Discrete Optimization

Quentin Louveaux

ULg - Institut Montefiore

2012

1 / 20

Contents of the lecture

- Formulations
 Guidelines for strong formulations
- Branch-and-bound algorithm

 The best known technique to solve integer programs in general
- Flow problems
- Matching and assignment problems
- Dynamic programming
- Cutting planes for integer programs
- Totally unimodular problems
- Lagrangian relaxations

Contents of the lecture

- Formulations
 Guidelines for strong formulations
- Branch-and-bound algorithm

 The best known technique to solve integer programs in general
- Flow problems
- Matching and assignment problems
- Dynamic programming
- Cutting planes for integer programs
- Totally unimodular problems
- Lagrangian relaxations

Contents of the lecture

- Formulations
 Guidelines for strong formulations
- Branch-and-bound algorithm
 The best known technique to solve integer programs in general
- Flow problems
- Matching and assignment problems
- Dynamic programming
- Cutting planes for integer programs
- Totally unimodular problems
- Lagrangian relaxations

We consider several concepts that can be well modeled by integer programs

Binary choice

A choice between 2 alternatives is modeled through a 0,1-variable.

Example

The knapsack problem

maximize
$$\sum_{i=1}^n c_i x_i$$
 subject to $\sum_{i=1}^n a_i x_i \leq b$ $x_i \in \{0,1\}$ for all $i=1,\ldots,n$.

Forcing constraints

If decision B is taken then decision A must be taken.

x = 1 if decision A is taken

x = 0 otherwise

y = 1 if decision B is taken

y = 0 otherwise

The constraint reads

$$x \le y$$

Example Facility location problem

Disjunctive constraints

Consider $x \ge 0$, $a \ge 0$, $c \ge 0$. We want to model an OR constraint :

$$a^T x \ge b$$
 or $c^T x \ge d$

We introduce a variable $y \in \{0,1\}$ that represents whether constraint 1 or constraint 2 is satisfied.

$$a^T x \ge yb$$
 and $c^T x \ge (1-y)d$.

Disjunctive constraints

Consider $x \ge 0, a \ge 0, c \ge 0$. We want to model an OR constraint :

$$a^T x \ge b$$
 or $c^T x \ge d$

We introduce a variable $y \in \{0,1\}$ that represents whether constraint 1 or constraint 2 is satisfied.

$$a^T x \ge yb$$
 and $c^T x \ge (1-y)d$.

Disjunctive constraints

Consider $x \ge 0, a \ge 0, c \ge 0$. We want to model an OR constraint :

$$a^T x \ge b$$
 or $c^T x \ge d$

We introduce a variable $y \in \{0,1\}$ that represents whether constraint 1 or constraint 2 is satisfied.

$$a^T x \ge yb$$
 and $c^T x \ge (1 - y)d$.

Restricted range of values

Suppose we want to formulate $x \in \{a_1, a_2, \dots, a_m\}$.

We introduce m binary variables y_i .

$$x = \sum_{j=1}^{m} a_j y_j, \quad \sum_{j=1}^{m} y_j = 1, \quad y_j \in \{0, 1\}$$

Restricted range of values

Suppose we want to formulate $x \in \{a_1, a_2, \dots, a_m\}$.

We introduce m binary variables y_i .

$$x = \sum_{j=1}^{m} a_j y_j, \quad \sum_{j=1}^{m} y_j = 1, \quad y_j \in \{0, 1\}$$

Arbitrary piecewise linear cost functions

Introduce $y_i \in \{0,1\}$ such that

$$y_i = 1 \quad \text{if } x \in [a_i, a_{i+1}] \ y_i = 0 \quad \text{if } x
otin [a_i, a_{i+1}] \$$

Arbitrary piecewise linear cost functions

Introduce $y_i \in \{0,1\}$ such that

$$y_i = 1$$
 if $x \in [a_i, a_{i+1}]$
 $y_i = 0$ if $x \notin [a_i, a_{i+1}]$

Guidelines for strong formulation

The linear relaxation

Given

min
$$c^T x + d^T y$$

s.t. $Ax + By = b$
 $x, y \ge 0$
 $x \in \mathbb{Z}^n$.

Its linear relaxation is defined as

min
$$c^T x + d^T y$$

s.t. $Ax + By = b$
 $x, y \ge 0$
 $x \in \mathbb{R}^n$.

The linear relaxation gives important information about the optimal value of an integer program.

Reminder: linear programming

If the objective is linear and the constraints are linear, we talk about linear programming (LP) or linear optimization.

LP in standard form

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \in \mathbb{R}^{n}_{+}$$

Definition

A polyhedron is a set $\{x \in \mathbb{R}^n | Ax \ge b\}$

A set of the form $Ax \leq b$ is also a polyhedron.

A set $\{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$ is a polyhedron in standard form.

Reminder: linear programming

If the objective is linear and the constraints are linear, we talk about linear programming (LP) or linear optimization.

LP in standard form

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \in \mathbb{R}^{n}_{+}$$

Definition

A polyhedron is a set $\{x \in \mathbb{R}^n | Ax \ge b\}$

A set of the form $Ax \leq b$ is also a polyhedron.

A set $\{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$ is a polyhedron in standard form.

We can represent a problem in two dimensions graphically.

Example:

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1$$
 (2)

$$-x_1+ x_2 \leq 0 \tag{3}$$

$$4x_1 + 3x_2 \le 12 \tag{4}$$

$$x_1, \quad x_2 \geq 0 \tag{5}$$

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1 + x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1+x_2\leq 0 \tag{3}$$

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1+ x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1+x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

$$\max x_1 + 2x_2 \tag{1}$$

$$-x_1+2x_2 \le 1 \tag{2}$$

$$-x_1 + x_2 \leq 0$$
 (3)

$$4x_1+3x_2 \le 12$$
 (4)
 $x_1, x_2 \ge 0$ (5)

Extreme points and vertices

Definition

Let P be a polyhedron. A point $x \in P$ is an extreme point of P if there do not exist two points $y, z \in P$ such that x is a convex combination of y and z.

Definition

Let P be a polyhedron. A point $x \in P$ is a vertex of P if there exists $c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P$ and $y \neq x$.

Extreme points and vertices

Definition

Let P be a polyhedron. A point $x \in P$ is an extreme point of P if there do not exist two points $y, z \in P$ such that x is a convex combination of y and z.

Definition

Let P be a polyhedron. A point $x \in P$ is a vertex of P if there exists $c \in \mathbb{R}^n$ such that $c^T x < c^T y$ for all $y \in P$ and $y \neq x$.

Bases of a polyhedron

We subdivide the equalities and inequalities into three categories :

$$a_i^T x \ge b_i$$
 $i \in M_{\ge}$
 $a_i^T x \le b_i$ $i \in M_{\le}$
 $a_i^T x = b_i$ $i \in M_{=}$

Definition

Let \bar{x} be a point satisfying $a_i^T \bar{x} = b_i$ for some $i \in M_{\geq}, M_{\leq}$ or $M_{=}$. The constraint i is said to be active or tight.

Bases of a polyhedron

Definition

Let P be a polyhedron and let $\bar{x} \in \mathbb{R}^n$.

- (a) \bar{x} is a basic solution if
 - ▶ all equalities ($i \in M_=$) are active
 - among the active constraints, there are *n* linearly independent
- (b) if \bar{x} is a basic solution that satisfies all constraints, then \bar{x} is a feasible basic solution.

Theorem

Let P be a polyhedron and let $\bar{x} \in P$. The three following statements are equivalent.

- (i) \bar{x} is a vertex
- (ii) \bar{x} is an extreme point
- (iii) \bar{x} is a basic feasible solution

Bases of a polyhedron

Definition

Let P be a polyhedron and let $\bar{x} \in \mathbb{R}^n$.

- (a) \bar{x} is a basic solution if
 - ▶ all equalities $(i \in M_{=})$ are active
 - among the active constraints, there are *n* linearly independent
- (b) if \bar{x} is a basic solution that satisfies all constraints, then \bar{x} is a feasible basic solution.

Theorem

Let P be a polyhedron and let $\bar{x} \in P$. The three following statements are equivalent.

- (i) \bar{x} is a vertex
- (ii) \bar{x} is an extreme point
- (iii) \bar{x} is a basic feasible solution

Comparing two formulations

To compare two formulations P^1 and P^2 with the same integer feasible points, we consider their respective linear relaxations P_{LP}^1, P_{LP}^2 .

Comparing two formulations

 P^1 is better than P^2 if

$$P_{LP}^1 \subset P_{LF}^2$$

Ideal formulation

If $\mathcal{F} = \{x_1, \dots, x_k\}$ is the set of feasible solutions, an ideal formulation is

$$conv(\mathcal{F})$$

Example: The facility location problem

Example: The pigeonhole principle

Comparing two formulations

To compare two formulations P^1 and P^2 with the same integer feasible points, we consider their respective linear relaxations P_{LP}^1, P_{LP}^2 .

Comparing two formulations

 P^1 is better than P^2 if

$$P_{LP}^1 \subset P_{LP}^2$$

Ideal formulation

If $\mathcal{F} = \{x_1, \dots, x_k\}$ is the set of feasible solutions, an ideal formulation is

$$conv(\mathcal{F})$$

Example: The facility location problem

Example: The pigeonhole principle

Comparing two formulations

To compare two formulations P^1 and P^2 with the same integer feasible points, we consider their respective linear relaxations P^1_{LP} , P^2_{LP} .

Comparing two formulations

 P^1 is better than P^2 if

$$P_{LP}^1 \subset P_{LP}^2$$

Ideal formulation

If $\mathcal{F} = \{x_1, \dots, x_k\}$ is the set of feasible solutions, an ideal formulation is

$$conv(\mathcal{F})$$

Example: The facility location problem

Example: The pigeonhole principle

The minimum spanning tree

Let G = (V, E) be an undirected graph. Every edge has a cost c_e . We look for the tree with the minimum total cost.

Constraints to encode

- A tree should have n-1 edges where n is the number of nodes
- A tree cannot have a cycle or equivalently
 - A tree must be connected

The minimum spanning tree

Let G = (V, E) be an undirected graph. Every edge has a cost c_e . We look for the tree with the minimum total cost.

Constraints to encode

- A tree should have n-1 edges where n is the number of nodes
- A tree cannot have a cycle or equivalently
 - A tree must be connected

The minimum spanning tree

Let G = (V, E) be an undirected graph. Every edge has a cost c_e . We look for the tree with the minimum total cost.

Constraints to encode:

- A tree should have n-1 edges where n is the number of nodes
- A tree cannot have a cycle or equivalently
 - A tree must be connected

The minimum spanning tree

Let G = (V, E) be an undirected graph. Every edge has a cost c_e . We look for the tree with the minimum total cost.

Constraints to encode:

- A tree should have n-1 edges where n is the number of nodes
- A tree cannot have a cycle or equivalently
 - A tree must be connected

The minimum spanning tree

Let G = (V, E) be an undirected graph. Every edge has a cost c_e . We look for the tree with the minimum total cost.

Constraints to encode:

- A tree should have n-1 edges where n is the number of nodes
- A tree cannot have a cycle or equivalently
 A tree must be connected

Subtour elimination formulation

Integer formulation

$$P_{sub}^{I} = \{x_e \in \{0,1\} \mid \sum_{e \in E} x_e = n-1$$

$$\sum_{e \in E(S)} x_e \le |S| - 1, \quad S \subset V, S \ne \emptyset, V \}$$

$$\begin{split} P_{sub} &= \{x_e \in [0,1] \mid \sum_{e \in E} x_e = n-1 \\ &\qquad \sum_{e \in E(S)} x_e \leq |S|-1, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

Subtour elimination formulation

Integer formulation

$$\begin{aligned} P_{sub}^{I} &= \{x_e \in \{0,1\} \mid \sum_{e \in E} x_e = n-1 \\ &\sum_{e \in E(S)} x_e \leq |S|-1, \quad S \subset V, S \neq \emptyset, V \; \} \end{aligned}$$

$$\begin{aligned} P_{sub} &= \{x_e \in \textbf{[}0,1\textbf{]} \mid \sum_{e \in E} x_e = n-1 \\ &\sum_{e \in E(S)} x_e \leq |S|-1, \quad S \subset V, S \neq \emptyset, V \ \} \end{aligned}$$

Cutset formulation

Integer formulation

$$egin{aligned} P_{cut}^{I} &= \{x_e \in \{0,1\} \mid \sum_{e \in \mathcal{E}} x_e = n-1 \ &\sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset V, S
eq \emptyset, V \ \} \end{aligned}$$

$$P_{cut} = \{x_e \in [0, 1] \mid \sum_{e \in E} x_e = n - 1$$

$$\sum_{e \in \delta(S)} x_e \ge 1, \quad S \subset V, S \ne \emptyset, V \}$$

Cutset formulation

Integer formulation

$$\begin{split} P_{cut}^I &= \{x_e \in \{0,1\} \mid \sum_{e \in E} x_e = \textit{n} - 1 \\ &\sum_{e \in \delta(S)} x_e \geq 1, \quad \textit{S} \subset \textit{V}, \textit{S} \neq \emptyset, \textit{V} \; \} \end{split}$$

$$\begin{split} P_{cut} &= \{x_e \in \textbf{[}0,1\textbf{]} \mid \sum_{e \in E} x_e = n-1 \\ &\qquad \sum_{e \in \delta(S)} x_e \geq 1, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

Comparing the two formulations

Theorem

- $P_{sub} \subset P_{cut}$ and the inclusion is sometimes strict
- *P_{cut}* can have fractional extreme points

Comparing the two formulations

Theorem

- $P_{sub} \subset P_{cut}$ and the inclusion is sometimes strict
- P_{cut} can have fractional extreme points

Comparing the two formulations

Theorem

- ullet $P_{sub}\subset P_{cut}$ and the inclusion is sometimes strict
- P_{cut} can have fractional extreme points

The traveling salesman problem

Subtour elimination formulation

$$\begin{split} P_{tspsub}^{I} &= \{x_e \in \{0,1\} \mid \sum_{e \in \delta(\{i\})} x_e = 2 \quad \text{for all } i \in V \\ &\sum_{e \in E(S)} x_e \leq |S| - 1, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

$$\begin{split} P_{tspcut}^I &= \{x_e \in \{0,1\} \mid \sum_{e \in \mathcal{S}(\{i\})} x_e = 2 \quad \text{for all } i \in V \\ &\qquad \sum_{e \in \mathcal{S}(S)} x_e \geq 2, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

$$P_{tspsub} = P_{tspcus}$$

2012

The traveling salesman problem

Subtour elimination formulation

$$\begin{split} P_{tspsub}^I &= \{x_e \in \{0,1\} \mid \sum_{e \in \delta(\{i\})} x_e = 2 \quad \text{for all } i \in V \\ &\sum_{e \in E(S)} x_e \leq |S| - 1, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

Cutset formulation

$$\begin{split} P_{tspcut}^I &= \{x_e \in \{0,1\} \mid \sum_{e \in \delta(\{i\})} x_e = 2 \quad \text{for all } i \in V \\ &\qquad \sum_{e \in \delta(S)} x_e \geq 2, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

$$P_{tspsub} = P_{tspcut}$$

2012

The traveling salesman problem

Subtour elimination formulation

$$\begin{split} P_{tspsub}^I &= \{x_e \in \{0,1\} \mid \sum_{e \in \delta(\{i\})} x_e = 2 \quad \text{for all } i \in V \\ &\sum_{e \in E(S)} x_e \leq |S| - 1, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

Cutset formulation

$$\begin{split} P_{tspcut}^I &= \{x_e \in \{0,1\} \mid \sum_{e \in \delta(\{i\})} x_e = 2 \quad \text{for all } i \in V \\ &\sum_{e \in \delta(S)} x_e \geq 2, \quad S \subset V, S \neq \emptyset, V \; \} \end{split}$$

Theorem

If P_{tspsub} and P_{tspcut} are the respective linear relaxations,

$$P_{tspsub} = P_{tspcut}$$