INTEL CYCLONE10 CORE BOARD

USER MANUAL(QUARTUS 17.0)

Preface

The QMTECH® Cyclone 10 Core Board uses Intel® (Altera) 10CL025 device to demonstrate the industry's lowest system cost and power, along with performance levels that make the device family ideal for differentiating your high-volume applications. All Intel® Cyclone® 10 LP FPGAs require only two core power supplies for operation, simplifying your power distribution network and saving you board costs, board space, and design time. The flexibility of the Intel® Cyclone® 10 LP FPGA enables you to design in a smaller, lower cost device, lowering your total system costs.

Table of Contents

1. QUARTUS PRIME 17.0 INSTALLATION		
2. FPGA PROJECT COMPILE, *.SOF DOWNLO	DAD AND *.JIC PROGRAM	7
2.1 CREATE NEW PROJECT		
2.2 COMPILE THE PROJECT		12
2.3 PIN ASSIGNMENT		13
2.4 DOWNLOAD *.SOF INTO FPGA		15
2.5 PROGRAM *.JIC INTO SPI FLASH		18
3. SIGNALTAP II LOGIC ANALYZER		
4. REFERENCE		
F DEVICION		20

1. Quartus Prime 17.0 Installation

The revolutionary Intel® Quartus® Prime Design Software includes everything you need to design for Intel® FPGAs, SoCs, and CPLDs from design entry and synthesis to optimization, verification, and simulation. Dramatically increased capabilities on devices with multi-million logic elements are providing designers with the ideal platform to meet next-generation design opportunities.

The Intel® Quartus® Prime Software design flow comprises of the following high-level steps:

The Quartus Prime software version 17.0 supports the following device families: Stratix IV, Stratix V, Arria II, Arria V, Arria V GZ, Arria 10, Cyclone 10 LP, Cyclone IV, Cyclone V, MAX II, MAX V, and MAX 10 FPGA. Below image shows the startup UI of Quartus II Prime 17.0:

Figure 1-1. Quartus II Prime 17.0

After the Quartus II Prime 17.0 is correctly installed, users still need to install the device package from Intel official website. Below lists the download center address:

https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html

In the Intel Download Center website, select the tab of 'Select by Device' and then all the available device packages will be listed as below image. The device used in this user manual is Cyclone10 LP series and the detailed chip part number is 10CL025YU256I7G, so please download the device package for Quartus II 17.0: cyclone10lp-17.0.0.595.qdz.

Figure 1-2. Download Device Package

Open Quartus II 17.0, Click Tools → Install Device and then select the downloaded device package:

M

Below window will pop up and click Next:

Figure 1-4. Install Device Package

Choose the Download Directory where contains the cyclone10lp-17.0.0.595.qdz file:

Figure 1-5. Choose Device Package

Choose the device package needs to be installed and click Next:

Figure 1-6. Install the Device Package

User could also install the device package by using Quartus II Prime 17.0 Device Installer directly:

Figure 1-7. Device Installer

2. FPGA Project Compile, *.sof Download and *.jic Program

2.1 Create New Project

Click 【File】 → 【New Project Wizard…】 to create a new project:

Figure 2-1. Create New Project

Choose [New Quartus Prime Project]:

Figure 2-2. New Quartus Prime Project

In below [New Project Wizard] page, choose Next:

Figure 2-3. New Project Wizard

Set the target working folder below 【What is the working directory for this project?】. Set the new project name below 【What is the name of this project?】. And finally set the example project name: Test01_Project_LED shown as below.

Figure 2-4. Set Working Directory and Project Name

Select 【Empty Project】 and then click Next:

Figure 2-5. Create Empty Project

If user already has some source code, please add all these necessary files in this step:

Figure 2-6. Add Source Code

Choose the FPGA Chip number: 10CL025YU256I7G

Figure 2-7. Select Device

Summary page will be shown and click [Finish] if there's nothing needs to be changed:

Figure 2-8. Project Summary Page

After the Empty Project created, below image will be shown:

Table 2-1. Empty Project

Users may add example source file Test01_Project_LED.v into this Empty Project shown as below:

Table 2-2. Add Source File

Table 2-3. Add Source File

Quartus Prime the Edition - E/Altera/Cyclone 10/5W_10CL025/Test01_LED_Test01_LED - Test01_LED

Ele_Edit_Xew_Broject_Assignments Placesting_Tools Window_Belp

Test01_LED

Test01_LED - ✓ ♥ ♥ ♦ ® ► ► ₭ ₽ **◎ ₹ ∌ 🐉** ● 0 # × Timescale ins / ips × ≡ Cyclone 10 LP: 10CL025YU256I7G Test01_LED 🕏 Y Project Director 13:40:55 02/28/2016 ~ Library Test01_LED Basic Functions > DSP > Memory Interfaces and Controllers Processors and Peripherals Revision: Revision 0.01 - File Created Additional Comments: University Program
 Search for Partner IP input sys_clk, input sys_rst_n, output led_1); parameter DLY_CNT = 32'd50000000; parameter HALF_DLY_CNT = 32'd25000000; reg r_led; reg [31:0]count; //counter control always@(posedge sys_clk or negedge sys_rst_n) if(!sys_rst_n) begin count <= 32'd0; end else if(count == DLY_CNT) begin count <= 12'd0; end else begin count <= count+32'd1; and Analysis & Synthesis Fitter (Place & Route) //led output register control always@(posedge sys_clk or negedge sys_rst_n) gin if(!sys_rst_n) begin + Add... x g All ② △ ▲ ▼ <<Fih

Type ID Message 66 Find Negt Type ID Message

After the newly added source file loaded into project, user can view the source code shown as below:

Figure 2-9. View of Source Code

Ln 22 Col 1 Verilog HDL File

2.2 Compile the Project

Users could use the button [Start Compilation – Ctrl + L] shown in below image to compile the project:

Figure 2-10. Compilation

There will be compilation report after the compile finished, in which shows the info like logical element resource usage, how many PLLs are used, etc. Below image shows an example Compilation Report:

Figure 2-11. Compilation Report

2.3 PIN Assignment

There are several ways to assign the Pins for the example project. Method 1: Choose 【Assignment】 → 【Pin Planner】:

Figure 2-12. Pin Planner

Pin Planner - E:/Altera/Cyclone_10/SW_10CL025/Test01_LED/Test01_LED - Test01_LED File Edit Yiew Processing Tools Window Help ₽ & × Pin Legend Report not available Symbol Pin Type Top View - Wire Bond User I/O User assigned I... Cyclone 10 LP - 10CL025YU256I7G Fitter assigned L. Unbonded pad Reserved pin 10 11 12 13 14 15 16 Other configura. DEV_OE DEV_CLR DIFF_n DIFF_p CLK_n :0 :2 :0 CLK_p Other PLL Other dual purp. MSELO 0 MSEL1 ✓ Early Pin Planning CONF DONE Run I/O Assignment Analys nCONFIG Export Pin Assignments... тск Highlight Pins TMS I/O Banks WREF Groups nSTATUS Edges Clock Pins VCCP/VCCR/V 10 11 12 13 14 15 Clock VCCA VCCIO 3.3-V LVTTL 3.3-V LVTTL 3.3-V LVTTL PIN_N9 PIN_E2 PIN_F3 8mA (default) 2 (default)

Below image shows PIN settings for this test example:

Figure 2-13. PIN Assignment

Method 2: Prepare a *.csv file from other project, then use 【Assignment】 → 【Import Assignment】 to import the existing *.csv file to allocate the Pin assignment:

Figure 2-14. Import Assignment

2.4 Download *.sof into FPGA

After the test example correctly compiled, the Quartus will generate a *.sof file which could be directly loaded into FPGA to check whether implemented functions perform as expected. User could use 【Tools】 → 【Programmer】 to start a new download:

Figure 2-15. Programmer

Make sure the USB Blaster's cable are correctly connected to FPGA's JTAG port before using Programmer to download *.sof file. Then click [Auto Detect] to check the hardware setup is okay or not:

Figure 2-16. JTAG Setup

Programmer - E:/Altera/Cyclone_10/SW_10CL025/Test01_LED/Test01_LED - Test01_LED - [Test01_LED.cdf]* X <u>File Edit View Processing Tools Window Help</u> 6 Search altera.com A Hardware Setup... USB-Blaster [USB-0] Mode: JTAG ☐ Enable real-time ISP to allow background programming when available Checksum Usercode Program/ Verify Examine ▶^N Start Configure Check Stop <none> 10CL025Y 00000000 <none> Auto Detect × Delete Add File... Change File... Save File Add Device.. J[™] Down TDO

Below image shows the FPGA has been detected by the Programmer:

Figure 2-17. Detect FPGA

Users click [None] column to choose the *.sof file to be loaded into FPGA.

Figure 2-18. Choose *.sof File

Then toggle [Program/Configure] and click the [Start] button to start a new program:

Figure 2-19. Program *.sof

If the *.sof file is correctly programed, the Progress bar will show info like: 100%(Successful). Then users could check whether the LEDs on FPGA board blinking or not.

Figure 2-20. Program Successful

2.5 Program *.jic into SPI Flash

QMTECH 10CL025 core board has mounted an external SPI Flash with 8MB capacity. The hardware design chooses Active Serial x 1 method to make the FPGA could boot up from external SPI Flash after power on. In this section, it describes how to program eternal SPI Flash through JTAG port. The SPI Flash is non-volatile device which means the programmed *.jic file will never lose its content after power down.

The SPI Flash programing file *.jic is converted by *.sof file described in previous chapter. So make sure *.sof could be correctly running on FPGA before performing below steps. Step1: choose the Quartus II Prime 15.1file convert tool by click 【File】 → 【Convert Programming File】:

Figure 2-21. Convert Programming File Tool

Change the settings following below figure: choose EPCQ64, generated file name output_file.jic, etc.

Figure 2-22. Configure Convert Programming File Tool

Click the 【Advanced…】 option, and set these below two options in the red rectangle in Disable status:

Figure 2-23. Advanced Options

Select [Flash Loader] and then click [Add Device] button:

Figure 2-24. Flash Loader

Choose the target Flash Loader device: 10CL025Y:

Figure 2-25. Flash Loader for 10CL025Y

Select 【SOF Data】 and then choose 【Add File…】 to add the verified *.sof file. And then click 【Generate】 to generate the output_file.jic file:

Figure 2-26. Generate *.jic File

After the output_file.jic correctly generated, run the $[Tools] \rightarrow [Programmer]$. And then click [Add File...] to choose the output file.jic.

Figure 2-27. Choose *jic File

Toggle 【Program/Configure】 and then click 【Start】 button to program the external SPI Flash. Program status will be shown in the 【Progress】 bar. After the *.jic correctly programmed, user may re-power on the board to check whether the FPGA could boot from external SPI Flash.

Figure 2-28. Program *.jic

3. SignalTap II Logic Analyzer

The SignalTap II Embedded Logic Analyzer is a system-level debugging tool that captures and displays signals in circuits designed for implementation in Intel's FPGAs. The user is expected to have access to a computer that has Quartus II 17.0 software installed. The detailed example in this chapter was obtained using Quartus II version 17.0, but newer versions of the software can also be used.

After successfully compiling the Test04_SDRAM project and setting pin assignments, select SignalTap II Logic Analyzer from the tools dropdown menu (as shown below). Ensure the JTAG programmer (USB Byte Blaster) is connected between the board and the computer.

Figure 3-1. Open SignalTap II Logic Analyzer

Below image shows the UI of the SignalTap II:

Figure 3-2. SignalTap II Logic Analyzer UI

Below image shows the settings of the Test04 SDRAM example project:

Figure 3-3. SignalTap II Logic Analyzer Main Window

Double click the 【Node】 column shown in the above image. Below window will pop up and user clicks the 【List】 button to add the signals need to be monitored:

Figure 3-4. Set Capturing Signals

0% 00:00:00

signal sampling clock [DRAM CLK]: 🦈 SignalTap II Logic Analyzer - E:/Altera/Cyclone_10/SW_10CL025/Test04_SDRAM/Test04_SDRAM - Test04_SDRAM - [stp1.stp] File Edit View Project Processing Tools Window Help Search altera.com 图 日 り で | ※ 66 | ▶ 時 3 Instance Manager: 🔌 👂 🔳 🔯 Invalid JTAG configuration JTAG Chain Configuration: JTAG ready Memory: 78848 Small: 0/0 Status Enabled LEs: 1355 Medium: 11/66 Large: 0/0 Instance Hardware: USB-Blaster [USB-0] ▼ Setup... auto_signaltap_0 Not running 🗹 1355 cells 78848 bits 0 blocks 9 blocks 0 blocks Device: @1: 10CL025(Y|Z)/EP3C25/EP₄ ▼ Scan Chain >> SOF Manager: Land Files/Test04_SDRAM.sof ... Signal Configuration: Lock mode: Allow all changes trigger: 2018/05/01 19:17:51 #1 Node Data Enable Trigger Enable Trigger Conditions Clock: DRAM CLK Name 77 1 ☑ Basic AND ▼ ⊞ RW_Test:u2|writedata[15..0] Data ☐ RW_Test:u2|readdata[15..0] ~ xxxxh Sample depth: 1 K ▼ RAM type: Auto \checkmark ⊞ RW_Test:u2|write_count[4..0] ⊞--RW_Test:u2|pre_button[1..0] \checkmark Segmented: 2 512 sample segments **~** ⊞ RW_Test:u2|c_state[3..0] Nodes Allocated:

Auto

Manual: 77 **~** ■ RW_Test:u2|address[23..0] \checkmark XXXXXXh RW Test:u2|drv status fail <u>~</u> Pipeline Factor: 0 ~ RW Test:u2|drv status pass 33 Storage qualifier: **~** RW Test:u2|drv status test complete 98 \checkmark \vee RW Test:u2|write 88 Type: See Continuous ~ RW_Test:u2|trigger 50 Input port: auto_stp_external_storage_qualifier ~ RW Test:u2|iBUTTON 99 **~** RW Test:u2liCLK 88 Nodes Allocated:

Auto

Manual: 77 \checkmark RW_Test:u2|iRST_n RW_Test:u2|read ~ $\overline{\mathsf{V}}$ ✓ Record data discontinuities RW_Test:u2|same \checkmark Disable storage qualifier Trigger O Manual: 77 Nodes Allocated:

Auto Trigger flow control: Sequential Trigger position: Trigger conditions: 1 Trigger in Data Setup Hierarchy Display: × 🔲 Data Log: 📴 ✓

✓

Test04_SDRAM auto_signaltap_0

All the signals added in the above step will be displayed in the 【setup】 page. Please also select the

Figure 3-5. Sampling Signals and Clocks

User needs to click the 【Compile】 button shown in the below image to recompile the whole project. Then user may download the newly compiled *.sof into FPGA.

Figure 3-6. Compile the SignalTap II Project

RW_Test:u2

auto_signaltap_0

00:00:00

User could click the button [AutoRun Analysis] or button [Run Analysis] to start the waveform capture:

Figure 3-7. Start Capture

Below two images show the SDRAM data write and SDRAM data read:

Figure 3-8. Waveform for Writing Data into SDRAM

Figure 3-9. Waveform for Reading Data from SDRAM

Reference 4.

- [1] 10cl025-sdram-v01.pdf
 [2] c10lp-51002.pdf
 [3] c10lp-51003.pdf
 [4] pcg-01021.pdf
 [5] cyclone-10-lp-product-table.pdf
 [6] an800.pdf
 [7] aib-01029.pdf

5. Revision

Doc. Rev.	Date	Comments
0.1	11/12/2023	Initial Version.
1.0	11/16/2023	Formal Release.

