

Summary: Vectors and vector space.	$C^2 = a^2 + b^2 - 2ab\cos\theta$
If $x = (A_1, A_2, A_3)$, $y = (y_1, y_2, y_3)$	Thm 1.6) Norm of a vector
1. Vector equality: $x = y \leftrightarrow 1_{\lambda} = y_{\lambda}$ ($\lambda = 1, 2, 3$)	Vector of \mathbb{R}^3 , $\alpha = (a_1, a_2, a_3)$ $\alpha_1 = (a_2, a_3)$
2. Vector addition: $2+y=z \Rightarrow 3x+yx=2x (")$	length of al $ a := \sqrt{a_1^2 + a_2^2 + a_3^2}$
3. Scalar multiplication: az → (aa1,aa2,aa3) a∈/R	Thm 1.1) Norm Property (a, b: vector, Q: Scalar)
4. Negative of vector: $-\mathcal{X} = (-1)\mathcal{X} + (-\lambda_1, -\lambda_2, -\lambda_3)$	$(1) \ \mathbf{a}\ = 0 \boldsymbol{\leftarrow} \mathbf{a} = 0$
5. Null vector: There exists a null vector 0 = (0,0,0)	$(2) \ \alpha\alpha\ = \alpha \ \alpha\ $
	(3) a+b ≤ a + b
Since our vector components are real num (or complex)	Def 1.7) Inner product
the followings hold.	$\angle (Q.b) = \theta (0 \le \theta \le \pi)$
1. addition of vector is commutative: $x+y=y+x$	define $a \cdot b = a b \cos \theta$
2. " associative: $(1+y)+z=1+(y+z)$	= 0 (+) a or b is zero vector
3 Scalar multiplication is distribute: $a(x+y) = ax + ay$	Thm 1.8) Cosine Rule
4. Scalar multiplication is associative: (ab) $a = a(bx)$	$\forall a.b: vector, a.b = \frac{1}{2}(a ^2 + b ^2 - b-a ^2)$
	Thm 1.9) Parallel and orthogonal Property
Def 1.6) Fundamental Unit Vectors.	a.b are not zero vector, ex: unit vector
$e_1 = (1,0,\dots,0), e_2 = (0,1,0,\dots,0), \dots, e_n = (0,\dots,1)$	(1) $e_{\lambda} \cdot e_{\hat{j}} = \delta_{\lambda \hat{j}}$, $\delta_{\hat{i}\hat{j}} = \int_{-1}^{1} \frac{0}{\hat{i}} \hat{i} = \hat{j}$
→ Fundamental unit vector of vector space Rn.	(2) a // b A a · b = ± a b
Thm 1.3) Linear Combination	(3) $a \perp b \Rightarrow a \cdot b = 0$
Any vector of IR" can be expressed by Linear combination	Thm 1.10) Inner product
ob ei.	$a = (a_1, a_2, a_3)$ $b = (b_1, b_2, b_3)$
$\exists V=(V_1,\cdots,V_n)\in \mathbb{R}^n, V=\sum_{\lambda=1}^n V_\lambda e_\lambda$	$\Rightarrow \alpha \cdot b = a_1b_1 + a_2b_2 + a_3b_3$
1.2 Inner product (내적)	Thm 1.11) Inner Product Property
Thm 1.5) Cosine Rule	(1) $a \cdot b = b \cdot a$ (2) $a \cdot (b + c) = a \cdot b + a \cdot c$

세 변 길이 0.b.C ∠C= O 인 잉의의 상각병 1ABC

(3) $(\alpha a) \cdot b = a \cdot (\alpha b) = \alpha (a \cdot b)$ (4) $||a|| = \sqrt{a \cdot a}$