APPLAUSE project meeting

California flats

Using the default assumptions about the solar installation

Model

Model

Limitations

- No electricity grid
- No hydrogen storage
- Free biogas, unlimited biogas

Cost assumptions

S1. Cost assumptions

Table S1: Efficiency, lifetime and FOM cost per technology (values shown corresponds to 2020).

Technology	Unit [%/a]	2025 Cost [a]	FOM ^a	Lifetime	Efficiency	Source
Solar PV (utility-scale)	€/kW	452	1.6	35		[1]
Battery storage	€/kWh	187		20		[1]
Battery inverter	€/kW	215	0.2	10	0.95	[1]
Electrolysis	\in /kW $_{el}$	550	2.0	25	0.66	[1]
Methanation	\in /kW $_{CH4}$	278	4.0	30	8.0	[2]
methanogens	\in /kW $_{CH4}$	834	4.0	30	8.0	
biogas generator	\in /kW $_{CH4}$	0			0.9	
CO2 storage	€/kWh	0				
gas storage	€/kWh	0				

Difference

- Sabatier vs methanogen
 - Assuming that methanogenesis is 3x cost of sabatier
 - Sabatier uses electricity

Methanogens Efficiencies

Sabatier eff
CO2 intensity/MW CH4
CO2 emissions/MW CH4

Sabatier Efficiencies

Sabatier eff
MW Electricity/MW CH4
MW CO2/MW CH4
CO2 emissions/MW CH4

Biogas upgrading

Efficiencies

Results Objective

methanogen

n.objective 6126.647634826454 sabatier

n.objective 5535.379865817146

Results Generators

methanogen

<u>Generator</u>

Solar PV 21.139298 Biogas 1.953359

Name: p_nom_opt, dtype: float64

sabatier

Generator

Solar PV 21.963748 Biogas 1.989954

Name: p_nom_opt, dtype: float64

Results Links

CO2 store = 0 because CO2 is used instantly? CO2 env = 0 because of typo

methanogen

	p_nom_opt
Link	
To CO2 store	0.000000
From CO2 store	0.000000
battery charger	10.252560
battery discharger	15.749899
To gas store	3.600432
From gas store	26276.399568
To CO2 environment	0.000000
From CO2 environment	0.000000
H2 Electrolysis	5.179128
Biogas upgrading	1.562687
methanogens	3.445726

Link	
To CO2 store	0.000000
From CO2 store	0.000000
battery charger	10.674232
battery discharger	12.288173
To gas store	3.667883
From gas store	26276.332117
To CO2 environment	0.000000
From CO2 environment	0.000000
H2 Electrolysis	5.276155
Biogas upgrading	1.591963
sabatier	3.510279

Results Stores

methanogen

```
Store
CO2 compressed store 0.0000000
battery 68.350246
gas store 26276.399568
CO2 environment 0.0000000
Name: e_nom_opt, dtype: float64
```

```
Store
C02 compressed store 0.0000000
battery 71.466430
gas store 26276.332117
C02 environment 0.0000000
Name: e_nom_opt, dtype: float64
```

Results Methanation link

methanogen

Results Biogas upgrading link

methanogen

Results Electrolysis

methanogen

Results Electrolysis

methanogen

Results Electricity battery

methanogen

Results Storage

methanogen

Results Storage

methanogen

Research Question

 What percentage of methane is from the biogas source vs the methane source?

Answer: 6150 kWh/26280 kWh = 23.4%

Research Question

- What is the proportion of the relative costs?
- A: mostly electrolysis/methanogen process

Research Question

```
In [183]: n.generators['capital_cost']
Out [183]:
Generator
Solar PV
           95.329548
Biogas
            0.000000
Name: capital_cost, dtype: float64
In [184]: n.links['capital_cost']
Out [184]:
Link
                      0.000000
To CO2 store
                      0.000000
From CO2 store
battery charger
                     38.263954
battery discharger 0.000000
To gas store
                      0.000000
                      0.000000
From gas store
To CO2 environment
                      0.000000
H2 Electrolysis
                    273.559662
Biogas upgrading
                      0.000000
methanogens
                    336.045303
Name: capital_cost, dtype: float64
In [185]: n.stores['capital_cost']
Out [185]:
Store
CO2 compressed store
                       0.000000
                      16.743523
battery
                       0.000000
gas store
CO2 environment
                       0.000000
Name: capital_cost, dtype: float64
```

```
In [188]: nsab.generators['capital_cost']
Out[188]:
Generator
Solar PV
           95.329548
Biogas
            0.000000
Name: capital_cost, dtype: float64
In [189]: nsab.links['capital_cost']
Out [189]:
Link
                       0.000000
To CO2 store
From CO2 store
                       0.000000
battery charger
                      38.263954
battery discharger
                      0.000000
To gas store
                       0.000000
From gas store
                       0.000000
To CO2 environment
                       0.000000
H2 Electrolysis
                     273.559662
Biogas upgrading
                       0.000000
sabatier
                     112.015101
Name: capital_cost, dtype: float64
In [190]: nsab.stores['capital_cost']
Out [190]:
Store
CO2 compressed store
                        0.000000
battery
                       16.743523
                        0.000000
gas store
CO2 environment
                        0.000000
Name: capital_cost, dtype: float64
```

Next steps

- Change costs?
- Add right compressors?
- New project meeting with Michael?
- ???