Question 1 Let V be the set of 2×2 matrices whose entries are elements in \mathbb{Q} .

- (a) Write V as a set using mathematical symbols.
- (b) Define the 0 element, the additive inverse $V \to V$, and two operations, addition $V \times V \to V$ and scalar multiplication $\mathbb{Q} \times V \to V$, which make V a vector space over \mathbb{Q} .
- (c) Using your definitions from (b), show that axiom S3: $(a+b)\underline{u} = a\underline{u} + b\underline{u}$ for all $a,b \in \mathbb{Q}$ and $\underline{u} \in V$, holds. You may use that \mathbb{Q} is a field.

Solution:

(a)
$$V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Q} \right\}.$$