Probability and Statistics: Lesson 1 Basic Probability

Morgan McCarty
03 July 2023

1 General Overview

1.1 Definitions

- 1. Experiment: procedure with undetermined <u>outcomes</u>
- 2. Sample Space: (S.S. or S) set of all possible outcomes
- 3. <u>Set</u>: a collection of things
- 4. <u>Countable</u>: can be put in one-to-one correspondence with the natural numbers (integers are countable)
- 5. Discrete: finite or countable
- 6. Continuous: uncountable (in opposition to discrete)
- 7. <u>Universal Set</u>: set of all possible outcomes equivalent to the sample space in a Probability experiment

1.2 Symbols

- \in : $x \in S$: x is an element of S
- \notin : $x \notin S$ x is not an element of S

1.3 Examples

- Experiment: flip a coin
 - Sample Space: $\{H, T\}$ Sample Space is **finite**
- Experiment: flip a coin until we get a tails
 - Sample Space: $\{T, HT, HHT, HHHT, \dots\}$ Sample Space is **infinite**, but **countable**
- \bullet Experiment: pick a number in the interval [0,1]
 - Sample Space: [0,1] or $\{x \in \mathbb{R} \mid 0 \le x \le 1\}$ Sample Space is **infinite**, and **not countable**

2 Events

2.1 Definitions

- 1. <u>Subset</u>: a set whose elements are all contained in another (super) set, additionally every set is a subset of itself and the empty set is a subset of every set
- 2. Event: a subset of the sample space

2.2 Symbols

- \subseteq : $A \subseteq B$: A is a subset of B
- \subset : $A \subset B$: A is a proper subset of B (at least one element of B is not in A)
- \emptyset : the empty set

2.3 Examples

- Rolling a six-sided die
 - $-S = \{1, 2, 3, 4, 5, 6\}$ Sample Space is **finite**
 - Events:
 - * Event of rolling even numbers: $A = \{2, 4, 6\}$
 - * Event of rolling a "6": $B = \{6\}$
 - * Event of rolling a prime number: $C = \{2, 3, 5\}$
 - * Event of rolling a number 7 or greater: $D = \emptyset$

3 Set Operations

3.1 Definitions

Given sets A and B:

- 1. Complement: $A^c = \{x \mid x \in S \text{ and } x \notin A\}$
- 2. <u>Intersection</u>: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- 3. Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- 4. Disjoint: if $A \cap B = \emptyset$, then A and B are disjoint
- 5. DeMorgan's Laws: $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$

3.2 Symbols

Assume $A, B \subseteq S$

- A^c : complement of A
- $A \cap B$: intersection of A and B
- $A \cup B$: union of A and B
- $A \sqcup B$: disjoint union of A and B (i.e. $A \cap B = \emptyset$)

4 The Probability Function

4.1 Definitions

1. P(A): probability of event A

4.2 Kolmolgorov's Axioms

- 1. Axiom 1: P(A) > 0
- 2. Axiom 2: P(S) = 1
- 3. Axiom 3: If A, B are disjoint, then $P(A \cup B) = P(A \cup B) = P(A) + P(B)$

4.3 Derived Properties

1.
$$P(A^c) = 1 - P(A)$$

Proof:

$$A \sqcup A^{c} = S$$

$$P(S) = P(A) + P(A^{c})$$

$$1 = P(A) + P(A^{c})$$

$$P(A^{c}) = 1 - P(A)$$

2. $P(\emptyset) = 0$ Proof:

$$\emptyset \sqcup S = S$$

$$P(S) = P(\emptyset) + P(S)$$

$$1 = P(\emptyset) + 1$$

$$P(\emptyset) = 0$$

3.
$$P(A) = P(A \cap B) + P(A \cap B^c)$$

Proof:

$$A = A \cap S$$

$$= A \cap (B \sqcup B^c)$$

$$= (A \cap B) \sqcup (A \cap B^c)$$

$$P(A) = P(A \cap B) + P(A \cap B^c)$$

$$\square$$
 [by Axiom 3]

4. If
$$A \subseteq B$$
, then $P(A) \le P(B)$
Proof:

$$B = S \cap B$$

$$= (A \sqcup A^c) \cap B$$

$$= (A \sqcup A^c) \cap (A \cup B)$$

$$= A \sqcup (B \cap A^c)$$

$$P(B) = P(A) + P(B \cap A^c)$$

$$\geq P(A) + 0$$

$$\geq P(A)$$

5. $P(A) \leq 1$ Proof:

$$A \sqcup A^c = S$$
 [by definition]
 $P(S) = P(A) + P(A^c)$ [by Axiom 3]
 $1 = P(A) + P(A^c)$ [by Axiom 2]
 $P(A) < 1$

6. Union Rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Proof:

$$A \cup B = A \sqcup (B \cap A^c)$$
 [by distribution]

$$P(A \cup B) = P(A) + P(B \cap A^c)$$
 [by Axiom 3]

$$P(B) = P(B \cap A) + P(B \cap A^c)$$
 [by derived property 3]

$$P(B \cap A^c) = P(B) - P(B \cap A)$$
 [by algebra]

$$P(A \cup B) = P(A) + P(B) - P(B \cap A)$$

4.4 Examples

• Example 1

$$-P(A) = 0.4, P(B) = 0.5, P(A \cap B) = 0.1$$

– Determine probability only A occurs:
$$P(A \cap B^c) = P(A) - P(A \cap B) = 0.4 - 0.1 = 0.3$$

– Determine probability
$$A$$
 or B occurs:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.4 + 0.5 - 0.1 = 0.8$$

– Determine probability
$$A$$
 xor B occurs:
$$P(A \cup B) - P(A \cap B) = 0.8 - 0.1 = 0.7$$
 or
$$P(A \cap B^c) + P(B \cap A^c) = 0.3 + 0.4 = 0.7$$

– Determine probability neither A nor B occurs:
$$P((A \cup B)^c) = 1 - P(A \cup B) = 1 - 0.8 = 0.2$$

5 Basic Principle of Probability

5.1 Definitions

1. Cardinality: the number of elements in a set

5.2 Symbols

• |A|: cardinality of A

5.3 The Principle

If every outcome of S.S. is equally likely, then:

$$P(A) = \frac{\text{number of outcomes in } A}{\text{number of outcomes in } S}$$

or

$$P(A) = \frac{|A|}{|S|}$$

5.4 Examples

- 1. Example 1
 - for a fair die roll, what is the probability of rolling an even number? $P(A)=\frac{|A|}{|S|}=\frac{3}{6}=\frac{1}{2}=.5$
- 2. Example 2
 - If you roll two fair dice, what is the probability of rolling a sum greater or equal to 9? $A = \{36, 45, 54, 55, 56, 63, 64, 65, 66\}$ $P(A) = \frac{|A|}{|S|} = \frac{10}{36} = \frac{5}{18} \approx .278$

6 Counting and Probability

6.1 Rules

- 1. Addition Rule
- 2. Multiple Rule

6.2 Examples

- 1. Example 1
 - In a standard deck of cards, what is the probability of drawing a face card or a black ace? $A = \{A\spadesuit, A\clubsuit\} + \{J\spadesuit, J\clubsuit, J\heartsuit, J\diamondsuit, Q\spadesuit, Q\clubsuit, Q\diamondsuit, Q\diamondsuit, K\spadesuit, K\clubsuit, K\heartsuit, K\diamondsuit\}$ 2*1 (multiple rule) aces + (addition rule) 4*3 face cards = 16 cards $P(A) = \frac{|A|}{|S|} = \frac{14}{52} = \frac{7}{26} \approx .269$