Université de Montréal

Exercice 01

Par
Roua Nour Briedj, **20162433** & Nawal Imad, **20161236**

Département de psychologie Faculté des arts et des sciences

Travail présenté à Madame Alena Tsikhanovich dans le cadre du cours IFT 1016 section B,

Programmation 1

1. Conversions de bases :

☐ Déterminer la puissance de chaque chiffre pour un nombre de 5 chiffres en base 7 :

Le nombre	5	4	3	2	1
La puissance	7^{4}	7^{3}	7^{2}	7^{1}	7^{0}

☐ Convertir le nombre 2AA316 en décimal :

1) Puissance correspondant à chaque chiffre

2	A	A	3
16^{3}	16^{2}	16 ¹	16^{0}

2) Sachant que A = 10 en base décimale, $2AA3_{16} = 16^3 \times 2 + 16^2 \times A (10) + 16^1 \times A (10) + 16^0 \times 3$ $= 8192 + 2560 + 160 + 3 = 10915_{10}$

- □ Conversion du nombre $4B_{16}$:
- o d'hexadécimal à décimal :
 - 1) B équivaut à la valeur 11 en décimal
 - 2)

4	В
16 ¹	16 ⁰

3)
$$4B_{16} = 16^{0} \times B (11) + 16^{1} \times 4$$

= $11 + 64 = 75_{10}$

o d'hexadécimal à binaire :

En hexadécimal	4	В
En binaire	100	1011

Donc, $4B_{16} = 1001011_2$

o d'hexadécimal à octal :

En hexadécimal	4	В
Binaire	100	1011
Octal	$(001)(001)(011) = 113_8$	

Donc, $4B_{16} = 113_8$

 $\hfill \Box$ encodage de l'entier 1011_{10} avec la notation hexadécimale de JavaScript : méthode des divisons successives

•
$$\frac{1011}{16}$$
 = 63 et il reste 3

•
$$\frac{63}{16} = 3$$
 et il reste 15

•
$$\frac{3}{16} = 0$$
 et il reste 3

La valeur 15 en décimal équivaut à F en hexadécimal. Le résultat est donc : 0x3F3₁₆

□ valeur de 0xee en JavaScript :

1) e = 14 en décimal

2)

e	e
16 ¹	16^{0}

$$\rightarrow$$
 0xee = 16⁰ x e (14) + 16¹ x e (14)

$$= 14 + 224$$

 $=238_{10}$

2. Représentation du nombre 1710 selon la convention non signée sur 5 bits :

$$17_{10} = 2^4 (16) + 2^0 (1) = 10001$$

1	0	0	0	1
2^{4}	2^{3}	2^2	2^{1}	2^{0}

#3. les valeurs encodées par la convention complément à 2 sur 5 bits par les chaines binaires :

$$\square$$
 01101₂ \rightarrow 10010₂ + 1 = 10011₂

$$\square$$
 10011₂ \rightarrow 01100₂ + 1 = 01101₂

<u>#4.</u>

- Rappel de l'anatomie d'un nombre à virgule flottante précision double IEEE 754 (64 bits) :

Signe (positif ou négatif)	Exposant	Fraction (= mentisse)
1 bit	11 bits	52 bits

- Encodage en précision double IEEE 754 (64 bits) des nombres point flottants :

□ 3.15

1) Convertir le nombre en binaire :

a) La partie entière : $3_{10} \rightarrow 11_2$

b) La partie décimale : multiplier la fraction (0,15) par la base (2)

$$0.15 \times 2 = 0.30$$

$$0.30 \times 2 = 0.60$$

$$0.60 \times 2 = 1.20 (1^{er} \text{ entier})$$

$$0.20 \times 2 = 0.40$$

$$0.40 \times 2 = 0.80$$

$$0.80 \times 2 = 1.60 (2^{\text{ème}} \text{ entier})$$

$$0,60 \times 2 = \frac{1}{1},20 \text{ (3}^{\text{ème}} \text{ entier)}$$

. . .

Donc,
$$0.15 = 0.001001100...$$

Et
$$3,15 = 11,001001100... = 1,1001001100... \times 2^{1}$$

2) Trouver l'exposant :

$$e = 1023 + 1 = 1024 = 2^{10} = 100000000000$$
 sur 11 bits

3) Trouver la fraction:

$$f = 1a \text{ mentisse} = 1001001100... \text{ sur } 52 \text{ bits}$$

4) Réponse:

s (positif)	e	f
0	1000000000	1001001100

□ -4:

1) Convertir le nombre en binaire :

$$4_{10} \rightarrow 100_2 = 1,00 \text{ x } 2^2 \text{ et s} = 1 \text{ car le 4 est négatif}$$

2) Trouver l'exposant :

$$e = 1023 + 2 \rightarrow e = 1025 = 2^{10}(1024) + 2^{0}(1) = 10000000001$$
 sur 11 bits

3) Trouver la fraction:

f = la mentisse = 000...0 sur 52 bits

4) Réponse:

s (négatif)	e	f
1	1000000001	000000

5. la plus petite expression JavaScript contenant les nombres 10, 2, 3, et 4 et les opérateurs +, - et * dont la valeur est 9 :

Réponse : ((10-4)*2)-3