Homework 3, 4, & 5

Sean Eva

Math 4320

[10]

- (a) To show that $\lim_{z\to\infty} \frac{4z^2}{(z-1)^2} = 4$ we can show that $\lim_{z\to0} \frac{4(\frac{1}{z})^2}{(\frac{1}{z}-1)^2} = \lim_{z\to0} \frac{4\frac{1}{z^2}}{\frac{1}{z^2}-\frac{2}{z}+1} = \lim_{z\to0} \frac{4}{1-2z+z^2} = \lim_{z\to0} \frac{4}{(z-1)^2} = 4$ as desired.
- (b) We know that $\lim_{z\to 1} \frac{1}{(z-1)^3} = \infty$ since we can easily show that $\lim_{z\to 1} \frac{(z-1)^3}{1} = \frac{0}{1} = 0$.
- (c) We are able to show that

$$\lim_{z \to \infty} \frac{z^2 + 1}{z - 1} = \lim_{z \to \infty} \frac{z^2 \left(1 + \frac{1}{z^2}\right)}{z \left(1 - \frac{1}{z}\right)}$$

$$= \lim_{z \to \infty} \frac{z \left(1 + \frac{1}{z^2}\right)}{\left(1 - \frac{1}{z}\right)}$$

$$= \lim_{z \to \infty} z \frac{\lim_{z \to \infty} (1 + \frac{1}{z^2})}{\lim_{z \to \infty} (1 - \frac{1}{z})}$$

$$= \infty \left(\frac{1 + 0}{1 - 0}\right)$$

$$= \infty * 1$$

$$= \infty$$

[3]

- (a) We can consider $P(z) = a_0 + f_1(z) + f_2(z) + ... f_n(z)$ where each $f_j(z) = a_j z^j$. Therefore we have that $P'(z) = \frac{d}{dz}(a_0 + f_1(z) + f_2(z) + ... f_n(z)) = 0 + f_1'(z) + f_2'(z) + ... f_n'(z) = 0 + a_1 + 2a_2z + ... + na_n z^{n-1}$ as desired.
- (b) Proof. We will proceed by mathematical induction: Base Case: If we consider the case when m=0 then we have that $P(0)=a_0+a_1(0)+...+a_n(0)^n=a_0$ as desired. Therefore, the statement is verified for m=0. Inductive Step: Assume that the statement is true for m=k, we then want to show that the statement is true for m=k+1. Then we know that $\frac{d}{dz}P^{k+1}(z)=\frac{d}{dz}(P^{(k)}(z))=\frac{d}{dz}(\frac{k!}{0!}a_{k+1}+\frac{(k+1)!}{1!}a_{k+1}z+...+\frac{n!}{(n-k)!}z^{n-k})=0+\frac{(k+1)!}{0!}a_{k+1}+...+\frac{n!}{(n-k+1)!}z^{n-k+1}$. Therefore, we see that $P^{(k)}(0)=k!a_k$ implies then that $a_k=\frac{P^{(k)}(0)}{k!}$ as desired.

[8]

(a) Proof. Consider $f'(z) = \lim_{\Delta z \to 0} \frac{Re(z + \Delta z) - Rez}{\Delta z} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{x + \Delta x - x}{\Delta x + i\Delta y} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta x}{\Delta x + i\Delta y}$. Then, if we find the limit of this along the line $(\Delta x, 0)$, the limit is 1. However, if we take the limit along the line $(0, \Delta y)$, the limit is 0. Therefore, since the limit of the function is different from two different directions, $1 \neq 0$, then we know that the limit does not exist and further that f is not differentiable at any point.

(b) Proof. Consider $f'(z) = \lim_{\Delta z \to 0} \frac{Im(z + \Delta z) - Imz}{\Delta z} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{y + \Delta y - y}{\Delta x + i\Delta y} = \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\Delta y}{\Delta x + i\Delta y}$ Then, if we find the limit of this along the line $(\Delta x, 0)$, the limit is 0. However, if we take the limit along the line $(0, \Delta y)$, the limit is 1. Therefore, since the limit of the function is different from two different directions, $1 \neq 0$, then we know that the limit does not exist and further that f is not differentiable at any point.

[4]

Note: for $z \neq 0$ we can write $z = re^{i\theta}$ with r > 0 and $-\pi < \theta \le \pi$ and $f(z) = u(r, \theta) + iv(r, \theta)$.

- (a) We know then that $f(z)=\frac{1}{z^4}$ is the same as $f(r,\theta)=r^{-4}e^{i(-4\theta)}$ which we can then split up into $z=r^{-4}\cos(4\theta)-ir^{-4}\sin(4\theta)$ to get that $u(r,\theta)=r^{-4}\cos(4\theta)$ and $v(r,\theta)=-r^{-4}\sin(4\theta)$. We will then calculate the first order partial derivatives with respect to r and θ for both of these u and v to get $u_r=-4r^{-5}\cos(4\theta), u_\theta=-4r^{-4}\sin(4\theta), v_r=4r^{-5}\sin(4\theta), v_\theta=-4r^{-4}\cos(4\theta)$. The polar form of the Cauchy-Riemann equations state that $ru_r=v_\theta$ and $-rv_r=u_\theta$. Then, we can apply this to the problem to get that, $ru_r=-4r^{-4}\cos(4\theta)=v_\theta, -rv_r=-4r^{-4}\sin(4\theta)=u_\theta$. Therefore, the Cauchy-Riemann condition is satisfied indicating that f'(z) does exist and $f'(z)=e^{-i\theta}(-4r^{-5}\cos(4\theta)+i4r^{-5}\sin(4\theta))=-4r^{-5}e^{-i5\theta}=\frac{-4}{z^5}$.
- (b) We need not to worry about converting this function to polar form. We can note that $u(r,\theta)=e^{-\theta}\cos(\ln(r)), v(r,\theta)=e^{-\theta}\sin(\ln(r))$. We can then take the partial derivatives, $u_r=\frac{-e^{-\theta}\sin(\ln(r))}{r}, u_\theta=-e^{-\theta}\cos(\ln(r)), v_r=\frac{e^{-\theta}\cos(\ln(r))}{r}, v_\theta=-e^{-\theta}\sin(\ln(r))$. We note that the Cauchy-Riemann condition is satisfied for this scenario and we have verified that f'(z) does exist. Therefore, $f'(z)=e^{-i\theta}(\frac{-e^{-\theta}\sin(\ln(r))}{r}+i(\frac{e^{-\theta}\cos(\ln(r))}{r}))=i(\frac{e^{-\theta}\cos(\ln(r))}{re^{i\theta}}+i(\frac{e^{-\theta}\sin(\ln(r))}{re^{i\theta}}))=i\frac{f(z)}{z}$ as desired.

[4]

- (a) The singular points are when $z(z^2+1)=0$, which is true when z=0,+i,-i. Therefore, the function is analytic for $z\in\mathbb{C}$ where $z\neq 0,+i,-i$ since the function is not continuous at these values of z.
- (b) The singular points are when $z^2 3z + 2 = 0$ which is when z = 1, 2. Therefore, the function is analytic when $z \in \mathbb{C}$ for $z \neq 1, 2$ since the function is not continuous at these values of z.
- (c) The singular points are when $(z+2)(z^2+2z+2)=0$ which is when z=-2,-1+i,-1-i. Therefore, the function is analytic when $z \in \mathbb{C}$ for $z \neq -2,-1+i,-1-i$ since the function is not continuous at these values of z.

[7]

Proof. Let us assume we have a function f(z) as described in the problem statement. Then we can write f(z) = f(x+iy) = u(x,y) + iv(x,y). Since we know that f(z) is real-valued for all $z \in D$, then we know that v(x,y) = 0 for all $x+iy \in D$. Given that the function f is analytic in D, then we know that the Cauchy-Riemann criteria is met which implies that $u_x = v_y$ and since we know that for $x+iy \in D$ that v(x,y) = 0 in the region, then we know that $u_x = v_y = 0$ and similarly $u_y = -v_u = 0$. Therefore, we know that both partial derivatives of u(x,y) equal 0, which then means that u(x,y) = c where c is a constant and $c \in \mathbb{R}$ as it's partial derivatives with respect to x and y and similarly for v(x,y). This then implies that $f(z) = c_1 + ic_2$ which means that f(z) is constant for all $z \in D$ as desired.

[2]

Proof. Let assumptions be as in the problem statement. Let $z_0 \in \mathbb{C}$ such that $z_0 = x_0 + iy_0$ is a point in the domain D and $c_1 = u(x_0, y_0)$ and $c_2 = v(x_0, y_0)$ specifically. Since we know that the function f(z) is analytic in D, then we know that the Cauchy-Riemann conditions are satisfied which means that f'(z) exists in D and that $u_x = v_y$ and $u_y = -v_x$ and we will allow $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0) = u_x(x_0, y_0) - iu_y(x_0, y_0) = v_u(x_0, y_0) + v_x(x_0, y_0)$ by definition. Let's define the matrices of partial

derivatives $\mathbf{n}_1 = \begin{bmatrix} u_x(x_0, y_0) \\ u_y(x_0, y_0) \end{bmatrix}$, $\mathbf{n}_2 = \begin{bmatrix} v_x(x_0, y_0) \\ v_y(x_0, y_0) \end{bmatrix}$. We know that \mathbf{n}_1 is orthogonal to the tangent line of the level curve $u(x, y) = c_1$ at the point (x_0, y_0) and \mathbf{n}_2 is similarly orthogonal to the tangent line of the level curve $v(x, y) = c_2$ at the point (x_0, y_0) . Then we know that the two tangent lines will only be orthogonal to each other if \mathbf{n}_1 and \mathbf{n}_2 are orthogonal to each other. This implies then that we need $\mathbf{n}_1 \cdot \mathbf{n}_2 = 0$. Then we have $\mathbf{n}_1 \cdot \mathbf{n}_2 = u_x(x_0, y_0)v_x(x_0, y_0) + u_y(x_0, y_0)v_y(x_0, y_0) = -u_x(x_0, y_0)u_y(x_0, y_0) + u_y(x_0, y_0)u_x(x_0, y_0) = 0$ since the Cauchy-Riemann equations we know that $v_x = -u_y$ and $v_y = u_x$. Therefore we know that the tangent lines to the level curves are orthogonal at the point (x_0, y_0) as desired.

[4]

We will first show that this function is exact, which is to say that it is analytic for all $z \in \mathbb{C}$. We will let $g(z) = e^z$ and $h(z) = z^2$ be two functions such that we know that $(g \circ h)(z) = e^{z^2} = f(z)$. We know that g(z) and z^2 are exact themselves. Therefore, we know that $(g \circ h) = f(z)$ is also exact. Another way to find if f(z) is to check the Cauchy-Riemann equations. We can say that $f(z) = e^{z^2} = e^{(x+iy)^2} = e^{x^2-y^2}\cos(2xy) + ie^{x^2-y^2}\sin(2xy)$ which means that $u(x,y) = e^{x^2-y^2}\cos(2xy), v(x,y) = e^{x^2-y^2}\sin(2xy)$. Therefore, we can find that $u_x = 2xe^{x^2-y^2}\cos(2xy) - 2ye^{x^2-y^2}\sin(2xy), u_y = -2ye^{x^2-y^2}\sin(2xy) - 2xe^{x^2-y^2}\sin(2xy), v_x = 2xe^{x^2-y^2}\sin(2xy) + 2ye^{x^2-y^2}\cos(2xy), v_y = -2ye^{x^2-y^2}\sin(2xy) + 2xe^{x^2-y^2}\cos(2xy)$. This then shows that $u_x = v_y$ and $u_y = -v_x$. So since the Cauchy-Riemann equations are satisfied for all $z \in \mathbb{C}$, and we again know that f(z) is exact. Both of these methods have shown that f(z) is differentiable everywhere and therefore exact. We then find that $f'(z) = 2ze^{z^2}$

[7]

- (\Rightarrow) Since we know that $|e^z| = e^x$, we then know that $|e^{-2z}| = e^{-2x}$ and to find when $e^{-2x} < 1$ we need to find when -2x < 0 which means $e^{-2x} < 1$ when x > 0.
- (\Leftarrow) If we know that Re(z) > 0 then we know that x > 0. Then we know that $e^{-2x} < 1$. Since we know that $|e^z| = e^x$ which then means that we know that $|e^{-2z}| = e^{-2x}$. Therefore, we know that $|e^{-2z}| < 1$ as desired.

Since the statement is true in both directions, we then know that $|e^{-2z}| < 1$ if and only if Re(z) > 0 as desired.

[3]

First we will note that $i^3=-i=e^{i(\frac{-\pi}{2})}$. Therefore, we know that $Log(i^3)=Log(-i)=ln|1|+i(\frac{-\pi}{2})=-i\frac{\pi}{2}$. However, we know that $i=e^{i(\frac{\pi}{2})}$, and then we know that $3Log(i)=3(ln|1|+i\frac{\pi}{2})=3(\frac{\pi}{2}i)=\frac{3\pi}{2}i$ which is in another branch of the logarithmic function. Therefore, we know that $-i\frac{\pi}{2}\neq\frac{3\pi}{2}i$ as they are located within different branches.

8]

If we take $e^{\log(z)} = z = e^{i\frac{\pi}{2}} = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = 0 + i*1 = i$.

[3]

Equation 4 states that $\log(\frac{z_1}{z_2}) = \log(z_1) - \log(z_2)$. Let us assume that equation 4 holds when $\log(z_1)$ is changed for $\log(z_2)$ that would be to say that $\log(\frac{z_1}{z_2}) = \log(z_1) - \log(z_2)$. Let us take that $z_1 = 1, z_2 = -1$. That then means that $\log(z_1) - \log(z_2) = (0+i0) - (0+i\pi) = -i\pi$. However, $\log(\frac{z_1}{z_2}) = \log(-1) = i\pi$. Which implies that $i\pi = -i\pi$ which is not true since they would be on different branches of the logarithm and leads to our assumption of equation 4 being true for $\log(z_1) = \log(z_1) = \log(z_$

[8]

(a) Let us say that $z^{c_1}z^{c_2}=a$ for some $a\in\mathbb{C}$. Let us apply log to both sides, we get

$$\log(z^{c_1}z^{c_2}) = \log(a)$$

$$\log(z^{c_1}) + \log(z^{c_2}) =$$

$$c_1 \log(z) + c_2 \log(z) =$$

$$(c_1 + c_2) \log(z) =$$

$$(c_1 + c_2) \log(z) =$$

$$\log(z^{c_1 + c_2}) = .$$

Then if we exponentiate this result we get that $z^{c_1+c_2} = a$ which implies then that $z^{c_1}z^{c_2} = z^{c_1+c_2}$ as desired.

(b) Let us say that $\frac{z^{c_1}}{z^{c_2}} = b$. Then,

$$\log(\frac{z^{c_1}}{z^{c_2}}) = \log(b)$$

$$\log(z^{c_1}) - \log(z^{c_2}) =$$

$$c_1 \log(z) - c_2 \log(z) =$$

$$(c_1 - c_2) \log(z) =$$

$$\log(z^{c_1 - c_2}) = .$$

Which then if we exponentiate, we find that $\frac{z^{c_1}}{z^{c_2}} = z^{c_1 - c_2}$ as desired.

(c) Let us say that $(z^c)^n = d$. Then,

$$\log(z^c)^n = d$$
$$\log(z^{cn} = .$$

Then if we expenonentiate this, we get that $(z^c)^n = z^{cn}$ as desired.

[2]

(a)

$$e^{iz_1}e^{iz_2} = (\cos(z_1) + i\sin(z_1))(\cos(z_2) + i\sin(z_2))$$

$$= \cos(z_1)\cos(z_2) + \cos(z_1)(i\sin(z_2)) + (i\sin(z_1))\cos(z_2) + i^2\sin(z_1)\sin(z_2)$$

$$= \cos(z_1)\cos(z_2) + i\cos(z_1)\sin(z_2) + i\sin(z_1)\cos(z_2) - \sin(z_1)\sin(z_2)$$

$$= \cos(z_1)\cos(z_2) - \sin(z_1)\sin(z_2) + i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)).$$

Then we have that $e^{-i\theta} = \cos(\theta) - i\sin(\theta)$ then

$$e^{-iz_1}e^{iz_2} = (\cos(z_1) - i\sin(z_1))(\cos(z_2) - i\sin(z_2))$$

$$= \cos(z_1)\cos(z_2) - i\cos(z_1)\sin(z_2) - i\sin(z_1)\cos(z_2) + i^2\sin(z_1)\sin(z_2)$$

$$= \cos(z_1)\cos(z_2) - i(\cos(z_1)\sin(z_2) + \sin(z_1)\cos(z_2)) - \sin(z_1)\sin(z_2)$$

$$= \cos(z_1)\cos(z_2) - \sin(z_1)\sin(z_2) - i(\cos(z_1)\sin(z_2) + \sin(z_1)\cos(z_2)).$$

And this is as desired.

(b) If we know that $\sin(z_1+z_2) = \frac{1}{2i}(e^{iz_1}e^{iz_2} - e^{-iz_1}e^{-iz_2})$. If we substitute $e^{iz_1}e^{iz_2}$, $e^{-iz_1}e^{-iz_2}$ in the

equation, which are obtained in part a. Then we know that

$$\sin(z_1 + z_2) = \frac{1}{2i} ((\cos(z_1)\cos(z_2) - \sin(z_1)\sin(z_2) + i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)))$$

$$- ((\cos(z_1)\cos(z_2)) - (\sin(z_1)\sin(z_2)) - i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)))$$

$$= \frac{1}{2i} (\cos(z_1)\cos(z_2) - \sin(z_1)\sin(z_2) + i(\sin(z_1)\sin(z_2) + \cos(z_1)\sin(z_2))$$

$$- \cos(z_1)\cos(z_2) + \sin(z_1)\sin(z_2) + i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2))$$

$$= \frac{1}{2i} (i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)) + i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2))$$

$$= \frac{1}{2i} (2i(\sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2))$$

$$= \sin(z_1)\cos(z_2) + \cos(z_1)\sin(z_2)$$

[5]

- (a) We know the identity $\sin^2(z) + \cos^2(z) = 1$, then if we divide each side by $\cos^2(z)$ we get that $\frac{\sin^2(z)}{\cos^2(z)} + \frac{\cos^2(z)}{\cos^2(z)} = \frac{1}{\cos^2(z)} \Rightarrow \tan^2(z) + 1 = \sec^2(z)$ as desired.
- (b) We know the identity $\sin^2(z) + \cos^2(z) = 1$, then if we divide each side by $\sin^2(z)$, we get that $\frac{\sin^2(z)}{\sin^2(z)} + \frac{\cos^2(z)}{\sin^2(z)} = \frac{1}{\sin^2(z)} \Rightarrow 1 + \cot^2(z) = \csc^2(z)$ as desired.

[9]

(a) We know that $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$. Therefore we know that

$$\begin{aligned} |\cos(z)| &= |\frac{e^{iz} + e^{-iz}}{2} \\ &\leq |\frac{e^{iz}}{2}| + |\frac{e^{-iz}}{2}| \\ &\leq |\frac{e^{i(x+iy)}}{2}| + |\frac{e^{-i(x+iy)}}{2}| \\ &= |\frac{e^{ix-y}}{2}| + |\frac{e^{-ix+y}}{2}| \\ &= |\frac{e^{ix}e^{-y}}{2}| + |\frac{e^{-ix}e^{y}}{2}| \\ &\leq \frac{e^{-y}}{2} + \frac{e^{y}}{2} \\ &= \frac{e^{-y} + e^{y}}{2} \\ &= \cosh(y) \\ |\cos(z)| &\leq \cosh(y). \end{aligned}$$

Similarly, since we know that $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$

$$\begin{split} |\sin(z)| &= |\frac{e^{iz} - e^{-iz}}{2i}| \\ &= |\frac{e^{iz} - e^{-iz}}{2}| \\ &\leq |\frac{e^{iz}}{2}| + |\frac{e^{-iz}}{2}| \\ &= |\frac{e^{i(x+iy)}}{2}| + |\frac{e^{-i(x+iy)}}{2}| \\ &= |\frac{e^{ix-y}}{2}| + |\frac{e^{-ix+y}}{2}| \\ &= |\frac{e^{ix}e^{-y}}{2}| + |\frac{e^{-ix}e^{y}}{2}| \\ &\leq \frac{e^{-y}}{2} + \frac{e^{y}}{2} \\ &= \cosh(y) \\ |\sin(z)| &\leq \cosh(y). \end{split}$$

Then given that $|\sin(z)|^2 = \sin^2(x) + \sinh^2(y) \Rightarrow |\sinh(y)| \le |\sin(z)|$ which implies that $|\sinh(y)| \le |\sin(2)| \le \cosh(y)$ as desired.

(b) Since we already know that $|\cos(z)| \le |\cosh(y)|$. Given that $|\cos(z)|^2 = \cos^2(x) + \sinh^2(y) \Rightarrow \sinh^2(y) \le |\cos(z)|^2 \Rightarrow \sqrt{\sinh^2(y)} \le \sqrt{|\cos(z)|^2} \Rightarrow |\sinh(y)| \le |\cos(z)|$. Therefore, we know that $|\sinh(y)| \le |\cos(z)| \le |\cosh(y)|$ as desired.

[5]

By the properties of sinh we have that $\sinh(z) = -i\sin(iz)$. Therefore, we have that $|\sinh(z)|^2 = |-i\sin(i(x+iy))|^2 = |-i|^2|\sin(-y+xi)|^2 + |\sin(-y+xi)|^2$. (15) states that $|\sin(x+iy)|^2 = \sin^2(x) + \sinh^2(y)$. So we then have that $|\sin(-y+xi)|^2 = \sin^2(y) + \sinh^2(x)$ as desired.

[16]

(a) Given that

$$\sinh(z) = i$$

$$\sinh(x + iy) =$$

$$\sinh(x)\cos(y) + i\cosh(x)\sin(y) =$$

$$\sinh(x)\cos(y) = 0$$

$$\cosh(x)\sin(y) = 1.$$

We have that either $x=0,y=(2n-1)\frac{\pi}{2}$ or both. When $x=0,y=\frac{\pi}{2}+2n\pi$, then there is no solution if $y=(2n-1)\frac{\pi}{2}$. Solutions are $z=(2n+\frac{1}{2})\pi i$.

(b) Given $\cosh(z) = \frac{1}{2} \Rightarrow \cosh(z) = \frac{e^z + e^{-z}}{2} = \frac{1}{2} \Rightarrow e^z + e^{-z} = 1$. Thus, $e^z + e^{-z} = 2\cos(y)\cosh(x) + 2i\sin(y)\sinh(x) = 1 + 0i$. Therefore, $\sin(y)\sinh(x) = 0$ and $\cos(y)\cosh(x) = \frac{1}{2}$. Therefore, $\sinh(z) = 0, \cos(y) = \frac{1}{2} \Rightarrow x = 0, y = 2n\pi \pm \frac{\pi}{y} \Rightarrow z = (2n\pi \pm \frac{\pi}{y})i \Rightarrow z = (2n \pm \frac{1}{y})\pi i$.

[2]

(a) We will first write that $\sin(z) = \sin(x + iy) = \sin(x)\cosh(y) + \cos(x)\sinh(iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$. Therefore, $\sin(x)\cosh(y) + i\cos(x)\sinh(y) = 2$. If we compare the real and imaginary parts, we get that $\sin(x)\cosh(y) = 2$ and $\cos(x)\sinh(y) = 0$. If y = 0 then the real part becomes $\sin(x) = 2$ which is not possible because the range of $\sin(x)$ is [-1, 1] so $y \neq 0$,

 $\sinh(y) \neq 0$, and $\cos(x) = 0$ from the imaginary part. Therefore, $x = 2n\pi - \frac{\pi}{2}$. In this case, the real part becomes $(-1)^n \cosh(y) = 2$. Since $\cosh(y)$ is always positive, then x has to be $2n\pi + \frac{\pi}{2}$. Then, $\cosh(y) = 2$ or $y = \cosh^{-1}(2)$. Therefore, the only roots of $\sin(z) = 2$ are $z = 2n\pi + \frac{\pi}{2} + i\cosh^{-1}(2)$. Now we want to show that $\cosh^{-1}(2) = \pm \ln(2 + \sqrt{3})$. We have that $y = \cosh^{-1}(2) \Rightarrow \cosh(y) = 2 \Rightarrow \frac{e^y + e^{-y}}{2} = 2 \Rightarrow e^y + \frac{1}{e^y} = y \Rightarrow (e^y)^2 - ye^y + 1 = 0$. This is the in the form of a quadratic equation in terms of e^y . Then by using the quadratic equation we find that the roots are $2 \pm \sqrt{3}$. Then if we take the logarithm of this, we find that $\ln(2 - \sqrt{3}) = -\ln(2 + \sqrt{3})$ which leads to $y = \pm \ln(2 + \sqrt{3})$, and $\cosh^{-1}(2) = \pm \ln(2 + \sqrt{3})$. Therefore, the only roots of $\sin(z) = 2$ are $z = (2n\pi + \frac{\pi}{2}) \pm i\ln(2 + \sqrt{3})$.

(b) We have that $\sin^{-1}(w) = -i\log(iw + \sqrt{1-w^2})$ from the data we knwo that $\sin(z) = 2$ as $z = \sin^{-1}(2)$. But putting w = 2 in $\sin^{-1}(w) = -i\log(iw + \sqrt{1-w^2})$ we get that $z = -i\log(2i \pm i\sqrt{3})$. Now we find $\log((2+\sqrt{3})i)$ and $\log((2-\sqrt{3})i)$ as if $z = re^{i\theta}$ is a nonzero complex number, the argument θ has only one of the values of $\theta = \Theta + 2n\pi$ where $\Theta = Arg(z)$ and $\log(z) = \ln r + i(\Theta + 2n\pi)$. Let $(2+\sqrt{3})i = re^{i\theta}$. Then, $(2+\sqrt{3})i = r\cos(\theta) + ir\sin(\theta) \Rightarrow r\cos(\theta) = 0$, $r\sin(\theta) = (2+\sqrt{3})$. Then we get that $r = (2+\sqrt{3})$ and therefore, $\cos(\theta) = 0$, $\sin(\theta) = 1$, then $\theta = \frac{\pi}{2}$, $Arg(i) = \frac{\pi}{2}$, $\Theta = \frac{\pi}{2}$. Therefore, $\log((2+\sqrt{3})i) = \ln(2+\sqrt{3}) + i(\frac{\pi}{2}+2n\pi)$. Now, $z = -i\ln(2+\sqrt{3}) + \frac{\pi}{2} + 2n\pi$. Let $(2-\sqrt{3})i = re^{i\theta} = r\cos(\theta) = ir\sin(\theta)$. Then we know that $r\cos(\theta) = 0$, $r\sin(\theta) = 1$ which implies that $\theta = \frac{\pi}{2}$, $Argh(i) = \frac{\pi}{2}$, $\Theta = \frac{\pi}{2}$. Thus $\log((2-\sqrt{3})i) = \ln(2-\sqrt{3}) + i(\frac{\pi}{2}+2n\pi)$. Now, $z = -i\ln(2-\sqrt{3}) + \frac{\pi}{2}+2n\pi$. Then we have that $\ln(2-\sqrt{3}) = -\ln(2+\sqrt{3})$. Then we know that $z = -i\ln(2+\sqrt{3}) + \frac{\pi}{2} + 2n\pi$. Then we arrive to $z = (\pm i\ln(2+\sqrt{3}) + (\frac{\pi}{2}+2n\pi))$.

[2]

- (a) $\int_0^1 (1+it)^2 dt = \int_0^1 1 t^2 + 2it dt = t \Big|_0^1 + \frac{1}{3} \Big|_0^1 + it^2 \Big|_0^1 = 1 \frac{1}{3} + i = \frac{2}{3} + i$ as desired.
- (b) $\int_{1}^{2} (\frac{1}{t} i)^{2} dt = \int_{1}^{2} (\frac{1}{t^{2}} \frac{2i}{t} + i^{2}) dt = \int_{1}^{2} (\frac{1}{t^{2}} 1) dt 2i \int_{1}^{2} \frac{dt}{t} = -\frac{1}{t} |_{1}^{2} t|_{1}^{2} 2i \ln(t)|_{1}^{2} = -(\frac{1}{2} 1) (2 1) 2i(\ln(2) \ln(1)).$ So $\in_{1}^{2} (\frac{1}{t} i)^{2} dt = -\frac{1}{2} 2i \ln(2) = -\frac{1}{2} i \ln(4)$ as desired.
- (c) $\int_0^{\frac{\pi}{6}} e^{i2t} dt = \int_0^{\frac{\pi}{6}} (\cos(2t) + i\sin(2t) dt = \int_0^{\frac{\pi}{6}} \cos(2t) dt + i \int_0^{\frac{\pi}{6}} \sin(2t) dt = \frac{1}{2} \sin(2t) \Big|_0^{\frac{\pi}{6}} + i \left(-\frac{1}{2} \cos(2t)\right|_0^{\frac{\pi}{6}} = \frac{1}{2} \left(\frac{\sqrt{3}}{2} 0\right) \frac{i}{2} \left(\frac{1}{2} 1\right).$ Therefore, we have that $\int_0^{\frac{\pi}{6}} e^{i2t} dt = \frac{\sqrt{3}}{4} + \frac{i}{4}.$
- (d) If M > 0, we have that

$$\int_0^M e^{-zt} dt = \int_0^M e^{-(x+iy)t} dt = \int_0^M e^{-xt} e^{-iyt} dt = \int_0^M e^{-xt} \cos(yt) dt - i \int_0^M e^{-xt} \sin(yt) dt.$$

Then if we say $M \to \infty$,

$$\int_0^\infty e^{-zt} dt = \int_0^\infty e^{-xt} \cos(yt) dt - i \int_0^\infty e^{-xt} \sin(yt) dt,$$

where both of these integrals converge since $x = \Re(z) > 0$. Since $\frac{d}{dt}(e^{-zt}) = -ze^{-zt}$, then for M > 0, we know that

$$\int_{0}^{M} e^{-zt} dt = -\frac{1}{z} e^{-zt} \Big|_{0}^{M} = \frac{1}{z} (1 - e^{-Mz}),$$

and since $|e^{-Mz}|=e^{-Mx}|e^{-iMy}|=e^{-Mx}\to 0$ as $M\to\infty$ provided that x>0, then we have that

$$\int_0^\infty e^{-zt} dt = \lim_{M \to \infty} \int_0^M e^{-zt} dt = \frac{1}{z}$$

provided that $x = \Re(z) > 0$. If we then equate the real and imaginary parts, we get that

$$\int_0^\infty e^{-xt}\cos(yt)\,dt = \frac{x}{x^2 + y^2}$$

and

$$\int_0^\infty e^{-xt} \sin(yt) \, dt = -\frac{y}{x^2 + y^2}.$$

[3]

Let $m, n \in \mathbb{Z}$ such that $m \neq n$, then we have that $\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \int_o^{2\pi} e^{i(m-n)\theta} = \frac{1}{i(m-n)} e^{i(m-n)\theta} |_0^{2\pi} = \frac{1}{i(m-n)} (e^{i(m-n)2\pi} - e^{i(m-n)0}) = \frac{1}{i(m-n)} (1-1)$ since $e^{i(m-n)2\pi} = e^{i0} = 1$. Therefore, we have that $\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = 0$ if $m \neq n$. Also, if m = n, then we have that $e^{im\theta} e^{-in\theta} = 1$, so then $\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \int_0^{2\pi} 1 dt = 2\pi$ if m = n.