Escuela de Ingeniería Electrónica

EL-5805 Procesamiento Digital de Señales

Prof.: Ing. José Miguel Barboza Retana, MSc.

Examen Corto #1. (9 puntos, 1pto c/u)

- 1. Una señal sinusoidal discreta x(n) = 5sen(5n + 2)
 - a) No es periódica.
 - b) Tiene periodo fundamental $2\pi/5$.
 - c) Tiene periodo fundamental 1/5.
 - d) Tiene periodo fundamental 2/5.
 - e) Tiene periodo fundamental 2.
- 2. Considerando que $\cos(A)\cos(B) = [\cos(A-B) + \cos(A+B)]/2$, se tiene para la señal sinusoidal discreta $x(n) = \cos(\pi n/6)\cos(\pi n/2)$ que
 - a) Tiene periodo fundamental 6.
 - b) Tiene periodo fundamental 3
 - c) Tiene periodo fundamental 12.
 - d) Tiene periodo fundamental 18.
 - e) No es periódica
- 3. Considerando que $\cos(A)\cos(B) = [\cos(A-B) + \cos(A+B)]/2$, se tiene para la señal sinusoidal discreta $x(n) = \cos(n/6)\cos(\pi n/6)$ que
 - f) Tiene periodo fundamental 6.
 - g) Tiene periodo fundamental $12\pi/(1+3\pi)$.
 - h) Tiene periodo fundamental 12.
 - i) Tiene periodo fundamental 4.
 - j) No es periódica
- 4. Para la señal sinusoidal $x(n) = sen(\pi n/12)$ un valor de frecuencia angular equivalente es:
 - a) $\omega = 48\pi$
 - b) $\omega = 47\pi$
 - c) $\omega = 49/12$
 - d) $\omega = 49\pi/12$
 - e) $\omega = -49\pi/12$

5.	El periodo fundamental de la señal de tiempo discreto $x(n)=\cos(3\pi n/7)$ es: a) $N=7$ b) $N=21$ c) $N=14$ d) $N=4$ e) No es periódica
6.	 La señal en tiempo discreto x(n) = cos(nπ/13) es: a) Una señal de energía. b) Una señal de potencia. c) No es ni señal de energía ni señal de potencia. d) Es señal de energía y señal de potencia.
7.	e) Es una señal de potencia cero. La señal en tiempo discreto $x(n)= \cos(n\pi/13) ,$ para $ n <1000;$ y 0 en el resto
8.	 es: a) Una señal de energía. b) Una señal de potencia. c) No es ni señal de energía ni señal de potencia. d) Es señal de energía y señal de potencia. e) Es una señal de potencia cero. La señal escalón unitario u(n) en tiempo discreto tiene: a) Potencia promedio cero. b) Energía cero. c) Potencia promedio igual a ½. d) Energía igual a ½.
9.	e) No es señal de energía ni señal de potencia. Sea $x_1(n)=\{\underbrace{1},2,3,1\}$, entonces la secuencia $x_2(n)=\{1,3,\underbrace{2},1\}$ está dada por:

a) $x_2(n) = x_1(n+1)$ b) $x_2(n) = x_1(n-1)$ c) $x_2(n) = x_1(-n-1)$ d) $x_2(n) = x_1(-n+1)$ e) $x_2(n) = x_1(-n+2)$