MAT-CSC A67: Discrete Mathematics — Summer 2024

Quiz 5

Due Date: Monday, June 17, 11:59 PM, on Crowdmark

Q1. Let A be an arbitrary non-empty set, and consider the statement $(\{x\} \in \mathcal{P}(A)) \to (x \in A)$. The next paragraph claims to prove this statement. Is this proof correct?

Suppose x is an arbitrary element of A. Then, by definition of the power set, there will be a singleton set containing x in $\mathcal{P}(A)$, that is, $\{x\} \in \mathcal{P}(A)$. Therefore, $\{x\} \in \mathcal{P}(A) \to x \in A$.

- Q2. Fill in the blanks with the proper function properties "injective", "not injective", "surjective", and "not surjective".
 - 1. Suppose that $f:A\to B$. To show that f is _____, show that if f(x)=f(y) for arbitrary $x,y\in A$, then x=y.
 - 2. Suppose that $f:A\to B$. To show that f is ______, find a particular elements $y\in B$ such that $f(x)\neq y$ for all $x\in A$.
 - 3. Suppose that $f:A\to B$. To show that f is _____, consider an arbitrary element $y\in B$ and find an element $x\in A$ such that f(x)=y.
 - 4. Suppose that $f:A\to B$. To show that f is ______, find particular elements $x,y\in A$ such that $x\neq y$ and f(x)=f(y).
- Q3. Consider the following five mappings illustrated in the image below. Choose the best option that describes these mappings.

- 1. (i) is one-to-one but not onto
 - (ii) is onto but not one-to-one
 - (iii) is one-to-one and onto
 - (iv) is neither one-to-one nor onto
 - (v) is not a function
- 2. (i) is one-to-one and onto
 - (ii) is neither one-to-one nor onto
 - (iii) is onto but not one-to-one
 - (iv) is not a function
 - (v) is one-to-one but not onto
- 3. (i) is one-to-one and onto
 - (ii) is one-to-one but not onto
 - (iii) is onto but not one-to-one
 - (iv) is onto and one-to-one
 - (v) is one-to-one but not onto
- 4. (i) is onto but not one-to-one
 - (ii) is one-to-one but not onto
 - (iii) is one-to-one and onto
 - (iv) is neither one-to-one nor onto
 - (v) is neither one-to-one nor onto

- **Q4.** Prove that for any sets A and B, if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B.
- **Q5.** For a finite set $A, f: A \to A$ is a bijection if there is an inverse function $g: A \to A$ such that $\forall x \in A$ g(f(x)) = x.