上节课内容回顾

● 电荷 (量子化,守恒)

● 库仑定律

$$\vec{F}_{21} = \frac{q_1 q_2}{4 \pi \epsilon_0 r_{21}^2} \vec{e}_{r_{21}} = -\vec{F}_{12}$$

• 电场强度

$$ec{E} = rac{ec{F}}{q_0}$$

$$\vec{E} = \frac{q \, \vec{e}_r}{4 \pi \, \varepsilon_0 r^2}$$

• 点电荷电场及叠加原理

$$\vec{E} = \sum_{i} \vec{E}_{i}$$

第十二章 静电场(2)

如何利用水滴发电?

李 渭

2024.09.12

Kelvin's water dropper

"Lord Kelvin's Thunderstorm"

§ 12.5 电场线和电通量

一. 电场线

为形象地描写场强的分布,引入电场线。

1. 电场线上某点的切向为该点电场强度方向。

2. 电场线的数密度给出电场强度的大小。

$$E = \lim_{\Delta S_{\perp} \to 0} \frac{\Delta N}{\Delta S_{\perp}} = \frac{\mathrm{d} N}{\mathrm{d} S_{\perp}}$$

电场线是一族空间曲线,用来形象描述场强分布 是电场分布的一种物理呈现形式。

单个点电极

单个带电平板电极

带异号电的点电极

带异号电的平行平板电极

带同号电的点电极

带异号电的点电极和平板电极

35

二. 电通量 Φ_{e}

定义:
$$\Phi_e = \iint_S \vec{E} \cdot d\vec{s}$$

- Ф。是对面而言,不是点函数
- Ф。是代数量,有正、负之分
- Φ_{o} 是穿过S 面的净电场线数

$$d\Phi_e = \vec{E} \cdot d\vec{s} = E \cos \theta \cdot ds$$
$$= E \cdot ds_{\perp} = dN$$

对闭合曲面 $\Phi_e = \iint \vec{E} \cdot d\vec{s}$

闭合曲面的外法线方向为正。

§ 12.6 高斯定理

$$\Phi_e = \iint_S \vec{E} \cdot d\vec{s} = \frac{\sum q_{|\gamma|}}{\varepsilon_0}$$

静电场中,通过任意一个闭合曲面S的电通量 Φ_e ,等于该曲面所包围的电量的代数和除以 ϵ_0 。

【证明】分四步进行:

$1. 求以点电荷为球心的球面的<math>\Phi_e$

由此可知:点电荷电场对球面的 Φ_e 与r无关,即各球面的 Φ_e 连续 \Rightarrow 点电荷的E线连续。

2. 求点电荷场中任意曲面的电通量

3. 求点电荷系电场中任意闭合曲面的电通量

$$ec{E} = \sum_{i} \vec{E}_{i} + \sum_{j} \vec{E}_{j}$$
 $(S \triangleright) \quad (S \triangleright)$

$$\Phi_{e} = \oiint \vec{E} \cdot d\vec{s}$$

$$= \oiint (\sum_{i} \vec{E}_{i}) \cdot d\vec{s} + \oiint (\sum_{j} \vec{E}_{j} \cdot d\vec{s})$$

$$= \sum_{i} \oiint \vec{E}_{i} \cdot d\vec{s} + \sum_{j} \oiint \vec{E}_{j} \cdot d\vec{s}$$

$$= \sum_{i} \frac{q_{i}}{\varepsilon_{0}} + \sum_{j} 0 = \frac{\sum q_{\triangleright}}{\varepsilon_{0}}$$
 $= \sum_{i} \frac{q_{i}}{\varepsilon_{0}} + \sum_{j} 0 = \frac{\sum q_{\triangleright}}{\varepsilon_{0}}$

4. 将上面结果推广到任意连续电荷分布情形

- 高斯定理是平方反比定律的必然结果。
- Φ_e 由 $\Sigma q_{\text{内}}$ 的值决定,与 $q_{\text{内}}$ 分布无关。
- \vec{E} 是总场强,它由 $q_{\rm h}$ 和 $q_{\rm h}$ 共同决定。
- 高斯面为几何面, $q_{\rm p}$ 和 $q_{\rm p}$ 总能分清。
- 高斯定理也适用于变化电场。高斯定理源 于库仑定律,高于库仑定律,更普适。

【例】由高斯定理证明: 电场线发于正电荷, 止于负电荷。若空间某处无电荷, 但有电场 存在, 则电场线在此处连续。

证: 设 P 点有电场线发出,

则
$$\iint_S \vec{E} \cdot d\vec{s} > 0 \implies q_{\mid j_j} > 0$$

$$\diamondsuit$$
 $S \rightarrow 0$,则 $q_{\bowtie} = q_{P} > 0$

同理可证,若 P 点有电场线终止,有 $q_p < 0$ 。

若 P 点无电荷,

则有:
$$\iint_S \vec{E} \cdot d\vec{s} = 0$$

即
$$N_{\lambda} = N_{\text{出}}$$

令 $S \rightarrow 0$, 则 P 点处 \vec{E} 线连续。

静电场特性之一:静电场是有源场,电荷是静电场的源,静电场的电场线是有头有尾的。

§ 12.7 高斯定理应用举例

【例1】已知:均匀带电球壳的 ρ 或q、 R_1 、 R_2

求: 电场强度的分布。

解: 分析 \vec{E} 的对称性

 $d\vec{E}$ 具有球对称性:

$$\vec{E} = E(r) \cdot \vec{e}_r$$

选高斯面S为与带电球壳同心的球面:

$$\therefore \vec{E} = \frac{q_{|\gamma|}}{4\pi \varepsilon_0 r^2} \vec{e}_r$$

$$ec{E} = rac{q_{
ho}}{4\pi \, arepsilon_0 r^2} ec{e}_r$$

•
$$r < R_1$$
, $q_{\triangleright} = 0$, $\vec{E} = 0$

•
$$R_1 < r < R_2$$
, $q_{|\gamma|} = \frac{4\pi}{3} (r^3 - R_1^3) \rho$,

$$\vec{E} = \frac{\rho}{3\varepsilon_0} (r - \frac{R_1^3}{r^2}) \vec{e}_r$$

•
$$r > R_2$$
, $q_{||\gamma|} = \frac{4\pi}{3} (R_2^3 - R_1^3) \rho = q$,

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{e}_r \quad (同点电荷的电场)$$

【讨论】

• E 的分布

• R_1 = 0,变为均匀带电球 ■

$$\vec{E} = \begin{cases} \frac{\rho \, \vec{r}}{3\varepsilon_0} & () \Rightarrow \vec{r} \\ \frac{q\vec{e}_r}{4\pi \, \varepsilon_0 r^2} & () \Rightarrow \vec{r} \end{cases}$$

• $R_1 = R_2 = R$, q 不变,变为均匀带电球面

普遍规律: 在有面电荷分布的界面两侧, 静电场场强会发生跃变。

【例2】求线电荷密度为 λ 的无限长均匀带电直线电场

解:分析 \vec{E} 的对称性

无限长,轴对称:

$$\vec{E} = E(r)\vec{e}_r$$

选同轴圆柱面为高斯面S,

49

$$\iint_{S} \vec{E} \cdot d\vec{s} = \iint_{S_{1}} \vec{E} \cdot d\vec{s} + \iint_{S_{2}} \vec{E} \cdot d\vec{s} + \iint_{S_{3}} \vec{E} \cdot d\vec{s}$$

$$= \mathbf{0} + \mathbf{0} + \mathbf{E} \cdot \iint_{S_{3}} ds = \mathbf{E} \cdot 2\pi rl$$

$$\iint_{S} \vec{E} \cdot d\vec{s} = E \cdot 2\pi r l = \frac{\lambda l}{(\vec{a})} \frac{\partial \vec{k}}{\partial z_{0}}$$

$$\therefore \vec{E} = \frac{\lambda}{2\pi \varepsilon_0 r} \vec{e}_r$$

• E 的分布: $E \propto r^{-1}$

• 所求 Ē 仅由 l 段产生吗?

● 选球为高斯面

$$ES = E4\pi r^2 = \frac{2r\lambda}{\varepsilon_0}$$

$$E = \frac{2r\lambda}{4\pi\varepsilon_0 r^2} = \frac{\lambda}{2\pi\varepsilon_0 r}$$

$$\oint \vec{E} \cdot d\vec{S} = \frac{\sum Q_{in}}{\varepsilon_0}$$

表面积: $S = 4\pi r^2$

$$\frac{\sum Q_{in}}{\varepsilon_0} = \frac{2r\lambda}{\varepsilon_0}$$

结果是一样的 ??

【例3】无限大平板均匀带电,面电荷密度 σ

【例3】无限大平板均匀带电,面电荷密度 σ

$$\oint \vec{E} \cdot d\vec{S} = \frac{\sum Q_{in}}{\varepsilon_0}$$

$$\sum Q_{in} = \sigma dS$$

$$\oint \vec{E} \cdot d\vec{S} = 2EdS$$

$$2E\Delta S = \frac{\sigma\Delta S}{\varepsilon_0} \quad E = \frac{\sigma}{2\varepsilon_0}$$

• **Ф**_e 的正、负

应用高斯定理求场强要点:

对象: 有球、柱、平面对称性的某些电荷分布

- 方法: (1) 分析 \vec{E} 的对称性;
 - (2) 选取高斯面S,原则:
 - 需通过待求 \vec{E} 的区域;
 - 在高斯面的待求 Ē处:

$$\vec{E} // d\vec{s}$$
 且等大,使 $\iint \vec{E} \cdot d\vec{s} = E \iint ds$

• 在高斯面的其余处有:

$$E = 0$$
 或 $\vec{E} \perp d\vec{s}$, 使 $\vec{E} \cdot d\vec{s} = 0$

第十二章作业

12.6, 12.8, 12.10, 12.16, 12.20, 12.21,

12.23, 12.26, 12.27, 12.29, 12.31

【思考】习题12.13

中英文名称对照表

电磁学 — electromagnetism 点电荷 — point charge 电荷守恒定律 — charge conservation law 库仑定律 — Coulomb's law 真空介电常量 — dielectric constant of vacuum 电场 — electric field 电场强度 — electric field intensity 场强叠加原理 — superposition principle of electric field intensity

电偶极子 — electric dipole

电偶极矩 — electric dipole moment

电场线 — electric field line

电通量 — and electric flux

高斯定理 — Gauss theorem

第十二章结束