13	-1,07	0

v_{in} (V_p)	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
v_{out} (V_p)	0.98	1.97	2.97	4.02	4.98	6.03	7	7.6	8.2	8.2

วาดกราฟของสัญญาณขาเข้าเทียบกับสัญญาณขาออก คำนวณอัตราขยายผลต่างในช่วงที่วงจรทำงานเชิงเส้น

เปรียบเทียบค่าอัตราขยายผลต่างในทางทฤษฎี กับค่าได้จากการทดลอง บันทึกผลลงในตาราง

	ค่าทางทฤษฎี: $Adm=1+rac{2R}{R_g}$	ค่าจากการทดลอง: ความชั้นของกราฟ
ค่าอัตราขยายผลต่าง	$14 \frac{2(19.51)}{9.67} = 5.03$	5.0 ₈

อภิปรายและตอบคำถาม

นิสิตคิดว่า เหตุใดแรงดันอิ่มตัวด้านบวกหรือด้านลบจึงไม่เท่ากับแรงดันไฟเลี้ยงบวกหรือลบ

<u>เพราะค่าตัวต้านทานที่ ใช้จริงมีความคลาดเคลื่อนไปจาก ค่าที่ออกแบบไว้ และ opamp เกิดแรงดันตก จึงทำใน แระดัน และ อุกสทุน เกิดแรงดันแกก จึงทำใน แระดัน
อิ่มตัวล้านงอกเรือดันเลบ ไม่สามเถมีค่าถึงค่าแรวดันไฟเลี้ยงบากเรือลบ คือ ± q v โดยค่าแรงดันโดนก = x,2 v

มีกามคลาดเคลื่อนจาก แระดันไฟเลี้ยล = | x2-q | x400 % = 3% และค่าแรงดันโลนก = -8% v มีกามคลาดเคลื่อน
จาก แระดันไฟเลี้ยล = | -8% -(-q1) x400 % = 4.4 %</u>

การวัดอัตราขยายผลร่วม

ต่อวงจรตามรูปที่ 3 **ลัดขั้วเข้าทั้งสองของวงจรขยายแบบอินสตรูเมนเตชันเข้าด้วยกัน** ป้อนสัญญาณ ไซน์ที่ความถี่ 50 Hz เพิ่มขนาดของสัญญาณไซน์จนกระทั่งสามารถสังเกตเห็นสัญญาณขาออกที่ขั้วออก (อาจจะใช้การปรับสเกลแกนตั้งของคิจิทัลออสซิลโลสโคป (DSO) ช่วยด้วย) วัดขนาดจากยอดถึงยอด (peakto-peak value) ของสัญญาณขาเข้าและขาออกเพื่อใช้คำนวณหาอัตราขยายผลร่วม

	คำนวณจากความไม่เข้าคู่ (mismatch)ของค่าความ ต้านทาน โดยใช้ค่าความต้านทาน ในตารางที่ 1	ค่าจากการทดลอง: $A_{cm} = rac{\left v_{out} ight }{\left v_{in} ight }$
	$A_{cm} = \left(\frac{R_3}{R_2 + R_3}\right) \left(1 + \frac{R_4}{R_1}\right) - \frac{R_4}{R_1}$	""
ค่าอัตราขยายผลร่วม	5.8178 × 10 ⁻³	5.734 × 10 ⁻³

ให้ใช้<u>ค่าอัตราขยายผลต่างและผลร่วม</u>ที่ได้จากการทดลอง คำนวณค่า CMRR ตามสมการ

$$CMRR = 20\log\left(\frac{A_{dm}}{A_{cm}}\right)$$

 ค่า CMRR จากการทดลอง
 56.73 dB

 ค่า CMRR จากการคำนวณ
 58.94 dB

อภิปรายผลการทดลองเทียบกับค่าจากการคำนวณ

สมบนามเหมู่ในมอบรล กระพูง obomb มู่ใน พูงให้ อุบุชเขาสถายเลของการบุรเกาลายุเขาสถายเลของการบุรเกาลายุเขาสายเหมือก พระพุทธเกาสมุก เพียง การบุรเกาลายุเขาสายเหมือน เพียง การบุรเกาลายุเขาสมานามเลของการบุรเกาลายุเขาสมานามผู้จุฬ

สิวกาใน ค่า cman คลาดเคลื่อนตามไปด้วย โดยที่

| 15.03-5.03 | ×100 / . = 0.99 / 、
| // error ค่าอัสถ์ ขยายผลต่าง = 5.03 | ×100 / . = 0.99 / 、

 $\frac{1}{58.99} \times \frac{1}{58.99} \times \frac{1}{58.99} \times \frac{100^{1/2}}{58.99} \times$

การทดลองที่ 2: วงจรขยายคลื่นไฟฟ้าหัวใจ

- 1) นำวงจรขยายแบบอินสตรูเมนเตชันที่ได้มาต่อเข้ากับวงจรกรองที่ได้จากการทดลองในครั้งแรก ดังแสดงใน รูปที่ 4 (ให้ขาออกของวงจรขยายแบบอินสตรูเมนเตชันเป็นขาเข้าของวงจรกรอง)
- 2) ต่อวงจรแบ่งแรงดันดังแสดงในรูปที่ 4 เลือกอัตราส่วนการแบ่งแรงดันประมาณ 50 เท่า คำนวณค่าความ ต้านทานที่ต้องนำมาใช้ สาเหตุที่ต้องแบ่งแรงดันเนื่องจากเครื่องกำเนิดสัญญาณที่ใช้ในห้องปฏิบัติการฯ สามารถกำเนิดสัญญาณได้ขนาดเล็กสุด 100 mVpp ซึ่งถ้าป้อนเข้าวงจรโดยตรงจะเกิดการอิ่มตัวของวงจร ได้ ค่าอัตราการลดทอน $Atten = \frac{R_B}{R_A + R_B}$
- 3) ต่อขาเข้าของวงจรขยายแบบอินสตรูเมนเตชันเข้ากับเครื่องกำเนิดสัญญาณ ผ่านทางวงจรแบ่งแรงดัน
- 4) วัดแรงดันขาเข้าและขาออก โดยต่อ CH1 ของ DSO เข้ากับขาเข้าของวงจรขยายแบบอินสตรูเมนเตชัน และต่อ CH2 ของ DSO เข้ากับขาออกของวงจรกรอง
- 5) ป้อนสัญญาณไซน์ที่ความถี่ต่างๆ บันทึกขนาดของสัญญาณขาเข้าและขาออกลงในตาราง โดยให้บันทึกเป็น ค่ายอดถึงยอด คำนวณค่าอัตราขยายตามสมการ $Gain(dB) = 20\log\left(\frac{v_{out}}{v_{in} \times Atten}\right)$ เพื่อหาผลตอบ สนองเชิงความถี่

รูปที่ 4: วงจรขยายคลื่นไฟฟ้าหัวใจซึ่งประกอบด้วยวงจรขยายแบบอินสตรูเมนเตชันและวงจรกรอง และการวัดผลตอบสนองเชิงความถี่

<u>หมายเหตุ</u>

1) ในการใช้ DSO (Digital storage oscilloscope) วัดสัญญาณ ช่องสัญญาณที่ 1 และ 2 ของ DSO ต้องถูกตั้งการเชื่อมโยงแบบ <u>DC (direct coupling)</u> เพื่อให้การวัดค่าอัตราขยายมีความถูกต้องที่ ความถี่ต่ำมาก หากตั้งเป็นแบบ AC ขนาดของสัญญาณที่ความถี่ต่ำจะมีค่าลดต่ำลงเนื่องจากมีตัวเก็บ ประจุขนาดใหญ่ต่อระหว่างขั้วเข้ากับวงจรภายในตัวเครื่อง

f (Hz)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
v_{in} (mV_{pp})	50	50	50	50	50	50	50	50	50
$\begin{pmatrix} v_{out} \\ (\text{mV}_{pp}) \end{pmatrix}$	0.19	0.3	0.4	0.48	0.52	0.53	0.5%	0.58	0.59
Gain (dB)	46.71	56.68	53.18	54.76	55,46	55.62	56.40	56.40	56.55

f (Hz)	1	2	3	4	5	6	7	8	9
$\frac{v_{in}}{(\text{mV}_{pp})}$	200	200	200	200	200	200	200	200	200
$egin{array}{c} v_{out} \ (-V_{pp}) \end{array}$	2.25	2.45	2.49	2.49	2.49	2,49	2.49	2,49	2.49
Gain (dB)	56.29	56.88	57.02	57.02	54.02	57.02	57.02	57.02	57.02

f (Hz)	10	20	30	40	50	60	70	80	90
$(\mathrm{mV}_{\mathrm{pp}})$	200	200	200	200	200	200	200	200	200
$egin{pmatrix} v_{out} \ (V_{pp}) \end{bmatrix}$	2.49	249	2.49	2.41	2.33	2.27	2.15	2.01	1.87
Gain (dB)	57.02	57.02	57.02	56.74	56.44	56.21	55.44	55.16	54.53

f (Hz)	100	200	300	400	500	600	700	800	900	1000
$\frac{v_{in}}{(\text{mV}_{pp})}$	200	200	200	200	200	200	200	200	200	200
$\begin{pmatrix} v_{out} \\ (V_{pp}) \end{pmatrix}$	1.69	0.59	0.29	0.18	0.11	0.08	0.066	0.052	0.044	0.034
Gain (dB)	53.65	44.52	88.34	34.06	29.52	29.16	25.49	23.42	21.97	19.73

หมายเหตุ นิสิตสามารถใช้โปรแกรม Excel หรือโปรแกรมอื่นช่วยวาดกราฟได้ แต่ต้องระบุข้อมูลให้ ถูกต้องและครบถ้วน เช่น ชื่อแกน หน่วยของแกน

กราฟผลตอบสนองเชิงความถี่ของวงจรกรอง

อภิปรายผลของค่าความถี่ตัดผ่านของวงจรขยายคลื่นไฟฟ้าหัวใจ เหมือนหรือแตกต่างจากวงจรกรองใน การทดลองที่แล้ว หรือไม่ พร้อมทั้งให้เหตุผลประกอบ

การทดลองที่ 3: การวัดสัญญาณคลื่นไฟฟ้าหัวใจ

ให้อาสาสมัครในกลุ่ม 1 คน เป็นตัวอย่าง นำสายสัญญาณและขั้วอิเล็กโทรดที่กำหนดให้ ต่อเข้ากับ แขนซ้าย แขนขวา และขาขวาดังรูปที่ 5 ต่อขาออกของวงจรเข้ากับ DSO CH1

- ปรับสเกลแนวนอนของออสซิลโลสโคป เป็น 200 ms/Div (จะเห็นรูปคลื่น ECG ประมาณ 2-4 รูปคลื่น)
- ปรับสเกลแกนตั้งของออสซิลโลสโคป เป็น 1 V/Div หรือสามารถใช้สเกลอื่นได้ที่เห็นสัญญาณชัดเจน
- บันทึกรูปคลื่นสัญญาณคลื่นไฟฟ้าหัวใจลงใน thumb drive **โดยบันทึกแบบเป็นไฟล์รูปภาพ (นามสกุล** .png หรือ .jpg) <u>และ</u> บันทึกแบบเป็นไฟล์ข้อมูล (นามสกุล .CSV)

รูปที่ 5: การวัดสัญญาณคลื่นไฟฟ้าหัวใจ

รูปที่ 6: สัญญาณคลื่นไฟฟ้าหัวใจที่บันทึกได้

อภิปรายผลการทดลองเกี่ยวกับรูปคลื่นไฟฟ้าหัวใจที่วัดได้