An Experimental Guided Approach to the Metric Dimension on Different Graph Families

Alex Herrero Bravo

Director: Antoni Lozano Boixadors Department of Computer Science

Defense Date: January 26, 2024

Table of Contents

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

- Introduction
- 2 Our project
- Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- 4 Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- 5 Summary
- 6 Planification

Are graphs important in Computer Science?

Are graphs important in Computer Science? The P vs NP question relies on solving or proving no polynomial algorithm exists for various graph problems:

k-Coloring

- k-Coloring
- Vertex Cover

- k-Coloring
- Vertex Cover
- Clique

- k-Coloring
- Vertex Cover
- Clique
- Dominating Set

Are graphs important in Computer Science? The P vs NP question relies on solving or proving no polynomial algorithm exists for various graph problems:

- k-Coloring
- Vertex Cover
- Clique
- Dominating Set
- And many more in the literature!

Hint: Want to win \$1M? Solve one of these problems in polynomial time!

Are graphs important in Computer Science? The P vs NP question relies on solving or proving no polynomial algorithm exists for various graph problems:

- k-Coloring
- Vertex Cover
- Clique
- Dominating Set
- Metric Dimension

Metric Dimensions appears on Garey and Johnson's Book Computers and Intractability: A Guide to the Theory of NP-Completeness!

Slater 1975, Harary-Melter 1976

1 The Metric Representation of a vertex $u \in V$ respect a subset $W \subseteq V$ where $W = \{w_1, w_2, \dots, w_n\}$ is an ordered tuple defined as $r(u|W) = (d(w_1, u), d(w_2, u), \dots, d(w_n, u))$

Slater 1975, Harary-Melter 1976

- **1** The Metric Representation of a vertex $u \in V$ respect a subset $W \subseteq V$ where $W = \{w_1, w_2, \dots, w_n\}$ is an ordered tuple defined as $r(u|W) = (d(w_1, u), d(w_2, u), \dots, d(w_n, u))$
- **2** A set $W \subseteq V$ is called Resolving Set if and only if $\forall i, j \in V$, $\exists x \in W : d(x, i) \neq d(x, j)$

Slater 1975, Harary-Melter 1976

- **1** The Metric Representation of a vertex $u \in V$ respect a subset $W \subseteq V$ where $W = \{w_1, w_2, \dots, w_n\}$ is an ordered tuple defined as $r(u|W) = (d(w_1, u), d(w_2, u), \dots, d(w_n, u))$
- **2** A set $W \subseteq V$ is called Resolving Set if and only if $\forall i, j \in V$, $\exists x \in W : d(x, i) \neq d(x, j)$

NP-Completeness

Given an arbitrary graph G = (V, E) and an integer k, deciding whether $\beta(G) \leq k$ is NP-complete.

Proof: By a reduction from 3-SAT^a.

^aKhuller, Raghavachari, and Rosenfeld, "Landmarks in graphs".

Slater 1975, Harary-Melter 1976

- **1** The Metric Representation of a vertex $u \in V$ respect a subset $W \subseteq V$ where $W = \{w_1, w_2, \dots, w_n\}$ is an ordered tuple defined as $r(u|W) = (d(w_1, u), d(w_2, u), \dots, d(w_n, u))$
- **2** A set $W \subseteq V$ is called Resolving Set if and only if $\forall i, j \in V$, $\exists x \in W : d(x, i) \neq d(x, j)$
- **3** The Metric Dimension of a graph G is the cardinality of the smallest Resolving Set of G, denoted as $\beta(G)$.

NP-Completeness

Given an arbitrary graph G = (V, E) and an integer k, deciding whether $\beta(G) \le k$ is NP-Complete.

Proof: By a reduction from 3-SAT^a.

^aKhuller, Raghavachari, and Rosenfeld, "Landmarks in graphs".

$$r(x_2|\{x_1\}) = (d(x_1,x_2)) = (1)$$

$$r(x_2|\{x_1\}) = (d(x_1, x_2)) = (1)$$

 $r(x_4|\{x_1\}) = (d(x_1, x_4)) = (1)$

$$r(x_2|\{x_1\})$$
 and $r(x_4|\{x_1\})$ has to be different.

Example (Metric Dimension)

$$r(x_2|\{x_1, x_4\}) = (d(x_1, x_2), d(x_4, x_2)) = (1, 2)$$

$$r(x_3|\{x_1, x_4\}) = (d(x_1, x_3), d(x_4, x_3)) = (2, 1)$$

$$r(x_1|\{x_1, x_4\}) = (d(x_1, x_1), d(x_4, x_1)) = (0, 1)$$

$$r(x_4|\{x_1, x_4\}) = (d(x_1, x_4), d(x_4, x_4)) = (1, 0)$$

Metric Representations are all unique!

Example (Metric Dimension)

$$r(x_2|\{x_1, x_4\}) = (d(x_1, x_2), d(x_4, x_2)) = (1, 2)$$

$$r(x_3|\{x_1, x_4\}) = (d(x_1, x_3), d(x_4, x_3)) = (2, 1)$$

$$r(x_1|\{x_1, x_4\}) = (d(x_1, x_1), d(x_4, x_1)) = (0, 1)$$

$$r(x_4|\{x_1, x_4\}) = (d(x_1, x_4), d(x_4, x_4)) = (1, 0)$$

Metric Representations are all unique!

$$W = \{x_1, x_4\}$$
 is a Resolving Set.

Example (Metric Dimension)

$$r(x_2|\{x_1, x_4\}) = (d(x_1, x_2), d(x_4, x_2)) = (1, 2)$$

$$r(x_3|\{x_1, x_4\}) = (d(x_1, x_3), d(x_4, x_3)) = (2, 1)$$

$$r(x_1|\{x_1, x_4\}) = (d(x_1, x_1), d(x_4, x_1)) = (0, 1)$$

$$r(x_4|\{x_1, x_4\}) = (d(x_1, x_4), d(x_4, x_4)) = (1, 0)$$

Metric Representations are all unique!

$$W = \{x_1, x_4\}$$
 is a Resolving Set. $\beta(G) = 2$

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- 4 Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

There are two ways to contribute:

There are two ways to contribute:

 Purely theoretical work: Initially, this was our preferred approach. However, due to time constraints and my skill level, there was a possibility that we might not discover anything particularly interesting.

There are two ways to contribute:

- Purely theoretical work: Initially, this was our preferred approach. However, due to time constraints and my skill level, there was a possibility that we might not discover anything particularly interesting.
- Using experiments: Experiments could guide us to the theoretical part. In the worst case, our experiments could serve as a starting point for other researchers.

There are two ways to contribute:

- Purely theoretical work: Initially, this was our preferred approach. However, due to time constraints and my skill level, there was a possibility that we might not discover anything particularly interesting.
- Using experiments: Experiments could guide us to the theoretical part. In the worst case, our experiments could serve as a starting point for other researchers.

Opting for experiments is the safest option! We can perform theoretical work based on experimental results and have substantial findings to present.

Experiments could help us in

- Improving bounds
- Conjecture Testing
- Study New Graphs Families
- Stimulate future research

How?

How? Use Integer Linear Programming solvers!

Integer Linear Programming

Maximize or Minimize:
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

Subject to: $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \leq b_2$
:
:
:
: $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \leq b_m$
 $x_i \in \mathbb{Z}, \quad i = 1, 2, \ldots, n$

Integer Linear Programming is NP-Complete, but highly optimized software is available for solving ILP instances.

Summary of the project

- Theoretical Work:
 - Graph Family: Tournaments
 - Graph Family: Bicyclic graphs
- Experimental Work:
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube graphs

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- 4 Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- 5 Summary
- 6 Planification

Outline

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

Tournaments

Definition

A Tournament T = (V, E) is a directed graph where each pair of vertices are connected by one arc.

Tournaments

Definition

A Tournament T = (V, E) is a directed graph where each pair of vertices are connected by one arc.

Example

Related Studies

Chartrand, Raines, and Zhang (2001)

There is no constant positive k that bounds the Metric Dimension of Tournaments.^a

^aGary Chartrand, Michael Raines, and Ping Zhang. "On the dimension of oriented graphs". In: *Utilitas Mathematica* 60 (Nov. 2001).

Related Studies

Chartrand, Raines, and Zhang (2001)

There is no constant positive k that bounds the Metric Dimension of Tournaments.^a

^aChartrand, Raines, and Zhang, "On the dimension of oriented graphs".

A. Lozano (2013)

For a **strong** tournament T, the optimal upper bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

^aLozano, "Symmetry Breaking in Tournaments".

Experimental Approach to Metric Dimension

Theoretical Work

Graph Family: Tournaments

Our results

Our results

A. Herrero and A. Lozano (2023)

For a **tournament** T, the optimal bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

Our results

A. Herrero and A. Lozano (2023)

For a **tournament** T, the optimal bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

A. Herrero and A. Lozano (2023)

Characterization of tournaments with $\beta(T) = 1$.

Source: Tournament samples taken from https://users.cecs.anu.edu.au/~bdm/data/ by Professor McKay.

Metric Dimension values by myself.

n	$\beta(G)=1$	$\beta(G)=2$	$\beta(G)=3$	$\beta(G) = 4$	$\beta(G) = 5$	$\beta(G) = 6$	$\beta(G) = 7$	$\beta(G) = 8$
2	1	0	0	0	0	0	0	0
3	2	0	0	0	0	0	0	0
4	2	2	0	0	0	0	0	0
5	2	10	0	0	0	0	0	0
6	2	49	5	0	0	0	0	0
7	2	348	106	0	0	0	0	0
8	2	2581	4286	11	0	0	0	0
9	2	16809	174188	537	0	0	0	0

Table: Metric Dimension values for tournaments of different sizes (self-elaborated)

A. Herrero and A. Lozano (2023)

Characterization of tournaments with $\beta(T) = 1$.

 ${\sf Experimental\ Approach\ to\ Metric\ Dimension}$

Theoretical Work

Graph Family: Tournaments

Characterization

Well-known result in Metric Dimension

Let G be a simple graph. Then $\beta(G) = 1 \iff G \cong P_n$.

Well-known result in Metric Dimension

Let G be a simple graph. Then $\beta(G) = 1 \iff G \cong P_n$.

$$r(x_1|\{x_1\})=(d(x_1,x_1))=(0)$$

Well-known result in Metric Dimension

Let G be a simple graph. Then $\beta(G) = 1 \iff G \cong P_n$.

$$r(x_1|\{x_1\})=(d(x_1,x_1))=(0)$$

$$r(x_2|\{x_1\}) = (d(x_1, x_2)) = (1)$$

Well-known result in Metric Dimension

Let G be a simple graph. Then $\beta(G) = 1 \iff G \cong P_n$.

$$r(x_1|\{x_1\})=(d(x_1,x_1))=(0)$$

$$r(x_2|\{x_1\}) = (d(x_1, x_2)) = (1)$$

$$r(x_3|\{x_1\}) = (d(x_1,x_3)) = (2)$$

Well-known result in Metric Dimension

Let G be a simple graph. Then $\beta(G) = 1 \iff G \cong P_n$.

$$r(x_1|\{x_1\}) = (d(x_1,x_1)) = (0)$$

$$r(x_2|\{x_1\}) = (d(x_1,x_2)) = (1)$$

$$r(x_3|\{x_1\}) = (d(x_1,x_3)) = (2)$$

$$r(x_4|\{x_1\}) = (d(x_1, x_4)) = (3)$$

Experimental Approach to Metric Dimension
Theoretical Work
Graph Family: Tournaments

Tournaments are directed graphs

- Tournaments are directed graphs
- Every pair of vertices is connected by one arc

Find the orientation to have the same property of paths!

Let's define
$$G_1 = (V, E)$$
 as a tournament with $V = \{0, 1, \dots, n-1\}$.

Let's define
$$G_1 = (V, E)$$
 as a tournament with $V = \{0, 1, \dots, n-1\}$.

Let's define
$$G_1 = (V, E)$$
 as a tournament with $V = \{0, 1, \dots, n-1\}$.

•
$$j - i = 1 \rightarrow \mathsf{First} \; \mathsf{Rule}.$$

Let's define
$$G_1 = (V, E)$$
 as a tournament with $V = \{0, 1, \dots, n-1\}$.

- $j i = 1 \rightarrow \mathsf{First} \; \mathsf{Rule}.$
- $i j \ge 2 \rightarrow \text{Second Rule}$.
- $E = \{(i,j) : j i = 1 \lor i j \ge 2\}$

Let's define
$$G_1 = (V, E)$$
 as a tournament with $V = \{0, 1, \dots, n-1\}$.

- $j i = 1 \rightarrow \text{First Rule}$.
- $i j \ge 2 \rightarrow$ Second Rule.
- $E = \{(i,j) : j i = 1 \lor i j \ge 2\}$

Graph Family: Tournaments

Lemma

$$d(0, k) = k, k \in V \text{ in } G_1.$$

Proof:

Lemma

$$d(0, k) = k, k \in V \text{ in } G_1.$$

Proof:

• Clearly $d(0, k) \le k$ because the existence of a path.

Lemma

$$d(0, k) = k, k \in V \text{ in } G_1.$$

Proof:

- Clearly $d(0, k) \le k$ because the existence of a path.
- Suppose we have a shortest path from 0 to k of the form v_0, v_1, \ldots, v_t where $v_0 = 0$ and $v_t = k$. By the definition of G_1 we have $v_{i+1} \leq v_i + 1$ for $0 \leq i < t$. Therefore $v_t \leq v_{t-1} + 1 \leq v_{t-2} + 2 \leq \ldots \leq v_0 + t = t$. Since $v_t = k$ we conclude that $d(0, k) \geq k$.

Lemma

$$d(0, k) = k, k \in V \text{ in } G_1.$$

Proof:

- Clearly $d(0, k) \le k$ because the existence of a path.
- Suppose we have a shortest path from 0 to k of the form v_0, v_1, \ldots, v_t where $v_0 = 0$ and $v_t = k$. By the definition of G_1 we have $v_{i+1} \leq v_i + 1$ for $0 \leq i < t$. Therefore $v_t \leq v_{t-1} + 1 \leq v_{t-2} + 2 \leq \ldots \leq v_0 + t = t$. Since $v_t = k$ we conclude that $d(0, k) \geq k$.

Corollary

$$\beta(G_1)=1$$

$$d(0, k) = k$$

First Graph

$$V = \{0, 1, \dots, n-1\}$$

$$E_1 = \{(i, j) : j - i = 1 \lor i - j \ge 2\}$$

$$G_1 = (V, E_1)$$

Second Graph

$$V = \{0, 1, \dots, n-1\}$$

$$E_2 = (\{(i,j) : j-i = 1 \lor i-j \ge 2\} - \{(n-2, n-1)\}) \cup \{(n-1, n-2)\}$$

$$G_2 = (V, E_2)$$

$$d(0,k) = \begin{cases} k & \text{if } k \in V - \{n-1\} \\ \infty & \text{if } k = n-1 \end{cases}$$

A. Herrero and A. Lozano (2023)

Characterization of tournaments with $\beta(T) = 1$.

A. Herrero and A. Lozano (2023)

Characterization of tournaments with $\beta(T) = 1$.

Characterization

Let T be a tournament, then $\beta(T) = 1 \iff T \cong G_1 \vee T \cong G_2$.

Consult Section 12.1.2 for more details!

Optimal upper bound

A. Lozano (2013)

For a **strong tournament** T, the optimal upper bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

^aLozano, "Symmetry Breaking in Tournaments".

Optimal upper bound

A. Lozano (2013)

For a **strong tournament** T, the optimal upper bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

^aLozano, "Symmetry Breaking in Tournaments".

A. Herrero and A. Lozano (2023)

For a **tournament** T, the optimal bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

Experimental Approach to Metric Dimension

Theoretical Work

Graph Family: Tournaments

Optimal upper bound

Optimal upper bound

A.Lozano (2013)

• For every tournament T exists a subset $S \subseteq V$ called anchor such that $|S| \le |n/2|$.

Optimal upper bound

A.Lozano (2013)

- For every tournament T exists a subset $S \subseteq V$ called anchor such that $|S| \leq \lfloor n/2 \rfloor$.
- An anchor S is a subset of vertices such that $\forall u, v \in V(T) S \quad \exists w \in S : uw, wv \in E(T) \lor vw, wu \in E(T)$.

Optimal upper bound

A.Lozano (2013)

- For every tournament T exists a subset $S \subseteq V$ called anchor such that $|S| \le |n/2|$.
- An anchor S is a subset of vertices such that $\forall u, v \in V(T) S \quad \exists w \in S : uw, wv \in E(T) \lor vw, wu \in E(T)$.

Updating optimal bound

Updating optimal bound

Let T be a tournament. Then $\beta(T) \leq \lfloor n/2 \rfloor$. **Proof:**

Consider an anchor S.

Updating optimal bound

- Consider an anchor S.
- For every

$$i,j \in V-S, i \neq j, \quad \exists w \in S: d(w,i) = 1 \land d(w,j) \neq 1$$

Updating optimal bound

- Consider an anchor S.
- For every $i, j \in V S, i \neq j, \quad \exists w \in S : d(w, i) = 1 \land d(w, j) \neq 1$
- S is a Resolving Set.

Updating optimal bound

- Consider an anchor S.
- For every

$$i,j \in V-S, i \neq j, \quad \exists w \in S : d(w,i) = 1 \land d(w,j) \neq 1$$

- ullet S is a Resolving Set.
- $|S| \leq \lfloor n/2 \rfloor$.

Updating optimal bound

- Consider an anchor S.
- For every $i, j \in V S, i \neq j, \quad \exists w \in S : d(w, i) = 1 \land d(w, j) \neq 1$
- S is a Resolving Set.
- $|S| \leq \lfloor n/2 \rfloor$.
- $\beta(T) \leq \lfloor n/2 \rfloor$.

Updating optimal bound

Let T be a tournament. Then $\beta(T) \leq \lfloor n/2 \rfloor$. **Proof:**

- Consider an anchor S.
- For every $i,j \in V-S, i \neq j, \quad \exists w \in S: d(w,i) = 1 \land d(w,j) \neq 1$
- S is a Resolving Set.
- $|S| \leq \lfloor n/2 \rfloor$.
- $\beta(T) \leq \lfloor n/2 \rfloor$.

A. Herrero and A. Lozano (2023)

For a tournament T, the optimal bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

Summary on Tournaments

A. Herrero and A. Lozano (2023)

Characterization of tournaments with $\beta(T) = 1$.

A. Herrero and A. Lozano (2023)

For a tournament T, the optimal bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

Outline

- Introduction
- Our project
- Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

Bicyclic Graphs

Bicyclic Graphs definition

A simple connected graph G is said to be bicyclic if |E(G)| = n+1.

Bicyclic Graphs

Bicyclic Graphs definition

A simple connected graph G is said to be bicyclic if |E(G)| = n+1.

Actual Studies on the Metric Dimension

"Metric Dimension of Bicyclic Graphs" by Khan et al. (2023).

Khan et al. studied the Metric Dimension of bicyclic graphs without vertices of degree 1 and classified them into three types:

• Type I: Two disjoint cycles C_n and C_m sharing a single vertex.

Example (Type I)

Khan et al. studied the Metric Dimension of bicyclic graphs without vertices of degree 1 and classified them into three types:

• Type II: Two disjoint cycles C_n and C_m joined by a path P_r connecting any vertex from C_n to any vertex of C_m

Khan et al. studied the Metric Dimension of bicyclic graphs without vertices of degree 1 and classified them into three types:

• Type III: Three disjoint paths P_r , P_s , P_t and two vertices u, v that connect the beginning and the end of the paths.

Example (Type III)

Experimental Approach to Metric Dimension
Theoretical Work
Graph Family: Bicyclic Graphs

Currrent Work:

• Type I: Proven by Khan et al. (Metric Dimension is 2 or 3) 🗸

- Type I: Proven by Khan et al. (Metric Dimension is 2 or 3) 🗸
- Type II: Proven by Khan et al. (Metric Dimension is 2 or 3) ✓

- Type I: Proven by Khan et al. (Metric Dimension is 2 or 3) 🗸
- Type II: Proven by Khan et al. (Metric Dimension is 2 or 3) ✓
- Type III: Not proven. In fact, one open question is, "Study the Metric Dimension of Type III Bicycle, providing a proof that they have a constant Metric Dimension."

- Type I: Proven by Khan et al. (Metric Dimension is 2 or 3) 🗸
- Type II: Proven by Khan et al. (Metric Dimension is 2 or 3) ✓
- Type III: Not proven. In fact, one open question is, "Study the Metric Dimension of Type III Bicycle, providing a proof that they have a constant Metric Dimension."

Goal: Proof Metric Dimension on Type III Bicyclic Graphs.

The idea of how embedding a graph: By Mercè Mora et al.¹

Lemma

Let G be a graph with $\beta(G) = 2$, then G can be *embedded* in a strong product of paths $P_n \boxtimes P_n$ of order n.

¹Mercè Mora et al. "Metric dimension of maximal outerplanar graphs". In: (2019). arXiv: 1903.11933 [math.CO].

The idea of how embedding a graph: By Mercè Mora et al.¹

Lemma

Let G be a graph with $\beta(G) = 2$, then G can be *embedded* in a strong product of paths $P_n \boxtimes P_n$ of order n.

$$V(P_n \boxtimes P_n) = [0, \ldots, n-1] \times [0, \ldots, n-1]$$

$$E(P_n \boxtimes P_n) = (i,j) \sim (i',j') : |i-i'| \le 1 \land |j-j'| \le 1$$

¹Mora et al., "Metric dimension of maximal outerplanar graphs".

 $P_5 \boxtimes P_5$

 $P_5 \boxtimes P_5$

Proposition

If
$$x_1x_2 \in E$$
 and $d(x_0,x_1)=d$ for some $x_0 \in V$, then $d(x_0,x_2) \in \{d-1,d,d+1\}$

$$x_0 - \cdots - x_3 - x_1 - x_2$$
 d

$$x_0 - - - - x_2 - x_1$$
 $d-1$

$$x_0 - \cdots - x_1 - x_2$$
 $d+1$

•
$$r(u|W) = (d(x, u), d(y, u))$$
 and $r(v|W) = (d(x, v), d(y, v))$.

- r(u|W) = (d(x, u), d(y, u)) and r(v|W) = (d(x, v), d(y, v)).
- $u \sim v$ and d(x, u) = d then $d(x, v) \in \{d, d + 1, d 1\}$

- r(u|W) = (d(x, u), d(y, u)) and r(v|W) = (d(x, v), d(y, v)).
- $u \sim v$ and d(x, u) = d then $d(x, v) \in \{d, d + 1, d 1\}$
- $u \sim v$ and d(y, u) = d' then $d(y, v) \in \{d', d' + 1, d' 1\}$

- r(u|W) = (d(x, u), d(y, u)) and r(v|W) = (d(x, v), d(y, v)).
- $u \sim v$ and d(x, u) = d then $d(x, v) \in \{d, d + 1, d 1\}$
- $u \sim v$ and d(y, u) = d' then $d(y, v) \in \{d', d' + 1, d' 1\}$
- $|d(x, v) d(x, u)| \le 1 \land |d(y, v) d(y, u)| \le 1$.

- r(u|W) = (d(x, u), d(y, u)) and r(v|W) = (d(x, v), d(y, v)).
- $u \sim v$ and d(x, u) = d then $d(x, v) \in \{d, d + 1, d 1\}$
- $u \sim v$ and d(y, u) = d' then $d(y, v) \in \{d', d' + 1, d' 1\}$
- $|d(x, v) d(x, u)| \le 1 \land |d(y, v) d(y, u)| \le 1$.
- $E(P_n \boxtimes P_n) = (i,j) \sim (i',j') : |i-i'| \leq 1 \wedge |j-j'| \leq 1$

- r(u|W) = (d(x, u), d(y, u)) and r(v|W) = (d(x, v), d(y, v)).
- $u \sim v$ and d(x, u) = d then $d(x, v) \in \{d, d + 1, d 1\}$
- $u \sim v$ and d(y, u) = d' then $d(y, v) \in \{d', d' + 1, d' 1\}$
- $|d(x, v) d(x, u)| \le 1 \land |d(y, v) d(y, u)| \le 1$.
- $E(P_n \boxtimes P_n) = (i,j) \sim (i',j') : |i-i'| \leq 1 \wedge |j-j'| \leq 1$
- $V(G^*) = r(v|W) = (d(x, v), d(y, v))$ for every $v \in V$.

- r(u|W) = (d(x, u), d(y, u)) and r(v|W) = (d(x, v), d(y, v)).
- $u \sim v$ and d(x, u) = d then $d(x, v) \in \{d, d + 1, d 1\}$
- $u \sim v$ and d(y, u) = d' then $d(y, v) \in \{d', d' + 1, d' 1\}$
- $|d(x, v) d(x, u)| \le 1 \land |d(y, v) d(y, u)| \le 1$.
- $E(P_n \boxtimes P_n) = (i,j) \sim (i',j') : |i-i'| \leq 1 \wedge |j-j'| \leq 1$
- $V(G^*) = r(v|W) = (d(x, v), d(y, v))$ for every $v \in V$.
- $\bullet \ E(G^*) = r(v|W)r(u|W) : uv \in E.$

Graph Embedding Example

	Xi	$d(5,x_i)$	$d(3,x_i)$	$r(x_i W)$
Ì	1	2	2	(2,2)
	2	3	1	(3,1)
	3	2	0	(2,0)
	4	1	1	(1, 1)
	5	0	2	(0,2)
	6	1	3	(1,3)

 C_6 with $R = \{5,3\}$ as the Resolving Set.

Graph Embedding Example

	Xi	$d(5,x_i)$	$d(3,x_i)$	$r(x_i W)$
Ì	1	2	2	(2,2)
	2	3	1	(3,1)
	3	2	0	(2,0)
	4	1	1	(1, 1)
	5	0	2	(0,2)
	6	1	3	(1,3)

An embedding of C_6 in $P_5 \boxtimes P_5$.

Subcases to prove

- $1 \le r < s \le t$ all with same parity
- $1 \le r < s \le t$ s, t different parity
- $r = 0, s, t \ge 1$
- $s = r, t = r + k, k \ge 1$ and $k \ne 2$.
- $1 \le r < s \le t$ s, t same parity and r different one.
- \bullet r = s = t
- r = s, t = r + 2.

Subcases to prove

- $1 \le r < s \le t$ all with same parity \checkmark
- $1 \le r < s \le t$ s, t different parity \checkmark
- $r = 0, s, t \ge 1$
- s = r, t = r + k, k > 1 and $k \neq 2$.
- $1 \le r < s \le t$ s, t same parity and r different one.
- \bullet r = s = t
- r = s, t = r + 2.

Our results

Although we couldn't prove them all we only left 3/7 subcases.

$1 \le r < s \le t$ same parity

$$\begin{cases} s = r + 2\alpha, \alpha \ge 1 \\ t = r + 2\beta, \beta \ge 1 \end{cases}$$

Main Idea of Proof

Proof: $R = \{s_{\alpha}, t_{\beta}\}$ is a Resolving Set.

Main idea of proof: Let $i, j \in V$, $i \neq j$, and consider

$$d(s_{\alpha}, i) = d(s_{\alpha}, j)$$
. Then prove $d(t_{\beta}, i) \neq d(t_{\beta}, j)$.

Main Idea of Proof

Proof: $R = \{s_{\alpha}, t_{\beta}\}$ is a Resolving Set.

Main idea of proof: Let $i, j \in V$, $i \neq j$, and consider $d(s_{\alpha}, i) = d(s_{\alpha}, j)$. Then prove $d(t_{\beta}, i) \neq d(t_{\beta}, j)$.

Why? If $i \neq j$ and $d(s_{\alpha}, i) = d(s_{\alpha}, j)$, we can consider the shortest paths $s_{\alpha} - i$ and $s_{\alpha} - j$. At one point, the paths will split. Now guess where the vertices will be.

Paths split at s_{α}

Paths split at u

Path $t_{\beta} - j$ doesn't pass through x

•
$$d(t_{\beta},j) = d(t_{\beta},u) + d(u,j)$$

$$d(t_{\beta},i) = |d(t_{\beta},u) - d(u,i)|$$

Path $t_{\beta} - j$ doesn't pass through x

If
$$d(t_{\beta}, i) = d(t_{\beta}, u) - d(u, i)$$

$$d(t_{\beta}, i) = d(t_{\beta}, j)$$

$$\xrightarrow{\text{substitute}} d(t_{\beta}, u) - d(u, i) = d(t_{\beta}, u) + d(u, j)$$

$$\xrightarrow{\text{simplify}} -d(u, i) = d(u, j)$$

This is only possible if and only if u = i = j but $i \neq j$, contradiction.

Path $t_{\beta} - j$ doesn't pass through x

If
$$d(t_{eta},i) = d(u,i) - d(t_{eta},u)$$

$$d(t_{eta},i) = d(t_{eta},j)$$

$$\xrightarrow{\text{substitute}} d(u,i) - d(t_{eta},u) = d(t_{eta},u) + d(u,j)$$

$$\xrightarrow{\text{simplify}} -d(t_{eta},u) = d(t_{eta},u)$$

This is not possible because $d(t_{\beta}, u) = \beta \ge 1$, contradiction.

Path $t_{\beta} - j$ pass through x

$$d(t_{\beta},j) = d(t_{\beta},x) + d(x,u) - d(u,j)$$

$$\bullet \ d(t_{\beta},i) = |d(t_{\beta},u) - d(u,i)|$$

Path $t_{\beta} - j$ pass through x

If
$$d(t_{\beta}, i) = d(t_{\beta}, u) - d(u, i)$$

$$d(t_{\beta}, i) = d(t_{\beta}, j)$$

$$\xrightarrow{\text{substitute}} d(t_{\beta}, u) - d(u, i) = d(t_{\beta}, x) + d(x, u) - d(u, j)$$

$$\xrightarrow{d(u, i) = d(u, j) \text{ and simplify}} d(t_{\beta}, u) = d(t_{\beta}, x) + d(x, u)$$

$$\xrightarrow{d(t_{\beta}, u) = \beta} \xrightarrow{d(t_{\beta}, x) = r + 1} \beta = r + 1 + \beta + r + 1$$

$$\xrightarrow{\text{simplify}} 0 = 2r + 2$$

Contradiction, because $2r + 2 \ge 1$.

Path $t_{\beta} - j$ pass through x

If
$$d(t_{\beta}, i) = d(u, i) - d(t_{\beta}, u)$$

$$d(t_{\beta}, i) = d(t_{\beta}, j)$$

$$\xrightarrow{\text{substitute}} d(u, i) - d(t_{\beta}, u) = d(t_{\beta}, x) + d(x, u) - d(u, j)$$

$$\xrightarrow{\text{reorder}} d(u, i) + d(u, j) = d(t_{\beta}, x) + d(x, u) + d(t_{\beta}, u)$$

$$\frac{d(u, i) = d(u, j)}{d(x, u) = \beta + r + 1} \frac{d(t_{\beta}, u) = \beta}{d(t_{\beta}, u) = \beta} 2d(u, i) = r + 1 + \beta + r + 1 + \beta = 2r + 2\beta + 2$$

$$\xrightarrow{\div 2} d(u, i) = d(u, j) = r + \beta + 1.$$

But this is possible if and only if i = j = x. But $i \neq j$, contradiction.

Subcases to prove

- $1 \le r < s \le t$ all with same parity \checkmark , $\beta(G) = 2$
- $1 \le r < s \le t$ s, t different parity \checkmark , $\beta(G) = 2$
- $r = 0, s, t \ge 1 \checkmark$, $\beta(G) = 2$
- $s = r, t = r + k, k \ge 1$ and $k \ne 2 \checkmark$, $\beta(G) = 2$
- $1 \le r < s \le t$ s, t same parity and r different one.
- \bullet r = s = t
- r = s, t = r + 2.

Our results

Although we couldn't prove them all we only left 3/7 subcases.

Consult **Section 13.2.1** for more details!

For the unproven cases we conducted some experiments, here are the results:

the results.				
Subcases	Resolving Set			
$r=s=t$ and $r\geq 2$	$R = \{2r, 5+3 \cdot (r-2), 6+3 \cdot (r-2)\}$			
$r = r, s = r, t = r + 2 \text{ and } r \ge 4$	$R = \{2r, 3r, 3r + 1\}$			
$1 \le r < s \le t$ s, t same parity and r different one.	No significant Resolving Set, but $\beta(G) = 2$ in all cases			

For the unproven cases we conducted some experiments, here are the results:

the results.				
Subcases	Resolving Set			
$r=s=t$ and $r\geq 2$	$R = \{2r, 5+3 \cdot (r-2), 6+3 \cdot (r-2)\}$			
$r = r, s = r, t = r + 2 \text{ and } r \ge 4$	$R = \{2r, 3r, 3r + 1\}$			
$1 \le r < s \le t$ s, t same parity and r different one.	No significant Resolving Set, but $\beta(G) = 2$ in all cases			

Conjecture

Let G be a Type III bicyclic graph, then $\beta(G) = 2$ or $\beta(G) = 3$.

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- 4 Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

Outline

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
 - Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

ILP formulation

Objective Function:

Minimize:
$$\sum_{i=1}^{n} x_i$$

Subject to:

Constraint 1:
$$\sum_{v \in A(i,j)} v \ge 1$$
 for every $1 \le i < j \le n$

Constraint 2:
$$x_i \in \{0,1\}$$
 for every $1 \le i \le n$

Where:

$$A(i,j) = \{x_k \in V : d(x_k, x_i) \neq d(x_k, x_j)\}$$
$$x_i = 1 \iff x_i \in \text{Resolving Set}$$

SAT Problem

Given a boolean formula in CNF form, find a model that satisfies the formula.

Decisional version of SAT is NP-complete: Cook-Levin Theorem.

SAT Problem

Given a boolean formula in CNF form, find a model that satisfies the formula.

Decisional version of SAT is NP-complete: Cook-Levin Theorem.

Example (SAT Problem)

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_4 \lor \neg x_1 \lor x_7 \lor x_2)$$

F is SAT, $x_2 = 1$ is enough for satisfying the formula.

Constraint 1: $\sum_{v \in A(i,j)} v \ge 1$ for every $1 \le i < j \le n$ Constraint 2: $x_i \in \{0,1\}$ for every $1 \le i \le n$

Constraint 1:
$$\sum_{v \in A(i,j)} v \ge 1$$
 for every $1 \le i < j \le n$

Constraint 2: $x_i \in \{0,1\}$ for every $1 \le i \le n$

SAT to ILP

Under the second of the seco

Constraint 2: Inherent from SAT nature

 $v \in A(i,i)$

Example

$$x_0 + x_1 + x_2 + x_3 \ge 1$$

$$x_0 + x_3 \ge 1$$

$$x_1 + x_2 \ge 1$$

$$x_0, x_1, x_2, x_3 \in \{0, 1\}$$

Example

Experimental Approach to Metric Dimension
Experimental Work
Integer Linear Programming vs Weighted Max-SAT

Integer Linear Programming vs Weighted Max-SAT

SAT Problem

Given a boolean formula in CNF form, find a model that satisfies the formula.

Decisional version of SAT is NP-complete (Cook-Levin Theorem).

SAT Problem

Given a boolean formula in CNF form, find a model that satisfies the formula.

Decisional version of SAT is NP-complete (Cook-Levin Theorem).

Weighted Max-SAT Problem

Given a boolean formula in CNF and a weight for every clause, find a model that minimizes the total weight.

Decisional version of WMax-SAT is also NP-complete.

Minimize:
$$\sum_{i=1}^{n} x_i$$
Constraint 1: $\sum_{v \in A(i,j)} v \ge 1$ for every $1 \le i < j \le n$
Constraint 2: $x_i \in \{0,1\}$ for every $1 \le i \le n$
WMSAT to ILP \bigcap ILP to WMSAT

Minimize section: $\bigcap^{n} (\neg x_i, 1)$

Constraint 1: $(\bigvee_{v \in A(i,j)} v, \infty)$ for every $1 \le i < j \le n$

Constraint 2: Inherent from SAT nature

Solvers from Max-SAT competition are free!

How well do ILP solvers perform by themselves?

Weighted

▶ ILP solvers by themselves are not competitive with MaxSAT solvers

16/31

Goal: See which solver performs better on the Metric Dimension problem. Participants for my comparison:

- CPLEX (ILP)
- Gurobi (ILP) → Personal recommendation from Enric!
- MaxHS (WMax-SAT) → Solves Hitting Sets (thanks to Jordi Coll, creator of this solver)
- WMaxCDCL (WMax-SAT)
- CASHWMAXSAT-CorePlus (WMax-SAT)

Samples: Metric Dimension of Hypercubes.

Q_d	#Variables	#Constraint 1
Q_1	2	1
Q_2	4	6
Q_3	8	28
Q_4	16	120
Q_5	32	496
Q_6	64	2016
Q_7	128	8128
Q_8	256	32640
Q_9	512	130816

Results

Q_d	Winner			
Q_1	WMaxCDCL			
Q_2	WMaxCDCL/MaxHS			
Q_3	MaxHS			
Q_4	MaxHS			
Q_5	MaxHS			
Q_6	Gurobi/CPLEX			
Q_7	CPLEX			
<i>Q</i> ₈	CPLEX			
Q_9	O ₉ Gurobi/MaxHS			

Q_d	Winner			
Q_1	WMaxCDCL			
Q_2	WMaxCDCL/MaxHS			
Q_3	MaxHS			
Q_4	Q ₄ MaxHS			
Q_5	NaxHS			
Q_6	Q ₆ Gurobi/CPLEX			
Q_7	Q ₇ CPLEX			
Q_8	Q ₈ CPLEX			
Q_9	Gurobi/MaxHS			

In fact $\frac{\text{Gurobi}}{\text{MaxHS}}$ were the unique solvers to solve Q_9 without a *Timeout*.

Goal: See which solver performs better on the Metric Dimension problem.

Our Results

A more in-depth study would contribute to this section. ILP vs Hitting Sets would be an interesting experiment. But WMaxSAT not always performs better than an ILP solver.

Outline

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
 - Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

$$Q_d = \underbrace{K_2 \times K_2 \times \ldots \times K_2}_{d \text{ times}}$$

$$\begin{cases} d & \text{if } d = 1, 2, 3, \\ d & \text{if } d = 1, 2, 3, \end{cases}$$

$$\beta(Q_d) = \begin{cases} d & \text{if } d = 1, 2, 3, 4 \\ d - 1 & \text{if } d = 5, 6, 7 \\ d - 2 & \text{if } d = 8, 9 \\ d - 3 & \text{if } d = 10, 11 \\ d - 4 & \text{if } d = 12, 13 \\ d - 5 & \text{if } d = 14, 15, 16 \\ d - 6 & \text{if } d = 17 \end{cases}$$

Actual known values² (since 2013!)

²A.F. Beardon. "Resolving the hypercube". In: Discrete Applied Mathematics 161.13 (2013), pp. 1882–1887. ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2013.02.012. URL: https: //www.sciencedirect.com/science/article/pii/S0166218X13000644.

Experimental Approach to Metric Dimension
Experimental Work
Graph Family: Hypercube Graphs

Goal: Calculate new Hypercube dimension.

Goal: Calculate new Hypercube dimension.

Not possible: Even with the support of Daniel Jiménez (AC Department), I rejected the idea. But something interesting appeared...

Q_d	#Variables	#Constraint	#Different Constraints	Ratio different constraints
Q_1	2	1	1	100%
Q_2	4	6	3	50%
Q_3	8	28	7	25%
Q_4	16	120	21	17.5%
Q_5	32	496	61	12.30%
Q_6	64	2016	183	9.05%
Q_7	128	8128	547	6.73%
Q_8	256	32640	1641	5.03%
Q_9	512	130816	4921	3.76%

Q_d	Expected #Constraints using interpolation
Q_{10}	14251
Q_{11}	38655
Q_{12}	97021
Q_{13}	225525
Q_{14}	488671
Q_{15}	994971
Q_{16}	1918417
Q_{17}	3527025
Q_{18}	6219859
Q_{19}	10574071
Q_{20}	17403621

Summary on Hypercubes

Our Results

Curious behaviour in the number of constraints generated; many of these restrictions can be ignored because they are repeated.

- Introduction
- Our project
- 3 Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- 4 Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

Summary on Tournaments

A. Herrero and A. Lozano (2023)

Characterization of tournaments with $\beta(G) = 1$.

A. Herrero and A. Lozano (2023)

For a **tournament** T, the optimal bound is given by $\beta(T) \leq \lfloor n/2 \rfloor$.

Summary on Type III

- $1 \le r < s \le t$ all with same parity $(\beta(G) = 2)$
- $1 \le r < s \le t$ s, t different parity $(\beta(G) = 2)$
- $r = 0, s, t \ge 1 \ (\beta(G) = 2) \checkmark$
- $s = r, t = r + k, k \ge 1$ and $k \ne 2$. $(\beta(G) = 2)$
- $1 \le r < s \le t$ s, t same parity and r different one. $(\beta(G) = 2)$
- $r = s = t \ (\beta(G) = 3)$
- $r = s, t = r + 2 (\beta(G) = 3)$

Our results

Although we couldn't prove them all we only left 3/7 subcases.

Conjecture

Let G be a Type III bicyclic graph, then $\beta(G) = 2$ or $\beta(G) = 3$.

Summary on ILP vs WMaxSAT

Our Results

A more in-depth study would contribute to this section. ILP vs Hitting Sets would be an interesting experiment. But WMaxSAT not always performs better than a ILP solver.

Summary on Hypercubes

Our Results

Curious behaviour in the number of constraints generated; many of these restrictions can be ignored because they are repeated.

- Introduction
- Our project
- Theoretical Work
 - Graph Family: Tournaments
 - Graph Family: Bicyclic Graphs
- 4 Experimental Work
 - Integer Linear Programming vs Weighted Max-SAT
 - Graph Family: Hypercube Graphs
- Summary
- 6 Planification

Expected Time: 726.5h vs Real Time: 586.5h This caused reductions in the Budget!

Summary

Source	Expected Cost	Real Cost	Cost Deviation
Hardware	76.66€	61.89€	14.77€
Software	0€	0€	0€
Human Resources	19699.82€	15780.45€	3919.37€
Indirect Costs	52.64€	37.54€	15.10€
Contingency	2974.37€	2386.47€	587.70€
Unexpected Costs	1699.58€	0€	1699.58€
Total	24503.07€	18266.35€	6236.72€

Also a review on the Sustainability of the project had appeared! More sustainable than expected :-)

Special Thanks

- Antoni Lozano for his $\Theta(2^{n!})$ wisdom!
- Mercè Mora for the idea for proving Type III Bicyclic
- Enric Rodríguez for the idea of the experiment.
- To the friends I've made during my time studying this degree.
- Who is currently reading this :D

An Experimental Guided Approach to the Metric Dimension on Different Graph Families

Alex Herrero Bravo

Director: Antoni Lozano Boixadors Department of Computer Science

Defense Date: January 26, 2024