

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS C6

600V CoolMOS™ C6 Power Transistor IPW60R070C6

Data Sheet

Rev. 2.1, 2010-02-09

Final

Industrial & Multimarket

600V CoolMOS™ C6 Power Transistor

IPW60R070C6

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. CoolMOS™ C6 series combines the experience of the leading SJ MOSFET supplier with high class innovation. The offered devices provide all benefits of a fast switching SJ MOSFET while not sacrificing ease of use. Extremely low switching and conduction losses make switching applications even more efficient, more compact, lighter, and cooler.

Features

- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- · Very high commutation ruggedness
- · Easy to use/drive
- JEDEC¹⁾ qualified, Pb-free plating, Halogen free

Applications

PFC stages, hard switching PWM stages and resonant switching PWM stages for e.g. PC Silverbox, Adapter, LCD & PDP TV, Lighting, Server, Telecom and UPS.

Please note: For MOSFET paralleling the use of ferrite beads on the gate or separate totem poles is generally recommended.

Table 1 Key Performance Parameters

Parameter	Value	Unit
V_{DS} @ $T_{\mathrm{j,max}}$	650	V
$R_{\mathrm{DS(on),max}}$	0.07	Ω
$Q_{\sf g,typ}$	170	nC
$I_{ m D,pulse}$	159	А
E _{oss} @ 400V	13	μJ
Body diode di/dt	300	A/µs

Related Links
IFX C6 Product Brief
IFX C6 Portfolio
IFX CoolMOS Webpage
IFX Design tools

Туре	Package	Marking
IPW60R070C6	PG-TO247	6R070C6

¹⁾ J-STD20 and JESD22

Table of Contents

Table of Contents

1	Description
	Table of Contents
2	Maximum ratings
3	Thermal characteristics
4	Electrical characteristics
5	Electrical characteristics diagrams
6	Test circuits
7	Package outlines
8	Revision History

Maximum ratings

2 Maximum ratings

at T_i = 25 °C, unless otherwise specified.

Table 2 Maximum ratings

Parameter	Symbol		Values			Note / Test Condition	
		Min.	Тур.	Max.			
Continuous drain current ¹⁾	I_{D}	-	-	53	Α	T _C = 25 °C	
				34		T _C = 100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	159	Α	T _C =25 °C	
Avalanche energy, single pulse	E _{AS}	-	-	1135	mJ	$I_{\rm D}$ =9.3 A, $V_{\rm DD}$ =50 V (see table 17)	
Avalanche energy, repetitive	E _{AR}	-	-	1.72		I _D =9.3 A, V _{DD} =50 V	
Avalanche current, repetitive	I _{AR}	-	-	9.3	Α		
MOSFET dv/dt ruggedness	dv/dt	-	-	50	V/ns	V _{DS} =0480 V	
Gate source voltage	V_{GS}	-20	-	20	V	static	
		-30		30		AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	391	W	T _C =25 °C	
Operating and storage temperature	$T_{\rm j}, T_{\rm stg}$	-55	-	150	°C		
Mounting torque		-	-	60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	Is	-	-	46	Α	T _C =25 °C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	159	Α	T _C =25 °C	
Reverse diode dv/dt ³⁾	dv/dt	-	-	15	V/ns	$V_{\rm DS}$ =0400 V, $I_{\rm SD} \le I_{\rm D}$, $T_{\rm j}$ =25 °C	
Maximum diode commutation speed ³⁾	di _f /dt	-	-	300	A/µs	(see table 18)	

¹⁾ Limited by $T_{\rm j,max}$ Maximum duty cycle D=0.75

3 Thermal characteristics

Table 3 Thermal characteristics TO-247 (IPW60R070C6)

Parameter	Symbol	ymbol Values				Note /
		Min.	Тур.	Max.		Test Condition
Thermal resistance, junction - case	R_{thJC}	-	-	0.32	°C/W	
Thermal resistance, junction - ambient	R_{thJA}	-	-	62		leaded
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	-	-	260	°C	1.6 mm (0.063 in.) from case for 10 s

Final Data Sheet 4 Rev. 2.1, 2010-02-09

²⁾ Pulse width t_p limited by $T_{j,max}$

³⁾ Identical low side and high side switch with identical $R_{\rm G}$

Electrical characteristics

Electrical characteristics 4

Electrical characteristics, at Tj=25 °C, unless otherwise specified.

Table 4 **Static characteristics**

Parameter	eter Symbol Values		Unit	Note / Test Condition		
		Min.	Тур.	Max.		
Drain-source breakdown voltage	$V_{(\mathrm{BR})\mathrm{DSS}}$	600	-	-	V	$V_{\rm GS}$ =0 V, $I_{\rm D}$ =0.25 mA
Gate threshold voltage	$V_{GS(th)}$	2.5	3	3.5		$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 1.72 \text{ mA}$
Zero gate voltage drain current	I_{DSS}	-	-	5	μΑ	$V_{\rm DS}$ =600 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C
		-	50	-		$V_{\rm DS}$ =600 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =150 °C
Gate-source leakage current	I_{GSS}	-	-	100	nA	$V_{\rm GS}$ =20 V, $V_{\rm DS}$ =0 V
Drain-source on-state resistance	$R_{DS(on)}$	-	0.063	0.07	Ω	$V_{\rm GS}$ =10 V, $I_{\rm D}$ =25.8 A, $T_{\rm j}$ =25 °C
		-	0.164	-		$V_{\rm GS}$ =10 V, $I_{\rm D}$ =25.8 A, $T_{\rm j}$ =150 °C
Gate resistance	R_{G}	-	0.85	-	Ω	f=1 MHz, open drain

Table 5 **Dynamic characteristics**

Parameter	Symbol	Symbol Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input capacitance	C_{iss}	-	3800	-	pF	$V_{\rm GS}$ =0 V, $V_{\rm DS}$ =100 V,
Output capacitance	C_{oss}	-	215	-		<i>f</i> =1 MHz
Effective output capacitance, energy related ¹⁾	$C_{o(er)}$	-	140	-		$V_{\rm GS}$ =0 V, $V_{\rm DS}$ =0480 V
Effective output capacitance, time related ²⁾	$C_{o(tr)}$	-	710	-		$I_{\rm D}$ =constant, $V_{\rm GS}$ =0 V $V_{\rm DS}$ =0480V
Turn-on delay time	$t_{\rm d(on)}$	-	16	-	ns	V _{DD} =400 V,
Rise time	t_{r}	-	12	-		$V_{\rm GS}$ =13 V, $I_{\rm D}$ =25.8A, $R_{\rm G}$ = 1.7 Ω (see table 16
Turn-off delay time	$t_{\sf d(off)}$	-	83	-		
Fall time	t_{f}	-	5	-		

¹⁾ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$ 2) $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{(BR)DSS}}$

Final Data Sheet 5 Rev. 2.1, 2010-02-09

Electrical characteristics

Table 6 Gate charge characteristics

Parameter	Symbol	ol Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Gate to source charge	$Q_{\sf gs}$	-	21	-	nC	V _{DD} =480 V,
Gate to drain charge	$Q_{\sf gd}$	-	87	-		$I_{\rm D}$ =25.8 A,
Gate charge total	Q_{g}	-	170	-		$V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	$V_{\sf plateau}$	-	5.4	-	V	7

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Diode forward voltage	V_{SD}	-	0.9	-	V	$V_{\rm GS}$ =0 V, $I_{\rm F}$ =25.8 A, $T_{\rm j}$ =25 °C
Reverse recovery time	$t_{\rm rr}$	-	720	-	ns	$V_{\rm R}$ =400 V, $I_{\rm F}$ =25.8 A,
Reverse recovery charge	Q_{rr}	-	19	-	μC	d <i>i</i> _F /d <i>t</i> =100 A/μs (see table 18)
Peak reverse recovery current	I_{rrm}	-	52	-	Α	

Final Data Sheet 6 Rev. 2.1, 2010-02-09

5 Electrical characteristics diagrams

Table 8

Table 9

Table 10

Table 11

Final Data Sheet 8 Rev. 2.1, 2010-02-09

Table 12

Table 13

Final Data Sheet 9 Rev. 2.1, 2010-02-09

Table 14

Table 15

Final Data Sheet 10 Rev. 2.1, 2010-02-09

Test circuits

6 Test circuits

Table 16 Switching times test circuit and waveform for inductive load

Table 17 Unclamped inductive load test circuit and waveform

Table 18 Test circuit and waveform for diode recovery times

Final Data Sheet 11 Rev. 2.1, 2010-02-09

Package outlines

7 Package outlines

Figure 1 Outlines TO-247, dimensions in mm/inches

Final Data Sheet 12 Rev. 2.1, 2010-02-09

Revision History

8 Revision History

CoolMOS C6 600V CoolMOS™ C6 Power Transistor

Revision I	Revision History: 2010-02-09, Rev. 2.1					
Previous Revision:						
Revision	Subjects (major changes since last revision)					
2.0	Release of final data sheet					
2.1	New package outlines TO-247					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document.

Please send your proposal (including a reference to this document) to: erratum@infineon.com

Edition 2010-02-09
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 13 Rev. 2.1, 2010-02-09