Électrocinétique – chapitre 3 Circuits du 1^{er} ordre

Son	nmaire
I Circuit RC	
I/A Circuit RC série : charge	
I/B Circuit RC série : décharge	
I/C Méthode pour les circuits à plusieurs mailles $\dots \dots \dots$	
II Bobine et circuit RL	
II/A Circuit RL série : échelon montant	
II/B Circuit RL série : décharge	
Capacités exigibles	
Distinguer, sur un relevé expérimental, régime transitoire et régime permanent au cours de l'évolution d'un système du premier ordre soumis à un échelon de tension.	Établir l'équation différentielle du premier ordre vérifiée par une grandeur électrique dans un circuit comportant une ou deux mailles.
☐ Interpréter et utiliser la continuité de la tension aux bornes d'un condensateur ou de l'intensité du courant traversant une bobine.	 Déterminer la réponse temporelle dans le cas d'un régime libre ou d'un échelon de tension Déterminer un ordre de grandeur de la du-
Réaliser un bilan énergétique.	rée du régime transitoire.

On appelle **circuit linéaire du premier ordre** un circuit électrique dont l'évolution des grandeurs électriques est régie par des équations différentielles linéaires à coefficients constants et *du premier ordre*. On étudie ici leur réponse à un échelon de tension.

${ m I} \mid { m Circuit} \; { m RC}$

I/A Circuit RC série : charge

Définition E3.1 : Échelon de tension

Un échelon de tension est montant s'il est de la forme

$$\begin{cases} u(t < 0) = 0 \\ u(t \ge 0) = E \end{cases}$$

et descendant si E avant et 0 après.

FIGURE 3.1

I/A) 1 Présentation

Définition E3.2 : Circuit RC en charge

- ♦ Il est constitué d'un générateur idéal de tension en série avec une résistance et un condensateur idéal.
- ♦ On suppose le condensateur initialement déchargé.
- \diamond À t=0, on ferme l'interrupteur.

 $\overline{\mathrm{I/A)}\,2}$ Équation différentielle du circuit

Démonstration E3.1 : Équation différentielle RC échelon montant

Avec la loi des mailles,

$$u_R + u_C = E$$

$$\Leftrightarrow RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = E$$

$$\Leftrightarrow \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{RC}u_C = \frac{E}{RC}$$

$$u_R = Ri$$

$$\text{et } i = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$$

♥ Propriété E3.1 : Équation différentielle RC échelon montant

L'équation différentielle de la tension $u_C(t)$ aux bornes d'un condensateur dans un circuit RC avec un échelon de tension montant E s'écrit

$$\frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{\tau}u_C = \frac{E}{\tau} \quad \text{avec} \quad \boxed{\tau = RC}$$

C'est une équation différentielle linéaire du premier ordre à coefficients et second membre constants, de condition initiale

$$u_C(0^-) = u_C(0^+) = 0$$

Application E3.1 : Dimension de RC

Montrer, par analyse dimensionnelle, que \overline{RC} est homogène à un temps.

Méthode 1

On a $[RC] = \Omega \cdot F$. Or,

$$[q] = [Cu] \Leftrightarrow C = F \cdot V$$
$$\Leftrightarrow F = C \cdot V^{-1}$$
$$\Leftrightarrow F = A \cdot s \cdot V^{-1}$$

de plus,
$$[u] = [Ri] \Leftrightarrow V = \Omega \cdot A$$

 $\Leftrightarrow \Omega = V \cdot A^{-1}$

Ainsi, $[RC] = \Omega \cdot \mathbf{F}$ $\Leftrightarrow [RC] = \mathbf{V} \cdot \mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{s} \cdot \mathbf{V}^{-1}$ $\Leftrightarrow [RC] = \mathbf{s}$

Méthode 2

Une équation physique étant homogène, comme

$$\frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{u_C}{RC} = \frac{E}{RC}$$

alors

$$\begin{bmatrix} \frac{\mathrm{d}u_C}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} \frac{u_C}{RC} \end{bmatrix}$$

$$\Leftrightarrow \frac{[u_C]}{[t]} = \frac{[u_C]}{[RC]}$$

$$\Leftrightarrow [RC] = [t]$$

I/A)3

Résolution de l'équation différentielle

♥ Important E3.1 : Résolution équation différentielle coefficients constants

Pour résoudre une équation différentielle linéaire à coefficients constants et second membre constant, de la forme $\frac{dy}{dt} + \frac{1}{\tau}y = k$:

- 1 On écrit l'**équation homogène** associée à l'équation différentielle obtenue.
- 2 On écrit la forme générale de la solution de l'équation homogène.
- 3 On recherche une solution particulière constante de l'équation générale, de la forme $y_p(t) = \lambda$.
- 4 On écrit la solution générale, somme de la solution particulière et de la forme générale.
- 5 On détermine la constante à l'aide des conditions initiales.

♥ Démonstration E3.2 : Tension RC série montant

1 L'équation homogène est :

$$\frac{\mathrm{d}u_{C,h}}{\mathrm{d}t} + \frac{1}{\tau}u_{C,h} = 0$$

2 La forme générale de la solution pour cette équation est :

$$u_{C,h}(t) = K \exp\left(-\frac{t}{\tau}\right)$$

3 Une solution particulière avec $u_{C,p}(t) = \lambda$ donne

$$0 + \frac{\lambda}{\tau} = \frac{E}{\tau}$$

Donc $u_{C,p}(t) = E$ est une solution de l'équation différentielle.

4 La solution générale est donc

$$u_C(t) = E + K \exp\left(-\frac{t}{\tau}\right)$$

5 Les conditions initiales donnent ici

$$u_C(t=0) = 0$$
 et $u_C(0) = K + E \Rightarrow K = -E$

Propriété E3.2 : Tension RC montant

La solution de l'équation différentielle de la tension $u_C(t)$ d'un circuit RC soumis à un échelon de tension E avec $u_C(0) = 0$ est

$$u_C(t) = E\left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$$

et $u_C(t)$ est continue.

I/A) 4 Constante de temps, régime transitoire

Quand $t \to +\infty$, $u_C(t) = E$. On est alors en **régime permanent** : $u_C(t)$ ne varie plus. La vitesse à laquelle ce régime est atteint dépend de la valeur de τ la constante de temps.

\P Implication E3.1 : Détermination τ RC montant

1) $u_C(\tau) = E(1 - e^{-1}) \approx 0.632 \times E$

Donc on trouve τ en lisant l'abscisse telle que $u_C(\tau) = 0.632 \times E.$

2) En t=0, l'équation différentielle donne

$$\frac{\mathrm{d}u_C}{\mathrm{d}t}(0) + \frac{u_C(0)}{\frac{\tau}{=0}} = \frac{E}{\tau}$$

$$\Leftrightarrow y_0'(t) = \frac{E}{\tau} \Rightarrow y_0(t) = E\frac{t}{\tau}$$

La tangente à la courbe en 0 coupe donc l'asymptote en $\boxed{t= au}$.

FIGURE 3.4

♥ Définition E3.3 : Temps de réponse

Le **temps** de **réponse** d'un circuit d'ordre 1 est le temps à partir duquel on peut considérer la consigne de tension ou de courant atteinte, c'est-à-dire qu'on est en **régime permanent**.

Pour cela, on se fixe un **seuil arbitraire** à partir duquel on considère le régime permanent atteint.

Démonstration E3.3 : Temps de réponse RC montant

Dans ce cours, on prendra 99%. On cherche donc t_{99} tel que $u(t_{99}) = 0.99E$:

Propriété E3.3 : Temps de réponse RC montant

Ainsi,

le temps de réponse à 99% est à $4,6\tau$

I/A)5Évolution de l'intensité

Qu'advient-il de l'intensité dans un circuit RC? On peut le déterminer de deux manières :

💙 Démonstration E3.4 : Intensité RC montant

Caractéristique de C

$$i(t) = C \frac{\mathrm{d}u_C}{\mathrm{d}t} \quad \text{avec} \quad u_C(t) = E(1 - \mathrm{e}^{-t/\tau})$$

$$\Rightarrow i(t) = CE \left(0 - \left(-\frac{1}{\tau}\right) \exp\left(-\frac{t}{\tau}\right)\right)$$

$$\Rightarrow i(t) = \frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

Loi des mailles

$$Ri = E - u_C \quad \text{avec} \quad u_C(t) = E(1 - e^{-t/\tau})$$

$$\Leftrightarrow Ri(t) = E - E + E \exp\left(-\frac{t}{\tau}\right)$$

$$\Leftrightarrow i(t) = \frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

Propriété E3.4 : Intensité RC montant

L'intensité dans un circuit RC en charge s'exprime par

$$i(t) = \frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

et est discontinue.

I. Circuit RC 7

I/A)6 Bilan de puissance

En électrocinétique, les puissances sont le produit d'une tension et d'une intensité. Or, par construction la loi des mailles est une relation entre les tensions du circuit; ainsi

♥ Important E3.2 : Bilan de puissance en élec.

On effectue un bilan de puissance en écrivant la loi des mailles multipliée par i.

♥ Démonstration E3.5 : Bilan de puissances RC montant

$$u_{C} + Ri = E$$

$$\Leftrightarrow u_{C} i + Ri^{2} = Ei$$

$$\Leftrightarrow u_{C} C \frac{du_{C}}{dt} + Ri^{2} = Ei$$

$$\Leftrightarrow \frac{d}{dt} \left(\frac{1}{2}Cu_{C}^{2}\right) + Ri^{2} = Ei$$

$$P_{J} \qquad P_{G}$$
RCT pour C: $i = C \frac{du_{C}}{dt}$

$$f \times f' = \left(\frac{1}{2}f^{2}\right)'$$

Propriété E3.5 : Bilan de puissances RC montant

Dans un circuit RC en charge, on a le bilan de puissances

$$\mathcal{P}_G = \mathcal{P}_C + \mathcal{P}_J$$

 $\mathcal{P}_G = Ei$: la puissance fournie par le générateur;

 $\mathcal{P}_C = \frac{\mathrm{d}\mathcal{E}_C}{\mathrm{d}t}$: la puissance reçue par le condensateur;

 $\mathcal{P}_J = Ri^2$: la puissance dissipée par effet Joule dans la résistance.

[I/A)7 Bilan d'énergie

On peut étudier énergétiquement cette évolution en intégrant la puissance délivrée sur le temps d'utilisation.

♥ Démonstration E3.6 : Bilan d'énergie RC montant

L'énergie fournie par le générateur sur toute la charge est

$$\mathcal{E}_{G} = \int_{0}^{+\infty} \mathcal{P}_{G} dt$$

$$= \int_{0}^{+\infty} Ei(t) dt$$

$$= \frac{E^{2}}{R} \left[-\tau \exp\left(-\frac{t}{\tau}\right) \right]_{0}^{+\infty} \qquad i(t) = E/Re^{-t/\tau}$$

$$= \frac{E^{2}}{R} \left(-\tau \exp\left(-\frac{\infty}{\tau}\right) - \left(-\tau \exp(0)\right) \right)$$

$$\Leftrightarrow \mathcal{E}_{G} = \tau \frac{E^{2}}{R}$$

$$\Leftrightarrow \mathcal{E}_{G} = CE^{2}$$

$$\downarrow \tau = RC$$

Or, l'énergie stockée dans le condensateur (Pt.E2.13) est

$$\mathcal{E}_C = \frac{1}{2}CE^2$$
 donc $\mathcal{E}_J = \frac{1}{2}CE^2$

🎔 Propriété E3.6 : Bilan d'énergie RC montant

Pendant la totalité de la charge, l'énergie du générateur est

$$\mathcal{E}_G = CE^2$$

Elle se répartit équitablement entre le condensateur et la résistance :

$$\mathcal{E}_C = \frac{1}{2}CE^2 = \mathcal{E}_J$$

I/B Circuit RC série : décharge

I/B) 1 Présentation

♥ Définition E3.4 : Circuit RC en décharge

- ♦ Il est constitué d'un générateur idéal de tension en série avec une résistance et un condensateur idéal.
- \diamond On suppose le condensateur initialement chargé : $u_C(0^-) = E.$
- \diamondsuit À t=0, on coupe le générateur.

On dit que le système est **en régime libre** et soumis à un **échelon de tension descendant**.

I/B) 2 Équation différentielle du circuit

Propriété E3.7 : Équation différentielle RC échelon descendant

L'équation différentielle de la tension $u_C(t)$ aux bornes d'un condensateur dans un circuit RC en décharge

$$\left| \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{\tau}u_C = 0 \right| \quad \text{avec} \quad \boxed{\tau = RC}$$

C'est une équation différentielle linéaire du premier ordre à coefficients constants sans second membre, de condition initiale

$$u_C(0^-) = u_C(0^+) = E$$

igoplus Démonstration E3.7 : Équation différentielle RC échelon decendant

Avec la loi des mailles,

$$u_R + u_C = 0$$

$$\Leftrightarrow RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0$$

$$\Leftrightarrow \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{RC}u_C = 0$$

$$u_R = Ri$$

$$et i = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$$

I/B) 3 Résolution de l'équation différentielle

♥ Propriété E3.8 : Tension RC descendant

La solution de l'équation différentielle de la tension $u_C(t)$ d'un circuit RC en décharge avec $u_C(0) = E$ est **continue**, et :

$$u_C(t) = E \exp\left(-\frac{t}{\tau}\right)$$

♥ Démonstration E3.8 : Tension RC descendant

L'équation étant déjà homogène, on écrit la forme générale :

$$u_C(t) = K \exp\left(-\frac{t}{\tau}\right)$$

et on trouve K avec la condition initiale :

$$u_C(0) = E$$
 et $u_C(0) = K \Rightarrow K = E$

I/B) 4 Représentation graphique, constante de temps et transitoire

Implication E3.2 : Détermination τ RC descendant

1) $u_C(\tau) = Ee^{-1} \approx 0.368 \times E$

Donc on trouve τ en lisant l'abscisse telle que $u_C(\tau) = 0.368 \times E$.

2) En t=0, l'équation différentielle donne

$$\frac{\mathrm{d}u_C}{\mathrm{d}t}(0) + \frac{u_C(0)}{RC} = 0$$

$$\Leftrightarrow y_0'(t) = -\frac{E}{\tau} \Rightarrow y_0(t) = -E\frac{t}{\tau}$$

La tangente à la courbe en 0 coupe donc l'asymptote en $t=\tau.$

FIGURE 3.7

V Démonstration E3.9 : Temps de réponse RC descendant

Comme précédemment, avec t_{99} tel que $u_C(t_{99})=0.01E$:

$$u_C(t_{99}) = 0.01E$$

$$\Leftrightarrow E \exp\left(-\frac{t_{99}}{\tau}\right) = 0.01E$$

$$\Leftrightarrow \exp\left(-\frac{t_{99}}{\tau}\right) = 0.01$$

$$\Leftrightarrow -\frac{t_{99}}{\tau} = \ln(0.01) = -\ln(100)$$

$$\Leftrightarrow t_{99} = \tau \ln(100)$$
on isole t_{99}

Propriété E3.9 : Temps de réponse RC descendant

Ainsi,

le temps de réponse à 99% est à 4.6τ

I/B)5Évolution de l'intensité

Démonstration E3.10 : Intensité RC décharge

Caractéristique de C

$$i(t) = C \frac{\mathrm{d}u_C}{\mathrm{d}t} \quad \text{avec} \quad u_C(t) = E \mathrm{e}^{-t/\tau}$$

$$\Rightarrow i(t) = -\frac{CE}{\tau} \exp\left(-\frac{t}{\tau}\right)$$

$$\Leftrightarrow i(t) = -\frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

Loi des mailles

$$Ri = -u_C$$

$$\Leftrightarrow Ri(t) = -E \exp\left(-\frac{t}{\tau}\right)$$

$$\Leftrightarrow i(t) = -\frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

$$\Leftrightarrow i(t) = -\frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

igoplus Propriété E3.10 : Intensité RC décharge

L'intensité dans un circuit RC en décharge s'exprime par

$$i(t) = -\frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

et est discontinue.

FIGURE 3.8

Attention E3.1 : Conditions initiales

Attention, lorsqu'on étudie un circuit charge-décharge, il faut étudier les conditions initiales en $|t \neq 0|$

Méthode pour les circuits à plusieurs mailles

Important E3.3: Méthode avec plusieurs mailles

- 1 Écrire les différentes lois du circuit (LdN, LdM, Ld Ω , RCT...);
- Écrire les lois des mailles;
- Isoler la grandeur dont on veut l'équation différentielle en éliminant les autres;
- 4 Mettre l'équation sous forme canonique :

$$\frac{\mathrm{d}f}{\mathrm{d}t} + \frac{f}{\tau} = \frac{F}{\tau}$$

et identifier F et τ ;

II. Bobine et circuit RL

- $\boxed{5}$ Établir les conditions initiales avec l'énoncé et la continuité de la tension pour C;
- 6 Résoudre l'équation différentielle.

II | Bobine et circuit RL

II/A Circuit RL série : échelon montant

II/A) 1 Présentation

♥ Définition E3.5 : Circuit RC en charge

- ♦ Il est constitué d'un générateur idéal de tension en série avec une résistance et une bobine idéals.
- \diamond On suppose l'interrupteur initialement ouvert.
- \diamondsuit À t = 0, on ferme l'interrupteur.

II/A) 2 Équation différentielle du circuit

Démonstration E3.11 : Équation différentielle RL échelon montant

Avec la loi des mailles,

$$u_{L} + u_{R} = E$$

$$\Leftrightarrow L \frac{\mathrm{d}i}{\mathrm{d}t} + Ri = E$$

$$\Leftrightarrow \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \frac{E}{L}$$

$$u_{R} = Ri$$

$$\text{et } u_{L} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

igoplus Propriété E3.11 : Équation différentielle RL échelon montant

L'équation différentielle du courant i(t) aux bornes d'une bobine dans un circuit RL avec un échelon de tension montant E s'écrit

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{\tau}i = \frac{1}{\tau}\frac{E}{R}$$
 avec $\tau = \frac{L}{R}$

C'est une équation différentielle linéaire du premier ordre à coefficients et second membre constants, de condition initiale

$$i(0^-) = i(0^+) = 0$$

 $\left[II/A \right] 3$

Résolution de l'équation différentielle

♥ Démonstration E3.12 : Intensité RL série montant

1 L'équation homogène est :

$$\frac{\mathrm{d}i_h}{\mathrm{d}t} + \frac{1}{\tau}i_h = 0$$

2 La forme générale de la solution pour cette équation est :

$$i_h(t) = K \exp\left(-\frac{t}{\tau}\right)$$

[3] Une solution particulière avec $i_p(t) = \lambda$ donne

$$0 + \frac{\lambda}{\tau} = \frac{1}{\tau} \frac{E}{R}$$

Donc $i_p(t) = \frac{E}{R}$ est une solution de l'équation différentielle.

4 La solution générale est donc

$$i(t) = \frac{E}{R} + K \exp\left(-\frac{t}{\tau}\right)$$

5 Les conditions initiales donnent ici

$$i(t=0)=0$$
 et $i(0)=K+rac{E}{R}\Rightarrow K=-rac{E}{R}$

Propriété E3.12 : Intensité RL montant

La solution de l'équation différentielle du courant i(t) d'un circuit RL soumis à un échelon de tension E avec i(0) = 0 est

et i(t) est continue.

FIGURE 3.10

II/A)4Constante de temps, régime transitoire

Implication E3.3 : Détermination τ RL montant 1) $i(\tau) = \frac{E}{R} (1 - e^{-1}) \approx 0.632 \times E/R$

Donc on trouve τ en lisant l'abscisse telle que $u_C(\tau) = 0.632 \times E.$

2) En t = 0, l'équation différentielle donne

$$\frac{\mathrm{d}i}{\mathrm{d}t}(0) + \underbrace{\frac{i(0)}{\tau}}_{=0} = \frac{1}{\tau} \frac{E}{R}$$

$$\Leftrightarrow y_0'(t) = \frac{E}{R\tau} \Rightarrow y_0(t) = \frac{E}{R} \frac{t}{\tau}$$

La tangente à la courbe en 0 coupe donc l'asymptote en $|t=\tau|$

FIGURE 3.11

II. Bobine et circuit RL 13

Comme précédemment, avec t_{99} tel que $i(t_{99})=0.99\frac{E}{R}$, on trouve $t_{99}=4.6\tau$.

Propriété E3.13 : Temps de réponse RL montant

Ainsi,

le temps de réponse à 99% est à 4.6τ

II/A)5Evolution de la tension

V Démonstration E3.13 : Tension RL montant

Caractéristique de ${\bf L}$

$u_{L}(t) = L\frac{\mathrm{d}i}{\mathrm{d}t} \quad \text{avec} \quad i(t) = \frac{E}{R}(1 - \mathrm{e}^{-t/\tau})$ $\Rightarrow u_{L}(t) = \frac{LE}{R}\left(0 - \left(-\frac{1}{\tau}\right)\exp\left(-\frac{t}{\tau}\right)\right)$ $\Leftrightarrow u_{L}(t) = E\exp\left(-\frac{t}{\tau}\right)$ $\Leftrightarrow u_{L}(t) = E\exp\left(-\frac{t}{\tau}\right)$ $\Leftrightarrow u_{L}(t) = E\exp\left(-\frac{t}{\tau}\right)$ $\Leftrightarrow u_{L}(t) = E\exp\left(-\frac{t}{\tau}\right)$

Loi des mailles

$$u_L = E - Ri \quad \text{avec} \quad i(t) = \frac{E}{R} (1 - e^{-t/\tau})$$

$$\Leftrightarrow u_L(t) = E - R \frac{E}{R} (1 - e^{-t/\tau})$$

$$\Leftrightarrow u_L(t) = E \exp\left(-\frac{t}{\tau}\right)$$

igoplus Propriété E3.14: Tension RL montant

La tension dans un circuit RL en charge s'exprime par

$$u_L(t) = E \exp\left(-\frac{t}{\tau}\right)$$

et est discontinue.

FIGURE 3.12

II/A)6Bilan de puissance

Démonstration E3.14 : Bilan de puissances RL montant

ilan de puissances RL montant
$$u_{L} + Ri = E$$

$$\Leftrightarrow u_{L} i + Ri^{2} = Ei$$

$$\Leftrightarrow i L \frac{\mathrm{d}i}{\mathrm{d}t} + Ri^{2} = Ei$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}Li^{2}\right) + Ri^{2} = Ei$$

$$f \times f' = \left(\frac{1}{2}f^{2}\right)'$$

$$\Leftrightarrow \frac{\mathrm{d}}{\frac{\mathrm{d}\varepsilon_{L}}{\mathrm{d}t}} \qquad \mathcal{P}_{J} \qquad \mathcal{P}_{G}$$

Propriété E3.15 : Bilan de puissances RL montant

Dans un circuit RL en charge, on a le bilan de puissances

$$\mathcal{P}_G = \mathcal{P}_L + \mathcal{P}_J$$

 $\mathcal{P}_G = Ei$: la puissance fournie par le générateur;

 $\mathcal{P}_L = \frac{\mathrm{d}\mathcal{E}_L}{\mathrm{d}t}$: la puissance reçue par la bobine;

 $\mathcal{P}_J = Ri^2$: la puissance dissipée par effet Joule dans la résistance.

♥ Attention E3.2 : Bilan d'énergie RL charge

Ici la puissance en régime permanent n'est pas nulle : un courant circule toujours dans la résistance qui dissipe RI^2 . On ne peut intégrer à l'infini.

II/B Circuit RL série : décharge

II/B) 1 Présentation

♥ Définition E3.6 : Circuit RL descendant

- ♦ Il est constitué d'un générateur idéal de tension en série avec une résistance et une bobine idéale.
- \diamondsuit On suppose le courant initialement établi : $i(0^-) = \frac{E}{R}.$
- \diamond À t=0, on coupe le générateur.

On dit que le système est **en régime libre** et soumis à un **échelon de tension descendant**.

II/B) 2 Équation différentielle du circuit

lacktriangle Propriété E3.16 : Équation différentielle RL échelon descendant

L'équation différentielle du courant i(t) aux bornes d'un condensateur dans un circuit RL en décharge

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{\tau}i = 0 \qquad \text{avec} \qquad \boxed{\tau = \frac{L}{R}}$$

C'est une équation différentielle linéaire du premier ordre à coefficients constants sans second membre, de condition initiale

$$i(0^-) = i(0^+) = \frac{E}{R}$$

♥ Démonstration E3.15 : Équation différentielle RL échelon decendant

Avec la loi des mailles,

$$u_R + u_L = 0$$

$$\Leftrightarrow L \frac{\mathrm{d}i}{\mathrm{d}t} + Ri = 0$$

$$\Leftrightarrow \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = 0$$

$$u_R = Ri$$

$$\text{et } u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

II/B) 3 Résolution de l'équation différentielle

♥ Propriété E3.17 : Intensité RL descendant

L'intensité i(t) d'un circuit RL en décharge avec $i(0) = \frac{E}{R}$ est **continue**, et :

$$i(t) = \frac{E}{R} \exp\left(-\frac{t}{\tau}\right)$$

♥ Démonstration E3.16 : Intensité RL descendant

L'équation étant déjà homogène, on écrit la forme générale :

$$i(t) = K \exp\left(-\frac{t}{\tau}\right)$$

et on trouve K avec la condition initiale :

$$i(0) = \frac{E}{R}$$
 et $i(0) = K \Rightarrow K = \frac{E}{R}$

II/B) 4 Représentation graphique, constante de temps et transitoire

lacktriangle Implication E3.4 : Détermination au RL descendant

Donc on trouve τ en lisant l'abscisse telle que $i(\tau)=0.368\times \frac{E}{R}.$

2) En t=0, l'équation différentielle donne

$$\frac{\mathrm{d}i}{\mathrm{d}t}(0) + \frac{\overline{i(0)}}{\tau} = 0$$

$$\Leftrightarrow y_0'(t) = -\frac{E}{R} \Rightarrow y_0(t) = -\frac{E}{R}\frac{t}{\tau}$$

La tangente à la courbe en 0, coupe donc l'asymptote en [t= au].

FIGURE 3.14

Comme précédemment, avec t_{99} tel que $i(t_{99}) = 0.01 \frac{E}{R}$, on trouve $t_{99} = 4.6\tau$.

♥ Propriété E3.18 : Temps de réponse RL descendant

Ainsi,

le temps de réponse à 99% est à 4,6 τ

II/B)5

Évolution de la tension

♥ Démonstration E3.17 : Tension RL descendant

Caractéristique de L

$$u_L(t) = L \frac{\mathrm{d}i}{\mathrm{d}t} \quad \text{avec} \quad i(t) = \frac{E}{R} \mathrm{e}^{-t/\tau}$$

$$\Rightarrow u_L(t) = -\frac{LE}{R\tau} \exp\left(-\frac{t}{\tau}\right)$$

$$\Leftrightarrow u_L(t) = -E \exp\left(-\frac{t}{\tau}\right)$$

Loi des mailles

$$u_{L} = -Ri$$

$$\Leftrightarrow u_{L}(t) = -R\frac{E}{R}e^{-t/\tau}$$

$$\Leftrightarrow u_{L}(t) = -E \exp\left(-\frac{t}{\tau}\right)$$

♥ Propriété E3.19 : Tension RL descendant

La tension dans un circuit RL en décharge s'exprime par

$$u_L(t) = -E \exp\left(-\frac{t}{\tau}\right)$$

et est discontinue.

FIGURE 3.15