Brain MR Elastography: Acquisition and Reconstruction Strategies

From: https://www.youtube.com/watch?v=CcmZi0J u3Y

Shear stiffness (kPa) Shear stiffness (kPa)

From: Hiscox. Phys Med Bio (2016)

MRI Group Talk

Grant Roberts March 5th, 2020

Elastography Introduction

- Ingredients for elastography
 - Mechanical excitation
 - 2. Measurement of tissue response
 - 3. Mechanical parameter estimation

Ultrasound

From: Sigrist, et al. Theranostics. (2017)

Optical Imaging

From: Kennedy, et al. Biomed Opt Express. (2014)

MR Elastography

- MRE allows quantitative analysis of viscoelastic properties of tissue
 - "Virtual palpation"
- Shear waves are introduced by driver (20-200Hz)
 - Active pneumatic driver placed outside of MR room
 - Passive driver placed under patient's head
- Wavelength dependent on shear modulus
 - Waves propagate rapidly in rigid tissue, slower in softer tissue

Shear Elastic Modulus

- MRE measures shear modulus (G)
 - $\tilde{G} = G' + iG''$
 - Other elastic moduli:
 - Young's Modulus (E), Bulk Modulus (K), etc.
 - High inherent dynamic range

From: Mariappan, et al. Clin Anat (2010)

MRE Encoding

- Modified phase-contrast sequence
- Sensitized motion to cyclic displacement from shear waves
 - Spins accumulate phase along motion encoding gradients
 - Bipolar or 1st order motion compensated gradient
 - Synchronized to driver frequency
- Multiple acquisitions with phase offsets
 - Shows shear wave at different points in cycle
- Goal: Acquire displacement fields in 3D (encode x,y,z) at different phase offsets

MRE Encoding

Phase is described by the following equation

$$-\phi(\vec{r},\theta) = \frac{\gamma NT(\vec{G}\cdot\xi_0)}{2}\cos(\vec{k}\cdot\vec{r}+\theta)$$

- ϕ = displacement induced phase
- \vec{r} = spatial position
- θ = phase offset
- γ = gyromagnetic ratio
- N = number of MEG pairs
- T = period of the MEG
- \vec{G} = gradient strength
- ξ_0 = peak amplitude of motion
- k = wave number

MRE Encoding (Visual)

GRE Acquisition

1. Gradient-recalled echo (GRE)

- Oldest method
- Online reconstruction
- Limitations:
 - Relatively slow

From: Venkatesh, et al. JMRI (2013)

SE-EPI Acquisition

2. Single-shot echo planar imaging (SE-EPI)

- Most common
 - What we use here
- Much faster than GRE
- Online reconstruction
- Limitations:
 - Long readouts
 - Distortion
 - Reduced SNR

From: Glaser, et al. JMRI (2012)

Multi-Shot Spiral Acquisition

3. Multi-shot, variable density spiral

- Relatively new
- Increased resolution
- Increased SNR
- Flexible Tradeoffs

Limitations:

- Phase error between shots from bulk motion
- Offline Recon
- Increased complexity

From: Johnson, et al. MRM (2013)

DENSE Acquisition

4. Displacement Encoding Using a Stimulated Echo (DENSE)

- Relatively new
- Allows for imaging with lower driver frequency
- Fast/Efficient
- Limitations:
 - Offline Recon
 - Increased Complexity

From: Strasser, et al. MRM (2018)

Reconstruction

How can we go from wave images to stiffness maps?

From: Venkatesh, et al. JMRI (2013)

Pre-Processing

1) Phase Unwrapping

- Higher amplitude of shear waves allows deeper penetration
- However, this leads to phase-wrapping near brain edges.
- Phase unwrapping algorithms need to be applied before stiffness reconstruction
 - 4D Laplacian-based algorithm

From: Hiscox. Phys Med Biol (2016)

Pre-Processing

2) Filtering

- Low frequency bulk waves
 - Occur because brain is not incompressible
- High frequency noise
 - Prevent parameter overestimation

From: Hiscox. Phys Med Biol (2016)

LFE Reconstruction

1) Local frequency estimation (LFE)

- Simplest, most-intuitive method
- Uses multiscale filters to estimate spatial wavelengths of shear waves in image.
- $G' = \rho V_S^2 = \rho (\lambda_{sp} f)^2$
 - ρ = tissue density (~1000 kg/m³)
 - V_s = shear wave speed
 - f = driver frequency
 - λ_{sp} = spatial frequency of shear wave
- Limitations:
 - Get only real part of shear modulus
 - Effected by boundary reflections and dilatational waves

DI Reconstruction

2) Single Frequency Direction Inversion (DI)

- Mechanical properties calculated directly through the wave equation.
- Complex inversion problem
 - Requires rank 4 tensor with 21 independent complex quantities to relate applied shear stress to resulting shear strain.
- If we assume tissue isotropy, we can greatly simplify problem.
 - $\tilde{G} = -\rho(2\pi f)^2 \cdot \vec{u}(f)/\nabla^2 \vec{u}(f)$
 - \tilde{G} = complex shear modulus
 - f = driver frequency
 - ρ = tissue density (~1000 kg/m³)
 - $\vec{u}(f)$ = frequency-dependent vector displacement field

DI Reconstruction

2) Single Frequency Direction Inversion (DI)

- Allows for a very quick calculation
 - Really only need to calculate $\nabla^2 \vec{u}(f)$
- UW scanners use DI
- Limitations:
 - Making many assumptions about material
 - Brain tissue is heterogenous and anisotropic
 - High noise sensitivity
 - Due to second derivative (Laplacian)
 - Susceptible to wave nodes
 - Imaging at single frequency

NLI Reconstruction

3) Non-Linear Inversion with Finite Element Models (NLI)

- Partial differential equations
- Forward problem utilizing prior knowledge
 - Boundary conditions
 - Tissue geometry
 - Mechanical properties

From: Tomita, et al. J Visual-Japan (2017)

- Iteratively update heterogenous tissue distribution until difference between experiment and theoretically derived data is minimized.
- Incorporates full equations of motion, nonlinearity, and anisotropy
- Limitations:
 - Speed of processing is on the order of hours

Conclusion

- MRE is a modified phase contrast sequence to encode displacement into image phase.
- Creates shear modulus maps
 - Must mechanically excite tissue
 - Measure/image tissue stress/strain
- Shear modulus has high dynamic range
- Acquisition Strategies:
 - GRE, Spin-echo EPI, Multi-shot spiral, DENSE
- Reconstruction Strategies:
 - Local frequency estimation (LFE), direct inversion (DI), non-linear finite element modelling (NLI)

Acknowledgements

Wieben Group

Oliver Wieben

Carson Hoffman

Phil Corrado

Dan Seiter

Ruiming Chen

Archana Dhyani

Special Thanks To:

Kevin Johnson

Laura Eisenmenger

Walter Block

Alejandro Roldán-Alzate

Alan McMillan

Leonardo Rivera-Rivera

David Rutkowski

Robert Moskwa

UW MR Support Staff

Kelli Hellenbrand

Sara John

Jenelle Fuller

