

+91-921-312-5921

arnavmakkar080505@gmail.com

INTRODUCTION

Thinking, Fast and Slow ~David Kahneman

Kahneman described System 1 as fast, intuitive, and automatic, while System 2 is slow, analytical, and effortful.

EEG analysis can help study these cognitive processes, and QML may enhance insights into decision-making and neural activity.

OBJECTIVES

- 1 Data Preprocessing
- 2 Feature Extraction
- 3 Designing a quantum circuit
- 4 Applying suitable QML techniques
- **5** Results Visualisation

DATA PREPROCESSING

- Scale data to fit quantum circuit requirements.
- Applying Bandpass Filter to clean EEG signals.
- Use PCA to reduce feature space for limited qubits.

```
def apply_bandpass_filter(self, data, lowcut=1.0, highcut=40.0, order=5):
    nyquist = 0.5 * self.sampling_rate
    low = lowcut / nyquist
    high = highcut / nyquist
    b, a = signal.butter(order, [low, high], btype='band')
    return signal.filtfilt(b, a, data, axis=0)
```

FEATURE EXTRACTION

- Extract spectral band powers (e.g., delta, theta, alpha, beta, gamma).
- Compute connectivity measures between EEG channels.
- Capture key brain activity patterns to distinguish cognitive states effectively.

```
class FeatureExtractor:
    def __init__(self):
        self.frequency_bands = {
            'delta': (0.5, 4), 'theta': (4, 8), 'alpha': (8, 13),
            'beta': (13, 30), 'gamma': (30, 45)
        }
        self.sampling_rate = 250
```

QUANTUM CIRCUIT

```
n_qubits = 6
```

- 6 qubits provide $2^6 = 64$ dimensions, which is sufficient for reduced EEG features.
- Balances computational cost and problem complexity.
- Matches the resource constraints of quantum simulators/hardware while retaining expressiveness.

```
def create_quantum_feature_map(n_qubits):
    return ZZFeatureMap(n_qubits, reps=1, entanglement='linear')

def create_variational_circuit(n_qubits):
    return RealAmplitudes(n_qubits, reps=2, entanglement='full')

0.0s
```

QUANTUM CIRCUIT

Design:

- Encoding: ZZFeatureMap to map classical EEG features into quantum states.
- Processing: RealAmplitudes variational form for trainable classification.

Advantage:

- Quantum Circuits leverage quantum gates for parallel computation and optimization.
- Quantum parallelism may outperform classical methods for specific tasks.

DATA VISUALIZATION

DATA VISUALIZATION

MODEL SELECTION

Variational Quantum Classifier (VQC)

- Advantages: Leverages quantum computing for potential speedups on specific problems; ideal for exploring quantum advantages in EEG classification.
- Challenges: Limited by qubit count (e.g., 6 qubits), noisy simulations, and longer training times (e.g., ~1.5 min/subject).
- Suitability: Best for research into quantum machine learning or when quantum hardware improves significantly.

MODEL SELECTION

Gradient Boosting (GB):

- Advantages: Robust, interpretable classical method; handles structured data well with moderate training time.
- Challenges: Slower than XGBoost, less optimized for high-dimensional data compared to modern gradient boosters.
- Suitability: Suitable for small-to-medium datasets with clear feature importance needs.

MODEL SELECTION

Extreme Gradient Boosting (XGBoost)

- Advantages: Fast, scalable, and highly accurate; excels with imbalanced data and high-dimensional features.
- Challenges: Requires tuning for optimal performance; less interpretable than GB.
- Suitability: Preferred for real-world applications requiring high accuracy and efficiency.

RESULTS ANALYSIS

VARIATIONAL QUANTUM CLASSIFIER

GRADIENT BOOSTING CLASSIFIER

XGBOOST CLASSIFIER

Accuracy Results

Paradigm oddball_paradigm Average VQC Accuracy: 46.00% Paradigm oddball_paradigm Average GB Accuracy: 87.50% Paradigm oddball_paradigm Average XGB Accuracy: 92.00%

Paradigm stroop_task Average VQC Accuracy: 51.50% Paradigm stroop_task Average GB Accuracy: 92.50% Paradigm stroop_task Average XGB Accuracy: 95.00%

Paradigm task-switching_paradigm Average VQC Accuracy: 48.81% Paradigm task-switching_paradigm Average GB Accuracy: 89.86% Paradigm task-switching_paradigm Average XGB Accuracy: 88.94%

Paradigm dual-task_paradigm Average VQC Accuracy: 57.50% Paradigm dual-task_paradigm Average GB Accuracy: 92.33% Paradigm dual-task_paradigm Average XGB Accuracy: 92.17%

Accuracy Results

```
--- XGBoost Classification Report for Subject 3, Paradigm: oddball_paradigm ---
             precision
                          recall f1-score
                                            support
                                     0.98
          0
                  0.95
                            1.00
                                                 21
          1
                  1.00
                            0.95
                                     0.97
                                                 19
                                     0.97
                                                 40
   accuracy
                                     0.97
                  0.98
                            0.97
                                                 40
  macro avg
weighted avg
                  0.98
                            0.97
                                     0.97
                                                 40
```

XGBoost	Classificatio	n Report	for Subject	2, Paradigm:	stroop_task
	precision	recall	f1-score	support	
(0.95	0.91	0.93	22	
1	L 0.89	0.94	0.92	18	
accuracy	,		0.93	40	
macro avo	0.92	0.93	0.92	40	
weighted avo	0.93	0.93	0.93	40	

Accuracy Results

```
--- XGBoost Classification Report for Subject 1, Paradigm: task-switching_paradigm ---
             precision
                          recall f1-score
                                            support
          0
                  0.92
                            0.95
                                     0.93
                                                 59
                  0.95
                            0.92
                                     0.94
                                                 63
          1
                                     0.93
                                                122
   accuracy
                  0.93
                            0.93
                                     0.93
                                                122
  macro avg
                                                122
weighted avg
                  0.93
                            0.93
                                     0.93
```

XGBoost C	Classification	Report	for Subject	5, Paradigm:	dual-task_paradigm
	precision	recall	f1-score	support	
0	0.94	0.91	0.92	33	
1	0.89	0.93	0.91	27	
accuracy			0.92	60	
macro avg	0.92	0.92	0.92	60	
weighted avg	0.92	0.92	0.92	60	

All the classification techniques: VQC, GB, XGB performed on 5 subjects each for all the given paradigms

CONCLUSION

Accuracy

- Achieved 90–97.5% accuracy in EEG classification (vs. 40–52.5% for VQC, 82.5–92.5% for GB), as shown in results.
- XGB handles imbalanced data effectively with robust regularization and gradient optimization.

Efficiency

- Faster training and prediction times than GB and VQC, leveraging parallel processing and optimized algorithms.
- Outperforms VQC (limited by quantum noise and qubit constraints) and GB (less optimized for large datasets).

CONCLUSION

Scalability

- Scales well with high-dimensional EEG features and large datasets, unlike VQC's qubit limitations.
- Supports GPU acceleration for further speed gains, reducing runtime significantly.

Robustness

- Manages noise and outliers in EEG data better than VQC (prone to simulation noise) and GB (less adaptive to complex patterns).
- Proven in real-world applications, making it ideal for brain-computer interfaces or diagnostics.

FUTURE IMPROVEMENTS

- Increasing qubit count as quantum hardware improves, capturing more complex patterns.
- Experimenting with deeper quantum circuits (e.g. more layers in ZZFeatureMap/RealAmplitudes) for better expressivity.
- Combining QML with deep learning (e.g. LSTMs/CNNs) for superior performance on temporal EEG data.

THANK YOU