MA3202

Algebra II

Spring 2022

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	Rings	2
	1.1 Basic definitions	. 2
	1.2 Subrings	. 3
	1.3 Ideals	. 4
	1.4 Integral domains	. 5
	1.5 Simple rings	. 6
	1.6 Homomorphisms and isomorphisms	. 6
	1.7 Quotient fields	. 9
	1.8 Prime and maximal ideals	. 10
	1.9 Divisibility	. 11
	1.10 Factorisation domains	. 13
	1.11 Principal ideal domains	. 14
	1.12 Euclidean domains	. 15
	1.13 Polynomial rings	. 16
2	Modules	17
	2.1 Basic definitions	. 17

1 Rings

1.1 Basic definitions

Definition 1.1. A ring is a set R equipped with two binary operations, namely addition and multiplication, such that

- 1. (R, +) is an abelian group.
 - (a) $a + b \in R$ for all $a, b \in R$.
 - (b) (a+b) + c = a + (b+c) for all $a, b, c \in R$.
 - (c) a+b=b+a for all $a,b \in R$.
 - (d) There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
 - (e) For each $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.
- 2. (R, \cdot) is a semi-group.
 - (a) $a \cdot b \in R$ for all $a, b \in R$.
 - (b) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
- 3. Multiplication distributes over addition.
 - (a) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in R$.
 - (b) $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in R$.

Remark. The following properties follow immediately,

- 1. $0 \cdot a = 0$ for all $a \in R$.
- 2. $(-a) \cdot b = -(a \cdot b) = a \cdot (-b)$ for all $a, b \in R$.
- 3. $(na) \cdot b = n(a \cdot b) = a \cdot (nb)$ for all $a, b \in R$.

Example. The integers \mathbb{Z} form a ring, under the usual addition and multiplication.

Example. All fields, for instance the rational numbers \mathbb{Q} or the real numbers \mathbb{R} , are rings.

Example. The integers modulo n, namely $\mathbb{Z}/n\mathbb{Z}$, form a ring.

Example. If R is a ring, then the algebra of polynomials R[X] with coefficients from R form a ring.

Example. If R is a ring, then the $n \times n$ matrices $M_n(R)$ with entries from R form a ring.

Definition 1.2. If R is a ring and (R, \cdot) is a monoid i.e. has an identity, then this identity is unique and called the unity of the ring R. Such a ring R is called a unit ring. Note that we typically demand that this identity be distinct from the zero element.

Example. The even integers $2\mathbb{Z}$ form a ring, but do not contain the identity.

Example. The trivial ring $\{0\}$ is typically not considered to be a unit ring, since 0 must serve as the additive identity as well as the multiplicative identity.

Definition 1.3. If R is a ring and (R, \cdot) is commutative, then R is called a commutative ring.

Definition 1.4. Let R be a unit ring. An element $a \in R$ is called a unit if there exists $b \in R$ such that $a \cdot b = 1 = b \cdot a$. This $b \in R$ is unique, and denoted by a^{-1} .

Example. The units in \mathbb{Z} are $\{1, -1\}$.

1.2 Subrings

Definition 1.5. Let R be a ring, and let $S \subseteq R$. We say S is a subring of R if the structure $(S, +, \cdot)$ is a ring, with addition and multiplication inherited from R.

Example. The rings $n\mathbb{Z}$ for $n \in \mathbb{N}$ are all subrings of \mathbb{Z} .

Example. Consider the rings $2\mathbb{Z} \subset \mathbb{Z}$. Here, \mathbb{Z} is a unit ring but $2\mathbb{Z}$ is not.

Example. Consider the rings $4\mathbb{Z}/12\mathbb{Z} \subset 2\mathbb{Z}/12\mathbb{Z}$. Here, $2\mathbb{Z}/12\mathbb{Z}$ is not a unit ring but $4\mathbb{Z}/12\mathbb{Z}$ is.

Lemma 1.1. Let S be a subring of R. Since (R, +) is an abelian group, (S, +) is a normal subgroup of (R, +). Thus, we can make sense of the quotient group (R/S, +).

Lemma 1.2. Let S be a subring of R. Then, the quotient $(R/S, +, \cdot)$ is a ring with multiplication $(a+S) \cdot (b+S) = ab+S$ if and only if $ab-xy \in S$ for all $a,b,x,y \in R$ such that the cosets a+S=x+S, b+S=y+S.

Example. Consider the ring \mathbb{Z} and the subring $n\mathbb{Z}$. Then, the quotient $\mathbb{Z}/n\mathbb{Z}$ is indeed a ring.

Example. Consider the ring \mathbb{Q} and the subring \mathbb{Z} . It can be shown that \mathbb{Q}/\mathbb{Z} is not a ring under the 'natural' multiplication.

1.3 Ideals

Definition 1.6. Let R be a ring and let I be a subset of R. We say that I is an ideal of R if (I, +) is a subgroup of (R, +), and $rx, xr \in I$ for all $r \in R$, $x \in I$.

Example. Consider the ring \mathbb{Z} , and the subring $n\mathbb{Z}$. This is an ideal of \mathbb{Z} , since $m(n\mathbb{Z}) \subseteq n\mathbb{Z}$. Indeed, every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$. This will follow from Euclid's Division Lemma.

Example. The subsets $\{0\}$ and R of any ring R are trivial ideals.

Lemma 1.3. Let R be a ring, and I be an ideal of R. Then, the quotient R/I is a ring.

Proof. Note that whenever $a - x \in I$, $b - y \in I$, we demand that $ab - xy \in I$. This can be rewritten as $(a - x)b + x(b - y) \in I$, which is clearly true by the properties of the ideal I. \square

Definition 1.7. An ideal $I \subset R$ is called finitely generated if there exist $x_1, x_2, \ldots, x_n \in I$ such that every element of I can be written as a finite linear combination

$$x = r_1 x_1 + \dots + r_n x_n,$$

where $r_i \in R$. We denote $I = (x_1, x_2, \dots, x_n)$.

Definition 1.8. An ideal generated by a single element is called a principal ideal.

Example. Every ideal of \mathbb{Z} is a principal ideal.

Lemma 1.4. Let R be a unit ring, and $I \subseteq R$ be an ideal. Then, I = R if and only if I contains the identity.

Definition 1.9. The sum of two ideals $I, J \subset R$ is defined

$$I+J=\{x+y:x\in I,y\in J\}.$$

Their product is defined

$$IJ = \{ \sum_{i=1}^{n} x_i y_i : x_i \in I, y_i \in J \}.$$

Lemma 1.5. The sum and product of two ideals of a ring are also ideals of that ring.

Lemma 1.6. Let $I, J \subset R$ be ideals in the commutative ring R. Then, $IJ \subset I \cap J$.

Example. Note that for $2\mathbb{Z}, 2\mathbb{Z} \in \mathbb{Z}, (2\mathbb{Z})(2\mathbb{Z}) = 4\mathbb{Z}$ but $2\mathbb{Z} \cap 2\mathbb{Z} = 2\mathbb{Z}$. A related example is $R = 2\mathbb{Z}, I = 4\mathbb{Z}, J = 6\mathbb{Z}$.

Lemma 1.7. If $I, J \subset R$ are ideals in a commutative unit ring R, and I + J = R, then $IJ = I \cap J$.

Proof. We already know that $IJ \subseteq I + J$. Since I + J = R, we can pick $x \in I, y \in J$ such that x + y = 1. Now pick $a \in I \cap J$, hence $a \cdot 1 = ax + ay \in I \cap J$; but this is also an element of IJ proving $I \cap J \subseteq IJ$.

1.4 Integral domains

Definition 1.10. Let R be a ring and $a, b \in R$, $a, b \neq 0$. If ab = 0, we call a a left zero divisor and b a right zero divisor.

Example. Consider $2, 3 \in \mathbb{Z}/6\mathbb{Z}$; then $2 \cdot 3 = 6 \equiv 0$.

Definition 1.11. A commutative ring R is called an integral domain if it has no zero divisors.

Example. When p is prime, the rings $\mathbb{Z}/p\mathbb{Z}$ are integral domains. Note that this set is a group under both + and \cdot .

Lemma 1.8. Every field is an integral domain.

Theorem 1.9. Every finite integral domain is a field.

Proof. Let $R = \{x_1, \ldots, x_n\}$ be a finite integral domain. We first show that R contains an identity 1. Pick $x \neq 0$, and note that xx_1, xx_2, \ldots, xx_n must all be distinct: otherwise $xx_i = xx_j$ would force $x(x_i - x_j) = 0$. This forces $x = xx_k$ for some $x_k \neq 0$. Now, we claim that x_k is our identity. Indeed, given any $y \neq 0$, we write $y = xx_l$ for some $x_l \neq 0$, hence $yx_k = xx_lx_k = x_l(xx_k) = x_lx = y$.

Next, we show that every non-zero $x \in R$ has an inverse. Indeed, $1 = x_k$ must be one of the xx_1, \ldots, xx_n , hence $1 = xx_m$ for some non-zero x_m . This means that $x_m = x^{-1}$.

Definition 1.12. Let R be a ring. The characteristic of R is the smallest positive integer n such that nx = 0 for all $x \in R$. If no such number n exists, we say that the characteristic of R is zero. We denote the characteristic of R by ch(R).

Example. We have $\operatorname{ch}(\mathbb{Z}) = 0$, $\operatorname{ch}(\mathbb{Z}/n\mathbb{Z}) = n$.

Lemma 1.10. Let R be a unit ring. Then, ch(R) is the smallest positive integer n such that $n \cdot 1 = 0$; if no such n exists, then ch(R) is zero.

Theorem 1.11. Let R be an integral domain. Then, ch(R) is either zero or a prime.

Proof. Let R be an integral domain such that $\operatorname{ch}(R) = n \neq 0$. If n is not a prime, write $n = n_1 n_2$ for $n_1, n_1 < n$. Then for any non-zero $x \in R$, write $0 = n(x^2) = (n_1 x)(n_2 x)$. This forces one of $n_1 x, n_2 x = 0$; say $n_1 x = 0$. Now for any $y \in R$, we have $x(n_1 y) = (n_1 x)y = 0$. Since $x \neq 0$, we have $n_1 y = 0$ for all $y \in R$, contradicting the minimality of n.

1.5 Simple rings

Definition 1.13. A simple ring is one which has no non-trivial ideals. We typically demand that multiplication in R is non-trivial.

Lemma 1.12. Every field is a simple ring.

Proof. If R is a field and $I \subset R$ is an ideal with non-zero $a \in I$, then $a^{-1} \in R$ hence $a^{-1}a = 1 \in I$. This immediately forces I = R.

Lemma 1.13. If R is a commutative, simple, unit ring, then R is a field.

Proof. Pick non-zero $a \in R$, and set I = (a). Since R is simple, I = R, hence $1 \in I = (a)$. In other words, 1 = ab for some $b \in R$.

1.6 Homomorphisms and isomorphisms

Definition 1.14. Let R, S be rings, and let $\varphi \colon R \to S$. We say that φ is a ring homomorphism if

- 1. $\varphi(x+y) = \varphi(x) + \varphi(y)$ for all $x, y \in R$.
- 2. $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in R$.
- 3. $\varphi(1_R) = 1_S$.

We only insist on 3 if both R and S are unit rings.

Remark. The following properties follow immediately.

- 1. $\varphi(0_R) = 0_S$.
- 2. $\varphi(-x) = -\varphi(x)$ for all $x \in R$.
- 3. $\varphi(nx) = n\varphi(x)$ for all $x \in R$, $n \in \mathbb{Z}$.
- 4. $\varphi(x-y) = \varphi(x) \varphi(y)$ for all $x, y \in R$.

Example. The map $\varphi \colon \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$, $k \mapsto k \mod n$ is a homomorphism.

Definition 1.15. A bijective homomorphism between two rings is called an isomorphism. If an isomorphism exists between two rings, we say that they are isomorphic.

Example. The map $\varphi \colon \mathbb{Z} \to n\mathbb{Z}, k \mapsto nk$ is an isomorphism.

Example. The map $\varphi \colon \mathbb{C} \to \mathbb{C}$, $z \mapsto \bar{z}$ is an isomorphism.

Example. The rings \mathbb{Z} and \mathbb{Q} are not isomorphic. If there did exist an isomorphism $\varphi \colon \mathbb{Q} \to \mathbb{Z}$, then set $a = \varphi(1/2)$. We now demand $a + a = \varphi(1/2 + 1/2) = 1$; but there is no such integer satisfying this property.

Lemma 1.14. The only isomorphism $\mathbb{Z} \to \mathbb{Z}$ is the identity map.

Theorem 1.15. The only isomorphism $\mathbb{Q} \to \mathbb{Q}$ is the identity map.

Proof. Let $\varphi \colon \mathbb{Q} \to \mathbb{Q}$ be an isomorphism. We must have $\varphi(1) = 1$, which immediately gives $\varphi(n) = n$ for all $n \in \mathbb{Z}$. Now for any rational $p/q \in \mathbb{Q}$, note that $1 = \varphi(q \cdot 1/q) = q \cdot \varphi(1/q)$, forcing $\varphi(1/q) = 1/q$. Thus, $\varphi(p/q) = p/q$, completing the proof.

Theorem 1.16. The only isomorphism $\mathbb{R} \to \mathbb{R}$ is the identity map.

Proof. Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be an isomorphism. We must have $\varphi(q) = q$ for all $q \in \mathbb{Q}$.

First we show that φ is strictly increasing. Note that when x > 0, $\varphi(x) = \varphi(\sqrt{x})^2 > 0$. Thus when x > y, $\varphi(x - y) > 0$, hence $\varphi(x) > \varphi(y)$.

Now let $x \in \mathbb{R}$; if $\varphi(x) \neq x$, we must have one of $\varphi(x) > x$ or $\varphi(x) < x$. Assume the former, and find $q \in \mathbb{Q}$ such that $\varphi(x) > q > x$. Now, q > x gives $q = \varphi(q) > \varphi(x)$, a contradiction. An analogous argument gives a contradiction when $\varphi(x) < x$, completing the proof.

Theorem 1.17. The only homomorphism $\mathbb{R} \to \mathbb{R}$ is the identity map.

Proof. If $\varphi \colon \mathbb{R} \to \mathbb{R}$ is a homomorphism, it is easy to check that $\varphi^{-1}(0)$ is an ideal. Since \mathbb{R} is simple, this must be $\{0\}$ or \mathbb{R} ; the latter can be ruled out since $\varphi(1) = 1$. In other words, $\varphi^{-1} = \{0\}$ so φ is injective. Following the previous proof, φ must be an isomorphism, hence the identity map.

Theorem 1.18. The only isomorphisms $\mathbb{C} \to \mathbb{C}$ which send $\mathbb{R} \to \mathbb{R}$ are the maps $z \mapsto z$ and $z \mapsto \bar{z}$.

Proof. The previous theorem guarantees that any such isomorphism $\varphi \colon \mathbb{C} \to \mathbb{C}$ is completely determined by $\varphi(i)$. Now, $-1 = \varphi(-1) = \varphi(i)^2$, forcing $\varphi(i) = \pm i$.

Lemma 1.19. The kernel of a ring homomorphism $\varphi \colon R \to S$ is an ideal of R. Its image is a subring of S.

Proof. If $x \in \ker \varphi$, then $\varphi(x) = 0$, hence for any $r \in R$ we have $\varphi(rx) = \varphi(r)\varphi(x) = 0$. Thus, $rx \in \varphi^{-1}(0)$. Also, recall that $\varphi^{-1}(0)$ is an additive subgroup of R.

Theorem 1.20 (First isomorphism theorem). Let $\varphi \colon R \to S$ be a surjective ring homomorphism. Then,

$$R/\ker\varphi\cong\operatorname{im}\varphi.$$

Proof. Denote $I = \ker \varphi$, so the elements of R/I are the cosets x + I for $x \in R$. This gives us the natural map

$$\phi \colon R/I \to S, \qquad x + I \mapsto \varphi(x).$$

It can be shown that this map is well defined: if x + I = y + I, then $x - y \in I$ so $\varphi(x - y) = 0$, or $\varphi(x) = \varphi(y)$. Now, $\phi((x + I) + (y + I)) = \varphi(x + y) = \varphi(x) + \varphi(y) = \phi(x + I) + \phi(y + I)$, and $\phi((x + I)(y + I)) = \varphi(xy) = \varphi(x)\varphi(y) = \phi(x + I)\phi(y + I)$. Additionally, if R and S are both unit rings, then $\phi(1_R + I) = \varphi(1_R) = 1_S$. Thus, ϕ is a homomorphism. It is obvious that ϕ is surjective; also observe that $\phi^{-1}(0) = 0 + I$, hence ϕ is also injective. This proves that ϕ is an isomorphism, as desired.

Theorem 1.21. Let $I, J \subset R$ be ideals. Then,

$$(I+J)/J \cong I/(I \cap J).$$

Proof. The map $\phi: I \to (I+J)/J$, $x \mapsto x+J$ can be shown to be a surjective homomorphism. It's kernel consists of the elements in I that get mapped to 0+J, so $\ker \phi = I \cap J$. Applying the first isomorphism theorem gives the desired result.

Lemma 1.22. Let $I \subset R$ be an ideal, and let $\varphi \colon R \to S$ be a surjective ring homomorphism, then $\varphi(I)$ is an ideal in S.

Theorem 1.23 (Correspondence theorem). Let $I \subset R$ be an ideal. Then there exists a one-to-one correspondence between the ideals of R containing I with the ideals of R/I.

Proof. Use the surjective ring homomorphism $\phi \colon R \to R/I$, $x \mapsto x + I$, which maps ideals in R to ideals in R/I. Furthermore, given ideals $J, J' \subset R$ such that $\varphi(J) = \varphi(J')$, note that $x \in J$ implies $\varphi(x) \in \varphi(J) = \varphi(J')$ so $x \in J'$; this shows that J = J', hence our map is injective. Finally, given an ideal K in R/I, its pre-image under our map is the ideal $L = \{x \in R : x + I \in K\}$.

Theorem 1.24 (Chinese remainder theorem). Let R be a commutative unit ring, and $I, J \subset R$ be ideals such that I + J = R. Then,

$$R/IJ \cong R/I \times R/J$$
.

Proof. Consider the map

$$\varphi \colon R \to R/I \times R/J, \qquad x \mapsto (x+I, x+J).$$

It is clear that this is a ring homomorphism. Furthermore, φ is surjective: to see this, pick $a \in I, b \in J$ such that a + b = 1. Then

$$\varphi(ay + bx) = (a(y - x) + x + I, b(x - y) + y + J) = (x + I, y + J).$$

Now, note that $\varphi(x) = (I, J)$ forces $x \in I \cap J$; but the latter is just IJ by a previous lemma. Applying the first isomorphism theorem gives the desired result.

1.7 Quotient fields

We recall the standard construction of \mathbb{Q} from \mathbb{Z} , and generalize this to the construction of the field Q(R) from an integral domain R. Consider the equivalence relation on the set $R \times R \setminus \{0\}$ defined by

$$(a,b) \sim (c,d) \iff ad = bc.$$

This partitions $R \times R \setminus \{0\}$ into equivalence classes; let Q(R) be the collection of these equivalence classes. Now define addition and multiplication of elements from Q(R) as

$$[a, b] + [c, d] = [ad + bc, bd],$$
 $[a, b] \cdot [c, d] = [ac, bd].$

It can be verified that this is well defined. Furthermore, we have an additive identity [0, a], a multiplicative identity [a, a], and every non-zero element [a, b] has a multiplicative inverse [b, a]. The remaining properties can be checked to show that Q(R) is a field. We can now embed R in Q(R) via the map

$$\iota \colon R \to Q(R), \qquad x \mapsto [ax, a].$$

It can also be shown that Q(R) is the smallest field containing R. Indeed if $j: R \to F$ is an embedding of R in the field F, we can embed Q(R) in F using the map $[a, b] \mapsto j(a) \cdot j(b)^{-1}$.

Remark. We do not require R to have a multiplicative identity!

Definition 1.16. The field Q(R) constructed as above is called the field of fractions, or quotient field of the integral domain R.

Lemma 1.25. The field of fractions Q(R) is the smallest field containing the integral domain R.

Lemma 1.26. Let R_1, R_2 be integral domains. If $R_1 \cong R_2$, then $Q(R_1) \cong Q(R_2)$.

1.8 Prime and maximal ideals

Definition 1.17. An ideal $I \subseteq R$ is called a prime ideal if it is proper, and $xy \in I$ implies that at least one of $x, y \in I$ for all $x, y \in R$.

Lemma 1.27. An ideal $I \subseteq P$ is prime if and only if $JK \subset I$ forces either $J \subset I$ or $K \subset I$ for all ideals $J, K \subseteq R$.

Example. The prime ideals of \mathbb{Z} are $\{0\}$ and $p\mathbb{Z}$

Example. A commutative ring is an integral domain if and only if $\{0\}$ is a prime ideal.

Theorem 1.28. Let R be a commutative ring, and I be a proper ideal. Then, I is a prime ideal if and only if R/I is an integral domain.

Example. The quotients $\mathbb{Z}/p\mathbb{Z}$ are integral domains precisely for primes p.

Definition 1.18. An ideal $I \subseteq R$ is called maximal if it is proper, and for any ideal $J \subseteq R$ with $I \subseteq J \subseteq R$, either J = I or J = R.

Example. The maximal ideals of \mathbb{Z} are $p\mathbb{Z}$.

Theorem 1.29. Let R be a commutative unit ring, and I be a proper ideal. Then I is a maximal ideal if and only if R/I is a field.

Example. Note that $4\mathbb{Z}$ is a maximal ideal in $2\mathbb{Z}$, but $2\mathbb{Z}/4\mathbb{Z}$ is not a field.

Lemma 1.30. Let R be a commutative unit ring. Then every maximal ideal is prime.

Example. Note that (X) is a prime ideal in $\mathbb{Z}[X]$, but not maximal.

Definition 1.19. A non-empty set S with a partial order \leq is called a partial ordered set, when we have

- 1. $x \leq x$ for all $x \in S$.
- 2. $x \le y$ and $y \le x$ forces x = y.
- 3. $x \leq y$ and $y \leq z$ forces $x \leq z$.

Definition 1.20. A subset T of S is called a chain or totally ordered set if any two elements are comparable. In other words, given $x, y \in T$, at least one of $x \leq y$ or $y \leq x$.

Lemma 1.31 (Zorn's Lemma). If S is a partially ordered set such that every chain C has an upper bound in S, then for every element $x \in S$, there exists a maximal element $z \in S$ such that $x \le z$.

Theorem 1.32. Let R be a commutative unit ring. Then R contains a maximal ideal.

1.9 Divisibility

In this section, all rings are integral domains with a multiplicative identity.

Definition 1.21. Let $a, b \in R$, $a \neq 0$. We say that a divides b if there exists $c \in R$ such that b = ac. We denote this by $a \mid b$.

Example. In $\mathbb{Z}[i]$, 3+i divides 10 because 10=(3+i)(3-i).

Lemma 1.33. If $a, b \in R$, $a \neq 0$, then $a \mid b$ if and only if $(a) \supseteq (b)$.

Lemma 1.34. Suppose that $a \mid b$ and $b \mid a$. Then, b = ua for some unit $u \in R$.

Definition 1.22. Two non-zero elements $a, b \in R$ are called associates of each other if b = ua for some unit $u \in R$.

Remark. This defines an equivalence relation on $R - \{0\}$.

Definition 1.23. A non-zero non-unit element $a \in R$ is said to be irreducible if a = bc forces either b, c to be a unit.

Remark. The only divisors of an irreducible element are its associates and units.

Definition 1.24. A non-zero non-unit element $p \in R$ is said to be prime if for $a, b \in R$, $p \mid ab$ forces either $p \mid a, p \mid b$.

Lemma 1.35. All prime elements are irreducible.

Example. Consider $x = 1 + \sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$; this is irreducible, but not prime.

Theorem 1.36. Let $p \in R$ be non-zero. Then, p is a prime if and only if (p) is a prime ideal.

Theorem 1.37. Let $x \in R$ be non-zero. Then, x is irreducible if (x) is maximal.

Example. Note that X is irreducible in $\mathbb{Z}[X]$, but (X) is not maximal.

Definition 1.25. Let $a, b \in R$ be non-zero. An element $d \in R$ is called a greatest common divisor (gcd) of a and b if

- 1. $d \mid a$ and $d \mid b$.
- 2. $d' \mid a$ and $d' \mid b$ forces $d' \mid d$.

Definition 1.26. Let $a, b \in R$ be non-zero. An element $l \in R$ is called a least common multiple (lcm) of a and b if

- 1. $a \mid l$ and $b \mid l$.
- 2. $a \mid l'$ and $b \mid l'$ forces $l \mid l'$.

Example. Consider the ring $\mathbb{Z}[\sqrt{-5}]$, with $a = 2(1 + \sqrt{-5})$, $b = 6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$. Then, a and b have no gcd or lcm.

Lemma 1.38. If the gcd of a and b does exist, then it is unique upto associates. The same applies for the lcm.

1.10 Factorisation domains

Definition 1.27. A unit integral domain R is called a factorisation domain if every non-zero, non-unit $x \in R$ can be expressed as a unit times a product of irreducible elements, i.e. $x = ux_1x_2...x_n$ where u is a unit and each x_i is irreducible.

Example. The ring $\mathbb{Z}[\sqrt{-5}]$ is a factorisation domain.

Example. Consider the ring if entire complex functions, i.e.

$$R = \{ \sum_{n=1}^{\infty} a_n z^n : a_n \in \mathbb{C}, \text{ the series converges for all } z \in \mathbb{C} \}.$$

Then, R is indeed a unit integral domain, and its units are those functions which vanish nowhere. Furthermore, its irreducible elements are the associates of linear polynomials z-a. Now if R were to be a factorisation domain, then every element would be an associate of a polynomial function, and thus have finitely many zeroes. However, the entire function sin has infinitely many zeroes.

Definition 1.28. A unit integral domain R is called a unique factorisation domain if R is a factorisation domain and the factorisation of every element non-zero $x \in R$ is unique upto associates.

Example. The ring of integers \mathbb{Z} is a unique factorisation domain.

Example. The ring $\mathbb{Z}[\sqrt{-5}]$ is not a unique factorisation domain.

Theorem 1.39. A unit integral domain R is a unique factorisation domain if and only if R is a factorisation domain in which every irreducible element is a prime.

Proof. First suppose that R is a unique factorisation domain. Let x be an irreducible element in R, and let $x \mid ab$. We claim that $x \mid a$ or $x \mid b$. Now, $x \mid ab$ means that there exists $y \in R$, xy = ab. We can factor a and b, and conclude that

$$xy = ab = (ua_1 \dots a_l)(vb_1 \dots b_m),$$

where u, v are units and a_i, b_j are all irreducible. Since R is a unique factorisation domain and the irreducible element x appears on the left, it must be an associate of one of the a_i, b_j . If $x = wa_i$ for some unit w, then $x \mid a_i$ hence $x \mid a$. Otherwise, $x \mid b_j$ hence $x \mid b$.

Next suppose that R is a factorisation domain where evert irreducible element is prime. Suppose that non-zero $x \in R$ factorises into irreducible elements as

$$x = ux_1 \dots x_l = vy_1 \dots y_m$$
.

Note that all x_i, y_j are primes. Suppose that $l \leq m$. Now $x_1 \mid x$ implies that $x_1 \mid vy_1 \dots y_m$, hence $x_1 \mid y_k$ for some y_k . Without loss of generality, let $x_1 \mid y_1$; the irreducibility of y_1 means that $x_1 = u_1y_1$ for some unit u_1 . Thus,

$$uu_1x_2\ldots x_l=vy_2\ldots y_m$$

Continuing this process, we will reach $w = vy_{l+1} \dots y_m$ for some unit w, which is a contradiction if l < m. Thus, we are forced to have l = m, and all $x_i = u_i y_i$ for units u_i .

Lemma 1.40. Let R be a unique factorisation domain. Then, any two non-zero elements in R have a gcd and an lcm.

1.11 Principal ideal domains

Definition 1.29. A unit integral domain R is called a principal ideal domain if every ideal of R is principal.

Example. The ring of integers \mathbb{Z} is a principal ideal domain.

Theorem 1.41. Let R be a principal ideal domain, and let $x \in R$ be non-zero. Then, x is irreducible if and only if (x) is maximal.

Corollary 1.41.1. Let R be a principal ideal domain. Then, every non-zero prime ideal is maximal.

Example. Note that (0) is a prime ideal in \mathbb{Z} , but is not maximal.

Lemma 1.42. Let R be a principal ideal domain. Then, every irreducible element is prime.

Theorem 1.43. Every principal ideal domain is a unique factorisation domain.

Corollary 1.43.1. Let R be a principal ideal domain. Then, any two non-zero elements in R have a gcd and an lcm.

Example. The ring $\mathbb{Z}[X]$ is a unique factorisation domain, but not a principal ideal domain.

1.12 Euclidean domains

Definition 1.30. An integral domain R is called a Euclidean domain if there is a map $d: R - \{0\} \to \mathbb{Z}_{\geq 0}$ such that

- 1. $d(a) \leq d(ab)$ for all non-zero $a, b \in R$.
- 2. For all $a \in R$ and non-zero $b \in R$, there exist $q, r \in R$ such that a = bq + r with either r = 0 or d(r) < d(b).

The map d is called the algorithm map and the second property is called the division algorithm.

Example. The ring of integers \mathbb{Z} is a Euclidean domain, with d(n) = |n|.

Example. The ring of Gaussian integers $\mathbb{Z}[i]$ is a Euclidean domain, with $d(a+ib) = a^2 + b^2$.

Example. Every field is a Euclidean domain, with d(x) = 1.

Lemma 1.44. Every ideal in a Euclidean domain is principal.

Proof. Let R be a Euclidean domain, and let $I \subseteq R$ be an ideal. If I = 0, we trivially have I = (0). Thus, let $I \neq 0$, and choose non-zero $a \in I$ such that d(a) is minimal. We claim that I = (a). Indeed, let $b \in I$, and exhibit $q, r \in R$ such that b = aq + r. This shows that $r = b - aq \in I$. Note that d(r) < d(a) contradicts the minimality of d(a), hence we must have r = 0, and $b = aq \in (a)$. Thus, I = (a) as desired.

Lemma 1.45. Every Euclidean domain is a unit ring.

Proof. The previous lemma shows that if R is a Euclidean domain, then R=(a) for some $a \in R$. Since $a \in R$, we must have $a=a_0a$ for some $a_0 \in R$. We claim that a_0 is the identity in R. Indeed, for $x \in R=(a)$, we must have x=ra for some $r \in R$, hence $x=ra_0a=a_0(ra)=a_0x$.

Theorem 1.46. Every Euclidean domain is a principal ideal domain.

Example. The ring $\mathbb{Z}[(1+\sqrt{19})/2]$ is a principal ideal domain, but not a Euclidean domain.

Corollary 1.46.1. Every Euclidean domain is a unique factorisation domain.

Corollary 1.46.2. Let R be a Euclidean domain. Then, any two non-zero elements in R have a gcd and an lcm.

Lemma 1.47. Let R be a Euclidean domain, and let $a, b \in R$. If a is a proper divisor of b, then d(a) < d(b).

1.13 Polynomial rings

Theorem 1.48 (Eisenstein's criterion). Let R be a unique factorisation domain, and

$$f(x) = \sum_{i=0}^{n} a_i x^i \in R[X].$$

Suppose that there is a prime $p \in R$ such that $a \mid a_i$ for $0 \le i < n$, $p \nmid a_n$, and $p^2 \nmid a_0$. Then, f(x) is irreducible.

Corollary 1.48.1. Let p be a prime and let n > 1. Then, $x^n - p \in \mathbb{Z}[X]$ is irreducible.

Lemma 1.49 (Gauss lemma). Let R be a unique factorisation domain, and let F be the field of fractions of R. Let $f(x) \in R[X]$ be irreducible in $\mathbb{R}[X]$. Then, f(x) is irreducible in F[X].

Theorem 1.50 (Gauss theorem). Let R be a unique factorisation domain. Then, R[X] is also a unique factorisation domain.

2 Modules

2.1 Basic definitions

Definition 2.1. Let R be a ring. A left R-module is an abelian group (M, +) together with a map $R \times M \to M$ given by $(a, x) \mapsto ax$ such that for all $a, b \in R$, $m, n \in M$, the following hold.

- 1. a(m+n) = am + an.
- 2. (a+b)m = am + bm.
- 3. a(bm) = (ab)m.
- 4. 1m = m.

Remark. When R is commutative, we simply call this structure an R-module.

Example. Any abelian group is a \mathbb{Z} -module.

Example. Any vector space V over a field F is an F-module.

Example. Any ring R is an R-module over itself. Indeed, given an ideal $I \subseteq R$, we see that I is an R-module.

Example. Let M be an S-module. If $\varphi \colon R \to S$ is a ring homomorphism, we can treat M as an R-module, with scalar multiplication $(a, m) \mapsto \varphi(a)m$ for $a \in R$, $m \in M$.

In particular, S is an R-module, with $(r,s) \mapsto \varphi(r)s$ for $r \in R$, $s \in S$.

Using this idea, suppose that $I \subseteq R$ is an ideal, and $\pi \colon R \to R/I$ is the canonical homomorphism. Then R/I is an R-module, with $(r, s + I) \mapsto rs + I$ for $r, s \in R$.

Definition 2.2. Let M be a module. A subset $N \subseteq M$ is called a submodule of M if N is a subgroup of (M, +), and $rx \in N$ for all $r \in R$, $x \in N$.

Example. Any subspace of a vector space is a submodule.

Example. All polynomials of degree at most n is a submodule of the R module R[x].

Example. The submodules of a commutative ring R are precisely the ideals of R.

Lemma 2.1. Let $M_1, M_2 \subseteq M$ be submodules. Then, $M_1 \cap M_2$ is a submodule of M.

Definition 2.3. Let $M_1, M_2 \subseteq M$ be submodules. The smallest submodule of M containing $M_1 \cup M_2$ is called the submodule generated by M_1, M_2 .

Lemma 2.2. The submodule generated by $M_1, M_2 \subseteq M$ is

$$M_1 + M_2 = \{x + y : x \in M_1, y \in M_2\}.$$

Definition 2.4. Let R be a ring, and let M, N be R-modules. A map $\varphi \colon M \to N$ is called a homomorphism if for all $r \in R$, $m, m' \in M$, the following hold.

- 1. $\varphi(m+m') = \varphi(m) + \varphi(m')$.
- 2. $\varphi(rm) = r\varphi(m)$.

The set of all R-module homomorphisms $\varphi \colon M \to N$ is denoted $\operatorname{Hom}_R(M,N)$.

Example. Any linear transformation between vector spaces over a field F is a homomorphism of F-modules.

Definition 2.5. A bijective homomorphism is called an isomorphism.

Definition 2.6. A homomorphism $\varphi \colon M \to M$ is called an endomorphism. The set of all R-module endomorphisms $\varphi \colon M \to N$ is denoted $\operatorname{End}_R(M,N) = \operatorname{Hom}_R(M,M)$.

Definition 2.7. A bijective endomorphism is called an automorphism.

Lemma 2.3. Let $\varphi \colon M \to N$ be a homomorphism of R-modules. Then, the following hold.

- 1. The set $\ker \varphi$ is a submodule of M.
- 2. The set im φ is a submodule of N.
- 3. The map φ is a injective if and only if $\ker \varphi = \{0\}$.

Theorem 2.4. Let M be an R-module, and $N \subseteq M$ be a submodule. Then, the quotient group M/N is an R-module, with $r[m] \mapsto [rm]$ for $r \in R$, $m \in M$.

Theorem 2.5. If $\varphi \in \operatorname{Hom}_R(M, M')$, then $M/\ker \varphi \cong \operatorname{im} \varphi$.

Definition 2.8. An *R*-module *M* is called cyclic if M = Rx for some $x \in M$.

Definition 2.9. The annihilator of an R-module M is defined as

Ann =
$$\{a \in R : aM = 0\}.$$

Definition 2.10. A cyclic module M is called free if Ann(M) = 0.

Lemma 2.6. If M = Rx is free, then every element $z \in M$ can be uniquely expressed as z = ax for $a \in R$.

Definition 2.11. An R-module M is called finitely generated if $M = M_1 + M_2 + \cdots + M_n$ where each M_i is cyclic. If each $M_i = Rx_i$, then $\{x_1, \ldots, x_n\}$ is called a generating set of M.

Example. The module of polynomials over R of degree at most n is generated by $\{1, x, \ldots, x^n\}$.

Definition 2.12. Let I be an indexing set. A family $(x_i, i \in I)$ is a function whose value at i is x_i . Let M_i be R-modules. Their direct product $\prod_{i \in I} M_i$ is the set of all families $(x_i, i \in I)$ with $x_i \in M_i$. Addition and scalar multiplication are defined simply as

$$(x_i) + (y_i) = (x_i + y_i), r(x_i) = (rx_i),$$

Definition 2.13. The external direct sum of R-modules M_i , denoted $\bigoplus_{i \in I} M_i$, is the set of all families $(x_i, i \in I)$ where all but finitely many $x_i = 0$ for each index $i \in I$.

Definition 2.14. Let $M_1, M_2 \subseteq M$ be submodules. We say that M is the internal direct sum of M_1, M_2 if $M = M_1 + M_2$, $M_1 \cap M_2 = \{0\}$.

Lemma 2.7. If M is the internal direct sum of M_1, M_2 , then $M \cong M_1 \oplus M_2$.

Definition 2.15. If M is an R-module and $M \cong M_1 \oplus M_2$, then this is called a direct decomposition of M. An indecomposable module M cannot be written as the direct sum of non-zero modules.

Definition 2.16. An R-module M is called free if on a finite basis, it can be expressed as a direct sum

$$M = M_1 \oplus \cdots \oplus M_n$$

where each M_i is a free cyclic R-module. If $M_i = Rx_i$, then the collection $\{x_1, \ldots, x_n\}$ is called a basis of the free module M.

Lemma 2.8. If M is a free module with basis $\{x_1, \ldots, x_n\}$, then each $z \in M$ can be uniquely expressed as

$$z = a_1 x_1 + \dots + a_n x_n,$$

for $a_i \in R$.