Wiederholung "Analysis" – Fragestellungen, Ansätze, Methoden (Sonntag)

Fragestellung	mathematischer Ansatz	Vorgehen/Werkzeuge
Berechnen Sie die Nullstellen der Funktion f.	f(x) = 0 → auflösen nach x → Schnittpunkte mit der x-Achse: (xi 0)	 - ausklammern - ein Produkt ist 0, wenn einer der Faktoren 0 ist - pq-Formel - Substitution - GTR: NSolve
Berechnen Sie den y- Achsenabschnitt der Funktion f.	f(0) → Wert des Funktionsterms an der Stelle 0 → Schnittpunkt mit der y-Achse (0 y0)	- den Wert des Terms für ein eingesetztes x bestimmen - Terme zusammenfassen und vereinfachen - GTR: Funktion definieren, Y1(0) berechnen
Bestimmen Sie das Verhalten des Graphen von f im Unendlichen.	Wert des Terms für x → oo bzw. x → – oo betrachten - ganzrationale Fkt: höchste Potenz - e-Fkt: Exponent - zusammengesetzte Fkt: Faktoren	 Grenzprozesse betrachten / Werte einsetzen Was passiert mit Termen wie x², x³, - xn, ax, ex, ex Rechnen mit Potenzen, Produkten
Bestimmen Sie das Verhalten des Graphen von f nahe 0.	Wert des Terms für x → 0 betrachten - ganzrat. Fkt: niedrigste Potenz, abs. Glied - e-Fkt: Exponent - zusammengesetzte Fkt: Faktoren	 Grenzprozesse betrachten / Werte einsetzen Was passiert mit Termen wie +/- xⁿ, a^x, e^x, e^{-x} Rechnen mit Potenzen, Produkten
Überprüfen Sie, ob der Graph von f symmetrisch zum Ursprung oder zur y-Achse ist.	symmetrisch zur y-Achse: f(-x) = f(x) symmetrisch zum Ursprung: f(-x) = - f(x) - ganzrt. Fkt.: auftretende Potenzen betrachten (nur gerade bzw. nur ungerade)	–x in den Funktionsterm einsetzen und zusammenfassen
Bestimmen Sie die Extrempunkte des Graphen von f.	notwendig: f'(x) = 0 hinreichend: f'(x) = 0 und f'(x) < 0 (HP) bzw. f'(x) = 0 und f'(x) > 0 (TP) alternativ; VZW von f'(x) betrachten	 - Ableitungen bilden (Potenzregel, Faktorregel, Summenregel, Ableitung von Exponentialfkt.) - Nullstellen berechnen - Werte von Termen berechnen - GTR: graphisch lösen ist sinnvoll

Fragestellung	mathematischer Ansatz	Vorgehen/Werkzeuge
Bestimmen Sie die Wendepunkte des Graphen von f.	notwendig: $f''(x) = 0$ hinreichend: $f''(x) = 0$ und $f''''(x) \neq 0$ alternativ; VZW von $f''(x)$ betrachten	Ableitungen bildenNullstellen berechnenWerte von Termen berechnenGTR: graphisch lösen ist sinnvoll
Bestimmen Sie das Monotonieverhalten des Graphen von f.	f ist in einem Intervall streng monoton steigend, wenn gilt: f'(x) > 0 für alle x in diesem Intervall; f ist in einem Intervall streng monoton fallend, wenn gilt: f'(x) < 0 für alle x in diesem Intervall	- Ableitungen bilden - Terme auf ihr Vorzeichen hin untersuchen
Bestimmen Sie das Krümmungsverhalten des Graphen von f.	f ist linksgekrümmt in einem Intervall, wenn für alle x in diesem Intervall gilt: f''(x) > 0; f ist rechtsgekrümmt in einem Intervall, wenn für alle x in diesem Intervall gilt: f''(x) < 0; (Smiley-Eselsbrücke verwenden)	- Ableitungen bilden- Terme auf ihr Vorzeichen hin untersuchen- am Graphen: "Bobbycar-Blick"
Überprüfen Sie, für welche Werte von x die Funktion den Wert a annimmt.	f(x) = a → nach x auflösen	 - ausklammern - ein Produkt ist 0, wenn einer der Faktoren 0 ist - pq-Formel - Substitution - GTR: NSolve
Berechnen Sie den Funktionswert an der Stelle x ₁ .	f(x ₁) berechnen	- den Wert eines Terms für einen eingesetzten x- Wert berechnen
Berechnen Sie die Steigung des Graphen an der Stelle x ₂ , auch in Grad.	f'(x ₂)	 Ableitungen bilden den Wert eines Terms für einen eingesetzten x- Wert berechnen

Fragestellung	mathematischer Ansatz	Vorgehen/Werkzeuge
Berechnen Sie die mittlere Steigung des Graphen zwischen den Punkten $P(x_1 y_1)$ und $Q(x_2 y_2)$.	Differenzenquotient: $\frac{y_2-y_1}{x_2-x_1} \qquad \text{(Steigungsformel der linearen Fkt.)}$	- Werte in eine Formel einsetzen und berechnen
Bestimmen Sie eine Stammfunktion der Funktion f. (und eine weitere)	$F(x) bzw. \int_{0}^{x} f(x)dx$	- Stammfunktionen bilden (Stammfunktionen von Potenzfunktionen, Summenregel, Faktorregel (Stammfunktionen von e-Funktionen bzw. Exponentialfunktionen)
Berechnen Sie den Wert des Integrals über f in den Grenzen 0 und b.	$\int_{0}^{b} f(x)dx = F(b) - F(a)$ (Hauptsatz der Differential- und Integralrechnung)	- Stammfunktionen bilden - Werte einsetzen und den Term berechnen
Bestimmen Sie die Größe der Fläche, die der Graph im Intervall [a; b] mit der x-Achse einschließt.	- Nullstellen im Intervall bestimmen - Beträge der "Einzelintegrale" addieren: $ \left \int_{a}^{n_{1}} f(x) dx \right + + \left \int_{n_{m}}^{b} f(x) dx \right $	 Gleichungen nach x auflösen (wie oben bei Nullstellenberechnung) Stammfunktionen bilden Werte einsetzen und den Term berechnen
Bestimmen Sie den Mittelwert von f im Intervall [a; b].	$m = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx$	- Stammfunktionen bilden - Werte einsetzen und den Term berechnen