

Rozvoj lidských zdrojů TUL pro zvyšování relevance, kvality a přístupu ke vzdělání v podmínkách Průmyslu 4.0

CZ.02.2.69/0.0/0.0/16_015/0002329

Úvod do zpracování obrazů

Mechatronika

Prezentace přednášky č. 10 b

Parametrizace a rozpoznávání obrazu

doc. Ing. Josef Chaloupka, Ph.D.

Viola-Jonesův detektor (VJD) obličeje využívá příznaky podobné
 Haarovým bázovým funkcím a klasifikátor založený na AdaBoost algoritmu

příznak - suma hodnot obrazových bodů nacházející se pod bílou oblastí 2D funkce mínus suma hodnot obrazových bodů pod černou oblastí funkce, zjednodušení: **Integrální obraz**

- suma byla spočítána ze čtyř hodnot na základě využití dvou operací sčítání a jedné operace odčítání: (fi(x1, y1) + fi(x4, y4)) (fi(x3, y3) + fi(x2, y2))
- Pro příznak typu A (obr. 2.8) by poté bylo potřeba použít 6 hodnot
 z integrálního obrazu, pro příznak B by to bylo 8 a 9 pro příznak typu C

Algoritmus AdaBoost

Příznakový prostor

Krok:

Příznak 🔿

(1)

změna váhy

\text{ klasifikátor

(3)

Využití dynamiky chování rozpoznaných objektů

horizontální rozšíření rtů *h*:

horizontální rozšíření rtů
$$h$$
: oblast rtů o :
$$h = \max_{y=0..N-1} \sum_{x=0}^{M-1} f(x,y) \qquad o = \sum_{y=0}^{N-1} \sum_{x=0}^{M-1} f(x,y)$$

Vertikální rozšíření rtů v:

Vertikaini rozsireni
$$v = \max_{x=0..M-1} \sum_{y=0}^{N-1} f(x,y)$$

oblast rtů o:

$$o = \sum_{y=0}^{N-1} \sum_{x=0}^{M-1} f(x, y)$$

zaokrouhlení rtů r.

$$r = \frac{v}{h}$$

Volba, výběr a redukce příznaků

2D Diskrétní kosinová transformace:

$$F(u,v) = \frac{2c(u)c(v)}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f(m,n) \cos\left(\frac{2m+1}{2N}u\pi\right) \cos\left(\frac{2n+1}{2N}v\pi\right) \quad c(k) = \begin{cases} \frac{1}{\sqrt{2}} & pro \ k = 0 \\ \frac{1}{\sqrt{2}} & pro \ k > 0 \end{cases}$$

N nejvyšších hodnot energie: $E(u,v) = F(u,v)^2$

Normalizace příznakového vektoru:

Výpočet dynamických příznaků:

$$x'[n] = x[n] - x[n-1]$$
 <<< rychlost
 $x''[n] = x'[n] - x'[n-1]$ <<< zrychlení

aby se dalo rozpoznávat, musí dojít k učení – není rozpoznávání bez učení

Terminy:

umělá inteligence (artificial intelligence, AI)

- stroj disponující Al vykazuje v dané situaci takové chování, že jej nelze odlišit od člověka

Rozpoznávání obrazů (pattern recognition) PR

teorie rozpoznávání obecných (abstraktních) obrazů

- obrazem může být 1- i více-rozměrných signál, statický či měnící se v čase

Základní úloha:

- zařadit OBJEKT na základě jeho OBRAZU do jedné ze TŘÍD

TŘÍDA (class)– množina objektů s podobnými vlastnostmi

Příklad: objekty určené k sezení

- a) židle, křesla, stoličky, sedla do auta,
- b) sedačky s nohami a bez nohou

PODOBNOST (similarity) – vlastnost měřitelná na obrazu objektu umožňující vyjádřit vztah ke každé ze tříd

OBRAZ (pattern) – reprezentace objektu vyjádřená pomocí kvantitativního či kvalitativního popisu, použitelná pro rozpoznávání

Jak volit obraz objektů?

- 1. tak aby byla chyba klasifikace co nejmenší (chyba zařazení do špatné třídy),
- 2. aby byl obraz snadno (levně) získatelný,
- 3. aby bylo vlastní porovnání obrazů co nejefektivnější

Jsou-li již objekty popsány svými obrazy, jak provádět rozpoznávání?

UČENÍ (training) – systému je předkládán jistý soubor obrazů objektů, u nichž je a priori známo jejich zařazení do daných tříd – tzv. *trénovací množina*Příklad: učení abecedy

A, a, A, A, A, - třída A

GENERALIZACE – schopnost zobecňovat z naučeného Učení může být sekvenční s průběžným testováním a zpřesňováním A vs. B - rozdíl ve spodní hraně

TESTOVÁNÍ (testing) – měří se chyba klasifikace na skupině objektů se známým zařazením – *testovací množina*

Možnosti klasifikace:

- 1. zařadit vždy do jedné z tříd
- 2. zařadit do jedné ze tříd s možností odmítnutí zařazení (rejection)
- 3. možnost zařadit objekt do více tříd

Chyba klasifikace:

- a) objekt je zařazen do nesprávné třídy classification error
- b) objekt je nesprávně odmítnut rejection error

Cena chyby (error cost):

Příklad: ovládání stroje

- a) cena špatně vykonaného pohybu zničení stroje
- b) cena nevykonaného pohybu zdržení
- c) rozpoznávání falešných bankovek

TRÉNOVÁNÍ, TESTOVÁNÍ, VYUŽÍVÁNÍ (s možností adaptace)

Další aspekty rozpoznávání

neexistují dva identické objekty – rozpoznávání tedy pracuje s daty, jejichž popis má náhodný charakter, obrazy jsou popisovány pomocí příznaků

- Obraz reprezentován příznakovým vektorem $x = [x_1, x_2, ..., x_N]$
- Obrazový prostor: euklid. prostor dimenze N (množina všech možných obrazů)
- Př.: obraz popsán dvěma příznaky:

Klasifikátor - systém s N vstupy a jedním výstupem

Úloha klasifikátoru:

Dány třídy T_1 , T_2 , T_R , obraz popsaný přízn. vektorem \mathbf{x} - klasifikátor na základě **pravidla** $t = d(\mathbf{x})$ rozhodne o přiřazení \mathbf{x} do třídy T_r tím, že na výstupu vyšle index t_r .

Rozhodovací pravidlo - nejčastější formy:

- a) metoda diskriminačních funkcí
- b) metoda minimální vzdálenosti
- c) metoda maximální pravděpodobnosti

a) Metoda diskriminačních funkcí

vychází z předpokladu, že obrazový prostor lze rozdělit na disjunktní části pomocí

rozdělujících nadploch:

v E2 rozdělující křivky

v E3 rozdělující plochy

Rozdělující nadplochy lze určit pomocí diskriminačních funkcí $g_1, \, \dots \, g_R,$

přičemž g_r je vybrána tak, aby pro všechna platilo $g_r(x) > g_s(x)$ $s = 1,...R, s \neq r$

Rozdělující plocha mezi třídami T_r a T_s je dána rovnicí: $g_r(x) - g_s(x) = 0$

b) Metoda minimální vzdálenosti

Princip: každá třída je reprezentována svými představiteli (vzorky trénovací množiny)

Rozpoznávání:

Pravidlo nejbližšího souseda - NN (Nearest Neighbour) neznámý vzorek se zařadí do té třídy, k jejímuž představiteli má <u>nejmenší vzdálenost</u>

Pravidlo k nejbližších sousedů - kNN (k Nearest Neighbours) neznámý vzorek se zařadí do té třídy, jejíž představitelé jsou nejvíce zastoupeny v uspořádané k-tici nejbližších sousedů

Vzdálenost: nejčastěji Euklidovská $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{P} (x_i - y_i)^2}$

Dynamické borcení času: DTW - Dynamic time warping

b) Metoda minimální vzdálenosti

Reprezentace pomocí etalonů:

Každá třída je reprezentována **etalonem** - vzorkem třídy, který ji nejlépe reprezentuje ve smyslu minimální vzdálenosti.

Etalon je buď skutečným prvkem třídy, nebo může vzniknout výpočtem, např. průměrováním, z příznakových vektorů třídy.

Při klasifikaci se měří vzdálenosti $|\mathbf{x} - \mathbf{e_r}|$ a vybere se $\mathsf{T_r}$, aby $|\mathbf{x} - \mathbf{e_r}| = \min_{s=1,2..R} |\mathbf{x} - \mathbf{e_s}|$

c) Metoda maximální pravděpodobnosti

(též nazývaná metoda minimální chyby)

Princip: každá třída je reprezentována

a) apriorní pravděpodobností třídy pravděpodobností výskytu prvků této třídy $P(T_r)$

musí platit
$$\sum_{r=1}^{R} P(T_r) = 1$$

b) podmíněnou hustotou pravděpodobností $p(\mathbf{x} \mid T_r)$ udává rozložení pravděpodobnosti vektoru příznaků x pro třídu T_r

<u>Trénování:</u> pro každou třídu se na trénovací množině určí (odhadnou) výše uvedené pravděpodobnosti

Rozpoznávání: aplikace Bayesova pravidla $P(T_r \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid T_r)P(T_r)}{p(\mathbf{x})}$ $P(T_r \mid \mathbf{x})_{p}$... aposteriorní pravděpodobnost, že **x** patří do třídy T_r

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x} \mid T_i) P(T_i)$$
 absolutní pravd. hustota rozložení vektoru příznaků (nezávisle na třídě)

c) Metoda maximální pravděpodobnosti – příklad

V útulku se nachází 70% psů a 30% koček. 20% koček a 10% psů je černých. Z dálky kamerou snímáme černé zvíře – jaká je pravděpodobnost, že to je pes?

apriorní pravděpodobnost:

třída - psy P(T₁) = 70%, kočky P(T₂) = 30%
$$\sum_{r=1}^{R} P(T_r) = 1$$

podmíněnou hustotou pravděpodobností

náhodně vybraný pes je černý p($\mathbf{x} \mid T_1$) = 10% náhodně vybraná kočka je černá p($\mathbf{x} \mid T_2$) = 20%

náhodně vybrané zvíře je černé $p(\mathbf{x}) = 0.7 \times 0.1 + 0.3 \times 0.2 = 0.13$

pozorované černé zvíře je pes p $(T_1 | \mathbf{x}) = (0.1 \times 0.7) / 0.13 = 54\%$

pozorované černé zvíře je kočka p $(T_2 \mid \mathbf{x}) = (0.2 \times 0.3) / 0.13 = 46\%$

Rozpoznávání obrazů - PCA

Rozpoznávání obrazů - PCA

Př. 9 známých obrázků o velikosti 64 x 64 pixelů, 1 neznámý, postup: Trénovací část

- 1) Obrázky převedeny na šedotónové, z obrázku vytvořen vektor o délce 4096 seřazení sloupců (nebo řádků) matice obrazu za sebe
- 2) Ze známých obrázků (vektorů) vytvořena matice Wp velikost 4096 x 9
- 3) Z řádků matice Wp spočítán průměrný vektor wp délka 4096
- 4) Vytvoření matice W od sloupců Wp odečten wp
- 5) Vytvoření kovarianční matice C = W^T* W velikost 9 x 9
- 6) Z matice C spočítány vlastní čísla a jím náležející vlastní vektory
- 7) Z vlastních vektorů vytvořena matice Ep vlastní vektory seřazeny podle velikosti (od největšího k nejmenšímu) vlastního čísla velikost 9 x 9
- 8) Vytvoření matice (vlastní prostor EigenSpace) E = W * Ep velikost 4096 x 9
- 9) Projekce známých vektorů do vlastního prostoru PI = E^T * W

Testovací část

- 1) Převedení neznámého obrázku do stupně šedi a vytvoření vektoru wpu
- 2) Vektor wu = wpu wp
- 3) Projekce neznámého vektoru PT = E^{T} * wu
- 4) Porovnání známých příznakových vektorů PI(i) a neznámého PT např. dle minimální vzdálenosti

Rozpoznávání obrazů - MACE

http://www.ite.tul.cz

Rozpoznávání obrazů - ANN

Umělé neuronové sítě – ANN Artificial Neural Network

$$y = f(\sum_{i=1}^{N} w_i x_i - T)$$

Rozpoznávání obrazů - CNN

Rozpoznávání obrazů - CNN

- Modified National Institute of Standards and Technology (MNIST) database (1994)
- 60 000 obrázků pro trénink, 10 000 pro testování

Rozpoznávání obrazů - CNN

Type \$	Classifier +	Distortion +	Preprocessing +	Error rate +
Linear classifier	Pairwise linear classifier	None	Deskewing	7.6 ^[10]
Decision stream with Extremely randomized trees	Single model (depth > 400 levels)	None	None	2.7 ^[28]
K-Nearest Neighbors	K-NN with rigid transformations	None	None	0.96 ^[29]
K-Nearest Neighbors	K-NN with non-linear deformation (P2DHMDM)	None	Shiftable edges	0.52 ^[30]
Boosted Stumps	Product of stumps on Haar features	None	Haar features	0.87 ^[31]
Non-linear classifier	40 PCA + quadratic classifier	None	None	3.3 ^[10]
Random Forest	Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC) ^[32]	None	Simple statistical pixel importance	2.8 ^[33]
Support-vector machine (SVM)	Virtual SVM, deg-9 poly, 2-pixel jittered 2002	None	Deskewing	0.56 ^[34]
Neural network	2-layer 784-800-10	None	None	1.6 ^[35]
Neural network	2-layer 784-800-10 2003	Elastic distortions	None	0.7 ^[35]
Deep neural network (DNN)	6-layer 784-2500-2000-1500-1000-500-10 2010	Elastic distortions	None	0.35 ^[36]
Convolutional neural network (CNN)	6-layer 784-40-80-500-1000-2000-10 2016	None	Expansion of the training data	0.31 ^[37]
Convolutional neural network	6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.27 ^[38]
Convolutional neural network (CNN)	13-layer 64-128(5x)-256(3x)-512-2048-256-256-10	None	None	0.25 ^[22]
Convolutional neural network	Committee of 35 CNNs, 1-20-P-40-P-150-10	Elastic distortions	Width normalizations	0.23 ^[17]
Convolutional neural network	Committee of 5 CNNs, 6-layer 784-50-100-500-1000-10-10	None	Expansion of the training data	0.21[24][25]
Random Multimodel Deep Learning (RMDL)	10 NN-10 RNN - 10 CNN	None	None	0.18 ^[27]
Convolutional neural network	Committee of 20 CNNS with Squeeze-and-Excitation Networks ^[39]	None	Data augmentation	0.17 ^[40]
Convolutional neural network	Ensemble of 3 CNNs with varying kernel sizes 2020	None	Data augmentation consisting of rotation and translation	0.09 ^[41]

https://en.wikipedia.org/wiki/MNIST_database

CNN, ImageNet - Alexnet (2012)

non-DNN modely

CNN, ImageNet

kombinace více modelů (ensemble)

CNN, ImageNet

obrázek: Canziani et al.: "An Analysis of Deep Neural Network Models for Practical Applications"

CNN, YOLO

