

DIE BEDEUTUNG DES CO2-GEHALTES IN BEZUG AUF VIRENBELADENE AEROSOLE

Handout für den Zusammenhang zwischen CO_2 und viralen Aerosolen

Inhaltsverzeichnis

1	Theoretische Grundlagen			
	1.1	Die Pettenkofer-Zahl	2	
	1.2	Einflussgrößen für den CO2-Gehalt in einem Raum	3	
2		hnerisch den CO_2 -Gehalt und die Luftwechselzahl timmen	5	
3	Beis	spielrechnungen	8	
4	Auf	gaben zur CO ₂ -Konzentration in Räumen	13	
Lit	terat	urverzeichnis	15	
Ar	nhang		16	

1 Theoretische Grundlagen

Um in Seminarräumen, Hörsälen oder Klassenzimmer das Risiko von einer Vireninfektion gering zu halten, ist eine gute Durchlüftung des jeweiligen Raumes nötig. Wie oft gelüftet werden sollte hängt von mehreren Parametern ab, welche sich gerade für Aerosole als kompliziert erweisen.

Hierbei werden Modelle für die Tröpfchenbildung, deren Sinkgeschwindigkeit, sowie Effizienz der Masken und ähnliches zurate gezogen.

Um dennoch eine sinnvolle Belüftung von Räumlichkeiten zu gewährleisten, können bereits untersuchte Luftparameter wie der CO2-Gehalt in Arbeitsräumen genutzt werden. Für diese Annahme wird davon ausgegangen, dass je mehr CO \neg 2 sich in der Luft befindet, desto höher ist das Risiko, dass bereits ausgeatmete Luft zusammen mit Aerosolen wieder eingeatmet wird.

Über den CO2-Gehalt kann somit eine indirekte Messung an Aerosolen erfolgen und entsprechende Messgeräte wie CO2-Ampeln auf ein Mindestmaß an Lüftung hinweisen.

Doch wie lässt sich nun der CO2-Gehalt in einem Raum bestimmen? Welche Kriterien für die maximale Konzentration sollen dabei eingehalten werden? [1, 2, 3]

1.1 Die Pettenkofer-Zahl

Prof. Max Pettenkofer (1818-1901) definierte bereits 1858 eine anzustrebende Obergrenze für den CO₂-Gehalt in einem Raum von 1000 ppm = 0,10 Vol.%. Dieser Grenzwert ist auch heute noch als Pettenkofer-Zahl bekannt. Entstanden aus der Zeit der Industrialisierung und als technische Regel an Arbeitsstätten hinzugezogen, beweist sich auch heute noch die Pettenkofer-Zahl bzw. der CO₂-Gehalt der Luft, als effektives Maß für die Bewertung der Luftqualität in Innenräumen. In der Lüftungsnorm DIN 1946 Teil 2 wird ein maximaler Wert von 1500 ppm = 0,15 Vol.% angegeben.

1.2 Einflussgrößen für den CO2-Gehalt in einem Raum

Der CO2-Gehalt in Räumen hängt von verschiedenen Parametern ab, ähnlich wie der Aerosolgehalt. Untersuchungen des CO2-Gehaltes legen jedoch sehr verständliche Annahmen und Messwerte nahe, welche eine gute Durchlüftung zum Niedrighalten des Aerosolgehaltes bestimmen lassen.

Aktivität

Je nachdem welche Aktivitäten die, sich im Raum befindlichen Personen ausüben wird pro Zeiteinheit ein höheres oder niedrigeres Maß an CO¬2 freigesetzt. In der folgenden Tabelle 1 findet sich eine Auswahl solcher Volumenströme nach VDI 4300 Blatt 7.

Tab. 1: CO2- Abgabe einer erwachsenen Person bei verschiedenen körperlichen Aktivitäten (VDI 4300 Blatt 7)

Aktivität	$\dot{V}_{ m CO_2}$ in $rac{ m L}{ m h}$
Sitzende Tätigkeit	15 - 20
Leichte Arbeit	20 - 40
Mittelschwere Arbeit	40 - 70
Schwere Arbeit	70 - 110

Personenzahl

Auch die Personenanzahl in einem Raum spielt eine wichtige Rolle. Je nachdem wie viele Personen sich in einem Raum befinden, wird die vorhandene Luft unterschiedlich schnell aufgebraucht und mit ausgeatmeter Luft ersetzt bzw. mit Aerosolen versehen.

Zeit

Dieser Punkt versteht sich von selbst, denn je mehr Zeit vergeht, desto mehr Luft wird eingeatmet und desto mehr CO2 bzw. Aerosole werden ausgeatmet.

Raumvolumen

Je größer der Raum ist, desto mehr Luftkapazitäten sind vorhanden. Je größer der Raum bei gleicher Personenzahl ist, desto geringer ist das Risiko Aerosole einzuatmen.

Luftwechselzahl

Die Luftwechselzahl gibt an wie oft das komplette Raumvolumen innerhalb einer Stunde ausgewechselt wird. Sie ist also ein maßgeblicher Parameter zur Kontrolle des CO2-Gehaltes bzw. der Aerosole im Raum. Wie groß die Luftwechselzahl ist hängt dabei unter anderem von der Anzahl geöffneter Türen oder Fenster, sowie Belüftungsanlagen ab.

Tab.	2:	Lüftung	rszahlen	fiir	verschiedene	Fenste	erlüftungen	[4]	1
Tab.		Larvany	SECULIA	LUL	VOIDOINICACINO	I CIIDUC		1 -	1

Zustand	$n \text{ in } \frac{1}{h}$
Fenster zu, Türen zu	> 0,0 bis $0,3$
Fenster gekippt (Spaltlüftung)	> 0, 3 bis $1, 5$
Fenster kurzzeitig ganz geöffnet (Stoßlüftung)	> 0, 3 bis 4, 0
Fenster ständig ganz geöffnet	> 9,0 bis $15,0$
Gegenüberliegende Fenster und Türen ständig geöffnet (Querlüftung)	> 40

Abb. 1: Spaltluft- und Querluftströmung

Alkalisches Mauerwerk

Auch das Mauerwerk kann für den CO2-Gehalt entscheidend sein, da dabei der verarbeitete Kalkmörtel (bestehend aus Sand, Löschkalk und Kies) zu Calciumcarbonat reagiert.

$$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$$

2 Rechnerisch den CO₂-Gehalt und die Luftwechselzahl bestimmen

Um die CO₂-Konzentration mit bekannter Luftwechselzahl zu bestimmen ergibt sich mit der Hintergrundbelastung an CO₂ aus der Umgebungsluft folgender Term:

$$c_{\text{CO}_2}(t) = c_{\text{CO}_2, \text{außen}} + \frac{N \cdot \dot{V}_{\text{CO}_2}}{10 \cdot n \cdot V} \cdot \left[1 - e^{-n \cdot t}\right]$$
(1)

$$n = \frac{N \cdot \dot{V}_{\text{CO}_2}}{10 \cdot V \cdot [c_{\text{CO}_2}(t \to \infty) - c_{\text{CO}_2,\text{außen}}]}$$
(2)

 $c_{\mathrm{CO_2}}(t)\dots$ Innenraum Konzentration an $\mathrm{CO_2}$ in Vol.% zu einem Zeitpunkt t

 $\boldsymbol{c}_{\text{CO}_2,\text{außen}}\dots$ Außenkonzentration an CO₂ in Vol.% (≈ 0.04 Vol.%)

 $c_{\mathrm{CO_2}}(t \to \infty) \dots$ Grenzkonzentration an $\mathrm{CO_2}$ für $t \to \infty$

 $N \dots$ Anzahl der Personen

 $n \dots$ Luftwechselzahl in $\frac{1}{h}$

 $\boldsymbol{V}\dots$ Raumvolumen in m³

 $\dot{V}_{\mathrm{CO_2}}\dots$ spezifische Emissionsrate in $\frac{\mathrm{L}}{\mathrm{h}}$

 $t \dots$ Zeit in h

Es gilt zu beachten, dass diese Gleichungen empirisch sind. So muss beachtet werden, dass die Gleichung nicht Einheiten gerecht ist und somit die Zahlenwerte der definierten Variablen zu nutzen sind!

Herleitung der Gleichung für die CO₂-Konzentration

Um die Gleichung 1 herzuleiten, ist es nötig den Sachverhalt zu vereinfachen (siehe Abb. 2). Die Blackbox stellt dabei den vereinfachten, betrachteten Raum dar in welchem der CO_2 -Gehalt zum Zeitpunkt t bestimmt werden soll.

Abb. 2: "Blackbox"-Modell für CO₂-Gehalt eines Raumes

 $k_1 \dots$ Geschwindigkeitskonstante des eingehenden Stoffstromes A

 $k_2 \dots$ Geschwindigkeitskonstante des ausgehenden Stoffstromes C

 $A \dots$ eingehender Stoffstrom A

 $B \dots$ "Blackbox" B

 $C \dots$ ausgehender Stoffstrom C

 $c_A \dots$ Konzentration an CO_2 des eingehenden Stoffstromes A

 $c_B \dots$ Konzentration an CO_2 der "Blackbox" B

 $c_C \dots$ Konzentration an CO_2 des ausgehenden Stoffstromes C

Unter der Annahme, dass die Änderung der Konzentration an CO_2 für die Stoffströme A und C konstant bleibt, kann ein differentieller Zusammenhang zwischen den Konzentrationen c_A und c_C jeweils mit der Zeit t aufgestellt werden. Dieser Ausdruck ist unter de folgenden Gleichungen mit den Geschwindigkeitskonstanten k_1 und k_2 in einen Zusammenhang gebracht worden.

$$\frac{\mathrm{d}c_A}{\mathrm{d}t} = -k_1 \cdot c_A \tag{3}$$

$$\frac{\mathrm{d}c_c}{\mathrm{d}t} = k_2 \cdot c_B \tag{4}$$

Da A als eingehender Stoffstrom in der Blackbox "verbraucht" wird, erhält die Geschwindigkeitskonstante k_1 ein negatives Vorzeichen. Die Geschwindigkeitskonstante k_2 beschreibt den ausgehenden Stoffstrom, als würde dieser "produziert" und erhält somit ein positives

Vorzeichen. Da der Stoffstrom C von der Konzentration in der Blackbox abhängig ist, wird hierbei mit der Konzentration c_B gerechnet. Stoffstrom A ist lediglich vom CO_2 -Gehalt außerhalb der Blackbox abhängig und ist somit lediglich abhängig von c_A .

Aus dem differentiellen Ansatz vom eingehenden Stoffstrom A und dem ausgehenden Stoffstrom B ergibt sich somit die Gleichung 5.

$$\frac{\mathrm{d}c_B}{\mathrm{d}t} = k_1 \cdot c_A - k_2 \cdot c_B \tag{5}$$

Die Vorzeichen ergeben sich erneut daraus ob die Stoffströme in die Blackbox eingetragen werden (+) oder die Blackbox verlassen (-). Daraus lässt im folgenden die Gleichung für die CO_2 -Konzentration aus bekannten Daten wie der Personenzahl N oder der Luftwechselzahl n berechnen.

Umformungen für die Formel der CO₂-Konzentration in einem Raum in Abhängigkeit von der Zeit:

$$c_{b} = \frac{k_{1}}{k_{2}} \cdot c_{A,0} \cdot \left(1 - e^{-k_{2} \cdot t}\right)$$

$$= \frac{k_{1}}{k_{2}} \cdot c_{A,0} \cdot \left(1 - e^{-k_{2} \cdot t}\right)$$

$$= \frac{\dot{V}_{CO_{2}}}{k_{2}} \cdot \frac{N}{10} \cdot \left(1 - e^{-k_{2} \cdot t}\right)$$

$$= \frac{1}{k_{2}} \cdot \frac{N \cdot \dot{V}_{CO_{2}}}{10 \cdot V} \cdot \left(1 - e^{-k_{2} \cdot t}\right)$$

$$c_{CO_{2},innen}(t) = \frac{N \cdot \dot{V}_{CO_{2}}}{10 \cdot n \cdot V} \cdot \left(1 - e^{-n \cdot t}\right) \qquad \text{(siehe Gl. 1)}$$

$$c_{CO_{2}}(t) = c_{CO_{2},außen} + \frac{N \cdot \dot{V}_{CO_{2}}}{10 \cdot n \cdot V} \cdot \left[1 - e^{-n \cdot t}\right] \qquad (6)$$

3 Beispielrechnungen

Wie lassen sich diese Kenntnisse nun nutzen, um den CO₂-Gehalt zu bestimmen?

Beispiel 1:

Berechnung des CO_2 -Gehaltes für eine bestimmte Personenzahl zu einem bestimmten Zeitpunkt t

10 Studenten sind in einem Seminarraum ($V=150\,\mathrm{m}^3$) mit gekippten Fenstern ($n=0,3\,\frac{1}{\mathrm{h}}$) und es soll der CO_2 -Gehalt nach $1,5\,\mathrm{h}$ bestimmt werden. Da alle Personen sitzende Tätigkeiten ausführen kann von einer spezifischen Emissionsrate von $17\,\frac{\mathrm{L}}{\mathrm{h}}$ an CO_2 ausgegangen werden.

Gegeben:

- Personenzahl N = 10
- Luftwechselzahl $n = 0.3 \frac{1}{h}$
- Raumvolumen $n = 150 \,\mathrm{m}^3$
- Zeit $t = 1.5 \,\text{h}$

- spezifische Emissionsrate $\dot{V}_{\rm CO_2} = 17 \, \frac{\rm L}{\rm h} = 17 \cdot 10^{-3} \, \frac{\rm m^3}{\rm h}$
- Außenkonzentration CO_2 $c_{CO_2,außen} = 4 \text{ Vol.}\%$

Gesucht:

• CO₂-Gehalt zum Zeitpunkt t

Skizze:

Abb. 3: Skizze zu Beispiel 1

Lösung:

$$c_{\text{CO}_2}(t) = c_{\text{CO}_2,\text{außen}} + \frac{N \cdot \dot{V}_{\text{CO}_2}}{10 \cdot n \cdot V} \cdot \left[1 - e^{-n \cdot t}\right]$$

$$c_{\text{CO}_2}(1,5 \,\text{h}) = 0.04 \,\text{Vol.\%} + \frac{10 \cdot 17 \,\frac{\text{L}}{\text{h}}}{10 \cdot 0.3 \,\frac{1}{\text{h}} \cdot 150 \,\text{m}^3} \cdot \left[1 - e^{-0.3 \,\frac{1}{\text{h}} \cdot 1.5 \,\text{h}}\right]$$

$$= 0.04 \,\text{Vol.\%} + 0.137 \,\text{Vol.\%}$$

$$= 0.177 \,\text{Vol.\%}$$
(7)

Grenzkonzentration für DIN 1946 Teil II und Pettenkofer-Zahl überschritten!

Beispiel 2:

Iterative Berechnung der Zeit t bis Grenzkonzentration erreicht ist

Sieben Personen treffen sich zum studentischen Gelage in einer WG am Campus mit $145\,\mathrm{m}^3$ Raumvolumen. Da ein halbgeöffnetes Fenster existiert, wird eine Luftwechselzahl von $n=0.26\,\frac{1}{\mathrm{h}}$ und durch den Milchgenuss eine Emissionsrate von $25\,\frac{\mathrm{L}}{\mathrm{h}}$ gemessen. Die Außenkonzentration bleibt bei $0.04\,\mathrm{Vol.\%}$. Es ist die Zeit zu bestimmen nach welcher eine Grenzkonzentration von $0.15\,\mathrm{Vol.\%}$ erreicht ist.

Gegeben:

- Personenzahl N=7
- Luftwechselzahl $n=1.05\frac{1}{\mathrm{h}}$
- Raumvolumen $n = 145 \,\mathrm{m}^3$
- Grenzkonzentration $c_{\text{CO}_2} = 0.15 \,\text{Vol.\%}$
- spezifische Emissionsrate $\dot{V}_{\mathrm{CO}_2} = 25\,\frac{\mathrm{L}}{\mathrm{h}}$
- Außenkonzentration CO_2 $c_{CO_2,außen} = 4 \text{ Vol.}\%$

Gesucht:

 \bullet Zeitpunkt t bis Grenzkonzentration erreicht ist

Was ist iteratives Rechnen?

Iterationsverfahren beschreiben eine schrittweise Annäherung an eine Lösung durch wiederholte Ausführung einer Rechenvorschrift. Die Anzahl der Wiederholungen ist dabei abhängig von einer Abbruchbedingung, wie zum Beispiel die Genauigkeit der Nachkommastellen des Ergebnisses.

Sinnvoll ist diese Art Berechnung wenn nicht genügend Informationen über Parameter vorliegen oder sich ein umstellen der Gleichung nach einem bestimmten Parameter, als zu komplex erweist.

In der verfahrenstechnischen Praxis findet sich das iterative Rechnen im Excel-Add-In *Solver* wieder. Auch dieses Add-In rechnet mit der iterativen Methodik.

Abb. 4: Übersicht zum iterativen Rechnen der CO₂-Konzentration

Lösung:

1. **Durchlauf** für t = 0 h:

$$c_{\text{CO}_2}(0 \text{ h}) = 0.04 \text{ Vol.\%} + \frac{10 \cdot 25 \frac{\text{L}}{\text{h}}}{10 \cdot 1.05 \frac{1}{\text{h}} \cdot 145 \text{ m}^3} \cdot \left[1 - e^{-1.05 \frac{1}{\text{h}} \cdot 0 \text{ h}}\right]$$

$$= 0.040 \text{ Vol.\%}$$

$$\Delta c_{\text{CO}_2} = |c_{\text{CO}_2} - c_{\text{Grenz}}|$$

$$= |0.040 \text{ Vol.\%} - 0.150 \text{ Vol.\%}|$$

$$= 0.110 \text{ Vol.\%} > 0 \rightarrow \text{Wiederholung mit } t + 1 \qquad (8)$$

2. **Durchlauf** für t = 1 h:

$$c_{\text{CO}_2}(1 \text{ h}) = 0.04 \text{ Vol.\%} + \frac{10 \cdot 25 \frac{\text{L}}{\text{h}}}{10 \cdot 1.05 \frac{1}{\text{h}} \cdot 145 \text{ m}^3} \cdot \left[1 - e^{-1.05 \frac{1}{\text{h}} \cdot 1 \text{ h}}\right]$$

$$= 0.115 \text{ Vol.\%}$$

$$\Delta c_{\text{CO}_2} = |0.115 \text{ Vol.\%} - 0.150 \text{ Vol.\%}|$$

$$= 0.035 \text{ Vol.\%} > 0 \rightarrow \text{Wiederholung mit } t + 1 \qquad (9)$$

3. **Durchlauf** für t = 2 h:

$$c_{\text{CO}_2}(2 \text{ h}) = 0.04 \text{ Vol.\%} + \frac{10 \cdot 25 \frac{\text{L}}{\text{h}}}{10 \cdot 1.05 \frac{1}{\text{h}} \cdot 145 \text{ m}^3} \cdot \left[1 - e^{-1.05 \frac{1}{\text{h}} \cdot 2 \text{ h}}\right]$$

$$= 0.141 \text{ Vol.\%}$$

$$\Delta c_{\text{CO}_2} = |0.141 \text{ Vol.\%} - 0.150 \text{ Vol.\%}|$$

$$= 0.009 \text{ Vol.\%} > 0 \rightarrow \text{Wiederholung mit } t + 1 \qquad (10)$$

4. **Durchlauf** für t = 3 h:

$$c_{\text{CO}_2}(3\,\text{h}) = 0.04\,\text{Vol.\%} + \frac{10\cdot25\,\frac{\text{L}}{\text{h}}}{10\cdot1.05\,\frac{1}{\text{h}}\cdot145\,\text{m}^3} \cdot \left[1 - e^{-1.05\,\frac{1}{\text{h}}\cdot3\,\text{h}}\right]$$

$$= 0.150\,\text{Vol.\%}$$

$$\Delta c_{\text{CO}_2} = |0.150\,\text{Vol.\%} - 0.150\,\text{Vol.\%}|$$

$$= 0.000\,\text{Vol.\%} = 0 \rightarrow \text{Zeit der Grenzkonzentration}$$
(11)

Beispiel 3:

Einfluss der Personenzahl auf den Verlauf der $\mathrm{CO}_2 ext{-}\mathrm{Konzentration}$

grafische Darstellung der ${\rm CO}_2 ext{-}{\rm Konzentration}$ mit verschiedenen Personenzahlen

4 Aufgaben zur CO₂-Konzentration in Räumen

Wie oft sollte nun gelüftet werden, um einer Verbreitung von Aerosolen vorzubeugen?

Aufgaben:

In einem Seminarraum ($V=200\,\mathrm{m}^3$) befinden sich 30 Studenten. Sie führen sitzende Tätigkeiten aus mit einer $\mathrm{CO_2}$ -Abgabe von $15\,\frac{\mathrm{L}}{\mathrm{h}}$. Laut DGUV, der deutschen gesetzlichen Unfallversicherung, soll nach der folgenden Tabelle regelmäßig gelüftet werden. Die $\mathrm{CO_2}$ -Konzentration in der Atmosphäre ist mit 0,04 Vol.% anzunehmen. Die Luftfeuchtigkeit wird nicht berücksichtigt.

Tab. 3: Regelmäßiges Lüften zur Sicherheit vor Corona [5]

	Winter	Sommer		
Büroräume	in 1 h für 3 min lüften	in 1 h für 10 min lüften		
Seminarräume	in 20 min für 3 min lüften	in 20 min für 10 min lüften		

- a) Welche Konzentration an CO₂ (ppm) liegt nach 1,5 h Vorlesung vor, wenn der Raum mit einer Luftwechselzahl von n=0,1 kaum gelüftet wird?_(3530 ppm)
- b) Nach dem letzten Block wird der Seminarraum gewechselt und einige Studenten sind bereits nach Hause gegangen. Im neuen Seminarraum 146 m³ befinden sich nun nur noch 21 Studenten. In diesem Raum soll die Pettenkofer-Zahl nicht überschritten werden. Durch das Wechseln des Raumes geben die Studenten für die 45 min Seminar nun 18 ½ CO₂ ab. Wie hoch muss die Luftwechselzahl sein, um den geforderten Grenzwert einzuhalten?
- c) Welche Luftwechselzahl ergibt sich für 15 Studenten im Raum aus 1 a), wenn es Winter ist und die nötige Regelmäßigkeit der Lüftung zur Sicherheit vor Aerosolbildung einzuhalten ist? Reicht dieser Luftwechselzahl um den Grenzwert der DIN 1946-2 oder der Pettenkofer-Zahl einzuhalten? Es wird davon ausgegangen,

dass mit den Fenstern stoßgelüftet wird und entweder alle Fenster und Türen offen oder zu sind.

(reicht nicht für Pettenkofer oder DIN 1946-2, 0,32 $\frac{1}{h}$ < 0,62 $\frac{1}{h}$ < 1,74 $\frac{1}{h}$)

- d) Werden die Grenzwerte im Sommer eingehalten? (reicht nicht für Pettenkofer, aber für DIN 1946-2, 0,62 $\frac{1}{h} < 1,08 \, \frac{1}{h} < 1,74 \, \frac{1}{h})$
- e) Wie lang muss im Winter und im Sommer für c) und d) pro 20 min gelüftet werden um die Grenzwerte für Pettenkofer und DIN 1946-2 einzuhalten? (Sommer/Winter: DIN mind. alle 20 min 5,8 min lüften, Pettenkofer mind. alle 20 min 16,2 min lüften)

Literatur

- [1] HARTMANN, Anne; KRIEGEL, Martin: Risikobewertung von virenbeladenen Aerosolen anhand der CO2-Konzentration. http://dx.doi.org/10.14279/DEPOSITONCE-10361
- [2] SIMMANK, Jakob: Coronavirus: Mit CO2-Sensoren gegen die Pandemie. In: Die Zeit (2020-08-15). https://www.zeit.de/wissen/gesundheit/2020-08/coronavirus-co2-sensoren-luft-innenraeume-lueften?utm_referrer=https%3A%2F%2Fwww.google.com%2F
- [3] Berufsgenossenschaft Holz und Metall: Coronavirus-BGHM-Zusatzinformationen-Lüftungsverhalten.

 Version: 27.08.2020. https://www.bghm.

 de/fileadmin/user_upload/Coronavirus/
 Coronavirus-BGHM-Zusatzinformationen-Lueftungsverhalten.

 pdf, Abruf: 2020-11-09
- [4] Bosy, Bruno: Wie wird richtig gelüftet? Version: 17.10.2020. http://www.bosy-online.de/Richtig lueften.htm, Abruf: 2020-11-09
- [5] E.V., Deutsche Gesetzliche U.: Richtig lüften während der Pandemie. Version: 2020. https://www.dguv.de/de/mediencenter/pm/pressearchiv/2020/quartal_3/details_3_405890.jsp, Abruf: 2020-11-09

Anhang