

Computer Basics

Number System

Moore's Law

Motherboards

(1) Identifying the Computer

Number System:

- **Decimal:** $1234 = (1 \times 1000) + (2 \times 100) + (3 \times 10) + (4 \times 1)$
 $= (1 \times 10^3) + (2 \times 10^2) + (3 \times 10^1) + (4 \times 10^0)$
 $= 1000 + 200 + 30 + 4$
 $= 1234$

- **Binary**

Step	Binary Number	Decimal Number
Step 1	10101_2	$((1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0))_{10}$
Step 2	10101_2	$(16 + 0 + 4 + 0 + 1)_{10}$
Step 3	10101_2	21_{10}

(1) Identifying the Computer

Number System:

- Octal

Octal was used in the early mainframe days.

Step	Octal Number	Decimal Number
Step 1	12570_8	$((1 \times 8^4) + (2 \times 8^3) + (5 \times 8^2) + (7 \times 8^1) + (0 \times 8^0))_{10}$
Step 2	12570_8	$(4096 + 1024 + 320 + 56 + 0)_{10}$
Step 3	12570_8	5496_{10}

(1) Identifying the Computer

Number System:

- Hexadecimal

Uses 10 digits and 6 letters, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), B(11), C(12), D(13), E(14), F(15).

Has a prefix with 0x

Step	Hex Number	Decimal Number
Step 1	$19FDE_{16}$	$((1 \times 16^4) + (9 \times 16^3) + (F \times 16^2) + (D \times 16^1) + (E \times 16^0))_{10}$
Step 2	$19FDE_{16}$	$((1 \times 16^4) + (9 \times 16^3) + (15 \times 16^2) + (13 \times 16^1) + (14 \times 16^0))_{10}$
Step 3	$19FDE_{16}$	$(65536 + 36864 + 3840 + 208 + 14)_{10}$
Step 4	$19FDE_{16}$	106462_{10}

(1) Identifying the Computer

Number System:

Hexadecimal

- Used in microprocessors and microcontrollers (Embedded system), process inputs by converting them into binary, store it, and display the same in hexanumbers again.
- Web development (ex: CSS colors)
- Networking (ex: MAC Address)
- In data science field, artificial intelligence and machine learning.

(1) Identifying the Computer

Number System:

- Binary to Decimal (vice versa)

50 / 2	= 25 : 0
25 / 2	= 12 : 1
12 / 2	= 6 : 0
6 / 2	= 3 : 0
3 / 2	= 1 : 1
1 / 2	= 0 : 1
110010	

1	+ 2*0	= 1
1	+ 2*1	= 3
0	+ 2*3	= 6
0	+ 2*6	= 12
1	+ 2*12	= 25
0	+ 2*25	= 50

(1) Identifying the Computer

Number System:

- Binary to Hexa (vice versa)

F (15)	= 1111
1	= 0001
b (11)	= 1011
111100011011	

(1) Identifying the Computer

ASCII Character Set:

- American Standard Code for Information Interchange
- Character encoding standard for electronic communication
- The first edition of the standard was published in 1963

ASCII TABLE

Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	`
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	c
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i
10	A	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6A	1101010	152	j
11	B	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	l
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	o
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	p
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	A	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	B	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	s
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[END OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	H	120	78	1111000	170	x
25	19	11001	31	[END OF MEDIUM]	73	49	1001001	111	I	121	79	1111001	171	y
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010	112	J	122	7A	1111010	172	z
27	1B	11011	33	[ESCAPE]	75	4B	1001011	113	K	123	7B	1111011	173	{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7D	1111101	175	}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	1111110	176	~
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111	117	O	127	7F	1111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	!	81	51	1010001	121	Q					
34	22	100010	42	"	82	52	1010010	122	R					
35	23	100011	43	#	83	53	1010011	123	S					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	45	%	85	55	1010101	125	U					
38	26	100110	46	&	86	56	1010110	126	V					
39	27	100111	47	'	87	57	1010111	127	W					
40	28	101000	50	(88	58	1011000	130	X					
41	29	101001	51)	89	59	1011001	131	Y					
42	2A	101010	52	*	90	5A	1011010	132	Z					
43	2B	101011	53	+	91	5B	1011011	133	[
44	2C	101100	54	,	92	5C	1011100	134	\					
45	2D	101101	55	-	93	5D	1011101	135]					
46	2E	101110	56	.	94	5E	1011110	136	^					
47	2F	101111	57	/	95	5F	1011111	137	_					

(1) Identifying the Computer

Moore's Law

- In 1965, by Gordon Moore - the co-founder of Intel
- Is the observation that the number of transistors in a dense integrated circuit doubles about every two years.
- Experts agree that computers should reach the physical limits of Moore's Law at some point in the 2020s.
- Intel's Core i7 microprocessor has 731 million transistors
- Xeon processor has 1.9 billion transistors

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldInData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

(2) Inside The Box: MotherBoards

- Mainboard, System Board, Main Circuit Board, Baseboard, Planar Board or Logic Board
- The motherboard is the spine of the computer
- It is the printed circuit board (PCB) that holds your RAM, processor, and a number of other components in place.
- If you take a close look at the system board, you can see that there are wires embedded on the board that form little pathways that span the system. This connection allows information to travel from one component to another component.

(2) Inside The Box: MotherBoards

Types of Motherboards:

Integrated system boards

Are called that because most of the components such as Graphic cards are integrated into the motherboard circuitry.

Advantages:

Integrated system boards were designed for their simplicity. Cheaper to produce.

Disadvantages:

When one component breaks, you can't just replace the component that's broken; the whole motherboard must be replaced.

Non-integrated system boards

Are called that because most of the components such as music cards are installed in the computer as expansion cards.

Advantages:

Cheaper to repair, Easier to Upgrade

MotherBoard

1) System Board Form Factors

It is important to understand the different motherboard form factors (design), because you cannot take any motherboard and place it in a computer case. You must put an ATX board in an ATX case,

- AT
- ATX
- ITX

MotherBoard

1) System Board Form Factors

- XT, released in 1983 by IBM

MotherBoard

1) System Board Form Factors

- AT (Advanced Technology), in 1984 by IBM

- The processor slot or socket and memory sockets are located at the front of the motherboard with longer expansion cards to extend over them.

The AT suffered:

- From a problem with accessing some of the items on the motherboard for example troubleshooting of the components on the motherboard is very difficult
- From overheating because of the expansion cards, once inserted into the systems.

MotherBoard

MotherBoard

1) System Board Form Factors

- Baby AT, In 1985 by IBM

- Used for 486 and Pentium processors.
- The processor slot or socket and memory sockets are located at the front of the motherboard.
- The baby AT board usually had a mixture of ISA and PCI slots located on the system board and included a plug and play BIOS.
- Using of SIMM and DIMM slots.
- The Baby AT board introduced a 60/66 MHz system bus.
- PS/2 mouse connector.

MotherBoard

MotherBoard

1) System Board Form Factors

- **ATX (Advanced Technology Extended) in 1995 by INTEL**
- The ATX has the processor and memory slots at right angles to the expansion cards
- Integrated I/O port connectors directly into the board, including USB ports.
- The ATX board introduced a 100 MHz system bus and has been increased to speeds of 533 MHz and higher.
- Soft power support (3.3v), which meant that the system could be shut down by the operating system.

ATX Board

MotherBoard

1) System Board Form Factors

- MicroATX and FlexATX

- Smaller versions of the ATX motherboard.
- is 9.6" x 9.6" and can fit in either a microATX case or a normal ATX case, known as a full ATX case.
- Measuring 9" x 7.5", the FlexATX is smaller than the microATX but can fit in an ATX or a microATX case.

ATX motherboard

microATX motherboard

MotherBoard

1) System Board Form Factors

- ITX

- Was developed by VIA Technologies in 2001
- ITX has different dimensions and is designed to function in different devices
- **Mini-ITX:** A low-power motherboard form factor that is smaller than the microATX with dimensions of 6.7 x 6.7 inches. Because of their low power consumption, they are kept relatively cool and are typically used in home theater PCs.
- **Nano-ITX:** The Nano-ITX form factor was developed in 2005 and has dimensions of 4.7 x 4.7 inches. The Nano-ITX form factor is a low-power-consumption form factor as well and is used in devices such as PVRs, media centers, and car PCs.
- **Mobile-ITX:** The Mobile-ITX form factor (2009) is used for compact devices such as smartphones, with dimensions such as 75mm x 45mm.

Standard-ATX

Micro-ATX

Mini-ITX

Pico-ITX
Nano-ITX

Mini-ITX

Nano-ITX

Pico-ITX

Mobile-ITX

MotherBoard

1) System Board Form Factors

- BTX (Balanced Technology eXtended)

- Designed by INTEL to replace the ATX form factor in late 2004 - early 2005 and create smaller, low-profile systems
- The BTX layout establishes a straighter path of airflow with fewer obstacles, resulting in better overall cooling capabilities.
- Future development of BTX retail products by Intel was canceled in September 2006 following Intel's decision to refocus on low-power CPUs after suffering scaling and thermal issues with the Pentium 4

Specification	Year	Dimensions of motherboard	Expansion slots
BTX	2004	10.5 × 12.8 in (266.70 × 325.12 mm)	7
micro BTX		10.5 × 10.4 in (266.70 × 264.16 mm)	4
nano BTX		10.5 × 8.8 in (266.70 × 223.52 mm)	2
pico BTX		10.5 × 8.0 in (266.70 × 203.20 mm)	1

MotherBoard

2) System Board Components

- **Chipsets**
- **Expansion slots and buses**
- Memory slots and external cache
- CPUs and their sockets
- Power connectors
- Onboard disk drive connectors
- Keyboard connectors
- **Integrated peripheral ports and headers**
- BIOS/firmware
- CMOS battery
- **Jumpers and DIP switches**
- **Front-panel connectors**

Thanks For Attention