

Applied Al, Artist, Speaker Board Member, Women in Data Michelle@generationship.ai

Graph Evangelist, Author, Speaker Founder of GraphGeeks Amy@GraphGeeks.org

Quick Review

Explainable AI (XAI) Today

Why is this model giving me this prediction?

- Uncovers strong co-occurrences in data
- Good at finding feasible actions that would change a prediction
- Quick diagnosis of problems in data
- Not great with data drift
- It doesn't actually explain anything

Explanation Techniques

Rules-Based (decision trees, KNN,...)

Causal Inference (SCM, Do-Why, PO...)

Example & Counterfactuals

Sufficient Explanation

Neural Representations

Feature Attribution (LIME, SHAP, Gradient Saliency..)

Statistical Focused

Domain Knowledge

Causal Focused

Causality: Another Layer of Explainability

Why does this outcome happen?

- Finds how a change in one variable causes a change in another
- Causality is inferred using the difference between outcomes

We Need Causal Inference

Answering Why

What changes outcomes? Overall effect of intervention? Inherent explainability

Better Results

Improve accuracy More actionable results Supports decision intelligence

Detecting Problems

Uncover poor associations Is more data needed? Highlight biased features

Human-in-the-Loop

Closest to human inference Integrates domain knowledge Emphasize human action

When To Use Causality vs Machine Learning?

Causality when your actions will impact the variables

ML when your actions depend on the outcome

Your Model

When To Use Causality vs Machine Learning?

Is Causality a Progression?

Descriptive

Causal + Statistical Approaches Are Complementary

Breakthrough and Turning Point

Accessible arguments on causation

Using graphs to model relationships changed the way we think about interventional questions

Creation of a do-calculus provided a mathematical way to calculate causal strength of "doing" something

Megapost summary:

https://engineeringideas.substack.com/p/megapost-about-causality-the-summary

P(Y|X)
to
P(Y|do(X))

Directed Acyclic Graphs (**DAG**) ONLY
No feedback loops: no intervention can cause itself!

Arrow direction illustrates causal influence

Directed Acyclic Graphs (**DAG**) ONLY
No feedback loops: no intervention can cause itself!

Arrow direction illustrates causal influence

Directed Acyclic Graphs (**DAG**) ONLY
No feedback loops: no intervention can cause itself!

Arrow direction illustrates causal influence

Basic structures

A mediator

treatment & outcome

C collider

Avoid Controlling As it introduces correlations that require further controls

Confounders - Back Door Adjustments

Control Node (CN) Criteria: 1) CN must not be a child of the treatment your estimating and 2) CN must block the path between treatment and outcome.

do-calculus P(Y|do(X)) - P(Y)

Replaces probability formulas with constant variables to simulate the change in a controlled manner

Interventions & counterfactuals are represented by the operator, do(x), which "erases" the function while keeping the rest of the model unchanged

Front Door Adjustments (if you can't do a back door)

Control Node (CN) Criteria: 1) CN must intercept all directed paths from treatment to outcome 2) no unblocked backdoor path from treatment to CN and 3) all backdoor paths from CN to outcome are blocked by the treatment.

Step 3 - Sum over Mediator and chain together

$$\sum_{\mathbf{Z}} P[\mathbf{Z}|do(\mathbf{X})] P[\mathbf{Y}|do(\mathbf{Z})]$$

DoWhy for Causal Inference

Identify target estimand

Estimate causal effect

Refute estimate

Input Data
Domain Knowledge

Causal Graphs and do-calculus

Statistical and Potential Outcomes

Sensitivity and Robustness Checks

Formula for describing (estimating) the impact!

PyWhy – Brings It All Together

LLM API LLM API

LLM API

Model

Identify

Estimate

Refute

DoWhy

DoWhy

DoWhy (basic)

DoWhy

Casual Learn (discovery &

investigation)

EconML (deeper)

ShowWhy

CausalML (deeper)

Today's Scenario

Camping Supply Vendor Wants to Increase Sales

We have lots of data and experience...and even more opinions!

We're Data Scientists: We Can Help Settle the Argument

What if we changed where we focus our resources this year? What changes have the most impact to sales?

Model

Costume Supplier (branded/not)

Costume variety

Production rate

Material (quality)

Pricing

Sales (output)

Identify

Use ATE (ave. treatment effect) to measure the effect of these variables on sales.

SME input → Updates

Estimate

Find the causal strength of interventions on sales using linear regression.

Then use EconML for Causal Forest

Refute

Test robustness of findings by adding randomness, checking new vs estimated effect and the p values.

Present Results!

Let's DO This!

```
np.random.seed(42)
num data points = 1000
# Variables
suppliers = np.random.randint(1,
raw_materials = np.random.randint
distribution efficiency = np.rano
marketing spend = np.random.rand:
# Relationships
production_rate = suppliers * 10
sales = (production rate * 5 + ma
df = pd.DataFrame({
    'suppliers': suppliers,
    'raw materials': raw material
    'distribution_efficiency': distribution_efficiency,
    'marketing spend': marketing spend,
    'production_rate': production_rate,
    'sales': sales
```

https://github.com/yulleyi/odsc_east_2024_graphs_explainability

copy or download the notebook

Um...Yeah, This Isn't Helpful

(maybe for more advanced?)

Start Simple and Add Layers!

- Find the strength of different relationships
- Simple models (linear regression)
- Limited to averages, not a lot of tuning

- Play with other models (, , , DML, +)
- More & deeper controls, cross validation
- No robustness testing → So fit the log back in DoWhy

Then go back and look at Causal Learn

Causality Limitations / Considerations

Missing Data

Missing confounders or other data left out can cause spurious correlations

One Outcome at a Time

Can't observe someone having the treatment and not having a treatment in one pass

Domain Expertise

Need to confirm your causal links, possible missing data, and confounder assumptions

Graph Model

No auto-magical creation, use your SME! Causal Learn can help

Final Tips and Resources

- Don't be intimated, the math and implementations are done for you!
- Finding good data is a challenge but DoWhy has some curated data
 - o Synthetic Healthcare Data Example Synthea
- There are multiple ways to do things, just try it out

Slides and Notebook - https://github.com/yulleyi/odsc_east_2024_graphs_explainability Causal Resources

- PyWhy <u>pywhy.org/</u> (with links to DoWhy and EconML)
- Another causal inference guide <u>tinyurl.com/5e4auenh</u>
- Discord community is very helpful! <u>tinyurl.com/365d7e37</u>

New Graph Community: <u>GraphGeeks.org</u> & <u>Discord tinyurl.com/hrjanc3p</u>

Real Use Cases??

tinyurl.com/48dk6bmm

Questions?

Thank You

Patrick Blöbaum Jason Grafft

Michelle@generationship.ai
Amy@GraphGeeks.org

Amit Sharma, Emre Kiciman. DoWhy: An End-to-End Library for Causal Inference. 2020. https://arxiv.org/abs/2011.04216

Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, Dominik Janzing. DoWhy-GCM: An extension of DoWhy for causal inference in graphical causal models. 2022. https://arxiv.org/abs/2206.06821

