FMI, Info, Anul I Logică matematică și computațională

Seminar 1

1 Breviar

1.1 Numărabilitate

Corolarul 1.10. Fie A o mulţime numărabilă şi B o mulţime nevidă cel mult numărabilă. Atunci $A \times B$ şi $A \cup B$ sunt numărabile.

Propoziţia 1.13.

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

1.2 Logica propozițională

Fie $\varphi, \psi \in Form$.

Pentru orice $e: V \to \{0, 1\}$, notăm cu $e \vDash \varphi$ (şi spunem că e satisface φ sau e este model pentru φ) dacă $e^+(\varphi) = 1$. Notăm cu $\vDash \varphi$ (şi spunem că φ este tautologie) dacă pentru orice $e: V \to \{0, 1\}$ avem că $e \vDash \varphi$. Spunem că φ este satisfiabilă dacă există $e: V \to \{0, 1\}$ cu $e \vDash \varphi$ și nesatisfiabilă în caz contrar, când nu există $e: V \to \{0, 1\}$ cu $e \vDash \varphi$, i.e. pentru orice $e: V \to \{0, 1\}$ avem că $e \vDash \varphi$. Notăm $\varphi \vDash \psi$ (şi spunem că din φ se deduce semantic φ sau că φ este consecință semantică a lui φ) dacă pentru orice $e: V \to \{0, 1\}$ cu $e \vDash \varphi$ avem $e \vDash \varphi$. Notăm cu $\varphi \sim \psi$ dacă pentru orice $e: V \to \{0, 1\}$ avem $e \vDash \varphi$ dacă și numai dacă $e \vDash \psi$, i.e. pentru orice $e: V \to \{0, 1\}$ avem $e \vDash \varphi$ dacă și numai

2 Exerciţii

(S1.1)

- (i) Demonstrați că mulțimea Expr a expresiilor logicii propoziționale este numărabilă.
- (ii) Demonstrați că mulțimea Form a formulelor logicii propoziționale este numărabilă.

(S1.2) Arătați că pentru orice $\varphi, \, \psi, \, \chi \in Form$, avem:

- (i) $\psi \vDash (\varphi \to \psi);$
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$.

(S1.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S1.4) Să se demonstreze că, pentru orice formulă φ , $\neg \varphi$ este nesatisfiabilă dacă și numai dacă φ este tautologie.

(S1.5) Confirmați sau infirmați:

- (i) pentru orice $\varphi,\,\psi\in Form, \vDash\varphi\wedge\psi$ dacă și numai dacă $\vDash\varphi$ și $\vDash\psi;$
- (ii) pentru orice φ , $\psi \in Form$, $\vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.