Ramsey's Theorem - Part 3

- Quote. No finite point has meaning without an infinite reference point.
 Jean-Paul Sartre, French philosopher, playwright, novelist, screenwriter, political activist, biographer, and literary critic 1905 1980
- 2. **Reminder.** For any $s, t \in \mathbb{N} \setminus \{1\}$ the Ramsey number R(s, t) exists and, for $s, t \geq 3$,

$$R(s,t) \le R(s-1,t) + R(s,t-1).$$

Figure 1: $K_{R(s,t)}$: There is a red K_s or there is a blue K_t

3. Infinite Case - Notation:

- The set of natural numbers:

$$\mathbb{N} = \{1, 2, 3, \ldots\}.$$

- For $r \in \mathbb{N}$ and any set X we define $X^{(r)}$ to be the set of all subsets on X with exactly r elements:

$$X^{(r)} = \{A \subset X : |A| = r\}.$$

- For $k \in \mathbb{N}$ we define a k-colouring of $\mathbb{N}^{(r)}$ as a map from $\mathbb{N}^{(r)}$ to $\{1, 2, \dots, k\}$:

$$c: \mathbb{N}^{(r)} \to \{1, 2, \dots, k\}.$$

- If c is a k-colouring of $\mathbb{N}^{(r)}$ and $A \subset \mathbb{N}$ such that for all $x, y \in A^{(r)}$

$$c(x) = c(y)$$

we say that the set *A* is **monochromatic**.

Figure 2: $A \subset \mathbb{N}$ is monochromatic!

4. **Ramsey's Theorem:** Whenever $\mathbb{N}^{(2)}$ is 2-coloured, there exist arbitrarily large monochromatic sets.

5. **Observation:** An infinite monochromatic set is much more than having arbitrarily large monochromatic sets.

Example: Colour

$$\{1, 2\}, \{3, 4, 5\}, \{6, 7, 8, 9\}, \cdots$$

i.e., colour red all edges within the sets above. Colour all other edges blue.

Question: What about the existence of an *infinite* red set in this colouring?

- 6. Ramsey Theorem Two Colours Infinite Case: Whenever $\mathbb{N}^{(2)}$ is 2-coloured, there exists an infinite monochromatic set.
- 7. **Proof.** We colour elements of $\mathbb{N}^{(2)}$ red and blue:

$$c: \mathbb{N}^{(2)} \to \{\bullet, \bullet\},$$

Figure 3: Step 1: Pick $a_1 \in \mathbb{N}$. Look at $\{a_1, x\}$ and $\{a_1, y\}$, $x, y \in \mathbb{N}$.

Figure 4: Step 2: Say that $B_1 = \{x \in \mathbb{N} : \{a_1, x\}\}$ is infinite. Pick $a_2 \in B_1$. Look at $\{a_2, x\}$ and $\{a_2, y\}$, $x, y \in B_1$.

Figure 5: Step 3: Say that $B_2 = \{y \in B_1 : \{a_2, x\}\}\$ is infinite. Pick $a_3 \in B_2$. Look at $\{a_3, x\}$ and $\{a_3, y\}$, $x, y \in B_2$.

Figure 6: Step 4: Say that $B_3 = \{x \in B_2 : \{a_3, x\}\}\$ is infinite. Pick $a_4 \in B_3$. Look at $\{a_4, x\}$ and $\{a_4, y\}$, $x, y \in B_3$. Note that $\{a_1, a_2\}, \{a_1, a_3\}, \{a_1, a_4\}, \{a_2, a_3\}, \{a_2, a_4\},$ and $\{a_3, a_4\}.$

Continue...

Summary: We obtain an infinite sequence of natural numbers

$$a_1, a_2, a_3, \dots$$

and an infinite sequence of sets

$$\mathbb{N} \supseteq B_1 \supseteq B_2 \supseteq B_3 \supseteq \dots$$

with the property that, for any $i \in \mathbb{N}$

- (a) B_i is an infinite set
- (b) $a_{i+1} \in B_i$
- (c) $c(\{a_i, a_{i+1}\}) = c(\{a_i, a_{i+2}\}) = c(\{a_i, a_{i+3}\}) = \dots$

Figure 7: Conclusion: There must be an infinite number of a_i 's that see only red or an infinite number of a_i 's that see only blue.

8. Example. Let

$$a_1, a_2, a_3, \dots$$

be a sequence of mutually distinct real numbers. Prove that that it contains a monotone subsequence.

Figure 8: Any sequence of mutually distinct real numbers contains a monotone subsequence.

9. **Ramsey Theorem Infinite Case.** Let $k, r \in \mathbb{N}$. Whenever $\mathbb{N}^{(r)}$ is k-coloured, there exists an infinite monochromatic set, where, by an *infinite monochromatic set* we mean an infinite subset T of \mathbb{N} such that $T^{(r)}$ is monochromatic.

Proof: Let a *k*-colouring $C: \mathbb{N}^{(r)} \to \{c_1, c_2, \dots, c_k\}$ be fixed.

The proof is by induction on r. If r = 1, then $\mathbb{N}^{(1)} = \{\{n\} : n \in \mathbb{N}\}$, Since C is a finite colouring, by the pigeonhole principle at least one of the colour classes is infinite. Hence, there is $i \in [1, k]$ such that the monochromatic set $\{n \in \mathbb{N} : C(n) = c_i\}$ is infinite.

Let $r \geq 2$ be such that for any k-colouring of $\mathbb{N}^{(r-1)}$ there exists an infinite monochromatic set. Observe that this assumption implies that, if B is any infinite subset of \mathbb{N} and if $B^{(r-1)}$ is k-coloured, then B contains an infinite monochromatic subset.

We build an infinite *C*–monochromatic set in the following way.

Step 1: Pick $a_1 \in \mathbb{N}$. Let a k-colouring C_1 of $(\mathbb{N}\setminus\{a_1\})^{(r-1)}$ be defined by $C_1(F) = C(F \cup \{a_1\})$. By the induction hypothesis, $\mathbb{N}\setminus\{a_1\}$ contains an infinite C_1 -monochromatic set. Call this set B_1 .

 $B_1^{(r-1)}$ $\mathbb{N}\setminus\{a_1\})^{(r-1)}$ B_1 A_1 \mathbb{N}

Step 2: Pick $a_2 \in B_1$. Let a k-colouring C_2 of $(B_1 \setminus \{a_2\})^{(r-1)}$ be defined by $C_2(F) = C(F \cup \{a_2\})$. By the induction hypothesis, $B_1 \setminus \{a_2\}$ contains an infinite C_2 -monochromatic set. Call this set B_2 .

Step 3: Pick $a_3 \in B_2$. Let a k-colouring C_3 of $(B_2 \setminus \{a_3\})^{(r-1)}$ be defined by $C_3(F) = C(F \cup \{a_3\})$. By the induction hypothesis, $B_2 \setminus \{a_3\}$ contains an infinite C_3 -monochromatic set. Call this set B_3 .

Observe that, for any $F \in B_1^{(r-1)}$, any $F' \in B_2^{(r-2)}$, and any $F'' \in B_3^{(r-3)}$, $C(\{a_1\} \cup F) = C(\{a_1, a_2\} \cup F') = C(\{a_1, a_2, a_3\} \cup F'')$. Also, for any $G \in B_2^{(r-1)}$ and any $G' \in B_3^{(r-2)}$, $C(\{a_2\} \cup G) = C(\{a_2, a_3\} \cup G')$.

Continue...

Through this process we obtain an infinite sequence of natural numbers a_1, a_2, a_3, \ldots and an infinite sequence of infinite sets $\mathbb{N} \supseteq B_1 \supseteq B_2 \supseteq B_3 \supseteq \ldots$ with the property that, for any $i \in \mathbb{N}$, $\{a_{i+1}, a_{i+2}, a_{i+3}, \ldots\} \subset B_i$, and, for any $F = \{a_{i_1}, a_{i_2}, \ldots, a_{i_{r-1}}\}, H = \{a_{j_1}, a_{j_2}, \ldots, a_{j_{r-1}}\} \in B_{i+1}^{(r-1)}, C(\{a_i\} \cup F\}) = C(\{a_i\} \cup H).$

In other words, each a_i sees all (r-1)-sets of elements of the sequence that come after it, i.e. all sets $\{a_{j_1}, a_{j_2}, \ldots, a_{j_{r-1}}\} \in B_{i+1}^{(r-1)}$, in the *same* colour.

By the pigeonhole principle, at least one of sets $C_j = \{i \in \mathbb{N} : a_i \text{ sees only the colour } c_j\}, j \in [1, k]$, must be infinite. Therefore, there is an infinite C-monochromatic set.

Since C was an arbitrarily k–colouring of $\mathbb{N}^{(r)}$, this completes the induction step and the proof of the theorem.

10. Example. Let

$$a_1, a_2, a_3, \dots$$

be a sequence of real numbers. Prove that that it contains either constant or strictly monotonic subsequence.