Tarea para SI08

Ejercicio 1.

	Nombre	Nivel OSI	Función del dispositivo
Dispositivo 1	Router	3	Conecta el switch a internet
Dispositivo 2	Switch	2	Conecta los diferentes ordenadores entre si

Ejercicio 2.

- 1. La topología de conexión si cogemos como referencia el dispositivo 2 sería estrella.
- 2. Para la conexión utilizaría cable directo
- 3. Utilizariamos conectores RJ45 con el estandar EIA/TIA-568B

Ejercicio 3.

1 PC y 1 Switch	directo
1 Pc y 1 Router	cruzado
2 PC	cruzado
1 Switch y 1 Router	directo
2 Switch	cruzado

Ejercicio 4.

Desde la maquina virtual con windows:

```
Símbolo del sistema
C:\Users\Alacreu>ipconfig /all
Configuración IP de Windows
  Nombre de host. . . . . . . : DESKTOP-SQMQKSQ
  Sufijo DNS principal . . . . :
  Tipo de nodo. . . . . . . . : híl
Enrutamiento IP habilitado. . . : no
                        . . . . . : híbrido
  Proxy WINS habilitado . . . . : no
Adaptador de Ethernet Ethernet:
  Sufijo DNS específico para la conexión. . :
  Descripción . . . . . . . . . . : Intel(R) PRO/1000 MT Desktop Adapter Dirección física . . . . . . . . : 08-00-27-81-66-63
  Dirección IPv4. . . . . . . . . . . : 10.0.2.15(Preferido)
  Concesión obtenida. . . . . . . . . . : jueves, 18 de marzo de 2021 15:33:59
  La concesión expira . . . . . . . . : viernes, 19 de marzo de 2021 15:33:58 Puerta de enlace predeterminada . . . . . : 10.0.2.2
  DUID de cliente DHCPv6. . . . . . . . : 00-01-00-01-27-88-ED-17-08-00-27-81-66-63 Servidores DNS. . . . . . . . . . . : 10.0.2.3
  NetBIOS sobre TCP/IP. . .
                                         . : habilitado
```

Desde el equipo anfitrión conectado a internet a traves de un móvil.

```
pakels@Pakels-MSI:~$ ifconfig
enp3s0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
        ether 00:d8:61:05:86:c4 txqueuelen 1000 (Ethernet) RX packets 0 bytes 0 (0.0 B)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 0 bytes 0 (0.0 B)
        TX errors 0 dropped 0 overruns 0 carrier 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 ::1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Bucle local)
        RX packets 2781 bytes 254199 (254.1 KB)
        RX errors 0 dropped 0 overruns 0 frame 0 TX packets 2781 bytes 254199 (254.1 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
usb0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 192.168.42.197 netmask 255.255.255.0 broadcast 192.168.42.255
        inet6 fe80::dbb:196a:6b77:2dfe prefixlen 64 scopeid 0x20<link>
        ether b6:2d:fc:a8:6b:d3 txqueuelen 1000 (Ethernet)
        RX packets 274675 bytes 372568096 (372.5 MB) RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 115124 bytes 15887053 (15.8 MB)
        TX errors 0 dropped 0 overruns 0 carrier 0
                                                        collisions 0
wlo1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 192.168.43.162 netmask 255.255.255.0 broadcast 192.168.43.255
        inet6 fe80::75a5:2076:9cb7:2f22 prefixlen 64 scopeid 0x20<link>
        ether 48:a4:72:90:dd:d7 txqueuelen 1000 (Ethernet)
        RX packets 871 bytes 144820 (144.8 KB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 1073 bytes 156113 (156.1 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Equipo	Conexión	Dirección física	Dirección IP
Xubuntu (Anfitrión)	Cableada	B6:2D:FC:A8:6B:D3	192.168.42.197
	Wireless	48:A4:72:90:DD:D7	192.168.43.162
Windows	Cableada	08:00:27:81:66:63	10.0.2.15
	Wireless		

Ejercicio 5.

La dirección 200.200.10.0 es de clase C, por lo que utilizamos 24 bits para la dirección de red y 8 bits para el identificador de equipo. La mascara de red son 24bits.

Necesitamos 2 bits de identificador de red. $2^2>3$. Por lo que las subredes tendran 26 bits y los identificadores de equipo 6 bits.

Calculamos las direcciones de las 4 subredes:

200.200.10.**00**0000002 Dirección de la primera subred 200.200.10.0/26

200.200.10.010000002 Dirección de la segunda subred 200.200.10.64/26

200.200.10.100000002 Dirección de la tercera subred 200.200.10.128/26

200.200.10.110000002 Dirección de la cuarta subred 200.200.10.192/26

Ahora el primer y último equipo y el broadcast de cada subred:

Para cada subred, son 6 bits los que identifican al equipo. Se ponen en negrita los 6 bits que determinan el equipo.

Primera subred: 200.200.10.0

Primer equipo: 200.200.10.00**000001** que corresponde a 200.200.10.1

Último equipo: 200.200.10.00**111110** que corresponde a 200.200.10.62

Broadcast: 200.200.10.00**111111** que corresponde a 200.200.10.63

• Segunda subred: 200.200.10.64

Primer equipo: 200.200.10.01**000001** que corresponde a 200.200.10.65

Último equipo: 200.200.10.01**111110** que corresponde a 200.200.10.126

Broadcast: 200.200.10.01111111 que corresponde a 200.200.10.127

• Tercera subred: 200.200.10.128

Primer equipo: 200.200.10.10**000001** que corresponde a 200.200.10.129

Último equipo: 200.200.10.10**111110** que corresponde a 200.200.10.190

Broadcast: 200.200.10.01**111111** que corresponde a 200.200.10.191

• Cuarta subred: 200.200.10.192

Primer equipo: 200.200.10.11**000001** que corresponde a 200.200.10.193

Último equipo: 200.200.10.11**111110** que corresponde a 200.200.10.254

Broadcast: 200.200.10.11**111111** que corresponde a 200.200.10.255

Para todas las subredes, la mascara será 255.255.255.192.

Partimos de la subred 200.200.10.192 para la división en las demás subredes donde tenemos 6 bits para la identificación de equipo.

Como queremos crear subredes de 12 ordenadores calculamos n de forma que $2^n > 12$ por lo que n=4.

Ahora tenemos subredes con (32-4) 28 bits de direccion de red.

Calculamos las 4 subredes:

200.200.10.110000002 Dirección de la primera subred 200.200.10.192/28

200.200.10.110100002 Dirección de la segunda subred 200.200.10.208/28

200.200.10.111000002 Dirección de la tercera subred 200.200.10.224/28

200.200.10.**1111**0000₂ Dirección de la cuarta subred 200.200.10.240/28

Ahora el primer y último equipo y el broadcast de cada subred:

• Primera subred: 200.200.10.192

Primer equipo: 200.200.10.1100**0001** que corresponde a 200.200.10.193

Último equipo: 200.200.10.1100**1110** que corresponde a 200.200.10.206

Broadcast: 200.200.10.1100**1111** que corresponde a 200.200.10.207

• Segunda subred: 200.200.10.208

Primer equipo: 200.200.10.1101**0001** que corresponde a 200.200.10.209

Último equipo: 200.200.10.1101**1110** que corresponde a 200.200.10.222

Broadcast: 200.200.10.11011111 que corresponde a 200.200.10.223

• Tercera subred: 200.200.10.224

Primer equipo: 200.200.10.1110**0001** que corresponde a 200.200.10.225

Último equipo: 200.200.10.1110**1110** que corresponde a 200.200.10.238

Broadcast: 200.200.10.11101111 que corresponde a 200.200.10.239

• Cuarta subred: 200.200.10.240

Primer equipo: 200.200.10.1111**0001** que corresponde a 200.200.10.241

Último equipo: 200.200.10.1111**1110** que corresponde a 200.200.10.254

Broadcast: 200.200.10.111111111 que corresponde a 200.200.10.255

Para todas estas subredes, la mascara será 255.255.255.11110000 → 255.255.255.240

La tabla con todos los datos quedaría de la siguiente manera:

Dirección de Subred	Broadcast	Primer Equipo	Último equipo	Máscara de Subred
200.200.10.0	200.200.10.63	200.200.10.1	200.200.10.62	255.255.255.192
200.200.10.64	200.200.10.127	200.200.10.65	200.200.10.126	255.255.255.192
200.200.10.128	200.200.10.191	200.200.10.129	200.200.10.190	255.255.255.192
200.200.10.192	200.200.10.207	200.200.10.193	200.200.10.206	255.255.255.240
200.200.10.208	200.200.10.223	200.200.10.209	200.200.10.222	255.255.255.240
200.200.10.224	200.200.10.239	200.200.10.225	200.200.10.238	255.255.255.240
200.200.10.240	200.200.10.255	200.200.10.241	200.200.10.254	255.255.255.240

Como perdemos 2 direcciones por cada subred que hemos creado, en total perdemos 14 direcciones.

Ejercicio 6

La dirección 150.200.0.0 es de clase B.

Para saber el número de subredes que se pueden crear realizamos el siguiente cálculo:

$$2^{n} > 2000 \rightarrow 2^{11} = 2048 > 2000$$

Podremos crear 11 subredes de 2048 nodos, teniendo en cuenta que perdemos 2 nodos por subred, cada una de ellas tendría 2046 nodos.

Es por ello que necesitaremos 11 bits para el identificador de host y 21 (32-11) para identificador de subred.

Calculamos las direcciones de las 4 primeras subredes:

 $150.200.00000000_2.00000000_2$ Dirección de la primera subred 150.200.0.0/21

150.200.**0001**000₂.00000000₂ Dirección de la primera subred 150.200.8.0/21

150.200.**00010**000₂.00000000₂ Dirección de la primera subred 150.200.16.0/21

150.200.**00011**000₂.00000000₂ Dirección de la primera subred 150.200.24.0/21

Ahora el primer y último equipo y el broadcast de cada subred:

• Primera subred: 150.200.0.0

Primer equipo: 150.200.00000000000001 que corresponde a 150.200.0.1

Último equipo: 150.200.00000**111.11111110** que corresponde a 150.200.7.254

Broadcast: 150.200.0000 00000111.11111111 que corresponde a 150.200.7.255

• Segunda subred: 150.200.8.0

Primer equipo: 150.200.00001000.00000001 que corresponde a 150.200.8.1

Último equipo: 150.200.00001**111.11111110** que corresponde a 150.200.15.254

Broadcast: 150.200.0000 00001**111.11111111** que corresponde a 150.200.15.255

• Tercera subred: 150.200.16.0

Primer equipo: 150.200.00010**000.0000001** que corresponde a 150.200.16.1

Último equipo: 150.200.00010**111.11111110** que corresponde a 150.200.23.254

Broadcast: 150.200.00010**111.11111111** que corresponde a 150.200.23.255

• Cuarta subred: 150.200.24.0

Primer equipo: 150.200.00011**000.0000001** que corresponde a 150.200.24.1

Último equipo: 150.200.00011**111.11111110** que corresponde a 150.200.31.254

Broadcast: 150.200.00011**111.11111111** que corresponde a 150.200.31.255

Para el calculo de la mascara tenemos 21 bits para el identificador de red, por lo que:

 $111111111_2.11111111_2.11110000_2.00000000_2 \rightarrow 255.255.240.0$

Dirección de Subred	Broadcast	Primer Equipo	Último equipo	Mascara de subred
150.200.0.0	150.200.7.255	150.200.0.1	150.200.7.254	255.255.240.0
150.200.8.0	150.200.15.255	150.200.8.1	150.200.15.254	255.255.240.0
150.200.16.0	150.200.23.255	150.200.16.1	150.200.23.254	255.255.240.0
150.200.24.0	150.200.31.255	150.200.24.1	150.200.31.254	255.255.240.0