CIS 520: Machine Learning

Project Introduction / Guidance

Barry Plunkett

Department of Computer & Information Science University of Pennsylvania

Spring 2019

Outline

- Introduce Project
 - Goals
 - High-level overview
 - Deliverables, deadlines, and evaluation
- Guidelines
 - Picking a dataset
 - Optimal timeline
 - Spotlight slides and report examples

Project Goals

- Design and implement a machine learning approach to solving a real-life problem
- Apply theory from class to justify your modeling decisions
- Possibly draw on theory to modify existing algorithms when necessary

Overview

- 1. Choose a problem and a dataset
- 2. Conduct a literature review of solutions
- Frame the project as a machine learning problem (supervised, unsupervised)
- 4. Clean and pre-process data into usable format
- 5. Choose several solution algorithms to implement
- 6. Write project report and give spotlight presentation

Deliverable	Due Date	
Proposal	March 12	
Milestone Meeting	April 5	
Presentation	April 26	
Report	April 30	

Proposal

Roadmap outlining problem you plan to solve and how you will solve it

Deliverable	Due Date	
Proposal	March 12	
Milestone Meeting	April 5	
Presentation	April 26	
Report	April 30	

Milestone Meeting

Meeting with project mentor to discuss progress and challenges

Deliverable	Due Date	
Proposal	March 12	
Milestone Meeting Presentation	April 5	
	April 26	
Report	April 30	

Presentation

Brief presentation giving high-level overview of problem and results

Deliverable	Due Date	
Proposal	March 12	
Milestone Meeting	April 5	
Presentation	April 26	
Report	April 30	

Report

Thorough 5-page analysis of methodology and findings

Evaluation Criteria

- Technical Quality
- Novelty
- Clarity of Presentation
- Significance

Characteristics

Simple to Wrangle

Moderate Size

Few Missing Values

Answers Question

Simple to Wrangle

- Downloadable as a .csv, .json, or text file
- Accessible via a free, welldocumented API

Tip: No bonus points for creative scraping or hand-labeling

TIP: If you're building a dataset using an API, finish building shortly after submitting proposal

Characteristics

Simple to Wrangle

Moderate Size

Few Missing Values

Answers Question

Moderate Size

- Large enough to learn complex models
- Small enough to load into memory
 - 8 GBs RAM : < 4 GBs data</p>
 - 12 GBs RAM : < 8 GBs data</p>
 - 16 GBs RAM: < 12 GBs data</p>

Tip: Don't expect BigLab will empower you

TIP: Only plan to rely on cloud computing platforms (AWS, Google Cloud, Azure) if you have experience

Characteristics

Simple to Wrangle

Moderate Size

Few Missing Values

Answers Question

Few Missing Values

- Most datasets have missing and misentered values
- Too many can make learning more challenging
- Many imputation methods exist

Tip: Determine how flawed your data is before anything else

TIP: Avoid datasets with > **15%** flawed/missing entries

Characteristics

Simple to Wrangle

Moderate Size

Few Missing Values

Answers Question

Answers Question You Pose

- For many questions, finding a dataset with meaningful features for learning can be challenging
- Bear this in mind when choosing a problem

Tip: Start with a "good" dataset, then think of questions

TIP: Formulate hypotheses for why features should cause or predict the outcome of interest before choosing a dataset

Characteristics

Simple to Wrangle

Moderate Size

Few Missing Values

Answers Question

Caveats

- These are guidelines, not requirements
- Dataset may not satisfy these requirements
- If your dataset deviates, be aware of consequences
- Reach for the stars!

Timeframe

Now - 3/12

3/12 - 4/5

4/5 - 4/12

4/12 - 4/19

4/19 - 4/26

4/26 - 4/30

Before Proposal

- Select problem and "good" dataset
- Load dataset into memory
- Compute summary statistics, measure quality
- Complete thorough literature review
- Set ambitious target for milestone meeting

TIP: Ask each group member to read at least two related papers and several blog posts at this stage

Timeframe

Now - 3/12

3/12 - 4/5

4/5 - 4/12

4/12 - 4/19

4/19 - 4/26

4/26 - 4/30

Before Milestone Meeting

- Complete all data wrangling
- Clean data & impute missing values
- Feature engineering
- Split into train/test/dev sets
- Transform data into format expected by models
- Implement minimum viable solution

TIP: At this stage re-watch lectures and re-read notes related to chosen algorithms. Meet to resolve confusion.

Timeframe

Now - 3/12

3/12 - 4/5

4/5 - 4/12

4/12 - 4/19

4/19 - 4/26

4/26 - 4/30

Week After Milestone

- Fully implement selected algorithms
- Train baseline versions of each model using arbitrary hyperparameters
- For each hyperparameter of each model, choose set of values to experiment with later

TIP: Measure training time of each model to gauge what types of hyperparameter searches will be feasible later

Timeframe

Now - 3/12

3/12 - 4/5

4/5 - 4/12

4/12 - 4/19

4/19 - 4/26

4/26 - 4/30

Two Weeks After Milestone

- Train models for all hyperparameter settings
- Record dev set / cross validation performance
- Train models with optimal settings and record test set performance
- Generate plots of training / dev error

TIP: If possible, avoid training schemes that require multiple days or many hours and/or record results intermittently.

Timeframe

Now - 3/12

3/12 - 4/5

4/5 - 4/12

4/12 - 4/19

4/19 - 4/26

4/26 - 4/30

Week Before Presentation Due

- Finalize model selection and test set results
- Write first draft of project report
- Review notes from literature review
- Meet with group members to discuss conclusions
- Prepare spotlight presentation slides

TIP: Visually appealing spotlight slides help your project standout during grading

Spotlight Slides Example

BIG BALLERS

We analyze NBA players' past performance and their physical characteristics with Machine Learning techniques to project what a player's contract would be in any given year.

Our goal is to minimize the least squared loss function, as we are aiming to get our predictions as close to as actual results as possible.

Datasets:

"NBA Contracts and Recency Bias: An Investigation into Irrationality in Performance Pay Markets"

<u>Basketball-Reference.com</u>'s comprehensive repository of all players, scraped with Python's BeautifulSoup

ANALYTICS

Benjamin Judd, Rohan Menezes, Johnathan Chen, Nihar Patil

Spotlight Slides Example

Overall Results

- 90-10 train-test split for our models
- Used cross validation to select the degrees for polynomial kernels and the number of neighbors for NN
- Computed r^2 values by averaging over several splits

Timeframe

Now - 3/12

3/12 - 4/5

4/5 - 4/12

4/12 - 4/19

4/19 - 4/26

4/26 - 4/30

Final Days Before Report Due

- Rehearse spotlight presentation
- Re-write and proofread report
- Precisely define variables for all equations
- Prepare table of test set results
- Break up text with illustrations, visualizations, error plots, etc.

TIP: Have all sections of the report proofread by at least one member other than the section author

Report Examples

CIS 520: Machine Learning Spring 2018

University of Pennsylvania

Home	Course Information			
Course Description				
Course Policies	This course provides a thorough modern introduction to the field of machine learning. It is designed for			
Course Staff	students who want to understand not only what machine learning algorithms do and how they can be used, but also the fundamental principles behind how and why they work. See the course description for more details.			
Lectures				
Projects	Instructor			
Canvas	Prof. Shivani Agarwal			
Piazza	Lecture Times			
	TR 12:00-1:30 (ANNS 110)			
	Discussion Sections (Occasional)			
	F 12:00-1:30 (ANNS 110)			
	Registration			
	To register for the course, please fill out this registration request form .			

www.Shivani-Agarwal.org/Teaching/CIS-520/Spring-2018/

Report Examples

The following were judged to be the top 3 projects in the course:

 Team 40 Christian Tabedzki, Amruthesh Thirumalaiswamy, Paul van Vliet Yo Home to Bel-Air: Predicting Crime on The Streets of Philadelphia [report] 	Supervised Learning
 Team 24 Brandon Lin, Chris Painter, Barry Plunkett, Stephanie Shi The Steam Engine: A Recommendation System for Steam Users [report] 	Collaborative Filtering
 Team 11 Hadi Elzayn, Mohammad Fereydounian, Mikhail Hayhoe, Harshat Kumar It's Over 400: Cooperative reinforcement learning through self-play [report] 	Reinforcement Learning

