Data Structures and Algorithms

Week 11 - Bellman-Ford SSSP Algorithm, Floyd-Warshalls APSP

Subodh Sharma and Rahul Garg {svs,rahulgarg}@iitd.ac.in.

The algorithm

```
Bellman-ford(source, V, E):
// initialise d[v], p[v], and d[source]=0
for |V| -1 times repeat:
  foreach (u,v) \in E with weight c_{uv}:
    alt = d[u] + C_{\mu\nu}
    If (alt < d[v]):
       d[v] = alt
       p[v] = u
```

foreach (u,v) \in E with weight c_{uv} :

if
$$d[u] + c_{uv} < d[v]$$

Error "Negative wt cycle found"

Time complexity: O(|V|, |E|)

Proof of correctness

- Lemma 1: The longest path without a cycle in G = (V, E) can be of almost |V| 1 edges.
 - Proof: Assume there is a path in G w/o a cycle that has length |V|. This means it has |V|+1 vertices.
 - By Pigeonhole principle, at least one vertex is repeated ⇒ the path has a cycle. This is a contradiction.
- Lemma 2: Assume a G with no negative cycles. Let $p = \langle v_0, v_1, ..., v_j \rangle$ be the shortest path from v_0 to v_j . Any sequence of calls that include in-order relaxations of $(v_0, v_1), (v_1, v_2), ..., (v_{j-1}, v_j)$ produces $d[v_j] = \delta[v_j]$ after all the relations and at all times afterwards.

Proof of correctness

- Lemma 2: Assume a G with no negative cycles. Let $p = \langle v_0, v_1, ..., v_j \rangle$ be the shortest path from v_0 to v_j . Any sequence of calls that include in-order relaxations of $(v_0, v_1), (v_1, v_2), ..., (v_{j-1}, v_j)$ produces $d[v_j] = \delta[v_j]$ after all the relations and at all times afterwards.
 - Proof: Base case trivial. Assume IH until k-1 and $d[v_{k-1}] = \delta[v_{k-1}]$. Eventually we will relax the edge (v_{k-1}, v_k) at least once after the call (v_{k-2}, v_{k-1}) . At the time of this call $d[v_k] \geq \delta[v_k]$. We also know that $\delta[v_k] = \delta[v_{k-1}] + w(v_{k-1}, v_k)$ because this path is the shortest. Therefore, $d[v_k] \geq d[v_{k-1}] + w(v_{k-1}, v_k)$. After the relaxation call, $d[v_k] = d[v_{k-1}] + w(v_{k-1}, v_k) = \delta[v_k]$.

Proof of correctness

- Thm1: For all $v \in V$ reachable from s, Bellman-Ford produces $d[v] = \delta[v]$
 - Proof: Let $p=\langle v_0=s,v_1,...,v_j=v\rangle$ be the shortest acyclic path. p cannot contain more than |V|-1 edges (Lemma 1). Assuming we consider a relaxation sequence where (s,v_1) gets relaxed in the 1st iteration, then (v_1,v_2) in the next and so on.
 - From Lemma 2, it implies that after |V|-1 many iterations $d[v]=\delta[v]$.

All-pairs Shortest Path Algorithm

Also called Floyd-Warshall

- On directed weighted graphs with no negative weight cycles
- The algorithm finds uses in computing Transitive closure of a relation and widest path problems
- ShortestPath(i,j,k): returns the length of the shortest path from i to j using vertices only from the set $\{1,2,\ldots,k\}$ as intermediate points.
 - Note: ShortestPath $(i,j,k) \leq$ ShortestPath(i,j,k-1). Think Why?
 - Now, if ShortestPath(i,j,k) < ShortestPath(i,j,k-1), then there must exist a path from i to j using vertices $\{1,2,\ldots,k\}$ that is shorter than any path that does not use k

All-pairs Shortest Path Algorithm

Also called Floyd-Warshall

- ShortestPath(i, j, k): returns the length of the shortest path from i to j using vertices only from the set $\{1, 2, ..., k\}$ as intermediate points.
 - Note: ShortestPath $(i,j,k) \leq \text{ShortestPath}(i,j,k-1)$. Think Why?
 - Now, if ShortestPath(i,j,k) < ShortestPath(i,j,k-1), then there must exist a path from i to j using vertices $\{1,2,\ldots,k\}$ that is shorter than any path that does not use k
 - This path can be decomposed as ShortestPath(i,j,k) = ShortestPath(i,k,k-1) + ShortestPath(k,j,k-1)
- Recursive formulation:

```
ShortestPath(i, j, k) = \min(\text{ShortestPath}(i, j, k - 1), \text{ShortestPath}(i, k, k - 1) + \text{ShortestPath}(k, j, k - 1))
```

All-pairs Shortest Path Algorithm

Also called Floyd-Warshall

- **Base case:** ShortestPath(i, j, 0) = w(i, j) where w(i, j) = weight of the edge between i and j if one exists, otherwise ∞
- Pseudocode:

```
// initialise d[u][v] matrix with w[u][v] or \infty, d[v][v] = 0 for k from 1 to |V|: for i from 1 to |V|: for j from 1 to |V|: if d[i][j] > d[l][k] + d[k][j]: d[i][j] := d[l][k] + d[k][j] Time Complexity: \Theta(|V|^3)
```

On Implementation of Floyd-Warshall All

- The $\Theta(|V|^3)$ complexity works when the graphs are dense
- For sparse graphs the asymptotic complexity can be reduced
 - Hint: you Dijkstra with binary heaps for each vertex
 - Time complexity?
 - $O(|E|.|V|.log|V|+|V|^2log|V|)$
 - The above is smaller than $O(|V|^3)$ when $|E| \ll |V|^2$
- Fasten matrix multiplication Strassen's Algorithm
 - The optimal # of arithmetic ops to multiply two square n x n matrices is still an open problem!

Some applications of the discussed algorithms

- Find the shortest path between two nodes while avoiding any strongly connected components
 - Tarjan's + Dijkstra's Alg.
- Given a network of cities and roads, which each city allowing a certain number of goods to flow through it. Find the path for each city's flow such that the maximum time taken for any flow is minimised.
 - Floyd-warshall + binary search on max flow time; then check feasibility of a path through Dijkstra's
- Optimal meeting point:
 - *n* people need to meet in a restaurant in a city which minimises the distance for everyone.