A new efficient explicit Deferred Correction framework: analysis and applications to hyperbolic PDEs and adaptivity

Davide Torlo*, Lorenzo Micalizzi

*MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy davidetorlo.it

Essentially hyperbolic problems: unconventional numerics, and applications Ascona - October 2022

A new efficient explicit **Deferred Correction** framework: analysis and applications to hyperbolic PDEs and adaptivity

Davide Torlo*, Lorenzo Micalizzi

*MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy davidetorlo.it

Essentially hyperbolic problems: unconventional numerics, and applications Ascona - October 2022

• PhD in hyperbolic PDE field with Rémi

2016

• PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

• Finite Volume

2016

• PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference

• PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

• PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

• Runge Kutta

• PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

2/24

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

Originally Finite Volume

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- Nowadays Continuous Finite Element

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- **Nowadays Continuous Finite Element**
- Stabilizations

PhD in hyperbolic PDE field with Rémi

Residual D

Element

Spatial Discretizations

- Finite V
- Finite Dit
- Discontinu

Journal of Computational Physics Volume 229, Issue 16, 10 August 2010, Pages 5653-5691 Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second

Time Discretiza

order case Runge Kutta

Strong Stability

M. Ricchiuto & Ed. R. Abgrall Ed

2016

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- Nowadays Continuous Finite Element
- Stabilizations

Time Discretization

Runge-Kutta 2 and Runge-Kutta 3

2016

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- Nowadays Continuous Finite Element
- Stabilizations

Time Discretization

- Runge-Kutta 2 and Runge-Kutta 3
- Mass lumping + Correction

2016

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- Nowadays Continuous Finite Element
- Stabilizations

Time Discretization

- Runge-Kutta 2 and Runge-Kutta 3
- ullet Mass lumping + Correction

Deferred Correction (January 2017)

Arbitrarily high order

2016

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- Nowadays Continuous Finite Element
- Stabilizations

Time Discretization

- Runge-Kutta 2 and Runge-Kutta 3
- ullet Mass lumping + Correction

Deferred Correction (January 2017)

- Arbitrarily high order
- Mass lumping + Correction

2016

PhD in hyperbolic PDE field with Rémi

Spatial Discretizations

- Finite Volume
- Finite Difference
- Discontinuous Galerkin

Time Discretizations

- Runge Kutta
- Strong Stability Preserving RK

Residual Distributions

- Originally Finite Volume
- Nowadays Continuous Finite Element
- Stabilizations

Time Discretization

- Runge-Kutta 2 and Runge-Kutta 3
- ullet Mass lumping + Correction

Deferred Correction (January 2017)

- Arbitrarily high order
- Mass lumping + Correction
- General algorithm

Table of contents

1 Introduction to DeC

2 An efficient Deferred Correction

3 Application to PDEs

4 Conclusions

Table of contents

1 Introduction to DeC

An efficient Deferred Correction

Application to PDEs

4 Conclusions

4/ 24

History of DeC

• Original framework for solution of nonlinear equations

- Original framework for solution of nonlinear equations
- Iterative method for ODEs with Taylor expansion Fox and Goodwin (1949)

- Original framework for solution of nonlinear equations
- Iterative method for ODEs with Taylor expansion Fox and Goodwin (1949)
- Pereyra (1968), Frank and Ueberhuber (1977), Stetter (1978), Skeel (1982)

- Original framework for solution of nonlinear equations
- Iterative method for ODEs with Taylor expansion Fox and Goodwin (1949)
- Pereyra (1968), Frank and Ueberhuber (1977), Stetter (1978), Skeel (1982)
- Spectral Deferred Correction (Gauss-Legendre quadrature + Lagrange polynomials) for ODEs.
 Explicit, implicit, stability
 Dutt, Greengard, Rokhlin (2000)

- Original framework for solution of nonlinear equations
- Iterative method for ODEs with Taylor expansion Fox and Goodwin (1949)
- Pereyra (1968), Frank and Ueberhuber (1977), Stetter (1978), Skeel (1982)
- Spectral Deferred Correction (Gauss-Legendre quadrature + Lagrange polynomials) for ODEs.
 Explicit, implicit, stability
 Dutt, Greengard, Rokhlin (2000)
- IMEX DeC: Minion (2003)

- Original framework for solution of nonlinear equations
- Iterative method for ODEs with Taylor expansion Fox and Goodwin (1949)
- Pereyra (1968), Frank and Ueberhuber (1977), Stetter (1978), Skeel (1982)
- Spectral Deferred Correction (Gauss-Legendre quadrature + Lagrange polynomials) for ODEs.
 Explicit, implicit, stability
 Dutt, Greengard, Rokhlin (2000)
- IMEX DeC: Minion (2003)
- Operators based DeC, generalization to many problems: Abgrall (2017)

DeC iterations

$$\frac{d}{dt}\boldsymbol{u}(t)=\boldsymbol{G}(t,\boldsymbol{u}(t)),$$

DeC iterations

$$\frac{d}{dt}\boldsymbol{u}(t)=\boldsymbol{G}(t,\boldsymbol{u}(t)), \qquad \boldsymbol{u}_n\approx\boldsymbol{u}(t_n)$$

$$\frac{d}{dt}u(t) = G(t, u(t)), \qquad u_n \approx u(t_n), \qquad u^m \approx u(t^m)$$

$$t_n=t^0$$
 t^1 t^2 $t_n+\Delta t=t^M$

Which sub time nodes?

Equispaced, Gauss-Lobatto

$$\frac{d}{dt}\boldsymbol{u}(t) = \boldsymbol{G}(t,\boldsymbol{u}(t)), \qquad \boldsymbol{u}_n \approx \boldsymbol{u}(t_n), \qquad \boldsymbol{u}^m \approx \boldsymbol{u}(t^m)$$

Which sub time nodes?

Equispaced, Gauss-Lobatto

DeC operators

 t^1 t^2 t^{m-1} t^m +M 1

\mathcal{L}^2_{Λ} operator

$$\mathcal{L}^{2}_{\Delta}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}) = \mathcal{L}^{2}_{\Delta}(\underline{\boldsymbol{u}}) :=$$

$$\begin{cases} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} - \int_{t^{0}}^{t^{M}} \boldsymbol{G}(\boldsymbol{u}(s)) ds \\ \vdots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} - \int_{t^{0}}^{t^{1}} \boldsymbol{G}(\boldsymbol{u}(s)) ds \end{cases}$$

- Implicit RK
- Order of accuracy $\geq M+1$
- Difficult to solve directly

DeC operators

\mathcal{L}^2_{Λ} operator

$$\mathcal{L}^{2}_{\Delta}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}) = \mathcal{L}^{2}_{\Delta}(\underline{\boldsymbol{u}}) :=$$

$$\begin{cases} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} - \Delta t \sum_{r=0}^{M} \theta_{r}^{M} \boldsymbol{G}(\boldsymbol{u}^{r}) \\ \dots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} - \Delta t \sum_{r=0}^{M} \theta_{r}^{1} \boldsymbol{G}(\boldsymbol{u}^{r}) \end{cases}$$

- Implicit RK
- Order of accuracy $\geq M+1$
- Difficult to solve directly

DeC operators

+¹ t^{m-1} t^m +M 1

\mathcal{L}^2_{Λ} operator

$$\begin{split} \mathcal{L}^2_{\Delta}(\boldsymbol{u}^0,\ldots,\boldsymbol{u}^M) &= \mathcal{L}^2_{\Delta}(\underline{\boldsymbol{u}}) := \\ \left\{ \begin{aligned} \boldsymbol{u}^M - \boldsymbol{u}^0 - \Delta t \sum_{r=0}^M \theta_r^M \boldsymbol{G}(\boldsymbol{u}^r) \\ \ldots \\ \boldsymbol{u}^1 - \boldsymbol{u}^0 - \Delta t \sum_{r=0}^M \theta_r^1 \boldsymbol{G}(\boldsymbol{u}^r) \end{aligned} \right. \end{split}$$

- Implicit RK
- Order of accuracy $\geq M+1$
- Difficult to solve directly

\mathcal{L}^1_{\wedge} operator

$$\mathcal{L}^{1}_{\Delta}(\boldsymbol{u}^{0},\ldots,\boldsymbol{u}^{M}) = \mathcal{L}^{1}_{\Delta}(\underline{\boldsymbol{u}}) :=$$

$$\begin{cases} \boldsymbol{u}^{M} - \boldsymbol{u}^{0} - \Delta t \beta^{M} \boldsymbol{G}(\boldsymbol{u}^{0}) \\ \ldots \\ \boldsymbol{u}^{1} - \boldsymbol{u}^{0} - \Delta t \beta^{1} \boldsymbol{G}(\boldsymbol{u}^{0}) \end{cases}$$

- First order accurate
- · Explicit or easy to solve

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{u}^{0,(p)} := \boldsymbol{u}(t_n), \quad p = 0, \dots, P, \\ & \boldsymbol{u}^{m,(0)} := \boldsymbol{u}(t_n), \quad m = 1, \dots, M \\ & \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}_{\Delta}^{2}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P. \end{split}$$

DeC Theorem

- \mathcal{L}^1_{Δ} coercive
- $\mathcal{L}^1_\Delta \mathcal{L}^2_\Delta$ Lipschitz

- $\mathcal{L}^1(\underline{\mathbf{u}}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\boldsymbol{u}}) = 0$, high order M+1.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{u}^{0,(\rho)} := \boldsymbol{u}(t_n), \quad \rho = 0, \dots, P, \\ & \boldsymbol{u}^{m,(0)} := \boldsymbol{u}(t_n), \quad m = 1, \dots, M \\ & \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(\rho)}) = \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(\rho-1)}) - \mathcal{L}_{\Delta}^{2}(\underline{\boldsymbol{u}}^{(\rho-1)}) \text{ with } \rho = 1, \dots, P. \end{split}$$

DeC Theorem

- \mathcal{L}^1_{Δ} coercive
- $\mathcal{L}^1_\Delta \mathcal{L}^2_\Delta$ Lipschitz

- $\mathcal{L}^1(\underline{\mathbf{u}}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\boldsymbol{u}}) = 0$, high order M+1.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{u}^{0,(p)} := \boldsymbol{u}(t_n), \quad p = 0, \dots, P, \\ & \boldsymbol{u}^{m,(0)} := \boldsymbol{u}(t_n), \quad m = 1, \dots, M \\ & \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}_{\Delta}^{2}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P. \end{split}$$

DeC Theorem

- \mathcal{L}^1_{Δ} coercive
- $\mathcal{L}^1_\Delta \mathcal{L}^2_\Delta$ Lipschitz

- $\mathcal{L}^1(\underline{\mathbf{u}}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\boldsymbol{u}}) = 0$, high order M+1.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{u}^{0,(p)} := \boldsymbol{u}(t_n), \quad p = 0, \dots, P, \\ & \boldsymbol{u}^{m,(0)} := \boldsymbol{u}(t_n), \quad m = 1, \dots, M \\ & \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}_{\Delta}^{2}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P. \end{split}$$

DeC Theorem

- \mathcal{L}^1_{Δ} coercive
- $\mathcal{L}^1_{\Delta} \mathcal{L}^2_{\Delta}$ Lipschitz

- $\mathcal{L}^1(\underline{\mathbf{u}}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\boldsymbol{u}}) = 0$, high order M+1.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{u}^{0,(p)} := \boldsymbol{u}(t_n), \quad p = 0, \dots, P, \\ & \boldsymbol{u}^{m,(0)} := \boldsymbol{u}(t_n), \quad m = 1, \dots, M \\ & \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}_{\Delta}^{1}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}_{\Delta}^{2}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P. \end{split}$$

DeC Theorem

- \mathcal{L}^1_{Δ} coercive
- $\mathcal{L}^1_\Delta \mathcal{L}^2_\Delta$ Lipschitz

- $\mathcal{L}^1(\underline{\boldsymbol{u}}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\boldsymbol{u}}) = 0$, high order M+1.

$$\mathcal{L}^1_{\Delta}(\underline{m{u}}^{(p)}) = \mathcal{L}^1_{\Delta}(\underline{m{u}}^{(p-1)}) - \mathcal{L}^2_{\Delta}(\underline{m{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$

$$m{u}^{m,(p)} = m{u}^0 + \sum_{r=0}^M \theta_r^m m{G}(t^r, m{u}^{r,(p-1)}), \qquad \forall m = 1, \dots, M, \ p = 1, \dots, P.$$

$$\mathcal{L}^1_{\Delta}(\underline{oldsymbol{u}}^{(
ho)}) = \mathcal{L}^1_{\Delta}(\underline{oldsymbol{u}}^{(
ho-1)}) - \mathcal{L}^2_{\Delta}(\underline{oldsymbol{u}}^{(
ho-1)}) ext{ with }
ho = 1, \dots, P.$$
 $oldsymbol{u}^{m,(
ho)} = oldsymbol{u}^0 + \sum_{r=0}^M heta_r^m oldsymbol{G}(oldsymbol{t}^r, oldsymbol{u}^{r,(
ho-1)}), \qquad orall m = 1, \dots, M, \
ho = 1, \dots, P$

$$\mathcal{L}^1_{\Delta}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}^1_{\Delta}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}^2_{\Delta}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$

$$\boldsymbol{u}^{m,(p)} = \boldsymbol{u}^0 + \sum_{r=0}^M \theta_r^m \boldsymbol{G}(t^r, \boldsymbol{u}^{r,(p-1)}), \qquad \forall m = 1, \dots, M, \ p = 1, \dots, P.$$

$$\mathcal{L}^1_{\Delta}(\underline{\boldsymbol{u}}^{(p)}) = \mathcal{L}^1_{\Delta}(\underline{\boldsymbol{u}}^{(p-1)}) - \mathcal{L}^2_{\Delta}(\underline{\boldsymbol{u}}^{(p-1)}) \text{ with } p = 1, \dots, P.$$

$$\boldsymbol{u}^{m,(p)} = \boldsymbol{u}^0 + \sum_{r=0}^M \theta_r^m \boldsymbol{G}(\boldsymbol{t}^r, \boldsymbol{u}^{r,(p-1)}), \qquad \forall m = 1, \dots, M, \ p = 1, \dots, P.$$

С	u ⁰	<u>u</u> ⁽¹⁾	<u>u</u> ⁽²⁾	<u>u</u> (3)		$\underline{\boldsymbol{u}}^{(M-1)}$	<u>u</u> ^(M)	А
0	0							u ⁰
$\beta_{1:}$	$\beta_{1:}$	0						<u>u</u> ⁽¹⁾
$\underline{\beta}_{1:}^{1:}$	$\Theta_{1:,0}$	$\Theta_{1:,1:}^{-}$	<u>O</u>					<u>u</u> ⁽²⁾
$\underline{\beta}_{1:}$	$\Theta_{1:,0}$	<u>0</u>	$\Theta_{1:,1:}^-$	<u>0</u>				<u>u</u> (3)
	:	:		٠.	·			:
	:	:			٠	٠		:
$\beta_{1:}$	Θ _{1:,0}	<u>0</u>			<u>0</u>	$\Theta_{1:,1:}$	<u>0</u>	<u>u</u> ^(M)
b	$\Theta_{M,0}$	<u>0</u>				<u>0</u>	$\Theta_{M,1:}$	$\underline{\boldsymbol{u}}^{M,(M+1)}$

Costs

Large costs!

Large costs!

• DeC
$$S = M \cdot (P-1) + 1$$

• DeC equi $S = (P-1)^2 + 1$
• DeC GLB $S = \left\lceil \frac{P}{2} \right\rceil (P-1) + 1$

-qa.spacca						
P	М	DeC				
2	1	2				
3	2	5				
4	3	10				
5	4	17				
6	5	26				
7	6	37				
8	7	50				

Equispaced

Gaı	Gauss-Lobatto						
Р	M	DeC					
2	1	2					
3	2	5					
4	2	7					
5	3	13					
6	3	16					
7	4	25					
8	4	29					
9	5	41					
10	5	46					

Large costs!

• DeC
$$S = M \cdot (P-1) + 1$$

• DeC equi $S = (P-1)^2 + 1$
• DeC GLB $S = \left\lceil \frac{P}{2} \right\rceil (P-1) + 1$

Equispaced						
P	М	DeC				
2	1	2				
3	2	5				
4	3	10				
5	4 5	17				
6		26				
7	6	37				
8	7	50				
9	8	65				
10	9	82				

Fauisnaced

Gauss–Lobatto							
M	DeC						
1	2						
2	5						
2	7						
3	13						
3	16						
4	25						
4	29						
5	41						
5	46						
	M 1 2 2 3 3 4 4						

How can we save computational time?

Table of contents

1 Introduction to DeC

2 An efficient Deferred Correction

Application to PDEs

4 Conclusions

Idea for reduction of stages

Idea for reduction of stages

Idea for reduction of stages

$\underline{\boldsymbol{u}}^{(\rho)} = \underline{\boldsymbol{u}}^0 + \Delta t \Theta \boldsymbol{G}(\underline{\boldsymbol{u}}^{(\rho-1)})$

Efficient DeC into RK framework

$$DeC S = M \cdot (P-1) + 1$$

С	u ⁰	$\underline{\textit{\textbf{u}}}^{(1)}$	<u>u</u> ⁽²⁾	<u>u</u> (3)		$\underline{\boldsymbol{u}}^{(M-1)}$	$\underline{\boldsymbol{u}}^{(M)}$	А	dim
0	0							u ⁰	1
β_1	$\underline{\beta}_{1:}$	<u>0</u>						<u>u</u> ⁽¹⁾	M
β_1	$\Theta_{1:,0}$	$\Theta_{1:,1:}^-$	<u>0</u>					<u>u</u> ⁽²⁾	M
$\frac{\underline{\beta}_{1:}}{\underline{\beta}_{1:}}$ $\underline{\underline{\beta}_{1:}}$	$\Theta_{1:,0}$	<u>0</u>	$\Theta_{1:,1:}^-$	<u>0</u>				<u>u</u> (3)	M
	:	:		٠	٠.			:	М
	:	:			٠	٠		:	М
$\frac{\beta}{2}$ 1:	Θ _{1:,0}	<u>0</u>			<u>0</u>	$\Theta_{1:,1:}$	<u>0</u>	<u><u>u</u>^(M)</u>	М
b	$\Theta_{M,0}$	<u>0</u>				<u>0</u>	$\Theta_{M,1:}$	$\underline{\boldsymbol{u}}^{M,(M+1)}$	

Efficient DeC into RK framework

DeCu
$$S = M \cdot (P-1) + 1 - \frac{(M-1)(M-2)}{2}$$

С	\boldsymbol{u}^0	$\underline{u}^{*(1)}$	<u>u</u> *(2)	$\underline{\boldsymbol{u}}^{*(3)}$		$\underline{\boldsymbol{u}}^{*(M-2)}$	$\underline{\boldsymbol{u}}^{*(M-1)}$	$\underline{\boldsymbol{u}}^{(M)}$	А	dim
0	0								u ⁰	1
$\beta_1^{(2)}$	$\beta_1^{(2)}$	<u>0</u>							$\underline{\boldsymbol{u}}^{*(1)}$	2
$\beta_{1}^{(3)}$	$W_{1:,0}^{(2)}$	$W_{1:,1:}^{\overline{(2)}}$	<u>o</u>						<u>u</u> *(1) <u>u</u> *(2)	3
$ \frac{\beta_{1:}^{(2)}}{\beta_{1:}^{(3)}} \\ \frac{\beta_{1:}^{(4)}}{\beta_{1:}^{(4)}} $	$W_{1:,0}^{(2)}$ $W_{1:,0}^{(3)}$	<u>o</u>	$W_{1:,1:}^{\underline{\underline{\underline{S}}}}$	<u>0</u>					<u>u</u> *(3)	4
	:	:		٠	٠				:	:
										:
	:	:				•			:	:
$\frac{\beta_{1:}^{(M)}}{\beta^{(M)}}$	$W_{1:,0}^{(M-1)}$	<u>o</u>			<u>o</u>	$W_{1:,1:}^{(M-1)}$	<u>0</u>	<u>0</u>	$\underline{\boldsymbol{u}}^{*(M-1)}$	M
$\beta_{1:}^{(M)}$	$W_{1:,0}^{(M)}$	<u>0</u>	•••	• • • •		<u>0</u>	$W_{1:,1:}^{\stackrel{\circ}{\overline{(}}M)}$	<u>0</u>	<u>u</u> ^(M)	M
b	$W_{M,0}^{(M+1)}$	<u>0</u>					<u>0</u>	$W_{M,1:}^{(M+1)}$	$\underline{u}^{M,(M+1)}$	

$$W^{(p)} := \begin{cases} H^{(p)} \Theta^{(p)} \in \mathbb{R}^{(p+2) \times (p+1)}, & \text{if } p = 2, \dots, M-1, \\ \Theta^{(M)} \in \mathbb{R}^{(M+1) \times (M+1)}, & \text{if } p \ge M. \end{cases}$$

Efficient DeC into RK framework

DeCdu
$$S = M \cdot (P - 1) + 1 - \frac{M(M - 1)}{2}$$

С	\boldsymbol{u}^0	$\underline{u}^{(1)}$	<u>u</u> ⁽²⁾	<u>u</u> (3)		$\underline{u}^{(M-2)}$	$\underline{\textit{u}}^{(M-1)}$	$\underline{\boldsymbol{u}}^{(M)}$	А	dim
0	0								u ⁰	1
$\beta_1^{(1)}$	$\beta_1^{(1)}$	<u>O</u>							<u>u</u> ⁽¹⁾	1
$\beta^{(2)}$	$Z_{1:0}^{(2)}$	$Z_{1:,1:}^{\overline{\overline{(2)}}}$	<u>0</u>						<u>u</u> ⁽²⁾	2
$ \frac{\beta_{1:}^{1:}}{\beta_{1:}^{(3)}} $ $ \frac{\beta_{1:}^{(3)}}{\beta_{1:}^{(3)}} $	$Z_{1:,0}^{(2)} \ Z_{1:,0}^{(3)}$	<u>0</u>	$Z_{1:,1:}^{\underline{\underline{0}}}$	<u>0</u>					$ \underline{\underline{\boldsymbol{u}}}^{(1)} \\ \underline{\underline{\boldsymbol{u}}}^{(2)} \\ \underline{\underline{\boldsymbol{u}}}^{(3)} $	3
	:	÷		٠.	٠.				:	:
	:	:			٠.	٠			:	:
$\left \begin{array}{c} \underline{\beta}_{1:}^{(M-1)} \\ \underline{\beta}_{M}^{(M)} \end{array} \right $	$Z_{1:,0}^{(M-1)}$	<u>0</u>			<u>0</u>	$Z_{1:,1:}^{(M-1)}$	<u>0</u>	<u>0</u>	$\underline{\boldsymbol{u}}^{(M-1)}$	M-1
$\beta_{1:}^{(M)}$	$Z_{1:,0}^{(M)}$	<u>0</u>				<u>o</u>	$Z_{1:,1:}^{\overline{(M)}}$	<u></u>	<u>u</u> (M)	М
b	$Z_{M,0}^{(M+1)}$	<u>0</u>					<u>0</u>	$Z_{M,1:}^{(M+1)}$	$\underline{\boldsymbol{u}}^{M,(M+1)}$	

$$Z^{(p)} := \begin{cases} \Theta^{(p)} H^{(p-1)} \in \mathbb{R}^{(p+1) \times p}, & \text{if } p = 1, \dots, M, \\ \Theta^{(M)} \in \mathbb{R}^{(M+1) \times (M+1)}, & \text{if } p > M. \end{cases}$$

14/24

Equispaced

Р	М	DeC	DeCu	DeCdu
2	1	2	2	2
3	2 3	5	5	4
4	3	10	9	7
5	4	17	14	11
6	5	26	20	16
7	6	37	27	22
8	7	50	35	29
9	8	65	44	37
10	9	82	54	46
11	10	101	65	56
12	11	122	77	67
13	12	145	90	79

Gauss-Lobatto

Р	М	DeC	DeCu	DeCdu
2	1	2	2	2
3	2	5	5	4
4	2	7	7	6
5	3	13	12	10
6	3	16	15	13
7	4	25	22	19
8	4	29	26	23
9	5	41	35	31
10	5	46	40	36
11	6	61	51	46
12	6	67	57	52
13	7	85	70	64

Stability Properties

DeC-DeCu-DeCdu

The stability function of DeC, DeCu, DeCdu of order P for any nodes distribution is

$$R(z) = 1 + z + \frac{z^2}{2!} + \cdots + \frac{z^p}{P!}.$$

DeC. DeCu. DeCdu

Adaptive DeC

How can we exploit the increasing order of accuracy?

How can we exploit the increasing order of accuracy?

Adaptive order DeC

- Set tolerance ε
- Check at each iteration if $\left\| \underline{\pmb{u}}^{(p)} \underline{\pmb{u}}^{(p-1)} \right\| < arepsilon$
- Stop at a certain order when tolerance is reached

How can we exploit the increasing order of accuracy?

Adaptive order DeC

- Set tolerance ε
- Check at each iteration if $\left\| \underline{\pmb{u}}^{(p)} \underline{\pmb{u}}^{(p-1)} \right\| < arepsilon$
- Stop at a certain order when tolerance is reached
- Saving on useless iterations
- Reach the needed order for tolerance
- Sub-optimal (waste of few stages)

$$my'' + ry' + ky = F\cos(\Omega t + \varphi), \qquad y(0) = A, \qquad y'(0) = B.$$

Equispaced

Gauss-Lobatto

DeC -. DeCu --, DeCdu - · -, adaptive in grey/black

$$my'' + ry' + ky = F\cos(\Omega t + \varphi), \qquad y(0) = A, \qquad y'(0) = B.$$

$$y(0)=A, \qquad y'(0)=B$$

Equispaced

Gauss-Lobatto

DeC -. DeCu --, DeCdu - · -, adaptive in grey/black

$$my'' + ry' + ky = F\cos(\Omega t + \varphi), \qquad y(0) = A, \qquad y'(0) = B.$$
Equispaced

Gauss-Lobatto

14

Decu-equi

Debecdu-equi

$$my'' + ry' + ky = F \cos(\Omega t + \varphi), \qquad y(0) = A, \qquad y'(0) = B.$$
Equispaced
$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Table of contents

Introduction to DeC

2 An efficient Deferred Correction

3 Application to PDEs

4 Conclusions

Residual Distributions and DeC

Residual Distribution (RD)

- Originally somehow Finite Volume
- Finite Element
- Runge Kutta + Mass matrix correction (Rémi + Mario)
- DeC + RD (Rémi 2017)

\mathcal{L}^2_Δ

$$\mathcal{L}^{2,m}_{\Delta,i}(\boldsymbol{u}) := \int_{\Omega} \varphi_i \varphi_j dx (u_j^m - u_j^0) + \Delta t \sum_{r=0}^{M} \theta_r^m \sum_{K} \Phi_K^i(u^r)$$

RD setting

- $\partial_t u + \nabla \cdot F(u) = 0$
- $V_h = \{u \in \mathcal{C}(\Omega) : u|_K \in \mathbb{P}_M\}$
- $\Phi_K(u) = \int_K \nabla \cdot F(u) dx$
- $\Phi_K^i(u) = \int_K \varphi_i(x) \nabla \cdot F(u) dx + \operatorname{ST}_i(u)$
- NOT method of lines

\mathcal{L}^1_Δ

$$\mathcal{L}_{\Delta,i}^{1,m}(oldsymbol{u}) := \int_{\Omega} arphi_i extsf{d} \mathsf{x} ig(u_i^{oldsymbol{m}} - u_i^{oldsymbol{0}} ig) + \Delta t eta^m \sum_K \Phi_K^i(oldsymbol{u}^0)$$

DeCu for RD

DeC for RD

$$\underbrace{\int_{K} \varphi_{i} dx (u_{i}^{m,(p)} - u_{i}^{m,(p-1)})}_{\mathcal{L}_{\Delta,i}^{1,m}(u^{(p)}) - \mathcal{L}_{\Delta,i}^{1,m}(u^{(p-1)})} = \underbrace{\int_{K} \varphi_{i} \varphi_{j} dx (u_{j}^{m,(p)} - u_{j}^{0}) + \Delta t \sum_{r=0}^{M} \theta_{r}^{m} \sum_{K} \Phi_{K}^{i} (u^{r,(p-1)})}_{\mathcal{L}_{\Delta,i}^{2,m}(u^{(p-1)})}$$

DeCu for RD

DeC for RD

$$\underbrace{\int_{K} \varphi_{i} dx (u_{i}^{m,(p)} - u_{i}^{m,(p-1)})}_{\mathcal{L}_{\Delta,i}^{1,m}(u^{(p)}) - \mathcal{L}_{\Delta,i}^{1,m}(u^{(p-1)})} = \underbrace{\int_{K} \varphi_{i} \varphi_{j} dx (u_{j}^{m,(p)} - u_{j}^{0}) + \Delta t \sum_{r=0}^{M} \theta_{r}^{m} \sum_{K} \Phi_{K}^{i} (u^{r,(p-1)})}_{\mathcal{L}_{\Delta,i}^{2,m}(u^{(p-1)})}$$

DeCu for RD

$$\underbrace{\int_{K} \varphi_{i} dx (u_{i}^{m,(p)} - u_{i}^{*,m,(p-1)})}_{\mathcal{L}_{\Delta,i}^{1,m}(u^{(p)}) - \mathcal{L}_{\Delta,i}^{1,m}(u^{*,(p-1)})} = \underbrace{\int_{K} \varphi_{i} \varphi_{j} dx (u_{j}^{*,m,(p-1)} - u_{j}^{0}) + \Delta t \sum_{r=0}^{M} \theta_{r}^{m} \sum_{K} \Phi_{K}^{i} (u^{*,r,(p-1)})}_{\mathcal{L}_{\Delta,i}^{2,m}(u^{*,(p-1)})}$$

DeCu for RD

DeC for RD

$$\underbrace{\int_{K} \varphi_{i} dx (u_{i}^{m,(p)} - u_{i}^{m,(p-1)})}_{\mathcal{L}_{\Delta,i}^{1,m}(u^{(p)}) - \mathcal{L}_{\Delta,i}^{1,m}(u^{(p-1)})} = \underbrace{\int_{K} \varphi_{i} \varphi_{j} dx (u_{j}^{m,(p)} - u_{j}^{0}) + \Delta t \sum_{r=0}^{M} \theta_{r}^{m} \sum_{K} \Phi_{K}^{i} (u^{r,(p-1)})}_{\mathcal{L}_{\Delta,i}^{2,m}(u^{(p-1)})}$$

DeCu for RD

$$\underbrace{\int_{K} \varphi_{i} dx (u_{i}^{m,(p)} - u_{i}^{*,m,(p-1)})}_{\mathcal{L}_{\Delta,i}^{1,m}(u^{(p)}) - \mathcal{L}_{\Delta,i}^{1,m}(u^{*,(p-1)})} = \underbrace{\int_{K} \varphi_{i} \varphi_{j} dx (u_{j}^{*,m,(p-1)} - u_{j}^{0}) + \Delta t \sum_{r=0}^{M} \theta_{r}^{m} \sum_{K} \Phi_{K}^{i} (u^{*,r,(p-1)})}_{\mathcal{L}_{\Delta,i}^{2,m}(u^{*,(p-1)})}$$

Computational cost

- Depends on update evaluation, less on flux evaluations
- DeC $C \approx (P-1)M+1$
- DeCu $C \approx (P-1)M + 1 \frac{M(M-1)}{2}$

Test PDE: linear advection equation

$$\begin{cases} \partial_t u + \partial_x u = 0 \\ u(0, x) = \cos(2\pi x) \end{cases}$$

Convergence

Computational Time

Test PDE: linear advection equation

$$\begin{cases} \partial_t u + \partial_x u = 0 \\ u(0, x) = \cos(2\pi x) \end{cases}$$

Speed up

Table of contents

1 Introduction to DeC

2 An efficient Deferred Correction

Application to PDEs

4 Conclusions

Summary

- DeC
- Efficient DeC
- Increasing order of reconstruction with iterations
- Great Speed up
- Not too big implementation in a DeC code (Remi's birthday present)
- Adaptive with tolerance
- DeC and RD for PDEs

Summary

- DeC
- Efficient DeC
- Increasing order of reconstruction with iterations
- Great Speed up
- Not too big implementation in a DeC code (Remi's birthday present)
- Adaptive with tolerance
- DeC and RD for PDEs

Perspectives

- Increasing spatial discretizations order
- IMEX
- ADER

Summary

- DeC
- Efficient DeC
- Increasing order of reconstruction with iterations
- Great Speed up
- Not too big implementation in a DeC code (Remi's birthday present)
- Adaptive with tolerance
- DeC and RD for PDEs

Perspectives

- Increasing spatial discretizations order
- IMFX
- ADFR

THANK YOU!

Preprint

L. Micalizzi, D. Torlo. A new efficient explicit Deferred Correction framework: analysis and applications to hyperbolic PDEs and adaptivity. arXiv:2210.02976.

Test PDE: shallow water equations

$$\begin{cases} \partial_t \begin{pmatrix} h \\ hu \end{pmatrix} + \partial_x \begin{pmatrix} hu \\ hu^2 + \frac{g}{2}h^2 \end{pmatrix} = 0 & \text{bDeC } - \\ IC = \text{moving vortex} & \text{bDeCu } - - \end{cases}$$

Convergence

Which sub-time-interval?

Which sub-time-interval? Small DeC (sDeC) t^0 $\mathcal{L}^2_{\Lambda}(\boldsymbol{u}^0,\ldots,\boldsymbol{u}^M) = \mathcal{L}^2_{\Lambda}(\boldsymbol{u}) :=$ $\begin{cases} \mathbf{u}^{M} - \mathbf{u}^{M-1} - \int_{t^{M-1}}^{t^{M}} \mathbf{G}(\mathbf{u}(s)) ds \\ \vdots \\ \mathbf{u}^{m} - \mathbf{u}^{m-1} - \int_{t^{m-1}}^{t^{m}} \mathbf{G}(\mathbf{u}(s)) ds \\ \vdots \\ \mathbf{u}^{1} - \mathbf{u}^{0} - \int_{t^{0}}^{t^{1}} \mathbf{G}(\mathbf{u}(s)) ds \end{cases}$ t^m Serial subtimesteps t^{M-1}

Which sub-time-interval? Small DeC (sDeC) t^0 $\mathcal{L}^2_{\Lambda}(\boldsymbol{u}^0,\ldots,\boldsymbol{u}^M) = \mathcal{L}^2_{\Lambda}(\boldsymbol{u}) :=$ $\begin{cases} \mathbf{u}^{M} - \mathbf{u}^{M-1} - \int_{t^{M-1}}^{t^{M}} \mathbf{G}(\mathbf{u}(s)) ds \\ \vdots \\ \mathbf{u}^{m} - \mathbf{u}^{m-1} - \int_{t^{m-1}}^{t^{m}} \mathbf{G}(\mathbf{u}(s)) ds \\ \vdots \\ \mathbf{u}^{1} - \mathbf{u}^{0} - \int_{t^{0}}^{t^{1}} \mathbf{G}(\mathbf{u}(s)) ds \end{cases}$ t^m Serial subtimesteps t^M

Many DeCs

