Name (Print)

Instructions:

- 1. The first line of your program should contain your first and last name.
- 2. You are required to type the honor code "On my honor as a student, I have neither given or received aid on this exam" and type your name at the beginning of the MSWord or PDF file of your solution.
- 3. The output of the problems should be given in a MSWord or a PDF file. The plot of Problems 2 should also be given in the same MSWord or PDF file.
- 4. Upload FOUR m-files (each problem has a main program and a function program) and ONE MSWord or a PDF file

Problem 1

Solve the following system of equations using Gauss-Elimination

$$\begin{cases} 8x_1 - 3x_2 - x_3 + 17x_4 = 67 \\ -2x_1 + 2x_2 - 4x_3 + 3x_4 = 2 \\ -x_1 - 3x_2 + 7x_3 + x_4 = 18 \\ 11x_1 - 7x_2 - 2x_3 + 2x_4 = -1 \end{cases}$$

Requirements:

- a. You will have one main program and one function program.
- b. Main program
 - a. Define the augmented matrix [C] by typing in the values of coefficients and constants
 - b. determine number of rows and columns of [C]
 - c. call your gauss elimination function program
 - d. output results. The output should be given in the following form

```
x(1) = #.###
x(2) = #.###
x(3) = #.###
x(4) = #.###
```

- c. Gauss-elimination function program
 - a. Use forward elimination to zero out the elements below the diagonal
 - After you zero out one column, output the matrix using function 'disp' in the function program. We will output 4 matrices in total. Store all the matrices in the MSWord or PDF file
 - b. Use back substitution to calculate the values of x_i

Problem 2

Given the following set of data points

t	0	0.15	0.30	0.45	0.60	0.75	0.90	1.05	1.20	1.35
X	1.48	1.26	1.01	0.85	0.89	1.10	1.35	1.54	1.64	1.62

Find the General Linear Least Squares solution to the equation below, that is, find the 'best' coefficients a_1 , a_2 , and a_3 , where $\omega_0 = 4.19$.

$$x^2 = a_1 cos(\omega_0 t) + a_2 sin(\omega_0 t) + a_3$$

(Please be noted that the left side is x^2)

Requirements:

- 1. You will have one main program and one function program.
- 2. Main Program
 - a. Define constant ω_0 , and define vector t and x. To use the General linear least squares regression, you need to define a new vector for x^2
 - b. Call function program GLLS. Pass the vectors and constant to the function.
 - c. outputs will be the vector $\{a\}$ containing a_1 , a_2 and a_3 . the output should look **very** similar to the following:

The calculated coefficients using Least Squares are:

a1 = #.###

a2 = #.##

a3 = #.##

- d. generate a plot (x vs. t) showing the raw data points and a smooth curve generated by the equation for x using 25 points for t between 0 and 1.4
- 3. Function Program
 - a. inputs will be the vectors and ω_0
 - b. create matrix [Z]
 - c. calculate vector {a}