МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №1 по курсу «Программирование графических процессоров»

Освоение программного обеспечения для работы с технологией CUDA. Примитивные операции над векторами.

Выполнил: Р.Р. Гаптулхаков

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Ознакомление и установка программного обеспечения для работы с программно-аппаратной архитектурой параллельных вычислений(CUDA). Реализация одной из примитивных операций над векторами.

Вариант 7. Поэлементное вычисление модуля вектора.

Входные данные. На первой строке задано число n -- размер векторов. На следующей строке записано n вещественных чисел -- элементы вектора. **Выходные данные.** Необходимо вывести n чисел -- результат поэлементного вычисления модуля исходного вектора.

Программное и аппаратное обеспечение

Таблица 1 — Характеристики графического процессора

Compute capability	2.1	
Name	GeForce GT 545	
Total Global Memory	3150381056	
Shared memory per block	49152	
Registers per block	32768	
Warp size	32	
Max threads per block	(1024, 1024, 64)	
Max block	(65535, 65535, 65535)	
Total constant memory	65536	
Multiprocessors count	3	

Таблица 2 — Используемое ПО

Operating system	Windows 11 + ssh Ubuntu 16.04.6 LTS		
IDE	Visual Studio Code		
Compiler	nvcc		

Таблица 3 — Характеристики процессора

Name	Intel(R) Core(TM) i7-3770 CPU	
Architecture	x86_64	
CPU(s)	8	
Thread(s) per core	2	
Core(s) per socket	4	
CPU max MHz	3900	
CPU min MHz	1600	
CPU MHz	1800	
L1d cache	32K	
L1i cache	32K	
L2 cache	256K	
L3 cache	8192K	

Таблица 4 — Оперативная память

Size	16 G
------	------

Таблица 5 — Постоянная память

Size	1000 G
------	--------

Метод решения

В функцию kernel передается указатель на массив данных и размер массива. Затем записываем в каждый элемент массива модуль исходного элемента.

Описание программы

Элемент массива имеет тип данных float. Функция kernel производит вычисления на ГПУ. Мы вычисляем номер потока. Затем каждый поток вычисляет модулю элемента.

Результаты

Количество потоков	Небольшой тест, ms	Средний тест, ms	Предельный тест, ms
<<<1, 32>>>	2.650144	26.316065	262.989502
<<<32, 32>>>	0.181504	1.673280	16.592159
<<<64, 64>>>	0.081888	0.680384	6.677632
<<<128, 128>>>	0.058304	0.434592	4.199488
<<<256, 256>>>	0.052512	0.375840	3.613984
<<<1, 512>>>	0.183392	1.687712	16.672640
<<<512, 512>>>	0.066688	0.375424	3.556800
<<<1, 1024>>>	0.102976	0.877792	8.675840
<<<1024, 1024>>>	0.202208	0.611904	4.093664
СРИ	1.847	12.032	120.36

Выводы

Реализованный алгоритм может послужить хорошим примером значительного ускорение простых вычислений. Подход может быть применен во многих областях. Например, в компьютерной графике или в обучении глубоких нейронных сетей, где требуется много простых вычислений. Выполнение лабораторной работы не вызвало никаких сложностей. Самыми лучшими параметрами оказались <<<256, 256>> и <<<512, 512>>>. Отклонение от данных значений увеличивает время расчетов из-за недостатка или избытка количества выделенных потоков.