Décohérence des systèmes quantiques uniques Systèmes quantiques uniques, trajectoires et décohérence

Alain Delaet André Kalouguine

E.N.S. de Lyon

22 mai 2018

Introduction

Systèmes quantiques uniques

INCOMPLET IMAGES des differents types de systemes quantiques

Plan

On utilise QuTiP, une bibliothèque Python pour montrer l'apparition de la décohérence dans des systèmes quantiques simples couplés a l'environnement.

- 1 Introduction
- 2 Résolution des systèmes simples
- 3 Décohérence
- 4 Trajectoires quantiques et mesures

Introduction

Oscillateur harmonique

Pour les systèmes dont l'énergie potentielle a un minimum local, on peut souvent le paraboliser (p.ex molécule diatomique). On a alors

$$H_{osc} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

La résolution de cela montre que l'état du système peut être décrit par un vecteur dans un espace de Hilbert de dimension décomptable :

 $\begin{vmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \\ \vdots \end{vmatrix}$

Introduction Qubit

On peut isoler dans certains systèmes deux états privilégiés :

- Spin ($|\uparrow\rangle$ ou $|\downarrow\rangle$)
- Atome $(|g\rangle \text{ ou } |e\rangle)$
- Oscillateur harmonique $(|n\rangle \text{ ou } |n+1\rangle)$
- Double puit de potentiel $(|L\rangle \text{ ou } |R\rangle)$
- Particule dans une boite $(|\psi_n\rangle$ ou $|\psi_{n+1}\rangle)$
- ...

L'état du système se décrit alors par un vecteur dans un espace hilbertien de dimension 2 :

 $\begin{vmatrix} \alpha \\ \beta \end{pmatrix}$

 $_{3}$

Résolution analytique

Ëquation de Schrödinger

Qubit

Résolution analytique

L'hamiltionien devant être hermitien et l'éspace étant de dimension 2, on peut le diagonaliser :

$$H_{qb} = \begin{bmatrix} E_0 & 0\\ 0 & E_1 \end{bmatrix}$$

On utilise a partir de cet instant la base propre de l'hamiltonien : $|0\rangle$ et $|1\rangle$. Ce sont des états stationnaires de pulsations $\omega_0 = \frac{E_0}{\hbar}$ et $\omega_1 = \frac{E_1}{\hbar}$.

Si
$$|\psi(t=0)\rangle = \begin{vmatrix} c_0 \\ c_1 \end{vmatrix}$$
 alors $|\psi(t)\rangle = \begin{vmatrix} c_0 \cdot e^{i\omega_0 t} \\ c_1 \cdot e^{i\omega_1 t} \end{vmatrix}$

Qubit

Visualisation

L'état d'un qubit est donné par un vecteur de $\mathcal{H}_2(\mathbb{C})$. Modulo la phase totale et en normalisant le vecteur, on peut l'écrire :

$$|\psi\rangle = \begin{vmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \cdot e^{i\phi} \end{vmatrix}$$

Cela représente un vecteur sur la sphère S_3 : la sphère de Bloch.

Qubit Oscillations de Rabi

Si $E_0 \neq E_1$, on aura $\omega_0 \neq \omega_1$. Modulo la phase totale, on aura donc pour $|\psi(0)\rangle = \begin{vmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \cdot e^{i\phi} \end{vmatrix}$:

$$|\psi(t)\rangle = \begin{vmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} \cdot e^{i(\phi + \Delta\omega \cdot t)} \end{vmatrix}$$

ou $\Delta \omega = \omega_1 - \omega_0$. On a donc le vecteur sur la sphère de Bloch qui tourne autour de l'axe z a une vitesse angulaire $\Delta \omega$.

Qubit Simulation

37

QuTiP a une fonction qui résout l'équation de Schrödinger numériquement : mesolve. Ainsi, on peut observer les 3 projections sur la sphère de Bloch : $\sigma_x, \sigma_y, \sigma_z$. On s'attend a voir x et y osciller. On a pris ici $\theta = \frac{1}{2}$ et $\phi = 1$, $\hbar = 1$ et $\Delta \omega = 1$:

Oscillateur harmonique

Résolution analytique

L'hamiltonien $H_{osc} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2$ peut se réécrire a l'aide de l'opérateur $a = \sqrt{\frac{m\omega}{2\hbar}}\left(x + \frac{i}{m\omega}p\right)$ comme

$$H_{osc} = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right)$$

On pose $\hat{N} = a^{\dagger}a$.

 \hat{N} se diagonalise et a pour spectre \mathbb{N} .

L'état propre de H_{osc} de valeur propre $\hbar\omega(n+\frac{1}{2})$ est $|n\rangle$.

Oscillateur harmonique Visualisation

Fonction de Wigner sur l'éspace des phases :

$$W(x,p) = \frac{1}{\pi\hbar} \int_{-\infty}^{+\infty} \psi^*(x+y)\psi(x-y)e^{2ipy/\hbar} dy$$

On a la probabilité de présence en représentation x:

 $P(x) = \int W(x, p) dp$ et vice versa.

Si négative : état sans analogue classique.

Oscillateur harmonique Dynamique

États de Fock:

- Stationnaires
- Purement quantiques

FIGURE 2 - Etat n=3

États cohérents:

- États propres de a.
- Semi classiques : tournent

FIGURE $3 - \alpha = 2 \cdot e^{i \cdot 1}$

Oscillateur harmonique État de chat

Une superposition d'états cohérents déphasés de $\frac{\pi}{2}$:

- Interferences quantiques
- Tournent comme l'état cohérent

FIGURE 4 – État de chat avec l'état cohérent précédent.

Décohérence d'un système quantique Apparition

Évolution unitaire

Un état pur dont on prends la trace partielle devient un état mixte.

Décohérence d'un système quantique Matrice de densité

Équation de Lindblad Opérateurs de Kraus

Équation de Lindblad L'équation

Équation de Lindblad Signification physique

Équation de Lindblad Résolution avec QuTiP

Décohérence d'un qubit

Décohérence d'un qubit Décohérence par perte d'énergie

Décohérence d'un qubit Décohérence par saut de phase

Décohérence d'un oscillateur Canal de décohérence

Décohérence d'un oscillateur État de Fock

Décohérence d'un oscillateur État cohérent

Décohérence d'un oscillateur État de chat

Trajectoires quantiques et mesures Une autre approche a la décohérence

Trajectoire d'un qubit Perte d'énergie

Trajectoire d'un qubit Perte de phase

Trajectoire d'un oscillateur Décohérence d'un état de Fock

Trajectoire d'un oscillateur

Décohérence d'un état cohérent

Trajectoire d'un qubit couplé a un oscillateur Décohérence d'un état de Fock

Conclusion

content...

Remerciements

Nous tenons à remercier Quentin Ficheux pour son aide précieuse et ses explications très claires.

Annexe

Résolution analytique Qubit (Annexe)

L'hamiltonien doit être hermitien. On peut le décomposer donc sur la base des matrices de Pauli :

id	σ_x	σ_y	σ_z
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

On a

$$H = E_0 \cdot id + \vec{r} \cdot \vec{\sigma}$$