Lens Design Tips

Richard Juergens

Adjunct Fellow in Optical Design rcjuergens@msn.com

Opti 517

Anatomy of a Lens

Sharp corners (≤ 90°) usually chamfered to 0.5 mm face width

Used Optical Beams and Footprints

Lens diameter does not necessarily define the used footprint for a given field

Lens Geometry: Edge Thickness

- Lenses are usually oversized 1-2 mm during fabrication
 - . Chipping may occur at the edges, prompting the oversize margin
 - . If too little margin, scratch/dig specifications may be compromised
- On steep radii surfaces, allow for more oversize margin
- In CODE V, the MNE general constraint (minimum edge thickness) in AUTO only constrains the ET over the clear apertures
 - . To constrain ET over a larger physical diameter during AUTO, use
 ET Sk MEC [overage factor [overage constant]] > target

Lens Geometry: Long Radius

- Long radii are hard to test
 - . During use of test plates in production
 - . On a radius slide or on an interferometer
- If a radius approaches 20x the outer diameter, make the surface flat
- To constrain this in CODEV, use a user-defined constraint in AUTO

Lens Geometry: Aspect Ratio

- "High aspect ratios risk surface irregularities due to springing after deblocking
- In CODE V, the aspect ratio can be constrained during AUTO with

ATC Sk [MEC [overage_factor [overage_constant]]] >=< target ATE SK [MEC [overage_factor [overage_constant]]] >=< target For example, ATC S3 MEC 1.0 1.0 > 3 < 12.5

$$??????? = \frac{??}{??}$$

Lens Geometry: Focal Length

- Lens centering machines (e.g., from Trioptics) work off beam deviations
- Long focal length singlets and doublets can lead to measurement errors
- Simple optimization constraint can save fabrication difficulties with centering
 - . $|EFL_{component}| < 500 \text{ mm}$ to avoid problems
 - In CODE V, use the constraint in AUTO
 EFY Sj..k < pos target or EFY Sj..k > neg target
 - . You can also use

```
@EFLjk == absf((efy sj..k))
DSP @EFLjk
@EFLjk < target</pre>
```


Spherical Aberration as an Assembly Metric

- A well-designed optical system balances every surfaces spherical aberration to minimize the sum of the spherical aberration content at the image plane
- Lateral shear of spherical wavefronts produces coma
- Coma produces the largest MTF drop to MTF compared to other aberrations
- Constraining the maximum surface spherical aberration reduces the sensitivity of the surface to decenter and reduces the costs of tolerances and assembly

Surface Spherical Aberration Theory

Spherical wavefront hits a surface with W_{040} SA

$$W(\rho) = 2W_{040}\rho^4$$

$$W(x,y) = 2W_{040}(x^2 + y^2)^2$$

Lateral shear: differentiate wrt x

$$\frac{\partial W(x,y)}{\partial x} = 2W_{040}(4x^3 + 4xy^2 + y^4) \approx 8W_{040}x^3$$
$$\frac{\Delta W}{\Delta x} = 8W_{040}\rho^3 \cos^3 \theta$$

 $\Delta x = Decenter\ Tolerance$ $\Delta W = Wavefront\ with\ tolerance\ \Delta x$

Figures from % ptical Shop Testing+, Malacara

Reduced surface SA reduces axial coma induced by tilted and decentered elements

SA Desensitization in Optical Design

Optical Design iteration #1 without Surface SA constraints

Optical Design iteration #2
With Surface SA constraints

Minimizing the maximum surface SA "spreads the pain" among all the elements

Surface SA Goal Based on F/# and MTF Drop

	Commercial	Diffraction Limited
Maximum Surface SA (λ)	$<\frac{215}{F/\#^3}$	< $\frac{22}{F/\#^3}$
Allowed MTF drop due to tolerances (spatial frequency 0.5 of optical cutoff)	-20%	-2%

These are empirically based on measured data for many lens assemblies fabricated at Edmund Optics

Target the maximum surface SA based on the allowable MTF drop and the system f/number

Constraining the Maximum Surface SA

To constrain the surface spherical aberration in waves for surface Sk in AUTO, use the following (for dimensions in mm)

```
AUTO

'sa_target == 2

'ref == (ref)

'sa_sk == absf((sa sk)/8/((wl w'ref)/1e6)/2)

dsp 'sa_sk

'sa_sk < 'sa_target

...
```

Optical System Color Correction Regimes

- Refractive optical systems have to color correct for the defocus due to glass dispersion
- There are many solutions available, primary, achromatic, apochromatic, etc.
- The level of correction and first order optical properties can impose heavy requirements on glass tolerances

	Primary Color	Achromatic	Apochromatic
# wavelengths for common focus	1	2	3
Defocus	$\frac{EFL}{V}$	$EFLrac{\Delta P}{\Delta V}$	Complex
Relative Defocus	100⋅Diffraction DoF	8-Diffraction DoF	<0.25·Diffraction DoF
Component Relative EFL	100	~50	~25
Relative Surface SA	1	4	17

Achromatic Lens Design

- Correcting secondary color requires consideration of a parameter called the partial dispersion
 - Partial dispersion is defined for four wavelengths across the spectral band $P = (n_{\lambda 1} n_{\lambda 2}) / (n_{\lambda 3} n_{\lambda 4})$
- Correcting secondary color takes special glasses whose partial dispersions are different from "normal" glasses
 - . These glasses cost significantly more than "normal" glasses
 - . Most glasses follow a "normal" line
- The technique is to find two glasses that have reasonably similar partial dispersions, but have different V values
 - . Use these glasses with the standard achromatic equations to solve for the lens powers
- " If the V values are too close together, the lens powers will be strong, and the lenses will be "fat"
 - . This will introduce significant spherochromatism (change in spherical aberration with wavelength) due to the higher angles of incidence

Partial Dispersion Map

Reduction of Secondary Color

BK7 . SF2 SF2 is 1x cost of BK7

PSK53 . KZFSN4 PSK53 is10x cost of BK7 KZFSN4 is 6x cost of BK7

Apochromatic Design

Apochromatic lenses (significantly reduced secondary color) can be designed using three different glasses

Power

$$\Phi_{total} = \Phi_1 + \Phi_2 + \Phi_3$$

Axial Color

$$\delta\Phi = \frac{\Phi_1}{V_1} + \frac{\Phi_2}{V_2} + \frac{\Phi_3}{V_3} = 0$$

Secondary Color

$$\delta\Phi_{dc} = \frac{\Phi_1 P_1}{V_1} + \frac{\Phi_2 P_2}{V_2} + \frac{\Phi_3 P_3}{V_3} = 0$$

All three lenses will be as weak as possible if glasses are selected with large E1, E2, E3

Solve For Power
$$\Phi_{1} = -\frac{T_{23}}{E_{1}}V_{1} \cdot \Phi_{total}$$

$$\Phi_{2} = -\frac{T_{31}}{E_{2}}V_{2} \cdot \Phi_{total}$$

$$\Phi_{3} = -\frac{T_{12}}{E_{3}}V_{3} \cdot \Phi_{total}$$

$$T_{12} = \frac{P_1 - P_2}{V_1 - V_2}$$

$$T_{23} = \frac{P_2 - P_3}{V_2 - V_3}$$

$$T_{31} = \frac{P_3 - P_1}{V_3 - V_1}$$

$$E_{1} = -\frac{\Gamma}{V_{2} - V_{3}}$$

$$E_{2} = -\frac{\Gamma}{V_{3} - V_{1}}$$

$$E_{3} = -\frac{\Gamma}{V_{1} - V_{2}}$$

$$\Gamma = [V_{1}(P_{2} - P_{3}) + V_{2}(P_{3} - P_{1}) + V_{3}(P_{1} - P_{2})]$$

Apochromatic Design Example

Apochromatic Example Performance

Compare with standard N-BK7 . F2 doublet

Surface Axial Color

- Optical design tools for material selection have become very adept at locating new solutions for color correction
 - . Glass substitution and Hammer in Zemax
 - . Glass Expert in Code V
- " Unfortunately, solutions can be found which are very sensitive to material dispersion tolerances
 - . Commercial dispersion tolerances typically range between 0.8% and 0.5%

Schott ¹		
Grade	ΔV	
Step 1	± 0.2%	
Step 2	± 0.3%	
Step 3	± 0.5%	

Ohara ²		
Grade	ΔV	
Standard	± 0.8%	
Request	± 0.3%	

CDGM ³		
Grade	$\Delta \mathbf{V}$	
Grade 1	± 0.5%	
Grade 2	± 0.8%	
Grade 3	± 1.0%	

¹ Schott North America Inc., "Optical Glass Catalog", Table 1.2, (2014)

² Ohara Corporation, "Guarantee of Quality", http://www.oharacorp.com/o7.html, (2014)

³ CDGM Glass, "Quality Definition", Table 5, http://www.cdgmgd.com/attachments/soft/InstructionEN.pdf, (2014)

Surface axial color is proportional to glass tolerances

Sensitivity to Glass Dispersion

Seidel chromatic aberrations of an optical system, y = marginal ray height, V=dispersion

$$C_L = \sum_{n=1}^{\# of \ elements} \frac{y^2}{V \cdot Focal_Length}$$
 (Axial color or longitudinal chromatic aberration)

Sensitivity found by first derivative with respect to dispersion

$$\frac{\partial}{\partial V}C_L \cong \frac{\Delta C_L}{\Delta V} = \frac{-C_L}{V}$$

Tolerance sensitivity scales directly with aberrations

Controlling Surface Axial Color

- In CODE V, use a user-defined constraint for each sensitive lens
 - . For example,

```
AUTO
...
^LCA_Target == 0.01
@LCA_E2 == absf((ax s3)+(ax s4))
@LCA_E2 < ^LCA_TARGET
```

" Use third-order coefficients (THO output) to identify sensitive lenses

Sample Design

- Linescan lens requirement:
 - . Polychromatic focus, high resolution
 - . Red, green, or blue monochromatic high resolution without refocus
 - . Apochromatic solution too costly (elements with short EFL and sensitive to mount)
- Solution: Achromat with secondary color ~1/2 diffraction-limited DoF

	Initial Design	Desensitized Design
Max surface induced axial color	72 waves	30 waves
Abbe Tolerance Required	<0.1% (required melt fit)	0.5%

Reducing surface axial color in half allowed the use of standard grade catalog glasses vs. requiring melt fitting

Passive Athermalization

- Due to lenses' CTEs and dn/dTs and the housing's CTE, optical systems often go out of focus with changes in temperature
 - . This is OK if you have a focus adjustment (man-in-the-loop)
- For stand-alone systems (no man-in-the-loop), it may be necessary to design the optical system to be passively athermal
- A lens can be represented by its plano-convex equivalent
 - F = r/(n-1)
- " The thermal derivative of this is

$$\frac{dF}{dT} = \frac{1}{n-1}\frac{dr}{dT} - \frac{r}{(n-1)^2}\frac{dn}{dT} = \frac{r}{n-1}\left(\frac{1}{r}\frac{dr}{dT} - \frac{1}{n-1}\frac{dn}{dT}\right) = F\left(\alpha - \frac{1}{n-1}\frac{dn}{dT}\right)$$

The change in focal length is then $\Delta F = v F \Delta T$ where

$$v = \alpha - \frac{1}{n-1} \frac{dn}{dT}$$

. v is often referred to as the thermo-optic coefficient

∨ Values of Optical Materials (x10⁶/°C)

" Visible glasses

N-BK7	-1.5
BaK4	-0.3
BaK50	11.4
N-SK16	-3.4
SF4	3.8

It is possible to find combinations of visible glasses to make an athermal design with common mounting materials

" Infrared glasses

Germanium	-127
TI-1173	- 34
ZnS	-28
ZnSe	-35
Silicon	-63
BaF ₂	62

Most common IR materials have negative ν , so it is more difficult to make a passive athermal design

" CTE of common mount materials (x106/°C)

Aluminum 6061	23.4
416 stainless	9.9
Invar36	1.5
Titanium	8.7
Beryllium	11.6

Example of Temperature Change

- An IR lens is made of germanium for use at 10 μm
- " It has a focal length of 4 inches and an aperture of 2 inches (f/2)
- The diffraction-limited depth of focus is $\pm 2\lambda f^2 = \pm 0.0032$ inches
- If we mount the lens in an aluminum mount, the change in focus is $\Delta_{\text{focus}} = 4(-127-23)\text{x}10^{-6}/^{\circ}\text{C} = -0.0006 \text{ in}/^{\circ}\text{C}$
- The lens defocus will exceed the diffraction depth of focus over a change in temperature of ±5° C
 - . Note that for military applications, the specified temperature range is typically ±50° C

Passive Athermal Design

- To make a lens passively athermal there are two choices:
 - Use a differential mount, using different expansion coefficients to simulate the desired mount CTE (usually negative)
 - This assumes a linear relationship between expansions, dn/dT values, and required motions
 - The limitation of this method is the non-linearity of CTE values and of dn/dT values over large temperature ranges
 - The final design may need to be iterated, due to imprecision or variability in the needed parameters
 - 2. Select the materials for the optics and the lens mounts to make the system optically athermal

Example of a Differential Mount

- We need the second lens to move closer to the first lens with increasing temperature to maintain focus
 - . For a simple spacer, this would require a negative spacer CTE
 - . Can be done with two different materials with different CTE values

Key Concept for Optical Passive Athermalization

- The inverse of the thermo-optic coefficient is exactly like a V-number for color dispersion
 - Thermal Abbe number is the inverse of the thermo-optic coefficient $\beta = 1/v$
- Doublet equations for color correction work for passive athermalization

$$\begin{aligned} & Color: \\ \Phi_1 &= \Phi_{Total} \frac{V_1}{V_1 - V_2} \\ \Phi_2 &= \Phi_{Total} \frac{V_2}{V_2 - V_1} \end{aligned}$$

Thermal Defocus and Athermalization Equations

	Doublet	For i Elements
Total System Power	$\Phi_T = \Phi_1 + \Phi_2$	$\Phi_T = \sum_i \Phi_i$
Axial Color	$\frac{\Phi_1}{V_1} + \frac{\Phi_2}{V_2} = 0$	$\Delta \Phi = \sum_{i} \frac{\Phi_{i}}{V_{i}} = 0$
Thermal Defocus (in air)	$\beta_1\Phi_1+\beta_2\Phi_2=0$	$\frac{\Delta \Phi}{\Delta T} = \sum_{i} -\beta_{i} \Phi_{i} = 0$
Thermal defocus (in a housing with CTE, α_h)	$\beta_1\Phi_1+\beta_2\Phi_2=\alpha_h\Phi_T$	$\frac{\Delta \Phi}{\Delta T} = \alpha_h \Phi_T - \sum_i \beta_i \Phi_i = 0$

Equations assume thin lenses in contact with each other

$$\Delta f = \beta f \Delta T$$

$$\beta = \alpha_{lens} - \frac{1}{n-1} \frac{dn}{dT}$$

 β = therm-optic coefficient

$$\Delta f = f (\beta_{lens} - \alpha_{housing}) \Delta T$$

Athermal Chart – β vs. 1/V

Consider the equation for a line y = mx + b between two points (x_1,y_1) and (x_2,y_2)

$$y = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)x + b$$

Solve for the y-intercept

$$b = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

" If we plot β vs. 1/V, then

$$\alpha_h = \frac{\beta_1 \cdot \frac{1}{V_2} - \beta_2 \cdot \frac{1}{V_1}}{\frac{1}{V_2} - \frac{1}{V_1}}$$

where α_h is the CTE of the housing

. Allows two materials to satisfy both color and athermal correction

Example Athermal Design for the Visible

Want thermal defocus and axial color to be less than the $\lambda/4$ depth of focus

$$\pm 2\%(\%/\%) = \pm 2(0.587\%\%)(2)\% = 10.2\%\%$$

IR Achromatic Examples (8 – 11.5 μ m)

