蜗壳 365

余庆杯项目报告

队长	孙旭磊	PB21000270		
队员1	赵奕	PB21000033		
队员2	张学涵	PB21000079		
子项目	大雾实验工具 & 蜗壳排课工具 & 我的科大 APP			

1 作品名称介绍

我们的作品叫做"蜗壳 365"。"蜗壳"谐音 "我科",是人们对科大的昵称;"365"表示我们 的服务无时无刻不在,"蜗壳 365"所提供的服务 具有普适性,其满足的需求是每一位科大学子都 具有的需求。

这一点,我们是从两大互联网巨头学得的。 微软和谷歌的操作系统、浏览器、搜索引擎等服 务都是面向普罗大众的。正是因为它们致力于打 造每个人都使用的产品,才得以攀登上互联网行 业的顶峰。然而,这些面向普遍群众的市场已经 被先驱者占据,我们如何在其中找到生存的空间 呢?

我们从一个规模稍小但极具重要性的群体——即大学生——开始。目前我们开发的"蜗壳365"是专为科大学子打造的,但这些功能实际上在所有大学中都普遍存在,未来我们有望与友校联手,打造每一位大学生都使用的产品,这是我们的远大目标。

2 项目需求分析

2.1 大雾实验工具

大物实验在评课社区、知乎等网站上一直饱 受争议,有多名同学指出实验报告撰写耗时长、 专业作图软件难以使用、Word 中打数学公式麻 烦等问题。

鉴于此,我们开发了大雾实验工具,它是一款网页应用,无需安装任何软件,更不需要有编程基础,没有任何学习成本。本工具的目标用户是中国科学技术大学本科生,着力于解决其撰写实验报告时最耗时的三件事情,即"绘制图像""计算不确定度""在电脑上书写公式"。

当然,一些高级软件也能出色地完成上述的本工具的功能,如专业绘图软件 Origin,专业计算软件 Matlab 等。但我们的项目不是去取代这些强大的软件,而是将它们本地化。这些软件功能繁多,故学习成本相对较高,但我们的软件为每一个大物实验都写了专门的处理工具,封装到只需要用户上传数据表格的程度。相比动辄几个GB 的专业软件来说,我们的工具更加友好,更加便捷,更加有针对性——更加有效。

2.2 蜗壳排课工具

每个学期的选课前夕,同学们总是细心地筹划他们的理想课程表。为了成功挑选出自己喜爱的课程,他们往往付出许多时间和精力来避免课程之间的时间冲突。在 Excel 表格中,他们反复调整,时而将某个课程替换为另一个课程。

对于不少同学来说,规划课表需要花费超过 一个小时的时间。

我们开发的蜗壳排课工具致力于解决同学们

的这一难题。与大雾实验工具一样,它也是一款 网页应用,免安装,免配置,即点即用,十分方 便。

2.3 我的科大 APP

科大的网络资源虽然丰富,但由于网站分布 散乱。我们在各种 QQ 群中常常看到有人寻找各 种网站的链接。而我的科大将常用的科大网站汇 聚一处,点击即可直接访问。

另外,科大大部分的网站并未针对小屏幕设备进行优化,导致在手机上阅读时经常需要进行缩放才能清晰看见文字。在某些浏览器上,元素重叠的问题甚至导致无法点击功能键。为了解决这个问题,我们的软件进行了深度改造以适应手机浏览,从而使得包括课程表、考试信息等页面在手机上的浏览体验大幅度提升。更为便利的是,这些页面可以直接查看,无需登录教务系统,快速方便。用户还可以创建桌面快捷方式,实现从系统桌面直接访问。

3 项目概要设计

3.1 大雾实验工具

3.1.1 总体功能说明

本工具通过腾讯云服务器搭建于网页平台, 支持任何设备自由访问。传入实验数据后,本 工具立刻完成绘制图像、计算不确定度、生成计 算公式等一系列操作,并将最终结果整理成一份 Word 文档,下载后即可直接使用。本实验工具 支持大学物理-基础实验的 49 个实验,这大大提 升了同学们撰写实验报告的效率。由于本工具只 是将传入的实验数据进行自动分析,故其不会造 成抄袭、造假等学术不端问题。

3.1.2 具体功能点说明

使用本工具时,用户只需输入他们做大物实验时测量到的原始数据,而无需任何额外的计算处理,用户所要做的只有按照规定的格式上传Excel 文档。本工具支持 xlsx, csv 等多种格式的数据表格。具体而言,每个实验都会有一张示例数据表供用户参考,如图 1 的界面所示。用户也可以直接下载示例数据,并直接在它的基础上进行修改。因此,本工具没有任何学习成本,是一款即点即用、免安装的简单轻应用。

另外,本工具贴心地提供了不确定度表格与 通用的计算工具,并且每个实验都附有可在线浏 览的实验指导。

图 1: "拉伸法测钢丝杨氏模量"工具界面

图 2: 平滑连接的光电效应伏安特性曲线

• 绘制图像

本工具根据输入的数据以及实验原理,自动生成美观的实验图像,支持平滑去噪、数据拟合、双 y 图等多种图像生成需求,如图 2 所示。

• 计算不确定度与生成计算公式

本工具在生成的 Word 文档中渲染了各种公式,如图 3 所示。用户可以直观看到不确定度每一步的计算过程,并在自己的报告中直接使用这些算式与结果。

图 3: 不确定度计算的详细过程

0.293)^2+(0.295-0.293)^2[(5-1)]\\mathrm(mm)\\
&=0.0015811\\mathrm(mm)\\end(aligned)
\$\$

Ø丝直径 d 的 B 类不确定度:
\$\$
\\Delta_[8.d]=\sqrt(\Delta_\text((5))^2+\Delta_\text((5))^2]=\sqrt((0.004^2+0.005^2)\\mathrm(mm)=0.0064031\\mathrm(mm)
\$\$

Ø丝直径 d 的 R 学不确定度:
\$\$
\\Delta_[8.d]=\sqrt(\Delta_\text((5))^2+\Delta_\text((5))^2]=\sqrt((0.004^2+0.005^2)\\mathrm(mm)=0.0064031\\mathrm(mm)
\$\$

Ø丝直径 d 的 R 学不确定度:
\$\$
\\Delta_[8.d]=\sqrt(\Delta_(1.004^2+0.005^2)\\mathrm(mm)=0.0064031\\mathrm(mm)\\\
&=\sqrt(\Delta_(1.004^2-0.005^2)\\mathrm(mm)\\\\
&=\sqrt(\Delta_(1.004^2-0.0015811)\(\sqrt(n)\)\right)^2+\\Delta_(1.96\)\times\(\frac(0.0015811)\(\sqrt(n)\)\right)^2+\\Delta_(1.96\)\times\(\frac(0.0015811)\(\sqrt(n)\)\right)^2+\\Delta_(1.96\)\times\(\frac(0.0015811)\(\sqrt(n)\)\right)^2+\\Delta_(1.96\)\times\(\frac(0.0015811)\(\sqrt(n)\)\right)\(\sqrt(n)\)\right)^2+\\Delta_(1.96\)\times\(\frac(0.0015811)\(\sqrt(n)\)\right)

图 4: 不确定度计算步骤的 LaTeX 源码

在 Word 文档中除了有已经渲染好的公式外, 我们还提供了它们的 LaTeX 源码,如图 4 所示。 这极大方便了用 LaTeX, Markdown 等排版实验 报告的用户, 使他们无需手动敲入每一个算式。

3.1.3 功能点设计细节

本工具后端使用 Python 编写,使用的包与模块如表 1 所示。前端由 HTML 编写,并使用了 Flask Web 应用框架。

表 1: 本工具使用的全部 Python 包与模块

Python 包或模块	用途		
chardet	检测用户上传的数据表格的编码		
openpyxl	Excel 文件处理		
Flask	Web 应用框架		
latex2mathml	LaTeX 代码转换为 MathML 代码		
lxml	MathML 代码转 Office MathML		
math, numpy	不确定度数字运算		
Matplotlib	绘制物理图像		
os, random, shutil	后台文件操作与管理		
pandas	数据表格处理		
python-docx	生成 Word 文档		
SciPy	数据拟合		
SymPy	不确定度符号运算		
uncertainties	ainties 保留有效位数的处理		
time, threading	定时删除生成的 Word 文档		
traceback	打印运行错误以便调试		

关于图像绘制、数据处理、文档生成的具体 规范和接口可参见开发说明、数据处理API指南、 公式插入API指南。

3.1.4 性能和效率

尽管工具实现的任务非常复杂,但它仍然能够在 1 秒内根据用户上传的数据生成文档,可见性能之卓越。

3.2 蜗壳排课工具

3.2.1 总体功能说明

该工具是一个网页应用,使用方便快捷。在主页面,已添加的课程列表会被清晰地展示出来,用户可以通过点击"添加课程"、"编辑课程"或"开始排课",进入相应的界面,如图 5 所示。

好:	✓ 不疊课的方案	优先		添加课程
	课程编号	课程名称	授课教师	操作
~	011044	计算机导论	₹K =	编钿 劃除
	011144	计算机网络	4 /张 /田	编钿 劃除
	011704	计算机系统概论(H)	安	编钿 劃除
~	0WR002	计算机领域前沿研究	石	编钿
~	210060	计算机网络	卢 /李 /洪	编钿 劃除
~	210710	计算机视觉	100	编钿 劃除
~	ATMS4001	计算机语言和科学建模	AX	编钿 劃除
~	CS1001A	计算机程序设计A	秦 - 『/潭』 - /郑 『/赵 -	编辑 副除
	CS1001B	计算机程序设计B	時 - 准 - 苏 - 序	加州

图 5: 蜗壳排课工具主页

图 6 展示了本工具的"添加课程"页面。在此页面,用户可以通过各种信息,如课程编号、课程名称、教师名称等进行课程搜索,我们的网站已经收录了超过 2500 个课程,并会定期从教务系统自动更新。

课程列表呈现了课程名称、授课教师、时间 地点等信息。此外,我们还引入了评课社区的课 程评级,供用户参考。在添加课程时,用户可以 为每个课程设定一个喜好程度,然后工具会根据 这个喜好程度和课程时间自动进行课程安排。

3.2.2 附加功能

值得一提的是,在主页面可以选择偏好设置——"不叠课的方案优先"。若勾选之,则我们的

图 6: 蜗壳排课工具"添加课程"页面

排课算法优先推荐没有任何时间冲突的方案;若不勾选,则优先满足喜好程度总和最大,其次再满足"尽量不叠课"的要求。

3.2.3 人机交互

蜗壳排课工具做了许多的人性化处理,例如:若用户选择的通识课超过 2 门,这种情况违背了教务系统的选课规则,则我们会提醒用户"你选择的通识课超过 2 门,是否需要根据倾向度及与其他课程的冲突情况自动选择合适的 2 门?";又如若用户选择课程过多,则工具会警告用户。

我们的工具提供的排课方案,既包括明确的列表形式,也包括直观的课程表形式(如图7所示)。虽然课程表的样式与教务系统的基本一致,但我们对其样式做了优化,让它看起来更为清楚易懂,同时对小屏幕设备的兼容性也做了提升。

3.2.4 性能和效率

本工具使用深度优先搜索技术,结合大量的 剪枝与智能优化,使得在用户点击"开始排课"

- 1	〈 返回			抖	沣课方案			
	方案1	方案2	方案3	方案4	方案5			~
		星期一	星期二	星期三	星期四	星期五	星期六	星期日
	1		CS1001A.10 计算机程序设计 A 吴文涛 1,2节 5404	011144.01 计算机网络 华舊 1,2节 GT-B112		210060.01 计算机网络 卢汉成 1,2节 GH-206		
上午	3				CS1001A.10 计算机程序设计 A	011144.01 计算机网络		
	4				吳文涛 3,4节 5404	华善 3,4节 GT-B112		
	5					GT-B105		
	6		ATMS4001.01 计算机语言和科 学建模	210060.01 计算机网络 卢汉成				
			赵纯	6,7节				

图 7: 蜗壳排课工具"排课方案"页面

后,在1秒钟之内呈现排课方案。而且,能够呈现5种备选方案供用户选择。

3.2.5 隐私安全

我们深切理解用户隐私的重要性。因此,排课算法完全在本地通过 JavaScript 运行,任何信息都不会被上传到服务器。

如果不放心,用户可以借助 Microsoft Edge 浏览器将本站点作为应用安装,一旦安装完成,即使断网也可以正常使用。或者,也可以打开网站后,断开网络,仍然能够实现排课,可见算法确实在本地运行。

3.3 我的科大 APP

3.3.1 总体功能说明

我的科大 APP 提供了包括教室查询、学校周边、校园导航等在内的 34 项链接功能,还有任务清单、资料分享等 7 项我们自主研发的功能,如图 8 所示。而软件安装包仅有 2.5 MB,安装后体积也仅 5 MB,可以说是十分小巧却功能全面。

图 8: 我的科大 APP 功能列表页

本项目主要使用 Android Studio 开发工具,结合了 Kotlin 和 HTML, JavaScript, CSS 等多种语言进行开发,可以在 Android 和 HarmonyOS 系统上运行。

3.3.2 具体功能点说明

我的科大 APP 拥有众多实用功能,这极大的便利了同学们的校内外生活。

- 1. 教务系统、科大邮箱: 首次打开弹出"输入 账号密码"对话框,并将数据加密保存至本 地,之后每次打开将自动登录。
- 2. 课程表、考试信息: 以优美的样式显示(如

图 9: 我的科大 APP 考试信息页面

图 9),并自动同步教务系统数据,若有更新,则会提醒用户。

- 3. 学校周边:采用高德地图 API,在地图上呈现周边美食、景点、超市、药店多种设施,方便用户快速寻找。
- 4. 生活攻略、社团介绍、校园风景: 使用 HTML 制作网页, APP 打开对应网页, 其 中社团介绍可长按复制 QQ 群号,校园风景 页面每次随机显示一张图片,根据用户投稿 不定期更新。
- 5. 习题分享:包含部分历年真题。
- 6. 任务清单: 用户可以添加、删除、编辑任务,

任务可以设置标题、详细内容、日期时间, 还能在完成之后打钩。

还有许多功能不胜列举,打开 APP 即可体验。

3.3.3 附加功能

我的科大 APP 还有许多附加功能,进一步 优化用户体验。

图 10: 我的科大 APP 首页

- 1. 支持本科生和研究生用户,其中对本科生用户的功能支持更为丰富。
- 2. "功能"页面分类显示,且根据用户的使用 次数,在首页显示常用功能(如图 10)。

- 3. 首页具有签到功能,签到后会显示今日运势, 作为消遣使用。
- 4. 支持自定义背景图片,个性化选择两种图标模式(见宣传片)。
- 5. 支持深色模式、横屏模式、分屏模式。

3.3.4 安全性

为了实现自动登录统一身份认证和科大邮箱,我的科大 APP 将密码加密存至本地,即便手机中潜藏病毒软件,也难以窃取信息,可谓"一夫当关,万夫莫开"。

除了用于统计用户量、启动次数、版本分布等而收集的去敏化的设备信息外,我们没有将任何用户信息上传至服务器。即便如此,我们仍编写了 APP 隐私政策,APP 将严格按照该隐私政策保护用户的信息。

软件已完成了工信部 ICP 备案并放置备案号。据我们了解,市场上的软件目前几乎均未放置备案号,在这一点上,我的科大 APP 遥遥领先。

此外,我的科大 APP 基于 Kotlin 语言开发,它是一门具有朝气和活力的语言。在 Google I/O 2017 中,Google 宣布 Kotlin 成为 Android 官方开发语言。2019 年其成为 Android 第一开发语言。相比于 Java,它引入了空安全特性,使软件更加安全稳定。

3.3.5 人机交互

我的科大 APP 在图标、文本布局、气泡提示、按钮位置等方面,经过我们的反复修改与琢磨,遵循了人体工程学的设计原则。

以功能图标为例,我们 APP 的图标历经 4 代变迁,首先是风格不一致的初代图标;随后统 一了风格,是简约图标;再后来我们自主设计, 使图标变得更为精致;最后我们采取了绚丽的拟 物风图标。

在功能上,我们做了许多的人性化处理,例如: 当用户在本科生模式下输入研究生学号时, APP 会自动判断,并提示是否要切换为研究生 模式。

再举一个细节设计的例子:在用户初次登录邮箱时,为了方便用户,APP 预先在邮箱地址中添加了"@mail.ustc.edu.cn",以防止用户——特别是新生——遗漏或忘记输入"mail."。当然,在之后的每次登录中,账号和密码都会自动填写。这些细节的精雕细琢,都为用户带来了极致的体验。

3.3.6 性能和效率

我的科大 APP 完全没有卡顿,占用内存极小,运行十分流畅,为用户带来极佳的使用体验。

3.3.7 用户至上

我们始终倾听用户的声音。一方面,APP 中设有反馈选项,用户可以通过填写问卷向我们反馈,另一方面,我们还通过用户交流群发布群投票,以不断优化我们的产品。

我们采纳了用户的许多有益建议,例如实现了网页内文件下载功能,添加了"科大影院"功能,课程表添加了自定义课程的功能,实现了课程表和考试信息的自动同步,以及新课程出分时的卡片提醒。

4 测试、运行情况

4.1 大雾实验工具

本程序的每一个实验模块由组员完成后,组 长会进行代码审核与测试,如果发现问题则要求 继续修改,直到所有问题被解决后该实验模块才 会发布。

另一方面,各种 API 的编写与模块化编程也 让我们的程序在编写过程中更不容易出错,同时 规范、统一的码风也让调试变得轻松。

2023 年春季学期期间的网站的访问统计如图 11 所示,可以看出我们的工具有 800 多名稳定用户,日均浏览量超过 2300 人次。同时,本工具在 GitHub 上开源,同学们可以进一步完善其功能。

图 11: 大雾实验工具运行情况(百度统计)

4.2 蜗壳排课工具

蜗壳排课工具的开发完成时间较晚,于本学期开始前刚刚发布。但根据统计数据,本学期选课周的峰值日浏览量已经超过3000人次(如图12所示),可见该工具具有光明的前景。

4.3 我的科大 APP

尽管 APP 的推广之路充满了挑战,但至今, 我的科大 APP 已经拥有超过 5000 名用户(如

图 12: 蜗壳排课工具运行情况(百度统计)

图 13 所示),仅在八月份就新增了超过 1200 名用户,这些用户主要为大一新生,考虑到本 APP 仅提供了安卓版,可见其市场占有率非常之高。我们每日活跃用户达到 2000 人(如图 14 所示,其中 10 月初有一个低谷是因为国庆假期),每日启动次数约为 20000 人次。这些数据充分反映了我们的产品受到了用户的热烈欢迎。

图 13: 我的科大 APP 累计用户(友盟统计)

图 14: 我的科大 APP 活跃用户(友盟统计)

5 总结与展望

5.1 项目源码

大雾实验工具源码和开发文档见 GitHub, 蜗壳排课工具源码见此处,我的科大 APP 源码 见此处。

5.2 产品鲁棒性

我们在开发过程中采取了有效的技术手段, 使产品具有极佳的鲁棒性。无论胡乱输入什么东 西,或者有意做任何非常规操作,我们的应用均 不会奔溃。

5.3 蜗壳作业助手

除了上述三款已发布的产品外,我们还在筹划一款新的产品——蜗壳作业助手。

众所周知,我校布置作业的平台众多,各课程所用平台各异。若没能记住,便需要在 QQ 群消息、群文件、群公告、群作业、BB 平台、瀚海教学网等各处寻觅。并且,作业完成数日后,又会忘记自己是否已完成、是否已提交,于是不得不又前往各个平台检查。

我们痛定思痛,计划打造一款统一的作业布置、提交平台,已完成和未完成的作业分别列表 呈现。

不仅如此,我们将利用 API 自动获取以上各个平台的作业信息,使同学们免于繁琐的翻阅。当学生完成作业后,对于需要提交电子版的作业,直接提交在蜗壳作业助手上,助手将自动通过 API 同步提交到上述平台;对于需要上交纸质版的作业,可以在助手上做打钩标记,以便使自己记得确实完成了该作业。

我们已经完成了程序接口的设计,即将开始 实现相应功能。

5.4 生态融合

我们这几款产品并非独立的产品,我们正积极推进生态融合。目前,大雾实验工具和蜗壳排课工具已集成至我的科大 APP,这是生态融合的初步尝试。未来,我们将进一步融合,例如将我的科大 APP 的"任务清单"功能与蜗壳作业助手进行结合。

5.5 团队协作

我们分工明确,使用 Git 进行协作,每个人的任务都有截止时间,这使我们的进度有序推进。以往的经历中,代码与相关工作往往都是独立完成,代码规范与项目进程完全由自己安排。但是在这种大工程中,相关代码需要符合规范,需要与队友交接,工作进度也要与队友进度相符。在这种分工体系下,每个人都要完成自己的任务,并顾及与他人的交互。

特别是大雾实验工具,我们建立了统一的码风,代码注释清楚,并制定了自主编写的 API 的详细使用说明。这样做一方面可以使得产品最终具有一致性——不同人写的代码能够基本一致;另一方面也使得最终的检验与调整能够更加方便——规范的代码提高了代码的可读性,降低了代码的审核成本。

5.6 期待合作

我们深知"一花独放不是春,百花齐放春满园","蜗壳 365" 秉持合作开放的态度,热切期待与其他同学的合作。

6 致谢

首先特别感谢余庆杯组委会为我们提供这样 一个项目开发和展示的机会。

其次,在"蜗壳 365"的开发与运维过程中, 我们在视觉艺术、功能模块、宣传推广、意见反 馈等方面得到了许多同学的帮助,列举如下:

苏宗山、秦沁、鲍政廷、周旭冉、尹冠霖、 夏熙林、陈艺雨、陈思、王星河、蔡卓凡、施耀 炜、李昊、邱梓惠、陈逸翀······

在此特别向他们表示衷心的感谢。

同时,我们感谢广大用户对我们的支持和厚爱,我们将秉持初心,勇攀高峰,我们的"蜗壳365"将持续提供极致的免费服务。