Aalto University School of Science Master's Programme in Life Science Technologies

Bent Ivan Oliver Harnist

Probabilistic Precipitation Nowcasting using Bayesian Convolutional Neural Networks

Master's Thesis Espoo, July 20th, 2022

DRAFT! — May 12, 2022 — DRAFT!

Supervisor: Professor Arno Solin Advisor: Terhi Mäkinen D.Sc.

Seppo Pulkkinen D.Sc.

Aalto University School of Science Master's Programme in Life Science Technologies

ABSTRACT OF MASTER'S THESIS

Author:	Bent Ivan Oliver Harnist			
Title:				
Probabilistic Pred	Probabilistic Precipitation Nowcasting using Bayesian Convolutional Neural Net-			
works				
Date:	July 20th, 2022	Pages:	17	
Major:	Complex Systems	Code:	SCI3060	
Supervisor:	Professor Arno Solin			
Advisor:	Terhi Mäkinen D.Sc.			
	Seppo Pulkkinen D.Sc.			
!Fixme This is an example how to use fixme: add your abstract here.				
FIXME!				
Keywords:	Precipitation nowcasting,			
Language:	English			

Aalto-yliopisto

Perustieteiden korkeakoulu

DIPLOMITYÖN TIIVISTELMÄ

Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

Tekijä:	Bent Ivan Oliver Harnist			
Työn nimi:				
Probabilistinen Sateen Nowcasting käyttäen Bayesilaisia Konvolutiivisia Neuro-				
verkkoja				
Päiväys:	20. heinäkuuta 2022	Sivumäärä:	17	
Pääaine:	Complex Systems	Koodi:	SCI3060	
Valvoja:	Professori Arno Solin			
Ohjaaja:	Terhi Mäkinen D.Sc.			
	Seppo Pulkkinen D.Sc.			
joku				
Asiasanat:	Sateen ennustaminen,			
Kieli:	Englanti			

Acknowledgements

 $! \\ FIXME \ \mathbf{My} \ \mathbf{acknowledgements} \ FIXME!$

Espoo, July 20th, 2022

Bent Ivan Oliver Harnist

Abbreviations and Acronyms

DL

Deep learning

Contents

\mathbf{A}	bbre	viation	ns and Acronyms	5
1	Intr	oducti	ion	8
	1.1	Proble	em statement	8
	1.2		cure of the Thesis	8
2	Bac	kgrou	nd	9
	2.1	Precip	pitation Nowcasting	10
		2.1.1	Weather radars and radar products	10
		2.1.2	Overview of weather forecast methods	10
		2.1.3	Precipitation nowcasting: classical methods	10
		2.1.4	Machine learning approaches to precipitation nowcasting	10
	2.2	Bayes	ian deep learning	10
		2.2.1	Learning probability distributions	10
		2.2.2	Intractable integrals and ways to deal with them	10
			2.2.2.1 MCMC based methods	10
			2.2.2.2 Variational inference	10
			2.2.2.3 Monte-Carlo dropout	10
		2.2.3	Applications of bayesian deep learning	10
		2.2.4	Predictive uncertainty estimation	10
			2.2.4.1 Epistemic and aleatoric uncertainty	10
	2.3	Proba	bilistic machine learning in atmospheric sciences	10
3	Met	thods		11
	3.1	Datas	ets and data selection	11
	3.2	Model	1	11
		3.2.1	The baseline: RainNet	11
		3.2.2	Our model: a bayesian extension to RainNet	11
	3.3	verific	eation methods	11
		3.3.1	Baseline models for verification	11
			3.3.1.1 Deterministic predictions	11

		3.3.1.2 Probabilistic predictions	11
		3.3.2 Prediction skill evaluation metrics	11
		3.3.2.1 Deterministic evaluation metrics	11
		3.3.2.2 Probabilistic evaluation metrics	11
		3.3.3 Evaluation of nowcast predictive uncertainty	11
	3.4	Experiments	11
4	Res	ults	12
	4.1	Case studies for nowcasts	12
		4.1.1 Case study 1 : Large-scale Stratiform rain event	12
		4.1.2 Case study 2: Rapidly evolving convective rain event.	12
	4.2	Deterministic prediction skill (Metrics)	12
	4.3	Probabilistic prediction skill (Metrics)	12
	4.4	Uncertainty estimation	12
		4.4.1 Uncertainties against leadtime	12
		4.4.2 Uncertainties against rainfall intensity	12
		4.4.3 Epistemic uncertainty against training parameters	12
5	Disc	cussion	13
	5.1	Goodness of results	13
	5.2	Validity of results	13
	5.3	What could we learn from uncertainty	13
	5.4	What would have to be improved, potential problems in the	
		study?	13
	5.5	Directions for further work	13
6	Con	aclusions	14
A	Firs	t appendix	16

Introduction

- 1.1 Problem statement
- 1.2 Structure of the Thesis

Background

2.1	Precipitation	Nowcasting

- 2.1.1 Weather radars and radar products
- 2.1.2 Overview of weather forecast methods
- 2.1.3 Precipitation nowcasting: classical methods
- 2.1.4 Machine learning approaches to precipitation nowcasting

2.2 Bayesian deep learning

- 2.2.1 Learning probability distributions
- 2.2.2 Intractable integrals and ways to deal with them
- 2.2.2.1 MCMC based methods
- 2.2.2.2 Variational inference
- 2.2.2.3 Monte-Carlo dropout
- 2.2.3 Applications of bayesian deep learning
- 2.2.4 Predictive uncertainty estimation
- 2.2.4.1 Epistemic and aleatoric uncertainty

2.3 Probabilistic machine learning in atmospheric sciences

Methods

3.1	Datasets	and	data	selection
O.T	Datasets	anu	uata	2616611011

- 3.2 Model
- 3.2.1 The baseline: RainNet
- 3.2.2 Our model: a bayesian extension to RainNet
- 3.3 verification methods
- 3.3.1 Baseline models for verification
- 3.3.1.1 Deterministic predictions
- 3.3.1.2 Probabilistic predictions
- 3.3.2 Prediction skill evaluation metrics
- 3.3.2.1 Deterministic evaluation metrics
- 3.3.2.2 Probabilistic evaluation metrics
- 3.3.3 Evaluation of nowcast predictive uncertainty
- 3.4 Experiments

Results

- 4.1 Case studies for nowcasts
- 4.1.1 Case study 1 : Large-scale Stratiform rain event
- 4.1.2 Case study 2 : Rapidly evolving convective rain event
- 4.2 Deterministic prediction skill (Metrics)
- 4.3 Probabilistic prediction skill (Metrics)
- 4.4 Uncertainty estimation
- 4.4.1 Uncertainties against leadtime
- 4.4.2 Uncertainties against rainfall intensity
- 4.4.3 Epistemic uncertainty against training parameters

Discussion

- 5.1 Goodness of results
- 5.2 Validity of results
- 5.3 What could we learn from uncertainty
- 5.4 What would have to be improved, potential problems in the study?
- 5.5 Directions for further work

Conclusions

Bibliography

Appendix A

First appendix

This is the first appendix. You could put some test images or verbose data in an appendix, if there is too much data to fit in the actual text nicely. For now, the Aalto logo variants are shown in Figure A.1.

(a) In English

(b) Suomeksi

(c) På svenska

Figure A.1: Aalto logo variants