BT ÔN TẬP CHƯƠNG 1

I. PHẦN TRẮC NGHIÊM:

CÂU 1. Trong các khẳng đinh sau, khẳng đinh nào là sai?

 $(\mathbf{A})\sin(\pi - \alpha) = \sin \alpha.$

 $(\mathbf{B})\cos(\pi-\alpha)=\cos\alpha.$

 $(\mathbf{c})\sin(\pi+\alpha) = -\sin\alpha.$

 $(\mathbf{D})\cos(\pi + \alpha) = -\cos\alpha.$

CÂU 2. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $\frac{2\pi}{3}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lương giác (O'u', O'v').

CÂU 3. Rút gọn biểu thức $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$, ta được

- $(\mathbf{B})M = 1 2\cos^2 a.$ $(\mathbf{C})M = 1 2\sin^2 a.$ $(\mathbf{D})M = \cos 4a.$

CÂU 4. Tập nghiệm của phương trình $3\cos\left(3x - \frac{\pi}{3}\right) = 0$ là

 $\bigcirc \left\{ \frac{5\pi}{18} + \frac{k2\pi}{3}, k \in \mathbb{Z} \right\}.$

CÂU 6. Tìm điều kiện xác định của hàm số $y = \cot x$.

 $\mathbf{A} x \neq \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$

 $(\mathbf{B})x \neq k2\pi, k \in \mathbb{Z}.$

 $(\mathbf{C})x \neq k\pi, k \in \mathbb{Z}.$

 \mathbf{D} $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$

CÂU 7. Hàm số nào sau đây đồng biến trên khoảng $(0; \pi)$?

- $\mathbf{A}y = x^2$.
- $(\mathbf{C})y = \sin x.$
- $(\mathbf{D})y = \tan x.$

CÂU 8. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $-\frac{5\pi}{6}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

CÂU 9. Hình bên dưới là đồ thị của hàm số nào dưới đây?

- $\mathbf{A}y = -3\cos x.$
- $\mathbf{B})y = -2 \cos x.$
- $(\mathbf{c})y = 2 + |\cos x|.$
- $(\mathbf{D})y = \cos x 4.$

CÂU 10. Điều kiện xác định của hàm số $y = \cot x$ là

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

	NO	TE
IICK		1112

CÂU 11. Cho hàm số $y = \sin^2 x - \sin x + 2$. Gọi M, N lần lượt là GTLN và GTNN của hàm số đã cho. Khi đó M+N bằng

B
$$\frac{23}{4}$$
.

$$c) \frac{15}{4}$$
.

CÂU 12. Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

B
$$y = x^2 + 1$$
.

$$\bigcirc y = \cot x.$$

$$\bigcirc y = \frac{\sin x}{x}.$$

CÂU 13. Góc 18° có số đo bằng rađian là bao nhiêu?

$$\mathbf{A}\pi$$
.

B
$$\frac{\pi}{360}$$
.

$$\mathbf{C} \frac{\pi}{10}$$
.

$$\bigcirc \frac{\pi}{18}$$

CÂU 14. Biểu diễn các góc lượng giác $\alpha=-\frac{5\pi}{6},\ \beta=\frac{\pi}{3},\ \gamma=\frac{25\pi}{3},\ \delta=\frac{17\pi}{6}$ trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

$$\triangle \beta$$
 và γ .

$$\bigcirc$$
 α , β , γ .

$$(\mathbf{C})\beta$$
, γ , δ .

$$\bigcirc \alpha \text{ và } \beta.$$

CÂU 15. Cho góc lượng giác (Ou, Ov) có số đo là $\frac{3\pi}{4}$, góc lượng giác (Ou, Ow) có số đo là $\frac{5\pi}{4}.$ Số đo của góc lượng giác (Ov,Ow)là

$$(Ov, Ow) = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(Ov, Ow) = 2\pi + k2\pi \ (k \in \mathbb{Z}).$$

$$(Ov, Ow) = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(Cov, Ow) = -\frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

CÂU 16. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 45° . Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Công thức biểu thị số đo góc lượng giác (O'u', O'v') là

$$(O'u', Ov') = -45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = 135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

$$(\mathbf{D})(O'u', Ov') = -135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

CÂU 17. Hàm số $y = 3 - 5 \sin x$ có giá trị lớn nhất bằng

CÂU 18. Rút gọn biểu thức $M=\sin(\pi-a)+\tan\left(\frac{\pi}{2}-a\right)+\sin(-a)+\cot(\pi+a)$ được

$$M = 2\cos a.$$

$$\mathbf{B}M = 2\tan a.$$

$$\bigcirc M = 2 \cot a.$$

CÂU 19. Đồ thị hàm số $y = \cos x$ đi qua điểm nào sau đây?

$$P(-1;\pi).$$

$$\mathbf{B}M(\pi;1).$$

$$\mathbb{C}Q(3\pi;1)$$

$$\bigcirc N(0;1).$$

CÂU 20. Tập xác định của hàm số $y = 2017 \tan^{2018} \left(2x + \frac{\pi}{2}\right)$ là

CÂU 21. Tìm khẳng định đúng (với điều kiện các hệ thức đã xác định).

$$\mathbf{B}\cos\left(-\alpha\right) = \cos\alpha.$$

$$\mathbf{C}\sin\left(\pi-\alpha\right)=-\sin\alpha.$$

$$\mathbf{D}\sin\left(-\alpha\right) = \sin\alpha.$$

II. PHẨN TỰ LUẬN:

CÂU 22. Giải phương trình:

a)
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$$

b)
$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$$
 c) $\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$

c)
$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

d)
$$2\cos 3x + 5 = 3$$
;

e)
$$3 \tan x = -\sqrt{3}$$
;

f)
$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$
.

CÂU 23. Giải phương trình:

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x;$$

b)
$$\sin 2x = \cos 3x$$
;

c)
$$\cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right)$$
.

CÂU 24. Giải các phương trình sau

a)
$$2\sin x + \sqrt{2} = 0;$$

b)
$$\sin 2x - \cos x + 2\sin x = 1;$$

c)
$$3\sin^2 x - 5\sin x + 2 = 0$$
;

d)
$$\sqrt{3}\tan^2 x - 2\tan x + \sqrt{3} = 0$$
;

e)
$$2\cos^2 2x - 5\cos 2x + 2 = 0$$
;

f)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0$$
.

QUICK NOTE

CÂU 25. Tìm tập xác định của các hàm số sau

a)
$$y = \frac{1 + \cos x}{\sin 2x}$$
.

$$b) y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}.$$

$$c) \ y = \frac{\cos x}{1 - \sin x}.$$

$$d) y = \frac{1}{\tan x}$$

CÂU 26. Tìm tập giá trị của các hàm số sau:

a)
$$y = 2\sin\left(x + \frac{\pi}{4}\right) + 3;$$

b)
$$y = \sqrt{2 + \cos x} - 5$$
.

c)
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 7;$$

$$d) y = 3 - \sqrt{2 + \sin x}$$

CÂU 27. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 2(\sin x + \cos x) + \sin 2x + 3$.

CÂU 28. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sqrt{3}\sin x - \cos x + 5$.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		 •	
	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•				•				•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		 •	
	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		 •	
•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		 •	
	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•				•				•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		 •	
	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•				•				•	•	•			
•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		 •	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		 •	
•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		 •	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		 •	
•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•		 •	
	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•				•	•	•		 •	
	•														•	•	•	•	•	•	•	•	•		•	•	•		 •	
																									•		•			
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•		 •	
	•	١	•	•	١						•	•	•	•	•	•	•							•	•	•			•	
																									•					
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•		٠	٠	٠	•		

LỜI GIẢI CHI TIẾT

BT ÔN TẬP CHƯƠNG 1

I. PHẦN TRẮC NGHIÊM:

CÂU 1. Trong các khẳng định sau, khẳng định nào là sai?

$$(\mathbf{A})\sin(\pi - \alpha) = \sin \alpha.$$

$$\mathbf{B}\cos(\pi - \alpha) = \cos\alpha.$$

$$\mathbf{C}\sin(\pi+\alpha)=-\sin\alpha.$$

$$(\mathbf{D})\cos(\pi + \alpha) = -\cos\alpha.$$

🗩 Lời giải.

Ta có $\cos(\pi - \alpha) = -\cos \alpha$ nên $\cos(\pi - \alpha) = \cos \alpha$ là khẳng định sai.

CÂU 2. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $\frac{2\pi}{3}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác O'u', O'v'.

$$(O'u', Ov') = \frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = \frac{3\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(\mathbf{D})(O'u',Ov') = -\frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

🗩 Lời giải.

Ta có $(O'u', Ov') = (Ou, Ov) + k2\pi = \frac{2\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$

CÂU 3. Rút gon biểu thức $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$, ta được $(\mathbf{A})M = \sin 4a.$

B
$$M = 1 - 2\cos^2 a$$
.

(B)
$$M = 1 - 2\cos^2 a$$
. **(C)** $M = 1 - 2\sin^2 a$.

$$\mathbf{D}M = \cos 4a$$
.

🗩 Lời giải.

Ta có

$$M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$$

$$= \frac{1}{2}(\cos 2a + \cos 2b) + \frac{1}{2}(\cos 2a - \cos 2b)$$

$$= \cos 2a$$

$$= 1 - 2\sin^2 a.$$

Chọn đáp án (C).....

CÂU 4. Tập nghiệm của phương trình $3\cos\left(3x-\frac{\pi}{3}\right)=0$ là

$$\bigcirc \left\{ \frac{5\pi}{18} + \frac{k2\pi}{3}, k \in \mathbb{Z} \right\}.$$

🗩 Lời giải.

 $3\cos\left(3x-\frac{\pi}{3}\right)=0 \Leftrightarrow 3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi \Leftrightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}, k\in\mathbb{Z}. \text{ Tập nghiệm phương trình } S=\left\{\frac{5\pi}{18}+\frac{k\pi}{3}, k\in\mathbb{Z}\right\}.$

CÂU 5. Phương trình $\sqrt{3}\sin x + \cos x = 1$ tương đương với phương trình nào sau đây?

$$\mathbf{A}\cos\left(x + \frac{\pi}{6}\right) = \frac{1}{2}.$$

$$\mathbf{B}\sin\left(x+\frac{\pi}{3}\right) = \frac{1}{2}.$$

$$\mathbf{C}\cos\left(x - \frac{\pi}{3}\right) = \frac{1}{2}.$$

$$\mathbf{D}\sin\left(x - \frac{\pi}{6}\right) = \frac{1}{2}.$$

🗗 Lời giải. Chia hai vế của phương trình cho 2, ta được

$$\sqrt{3}\sin x + \cos x = 1 \quad \Leftrightarrow \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = \frac{1}{2}$$

$$\Leftrightarrow \sin\frac{\pi}{3}\sin x + \cos\frac{\pi}{3}\cos x = \frac{1}{2}$$

$$\Leftrightarrow \cos\left(x - \frac{\pi}{3}\right) = \frac{1}{2}.$$

CÂU 6. Tìm điều kiện xác định của hàm số $y = \cot x$.

🗩 Lời giải.

Hàm số $y = \cot x$ xác định khi và chỉ khi $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

Chon đáp án (C).....

CÂU 7. Hàm số nào sau đây đồng biến trên khoảng $(0; \pi)$?

$$\mathbf{B}y = \cos x.$$

$$\mathbf{C}$$
 $y = \sin x$.

P Lời giải.

Hàm số $y = x^2$ đồng biến khi $x > 0 \Rightarrow$ hàm số đồng biên trên khoảng $(0; \pi)$.

CÂU 8. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $-\frac{5\pi}{6}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

$$(A) (O'u', Ov') = \frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = \frac{4\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

🗩 Lời giải.

Ta có $(O'u', Ov') = (Ou, Ov) + k2\pi = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$

Chọn đáp án \bigcirc

CÂU 9. Hình bên dưới là đồ thị của hàm số nào dưới đây?

$$\mathbf{A}y = -3\cos x.$$

$$\mathbf{B})y = -2 - \cos x.$$

Dèi giải.

$$\bigcirc y(0) = -3 \Rightarrow \text{loai } y = \cos x - 4 \text{ và } y = 2 + |\cos x|.$$

$$\bigcirc y(\pi) = 3 \Rightarrow \text{loại } y = -2 - \cos x.$$

Chọn đáp án (A).....

CÂU 10. Điều kiện xác định của hàm số $y = \cot x$ là

$$\mathbf{C}x \neq k\pi$$
.

P Lời giải.

Hàm số xác định khi và chỉ khi $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

Chọn đáp án (C).....

CÂU 11. Cho hàm số $y = \sin^2 x - \sin x + 2$. Gọi M, N lần lượt là GTLN và GTNN của hàm số đã cho. Khi đó M + N

B
$$\frac{23}{4}$$
.

$$\bigcirc \frac{15}{4}.$$

🗩 Lời giải.

Ta có $y = \sin^2 x - \sin x + 2 = \left(\sin x - \frac{1}{2}\right)^2 + \frac{7}{4}$.

 $\mathrm{Vi} \ -1 \leq \sin x \leq 1, \ \forall x \in \mathbb{R} \ \mathrm{n\^{e}n} \ -\frac{3}{2} \leq \sin x - \frac{1}{2} \leq \frac{1}{2}, \ \forall x \in \mathbb{R}.$

Suy ra $0 \le \left(\sin x - \frac{1}{2}\right)^2 \le \frac{9}{4}, \forall x \in \mathbb{R}.$

Suy ra $\frac{7}{4} \le \left(\sin x - \frac{1}{2}\right)^2 + \frac{7}{4} \le 4, \ \forall x \in \mathbb{R}.$

Suy ra $\frac{7}{4} \le y \le 4, \, \forall x \in \mathbb{R}.$

Vậy $M + N = \frac{7}{4} + 4 = \frac{23}{4}$

CÂU 12. Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

B
$$y = x^2 + 1$$
.

$$\mathbf{C}$$
 $y = \cot x$.

$$\bigcirc y = \frac{\sin x}{x}.$$

Lời giải.

Hàm số $y = \cot x$ là hàm số tuần hoàn với chu kỳ $T = \pi$.

Chọn đáp án (C).....

CÂU 13. Góc 18° có số đo bằng rađian là bao nhiêu?

$$\triangle \pi$$
.

$$\mathbf{B} \frac{\pi}{360}.$$

$$\mathbf{C}\frac{\pi}{10}$$
.

$$\bigcirc \frac{\pi}{18}$$

🗩 Lời giải.

Ta có $18^{\circ} = \frac{\pi}{10}$ rad.

Chọn đáp án (C)...

CÂU 14. Biểu diễn các góc lượng giác $\alpha = -\frac{5\pi}{6}$, $\beta = \frac{\pi}{3}$, $\gamma = \frac{25\pi}{3}$, $\delta = \frac{17\pi}{6}$ trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

$$\bigcirc$$
 β và γ .

$$(\mathbf{B})\alpha, \beta, \gamma.$$

$$\bigcirc \beta, \gamma, \delta.$$

$$\mathbf{D} \alpha \text{ và } \beta$$

🗩 Lời giải.

Ta có
$$\beta + 8\pi = \frac{\pi}{3} + 8\pi = \frac{25\pi}{3} = \gamma$$
.

Do đó, β và γ có điểm biểu diễn trùng nhau trên đường tròn lượng giác.

Chọn đáp án (A).....

CÂU 15. Cho góc lượng giác (Ou, Ov) có số đo là $\frac{3\pi}{4}$, góc lượng giác (Ou, Ow) có số đo là $\frac{5\pi}{4}$. Số đo của góc lượng giác (Ov, Ow) là

$$(A) (Ov, Ow) = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(Ov, Ow) = 2\pi + k2\pi \ (k \in \mathbb{Z}).$$

$$(\overset{\frown}{\mathbf{A}})(Ov,Ow) = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(\overset{\frown}{\mathbf{C}})(Ov,Ow) = -\frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(Ov, Ow) = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

🗩 Lời giải.

Theo hệ thức Chasles, ta có

$$(Ov, Ow) = (Ou, Ow) - (Ou, Ov) + k2\pi$$
$$= \frac{5\pi}{4} - \frac{3\pi}{4} + k2\pi$$
$$= \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

CÂU 16. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 45° . Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Công thức biểu thị số đo góc lượng giác (O'u', O'v') là

$$(O'u', Ov') = -45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

$$\bigcirc$$
 $\bigcirc (O'u', Ov') = -135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

🗩 Lời giải.

Ta có $(O'u', Ov') = (Ou, Ov) + k360^{\circ} = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

Chọn đáp án (B).....

CÂU 17. Hàm số $y = 3 - 5 \sin x$ có giá trị lớn nhất bằng

(**A**) 6.

Ta có

(C)8.

 $(\mathbf{D})4.$

🗩 Lời giải.

 $-1 \leq \sin x \leq 1 \Leftrightarrow 5 \geq -5\sin x \geq -5 \Leftrightarrow 8 \geq 3 - 5\sin x \geq -2 \Rightarrow -2 \leq y \leq 8.$

Suy ra giá trị lớn nhất của hàm số là 8, đạt được khi $x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$.

Chon đáp án C.....

CÂU 18. Rút gọn biểu thức $M = \sin(\pi - a) + \tan(\frac{\pi}{2} - a) + \sin(-a) + \cot(\pi + a)$ được

$$M = 2\cos a.$$

$$\mathbf{B}M = 2\tan a.$$

$$\bigcirc M = 2 \cot a.$$

$$\bigcirc M = 0.$$

GV.VŨ NGOC PHÁT

🗩 Lời giải.

Ta có $M = \sin a + \cot a - \sin a + \cot a = 2 \cot a$.

CÂU 19. Đồ thị hàm số $y = \cos x$ đi qua điểm nào sau đây?

$$(A)$$
 $P(-1;\pi).$

$$(\mathbf{B})M(\pi;1).$$

$$\mathbb{C}Q(3\pi;1).$$

🗩 Lời giải.

Điểm N(0;1) thuộc đồ thị hàm số.

Chọn đáp án (D).....

CÂU 20. Tập xác định của hàm số $y = 2017 \tan^{2018} \left(2x + \frac{\pi}{2}\right)$ là

🗩 Lời giải.

Hàm số xác định khi $2x + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi \Leftrightarrow x \neq \frac{\pi}{12} + k\frac{\pi}{2}, k \in \mathbb{Z}.$

Chọn đáp án (A)....

CÂU 21. Tìm khẳng định đúng (với điều kiện các hệ thức đã xác định).

$$(\mathbf{A})\cos\left(\pi - \alpha\right) = \cos\alpha.$$

$$\mathbf{B}\cos\left(-\alpha\right) = \cos\alpha.$$

$$\mathbf{C}\sin\left(\pi-\alpha\right)=-\sin\alpha.$$

$$(\mathbf{D})\sin\left(-\alpha\right) = \sin\alpha.$$

Dòi giải.

Ta có

$$\Theta$$
 $\sin(-\alpha) = -\sin\alpha$.

$$\odot$$
 $\cos(\pi - \alpha) = -\cos\alpha$.

$$\Theta$$
 $\cos(-\alpha) = \cos \alpha$.

$$\odot \sin(\pi - \alpha) = \sin \alpha.$$

Chon đáp án \bigcirc B.....

II. PHẦN TƯ LUÂN:

CÂU 22. Giải phương trình:

a)
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$$

b)
$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$$

c)
$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$$

d)
$$2\cos 3x + 5 = 3$$
;

e)
$$3 \tan x = -\sqrt{3}$$
;

f)
$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$
.

Dèi giải.

a) Ta có

$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \sin\left(2x - \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right)$$

$$\Leftrightarrow \left[2x - \frac{\pi}{3} = -\frac{\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \left[2x - \frac{\pi}{3} = \pi + \frac{\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \left[2x = k2\pi\right]$$

$$\Leftrightarrow \left[2x = k2\pi\right]$$

$$2x = \frac{5\pi}{3} + k2\pi$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$x = \frac{5\pi}{6} + k\pi\right]$$

$$(k \in \mathbb{Z}).$$

b) Ta có

$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2}$$

$$\Leftrightarrow \sin\left(3x + \frac{\pi}{4}\right) = \sin\left(-\frac{\pi}{6}\right)$$

$$\Leftrightarrow \left[3x + \frac{\pi}{4} = -\frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[3x + \frac{\pi}{4} = \pi - \left(-\frac{\pi}{6}\right) + k2\pi\right]$$

$$\Leftrightarrow \left[3x = -\frac{5\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[3x = \frac{11\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5}{36} + \frac{k2\pi}{3}\right]$$

$$\Leftrightarrow \left[x = \frac{11\pi}{36} + \frac{k2\pi}{3}\right]$$

c) Ta có

$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \cos\frac{\pi}{6}$$

$$\Leftrightarrow \left[\frac{x}{2} + \frac{\pi}{4} = \frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} + \frac{\pi}{4} = -\frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} = -\frac{\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} = -\frac{5\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{\pi}{6} + k4\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5\pi}{6} + k4\pi\right]$$

- d) Ta có $2\cos 3x + 5 = 3 \Leftrightarrow \cos 3x = -1 \Leftrightarrow 3x = \pi + k2\pi \Leftrightarrow x = \frac{\pi}{3} + \frac{k2\pi}{3} \ (k \in \mathbb{Z}).$
- e) Ta có $3\tan x = -\sqrt{3} \Leftrightarrow \tan x = -\frac{\sqrt{3}}{3} \Leftrightarrow \tan x = \tan\left(-\frac{\pi}{6}\right) \Leftrightarrow x = -\frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$
- f) Ta có

$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$

$$\Leftrightarrow \cot x - 3 = \sqrt{3} - \sqrt{3} \cot x$$

$$\Leftrightarrow (1 + \sqrt{3}) \cot x = \sqrt{3} (1 + \sqrt{3})$$

$$\Leftrightarrow \cot x = \sqrt{3}$$

$$\Leftrightarrow \cot x = \cot \frac{\pi}{6}$$

$$\Leftrightarrow x = \frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$$

CÂU 23. Giải phương trình:

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x;$$
 b) $\sin 2x = \cos 3x;$ c) $\cos^2 2x = \cos^2\left(x + \frac{\pi}{6}\right).$

🗩 Lời giải.

a) Ta có

$$\sin\left(2x+\frac{\pi}{4}\right)=\sin x \Leftrightarrow \begin{bmatrix}2x+\frac{\pi}{4}=x+k2\pi\\2x+\frac{\pi}{4}=\pi-x+k2\pi\end{cases} \Leftrightarrow \begin{bmatrix}x=-\frac{\pi}{4}+k2\pi\\3x=-\frac{\pi}{4}+k2\pi\end{cases} \Leftrightarrow \begin{bmatrix}x=-\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+k2\pi\end{cases}, \ (k\in\mathbb{Z}).$$

b) Ta có

$$\sin 2x = \cos 3x \quad \Leftrightarrow \quad \cos 3x = \cos \left(\frac{\pi}{2} - 2x\right)$$

$$\Leftrightarrow \quad \begin{bmatrix} 3x = \frac{\pi}{2} - 2x + k2\pi \\ 3x = \pi - \left(\frac{\pi}{2} - 2x\right) + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} 5x = \frac{\pi}{2} + k2\pi \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} x = \frac{\pi}{12} + \frac{k2\pi}{5} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} x = \frac{\pi}{12} + \frac{k2\pi}{5} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

c) Ta có
$$\cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right) \Leftrightarrow \begin{bmatrix} \cos 2x = \cos \left(x + \frac{\pi}{6}\right) & (1) \\ \cos 2x = -\cos \left(x + \frac{\pi}{6}\right) & (2) \end{bmatrix}$$

$$+) (1) \Leftrightarrow \begin{bmatrix} 2x = x + \frac{\pi}{6} + k2\pi \\ 2x = -\left(x + \frac{\pi}{6}\right) + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ 3x = -\frac{\pi}{6} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = -\frac{\pi}{18} + \frac{k2\pi}{3} \end{bmatrix} (k \in \mathbb{Z}).$$

$$+) (2) \Leftrightarrow \cos 2x = \cos \left[\pi - \left(x + \frac{\pi}{6}\right)\right] \Leftrightarrow \begin{bmatrix} 2x = \pi - \left(x + \frac{\pi}{6}\right) + k2\pi \\ 2x = -\left[\pi - \left(x + \frac{\pi}{6}\right)\right] + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 3x = \frac{5\pi}{6} + k2\pi \\ x = -\frac{5\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{18} + \frac{k2\pi}{3} \\ x = -\frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

CÂU 24. Giải các phương trình sau

a)
$$2\sin x + \sqrt{2} = 0$$
;

c)
$$3\sin^2 x - 5\sin x + 2 = 0$$

e)
$$2\cos^2 2x - 5\cos 2x + 2 = 0$$
;

$$b) \sin 2x - \cos x + 2\sin x = 1;$$

d)
$$\sqrt{3} \tan^2 x - 2 \tan x + \sqrt{3} = 0;$$

f)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0$$
.

🗩 Lời giải.

a)
$$2\sin x + \sqrt{2} = 0 \Leftrightarrow \sin x = -\frac{\sqrt{2}}{2} \Leftrightarrow \sin x = \sin\left(-\frac{\pi}{4}\right) \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k2\pi \\ x = \frac{5\pi}{4} + k2\pi \end{bmatrix} (k \in \mathbb{Z});$$

b)
$$\sin 2x - \cos x + 2\sin x = 1 \Leftrightarrow 2\sin x \cos x - \cos x + 2\sin x - 1 = 0 \Leftrightarrow (2\sin x - 1)(\cos x + 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} \sin x = \frac{1}{2} \\ \cos x = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin x = \sin \frac{\pi}{6} \\ x = (2k+1)\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z});$$

$$x = (2k+1)\pi$$

c) Đặt $t = \cos x$, $-1 \le t \le 1$, phương trình đã cho trở thành $3t^2 - 5t + 2 = 0$, ta được t = 1 hoặc $t = \frac{2}{3}$

Với
$$t=1$$
 ta có $\cos x=1 \Leftrightarrow x=k2\pi, \ (k\in\mathbb{Z}).$
Với $t=\frac{2}{3}$ ta có $\cos x=\frac{2}{3}=\cos \alpha \Leftrightarrow x=\pm \alpha+k2\pi, \ (k\in\mathbb{Z}).$

Vậy tập nghiệm của phương trình đã cho là $S = \{k2\pi, \pm \alpha + k2\pi, k \in \mathbb{Z}\}.$

d) Đặt $t = \tan x$, phương trình đã cho trở thành $\sqrt{3}t^2 - 2t + \sqrt{3} = 0$. Phương trình này vô nghiệm. Vậy phương trình đã

e)
$$2\cos^2 2x - 5\cos 2x + 2 = 0 \Leftrightarrow \begin{bmatrix} \cos 2x = 2 \\ \cos 2x = \frac{1}{2} \\ & \cos 2x = \cos \frac{\pi}{3} \\ & \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi, \ (k \in \mathbb{Z}); \end{bmatrix}$$

f)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0 \Leftrightarrow \begin{bmatrix} \sin \frac{x}{2} = 1 \\ \sin \frac{x}{2} = -2 \end{bmatrix} \Leftrightarrow \frac{x}{2} = \frac{\pi}{2} + k2\pi \Leftrightarrow x = \pi + k4\pi, (k \in \mathbb{Z}).$$

CÂU 25. Tìm tập xác định của các hàm số sau

a)
$$y = \frac{1 + \cos x}{\sin 2x}.$$

$$b) y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}.$$

$$c) \ \ y = \frac{\cos x}{1 - \sin x}.$$

$$d) y = \frac{1}{\tan x}$$

Dèi giải.

a)
$$y = \frac{1 + \cos x}{\sin 2x}$$

Vậy
$$D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}.$$

$$b) y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}$$

+ Hàm số
$$y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}$$
 xác định $\Leftrightarrow \frac{1 + \cos x}{2 + \cos x} \ge 0$

$$V_{\text{ay}} D = \mathbb{R}.$$

$$c) y = \frac{\cos x}{1 - \sin x}$$

Vây
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$$

$$d) y = \frac{1}{\tan x}$$

 $\operatorname{H\grave{a}m} s \acute{o} y = \frac{1}{\tan x} \operatorname{x\acute{a}c} \operatorname{dinh} \Leftrightarrow \begin{cases} \tan x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \begin{cases} \sin x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \sin 2x \neq 0 \Leftrightarrow x \neq k \frac{\pi}{2}, \ k \in \mathbb{Z}.$

Vậy
$$D = \mathbb{R} \backslash \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}$$

CÂU 26. Tìm tập giá trị của các hàm số sau:

a)
$$y = 2\sin\left(x + \frac{\pi}{4}\right) + 3;$$

b)
$$y = \sqrt{2 + \cos x} - 5$$
.

c)
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 7;$$

$$d) y = 3 - \sqrt{2 + \sin x}$$

Dèi giải.

a) Tập xác định của hàm số là $D = \mathbb{R}$.

Ta có
$$-1 \le \sin\left(x + \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{F}$$

$$\Leftrightarrow -2 \le 2\sin\left(x + \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$$

Ta có
$$-1 \le \sin\left(x + \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{R}$$

 $\Leftrightarrow -2 \le 2\sin\left(x + \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$
 $\Leftrightarrow 1 \le 2\sin\left(x + \frac{\pi}{4}\right) + 3 \le 5, \forall x \in \mathbb{R}$

hay
$$1 \le y \le 5, \forall x \in \mathbb{R}$$
.

Vậy tập giá trị của hàm số là T = [1; 5].

b) Vì $\cos x \ge -1 \Leftrightarrow 2 + \cos x \ge 1 > 0, \forall x \in \mathbb{R}$ nên tập xác định của hàm số là $D = \mathbb{R}$.

 $-1 \le \cos x \le 1, \forall x \in \mathbb{R} \Leftrightarrow 1 \le 2 + \cos x \le 3, \forall x \in \mathbb{R} \Leftrightarrow 1 \le \sqrt{2 + \cos x} \le \sqrt{3}, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{2 + \cos x} - 5 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{2 + \cos x} - 5 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{2 + \cos x} - 5 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{2 + \cos x} - 5 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} + 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} - 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{3} + 5, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{$ \mathbb{R} hay $-4 \le y \le \sqrt{3} - 5, \forall x \in \mathbb{R}$.

Vậy tập giá trị của hàm số là $T = \begin{bmatrix} -4; \sqrt{3} - 5 \end{bmatrix}$.

c) Tập xác định của hàm số là $D=\mathbb{R}$

Ta có
$$-1 \le \cos\left(x - \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{R}$$

$$\Leftrightarrow -2 \le 2\cos\left(x - \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$$

Ta có
$$-1 \le \cos\left(x - \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{R}$$

 $\Leftrightarrow -2 \le 2\cos\left(x - \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$
 $\Leftrightarrow -9 \le 2\cos\left(x - \frac{\pi}{4}\right) - 7 \le -5, \forall x \in \mathbb{R}$
hav $-9 \le u \le -5, \forall x \in \mathbb{R}$

hay $-9 \le y \le -5, \forall x \in \mathbb{R}$.

Vậy tập giá trị của hàm số là T = [-9, -5].

d) Vì $2 + \sin x \ge 1 > 0, \forall x \in \mathbb{R}$ nên tập xác định của hàm số là $D = \mathbb{R}$.

Ta có: $-1 < \sin x < 1, \forall x \in \mathbb{R}$

 $\Leftrightarrow 1 \le 2 + \sin x \le 3, \forall x \in \mathbb{R}$

 $\Leftrightarrow 1 \le \sqrt{2 + \sin x} \le \sqrt{3}, \forall x \in \mathbb{R}$

 $\Leftrightarrow -1 \ge -\sqrt{2 + \sin x} \ge -\sqrt{3}, \forall x \in \mathbb{R}$ $\Leftrightarrow 2 \ge 3 - \sqrt{2 + \sin x} \ge 3 - \sqrt{3}, \forall x \in \mathbb{R}$

hay $3 - \sqrt{3} \le y \le 2, \forall x \in \mathbb{R}$.

Vậy tập giá trị của hàm số là $T = \left[3 - \sqrt{3}; 2\right]$

CÂU 27. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 2(\sin x + \cos x) + \sin 2x + 3$. 🗩 Lời giải.

Tập xác định $\mathscr{D} = \mathbb{R}$.

Dăt
$$t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right), t \in \left[-\sqrt{2}; \sqrt{2}\right].$$

Ta có $t^2=(\sin x+\cos x)^2=1+2\sin x\cos x=1+\sin 2x\Rightarrow\sin 2x=t^2-1.$ Hàm số trở thành $y=g(t)=t^2+2t+2.$

Bảng biến thiên của hàm số y = g(t) trên đoạn $\left| -\sqrt{2}; \sqrt{2} \right|$

Vậy $\max_{x \in \mathbb{R}} y = 4 + 2\sqrt{2} \text{ và } \min_{x \in \mathbb{D}} y = 1.$

CÂU 28. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sqrt{3}\sin x - \cos x + 5$. Dèi giải.

Tập xác định $\mathcal{D} = \mathbb{R}$.

Biến đổi
$$y = \sqrt{3} \sin x - \cos x + 5 = 2\left(\frac{\sqrt{3}}{2} \cdot \sin x - \frac{1}{2} \cdot \cos x\right) + 5 = 2 \sin\left(x - \frac{\pi}{6}\right) + 5.$$

Với mọi $x \in \mathbb{R}$ ta có

$$-1 \le \sin\left(x - \frac{\pi}{6}\right) \le 1$$

$$\Leftrightarrow -2 \le 2\sin\left(x - \frac{\pi}{6}\right) \le 2$$

$$\Leftrightarrow 3 \le 2\sin\left(x - \frac{\pi}{6}\right) + 5 \le 7.$$

Vậy $\max_{x \in \mathbb{R}} y = 7$ khi $x = \frac{2\pi}{3}$ và $\min_{x \in \mathbb{R}} y = 3$ khi $x = -\frac{\pi}{3}$.

LỜI GIẢI CHI TIẾT

4

