Reikalavimai ataskaitoms:

- 1. Ataskaitos keliamos į Moodle iki gynimo dienos.
- 2. Ataskaitoje privaloma taikyti darbo įforminimo reikalavimus, pateiktus "<u>Rašto darbų rengimo</u> metodiniai nurodymai", dalyje "Formalieji rašto darbų reikalavimai".
- 3. Visais atvejais atsiskaitymo metu galima naudotis namų užduotyje ir laboratorinių darbų metu nagrinėtomis programomis.
- 4. Gynimo metu studentas privalo paaiškinti bet kurią programos išeities teksto eilutę; jeigu to padaryti nesugeba, darbas vertinamas 0. **Gynimo metu pateikiama darbo sutapties patikros ataskaita.**
- 5. Ataskaitoje pateikiama:
 - a. užduotis;
 - b. teorinė dalis: naudotų algoritmų aprašymas, pseudo kodai arba programinio kodo fragmentai, realizuojantys konkretų algoritmą;
 - c. atliktų užduočių rezultatai, komentarai ir darbo apibendrinimas.
 - d. programos, realizuojančios užduotis, aprašymas (pateikiamas kaip priedas. Galima įtraukti flowchart diagramas, aprašyti kaip pateikiami išvedami duomenys, vartotojo vadovą).

I užduotis. Interpoliavimas daugianariu.

1 lentelėje duota interpoliuojamos funkcijos analitinė išraiška. Pateikite interpoliacinės funkcijos išraišką naudodami *1 lentelėje* nurodytas bazines funkcijas, kai:

- a. Taškai pasiskirstę tolygiai.
- b. Taškai apskaičiuojami naudojant Čiobyševo abscises.

Interpoliavimo taškų skaičių parinkite laisvai, bet jis turėtų neviršyti 30. Pateikite du grafikus, kai interpoliacinės funkcijos apskaičiuojamos naudojant skirtingas abscises ir gautas interpoliuojančių funkcijų išraiškas. Tame pačiame grafike vaizduokite duotąją funkciją, interpoliacinę funkciją ir netiktį.

II užduotis. Interpoliavimas daugianariu ir splainu per duotus taškus

Pagal *2 lentelėje* pateiktą šalį ir metus, sudaryti interpoliuojančią kreivę 12 mėnesių temperatūroms atvaizduoti nurodytais metodais:

- a. Daugianariu, sudarytu naudojant *1 lentelėje* nurodytas bazines funkcijas.
- b. 2 lentelėje nurodyto tipo splainu.

III užduotis. Parametrinis interpoliavimas.

Naudodami **parametrinio** interpoliavimo metodą *2 lentelėje* nurodytu splainu suformuokite *2 lentelėje* nurodytos šalies kontūrą. Pateikite pradinius duomenis ir rezultatus, gautus naudojant 10, 20, 50, 100 interpoliavimo taškų.

IV užduotis. Aproksimavimas

Pagal *2 lentelėje* nurodytą šalį ir metus mažiausių kvadratų metodu sudarykite aproksimuojančią kreivę 12 mėnesių vidutinėms temperatūroms atvaizduoti naudojant **antros**, **trečios**, **ketvirtos** ir **penktos** eilės daugianarius. Pateikite gautas daugianarių išraiškas.

1 lentelė. Interpoliuojamos funkcijos išraiška ir bazinės funkcijos

Var. Nr.	terpoliuojamos funkcijos išraiška ir bazinės funkcijos Funkcijos išraiška	Bazinė funkcija
	ln(x)	-
1	$\frac{\sin(x)}{(\sin(2 \cdot x) + 1,5)}; 2 \le x \le 10$ $\cos(2 \cdot x) / (\sin(2 \cdot x) + 1,5) - \cos\frac{x}{5}; -2 \le x \le 3;$	Niutono
2		Čiobyševo
3	$e^{-x^2} \cdot \cos(x^2) \cdot (x+2); -2 \le x \le 3$	Vienanarių
4	$e^{-x^{2}} \cdot \cos(x^{2}) \cdot (x+2); -2 \le x \le 3$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} - x/7; 2 \le x \le 10$ $\ln(x)$ $\lim_{x \to \infty} (x^{2}) \cdot 2 \le x \le 10$	Niutono
5	$\frac{\ln(x)}{\left(\sin(2\cdot x) + 1.5\right)} + \sin\left(\frac{x}{5}\right); 2 \le x \le 10$ $\ln(x)$	Vienanarių
6	$\frac{1}{(\sin(2 \cdot x) + 1.5)} + x/5; 2 \le x \le 10$	Niutono
7	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) - \cos\frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
8	$\frac{\ln(x)}{(\sin(2 \cdot x) + 1.5)} + x/5; 2 \le x \le 10$ $\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) + \cos x; -2 \le x \le 3;$	Vienanarių
9	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$	Niutono
10	$\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
11	$\frac{\ln(x)}{(\sin(2\cdot x) + 2.5)}; 2 \le x \le 10$	Vienanarių
12	$\frac{\ln(x)}{(\sin(2x) + 15)} - x/7; 2 \le x \le 10$	Niutono
13	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1.5) + \cos x; -2 \le x \le 3;$	Čiobyševo
14	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$ $\cos(2 \cdot x) / (\sin(2 \cdot x) + 1,5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
15	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3) \cdot (x^2+3); -3 \le x \le 3$	Vienanarių
16	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3) \cdot (x^2+3); -3 \le x \le 3$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} - x/7; 2 \le x \le 10$ $\cos(2 \cdot x)/(\sin(2 \cdot x) + 1,5) - \frac{x}{5}; -2 \le x \le 3;$	Niutono
17	$\cos(2 \cdot x) / (\sin(2 \cdot x) + 1.5) - \frac{x}{5}; -2 \le x \le 3;$	Čiobyševo
18	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3) \cdot (x^2+3); -3 \le x \le 3$	Vienanarių
19	$e^{-x^2} \cdot \sin(x^2) \cdot (x-3); -3 \le x \le 2$	Čiobyševo
20	$\frac{\ln(x)}{(\sin(2\cdot x) + 1.5)} + x/5; 2 \le x \le 10$	Vienanarių
21	$e^{-x^{2}} \cdot \cos(x^{2}) \cdot (x-3); -3 \le x \le 2$ $\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$ $e^{-x^{2}} \cdot \sin(x^{2}) \cdot (x-3); -3 \le x \le 2$	Niutono
22	$\cos(2 \cdot x) \cdot (\sin(2 \cdot x) + 1,5) + \cos x; -2 \le x \le 3;$	Čiobyševo
23	$e^{-x^2} \cdot \sin(x^2) \cdot (x-3); -3 \le x \le 2$	Vienanarių
24	$ \cos(2 \cdot x) \cdot (\sin(3 \cdot x) + 1,5) - \cos \frac{\pi}{2}; -2 \le x \le 3;$	Čiobyševo
25	$e^{-x^2} \cdot \cos(x^2) \cdot (x-3); -3 \le x \le 2$	Vienanarių
26	$e^{-x^{2}} \cdot \cos(x^{2}) \cdot (x-3); -3 \le x \le 2$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} + x/5; 2 \le x \le 10$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1,5)} + \sin(\frac{x}{5}); 2 \le x \le 10$	Niutono
27	$\frac{\ln(x)}{(\sin(2\cdot x) + 1.5)} + \sin\left(\frac{x}{5}\right); 2 \le x \le 10$	Niutono
28	$\cos(2 \cdot x) / (\sin(x) + 1.5) - \frac{1}{5}; -2 \le x \le 3;$	Čiobyševo
29		Vienanarių
30	$e^{-x^2} \cdot \sin(x^2) \cdot (x+2); -2 \le x \le 3$ $\frac{\ln(x)}{(\sin(2 \cdot x) + 1.5)} - \cos(\frac{x}{5}); 2 \le x \le 10$	Niutono

2 lentelė. Šalys, metai ir splaino tipas II, III ir IV užduotims.

* pakanka pavaizduoti pagrindinį šalies kontūrą, t. y. nereikia vaizduoti atsiskyrusių teritorijų, pavyzdžiui, šaliai priklausančių salų ir pan.

Var. Nr.	Šalis	Metai	Splainas
1	Rumunija	2008	Globalus
2	Olandija	2010	Ermito (Akima)
3	Vokietija	2003	Globalus
4	Latvija	2015	Ermito (Akima)
5	Kroatija	2017	Globalus
6	Malis	2006	Ermito (Akima)
7	Peru	2008	Globalus
8	Argentina	2016	Ermito (Akima)
9	Prancūzija	2004	Globalus
10	Ispanija	2012	Ermito (Akima)
11	Kamerūnas	2009	Globalus
12	Kipras	2004	Ermito (Akima)
13	Bolivija	2012	Globalus
14	Moldova	2008	Ermito (Akima)
15	Vengrija	2006	Globalus
16	Venesuela	2001	Ermito (Akima)
17	Austrija	2014	Globalus
18	Panama	2009	Ermito (Akima)
19	Zambija	2000	Globalus
20	Suomija	2007	Ermito (Akima)
21	Slovakija	2010	Globalus
22	Italija	2011	Ermito (Akima)
23	Šveicarija	2014	Globalus
24	Mongolija	2005	Ermito (Akima)
25	Lenkija	2012	Globalus
26	Mianmaras	2005	Ermito (Akima)
27	Portugalija	2003	Globalus
28	Paragvajus	2013	Ermito (Akima)
29	Čekija	2011	Globalus
30	Bulgarija	2015	Ermito (Akima)

Galimas duomenų šaltinis:

Temperatūrų duomenys:

https://climateknowledgeportal.worldbank.org/download-data

Šalių kontūrai:

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/