ニューラルネットワークを用いた 動画像内の物体認識

総合人間学部 認知情報学系 神谷研究室 中村 優太

ニューラルネットワークとは

・機械学習の手法の一つで, 特に画像認識の分野で飛躍的な 成果を生み出してきた手法

(Krizhevsky Hinton, 2012)

(Tran, Bourdev, Fergus, Torresani, Paluri, 2015)

ニューラルネットワークのfine-tuning

- ニューラルネットワークを訓練するには、大量のデータが必要
- 学習済みのモデルを元に、ターゲットとするタスクを学習する fine-tuningが広く用いられている.

動画中の物体判別タスクの学習

- 動画中の物体判別タスクにおけるfine-tuningを複数の条件で行い、fine-tuningの特性を検証
- 学習するデータの特性とタスクの特性がfine-tuningに与える効果を検証

CNNアーキテクチャ	学習済みタスク
2次元畳み込み (静止画用)	静止画中の物体判別タスク
3次元畳み込み (動画用)	静止画中の物体判別タスク
3次元畳み込み (動画用)	動画中の動詞判別タスク

検証に用いたニューラルネットワーク

- 2次元CNNは ResNet50 (He, Zhang, Ren, Sun, 2015)のアーキテクチャ
- 3次元CNNは ResNet50 を3次元に拡張したアーキテクチャ
- 静止画中の物体判別タスクとして、ImageNet (Jia Deng, et al., 2009) の1000クラス物体判別タスク
- 動画中の動詞判別タスクとして Kinetics (Kay, Carreira, Simonyan, 2017) の動詞判別タスク

CNNアーキテクチャ	学習済みタスク
2次元畳み込み (静止画用)	静止画中の物体判別タスク
3次元畳み込み (動画用) 中心化拡張	静止画中の物体判別タスク
3次元畳み込み (動画用) 平均化拡張	静止画中の物体判別タスク
3次元畳み込み (動画用)	動画中の動詞判別タスク

ニューラルネットワークの拡張

静止画像判別のためのニューラルネットワークを、動画用に拡張する技術 I3D (Kay, Carreira, Simonyan, 2017) を用いて3次元に拡張した。

検証の手続き

前述のネットワークを用いて、動画中の物体判別タスクを行い、マルチラベル判別タスクの成績を比較した

- データ: Moments In Timeデータセット (Monfort, et al., 2018) を元に、1動画に含まれる物体を複数ラベル付けしたデータを自作
- ・ネットワーク: 二次元画像判別NN,中心化拡張NN, 平均化拡張NN,三次元動詞判別NNを使用
- 学習:全てのNNにおいて、最適化手法としてSGD with Momentum,学習率0.01を用いて学習
- ・評価: 各カテゴリ毎に,予測結果からAUCを算出

データ例

Car, Man

Water, Boat

Man, Baby

Crowd

結果

• 各ネットワークからfine-tuningした際の、物体認識タスクの 成績は以下のようであった。

平均化拡張による三次元ニューラルネットワークにおいてのみ、 成績が高い

二次元画像判別NNの考察

一次元の画像判別ネットワークを用いた場合には、過学習の傾向が強くみられた。

三次元画像判別NNの考察

- 三次元のNNの中では、平均化拡張のニューラルネットワークの みが学習に成功した
- その要因の仮説として、今回のような限られたデータを用いた fine-tuningにおいては、ニューラルネットワークの重みの変化 量が少なくてもタスクを学習できる性質が必要で、平均化拡張 のネットワークがその性質を満たしていたと考えられる
- 学習済みのネットワークの重みを検証する必要がある

まとめ

- 動画中の動詞判別タスクにおけるfine-tuningの手法について 比較を行った
- 画像判別用のニューラルネットワークをそのまま動詞判別に利用するとデータ量が少ない場合、過学習に陥りやすいことが明らかになった
- 動詞判別タスクにおいては、動画を扱える三次元ニューラルネットワークを用いることで過学習は避けられるものの、学習が困難になった
- データ量が少ない場合には、平均化拡張により学習済み画像判別ネットワークを三次元に拡張したネットワークによるfine-tuningが有利であることがわかった