Геометрия и топология

Курс Солынина А.А.

Весна 2022 г.

Примечания

В тексте использованы рисунки из конспектов Солынина А.А.

Оглавление

Оглавление				
1	Метрические пространства			
	1.1	Метрические пространства	2	
	1.2	Расположение точки относительно множества	6	
2	Ton	пологические пространства	15	
	2.1	Топологические пространства	15	
	2.2	Расположение точки относительно множества	18	
	2.3	Базы и предбазы	20	
3	Her	грерывные отображения	24	
	3.1	Непрерывные отображения	24	
	3.2	Гомеоморфизмы		
	3.3	Инициальная топология	28	
	3.4	Финальная топология	32	
4	Связность			
	4.1	Связность	39	
	4.2	Компоненты связности	43	
	4.3	Линейная связность	45	
5	Компактность			
	5.1	Компактность	48	
	5.2	Компактность и хаусдорфовость	51	
	5.3	Компактность в \mathbb{R}^n	53	
	5.4	Локальная компактность	56	

OI	ГЛАΙ	ЗЛЕНИЕ	iii
6	Акс	сиомы счетности	59
	6.1	Сепарабельность	59
	6.2	Секвенциальная компактность	61
	6.3	Компактность в метрических пространствах	64
7	Акс	сиомы отделимости	68
	7.1	Аксиомы отделимости	68
	7.2	Нормальные пространства	70

Общая топология

Глава 1

Метрические пространства

1.1. Метрические пространства

Определение 1.1. M – множество. M вместе с $\rho: M \times M \to \mathbb{R}$ называется метрическим пространством, если:

- 1. $\forall x, y \ \rho(x, y) \geqslant 0$ и $\rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \ \rho(x, y) = \rho(y, x)$
- 3. Неравенство треугольника: $\rho(x,z) \le \rho(x,y) + \rho(y,z)$

 (M, ρ) – метрическое пространство, ρ – метрика на M.

Пример 1.1. M – множество домов в городе. $\rho(x,y)$ – минимальное время, за которое можно добраться от x до y. (1 свойство очевидно, 2 свойство выполняется при симметричности дорог, 3 очевидно)

Пример 1.2. Расстояние на плоскости.

$$\begin{split} \mathbb{R}^2 &= \{(x,y): x,y \in \mathbb{R}\} \\ \rho_1((x_1,y_1),(x_2,y_2)) &\coloneqq |x_1-x_2| + |y_1-y_2| \\ \rho_2((x_1,y_1),(x_2,y_2)) &\coloneqq \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} \\ \rho_k((x_1,y_1),(x_2,y_2)) &\coloneqq \left(|x_1-x_2|^k + |y_1-y_2|^k\right)^{1/k} \\ k &\to \infty : \rho_\infty((x_1,y_1),(x_2,y_2)) \coloneqq \max\{|x_1-x_2|;|y_1-y_2|\} \end{split}$$

Если перейти к \mathbb{R}^n , то

$$\rho_k((x_1,x_2,...,x_n);(y_1,y_2,...,y_n)) = \left(\sum_{i=1}^n |x_i-y_i|^k\right)^{1/k}$$

$$\left(|\underbrace{x_1 - x_3}_{a_1 + b_1}|^k + |\underbrace{y_1 - y_3}_{a_2 + b_2}|^k \right)^{1/k} \leqslant \left(|\underbrace{x_1 - x_2}_{a_1}|^k + |\underbrace{y_1 - y_2}_{a_2}|^k \right)^{1/k} + \left(|\underbrace{x_2 - x_3}_{b_1}|^k + |\underbrace{y_2 - y_3}_{b_2}|^k \right)^{1/k}$$

$$\left(\sum |a_i + b_i|^k \right)^{1/k} \leqslant \left(|a_1|^k + |a_2|^k \right)^{1/k} + \left(|b_1|^k + |b_2|^k \right)^{1/k}$$

Неравенство Йенсена (к чему это?)

Определение 1.2. $B(x_0,r) \coloneqq \{x \in M : \rho(x,x_0) < r\}$ — шар с центром в точке x_0 и радиусом r.

Нарисуем B((0,0);1) в $\rho_1, \rho_2, \rho_{\infty}$.

Пример 1.3. M — пространство «некоторых» функций. Функции определены на $X \subset \mathbb{R}$.

$$\rho_1(f,g) \coloneqq \int_X |f(x) - g(x)| dx$$

Есть проблемы: если f(x)=g(x) всюду, кроме 1 точки, то $\rho_1(f,g)=0.$

 $^{^{1}\!}$ «некоторых» — обладающих естественными свойствами, какими именно — зависит от функци

1 и 2 свойство очевидны. Третье:

$$\int_X |f - h| dx \leqslant \int_X |f - g| dx + \int_X |g - h| dx$$

Аналогично определяются другие метрики, например:

$$\begin{split} \rho_2(f,g) &= \left(\int_X |f(x)-g(x)|^2 dx\right)^{1/2} \\ \rho_k(f,g) &= \left(\int_X |f(x)-g(x)|^k dx\right)^{1/k} \\ \rho_\infty(f,g) &= \sup_{x \in X} |f(x)-g(x)| \end{split}$$

Естественные свойства:

$$\rho_2: \int_X |f(x)|^2 dx < \infty$$

Определение 1.3. (M,ρ) – метрическое пространство. $\{x_n\}_{n=1}^{\infty}\subset M$ – последовательность. Говорим, что $\lim_{n\to\infty}x_n=x_0$, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n > N \ \rho(x_n; x_0) < \varepsilon$$

В частности, в пространстве функций с разными метриками бывают разные пределы последовательностей функций.

$$f_n(x) \to f_0(x)$$
 по метрике ρ_1

Аналогично для других метрик.

$$f_n(x) \to f_0(x)$$
 по метрике ρ_{∞}

называется равномерной сходимостью. $f_n \rightrightarrows f_0$:

$$f_n(x) \rightrightarrows f_0(x) \Leftrightarrow \lim \sup_{\mathbf{X}} |f_n(x) - f_0(x)|$$

Пример 1.4. Дискретное метрическое пространство. M – любое множество.

$$\rho(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

дискретная метрика.

Пример 1.5. На самом деле дискретная метрика — это обобщение $\rho(x,y) \geqslant \varepsilon > 0$. ε не зависит от x или y.

Пример 1.6. M — множество строк длины n. $\rho(x,y)$ — количество символов, где эти строки отличаются

Пример 1.7. Задача: есть код из N бит. Можем переслать, но возникнет не более k ошибок. Сколько бит надо переслать, чтобы эти ошибки можно было исправить?

Решать не будем, переформулируем на язык метрических пространств.

 $(M,\rho).$ M состоит из строк, каждая из N+k двоичных символов. Хотим выбрать $\{x_1,x_2,...,x_{2^N}\}\subset M: \rho(x_i,x_i)>2k.$ $l\to \min$.

 x_i – строки из N+l символов.

$$x_i = a_{i1}a_{i2}...a_{iN+l}$$

 $x_j = b_{i1}b_{i2}...b_{iN+l}$

1.2. Расположение точки относительно множества

Теорема 1.1 (Жордана). Любая замкнутая непересекающаяся кривая на плоскости делит плоскость на две части; равно одна из частей не ограничена.

Доказательство. Доказать невероятно сложно.

Кривая Пеано

$$f:[0,1]\rightarrow [-1,1]\times [-1,1]$$

Разложим $a\in[0,1]$ в четверичную систему счисления: $a=0.a_1a_2a_3a_4...$ Если $a_1=0$, то идем в I квадрант. Разбиваем его на 4 части. Далее, если $a_2=2$, то идем в III квадрант, и так далее.

То есть, сопоставляем числу последовательность квадратов. Эта последовательность квадратов сходится к одной точке.

По теореме о вложенных отрезках, пересечение квадратов не пусто. Но это пересечение не может состоять более чем из одной точки.

Кривая Пеано сопоставляет точке $a=0.a_1a_2a_3...$ единственную существующую точку, содержащуюся в пересечении всех соответствующих квадратов

Почему эта кривая непрерывна?

$$|a-b| < \delta$$
 $a = 0.a_1a_2a_3...$ $b = 0.b_1b_2b_3...$

Это значит, что либо

$$a_1 = b_1, a_2 = b_2, ..., a_k = b_k$$

либо

$$a_1=b_1,...,a_{l-1}=b_{l-1}$$
 и $b_l=a_{l+1}=...=a_k=3,b_{l+1}=...=b_k=0$

k достаточно большое число

Строится кривая, чтобы она была непрерывна. Такая кривая полностью заметает квадрат.

Существуют кривые, такие что их образ покрывают квадрат.

Определения

Определение 1.4. (M, ρ) — метрическое пространство. $A \subset M, x_0 \in M(x_0 \in A \text{ или } x_0 \notin A).$

 $B(x_0,\varepsilon)\coloneqq\{x: \rho(x,x_0)<\varepsilon\}$ — шар с центром в x_0 и радиусом $\varepsilon.$ x_0 называется внутренней точкой для A, если $\exists \delta>0: B(x_0,\delta)\subset A.$

 x_0 называется внешней точкой для A, если $\exists \delta>0: B(x_0,\delta)\cap A=\varnothing.$

В противном случае точка называется граничной. А именно, x_0 – граничная, если $\forall \delta > 0 \ B(x_0, \delta) \not\subset A$ и $B(x_0, \delta) \cap A \neq \emptyset$, то есть $\exists x_1 \in B(x_0, \delta) \cap A$ и $\exists x_2 \in B(x_0, \delta) \setminus A$.

Определение 1.5. Множество внутренних точек A называется внутренностью $A: \operatorname{Int} A.$

Множество внешних точек A называется внешностью A : Ex A. Множество граничных точек A называется границей A : ∂A или Fr A

Замечание. Эти множества не пересекаются. В объединении – множество M.

Определение 1.6. Замыкание $A:\operatorname{Cl} A=\operatorname{Int} A\cup\partial A$ или $\operatorname{Cl} A=M\setminus\operatorname{Ex} A$

Определение 1.7. $U\subset M$. U называется открытым, если U= Int U. Или $\forall x_0\in U\exists \varepsilon>0: B(x_0,\varepsilon)\subset U$

Теорема 1.2 (Свойства открытых множеств).

- 1. $\{U_i\}_{i\in I}$ семейство открытых множеств, тогда $\bigcup_{i\in I} U_i$ открыто.
- 2. $U_1, U_2, ..., U_n$ открытые множества, тогда $\bigcap_{i=1}^n U_i$ открыто.
- $3. \varnothing, M$ открыто

Доказательство.

- 1. Возьмем $x_0\in\bigcup_{i\in I}U_i\implies \exists i_0:x_0\in U_{i_0}$. Пусть U_{i_0} открыто, тогда $\exists \delta>0:B(x_0,\delta)\subset U_{i_0}\subset\bigcup_{i\in I}U_i$. Значит, $\bigcup_{i\in I}U_i$ открыто
- 2. Рассмотрим $\forall x_0 \in \bigcap_{i=1}^n U_i \implies \forall i: x_0 \in U_i$. Значит $\exists \delta_i > 0: B(x_0, \delta_i) \subset U_i$. Возьмем $\delta \coloneqq \min\{\delta_1, \delta_2, ..., \delta_n\} > 0$. $B(x_0, \delta) \subset B(x_0, \delta_i) \subset U_i \ \forall i$. Раз выполнено для любого i, значит $B(x_0, \delta) \subset \bigcap_{i=1}^n U_i$
- 3. Очевидно

Определение 1.8. $F \subset M, F$ называется замкнутым множеством, если $M \setminus F$ открыто.

Теорема 1.3 (Свойства замкнутых множеств).

- 1. $\{F_i\}_{i\in I}$ семейство замкнутых множеств, значит $\bigcap_{i\in I} F_i$ замкнуто.
- 2. $F_1, F_2, ..., F_n$ замкнутые множества, значит $\bigcup_{i=1}^n F_i$ замкнуто.
- $3. \, \emptyset, M$ замкнуты

Доказательство. Упражнение.

Hint: $U_i := M \setminus F_i$. U_i открытое $\Leftrightarrow F_i$ замкнутое. По формулам де Моргана: $M \setminus (F_1 \cup F_2) = (M \setminus F_1) \cap (M \setminus F_2)$ и т.д..

Лемма 1.4. $B(x_0, \delta)$ – открытое множество.

Доказательство.

Пусть $x_1 \in B(x_0, \delta)$, $\rho(x_0, x_1) = \varepsilon < \delta$. Если взять $r \coloneqq \delta - \varepsilon$, то $B(x_1, r) \subset B(x_0, \delta)$. Почему так?

Допустим $x_2 \in B(x_1,r)$, то есть $\rho(x_1,x_2) < r = \delta - \varepsilon$. Но допустим $x_2 \notin B(x_0,\delta)$, то есть $\rho(x_0,x_2) \geqslant \delta$.

$$\underbrace{\rho(x_0,x_2)}_{\geqslant \delta} \leqslant \underbrace{\rho(x_0,x_1)}_{=\varepsilon} + \underbrace{\rho(x_1,x_2)}_{<\delta-\varepsilon}$$
 — противоречие.

Теорема 1.5. M – метрическое пространство; $A \subset M$; Тогда

$$\operatorname{Int} A = \bigcup_{\substack{U_i \text{ открыто} \\ U_i \subset A}} U_i,$$

где U_i открыты и $U_i \subset A$

Доказательство. $\bigcup_{\substack{U_i \text{ открыто} \\ U_i \subset A}} U_i \text{ открыто. Int } A - \text{открытое множе-}$

ство по лемме 1.4.

Если x_0 внутренняя точка, а $x_1\in B(x_0,\delta)\subset A$, тогда по лемме x_1 – внутренняя точка $B(x_1,\delta-\rho(x_0,x_1))\subset B(x_0,\delta)\subset A$, значит все точки шара являются внутренними.

 $\operatorname{Int} A = \bigcup_{x_0 \in \operatorname{Int} A} B(x_0, \delta_{x_0}), \text{ где } B(x_0, \delta_{x_0}) \subset A, \text{ тогда Int } A \text{ является открытым множеством. Следовательно Int } A \subset \bigcup_{\substack{U_i \text{ открыто} \\ U_i \subset A}} U_i.$

С другой стороны, Int $A\supset\bigcup_{\substack{U_i\text{ открыто}\\U_i\subset A}}U_i$. Возьмем любое U_i , т.ч. оно

открыто и $U_i\subset A$. По определению $\forall x_o\in U_i\ \exists \varepsilon>0\ B(x_0,\varepsilon)\subset A,$ тогда $x_0\in {\rm Int}\ A.$

Итого: Int
$$A = \bigcup_{\substack{U_i \text{ открыто} \\ U_i \subset A}} U_i$$
.

Следствие 1.5.1. Следующие определения внутренности равносильны:

1. Множество внутренних точек

$$2. \ \bigcup_{B(x_0,\delta)\subset A} B(x_0,\delta)$$

3. Int
$$A = \bigcup_{\substack{U_i \text{ открыто} \\ U_i \subset A}} U_i$$

4. Int A — максимальное открытое подмножество A.

Теорема 1.6.

$$\operatorname{Cl} A = \bigcap_{\substack{F \text{ замкнуто} \\ F \supset A}} F$$

Доказательство. Упражнение.

Пример 1.8. $M = \mathbb{R}; A = \mathbb{Q}.$ A не открыто и не замкнуто.

$$\operatorname{Int} A = \emptyset \qquad \operatorname{Cl} A = \mathbb{R} \qquad \partial A = \mathbb{R}$$

 $B(x_0,\varepsilon)=(x_0-\varepsilon;x_0+\varepsilon).$ В этом (как и в любом другом интервале) есть рациональные и иррациональные числа, тогда $x_0\in\partial\mathbb{Q}\implies\partial\mathbb{Q}=\mathbb{R}.$

Предложение 1.7. (M,ρ) — метрическое пространство. $A\subset M \Longrightarrow \operatorname{Cl} A$ — это:

1. Int
$$A \cup \partial A = M \setminus \operatorname{Ex} A = M \setminus \operatorname{Int}(M \setminus A)$$

2.
$$\bigcap_{\substack{Z \text{ замкнуто} \\ Z \supset A}} Z$$

3. Наименьшее замкнутое множество, которое содержит A.

Доказательство. (2) \Leftrightarrow (3): наименьшее замкнутое множество, содержащее A входит в пересечение, т.е. пересечение заведомо не больше. Пересечение замкнуто как пересечение замкнутых множеств, и оно содержит A, значит оно не меньше, чем наимень-

шее.

$$(1)\Leftrightarrow (2)\colon x_0\in\operatorname{Ex} A\implies \exists \varepsilon>0: B(x_0,\varepsilon)\in\operatorname{Ex} A\ (B\ \text{открыт}).$$
 $M\backslash B(x_0,\varepsilon)\supset A$ – замкнуто. Если $x_0\in\operatorname{Ex} A\implies x_0\notin\bigcap_{Z\supset A}Z.$

Если $x_0 \notin \operatorname{Ex} A$, допустим, что $x_0 \notin \bigcap_{\substack{Z \text{ замкнуто} \\ Z \supset A}} Z$. Значит существу-

ет замкнутое $Z_i:x_0\notin Z_i$, тогда x_0 лежит в открытом $M\setminus Z_i$. Но $\exists \varepsilon>0:B(x_0,\varepsilon)\in M\setminus Z\subset M\setminus A\implies x_0\in\operatorname{Ex} A.$

Предложение 1.8. U – открытое, Z – замкнутое.

$$U \setminus Z$$
 — открытое $Z \setminus U$ — замкнутое

Доказательство.

$$U \setminus Z = U \cap (M \setminus Z),$$

где U и $M \setminus Z$ открытые, значит их пересечение открыто.

$$Z \setminus U = Z \cap (M \setminus U),$$

где Z и $M \setminus U$ замкнутые, значит их пересечение замкнуто.

Следствие 1.8.1. Cl A замкнуто, Cl $A = M \setminus \operatorname{Ex} A$. ∂A замкнуто, $\partial A = \operatorname{Cl} A \setminus \operatorname{Int} A$.

Пример 1.9. Канторово множество.

$$K = \left([0;1] \setminus \left(\frac{1}{3};\frac{2}{3}\right)\right) \setminus \left(\left(\frac{1}{9};\frac{2}{9}\right) \cup \left(\frac{7}{9};\frac{8}{9}\right)\right) \setminus \dots$$

Mepa K = 0:

$$1 - \frac{1}{3} - \frac{2}{9} - \frac{4}{27} - \dots = 1 - \frac{1}{3} \left(1 + \frac{2}{3} + \frac{4}{9} + \dots \right) = 1 - \frac{1}{3} \cdot \frac{1}{1 - (2/3)} = 1 - \frac{1}{3} \cdot 3 = 0$$

K несчетно. $K = \{0.a_1a_2a_3...: a_i = \{0,2\}\}$ в троичной системе.

K равномощно множеству двоичных бесконечных последовательностей. K замкнутое множество.

Теорема 1.9. (M, ρ_1) и (M, ρ_2) – два метрических пространства на M. Пусть существует $C>0: \forall x,y$

$$\rho_1(x,y) \leqslant C\rho_2(x,y)$$

Тогда, если множество U открыто в (M, ρ_1) , то U открыто и в (M, ρ_2) .

Доказательство. U открыто в (M, ρ_1) . $\forall x_0 \in U \Longrightarrow \exists \varepsilon > 0: B_{\rho_1}(x_0, \varepsilon) \subset U$, то есть, если $\rho_1(x_0, x_1) < \varepsilon \Longrightarrow x_1 \in U$. Пусть $\delta = \frac{\varepsilon}{C}$ и x_1 – точка, такая что $\rho_2(x_1, x_0) < \delta$.

$$\implies \rho_1(x_1, x_0) \leqslant C\rho_2(x_1, x_0) < C\delta = \varepsilon$$
$$\implies B_{\rho_2}(x_0, \delta) \subset B_{\rho_1}(x_0, \varepsilon) \subset U$$

тогда U открыто в ρ_2 .

Следствие 1.9.1. В \mathbb{R}^n $\rho_1, \rho_2, \rho_\infty$ порождают один и тот же набор открытых множеств.

Доказательство. $x=(x_1,x_2,...,x_n),\,y=(y_1,y_2,...,y_n)$

$$\begin{split} \rho_1(x,y) & \stackrel{1}{\geqslant} \rho_2(x,y) \stackrel{2}{\geqslant} \rho_{\infty}(x,y) \\ \sum |x_i - y_i| & \geqslant \sqrt{\sum (x_i - y_i)^2} \geqslant \max(x_i,y_i) \end{split}$$

Докажем 1:

$$\left(\sum |x_i-y_i|\right)^2\geqslant \sum (x_i-y_i)^2$$

Докажем 2:

$$\sum_{i=1}^n (x_i-y_i)^2 \geqslant \max |x_i-y_i|^2$$
 $\rho_1(x,y)\leqslant n\rho_\infty(x,y),$ где n – размерность пространства
$$\sum_{i=1}^n |x_i-y_i| \stackrel{?}{\leqslant} n \cdot \max(x_i-y_i)$$

У всех метрик одинаковые открытые множества.

Замечание. В дискретный метрике $(\rho(x,y)=1$ при $x\neq y)$ любое множество открытое.

Теорема 1.10. (M, ρ) — метрическое пространство. Срезающая метрика:

$$\rho_1(x,y) = \begin{cases} \rho(x,y) & \rho(x,y) \leqslant 1 \\ 1 & \rho(x,y) > 1 \end{cases}$$

- 1. ρ_1 метрика
- 2. Набор открытых множеств у ρ и ρ_1 одинаков.

Доказательство. Докажем 1: ρ_1 – метрика.

1.
$$\rho_1(x,y) \geqslant 0$$
 и $\rho_1(x,y) = 0 \Leftrightarrow x = y$ – очевидно

2.
$$\rho_1(x,y) = \rho_1(y,x)$$
 – очевидно

3.
$$\rho_1(x,z) \stackrel{?}{\leqslant} \rho_1(x,y) + \rho_1(y,z)$$

$$\rho_1(x,z) \leqslant \rho_1(x,y) + \rho_1(y,z)$$

$$\begin{bmatrix} \rho(x,z) \\ 1 \end{bmatrix} \leqslant \begin{bmatrix} \rho(x,y) \\ 1 \end{bmatrix} + \begin{bmatrix} \rho(y,z) \\ 1 \end{bmatrix}$$

Докажем 2: U открыто в ρ_1 , значит U открыто в ρ :

$$\rho_1(x,y) \leqslant 1 \cdot \rho(x,y)$$

Пусть U открыто в ρ , тогда для любого $x_0 \in U \exists \varepsilon > 0 : B(x_0, \varepsilon) \subset U$. Пусть $\varepsilon < 1$, тогда $B_{\rho}(x_0, \varepsilon) = B_{\rho_1}(x_0, \varepsilon) \subset U$, значит U открыто в ρ_1 .

Глава 2

Топологические пространства

2.1. Топологические пространства

Пример 2.1. $B \mathbb{R}^2$

$$\begin{split} \rho_p((x_1,y_1),(x_2,y_2)) &= (|x_1-x_2|^p + |y_1-y_2|^p)^{1/p} \ \forall p \geqslant 1 \\ \rho_\infty &= \max\{|x_1-x_2|;|y_1-y_2|\} \\ \rho_{\text{срезающая}}(A,B) &= \begin{cases} \rho_i(A,B) & \text{если } \rho_i(A,B) \leqslant 1 \\ 1 & \text{если } \rho_i(A,B) > 1 \end{cases} \\ \rho'(A,B) &= \frac{\rho(A,B)}{1+\rho(A,B)}, \ \rho'(A,B) < 1 \end{split}$$

У всех этих метрик одинаковые открытые множества Вывод: метрические пространства не всегда удобны.

Определение 2.1. Пусть X — множество, а Ω — система подмножеств X. ($\Omega \subset 2^X$ — множество всех подмножеств X) Пара (X,Ω) называется топологическим пространством, если

- 1. $\forall \{U_i\}_{i \in I} \subset \Omega \implies \bigcup_{i \in I} U_i \in \Omega$
- 2. $U_1, U_2 \in \Omega$, тогда $U_1 \cap U_2 \in \Omega$
- 3. $\emptyset, X \in \Omega$

Определение 2.2. Ω называется топологией на X. Любое $U \in \Omega$ называется открытым подмножеством X.

Определение 2.3. (X,Ω) – топологическое пространство. $F\subset X$. F назовем замкнутым, если $X\setminus F$ – открыто, т.е. $X\setminus F\in\Omega$.

Теорема 2.1 (Свойства замкнутых подмножеств).

- 1. $\forall \{F_i\}_{i\in I}$ замкнутые, то $\bigcap_{i\in I} F_i$ замкнутые
- 2. F_1, F_2 замкнутые, то $F_1 \cup F_2$ замкнуты
- 3. \emptyset, X замкнуты

Доказательство. Переход к дополнениям множеств и свойства объединения, пересечения и разности множеств.

Таким образом топологическое пространство можно задавать при помощи замкнутых множеств.

Пример 2.2. Метрическая топология: (X, ρ) – метрическое пространство, Ω – множество всех открытых подмножеств. U называет открытым, если $\forall x_0 \in U \; \exists \varepsilon > 0 : B(x_0, \varepsilon) \coloneqq \{x \in X : \rho(x, x_0) < \varepsilon\} \subset U$.

Пример 2.3. Дискретная топология: X – множество, $\Omega = 2^X$ (любое подмножество открыто).

Пример 2.4. Антидискретная топология: X – множество, $\Omega = \{\emptyset, X\}$. Замечание. 2 пример – частный случай 1-ого.

$$\rho(x,y) = \begin{cases} 0 & x=y\\ 1 & x\neq y \end{cases}$$

$$B(x_0,1/2) = \{x_0\} - \text{открыто}$$

А если любая точка открыта, значит любое подмножество открыто

Определение 2.4. Топология называется метризуемоей, если существует метрика ρ , порождающая данную топологию.

Антидискретная топология не метризуема.

$$a,b\in X.\ r\coloneqq \rho(a,b).\ b\notin B(a,r/2), a\in B(a,r/2)$$

$$B(a,r/2)-\text{открыто}$$

Вопрос: (X,Ω) — топологическое пространство. Выяснить является ли оно метризуемым.

Пример 2.5. Топология конечных дополнений (Зариского). X – бесконечное множество. F называется замкнутым, если F конечное или F = X. $\Omega := \{X \setminus F : F$ конечно или $F = X\}$

Теорема 2.2 (Гильберта о базисе). Любой идеал $I\subset F[x_1,x_2,...,x_n]$ порождается конечным набором многочленов.

Пример 2.6. Развитие предыдущего примера. F – поле (в алгебраическом смысле). $F^n = F \times F \times ... \times F$ – координатное пространство. $f_1, f_2, ..., f_k$ – некоторые многочлены от n переменных с коэффициентами в поле F. Тогда множество совместных корней этих многочленов назовем замкнутым множеством:

$$G = \{(x_1, x_2, ..., x_n) : \forall i = 1...k \ f_i(x_1, ..., x_n) = 0\}$$

Это семейство замкнутых множеств порождает топологию.

$$I = \{f_1g_1 + f_2g_2 + ... + f_kg_k : g_i$$
 – любые многочлены от n переменных $\}$

идеал, порожденный $f_1, ..., f_n$

По теореме 2.2 возникает соответствие $G \leftrightarrow I$. Это биекция, только если F алгебраически замкнуто (по теореме Гильберта о нулях).

Зачем это надо?

$$x^{n} + y^{n} - z^{n} = f(x, y, z)$$
$$n > 2, F = \mathbb{Q}$$

Существуют ли корни этого многочлена? А это великая теорема Ферма. $x^n + y^n - z^n = 0$ (Решения в \mathbb{Z} существуют, н.р. x = y = z = 0)

Пример 2.7. Стрелка. $X = \mathbb{R}$ (или \mathbb{R}_+).

$$\Omega = \{(a,+\infty): a \in X\} \cup \{\varnothing\} \cup \{X\}$$

Это топология.

Пример 2.8. D – множество бесконечно дифференцируемых функций с компактным носителем, т.е. f(x)=0 если |x|>M. ($\forall f\in D\ \exists M>0$: если |x|>M, то f(x)=0).

 $f_n(x)
ightharpoonup f(x)$ если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geqslant N \ |f_n(x) - f(x)| < \varepsilon \ \forall x$ Пусть $f_n(x)$ – последовательность функций в $D. \ f_n(x) \xrightarrow{D} f(x)$, если

- 1. $\exists M : \forall |x| > M \ \forall n \ f_n(x) = 0$
- 2. $f_n(x) \rightrightarrows f(x); f'_n(x) \rightrightarrows f'(x)$ и т.д.

 $F\subset D$ называется замкнутым, если из $\{f_n(x)\}_{n\in\mathbb{N}}\subset F$ и $f_n(x)\to f(x)$, следует $f(x)\in F$. Это порождает топологию на D.

2.2. Расположение точки относительно множества

Определение 2.5. (X,Ω) – топологическое пространство. $x_0\in X$. Окрестностью точки x_0 называется любое открытое подмножество $U_{x_0}:x_0\in U_{x_0}$.

Определение 2.6. $A \subset X$ – подмножество. $x_0 \in X$.

 x_0 – внутренняя точка для A, если \exists окрестность $U_{x_0} \subset A$

 x_0 – внешняя точка A, если есть окрестность $U_{x_0} \cap A = \emptyset$ (т.е. $U_{x_0} \subset X \setminus A$

 x_0 называется граничной, если $\forall U_{x_0}$ неверно $U_{x_0} \subset A$ и неверно $U_{x_0} \subset X \setminus A$.

Определение 2.7. Int $A = \{x_0 \in X : x_0$ – внутренняя для $A\}$

 $\operatorname{Ex} A = \{x_0 \in X : x_0 - \operatorname{внешняя} \ для \ A\}$

 $\partial A = \{x_0 \in X : x_0 - \text{граничная для } A\}$

 $\operatorname{Cl} A = \operatorname{Int} A \cup \partial A$

Теорема 2.3.

1. Int
$$A = \bigcup_{\substack{U_i \in \Omega \\ U_i \subset A}} U_i$$

$$U_i \subset A$$

2. Ex
$$A = \bigcup_{\substack{U_i \in \Omega \\ U_i \cap A = \emptyset}} U_i$$

$$U_i \in \Omega$$
 $U_i \cap A = \emptyset$

3.
$$\operatorname{Cl} A = \bigcap_{Z_i - \operatorname{3amkhyto}} Z$$

Замечание. Часто именно это дается в качестве определения $\operatorname{Int} A$, $\operatorname{Ex} A$, $\operatorname{Cl} A$, $\partial A = \operatorname{Cl} A \setminus \operatorname{Int} A$

Доказательство. Докажем 1: заметим, что $\bigcup_{U_i \in \Omega} U_i \supset \operatorname{Int} A$.

 $U_i{\subset}A$ Потому что $\operatorname{Int} A$ – множество внутренних точек, а каждая такая точка входит вместе с окрестностью. Значит все окрестности включаются в левую часть.

Почему
$$\bigcup_{\substack{U_i \in \Omega \\ U_i \subset A}} U_i \subset \operatorname{Int} A$$
?

Возьмем x_0 из левой части, тогда $x_0 \in U_i \subset A$, значит U_i нужная окрестность, чтобы считать x_0 внутренней.

Докажем 2: аналогично 1.

Докажем 3: следует из 1 потому что $U_i := X \setminus F_i$.

$$\bigcap_{\substack{F_i \text{--замкнуто} \\ A \subset F_i}} F_i = \bigcap_{\substack{U_i \text{--открыто} \\ U_i \cap A = \varnothing \\ U_i \subset X \backslash A}} (X \setminus U_i) = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X \backslash A}} U_i = X \setminus \bigcup_{\substack{U_i \in \Omega \\ U_i \subset X$$

2.3. Базы и предбазы

Определение 2.8. (X,Ω) – топологическое пространство. $\mathfrak{B} \subset 2^X$ (Точнее $\mathfrak{B} \subset \Omega$). \mathfrak{B} называется базой топологии Ω , если

$$\forall U \in \Omega \quad U = \bigcup_{i \in I} B_i \; (\exists I \; \exists B_i) : B_i \in \mathfrak{B}.$$

Определение 2.9. $\mathfrak B$ называется базой некоторой топологии, если существует $\Omega : \mathfrak B$ база топологии.

Замечание. Такая Ω единственна:

$$\Omega = \left\{ \bigcup_{i \in I} B_i : B_i \in \mathfrak{B} \right\}.$$

Пример 2.9. В \mathbb{R}^n $\mathfrak{B} := \{B(x,\varepsilon) : x \in R^n; \varepsilon > 0\}$. \mathbb{R}^n можно заменить на любое метрическое пространство.

Пример 2.10. $X = \mathbb{N}$. \mathfrak{B} – множество арифметических прогрессий, тогда \mathfrak{B} база некоторой топологии. (обоснование позже)

Пример 2.11. (X,Ω) – дискретное пространство. ${\mathfrak B}$ все одноточечные множества. ${\mathfrak B}$ – база $\Omega.$

Пример 2.12. $C(\mathbb{R}^n)$ – множество непрерывных функций из $\mathbb{R}^n \to \mathbb{R}$. (Это обобщается)

 $K_1,...,K_n$ – замкнутые и ограниченные подмножества $\mathbb{R}^n.$ $U_1,...,U_n$ – открытые множества в $\mathbb{R}.$

$$V^{U_1,...,U_n}_{K_1,...,K_n}\coloneqq\{f:\mathbb{R}^n o\mathbb{R}$$
 — непрерывно $:f(K_i)\subset U_i, i=1,...,n\}$

Множество таких $V_{K_1,...,K_n}^{U_1,...,U_n}$ – база некоторой топологии. Она называется компактно-открытая топология.

Теорема 2.4. (X,Ω) – топологическое пространство, $\mathfrak{B}\subset\Omega$, то \mathfrak{B} – база $\Omega\Leftrightarrow \forall U\in\Omega\ \forall x_0\in U\ \exists B\in\mathfrak{B}:x_0\in B\subset U.$

Доказательство.
$$U = \bigcup_{x_0 \in U} B_{x_0}$$

Теорема 2.5. X – множество, $\mathfrak{B}\subset 2^X$. \mathfrak{B} является базой некоторой топологии

$$\Leftrightarrow \forall B_1,B_2\in\mathfrak{B}\ \forall x_0\in B_1\cap B_2\ \exists B_3\in\mathfrak{B}:x_0\in B_3\subset B_1\cap B_2$$
 и $\bigcup_{B\in\mathfrak{B}}B=X.$

Замечание. Частный случай: Если $B_1 \cap B_2 \in \mathfrak{B}$, то \mathfrak{B} – база топологии.

Доказательство. Прямое доказательство: по предыдущей теореме. $(U \coloneqq B_1 \cap B_2)$

Обратное доказательство: $\Omega\coloneqq\left\{\bigcup_{i\in I}B_i:B_i\in\mathfrak{B}\right\}$. Ω — топология?

1.
$$U_i = \bigcup_{j \in J_i} B_{ij}, \, (B_{ij} \in \mathfrak{B}),$$
 тогда

$$\bigcup_{i \in I} U_i = \bigcup_{i \in I} \bigcup_{j \in J} B_{ij} \in \Omega$$

2.
$$U_1 = \bigcup_{i \in I} B_i$$
, $U_2 = \bigcup_{j \in J} C_j$, B_i , $C_j \in \mathfrak{B}$,

$$B_i \cap C_j = \bigcup_{x_0 \in B_i \cap C_j} B_3(x_0, B_i \cap C_j),$$

где
$$B_3(x_0,B_i\cap C_j):x_0\in B_3(x_0,B_i\cap C_j)\subset B_i\cap C_j.$$

Почему $U_1 \cap U_2 \in \Omega$?

$$\begin{split} U_1 \cap U_2 &= \left(\bigcup_{i \in I} B_i\right) \cap \left(\bigcup_{j \in J} C_j\right) = \bigcup_{(i,j) \in I \times J} (B_i \cap C_j) = \\ &\qquad \bigcup_{(i,j)} \bigcup_{x_0 \in B_i \cap C_j} B_3(x_0; B_i \cap C_j) \in \Omega \end{split}$$

и каждое $B_3(x_0; B_i \cap C_j) \in \mathfrak{B}$

3.
$$\emptyset = \bigcup_{i \in \emptyset} B_i, X = \bigcup_{B \in \mathfrak{B}} B$$

Определение 2.10. (X,Ω) — топологическое пространство. $\mathfrak A$ называется предбазой Ω , если $\mathfrak B:=\{\bigcap_{i=1}^n A_i: A_i\in \mathfrak A\}$ — база Ω . То есть предбаза — любой набор подмножеств, объединение которых X.

Определение 2.11. (X,Ω) – топологическое пространство. $\forall x_0 \in X$ задано \mathfrak{B}_{x_0} – множество некоторых окрестностей x_0 . $\mathfrak{B}_{x_0} \in \Omega$. Говорим, что $\{\mathfrak{B}_{x_0}\}_{x_0 \in X}$ является базой окрестностей точек Ω , если $\forall U \in \Omega \ \forall x_0 \in X : x_0 \in U \ \exists B(x_0,U) \in \mathfrak{B}_{x_0} : x_0 \in B(x_0,U) \subset U$.

Замечание. $\bigcup_{x_0 \in X} \mathfrak{B}_{x_0}$ – база Ω .

$$U = \bigcup_{x_0 \in U} B(x_0, U)$$

Пример 2.13. (M,ρ) – метрическое пространство, тогда $\mathfrak{B}_{x_0}=\{B(x_0,\varepsilon): \varepsilon>0\}.$

Теорема 2.6. X – множество. $\forall x_0 \in X \; \exists \mathfrak{B}_{x_0} \subset 2^X$: $(\mathfrak{B}_{x_0} \neq \varnothing)$

- 1. $\forall B \in \mathfrak{B}_{x_0} \ x_0 \in B$
- $2. \ \forall B_1,B_2 \in \mathfrak{B}_{x_0} \implies \exists B_3 \in \mathfrak{B}_{x_0} : B_3 \in B_1 \cap B_2$
- 3. $\forall B_1 \in \mathfrak{B}_{x_0}, \forall x_1 \in B_1 \ \exists B_2 \in \mathfrak{B}_{x_1} : x_1 \in B_2 \subset B_1$

Если все это выполнено, то $\bigcup_{x_0 \in X} \mathfrak{B}_{x_0}$ – база некоторой топологии.

Доказательство. Смотри предыдущую теорему.

Глава 3

Непрерывные отображения

3.1. Непрерывные отображения

Определение 3.1. $(X, \rho), (Y, d)$ – метрические пространства. $f: X \to Y$ – отображение. Говорим, что f непрерывно в $x_0 \in X$, если $\forall \varepsilon > 0 \; \exists \delta > 0 :$ если $\rho(x_1, x_0) < \delta \implies d(f(x_0), f(x_1)) < \varepsilon.$

Определение 3.2. f непрерывно если f непрерывно в любой точке.

Замечание. $f:X\to Y$ непрерывно в $x_0\Leftrightarrow \forall \varepsilon>0\ \exists \delta>0: f(B_X(x_0,\delta))\subset B_Y(f(x_0),\varepsilon).$

Определение 3.3. (X,Ω_X) и (Y,Ω_Y) – топологические пространства. $f:X\to Y$ – отображение. f называется непрерывным в точке $x_0\in X,$ если $\forall U\in\Omega_Y\colon f(x_0)\in U\ \exists V\in\Omega_X: x_0\in V: f(V)\subset U$

Теорема 3.1. (X, ρ) и (Y, d) метрические пространства. $f: X \to Y$ отображение. f непрерывно $\Leftrightarrow \forall U \subset Y, U$ открыто, $f^{-1}(U)$ открыто в X.

Доказательство. Прямое доказательство: f непрерывное, т.е. $\forall x_0 \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon, x_0) > 0 : f(B_X(x_0, \delta)) \subset B_Y(f(x_0), \varepsilon). \ \forall U \subset Y$ открыто, $V := f^{-1}(U)$. Хотим доказать, что V открыто. $\forall x_0 \in V \implies f(x_0) \in U.$ U отрытое, значит $\exists \varepsilon > 0 : B(f(x_0), \varepsilon) \subset U.$ Тогда $\exists \delta > 0 : f(B_X(x_0, \delta)) \subset B_Y(f(x_0), \varepsilon) \subset U.$ Если $f(B_X(x_0, \delta)) \subset U \implies B_X(x_0, \delta) \subset V.$

Обратное: $\forall x_0 \in X, \forall \varepsilon > 0.\ U := B(f(x_0); \varepsilon)$ открытое. Значит $f^{-1}(U)$ открыт, $x_0 \in f^{-1}(U)$, т.к. $f(x_0) \in U$. Тогда $\exists \delta > 0 : B(x_0, \delta) \subset f^{-1}(U).\ f(B(x_0), \delta) \subset U := B(f(x_0), \varepsilon).$

Определение 3.4. (X,Ω_X) и (Y,Ω_Y) – топологические пространства. $f:X\to Y$ – отображение. f называется непрерывным, если $\forall U\in\Omega_Y\,f^{-1}(U)\in\Omega_X.$

Замечание. X, Y – множества, $A, B \subset X; C, D \subset Y$.

$$f(A\cup B)=f(A)\cup f(B)$$

$$f(A\cap B)=f(A)\cap f(B)\text{ - неверно!}$$

$$f^{-1}(C\cup D)=f^{-1}(C)\cup f^{-1}(D)$$

$$f^{-1}(C\cap D)=f^{-1}(C)\cap f^{-1}(D)$$

Почему неверно второе:

$$f(A \cap B) = \{f(x_0) : x_0 \in A \cap B\}$$

$$f(A) \cap f(B) = \{f(x_0) : x_0 \in A\} \cap \{f(y_0) : y_0 \in B\} = \{f(x_0) = f(y_0) : x_0 \in A, y_0 \in B\}$$

Почему неверны остальные – упражнение.

Определение 3.5. $f: X \to Y$ называется

- 1. непрерывным, если прообраз открытого множества открыт
- 2. непрерывным, если прообраз замкнутого замкнут
- 3. открытым, если образ открытого открыт
- 4. замкнутым, если образ замкнутого замкнут

 $F\subset X$ замкнутое, $U:=Y\setminus F$ открытое. $f^{-1}(Y\setminus U)=X\setminus f^{-1}(U)$ замкнуто, если U открыто. $f^{-1}(U)$ и $f^{-1}(Y\setminus U)$ не пересекаются и в объединении дают X.

Пример 3.1. $X = Y = \mathbb{R}$, на X дискретная топология, на Y стандартная, $f: X \to Y, \ f(x) = x$ непрерывно, но не открытое и не замкнутое.

U подмножество, не открытое в стандартной топологии, но открытое в дискретной.

Пример 3.2. Разница между открытым и замкнутым: рассмотрим отображения включения: $i: U \hookrightarrow X, i(x) = x$. Если

- \bullet *U* открытое множество, тогда *i* открытое
- \bullet U не открытое в X, тогда i не открытое отображение
- ullet U замкнутое множество в X, тогда i замкнутое

3.2. Гомеоморфизмы

Определение 3.6. $f: X \to Y$ называется гомеоморфизмом, если

- 1. f непрерывно
- 2. f биективно
- 3. f^{-1} непрерывно

Пример 3.3. $X = Y = \mathbb{R},$ на X дискретная топология, на Y стандартная.

 $f: X \to Y; f(x) = x, f$ непрерывно и биективно, но не f^{-1} не непрерывно, не гомеоморфизм!

Пример 3.4. $X = [0, 2\pi), Y = S' = \{z \in \mathbb{C} : |z| = 1\}$

 $f: X \to Y; f(t) = e^{it}$ – биекция и непрерывное отображение, но обратное не непрерывно:

- **Теорема 3.2.** 1. Гомеоморфность, т.е. существование какогото гомеоморфизма, есть эквивалентность
 - 2. $f: X \to Y$ гомеоморфизм, тогда f индуцирует биекцию между Ω_X и Ω_Y (и между замкнутыми множествами X и Y тоже)

Доказательство. Докажем 1: будем означать гомеоморфность символом эквивалентности: \sim . Пусть $X \sim X, id: x \mapsto x.$ id(X) = X. Пусть $X \sim Y \implies \exists f: X \to Y$ – гомеоморфизм, тогда $f^{-1}: Y \to X$ – гомеоморфизм. Пусть $X \sim Y, Y \sim Z \implies X \sim Z.$ $f: X \to Y, g: Y \to Z, g \circ f: X \to Z$ – гомеоморфизм. Доказательство 2 очевидно

Пример 3.5. $(0,1)\stackrel{f}{\sim}(a,b)\stackrel{g}{\sim}\mathbb{R}\stackrel{\mathrm{ymp}}{\sim}(0,+\infty)$

$$\begin{split} g:\left(-\frac{\pi}{2};\frac{\pi}{2}\right) \to \mathbb{R}; g(x) &= \operatorname{tg} x \\ f(0,1) \to (a,b); f(x) &= (b-a)x + a \end{split}$$

Но $(0,1) \sim [0,1]$. Почему? Нужно искать инварианты.

Пример 3.6. Шуточные примеры:

3.3. Инициальная топология

Прообраз топологии

 $f: X \to Y$ отображение, (Y, Ω_Y) топологическое пространство. X пока нет. Цель: ввести топологию на X, т.ч. f непрерывно, топология на X слабейшая из возможных.

Определение 3.7. (X, Ω_1) и (X, Ω_2) топологические пространства. Говорим, что Ω_1 сильнее Ω_2 , если $\Omega_2 \subset \Omega_1$.

Определение 3.8. Самая слабая топология на X, т.ч. $f: X \to Y$ непрерывно, называется прообразом топологии Ω_Y

Теорема 3.3. Прообраз топологии существует.

Доказательство. $U\in\Omega_Y\Longrightarrow f^{-1}(U)$ должен быть открыт в X. Прообраз $\Omega_X:=\{f^{-1}(U):U\in\Omega_Y\}.$

$$\begin{split} f^{-1}(U_1 \cap U_2) &= f^{-1}(U_1) \cap f^{-1}(U_2) \\ f^{-1}\left(\bigcup_{i \in I} U_i\right) &= \bigcup_{i \in I} f^{-1}(U_i) \\ f^{-1}(\varnothing) &= \varnothing, f^{-1}(Y) = X. \end{split}$$

Важный частный случай: (X,Ω_X) — топологическое пространство. $Y\subset X.\ i:Y\hookrightarrow X.$ Тогда Y наделяется топологией.

Определение 3.9. Такая топология на Y называется индуцированной.

 $V\subset Y$. V открыто в Y если $\exists U$ – открытое в X: $i^{-1}(U)=V=U\cap Y$.

Определение 3.10. Переформулируем: $V \subset Y$ называется открытым, если $\exists U$ – открытое в $X: U \cap Y = V$.

Замечание. V открыто в Y, но это не означает, что V открыто в X. $Y=[0,1], X=\mathbb{R}$ со стандартной топологией. U=(-1,0.5) открыто в $\mathbb{R}=X$. $U\cap [0,1]=[0,0.5)$ открыто в Y, но не открыто в X.

Инициальная топология

Определение 3.11. X — множество. (Y_i, Ω_i) — топологические пространства. $f_i: X \to Y_i$. Хотим завести на X топологию, такую что все f_i непрерывные, а топология на X слабейшая из возможных. Такая топология называется инициальной.

Теорема 3.4. Инициальная топология существует и единственна.

Доказательство. $f_i^{-1}(U_i)$ должны быть открытыми, $U_i \subset Y_i$ открытые. Все такие множества – предбаза. По критерию базы:

$$\mathfrak{B} = \{f_{i_1}^{-1}(U_{i_1}) \cap \ldots \cap f_{i_k}^{-1}(U_{i_k}) : U_{i_j} \in \Omega_j\}$$

является базой некоторой топологии.

Пример 3.7. (X, Ω_X) и (Y, Ω_Y) – топологические пространства. Как ввести топологию на $X \times Y$? Берем проекции на X и Y и инициальную топологию. Как ее описать? Далее.

Бесконечное произведение. Ликбез

 $\{X_i\}_{i\in I}$ — семейство множеств. Пусть (X_i,Ω_i) — топологические пространства.

$$\prod_{i\in I} X_i \ = \{f: I \to \bigcup_{i\in I} X_i: f(j) \in X_j\}$$

Пусть $\forall i \ X_i \neq \varnothing$. Почему $\prod_{i \in I} X_i \neq \varnothing$? Это равносильно аксиоме выбора.

Аксиома 3.5 (выбора). $\{X_i\}_{i\in I}$ – семейство непустых множеств. Тогда $\exists Y$ состоящее из элементов X_i (по одному элементу из каждого множества)

Лемма 3.6 (Цорна). X – непустое частично упорядоченное множество (введено отношение порядка, которое рефлексивно, антисимметрично и транзитивно). $\forall x_1 \leqslant x_2 \leqslant ... \exists x_* : x_* > x_i \forall i$, тогда в множестве X существует максимальный элемент

Теорема 3.7 (Цермело). Любое непустое множество можно вполне упорядочить (ввести такой порядок, что любое подмножество будет иметь наименьший элемент).

Стандартное \leqslant на \mathbb{R} – неполный порядок, например (0,1) не имеет наименьшего.

Преположение 3.8. Аксиома выбора ⇔ лемме Цорна ⇔ теореме Цермело.

Теорема 3.9. У любого векторного пространства есть базис.

Доказательство. A – множество всех ЛНЗ наборов. $(A; \subset)$ – частично упорядоченное множество.

$$x_1 \subset x_2 \subset \dots \implies x_* = \bigcup_{i=1}^\infty X_i$$

по лемме Цорна существует максимальный элемент. Он и является базисом. \blacksquare

Декартово произведение

Есть $X \times Y$, $p_X(x,y) = x$, $p_Y(x,y) = y$

 $(X,\Omega_X),(Y,\Omega_Y)$ – топологические пространства. На $X\times Y$ введем топологию (инициальную). $U\subset X$ открыто $p_X^{-1}(U)=U\times Y.\ V\subset Y$

открыто $p_Y^{-1}(V) = X \times V$.

$$(U_1 \times Y) \cap (U_2 \times Y) = (U_1 \cap U_2) \times Y$$
$$(U \times Y) \cap (X \times V) = U \times V$$

Таким образом $\{U \times V : U \in \Omega_X; V \in \Omega_Y\}$ – база топологии $X \times Y$

Иначе: множество $W\subset X\times Y$ является открытым, тогда и только тогда, когда $\forall (x_0,y_0)\in W\ \exists U_{x_0}\in\Omega_X, V_{y_0}\in\Omega_Y: x_0\in U_{x_0}, y_0\in V_{y_0}, U_{x_0}\times V_{y_0}\subset W$

Пример 3.8. Это совпадает с топологией на \mathbb{R}^2 :

Пример 3.9.

 $\prod_{i \in I} X_i$ хотим снабдить топологией. $U \subset X_i$ — открыто, тогда $U \times \prod_{j \neq i} X_j$ — открытое множество в инициальной топологии. Такие множества предбаза.

$$U_1 \times U_2 \times \ldots \times U_k \times \prod_{j \neq 1, \ldots, k} X_j$$

– база топологии.

HO $U_i \subset X_i$ открыто, $\prod U_i$ не является открытым в $\prod X_i!$

Свойство 3.1. Если на X_i дискретная топология, то $\prod_{i \in I} X_i$ не является дискретным пространством, если I бесконечно

В частности счетное произведение $\{0,1\} \times \{0,1\} \times ... = \{0,1\}^{\mathbb{N}}$ не дискретно. Такое множество гомеоморфно K – канторову множеству.

Свойство 3.2. 1. l(K) = 0. l(K) = 1 - (1/3 + 2/9 + 4/27 + ...)

- 2. K замкнуто
- 3. K состоит из чисел без 1 в троичной записи. 1/3=0.1=0.022222... в троичной записи
- 4. $K \simeq \{0,1\}^{\mathbb{N}}$ гомеоморфизм. $K = \{0.a_1a_2a_3...: a_i \in \{0,2\}\}$ (не очень простое упражнение)
- 5. K несчетно
- 6. $K \simeq K \times K$, по пункту 4: $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} = \{0,1\}^{\mathbb{N}^2}$, а $\mathbb{N}^2 \sim \mathbb{N}$, поэтому $\{0,1\}^{\mathbb{N}^2} \simeq \{0,1\}^{\mathbb{N}}$

3.4. Финальная топология

 (X_i,Ω_i) – топологические пространства $(i\in I)$. $f_i:X_i\to Y,Y$ – множество. Хотим задать топологию на Y так, чтобы f_i было непрерывным и эта топология была сильнейшей из возможных.

Определение 3.12. Такая топология называется финальной.

Теорема 3.10. Финальная топология существует и единственна.

Доказательство. $U \subset Y$ открыто, если $\forall i \ f_i^{-1}(U)$ открыто в X_i (другие множества все равно не можем назвать открытыми). Такие U образуют топологию:

- \bullet Ø и Y- открытые
- $U_1,...,U_k$ открытые, значит $U_1\cap...\cap U_k$ открыто?

$$\forall i\ f_i^{-1}(U_1\cap\ldots\cap U_k)=f_i^{-1}(U_1)\cap\ldots\cap f_i^{-1}(U_k)$$

каждое $f_i^{-1}(U_k)$ открыто в X_i , их пересечение тоже открыто в X_i

 $f_i^{-1}\left(\bigcup_{j\in J}U_j\right)=\bigcup_{j\in J}f_i^{-1}(U_j)$

открыто в X как объединение открытых.

Пример 3.10. $(X_1,\Omega_1),(X_2,\Omega_2)$ – непересекающиеся топологические пространства. $Y=X_1\sqcup X_2.$ Хотим ввести топологию на Y. Введем финальную топологию:

$$X_1 \overset{i_1}{\hookrightarrow} X_1 \cup X_2 \overset{i_2}{\hookleftarrow} X_2$$

$$U \subset X_1 \cup X_2$$

$$U_1 = U \cap X_1 \quad U_2 = U \cap X_2$$

$$U_1 = i_1^{-1}(U) \quad U_2 = i_2^{-1}(U)$$

 U_1 и U_2 открыты $\Leftrightarrow U$ открыто. Аналогично вводим топологию на $\bigsqcup X_i, U$ называем открытым, если $U \cap X_i$ открыто в $X_i \ \forall i.$

Замечание. $X_1=(0,1), X_2=[1,2).$ Топология на $X_1\sqcup X_2$ не совпадает с топологией на (0,2)!

 $U_1=\varnothing, U_2=[1,1.5]$ открыты в X_1 и X_2 соответственно. [1,1.5) открыто в $X_1\sqcup X_2.$

Или $\forall X = \bigcup_{x_i \in X} \{x_i\}$. На каждом $\{x_i\}$ дискретная топология, тогда $\bigsqcup \{x_i\}$ имеет дискретную топологию.

Пример 3.11. (X,Ω) – топологическое пространство, \sim – отношения эквивалентности на X. Пусть $\exists p: X \to X/\sim$. На X/\sim естественным образом вводится финальная топология. $U \subset X/\sim$ открыто $\Leftrightarrow p^{-1}(U)$ открыто в X.

Топология фактор-множества

 (X,Ω) - топологическое пространство, \sim - отношение эквивалентности на X. $p: X \to X/\sim$. На X/\sim вводится финальная топология. $\tilde{U} \subset X/\sim$ называется открытым, если $p^{-1}(\tilde{U})$ открыто в X.

Пример 3.12. Склеивание. Хотим отождествлять некоторые пары точек.

Склеим горизонтальные стороны квадрата как нарисовано. $(x,0) \sim (x,1)$, а остальные эквиваленты только себе.

U открыто в квадрате, U не открыто в цилиндре, т.к. $p^{-1}(U)$ не открыто.

Лента Мёбиуса:

Свойства ленты Мёбиуса:

- только одна сторона
- только один край
- средняя линия не делит на части
- на ленте Мёбиуса можно нарисовать полный граф на шести вершинах без пересечения ребер (упражнение) [На плоскости только K_4]
- на ленте Мёбиуса любая карта красится в 6 цветов (довольно просто) [Для плоскости 4 цвета, очень сложно]

Теорема 3.11 (Жордана). Замкнутая непересекающаяся кривая на плоскости делит плоскость ровно на две компоненты связанности. Ровно одна из них ограниченна.

Теорема 3.12 (Эйлера). Для плоскости:

(количество вершин) + (количество граней) = = (количество ребер) + 2

(для связного графа с непересекающимися ребрами) Для ленты Мёбиуса:

$$B + \Gamma = P + \chi$$

где $\chi=1,$ если есть цикл, опоясывающий ленту, или 2.

Top:

Бутылка Клейна:

Бутылка Клейна – это 2 склеенные ленты Мёбиуса:

1. Проективная плоскость

Другие интерпретации проективной плоскости ($\mathbb{R}P^2$):

2. $x \sim -x \ (x$ – крайняя точка круга)

3. $S^2/x \sim -x$

4. $\mathbb{R}^3 \setminus \{(0,0,0)\}/(x,y,z) \sim (\lambda x; \lambda y; \lambda z)$

- 5. Множество прямых в \mathbb{R}^3 , проходящих через (0,0,0). Метрика угол между прямыми
- 6. $\{[x:y:z]:x,y,z\in\mathbb{R},\ x^2+y^2+z^2\neq 0\}$ однородные координаты: $[x:y:z]=[\lambda x:\lambda y:\lambda z].\ Ax+By+Cz=0$ уравнение любой прямой на проективной плоскости
- 7. $\mathbb{R}P^2 = \mathbb{R}^2 \cup \mathbb{R}^1 \cup \mathbb{R}^0$

Сфера:

Упражнение: что будет, если склеить по-другому?

Еще: Если ленту повернуть на 2 полуоборота и склеить, то получится лента, гомеоморфная обычной. (в \mathbb{R}^2 не очевидно, в \mathbb{R}^4 переводится – упражнение)

Поверхности:

Поверхность можно задать, если есть многоугольник. Приклеивание ручки (тора):

Приклеивание пленки (ленты Мёбиуса):

Почему проективная плоскость с дыркой это лента Мёбиуса? Край ленты Мёбиуса — окружность.

Теорема 3.13. (почти) Любая двумерная поверхность – либо сфера с k ручками, либо проективная плоскость с k ручками, либо бутылка Клейна с k ручками.

Проективная плоскость – сфера с пленкой, бутылка Клейна – сфера с 2 пленками.

Пример 3.13. Приклеивание. X,Y — топологические пространства. $A\subset X, f:A\to Y$ — непрерывное отображение.

Приклеивание: $X \sqcup_f Y = X \sqcup Y/a \sim f(a)$.

Глава 4

Связность

4.1. Связность

Связность

Определение 4.1. (X,Ω) – топологическое пространство. Если существуют $U_1,U_2\subset\Omega$: $U_1\cup U_2=X;\ U_1\cap U_2=\varnothing;\ U_1,U_2\neq\varnothing,$ тогда X называется несвязным. Иначе X называется связным.

Переформулировки:

- 1. X несвязно $\Leftrightarrow U_1 = X \setminus U_2, \ U_1 \neq \emptyset$ и $U_1 \neq X$. U_1 открытое и U_1 замкнутое. X несвязно $\Leftrightarrow \exists U \neq \emptyset; \ U \neq X; \ U$ открыто и замкнуто одновременно.
- 2. X связно \Leftrightarrow $\forall U_1,U_2\in\Omega,$ если $U_1\cup U_2=X$ и $U_1\cap U_2=\varnothing\implies U_1=\varnothing$ или $U_2=\varnothing$

Определение 4.2. (X,Ω) — топологическое пространство. $A\subset X$ называется связным, если A связно как топологическое пространство с индуцированной топологией.

Переформулировка: A связно $\Leftrightarrow \forall U_1, U_2 \in \Omega_X$, если $(U_1 \cap A) \cup (U_2 \cap A) = A$ (то есть $U_1 \cup U_2 \supset A$), $(U_1 \cap A) \cap (U_2 \cap A) = \emptyset$ (т.е. $U_1 \cap U_2 \cap A = \emptyset$), то есть или $U_1 \cap A = \emptyset$, или $U_2 \cap A = \emptyset$

Еще раз: A связно $\Leftrightarrow \forall U_1, U_2 \in \Omega_X$ если $U_1 \cup U_2 \supset A$ и $U_1 \cap U_2 \cap A = \emptyset$, то или $U_1 \cap A = \emptyset$, или $U_2 \cap A = \emptyset$

Пример 4.1. Антидискретное пространство связно, т.к. любое подмножество связно.

Пример 4.2. Дискретное пространство. Если в дискретном пространстве больше 1 точки, то оно несвязно.

$$U_1 := \{x_0\} \quad U_2 = X \setminus U_1$$

Любое подмножество дискретного пространства, в котором больше 1 точки, несвязно

Пример 4.3. Топология Зариского (замкнутые = конечные). Конечные подмножества (более чем из 1 точки) несвязны. Бесконечные подмножества связны.

Если A — конечное подмножество, тогда в A топология такая: замкнутое = конечное = любое, значит в A дискретная топология. Если A — бесконечное и U открыто и замкнуто одновременно ($U \neq \emptyset, U \neq A$), тогда U — конечное и $A \setminus U$ — конечное, но так не бывает. Поэтому бесконечные связны, на них реализуется топология Зариского.

Пример 4.4. Стрелка на \mathbb{R} . Открытые – лучи $(a, +\infty)$. Стрелка связная. Потому что нет непересекающихся открытых подмножеств. Любое подмножество стрелки связно.

Пример 4.5. $\mathbb R$ со стандартной топологией. $A=[0,1]\cup[2,3]$ — несвязно. Пусть $U_1=(-\infty,1.5), U_2=(1.5,4)$ — Ок. Или $V_1=(-\infty,2), V_2=(1,+\infty)$ тоже Ок.

Теорема 4.1. Интервал (0,1) связен.

Доказательство. Пусть U_1, U_2 открыты в $\mathbb{R},\ U_1 \cup U_2 \supset (0,1),\ U_1 \cap U_2 \cap (0,1) = \varnothing,\ x_1 \in U_1 \cap (0,1) \neq \varnothing$ и $x_2 \in U_2 \cap (0,1) \neq \varnothing.$ НУО считаем $x_2 > x_1.$ Рассмотрим $[x_1;x_2]$

$$x_* := \sup\{x \in [x_1; x_2] \cap U_1\} \implies x_1 \leqslant x_* \leqslant x_2$$

1 случай: $x_1 < x_* < x_2$ (т.е $x_* \neq x_1$; $x_* \neq x_2$) Если $x_* \in U_1 \implies \exists \varepsilon > 0: (x_* - \varepsilon; x_* + \varepsilon) \subset U_1.$ $(x_* - \varepsilon; x_* + \varepsilon) \subset [x_1, x_2] \implies x_* + \varepsilon/2 \in U_1$ и $x_* + \varepsilon/2 \in [x_1; x_2] \implies x_*$ не sup. Если $x_* \in U_2 \implies \exists \varepsilon > 0: (x_* - \varepsilon; x_* + \varepsilon) \subset U_2.$ $(x_* - \varepsilon; x_* + \varepsilon) \subset [x_1, x_2] \implies x_*$ не является точной верхней гранью $U_1 \cap [x_1, x_2]$, т.к. $x_* - \varepsilon$ тоже верхняя грань. Получили противоречие. 2 случай: $x_*=x_1\in U_1$ Если U_1 открыто, то $\exists \varepsilon>0:[x_1;x_1+\varepsilon)\subset U_1,$ далее случай 1. 3 случай: $x_*=x_2\in U_2$ (упражнение)

Теорема 4.2. (X,Ω) – топологическое пространство. $A\subset X,\,A$ связно. $A\subset B\subset\operatorname{Cl} A\implies B$ связно.

Доказательство. Допустим, что B несвязно, тогда существуют U_1, U_2 открытые в X: $U_1 \cup U_2 \supset B, \ U_1 \cap U_2 \cap B = \emptyset, \ U_1 \cap B \neq \emptyset$ и $U_2 \cap B \neq \emptyset$.

 $U_1 \cup U_2 \supset A,\, U_1 \cap U_2 \cap A = \varnothing,$ но A связно, тогда НУО считаем $U_1 \cap A = \varnothing$

 $B\subset\operatorname{Cl} A.\ F\coloneqq\operatorname{Cl} A\cap(X\setminus U_1)$ замкнутое. $F\supset A$ и $F\subset\operatorname{Cl} A\Longrightarrow F=\operatorname{Cl} A\Longrightarrow X\setminus U_1=\emptyset$, т.е. $U_1\cap\operatorname{Cl} A=\emptyset$ и $U_1\cap B\neq\emptyset$ —противоречие.

Следствие 4.2.1. $\operatorname{Cl} A$ связно, если A связно.

Замечание. A связно, $\operatorname{Int} A$ не обязательно связна!

Теорема 4.3. (X,Ω) – топологическое пространство. A_1,A_2 связные и $A_1\cap A_2\neq\varnothing\implies A_1\cup A_2$ связное.

Доказательство. Допустим $A_1 \cup A_2$ несвязно. Тогда существуют $U_1, U_2 : U_1 \cup U_2 \supset A_1 \cup A_2, U_1 \cap U_2 \cap (A_1 \cup A_2) = \emptyset, U_1 \cap (A_1 \cup A_2) \neq \emptyset, U_2 \cap (A_1 \cup A_2) \neq \emptyset.$

Тогда с помощью U_1 и U_2 можно разбить $A_1\colon U_1\cup U_2\supset A_1,$ $U_1\cap U_2\cap A_1=\varnothing,$ но A_1 связно. НУО $U_1\cap A_1=\varnothing.$ Пусть $x_0\in A_1\cap A_2,$ тогда $x_0\in U_2.$

Аналогично с A_2 : $U_1 \cup U_2 \supset A_2, \ U_1 \cap U_2 \cap A_2 = \emptyset,$ но A_2 связно. тогда

- или $U_2 \cap A_2 = \emptyset$, но $x_0 \in A_2 \cap U_2$ так не бывает
- или $U_1\cap A_2=\varnothing$, но $U_1\cap A_1=\varnothing\implies U_1\cap (A_1\cup A_2)=\varnothing$ противоречие.

Теорема 4.4. $f: X \to Y$ непрерывно. $A \subset X$. A связно, значит f(A) связно.

Доказательство. Допустим f(A) несвязно $\implies \exists U_1, U_2$ – открытые в $Y:U_1\cup U_2\supset f(A),\ U_1\cap U_2\cap f(A)=\varnothing,\ U_1\cap f(A)\neq\varnothing,\ U_2\cap f(A)\neq\varnothing.$

Заметим, что $U_1, U_2 \subset Y$. $V_1 := f^{-1}(U_1), V_2 := f^{-1}(U_2)$ – открыты в X. Тогда $V_1 \cup V_2 \supset A$, $V_1 \cap V_2 \cap A = \emptyset$. $V_1 \cap A \neq \emptyset$ и $V_2 \cap A \neq \emptyset$ получается, что A несвязное – противоречие.

Следствие 4.4.1. Если X связно, то X/\sim связно.

Следствие 4.4.2. Связность – топологическое свойство, т.е. сохраняется при гомеоморфизме.

Следствие 4.4.3. $\mathbb{R} \not\simeq \mathbb{R}^2$, т.к. $\mathbb{R}^2 \setminus \{(x,y)\}$ связна, а $\mathbb{R} \setminus \{a\}$ несвязна.

Следствие 4.4.4. \mathbb{R} связна, т.к. $\mathbb{R} \simeq (0,1)$

Лемма 4.5. X связно $\Leftrightarrow \forall f: X \to \{0,1\}; \ f$ непрерывно, тогда f=const

Доказательство. Если X связен, то f(X) связно, то $f(x) = \{0\}$ или $f(x) = \{1\}$.

В обратную сторону: допустим X несвязно. Тогда $X=U_1\cup U_2,$ U_1,U_2 — открытые. $U_1,U_2\neq\varnothing$ и $U_1\cap U_2=\varnothing\implies f(U_1)=0,$ $f(U_2)=1$ отсюда f — непрерывно и $f\neq const.$

Теорема 4.6. $\{X_i\}_{i\in I}\ \forall X_i$ связно $\Leftrightarrow \prod_{i\in I} X_i$ связно.

Теорема 4.7. X, Y связны $\Leftrightarrow X \times Y$ связно.

Доказательство. В обратную сторону: $p_X: X \times Y \to X$ – непрерывно, если $X \times Y$ связно, то $p_X(X \times Y) = X$ связно по теореме 4.4.

Прямое доказательство: Допустим, что X,Y связны, но $X\times Y$ несвязно, тогда $\exists f: X\times Y\to \{0,1\}$ непрерывно и сюръективно. $f(x_0,y_0)=0, f(x_1,y_1)=1.$ Тогда чему равняется $f(x_1,y_0)$ пусть оно НУО равно 0. Рассмотрим $f|_{\{x_1\}\times Y}.$ Пусть $g(y):=f(x_1,y),$ $g:Y\to \{0,1\}.$ g непрерывно, т.к. $g=f\circ h$, тогда $h(x,y)=(x_1,y)$ – проекция.

$$g(y_0) = f(x_1, y_0) = 0$$

$$g(y_1) = f(x_1, y_1) = 1$$

Y- связно. Противоречие с леммой, т.к. g непрерывно, но $f \neq const.$

Следствие 4.7.1. $X_1,...,X_n$ связны $\Leftrightarrow X_1 \times X_2 \times ... \times X_n$ связно.

Следствие 4.7.2. \mathbb{R}^n связно. Полуплоскость $\simeq (0,+\infty) \times \mathbb{R}$ связно

4.2. Компоненты связности

Определение 4.3. (X,Ω) — топологическое пространство. K является компонентой связности X, если K связно и $\forall K' \supset K, K'$ несвязно. (т.е. K — максимальное связное подмножество X)

Теорема 4.8. Свойства компонент связности:

- 1. Компоненты связности совпадают или не пересекаются (отношение эквивалентности)
- 2. Компоненты связности замкнуты
- 3. Любое связное подмножество лежит в компоненте связности
- 4. $\forall x,y \in X$ лежат в одной компоненте связности тогда и только тогда, когда \exists связное $A:x,y \in A$

Доказательство. 1. $K_1 \neq K_2$ и $K_1 \cap K_2 \neq \emptyset$, то по теореме 4.3 $K_1 \cup K_2$ связно, значит K_1 и K_2 не компоненты

- 2. $\operatorname{Cl} K$ связно, значит $K = \operatorname{Cl} K$
- 3. Рассмотрим максимальное связное множество содержащее A. Это компонента связности содержащая A
- 4. прямо: $x, y \in K$, тогда A = K, обратно: пункт 3

Замечание. Компонента связности не обязана быть открытой

Пример 4.6. Компоненты связности \mathbb{Q} – отдельные точки.

Замечание. Если есть конечное количество компонент связность, то они открыты.

 $K_1,...,K_n$ – компоненты. K_1 замкнуто, значит $U_1=K_2\cup K_3\cup...\cup K_n$ открыто. Аналогично $U_i=X\setminus K_i$ открыто. $K_1=U_2\cap U_3\cap...\cap U_n$ открыто.

Теорема 4.9. (X,Ω) – топологическое пространство. $\{K_i\}$ – компоненты связности. Эквивалентные определения:

- 1. K_i открыты
- 2. $X = \bigsqcup_i K_i$ (как топологическое пространство) На K_i задана топология. На X есть два топологических пространства: исходная и топология объединения $\bigsqcup_i K_i$
- 3. $\forall x_0 \in X \; \exists \; \text{связная} \; U_{x_0}$ открытая окрестность

Доказательство. (1) \to (3) K_i – связная окрестность

- $(3) \to (1) \ K_i = \bigcup_{x_0 \in K} U_{x_0}$ открыто $(U_{x_0}$ открытое связное)
- $(2) \rightarrow (1), (3)$ упражнение

Упражнение: Есть X, K_i его компоненты. Есть Y, L_J – его компоненты, тогда $K_i \times L_j$ компоненты связности $X \times Y$.

4.3. Линейная связность

Определение 4.4. Путь в топологическом пространстве (X,Ω) – непрерывное отображение: $f:[0,1]\to X.$ f(0) начало пути, f(1) конец пути

Определение 4.5. x_0 и x_1 соединены путем, если существует путь с началом в x_0 и концом в x_1

Определение 4.6. X называется линейно связным, если любые две точки можно соединить путем.

 $A\subset X$ линейно связно, если A линейно связно как топологическое пространство (с индуцированной топологией) A линейно связно $\Leftrightarrow \forall x_0, x_1 \in A$ можно соединить путем в A.

Теорема 4.10. X линейно связно, значит X связно

Доказательство. Допустим X несвязно, тогда x_0, x_1 в разных компонентах связности. Рассмотрим $f:[0,1]\to X:f(0)=x_0, f(1)=x_1.$ Образ связного связен: f([0,1]) связное, значит лежит в одной компоненте, но f(0) и f(1) в разных. Противоречие.

Замечание. Обратное неверно.

Пример 4.7. Контрпример: график функции $\sin \frac{1}{x} \cup [-1,1]$ по *OY*

Иначе это $Cl(\text{график }\sin\frac{1}{x})$ — связное, но не линейно связное.

46

Замечание.

- 1. A линейно связное, $\operatorname{Cl} A$ не обязательно линейно связное
- 2. Компоненты линейной связности не обязательно замкнуты
- 3. Отношения «соединены путем» отношения эквивалентности:
 - Рефлексивность: $x_0 \sim x_0 : f(t) = x_0$

 - \bullet Транзитивность: f(t) соединяет x_0 и $x_1,\,g(t)$ соединяет x_1 и $x_2.$

$$h(t) = \begin{cases} f(2t) & t \in \left[0, \frac{1}{2}\right] \\ g(2t-1) & t \geqslant \frac{1}{2} \end{cases}$$

Пример 4.8. Выпуклые множества. A называется выпуклым, если для любой точки $x_0, x_1 \in A: [x_0, x_1] \subset A$. Такое множество линейно связно.

$$f(t) = (1-t)x_0 + tx_1$$

Пример 4.9. Звездные множества \mathbb{R}^n . A называется звездным, если $\exists x_0 \in A: \forall x_1 \in A \ [x_0, x_1] \subset A.$

Замечание. Связность и линейная связность – топологические свойства.

Теорема 4.11 (Вейерштрасса о промежуточном значении). X – связное пространство, $f:X\to\mathbb{R}$ непрерывная функция. $f(x_0)=a,\ f(x_1)=b.$ Пусть $a\leqslant c\leqslant b\implies \exists x_*\in X: f(x_*)=c$

Доказательство. Допустим противное: $f^{-1}(c) = \emptyset$. Пусть $U_1 = (-\infty,c),\ U_2 = (c,+\infty)$. Тогда $f^{-1}(U_1)$ и $f^{-1}(U_2)$ – открытые непересекающиеся подмножества. $f^{-1}(U_1) \cup f^{-1}(U_2) = X.\ x_0 \in f^{-1}(U_1)$ и $x_1 \in f^{-1}(U_2)$, значит X несвязно.

Пример 4.10. Блин – открытое связное ограниченное подмножество \mathbb{R}^2 . Его можно разрезать прямой на 2 равновеликие части.

$$f(t) = S_1$$
 $f(-\infty) = 0$ $f(+\infty) = S \implies \exists t : f(t) = S/2$

(надо доказать непрерывность, например, f).

Глава 5

Компактность

5.1. Компактность

Определение 5.1. (X,Ω) – топологическое пространство,

$$\{U_i\}_{i\in I}\subset\Omega:\bigcup_i U_i=X.$$

Такое $\{U_i\}_{i\in I}$ – покрытие X. (точнее открытое покрытие) $\{V_j\}_{j\in J}$ называется подпокрытием $\{U_i\}_{i\in I}$, если $\forall j\ \exists i: V_j=U_i$ и $\{V_j\}$ – покрытие.

По умолчанию: покрытие = открытое покрытие.

Определение 5.2. X называется компактным, если $\forall \{U_i\}_{i\in I}$ покрытия X можно выбрать $U_{i_1},...,U_{i_n}$ конечное подпокрытие.

В старых учебниках это называется бикомпактностью.

Определение 5.3. $A\subset X$ компактно, если A компактно в индуцированной топологии или $\forall\{U_i\}_{i\in I}\subset\Omega:\bigcup U_i\supset A\ \exists U_{i_1},...,U_{i_n}:\bigcup_{k=1}^n U_{i_k}\supset A$

Пример 5.1. X – антидискретное пространство, значит X компактно.

Пример 5.2. X – конечное, тогда X компактно

 $X = \{x_1,...,x_n\}$ и $\{U_i\}_{i \in I}$ – некоторое покрытие. Различных U_i не более 2^n , поэтому считаем весь набор U_i конечным.

Пример 5.3. Бесконечное дискретное пространство не компактно.

 $X = \bigcup_{x_i \in X} \{x_i\}, \ \{x_i\}$ – открыто. Ни одно из подмножеств нельзя выкинуть. Конечного подпокрытия быть не может.

Пример 5.4. Топология Зариского компактна.

Пусть $X=\bigcup_{i\in I}U_i,\ U_{i_0}=X\setminus\{x_1,x_2,...,x_n\}.$ Но $x_1\in U_{i_1},x_2\in U_{i_2},...,x_n\in U_{i_n}.$ $\{U_{i_k}\}_{k=0}^n$ – покрытие X. Из этого следует, что $\forall A\subset X$ компактно.

Пример 5.5. Стрелка: топология на \mathbb{R} , где $(x; +\infty) + \emptyset + \mathbb{R}$ открытые. Сама по себе не компактна.

 $U_i=(-i;+\infty), \bigcup_{i=1}^\infty U_i=\mathbb{R}.$ Но конечного набора, который бы давал \mathbb{R} не существует.

Какие подмножества стрелки является компактными?

 $A = [0, \infty)$, такое A компактно.

 $B \subset \mathbb{R}, \ B$ компактно тогда и только тогда, когда $\inf B \in B$. Если $\inf B = x_0$ и $x_0 \notin B$, тогда $U_n = (x_0 + 1/n; +\infty)$. Тогда $\bigcup_{n=1}^{\infty} U_n \supset B$, но конечное подпокрытие выбрать нельзя.

Пример 5.6. $\mathbb{R}^{(n)}$ со стандартной топологией. Само по себе не компактно (см. стрелку): $U_i = (-i; +\infty)$

Какие подмножества \mathbb{R}^n компактны? Читайте далее!

Теорема 5.1. X – компактное пространство. A – замкнутое подмножество в X, тогда A компактно.

Доказательство. Пусть $\{U_i\}_{i\in I}$ покрывает A. $\{U_i\}$ \cup $\{X\setminus A\}$ – открытое покрытие X, значит существует конечное подпокрытие. Уберем из него $X\setminus A$ (если есть), получим конечное подпокрытие A.

Теорема 5.2. $f: X \to Y$ непрерывно. $A \subset X$. A компактно, тогда f(A) компактен.

Доказательство. Пусть $\{U_i\}_{i\in I}$ покрывают f(A). Тогда $\{f^{-1}(U_i)\}$

открытое покрытие A. Тогда

$$\exists U_{i_1},...,U_{i_n}: \bigcup_{k=1}^n f^{-1}(U_{i_k})\supset A,$$

значит $U_{i_1},...,U_{i_n}$ покрывают f(A)

Следствие 5.2.1. Компактность – топологическое свойство.

Теорема 5.3 (Тихонова). $\prod_{i \in I} X_i$ компактно $\Leftrightarrow \forall i \ X_i$ компактно.

Доказательство. Не будет.

Теорема 5.4. X и Y компактны $\Leftrightarrow X \times Y$ компактно

Доказательство. В обратную сторону: $p: X \times Y \to X$ – проекция, она непрерывна. $X \times Y$ компактно, значит по теореме 5.2 $p(X \times Y) = X$ тоже компактно.

Прямо. рассмотрим любое открытое покрытие $X \times Y$:

1. Считаем, что это покрытие прямоугольными множествами, т.е. $\{U_i \times V_i\}_{i \in I}, U_i$ открыто в X, V_i открыто в Y. Достаточно выбрать конечное подмножество из него.

2. $\forall x_0 \in X, \ \{x_0\} \times Y \simeq Y$ в $X \times Y$. Существует минимальное покрытие $U_1 \times V_1, ..., U_n \times V_n$, которое покрывает $\{x_0\} \times Y$, значить $V_1, ..., V_n$ покрывает Y.

 $W_{x_0}\coloneqq\bigcap_{i=1}^n U_i$ – открытое в X подмножество. $x_0\in W_{x_0},$ тогда $\{W_{x_0}\}_{x_0\in X}$ – покрытие X, следовательно существует

 $W_{x_1},...,W_{x_k}$ – конечное подпокрытие.

$$W_{x_j} \leftrightarrow \{U_{j_1} \times V_{j_1}, ..., U_{j_{n_j}} \times V_{j_{n_j}}\}$$

Возьмем все множества, соответствующие W_j . Это конечный набор. Почему покрытие? $\forall (x,y) \in X \times Y, \ x \in W_{x_l}, \ (x_l,y) \in U_i \in V_i \ (U_i \times V_i \ \text{из нашего набора}). \ x \in U_i \ \text{и} \ y \in V_i, \ (x,y) \in U_i \times V_i$

5.2. Компактность и хаусдорфовость

Аксиома 5.5 (Хаусдорфа). X называется хаусдорфовым, если $\forall x_0 \neq x_1 \in X \; \exists U_{x_0}, U_{x_1}: U_{x_0} \cap U_{x_1} = \varnothing$

Пример 5.7. Любое метрическое пространство хаусдорфово.

$$U_{x_0} = B(x_0, \rho(x_0, x_1)/2)$$

$$U_{x_1} = B(x_1, \rho(x_0, x_1)/2)$$

Замечание. X хаусдорфово, $A \subset X \implies A$ хаусдорфово.

Теорема 5.6. X – хаусдорфово пространство. $A \subset X$, A компактно в X, тогда A замкнуто.

Замечание. Докажем, что $X\setminus A$ открыто. Для этого возьмем любой $x_0\in X\setminus A$. Найдем $U_{x_0}\cap A=\varnothing$

$$\bigcup_{x_0} = X \setminus A - \text{открыто}$$

Это базовая схема как доказать замкнутость подмножеств.

Доказательство. Рассмотрим $\forall y \in A \; \exists U_{x_0y} \; \text{и} \; V_y$ – окрестности: $x_0 \in U_{x_0y}, y \in V_y, \; U_{x_0y} \cap V_y = \varnothing \; (\text{по хаусдорфовости}).$ $\{V_y\}_{y \in A}$ – покрывают A, тогда $\exists y_1,...,y_n:V_{y_1},...,V_{y_n}$ – покрытие A, рассмотрим $\bigcap_{i=1}^n U_{x_0y_i}$ открытое подмножество, не пересека-

ющееся с $V_{y_i} \forall i=1,...,n,$ значит $\bigcap_{i=1}^n U_{x_0y_i}$ не пересекается с A.

Следствие 5.6.1. X – компактно и хаусдорфово, $A \subset X$, тогда A компактно $\Leftrightarrow A$ замкнуто.

Теорема 5.7. $f: X \to Y$ непрерывно. X компактно, Y хаусдорфово. $A \subset X$, A замкнутое, значит f(A) замкнут.

Доказательство. A замкнуто, тогда по теореме 5.1 A компактно, значит по теореме 5.2 f(A) компактен, тогда по теореме 5.6 f(A) замкнут.

Следствие 5.7.1. $f: X \to Y$ непрерывное и биекция. X компактно. Y хаусдорфово. A открытое, тогда f(A) открыт.

Доказательство. A открытое, значит $X \setminus A$ замкнутое, значит $f(X \setminus A)$ замкнут, значит f(A) открыт.

$$f(X \setminus A) = Y \setminus f(A)$$
, если f биективно

Следствие 5.7.2. $f: X \to Y$ непрерывная биекция, X компактно, Y хаусдорфово, тогда f гомеоморфизм.

Кривые Пеано: $f:[0,1] \rightarrow [0,1] \times [0,1]$ — непрерывное и сюръективное отображение. В пределе непрерывная кривая, которая заметает весь квадрат. Кривая Пеано не может быть биективной!

5.3. Компактность в \mathbb{R}^n

Лемма 5.8 (Лебега). $I = [0,1], \{U_i\}$ – открытое покрытие I, тогда существует $\varepsilon > 0$ (число Лебега, зависит от покрытия): $\forall x_0 \in I \ (x_0 - \varepsilon; x_0 + \varepsilon) \subset U_i$ для некоторого i.

Доказательство. Допустим такого ε не существует. $\varepsilon_i \coloneqq 1/2^i$ (или $\varepsilon_i \to 0$).

 $\exists x_i: (x_i-arepsilon_i;x_i+arepsilon)$ не попадает ни в одно U_i . $\{x_i\}_{i=1}^\infty$ – последовательность точек I. $\exists x_{i_j} \to x_0$ в [0,1]. $x_0 \in U_i$, U_i открыто, значит $\exists \varepsilon > 0: (x_0-arepsilon;x_0+arepsilon) \subset U_i$

 $\exists N_1:$ если $j>N_1,$ то $|x_0-x_j|<\varepsilon/2.$ Так же $\exists N_2:\varepsilon_{N_2}<\varepsilon/2.$ Выберем $N:=\max\{N_1,N_2\},$ тогда

$$(x_{i_i}-\varepsilon_{i_i};x_{i_i}+\varepsilon_{i_i})\subset (x_0-\varepsilon;x_0+\varepsilon)\subset U_i$$

Противоречие, значит число Лебега существует.

Теорема 5.9. [0,1] компактен

Доказательство. $\{U_i\}$ покрывает I=[0,1], тогда по теореме 5.8 $\exists \varepsilon$ — число Лебега. $x_0=0, x_k=k\varepsilon \implies \exists N: x_N>1$. Тогда $(x_{k-1};x_{k+1})=(x_k-\varepsilon;x_k+\varepsilon)\subset U_{i_k}$. Рассмотрим $U_{i_1},U_{i_2},...,U_{i_{N-1}}$ — покрытие [0;1].

Замечание. (0,1) не компактно. $U_k = (1/k,1)$. Нельзя выбрать конечное подпокрытие

Следствие 5.9.1. $[a_1,b_1] imes ... imes [a_n,b_n]$ компактно в \mathbb{R}^n

Определение 5.4. $A \subset \mathbb{R}^n$, A называется ограниченным, если $A \subset B(0,N)$, такое N существует. Или $A \subset [a_1,b_1] \times ... \times [a_n,b_n]$

Теорема 5.10 (Компактность подмножества в \mathbb{R}^n). $A \subset \mathbb{R}^n$, A компактно $\Leftrightarrow A$ — замкнуто и ограниченно.

Доказательство. Прямое доказательство A замкнуто по 5.6, Aограниченно, иначе $\{B(0,n)\}_{n=1}^{\infty}$ – покрытие, из которого нельзя выбрать конечное.

Обратное доказательство: A ограниченно, значить $A \subset X =$ $[a_1, b_1] \times ... \times [a_n, b_n], X$ компактно по 5.9.1, A замкнуто в X, значит по 5.1 A компактно.

Теорема 5.11. $f: X \to \mathbb{R}$ – непрерывная функция, X компактен, тогда $\exists x_0: f(x_0) \geqslant f(x) \ \forall x \in X$. (т.е. непрерывная функция на компакте достигает своего максимума)

Доказательство. f(X) компактна в \mathbb{R} , значит f(X) замкнута и ограничена. Ограничена, значит $\sup f(X) < +\infty$. Замкнута, значит $\sup f(X) \in f(X) \implies \sup$ достигается.

Пример 5.8. В прошлом семестре: брали квадратичную форму

$$F(x,y,z) = a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$$

Поворотом можно избавиться от двойных слагаемых. Для этого мы проецировали на сферу

$$F(x,y,z)|_{S^2}$$
 $S^2 := \{(x,y,z) : x^2 + y^2 + z^2 = 1\}$

 (x_*,y_*,z_*) – максимум F на S^2 F – непрерывна, S^2 – компактна, значит существует максимум.

Пример 5.9 (Задача Фаньяно). ABC – остроугольный треугольник. Хотим выбрать $A' \in [BC], B' \in [AC], C' \in [AB]$, так чтобы $P_{A'B'C'} \rightarrow$ min. Ответ: это основания высот.

Если A'B'C' – искомый, тогда $\angle C'A'B = \angle B'A'C$. Если нет, то $A'': \angle C'A''B = \angle B'A''C$.

$$C'A'' + A''B' < C'A' + A'B'$$

(это доказано в оптическом свойстве эллипса.)

Значит оптимальная конфигурация: с равными соответствующими углами. Такое бывает, если A', B', C' — основания высот. (почему? — упражнение)

Принцип. Из множества конфигураций M есть лишь одна не улучшаемая, значит именно она оптимальная.

Почему этот принцип вообще работает? Он работает не всегда, он работает только если M компактна.

В задаче Фаньяно $M=\{(A';B';C')\},\ A'\in[BC]$ и т.д, значит $M\simeq [a_1,a_2]\times [b_1,b_2]\times [c_1,c_2]\implies M$ компактно.

Пример 5.10. Пример, в котором принцип не работает. Найти $C:S_{ABC} \to \max$, если есть область, которая не должна пересекать ABC и куда нельзя поставить C. Очевидно, что такой C нет.

Любая конфигурация, кроме C' улучшаема.

Пример 5.11 (Задача Томсона). Расположить n единичных одноименных зарядов на S^2 с минимальной потенциальной энергией.

$$E = \sum_{i \neq j} \frac{1}{\rho^2(a_i, a_j)} \to \min$$

Задача полностью не решена. Но мы знаем, что min достигается. $E: M \to \mathbb{R}.\ M \simeq S^2 \times S^2 \times ... \times S^2 \ (n$ раз). Но есть проблема с тем, что знаменатель может обратиться в 0. Исправим это:

$$E'(a_1,a_2,...,a_n) = \begin{cases} E(a_1,...,a_n) & \rho(a_i,a_j) > \varepsilon \\ \sum_{\rho(a_i,a_j) > \varepsilon} \frac{1}{\rho^2(a_i,a_j)} + \sum_{\rho(a_i,a_j) \leqslant \varepsilon} \frac{1}{\varepsilon^2} \end{cases}$$

 ε взять такое, чтобы не мешало.

Пример 5.12. Есть n сотрудников, существует k групп из них, таких, что любые 2 группы пересекаются. Требуется доказать, что сотрудников можно расположить на окружности длиной 1, так чтобы любая группа была растянута по дуге не меньше чем $\frac{1}{3}$.

Решение: пусть x – расстановка сотрудников, S(x) – минимальная длина дуги, которая покрывает какую-то группу.

Хотим доказать: $\exists x_* : S(x_*) \geqslant \frac{1}{3}$.

Возьмем x_* , для нее $S(x_*) = \max_{s} S \geqslant \frac{1}{3}$

5.4. Локальная компактность

Определение 5.5. X называется локально компактным, если

$$\forall x_0 \; \exists U_{x_0} : \operatorname{Cl} U_{x_0}$$
 компактна

Теорема 5.12 (Компактификация по П.С. Александрову). X – локально компактное хаусдорфово пространство, тогда

$$\exists \hat{X} = X \cup \{\infty\}$$

X – подпространство \hat{X} и \hat{X} – компактно и хаусдорфово.

Пример 5.13.

$$\mathbb{R} \cup \{\infty\} \simeq S^1$$

$$\mathbb{R}^2 \cup \{\infty\} \simeq S^2$$

$$\mathbb{R}^n \cup \{\infty\} \simeq S^n$$

Доказательство. $\hat{X} = X \cup \{\infty\}$, но какая топология?

Пусть $U \subset \hat{X}$. Если $\infty \notin U$, то U открыто в $\hat{X} \Leftrightarrow U$ открыто в X. Если $\infty \in U \implies U$ открыто $\Leftrightarrow X \setminus U$ компактно.

Это топология: $X \setminus U$ компактно, значит по хаусдорфовости замкнуто.

$$X\setminus\bigcup_{i\in I}U_i=\bigcap_{i\in I}(X\setminus U_i)\subset X\setminus U_{i_0}$$

$$X\setminus\bigcap_{i=1}^nU_i=\bigcup_{i=1}^n(X\setminus U_i)-\text{компактно}$$

Это топология, $X\subset \hat{X}$ (в смысле топологии) (упражнение) Почему \hat{X} компактен?

 $\{U_i\}_{i\in I}$ – покрытие $\hat{X},\infty\in U_{i_0}$. $X\backslash U_{i_0}$ – компактно. (т.е. остальные множества покрывают компакт, можно выбрать конечное число) \hat{X} – хаусдорфово?

 $x,y\neq\infty$, тогда по хаусдорфовости X $\exists U_x,U_y:U_x\cap U_y=\varnothing$. x,∞ как определить? $\exists U_x:\operatorname{Cl} U_x$ компактна. $U_\infty\coloneqq \hat{X}\setminus\operatorname{Cl} U_x$. U_∞ открыто в \hat{X} .

Замечание. Пересечение компактов не обязательно компакт! Но в хаусдорфовых пространствах пересечение компактов компакт. Потому что в хаусдорфовом пространстве компакт – это замкнутое подмножество некоторого компакта.

Замечание. Объединение конечного числа компактов – компакт.

Пример 5.14. $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$.

 $\infty \in U.$ Uоткрыто $\Leftrightarrow \mathbb{Q} \setminus U$ компактно.

Докажем, что ∞ и 0 не разделяются. Пусть они разделяются, тогда U_0 и U_∞ , $U_0\supset (-\varepsilon,\varepsilon)\cap \mathbb{Q}\implies \hat{\mathbb{Q}}\setminus U_\infty$ не компактно.

Теорема 5.13.

- 1. X локально компактно и хаусдорфово, $x_0 \in X, U_{x_0}$ открытая окрестность x_0 , тогда $\exists V_{x_0} : \operatorname{Cl} V_{x_0} \subset U_{x_0}$ и $\operatorname{Cl} V_{x_0}$ компактно. (X локально компактно и хаусдорфово, $U \subset X$ открыто, тогда U локально компактно и хаусдорфово)
- 2. X локально компактно и хаусдорфово, $K\subset X$ компакт. $K\subset G,\ G$ открытое, тогда \exists открытое $G':G\supset \mathrm{Cl}\, G'\supset G'\supset K$

Доказательство.

1. X локально компактно, значит существует $W_{x_0}: \operatorname{Cl} W_{x_0}$ компактно. $x_0 \in X \ \forall y \notin U$. Существуют непересекающиеся окрестности $W_{x_0,y}$ и W_y . Если $y \in \operatorname{Cl} W_{x_0} \cap (X \setminus U)$. $\operatorname{Cl} W_{x_0} \cap (X \setminus U)$ компакт (пересечение замкнутых — замкнуто, оно подмножество $\operatorname{Cl} W_{x_0}$ — компакт).

 $\{W_y\}$ — покрытие $F \Longrightarrow \exists$ конечное подпокрытие $y_1,...,y_n:\{W_u,\}_{i=1}^n$ — подпокрытие F.

 $V_{x_0} = \bigcap_{i=1}^n W_{x_0,y_i}$ – открытая окрестность x_0 .

$$\operatorname{Cl} V_{x_0} \subset \bigcap_{i=1}^n \operatorname{Cl} W_{x_0,y_i} \subset U$$

$$\operatorname{Cl} W_{x_0,y_i} \subset X \setminus W_{y_i} \implies \bigcap \operatorname{Cl} W_{x_0,y_i} \subset X \setminus \left(\bigcup_{i=1}^n W_{y_i}\right) \subset U$$

2. $K \subset U, \forall x \in K \; \exists V_x : V_x \subset \operatorname{Cl} V_x \subset U \; (\text{по 1 пункту}).$ $\{V_x\}_{x \in K} - \text{покрытие } K, \; \text{значит существует конечное подпокрытие} \; \{V_{x_1},...,V_{x_k}\}.$

$$G' := \operatorname{Cl}\left(\bigcup_{i=1}^k V_{x+i}\right)$$

Глава 6

Аксиомы счетности

6.1. Сепарабельность

Определение 6.1. (X,Ω) — топологическое пространство. Говорят, что X обладает второй аксиомой счетности, если у X есть счетная база.

Определение 6.2. (X,Ω) – топологическое пространство. $A\subset X$ называется всюду плотным в X, если $\operatorname{Cl} A=X$

Определение 6.3. X называется сепарабельным, если существует счетное всюду плотное множество в X.

Теорема 6.1. Из второй аксиомы счетности следует сепарабельность

Доказательство. $\{U_i\}_{i\in I}^{\infty}$ — счетная база. $x_i\in U_i \implies \{x_i\}_{i=1}^{\infty}$ — счетное всюду плотное. Тогда $\mathrm{Cl}\{x_i\}_{i=1}^{\infty}=X$? Допустим противное: $y\in\mathrm{Ex}\{x_i\}_{i=1}^{\infty}$, значит $\mathrm{Ex}\{x_i\}_{i=1}^{\infty}=\bigcup_j U_{i_j}\ni x_{i_j}$. Внешность множества $\{x_i\}_{i=1}^{\infty}$ содержит x_{i_j} — противоречие.

Замечание. Вторая аксиома счетности и сепарабельность – топологические свойства.

Здесь и далее в этой главе под словом «счетное» подразумевается «не более чем счетное».

Пример 6.1. X НБЧС, тогда X сепарабельно.

Пример 6.2. X – антидискретное, тогда вторая аксиома счетности и сепарабельность есть.

Пример 6.3. X – дискретное:

- 1. X счетное, тогда есть вторая аксиома счетности: база одноточечные подмножества
- 2. X более чем счетное, нет ни сепарабельности, ни второй аксиомы счетности. СІ A=A в дискретной топологии.

Пример 6.4. На \mathbb{R}^n со стандартной топологией, есть вторая аксиома счетности и сепарабельность

Рассмотрим $\mathfrak{B}=\{B(x,\varepsilon):x,\varepsilon>0\in\mathbb{Q}\}.$ Это счетная база. Возьмем $y_0\in B(x_0,\varepsilon)$, где x_0,ε не обязательно рациональные. $\rho:=\rho(x_0,y_0),$ тогда существует z_0 с рациональными координатами: $\rho(z_0,y_0)<\frac{\varepsilon-\rho}{2},$ выберем $r\in\mathbb{Q}_+\rho(z_0,y_0)< r<\frac{\varepsilon-\rho}{2}.$ Рассмотрим $B(z_0,r)$ такой что y_0 принадлежит ему. $B(z_0,r)\subset B(x_0,\varepsilon).$

Сепарабельность: множество точек с рациональными координатами – счетное всюду плотное.

Замечание. НЕ любое метрическое пространство обладает второй аксиомой счетности или сепарабельностью.

Пусть X континуальное, $\rho(x,y)=1$ если $x\neq y$, тогда порождается дискретная топология.

Пример 6.5. $X = \mathbb{R}$ с топологией Зариского (замкнутые, значит конечные). X сепарабельно (любое бесконечное множество всюду плотно). Второй аксиомы счетности нет.

Предположим, что она есть: $\{U_i\}_{i\in I}^{\infty}$ – счетная база. $U_i=X\setminus\{x_{i_1},...,x_{i_{n_i}}\}$, тогда $\bigcup_{i=1}^{\infty}\{x_{i_1},...,x_{i_{n_i}}\}$ счетно. А $\mathbb R$ несчетно, тогда $\exists y\in U_i\ \forall i.\ U=X\setminus\{y\},\ y\notin U\neq\bigcup_j U_j\ni y$, значит счетной базы нет.

Теорема 6.2 (Линделёфа). Если на X есть вторая аксиома счетности, тогда из любого открытого покрытия X можно выбрать НБЧС подпокрытие.

Доказательство. $X=\bigcup_{i\in I}U_i, \mathfrak{B}=\{B_i\}_{i=1}^{\infty}$ — счетная база. $\forall i\ U_i=\bigcup_j B_j$

 $\{U_i\}$ вполне упорядочены (по теореме Цермело так можно). Рассмотрим U_{i_1} , отметим все $B_j\subset U_{i_1}$. Пусть $x_2\notin U_{i_1}\Longrightarrow \exists U_{i_2}\ni x_2$ тогда $U_{i_2}=\bigcup_j B_j$, отметим все такие B_j . На этом шаге мы отметили как минимум одно новое B_j .

Продолжаем: $x_3 \notin U_{i_1} \cup U_{i_2} \implies x_3 \in U_3 = \bigcup_j B_j$, отметили новое B_j .

Таких шагов нельзя сделать более чем счетное количество. Таких U_{i_k} НБЧС количество, после которых новую точку, не входящую в их объединение, нельзя выбрать.

6.2. Секвенциальная компактность

Определение 6.4. $\{x_n\}_{n=1}^{\infty}$ — последовательность в X. Говорим, что $x_0 \in \lim_{n \to \infty} x_n$ если ($\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N$ выполнено $\rho(x_n, x_0) < \varepsilon$ или $x_n \in B(x_0, \varepsilon)$) $\forall U_{x_0}$ окрестность $\exists N \in \mathbb{N} : \forall n > \mathbb{N} \ x_n \in U_{x_0}$

Пример 6.6. \mathbb{R} с топологией Зариского. Пусть $x_i \neq x_j \implies \forall x_0 \ x_n \to x_0$

$$\forall U_{x_0} = X \setminus \{a_1, a_2, ..., a_n\} \ \exists N : \forall n > N \ x_n \neq a_n \implies x_n \in U_{x_0}$$

Пример 6.7. \mathbb{R} с топологией типа Зариского: замкнутые = НБЧС. Если $x_i \neq x_j$, то $\nexists x_0 : x_n \to x_0$. Возьмем любой x_0 (считаем, что $x_0 \neq x_n$, иначе начнем последовательность с x_{n+1})

$$U_{x_0} = \mathbb{R} \setminus \{x_1, x_2, ..., \}$$
 – открыто

 U_{x_0} не содержит ни одного члена последовательности.

Замечание. Если X хаусдорфово, тогда предел не более чем единственный.

Доказательство. Допустим x_0 и \tilde{x}_0 – пределы x_n .

$$U_{x_0} \cap U_{\tilde{x}_0} = \emptyset$$

Тогда с некоторого места: все $x_n \in U_{x_0}$ и все $x_n \in U_{\tilde{x}_0}$. Но это противоречит с хаусдорфовостью.

Определение 6.5. X называется секвенциально компактным пространством, если $\{x_i\}_{i=1}^{\infty} \subset X \; \exists x_{n_k} \xrightarrow[k \to \infty]{} x_0$ (из любой подпоследовательности можно выбрать сходящуюся).

Определение 6.6. X обладает первой аксиомой счетности если $\forall x_0 \in X$, существует счетная база окрестностей x_0 , т.е. $\exists \{B_{x_0,i}\}_{i=1}^\infty: x_0 \in B_{x_0,i} \ x_0 \in \forall U \text{ открытому}$ $\exists B_i: x_0 \in B_{x_0,i} \subset U \Longrightarrow \{B_{x_0,i}\}_{i,x_0}$ – база топологии. Это обобщение $B(x_0,\varepsilon)$.

Замечание. X – метрическое пространство, тогда X обладает первой аксиомой счетности. $B(x_0,\varepsilon)$, где $\varepsilon\in\mathbb{Q}_+$.

Пример 6.8. \mathbb{R} с топологией Зариского не обладает первой аксиомой счетности.

Допустим: есть счетное $\{U_{x_0,i}\}\ \forall x_0$. Рассмотрим $U_{x_0,1}, U_{x_0,2}$ и так далее, каждое из них НЕ содержит счетное число точек, в итоге счетный набор точек НЕ содержится в каком-то из этих множеств. Значит $\exists y \in U_{x_0,i} \ \forall i$. Возьмем $U = \mathbb{R} \setminus \{y\}$ – окрестность x_0 . $\nexists U_{x_0,i} \subset U$ т.к. $U \not\ni y$.

Замечание. Из второй аксиомы счетности следует первая аксиома счетности.

Определение 6.7. a называется точкой накопления, если для любой U_a выполнено: $U_a \cap A$ – бесконечно.

Замечание. Точка накопления не обязательно лежит в A.

[Примечание редактора: для следующих теорем большое доказательство будет разбито на несколько блоков для простоты восприятия]

Теорема 6.3. Для утверждений:

- 1. X компактно
- 2. $A \subset X : |A| = \infty \implies \exists a$ точка накопления A.
- 3. Х секвенциально компактно
- 4. $\forall F_1\supset F_2\supset\dots$ и $F_i\neq\varnothing$ замкнутое, тогда $\bigcap_{i=1}^\infty F_i\neq\varnothing$

выполнено:

Доказательство. Из 1 в 2:

Допустим противное: любая $a \in X$ – не точка накопления. Тогда $\exists U_a : U_a \cap A$ – конечна.

Соберем все $\{U_a\}_{a\in X}$ – открытое покрытие X, значит $\exists U_{a_1},...,U_{a_n}$ – конечное подпокрытие.

Каждое $U_{a_i} \cap A$ — конечное, тогда $\bigcup_{i=1} (U_{a_i} \cap A)$ — конечное. Но это объединение есть A — противоречие.

Доказательство. Из 2 в 3:

Хотим для любой последовательности иметь сходящуюся подпоследовательность. A – множество членов последовательности.

Если A конечно, то какой-то член повторяется бесконечное количество раз, его возьмем как подпоследовательность.

Пусть A бесконечное, тогда возьмем x_0 – точка накопления. По первой аксиоме счетности: существует $\{U_i\}_{i=1}^\infty$ – счетная база окрестностей x_0 и считаем, что $U_1 \supset U_2 \supset U_3 \supset \dots$

Пусть V_1,V_2,\dots – какая-то счетная база окрестностей. Тогда $U_1:=V_1,\,U_2:=V_1\cap V_2,\,U_3:=V_1\cap V_2\cap V_3$ и т.д.

 $|U_i\cap A|=\infty$, значит выберем $a_i\in U_i\cap A$ так, чтобы все a_i различны и номер a_i в последовательности больше номеров предыдущих выбранных. Тогда $a_i\to x_0$. Почему?

 $\forall U$ – окрестность x_0 $\exists U_n \subset U, U_{n+1} \subset U, U_{n+2} \subset U...$ Рассмотрим

 $a_n\in U_n\subset U,\ a_{n+1}\in U_{n+1}\subset U$ и т.д. $\forall k\geqslant n\ a_k\in U\implies\lim_{n\to\infty}a_n=x_0.$

Доказательство. Из 3 в 4:

 $F_1\supset F_2\supset F_3\supset\ldots$ — замкнутые, $F_i\neq\varnothing$. $F_i\neq F_{i+1}$ (иначе сократим). Хотим $\bigcap F_i\neq\varnothing$.

Выберем $x_n \in F_n \backslash F_{n-1}$. Отсюда $\{x_n\}$ – последовательность. Тогда $\exists x_{n_k} \to x_0$. Утверждение: $x_0 \in \bigcap_{i=1}^\infty F_i$. Покажем, что $x_0 \in F_i \ \forall i$. Допустим: $x_0 \notin F_m$. Выберем $U_m \coloneqq X \backslash F_m$ – открытое. $x_0 \in U_m$ значит $\exists N : \forall k \geqslant N \ x_{n_k} \in U_m$. Все $x_{n_k} \notin F_m$.

HO если $n_k \geqslant m$, то $x_{n_k} \in F_{n_k} \subset F_m$. Противоречие.

Доказательство. Из 4 в 1:

X удовлетворяет второй аксиоме счетности. Пусть $\{U_i\}$ – любое открытое покрытие X. Считаем, что $\{U_i\}$ счетно (по 6.2), т.е. $\{U_i\}=\{U_1,U_2,\ldots\}$.

Построим замкнутые множества: $V_1=U_1, V_2=U_1\cup U_2,...,V_n:=\bigcup_{i=1}^n U_i.\ V_1\subset V_2\subset V_3\subset ...$ – открытые.

Тогда $F_i:=X\setminus V_i$ – замкнутые. $F_1\supset F_2\supset F_3\supset\dots$ Почему $F_i\neq\varnothing$? Если $F_k=\varnothing\implies V_k=X.$ $U_1\cup\dots\cup U_k=X$ – победа. Иначе по $(3)\bigcap_{k=1}^\infty F_k\neq\varnothing\implies\bigcup_{k=1}^\infty V_k\neq X.$ Тогда и $\bigcup_{k=1}^\infty U_k\neq X$

Иначе по (3) $\bigcap_{k=1}^{\infty} F_k \neq \emptyset \implies \bigcup_{k=1}^{\infty} V_k \neq X$. Тогда и $\bigcup_{k=1}^{\infty} U_k \neq X$ значит $\{U_k\}$ не покрытие, НО изначально брали покрытие – противоречие.

6.3. Компактность в метрических пространствах

Замечание. $A\subset\mathbb{R}^n$ компактно $\Leftrightarrow A$ – замкнуто и ограниченно. Если $A\subset(M,\rho)$ – не обязательно.

Пример 6.9. Есть $\mathbb R$ с дискретной топологией. $\rho(x,y)=1$, если $x\neq y$. $\forall U$ – замкнуто и ограничено. $B(x_0,2)=X\supset U$, значит U – ограничено, U замкнуто, т.к. любое множество замкнуто в дискретной топологии. Но если U бесконечное множество, тогда U не компактно.

Определение 6.8. (M, ρ) — метрическое пространство. $\{x_n\}$ — последовательность. $\{x_n\}$ называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) : \$$
если $\forall n,k \geqslant N$ то $\rho(x_n,x_k) < \varepsilon$

Определение 6.9. Пространство M называется полным, если любая фундаментальная последовательность сходится.

Пример 6.10. \mathbb{Q} – не полное, \mathbb{R} – полное.

Теорема 6.4 (из курса матанализа). Следующие определения равносильны:

- 1. $[a_1; b_1] \supset [a_2; b_2] \supset \dots \implies \exists x_0 \in \bigcap_{n=1}^{\infty} [a_n; b_n]$
- 2. Любая фундаментальная последовательность сходится

Определение 6.10. Пусть $\varepsilon > 0$, тогда $\{x_i\}_{i \in I}$ называете ε -сетью пространства M, если $\forall y \in M \ \exists x_i : \rho(x_i, y) < \varepsilon$. Переформулируем: $\{B(x_i, \varepsilon)\}_{i \in I}$ – покрытие M.

Задача: Есть код из n бинарных символов. При передаче портится не более чем k символов. Сколько различных кодов можно передать? Пусть $K_1,...,K_l$ — коды, которые можем передать. Это означает $\rho(K_i,K_j)\geqslant 2k$ (расстояние — количество отличающихся бит). Если набор $K_1,...,K_l$ — максимальный, тогда $\nexists K_{l+1}:\rho(K_{l+1};K_i)\geqslant 2k\implies \{K_i\}-2k$ -сеть.

Определение 6.11. Если $\forall \varepsilon \exists$ конечная ε -сеть, то M называется вполне ограниченным.

Предложение 6.5. Если M вполне ограниченно, то M удовлетворяет второй аксиоме счетности.

Доказательство. Пусть $\varepsilon_k = \frac{1}{k}, X$ – множество точек, входящих в какую либо из ε_k -сетей. Значит X – счетное множество, как счетное объединение счетных множеств. $\{B\left(x_k,\frac{1}{l}\right): x_k \in X, l \in \mathbb{N}\}$ – база.

Пусть $U\subset M$ — открытое, $y_0\in U$ — точка. Докажем: $\exists B\left(x_k,\frac{1}{l}\right)\subset U,\,y_0$ лежит в этом шаре.

$$\exists B(y_0,\varepsilon)\subset U$$
 (т.к. U открыто). Скажем, что $\frac{1}{l}<\frac{\varepsilon}{2}$, тогда $\exists x_n:$ $ho(x_n,y_0)<\frac{1}{l}, B\left(x_n,\frac{1}{l}\right)$ подходит.

Замечание. Первая аксиома счетности выполняется в любом метрическом пространстве.

Теорема 6.6. (M, ρ) — метрическое пространство. Следующие определения равносильны:

- $1. \, M$ компактно
- 2. М секвенциально компактно
- 3. M полное и вполне ограниченное

План доказательства: $1 \implies 2 \implies 3 \implies 2, 2 \& 3 \implies 1$.

Доказательство. $1 \implies 2$

M — метрическое пространство, значит первая аксиома счетности выполнена, тогда из компактности следует секвенциальная компактность по 6.3. [далее прямой ссылки на теорему при применении нет]

Доказательство. $2 \implies 3$

Полнота:

Допустим, что $\{x_n\}$ – фундаментальная, но не сходящаяся последовательность. M – секвенциально компактно, тогда существует $\{x_{n_k}\}: x_{n_k} \to x_0$, тогда и $x_n \to x_0$.

$$orall arepsilon > 0: \exists N: \ ext{ecли} \ n_k > N \ ext{тo} \
ho(x_{n_k}, x_0) < arepsilon/2$$

Если l>N, то $\rho(x_{n_k},x_l)<\varepsilon/2$, значит $\rho(x_l,x_0)<\varepsilon$ и x_n сходится. Вполне ограниченность:

Допустим $\exists \varepsilon$, что нет конечной ε -сети. Тогда

$$\exists x_1, x_2, \ldots : \rho(x_n, x_k) > \varepsilon.$$

Выберем x_1 , $\exists x_2: \rho(x_1,x_2) \geqslant \varepsilon$, $\exists x_3: \rho(x_3,x_1) \geqslant \varepsilon$ и $\rho(x_3,x_2) \geqslant \varepsilon$ и т.д. $\{x_i\}$ – последовательность. У нее нет сходящейся подпоследовательности.

Доказательство. $3 \implies 2$

Пусть $\{x_n\}$ – последовательность, хотим выбрать фундаментальную подпоследовательность. (из-за полноты она будет сходящейся) Возьмем $\varepsilon_1=1$, тогда существует конечная ε_1 -сеть.

Пусть y_1 точка из конечной ε_1 -сети. Тогда в $B(y_1,1)$ есть бесконечно много x_i . Выберем один из них: x_{n_1} . В следующих выборках будем брать только из x_i , входящих в $B(y_1,1)$. Пусть $\varepsilon_2=1/2$. Существует конечная ε_2 -сеть. В $B(y_2,1/2)$ есть бесконечно много x_i . Выберем один из них: x_{n_2} . Пусть $\varepsilon_3=1/3$ и т.д.

Получим $\{x_{n_k}\}$: $x_{n_k}\in\bigcap_{i=1}^k B(y_k,\varepsilon_i)$. Тогда $|x_{n_k}-x_{n_l}|<2\cdot\max\left\{\frac{1}{k},\frac{1}{l}\right\}$. Пусть k< l, тогда $x_{n_k},x_{n_l}\in B\left(y_k,\frac{1}{k}\right)$. Отсюда $\rho(x_{n_k},x_{n_l})<\frac{2}{k}$ и это означает, что $\{x_{n_k}\}$ – фундаментальная.

Доказательство. $2 \& 3 \implies 1$

Из вполне ограниченности следует вторая аксиома счетности. Секвенциальная компактность со второй аксиомой счетности дает компактность.

Глава 7

Аксиомы отделимости

7.1. Аксиомы отделимости

Теорема 7.1 (T_0 , аксиома Колмогорова). $\forall x, y \in X \exists U$ – открытое, которое содержит ровно одну из этих точек.

Теорема 7.2 (T_1). $\forall x,y \in X \; \exists U_x \; - \; \text{открытое, т.ч.} \; x \in U_x, y \notin U_x.$

Теорема 7.3 (T_2 , аксиома Хаусдорфа). $\forall x,y\in X\ \exists U_x,U_y$ – открытые окрестности, т.ч. $U_x\cap U_y=\varnothing$

Теорема 7.4 (T_3). $\forall x \ \forall F$ – замкнутое: $x \notin F \ \exists U_x, U_F$ – открытые, $x \in U_x; F \subset U_F, U_x \cap U_F = \varnothing$

Теорема 7.5 (T_4). $\forall F_1, F_2 \subset X$ — замкнутые, $F_1 \cap F_2 = \varnothing$, $\exists U_{F_1}, U_{F_2}$ — открытые окрестности: $U_{F_1} \cap U_{F_2} = \varnothing$

Тривиальная связь: $T_2 \implies T_1 \implies T_0$. Других подобных связей нет.

Упражнение. Какими аксиомами отделимости обладают дискретная, антидискретная, стрелка, Зариского и стандартная топологии?

Теорема 7.6. Следующие условия равносильны:

- 1. $X T_0$
- 2. X не содержит двухточечного антидискретного пространства
- 3. $Cl\{x_0\} \neq Cl\{y_0\}$

Доказательство. (1) в (3)

Допустим противное: если $\operatorname{Cl}\{x_0\} = \operatorname{Cl}\{y_0\} = F$. Тогда $\exists U$ НУО $x_0 \in U, y_0 \notin U$. $F \cap (X \setminus U)$ — замкнутое множество, содержащие y_0 , но не x_0 , значит оно меньше замыкания — противоречие (замыкание наименьшее).

(3) B (2)

Если $\{x_0, y_0\}$ – антидискретное множество, тогда ни одно открытое или замкнутое множество не различает x_0, y_0 . Тогда $\mathrm{Cl}\{x_0\} = \mathrm{Cl}\{y_0\}$.

(2) в (1) $\forall \{x_0, y_0\}$ – не антидискретное, тогда в индуцированной топологии $\{x_0\}$ – открыто (или $\{y_0\}$), значит $\exists U \subset X$ – открытое: $U \cap \{x_0, y_0\} = \{x_0\}, x_0 \in U, y_0 \notin U$

Теорема 7.7. $X - T_1$ пространство \Leftrightarrow любая точка замкнута \Leftrightarrow любое конечное подмножество замкнуто.

Доказательство. Прямое доказательство: $\mathrm{Cl}\{x_0\} = \bigcap_{x_0 \in F} F$ докажем, что это пересечение равно $\{x_0\}$. $\forall y \neq x_0 \ \exists U_y : U_y \not\ni x_0;$ $F_y := X \setminus U_y$, тогда $x_0 \in F_y, y \notin F_y$, значит раз F_y лежит в пересечении, то $y \notin \mathrm{Cl}\{x_0\} \implies \mathrm{Cl}\{x_0\} = \{x_0\}$ Обратное доказательство: $\{x_0\} - \mathrm{замкнуто}$, значит $U_y := X \setminus \{x_0\} \forall y$.

Определение 7.1. Пространства $T_1 + T_3$ называются регулярными. Пространства $T_1 + T_4$ называются нормальными.

Замечание. Регулярные $T_0 - T_3$. Нормальные $T_0 - T_4$.

Определение 7.2. Топологическое свойство A называются наследственным, если $X \in A$ (X удовлетворяет A), $Y \subset X \implies Y \in A$

Пример 7.1. T_0, T_1, T_2, T_3 – наследственные. T_4 – не наследственное (почему?).

Замечание. $X,Y \in T_0, T_1, T_2$ или T_3 , то $X \times Y$ тоже. Для T_4 не выполняется (есть примеры, но они очень непростые).

Теорема 7.8. $f,g:X\to Y$ – непрерывные отображения. Y хаусдорфово. Рассматриваем $\{x:f(x)=g(x)\}$. Оно замкнуто.

Доказательство. Докажем открытость дополнения: $\{x: f(x) \neq g(x)\}$. $f(x), g(x) \in Y$. Если $f(x) \neq g(x)$, то $\exists U_{f(x)} \cap U_{g(x)} = \emptyset$ (по хаусдорфовости Y).

$$U \coloneqq f^{-1}(U_{f(x)}) \cap f^{-1}(U_{g(x)})$$

открытое. $x \in U$ (т.к. попадает в обе окрестности). Утверждение: $U \cap F = \emptyset$ ($F \coloneqq \{x : f(x) = g(x)\}$). Если $y \in U \cap F \implies f(y) \in U_{f(x)}, g(y) \in U_{g(x)}$. Тогда f(y) = g(y), но окрестности не пересекались – противоречие.

Следствие 7.8.1. $f: X \to \mathbb{R}$ – непрерывное, тогда множество корней f замкнуто (положим, что q(x) = 0).

Из него следует всякое: $\{(x,y,z): x^2+y^2+z^2=1\}$ – замкнутое и т л

Замечание. X хаусдорфово $\Leftrightarrow \{(x,x)\} \subset X \times X$ – замкнуто. (упражнение)

7.2. Нормальные пространства

Теорема 7.9. X – метрическое пространство, то X – нормально.

Доказательство. Сначала докажем, что метрическое пространство хаусдорфово:

Пусть $x\neq y$, значит $\exists \rho(x,y)\neq 0$. Пусть $\varepsilon\coloneqq \rho(x,y)/2\implies B(x,\varepsilon)\cap B(y,\varepsilon)=\varnothing$

Докажем, что метрическое пространство T_3 :

Пусть $x \notin F$, F – замкнуто.

$$\rho(x, F) = \inf \{ \rho(x, y) : y \in F \} > 0$$

Почему > 0? Допустим это не так:

$$\exists y_n : \rho(x, y_n) \xrightarrow[n \to \infty]{} 0 \implies y_n \xrightarrow[n \to \infty]{} x$$
$$(\forall \varepsilon > 0 \ \exists N : \rho(x, y_n) < \varepsilon \ \forall n > N \ y_n \in B(x, \varepsilon))$$

F – замкнуто и $y_n \to x \implies x \in F$ – противоречие. Теперь докажем, что метрическое пространство T_4 . Доказать аналогично T_3 не получится: $\rho(F_1,F_2)=\inf\{\rho(x,y):x\in F_1,y\in F_2\}$ но может быть $\rho(f_1,f_2)=0$ пример (график и асимптота):

Выберем $\forall x_0 \in F_1 \implies$ по T_3 выберем $\varepsilon_{x_0} = \rho(x_0, F_2)/2$ $U_1 := \bigcup_{x_0 \in F_1} B(x_0, \varepsilon_{x_0}). \ \forall y_0 \in F_2$ выберем $\varepsilon_{y_0} = \rho(y_0, F_1)/2$ $U_2 := \bigcup_{y_0 \in F_2} B(y_0, \varepsilon_{y_0})$ $U_1 \supset F_1, U_2 \supset F_2, \ U_1 \cap U_2 = \varnothing:$ если $z_0 \in U_1 \cap U_2,$ то $z_0 \in B(x_0, \varepsilon_{x_0}) \cap B(y_0, \varepsilon_{y_0}),$ это значит, что $\rho(x_0, y_0) < \varepsilon_{x_0} + \varepsilon_{y_0} < 2 \max\{\varepsilon_{x_0}, \varepsilon_{y_0}\}.$ Пусть $\varepsilon_{y_0} \geqslant \varepsilon_{x_0}$ тогда $\rho(x_0, y_0) < 2\varepsilon_{y_0} = \rho(y_0, F_1).$ Получили противоречие.

Замечание. Почти верно обратное: если X нормально и X удовлетворяет второй аксиоме счетности, тогда X – метризуемо.

Теорема 7.10. X — хаусдорфово, тогда X нормально $\Leftrightarrow \forall$ замкнутого F, \forall открытого $G:G\supset F \exists G'$ — открытое: $F\subset G'\subset \operatorname{Cl} G'\subset G$ (замкнутое \subset открытое \subset замкнутое \subset открытое) [так можно делать бесконечно].

Доказательство. Это переформулировка нормальности:

$$F \subset G \Leftrightarrow F \cap (X \setminus G) = \emptyset$$
$$F \subset G' \subset \operatorname{Cl} G' \subset G$$

$$\begin{cases} G' - \text{окрестность } F \\ X \setminus \operatorname{Cl} G' - \text{окрестность } X \setminus G \end{cases} \implies G' \cap (X \setminus \operatorname{Cl} G') = \varnothing$$

Теорема 7.11. X компактно + хаусдорфово, тогда X нормально.

Напоминание: в X замкнутость равносильна компактности.

Доказательство. F_1, F_2 — замкнуты, $F_1 \cap F_2 = \emptyset$. $\forall x, y : x \in$ $F_1,y\in F_2$ выберем $U_{x,y}\cap V_{x,y}=\varnothing,\,x\in U_{x,y},y\in V_{x,y}$ Зафиксируем y , $\{U_{x,y}\}_{x\in X}$ — покрытие F_1 , значит существует конечное подпокрытие: $\exists U_{x_1,y},...,U_{x_n,y}$ – конечное подпокрытие.

$$U_y \coloneqq \bigcup_{i=1}^n U_{x_i,y}$$

окрестность F_1 , не содержит y.

$$W_y \coloneqq \bigcap_{i=1}^n V_{x_i,y}$$

окрестность $y: U_y \cap W_y = \emptyset$

 $\{W_y\}_{y\in F_2}$ – покрытие F_2 . Существуют $y_1,...,y_m:W_{y_1},...,W_{y_m}$ – покрытие F_2

$$U_{F_1} \coloneqq \bigcap_{i=1}^m U_y \quad U_{F_2} \coloneqq \bigcup_{i=1}^m W_{y_i}$$

Допустим $z\in U_{F_1}\cap U_{F_2}$ $\exists i:z\in W_{y_i},\,z\in U_{y_i},$ но $W_{y_i}\cap U_{y_i}=\varnothing$ по построению – противоречие.

Теорема 7.12 (Урысон). X – нормальное пространство. F_1, F_2 – неперескающиеся замкнутые множества $\Leftrightarrow \exists$ непрерывная f : $X \to \mathbb{R}$: $f|_{F_1} = 0, f|_{F_2} = 1$ (функциональная отделимость).

Схема доказательства: Обратно: $f: X \to \mathbb{R}$ – непрерывная:

$$f|_{F_1} = 0, f|_{F_2} = 1$$

$$U_{F_1} \coloneqq f^{-1}((-\infty, 1/2)) \quad U_{F_2} \coloneqq f^{-1}((1/2, +\infty))$$

Прямо: X нормально, $F_0 \cap F_1 = \emptyset$, значит $G_1 \coloneqq X \setminus F_1, F_0 \subset G_1$

$$\begin{split} \Longrightarrow \exists G_{1/2}: F_0 \subset G_{1/2} \subset \operatorname{Cl} G_{1/2} \subset G_0 \\ \Longrightarrow \exists G_{1/4}, G_{3/4} \qquad F_i \coloneqq \operatorname{Cl} G_i \\ F_0 \subset G_{1/4} \subset F_{1/4} \subset G_{1/2} \subset F_{1/2} \subset G_{3/4} \subset F_{3/4} \subset G_1 \end{split}$$

и так далее Получаем $G_{k/2^n}$ и $F_{k/2^n} \coloneqq \operatorname{Cl} G_{k/2^n}$. Если $k_1/2^{n_1} < k_2/2^{n_2}$, тогда $G_{k_1/2^{n_1}} \subset F_{k_1/2^{n_1}} \subset G_{k_2/2^{n_2}} \subset F_{k_2/2^{n_2}}$. Рассмотрим $f(x) \coloneqq \inf\{\alpha: x \in F_\alpha\}$. Если $x \in F_0 \implies f(x) = 0$,

Рассмотрим $f(x) := \inf\{\alpha : x \in F_{\alpha}\}$. Если $x \in F_{0} \implies f(x) = 0$, если $x \in F_{1} \implies f(x) = 1$. В качестве упражнения надо доказать непрерывность f, тогда f – искомая функция.