데이터베이스시스템

07. 논리적 데이터베이스 설계

나홍석 교수

7 LESSON

논리적 데이터베이스 설계

Goals

학습 목표

- 1 ER 모델을 관계 모델로 변환하는 과정을 설명할 수 있다.
- 2 ERD를 릴레이션 스키마로 변환할 수 있다.

학습 내용

- 11 개체와 관계의 관계모델 변환
- 2 속성의 관계모델 변환
- 3 특수개체 및 관계의 릴레이션 변환
- 4 릴레이션 스키마 생성 실습

Chapter 01 개체와 관계의 관계모델 변환

1 개체의 릴레이션 변환

1 변환 방법

- ☑ 개체는 그 자체로 하나의 릴레이션으로 변환
- ☑ 개체의 이름은 릴레이션의 이름으로 대응
- ☑ 개체에 속한 각각의 속성을 애트리뷰트로 하는 릴레이션을 생성

1 개체의 릴레이션 변환

2 변환 예

부서 <u>부서코드</u> 부서명 위치

N:M 관계의 변환 #1

Q 다음 ER모델에서 등록 관계를 릴레이션 구조로 변환한 결과를 생각해보세요.

N:M 관계의 변환 #2

- ☑ 관계 역시 그 자체로 하나의 릴레이션으로 변환됨
- ☑ 양쪽의 기본키 두 개를 각각 외래키로 만들고,이 두 키를 합쳐서 기본키로 하는 별도의 릴레이션을 생성

학생 <u>학번</u> 이름 성별 주소 학과

과목 <u>과목번호</u> 과목명 학점

등록 <u>학번(FK)</u> <u>과목번호(FK)</u> 성적

N:M 관계의 변환 #3 - 데이터베이스 상태

학생

학번	이름	성별	주소	학과
ST001	최현주	ਲ	서울	소프트웨어
ST002	강하늘	山	서울	경영
ST003	이성민	남	서울	소프트웨어
ST004	박정수	여	경기	전기전자
ST005	홍민호	山	대전	경영

과목

과목번호	과목명	학점
SE0101	컴퓨터학 개론	3
BZ0011	경영학 원론	3
SE0102	자바언어	3
BZ0013	이비즈니스	3
GE0011	디자인씽킹	3

등록

학번(FK)	과목번호 (FK)	성적
ST001	SE0101	В
ST001	BZ0011	С
ST002	SE0102	Α
ST002	SE0101	C
ST002	GE0011	Α
ST002	SE0102	Α
ST003	SE0102	С
ST003	BZ0013	C
ST004	GE0011	В

1:N, N:1 관계의 변환 #1

4

Q 다음의 소속 관계는 어떻게 릴레이션으로 표현될까요?

1:N, N:1 관계의 변환 #2 - 데이터베이스 상태

사원

사번	이름	직급
S01	강우석	대리
S02	김민석	대리
S03	박지윤	과장
S04	백다현	부장
S05	최수형	사원

소속

사번	부서번호
S01	A01
S02	A02
S03	B01
S04	B01
S05	C01

부서

부서코드	부서명	위치
A01	영업1부	서울
A02	영업2부	서울
B01	기획부	대전
C01	총무부	부산

1:N, N:1 관계의 변환 #3

- ☑ N쪽 개체인스턴스 각각에 1쪽 개체인스턴스가 하나씩만 연결되므로,N쪽에 연결 정보를 표시
- ☑ 1쪽의 기본키를 N쪽의 외래키로 넣어서 릴레이션을 생성

부서 <u>부서코드</u> 부서명 위치

1:1 관계의 변환 #1

6

- ☑ N1:N 관계에서 N이 1로 바뀐 경우로 생각할 수 있음
- ☑ 어느 쪽이든 한쪽의 기본키를 다른 쪽의 외래키로 넣어서 릴레이션을 생성

1:1 관계의 변환 #2

6

 학생
 화번
 이름
 학과

 의리이션에
 포함
 보호
 이름
 연락처
 국적
 학생학반(FK)

Chapter 02 속성의 관계모델 변환

1 키속성을 가진 개체의 릴레이션 변환

1 변환 방법

- ☑ 일반적인 형태로 개체 자체가 정보의 저장/관리의 단위가 됨
- ☑ 해당 개체를 릴레이션으로 만들고, 속성을 기본키로 설정

2 다중값 속성의 릴레이션 변환 방법

다중값 속성의 예

Q 다음 ERD의 취미/색상 속성은 릴레이션으로 어떻게 변환 될까요?

다중값 속성의 릴레이션 변환 방법

2 변환 방법

- ☑ 다중값 속성은 하나의 속성에 여러 개의 값이 들어간다는 것을 표현
- ☑ 관계형 모델에서는 하나의 속성은 하나의 원자값 만을 가져야 되므로 별도의 변환 방법이 필요
- ☑ 해당 개체의 기본키와 다중값 속성을 합쳐서 복합속성을 만들고
 그 복합 속성을 기본키로 하는 별도의 릴레이션을 생성

2 다중값 속성의 릴레이션 변환 방법

3 변환 예제

3 복합 속성의 릴레이션 변환 방법

1 변환 방법

- ☑ 복합 속성은 하나의 속성이 여러 개의 세부 속성으로 구성됨
- ☑ 관계형 모델에서는 하나의 속성은 하나의 원자값 만을 가져야 되므로 별도의 변환 방법이 필요함
- 복합속성은 합쳐서 하나의 애트리뷰트로 만들던지, 아니면 나누어서여러 개의 애트리뷰트로 만듦

3 복합 속성의 릴레이션 변환 방법

2 변환 예제

속성의 의미 파악 #1

복합속성의 대표적 유형

- 일자(日字)형태의 속성 : 매출일자 등
- 외부에서 공인된 속성 : 주민등록번호 등
- 전화번호 유형 : 전화번호, 휴대폰, 팩스번호
- 주소 유형 : 고객주소

속성의 의미 파악 #2

- 1 일자(日字) 형태의 속성 : 매출일자
 - 매출월, 매출년도, 매출일은 함께 뭉쳐져 있을 때 그 의미를 찾을 수 있으며,

분리된 경우 각각은 큰 의미를 가지지 못함

- 2 외부에서 공인된 속성 : 주민등록번호
 - 국가나 공공기관에 의해서 이미 공인되어 있는 각종 번호들은 대부분 "OOO-OOO"의 형태로 대부분의 시스템에서 유사하게 관리됨
 - 우편번호, 주민등록번호, 사업자등록번호, 법인번호, 여권번호 등

속성의 의미 파악 #3

- 3 전화번호 유형 : 전화, 휴대폰, 팩스번호
 - 전화번호는 "지역번호(DDD)+국번+개별번호" 로 나누어짐
 - 각각의 속성은 독립적인 의미가 있기 때문에, 관리의 수준이나 필요성에 따라 나누어서 저장할 지, 하나의 속성으로 표현할 지를 결정

- 4 주소 유형 : 고객주소
 - "도(광역시) + 시군구 + 읍면동 + 단지(아파트, 건물) + 동호수(번지)" 로 세분화
 - "우편번호와 연결된 부분 + 상세주소"로 분리

4 유도 속성의 릴레이션 변환 방법

1 변환방법

- ☑ 유도 속성은 다른 속성에 의해 가공되어서 만들어진 값을 가지는 속성
- ☑ 다른 개체의 속성으로부터 유도되는 경우도 많이 존재함
- ☑ 2차적인 가공을 통해서 나오는 값을 저장하는 속성으로 경영자나 관리자가 관심을 두고 필요로 하는 정보를 대표하는 경우가 많음
- ☑ 유도 속성은 속성이 가지는 중요도에 따라 존재 여부를 판단함

4 유도 속성의 릴레이션 변환 방법

변환 예제 #1

Q 사원의 가족수 속성은 어떻게 처리할까요?

- 별도의 애트리뷰트로 만들지 않음
- ・ "가족수"는 프로그램 로직으로 처리

사원

<u>사원번호</u> 이름 주소

부양가족

<u>사원번호</u> 이름 관계 동거여부

4 유도 속성의 릴레이션 변환 방법

2 변환 예제 #2

Q 가족수를 애트리뷰트로 처리한다면?

• 유도과정 : 부양가족의 인스턴스 수를 계산

사원

<u>사원번호</u> 이름 주소 가<mark>족수</mark>

부양가족

<u>사원번호</u> <u>이름</u> 관계 동거여부

유도 속성의 대표적 유형

- 1 현재 정보만 관리하는 형태: 현주소, 고객 등급 등
 - 관련 개체의 최종(현시점) 정보를 미리 가져다 두는 형태

- 2 집계 정보를 관리하는 형태: 인원수, 가족수, 총직원수 등
 - 수행 속도를 위해서 개체의 통계 정보를 미리 집계해 가져다 두는 경우
 - 건수, 회수, 차수 등의 단어가 들어가는 속성들

유도 속성의 대표적 유형

- 3 대표 정보만 관리하는 형태: 대표 전자메일 ID, 취미, 법인의 대표자 정보
 - 여러 정보 중 가장 대표적인 것 하나만을 선정하여 저장하는 경우

- 4 다른 속성의 일부 정보만 분리한 형태: 성별, 나이 등
 - 주민등록번호의 일부 정보를 가지고 성별과 나이 등을 계산할 수 있음

5 관계에 속한 속성의 릴레이션 변환 방법

1 변환 방법

- ☑ 1:N 관계의 경우 해당 관계는 N쪽의 릴레이션에 외래키 형태로 나타남
- ☑ N:M관계의 경우 해당 관계는 새로운 릴레이션으로 생성됨
- ☑ 관계에 속한 속성은 그 관계가 표현된 릴레이션의 한 애트리뷰트로 변환

5 관계에 속한 속성의 릴레이션 변환 방법

변환 예제 #1

2

변환 예제 #2

사원 |사번 이름 직급 |소속부서(FK) | 발령일

부서 <u>부서코드</u> 부서명 위치

Chapter 03 특수개체 및 관계의 릴레이션 변환

1 약개체의 릴레이션 변환

1 변환 방법

- ☑ 약개체의 경우 기본키에 해당하는 속성(집합)이 없음
- ☑ 약개체가 기준으로 하는 개체에서 필요한 속성을 빌려와야 함
- ☑ 기준 개체의 기본키와 약개체의 대표 속성을 합치고, 이를 기본키로 하는 릴레이션을 생성

1 약개체의 릴레이션 변환

2 변환 예제

사원

<u>사원번호</u> 이름 주소

부양가족

<u>사원번호</u> 이름 관계 동거여부

2 순환관계의 릴레이션 변환

변환 방법

- ☑ 순환 관계는 "자기참조관계"라고 부르기도 함
- ☑ 주로 계층적인 데이터 구조를 표현할 때 순환관계를 사용
- ☑ 순환 관계에 참여하는 개체의 기본키를 바로 그 개체의 외래키로 넣어서 릴레이션을 생성

2 순환관계의 릴레이션 변환

2 변환 예제

3 이중 이진관계의 릴레이션 변환

1 변환 방법

- ☑ 개체와 개체 사이에는 한 개 이상의 관계가 존재
- ☑ N:M 관계의 경우 독립된 릴레이션을 생성
- ☑ 1:N 관계의 경우는 N쪽의 릴레이션에 각각의 관계를 표현
- ☑ 즉, 각각의 관계에서 따라 각각의 외래키를 포함해서 릴레이션을 생성

3 이중 이진관계의 릴레이션 변환

 사람
 주민번호
 이름
 연락처
 거주도시명(FK)
 전입일
 출생도시명(FK)
 출생일

도시 <u>도시명</u> 인구

2

Chapter 04 릴레이션 스키마 생성 실습

1 학사관리 시스템의 릴레이션 스키마 생성

학사관리 시스템 ERD

1

학사관리 시스템 릴레이션 스키마

학생	<u>학번</u>	이름		성별		주소		학과		
과목	<u>과목번호</u> 그		과목명		장소		담당교수(FK)			
강사	강사번호	<u>5</u> 0	름		성별	생년	생년월일		연락처	
등록	<u>학번(F</u>	<u> 과목번호(FK)</u>				성적	1			
과목시간	<u> 과목번호</u>	∑(FK)		<u>시</u>	<u>가</u>					

3 사원관리 시스템의 릴레이션 스키마 생성

사원관리 시스템 ERD

2

사원관리 시스템 릴레이션 스키마

사원 이름 감독자(FK) 사원번호 급여 성별 생년월일 부서번호(FK) 주소 부서 부서번호 부서이름 부서관리자(FK) 시작일 <u> 부서번호(FK)</u> <u>위치</u> 부서위치 프로젝트 프로젝트번호 위치 수행부서(FK) 프로젝트이름 근무시간 사원번호(FK) 프로젝트번호(FK) 참여 부양가족 사원번호 가족이름 성별 생년월일 관계

정리

🖳 논리적 데이터베이스 설계

- 데이터베이스 유형을 고려(관계형 데이터베이스)
- 수학적 릴레이션(Mathmatical relation)의 개념을 사용해서 테이블의 형태로 표현
- ERD로부터 릴레이션의 형태로 변환

학습 정리

🗒 릴레이션 변환

- 개체 및 관계의 릴레이션 변환
- 속성의 릴레이션 변환
- 특수 개체 및 관계의 릴레이션 변환
- 릴레이션 스키마 생성

References

무허

山 데이터베이스 시스템 7판, Ramez Elmasri, Shamkant B. Navathe 지음, 황규영 등 옮김, 홍릉과학출판사, 2018년 8월

www.wikipedia.org

