

Biohackathon 2021

Prediction of TCR-pMHC binding

Who are we?

Al for Immunological Molecules group at DTU (Paolo Marcatili)

Ida MeitilMaster thesis student at DTU

Magnus Høie Research Assistant at University of Copenhagen

Anna-Lisa Schaap-JohansenPhD student at DTU

TCR: T cell receptor

MHC: Major histocompatibility

complex

Predict binding of TCR and pMHC

Why is this important

All nucleated cells show peptide fragments on the cell surface

Why is this important

If a T-cell binds to the pMHC, it will kill the cell

* HLA: Human leukocyte antigen (a subclass of MHC)

What can we do with such a model?

- Understand the rules of TCR binding
- Immunotherapy: Find TCRs for cancer epitopes
- Vaccine development: Screening for epitopes

Previous TCRpMHC prediction models

18. marts 2021

DTU Bioengineering

NetTCR (2018)

NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks

Description Vanessa Isabell Jurtz, Description Leon Eyrich Jessen, Amalie Kai Bentzen, Martin Closter Jespersen, Randi Vita, Randi Vita, Kamilla Kjærgaard Jensen, Paolo Marcatili, Description Sine Reker Hadrup,

Bjoern Peters, Morten Nielsen

doi: https://doi.org/10.1101/433706

- Sequence-based
- Convolutional neural network
- Trains only on TCR CDR3 and peptide
- Struggles to predict on new peptides

Molecular modeling and force field scoring (2018)

Contents lists available at ScienceDirect

Molecular Immunology

journal homepage: www.elsevier.com/locate/molimm

Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring

Esteban Lanzarotti^a, Paolo Marcatili^b, Morten Nielsen^{a,b,*}

- Uses molecular modeling and FoldX and Rosetta energy terms
- Limited performance

a Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina

^b Department of Bio and Health Informatics, Technical University of Denmark, Building 208, Kemitorvet, 2800 Lyngby, Denmark

Siamese network (2019)

The dataset

The dataset

- Molecular models and energy terms calculated from these
 - -TCRs have a very conserved structure => easy to model
- New dataset
- We are excited to see your results!

Preparation of dataset

Sequences of TCRpMHC complexes

Dataset with sequences, FoldX and Rosetta energy terms

Starting point

- ~ 8,000 TCR-p-MHC-complex sequences
 - -25% positive complexes coming from VDJdb and IEDB
 - —75% negative complexes coming from the 10X genomics dataset and swapped complexes
- Only HLA-02-01
- 18 different peptides. GILGFVFTL (influenza) ~60%, GLCTLVAML (herpesvirus) ~10%, NLVPMVATV (herpesvirus) ~10%

Modeling and energy calculations

- The complexes were modeled using TCRpMHCmodels
- Relaxation and energy calculation using FoldX
- Relaxation and energy calculation using Rosetta (global and perresidue)
 - Electrostatic, h-bond, repulsive, attractive etc...

The features

Feature	Columns	Feature encoding
Amino acid	1-20	One-hot encoded
Rosetta per-residue energy terms	21-27	
FoldX energies	28-33	Constant, one value
Rosetta global energy complex	34-40	Constant, one value
Rosetta global energy TCR	41-47	Constant, one value
Rosetta global energy pMHC	48-54	Constant, one value

CSV

The files

- P1_input.npz, P2_input.npz ...
 - The input data
 - A 3D-array. (sample, position, features)
- P1_labels.npz, P2_labels.npz ...
 - The labels
 - A 1D-array. 0 meaning negative, 1 meaning positive
- Sequence have been padded in order to make up for the differences in length
- [0:180] MHC
- [180:192] peptide
- [192:421] TCR

Practicals

Ask questions in the Slack channel

Check-in Saturday at 17

M. Howarth, Nat. Struct. Mol. Biol. 2015