Clustering concepts

Clustering of Data

Welcome to week 3

- By the end of this week you will know:
 - Distance metrics and their usage in machine learning.
 - Clustering concept and it's use for revealing patterns from unlabelled data

Distance Metrics

- Measuring similarity or distances between different data points is fundamental to many machine learning algorithms
 - unsupervised learning problems (i.e. K-means method in clustering)
 - supervised learning methods (i.e. K-Nearest-Neighbor)
- Distance measures are functions that define a distance $d(x_i, x_j)$ between any two data instances x_i and x_j for measuring how similar the instances are.

Distance Metrics...

- Distance measures satisfy the following three properties:
 - For any instance x_i , distance with itself is zero, $d(x_i, x_i) = 0$
 - For an instance pairs x_i and x_j , the distance is non-negative and symmetric, $d(x_i, x_j) \ge 0$ and $d(x_i, x_j) = d(x_j, x_i)$
 - Distance measure follows triangular inequality $d(x_i, x_k) \le d(x_i, x_j) + d(x_j, x_k)$
- Distance measures satisfying above properties are also known as Distance Metrics

Distance Metrics...

- Example 1: Nearest Neighbour Classification
 - Using distance to find the label of the new data point (the red triangle -Square or circle?)
- Example 2: Image retrieval
 - Animal types in NUS Wide Animal dataset

 given a new image like the image of a cat, can we fetch all cat images from the dataset? (yes! with the help of distance measurements)

Euclidean distance

- Straight-line distance between two points in Euclidean space
- For any two data instances, represented by d-dimensional feature vectors x_i , x_j their Euclidean distance is

$$d_{Euclidean}(x_i, x_j) = \left(\left(x_{i,1} - x_{j,1} \right)^2 + \dots + \left(x_{i,D} - x_{j,D} \right)^2 \right)^{1/2}$$

For example, consider these two vectors:

$$x_1 = \begin{bmatrix} 1\\1\\2\\1\\0 \end{bmatrix} \text{ and } x_1 = \begin{bmatrix} 0\\2\\2\\0\\2 \end{bmatrix}$$

$$d(x_1, x_2) = ((1-0)^2 + (1-2)^2 + (2-2)^2 + (1-0)^2 + (0-2)^2)^{\frac{1}{2}}$$
$$= \sqrt{(1+1+0+1+4)} = \sqrt{7} = 2.65 \text{ (approx)}$$

Cosine distance

• For any two data instances, represented by d-dimensional feature vectors x_i , x_i

$$d_{Cosine}(x_i, x_j) = 1 - \frac{x_i^T x_j}{\|X_i\|_2 \cdot \|X_j\|_2}$$

Lets see an example

$$d(x_1, x_2) = 1 - \frac{(1*0+1*2+2*2+1*0+0*2)}{\sqrt{1^2+1^2+2^2+1^2+0^2}*\sqrt{0^2+2^2+2^2+0^2+2^2}}$$

=0.3453

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}$

Cityblock/Manhattan distance

• For any two data instances, represented by d-dimensional feature vectors x_i , x_i , their Cityblock distance is computed as:

$$d_{Cityblock}(x_i, x_j) = |x_{i,1} - x_{j,1}| + ... + |x_{i,D} - x_{j,D}|$$

- In most cases, this results similar to the Euclidean distance
- However, the effect of a large difference in a single dimension is dampened (since the distances are not squared)

$$d(x_1, x_2)_{CB} = |1 - 0| + |1 - 2| + |2 - 2| + |1 - 0| + |0 - 2| = 5$$

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix} \text{ and } x_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}$$

Minkowski distance

- Defines a distance between two points in a normed vector space.
- Euclidean and Cityblock distances are 2^{nd} and 1^{st} normed distance between x_i and x_j .
- Minkowski distance is a generalization of these distances defined for any p-norm

$$d(x,y) = \left(\sum_{i=0}^{n-1} |x_i - y_i|^p\right)^{\frac{-1}{p}}$$

- when p=1, d is Manhattan distance
- when p=2, d is Euclidean distance

Mahalanobis distance

• MD is the distance between two points in multivariate space, represented by d-dimensional feature vectors x_i , x_i

$$d_{Mahalanobis}(x_i, x_j) = (x_i - x_j)M^{-1}(x_i - x_j)^T$$

where, M is the covariance matrix of the data.

- Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions
- MD can be thought of scaling each data dimension by its variance and adjusting for their relationships
- When data are independent, i.e. M=I (identity matrix), Mahalanobis distance becomes same as Euclidean distance.

Jaccard distance

- Is a distance used to measure diversity of any two sets
- Consider any two instances x_i and x_j as binary vectors indicating presence or absence of features
- Jaccard distance between x_i and x_j is defined as $d_{Jaccard}(x_i, x_j) = 1 \frac{|x_i \cap x_j|}{|x_i \cup x_j|}$
- Where ∩ denotes logical 'AND' and ∪ denotes logical 'OR' operators.
 The|x|₁ is 1-norm
- Jaccard distance for $x_i = [1,0,1]$, and $x_j = [1,1,0]$

$$d_{Jaccard}(x_i, x_j) = 1 - \frac{1}{3} = \frac{2}{3}$$

Clustering and It's Applications

- Humans are encoded to see patterns in everything. (related to ML?!)
- Did I just saw a huge puffy white duck in the sky?

- You are probably right! Our brain prefers patterns and we always look for patterns!
- It looks that our brains do clustering unconsciously

Clustering Algorithms

- How do we teach a computer to do this?
- Goal of clustering algorithms are:
 - Group objects of similar properties together
 - Discover interesting clusters and groups in the data
 - Find valid organisation of the data
- In other words, we can define two algorithmic goals:
 - Minimise intra-distance (distance between points in the same cluster)
 - Maximise inter-distance (distance between points from different clusters)

Clustering Algorithms...

- Now we can define a generic set-up based on our current understanding from clustering methods:
 - Step 1: define a distance metric between objects
 - Step 2: define an objective function that gets us to our clustering goal
 - Step 3: devise an algorithm to optimise the objective function

How Kmeans Works

- The most popular clustering algorithm; simple and fast
- was independently discovered in 60s and 70s by Steinhaus (1955), Lloyd (1957), Ball and Hall (1965) and McQueen (1967)
- Kmeans
 - stores k centroids
 - A point is considered to be in a particular cluster if it is closer to that cluster's centroid than any other centroid.
 - KMeans searches for the best centroids by alternating between two methods:
 - Assigning data points to clusters based on the current defined centroids (points which are the centre of a cluster).
 - Choosing centroids based on the current assignment of data points to clusters

- Generally there are two main categories of evaluation methods for clustering
- External assessment:
 - compare clustering performance against a known clustering (often called Ground truth or Gold standard)
- Internal assessment:
 - determine if clustering follows certain intrinsic assumptions (e.g. cluster-tocluster distance or cluster size etc.),
 - Examples: Silhouette coefficient, Dunn index etc.

 The following figure illustrates a sample of ground truth (C) and the clustering partition found by a clustering algorithm (C')

Rand Index

- Is a measure of the similarity between two data clusters
- Rand index is a function that measures the similarity of the two assignments C and C', ignoring their permutations.
- Rand index is computed as $R = \frac{a+b}{\binom{n}{2}} = \frac{a+b}{a+b+c+d}$
 - a = the number of pairs of data instances that are in the same cluster in both C,C'
 - b = the number of pairs of data instances that are in the different clusters in C and in different clusters in C'
 - c = the number of pairs of data instances that are in the same cluster in C but in different clusters in C'.
 - d = the number of pairs of data instances that are in the different clusters in C
 but in the same clusters in C'

Purity

- Purity is a way of quality measurement in clustering methods
- As the name suggests, we would like to measure the purity for all clusters in terms of class labels of the data in each cluster i.e.,

$$Purity = \frac{\sum_{i=1..q} A_i}{\sum_{i=1..q} n_i}$$

where q is the number of clusters, A_i is the number of correctly assigned elements in i^{th} cluster and n_i is the number of elements in each cluster.

 This means the purity is measured by counting the number of correctly assigned instances and dividing by the number of total instances

Purity Example

Let's we have three clusters as shown in the figure.

- Each cluster is assigned to the class label which has the majority in the cluster i.e., first cluster labelled as Cross, second as Circle and last one as Plus.
- Based on the figure, 5 crosses, 4 circles, 3 pluses were correctly assigned. So, the purity of this clustering is:

$$Purity = \frac{1}{17} * (5 + 4 + 3) \approx 0.71$$

Mutual Information

- Mutual information is a function that measures the agreement of the two clustering assignments C and C' in terms of how informative one is about the other, ignoring permutations.
- To put it simple, how informative is C about C'
- Let us assume that clustering partition C has K clusters and the partition C' has K' clusters

$$MI(C,C') = \sum_{i=1}^{K} \sum_{j=1}^{K'} P(i,j) log \frac{P(i,j)}{P(i)P'(j)}$$

where P(i) denotes the probability of randomly selected instance to belong to i^{th} cluster of the partition C, similarly, P(i,j) denotes the probability of a randomly selected instance to belong in i^{th} cluster of the partition C and j^{th} cluster of the particition C'. P'(j) is defined similarly as P(i).

 So if our C' clustering is highly informative based on C, we can conclude that the C clustering assignment is doing good

Silhouette Coefficient

- It is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation)
- This method does not require the ground truth cluster assignments
- The silhouette coefficient contrasts the average distance between the instances of the same cluster with the average distance between the instances of different clusters h(i) = g(i)

 $s(i) = \frac{b(i) - a(i)}{max\{a(i), b(i)\}}$

Where, a(i) is the average distance of i^{th} instance with all other instances of the same cluster, and b(i) is the lowest average dissimilarity of i^{th} instance with all other clusters.

• The final value of Silhouette ranges from -1 to +1. High value of s(i) indicates that the object is well matched to its own cluster and poorly matched to neighbouring clusters.

Limitations of Kmeans

- Most important limitations of Simple Kmeans are:
 - Random initialisation means that you may get different clusters each time. As a solution, we can use Kmeans++ initialisation algorithm to initialise it better.
 - We have to supply the number of clusters beforehand. We can use Elbow method to choose K, but it may not be straightforward.
 - It cannot find clusters of arbitrary shapes.
 - It cannot detect noisy data points, i.e. they should not be taken into account for cluster analysis. Kmedian is less affected but cannot identify them.

Finding the Number of Clusters

Elbow Method

- The idea of elbow method is to run Kmeans clustering algorithm for a range of values of K, and for each value of K, compute the sum of squared error (SSE) as: $SSE_k = \sum_{i} \sum_{z_{ik}} \|x_i \mu_k\|^2$
- So, $\|x_i \mu_k\|^2$ finds the distance of each point (x_i) to its corresponding centroid (μ_k) in the cluster
- z_{ik} is a binary variable
 - 1 when x_i is assigned to the cluster number k and
 - 0 when x_i is not related to cluster number k
- it looks 6 is the best cluster number

Kmeans with Kmeans++

- Kmeans++ is an algorithm for choosing the initial cluster's centre values or centroids for the Kmeans clustering algorithm
 - K-means++ starts with allocating one cluster centre randomly and then searches for other centres given the first one
 - Choose one centroid μ_1 uniformly at random from dataset
 - Let D(x) be the shortest distance from a data point to the closest centroid we have already chose
 - Choose a new centroid from the dataset with probability of $\frac{D^{-}(x_i)}{\sum_i D^2(x_i)}$
 - Now repeat previous step until we have initialised K centroids

Kmeans with Kmeans++

Guarantee of Kmeans++

- In Kmeans algorithm with random initialisation of centroids, the objective function monotonically decreases with each iteration of the algorithm
- Let us say, for the best solution, the objective function takes value $j_{optimum}$
- Let us say, when using Kmeans the objective function converges to $j_{optimum}$
- For Kmeans with random initialisation there is no theoretical bound on

$$\frac{j_{converged}}{j_{optimum}}$$

 In contrast, Kmeans++ initialisation has the following theoretical guarantee on convergence

$$\frac{E(j_{converged})}{j_{optimum}} \le 8(logK + 2)$$

Hierarchical Clustering:

- clusters that have a predetermined ordering
- Two types -
 - Agglomerative Clustering (Bottom-up)
 - each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy
 - Divisive Clustering (Top-down)
 - all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy

Agglomerative Clustering:

- At the bottom of the tree, at the starting point each of the characters p,q,r,s,t are assigned into a single separate cluster
- As we go up to the higher levels, the closest characters are formed another cluster. i.e. s,t and p,q.
- At the next level we can notice r,s,t are making a cluster
- And finally at the top of the tree, all the characters are in one single cluster p,q,r,s,t
- How to find the closest cluster pairs? i.e. how to find the distance between two sub-clusters in the middle of the tree?

- Agglomerative Clustering: four ways to find distance -
 - Single-link: It is a distance between closest points
 - Complete-link: Distance between the furthest points
 - Centroid: Distance between the Centroids
 - Average-link: Average distance between pairs of elements from across cluster pairs

Divisive Clustering

- Same as the Agglomerative Clustering in this type of clustering, initially all data instances are put in the same cluster
- For splitting, we can use any clustering algorithm that produces at least two clusters (e.g. Kmeans) to find 2 clusters
- The process is continued until each data instance is separate

Thank You.