Derivaatta

funktion raja-arvo

Oletetaan, että funktio f on määritelty kohdan a läheisyydessä kohdan a molemmilla puolilla. Funktiolla f on kohdassa a raja-arvo b, jos muuttujan arvojen lähestyessä lukua a kummalta puolen tahansa funktion arvot lähestyvät lukua b.

Jos funktiolla f on kohdassa a raja-arvo b, niin merkitään $\lim_{x\to a} f(x) = b$

Voidaan myös merkitä $f(x) \rightarrow b$, kun $x \rightarrow a$.

Funktion jatkuvuus

Olkoon a jokin luku funktion f määrittelyjoukossa. Funktio f on jatkuva kohdassa a, jos

$$\lim f(x) = f(a).$$

(Jatkuvuuden ehdot: funktio määritelty kohdassa a, funktiolla raja-arvo kohdassa a, ja funktion raja-arvo ja funktion arvo ovat samoja kohdassa a.)

Polynomifunktio on kaikkialla jatkuva.

Rationaalifunktio on jatkuva koko määrittelyjoukossaan.

Jos funktio f on polynomi- tai rationaalifunktio, joka on määritelty kohdassa a, niin funktion raja-arvo kohdassa a on sama kuin funktion arvo kohdassa a eli

$$\lim_{x \to a} f(x) = f(a)$$

43. Määritä funktion f(x)=2x+5 raja-arvo kohdassa 2. Onko funktio jatkuva? Mikä on funktion määrittelyjoukko? Funktio on määritelty kohdassa 2, joten

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} 2x + 5 =$$

Taulukko.

Funktion arvot lähestyvät kohtaa 2 alapuolelta.

X	f(x)
1,5	
1,9	
1,99	
1,999	

Taulukko.

Funktion arvot lähestyvät kohtaa 2 yläpuolelta.

X	f(x)
2,5	
2,1	
2,01	
2,001	

44. Määritä funktion $f(x) = \frac{x^2 - 4}{x - 2}$ raja-arvo kohdassa 2. Onko funktio jatkuva?

Funktiota f(x) ei ole määritelty kohdassa 2, joten lause pyritään supistamaan muotoon, joka on määritelty kohdassa 2.

$$\frac{x^2-4}{x-2}=$$

Tällöin
$$\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{x^2-4}{x-2} =$$

Taulukko.

X	f(x)
1,5	
1,9	
1,99	
1,999	

Taulukko.

Х	f(x)
2,5	
2,1	
2,01	
2,001	

45. Määritä funktion $f(x) = \frac{3x}{x-2}$ raja-arvo kohdassa 2. Piirrä kuvaaja (Desmos).

Funktiota f(x) ei ole määritelty kohdassa 2. Funktion lauseke ei myöskään supistu.

Taulukko

Taulukko	
X	f(x)
1,5	
1,9	
1,99	
1,999	

Taulukko

raurukko	
X	f(x)
2,5	
2,1	
2,01	
2,001	

Funktiolla f ei ole raja-arvoa kohdassa 2.

Rationaalifunktiolla on raja-arvo kohdassa a silloin kun nimittäjän arvo on 0: Jos osoittajana olevan polynomin arvo kohdassa a on eri suuri kuin 0, niin funktiolla ei ole raja-arvoa. Funktiolla $r(x) = \frac{p(x)}{s(x)}$ on raja-arvo kohdassa a, jos p(a) = 0 ja s(a) = 0.

Trigonometriset funktiot

46. Mikä on funktioiden sin x ja cos x määrittelyjoukko? (Desmos) Mikä on funktioiden sin x ja cos x arvojoukko? Sin x ja cos x funktiot ovat kaikkialla jatkuvia.

47. Mikä on funktion tan x määrittelyjoukko?

Tan x on jatkuva koko määrittelyjoukossaan.

Jatkuvuus ja funktion kuvaaja

Jos funktio on jatkuva jollakin lukusuoran välillä, niin funktion kuvaaja tällä välillä on katkeamaton käyrä.

Kuva. Paloittain määritelty funktio. Funktiolla on raja-arvo kohdassa 1. Funktio ei ole jatkuva.

$$f(x) = \begin{cases} x^2 - 2x + 2, x \neq 1 \\ 0, x = 1 \end{cases}$$

Jatkuvan funktion arvot

Jos funktio on määritelty ja jatkuva välillä [a, b], niin se saa välillä]a, b[ainakin kerran jokaisen arvon, joka on päätepistearvojen f(a) ja f(b) välissä.

Jatkuvan funktion nollakohdat

Jos funktio f on määritely ja jatkuva välillä [a, b] ja jos funktion f arvot f(a) ja f(b) ovat erimerkkiset, niin funktiolla on ainakin yksi nollakohta välillä]a, b[.

48. Osoita, että funktiolla x^3-5x^2+11 on nollakohta välillä]4, 5[. (Funktiolla on kolme nollakohtaa.) Laske funktion arvot f(-2), f(0) ja f(2).

Funktion kasvunopeus

Kuva. Funktio $f(x)=-x^2+7x-6$

Funktion käyrästä saadaan selville kasvunopeus piirtämällä kasvukäyrää sivuava suora l. tangentti. Kasvunopeuden ilmaisee tangentin kulmakerroin:

y: n muutos

 $\overline{x:n\ muutos}$

Kuvaajan tangentin kulmakerrointa voidaan käyttää funktion arvojen kasvunopeuden mittana.

Funktion derivaatta

Jos funktion f kuvaajalle voidaan piirtää yksikäsitteisesti tangentti muuttujan arvon a kohdalle ja jos tangentti ei ole pystysuora, niin funktio on derivoituva kohdassa a.

Tangentin kulmakerroin on funktion derivaatta kohdassa a ja merkitään f'(a).

49. Päättele funktion $f(x)=-x^2+9$ derivaatat kohdassa -2 ja 1.

Jos funktiolle voidaan piirtää yksikäsitteinen tangentti kaikkialle → tällöin funktio on derivoituva kaikkialla.

50. Päättele funktion f(x)=2x+1 derivaatta kohdassa 0.

Jos funktio on derivoituva kohdassa a, niin funktio on jatkuva kohdassa a.

Huom! Kaikki jatkuvat funktiot eivät ole derivoituvia, esim. |x| ei ole derivoituva kohdassa 0, koska toispuoleiset derivaatat eivät ole samat.

Derivaatan määritelmä

Jos funktion f erotusosamäärällä kohdassa a on raja-arvo kohdassa a, niin funktio f on derivoituva kohdassa a. Raja-arvoa kutsutaan funktion f derivaataksi kohdassa a ja merkitään f'(a).

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Erotusosamäärä

Suora leikkaa funktion f kuvaajan muuttujan arvojen a ja x kohdalla pisteissä (a, f(a)) ja (x, f(x)). Suoran kulmakerroin l. erotusosamäärä on

$$\underline{f(x)-f(a)}$$

Kun leikkauskohta x lähestyy kohtaa a, leikkaava suora kiertyy kuvaajan tangentiksi pisteeseen (a, f(a)). Leikkaavan suoran kulmakerroin on funktion f derivaatta kohdassa a.

51. Määritä funktion $f(x)=x^2$ derivaatta f'(2), f'(0) ja f'(1). Tehtävän ratkaisu vaiheittain:

- Määrittele ensin funktion erotusosamäärä kohdassa 2.
 Määrittele seuraavaksi erotusosamäärän raja-arvo kohdassa 2 eli f'(2).
 (Erotusosamäärän raja-arvon hyödyntäminen yksittäiselle kohdalle.)
- Määrittele ensin funktion erotusosamäärä kohdassa a.
 Määrittele seuraavaksi erotusosamäärän raja-arvo kohdassa a.
 (Yleinen ratkaisu)
- c. Ratkaise f'(0) ja f'(1). (Hyödynnä kohtaa b.)
- 52. Määritä f'(1), kun $f(x)=-2x^2+x+2$.

Derivoituvuus ja jatkuvuus.

Kuvat.

- 53. Funktio f(x)=|x|.
 - Osoita, että funktio f(x)=|x| on jatkuva laskemalla funktion raja-arvot kohdassa 0. a. (Laske funktion toispuoleiset raja-arvot kohdassa 0. Laske funktion arvo kohdassa 0.)
 - Osoita, että funktio f(x)=|x| ei ole derivoituva kohdassa 0. (Laske funktion toispuoleiset derivaatat erotusosamäärän raja-arvona kohdassa 0.)

Derivaattafunktio f

Funktio f' on funktion f derivaatta funktio. Derivaattafunktion arvo on funktion f derivaatta jokaisessa kohdassa, jossa funktio on derivoituva. Derivointi = derivaattafunktion määrittäminen

Merkintätapoja.

Funktion f derivaatta:

f

Df

 $\frac{df}{dx} = \frac{d}{dx}$ (korostetaan, minkä

muuttujan suhteen derivoidaan)

Derivointisääntöjä

D k=0, jos k on vakio

Dx = 1

 $D x^n = nx^{n-1}$

Vakiolla kerrotun funktion derivaatta D kf(x) = k f'(x), k vakio

Summan derivaatta D (f(x) + g(x)) = f'(x) + g'(x)

Tulon derivaatta D $(f(x) \cdot g(x)) = f'(x) \cdot g(x) + g'(x) \cdot f(x)$

Osamäärän derivaatta $D \frac{f(x)}{g(x)} = \frac{f(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$

Funktion potenssin derivaatta D $(f(x))^r = r \cdot f(x)^{r-1} \cdot f'(x)$

Yhdistetyn funktion derivaatta D (g o f(x)) = D (g(f(x))) = g'(f(x)) · f'(x)

- 54. Derivoi funktio $f(x) = x^3$
- 55. Derivoi funktio 2x²+4x-5
- 56. Derivoi funktio $\frac{1}{2}x^4 5x^2$
- 57. Derivoi funktio $f(x)=x^2$. Laske f'(2), f'(0) ja f'(1). (Vrt. Aiempi tehtävä)
- 58. Derivoi funktio $f(x)=-2x^2+x+2$. Laske f'(1). (Vrt- aiempi tehtävä.)
- 59. Merkintätapoja:
 - a. Funktio f(x) = x + 2t, kun t on vakio.
 - b. Derivoi f(t)=x+2t, kun x on vakio.

 - c. $\frac{d}{dx}(x+2t)$
d. $\frac{d}{dt}(x+2t)$
- 60. Derivoi (Derivoimiskaavat Tekniikan kaavastossa!)

f.
$$(4x-3)(9-x^2)$$

g.
$$\sqrt{x}(2-x)$$

$$\frac{3x}{1}$$

h.
$$\frac{3x+3}{1-x}$$

i.
$$(9-2x^3)^3$$

j.
$$\sqrt{3x}$$

k.
$$\sqrt[3]{x}$$

q.
$$\frac{1}{2}$$
 cos 6x

r.
$$2x + \sin 2x$$

S.
$$\frac{1}{\sin^2 x}$$
.

w.
$$\ln(2x+2)$$

- 61. Laske f'(2), kun $f(x) = (9 2x)^3$.
- 62. Laske $f'(\frac{\pi}{4})$, kun $f(x) = \cos 2x \sin^2 x$.

DERIVOIMISSÄÄNTÖJÄ

DIFFERENTIAALILASKENTA

Vakion derivaatta	Dk = 0, k	vakio	8
Vakiolla kerrotun	funktion derivaatta $D[kf(x)] =$	kf'(x)	1
Summan derivaat	ta $D[f(x)+g$	f'(x)] = f'(x) + g'(x)	3.5
Tulon derivaatta	$D[f(x)\cdot g($	$[x] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$	1
Funktion potenssis	n derivaatta $D[f(x)]^r =$	$r \cdot [f(x)]^{r-1} \cdot f'(x)$	4
Osamäärän deriva	D $\frac{f(x)}{g(x)} = \frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$	6
Yhdistetyn funktio	on derivaatta $D[g \circ f(x)]$	$= Dg[f(x)] = g'[f(x)] \cdot f'(x)$	7
Käänteisfunktion o	derivaatta $Df(x) = \frac{1}{Df}$ tai $\frac{d f(x)}{dx} = \frac{dy}{dx}$	38.2	8
DERIVOIMISKA	AVOJA		
Funktio f(x)	Derivaattafunktio $f'(x)$	Huom!	
x ^r	rx ^{r-1}	$x \in \mathbb{R}_+ \land r \in \mathbb{R}$	9
1	$-rx^{-r-1} = -\frac{r}{v^{r+1}}$	$x \in \mathbb{R}_+ \land r \in \mathbb{R}$	10
$\frac{1}{x^r} = x^{-r}$	x'+1	7 C 117 / C 11	
	$\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$	$x \in \mathbb{R}_+$	11
$\frac{1}{x^r} = x^{-r}$ $\sqrt{x} = x^{\frac{1}{2}}$ $\sqrt{x} = x^{\frac{1}{2}}$			11

DIFFERENTIAALILASKENTA

Funktio f(x)	Derivaattafunktio $f'(x)$	Huom!	
e ^x	e ^x		
e ^{ax}	a e ^{ax}		
$k^x = e^{x \ln k}$	$k^x \ln k$	k > 0	
ln x	1/x	x > 0	
$\log_k x$	_1	x > 0	
$\ln f(x)$	$\frac{x \ln k}{f'(x)/f(x)}$		
sin x	cosx		
$\sin(ax+b)$	$a \cdot \cos(ax + b)$		
cosx	$-\sin x$		
tan x	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$x \neq \frac{\pi}{2} + n\pi$	
cotx	$\frac{-1}{\sin^2 x} = -1 - \cot^2 x$	$x \neq n\pi$	
arcsin x	$\frac{1}{\sqrt{1-x^2}}$	x <1	
arccos x	$\frac{-1}{\sqrt{1-x^2}}$ $\frac{1}{1+x^2}$	x <1	
arctan x	$\frac{1}{1+x^2}$		
arccot x	$\frac{-1}{1+x^2}$		
inh x	cosh x		
osh x	sinh x		
anh x	$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$		
oth x	$\frac{-1}{\sinh^2 x} = 1 - \coth^2 x$	$x \neq 0$	
rsinh x	$\frac{1}{\sqrt{x^2+1}}$		2
rcosh x	$\frac{1}{\sqrt{x^2-1}}$	x > 1	2
rtanh x	$\frac{1}{1-x^2}$ $\frac{1}{1-x^2}$	x < 1	2
r coth x	1 1 2	x >1	2