Universidad Nacional de Ingeniería
Facultad de Ciencias
Escuela Profesional de Matemática

$$2\langle a,b\rangle = \langle a^{\dagger}+b, (-1,5) \rangle$$

$$2\langle a,b\rangle = \langle a^{\dagger}+b, (-1,5) \rangle$$
Examen Parcial de Cálculo Vectorial I-CM141

Temas: Espacio vectorial, dependencia lineal, ortogonalidad, producto vectorial y rectas.

Zast (a,5) = (a+b, (-1,5))

2(a1b) = (a+b, (-1,5)) Ciclo 2016-II

2<a,b>= (dib, (1,-5))

Determine los vectores
$$a$$
 y b en \mathbb{R}^2 de modo que verifiquen las condiciones siguientes:

i)
$$a + b^{\perp} = (-1, 5)$$
. half $a = 10 \text{ last } |a|^2 + |b|^2 + 2(a + b^2) - 26$
ii) $(a^{\perp} + b) \perp (-5, 3)$. $(3, -3)$ $|a^{\perp} + b|^2 = |a^{\perp} + b|^2 + b|^2 = |a^{\perp} + b|^2 = |a^{\perp} + b|^2 = |a^{\perp} + b|$

iii)
$$(a+b)^* \| (1,-1)$$
.

Demostrar: $(1/1)$

(a) Dados V un espacio vectorial, S_1 y S_2 dos subespacios vectoriales de V , definimos $S_1 + S_2 = \{x + y : y \in S_1, y \in S_2\}$, entonces $S_1 + S_2$ es un subespacio vectorial de

- (b) Dado $V = \{u_n : u_n \text{ es una sucesión en } \mathbb{R} \}$ un espacio vectorial con las operaciones usuales y $S = \{(u_n)_{n \in \mathbb{N}} \in V : u_{n+2} = u_{n+1} + u_n, \forall n \in \mathbb{N}\}, \text{ entonces } S \text{ es un}$ subespacio vectorial de V.
- 3. Sea $\{u_1, u_2\}$ y $\{v_1, v_2\}$ dos bases de \mathbb{R}^2 tales que $v_1 = -2u_1 u_2$ y $v_2 = 5u_1 + 2u_2$. Si $w \in \mathbb{R}^2$ tal que $w = au_1 + bu_2$. Hallar $x \in y$ tal que $w = xv_1 + yv_2$.
- 4. Sean $u, v, w \in \mathbb{R}^3$. Demostrar: $(a+b) \times (1, -1) = 0$ i) Si u + v + w = 0, entonces $u \times v = v \times w = w \times u$. W= a Mit blub
- ii) Si $u \times v = v \times w = w \times u \neq 0$, entonces u + v + w = 0. 5. Para que valores de a las rectas r y s no son alabeadas, donde: r : x = y = z - a y $s: \frac{2x-1}{3} = \frac{y+3}{-2} = \frac{z-2}{3}$
- Im. (VXW)-Zuvy, Po+t V1= -2M/-1/1/1/