CS/ECE/ME532 Activity 18

Estimated time: 15 mins for P1, 20 mins for P2, 15 mins for P3, 20 mins for P4

1. A breast cancer gene database has approximately 8000 genes from 100 subjects. The label y_i is the disease state of the ith subject (+1 if no cancer, -1 if breast cancer). Suppose we build a linear classifier that combines the 8000 genes, say \mathbf{g}_i , i = 1, 2, ..., 100 to predict whether a subject has cancer $\hat{y}_i = \text{sign}\{\mathbf{g}_i^T \mathbf{w}\}$. Note that here \mathbf{g}_i and \mathbf{w} are 8000-by-1 vectors. You recall from the previous period that the least-squares problem for finding classifier weights has no unique solution.

Your hypothesis is that a relatively small number of the 8000 genes are predictive of the cancer state. Identify a regularization strategy consistent with this hypothesis and justify your choice.

- 2. Consider the least-squares problem $\min_{\boldsymbol{w}} ||\boldsymbol{y} \boldsymbol{X}\boldsymbol{w}||_2^2$ where $\boldsymbol{y} = 4$ and $\boldsymbol{X} = \begin{bmatrix} 2 & 1 \end{bmatrix}$.
 - a) Does this problem have a unique solution? Why or why not?
 - b) Sketch the contours of the cost function $f(\mathbf{w}) = ||\mathbf{y} \mathbf{X}\mathbf{w}||_2^2$ in the $w_1 w_2$ plane.
 - c) Now consider the LASSO $\min_{\boldsymbol{w}} ||\boldsymbol{w}||_1$ subject to $||\boldsymbol{y} \boldsymbol{X}\boldsymbol{w}||_2^2 < 1$. Find the solution using the following steps
 - i. Repeat your sketch from part b).
 - ii. Add a sketch of $||\boldsymbol{w}||_1 = c$
 - iii. Find the w that satisfies $||y Xw||_2^2 = 1$ with the minimum possible value of $||w||_1$.
 - d) Use your insight from the previous part to sketch the set of solutions to the problem $\min_{\boldsymbol{w}} ||\boldsymbol{y} \boldsymbol{X} \boldsymbol{w}||_2^2 + \lambda ||\boldsymbol{w}||_1$ for $0 < \lambda < \infty$.
- 3. The script provided has a function that will compute a specified number of iterations of the proximal gradient descent algorithm for solving the ℓ_1 -regularized least-squares problem

$$\min_{\boldsymbol{w}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||_2^2 + \lambda ||\boldsymbol{w}||_1$$

The script will get you started displaying the path taken by the weights in the proximal gradient descent iteration superimposed on a contour plot of the squared error surface

for the cost function defined in problem **2.** part **b)** starting from $\boldsymbol{w}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The script assumes $\lambda = 4$ and $\tau = 1/4$.

Include the plots you generate below with your submission.

- a) How many iterations does it take for the algorithm to converge to the solution? What is the converged value for \boldsymbol{w} ?
- b) Change to $\lambda = 2$. How many iterations does it take for the algorithm to converge to the solution? What is the converged value for \boldsymbol{w} ?
- c) Explain what happens to the weights in the regularization step.
- **4.** Use the proximal gradient algorithm to solve $\min_{\boldsymbol{w}} ||\boldsymbol{y} \boldsymbol{X}\boldsymbol{w}||_2^2 + 4||\boldsymbol{w}||_1$ for the parameters defined in problem **2**.
 - a) What is the maximum value for the step size in the negative gradient direction, τ ?
 - b) Suppose $\tau = 0.1$ and you start at $\boldsymbol{w}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Calculate the first two complete iterations of the proximal gradient algorithm and depict $\boldsymbol{w}^{(0)}, \boldsymbol{z}^{(1)}, \boldsymbol{w}^{(1)}, \boldsymbol{z}^{(2)}$ and $\boldsymbol{w}^{(2)}$ on a sketch of the cost function identical to the one you created in problem 2.b).