Chapter 11 Interior-point methods

Last update on 2024-05-31 09:01

Table of contents

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

inequality constrained minimization

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \qquad i=1,\ldots,m$ $Ax=b$

general assumptions

- $ightharpoonup f_i$ convex and twice continuously differentiable
- $ightharpoonup A \in \mathbb{R}^{p \times n}$ and $\operatorname{rank} A = p$
- $\triangleright p^*$ is finite and attained
- **>** problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \mathbf{dom} \, f_0, \qquad f_i(\tilde{x}) < 0, \qquad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence strong duality holds and dual optimum is attained

examples

- ▶ LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints $(\mathcal{D} = \mathbb{R}^n_{++})$

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$
 subject to
$$Fx \leq g$$

$$Ax = b$$

- ▶ differentiability may require reformulating the problem, e.g. piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

reformulation via indicator function

subject to Ax = b

where I_- is the indicator function of \mathbb{R}_-

$$I_{-}(u) = \begin{cases} 0, & \text{if } u \le 0\\ \infty, & \text{if } u > 0 \end{cases}$$

Logarithmic barrier

approximation via logarithmic barrier

minimize
$$f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x))$$
 subject to
$$Ax = b$$

- an equality constrained problem
- ▶ for t > 0, the term $-(1/t)\log(-u)$ is a smooth approximation of I_-
- **>** approximation improves as $t \to \infty$

- ▶ dashed line: function $I_{-}(u)$
- lacktriangle solid curves: function $-(1/t)\log(-u)$ for t=0.5,1,2
- ightharpoonup t=2 gives the best approximation

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \, \phi = \{x \mid f_i(x) < 0, \ i = 1, \dots, m\}$$

- convex function (follows from composition rule)
- twice continuously differentiable (can be easily computed)

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

centering problem

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

- **assume** it has a unique solution $x^*(t)$ for each t > 0
- ▶ the curve $\{x^*(t) \mid t > 0\}$ is called the central path
- ▶ there exists some w such that $(x = x^*(t), \nu = w)$ satisfies

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T \nu = 0, \qquad Ax = b$$

example central path for an LP

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i, \qquad i = 1, \dots, 6$

the hyperplane $c^Tx=c^Tx^*(t)$ is tangent to the level curve of ϕ through $x^*(t)$

dual points from central path

 \triangleright by the optimality condition, $x^*(t)$ minimizes the Lagrangian

$$L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t) f_i(x) + \nu^*(t)^T (Ax - b)$$

where we define $\lambda_i^*(t) = 1/(-tf_i(x^*(t)))$ and $\nu^*(t) = w/t$

▶ the duality gap for the original problem associated to these values

$$g(\lambda^*(t), \nu^*(t)) = L(x^*(t), \lambda^*(t), \nu^*(t)) = f_0(x^*(t)) - m/t$$

as a consequence

$$f_0(x^*(t)) - p^* \le m/t$$

which confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ as $t \to \infty$

interpretation via KKT conditions

$$x = x^*(t)$$
, $\lambda = \lambda^*(t)$, $\nu = \nu^*(t)$ satisfy

- 1. primal constraints $f_i(x) \leq 0, \quad i = 1, \dots, m, \quad Ax = b$
- 2. dual constraints $\lambda \succ 0$
- 3. approximate complementary slackness $-\lambda_i f_i(x) = 1/t, \quad i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes

$$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + A^T \nu = 0$$

the only difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

centering problem without equality constraints

minimize
$$tf_0(x) - \sum_{i=1}^{m} \log(-f_i(x))$$

force field interpretation

- ▶ $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$
- ▶ $-\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x)) \nabla f_i(x)$

the forces balance at $x^*(t)$

$$F_0(x^*(t)) + \sum_{i=1}^{m} F_i(x^*(t)) = 0$$

example

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \qquad i = 1, \dots, m$

- ightharpoonup objective force field is constant $F_0(x) = -tc$
- constraint force decays as inverse distance to constraint hyperplane

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad ||F_i(x)||_2 = \frac{1}{\mathbf{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

- lacktriangle a small LP example with n=2 and m=5
- ▶ the equilibrium position of the particle traces out the central path
- ▶ larger value of objective force moves the particle closer to the optimal point

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

Barrier method

given strictly feasible $x,\ t \coloneqq t^{(0)} > 0,\ \mu > 1,$ tolerance $\epsilon > 0$ repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$ subject to Ax = b
- 2. Update. $x := x^*(t)$
- 3. Stopping criterion. quit if $m/t < \epsilon$
- **4**. Increase t. $t := \mu t$

remarks

- \blacktriangleright terminates with $f_0(x) p^* \le \epsilon$
- centering usually done using Newton's method, starting at current x
- ▶ choice of μ involves a trade-off: larger μ means fewer outer (centering) iterations and more inner (Newton) iterations; typical values $10 \le \mu \le 20$
- lacktriangle several heuristics for choice of $t^{(0)}$

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

- ▶ starts with x on central path $(t^{(0)} = 1$, duality gap 100)
- ▶ terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- lacktriangle total number of Newton iterations not very sensitive for $\mu \geq 10$

geometric program

$$(m = 100 \text{ inequalities and } n = 50 \text{ variables})$$

minimize
$$\log \left(\sum_{k=1}^{5} \exp \left(a_{0k}^T x + b_{0k} \right) \right)$$
 subject to
$$\log \left(\sum_{k=1}^{5} \exp \left(a_{0k}^T x + b_{0k} \right) \right) \leq 0, \qquad i = 1, \dots, m$$

$$10^2$$

$$10^2$$

$$10^2$$

$$10^{-2}$$

$$10^{-4}$$

$$10^{-6}$$

$$\mu = 150$$

$$\mu = 50$$

$$\mu = 2$$

Newton iterations

family of standard LPs

 $(A \in \mathbb{R}^{m \times 2m})$

- ightharpoonup solve 100 randomly generated instances for each m between 10 and 1000
- ightharpoonup number of iterations grows very slowly as m ranges over a 100:1 ratio

Convergence analysis

outer (centering) iterations number is exactly

$$\left\lceil \frac{\log\left(m/\epsilon t^{(0)}\right)}{\log\mu} \right\rceil$$

plus the initial centering step for computing x^* ($t^{(0)}$)

inner (Newton) iterations

minimize
$$tf_0(x) + \phi(x)$$

see convergence analysis of Newton's method

- $\blacktriangleright t f_0 + \phi$ must have closed sublevel sets for $t > t^{(0)}$
- classical analysis requires strong convexity and Lipschitz condition
- \triangleright analysis via self-concordance requires self-concordance of $tf_0 + \phi$

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

Self-concordance assumptions

same general assumptions in this chapter plus

- \blacktriangleright sublevel sets (of f_0 on the feasible set) are bounded
- lacktriangledown $t f_0 + \phi$ is self-concordant with closed sublevel sets for all $t \geq t^{(0)}$

the second condition above

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.

$$\begin{array}{ccc} \text{minimize} & \sum_{i=1}^n x_i \log x_i \\ \text{subject to} & Fx \preceq g \end{array} \quad \Longrightarrow \quad \begin{array}{c} \text{minimize} & \sum_{i=1}^n x_i \log x_i \\ \text{subject to} & Fx \preceq g, \quad x \succeq 0 \end{array}$$

 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Newton iterations per centering step

general result for closed strictly convex self-concordant function f

Newton iterations
$$\leq \frac{f(x) - p^*}{\gamma} + c$$

where γ and c are constants depending only on Newton algorithm parameters

barrier method effort of computing
$$x^+ = x^*(\mu t)$$
 starting at $x = x^*(t)$

Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

deriving an upper bound

with $\lambda = \lambda^*(t)$ and $\nu = \nu^*(t)$

$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

$$= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=0}^{m} \log(-\mu t \lambda_i f_i(x^+)) - m$$

$$= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu \sum_{i=1}^m \lambda f_i(x^+) - m - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$
$$= m(\mu - 1 - \log \mu)$$

Total number of Newton iterations

total number of Newton steps in barrier method excluding initial centering step

$$\# \text{ Newton iterations } \leq N = \left\lceil \frac{\log \left(m / \epsilon t^{(0)} \right)}{\log \mu} \right\rceil \left(\frac{m (\mu - 1 - \log \mu)}{\gamma} + c \right)$$

- figure shows N for typical values of γ , c, m=100, $m/\epsilon t^{(0)}=10^5$
- \triangleright confirms trade-off in choice of μ
- \blacktriangleright in practice, number of iterations is in the tens; not very sensitive for $\mu \geq 10$

polynomial-time complexity of barrier method

- we choose $\mu = 1 + 1/\sqrt{m}$, which approximately optimizes worst-case complexity
- ▶ for such μ simple calculation shows $N = O\left(\sqrt{m}\log\left(m/\epsilon t^{(0)}\right)\right)$
- ightharpoonup number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions) to get bound on number of flops
- in practice we choose μ fixed (between 10 and 20)

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

feasibility problem find x such that

$$f_i(x) \le 0, \qquad i = 1, \dots, m$$

 $Ax = b$

phase I computes strictly feasible starting point for barrier method

Basic phase I method

basic phase I method (with optimal value \bar{p}^*)

minimize
$$s$$
 subject to
$$f_i(x) \leq s, \qquad i = 1, \dots, m$$

$$Ax = b$$

- ▶ if (x, s) feasible with s < 0, then x is strictly feasible for feasibility problem
- ▶ if $\bar{p}^* > 0$, then feasibility problem is infeasible
- \blacktriangleright if $\bar{p}^*=0$ and not attained, then feasibility problem is infeasible
- lackbox if $ar p^*=0$ and attained, then feasibility problem is feasible, but not strictly

sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$
 subject to $f_i(x) \leq s_i, \qquad i=1,\dots,m$ $Ax=b$ $s\succeq 0$

comparison of methods

infeasible set of 100 linear inequalities in 50 variables

- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities
- for infeasible problems, second method produces a solution that satisfies many more inequalities than first method

Example

family of linear feasibility problems

$$Ax \leq b + \gamma \Delta b$$

- ▶ data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma < 0$, feasible but not strictly feasible for $\gamma = 0$
- use basic phase I method, terminate when s<0 (find a strictly feasible point) or when dual objective >0 (produce a certificate of infeasibility)

conclusion

- cost of solving a convex feasibility problem using barrier method is modest when the problem is not close to the boundary between feasibility and infeasibility
- cost grows when the problem is very close to the boundary
- cost becomes infinite when the problem is exactly on the boundary

number of iterations roughly proportional to $\log{(1/|\gamma|)}$

Inequality constrained minimization problems

Logarithmic barrier function and central path

The barrier method

Complexity analysis via self-concordance

Feasibility and phase I methods

Problems with generalized inequalities

minimization with generalized inequalities

minimize
$$f_0(x)$$
 subject to $f_i(x) \preceq_{K_i} 0, \qquad i=1,\ldots,m$ $Ax=b$

assumptions

- $ightharpoonup f_0$ convex function
- $f_i \colon \mathbb{R}^n \to \mathbb{R}^{k_i}$ convex with respect to proper cones $K_i \subset \mathbb{R}^{k_i}$ for $i = 1, \dots, m$
- \triangleright all f_i twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with rank A = p
- $ightharpoonup p^*$ is finite and attained
- lacktriangle problem is strictly feasible, hence strong duality holds and dual optimum is attained

examples of greatest interest SOCP, SDP

Logarithmic barrier and central path

generalized logarithm for a proper cone

function $\psi\colon\mathbb{R}^q\to\mathbb{R}$ is a generalized logarithm for a proper cone $K\subseteq\mathbb{R}^q$ if

- 1. $\operatorname{dom} \psi = \operatorname{int} K$
- 2. ψ is concave, closed, twice continuously differentiable
- 3. $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- 4. there exists a constant $\theta > 0$ (degree of ψ) such that for $y \succ_K 0$ and s > 0

$$\psi(sy) = \psi(y) + \theta \log s$$

properties
$$\nabla \psi(y) \succeq_{K^*} 0$$
 and $y^T \nabla \psi(y) = \theta$ for any $y \succ_K 0$

examples

▶ nonnegative orthant $K = \mathbb{R}^n_+$

$$\psi(y) = \sum_{i=1}^{n} \log y_i, \qquad (\theta = n)$$
$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

$$ightharpoonup$$
 positive semidefinite cone $K=\mathbb{S}^n_+$

$$\psi(Y) = \log \det Y, \qquad (\theta = n)$$

 $\nabla \psi(Y) = Y^{-1}, \qquad \mathbf{tr}(Y \nabla \psi(Y)) = n$

• second-order cone $K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} < u_{n+1} \}$

 $\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2), \quad (\theta = 2)$

 $\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2$

 $\operatorname{dom} \phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$

- \blacktriangleright ψ_i is generalized logarithm for K_i with degree θ_i
- \blacktriangleright ϕ is convex and twice continuously differentiable

central path

 \blacktriangleright $\{x^*(t) \mid t > 0\}$ where $x^*(t)$ solves

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

 $ightharpoonup x = x^*(t)$ if there exists $w \in \mathbb{R}^p$ such that

$$t\nabla f_0(x) + \sum_{i=1}^{m} Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

where $Df_i(x) \in \mathbb{R}^{k_i \times n}$ is derivative (Jacobian) matrix of f_i at x

dual points on central path

 \blacktriangleright $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t))$, where

$$L(t)$$
 initializes Lagrangian $L(t, \lambda, (t), \nu, (t))$, where

$$\lambda_i^*(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^*(t))), \qquad \nu^*(t) = \frac{w}{t}$$

$$\lambda_i^{\cdot}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\cdot}(t))), \qquad \nu^{\cdot}(t) = \frac{1}{t}$$

$$lacksquare$$
 $\lambda_i^*(t) \succ_{K_i^*} 0$ from properties of ψ_i , therefore duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = \frac{1}{t} \sum_{i=1}^m \theta_i$$

$$\lambda_i^*(t) \succ_{K_i^*} 0$$
 from properties of ψ_i , therefore duality gap

minimize
$$c^T x$$

subject to
$$F(x) = \sum_{i=1}^{n} x_i F_i + G \leq 0$$

- logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$
- ▶ central path: $x^*(t)$ minimizes $tc^Tx \log \det(-F(x))$, hence

$$tc_i - \mathbf{tr}(F_i F(x^*(t))^{-1}) = 0, \qquad i = 1, \dots, n$$

• dual point on central path: $Z^*(t) = -(1/t)F(x^*(t))^{-1}$ is feasible for

maximize
$$\mathbf{tr}(GZ)$$
 subject to $\mathbf{tr}(F_iZ)+c_i=0, \qquad i=1,\dots,n$ $Z\succeq 0$

• duality gap on central path: $c^T x^*(t) - \mathbf{tr}(GZ^*(t)) = p/t$

Barrier method

given strictly feasible $x,\ t \coloneqq t^{(0)} > 0,\ \mu > 1,$ tolerance $\epsilon > 0$ repeat

- 1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$ subject to Ax = b
- 2. Update. $x := x^*(t)$
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$
- **4**. *Increase* t. $t := \mu t$

remarks

- lacktriangle only difference is duality gap m/t on central path is replaced by $\sum_i heta_i/t$
- number of outer iterations

$$\left\lceil \frac{\log\left(\left(\sum_{i}\theta_{i}\right)/\left(\epsilon t^{(0)}\right)\right)}{\log\mu}\right\rceil$$

complexity analysis via self-concordance applies to SDP and SOCP

Examples

SOCP (50 variables, 50 SOC constraints in \mathbb{R}^6)

minimize
$$f^T x$$
 subject to $\|A_i x + b_i\|_2 \leq c_i^T x + d_i, \qquad i = 1, \dots, m$

SDP

minimize
$$c^T x$$
 subject to $\sum_{i=1}^n x_i F_i + G \leq 0$

family of SDPs $(A \in \mathbb{S}^n, x \in \mathbb{R}^n)$

solve 100 randomly generated instances for each n between 10 and 1000

