

Derivada

A Regra da Cadeia 0.1

Teorema: Se y = f(u), u = g(x) e as derivadas $\frac{dy}{du}$ e $\frac{du}{dx}$ existem, então a função composta y = f(g(x)) tem derivada dada por

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

ou seja, $(f'(x) = f'(u) \cdot g'(x))$

Observação: O teorema se estende para a composta de um número finito de funções.

Exemplos:

a) Se
$$y = (x^2 - 3x + 8)^3$$
 encontre $\frac{dy}{dx}$

b) Dado que
$$f(x) = \sqrt{x^2 + 1}$$
, calcule $f'(x)$

c) Se
$$y = \left(\frac{2x+1}{4x-5}\right)^8$$
, calcule y'

d) Calcule
$$\frac{dy}{dx}$$
, sabendo que $y = (4x^2 + 1)^2 (3x^3 - 4)^3$

e) Se
$$y = (\sqrt{x^2 + 4})^5$$
, obtenha $\frac{dy}{dx}$

Exercícios

1. Nos Exercícios a seguir, encontre a derivada da função dada:

a)
$$f(x) = (3x+5)^{10}$$

b)
$$f(x) = (x^2 - 2x + 6)^5$$

c)
$$f(x) = (x+5)^{-3}$$

d)
$$g(x) = (17x - 5)^{1000}$$

e)
$$g(x) = \left(x^4 + 5x + \frac{1}{6x}\right)^3$$

f)
$$g(x) = (x^2 + 1)^2 (x^3 - 2x)^2$$

g)
$$h(x) = (x^3 + 2x - 6)^3 (x^2 - 4x + 5)^7$$
 h) $h(x) = \frac{x}{(x^2 - 1)^4}$

h)
$$h(x) = \frac{x}{(x^2 - 1)^4}$$

$$i)h(x) = \frac{(x^2+1)^3}{(x^2+2)^2}$$

$$j) f(x) = \frac{7x + \frac{1}{x}}{x^2 + 2x - 1}$$

k)
$$f(x) = \frac{(4x-1)^3 (x^2+2)^4}{(3x^2+5)^2}$$

l)
$$f(x) = \sqrt[3]{(x+1)^2}\sqrt{x-1}$$

m)
$$g(x) = \left(\sqrt{5x} + \frac{1}{\sqrt[3]{x^2}} + \sqrt{\pi}\right)^8$$
 n) $g(x) = \sqrt{\frac{3x - 2}{2x + 3}}$

n)
$$g(x) = \sqrt{\frac{3x - 2}{2x + 3}}$$

1