Tema III

Espacios vectoriales

1. Espacios vectoriales y subespacios vectoriales.

1 Espacios vectoriales.

1.1 Definición.

Definición 1.1 Sea \mathbb{K} un cuerpo conmutativo y V un conjunto no vacío. Se dice que V tiene estructura de **espacio vectorial sobre** \mathbb{K} si cumple:

- 1. Existe una operación interna $+: V \times V \to V$ (que se llama suma) con la cual V tiene estructura de grupo abeliano, es decir, se verifica:
 - (a) Propiedad asociativa: $\bar{x} + (\bar{y} + \bar{z}) = (\bar{x} + \bar{y}) + \bar{z}$, para cualesquiera $\bar{x}, \bar{y}, \bar{z} \in V$.
 - (b) Elemento neutro: $\exists \bar{0} \in V \text{ tal que } \bar{0} + \bar{x} = \bar{x} + \bar{0} = \bar{x}, \text{ para cualquier } \bar{x} \in V.$
 - (c) Elemento opuesto: para cualquier $\bar{x} \in V$, $\exists (-\bar{x}) \in V$ con

$$\bar{x} + (-\bar{x}) = (-\bar{x}) + \bar{x} = \bar{0}.$$

- (d) Conmutativa: $\bar{x} + \bar{y} = \bar{y} + \bar{x}$, para cualesquiera $\bar{x}, \bar{y} \in V$.
- 2. Existe una operación externa $(\cdot): \mathbb{K} \times V \longrightarrow V$ verificando:
 - (a) $1 \cdot \bar{x} = \bar{x}$ para cualquier $\bar{x} \in V$.
 - (b) $(\alpha\beta) \cdot \bar{x} = \alpha \cdot (\beta \cdot \bar{x})$, para cualesquiera $\alpha, \beta \in \mathbb{K}$ $y \bar{x} \in V$.
 - (c) $(\alpha + \beta) \cdot \bar{x} = \alpha \cdot \bar{x} + \beta \cdot \bar{x}$, para cualesquiera $\alpha, \beta \in \mathbb{K}$ $y \bar{x} \in V$.
 - (d) $\alpha \cdot (\bar{x} + \bar{y}) = \alpha \cdot \bar{x} + \alpha \cdot \bar{y}$, para cualesquiera $\bar{x}, \bar{y} \in V$ $y \alpha \in \mathbb{K}$.

A los elementos de un espacio vectorial se les llama vectores.

Algunos de los ejemplos más usuales de espacios vectoriales son:

- 1. $V = \mathbb{K}$ es un espacio vectorial sobre \mathbb{K} .
- 2. $V = \mathcal{M}_{m \times n}(\mathbb{K})$ es el espacio vectorial sobre \mathbb{K} de matrices $m \times n$.
- 3. $V = S_{n \times n}(\mathbb{K})$ es el espacio vectorial sobre \mathbb{K} de matrices simétricas $n \times n$.
- 4. $V = \mathcal{P}_n(\mathbb{K})$ es el espacio vectorial de polinomios con coeficientes en \mathbb{K} de grado menor o igual que n.

1.2 Propiedades

1. $\alpha \cdot \bar{0} = \bar{0}$, para cualquier $\alpha \in \mathbb{K}$.

Prueba: Se tiene:

$$\alpha \cdot \bar{0} = \alpha \cdot (\bar{0} + \bar{0}) = \alpha \cdot \bar{0} + \alpha \cdot \bar{0} \implies \alpha \cdot \bar{0} = \bar{0}.$$

2. $0 \cdot \bar{x} = \bar{0}$, para cualquier $\bar{x} \in V$.

Prueba: Se tiene:

$$0 \cdot \bar{x} = (0+0) \cdot \bar{x} = 0 \cdot \bar{x} + 0 \cdot \bar{x} \quad \Rightarrow \quad 0 \cdot \bar{x} = \bar{0}.$$

3. $\alpha \cdot \bar{x} = \bar{0} \implies \alpha = 0, \quad \acute{o} \quad \bar{x} = 0.$

Prueba: Si $\alpha \cdot \bar{x} = \bar{0}$ y $\alpha \neq 0$ entonces α tiene inverso y:

$$\bar{x} = 1 \cdot \bar{x} = (\alpha^{-1}\alpha) \cdot \bar{x} = \alpha^{-1} \cdot (\alpha \cdot \bar{x}) = \alpha^{-1} \cdot \bar{0} = \bar{0}.$$

4. $(-1) \cdot \bar{x} = -\bar{x}$, para cualquier $\bar{x} \in V$.

Prueba: Basta tener en cuenta que:

$$\begin{array}{c} (-1) \cdot \bar{x} + \bar{x} = (-1+1) \cdot \bar{x} = 0 \cdot \bar{x} = \bar{0} \\ \bar{x} + (-1) \cdot \bar{x} = (1-1) \cdot \bar{x} = 0 \cdot \bar{x} = \bar{0} \end{array} \right\} \quad \Rightarrow \quad -\bar{x} = (-1) \cdot \bar{x}.$$

5. $(-\alpha) \cdot \bar{x} = \alpha \cdot (-\bar{x}) = -(\alpha \cdot \bar{x})$, para cualesquiera $\alpha \in \mathbb{K}, \bar{x} \in V$.

Prueba: Por las propiedades anteriores:

$$(-\alpha) \cdot \bar{x} = (-1) \cdot (\alpha \cdot \bar{x}) = -(\alpha \cdot \bar{x}).$$

$$(-\alpha) \cdot \bar{x} = (\alpha) \cdot ((-1) \cdot \bar{x}) = \alpha \cdot (-\bar{x}).$$

6. Si $\alpha \neq 0$ y $\alpha \cdot \bar{x} = \alpha \cdot \bar{y}$ entonces $\bar{x} = \bar{y}$.

Prueba: Si $\alpha \neq 0$ entonces tiene inverso y:

$$\alpha \cdot \bar{x} = \alpha \cdot \bar{y} \quad \Rightarrow \quad (\alpha^{-1}\alpha) \cdot \bar{x} = \alpha^{-1}\alpha) \cdot \bar{y} \quad \Rightarrow \quad \bar{x} = \bar{y}.$$

7. Si $\bar{x} \neq \bar{0}$ y $\alpha \cdot \bar{x} = \beta \cdot \bar{x}$ entonces $\alpha = \beta$.

Prueba: Se tiene:

$$\alpha \cdot \bar{x} = \beta \cdot \bar{x} \quad \Rightarrow \quad (\alpha - \beta) \cdot \bar{x} = \bar{0}.$$

Como $\bar{x} = \bar{0}$, por las propiedades anteriores deducimos que:

$$\alpha - \beta = 0 \implies \alpha = \beta.$$

2 Subespacios vectoriales.

2.1 Definición y caracterizaciones.

Definición 2.1 Dado un espacio vectorial V sobre un cuerpo \mathbb{K} , un subconjunto $S \subset V$ no vacío se dice un subespacio vectorial de V si S es un espacio vectorial sobre \mathbb{K} con la restricción de las operaciones de V.

En realidad para identificar los subespacios vectoriales se suele utilizar una de las siguientes caracterizaciones:

Teorema 2.2 Sea V un espacio vectorial sobre \mathbb{K} y $S \subset V$ un subconjunto <u>no vacío</u>. S es un subespacio vectorial precisamente si se verifica:

- 1. $\bar{x} + \bar{y} \in S$, para cualesquiera $\bar{x}, \bar{y} \in S$.
- 2. $\lambda \cdot \bar{x} \in S$, para cualquier $\lambda \in \mathbb{K}$, $\bar{x} \in S$.

Equivalente, si se verifica:

a. $\alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S$, para cualesquiera $\bar{x}, \bar{y} \in S$, $\alpha, \beta \in \mathbb{K}$.

Prueba: Si se cumplen las condiciones 1 y 2 las operaciones interna y externa de V restringen a S. Por tanto por ser V espacio vectorial también lo es S. Recíprocamente, si S es subespacio vectorial de V, las operaciones han de restringir y se cumplen las condiciones 1 y 2.

Por otra parte veamos la equivalencia entre las condiciones 1,2 y la condición a.

$$1,2 \Rightarrow a$$
:

Y ahora:

Por la condición 1:
$$\left. \begin{array}{c} \alpha \cdot \bar{x} \in S \\ \beta \cdot \bar{y} \in S \end{array} \right\} \quad \Rightarrow \quad \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S.$$

$$a \Rightarrow 1,2$$
:

Tomando en la condición a, $\alpha = 1, \beta = 1$ obtenemos la condición 1, $\bar{x} + \bar{y} \in S$.

Tomando en la condición a, $\beta = 0$ obtenemos la condición 2, $\alpha \cdot \bar{x} \in S$.

Observación 2.3 En todo espacio vectorial V siempre hay dos subespacios vectoriales llamados **triviales**, el total V y el subespacio cero $\{\bar{0}\}$.

2.2 Intersección de subespacios vectoriales.

Proposición 2.4 Sean S_1 y S_2 dos subespacios vectoriales de V, la intersección $S_1 \cap S_2$ es un subespacio vectorial.

Prueba: En primer lugar tenemos en cuenta que $S_1 \cap S_2$ es no vacío, porque $\bar{0} \in S_1$ y $\bar{0} \in S_2$. Ahora comprobamos la condición de subespacio vectorial. Sean $\bar{x}, \bar{y} \in S_1 \cap S_2$ y $\alpha, \beta \in \mathbb{K}$. Se tiene:

$$\bar{x}, \bar{y} \in S_1 \cap S_2 \quad \Rightarrow \quad \bar{x}, \bar{y} \in S_1 \quad \Rightarrow \quad \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S_1 \\ \bar{x}, \bar{y} \in S_1 \cap S_2 \quad \Rightarrow \quad \bar{x}, \bar{y} \in S_2 \quad \Rightarrow \quad \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S_2 \\ \end{aligned} \} \quad \Rightarrow \quad \alpha \cdot \bar{x} + \beta \cdot \bar{y} \in S_1 \cap S_2.$$

2.3 Suma de subespacios vectoriales.

En primer lugar observemos que la unión de subespacios vectoriales no tiene por que ser un subespacio vectorial. Por ejemplo consideramos:

$$V = \mathbb{R}^2$$
; $S_1 = \{(x, 0) \in \mathbb{R}^2, x \in \mathbb{R}\}$; $S_2 = \{(0, y) \in \mathbb{R}^2, y \in \mathbb{R}\}$.

Si tomamos $(1,0) \in S_1 \cup S_2$ y $(0,1) \in S_1 \cup S_2$, se tiene $(1,0) + (0,1) = (1,1) \notin S_1 \cup S_2$ y por tanto la unión de S_1 y S_2 no es un subespacio vectorial.

Sin embargo, dados dos subespacios vectoriales si podremos definir el subespacio suma, mayor que la unión.

Definición 2.5 Sean S_1 y S_2 dos subespacios vectoriales de V, definimos la **suma** de S_1 y S_2 como:

$$S_1 + S_2 = \{\bar{x}_1 + \bar{x}_2 \ con \ \bar{x}_1 \in S_1 \ y \ \bar{x}_2 \in S_2\}$$

Proposición 2.6 La suma de dos subespacios vectoriales es un subespacio vectorial.

Prueba: Sean $S_1, S_2 \in V$ dos subespacios vectoriales de V. Tomemos $\bar{x}, \bar{y} \in S_1 + S_2$ y $\alpha, \beta \in \mathbb{K}$. Se tiene:

$$\bar{x} \in S_1 + S_2 \implies \bar{x} = \bar{x}_1 + \bar{x}_2, \text{ con } \bar{x}_1 \in S_1, \bar{x}_2 \in S_2$$

 $\bar{y} \in S_1 + S_2 \implies \bar{y} = \bar{y}_1 + \bar{y}_2, \text{ con } \bar{y}_1 \in S_1, \bar{y}_2 \in S_2$

por tanto

$$\alpha \cdot \bar{x} + \beta \cdot \bar{y} = \alpha \cdot (\bar{x}_1 + \bar{x}_2) + \beta \cdot (\bar{y}_1 + \bar{y}_2) = \underbrace{\alpha \cdot \bar{x}_1 + \beta \cdot \bar{y}_1}_{\in S_1} + \underbrace{\alpha \cdot \bar{x}_2 + \beta \cdot \bar{y}_2}_{\in S_2} \in S_1 + S_2.$$

Proposición 2.7 La suma de dos subespacios vectoriales es el menor subespacio vectorial que contiene a unión.

Prueba: Sean $S_1, S_2 \in V$ dos subespacios vectoriales de V. En primer lugar está claro que $S_1 \cup S_2 \in S_1 + S_2$. Ahora sea S un subespacio conteniendo a $S_1 \cup S_2$ y veamos que $S_1 + S_2 \subset S$.

$$\bar{x} \in S_1 + S_2 \quad \Rightarrow \quad \bar{x} = \bar{x}_1 + \bar{x}_2 \text{ con } \begin{cases} \bar{x}_1 \in S_1 \subset S_1 \cup S_2 \subset S \\ \bar{x}_2 \in S_2 \subset S_1 \cup S_2 \subset S \end{cases} \quad \Rightarrow \quad \bar{x} = \bar{x}_1 + \bar{x}_2 \in S.$$

Este concepto de generaliza de manera natural para un número finito de subespacios.

Definición 2.8 Sean S_1, S_2, \ldots, S_k subespacios vectoriales de V, definimos su suma como:

$$S_1 + S_2 + \ldots + S_k = \{\bar{x}_1 + \bar{x}_2 + \ldots + \bar{x}_k \text{ con } \bar{x}_1 \in S_1, \quad \bar{x}_2 \in S_2, \quad \ldots, \bar{x}_k \in S_k\}$$

2.4 Suma directa.

Definición 2.9 Sean S_1, S_2 dos subespacios vectoriales de U. Si $S_1 \cap S_2 = \{\overline{0}\}$, entonces al espacio suma $S_1 + S_2$ se le llama suma directa de S_1 y S_2 y se denota por:

$$S_1 \oplus S_2$$
.

Proposición 2.10 Sean S_1, S_2 dos subespacios vectoriales de U. La suma $S_1 + S_2$ es una suma directa si y sólo si todo elemento de $S_1 + S_2$ se descompone de manera **única** como suma de un elemento de S_1 y otro de S_2 .

Prueba: Supongamos en primer lugar que la suma es directa, es decir $S_1 \cap S_2 = \{\bar{0}\}$. Veamos que entonces la descomposición es única. Sea $\bar{x} \in S_1 + S_2$. Si:

$$\bar{x} = \bar{x}_1 + \bar{x}_2 = \bar{y}_1 + \bar{y}_2 \quad \text{con } \bar{x}_1, \bar{y}_1 \in S_1 \quad \text{y} \quad \bar{x}_2, \bar{y}_2 \in S_2$$

entonces

$$\bar{x}_1 - \bar{y}_1 = \bar{y}_2 - \bar{x}_2 \in S_1 \cap S_2 \quad \Rightarrow \quad \bar{x}_1 - \bar{y}_1 = \bar{y}_2 - \bar{x}_2 = \bar{0} \quad \Rightarrow \quad \bar{x}_1 = \bar{y}_1, \quad \bar{x}_2 = \bar{y}_2.$$

Ahora supongamos que la descomposición es única y veamos que la suma es directa. Hay que comprobar que $S_1 \cap S_2 = \{\overline{0}\}$. Sea $\overline{x} \in S_1 \cap S_2$; puede descomponerse como:

$$\bar{x} = \bar{x} + \bar{0} \text{ con } \bar{x} \in S_1, \bar{0} \in S_2, \quad \text{y también} \quad \bar{x} = 0 + \bar{x} \text{ con } \bar{0} \in S_1, \bar{x} \in S_2.$$

Por la unicidad de la descomposición deducimos que $\bar{x} = \bar{0}$.

Este concepto puede ser generalizado a más de dos subespacios.

Definición 2.11 Sean S_1, S_2, \ldots, S_k subespacios vectoriales de U. Si $(S_1 + \ldots + S_i) \cap S_{i+1} = \{0\}$ para cualquier $i, 1 \leq i \leq k-1$ entonces al espacio suma $S_1 + S_2 + \ldots + S_k$ se le llama suma directa de S_1, S_2, \ldots, S_k y se denota por:

$$S_1 \oplus S_2 \oplus \ldots \oplus S_k$$
.

Proposición 2.12 Sean S_1, S_2, \ldots, S_k subespacios vectoriales de U. La suma $S_1 + S_2 + \ldots + S_k$ es una suma directa si y sólo si todo elemento de $S_1 + S_2 + \ldots + S_k$ se descompone de manera **única** como suma de elementos de S_1, S_2, \ldots, S_k .

Prueba: Supongamos que la suma es directa. Sea $\bar{x} \in S_1 + \ldots + S_k$ y supongamos que tenemos dos descomposiciones distintas de \bar{x} :

$$\bar{x} = \bar{x}_1 + \ldots + \bar{x}_k = \bar{y}_1 + \ldots + \bar{y}_k, \quad \bar{x}_i, \bar{y}_i \in S_i, \quad i = 1, 2, \ldots, k.$$

Entonces aplicando que $(S_1 + \ldots + S_{k-1}) + S_k$ es una suma directa vemos que $x_k = y_k$, y:

$$\bar{x}_1 + \ldots + \bar{x}_{k-1} = \bar{y}_1 + \ldots + \bar{y}_{k-1}.$$

Utilizando ahora que $(S_1 + \ldots + S_{k-2}) + S_{k-1}$ es una suma directa vemos que $x_{k-1} = y_{k-1}$,

$$\bar{x}_1 + \ldots + \bar{x}_{k-2} = \bar{y}_1 + \ldots + \bar{y}_{k-2}.$$

Repitiendo el proceso deducimos que $x_i = y_i$ para i = 1, 2, ..., k.

Recíprocamente supongamos que la descomposición es única. Veamos que para cualquier $i=2,\ldots,k, (S_1+\ldots+S_i)+S_{i+1}$ es una suma directa.

Cualquier $\bar{x} \in S_1 + \ldots + S_i$ se escribe como suma de elementos de S_1, \ldots, S_i . Por hipótesis esta descomposición es única. Aplicando la Proposición 2.10 deducimos que la suma es directa, es decir, $(S_1 + \ldots + S_i) \cap S_{i+1} = \{\bar{0}\}.$

2.5 Subespacios suplementarios.

Definición 2.13 Sean S_1, S_2 dos subespacios vectoriales de V. Se dice que son suplementarios si cumplen:

$$S_1 \cap S_2 = \{0\}$$

$$S_1 + S_2 = V$$

o equivalentemente:

$$S_1 \oplus S_2 = V$$
.

Si S_1, S_2 son subespacios suplementarios sabemos que un vector $\bar{x} \in V$ cualquiera se descompone de manera única como $\bar{x} = \bar{x}_1 + \bar{x}_2$, con $\bar{x}_1 \in S_1$ y $\bar{x}_2 \in S_2$:

 \bar{x}_1 se llama la proyección de \bar{x} sobre S_1 paralelamente a S_2 .

 \bar{x}_2 se llama la proyección de \bar{x} sobre S_2 paralelamente a S_1 .

Es interesante tener en cuenta que más allá del trasnfondo algebraico el concepto es muy geométrico. En el siguiente dibujo está representado un ejemplo. Lo subespacios suplementarios son el plano S_1 (en rojo) y la recta S_2 (en azul), cualquier vector \vec{x} puede descomponerse como suma de un par de vectores \vec{x}_1 y \vec{x}_2 en cada uno de los subespacios.

Geométricamente el vector \vec{x}_1 se construye tomando la recta paralela a S_2 por el extremos del vector \vec{x} y cortando con el plano S_1 . De ahí que se llame proyección de \bar{x} sobre S_1 paralelamente a S_2 .

Análogamente el vector \vec{x}_2 se construye cortando el plano paralelo a S_1 por el extremo de \vec{x} con la recta S_1 .

Basándonos en esta descomposición, podemos definir la siguientes funciones proyección:

La función p_1 se llama la función proyección sobre S_1 paralelamente a S_2 y la función p_2 es la función proyección sobre S_2 paralelamente a S_1 .

Estas funciones verifican las siguientes propiedades:

1.
$$p_1 + p_2 = Id$$
.

2.
$$p_1 \circ p_1 = p_1 \ \text{y} \ p_2 \circ p_2 = p_2$$
.

3.
$$p_1 \circ p_2 = p_2 \circ p_1 = 0$$
.