QCD material parameters at non-zero chemical potential from the lattice

D. A. Clarke for the HotQCD collaboration

University of Utah

Quark Matter 2023, 6 Sep 2023

Motivation and strategy

Useful and interesting to have EoS at $\mu_B > 0$. But we only have direct access to $\mu_B = 0$ on the lattice. Commonly played game:

- 1. Write p/T^4 as Taylor expansion in μ_i/T
- 2. Derive all other observables from P/T^4 using **thermodynamics**
- 3. Measure Taylor coefficients on lattice
- 4. Compare against **HRG** at low T
- 5. Compare against ideal gas or perturbation theory at large T

¹See e.g. Borsányi Tue 14:50; Pásztor plenary.

Lattice approach

For convenience, $\hat{X} \equiv XT^{-k}$ with k s.t. \hat{X} dimensionless (e.g. $\hat{\mu} = \mu/T$)

Dealing with 3 chemical potentials $\hat{\mu}_B$, $\hat{\mu}_Q$, $\hat{\mu}_S$

To make contact with T- $\hat{\mu}_B$ plane, need to eliminate 2 independent variables

Can impose external constraint, e.g.

- 1. $\hat{\mu}_Q = \hat{\mu}_S = 0$
- 2. $n_S = 0$, $n_Q/n_B = 0.4$ (RHIC-like)
- 3. $n_S=0$, $n_Q/n_B=0.5$ (isospin-symmetric; yields $\hat{\mu}_Q=0$)

and think of expansions in $\hat{\mu}_B$ only:

$$\hat{p} = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \hat{\mu}_B^i \hat{\mu}_Q^j \hat{\mu}_S^k \qquad \rightarrow \qquad \hat{p} = \sum_{k \text{ even}} \frac{P_k(T)}{k!} \hat{\mu}_B^k$$

Hadron resonance gas (HRG): the basics

Non-interacting, quantum, relativistic gas eventually gives (single species)

$$p = \frac{m^2 g T^2}{2\pi^2} \sum_{k=1}^{\infty} \frac{\eta^{k+1} z^k}{k^2} K_2\left(\frac{mk}{T}\right), \qquad z \equiv e^{\hat{\mu}_B B + \hat{\mu}_Q Q + \hat{\mu}_S S},$$

with K_2 modified Bessel function 2^{nd} kind. HRG:

- Assume such gas where hadrons and resonances only d.o.f.
- ▶ Hence valid up to $\sim T_{
 m pc}$
- ▶ Sum over all such states, each with g_i , m_i , etc.
- $ightharpoonup K_2$ exponentially suppressed, so can keep few terms

Some context and lattice setup

Related studies from the past, for instance $\hat{\mu}_B = 0^{2,3}$ and $\hat{\mu}_B > 0^{4,5}$.

This study:

- ▶ **High statistics** with $\lesssim 1.5$ M configurations per ensemble.
- ▶ Continuum extrapolated for $\mathcal{O}(\hat{\mu}_B^2)$ and $\mathcal{O}(\hat{\mu}_B^4)$ coefficients.
- ▶ Taylor series up to 8^{th} order; converges well at least for $\hat{\mu}_B < 1.5^{6,7}$.
- ► Use these coefficients to construct EoS⁸.

²A. Bazavov et al., Phys. Rev. D, 90, 094503 (2014).

³S. Borsányi et al., Physics Letters B, 730, 99–104 (2014).

⁴A. Bazavov et al., Phys. Rev. D, 95.5, 054504 (2017).

⁵S. Borsanyi et al., J. High Energ. Phys. 2018.10, 205 (2018).

⁶D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

⁷Strictly speaking, convergence radius depends on temperature.

⁸D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).

Results: HotQCD pressure coefficients⁹

⁹D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).

Results: Lines of constant physics $n_S = 0$, $n_Q/n_S = 0.5$

Results from $\mathcal{O}(\hat{\mu}_B^6)$ pressure series, high reliability. Good agreement between lattice and HRG below $T_{\rm pc}$. Approaches $\mathcal{O}(g^2)$ perturbation theory at high T.

¹⁰D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).

Material parameter: Speed of sound

$$c_T^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_T$$

$$c_s^2 = \left(\frac{\partial p}{\partial \epsilon}\right)_{s/n_B} = \left(\frac{\partial p/\partial T}{\partial \epsilon/\partial T}\right)_{s/n_B}$$

"Trick" on RHS to get c_s^2 ; now take more direct approach.

Can use c_s^2 to learn about QCD phase diagram:

- ► Related to cooling/expansion rate
- ightharpoonup Can be related to bulk viscosity at high T^{11}
- ► Minimum/ "softest point" may indicate long-lived fireball¹²

 c_T^2 in principle¹³ accessible in HIC.

¹¹P. B. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D, 74, 085021 (2006).

¹²C. M. Hung and E. V. Shuryak, Phys. Rev. Lett. 75, 4003–4006 (1995).

¹³A. Sorensen et al., Phys. Rev. Lett. 127.4, 042303 (2021).

Results: HRG c_X^2 for $n_S=0,~\hat{\mu}_Q=0$

Bump in c_s^2 related to interplay of mesons and baryons; c_T^2 determined by baryons so no bump.

D. A. Clarke QCD material parameters 6 Sep 2023

9 / 13

Results: Lattice¹⁴ c_s^2 for $n_S = 0$, $\hat{\mu}_Q = 0$

¹⁴D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).

Results: "Direct" Lattice c_X^2 for $n_S=0, \hat{\mu}_Q=0$

Dip in c_s^2 in vicinity of $T_{\rm pc}$. Dependence of c_s^2 on s/n_B is at most mild.

11 / 13

Material parameter: Adiabatic compressibility for $n_S=0, \, \hat{\mu}_Q=0$

Formally fulfills $\kappa_s = 1/c_s^2 (\epsilon + p - \mu_Q n_Q - \mu_S n_S)$.

D. A. Clarke QCD material parameters 6 Sep 2023 12 / 13

Conclusions

- ► Have QCD EoS at finite $\hat{\mu}_B$ for $n_S = \hat{\mu}_Q = 0$ systems; lowest orders continuum-extrapolated.
- ightharpoonup Dip in c_s^2 can be attributed to mesonic contribution in HRG.
- ▶ Dependence of these observables on $\hat{\mu}_B$ seems to be mild.
- ▶ Should be able to get α , C_V , and C_p .

Thanks for your attention.