Comprehensive Question Preview

Questions	Choices
	1 (A+B+C+D+E)
	2 1
	3 0
The sum of all the minterms of a Boolean function of 5 variables is:	4 ABCDE
	Key :1
	Edit Delete
	4 NAME
	1 NAND
	2 OR
A positive legic NOD gets is equal to pogetive legic	3 NOR
A positive logic NOR gate is equal to negative logic gate.	4 AND
	Key :2
	Edit Delete
	1 Volt
	2 Volt-sec
	3 Volt/sec
The Fourier transform of a voltage signal $x(t)$ is $X(f)$. The unit of $ X(f) $ is	
	4 Square of Voltage
	Key :1
	Edit Delete
	1 14
	2 12
Harrison OD makes and thous in AIVD DOMO	3 10
How many OR gates are there in 1KB ROM?	4 8
	Key :4
	Edit Delete
	1 6°
	2 18°
A three phase, three stack, variable reluctance step per motor has 20 poles on	3 3°
	4 9°
each rotor and stator stack. The step angle of this step per motor is	
	Key :1
	Edit Delete
	1 100%
	2 50%
	3 Less than 50%
The efficiency of a dc motor when developing maximum power will be about:	4 More than 50%
	Key:3
	🖍 Edit 🛅 Delete
	1 S = fr/fs
	2 S = fr*fs
	3 S = fs/fr
The slip for induction motor is calculated by	4 None of these
	Key :1
	Edit 🛅 Delete

Questions	Choices
	kept constant throughout the length
	decreased towards the centre of the beam
Spacing of stirrups in a rectangular beam, is	3 increased at the ends
	increased at the centre of the beam.
	Key :4 ✓ Edit Delete
	1 25%
	2 20%
By over-reinforcing a beam, the moment of resistance can be increased not more than	3 15%
	4 10%
	Key :1 ✓ Edit 🛅 Delete
The direction of rotation of a dc compound motor can be reversed by interchanging connections:	1 Armature 2 Series field 3 Shunt field 4 Armature and series field Key :1
	▶ Edit 🛅 Delete

Questions	Choices
	1/(1+K _p)
The steady state error of a stable 'type 0' unity feedback system for a unit step	1/K _p 2
function is	3 0
	4 1
	Key :1
	🖍 Edit 🛅 Delete
	 four-directional two directional unidirectional
A SCR is a switch.	4 three-directional Key :3
	🖍 Edit 🛅 Delete
	1 Purely inductive
	Complex with a capacitive component
The intrinsic impedance of copper at high frequency is	Complex with a inductive component
	4 Purely resistive
	Key :3
	🖍 Edit 🛅 Delete
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & -4 \end{bmatrix}$
	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & -4 \end{bmatrix}$
$H(s)=rac{3(s-2)}{4s^2-2s+1}$ the matrix A in the state space form $\dot{m X}=Am X+Bm u$ is equal to	$\begin{bmatrix} 0 & 1 & 0 \\ 3 & -2 & 1 \\ 1 & -2 & 4 \end{bmatrix}$
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & -4 \end{bmatrix}$ Key:2 Edit Delete
	s Euit iii Deiete

Questions	Choice	es
	1	equal to break-over voltage
	2 (equal to cathode voltage
With gate open, a SCR can be turned-on by making supply voltage		reverse
That gate open, a contract amount of by matting cappi, voltage		minimum
	Key :1	_
	"	Edit 🗓 Delete
	1	Positive feedback
	2 1	Negative feedback
A Schmitt trigger uses	1	Compensating capacitors
A committingger uses		Pullup resistors
	Key :1	_
		Edit 🛅 Delete
	1 4	4
		8
If f (t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t +, the magnitude of the dc	1	29
component is:		10
	Key :4	_
	, M*	Edit 🗓 Delete
		AD – BC = 1
		Z11 Z22 – Z12 Z21 = 1
A two port network is symmetrical if		Z12Z21 = 1
, ,		h11 h22 – h12 h21 = 1
	Key :4	
	, / *	Edit 🛅 Delete
	1	eft circularly polarized
	2	right circularly polarized
A plane electromagnetic wave traveling along the + z direction, has its electric	3	elliptically polarized
field given by E_x = 2 cos(ωt) and E_y = 2 cos(ω + 90°)the wave is	4	inearly polarized
	Key :1	
	*	Edit 🛅 Delete
	1	Remains same
	2	Increases four fold
If the potential V across a capacitor (Capacitance C and Charge Q) is	3	ls zero
quadrupled, the value of new capacitance	4	Decreases four fold
	Key :1	
	*	Edit 🛅 Delete
	14	The permittivity is a linear function of electric force
		The permittivity is not a function of the electric force
A dielectric medium is said to be linear if	١.	The permittivity is same everywhere
		The relative permittivity is same in all the directions
	Key :2	
		_
		Edit 🛱 Delete

Questions	Choices		
	1	Is inversely proportional to r ²	
	2	Is inversely proportional to r ³	
The potential of an electric dipole at a large but finite distance r from the mid-	3	Is independent of r	
point of a dipole	4	Is inversely proportional to r	
	Key:	1	
		Edit 🗓 Delete	
	1	σJ	
	2	σ J ²	
If current density in a conductor is J and its conductivity is σ , then power	3	σ^2 J	
dissipated per unit volume of the conductor is	4	J^2/σ	
	Key :	4	
	, / *	Edit Delete	
	1	whose curl is equal to the magnetic flux density	
	2	whose divergence is equal to the electric potential	
Vector potential is a vector	3	whose curl is equal to the electric field intensity	
	4	which is equal to the vector product E x H	
	Key:	1	
		Edit 🛅 Delete	
	1	Remains the same	
	2	is halved is doubled	
When the total charge in a capacitor is doubled, the energy stored:	4	is quadrupled	
	Key:		
		Edit Delete	
	1	10 m	
	2	2/√0.05 <i>m</i>	
The wavelength of wave with propagation constant $(0.1 \pi + j \ 0.2\pi)^{-1}$ is	3	20 m	
	4	30 m	
	4		
	⁻ Key :		
	Key:		
		1	
		1 Edit m Delete	
The donth of population of a ways in a least dialocatric in account the investigation	1 2 3	1 Edit Delete Permittivity	
The depth of penetration of a wave in a lossy dielectric increases with increasing	1 2 3	Edit Delete Permittivity Conductivity	
The depth of penetration of a wave in a lossy dielectric increases with increasing	1 2 3	Edit Delete Permittivity Conductivity Wavelength Permeability	
The depth of penetration of a wave in a lossy dielectric increases with increasing	1 2 3 4	Edit Delete Permittivity Conductivity Wavelength Permeability	

Questions	Choi	ces		
	1	half of	first v	/alue
	2	one-fou	urth c	of first value
A length of wire carries a steady current. It is bent to form a circular plane coil of	3	unalter	ed	
one turn. The same length is now bent more sharply to give a double loop of		four tim	nec 2	s before
smaller radius. The magnetic field at the centre caused by the same current is	4		ics a	3 Deloie
	Key:		ᇁ	
				Delete
	1	Has no separa		tion with plate
	2	Decrea	ses l	by a factor of 2
A parallel plate capacitor with plate separation'd' is connected to a battery. Without breaking any of the connections, insulating handles are used to increase	3	Remair	ns sa	me
the plate separation to 2d. The capacitor charge 'Q'	4	Increas	ses b	y a factor of 2
	Key:			
	itoy .		â	Delete
	,	1	ш	50,000
	1	1/2		
	2			
Two thin spherical shells, one with radius R and the other with radius 2R, surround an isolated charged point particle. The ratio of the number of field lines	3	2		
through the larger sphere to the number through the smaller is:	4	4		
	Key:	:1		
		Edit	曲	Delete
	1			joule/sec
	2			amperes/volt
	2			(amperes)2 x ohm
Which of the following is not the same as watt?				amperes x volts
	4	•		amperes x voits
	Key:		ᅟ	
	•	Edit	<u> </u>	Delete
	1	∇(∇·P)-		
	2	$\nabla^2 P + \nabla$	∢P	
	3	$\nabla^2 P + \nabla ($	∇·P)	
$\nabla \times \nabla \times P$, where P is a vector, is equal to	4	$P \times \nabla \times P$	-∇ ² P	
	Key :	:1		
	**		曲	Delete
	1	consta		
		one-fou		
	2			
	3	Quadru	ibied	
	٦			
	4	zero		
If the potential V across a capacitor is quadrupled, the value of new capacitance is	4 Key :			

Questions	Choices
	The normal component of electric field intensity in the insulation is zero The normal component of electric flux density in the
At the boundary surface between a good conductor and a perfect insulator	insulator is zero The tangential component of electric field intensity in the insulation has a finite value
	The normal component of current density in the conductor has a finite value
	Key :3 ✓ Edit Delete
A line current of finite length is along z direction of cylindrical coordinates. The direction of magnetic field intensity	Depends on length of the line Is in φ direction Is in z direction Is in r direction Key:2 Edit Delete
A planar coil rotates at a constant angular velocity in a uniform magnetic field. The maximum voltage induced in the coil is 12 V. What is the angle between the direction of flux density and normal to the plane of the coil when the induced voltage is 6 V?	1 45° 2 60° 3 30° 4 75° Key:3 ✓ Edit □ Delete
The impulse response of a system is $h\big(t\big)=tu\big(t\big)$. For an input $u\big(t-1\big)$, the output is	1 $\frac{t^2}{2}u(t)$ 2 $\frac{t(t-1)}{2}u(t-1)$ 3 $\frac{(t-1)^2}{2}u(t-1)$ 4 $\frac{t^2-1}{2}u(t-1)$ Key:3
The capacitance per unit length of a transmission line with two parallel cylindrica conductors each of radius 'a' and conductor spacing 2h is C. Then, the capacitance of a cylindrical conductor of radius a and located at a height habove the ground plane is	1 2C 2 C/2 3 C 4 C/4 Key:1

Questions	Choices
	Volume charge density of free electrons and drift velocity'
	Volume charge density of free electrons and mobility
The conductivity of a metal is equal to the product of	Drift velocity, charge concentration and mobility
	Drift velocity and mobility
	Key :2
	Edit Delete
	1 0 C/ m ²
	4.44.40=9612
The electric field on the surface of a perfect conductor is 2 V/m. The	1 8×10-11 c/2
conductor is immersed in water ε =80 ε_0 . The surface charge density on the	3
conductor is	4 2 C/ m ²
	Key :2
	Edit Delete
	1 12.50 cm
	2 100. 00 cm
The depth of penetration of electromagnetic wave in a medium having	3 50.00 cm
conductivity σ at a frequency 1 KHz is 25 cm. The depth of penetration at a frequency of 4 KHz will be	4 6.25 cm
	Key :1
	✓ Edit ☐ Delete
	1 intensity of magnetic field
	direction of polarization
	rate of energy flow
Poynting vector gives	intensity of electric field
	r ·
	Key :3 ✓ Edit Delete
	time varying fields only
	both static and time varying fields
	static field only
Divergence theorem is applicable for	
	4 electric fields only
	Key :2
	Edit Delete
	1 doubles
	2 halves
Consider a long, two-wire line composed of solid round conductors. The radius of both conductors is 0.25 cm and the distance between their centres is 1 m. If	decreases but not halve
this distance is doubled, then the inductance per unit length	4 increases but not doubles
	Key :4 ✓ Edit Delete
	East W Delete

Questions	Choic	ces		
,	1	E = kQ/c	d	
	2	E = kQ/	d^2	
Vhat is the exact representation of electric field strength of a point charge?	3	E = Q/d	2	
	4	E = 2k (Q/d^2	
	Key:	2		
		– Edit	â	Delete
	1			etre square
	1	watt per		•
	2	•		
The unit of Poynting vector is	3			etre cube
	4	joule pe	r me	etre square
	Key:	1		
	**	Edit		Delete
	1	2		
	2	4		
A long coaxial transmission line has two dielectric layers of different permittivities between the conductors. To solve the one-dimensional Laplace's equations for	3	3		
the scalar potential in the dielectric regions, the number of boundary conditions	4	5		
needed is	· Key ::	2		
		Edit	â	Delete
	1	MVA	_	
	2	Kilo-amj	peres	S
Breaking capacity of the circuit breaker is usually expressed in:	3	kV		
	4 Key :	MW 1		
	.ey .	Edit	龠	Delete
		Ampere		
	1	-		iei
	2	Ampere		
The unit of $\nabla \times H$ is	3	Ampere	-me	ter
	4	Ampere	/ sq.	meter
	Key :	4		
	**	Edit	â	Delete
	1			nd Ohms law
	2	KVL and		
The Nodal method of circuit analysis is based on,				
			<i>a</i> 100	,L
			â	Delete
	1	1.9V	_	
A conducting bar moves in a uniform magnetic field at a constant velocity				
between two conducting rails of negligible resistance. The flux density, velocity				
and distance between the rails are 0.25 T, 12 m/s and 40 cm respectively. The	3			
	4	1.2V		
	Key :	2		
		Edit	â	Delete
A conducting bar moves in a uniform magnetic field at a constant velocity between two conducting rails of negligible resistance. The flux density, velocity	3 4 Key : 1 2 3	KCL and KVL and 3 Edit 1.9V 0.6V 1.04V 1.2V 2	in the second se	nms law

Questions	Choic	es	
	1	aω B ₀ s	sin ωt
	2	0.5 αω	B ₀ sinωt
A stationary single-turn circular conducting loop is located in a uniform magnetic field with its axis along the direction of flux density. The radius of the loop is 'a'	3	-0.5 aω	B ₀ cos ωt
and the flux density is B_0 sin ωt . The electric field intensity along the loop is	4	0.5 aω	B ₀ cos ωt
	Key:	3	
	, / ,	Edit	Delete
	1	remain	s the same
	2	increas	es
When the separation between two charges increases, the electric potential	3	decrea	ses
energy of charges	4	may ind	crease or decreases
	Key:	3	
		Edit	Delete
	1	= 0.63	2Vs / т
	2	= 0.632	2Vs / fτ
	3	= 0.63	2Vs / f
The snubber circuit basic design expression is given by	4	All ans	wers are wrong
	Key:	1	
	**	Edit	Delete
	1	Only in	side the pipe
	2	Only or	utside the pipe
	3	Both in	side and outside the pipe
If a long hollow pipe carries a direct current, the magnetic field due to current will be		Neither	inside nor outside the
	4	pipe	
	Key:	2	
	4	Edit	Delete
	1	numbe paths	r of armature parallel
		numb	er of armature parallel
	2	paths 8	R Pole flux
In a d.c. generator, the generated e.m.f is directly proportional to the	3	no of sl	lots
	4	Speed	
	Key:	4	
	, / ,	Edit	Delete
	1		are sinks and source for
			tic fields c and magnetic fields are
	2		quadrature
	3	In lossl time is	ess dielectric, relaxation finite
Consider the following statements. Which of the following statement is correct?		In cond	lucting medium, the field
	4	attenua	ates exponentially with
	Key:		
	-	Edit	Delete
		Luit	ui Detete

Questions	Choices
When a magnetic flux cuts across 200 turns at the rate of 2 Wb/s , the induced voltage is	1 400 V 2 100 V 3 0 V 4 600 V Key :1
The magnetic field intensity (in m A) at the centre of a circular coil of diameter 1 meter and carrying current of 2 A is	1 3 2 4 3 8 4 2 Key:3
The relative permittivity of free space is given by	1 1 2 10 3 100 4 1000 Key:1 ✓ Edit
A wave is incident normally on a good conductor. If the frequency of a plane electromagnetic wave increases four times, the skin depth, will	1 decrease by a factor of 2. 2 increase by a factor of 2. 3 decrease by a factor of 4. 4 remain the same. Key:1 * Edit Delete
Poynting vector signifies	1 current density vector 2 power density vector producing electrostatic field 3 Power density vector producing electromagnetic field current density vector producing electromagnetic field Key:3 Edit Delete
For finite difference analysis, a rectangular plate measuring 10 by 20 cm is divided into eight subregions by lines 5 cm apart parallel to the edges of the plates. How many free nodes are there if the edges are connected to some source?	1 15 2 12 3 9 4 3 Key :4 ★ Edit Delete
When an EM wave is incident on a dielectric, it is	Partially transmitted and partially reflected fully reflected Fully transmitted none of these. Fully transmitted
With respect to equipotential surface pick the odd one out.	Potential is different every where Work done in moving charge from one point to another is zero Potential is same every where No current flows on this surface Key:1 Edit Delete

Questions	Choices
The transient stability of the power system can be effectively improved by	1 Excitation control 2 Single pole switching of circuit breakers 3 Phase shifting transformer 4 Increasing the turbine valve opening Key:2 * Edit Delete
The force between two charges is 120 N. If the distance between the charges is doubled, the force will be	1 40 N 2 30 N 3 60 N 4 15 N Key :2 ✓ Edit
Which type of ADC quantizes the analog signal into a stream of bits whose amount corresponds to the signal level?	1 Flash ADC 2 Dual-slope 3 Successive approximation 4 Sigma-delta Key:4 ✓ Edit ☐ Delete
In opamp the ratio of the voltage, that is feedback, to the input is known as	1 gain 2 loop gain 3 feedback factor 4 transfer function Key:3
A comparator with a trip point of zero is sometimes called a	1 Positive limit detector 2 Zero-crossing detector 3 Threshold detector 4 Half-wave detector Key:2
If the current through a 10 mH inductor increases from zero to 2 A, how much energy is stored in the inductor?	 ✓ Edit
Turn-on time of an SCR can be reduced by using a	triangular pulse trapezoidal pulse rectangular pulse of low amplitude and wide width rectangular pulse of high amplitude and narrow width Key:4 Edit Delete

Questions	Choic	choices				
The 741 has become the most widely used opamp because	1 2 3	it has lo it is inex use	wer o	voltage gain output impedance sive and easy to cteristics specified		
	Key:	in the o 4 Edit	_	s Delete		
Differentiation of the step function is function	1 2 3 4 Key :	Step Delta Parabol Ramp 2 Edit		Delete		
Logic system in which the higher of the two levels is represented by 1 and lower is represented by 0.	1 2 3 4 Key :	system Positive Negativ	sitive logi e log	te state e and negative logic c system lic system Delete		
A dielectric material must be	1 2 3 4 Key :	Resisto good co semi co insulato 4	onduc onduc or			
1 Tesla =	1 2 3 4 Key :	1 Webe 1 Webe 1 Webe 1 Webe 3	er/mm er/m ² er/cm			
A true differential amplifier	1 2 3 4 Key :	applied termina amplified applied termina amplified betweed none of	at th I es the at th I es the the the	e input voltage e positive input e input voltage e negative input e difference input voltages options specified Delete		
Identify which of the following quantities is not a vector:	1 2 3 4 Key :	electric force work electric	flux			

A material has conductivity of 10 ⁻² mho/m and a relative permittivity of 4. The frequency at which the conduction current in the medium is equal to the displacement current is What controls the output pulse width of a one shot multivibrator?	90 3 450 4 900 Key :1 • Edi		
4. The frequency at which the conduction current in the medium is equal to the displacement current is What controls the output pulse width of a one shot multivibrator?	900 Key :1 Fedi	MHz	
equal to the displacement current is What controls the output pulse width of a one shot multivibrator?	• Key :1	t 🗂	
What controls the output pulse width of a one shot multivibrator?	Edi		
	1 Clo		B. 1.
		-l. f	
		ck frequ width o	f the clock pulse
	3 an		constant
		RC time	constant
	Key :4	. 而	Delete
	•	a / (d* d	
A long line charge is parallel to the axis of a long cylindrical conductor and it is ocated outside the conductor. The radius of the cylinder is 'a' and its axis is at a	_	[(a * a) <i>i</i>	
distance 'd' from the line charge. An image charge located on the line that is berpendicular to the line charge and the conductor axis satisfies the necessary	3 d*	d - (a/d)	
poundary conditions. The distance of the image line charge from the real line	4 (a * Key :2	a)/ d	
	Edi	t 🟛	Delete
	1 147	'6 pF	
A capacitor consists of two metal plates each 500 X 500 mm ² and spaced 6 mm	983	3.3 pF	
apart. The space between the metal plates is filled with a glass plate of 4 mm		7.7 pF	
hickness and a layer of paper of 2 mm thickness. The relative permittivities of	,	' 56.25 pl	=
he glass and paper are 8 and 2 respectively. Neglecting the fringing effect, the capacitance will be	₄ Кеу :2	70.20 PI	
	Key .2 Fdi	t 🟛	Delete
			le and observable
The state discussion of a contagn is always in Callerina Comm	Į.		
Γhe state diagram of a system is shown in following figure.	_	ntrollab ervable	le but not
1 1/s x_2 1 1 1/s x_1 2 1	_	servable trollabl	e but not e
c_1 c_2 c_3	4	ther co	ntrollable nor
Γhe system is	Key :1		
	🖍 Edi	t 🟛	Delete
	1 Alo	ng the c	urrent density vector
	₂ Alo	ng the f	ux density vector
A piece of semiconductor carrying direct current is located in a steady magnetic			llar to both current I flux density vectors
ield so that the magnetic flux density is perpendicular to the direction of flow of current. The direction of Hall voltage is	₁ of c		n the relative values lensity and flux
	Key :3		
	🖍 Edi	t 🟛	Delete

Questions	Choice	es		
		Indepei radius	nden	t of conductor
	2	Proport conduc	tional tor ra	to square of adius
The internal inductance of a round conductor carrying steady current is	3	Inverse conduc	ly pro	oportional to adius
, ,	4	Directly conduc	prop	oortional to adius
	Key :1			
	*	Edit	â	Delete
	1	-2.47	$\tau \vec{a}_z$	
	2	2.4π <i>ἀ</i>	i_z	
The time averaged Poynting vector, in W/m ² , for a wave with	3 '	4.8π <i>ἀ</i>	z	
\vec{E} =24 $e^{j(\omega t + \beta z)}\vec{a}_{y}V/m$ in free space is	4	-4.8π	d_z	
	Key :1			
		Edit	â	Delete
	1	1 30π		
		1		
The electric field component of a time harmonic plane EM wave	2	60π		
traveling in a non-magnetic lossless dielectric medium has	3	1		
amplitude of 1 V/m. If the relative permittivity of the medium is 4	,	120π 1		
the magnitude of the time-average power density vector (in W/m ²)	4	240π		
vv/m)	Key :3			
	-	Edit	a	Delete
	4	Luit		Copper
	1			Nickel
	2			
Most widely used RTD element is	3			Platinum
	4			Iron
	Key :3	}		
		Edit	曲	Delete
	11			rgence of the
	ļ' ·	field is	s ec	qual to zero
	2	The c	url	of the field is
		equal	to z	zero
	1_			of the field is
An electrostatic field is said to be conservative when	3	equal	to -	∂B ∂t
		The L	.apla	acian of the
	4 .	field i	s ec	qual to $\mu \varepsilon \frac{\partial^2 E}{\partial t^2}$
	Key :2			ot-
	**	Edit		Delete
	1			

Questions	Choices			
A four quadrant operation require:	Two full converters in series Two full converters connected back to back Two semi conductors connected back to back Two full converters connected in parallel Key:2 Edit Delete			
In a circulating-current type of dual converter, the nature of the voltage across the reactor is:	1 Alternating 2 Pulsating 3 Direct 4 Triangular Key:1 * Edit Delete			
Copper behaves as a	Conductor or dielectric depending on the frequency Conductor always. Conductor or dielectric depending on the applied electric field strength Conductor or dielectric depending on the electric current density Key:2 Edit Delete			
For dynamic equalizing circuit used for series connected SCRs, the choice of C is based on:	Reverse recovery characteristics Rise time characteristics Turn-off characteristics Turn-on characteristics Key:1 Edit Delete			
It is recommended to use UJT oscillator for gate-triggering of the thyristors mainly because	1 it is less expensive 2 it provides sharp firing pulses 3 it is fairly simple 4 none of these Key :2 ✓ Edit ☐ Delete			
The function of snubber circuit connected across the SCR is to:	1 Suppress dv/dt 2 Increase dv/dt 3 Decrease dv/dt 4 Decrease di/dt Key:1 ** Edit Delete			
An SCR does not conduct for a certain value of load resistance. In order to make it ON, it is necessary to	1 decrease the load resistance 2 increase the resistance 3 increase the gate-pulse 4 none of these Key:1 * Edit Delete			

Questions	Choices				
For thyristors, pulse triggering is preferred to dc triggering because	triggering system is required for a very short duration pulse system is simpler gate dissipation is low all of these Key:4 Edit Delete				
If a medium has a greater number of free charges, the medium	1 Behaves like a perfect dielectric 2 Has no polarization 3 behaves like an insulator 4 Has larger polarization Key:2 * Edit Delete				
When an alternating current passes through an ohmic resistance the electrical power converted in to heat is	1 Reactive power 2 Apparent power 3 Active and reactive power 4 True power Key:4 * Edit Delete				
An opamp is	a high gain push pull amplifier a low impedance amplifier. a differential amplifier a direct coupled amplifier Key:4 ✓ Edit □ Delete				
Stringing chart is used in TLs for	for designing the tower for calculating the sag in the conductor determining the distance between the conductor in the design of insulator string Key:2 Edit Delete				
Mesh analysis employs	1 KVL 2 lence law 3 KCL 4 both KVL and KCL Key:1 Fedit Delete				

Questions	Choic	Choices			
	1	The ma	-	zing current has a	
	2	The vo		ratio remains	
When high permeability core is used for a transformer in order, that	3	The ma		zing current has a	
	4			zing current has a reactance	
	Key:	3			
	, / ^\	Edit	â	Delete	
	1	Armatu			
	2	Comm			
Which of following is not a part of DC machine?	4	Field w			
	Key:				
	*	Edit	â	Delete	
	1	Lags b	y 90°		
	2	Leads	by slig	htly less than 90°	
The no-load current in a transformer with respect to primary voltage	3	Leads	by 90°	,	
The first can be a series of the first can	4	Lags b	y sligh	tly less than 90°	
	Key:	4			
		Edit		Delete	
	1	Core re	eluctar	nce	
	2	Eddy c	urrent	loss	
The core of a transformer is laminated, which is lightly insulated by varnish in	3	Hyster	esis lo	ss	
order to reduce	4	Both hy		sis and eddy	
	Key:	2			
	**	Edit	â	Delete	
	1	all			
	2	Alterna	itor		
The machine used in windmills is	3	synchr	onous	generator	
	4	Induction	on ger	nerator	
	Key:	4			
	**	Edit		Delete	
	1			pedance bridge	
	2	OC Tes			
The tests needed to be performed to determine the leakage reactance of a	3	SC Tes			
transformer are	4		C and	SC tests	
	Key:		_		
	*	Edit		Delete	

Questions	Choices
The SCR is turned-off when the anode current falls below	1 latching current 2 breakover voltage 3 holding current 4 forward current rating Key:3 ✓ Edit □ Delete
Gate characteristics of a thyristor	is a straight line passing through the origin is of the type, V V = a + b. IV is a curve between V g and Ig has a spread between two curves of V g = Ig. Key :4 Edit □ Delete
The advantages of Hay's bridge over maxwell's inductance –capacitance bridge is because	It can be used for measurement of inductance of low Q coils It can be used for measurement of inductance of high Q coils Its equation for balance do not contain any frequency term All answers are wrong Key:2 Edit Delete
Inductance is measured by which one of the following?	1 Wien bridge 2 Schering bridge 3 Maxwell bridge 4 Owen bridge Key:3 ✓ Edit □ Delete
In a dc motor, the shaft torque is less than armature torque . This is due to:	1 Eddy current loss 2 Hysteresis loss 3 Stray loss 4 All the losses Key:3 Edit Delete
An average-reading digital multimeter reads 10V when fed with a triangular wave, symmetric about the time-axis.For the same input an rms-reading meter will read	1 20√3 2 10/√3 3 20/√3 4 10√3 Key:1 ✓ Edit Delete
An analog voltmeter uses external multiplier settings. With a multiplier setting of $20k\Omega$, it reads 440V and-with a multiplier setting of $80k\Omega$ it reads 352V. For a multiplier setting of $40k\Omega$,voltmeter reads	1 371V 2 383V 3 394V 4 406 V Key:4 ✓ Edit □ Delete

Questions	Choices					
	1	Non-minimum phase and unstable				
	2	Minimum phase and unstable				
The discrete time transfer function $1-2z^{-1}$	3	Minimum phase and stable				
The discrete-time transfer function $\frac{1-2z^{-1}}{1-0.5z^{-1}}$ is	4	Non-minimum phase and stable				
	Key:	4				
		Edit 🗓 Delete				
	1	Voltage				
	2	Resistance				
	3	frequency				
In a multimeter, internal battery is required to measure	4	current				
	Key:	2				
	, , , , , , , , , , , , , , , , , , ,					
	•	2 2 3 3 3 3				
	1	selecting a proper measuring device for the particular application				
	2	calibrating the measuring device against a standard device				
Systematic error of an instrument for measurement can be minimized by	3	applying correction factors for change of ambient conditions				
		carrying out all of the above				
	4					
	Key:	_				
	,	Edit 🗓 Delete				
	•					
	1	applying a constant voltage across the unknown resistance and measuring the current				
	1 2	across the unknown resistance				
Modern electronic multimeters measure resistance by	1	across the unknown resistance and measuring the current				
Modern electronic multimeters measure resistance by	1 2	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across				
Modern electronic multimeters measure resistance by	1 2	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling				
Modern electronic multimeters measure resistance by	1 2 3	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling				
Modern electronic multimeters measure resistance by	1 2 3 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling				
Modern electronic multimeters measure resistance by	1 2 3 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling				
	1 2 3 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling 4 Edit Delete 5.5 kHz 5.75 kHz				
A circuit was tuned for resonance by 8 students and the values of resonant frequency in kHz were recorded as 532,548,543,535,546,531,543 and 536. The	1 2 3 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling 4 Edit Delete 5.5 kHz 5.75 kHz 5.25 kHz				
A circuit was tuned for resonance by 8 students and the values of resonant frequency in kHz were recorded as 532,548,543,535,546,531,543 and 536. The	1 2 3 4 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling 4 Edit Delete 5.5 kHz 5.75 kHz 5.25 kHz 5.15 kHz				
A circuit was tuned for resonance by 8 students and the values of resonant	1 2 3 4 Key : 3 4 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling 4 Edit Delete 5.5 kHz 5.75 kHz 5.25 kHz 5.15 kHz				
A circuit was tuned for resonance by 8 students and the values of resonant frequency in kHz were recorded as 532,548,543,535,546,531,543 and 536. The	1 2 3 4 Key :	across the unknown resistance and measuring the current using a bridge circuit forcing a constant current and measuring the voltage across unknown resistance taking advantage of an electronic bridge compensator for nulling 4 Edit Delete 5.5 kHz 5.75 kHz 5.25 kHz 5.15 kHz				

Questions	Choic	Choices				
	1	10mΩ	in se	ries with the meter		
	2	$10 \text{m}\Omega$	in pa	rallel with the meter		
A PMMC type ammeter has full scale current of 100μA and a coil resistance of	3	1mΩ ir	seri	es with the meter		
100Ω . The resistance required to convert the $100\mu A$ ammeter into 1A full scale dc ammeter is	4	1mΩ ir	n para	allel with the meter		
	· Key ::	Čev :2				
		Edit		Delete		
	1	Spring				
		Fluid fr	iction	1		
	2	eddy c				
In majority of instruments damping is provided by	3	-				
	4	all the	abov	e		
	Key:		_			
	, / ,	Edit		Delete		
	1			RTD, Thermocouple		
	2	Thermi	stor,	Thermocouple, RTD		
	3			ple, RTD,		
The order in which the temperature transducers exhibit non-linearity (decreasing		Thermi				
manner) is	4	RTD, T		nocouple,		
	Kov.		3101			
	Key:		â	Delete		
	•	Eait	ш	Delete 2%		
	1					
A strain regular has a regular factor of 4. It is ottoched to a mostal har that	2			8%		
A strain gauge has a gauge factor of 4. It is attached to a metal bar that stretches from 0.25m to 0.255m when strained. What is percentage change in	3			0.8%		
resistance?	4			8.8%		
	Key:	1				
		Edit		Delete		
				orks when it is		
	1			sed and the works when it is		
		reverse				
		The LE	D w	orks when it is		
	2			sed and the		
	_	reverse		works when it is sed.		
				orks when it is		
Which of the following statements is true?				sed and the		
	3	•		works when it is		
		forward				
				orks when it is sed and the		
	4			works when it is		
		forward	d bia	sed.		
	Key :	3				
	<i>A</i> *	Edit		Delete		
ı	!					

Questions	Choices
In a nonlinear op-amp circuit, the	Op amp never saturates Output shape is the same as the input shape Feedback loop is never opened Op amp may saturate Key:1 Edit Delete
An ideal operational amplifier has	1 infinite bandwidth 2 All the characteristics specified in the options 3 infinite output impedance 4 zero input impedance Key :1 ✓ Edit ☐ Delete
Turn-on time for an SCR is 10 msec. If an inductance is inserted in the anode circuit, then the turn-on time will be	1 about 10 msec 2 less than 10 msec 3 more than 10 msec 4 10 msec Key :3 ✓ Edit ☐ Delete
The forward voltage drop during SCR-on state is 1.5 V. This voltage drop	varies linearly with load current decreases slightly with load current remains constant and its independent of load current increases lightly with load current Key:2 Edit Delete
A thyristor can be termed as	1 dc switch 2 AC switch 3 square-wave switch 4 both DC switch and AC switch Key:1 Edit Delete
On-state voltage drop across a thyristor used in a 250 V supply system is of the order of	1 None of these 2 240-250 V 3 1-1.5 V 4 100-110 V Key:3 ✓ Edit □ Delete
When subject to a unit step input, the closed loop control system shown in the figure will have a steady state error of $\frac{2}{s+2} \frac{Y(s)}{s+2}$	1 -1 2 -0.5 3 0 4 0.5 Key:3 ✓ Edit □ Delete

Questions	Choices
	-2 and +2
	-j2 and $+j2$
The state variable description of a linear autonomous system is, $\dot{X} = AX$	2 1 2
where X is the two dimensional state vector and A is the system matrix $\begin{bmatrix} 0 & 2 \end{bmatrix}$	
given by $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$. The roots of the characteristic equation are	+2 and +2
	Key :1
	Edit Delete
	1 0.144 A
	2 0.244 A 3 0.344 A
,	4 0.444 A
	Key :2
	Edit Delete
	1 electrons only
	2 electrons or holes
In a thyristor, anode current is made up of	3 electron and holes4 none of these
	Key :3
	Edit Delete
	$1 K_t s^2$
	$_{2}$ K_{t}/s
For a tachometer, if $\theta(t)$ is the rotor displacement in radians, $e(t)$ is the output voltage and K_t is the tachometer constant in V/rad/sec, then the	$K_t s$
transfer function, $\frac{E(s)}{Q(s)}$ will be	
transfer function, $\frac{1}{Q(s)}$ with be	K_t
	Key :3
	Edit Delete
	$s^2 + 5s + 3 = 0$
	$s^{2} - 3s - 5 = 0$ $s^{2} + 3s + 5 = 0$
If the system matrix of a linear time invariant continuous system is given by $\begin{bmatrix} 0 & 1 \end{bmatrix}$	$s^2 + 3s + 5 = 0$
$A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by	$s^2 + s + 2 = 0$
	Key :1
	Edit Delete
	1 10 2 6
	3 16
The negative number equivalent of -(A) of radix 16 is	4 5
	Key :2
	Edit Delete
	Both A and R are correct and I
	is correct explanation of A A is wrong but R is correct
Assertion (A): A fully controlled bridge converter can operate in first and fourth	3 A is correct but R is wrong
quadrant.	Both A and R correct but R is
Reason (R): A semi converter is cheaper than a full converter.	not correct explanation of A
	Key :2
	Edit 🛅 Delete

Questions	Choices				
In a SCR	1 2 3 Key :	low in the state. gate-cur continuo gate cur proportio breakov as gate-forward reduces	rent ously rent onal er vo curre brea	hakover voltage is rward blocking has to be kept ON of for conduction. is directly to forward bltage. ent is raised, akover voltage Delete	
The average on-state current for an SCR is 20 A for conduction angle of 120°. The average on-state current for 60° conduction angle will be	1 2 3 4 Key :	less that 10 A 20 A 40 A	n 20		
In an induction motor, the frequency of rotor currents at standstill is equal to for a supply frequency f.	1 2 3 4 Key :	2f sf zero f 4 Edit	1	Delete	
A 200/100 V transformer has a pu impedance of 0.05. The voltage needed to be applied on the HV side to circulate full-load current during short-circuit test is	1 2 3 4 Key :	5 V 200 V 10 V 100 V 3 Edit	4	Delete	
Which of the following is not a basic element of a transformer ?	1 2 3 4 Key :	core primary seconda mutual f 4	ary w lux	-	
When the SCR conducts, the forward voltage drop	1 2 3 4 Key ::	current increase current is 1 to 1 is 0.7 V	es sli .5 V	stant with load ghtly with load Delete	

Questions	Choices
A class E chopper	can operate in second quadrant only can operate in first or third quadrant can operate in all the four quadrants can operate in either second or third quadrant Key:3 Edit Delete
The turn-on time of a SCR with inductive load is 20 ms. The pulse train frequency is 2.5 kHz with a mark/space ratio of 1/10, then	the SCR will not turn-on the SCR will turn-on if inductance is removed the SCR will turn-on if pulse frequency is increased to two times. the SCR will turn-on Key:1 Edit Delete
In an ideal transformer,	1 windings have no resistance 2 primary winding 3 secondary winding 4 mutual flux Key:4
The main purpose of using core in a transformer is to	1 decrease iron losses 2 prevent eddy current loss 3 eliminate magnetic hysteresis 4 decrease reluctance of the common magneticcircuit. Key:4 * Edit Delete
A cycloconverter uses	1 natural commutation 2 forced commutation both natural and forced commutation together either natural or forced commutation Key:3 Edit Delete
Pulsation loss in rotating machines occurs in the	Armature teeth and pole shoes Pole body Armature teeth and pole body Stator and rotor cores Key:1 Edit Delete
For a L- L fault which of the following sequence network will not be involved for calculating the fault current.	1 Zero 2 Negative 3 Positive 4 all the three Key:1 ✓ Edit □ Delete

Questions	Choices
Transformer cores are laminated in order to	1 simplify its construction 2 minimise eddy current loss 3 reduce cost 4 reduce hysteresis loss. Key:2 Edit Delete
A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be	1 1600 2 250 3 400 4 1250 Key :1
The essential requirement(s) for power plants to be operated as as base load is/are	All of the requirements specified in the options Capacibility of operating continuously for long period. Requirement of few operating personal and economical repair. Low operating cost. Key:2 Edit Delete
Hysteresis prevents false triggering associated with	1 sinusoidal input 2 Stray capacitances 3 Noise voltages 4 Trip points Key :2 ✓ Edit □ Delete
The closed loop transfer function of a control system is given by G(s) = 2(s-1)/[(s+1)(s+2)] For a unit step input the output is	1 -3e^-2 t + 4e^- t -1 2 -3e^-2 t - 4e^- t +1 3 Zero 4 Infinity Key :1 Edit Delete
The motor equation is given by	PEdit Delete 1 V=IaRa-V 2 V=Eb-IaRa 3 V=Eb x IaRa 4 V=Eb+IaRa Key:4 Edit Delete
In a synchro error detector, the output voltage is proportional to [¿(t)]n, where ¿(t) is the rotor velocity and n equals	1 -2 2 -1 3 1 4 2 Key:3
The capacitance of a capacitor is not affected by	Distance between plates area of plates all of the options specified Thickness of plates Key:3 Edit Delete

Questions	Choi	ces
	1	Metal plates
	2	Both metal plates and dielectric
In a capacitor the electric charge is stored in	3	dielectric
in a capacitor the electric charge is stored in	4	none of these
	Key:	:2
	**	Edit Delete
	1	Two insulators separated by a conductor
	2	two conductors separated by an
A capacitor consists of	_	insulator
	3	two conductors only
	4 Key:	Two insulators only
	**	Edit 🛅 Delete
	1	1
	2	10
The relative permittivity of free space is given by	3	100 1000
	4 Key:	
	rey .	_
	_	Edit Delete
	1	20μF
	2	10 μF
What capacitance must be placed in series with a 15µF capacitor to give a total	3	5 μF
capacitance of 5μF	4 K ov.	7.5 μF
	Key:	
	.//	Edit Delete
	1	Displacement
	2	Temperature
LVDT is used to measure	3	Humidity
	4 K ov.:	Force
	Key:	
	**	Edit 🛅 Delete
	1	4.0
	2	2.0
The inertia constant H of a machine of 200 MVA is 2. p.u. Its value corresponding to 400	3	1.0
MVA will be	4	0.5
	Key:	_
	**	
	1	bulk power transmission over very
		long distances
	2	inter-connecting two systems with
		same nominal frequency
High Voltage DC (HVDC) transmission is mainly used for	3	minimizing harmonics at the
, , , , , , , , , , , , , , , , , , , ,		converter stations
	4	eliminating reactive power
	V	requirement in the operation
	Key:	
	, / ^,	
	1	Improve the protection of the line
	2	Reduce the voltage profile
Series capacitive compensation in EHV transmission lines is used to	3	Improve the stability of the system
	4	Reduce line loading
	Key:	:3
	**	Edit Delete

Questions	Choices			
The incremental fuel cost for two generating units are given by C1= 25+0.2PG1;C2= 32+0.2PG2 where PG1 and PG2 are real power generated by the units. The economic allocation of the total load of 250MW, neglecting transmission loss is given by:	1 PG1=100MW,PG2=150MW 2 PG1=125MW=PG2 3 PG1=109.75MW,PG2=140.25MW 4 PG1=140.25MW,PG2=109.75MW Key:4 * Edit Delete			
The cause of power system instability is	1 alternator loosing its excitation 2 switching ON and OFF in the line 3 short circuit fault in the lines 4 all Key:4 * Edit Delete			
The transformer will work on	1 a.c. only 2 d.c. only 3 All the answers are wrong 4 a.c. as well as d.c Key:1 * Edit Delete			
When bundle conductors are used in place of single conductors, the effective inductance and capacitance will respectively	1 increase and decrease 2 remain unaffected and increase 3 decrease and remain unaffected 4 decrease and increase Key:3 ** Edit Delete			
Real power flow in the transmission lines is largely effected by	 Line Resistance System Voltage Load angle Conductor spacing Key:3 Edit Delete 			
A consumer consume. 600 kWh per day at a load factor of 0.40. If the coneumer increases the load factor of 0.70 without increasing the maximum demand, what is the consumption of energy in kWh	1 1100 kWh 2 1000 kWh 3 950 kWh 4 1050 kWh Key:4 ✓ Edit □ Delete			

Questions	Choices			
	1	Short circuit ratio is the ratio of the field current required to produces the rated voltage on open circuit to the rated armature current		
	_	The damper bars help the synchronous motor self-start		
In relation to the synchronous machines, which on of the following statements is false?	3	The V-cure of a synchronous motor represents the variation in the armature current with field excitation, at a given output power		
	4	In salient pole machines, the direct-axis synchronous reactance is greater than the quadrature-axis synchronous reactance.		
	Key :1	1		
		Edit Delete		
The conductor of a 10 km long, single phase, two wire line are separated by a distance of 1.5 m. The diameter of each conductor is 1 cm, If the conductors are of copper, the inductance of the circuit is	2 3 4 Key :2	19.6 mH 23.8 mH 50.0 mH 45.3 mH 2 Edit Delete		
In a string of suspension insulators, the voltage distribution across the different units of a string could be made uniform by the use of a grading ring, because it	1 2 3 4 Key :4	decreases the capacitances of upper insulators units to cause equal voltage drop increases the capacitances of lower insulator units of cause equal voltage drop forms capacitances with link-pins to carry the charging current from link pins forms capacitances which help to cancel the charging current from link pins 1 Edit Delete		
Generation, in India is mostly atkV	2 3 4 Key :3	12 11.5 11 6.6 3 Edit Delete		

Questions	Choices			
	1	flat volta	age profile	
	2	transmis	sion line angle is greater	
	2	than actu	al length of line	
	3	transmis	sion line agnle is less than	
A loss less line terminated with its surge impedance has	3	the actua	al length	
A loss less line terminated with its surge impedance has		both flat	voltage profile and	
	4	transmis	sion line angle is greater	
		than actu	ual length of line	
	Key:	1		
	**	Edit	Delete	
	1	Differen	tial	
	2		nal over current	
relay is a gas actuated relay used to sense the incipient fault in a	3	Voltz/he		
transformer.	4	Buchhol		
	Key:		,	
		Edit	Delete	
	•			
	1		d and backward rotating re equal	
	2		urrent is zero	
A single-phase induction motor with only the main winding excited would exhibit	3		urrent is non-zero and is requency	
the following response at synchronous speed	4		d rotating field is more backward rotating field	
			3	
	Key:		_	
	**	Edit	Delete	
	1	salient	pole rotor	
	2	all the a	inswers are wrong	
Which of the following rotor requires damper winding?	3	cylindric	cal rotor	
which of the following fotor requires damper winding?	4	both typ	e rotor	
	Key:			
		Edit	Delete	
	*			
	1		line through the origin	
	2	circle al	oout the origin	
An electric motor with "constant output power" will have a torque-speed	3	rectang	ular hyperbola	
characteristics in the form of a	4	straight speed a	line parallel to the axis	
	Key:	3		
	NOY .		命 5.17	
	1	Edit	Delete	
	1	Increas	e in magnetizing current	
	2	Increas	e in no-load speed	
Increasing the air-gap of a squirrel-cage induction motor would result in	3	Increase factor	e in full-load power-	
]	4	Maximu	ım available torque	
	· Key:	1		
	ļ -		음 ~ .	
	***	Edit	Delete	

Questions	Choices			
According to application, instruments are classified as	1 2 3 4 Key :	portable switch b 3	tch k	
Which of the following essential features is possessed by an indicating instrument ?	1 2 3 4 Key :	Controlli Deflectir 4 Edit	g developting de	ions specified evice
A device prevents the oscillation of the moving system and enables the latter to reach its final position quickly	2 3 4 Key :	damping controllin deflectin	ng ng	Delete
The spring material used in a spring control device should have the following property.	1 2 3 4 Key :	efficient All of the Should h resistand Should h	e opt nave ce pe no	ow temperature co- ions specified low specific on-magnetic Delete
A wattmeter has a current coil of 0.1 ¿ resistance and pressure coil of 6.5 k¿ resistance. When the input to the meter is 12 A at 250 V with unity power factor and the current coil is connected on load side calculate the percentage error due to the resistance only.	1 2 3 4 Key :	0.32 0.48 0.23 0.84 3		Delete
A CRT has an anode voltage of 2 kV and parallel deflecting plates 2 cm loang and 5mm apart. The screen is at a distance of 30 cm from the centre of deflecting plates. Find the input voltage required to deflect the beam though 3 cm. The input voltage is applied to the deflecting plates through amplifiers having an overall gain of 100.	1 2 3 4 Key :	0.1 V 1 V 10 V 0.01 V 4	â	Delete
Most widely used RTD is	1 2 3 4 Key :	Tungste Platinum Gold Copper 3	1	Delete
A piezo electric crystal having dimensions of 5 mm x 5 mm x 1.5 mm and a voltage sensitivity of 0.055 V-m/N is used for force measurement . Calculate the force if the voltage developed is 100 V.	1 2 3 4 Key :	50 N 40 N 39 N 30 N 4		Delete
	ney:		<u></u>	Delete

Questions	Choices			
	1 Repeatablity 2 Range			
Precision is a measure ofthe measuring instrument .	3 Correctness 4 Linearity Key :4			
	Edit Delete			
In dynamo meter type wattmeter a high resistance is connected in series with	Both Pressure Coil and Current coil Current coil Load Pressure Coil Key:2			
LVDT is widely used for	 Measureing low voltage Measuring high Volatge Measuring small displacements Measuring large Displacements Key:3 			
RTD is made up of	1 Metals 2 Metal oxides 3 Semi conductor materials 4 Ceramic materials Key:4			
In thermometer, mercury is	1 Auxiliary element 2 Data presentation element 3 Signal conditioner 4 Transducer Key:2 * Edit Delete			
An induction wattmeter can be used for	1 any of the options specified 2 A.C. only 3 both D.C. and A.C. 4 D.C. only Key :2 ✓ Edit □ Delete			
The pressure coil of a wattmeter should be connected on the supply side of the current coil when	1 supply voltage is low 2 load impedance is low 3 load impedance is high 4 none of these Key:1 * Edit Delete			
Which of the following are integrating instruments ?	1 Ammeters 2 Voltmeters 3 Wattmeters 4 Ampere-hour and watt-hour meters Key:4 * Edit Delete			

Questions	Choic	ces		
	1	in parall	el wit	h pressure coil
	2	in series	with	current coil
	3			h current coil
In a low power factor wattmeter the compensating coil is connected	4	•		pressure coil
	Key:		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pressure con
	Rey .		â	D.1.
	-	Edit		Delete
	1	temperat		se
	2	corona lo		
The main criterion for selection of the size of a distribution for a radial distribution	3	voltage d		
system is	4	capital co	ost	
	Key:	3		
		Edit	â	Delete
	1	Battery		
	2	Dynode		
	3	Anode		
Which of the following is not part of phototube?	4	Cathode)	
	Key:	4		
		Edit		Delete
	1	recordin		
	2			strument
An ammeter is a	3			strument
, an animotor to a	4	absolute	instr	rument
	Key:	1		
		Edit	曲	Delete
	1	all of the	optio	ons specified
	2	calibration	on of	ammeter
	3	measure	emen	t of current
A potentiometer may be used for	4	measure	emen	t of resistance
	Key:			
			â	Delete
	<u> </u>	Edit		
	1			motor meters
	2			or meters
Most common form of A.C. meters met with in every day domestic and industrial	3			e single phase
installations are		energy r		
installations are	4	all of the	opti	ons specified
	Key:	3		
	**	Edit		Delete
	1	very hea	avy	
	2	very ligh	•	
				ght) or (very
	3	heavy)	,	5 / ()
The pointer of an indicating instrument should be			verv	light) nor (very
	4	heavy)	,	
	Key:			
	l -		血	
		Edit		Delete
	1	fluid frict		
	2			ons specified
In majority of instruments damping is provided by	3	eddy cu	rrents	3
provided by	4	spring		
	Key:	3		
		Edit	â	Delete
	<u> </u>			

Questions	Choices				
Hysteresis in an instrument means	change in same reading when input is first increased and then decreased repeatability of the instrument. the inaccuracy due to change in temperature. reliability of the instrument. Key:4 Edit Delete				
A moving-coil permanent magnet instrument can be used as by using a low resistance shunt.	1 Flux-meter 2 Ballistic galvanometer 3 Voltmeter 4 Ammeter Key:1 * Edit Delete				
If the displacement is measured with strain gauge then the number of strain gauge normally required are	1 1 2 2 3 3 4 4 Key:4 ✓ Edit □ Delete				
In a digital storage oscilloscope, the input signals are	Applied to amplifier, stored as analog signals, multiplexed, converted to digital form, stored in digital form, converted to analog form, and applied to CRO through an amplifier Multiplexed, converted to digital form and stored and applied to oscilloscope Multiplexed, converted to digital form, stored, converted to analog for and applied to oscilloscope Directly applied to the oscilloscope Key:4				
In moving coil meters, damping is provided by	The coil spring attached to the moving mechanism damping vane in the air tight chamber eddy current disk the aluminium frame of the coil Key:3 Edit Delete				

		contacts A reacto	or in the line or in the line
Sparking between the contacts can be reduced by inserting: 4 Ke		A resist	or in the line
Sparking between the contacts can be reduced by inserting: 4 Ko			
		F	citor in parallel with the
	ov • 4	contacts	_
	∈у.4	ı	
l.		Edit	Delete
1		Only a	high gain
2			answers are correct
A vertical amplifier for a CRO can be designed for:			tant gain times idth product
4			broad bandwidth
	ey :3	3	
		Edit	Delete
1		voltage	•
2		either v	oltage or resistance
In a strain massuring device using a strain gauge, the output quantity is		resista	nce
In a strain measuring device using a strain gauge, the output quantity is 4		impeda	ance
K	ey :1	l	
		Edit	Delete
1		Average	load on that day
2		Connect	ted load
3		Total po	wer generated on that day
Area under the daily load curve gives 4		Total un	its generated on that day
K	ey :1	I	
	, / ·	Edit	Delete
1		Wien b	
			uty bridge
2 3			ide Campbell bridge
The bridge method commonly used for finding mutual inductance is			ng bridge
i l	ey :1	I	
		Edit	Delete
1		changes	the color of light
2		acts as a	shield around the filament
Neon gas in sodium vapor lamp			developing enough heat to the sodium
4		prevents	vaporization of filament
	9	2	
K	ey :3	•	
		Edit	Delete

Questions	Choices			
	1	Both loa should b		or and diversity factor
	2	Both loa should b		or and demand factor
To reduce the generation cost,	3			or and diversity factor and unity
	4	Both loa should b		or and demand factor
	Key:	1		
	./*	Edit	â	Delete
	1	1		
	2	greater t	han 1	
	3	Less than	n 1	
Diversity factor is always	4	0		
	· Key :	2		
		_ Edit	â	Delete
	1	break w	vay p	oints
If the open loop transfer function is a ratio of a numerator polynomial of degree	2	unstabl	e po	es
"m" and a denominator polynomial of degree "n", then the integer (n-m)	3 4	separat asymto		ot loci
represents the number of	Key:			
		Edit	盦	Delete
	1	0.8 Ω ir	ı seri	es with the meter
	2	1.0 Ω ir	ı seri	es with the meter
An ammeter has a current range of 0-5 A, and its internal resistance is 0.2 Ω . In	3	0.04 Ω	in pa	rallel with the meter
order to change the range to 0-25 A, we need to add a resistance of	4	0.05 Ω	in pa	rallel with the meter
	Key:	4		
	,	Edit		Delete
	1	Absolut	e	
	2	Indicati	ng	
The use of instruments is merely confined within laboratories as	3	Record	ing	
standardizing instruments	4	Integrat	ting	
	Key:	1		
	, / *	Edit		Delete
	1	increas	es th	e inductance
	2	increas	es th	e capacitance
	3	decreas	ses tl	ne capacitance
The presence of earth in case of overhead lines	4	decreas	ses tl	ne inductance
	Key:	2		
	**			Delete

Questions	Choic	ces
	1	1 cm
	2	1.6 cm
A single phase line has two parallel conductors 2m apart. Find the suitable	3	1.4 cm
diameter of the conductor if the loop inductance is 2.423mH.	4	1.2 cm
	Key:	4
		Edit Delete
	1	It has two set of ratio arms which eliminates effect of resistance of connecting lead
	2	It has two null indicator
For the measurement of low resistances, Kelvin's double bridge has high accuracy because	3	It has a null indicating galvanometer
	4	It has four sets of ratio arms which eliminates the effect of resistance of connecting lead
	Key:	1
		Edit Delete
	1	less than the sending end voltage
	2	equal to the sending end voltage
If the line is loaded with the surge impedance; the receiving end voltage is	3	greater than the sending end voltage
	4	none of these
	Key:	2
		Edit Delete
	1	increasing the length of cross arm
	2	Grading of the units
	3	Static shielding
Which of the following is not a method of voltage equalization in a string insulator	4	Connecting two discs in parallel
	Key:	4
	**	Edit Delete
	1	0.5
	2	0.004
The equivalent resistance of the primary of a transformer having k=5 and R1= 0.1	3	2.5
ohm when referred to secondary becomes ohm	4	0.02
onin whom referred to december y becomes onin	Key:	3
		Edit Delete
	1	in dc circuits only
	2	in magnetic circuits
A moving iron instrument can be used for surrent and a large	3	in both ac and dc circuits
A moving iron instrument can be used for current and voltage measurements:	4	in ac circuits only
ļ.	Key:	3
		Edit Delete

Questions	Choic	es		
	1		nt co	f eddycurrent due oil and flux due to I
	2		sure	f eddycurrent due coil and flux due to I
Torque in the induction type energymeter due to current coil is produced by	3		nt co	f eddycurrent due iil and flux due to
	4		sure	f eddycurrent due coil and flux due to
	Key:	1		
	AP.	Edit	â	Delete
	1	the curr	ent o	coil is made fixed
	2	the fixe		sure coil is made
	3		he tv	vo coils can be
In an electrodynamometer type of wattmeter	4	both the	e coil	s should be
		movabl	е	
	Key:		_	
	**			Delete
	1	990Ω		
	2	999	9Ω	
A 1mA d'Arsonval movement has a resistance of 100Ω . It is to be converted to a	3	999Ω		
10V voltmeter. The value of multiplier resistance is	4	990	Ω0	
	Key :	4		
	**	Edit		Delete
	1	120°		
	2	90°		
In a two wattmeter method, the wattmeters are connected in the line 1 and 2.	3	120+Ф		
The laod is star connected load. What is the angle between the line voltage V_1		90+	.ф	
and line current I ₂ ?	4 Key:		•	
	Rey .		â	Delete
	_	Edit Full loa		
	1 2	Full load		
If the supply voltage to a dc shunt motor is increased by 15%, which of the	3	Starting	torq	ue
following will reduce?	4 K ov :		f the	options specified
	Key:		â	Delete
	_	Edit		Delete
	1 2	Straight Decreas		the field current
	3	Decrea	sing	the terminal voltage
Current – versus time graph for an ideal commutation is a	4	Increas resistar		ne armature
	Key :		.00	
	./`	Edit	â	Delete

Questions	Choic	ces			
	1	100 Hz	to 100) kHz	
	2	More tha	an 10	0 MHz	
The Wien's bridges is suitable for the measurement of frequency of the range of	3	1 kHz to	100	MHz	
	4	Less tha	an 100) Hz	
	Key:	1			
		Edit	â	Delete	
	1	187.5	-70		
	2	187.5	70		
An AC bridge with $Z_1 = 200 30^\circ$, $Z_2 = 150 0^\circ$, $Z_3 = 250 -40^\circ$, in order to	3	187.5	-10		
balance the bridge the Z ₄ should be	4	187.5	10		
	Key:	1			
		Edit		Delete	
	1	Q of a c	oil		
	2	Inductar	nce ai	nd its Q-value	
	3	Very sm	all re	sistance	
Schering bridge can be used to measure which one of the following ?	4	Capacita factor	ance	and its power	
	Key:	ey :4			
		Edit		Delete	
	1	It should		ynchronised with	
	2	None of		•	
Which of the following conditions is necessary for triggering system for	3	It should pulses	•	ride a train of	
thyristors?	4		ıse se	eparate power	
	Key:	supply 1			
	,,,,	Edit		Delete	
	1	18500W			
A 220 V d.c shunt motor takes a total current of 80 A and runs at 800 rpm. Resistance of shunt field is 50 ohm and that of armature is 0.1ohm. The iron and	2 3	16050W 12600W			
friction losses amount to 1600 W. What is the driving power & B.H.P of the	4	14500W			
motor?	Key :	2	_		
	,//	Edit		Delete	
	1	The load		uit parameters	
	2	inductar		ina ibad	
The frequency of the ripple in the output voltage of 3-phase semiconductor	3	_	-	and load resistance	
depends on:	4	Firing ar		and the supply	
	Key :	-	- 3		
	**	Edit	亩	Delete	

Questions	Choices
The turn-off time of thyristor is 30 m sec at 50°C. It's turn-off time at 100° is	1 100 m sec 2 60 m sec 3 same 4 15 m sec Key :3
Turn-off time of a thyristor effects its	Edit Delete 1 thermal behaviour 2 overload capacity 3 operating voltage 4 operating frequency Key:2 Edit Delete
Which statement is correct?	BJT and MOSFET are voltage controlled devices BJT is voltage controlled and MOSFET is current controlled device BJT and MOSFET are current controlled devices BJT is current controlled and MOSFET is voltage controlled device Key:4 Edit Delete
The di/dt capability of a thyristor increases	when the anode to cathode voltage rating increases. when the gate current decreases when the gate current is zero when the gate current increases when the gate current increases Key:2
A 3 phase fully controlled converter is a	1 12 pulse converter 2 2 pulse converter 3 3 pulse converter 4 6 pulse converter Key:2 Edit Delete
A positive voltage is applied to the gate of a reverse biased SCR	This increases reverse leakage current into anode Heating of junction is unaffected failure of junction occurs due to thermal runaway. This inject more electrons into junction J1 Key:2
In a half bridge inverter the gate pulses of the two thyristors have a phase displacement of	1 90° 2 120° 3 180° 4 60° Key:4 ✓ Edit

Questions	Choices
At a room temperature of 30°C, minimum voltage and current required to fire a SCR is	1 0.6 V, 40 mA 2 no limit 3 3 V, 100 mA 4 3 V, 40 mA Key :1 ✓ Edit □ Delete
A transformer is working at its full load and its efficiency is also maximum. Its iron loss is 1000W. Then, its copper loss at half of full load will be	1 250W 2 400W 3 400W 4 300W Key:1
The output of $y = x $ if $x = 9$ 'b101010101 is	1 1 2 0 3 2'b10 4 2'b 01 Key :1 ✓ Edit □ Delete
motor should not be started on no-load condition.	1 Differential compound 2 Series 3 Shunt 4 Cumulative compound Key:2 * Edit Delete
The impact of negative feedback on which of the following are disadvantageous? i) Gain ii) Stability iii) Bandwidth iv) Noise	1 i and iii 2 iii and iv 3 ii and iv 4 i and ii Key:2
A transformer transforms	Edit Delete 1 frequency 2 voltage 3 current 4 voltage and current Key:4 Edit Delete
Which of the following is not a basic element of a transformer ?	1 core 2 primary winding 3 secondary winding 4 mutual flux Key:4
A step-up transformer increases	1 voltage 2 current 3 power 4 frequency Key:1 Page 101

Questions	Choices
	Directly proportional to supply frequency Inversely proportional to supply frequency Inversely proportional to primary
The maximum flux produced in the core of a transformer is	voltage Inversely proportional to area of core. Key:2 Edit Delete
Armature reaction in dc motor results	1 decrease in speed 2 increase in speed. 3 short circuit. 4 open circuit. Key:2 Edit Delete
A lap wound 4 pole dc motor has 460 conductors. Find the number of parallel paths between the conductors?	1 2 2 4 3 6 4 data provided is insufficient Key:2 * Edit Delete
The armature resistance of the dc motor is generally of the range	1 0.1 ohm. 2 0.5 ohm. 3 50 ohm. 4 100 ohm. Key:2 ✓ Edit □ Delete
The power flow of a dc motor, with respect to a DC generator is	1 modified. 2 reversed. 3 increased. 4 none of these. Key:2 ✓ Edit □ Delete
The shaft torque of a dc motor is less than the electromagnetic torque because of	1 mechanical losses 2 hysteresis losses. 3 ohmic losses. 4 eddy current losses. Key:1
A dc motor having full load speed of 75 rpm and speed regulation of 10% will have no load speed of:	1 825 rpm 2 675 rpm 3 800 rom 4 700 rpm Key:1 ✓ Edit □ Delete
A 230 volt dc motor has an armature winding resistance of 0.5 ohm. Calculate the emf induced by the motor if the full load armature current is 23 ampere.	1 120 volt. 2 218.5 volt. 3 220.4 volt. 4 None of these. Key :2

Questions	Choices
A 4 pole wave wound dc motor having flux per pole of 9.56 × 10-3 Wb contains 460 armature conductors. Calculate the back emf produced when it is running at a speed of 1500 rpm.	1 220 volt. 2 230 volt. 3 240 volt. 4 440 volt. Key:1 * Edit Delete
In case of a 3-phase induction motor having Ns=1500 rpm and running with s=0.04. Then the rotor speed	1 1440 2 1500 3 1460 4 0 Key :1 ✓ Edit □ Delete
State the conditions, under which no load and block rotor test is performed?	1 Rated voltage & rated current 2 Rated power and rated voltage 3 Rated power and rated current 4 All of these Key:1 Edit Delete
A 12–pole alternator will pass through how many electrical degree in one complete revolution	1 60° 2 1080° 3 360° 4 2160° Key:4 ✓ Edit □ Delete
If the slip of an Induction machine is negative mode, the machine will act like	1 Induction motor 2 D.C. motor 3 Synchronous motor 4 Induction generator Key:4 ✓ Edit □ Delete
The starting winding of a single-phase motor is placed in the	1 rotor 2 armature 3 Stator 4 field Key:3 ✓ Edit □ Delete
A centrifugal switch is used to disconnect starting winding when motor has	Run for about 1 minuted Picked up about 50 to 70% of rated speed Run for about 5 minutes Picked up about 10 to 25% of rated speed Key:2 Edit Delete

Questions	Choices
Zero Power Factor Characteristics of synchronous generator is obtained by performing	generator is loaded to give varying zero pf lagging current while its excitation is adjusted to give rated V generator is loaded to give rated zero pf lagging current while its excitation is adjusted to vary terminal V generator is loaded to give varying zero pf leading current while its excitation is adjusted to give rated V generator is loaded to give rated zero pf leading current while its excitation is adjusted to vary terminal V Key:2
	Edit 🛅 Delete
A 4-pole three-phase induction motor has a synchronous speed of 25 rev/s. The frequency of the supply to the stator is:	1 50 Hz 2 25 Hz 3 2.5 Hz 4 100 Hz Key :1 ✓ Edit Delete
The starting torque of a simple squirrel-cage motor is:	1 Low 2 Decreases as rotor current rises 3 Increases as rotor current rises 4 High Key:1 ✓ Edit □ Delete
The function of damper winding in synchronous machine is	1 Providing starting torque 2 Increase the efficiency 3 Improve voltage regulation 4 None of these Key:1
Which of the following motors is used in mixies?	1 Repulsion motor 2 Hysteresis motor 3 Reluctance motor 4 Universal motor Key:4 * Edit Delete
If a particular application needs high speed and high starting torque, then which of the following motor will be preferred ?	1 Universal motor 2 Capacitor start motor 3 Shaded pole type motor 4 Capacitor start and run motor Key:1 * Edit Delete
Which one is not the application of synchronous motor	1 Constant speed 2 Power factor correction 3 Voltage regulation Charging the battery in automobiles Key:4 Edit Delete

Questions	Choices
What type of rotor construction is adopted for high speed alternators?	Salient pole type Both Salient pole and Non- salient pole type Non-salient pole None of these Key :3
Zero power factor method of an alternator is used to find its	Edit Delete 1 Efficiency 2 Armature resistance 3 Voltage regulation 4 Synchronous impedance Key:3 Edit Delete
The terminal voltage of an alternator can be changed under running condition by	1 varying the number of poles 2 All the options given are correct varying the number of turns/ phase of the armature winding varying the excitation of alternator Key:4 Edit Delete
3rd harmonics are eliminated in induction motor by using	1 delta connection. 2 zig - zag connection 3 V connection. 4 star connection. Key :4 * Edit Delete
Which of following is not integral part of synchronous generator system?	1 Prime mover 2 Excitation system. 3 Distribution system. 4 Protection system. Key:1 Market Edit 面 Delete
An Induction motor cannot run at synchronous speed because	air friction will prevent it. none of the options given are correct rotor torque will not be produced induction motor will become synchronous motor. Key:3 Edit Delete
Harmonics in the emf generated in an alternator can be reduced by	1 Chamfering the salient pole tips. by all the methods specified in the options 3 skewing the slots 4 using damper winding. Key:2 Edit Delete
current, the armature reaction is	1 cross-magnetizing 2 demagnetizing. 3 magnetizing 4 ineffective. Key :2 ✓ Edit □ Delete
	<u> </u>

Questions	Choices
With the increase in the excitation current of synchronous motor the power factor of the motor will	4 remain constant Key :3
at 1800 rpm is	Market M
In modern alternators, the rotating part is	Armature as well as field system Field system None of these Armature Key:2
The slip speed of an induction motor:	is zero until the rotor moves and then rises slightly is zero until the rotor moves and then rises to 100 per cent is 100 per cent until the rotor moves and then decreases slightly is 100 per cent until the rotor moves and then falls to a low value Key :4 Edit Delete
If the capacitor of a single-phase motor is short-circuited	the motor will not start the motor will run in the same direction at reduced r.p.m. the motor will run the motor will run in reverse direction Key:1
If the field of a synchronous motor is under excited, the power factor will be	1 Unity 2 Lagging 3 More than unity 4 Leading Key:2 ✓ Edit 面 Delete
The open loop transfer function of a unity negative feedback control system is given by $G(s) = \frac{150}{s(s+9)(s+25)}.$ The gain margin of the system is:	1 10.8dB 2 22.3dB 3 34.1dB 4 45.6dB Key:3 ✓ Edit □ Delete

Questions	Choic	es		
	1	20 dB		
	2	40 dB		
	2			
The open loop transfer function of a unity feedback control system is 10/ (s+5) ³ .	3	80 dB		
The gain margin of the system will be	4	60 dB		
	Key :	3		
			侖	D.1.
	•	Edit		Delete
	1	settling		
Peak overshoot of step-input response of an underdamped second-order system	2	rise tim		IODOV.
is	3 4	natural dampin		
explicitly indicative of	Key:		ig iat	
		Edit	☆	Delete
				Defete
	1	infinite.		
	2 3	zero. 0.25.		
For a type one system, the steady – state error due to step input is equal to	4	0.23.		
	Key :			
		Edit	童	Delete
				Delete
	1	Zero		
	2	Low High		
The starting torque of dc shunt motor is:	4	Very hi	ah	
	Key :		9''	
		Edit	☆	Delete
	•			
	1			emf and increase in
		harmor		both emf and
	2	harmor		bour crin and
L				emf and reduction in
Distributed winding and short chording employed in AC machines will result in	3	harmor	nics	
	4	increas	e in b	ooth emf and
		harmor	nics	
	Key :	2	_	
	**	Edit		Delete
	1	time va	riant	
	2	time inv		
A system is said to be if its input-output characteristics do	3	linear ti		
not change with time.	4 Key ::		me ir	nvariant
	· .		ᇁ	
	./*	Edit	Ш	Delete
	1	causal		
The impulse response h(n) of a linear time invariant system is given by	2	stable a		
h(n)=u(n+3)+u(n-2)-2u(n-7),	3 4			ot causal d not causal
where u(n) is the unit step sequence. The above system is	⁴ Key:		e and	i not causai
	itey .		숊	Dia
	-	Edit		Delete
	1			g supply terminals.
	2			options.
The direction of retation of a D.C. series mater can be should by	3	termina		g supply and field
The direction of rotation of a D.C. series motor can be changed by	4			g field terminals.
	⊤ Key :			J
	,	Edit	侖	Delete
		Edit	<u>ш</u>	Delete

Questions	Choices
If two systems with h1(t) and h2(t) are connected in series, then overall impulse response is	1 h(t)=h1(t)h2(t) 2 h1(t)+h2(t) 3 d/dt[h1(t)h2(t)] 4 h1(t)*h2(t) Key:3 ✓ Edit □ Delete
The back emf produced in a dc motor depends on	1 P. 2 Z. 3 P and Z. 4 none of these. Key:3
When the armature current of 5 Amp is flowing through the dc motor the torque produced is 47 Nm. Keeping the speed constant if the armature current is increased to 7 amp, calculate the new torque. Assume losses to be constant.	1 27.73 Nm. 2 38.5 Nm. 3 65.8 Nm. 4 74 Nm. Key:3 ✓ Edit
Which motor used in Lathe machine?	1 D.C. series motor. 2 D.C. shunt motor. 3 D.C. cumulative compound motor. 4 None of these. Key:2
The condition for maximum efficiency for a D.C. generator is	variable losses = constant losses hysteresis losses = eddy current losses copper losses = 0 eddy current losses = stray losses Key :1 Edit Delete
With a unity load p.f, the effect of armature reaction on the main field flux of an alternator is	1 Magnetising 2 Nominal 3 Distortional 4 Demagnetising Key:3
A unity feedback system with open-loop transfer function G(s) = 4/ [s(s + p)] is critically damped. The value of the parameter p is	1 4 2 3 3 2 4 1 Key:1 * Edit Delete
The value of flux involved m the e.m.f. equation of a transformer is	1 average value 2 r.m.s. value 3 instantaneous value 4 maximum value Key:4 * Edit Delete

Questions	Choic	ces		
	1	Infinite		
	2	Constar	nt	
	3	Zero		
For a feedback control system of type 2, the steady state error for ramp input is,	4	Indeterr	ninat	e
	Key:			
			_	
		Edit		Delete
	1 2	and pov	ver fa rent,	voltage, frequency actor voltage and
The leakage flux in a transformer depends upon		frequen	•	
The reality was a same of the same apon	3			and voltage
	4	load cur	rent	
	Key:	4		
		Edit		Delete
	1	-3e^-2 t		
	2	-3e^-2 t	- 4e	`– t +1
The closed loop transfer function of a control system is given by $G(s) = 2(s-$	3	Zero		
1)/[(s+1)(s+2)] For a unit step input the output is	4	Infinity		
	Key:	1		
		Edit	â	Delete
	, A	Edit		Defete
	1 2	Lap win Wave w	_	g
	3	Either L	ap w	inding or Wave
For a D.C. generator when the number of poles and the number of armature	3	winding		
conductors is fixed, then which winding will give the higher e.m.f. ?		Depend	s on	other features of
social determined with a single control of the single control of t	4	design		
	Key:	_		
	-		_	
	***	Edit		Delete
	1	0		
	2	0.707		
	3	0.5		
The value of damping ratio where root locus intersects imaginary axis is	4	1		
	Key:			
	rtey .	•	_	
	.//	Edit	曲	Delete
	1	K>6 sec	 ^_1	
The newformance energification for a unity feedback central eveters having an	2	6	, -1	
The performance specification for a unity feedback control system having an		K>10 se	۰۵۸ 1	
open loop transfer function G(s) = K/[s(s+1)(s+2) are, (i) velocity error coefficient	3 4	K > 20 s		
Kv > 10 sec^-1 (ii) Stable closed loop operation.	1.		sec	·I
The value of K, satisfying the above specifications is	Key:	4		
		Edit	曲	Delete
	1	any of th	ne or	otions specified
		-	-	· ·
	2			series with
		armatur		
The speed of a D.C. motor can be varied by varying	3	applied		ge
	4	field cur	rent	
	Key:	1		
		Edit	â	Delete
	<u> </u>			
	1	zero		
	2	one		
	2	5110		
Consider a feedback control system with loop transfer function $G(s)H(s) = K(1 + 1)$	3	two		
0.5s) /s(1 + s)(1 + 2s) The type no of the closed loop system is	Ĭ	41		
0.03) /3(1 + 3)(1 + 23) The type no of the closed loop system is	4	three		
	Key:	2		
	۸.		윤	P. 1.
	1	Edit		Delete

Questions	Choices
The slip speed of an induction motor may be defined as the:	Rotor speed - synchronous speed Synchronous speed - rotor speed Number of pairs of poles ÷ frequency Rotor speed + synchronous speed Key:2 Edit Delete
In a D.C. generator in case the resistance of the field winding is increased, then output voltage will	1 increase 2 remain unaffected 3 decrease 4 fluctuate heavily Key:3 ✓ Edit □ Delete
The phase margin (in degrees) of a system whose loop transfer function $G(s)$ $H(s) = 2\sqrt{3}/s(s+1)$ is	1 60° 2 30° 3 -30° 4 45° Key : 2 ✓ Edit □ Delete
A winding having 24 slots, 4 poles with coil span of 1 to 6, will have pitch factor as,	1 0.9659 2 0.7355 3 0.6678 4 0.8655 Key:1 ★ Edit Delete
The speed of a D.C. series motor is	proportional to the square of the armature current proportional to field current inversely proportional to the armature current proportional to the armature current Edit Delete
If the field of a D.C. shunt motor gets opened while motor is running	the motor will attain dangerously high speed the motor will continue to run at constant speed the speed of motor will be reduced % the armature current will reduce Key:1 Edit Delete

Questions	Choices
	1 1/s
	2 1/s^2
The impulse response of a LTI system is a unit step function, then the	₃ 1
corresponding	3 4 S
transfer function is	Ť
	Key :1
	Edit Delete
	1 reduces damping
	reduces the gain margin
	increases input noise
A differentiator is usually not a part of a control system because it	increases error
	*
	Key :3
	Edit Delete
	1 100 uF
	2 400 uF 3 00 uF
The value of starting capacitor of a fractional horse power motor will be	4 300 uF
	Key :4
	🖍 Edit 🛅 Delete
	equal to mechanical time-
	smaller than mechanical time
	² constant
Electrical time-constant of an armature-controlled dc servomotor is	larger than mechanical time- constant
	not related to mechanical time 4 constant
	Key :2
	Edit Delete
	1 1
	2 16
Given a unity feedback control system with $G(s) = \frac{K}{s(s+4)}$	3 32
s(s+4)	4 64
the value of K for a damping ratio of 0.5 is	
	Key :2
	Edit Delete
	1 start and run slowly
A consistent standard of the last standard to the standard to	2 not start at all
A capacitor-start single phase induction motor is switched on to supply with its capacitor replaced by an inductor of equivalent reactance value. It will	start and then stopstart and run at rated speed
oupdoiler replaced by air inductor of equivalent reactaince value. It will	Key :2
	Edit Delete
	. 231

Questions	Choi	ces
	1	$\frac{s+2}{s^2+5s-6}$
A system is described by the following state and output equations $dx_1(t)$	2	$\frac{s+3}{s^2+5s+6}$
$\frac{dx_1(t)}{dt} = -3x_1(t) + x_2(t) + 2u(t)$ $\frac{dx_2(t)}{dt} = -3x_1(t) + x_2(t) + 2u(t)$		$\frac{2s+5}{s^2+5s+6}$
$\frac{dx_2(t)}{dt} = -2x_2(t) + u(t) y(t) = x_1(t)$		
$y(t) = x_1(t)$ where u(t) is the input and y(t) is the output. The system transfer function is	4	$\frac{2s-5}{s^2+5s-6}$
	Key:	: 3 Edit 面 Delete
	1	C1 is lead compensator and C2 is a lag compensator
The transfer functions of two compensators are given below :	2	C1 is a lag compensator and C2 is a lead compensator
$C_1 = \frac{10(s+1)}{(s+10)}, C_2 = \frac{s+10}{10(s+1)}$	3	Both C1 and C2 are lead compensator
Which one of the following statements is correct ?	4	Both C1 and C2 are lag compensator
	Key :	Edit 🛍 Delete
The system shown in the figure is	1	Stable
$u_1 \longrightarrow (s-1) \over (s+2)$	2	Unstable Conditionally stable Stable for input u1, but unstable
$\frac{1}{(s-1)}$ u_2	4 Key :	for input u2 : 4 Edit m Delete
	1	$\frac{1}{\sqrt{2}}\sin\left(t-45^{\circ}\right)$
In the system shown in figure, the input $x(t) = \sin t$. In the steady-state, the response $y(t)$ will be	2	$\frac{1}{\sqrt{2}}\sin(t+45^\circ)$
x(t) s $y(t)$	3	$\sin(t-45^\circ)$
	4	$\sin{(t+45^\circ)}$
	Key :	

Questions	Choices
	1 0.141
	2 0.441
The open loop transfer function of a unity feedback control system is given $as+1$	3 0.841
as $G(s)=rac{as+1}{s^2}$. The value of 'a' to give a phase margin of 45 deg is	1.141
equal to	Key :3
	Edit Delete
The steady state error of a unity feedback linear system for a unit step	
nput is 0.1. The steady state error of the same system, for a pulse input r(t) having a magnitude of 10 and a duration of one second, as shown in the	
igure is	1 0
	2 0.1
r(t)	3 1
↑	1 10
10	Key :1
	Edit Delete
	P Edit un Delete
$\downarrow \qquad \qquad \downarrow \qquad \qquad t$	
1 s	
The polar plot of an open loop stable system is shown below. The closed	
oop system is	1 always stable
∳Im	marainally atable
	unstable with one pole on the RH s -plane
$\omega = \infty$ ∞	unstable with two pole on the
-1.42 Re	4 RH s -plane
	Key :4
ω	Edit 🛅 Delete
<u>\</u>	2 2000
ω =0 1	
Figure shows a feedback system where K > 0	
	1 0 < K < 30
K	2 0 < K < 39
s(s+3)(s+10)	3 0 < K < 390
<u> </u>	4 K > 390
	Key :3
	Edit Delete
The range of K for which the system is stable will be given by	
	1 a. 150
	2 20
The voltage regulation of an alternator having 0.75 leading p.f load, no-load	3 -20
induced emf of 2400V and rated terminal voltage of 3000V is	. 26.7
percent.	Ţ
	Key :3
	Edit Delete

Questions	Choic	Choices			
	1	0.5 rad/	sec		
A system with zero initial conditions has the closed loop transfer function.	2	1 rad/sec			
	3	2 rad/se	ес		
$T(s) = rac{s^2+4}{(s+1)(s+4)}$. The system output is zero at the frequency	4	4 rad/se	ес		
(0 + 2) (0 + 2)	Key:	3			
	**	Edit		Delete	
	1	Stray lo	SS		
	2	Constar	nt los	sses	
DC machines	3	core losses			
	4	Field copper loss			
	Key :2				
		Edit		Delete	
	1	quick ac	ccele	ration	
	2	reduced	d size	e	
esistance rotor is to achieve	3	high effi	icien	су	
	4	low sta	rting	torque	
	Key :2				
	^.	Edit	â	Delete	

Questions	Choices
	1 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
A closed-loop system has the characteristic function $\begin{pmatrix} c^2 & 4 \end{pmatrix} \begin{pmatrix} c & 1 \end{pmatrix} + K \begin{pmatrix} c & 1 \end{pmatrix} = 0$ Its root loop splet against K is	j \
$(s^2-4)(s+1)+K(s-1)=0$. Its root locus plot against K is	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Key :2 ✓ Edit Delete
A unity feedback system, having an open loop gain	1 K > 1 2 K > 1
$G(s)H(s)=rac{K(1-s)}{(1+s)}$ becomes stable when	3 K < 1 4 K < - 1 Key :3
	Edit Delete

Questions	Choic	es		
	1	1 and 2	0	
	2	0 and 2	0	
A rooms input applied to an unity foodbook system regults in E0/ stoody state		0 and 1	/20	
A ramp input applied to an unity feedback system results in 5% steady state error. The type number and zero frequency gain of the system are respectively		1 and 1	/20	
	Γ		,20	
	Key :1		ᇁ	
		Edit		Delete
	1	Internal	dist	ırbances
	2	Environ	men	tal parameters
A good control system should be sensitive to	3	Parame	etric v	rariations
	4	Input si	gnals	(except noise)
	Key :4	1		
	**	Edit		Delete
	1	jωμ/α	Γ	
	2	jω∈/μ		
The intrinsic impedance of a lossy dielectric medium is given	3	√jωµ,	/(σ	+ jωε)
by	4	√ <u>µ/</u> ∈		
	Key :3	3		
		Edit	â	Delete
		3.2 <i>µ</i> H		Belete
		· ·		
	_	32 mH		
The inductance of a long solenoid of length 1000 mm wound uniformly with 3000) 3	3.2 mH		
turns on a cylindrical paper tube of 60 mm diameter is	4	3.2 H		
	Key :2	2		
	^	Edit		Delete
	1	1V		
A field excitation of 20A in a certain alternator results in an armature current of	2	1000V 10V		
400A in short circuit and a terminal voltage of 2000V on open circuit. The magnitude of the internal voltage drop within the machine at a load current of		100V		
200A is	Key :2	2		
	. / *	Edit		Delete
	1	Remain	the	same
	2	Become	e 3/4	
If the applied voltage of a transformer is increaded by 50% while it frequency is	3	Become	es thi	ee times
reduced to 50%, the core flux density will		Become	e 1/3	
	¬ Key :3	3		
		Edit	â	Delete
		2.5 Hz	ш.	201010
		2.5 112 2 Hz		
	_			
A four pole, 50 Hz induction motor runs at a speed of 1440 rpm. The frequency	٦	1 Hz		
of rotor current is	4	3 Hz		
	Key :2	2		
		Edit		Delete

Questions	Choices
	1 3/2
	2 1/2
The ratio of magnetic field inside a solenoid at an axial point well inside and at	3 2
an axial end point is	4 1
	Key :3
	Edit Delete
	1 less than the rated torque
	2 more than then rated torque
The rotor developed by a single-phase motor at starting is	3 zero
	4 rated torque Key :3
	Edit Delete
	1 x(t)
	2 x(t)
A DSB-SC signal is generated using the carrier Cos(ℂct+⊖)	3 only positive portion of $x(t)$ $x(t) \cos \theta$
and modulating signal x(t). The envelope of the DSB-SC signal is	
	Key :2 ✓ Edit Delete
	both periodic & aperiodicaperiodic
Fourier series is used in continuoussignal.	3 periodic
	4 none of these answer is correct Key :3
	Edit Delete
	60° 120° 200°
The open loop transfer function of a unity feedback system is given by	
$G(s) = \frac{2(s+\alpha)}{s(s+2)(s+10)}$	3 90°,270°,360°
	4 90°,180°,270°
Angles of asymptotes are	Key :3
	Edit Delete
	1 1
	2 4
The divergence of \vec{r} \rightarrow \rightarrow \vec{r} \rightarrow \rightarrow \vec{r} \rightarrow \rightarrow \vec{r} \rightarrow	3 3
The divergence of $\vec{F} = xy(\vec{u_x} + \vec{u_y})$ at (1,3) is equal to	4 2
	Key :2
	Edit Delete
	1 50.0 mH
	2 22.8 mH
The conductors of a 10 km long, single phase, two wire line are separated by a	³ 3 45.3 mH
distance of 1.5 m. The diameter of each conductor is 1 cm. If the conductors are of copper, the inductance of the circuit is	4 19.6 mH
	Key :2
	Edit Delete
of copper, the inductance of the circuit is	Key :2

Questions	Choices			
	1 2 µC			
	2 4 μC			
A capacitor is made with a polymeric dielectric having an εr of 2.26 and a dielectric breakdown strength of 50 kV/cm. The permittivity of free space is	3 8 μC			
8.85 pF/m. If the rectangular plates of the capacitor have a width of 20 cm	4 10 μC			
and a length of 40 cm, then the maximum electric charge in the capacitor is	Key :1			
	1 37.68 μH			
	2 1.1304 μH			
A coil of 300 turns is wound on a non-magnetic core having a mean circumference of 300 mm and a cross-sectional area of 300 mm ² . The	3 3.768 μH			
inductance of the coil corresponding to a magnetizing current of 3 A will be	4 113.04 μH			
	Key :2			
	🖍 Edit 🛅 Delete			
	1 $B_z = \mu_0 R^2/(2z^3)$			
	2 $B_z = \mu_0 IR/(2z^3)$			
In a circular loop of wire of radius R with current I, what will be the magnetic	$B_z = \mu_0 IR^2/(2z)$ $B_z = \mu_0 IR^2/(2z^3)$			
induction B on the axis of the loop at a distance z from the center of the loop?	Key :4			
	Edit Delete			
	1 Both are zero			
	They are zeros for static densities but non zero for time varying densities			
Which of the following statements holds for the divergence of electric and magnetic flux densities?				
magnetic nux densities:	Zero for electric flux density			
	Key :3			
	► Edit			
	1 1200 rpm			
A dc separately excited motor has constant field current. The armature is	2 650 rpm			
fed from a single phase supply through a semi- converter. When α = 0,	3 325 rpm			
speed is 650 rpm. If α = 90°, the speed is likely to be?	4 175 rpm			
	Key :3			
	Edit Delete			
	1 5 msec			
	10 mses			
A single-phase full-bridge voltage-source inverter feeds a purely inductive	2 10 msec			
load. The inverter is operated in square-wave mode with a frequency of	3 20 msec			
50 Hz. If the average load current is zero, what is the time duration of conduction of each feedback diode in a cycle?	4 2.5 msec			
	Key :1			
conduction of cash localization aloae in a cycle.	Ney . I			

Questions	Choic	es		
1	1	Square		
	2	Sine		
A single phase voltage source inverter has pure L as the load. For a constant source	3	Triangul	ar	
voltage, the current through an inductor is	4	Pulsed		
	Key :	3		
	*	Edit		Delete
	1	400/π		
	2	300/π		
A single phase half wave controlled rectifier has 400 sin 314t volts as input	3	240/π		
voltage and supplies a resistive load. For the firing angle of 60° for the SCR, the average output voltage is	4	360/π		
	Key :	2		
		Edit	Î	Delete
	1	26		
	2	10		
Calculate the number of SCRs required in a series string of voltage rating	3	18		
7.5kV. The individual rating of the SCR is 500V, 75A and the voltage derating factor is 14%.	4	6		
	Key :	3		
		Edit		Delete
	1	f		
	2	2f		
	3	3f		
In 3 phase half converter the output voltage pulsates at a frequency equal to	4	6f		
	Key :	3		
		Edit	â	Delete
	1	3.86 ms	3	
	2	7.72ms		
A channer circuit is operating TRC principle at a frequency of 2 kHz on a		0.772ms	s	
220 V dc supply. If the load voltage is 170 V, then the conduction period of		0.386ms	S	
	-			
	-		俞	Delete
	1	voltage	5- •	,
	2	ac volta	ge to	dc voltage
	3		_	ac voltage of quency
an inverter converts	4	de volta	ge to	ac voltage of
			ireq	uency
	-		ᅀ	
		Edit		Delete
A chopper circuit is operating TRC principle at a frequency of 2 kHz on a 20 V dc supply. If the load voltage is 170 V, then the conduction period of hyristor in each cycle is	3 4 Key: 1 2 3 4 Key:	3f 6f 3 Edit 3.86 ms 7.72ms 0.772ms 0.386ms 4 Edit dc volta voltage ac volta dc volta constant dc volta variable	ge to ge to ge to freq	Delete variable dc dc voltage ac voltage of quency ac voltage of

Questions	Choices
	1 18.708 A
	2 13.23 A
A three phase full bridge VSI delivers power to a resistive load from a 450 V dc	
source. For a star connected resistive load of 10 Ω /ph. Find the rms value of the	21 212 A
load current under 180° conduction mode	ľ
	Key :4
	Edit Delete
	1 354 rpm
	2 250 rpm
A dc separately excited motor has constant field current. The armature is fed	3 175 rpm
from a single phase supply through a full converter. When $\alpha = 0$, speed is 500 rpm. If $\alpha = 45^{\circ}$, the speed is likely to be	4 125 rpm
phil if a 13, the speed is likely to be	Key :1
	Edit Delete
	1 Stator voltage control
	Invertor
	Channan
Speed of induction motor is controlled by its stator voltage, which power	3 Chopper
converter is used for varying the stator voltage	4 Rectifier
	Key :1
	Edit Delete
	1 90°
	2 180°
A many industrial commented to 1 A simposidal course through a diada	3 270°
A pure inductor is connected to 1–φ sinusoidal source through a diode. Conduction angle for diode is	260°
	T .
	Key :4
	Edit Delete
	1 more than 20 A
	2 less than 20 A
The average on state current for an SCR is 20 A for a resistive load. If	3 15 A
an inductance of 5mH is included in the load, then average on state current would be	4 20 A
	Key :1
	Edit Delete
	1 20 A
What is the average on state current for 60° conduction angle where in the	25 A
	_
	3 40 A
average on state current for an SCR is 20 A for conduction angle of 120°	4 < 20 A
	Key :4
	Edit Delete

Questions	Choi	ces		
	1	753.73	W	
	2	974.23	W	
A 3 – ϕ half wave diode rectifier feeds a load of R = 100 Ω . For an input of	3	376.98	W	
400 V, 50 Hz, the power delivered to the load is	4	487.26	W	
	Key:	:1		
		Edit	â	Delete
	1	401.1 \	/	
	2	567.2 \	/	
What is the maximum output voltage of three phase full bridge rectifier	3	498 V		
supplied with a line voltage of 420 V?	4	532 V		
	Key:	:2		
	<i>A</i> .	Edit	â	Delete
	1	2001		
	2	2005		
The thyristor has holding current of 150mA.when it was turned ON, the load	3	2000		
resistance was at low value. Now if R is progressively increased, at what value of R (in Ω) will the thyristor turn OFF? The applied voltage is 300V.	f 4	1200		
ix (iii \$2) will the mynstol turn OTT: The applied voltage is 500 v.	Key:	:3		
	A			Delete
	1 1	47.5°		
	2	30° to	45°	
A SCR is rated at 75A peak, 20A average. The greatest possible delay in the	3	74.5°		
trigger angle if the dc is at rated value is	3	137°		
	4 Key :			
	, A	Edit	â	Delete
	1	Less ha		
	2	increase	e in o	utput voltage
	3	good p.		, ,
Effect of source inductance is	3			average output
	4	voltage		avorago output
	Key:	:4		
		Edit	â	Delete
	1	Zero		
				reverse peak
The reverse recovery time of the diode is defined as the time between the	2	current		
instant diode current becomes zero and the instant reverse recovery current	3	25% of	f (I _{RN}	Λ)
decays to	4	15% of	f (I _{RN}	(h
	Key :	:3		
		Edit	曲	Delete

Questions	Choi	ces				
	1	50 A				
	2	25 A				
		less than 50 A but more than				
An SCR is triggered at 40° in the positive half cycle only. The average anode current is 50 A. If the firing angle is changed to 80°, the average anode	3	less than 30 A but more than 25 A				
current is likely to be	4	less than 25 A				
	Key:	:3				
	./	Edit 🗓 Delete				
	•					
	1	0.78				
A single place 6,11c, souther 11 at the mister 1 mid as a side of souther is a souther in	2	0.827				
A single phase fully controlled thyristor bridge ac-dc converter is operating at a firing angle of 25 degree, and an overlap angle 10 degree with constant	3	0.866				
dc output current of 20A. The fundamental power factor (displacement	4	0.9				
factor) at input ac mains is	4					
	Key:					
	***	Edit Delete				
	1	1/2				
	2	$(1-\alpha)/\pi$				
A half-controlled single-phase bridge rectifier is supplying an R-L load. It is		$(\alpha)/2\pi$				
operated at a firing angle a and the load current is continuous. The fraction of	. 3					
cycle that the freewheeling diode conducts is	4	$(\alpha)/\pi$				
	Key:					
		Edit Delete				
	1	Both pole-voltage and line- voltage will have 3rd harmon components				
	2	Pole-voltage will have 3rd harmonic component but line voltage will be free from 3rd harmonic				
A 3-phase voltage source inverter is operated in 180 degree conduction mode. Which one of the following statements is true ?	3	Line-voltage will have 3rd harmonic component but po voltage will be free from 3rd harmonic				
	4	Both pole-voltage and line- voltage will be free from 3rd harmonic components				
	Key:	•4				
	-	Edit 🛅 Delete				
	1	It can be turned OFF but not				
		ON with a gate pulse				
An SCR is considered to be a semi-controlled device because	2	It conducts only during one half-cycle of an alternating current wave				
	3	It can be turned ON but not OFF with a gate pulse				
		It can be turned ON only				
	4	during one half-cycle of an alternating voltage wave				
	4 Key :	alternating voltage wave				

		Questions	Choic	ces				
			1 Vds					
		2	Ig					
1		The controlling parameter in MOSFET is	3	Vgs				
1	.	The controlling parameter in WOSFET is	4	Is				
			Key:	3				
			*	Edit Delete				
			1	Taken by the SCR to turn off				
			2	Required for SCR current to become zero				
1	1. Circuit turn-off time of an SCR is defined as the time	3	For which the SCR is reverse biased by the commutation circuit					
		4	For which the SCR is reverse biased to reduce its current below the holding current					
			Key:	3				
				Edit Delete				
			1	0.65				
			2	0.78				
1		A single phase fully controlled bridge converter supplies a load drawing constant and ripple free load current, if the triggering angle is 30 degree, the input power factor will be	3	0.85				
			4	0.866				
			Key:	2				
			**	Edit Delete				
			1	119.05 A				
1		A shows where Cillian and willed showing the haiden accounts in many and an line	2	79.37 A				
1		A three-phase, fully controlled thyristor bridge converter is used as line commutated inverter to feed 50 kW power 420 V dc to a three-phase, 415	3	68.73 A				
	ŀ	V(line), 50 Hz ac mains. Consider dc link current to be constant. The rms	4	39.68 A				
		current of the thyristor is	Key:	3				
			**	Edit Delete				
			1	400 V				
			2	400 √2 V				
1	.	A three-phase diode bridge rectifier is fed from a 400 V RMS, 50 Hz,	3	400 √2/3 V				
		three-phase AC source. If the load is purely resistive, then peak instantaneous output voltage is equal to	4	400/(√3) V				
		Key :	2					
			*	Edit Delete				
			1	two SCR's in parallel				
				opposition				
			2	two SCR's in series				
1	.	AC power in a load can be controlled by using	3	three SCR's in series				
			4	four SCR's in series				
			Key :1					
		**	Edit 🛅 Delete					

Questions	Choices				
	1 equal to				
	2 longer than				
To turn off a SCR, the reverse bias should be applied for a period the	3 less than				
turn-off time	4 irrespective of				
	Key :2				
	Edit Delete				
	Lower switching losses but higher conduction loss				
	Higher switching losses and higher conduction loss				
Compared to Power MOSFET, the Power BJT has	Higher switching losses but lower conduction loss				
	Lower switching losses and lower conduction loss				
	Key :3				
	🖍 Edit 🛅 Delete				
	1 air blast circuit breaker				
	2 vacuum circuit breaker				
	3 SF ₆ circuit breaker				
Current chopping mainly occurs in	4 oil circuit breaker				
	Key :1				
	Edit Delete				
	1 Current transformer				
	2 Potential transformer.				
	3 Power transformer				
In relay coil which is used	4 Instrument transformer				
	Key :1				
	Edit Delete				
	1 long transmission lines				
	2 short length lines				
	3 medium length lines				
Mho relay is used for the protection of	no length criterion				
	Key :1				
	Edit Delete				
	1 75 kA				
	2 35 kA				
A 3-phase, 33 kV oil circuit breaker is rated 1200 A, 2000 MVA, 3s. The symmetrical breaking current is	62.75 1- 4				
	3 63.73 kA 4 45.32 kA				
	4 43.32 KA Key :2				
	Key :2 ✓ Edit Delete				
	▼ Edit				

Questions	Choices
In an opamp inverting amplifier, the input and feedback resis¬tances are 2k¿ and 100k¿ respectively. Assuming an open loop gain of 10,000, the gain will be	1 10,000 2 500 3 100 4 50. Key :4 ✓ Edit ☐ Delete
When two conductors each of radius r are at a distance D, the capacitance between the two is proportional to	1 log _e (D/r) 2 log _e (r/D) 3 l/log _e (D/r) 4 l/log _e (r/D). Key :3 ✓ Edit □ Delete
A circuit breaker is	power factor correcting device a device to neutralize the effect of transients a waveform correcting device a current interrupting device. Key:4 Edit Delete
The pressure of SF_6 gas in circuit breakers is of the order of	1 100 mm Hg 2 1 kg/cm ² 3 3 to 5 kg/cm ² 4 30 to 50 kg/cm ² Key:3 ✓ Edit □ Delete
The main criterion for selection of the size of a distribution for a radial distribution system is	1 Temperature rise 2 Corona loss 3 Voltage drop 4 Capital cost Key:3
The resistance and inductance found to be equal in a short transmission line. What will be the power factor of the load to obtain zero regulation?	1 Zero power factor 2 Unity power factor 3 0.7 lagging power factor 4 0.7 leading power factor Key:4 Edit Delete
The ratio of capacitance from line to line capacitance from line to neutral is nearly	1 1/4 2 1/2 3 1 4 2 Key:1 ✓ Edit □ Delete

Questions	Choices					
1 2	1	Resistance				
	2	Inductance				
If the height of transmission towers is increased, which of the following parameters	3	Capacita	ance			
is likely to change?	4	All ansv	vers a	re correct.		
	Key :	3				
	./*	Edit	Î	Delete		
	1	1 kV and	d abo	ve		
	2	11 kV aı	nd ab	ove		
Voltages under Extra High Voltage are	3	132 kV	and a	bove		
Total Section 1	4	330 kV	and a	bove.		
	Key :	4				
	./*	Edit	â	Delete		
	1	230 < 0	V			
	2	230 < 12	20° V			
In a balance 3 φ, 4 wire AC system, the phase sequence is RYB. If the voltage of R	3	230 < 90)°V			
phase is. 230 < 0° V, then for Y phase	4	230 < 60)° V			
	Key :2					
	*	Edit	â	Delete		
	1	Earthing	g swit	ch		
	2	Series re	eactor			
Which davies systematically interments the granty in the grant of synone	3	Circuit breaker.				
Which device automatically interrupts the supply in the event of surges	4	Isolator				
	Key :	3				
	./*	Edit	Î	Delete		
	1	an alterr	nator			
	2	a transfo	ormer			
A negative sequence relay is commonly used to protect	3	a transm	issio	n line		
Trinegative sequence relay is commonly used to protect	4	a bus ba	r			
	Key:	1				
	**	Edit	â	Delete		
	1	500 kVA	4			
	2	None of are corr		mentioned answers		
A 500kVA, 400V, three phase, 60Hz transformer is replaced by similar transformer of frequency 50Hz. Its rating will be	3	680 kVA	A			
	4	416 kVA	4			
	Key :	4				
	, / ,	Edit	â	Delete		

Questions	Choices
	1 1200 A
	2 3600 A
A three-phase, 33 kV oil circuit breaker is rated 1200 A, 2000 MVA, 3 s. The	3 35 kA
Symmetrical breaking current is	⊿ 104.8 kA
	Key :3
	Edit Delete
The level of compounding in a cumulatively compounded d.c. generator is adjusted by	1 Connecting it as short shunt 2 Changing series field current 3 Connecting it as long shunt 4 Changing shunt field current Key:2
	Edit Delete
	1 4, 0.4
The p.u. parameter for a 500 MVA machine on its own base are:	2 100, 10
inertia, $M = 20$ p.u.; reactance, $X = 2$ p.u.	3 4, 10
The p.u. values of inertia and reactance on 100 MVA common base, respectively, are	4 100, 0.4
aic	Key :4
	Edit 🛅 Delete
	1 2.5 Ω
	2 4.033 Ω
At a 220 kV substation of a power system, it is given that the three-phase fault level is 4000 MVA and single-line to ground fault level is 5000 MVA Neglecting	3 5.5 Ω
the resistance and the shunt suspectances of the system. The positive sequence driving point reactance at the bus is	4 12.1 Ω
The positive sequence driving point reactance at the ous is	Key :4
	🖍 Edit 🛅 Delete
	1 salient pole field structure
	2 rotating a.c. armature winding
	non-salient pole field 3 structure
A turbo alternators uses	None of the mentioned answers are correct
	Key :3
	Edit Delete
	1 1835 MW
	2 2280 MW
A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of 30%.	3 2725 MW
Then, SIL of the compensated transmission line will be	4 3257 MW
,	Key :2
	Edit Delete

Questions	Choic	ces		
	1	number and oper		rns of restraining g coil
	2			l current and oil current
In a biased differential relay the bias is defined as a ratio of	3	fault cur current	rrent	and operating coil
	4	fault cur current	rrent	and restraining coil
	Key :	2		
		Edit	Ô	Delete
	1	42.7		
	2	10.2		
A balanced delta connected load of $(8 + j6)\Omega$ per phase is connected to a 400 V, 50 Hz, 3-phase supply lines. If the input power factor is to be improved to 0.9 by	3	28.8		
connecting a bank of star connected capacitor the required kVAR of the of the	4	38.4		
bank is	Key :	2		
		Edit	â	Delete
	1	P and Q		
Choose two appropriate auxiliary components of a HVDC transmission system from the following	2	P and R		
P. D.C line inductor Q. A.C line inductor	3	Q and S		
R. Reactive power sources S. Distance relays on D.C line	4	S and T		
T. Series capacitance on A.C. line	Key :	2		
		Edit		Delete
	1	NO CH		 E
If T=1 at the positive plack adds and the pative law react is 0, the author 0 of the	2	TOGGL	.E	
If T=1 at the positive clock edge and the active low reset is 0, the output Q of the T flip-flop is	4	0		
	Key :	4	_	
	./*	Edit		Delete
	1	condens	er	
	2	super he	ater	
In the thermal power plants, the pressure in the working fluid cycle is developed by	3	feed war	ter pı	ımp
in the thermal power plants, the pressure in the working fitting eyere is developed by	4	turbine		
	Key:	3		
	**	Edit		Delete
	1	(~a) ^ (~	~b)	
	2	1 a^b		
If a=1 and b=0, the expression \sim (((\sim a) b) $^{\circ}$ (a&(\sim b))) equals	4	0		
	Key:		숃	_ ,
	**	Edit		Delete
	1 2	16s 2 s		
A capacitor in an RC circuit with R =2 ohm and C = 4 F is being charged. The time required for the capacitor voltage to reach 63.2 percent of its steadystate	3	4 s		
value is:	4 Key :	8s ₄		
	Rey .			Delete
	"	Lan	ш	Detett

Questions	Choices
During measurements, the currents flowing towards the — ve and +ve input terminals of an opamp were found to be 3μA and 6μA respectively. The input offset current is	1 9μA 2 6μA 3 3μA 4 zero. Key :3 ✔ Edit 🛅 Delete
If the current through a 10-mH inductor increases from zero to 2 A, how much energy is stored in the inductor?	1 40 mJ 2 20 mJ 3 10 mJ 4 5mJ Key :2 ✓ Edit ☐ Delete
Which of these transformers can be used as an isolation device?	1 Linear transformer 2 Ideal transformer 3 Autotransformer 4 All the transformers specified in the options Key :2 ✓ Edit □ Delete
A quantity that contains all the power information in a given load is the	1 power factor 2 complex power 3 apparent power 4 reactive power Key :2 ✓ Edit ☐ Delete
The coefficient of coupling for two coils having L1 = 2 H, L2 = 8 H and M = 3H is:	1 0.1875 2 0.75 3 1.333 4 5.333 Key :2 ✓ Edit □ Delete
If one of the resistors in a parallel circuit is removed, what happens to the total resistance?	1 Decreases 2 Increases 3 Remains constant 4 Exactly doubles Key:2 * Edit Delete
The following voltage drops are measured across each of the three resistors in series: 5.2 V, 8.5 V, 12.3 V. What is the value of source voltage to which these resistors are connected?	1 8.2 V 2 12.3 3 5.2 4 26 Key:4 ✓ Edit □ Delete
In a series RC circuit, 12 V(rms) is measured across the resistor and 15 V(rms) is measured across the capacitor. The rms source voltage is	1 1.9V 2 27V 3 19.2V 4 3V Key :3 ✓ Edit ☐ Delete

Questions	Choices
Norton's equivalent circuit consists of	Voltage source in parallel with resistance Voltage source in series with resistance Current source in series with resistance Current source in parallel Current source in parallel Key:4 Edit Delete
A current of 6 A is same as	1 6 Joule / second. 2 6 Coulomb / second. 3 6 Watt / second. 4 none of the options specified Key:2 Edit Delete
Ampere - second is the unit of	1 conductance. 2 power. 3 energy 4 charge. Key:4 ✓ Edit □ Delete
current is	1 42.42 A. 2 27 A. 3 38 A. 4 22 A. Key :2 ✓ Edit
If 1 A current is flowing through a series circuit having 100 resistors of each having resistance of 1 O. What will be the current in the circuit where, these 100 resistors are connected in parallel?	1 10 A. 2 100 A. 3 1000 A. 4 10000 A. Key :4 ✓ Edit ☐ Delete
A 10 ohm resistor, a 1 H inductor and 1 µF capacitor are connected in parallel. The combination is driven by a unit step current. Under the steady state	1 Capacitor only 2 Inductor 3 Resistor 4 All the three elements Key:2 Edit Delete
When a magnetic flux cuts across 200 turns at the rate of 2 Wb/s , the induced voltage is	1 400 V 2 100 V 3 0 V 4 600 V Key:1
What capacitance must be placed in series with a 15μF capacitor to give a total capacitance of 5μF	1 20μF 2 10 μF 3 5 μF 4 7.5 μF Key :4 ★ Edit Delete

Questions	Choi	ces				
	1	synchro	onous	s speed		
	2	core-loss component				
	3	shaft to	rque			
The slip of an induction motor normally does not depend on	4	rotor sp	peed			
	⁺ Key:	-				
	Ney .		â	D.L.		
	ļ -	Edit		Delete		
	1 2	50% 80%				
A voltage source of internal impedance Zs is used to feed signal ZR. The	3	75%				
maximum power that can be delivered to the load is	4	100%				
	Key:	1				
	, / /	Edit		Delete		
	1	All of th	nem			
	2	Inducta	nce			
Which of the following circuit elements will oppose the change in the circuit	3	Resista				
current?	4	Capaci	tance	•		
	Key:		_			
	, /^ \	Edit		Delete		
	1			and resistance		
	2	bridges ammet				
Resistances can be measured with the help of	2	voltmet				
ixesistances can be measured with the neip of	4	wattme				
	Key:	1				
	, / /	Edit		Delete		
	1	A highe	er imp	pedance		
	2			ndwidth		
In a series resonant band-pass filter, a lower value of Q results in	3 4	_		d-width		
	⁴ Key:	_	1168	onant frequency		
		Edit		Delete		
	ļ .	1B H		Defete		
The contents of the accumulator after this operation	1 2	3B H				
MOV A,#2BH	3	2B H				
ORL A,00H	4	4B H				
will be:	Key:	3				
	**	Edit	童	Delete		
	1	a class		-		
	2			sh-pull amplifier		
The first stage of an opamp is always	3 4			amplifier		
	4 Key:		igion	amplifier.		
		Edit	=	Delete		
	1	0	ш	Delete		
	2	1				
The neith of ideal and have a second of the PE	3	infinte				
The gain of ideal open loop operational amplifier	4	finite				
	Key:					
		Edit	â	Delete		
	1					

Questions	Choices			
CMMR of an ideal Op-amp is	1 1 2 finite 3 infinite 4 Zero Key:3			
The differential gain of the opamp is 20,000. This opamp is used in a differential mode with power supply voltages of +10 V and— 15V. An input of 1 mV at the non-inverting input with inverting input grounded shall yield	Edit Delete 1 20 V at the output 2 zero at the output. 3 —20 V at the output 4 +10 V at the output Key:4 Edit Delete			
One way to measure the quality of a D/A converter is its	1 power consumption 2 repeatability 3 resolution 4 settling time. Key:3 ✓ Edit □ Delete			
An opamp has an open loop gain of 100 dB. Its gain starts falling at a frequency of 900 kHz with a rate of 6 dB per octave. The gain at a frequency of 3.6 MHz will be	1 128 dB 2 88 dB 3 28 dB 4 8 dB. Key :2 ✓ Edit			
When an Op-Amp is used as a non-inverting amplifier, the input signal is fed into the input and the input is grounded through a resistor.	1 Inverting, non-inverting All of the given options are correct 3 Non-inverting, inverting 4 Feedback, slewrate Key:3 Edit Delete			
The maximum rate of change of output voltage for the step input is called	1 Slew Rate 2 Set-up time 3 Offset current 4 Offset voltage Key:1 * Edit Delete			
The common mode input voltage of a differential amplifier is	1 Difference of 2-inputs 2 Summation of 2-inputs 3 Zero 4 Average of 2-inputs Key :4 ✓ Edit □ Delete			
The ability of an amplifier to provide gain for the differential signal but reject the common mode signal is indicated by	1 closed loop gain 2 open loop gain 3 CMRR 4 PSRR. Key:3 ✓ Edit □ Delete			

Questions	Choices
The upper input of opamp marked is	1 inverting input 2 non-inverting input 3 phase input 4 out-of-phase input. Key:2
Another name for a unity gain amplifier is	Edit Delete difference amplifier comparator single ended voltage follower Key:4 Edit Delete
A opamp can be used with	1 ac signals only 2 neither ac nor dc signals. 3 dc signals only 4 both ac and dc signals Key:4 * Edit Delete
An ideal opamp is characterized bygain,input imped¬ance and output	1 infinite, infinite, zero. 2 zero, zero, infinite 3 infinite, zero, zero 4 zero, infinite, zero Key:1 ✓ Edit □ Delete
The practical integrator performs like a at very low frequencies.	1 Voltage Follower both as voltage follower and high - pass filter 3 Inverting Amplifier 4 high – pass filter Key :3 Edit Delete
The number of output steps in a D/A converter iswhere n is the number of bits.	1 2^(n+2) 2 2^n 3 2^(2n) 4 2^n-1 Key :4 ✓ Edit
An opamp is used as a differential amplifier. Its positive and negative inputs are at potentials of 2.1 and 1.9 mV respectively. If the gain is 100,000, the output will be	1 0.2 V 2 2 V 3 20 V 4 200 V. Key :3 ✓ Edit
If the present state and next state of a D flip-flop is 1 and 0 respectively, what will be the input of the flip-flop?	1 It is not possible 2 X 3 0 4 1 Key:3 ✓ Edit ☐ Delete

Questions	Choices		
741 is the	1 first generation 1C 2 second generation 1C 3 third generation 1C 4 fourth generation 1C. Key:2		
Which of the following statement about opamp is not necessarily true?	An opamp uses direct coupling An op amp has high input impedance On amps are always used closed loop Op amps have high voltage gain. Key:3 Edit Delete		
The opamp has a non-inverting input and an inverting input. Thevoltage appears between the two inputs.	1 cumulative 2 negative 3 pulsating 4 error. Key:4 * Edit Delete		
With a non-inverting amplifier, negative feedbackthe gain,the input impedance, andthe output impedance	increases, decreases, decreases decreases, decreases, increases increases, decreases, increases decreases, increases, decreases Key:4 Edit Delete		
Figure of merit for opamp is	1 gain 2 bandwidth 3 (gain x bandwidth) 4 (gain x bandwidth x slew rate). Key :3 ✓ Edit □ Delete		
Log amplifiers generally find application in	1 dividers 2 dividers and multipliers 3 dividers, multipliers and differentiators 4 dividers, multipliers, differentiators and integrators Key:4 Edit Delete		
Which of the following system is non-linear ?	1 logarithmic amplifiers 2 none of the options specified 3 voltage to current converter 4 current to voltage converter Key:1 ** Edit ** Delete*		

Questions	Choices
The ideal closed loop transfer function/gain of an amplifier is	1 (1+\(\beta\A\)) 2 A\(\beta\((1+\beta\A\)) 3 1/(1+\beta\A) 4 A/(1+\beta\A) Key :4
In opamp for minimum percentage error	open loop gain should be high but feedback factor should be low open loop gain should be low but feedback factor should be high open loop gain as well as feedback factor should be high open loop gain as well as feedback factor should be low. Key:3
If the open loop transfer function is a ratio of a numerator polynomial of degree "m" and a denominator polynomial of degree "n", then the integer (n-m) represents the number of	Edit Delete 1 break way points 2 unstable poles 3 separate root loci 4 asymtotes Key:4 Fdit Delete
The feedback system shown below oscillates at 2 rad/s when $\frac{K(s+1)}{s^3+as^2+2s+1}$	Model Fedit □ Delete 1
The transfer function of a linear time invariant system is given as $G(s)=\frac{1}{s^2+3s+2}$ The steady state value of the output for a unit impulse input	1 0 2 0.5 3 1 4 2 Key :1
applied at time instant t = 1 will be	Edit Delete An over damped system An under damped system A critically damped system An unstable system
,	Key :3 ✓ Edit Delete

Questions	Choices
If all the maxterms in a N-bit POS K-map is 0, the output expression is:	1 1 2 0000N times 3 1111N times 4 0 Key:1 ✓ Edit □ Delete
A 16-bit shift register is fed a value of 16{1'b1}. The number of clock cycles needed to reach 1111111111 is	1 8 2 9 3 10 4 16 Key:3 ✓ Edit Delete
The output of $y = x $ if $x = 9$ 'b101010101 is	1 0 2 2'b10 3 2'b01 4 1 Key:4 ✓ Edit ☐ Delete
If a=1 and b=0, the expression \sim (((\sim a) b) $^$ (a&(\sim b))) equals	1 (~a) ^ (~b) 2 0 3 a^b 4 1 Key:2
If a 2x4 decoder is connected with a 4x1 MUX and the input to the select lines, then the output of the MUX for all inputs of the decoder is	1 1,1,1,1 2 0,0,0,0 3 0,1,0,1 4 1,0,1,0 Key :1 • Edit Delete
If all the maxterms in a 4-bit POS K-map is 0, the output expression is:	1 1 2 0 3 1111 4 0000 Key:1
The simplification of the F(A,B) = (0) + (2) is	1 B 2 A' 3 A 4 B' Key:1 ✓ Edit Delete
If an active low XOR gate is fed with inputs A and B, the output is	1 same as OR 2 same as XNOR 3 same as NAND 4 same as XOR Key:4 P Edit Delete
What is the characteristic equation of the complemented output (Q') of JK flip-flop?	1 J'Q' + KQ 2 JQ' + K'Q 3 JQ' + KQ' 4 JQ + K'Q' Key:1 ✓ Edit □ Delete

Questions	Choic	ces		
	1	8		
	2	64		
How many AND gates are there in 16 X 4 ROM?	3	16		
Tiow maily 7110 gates are thore in 10 X 4 Now.	4	4		
	Key :	3		
	**	Edit	曲	Delete
	1	5		
	2	6		
How many variable function we can implement by using a ROM of the size 64 X	3	7		
5?	4	8		
	Key ::	2		
		Edit	â	Delete
		(s+	2)	
	1	$\frac{(s+)}{(s^2+)}$	2)	
		$\frac{(s+)}{(s^2+)}$	1)	
	2	$(s^2 +$	<u>s)</u>	
The transfer function of the system described by		(0)	9	
$\frac{d^2y}{dt^2} + \frac{dy}{dt} = \frac{du}{dt} + 2u$	3	$\frac{2}{(s^2 + \frac{2s}{(s^2 + \frac{2s}{s^2 + 2$		
dt^2 $dt = dt + 2u$	3	$(s^2 +$	s)	
with u as input and y as output is		2s		
	4	$(s^2 +$	s)	
		•	0)	
	Key :	1		
		Edit		Delete
	1	Scherir	na bri	dae
	1			
	2	Weins	briag	е
	3	Se san	ty bri	dge
For high measurement capacitance measurementbridge is used				
	4			mentioned answers
		are cor	rect	
	Key:	1		
		Edit	â	Delete
	1	y(n - 1)		
	2	y(n + 1		
	3	y(n)		
Which of following is recursive system?	4	y(n) + y	/(n +	1)
	Key :	1		
	, / \	Edit		Delete
	1	0 and 0)	
	2	0 and 1		
	3	1 and 0		
high clear signal?	4	1 and 1		
	Key ::	2		
	, / `	Edit		Delete
	4	0.366		
If the compensated system shown in the figure has a phase margin of 60 deg at	1			
the crossover frequency of 1 rad/sec, then value of the gain K is	2	0.732		
	3	1.366		
R(s) $K+0.366s$ $Y(s)$	3			
K+0.300s $s(s+1)$	4	2.738	3	
	Key :	3		
		Edit	â	Delete
	"	Luit	ш	Detett

Questions	Choi	ces		
	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\frac{1}{3}(1 + e^{-\frac{1}{3}})$	$\begin{bmatrix} 1 - e^{-3t} \\ -3t \end{bmatrix}$
[0 1] [1]	2	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\frac{1}{3}(e^{i})$	$e^{-t} - e^{-3t}$
A state variable system $\dot{\boldsymbol{X}}(t) = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \boldsymbol{X}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boldsymbol{u}(t)$ with the initial condition $\boldsymbol{X}(0) = \begin{bmatrix} -1, & 3 \end{bmatrix}^T$ and the unit step input $u(t)$ has The state transition matrix	3	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\frac{1}{3}$ ($e^{3-t} - e^{-3t}$
The state transition matrix	4	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	e^{-}	$-\frac{1}{t}e^{-t}$
	Key:	1		
	**	Edit	â	Delete
	1			uts produce a HIGH
		output. Output		GH if and only if all
	2	inputs	are H	IGH.
For each of the following statements indicate the logic gate AND for which it is true	3	Output		W if and only if all IGH.
	4	Output	is LO	W if and only if all
	Key:	inputs	are L0	OW .
	l		血	
	***			Delete
	1	101000		
	2 3	101101		
The 2's complement of 01001110 is	4	101100		
	Key:	4		
	**	Edit	â	Delete
	1	3		
	2	5		
The number of bits required to represent the decimal number 25 in natural BCD code is	3 4	8 4		
5000 15	Key:	3		
	**	Edit		Delete
	1	110011	0010	1
	2	100011		
The binary code for the given Gray code 10101100111 is	3	110010		
	4 Key :	110010 3	0110	1
	Ney .	Edit	侖	Delete
1	1	Either 4		
	1.5		. 5. 1	-
	2	8		
	2	8 4		
The number of rows in the truth table of 4 variables are	3 4	4 16		
The number of rows in the truth table of 4 variables are		4 16		

Questions	Choices
For the block diagram shown, the transfer function $\frac{C(s)}{R(s)}$ is equal to $\frac{R(s)}{s} = \frac{1}{s}$	1 $\frac{s^2 + 1}{s^2}$ 2 $\frac{s^2 + s + 1}{s^2}$ 3 $\frac{s^2 + s + 1}{s}$ 4 $\frac{1}{s^2 + s + 1}$ Key:2
An 8-bit shift register is fed a value of 11011001. The number of clock cycles needed to reach 00011001 is	Edit Delete 1 5 2 6 3 8 4 3 Key:1 Edit Delete
The unit impulse response of a second order under-damped system starting from rest is given by $c(t) = 12.5e^{-6t}\sin 8t, \ t \ge 0$. The steady-state value of the unit step response of the system is equal to	1 0 2 0.25 3 0.5 4 1 Key:4 ✓ Edit □ Delete
In a flash analog-to-digital converter, the output of each comparator is connected to an input of a	1 decoder 2 priority encoder 3 multiplexer 4 demultiplexer Key :2 ✓ Edit □ Delete
A control system is defined by the following mathematical relationship $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 5x = 12(1 - e^{-2t})$ The response of the system as $t \to \infty$ is	x=6 $x=2$ $x=2$ $x=2.4$ $x=-2$ Key:3
For a 4-bit DAC, the least significant bit (LSB) is	1 0.625% of full scale 2 12% of full scale 3 1.2% of full scale 4 6.25% of full scale Key:4 Edit Delete
Filter is used to avoid aliasing	1 BRF 2 HPF 3 BPF 4 LPF Key:4 ✓ Edit

Questions	Choices			
	11	all the equipment mentioned in the options		
		requency counters		
The dual-slope analog-to-digital converter finds extensive use in	1	digital voltmeters		
		function generators		
	Key :1	-		
	✓]	Edit 🗓 Delete		
		dual-slope analog-to-digital converter		
	2	digital-ramp analog-to-digital converter		
The ADC0804 is an example of a	1.5	successive-approximation analog-to-digital converter		
	4	single-slope analog-to-digital		
	Key :3			
	✓ 1	Edit 🛅 Delete		
	1	$\frac{2s}{(s+2)^2+2\omega^2}$		
	2	$\frac{2\omega}{(s-2)^2 + 4\omega^2}$		
The Laplace transform of e ^{-2t} sin 2ωt is	3	$\frac{2\omega}{(s+2)^2+4\omega^2}$		
	4	$\frac{2s}{(s+2)^2 + 2\omega^2}$		
	Key :3	_		
		Edit Delete		
		an ii		
For a LTI system which of the following statements are true.		i and iii		
(i) Transfer function is ratio of L.T. of output & input.		ii only		
(ii) Transfer function is ratio of L.T. of input & output.		and iii		
(iii) Transfer function is L.T. of impulse response	Key :4	Edit 🗓 Delete		
If two systems with h1(t) and h2(t) are connected in series, then overall impulse response is	1 h 2 h 3 d	n(t)=h1(t)h2(t) n1(t)+h2(t) d/dt[h1(t)h2(t)] n1(t)*h2(t)		
	^]	Edit 🗓 Delete		

Questions	Choices
	1 F(s+a)
	$\frac{F(s)}{(s+a)}$
Given $L f(t) = F(s), L[f(t)e^{-at}]$ is equal to	$e^{as}F(s)$ $e^{-as}F(s)$
	Key :1 ✓ Edit Delete
the fourier series coefficients of the even part of x(t) are	1 EV(cn) 2 odd(cn) 3 jlm(cn) 4 Re(cn) Key:4
	Edit Delete
	1 0.353 2 0.330
The damping ratio of a system having the characteristic equation	0.300
$s^2 + 2s + 8 = 0$ is	4 0.250
	Key :1
	Edit Delete
	1 real and even2 imaginary and even
If x(t) is odd then its fourier series coefficients must be	3 real and odd
	4 imaginary and odd Key :4
	Edit Delete
	1 10 seconds
	$\frac{1}{10}$ second
If the transfer function of a first-order system is $G(s) = \frac{10}{1+2s}$, then the time constant	2 seconds
of the system is	$\frac{1}{2}$ second
	Key :3
	🖍 Edit 🛅 Delete
	1 [∞] ₂ τ
Closed-loop transfer function of a unity-feedback system is given by	2 1
$Y(s)/R(s) = 1/(\tau s + 1)$. Steady-state error to unit-ramp input is	4 1/τ
	Key :2 ✓ Edit Delete

Questions	Choices				
	1	increas harmo		ooth emf and	
	2	reducti harmo		both emf and	
Distributed winding and short chording employed in AC machines will result in	3	increas harmo		emf and reducti	on in
	4	reducti harmo		emf and increa	se in
	Key:	2			
	**	Edit		Delete	
	1			sa of converge	nce
	2	Entire	-	ne een two absciss	sa of
	3	conver			3a Oi
The ROC of a anti-causal signal x(t) is,	4	right of	fabsc	issa of	
	· Vov.	conver	gence	Э	
	Key:		ᇁ		
	./*	Edit		Delete	
	1	rectan	gular l	hyperbola	
	2	straigh	t line	through the orig	gin
An electric motor with "constant output power" will have a torque-speed		straigh	t line	parallel to the	
characteristics in the form of a	3	speed			
	4	circle a	about	the origin	
	Key:	1			
	**	Edit	â	Delete	
In an alternator, the armature winding is kept stationary while the filed winding is kept rotating for the following reasons:	1	(i) and	` ,	•	
(i). Armature handles very large current and high voltage	2	All thre	ee opti	ions are correc	t
	2				
(ii) Armature fabrication, involving deep slots to accommodate large coils, is easy if armature is kept stationary	3	(i) and			
(iii) It is easier to cool the stator than the rotor	4	(ii) and	l (iii) o	only	
Which of the above reasons are correct?	Key:	2			
	"	Edit	Ô	Delete	
	1	causal	but u	nstable	
The impulse response h(n) of a linear time invariant system is given by	2	stable			
h(n)=u(n+3)+u(n-2)-2u(n-7),	3			ot causal	
where u(n) is the unit step sequence. The above system is	4 Key:		ie and	d not causal	
		Edit	â	Delete	
	.		ш	Delete	
			s) Ne		
	1	N=(1+:			
	1 2	N=(1+s	s) Ns		
The relationship among synchronous speed (Ns), rotor speed (N) and slip is	1	N=(1+s N=(1-s N=(s-1	s) Ns) Ns		
The relationship among synchronous speed (Ns), rotor speed (N) and slip is	1 2	N=(1+s	s) Ns) Ns		
The relationship among synchronous speed (Ns), rotor speed (N) and slip is	1 2	N=(1+s N=(1-s N=(s-1 N=(1+s	s) Ns) Ns		

Questions	Choices
A good measure of similarity between two signal x1(t) and x2(t) is	1 convolution 2 correlation 3 power density spectrum 4 fourier transform Key :2
The signal flow graph for a system is given below. The transfer function $\frac{Y(s)}{U(s)}$ for this system is given as	Edit Delete $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Which one of the following statements is true for all real symmetric matrices?	All the eigenvalues are real. All the eigenvalues are positive All the eigenvalues are distinct All the eigenvalues are distinct Sum of all the eigenvalues is zero Key:1 Edit Delete
Consider an LTI system with impulse response $h(t)=e^{-5t}u(t)$. If the output of the system is $y(t)=e^{-2t}\ u(t)-e^{-5t}u(t)$ then the input, $x(t)$, is given by	1 $e^{-3t} u(t)$ 2 $2e^{-3t} u(t)$ 3 $e^{-5t} u(t)$ 4 $2e^{-5t} u(t)$ Key:2
The filter whose transfer function is of the form $G(s) = \frac{s^2 - bs + c}{s^2 + bs + c}$ is	a high-pass filter a low-pass filter an all-pass filter a band-reject filter Key:3 ► Edit □ Delete
The Fourier transform (FT) of a function x (t) is X (f). The FT of dx(t)/dt will be:	1 jf X(f). 2 j2 pf X(f). 3 dX(f)/ df 4 X(f)/(jf). Key:2 ✓ Edit □ Delete

Questions	Choices
A system is said to be if the output does not depends on future	1 Non-Causal 2 Anti-Causal 3 Causal
inputs and outputs.	4 Static Key:3
	🖍 Edit 🛅 Delete
	1 Population model 2 RL circuit
Which one of the following system is not a discrete time system	3 Rain fall of a city for one month 4 savings account Key :2
	Edit Delete
	1 z^-k X(z) 2 kX(z^-1)
Z transform of x(n-k) is:	3 n^-1 X(z) 4 X(k^-1 z) Key :1
	Edit Delete
In s->z mapping if the s pole is -s+j¿,will fall in	1 Outside unit circle 2 inside unit circle 3 on unit circle 4 towards to infinity
	Key :2 * Edit Delete
In s-> z mapping if the s pole is jخ,will fall in	1 Outside unit circle 2 inside unit circle 3 on unit circle 4 towards to infinity Key:3
	Edit Delete
	1 Scaling. 2 Duality.
The property of Fourier Transform which states that the compression in time	Time Scaling. Frequency Shifting.
domain is equivalent to expansion in the frequency domain is	4
	Key :1 ✓ Edit Delete
	1 sinc 2 gate
	2 gate 3 Gaussian
	4 Impulse
	Key :3 ★ Edit Delete
	1 Conjugate Symmetry
	2 Time Shifting
The property of Fourier Transform depicts the energy of	3 Time Scaling
the signal	4 Parseval's Theorem. Key :4
	rey.4 ✓ Edit

Random signal can be modeled by Integral Random signal can be modeled by Random signal can be modeled by Integral Random signal can be modeled by Random signal can be modeled by Integral Integral Random signal can be modeled by Integral Random signal can be modeled by Integral Random signal can be modeled by Integral Integral Random signal can be modeled by Integral Integral Random signal can be modeled by Integral Random signal can be modeled by Integral Int	Questions	Choices					
Convolution is used to find: The time response of a LTI system The phase response of a LTI system Key :1 Edit Delete 1 a is false, b is true 2 a is true, b is false 3 a is false, b is false 4 a is true, b is false 4 a is true, b is false 5 bis false 7 Edit Delete 1 Differential equation into algebraic equation 6 Difference equation into algebraic equation 7 Edit Delete Legy :1 Felix Delete Legy :1 Felix Delete Legy :3 Legy :3 Edit Delete Legy :4 Edit Delete		1		ulse response of an LTI			
Convolution is used to find: The phase response of a LTI system Key :1 Edit Delete 1 a is false, b is true 2 a is true, b is false 3 a is false, b is false 4 a is true, b is false 4 a is true, b is false 5 a is true, b is false 6 a is true, b is false 7 bdit Delete Key :1 Bdit Delete Key :1 Bdit Delete Limegral Key :3 Edit Delete 1 subtraction. multiplication. division. addition. Key :2 Bdit Delete The function which has its Fourier transform, Laplace transform, and Z transform supplies Limegral Key :1 Bdit Delete Limpulse 2 Sinc 3 pulse 4 Gausian Key :1 Bdit Delete 1 impulse 5 Sinc 5 pulse 6 Gausian Key :1 Bdit Delete 1 impulse 7 Edit Delete 7 Delete 8 Sinc 8 Delete 9 Delete 1 impulse 9 Sinc 9 Delete 1 impuls		2					
A system Key:1	Convolution is used to find:	3					
Z-transform helps to convert a) differential equation into algebraic equation b) difference equation into algebraic equation b) difference equation into algebraic equation Equation Random signal can be modeled by Z-transform converts convolution of time-signals to Z-transform converts convolution of time-signals to Z-transform which has its Fourier transform, Laplace transform, and Z transform The function which has its Fourier transform, Laplace transform, and Z transform Key:1 Z-transform Z-tran		4		se response of a LTI			
z-transform helps to convert a) differential equation into algebraic equation b) difference equation into algebraic equation b) difference equation into algebraic equation Random signal can be modeled by Random signal can be modeled by z-transform converts convolution of time-signals to z-transform converts convolution of time-signals to 1		Key :	1				
z-transform helps to convert a) differential equation into algebraic equation b) difference equation into algebraic equation b) difference equation into algebraic equation Random signal can be modeled by Random signal can be modeled by z-transform converts convolution of time-signals to z-transform converts convolution of time-signals to The function which has its Fourier transform, Laplace transform, and Z transform unity is 2 a is true, b is false a is true, b is true feet but a false and is true, b is false a is true, b is true feet but a false and is true, b is false a is true, bis false a i			Edit	Delete			
z-transform helps to convert a) differential equation into algebraic equation b) difference equation into algebraic equation Key :1		1	a is false	e, b is true			
a) differential equation into algebraic equation b) difference equation into algebraic equation Key:1 Edit Delete		2	a is true,	b is false			
a) differential equation into algebraic equation b) difference equation into algebraic equation Key:1 Letit Delete 1 Differential equation 2 Difference equation 3 Statistical parameters 4 Integral Key:3 Letit Delete 1 subtraction. 2 multiplication. 3 division. 4 addition. Key:2 Letit Delete 1 subtraction. 3 division. 4 addition. Key:2 Letit Delete 1 pelete 1 subtraction. 4 addition. Key:2 Letit Delete 1 impulse 2 Sinc 2 pulse 4 Gausian Key:1 Letit Delete		3	a is false	e, b is false			
Random signal can be modeled by Integral Random signal can be modeled by Random signal can be modeled by Integral Random signal can be modeled by Random signal can be modeled by Integral Integral Random signal can be modeled by Integral Random signal can be modeled by Integral Random signal can be modeled by Integral Integral Random signal can be modeled by Integral Integral Random signal can be modeled by Integral Random signal can be modeled by Integral Int		4	a is true,	b is true			
Random signal can be modeled by Rey:3 Rey:3 Rey:3 Rey:4 Subtraction. addition. Key:2 Regit Delete Delete 1 subtraction. 4 addition. Key:2 Regit Delete The function which has its Fourier transform, Laplace transform, and Z transform 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Rey:1 Regit Delete	b) difference equation into algebraic equation	· Key :	1				
Random signal can be modeled by 2 Difference equation 3 Statistical parameters 4 Integral Key:3 Edit Delete 1 subtraction. 2 multiplication. 3 division. 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete				Delete			
Random signal can be modeled by 3 Statistical parameters 4 Integral Key:3 Edit Delete 1 Subtraction. 2 multiplication. 3 division. 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete		1	Different	ial equation			
Random signal can be modeled by A Integral		2	Difference	ce equation			
Random signal can be modeled by Integral	Random signal can be modeled by	3	Statistical parameters				
Key :3 Edit Delete			Integral				
z-transform converts convolution of time-signals to 2 transform converts convolution of time-signals to 2 transform converts convolution of time-signals to 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete		ļ -					
z-transform converts convolution of time-signals to 2 multiplication. 3 division. 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete 1 Delete				Delete			
z-transform converts convolution of time-signals to 2 division. 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete 1 Delete		1	subtracti	on.			
z-transform converts convolution of time-signals to 3 division. 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete		2	multiplication.				
z-transform converts convolution of time-signals to 4 addition. Key:2 Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 Edit Delete			division.				
Key:2 ** Edit Delete 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 ** Edit Delete	z-transform converts convolution of time-signals to		addition.				
The function which has its Fourier transform, Laplace transform, and Z transform unity is Edit Delete impulse Sinc pulse Gausian Key:1 Edit Delete							
The function which has its Fourier transform, Laplace transform, and Z transform unity is 1 impulse 2 Sinc 3 pulse 4 Gausian Key:1 * Edit Delete 1 1				Delete			
The function which has its Fourier transform, Laplace transform, and Z transform unity is The function which has its Fourier transform, Laplace transform, and Z transform Gausian Key:1 Edit Delete 1 1							
The function which has its Fourier transform, Laplace transform, and Z transform 4		-					
unity is 4 Gausian Key:1 ** Edit Delete 1 1							
Key:1 ✓ Edit ☐ Delete 1 1	unity is						
Edit Delete							
1 1				n Delete			
1				- Dolott			
17 173		2	1/s ²				
3 1/s							
The Lapalce Transform of tu(t) is given by	The Lapalce Transform of tu(t) is given by						
4 1/S-3 Key :2		ļ .					
rey.2 ✓ Edit Delete				n Delete			
F Edit w Delete		•	Lan	I DOIGIC			

Questions	Choic	ces		
	1	1/X(Z)		
	2	X(1/Z)		
The time reversel preparty of 7 Transferms for M ml is	3	X(-Z)		
The time reversal property of Z-Transform for x[-n] is	4	-X(Z)		
	Key:	2		
		Edit		Delete
	1	jω		
:	2	jπω		
The Fermion Transforms of Circums for sting is	3	1/jπω		
The Fourier Transform of Signum function is	4	ω		
	Key:	3		
	^	Edit	â	Delete
	1	z/(z-1)		
	2	1/z		
The Z-Transform of u[n] is	3	1/(z-a)		
	4	1		
	Key:	1		
		Edit		Delete
An RLC series. circuit remains predominantly inductive	1 2 3 4 Key :	frequence below re above re at reson	cy eson eson ance	half power ance frequency ance frequency e frequency Delete
The differentiation of a unit step signal is signal.	1 2 3 4 Key :	ramp impulse exponer paraboli	ntial	
	κey .	Edit		Delete
	1	Field rhe	eosta	at
n method of speed control the speed above the rated speed can be obtained.	2	None of are corr		mentioned answers
	3	Voltage	cont	rol
obtained.	4	Armatur	e rhe	eostat
	Key:	1		
	A	Edit		Delete

Questions	Choic	ces					
	1	V ₀ Sin (o	ω_0 t)				
	2	•0					
An ideal capacitor is charged to a voltage V0 and connected at t = 0 across an ideal inductor L. (The circuit now consists of a capacitor and inductor alone). If	3	$V_0 e^{-\omega ot} Cos (\omega_0 t)$					
we let $\omega 0 = 1/\sqrt{LC}$, the voltage across the capacitor at time t > 0 is given by	4	V ₀ Cos	$(\omega_0 t)$				
	Key:	4					
	**	Edit	Delete				
	1	7 V					
	2	√17 V					
The RMS value of the voltage u(t)= 3 + 4 cos (3t) is	3	5 V					
The range value of the voltage u(t)= 0 : 4 cos (ct) is	4	3 + 2 √2	V				
	Key:	2					
	**	Edit	Delete				
	1	15A					
sinusoidal alternating current of peak value 20 A is	2	17.32A					
	3	10A					
	4	14.14A					
	Key:	2					
	**	Edit	Delete				
	1	linear bi	lateral elements				
	2	resistive elements					
superposition theorem can be emplied only to sirguite begins	3	passive elements					
superposition theorem can be applied only to circuits having	4	non-line	ar elements				
	Key:	y :3					
		Edit	Delete				
	1	240W					
	2	2880W					
A 240 V single-phase ac source is connected to a load with an impedance of	3	1200W					
10 Đ 60 °Ω. A capacitor is connected in parallel with the load. If the capacitor supplies 1250 VAR, the real power supplied by the source is	4	3600W					
	Key:	эy :2					
	./*	Edit	Delete				
	1	Resistar	nce				
In series as well as parallel circuits the equivalent (total) value of certain	2	Voltage					
	3	Current					
parameter is given by X = X1 + X2 + X3 + X4 + The parameter X could be	4	power					
	Key:	4					
	**	Edit	Delete				

Questions	Choices						
	1	High po	wer	factor			
	2	Low eff	icier	псу			
	3	Low po	wer	factor			
In a circuit low reactive power compared to true power indicates:	4	High ef	ficie	ncy			
	Key ::	2					
		Edit	â	Delete			
	1	columb	s				
	2	Conduc	ctano	ce			
The reciprocal of resistance is:	3	Voltage	:				
The rediprocal of resistance is.	4	Current					
	Key ::	2					
	**	Edit	ŵ	Delete			
	1	247mA					
	2	303mA					
How much current will flow in a 100 Hz series RLC circuit if VS = 20 V, RT = 66	3	1.05A					
ohms, and XT = 47 ohms?	4	107mA					
	Key:	Key :1					
		Edit	â	Delete			
	1	small v	alue	of emf			
	2	zero so	urce	resistance			
An ideal voltage course should have	3	large value of emf					
An ideal voltage source should have	4	infinite	sour	ce resistance			
	Key :	4					
	**	Edit		Delete			
	1	Branch	vol	tages are additive			
	2	Branch additiv		rrents are			
When the resistances are connected in parallel circuit then	3	Resista	ance	s's are additive			
·	4	freque	ncie	s are additive			
	Key ::	2					
		Edit	â	Delete			
	1	Halved					
	2	Double	d				
A network contains linear resistors and ideal voltage sources. If values of all the	3	Not cha	nge	d			
resistors are doubled, then the voltage across each resistor is	4	Increas	ed b	y four times			
	Key :	3					
	*	Edit	<u></u>	Delete			

Questions	Choic	ces				
	1	30 Ω, 1	5A			
	2	10 Ω, 1	0A			
A load that has a resistance of 10Ω is to be connected to a supply that has a constant voltage of 120 volts. If it is desired that the current to the load be varied	3	30 Ω, 5	Α			
from 3 to 5 Amperes, what are the resistance and the current rating of the series		20 Ω, 1	ΛΑ			
rheostat that permit this variation?						
	Key:		4			
		Edit		Delete		
	1	29.5Ω				
	2	9.5Ω				
An RLC resonant circuit has a resonance frequency of 1.5 MHz and a bandwidth	3	14.75Ω				
of 10 kHz. If C = 150 pF, then the effective resistance of the circuit will be	4	4.7Ω				
	Key:	4				
	**	Edit		Delete		
	1	Real pa	arts of	fzeroes		
	2	Poles a	nd ze	eroes		
A materials and he committee to an exist of large	3	Real part of poles				
A network can be completely specified by:	4	Poles, z	zeroe	s and a scale factor		
	Key :	4				
		Edit	â	Delete		
	1	8				
	2	20				
In a series RLC circuit, which of these quality factors has the steepest	3	4				
magnitude response curve near resonance?	4	12				
	Key :	2				
	, / `	- Edit	â	Delete		
	1	Voltage	sour	ce		
	2	Transis	tor			
	3	Current	sour	ce		
Identify the passive element among the following.	4	Inducto	r			
	Key:	4				
	, / *	Edit		Delete		
	1	0.75				
	2	0.1875				
The coefficient of coupling for two coils having L1 = 2 H, L2 = 8 H and M = 3H is:	3	5.333				
	4	1.333				
	Key:	1				
		Edit	â	Delete		

Questions	Choic	ces			
	1	L/ RC			
	2	1 / RLC			
		C/ RL			
A choke coil having resistance R ohms and of L henry is shunted by a capacitor of C farads. The dynamic impedance of the resonant circuit would be	3	R/LC			
or or larado. The dynamic impodance of the recontinuous would be	4				
	Key:		_		
	A	Edit		Delete	
	1	Current resistan		rce in series with	
	2	Voltage resistan		rce in series with	
Norton's equivalent circuit consists of	3	Current resistan		rce in parallel with	
	4	Voltage resistan		rce in parallel with	
	Key:	3			
	, M'	Edit		Delete	
	1		nge t	the resonance	
	2	will incre		the selectivity of	
In series resonant circuit, increasing inductance to its twice value and reducing capacitance to its half value	3			the impedance at requency	
	4	will change the maximum value of current at resonance			
	Key :	2			
	A.	E dit	â	Delete	
	•	Eun		300 watt	
	1				
	2			67 watt	
Two bulbs marked 200 watt-250 volts and 100 watt-250 volts are joined in series	3			100 watt	
to 250 volts supply. Power consumed in circuit is	4			33 watt	
	Key :	2			
	A	Edit	â	Delete	
	1	R only			
	2	RLC eve	enly		
		C only	·		
In a circuit containing R, L and C, power loss can take place in	3	L only			
	4				
	Key:		ᅟ		
	./`	Edit	<u> </u>	Delete	
	1			charge	
	2			energy	
	3			conductance	
Ampere second could be the unit of	4			power	
	Key:	1			
		Edit	â	Delete	

Questions	Choi	noices					
	1	220 V, 60 V	V				
	2	115 V, 100	W				
	3	220 V, 100	W				
Which of the following bulbs will have the least resistance?	4	115 V, 60 V	V				
	Key:	2					
		Edit 🛅	Delete				
	1	R.M.S. value is equal to average value Only average value					
	2						
The square waveform of current has following relation between R.M.S. value	3	R.M.S. valu	ue of current is less ge value				
and average value	4		ue of current is n average value				
	Key:	1					
	, / /	Edit 🛅	Delete				
	1	average va	lue/peak value				
Form Factor is the ratio of	2	r.m.s. value	e/average value				
	3	r.m.s. value/peak value					
	4	average value/r.m.s. value					
	1.	Key :2					
	, / /		Delete				
	1	1.5 ohms a	nd 3 ohms				
	2	3 ohms and 9 ohms					
Two resistances R_1 and R_2 give combined resistance of 4.5 ohms when in series		1.5 ohms and 0.5 ohms					
and 1 ohm when in parallel. The resistances are	4	3 ohms and 6 ohms					
	т Key:						
	-		Delete				
	1	AC - AC o	converters				
	2	AC - DC d	converters				
			converters				
Unipolar modulation is generally used in	3		converters				
	4		converters				
	Key:	_					
	**		Delete				
	1	Eddy curre					
	2	Copper los					
	3	Magnetic lo					
	4	Hysteresis	loss				
	Key:	_					
	,	Edit 🗖	Delete				

Questions	Choic	ces				
	1	Depend current		on the load		
	2	Depend	dent	on the voltage		
During the commutation period in 3 phase converter, overlap time is	3	Dependent on both the load current and load voltage behind the short circuit current				
	4		ırren	nt on both the it and load		
	Key:	:3				
	**	Edit	Î	Delete		
	1	1				
In a three phase full converter, the number of notches per cycle is	2	3				
	3	6				
	4	9				
	Key:	:3				
	, /^ \	Edit	Î	Delete		
	1	inductive	е			
	2	suscept	ive			
In any DI Coories signifit the fix fo then the circuit behaves as	3	capacitive				
In any RLC series circuit, the f > f0 then the circuit behaves as nature	4	resistive	;			
	Key:	:1				
	^	Edit	Î	Delete		
	1	Does n		ontains second		
	2	Does not contains third harmonic				
Under harmonic free load voltages, the 3 phase VSI	3	Does not contains fifth harmonic				
	4	Does n		ontains seventh		
	Key:	:1				
		Edit		Delete		
	1	20V				
	2	8V				
Two resistors 5 Ω and 3 Ω are connected in series with a voltage source of 20 V. What is the voltage drop across 3 Ω resistor?	3	7.5V				
	4	12.5V				
	Key:	3				
	, /	Edit	Î	Delete		

Questions	Choi					
	1	0°				
	2	240°				
	3	180°				
At unbalanced condition, angle between each phases of 3 phase supply are	4	120°				
	Key:	4				
		Edit		Delete		
	4	Passiv				
	1	Active				
	2					
	2	Both p filters	assi\	e and active		
Harmonics in 3 phase inverters can be reduced by using	3	IIILEIS				
	4	None	of th	ese		
	Key:	:3				
	-	Edit	â	Delete		
	1	3 k Ω				
The parallel combination of a 470 Ω resistor and a 1.2 k Ω resistor is in series with the parallel combination of three 3 k Ω resistors. A 200 V source is connected across the circuit. The resistor with the most current has a value of	2	a. 1	.2 k Ω	Ω		
	3	470 Ω α				
		470 Ω				
	4					
	Key:		â	D. L.		
	•	Edit		Delete		
	1	114 mA				
	2	1.14 A				
A 680Ω load resistor, RL, is connected across a constant current source of 1.2	3	0 A				
A. The internal source resistance, RS, is 12 kΩ. The load current, RL, is	4	1.2 A				
	Key :	2				
	**	Edit		Delete		
	1	144 V				
	2	7.2 V				
A 12 mA current source has an internal resistance, RS, of 1.2 kΩ. The	3	72 mV				
equivalent voltage source is	4	14.4 V				
	Key :	4				
		Edit	â	Delete		
	1	joule/se	eC .			
	2	amperes/volt				
	3	(Amper	es) ² >	cohm.		
Which of the following is not the same as watt?	4	ampere				
	Key:					
	itey .	Edit		Delete		
		Lait	ш	Doloto		

Questions	Choices					
	1	large cu resistor	rren	t flows in larger		
	2	smaller resistance has smaller conductance				
A circuit contains two un-equal resistances in parallel	3	current	s sa	me in both		
	4	potentia is same		erence across each		
	Key:	4				
			â	Delete		
	1	Square)			
	2	Sinuso	idal			
In the SPWM, the modulating signal is	3	Triangu	ılar			
and of true, and modulating orginal to	4	Saw -	toot	h		
	Key:	2				
			â	Delete		
	1	125 V				
	2	120 V				
The voltage drop across a 1.5-kW toaster that draws 12 A of current is:	3	10.42 V				
	4	18 kV				
	Key:	1				
		Edit	â	Delete		
	1	4				
	2	19				
A network has 12 branches and 8 independent loops. How many nodes are	3	5				
there in the network?	4	17				
	Key:		_			
				Delete		
	1	80W				
A load is connected to a network. At the terminals to which the load is	2	40W				
connected, RTh = 10Ω and VTh = 40V. The maximum possible power supplied	3	1W				
ne load is:		160W				
	Key:		侖	D.1.		
	4	Edit 13 V		Delete		
	2	7 V				
A corios BC circuit has IVPI = 12 V and IVCI = 5 V. The magnitude of the averalty	3	– 7 V				
Notable is:	3 4	17 V				
	ີ Key∶					
		Edit	â	Delete		
	<u> </u>					

Questions	Choices				
	1 reactive				
	2 periodic				
	3 a phasor				
A function that repeats itself after fixed intervals is said to be:	4 harmonic				
	Key :2				
	Edit Delete				
	1 4Ω				
	2 2Ω				
A parallel RLC circuit has L = 2 H and C = 0.25 F. The value of R that will	3 1Ω				
	0.5.0				
France and annipug access to	Ţ.				
	Key:2 Edit Delete				
	1 band pass				
What kind of filter can be used to select a signal of one particular radio station?	2 band stop				
	3 high pass				
	4 low pass				
	Key :1				
	🖍 Edit 🗓 Delete				
	1 84.43 mH				
	2 3.333 H				
How much inductance is needed to resonate at 5 kHz with a capacitance of 12	3 11.844 H				
nF?	4 2,652 H				
	Key :1				
	Edit Delete				
	y21 = y12				
	2 AD = BC + 1				
	3 Z21 = Z12				
If a two-port is reciprocal, which of the following is not true?	b24 = b42				
	Key :4				
	Edit Delete				
	1 Reciprocity				
	2 Duality				
The concept of superposition theorem is based on	3 Non-linearity				
	4 Linearity				
	Key :4				
1	Edit Delete				

Questions	Choic	ces
	1	2.2 k and 1 k
	2	2.2 k
The parallel combination of a 6.8 k resistor and a 10 k resistor is in series with		6.8 k
the parallel combination of a 2.2 k resistor and a 1 k resistor. A 100 V source is connected across the circuit. The resistor(s) with the greatest voltage drop is	3	
(are)	4	6.8 k and 10 k
	Key:	4
		Edit Delete
	1	An inductive circuit
	2	R-C circuit
	3	R-L circuit
A Circuit of zero lagging power factor behaves as	3	
	4	A capacitive circuit
	Key:	-
	***	Edit Delete
	1	same phase sequence
	2	same frequency
NA/high af Aha fallanding is mad a management of the control of th	3	same voltage magnitude
Which of the following is not a necessary condition to be satisfied for synchronising an incoming alternator to an already operating alternator?	3	same prime mover speed
	4	
	Key:	
	***	Edit Delete
	1	Negative, negative
	2	Negative, positive
What are the signs of load angle in an alternator during generator and mater	3	Positive, positive
What are the signs of load angle in an alternator during generator and motor operations, respectively?	4	Positive, negative
	4	_
	Key:	
	,,	Edit Delete
	1	The motor will stop
	2	The capacitor will be damaged
		The auxiliary winding will be
If the capacitor of a capacitor-start single phase motor fails to open when the	3	damaged
motor picks up speed,	4	The winding will be damaged
	Key:	2
		Edit 🛍 Delete
	1	All the answers are wrong
	1	
	2	a.c. only
The transformer will work on	3	d.c. only
THE CAUSIONNER WIII WORK ON	4	a.c. as well as d.c.
	Key:	2
	,,,	Edit Delete
	1	nominal voltage of the line
	2	physical length of the line
	3	wavelength of the line
The concept of an electrically short, medium and long line is primarily based on the	4	power transmitted over the line
	Key:	_
		_

Questions	Choices			
	1 inductors			
[2 capacitors			
	3 transformers			
Boosters are basically	4 Synchronous motors.			
	Key :2			
	Edit Delete			
	1 skin effect			
	2 corona			
The fact that a conductor carries more current on the surface as compared	3 permeability			
to core, is known as	4 unsymmetrical fault.			
	Key :1			
	Edit Delete			
	1 cannot be changed			
	can be changed only in large capacity motors			
In a single-phase capacitor-start induction motor, the direction of rotation	is dependent on the size of the capacitor			
	can be changed by reversing the main winding terminals			
	Key :4			
	Edit Delete			
	1 Only zero p.f lag			
	2 Unity p.f			
A transfer many transfer many transfer to the state of th	3 Leading for some values of p.f			
A transformer may have negative voltage regulation if the load power factor(p.f) is	4 Lagging but not zero p.f			
	Key :3			
	Edit Delete			
	1 125% of the previous value			
	2 25% of the previous value			
If the current in the armature od dc series motor is reduced to 5%, the torque of	3 150% of the previous value			
the motor will become	4 50% of the previous value			
	Key :2			
	Edit Delete			
	201/			
	1201/			
A 4 pole lap wound armature has 480 conductors and the flux per pole is	3 60V			
25mWb. The emf generated, when running at 600 rpm will be	4 240V			
	Key :2			
	Edit Delete			

Questions	Choic	ces		
	1	Kaplan		
	2	Francis		
For harnessing low variable waterheads, the suitable hydraulic turbine with high	3	Pelton		
percentage of reaction and runner adjustable vanes is	1	Impeller	•	
	т Кеу:	_		
		Edit	â	Delete
	1	100		Beiete
	1	200		
	2			
A 200 kVA transformer has an iron loss of 1 kW and full-load Cu loss of 2KW, its	3	141.1		
load kVA corresponding to maximum efficiency is kVA.	4	50		
	Key:	3		
	**	Edit		Delete
	1	steady s	state	value of the system
	2	initial va	lue d	of the system output
		transien	t bel	navior of the system
	3	output		
The final value theorem is used to find the				
	4	None of	the	mentioned answers
		are corr	ect	
	Key:	1		
	.//	Edit		Delete
A -1'-1	1	53.5		
A cylinder rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator		60.2		
no-load voltage is 1.5 pu and the infinite bus voltage is 1 pu. The inertia		70.8		
constant of the generator is 5MW-s/MVA and the generator reactance is 1		79.6		
pu. The critical clearing angle, in degrees, for a three-phase dead short		4		
circuit fault at the generator terminal is	M.	Edit	â	Delete
	,			ompound motor
				compound motor
	2			•
The motor used for intermittent and high torque loads is	3	dc serie		
	4	dc shun	t mo	tor
	Key:	2		
	**	Edit		Delete
	1	70.8		
A cylinder rotor generator delivers 0.5 pu power in the steady-state to an infinite	2	53.5		
bus through a transmission line of reactance 0.5 pu. The generator no-load voltage is 1.5 pu and the infinite bus voltage is 1 pu. The inertia constant of the	3	79.6		
generator is 5MW-s/MVA and the generator reactance is 1 pu. The critical	4	60.2		
clearing angle, in degrees, for a three-phase dead short circuit fault at the	Ч Кеу:	3		
generator terminal is	My.	Edit	龠	Delete
		Luit	ш	

The starting current of an induction motor is five times the full load current while the full-load slip is 4%. The ratio of starting torque to full load torque is:	0.6 0.8
The starting current of an induction motor is five times the full load current while	0.8
1	
the full-load slip is 4%. The ratio of starting torque to full load torque is:	1.0
into tain load one to 170. The taile of starting torque to full load torque is.	1.2
4	
	ey :3
	Edit Delete
1	Prevent hunting & provide starting torque
2	Provide the starting torque only
The damper winding in the synchronous motor is often used to	Maintain synchronism
4	Prevent hunting only
K	ey :1
	Edit Delete
1	Series inductive compensator in the line
2	Shunt inductive compensator
For enhancing the power transmission in along EHV transmission line, the	at the receiving end Series capacitive compensator
most preferred method is to connect a	in the line
4	Shunt capacitive compensator
	at the sending end
	ey :3
	Edit Delete
1	produce rotating flux in conjunction with main winding
	limit temperature rise of the
2	machine
The purpose of starting winding in a single phase induction motor is to 3	reduce losses
4	avoid the oscillations
K	ey :1
	Edit Delete
1	alternators against all internal
	faults oil immersed transformers
	against all internal faults
	synchronous motors against all
The Buchholz relay is used to protect the	internal faults
4	transmission line against all
	types of faults.
	ey :2
	Edit Delete

Questions	Choic	es	
	1	⊿-Y	
	2	Y- <i>∆</i>	
30^0 phase shift between primary and secondary phase voltage will be	3	Y-Y	
experienced on	4	both ⊿-`	Y & Y-1
connection of three phase transformer.	4		1 Q 1-2
	Key :		<u> </u>
	***	Edit	Delete
	1	synchro	onous motor.
	2	wound i	rotor induction motor.
A motor which can conveniently be operated at lagging as well as leading power factors is the	3	dc shun	nt motor
	4	squirrel	cage induction motor
	Key :	1	
	**	Edit	Delete
	1	integrat	ing instrument
	2	indicatir	ng instrument
	3	recordir	ng instrument
The household energy meter is	4	None of	f the mentioned answers ect
	Key :	3	
	**	Edit	Delete
	1	200 km	
	2	160 km	
In overhead transmission lines the effect of capacitance can be neglected	3	100 km	l
when the length of line is less than	4	80 km	
	Key :		≙ ≂ .
		Edit	Delete
	1		ting point with any resistance.
	2		ting point and high resistance
The material used for fuse wire must have	3		ting point and low resistance
4	4		elting point and low resistance
	Key ::	2	
		Edit	Delete

Questions	Choic	ces
	1	oil immersed transformers
	1	against all internal faults
	2	alternators against all internal faults
	3	transmission line against all types of faults.
	4	synchronous motors against all internal faults
	Key:	1
	^	Edit Delete
	1	corona effect
	2	skin effect
	3	radio interference
Litz wires are used for intermediate frequencies.to overcome	4	all of the above.
	Key:	3
		Edit Delete
	1	radial system
	2	ring system
		open loop system
Which of the following distribution systems gives the greater reliability	3	
	4	DC three wire system
	Key ::	2
	***	Edit Delete
	1	increase
	2	decreas
If the height of the transmission tower is decreased, the capacitance of the	3	remain same
line will	4	decrease exponentially
	Key :	2
	**	Edit Delete
	1	summer heat
	2	winter
	3	dry weather
The chances of corona are maximum during	4	humid weather
	Key :	4
	*	Edit Delete
	1	Primary distribution
	2	Secondary distribution
	3	Primary transmission
A 3 phase 4 wire system is commonly used for	4	Secondary transmission
	Key :	2
		Edit Delete

Questions	Choices
	1 Zero
	2 Leading
	Linity
In a transformer zero voltage regulation is achieved at a load PF which is	
	4 Lagging
	Key :2
	Edit Delete
	$ \begin{array}{ccc} & \frac{s^2+1}{s^2} \\ 2 & \frac{s^2+s+1}{s^2} \\ 3 & \frac{s^2+s+1}{s} \end{array} $
For the block diagram shown, the transfer function $\dfrac{C(s)}{R(s)}$ is equal to	$\frac{s^2+s+1}{s^2}$
$R(s)$ $\frac{1}{s}$ $C(s)$	$\frac{s^2+s+1}{s}$
	$\frac{1}{s^2+s+1}$
	Key :2
	🖍 Edit 🛅 Delete
	1 Wein
	2 Anderson
Which of the following bridge can be used for measuring unknown frequency?	3 Kelvin
	4 Maxwell Key :1
	Edit Delete
	1 11000 volt
	2 1000 volt
After what level of operating voltage, the system is called higher voltage system?	3 500 volt
The what level of operating voltage, the system is called higher voltage system.	4 1500 volt
	Key :1
	Edit Delete
	square output waves are required
	·
	wide range of high purity sine waves is to
	2
Nien bridge oscillator is most often used when-ever	be generated
THE PROPERTY OF THE PROPERTY O	3 high feedback ratio is needed
	square output waves are required
	Key :2
	Edit 🛅 Delete

Questions	Choices					
	1	Reduce the	frequer	cy error		
	2	Reduce the	tempera	ature error		
In a moving coil of a meter swamping resistance is added to	3	Reduce the power consumption				
	4	. All of thes	е			
	Key:	:2				
		Edit 🗂	Delete			
	1	Increasing recalibration		lency of		
	2	Decreasing the frequency of recalibration				
Calibration of instrument is an important consideration in measurement system. The errors due to instruments being out of calibration can be rectified by	3	Increasing the temperature coefficient				
	4	Increasing the susceptibility of measuring instrument				
	V	.4				
	Key:		Delete			
	1			Reproducibility		
				Dead zone		
	2					
Which of the following is the dynamic characteristic of an instrument?	3			Fidelity		
	4			Sensitivity		
	Key:	-				
	**	Edit 🛅	Delete			
	1	Low Q coils				
	2	medium Q	coils			
Maxwell's induction-capacitance bridge is used for measurement of inductance	3	high Q coils				
of:	4	low and me	dium Q	coils		
	Key:	:2				
		Edit 🛅	Delete			
	1	electrically	and mag	netically		
	2	electrically				
The primary and secondary of a transformer are coupled	3	None of the	mention	ned answers		
	4	magneticall	у			
	Key:	:4				
		Edit 🛅	Delete			
	1	three times	output f	requency		
	2	six times ou		· ·		
In a three phase series inverter, the firing frequency is	3 4	twice the ou				
	Key :		, 04	,		
	**	Edit 🛅	Delete			
	<u> </u>					

Questions	Choices
	$e^{-t} - e^{-3t}$
The impulse response of a system $G(s) = \frac{2}{(s+1)(s+3)}$ is	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(s+1)(s+3)	
	Key:1 ✓ Edit Delete
	1 1600
A transformer having 1000 primary turns is connected to a 250-V a.c. supply. For a secondary voltage of 400 V, the number of secondary turns should be	2 250 3 400 4 1250 Key :1
	Edit Delete
Armature reaction in an alternator mainly affects	1 Rotor speed 2 Frequency of armature curren 3 Terminal voltage per phase 4 Generated voltage per phase Key:4
	Edit Delete
	1 flux meter
A moving coil permanent magnet instrument can be used as by using a	voltmeterballistic galvanometer
low resistance shunt.	4 ammeter
	Key :4
	Edit Delete
Which of these transformers can be used as an isolation device?	1 Linear transformer 2 Ideal transformer 3 Autotransformer 4 All the transformers specified the options Key :2
	Edit Delete
A transformer core is laminated to	1 reduce hysteresis loss 2 reduce eddy current losses 3 reduce all losses specified in the options 4 reduce copper losses Key :2 Edit Delete
Which of the following motors is used for elevators ?	Any of the motors specified in the options Induction motor Synchronous motor Capacitor start single phase motor Key:2
	Edit Delete

Questions	Choices
	1 Root locus
	2 Bode plot
Which of the following is the best method for determining the stability and	3 Nyquist plot
transient	₄ Polar plot
response?	Key :1
	Edit Delete
	1 0.353
	2 0.330
	3 0.300
The damping ratio of a system having the characteristic equation s^2+2s+8	=0 is 0.250
	т Key :1
	Edit Delete
	1 Stable and controllable
	Stable but upcentrallable
[_1 9] [6]	Linetable but centralishin
The system $oldsymbol{\dot{X}}=Aoldsymbol{X}+Boldsymbol{u}$ with $A=egin{bmatrix} -1 & 2 \ 0 & 2 \end{bmatrix}$, $B=egin{bmatrix} 0 \ 1 \end{bmatrix}$ is	3 Unstable but controllable 4 Unstable and uncontrollable
	7
	Key :3 ✓ Edit 🛅 Delete
	Edit Delete
	$\begin{bmatrix} e^{-3t} & 0 \end{bmatrix}$
	$\begin{bmatrix} e^{-3t} & 0 \\ e^{-2t} + e^{-3t} & e^{-2t} \end{bmatrix}$
A system is described by the following state and output equations	$\left[e^{-3t} \ e^{-2t} - e^{-3t}\right]$
$rac{dx_1(t)}{dt} = -3x_1(t) + x_2(t) + 2u(t)$	$\begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}$
$dr_2(t)$	$[e^{-3t} \ e^{-2t} + e^{-3t}]$
$\frac{dx_2(t)}{dt} = -2x_2(t) + u(t)$	$\begin{bmatrix} e^{-3t} & e^{-2t} + e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}$
$y(t) = x_1(t)$	L J
	$[e^{3t} e^{-2t} - e^{-3t}]$
The state transition matrix of the system is	$\begin{bmatrix} e^{3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}$
	Key :2
	Edit Delete
	Stable and of the minimum phase type
	Stable and of the non–minimum
	2 phase type
An open loop system represented by the transfer function $(s-1)$	Unstable and of the minimum 3 phase type
$G(s)=rac{(s-1)}{(s+2)(s+3)}$ is	Unstable and of non–minimum 4 phase type
	Key :2
	Fedit ☐ Delete
	A Edit m Delete

Questions	Choices
	1 a = 1, b = 2
The transfer function of a compensator is given as	a = 3, b = 2
	3 a =- 3, b =- 1
$G_c(s) = \frac{s+a}{s+b}$	a = 3, b = 1
	·
Sc (s) is a lead compensator if	Key :1
	Edit Delete
The block diagram shown in figure gives a unity feedback closed loop control	
system. The steady state error in the response of the above system to unit	1 25%
step input is	0.759/
	_
u(t) 3 15 $y(t)$	3 6%
s+15 $s+1$	4 33%
<u> </u>	Key :1
	Edit Delete
	$j\omega$
	<i>J.</i>
	1
	←
	∫ σ
	$j\omega$
	2
	σ
	,
	$j\omega$
A unity feedback system has an open loop transfer function $G(s)=rac{K}{arepsilon^2}$. Th	ne
ð	
oot locus plot is	3
	σ
	$j\omega$
	$\frac{4}{\sigma}$
	Key :2
	Edit Delete
	r Dan m Delete

Questions	Choices
Point charges 30 nC, –20 nC and 10 nC are located at (–1, 0, 2), (0, 0,0) and (1, 5, –1) respectively. The total flux leaving a cube of side 6m centered at the origin	1 -20 nC
	2 30 nC
	3 10 nC
	⊿ 20 nC
is	⊤ Key :3
	Edit Delete
	1 (1.4 m, 0.592 m, 0.75 m)
	2 (1.269 m, 0.592 m, 0.75 m)
A maint in audit dei ad a continuta in defined by (4.4 m, 050, 0.75 m). I continue f	3 (1.4 m, 0.92 m, 0.75 m)
A point in cylindrical coordinates is defined by $(1.4 \text{ m}, 25^0, 0.75 \text{ m})$. Location of the point in rectangular coordinates is	4 (1.4 m, 0.592 m, 0.375 m)
	Key :2
	🖍 Edit 🛅 Delete
	1 179.63V
	2 254.04V
In a single pulse modulation of PWM inverters, the pulse width is 120°, for an	3 127.02V
input voltage of 220 V dc, the RMS value of output voltage is	185.04V
	Key :1
	Edit Delete
	high
	·
	2 low
SCR will suffer from reverse recovery current when the switching frequency is	3 never suffer
	4 moderate
	Key :1
	Edit Delete
	1 Sinusoidal
	2 Constant DC
A single phase diode rectifier supplies a highly inductive load. The load	3 Square
current can be assumed to be ripple free. The ac supply side current waveform will be	4 Triangular
wavelolm win se	Key :3
	Edit Delete
	1 Higher current carrying
	Lower peak inverse voltage
	2 requirement
Comparing with the full wave rectifier using two diodes, the four diode	3 Lower ripple factor
bridge rectifier has the dominant advantage of	4 Higher efficiency
	Key :2
	Edit Delete
	1 anode current
	2 forward current rating
In a SCR circuit, the angle of conduction can be changed by changing	3 gate current
	4 anode voltage Key :3
	Edit Delete

1.

Questions	Choices
The superposition theorem requires as many circuits to be solved as there are	1 branches 2 sources 3 sources and nodes 4 nodes Key:2
The 4's complement of (23) of radix 5 is	Fedit Delete 1 4 2 3 3 1 4 2 Key:3
Slew rate is the	maximum rate of output voltage change minimum rate of output voltage change change zero rate of output voltage change average rate of output voltage change. Key:1 Edit Delete
Which of the following type display needs backlight?	1 CRO 2 LCD 3 LED 4 None of the mentioned answers are correct Key:2
For a system with the transfer function $H(s) = \frac{3(s-2)}{4s^2 - 2s + 1},$ the matrix A in the state space form $\dot{\mathbf{X}} = A\mathbf{X} + B\mathbf{u}$ is equal to	1 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & -4 \end{bmatrix}$ 2 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & -4 \end{bmatrix}$ 3 $\begin{bmatrix} 0 & 1 & 0 \\ 3 & -2 & 1 \\ 1 & -2 & 4 \end{bmatrix}$ 4 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 2 & -4 \end{bmatrix}$ Key:2 * Edit Delete

Roy .4 Edit 15.9% 63% 3 63% 4 1.59% 63% 4 1.59% 63% 4 1.59% 63% 63% 4 1.59% 63%	Questions	Choices			
A 4-bit R/2R ladder digital-to-analog converter uses 3		1	four resi	stor	values
A 4-bit R/2R ladder digital-to-analog converter uses 3		2	three res	sisto	r values
A 4-bit R/2R ladder digital-to-analog converter uses 4 to resistor values					
Key: 4 Edit	A 4-bit R/2R ladder digital-to-analog converter uses				
The resolution of a 6-bit DAC is The resolution of a 6-bit DAC is The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of The dust The main purpose of The dust The dist				olUI '	values
The resolution of a 6-bit DAC is The resolution of a 6-bit DAC is The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The did iii Delete The did iii Delete The main purpose of performing open-circuit test on a transformer is to test The did iii The did iii Delete The did iii The did iii Delete The did iii The did iii _		rey:	4		
The resolution of a 6-bit DAC is The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure. The main purpose of performing open-circuit test on a transformer is to measure. The main purpose of performing open-circuit test on a transformer is to measure. The main purpose of performing open-circuit test on a transformer is to measure. The culos The did			Edit	â	Delete
The resolution of a 6-bit DAC is The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to tall oss The main purpose of performing open-circuit test on a transformer is to tall oss The did		1	15 00/		
The resolution of a 6-bit DAC is 3		1			
The resolution of a 6-bit DAC is 4					
Key :4	The resolution of a 6-bit DAC is				
The main purpose of performing open-circuit test on a transformer is to measure its		1			
The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit estations The main purpose of performing open-circuit and The main purpose of performing open-circuit estations The m		Key:	4		
The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure its The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit test on a transformer is to measure The main purpose of performing open-circuit estations The main purpose of performing open-circuit and The main purpose of performing open-circuit estations The m		<i>J</i> *	Edit	侖	Delete
The main purpose of performing open-circuit test on a transformer is to measure its total loss total loss key:4 / Edit		ļ ^			Belete
The main purpose of performing open-circuit test on a transformer is to measure its Core loss		1	Cu loss		
The main purpose of performing open-circuit test on a transformer is to measure its Core loss			insulatio	n ro	sistance
In order to implement a Full Subtractor,ROM will be sufficient. ROM will be sufficient. Text			การนาสเเป	,,,,, ,,	
tiss A core loss		3	total loss	S	
Key :4 Edit Delete	its				
In order to implement a Full Subtractor,ROM will be sufficient. 1		4	core los	S	
In order to implement a Full Subtractor,ROM will be sufficient. 1		Kev :	4		
In order to implement a Full Subtractor,ROM will be sufficient. ROM be sufficient. ROM will be sufficient. ROM belat 1 0 and 0 2 1 and 0 3 0 and 1 4 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 4 1,				ے	
In order to implement a Full Subtractor,ROM will be sufficient. ROM will be sufficient. Roll will be sufficient. Relit Delete Polete None Both positive and negative logic system Negative logic system Rey :4		***	Edit		Delete
In order to implement a Full Subtractor,ROM will be sufficient. ROM will be sufficient. Roll will be sufficient. Relit Delete Polete None Both positive and negative logic system Negative logic system Rey :4		1	16 X 2		
In order to implement a Full Subtractor,ROM will be sufficient. A S X 2 4 4 X 2 Key:3 ** Edit ** Delete** 1 0 and 0 2 1 and 0 0 2 1 and 0 0 3 0 and 1 1 1 and 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
In order to implement a Full Subtractor,ROM will be sufficient. ### A X 2 Key:3					
Comparison of the flip-flop with active low preset and active high clear? Comparison of the flip-flop with active low preset and active high clear? Comparison of the flip-flop with active low preset and active high clear? Comparison of the flip-flop with active low preset and active high clear? Comparison of the flip-flop with active low preset and active high clear? Comparison of the flip-flop of the flip-flop with active low preset and active high clear? Comparison of the flip-flop of the flip-flop with active low preset and active high clear? Comparison of the flip-flop of the flip-flop with active low preset and active high clear of the flip-flop of the flip	In order to implement a Full Subtractor, ROM will be sufficient.				
What will be the set condition of the flip-flop with active low preset and active high clear? If the property of the parity bits are		1			
What will be the set condition of the flip-flop with active low preset and active high clear? What will be the set condition of the flip-flop with active low preset and active high clear? A condition of the flip-flop with active low preset and active high clear? A condition of the flip-flop with active low preset and active high clear? A condition of the flip-flop with active low preset and active high clear. A condition of the flip-flop with active low preset and active high clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the		Key:	3		
What will be the set condition of the flip-flop with active low preset and active high clear? What will be the set condition of the flip-flop with active low preset and active high clear? A condition of the flip-flop with active low preset and active high clear? A condition of the flip-flop with active low preset and active high clear? A condition of the flip-flop with active low preset and active high clear. A condition of the flip-flop with active low preset and active high clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low preset and active and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the flip-flop with active low and clear. A condition of the			Edit	盦	Delete
What will be the set condition of the flip-flop with active low preset and active high clear? A		1	O and O		
What will be the set condition of the flip-flop with active low preset and active high clear? A					
high clear? 4 1 and 1 Key:1 Edit Delete 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key:1 Edit Delete 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key:1 Edit Delete 1 A 2 3 3 2 4 5 Key:1 Edit Delete 1 A 2 B 3 Delete 1 None Both positive and negative logic system is represented by 1 and higher is represented by 0.					
Key :1 Edit Delete	What will be the set condition of the flip-flop with active low preset and active	3			
In 9-bit Hamming code for BCD, the parity bits arelocations 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key:1 * Edit Delete How many flip-flops required to design a sequence generator for the sequence "1000"? How many flip-flops required to design a sequence generator for the sequence "1000"? Edit Delete 1 4 2 3 3 2 4 5 Key:1 * Edit Delete Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0.	high clear?				
In 9-bit Hamming code for BCD, the parity bits arelocations 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key :1 Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key :1 Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0.		Key:	1		
In 9-bit Hamming code for BCD, the parity bits arelocations 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key :1 Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. 1 1,2,4,8 2 2,3,4 3 1,2,4 4 1,4,8 Key :1 Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0.		./*	Edit	侖	Delete
In 9-bit Hamming code for BCD, the parity bits arelocations 2 2,3,4 3 1,2,4 4 1,4,8 Key:1 ** Edit Delete How many flip-flops required to design a sequence generator for the sequence "1000"? ** Edit Delete 1 4 2 3 3 2 4 5 Key:1 ** Edit Delete 1 None Both positive and negative logic system is represented by 0. ** Edit Delete 1 None Both positive and negative logic system 3 Positive logic system 4 Negative logic system Key:4					Belete
In 9-bit Hamming code for BCD, the parity bits arelocations 3 1,2,4 4 1,4,8 Key :1 Edit Delete How many flip-flops required to design a sequence generator for the sequence "1000"? Edit Delete 1 4 2 3 3 2 4 5 Key :1 Edit Delete 1 None Both positive and negative logic system 3 Positive logic system 4 Negative logic system Key :4					
In 9-bit Hamming code for BCD, the parity bits arelocations 4 1,4,8 Key :1 Edit Delete 1 4 2 3 3 2 4 5 Key :1 ** Edit Delete 1 None Both positive and negative logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. ** Edit Delete 1 None Both positive and negative logic system Positive logic system Negative logic system Key :4		2			
How many flip-flops required to design a sequence generator for the sequence "1000"? How many flip-flops required to design a sequence generator for the sequence "1000"? Edit Delete Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. The property of the two levels is represented by 1 and higher is represented by 0. How many flip-flops required to design a sequence generator for the sequence in the sequen	In 0 hit Hamming gods for BCD, the navity hits are	3	1,2,4		
How many flip-flops required to design a sequence generator for the sequence "1000"? How many flip-flops required to design a sequence generator for the sequence "1000"? Edit Delete Key:1 Edit Delete 1 None Both positive and negative logic system Positive logic system Negative logic system Negative logic system Key:4	ווו פ-טוג המחוחוווון code וטו שלט, the parity bits arelocations	4	1,4,8		
How many flip-flops required to design a sequence generator for the sequence "1000"? How many flip-flops required to design a sequence generator for the sequence "1000"? Edit Delete Key:1 Edit Delete 1 None Both positive and negative logic system Positive logic system Negative logic system Negative logic system Key:4		Key:	1		
How many flip-flops required to design a sequence generator for the sequence "1000"? How many flip-flops required to design a sequence generator for the sequence Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. The distribution of the two levels is represented by 1 and higher is represented by 0. The distribution of the two levels is represented by 1 and higher is represented by 0. The distribution of the two levels is represented by 1 and higher is represented by 0. The distribution of the two levels is represented by 1 and higher is represented by 0. The distribution of the two levels is represented by 1 and higher is represented by 0. The distribution of the two levels is represented by 1 and higher is represented by 0.				侖	Delete
How many flip-flops required to design a sequence generator for the sequence "1000"? Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0.		, A	Luit	ш	Delete
How many flip-flops required to design a sequence generator for the sequence "1000"? Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. Sequence generator for the sequence and a sequence generator for the sequence and a sequence and a sequence generator for the sequence genera		1			
#1000"? 4 5 Key :1 ** Edit Delete 1 None Both positive and negative logic system 2 system 3 Positive logic system 4 Negative logic system 4 Negative logic system 5 Key :1 ** Edit Delete		1			
#1000"? 4 5 Key :1 ** Edit Delete 1 None Both positive and negative logic system 3 Positive logic system 4 Negative logic system Negative logic system Key :4	How many flip-flops required to design a sequence generator for the sequence	3	2		
Key :1 ✓ Edit Delete 1 None Both positive and negative logic system 2 system 3 Positive logic system 4 Negative logic system Key :1 Key :4	"1000"?	4	5		
Edit Delete 1 None 2 Both positive and negative logic system 3 Positive logic system 4 Negative logic system Key:4		Key:	1		
Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. 1 None Both positive and negative logic system 3 Positive logic system 4 Negative logic system Key:4		l .		侖	D.1.
Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. Both positive and negative logic system Positive logic system Negative logic system Key:4		1	East	Ш	Delete
Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. 2 system 3 Positive logic system 4 Negative logic system Key:4		1	None		
Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. 2 system 3 Positive logic system 4 Negative logic system Key:4			Both pos	sitive	and negative logic
Logic system in which the lower of the two levels is represented by 1 and higher is represented by 0. 3 Positive logic system 4 Negative logic system Key :4		2			5 5
is represented by 0. 4 Negative logic system Key :4	Logic system in which the lower of the two levels is represented by 1 and higher	3	-	loaid	c system
Key :4	is represented by 0.	1.		-	-
		1 -		Jiog	io oyotoiii
Edit Delete				_	
			Edit		Delete

Questions	Choic	ces		
	1	0		
	2	1		
		2		
For the equation, $s^3 - 4s^2 + s + 6 = 0$ the number of roots in the left half of	3			
s-plane will be	4	3		
	Key :	2		
	***	Edit		Delete
Which of the following represents a stable system?	1	1 and 4		
Impulse response of the system decreases exponentially.	2	1 and 3		
2. Area with the impulse response is finite.	3	2, 3 and 1, 2 and		
3. Eigen values of the system are positive and real.	т Key:		-	
Roots of Characteristic equations of the system are real and negative.		Edit		Delete
	1	5		
		5/2		
	2			
Consider the function $F(s) = \frac{5}{s(s^2 + s + 2)}$, where $F(s)$ is the Laplace transform	3	zero		
of f (t). $\underset{t\to\infty}{\text{Lim}} f(t)$ is equal to	4	Infinity		
	Key ::	2		
		Edit		Delete
	1	Increase	es co	ontinuously
	2	Remain	s co	nstant
A three phase, salient pole synchronous motor is connected to an infinite bus. It		First inc	reas	es and then
is operated at no load a normal excitation. The field excitation of the motor is first	3	decreas	es s	teeply
reduced to zero and then increased in reverse direction gradually. Then the		First ded	crea	ses and then
armature current:	4	increase	es st	eeply
	Key :	3		
		Edit		Delete
	1	Power s	igna	<u> </u>
	2	Even		
Any signal which is symmetric about the time origin is called	3	Energy	sign	al
	4 Key::	Odd		
	rey		솖	D.L.
	-	Edit		Delete
	1	x(t-12)		
	2	x(t+12) x(t-2)		
Convolution of x(t+5) with impulse function d(t-7) is equal to	4	x(t-2) x(t+2)		
	Key :			
	**	Edit	â	Delete
	1	ramp fu	nctio	on .
	2	parabola		
If the unit impulse response of an LTI system and the input signal are both	3	rectang		
rectangular pulses, then the response will be a	4	triangula	ar pu	ılse
	Key :	4	_	
	./		曲	

Questions	Choices
	$\begin{bmatrix} 1 \\ -j \end{bmatrix}, \begin{bmatrix} j \\ -1 \end{bmatrix}$
	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
One pair of eigen vectors corresponding to the two eigen values of the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is	$\begin{bmatrix} 1 \\ j \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	$\begin{bmatrix} 1 \\ j \end{bmatrix}, \begin{bmatrix} j \\ 1 \end{bmatrix}$
	Key :4
	Edit Delete
The discrete time system describes by $y(n) = x(n^2)$ is:	non-casual, Linear, time invariant casual, non-linear, time varying casual, Linear, time varying non-casual, non-linear, time variant
	Key:3 Edit Delete
	1 1/30
Consider an LTI system with transfer function	2 1/15
$H'(s) = \frac{1}{s(s+4)}$	3 3/4
If the input to the system is $cos(3t)$ and the steady state output is $A sin(3t + \alpha)$, then the value	e 4 4/3
of A is	Key :2
	Edit Delete
Two sequences x1 (n) and x2 (n) are related by x2 (n) = x1 (- n). In the z-domain, their ROC's are	 the same. reciprocal of each other. negative of each other. complements of each other. Key:2
	🖍 Edit 🛅 Delete
	1 Sampling
	2 Interpolation
The process of reconstructing a continuous time signal $x(t)$ from its samples is	3 Decimation
known as	4 band limiting
	Key :2
	- · · · · · · · · · · · · · · · · · · ·

Questions	Choic	ces				
	1			of cycles one minute		
	2			of waves passing pint in one second		
The frequency of an alternating current is	3		thro	of electrons ugh a point in one		
	4	The speed with which alternate runs				
	Key:	1				
	./*	Edit		Delete		
	1	40KA				
	2	5mA				
	3	25 µA				
The maximum current that a 2W, 80 kΩ resistor can safely conduct is:	4	160KA				
	Key:	1				
		Edit		Delete		
	1	remains				
	2	is quad	ruple	d		
	3	is doub				
When the total charge in a capacitor is doubled, the energy stored:	4	Is halve				
	⁴ Key∶					
	. /	– Edit	=	Delete		
	1	4.2 W		Belete		
	2	2.4 W				
		4W				
Two resistors of 4 W and 6 W are connected series to a supply of 20 V. The load is in parallel with 6 W .Then the Thevenin's resistance is	3 4	10 W				
·	4 Key:					
	.ey .	E dit	â	Delete		
	•			e parallel with 1H		
	1	inducta		o paramor with TTT		
	2	1Ω resi capacit		e in parallel with 1F		
A source of angular frequency 1 rad/sec has source impedance consisting of 1Ω resistance in series with 1 H inductance. The load that will obtain the maximum	3	1Ω resi	stanc	e		
power transfer is:	4	1Ω resistance in series with 1F capacitor				
	Key:	4				
	, /	Edit	â	Delete		
	I					

Questions	Choices			
	1	Current leads behind the voltage by 90		
	2	Current lags behind the voltage by 90		
In a pure Inductive circuit,	3	Current and voltage are in- phase		
	4	Current is zero.		
	Key:	2		
		Edit Delete		
	1	reactive power is more than the actual power		
	2	actual power is more than its reactive power		
In a highly capacitive circuit the	3	reactive power is more than the apparent power		
	4	apparent power is equal to the actual power		
	Key:	1		
	**	Edit Delete		
	1	Voltage across the commutating inductances collapses		
In current commutated DC-DC choppers, the voltage spike	2	The capacitance voltage adds to the supply voltage		
appears across the load when	3	Both (a) and (b)		
	4	None of these		
	Key:	3		
	A	Edit Delete		
	1	reduces the flux density		
	2	reduces the magneto motive force		
The effect of an air gap in a magnetic circuit is to:	3	increases the reluctance		
	4	reduces the flux		
	Key:	3		
	1	deviation		
'Sum of all deviations/No of measurements" is equal to	2	None of the mentioned answers are correct		
	3	Mean deviation Variance		
	Key:	4 Edit ⊞ Delete		

Questions	Choic	ces			
A thyristor can be termed as:	1 2 3 4 Key :	are co both A DC sw AC sw	rrect C and ritch itch	mentioned a d DC switch Delete	nswers
If N2 > N1, then E2 > E1. What type of transformer	1 2 3 4 Key :	None of are co	of the rrect transi	sformer mentioned a former ransformer Delete	nswers
The Nodal method of circuit analysis is based on,	1 2 3 4 Key :	KVL, k	nd Oh (CL ai nd Oh	CL nms law nd Ohms law nms law Delete	,
An electric current of 5 A is same as	1 2 3 4 Key :	3 Edit	俞	5 w / sec 5 V / C 5 C / sec 5 J / C Delete	
The power MOSFET device is a	1 2 3	Curre device Curre device Voltage device Voltage device Curre device Voltage device Curre device	nt co ge co e nt co e	introlled uni introlled uni introlled bip	polar olar
If the firing angle becomes negative, then the rectifier begins to work as	1 2 3 4 Key:	An inv A cho	tifier /ertei	r	
		Edit	盦	Delete	

Questions	Choic	Choices			
	1	quality f	acto	r	
	2	cutoff fre	eque	ency	
The difference between the half-power frequencies is called the:	3	bandwid	dth		
The difference between the nail-power frequencies is called the.	4	resonan	nt fre	quency	
	Key:	3			
		Edit	â	Delete	
	1	Cosine	of th	e phase angle	
	2	Sine of	the p	ohase angle	
	3	Tangent	t of t	he phase angle	
The power factor of an ac circuit is equal to	4	Cotange	ent c	of the phase angle	
	Key:	1			
	**		â	Delete	
	1	Active			
	2	None of are corr		mentioned answers	
When superposition theorem is applied to any circuit, the voltage source in that	3	Shorted			
circuit is aiways	4	Opened	l		
	Key:	3			
	**	Edit	â	Delete	
	1	Copper			
	2	Alumini	um		
Which of the following materials is not used for transmission and distribution of	3	Steel			
electrical power?	4	Tungster	1		
	Key:	4			
		Edit	â	Delete	
	1	440 V			
	2	11 kV			
	3	33 kV			
The underground system cannot be operated above	4	66 kV			
	Key:	4			
		Edit	â	Delete	
	1	alternat		loosing its	
	2			ON and OFF in the	
The cause of transient stability is	3			t fault in the lines	
	4	all of th	ne al	oove	
	Key:		â	Delete	

Questions	Choices
	a. Operating speed
	2 Windage losses
	3 Waveform
The armature reaction of an alternator influences	a. Emf/phase
	Key :3
	Edit Delete
	1 600
	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
	200
An alternator delivering a balanced load at unity power factor. The phase angle between line voltage and line current is	000
solwoon line voltage and line eartern to	ľ
	Key :3
	Edit Delete
	1 110 V
	2 220 V
The voltage of the single phase supply to residential consumers is	3 440 V
The relative of the engle primes capping to recall that the containing is	4 11 kV
	Key :2
	Edit Delete
	Generating station to a switching station
	Stepdown transformer station to service transformer banks
Transmission line connects-	Distribution transformer to consumer premises
	Service points to consumer
	4 permises
	Key :1
	Edit Delete
	None of the mentioned answer are correct
	Second
	2 order
Which of the following system has zero dynamic error?	3 First order
	4 Zero order
	Key :4
	Edit Delete
	1 24.11 kW
A 400V, 50Hz, 3 hp, three phase induction motor is drawing 50A current at 0.8	2 26.21 kW
power factor lagging. The stator and rotor copper losses are 1.5kW and 900W respectively. The friction and windage losses are 1050W and the core losses are	3 23.06 kW 4 25.01 kW Key :4
1200W. The airgap power of the motor will be	Edit Delete

Questions	Choices
	$_{1}$ $\sigma_{3}/(\sigma_{1}+\sigma_{3})$
	$_{2}$ $\sigma_{3}/(\sigma_{1}-\sigma_{3})$
	$\left _{3}\right $ $\left(\sigma_{1}-\sigma_{3}\right)/\sigma_{3}$
In an undrained triaxial test on saturated clay, the poisson's ratio is	$(\sigma_1 + \sigma_3) / \sigma_3$
	4
	Key :1
	Edit Delete
	N=s Ns
	2 N=(1+s) Ns
The relationship among synchronous speed (Ns), rotor speed (N) and slip is	3 N=(1-s) Ns
	4 N=(s-1) Ns
	Key :3
	Edit Delete
	Will decrease bus - bar voltage
	though momentarily Is likely to run as synchronous
	2 motor
The stationary alternator should not be connected to live bus-bars because it	Will get short - circuited Will disturb generated emf's of
	4 other alternators connected in
	parallel.
	Key :3
	Edit Delete
	An ordinary static capacitor bank
	An over excited synchronous
	2 motor running without
Synchronous capacitor is	mechanical load An over excited synchronous
	motor driving mechanical load
	4 None of the options specified Key :2
	Edit Delete
	T time factor
	a coefficient of consolidation
	<u></u>
	a _v , coefficient of compressibility
Root time method is used to determine	m _v , coefficient of volume
	4 compressibility
	Key :2
	Edit Delete
	1 reduce
	2 increase
	3 remain constant
If a saturated soil sample is consolidated, the degree of saturation will	becomes zero
	Key :3
	Edit Delete
	, Lan w Delete

Questions	Choices
	1 0.002 mm
	2 0.04 mm
Minimum size of the particles of silt soil, is	3 0.06 mm
	4 0.08 mm
	Key :1
	🖍 Edit 🛅 Delete
	1 30°
	2 45°
The maximum shear stress occurs on the filament which makes an angle with the horizontal plane equal to	3 60°
	4 90° Key :2
	Edit Delete
	1 One phase soil
	2 Two phase soil
A partially saturated soil is classified as	3 Three phase soil
	Four phase soil
	Key :3
	rey:3 ✓ Edit Delete

Questions	Choices			
	1	are of s	pong	gy nature
	2	swell w	ith de	ecrease of moisture
	_	shrink v	vith i	ncrease of moisture
Soils containing organic matters	3	content		nordado or meletare
Solis Containing Organic matters	4	expand	with	moisture content
	4 Key :			
	Rey .		슾	Delete
	•	Edit		
	1			utral area
	2	force pe	er eff	ective area
	2		aken	up by the pore
The neutral stress in a soil mass is	3	water		
	4			up by solid
	Ţ	particle	S	
	Key :	3	_	
	,,,,,	Edit		Delete
	1	d/2		
	2	d/3		
For keeping the stress wholly compressive the load may be applied on a circular	3	d/4		
column anywhere within a concentric circle of diameter	4	d/8		
	ີ Key :			
	_		_	
	**	Edit		Delete
	1	capaciti	ve co	mpensation
	2	inductiv	e con	npensation
	3	resistive	com	pensation
		None	f tha	mentioned answers
For a good voltage profile under no load conditions, a long line needs	4	are con		mentioned answers
	ſ			
	Key ::	2		
			侖	Delete
	1	Voltage		
	2	Freque		
Which of the following does not change in a transformer ?	3	All	-	
	4	Current	İ	
	Key :		ᇁ	
	**	Edit		Delete
	1			s motor with short-circuited
	2	second		with Short-onculted
The principle of starting of 3 - phase induction motor is similar to	3	capacit	-	n IM
	4		on m	otor type starting.
	Key :		_	
	**	Edit		Delete

Questions	Choi	ces		
	1	0.5 An	np.	
	2	320 Aı	-	
A 4 pole wave wound dc motor having flux per pole of 9.56 × 10-3 Wb contains	3	400 Aı	-	
460 armature conductors with armature resistance of 0.6 ohm. Calculate the	4	800 Aı	-	
starting current flowing through the armature if the supply voltage is 240 volt.	1.		πp.	
	Key	3		
	*	Edit	曲	Delete
	1	Relow	evnek	nronous speed only
	'			options given are
	2			options given are
		correc		
Squirrel cage bars placed in the rotor pole faces of an alternator help reduce	3		•	nronous speed only
hunting	4			olow synchronous
		speed	s both	1
	Key	:4		
		Edit		Delete
	1	V		
	2	V*V		
For a fixed value of complex power flow in a transmission line having a	3	1/(V*V	7)	
sending end voltage V, the real power loss will be proportional to	4	1/V		
	Key	:3		
		Edit	â	Delete
	1	33kV/4	140V	
	2	33kV/4	140V	
	3	33kV/2	230V	
Nominal voltage rating of distribution transformer is	4	11kV/4	40V	
	Key	:4		
	**	Edit		Delete
	1	All typ	e of lii	nes
	2	Long li		
	2			
Ferranti effect is more predominant in type of Transmission lines?	3	Short l		
	4	Mediu	n lines	S
	Key:	:2		
		Edit	俞	Delete
	1			
	1	underg		
	2	conduc	tor of	larger diameter
	3	solid co	onduct	or
To reduce inductance per phase, which of the following is best answer?	4	bundle	d cond	uctor
	Key			
			_	
		Edit		Delete
	1	reduce	power	· losses
			-	er transmission
	2	capabil		
				the officionary of
				the efficiency of
The main consideration for higher and higher operating voltage of transmission is to	3	transm: losses	ission	and reduce power
	4	increas		efficiency of
	1	transm	ission	
	Key	:3		
		Edit		Delete

Questions	Choic	ces		
The yearly load duration curve of a power plant is a straight line. The maximum load is 750 MW and the minimum load is 600 Mw. The capacity of the plant is 900 MW. What	1 2 3	0.75, 0. 0.78, 0. 0.56,0.8	9 30	
is the capacity factor and utilization factor?	4 Key:	0.83,0.7 1 Edit	75 fii	Delete
The X:R ratio of 220 kV line as compared to 400 kV line is	1 2 3 4 Key :	greater smaller equal it could 2		ything Delete
	1	The term	ninal	voltage and current
A synchronous generator connected to infinite bus delivers power at lagging power	2	decrease	e tage a	voltage and current
factor. If its excitation is increased	4	The volt	tage a	angle and current
	Key:	1 Edit	â	Delete
	1	3 phase	fault	ound fault
For a fault at the terminals of a synchronous generator, the fault current is maximum for	3	Line to	grour	nd fault
	Key:	2 Edit	â	Delete
Consider two buses connected by an impedance of (0+j5)Ω. The bus 1 voltage is 100∠30° V, and bus 2 voltage is 100∠0° V. The real and reactive power supplied by bus 1, respectively are	1 2 3 4 Key :	1000W -1000W 276.9W -276.9W	V,-13 V,-56	4Var 7Var
	1		â	Delete
An 800 kV transmission line has a maximum power transfer capacity of P. If it is operated at 400 kV with the series reactance unchanged, the new maximum power transfer capacity is approximately	2 3 4 Key :	P 2P P/2		
	1	Edit any ins	ulato	Delete r
In aluminium conductors steel reinforced, the insulation between aluminium and steel conductors is	2 3 4 Key :			n is require
	A	Edit	â	Delete

The sequence components of the fault current are as follows: <i>I</i> positive = j1.5 pu, <i>I</i> negative = - j0.5 pu, <i>I</i> zero = - j1 pu. The type of fault in the system is LLG	7.14MW;
Impedance relays can be used for: 3 Both earth and phase faults 4 Phase faults only Key :3 ★ Edit Delete 1 LL 2 LG 3 LLG 3 LLG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 3 LLG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 3 LLG 4 LLLG Key :3 ★ Edit Delete 1 LL 3 LLG 4 LLLG Key :3 ★ Edit Delete 2 and P₃ = 300MW P₁ = 157.14MW;P₂ = 157.14Y 1 and P₃ = 300MW P₁ = 157.14MW;P₂ = 242.86N 2 and P₃ = 300MW P₁ = 300MW;P₂ = 300MW; at and P₃ = 300MW; at and P₃ = 233.3MW;P₂	7.14MW;
Impedance relays can be used for: 3 Both earth and phase faults 4 Phase faults only Key :3 ★ Edit Delete 1 LL 2 LG 3 LLG 3 LLG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 3 LLG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 2 LG 4 LLLG Key :3 ★ Edit Delete 1 LL 3 LLG 4 LLLG Key :3 ★ Edit Delete 1 LL 3 LLG 4 LLLG Key :3 ★ Edit Delete 2 and P₃ = 300MW P₁ = 157.14MW;P₂ = 157.14Y 1 and P₃ = 300MW P₁ = 157.14MW;P₂ = 242.86N 2 and P₃ = 300MW P₁ = 300MW;P₂ = 300MW; at and P₃ = 300MW; at and P₃ = 233.3MW;P₂	7.14MW;
Impedance relays can be used for: 4 Phase faults only Key:3 ▶ Edit □ Delete 1 LL 2 LG 3 LLG 4 LLLG 4 LLLG 4 LLLG 4 LLLG 4 LLLG 4 LLLG 4 Key:3 ▶ Edit □ Delete 1 LL 2 LG 3 LLG 4 LLLG Key:3 ▶ Edit □ Delete 4 LLG Key:3 ★ Edit □ Delete 4 Phase faults only 4 LLG Key:3 ★ Edit □ Delete 4 LLG 4 LLG Key:3 ★ Edit □ Delete 4 LLG 4 LLG Key:3 ★ Edit □ Delete 4 Phase faults only 4 LLG	7.14MW;
The sequence components of the fault current are as follows: I positive $= j1.5$ pu, I negative $= -j0.5$ pu, I zero $= -j1$ pu. The type of fault in the system is The sequence components of the fault current are as follows: I and I be the system is LLG Key: 3 Edit Delete Rey: 3 Edit Delete I LLLG Key: 3 Felit Delete I Delete	
The sequence components of the fault current are as follows: <i>I</i> positive = <i>j</i> 1.5 pu, <i>I</i> negative = - <i>j</i> 0.5 pu, <i>Izero</i> = - <i>j</i> 1 pu. The type of fault in the system is The sequence components of the fault current are as follows: <i>I</i> positive = <i>j</i> 1.5 pu, <i>I</i> negative = - <i>j</i> 0.5 pu, <i>Izero</i> = - <i>j</i> 1 pu. The type of fault in the system is Key:3 Edit Delete LLLG Key:3 Edit Delete LLLG Key:3 P1 = 242.86MW; P2 = 157.14P and P3 = 300MW P1 = 157.14MW; P2 = 242.86I and P3 = 300MW P1 = 300MW; P2 = 300MW; P3 = 100MW P1 = 300MW; P2 = 300MW; P3 = 100MW P1 = 300MW; P2 = 300MW; P3 = 100MW P1 = 233.3MW; P2 = 233.3MV And P3 = 233.4MW Key:1	
The sequence components of the fault current are as follows: I positive $= j1.5$ pu, J negative $= -j0.5$ pu, I zero $= -j1$ pu. The type of fault in the system is LLG	
The sequence components of the fault current are as follows: I positive $= j1.5$ pu, I negative $= -j0.5$ pu, I zero $= -j1$ pu. The type of fault in the system is LLG	
The sequence components of the fault current are as follows: I positive $= j1.5$ pu, I negative $= -j0.5$ pu, I zero $= -j1$ pu. The type of fault in the system is LLG	
positive $= j1.5$ pu, I negative $= -j0.5$ pu, I zero $= -j1$ pu. The type of fault in the system is Comparison of three generating units are IC1 = 20 + 0.3P_1, IC2 = 30 + 0.4P_2, IC3 = 30 Where P_1 is the power in MW generated by unit i for $i = 1,2$ and i	
type of fault in the system is 4 LLLG Key :3 Edit Delete $P_1 = 242.86 \text{MW}; P_2 = 157.14 \text{MW}; P_2 = 157.14 \text{MW}; P_2 = 242.86 \text{MW}; P_2$	
Key :3 Edit Delete	
Incremental fuel costs (in some appropriate unit) for a power plant consisting of three generating units are $IC_1 = 20 + 0.3P_1$, $IC_2 = 30 + 0.4P_2$, $IC_3 = 30$ Where P_1 is the power in MW generated by unit i for $i = 1,2$ and 3 . Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is P1 = 157.14MW; $P_2 = 242.86M$ and $P_3 = 300MW$ P1 = 300MW; $P_2 = 300MW$; and $P_3 = 100MW$ P1 = 233.3MW; $P_2 = 233.3MW$ And $P_3 = 233.4MW$ Key:1	
Incremental fuel costs (in some appropriate unit) for a power plant consisting of three generating units are $IC_1 = 20 + 0.3P_1$, $IC_2 = 30 + 0.4P_2$, $IC_3 = 30$ Where P_1 is the power in MW generated by unit i for $i = 1,2$ and 3 . Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is 1 and $P_3 = 300MW$ $P_1 = 157.14MW$; $P_2 = 242.86M$ $P_1 = 300MW$; $P_2 = 300MW$; and $P_3 = 100MW$ $P_1 = 233.3MW$; $P_2 = 233.3MW$; $P_3 = 100MW$ And $P_3 = 233.3MW$;	
Incremental fuel costs (in some appropriate unit) for a power plant consisting of three generating units are $IC_1 = 20 + 0.3P_1$, $IC_2 = 30 + 0.4P_2$, $IC_3 = 30$ Where P_1 is the power in MW generated by unit i for $i = 1,2$ and 3. Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is 1 and $P_3 = 300$ MW $P_1 = 157.14$ MW; $P_2 = 242.86$ N $P_1 = 300$ MW; a $P_3 = 100$ MW $P_1 = 233.3$ MW; $P_2 = 233.3$ MW $P_1 = 233.3$ MW; $P_2 = 233.3$ MW $P_3 = 233.4$ MW	·
three generating units are $IC_1 = 20 + 0.3P_1$, $IC_2 = 30 + 0.4P_2$, $IC_3 = 30$ Where P_1 is the power in MW generated by unit i for $i = 1,2$ and 3. Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is $P_1 = 300MW$; $P_2 = 300MW$; and $P_3 = 100MW$ and $P_3 = 233.3MW$; $P_2 = 233.3MW$; $P_3 = 100MW$	2.86MW;
Where P_1 is the power in MW generated by unit i for $i = 1,2$ and 3. Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is $P_1 = 300 \text{MW}; P_2 = 300 \text{MW}; a$ $P_3 = 100 \text{MW}$ $P_1 = 233.3 \text{MW}; P_2 = 233.3 \text{MW}; P_2 = 233.3 \text{MW}; P_3 = 233.4 \text{MW}$ Key :1	
Where P_1 is the power in MW generated by unit i for $i=1,2$ and 3. Assume that all the three units are operating all the time. Minimum and maximum loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is $P_1 = 300 \text{MW}; P_2 = 300 \text{MW}; a power loads on the power loads of the plant is operating on loads on each unit is loads on each unit is loads on each unit is loads on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power loads of the po$	
on each unit are 50 MW and 300 MW respectively. If the plant is operating on economic load dispatch to supply the total power demand of 700 MW, the power generated by each unit is $P_1 = 233.3 \text{MW}; P_2 = 233.3 \text{MW}$ 4 and $P_3 = 233.4 \text{MW}$ Key :1	W; and
generated by each unit is $4 \text{and } P_3 = 233.4 \text{MW}$ Key :1	21/11/1
Key :1	.51VI W;
Edit Delete	
1 L-G fault	
2 L-L fault	
fault conditions. 4 None of These	
Key :3	
Edit Delete	
1 Tungsten	
2 Osmium	
material is mostly used for filaments in incandescent lamps 3 Tantalum	
4 Silver	
Key :1	
✓ Edit 🛍 Delete	
1 Voltage	
2 Current	
3 Frequency	
The skin effect depend upon factor factor All the above	
Key :3	
✓ Edit 🛍 Delete	

Questions	Choices
	1 reduce line losses
	2 reduce skin effect
Transposition of transmission line is done to	3 balance line voltage drop
	4 reduce corona
	Key :3
	Edit Delete
	1 improves system stability
	decrease system stability
The use of high speed circuit breakers	3 reduces the short circuit current
and an inguispeed chronic scanners	4 increased the short circuit current
	Key :1
	🖍 Edit 🛅 Delete
	1 miniature circuit breaker
	2 minimum capacity breaker
MCB stands for	3 molded circuit breaker
THE States for	4 maximum capacity breaker
	Key :1
	Edit Delete
	1 rms phase voltage
	2 peak phase voltage
The rated voltage of a 3 phase power system is given as	g peak line to line voltage
The faced voltage of a 5 phase power system is given as	4 rms line to line voltage
	Key :4
	Edit Delete
	1 P
	2 2P
An 800 kV transmission line has a maximum power transfer capacity of <i>P</i> . If it is operated at 400 kV with the series reactance unchanged, the new maximum	3 P/2
power transfer capacity is approximately	4 <i>P</i> /4
	Key :4
	Fdit Delete
	1 0.85
	2 1.00
At an industrial sub-station with a 4 MW load, a capacitor of 2 MVAR is installed to maintain the load power factor at 0.97 lagging. If the	3 0.80 lag
capacitor goes out of service, the load power factor becomes	4 0.90 lag
	Key :3
	Edit Delete

	few min few seco	onds	
	one seco		
		nd	
	form oxial	ma	
ον ·/	iew cyc	les of	f supply voltage.
⊂y	1		
	Edit	曲	Delete
	2.44 s		
	2.71 s		
	4.88 s		
		侖	Delete
			Belete
		_	
			Delete
	2%		
	30%		
	70%		
	98%		
ey :1	ı		
<u>, </u>	Edit		Delete
	_		eed governors on
	using lo	w ine	ertia machines
	dispensi	ng w	ith neutral
	groundi	ng	
	using hi	gh in	ertia machines
,	Edit		Delete
	2 2+s		
	1 21-		
	2 TS		
	2s 1+2s		
	1		
	1+2s		
	1		
, / \	Edit	Î	Delete
	эў : ́ • ́ • ́ • ́ • ́ • ́	2.71 s 4.88 s 5.42 s Edit 64KV 110KV 220KV 400KV 20KV 40KV 40KV 40KV 40KV 40KV 40KV 40KV 4	2.71 s 4.88 s 5.42 s Edit 64KV 110KV 220KV 400KV 20KV 400KV Edit 2% 30% 70% 98% Edit using high sp machines using low ince dispensing w grounding using high in Edit 2 c 2 c 2 c 1 c 2 c 1 c 2 c 1 c 2 c 2 c 1 c 2 c 2 c 1 c 2 c 2 c 1 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2 c 2

In the Bode-plot of a unity feedback control system, the value of phase of G(jw) at the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The phase margin of the system is the gain cross over frequency is 125 deg. The gain cross ov	
In the Bode-plot of a unity feedback control system, the value of phase of G(jw) at the gain cross over frequency is 125 deg. The phase margin of the system is 4 125 deg Key :2 Edit Delete 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Equipment Edit Delete 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Edit Delete 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
In the Bode-plot of a unity feedback control system, the value of phase of G(jw) at the gain cross over frequency is 125 deg. The phase margin of the system is 4 125 deg Key :2 Edit Delete 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Equipment Edit Delete 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Edit Delete 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
at the gain cross over frequency is 125 deg. The phase margin of the system is 4 125 deg Key :2 Edit Delete 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 St. 92KHz 2 0.55KHZ	
Key :2	
For an under damped second order system, the roots of characteristic polynomial are For an under damped second order system, the roots of characteristic polynomial are 1	
For an under damped second order system, the roots of characteristic polynomial are 1 Real but not equal 2 Real and equal 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 51.92KHz 2 1.92KHz	
For an under damped second order system, the roots of characteristic polynomial are 2 Real and equal 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 51.92KHz 2 1.92KHz	
For an under damped second order system, the roots of characteristic polynomial are 2 Real and equal 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 51.92KHz 2 1.92KHz	
For an under damped second order system, the roots of characteristic polynomial are 3 Complex conjugates 4 Imaginary Key :3 Edit Delete 1 51.92KHz 2 1.92KHz	
polynomial are 4 Imaginary Key : 3 Fig. Edit Delete 1 51.92KHz 2 1.92KHz	
Key :3 ✓ Edit ☐ Delete 1 51.92KHz 2 1.92KHz 3.055KHZ	
✓ Edit □ Delete 1 51.92KHz 2 1.92KHz 3.055KHZ	
1 51.92KHz 2 1.92KHz	
2 1.92KHz	
2.0551/17	
2.0551/17	
A series PLC circuit has R = 50 O L = 100 mH and C = 10E The lower helf 3 3.055KHZ	
power frequency of the circuit is 4 30.55KHz	
Key :3	
Edit Delete	
1 open circuited	
2 short circuited	
When superposition theorem is applied to any circuit, for calculating the	
contribution of one voltage source, the other voltage source in that circuit is 4 none of the options specified	d
always	
Edit Delete	
1 straight along the y-axis	
2 cycloidal along the x-axis	
A magnetic B vector and an electric field E vector are at right angles to each other along the y-axis and x-axis respectively. The path of an electron which	
starts at origin will be 4 cycloidal along the z-axis	
Key :4	
▶ Edit 🛱 Delete	
1 Converging and Diverging	-
2 Converging	
3 Tangential	
Divergence at a point is positive if field lines are	
Key :4	
▶ Edit	
1 A is true but R is false	
Both A and R are true but R	- 1
2 NOT the correct explanation	ı of
Assertion: Conducting medium behaves like a short circuit to the electrostatic A	
field. Both A and R are true and F	≀is l
Reason: In a charge free region, the Poisson's equation becomes Laplace's the correct explanation of A	
equation	
4 A is false but R is true	
Key :4	
[- 1
Edit Delete	

Questions	Choi	ces
	1	521
	2	1800
The external and internal radii of a toroid are 45 cm and 55 cm respectively. It	3	573
has a uniformly distributed winding of 1500 turns. The winding current is 1.2 A.	1	636
The magnetic field intensity, in A/m, at 50 cm radius is nearest to	т Key:	3
		5 π Coulombs
	1	10
A metal sphere with 1 m radius and surface charge density of 10 Coulombs /	2	
m ² is enclosed in a cube of 10 m side. The total outward electric displacement	3	10 π Coulombs
normal to the surface of the cube is	4	40 π Coulombs
	Key:	4
	A.P.	Edit 🛅 Delete
	1	$sin[\omega(10z+5t)]$
	2	$\cos(y^2 + 5t)$
	3	$\sin(x) . \cos(t)$
Identify which one of the following will NOT satisfy the wave equation.	4	$50e^{(\omega t - 3z)}$
	ˈ Key :	2
		Edit 🛅 Delete
	1	$\nabla .E=0, \ \nabla .B=0$
	1	∇× <i>E</i> =0, ∇. <i>B</i> =0
For static electric and magnetic fields in a homogenous source-free	2	
medium, which of the following represents the correct form of two of	3	∇× <i>E</i> =0, ∇× <i>B</i> =0
Maxwell's equations?	4	∇. <i>E</i> =0, ∇× <i>B</i> =0
	Key:	
	***	Edit Delete
	1	√∈ r1/∈ r2
	2	$\sqrt{\in r2/\in r_1}$
Two coaxial cables 1 and 2 are filled with different dielectric		€r1/€r2
constants \in_{r1} and \in_{r2} respectively. The ratio of the	3	
wavelengths in the two cables, (λ_1/λ_2) is	4 Key:	€r2/€r1
		Edit Delete
	**	the sphere is replaced by a
	1	cube of the same volume
		point charge is moved to
	2	center (but still inside
		original sphere)
A charged point particle is placed at the center of a spherical	3	the point charge is moved to just outside the sphere
Gaussian surface. The electric flux E is changed if		
	4	a second point charge is placed just outside the
	7	sphere
	Key :	3
		Edit 🛅 Delete
1		

Questions	Choic	ces		
	1	rate of c	chanç	ge of vector
	2	Angular	rota	tion
		rate of c	chanç	ge and angular
Curl measures	3	rotation	of ve	ector
	4	gradien	t of v	ector
	Key:	3		
		Edit	â	Delete
	1	0.141		
The open loop transfer function of a unity feedback control system is given	2	0.441		
as $as + 1$	3	0.841		
$G(s) = \frac{as+1}{s^2}.$	4	1.141		
The value of 'a' to give a phase margin of 45° is equal to	Key:	3		
	A .	Edit	曲	Delete
	1	sine teri	ms a	nd a constant terms
	2	only cos		I
	3	cosine t	erms	and a constant
If a periodic signal has an even symmetry, the fourier series contains		term		
	4 Key:	only sin	e ter	ms
	AP.	Edit	â	Delete
	1	can rota	ate in	one direction only
	2	requires	only	one winding
One of the characteristics of a single-phase motor is that it	3	is not se	elf-sta	arting
one of the characteristics of a single-phase motor is that it	4 Key :		es ro	tating magnetic field
		Edit		Delete
	1	power	facto	or
	2	load flo	WC	
	3	voltage	9	
Regulating transformers are used in power system to control	4	None of are corr		mentioned answers
	Key:	3		
	AP.	Edit		Delete
	1	to redu	ice c	learance from
		grou	ınd	
	2	to incre	ease	clearance from
		grou		
Conductors for high voltage transmission lines are suspended from towers	3	to redu load		vind and snow
	4	None of are corr		mentioned answers
	Key:	2		
		Edit		Delete

Questions	Choices
	1 series
	2 parallel
	agrica or parallal
	3 Series of paraller
Current derating may be necessary when thyristors are operating in	
	4 None of the mentioned answe
	are correct
	Key :2
	Edit Delete
	1 Analog
	2 Digital
	3 analog and digital
signals can have an infinite number of values in a range.	4 None of the mentioned answe
	4 None of the mentioned answe are correct
	Key :1
	Edit Delete
	1 553 by 553
A power system consist of 300 buses out of which 20 buses are generator bus,	2 540 by 540
25 buses are the ones with reactive power support and 15 buses are the ones with fixed shunt capacitors. All the other buses are load buses. It is proposed to	3 555 by 555
perform a load flow analysis in the system using Newton-Raphson method. The	4 554 by 554
size of the Newton Raphson Jacobian matrix is	Key :4
	Edit Delete
	1 1000
	150
	_
The slip of a 500HP, 3 phase, 400V, 50 Hz induction motor is 5%. How many	3 1200
complete cycles will the rotor voltage make per minute?	4 2000
	Key :2
	Edit Delete
	1 2280 MW
	1925 MAN
A local ace transmission line having Surga Impadance Loading (SIL) of 2000	
A loss less transmission line having Surge Impedance Loading (SIL) of 2280 MW is provided with a uniformly distributed series capacitive compensation of	3 2725 MW
30%.Then, SIL of the compensated transmission line will be	4 3257 MW
	Key :3
	Edit Delete
	1 To increase starting torque
	2 Increase supply voltage
In a slip ring induction motor, resistance is connected in rotor phases	3 To limit starting current
i iig iii ziiii piidoo	4 To decrease the supply voltage Key :3
	11/21 'A
	Edit Delete

Questions	Choices
	1 24.2×10 ² W
A single phase transformer with a ratio of 6600/600 V has a load impedance of	2 57.6×10 ³ W
(4+j3) ohm connected across the terminals of low voltage winding. The power delivered to load is	3 1.2×10 ³ W
	4 2.4×10 ⁴ W
	Key :2
	🖍 Edit 🛅 Delete
	1 Induced emf 2 Reactance
 Which of the following rotor quantity in a Squirrel Cage Induction Motor does not	
depend on its slip?	4 Frequency
	Key :3
	🖍 Edit 🛅 Delete
In Synchronous Alternator negative voltage regulation can be expected in case of	1 Lagging power factor load 2 Slow speed alternators 3 Leading power factor load 4 High speed alternators Key:3
	🖍 Edit 🛅 Delete
Piezoelectric transducers are	1 Resistive transducers 2 Capacitive transducers 3 Passive Transducers 4 Active transducers Key:3 * Edit Delete
In a thyristor, ratio of latching current to holding current is	1 1.0 2 2.5 3 0.4 4 None of these Key :2
	🖍 Edit 🛅 Delete
For normal SCRs, turn-on time is	1 half of tq 2 equal to tq 3 less than turn-off time tq 4 more than tq Key:3 ✓ Edit □ Delete
	1 high dielectric strength
	2 non-inflammability
While selecting a gas as a arc quenching media for circuit breaker, the property of gas that should be considered is	4 all mentioned answers are correct
	Key :4
	🖍 Edit 🛅 Delete

Questions	Choic	es
Ripples will be present in band of the chebyshev type II analog low pass filter	2 3	no change increase Transition band stop band
		Edit 🛅 Delete
	4 Key :2	Easy transformation Less losses in transmission over long distances Less insulation problem Less problem of instability 2 Edit Delete
The slip of an induction motor normally does not depend on	1 2 3 4 Key :2	Edit Delete
In a single phase induction motor driving a fan load, the reason for having a high resistance rotor is to achieve	l_	_
In a strain measuring device using a strain gauge, the output quantity is	1 2 3 4 Key:4	Edit Delete
Which of the following insulator is used in TL at the river and road crossing?	1 2 3 4 Key :2	Pin type insulator Strain type insulator Suspension type insulator both Pin & Suspension type insulator 2 Edit Delete

Questions	Choic	es		
	1	reduced	wei	ght
	2	self com	muta	ating capability
TI : 1 / (100T 00D: 1 / : :	3	high free	quen	cy switching
The main advantage of IGBT over SCR in power electronics is		self cool	lina r	property
	4 Key :3		9 F	
		Edit	童	Dila
			ш	Delete
	1	15.11Ω		
A 10Ω copper resistor at 20 °C is to be used to indicate the temperature of	2	11.5Ω		
bearings of machine. What resistance should not be exceeded if the maximum bearing temperature is not to exceed 150 °C. The resistance temperature	3	18.51Ω		
coefficient of copper is 0.00393		20Ω		
Ω/ m- °C at 20 °C.	4			
	Key :1	1		
		Edit	â	Delete
				eversal of load
	14	voltage	,,,,,,,,	voidal of load
	2	To preve	ent f	orward voltage
		-		ut current
A freewheeling diode is placed across the DC load	3		٠	
	4	•	To bl	ock output current
	Key :1	l		
	A	Edit		Delete
		stochas		
		Aperiodic Periodic		
	3	renould	i	
The signal u(t)-u(t-10) is	4	None of	the i	mentioned answers
		are corre		
	Key :2	2		
		Edit		Delete
	1	4		
		3		
How many flip-flops required to design a sequence generator for the sequence	3	1		
"110011"?	4 Key :2	2 2		
		- Edit	俞	Delete
	1			rent for a given
	14	output	Jul	ioni ioi u givon
		_	es los	sses in line
	_			e cost of station
Improving power factor-	_	equipme		cost of station
				s condensers
	4 Key :4			
	INED .4	•		
		Edit	侖	Delete

Questions	Choic	ces
	1	Fill material
	2	dense coarse sand
Negative skin friction in a soil is considered when the pile is	3	over consolidated stiff clay
constructed through a	4	dense fine sand
	Key:	1
	**	Edit Delete
	1	bulk density
		dry density
The best indication of the behavior of a deposit of sand under load can	2	relative density
be determined from its		grading
	4	
	Key:	
		Edit Delete
	1	6
	2 3	9
The second on of course discord combined to see in a 4 bit DOD added in	5	None of the mentioned answers
The number of unused input combinations in a 4-bit BCD adder is	4	are correct
	Key:	1
	A *	Edit 🛍 Delete
	1	Transformer substations
	2	Service mains
	3	Distributors
In a transmission system the feeder supplies power to	4	busbars
	Key:	
	**	Edit 🛅 Delete
	1	Non-Causal
	2	Causal Anti Causal
A unit step function is a signal.	3 4	Aperiodic.
	Key :	-
		Edit 🛅 Delete
	1	one coulomb/volt
	2	one coulomb/joule
One farad is same as	3	one joule
	4 Key:	one joule/coulomb
	rey .	
	-	Edit Delete
	1	Both Forward and Reverse bias Reverse bias
	2	Forward bias
LED emits light when operated in	4	Common collector
	Key :	3
		Edit 🛅 Delete
<u> </u>	<u> </u>	

Questions	Choices
	1 Copper loss
	2 Core loss
	Eddy-current plus hysteresis
During SC test the power drawn by the primary winding is predominantly	3 loss
absorbed by	4 Copper loss plus core loss
	Key :4
	Edit Delete
	1 220 HZ
	2 250 HZ
A chopper controlled electric train is powered from a 1500 V DC supply. The power semiconductor switching element has a minimum effective ON time of 40	2
μs .During starting and slow speed running, the output of the chopper has to go	3
as low as 15 V. What is the highest chopper frequency possible to satisfy this	4 245 HZ
requirement?	Key :2
	Edit Delete
	1 Rectifier
	2 Chopper
Speed of induction motor is controlled by its stator voltage, which power	3 Cycloconverter
converter is used for varying the stator voltage	4 Inverter
	Key :4
	Edit Delete
	1 1. 89.7 V
	2 126.7 V
A sine voltage of 200Vrms, 50Hz is applied to an SCR through 100ohm resistor. The firing angle is 60°. Consider no voltage drop.	166.7.1/
	3 166.7 V 4 200 V
The output voltage in rms is	T
	Key :2
	Edit Delete
	1 resistive load
	2 Capacitive load
Triacs cannot be used in ac voltage regulators for	3 inductive load
This same be used in as voltage regulators for	4 resistive and inductive load
	Key :3
	🖍 Edit 🛅 Delete
	1 4 Nos
	2 5 Nos
A 3 kV circuit uses SCR of 800 V rating. If derating is 25%, the	3 6 Nos
number of SCRs in series is	4 8 Nos
	Key :2
	Edit Delete
	1 transmission line
	2 distributor
	3 service mains
the load must not be connected directly on	4 L.T. 220 volt line
	Key :1
	🖍 Edit 🛅 Delete

Questions	Choic	es		
	1	6.6 kV		
	2	9.9 kV		
	3	11kV		
Which of the following is usually not the generating voltage?	4	13.2 kV	7	
	Key :			
	, /	Edit		Delete
	•			Defete
	1	Star/star		
	2	Grounde	ed Sta	r/delta
7	3	Delta/sta	ar	
Zero sequence current can flow from a line into a transformer bank if the windings are in		Delta/de	140	
	4		па	
	Key :	2		
	**	Edit	â	Delete
	1	dc shun	t gen	erator
		dc shun	t mot	or
	2			
When an electric train is moving down a hill , the dc motor acts as	3	dc serie	s mo	tor
Then an elecate dam to moving down a min , and do moter dots do	4	dc serie	es ge	nerator
	Key :	4		
	· .	Edit	â	Delete
	-	-7V		Detete
	1 2	-7 V 7 V		
	3	13V		
A series RC circuit has $ V_R = 12 \text{ V}$ and $ V_C = 5 \text{ V}$. The magnitude of the supply voltage is:	4	17V		
Vollage 19.	Key:	3		
	M	Edit	â	Delete
	1	2.5W		
		1.0W		
	2			
A 3 V DC supply with an internal resistance of 2 Ω supplies a passive non-linear	3	3.0W		
resistance characterized by the relation VNL = INL2. The power dissipated in the non linear resistance is	4	1.5W		
	Key :	2		
		Edit		Delete
	, A			Defete
	1	1.5		
	2	2		
	3	1		
A node is the junction of more than				
A node is the junction of more than branches	4			mentioned answers
		are corr	ect	
	Key :	2		
	**	Edit	â	Delete
	1	Y param	neters	 S
		•		
	2	open cir	cuit p	parameters
Impedance parameters are also called as	3	h-param	neters	3
Impedance parameters are also called as	4	Short cir	rcuit	parameters
	· Key ::	2		
		Edit	侖	Delete
	_ A	Eult	ш	Delete

Questions	Choic	es				
	1	All the a	nswers are correct			
	2	С				
The value of current at resonance in a series RLC circuit is affected by the value	3	R				
of	4	L				
	Key :3					
	, /	Edit	Delete			
	1	Continuo	ous signal			
	2	Large iso transforr	olating pulse mer			
be in the form of	3	A train of pulses				
	4	Non-per	iodic signal			
	Key :	3				
	, / ,	Edit	Delete			
	1	1.2 Ω				
	2	120 Ω				
An electric heater draws 10 A from a 120-V line. The resistance of the heater is:	3	1200 Ω				
An electric heater draws to A from a 120-v line. The resistance of the heater is.	4	12 Ω				
	Key :	4				
		Edit	Delete			
	1	8.888 V				
	2	1.2 V				
A 5-H inductor changes its current by 3 A in 0.2 s. The voltage produced at the terminals of the inductor is:	3	75 V				
	4	3 V				
	Key :4					
		Edit	Delete			
	1	30° to	150°.			
A single phase one pulse controlled circuit has a resistance and counter emf	2	30° to	180°.			
load 400sin(314t) as the source voltage (https://electricalstudy.sarutech.com/voltage-or-electric-potential-	3	60° to	120°.			
difference/index.html) for a load counter emf of 200 V, the range of firing	4	60° to	180°.			
angle control is	Key :	1				
		Edit	Delete			
	1	Mass				
	2	Charge				
Kirabba 60	3	Energy				
Kirchhoff's second law is based on law of conservation of	4	Moment	um			
	Key :	2				
	, / ,	Edit	Delete			

Questions	Choi	ices
	1	V = √ (PR)
	2	I =√ (P / R
When P = Power, V = Voltage, I = Current, R = Resistance and G =	3	$P = V^2G$
Conductance, which of the following relation is incorrect?	4	$G = P/I^2$
	Key:	:4
		Edit 🛱 Delete
	1	zero power factor
	2	unity power factor
When excitation is increased (over excitation), the synchronous generator	3	lagging power factor
operates at	4	leading power factor
	Key:	:4
	A	Edit 🛱 Delete
	1	away from the circuit breaker.
	2	near the isolator
	3	away from the transformer
The location of the lightning arresters is	4	near the transformer
	Key:	:4
	A .	Edit 🗓 Delete
	1	In salient pole machines, the direct-axis synchronous reactance is greater than the quadrature-axis synchronous reactance.
	2	The V-cure of a synchronous motor represents the variation in the armature current with field excitation, at a given output power
In relation to the synchronous machines, which one of the following statements is false?	3	The damper bars help the synchronous motor self-start
	4	Short circuit ratio is the ratio of the field current required to produces the rated voltage on open circuit to the rated armature current
	Key:	
	*	Edit 🗖 Delete

because the converter inherently does not profor free wheeling because the converter not provide for free wheeling for high value triggering angles or else the free wheeling action of the converter cause shorting of the A supply or else if a gate pulse to one of the SCRs is mis it will subsequently cause.	ovide does es of ng will AC			
not provide for free wheeling for high value triggering angles or else the free wheelin action of the converter cause shorting of the A supply or else if a gate pulse to one of the SCRs is mis	es of ng will AC			
A single phase full - wave half controlled bridge converter feeds an inductive load. The two SCRs in the converter are connected to a common DC bus. The converter has to have a free wheeling diode or else the free wheeling action of the converter cause shorting of the A supply or else if a gate pulse to one of the SCRs is missing to the supply of the SCRs is missing to the supply of the supply of the SCRs is missing to the supply of the supply	will AC to			
A single phase full - wave half controlled bridge converter feeds an inductive load. The two SCRs in the converter are connected to a common DC bus. The converter has to have a free wheeling diode action of the converter cause shorting of the A supply or else if a gate pulse to one of the SCRs is missing to the converter feeds an action of the converter cause shorting of the A supply	will AC to			
or else if a gate pulse to one of the SCRs is mis				
one of the SCRs is mis				
<u> </u>	,			
high load current in the other SCR	;			
Key :3				
✓ Edit 🛍 Delete				
1 Diode				
2 Freewheeling diode				
3 feedback diode				
In single phase half bridge inverter feeding R-L load, the energy is feed back to the source by In single phase half bridge inverter feeding R-L load, the energy is feed back to the source by				
Key :3				
Edit Delete				
1 Real but not equal				
2 Real and equal				
For a second order system, the damping ratio is $0<\xi<1$, then the roots of				
characteristic polynomial are 4 Imaginary Key :3	Imaginary			
Edit Delete				
Which of the following represents a stable system?				
I Impulse repeate of the system degrees expensions				
2. Area within the impulse represe is finite				
2. Figon values of the system are positive and real				
4. Roots of Characteristic equations of the system are real and positive.				
✓ Edit 🛍 Delete				
1 Analog				
2 Discrete				
Sampling process converts continuous signal into				
4 Non-Stationary Signal				
Key :2				
Edit Delete				

Questions	Choic	es		
	1	increase the load	s as	the square root of
	2	is strictly		stant with load
The core flux of a practical transformer with a resistive load	3	increase	s lin	early with load
The core has or a practical transformer with a resistive load	4	decreas	es w	ith increase of load
	Key:	2		
	, / `	Edit	â	Delete
If f(t)==f(-t) and f(t) satisfy the Dirichlet's conditions then f(t) can be expanded in a fourier series containing	1 2 3 4 Key :	cosine to	ine t	
	-		血	
	./*	Edit		Delete
If h(n) is real, then the magnitude of H(e ^{j\odot}) is and phase of H(e ^{j\odot}) is	1 2 3 4 Key :	symmetr symmetr antisymi	ric & ric &	c & symmetric antisymmetric symmetric c & antisymmetric
	**	Edit		Delete
	1	Zero		
	2	Infinity		
In a dielectric-conductor boundary (interface), the tangential component of	3	E _t		
electric field is	4	2E _t		
	4 Key:	-		
			侖	Delete
	1	Edit 100 A.	ш	Defete
	2	100 A. 50 A.		
A copper conductor of one square millimeter can safely carry an current of	3	25 A.		
A copper conductor of one square minimeter carr salely carry an current of	4	6 A.		
	Key:	4 Edit	6	D.L.
		0.1 kN/n		Delete
	1			
	2	0.4 kN/n		
A pressure gauge is calibrated from 0-50 kN/m ² . It has a uniform scale with 100 scale divisions. 1/5 th of a scale division can be read with certainty. The resolution	3	0.2 kN/n		
of the gauge is	4	0.3 kN/n	n ²	
	Key:	1		
	**	Edit		Delete
	1	12 mts		
	2	10 mts		
The minimum clearance above the ground of the lowest conductor, for low and medium	3	8 mts		
voltage lines, across a street may be	4	4 mts		
	⁺ Key:	4		
		Edit	â	Delete
	*	Luit	ш	Delete

Questions	Choic	ces
	1	12.5 m resistor in parallel with the meter
	2	12.5 m resistor in series with the meter
A 2A full-scale PMMC type dc ammeter has a voltage drop of 100 mV at 2A. The meter can be converted into a 10A full-scale dc ammeter by connecting a	3	50.0 m resistor in parallel with the meter
	4	50.0 m resistor in series with the meter
	Key:	1
		Edit Delete
	1	Maxwell's bridge
	2	schering's bridge
	3	Wien's bridge
Frequency can be measured using		Campbell bridge
	4	
	Key:	_
	**	Edit Delete
	1	E= - Divergence of V
	2	E= Divergence of V E= - Gradient of V
The electric field intensity E and electric potential V are interrelated by	3 4	None of them correct
	Key:	
		Edit Delete
	1	flux density
	2	susceptibility
	3	relative permeability
The ratio of intensity of magnetisation to the magnetisation force is known as	4	None of the mentioned answers are correct
	Key:	2
		Edit Delete
	1	medium current and large
	2	voltage low current and large voltage
	3	large current and low voltage
		ŭ
During forward blocking state, a thyristor is associated with:	4	None of the mentioned answers
	V	are correct
	Key:	
	./.	Edit Delete
	1	None of the mentioned answers are correct
		either line commutation or
The commutation method in an inverter, is	2	forced commutation
	3	line commutation
	4	forced commutation
	Key:	3
		Edit Delete
F		

Questions	Choices
	1 Short Transmission line 2 Long Transmission line
A transmission line with 50 Hz frequency and 30 km length can be classified as	None of the mentioned answers are correct
	4 Medium Transmission line Key :1
	Edit Delete
	To improve the power system stability To improve the power factor To reduce over voltages
What is the necessity to connect an inductor at the receiving end of open circuited long Transmission lines?	None of the mentioned answers are correct
	Key :3 ✓ Edit Delete
	None of the mentioned answers are correct
What is the advantage of using bundled conductors in Transmission lines other than reduction of Corona?	2 Improvement of voltage regulation 3 Improvement of real power transfer capability Both Improvement of real power
	4 transfer capability & Improvement of voltage regulation Key :3
	Edit Delete
In a UJT, maximum value of charging resistance is associated with	1 after the valley point 2 any point between peak & valley point 3 Peak Point 4 valley point Key:3
	Edit Delete
A forward voltage can be applied to an SCR after its	1 gate recovery time 2 anode current reduces to zero 3 reverse recovery time 4 anode voltage reduces to zero Key:1 * Edit Delete
	r Luit um Deiete

Questions	Choic	es	
	1	hysteres losses	is and eddy current
	2	friction a	nd windage losses
In a given transformer for a given applied voltage, losses which remain constant irrespective of load changes are	3	None of	the mentioned answers ect
	4 Key :	copper lo 1	osses
		Edit	Delete
	1	magnetis	sing
Armature reaction of an unsaturated D.C. machine is	2	None of	the mentioned answers
	3	demagne	
	4 Key :		agnetising
	**	Edit	Delete
	1 2	Periodic Aperiodic	3
Fourier series is used in continous signal	3	None of	the mentioned answers
	4 Key :		iodic & aperiodic
	**		Delete
	1 2 3	Linear Non-Line Both	ear
Check whether the following signal y(n)=10x(t)+5 is	4	None of	the mentioned answers
	Key :2		
	,	Edit	Delete
	2		rcuit has more losses no need to change the age
A transformer cannot raise or lower the voltage of a D.C. supply because	3	None of	the mentioned answers
	4	electrom not valid	s laws of agnetic induction are since the rate of
	Key :		of flux is zero
	*	Edit	Delete

2 3 4 Key : :	are cor analog Digital Analog	rect and o	mentioned answers digital
' 2 3 4 Key ::	Service Feeder None o are cor	e mai s f the rect	
1 2 3 4	No load Full loa Both Fu	cond cond	
1 2 3 4 Key :	22.5Wa 30.0Wa 18Watt 15.0Wa	atts atts s atts	Delete
	1	Lum elem Non-	ributed parameters ped parameters ents -linear resistances Delete
	3 4 Key :: 1 2 3 4 Key ::	2 analog 3 Digital 4 Analog Key:3 Edit 1 Distrib 2 Service 3 Feeder None of are cor Key:2 Edit None of are cor 2 No load 3 Full load 4 Condition Key:4 Edit 1 22.5Wa 3 18Watt 4 15.0Wa Key:1 Edit 1	3 Digital 4 Analog Key:3 Edit

Choices
long rise time with pulse width =
¹ 6 µ sec.
short rise time with pulse width
² = 6 µ sec.
long rise time with pulse-width =
3 µ sec.
short rise time with pulse width
= 3 Umsec.
Key :2
🖍 Edit 🛅 Delete
 increasing circuit resistance R decreasing R
3 decreasing L
4 increasing circuit inductance
Key :3
Edit Delete
1 td and tp
2 rise time tr and spread time tp
3 td and tr 4 delay time d
Key :3
Edit Delete
1 0.6745σ
2 67.45σ
3 6.745σ
4 1.6745 σ
Key :1
Edit Delete
Both AC
and DC
Measuremer
None of the mentioned answers
2 are correct
3 DC measurements
4 AC measurements
Key :3
Edit Delete
None of the mentioned answers are correct
2 medium
low resistance measurement
S
4 High resistance measurement
3

Questions	Choi	ces
	1	Ballistic galvanometer
	2	fluxmeter
	3	Voltmeter
A PMMC can be used as by using a low resistance shunt	1	Ammeter
	4 Key	
		Edit Delete
	**	
	1	Resistance potentiomete
		LVDT
	2	
Which one of the following can act as the inverse transducer?	3	Piezoelectric transducer.
	4	Capacitive transducer
	Key	
		Edit Delete
	1	Before pre-accelerating anode
In a CRT the focusing anode is located	2	Between pre-accelerating and accelerating anodes
	3	All the answers are wrong
in a Civi the locasing anode is located	1	Before accelerating anode
	Key	
	, p	
	 •	Electrodynamo meter
	1	instruments
	2	Moving iron instruments
No eddy current and hysteresis losses occur in	3	PMMC instruments
	4	Electrostatic instruments
	Key	:4
		Edit Delete
	1 2	none of these a recording instrument
	3	an integrating instrument
The household energy meter is	4	an indicating instrument
	Key	_
	***	Edit Delete
Sensitivity of a potentiometer can be increased by	1	Decreasing the length of potentiometer wire
	2	increasing the length of potentiometer wire
	3	Increasing the current in potentiometer wire
	4	Decreasing the resistance in the rheostat in series with the battery
	Key	:2
		Edit 🗓 Delete
	1 '	

Questions	Choic	ces		
	1	Ground	cleara	ince of the conductor
	2	Max. Sp	an of	the conductor
	3	Max str	ess on	the conductor
The Knowledge of Maximum sag is essential in determining the	4	None o		mentioned answers
	Key:		_	
		Edit		Delete
	1	Brass		
	2	Electro	lytes	
Which of the following has negative temperature coefficient?	3	Mercur	y	
which of the following has negative temperature coefficient:	4	Silver		
	Key:	2		
		Edit		Delete
	1	Maxwe	ll and	Hay's bridge
	2	Maxwe	ll and	Schering bridge
For the measurement of unknown inductance in terms of known	3	Hay's a	ınd W	ien's bridge
capacitance, the suitable ac bridges are	3			Wien's bridge
	4			
	Key :1			
		Edit	â	Delete
	1	Linear	capac	citance
	2	Non - li	near i	inductance
LVDT which is an instrument for the measurement of displacement works	3	Mutual	induc	tance
on the principle of	4	Linear	induct	tance
	Key:			
	-	Edit	俞	Delete
	1			eld type construction
	2	Commi		
	3			c. armature winding
Majority of the alternators in use have	4	revolvir	ng fiel	d type construction
	Key:	4		
	**	Edit	â	Delete
One of the characteristics of a single-phase motor is that it				ating Magnetic
	1	Field		- -
	2	require	s only	one winding
	3	can rot	ate in	one direction only
	4	is not s	elf-sta	arting
	Key:			
	A.C.	Edit	盦	Delete
	<u> </u>			

Questions	Choices
input relationship, y(n)=x(n)+3. The system: 1) Is linear 2) Is causal 3) Has bounded output bounded input 4) Is non-	1 1, 2 & 3 are correct 2 2 & 3 are correct 3 1 & 2 are correct 4 1, 3 & 4 are correct Key:1
Sinusoidal voltage is given by the expression $v = 300 \cos (120*pi*t+30°)$. What is the frequency in hertz.	Edit Delete 1 600 KHz 2 600 Hz 3 60 Hz 4 60 KHz Key:3 Edit Delete
For physically realizable circuit , impulse response is	1 One for t<0 2 Zero for t<0 3 Infinite for t>0 4 zero for t>0 Key :2 Edit Delete
conducting metal sheet sphere whose center is at the origin, then the electric	1 Zero 2 100 μV/m 3 -100 μV/m 4 50 μV/m Key:2 Edit Delete
parallel to either plate of the capacitor at distance <i>d</i> /2 from either plate, the new capacitance will be	1 4C 2 C 3 C/2 4 2C Key:4 ✓ Edit Delete
The starting torque developed by an induction motor is maximum when	1 R ₂ =X ₂ 2 SR ₂ =X ₂ 3 R ₂ =SX ₂ 4 None of these answers Key :3 ✓ Edit □ Delete
At lagging loads, armature reaction in an alternator is	1 Non-effective 2 Cross-magnetising 3 Demagnetising 4 Magnetising Key:3
The plot of cn versus ω is called:	Complex amplitude spectrum Complex frequency spectrum None of the mentioned answers Complex phase spectrum Key:1

Questions	Choices
Maximum power is transferred from source to load when load impedance is	equal to half of the source impedance equal to conjugate of source impedance equal to 1 equal to 1 equal to zero Key:2
The unit-impluse response of a system starting from rest is given by $C(t) = 1 - e^{-2t} \ \text{for} t \ge 0$ The transfer function of the system is	1 $\frac{1}{1+2s}$ 2 $\frac{2}{s+2}$ 3 $\frac{2}{s(s+2)}$ 4 $\frac{1}{s+2}$ Key:2
The number of roots of $s^3 + 5s^2 + 7s + 3 = 0$ in the left half of the s – plane is	1 Two 2 One 3 Zero 4 Three Key:1 ✓ Edit □ Delete
State the essential condition for a self excitation a DC machines, to induce voltage If the Nyquist plot of the loop transfer function G(s) H(s) of a closed-loop system	armature voltage all the answers are wrong back EMF residual voltage Key:4 Edit Delete zero. greater than zero. less than zero.
encloses the (-1, jo) point in the G(s) H(s) plane, the gain margin of the system is	4 infinity. Key :1
A system with gain margin close to unity or a phase margin close to zero is	2 oscillatory. 3 relatively stable. 4 unstable. Key:3 ✓ Edit □ Delete

Questions	Choi	ces
	1	Guarded Wheatstone bridge
	2	Maxwell bridge
For low resistance (from few micro ohms to one ohm) measurement, which	3	Kelvin double bridge
bridge is used?	4	Wheatstone bridge
	Key:	3
	^	Edit 🗓 Delete
	1	Fair child µA 709
	2	T.I. SN 72709 Motorola's MC 1709
The first generation of IC opamp was		National Semi-conductor's LM
The mot gonoration of the opamp mas	4	709.
	Key:	1
	**	Edit 🛍 Delete
	1	all the answers are right
	2	contact resistance
A Wheatstone bridge cannot be used for precision measurements because	3	thermo-electric EMF
errors are introduced in to on account of	4	Resistance of connecting leads
	Key :	1
	**	Edit Delete
	1	none of the specified options
	2	reduces to zero looks like a virtual ground
In opamp when the non-inverting input is grounded, the inverting input	4	attains high values
	Key:	
		Edit Delete
	1	can build a A/D converter
	2	can be used as a integrator.
In an opamp by using binary weight resistors the summing circuit (0) can build a	3	can build a D/A converter
D/A converter	4 Key:	can be used as a differentiator
	ACY .	Edit 🗓 Delete
	1	JFETs, MOS
	2	MOSFET, JFETs
PIEET on amos usefor the input stage andfor later stages	3	JFETS, bipolar transistors
BIFET op amps usefor the input stage andfor later stages.	4	diode, JFETs.
	Key:	
	.//	Edit Delete
	1	for highest precision
Amplitude scaling is done in analog computers	2	to increase noise to increase voltage drift
		for high precision and to reduce
	4	noise
	Key:	4
	**	Edit Delete
	1	

Questions	Choices
	₁ 10 mA
A parallel plate air-filled capacitor has plate area of 10 ⁻⁴ m ² and plate	2 100 mA
separation of 10 ⁻³ m. It is connected to a 0.5 V, 3.6 GHz source. The	3 10 A 4 1.59 mA
magnitude of the displacement current is	Key :4 ✓ Edit Delete
Opamp Power Supply Rejection Ratio should be	1 as large as possible 2 as small as possible 3 nearly 0.5 4 nearly 1. Key:2 * Edit Delete
A UJT has one base resistance of 5.2 k. Its intrinsic stand of ratio is 0.67. The inter-base voltage of 12 V is applied across the two passes. The value of base current will be	1 1.41 mA 2 1.34 mA 3 1.16 mA 4 1.28 mA Key :3 ✓ Edit Delete
An UJT exhibits negative resistance region:	1 Between peak and valley point 2 Before the break point 3 After the valley point Both Between peak & valley point and After the valley point Key:1 Edit Delete
If gate current is increased, the anode-cathode voltage at which SCR closes is	1 maximum 2 least 3 decreased 4 increased Key:3 * Edit Delete
UJT oscillators are used for gate-triggering of thyristors for	1 none of these 2 Being cheap and simple 3 Better phase control 4 Snap action Key:3 ** Edit Delete
A device that does not exhibit negative resistance characteristic is	1 SCR 2 tunnel diode 3 FET 4 UJT Key:3
Most SCRs can be turned-off by voltage reversal during negative half-cycle of the ac supply for	1 frequencies upto 300 kHz 2 frequencies upto 30 kHz 3 all frequencies 4 frequencies upto 300 Hz Key:2
	Edit Delete

Questions	Choices
If a diode is connected in antiparallel with a SCR, then	none of these turn-off power loss increases, but turn-off time decreases both turn-off power loss and turn-off time decrease turn-off power loss decreases but turn-off time increases Key:4 Edit Delete
Surge current rating of an SCR specifies the maximum	repetitive current with rectangular wave non-repetitive current with sine wave non-repetitive current with rectangular wave repetitive current with sine wave Key:2
For enhancing the power transmission in a long EHV transmission line, the most preferred method is to connect a	Series inductive compensation in the line Shunt inductive compensation at the receiving end Series capacitive compensator in the line Shunt capacitive compensator at the sending end Key:3 Edit Delete
Once SCR starts conducting a forward current, its gate losses control over:	1 None of the mentioned answers are correct 2 anode circuit voltage and current 3 anode circuit current only 4 anode circuit voltage only Key:2 * Edit Delete
A DC shunt motor is running at light load, what happens if the field winding gets opened?	1 Motor will stop 2 Motor will burn 3 Motor will make noise 4 Motor will pickup high speed Key:1 Edit