TONE DECODER IC

The IL567CN, IL567CD are general purpose tone decoders .

ICs are purposed to receive and decode sine signal of wide bandwidth in telelecom systems.

IC can be applied for tone (voice-frequency) decoding, frequency control, broadband FSK demodulations, ultrasonic frequency control, in precision generator, search decoders.

Main features

- 08
 01
 N-suffix
 DIP-package

 D-suffix
 SO-package

 Fig. 1 –Views of ICs in
 DIP & SO packages

- (at U_{CC} = 5 V, R_L = 20 k Ω), not more8;
- Operating temperature range 0 to +70°C;
- Immunity to ESD potential 200 V. Limiting value of the potential of static electricity 350 V;
- Logic compatible output with 100mA current sinking capability;
- High rejection of outband signals and noise;
- Thermal resistance «junction-ambient» for IL567CN not more 110 °C/W; for IL567CD not more 160 °C/W.

Fig. 2 - Pinout diagramm

1

Fig. 3 – Block diagram of IC

Table 1 - Pin description

Pin number	Symbol	Description					
01	OF	Filter output					
02	LF	Loop filter (Low frequency filter of the synchronous demodulator)					
03	IN	Detected frequency input					
04	U _{cc}	Supply voltage pin					
05	TR	Timing resistor connection pin					
06	TC	Timing capacitor connection pin					
07	GND	Common pin (Ground)					
80	OUT	Output					

Table 2 – Absolute maximum ratings

Symbol	Parameter	Nor	Unit	
		Min	Max	
U_cc	Supply voltage	-	9,5	V
U_{03}	Input voltage (pin 03)	-10	U _{CC} +0,5	V
P _{tot} ¹⁾	Total power dissipation	-	1100 ²⁾	mW
Та	Storage temperature	-50	125	°C

 $^{^{1)}\!}At$ IC operation junction temperature has not to excess 115 °C taking into account thermal resistance "junction-ambient". For IL567CN thermal resistance "junction-ambient" - 110 °C/W. For IL567CD thermal resistance "junction-ambient" - 160 °C/W.

Maximum power Ptot,W, dissipated by IC for TA, is calculated by formula

$$P_{tot} = (115 - T_A) / R_{TJA}$$
, (1)

115 – maximum permissible operating junction temperature, °C;

T_A – ambient temperature, °C;

R_{TJA} – thermal resistance «junction-ambient» , °C/W.

²⁾ Duration of influence of extreme mode has to be not more than 20 ms

Table 3 – Recommended operation modes

Symbol	Symbol Parameter		Norm		
		Min	Max		
U_cc	Supply voltage	4,75	9	V	
U ₀₈	Voltage applied to closed output, V (pin 08)	-	15	V	
Та	Operating ambient temperature	0	70	°C	

Table 4 - Electric parameters

Parameter, unit, mode of measurement	Symbol	No	Ambient	
	-	Min	Max	tempera- ture, °C
Quiescent consumption current, mA at U_{CC} = 5 V, R_L = 20 k Ω	I _{CC}	-	<u>8</u> 9	25±10 0; 70
Dinamic consumption current, mA at U_{CC} = 5 V, R_L = 20 k Ω	l _{occ}	-	<u>13</u> 14	
Input resistance, $k\Omega$ at U_{CC} = 5 V	R _I	<u>15</u> 14	1	
Smallest detectable input voltage, mV (RMS) at U_{CC} = 5 V, I_L = 100 mA, f_I = f_C	U_{lmin}	-	<u>25</u> 30	
Largest detectable input voltage (at signal abcence), mV (RMS) at U_{CC} = 5 V, I_L = 100 mA, f_I = f_C	U_{Imax}	<u>10</u> 9	1	
Bandwidth, % (relatively to central frequency f_C)	BW	<u>10</u> 9	<u>18</u> 19	
Bandwidth relative deviation, % (relatively to central frequency f_C) at U_{CC} = 5 V	ΔBW_REL	-	<u>3,0</u> 3,5	
Coefficient of bandwidth variation with supply voltage, $\%$ / V at U _{CC} = (4,75 - 6,75) V	K _{BW}	-	<u>±5</u> ±5,5	
Highest center frequency, kHz at U_{CC} = 5 V, R = 2,8 kΩ, C = 3300 pF	f _C	<u>100</u> 110	-	
at U_{CC} = 5 V, R = 2,8 k Ω , C = 800 pF		ı	<u>500</u> 400	
Center frequency variation with supply voltage, %/V at U_{CC} = (4,75 - 6,75) V at U_{CC} = (4,75 - 9,0) V	δ _{fC}	1	<u>2,0</u> 2,5	
High level output leakage current, μ A at U_{CC} = 5 V, U_{08} = 15 V	I _{OLH}	-	<u>25</u> 40	
Output saturation voltage, V at U_{CC} = 5; 9 V, I_{08}^{1} = 30 mA, U_{03} = 25 mV	U _{OSAT}	-	<u>0,4</u> 0,6	
at U _{CC} = 5; 9 V, I ₀₈ = 100 mA, U ₀₃ = 25 mV		-	<u>1,0</u> 1,5	

 $^{1)}$ I_{08} –08 pin current

Table 5 - Reference parameters

Parameter, unit, mode	Symbol	No	rm	Ambient	
of measurement		Min	Max	tempera- ture, °C	
Largest Simultaneous Outband Signal to Inband Signal Ratio, dB	N _S	<u>1,5</u> 1,0	<u>9</u> 8	25±10 0; 70	
Minimum Input Signal to Wideband Noise Ratio, dB at U_{CC} = 5 V, B_n =140 kHz	N _n	<u>-1,5</u> -1,0	<u>-9</u> -8		
Cycle repeating frequency, kHz at U_{CC} = 5 V	f _{CYC}	-	<u>f_c/20</u> f _c /25		
Output fall time, ns at U_{CC} = 5 V	t _f	-	<u>60</u> 80		
Output rise time, ns at U_{CC} = 5 V	t _r	-	<u>300</u> 350		
Coefficient of bandwidth variation with temperature, % / °C at U _{CC} = 5 V	$lpha_{BW}$	-	±0,2	0; 70	
Coefficient of central frequency variation with temperature, ppm/°C at U_{CC} = (4,75 - 5,75) B	$lpha_{ ext{fC}}$	-100	100	0; 70	

Functionality of the microcircuit

Tone signals decoder IC is purposed for decoding of frequencies in bandwidth BW (relatively the central frequency), %, determined by expression

$$BW = 1070 \sqrt{\frac{Ui}{f_C C2}}, \qquad (2)$$

Ui - input voltage (RMS) $Ui \le 200 \text{ mV}$;

f_C - bandwidth central frequency of decoder, kHz, is determined by formula

$$f_{\rm C} \cong \frac{1}{1.1R1C1} \quad , \tag{3}$$

R1, C1, C2 - extermal passive components.

R2 - load resistor

Capacitor C1 used to correct oscillator central frequency. Capacitor C2 used to determine decoder bandwidth.

Fig. 4 – Recommended application diagram

^{*} for frecuency $f_C = 100 \text{ kHz only.}$

Reference diagramm

Fig. 5 – Bandwidth central frequency average values versus ambient temperature

Fig. 6 – Bandwidth average values versus ambient temperature

Fig. 7 Bandwidth average values versus input voltage at U_{cc} = 5 V, Ta = (25±10) °C

Fig. 8 Bandwidth average values versus central frequency at U_{cc} = 5 V, $Ta = (25\pm10)^{\circ}C$

Fig. 9 – Bandwidth average values versus capacity at U_{CC} = 5 V, Ta = (25±10) $^{\circ}\text{C}$

Fig.10 – Quiescent consumption current and dynamic consumption current average values versus supply voltage Ta = (25±10) °C

Fig. 11 – Cycle repeating frequency average values versus ambient temperature at U_{CC} = 5 V

Fig. 12 – Output saturation voltage average values versus $\,$ ambient temperature at $U_{\text{CC}}\text{=}~5~\text{V}$

Typical applications diagrams R3 $0.5\,\mu F$ IL567 $\begin{array}{c} 08 \\ 02 \end{array}$ 03 01 C3 C2 $0.5\,\mu F$ IL567 770 Hz 02 03 06 $0.5\,\mu F$ IL567 ${08\atop02}$ 01 05 06 Input signal $0.5\,\mu F$ 100 – 200 mV IL567 941 Hz 0 08 03 05 06 01 02 $0.5 \; \mu F$ IL567 08 1209 Hz 03 06 05 $0.5 \, \mu F$ IL567 1336 Hz 02 03 06 01 R1 - $6,8 - 15 \text{ k}\Omega$ $R2 - 4.7 k\Omega$ $\mbox{R3}$ - 20 $\mbox{k}\Omega$ $0.5 \; \mu F$ $C1 - 0.1 \mu F$ IL567 $\begin{array}{c} 08 \\ 02 \end{array}$ 1477 Hz 03 C2 - 1,0 $\mu F \times 6~V$ 01 C3 - 2,2 $\mu\text{F}\times6~\text{V}$ C4 - 250 $\mu F \times 6~V$ R1 is selected based on required detecting frequiency

Fig.13 - Push-button phone decoder

Output signal is inverted at 2,8V voltage applied to $\,$ pin $\,$ 03 $\,$.

Fig. 14 - Oscillator with Quadrature Output Fig. 15 - Oscillator with Double Frequency Output

Fig. 16 - Precision oscillator-driver with 100 mA load

α

Note $\,-$ The sizes D, E1 do not include size of the spew which should not be more 0,25 (0,010) on the side.

	D	E1	Α	b	b2	е	α	L	E	С	A1
mm	mm										
min	9.02	6.07	_	0.36	1.14		0°	2.93	7.62	0.20	0.38
max	10.16	7.11	5.33	0.56	1.78	2.54	15°	3.81	8.26	0.36	_
inches											
min	0.355	0.240	_	0.014	0.045		0°	0.115	0.300	0.008	0.015
max	0.400	0.280	0.210	0.022	0.070	0.1	15°	0.150	0.325	0.014	

Fig. 17 - DIP-packade (MS-001BA) dimensions

⊕ 0,25 (0,010) M

	D	E1	Н	b	е	α	Α	A1	С	L	h
mm	mm										
min	4.80	3.80	5.80	0.33		0°	1.35	0.10	0.19	0.41	0.25
max	5.00	4.00	6.20	0.51	1.27	8°	1.75	0.25	0.25	1.27	0.50
inches											
min	0.1890	0.1497	0.2284	0.013		0°	0.0532	0.0040	0.0075	0.016	0.0099
max	0.1968	0.1574	0.2440	0.020	0.100	8°	0.0688	0.0090	0.0098	0.050	0.0196

Fig. 18 - SO- package (MS-012AA) dimensions

Technological mark coordinates IL567CN (mm): left bottom corner x = 0,6971, y =0,2044. Chip thickness 0,35 ± 0,02 mm.

Contact pad number	Coordinates(left bottom corner), mm				
	X	У			
01	0,6397	0,0885			
02	0,6397	0,4577			
03	0,6397	0,6362			
04	0,4847	0,6362			
05	0,0885	0,4341			
06	0,0885	0,2791			
07	0,2931	0,0765			
08	0,4996	0,0885			

Note - Contact pad dimensions $0.085 \times 0.085 \, \text{mm}\,$ and coordinates are indicated under "Passivation" layer

Fig. 19 - Contact pad layout and coordinates

