Clinical implementation of deep learning: Automatic contouring via U-Net architecture

Matthew Cooper¹

Simon Biggs² Yu Sun¹ Matthew Sobolewski²

¹The University of Sydney (USyd). School of Physics. Institute of Medical Physics.

²Riverina Cancer Care Centre (RCCC), Cancer Care Associates,

Thesis: github.com/matthewdeancooper/masters_thesis Docs: docs.pymedphys/com/background/autocontouring

Introduction: Motivation

Variability

- Large intra and inter-observer variance (IOV).¹
- AAPM TG275 risk assessment multiple human-factor failure modes in RT.²

Time constraints

- Atlas methods
 ⇒ significant correction times.³
- Barrier to future technologies that require fast contouring.³

Current deep learning methods

- Shown to reduce IOV and contouring time.³
- Significant improvement cf. atlas methods (time & accuracy).⁴

1809.04430 [cs.CV]

¹Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754-9485.12844

²Eric Ford et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236–e272. DOI: https://doi.org/10.1002/mp.14030

³ Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1764-9485.12462

ledical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462

*
Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv:

Introduction: Clinical application

Model 1: QA tool (RCCC) - Pelvic imaging (Patient, bladder, rectum).

- Need for delineation to be part of regular QA.⁴
- Alert if prediction differs significantly from expert.

Model 2: Automatic contouring (SASH) - Canine vacuum bag

- Currently: Manual vacuum bag contouring (\sim 30 min)
- Lower barrier to entry wrt. implementation.

Goal: Performance similar to human experts.

- Performance metric (sDSC) that takes into account expert IOV.³
- Stronger correlation with correction time cf. DSC.⁵

Imaging in Radiation Oncology 13 (2020), 1-6, ISSN: 2405-6316, DOI: 10.1016/j.phro.2019.12.001

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

⁴ Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393-406. DOI: 10.1111/1754-9485.12462

⁵ Femke Vaassen et al. "Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy". In: Physics and

Figure: Modified 2D U-net architecture:⁸ Composed of encoding (blue) and decoding blocks (yellow). MaxPooling layers replaced by strided convolution.¹¹ Added batch normalisation¹² and final sigmoid activation.³ Tensor dimensions (Batch size, X, Y, Channels).

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

⁸Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-Net: Convolutional Networks for Biomedical Image Segmentation*. 2015. arXiv: 1505.04597 [cs.CV]

¹¹ Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolutional Net. 2014. arXiv: 1412.6806 [cs.LG]

¹² Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG]

Method: All happy models are alike...

Figure: Modules required for end-to-end deep learning model deployment

Method: Clinical implementation

Figure: TPS exports to remote server via DICOM networking protocol

Figure: Representative output for **patient**. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm.

Figure: Representative output for bladder. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm. sDSC calculated at τ of 1.46 mm.²

Figure: Representative output for rectum. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm. sDSC calculated at τ of 6.99 mm.²

Figure: Representative output for **vacuum bag**. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm.

Discussion: Structure specific metrics

Table: Organ specific evaluation for proposed models on independent test dataset

Organ: Mean(Std)	sDSC (au)	DSC	MSD (mm)	Sensitivity	Specificity
Pelvic imaging Patient Bladder ($ au$ 1.46 mm) Rectum ($ au$ 6.99 mm)	0.9(0.2) 0.9(0.1)	0.998(0.001) 0.9(0.2) 0.7(0.1)	0.002(0.005) 1(3) 1(2)	0.997 0.786 0.619	0.999 0.999 0.999
Average Canine imaging		0.9(0.2)	0.6(2)	0.991	0.999
Vacbag		0.952(0.001)	0.2(0.3)	0.953	0.995

• Organ specific tolerance $\tau = \mathsf{MSD}_{95}$ (ie. Top 95% expert performance).³

Cf. Experts IOV.²

- \bullet Clinically 'acceptable' bladder and rectum DSC ≥ 0.7
- ullet Bladder: DSC 0.93 \pm 0.03, MSD 0.99(0.30) mm.
- \bullet Rectum: DSC 0.81 \pm 0.07, MSD 2.862(2.066) mm.

1809.04430 [cs.CV]

²Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754–9485.12844

terest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754–9485.12844

3 Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv:

Conclusion: Summary

Pelvic imaging model:

- Patient contouring within tolerances (DSC 0.998).
- Suspect more data will improve bladder and rectum volumes (DSC 0.860, 0.670).
 - cf. S.O.T.A commercial DL solution (0.97, 0.79). 15
- Weighted soft DSC loss significantly improved performance on class imbalanced data.

Canine imaging model:

- Successfully deployed to clinic under a prototype warning
- Performance improvement of approximately 30 minutes per patient

¹⁵ Jordan Wong et al. "Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning". In: Radiotherapy and Oncology 144 (2020), 152–158. DOI: 10.1016/j.radonc.2019.10.019

Appendix: Surface dice similarity coefficient (sDSC)

$$DSC_{1,2} = \frac{2|M_1 \cap M_2|}{|M_1| + |M_2|} \tag{1}$$

$$sDSC_{1,2}^{(\tau)} = \frac{|S_1 \cap B_2^{(\tau)}| + |S_2 \cap B_1^{(\tau)}|}{|S_1| + |S_2|} \tag{2}$$

Figure: Clinical performance metric: Illustration of volume masks M_i , surfaces S_i , boundaries $B_i^{(\tau)}$ at organ specific tolerance τ , and intersection of surface boundaries $S_i \cap B_j^{(\tau)}$. Value states the percentage of surface contoured within expert IOV.³

Matthew Cooper (USyd)

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

Appendix sDSC cf. DSC

Comparison of common segmentation metrics with surface DSC (sDSC) for ability to infer absolute time required for automatic contour correction. ¹⁸

¹⁸ Femke Vaassen et al. "Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy". In: Physics and Imaging in Radiation Oncology 13 (2020), 1–6. ISSN: 2405-6316. DOI: 10.1016/j.phro.2019.12.001

References I

- Ford, Eric et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236–e272. DOI: https://doi.org/10.1002/mp.14030.
- Ioffe, Sergey and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].
- Nikolov, Stanislav et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV].
- Roach, Dale et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: *Journal of Medical Imaging and Radiation Oncology* 63.2 (2019), pp. 264–271. DOI: 10.1111/1754-9485.12844.
- Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. *U-Net: Convolutional Networks for Biomedical Image Segmentation*. 2015. arXiv: 1505.04597 [cs.CV].
- Springenberg, Jost Tobias et al. Striving for Simplicity: The All Convolutional Net. 2014. arXiv: 1412.6806 [cs.LG].
- Vaassen, Femke et al. "Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy". In: *Physics and Imaging in Radiation Oncology* 13 (2020), 1–6. ISSN: 2405-6316. DOI: 10.1016/j.phro.2019.12.001.
- Vinod, Shalini K et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: *Journal of Medical Imaging and Radiation Oncology* 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462.
- Wong, Jordan et al. "Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning". In: Radiotherapy and Oncology 144 (2020), 152–158. DOI: 10.1016/j.radonc.2019.10.019.