Intégrale de Gauss

1) Définition et existence.

La fonction $x \mapsto e^{-x^2}$ est continue sur $[0, +\infty[$ et négligeable devant $\frac{1}{x^2}$ en $+\infty$. On en déduit que la fonction $x \mapsto e^{-x^2}$ est intégrable sur $[0, +\infty[$. Donc

l'intégrale
$$\int_0^{+\infty} e^{-x^2} dx$$
 existe et s'appelle l'intégrale de Gauss.

- 2) Calcul de $\int_0^{+\infty} e^{-x^2} dx$.
- a) Premier calcul. Puisque la fonction $x \mapsto e^{-x^2}$ est intégrable sur $[0, +\infty[$, $\int_0^{+\infty} e^{-x^2} dx = \lim_{R \to +\infty} \int_0^R e^{-x^2} dx$.

Pour R réel strictement positif donné, on pose $I(R) = \int_0^R e^{-x^2} dx$. On a

$$(I(R))^2 = \left(\int_0^R e^{-x^2} \ dx\right)^2 = \left(\int_0^R e^{-x^2} \ dx\right) \left(\int_0^R e^{-y^2} \ dy\right) = \iint\limits_{(x;y) \in [0,R]^2} e^{-(x^2+y^2)} \ dxdy \ (\text{intégrales indépendantes}).$$

Le terme $x^2 + y^2$ invite à passer en polaires mais le domaine d'intégration n'est pas parfaitement adapté à ce changement de variables.

La fonction à intégrer est positive et, dans le but d'encadrer I(R), on encadre le domaine d'intégration entre les deux quarts de disque noté D(R) et $D(R\sqrt{2})$ où $D(R) = \{(x,y) \in \mathbb{R}^2 / 0 \le x, \ 0 \le y, \ x^2 + y^2 \le R^2\}$. On a bien $D(R) \subset [0,R]^2 \subset D(R\sqrt{2})$ car

$$(x,y)\in D(R) \Rightarrow 0 \leq x, \; 0 \leq y, \; x^2+y^2 \leq R^2 \Rightarrow 0 \leq x \leq R \; \mathrm{et} \; 0 \leq y \leq R,$$

et de même

$$(x,y)\in [0,R]^2 \Rightarrow 0 \leq x \leq R \ \mathrm{et} \ 0 \leq y \leq R \Rightarrow 0 \leq x, \ 0 \leq y \ \mathrm{et} \ x^2+y^2 \leq R^2+R^2=2R^2.$$

Par positivité de l'intégrale et additivité par rapport au domaine d'intégration, on obtient

$$\iint\limits_{D(R)} e^{-(x^2+y^2)} \ dx dy \leq \iint\limits_{[0,R]^2} e^{-(x^2+y^2)} \ dx dy \leq \iint\limits_{D(R\sqrt{2})} e^{-(x^2+y^2)} \ dx dy.$$

Pour R>0, posons alors $J(R)=\iint\limits_{D(R)}e^{-(x^2+y^2)}~dxdy.$ En passant en polaires, on obtient

$$\begin{split} J(R) &= \iint\limits_{D(R)} e^{-(x^2+y^2)} \; dx dy = \iint\limits_{r \in [0,R], \theta \in [0,\frac{\pi}{2}]} e^{-r^2} r dr d\theta = \left(\int_0^{\pi/2} d\theta \right) \left(\int_0^R r \; dr \right) \; (\text{intégrales indépendantes}) \\ &= \frac{\pi}{2} \times \left[-\frac{1}{2} e^{-r^2} \right]_0^R = \frac{\pi}{4} (1-e^{-R^2}). \end{split}$$

1

http://www.maths-france.fr

Puis en remplaçant R par $R\sqrt{2}$, on obtient $J(R\sqrt{2})=\frac{\pi}{4}(1-e^{-2R^2})$. L'encadrement obtenu plus haut s'écrit alors $\frac{\pi}{4}(1-e^{-2R^2})$ $e^{-R^2}) \leq (I(R))^2 \leq \frac{\pi}{4}(1-e^{-2R^2}) \text{ ou encore, puisque } I(R) \text{ est positif,}$

$$\forall R > 0, \ \frac{\sqrt{\pi}}{2} \sqrt{1 - e^{-R^2}} \le \int_0^R e^{-x^2} \ dx \le \frac{\sqrt{\pi}}{2} \sqrt{1 - e^{-2R^2}}.$$

Quand R tend vers $+\infty$, on obtient en particulier la valeur de l'intégrale de GAUSS

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \text{ et par parité } \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$

Remarque. On peut directement passer en polaires dans $(I(R))^2$ pour obtenir

$$\begin{split} (I(R))^2 &= \iint\limits_{[0,R]^2} e^{-(x^2+y^2)} \, dx dy = 2 \iint\limits_{0 \le x \le y \le R} e^{-(x^2+y^2)} \, dx dy = 2 \int_0^{\pi/4} \left(\int_0^{R/\cos\theta} e^{-r^2} r \, dr \right) d\theta \\ &= 2 \int_0^{\pi/4} \left[-\frac{1}{2} e^{-r^2} \right]_0^2 R/\cos\theta d\theta = \int_0^{\pi/4} \left(1 - e^{-R^2/\cos^2\theta} \right) d\theta = \frac{\pi}{4} - \int_0^{\pi/4} e^{-R^2/\cos^2\theta} d\theta. \end{split}$$

Donc

$$\forall R > 0, \ \int_0^R e^{-x^2} \ dx = \sqrt{\frac{\pi}{4} - \int_0^{\pi/4} e^{-R^2/\cos^2\theta} d\theta}.$$

On peut alors analyser directement $\lim_{R\to +\infty} \sqrt{\frac{\pi}{4}} - \int_{0}^{\pi/4} e^{-R^2/\cos^2\theta} d\theta$.

b) Deuxième calcul.

i) Définition de deux fonctions. Pour x réel, posons $f(x) = \left(\int_{0}^{x} e^{-t^2} dt\right)^2$ puis $g(x) = \int_{0}^{1} \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

ii) **Dérivée de** f. La fonction $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} et donc la fonction $x \mapsto \int_{0}^{x} e^{-t^2} dt$ est définie et de classe C^1 sur $\mathbb R.$ f est donc de classe C^1 sur $\mathbb R$ et de plus pour x réel

$$f'(x) = 2e^{-x^2} \int_0^x e^{-t^2} dt.$$

iii) Dérivée de g.

$$\begin{array}{ccccc} \text{Posons} & \Psi : & [0,1] \times \mathbb{R} & \to & \mathbb{R} \\ & & (t,x) & \mapsto & \frac{e^{-x^2(1+t^2)}}{1+t^2} \end{array}.$$

- Pour tout réel x, la fonction $t \mapsto \frac{e^{-x^2(1+t^2)}}{1+t^2}$ est continue et donc intégrable sur le segment [0,1].
- Ψ admet sur $[0,1] \times \mathbb{R}$ une dérivée partielle par rapport à x et pour $(x,t) \in [0,1] \times \mathbb{R}$, $\frac{\partial \Psi}{\partial x}(x,t) = -2xe^{-x^2(1+t^2)}$. De plus, pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto -2xe^{-x^2(1+t^2)}$ est continue sur [0,1] et pour chaque $t \in [0,1]$, la fonction $x \mapsto -2xe^{-x^2(1+t^2)}$ est continue sur \mathbb{R} . Enfin, sir A est un réel positif donné,

$$\left| \frac{\partial \Psi}{\partial x}(x,t) \right| \le 2A \times 1 = 2A = \varphi(t),$$

où φ est une fonction continue et donc intégrable sur le segment [0,1].

D'après le théorème de dérivation sous le signe somme, g est de classe C^1 sur tout segment de $\mathbb R$ et donc sur $\mathbb R$ et pour tout réel x

$$g'(x) = \int_0^1 \frac{\partial}{\partial x} \left(\frac{e^{-x^2(1+t^2)}}{1+t^2} \right) dt = -2x \int_0^1 e^{-x^2(1+t^2)} dt.$$

iv) La fonction f + g est constante sur \mathbb{R} . Soit x un réel non nul. En posant u = xt, on obtient

$$g'(x) = -2x \int_0^1 e^{-x^2(1+t^2)} dt = -2e^{-x^2} \int_0^1 e^{-(xt)^2} d(xt) = -2e^{-x^2} \int_0^x e^{-u^2} du = -f'(x).$$

Donc, pour $x \neq 0$, (f+g)'(x) = 0. Cette dernière égalité reste vraie pour x = 0 par continuité de f' et g' en 0. Ainsi (f+g)' = 0 et on en déduit que la fonction f+g est constante sur \mathbb{R} . Mais alors, pour tout réel x,

$$(f+g)(x) = (f+g)(0) = 0 + \int_0^1 \frac{1}{1+t^2} dt = \frac{\pi}{4}.$$

On a montré que

$$\forall x \in \mathbb{R}, \ \left(\int_0^x e^{-t^2} \ dt\right)^2 = \frac{\pi}{4} - \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} \ dt.$$

v) Limite de g quand x tend vers $+\infty$. Soit x un réel positif. Pour tout réel $t \in [0, 1]$, on a $0 \le \frac{e^{-x^2(1+t^2)}}{1+t^2} \le e^{-x^2}$. Par croissance de l'intégrale, on obtient pour $x \ge 0$

$$0 < q(x) < e^{-x^2}$$
.

Puisque $\lim_{x\to +\infty}e^{-x^2}=0$, le théorème des gendarmes montre alors que $\lim_{x\to +\infty}g(x)=0$.

vi) Valeur de l'intégrale de Gauss. Pour x>0, $\int_0^x e^{-t^2} dt = \sqrt{\frac{\pi}{4} - g(x)}$ et puisque $\lim_{x\to +\infty} g(x) = 0$, on a redémontré que

$$\lim_{x\to +\infty} \int_0^x e^{-t^2} \ dt = \frac{\sqrt{\pi}}{2}.$$

c) Troisième calcul.

On va obtenir l'intégrale de Gauss comme limite d'une suite d'intégrales .

i) Définition d'une suite de fonctions convergeant vers la fonction $x \mapsto e^{-x^2}$. Pour x réel positif et n entier naturel non nul, on pose $f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } 0 \le x \le n \\ 0 & \text{si } x > n \end{cases}$ et $f(x) = e^{-x}$.

On pose aussi $g_n(x) = f_n(x^2)$ et $g(x) = f(x^2)$.

• Vérifions que la suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction g sur $[0,+\infty[$.

$$\mathrm{Soit}\; x \in [0,+\infty[.\;\mathrm{Pour}\; n > x^2,\,\mathrm{on}\;\mathrm{a}\;g_{\mathfrak{n}}(x) = \left(1-\frac{x^2}{\mathfrak{n}}\right)^{\mathfrak{n}} = e^{\mathfrak{n}\ln(1-\frac{x^2}{\mathfrak{n}})}\;\mathrm{et}\;\mathrm{donc}$$

$$g_n(x) = e^{n(-\frac{x^2}{n} + o(\frac{1}{n}))} = e^{-x^2 + o(1)},$$

ce qui montre que $\lim_{n \to +\infty} g_n(x) = e^{-x^2} = g(x)$.

- Il est clair que pour $n \in \mathbb{N}^*$, g_n est intégrable sur $[0, +\infty[$ car g_n est continue sur le segment $[0, \sqrt{n}]$ et nulle sur l'intervalle $[\sqrt{n}, +\infty[$.
- Montrons que pour tout entier naturel n et tout réel positif x, on a $0 \le g_n(x) \le g(x)$. Soit $n \in \mathbb{N}^*$. g_n est positive sur $[0, +\infty[$. D'autre part, l'encadrement précédent est clair pour $x \in [\sqrt{n}, +\infty[$.

 $\mathrm{Maintenant, \ si} \ x \in [0, \sqrt{n}[, \ \mathrm{on \ a} \ -\frac{x^2}{n} \in]-1, 0]. \ \mathrm{Il} \ \mathrm{est \ connu} \ \mathrm{que \ pour} \ u \in]-1, +\infty[, \ \mathrm{on \ a} \ \ln(1+u) \leq u \ (\mathrm{la \ fonction} \ \mathrm{ln}) = [-1, +\infty[] + [-1, +\infty[]$ $u \mapsto \ln(1+u)$ est concave sur $]-1,+\infty[$ car y admet une dérivée seconde négative de sorte que son graphe est au-dessous de sa tangente en (0,0) sur $]-1,+\infty[)$. On en déduit que

$$q_n(x) = e^{n \ln(1 - \frac{x^2}{n})} < e^{n(-\frac{x^2}{n})} = e^{-x^2} = q(x).$$

Ainsi, $\forall n \in \mathbb{N}^*$, $|g_n| \leq g$ avec g continue et intégrable sur $[0, +\infty[$.

En résumé

- La suite de fonctions $(g_n)_{n\in\mathbb{N}^*}$ converge simplement vers la fonction g sur $[0,+\infty[$ et la fonction est continue sur $[0, +\infty[$.
- Chaque fonction g_n est intégrable sur $[0, +\infty[$.
- Il existe une fonction ϕ continue et intégrable sur $[0,+\infty[$ telle que $\forall n\in\mathbb{N}^*,\, |g_n|\leq \phi$ à savoir $\phi=g$. D'après le théorème de convergence dominée, on a alors

$$\int_0^{+\infty} e^{-x^2} \ dx = \int_0^{+\infty} g(x) \ dx = \int_0^{+\infty} \lim_{n \to +\infty} g_n(x) \ dx = \lim_{n \to +\infty} \int_0^{+\infty} g_n(x) \ dx = \lim_{n \to +\infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \ dx.$$

 $\begin{aligned} & \textbf{ii)} \mathbf{D\acute{e}termination} \ \mathbf{de} \ \lim_{n \to +\infty} \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \ dx. \ \mathrm{Pour} \ n \in \mathbb{N}*, \ \mathrm{posons} \ I_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \ dx. \end{aligned}$ Le changement de variables $x = \sqrt{n} \cos t \ \mathrm{et} \ \mathrm{donc} \ dx = -\sqrt{n} \sin t \ \mathrm{fournit}$

$$I_n = \int_0^{\sqrt{n}} \left(1 - \frac{x^2}{n}\right)^n \ dx = \int_{\pi/2}^0 \left(1 - \cos^2 t\right)^n \ - \sqrt{n} \sin t \ dt = \sqrt{n} \int_0^{\pi/2} \sin^{2n+1} t \ dt = \sqrt{n} W_{2n+1},$$

où W_n est la n-ème intégrale de Wallis. L'étude de ces intégrales montre que

$$I_n \underset{n \rightarrow +\infty}{\sim} \sqrt{n} \sqrt{\frac{\pi}{2(2n+1)}} \underset{n \rightarrow +\infty}{\sim} \frac{\sqrt{\pi}}{2},$$

et on retrouve encore $\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

iii) Bonus. Montrons que la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers la fonction f sur $[0,+\infty[$.

Soit $n \in \mathbb{N}^*$. On a vu précédemment que $\forall x \in [0, +\infty[, \ f(x) - f_n(x) \geq 0.$

Posons $h_n = f - f_n$ et étudions la fonction h_n . Il est déjà clair que h_n est continue, positive sur $[0, +\infty[$ et décroissante sur $[n, \infty[$.

 h_n est dérivable sur [0, n[et pour $x \in [0, n[$,

$$h'_n(x) = -e^{-x} + \left(1 - \frac{x}{n}\right)^{n-1}.$$

Par croissance de la fonction exponentielle sur \mathbb{R} , on a pour $x \in [0, n]$

$$\mathrm{sgn}(h_n'(x)) = \mathrm{sgn}\left(e^{(n-1)\ln(1-\frac{x}{n})} - e^{-x}\right) = \mathrm{sgn}((n-1)\ln(1-\frac{x}{n}) - (-x)) = \mathrm{sgn}((n-1)\ln(1-\frac{x}{n}) + x).$$

Pour $x \in [0, n[$, posons $k_n(x) = (n-1)\ln(1-\frac{x}{n}) + x$. k_n est dérivable sur [0, n[et pour $x \in [0, n[$,

$$k'_n(x) = (n-1)\frac{-\frac{1}{n}}{1-\frac{x}{n}} + 1 = -\frac{n-1}{n-x} + 1 = \frac{1-x}{n-x}.$$

 $k_n \text{ est donc strictement croissante sur } [0,1] \text{ et strictement décroissante sur } [1,n[.\text{ Comme } k_n(0)=0,\text{ on a } k_n(1)>0] \text{ on a } k_n(1)>0$ et comme $\lim_{n \to \infty} k_n(x) = -\infty$, on en déduit qu'il existe $\alpha_n \in]1, n[$ tel que $k_n(\alpha_n) = 0$ ou encore $h'_n(\alpha_n) = 0$. De plus, k_n est positive sur $[0, \alpha_n]$ et négative sur $[\alpha_n, n[$ et il en est de même de k'_n .

Mais alors, h_n est croissante sur $[0, \alpha_n]$ et décroissante sur $[\alpha_n, n[$. Comme de plus h_n est continue sur $[0, +\infty[$ et décroissante sur $[n, \infty[$, h_n est décroissante sur $[\alpha_n, +\infty[$. En résumé, h_n est positive sur $[0, +\infty[$, croissante sur $[0, \alpha_n]$ et décroissante sur $[\alpha_n, +\infty[$.

$$\forall x \in [0, +\infty[, 0 < h_n(x) < h_n(\alpha_n)].$$

Maintenant, l'égalité $h_n'(\alpha_n) = 0$ fournit $e^{-\alpha_n} = \left(1 - \frac{\alpha_n}{n}\right)^{n-1}$ et donc

$$h_n(\alpha_n) = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right)^n = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right)^{n-1} \left(1 - \frac{\alpha_n}{n}\right) = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right) e^{-\alpha_n} = \frac{\alpha_n e^{-\alpha_n}}{n}.$$

Enfin, la fonction $u:x\mapsto xe^{-x}$ est dérivable sur $[0,+\infty[$ de dérivée $u':x\mapsto (1-x)e^{-x}$. La fonction u admet donc un maximum en 1 égal à $1\times e^{-1}=\frac{1}{e}$. On en déduit que $h_n(\alpha_n)=\frac{u(\alpha_n)}{n}\leq \frac{1}{ne}$. On a montré que

$$\forall x \in [0, +\infty[, 0 \le f(x) - f_n(x) \le \frac{1}{ne}.$$

Mais alors $\sup\{|f(x)-f_n(x)|,\ x\in[0,+\infty[\}] \le \frac{1}{ne}$ et puisque $\lim_{n\to+\infty}\frac{1}{ne}=0$, on a montré que

la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément vers la fonction f sur $[0,+\infty[$.

- 3) Calcul de $\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx$.
- a) Existence de l'intégrale. La fonction $x \mapsto \frac{e^{-x}}{\sqrt{x}}$ est continue sur $]0, +\infty[$ et donc localement intégrable sur $]0, +\infty[$, positive et équivalente en 0 à $\frac{1}{\sqrt{x}}$ et donc intégrable sur un voisinage de 0, négligeable devant $\frac{1}{x^2}$ en $+\infty$ et donc intégrable sur un voisinage de $+\infty$. Finalement, la fonction $x \mapsto \frac{e^{-x}}{\sqrt{x}}$ est intégrable sur $]0, +\infty[$.
- b) Calcul de l?intégrale. En posant $x = u^2$ et donc dx = 2udu, on obtient

$$\int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx = \int_0^{+\infty} \frac{e^{-u^2}}{u} 2u du = 2 \int_0^{+\infty} e^{-u^2} du = \sqrt{\pi}.$$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx = \sqrt{\pi}.$$

- 4) Calcul de $I_n = \int_0^{+\infty} x^n e^{-x^2} dx$.
- a) Existence. Soit n un entier naturel. La fonction $x \mapsto x^n e^{-x^2}$ est continue sur $[0, +\infty[$ et négligeable devant $\frac{1}{x^2}$ en $+\infty$. Donc la fonction $x \mapsto x^n e^{-x^2}$ est intégrable sur $[0, +\infty[$ et l?intégrale proposée existe.
- b) Calcul.
 - i) Relation de récurrence. Pour n entier naturel donné, posons $I_n = \int_0^{+\infty} x^n e^{-x^2} dx$. Soit A un réel positif. Une intégration par parties fournit

$$\int_0^A x^{n+2} e^{-x^2} dx = \int_0^A x^{n+1} \times x e^{-x^2} dx = \left[-\frac{1}{2} e^{-x^2} x^{n+1} \right]_0^A + \frac{n+1}{2} \int_0^A x^n e^{-x^2} dx$$
$$= -\frac{A^{n+1} e^{-A^2}}{2} + \frac{n+1}{2} \int_0^A x^n e^{-x^2} dx.$$

Quand A tend vers $+\infty$, on obtient $\int_0^{+\infty} x^{n+2} e^{-x^2} dx = \frac{n+1}{2} \int_0^{+\infty} x^n e^{-x^2} dx$. D'où la relation de récurrence

$$\forall n \in \mathbb{N}, \ I_{n+2} = \frac{n+1}{2} I_n.$$

ii) Calcul de I_{2n} et I_{2n+1} . D'après 2), on a déjà $I_0 = \frac{\sqrt{\pi}}{2}$. D'autre part, $I_1 = \int_0^{+\infty} x e^{-x^2} dx = \left[-\frac{1}{2}e^{-x^2}\right]_0^{+\infty} = \frac{1}{2}$. Soit alors n un entier naturel non nul.

$$I_{2n} = \frac{(2n-1)}{2} \frac{2n-3}{2} \dots \frac{1}{2} I_0 = \frac{(2n)(2n-1)(2n-2) \dots 2}{2^n (2n)(2n-2) \dots 2} \frac{\sqrt{\pi}}{2} = \frac{(2n)!}{2^{2n} n!^2} \frac{\sqrt{\pi}}{2},$$

$$I_{2n+1} = \frac{(2n)}{2} \frac{2n-2}{2} \dots \frac{2}{2} I_1 = \frac{n!}{2},$$

Ces égalités restant vraies pour n = 0, on a montré que

$$\forall n \in \mathbb{N}, \, \int_0^{+\infty} x^{2n} e^{-x^2} \ dx = \frac{(2n)!}{2^{2n} n!^2} \frac{\sqrt{\pi}}{2} \ \mathrm{et} \, \int_0^{+\infty} x^{2n+1} e^{-x^2} \ dx = \frac{n!}{2} \ .$$

Remarque. Par le changement de variables $u = x^2$, les intégrales précédentes s'écrivent respectivement

$$\int_0^{+\infty} x^{2n+1} e^{-x^2} \ dx = \frac{1}{2} \int_0^{+\infty} u^n e^{-u} \ du = \frac{1}{2} \Gamma(n+1) \ \text{et} \int_0^{+\infty} x^{2n} e^{-x^2} \ dx = \frac{1}{2} \int_0^{+\infty} u^{n-\frac{1}{2}} e^{-u} \ du = \frac{1}{2} \Gamma(n+\frac{1}{2}).$$

et on a donc montré que

$$\forall n \in \mathbb{N}, \ \Gamma(n+1) = n! \ \mathrm{et} \ \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!^2} \sqrt{\pi}.$$

- 5) Calcul de $\int_{-\infty}^{+\infty} e^{-i(x+iy)^2} dx$. Pour y réel on pose $F(y) = \int_{-\infty}^{+\infty} e^{-i(x+iy)^2} dx$.
- a) Existence. Soit y un réel fixé. La fonction $x \mapsto e^{-i(x+iy)^2}$ est continue sur \mathbb{R} . De plus, pour tout réel x,

$$|e^{-(x+iy)^2}| = |e^{-x^2+y^2} \times e^{-2iy}| = e^{-x^2+y^2}.$$

Cette dernière expression est négligeable devant $\frac{1}{x^2}$ quand x tend vers $+\infty$ ou vers $-\infty$. Donc, pour tout réel y, la fonction $x\mapsto e^{-i(x+iy)^2}$ est intégrable sur $\mathbb R$.

F est définie sur \mathbb{R} .

- b) Calcul. Soit a un réel strictement positif. Soit f $\mathbb{R} \times [-a,a] \to \mathbb{C}$. $(x,y) \mapsto e^{-(x+iy)^2}$.
 - Pour chaque $y \in [-a, a]$, la fonction $x \mapsto f(x, y)$ est continue et intégrable sur \mathbb{R} .
 - f est pourvue sur $\mathbb{R} \times [-\mathfrak{a},\mathfrak{a}]$ d'une dérivée partielle par rapport à sa deuxième variable y et pour $(x,y) \in \mathbb{R} \times [-\mathfrak{a},\mathfrak{a}]$, $\frac{\partial f}{\partial y}(x,y) = -2i(x+iy)e^{-(x+iy)^2}$. De plus
 - Pour chaque $x \in \mathbb{R}$, la fonction $y \mapsto \frac{\partial f}{\partial y}(x,y)$ est continue sur $[-\alpha,\alpha]$,
 - Pour chaque $y \in [-a, a]$, la fonction $x \mapsto \frac{\partial f}{\partial y}(x, y)$ est continue sur \mathbb{R} ,
 - Pour chaque $(x,y) \in \mathbb{R} \times [-\alpha,\alpha], |f(x,y)| = 2\sqrt{x^2 + y^2}e^{-x^2 + y^2} \le 2\sqrt{x^2 + \alpha^2}e^{-x^2 + \alpha^2} = \phi(x)$ où ϕ est continue sur \mathbb{R} et intégrable sur \mathbb{R} car négligeable devant $\frac{1}{x^2}$ en $+\infty$ et $-\infty$.

D'après le théorème de dérivation sous le signe somme, F est de classe C^1 sur tout segment de $\mathbb R$ et donc sur $\mathbb R$ et pour tout réel y, on a

$$F?(y) = \int_{-\infty}^{+\infty} \frac{\partial f}{\partial y}(x, y) \ dx = \int_{-\infty}^{+\infty} -2i(x + iy)e^{-i(x + iy)^2} \ dx = \left[ie^{-(x + iy)^2}\right]_{-\infty}^{+\infty} = 0,$$

 $\operatorname{car} |e^{-(x+iy)^2}| = e^{-x^2+y^2} \underset{x \to +\infty}{\longrightarrow} 0.$

F est donc constante sur \mathbb{R} et pour tout réel y, $F(y) = F(0) = \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

$$\forall y \in \mathbb{R}, \int_{-\infty}^{+\infty} e^{-(x+iy)^2} dx = \sqrt{\pi}.$$

Enfin, puisque $\int_{-\infty}^{+\infty} e^{-(x+iy)^2} dx = e^{y^2} \int_{-\infty}^{+\infty} e^{-x^2} e^{-2ixy} dx$, on a aussi montré que :

$$\forall y \in \mathbb{R}, \ \int_{-\infty}^{+\infty} e^{-x^2} e^{2ixy} \ dx = \sqrt{\pi} e^{-y^2}.$$