

Linear programming (LP) – basic concepts

- *LP: A definition*
- Graphical solution procedure for LP
- Binding and redundant constraints
- Special cases: Infeasible and unbounded problems; alternate optima
- Computer solution of LPs
- Application Examples

Mathematical programming (optimization) problem

- A math. programming/optimization problem is defined by
 - 1. decision variables $(x = (x_1, ..., x_m))$
 - 2. objective function $(\min f(x) \text{ or } \max f(x))$
 - 3. constraints (equalities h(x) = c, or inequalities $g(x) \le c$)
- A solution = some values for the decision variables
 - A <u>feasible solution</u> satisfies all the problem's constraints
 - The set of all feasible solution is called the <u>feasible region</u>
 - An <u>optimal solution</u> is a feasible solution that results in the best possible value for the objective function
 - The best value =
 - The lowest in minimization problems
 - The highest in maximization problems

Linear Programming (LP) Problem

- If both the objective function and the constraints are linear, the problem is referred to as a <u>linear programming (LP) problem</u>
- <u>Linear functions</u> are functions in which each (decision) variable appears in a separate term raised to the first power and is multiplied by a constant (which could be zero).
- Linear constraints are linear functions that are restricted to be "less than or equal to" (≤), "equal to" (=), or "greater than or equal to" (≥) a constant
- Question: Why do you think strict inequalities (>, <) are not that relevant for LP, or optimization in general? Consider e.g., the problem

$$\max 2x$$
$$x < 1$$

- Iron Works, Inc. manufactures two grades of steel and receives 19 kilotons of iron ore per day
 - It takes 2 kt of ore to make one kt of grade 1 steel
 - It takes 3 kt of ore to make one kt of grade 2 steel
 - Facilities allow to produce at most 8 kt of steel daily
 - At most 6 kt of grade 1 steel can be produced daily due to labor restrictions
 - Revenue from one kt of steel is 50000 and 70000 euros for grades 1 and 2, respectively.

• Question:

- Provide an interpretation of the decision variables (x_1, x_2) , constraints and objective function.

LP Formulation

Max
$$5x_1 + 7x_2$$

Obj. func.

$$x_1 \leq 6$$

$$2x_1 + 3x_2 \le 19$$

$$x_1 + x_2 \le 8$$

$$x_1, x_2 \ge 0$$

At most 6 tons of grade 1 steel can be produced

- x_1 = tons of grade 1 steel produced
- x_2 = tons of grade 2 steel produced

At most 8 tons of steel can be produced

- x_1 = tons of grade 1 steel produced
- x_2 = tons of grade 2 steel produced

19 tons of iron ore available

- x_1 = tons of grade 1 steel produced
- x_2 = tons of grade 2 steel produced

Combined-Constraint Graph

feasible region (=the set of feasible solutions)

Objective Function Line

- Cf. revenue
 - Grade 1: 50k euros
 - Grade 2: 70k euros

Optimal Solution:

- $x_1 = 5$ tons of grade 1 steel produced
- x₂ = 3 tons of grade2 steel produced

Optimal objective function value:

460000 euros
 Binding constraints at optimum:

$$2x_1 + 3x_2 \le 19$$

$$\mathbf{x}_1 + x_2 \leq 8$$

$$5x_1 + 7x_2 = 35$$

ISM-C1004 Business Analytics 1

LP Formulation

Max
$$5x_1 + 7x_2$$

 $x_1 \le 6$
 $2x_1 + 3x_2 \le 19$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

LP Formulation

Max
$$5x_1 + 7x_2$$

 $x_1 \le 6$
 $2x_1 + 3x_2 \le 19$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

Redundant constraints

 A constraint is **redundant** if removing it does not change the feasible region

 $2x_1 + 3x_2 \le 19$

• Example:

 \rightarrow Constraint $9x_1 + 10x_2 < 90$ is redundant!

Example: A Minimization Problem

LP Formulation

Min
$$z = 5x_1 + 2x_2$$

$$4x_1 - x_2 \ge 12$$
 (1)

$$\chi_1 + \chi_2 \ge 4 \qquad (2)$$

$$x_1 \ge 0$$
 (3)

$$\chi_2 \ge 0$$
 (4)

ISM-C1004 Business Analytics 1

Summary of the Graphical Solution Procedure

- Prepare a graph of the feasible solutions for each of the constraints
- Determine the feasible region
 - The set of those solutions that satisfy all the constraints
- Draw an objective function line
 - Move parallel objective function lines toward improved objective function values without entirely leaving the feasible region
 - Any feasible solution on the objective function line with the largest (smallest) value is an optimal solution
- Another example on the graphical solution procedure can be found at the end of this slide set

Extreme Points and the Optimal Solution

- The corners of the feasible region are referred to as the extreme points.
- At least one of the extreme points is an optimal solution*
- →An alternative (graphical) solution method:
 - Compute the objective function value in each extreme point
 - The extreme point with the highest objective function value is an optimal solution

ISM-C1004 Business Analytics 1 Liesiö

^{*)} as long as the problem has an optimal solution (cf. unbounded and infeasible problems introduced soon)

LP special cases

- Each LP problem falls into one of the three categories:
- 1. The problem has one or more optimal solutions
 - Several alternative optimal solutions exists if all points of a line segment between two extreme points yield the optimal objective function value
- 2. The problem is infeasible
 - An over constrained LP with no point that satisfies all the constraints (i.e., the feasible region is empty)
- 3. The problem is unbounded
 - The objective function value can be improved without a bound in the feasible region

Example: Alternate optimal solutions

Min
$$z = 2x_1 + 2x_2$$

 $x_1 + x_2 \ge 5$
 $3x_1 + x_2 \ge 8$
 $x_1, x_2 \ge 0$

- The objective function line is parallel to a boundary constraint in the direction of optimization
- The points (5,0) and (1.5, 3.5) and all points on the line segment in between are optimal
 - Objective function value is 10

Example: An Infeasible Problem

Max
$$z = 2x_1 + 6x_2$$

 $4x_1 + 3x_2 \le 12$
 $2x_1 + x_2 \ge 8$
 $x_1, x_2 \ge 0$

- There are no points that satisfy all constraints
- Hence, this problem has
 - An empty feasible region
 - No feasible solution
 - No optimal solution

Example: An Unbounded Problem

Max
$$z = 3x_1 + 4x_2$$

 $x_1 + x_2 \ge 5$
 $3x_1 + x_2 \ge 8$
 $x_1, x_2 \ge 0$

 The objective function line can be moved parallel to itself without bound so that z can be increased infinitely

ISM-C1004 Business Analytics 1

The Simplex Algorithm

- Solution Algorithms for LP
 - **Simplex** (G.B. Dantzig, 1947)
 - Interior point methods (Karmarkar, 1984)

- Simplex (of its modification) is implemented in many software
 - Excel Solver
 - lp_solve (open source)
 - CPLEX
 - Gurobi
 - XPress

Excel solver

	Excel Solve	Max	5x ₁ +	$-7x_2$			
04	* : X \ f_x = 5	SUMPRODUCT(B\$	2:C\$2;B4:C4)	<i>x</i> ₁ ≤	6		
4	А	В	С	$2x_1 + 3$ $x_1 + x$	$3x_2 \leq$	19	
1		x1	x2	$x_1 + x$	$C_2 \leq$	8	
2	Decision variable	5	3	$x_1, x_2 \ge$	<u>></u> O		
3			•				
4	Objective f. coefficients	5	7	46			
5							

LP Formulation

6

19

8

<=

<=

<=

19

 Details of building and solving the model can be found at the end of this slide set

Constraint #1

Constraint #2

Constraint #3

10

Open solver

- Excel Solver is not particularly powerful
 - Difficult to solve
 - large problems (i.e., any constrains/ decision variables)
 - integer LP problems (covered later)
 - Mac versions have bugs
- Open solver offers a free alternative for Win and Mac
 - Download: http://opensolver.org/
 - More powerful solution algorithm
 - Better user interface
 - This also has some bugs...

Guidelines for Building Spreadsheet Models

- All data should be visible and labeled
 - Organize and clearly identify the data
 - Use Borders, shading, and/or colors to distinguish cell types (data/parameters, decision variables, formulas, the objective function)
 - Enter each piece of data into one cell only
 - This makes the model much easier to modify later
- Show entire model on the spreadsheet
 - Avoid putting numbers directly in formulas
 - Break out complicated formulas into subtotals
 - All constraints should be on the spreadsheet (not buried in Solver)
- Try to enter the formula just once, and then use Excel's 'fill' capability.
 - This makes the model easer to build and reduces typos

Formulas in Excel that result in a LP model

Problem parameters (data) located in cells D1:D6

Decision variables located in cells C1:C6.

```
SUMPRODUCT(D4:D6, C4:C6)
[(D1 + D2) / D3] * C4
SUM(D4:D6)
2*C1 + 3*C4 + C6
C1 + C2 + C3
```


NOT a LP model

Example: Marketing Research

- Market Survey Inc. has been asked to conduct 1000 interviews to find out how consumers react to a new household product
- The client has also given the following guidelines:
 - Interview at least 400 households with children
 - Interview at least 400 households with no children
 - At least as many interviews in the evening as during the day
 - Conduct at least 40% of the children household interviews in the evening
 - Conduct at least 60% of the no children household interviews in the evening

Household	Interview Cost			
	Day	Evening		
Children	\$20	\$25		
No Children	\$18	\$20		

Example: Marketing Research (Cont'd)

- Interview at least 400 households with children
- Interview at least 400 households with no children
- At least as many interviews in the evening as during the day
- Conduct at least 40% of the children household interviews in the evening
- Conduct at least 60% of the no children household interviews in the evening

Question:

- A summer trainee developed an LP model to optimize the interview plan. Help the management to understand the model:
 - What do the decision variables represent?
 - What does the objective function measure?
 - What requirements do the constraint capture?

$$\min 20x_1 + 25x_2 + 18x_3 + 20x_4$$

$$x_1 + x_2 + x_3 + x_4 = 1000$$

$$x_1 + x_2 \ge 400$$

$$x_3 + x_4 \ge 400$$

$$x_2 + x_4 \ge x_1 + x_3$$

$$x_2 \ge 0.4(x_1 + x_2)$$

$$x_4 \ge 0.6(x_3 + x_4)$$

Example: Marketing Research (Cont'd)

Simplified LP model and its spreadsheet implementation

F7	F7 \Rightarrow : \times $f_{\mathcal{X}}$ =SUMPRODUCT(B7:E7;\$B\$2:\$E\$2)							
4	А	В	С	D	Е	F	G	Н
1	Dec. Vars.	DayC (x1)	EveC (x2)	DayNC (x3)	EveNC (x4)			
2	# of interviews	700	0	0	300			
4	Obj. (Min)							
5	Costs	20	25	18	20	20000		
6	Constraints							
7	Total	1	1	1	1	1000	=	1000
8	Children	1	1	0	0	700	>=	400
9	No children	0	0	1	1	300	>=	400
10	Evening	-1	1	-1	1	-400	>=	0
11	Children in evening	-0.4	0.6	0	0	-280	>=	0
12	No chidren in evening	0	0	-0.6	0.4	120	>=	0
13								
14	Decision variables							
15	Parameters							
16	Formulas							

Example: Marketing Research (Cont'd)

Solver settings and optimal solution

4	А	В	С	D	E	F	G	Н
1	Dec. Vars.	DayC (x1)	EveC (x2)	DayNC (x3)	EveNC (x4)			
2	# of interviews	240	160	240	360			
4	Obj. (Min)							
5	Costs	20	25	18	20	20320		
6	Constraints							
7	Total	1	1	1	1	1000	=	1000
8	Children	1	1	0	0	400	>=	400
9	No children	0	0	1	1	600	>=	400
10	Evening	-1	1	-1	1	40	>=	0
11	Children in evening	-0.4	0.6	0	0	0	>=	0
12	No chidren in evening	0	0	-0.6	0.4	0	>=	0
13								
14	Decision variables							
15	Parameters							
16	Formulas							
17								

Other properties of LP problems

- Optimal solution will not change if
 - A constant is added to the objective function
 - The objective function is multiplied with a positive constant
 - The objective function (i) is multiplied with a negative constant **and** (ii) min (max) is changed to max (min)
- Any problem can be formulated such that it only has one of the constraint types =, ≥ and ≤
- Adding a constraint can never improve the objective function value

min
$$z=-5x_1 - 7x_2$$

 $2x_1 + 3x_2 = 19$
 $x_1 + x_2 \le 8$
 $x_1 + x_2 \le 19$
 $x_1 + x_2 \le 8$
optimal $x_1 + x_2 \le 19$

$$\max \quad w=50x_1 + 70x_2 - 500$$
$$2x_1 + 3x_2 \le 19$$
$$x_1 + x_2 \le 8$$

Slack and Surplus Variables

- A linear program in which all the variables are non-negative and all the constraints are equalities is said to be in <u>standard form</u>
 - Standard form can be obtained by adding <u>slack variables</u> to ≤-constraints, and by subtracting <u>surplus variables</u> from ≥-constraints
 - Slack/surplus variables
 - Represent the difference between the left and right sides of the constraints.
 - Have objective function coefficients equal to zero
 - An LP Formulation

Max
$$z = 5x_1 + 7x_2$$

s.t. $x_1 \le 6$
 $2x_1 + 3x_2 \le 19$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

Formulation in Standard Form

Max
$$z = 5x_1 + 7x_2 + 0s_1 + 0s_2 + 0s_3$$

s.t. $x_1 + s_1 = 6$
 $2x_1 + 3x_2 + s_2 = 19$
 $x_1 + x_2 + s_3 = 8$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Uses of additional decision variables

- Decision variables often have an explicit connection to the real-life decisions, e.g.,
 - x_1 : number of houses with children interviewed during day
 - x_2 : kilotons of steel to produce
- Sometimes the link is implicit, e.g.,
 - Value of decision variable s_1 depends on how much we decide to produce grade 1 steal, i.e., the value of x_1
- Use of such auxiliary decision variables can make it easier to apply LP in more complex problems (cf. example on next slide)

An LP Formulation

Max
$$z = 5x_1 + 7x_2$$

s.t. $x_1 \le 6$
 $2x_1 + 3x_2 \le 19$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$

Formulation in Standard Form

Max
$$z = 5x_1 + 7x_2 + 0s_1 + 0s_2 + 0s_3$$

s.t. $x_1 + s_1 = 6$
 $2x_1 + 3x_2 + s_2 = 19$
 $x_1 + x_2 + s_3 = 8$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Application in production scheduling

- A company produces computers
 - **R**egular production capacity is 160 computers per week
 - Production costs 190€ per computer
 - Additional 50 computers per week can be produced with **o**vertime (260€ / cmp.)
 - Cost of holding a computer in **i**nventory to satisfy future demand is 10€ / cmp.
 - Demand for the upcoming four weeks (105, 170, 230, 180 computers) needs to be satisfied

Question:

- Help the management understand this LP model for production planning:
 - What does decision variable i_2 represent?
 - What is the interpretation of constraint

$$r_2 + o_2 + i_1 - i_2 = 170$$
?

```
\min 190r_1 + 260o_1 + 10i_1
 +190r_2 + 260o_2 + 10i_2
 +190r_3 + 260o_3 + 10i_3
     +190r_4 + 260o_4
     r_1 + o_1 - i_1 = 105
  r_2 + o_2 + i_1 - i_2 = 170
  r_3 + o_3 + i_2 - i_3 = 230
     r_4 + o_4 + i_3 = 180
 0 \le r_i \le 160, j = 1, ..., 4
  0 \le o_i \le 50, j = 1, ..., 4
      i_i \ge 0, j = 1, ..., 3
```

Auxiliary decision variables in production scheduling

Subject to the Constraints:

SNS8:SNS11 = SPS8:SPS11 SNS12:SNS19 <= SPS12:SPS19

Select a Solving

Method:

Make Unconstrained Variables Non-Negative

Simplex LP

ISM-C1004 Business Analytics 1 Liesiö

General matrix formulation of an LP problem

 Since each constraint can be presented with ≤-constraints and the objective function can be multiplied by -1 to change "min" to "max," any LP problem can be written in the form

36

Additional examples

Example 1:

Graphical solution approach

- Constraint (1)
 - Draw line $x_1 + x_2 = 350$
 - If $x_1 = 0$ then $x_2 = 350$
 - If x_2 =0 then x_1 =350
 - Hence the line goes through points (0,350) and (350,0)
 - Which side of the line is feasible?
 - \star (0,0) gives 0 + 0 ≥ 350 → constraint not satisfied
 - \bigstar (350,350) gives 350 + 350 \geq 350 \rightarrow constraint satisfied
 - Thus, points located up and right of the line are feasible

$$\min 2x_1 + 3x_2$$

$$x_1 + x_2 \ge 350 \quad (1)$$

$$2x_1 + x_2 \le 600 \quad (2)$$

$$x_1, x_2 \ge 0$$

- Constraint (2)
 - Draw line $2x_1 + x_2 = 600$
 - If $x_1 = 0$ then $x_2 = 600$
 - If x_2 =0 then x_1 =300
 - Hence the line goes through points (0,600) and (300,0)
 - Which side of the line is feasible?
 - \bigstar (0,0) gives 0 ≤600 \rightarrow constraint satisfied
 - \bigstar (300,600) gives 2 * 300 + 600 ≤ 600 → constraint not satisfied
 - Points down left and right of the line are feasible

$$\min 2x_1 + 3x_2$$

$$x_1 + x_2 \ge 350 \quad (1)$$

$$2x_1 + x_2 \le 600 \quad (2)$$

$$x_1, x_2 \ge 0$$

- Objective function line
 - Evaluate objective function at point (0,600)

$$z = 2 * 0 + 3 * 600 = 1800$$

- Find point (300, x_2) such that z=1800

$$z = 2 * 300 + 3 * x_2 = 1800$$

 $\Rightarrow x_2 = 400$

- Objective function value is 1800 also at point (300,400)
- The contours of a linear function are straight lines

$$\min z = 2x_1 + 3x_2$$

$$x_1 + x_2 \ge 350 \quad (1)$$

$$2x_1 + x_2 \le 600 \quad (2)$$

$$x_1, x_2 \ge 0$$

$$2*(+300) + 3*(-200) = 600 - 600 = 0$$

- Move objective function line
 - Clearly at (0,0) z=0 → better solutions are found by when both decision variable decrease
- Optimum is at the extreme point defined by constraints (1) and (2)
 - Solve (x_1, x_2) such that

$$x_1 + x_2 = 350 \text{ and } 2x_1 + x_2 = 600$$

 $x_2 = 350 - x_1$
 $2x_1 + (350 - x_1) = 600$
 $\Rightarrow x_1 = 250$
 $\Rightarrow x_2 = 350 - 250 = 100$
 $\Rightarrow (x_1, x_2) = (250,100)$

■ Optimal objective function value: z=2*250+3*100=800

$$\min z = 2x_1 + 3x_2$$

$$x_1 + x_2 \ge 350 \quad (1)$$

$$2x_1 + x_2 \le 600 \quad (2)$$

$$x_1, x_2 \ge 0$$

Example 1: Binding vs. Redundant constraints

Constraints (1) and (2) are
 binding since at optimum we have

$$x_1 + x_2 = 350$$
$$2x_1 + x_2 = 600$$

- $x_1 \ge 0, x_2 \ge 0$ are not binding
- A constraint is **redundant** if removing it would not change the feasible region
 - → The constraint $x_2 \ge 0$ is redundant
 - Also the constraint $x_1 + x_2 \ge 100$ would be redundant

$$\min z = 2x_1 + 3x_2$$

$$x_1 + x_2 \ge 350 \quad (1)$$

$$2x_1 + x_2 \le 600 \quad (2)$$

$$x_1, x_2 \ge 0$$

Example 2:

Optimization with Excel Solver

Example 2: Spreadsheet formulation

- 1. Enter the problem data.
- Objective coefficients are in cells B4 and C4.
- Constraint coefficients are in cells B7, C7, B8, C8, B9, C9.
- 2. Specify cell locations for all decision variables.
- Cell B2 is reserved for x1, cell C2 is reserved for x2.
- 3. Select a cell and enter a formula for computing the value of the objective function.
- Cell D4 contains formula for computing value of the obj. function.

	direction.					
	А	В	С	D	Е	F
1		x1	x2			
2	Decision Variables					
3						
4	Objective Coefficients	5	7	=SUMPRODUCT(B\$2:C\$2,B4:C4)	Į	
5						
6						
7	Constraint #1	1	0		<=	6
8	Constraint #2	2	3		<=	19
9	Constraint #3	1	1		<=	8

LP Formulation

Max $z = 5x_1 + 7x_2$ s.t. $x_1 \le 6$

 $2x_1 + 3x_2 \le 19$

 $x_1 + x_2 \le 8$

 $X_1, X_2 \ge 0$

Example 2: Spreadsheet formulation

LP Formulation

$$\text{Max} \quad z = 5x_1 + 7x_2$$

s.t. $x_1 \leq 6$

$$2x_1 + 3x_2 \le 19$$

$$x_1 + x_2 \le 8$$

$$X_1, X_2 \ge 0$$

4. Select a cell and enter a formula for computing the left-hand-side of each constraint.

 Cells D7, D8, D9 contain formulas for computing the LHSs of the constraints.

5. Select a cell and enter the value of the RHS of each constraint

Cells F7, F8, F9 contain the RHS values.

	А	В	С	D	Е	F
1		x1	x2			
2	Decision Variables					
3						
4	Objective Coefficients	5	7	=SUMPRODUCT(B\$2:C\$2,B4:C4)		
5						
6						
7	Constraint #1	1	0	=SUMPRODUCT(B\$2:C\$2,B7:C7)	<=	6
8	Constraint #2	2	3	=SUMPRODUCT(B\$2:C\$2,B8:C8)	<=	19
9	Constraint #3	1	1	=SUMPRODUCT(B\$2:C\$2,B9:C9)	<=	8

Example 2: Installing and opening the solver

Select the Solver option from

Data tab

Aalto University School of Business

- If the solver is not visible you have to install it first:
 - File -> Options -> Add-ins
 - In the Add-ins box, select Solver Add-In and click Go.
 - In the Add-Ins available box, check the Solver Add-in and then OK.

MacOS:

https://support.ivev.ca/hc/en-us/articles/209172446-Solver-and-Data-Analysis-Add-ins-for-Excel-for-Mac-2016

Example 2: Set formula calculation to "Automatic" – otherwise solver will not work!

 Solver needs to know how the changes it makes to the decision variable values affects the values of the objective function and the constraints

• This is not possible if the values of these cells are calculated only in the

case the user manually launches the update

Example 2: Using Excel solver on Mac

\$ × ✓ fx

- Solver is on the 'Data'-tab if it is installed
- To install Solver [A]
 - Tools → Excel Add-ins →
 Solver
- Enable automatic update of call values from `Formulas'-tab [B]
 - Verify that Calculation is set to Automatic in Excel-menu → Preferences → Calculation [C]

Automatic Except for Data Tables

Example 2: Using the Excel Solver

In solver parameters dialog box:

- Enter D4 into the **Set Target Cell** box
- Select the **Max** option
- Enter B2:C2 into the **By Changing**Cells box
- Choose Add

In **Add Constraint** dialog box:

- Enter D7:D9 in the Cell Reference box
- Select <=</p>
- Enter F7:F9 into the Constraint box
- Choose **OK**

Example 2: Using the Excel Solver

In the **solver parameters** dialog box:

- Select Simplex LP as a Solving Method
- Make unconstrained
 Variables Non-negative
- Choose Solve

Example 2: Using the Excel Solver

When the **Solver Results** dialog box appears:

- Select Keep Solver Solution
- Select **Answer** and **Sensitivity** reports
- Choose **OK** to produce the optimal solution output.

Example 2: Solver solution

	А	В	С	D	Е	F	
1		x1	x2				
2	Decision Variables	5	3				
3							
4	Objective Coefficients	5	7	46			
5							
6							
7	Constraint #1	1	0	5	<=	6	
8	Constraint #2	2	3	19	<=	19	
9	Constraint #3	1	1	8	<=	8	-

Example 2: Answer report

Objective Cell (Max)

Cell	Name	Original Value	Final Value	
\$D\$4 O	bjective Coefficients	0	46	

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	Decision Variables x1	0	5	Contin
\$C\$2	Decision Variables x2	0	3	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$D\$7	Constraint #1	5	\$D\$7<=\$F\$7	Not Binding	1
\$D\$8	Constraint #2	19	\$D\$8<=\$F\$8	Binding	0
\$D\$9	Constraint #3	8	\$D\$9<=\$F\$9	Binding	0

Example 2: Sensitivity report

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$2	Decision Variables x1	5	0	5	2	0.333333333
\$C\$2	Decision Variables x2	3	0	7	0.5	2

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$7 (Constraint #1	5	0	6	1E+30	1
\$D\$8 (Constraint #2	19	2	19	5	1
\$D\$9 (Constraint #3	8	1	8	0.333333333	1.666666667

