

Cấu trúc dữ liệu CÁC KIỂU DỮ LIỆU TRỪU TƯỢNG CƠ BẢN (BASIC ABSTRACT DATA TYPES)

Bộ môn Công Nghệ Phần Mềm

MỤC TIÊU

- Nắm vững các kiểu dữ liệu trừu tượng như: danh sách, ngăn xếp, hàng đợi.
- Cài đặt các kiểu dữ liệu trừu tượng bằng ngôn ngữ lập trình cụ thể.
- Ứng dụng được các kiểu dữ liệu trừu tượng trong bài toán thực tế.

NỘI DUNG

- Kiểu dữ liệu trừu tượng danh sách (LIST)
- Kiểu dữ liệu trừu tượng ngăn xếp (STACK)
- Kiếu dữ liệu trừu tượng hàng đợi (QUEUE)
- Danh sách liên kết kép (Double Lists)

NGĂN XÉP (STACK)

- ĐỊNH NGHĨA
- CÁC PHÉP TOÁN
- CÀI ĐẶT
 - CÀI ĐẶT BẰNG DANH SÁCH LIÊN KẾT
 - CÀI ĐẶT BẰNG MẢNG

NGĂN XÉP (STACK)

- ĐỊNH NGHĨA
- CÁC PHÉP TOÁN
- CÀI ĐẶT
 - CÀI ĐẶT BẰNG DANH SÁCH LIÊN KẾT
 - CÀI ĐẶT BẰNG MẢNG

ĐỊNH NGHĨA

Ngăn xếp:

- Là một dạng danh sách đặc biệt mà việc thêm (Push) hay xóa (Pop) một phần tử chỉ thực hiện tại một đầu gọi là đỉnh (TOP) của ngăn xếp
- Việc thêm và xóa một phần tử được thực hiện theo dạng LIFO (Last In First Out) hay FILO (First In Last Out)

NGĂN XÉP (STACK)

- ĐỊNH NGHĨA
- CÁC PHÉP TOÁN
- CÀI ĐẶT
 - CÀI ĐẶT BẰNG DANH SÁCH LIÊN KẾT
 - CÀI ĐẶT BẰNG MẢNG

CÁC PHÉP TOÁN

Phép toán	Diễn giải
makenullStack(S)	Tạo một ngăn xếp rỗng (S)
emptyStack(S)	Kiểm tra xem ngăn xếp S có rỗng hay không. Hàm cho kết quả 1 (true) nếu ngăn xếp rỗng và 0 (false) trong trường hợp ngược lại.
full(S)	Kiểm tra xem ngăn xếp S có đầy hay không
push(x,S)	Thêm phần tử x vào đỉnh ngăn xếp S. Tương đương: insertList(x,first(S),S)
pop(S)	Xóa phần tử tại đỉnh ngăn xếp S. Tương đương: deleteList(first(S),S)
top(S)	Trả về phần tử đầu tiên trên đỉnh ngăn xếp S, tương đương: retrieve(first(S),S)

8

NGĂN XÉP (STACK)

- ĐỊNH NGHĨA
- CÁC PHÉP TOÁN
- CÀI ĐẶT
 - CÀI ĐẶT BẰNG MẢNG
 - CÀI ĐẶT BẰNG DANH SÁCH

Kiểu dữ liệu trừu tượng - Lưu ý

- Cài đặt kiếu dữ liệu trừu tượng:
 - Tổ chức lưu trữ: cấu trúc dữ liệu (khai báo dữ liệu).
 - Viết chương trình con thực hiện các phép toán (khai báo phép toán).

CÀI ĐẶT NGĂN XẾP BẰNG MẢNG

Khai báo

KHỞI TẠO NGĂN XẾP RỖNG

Khai báo

KHỞI TẠO NGĂN XẾP RỖNG

```
• Khai báo

#define MaxLength <n>
typedef <datatype> ElementType;

typedef struct {

    ElementType Elements[MaxLength];
    int Top_idx;
}Stack;
S rỗng:

O

I

Maxlength-1

Top_idx-
```

 Khi ngăn xếp S rỗng ta cho đỉnh ngăn xếp được khởi tạo bằng Maxlength

```
void makenullStack(Stack *pS) {
    pS->Top_idx=MaxLength;
}
```


KIỂM TRA NGĂN XẾP RỐNG?

Khai báo

– Ta kiểm tra xem đỉnh ngăn xếp có bằng MaxLength không?

```
int emptyStack(Stack S) {
    return S.Top_idx==MaxLength;
}
```


KIỂM TRA NGĂN XẾP ĐẦY?

– Ta kiểm tra xem Top_idx có chỉ vào 0 hay không?

```
int full(Stack S) {
    return S.Top_idx==0;
}
```


TRẢ VỀ PHẦN TỬ ĐẦU NGĂN XẾP

Kết quả của phép toán trên ngăn xếp là x

- Giải thuật:
 - Nếu ngăn xếp rỗng thì thông báo lỗi
 - Ngược lại, trả về giá trị được lưu trữ tại ô có chỉ số là Top_idx

TRẢ VỀ PHẦN TỬ ĐẦU NGĂN XẾP

CANTHO UNIVERSITY

Khai báo

```
if (!emptyStack(S))
    return S.Elements[S.Top_idx];
else printf("Loi! Ngan xep rong");
}
```


XÓA PHẦN TỬ TẠI ĐỈNH NGĂN XẾP

- Giải thuật:
 - Nếu ngăn xếp rỗng thì thông báo lỗi
 - Ngược lại, tăng Top_idx lên 1 đơn vị

XÓA PHẦN TỬ TẠI ĐỈNH NGĂN XẾP

- Giải thuật:
 - Nếu ngăn xếp rỗng thì thông báo lỗi
 - Ngược lại, tăng Top_idx lên 1 đơn vị

19

THÊM PHẦN TỬ x VÀO NGĂN XẾP

Giải thuật:

- Nếu ngăn xếp đầy thì thông báo lỗi
- Ngược lại, giảm Top_idx xuống 1 đơn vị rồi đưa giá trị x vào ô có chỉ số Top idx

THÊM PHẦN TỬ x VÀO NGĂN XẾP


```
void push(ElementType x, Stack *pS){
   if (full(*pS))
       printf("Loi! Ngan xep day!");
   else {
       pS->Top_idx=pS->Top_idx-1;
       pS->Elements[pS->Top_idx]=x;
   }
```


– Sử dụng các phép toán trên ngăn xếp, viết hàm void Print_Binary(int n), nhận vào 1 số nguyên không âm n và in ra biểu diễn nhị phân của số n?

Sử dụng các phép toán trên ngăn xếp, viết hàm void Print_Binary(int n), nhận vào 1 số nguyên không âm n và in ra biểu diễn nhị phân của số n?

void print binary(int n) { Stack S; makenullStack(&S); **while**(n!=0){ push (n%2, &S); n=n/2; printf ("So nhi phan tuong ung la:"); while(!emptyStack(S)) { printf("%d", top(S)); pop(&S);


```
void print binary(int n) {
   Stack S;
   makenullStack(&S);
   while (n!=0) {
      push (n%2, &S);
      n=n/2;
   printf("So nhi phan tuong ung la:");
   while(!emptyStack(S)) {
      printf("%d", top(S));
      pop(&S);
```


NGĂN XÉP (STACK)

- ĐỊNH NGHĨA
- CÁC PHÉP TOÁN
- CÀI ĐẶT
 - CÀI ĐẶT BẰNG MẢNG
 - CÀI ĐẶT BẰNG DANH SÁCH

CÀI ĐẶT NGĂN XẾP BẰNG DANH SÁCH

Khai báo
 typedef List Stack;
 Tạo ngăn xếp rỗng
 void makenullStack(Stack *pS) {
 makenullList(pS);

Kiểm tra ngăn xếp rỗng

```
int emptyStack(Stack S) {
    return emptyList(S);
```


CÀI ĐẶT NGĂN XẾP BẰNG DANH SÁCH

Trả về phần tử ở đỉnh ngăn xếp

```
ElementType top(Stack S) {
    retrieve(first(S),S);
}
```

Xóa phần tử ra khỏi ngăn xếp

```
void pop(Stack *pS) {
    deleteList(first(*pS),pS);
}
```

Thêm phần tử vào ngăn xếp

```
void push(Elementtype x, Stack *pS) {
    insertList(x,first(*pS),pS);
}
```


Q&A?