INTRO TO DATA SCIENCE HW 1

Ben Green

Contents

Question	1																		1
1a																			1
1b																			1
1c																			1
1d		 																	1
1e		 																	1
1f																			2
1g																			2
1h																			2
1i																			2
Question	2																		3
Question	3																		3
3a																			3
3b																			3
Question	4																		3
4a		 																	3
4b																			3
Question	5																		4
5a		 																	4
5b																			4
5c																			4
Question	6																		4
Question	7																		4

Question 1

1a.

Feature Name	Feature Type
producer	nominal
release_to_review_time	interval
used_real_name	binary
verified_purchase	binary
rating	ordinal
helpfulness	ratio
number_of_votes	ratio
length_of_review_text	ratio

1b.

The mode of producer is Apple, with 4480 entries.

1c.

5077/9585, or 53% of reviewers used their real name and had a verified purchase.

1d.

5077/13989, or 36% of reviews with a verified purchase had a reviewer who used their real name.

1e.

Measure	Value
min	-537
q1	74
median	144
q3	290
max	11686
interquartile	215

These numbers can be displayed conveniently in a boxplot.

1f.

1g.

Yes, the distribution of length_of_review_text is heavily skewed towards the shorter end. There are outliers of 18275, 22492, and 26332.

1h.

The Pearson correlation value between length_of_review_text and helpfulness is approximately .25. This indicates that there is a slight positive correlation between these two variables.

1i.

Question 2

Regarding the AND construction, r=3 being the number of hash functions and the LSH family $\{d1,d2,0.6,0.4\}$, the new family that is derived is:

Regarding the OR construction, r = 3 being number of hash functions and the LSH family $\{d1,d2,.216,0.64\}$, the new family that is derived is:

$$\begin{aligned} \{\mathrm{d}1,\mathrm{d}2,\mathrm{1-}(\mathrm{1-}(0.6))^3,\mathrm{1-}(\mathrm{1-}(0.4))^3\} \\ y &= 0.936 \\ z &= 0.784 \end{aligned}$$

Question 3

3a.

```
Sketch of vector u = [1.25, -1.75, 1.75]
Sketch of vector v = [0.95, -0.95, 1.35]
Sketch of vector w = [-0.35, 1.65, 1.85]
```

The sketches were constructed by taking the dot products of each vector with each randomly generated vector.

3b.

$$\frac{u \cdot v}{\|u\| \cdot \|v\|} = 0.949 \tag{1}$$

$$\frac{u \cdot w}{\|u\| \cdot \|w\|} = 0.017 \tag{2}$$

Question 4

4a.

The Mahalanobis distance reduces to the Euclidian distance when the covariance matrix is the identity matrix.

4b.

The Mahalanobis distance reduces to the Euclidian distance when the covariance matrix is a diagonal matrix.

Question 5

5a.

The minihash signatures for each column are as follows:

S_1	S_2	S_3	S_4	S_5
5	5	1	1	1
5	2	2	2	2
3	0	1	4	0

5b.

Only h_2 is a true permutation.

5c.

Estimated Jaccard Similarities:

1-2	1-3	1-4	2-3	2-4	S6
0	0	1/4	0	1/4	1/4

True Jaccard Similarities:

1-2	1-3	1-4	2-3	2-4	S6
1/3	1/3	1/3	2/3	2/3	2/3

Question 6

The stop-word based shingles for the sentences are:

```
{and Mrs.Dursley, of number four, to say that, that they were} {for the first, the first time, an argument had, at number four}
```

There are no matches between shingles of each sentence, so the Jaccard Similarity is 0/8.

Question 7

The logit function can be used to transform values obtained from a logistic equation to generate a sequence of random numbers with an (almost) normal distribution.