

FindDigits

Given an integer, N, traverse its digits $(d_1, d_2,...,d_n)$ and determine how many digits evenly divide N (i.e.: count the number of times **N** divided by each digit \mathbf{d}_i has a remainder of $\mathbf{0}$). Print the number of evenly divisible digits.

Note: Each digit is considered to be unique, so each occurrence of the same evenly divisible digit should be counted (i.e.: for **N** = **111**, the answer is **3**).

Input Format

The first line is an integer, **T**, indicating the number of test cases.

The **T** subsequent lines each contain an integer, **N**.

Constraints

- $1 \le T \le 15$
- $0 < N < 10^9$

Output Format

For every test case, count and print (on a new line) the number of digits in N that are able to evenly divide N.

Sample

Sample input	Sample output
2	2
12	3
1012	

Explanation

The number 12 is broken into two digits, 1 and 2. When 12 is divided by either of those digits, the calculation's remainder is **0**; thus, the number of evenly-divisible digits in **12** is **2**.

The number 1012 is broken into four digits 1, 0, 1 and 2. 1012 is evenly divisible by its digits 1, 1, and 2, but it is not divisible by 0b as division by zero is undefined; thus, our count of evenly divisible digits is 3.

