

MOTO

Whether you love or hate math class, this formula sheet will help you survive math in one piece.

Alan Ngo Algebra – Calculus III

Formulas & Functions

Arithmetic Operations	Exponents/Radicals	Logs	<u>Circle</u>
$a(b \pm c) = ab \pm ac$	$x^a x^b = x^{a+b}$	$log_b 1 = 0$	$(x-h)^2 + (y-k)^2 = r^2$
$\frac{a}{b} \pm \frac{x}{y} = \frac{ay \pm bx}{by}$	$\frac{x^a}{x^b} = x^{a-b}$	$log_b b = 1$	<u>Ellipse</u>
$\frac{a \pm b}{c} = \frac{a}{c} \pm \frac{b}{c}$	$(x^a)^b = x^{ab}$	$log_b(xy) = log_b x + log_b y$	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{h^2} = 1$
$\frac{a \pm b}{c} = \frac{a}{c} \pm \frac{b}{c}$ $\frac{a}{b} * \frac{x}{y} = \frac{ax}{by}$	$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$	$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$
$\frac{a/b}{x/y} = \frac{ay}{bx}$	$(xy)^a = x^a y^a$	$log_b x^n = nlog_b x$	$c^2 = a^2 - b^2 \text{ (foci)}$
<u>Linear</u>	$x^{\frac{a}{b}} = \sqrt[b]{x^a} = (\sqrt[b]{x})^a$	$log_b x = y \leftrightarrow b^y = x$	<u>Hyperbola</u>
Ax + By = C	$\sqrt[a]{xy} = \sqrt[a]{x} * \sqrt[a]{y}$	$b^{\log_b x} = x$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$
$m = \frac{y_2 - y_1}{x_2 - x_1}$	$\sqrt[a]{\frac{x}{y}} = \frac{\sqrt[a]{x}}{\sqrt[a]{y}}$	$log_b x = \frac{log_a x}{log_a b}$	$\frac{\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1}{\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1}$
y = mx + b	<u>Functions</u>	Natural Logs	$y = \pm \left(\frac{b}{a}\right)(x - h) + k \text{ (asm)}$
$y - y_1 = m(x - x_1)$	y = af(b(x - h)) + k	ln1 = 0	$c^2 = a^2 + b^2 \text{ (foci)}$
Quadratic	a: vertical stretch/shrink	lne = 1	<u>Parabola</u>
$ax^2 + bx + c = 0$	b: horizontal stretch/shrink	ln(xy) = lnx + lny	$y = a(x - h)^2 + k$
$a(x-h)^2 + k = 0$	h: horizontal shift	$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$	$x = a(y - k)^2 + h$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	h: vertical shift	$lnx^n = nlnx$	$a = \frac{1}{4c} \text{ (focus)}$
Special Factor Rules	Domain/Range	$lnx = y \leftrightarrow e^y = x$	<u>Rational</u>
$x^{2} - a^{2} = (x - a)(x + a)$	Interval	$e^{lnx} = x$	$y = \frac{1}{f(x)}$
$x^2 + a^2 = (x - ai)(x + ai)$	$x \in [a,b]$ $x \in (a,b)$ $x \in (-\infty,\infty)$	$log_b x = \frac{lnx}{lnb}$	$f(x) \neq 0$
$x^3 \pm a^3 = (x \pm a)(x^2 \mp ab + b^2)$	$y \in [c,d]$ $y \in (c,d)$ $y \in (-\infty,\infty)$	Temp Conversions	Pythagorean THM
Binomial Theorem	Set Builder	$K = 273 + {}^{\circ}\text{C}$	$a^2 + b^2 = c^2$
$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$	$a \le x \le b$ $a < x < b$ \mathbb{R}	$^{\circ}\text{C} = 5(^{\circ}\text{F} - 32)/9$	
100	$c \le y \le d c < y < d \mathbb{R}$	$^{\circ}F = 9^{\circ}C/5 + 32$	

Quad.	Angle°	RA°	Angle (rad)	RA	cosθ	$sin\theta$	tanθ	secθ	cscθ	cotθ
X	0	0	0	0	1	0	0	1	und	und
1	30	30	π/6	π/6	√3/2	1/2	√3/3	2/√3	2	√3
1	45	45	π/4	π/4	√2/2	√2/2	1	√2	√2	1
1	60	60	π/3	π/3	1/2	√3/2	√3	2	2/√3	√3/3
X	90	90	π/2	π/2	0	1	und	und	1	0
II	120	60	2π/3	π/3	-1/2	√3/2	-√3	-2	2/√3	-√3/3
II	135	45	3π/4	π/4	-v2/2	√2/2	-1	- √ 2	√2	-1
II	150	30	5π/6	π/6	-√3/2	1/2	-√3/3	-2/√3	2	-√3
X	180	0	π	0	-1	0	0	-1	und	und
III	210	30	7π6	π/6	-√3/2	-1/2	√3	-2/√3	-2	√3
III	225	45	5π/4	π/4	-√2/2	-√2/2	1	-√2	-√2	1
III	240	60	4π/3	π/3	-1/2	-√3/2	√3/3	-2	-2/√3	√3/3
X	270	90	3π/2	π/2	0	-1	und	und	-1	0
IV	300	60	5π/3	π/3	1/2	-√3/2	-√3/3	2	-2/√3	-√3/3
IV	315	45	7π/4	π/4	√2/2	-√2/2	-1	√2	-√2	-1
IV	330	30	11π/6	π/6	√3/2	-1/2	-√3	2/√3	-2	-√3
Х	360	0	2π	0	1	0	0	1	und	und

Trig Identi	ties	Geometri	С	Polar basics			
$\sin\theta = \frac{y}{r}$	$csc\theta = \frac{r}{y}$	$A_{\square} = s^2$	$A_{rec} = lw$	$A_{\Delta} = \frac{bh}{2}$	$A_{\circ} = \pi r^2$	$x = rcos\theta$	$y = rsin\theta$
$cos\theta = \frac{x}{r}$	$sec\theta = \frac{r}{x}$	$P_{\square} = 4s$	$P_{rec} = 2l + 2w$	$P_{\Delta} = a + b + c$	$C = 2\pi r$	$r = \sqrt{x^2 + y^2}$	$\theta = arctan(\frac{y}{x})$
$tan\theta = \frac{y}{x}$	$cot\theta = \frac{x}{y}$	$V_{\square} = s^3$	$V_{prism} = Bh$	$V_{pyr} = \frac{lwh}{3}$	$V_{\circ} = \frac{\pi r^2 h}{3}$		

Identities/Trig Formulas				
Distance/Midpoint	Radian / Degree	Velocity	Angular Speed	Arc length / Area of Sector
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$1^{\circ} = \frac{180}{\pi} rad$	$v = \frac{s}{t}$	$v = r\dot{\omega}$	$s = r\theta$
$m = \left(\frac{(x_2 + x_1)}{2}, \frac{(y_2 + y_1)}{2}\right)$	$1 rad = \frac{\pi}{180} ^{\circ}$	$v = \frac{r\theta}{t}$	$\dot{\omega} = \frac{\theta}{t}$	$A = \frac{1}{2}r^2\theta$
Pythagorean Identities	Even/Odd Identities	Power Reduce	rs Sum/Diffe	erence Identities
$\sin^2 x + \cos^2 x = 1$	$\sin(-x) = -\sin x$	$\sin^2 x = \frac{1 - \cos 2x}{2}$	$\sin(x \pm y)$	$= sinx cosy \pm cosx siny$
$\tan^2 x + 1 = \sec^2 x$	cos(-x) = cosx	$\cos^2 x = \frac{1 + \cos 2x}{2}$		$= cosx cosy \mp sinx siny$
$1 + \cot^2 x = \csc^2 x$	tan(-x) = -tanx	$tan^2x = \frac{1 - \cos 2x}{1 + \cos 2x}$	$tan(x \pm y)$	$=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$
Double Angle Identities	Half Angles	Co-function Ide	entities	Reciprocal Identities
sin2x = 2sinx cosx	$\sin\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos x}{2}}$	$sin\theta = \cos\left(\frac{\pi}{2} - \frac{\pi}{2}\right)$	θ	$sinx = \frac{1}{cscx}$
$\cos 2x = \cos^2 x - \sin^2 x$	$\cos\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 + \cos x}{2}}$	$\cos\theta = \sin\left(\frac{\pi}{2} - \frac{\pi}{2}\right)$	θ	$cos = \frac{1}{secx}$
$\cos 2x = 1 - 2\sin^2 x$	$\tan\left(\frac{x}{2}\right) = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}$	$tan\theta = \cot\left(\frac{\pi}{2}\right)$	θ	$tanx = \frac{1}{cotx}$
$\cos 2x = 2\cos^2 x - 1$	$\tan\left(\frac{x}{2}\right) = \frac{\sin x}{1 + \cos x}$	$cot\theta = \tan\left(\frac{\pi}{2} - \frac{\pi}{2}\right)$	θ)	$secx = \frac{1}{cosx}$
$tan2x = \frac{2tanx}{1-tan^2x}$	$\tan\left(\frac{x}{2}\right) = \frac{(1 - \cos x)}{\sin x}$	$sec\theta = \csc\left(\frac{\pi}{2} - \frac{\pi}{2}\right)$	θ	$cscx = \frac{1}{sinx}$
$tan2x = \frac{sin2x}{cos2x}$	$\tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}$	$csc\theta = \sec\left(\frac{\pi}{2} - \frac{\pi}{2}\right)$	θ	$cotx = \frac{1}{tanx}$
Laws of Sines/Cosines				
$\frac{\sin A}{a} = \frac{\sin B}{b} \qquad A = \frac{ab}{2} \sin C$	$c^2 = a^2 + b^2 - 2ab * cost$	Semi perime	ter/Area	
$\frac{\sin B}{b} = \frac{\sin C}{c} \qquad A = \frac{ac}{2} \sin B$	$b^2 = a^2 + c^2 - 2ac * cost$		(s-b)(s-c)	
$\frac{\sin A}{a} = \frac{\sin C}{c} \qquad A = \frac{bc}{2} \sin A$	$a^2 = b^2 + c^2 - 2bc * cosA$	$s = \frac{a+b+c}{2}$		

Standard Derivatives										
Basic Rules	Trig	Inverse Trig	Exponents	Logs						
$\frac{d}{dx}k = 0$	$\frac{d}{dx}sinx = cosx$	$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}lnx = \frac{1}{x}$						
$\frac{d}{dx}(ku) = ku'$	$\frac{d}{dx}cosx = -sinx$	$\frac{d}{dx} \operatorname{arccos} x = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d}{dx}b^x = b^x lnb$	$\frac{d}{dx}log_b x = \frac{1}{xlnb}$						
$\frac{d}{dx}(u \pm v) = u' \pm v'$	$\frac{d}{dx}tanx = \sec^2 x$	$\frac{d}{dx} \arctan x = \frac{1}{x^2 + 1}$	Definition	LH's Rules						
$\frac{d}{dx}(uv) = uv' + vu'$	$\frac{d}{dx}cotx = -\csc^2 x$	$\frac{d}{dx} \operatorname{arccot} x = \frac{-1}{x^2 + 1}$	$\frac{d}{dx}f = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\lim_{x \to \infty} \frac{u}{v} = \lim_{x \to \infty} \frac{u'}{v'}$						
$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$	$\frac{d}{dx}secx = secx tanx$	$\frac{d}{dx} \operatorname{arcsecx} = \frac{1}{x\sqrt{x^2 - 1}}$	$\frac{d}{dx}f = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$	$\lim_{x \to 0} \frac{u}{v} = \lim_{x \to 0} \frac{u'}{v'}$						
$\frac{d}{dx}x^n = nx^{n-1}$	$\frac{d}{dx}cscx = -cscx \ cotx$	$\frac{d}{dx} \operatorname{arccsc} x = \frac{-1}{x\sqrt{x^2 - 1}}$								

Chain Rules/Misc.

Basic Rules	Trig	Inverse Trig	Exponents	Logs
$\frac{d}{dx}u(v(x)) = u'(v) * v'(x)$	$\frac{d}{dx}sinu = u'cosu$	$\frac{d}{dx} \arcsin u = \frac{u'}{\sqrt{1 - u^2}}$	$\frac{d}{dx}e^u = u'e^u$	$\frac{d}{dx}lnu = \frac{u'}{u}$
$\frac{d}{dx}u^n = u' * nu^{n-1}$	$\frac{d}{dx}\cos u = -u'\sin u$	$\frac{d}{dx} \operatorname{arccosu} = \frac{-u'}{\sqrt{1 - u^2}}$	$\frac{d}{dx}b^u = u'b^u lnb$	$\frac{d}{dx}log_b u = \frac{u'}{ulnb}$
Linear Approx./Differential	$\frac{d}{dx}tanu = u'\sec^2 u$	$\frac{d}{dx} \arctan u = \frac{u'}{u^2 + 1}$	Polar	
L(x) = f'(a)(x - a) + f(a)	$\frac{d}{dx}cotu = -u'\csc^2 u$	$\frac{d}{dx} \operatorname{arccot} u = \frac{-u'}{u^2 + 1}$	$\frac{dy}{dx} = \frac{\left[\frac{dr}{d\theta}sin\theta + rcos\theta\right]}{\left[\frac{dr}{d\theta}cos\theta - rsin\theta\right]}$	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$
$\Delta y = f(x+h) - f(x)$	$\frac{d}{dx}secu = u'secu tanu$	$\frac{d}{dx}arcsecu = \frac{u'}{u\sqrt{u^2 - 1}}$	$\begin{bmatrix} ax & \left[\frac{\omega}{d\theta}cos\theta-rsin\theta\right] \end{bmatrix}$	$\frac{dx}{d\theta}$
dy = f'(x) dx	$\frac{d}{dx}cscu = -u'cscu cotu$	$\frac{d}{dx} \operatorname{arccscu} = \frac{-u'}{u\sqrt{u^2 - 1}}$		

Special Chain Rules

Function-Power	Implicit/Logarithmic Differentiation		
$\frac{d}{dx}sin^n u = nu'sin^{n-1}u \cos u$	$\frac{d}{dx}\sec^n u = nu'sec^n u \ tanu$	$\frac{d}{dx}e^{u^n} = nu'u^{n-1}e^{u^n}$	$[f(x) + f(y) = a] \rightarrow f'(x) + \frac{dy}{dx}f'(y) = 0$
$\frac{d}{dx}\cos^n u = -nu'\cos^{n-1}u\sin u$	$\frac{d}{dx}\csc^n u = -nu'\csc^n u \cot u$	$\frac{d}{dx}b^{u^n} = nu'u^{n-1}b^{u^n}\ln b$	$\frac{d}{dx}x^x = x^x(\ln(x) + 1)$
$\int \frac{d}{dx} \tan^n u = nu' \tan^{n-1} u \sec^2 u$	$\frac{d}{dx}\cot^n u = -nu'\cot^{n-1}u\csc^2 u$	$\frac{d}{dx}ln^n u = \frac{nu'ln^{n-1}u}{u}$	$\left[\frac{d}{dx} \left[\frac{(x \pm a)^n}{(x \pm b)^m} \right] = \left[\frac{(x \pm a)^n}{(x \pm b)^m} \right] \left[\frac{n}{(x \pm a)} - \frac{m}{(x \pm b)} \right]$

Basic Integrals	Integration By Parts	Trig Sub Rules
$\int k dx = kx + c$	$\int u \ dv = uv - \int v \ du \ (Remember \ LIPTE)$	$\sqrt{a^2 + x^2} \mid x = a t a n \theta$
$\int kf \ dx = k \int f \ dx$	Special IBP rules	$\sqrt{a^2 - x^2} \mid x = a sin\theta$
$\int u \pm v dx = \int u dx \pm \int v dx$	$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$	$\sqrt{x^2 - a^2} \mid x = asec\theta$
$\int x^n dx = \frac{x^{n+1}}{n+1} + c$	$\int x^n \sin(ax) dx = -\frac{x^n \cos(ax)}{a} + \frac{n}{a} \int x^{n-1} \cos(ax) dx$	<u>Definite Integrals</u>
$\int e^x dx = e^x + c$	$\int x^n \cos(ax) dx = \frac{x^n \sin(ax)}{a} - \frac{n}{a} \int x^{n-1} \sin(ax) dx$	$\int_{a}^{b} f(x) dx = F(b) - F(a)$
$\int b^x dx = \frac{b^x}{\ln b} + c$	$\int \arcsin x dx = x \arcsin x + \sqrt{1 - x^2} + c$	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
$\int \frac{1}{x} dx = \ln x + c$	$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + c$	IBP Priority (LIPTE)
$\int \sin x dx = -\cos x + c$	$\int \arctan x dx = x \arctan x - \frac{\ln(1+x^2)}{2} + c$	Log
$\int \cos x dx = \sin x + c$	$\int e^{ax} \sin(bx) dx = \frac{e^{ax}(a\sin(bx) - b\cos(bx))}{c^2 + b^2} + c$	Inverse trig
$\int \sec x \tan x dx = \sec x + c$	$\int e^{ax} \cos(bx) dx = \frac{e^{ax} (a \cos(bx) + b \sin(bx))}{a^2 + b^2} + c$	Polynomial
$\int \csc x \cot x dx = -\csc x + c$	$\int x^n \ln ax \ dx = \frac{(x^{n+1} (n+1) \ln(ax) - 1)}{(n+1)^2} + c$	Trig
$\int \sec^2 x dx = \tan x + c$	$\int \ln ax \ dx = x(\ln(ax) - 1) + c$	Exponent
$\int \csc^2 x dx = -\cot x + c$	$\int \sec^3 x dx = \frac{\sec x \tan x + \ln \sec x + \tan x }{2} + c$	FTC
$\int \sec x dx = \ln \sec x + \tan x + c$	$\int \csc^3 x dx = \frac{\csc x \cot x - \ln \csc x + \cot x }{2} + c$	$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$
$\int \csc x dx = -\ln \csc x + \cot x + c$	$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \cos^{n-2} x dx$	
$\int \tan x dx = -\ln \cos x + c$	$\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$	
$\int \cot x dx = \ln \sin x + c$	Partial Fraction Decomposition	
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin\left(\frac{x}{a}\right) + c$	$\int \frac{P(x)}{(ax+b)(cx+z)} dx = \int \frac{A}{(ax+b)} dx + \int \frac{B}{(cx+z)} dx$	
$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + c$	$\int \frac{P(x)}{(ax+b)(cx+z)^n} dx = \int \frac{A}{(ax+b)} dx + \int \frac{B}{(cx+z)} dx + \int \frac{C}{(cx+z)} dx$	$\frac{1}{2}dx + \dots + \int \frac{\overline{U}}{(cx+z)^n} dx$
$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \operatorname{arcsec}\left(\frac{x}{a}\right) + c$	$\int \frac{P(x)}{(ax+b)(ux^2+vx+w)} dx = \int \frac{A}{(ax+b)} dx + \int \frac{Ux+V}{(ux^2+vx+w)} dx$	

Arc Length	Area	<u>Volumes</u>		Probability			
Rectangular			Discs		PDF		
$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$	$A_x = \int_a^b f(x) - g(x)$) dx	$V_x = \pi \int_a^b f(x)^2$	dx	$\int_{-\infty}^{\infty} f(x) dx = 1$		
$\int_{a}^{b} \int_{a}^{b} \sqrt{1 + \left(\frac{dx}{dx} \right)^{b}} dx$	$A_x = \int_a^b f(x) - g(x)$ $A_y = \int_c^d f(y) - g(y)$) dy	$V_y = \pi \int_c^d f(y)^2$	dy	Median PDF		
Parametric			Washers		$\int_{m}^{\infty} f(x)dx = \frac{1}{2}$		
$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$	$A = \int_{a}^{b} y dx$		$V_x = \pi \int_a^b f(x)^2$	$-g(x)^2dx$	Mean PDF		
$I = \int_a \sqrt{dt} \int_a dt$	$A = \int_{c}^{d} x dy$		$V_y = \pi \int_c^d f(y)^2$	$-g(y)^2dy$	$\mu = \int_{-\infty}^{\infty} f x(x) dx$		
Polar			Shells		Average Valu	<u>e</u>	
$L = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$	$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$		$V_x = 2\pi \int_c^d y[f($	(y) - g(y)]dy	$S = \frac{1}{h-a} \int_{a}^{b} f(x) dx$		
$- \int_{\alpha} \sqrt{1 + \left(d\theta\right)} d\theta$			$V_y = 2\pi \int_a^b x [f(x) - g(x)] dx$				
Improper Integrals		Tab	<u>bular (PT)</u>		Tabular (PE)		
$\int_{a}^{\infty} f(x)dx = \lim_{h \to \infty} \int_{a}^{b} f(x)dx$		u	dv	<u>±</u>	u	dv	±
$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$	dx	x ²	COSX	+	x ²	e ^x	+
$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$	$dx + \lim_{b \to \infty} \int_a^b f(x) dx$	2x	sinx	-	2x	ex	-
Manual Integration	<i>y</i> ,	2 _	COSX	+	2	e*	+
('n' is the number of rect	angles to split by)	0	sinx	_	0	e ^x	_
0		0	COSX	+	0 e ^x +		
$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$				sx + 2sinx + c		$x^2 - 2x +$	<u>2) + c</u>
Midpoint Rule: $\int_a^b f(x)dx$	$= \Delta x \left[f_0 + \overline{f_1 + f_2} + \right]$	$f_3 + \cdots$	$\cdots + f_{n-3} + f_{n-2} + \cdots$	$f_{n-1} + \overline{f_n}$ whe	$re \ x = \frac{x_{i-1} + x_i}{2}$		
	Trapezoid Rule: $\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} [f_0 + 2(f_1 + f_2 + f_3 + \dots + f_{n-3} + f_{n-2} + f_{n-1}) + f_n]$						
Simpson Rule: $\int_a^b f(x)dx = \int_a^b f(x)dx$	$= \frac{\Delta x}{3} [\overline{f_0 + 4f_1 + 2f_2} +$	$-4f_3 +$	$-2f_4 + \cdots + 2f_{n-4}$	$4 + 4f_{n-3} + 2f_{n-3}$	$-2 + \overline{4f_{n-1} + f_n}$		

Diff. EQ			Test nth -term	Series	Converges	Diverges $\lim_{n \to \infty} a_n \neq 0$	Comment Cannot be used to		
General Forms		_		$\sum_{n=1}^{\infty} a_n$			show convergence		
$\frac{dy}{dx} = f(x) \qquad \frac{dy}{dx}$	-f(x) $dy - f(x, y)$		Geometric series	$\sum_{n=0}^{\infty} ar^{n-1}$	r < 1	$ r \ge 1$	Sum is $S = \frac{a}{1 - r}$		
ux	ux		Telescoping Series	$\sum_{n=1}^{\infty} \left(a_n - a_{n+1} \right)$ $\sum_{n=1}^{\infty} \frac{1}{n^p}$	$\lim_{n\to\infty}a_n=L$		Sum is $S = a_1 - L$		
Newton's Law of Co	oling	_	p-series	$\sum_{n=1}^{\infty} \frac{1}{n}$	p > 1	$p \leq 1$			
$\frac{dT}{dt} = k(T - T_a)$			Alternating	$\sum_{n=1}^{\infty} n^p$	$0 < a_{n+1} \le a_n$		Remainder		
Growth/Decay			Series	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} a_n$	and $\lim_{n\to\infty} a_n = 0$		$R_n = S - S_n$:		
$\frac{dP}{dt} = kP$ $\frac{dP}{dt} =$	$= kP(M-P)$ $\frac{dP}{dt} = k(M-P)$		Integral (f is	$\sum_{n=1}^{\infty} a_n ,$	$\int_{0}^{\infty} f(x)dx$	$\int_{0}^{\infty} f(x)dx$	$ R_n \le a_{n+1}$ Remainder:		
Mixing	1 ut	_	continuous, positive, and decreasing)	$\sum_{n=1}^{n} a_n = f(n) \ge 0$	converges	diverges	$0 \le R_n \le \int_n^\infty f(x) dx$		
$\frac{dx}{dt} = r_i c_i - \frac{r_o x}{V}$			Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{a_n} < 1$	$\lim_{n\to\infty} \sqrt[n]{a_n} > 1$	Test is		
Euler Method							inconclusive if $\lim_{n\to\infty} \sqrt[n]{a_n} = 1.$		
	$y_{n-1} = y_n + f(x_n, y_n) * h$		Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right > 1$	Test is inconclusive		
<u>Series</u>							$ \inf_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1 . $		
Arithmetic Series	Alternating Series		Direct Comparison	$\sum_{n=1}^{\infty} a_n$	$0 \le a_n \le c_n$ and	$0 \le d_n \le a_n$ and			
$S_n = \frac{n(a+a_n)}{2}$	$\sum_{n=0}^{\infty} (-1)^n \ a_n$		$(a_n, c_n, d_n > 0)$	n=1	$\sum_{n=1}^{\infty} c_n$	$\sum_{n=1}^{\infty} d_n \text{ diverges}$			
Power Series			Limit	$\sum_{n=0}^{\infty} a_n$	converges $\lim_{n\to\infty} \frac{a_n}{c_n} = L > 0$	$\lim_{n \to \infty} \frac{a_n}{d} = L > 0$			
$\sum_{n=0}^{\infty} x^n$			Comparison $(a_n, c_n, d_n > 0)$	n=1					
$S_n = \frac{1}{1-x}$					and $\sum_{n=1}^{\infty} c_n$ converges	and $\sum_{n=1}^{\infty} d_n$ diverges			
Taylor Series		Expai	nded						
$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^n}{n!}$		f(a) -	$+\frac{f'(a)(x-a)}{1!}+$	$\frac{f''(a)(x-a)^2}{2!}$	$+\frac{f'''(a)(x-a)^3}{3!}$	$+\frac{f^4(a)(x-a)^4}{4!}$	$+ + \frac{f^{(n)}(a)(x-1)}{n!}$	$-a)^n$	
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$			$\frac{x^2}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!}$	$+\frac{x^4}{4!}+\frac{x^5}{5!}+$	$-\frac{x^6}{6!} + \frac{x^7}{7!} + \frac{x^7}{5!}$	$\frac{x^8}{8!} + \frac{x^9}{9!} + \frac{x^{10}}{10!}$	$+ \dots + \frac{x^{n-1}}{(n-1)!} +$	$+\frac{x^n}{n!}$	
$sinx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ $cosx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$			$f(a) + \frac{f'(a)(x-a)}{1!} + \frac{f''(a)(x-a)^2}{2!} + \frac{f'''(a)(x-a)^3}{3!} + \frac{f^4(a)(x-a)^4}{4!} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!}$ $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \frac{x^7}{7!} + \frac{x^8}{8!} + \frac{x^9}{9!} + \frac{x^{10}}{10!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!}$ $\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \frac{x^{13}}{13!} - \dots$ $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \dots$						
$cosx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$		$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \dots$							
		•							

<u>Vectors</u>			
Cross Product => vector	Dot Product => scalar	Triple Product	Projections
$\vec{u} \times \vec{v} = (\vec{u} \vec{v} \sin\theta)\vec{n}$	$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$	$A = \vec{u} \cdot (\vec{v} \times \vec{w})$	$com \vec{h} - \frac{\vec{a} \cdot \vec{b}}{\vec{b}}$
$ \vec{u} \times \vec{v} = \vec{u} \vec{v} sin\theta$	$ \vec{u} \cdot \vec{v} = \vec{u} \vec{v} cos\theta$	$V = (\vec{u} \times \vec{v}) \cdot \vec{w}$	$-comp_{\vec{a}}b = \frac{\vec{a}\cdot\vec{a}}{ \vec{a} }$
$ \vec{u} \times \vec{v} = \langle \det \begin{bmatrix} u_2 & u_3 \\ v_2 & v_3 \end{bmatrix}, -\det \begin{bmatrix} u_1 & u_3 \\ v_1 & v_3 \end{bmatrix}, \det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{bmatrix} \rangle $	Magnitude		$proj_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot\vec{b}}{ \vec{a} } * \frac{\vec{a}}{ \vec{a} }$
$\begin{bmatrix} u \times v - \langle ucv v_2 & v_3 \end{bmatrix}, ucv [v_1 & v_3], ucv [v_1 & v_2],$	$ \vec{u} = \sqrt{u_1^2 + u_2^2 + u_3^2}$		$\int_{0}^{\pi} p r \partial f a b = \frac{1}{ \vec{a} } \int_{0}^{\pi} \vec{a} $

Tangent Vectors/Curvature

$\vec{r}'(t) = \langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \rangle$	$\vec{T}(t) = \frac{\vec{r}'(t)}{ \vec{r}'(t) }$	$\vec{N}(t) = \frac{\vec{T}'(t)}{ \vec{T}'(t) }$	$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = \frac{r'(t) \times r''(t)}{ r'(t) \times r''(t) }$	Arc Length
$k = \frac{\vec{T}'(t)}{ \vec{r}'(t) }$	$k = \frac{ \vec{r}'(t) \times \vec{r}''(t) }{ \vec{r}'(t) ^3}$	$k = \frac{ f''(x) }{(1+[f'(x)]^2)^{3/2}}$	$k = \frac{ d\vec{T} }{ d\vec{s} }$	$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$

Coordinate Systems

Cylindrical $f(r, \theta, z)$ Spherical $f(\rho, \theta, \emptyset)$

	$(\varphi) \circ (Z)$ b Herical $f(\varphi) \circ (\varphi)$				
$x = r cos \theta$	$y = r sin\theta$	z = z	$\theta = \arctan\left(\frac{y}{x}\right)$	$r = \sqrt{x^2 + y^2}$	
$x = \rho sin \emptyset cos \theta$	$y = \rho sin \emptyset sin \theta$	$z = \rho cos \emptyset$	$\rho = \sqrt{x^2 + y^2 + z^2}$	$\emptyset = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$	

Partial Derivatives

General	Gradient Vector	LaGrange	Normal Line	Implicit	Directional Derivative		
$f_x = \frac{\partial f}{\partial x} f_{xy} = \frac{\partial f}{\partial x \partial y}$	$\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \rangle$	$\nabla f = \lambda \nabla g$	$\frac{(x-a)}{f_a} = \frac{(y-b)}{f_b} = \frac{(z-c)}{f_c}$	$\frac{dy}{dx} = -\frac{f_X}{f_Y}$	$D_u = \nabla f(x_0, y_0, z_0) \cdot \frac{\langle A, B, C \rangle}{\sqrt{A^2 + B^2 + C^2}}$		
Tangent Planes		Laplace/Wave	Linearization/Differential				
$\nabla f \cdot \langle (x-a), (y-b), (z-c) \rangle = 0$		$f_{xx} + f_{tt} = 0$	$L(x, y, z) = f_a(x - a) + f_b(y - b) + f_c(z - c) + f(a, b, c)$				
$z - c = z_a(x - a) +$	$z_b(y-b)$	$f_{tt} = a^2 f_{xx}$	$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$				

Chain rule

$$\frac{d}{dt}u(x(t), y(t), z(t)) = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} + \frac{\partial u}{\partial z}\frac{dz}{dt}$$

Second Derivative Tests

 $D = f_{xx} + f_{yy} - (f_{xy})^2$ D>0, local extrema, D<0, saddle point, D=0, inconclusive

 f_{xx} or $f_{yy} > 0$: local min, f_{xx} or $f_{yy} < 0$: local max, f_{xx} or $f_{yy} = 0$: test D

Double Integrals					
General	Pro	Probability Average Value		Surface Area/Polar Conversion	
$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$	$\int_{c}^{d} \int_{c}$	$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = 1 \text{ (CDF)}$		$A = \iint \sqrt{1 + f_x^2 + f_y^2} dA$	
$\int_{a}^{b} \int_{c}^{d} f(x) f(y) dy dx = \int_{a}^{b} f(x) dx \int_{c}^{d} f(x) dx$	(y)dy Avg	111 00(D)		$\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{m}^{n} \int_{\alpha}^{\beta} r f(r, \theta) dr d\theta$	
Manual Integration $\Delta x = \frac{b-a}{m}$	$\Delta y = \frac{d-c}{n}$	Midpoint Rule	$x = \frac{\lambda}{2}$	$\frac{x_{i-1}+x_i}{2} y = \frac{y_{i-1}+y_i}{2}$	
$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \lim_{m \to \infty} \sum_{i}^{m} \lim_{n \to \infty} \sum_{j}^{n} f(x_{i}, y_{j}) \Delta x \Delta y \qquad \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \lim_{m \to \infty} \sum_{i}^{m} \lim_{n \to \infty} \sum_{j}^{n} f(x_{i}, y_{j}) \Delta x \Delta y$					
Mass			Inertia		
$M = \iint p(x, y) dA$	$\bar{x} = \frac{M_y}{M} = \frac{1}{M}$	$\iint x p(x,y) dA$	$I_x = \iint$	$\int y^2 f(x,y) dA$	
$C = \frac{1}{M}(M_y, M_x)$	$\bar{y} = \frac{M_x}{M} = \frac{1}{M}$	$\iint y p(x,y) dA$	$I_{\mathcal{Y}} = \iint$	$\int x^2 f(x,y) dA$	
$C = (\bar{x}, \bar{y}) \qquad M_{\chi} = \int$		1 14		$(x^2 + y^2)f(x, y)dA$	
$C = \frac{1}{M} \left(\iint x p(x, y) dA, \iint y p(x, y) dA \right)$	$M_{y} = \iint x p$	(x,y)dA	$I_0 = I_x$	$I_{y} + I_{y}$	
Triple Integrals					
Cananal					

General

 $\int_{e}^{f} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dxdydz = \lim_{m \to \infty} \sum_{i}^{m} \lim_{n \to \infty} \sum_{j}^{n} \lim_{n \to \infty} \sum_{k}^{o} f(x_{i}, y_{j}, z_{k}) \Delta x \Delta y \Delta z$ $\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} f(x) f(y) f(z) dzdydx = \int_{a}^{b} f(x) dx \int_{c}^{d} f(y) dy \int_{e}^{f} f(z) dz$

Volume	Average Value
$V(x,y,z) = \iiint 1 dV V(r,\theta,z) = \iiint r dV V(\rho,\theta,\emptyset) = \iiint \rho^2 \sin \theta$	$\emptyset \ dV \qquad Avg = \frac{1}{Volume(D)} \iiint f(x, y, z) dV$

Probability/Mass $\int_{e}^{f} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dxdydz = 1 \text{ (CDF)}$

$M = \iiint p(x, y, z) dV$	$\bar{x} = \frac{M_{yz}}{M} = \frac{1}{M} \iiint x p(x, y, z) dV$
$C = \frac{1}{M}(M_{yz}, M_{xz}, M_{xy})$	$\bar{y} = \frac{M_{xz}}{M} = \frac{1}{M} \iiint yp(x, y, z) dV$
$C = \frac{1}{M} \left(\iiint x p(x, y, z) dV, \iiint y p(x, y, z) dV, \iiint z p(x, y, z) dV \right)$	$\bar{z} = \frac{M_{xy}}{M} = \frac{1}{M} \iiint zp(x, y, z) dV$

####