

## TMA4125 Matematikk

4N

Spring 2017

Norwegian University of Science and Technology Institutt for matematiske fag

Exercise set 1

Sketch the graph of the following functions f and g, which are periodic with period 2, and are defined as follows for  $|x| \le 1$ :

$$f(x) = |x| + 1$$
  

$$g(x) = \begin{cases} 2x + 1 & \text{for } -1 \le x < 0 \\ \cos \pi x & \text{for } 0 \le x < 1 \end{cases}$$

2 a) Find the Fourier series of the  $2\pi$ -periodic function f given for  $|x| \leq \pi$  by

$$f(x) = \begin{cases} -x & \text{for } -\pi \le x < 0\\ 0 & \text{for } 0 \le x < \pi \end{cases}$$

Compute the values of the Fourier series at the following points:  $x = -\pi, x = \frac{-\pi}{2}, x = 0, x = \frac{\pi}{2}$ .

- b) Sketch the graph of f together with the first three terms in its Fourier series.
- $\boxed{\bf 3}$  Which of the following functions  $f:\mathbb{R}\to\mathbb{R}$  are odd, even, or neither?

**a)** 
$$f(x) = x^2$$

**b)** 
$$f(x) = x^3$$

c) 
$$f(x) = 2^x$$

(In the remaining examples, g is an even function and h is an odd function)

**d)** 
$$f(x) = g(x) - h(x)$$

e) 
$$f(x) = g(x) + h(x)$$

$$f) f(x) = g(x)h(x)$$

**g)** 
$$f(x) = g(h(x))$$

**a)** Use the identity  $\sin a \cos b = \frac{1}{2} (\sin(a+b) + \sin(a-b))$  to prove the following orthogonality relation (for any positive integers m, n):

$$\int_{-\pi}^{\pi} \sin nx \cos mx \, dx = 0$$

b) Let  $f(x) = \sin(8x)\cos(x)$ . Is this function odd, even, or neither?

| <b>c</b> ) | Calculate the Fourier series of the above function (hint: you me to use the trigonometric identity given in part a) | y find it helpful |
|------------|---------------------------------------------------------------------------------------------------------------------|-------------------|
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |
|            |                                                                                                                     |                   |