

SESA1015 Astronautics

Launch Vehicles

Contents

Conservation of Momentum

The Rocket Equation

Launch Vehicles

Launch Vehicle Interface

Launch System Characteristics

Summary

Conservation of Momentum

Basic System, relative to an observer

Conservation of Momentum

Basic System, relative to an observer

To increase V_1 we need to increase the mass ratio and make V_2 as large and as negative as possible

Conservation of Momentum

Exhaust Velocity, relative to vehicle

$$V_{1} = \frac{m}{M} (V - V_{2})$$

$$V_{ex}$$

In very simple terms: $V_1 =$

$$V_1 = \frac{m}{M} V_{ex}$$

However for rockets the burnt mass and velocity change is continuously happening over the time of burn, so this linear approximation is not accurate, (i.e. *M* is constantly reducing!)

Derived by Tsiolkovsky in 1903.

Newtons second law:

$$F = ma = \frac{d}{dt}(mv)$$

Or equivalently:

$$\sum_{ext} F_{ext} = \lim_{\Delta t \to 0} \frac{\text{Momentum @ B - Momentum @ A}}{\Delta t}$$

A Rocket in Space

Momentum

$$(M + \Delta m)V$$

$$M (V + \Delta V) + \Delta mV_2$$

Therefore from Newton's second law:

$$F_{ext} = \lim_{\Delta t \to 0} \frac{\left(M \left(V + \Delta V\right) + \Delta m V_{2}\right) - \left(\left(M + \Delta m\right)V\right)}{\Delta t}$$

Equation of motion:

$$F_{ext} = \lim_{\Delta t \to 0} \frac{\left(M \left(V + \Delta V\right) + \Delta m V_{2}\right) - \left(\left(M + \Delta m\right)V\right)}{\Delta t}$$

As there are no external forces being applied $F_{ext} = 0$ and as Δt tends to 0 (i.e. we make the time step really small) the equation becomes:

$$0 = \frac{(M (V + dV) + dmV_{2}) - ((M + dm)V)}{dt}$$

$$= \frac{MV + MdV + dmV_{2} - (MV + dmV)}{dt}$$

$$= \frac{MV + MdV + dmV_{2} - MV - dmV}{dt} = M \frac{dV}{dt} + \frac{dm}{dt}V_{2} - \frac{dm}{dt}V$$

Rearranging:

$$0 = M \frac{dV}{dt} + \frac{dm}{dt}V_2 - \frac{dm}{dt}V \longrightarrow M \frac{dV}{dt} = \frac{dm}{dt}(V - V_2)$$

From before we defined the exhaust velocity relative to the vehicle to be:

$$V_{ex} = V - V_2$$

So the Rocket Equation becomes:

$$\frac{dV}{dt} = V_{ex} \frac{1}{M} \frac{dm}{dt}$$
 Previously: $V_1 = \frac{m}{M} V_{ex}$

Which is the differential equation version of the previous simple conservation of momentum equation. This differential equation needs to be integrated between limits to determine the total velocity change from the rocket burn... but...

What is...
$$\frac{dm}{dt}$$
?

Mass

is the fuel mass ejected over the time dt, i.e. the mass flow rate $\frac{dM}{dt}$ is the change in mass of the rocket

Therefore:

$$\frac{dM}{dt} = -\frac{dm}{dt}$$

So the equation becomes:

$$\frac{dV}{dt} = -V_{ex} \frac{1}{M} \frac{dM}{dt}$$

The Solution

Therefore, integrating...

Where:
$$\int_{u}^{v} dv = -V_{ex} \int_{M_{0}}^{M_{b}} \frac{1}{M}$$
• *u* is the initial velocity
• *v* is the final velocity
• *M_{0}* is the initial rocker

- *u* is the initial velocity
- M_0 is the initial rocket mass
- M_b is the final rocket mass or 'burnout mass'

$$v - u = -V_{ex} \left[\ln M \right]_{M_0}^{M_b}$$

So the final solution is:

$$\Delta V = V_{ex} \ln \left(\frac{M_0}{M_b} \right)$$
 (3.1) This is the *Rocket Equation*

A Rocket in Space

Momentum

$$(M + \Delta m)V$$

$$M (V + \Delta V) + \Delta mV_2$$

Therefore from Newton's second law:

$$F_{ext} = \lim_{\Delta t \to 0} \frac{\left(M \left(V + \Delta V \right) + \Delta m V_{2} \right) - \left(\left(M + \Delta m \right) V \right)}{\Delta t} \longrightarrow \Delta V = V_{ex} \ln \left(\frac{M_{0}}{M_{b}} \right)$$

$$\Delta V = V_{ex} \ln \left(\frac{M_0}{M_b} \right)$$

The Rocket Equation Applied to Launch Vehicles

If we apply the rocket equation derivation to launch vehicles then there are external forces acting on the rocket... for example drag and rocket weight. If we assume the rocket is thrusting along the vehicles velocity vector then...

Where the rocket drag force is given by:

$$D = \frac{1}{2} \rho V^2 SC_D$$

The Rocket Equation Applied to Launch Vehicles

We can derive the equation of motion in the *i* direction:

$$\frac{\left(M \left(V + dV\right) + dmV_{2}\right) - \left(\left(M + dm\right)V\right)}{dt} = F_{ext} = -Mg \sin \gamma - D$$

The Rocket Equation Applied to Launch Vehicles

$$\frac{\left(M \left(V + dV\right) + dmV_{2}\right) - \left(\left(M + dm\right)V\right)}{dt} = -Mg \sin \gamma - D$$

$$M \frac{dV}{dt} + \frac{dm}{dt} (V_2 - V) = -Mg \sin \gamma - D$$

$$M \frac{dV}{dt} = -V_{ex} \frac{dM}{dt} - Mg \sin \gamma - D$$

Which is the same as the rocket equation with the added drag and mass terms.

$$\frac{dV}{dt} = -V_{ex} \frac{1}{M} \frac{dM}{dt} - g \sin \gamma - \frac{D}{M}$$

The Rocket Equation Applied to Launch Vehicles

Integrate:

$$\int_{u}^{v} dV = -V_{ex} \int_{M_{0}}^{M_{b}} \frac{1}{M} dM - \int_{0}^{t} g \sin \gamma dt - \int_{0}^{t} \frac{D}{M} dt$$

Therefore:

$$\Delta V = V_{ex} \ln \left(\frac{M_0}{M_b} \right) - \int_0^t g \sin \gamma dt - \int_0^t \frac{D}{M} dt$$

$$\Delta V_{ideal} \qquad \text{Gravity} \qquad \text{Drag}$$
(3.2)

Which can be written as:

$$\Delta V = \Delta V_{ideal} - \Delta V_{g} - \Delta V_{D}$$
 (3.3)

Where: ΔV_g = 'gravity loss'; ΔV_D = 'drag loss'

 ΔV required to achieve LEO ~ 7.8 km/s

The Rocket Equation Applied to Launch Vehicles – Using vector notation

This analysis can be done in a more advanced way using vector notation analysing both the i and j directions in one equation.

The Rocket Equation Applied to Launch Vehicles – Using vector notation

Newton's second law for systems with momentum inflow and outflow (jets, rockets etc):

$$\frac{d}{dt}(M \mathbf{V}) = \mathbf{F}_{ext} + \{\text{rate of momentum inflow }\}$$
$$- \{\text{rate of momentum outflow }\}$$

So:

$$\frac{d}{dt}(M\mathbf{V}) = \mathbf{D} + M\mathbf{g} + \mathbf{L} + \{0\} - \{\sigma(\mathbf{V} + \mathbf{V}_{ex})\}\$$

Using the *i*, *j* reference system:

$$\dot{M}\mathbf{V} + M\dot{\mathbf{V}} = -D\mathbf{i} - Mg\sin\gamma\mathbf{i} - Mg\cos\gamma\mathbf{j} + L\mathbf{j} - \sigma(V - V_{ex})\mathbf{i}$$

Where:

$$\dot{M} = -\sigma$$
 $\dot{\mathbf{V}} = \dot{V}\mathbf{i} + V\ddot{\eta}$

Ascent Optimisation

Realistic launches are a trade off between the gravity loss and the drag loss

Trajectory Optimisation

Typically, $\Delta V_g \sim 0.75$ to 1.5 km/s, $\Delta V_D \sim 0.2$ to 0.3 km/s

Ascent Profile

Ascent profile for typical 'classical' 3-stage expendable launch vehicle - Ariane 44LP taken as an example

Some numbers...

From equation (3.3):

$$\Delta V = V_{ex} \ln \left(\frac{M_0}{M_b} \right) - \Delta V_g - \Delta V_D$$
7.8 km/s
$$0.75 \text{ km/s} \qquad 0.2 \text{ km/s}$$

$$V_{ex} \ln \left(\frac{M_0}{M_b} \right) = 8.75 \text{ km/s}$$

Assume V_{ex} for our rocket is 3 km/s and we want to put 1000kg into LEO

$$3 \ln \left(\frac{1000 + M_f}{1000} \right) = 8.75 \rightarrow M_f = 17500 \text{ kg}$$

Single Stage To Orbit (SSTO) Vehicle

From equation (3.3):

$$\Delta V + \Delta V_g + \Delta V_D = V_{ex} \ln \left(\frac{M_p + M_s + M_f}{M_p + M_s} \right)$$

Where: $M_P = p/l$ mass

 M_S = structure mass

 M_f = fuel mass

Define: $p = M_P/M_0$ (payload fraction)

 $s = M_S/M_f$ (propellant tankage structural efficiency)

Then:

$$\Delta V + \Delta V_g + \Delta V_D = V_{ex} \ln \left(\frac{1+s}{p+s} \right)$$

Single Stage To Orbit (SSTO) Vehicle

To achieve LEO, we require $\Delta V = 7.8$ km/s.

Also assume that s = 0.1, $\Delta V_g = \Delta V_D = 0$ (no losses) and p = 0 (no p/l!)

Then: $7.8 \text{ km/s} = V_{ex} \ln(11)$

or $V_{ex} = 3.25 \text{ km/s}$

Even under these ideal conditions (no p/l, no losses), SSTO only achievable with high energy propellants.

Since mass of propellant tankage is large, significant performance benefits result from progressive shedding of mass on ascent \rightarrow staging.

Staging

Variation of Velocity Increment with Number of Stages

Multi Stage Vehicle

From previously:

$$\Delta V_{ideal} = V_{ex} \ln \left(\frac{M_0}{M_b} \right) = V_{ex} \ln \left(\frac{M_p + M_s + M_f}{M_p + M_s} \right)$$

$$= V_{ex} \ln \left(\frac{1+s}{p+s} \right)$$

Where: $p = M_P/M_0$ (payload fraction) $s = M_S/M_f$ (propellant tankage structural efficiency)

Multi Stage Vehicle

Consider a three stage vehicle:

Mass delivered by the launcher to orbit

Jettison at the end of stage 3

Jettison at the end of stage 2

Jettison at the end of stage 1

Multi Stage Vehicle

For stage 1:

For stage 3:

So in total:
$$\Delta V_{ideal} = \sum_{i=1}^{3} V_{ex,i} \ln \left(\frac{1 + s_i}{p_i + s_i} \right)$$

$$P = \frac{M_{p3}}{M_{o1}}$$

Southampton Southampton

Launch Vehicle Interface

Typical Launch System Fairing

Launch Vehicle Interface

Impacts of Launcher Selection on Spacecraft System

- main input to S/C structure design
- major impact on:

S/C mass

S/C volume

S/C stowed configuration

S/C mass distribution (constraint on centre of mass position)

- input to design of S/C deployment mechanisms

Ariane 5

Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Ariane 5				4.6	~8.5 to
G (generic)	21000	9500	6600		~13.0
ECA (evolution)	21000	9500	10000		

(+) = Approximate values

Space Shuttle

Astronautics - Launch Vehicles

Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Ariane 5				4.6	~8.5 to
G (generic)	21000	9500	6600		~13.0
ECA (evolution)	21000	9500	10000		
Shuttle	24400		5900	4.5	18.0

(+) = Approximate values

Space Shuttle

Astronautics - Launch Vehicles

US ELV (Expendable Launch Vehicle) – Delta 2

US ELV (Expendable Launch Vehicle) – Titan III

US ELV (Expendable Launch Vehicle) – Atlas 5

Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Ariane 5				4.6	~8.5 to
G (generic)	21000	9500	6600		~13.0
ECA (evolution)	21000	9500	10000		
Shuttle	24400		5900	4.5	18.0
Delta II	5000	3000	2000	2.5	4.8
Titan III	11000		5000	3.6	12.4
Atlas V	20500	17300	8700	4.2	12.2

(+) = Approximate values

Russian ELV: Proton

Russian ELV: Energia

Russian ELV: Energia

Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)	
	LEO	LEO Polar	GTO	Diam.	Length	
Ariane 5				4.6	~8.5 to	
G (generic)	21000	9500	6600		~13.0	
ECA (evolution)	21000	9500	10000			
Shuttle	24400		5900	4.5	18.0	
Delta II	5000	3000	2000	2.5	4.8	
Titan III	11000		5000	3.6	12.4	
Atlas V	20500	17300	8700	4.2	12.2	
Proton	20000		5500	3.3	7.5	
Energia	90000	72000		5.5	37	

(+) = Approximate values

Russian ELV: Soyuz

Southampton

Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Ariane 5				4.6	~8.5 to
G (generic)	21000	9500	6600		~13.0
ECA (evolution)	21000	9500	10000		
Shuttle	24400		5900	4.5	18.0
Delta II	5000	3000	2000	2.5	4.8
Titan III	11000		5000	3.6	12.4
Atlas V	20500	17300	8700	4.2	12.2
Proton	20000		5500	3.3	7.5
Energia	90000	72000		5.5	37
Soyuz	4850	4400	3250	3.7	6.5

^{(+) =} Approximate values (*) = air launched

Air Launch - Pegasus

Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Ariane 5				4.6	~8.5 to
G (generic)	21000	9500	6600		~13.0
ECA (evolution)	21000	9500	10000		
Shuttle	24400		5900	4.5	18.0
Delta II	5000	3000	2000	2.5	4.8
Titan III	11000		5000	3.6	12.4
Atlas V	20500	17300	8700	4.2	12.2
Proton	20000		5500	3.3	7.5
Energia	90000	72000		5.5	37
Soyuz	4850	4400	3250	3.7	6.5
Pegasus(*)	455	265	125	1.2	1.9

^{(+) =} Approximate values (*) = air launched

SpaceX Commercial Systems – Falcon 9

Astronautics - Launch Vehicles

SpaceX Commercial Systems

SpaceX Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Falcon 9	22,800*		8,300*	4.6	~6.6 to ~11.4

^{*} From SpaceX website. However, typical payloads in the Falcon 9 class are below 6800 kg.

Falcon 9 stats as of 11th Sept 2020: 92 launches, 53 total landings, 38 reflown rockets

(+) = Approximate values

SpaceX Commercial Systems – Falcon Heavy

SpaceX Commercial Systems

SpaceX Launcher	Payload(+)	into	orbit (kg)	Fairing	size (m)
	LEO	LEO Polar	GTO	Diam.	Length
Falcon 9	22,800*		8,300*	4.6	~6.7 to ~11
Falcon Heavy	63,800*		26,700*		

^{*} From SpaceX website.

Falcon Heavy stats as of 11th Sept 2020: 3 launches, 7 total landings, 4 reflown rockets

(+) = Approximate values

Future Air-launch systems

'Virgin Orbit', launcher one (~500 kg to SSO) Maiden flight 25th May 2020 - unsuccessful

Stratolaunch (6,000 – 8,000 kg to LEO)

Future Air-launch systems

Stratolaunch – largest aircraft (by wingspan) ever to fly

Second Generation Reusable LV – X37

Future – Single Stage to Orbit

Basic statistics from Ariane 1 launcher:

1st stage – 120 metric tons of propellant (55% of the initial mass of the rocket)

Accelerates the vehicle to 1.5 km/s (20% of the orbital velocity at 30km altitude)

2/3 of this is oxidiser (by mass)

- which is burnt within the Earth atmosphere

Second Generation Reusable LV – X34 (air launch)

Astronautics - Launch Vehicles

Southampton Southampton

Launch System Characteristics

Future – Reaction Engines 'Skylon'

'Sabre' Engine

Combines elements of rocket and gas turbine technology.

Enables the launcher to be accelerated to mach 5.5 using an air-breathing mode, before switching to the rocket mode, to accelerate the vehicle to the orbital velocity.

(Theoretically!)

Launch Vehicles Summary

Key points:

Conservat	ion	of M	om	enti	ım
Constinat	11011	OI MI	OHI	CIILL	

- Basic definition of exhaust velocity and its link to the location of the observer
 Important performance conclusion of this basic approach
 The limitations of this approach

The Rocket Equation

• The derivation of the rocket equation by applying Newton's

Launch Vehicles

- How the rocket equation is modified for launch vehicles
- The fundamental trade-offs required for trajectory optimisation
- Key performance limitations outlined by numerical examples
- The need for staging, the diminishing returns and how to apply the rocket equation to multi-stage vehicles

Launch Vehicle Interface

• Important features of the launch vehicle interface

• Impacts of launcher selection

Launch System Characteristics

- Overview of typical launch system characteristics
- Knowledge of future areas of development in the field

Southampton Southampton

Launch Vehicles Summary

Read Chapter 7 of Fortescue, Stark & Swinerd

Read Chapter 5 of 'How S/C Fly'

