Big data science Day 4

F. Legger - INFN Torino https://github.com/leggerf/MLCourse-2021

Previously

- Big data
- Analytics
- Machine learning
- Deep learning

Today

- Parallelisation
- Heterogeneous architectures

Summary

- Machine learning (ML): family of algorithms with ability to automatically learn and improve from experience without being explicitly programmed
 - potential to approximate linear and non-linear relationships
- For a given problem:
 - find algorithm that will give the best results
 - Train model
 - Tune hyperparameters
 - Do cross-validation
 - Do inference

- Most ML algorithms require significant amount of CPU, RAM and sometimes GPU in order to be applied efficiently
- Does it fit on your laptop?

Fraction of non-distributed vs distributed deep learning over time

Use of hardware for deep learning

GPU (Graphical Processing Unit)

- Typically composed of thousands of logical cores
- Excels at matrix and vector operations
 - Gaming, rendering...and
 ML
- Main vendor: NVidia
 - CUDA: parallel computing platform and programming model

tions

- **NVIDIA CUDA**
 - Market leader, large user community, best support from DL frameworks
 - Can be used in python, C/C++, fortran, Matlab
- **AMD HIP**
 - Limited support for pyTorch
 - and Tensorflow
 - Slightly behind in terms of performances

- Xeon Phi: Poor support

Google TPU

Good performances, more

in 2021!

- powerful than cloud GPUs
 - best for training, for prototype and inference better use cheaper alternatives
- **Amazon AWS and Microsoft**
 - **Azure**

Habana Gaudi-based AWS

EC2 instances will be available

Powerful, easy to scale, expensive

How to choose hardware

- GPUs have high performance for floating point arithmetic
 - limited amount of memory available
 - rate at which data can be moved from CPU to GPU
 - memory bandwidth for GPUs must be seen relative to the amount of FLOPS: if one has more floating point units, a higher bandwidth is needed to keep them occupied
- Matrix operations: typically bandwidth cost is larger than multiplication cost
 - Particularly important for many small multiplications

How to choose hardware

- CNN need a lot of computing power (need high number of cores, FLOPS)
- LSTM and RNN are made of small matrix multiplication: memory bandwidth matters
- Be aware of power consumption and overheating when placing multiple GPUs close to one another!

Performances

Architecture	INT8 [TOPS]	FP16 [TFLOPS]	FP32 [TFLOPS]	FP64 [TFLOPS]	Memory [GB]	Memory Bandwidth [GB/s]	PCIe [GB/s][a]	Proprietary Interconnect [GB/s] ^[a]
AMD Instinct MI25 [65]	=	24.6	12.29	0.77	16	484	15.75	=
AMD Instinct MI50 [66]	53.6	26.8	13.4	6.7	16	1024	31.51	200 (2 x 100)
AMD Instinct MI60 [67]	58.9	29.5	14.7	7.4	32	1024	31.51	200 (2 x 100)
NVIDIA P100[b] [68] [69] [71]	-	21.2	10.6	5.3	16	732	15.75	160 (4 x 40)
NVIDIA V100 ^[b] [71] [70] [72]	62.8[c]	31.4 ^[c] / 125[d]	15.7	7.8	16 / 32	900	15.75	300 (6 x 50)
Intel Xeon Scalable 8180 (per socket) [73] [74]	-	-	3.0 / 4.2[e]	1.5 / 2.1 ^[e]	768 (max)	119 (max)	15.75	_
AMD EPYC 7601 (per socket) [61] [62]	=	_	1.1 / 1.4[f]	0.56 / 0.69 ^[f]	2000 (max)	159	15.75	_

[[]a] PCIe bandwidths are unidirectional. NVlink speeds are aggregated bidirectional bandwidth. For Infinity Fabric (IF) the bandwidth for one Infinity Fabric link is quoted; it is unspecified whether this is unidirectional, or aggregated bidirectional bandwidth.

NVIDIA GPUs

	Peak Performance				
Transistor Count	54 billion				
Die Size	826 mm²				
FP64 CUDA Cores	3,456				
FP32 CUDA Cores	6,912				
Tensor Cores	432				
Streaming Multiprocessors	108				
FP64	9.7 teraFLOPS				
FP64 Tensor Core	19.5 teraFLOPS				
FP32	19.5 teraFLOPS				
TF32 Tensor Core	156 teraFLOPS 312 teraFLOPS*				
BFLOAT16 Tensor Core	312 teraFLOPS 624 teraFLOPS*				
FP16 Tensor Core	312 teraFLOPS 624 teraFLOPS*				
INT8 Tensor Core	624 TOPS 1,248 TOPS*				
INT4 Tensor Core	1,248 TOPS 2,496 TOPS*				
GPU Memory	40 GB				
GPU Memory Bandwidth	1.6 TB/s				
	NVLink 600 GB/s				
Interconnect	PCIe Gen4 64 GB/s				
Multi-Instance GPUs	Various Instance sizes with up to 7MIGs @5GI				
Form Factor	4/8 SXM GPUs in HGX A100				
Max Power	400W (SXM)				

With its <u>multi-instance GPU (MIG) technology</u>, A100 can be partitioned into up to seven GPU instances, each with 10GB of memory.

Parallelisation on multiple GPUs

- 'Easy' for RNNs and CNNs
- Fully connected networks with transformers poorer performances
- multiple GPUs can be used for tasks trivial to parallelise such as hyperparameter scan

Local training

- Both model and data fit on a single machine (multi cores + GPU)
 - Multi-core processing:
 - Embarrassingly parallel process: use the cores to process multiple images at once, in each layer
 - Use multiple cores to perform SGD of multiple mini-batches in parallel.
 - Use GPU for computationally intensive subroutines like matrix multiplication.
 - Use both multi-core processing and GPU where all cores share the GPU and computationally intensive subroutines are pushed to the GPU.

Distributed training

- Data or model stored across multiple machines
- Data parallelism: data is distributed across multiple machines
 - data is too large to be stored on a single machine or to achieve faster training
 - Synchronous update: all loss gradients in a given mini-batch are computed using the same weights and full information of the average loss in a given mini-batch is used to update weights
 - Asynchronous update: as soon as a machine finishes computing updates, the parameters in the driver get updated. Any machine using the parameters will fetch the updated parameters from the server.

Data parallelism

- large batch of input data split across a collection of workers, each holding the full model
 - the forward pass involves no communication
 - the backward pass involves aggregating the gradients computed by each individual worker with respect to its separate part of the "global batch"
- scaling out:
 - the "global batch size" (i.e. the total number of examples across all workers that are seen in a single forward pass) increases
 - Affects convergence of DL algorithms and does not reach same accuracy levels that can be obtained with smaller batch sizes

Model parallelism

- model layers split across a collection of workers
- the batch size stays constant, and large models that would not fit the memory of a single device can be trained
- active communication also in the forward pass, thus requiring a lot more communication than a data parallel approach
- unless the advantages of model parallelism are absolutely critical (model doesn't fit on one machine), most research on large-scale training is done using data parallelism.
- Schemes involving a mix of data and model parallelism also exist: *hybrid parallelism*.

Hardware issues

- I/O contention with large data sets, or data sets with many small examples, and the data has to be physically stored on shared storage facilities.
- **Communication** bottlenecks during gradient-aggregation, due to high ratio between the number of parameters and amount of computation
- Memory bottlenecks for large networks, particularly when using memory-limited GPUs
- On large system such as HPCs, data are typically stored on shared file systems
 - Might be faster to copy data locally to worker node

Architectural choices

Your model doesn't fit in the GPU memory?

- tune the model e.g. by reducing its connectivity (if that is acceptable) to fit the hardware
- use model parallelism to distribute the model over multiple GPUs
- use a data parallel approach on CPUs (if it does fit in CPU memory)

Your dataset doesn't fit in the GPU memory?

- Make sure your data arrives fast enough to the GPU, otherwise revert to CPU
- Do you have access to a system with a few GPU nodes, but thousands of CPUs?
 - O Development stage: run a limited number of examples (potentially even with a smaller model) on a single GPU, which allows quick development cycles
 - Production: may require CPUs because of memory constraints

Requirements for ML framework

- Run any ML algorithm of our choice in parallel
- Large datasets to be processed
- Multi-tenancy, so different users can request simultaneously ML pipelines
- An efficient resource management system for the cluster
- Support heterogeneous architectures
 - o CPUs, GPUs, ...

ML as a Service (MLaaS)

CHALLENGES

- Reconstruction
- Analysis
- Trigger
- Data quality
- Detector monitoring
- Computing operations
- Monte Carlo tuning

• ...

REQUIREMENTS

- Workflow definition
 - Results reproducibility
- Multi-tenancy (scheduling, authentication...)
- Parallel execution and scaling
- Data handling
- Ease of use and management
- ...

IMPLEMENTATION

- Lightweight virtualization
- Modularity
- Flexibility
- Heterogeneous back-end infrastructures
- ...

Example architecture

- Workflow definition
- Process Monitoring

Deep Learning framework

Distributed DL libraries

Cluster framework (parallelize task)

Orchestrator (schedule on resources)

Packetization and virtualization

Resources:

- Bare metal
- Infrastructure as a Service

Hands-on test

- Evaluation might be based on:
 - Improve ML model trying to improve performances vs training time
 - Measure scaling performances vs complexity
- May include cross-validation and hyper-parameter tuning:
 - K-fold training
 - Grid search

Hands-on test

- 1. Point your browser to: https://yoga.to.infn.it
- 2. Open a terminal:
 - o cd MLCourse-2021
 - o git pull
 - o cp Notebooks/Day4/* ../
- 3. From JupyterHub Home tab:
 - start and run BigDL.ipynb
- Deep learning with <u>BigDL</u>
 - o FF NN

Useful commands

From the terminal (replace username accordingly):

- kubectl get pods
- kubectl describe pod jupyter-leggerf-1571836347893-exec-1
- kubectl describe node vdummy06.to.infn.it
- kubectl get nodes kubectl describe farm

To remove pods in error state:

kubectl get pods -n leggerf | grep Error | awk '{print \$1}' | xargs kubectl delete pod -n leggeraf