第四节 向量空间

- ●向量空间的定义
- ●向量空间的基与维数

●向量的坐标

行列式运算

矩阵运算

向量组运算

一、向量空间的定义

定义 1 设 V为 n 维向量的集合,如果集合 V 非空,且集合 V 对于加法及数乘两种运算封闭,那么就称集合 V 为向量空间.

所谓**封闭**,是指在集合 V 中可以进行加法及数乘两种运算.具体地说, 若 $a \in V$, $b \in V$,则 $a + b \in V$; 若 $a \in V$, $\lambda \in \mathbb{R}$,则 $\lambda a \in V$.

例 1 3 维向量的全体 R^3 , 就是一个向量空间.

类似地,n 维向量的全体所构成的集合 R^n 是一个向量空间.

例 2 齐次线性方程组的解集

$$S = \{ x \mid Ax = 0 \}$$

是一个向量空间(称为齐次线性方程组的解空间).

例 3 非齐次线性方程组的解集

$$T = \{ x \mid Ax = b \}$$

不是向量空间.

二、向量空间的基与维数

定义2 设有向量空间 V_1 及 V_2 ,若 $V_1 \subset V_2$, 就称 V_1 是 V_2 的子空间.

例如任何由 n 维向量所组成的向量空间 V,总有 $V \subset \mathbb{R}^n$,所以这样的向量空间总是 \mathbb{R}^n 的子空间.

行列式运算

矩阵运算

向量组运算

定义 3 设 V 为向量空间, 如果 r 个向量 α_1 , α_2 , \cdots , $\alpha_r \in V$, 且满足

- (i) $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关;
- (ii) V中任一向量都可由 α₁, α₂, ···, α_r 线性表示.

那么,向量组 α_1 , α_2 ,…, α_r 就称为向量空间 V的一个基,r 称为向量空间 V的维数,并称 V为 r 维向量空间.

如果向量空间 V没有基,那么 V 的维数为 0. 0 维向量空间只含一个零向量 0.

若把向量空间 V 看做向量组,则由最大无关组的等价定义 可知, V 的基就是向量组的最大线性无关组, V 的维数就是向量组的秩.

例如,由例 8 知,任何 n 个线性无关的 n 维向量都可以是向量空间 R^n 的一个基,且由此可知 R^n 的维数为 n. 所以我们把 R^n 称为 n 维向量空间.

行列式运算

矩阵运算

向量组运算

三、向量的坐标

定义 4 如果在向量空间 V 中取定一个基 α_1 , α_2 , \cdots , α_r , 那么 V 中任一向量 β 可唯一地表 示为

$$\beta = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_r \alpha_r,$$

数组 λ_1 , λ_2 , …, λ_r 称为向量 β 在基 α_1 , α_2 , …, α_r 中的坐标.

例 5 设

$$A = (a_1, a_2, a_3) = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}, B = (b_1, b_2) = \begin{pmatrix} 1 & 4 \\ 0 & 3 \\ -4 & 2 \end{pmatrix},$$

验证 a_1 , a_2 , a_3 是 \mathbb{R}^3 的一个基, 并求 b_1 , b_2 在这个基中的坐标.

← → △

例 6 在 R³ 中取定一个基 a_1 , a_2 , a_3 , 再取一个新基 b_1 , b_2 , b_3 , 设 $A = (a_1, a_2, a_3)$, $B = (b_1, b_2, b_3)$. 求用 a_1 , a_2 , a_3 表示 b_1 , b_2 , b_3 的表示式(基变换公式), 并求向量在两个基中的坐标之间的关系式(坐标变换公式).

行列式运算

矩阵运算

向量组运算

- **例** 7设 $\alpha_1, \alpha_2, \alpha_3$ 与 $\beta_1, \beta_2, \beta_3$ 是R³的两个基,
 - (1) 已知从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 3 & 1 \end{pmatrix},$$

且向量 γ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标为 $(1,3,1)^T$,求 γ 在基 β_1,β_2,β_3 下的坐标;

(2) 令向量组 $\eta_1 = 2\alpha_1 + \alpha_2 + \alpha_3$, $\eta_2 = \alpha_1 + 2\alpha_2 - \alpha_3$, $\eta_3 = \alpha_1 - \alpha_2$,判断 η_1, η_2, η_3 是否为 R^3 的一个基,并说明理由.

四. 小结

- (1) 会证明向量空间的基.
- (2) 会求向量在给定基下的坐标.
- (3) 熟练掌握基变换公式与坐标变换公式.

五、作业

书 习题四 P111

20, 23, 24