Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (CycleGAN)

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

ICCV 2017

Slides compiled by Lars Gjesteby August 9, 2018

Motivation

- Image-to-image translation between domains (i.e. art style transfer, season transfer, animal transfiguration)
- Paired training data not needed
- Learn domain-level relationships

Figure 2: Paired training data (left) consists of training examples $\{x_i, y_i\}_{i=1}^N$, where the correspondence between x_i and y_i exists [21]. We instead consider unpaired training data (right), consisting of a source set $\{x_i\}_{i=1}^N$ ($x_i \in X$) and a target set $\{y_j\}_{j=1}$ ($y_j \in Y$), with no information provided as to which x_i matches which y_i .

Approach

- Learn two mappings:
 - $G: X \rightarrow Y$ and $F: Y \rightarrow X$
- D_X and D_Y encourage generated outputs to be indistinguishable from target domain

Figure 3: (a) Our model contains two mapping functions $G: X \to Y$ and $F: Y \to X$, and associated adversarial discriminators D_Y and D_X . D_Y encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for D_X and F. To further regularize the mappings, we introduce two *cycle consistency losses* that capture the intuition that if we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency loss: $x \to G(x) \to F(G(x)) \approx x$, and (c) backward cycle-consistency loss: $y \to F(y) \to G(F(y)) \approx y$

Loss Functions

 Adversarial Loss: Match distribution of generated images to data distribution in the target domain

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{data}(y)} [\log D_Y(y)] + \mathbb{E}_{x \sim p_{data}(x)} [\log (1 - D_Y(G(x)))]$$

 Cycle Consistency Loss: Prevent the learned mappings G and F from contradicting each other

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_{1}] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_{1}].$$

Loss Functions

Full Objective:

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F),$$

$$G^*, F^* = \arg\min_{G, F} \max_{D_x, D_Y} \mathcal{L}(G, F, D_X, D_Y)$$

• For training, $\lambda = 10$

Generators

- Generative network model from Johnson et al.
 - Two stride-2 convolutions, residual blocks, and two fractionally-strided convolutions with stride ½
 - 6 blocks for 128x128 images
 - 9 blocks for 256x256 and higher images

Johnson, J., Alahi, A., & Fei-Fei, L. "Perceptual losses for real-time style transfer and super-resolution." *ECCV 2016*.

Discriminators

- PatchGAN
 - Classify if each 70x70 patch in the image is real or fake
 - Run convolutionally across the image, averaging all responses to provide the final output
 - Fewer parameters
- Markov random field model, assuming independence between pixels separated by more than a patch diameter

Cycle-Consistent Examples

Evaluation

- Cityscapes dataset: Semantic labels ←→Photo
- Google Maps: Map←→Aerial photo
- Amazon Mechanical Turk (AMT) assessment
 - Pick image they think is real
- Fully-convolutional network (FCN)
 - Predict label map for generated photo
- Per-pixel accuracy, per-class accuracy, and mean class intersection-over-union (IOU)

Baselines for Comparison

CoGAN [30] This method learns one GAN generator for domain X and one for domain Y, with tied weights on the first few layers for shared latent representation. Translation from X to Y can be achieved by finding a latent representation that generates image X and then rendering this latent representation into style Y.

SimGAN [45] Like our method, Shrivastava et al.[45] uses an adversarial loss to train a translation from X to Y. The regularization term $||X - G(X)||_1$ was used to penalize making large changes at pixel level.

Feature loss + GAN We also test a variant of Sim-GAN [45] where the L1 loss is computed over deep image features using a pretrained network (VGG-16 relu4_2 [46]), rather than over RGB pixel values. Computing distances in deep feature space, like this, is also sometimes referred to as using a "perceptual loss" [7, 22].

BiGAN/ALI [8, 6] Unconditional GANs [15] learn a generator $G: Z \to X$, that maps random noise Z to images X. The BiGAN [8] and ALI [6] propose to also learn the inverse mapping function $F: X \to Z$. Though they were originally designed for mapping a latent vector z to an image x, we implemented the same objective for mapping a source image x to a target image y.

pix2pix [21] We also compare against pix2pix [21], which is trained on paired data, to see how close we can get to this "upper bound" without using any paired training data.

Figure 5: Different methods for mapping labels↔photos trained on Cityscapes images. From left to right: input, Bi-GAN/ALI [6, 8], CoGAN [30], feature loss + GAN, SimGAN [45], CycleGAN (ours), pix2pix [21] trained on paired data, and ground truth.

Figure 6: Different methods for mapping aerial photos↔maps on Google Maps. From left to right: input, BiGAN/ALI [6, 8], CoGAN [30], feature loss + GAN, SimGAN [45], CycleGAN (ours), pix2pix [21] trained on paired data, and ground truth.

	$\mathbf{Map} \to \mathbf{Photo}$	$\textbf{Photo} \rightarrow \textbf{Map}$	
Loss	% Turkers labeled real	% Turkers labeled real	
CoGAN [30]	$0.6\% \pm 0.5\%$	$0.9\% \pm 0.5\%$	
BiGAN/ALI [8, 6]	$2.1\% \pm 1.0\%$	$1.9\% \pm 0.9\%$	
SimGAN [45]	$0.7\% \pm 0.5\%$	$2.6\% \pm 1.1\%$	
Feature loss + GAN	$1.2\% \pm 0.6\%$	$0.3\% \pm 0.2\%$	
CycleGAN (ours)	$26.8\% \pm 2.8\%$	$23.2\% \pm 3.4\%$	

Table 1: AMT "real vs fake" test on maps \leftrightarrow aerial photos at 256×256 resolution.

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [30]	0.40	0.10	0.06
BiGAN/ALI [8, 6]	0.19	0.06	0.02
SimGAN [45]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [21]	0.71	0.25	0.18

Table 2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

Art Style Transfer

Transfiguration

orange → apple

14

Other Applications: Face ←→ Ramen

Ramen Input

Face Input

Paper Conclusions

- Compelling results on translation tasks that involve color and texture changes
- Tasks that require geometric changes are less successful
- Generator architecture tailored for appearance changes
- May need to incorporate weak semantic supervision

 $cat \rightarrow dog$

Horse → Zebra