1 Publication number:

0 173 364

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 85201157.6

(5) Int. Cl.4: **H 04 L 11/16**, H 04 M 9/02

② Date of filing: 10.07.85

30 Priority: 27.07.84 NL 8402364

7 Applicant: N.V. Philips' Gloellampenfabrieken, Groenewoudseweg 1, NL-5621 BA Eindhoven (NL)

Date of publication of application: 05.03.86
 Bulletin 86/10

(7) Inventor: Bourgonje, Wouter, c/o INT.
OCTROOIBUREAU B.V. Prof. Hoistlaan 6, NL-5656 AA
Eindhoven (NL)
Inventor: Janssen, Daniel Johannes Gerardus, c/o INT.
OCTROOIBUREAU B.V. Prof. Hoistlaan 6, NL-5656 AA
Eindhoven (NL)
Inventor: Van Reede, Willem Albert, c/o INT.
OCTROOIBUREAU B.V. Prof. Hoistlaan 6, NL-5656 AA
Eindhoven (NL)
Inventor: Vossen, Johannes Adrianus Alphonsus, c/o

INT. OCTROOIBUREAU B.V. Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL)

Designated Contracting States: AT BE CH DE FR GB IT LI SE Mepresentative: De Jongh, Cornelis Dominicus et al, INTERNATIONAAL OCTROOIBUREAU B.V. Prof. Hoistlaan 6, NL-5656 AA Eindhoven (NL)

Method, station and system for the transmission of messages in the form of data packets.

A method of transmitting data packets in a message-switched channel (signalling channel) of a time-division multiplex system with CSMA-CD. Interference-free transmission in the message-switched channel ensures the absence of collisions on occupying the circuit-switched connection. Message mutilation and collision on accessing the message-switched channel are remedied by a retransmission procedure in which the unique station address number determines the frame number in which the retransmission may start. This procedure guarantees that a station accesses the message-switched channel within a very short period of time. This guaranteed access is not possible with the prior art CSMA-CD buses.

173 364

1

"Method, station and system for the transmission of messages in the form of data packets."

The invention relates to a method of transmitting messages formed by data packets between stations <u>via</u> a common communication channel formed by corresponding time slots in consecutive frames of a time-division multiplex system,

- 5 each station continuously checking the traffic state (free of busy) of the channel,
 - those stations which have a data packet ready for transmission transmitting this packet after they have detected the traffic-free state of the channel,
- 10 each transmitting station comparing the content of the data packet transmitted by this station to the content of the data packets present in the communication channel to check those packets for mutilations,
 - each station detecting mutilation of its data packet terminating the transmission of further data packets of the message,
- 15 whereafter those stations which have detected mutilation of the data packets adopting a procedure for repeated transmission of their data packets.

The invention also relates to a station for performing that method and a system of stations having a common communication 20 channel.

Such a method, station and system are disclosed in United States Patent No. 4063220.

The manner described there for the stations to access the communication channel is known as the CSAMA-CD protocol (Carrier Sense Multiple Access with Collision Detection). If in such a system several stations start transmitting data packets simultaneously a collision state occurs which is detected by the transmitting stations in that they detect inequality between the data transmitted by them and the data simultaneously present in the communication channels. Repeated transmission of the data packets must then occur in accordance with a

30 transmission of the data packets must then occur in accordance with a retransmission procedure so as to accomplish undisturbed transmission as

yet.

The retransmission procedure adopted in the system in accordance with the above-mentioned United States Patent consists in that after collision a data packet must wait for a waiting time which is directly ascertained after the collision before transmission can be resumed. The waiting times in the stations of this system are statistically distributed, the waiting time being influenced by a weighting factor which depends on the number of times collision has occurred on transmission of a data packet.

Because of the random character of the length of the

10 waiting time it is possible that the overall waiting time becomes very
long; in practice this means that the access to the communication
channel of a data packet after collision is not absolutely certain.

The invention has for its object to provide a method of the type descibed in the opening paragraph with which access of collided data packets to the communication channel is guaranteed.

According to the invention, the method is therefore characterized in that

- each station has an address number which unambiguously identifies this station,
- 20 that after mutilation of the data packets has been detected, consecutive numbers are assigned in each station to a first number of consecutive frames, and
- that the number of the frame in which the repeated transmission of the data packets of a station starts is equal to at least a part of the address number of that station.

One has the possibility to opt for a number of consecutive frames to be numbered, which is identical to the number of stations which can use the communication channel. In that case it is certain that a data packet can already be transmitted at the first re-transmission without collision.

An alternative possibility is to limit the number of frames which are to be counted down after collision. An embodiment of the method in which this feature is used, is therefore characterized in that,

35 - after mutilation of the data packets has been detected, consecutive numbers are assigned in all stations to a second number of consecutive frames which precede in the time the first number of consecutive frames

and

5

15

- the number of the frame of the second number in which, if necessary, a second re-transmission of the data packets of a station starts, is equal to the other part of the address number of that station.

3

As for the assigning of the frame for first retransmission only a portion of the address number is used, there is a risk that a collision occurs again at the first retransmission, namely between two stations which have the relevant portion of the address number in common. After such a repeated collision a subsequent 10 retransmission is effected of the data packets which were involved in this repeated collision. This subsequent retransmission then occurs in frames of the second number. In these last frames no collision can now occur anymore because the other portions of the address numbers of the relevant stations are mutually different.

In some communication systems different types of messages are transmitted in which one wants to make a distinction between the types on transmission of the messages. Such a situation occurs, for example, if the communication channel is a channel which is used for both signalling purposes for stations such as telephone sets and the 20 transmisssion of less urgent messages such as, for example, messages for telemetry purposes.

A method which makes a distinction between different types of messages on the transmission of messages is therefore characterized in that

25 - data packets of first and second types are transmittable by the stations, these types differing from each other by their contents and in the traffic-free state, of consecutive pairs of frames the first and the second frames are alternately available for the transmission of a packet of the first and second type, respectively.

30 On transmission of different types of messages it may be desirable to give one type priority over another type. A method which, before proceding to retransmission of one type of messages first enables the transmission of non-collided messages of a different type, is therefore characterized in that

35 - data packets of a first and a second type are transmittable by the stations, these types differing frome each other by their contents, - each station can start the transmission of data packets of the first type in a frame located between detection of mutilation of a data packet and the subsequent assigning of consecutive numbers to consecutive frames, and

- in each station a flag is placed which indicates the transmission of a 5 data packet of the first type in said frame.

Providing the flag may prevent non-collided messages of a first type from repeatedly preceding the retransmission of messages of the same type. It also prevents messages of the second type waiting for retransmission from interfering with retransmission of messages of the 10 first type.

Not only by the collision of messages but also by other causes such as, for example, noise or externally induced interferences in the communication channel is it possible that messages are transmitted in a mutilated condition without this being detected by the transmitting station. Also in such a case repeated transmission of the relevant message is required.

A method with which retransmission is accomplished in such cases is therefore characterized in that,

- after transmission of the message has been completed the receiving stations perform an error check,
 - in each station after the transmission of the message has been completed, consecutive numbers are assigned to a third number of consecutive frames, which number of frames is immediately subsequent to the last data packet of the message,
- 25 each station which has detected an error during the error check tranmits an alarm signal in a predetermined frame of the third number of frames and
 - the station which has transmitted the error-containing message starts in response to the alarm signal a procedure for repeated transmission.
- 30 This procedure for repeated transmission may proceed as described above for the case of collision.

The invention and its advantages will now be described in detail by way of example with reference to the accompanying Figures. Therein:

- Fig. 1 shows a system of stations connected to a common bus;
 - Fig. 2 is a diagrammatic representation of the frame

structure of the time-division multiplex system and the frame sequences on re-transmission;

5

Fig. 3 shows a block circuit diagram of a station of Fig. 1 in which only the functional blocks relevant to the invention are 5 shown:

Fig. 4 shows a flow chart illustrating the operation of the frame counter;

Fig. 5 shows a flow chart which illustrates the access procedure of a first type of messages to one of the communication than the communication of the communication than the communication that the communica

Fig. 6 shows a flow chart illustrating the access procedure of a second message type to the same communication channel.

Fig. 1 shows a system of a number of stations 11-1 to 11N connected to a common bus 12. These stations may be
telecommunications terminals such as, for example, telephone sets or
telex apparatus. They may alternatively be data-processing apparatus
such as, for example, word processors or personal computers. Sensor
stations for safety purposes or for process control, such as for example
fire sensors or temperature sensors for room heating can also function
as stations in this system.

Each of these stations has an address number which unambiguously identifies this station within the system. This address number is important for the selection, still to be described in the sequel, of a main station for synchronizing purposes and for the retransmission, also to be further described in the sequel, of message which were mutilated during transmission.

Bus 12 is a two-wire conductor whose ends are terminated by terminating impedances 13-1 and 13-2. A direct current supply source 14 can be connected to bus 13 for feeding the stations. The signal transmission via the bus is effected in binary encoded form. One of these two binary values (for example "O") can be represented by the electrically floating state of the bus whilst the other binary value ("1") is represented by a voltage difference. The advantage thereof is that if two stations transmit simultaneously, the "O" of one station is suppressed by the "1" of the other station, which facilitates detection of this collision situation by the station transmitting the "O".

The communication via the bus proceeds via

0173364

PHN 11.115

6

communication channels which are made available by the use of a timedivision multiplex system. Communication in such a system requires the time-division multiplex frames in all the connected stations to be mutually synchronized. This synchronization is obtained by means of a synchronizing signal transmitted in a synchronizing channel intended therefor by one of the stations, the main station.

Because of the selection procedure followed during the selection of the main station, none of the stations is excluded from the possibility of being selected as the main station. This procedure consists in that in each station one unit is each time added to the address number until a predetermined final value has been reached in one station, which then becomes the main station. Should that station be removed from the bus, then this selection procedure is performed again until a new main station has been selected.

There is a possibility that the station is not only connectable to the bus but also to an external communication channel, (for example a private of public telephone network), that external communication channel also being formed by a sequence of time slots. It is then necessary to synchronize the bus with the external communication channels. As for this purpose the stations having an external connecting feature must be given priority during the selection procedure of the main station, these stations comprise an additional "address bit", so that these stations always have a higher address number than the other stations.

In Fig. 2 the upper diagram shows the frame structure of the time-division multiplex system. The frame repetition rate is adapted to the standard 8 kHz sampling rate for digital speech transmission, so that a frame period of 125 /us is obtained. The frame is divided into ten channels, namely one synchronizing channel R, one half-duplex channel (bd) for system control (signalling) and for message-switched data transmission and eight half-duplex channels b₁ to b₈ for circuit-switched speech and data transmission. Thus a maximum of, for example, four telephone conversations are simultaneously possible in this frame structure.

The F-channel for synchronization contains a five-bit word. The remaining channels may contain a nine-bit word and leave 4 bit positions unoccupied to offset the delay caused by the required

0173364

PHN 11.115 7

10

propagation time in the bus conductor. Together with the spaces between the channels in the above-mentioned bit occupation of the channels produces a bit rate on the bus of the order of magnitude of 1 Mbit/s.

So as to indicate that a channel is busy, each frame of 5 such a busy channel starts with a "1", referred to as the start bit. This start bit is followed in the same frame by a bit word of four (Fchannel) or eight bits (remaining channels). Each station is now capable of detecting the traffic state (free or busy) of a channel by observing the first bit position in each frame of that channel.

Access of a station to a circuit-switched channel must be realized via preceding signalling in the bd-channel. The channel starts by transmitting a message in the bd-channel when this channel is free. This message is formed by a message identification, the address number of that station and two check words, referred to as CRC-bytes (Cyclic 15 Redundancy Check). Since the address number is unique for each station, the transmitting station can ascertain whether another station has simultaneously started the transmission of a similar message. If yes, collision is unavoidable, as all the address numbers are mutually different. Upon an undisturbed transmission of the address number it is 20 certain that no other station has had access to the bd channel. The station which was the sole station transmitting via the bd-channel now consequently is also the sole station accessing one of the channels b. - bg, provided one of these channels is free. Acting thus prevents collision in a circuit-switched channel. Consequently, collisions can 25 only occur on transmission via the bd-channel.

The invention provides a method which is suitable for solving collision problems in such a way that it is ensured that messages involved in a collision can be transmitted without mutilations after this collision. This method is illustrated in the lower diagram of 30 Fig. 2.

The lower diagram of Fig. 2 shows a sequence of frames of the bd-channel. The top row of this diagram illustrates the traffic state, Empty (E) or Busy (B). A dash(-) indicates that such a frame can be both empty and busy. The central row of this diagram shows the name 35 of the several frames. B is a frame being used for the transmission of a byte. E is a frame which is always kept empty. N is a frame in which a receiving station can report by means of an alarm signal (N = NACK, "Not Acknowledged") that the message was mutilated on receipt.

The messages in the bd-channel can be distiguished in two types by their function in the system. A first type includes, for example, the messages which form the signalling for the setting-up of a 5 circuit-switched connection between two stations. In a more general sense, the messages providing the system control belong to this first category. The length of these messages is limited, whilst for their function (system control) a fast transmission is desirable. The second category is formed by messages embodying, for example, the data for 10 telemetry or (slow) data transmission between computers. They may be comparatively long messages having a comparatively low urgency. The first category is referred to as an s-message, the second category as a d-message. On repeated transmission, the transmission procedure in accordance with the invention gives s-messages priority over d-15 messages. S and D are frames intended for starting the transmissison of s-messages and d-messages, respectively. The frames H 00 to L 111 are intended for starting the re-transmission of messages involved in a collision or which were received mutilated.

In the present embodiment it is assumed that 31 stations

20 are connected to the bus having address numbers (binary) 00001 to

11111. A station having address number a b i j k tries to effect its
first re-transmission in frame L i j k; there still is a possibility
that in said last frame collision occurs again with another station
having the same last three address bits. In that case station a b i j k

25 effects its second re-transmission in frame H a b. Since H-frames are
only accessible to stations which previously collided in an L-frame,
collision is now impossible since all the address numbers are different
(A station having address number 00000 is absent, so that the
combination L 000 followed by H 00 will not occur during

30 retransmission. The value 00000 is used as the final value in the
selection procedure for the synchronizing main station).

The lower row of the diagram of Fig. 2 illustrates the numbering of the several frames. As long as the channel is occupied by the transmission of a message, the frame counter FC is in the zero position. After a message has ended, an empty frame always occurs, which causes the frame counter to increment to 1.1 (In this empty frame receiving stations can carry out their error check CRC). If a station

PHN 11.115 9

15

has detected an error then this station transmits a NACK signal in frame 2, which causes the transmitting station to effect a re-transmission in one of the frames 9 to 16. If during frame 1 no error is detected then frame 2 remains empty. The empty frame 3 is only included because of the lack of computation time and has no further significance for the invention.

Frame 4 in Fig. 2 is intended for the start of new smessages. This new s-message consequently has priority over
retransmission of both d- and s-messages. This realizes the precedence
10 of s-messages over d-messages during retransmission of d-messages. In
the event in which such a new s-message takes precedence over other smessages waiting for re-transmission then in all stations a flag is
placed which prevents, after the end of that new s-message, a further
new s-message form postponing the retransmission of s-messages again.

The frames 9 to 16 are intended for first retransmissions, the frames 5 to 8 for further retransmissions. In frames 17 and 18 s-messages and d-messages, respectively can start again.

In the empty traffic state of the bd-channel the frame counter changes-over between counting positions 17 and 18. A station having a message for transmission <u>via</u> the bd-channel takes access to that channel, the frame counter then being adjusted to zero. After the end of the message the frame counter starts counting from zero. If in frame 2 no NACK byte is received, then the frame counter proceeds to 17 and 18, whereafter the counter starts alternating between 17 and 18 ("toggling"). If a NACK byte was indeed received in frame 2 then the station starts retransmission in that L-frame which corresponds to its address number. After that retransmission has ended the frame counter again passes from 0 to 18 and starts toggling.

If during toggling two stations simultaneously start to

transmit simultaneously each of the stations detects that its message is mutilated. The stations now stop the transmission of the message and in the next frame send a disturb signal (formed by the NACK-byte consisting of 9 "1"-bits), whereafter the subsequent frame is again kept empty. In that empty frame the counter goes to 1, the other stations detect in

frame 1 an error on the basis of their error check and transmit a NACK-byte in frame 2. In the absence of a new s-message in frame 4 retransmission (in the event of collision in an L-frame) is followed by

a second retransmission in a H-frame, collision being impossible.

10

It is however still possible that after a retransmission has ended the transmitting station again receives a NACK-byte in frame 2, namely when the message is mutilated on transmission or when the receiving station is not capable of accepting the message. To distinguish between these two situations a third retransmission is effected, also in the corresponding H-frame. If thereafter a NACK byte is received again, then the transmitting station decides that the receiving station is not capable of accepting the message and terminates further transmission. After the last-NACK-byte (counting position 2) the frame counters in the stations pass once again through the positions up to 18, inclusive and start toggling thereafter.

If, however, during last-mentioned cycling through the frame counter the flag was in the set state (in response to a s-message in frame 4 which started at an earlier stage) then the frame counter returns from position 16 to position 3 and thereafter starts to count up whilst at the same time the flag is adjusted to the non-set state. The object thereof is to offer the d-message (which could not be transmitted in an earlier stage because the flag was in the set state) the opportunity to be transmitted. After the frame counter has returned to position 3 it is still possible that in the subsequent frame 4 an s-message starts again, the flag being set.

Fig. 3 shows a block circuit diagram of a station 3-10 in accordance with the invention, connected to the bus 12. The station comprises a receiver 3-11 which takes signals from the bus and a transmitter 3-12 transmitting signals to the bus. In order to determine equality between the transmitted bits and the bits present on the bus, a channel comparator 3-13 is provided, which is connected to the transmitter input and to the receiver output. An alarm signal detector 3-14 is also provided for detecting alarm signals (NACK-bytes) in the communication channel. The outputs of channel comparator 3-13 and alarm signal detector 3-14 are connected to an OR-gate 3-15, whose output is connected to a counting unit 3-16. This counting unit is constituted by two retransmission counters, one for s-messages 3-17, and one for d-35 messages 3-18. Both counters are connected to the central control 3-19 of the station for activation by an s-message and a d-message, respectively.

11

The station further comprises a using unit 3-20 for converting the received information into a form suitable for use. Such a unit may, for example, be in the form of a picture screen, a printer or a circuit of a telephone set. The using unit is shown symbolically for last-mentioned use. Using unit 3-20 transfers the bytes to be transmitted to buffer store 3-21 from which these bytes are transmitted to the bus by transmitter 3-12.

The transmission of the bytes contained in bufferstore 321 by transmitter 3-12 must only be effected in predetermined frames,
10 for example a byte of a new s-message is only to start in frame 4 or in
frame 18. To enable this frame-selective transmission, energizing means
3-22 are connected to transmitter 3-12, which energize transmitter 3-12
for transmitting the content of buffer store 3-21 in dependence on the
position of the frame counter, of the station address number, the type
15 of message (s or d), whether the flag is in the set or the non-set state
(when frame 4 is occupied) and on the position of the retransmission
counter.

The energizing means 3-22 receive information from counter comparator 3-23 which compares the content of address store 3-24 to the content of frame counter 3-25. This comparison is necessary for selecting the appropriate frame for retransmission; the energizing means receive further information necessary for this selection from the central control 3-19.

Repeated transmission of a message is necessary on

25 collision of several stations or in the case of error detection by a
receiving station. Collision is detected by channel comparator 3-13
which, when it detects inequality of the bits at its two inputs, applies
a collision signal to an OR-gate 3-15. When it detects an error, a
receiving station reports this by means of an alarm signal (NACK) in

30 frame 2. In response to that alarm signal, alarm signal detector 3-14
applies an alarm indication signal to OR-gate 3-15. In response to one
of the two input signals OR-gate 3-15 supplies a signal for increasing
the counter position of either s-retransmission counter 3-17 or dretransmission counter 3-18. A non-zero counting position of these

35 counters triggers the start of the retransmission in one of the frames 5
to 16.

The flow chart of Fig. 1 illustrates how the various

35

counting positions of the frame counter are obtained. In all stations the counting position of the frame counters are equal to each other. The portion of the flow chart located below block 4-2 is passed through once in each frame. The several blocks in the flow chart have the following 5 significance:

12

	Block no.	caption	Significance
	4 - 1	POWER ON	the bus is made operative by feeding supply
			energy to the station.
	4 - 2	SF: = 0	The non-set state of the flag indicating the
			start of a s-message in frame 4, is set
	4 - 3	START	start of the cycle which repeats itself each
			frame.
	4 - 4	FRAME	test whether the frame generated in the station
15		SYNC.	is in phase synchonism with the frame generated
			by the synchronizing main station.
	4 - 5	CH.OCC.	test whether the bd-channel is occupied.
	4 - 6	FC = 2	test whether the frame counter is in position
			2.
20	4 - 7	FC = 4	test whether the frame counter is in position
			4,
	4 - 8	SF: = 1	the flat indicating the start of an s-message
			in frame 4, is set.
	4 - 9	FC: = 0	the frame counter is set to position 0.
25	4 - 10	FC = 18	test whether the frame counter is in position
			18.
	4 - 11	FC: = 17	the frame counter is set to position 17.
	4 - 12	FC:= FC+1	the position of the frame counter is
			incremented by 1 unit.
30	4 - 13	FC = 16	test whether the frame counter is in position
		ASF= 1	16 and also whether the flag is set.
	4 - 14	SF:= 0	the non-set state of the flag is set and the
		FC:= 3	frame counter is adjusted to position 3.
	4 - 15	FC:= 0	the frame counter is set to the position 0.

Immediately after the bus has been made operative (4 -

^{1),} the non-set state of the flag (indicating the start of an s-message

PHN 11.115 13

in frame 4) is set, whereafter the then subsequent cycle is repeated in each frame.

As long as the locally generated frame is not in synchronism with the bus frame, the frame counter is kept at zero. The frame counter can continue counting after frame synchronization. In counting position 4 an s-message may be transmitted over the bus; if no message is transmitted then the frame counter counts on to alternately position 17/18 in which an s-message may alternately start.

The channel being occupied and the frame counter being in counting position 2 inevitably denotes a NACK-signal; the frame counter now continues to count via block 4-12. In that case, if no new smessage is started in frame 4, the retransmission field 5 to 16 is cycled through. In one of these frame the collided or mutilated message can be retransmitted. The channel being occupied and the frame counter being in position 4 is a sure indication of a new s-message in frame 4; now the flag is set, block 4-8. In all other cases the channel is normally occupied, the frame counter always being kept at 0, block 4-9.

If a flag is set when a channel is not occupied and the frame counter has arrived in counting position 16 (block 4-13), then
the non-set state of the flag is set and the retransmission field is once cycled through again, whereafter the frame counter starts toggling between the positions 17 and 18.

The advantage of the method illustrated by the flow chart of Fig. 4 is that any deviations of a frame counter of a given station is corrected automatically without outside action. Such deviations, can, for example, occur because the station is connected to the bus at a later instant than the other stations, has been removed from the bus for some time of by externally induced interferences. The frame counter of that station is indeed originally not in synchronism with the other frame counters, (thus this frame counter shows other frame numbers) but at the first occupied frames detected by that station the frame counter will be adjusted to the zero position or the station will cause collision. In the first case synchronization is obtained, in the second case a retransmission procedure is started, also beginning with frame counter position O, which also accomplishes synchronization. The adopted method renders the frame counting and consequently the access procedure self-repairing.

The flow chart of Fig. 5 illustrates the course of the access procedure for the bd channel of an s-message to be transmitted by a station. The blocks in this flow chart have the following significance:

5	•		
	Block no.	<u>Caption</u>	<u>significance</u>
	5 - 1	START	start of the access procedure.
	5 - 2	MESS.	test whether a message is ready for
			transmission.
10	5 - 3	S	test whether the message ready for
			transmission is an s-message.
	5 - 4	RC := 0	the retransmission counter for s-messages
			is set to 0
	5 - 5	RC = 0	test whether the retransmission counter
15			for s-messages is in the zero position.
	5 - 6	SF = 0	test whether the flag is in the non-set
			state.
	5 - 7	FC = 3, 16, 18	test whether the frame counter is in one
			of the counting positions 3, 16 or 18.
20	5 - 8	FC = 16,18	test whether the frame counter is in one
			of the positions 16 or 18.
	5 - 9	RC = 1	test whether the s-retransmission counter
	F 40		is in counting position 1.
25	5 - 10	RC = 2,3	test if the s-retransmission counter is in
25	E 44	FG-1 4	one of the counting positions 2 or 3.
	5 - 11	FC=L-1	test whether the frame counter is in one
			of the counting positions 8 to 15 and
			whether at the same time that counting
30			position minus 8 is equal to the number
			formed by the three least significant bits of the address number.
	5 - 12	FC = H-1	test whether the frame counter is in one
	· · ·		of the position 4 to 7, and whether at the
			same time that counting position minus 4
35			is equal to the number formed by the two
			most significant bits of the address
			number.

	E1114 11.11J		15	21-6-1985
	5 - 13	ERR.	decide to situation in which is not capable of accepting	
	5 - 14	CH.OCC	test whether bd-channel is o	
5	5 - 15	TRNSMT IN NEXT FR.	transmit the message in the	next frame.
	5 - 16	END MESS.	test whether the last byte o has been reached.	f the message
	5 - 17	COLL.	test whether collision has b	een detected.
	5 - 18	STOP TRM	stop the transmission.	
10	5 - 19	FC = 1	test whether the frame count counting position 1.	er is in the
	5 - 20	NACK IN NEXT FR.	send NACK-signal in the next	frame.
	5 - 21	STOP TRM.	stop the transmission.	
15	5 - 22	FC = 2	test whether the frame counter	er is in
	_		counting position 2.	
	5 - 23	CH.OCC	test whether the bd-channel i	is occupied.
	5 - 24	RC:=RC+1	increment the counting position	ion of the s-
			retransmission counter by one	unit.

20

After the start of the access procedure it is tested whether the message to be transmitted is an s-message. If no, then the access-procedure for d-messages is proceeded too, which is symbolically shown in Fig. 5 in block 5-3 by "d"; the d-procedure is then started at the input of block 6-4, Fig. 6. If yes, then the message is transmitted, the path 5-4, 5-5, 5-6, 5-7, 5-14, 5,-15, 5-16, 5-17, ..., 5-15, 5-16, 5-21, 5-22, 5-23, 5-1 being followed further.

(after first the same path from block 5-4 to 5-16 has been followed) the path is followed via the block 5-16, 5-17 to 5-20, 5-22, 5-23, 5-24 and back to 5-5. For the first retransmission the path is now chosen which leads from 5-5 via the blocks 5-9, 5-11, 5-14, 5-15, 5-16, 5-17. Let it be assumed that during this first retransmission collision occurs again, so that the path is continued via the blocks 5-18, 5-19, 5-20, 5-22, 5-23, 5-24, and back again to 5-5. For the second retransmission the path is taken from block 5-5 via the blocks 5-9, 5-10, 5-12, 5-14, 5-15, 5-16, 5-17. At this stage collision is impossible (the frame counter is

now in the H-range of Fig. 2), so that after termination of the message (block 5-16) the path is continued <u>via</u> blocks 5-21 and 5-22. If now in frame 2 (block 5-22) the channel is found to be occupied (5-23), then this must be a NACK-signal reporting mutilated reception. Now the retransmission counter is now adjusted to position 3 (block 5-24) and said last path is again continued from block 5-5 to block 5-23. If now a NACK-signal indicating mutilated reception is again detected, then the retransmission counter is adjusted to 4, as a result of which the path 5-5, 5-9, 5-10, 5-13 back to 5-1 is followed, an error being reported (5-13) to the central control of the station.

16

The flow chart of Fig. 6 shows the course of the access procedure to the bd-channel of a d-message to be transmitted by a station. The blocks in this flow chart have the following significance:

15	Block no.	<u>Caption</u>	significance.
	6 - 1	START	start of the access procedure.
	6 - 2	MESS.	test whether a message is ready for
			transmission.
	6 - 3	D	test whether the message ready for
20			transmission is a d-message.
	6 - 4	RC:= 0	the retransmission counter for d-messages
			is set to 0.
	6 - 5	RC = 0	test whether the retransmission counter
			for d-messages is in the zero position.
25	6 - 8	FC = 17	test whether the frame counter is in
			position 17.
	6 - 9	RC = 1	test whether the d-retransmission counter
			is at 1.
	6 - 10	RC = 2,3	test whether the d-retransmission counter
30			is in one of the positions 2 or 3.
	6 - 11	FC = L-1	test whether the frame counter is in one
		ASF= 0	of the counting positions 8 to 15, whether
			at the same time the counting position
			minus 8 is equal to the number formed by
35			the three least-siginificant bits of the
			address number and whether at the same
	•		time the flag is in the non-set state.

	6 - 12	RC = H-1 ASF = 0	test whether the frame counter is in one of the positions 4 to 7, whether at the same time the counting position minus 4 is
5			equal to the number formed by two most
J			significant bits of the address number and
			whether at the same time the flag is in
	c 15		the non-set state.
	6 - 13	ERR.	decide to the situation in which the
			receiver is not capable of accepting the
10			message.
	6 - 14	CH.OCC	test whether the bd-channel is occupied
	6 - 15	TRNSMT IN	transmit the message in the next frame.
		NEXT FR.	
	6 - 16	END MESS.	test whether the last byte of the message
15			has been reached.
	6 - 17	COLL.	test whether collision has been detected.
	6 - 18	STOP TRM	terminate the transmission.
	6 - 19	FC = 1	test whether the frame counter is in the
			counting position 1.
20	6 - 10	NACK IN	send NACK-signal in the next frame.
		NEXT FR.	
	6 - 21	STOP TRM.	terminate the transmission.
	6 - 22	FC = 2	test whether the frame counter is in
			counting position 2.
25	6 - 23	CH.OCC.	test whether the bd-channel is occupied.
	6 - 24	RC:=RC+1	increment the counting position of the d-
			retransmission counter by one unit.

After the access procedure has been started, it is tested

30 whether the message to be transmitted is of the d-type. If no, then the
access procedure for s-messages is proceeded to, which in Fig. 6 is
symbolically shown at block 6-3 by "s"; the s-procedure is then started
at the input of block 5-4, Fig. 5. If yes, then the transmission of a dmessage is effected in the same way as described with reference to Fig.

35 5 for a s-message, but for the following differences: to give new s-

messages priority over d-messages waiting for retransmission, the possibility is provided for s-messages to start once in frame 4 while

setting a flag (see Fig. 5, block 5-6, 5-7, 5-8). As this feature is absent for d-packets, in Fig. 6 the blocks corresponding to block 5-6 and 5-7 are absent. In addition, on retransmission of d-packets (path 6-9, 6-11, and 6-10, 6-12, respectively) it should always be tested whether the flag has not been set. If yes, then those d-packets must wait until the flag is again in the non-set state. The procedure of setting and non-setting of the flag is illustrated in Fig. 4.

- 1. A method of transmitting messages formed by data packets between stations <u>via</u> a common communication channel formed by corresponding time slots in consecutive frames of a time-division multiplex system,
- 5 each station continuously checking the traffic state (free or busy) of the channel,
 - those stations which have a data packet ready for transmission transmitting this packet after they have detected the traffic-free state of the channel,
- 10 each transmitting station comparing the content of the data packet this station transmits to the content of the data packet present in the communication channel to check those packets for mutilations,
 - each station detecting mutilation of its data packet terminating the transmission of further data packets of the message,
- 15 whereafter those stations which have detected mutilation of the data packets adopting a procedure for repeated transmission of the data packets, characterized in that:
 - each station has an address number which unambiguously identifies this station,
- 20 after mutilation of data packets has been detected, consecutive numbers are assigned in each station to a first number of consecutive frames, and
- the number of the frame in which the re-transmission of the data packets of a station starts is equal to at least a portion of the address number of that station.
- A method as claimed in Claim 1, characterized in that

 after mutilation of the data packets has been detected, consecutive numbers are assigned in all stations to a second number of consecutive frames which considered in the time precede the first number of

 30 consecutive frames, and
 - the number of the frame of the second number in which, if necessary a second retransmission of the data packets of a station starts is equal

PHN 11.115 20 21-6-1985

to the other portion of the address number of that station.

- 3. A method as claimed in Claim 1 or 2, characterized in that each station which has detected that a data packet has been mutilated transmits after this detection a disturb signal for mutilating further data packets before starting to follow the retransmission procedure.
 - 4. A method as claimed in Claim 1, 2 or 3, characterized in that
- data packets of first and second types are transmittable, these types 10 differing from each other by their contents, and
 - in the traffic-free state, of consecutive pairs of frames the first and second frames are alternately available for the transmission of a packet of the first and second type, respectively.
- A method as claimed in any one of the preceding Claims,
 characterized in that
 - data packets of the first and second types are transmittable by the stations, these types differing from each other by their contents,
 - each station can start the transmission of data packets of the first type in a frame located between the instant at which mutilation of a
- 20 data packet was detected and the subsequent assigning of consecutive numbers for consecutive frames, and
 - in each station a flag is set which indicates the transmission of a data packet of the first type in said frame.
- A method as claimed in any one of the preceding Claims,
 characterized in that
 - after the transmission of the message has been completed, the receiving stations effect an error check,
 - in each station after completion of the transmission of the message consecutive numbers are assigned to a first number of consecutive
- 30 frames, which number is immediately subsequent to the last data packet of the message,
 - each station which detects an error during the error check transmits an alarm signal in a predetermined frame of the first number, and
 - that station which has sent the erroneously transmitted message starts
- 35 to follow a procedure for retransmission in response to the alarm signal.
 - 7. A method of selecting a main station for transmitting

PHN 11.115 21

synchronizing signals in a system comprising a communication channel and a synchronizing signal for performing the method as claimed in any one of the preceding Claims,

characterized in that

- 5 in each station the address number of that station is used as a presetting of a counter,
 - the counting position of this counter is always incremented by one unit under the control of a local clock which is nominally the same for all stations until in one of the stations a predetermined final
- position, which is identical for all stations, is reached, and
 the station reaching this final state starts to transmit synchronizing signals via the synchronizing channel.
 - 8. A station suitable for performing the method as claimed in Claim 1, this station comprising:
- 15 a receiver for receiving data packets from the communication channel,
 - a transmitter for transmitting data packets to the communication channel, and
 - a channel comparator for comparing the data packets which are simultaneously present at the transmitter output and in the
- 20 communication channel, this channel comparator generating a collision signal on detection of inequality between the data packets, characterized in that the station further comprises:
 - an address store for storing the address number of the station,
- a frame counter for storing the frame numbers of the first number of 25 frames,
 - a counter comparator for comparing the content of the frame counter to the first-mentioned portion of the address number, the counter comparator in the event of equality generating an energizing signal,
 - a buffer memory for storing the data packets to be transmitted,
- 30 and energizing means which in response to the energizing signal cause the transmitter to transmit the content of the buffer store.
 - 9. A station as claimed in Claim 8, for performing the method as claimed in Claim 6,

characterized in that

35 - this station comprises an alarm signal detector for detecting alarm signals in the communication channel, the detector on detecting an alarm signal generating an alarm indication signal, and

- this station comprises a re-transmission counter for increasing the content of this counter in response to collision signals and in response to alarm indication signals.
- 10. A system of stations having a common communication
 5 channel and a common synchronizing channel for performing the method as claimed in Claim 7,
 - characterized in that
 - at least one station is connectable to an external communication channel constituted by a sequence of frames, and
- 10 the most significant figure of the address number of this station is one unit higher than the most significant figure of the other stations.
 - 11. A system of stations having a communication channel for performing the method as claimed in one of the Claims 1 to 7, inclusive, the content of the data packets being binary encoded and the
- 15 communication channel being realised by a conductor of electromagnetic activity

characterized

in that one of the two values of the binary code is represented by the absence of electromagnetic activity.

F16.2

FIG.4

EUROPEAN SEARCH REPORT

ΕP 85 20 1157

	DOCUMENTS CONS					
Category		h indication, where appropriate, ant passages		evant claim	CLASSIFICATION (
Y	ELECTRONIC DESIG 11, 31st May 198 Waseca, MN, Denv US; M. BEEDIE: " carries speech a offices, factori * Whole document	4, page 90 E, ille, New York, Bus network nd data for es"	1		H 04 L H 04 M	
A	Idem		4,	5,8		
Y		es 38-57; page 2, page 3, lines	1			
A	,		2,	6,8	TECHNICAL	FIFI DS
		2, no. 11, April -4812, New York, Carrier sense access system"	1,	2,5	H O4 L H O4 M	
A	GB-A-2 126 850 * Page 1, lin	- (SHARP) es 54-59; figures /-	11	3,8,		
	The present search report has b	een drawn up for all claims				
	Place of search THE HAGUE Date of completion of the search 01-11-1985				Examiner LSEN C.	
A: ted O: no	CATEGORY OF CITED DOCU articularly relevant if taken alone articularly relevant if combined w ocument of the same category chnological background on-written disclosure termediate document	after the distribution of	e filing da ent cited i ent cited f	te n the ap or other	lying the invention but published on plication reasons and family, corresp	

EUROPEAN SEARCH REPORT

Application number

EP 85 20 1157

	DOCUMENTS CON	(T	Page 2			
Category	Citation of document w of rek	vith indication, where evant passages	appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)	
A	EP-A-O 100 594 * Page 7, line 17 *	(PLESSEY) 10 - page	13, line	1,11		
A	COMMUNICATIONS Of 19, no. 7, July 395-404, US; R.M al.: "Ethernet: packet switching computer network Paragraphs 34.4 *	1976, pag M. METCALF distribut g for loca ks"	es E et ed l	1,3,8,		
A	WO-A-8 303 936 * Page 1, line 1 *			1,7		
A	ELECTRONICS INTE 55, no. 18, 8th pages 158-163, N J.A. MURPHY: "To protocol boosts local networks" * Page 162, 1 lines 5-16 *	September New York, oken-passi throughpu	1982, US; ng t in	1,7	TECHNICAL FIELDS SEARCHED (Int. Ci.4)	
			-/-			
				Λ.		
	The present search report has b	been drawn up for all	claims	1		
	Place of search THE HAGUE	Date of compl 01-1	etion of the search 1-1985	MIKKEI	Examiner SEN C.	
Y: part doc A: tech O: non	CATEGORY OF CITED DOCL ticularly relevant if taken alone ticularly relevant if combined w ument of the same category nnological background -written disclosure rmediate document		E : earlier pate after the fill D : document L : document	ent document, b ling date cited in the app cited for other r f the same paten	ring the invention out published on, or lication easons at family, corresponding	

EUROPEAN SEARCH REPORT

EP 85 20 1157

DOCUMENTS CONSIDERED TO BE RELEVANT					Page 3
Category	Citation of document wi of rele	th indication, where app vant passages	ropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
A	LINKS FOR THE FU Systems & Servic Communications, 1984, pages 141- York, US, Elsevi Publishers B.V., JP. BEHR et al concept of a PAB voice and data" * Paragraph 3.1;	es for vol. 1, May 144, IEEE, er Science Amsterdam, .: "System X integrati	New NL; ng	1,7-9,	
				-	TECHNICAL FIELDS SEARCHED (Int. Cl.4)
	The present search report has	hoon drawn un for all cie	ime		
	Place of search	Date of completi	on of the search		Examiner
			after the fili D: document of L: document of	inciple under nt document, ng date sited in the ap sited for other	ISEN C. lying the invention but published on, or plication reasons ent family, corresponding