Лекция 5

Векторы. Линейные операции над векторами

Значения многих геометрических и физических величин могут быть разделены на две категории. С одной стороны существуют такие физические и механические величины, которые определяются заданием некоторого числа (масса, плотность, длина и т.д.). Подобные величины называются скалярными. Таким образом скаляр— это число.

Другие величины определяются заданием направлении и числа (сила, приложенная к некоторой точке). Такие величины называются векторными.

Вектором называется направленный отрезок \overline{AB} с начальной точкой A и конечной точкой B. Обозначается $\overline{a} = \overline{AB}$

Рис. 1

Длиной $|\overline{AB}|$ *(или модулем) вектора* $\overline{a} = \overline{AB}$ называется число, равное длине отрезка AB, изображающего вектор.

Если длина вектора равна 1, то он называется единичным вектором или ортом. (обозначается \bar{e})

Декартова система координат— ортонормированный базис которой образован тремя единичными по модудю и взаимно ортогональными (перпендикулярными) векторами \hat{i} , \hat{j} , \hat{k} проведенными из начала координат.

Вектор, длина которого равна нулю, называется *нулевым вектором* и обозначается $\overline{AA} = 0$.

Два ненулевых вектора называются *противоположными*, если они имеют одинаковую длину и противоположные направления. Обозначают \bar{a} $-\bar{a}$

Векторы называются *коллинеарными*, если лежат на одной прямой или на параллельных прямых. \bar{a}/\bar{b}

Три вектора называются *компланарными*, если лежат в одной плоскости или в параллельных плоскостях.

Два коллинеарных вектора \bar{a} u \bar{b} называются *равными* $\bar{a} = \bar{b}$, если они сонаправлены, т.е. имеют одинаковое направление и имеют равные длины.

Линейные операции над векторами

1) Сложение векторов (коммутативное свойство)

Суммой 2-х векторов \bar{a} u \bar{b} называется такой вектор \bar{c} , начало которого совпадает с началом вектора \bar{a} , а конец с концом вектора \bar{b} .

Свойства.

1)
$$\bar{a} + \bar{b} = \bar{b} + \bar{a}$$

2) Сочетательное свойство
$$(\bar{a}+\bar{b})+\bar{c}=\bar{a}+(\bar{b}+\bar{c})$$

Видно, что сумма трех векторов $\overline{AB} + \overline{AD} + \overline{AA_1}$ представляет собой диагональ параллелипипеда, построенного на векторах \overline{AB} , \overline{AD} , $\overline{AA_1}$, не лежащих в одной плоскости или параллельных плоскостях (правило параллелипипеда)

$$(\overline{AB} + \overline{AD}) + \overline{AA_1} = \overline{AC} + \overline{AA_1} = \overline{AC_1}$$

$$\overline{AB} + (\overline{AD} + \overline{AA_1}) = \overline{AB} + \overline{AD_1} = \overline{AB} + \overline{BC_1} = \overline{AC_1}$$

Операция сложения векторов может быть распространена на любое число слагаемых векторов.

Например: Начало вектора \bar{s} совпадает с началом вектора $\bar{a_1}$, а конец с концом вектора $\bar{a_4}$ (Правило многоугольника) $\bar{a_1} + \bar{a_2} + \bar{a_3} + \bar{a_4} = \bar{s}$

2) Вычитание векторов

Разностью двух векторов \bar{a} u \bar{b} называется сумма вектора \bar{a} u вектора $-\bar{b}$, противоположного \bar{b} , т.е. такой вектор \bar{c} , для которого \bar{c} $+\bar{b}$ = \bar{a}

В параллелограмме меньшая диагональ представляет собой сумму векторов $\bar{a}\ u\ \bar{b}$, а большая их разность.

3) Умножение вектора на число

Свойства.

$$\overline{a} \cdot 1 = \overline{a}$$
 $\overline{a} \cdot 0 = 0$
Сочетательное $\lambda(\mu \overline{a}) = (\lambda \mu)\overline{a}$ $(\lambda + \mu)\overline{a} = \lambda \overline{a} + \mu \overline{a}$ $\lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}$

Два ненулевых вектора \bar{a} u \bar{b} коллинеарны т. и т.т.к. один из них есть про- изведение другого на некоторое число, т.е. $\bar{a} = \lambda \bar{b}$

Три ненулевых вектора компланарны т. и т.т.к. один из них является линейной комбинацией других. $\bar{c} = \lambda_1 \bar{a} + \lambda_2 \bar{b}$

4) Проекция вектора на ось.

Проекцией точки M на ось 1 называют основание перпендикуляра, опущенного из точки на ось.

Пусть $\overline{a} = \overline{AB}$ произвольный вектор. Обозначим через A_1 и B_1 проекции на ось 1 соответственно начала A и конца B вектора \overline{AB}

Проекцией вектора \overline{AB} на ось l называется A_1B_1 , если \overline{AB} и l сонаправленные, и $-A_1B_1$, если \overline{AB} и l противоположно направленные.

 ϕ – угол между осью и вектором \overline{AB} $(\overline{l}, \overline{AB})$.

Если точки A_1 и B_1 совпадают, то проекция вектора \overline{AB} равна 0. Обозначают $\Pi p_1 \overline{AB}$

Основные свойства проекций

- 1) $\Pi p_l \lambda \overline{a} = \lambda \Pi p_l \overline{a}$
- 2) $\Pi p_l(\bar{a} + \bar{b}) = \Pi p_l \bar{a} + \Pi p_l \bar{b}$
- 3) $\Pi p_1 \overline{a} = |\overline{a}| \cdot \cos \varphi = |A_1 B_1|$

Проекция вектора на ось положительна (отрицательна) если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол прямой.

4) Проекции равных векторов на одну и ту же ось равны между собой.

Разложение вектора по ортам координатных осей. Модуль вектора. Направляющие косинусы.

Если \bar{i} , \bar{j} , \bar{k} – орты координатных осей прямоугольной системы координат oxyz, то любой вектор \bar{a} можно представить в виде линейной комбинации

$$\overline{a} = a_x \overline{i} + a_y \overline{j} + a_z \overline{k}$$

Коэффициенты a_x, a_y, a_z – проекции вектора на координатные оси, называются координатами вектора $\bar{a}(a_x, a_y, a_z)$

$$a_x = \Pi p_x \overline{a}$$
 $a_y = \Pi p_y \overline{a}$ $a_z = \Pi p_z \overline{a}$

Вектор ОМ $= \bar{r} = \bar{a}$ идущий из начала координат к точке М, называется радиус вектором этой точки.

Длина вектора \bar{a} определяется как модуль вектора $|\bar{a}| = \sqrt{{a_x}^2 + {a_y}^2 + {a_z}^2}$

Пусть углы вектора с координатными осями ох, оу, оz соответственно равны α , β , γ . По свойству проекций вектора на ось

$$a_x = |\overline{a}| \cdot \cos \alpha \quad a_y = |\overline{a}| \cdot \cos \beta \quad a_z = |\overline{a}| \cdot \cos \gamma$$

$$\cos \alpha = \frac{a_x}{|\overline{a}|} \quad \cos \beta = \frac{a_y}{|\overline{a}|} \quad \cos \gamma = \frac{a_z}{|\overline{a}|}$$

Числа $\cos \alpha$, $\cos \beta$, $\cos \gamma$ называются направляющими косинусами вектора

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$