PMAT 319 Winter 2016. Chapter 5: Isometries.

\starTheorem 5.1: Let $\alpha \neq i$ be an isometry of \mathbb{R}^2 .

- (a) If α fixes two distinct points of a line then α fixes that line pointwise.
- (b) α fixes at most two of any three non-collinear points.
- (c) α is uniquely determined by three non-collinear points and their images.
- (d) If α fixes two distinct points then α is a reflection (in the line through these two points).
- (e) If α fixes exactly one point then α is a product of two reflections.

Proof:

- (a) Suppose that $\alpha(P) = P$ and $\alpha(Q) = Q$ where $P \neq Q$ and $l = \overrightarrow{PQ}$. Let $R \in l$ and $\alpha(R) = R'$. Since α is an isometry, R'P = RP and R'Q = RQ which implies that R' = R and therefore, $\alpha(R) = R$.
- (b) We prove this by contradiction. Suppose that α fixes three non-collinear points A, B and C. Then by (a), α fixes points on the lines \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} . Let P be any point of \mathbb{R}^2 . Choose a point Q in the interior of the triangle ABC so that $Q \neq P$, and let $l = \overrightarrow{PQ}$. Then l intersects the lines \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} at at least two points. Since α fixes these two points of l, by (a), α fixes l pointwise. In particular, $\alpha(P) = P$. Thus, we have prove that $\alpha(P) = P$ for all $P \in \mathbb{R}^2$; that is, $\alpha = i$ which contradicts $\alpha \neq i$. Thus, α fixes at most two of any three non-collinear points.
- (c) Let A, B, C be three non-collinear points. We prove that if β is an isometry of \mathbb{R}^2 so that $\beta(A) = \alpha(A)$, $\beta(B) = \alpha(B)$ and $\beta(C) = \alpha(C)$ then $\alpha = \beta$.

Suppose that β is an isometry of \mathbb{R}^2 so that $\beta(A) = \alpha(A)$, $\beta(B) = \alpha(B)$ and $\beta(C) = \alpha(C)$. Then $\beta^{-1}\alpha$ is an isometry that fixes three non-collinear points A, B and C. By part (b), $\beta^{-1}\alpha = i$ and so $\alpha = \beta$.

- (d) Suppose that α fixes two distinct points P and Q. Let $m = \overrightarrow{PQ}$. By (a), α fixes every point on m. Let $A \notin m$. By (b), $\alpha(A) \neq A$. Since α is an isometry, $AP = \alpha(A)P$ and $AQ = \alpha(A)Q$. It follows that m is the perpendicular bisector of $\overline{A\alpha(A)}$ and so $\alpha = \sigma_m$.
- (e) Suppose that α fixes exactly the point P. Let $Q \neq P$. Then $Q \neq \alpha(Q)$ and let m be the perpendicular bisector of $\overline{Q\alpha(Q)}$. Since α is an isometry, $PQ = P\alpha(Q)$ and hence $P \in m$. Then $\sigma_m \alpha$ fixes the points P and Q and so by (d), $\sigma_m \alpha = \alpha_l$. Now, $\alpha = \sigma_m^{-1} \alpha_l = \sigma_l \sigma_m$.

★Theorem 5.2 (Reflection Theorem):

- (a) A product of reflections is an isometry, and conversely,
- (b) Each isometry is a product of at most three reflections.

Proof:

- (a) This is clear from the fact that each reflection is an isometry, and \mathcal{I} is a group.
- (b) Let α be an isometry. If $\alpha = i$ then $\alpha = \sigma_m^2$ for any line m, so in this case α is the product of two reflections. Suppose that $\alpha \neq i$. If α has a fixed point then by Theorem 5.1, α is the product of at most two reflections. Now, suppose that α has no fixed points.

Let $P \in \mathbb{R}^2$ and let m be the perpendicular bisector of $\overline{P\alpha(P)}$. Then $\sigma_m\alpha(P) = P$, and so has a fixed point and by Theorem 5.1, $\sigma_m \alpha$ is the product of at most two reflections and so α is the product of at most three reflections.

How to see that an isometry is the product of at most three reflections.

Definition: Two subsets S_1 and S_2 of \mathbb{R}^2 are congruent if and only if there exists an isometry α so that $\alpha(S_1) = \alpha(S_2)$.

Rotations: We denote by $\rho_{C,\theta}$ the rotation centred at C with directed angle θ .

It is easy to see that

A rotation is an isometry.

 $\rho_{C,180^{\circ}} = \sigma_C$ and $\rho_{C,180^{\circ}}^{-1} = \rho_{C,180^{\circ}}$ When θ is not a multiple of 360°, $\rho_{C,\theta}$ has exactly one fixed point which is C.

$$\rho_{C,\theta}^{-1} = \rho_{C,-\theta}.$$

 $\rho_{C,\theta}\rho_{C,\varphi} = \rho_{C,\theta+\varphi} = \rho_{C,\varphi}\rho_{C,\theta}.$

Fix a point C, the set $\{\rho_{C,\theta} \mid \theta \in \mathbb{R}\}$ is a group.

Note that $\rho_{O,\theta}(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$ where O = (0,0) is the origin of \mathbb{R}^2 .

In the case C=(a,b). Let $\tau=\tau_{CO}$. We note that $\rho_{C,\theta}=\tau^{-1}\rho_{O,\theta}\tau$ where $\tau(x,y)=$ (x-a, y-b) and so

$$\rho_{C,\theta}(x,y) = \tau^{-1}\rho_{O,\theta}\tau(x,y)
= \tau^{-1}\rho_{O,\theta}(x-a, y-b)
= \tau^{-1}((x-a)\cos\theta - (y-b)\sin\theta, (x-a)\sin\theta + (y-b)\cos\theta)
= ((x-a)\cos\theta - (y-b)\sin\theta + a, (x-a)\sin\theta + (y-b)\cos\theta + b)
= (x\cos\theta - y\sin\theta + b\sin\theta - a\cos\theta + a, x\sin\theta + y\cos\theta + b - a\sin\theta - b\cos\theta)$$