전 자 공 학 개 론

1. 다음 그림과 같은 회로에서 $50[\Omega]$ 저항 R_1 에 흐르는 전류의 크기와 방향으로 옳은 것은?

- ① 3mA, a에서 b로
- ② 3mA, b에서 a로
- ③ 4mA, a에서 b로
- ④ 11mA, a에서 b로
- ⑤ 11mA, b에서 a로

2. 다음 그림과 같은 반파정류기에서 커패시터 입력필터에 대한 설명 으로 옳지 않은 것은?

- ① 양(+)의 첫 1/4주기 동안 다이오드는 순방향 바이어스 되어 커패 시터에는 입력 피크값보다 0.7[V] 낮게 충전된다.
- ② 입력전압이 양(+)의 피크값보다 작아지면 다이오드는 역방향 바이어스 된다.
- ③ 다이오드의 최대역전압(PIV: peak inverse voltage)는 $2\,V_{p(in)}-0.7$ [V] 이다.
- ④ 입력전압이 다시 증가하여 커패시터의 충전전압보다 0.7[V] 이상 커지게 되면 다이오드는 순방향 바이어스 된다.
- ⑤ R_L 또는 C가 증가하면 리플전압은 증가하고 직류전압은 감소한다.

3. 다음 그림과 같은 연산증폭기 회로에서 출력전압 V_0 [V] 값은? (단, 연산증폭기 U_1 , U_2 는 이상적이다)

- ② -3 V
- ③ 0 V
- ④ 3V
- ⑤ 6 V

4. 다음 그림과 같은 증폭기에 대한 설명으로 옳은 것은?

- ① 전류이득이 매우 크다.
- ② 출력임피던스가 낮다.
- ③ 전압이득이 거의 1이다.
- ④ 전류이득이 거의 1이다.
- ⑤ 입출력 위상이 반전이다.

5. 다음의 구형파는 한 주기가 2π [rad]인 비정현 주기파이다. 구형파 의 3고조파 값의 크기로 옳은 것은?

- $2 10\pi$
- 10
- 10 4

6. 다음 그림과 같은 회로에서 전류 I_1 [A]과 전류 I_2 [A]의 값으로 옳 은 것은? (단, 다이오드 D₁과 D₂의 순방향 전압강하는 각각 0.5 [V], 0.7[V]이며 다이오드의 나머지 특성은 이상적이다)

- I_{1} 0 A 1
- I_2 6 A
- 2 $2.5\,\mathrm{A}$
- 3.5 A
- 3.5 A 3
- 2.5 A
- 4 5 A (5) 6 A
- 0A0 A

7. 다음은 연산증폭기를 이용한 4 bit D/A 컨버터에 2진 입력 $1000_{(2)}$ 을 입력한 경우이다. 이때의 출력전압 V_0 가 -5[V]이다. 출력전압 $V_{\rm o}$ 가 -5.625[V]가 되기 위해 입력해야 하는 2진 입력으로 옳은 것 은?

- ① $1001_{(2)}$
- 2 1010(2)
- $31100_{(2)}$
- 4 1101₍₂₎
- $51110_{(2)}$

8. 다음 그림과 같은 회로에서 $100 \angle 0$ $^{\circ}$ [V]의 교류전압이 인가될 때 전체 임피던스 (Z_{ab}) $[\Omega]$ 와 전류 I_1 [A] 및 전류 I_2 [A]는?

	$Z_{ab}[\Omega]$	
1	10	

 $I_1[A]$ $5 \angle 45^{\circ}$

 $I_{2}[A]$ $5 \angle -45\,^{\circ}$

- 2 10
- $5\sqrt{2} \angle -45^{\circ}$ $5 \angle 45$ °
- $5\sqrt{2} \angle 45^{\circ}$ $5 \angle -45$ $^{\circ}$

- $10\sqrt{2}$ 3 $10\sqrt{2}$
- $5\sqrt{2}$ \angle -45 $^{\circ}$
- $5\sqrt{2}$ \angle 45 $^{\circ}$

5

4

- $5 \angle 45^{\circ}$
- $5 \angle 45$ °

9. 다음 그림과 같이 D 플립플롭을 이용하여 JK 플립플롭을 구현하고자 한다. (가) 부분에 들어갈 게이트 회로의 조합으로 옳은 것은?

11. 다음 그림과 같은 회로에서 출력전압 V_{out} [V]값은? (단, 연산증폭기는 이상적이다)

- ① -12 V
- ② -3 V
- ③ 3V
- ④ 12 V
- ⑤ 15 V

10. 다음 그림과 같은 회로에서 Q가 정방향 선형영역에서 동작하기 위한 최대 허용 R_c [Ω]값은? (단, $V_{BE}=0.7$ [V], $R_B=50$ [k Ω], $eta_{DC}=100$ 이다)

- ① 200 Ω
- ② 500 Ω
- $31k\Omega$
- $4 2 k\Omega$
- \odot 5 k Ω

12. 다음 그림과 같은 윈브리지(Wien-bridge) 발진기에 대한 설명으로 옳지 않은 것은?

- ① 증폭기의 폐루프 이득이 3이 되기 위해서는 $R_2 = 2R_1$ 이어야 한다.
- ② 전압분배기와 진상-지상(lead-lag) 회로로 구성되어 있다.
- ③ 출력이 나오기 위해서는 전체 루프이득이 1보다 커야 한다.
- ④ 발진하기 위해서는 정귀환 루프 위상변이가 0°이어야 한다.
- ⑤ $R_3=R_4$ 이고 $X_{C_1}=X_{C_2}$ 이면 RC회로는 1/3의 감쇠비를 갖는다.

13. 다음 그림과 같은 회로에서 제너 다이오드가 정전압 조정을 유지하기 위한 최대 부하전류 (I_L) [mA]와 사용 가능한 최대 부하저항 (R_L) $[\Omega]$ 의 값은? (단, 제너전압 $V_Z=10$ [V], 제너최소전류 $I_{ZK}=1$ [mA], 제너최대전류 $I_{ZM}=100$ [mA], 제너임피던스 $Z_Z=0$ $[\Omega]$ 이다)

	최대 부하전류 (I_L) [mA]	최대 부하저항 $(R_L)[\Omega]$
1	50	67
2	50	200
3	100	150
4	149	67
(5)	149	200

	전압이득 (A_V)	교류출력저항[kΩ]
1	20	5
2	20	10
3	30	10
4	40	5
(5)	40	10

15. 다음의 그림 (a), (b) 회로가 서로 등가회로일 때, 등가저항 (R_{EQ}) [Ω] 과 등가전압 (V_{EQ}) [V]의 값은?

	능가저항 (R_{EQ}) [(2]	능가전압(V_{EQ})[$ m V$
1	125	2.5
2	125	5.0
3	250	2.5
4	250	5.0
(5)	500	4.0

16. 다음은 증가형 MOSFET을 이용한 증폭기 회로와 MOSFET의 $^{\circ}$ 소신호 등가모델이다. 이 증폭기의 전압이득 (V_{o}/V_{i}) 의 값은? $(^{\circ}$ (단, $^{\circ}$ $g_{m}=0.5$ [mA/V]이다)

- ① -20
- ② -5
- 3 -4
- 4
- ⑤ 20

17. 다음은 논리회로의 연산 결과를 아래 카르노 맵으로 나타낸 것이다. x, y, z에 들어갈 값으로 옳은 것은?

AB C	00	01	11	10
0	1	0	х	1
1	1	0	у	z

(x, y, z)

- ① (1, 0, 1)
- ② (1, 1, 0)
- ③ (1, 1, 1)
- 4 (0, 1, 1)
- ⑤ (1, 0, 0)
- 18. 다음 그림과 같은 정류회로가 있다. L값, C값은 충분히 큰 값이며 부하저항 R = 15 [Ω]이다. $v_s=100\sin 377t$ [V]이고, 회로가 정상상 태로 동작하고 있을 시 (즉, Vc가 일정 전압을 유지하고 있을 시) 부하의 소비 전력으로 옳은 값은? (단, 소수점 이하는 생략한다)

- $\textcircled{1} 120 \, \mathrm{W}$
- ② 150 W
- ③ 200 W
- 4 270 W
- ⑤ 375 W

19. 다음의 논리식을 간소화한 것으로 옳은 것은?

$$F = A'B'C + ABC + A'BC + AB'C$$

- ① F = A
- 2 F = B
- $\Im F = C$
- (4) F = A'
- \bigcirc F = B'

- 20. 다음 바이폴라 접합 트랜지스터(BJT: bipolar junction transistor)의 특성을 설명한 것으로 옳지 않은 것은?
 - ① 선형영역에서 동작시키기 위해서는 베이스-이미터 접합은 순방향 바이어스를 걸고 베이스-컬렉터 접합은 역방향 바이어스를 건다.
 - ② 선형영역에서 베이스 전류를 특정한 값으로 고정하면 컬렉터-이미터 전압을 증가시켜도 컬렉터 전류는 일정하다.
 - ③ 일반적으로 이미터 영역은 높게, 컬렉터 영역은 중간정도로 도핑되어 있는 것에 비해 베이스 영역은 엷게 도핑되어 있다.
 - ④ 포화영역에서는 베이스-컬렉터 접합이 역방향 바이어스 되기 때문에 컬렉터-이미터 전압은 0.7[V]보다 크다.
 - ⑤ 베이스 전류가 0[A]인 경우에 트랜지스터는 차단되고 컬렉터-이미터 전압은 컬렉터 인가전압과 같게 된다.