ปีริกสาก ป 7

ພາກທີ່ IV: ສຽງ ບິດທີ່ 9: ຄືນສຽງ

ອຈ ຄຳສອນ ຄຳສົມພູ

ໂຮງຮຽນ ມປ ສິ່ງໂສກປ່າຫຼວງ

ເບີໂທ: 020 99548699

ອີເມວ: khamsone896@gmail.com

ບິດທີ່ 9: ຄື້ນສຽງ

1. ມະໂນພາບຂອງຄື້ນສຸງງ

ເມື່ອນັ່ງຢູ່ໃກ້ກັບບ່ອນນ້ຳຕົກຕາດ ເຈົ້າໄດ້ຍິນຫຍັງແດ່ ແລະ ຮູ້ສຶກແນວໃດ?

ຮູບ 9.1. ກ) ນ້ຳຕົກຕາດ ຂ) ຍົນກຳລັງບິນ

ຄົນກຳລັງຫຼິ້ນດົນຕີ

ການທົດລອງຂ້າງເທິງນີ້ ໃຫ້ຮູ້ວ່າ ຍ້ອນມີການສັ່ນຈຶ່ງເກີດມີສຸງງດັງ. ສັ່ນຄ່ອຍສຸງງກໍ ຈະດັງຄ່ອຍ ກົງກັນຂ້າມ ຖ້າສັ່ນແຮງສູງກໍຈະດັງແຮງ. ນັ້ນສະແດງວ່າ ຄວາມດັງຂອງ ສຸງງມີການພົວພັນກັບລະດັບຂອງການສັ່ນ. ດັ່ງນັ້ນ, ຈຶ່ງເວົ້າໄດ້ວ່າ **ສຸງງເກີດຈາກການສັ່ນ** ຄື້ນສູງງຈຶ່ງເປັນຄື້ນຊື່. ຂອງວັດຖຸ.

2. ການເຄື່ອນທີ່ຂອງຄື້ນສູງງຜ່ານແວດລ້ອມ

2.1 ຄວາມໄວຂອງສູງໃນອາກາດ

$$v_t = 331 + 0.6t$$
 (9.1)

- v_i ແມ່ນຄວາມໄວຂອງສູງງໃນອາກາດມີຫົວໜ່ວຍເປັນແມັດຕໍ່ວິນາທີ $(\mathrm{m/s})$
- t ແມ່ນອຸນຫະພູມຂອງອາກາດມີຫົວໜ່ວຍເປັນອົງສາແຊນຊີອຸດ ($^{\circ}$ C)

$$v = \frac{S}{t}$$
 ສະນັ້ນ, $v = \frac{\lambda}{T} = \lambda f$ (9.2)

ໃນນີ້ f ແມ່ນຄວາມຖີ່ (Hz); λ ແມ່ນຄວາມຍາວຄື້ນ(m); T ແມ່ນເວລາຮອບວຸງນ (s)

ຄວາມໄວຂອງສູງງໃນແວດລ້ອມຕ່າງໆທີ່ອຸນຫະພູມ $0^{\circ}\mathrm{C}$ ຫາ $25^{\circ}\mathrm{C}$

ແວດລ້ອມ (Medium)	ຄວາມໄວຂອງສູງ (m/s)			
	0°C	25°C		
ອາກາດ	331	346		
_{ອີ} ໂດຣແຊນ	1270	1339		
บ้ ำ	1450	1498		
រ្គើ្ <mark>ឋ</mark> ភា	5100	5200		
ແກ້ວ	5500	4540		

ຕົວຢ່າງ 1: ຈົ່ງຄິດໄລ່ຄວາມໄວຂອງສູງໃນອາກາດທີ່ອຸນຫະພູມ 10° C ແລະ 25° C ແກ້: ນຳໃຊ້ສູດ $v_{t} = 331 + 0,6t$

- ແທນຄ່າ $t = 10^{\circ}$ C, ຈະໄດ້ $v_t = 331 + 0, 6t = 331 + (0, 6 \times 10)$ m/s = 337 m/s
- แทมค่ำ $t = 25^{\circ}$ C , จะได้ $v_t = 331 + 0,6t = 331 + (0,6 \times 25) \,\mathrm{m/s} = 346 \,\mathrm{m/s}$

ຕົວຢ່າງ 2: ຄົນຜູ້ໜຶ່ງຢືນຢູ່ຫ່າງຈາກໜ້າຜາໄລຍະ 300m, ລາວຮ້ອງຂຶ້ນດ້ວຍສູງທີ່ມີ ຄວາມຖີ່ 1000 ຮອບ/s. ຫຼັງຈາກນັ້ນ 4s ລາວໄດ້ຍິນສູງສະທ້ອນກັບຄືນມາ. ຈົ່ງຄິດໄລ່:

- ກ. ຄວາມໄວຂອງສູງງຮ້ອງທີ່ເຄື່ອນທີ່ໃນອາກາດ.
- ຂ. ຄວາມຍາວຄື້ນຂອງສຸງງຮ້ອງ.

ແກ້:

ກ. ຄວາມໄວຂອງສູງຮ້ອງ ນຳໃຊ້ສູດ: $v=\frac{S}{t}$ ເຊິ່ງ S ແມ່ນໄລຍະທາງໄປ ແລະ ກັບຂອງສູງຮ້ອງກົງກັບໄລຍະເວລາ $t=4\mathrm{s}$ ສະນັ້ນ, $v=\frac{300\times2}{4}=150\mathrm{m/s}$

ຂ. ຄວາມຍາວຄື້ນຂອງສູງຮ້ອງ, ນຳໃຊ້ສູດ: $v = \lambda f \Rightarrow \lambda = \frac{v}{f} = \frac{150}{1000} = 0{,}15\mathrm{m}$

2.2 ຄວາມໄວຂອງສູງໃນວັດຖຸແຫຼວ

ສູງງທີ່ເຄື່ອນທີ່ໃນວັດຖຸແຫຼວມີຄວາມໄວຂຶ້ນກັບຄ່າໂມດູນກ້ອນ ຂອງການຫົດຢືດ B ແລະ ຄວາມໜາແໜ້ນ (ho) ຂອງວັດຖຸແຫຼວ.

$$v = \sqrt{\frac{B}{\rho}}$$

$$B = \frac{\Delta P}{\Delta V / V}$$

ຕົວຢ່າງ 3: ທະຫານເຮືອຜູ້ໜຶ່ງເອົາຄ້ອນຕີເຄາະຫົວເຮືອ, ຫຼັງຈາກນັ້ນ 0,5s ລາວໄດ້ຍິນ ສູງສະທ້ອນກັບຈາກພື້ນທະເລ. ຈົ່ງຄິດໄລ່ຄວາມເລິກຂອງນ້ຳທະເລຢູ່ທີ່ຕຳແໜ່ງດັ່ງກ່າວ. ກຳນົດຄ່າໂມດູນກ້ອນຫົດຢຶດຂອງນ້ຳທະເລເທົ່າກັບ 2,1×10°N/m² ແລະ ຄ່າຄວາມໜາ ແໜ້ນຂອງນ້ຳທະເລ 1,025×10³kg/m³.

ແກ້:

• ຄວາມໄວຂອງສູງງໃນນ້ຳທະເລ

ນຳໃຊ້ສູດ
$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{2,1\times10^9}{1,025\times10^3}} = 143 \,\mathrm{lm/s}$$

• ຄວາມເລິກຂອງນ້ຳທະເລ ນຳໃຊ້ສູດໄລຍະທາງທີ່ຄື້ນສູງເຄື່ອນທີ່ໄປໄດ້ S=vtຍ້ອນວ່າ ສູງໃຊ້ເວລາເຄື່ອນໄປ ແລະ ກັບ. ສະນັ້ນ, $2h=vt \Leftrightarrow 2h=1431 \times 0, 5 \Rightarrow h=357,75 \mathrm{m}$

2.3 ຄວາມໄວຂອງສູງໃນວັດຖຸແຂງ

$$v = \sqrt{\frac{Y}{\rho}}$$

ho ແມ່ນຄວາມໜາແໜ້ນຂອງວັດຖຸແຂງ.

$$Y\!=\!rac{F_{_{n}}\,/\,S}{\Delta L\,/\,L}$$
 ແມ່ນ ໂມດູນຢັງຂອງການຫົດຢືດ

2.4 ຄວາມໄວຂອງສູງງໃນກາສ

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

$$v = \sqrt{\frac{\gamma RT}{M}}$$

ຕົວຢ່າງ 4: ຈົ່ງຄິດໄລ່ຄວາມໄວຂອງສູງໃນອາກາດພາຍໃຕ້ເງື່ອນໄຂປົກກະຕິຂອງຄວາມ ດັນ ແລະ ອຸນຫະພູມ.

ແກ້: ໂດຍທົ່ວໄປອາກາດປະກອບດ້ວຍກ້ຳສອົກຊີແຊນ ແລະ ກ້ຳສນີໂຕຣແຊນເປັນສ່ວນ ຫຼາຍ. ໂມເລກູນຂອງທັງກ້ຳສສອງປະກອບດ້ວຍສອງອາໂຕມ. ສະນັ້ນ, $\gamma=1,40$. ຢູ່ພາຍໃຕ້ເງື່ອນໄຂມາດຕະຖານຄວາມດັນຂອງອາກາດ $P=1,01\times10^5$ Pa ແລະ ຄວາມໜາແໜ້ນຂອງມັນແມ່ນ $\rho=1,29\,\mathrm{kg/m}^3$.

ນຳໃຊ້ສູດ
$$v = \sqrt{\frac{\gamma P}{\rho}}$$

ຈະໄດ້ຄວາມໄວຂອງສູງງໃນອາກາດແມ່ນ:

$$v = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\frac{1,40 \times 1,01 \times 10^5}{1,29}} = 331 \text{ m/s}$$

ບົດທີ່ 10: ຄຸນລັກສະນະຂອງຄື້ນສຽງ 1. ການສະທ້ອນຂອງຄືນສຽງ 2.ການຫັກຂອງຄືນສຽງ 3.ການສອດສະຫຼັບຂອງຄືນສຽງ

1. ການສະທ້ອນຂອງຄື້ນສູງງ

ຖ້າເຮົາຕົບມື ຫຼື ຮ້ອງຢູ່ໃນຫ້ອງໂຖ່ງ ເຮົາຈະໄດ້ຍິນສູງສະທ້ອນ ສະແດງວ່າເມື່ອຄື້ນ ສູງເຄື່ອນທີ່ໄປຕຳໃສ່ຝາແລ້ວມີການປ່ຽນແປງເກີດຂຶ້ນກັບຄື້ນສູງນັ້ນ.

ປາກົດການສະທ້ອນຂອງຄື້ນສູງງເກີດຂຶ້ນມີລັກສະນະຄ້າຍຄືກັນກັບຄື້ນຊະນິດອື່ນໆ ເຊັ່ນ: ຄື້ນໜ້ານ້ຳ, ຄື້ນແສງ,... ເຊິ່ງເປັນໄປຕາມກົດເກນ ດັ່ງນີ້:

- ທິດເຄື່ອນທີ່ຂອງຄື້ນສູງງ (ຄື້ນສູງງຕົກກະທົບ) ແລະ ທິດເຄື່ອນທີ່ຂອງຄື້ນສູງງ ສະທ້ອນນອນໃນໜ້າພູງດູງວກັນ.
- 2) ມູມຕົກກະທົບເທົ່າກັບມູມສະທ້ອນ.

2. ການຫັກຂອງຄື້ນສູງງ

ການຫັກຂອງຄົ້ນສູງງ ແມ່ນການປ່ຽນແປງທິດເຄື່ອນທີ່ຢ່າງກະທັນຫັນຂອງຄົ້ນສູງງ ໃນ ເມື່ອສູງເຄື່ອນທີ່ຜ່ານເຂົ້າໄປໃນແວດລ້ອມທີ່ແຕກຕ່າງກັນ ຫຼື ເຄື່ອນທີ່ຜ່ານແວດລ້ອມຊະນິດ ດູງວກັນ ແຕ່ອຸນຫະພູມຕ່າງກັນ ຍ້ອນສາເຫດຄວາມໄວຂອງສູງງໃນສອງແວດລ້ອມດັ່ງກ່າວ ນັ້ນແຕກຕ່າງກັນ (ບໍ່ເທົ່າກັນ).

3. ການສອດສະຫຼັບຂອງຄື້ນສູງງ

ສຸງງມີລັກສະນະສອດສະຫຼັບ.

4. ການລັງວວີນຂອງຄື້ນສູງງ

ສູງມີລັກສະນະລັງວວີນ (Diffraction Of Sounds).

5. ຄື້ນຈັ້ງຂອງສູງງ

ຄື້ນຈັ້ງ (Standing Waves) ແມ່ນປາກົດການໜຶ່ງຂອງການສອດສະຫຼັບຂອງຄື້ນສູງງ ຕົກກະທົບ (ສູງຈາກແຫຼ່ງກຳເນີດສູງງ) ກັບຄື້ນສູງງສະທ້ອນມາຈາກແວດລ້ອມ ຫຼື ສິ່ງ ກີດຂວາງ ແລ້ວເຮັດໃຫ້ເກີດມີບ່ອນສູງດັງແຮງ (ປະຕິຂອດ Anti-Node) ແລະ ບ່ອນສູງງ

ດັງຄ່ອຍ (ຂອດ Node) ສະຫຼັບກັນ. ໄລຍະຫ່າງລະຫວ່າງທ້ອງຄື້ນທີ່ຢູ່ຕິດກັນເທົ່າກັບໄລຍະ ຫ່າງລະຫວ່າງຂອດຄື້ນທີ່ຢູ່ຕິດກັນເທົ່າກັບ $\frac{\lambda}{2}$. ໄລຍະຫ່າງລະຫວ່າງທ້ອງຄື້ນຫາຂອດຄື້ນ ເທົ່າກັບ $\frac{\lambda}{4}$. ຄວາມຍາວຂອງຄື້ນຈັ້ງ 2 ລູກ (2 Loop) ທີ່ຢູ່ຕິດກັນເທົ່າກັບ λ .

- 1. ບິດຂອງສຽງ
- 2.ລະດັບສຽງ ແລະ ຄວາມເຂັ້ມຂອງສຽງ
- 3. ຄຸນນະພາບສຽງ ແລະ ມົນພາວະຂອງສຽງ
- 4. ຫຼໍ ແລະ ການໄດ້ຍິນ
- 5. ປາກິດການລິບເປີ
- 6.ປະໂຫຍດຂອງສຽງ

1. ບີດຂອງສູງງ

ບົດທີ່ 11: ປາກິດການຂອງສຽງ

ດັ່ງນັ້ນ, ບີດຂອງສູງເກີດຈາກການຊ້ອນທັບຂອງຄື້ນສູງຈາກແຫຼ່ງກຳເນີດສູງສອງແຫຼ່ງທີ່ ມີຄວາມຖີ່ບໍ່ເທົ່າກັນ ສະແດງດັ່ງຮູບ 11.2.

$$\Delta f = |f_2 - f_1|$$

ຄື້ນສູງງຈາກແຫຼ່ງກຳເນີດສູງສອງແຫຼ່ງທີ່ມີຄວາມຖີ່ f_1 ແລະ f_2 ເຊິ່ງຕ່າງກັນບໍ່ ເກີນ 7 Hz ເມື່ອມາຊ້ອນທັບກັນຈະເຮັດໃຫ້ເກີດບີດທີ່ມີສູງງດັງແຮງ ແລະ ຄ່ອຍສະຫຼັບ ກັນເປັນຈັງຫວະຄົງທີ່. ຄວາມຖີ່ບີດ (Δf) ຈະເທົ່າກັບຈຳນວນຄັ້ງຂອງສູງງທີ່ໄດ້ຍິນໃນ

- 2. ລະດັບສູງ ແລະ ຄວາມເຂັ້ມຂອງສູງ
 - 2.1 ລະດັບສູງງ (Pitch)

ຕາຕະລາງ 1: ການແບ່ງລະດັບສູງດົນຕີໃນວິທະຍາສາດ

ລະດັບສູງງດິນຕີ	C(ໂດ)	D (ទេ)	E(IJ)	F(ฟา)	G (ຊອນ)	A (ລາ)	B(දි)	C (ໂດ)
ຄວາມຖີ່ (Hz)	256	288	320	341	384	427	480	512

ຕາຕະລາງ 2: ແບ່ງລະດັບສູງງດົນຕີໃນທາງດົນຕີ

ລະດັບສູງດົນຕີ	(ດໃ) ງ	D(s)	E(ມີ)	F(ฟา)				* F
ຄວາມຖີ່ (Hz)	261,6	293,7	329,6	349,2	392,0	440,0	493,9	523,3

2.2 ຄວາມເຂັ້ມຂອງສູງງ

1) ຄວາມເຂັ້ມສູງງ (Sound Intensity)

ເມື່ອແຫຼ່ງກຳເນີດສູງສັ່ນໄກວ ພະລັງງານຈາກການສັ່ນໄດ້ຖືກຖ່າຍໂອນຜ່ານໂມເລ ກູນຂອງອາກາດຕໍ່ໆກັນໄປຈົນເຖິງຫູຜູ້ຟັງ ເຮັດໃຫ້ຜູ້ຟັງໄດ້ຍິນສູງງ ແລະ ສູງທີ່ໄດ້ຍິນນັ້ນ ຈະດັງແຮງ ຫຼື ຄ່ອຍ ຂຶ້ນກັບພະລັງງານຂອງສູງທີ່ຜູ້ຟັງໄດ້ຮັບ.

$$I = \frac{W}{At} = \frac{P}{A} = \frac{P}{4\pi R^2}$$

ຢູ່ທີ່ຕັ້ງຫ່າງໄກຈາກແຫຼ່ງກຳເນີດສູງຫຼາຍເທົ່າໃດ ຄວາມເຂັ້ມຂອງສູງຍິ່ງຫຼຸດລົງ. ຈາກການທົດລອງ ເພິ່ນພົບວ່າ ສຳລັບຫູຄົນປົກກະຕິສາມາດໄດ້ຍິນມີຄວາມເຂັ້ມຕໍ່າ ສຸດ 10⁻¹² W/m² ແລະ ຄວາມເຂັ້ມສູງສຸດ 1W/m² ເທົ່ານັ້ນ.

2) ລະດັບຄວາມເຂັ້ມສູງງ

ແມ່ນ 0dB ແລະ ສູງສຸດແມ່ນ 120dB.

ຄວາມສຳພັນລະຫວ່າງຄວາມເຂັ້ມສູງງI ກັບລະດັບຄວາມເຂັ້ມສູງງeta ມີຄືດັ່ງລຸ່ມນີ້:

$$\beta = 10\log\left(\frac{I}{I_0}\right) \tag{11.4}$$

ໃນນີ້ I_0 ແມ່ນຄວາມເຂັ້ມສູງງທີ່ຄົນສາມາດໄດ້ຍິນ $10^{-12}\,\mathrm{W/m^2}$; I ແມ່ນຄວາມ ເຂັ້ມສູງງໃດໜຶ່ງທີ່ຕ້ອງການແທກມີຫົວໜ່ວຍເປັນວັດຕໍ່ຕາແມັດ ($\mathrm{W/m^2}$); β ແມ່ນລະດັບ

ຕາຕະລາງ 3: ສະແດງລະດັບຄວາມເຂັ້ມສູງຈາກແຫຼ່ງກຳເນີດສູງຕ່າງໆ

ແຫຼ່ງກຳເນີດສູງງ	ລະດັບຄວາມເຂັ້ມສູງງ(dB)	ຜົນການຮັບຟັງ		
ການຫາຍໃຈປົກກະຕິ	10	ເກືອບຈະບໍ່ໄດ້ຍິນ		
ການຊິ່ມຄ່ອຍໆ	30	ມິດຫຼາຍ		
ໃນສະຖານທີ່ເຮັດວງກທີ່ງໆບ	50	ມິດ		
ການເວົ້າລົມກັນທຳມະດາ	60	ປານກາງ		
ເຄື່ອງດູດຝຸ່ນ	75	ດັງ		
ໂຮງງານທົ່ວໄປ/ທາງທີ່ມີການສັນຈອນໜາແໜ້ນ	80	ດັງ		
ເຄື່ອງສູງສະເຕຣີໂອໃນຫ້ອງ/ເຄື່ອງເຈາະທາງແບບອັດລົມ	90	ຖ້າໜັງເລື້ອຍໆ ການໄດ້ຍິນ		
ເຄື່ອງຈັກຕັດຫຍ້າ	100	ຈະເຊື່ອມຢ່າງຖາວອນ		
ດິສ ໂກເທັກ/ການສະແດງດົນຕີປະເພດເພງຣ໋ອກ	120	ເຮັດໃຫ້ເຄື່ອງຫູ		
ຟ້າຕ່າໃນໄລຍະໃກ້	130			
ເຮືອບິນອາຍພົ່ນທີ່ກຳລັງບິນໃນໄລຍະໃກ້	150	ເຈັບປວດໃນຫູ		
ຈະລວດຂະໜາດໃຫຍ່ກຳລັງຂຶ້ນໃນໄລຍະໃກ້	180	ເຈ້ຍຫູແຕກທັນທີ		

ຕາຕະລາງ 4: ຄວາມເຂັ້ມ ແລະ ລະດັບຄວາມເຂັ້ມຂອງສູງຈຳນວນໜຶ່ງ

ຊະນິດຂອງສູງງ	ຄວາມເຂັ້ມສູງໆ(W/m²)	ລະດັບຄວາມເຂັ້ມສູງງ(dB)
ສູງຮ້ອງຕອນເຈັບປວດ	1	120
ສູງຕອກເສົາເຂັມ	10-2	100
ສູງງຈໍລະຈອນ(ໃນຫົນທາງທີ່ມີລົດ)	10 ⁻⁵	70
ສູງໂອ້ລົມທຳມະດາ	10 ⁻⁶	60
ສູງງຊິມຊຸບຊິບ	10^{-10}	20
ສູງໃບໄມ້ຕີງ	10-11	10

3. ຄຸນນະພາບສູງ ແລະ ມົນພາວະສູງ

3.1 ຄຸນນະພາບຂອງສູງງ

ຄວາມຖີ່ຕໍ່າສຸດຂອງສູງທີ່ອອກຈາກແຫຼ່ງກຳເນີດໃດໜຶ່ງ ເພິ່ນເອີ້ນວ່າ: ຄວາມຖີ່ມູນ ຖານຂອງແຫຼ່ງກຳເນີດນັ້ນ. ສຳລັບຄວາມຖີ່ອື່ນໆທີ່ເກີດຂຶ້ນພ້ອມກັບຄວາມຖີ່ມູນຖານ ແຕ່ມີ ຄວາມຖີ່ເທົ່າກັບຈຳນວນຖ້ວນເທື່ອຄວາມຖີ່ມູນຖານ ເອີ້ນວ່າ: ຮາໂມນິກ (Harmonic) ຂອງຄວາມຖີ່ມູນຖານ ເຊັ່ນ: ຄວາມຖີ່ຂອງສູງສູງມີຄ່າເທົ່າກັບ 2 ເທື່ອ ຂອງຄວາມຖີ່ມູນ ຖານ ເອີ້ນວ່າ: ຮາໂມນິກ 2, ຄວາມຖີ່ຂອງສູງສູງມີຄ່າເທົ່າກັບ 3 ເທື່ອ ຂອງຄວາມຖີ່ມູນ ຖານ ເອີ້ນວ່າ: ຮາໂມນິກ 3.

3.2 ມົນພາວະຂອງສຸງງ

ເມື່ອໄດ້ຍິນສູງງຂຸດເຈາະຖະໜົນ, ສູງເຮືອບິນ, ສູງດົນຕີໃນງານບຸນ,... ເຮົາຮູ້ສຶກ ແນວໃດ?

ຕາຕະລາງ 5 ກຳນົດຄວາມປອດໄພກູ່ງວກັບສູງງຂອງບາງປະເທດ

ເວລາເຮັດວງກຊົ່ວໂມງຕໍ່ມື້	ລະດັບຄວາມເຂັ້ມສຽງທີ່ຄົນເຮັດ
(h/day)	ວງກໄດ້ຮັບຢ່າງຕໍ່ເນື່ອງຕ້ອງບໍ່ເກີນ
	ເດຊີແບລ (dB)
ໜ້ອຍກວ່າ 7 ຊົ່ວໂມງ/ມື້	91
7-8 ຊົ່ວໂມງ/ມື້	90
ຫຼາຍກວ່າ 8 ຊົ່ວໂມງ/ມື້	80

ບາງປະເທດໄດ້ກຳນົດມາດຖານຄວາມປອດໄພ ໃນ ການເຮັດວງກຢູ່ບໍລິເວນທີ່ມີສຽງດັງ, ສຽງທີ່ມີລະດັບ ຄວາມເຂັ້ມສູງ ແລະ ສຽງທີ່ສ້າງຄວາມລຳຄານໃຫ້ແກ່ຜູ້ ຟັງ ເອີ້ນວ່າ ມີນພາວະຂອງສຽງ.

4. ຫຼູ ແລະ ການໄດ້ຍິນ

ຫູ (Ear) ເປັນປະສາດສຳຕັດ ເຊິ່ງ ເຮັດໜ້າທີ່ຮັບຄວາມຮູ້ສຶກໃນລັກສະນະຂອງ ການໄດ້ຍິນສູງງ (Hearing). ຫູປະກອບ ດ້ວຍ 3 ພາກສ່ວນຄື: ຫູສ່ວນນອກ (Outer Ear), ຫູສ່ວນກາງ (Middle Ear) ແລະ ຫູ ສ່ວນໃນ (Inner Ear) ດັ່ງຮູບ 11.5.

ຮູບ 11.5 ໂຄງປະກອບຂອງຫູ

5. ປາກົດການດົບເປຼີ (Doppler Effect)

ສະນັ້ນ, ຄວາມຍາວຄື້ນຂອງສູງງໃນອາກາດຢູ່ທາງໜ້າຂອງແຫຼ່ງກຳເນີດສູງງແມ່ນ

$$\lambda_1 = \frac{\left(v - v_s\right)t}{f_0 t} = \frac{\left(v - v_s\right)}{f_0} \tag{11.6}$$

ຄວາມຍາວຄື້ນຂອງສູງງໃນອາກາດຢູ່ທາງຫຼັງຂອງແຫຼ່ງກຳເນີດສູງແມ່ນ:

$$\lambda_2 = \frac{\left(v + v_s\right)}{f_0} \tag{11.7}$$

ຜູ້ຟັງທີ່ຢູ່ດ້ານໜ້າ (ດ້ານທີ່ແຫຼ່ງກຳເນີດເຄື່ອນທີ່ເຂົ້າຫາ) ໄດ້ຍິນສູງທີ່ມີຄວາມຖີ່:

$$f_1 = \frac{v}{\lambda} = \frac{v}{(v - v_s)} \times f_0 \tag{11.8}$$

ຜູ້ຟັງທີ່ຢູ່ດ້ານຫຼັງ (ດ້ານທີ່ແຫຼ່ງກຳເນີດເຄື່ອນທີ່ອອກຫ່າງ) ໄດ້ຍິນສູງງທີ່ມີຄວາມຖີ່:

$$f_2 = \frac{v}{\lambda_2} = \frac{v}{(v + v_s)} \times f_0 \tag{11.9}$$

ຜູ້ຟັງຢູ່ດ້ານໜ້າໄດ້ຍິນສູງງທີ່ມີຄວາມຖີ່ສູງຂຶ້ນ ຖ້າຢູ່ດ້ານຫຼັງໄດ້ຍິນສູງທີ່ມີຄວາມຖີ່ຕ່ຳລົງ.

<u>ິບ</u>ດທີ່ 11: ປາກິດການຂອງສຽງ

- 6. ປະໂຫຍດຂອງສຸງງ
 - 6.1 ถ้ามสะทาปักตะยะทำ
- 6.2 ດ້ານການປະມົງ
- 6.3 ດ້ານການແພດ
 - 6.4 ດ້ານທໍລະນີວິທະຍາ
 - 6.5 ດ້ານວິສະວະກຳ ແລະ ອຸດສາຫະກຳ

ຕົວຢ່າງ 1: ໃນການສຳຫຼວດຄວາມເລິກຂອງທະເລແຫຼ່ງໜຶ່ງ ຜູ້ສຳຫຼວດຈັບເວລາທີ່ສູງງ ເຄື່ອນທີ່ອອກ ແລະ ສະທ້ອນກັບມາເຖິງເຄື່ອງຮັບໄດ້ 1,2s. ຖາມວ່າທະເລຢູ່ບໍລິເວນນັ້ນ ເລິກເທົ່າໃດ? ໃຫ້ຄວາມໄວຂອງສູງງໃນນ້ຳທະເລ 1,531m/s.

ແກ້:

- ໄລຍະເວລາທີ່ຄື້ນສູງງເຄື່ອນໄປເຖິງພື້ນທະເລ t=1,2s.
- ໄລຍະເວລາທີ່ຄື້ນສູງເຄື່ອນໄປເຖິງພື້ນທະເລ $t'=\frac{t}{2}=\frac{1,2s}{2}=0,6s$ ຈາກສູດ $S=vt\Rightarrow S=1,53\,\mathrm{lm/s}\times0,6s=918,6m$ ຕອບ: ທະເລຢູ່ບໍລິເວນນັ້ນເລິກ 918,6m

ຕົວຢ່າງ 2: ເຄື່ອງໂຊນາສົ່ງຄື້ນສູງຄວາມຖີ່ 5kHz. ຈົ່ງຄິດໄລ່ຂະໜາດຂອງວັດຖຸຢູ່ ໃຕ້ນ້ຳທີ່ບໍ່ສາມາດສະທ້ອນຄື້ນສູງນີ້ໄດ້. ໃຫ້ຄວາມໄວຂອງສູງງໃນນ້ຳທະເລ 1,531m/s. ແກ້:

ຈາກສູດ
$$\lambda = \frac{v}{f} \Rightarrow \lambda = \frac{1,53 \, \text{lm/s}}{5 \times 10^3 \, \text{Hz}} = 306,1 \times 10^{-6} \, \text{m}$$

ວັດຖຸຢູ່ໃຕ້ນ້ຳທີ່ບໍ່ສາມາດສະທ້ອນສູງຈາກເຄື່ອງໂຊນາໄດ້ແມ່ນ 306,1×10 m