

Dynamic Sets and Hashing

Dynamic Set

- One of the most useful abstract data types.
- A collection of unique keys which supports:
 - insertion and deletion
 - membership queries: x in set
- Very similar to dictionary.

Implementation #1

Store n elements in a dynamic array.

▶ Initial cost: $\Theta(n)$.

ightharpoonup Query: linear search, O(n).

Insertion: Θ(1) amortized.

Implementation #2

- Store n elements in a sorted dynamic array.
- ► Initial cost: $O(n \log n)$.
- Puery: binary search, Θ(log n).
- ► Insertion: *O*(*n*)
 - Must maintain sorted order, involves copies.

Better Implementation

Store n elements in a hash table.

▶ Initial cost: $\Theta(n)^1$.

► Query: Θ(1).

► Insertion: Θ(1).

¹All time complexities are average case.

Today's Lecture

- We'll review hashing.
- See where hashing is **not** the right thing to do.
- Review binary search trees as an alternative.
- Next lecture: introduce treaps.

Hashing

- One of the most important ideas in CS.
- Tons of uses:
 - Verifying message integrity.
 - Fast queries on a large data set.
 - Identify if file has changed in version control.

Hash Function

A hash function takes a (large) object and returns a (smaller) "fingerprint" of that object.

How?

Looking at certain bits, combining them in ways that look random.

Hash Function Properties

- Hashing same thing twice returns the same hash.
- Unlikely that different things have same fingerprint.
 - ► But not impossible!

Example

- MD5 is a cryptographic hash function.
 - ► Hard to "reverse engineer" input from hash.
- Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to "fingerprint" whole files.

Example

```
> echo "My name is Justin" | md5
a741d8524a853cf83ca21eabf8cea190
> echo "My name is Justin" | md5
a741d8524a853cf83ca21eabf8cea190
> echo "My name is Justin!" | md5
f11eed2391bbd0a5a2355397co89fafd
```

Another Use

- Want to place images into 100 bins.
- How do we decide which bin an image goes into?
- Hash function!
 - Takes in an image.
 - Outputs a number in {1, 2, ..., 100}.

Hashing for Data Scientists

- Don't need to know much about how hash function works.
- But should know how they are used.

Hash Tables

- Create an array with pointers to m linked lists.
 - ▶ Usually $m \approx$ number of things you'll be storing.
- Create hash function to turn input into a number in {0, 1, ..., m - 1}.

Example

```
hash('hello') == 3
hash('data') == 0
hash('science') == 4
```

0 1 2 3 4 ... m-1

Collisions

- ► The universe is the set of all possible inputs.
- This is usually much larger than m (even infinite).
- Not possible to assign each input to a unique bin.
- ► If hash(a) == hash(b), there is a collision.

Chaining

- Collisions stored in same bin, in linked list.
- **Query**: Hash to find bin, then linear search.

0 1 2 3 ... m -

The Idea

- A good hash function will utilize all bins evenly.
 - Looks like uniform random distribution.
- ▶ If $m \approx n$, then only a few elements in each bin.
- As we add more elements, we need to add bins.

Average Case

n elements in bin.

- \triangleright *m* bins.
- ► Assume elements placed randomly in bins².
- \triangleright Expected bin size: n/m.

²Of course, they are placed deterministically.

Analysis

- Query:
 - \triangleright $\Theta(1)$ to find bin
 - \triangleright $\Theta(n/m)$ for linear search.
 - ► Total: $\Theta(1 + n/m)$.
 - ▶ We usually guarantee m = O(n), \implies $\Theta(1)$.
- ► Insertion: Θ(1).

Worst Case

- Everything hashed to same bin.
 - Really unlikely!
 - Adversarial attack?

- Query:
 - \triangleright $\Theta(1)$ to find bin
 - \triangleright $\Theta(n)$ for linear search.
 - ► Total: Θ(*n*).

Worst Case Insertion

- ▶ We need to ensure that $m \le c \cdot n$.
 - Otherwise, too many collisions.
- ► If we add a bunch of elements, we'll need to increase *m*.

Increasing m means allocating a new array, $\Theta(m) = \Theta(n)$ time.

Main Idea

Hash tables support constant (expected) time insertion and membership queries.

Hashing Downsides

- Hashing is like magic. Constant time access?!
- Comes at a cost: data now scattered "randomly".
- Examples:
 - find max/min in hash table.
 - range query: all strings between 'a' and 'c'

Must do a full loop over table!

Example

```
hash('apple') == 3
hash('bill nye') == 0
hash('cassowary') == 4
```

0 1 2 3 4 ... m-1

Binary Search Trees

Binary Search Trees

- An alternative way to implement dynamic sets.
- Slightly slower insertion, query.
- But preserves data in sorted order.

Binary Search Tree

- A binary search tree (BST) is a binary tree that satisfies the following for any node x:
- ▶ if y is in x's **left** subtree:

▶ if y is in x's **right** subtree:

Example

► This **is** a BST.

Example

► This is **not** a BST.

Exercise

Is this is a BST?

Memory Representation

- Each element stored as a node at an arbitrary address in memory.
- Each node has a key³ and pointers to left child, right child, and parent nodes (if they exist).

³We'll assume keys are unique, though this can be relaxed.

In Python

```
class Node:
   def init (self, key, parent=None):
        self.key = key
        self.parent = parent
        self.left = None
        self.right = None
class BinarySearchTree:
   def init (self, root: Node):
        self.root = root
```

In Python


```
root = Node(6)
n1 = Node(12, parent=root)
root.left = n1
n2 = Node(33, parent=root)
root.right = n2
tree = BinarySearchTree(root)
```

Operations on BSTs

- ► We will want to:
 - traverse the nodes in sorted order by key
 - query a key (is it in the tree?)
 - insert a new key
 - delete an existing key

Inorder Traversal


```
def inorder(node):
    if node is not None:
        inorder(node.left)
        print(node.key)
        inorder(node.right)
```

Inorder Traversal

Prints nodes in sorted order.

- \triangleright Visits each node once, $\Theta(1)$ time in the call.
- Takes Θ(n) time.

Queries

Given: a BST and a target, t.

► **Return**: True or False, is the target in the collection?

Queries

► Is 36 in the tree? 65? 23?

Queries

- Start walking from root.
- If current node is:
 - equal to target, return True;
 - too large (> target), follow left edge;
 - too small (< target), follow right edge;</p>
 - None, return False

Queries, in Python

```
def query(self, target):
    current node = self.root
    while current node is not None:
        if current node.key == target:
            return current node
        elif current node.kev < target:</pre>
            current node = current node.right
        else:
            current node = current node.left
    return None
```

Queries, Analyzed

 \triangleright Best case: Θ(1).

 \triangleright Worst case: Θ(h), where h is **height** of tree.

Insertion

► **Given**: a BST and a new key, *k*.

► **Modify**: the BST, inserting *k*.

Must maintain the BST properties.

Insertion

► Insert 23 into the BST.


```
def insert(self. new kev):
    # assume new key is unique
    current node = self.root
    parent = None
    while current node is not None:
        parent = current node
        if current node.kev == new kev:
            raise ValueError(f'Duplicate kev "{new kev}" not allowed.')
        if current node.kev < new kev:
            current node = current node.right
        elif current node.kev > new kev:
            current node = current node.left
    new node = Node(key=new key, parent=parent)
    if parent is None:
        self.root = new node
    elif parent.key < new key:
        parent.right = new node
    else:
        parent.left = new node
```

Insertion, Analyzed

 \triangleright Worst case: Θ(h), where h is **height** of tree.

Deletion

► **Given**: a key in the BST.

▶ **Modify**: the BST, deleting the key.

Must maintain the BST properties.

► This is a little trickier.

Deletion: Case 1 (Easy)

▶ Delete 36 from the BST.

Deletion: Case 2 (Tricky)

▶ Delete 42 from the BST.

Deletion

- If node has no children (leaf), easy.
- Otherwise, a little trickier.
- ► Idea: rotate⁴ node to bottom, preserving BST. When it is a leaf, delete.

⁴Most books take a different approach with the same time complexity.

(Right) Rotation

(Left) Rotation

Claim

Left rotate and right rotate preserve the BST property.

```
def right rotate(self, x):
    u = x \cdot left
    B = u.right
    C = x.right
    p = x.parent
    x.left = B
    if B is not None: B.parent = x
    u.right = x
    x.parent = u
    u.parent = p
    if p is None:
        self.root = u
    elif p.left is x:
        p.left = u
    else:
        p.right = u
```

Deletion Analyzed

- ightharpoonup Each rotate takes Θ(1) time.
- \triangleright O(h) rotations until node becomes leaf.
- So $\Theta(h)$ time in the worst case.

Main Idea

Insertion, deletion, and querying all take $\Theta(h)$ time in the worst case, where h is the height of the tree.

Balanced and Unbalanced BSTs

Binary Tree Height

- In case of very balanced tree, *h* grows **logarithmically** with *n*.
 - $h = \Theta(\log n)$
 - Puery, insertion, deletion take worst case $\Theta(\log n)$ time.

Binary Tree Height

- In the case of very unbalanced tree, *h* grows **linearly** with *n*.
 - $h = \Theta(\log n)$
 - ightharpoonup Query, insertion, deletion take worst case $\Theta(n)$ time.

Unbalanced Trees

- Occurs if we insert items in (close to) sorted or reverse sorted order.
- ► This is a **common** situation.

Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query $\Theta(h)$ insertion $\Theta(h)$

Where h is height, and $h = \Omega(\log n)$ and h = O(n).

Time Complexities (Balanced)

```
query O(\log n) insertion O(\log n)
```

Where h is height, and $h = \Omega(\log n)$ and h = O(n).

Worst Case Time Complexities (Unbalanced)

```
query \Theta(n) insertion \Theta(n)
```

- The worst case is bad.
 - Worse than using a sorted array!
- ► The worst case is **not rare**.

Main Idea

The operations take linear time in the worst case **unless** we can somehow ensure that the tree is **balanced**.

Range Queries, Max, and Min

Why use a BST?

Even assuming a balanced tree, BSTs seem worse than hash tables.

	BST	Hash Table ⁵
query	$O(\log n)$	Θ(1)
insertion	$O(\log n)$	Θ(1)

So when are BSTs better?

⁵Average case times reported.

Max/Min

- Consider finding the maximum element.
- \triangleright Hash tables: Θ(n); must loop through all bins.
- ▶ BST: $\Theta(h)$, which is $O(\log n)$ if balanced

Example

Main Idea

Keeping track of the maximum can be done efficiently in any stream of numbers, provided that there are only **insertions**. But if **deletions** are allowed, BSTs can find the *next* maximum efficiently.

Exercise

How well do heaps work for this problem? Are they better? In what sense?

Range Queries

- Given: a collection and an interval [a, b]
- ▶ **Retrieve:** all elements in the interval.

- Example:
 - collection: 55, 12, 5, 43, 20, 90, 65, 99, 60, 70
 - ▶ interval: [1, 30]
 - result: 5, 12, 20

Exercise

How quickly can this be performed with a hash table?

Range Queries in BST

- Definitions:
 - ► The ceiling of x in a BST is the smallest key $\ge x$.
 - ightharpoonup The successor of node u is the smallest node > x.

- Strategy:
 - Find the **floor** of a
 - Repeatedly find the successor until > b

Example

Range Queries

ceiling and successor both take $O(h) = O(\log n)$ in balanced trees

► If the are k elements in the range, calling successor k times gives complexity O(k log n).