Introduction to Software Testing (2nd edition)

Chapter 8

Logic Coverage

Instructor: Morteza Zakeri

Slides by: Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/

Modified by: Morteza Zakeri

March 2024

Ch. 8: Logic Coverage

Semantic Logic Criteria (8.1)

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and state charts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, !=
 - boolean function calls
- Internal structure is created by logical operators
 - ¬: the *negation* operator
 - \blacksquare \land : the *and* operator
 - \vee : the *or* operator
 - \blacksquare \rightarrow : the *implication* operator
 - \blacksquare \oplus : the exclusive or operator
 - \blacksquare \leftrightarrow : the equivalence operator
- · A clause is a predicate with no logical operators

Example and Facts

- Predicate (a<b) \vee f(z) \wedge D \wedge (m>=n*0) has four clauses:
 - I. (a < b) relational expression
 - f (z) boolean-valued function
 - 3. D boolean variable
 - $(m \ge n*o)$ relational expression
- Most predicates have few clauses (Pareto principle)
 - 88.5% have I clause
 - 9.5% have 2 clauses
 - 1.35% have 3 clauses
 - Only 0.65% have 4 or more!
- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal
 - SQL queries

from a study of 63 open source programs, > 400,000 predicates

Translating from English

- "I am interested in SWE 637 and CS 652"
- course = swe637 OR course = cs652

Humans have trouble translating from English to logic

- "If you leave before 6:30 AM, take Braddock to 495, if you leave after 7:00 AM, take Prosperity to 50, then 50 to 495"
- (time < 6:30 \rightarrow path = Braddock) \land (time > 7:00 \rightarrow path = Prosperity)
- Hmm ... this is incomplete!
- (time < 6:30 \rightarrow path = Braddock) \land (time \geq = 6:30 \rightarrow path = Prosperity)

Logic Coverage Criteria (8.1.1)

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses

Abbreviations:

- P is the set of predicates
- -p is a single predicate in P
- C is the set of clauses in P
- $-C_p$ is the set of clauses in predicate p
- c is a single clause in C

Predicate and Clause Coverage

 The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.

- When predicates come from conditions on edges, this is equivalent to edge coverage
- PC does not evaluate all the clauses, so ...

Clause Coverage (CC): For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

Predicate Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$

predicate coverage

Predicate = true a = 5, b = 10, D = true, m = 1, n = 1, o = 1 $= (5 < 10) \lor true \land (1 >= 1*1)$ $= true \lor true \land TRUE$ = true

```
Predicate = false
a = 10, b = 5, D = false, m = 1, n = 1, o = 1
= (10 < 5) \lor false \land (1 >= 1*1)
= false \lor false \land TRUE
= false
```

Clause Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$

Clause coverage

Problems with PC and CC

 PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation

- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false
 - This is definitely not what we want!

• The simplest solution is to test all combinations ...

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each p in P, TR has test requirements for the clauses in Cp to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	((a < b) ∨ D) ∧ (m >= n*o)
I	Т	Т	Т	Т
2	Т	Т	F	F
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	Т
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the details right is hard
- What exactly does "independently" mean?
- The book presents this idea as "making clauses active" ...

Active Clauses (8.1.2)

- Clause coverage has a weakness: The values do not always make a difference
- Consider the first test for clause coverage, which caused each clause to be true:

$$-(5 < 10) \lor \text{true} \land (1 >= 1*1)$$

- Only the first clause counts!
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

A clause C_i in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses C_j are such that changing C_i changes the value of p

This is considered to make the clause active

Determining Predicates

$P = A \vee B$

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

$P = A \wedge B$

if B = false, p is always false.

so if B = true, A determines p.

if A = true, B determines p.

- Goal: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in a family of criteria that have subtle, but very important, differences

Active Clause Coverage

Active Clause Coverage (ACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false.

- This is a form of MCDC, which is required by the FAA for safety critical software
- Ambiguity: Do the minor clauses have to have the same values when the major clause is true and false?

Resolving the Ambiguity

```
p = a \lor (b \land c)

Major clause: a

a = \text{true}, b = \text{false}, c = \text{true}

a = \text{false}, b = \text{false}, c = \text{false}
```

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria:
 - Minor clauses do not need to be the same
 - Minor clauses do need to be the same
 - Minor clauses force the predicate to become both true and false

General Active Clause Coverage

General Active Clause Coverage (GACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that ci determines p. TR has two requirements for each ci: c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_i OR $c_i(c_i = true) != c_i(c_i = false)$ for all c_i .

- This is complicated!
- It is possible to satisfy GACC without satisfying predicate coverage.
- We really want to cause predicates to be both true and false.

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_i(c_i = false)$ for all c_i .

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_j must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) != p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage

CACC and **RACC**

P_a:b=true or c = true

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of *nine* pairs

RACC can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs

Inactive Clause Coverage (8.1.3)

- The active clause coverage criteria ensure that "major" clauses do affect the predicates
- Inactive clause coverage takes the opposite approach major clauses do not affect the predicates

Inactive Clause Coverage (ICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i does not determine p. TR has four requirements for each c_i : (1) c_i evaluates to true with p true, (2) c_i evaluates to false with p true, (3) c_i evaluates to true with p false, and (4) c_i evaluates to false with p false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - ci does not determine p, so cannot correlate with p
- · Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i does not determine p. The values chosen for the minor clauses c_j do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) != c_j(c_i = false)$ for all c_j .

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , j != i, so that c_i does not determine p. The values chosen for the minor clauses c_j must be the same when c_i is true as when c_i is false, that is, it is required that $c_j(c_i = true) = c_i(c_i = false)$ for all c_i .

Infeasibility & Subsumption (8.1.4)

Consider the predicate:

$$(a > b \land b > c) \lor c > a$$

- (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable
- Software testing is inexact engineering, not science

Logic Criteria Subsumption

Making Clauses Determine a Predicate

- Finding values for minor clauses c_j is easy for simple predicates. (8.1.5)
- But how to find values for more complicated predicates?
- Definitional approach:
 - $-p_{c=true}$ is predicate p with every occurrence of c replaced by true
 - $-p_{c=false}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

• After solving, p_c describes exactly the values needed for c to determine p

Examples

```
p = a \lor b
P_a = P_{a=true} \oplus P_{a=false}
= (true \lor b) XOR (false \lor b)
= true XOR b
= \neg b
```

```
p = a \wedge b
P_a = P_{a=true} \oplus P_{a=false}
= (true \wedge b) \oplus (false \wedge b)
= b \oplus false
= b
```

```
p = a \lor (b \land c)
P_{a} = P_{a=true} \oplus P_{a=false}
= (true \lor (b \land c)) \oplus (false \lor (b \land c))
= true \oplus (b \land c)
= \neg (b \land c)
= \neg b \lor \neg c
```

- "NOT b \times NOT c" means either b or c can be false
- RACC requires the same choice for both values of a, CACC does not

XOR Identity Rules

Exclusive-OR (xor, \oplus) means both cannot be true That is, A xor B means "A or B is true, but not both"

$$p = A \oplus A \wedge b$$
 $p = A \oplus A \vee b$ $= \neg A \wedge b$

$$P = A \oplus A \vee b$$
$$= \neg A \wedge b$$

with fewer symbols ...

Repeated Variables

• The definitions in this chapter yield the same tests no matter how the predicate is expressed

•
$$(a \lor b) \land (c \lor b) == (a \land c) \lor b$$

- $(a \wedge b) \vee (b \wedge c) \vee (a \wedge c)$
 - Only has 8 possible tests, not 64

• Use the simplest form of the predicate, and ignore contradictory truth table assignments

A More Subtle Example

```
p = (a \land b) \lor (a \land \neg b)
p_a = p_{a=true} \oplus p_{a=false}
= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b))
= (b \lor \neg b) \oplus false
= true \oplus false
= true
```

```
p = (a \land b) \lor (a \land \neg b)
p_b = p_{b=true} \oplus p_{b=false}
= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))
= (a \lor false) \oplus (false \lor a)
= a \oplus a
= false
```

- a always determines the value of this predicate.
- **b** never determines the value -b is irrelevant!

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

	a	b	С	a ∧ (b ∨ c)	p _a	P _b	p _c
1	Т	Т	Т	Т			
2	Т	Т	F	Т			
3	Т	F	Т	Т			
4	Т	F	F	F			
5	F	Т	Т	F			
6	F	Т	F	F			
7	F	F	Т	F			
8	F	F	F	F			

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

b & c are the same, a differs, and p differs ... thus TTT and FTT cause a to determine the value of p

	a	b	С	a ∧ (b ∨ c)	p _a	P _b	p _c
	Т	Т	Т	Т	\rightarrow		
2	Т	Т	F	Т			
3	Т	F	Т	Т			
4	Т	F	F	F			
5	F	Т	Т	F	\(\)		
6	F	Т	F	F			
7	F	F	Т	F			
8	F	F	F	F			

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

Again, b & c are the same, so TTF and FTF cause a to determine the value of p

	a	b	С	a ∧ (b ∨ c)	p _a	P _b	p _c
I	Т	Т	Т	Т			
2	Т	Т	F	Т	0		
3	Т	F	Т	Т			
4	Т	F	F	F			
5	F	Т	Т	F			
6	F	Т	F	F	\Q		
7	F	F	Т	F			
8	F	F	F	F			

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

	b & A	Finally, this third pair, TFT and FFT, also cause a to determine the value of p
ı	diffe a	also cause a to determine the value
	to d	of p

	a	b	С	a ∧ (b ∨ c)	p _a	P _b	p _c
1	Н	Т	Т	Т			
2	Т	Т	F	Т			
3	Т	F	Т	Т	\Diamond		
4	Т	F	F	F			
5	F	Т	Т	F			
6	F	Т	F	F			
7	F	F	Т	F	\Q		
8	F	F	F	F			

The math sometimes gets complicated

A truth table can sometimes be simpler

Example

	a	b	C	a ∧ (b ∨ c)	p _a	P _b	P _c
I	Т	Т	Т				
2	Т	Т	F	Т		0	
3	Т	F	Т	Т			
4	Т	F	F	F		0	
5	F	Т	Т	F			
6	F	Т	F	F			
7	F	F	Т	F			
8	F	F	F	F			

The math sometimes gets complicated

A truth table can sometimes be simpler

Example

	a	b	U	a ∧ (b ∨ c)	p _a	P _b	p _c
I	Т	Т	Т				
2	Т	Т	F	Т			
3	Т	F	Т	Т			\Diamond
4	Т	F	F	F			0
5	F	Т	Т	F			
6	F	Т	F	F			
7	F	F	Т	F			
8	F	F	F	F			

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

	a	b	C	a ∧ (b ∨ c)	p _a	P _b	p _c
I	Т	Т	Т	Т	\oightarrow		
2	Т	Т	F	Т	0	\Diamond	
3	Т	F	Т	Т	\Q		\ODE
4	Т	F	F	F		O	O
5	F	Т	Т	F	\(\)		
6	F	Т	F	F	\ODE		
7	F	F	Т	F	\Q		
8	F	F	F	F			

In sum, three separate pairs of rows can cause *a* to determine the value of *p*, and only one pair each for *b* and c

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses.
 - In fact, most predicates only have one clause!
 - With only clause, **PC** is enough
 - With 2 or 3 clauses, **CoC** is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses
- Control software such as Proportional—integral—derivative controller (PID), often has many complicated predicates, with lots of clauses.