Функционални зависимости (Functional Dependencies)

Значение на FD's Ключове и суперключове Аксиоми на Армстронг

Релационен модел - основни понятия

- Атрибути
- Схеми
- Кортежи
- Домейни

Домейни

- С всеки атрибут на релация е свързан домейн - м-во от допустими стойности
- Релационният модел изисква стойностите на атрибутите да бъдат атомарни
 - —Прости типове integer, string
 - Сложни типове като lists, arrays не са разрешени

Movies

(title:string,year:integer,length:integer,filmType:string)

Релация

- Формализирана дефиниция:
 - Ако **A, B** са м-ва, релацията **R** е подмножество на **A x B**
- $A = \{1,2,3\}, B = \{a,b,c,d\},$ $R = \{(1,a), (1,c), (3,b)\}$ Product

 Company $A = \{1,2,3\}, B = \{a,b,c,d\},$ $A = \{1,2,3\}, B = \{1,2,3\}, B$
- makes е подмножество на Product x Company:

Формална дефиниция

- Нека ге релация. Да означим с R нейната схема - R(A₁, A₂, ..., A_n)
- Тогава r, или r(R), е математическа релация от степен n върху домейните dom(A₁), dom(A₂), ..., dom (A_n) подмножество на декартовото произведение на домените, които дефинират R. Това може да се изрази чрез:

$$r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$$

- \blacksquare r(R) е м-во от n-tuples, r = {t₁, t₂, ..., t_m}
- Всеки n-tuple t е подреден списък от n стойности t=<v₁,v₂,...,v_n>, където v_i, 1 ≤ i ≤ n, е елемент от dom(A_i) или специалната стойност NULL value

Нотация

```
R(A_1, A_2, ..., A_n)
r = \{t_1, t_2, ..., t_m\}
t = < v_1, v_2, ..., v_n > 
t[A_1] or t.A_1
Имена на релации: Q, R, S
Екземпляри на релации : q, r, s
Кортежи (tuples): t, u, v
```

Функционални зависимости

- Дефиниция
- Функционални зависимости и ключове
- Правила за функционални зависимости
 - Аксиоми на Армстронг
 - Правила за извод

Функционални зависимости

- Най-важните ограничения в релационния модел
- Знанията за функционални зависимости са от особена важност при проектиране на БД за елиминиране на anomalies & redundancies

Функционална зависимост - дефиниция (FD)

- $A_1, A_2, ..., A_n \rightarrow B$
 - Чете се: "A₁, A₂, …, A_n функционално определя В"
- Ако два кортежа от r(R) съвпадат по атрибутите A₁, A₂, ..., A_n of R, те трябва да съвпадат и по атрибута В

Графично представяне...

Нека A → B

FD се отнася за всеки два кортежа *t* и *u* в релацията R

Пример 1

78. /		
	[ovi	PC
		U D

title	year	length	filmType	studioName	starName		
Star Wars	1977	124	color	Fox	Carrie Fisher		
Star Wars	1977	124	color	Fox	Mark Hamill		
Star Wars	1977	124	color	Fox	Harrison Ford		
Mighty Ducks	1991	104	color	Disney	Emilio Estevez		
Wayne's World	1992	95	color	Paramount	Dana Carvey		
Wayne's World	1992	95	color	Paramount	Mike Myers		

```
title year → length
title year → filmType
title year → studioName
```

но не:

title year → starName

Пример 2

- Посочете подходящи FDs при съставяне на разписание на лекциите?
 - Course codes and names
 - The period a course is given
 - The number of students taking a course
 - The name of the course responsible
 - The names of all lecture rooms
 - The number of seats in a lecture room
 - Weekdays and hours of lectures

Нотация

- A, B, C, ... м-ва от атрибути
 - Понякога за по-голяма яснота се използва
 АА или ВВ
 - A₁, A₂, A₃, …, A_n означават индивидуални атрибути
- F се използва за означение на м-то на функционалните зависимости
 - С малки букви f означаваме единични функционални зависимости

FD's и схема

- FD е твърдение за <u>схемата</u> на релацията, не за конкретен екземпляр
 - FD's не могат да се определят чрез просто преглеждане на данните
 - FDs са свойства на семантиката на атрибутите
 - Всички данни ги удовлетворяват

Ключове на релации

- *K* ={A₁,A₂,...,A_n} е ключ за релацията *R* ако:
 - 1. М-то *K* функционално определя всички атрибути на *R*.
 - 2. За нито едно подмножество на K (1) не е вярно
- Ако *К* удовлетворява (1), но не удовлетворява (2), то *К* е суперключ.
 - •За ключовете в E/R модела няма изискване за минималност

Пример

Movies(title, year, length, filmType, studioName, starName)

- Ключ {title, year, starName}
- Няма други ключове, но има много суперключове.
 - Всяко супермножество на {title, year, starName}
 - Пример : {title, year, starName,length, stufioName} is a superkey

FD's и ключове

- Нова дефиниция в термините на FD's
- K={A₁,A₂,...,A_n} е ключ на релацията R *ако*:
 - 1.К определя функционално ВСИЧКИ други атрибути на R
 - $\blacksquare K \to R$
 - ■Не е възможно 2 различни кортежа *t* и *u* да съвпадат по A₁, A₂, ..., A_n
 - 2. Нито едно подмножество на K не може да определи функционално всички останали атрибути на R
 - К е минимално

Какво е функционалното при FDs?

- A₁A₂...A_n → В се нарича функционална зависимост, защото има функция, която на списък от стойности (по една за всяко A₁,A₂,...A_n) съпоставя уникална стойност за В
- Тук функцията не се изчислява по стандартния начин
 - "изчислението" става чрез търсене в релацията

Откриване на ключове в релации

- Когато релационната схема е получена от преобразуването на E/R диаграма в релация, структурата на ключа може да се предвиди:
 - Преобразуване на същност
 - Ако релацията е получена от м-во същности,
 ключът на релацията се формира от атрибутите на ключа на м-вото същности
 - Преобразуване на бинарна връзка

Откриване на ключове в релации (2)

Преобразуване на бинарна връзка М:М

 Ключът на релацията R се формира от ключовите атрибути на двете свързани множества същности

Откриване на ключове в релации (3)

■ Преобразуване на бинарна връзка М:1

 Ключът на релацията R се формира от ключовите атрибути на Е

Откриване на ключове в релации (4)

■ Преобразуване на бинарна връзка 1:1

 Ключ на релацията R могат да са ключовите атрибути от всяко едно от двете свързани множества същности

Определяне на всички FDs

A	В	C
a	b	С
а	b1	С
a1	b	c1

 $A \rightarrow C$?

Student-course database

Id	Name	Address	C	Description	Grade
124	Jones	Phila	Phil7	Plato	A
456	Smith	NYC	Phil7	Plato	В
789	Brown	Boston	Math8	Topology	C
124	Jones	Phila	Math8	Topology	A
789	Brown	Boston	Eng12	Chaucer	В

Добри и лоши проекти

■ Кой проект е по-добър?

Data(Id#, Name, Address, C#, Description, Grade)

Student(Id#, Name, Address)
Course(C#, Description)
Enrolled(Id#, C#, Grade)

student-course database

Пример за лошо проектиране

	d#	Name	Address	C#	Description	Grade
1	124	Jones	Phila	Phil7	Plato	Α
	156	Smith	NYC	Phil7	Plato	В
7	789	Brown	Boston	Math8	Topology	C
1	124	Jones	Phila	Math8	Topology	A
7	789	Brown	Boston	Eng12	Chaucer	В

- Излишество на информация
 - Name Address
- Информацията за курса зависи от наличието на студент

Определяне на FDs

■ FDs при student-course database

```
Id# \rightarrow Name, Address C# \rightarrow Description Id#,C# \rightarrow Grade
```

- Всяка релация трябва да удовлетворява FDs.
- FDs са твърдения за семантиката на БД (не претърсваме екземплярите на БД за откриването им).
- Как да открием всички FDs, ако имаме някои от тях?

- Някои FD's могат да се получат като логически следствия от други, чрез прилагане на определени правила. Тези правила са познати под името Armstrong's axioms:
 - Рефлексивност
 - Разширение
 - Транзитивност

■ A1 Рефлексивност (Reflexivity).

Ако $Y \subseteq X$ то $X \rightarrow Y$ Пример: Name, Address \rightarrow Address

■A2 Разширение, попълнение (Augmentation).

Ако $X \rightarrow Y$ то $XW \rightarrow YW$ Пример : от $C\# \rightarrow$ Description получаваме $C\#, Id\# \rightarrow$ Description, Id#

■А3 Транзитивност (Transitivity).

Ако $X \to Y$ и $Y \to Z$ то $X \to Z$ Пример : от $Id\#,C\# \to C\#$ и $C\# \to Description$, получаваме $Id\#,C\# \to Description$

■ A1 Рефлексивност (Reflexivity)
Ако $Y \subseteq X$ то $X \rightarrow Y$

Всеки 2 кортежа t и u съвпадат по всички атрибути на x, следователно те съвпадат и по всяко подмножество на x, включително y

■ A2 Разширение, попълнение (Augmentation).

AKO $X \rightarrow Y$ TO $XW \rightarrow YW$

Да допуснем, че има 2 кортежа **t** и **u**, които съвпадат по всички атрибути на **XW**, но не съвпадат по **YW**.

t и u задължително съвпадат по w.

Следователно t <> u по някой от атрибутите на Y, което противоречи на $X \to Y$

■ АЗ Транзитивност (Transitivity)

Ако
$$X \rightarrow Y$$
и $Y \rightarrow Z$ то $X \rightarrow Z$

Да допуснем, че има 2 кортежа (x,y1,z1) и (x,y2,z2), които съвпадат по всички атрибути на **X**.

 $X \to Y$, следователно щом съвпадат по всички атрибути на X, задължително съвпадат по всички атрибути на Y, т.е. у1=у2

$$Y \rightarrow Z \dots z1=z2$$

2-та кортежа съвпадат

■ Обединение

Ако
$$X \rightarrow Y$$
 и $X \rightarrow Z$ то $X \rightarrow YZ$

■ Псевдотранзитивност

Ако
$$X \to Y$$
 и $WY \to Z$ то $XW \to Z$

Декомпозиция

Ако
$$X \rightarrow Y$$
 и $Z \subseteq Y$ то $X \rightarrow Z$

Доказателство?

■ Обединение

Ако
$$X \rightarrow Y$$
 и $X \rightarrow Z$ то $X \rightarrow YZ$

$$X \rightarrow Y$$
, следователно $X \rightarrow XY$ (A2)

$$X \rightarrow Z$$
, следователно $XY \rightarrow ZY$ (A2)

$$XY \rightarrow ZY$$
 (A3)

■ Псевдотранзитивност

Ако
$$X \to Y$$
 и $WY \to Z$ то XW $\overrightarrow{X} \to \overrightarrow{Y}$, следователно $WX \to WY$ (A2) но $WY \to Z$, следователно $WX \to Z$ (A3)

Декомпозиция

Ако
$$X o Y$$
 и $Z \subseteq Y$ то $X o Z$ $X o Y$ $Z \subseteq Y$, следователно $Y o Z$ (A1)

Правила за разделяне и обединение

- Имаме право да разделим множеството атрибути в дясната част на FD и да поставим всеки от тях в дясната част на нова FD.
- Правило за декомпозиция:

- Ако
$$AA \to B_1$$
, B_2 , ..., B_n , то $AA \to B_1$..., $AA \to B_2$, ..., $AA \to B_n$

■ Можем ли да декомпозираме лявата част?

Правила за разделяне и обединение

■ Правило за обединение:

AKO
$$AA \rightarrow B_1$$
 $AA \rightarrow B_2$
, ...,
 $AA \rightarrow B_n$

TO $AA \rightarrow B_1, B_2, ..., B_n$

Пример

■ title year → length filmType studioName

- title year → length
- title year → filmType
- title year → studioName

Тривиални зависимости

- Функционалната зависимост A₁A₂...A_n → В се нарича **тривиална**, ако атрибутът В съвпада с някой от атрибутите A₁,A₂, ..., A_n. В противен случай **нетривиална**.
- Тривиални, нетривиални, напълно нетривиални
 - Тривиална: атрибутите B₁B₂...B_n са подмножество на A₁A₂...A_n
 - title year → title
 - Нетривиална: поне един атрибут от B₁B₂...B_n не е подмножество на A₁A₂...A_n
 - title year → year, length
 - Напълно нетривиална: нито един от атрибутите В's не е част от А's

Правило на тривиалната зависимост

Имаме право от дясната част на FDs да премахнем тези атрибути, които принадлежат на лявата част:

От
$$A_1A_2...A_n \to B_1B_2...B_m$$
 получаваме

$$A_1A_2...A_n \to C_1C_2...C_k$$
 където $\{C_1,C_2...C_k\} \subseteq \{B_1,B_2...B_m\}$ и нито един от атрибутите C не е от $A_1A_2...A_n$