Aula 6: Revisão da Semana 2

Machine Learning

Paulo Orenstein

Verão, 2025 IMPA

Capítulo 4: Métodos lineares para classificação

Modelos lineares generalizados (GLM)

▶ Quando y é real, usamos regressão linear:

$$\hat{eta}_0,\ldots,\hat{eta}_p=\operatorname*{argmin}_{ ilde{eta}_0,\ldots, ilde{eta}_p}\sum_{i=1}^n(y_i-(ilde{eta}_0+ ilde{eta}_1x_{i1}+\cdots+ ilde{eta}_px_{ip}))^2$$

- ► E se y é inteiro positivo? binário? categórico?
- Metodologia geral: modelos lineares generalizados
 - 1. Escrever log-verossimilhança de Y
 - 2. Modelar parâmetro que multiplica y na log-verossimilhança como uma função linear de x e $\hat{\beta}$
 - 3. Encontrar o valor de \hat{eta} que maximiza a log-verossimilhança
- ▶ Vantagens: escolha de perda e parametrização é automática; permite inferência assintótica

Exemplo: regressão logística

▶ Suponha que $Y \sim \text{Bern}(p)$, de modo que $\mathbb{P}[Y = y] = (p)^y (1-p)^{1-y}$, e

$$L(y, p) = -(y \log(p) + (1 - y) \log(1 - p)) = -(y \log(p/(1 - p)) + \log(1 - p))$$

ightharpoonup Daí, escolhemos p(x) via

$$\log\left(\frac{p(x)}{1-p(x)}\right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Finalmente, estimamos os coeficientes via

$$\begin{split} (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p) &= \underset{\tilde{\beta}_0, \dots, \tilde{\beta}_p}{\operatorname{argmin}} - \left(\frac{1}{n} \sum_{i=1}^n y_i \log \frac{\hat{p}(x_i)}{1 - \hat{p}(x_i)} + \log(1 - \hat{p}(x_i)) \right) \\ &= \underset{\tilde{\beta}_0, \dots, \tilde{\beta}_p}{\operatorname{argmin}} - \left(\frac{1}{n} \sum_{i=1}^n y_i (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}) - \log \left(\frac{1}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}}} \right) \right) \end{split}$$

O problema é convexo, então basta usar algum método de gradiente para resolvê-lo

Outros classificadores

- Métodos discriminativos: estimam $\mathbb{P}[Y|X=x]$ diretamente
 - Regressão logística (e GLMs em geral)
- ▶ Métodos generativos: estimam $\mathbb{P}[Y|X=x]$ via $\mathbb{P}[X|Y=k]$ e $\mathbb{P}[Y]$
 - LDA: assume que $X|Y = k \sim N(\mu_k, \Sigma)$; fronteira de decisão linear
 - **QDA**: assume que $X|Y = k \sim N(\mu_k, \Sigma_k)$; fronteira de decisão quadrática
 - Naive Bayes: assume que $\mathbb{P}[X|Y=k] = \prod_{i=1}^{p} \mathbb{P}[X_i|Y=k]$; fronteira arbitrária
- Qual é melhor? Se hipóteses generativas são razoáveis, então são melhores; senão, métodos discriminativos. De modo geral, hipóteses generativas são mais fortes

Avaliação de classificadores

- ▶ Em geral, para métodos de classificação, usamos a perda 0-1: $\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}_{[\hat{y}_i\neq y_i]}$
- ► Ela não é bem informativa: será que os erros são balanceados entre classes?
- ▶ Uma descrição melhor é a matriz de confusão:

		Actual class	
		Negative	Positive
Predicted class	Negative	True Negative (TN)	False Negative (FN)
	Positive	False Positive (FP)	True Positive (TP)

- lacktriangle Mudando o threshold t na classificação $\mathbb{I}_{[\hat{\mathbb{P}}[Y=1|X]>t]}$, mudamos os erros cometidos
- ▶ Uma forma agregada de ver o classificador: curva ROC e AUC

Capítulo 5: Métodos de reamostragem

1. Estimando performance futura

- Para ter uma noção realista do sucesso de um método, precisamos estimar performance futura
- Isso pode ser feito via o erro de teste, i.e., num conjunto de dados intocados até então.
 - É a última etapa do processo
 - Regra de ouro: conjunto de teste só pode ser usado depois do modelo ser escolhido; senão está roubando (acontece muito)

Filosofia:

- Modelo é treinado nos dados de treino; erro de treino por si só não é informativo sobre performance futura
- Se houver hiperparâmetro (parâmetro não escolhido no treino), usamos conjunto de validação
- Depois do modelo ser escolhido, retreinamos em treino+validação, avaliamos erro de teste
- Na hora de entregar o modelo, retreinamos em treino+validação+teste, e usamos o erro de teste como estimativa de performance futura

Como implementar essa filosofia

- Conjunto de validação: dados particionados em treino e validação
 - Vantagens: simples de implementar, e simples computacionalmente
 - Desvantagens: estimativas têm alta variância, dados não são reutilizados, erros sobrestimados
- ▶ LOOCV: média de estimativa em *n* folds; cada um tirando o ponto x_i , i = 1, ..., n
 - Vantagens: melhor uso dos dados, estimativas mais precisas
 - Desvantagens: computacionalmente muito intensivo, média de estimativas correlacionadas
- ▶ 5 ou 10CV: média de estimativa em 5 ou 10 folds; cada um tirando o ponto x_i , i = 1, ..., n
 - É um meio-termo, e muito popular
- ▶ Regra de 1 desvio-padrão para promover parsimônia
- ▶ Vale sempre? Não: dependência nos dados (e.g., séries temporais e rolling + block CV)

2. Estimando incerteza

- \blacktriangleright Em casos particulares, desenvolvemos teoria de distribuição (Normal, t, χ^2 , F)
- Mas de maneira mais ampla essa teoria não está disponível. Como fazer de forma não-paramétrica?
- Bootstrap: usar o próprio dataset para simular mais datasets via reamostragem com repetição;
- \triangleright Reamostramos até ter as mesmas n amostras para garantir amostras de mesmo tamanho
- A partir daí, obtemos a distribuição de bootstrap, e estimamos quaisquer quantidades inferenciais
- Por que isso deveria funcionar? Estamos substituindo a distribuição populacional F pela empírica \hat{F} , e ao invés de amostrar de F amostramos de \hat{F} . Há razões teóricas para dar certo
- Vale sempre? Não, mas são casos relativamente patológicos

10 / 10