⑤	Int. Cl.:	. J7 d, 51/30
	•	

BUNDESREPUBLIK DEUTSCHLAND

Deutsche Kl.: 12 p, 7/01

(1) (1)	Offenlegungsschrift	2150686
	——————————————————————————————————————	

Aktenzeichen:

P 21 50 686.5

Anmeldetag:

12. Oktober 1971

Offenlegungstag: 19. April 1973

Ausstellungspriorität:	
------------------------	--

- 30 Unionspriorität
- ② Datum:

2

- 33 Land:
- Aktenzeichen:
- Bezeichnung: 6-Amino-uracil-5-carbonsäurethiomide
- 61 Zusatz zu: __
- Ausscheidung aus: __
- (f) Anmelder: Badische Anilin- & Soda-Fabrik AG, 6700 Ludwigshafen
 - Vertreter gem. §16 PatG: —
- Miess, Rolf, Dr., 6707 Schifferstadt; Eilingsfeld, Heinz, Dr., 6710 Frankenthal

Unser Zeichen: 0.Z. 27 743 Bg/Wil 6700 Ludwigshafen, 11.10.1971

6-Amino-uracil-5-carbonsäure-thioamide

Die Erfindung betrifft Verbindungen der allgemeinen Formel I

in der

R¹ Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aralkyl,

R² unabhängig von R¹ Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl, Phenyl oder einen gegebenenfalls substituierten heterocyclischen Rest,

R³ Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl,

 R^4 Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl,

R³ und R⁴ zusammen mit dem Stickstoff einen heterocyclischen Rest

R⁵ einen Sulfonyl- oder Acylrest bedeuten.

Vorzugsweise sind für R¹ und R² Alkylreste mit 1 bis 4 C-Atomen, durch Alkoxy mit 1 bis 4 C-Atomen, Dialkylamino mit insgesamt 2 bis 8 C-Atomen oder Alkanoyloxy mit 2 bis 4 C-Atomen substituierte Alkylreste mit 2 oder 3 C-Atomen, gegebenenfalls durch Methyl substituiertes Cyclohexyl und für R² außerdem gegebenenfalls durch Chlor, Brom, Methoxy, Äthoxy, Methyl oder Äthyl substituiertes Phenyl zu nennen.

Im einzelnen seien für R¹ und R² beispielsweise genannt: Methyl, Äthyl, n- oder i-Propyl oder -Butyl, Allyl, Methoxyäthyl, -propyl oder -butyl, Äthoxyäthyl, -propyl oder -butyl, Butoxyäthyl, -propyl oder -butyl, Dimethylamino-, Diäthyl-, Dipropyl-, Dibutyl-, N-Methyl-N-butyl-aminoäthyl oder -amino-propyl, Acetoxy-, Propionyloxy- oder Butyryloxyäthyl oder -propyl, Cyclohexyl, Methylcyclohexyl, Benzyl oder Phenyläthyl und für R² Chlorphenyl, Dichlor-, Brom-, Methoxy-, Äthoxy-, Methyl- oder Dimethylphenyl.

Heterocyclische Reste \mathbb{R}^2 leiten sich z. B. von Furan oder Thiophen ab. Im einzelnen seien z. B. Thienyl oder Furyl genannt.

Reste R³ und R⁴ sind neben Wasserstoff beispielsweise Alkyl mit 1 bis 4 C-Atomen, durch Alkoxy, Cyan, Alkanoyloxy oder Dialkylamino substituiertes Alkyl, Cyclohexyl, Benzyl, Phenyläthyl, Phenyl oder durch Chlor, Methyl, Methoxy oder Athoxy substituiertes Phenyl.

Im einzelnen seien beispielsweise noch genannt: Methyl, Äthyl, n- oder iso-Propyl oder -Butyl, Methoxyäthyl, -propyl oder -butyl, Äthoxyäthyl, -propyl oder -butyl, Butoxyäthyl, -propyl oder -butyl, Cyanäthyl, Acetoxyäthyl, Propionyl-oxy-äthyl, Dimethylaminopropyl oder -butyl oder Dibutylaminopropyl.

Zusammen mit dem Stickstoff bedeuten R³ und R⁴ beispielsweise den Rest des Pyrrolidins, Piperidins, Morpholins oder N-Methylpiperazins.

Als Sulfonylreste R⁵ sind Alkyl-, Aryl-, Cycloalkyl-, Aralkyl-oder Heteroarylsulfonylreste zu nennen.

Einzelreste sind z. B.: Methylsulfonyl, Äthyl-, Propyl-, Butyl-, Cyclohexyl-, Benzyl-, Phenyläthyl-, Phenyl-, Chlorphenyl-, Dichlorphenyl-, Methylphenyl-, Dimethylphenyl- oder Thienyl-sulfonyl.

Acylreste R⁵ sind beispielsweise Alkanoylgruppen, wie Acetyl, Propionyl, Butyryl, Caproyl, Hexanoyl, Capryloyl, B-Athylhexanoyl, Chloracetyl, Bromacetyl, &-Chlorpropionyl, B-Chlorpropionyl, J-Chlor-n-butyryl oder &-Bromisovaleroyl, Aralkanoylreste, wie Phenylacetyl, Tolylacetyl, Methoxyphenylacetyl, Chlorphenylacetyl

- ゥ *-*

oder Dichlorphenylacetyl, Alkoxy- oder Aroxycarbonylreste, wie Methoxycarbonyl, Äthoxycarbonyl, Propoxy-, Butoxy- oder Phenoxy-carbonyl, Aroylreste, wie Benzoyl, durch Chlor, Brom, Nitro, Methoxy, Äthoxy oder Methyl substituiertes Benzoyl, Naphthoyl, Phenanthronyl oder Cinnamoyl, oder heterocyclische Reste wie Furoyl oder Thienoyl.

Technisch von besonderer Bedeutung sind Verbindungen der Formel [1a]

in der

A Wasserstoff, Alkyl mit 1 bis 4 C-Atomen oder Alkoxyalkyl mit insgesamt 3 bis 8 C-Atomen,

A¹ und A² Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen und

A³ Alkylsulfonyl mit 1 bis 4 C-Atomen, Arylsulfonyl, Alkoxy-carbonyl mit 2 bis 5 C-Atomen, Phenoxycarbonyl oder Aroyl bedeuten.

Zur Herstellung der 6-Aminouracil-5-carbonsäurethioamide kann man ein 6-Amino-uracil der allgemeinen Formel II

in der R^1 , R^2 , R^3 und R^4 die angegebene Bedeutung haben, mit Isothio-cyanaten der allgemeinen Formel III

$$R^5$$
-N=C=S III,

umsetzen, wobei R⁵ die angegebene Bedeutung hat.

Verbindungen der Formel II sind beispielsweise: 6-Aminouracil

- 1-Methyl-6-amino-uracil
- 1-Athyl-6-amino-uracil
- 1-n-Propyl-6-amino-uracil
- 1-Ally1-6-amino-uracil
- 1-n-Butyl-6-amino-uracil
- 1-Isobuty1-6-amino-uracil
- 1-Benzyl-6-amino-uracil
- 1-Methoxyäthyl-6-amino-uracil
- 1-Athoxyathyl-6-amino-uracil
- 1-Isopropoxyäthyl-6-amino-uracil
- 1-/-Methoxypropyl-6-amino-uracil
- 1-/-Athoxypropy1-6-amino-uracil
- 1-7-Propoxypropyl-6-amino-uracil
- 1-7-Isopropoxypropyl-6-amino-uracil
- 1-7-Butoxypropy1-6-amino-uracil
- 1-B-Dimethylaminoathyl-6-amino-uracil
- 1-Phenyl-6-amino-uracil
- 1-p-Chlorpheny1-6-amino-uracil
- 1-p-Tolyl-6-amino-uracil
- 1,3-Dimethyl-6-amino-uracil
- 1,3-Diäthyl-6-amino-uracil
- 1,3-Di-i-propyl-6-amino-uracil
- 1,3-Di-n-propyl-6-amino-uracil
- 1,3-Dially1-6-amino-uracil
- 1,3-Di-n-buty1-6-amino-uracil
- 1,3-Dibenzyl-6-amino-uracil
- 1,3-Di-methoxyäthyl-6-amino-uracil
- 1,3-Di-äthoxyäthyl-6-amino-uracil
- 1,3-Di-isopropoxyäthyl-6-amino-uracil
- 1,3-Di-f-methoxypropyl-6-amino-uracil
- 1,3-Di-7-äthoxypropyl-6-amino-uracil
- 1,3-Di-7-isopropoxypropyl-6-amino-uracil
- 1,3-Di- γ -butoxypropyl-6-amino-uracil
- 1-Athyl-3-methyl-6-amino-uracil
- 1-n-Propyl-3-methyl-6-amino-uracil
- 1-Isopropyl-3-methyl-6-amino-uracil
- 1-n-Buty1-3-methy1-6-amino-uracil
- 1-Isobuty1-3-methy1-6-amino-uracil
- 1-Ally1-3-methy1-6-amino-uracil

- 1-Cyclohexyl-3-methyl-6-amino-uracil
- · 1-p-Chlorphenyl-3-methyl-6-amino-uracil
 - 1-Phenyl-3-methyl-6-amino-uracil
 - 1-Furfuryl-3-methyl-6-amino-uracil
 - 1-Methyl-3-äthyl-6-amino-uracil
 - 1-n-Propyl-3-äthyl-6-amino-uracil
 - 1-Isopropyl-3-äthyl-6-amino-uracil
 - 1-Allyl-3-äthyl-6-amino-uracil
 - 1-n-Butyl-3-äthyl-6-amino-uracil
 - 1-n-Hexy1-3-äthy1-6-amino-uracil
- . 1-Cyclohexyl-3-äthyl-6-amino-uracil
 - 1-7-Phenylpropy1-3-äthyl-6-amino-uracil
 - 1-Methyl-3-n-propyl-6-amino-uracil
 - 1-Athyl-3-n-propyl-6-amino-uracil
 - 1-Allyl-3-n-propyl-6-amino-uracil
- 1-Athyl-3-allyl-6-amino-uracil
- 1-Isobutyl-3-allyl-6-amino-uracil
- 1-Phenyl-3-allyl-6-amino-uracil
- 1-Benzyl-3-allyl-6-amino-uracil
- 1-Athyl-3-n-butyl-6-amino-uracil
- 1-Allyl-3-n-butyl-6-amino-uracil
- 1-Methoxyathy1-3-methyl-6-amino-uracil
- 1-Athoxyathyl-3-methyl-6-amino-uracil
- 1-Isopropoxyäthyl-3-methyl-6-amino-uracil
- 1-7-Methoxypropy1-3-methyl-6-amino-uracil
- 1-/-Athoxypropyl-3-methyl-6-amino-uracil
- 1- /-Isopropoxypropyl-3-methyl-6-amino-uracil
- 1-1-Butoxypropyl-3-methyl-6-amino-uracil
- 1-Phenyl-3-/-methoxypropyl-6-amino-uracil
- 1,3-Dimethyl-6-methylamino-uracil
- 1,3-Diäthyl-6-methylamino-uracil
- 1.3-Di-n-Propyl-6-methylamino-uracil
- 1,3-Di-i-Propyl-6-methylamino-uracil
- 1,3-Di-n-Butyl-6-methylamino-uracil
- 1,3-Di-i-Butyl-6-methylamino-uracil
- 1,3-Di-Benzyl-6-methylamino-uracil
- 1,3-Dimethyl-6-äthylamino-uracil
- 1.3-Dimethyl-6-benzylamino-uracil
- 1,3-Dimethyl-6-butylamino-uracil
- 1,3-Dimethyl-6-(/-methoxy)-propylamino-uracil

```
1,3-Dimethyl-6-(/-athoxy)-propylamino-uracil
```

1,3-Dimethy1-6-(7-butoxy)-propylamino-uracil

2150686

1,3-Dimethyl-6-methoxy-athylamino-uracil

1,3-Dimethyl-6-pyrrolidono-uracil

1,3-Dimethyl-6-piperidino-uracil

1,3-Dimethyl-6-dimethylamino-uracil

1,3-Dimethyl-6-phenylamino-uracil

Die Herstellung dieser Verbindungen erfolgt nach bekannten Verfahren, siehe z. B. J. Org. Chem. 16, 1879 bis 1890 (1951).

Als Isothiocyanate der Formel III können beispielsweise Sulfonylsenföle verwendet werden; als Beispiele seien angeführt:

p-Toluolsulfonylsenföl

Benzolsulfonylsenföl

o-Toluolsulfonylsenföl

o-Chlorbenzolsulfonylsenföl

m-Chlorbenzolsulfonylsenföl

p-Chlorbenzolsulfonylsenföl

3,4-Dichlorbenzolsulfonylsenföl

Thiophen-2-sulfonylsenföl

Cyclohexansulfonylsenföl

Methansulfonylsenföl

Athansulfonylsenföl

Die Darstellung der Sulfonylsenföle erfolgt nach bekannten Verfahren, z.B. nach dem in der DAS 1 183 492 beschriebenen.

Verbindungen der Formel III sind neben Sulfonylsenfölen auch Acylsenföle. Als Beispiele seien angeführt:

Benzoylisothiocyanat

4-Methoxy-benzoyl-isothiocyanat

p-Chlor-benzoyl-isothiocyanat

p-Nitro-benzoyl-isothiocyanat

m-Methoxy-benzoyl-isothiocyanat

o-Methyl-benzoyl-isothiocyanat

m-Methyl-benzoyl-isothiocyanat

p-Methyl-benzoyl-isothiocyanat

3,5-Dimethyl-benzoyl-isothiocyanat

2150686

```
2,6-Dichlorbenzoyl-isothiocyanat
2.4.6-Trimethyl-benzoyl-isothiocyanat
3,4,5-Trimethoxy-benzoyl-isothiocyanat
Thienoyl-isothiocyanat
A-Naphtoyl-isothiocyanat
B-Naphtoyl-isothiocyanat
3-Phenanthroyl-isothiocyanat
Phenylacetyl-isothiocyanat
m-Tolylacetyl-isothiocyanat
p-Tolylacetyl-isothiocyanat
m-Methoxyphenylacetyl-isothiocyanat
p-Methoxyphenylacetyl-isothiocyanat
p-Chlorphenylacetyl-isothiocyanat
Carbmethoxy-isothiocyanat
Carbäthoxy-isothiocyanat
Carbbutoxy-isothiocyanat
Phenoxycarbonyl-isothiocyanat
Acetyl-isothiocyanat
Propionyl-isothiocyanat
Butyryl-isothiocyanat
n-Caproyl-isothiocyanat
n-Capryloyl-isothiocyanat
Chloracetyl-isothiocyanat
1-Chlorpropionyl-isothiocyanat
B-Chlorpropionyl-isothiocyanat
X-Brom-iso-butyryl-isothiocyanat
\gamma-Chlor-n-butyryl-isothiocyanat
```

Die Herstellung der Acylisothiocyanateerfolgt nach bekannten Verfahren, z. B. durch Umsetzung der entsprechenden Acylhalogenide mit Kalium-, Natrium-, Ammonium- oder Bleirhodanid in inerten Lösungsmitteln. Siehe z. B. Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. 9, S. 879, G. Thieme, Stuttgart, 1955, oder J. Org. Chemistry 29, 2261 (1964) oder Pharmazeutische Zentralhalle 107, S. 277 (1968).

Wie die mesomeren Grenzformeln der Acylsenföle

zeigen, haben sie zwei elektrophile Zentren, die reagieren können. Diese Reaktionsmöglichkeiten sind in der Literatur schon mehrfach beschrieben worden (vgl. dazu Chem. Ber. 104 1582 (1971)).

Da weiterhin die 6-Aminouracile zwei Möglichkeiten für einen elektrophilen Angriff bieten, nämlich die 5-Stellung im Ring und die 6-Aminogruppe, war es überraschend und nicht vorhersehbar, daß bei der Umsetzung der Komponenten II und III ausschließlich die Verbindungen der Formel I erhalten werden.

Man führt die Umsetzung der 6-Aminouracile mit den Verbindungen der Formel III zweckmäßigerweise bei Temperaturen zwischen 10 und 200°C, vorzugsweise 20 und 100°C, in einem gegenüber den Reaktionspartnernindifferenten Lösungs- oder Verdünnungsmittel durch. Als solche kommen beispielsweise 1,2-Dimethoxyäthan, Tetrahydrofuran, Dioxan, Formamid, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidin, Tetramethylensulfon, Benzol, Toluol, Chlorbenzol, Benzonitril oder Acetonitril in Betracht. Die Reaktion kann auch ohne Lösungsmittel unter Verwendung von überschüssiger Verbindung der Formel III ausgeführt werden.

Im ersten Fall löst oder suspendiert man z. B. 0,1 Mol eines Aminouracils der Formel II bei Raumtemperatur im Lösungs- oder Verdünnungsmittel und gibt dann unter Rühren mindestens 0,1 Mol einer Verbindung der Formel III zu. Fs tritt meist sofort eine exotherme Reaktion ein. Zur Vervollständigung der Umsetzung wird zusätzlich noch 1/2 bis 3, vorzugsweise 1 bis 2 Stunden auf 40 bis 80°C erwärmt. Die häufig schwerlöslichen Umsetzungsprodukte kristallisieren beim Abkühlen meist aus, wenn nötig kann man einen Teil des Lösungsmittels unter vermindertem Druck abdestillieren oder die konzentrierte Lösung mit Äther, Petroläther, Cyclohexan oder auch Wasser versetzen, um die Abscheidung zu erzielen oder zu vervollständigen.

Die Aufarbeitung der Reaktionsmischungen erfolgt nach üblichen Hethoden, z. E. durch Absaugen des Niederschlages, Waschen mit

z. B. Wasser, Alkoholen, Ather, Petroläther oder Cyclohexan und Trocknung unter vermindertem Druck.

Auch bei der Ausführung der Reaktion mit überschüssiger Verbindung der Formel III, wobei man z. B. das 6-Aminouracil in die ungefähr 4- bis 8-fache molare Menge Senföl zweckmäßigerweise unter Rühren einträgt und nach dem Abklingen der exothermen Reaktion noch 1 bis 3 Stunden auf 40 bis 80°C erwärmt, verwendet man bei der Isolierung des Reaktionsproduktes vorteilhaft ein dieses nicht lösendes Verdünnungsmittel, z. B. einen aliphatischen oder cycloaliphatischen Kohlenwasserstoff. Das Reaktionsprodukt fällt dann in einer leicht absaugbaren Form an; aus dem Filtrat läßt sich das nicht umgesetzte Isothiocyanat durch Fraktionierung gewinnen.

Man erhält die Verbindungen der Formel I meist schon in sehr reiner Form. Sie lassen sich durch Umkristallisieren z. B. aus Alkoholen, Acetonitril, Benzol, Methylglykol oder Dimethylformamid weiter reinigen.

Die neuen Verbindungen sind wertvolle Zwischenprodukte zur Herstellung von Farbstoffen und Arzneimitteln.

Die in den Beispielen angegebenen Teile sind Gewichtsteile; Prozentangaben beziehen sich auf Gewichtsprozente. Zur Herstellung der in der Tabelle durch Angabe der Substituenten charakterisierten Verbindungen der Formel I wurde folgende allgemeine Arbeitsweise gewählt:

Zu 0,1 Mol 6-Amino-uracil, die in 30 bis 300 Teilen des in der Tabelle angegebenen Lösungsmittels gelöst oder suspendiert sind, werden 0,1 Mol Isothiocyanat bei Raumtemperatur unter Rühren zugegeben. Wegen der Empfindlichkeit der Isothiocyanate muß dabei unter Ausschluß von Feuchtigkeit gearbeitet werden. Reaktionstemperatur und Reaktionszeit sind der Tabelle zu entnehmen. Der Ablauf der Reaktion läßt sich chromatographisch verfolgen. Die Aminouracilthioamide sind meist schwerlöslich und kristallisieren während der Reaktion oder beim Abkühlen der Lösung aus. Die Niederschläge werden abgesaugt, mit Methanol oder Äther ausgewaschen und unter vermindertem Druck bei 50°C getrocknet. Lös-

liche Verbindungen werden entweder durch Zugabe von Wasser oder Äther zur abgekühlten Reaktionslösung ausgefällt oder man destilliert das Lösungsmittel unter vermindertem Druck ab und verrührt den Rückstand mit Äther, wobei das Reaktionsprodukt auskristallisiert.

Die rohen Umsetzungsprodukte sind meist sehr rein; für analytische Zwecke werden sie aus den angegebenen Lösungsmittel umkristallisiert.

Nach dieser allgemeinen Vorschrift wurden die in der folgenden Tabelle aufgeführten 6-Amino-uracil-5-carbonsäurethioamide hergestellt.

Fp. (°G)	v 360	>360	245-255	308-312	244-246	240-248	268-270	223-224	226-228	256-260	250-260	> 320	234-236	60686
Ausboute (%)	81	58,5	87	. 85	61,5	73,6	92,	92	94 .	86	94	68,5	98	
Reaktions- temperatur (oC)	140	140	90	09	25	08	70	. 25	08	25	70	40	08	
Reaktions- zeit (h)	8	CI	-	~	. 91		-	16	-	4	Υ-	8	-	· ·
Lösungs- nittel	NMP	NMP	ch ₂ cn	Hzcen	H ₂ ccn	Hzcon	H ₂ CCN	H ₂ ccN	H ₂ CCN	H CCN	H ₂ ccN	H CCN	H ₃ ccN	
n.5	co-oc ₂ H ₅	c0−c ₆ H ₅	so ₂ -c ₆ H ₄ -cH ₂ (P)	SO2-CH3	302-c6H4-CH3 (P)	$so_2-c_6H_4-cH_3$ (P)	502-CH3	so ₂ -c _{HA} -cH ₃ (P)	(a) \$10-08 (b)	SO ₂ -CH ₂	so ₂ -c _H ²	CO-C _{6H₄} -NO ₂ (P)	SO ₂ -C ₆ H ₄ -CH ₃ (P)	
n.4	ш	Ħ	Ħ	四	Ħ	Ħ	н	田	н	田	Ħ	щ	#.	<i>.</i>
n,2	11.	=	Ħ	Ħ	Ħ	Ħ	щ	Ħ	Ħ		Ħ	Ħ	坩	
ਟੂਜ਼	ц	ţi.	CII,	CH ₂	C ₂ H ₅	C ₉ H _E	CoHE	CH3-CH-CH3	CHO=HO-CHO	CHO=HO-CHO	CHD=HD-CHD	CH2-CHE	сп ₂ -с ₁₁ 5	
	Ħ	Ŀ	н	Ħ	Ħ.	п	ם	Щ	Ħ	н	Ħ	田	¤	
.er.cpto.e.	-		N".		(9 2		/ 1	2 2	6	~	= CAN	12	•	

BAD ORIGINAL

	15	£ .	<u>დ</u>	9	0	. 8	38	<u>9</u> 2		4	<u>0</u>	Ō	. Z	15
Fp.	243-245	240-243	315-318	236-240	> 300	256-258	256-258	254-256		243-244	148-150	> 360	250-251	
Ausbeute (%)	92.	89	81,5	. 99	59	52	89,5	29	11	93	70	77,8	. 16	
Reaktions- temperatur (og)	25	70	09	. 09	40	100	80	. 65	25	. 25	50		25	
Reaktions- zeit (h)	. 4		Ø	Ø	4	N.		. 8	4	16	*-	24	2	
Lösungs- mittel	Hzcon	H ₂ CCN	DNT	DMF	DMF	DME	CH ₂ CN	THE	DMF	H ₂ ccN	DME	DME	CH ₂ CN	
я5	SO2-CH3	SO2-CH3	co-oc ₂ H ₅	so2-c6H4-cH3 (P)	$co-c_{6H_4}-No_2$ (P)	CO-OC2H5	со-ос ₂ н ₅	co-oc ₂ H ₅	CO-C _{6H5} -C1 (P)	so ₂ -c ₆₄ -c _{H₃ (P)}	со-(сн ₂) ₆ -сн ₃	CO-CGH5	502-CH3	
R4	用.	Ħ	Ħ	Ħ	щ	н	· Ħ	Ħ	Ħ	Ħ	н	, H	Ħ	
R ³	Ħ.	Ħ	Ħ	Ħ	¤	Ħ	Ħ	岜	Ħ	Ħ	н	Ħ	Щ	
п.	CH2-CGH5	CH2-CH2	c _H 2	G _{6H} ₅	C ₆ H ₅	CH ₃	CH ₃	CH ₃	CH ₂	CH ₃	CH ₃	CH ₃	CH ₂	
R1	н	Ħ.	Ħ	щ	Ħ	CH ₃	CH ₃	CH ₂	CH ₂	CH ₃	CH ₃	CH ₂	CH ₂	
Beispiel-Nr.	14	15	16	2 O S	<u></u> ₽ 3 8 1	6/		≂. ≅ 3 1	55	. 23	24	25	56	

1														2150
Fp. (°c)	134-136	174-176	176-180	159-161	149-152	108-111	151-153	134-136	116-118	195-198	121-123	178-180	210-214	212-215
Ausbeute (%)	55	. 81	81	94	15	62	89,5	29	. 81	29,5	71,5	88,5	. 92	85
Reaktions- temperatur (°C)	25	25	. 25	25	. 25	25	25	25	25	20	20	. 80	. 01	25
Reaktions- zeit (h)	20	2	20	. 2	20	24	24	20	. 16	-	· • •	<u>-</u>	CV.	4
Lösungs- mittel	CH ₂ CN	CH ₂ CN	CH ₂ CN	CH ₂ CN	THE	THE	THE	CH ₂ CN	CH ₃ CN	DME	CH ₂ CN	CH ₂ CN	CH ₂ CN	ch ₂ cn
R5	SO ₂ -C ₆ H ₄ -CH ₅ (P)	SO2-CH3	so ₂ -c ₆ H ₄ -cH ₃ (P)	so2-cH3	co-oc _{2H5}	со-с _{ен} 5	co-c ₆ H ₅ -c1 (P)			co-(cH2)2-CH3	co-(cH ₂) ₂ -cH ₃	$so_2 - c_6H_4 - cH_3$ (P)	SO2-CH3	SO2-CH3
R4	Ħ	Щ	Ħ	耳	CH ₃	CH ₂	CH ₂	CHS	СПЭ	Ħ	Ħ	Щ	Ħ	Ħ
E24	CH3	CH ₃	$c_{2}^{\rm H_5}$	$G_2^{H_5}$	CH ₂	CH ₃	CH ₂	CH2	CH ₂	щ	Ħ	囯.	ם	щ
R ²	СН3	GH ₃		CH ₂	CH ₂	CII ₂		CH ₂	CH ₂	C2H5	n C ₂ H ₇ n C ₂ H ₇	n C ₂ H ₇ n C ₂ H ₇	n C ₂ H ₇ n C ₂ H ₇	n C ₂ H ₇ n C ₂ H ₇
Œ	CH ₂	CH3	CH ₂	CH ₂	CH ₃	CH ₃	CH ₂	CH ₃	CH ₂	CH ₃	n C ₃ H,	n C ₃ H,	n C ₇ H.	n C ₃ H
Beispiel-Mr.	27	28	59	0£ 3	0 9 %	≈ 8 1 €		13	1 1	36	37	38	39	40

	1													215
₽₽• (°G)	153-156	134-136	153-154	115-120	116-120	151-157	156-158	178-180	91- 93	138-140	192-195	191-195	115-122	174-178
Ausbeute (%)	55,5	. 73	73,5	85	92	87,5	. 08	78	. 73	70	82,4	84	71,5	69,5
Reaktions- temperatur (°C)	25	25	25	25	25	25	25	25	50	09	25	70	50	100
Reaktions- zeit (h)	20	24	24	20	20	5	24	24	-	-	2	•	α	8
Lösungs- mittel	THL	THE	THE	DME	CH ₂ CN	Hocn	H ₃ ccn	H3ccn		H3con	H ₃ ccn	H3ccn	H ₃ CCN	DMF
я5	co-oc ⁵ H ²	co-ce _{H5}	co-c _{6H4} -c1 (P)	co-oc ₂ H ₅	co-oc ₂ H ₅	со-с ^{ен} 5	co-c _{6H4} -c1 (P)	SO ₂ -c ₆ H ₄ -cH ₃ (P)	со-(сн ₂) ₆ сн ₃	CO-C6H4-NO2 (P)	so2-cH3	so ₂ -сн ₃	со-(сн ₂) ₂ сн ₃	co-oc2H5
R.4	н	Ħ	щ	म	Щ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
в3	Н	Ħ,	田	ш	щ	Ħ	Ħ	щ	Ħ	Ħ	щ	щ	Ħ	四
R ²	i c ₃ H7	i GHT	1 CH2	$c_4^{H_9}$	$^{\mathrm{C}_{4}\mathrm{H}_{9}}$	C4H9	n C4H9	n C4H9	n C4H9	n C4 ^H 9	п С4Н9	n C4H9	n C4H9	сн ₂ -с ₆ п ₅ сн ₂ -с ₆ н ₅
в ¹	i c ₃ H ₇	1 CH2	i C ₃ H ₇	$^{\mathrm{C}_{4}\mathrm{H}_{9}}$	$c_4^{\rm H_9}$	$c_{4}^{\mathrm{H}_9}$	n C4H9	n C4H9	п С ₄ ^н 9	n C4H9	п С4Н9	n C ₄ H ₉ n C ₄ H ₉	n C4H9 n C4H9	сн ₂ -с ₆ п ₅
Beispiel-Nr.	41	42	43	44	9 9 6	9 4	L¥ /1	8 ₄	49	50	51	52	53	54

Fp (°c)	177-178	213-215	147-150	164-167	222-223	
Ausbeute (%)	77,2	83,5	9	61	70,5	54
Reaktions- temperatur (OC)	08	25	50	09	25	. 50
Reaktions- zeit (h)	3	16	ς-		72	~
Lösungs- mittel	Hzcon	THE	H ₃ ccn	Hzcon	H ₃ ccN	H ₅ ccn
я5	00-00 ₂ H ₅	so2-c6114-cH3	co-(cH ₂)6-cH ₃	$co-c_6H_4-NO_2$ (P)	so2-cH3	co-(cH ₂) ₂ -cH ₃
в4	н	Ħ	Ħ	Ħ	坩	Ħ
п3	H	Ħ	岜	四	Ħ	Ħ
R2	CH2-C6H5	сн ₂ -с _{н₅}	CH2-CGH5			сн ₂ -с ₆ н ₅
FH.	CH2-C6H5	CH2-C6H5	CH2-C6H5	CH2-C6H5	CH2-CGH5	СH2-Св
Beispiel-Nr.	55	3 92	0 9 2		65	9 131

Patentansprüche

6-Amino-uracil-5-carbonsäure-thioamide der Formel

in der

R¹ Wasserstoff, gegebenenfalls substituiertes Alkyl, Cyclo-alkyl oder Aralkyl,

 ${
m R}^2$ unabhängig von ${
m R}^1$ Wasserstoff, gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl, Phenyl oder einen gegebenenfalls substituierten heterocyclischen Rest,

R³ Wasserstoff, gegebenenfalls substituiertes Alkyl, Cyclo-alkyl, Aralkyl oder Aryl,

R Wasserstoff, gegebenenfalls substituiertes Alkyl, Cyclo-alkyl, Aralkyl oder Aryl,

R³ und R⁴ zusammen mit dem Stickstoff einen heterocyclischen Rest und

R⁵ einen Sulfonyl- oder Acylrest bedeuten.

2. Verbindungen gemäß Anspruch 1 der Formel

in der

A Wasserstoff, Alkyl mit 1 bis 4 C-Atomen oder Alkoxyalkyl mit insgesamt 3 bis 8 C-Atomen,

A¹ und A² Wasserstoff oder Alkyl mit 1 bis 4 C-Atomen und

A³ Alkylsulfonyl mit 1 bis 4 C-Atomen, Arylsulfonyl, Alkoxy-carbonyl mit 2 bis 5 C-Atomen, Phenoxycarbonyl oder Aroyl bedeuten.

3. Ein Verfahren zur Herstellung von Verbindungen gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man ein 6-Aminouracil

2150686

der Formel

in der R^1 , R^2 , R^3 und R^4 die angegebene Bedeutung haben, mit Isothiocyanaten der allgemeinen Formel

$$R^5 - N = C = S$$

umsetzt, wobei R⁵ die angegebene Bedeutung hat.

4. Die Verwendung der Verbindungen gemäß Anspruch 1 oder 2 zur Herstellung von Diazokomponenten.

Badische Anilin- & Soda-Fabrik AG

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)