Do all 5 problems (each worth 20 points); show details for partial credit

1. Suppose a four-dimensional vector space \mathbb{V} has a basis $\{e_1, e_2, e_3, e_4\}$. In terms of these basis vectors give a basis for each of

- (a) $\Lambda^1(\mathbb{V})$,
- (b) $\Lambda^2(\mathbb{V})$,
- (c) $\Lambda^3(\mathbb{V})$,
- (d) $\Lambda^4(\mathbb{V})$.

2. Suppose $dim(\mathbb{V}) = 5$, $\xi \in \Lambda^2(\mathbb{V})$ and $\eta \in \Lambda^3(\mathbb{V})$. Explain the difference between $\xi \otimes \eta$ and $\xi \wedge \eta$ and define $\xi \wedge \eta$ in terms of $\xi \otimes \eta$. Express $\xi \wedge \eta$ in terms of $\eta \wedge \xi$. Give an example each for ξ and η in terms of a basis $\{e_i\}$ $(1 \leq i \leq 5)$ of \mathbb{V} .

3. Suppose $\{e_1, e_2, e_3\}$ is a basis of a three-dimensional vector space \mathbb{V} , and $\{e^{*1}, e^{*2}, e^{*3}\}$ its dual basis in \mathbb{V}^* . Compute

$$(e_1 \wedge e_2 \wedge e_3) (e^{*3}, e^{*2}, e^{*1})$$
,

interpreted as the action of the wedge product on the ordered triplet. Show your calculation carefully.

4. The matrix representation of a linear map $A: \mathbb{V} \longrightarrow \mathbb{V}$ with respect to a basis $\{e_1, e_2, e_3\}$ of \mathbb{V} is given by

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} .$$

Let $\varphi = e^{*1} \wedge e^{*2} \wedge e^{*3} \in \Lambda^3(\mathbb{V}^*)$. Calculate $A^*\varphi$ in terms of φ , where A^* is the pullback map $A^* : \Lambda^3(\mathbb{V}^*) \longrightarrow \Lambda^3(\mathbb{V}^*)$.

5. In the three-dimensional Euclidean manifold \mathbb{R}^3 consider the transformation between the Cartesian coordinates (x,y,z) and the spherical polar coordinates (r,θ,ϕ) .

(a) In the matrix equation

$$(dx \quad dy \quad dz) = (dr \quad d\theta \quad d\phi) g',$$

find the 3×3 matrix g'.

(b) Use the result in (a) to calculate $dx \wedge dy \wedge dz$ in terms of $dr \wedge d\theta \wedge d\phi$.

MAT 444 MT2 Solutions

KAI S. LAM

: a basis is { e, , e, , e, , e, }

(b) The dimension of $\Lambda^2(V) = \frac{4!}{2!(4-2)!} = 6$.

A basis in { \(\vec{e}_{1} \ne_{2} \), \(\vec{e}_{1} \ne_{3} \), \(\vec{e}_{1} \ne_{3} \), \(\vec{e}_{1} \ne_{3} \), \(\vec{e}_{2} \ne_{3} \), \(\vec{e}_{2} \ne_{3} \), \(\vec{e}_{3} \ne_{3} \ne_{

(c) The dimension of $\Lambda^3(V) = \frac{4!}{3!(4-5)!} = \frac{4!}{3!} = 4$.

(d) 14(V) is one-dimensional. A basis is

§ c, 1 e, 1 e, 1 e, 3

② \$⊗1 is the [insor product of \$∈12(V)

and $\eta \in \Lambda^3(V)$, when $\Lambda^2(V)$ and $\Lambda^3(V)$ are considered as vector spaces. Note that even as \S and η are each to lally antisymmetric, $\S \otimes \eta$ is not necessarily to lally antisymmetric.

\$ 17 is the exterior (wedge) product of 3 and 7.
It is totally antisymmetric, and is defined in terms

of 307 by

≥ 17 = A₅ (387)

Where As is the antisymmetrizer (operator) given by

A5 = 1 [(Sgn 6). 6 (A (5) in the permutation) group of 5 objects

(2) cont'd. An example of
$$\tilde{s}$$
 and $\tilde{\eta}$ are given by
$$\tilde{s} = 2\vec{e}_1 \wedge \hat{e}_5 + 3\vec{e}_2 \wedge \hat{e}_4 - \vec{e}_4 \wedge \hat{e}_5 ;$$

$$\tilde{\eta} = \vec{e}_1 \wedge \hat{e}_2 \wedge \hat{e}_5 - 2\vec{e}_3 \wedge \hat{e}_4 \wedge \hat{e}_5 .$$

(3) We use the evaluation formula for exterior products:
$$(\vec{e}_{i}, \Lambda...\Lambda\vec{e}_{ir})(\vec{v}^{*1}, \vec{v}^{*2}, ..., \vec{v}^{*r})$$

$$= \frac{1}{r!} \langle \vec{e}_{i_1}, \vec{v}^{*1} \rangle \dots \langle \vec{e}_{i_r}, \vec{v}^{*r} \rangle$$

$$\langle \vec{e}_{i_2}, \vec{v}^{*1} \rangle \dots \langle \vec{e}_{i_r}, \vec{v}^{*r} \rangle$$

$$\langle \vec{e}_{i_r}, \vec{v}^{*1} \rangle \dots \langle \vec{e}_{i_r}, \vec{v}^{*r} \rangle$$

$$= \frac{\langle \vec{e}_{1}, \vec{e}^{*3} \rangle \langle \vec{e}_{1}, \vec{e}^{*2} \rangle \langle \vec{e}_{1}, \vec{e}^{*1} \rangle}{\langle \vec{e}_{2}, \vec{e}^{*3} \rangle \langle \vec{e}_{2}, \vec{e}^{*2} \rangle \langle \vec{e}_{2}, \vec{e}^{*1} \rangle}$$

$$= \frac{1}{3!} \langle \vec{e}_{2}, \vec{e}^{*3} \rangle \langle \vec{e}_{2}, \vec{e}^{*2} \rangle \langle \vec{e}_{2}, \vec{e}^{*1} \rangle}{\langle \vec{e}_{3}, \vec{e}^{*3} \rangle \langle \vec{e}_{3}, \vec{e}^{*2} \rangle \langle \vec{e}_{3}, \vec{e}^{*1} \rangle}$$

$$= \frac{1}{3!} \quad 0 \quad 0 \quad 1 \\ = \frac{1}{6}(-1) = -\frac{1}{6} = \frac{1}{3!} \delta_{123}^{321}$$

This induces the pullback map
$$A^*: \Lambda^3(V) \rightarrow \Lambda^3(V^*)$$
 We have, for any $\varphi \in \Lambda^3(V^*)$,

$$A^* \varphi = (\det A) \varphi$$

$$\det A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix} = 1(2) + 2(-4) + 3(-1) = -9$$

$$A^*(\tilde{e}^{*1}\Lambda \tilde{e}^{*2}\Lambda \tilde{e}^{*3}) = (-9)(\tilde{e}^{*1}\Lambda \tilde{e}^{*2}\Lambda \tilde{e}^{*3})$$

(5) When $X = r\sin\theta\cos\varphi$, $Y = r\sin\theta\sin\varphi$, $Y = r\cos\theta$ for $Y = r\cos\theta$ and $Y = r\sin\theta\sin\varphi$ of $Y = r\cos\theta\sin\varphi$ and $Y = r\sin\theta\sin\varphi$ and $Y = r\sin\theta\sin\varphi$ and $Y = r\cos\theta\sin\varphi$ and $Y = r\sin\theta\sin\varphi$ and $Y = r\sin\varphi$ and $Y = r\sin\varphi$ and $Y = r\cos\varphi$ and $Y =$

det g = r2 sin 0 (by straightforward colculation)

(b) dxndyndz = (detg') drndondp

: dxndyndz = r2 smb drndondø

3