Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-09-04

Mathematical Modelling

Textbook p. 2: How to specify an algorithm to compute b, an integer approximation to \sqrt{n} for some integer *n*?

• Square roots do not exist for negative integers! Therefore, the algorithm must only be used for non-negative n.

Precondition: $n \ge 0$

• To compute <u>an</u> approximation???

42 is an approximation of $\sqrt{1000}$!

"Reasonable" approximations (candidates for the *postcondition*):

- $b^2 \le n \le (b+1)^2$
- $abs(b^2 n) \le abs((b+1)^2 n)$ and $abs(b^2 n) \le abs((b-1)^2 n)$ $(b-1)^2 \le n \le b^2$

Now step back, and do "grammatical analysis"!

Grammatical Analysis: Sentence Structure Trees

Square roots do not exist for negative integers.

Mathematical Modelling uses Mathematical Expressions

Textbook p. 2: How to specify an algorithm to compute b, an integer approximation to \sqrt{n} for some integer n?

- Square roots do not exist for negative integers!
 Therefore, the algorithm must only be used for non-negative *n*.
 Precondition: n > 0
- To compute \underline{an} approximation??? 42 is an approximation of $\sqrt{1000}$! "Reasonable" approximations (candidates for the *postcondition*):
 - $b^2 \le n \le (b+1)^2$
 - $abs(b^2 n) \le abs((b+1)^2 n)$ and $abs(b^2 n) \le abs((b-1)^2 n)$
 - $(b-1)^2 \le n \le b^2$

Now step back, and do "grammatical analysis"!

- How is all that math put together?
- What are the different kinds of atoms ("words")?
- What are the different kinds of composite structures ("phrases")?
- What are the rules for analysis/synthesis of composite structures?

Syntax of Conventional Mathematical Expressions

- A **constant** (e.g., 231) or **variable** (e.g., *x*) is an expression
- If *E* is an expression, then (*E*) is an expression
- If \circ is a **unary prefix operator** and *E* is an expression, then $\circ E$ is an expression, with operand *E*.

For example, the negation symbol – is used as a unary prefix operator, so –5 is an expression.

• If \otimes is a **binary infix operator** and *D* and *E* are expressions, then $D \otimes E$ is an expression, with operands *D* and *E*.

For example, the symbols + and · are binary infix operators, so 1 + 2 and $(-5) \cdot (3 + x)$ are expressions.

Textbook 1.1, p. 7

Term Tree Presentation of Mathematical Expression

$$b^2 \le n \le (b+1)^2$$

We write strings, but we think trees.

All the rules we have for implicit parentheses only serve to encode the tree structure.

Syntax of Conventional Mathematical Expressions

- A **constant** (e.g., 231) or **variable** (e.g., *x*) is an expression
- If *E* is an expression, then (*E*) is an expression
- If \circ is a **unary prefix operator** and *E* is an expression, then $\circ E$ is an expression, with operand *E*.
- If \otimes is a **binary infix operator** and *D* and *E* are expressions, then $D \otimes E$ is an expression, with operands *D* and *E*.

Therefore, each expression (for now) is **exactly one** of the following alternatives:

- either some constant
- or some variable
- or some simpler expression in parentheses
- or the application of some unary prefix operator to some simpler expression
- or the application of some binary infix operator to two simpler expressions

Recognising the Syntax of Conventional Mathematical Expressions

- A constant (e.g., 231) or variable (e.g., *x*) is an expression
- If *E* is an expression, then (*E*) is an expression
- If ∘ is a unary prefix operator and E is an expression, then ∘E is an expression, with operand E.
- If \otimes is a **binary infix operator** and *D* and *E* are expressions, then $D \otimes E$ is an expression, with operands *D* and *E*.

Which are expressions? $0.6 \cdot 7 - 8 \cdot 9$ - really bad style $3 \cdot +7$ / — we may use + as a unary prefix operator. **4** x + .11× $\mathbf{0}$ 31 + 32 · · · 39 ×

Why is this an expression?

$$2 \cdot 3 + 4$$

- If \otimes is a **binary infix operator** and *D* and *E* are expressions, then $D \otimes E$ is an expression, with operands *D* and *E*.
- or the application of some binary infix operator to two simpler expressions

Which expression is it? Why?

The multiplication operator · has higher **precedence** than the addition operator +.

Table of Precedences

• [x := e] (textual substitution)

(highest precedence)

- . (function application)
- unary prefix operators +, −, ¬, #, ~, ₱
- / ÷ mod gcd
- ∪ ∩ x ∘ •

- < > € ⊂ ⊆ ⊃ ⊇ |

(conjunctional)

(lowest precedence)

All non-associative binary infix operators associate to the left, except $**, \triangleleft, \Rightarrow$, which associate to the right.

Why are these expressions? Which expressions are these?

05-6+7

a+b-c

The operators + and – associate to the left, also mutually.

Which are expressions? (ctd.)

$$x + z - 5 - (-3 \cdot y)$$

$$\checkmark$$

2
$$f z + 3$$

× — LADM: juxtaposition not used as operator / — CALCCHECK: juxtaposition used as function application

$$\sqrt{}$$

$$\bullet 5 \cdot (-3 \cdot y)$$

$$\checkmark$$

$$\times$$
(5 is not a function)

6
$$5 = (-3 \cdot y)$$

$$\sqrt{}$$

$$\sqrt{}$$

Associativity versus Association

• If we write a + b + c, there is no need to discuss whether we mean (a + b) + c or a + (b + c), because they are the same:

$$(a + b) + c = a + (b + c)$$
 "+" is associative

• If we write a - b - c, we mean (a - b) - c:

"-" associates to the left
$$9 - (5 - 2) ≠ (9 - 5) - 2$$

• If we write a^{b^c} , we mean $a^{(b^c)}$:

exponentiation associates to the right
$$2^{(3^2)} \neq (2^3)^2$$

• If we write a ** b ** c, we mean a ** (b ** c):

• If we write $a \Rightarrow b \Rightarrow c$, we mean $a \Rightarrow (b \Rightarrow c)$:

"
$$\Rightarrow$$
" associates to the right $F \Rightarrow (T \Rightarrow F) \neq (F \Rightarrow T) \Rightarrow F$

Mathematical Expressions, Terms, Formulae ...

"Expression" is not the only word used for this kind of concept.

Related terminology:

- Both "term" and "expression" are frequently used names for the same kind of concept.
- The textbook's "expression" subsumes both "term" and "formula" of conventional first-order predicate logic.

Remember:

- Expressions are **understood** as tree-structures
 - "abstract syntax"
- Expressions are written as strings
 - "concrete syntax"
- Parentheses, precedences, and association rules only serve to disambiguate the encoding of trees in strings.

Truth Values

Boolean constants/values: false, true

The type of Boolean values: \mathbb{B}

- This is the type of propositions, for example: $(x = 1) : \mathbb{B}$
- For any type t, equality $_=$ can be used on expressions of that type: $_=$: $t \to t \to \mathbb{B}$

Boolean operators:

- $\neg_: \mathbb{B} \to \mathbb{B}$ negation, complement, "logical not"
- $_ \land _ : \mathbb{B} \to \mathbb{B} \to \mathbb{B}$ conjunction, "logical and"
- $_\vee_: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$ disjunction, "logical or"
- $_\Rightarrow_: \mathbb{B} \to \mathbb{B} \to \mathbb{B}$ implication, "implies", "if ... then ..."
- $\underline{=} : \mathbb{B} \to \mathbb{B} \to \mathbb{B}$ equivalence, "if and only if", "iff"
- $_{\pm}$: $\mathbb{B} \to \mathbb{B} \to \mathbb{B}$ inequivalence, "exclusive or"

Table of Precedences

```
• [x := e] (textual substitution)
```

(highest precedence)

- . (function application)
- unary prefix operators +, −, ¬, #, ~, P
- k* •
- · / ÷ mod gcd
- + U ∩ x ∘ •
- **↓**
- #
- <1 >
- = ≠ < > € ⊂ ⊆ ⊃ ⊇ |

(conjunctional)

- _ _ _ /

(lowest precedence)

All non-associative binary infix operators associate to the left, except **, \triangleleft , \Rightarrow , which associate to the right.

Some Laws for the Boolean Operators

```
(3.12) Double negation: \neg \neg p \equiv p
```

(3.36) **Symmetry of**
$$\wedge$$
: $p \wedge q \equiv q \wedge p$

(3.37) **Associativity of**
$$\wedge$$
: $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

(3.38) **Idempotency of**
$$\wedge$$
: $p \wedge p \equiv p$

(3.39) **Identity of**
$$\wedge$$
: $p \wedge true \equiv p$

(3.40) **Zero of**
$$\wedge$$
: $p \wedge false \equiv false$

(3.42) **Contradiction**:
$$p \land \neg p \equiv false$$

(3.24) **Symmetry of**
$$\vee$$
: $p \vee q \equiv q \vee p$

(3.25) Associativity of
$$\vee$$
: $(p \vee q) \vee r \equiv p \vee (q \vee r)$

(3.26) **Idempotency of**
$$\vee$$
: $p \vee p \equiv p$

(3.29) **Zero of**
$$\vee$$
: $p \vee true \equiv true$

(3.30) **Identity of**
$$\vee$$
: $p \vee false \equiv p$

(3.28) **Excluded Middle**:
$$p \lor \neg p$$

(3.45) **Distributivity of**
$$\vee$$
 over \wedge : $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

(3.46) **Distributivity of**
$$\land$$
 over \lor : $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

(3.47) **De Morgan**:
$$\neg (p \land q) \equiv \neg p \lor \neg q \qquad \neg (p \lor q) \equiv \neg p \land \neg q$$

Binary Boolean Operators: Conjunction

Args.			
		_ ^	
F	F T F T	F	The moon is green, and $2 + 2 = 7$.
F	Т	F	The moon is green, and $1 + 1 = 2$.
Т	F	F	1 + 1 = 2, and the moon is green.
Т	Т	Т	1 + 1 = 2, and the sun is a star.

Binary Boolean Operators: Disjunction

Args.			
		\ \	
F	F	F	The moon is green, or $2 + 2 = 7$.
F	Т	Т	The moon is green, or $1 + 1 = 2$.
Т	F	Т	1 + 1 = 2, or the moon is green.
Τ	F T F T	Т	1 + 1 = 2, or the sun is a star.

This is known as "inclusive or" — see textbook p.34.