

IECTURE NINETEEN: BAYESTAN CIASSIFICATION

COUNT MORKISON

SIS

31 - 1 October 2013

Main parametric modeling frameworks

Minimizing a Loss function

Linear model

Linear least mean squares

Maximum Likelihood

Approaches to Avoiding Over-fitting i.e., how to achieve *generalization*Regularization

Cross Validation (estimating the gen error)

Marginal Likelihood model selection

- Probabilistic model of uncertainty (noise, error)
- Maximize the likelihood w.r.t. parameters
- Linear model with additive Gaussian noise
- Bayesian Approach
 - Treat parameters as random variables
 - Use Bayes Theorem to combine likelihood & prior to find posterior distribution
- Estimation Techniques (often used in Bayesian approaches)
 - Gradient methods (Widrow-Hoff (1st), Newton-Rhapson (2nd))
 - Laplace Approximation
 - Monte Carlo estimation of expectation; Metropolis-Hastings
- Classification (& Regression)
- Clustering

Projection

Main algorithmic families of Machine Learning

Classification

- N training objects, x₁, ..., x_N
- Each x_i is a D-dimensional vector
- Each object has a label, t_n describing the class object n belongs to
 - Typically class label is expressed as an integer
 - Binary case:
 - $t_n = \{0,1\}$
 - $t_n = \{-1, 1\}$
 - C classes:
 - $t_n = \{1, 2, ..., C\}$
- Task: predict the class t_{new} for an unseen object \mathbf{x}_{new}

Issues in Classification

Duda Hart Stork 2001 Ch 2!

- Different domains have different problems.
 - Disease Diagnosis: How do we handle the uneven cost of making errors?
 - Text classification: How do we handle complex data objects like text?
- Two very general ML approaches to Classification:
 - Non-probabilistic if all we care about is class assignment (often, just define decision boundary)
 - Probabilistic permits measure of confidence in class assignment

Probabilistic Classifiers

$$P(T_{\mathsf{new}} = c | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t})$$
 $0 \le P(T_{\mathsf{new}} = c | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t}) \le 1$ $\sum_{c=1}^{C} P(T_{\mathsf{new}} = c | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t}) = 1$ Note: assumes mutual exclusivity!

Disease classification:

$$P(T_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \ \mathbf{X}, \ \mathbf{t}) = 0.6$$

versus
 $P(T_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \ \mathbf{X}, \ \mathbf{t}) = 0.9$

The Bayes Classifier

Given a set of training points from C classes

$$P(T_{\mathsf{new}} = c | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t}) =$$

$$P(T_{\mathsf{new}} = c | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t}) = \frac{p(\mathbf{x}_{\mathsf{new}} | T_{\mathsf{new}} = c, \mathbf{X}, \mathbf{t}) P(T_{\mathsf{new}} = c | \mathbf{X}, \mathbf{t})}{\sum_{c'=1}^{C} p(\mathbf{x}_{\mathsf{new}} | T_{\mathsf{new}} = c', \mathbf{X}, \mathbf{t}) P(T_{\mathsf{new}} = c' | \mathbf{X}, \mathbf{t})}$$

$$p(\mathbf{x}_{\mathsf{new}}|T_{\mathsf{new}} = c, \mathbf{X}, \mathbf{t}) \text{ and } P(T_{\mathsf{new}} = c|\mathbf{X}, \mathbf{t})$$

Need to define *C* class-conditional distributions
Usually these are the same type (but not necessarily)
Then find parameters (ML!)

Probability of c "before evidence" Can account for uneven class sizes (can bias for or against a class) **Always**: must be positive and $\sum_{c} P(T_{\text{new}} = c | \mathbf{X}, \mathbf{t}) = 1$

1. Uniform prior:
$$P(T_{new} = c | \mathbf{X}, \mathbf{t}) = \frac{1}{C}$$

2. Class size prior:
$$P(T_{\text{new}} = c | \mathbf{X}, \mathbf{t}) = \frac{N_c}{N}$$

The Bayes Classifier

• Example: Gaussian class-conditionals

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

 $t_n = \{1, 2, 3\}$

$$p(\mathbf{x}_n|t_n = c, \mathbf{X}, \mathbf{t}) = \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

Next step: estimate μ_c and Σ_c

One possibility: A Bayesian approach...

$$p(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c | \mathbf{X}^c) = \frac{p(\mathbf{X}^c | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) p(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}{p(\mathbf{X}^c)}$$

....then compute the likelihood of \mathbf{x}_{new} by taking this expectation:

$$p(\mathbf{x}_{\mathsf{new}}|T_{\mathsf{new}} = c, \mathbf{X}, \mathbf{t}) = \mathbf{E}_{p(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c | \mathbf{X}^c)} \left\{ p(\mathbf{x}_{\mathsf{new}} | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right\}$$

This is most useful when there is little data and our estimates of $\,\mu_c$ and $\,\Sigma_c$ are uncertain $\,^7$

The Bayes Classifier

• Example: Gaussian class-conditionals

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

 $t_n = \{1, 2, 3\}$

$$p(\mathbf{x}_n|t_n = c, \mathbf{X}, \mathbf{t}) = \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

Next step: estimate μ_c and Σ_c

Direct maximum likelihood estimates of $\,\mu_c$ and $oldsymbol{\Sigma}_c$

$$\mu_c = \frac{1}{N_c} \sum_{n=1}^{N_c} \mathbf{x}_n$$

$$\Sigma_c = \frac{1}{N_c} \sum_{n=1}^{N_c} (\mathbf{x}_n - \boldsymbol{\mu}_c) (\mathbf{x}_n - \boldsymbol{\mu}_c)^{\mathsf{T}}$$

Summations are only for the data instances from the $c^{\rm th}$ class.

$$P(T_{\mathsf{new}} = c | \mathbf{X}, \mathbf{t}) = \frac{1}{3}$$

The Bayes Classifier

• Example: Gaussian class-conditionals

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

 $t_n = \{1, 2, 3\}$

$$p(\mathbf{x}_n|t_n = c, \mathbf{X}, \mathbf{t}) = \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

Next step: estimate μ_c and Σ_c

Direct maximum likelihood estimates of μ_c and Σ_c

$$\mu_c = \frac{1}{N_c} \sum_{n=1}^{N_c} \mathbf{x}_n$$

$$\mathbf{\Sigma}_c = rac{1}{N_c} \sum_{n=1}^{N_c} (\mathbf{x}_n - \boldsymbol{\mu}_c) (\mathbf{x}_n - \boldsymbol{\mu}_c)^\mathsf{T}$$

Summations are only for the data instances from the $c^{\rm th}$ class.

$$P(T_{\mathsf{new}} = c | \mathbf{X}, \mathbf{t}) = \frac{1}{3}$$

The Bayes Classifier

• Example: Gaussian class-conditionals

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

 $t_n = \{1, 2, 3\}$

$$p(\mathbf{x}_n|t_n = c, \mathbf{X}, \mathbf{t}) = \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)$$

Next step: estimate μ_c and Σ_c

Making Predictions for $\mathbf{x}_{\text{new}} = [2, 0]^{\text{T}}$

c	$p(\mathbf{x}_{new} T_{new}=c,oldsymbol{\mu}_c,oldsymbol{\Sigma}_c)$	$P(T_{\sf new} = c \mathbf{X}, \mathbf{t})$	$p(\mathbf{x}_{new} T_{new} = c, \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)P(T_{new} = c \mathbf{X}, \mathbf{t})$	_
1	0.0138	$\frac{1}{3}$	0.0046 0.6890	normalized
2	0.0061	$\frac{1}{3}$	0.0020 0.3024	
3	0.0002	$\frac{\gamma}{3}$	0.0001 0.0087	

The Bayes Classifier

• Example: Gaussian class-conditionals

The Bayes Classifier

- Problem with Bayes Classifier: Growth of parameters to estimate as number of dimensions (D) increases.
- For Gaussian class-conditional Bayes:

$$D + D + \frac{D(D-1)}{2}$$
 For the mean For the covariance matrix (diagonally symmetrical)

For 10 dimensions, 30 data points are not sufficient to estimate 65 parameters!

The key cost here is the covariance estimate.

We can dramatically simplify by assuming (class-conditional) *independence*

Naïve Bayes Classifier

• The Gaussian class-conditional

$$p(\mathbf{x}_n|t_n=k,\mathbf{X},\mathbf{t}) = \prod_{d=1}^2 p(x_{nd}|t_n=k,\mathbf{X},\mathbf{t})$$

(a)
$$P(T_{\text{new}} = 1 | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$$

(b)
$$P(T_{\mathsf{new}} = 2 | \mathbf{x}_{\mathsf{new}}, \mathbf{X}, \mathbf{t})$$

(c)
$$P(T_{\text{new}} = 3|\mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t})$$

Example Naïve Bayes Classifier

$$p(C|F_1, F_2, ..., F_k, C) = \frac{p(F_1|C)p(F_2|C) \cdots p(F_k|C)p(C)}{p(F_1, F_2, ..., F_k)}$$

$$p(F = x_i | C) = \alpha_{1c}^{[F = x_1]} \alpha_{2c}^{[F = x_2]} \cdots \alpha_{kc}^{[F = x_k]}$$

Example:

Categorical class-conditionals from nominal data: predicting *play*

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Example Naïve Bayes Classifier

Οι	ıtlook		Tempe	rature		Нι	umidity		V	Vindy		Pla	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5			O. N.				14/2	Diam

$$p(F = x_i|C) = \alpha_{1c}^{[F=x_1]} \alpha_{2c}^{[F=x_2]} \cdots \alpha_{kc}^{[F=x_k]}$$

Example:

Categorical class-conditionals from nominal data: predicting *play*

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Example Naïve Bayes Classifier

Outlook			Tempe	rature		Нι	umidity			Windy		Pl	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

A new day:

$$p(F = x_i | C) = \alpha_{1c}^{[F = x_1]} \alpha_{2c}^{[F = x_2]} \cdots \alpha_{kc}^{[F = x_k]}$$

Example:

Categorical class-condi from nominal data: predicting *play*

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Likelihood of the two classes

For "yes" = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$

For "no" = $3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$

Conversion into a probability by normalization:

P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205

P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795

The "Zero-Frequency Problem" (1)

• What if an nominal attribute value doesn't occur with every class value?

(e.g., no outlook "overcast" for class "no play")

- Probability will be zero!
- A posteriori probability will also be zero! (no matter how likely the other values are!)
- Remedy for Categorical likelihood: add 1 to the count for every attribute value-class combination (Laplace estimator or rule of succession)
- Result: probabilities will never be zero (also stabilizes probability estimates)

Pierre-Simon, marquis de Laplace

The "Zero-Frequency Problem" (2)

(Categorical likelihood continued...)

- In some cases, adding a constant different from 1 might be more appropriate: μ
- Example: attribute outlook for class yes

Sunny
$$\frac{2 + \frac{\mu}{3}}{9 + \mu}$$

$$\frac{4+\frac{\mu}{3}}{9+\mu}$$

$$\frac{\textit{Rainy}}{3 + \frac{\mu}{3}}$$

• Weights (p's) don't need to be equal (but p's **must sum to 1**!)

$$\frac{2 + (\mu \cdot p_1)}{9 + \mu}$$

$$\frac{2 + (\mu \cdot p_1)}{9 + \mu} \qquad \frac{4 + (\mu \cdot p_2)}{9 + \mu} \qquad \frac{3 + (\mu \cdot p_3)}{9 + \mu}$$

$$\frac{3 + (\mu \cdot p_3)}{9 + \mu}$$

Another Example: Classifying Text

- 20 newsgroup dataset
- Total of 20,000 documents
- Task: assign a new document to one of the 20 newsgroups
- **Bag-of-words** model:
 - Total of M unique words for all documents
 - $-\mathbf{X}_{n}$ is vector of counts of each of the M word types
 - (so $x_{n,m}$ is the number of times word m appears in document *n*)

$$p(\mathbf{x}_n|T_n=c,\ldots)=\prod_{m=1}^M p(x_{nm}|T_n=c,\ldots)$$

Another Example: Classifying Text

- Note: the bag-of-words model ignores word order. 1: The quick brown fox jumps over the lazy dog.
 - 2: Dog quick lazy the jumps fox brown the over.
- **Multinomial** distribution:

$$P(\mathbf{x}_n|\mathbf{q}) = \left(\frac{s_n!}{\prod_{m=1}^{M} x_{nm}!}\right) \prod_{m=1}^{M} q_m^{x_{nm}}$$

$$P(T_{\text{new}} = c|\mathbf{X}, \mathbf{t}) = \frac{1}{C}$$

$$P(T_{\text{new}} = c | \mathbf{X}, \mathbf{t}) = \frac{1}{C}$$

- Max likelihood estimate of q: $q_{cm} = \frac{\sum_{n=1}^{N_c} x_{nm}}{\sum_{m'=1}^{M} \sum_{n=1}^{N_c} x_{nm'}}$
- Prediction:

$$P(T_{\text{new}} = c | \mathbf{x}_{\text{new}}, \mathbf{X}, \mathbf{t}) = \frac{p(\mathbf{x}_{\text{new}} | T_{\text{new}} = c, \mathbf{X}, \mathbf{t}) P(T_{\text{new}} = c | \mathbf{X}, \mathbf{t})}{\sum_{c'=1}^{C} p(\mathbf{x}_{\text{new}} | T_{\text{new}} = c', \mathbf{X}, \mathbf{t}) P(T_{\text{new}} = c' | \mathbf{X}, \mathbf{t})}$$
20

The Bayesian Approach to Zero-Frequency problem for Multinomial Likelihood

The **Dirichlet** Prior:

$$p(\mathbf{q}_c|\boldsymbol{\alpha}) = \frac{\Gamma\left(\sum_{m=1}^{M} \alpha_m\right)}{\prod_{m=1}^{M} \Gamma(\alpha_m)} \prod_{m=1}^{M} q_{cm}^{\alpha_m - 1}$$

MAP estimate of Multinomial Likelihood and Dirichlet prior:

$$q_{cm} = \frac{\alpha - 1 + \sum_{n=1}^{N_c} x_{nm}}{M(\alpha - 1) + \sum_{m'=1}^{M} \sum_{n=1}^{N_c} x_{nm'}}$$

• Called "smoothing" because as α is increased, $q_{\rm cm}$ gets closer to 1/M

Document Classification Results

• Trained on 11,000 documents

• Results of classifying 7,000 held-out

documents:

