Losningsforslag 2021-01-08

1a) JA, tex $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, som ar diagonaliserbar (ty diagonal) med egentården 1 och 2.

b) NEJ. Om f(1)=g(1), so galler f(2)=2.f(1)=2.g(1)=g(2).

C) JA, Lex < p(x), q(x) >= 6 \int p(x) \ dx,

Di ar $|x| = \sqrt{6\int_0^1 x \cdot x \, dx} = \sqrt{6 \cdot \frac{1}{3}} = \sqrt{2}$

2 a) Ej undervau, då delnangden inhelveiller (1) men ej \frac{1}{2} (1) = (1/2).

b) Undervour. En diegonal (2×2) -matrix her formen (x_1, x_2) . Ut har

 $\begin{array}{lll} * \lambda \begin{pmatrix} \times_1 & \circ \\ \circ & \times_2 \end{pmatrix} = \begin{pmatrix} \times_1 & \circ \\ \circ & \lambda_{\times_2} \end{pmatrix} & \text{for alls } \lambda \in \mathbb{R} \\ \hline D \tilde{a} r \text{ med } \tilde{a} r & \text{delucing den sleden under addition och skaluing, och } \\ \hline i & \text{chebrn } d \tilde{a} & \begin{pmatrix} \circ & \circ \\ \circ & \circ \end{pmatrix} & \text{fill hor den}. & En & bas & \tilde{a} r & \begin{pmatrix} \cdot & \circ \\ \circ & \circ \end{pmatrix}, \begin{pmatrix} \circ & \circ \\ \circ & i \end{pmatrix} \end{pmatrix}$

C) Eg underrum, då den tex innehåller 1+ x men ej -(1+x) = -(-x)

3a) Matrisen med auseende på standardbasenna får genom att utbycha F(6) och F(9) ; standardbasen für P_2 :

 $F(6) = 1 - x^2$, som i std. basen har koordinatveldom $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

 $F(?) = F((!) - (!)) = F(!) - F(!) = x - x^2 - (1 - x^2) = -1 + x$, som har hordinativelibra ().

Dorfor or natisen
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$$
. [Alternative method: bas byte; \mathbb{R}^2] mellan abasen $((1)(6))$ oth $(6)(9)$]

b) F ar jujelliv (=> Ker F=0, så vi undersoher nollneumet till A;

Scar: Ja, ty Ker F ar trival.

c) \mathbb{R}^2 har dimension 2 och \mathbb{P}_2 har dimension 3. Efters on

$$\dim (Im F) + \dim (\ker F) = \dim (\mathbb{R}^2)$$
Så \overline{ar} $\dim (Im F) \leq 2$

$$\leq 2$$

$$\int \operatorname{dim} (\mathbb{R}^2)$$
Svar; Mej .

C 4a) Vi kontrolleror att $(A-\lambda I)x=0$ hor iche-triviala lösningar for >=1,0 och -1.

pga nollvaden kon denna matris ej ha 4 ledande elter, soi det finns iche-hinde losningur.

$$\frac{\lambda=0:}{A \mid 0)} \sim \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 1 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \\ 0 & -1 & 1 & 2 \mid 0 \mid 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 1 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 1 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 2 & 1 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \\ 0 & 0 & 2 & -1 \mid 0 \end{pmatrix} \Rightarrow \begin{cases} \text{Samua resonemary} \\ \text{Samua resonemary} \end{cases}.$$

dar u är ralfri egemelder till egemendet o och v " " " " " " 1.

5a) Forst maste
$$u_1 \cdot u_2 = 0$$
, des $\binom{b}{-2} \cdot \binom{4}{1} = 0$
(=) $4-b-2=0$ (=) $b=2$

Schan moise
$$\overline{u}_1 \cdot \overline{u}_1 = 1$$
, les $\begin{pmatrix} a \\ 2a \\ -2a \end{pmatrix} \cdot \begin{pmatrix} a \\ 2a \\ -2a \end{pmatrix} = 1 = 1$ (=) $a^2 + \frac{1}{4}a^2 + 4a^2 = 1$ (=) $a^2 = \frac{1}{4}$ (=) $a^2 = \frac{1}{4}$ (=) $a = \frac{1}{3}$ (Att $\overline{u}_2 \cdot \overline{u}_1 = 1$ Kan hontrolleus; $\frac{1}{18} \left(4^1 + (-1)^1 + 1^2 \right) = 1$). Super: $\begin{cases} a = \frac{1}{3} \\ b = 2 \end{cases}$

b) Projektionen für Alle weed
$$(\overline{v},\overline{u}_1)\overline{u}_1 + (\overline{v},\overline{u}_2)\overline{u}_1$$

When $\overline{v} \cdot \overline{u}_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1/3 \\ 1/3 \\ -1/3 \end{pmatrix} = 1$ and $\overline{v} \cdot \overline{u}_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1/171 \\ -1/15 \\ -1/15 \end{pmatrix} = \frac{3}{175}$

So projektionen belin $1 \cdot \frac{1}{3} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} \frac{1}{1} \\ -\frac{1}{1} \end{pmatrix} = \begin{pmatrix} 1/3 \\ -1/3 \\ -\frac{1}{175} \end{pmatrix} + \begin{pmatrix} 1/15 \\ -1/5 \end{pmatrix} = \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix}$

Shar: $\begin{pmatrix} 1/1 \\ 1/2 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{1}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{3}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{3}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{3}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac{3}{175} \cdot \frac{3}{175} \begin{pmatrix} 1/12 \\ -1/12 \end{pmatrix} = \frac$

Eigenelibre:
$$\lambda = 2$$
: $\begin{pmatrix} -9 & -8 & 0 \\ 4 & 4 & 0 \end{pmatrix}$ \iff $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} t$
 $\lambda = -2$: $\begin{pmatrix} -4 & -8 & 0 \\ 4 & 8 & 0 \end{pmatrix}$ \implies $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} s$

The distribution of $\lambda = 1$ and $\lambda = 1$ and

Suar:
$$|y_1 = -5e^{2t} + 6e^{-2t}$$

 $|y_2 = 5e^{2t} - 3e^{-2t}$

8a) It make his alt $f(x+y)=f(x)\oplus f(y)$ out $f(\lambda x)=\lambda \cdot f(x)$

> How f(x+y) = 2^{x+y} $f(x) \oplus f(y) = f(x) f(y) = 2^{x} \cdot 2^{y} = 2^{x+y}$ and $f(\lambda x) = 2^{x}$ $f(\lambda x) = 2^{x}$ $f(\lambda x) = f(x) = f(x)^{x} = (2^{x})^{x} = 2^{x}$

Darwed ar f linjar. b) $2^{x}=1$ (a) x=0 => Ker $f=\{0^{3}\}$, och elfersom ranje y>0 har $y=2\log_{2}y$ Darwed ar f bijeldiv, des en isover f: