SVM实战

-----BY YANGZHONGXIU 2020.04

内容

- ■SVC之鸢尾花
- ■SVC之人脸识别
- SVR 之california housing

SVC之鸢尾花

概述

任务:采用支持向量机对鸢尾花进行类型鉴别。

目的:

文本数据的读取(两种方法: numpy 与pandas)

SVC的应用

预测结果分析

数据可视化

数据分析

```
5. 1, 3. 5, 1. 4, 0. 2, Iris-setosa
4. 9, 3. 0, 1. 4, 0. 2, Iris-setosa
4. 7, 3. 2, 1. 3, 0. 2, Iris-setosa
4. 6, 3. 1, 1. 5, 0. 2, Iris-setosa
5. 0, 3. 6, 1. 4, 0. 2, Iris-setosa
5. 4, 3. 9, 1. 7, 0. 4, Iris-setosa
7. 0, 3. 2, 4. 7, 1. 4, Iris-versicolor
6. 4, 3. 2, 4. 5, 1. 5, Iris-versicolor
6. 9, 3. 1, 4. 9, 1. 5, Iris-versicolor
5. 5, 2. 3, 4. 0, 1. 3, Iris-versicolor
6. 5, 2. 8, 4. 6, 1. 5, Iris-versicolor
6. 5, 3. 2, 5. 1, 2. 0, Iris-virginica
6. 4, 2. 7, 5. 3, 1. 9, Iris-virginica
6. 8, 3. 0, 5. 5, 2. 1, Iris-virginica
5. 7, 2. 5, 5. 0, 2. 0, Iris-virginica
5. 8, 2. 8, 5. 1, 2. 4, Iris-virginica
```

sepal_length, sepal_width, petal_length, petal_width, class

文本数据读取一numpy

```
path = 'iris/iris1.txt'

data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: Iris_label})

def Iris_label(s):
   it = {b'Iris-setosa':0,b'Iris-versicolor':1,b'Iris-virginica':2}
   return it[s]
```

文本数据读取一Pandas

path = 'iris/iris.data'

```
data_0 = DataFrame(pd.read_csv(path))
data_0['class'] = data_0['class'].apply(Iris_label)
def Iris_label(s):
  it = {b'Iris-setosa':0,b'Iris-versicolor':1,b'Iris-virginica':2}
  return it[s]
```

划分数据与标签一numpy

Numpy读取数据划分:

```
x, y = np.split(data, (4,), axis=1)
train_data, test_data, train_label, test_label =
   train_test_split (x, y, random_state = 1, train_size = 0.6,
test_size = 0.4)#sklearn.model_selection.
```

划分数据与标签一pandas

```
feature = ['sepal length', 'sepal width', 'petal length', 'petal width']
label=['class']
x = data O[feature]
x = np.array(x)#为模型准备数据,第一行不能有column title
y = data 0[label]
y = np.array(y)#同 x 处理原因
train_data, test_data, train_label, test_label = train_test_split (x, y,
random state = 1, train size = 0.6, test size = 0.4)#sklearn.model selection.
```

训练SVC分类器

```
classifier=SVC(C=2, kernel='rbf', gamma=10, decision_function_shape='ovo')
# ovo: 一对一; ovr:一对其余策略
#rbf为高斯核,又称"径向基"核
classifier.fit(train_data, train_label.ravel())
#ravel函数在降维时默认是行序优先
```

计算svc分类器的准确率

print("训练集: ",classifier.score(train_data,train_label))

print("测试集: ",classifier.score(test_data,test_label))

#也可直接调用accuracy_score方法计算准确率
tra_label = classifier.predict(train_data)#训练集的预测标签
tes_label = classifier.predict(test_data)#测试集的预测标签
print("训练集: ",accuracy_score(train_label, tra_label))
print("测试集: ",accuracy_score(test_label, tes_label))

查看决策函数

```
print('train_decision_function:\n',
classifier.decision_function(train_data)) # (90,3)
print('predict_result:\n', classifier.predict(train_data))
```

```
train decision function:
                                                  train decision function:
OVO
                                                   [[ 2.41356518  0.82484721 -0.23841239]
 [-1.00777232 -1.00008021 0.63444159]
                                                   [-0.41036662 2.33563709 1.07472954]
 [-0.99416388 -1.06070485 -0.681607
                                                   [-0.41997583 1.06388064 2.35609519]
 2.40883676 0.80669872 -0.21553548]
 [ 2.41794332 0.82150929 -0.23945262]
 [-0.94393468 -1.02064785 -1.00008844]
                                                   [-0.40152306 0.98852325 2.41299982]
                                         ovr
 2.40869085 0.82659034 -0.23528119]
 [-0.96836014 -0.99980535 0.58258857]
                                                   [-0.40225535 2.31698423 1.08527112]
 [-0.57544729 -1.05719931 -1.38921374]
 [-0.99957828 -1.07645757 -0.44947688]
                                                   [-0.33368171 0.83368171 2.5
 [-1.06076059 -1.12561405 1.00935269]
                                                   [-0.42430199 1.1124302
                                                                          2.31187179]
 [-0.61824976 -1.00025184 -0.99988863]
                                                   [-0.44685313 2.42309153 1.02376159]
 [-1.04911984 -1.01738974 0.82720369]
                                                   [-0.33079075 0.92200032 2.40879043]
 1.0004868 0.99973226 0.15150631]
                                                   [-0.422355 2.38348461 1.03887039]
 [-0.99959974 -0.27106766 1.00008043]
                                                   [ 2.40880649  0.82648464 -0.23529113]
 [-1.00037028 -1.0072383 -0.79454
                                                   [-0.25970009 2.40869635 0.85100374]
 [-0.94393468 -1.02064785 -1.00008844]
                                                   [-0.41031677 1.04206777 2.368249 ]
 [-1.16901646 -0.68521942 0.99969349]
                                                   [-0.40152306 0.98852325 2.41299982]
 [-0.36188214 -1.05474156 -1.22681095]
                                                   [-0.37897032 2.4432428
                                                                          0.93572752]
 [-0.99998921 -0.7292288 1.00000149]
 [ 0.9997492    1.00028017    0.16527647]
                                                   [-0.28953077 0.82322511
                                                                          2.46630566]
 1.10037424 1.1294864
                      0.11662767]
                                                   [-0.35341906 2.40875982
                                                                          0.944659241
 predict result:
  [0. 1. 2. 0. 0. 2. 0. 1. 2. 2. 1. 2. 1. 0. 1. 2. 2. 1. 2. 1. 0. 0. 0. 2.
  0. 1. 2. 1. 0. 0. 1. 0. 2. 1. 2. 2. 1. 2. 2. 1. 0. 1. 0. 1. 1. 0. 1. 0.
     2. 1. 1. 0. 0. 1. 0. 1. 0. 2. 1. 0. 2. 0. 1. 0. 1. 1. 0. 0. 1. 0. 1.
  1. 0. 2. 1. 1. 1. 1. 0. 0. 1. 1. 2. 1. 2. 2. 1. 2. 0.
```

绘制图形

```
#确定坐标轴范围
```

```
x1_min,x1_max=x[:,0].min(),x[:,0].max()#第0维特征的范围
x2_min,x2_max=x[:,1].min(),x[:,1].max()#第1维特征的范围
x1,x2=np.mgrid[x1_min:x1_max:200j,x2_min:x2_max:200j]#生成网络采样点
grid_test=np.stack((x1.flat,x2.flat),axis=1)#测试点
#指定默认字体
mpl.rcParams['font.sans-serif']=['SimHei']
```

```
#设置颜色
cm light=mpl.colors.ListedColormap(['#A0FFA0','#FFA0A0','#A0A0FF'])
cm dark=mpl.colors.ListedColormap(['g','r','b'])
grid hat=classifier.predict(grid test)#预测分类值
grid hat=grid hat.reshape(x1.shape)#使之与输入的形状相同
plt.pcolormesh(x1,x2,grid hat,cmap=cm light)# 预测值的显示
plt.scatter(x[:,0],x[:,1],c=y[:,0],s=30,cmap=cm dark)# 样本
plt.scatter(test_data[:,0],test_data[:,1],c=test_label[:,0],s=30,edgecolors='k',zor
der=2,cmap=cm dark)#圈中测试集样本点
plt.xlabel('花萼长度',fontsize=13)
plt.ylabel('花萼宽度',fontsize=13)
plt.xlim(x1_min,x1_max)
plt.ylim(x2 min,x2 max)
plt.title('鸢尾花SVM二特征分类')
plt.show()
```


import pandas as pd from pandas import Series, DataFrame import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score

SVC之人脸识别

概述

□任务:

●采用支持向量机进行对sklearn自带人脸数据库fetcg_lfw_people进行人脸识别。

□目的:

- •人脸数据的读取
- P C A 降维的应用
- GridSearchCV调参
- ●SVC的应用
- •预测结果分析

数据集说明

fetcg_lfw_people: 在 sklearn 中的封装的人脸识别数据集;

faces:字典类型,其中"target_names"为每一个人脸样本对应的真实的人的姓名;

数据集中共有6370张人脸,每张人脸有125*94个特征;

lfw_people = fetch_lfw_people()

默认resize参数为0.5,故取出为2914 = 62*47个特征

其中 62 * 47 = 2914, 表示每张人脸都是 62 X 47 像素的图片

具体参见官方文档:

https://sklearn.apachecn.org/docs/master/47.html?h=fetch_lfw_people

每个人各自有的图片数量不等,可以通过设置min_faces_per_person的值来确定。

lfw_people = fetch_lfw_people(min_faces_per_person=100, resize=0.4) 即获取的每个人图片不少于100张,并且将尺寸缩小到原来0.4,即为50X37 = 1850

示例代码:

```
Ifw people = fetch Ifw people()
 print(lfw people.keys())
 #输出: dict keys(['data', 'images', 'target', 'target_names', 'DESCR'])
 print(lfw people.data.shape)
 print(lfw people.images.shape)
dict keys(['data', 'images', 'target', 'target_names', 'DESCR'])
(6370, 2914)
(6370, 62, 47)
```

数据降维PCA

n_components= 150 #降维的参数,组成元素的数量,即保留下来的特征个数

pca =

PCA(n_components=n_components,svd_solver='randomized',whiten=True).fit(X _train)

#使用进行数据模型降维,降成了150

X_train_pca = pca.transform(X_train)

X_test_pca = pca.transform(X_test)

建模

```
#C是对错误部分的惩罚; gamma 合成点
param grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
      'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1],}
#rbf处理图像较好,C和gamma组合,找出最好的一个组合
clf = GridSearchCV(SVC(kernel='rbf'), param grid)
print( clf)
#建模
clf = clf.fit(X train pca, y train)
print( clf.best estimator )#最好的模型的信息
```

sklearn.model_selection.GridSearchCV

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV</u>

GridSearchCV,它存在的意义就是自动调参,只要把参数输进去, 就能给出最优化的结果和参数。

GridSearchCV用于系统地遍历多种参数组合,通过交叉验证确定最佳效果参数。

但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果。

数据预测

```
y_pred = clf.predict(X_test_pca)
#打印预测成绩报告
print( classification_report(y_test,y_pred,target_names=target_names))
#打印预测成绩混淆矩阵
print( confusion_matrix(y_test,y_pred,labels=range(n_classes)))
print( y test)
print( y_pred)
```

	precision	recall	f1-score	support
Ariel Sharon	0.70	0.64	0.67	22
Colin Powell	0.80	0.86	0.83	56
Donald Rumsfeld	0.84	0.81	0.82	26
George W Bush	0.87	0.90	0.89	133
Gerhard Schroeder	0.81	0.76	0.79	29
Hugo Chavez	0.93	0.81	0.87	16
Tony Blair	0.79	0.75	0.77	40
micro avg	0.83	0.83	0.83	322
macro avg	0.82	0.79	0.80	322
weighted avg	0.83	0.83	0.83	322

support列为每个标签的出现次数 precision 为预测为该人,真正是该人的比率 recall 为 该人正确被预测的比率

F_1 值

 F_1 值是精确度和召回率的调和平均值:

$$\frac{2}{F_1} = \frac{1}{P} + \frac{1}{R}$$

$$F_1=2rac{P imes R}{P+R}$$

```
5
         1
              2
                   ø
                        0
             5
                             2]
                   0
   48
         Ø
                        0
                             0]
        21
              3
    1
                        0
0
    3
                             2]
3
         2 120
                   2
              1
                 22
0
                        0
                   0
                       13
         0
                            30]]
              6
                   2
         0
                        0
```

测试数据标 签 3 3 2 3 1 2 4]

SVR california housing

概述

□任务:

●根据给出的california 房价信息,进行房价预测。

□目的:

- ●数据集数据读取
- ●线性支持向量回归模型应用
- RandomizedSearchCV调参
- •预测结果分析

数据说明

7.3.7. California Housing dataset

Data Set Characteristics:

Number of Instances:	20640
Number of Attributes:	8 numeric, predictive attributes and the target
Attribute Information:	 MedInc median income in block HouseAge median house age in block AveRooms average number of rooms AveBedrms average number of bedrooms Population block population AveOccup average house occupancy
	 Latitude house block latitude Longitude house block longitude

数据获取与观察

```
housing = fetch_california_housing()#获取数据
X = housing['data']#得到数据
y = housing['target']#得到标签
print(housing.feature_names)#显示特征名称
print(housing.DESCR)
print(X.shape)
print(X[0:5])
print(y.shape)
print(y[0:5])
```

```
['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup', 'Latitude', 'Longitude']
.. california housing dataset:
California Housing dataset
                                                                                     housing.feature_names
**Data Set Characteristics:**
    :Number of Instances: 20640
    :Number of Attributes: 8 numeric, predictive attributes and the target
    :Attribute Information:
       - MedInc median income in block

    HouseAge median house age in block

       - AveRooms average number of rooms
       - AveBedrms
                     average number of bedrooms

    Population

                      block population
       - AveOccup
                      average house occupancy
                                                                                            housing.DESCR
       - Latitude
                    house block latitude
       - Longitude
                     house block longitude
    :Missing Attribute Values: None
This dataset was obtained from the StatLib repository.
http://lib.stat.cmu.edu/datasets/
The target variable is the median house value for California districts.
```

```
(20640, 8)
[[ 8.32520000e+00 4.10000000e+01 6.98412698e+00 1.02380952e+00
  3.22000000e+02 2.5555556e+00
                                 3.78800000e+01 -1.22230000e+02]
                                  6.23813708e+00 9.71880492e-01
  8.30140000e+00 2.10000000e+01
                                 3.78600000e+01 -1.22220000e+02]
  2.40100000e+03
                 2.10984183e+00
  7.25740000e+00 5.20000000e+01
                                  8.28813559e+00
                                                 1.07344633e+00
                 2.80225989e+00
  4.96000000e+02
                                  3.78500000e+01 -1.22240000e+02]
  5.64310000e+00 5.20000000e+01
                                 5.81735160e+00 1.07305936e+00
                                 3.78500000e+01 -1.22250000e+02]
  5.58000000e+02 2.54794521e+00
  3.84620000e+00 5.20000000e+01
                                  6.28185328e+00 1.08108108e+00
  5.65000000e+02 2.18146718e+00 3.78500000e+01 -1.22250000e+02]]
(20640,)
[4.526 3.585 3.521 3.413 3.422]
```

X[0:5]

y[0:5]

数据划分与归一化

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)//均值归一化

X_test_scaled = scaler.transform(X_test)

StandardScaler类中transform和fit_transform方法有什么区别?

fit_transform方法是fit和transform的结合,fit_transform(X_train) 意思是找出 X_train的μ和σ,并应用在X_train上。这时对于X_test,我们就可以直接使用 transform方法。因为此时StandardScaler已经保存了X_train的μ和σ。

建模与分析— LinearSVR

```
lin_svr = LinearSVR(random_state=42)
lin_svr.fit(X_train_scaled, y_train)

y_pred = lin_svr.predict(X_test_scaled)

mse = mean_squared_error(y_test, y_pred)

print(mse)

print(np.sqrt(mse))
```

建模与分析一 RandomizedSearchCV

```
param distributions = {'gamma': reciprocal(0.001, 0.1), 'C': uniform(1, 10)}
rnd_search_cv = RandomizedSearchCV(SVR(), param_distributions, n_iter=10,
verbose=2, cv=3, random state=42)
rnd_search_cv.fit(X_train_scaled, y_train)
y pred = rnd_search_cv.best_estimator_.predict(X_train_scaled)
mse = mean_squared_error(y_train, y_pred)
print(np.sqrt(mse)) # 0.5727524770785356
y_pred = rnd_search_cv.best_estimator_.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)
print(np.sqrt(mse)) # 0.592916838552874
```

小结

□本次课主要示例了三个支持向量机应用:

- ✓鸢尾花
- ✓人脸识别
- ✓ california housing房价预测

□需要掌握技巧:

- ✓数据集的了解
- ✓数据处理
- ✓建模
- ✓结果分析
- ✓可视化