

Nome	RA	Curso/Turma
Vitor Hugo Ferrari Ribeiro	112481	Física / 34
Giovanna Maria Nogueira	112479	Física / 34

Experimento III

Circuito RLC em série, em corrente alternada.

1- Anote os valores de *R*, *L* e *C* na Tabela 1.

Tabela 1

R =	219,4 Ω
L =	2,546 mH
<i>C</i> =	10,008 nF

2- Calcule a frequência de ressonância (f_0^{calc}) e anote aqui: 31.529,51 Hz

Fig. 1. Esquema da montagem do circuito.

O gerador de função foi ajustado em 5 V, pico a pico (V_{pp}), e com forma de onda senoidal. Já o osciloscópio foi configurado para medir a V_{pp} nos canais 1 e 2, a frequência do canal 1 e a diferença de fase (ϕ) do canal 1 com relação ao canal 2;

3- Anote na Tabela 2 os valores da f_0^{exp} (frequência de ressonância experimental), obtida por meio do osciloscópio. E nesta frequência, anote os valores de V_L (tensão pico a pico aplicada no indutor), V_R (tensão pico a pico aplicado no resistor), V_C (tensão pico a pico aplicado no capacitor), V_{fonte} (tensão pico a pico ajustada na fonte) e de ϕ (diferença de fase entre a V_T e a corrente do circuito);

Tabela 2

f (kHz)	$V_{fonte}(V)$	$V_{R}\left(V\right)$	$V_{c}\left(V\right)$	$V_L(V)$	φ (°)
31,82	5,00	4,68	10,9	11,0	0,00

- 4- A frequência foi variada na fonte AC de 10 a 50 kHz. Anote, na Tabela 3, cada uma das frequências selecionadas, e em cada uma delas anote também os valores de V_{fonte} , V_R , V_L , V_C e ϕ ;
- 5- Calcule os demais itens que constam na Tabela 3, preenchendo-a, para todas as frequências medidas no item 4.

$$X_{Lexp} = \frac{v_L}{(V_R/R)}; \; X_{Cexp} = \frac{v_C}{(V_R/R)}; \; f_0^{calc} = \frac{1}{2\pi\sqrt{LC}} \; ; \; Z_{exp} = \sqrt{R^2 + \left(X_{Lexp} - X_{Cexp}\right)^2}; \; \; V_T = \sqrt{V_R^2 + \left(V_L - V_C\right)^2}$$

Discussão dos dados obtidos:

- 1) Construa um único gráfico contendo V_T , V_L , V_C e V_R em função da frequência, e a partir dele obtenha o que se pede a seguir:
 - a. A $f_0^{gr\'afico}$ (frequência de ressonância a partir do gr\'afico) e determine o desvio percentual com relação ao valor de f_0^{calc} ;

Para calcular f_0^{calc} , vamos usar a seguinte equação:

$$f_0^{calc} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

Substituindo na equação com os dados fornecidos, temos: 31,53 kHz. Para obter f_0^{graf} , basta analisar o gráfico. Essa frequência corresponde ao momento em que as curvas no gráfico entram em ressonância, ou seja, quando o circuito entra em ressonância. Ocorre quando a frequência de oscilação da fonte for muito próxima da frequência natural do circuito definida com base nos valores da capacitância e indutância Nesse caso, a tensão e a corrente sobre cada componente é máxima. Dessa forma, olhando para o gráfico, vemos que essa frequência é aproximadamente $f_0^{graf} = 31,0 \text{ kHz}$. Calculando o desvio entre os dois valores, temos:

$$\Delta = \left| \frac{31,53 \ kHz - 31,00 \ kHz}{31,53 \ kHz} \right| \times 100 \cong 1,68 \%$$

b. Descreva, no gráfico, o comportamento de V_T , V_L , V_C e V_R para valores $f < f_0^{gráfico}$, $f > f_0^{gráfico}$ e $f = f_0^{gráfico}$;

Quando $f < f_0^{grafico}$, temos que a frequência de oscilação da fonte é menor que a frequência de oscilação do circuito; nesse caso temos uma defasagem entre a corrente e a tensão, logo, observa-se certos graus de interferência no circuito. Ao passo que a frequência de oscilação da fonte aumenta tendendo a frequência de ressonância, a corrente e a tensão tendem a entrarem em fase com a frequência natural do circuito.

Quando $f > f_0^{grafico}$, agora temos que a frequência de oscilação da fonte é maior do que a frequência natural de oscilação do circuito, aqui mais uma vez tem uma interferência entre as frequências de oscilação e uma defasagem entre a corrente e a tensão.

Quando $f = f_0^{grafico}$, temos que a frequência de oscilação da fonte é igual a frequência de oscilação do circuito, nesse caso o circuito entra em ressonância e o potencial sobre o capacitor e o indutor é máximo, chegando a ser duas vezes maior do que o potencial da fonte externa.

c. Faça o digrama de fasores contendo V_T, V_L, V_C, V_R, ϕ e I (corrente elétrica total do circuito) para cada uma das seguintes situações: $f \ll f_0, f \gg f_0$ e $f = f_0$.

2) Explique o fenômeno de V_L e V_C , na ressonância, apresentarem valores medidos maiores que a tensão da fornecida pela fonte.

Ressonância é um fenômeno físico que ocorre quando uma força é aplicada sobre um sistema com frequência igual ou muito próxima da frequência fundamental desse sistema. A ressonância ocasiona um aumento na amplitude de oscilação maior do que aquele ocasionado por outras frequências. No caso do circuito RLC, quando a fonte externa oscila na mesma frequência natural do circuito, as frequências começam a se interferir de modo construtivo, levando a uma ressonância, logo aumentando a amplitude dos sinais medidos pelo osciloscópio, tendo um moderado desse circuito o resistor.

- 3) Construa um único gráfico contendo $\chi_{L_{exp}}$, $\chi_{C_{exp}}$, Z_{exp} e R em função da frequência, e a partir obtenha o que se pede a seguir:
 - a. A $f_0^{gr\'afico}$ e determine o desvio percentual com relação ao valor de f_0^{calc} ;

Para calcular f_0^{calc} , vamos usar a seguinte equação:

$$f_0^{calc} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

Substituindo na equação com os dados fornecidos, temos: 31,53 kHz. Para obter f_0^{graf} , basta analisar o gráfico. Quando $f = f_0$ o potencial no capacitor e no indutor são iguais, de modo que a soma vetorial deles é igual a zero. Por estarem associados em séria, temos que a corrente, a tensão e as reatâncias na ressonância são iguais. Dessa forma, olhando para o gráfico, vemos que essa frequência é aproximadamente $f_0^{graf} = 31,0 \text{ kHz}$. Calculando o desvio entre os dois valores, temos:

$$\Delta = \left| \frac{31,53 \text{ kHz} - 31,00 \text{ kHz}}{31,53 \text{ kHz}} \right| \times 100 \cong 1,68 \%$$

b. Descreva, no gráfico, o comportamento de $\chi_{L_{exp}}$, $\chi_{C_{exp}}$, Z_{exp} e R para valores $f < f_0^{gráfico}$, $f > f_0^{gráfico}$ e $f = f_0^{gráfico}$;

Quando $f < f_0^{grafico}$ esse comportamento está bem retratado nos gráficos de fasores no item 1C. O potencial do capacitor e do indutor são opostos com relação a corrente, como o potencial no capacitor é maior a reatância capacitiva tente a ser maior do que a reatância indutiva pois o potencial no indutor é menor, respeitando a lei de Ohm. Como a impedância é o reflexo das reatâncias, para frequências baixas ela tende a cair também.

Quando $f > f_0^{grafico}$ esse comportamento está bem retratado nos gráficos de fasores no item 1C. Como antes, agora temos que o potencial no capacitor é menor do que no indutor, aplicando a lei de Ohm com as reatâncias, a capacitiva tende a diminuir e a reatância indutiva cresce. Como a impedância é o reflexo das reatâncias, com o aumento da frequência ela tende a crescer também.

Quando $f = f_0^{grafico}$ esse comportamento está bem retratado nos gráficos de fasores no item 1C. Agora temos que o potencial do capacitor e do indutor são iguais. Logo, temos que as reatâncias são iguais também; aplicando a lei de Ohm, vemos que a impedâncias é igual a resistência, logo a impedância assume o menor valor possível para o circuito.

4) Discuta sobre os efeitos da ressonância observados neste gráfico.

A ressonância no circuito RLC faz com que os potencias sobre os componentes sejam máximo. Pela lei de Ohm temos que a reatância capacitiva e indutiva é máxima, como o potencial máximo sobre esses componentes são iguais as reatâncias são iguais, logo a impedância assume seu valor mínimo que é igual a resistência.

5) Construa o gráfico de φ em função da frequência, e a partir dele obtenha o que se pede a seguir:

a. A $f_0^{gr\'afico}$ e determine o desvio percentual com relação ao valor de f_0^{calc} ;

Para calcular f_0^{calc} , vamos usar a seguinte equação:

$$f_0^{calc} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

Substituindo na equação com os dados fornecidos, temos: 31,53 kHz. Para obter f_0^{graf} , basta analisar o gráfico. Sabemos que quando a fonte de frequência externa atinge a frequência de ressonância, não existe defasagem entre a corrente e a tensão; logo $\phi = 0$, pelo gráfico temos aproximadamente $f_0^{graf} = 31,00$ kHz. Calculando o desvio entre os dois valores, temos:

$$\Delta = \left| \frac{31,53 \ kHz - 31,00 \ kHz}{31,53 \ kHz} \right| \times 100 \cong 1,68 \%$$

b. Descreva, no gráfico, o comportamento de ϕ para valores $f < f_0^{gráfico}, \, f > f_0^{gráfico}$ e $f = f_0^{gráfico};$

Quando $f < f_0^{grafico}$, temos que a frequência de oscilação da fonte é menor que a frequência de oscilação do circuito; nesse caso a diferença de fase entre a tensão e a corrente é máxima, tendendo a -90° conforme a frequência vai diminuindo.

Quando $f > f_0^{grafico}$, temos que a frequência de oscilação da fonte é maior do que a frequência natural de oscilação do circuito, nesse caso a diferença de fase entre a tensão e a corrente também é máxima, tendendo a 90°, conforme a frequência vai aumentando.

Quando $f = f_0^{grafico}$, temos que a frequência de oscilação da fonte é igual a frequência de oscilação do circuito, nesse caso a diferença de fase entre a corrente e a tensão é nula. Isso ocorre porque a diferença entre a queda de potência no capacitor e no indutor é nulo, ou seja, o potencial em ambos é igual.

c. Discuta sobre os efeitos da ressonância observada neste gráfico.

A partir do gráfico pode-se observar dois comportamentos assintóticos nas extremidades o que lembra o formato de uma tangente rotacionada, além disto, é possível observar que no valor da frequência de ressonância a fase se anula, logo o potencial no indutor e no capacitor é máximo e igual.

6) Construa o gráfico de I^2 em função da frequência, e a partir dele obtenha o que se pede a seguir:

a. O fator de qualidade (Q). Qual a dependência deste fato com a resistência.

Os picos de corrente ocorrem para a frequência de ressonância, logo, podem-se tomar tais valores para o cálculo do fator de qualidade para o respectivo circuito. Para o cálculo do fator de qualidade utilizamos a seguinte equação:

$$Q = \frac{f_0}{f_2 - f_1}$$

Onde f_0 corresponde à frequência de ressonância, isto é, o valor para qual a corrente é máxima. f_1 e f_2 corresponde à frequência na qual corresponde o valor:

Sendo I_{pp} a corrente pico a pico. Dividindo a corrente pico a pico por $\sqrt{2}$, obtemos um novo valor de corrente cujo qual corresponde duas frequências características, denotadas por f_1 e f_2 . A diferença entre f_1 e f_2 é chamada de largura de banda. Utilizando o gráfico:

$$I_{pp} = 450 \ mA \rightarrow \frac{I_{pp}}{\sqrt{2}} = \frac{450}{\sqrt{2}} = 318.2 \ mA$$

$$\Delta f = f_2 - f_1 = 40.2 - 20.4 = 19.8$$

Substituindo:

$$Q = \frac{31,53}{19.8} = 1,59$$

f (kHz)	$V_{fonte}(V)$	$V_T(V)$	$V_{R}\left(V\right)$	$V_L(V)$	$V_{c}(V)$	φ (°)	$\chi_{L_{exp}}(\Omega)$	$\chi_{C_{exp}}(\Omega)$	$Z_{exp}\left(\Omega\right)$	I(mA)	$I^2(mA)^2$
10,00	5,00	4,917	0,744	0,536	5,40	-81,4	158,062	1592,419	1451,040	0,00339	0,00001521
12,00	4,96	4,832	0,920	0,816	5,56	-76,6	194,598	1325,939	1152,419	0,00419	0,00001756
14,00	4,96	4,861	1,12	1,15	5,88	-74,6	225,277	1151,850	952,194	0,00510	0,00002601
16,00	4,96	4,810	1,34	1,62	6,24	-72,5	265,245	1021,684	787,614	0,00611	0,00003733
18,00	4,96	4,796	1,66	2,18	6,68	-68,7	288,128	882,887	633,936	0,00757	0,00005730
20,00	4,96	4,799	1,96	2,86	7,24	-64,8	320,145	810,437	537,143	0,00893	0,00007974
22,00	5,00	4,758	2,38	3,76	7,88	-58,6	346,615	726,417	438,618	0,01085	0,00011772
24,00	4,88	4,829	2,82	4,96	8,88	-50,1	385,895	690,877	375,700	0,01285	0,00016512
25,00	4,96	4,781	3,10	5,72	9,36	-46,8	404,828	662,446	338,383	0,01413	0,00019966
26,01	4,96	7,738	3,38	6,52	9,84	-42,0	423,221	638,727	307,537	0,01541	0,00023747
27,00	4,96	4,657	3,66	7,32	10,20	-35,8	438,800	611,443	279,181	0,01668	0,00027822
28,00	4,84	4,473	3,86	8,24	10,50	-28,2	468,356	596,813	254,239	0,01759	0,00030941
29,00	4,88	4,554	4,20	9,04	10,80	-22,1	472,232	564,171	237,885	0,01914	0,00036634
30,03	4,96	4,589	4,44	9,84	11,00	-15,1	486,238	543,558	226,764	0,02024	0,00040966
31,02	5,00	4,679	4,64	10,50	11,1	-5,81	496,487	524,858	221,227	0,02115	0,00044732
32,01	5,00	4,684	4,68	11,00	10,80	2,30	515,684	506,308	219,600	0,02133	0,00045497
34,00	5,04	4,750	4,52	11,30	9,84	16,20	548,500	477,632	230,561	0,02060	0,00042436
36,02	5,04	4,738	4,12	10,90	8,56	29,6	580,451	455,841	252,317	0,01878	0,00035269
38,05	5,00	4,855	3,72	10,40	7,28	38,4	613,376	429,363	286,351	0,01695	0,00028730
40,00	4,96	4,724	3,32	9,60	6,24	45,5	634,410	412,366	312,154	0,01513	0,00022892
43,10	5,12	4,736	2,88	8,72	4,96	53,4	664,294	377,855	360,810	0,01313	0,00017240
45,05	5,04	4,874	2,54	8,40	4,24	58,3	725,575	366,242	421,018	0,01158	0,00013410
50,00	5,08	4,714	2,06	7,44	3,20	65,2	792,396	340,815	502,057	0,00939	0,00008817

60,02	5,12	4,883	1,52	6,56	1,92	72,2	946,884	277,137	704,768	0,00693	0,00004803	
-------	------	-------	------	------	------	------	---------	---------	---------	---------	------------	--