差错控制 (纠错编码)

海明码

海明距离

两个合法编码(码字)的对应比特取值不同的比特数称为这两个码字的海明距离(码距),一个有效编码集中,任 意两个合法编码(码字)的海明距离的最小值称为该编码集的海明距离(码距)。 000 0000 001 1001 可检测出1位错 010 该编码系统中的码距为2 该编码系统中的码距为1 1010 但不可被纠正 011 0011 100 传输中出错了咋整? 1100 101 0101 110 0110 111 1111

1.确定校验码位数r

数据/信息有m位,冗余码/校验码有r位

校验码一共有2°种取值

$$2^r \ge m+r+1$$

0

要发送的数据: D=1100

数据的位数m=4, 满足不等式的最小r为3, 也就是D=1100的海明码应该有4+3=7位, 其中原数据4位,校验码3位。

2.确定校验码和数据的位置

D=1100

校验码放在序号为2n的位置,数据按序填上

序号	7	6	5	4	3	2	1
值	1	1	0	X ₄	0	x ₂	x_1

3.求出校验码的值

原始数据D=1100 **1 1** *1* 二进制 111 101 011 110 100 010 001 序号 7 6 5 4 3 2 1 值 1 1 0 0 X_4 X_2 X_1

4号校验码负责4,5,6,7的校验

2号校验码负责2,3,6,7的校验

1号校验码负责1,3,5,7的校验

 $x_4 = 0$ $x_2 = 0$ $x_1 = 1$

完整海明码:

序号	7	6	5	4	3	2	1
值	1	1	0	0	0	0	1

4.检错并纠错

二进制	111	110	101	100	011	010	001
序号	7	6	5	4	3	2	1
值	1	1	0	0	0	0	1

若接收方收到的数据为1110001, 检错类似奇偶校验

4号校验码负责4, 5, 6, 7的校验 _______0, 1, 1, 1 🔀

2号校验码负责2, 3, 6, 7的校验 ■ 0, 0, 1, 1 🗸

1号校验码负责1, 3, 5, 7的校验 ______1, 0, 1, 1 _____

纠错方法二:

X4-0,-1,-1,-1

X2 0, 0, 1, 1

X1 1, 0, 1, 1

X4 = 1

X4 X2 X1 X2 = 0

1 0 1 X1 = 1

第五位错了