Q: If $a(\frac{1}{b} + \frac{1}{c})$, $b(\frac{1}{c} + \frac{1}{a})$, $c(\frac{1}{a} + \frac{1}{b})$ are in arithmetic progression (AP), prove that a, b, c are also in AP.

Solution: Common difference can be written as:

$$b\left(\frac{1}{c} + \frac{1}{a}\right) - a\left(\frac{1}{b} + \frac{1}{c}\right) = c\left(\frac{1}{a} + \frac{1}{b}\right) - b\left(\frac{1}{c} + \frac{1}{a}\right)$$

$$(b\left(\frac{1}{c} + \frac{1}{a}\right) + 1) - (a\left(\frac{1}{b} + \frac{1}{c}\right) + 1) = (c\left(\frac{1}{a} + \frac{1}{b}\right) + 1) - (b\left(\frac{1}{c} + \frac{1}{a}\right) + 1)$$

$$\implies (b\left(\frac{1}{c} + \frac{1}{a}\right) + \frac{b}{b}) - (a\left(\frac{1}{b} + \frac{1}{c}\right) + \frac{a}{a}) = (c\left(\frac{1}{a} + \frac{1}{b}\right) + \frac{c}{c}) - (b\left(\frac{1}{c} + \frac{1}{a}\right) + \frac{b}{b})$$

$$\implies (b\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)) - (a\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)) = (c\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)) - (b\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right))$$

$$\implies b - a = c - b$$

Hence proved that a, b, c are in AP.

parameter	value	description
<i>x</i> (0)	$a\left(\frac{1}{b}+\frac{1}{c}\right)$	First Term of given AP
d	$\frac{a^2b-a^2c+b^2c-b^2a}{abc}$	Common Difference of given AP
x(n)	(x(0) + nd)u(n)	General Term of given AP

TABLE I Input Parameter Table

From table I

$$X(z) = x(0)\frac{1}{1 - z^{-1}} + d\frac{z^{-1}}{(1 - z^{-1})^2} \quad |z| > 1$$
 (1)

Fig. 1. graph with value of a = 3, b = 5, c = 7