Séries

I. Séries à termes positifs, séries absolument

convergentes

- Nature des séries de terme général $u_n = \frac{1}{n^n}$ et $v_n = 3^{\frac{1}{n}}$. **Ex.** 20.1
- Calculer, si existence, la somme $\sum_{k=1}^{+\infty} \frac{1}{2k(2k-1)(2k+1)}.$ **Ex.** 20.2
- Déterminer la nature, et éventuellement calculer la somme, **Ex.** 20.3
 - de la série $\sum \ln \left(1 \frac{1}{n^2}\right)$.
- Nature de la série $\sum n^n e^{-n^2}$.
- $\overline{\text{Ex. 20.5}}$ Nature de la série $\sum e^{-\sqrt{n}}$.
- Ex. 20.6 On suppose que la série à termes positifs $\sum u_n$ converge.
- Que peut-on dire de la nature de la série $\sum \frac{\sqrt{u_n}}{n}$?
- **Ex.** 20.7 Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle positive. Pour tout entier n, on pose $b_n = \frac{1}{2}$
 - Ou pose $v_n = \bar{1} + a_n$. Comparer la nature des séries de terme général a_n et b_n .
- Ex. 20.8 On pose pour tout entier n, $u_n = \int_0^1 \frac{\sin^n(t)}{1+t^n} dt$.
 - Quelle est la nature de la série $\sum u_n$?

Ex. 20.9

- a. Montrer que la série $\sum_{n} \frac{1}{n}$ diverge.
- b. Montrer que la série $\sum_{n} \frac{(-1)^{n+1}}{n}$ converge vers une limite dont on donnera le signe.
 - Montrer que $\forall n \in \mathbb{N}^* \backslash \{1\}, \int_n^{n+1} \frac{1}{x} dx \le \frac{1}{n} \le \int_{n-1}^n \frac{1}{x} dx.$ c. Pour tout $N \in \mathbb{N}^*$, on note $H_N = \sum_{n=1}^N \frac{1}{n}$. En déduire un encadrement de H_N .
- d. Déduire de la question précédente que $H_N \ln(N)$ converge. On note γ la limite.
 - e. Exprimer $\sum_{n=1}^{2N} \frac{(-1)^{n+1}}{n}$ à l'aide de la suite H.
 - f. Calculer la somme $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}.$
- $\overline{n + \sin(n)}.$ **Ex.** 20.10 Nature de la série de terme général $u_n =$
- Ex. 20.11 Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{4n+1}$.

III. Pour aller plus loin

Soit u la suite numérique définie par $u_0 = 0$ et $\frac{\mathbf{Ex.} \ \ 20.12}{u_{n+1} = \frac{e^{-u_n}}{n+1}}.$

a. Montrer que $\forall n \in \mathbb{N}, u_n \geqslant 0$.

b. Montrer que
$$\forall n \in \mathbb{N}, u_n \leqslant \frac{1}{n}$$
.

d. Donner un équivalent simple de
$$u_n$$
 lorsque $n \to +\infty$.

e. La série
$$\sum u_n$$
 est-elle convergente?

 $\overline{\mathbf{Ex.} 20.13}$ Soient u et w définies par

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{(-1)^{n+1}}{\sqrt{n}}$$

$$v_n = \frac{(-1)^{n+1}}{\sqrt{n} + (-1)^{n+1}}$$

On note $S = \sum u_n$ et $T = \sum v_n$ les séries associées à ces deux suites.

- a. Les séries S et T sont-elles absolument convergentes ?
- b. Les séries S et T sont-elles à termes positifs ?
- c. Montrer que S est une série convergente.
- d. Montrer que $u_n \underset{n \to +\infty}{\sim} v_n$.
- e. Soit w = u v. Montrer qu'elle est de signe constant et donner un équivalent (simple) de w_n au voisinage de $+\infty$.
- f. Montrer que T est une série divergente.

Ex. 20.14 Étant donnés $a, b, c \in \mathbb{R}$, on note pour $n \in \mathbb{N}^*$,

$$u_n = a \ln(n) + b \ln(n+1) + c \ln(n+2)$$

a. Donner les valeurs de a, b, c pour lesquelles la série $\sum u_n$

b. Calculer $\sum_{n=1}^{+\infty} u_n$ en cas de convergence ou donner un équivalent

de
$$S_n = \sum_{k=1}^n u_k$$
 en cas de divergence.

Soit u la suite définie par $u_n = \sin(2\pi\sqrt{1+n^2})$ et

$$\frac{\mathbf{Ex.} \ 20.15}{S = \sum u_n}.$$

a. Énoncer précisément le théorème sur la nature de séries à termes équivalents.

- b. Donner un équivalent simple de u_n au voisinage de $+\infty$.
- c. En déduire que S est une série à termes **positifs** à **partir** d'un certain rang.
- d. Nature de $\sum u_n$?