Linear Analysis Homework 5

Michael Nelson

Throughout this homework, let \mathcal{H} be a Hilbert space.

Problem 1

Proposition 0.1. *Let* $T: \mathcal{H} \to \mathcal{H}$ *and* $S: \mathcal{H} \to \mathcal{H}$ *be two bounded operators. Then*

$$(\alpha T + \beta S)^* = \overline{\alpha} T^* + \overline{\beta} S^* \tag{1}$$

for all α *,* β *,* \in \mathbb{C} *.*

Proof. Let $\alpha, \beta, \in \mathbb{C}$ and let $y \in \mathcal{H}$. Then for all $x \in \mathcal{H}$, we have

$$\langle x, (\alpha T + \beta S)^* y \rangle = \langle (\alpha T + \beta S) x, y \rangle$$

$$= \alpha \langle Tx, y \rangle + \beta \langle Sx, y \rangle$$

$$= \alpha \langle x, T^* y \rangle + \beta \langle x, S^* y \rangle$$

$$= \langle x, (\overline{\alpha} T^* + \overline{\beta} S^*) y \rangle$$

In particular, this implies $(\alpha T + \beta S)^* y = (\overline{\alpha} T^* + \overline{\beta} S^*) y$ for all $y \in \mathcal{H}$ (by positive-definiteness of the inner-product) which implies (1).

Problem 2

Proposition 0.2. *Let* $T: \mathcal{H} \to \mathcal{H}$ *and* $S: \mathcal{H} \to \mathcal{H}$ *be two bounded operators. Then*

- 1. *TS* is bounded and $||TS|| \le ||T|| ||S||$;
- 2. $(TS)^* = S^*T^*$.

Proof.

1. Let $x \in \mathcal{H}$ such that ||x|| = 1. Then

$$||TSx|| \le ||T|| ||Sx||$$

 $\le ||T|| ||S|| ||x||$
 $= ||T|| ||S||.$

Thus TS is bounded and $||TS|| \le ||T|| ||S||$.

2. Let $y \in \mathcal{H}$. Then for all $x \in \mathcal{H}$, we have

$$\langle x, (TS)^* y \rangle = \langle TSx, y \rangle$$

$$= \langle Sx, T^* y \rangle$$

$$= \langle x, S^* T^* y \rangle.$$

In particular, this implies $(TS)^*y = S^*T^*y$ for all $y \in \mathcal{H}$, which implies $(TS)^* = S^*T^*$.

Problem 3

Proposition 0.3. *Let* $u, v \in \mathcal{H}$ *be fixed vectors.*

1. The operator $T \colon \mathcal{H} \to \mathcal{H}$ defined by

$$Tx = \langle x, u \rangle v$$

for all $x \in \mathcal{H}$ is bounded. Moreover, we have ||T|| = ||u|| ||v||.

2. The adjoint of T is given by

$$T^*y = \langle y, v \rangle u$$

for all $y \in \mathcal{H}$.

Proof.

1. Let $x \in \mathcal{H}$. Then

$$||Tx|| = ||\langle x, u \rangle v||$$

$$= |\langle x, u \rangle| ||v||$$

$$\leq ||x|| ||u|| ||v||,$$

where we used Cauchy-Schwarz to get from the second to the third line. This implies $||T|| \le ||u|| ||v||$. We have equality at the Cauchy-Schwarz step if and only if $x = \lambda u$ for some $\lambda \in \mathbb{C}$. In particular, setting x = u/||u|| gives us ||T|| = ||u|| ||v||.

2. Let $y \in \mathcal{H}$. Then

$$\langle x, T^*y \rangle = \langle Tx, y \rangle$$

$$= \langle \langle x, u \rangle v, y \rangle$$

$$= \langle x, u \rangle \langle v, y \rangle$$

$$= \langle x, \overline{\langle v, y \rangle} u \rangle$$

$$= \langle x, \langle y, v \rangle u \rangle$$

for all $x \in \mathcal{H}$. This implies $T^*y = \langle y, v \rangle u$ for all $y \in \mathcal{H}$.

Problem 4

Corollary. Let $T: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be operator defined by

$$T(x)_n = \sum_{m=1}^{\infty} \frac{x_m}{2^n 3^m},$$

for all $x = (x_m) \in \ell^2(\mathbb{N})$, where $T(x)_n$ denotes the n-th coordinate of $T(x) \in \ell^2(\mathbb{N})$. Then T is bounded with

$$||T||=\sqrt{\frac{1}{24}}.$$

The adjoint of T is given by

$$T^*(y)_n = \sum_{m=1}^{\infty} \frac{y_m}{2^m 3^n},$$

for all $y \in \ell^2(\mathbb{N})$.

Proof. Set $u = (1/3^m)$ and $v = (1/2^n)$. Then

$$T(x)_n = \sum_{m=1}^{\infty} \frac{x_m}{2^n 3^m}$$
$$= \langle x, u \rangle \frac{1}{2^n}$$
$$= \langle x, u \rangle v_n$$

for all $x \in \mathcal{H}$. Thus $Tx = \langle x, u \rangle v$ for all $x \in \mathcal{H}$. Therefore we can apply Proposition (0.3) and obtain

$$||T|| = ||u|| ||v||$$

$$= \sqrt{\sum_{n=1}^{\infty} 9^{-n}} \sqrt{\sum_{n=1}^{\infty} 4^{-n}}$$

$$= \sqrt{\left(\frac{1}{1 - \frac{1}{9}} - 1\right) \left(\frac{1}{1 - \frac{1}{4}} - 1\right)}$$

$$= \sqrt{\frac{1}{24}}.$$

The adjoint of *T* is given by

$$T^*(y)_n = \langle y, v \rangle u_n$$
$$= \sum_{m=1}^{\infty} \frac{y_m}{2^m 3^n}$$

for all $y \in \mathcal{H}$.

Problem 5

Proposition 0.4. *Let* $T: \mathcal{H} \to \mathcal{H}$ *be a bounded operator. Then*

- 1. $||T^*T|| = ||T||^2$;
- 2. $Ker(T^*T) = Ker(T)$.

Proof.

1. First note that Proposition (0.2) implies $||T^*T|| \le ||T^*|| ||T|| = ||T||^2$. For the reverse inequality, let $x \in \mathcal{H}$ such that ||x|| = 1. Then

$$||Tx||^2 = \langle Tx, Tx \rangle$$

$$= \langle x, T^*Tx \rangle$$

$$\leq ||x|| ||T^*Tx||$$

$$= ||T^*Tx||,$$

where we used Cauchy-Schwarz to get from the second line to the third line. In particular, this implies

$$||T||^{2} = \sup\{||Tx||^{2} \mid ||x|| \le 1\}$$

$$\le \sup\{||T^{*}Tx|| \mid ||x|| \le 1\}$$

$$= ||T^{*}T||,$$

where the first line is justifed in the Appendix.

2. Let $x \in \text{Ker}(T)$. Then

$$T^*Tx = T^*(Tx)$$
$$= T^*(0)$$
$$= 0$$

implies $x \in \text{Ker}(T^*T)$. Thus $\text{Ker}(T) \subseteq \text{Ker}(T^*T)$.

For the reverse inclusion, let $x \in \text{Ker}(T^*T)$. Then

$$\langle Tx, Tx \rangle = \langle x, T^*Tx \rangle$$
$$= \langle x, 0 \rangle$$
$$= 0$$

implies Tx=0 (by positive-definiteness of inner-product) which implies $x\in \mathrm{Ker}(T)$. Therefore $\mathrm{Ker}(T)\supseteq \mathrm{Ker}(T^*T)$.

Problem 6

Proposition 0.5. Let $T \colon \mathcal{H} \to \mathcal{H}$ be a bounded operator. Then

- 1. $Ker(T^*) = Im(T)^{\perp};$
- 2. $Ker(T)^{\perp} = \overline{Im(T^*)}$.

Proof.

1. Let $x \in \text{Ker}(T^*)$. Then

$$\langle Ty, x \rangle = \langle y, T^*x \rangle$$

= $\langle y, 0 \rangle$
= 0

for all $Ty \in \text{Im}(T)$. This implies $x \in \text{Im}(T)^{\perp}$ and so $\text{Ker}(T^*) \subseteq \text{Im}(T)^{\perp}$. For the reverse inclusion, let $x \in \text{Im}(T)^{\perp}$. Then

$$0 = \langle x, TT^*x \rangle$$
$$= \langle T^*x, T^*x \rangle$$

implies $T^*x = 0$ (by positive-definiteness of inner-product) which implies $x \in \text{Ker}(T^*)$.

2. Let us first show that $Ker(T)^{\perp}$ contains $Im(T^*)$. Let $T^*y \in Im(T^*)$. Then for all $x \in Ker(T)$, we have

$$\langle x, T^*y \rangle = \langle Tx, y \rangle$$
$$= \langle 0, y \rangle$$
$$= 0$$

In particular, this implies $\overline{\operatorname{Im}(T^*)} \subseteq \operatorname{Ker}(T)^{\perp}$ (as $\operatorname{Ker}(T)^{\perp}$ is a closed subspace which contains $\operatorname{Im}(T^*)$). For the reverse inclusion, we have

$$\operatorname{Ker}(T)^{\perp} = \operatorname{Ker}((T^*)^*)^{\perp}$$
$$= (\operatorname{Im}(T^*)^{\perp})^{\perp}$$
$$= (\overline{\operatorname{Im}(T^*)}^{\perp})^{\perp}$$
$$= \overline{\operatorname{Im}(T^*)},$$

where we used part 1 of this proposition to get from the first line to the second line.

Problem 7

Definition 0.1. An **isometry** between normed vector spaces V_1 and V_2 is an operator $T: V_1 \to V_2$ such that

$$||Tx - Ty|| = ||x - y||$$

for all $x, y \in \mathcal{V}$.

Proposition o.6. Let V_1 and V_2 be inner-product spaces and let $T: V_1 \to V_2$ be an operator. Then T is an isometry (where V_1 and V_2 are viewed as the induced normed vector spaces with respect to their inner-products) if and only if

$$\langle x, y \rangle = \langle Tx, Ty \rangle \tag{2}$$

for all $x, y \in \mathcal{V}_1$.

Proof. Suppose (2) holds for all $x, y \in V_1$. Then

$$||Tx - Ty|| = \sqrt{\langle Tx - Ty, Tx - Ty \rangle}$$

$$= \sqrt{\langle Tx, Tx \rangle - \langle Tx, Ty \rangle - \langle Ty, Tx \rangle + \langle Ty, Ty \rangle}$$

$$= \sqrt{\langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle}$$

$$= \sqrt{\langle x - y, x - y \rangle}$$

$$= ||x - y||.$$

for all $x, y \in \mathcal{V}_1$. Thus T is an isometry.

Conversely, suppose T is an isometry and let $x, y \in \mathcal{V}_1$. Then

$$||x||^{2} - 2\operatorname{Re}(\langle x, y \rangle) + ||y||^{2} = \langle x - y, x - y \rangle$$

$$= \langle Tx - Ty, Tx - Ty \rangle$$

$$= ||Tx||^{2} - 2\operatorname{Re}(\langle Tx, Ty \rangle) + ||Ty||^{2}$$

$$= ||x||^{2} - 2\operatorname{Re}(\langle Tx, Ty \rangle) + ||y||^{2}$$

implies $\text{Re}(\langle x, y \rangle) = \text{Re}(\langle Tx, Ty \rangle)$ for all $x, y \in \mathcal{V}_1$. Note that this also implies

$$Im(\langle x, y \rangle) = -Re(i\langle x, y \rangle)$$

$$= -Re(\langle ix, y \rangle)$$

$$= -Re(\langle T(ix), Ty \rangle)$$

$$= -Re(i\langle Tx, Ty \rangle)$$

$$= Im(\langle Tx, Ty \rangle)$$

for all $x, y \in \mathcal{V}_1$. Thus we have (2) for all $x, y \in \mathcal{V}_1$.

Proposition 0.7. *Let* $T: \mathcal{H} \to \mathcal{H}$ *be a bounded operator. Then*

- 1. T is an isometry if and only if $T^*T = 1_{\mathcal{H}}$.
- 2. There exists isometries T such that $TT^* \neq 1_{\mathcal{H}}$.

Proof.

1. Suppose *T* is an isometry. Then for all $y \in \mathcal{H}$, we have

$$\langle x, 1_{\mathcal{H}} y \rangle = \langle x, y \rangle$$

$$= \langle Tx, Ty \rangle$$

$$= \langle x, T^* Ty \rangle$$

for all $x \in \mathcal{H}$. In particular, this implies $T^*Ty = 1_{\mathcal{H}}y$ for all $y \in \mathcal{H}$, which implies $T^*T = 1_{\mathcal{H}}$. Conversely, suppose $T^*T = 1_{\mathcal{H}}$. Then

$$\langle Tx, Ty \rangle = \langle x, T^*Ty \rangle$$

= $\langle x, 1_{\mathcal{H}}y \rangle$
= $\langle x, y \rangle$

for all $x, y \in \mathcal{H}$. This implies T is an isometry.

2. Consider the shift operator $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$, given by

$$S(x_n) = (x_{n-1})$$

for all $(x_n) \in \ell^2(\mathbb{N})$, where $x_0 = 0$. In class, it was shown that

$$S^*(x_n) = (x_{n+1})$$

for all $(x_n) \in \ell^2(\mathbb{N})$. Thus, whenever $x_1 \neq 0$, we have

$$SS^*(x_n) = SS^*(x_1, x_2,...)$$

= $S(x_2, x_3,...)$
= $(0, x_2, x_3,...)$
 $\neq (x_n).$

On the other hand, *S* is an isometry. Indeed, let (x_n) , $(y_n) \in \ell^2(\mathbb{N})$. Then

$$\langle S(x_n), S(y_n) \rangle = \langle (x_{n-1}), (y_{n-1}) \rangle$$

$$= \sum_{n=1}^{\infty} x_{n-1} \overline{y}_{n-1}$$

$$= \sum_{m=0}^{\infty} x_m \overline{y}_m$$

$$= x_0 y_0 + \sum_{m=1}^{\infty} x_m \overline{y}_m$$

$$= \sum_{m=1}^{\infty} x_m \overline{y}_m$$

$$= \langle (x_n), (y_n) \rangle.$$

Appendix

Proposition o.8. *Let* $T: \mathcal{U} \to \mathcal{V}$ *be a bounded linear operator. Then*

$$||T||^2 = \sup\{||Tx||^2 \mid ||x|| \le 1\}$$

Proof. For any $x \in \mathcal{U}$ such that $||x|| \le 1$, we have $||Tx||^2 \le ||T||^2$. Thus

$$||T||^2 \ge \sup\{||Tx||^2 \mid ||x|| \le 1\}. \tag{3}$$

To show the reverse inequality, we assume (for a contradiction) that (3) is a strictly inequality. Choose $\delta > 0$ such that

$$||T||^2 - \delta > \sup\{||Tx||^2 \mid ||x|| \le 1\}.$$

Now let $\varepsilon = \delta/2||T||$, and choose $x \in \mathcal{U}$ such that $||x|| \le 1$ and such that

$$||T|| - \varepsilon < ||Tx||.$$

Then

$$||Tx||^2 > (||T|| - \varepsilon)^2$$

$$= ||T||^2 - 2\varepsilon||T|| + \varepsilon^2$$

$$\geq ||T||^2 - 2\varepsilon||T||$$

$$= ||T||^2 - \delta$$

gives us a contradiction.

6