Algebra 2 R, lista 4.

Zadanie domowe : dowolne trzy. Każdy podpunkt liczy sie jako oddzielne zadanie. Z każdego zadania wolno oddać ≤ 1 podpunkt. $K \subset L \subset M$ oznaczają zawsze rozszerzenia ciał. Zadania onaczone minusem są wykluczone z zadań domowych i nie są omawiane na ćwiczeniach (były krótko omówione na wykładzie), chyba że studenci poproszą.

- 1. Wyznaczyć wielomany cyklotomiczne $F_1(X), F_2(X), F_4(X), F_8(X), F_{16}(X), F_{15}(X)$, a następnie ich obrazy w pierścieniu $\mathbb{Z}_3[X]$, względem homomorfizmu $\mathbb{Z}[X] \to \mathbb{Z}_3[X]$ indukowanego przez homomorfizm ilorazowy $\mathbb{Z} \mapsto \mathbb{Z}_3$. Które z tych wielomianów są nierozkładalne nad \mathbb{Z}_3 ?
- 2. Opisać normalne domknięcia następujących rozszerzeń:
 - (a) $\mathbb{Q}[\sqrt[n]{2}] \supset \mathbb{Q}$,
 - (b) $\mathbb{Q}(\sqrt[n]{X}) \supset \mathbb{Q}(X)$,
 - (c) $\mathbb{C}(\sqrt[n]{X}) \supset \mathbb{C}(X)$,
 - (d) $\mathbb{Q}[\zeta] \supset \mathbb{Q}$, gdzie ζ jest pierwiastkiem pierwotnym z 1 stopnia n > 1. (wsk: w (a)–(c) wskazać wielomian minimalny, w (c) skorzystać z tego, że \mathbb{C} jest algebraicznie domknięte. W (b) zauważyć, że X można zastąpić dowolną liczbą przestępną, to nie jest konieczne, lecz ułatwi myślenie.)
- 3. Udowodnić, że każde rozszerzenie ciał stopnia 2 jest normalne.
- 4. Załóżmy, że rozszerzenie $K \subset L$ jest algebraiczne i $f: L \to L$ jest monomorfizmem , $f|_K = id$. Udowodnić, że f jest "na".
- 5. Udowodnić, że jeśli $K\subset L\subset \hat{K}$ i rozszerzenie $K\subset L$ jest radykalne, to $G(\hat{K}/K)=G(\hat{K}/L).$
- 6. Załóżmy, że char(K)=p>0 oraz $W(X)\in K[X]$ jest nierozkładalny i nierozdzielczy. Udowodnić, że $W(X)\in K[X^p]$. (wsk: Rozważyć W(X) jako wielomian minimalny dla $a\in \hat{K}$ t.że a jest pierwiastkiem wielokrotnym W. Udowodnić, że W'(X) jest wielomianem zerowym.)
- 7. Załóżmy, że char(K) = p > 0 oraz $a \in \hat{K}$ jest rozdzielczy nad K. Udowodnić, że $K(a) = K(a^p)$ (wsk: rozważyć wielomian minimalny a nad K).
- 8. (a) Udowodnić, że jeśli $a \in L$ jest czysto nierozdzielczy nad K, to stopień a nad K równa się min $\{p^n : a^{p^n} \in K\}$.
 - (b) Wywnioskować stąd, że jeśli rozszerzenie skończone $K \subset L$ jest radykalne, to jego stopień jest potęgą p (tu p = char(K)).
- 9. Załóżmy, że $K\subseteq L, M\subseteq \hat{K}$ to rozszerzenia ciała K takie, że $L\cap M=K.$ Udowodnić, że jeśli

$$(\forall K \subseteq_{\text{finite}} L_0 \subset L)(\forall K \subseteq_{\text{finite}} M_0 \subseteq M)[L_0(M_0) : L_0] = [M_0 : K],$$
 to $[L(M) : L] = [M : K].$

- 10. Udowodnić Uwagę 7.5(1) w przypadku ogólnym, tzn. gdy [L:K] jest nieskończone.
- 11. Załóżmy, że liczby m, n > 1 są względnie pierwsze i $\zeta_n, \zeta_m \in \mathbb{C}$ to pierwiastki pierwotne z 1 stopni n, m odpowiednio. Udowodnić, że $\mathbb{Q}(\zeta_n) \cap \mathbb{Q}(\zeta_m) = Q$. (wsk: zauważyć, że $\mathbb{Q}(\zeta_n, \zeta_m) = \mathbb{Q}(\zeta_{mn})$. Skorzystać bez dowodu z faktu, że dla względnie pierwszych m, n mamy $\varphi(mn) = \varphi(m)\varphi(n)$.)
- 12. * Udowodnić, że jeśli $K \subset L \subset \hat{K}$ i każdy wielomian nad K stopnia > 0 ma pierwiastek w L, to $L = \hat{K}$. (wsk: rozpatrzyć najpierw przypadek rozdzielczy, skorzystać z twierdzenia Abela o elemencie pierwotnym)