#### Le Courant électrique continu

# Exercices Supplémentaires

#### Exercice 1 : la quantité d'électricité

On frotte Une baguette en ébonite avec une Fourrure de chat, et elle porte une charge électrique de  $q = -3, 2.10^{-12}C$ .

- 1. Le frottage provoque-t-elle une diminution ou une augmentation du nombre d'électrons de la baguette?
- 2. Calculer le nombre de ces électrons.
- 3. Calculer la charge électrique apparaissant sur la fourrure. Avec  $e=1,6.10^{-19}C$ .

Une quantité d'électricité Q = 2,3C passe en un point d'un fil en 12 secondes.

- 4. Calculer l'intensité (en mA) du courant I dans le fil.
- 5. On mesure un courant de 1A dans un fil. Calculer le nombre d'électrons passant à un endroit donné du fil en une seconde.

#### Exercice 2 :électrisation par frottement

Un bâton (A) initialement neutre, est électrisé par frottement à l'aide d'un chiffon. Sa charge électrique devient ;  $q_A = 48.10^{-18}C$ .

- 1. Le bâton (A) a-t-il gagné ou perdu des électrons à la suite de l'électrisation ? Justifier.
- 2. Déterminer le nombre d'électrons gagnés ou perdus par (A).

Un deuxième bâton (B) porte une charge  $q_B = 3, 2.10^{-18}C$ . On met en contact l'extrémité chargée de (A) avec l'extrémité chargée de (B).

- 3. Interpréter le phénomène qui se produit entre les deux bâtons après ce contact.
- 4. Préciser, en le justifiant, le sens de transfert des électrons.
- 5. Déterminer le nombre d'électrons perdus par (B).
- 6. Déterminer la charge de chaque bâton après le contact.

**Données:** La charge élémentaire:  $e = 1, 6.10^{-19}C$ .

#### Exercice 3 :intensité du courant

Un courant continu a une intensité I = 0.4 A.

- 1. Calculer la quantité d'électricité Q débitée en 8 secondes.
- 2. Déterminer le nombre d'électrons N traversant une section du conducteur pendant ce temps. On désire mesurer un courant de 300mA à l'aide d'un ampèremètre dont le cadran comporte 100 divisions. Les calibres de l'ampèremètre sont les suivants: 5A; 500mA; 50mA.
- 3. Comment doit-on brancher l'ampèremètre dans le circuit?
- 4. Quel calibre doit-on choisir; justifier la réponse.

5. Sur quelle graduation se fixera l'aiguille de l'ampèremètre?

# Exercice 4: Utilisation d'un ampèremètre

La figure ci-contre représente l'image du port de l'ampèremètre.

- 1. Déterminer le type du courant électrique mesuré.
- 2. Déterminer le calibre utilisé.
- 3. Déterminer la valeur de l'intensité.



- 4. Calculer la quantité d'électricité traversant une section du circuit pendant  $\Delta t = 10s$ .
- 5. Déduire le nombre d'électrons passant par cette section pendant cette durée.
- 6. L'appareil est de classe 2. Déterminer la valeur de l'incertitude absolue  $\Delta I$ . Déterminer la précision de mesure.

#### Exercice 5 :application de la loi des nœuds

Calculer les intensités de courant manquantes dans chacun des cas suivants:



$$I_2 = 1A$$
;  $I_4 = 3A$ ;  $I_6 = 2A$ 



$$I_4 = 7A$$
;  $I_5 = 2A$ ;  $I_6 = 3A$  ;  $I_7 = 5A$ 

# Exercice 6 : Exploitation des circuits électriques

On considère le circuit de la figure ci-contre, Sachant que la quantité d'électricité Q qui traverse la section du fil AP pendant une minute est Q=30C.

- 1. Calculer le nombre d'électrons qui traverse cette section pendant la même durée.
- 2. En déduire la valeur de l'intensité du courant  $I_1$  qui traverse  $L_1$ . L'ampèremètre A comporte 100 divisions et possède les calibres suivant : 5A ; 1A ; 300mA ; 100mA.



- 3. Quel est le calibre le plus adapté pour la mesure de l'intensité  $I_1$ ?
- 4. Devant quelle division l'aiguille de l'ampèremètre s'arrête-t-elle?
- 5. L'intensité débitée par le générateur est 0,8A. Quels sont les points qui sont considérés des nœuds?
- 6. Indiquer le sens du courant dans chaque branche.
- 7. Déterminer les valeurs des intensités qui traversent les lampes  $L_2$ ,  $L_3$  et  $L_4$ .

#### Exercice 7 : Influence d'un dipôle sur la valeur de l'intensité du courant

Soit le circuit de la figure ci-contre où  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ ,  $A_5$  et  $A_6$  sont des ampèremètres.

- 1. Les cinq lampes  $L_2$ ,  $L_3$ ,  $L_4$  et  $L_5$  sont identiques et l'intensité  $I_1$  vaut 200mA. Déterminer les valeurs des intensités inconnues  $I_2$ ,  $I_3$ ,  $I_4$ ,  $I_5$  et  $I_6$ .
- 2. Les cinq lampes ne sont plus identiques. Les ampèremètres  $A_1$  et  $A_2$  indiquent les intensités :  $I_1 = 300mA$ ;  $I_2 = 100mA$  et l'ampèremètre  $A_4$  révèle le passage d'un courant dans le sens A vers B et d'intensité  $I_4 = 50mA$ . Déterminer les valeurs des intensités  $I_3$ ,  $I_5$  et  $I_6$ .
- 3. Déterminer l'intensité du courant qui revient au générateur.



### Exercice 8: Synthèse

Soit le circuit électrique suivant:

- 1. Que peut-on dire des deux points A et B?
- 2. Indiquer le sens des courants manquants dans chaque branche du circuit.



- 3. Pour mesurer l'intensité I, on utilise un ampèremètre à aiguille dont  $\hat{l}$ e calibre est fixé à 10A et son aiguille indique la graduation 85. Calculer I.
- 4. En appliquant la loi des nœuds, écrire: Une relation entre I,  $I_1$ ,  $I_2$  et  $I_3$ ; Une relation entre  $I_1$ ,  $I_2$ , et  $I_4$ ; Une relation entre  $I_3$ ,  $I_4$ ,  $I_5$  et  $I_6$ .
- 5. Sachant que  $I_2 = 2A$ ,  $I_3 = 3A$  et  $I_6 = 1, 5A$ , calculer les intensités manquantes.

### Exercice 9 : Synthèse

Soit le circuit électrique suivant: calculer les intensités manquantes.



If it weren't for electricity, we'd all be watching television by candlelight.

Future Is Loading...