Europäisches **Patentamt**

European Patent Office

Office européen

des brevets EP04/20

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten internationalen Patentan-meldung überein.

The attached documents are exact copies of the international patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet international spécifiée à la page suivante.

Den Haag, den The Hague, La Haye, le

2 0. 09. 2004

Der Präsident des Europäischen Patentamts

For the President of the European Patent Office Le Président de l'Office européen des brevets

Mrs. H. Fransz

Patentanmeldung Nr. Patent application no. Demande de brevet nº

PCT/EP 03/09107

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation -

Anmeldung Nr.:

Application no.: Demande nº:

PCT/EP 03/09107

Anmelder:

Applicant(s): Demandeur(s): 1. SUNGENE GMBH & CO. KGAA - Gatersleben, Deutschland

2. SCHOPFER, Christel Renate - Quedlinburg, Deutschland (nur US)

Bezeichnung der Erfindung: 3. FLACHMAN, Ralf - Quedlinburg, Deutschland (nur US)

Title of the invention:

Titre de l'invention:

Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflazen

Anmeldetag:

Date of filing: Date de dépôt:

18. August 2003 (18.08.2003)

In Anspruch genommene Priorität(en)

Priority(ies) claimed Priorité(s) revendiquée(s)

State: Pays:

Deutschland

Tag: 13. November 2002

Aktenzeichen: 10253112.9

Date: (13.11.2002)

File no. Numéro de dépôt:

Benennung von Vertragsstaaten : Siehe Formblatt PCT/RO/101 (beigefügt)
Designation of contracting states : See Form PCT/RO/101 (enclosed)
Désignation d'états contractants : Voir Formulaire PCT/RO/101 (ci-joint)

Weitere Anmelder:

Bemerkungen: Remarks:

Remarques:

4. HERBERS, Karin - Quedlinburg, Deutschland (nur US)

5. KUNZE, Irene - Gatersleben, Deutschland (nur US)

6. SAUER, Matt - Quedlinburg, Deutschland (nur US)

7. KLEBSATTEL, Martin - Quedlinburg, Deutschland (nur US)

Weitere Prioritätsanspruche:

Deutschland

16. Dezember 2002 (16.12.2002)

10258971.2

Weitere Prioritätsanspruche:

Deutschland	20. August 2002 (20.08.2002)	10238980.2
Deutschland	20. August 2002 (20.08.2002)	10238978.0
Deutschland	20. August 2002 (20.08.2002)	10238979.9

PCT-ANTRAG

Original (für EINREICHUNG) - gedruckt am 06.08.2003 11:57:52 AM

0000053863

IV-1	Anwalt oder gemeinsamer Vertreter; oder besondere Zustellanschrift				
	Die unten bezeichnete Person ist/wird hiermit bestellt, um den (die) Anmelder vor den internationalen Behörden zu	Anwalt			
	vertreten, und zwar als:				
IV-1-1	Name (FAMILIENNAME, Vorname)	DÖRPER, Thomas			
IV-1-2	Anschrift:	c/o BASF Aktiengesellschaft			
	·	D-67056 Ludwigshafen			
		Deutschland			
IV-1-3	Telefonnr.	0621/60-73919			
IV-1-4	Telefaxnr.	0621/60-43123			
V	Bestimmung von Staaten				
V-1	Regionales Patent	AP: GH GM KE LS MW MZ SD SL SZ TZ UG ZM			
v	(andere Schutzrechtsarten oder	ZW und jeder weitere Staat, der			
	Verfahren sind ggf. in Klammern nach der (den) betreffenden Bestimmung(en)	Mitgliedstaat des Harare-Protokolls und			
	angegeben)	Vertragsstaat des PCT ist			
		EA: AM AZ BY KG KZ MD RU TJ TM und jeder			
		weitere Staat, der Mitgliedsstaat des Eurasischen Patentübereinkommens und			
		Vertragsstaat des PCT ist			
	1.	EP: AT BE BG CH&LI CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI			
		SK TR und jeder weitere Staat, der			
		Mitgliedsstaat des Europäischen			
	·	Patentübereinkommens und Vertragsstaat			
		des PCT ist			
	Ì	OA: BF BJ CF CG CI CM GA GN GQ GW ML MR			
	1.	NE SN TD TG und jeder weitere Staat, der			
		Mitgliedstaat der OAPI und Vertragsstaat			
	N. Caralan Dataset	des PCT ist AE AG AL AM AT AU AZ BA BB BG BR BY BZ			
V-2	Nationales Patent (andere Schutzrechtsarten oder	CA CHELI CN CO CR CU CZ DE DK DM DZ EC			
	Verfahren sind ggf. in Klammern nach der (den) betreffenden Bestimmung(en				
	angegeben)	IS JP KE KG KP KR KZ LC LK LR LS LT LU			
		LV MA MD MG MK MN MW MX MZ NI NO NZ OM			
		PG PH PL PT RO RU SC SD SE SG SK SL SY			
		TJ TM TN TR TT TZ UA UG US UZ VC VN YU			
•		ZA ZM ZW			

Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen

5 Beschreibung

tococcus.

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die in Früchten eine Ketolase-Aktivität aufweisen, die10 genetisch veränderten Pflanzen, sowie deren Verwendung als Nahrungs- oder Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflan15 zen synthetisiert. Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin,
Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin oder Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen
20 als Sekundärmetabolite produziert werden.

Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbesondere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und 25 Shrimpszucht verwendet.

Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in 30 biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise Haematococcus pluvialis, oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.

35 Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.

WO 98/18910 beschreibt die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Einbringen eines Ketolase-Gens 40 in Tabak.

WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung 45 eines Samen-spezifischen Promotors und einer Ketolase aus HaemaDie im Stand der Technik offenbarten Verfahren liefern zwar genetisch veränderte Pflanzen, die in spezifischen Geweben einen Gehalt an Ketocarotinoiden aufweisen, weisen jedoch den Nachteil auf, dass die Höhe des Gehalts an Ketocarotinoiden und die Reinheit, insbesondere an Astaxanthin, noch nicht zufriedenstellend

Der Erfindung lag daher die Aufgabe zugrunde, ein alternatives Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung 10 von Pflanzen zur Verfügung zu stellen, bzw. weitere transgene Pflanzen, die Ketocarotinoide herstellen, zur Verfügung zu stellen, die optimierte Eigenschaften, wie beispielsweise einen höheren Gehalt an Ketocarotinoiden, aufweisen und den geschilderten Nachteil des Standes der Technik nicht aufweisen.

Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte Pflanzen kultiviert, die in Früchten eine Ketolase-Aktivität aufweisen.

20 Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Cantha-xanthin umzuwandeln.

- Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β -Carotin bzw. gebildete Menge Canthaxanthin verstanden.
- 35 Um in den Früchten der genetisch veränderten Pflanzen eine Ketolaseaktivität aufzuweisen, werden in einer bevorzugten Ausführungsform genetisch veränderte Pflanzen verwendet, die in-Früchten eine Ketolase exprimieren.
- 40 Vorzugsweise werden daher im erfindungsgemäßen Verfahren genetisch veränderte Pflanzen verwendet, die in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase, enthalten.

Es sind keine Pflanzen bekannt, die als Wildtyp in Früchten eine Ketolase-Aktivität aufweisen. Insbesondere weisen die nachstehend beschriebenen, bevorzugten Pflanzen in Früchten als Wildtyp keine Ketolase-Aktivität auf.

5

In der vorliegenden Erfindung wird die Ketolase-Aktivität in Früchten der genetisch veränderten Pflanzen durch die genetische Veränderung der Ausgangspflanze verursacht. Die erfindungsgemäße genetisch veränderte Pflanze weist somit, im Vergleich zur genetisch nicht veränderten Ausgangspflanze eine Ketolase-Aktivität in Früchten auf und ist somit vorzugsweise in der Lage, in Früchten eine Ketolase zu exprimieren.

Unter dem Begriff "Ausgangspflanze" oder "Wildtyp" wird die ent-15 sprechende nicht genetisch veränderte Ausgangspflanze verstanden.

Unter dem Begriff "genetisch veränderte Pflanze" wird vorzugsweise eine im Vergleich zur Ausgangspflanze genetisch veränderte Pflanze verstanden.

20

Je nach Zusammenhang kann unter dem Begriff "Pflanze" die Ausgangspflanze (Wildtyp) oder eine erfindungsgemäße, genetisch veränderte Pflanze oder beides verstanden werden.

- 25 Die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, in den Früchten der Pflanzen erfolgt vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in die Ausgangspflanze.
- 30 Die Erfindung betrifft daher insbesondere das vorstehend beschriebene Verfahren, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, in die man ausgehend von einer Ausgangspflanze, mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.

35

Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäure die eine Ketolase kodiert, verwendet werden.

Alle in der Beschreibung erwähnten Nukleinsäuren können 40 beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.

Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall, dass die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden

45 kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs, zu verwenden.

Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren bzw. in den nachstehend beschriebenen erfindungsgemäßen genetisch veränderten Pflanzen verwendet werden können, sind beispielsweise 5 Sequenzen aus

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession No. X86782; Nukleinsäure: SEQ ID No. 1, Protein SEQ ID No. 2),

10

Haematoccus pluvialis, NIES-144 (Accession No. D45881; Nuklein-säure: SEQ ID No. 3, Protein SEQ ID No. 4),

Agrobacterium aurantiacum (Accession No. D58420; Nukleinsäure: 15 SEQ. ID. No. 5, Protein SEQ ID No. 6),

Alicaligenes spec. (Accession No. D58422; Nukleinsäure: SEQ ID No. 7, Protein SEQ ID No. 8),

20 Paracoccus marcusii (Accession No. Y15112; Nukleinsäure: SEQ ID No. 9, Protein SEQ ID No. 10).

Synechocystis sp. Strain PC6803 (Accession No. S76617, NP442491; Nukleinsäure: SEQ ID No. 11, Protein SEQ ID No. 12).

25

Bradyrhizobium sp. (Accession No. AF218415, BAB 74888; Nukleinsäure: SEQ ID No. 13, Protein SEQ ID No. 14).

Nostoc sp. Strain PCC7120 (Accession No. AP003592; Nukleinsäure: 30 SEQ ID No. 15, Protein SEQ ID No. 16).

Haematococcus pluvialis (Accession NO: AF534876, AAN03484; Nukleinsäure: SEQ ID NO: 37, Protein: SEQ ID NO: 38)

35 Paracoccus sp. MBIC1143 (Accession NO: D58420, P54972; Nukleinsäure: SEQ ID NO: 39, Protein: SEQ ID NO: 40)

Brevundimonas aurantiaca(Accession NO: AY166610, AAN86030; Nukleinsäure: SEQ ID NO: 41, Protein: SEQ ID NO: 42)

40

Nodularia spumigena NSOR10 (Accession NO: AY210783, AAO64399; Nu-kleinsäure: SEQ ID NO: 43, Protein: SEQ ID NO: 44)

Nostoc punctiforme ATCC 29133 (Accession NO: NZ_AABC01000195, 45 ZP_00111258; Nukleinsäure: SEQ ID NO: 45, Protein: SEQ ID NO: 46)

Nostoc punctiforme ATCC 29133 (Accession NO: NZ_AABC01000196; Nukleinsäure: SEQ ID NO: 47, Protein: SEQ ID NO: 48)

Deinococcus radiodurans R1(Accession NO: E75561, AE001872; Nu-5 kleinsäure: SEQ ID NO: 49, Protein: SEQ ID NO: 50)

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomi
10 sche Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO. 2 und/
oder SEQ ID NO. 16 leicht auffinden.

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen

SEQ ID. No 1 und/oder SEQ ID NO. 15 aus verschiedenen Organismen,

20 deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen 25 erfolgen.

Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory 30 Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 beschrieben.

Beispielhaft können die Bedingungen während des Waschschrittes 35 ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

40 Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.

Beide Parameter, Salzkonzentration und Temperatur, können gleich45 zeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der
Hybridisierung können auch denaturierende Agenzien wie zum Bei-

spiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

Einige beispielhafte Bedingungen für Hybridisierung und Wasch-5 schritt sind infolge gegeben:

- (1) Hybridisierungsbedingungen mit zum Beispiel
 - (i) 4X SSC bei 65°C; oder

10

- (ii) 6X SSC bei 45°C, oder
- (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder

15

- (iv) 6X SSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
- (v) 6XSSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte 20 Lachssperma-DNA, 50 % Formamid bei 42°C, oder
 - (vi) 50 % Formamid, 4x SSC bei 42°C, oder
- (vii) 50 % (vol/vol) Formamid, 0,1 % Rinderserumalbumin,
 0,1 % Ficoll, 0,1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6,5, 750 mM NaCl, 75 mM Natriumcitrat
 bei 42°C, oder
 - (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder

30

- (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42° (moderate Bedingungen).
- (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel

35

- (i) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1 % SDS bei 50°C, oder
- (ii) 0,1X SSC bei 65°C, oder

40

- (iii) 0,1% SSC, 0.5 % SDS bei 68°C, oder
- (iv) 0,1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder
- 45 (v) 0,2X SSC, 0.1 % SDS bei 42°C, oder

(vi) 2X SSC bei 65°C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens bringt man Nukleinsäuren ein, die ein Protein kodieren, 5 enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Ketolase aufweist.

15 Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO. 2 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 16 und die enzymatische Eigenschaft einer Ketolase aufweist.

35 Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO. 16 durch künstliche Variation, beispielsweise durch 40 Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere 45 Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähn-

tausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch Ile, Leu durch Ile, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte 5 Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptid-10 kette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden,
15 insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc.Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter:

	Gap penalty	10
25	Gap length penalty	10
	Pairwise alignment parameter:	
	K-tuple	1
	Gap penalty	3
	Window	5
30	Diagonals saved	5

Unter einem Protein, das eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 oder 16 aufweist, wird dementsprechend ein Protein verstanden, das bei einem 35 Vergleich seiner Sequenz mit der Sequenz SEQ ID NO. 2 oder 16, insbesondere nach obigen Programmalgorithmus mit obigem Parametersatz eine Identität von mindestens 20 % aufweist.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rück-40 übersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

Bevorzugt werden dafür solche Kodons verwendet, die entsprechend der pflanzespezifischen codon usage häufig verwendet werden. Die 45 codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO. 1, in den Pflanze ein.

5 In einer weiteren besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO. 15, in den Pflanze ein.

Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich 10 bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite

896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning:

20 A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, 25 die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.

Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors 30 erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt, funktionell verknüpft mit einem fruchtspezifischen Promotor, in die Pflanze eingebracht.

35 Unter Pflanzen werden erfindungsgemäß vorzugsweise Pflanzen verstanden, die als Wildtyp in Früchten Chromoplasten aufweisen.

Weiter bevorzugte Pflanzen weisen als Wildtyp in den Früchten zusätzlich Carotinoide, insbesondere β -Carotin, Zeaxanthin, Neo- 40 xanthin, Violaxanthin oder Lutein auf.

Weiter bevorzugte Pflanzen weisen als Wildtyp in den Früchten zusätzlich eine Hydroxylase-Aktivität auf.

45 Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden. Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

5

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.

- 10 Dementsprechend wird unter Hydroxylase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β -Carotin oder Canthaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.
- 15 In einer bevorzugten Ausführungsform werden Pflanzen kultiviert, die gegenüber dem Wildtyp zusätzlich eine erhöhte Hydroxylase-Aktivität und/oder β -Cyclase-Aktivität aufweisen.

Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydro-20 xylase verstanden.

Unter einer Hydroxylase wird ein Protein verstanden, das díe enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

25

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Zeaxanthin oder Cantaxanthin in Astaxanthin umzuwandeln.

- 30 Dementsprechend wird unter Hydroxyase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β -Carotin oder Cantaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.
- 35 Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge β -Carotin oder Cantaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.

40

Vorzugsweise beträgt diese Erhöhung der Hydroxylase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 50 %, weiter bevorzugter mindestens 500 %, instagter mindestens 300 %, noch bevorzugter mindestens 500 %, instagter mindestens 600 % der Hydroxylase-Aktivität des Wild-

typs.

15

20

35

Unter β -Cyclase-Aktivität wird die Enzymaktivität einer β -Cyclase verstanden.

Unter einer β -Cyclase wird ein Protein verstanden, das die enzyma-5 tische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen β -Ionon-Ring zu überführen.

Insbesondere wird unter einer β -Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ -Carotin in β -Carotin 10 umzuwandeln.

Dementsprechend wird unter β -Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein β -Cyclase umgesetzte Menge γ -Carotin bzw. gebildete Menge β -Carotin verstanden.

Bei einer erhöhten β -Cyclase -Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein β -Cyclase die umgesetzte Menge γ -Carotin bzw. die gebildete Menge β -Carotin erhöht.

Vorzugsweise beträgt diese Erhöhung der β-Cyclase-Aktivität mindestens 5 %, weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 100 %, bevorzugter mindestens 300 %, noch bevorzugter mindestens 500 %, insbesondere mindestens 600 % der β-Cyclase-Aktivität des Wildtyps.

Unter dem Begriff "Wildtyp" wird erfindungsgemäß die entsprechende nicht genetisch veränderte Ausgangspflanze verstanden.

30 Vorzugsweise und insbesondere in Fällen, in denen die Pflanze oder der Wildtyp nicht eindeutig zugeordnet werden kann, wird unter "Wildtyp" für die Erhöhung der Hydroxylase-Aktivität, für die Erhöhung der β -Cyclase-Aktivität und für die Erhöhung des Gehalts an Ketocarotinoiden jeweils eine Referenzpflanze verstanden.

Diese Referenzpflanze ist vorzugsweise Lycopersicon esculentum.

Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen zen erfolgt vorzugsweise unter folgenden Bedingungen:

Die Aktivität der Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro bestimmt. Es wird zu einer bestimmten Menge an Pflanzenextrakt Ferredoxin, Ferredoxin-45 NADP Oxidoreductase, Katalase, NADPH sowie beta-Carotin mit Monound Digalaktosylglyzeriden zugegeben.

45

Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320-328):

durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),
10 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+
Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin
(in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Monound Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Monound Digalaktosylglyzeriden, (1:1), 0.2 mg Rinderserumalbumin und
15 Pflanzenextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30C inkubiert. Die Reaktionsprodukte
werden mit organischem Lösungsmittel wie Aceton oder Chloroform/

Der in-vitro Assay wird in einem Volumen von 0.250 ml Volumen

20 Die Bestimmung der β -Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:

Methanol (2:1) extrahiert und mittels HPLC bestimmt.

- Die Aktivität der β-Cyclase wird nach Fraser und Sandmann (Bio25 chem. Biophys. Res. Comm. 185(1) (1992) 9-15) in vitro bestimmt.
 Es werden zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stromaprotein
 von Paprika, NADP+, NADPH und ATP zugegeben.
- 30 Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346(1) (1997) 53-64):
- 35 Der in-vitro Assay wird in einem Volumen von 250 ∝l Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6),unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 250 ∝g an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 40 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30C wird die Reaktion durch Zugabe von Chloroform/Methanol

(2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185(1) (1992) 9-15).

5 Die Erhöhung der Hydroxylase-Aktivität und/oder β-Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressionsund Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren kodierend eine Hydroxylase und/oder von Nukleinsäuren kodierend eine β-Cyclase gegenüber dem Wildtyp.

Die Erhöhung der Genexpression der Nukleinsäuren kodierend eine Hydroxylase und/oder die Erhöhung der Genexpression der Nukleinsäure kodierend eine β -Cyclase gegenüber dem Wildtyp kann eben- 15 falls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens und/oder β -Cyclase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien und/oder β -Cyclase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure kodierend eine Hydroxylase und/oder 20 mindestens einer Nukleinsäure kodierend eine ϵ -Cyclase in die Pflanze.

Unter Erhöhung der Genexpression einer Nukleinsäure codierend eine Hydroxylase und/oder β -Cyclase wird erfindungsgemäß auch die 25 Manipulation der Expression der Pflanzen eigenen, endogenen Hydroxylase und/oder β -Cyclase verstanden.

Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Hydroxylasen und/oder β-Cyclasen kodierende Gene er30 reicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.

Es ist, wie vorstehend beschrieben, möglich, die Expression der 35 endogenen Hydroxylase und/oder β -Cyclase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.

40 Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen Hydroxylase- und/oder β -Cyclase-Gens dadurch erzielt werden, dass ein in der nicht transformierten Pflanze nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.

Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA-Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.

5 In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure kodierend eine Hydroxylase und/ oder die Erhöhung der Genexpression einer Nukleinsäure kodierend eine β -Cyclase durch Einbringen von mindestens einer Nukleinsäure kodierend eine Hydroxylase und/oder durch Einbringen von mindetostens einer Nukleinsäure kodierend eine β -Cyclase in die Pflanze.

Dazu kann prinzipiell jedes Hydroxylase-Gen bzw. jedes β -Cyclase-Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine β -Cyclase codiert, verwendet werden.

15

Bei genomischen Hydroxylase-bzw. β -Cyclase-Nukleinsäure-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall das die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase bzw.

20 β -Cyclase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs zu verwenden.

Beispiele für Hydroxylase-Gene sind Nukleinsäuren,

25 kodierend eine Hydroxylase aus Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 51, Protein: SEQ ID NO: 52),

sowie Hydroxylasegene der folgenden Accession Nummern:

30

|emb|CAB55626.1, CAA70427.1, CAA70888.1, CAB55625.1, AF499108_1, AF315289_1, AF296158_1, AAC49443.1, NP_194300.1, NP_200070.1, AAG10430.1, CAC06712.1, AAM88619.1, CAC95130.1, AAL80006.1, AF162276_1, AAO53295.1, AAN85601.1, CRTZ_ERWHE, CRTZ_PANAN,

- 35 BAB79605.1, CRTZ_ALCSP, CRTZ_AGRAU, CAB56060.1, ZP_00094836.1, AAC44852.1, BAC77670.1, NP_745389.1, NP_344225.1, NP_849490.1, ZP_00087019.1, NP_503072.1, NP_852012.1, NP_115929.1, ZP_00013255.1
- 40 Eine besonders bevorzugte Hydroxylase ist weiterhin die Hydroxylase aus Tomate) (Nukleinsäure: SEQ. ID. No. 55; Protein: SEQ. ID. No. 56)

Beispiele für b-Cyclase-Gene sind Nukleinsäuren, codierend eine b-Cyclase aus Tomate (Accession X86452). (Nukleinsäure: SEQ ID NO: 53, Protein: SEQ ID NO: 54), sowie b-Cyclase-Gene der folgenden Accession Nummern:

```
5
  S66350 lycopene beta-cyclase (EC 5.5.1.-) - tomato
  CAA60119
              lycopene synthase [Capsicum annuum]
  S66349
              lycopene beta-cyclase (EC 5.5.1.-) - common tobacco
  CAA57386
              lycopene cyclase [Nicotiana tabacum]
10 AAM21152
              lycopene beta-cyclase [Citrus sinensis]
  AAD38049
              lycopene cyclase [Citrus x paradisi]
  AAN86060
              lycopene cyclase [Citrus unshiu]
  AAF44700
              lycopene beta-cyclase [Citrus sinensis]
  AAK07430
              lycopene beta-cyclase [Adonis palaestina]
15 AAG10429
              beta cyclase [Tagetes erecta]
  AAA81880
              lycopene cyclase
   AAB53337
              Lycopene beta cyclase
   AAL92175
              beta-lycopene cyclase [Sandersonia aurantiaca]
   CAA67331
              lycopene cyclase [Narcissus pseudonarcissus]
              beta cyclase [Tagetes erecta]
20 AAM45381
   AA018661
              lycopene beta-cyclase [Zea mays]
   AAG21133
              chromoplast-specific lycopene beta-cyclase
              [Lycopersicon esculentum]
              lycopene beta-cyclase [Daucus carota]
   AAF18989
              hypothetical protein [Prochlorococcus marinus str.
25 ZP_001140
              MIT9313]
   ZP_001050
              hypothetical protein [Prochlorococcus marinus subsp.
              pastoris str. CCMP1378]
   ZP_001046 hypothetical protein [Prochlorococcus marinus subsp.
30
              pastoris str. CCMP1378]
   ZP_001134
              hypothetical protein [Prochlorococcus marinus str.
              MIT9313]
   ZP_001150
              hypothetical protein [Synechococcus sp. WH 8102]
   AAF10377
              lycopene cyclase [Deinococcus radiodurans]
35 BAA29250
              393aa long hypothetical protein [Pyrococcus
              horikoshii]
   BAC77673
              lycopene beta-monocyclase [marine bacterium P99-3]
   AAL01999
              lycopene cyclase [Xanthobacter sp. Py2]
   ZP_000190
              hypothetical protein [Chloroflexus aurantiacus]
40 ZP_000941
              hypothetical protein [Novosphingobium
              aromaticivorans]
              lycopene cyclase [Bradyrhizobium sp. ORS278]
   AAF78200
   BAB79602
              crtY [Pantoea agglomerans pv. milletiae]
   CAA64855
              lycopene cyclase [Streptomyces griseus]
45 AAA21262
              dycopene cyclase [Pantoea agglomerans]
   C37802
               crty protein - Erwinia uredovora
   BAB79602
```

crty [Pantoea agglomerans pv. milletiae]

	AAA64980	lycopene cyclase [Pantoea agglomerans]
	AAC44851	lycopene cyclase
	BAA09593	Lycopene cyclase [Paracoccus sp. MBIC1143]
	ZP_000941	hypothetical protein [Novosphingobium
5		aromaticivorans]
	CAB56061	lycopene beta-cyclase [Paracoccus marcusii]
	BAA20275	lycopene cyclase [Erythrobacter longus]
	ZP_000570	hypothetical protein [Thermobifida fusca]
	ZP_000190	hypothetical protein [Chloroflexus aurantiacus]
10	AAK07430	lycopene beta-cyclase [Adonis palaestina]
	CAA67331	lycopene cyclase [Narcissus pseudonarcissus]
	AAB53337	Lycopene beta cyclase
	BAC77673	lycopene beta-monocyclase [marine bacterium P99-3]

15 Eine besonders bevorzugte ß-Cyclase ist weiterhin die chromoplastenspezifische b-Cyclase aus Tomate (AAG21133) (Nukleinsäure: SEQ. ID. No. 57; Protein: SEQ. ID. No. 58)

In den erfindungsgemäßen bevorzugten transgenen Pflanzen liegt 20 also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase-Gen und/oder β -Cyclase-Gen vor.

In dieser bevorzugten Ausführungsform weist die genetisch verän-25 derte Pflanze beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase und/oder mindestens eine exogene Nukleinsäure, kodierend eine β -Cyclase oder mindestens zwei endogene Nukleinsäuren, kodierend eine β -Cyclase auf.

Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 52 oder eine von dieser Sequenz durch Substitution, Insertion oder Dele-

35 tion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter mindestens 70%, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ. ID. NO: 52, und die die enzymatische Eigenschaft einer Hydroxylase 40 aufweisen.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben, durch Ho-45 mologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SeQ ID. NO: 52 leicht auffinden.

Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen 5 sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 51 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

10

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 52.

15

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

- 20 Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.
- 25 In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 51 in den Organismus ein.
- Bevorzugt verwendet man in vorstehend beschriebener bevorzugter 30 Ausführungsform als β -Cyclase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 54 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30 %, vorzugsweise mindestens 50 %, bevorzugter minde-
- 35 stens 70 %, noch bevorzugter mindestens 90 %, am bevorzugtesten mindestens 95 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 54, und die die enzymatische Eigenschaft einer β -Cyclase aufweisen.
- 40 Weitere Beispiele für β -Cyclasen und β -Cyclase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO:
- 45 54 leicht auffinden.

Weitere Beispiele für β -Cyclasen und β -Cyclase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 53 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der β -Cyclase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz 10 der β -Cyclase der Sequenz SEQ. ID. NO: 54.

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

15

Bevorzugt werden dafür solche Codons verwendet, die entsprechend der pflanzenspezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

20

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 53 in deń Organismus ein.

25 Alle vorstehend erwähnten Hydroxylase-Gene oder β-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Syn-

30 these von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen so-

35 wie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

Besonders bevorzugte Pflanzen sind Pflanzen, ausgewählt aus den 40 Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra,

45 Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathy-

40

rus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis.

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen erfolgt in Anlehnung an die Methode

10 von Frazer et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in pflanzlichen Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

Im erfindungsgemäßen Verfahren zur Herstellung von Ketocarotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeich20 net, ein Ernten der Pflanzen und ein Isolieren von Ketocarotinoiden aus den Früchten der Pflanzen angeschlossen.

Die transgenen Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.

Die Isolierung von Ketocarotinoiden aus den geernteten Früchten erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispiels30 weise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Früchten erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.

Weitere Isolierverfahren von Ketocarotinoiden sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.

Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.

45 Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.

Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das mindestens eine, vorzugsweise auch mehrere der vorstehend beschriebenen Nukleinsäuren enthält, die mit einem 5 oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.

Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz mit einem oder mehreren Regulationssignalen funktio-10 nell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.

Vorzugsweise enthalten die Regulationssignale einen oder mehrere 15 Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.

Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der 20 kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promótor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, dass jedes der regulativen 30 Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Ver-35 fahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.

Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährlei40 stung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem
Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987),
45 8693-8711).

Als Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.

- 5 "Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.
- 10 Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985)
- 15 Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202).
- Ein weiterer geeigneter konstitutiver Promotor ist der pds Promo20 ter (Pecker et al. (1992) Proc. Natl. Acad. Sci USA 89:
 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor
 (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677),
 der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacter-
- 25 ium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der va-
- 30 kuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hillebrand et al. (1996), Gene, 170, 197-200, der Ferredoxin-NADPH-Oxidoreductase Promotor (Datenbankeintrag AB011474, Posi-
- 35 tion 70127 bis 69493), der TPT-Promoter (WO 03006660), der "Superpromotor" (US-Patent 5955646), der 34S-Promotor (US-Patent 6051753) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.
- 40 Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des Ketolase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B.
- 45 der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186),

15

ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogeninduzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol
10 Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinII-Promoter (EP375091).

Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispiels-weise Gene von PR-Proteinen, SAR-Proteinen, b-1,3-Glucanase,

Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J

20 Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al.

- 25 (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989).
- 30 Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinII Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin (McGurl et al. (1992)
- 35 Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Ekelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.
- 40 Weitere geeignete Promotoren sind beispielsweise fruchtreifungspezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließen zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe natur45 gemäß entwicklungsabhängig erfolgt.

Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren 5 mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Wurzeln und Früchte und Kombinationen hieraus.

Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren 10 sind beispielsweise der Patatin Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.

Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU

15 Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphat-carboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).

Blütenspezifische Promotoren sind beispielsweise der Phytoen Syn-20 thase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593).

Antheren-spezifische Promotoren sind beispielsweise der 5126-Promotor (US 5,689,049, US 5,689,051), der glob-1 Promotor oder 25 der g-Zein Promotor.

Fruchtspezifische Promotoren sind beispielsweise

der Pds-Promoter aus Tomate (Genbank-ACCESSION U46919; Corona,
30 V., Aracri, B., Kosturkova, G., Bartley, G.E., Pitto, L., Giorgetti, L., Scolnik, P.A. and Giuliano, G., Regulation of a carotenoid biosynthesis gene promoter during plant development
Plant J. 9 (4), 505-512 (1996)), SEQ ID NO.17,

35 der 2A11 Promoter aus Tomate (Pear, J.R., Ridge, N., Rasmussen, R., Rose, R.E. and Houck, C.M. Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomatoPlant Mol. Biol. 13 (6), 639-651 (1989), SEQ ID NO. 18,

40

der Cucumisin Promoter (Yamagata, H., Yonesu, K., Hirata, A. and Aizono, Y., TGTCACA Motif Is a Novel cis-Regulatory Enhancer Element Involved in Fruit-specific Expression of the cucumisin GeneJ. Biol. Chem. 277 (13), 11582-11590 (2002), SEQ ID NO. 19,

der Promoter des Endogalacturonasegens (Redondo-Nevado, J., Medina-Escobar, N., Caballero-Repullo, J.L. and Munoz-Blanco, J.

A fruit-specific and developmentally regulated endo-polygalactu-5 ronase gene from strawberry (Fragaria x ananassa c.v. Chandler), J Experimental Botany 52 (362) 1941-1945 (2001), SEQ ID NO. 20,

der Polygalacturonase Promoter aus Tomate (Nicholass, F.J., Smith, C.J., Schuch, W., Bird, C.R. and Grierson, D., High levels 10 of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions, Plant Mol. Biol. 28 (3), 423-435 (1995)), SEQ ID NO. 21,

die TMF7 und TMF9 Promotoren (US 5608150),

15

der Promotor E4 (Cordes S. Deikman J. Margossian LJ. Fischer RL. Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato (1989), Plant Cell 1, 1025-1034) und

20

der Promotor E8 (Deikman and Fisher, Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato (1988), EMBO J. 7, 3315-3320). Weitere zur Expression in Pflanzen geeignete Promotoren sind be-25 schrieben (Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11; Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406)

Alle in der vorliegenden Anmeldung beschriebenen Promotoren er-30 möglichen in der Regel die Expression der Ketolase in Früchten der erfindungsgemäßen Pflanzen.

Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive sowie insbesondere fruchtspezifische Promotoren.

35

Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor, besonders bevorzugt einen oben beschriebenen fruchtspezifischen Promotor, und eine Nukleinsäure,

40 kodierend eine Ketolase.

Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure kodierend eine Ketolase und vorzugs-45 weise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen

Rekombinations— und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.

- 10 Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Plastiden und insbesondere in Chromoplasten.
- Es können auch Expressionskassetten verwendet werden, deren

 15 Nukleinsäure-Sequenz für ein Ketolase-Fusionsprotein kodiert,
 wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das
 die Translokation des Polypeptides steuert. Bevorzugt sind für
 die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Ketolase in die Chromoplasten vom Ketolase-Teil
 20 enzymatisch abgespalten werden.

Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der

- 25 Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.
- Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei 30 Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als KpnI/BamHI Fragmente mit einem ATG-Kodon in der NcoI Schnittstelle:

pTP09

35

40 TCC_BamHI

pTP10

 TAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTG GATCC_BamHI

pTP11

5

 $\verb|CCTCGCCATGGCTCTTCTTCTCAACTTTCCCCCTTCTTCTCACTTTTTCCGGCCTTAA| \\$ TAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGGGG

10 ATCC_BamHI

Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der 15 kleinen Untereinheit der Ribulosebisphospaht Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloropistas. Nucl. Acids Res. 16: 11380).

20 Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.

25

Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten 30 interessanten Pflanzenspezies exprimiert werden.

Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest 35 und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Zweckmäßigerweise können die Promotor- und die Terminator-Regio-40 nen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatori-45 schen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ

bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze

35

sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Ter-5 minationsbereiche sind gegeneinander beliebig austauschbar.

Ein Beispiel für einen Terminator ist der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman 10 HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982;1(6):561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 3: 835-846).

Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen,

20 Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primerrepair", Restriktion oder Ligation verwendet werden.

Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-25 back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.

Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadeny30 lierungssignale, vorzugsweise solche, die im wesentlichen T-DNAPolyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids
pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff)
oder funktionelle Äquivalente.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.

Dazu können an sich bekannte Methoden zur Transformation und 40 Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.

Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-45 Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die

Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikro-

injektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispiels-weise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausge-geben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.

Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor 10 kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).

15 Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

20

Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine Ketolase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN2 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden

Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere 30 von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

Die Transformation von Pflanzen durch Agrobakterien ist unter
35 anderem bekannt aus F.F. White, Vectors for Gene Transfer in
Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press,
1993, S. 15-38. Aus den transformierten Zellen der verwundeten
Blätter bzw. Blattstücke können in bekannter Weise transgene
40 Pflanzen regeneriert werden, die ein in die Expressionskassette
integriertes Gen für die Expression einer Nukleinsäure codierend

eine Ketolase enthalten.

Zur Transformation einer Wirtspflanze mit einer für eine Ketolase 45 kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise

Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.

5

Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in *E.*coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a.

- pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16 :11380),
 pBR332, pUC-Serien, M13mp-Serien ,pACYC184, pMC1210, pMcl 210 und
 pCL1920. Besonders geeignet sind binäre Vektoren, die sowohl in
 E. coli als auch in Agrobakterien replizieren können.
- 15 Dabei kann je nach Wahl des Promotors die Expression konstitutiv oder vorzugsweise spezifisch in den Früchten erfolgen.

Dementsprechend betrifft die Erfindung ferner ein Verfahren zur Herstellung von genetisch veränderten Pflanzen, dadurch gekenn20 zeichnet, dass man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und Nukleinsäuren kodierend eine Ketolase in das Genom der Ausgangspflanze einführt.

25 Die Erfindung betrifft ferner die genetisch veränderten Pflanzen, die im Vergleich zur Ausgangspflanze in Früchten eine Ketolase-Aktivität aufweist.

Die Ketolaseaktivität wird in einer bevorzugten Ausführungsform 30 dadurch erreicht, dass die genetisch veränderte Pflanze in den Früchten eine Ketolase exprimiert.

Die bevorzugten, genetisch veränderten Pflanzen enthalten daher in Früchten mindestens eine Nukleinsäure, kodierend eine Keto35 lase.

In einer weiter bevorzugten Ausführungsform erfolgt, wie vorstehend ausgeführt, die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von 40 Nukleinsäuren, kodierend eine Ketolase, in die Ausgangspflanze.

Der Erfindung betrifft daher besonders bevorzugt eine vorstehend beschriebene genetisch veränderte Pflanze, dadurch gekennzeichnet, dass man in die Pflanze ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase eingebracht hat.

Die Erfindung betrifft insbesondere genetisch veränderte Pflanzen, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix,

- 5 Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea,
- 10 Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus,
- 15 Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis, enthaltend mindestens eine Nukleinsäure, kodierend eine Ketolase.

Ganz besonders bevorzugte Pflanzengattungen sind Ananas, Asparagus, Capsicum, Citrus, Cucumis, Cucurbita, Citrullus,

20 Lycopersicum, Passiflora, Prunus, Physalis, Solanum, Vaccinium und Vitis, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase.

Wie vorstehend erwähnt wird in bevorzugten transgenen Pflanzen 25 die Ketolase in den Früchten exprimiert, besonderes bevorzugt ist die Expression der Ketolase in den Früchten am höchsten.

Besonders bevorzugte, genetisch veränderte Pflanzen weisen, wie vorstehend erwähnt, zusätzlich eine erhöhte Hydroxylase-Aktivität 30 und/oder ß-Cyclase-Aktivität gegenüber einer Wildpflanze auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.

Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflan-35 zenzellen, -gewebe oder -teile, insbesondere deren Früchte sind ein weiterer Gegenstand der vorliegenden Erfindung.

Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von Ketocarotinoiden, insbesondere 40 Astaxanthin, verwendet werden.

Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen mit erhöhtem Gehalt an Ketocarotinoiden können auch beispielsweise direkt oder nach an sich bekannter Pro-

45 zessierung als Nahrungsmittel oder Futtermittel oder als Futterund Nahrungsergänzungsmittel verwendet werden. Ferner können die genetisch veränderten Pflanzen zur Herstellung von Ketocarotinoid-haltigen Extrakten der Pflanzen und/oder zur Herstellung von Futter- und Nahrungsergänzungsmitteln verwendet werden.

Die genetisch veränderten Pflanzen weisen im Vergleich zum Wild-5 typ einen erhöhten Gehalt an Ketocarotinoiden auf.

Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-Ketocarotinoid verstanden.

- 10 Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.
- 15 In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.

Unter einem erhöhten Gehalt wird in diesem Fall insbesondere 20 ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.

Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

25
Allgemeine Exp

Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem 30 Laserfluoreszenz-DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).

Beispiel 1: Amplifikation einer cDNA, die die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille kodiert

Die cDNA, die für die Ketolase aus Haematococcus pluvialis kodiert, wurde mittels PCR aus Haematococcus pluvialis (Stamm 40 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") Suspensionskultur amplifiziert.

Für die Präparation von Total-RNA aus einer Suspensionskültur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit in45 direktem Tageslicht bei Raumtemperatur in Haematococcus-_Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCl2x6H2O, 0.02 CaCl2x2H2O; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l

L-Asparagin, 10 mg/l FeSO4xH2O) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pulverisierten Algenzellen in ein Reaktionsgefäß überführt und in 0,8 ml 5 Trizol-Puffer (Life Technologies) aufgenommen. Die Suspension wurde mit 0,2 ml Chloroform extrahiert. Nach 15minütiger Zentrifugation bei 12000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75 % Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.

15 Für die cDNA-Synthese wurden 2.5 μg Gesamt-RNA für 10 min bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR1 SEQ ID No. 29) in cDNA umgeschrieben.

20

Die Nukleinsäure codierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID No. 30) und eines antisense spezifischen Primers (PR1 SEQ ID No. 29) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein 30 bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem $50~\mu l$ Reaktionsansatz, in dem enthalten war:

- 4 μl einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 35 0,25 mM dNTPs
 - 0,2 mM PR1 (SEQ ID No. 29)
 - 0,2 mM PR2 (SEQ ID No. 30)
 - 5 μl 10X PCR-Puffer (TAKARA)
 - 0,25 μl R Taq Polymerase. (TAKARA)
- $40 25,8 \mu l$ Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X		94°C	2	Minuten
45	35X		94°C	1	Minute
		•	53°C	2	Minuten
			72°C	3	Minuten

gleiche).

pJKETO2.

40

1X 72°C 10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 29 und SEQ ID No. 30 resultierte in einem 1155 Bp-Fragment, das für ein Protein bestehend 5 aus der gesamten Primärsequenz kodiert (SEQ ID No. 22). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der KlonpGKETO2 erhalten.

- 10 Sequenzierung des Klons pGKETO2 mit dem T7- und dem SP6-Primer bestätigte eine Sequenz, die sich lediglich in den drei Kodons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80 (Abbildung 3 und 4, Sequenzver-
- Dieser Klon wurde daher für die Klonierung in den Expressionsvek
 20 tor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380)
 verwendet. Die Klonierung erfolgte durch Isolierung des 1027 Bp
 SpHI-Fragmentes aus pGKETO2 und Ligierung in den SpHI geschnittenen Vektor pJIT117. Der Klon, der das Haematococcus pluvialis Ketolasegen in der korrekten Orientierung als N-terminale transla
 25 tionale Fusion mit der rbcs Transitpeptidsequenz enthält, heißt
- Beispiel 2: Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em. Wille mit einem um 14
 Aminosäuren verkürztem N-terminus kodiert

Die cDNA, die für die Ketolase aus Haematococcus pluvialis (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus kodiert, wurde mittels PCR aus Haematococcus pluvialis Suspensionskultur (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") amplifiziert.

Die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80) erfolgte wie in Beispiel 1 beschrieben.

Die cDNA-Synthese erfolgte wie unter Beispiel 1 beschrieben.

Die Nukleinsäure, kodierend eine Ketolase, aus Haematococcus pluvialis (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem 45 N-Terminus wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen

Primers (PR3 SEQ ID No. 31) und eines antisense spezifischen Primers (PR1 SEQ ID No. 29) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

5

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit um 14 Aminosäuren verkürztem N-Terminus kodiert, erfolgte in einem 50 μ l Reaktionsansatz, in dem enthalten war:

- 10 4 μl einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
 - 0,25 mM dNTPs
 - 0,2 mM PR1 (SEQ ID No. 29)
 - 0,2 mM PR3 (SEQ ID No. 31)
- 15 5 μ l 10X PCR-Puffer (TAKARA)
 - 0,25 μl R Taq Polymerase (TAKARA)
 - 25,8 μl Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

20

	1x	94°C	2 Minuten
	35X	94°C	1 Minute
		53°C	2 Minuten
		72°C	3 Minuten
25	1x	72°C	10 Minuten

Die PCR-Amplifikation mit SEQ ID No.29 und SEQ ID No. 31 resultierte in einem 1111 Bp Fragment, das für ein Ketolase Protein kodiert, bei dem N-terminalen Aminosäuren (Position 2-16) durch 30 eine einzige Aminosäure (Leucin) ersetzt sind.

Das Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO3 erhalten. Sequenzierungen mit den Primern T7- und 35 SP6 bestätigten eine zur Sequenz SEQ ID No. 22 identische Sequenz, wobei die 5'Region (Position 1-53) der SEQ ID No. 22 im Amplikikat SEQ ID No. 24 durch eine in der Sequenz abweichende Nonamersequenz ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 40 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 985 Bp SpHI Fragmentes aus pGKETO3 und Ligierung mit dem SpHI geschnittenen Vektor pJIT117. Der Klon, der die Haematococcus pluvialis Ketolase mit einem um 14 Aminosäuren verkürztem N-Terminus in der korrekten

Orientierung als N-terminale translationale Fusion mit dem rbcs Transitpeptid enthält, heißt pJKETO3.

- Beispiel 3: Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em. Wille (Stamm 192.80 der
 "Sammlung von Algenkulturen der Universität Göttingen") bestehend aus der gesamten Primärsequenz und
 fusioniertem C-terminalem myc-Tag kodiert
- 10 Die cDNA, die für die Ketolase aus Haematococcus pluvialis (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag kodiert, wurde mittels PCR unter Verwendung des Plasmids pGKETO2 (in Beispiel 1 beschrieben) und des Primers PR15 (SEQ ID No. 32) hergestellt. Der Primer PR15 setzt sich zusammen aus einer antisense spezifischen 3'Region (Nucleotide 40-59) und einer myc-Tag kodierenden 5'Region (Nucleotide 1-39).

Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) von pGKETO2 und PR15 erfolgte in 20 einem 11,5 µl Reaktionsansatz, in dem enthalten war:

- 1 μg pGKETO2 PlasmidDNA
- 0,1 μg PR15 (SEQ ID No. 32)
- 25 Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 μ l Reaktionsansatz, in dem enthalten war:
 - 11,5 μ l pGKETO2/PR15-Annealingsreaktion (hergestellt wie oben beschrieben)
- $30 50 \mu M$ dNTPs
 - 2 μl 1X Klenow Puffer
 - 2U Klenow Enzym

Die Nukleinsäure kodierend eine Ketolase aus Haematococcus
35 pluvialis (Stamm 192.80) bestehend aus der gesamten Primärsequenz
und fusioniertem C-terminalem myc-Tag wurde mittels polymerase
chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung
eines sense spezifischen Primers (PR2 SEQ ID No. 30) und eines
antisense spezifischen Primers (PR15 SEQ ID No. 32) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit fusioniertem C-terminalem myc-Tag kodiert, erfolgte in einem 45 50 µl Reaktionsansatz, in dem enthalten war:

		36 (hergestellt wie oben
-	1 μ1	einer Annealingsreaktion (hergestellt wie oben beschrieben)
-	0,25 mM 0,2 μM 0,2 μM	dNTPs PR15 (SEQ ID No. 32) PR2 (SEQ ID No. 30)
5 -	5 μl 0,25 μl	10X PCR-Puffer (TAKARA) R Taq Polymerase (TAKARA)
	28,8 µl	Aq. Dest.

10 Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 35X 94°C 53°C 72°C 15 1X 72°C	2 Minuten 1 Minute 1 Minute 1 Minute 1 Minute 1 Minute
---------------------------------------	--

Die PCR-Amplifikation mit SEQ ID No. 32 und SEQ ID No. 30 resultierte in einem 1032 Bp-Fragment, das für ein Protein kodiert, 20 bestehend aus der gesamten Primärsequenz der Ketolase aus Haematococcus pluvialis als zweifache translationale Fusion mit dem rbcS Transitpeptide am N-Terminus und dem myc-Tag am C-Terminus.

Das Amplifikat wurde unter Verwendung von Standardmethoden 25 in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO4 erhalten. Sequenzierungen mit den Primern T7und SP6 bestätigten eine zur Sequenz SEQ ID No. 22 identische Sequenz, wobei die 3'Region (Position 993-1155) der SEQ ID No. 22 im Amplifikat SEQ ID No. 26 durch eine in der abweichende Sequenz 30 aus 39 Bp ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 1038 Bp EcoRI-SpHI 35 Fragmentes aus pGKETO4 und Ligierung mit dem EcoRI-SpHI geschnittenen Vektor pJIT117. Durch die Ligation entsteht eine translationale Fusion zwischen dem C-Terminus der rbcS Transitpeptidsequenz und dem N-Terminus der Ketolase Sequenz. Der Klon, der die Haematococcus pluvialis Ketolase mit fusioniertem C-termina-40 lem myc-Tag in der korrekten Orientierung als translationale N-terminale Fusion mit dem rbcs Transitpeptid enthält, heißt

pJKET4. Beispiel 4: Herstellung von Expressionsvektoren zur konstitutiven Expression der Haematococcus pluvialis Ketolase in ·Lycopersicon esculentum 45

Die Expression der Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte unter Kontrolle des konstitutiven Promoters d35S aus CaMV (Franck et al. 1980, Cell 21: 285-294). Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Die Herstellung eines Expressionsplasmides für die Agrobacteriumvermittelte Transformation der Ketolase aus *Haematococcus pluvialis* in *L. esculentum* erfolgte unter der Verwendung des binären 10 Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors pS3KETO2 wurde das
 2.8 Kb SacI-XhoI Fragment aus pJKETO2 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 5, Konstruktkarte).

In der Abbildung 5 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO2 (1027 bp) die gesamte Primärsequenz kodierend für die Haematococcus pluvialis Ketolase, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

20

25

- Zur Herstellung des Expressionsvektors pS3KETO3 wurde das 2.7 Kb bp SacI-XhoI Fragment aus pJKETO3 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert. (Abbildung 6, Konstrukt-karte). In der Abbildung 6 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transit-peptid aus Erbse (204 bp), Fragment KETO3 (985 bp) die um 14 Nterminale Aminosäuren verkürzte Primärsequenz kodierend für die Haematococcus pluvialis Ketolase, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

30

Zur Herstellung des Expressionsvektors pS3KETO4 wurde das 2.8 Kb SacI-XhoI Fragment aus pJKETO4 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert. (Abbildung 7, Konstruktkarte). In der Abbildung 7 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO4 (1038 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase mit C-terminalem myc-Tag, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

40 Beispiel 5: Herstellung von Expressionsvektoren zur Expression der Haematococcus pluvialis Ketolase in Lycopersicon esculentum

Die Expression der Ketolase aus Haematococcus pluvialis in 45 L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des Promoters AP3 aus Arabidopsis thaliana (AL132971: Nukleotidregion 9298-10200; Hill et al. (1998) Development 125: 1711-1721).

Das DNA Fragment, das die AP3 Promoterregion -902 bis +15

5 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter
Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis
thaliana isoliert) sowie der Primer PR7 (SEQ ID No. 33) und PR10
(SEQ ID No. 36) hergestellt.

10 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) beinhaltet, erfolgte in einem 50 μ l Reaktionsansatz, in dem enthalten war:

15

- 100 ng genomischer DNA aus A.thaliana
- 0,25 mM dNTPs
- 0,2 mM PR7 (SEQ ID No. 33)
- 0,2 mM PR10 (SEQ ID No. 36)
- 20 5 μl 10X PCR-Puffer (Stratagene)
 - 0,25 μl Pfu Polymerase (Stratagene)
 - 28,8 μ l Aq. Dest.

thaliana Pflanzen.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

25

1X	94°C	2	Minuten
35X	94°C	1	Minute
•	50°C	1	Minute
	72°C	1	Minute
1X	72°C	10	Minuten
	35x	35X 94°C 50°C 72°C	35X 94°C 1 50°C 1 72°C 1

Das 922 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pTAP3 erhalten.

35

Sequenzierung des Klons pTAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 40 Sequenz (AL132971, Nukleotidregion 9298-10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis

Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die Region 10200-9771 wurde mit den Primern PR7 (SEQ ID No. 33) und Primern PR9 (SEQ ID No. 35) amplifiziert (Amplifikat A7/9), 5 die Region 9526-9285 wurde mit den PR8 (SEQ ID No. 34) und PR10 (SEQ ID No. 36) amplifiziert (Amplifikat A8/10).

Die PCR-Bedingungen waren die folgenden:

10 Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region 10200-9771 und Region 9526-9285 des AP3 Promoters beinhalten, erfolgte in 50 µl Reaktionsansätzen, in denen enthalten war:

- 15 100 ng AP3 Amplifikat (oben beschrieben)
 0,25 mM dNTPs
 0,2 mM sense Primer (PR7 SEQ ID No. 33 bzw. PR8
 SEQ ID No. 35)
 0,2 mM antisense Primer (PR9 SEQ ID No. 35 bzw. PR10
 20 SEQ ID No. 36)
 5 µl 10X PCR-Puffer (Stratagene)
 - 0,25 µl Pfu Taq Polymerase (Stratagene)
 - 28,8 μl Aq. Dest.

25 Die FCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94°C	2	Minuten
	. 35X	94°C	1	Minute
		50°C	1	Minute
30		72°C	1	Minute
	1X	72°C	10	Minuten

Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und 35 A8/10, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670-9526 deletiert sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A7/9 und A8/10 erfolgte in einem 17.6 ~l Reaktionsansatz, in dem enthalten war:

- 0,5 μg A7/9 Amplifikat
- 0,25 µg A8/10 Amplifikat

Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 ∞l Reaktionsansatz, in dem enthalten war:

- 17,6 μl A7/9 und A8/10-Annealingsreaktion (hergestellt wie oben beschrieben)
 - 50 μ M dNTPs
 - 2 µl 1X Klenow Puffer
 - 2U Klenow Enzym
- 10 Die Nukleinsäure, kodierend für die modifizierte Promoterversion AP3P, wurde mittels PCR unter Verwendung eines sense spezifischen Primers (PR7 SEQ ID No. 28) und eines antisense spezifischen Primers (PR10 SEQ ID No. 36) amplifiziert.
- 15 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 20 1 μl Annealingsreaktion (hergestellt wie oben beschrieben)
 - 0,25 mM dNTPs
 - 0,2 mM PR7 (SEQ ID No. 33)
 - 0,2 mM PR10 (SEQ ID No. 36)
- 25 5 μl 10X PCR-Puffer (Stratagene)
 - 0,25 μl Pfu Taq Polymerase (Stratagene)
 - 28,8 µl Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

30

	1X	94°C	2	Minuten
	35x	94°C	1	Minute
		50°C	1	Minute
		72°C	1	Minute
35	-1X	72°C	10	Minuten

Die PCR-Amplifikation mit SEQ ID No. 33 und SEQ ID No. 36 resultierte in einem 778 Bp Fragment, das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den Klonierungs-

- 40 vektor pCR2.1 (Invitrogen) kloniert und der Klon pTAP3P erhalten. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200-9298 identische Sequenz, wobei die interne Region 9285-9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et
- 45 al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 771 Bp SacI-HindIII Fragmentes aus pTAP3P und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heißt pJAP3P.

Zur Herstellung einer Expressionskassette pJAP3PKETO2 wurde das 1027 Bp SpHI-Fragment KETO2 (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJAP3P kloniert. Der Klon, der das Fragment KETO2 in der korrekten Orientierung als N-terminale 10 Fusion mit dem rbcS Transitpeptid enthält, heißt pJAP3PKETO2.

Zur Herstellung einer Expressionskassette pJAP3PKETO4 wurde das 1032 Bp SpHI-EcoRI Fragment KETO4 (in Beispiel 3 beschrieben) in den SpHI-EcoRI geschnittenen Vektor pJAP3P kloniert. Der 15 Klon, der das Fragment KETO4 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heißt pJAP3PKETO4.

Die Herstellung eines Expressionsvektors für die Agrobacterium20 vermittelte Transformation der AP3P-kontrollierten Ketolase
aus Haematococcus pluvialis in L. esculentum erfolgte unter
der Verwendung des binären Vektors pSUN3 (WOO2/00900).

- Zur Herstellung des Expressionsvektors pS3AP3PKETO2 wurde das
 2.8 KB bp SacI-XhoI Fragment aus pJAP3KETO2 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 8, Konstrukt-karte). In der Abbildung 8 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO2 (1027 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase, Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.
- Zur Herstellung des Expressionsvektors pS3AP3PKETO4 wurde das
 2.8 KB SacI-XhoI Fragment aus pJAP3PKETO4 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert. (Abbildung 9, Konstrukt-karte). In der Abbildung 9 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO4 (1038 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase mit C-terminalem myc-Tag, Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.

Beispiel 6: Herstellung transgener Lycopersicon esculentum Pflan-45 zen Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17:843-847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100mg/L) selektioniert.

5

Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15,

- 10 473-) mit 2 % Saccharose, pH 6,1 verwendet. Die Keimung fand bei 21°C bei wenig Licht (20 bis 100 μΕ) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5 bis 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1, 3 % Saccharose + 1 mg/l BAP, 0,1 mg/l NAA)
- 15 gelegt, das am Vortag mit suspensionskultivierten Tabakzellen beschickt wurde. Die Tabakzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den
- 20 Plasmiden pS3KETO2, pS3KETO3 bzw. pS3AP3KETO2 transformiert. Von den einzelnen mit den Binaervektoren pS3KETO2, pS3KETO3 bzw. pS3KETO2 transformierten Agrobakterium-Stämmen wurde jeweils eine Übernachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28 Grad Celsius kultiviert und die Zellen zentrifugiert. Das Bakterien-
- 25 pellet wurde mit flüssigem MS Medium (3 % Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die
- 30 Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21°C) auf ihr Vorkulturmedium zurück gelegt.

Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3 % Saccharose, 2 mg/l Zeatin, 100 mg/l Kanamycin, 35 160 mg/l Timentin) transferiert und für die selektive Regeneration bei 21°C unter Schwachlicht Bedingungen (20 bis 100 ∞E, Lichtrhythmus 16 h / 8 h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bildeten. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3 % Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus überführt.

43

Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonstrukten folgende Linien erhalten:

Mit pS3KETO2 wurde erhalten: cs13-24, cs13-30, cs13-40.

Mit pS3KETO3 wurde erhalten: cs14-2, cs14-3, cs14-9, cs14-19.

Mit pS3AP3PKETO2 wurde erhalten: cs16-15, cs16-34, cs16-35, cs16-40.

10 ~

5

Beispiel 8: Charakterisierung der transgenen Früchte

Das Fruchtmaterial der transgenen Pflanzen wurde in flüssigem 15 Stickstoff gemörsert und das Pulver (etwa 250 bis 500 mg) mit 100 % Aceton extrahiert (dreimal je 500 ul). Das Lösungs-mit-tel wurde evaporiert und die Carotinoide in 100 ul Aceton resuspendiert.

Mittels einer C30-Reverse phase-Säule konnte zwischen Monound Diestern der Carotinoide unterschieden werden. HPLC-Laufbedingungen wurden modifiziert nach einer publizierten Methode (Frazer et al.(2000), Plant Journal 24(4): 551-558). Folgende HPLC-Bedingungen wurden eingestellt.

25 Trennsäule: Prontosil C30-Säule, 250 x 4,6 mm, (Bischoff, Leonberg, Germany)

Flussrate: 1.0 ml/min

Eluenten: Laufmittel A - 100% Methanol

Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat

Laufmittel C - 100% t-Butyl-methylether

30

Gradientenprofil:

	Zeit	Flussrate	% Lauf-	% Lauf-	% Lauf-
35			mittel A	mittel B	mittel C
	1.00	1.0	95.0	5.0	0
	12.00	1.0	95.0	5.0	0
	12.10	1.0	80.0	5.0	15.0
40	22.00	1.0	76.0	5.0	19.0
	22.10	1.0	66.5	5.0	28.5
	38.00	1.0	15.0	5.0	80.0
	45.00	1.0	95.0	5.0	0
	46.0	1.0	95.0	5.0	0

Detektion: 300 - 530 nm

45

Die Spektren wurden unter Verwendung eines Photodiodenarray-Detektors bestimmt. Die Carotinoide wurden über ihre Absorptions-

spektren und ihre Retentionszeiten im Vergleich zu Standardproben identifiziert.

Tabelle 1 zeigt das Carotinoidprofil in Tomatenfrüchten der gemäß der vorstehend beschriebenen Beispiele hergestellten transgenen Tomaten und Kontrolltomatenpflanzen. Im Vergleich zur genetisch nicht veränderten Kontrollpflanze weisen die genetisch veränderten Pflanzen einen Gehalt an Ketocarotinoiden und insbesondere einen Gehalt an Astaxanthin auf.

10

Tabelle 1

	Pflanze	Lutein	Lycopin	beta-Carotin	Cryptoxanthin	Canthaxanthin	Adonirubin	Astaxanthin
	Kontrolle	+	+	+ .	(+)	-	_	_
15	Kontrolle	+	+	+	(+)	_	_	_
	CS13-24	-	+	+	(+)	+	+	+
	CS13-30	_	+	+	(+)	+	+	+
	CS13-40	_	+ .	+	(+)	+	+	+
	CS14-2		+	+	(+)	· +	+	+
20	CS14-3		+	+		+	+	+
	CS14-9	-	+	+	(+)	+	+	+
	CS14-19	-	+	+	_	+	+	+
	CS16-15		+	+	(+)	+	+	+.
	CS16-34		+	+	(+)	+	+	+
	CS16-35		+	+		+	+	+
	CS16-40		+	(+)	(+)	+ ,	+	+

25

- + bedeutet Carotinoid nachweisbar
- bedeutet Carotinoid nicht detektiert
- (+) bedeutet Carotinoidkonzentration an der Nachweisgrenze

30

Tabelle 2a zeigt die Carotinoidmengen in reifen Früchten von transgenen Tomaten und Kontrollpflanzen. Die Angaben sind Mittel-werte verschiedener Linine und in Prozent des Gesamtcarotinoidgehalt angegeben.

35	Promoter used	Lycopene	Beta-ca- rotene	Lutein	Cantha- xanthin	Adoni- rubin	Astaxanthin	Zeaxanthin
	Control plants	80.5	14.4	2.8				0.2
	CS16	84	9.4	0.3	0.5	0.2	5.0	0.3
	CS13	78	16.5	2.8	0.3	0.2	6.1	

40

Tabelle 2b zeigt die Carotinoidmengen in reifenden Früchten von transgenen Tomaten und Kontrollpflanzen. Die Angaben sind Mittel-werte verschiedener Linine und in Prozent des Gesamtcarotinoidgehalt angegeben.

	Promoter used	Lycopene	Beta-ca- rotene	Lutein	Cantha- xanthin	Adonirubin	Astaxanthin	Zeaxanthin
	Control plants	59	28.4	9				0.3
5	CS16	61	22.3	5.2	1.6	3.1	3.9	2.5
ے	CS13	52	19.5	5.4	1.2	4.7	6.1	

Beispiel 9:

im Mörser pulverisiert.

10 Amplifikation einer DNA, die die gesamte Primärsequenz der NP196-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert

Die DNA, die für die NP196-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert, wurde mittels PCR aus Nostoc punctiforme ATCC 15 29133 (Stamm der "American Type Culture Collection") amplifiziert.

Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme ATCC 29133, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5 g/l NaNO₃, 0.04 g/l K₂PO₄x3H₂O, 0.075 g/l MgSO₄xH₂O, 0.036 g/l CaCl₂x2H₂O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na₂CO₃, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H₃BO₃, 1.81 g/l MnCl₂x4H₂O, 0.222 g/l ZnSO₄x7H₂O, 0.39 g/l NaMoO₄X2H₂O, 0.079 g/l CuSO₄x5H₂O, 0.0494 g/l Co(NO₃)₂x6H₂O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und

30 Protokoll für die DNA-Isolation aus Nostoc punctiforme ATCC 29133:

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemablen. Das Zellmaterial wurde in 1 ml 10mM

- 35 ser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris_HCl (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von
 - 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde
- die Suspension mit 500 µl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Iso-
- 45 propanol gefällt und anschließend mit 70% Ethanol gewaschen. Das

DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μ l Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

Die Nukleinsäure, kodierend eine Ketolase aus Nostoc punctiforme 5 ATCC 29133, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme ATCC 29133 unter Verwendung eines sense-spezifischen Primers (NP196-1, SEQ ID No. 59) und eines antisense-spezifischen Primers (NP196-2 SEQ ID No. 60) amplifiziert.

10 Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

15

- 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NP196-1 (SEQ ID No. 59)
- 20 0.2 mM NP196-2 (SEQ ID No. 60)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.
- 25 Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2 Minuten
35X	94°C	1 Minute
	55°C	1 Minuten
30	72°C	3 Minuten
1X	72°C	10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 59 und SEQ ID No. 60 resultierte in einem 792 Bp-Fragment, das für ein Protein bestehend

- 35 aus der gesamten Primärsequenz kodiert (NP196, SEQ ID No. 61). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNP196 erhalten.
- 40 Sequenzierung des Klons pNP196 mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 140.571-139.810 des Datenbank-eintrages NZ_AABC01000196 identisch ist (inverse orientiert zum veröffentlichen Datenbankeintrag) mit der Ausnahme, daß G in Position 140.571 durch A ersetzt wurde, um
- 45 ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert

47

und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.

Dieser Klon pNP196 wurde daher für die Klonierung in den Expres-5 sionsvektor pJAP3P (in Beispiel 5 beschrieben) verwendet.

PJAP3P wurde modifiziert, indem der 35S-Terminator durch den OCS-Terminator (Octopine Synthase) des Ti-Plasmides pTi15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493 von Position 12,541-12,350, Gielen et al. (1984) EMBO J. 3 835-846) ersetzt wurde.

Das DNA-Fragment, das die OCS-Terminatorregion beinhaltet, wurde mittels PCR unter Verwendung des Plasmides pHELLSGATE (Datenban15 keintrag AJ311874, Wesley et al. (2001) Plant J. 27 581-590, nach Standardmethoden aus *E.coli* isoliert) sowie der Primer OCS-1 (SEQ ID No. 63) und OCS-2 (SEQ ID No. 64) hergestellt.

Die PCR-Bedingungen waren die folgenden:

20

Die PCR zur Amplifikation der DNA, die die Octopin Synthase (OCS) Terminatorregion (SEQ ID 65) beinhaltet, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten waren:

- 25 100 ng pHELLSGATE plasmid DNA
 - 0.25 mM dNTPs
 - 0.2 mM OCS-1 (SEQ ID No. 63)
 - 0.2 mM OCS-2 (SEQ ID No. 64)
 - 5 ul 10X PCR-Puffer (Stratagene)
- 30 0.25 ul Pfu Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

35	1X	94°C	2 Minuten
	35X	94°C	1 Minute
		50°C	1 Minute
		72°C	1 Minute
	1X	72°C	10 Minuten

40

Das 210 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pOCS erhalten.

Sequenzierung des Klons pOCS bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf dem Ti-Plasmid pTi15955 von Agrobacterium tumefaciens (Datenbankeintrag X00493) von Position 12.541 bis 12.350 übereinstimmt.

5

Die Klonierung erfolgte durch Isolierung des 210 bp Sall-XhoI Fragmentes aus pOCS und Ligierung in den Sall-XhoI geschnittenen Vektor pJAP3P.

10 Dieser Klon heisst pJOAP und wurde daher für die Klonierung in den Expressionsvektor pJOAP:NP196 verwendet.

Die Klonierung erfolgte durch Isolierung des 782 Bp SphI-Fragmentes aus pNP196 und Ligierung in den SphI geschnittenen Vektor pJOAP. Der Klon, der die NP196-Ketolase von Nostoc punctiforme in

der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOAP:NP196.

Beispiel 10:

20

Herstellung von Expressionsvektoren zur fruchtspezifischen Ueberexpression der NP196-Ketolase aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") in Lycopersicon esculentum

25 Die Expression der NP196-Ketolase aus Nostoc punctiforme in L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des Promoters AP3P aus Arabidopsis thaliana (in Beispiel 5 beschrieben).

30

Die Herstellung eines Expressionsvektors für die Agrobacteriumvermittelte Transformation der AP3P-kontrollierten NP196-Ketolase aus Nostoc punctiforme ATCC 29133 in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

35

Zur Herstellung des Expressionsvektors MSP120 wurde das 1.958 KB bp SacI-XhoI Fragment aus pJOAP:NP196 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 10, Konstruktkarte). In der Abbildung 10 beinhaltet Fragment AP3P PROM den AP3P Promoter

40 (765 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP196 KETO CDS (761 bp), kodierend für die Nostoc punctiforme NP196-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 11:

Amplifikation einer DNA, die die gesamte Primärsequenz der NOST-Ketolase aus Nostoc spp. PCC 7120 codiert

5

Die DNA, die für die NOST-Ketolase aus *Nostoc punctiforme PCC 7120* kodiert, wurde mittels PCR aus *Nostoc PCC 7120* (Stamm der "Pasteur Culture Collection of Cyanobacterium") amplifiziert.

- 10 Für die Präparation von genomischer DNA aus einer Suspensionskultur von aus Nostoc spp. PCC 7120, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5 g/l NaNO₃, 0.04 g/l K₂PO₄x3H₂O, 0.075 g/l MgSO₄xH₂O, 0.036 g/l CaCl₂x2H₂O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium ci-
- 15 trate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na₂CO₃, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H₃BO₃, 1.81 g/l MnCl₂x4H₂o, 0.222 g/l ZnSO₄x7H₂O, 0.39 g/l NaMoO₄X2H₂o, 0.079 g/l CuSO₄x5H₂O, 0.0494 g/l Co(NO₃)₂x6H₂O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und 20 im Mörser pulverisiert.

Protokoll für die DNA-Isolation aus aus Nostoc spp. PCC 7120:

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 25 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM Tris_HCl (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von

- 30 100 µl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde
 die Suspension mit 500 µl Phenol extrahiert. Nach 5minütiger
 Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in
 ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion
- 35 mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 μl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

40

Die Nukleinsäure, kodierend eine Ketolase aus Nostoc PCC 7120, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc PCC 7120 unter Verwendung eines sense-spezifischen Primers (NOST-1, SEQ ID No. 66) und eines antisense-spezifischen Primers (NOST-2 5EQ ID No. 67) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in 5 einem 50 ul Reaktionsansatz, in dem enthalten war:

- 1 ul einer Nostoc PCC 7120 DNA (hergestellt wie in Beispiel 9 beschrieben)
- 0.25 mM dNTPs
- 10 -0.2 mM NOST-1 (SEQ ID No. 66)
 - 0.2 mM NOST-2 (SEQ ID No. 67)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Tag Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

15

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2 Minuten
35X	94°C	1 Minute
20	55°C	1 Minuten
	72°C	3 Minuten
1X	72°C	10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 66 und SEQ ID No. 67 resul-25 tierte in einem 809 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 68). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNOST erhalten.

30

Sequenzierung des Klons pNOST mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz des Datenbankeintrages AP003592 identisch ist. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und 35 repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc PCC 7120. ·

Dieser Klon pNOST wurde daher für die Klonierung in den Expressionsvektor pJOAP (in Beispiel 9 beschrieben) verwendet.

40

Die Klonierung erfolgte durch Isolierung des 799 Bp SphI-Fragmentes aus pNOST und Ligierung in den SphI geschnittenen Vektor pJOAP. Der Klon, der die NOST-Ketolase von Nostoc PCC7120 in der korrekten Orientierung als N-terminale translationale Fusion mit

45 dem rbcS Transitpeptid enthält, heisst pJOAP:NOST

Beispiel 12:

Herstellung von Expressionsvektoren zur fruchtspezifischen Ueberexpression der NOST-Ketolase aus Nostoc spp. PCC 7120 in 5 Lycopersicon esculentum.

Die Expression der NOST-Ketolase aus Nostoc spp. PCC 7120 in L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des Promoters AP3P aus Arabidopsis thaliana (in Beispiel 5 beschrieben).

Die Herstellung eines Expressionsvektors für die Agrobacteriumvermittelte Transformation der AP3P-kontrollierten NOST-Ketolase 15 aus Nostoc spp. PCC 7120 in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900).

Zur Herstellung des Expressionsvektors MSP121 wurde das 1.982 KB bp SacI-XhoI Fragment aus pJOAP:NOST mit dem SacI-XhoI geschnit20 tenen Vektor pSUN3 ligiert (Abbildung 11, Konstruktkarte). In der Abbildung 11 beinhaltet Fragment AP3P PROM den AP3P Promoter (765 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NOST KETO CDS (774 bp), kodierend für die Nostoc spp. PCC 7120 NOST-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 13:

Amplifikation einer DNA, die die gesamte Primärsequenz der 30 NP195-Ketolase aus Nostoc punctiforme ATCC 29133 codiert

Die DNA, die für die NP195-Ketolase aus Nostoc punctiforme ATCC 29133 kodiert, wurde mittels PCR aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") amplifiziert. Die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc punctiforme ATCC 29133 wurde in Beispiel 9 beschrieben.

Die Nukleinsäure, kodierend eine Ketolase aus Nostoc punctiforme 40 ATCC 29133, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc punctiforme ATCC 29133 unter Verwendung eines sense-spezifischen Primers (NP195-1, SEQ ID No. 70) und eines antisense-spezifischen Primers (NP195-2 SEQ ID No. 71) amplifiziert.

45 Die PCR-Bedingungen waren die folgenden:

40

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 5 1 ul einer Nostoc punctiforme ATCC 29133 DNA (hergestellt wie in Beispiel 9 beschrieben)
 - 0.25 mM dNTPs
 - 0.2 mM NP195-1 (SEQ ID No. 70)
 - 0.2 mM NP195-2 (SEQ ID No. 71)
- 10 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

ΤЭ			
	1X	94°C	2 Minuten
	35X	94°C	1 Minute
		55°C	1 Minuten
		72°C	3 Minuten
20	1X	72°C	10 Minuten

Die PCR-Amplifikation mit SEQ ID No. 70 und SEQ ID No. 71 resultierte in einem 819 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 72). Unter 25 Verwendung von Standardmethoden wurde das Amplifikat in den PCR-

25 Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNP195 erhalten.

Sequenzierung des Klons pNP195 mit dem M13F- und dem M13R-Primer 30 bestätigte eine Sequenz, welche mit der DNA-Sequenz von 55,604-56,392 des Datenbank-eintrages NZ_AABC010001965 identisch ist, mit der Ausnahme, daß T in Position 55.604 durch A ersetzt wurde, um ein Standard-Startkodon ATG zu erzeugen. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc punctiforme ATCC 29133.

Dieser Klon pNP195 wurde daher für die Klonierung in den Expressionsvektor pJOAP (in Beispiel 9 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 709 Bp SphI-Fragmentes aus pNP195 und Ligierung in den SphI geschnittenen Vektor pJOAP. Der Klon, der die NP195-Ketolase von Nostoc punctiforme ATCC 29133 in der korrekten Orientierung als N-terminale transla-

45 tionale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOAP:NP195.

Beispiel 14:

Herstellung von Expressionsvektoren zur fruchtspezifischen Ueberexpression der NP195-Ketolase aus Nostoc punctiforme ATCC 29133 5 in Lycopersicon esculentum

Die Expression der NP195-Ketolase aus Nostoc punctiforme ATCC 29133 (Stamm der "American Type Culture Collection") in L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des Promoters AP3P aus Arabidopsis thaliana (in Beispiel 5 beschrieben).

Die Herstellung eines Expressionsvektors für die Agrobacterium
15 vermittelte Transformation der AP3P-kontrollierten NP195-Ketolase aus Nostoc punctiforme ATCC 29133 in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WOO2/00900).

Zur Herstellung des Expressionsvektors MSP122 wurde das 1.992 KB 20 bp SacI-XhoI Fragment aus pJOAP:NP195 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 12, Konstruktkarte). In der Abbildung 12 beinhaltet Fragment AP3P PROM den AP3P Prómoter (765 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus Erbse (194 bp), Fragment NP195 KETO CDS (789 bp), kodierend für 25 die Nostoc punctiforme ATCC 29133 NP195-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.

Beispiel 15:

30

Amplifikation einer DNA, die die gesamte Primärsequenz der NODK-Ketolase aus Nodularia spumignea NSOR10 codiert. Die DNA, die für die Ketolase aus Nodularia spumignea NSOR10 kodiert, wurde mittels PCR aus Nodularia spumignea NSOR10 amplifi-35 ziert.

Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nodularia spumignea NSOR10, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5

- 40 g/l NaNO₃, 0.04 g/l K₂PO₄x3H₂O, 0.075 g/l MgSO₄xH₂O, 0.036 g/l CaCl₂x2H₂O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na₂CO₃, 1ml Trace Metal Mix "A5+Co" (2.86 g/l H₃BO₃, 1.81 g/l MnCl₂x4H₂O, 0.222 g/l ZnSO₄x7H₂O, 0.39 g/l NaMoO₄X2H₂O, 0.079 g/l CuSO₄x5H₂O,
- 45 0.0494 g/l Co(NO₃)₂x6H₂O) gewachsen war, wurden die Zellen durch

Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.

Protokoll für die DNA-Isolation aus Nodularia spumignea NSOR10 :

5

Aus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10 minütige Zentrifugation bei 8000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10mM

- 10 Tris_HCl (pH 7.5) resuspendiert und in ein Eppendorf-Reaktionsgefäß (2ml Volumen) überführt. Nach Zugabe von 100 μl Proteinase K (Konzentration: 20 mg/ml) wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 μl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm
- 15 wurde die obere, wässrige Phase in ein neues 2 ml-Eppendorf-Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3mal wiederholt. Die DNA wurde durch Zugabe von 1/10 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtem-
- 20 peratur getrocknet, in 25 μ l Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

Die Nukleinsäure, kodierend eine Ketolase aus Nodularia spumignea NSOR10, wurde mittels "polymerase chain reaction" (PCR) aus Nodu25 laria spumignea NSOR10 unter Verwendung eines sense-spezifischen Primers (NODK-1, SEQ ID No. 74) und eines antisense-spezifischen Primers (NODK-2 SEQ ID No. 75) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

30

Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 35 1 ul einer Nodularia spumignea NSOR10 DNA (hergestellt wie oben beschrieben)
 - 0.25 mM dNTPs
 - 0.2 mM NODK-1 (SEQ ID No. 74)
 - 0.2 mM NODK-2 (SEQ ID No. 75)
- 40 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul R Taq Polymerase (TAKARA)
 - 25.8 ul Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

- 1X 94°C 2 Minuten
- 35X 94°C 1 Minute

		55
	55°C	1 Minuten
	72°C	3 Minuten
1X	72°C	10 Minuten

5 Die PCR-Amplifikation mit SEQ ID No. 74 und SEQ ID No. 75 resultierte in einem 720 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (NODK, SEQ ID No. 76). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und der Klon pNODK erhalten.

Sequenzierung des Klons pNODK mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz von 2130-2819 des Datenbank-eintrages AY210783 identisch ist (inverse orien15 tiert zum veröffentlichen Datenbankeintrag). Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment re-

sequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nodularia spumignea NSOR10.

20 Dieser Klon pNODK wurde daher für die Klonierung in den Expressionsvektor pJOAP (in Beispiel 9 beschrieben) verwendet.

Die Klonierung erfolgte durch Isolierung des 710 Bp SphI-Fragmentes aus pNODK und Ligierung in den SphI geschhittenen Vektor

25 pJOAP. Der Klon, der die NODK-Ketolase von Nodularia spumignea NSOR10 in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJOAP: NODK.

30 Beispiel 16:

Herstellung von Expressionsvektoren zur fruchtspezifischen Ueberexpression der NODK-Ketolase aus Nodularia spumignea NSOR10 in Lycopersicon esculentum.

35

Die Expression der NODK-Ketolase aus Nodularia spumignea NSOR10 in L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle des Promoters AP3P aus Arabidopsis tha-40 liana (in Beispiel 5 beschrieben).

Die Herstellung eines Expressionsvektors für die Agrobacteriumvermittelte Transformation der AP3P-kontrollierten NP195-Ketolase aus Nostoc punctiforme ATCC 29133 in L. esculentum erfolgte unter 45 der Verwendung des binären Vektors pSUN3 (WO02/00900). Zur Herstellung des Expressionsvektors MSP123 wurde das 1.893 KB bp SacI-XhoI Fragment aus pJOAP:NODK mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 13, Konstruktkarte). In der Abbildung 13 beinhaltet Fragment AP3P PROM den AP3P Promoter (765 bp), Fragment rbcS TP FRAGMENT das rbcS Transitpeptid aus

- Erbse (194 bp), Fragment rocs TP FRAGMENT das rocs Transitpeptid aus Erbse (194 bp), Fragment NODK KETO CDS (690 bp), kodierend für die Nodularia spumignea NSOR10 NODK-Ketolase, Fragment OCS Terminator (192 bp) das Polyadenylierungssignal von Octopin-Synthase.
- 10 Beispiel 17: Herstellung einer Expressionskassette zur fruchtspezifischen Ueberexpression der chromoplastenspezifischen b-Hydroxylase aus Lycopersicon esculentum.
- Die Expression der chromoplastenspezifischen ß-Hydroxylase aus

 15 Lycopersicon esculentum in Tomate erfolgt unter Kontrolle des
 fruchtspezifischen Promoters AP3P aus Arabidopsis (Beispiel 2).
 Als Terminatorelement wird LB3 (Datenbank-eintrages AX696005) aus
 Vicia faba verwendet. Die Sequenz der chromoplastenspezifischen
 ß-Hydroxylase (Datenbank-eintrages Y14810 & BE354440) wurde durch

 20 RNA Isolierung, reverse Transkription und PCR hergestellt.

Das DNA-Fragment, das die LB3-Terminatorregion beinhaltet, wurde mittels PCR isoliert.

25 Genomische DNA aus Vicia faba-Gewebe nach Standardmethoden wird isoliert und durch genomische PCR unter Verwendung der Primer PR206 (SEQ ID No. 78) und PR207 (SEQ ID No. 79) eingesetzt. Die PCR zur Amplifikation dieses LB3 DNA-Fragmentes, erfolgt in einem 50 ul Reaktionsansatz, in dem enthalten ist:

30

- 1 ul genomische DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 uM PR206 (SEQ ID No. 78)
- 0.2 uM PR207 (SEQ ID No. 79)
- 35 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul. R Taq Polymerase (TAKARA)
 - 28.8 ul. Aq. Dest.

Die PCR-Amplifikation mit SEQ ID No. 78 und SEQ ID No. 79 resul40 tiert in einem 307 bp Fragment (SEQ ID No. 80) das für den LBTerminator enthaelt. Unter Verwendung von Standardmethoden wurde
das Amplifikat in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen)
kloniert und der Klon pLB3 erhalten. Sequenzierung des Klons pLB3
mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche
45 mit der DNA-Sequenz von 3-298 des Datenbank-eintrages AX696005

identisch ist. Dieser Klon heisst pLB3 und wird daher für die Klonierung in den Vektor pJAP3P (siehe Beispiel 5) verwendet.

Die Expressionskassette pJAP3P wurde modifiziert, indem der 35S-5 Terminator durch den Legumin LB3-Terminator des Vicia faba (Datenbankeintrag AX696005; WO03/008596) ersetzt wurde (siehe unten).

Für die Herstellung der ß-Hydroxylase-Sequenz wird Total-RNA aus 10 Tomate präpariert. Dazu werden 100mg der gefrorenen, pulverisierten Blüten in ein Reaktionsgefäß überführt und in 0.8 ml Trizol-Puffer (LifeTechnologies) aufgenommen. Die Suspension wird mit 0.2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12 000 g wird der wässrige Überstand abgenommen und in ein

- 15 neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wird mit einem Volumen Isopropanol gefällt, mit 75% Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-
- 20 Konzentration wird photometrisch bestimmt. Für die cDNA-Synthese werden 2.5 ug Gesamt-RNA für 10 min bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-t6-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR215 SEQ ID No.
- 25 56) in cDNA umgeschrieben.

Die Bedingungen der anschließenden PCR-Reaktionen sind die folgenden:

30 Die Nukleinsäure, kodierend die ß-Hydroxylase kodiert, wurde mittels "polymerase chain reaction" (PCR) aus Tomate unter Verwendung eines sense-spezifischen Primers (VPR204, SEQ ID No. 81) und eines antisense-spezifischen Primers (PR215 SEQ ID No. 82) amplifiziert.

35

Die PCR zur Amplifikation der DNA, die für ein ß-Hydroxylase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 ul Reaktionsansatz, in dem enthalten war:

- 40 1 ul cDNA (hergestellt wie oben beschrieben)
 - 0.25 mM dNTPs
 - 0.2 uM VPR204 (SEQ ID No. 81)
 - 0.2 uM PR215 (SEQ ID No. 82)
 - 5 ul 10X PCR-Puffer (TAKARA)
- 45 0.25 ul R Taq Polymerase (TAKARA)
 - 28.8 ul Aq. Dest.

Die PCR-Amplifikation mit VPR204 und PR215 resultiert in einem 1.040 bp Fragment (SEQ ID No. 83) das für die b-Hydroxylase codiert. Das Amplifikat wird in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert. Dieser Klon heisst pCrtR-b2.

5

Sequenzierungen des Klons pCrtR-b2 mit den Primern M13-R und M13-R bestätigte eine Sequenz, welche mit der DNA-Sequenz von 33-558 des Datenbank-eintrages BE354440 identisch ist und mit der DNA-Sequenz von 1-1009 des Datenbank-eintrages Y14810 identisch 10 ist. Der Klon pCrtR-b2 wird daher für die Klonierung in den Vektor pCSP02 verwendet (siehe unten).

Der erste Klonierungsschritt erfolgt durch Isolierung des 1.034 bp HindIII-EcoRI Fragmentes aus pCrtR-b2, abgeleitet vom Klonie15 rungsvektor pCR-2.1 (Invitrogen), und Ligierung mit dem HindIIIEcoRI geschnittenen Vektor pJAP3P (siehe Beispiel 5). Der Klon, der das b-Hydroxylase-Fragment CrtR-b2 enthält, heisst pCSP02.

Der zweite Klonierungsschritt erfolgt durch Isolierung des 301bp

20 EcoRI-XhoI Fragmentes aus pLB3, abgeleitet vom Klonierungsvektor
pCR-2.1 (Invitrogen), und Ligierung mit dem EcoRI-XhoI geschnittenen Vektor pCSP02. Der Klon, der den 296 bp Terminator LB3 enthält, heisst pCSP03. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem Terminator LB3 und dem b-Hydroxy
25 lase-Fragment CrtR-b2. Zudem entsteht eine transkriptionelle Fusion zwischen dem AP3P Promoter und dem b-Hydroxylase-Fragment.

Beispiel 18: Herstellung einer Expressionskassette zur fruchtspezifischen Ueberexpression des B-Genes aus Lycopersicon esculentum.

Die Expression des B-Genes aus Lycopersicon esculentum in Tomat (Lycopene b-cyclase; Datenbank-eintrages AF254793) erfolgt unter Kontrolle des fruchtspezifischen Promoters PDS (phytoene desatu-35 rase; Datenbank-eintrages U46919) aus Lycopersicon esculentum. Als Terminatorelement wird 35S aus CaMV verwendet. Die Sequenz des B-Genes wurde durch PCR aus genomischer DNA aus Lycopersicon esculentum hergestellt.

40 Zur Isolation des B-Genes mittels PCR mit genomischer DNA von Lycopersicon esculentum wurden die Oligonukleotid Primer BGEN-1 (SEQ ID No. 85) und BGEN-2 (SEQ ID No. 86) verwendet.

Die genomische DNA wurde aus Lycopersicon esculentum wie be-45 schrieben (Galbiati M et al. Funct. Integr. Genomics 2000, 20 1:25-34) isoliert. Die PCR Amplifikation wurde wie folgt durchgeführt:

80ng genomische DNA

1x Expand Long Template PCR Puffer

- 5 2,5 mM MgCl2
 - je 350 µM dATP, dCTP, dGTP, dTTp
 - 0.3 uM BGEN-1 (SEQ ID No. 85)
 - 0.3 uM BGEN-2 (SEQ ID No. 86)
 - 2,5 Units Expand Long Template Polymerase
- 10 in einem Endvolumen von 25 µl

Folgendes Temperaturprogramm wurde verwendet:

- 1 Zyklus mit 120 sec bei 94°C
- 15 35 Zyklen mit 94°C für 10 sec, 48°C für 30 sec und 68°C für 3 min 1 Zyklus mit 68°C für 10 min

Die PCR-Amplifikation mit BGEN-1 und BGEN-2 resultiert in einem 1.505 kb Fragment (SEQ ID No. 87) das für die b-Hydroxylase co-

20 diert. Das Amplifikat wird in den PCR-Klonierungsvektor pCR-2.1 (Invitrogen) kloniert. Dieser Klon heisst pBGEN.

Sequenzierungen des Klons pBGEN mit den Primern M13-R und M13-F bestätigte eine Sequenz, welche mit der DNA-Sequenz von 1-1497

25 des Datenbank-eintrages AF254793 identisch ist. Der Klon pCrtRb2 wird daher für die Klonierung in den Vektor pCSP02 verwendet (siehe unten).

Für die Herstellung der PDS-Promotor-Sequenz aus Lycopersicon

30 esculentum wird genomische DNA aus Lycopersicon esculentum-Gewebe
nach Standardmethoden isoliert und durch genomische PCR unter
Verwendung der Primer PDS-1 und PDS-2 eingesetzt. Die PCR zur Amplifikation dieses PDS-PRomotor-Fragmentes, erfolgt in einem 50
ul. Reaktionsansatz, in dem enthalten ist:

35

- 1 ul genomische DNA (hergestellt wie oben beschrieben)
- 0.3 mM dNTPs
- 0.2 uM PDS-1 (SEQ ID No. 89)
- 0.2 uM PDS-2 (SEQ ID No. 90)
- **40** 5 ul 10X Pfu-Turbo Polymerase (Stratagene)
 - 1 ul Pfu-Turbo Polymerase (Stratagene)
 - 28.8 ul Aq. Dest.

Folgendes Temperaturprogramm wurde verwendet:

- 1 Zyklus mit 120 sec bei 94°C
- 36 Zyklen mit 94°C für 60 sec, 55°C für 120 sec und 72°C für 4 min

1 Zyklus mit 72°C für 10 min

Die PCR-Amplifikation mit PDS-1 und PDS-2 resultiert in einem Fragment das die Sequenz für den PDS-Promotor enthaelt. Das Am-5 plifikat wird in den pCR4-BLUNT (Invitrogen) kloniert. Dieser Klon heisst pPDS.

Sequenzierungen mit den Primern M13-R und M13-F bestätigen eine zur Sequenz SEQ ID No. 91 identische Sequenz. Dieser Klon heisst 10 pPDS und wird daher für die Klonierung in den Vektor pJBGEN verwendet (siehe unten).

Der erste Klonierungsschritt erfolgt durch Isolierung des 1.499 bp NcoI/EcoRI Fragmentes aus pBGEN, abgeleitet vom Klonierungs15 vektor pCR2.1 (Invitrogen). Zunaechst wird pBGEN mit BamHI geschnitten, die 3'Enden nach Standardmethoden (30 min bei 30°C) aufgefuellt (Klenow-fill-in) und dann ein Partialverdau mit NcoI durchgefuehrt, bei dem das entstehende 1.499 kb Fragment isoliert. Anschliessend wurde dieses Fragment in den pCSP02 kloniert, welches vorher mit EcoRI geschnitten, die 3'Enden nach Standardmethoden (30 min bei 30°C) aufgefuellt (Klenow-fill-in) und dann wird mit NcoI geschnitten. Der Klon, der das 1.497 bp B-Gen-Fragment BGEN enthält, heisst pJAP:BGEN. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem 35S-Ter25 minator und dem B-Gen.

Der zweite Klonierungsschritt erfolgt durch Isolierung des 2.078 bp PDS PROM Fragmentes aus pPDS. Zunaechst wird pPDS mit SmaI geschnitten und dann ein Partialverdau mit SacI durchgefuehrt,

30 bei dem das entstehende 2.088 bp Fragment isoliert. Anschliessend wurde dieses Fragment in den pJAP:BGEN kloniert, welches vorher mit BamHI geschnitten, die 3' Enden nach Standardmethoden (30 min bei 30°C) aufgefuellt (Klenow-fill-in) und dann wird mit SacI geschnitten. Durch die Ligation entsteht eine transkriptionelle Fusion zwischen dem Promotor PDS und dem B-Gen. Der Klon, der das 2.078 bp PDS Promotoren BGEN enthält, heisst pJPDS:BGEN.

Beispiel 19: Herstellung eines Dreifach-Expressionsvektors zur Ueberexpression des B-Genes, der Expression der Nostoc puncti40 forme Ketolase NP196, sowie der Ueberexpression der chromoplastenspezifischen B-Hydroxylase aus Lycopersicon esculentum fruchtspezifisch in Lycopersicon esculentum.

Zunaechst erfolgt die Herstellung eines Doppelkonstruktes, das 45 Expressionskassetten zur Ueberexpression der Nostoc punctiforme ATCC 29133 NP196 Ketolase sowie zur Ueberexpression der B-Hydroxylase enthaelt. Zunaechst wird dem Fragment AP3P:b-Hydroxy-

lase:LB3, das die B-Hydroxylase-Expressionskassette enthaelt, als 2104 bp Ecl136II-XhoI Fragment isoliert aus pCSP03 (in Beispiel 18 beschrieben). Das Auffüllen der 3' Enden (30 min bei 30°C) erfolgt nach Standardmethoden (Klenow-fill-in). Anschliessend, 5 wurde dieses Fragment in der Vektor MSP120 (in Beispiel 10 beschrieben) mit Ecl136II und EcoRI geschnitten, die 3'Enden nach Standardmethoden (30 min bei 30°C) aufgefuellt (Klenow-fill-in). Durch die Ligation entsteht eine T-DNA die zwei Expressionskassetten enthaelt: erstens eine Kassette zur chromoplastenspezifi-10 schen Ueberexpression der B-Hydroxylase aus Lycopersicon esculentum, und zweitens eine Kassette zur Ueberexpression der Ketolase NP196 aus Nostoc punctiforme. Die B-Hydroxylase-Runterregulierungs-Kassette kann in zwei Orientierungen in den Vektor ligieren. Bevorzugt wird die Version verwendet, in der beide Expres-15 sionskassette in ihrer Orientierung uebereinstimmen (siehe Abbildung 14). Diese Version kann durch PCR wie beschrieben identifiziert werden:

Die PCR zur Amplifikation des PR206-PR010 Plasmid-Fragmentes, das 20 die Verbindung von LB3 terminator der B-Hydroxylase-Kassette und des AP3P-Promoters der Ketolase-Kassette enthaelt, erfolgt in einem 50 ul Reaktionsansatz, in dem enthalten ist:

- 1 ul Plasmid-DNA (nach Standardmethoden hergestellt)
- 25 0.25 mM dNTPs
 - 0.2 uM PR010 (SEQ ID No. 92)
 - 0.2 uM PR206 (SEQ ID No. 93)
 - 5 ul 10X PCR-Puffer (TAKARA)
 - 0.25 ul. R Taq Polymerase (TAKARA)
- 30 28.8 ul. Aq. Dest.

Die PCR-Amplifikation mit PR010 und PR206 resultiert in einem.
1.080 Bp Fragment, das auf das Vorliegen der oben beschriebenen
Verbindung von LB3-Terminator und AP3P-Promotor hinweist, und da35 mit die bevorzugte Orientierung beider Expressionskassetten. Dieser Klon heisst pBHYX:NP196.

Zur Klonierung dieser B-Gen-Ueberexpressionskassette in Expressionsvektoren für die Agrobacterium-vermittelte Transformation
40 von Tomate erfolgt durch Isolierung des 4.362 Bp EcoRV-XhoI Fragmentes aus pJPDS:BGEN (siehe Beispiel 19) und Ligierung in dem SmaI-XhoI-geschnittenen Vektor pBHYX:NP196 (oben beschrieben). Durch die Ligation entsteht eine T-DNA die drei Expressionskassetten enthaelt: erstens eine Kassette zur Ueberexpression des B-45 Genes, zweitens eine Kassette zur Ueberexpression der Ketolase NP196-1 aus Nostoc punctiforme, und drittens eine Kassette zur chromoplastenspezifischen Ueberexpression der B-Hydroxylase aus

Lycopersicon esculentum (Abbildung 14, Konstruktkarte). Dieser Klon heisst MSP124. In der Abbildung 14 beinhaltet Fragment AP3P PROM (765 bp) den AP3P-Promoter, das Fragment BHYX b2 CDS (2 bp) die B-Hydroxylase CrtRb2, Fragment LB3 TERM (296 bp) den LB3 Ter-5 minator.

Weiterhin beinhaltet Fragment AP3P PROM (765 bp) den AP3P-Promoter, Fragment rbcS TP FRAGMENT (194 bp) das Transitpeptid des rbcS Gens aus Erbse, NP196 KETO CDS (761 bp) die Ketolase aus No
10 stoc punctiforme ATCC29133, und OCS TERM (192 bp) das Polyadenylierungssignal des Octopin-Synthasegens.

Weiterhin beinhaltet Fragment PDS PROM (2078 bp) den PDS Promoter, Fragment BGEN CDS (1.497 bp) die B-Gen Sequenz, und Fragment 15 35S TERM (746 bp) den 35S Terminator.

Beispiel 20:

Herstellung transgener Lycopersicon esculentum Pflanzen 20

Transformation und Regeneration von Tomatenpflanzen wurde in Beispiel 6 beschrieben.

Gemäß der beschriebenen Transformationsmethode wurden mit folgen-25 den Expressionskonstrukten folgende Linien erhalten:

Mit MSP120 wurde erhalten: MSP120-1, MSP120-2, MSP120-3

Mit MSP121 wurde erhalten: MSP121-1, MSP121-2, MSP121-3

30

Mit MSP122 wurde erhalten: MSP122-1, MSP122-2, MSP122-3

Mit MSP123 wurde erhalten: MSP123-1, MSP123-2, MSP123-3

35 Mit MSP124 wurde erhalten: MSP124-1, MSP124-2, MSP124-3

Patentansprüche

- Verfahren zur Herstellung von Ketocarotinoiden durch Kulti vierung von genetisch veränderten Pflanzen, die in Früchten eine Ketolase-Aktivität aufweisen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten eine Ketolase exprimieren.
 - 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase, enthalten.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, in die man ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser
 Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Ketolase aufweist.
- 30 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO. 1 einbringt.
- 7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO. 16 und die enzymatische Eigenschaft einer Ketolase aufweist.
 - 8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO. 15 einbringt.

45

40

5

- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
- 10 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Pflanzen zusätzlich gegenüber dem Wildtyp
 eine erhöhte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe Hydroxylase-Aktivität und ß-CyclaseAktivität aufweisen.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung mindestens einer der Aktivitäten, die Genexpression mindestens einer Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine Hydroxylase und Nukleinsäuren kodierend eine ß-Cyclase gegenüber dem Wildtyp erhöht.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression mindestens' einer der Nukleinsäuren, mindestens eine Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine Hydroxylase und Nukleinsäuren kodierend eine ß-Cyclase in die Pflanze einbringt:
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine Hydroxylase, Nukleinsäuren einbringt die eine Hydroxylase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 52 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 52 aufweist.
 - 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 51 einbringt.
- 16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man als Nukleinsäure kodierend eine ß-Cyclase, Nukleinsäuren einbringt die eine ß-Cyclase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 54 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abge-

- leitete Sequenz, die eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO: 54 aufweist.
- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 53 einbringt.
- 18. Verfahren nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Blüten die höchste Expressionsrate einer Hydroxylase und/oder ß-Cyclase aufweisen.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Genexpression der Hydroxylase und/oder ß-Cyclase unter Kontrolle eines blütenspezifischen Promotors erfolgt.
- 20. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze verwendet, die in Früchten Chromoplasten aufweist.
- 21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis verwendet.
- 22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Pflanzen erntet und anschließend die Ketocarotinoide aus den Früchten der Pflanzen isoliert.

23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der
Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.

5

- 24. Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und eine Nukleinsäure kodierend eine Ketolase.
- 10 25. Genetisch veränderte Pflanze, die in Früchten eine Ketolase-Aktivität aufweist.
 - 26. Genetisch veränderte Pflanze nach Anspruch 25, dadurch gekennzeichnet, dass die genetisch veränderte Pflanze in den Früchten eine Ketolase exprimiert.
 - 27. Genetisch veränderte Pflanze nach Anspruch 25 oder 26, enthaltend in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase.

20

15

28. Genetisch veränderte Pflanze nach einem der Ansprüche 25 bis 27, dadurch gekennzeichnet dass man in die Pflanze ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.

- 29. Genetisch veränderte Pflanze nach einem der Ansprüche 25 bis 28, dadurch gekennzeichnet, dass die genetische Veränderung zusätzlich mindestens eine der Aktivitäten, ausgewählt aus der Gruppe Hydroxlase-Aktivität und ß-Cyclase-Aktivität gegenüber einer Wildtyppflanze erhöht.
 - 30. Genetisch veränderte Pflanze, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia,
- Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium,
- Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita,
- Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia

oder Vitis, enthaltend mindestens eine Nukleinsäure, kodierend eine Ketolase.

- 31. Genetisch veränderte Pflanze nach Anspruch 30, dadurch
 5 gekennzeichnet, dass die Ketolase in Früchten exprimiert wird.
- 32. Genetisch veränderte Pflanze nach einem der Ansprüche 25 bis 31, dadurch gekennzeichnet, dass die Expressionsrate einer Ketolase in Früchten am höchsten ist.
 - 33. Verwendung der genetisch veränderten Pflanzen nach einem der Ansprüche 25 bis 32 als Futter- oder Nahrungsmittel.
- 15 34. Verwendung der Früchte der genetisch veränderten Pflanzen nach einem der Ansprüche 25 bis 32 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter- oder Nahrungsergänzungsmittel.
- 20 35. Verfahren zur Herstellung von genetisch veränderten Pflanzen gemäß Anspruch 32, dadurch gekennzeichnet, dass man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und Nukleinsäuren kodierend eine Ketolase in das Genom der Ausgangspflanze einführt.

25 .

30

35

Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen

5 Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzadie in Früchten eine Ketolase-Aktivität aufweisen.

Abbildung 1: Biosyntheseschema von Carotinoiden in Tomatenfrüchten

2/14

Abbildung 2: Biosyntheseschema von Astaxanthin in genetisch veränderten Tomatenfruechten

3/14

Abbildung 3: Nukleotidsequenzvergleich

KETO2.seq X86782.seq	ATCCACCT/ACCACGACAGTAATGITICGACCACCTTACCCGAACCCCTGACGACAACGACGACGACGACGACGACGACGACGACGACG
KETO2.seq X86782.seq	GTACATOCCCGACCCAGTACTCCCTTCCGTCAGACGAGTCAGACCCCCCCC
KETO2.seq X86782.seq	CATCACAATOCCCCTACCTGTCATCCCCTCCTGGCCCCCAGTGTTCCTCCACCCCATTTTTCAAATCAACCTTCCGACCTCCTTGGACCACCTCCACTCG CATCACAATGCCCCTACGTGTCATCCGCTCCTGGCCCCAGTGTTCCTCCACCCCATTTTTCAAATCAAGCTTCCGACCTCCTTGGACCACCTCCACTGG
KETO2.seq X86782.seq	CTOCCCGTGTCAGATCCCACAGCTCAGCTGGTTAGCCGCACCAGCAGCCTGCTGCACATCGTCGTAGTACTTCTTTGTCCTGGAGTTCCTGTACACAGCCCCTGCCCGTGTCAGATCCTAGATCCTGAGTTCCTGTACACAGCCC
KETO2.seq X86782.seq	TTTTTATCACCACCCATGATCCTATCCATCCCACCCATCCCCATGAGAAACACCCACC
KETO2.seq X86782.seq	GITTIGATTIACAACATCCTOCACCCCAACCATTGGGACCACCACAACCACACCAC
KETO2.seq X86782.seq	GICCCCTCGITTCCCACCTTCATGTCCACCTACATGTCCATGTCCCAGTTTCCCCCCCTCCCATCGTCGACCGTCGTCATCCACCTCCTCCGTCCCCCAA GICCCCTCGTTTCCCACCTTCATGTCCACCTACATGTCCATGTCCCAGTTTCCCCCCCTCCCATCGTCGACCGTCGTCATCCACCTCCTCCGTCCCCCAA
KETO2.seq X86782.seq	TOCCCAACCTICTICSTIGITICATICCCCCCCCCCCCCCCTICCCCCTTCCCCCTTGTTCTACTTTTCCCACGTACATCCCCCACAACCCTGACCCTGACCCTGACCTCCCCCACAACCCTGACCCTACACCCTGACCCTACCACCCTGACCCTACACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCCTGACCTGACCTGACCTGACCCTACACCCTGACCCTGACCCTACACCCTGACCCTACACCCTGACCCTACACCCTGACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACACCTACACACCAC
KETO2.seq X86782.seq	COOSTCACCCTCTTCACCACCGTCATGAACTGGTGGAAGTCGCCCACTACCCAGGGTCCGACCTGGTCAGCTTTCTGACCTGCTACCACTTCGACCTG CGCGTCAGGCTCTTCACCAGCCGTCATGAACTGGTGGAAGTCGCCCCACTAGCCAGGCGTCCGACCTGGTCAGCTTTCTGACCTGCTACCACTTCGACCTG
KETO2.seq X86782.seq	CACTOGGACCACCCCTGCCCTTTTCCCCCCTGTTCCCAACTGCCCAACTGCCCCAACTGCCTGC

4/14

Abbildung 4: Proteinsequenzvergleich

KETO2.pro X86782.pro	MQLAATVMLEQLTGS A E A L K E K E K E V A G S S D V L R T WAT Q Y S L P S E E MQLAAT V M L E Q L T G S A E A L K E K E K E V A G S S D V L R T WAT Q Y S L P S E E	
KETO2.pro X86782.pro	R P G L K N A Y K P P P S D T K G I T M A L A V I G S W A A V F L H A I F Q I K L P T S L D R P G L K N A Y K P P P S D T K G I T M A L R V I G S W A A V F L H A I F Q I K L P T S L D	
KETO2.pro X86782.pro	L P V S D A T A Q L V S G S S S L L H I V V V F F V L E F L Y T G L F I T T H D A M H G T I L P V S D A T A Q L V S G T S S L L D I V V V F F V L E F L Y T G L F I T T H D A M H G T I	
KETO2.pro X86782.pro	R OL N D F L G R V C I S L Y A W F D Y N M L H R K H W E H H N H T G E V G K D P D F H R G R Q L N D F L G R V C I S L Y A W F D Y N M L H R K H W E H H N H T G E V G K D P D F H R G	
KETO2.pro X86782.pro	V P W F A S F M S S Y M S M W Q F A R L A W W T V V M Q L L G A P M A N L L V F M A A A P I V P W F A S F M S S Y M S M W Q F A R L A W W T V V M Q L L G A P M A N L L V F M A A A P I	
KETO2.pro X86782.pro	R L F Y F G T Y M P H K P E P G A A S G S S P A V M N W W K S R T S Q A S D L V S F L T C Y R L F Y F G T Y M P H K P E P G A A S G S S P A V M N W W K S R T S Q A S D L V S F L T C Y	
KETO2.pro	H WE H H R WP F A P WWE L P N C R R L S G R G L V P A	

Abbildung 5: Konstrukt zur Überexpression des β -C-4-Oxygenas Proteins aus H. pluvialis mit rbcS Transitpepti aus Erbse unter Kontrolle des d35S-Promoters (T matentransformationskonstrukt)

Abbildung 6: Konstrukt zur Überexpression des N-terminal verkür ten Ketolase (β -C-4-Oxygenase) Proteins aus $\emph{H. pluvialis}$ mit rt Transitpeptid aus Erbse unter Kontrolle des d35S-Promoters.

Abbildung 7: Konstrukt zur Überexpression des Ketolase (β -C-4-(genase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse und C-terminalem myc-Tag unter Kontrolle des d35S-Promoters.

Abbildung 8: Konstrukt zur Überexpression der β -C-4-Oxygenase Protein aus H. pluvialis mit rbcS Transitpeptide aus Erbse unter Kontrolle des AP3P-Promoters (Tc matentransformationskonstrukt).

Abbildung 9: Konstrukt zur Überexpression des Ketolase (β -C-4-Oxgenase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse und C-terminalem myc-Tag unter Kontrolle des AP3P-Promoters.

 β -C-4-0xygenase Protein NP196 aus des AP3P -Promoters (Tomatentransformationkonstruct). Abbildung 10: psUN3 konstrukt zur Expression des Nostoc punctiforme ATCC 29133 mit

aadA

·RB

Hin dIII (2049)

Sph 1 (2047) Sal 1 (2031)

 β -C-4-oxygenase Protein NOST1 aus rbcs Transitpeptid aus Erbse unter Kontrolle des AP3P -Promoters (Tomatentransformationkonstruct). Abbildung 11: psun3 konstrukt zur Expression des Nostoc spp. PCC7120 mit

_

 β -C-4-0xygenase Protein NP195 aus rbcs Transitpeptid aus Erbse unter Kontrolle des AP3P -Promoters (Tomatentransformationkonstruct). Abbildung 12: psww3 konstrukt zur Expression des Nostoc punctiforme ATCC 29133 mit

·___

 β -C-4-0xygenase Protein NODK aus Nodularia spumignea NSOR10 mit rbcS Transitpeptid aus Erbse unter Kontrolle des AP3P -Promoters (Tomatentransformationkonstruct). Abbildung 13: psum3 konstrukt zur Expression des

Hin dlll (7386) PDS PROM

Xho I (4099) OCS TERM

Sph 1 (3887) Sal 1 (3895) 35S TERM

Hin dll (5089)

Sac I (8085)

Hin dill (8307) Hin dill (8418)

Eco RV (8472)

Sal 1 (8493)

Sph 1 (8509)

Hin dill (8511)

Hin dill (8070) Ec/ 13611 (8083)

Eco RI (5300)

BGEN CDS

SEQUENCE LISTING

5	<110>	SunGene GmbH Co. KGaA
10	<120>	Verfahren zur herstellung von Astaxanthin in Fruechten von Pflanzen
	<130>	NAE 365/02
15	<160>	93
	(100)	
20	<170>	PatentIn version 3.1
25	<210>	1
	<211>	1771
20	<212>	DNA
30	<213>	Haematococcus pluvialis
35	<220>	
	<221>	CDS
40	<222	(166)(1155)
40	<223	
45	.400	
40	<400: ggca	> 1 egaget tgeaegeaag teagegegeg caagteaaea eetgeeggte eacageetea 60
	aata	ataaag ageteaageg tttgtgegee tegaegtgge eagtetgeae tgeettgaae 120
50	cege	gagtot ecegeegeae tgaetgeeat ageacageta gaega atg eag eta gea 17°

Met Gln Leu Ala

5	gcg a Ala '	aca Thr	gta Val	atg Met	Leu	gag Glu 10	cag Gln	ctt Leu	acc Thr	gga Gly	ago Ser 15	gc Al	t g	ag lu	gca Ala	ctc Leu	аа Бу	ys	225	
10	gag Glu	aag Lys	gag Glu	aag Lys	gag Glu 25	gtt Val	gca Ala	Gly	agc Ser	tct Ser	gao Asj	c gt p Va	g t	tg Leu	cgt Arg	aca Thi	t t	rb aa	273	
, <u>n</u>	gcg Ala	acc Thr	cag Gln	tac Tyr 40	tcg Ser	ctt Leu	ccg Pro	tca Ser	gaa Glu 45	gaq Glu	g to 1 Se	a ga r As	sp i	gcg Ala	gcc Ala 50) Arg	g P	cg Pro	321	L
15	gga Gly	ctg Leu	aag Lys 55	aat Asn	gcc Ala	tac Tyr	aag Lys	cca Pro	cca Pro	cc Pr	t to o Se	c g	sp	aca Thr 65	aag Lys	. Gl	c a	itc [le	369	9
20	aca Thr	atg Met	geg : Ala	rcta Leu	cgt Arg	gtc Val	ato Ile 75	ggc Gly	tco Se:	c tg r Tr	g go	la A	ca la	gtg Val	tto Phe	c ct	c c	cac His	41	7
25	gcc Ala 85	att Ile	ttt Phe	caa e Glr	atc lle	aag Lys	ctt Le	c cc;	g ac o Th	c to	c to	eu A	Jac Asp	cag	cto	g ca	LS	tgg Trp 100	46	5
30	ctg Lev	cc.	c gt	g tca l Se	a gat r Asp 109	Ala	e aca	a gc r Al	t ca a Gl	n L	eu V	tt a	agc Ser	Gly	ac Th	r S	gc er 15	agc Ser	51	L3
	ct <u>s</u> Lei	g ct 1 Le	c ga u As	c atop Il	e Vai	gta l Va	a gt 1 Va	a tt l Ph	c tt le Ph 12	ne V	tc c	tg eu	gag Glu	tto Pho	c ct e Le 13	u T	ac yr	aca Thr	56	61
35	gg:	c ct y Le	t tt u Ph	t at ne Il 15	c ac e Th	c ac r Th	g ca r Hi	s As	at go sp Ai	et a la M	tg d let H	cat His	ggc Gly	ac Th	r I	c g Le A	cc	atg Met	6	09
40	ag:	g As	ic ag sn Ai	d Gj	g ct n Le	t aa u As	n As	ac ti sp Pi	tc t he L	tg g eu G	gly i	aga Arg	gta Val	l Cy	rc at	tc t le s	cc Ser	ttg Leu	6	57
45	ta Ty 16	r A	cc to	gg tt rp Pl	t ga ne As	эр Ту	ac aa yr Aa 70	ac a sn M	tg c	tg (cac His	cgc Arg 175	aaq Ly	g ca s Hi	at t is T	gg (gag Glu	cac His	7	705
50	ca Hi	ıc a	ac c sn H	ac a is T	hr G	gc ga ly Gi	ag g lu V	tg g	gc a	yys .	gac Asp 190	cct Pro	ga As	c ti	tc c	lis .	agg Arg	gga Gly	•	753

												atg Met					801
5	tcg	atg	tgg	cag	ttt	gcg	cgc	ctc	gca	tgg	tgg	acg	gtg	gtc	atg	cag	849
	Ser	Met	Trp 215	Gln	Phe	Ala	Arg	Leu 220	Ala	Trp	Trp	Thr	Val 225	Val	Met	GIN	
10												ttc Phe 240	Met				897
15		Ile										Gly				Pro 260	945
20	cac His	aag Lys	cct Pro	gag Glu	cct Pro 265	Gly	gcc	gcg Ala	tca Ser	ggc Gly 270	Ser	tca Ser	cca Pro	gcc Ala	gto Val	atg Met	993
	aac Asr	tgg Tr	tgg Tr	aag Lys 280	Ser	cgc Arg	act Thr	ago Ser	cag c Glr 285	ı Ala	g tco a Se:	c gad r Ası	c cto p Lev	g gto 1 Val 290	L Se	c ttt c Phe	1041
25	cts Lei	g aco	c tgo c Cy:	з Ту	c cac	tto Phe	gad Asj	c ct Dec 30	u Hi	c tgg	g ga p Gl	g ca u Hi	с са s Ні 30	s.Ar	c tg g Tr	g ccc p Pro	1089
30	tt: Ph	e ge e Al 31	a Pr	c tgg	g tg p Tr	g gaq p Gl	g cto Le 31	u Pr	c aa o As	c tg n Cy	c cg s Ar	c cg g Ar 32	g Le	g tc u Se	t gg r Gl	c cga y Arg	1137
35		у Le		t cc l Pr			g ct	ggac	acac	tgo	agts	laac	cctg	ctgc	ca		1185
																getgeeg	1245
40																gtagetg	1305
																aggecaac	1425
45																tatgattg cgccctgc	1485
																gaggtgcg	1545
50																tggcagtg	

	agagetgegt gattaaetgg getatggatt gtttgageag teteaettat tetttgatat	1665
_	agatactggt caggcaggtc aggagagtga gtatgaacaa gttgagaggt ggtgcgctgc	1725
5	ccctgcgctt atgaagctgt aacaataaag tggttcaaaa aaaaaa	1771
10	<210> 2	
	<211> 329	
	<212> PRT	
15	<213> Haematococcus pluvialis	
20	<400> 2	
20	Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15	
	1 .	•
25	Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val 20 25 30	/
20	Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp	
30	35 40 45	
	Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp	
35	50 55 60	,
	Thr Lys Gly Ile Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala	
40	65 70 75 ⁸⁰ .	
40	Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp	
	85 90 95	
45	Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser	
	100 105 110	
50	Gly Thr Ser Ser Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu 115 120 125	

	5	Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly 130 135 140
		Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val 145 150 155 160
•	10	Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys 165 170 175
	15	His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp 180 185 . 190
	20	Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met 195 200 205
	25	Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr 210 215 220
		Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe 225 230 235 240
	30	Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly 245 . 250 255
	35	Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 260 265 270
	40	Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 285
	45	Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 290 295 300
		His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 305 310 315 320
	5	0

Leu Ser Gly Arg Gly Leu Val Pro Ala 325

5	<210>	3													
	<211>	1662													
	<212>	DNA													
10	<213>	Haematococcus pluvialis													
15	<220>														
	<221>	CDS													
20	<222>	(168)(1130)													
20	<223>														
25	<400>	y 3 Grant caagaaatte aacagetgea agegegeeee ageeteacag egecaagtga	60												
		. •	120												
30	ctccgtcctc tgccaaatct cgcgtcgggg cctgcctaag tcgaaga atg cac gtc Met His Val														
		1													
	gca	tog goa ota atg gto gag cag aaa ggo agt gag goa got got too	224												
35		Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala Ala Ala Ser 10 15													
	agc	cca gac gtc ttg aga gcg tgg gcg aca cag tat cac atg cca tcc	272												
40		Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His Met Pro Ser 25 30 35													
	gag	tcg tca gac gca gct cgt cct gcg cta aag cac gcc tac aaa cct Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala Tyr Lys Pro	320												
4-		Ser Ser Asp Ala Ala Ala Flo Ala 250 50													
45		gca tct gac gcc aag ggc atc acg atg gcg ctg acc atc att ggc Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr Ile Ile Gly	368												
	Pro	55 60 65													
50) acc	tgg acc gca gtg ttt tta cac gca ata ttt caa atc agg cta ccg	416												

	Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile Arg Leu Pro 70 75 80	
5	aca tcc atg gac cag ctt cac tgg ttg cct gtg tcc gaa gcc aca gcc Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu Ala Thr Ala 85 90 95	464
10	cag ctt ttg ggc gga agc agc cta ctg cac atc gct gca gtc ttc Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala Ala Val Phe 100 105 110 115	512
15	att gta ctt gag ttc ctg tac act ggt cta ttc atc acc aca cat gac Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp 120 125 130	560
15	gca atg cat ggc acc ata gct ttg agg cac agg cag ctc aat gat ctc Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu Asn Asp Leu 135 140 145	608
20	ctt ggc aac atc tgc ata tca ctg tac gcc tgg ttt gac tac agc atg Leu Gly Asn Ile Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Ser Met 150 155 160	656
25	ctg cat cgc aag cac tgg gag cac cac aac cat act ggc gaa gtg ggg Leu His Arg Lys His Trp Glu His His Asn His Thr Gly Glu Val Gly 165 170 175	704
30	aaa gac cct gac ttc cac aag gga aat ccc ggc ctt gtc ccc tgg ttc Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Val Pro Trp Phe 180 185 190 195	752
35	gcc agc ttc atg tcc agc tac atg tcc ctg tgg cag ttt gcc cgg ctg Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe Ala Arg Leu 200 205 210	800
	gca tgg tgg gca gtg gtg atg caa atg ctg ggg gcg ccc atg gca aat Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro Met Ala Asn 215 220 225	848
40	Leu Leu Val Phe Met Ala Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu 230 235 240	896
45	245	944
50	gca ggc tct cag gtg atg gcc tgg ttc agg gcc aag aca agt gag gca Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr Ser Glu Ala 260 265 270 275	992

	tct gat gtg atg agt ttc ctg aca tgc tac cac ttt gac ctg cac tgg Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp 280 285 290	1040
5	gag cac cac agg tgg ccc ttt gcc ccc tgg tgg cag ctg ccc cac tgc Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu Pro His Cys 295 . 300 305	1088
10	cgc cgc ctg tcc ggg cgt ggc ctg gtg cct gcc ttg gca tga Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 310 315 320	1130
	cctggtccct ccgctggtga cccagcgtct gcacaagagt gtcatgctac agggtgctgc	1190
15	ggccagtggc agcgcagtgc actctcagcc tgtatggggc taccgctgtg ccactgagca	1250
	ctgggcatgc cactgagcac tgggcgtgct actgagcaat gggcgtgcta ctgagcaatg	1310
20	ggcgtgctac tgacaatggg cgtgctactg gggtctggca gtggctagga tggagtttga	1370
	tgcattcagt agcggtggcc aacgtcatgt ggatggtgga agtgctgagg ggtttaggca	1430
	geeggeattt gagagggeta agttataaat egeatgetge teatgegeae atatetgeae	1490
25	acagecaggg aaatecette gagagtgatt atgggacaet tgtattggtt tegtgetatt	1550
	gttttattca gcagcagtac ttagtgaggg tgagagcagg gtggtgagag tggagtgagt	1610
30	gagtatgaac ctggtcagcg aggtgaacag cctgtaatga atgactctgt ct	1662
	<210> 4	
35	<211> 320	
	<212> PRT	
40	<213> Haematococcus pluvialis	
	<400> 4	
45	Met His Val Ala Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala 1 5 10 15	
50	Ala Ala Ser Ser Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His	

	5	Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala 35 40 45	
		Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr 50 55 60	
1	10	Ile Ile Gly Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile 65 70 75 80	
	15	Arg Leu Pro Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu 85 90 95	
	20	Ala Thr Ala Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala 100 105 110	
	25	Ala Val Phe Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr 115 120 125	
		Thr His Asp Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu 130 135 140	ι
	30	Asn Asp Leu Leu Gly Asn Ile Cys Ile Ser Leu Tyr Ala Trp Phe Asp 145 150 155 160))
	35	Tyr Ser Met Leu His Arg Lys His Trp Glu His His Asn His Thr Gl 165 170 175	У
	40	Glu Val Gly Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Va 180 185 190	.1
	45	Pro Trp Phe Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Ph 195 200 205	
		Ala Arg Leu Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala P 210 215 220	ro
	5	n	

											10									
		Met 225	Ala	Asn	Leu	Leu	Val 230	Phe	Met	Ala	Ala	Ala 235	Pro	Ile	Leu	Ser	Ala 240			
	5	Phe	Arg	Leu	Phe	Tyr 245	Phe	Gly	Thr	Tyr	Leu 250	Pro	His	Lys	Pro	Glu 255	Pro	>		
	10	Gly	Pro	Ala	Ala 260		Ser	Gln	Val	Met 265	Ala	Trp	Phe	Arg	Ala 270	Lys	Th	r		
	15	Ser	· Glu	Ala 275		. Ast	Val	Met	Ser 280		Leu	. Thr	Cys	285	His	s Ph∈	e As	р		
		Lev	1 His		Glu	ı His	s His	299		Pro	Phe	e Ala	300		o Tr	ρ Gl	n Le	eu		
	20	Pro		s Cy	s Arg	g Ar	g Let 31		r Gly	y Ar	g Gl	y Le ¹	u Vai	l Pr	o Al	a Le	u A	la 20		
	25	<2	10>	5															/	
		<2	11>	729					•						. •					
	30	<2	12>	DNA																
	50	<2	213>	Agı	cobac	teri	ium a	urar	ntiac	eum										
•	35		220>																	
			221>																	
	40		222>) (729)														
		<	223>																	
	45	=	400> itg a	מכ כ	ıca o	cat q	jee c	tg o	ecc a	ag g	jca g	gat d	ctg a	acc (gcc :	Inr	ser	ctg Leu		48
		1	L			5	5		•			10					12			0.0
	50) á	atc 9	gtc 1	cg	ggc 9	ggc a	atc a	atc 9	gec i	gct	tgg (ctg	gcc	ctg	cat	gtg	cat		96

	Ile	Val	Ser	Gly 20	Gly	Ile	Ile	Ala	Ala 25	Trp	Leu	Ala	Leu	His 30	Val	His	
5	gcg Ala	_							_								144
10			_		ctg Leu			_	_								192
15		_		_	cac His		_		_	_							240
10			_		cag Gln 85			-		_							288
20	_	_	_		gtc Val	_		_	_	His		_		_	Gly		336
25	_	_	-	Pro	-		_		Gly		_		Arg 125	Trp		gcc Ala	384
30	_		Ile					Gly		_			r Cto	, ctg		ccc Pro	432
25	_	Ile		_	_		Ala	_				/ Ast				tac Tyr 160	480
35						Lev					ı Ala					g ttc 1 Phe	528
40					r Try					g Pro					a Pho	c ccg e Pro	576
45		_		s Ası					r Ar					o Va		g ctg r Leu	624
50	-	-	r Cy					y Gl				_	u Hi			g cac u His	

		ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gacPro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp225230	720
5	•	acc gca tga Thr Ala	729
10	כ	<210> 6	
1	5	<211> 242 <212> PRT	
		<213> Agrobacterium aurantiacum	
2	20	<400> 6	,
2	25	Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10 15	
		Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30	
	30	Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 35 40 45	
•	35	50 55 60	
	40	His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 75 80	
	45	Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95	
45	Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 100 105 110		
	5	o`	

Asp	Asp	Asp	Pro	Asp	Phe	Asp	His	Gly	Gly	Pro	Val	Arg	\mathtt{Trp}	Tyr	Ala
_	_	115					120					125			

5 Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr
10 145 150 155

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

15

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

20

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu 195 200 205

25 Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 30 225 230 235

Thr Ala

35

<210> 7

<211> 1631

40

<212> DNA

<213> Alcaligenes sp.

45

<220>

<221> CDS

<222> (99)..(827)

<223>

5		
	<400> 7 ctgcaggccg ggcccggtgg ccaatggtcg caaccggcag gactggaaca ggacggcggg	60
10	ccggtctagg ctgtcgccct acgcagcagg agtttcgg atg tcc gga cgg aag cct Met Ser Gly Arg Lys Pro 1 5	116
15	ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 15 20	164
20	ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp 25 30 35	212
	gcg gcc gcg cat ccg ctg ctt gcc gtg ctg tgc ctg gct ggg ctg acc Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr 40 45 50	260
25	tgg ctg tcg gtc ggg ctg ttc atc atc gcg cat gac gca atg cac ggg Trp Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly 55 60 65 70	308
30	tcc gtg gtg ccg ggg ccg ccg cgc gcc aat gcg gcg atc ggg caa ctg Ser Val Val Pro Gly Arg Pro Arg Ala Asn Ala Ala Ile Gly Gln Leu . 75 80 85	356
35	gcg ctg tgg ctc tat gcg ggg ttc tcg tgg ccc aag ctg atc gcc aag Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp Pro Lys Leu Ile Ala Lys 90 95 100	404
40	cac atg acg cat cac cgg cac gcc ggc acc gac aac gat ccc gat ttc His Met Thr His His Arg His Ala Gly Thr Asp Asn Asp Pro Asp Phe 105 110 115	452
	ggt cac gga ggg ccc gtg cgc tgg tac ggc agc ttc gtc tcc acc tat Gly His Gly Gly Pro Val Arg Trp Tyr Gly Ser Phe Val Ser Thr Tyr 120 125 130	500
45	ttc ggc tgg cga gag gga ctg ctg cta ccg gtg atc gtc acc acc tat Phe Gly Trp Arg Glu Gly Leu Leu Pro Val Ile Val Thr Thr Tyr 135 140 . 145 150	548
50	gcg ctg atc ctg ggc gat cgc tgg atg tat gtc atc ttc tgg ccg gtc	596

	Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr Val Ile Phe Trp Pro Val 155 160 165	
5	ccg gcc gtt ctg gcg tcg atc cag att ttc gtc ttc gga act tgg ctg Pro Ala Val Leu Ala Ser Ile Gln Ile Phe Val Phe Gly Thr Trp Leu 170 175 180	344
10	ccc cac cgc ccg gga cat gac gat ttt ccc gac cgg cac aac gcg agg Pro His Arg Pro Gly His Asp Asp Phe Pro Asp Arg His Asn Ala Arg 185 190 195	592
	tcg acc ggc atc ggc gac ccg ttg tca cta ctg acc tgc ttc cat ttc Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu Leu Thr Cys Phe His Phe 200 205 210	740
15	ggc ggc tat cac cac gaa cat cac ctg cat ccg cat gtg ccg tgg tgg Gly Gly Tyr His His Glu His His Leu His Pro His Val Pro Trp 215 220 225 230	788
20	ege etg eet egt aca ege aag ace gga gge ege gea tga egeaatteet Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly Arg Ala 235 240	837
	cattgtcgtg gcgacagtcc tcgtgatgga gctgaccgcc tattccgtcc accgctggat	897
25	tatgcacggc cccctaggct ggggctggca caagtcccat cacgaagagc acgaccacgc	957
,	gttggagaag aacgacctct acggcgtcgt cttcgcggtg ctggcgacga tcctcttcac	1017
30	cgtgggcgcc tattggtggc cggtgctgtg gtggatcgcc ctgggcatga cggtctatgg	1077
	gttgatetat tteateetge aegaeggget tgtgeateaa egetggeegt tteggtatat	1137
	. tccgcggcgg ggctatttcc gcaggctcta ccaagctcat cgcctgcacc acgcggtcga	1197
35	ggggegggac cactgegtca getteggett catetatgee ecaceegtgg acaagetgaa	1257
	gcaggatetg aageggtegg gtgteetgeg ecceeaggae gagegteegt egtgatetet	1317
40	gateceggeg tggeegeatg aaateegaeg tgetgetgge aggggeegge ettgeeaaeg	1377
	gactgatege getggegate egeaaggege ggeeegaeet tegegtgetg etgetggaee	1437
	gtgcggcggg cgcctcggac gggcatactt ggtcctgcca cgacaccgat ttggcgccgc	1497
45	actggctgga ccgcctgaag ccgatcaggc gtggcgactg gcccgatcag gaggtgcggt	1557
	teccagacea ttegegaagg eteegggeeg gatatggete gategaeggg egggggetga	1617
50	tacatacaat aacc	1631

<210> 8 5 <211> 242 <212> PRT <213> Alcaligenes sp. 10 <400> 8 Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu 15 10 5 1 Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe 20 20 Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu 45 40 35 25 Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe'Ile Ile Ala. 60 50 30 His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 75 65 Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp 35 .90 85

Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr
40 100 105 110

Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly 115 120 125

Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

50

.

									17						
	Val Ile 145	Val	Thr	Thr	Tyr 150	Ala	Leu	Ile	Leu	Gly 155	Asp	Arg	Trp	Met	Tyr 160
5	Val Ile	Phe	Trp	Pro 165	Val	Pro	Ala	Val	Leu 170	Ala	ser	Ile	Gln	Ile 175	Phe
10	Val Phe	Gly	Thr 180	Trp	Leu	Pro	His	Arg 185	Pro	Gly	His	Asp	Asp 190	Phe	Pro
15	Asp Arg	His 195		Ala	Arg	Ser	Thr 200		Ile	Gly	Asp	Pro 205	Leu	Ser	Leu
	Leu Thr 210		Phe	His	Phe	Gly 215		Tyr	His	His	Glu 220	His	His	Leu	His
20	Pro His 225	val	. Pro	Tr	230		Lev	n Pro	Arg	g Thr 235	Arg	Lys	3 Thi	- Gly	Gly 240
25	Arg Ala	L											. 1		
30	<210>	9													
	<211>	729 DNA	٠												
	<212>	DIM													

40

35 <213> Paracoccus marcusii

<220>

<221> CDS

<222> (1)..(729)

45 <223>

<400> 9
50 atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc aca agc ctg

	Met 1	Ser	Ala	His	Ala 5	Leu	Pro	Lys	Ala	Asp 10	Leu	Thr	Ala	Thr	Ser 15	Leu		
5		_	_		ggc Gly			_	_		_							96
10		_			ctg Leu			-	-									144
45			_		ctg Leu			-	_	_	_							192
15		_			cac His													240
20			_		cag Gln 85		_	_		_								288
25	_									His					Gly	acc Thr	,	336
30	_	-	-	Pro	_		_		Gly					Tr		gcc Ala		384
25	_		Ile					Gly		_			Leu			g ccc 1 Pro		432
35		Ile					Ala					y Ası				tac Tyr 160		480
. 40		_				Lev					ı Ala					g ttc u Phe 5		528
45					r Tr		_		_	g Pro					a Ph	c ccg e Pro		576
50	_	-		a Ası					r Ar					o Va		g ctg r Leu		624

_	ctg acc tgc ttt cat ttt ggc ggt tat cat cac gaa cac cac ctg cac Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220	672
5	ccg acg gtg ccg tgg tgg cgc ctg ccc agc acc cgc acc aag ggg gac Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240	720
10	acc gca tga Thr Ala	729
15	<210> 10	
	<211> 242	
	<212> PRT	
20	<213> Paracoccus marcusii	
25	<400> 10	
	Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10 15	
30	Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30	
35	Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 35 40 45	
40	Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60	
45	His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80	
	Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95	

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 100 105 110

- 5 Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125
- Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Leu Pro
 10 130 . 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

15

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

20

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

25 Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu
195 200 205

. .

- Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 30 210 215 220
- Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp
 225 230 235 240

35

Thr Ala

40

<210> 11

<211> 1629

45 <212> DNA

<213> Synechococcus sp.

<220>

<221> CDS

5 <222> (1)..(1629)

. <223>

10		
15	<pre><400> 11 atg atc acc acc gat gtt gtc att att ggg gcg ggg cac aat ggc tta Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu 1 5 10 15</pre>	48
15	gtc tgt gca gcc tat ttg ctc caa cgg ggc ttg ggg gtg acg tta cta Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu 20 25 30	96
20	gaa aag cgg gaa gta cca ggg ggg gcg gcc acc aca gaa gct ctc atg Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met 35 40 45	144
25	ccg gag cta tcc ccc cag ttt cgc ttt aac cgc tgt gcc att gac cac Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His 50 55 60	192
30	gaa ttt atc ttt ctg ggg ccg gtg ttg cag gag cta aat tta gcc cag Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu.Ala Gln 65 70 75 80	240
05	tat ggt ttg gaa tat tta ttt tgt gac ccc agt gtt ttt tgt ccg ggg Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly 85 90 95	288
35	ctg gat ggc caa gct ttt atg agc tac cgt tcc cta gaa aaa acc tgt Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys 100 105 110	336
40	gcc cac att gcc acc tat agc ccc cga gat gcg gaa aaa tat cgg caa Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln 115 120 125	384
45	ttt gtc aat tat tgg acg gat ttg ctc aac gct gtc cag cct gct ttt Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe 130 135 140	432
50	aat gct ccg ccc cag gct tta cta gat tta gcc ctg aac tat ggt tgg Asn Ala Pro Pro Gln Ala Leu Leu Asp Leu Ala Leu Asn Tyr Gly Trp 150 155 160	480

	gaa a Glu A	ac .sn	tta Leu	aaa Lys	tcc Ser 165	gtg Val	ctg Leu	gcg Ala	atc Ile	gcc Ala 170	GJÀ āāā	tcg Ser	aaa Lys	acc Thr	aag Lys 175	gc	g a	528
5	ttg g Leu A	ıat Lsp	ttt Phe	atc Ile 180	cgc Arg	act Thr	atg Met	atc Ile	ggc Gly 185	tcc Ser	ccg Pro	gaa Glu	gat Asp	gtg Val 190	Leu	aa As	t n	576
10	gaa t Glu :	rrp	ttc Phe 195	gac Asp	agc Ser	gaa Glu	cgg Arg	gtt Val 200	aaa Lys	gct	cct Pro	tta Lev	ı gct ı Ala 205	Arg	. cta , Leu	tg Cy	jt ⁄s	624
15		gaa Glu 210	att Ile	ggc	gct Ala	ccc	cca Pro 215	Ser	caa Glr	aag Lys	g Gly	agt 7 Se: 22	r Ser	tco Sei	e ggo	e at y Me	tg et	672
20	atg Met 225	atg Met	gtg Val	gcc	atg Met	cgg Arg 230	His	ttg Lev	gaq ıGl	n GJ	a att	e Al	c aga a Arg	a cc	a aaa o Ly	s G	ga ly 40	720
	ggc	act Thr	gga Gly	gco Ala	cto Lei 245	ı Th	a gaa	a gco	c tt a Le	g gt u Va 25	l Ly	g tt s Le	a gt eu Va	g ca 1 Gl	a gc n Al 25	a G	ln	768
25	gj'À aaa	gga	a aaa y Ly:	a ato s Ilo 26	e Le	c ac u Th	t ga r As	c ca p Gl	a ac n Th 26	ır Va	c aa ll Ly	ia co vs Ai	gg gt rg Va	a tt il·Le 27	eu Va	g g	gaa Glu	816
30	aac Asn	aa	c ca n Gl 27	n Al	g at a Il	c gg e Gl	g gt y Va	g ga 1 Gl 28	u Va	al A	ct aa la As	ac g sn G	ga ga ly G:	aa ca lu Gi 85	ag ta ln T	ac (cgg Arg	864
35	gcc Ala	aa Ly 29	s Ly	a gg 's Gl	ıc gt .y Və	g at	e se	et as er As 95	ac at	tc g le A	at g sp A	la A	gc c rg A	gt t rg L	ta t eu P	tt he	ttg _. Leu	912
40	caa Glr 309	ı Le	g gt u Va	g ga	aa co lu Pi	ro G	10 JA 9 33 34	cc c	ta g eu A	cc a la I	ys V	tg a al 7	at c Asn G	aa a ln A	ac c sn I	ta eu	ggg Gly 320	960
45	Glı	a Cg u Ai	ga ci	tg ga	lu A	gg c rg A 25	gc a rg T	ct g hr V	tg a	sn 1	at a Asn <i>F</i> 330	ac (gaa g Glu <i>F</i>	jcc a	[le]	ta Leu 335	aaa Lys	1008
45	at	c ga	at t sp C	ys A	cc c la L 40	tc t eu S	cc g er G	gt t	eu 1	ecc (Pro :	cac t	ttc Phe	act q	Ala	atg 9 Met 2 350	gcc Ala	GJÀ BBB	1056
50	cc	g g	ag g	at c	ta a	cg g	ıga a	act a	att '	ttg	att (gcc	gac	tcg	gta	cgc	cat	1104

										20							
	Pro	Glu	Asp 355	Leu	Thr	Gly		Ile 360	Leu	Ile	Ala	Asp	Ser 365	Val	Arg	His	
5			gaa Glu														1152
10		_	tct Ser														1200
																tac Tyr	1248
15															Trr	acc Thr	1296
20				Lys					Asp					Lys		a acg ı Thr	1344
25			Ala										Arg	g Ar		g gaa l Glu	1392
30		Pro					Gln					r Ty	aa			t gtc n Val 480	
						: Ser					Me					t cta o Leu	
35					a Ası					o Ile					r Le	a aca u Thr	
40				y Th					y Se					t Pr		gt aga Ly Arg	
45		_	c gc s Al					u Ly					g Pi			aa	1629

<210> 12

<211> 542

<212> PRT

5 <213> Synechococcus sp.

<400> 12

10

Met Ile Thr Thr Asp Val Val Ile Ile Gly Ala Gly His Asn Gly Leu

1 5 10 15

- Val Cys Ala Ala Tyr Leu Leu Gln Arg Gly Leu Gly Val Thr Leu Leu 20 25 30
- Glu Lys Arg Glu Val Pro Gly Gly Ala Ala Thr Thr Glu Ala Leu Met
 20 35 40 45
 - Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His 50 55 60

25

Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn'Leu Ala Gln 65 70 75 80

30

Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly 85 90 95

- 35 Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys 100 105 110
- Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln
 40 115 120 125
 - Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe 130 135 140

45

Asn Ala Pro Pro Gln Ala Leu Leu Asp Leu Ala Leu Asn Tyr Gly Trp 145 150 155 160

	Glu Asn Leu Lys Ser Val Leu Ala Ile Ala Gly Ser Lys Thr Lys Ala 165 170 175
5	Leu Asp Phe Ile Arg Thr Met Ile Gly Ser Pro Glu Asp Val Leu Asn 180 185 190
10	Glu Trp Phe Asp Ser Glu Arg Val Lys Ala Pro Leu Ala Arg Leu Cys 195 200 205
15	Ser Glu Ile Gly Ala Pro Pro Ser Gln Lys Gly Ser Ser Ser Gly Met 210 215 220
	Met Met Val Ala Met Arg His Leu Glu Gly Ile Ala Arg Pro Lys Gly 225 230 235 240
20	Gly Thr Gly Ala Leu Thr Glu Ala Leu Val Lys Leu Val Gln Ala Glṅ 245 250 255
25	Gly Gly Lys Ile Leu Thr Asp Gln Thr Val Lys Arg Val Leu Val Glu 260 265 270
30	Asn Asn Gln Ala Ile Gly Val Glu Val Ala Asn Gly Glu Gln Tyr Arg 275 280 285
35	·
	Gln Leu Val Glu Pro Gly Ala Leu Ala Lys Val Asn Gln Asn Leu Gly 305 310 315 320
40	Glu Arg Leu Glu Arg Arg Thr Val Asn Asn Glu Ala Ile Leu Lys 325 330 335
4	Ile Asp Cys Ala Leu Ser Gly Leu Pro His Phe Thr Ala Met Ala Gly 340 345 350
5	Pro Glu Asp Leu Thr Gly Thr Ile Leu Ile Ala Asp Ser Val Arg His 365 365

5	Val	370	GIu	Ala	HIS	Ala	ьец 375	IIe	Ala	Leu	GIÀ	380	11e	PIO.	KS P	AIA
	Asn 385	Pro	Ser	Leu	Tyr	Leu 390	Asp	Ile	Pro	Thr	Val 395	Leu	qeA	Pro	Thr	Met 400
10	Ala	Pro	Pro	Gly	Gln 405	His	Thr	Leu	Trp	Ile 410	Glu	Phe	Phe	Ala	Pro 415	Tyr
15	Arg	Ile	Ala	Gly 420	Leu	Glu	Gly	Thr	Gly 425	Leu	Met	Gly	Thr	Gly 430	Trp	Thr
20	Asp	Glu	Leu 435	Lys	Glu	Lys	Val	Ala 440	Asp	Arg	Val	Ile	Asp 445	Lys	Leu	Thr
25	Asp	Tyr 450		Pro	Asn	Leu	Lys 455	Ser	Leu	Ile	Ile	Gly 460	Arg	Arg	Val	Glu
30	Ser 465		Ala	Glu	Leu	Ala 470	Gln	Arg	Leu	Gly	Ser 475		Asn	'Gly	Asn	Val 480
30	Tyr	His	Leu	Asp	Met 485		Leu	Asp	Gln	Met 490		Phe	Leu	Arg	Pro 495	
35	Pro	Glu	lle	Ala 500		Tyr	Gln	Thr	9ro 505		Lys	Asn	. Leu	Tyr 510		. Thr
40	Gly	Ala	Gly 515		His	Pro	Gly	Gly 520		: Ile	e Ser	Gl _y	7 Met 525	Pro	Gly	/ Arg
45	Asr	530		Arg	y Val	. Phe	535		s Glr	ı Glr	n Arg	540		e Trp)	
	<23	L0>	13													
50	<21	11>	776													

<212> DNA

<213> Bradyrhizobium sp.

5

<220>

<221> CDS

10

<222> (1)..(774)

<223>

15

<400> 13

atg cat gca gca acc gcc aag gct act gag ttc ggg gcc tct cgg cgc

Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg

10 15

gac gat gcg agg cag cgc cgc gtc ggt ctc acg ctg gcc gcg gtc atc
Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile
20 25 30

25

atc gcc gcc tgg ctg gtg ctg cat gtc ggt ctg atg ttc ttc tgg ccg 144

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro

35 40 45

96 .

27

acc tgg ctc tat gta ggc ctg ttc atc atc gcg cat gac tgc atg cac 240

35 Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His
65 70 75 80

ggc tcg ctg gtg ccg ttc aag ccg cag gtc aac cgc cgt atc gga cag

Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln

40 85 90 95

ctc tgc ctg ttc ctc tat gcc ggg ttc tcc ttc gac gct ctc aat gtc
Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
100 105 110

45 ·

gag cac cac aag cat cac cgc cat ccc ggc acg gcc gag gat ccc gat

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp

115 120 125

50 ttc gac gag gtg ccg cac ggc ttc tgg cac tgg ttc gcc agc ttt 432

	Phe	Asp 130	Glu	Val	Pro	Pro	His 135	Gly	Phe	Trp	His	Trp 140	Phe	Ala	Ser	Phe		
5	ttc Phe 145	ctg Leu	cac His	tat Tyr	ttc Phe	ggc Gly 150	tgg Trp	aag Lys	cag Gln	gtc Val	gcg Ala 155	atc Ile	atc Ile	gca Ala	gcc Ala	gtc Val 160		480
10			gtt Val															528
15			tgg Trp															576
			acc Thr 195															624
20	_		aac Asn					Glu					Leu					672
25		Cys	ttc Phe				Phe					His	Leu			gat Asp 240	/	720
30		_				Lev					Arg					agg Arg		768
35	_	gac J Asp																776
	<2	LO>	14	٠									•					
40	<23	11>	258															
		12>	PRT		• 3	·												
45	<2.	13>	Brac	lyrhi	1200:	Lum	sp.											
	<4	00>	14															
50	Me 1	t Hi	s Ala	a Ala	a Th:	r Al	a Ly	s Al	a Th	r Gl 10		e Gl	y Al	a Se	r Ar 15	g Arg		

5	Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile 20 25 30
	Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro 35 40 45
10	Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln 50 55 60
15	Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 9 75 80
20	Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95
25	Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val
23	Glu His His Lys His His Arg His Pro Gly Thr Ala Glu. Asp Pro Asp 115 120 125
30	Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140
35	Phe Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 145 150 155 160
40	
45	Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr 180 185 190
	Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp

	Arg	His 210	Asn	Ala	. Arg	Thr	Ser 215	Glu	Phe	Pro	Ala	Trp 220	Leu	Ser	Leu	Leu			
5	Thr 225	CAa	Ph∈	e His	3 Phe	Gly 230		His	His	Glu	His 235	His	Leu	. His	Pro	Asp 240))		
10	Ala	Pro	Tr	o Tr	p Arg 249	g Leu S	Pro	Glu	ı Ile	25	a Arg	J Arg	, Ala	. Le	1 Glu 259	Ar	3		
	Arg	Asp)																
15																			
	<21	L0>	15											•					
20	<2	11>	777	7												•			
20	<2	12>	DNZ	A															
	<2	13>	Nos	stoc	sp.													r	
25																			
	<2	20>																	
30	<2	221>	CD	s											•				
30	<2	222,>	(1	.) ((777)														
	<:	223>															•		
35																			
40	a M	iet V			Cys	caa c Gln I 5	eca 1 Pro 1	cca Ser	tct (Leu	cat d His d	tca (Ser (gaa : Glu	aaa Lys	пеп	gtg Val 15	tta Leu		48
	į	tg t	ca Ser	tcg Ser	aca Thr 20	atc a	aga Arg	gat Asp	gat Asp	aaa Lys 25	aat Asn	att Ile	aat Asn	aag Lys	ggt Gly 30	ata Ile	ttt Phe		96
4		att (gcc Ala	tgc Cys 35	ttt Phe	atc Ile	tta Leu	ttt Phe	tta Leu 40	tgg Trp	gca Ala	att Ile	agt Ser	tta Leu 45	atc Ile	tta Leu	tta Leu		144
5	0	ctc	tca	ata	gat	aca	tcc	ata	att	cat	aag	agc	tta	tta	ggt	ata	gcc		192

	Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 50 55 60	
5	Atg ctt tgg cag acc ttc tta tat aca ggt tta ttt att act gct cat Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 65 70 75 80	240
10	gat gcc atg cac ggc gta gtt tat ccc aaa aat ccc aga ata aat aat Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 85 90 95	288
	ttt ata ggt aag ctc act cta atc ttg tat gga cta ctc cct tat aaa Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys 100 105 110	336
15	gat tta ttg aaa aaa cat tgg tta cac cac gga cat cct ggt act gat Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125	384
20	tta gac cct gat tat tac aat ggt cat ccc caa aac ttc ttt ctt tgg Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp 130 135 140	432
25	tat cta cat ttt atg aag tct tat tgg cga tgg acg caa att ttc gga Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly 145 150 155 160	480
30	tta gtg atg att ttt cat gga ctt aaa aat ctg gtg cat ata cca gaa Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu 165 . 170 175	528
	aat aat tta att ata ttt tgg atg ata cct tct att tta agt tca gta Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val 180 185 190	576
35	caa cta ttt tat ttt ggt aca ttt ttg cct cat aaa aag cta gaa ggt Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly 195 200 205	624
4	ggt tat act aac ccc cat tgt gcg cgc agt atc cca tta cct ctt ttt Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe 210 215 220	672
4	tgg tct ttt gtt act tgt tat cac ttc ggc tac cac aag gaa cat cac Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 240	720
ţ	gaa tac cct caa ctt cct tgg tgg aaa tta cct gaa gct cac aaa ata Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile 245 250 255	768

	tct tta taa Ser Leu	777
5		
	<210> 16	
10	<211> 258	
	<212> PRT	
	<213> Nostoc sp.	
15		
	<400> 16	
20	Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu 1 5 10 15	
	The Academy Cly The Phe	
	Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe 20 25 30	,
25	Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu'Ile Leu Leu	
	35 40 45	
30	Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala	
	50 55 60	
35	Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His	
	65 70 75 80	
	Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn	
40	85	
	Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys	
45	. 100	
	Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125	

										33						
	Leu	Asp 130	Pro	Asp	Tyr	Tyr	Asn 135	Gly	His	Pro	Gln	Asn 140	Phe	Phe	Leu	Trp
5	Tyr 145	Leu	His	Phe	Met	Lys 150	Ser	Tyr	Trp	Arg	Trp 155	Thr	Gln	Ile	Phe	Gly 160
10	Leu	Val	Met	Ile	Phe 165	His	Gly	Leu	Lys	Asn 170	Leu	Val	His	Ile	Pro 175	Glu
15	Asn	Asn	Leu	Ile 180	Ile	Phe	Trp	Met	Ile 185	Pro	Ser	Ile	Leu	Ser 190	Ser	Val
	Gln	Leu	Phe 195		Phe	Gly	Thr	Phe 200	Leu	Pro	His	Lys	Lys 205	Leu	Glu	Gly
20	Gly	Tyr 210		Asn	Pro	His	Cys 215	Ala	Arg	Ser	Ile	Pro 220	Leu	Pro	Leu	Phe
25	Trp 225		Phe	· Val	Thr	Cys 230		His	Phe	Gly	Tyr 235			Glu '	His	His 240
30	Glu	і Туг	Pro	Gln	Leu 245		Trp	Trp	Lys	250		Glu	Ala	His	Lys 255	Ile
	Sei	. Lei	1												•	
35																
	<23	10>	17													
	<2	11>	2093	3												

45

50

<212> DNA

<220>

<213> Tomate

<221> promoter

<222> (1)..(2093)

<223>

5

<400> 17 tttgccagta ttacaacage ttatatgttg agcaggtaaa agcttcaatg ccctattctt 60 120 tetacagtta teaatgttge tegtetaata tetggtgtte ttetegaaat gteaattgge 10 ttgcagcaca ttgtcctcta atatccattc aagcttctta gatgatgaaa catttgtcaa 180 atttattaat ttcatagtgt tcagtctcaa ttctttagct ggttcctcat agtaaagttg 240 15 tctaatatga aatgaaaatg ttctgtgtgt tgtactaata ccttttcatg gttgtctata 300 gaacgtcgat gaagagccaa acagaaacta ttttgggctg cgatttctga taccattgta 360 tetgaatget gggtgggage teatcagaag etttacaatg ggteacatat atggageegg 420 20 tatgaggaat getgggaate agttgegttt egegtgetag gaetttteet teetggtatt 480 tetgeccaca geccagttga ttacgtgaac teegteagae ttggaaagga gagaagtace 540 25 caaatgtcgt ctttttagaa atacttttgt cacaaaatag cggggtttac agctacagaa 600 gatcatgcag aaggcgtcca gtttagtttt tgaaggttgt ttggagttta tttatctaaa 660 gtaaacttaa atcagctttt tgtttatgag ttcagtgaac tatatgttca aataagactt 720 30 ccetttgtag atatgtgttt tttttgttgt tgagcaettt gtgtgeattg gataaaccce 780 caacgtgtaa tagctaccat acaagagaag taactcgcac tgtccatgtc ttatgtggct 840 35 cgactcagaa agcattcagg gggattgata accaccctcc aaaccaactg aaccattgtg 900 aataaccacc cttcaaatca accgagtect cgtgaaggac aaatatgtgg ttttatatac 960 attaaatttt gtttttacat gcttcctctt acttctttag ttttcttgac catatcttgc 1020 40 gtttttccct tctgtaattg acacttttct tcaaaccatc cagcaatgtg gaagcttgac 1080 gattttcctt cagagtagaa attgaaaaga atcaactaaa aaggatagtc cttcgatttg 1140 45 atttccggct taaaaataaa ctaataagaa tgagagagcg aataatagaa tattttgaaa 1200 ttttaaagat attcaactat gttaaattgc gttataaatt tcttaaatta gtagcaccta 1260 atagtttagt teteaaaagt caaaactact acataatgtg eteatttte acattaaaat 1320 50

	gcctacatga	tgtaaaagta	aaactcgtag	cattctacgt	gttttactca	actcaaacat	1380
5	cctgttcatt	ttaataaacg	tacgatgagc	ttctctctcc	aattttcttt	tettttttt	1440
5	ttttaaaaaa	atatttttt	ttatatcaat	ccaaatgggc	tccaatttat	cataaattag	1500
	gtagaaactt	agatattaaa	gaaagaaaag	ggtttatctc	gcaagtgtgg	ctatggtggg	1560
10	acgtgtcaaa	ttttggattg	tagccaaaca	tgagatttga	tttaaaggga	attggccaaa	1620
	tcaccgaaag	caggcatctt	catcataaat	tagtttgttt	atttatacag	aattatacgc	1680
15	ttttactagt	tatagcattc	ggtatctttt	tctgggtaac	tgccaaacca	ccacaaattt	1740
15	caagtttcca	tttaactctt	caacttcaac	ccaaccaaat	ttatttgctt	aattgtgcag	1800
	aaccactccc	tatatettet	aggtgctttc	attcgttccg	aggtaagaaa	. agatttttgt	1860
20	ttctttgaat	gctttatgcc	actcgtttaa	cttctgaggt	ttgtggatct	tttaggcgac	1920
	tttttttt	tttgtatgta	aaatttgttt	: cataaatgct	teteaacata	aatcttgaca	1980
25	aagagaagga	attttaccaa	gtatttaggt	tcagaaatgg	g ataattttct	: tactgtgaaa	204
25	tatccttatg	gcaggtttta	ctgttattt	tcagtaaaat	gcctcaaati	gga	209

<210> 18 30

<211> 4760

<212> DNA

35 <213> Tomate

<220>

<221> promoter

<222> (1)..(4760)

45 <223>

40

<400> 18 tctagattga aataaacctt attgcattta gtatatgaga atgcatctat aaaataatgt 60 50

	ctatttttgg tggaaaatat ttgtgcgcca aagcacggtt tgtattttat attttacaat	120
	atttttgcac ggtaatatag ttgcaaggtt ttacaaacga attatctctt gaactttaaa	180
5	ttaagttcac agtttattcc aaaaataatg ttcaacttct aatcatatct ccccctattg	240
	ctagaaaaat ataacattta cgcccaactt catttaggat ccatttttat gcatggtgga	300
10	gcaattggat catatactac atatttttt aaaaaaaata gatagaaatt atttaatctt	360
	gattccgaat caattgtgat gggaaaacct tattagtttg atgtgtacat ataatgtttt	420
	atgtcaaata aatttatttt atactaaatt ttatttgaaa gtatttttct cataacaaat	480
15	aatttaacta tattggagac atgaaaattc tacaaaacca acttgcatta tcaacataat	540
	tttatagttt gaaattgtgc tcttaattaa acaattcaag ataacaatct ggtaaaatta	600
20	aaattacaag ttgataacaa acatatacat atgtacatct catagatgca ttcattaaat	660
	catataatag taaatgcttc acaatagaag ggtctatatt cattttttt ttatgtgtca	720
	aacaattttg aggaattcaa tttcatcttt aactggtaca ataatcattt tatcatgaaa	780
25	ataagcagct caagagaatt tttgaagaat cttttatttc tttaacattt aaccacatga	840
	atttttaatt tttttttgca atacatttaa accgaaatgg tcaaacgatc aaccaactga	900
30	totttattot aataaactto tagtttacat ttgcatgtga gtgcatcato attatcatat	960
	ttgtacacaa caaacaagaa aaaaatataa acaatatttt atttaaatat ttatattcca	1020
	ctttgactgt agatattaaa tcttgtcatc atttatagtc tcaatattat aattttttta	1080
35	ttttttcaaa attcaaaagt ttacaattat ttttttgaac tataatatta tccaagatga	1140
	acatctcaag aagaaaatta ttaatattgt tatggttaaa attttacata caatacttgt	1200
40	tttttgcttt acttttatct taccgtagat acacaatcga cgataactta gtgatcacac	1260
	aataataatt attttgttca tgacacaata tttataagaa atacttattt ctttctttta	1320
	teetteagta gtteataata aaaacataee ataatatttg tgatgeatte atagtaegta	. 1380
45	atgaaatgac aatttatgtc aaattatttt cttttatact ctcaaacctc ccgtaaaggt	1440
	gagatgagtc atttatccaa ttatacataa atatgtcttt attcatgctc tttatcacat	1500
50	O totgacacat toacttaatt toaagagtaa goaagoatga taactgaaac tatttatgog	1560

	tatcttacct	tgatatttga	cacattacat	gacacacctc	aacatcactt	tcaaagatta	1620
5	agcgcaccac	catattatct	ttctttttt	ttttatgaag	gttttataaa	attattaaat	1680
J	taggtccaaa	aaattgtttg	tcaaataacc	ttttatacta	gattgatgac	aaaaattacc	1740
	tttacgtttt	gaaagaccat	tttaagacct	aatctatcag	tgactcctta	aagttggcac	1800
10	aatatttcac	ttagacaccc	taattgaatg	atgttcattt	taaacaccca	atgtagggtt	1860
	ccgctatatc	attttgacac	atttcttaac	atcaacaaaa	atatataatg	agtatgtgat	1920
15	atactcgcga	atgacgtgaa	aaatgaagac	atttgttatt	tgtatcaaag	tagttactaa	1980
13	ataattaatt	ttgaataaaa	ataaaagctg	accagtaaat	caataacaca	taatatttc	2040
	cacctaataa	. ttaaaatata	aaataaaaa	gagecatete	agggtcatct	gcccaccatt	2100
20	gctatttcaa	. agaaatttgt	acgttagttt	atagaaattg	atgttaaaat	tctttcaaga	2160
	aaaatttatg	g aatgaattta	ttetetaati	taaaaatatt	ttctgttatt	tttgttgaaa	2220
25	gaaatttaac	ttggataaa	ı tggtggtta:	a aactggaaag	g aagaaaagag	g aaaaaataat	2280
20	taaaaatcat	ttcacgctc1	aatcaatga	g cgtatcacat	t tcattatgt	t atataagcaa	2340
	aagtgacaaa	a acgaaaata	a tatattaca	t gaaatgtcta	a aaataaata	t cgtctaatta	2400
30	aaatatctaa	a gtaacatat	t gtgcctaac	t ttagaggga	t catcaataa	g ttaaacccca	2460
	ttttaataa	c tcataattg	t cctttttat	t taatattgt	c acaaatcac	a atgataatta	2520
35	acattaatt	t gtcctttgt	g acgtccata	t tcatgcatt	t aaccaatca	t cttcatttgg	2580
00	acttattat	c acaattatc	c cactttcct	c'acaaaatgg	a gcattcaag	t ggaatagact	2640
	acacgattt	t taatttcat	c aaaaacato	t ttttgcttt	a ttcattatt	a tattgtcgct	2700
40	attgttgaa	t tttatttgc	c ctaaattt	t taccataaa	t agattttt	t tttagaaaaa	2760
	ggagattga	c taattettt	t cttgtagg	aa aaggtttag	g actctataa	a tagagacata	2820
45	ttccttcta	a cttaatcaa	c atttacaa	g tagtettaa	aa gactttgaa	aa gtttttggtt	2880
70	agggggaga	a attgtgggt	c acaagett	ga tacgttato	ca attgtgta	aa cctcccatgt	2940
	attctgagt	g aatttggt!	g aggttgtt	tc cctctgta	tt ttgtactc	tc atatttatag	3000
50	tggattgtt	c atctcttt	g tggacgta	gg tcgattga	cc gtcgattg	ac cgaaccacgt	3060

	taaatctttg 1	tatttttga	tatatttctc	attatettet	tactcgtgat	Ctttcaaggt	3120
_	ttgcattgct a	atcttccgcg	ttacaccaac	ttatttacga	tcctaacagc	tatggtgtgg	3180
5	aaacataaat (caaacatttt	actgatataa	acacatcttt	gattataaca	tgatagaaat	3240
	ttgagcccaa	ctttttatca	tcattatata	caaaaagttc	taaattttt	ttttgatgta	3300
10	gtaaaactta	aatccatagt	cttgccccta	aaccaatgac	ataatatata	acccaaaata	3360
	tactagtttt	cgccctcgag	ccctttaaaa	agtatagtca	atatttacgg	tgaccgtgaa	3420
15	tttcttaatt	atgatatata	atttaaaaga	aatcatgatc	acattctact	gatgagaaca	3480
13	tgtgctaatc	aagggaaaac	atggatgtga	aaaatacttt	ttgttaaaag	taaaaaaaaa	3540
	tgtgaaattt	tgttagttat	ttactaccta	tacattattt	gagcatgtgc	aaactttaca	3600
20	aatacctaat	agaagatttt	cacctgcctg	tatatatgta	aattaattat	aatgaacact	3660
	ctcacataaa	ataattatca	gtatatacat	taatacttgo	: cctccacaat	gaattaaata	3720
25	aaatgtagaa	catgatctac	acttcaataa	aactaagaco	: ataaagaata	atttcaaaat	3780
20	atacacatgt	caacaataaa	ttatttgcat	: attatattaa	a cttactaaac	e aatctttact	3840
	tttgaaatat	aaaaataato	aagttataag	tctgctcaaa	a gtaaagcact	tgttagactc	3900
30	atctgatttt	gagaaggtaa	gcaaattgat	ggtgcataa	t agtcacaag	t aaaatataaa	3960
	atagatttca	ttagtaaaat	tgttttta	c tttctttat	a tataattat	c aatatccttc	4020
35	aatggtaggt	taattatatt	gttaacttc	t tgttgaatt	a aagcaataa	g acaagaatat	4080
00	taaagataaa	agaacaataa	a aaatagaaa	g actaagaga	t aagagtttt	c ttattcttct	4140
	ttcaataagt	atcatcaag	t gtatacaat	a taaatttt	g tatttttga	t ctatctattt	4200
40	ataatgttat	atataagca	t acaaaagat	c agtcataaa	t atgacttta	a tcatgaaaat	4260
	aatgaaagag	g attatgaag	g cgtaaggtt	a ctagaataa	it agtcattaa	a aaaaggggtt	4320
45	atctttataa	ttgaataat	t gatgaagta	a tggagataa	it tagtgagca	t aaatttttt	. 4380
70	aaaaaaatgg	g acatttaca	c tataatatt	t tataacact	t teeettaaa	c atctaggtat	4440
	aaataatgag	g tcttgtcaa	a atcttagta	g gaaaaatto	t gtgaaatt	t tttagtgaaa	4500
50	acaaatgata	a taaatatct	t gaatactca	t tatttgtt	t ctcattaa	a atcttatctg	4560

	acctataaaa taaattattt gctcaactca aaatagtttt tcattctaaa attagtataa	4620
c	ttattagtga atatttaatt aacataattg tatactaagg ggcctataaa ttggattctt	4680
5	ctcaaagaaa aataaaatca ccacacaact ttcttcttct gctcatcaat tagcaattaa	4740
	tccaaaacca ttatggctgc	4760
0	•	
	<210> 19	
	<211> 1229	
15	<212> DNA	
	<213> Tomate	
20		
	<220>	
	<221> promoter	
25	<222> (1)(1229)	
	<223>	
30		
30	<400> 19 gatcttactt taccataatg gtgaaaagga tagagaccca catggttttt acttcgttat	60
	agagacaaga tgaaaacaaa tctaaaattt aatattatag atggatagat gatggacaac	120
35	aaaaagagaa aagaagatac tggtcattgg tccaaaacag ccacccgaat caatatatga	180
	ccgaaaaaca aaagctacag aatcatatct gtgcaacggt gccacagtgc tataggatag	240
40	cacaaccaca ctgtcacata aaaaagagga ttttgcactc gttttagatg gagtttcgta	300
	attttcgggt ctttcaagct taaatatata cttcattaaa gcttcgaatt ttgtaatgtt	360
	caattetace tetttgatgt tegataceta taaaataatt aaataaaegt atagaegtag	420
45	gaacaattaa geggagttag atagtgeatt tatgatteta eetgtgagtg eaatggtaaa	480
	atggacatta taaaagagta ggggcaaaga gggaagtgaa aaattctccc cacttagcca	540
50		600

	gtatacttct tccatctcct ttaattatta aaaggttttc ctctctttac tctttctctc	660
_	taaattacta ttctgaagta tattttcttt tataaaaaga gtaataaact ttatttccat	720
5	taaaagaaca aacaacaaga aatgataatc aaatacacat tcatattttt aaaaaaaaag	780
	ttaaacaaga tatagaaata gttatcaaat atatttatgt tgtcattcct tgtatacaat	840
10	ggcattcctt tagctttgtt tatgtatttc ctgagcttct cttagtgtac tatatccttt	900
	aatattaatg catctttcga tcttgctaag atatgataaa aatagacgac acgtgtcaca	960
15	acctaattga gatatttcga tgtactttct atccgtctta gcttgtaatt aattattgtt	1020
15	aaaaaagaat actcaattaa ctagaaacaa gaaataagaa acgaaaacat tacaaaacgg	1080
	agttgaagcg tgcaaatttg tggaaatgat tgttatcatg aaccagaaaa cattaaataa	1140
20	ctcttcctat aaaaggccct tattcttcac tttctcaaat cacgtcctaa agatatcaaa	1200
	gatttcaact gatagcaaaa agcactact	1229
25	<210> 20	
	<211> 845	
30	<212> DNA	
00	<213> Tomate	
35	<220>	
	<221> promoter	
40	<222> (1)(845)	
40	<223>	
45	<400> 20 ctgttattga atttctataa aatgttataa tattgatttc ttaatgatca gttaactacg	60
	tgattatttg atatgtttt aatctaaaat gtgatatgta aaatatagaa gaaaaaaaat	120
	tgattatity atalytics additionable graduages seems of	

taaaaagaac tttaagaaaa aaatttcaac ccaccccaac ctaaaatcct aggtccgcca

	tggtaattat agatatatga tgatgaaggg caaatattgg tctatgagaa tttcggtgat	240
_	actaccgctt gaagagcaat aatggttttg ggactccgat gagggaaaca ttcaaatatg	300
5	atggattttg gtgatactat gtttacccga gctagctatc acagaataat ctacatccca	360
	caaatgaaat atgttatagg ctaccaatta ggaagtagtg gaartatgaa gaagtaggga	420
10	tgtgcaaata taagagaaaa tttgaaaatt atgattgaaa caagttatgt ttttttaact	480
	agatgaatta aatggtttaa agatttgtag atttataatc aaacaattac cgctactcta	540
	teggtgacta ecaattecat cattgtaaat aacaaataae agattegttg etggatgtet	600
15	tagtgccgtg aagcctacaa atcacactat aaactgctta gctctcgagc gttactaatt	660
	tggtgattac caattccaac attgcgactt cttctactag tagtactaaa atagcaagta	720
20	atatgcattt gtggtaagat gtttggtgtt aacctttcct aaccagacta taaatgacct	780
	caacactata gtggagtttc atcgatcatc attctaaacg aaaaacttga agtgaaagca	840
	tcaag ,	845
25		
	<210> 21	
30	<211> 3417	
	<212> DNA	
	<213> Tomate	
35		
	<220>	
40	<221> promoter	
.0	<222> (1)(3417)	
	<223>	
45	5	
	<400> 21 aagettgget geaggtegae etgeaggtea aeggateaat geettgttaa taatatgaaa	60
50	O ataagacgta aaagaagtet tgeatatgea eeataatatt agaettatgg acaaaagtaa	120

	gttggttcaa attacgcttt tatttatcca catagcaaga aaataatact caaaatccaa	180
-	cggtatcggt tattttatat tttactctac atgtatatat gtagtataat ggacataaat	240
5	totgtogtaa ttatacatat attaataatg aggattgtaa aataatatgo aaaaacgtog	300
	tatttgacat actaatagct aaaatactac ctactatcat atataattag ttaactatgt	360
10	gccttttaag aaaaattacg tgaaataaca aatatttaga gcatattatg taatatagct	420
	gtagttttat tattttttgt taatggctac aatttcgcaa aattttccta ttttgtttct	480
	taatcgtata aatccaaatt ttgtataatt atgaccttaa ttgtttaatt cagatttcgt	540
15	ataaaattcg atttttgatt ttataaatta aaatttatac ttactttagc tacttgttta	600
	tgatttatca aaaaattcat attaatctat ttgtatatgg acaagcaaaa tatacaaatg	660
20	gagttctgaa aatttctaaa tgcatatact taatatcttt gatggtcact caactatcaa	720
•	ctttttccat aaaaagtcac ttaacattga ttttcaactc gaaaatcact caactatgaa	780
	atctttgtat agaaagtcac tcaacctatt taattatttt tttccattat atctgttgtc	840
25	acgaaatatt atttctaact aatattctaa gaataaacat acatccattt aaatcattta	900
	ataaacccgc ccacttgacc taacccacat aatattaaca cttttgtttt acttttattc	960
30	tccaaaatta ttttcttggt ttcccattct ttctcctttg ctttttttt cttcttctca	1020
	atttcagcct ttttcttcct ttttttagta aacctcagtc aaataggaat tagattgtga	1080
	ttaaaatatt attagaagga tgcagggttg tacaaagaga gtttattaag agataatcta	1140
35	taaaaaaaaa aaagtcagat aatgcatatt cagattcaga gatcattaaa tgatgacttt	1200
	tttcgtaata ggttttcttt aaatcctttc gccttcatac gacgactctc gataataaca	1260
40	tcgtttaaag ctaataatgc taatgaacaa taatcaaaat aaaaaagaat tcggatacaa	1320
	gagaaaatga tttagtgaga gaaaaaattg agatatteet tatteetaae taaacgaagg	1380
	aagaagaggc taaaattgag attcagttaa aaaaaaaaaa	1440
45	atgagagaaa gtaattttga aaaataaaaa taaattaaga gggtaaatat tttattttta	1500
	gcgagttggg ttaagtggtg ccggtcatta aatggatata tgtttatttc ttaaaatttt	1560
50	O agttagaaat acaaatttca aatcaacaaa ttttaatgaa aaaataatta aatággttga	1620

gtggctttct atgcaaagat ctcatagttg agtgattttt gagtagaaaa tcatagttaa 1680 gtgagtttct gtgaaaaaa attgatagtt gagtgactat caaagatatt aactctagac 1740 5 ttgtcatatt cgtatactta catacgaaat atacaaacct ctgcctccat gacaagcaaa 1800 aaactataac tatgaaacaa tattttcgaa atcatagcta taaagtctta ttatatctaa 1860 10 1920 taacgaaaaa ggacattttt atgtcacctg agagcccatc ggtagattca tcacattttt 1980 togtttottg taataaactg tacacatata aggagaaatt aaattagaga ttatttttcc 2040 15 attttgagga gattaataaa tttaaaatgt aacttaacat gtaaactgct ataaaggtaa 2100 caaaacacgt aaactgctat aaaggtaatt ctatttaaaa gataaataaa tgcttaaaag 2160 20 aagtgccaaa aaaacacaaa caaacaaatg aaactaaacc tacttcaagg gaagttcttg 2220 tagtataaaa ataaataaag tcaacttatt cacgacattt ctttttggt ttcttttggc 2280 tacgtattca tatttaagtc tgactaattt agattctcgc tatatataaa agattcaggg 2340 25 gtggctcaac gcaattggag gcctagagca aaatttcaat tcgcggccta atatattata 2400 tactttatat acctatttat tcaaaattta tttttttac actatttaga tggaaattat 2460 30 tagtacttaa tattgttttt tcagttatta gttttaggta aaattttatt aatacaacat 2520 tgaaaaacat cetttaagtg agacaattat tatatgtatt gttaacatag tgetataagt 2580 aataagtaaa taaatattaa ataaaaataa gagtaagaac catagaattt gacacaagaa 2640 35 gttgatgact tggtatacct cattttaaca tgcttgtact ttagtaatgc ttgaatctaa 2700 aatttaaaaa gaaataaaaa agaatttgta atccactttt tccaacactt ttcactgtta 2760 40 attettattt ttaacatagt acaaaaaata ttaaaatgga taaaataatt tattttataa 2820 aagattatat atatatttt ttatcatata taactaattt ttctataaaa atttaaacac 2880 ataatttaat tttaaaaaaa atttggggct ttggggccta agacaaaggc cttaaaggac 2940 45 aaaacataga gccgcccctg aaaagatctc attcgaaaga aaatatgcat taccaatgat 3000 ttttcgtacc cagagctcaa aatcaaaatt gtactgttat ttttttaaaa aatttcatct 3060 50 cagactaaat ggaattttt tctttggtta acctgtttga tcaatctttt ggaatcagtt 3120

	aattttgaaa aataaattaa tgagaaataa tttgtatttg tccagcttat ttaagaatta	3180
_	tttttgagca acaatttata tttagtcacg cttttaagtg tatttttaa aataaaatta	3240
5	aggtattatt tgaaaaaatt acttttaaaa aaattgaatt aaattctgtt actcttatta	3300
	tatactccta tataatttga ttgccaaaaa tatcaaacgt ttaatatttg aagttgatgt	3360
10	gagggattac ttcttgatta aattgtacta caatgtaata ttatcaaatt aaagctt	3417
	<210> 22	
15	<211> 1155	
	<212> DNA	•
20	<213> Haematococcus pluvialis	
	<220>	
25	<221> CDS	
	<222> (6)(995)	
30	<223>	
35	<pre><400> 22 gaagc atg cag cta gca gcg aca gta atg ttg gag cag ctt acc gga agc Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser 1</pre>	50
40	gct gag gca ctc aag gag aag gag aag gag gtt gca ggc agc tct gac Ala Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp 20 25 30	98
4.5	gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gag gag tca Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser . 35 40 45	146
45	gac gcg gcc cgc ccg gga ctg aag aat gcc tac aag cca cca cct tcc Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser 50 55 60	194
50	gac aca aag ggc atc aca atg gcg cta gct gtc atc ggc tcc tgg gcc	242

	Asp '	Thr 65	Lys	Gly	Ile	Thr	Met 70	Ala	Let	ΙAl	a V	/al	Ile 75	Gly	Ser	Tr	o A.	La		
5	gca Ala 80	gtg Val	ttc Phe	ctc	cac His	gcc Ala 85	att Ile	ttt Phe	ca:	a at n Il	le 1	aag Lys 90	ctt Leu	ccg Pro	acc Thr	tc Se	c t r L 9	eu	2	290
10	gac Asp	cag Gln	ctg Leu	cac His	tgg Tr	, Lei	ccc Pro	gtg Val	g tc L Se	r A	at sp	gcc Ala	aca Thr	gct Ala	cag Gln	ct Le 11	u V	tt al	;	338
	agc Ser	Gly	ago Ser	ago Se:	Se	c cto	g cto	g cad	c at s II	le V	tc al	gta Val	gta Va]	tto Phe	ttt Phe	e Va	c c	tg Leu		386
15	gag Glu	tto Phe	cto Lev	1 ТУ	c ac r Th	a gg r Gi	y Le	t tt u Ph 13	e I	tc a le I	cc	acg	cat Hi	gat S Asj 14	Al:	t at a Mo	tg (et 1	cat His		434
20	ggc	acc Thi	: Il	c gc e Al	c at a Me	g ag et Ar	a aa g As 15	n Ar	g G	ag (ln l	ctt Leu	aat Ası	ga n As	p Ph	c tt e Le	g g u G	gc ly	aga Arg		482
25	gta Val 160	. Cy	c at s Il	c to e Se	c tter Le	eu Ty	ic go /r Al	c to	gg t rp P	tt (gat Asp	ta Ty 17	r As	c at n Me	g ct	g c	ac Iis	cgc Arg 175	/	530
30	aag Lys	у са в Ні	t to s Ti	p G:	lu H	ac ca is H: 80	ac aa is A:	ac c	ac a	ect Thr	ggc Gly 185	r Gl	.g gt u Va	:g. gg	rc as	ys 1	gac Asp 190	cct Pro		578
	gao Asj	c tt p Ph	.c ca .e H:	Ls A	gg g rg G 95	ga a ly A	ac c sn P	ct g ro G	ly :	att Ile 200	gtg Val	g co L Pi	c to	gg ti	ne A	cc a la a 05	agc Ser	ttc Phe		626
35	at Me	g to t Se	er S	gc t er T 10	ac a	itg t Met S	cg a er M	et 1	gg Trp 215	cag Gln	tt: Ph	t go	cg c la A	rg L	tc g eu A 20	ca	tgg Trp	tgg Trp		674
40	ac Th	ır V	tg g al V 25	tc a	itg (Met (cag o	eu I	tg 9 Leu (ggt 31y	gcg Ala	cc	a a o M	et I	cg a la A	ac c sn I	etg Seu	ctg Lev	gtg Val		722
45	tt Ph	ne M	tg g et <i>P</i>	rcg (gcc (Ala :	ccc a Pro :	atc (ctg Leu	tcc	gc : Al	.a F	tc o	ege t Arg l	itg (Leu 1	ttc Phe	tac	ttt Phe 255		770
50	G.	gc a ly T	.cg t	ac fyr	Met	ccc Pro 260	cac His	aag Lys	cct Pro	gag	ı Pı	et g ro (gc 31y	gcc (gcg Ala	tca Ser	gg G1: 27	c tct y Ser 0		818

	tca Ser	cca Pro	gcc Ala	gtc Val 275	atg Met	aac Asn	tgg Trp	tgg Trp	aag Lys 280	tcg Ser	cgc Arg	act Thr	agc Ser	cag Gln 285	gcg Ala	tcc Ser		866
5	gac	ctg Lev	gtc Val 290	Ser	ttt Phe	ctg Leu	acc Thr	tgc Cys 295	Tyr	cac His	ttc Phe	gac Asp	ctg Leu 300	HIS	tgg Trp	gag Glu		914
10	cac His	cac His	a Arç	tgg Trp	ccc Pro	ttt Phe	gcc Ala 310	Pro	tgg	tgg Trp	gag Glu	ctg Leu 315	Pro	aac Asn	tgc Cys	cgc Arg	: :	962
15	cg Ar 32	g Le	g tci u Se:	r ggo	c cga y Arg	a ggt g Gly 325	Let	gtt 1 Va:	cct l Pro	gco Ala	tag a	g ctg	gaca	acac	tgca	ıgtg	ggc	1015
	cc	tgct	.gcca	gct	gggc	atg (cagg	ttgt	gg c	agga	ctgg	g tg	aggt	gaaa	agc	tgca	.ggc	1075
20						tgc						•						1135
					_r aget													1155
25	<	210>	23														,	
	<	211>	32	9										. •				
	<	212>	PR	т														
30	<	213>	. На	emat	ococ	cus]	pluv	iali	s									
35		:400 :	> 23	3														
		Met (1	Gln I	Seu 1		Ala I	hr V	al N	Met I	Leu (31u 0	3ln I	leu 7	rhr (∃ly S	Ser I	Ala	
40	ı	Glu	Ala		Lys (20	Glu 1	Lys (Glu :	Lys (Glu 25	Val i	Ala (gly ;	Ser	ser 3	Asp	Val	
45	5	Leu	Arg	Thr 35	Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser	Glu 45	Glu	Ser	Asp	
5	0	Ala	Ala 50	Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Tyr	Lys	Pro 60	Pro	Pro	Ser	Asp	

5	Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp Ala Ala 65 70 75 80
	Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95
10	Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110
15	Gly Ser Ser Leu Leu His Ile Val Val Phe Phe Val Leu Glu 115 120 125
20	Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly 130 135 140
25	Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val 145 150 155 160
	Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys 165 170 175
30	His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp 180 185 190
35	Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met 195 200 205
40	Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr 210 215 220
45	Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe 225 230 235 240
	Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly 245 250 255

	Thr	Tyr	Met	Pro 260	His	Lys	Pro	Glu	Pro 265	Gly	Ala	Ala	Ser	Gly 270	Ser	Ser		
5	Pro	Ala	Val 275	Met	Asn	Trp	Trp	Lys 280	Ser	Arg	Thr	: Ser	Gln 285	Ala	. Ser	As _]	ρ	
10	Leu	Val 290		Phe	Leu	Thr	Cys 295		His	: Phe	e As <u>r</u>	Let 300	ı His	Tr	Glu	ı Hi	S	
15	His 305		Trp	Pro) Phe	Ala 310		Tr	Tr	Gl	u Le		o Asi	n Cy	s Ar	g Ar 32	.g	
	Lev	ı Sei	Gly	y Arg	g Gly 32!		u Va	l Pr	o Al	a								
20	<2	10>	24															
	<2	11>	111	1														
25	<2	12>	DNA															
	<2	13>	Hae	matc	cocc	us p	oluvi	lalis	3					•				
30	<2	20>									•							
	<2	221>	CDS	3														
35	<2	222>	(4)) (951)													
	<:	223>																
40	_	400>	24								~~~	220	asa i		rca (aac	agc	48
	t	gc a M 1	et L	ta g Leu G	ag g Hu A	la I	ccc a Leu I	rag g	gag d Blu :	Lys	Glu	Lys 10	gag Glu	Val	Ala	Gly	Ser 15	
45	+	ct g Ser <i>F</i>	rsb /	jtg t /al I	Leu 1	egt a Arg '	aca f	tgg :	gcg Ala	acc Thr	cag Gln 25	tac Tyr	tcg Ser	ctt Leu	Pro	tca Ser 30	gaa Glu	96
50) <u>c</u>	gag t	cca g	gac (gcg (gcc	cgc	ccg	gga	ctg	aag	aat	gcc	tac	aag	cca	cca	144

	Glu Ser		Ala Al 35	a Arg	Pro Gl	y Leu 40	Lys	Asn A	la Tyr	Lys Pi 45	ro Pro	
5	cct tcc Pro Ser	gac Asp 50	aca aa Thr Ly	g ggc rs Gly	atc ac Ile Th	nr Met	g gcg t Ala	cta c	gct gtc Ala Val 60	atc g	gc tcc ly Ser	192
10	tgg gcc Trp Ala	gca Ala	gtg tt Val Pl	c ctc ne Leu	cac go His A	cc at	t ttt e Phe	Gln :	atc aag Ile Lys 75	ctt c Leu P	cg acc	240
45	tcc tto Ser Lev	g gac	cag c	tg cac eu His 85	tgg c Trp L	tg cc eu Pr	c gtg o Val	tca Ser 90	gat gcc Asp Ala	aca g	oct cas Ala Glr 95	g 288 n
15	ctg gt Leu Va	t agc l Ser	Gly S	gc ago er Ser 00	agc c	tg ct eu Le	g cac eu His	: Ile	gtc gta Val Val	. Val 1	ttc tti Phe Pho 110	t 336 e .
20	gtc ct Val Le	g gag u Glu	ttc c Phe I 115	tg tac eu Ty	e aca c	3ly L	tt tt: eu Pho 20	t atc e Ile	acc acc	g cat r His 125	gat gc Asp Al	t 384 a _.
25	atg ca Met Hi	t ggc s Gly	Thr :	atc gc [le Al	a Met .	aga a Arg A 135	ac ag sn Ar	g cag g Gln	ctt aa Leu As 14	n Asp	ttc tt Phe Le	:g 432 eu /
30	Gly A	ga gta rg Val	a tgc	atc to Ile Se	c ttg r Leu 150	tac g Tyr A	jec tg Ma Tr	g ttt p Phe	gat ta Asp Ty	c aac r Asn	atg ct Met Le	eu 480
	cac c His A 160	gc aa rg Ly	g cat s His	tgg ga Trp Gl	lu His	cac a	aac ca Asn Hi	ac act Is Thr	ggc ga	ıg gtg Lu Val	GIA P	ag 528 ys 75
35	gac c Asp P	ct ga ro As	c ttc p Phe	cac as His A	gg gga rg Gly	aac o	Pro G	gc att ly Ile 85	t gtg co	cc tgg ro Trp	ttt g Phe A 190	cc 576 la
40	agc t Ser E	tc at	g tcc t Ser 195	agc t Ser T	ac atg yr Met	Ser	atg t Met T 200	gg cag	g ttt g n Phe A	cg cgc la Arg 205	J Leu A	gca 624 Ala .
45	tgg t	rp T	eg gtg ar Val	gtc a Val M	tg cag et Gln	ctg Leu 215	ctg g Leu G	gt gc Sly Al	g cca a a Pro M	itg gcg Met Ala 220	g aac o a Asn 1	etg 672 Leu
50	Leu '	gtg t Val P 225	tc atg he Met	gcg g Ala <i>P</i>	gee geg Ala Ala 230	Pro	atc o	etg to Seu Se	ec gcc ter Ala 1 235	tc cg	c ttg g Leu	ttc 720 Phe

5	tac ttt ggc acg tac atg ccc cac aag cct gag cct ggc gcc gcg tca Tyr Phe Gly Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser 240 245 250 255	768
3	ggc tct tca cca gcc gtc atg aac tgg tgg aag tcg cgc act agc cag Gly Ser Ser Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln 260 265 270	816
10	gcg tcc gac ctg gtc agc ttt ctg acc tgc tac cac ttc gac ctg cac Ala Ser Asp Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His 275 280 285	864
15	tgg gag cac cac cgc tgg ccc ttc gcc ccc tgg tgg gag ctg ccc aac Trp Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn 290 295 300	912
20	tgc cgc cgc ctg tct ggc cga ggt ctg gtt cct gcc tag ctggacacac Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala 305 310 315	961
	tgcagtgggc cctgctgcca gctgggcatg caggttgtgg caggactggg tgaggtgaaa	1021
25	agetgeagge getgetgeeg gaeaegttge atgggetaee etgtgtaget geegeeaeta	1081
23	ggggagggg tttgtagctg tcgagcttgc	1111
30	<210> 25	
	<211> 315	
	<212> PRT	
35	<213> Haematococcus pluvialis	
40	<400> 25	
	Met Leu Glu Ala Leu Lys Glu Lys Glu Val Ala Gly Ser Ser 1 5 10 15	
45	Asp Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu 20 25 30	
50	Ser Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro 35 40 45	

	5	Ser Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp 50 55 60
		Ala Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser 65 70 75 80
•	10	Leu Asp Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu 85 90 95
	15	Val Ser Gly Ser Ser Leu Leu His Ile Val Val Phe Phe Val 100 105 110
	20	Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met 115 120 125
	25	His Gly Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly 130 135 140
		Arg Val Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His 145 150 155 160
	30	Arg Lys His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp 165 170 175
	35	Pro Asp Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser 180 185 190
	40	Phe Met Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp 195 200 205
	45	Trp Thr Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu 210 215 220
		Val Phe Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr 225 230 235 240
	50	0

	Phe	Gly	Thr	Tyr	Met 245	Pro	His	Lys	Pro	Glu 250	Pro	Gly	Ala	Ala	ser 255	GIÀ		
5	Ser	Ser	Pro	Ala 260	Val	Met	Asn	Trp	Trp 265	Lys	Ser	Arg	Thr	Ser 270	Gln	Ala	L	
10	Ser	Asp	Leu 275		Ser	Phe	Leu	Thr 280		Tyr	His	Phe	Asp 285	Leu	His	Tr	·	
15	Glu	His 290		Arg	Trp	Pro	Phe 295		Pro	Trp	Trp	Glu 300		. Pro	Asn	. Cy	s	
	Arg		Leu	. Ser	: Gly	Arg		/ Let	ı Val	l Pro) Ala 315							
20	<2]	.0>	26		,													
	<23	11>	103	L												•		
25	<2	12>	DNA															
	<2	13>	Hae	mato	cocc	us p	luvi	alis						. •				
30	<2	20>				•												
	<2	21>	CDS	1														
35	<2	22>	(6)	(1	L031)		,											
	<2	23>																
40	<4	£00>	26 at 0	cag	cta	σcа	aca	aca	qta	atg	ttg	gag	cag	ctt	acc	gga	a agc	50
	96	age	Met 1	Gln	Leu	Ala	Ala 5	Thr	Val	Met	Leu	Glu 10	Gln	Leu	Thr	Gl	y Ser 15	
45	g A	ct ga	ag g lu A	ca c	eu L	ag g ys G O	ag a lu L	ag g ys G	ag a Slu I	ag g ys G	ag g lu V 5	tt g al A	ca g la G	gc a	er S	ct er	gac Asp	98
50	g	tg t	tg c	gt : a	ıca t	gg g	cg a	cc c	ag t	ac t	cg c	ett c	cg t	ca g	lag g	Jag	tca	146

										55							
	Val	Leu	Arg	Thr 35	Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser	Glu 45	Glu	Ser	
	gac	gcg	gcc	cgc	ccg	gga	ctg	aag	aat	gcc	tac	aag	cca	cca	cct	tcc	194
5			Ala														
			50					55					60				
	gac	aca	aag	ggc	atc	aca	atg	gcg	cta	gct	gtc	atc	ggc	tcc	tgg	gct	242
40	Asp		Lys	Gly	Ile	Thr		Ala	Leu	Ala	Val		Gly	Ser	Trp	Ala	
10		65					70					75					
	_		ttc			_											290
		Val	Phe	Leu	His		Ile	Phe	Gln	Ile		Leu	Pro	Thr	Ser		
15	80					85	•				90					95	
	gac	cag	ctg	cac	tgg	ctg	ccc	gtg	tca	gat	gcc	aca	gct	cag	ctg	gtt	338
	Asp	Gln	Leu	His	Trp	Leu	Pro	Val	Ser	Asp	Ala	Thr	Ala	Gln	Leu	Val	
					100			•		105				•	110		
20	agc	ggc	agc	agc	agc	ctg	ctg	cac	atc	gtc	gta	gta	ttc	ttt	gtc	ctg	386
	Ser	Gly	Ser	Ser	Ser	Leu	Leu	His	Ile	Val	Val	Val	Phe			Leu	
				115					120					125			
	gag	tto	ctg	tac	aca	ggc	ctt	ttt	atc	acc	acg	cat	gat	gct	atg	cat	434
25	Glu	Phe		_	Thr	Gly	Leu			Thr	Thr	His			Met	His	
			130					135					140				
	ggc	acc	: atc	gcc	atg	aga	aac	agg	cag	ctt	aat	gac	ttc	ttg	ggc	aga	482
00	Gly			Ala	Met	Arg		_	Gln	Leu	Asn			Lev	ı Gly	Arg	
30		145	5				150)				155	•				
	gta	tgo	ato	tec	ttg	tac	gcc	tgg	ttt	gat	tac	aac	ato	, ct	g cad	c cgc	530
•		-	; Ile	. Ser	Lev	_		Trp	Phe	e Asp	_		Met	: Let	ı His	Arg	
35	160)				165	5				170)				175	
33	aad	r cat	t ta	qaq	r cac	cac	aac	cac	act	gge	gaq	gto	1 gg	z aag	g gad	cct	578
	_				-								_			Pro	
					180)				185	5				19	0	
40	gao	: tt	c cac	agg	3 998	a aac	c cct	gg g	att	gt	3 66	e tg	g tti	c gc	c ag	e ttc	626
	Asp	Ph	e His	a Arg	g Gl	y Ası	n Pro	o Gly	, Ile	e Vai	l Pro	o Trj	p Pho	e Ala	a Se	r Phe	
				199	5				20	ס				20	5		
	ato	g to	c ago	c ta	c at	g to	g at	g tg	g ca	g tt	t gc	g cg	c ct	e ge	a tg	g tgg	674
45	Met	s Se	r Se	r Ty	r Me	t Se	r Me	t Tr	p Gl	n Ph	e Al	a Ar	_		a Tr	p Trp	
			21	0				21.	5				22	0			
	ace	g gt	g gt	c at	g ca	g ct	g ct	g gg	t gc	g cc	a at	g gc	g aa	c ct	g ct	g gtg	722
																u Val	
50		22	5				23	0				23	5				

5	ttc atg gcg gcc gcg ccc atc ctg tcc gc Phe Met Ala Ala Ala Pro Ile Leu Ser Al 240 245		0
	ggc acg tac atg ccc cac aag cct gag cc Gly Thr Tyr Met Pro His Lys Pro Glu Pr 260 26		.8
10	tca cca gcc gtc atg aac tgg tgg aag tc Ser Pro Ala Val Met Asn Trp Trp Lys Se 275 280		
15	gac ctg gtc agc ttt ctg acc tgc tac ca Asp Leu Val Ser Phe Leu Thr Cys Tyr Hi 290 295		14
20	cac cac ege tgg eee ttt gee eee tgg tg His His Arg Trp Pro Phe Ala Pro Trp Tr 305 310	.99 949 0-9 0009-	62
25	cgc ctg tct ggc cga ggt ctg gtt cct g Arg Leu Ser Gly Arg Gly Leu Val Pro A 320 325		10
	gaa gag gat ctg aat agc tag Glu Glu Asp Leu Asn Ser 340		31
30	<210> 27 <211> 341		
35			
40)		
		Glu Gln Leu Thr Gly Ser Ala 10 15	
45	Glu Ala Leu Lys Glu Lys Glu Lys Glu V 20 25	Val Ala Gly Ser Ser Asp Val 30	
5 0			

		Leu	Arg	Thr 35	Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser	Glu 45	Glu	Ser	Asp
	5	Ala	Ala 50	Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Tyr	Lys	Pro 60	Pro	Pro	Ser	Asp
	10	Thr 65	Lys	Gly	Ile	Thr	Met 70	Ala	Leu	Ala	Val	Ile 75	Gly	Ser	Trp	Ala	Ala 80
	15	Val	Phe	Leu	His	Ala 85	Ile	Phe	Gln	Ile	Lys 90	Leu	Pro	Thr	ser	Leu 95	Asp
	0	Gln	Leu	His	Trp 100	Leu	Pro	Val	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser
2	20	Gly	Ser	Ser 115	Ser	Leu	Leu	His	Ile 120	Val	Val	Val	Phe	Phe 125		Leu	Glu
	25	Phe	Leu 130	_	Thr	Gly	Leu	Phe		Thr	Thr	His	Asp 140		Met	His	Gly
	30	Thr 145		Ala	Met	Arg	Asn 150	Arg	Gln	Leu	Asn	Asp 155	Phe	Leu	, Gly	Arg	Val 160
	35	Cys	: Ile	. Ser	Leu	Tyr 165	Ala	Trp	Phe	Asp	Tyr 170		Met	Leu	His	175	Lys
		His	Trp	Glu	His 180		Asn	His	Thr	Gly 185		val	Gly	. FÀs	190		Asp
	40	Phe	e His	195		Asn	Pro	Gly	7 [.] Ile 200		Pro	Trp	Phe	205		Phe	e Met
	45	Sei	210		. Met	: Ser	Met	Trp 215		Phe	e Ala	a Arg	220		a Tri) Tr) Thr
	50	Val	l Val	L Met	: Glr	ı Lev	Lev	Gly	y Ala	Pro) Met	Ala		ı Lei	ı Leı	ı Va:	l Phe

5	Met Ala	Ala	Ala	Pro 245	Ile	Leu	Ser	Ala	Phe 250	Arg	Leu	Phe	Tyr	Phe 255	Gly
	Thr Tyr	Met	Pro 260	His	Lys	Pro	Glu	Pro 265	Gly	Ala	Ala	Ser	Gly 270	Ser	Ser
10	Pro Ala	Val 275	Met	Asn	Trp	Trp	Lys 280	Ser	Arg	Thr	Ser	Gln 285	Ala	Ser	Asp
15	Leu Val 290		Phe	Leu	Thr	Cys 295		His	Phe	Asp	Leu 300		Trp	Glu	His
20	His Arg	Trp	Pro	Phe	Ala 310		Trp	Trp	Glu	Leu 315		Asn	. Cys	Arg	Arg 320
25	Leu Ser	- Gly	Arg	325		ı Val	. Pro) Ala	330		. Lys	. Lev	ı Ile	335	
	Glu Ası) Lev	Asr 340										. •		
30	<210>	28													
	<211>	777													
35	<212>	DNA													
	<213>	Ara	bido	psis	tha	lian	a								
40	<220>										•				
	<221>	pro	mote	r											
45	<222>	(1)	(7	77)											٠
	<223>														

		28 ctc	actgatttcc	attgcttgaa	aattgatgat	gaactaagat	caatccatgt	60
5	tagtttca	aaa	acaacagtaa	ctgtggccaa	cttagttttg	aaacaacact	aactggtcga	120
J	agcaaaa	aga	aaaaagagtt	tcatcatata	tctgatttga	tggactgttt	ggagttagga	180
	ccaaaca	tta	tctacaaaca	aagacttttc	tcctaacttg	tgattccttc	ttaaacccta	240
10	ggggtaa	tat	tctattttcc	aaggatcttt	agttaaaggc	aaatccggga	aattattgta	300
	atcattt	a aa	gaaacatata	aaagatttga	gttagatgga	agtgacgatt	aatccaaaca	360
45	tatatat	ctc	tttcttctta	tttcccaaat	taacagacaa	aagtagaata	ttggctttta	42,0
15	acaccaa	tat	aaaaacttgc	ttcacaccta	aacacttttg	tttactttag	ggtaagtgca	480
	aaaagcc	aac	caaatccacc	tgcactgatt	tgacgtttac	aaacgccgtt	aagtcgatgt	540
20	ccgttga	ttt	aaacagtgtc	ttgtaattaa	. aaaaatcagt	ttacataaat	ggaaaattta	600
	tcactta	ıgtt	ttcatcaact	tctgaactta	cctttcatgg	tagttttg aaacaacact aactggtcga 120 tgatttga tggactgttt ggagttagga 180 ctaacttg tgattccttc ttaaacccta 240 ttaaaggc aaatccggga aattattgta 300 ttagatgga agtgacgatt aatccaaaca 360 acagacaa aagtagaata ttggctttta 420 acacttttg tttactttag ggtaagtgca 480 gacgtttac aaacgccgtt aagtcgatgt 540		
25	tttagta	act	caagtggacc	ctttacttct	: tcaactccat	ctctctctt	ctatttcact	720
25	tetttet	tet	cattatatct	cttgtcctct	ccaccaaato	: tcttcaacaa	aaagctt	777
						. •		
30	<210>	29						
	<211>	22						
	<212>	DNA						
35	<213>	kue	enstlich					

<220> 40

<221> primer_bind

<222> (1)..(22)

45 <223>

50

<400> 29 gcaagctcga cagctacaaa cc

```
<210> 30
5
    <211> 24
    <212> DNA
    <213> kuenstlich
10
    <220>
15
    <221> primer_bind
     <222> (1)..(24)
     <223>
20
     <400> 30
                                                                        24
     gaagcatgca gctagcagcg acag
25
     <210> 31
     <211> 30
30
     <212> DNA
     <213> kuenstlich
35
     <220>
     <221> primer_bind
40
     <222> (1)..(30)
     <223>
45
     <400> 31
                                                                         30
     tgcatgctag aggcactcaa ggagaaggag
```

20
 <400> 32
 ctagctattc agatcctctt ctgagatgag tttttgctcg gcaggaacca gacctcggc 59

45 <400> 33
gageteacte actgatttee attgettg 28

<210> 34 ·

<211> 37

<212> DNA

5 <213> kuenstlich

<220>

10

<221> primer_bind

<222> (1)..(37)

15 <223>

<400> 34

20 cgccgttaag tcgatgtccg ttgatttaaa cagtgtc

37

34

<210> 35

25 <211> 34

<212> DNA

<213> kuenstlich

30

<220>

35 <221> primer_bind

<222> (1)..(34)

<223>

40

<400> 35

atcaacggac atcgacttaa cggcgtttgt aaac

45

<210> 36

<211> 25

```
61
    <212> DNA
    <213> kuenstlich
5
     <220>
     <221> primer_bind
10
           (1)..(25)
     <222>
     <223>
15
     <400> 36
                                                                            25
     taagcttttt gttgaagaga tttgg
20
     <210> 37
     <211> 831
25
     <212> DNA
     <213> Haematococcus pluvialis
30
      <220>
      <221> CDS
            (1)..(831)
 35
      <222>
      <223>
 40
      <400> 37
      atg cca tee gag teg tea gae gea get egt eet gtg ttg aag eac gee
                                                                             48
      Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Val Leu Lys His Ala
                                          10
                      5
 45
      tat aaa cct cca gca tct gac gcc aag ggc atc act atg gcg ctg acc
                                                                             96
      Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr
                                                           30
                                       25
                   20
```

atc att ggc acc tgg acc gca gtg ttt tta cac gca ata ttc caa atc

		Gly Thr 35	Trp Th		al Phe	e Leu H		Ile Phe (45	Gln Ile	
5	agg cta Arg Leu 50	ccg aca	a tcc at r Ser Me	g gac o t Asp (cag cti Gln Lei	t cac t u His :	rgg ttg Frp Leu 60	cct gtg	tcc gaa Ser Glu	192
10	gcc aca Ala Thr 65	gcc ca	g ctg tt n Leu Le 70	u Gly	gga ag Gly Se	r Ser	agc cta Ser Leu 75	ttg cac Leu His	atc gcc Ile Ala 80	240
45	gca gtc Ala Val	ttc at	t gta ct e Val Le 85	t gag u Glu	ttt ct Phe Le	g tac u Tyr 90	act ggt Thr Gly	cta ttc Leu Phe	atc acc Ile Thr 95	288
15	acg cat Thr His	gat go Asp Al	a Met H	at ggc is Gly	Thr Il	a gct le Ala 05	ttg agg Leu Arg	aac agg Asn Arg 110	cag ctc Gln Leu	336
20	aat gat Asn Asp	ctc ct Leu Le	et ggc a eu Gly A	ac atc sn Ile	tgc at Cys II	ta tca le Ser	ctg tac	gcc tgg Ala Trp 125	ttt gac Phe Asp	384
25	tac ago Tyr Ser 130	Met H	ac tgg g is Trp G	ag cac lu His 135	cac a His A	ac cat sn His	act ggo Thr Gly		ggg aaa Gly Lys	432
30	gac cct Asp Pro	t.gac t o Asp P	he His I	aa gga ys Gly .50	aat c Asn F	et ggc Pro Gly	ctt gto Leu Val	c ccc tgg l Pro Trp	ttc gcc Phe Ala 160	480
	agc tto Ser Pho	c atg t e Met S	cc agc ter Ser Ser Ser Ser Ser Ser Ser Ser Ser S	ac atg Tyr Met	tcc o	etg tgg Leu Trp 170	Gln Ph	t gcc cgg e Ala Arg	g ctg gca g Leu Ala 175	528
35	tgg tg Trp Tr	p Ala v	gtg gtg a Val Val 1	atg caa Met Glr	1 Thr 1	ttg ggg Leu Gly 185	g gcc cc y Ala Pr	c atg gc o Met Ala 19	g aat ctc a Asn Leu 0	576
40	cta gt Leu Va	c ttc a l Phe 1	atg gct Met Ala	gca gco Ala Ala	c cca a Pro 200	atc tt: Ile Le	g tca go u Ser Al	a ttc cg La Phe Ar 205	c ctc ttc g Leu Phe	624
45	tac tt Tyr Ph 21	ne Gly	act tac Thr Tyr	ctg cca Leu Pro 21	o His	aag cc Lys Pr	o Glu P	ca ggc co ro Gly Pr 20	t gca gca o Ala Ala	672
50	Gly Se	et cag er Gln	gtc atg Val Met	tct tg Ser Tr 230	g ttc p Phe	agg gc Arg Al	c aag a a Lys T 235	ca agt ga hr Ser Gl	ng gca tct Lu Ala Ser 240	720

5	gat g Asp V	tg a	atg a Met S	Ser E	tc c he I 245	tg a eu T	ca t	gc Cys	Tyr	cac 1 His 1 250	ttt g Phe <i>F</i>	ac c Asp I	tg t eu P	he A	cc c la P :55	cc ro	7	68
5	tgg t	gg (Gln :	ctg o Leu I 260	ecc o	cac t	gc o	Arg	cgc Arg 265	ctg Leu	tct g Ser (aly 1	rg G	gc o	etg g Leu V	tg al	8	16
10	cct g	Ala			tga												8	
15	<210		8								•				,	٠.		
20	<211: <212 <213	> F	PRT ·	itocc	occus	plu	vial	is				-						
25	<400	> :	38														/	
	Met 1	Pro	Ser	Glu	Ser 5	Ser	Asp	Ala	. Ala	Arg 10	Pro	Val	Leu	Lys	His 15	Ala		
30	Tyr	Lys	Pro	Pro 20	Ala	Ser	Asp	Ala	Lys 25	Gly	Ile	Thr	Met	Ala 30	Leu	Thr		
35	Ile	Ile	Gly 35	Thr	Trp	Thr	Ala	Va]	l Phe	. Leu	. His	Ala	Ile 45	Phe	Gln	Ile		
40	Arg	Leu 50	ı Pro	Thr	Ser	Met	Asp 55	Glı	n Lev	ı His	Trp	Leu 60	Pro	Val	Ser	Glu		
45	Ala 65	Thr	Ala	. Gln	Leu	Leu 70	Gly	Gl;	y Se	r Sei	r Ser 75	Lev	Leu	His	Ile	Ala 80		
	Ala	Va]	l Phe	: Ile	val 85	. Leu	Glu	ı Ph	e Le	u Ty: 90	r Thi	Gly	, Len	Phe	e Ile 95	Thr		

										(64						
		Thr	His	Asp	Ala 100	Met :	His (Gly		Ile 7 105	Ala	Leu .	Arg	Asn	Arg (Gln :	Leu
	5	Asn	Asp	Leu 115	Leu	Gly	Asn	Ile	Cys 120	Ile	Ser	Leu	Tyr	Ala 125	Trp	Phe	Asp
	10	Tyr	Ser 130		His	Trp	Glu	His 135	His	Asn	His	Thr	Gly 140	Glu	Val	Gly	Lys
	15	Asp 145	Pro	Asp	Phe	His	Lys 150	Gly	Asn	Pro	Gly	Leu 155	Val	Pro	Trp	Phe	Ala 160
		Ser	Phe	. Met	. Ser	Ser 165	Tyr	Met	Ser	Leu	Trp 170		Phe	Ala	Arg	Leu 175	Ala
	20	Trp	Trp	o Ala	a Val 180		Met	Gln	Thr	Leu 185	Gly	· Ala	Pro) Met	. Ala 190		Leu
	25	Lev	ı Val	1 Phe		. Ala	Ala	Ala	200		Let	ı Ser	: Ala	209		Leu	Phe
•	30	Туз	r Ph		y Th:	r Tyr	: Leu	21:		s Lys	Pro	o Glu	1 Pro 22		y Pro) Ala	ı Ala
	35	Gl ₃ 22	-	r Gl	n Va	l Met	23(p Ph	e Arg	J Al	a Ly: 23		r Se	r Glı	ı Ala	a Ser 240
		As	p Va	ıl Me	t Se	r Ph		ı Th	r Cy	s Ту	r Hi 25		e As	p Le	u Ph	e Al 25	a Pro 5
	40	Tr	p Tr	rp Gl	in Le 26		o Hi	s Cy	s Ar	g Ar		eu Se	r Gl	y Ar	g Gl 27	y Le	u Val

45 Pro Ala Leu Ala 275

<210> 39

										65	5							
		<211>	729	•														
		<212>	DNA	1														
	5	<213>	Par	raco	ccus	sp.	MBIC	2114	3									
		<220>																
•	10	<221>	CD	S														
				-)(7291													
		<222>	(1	, \	, , , , ,													
	15	<223>							•									
	20	<400> atg a	ac c	rca o	cat	gcc ·	ctg (cc a	aag	gca	gat o	ctg :	acc	gcc a	acc	agc	ctg	48
		Met S	er 1	Ala 1	His	Ala 5	Leu 1	Pro :	Lys	Ala .	Asp 1 10	Leu	Thr .	Ala '	Thr	Ser 15	Leu	
	•	atc g	- - - 1				ato	atc	acc	act.	taa	cta	qcc	ctg	cat	gtg	cat	96
	25	Ile V	al :	Ser	Gly	Gly	Ile	Ile	Ala	Ala 25	Trp	Leu	Ala	Leu	His 30	Val	His	
					20								250	. ·		atc	σca	144
		gcg (ctg Leu	tgg Trp	ttt Phe	ctg Leu	gac Asp	Ala	Ala	gcg	His	Pro	Ile	ren	Ala	Ile	Ala	
	30			35					·40					45				100
		aat Asn	ttc Phe	ctg Leu	ggg Glv	ctg Leu	acc Thr	tgg Trp	ctg Leu	tcg Ser	gtc Val	gga Gly	ttg Leu	ttc Phe	atc Ile	atc Ile	gcg	192
	35		50					55					60					
	33	cat	gac	gcg	atg	cac	aaa	tcg	gtg	gtg	ccg	999 999	cgt Ara	ccg	cgc Ara	gcc	aat Asn	240
		His 65	Asp	Ala	Met	Hls	70	ser	val	. var	FIO	75	3				80	
	40	gcg	gcg	atg	ggc	cag	ctt	gto	: ctg	, tgg	ctg	tat	gcc	gga	.ttt	to	g tgg	288
		Ala	Ala	Met	. Gly	7 Glr 85	Leu	. Val	. Lei	ı Trp	Leu 90	Тух	Ala	. Сту	Pne	95	r Trp	
		cac	aao	ato	r ato	e ata	aaq	cac	ate	g gco	cat	cac	c cgo	cat	gc:	e gg	a acc	336
	45	Arg	Lys	Met	: Ile	e Vai	l Lys	His	s Me	t Ala	a His	His	s Arg	y His	s Ala 11	3 61	y Thr	
					100	U				· ·	-							

gac gac gac ecc gat the gac cat gge gge ecg gte ege tgg tac gee

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala

5	cgc ttc Arg Phe 130	Ile	ggc Gly	acc Thr	Tyr	ttc Phe 135	Gly	tgg Trp	cgc Arg	gag Glu	ggg Gly 140	ctg Leu	ctg Leu	ctg Leu	Pr	.c	432
J	gtc ato Val Ile 145	gtg e Val	acg Thr	gtc Val	tat Tyr 150	gcg Ala	ctg Leu	atc Ile	ctt Leu	ggg Gly 155	gat Asp	cgc Arg	tgg Trp	atg Met	T	r Yr 50	480
10	gtg gto	c ttc l Phe	tgg Trp	ccg Pro 165	ctg Leu	ccg Pro	tcg Ser	atc Ile	ctg Leu 170	gcg Ala	tcg Ser	atc Ile	cag Gln	ctg Leu 175	P.	tc he	528
15	gtg tt Val Ph	c ggc e Gly	acc Thr	Trp	ctg Leu	ccg Pro	cac His	cgc Arg 185	Pro	ggc	cac His	gac Asp	gcg Ala 190	Phe	C P	cg ro	576
20	gac cg Asp Ar	c cac g His	s Asr	gcg Ala	cgg Arg	tcg Ser	tcg Ser 200	Arg	ato Ile	ago Ser	gac Asp	Pro 205	val	tcg Sei	r I	tg eu	624
25	ctg ac Leu Th	ec tge ir Cy: LO	c ttt s Phe	cac His	ttt Phe	ggc Gly 215	Gl?	taty Ty	cat His	cac His	gaa Glu 220	ı His	cac His	cte	g o u I	HIS	672
25	ccg ac Pro Tl 225	eg gt hr Va	g ccq	g tgg o Trp	tgg Trp 230	Arg	ct; Le	g cc	c age	c acer Th	r Arg	Th:	c aa r ·Ly	g 99 s Gl	У.	gac Asp 240	720
30	acc g	_	a														729
35	<210>																
	<211>																
40	<213>	> Pa	raco	ccus	sp.	MBIC	1143	3									
45	<400:	> 40															
	Met :	Ser A	la H	is Al	la Le	eu P	ro L	ys A	la A 1	sp L 0	eu T	hr A	la T	hr S	Ser L5	Leu	

	Ile	Val	Ser	Gly 20	Gly	Ile	Ile	Ala	Ala 25	67 Trp	Leu	Ala	Leu	His 30	Val	His
5	Ala	Leu	Trp 35	Phe	Leu	Asp	Ala	Ala 40	Ala	His	Pro	Ile	Leu 45	Ala	Ile	Ala
10	Asn	Phe 50	Leu	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala
15	His 65	Asp	Ala	Met	His	Gly 70	Ser	Val	Val	Pro	Gly 75	Arg	Pro	Arg	Ala	Asn 80
	Ala	Ala	Met	Gly	Gln 85	Leu	Val	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp
20	Arg	Lys	Met	Ile 100	Val	Lys	His	Met	Ala 105	His	His	Arg	His	Ala 110	Gly	Thr
25	Asp	Asp	Asp 115	Pro	Asp	Phe	Asp	His 120	Gly	Gly	Pro	Val	125		Tyr	Ala
30	Arg	Phe 130		Gly	Thr	туг	Phe 135	_	Trp	Arg	Glu	. Gly 140		Leu	Leu	Pro
35	Val 145		Val	Thr	Val	Tyr 150	Ala	Leu	Ile	Leu	Gly 155	_	Arg	Trp	Met	Tyr 160
	Val	Val	Phe	Trp	Pro 165		Pro	Ser	·Ile	170		Ser	·Ile	Gln	. Leu 175	Phe
40	Val	Phe	: Gly	Thr		Leu	. Pro	His	185		Gly	/ His	Asp) Ala		Pro

45 Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu

200

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His

205

195

5	Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240	
	Thr Ala	
10		
	<210> 41	
	<211> 735	
15	<212> DNA	
	<213> Brevundimonas aurantiaca	
20		
20	<220>	
	<221> CDS	
25	<222> (1)(735)	
	<223>	
30		
	<400> 41	_
	atg acc gcc gcc gcc gag cca cgc acc gtc ccg cgc cag acc tgg 49 Met Thr Ala Ala Val Ala Glu Pro Arg Thr Val Pro Arg Gln Thr Trp	3
35	1 5 10 15	
33	atc ggt ctg acc ctg gcg gga atg atc gtg gcg gga tgg gcg gtt ctg	5
	Ile Gly Leu Thr Leu Ala Gly Met Ile Val Ala Gly Trp Ala Val Leu . 20 25 30	
40	cat gtc tac ggc gtc tat ttt cac cga tgg ggg ccg ttg acc ctg gtg 14	4
	His Val Tyr Gly Val Tyr Phe His Arg Trp Gly Pro Leu Thr Leu Val 35 40 45	
	ate gee eeg geg ate gtg geg gte eag ace tgg ttg teg gte gge ett 19	2
45	Ile Ala Pro Ala Ile Val Ala Val Gln Thr Trp Leu Ser Val Gly Leu 50 55 60	
	the are gre get gat gat get are tac gge tee etg gcg ccg gga cgg 24	O
	ttc atc gtc gcc cat gac gcc atg tac ggc tcc ctg gcg ccg gga cgg Phe Ile Val Ala His Asp Ala Met Tyr Gly Ser Leu Ala Pro Gly Arg	•
50	65 70 75 80	

_			ctg Leu				_			_						_		288
5			egc Arg				_		_				_					336
10			ggc Gly 115						_			_	_	_				384
15	_		ctt Leu				_				_							432
20			atg Met		-			_	_	_	_	Ile	_					480
25	_		gcg Ala		_	_			_		Phe		_		_	Ala	-	528
	_			-	Leu	_				Phe					Pro	cac His		576
30				Asp				_	Asp					Arg		agc Ser		624
35			Gly					Lev			_		His			egc Arg		672
40		His					ser					TI				tgg Trp 240		720
45			gag Glu								•							735
	<2]	.0>	42															

<211> 244

<	2	1	2	>	PRT
---	---	---	---	---	-----

<213>	Brevundimonas	aurantiaca

<400> 42

Met Thr Ala Ala Val Ala Glu Pro Arg Thr Val Pro Arg Gln Thr Trp

10 1 5 10 15

Ile Gly Leu Thr Leu Ala Gly Met Ile Val Ala Gly Trp Ala Val Leu 20 25 30

15

His Val Tyr Gly Val Tyr Phe His Arg Trp Gly Pro Leu Thr Leu Val

20

Ile Ala Pro Ala Ile Val Ala Val Gln Thr Trp Leu Ser Val Gly Leu 50 55 60

- Phe Ile Val Ala His Asp Ala Met Tyr Gly Ser Leu Ala Pro Gly Arg

 65 70 75 80
- Pro Arg Leu Asn Ala Ala Val Gly Arg Leu Thr Leu Gly Leu Tyr Ala 30 85 90 95
 - Gly Phe Arg Phe Asp Arg Leu Lys Thr Ala His His Ala His His Ala
 100 105 110

35

Ala Pro Gly Thr Ala Asp Asp Pro Asp Phe His Ala Pro Ala Pro Arg 115 120 125

40

Ala Phe Leu Pro Trp Phe Leu Asn Phe Phe Arg Thr Tyr Phe Gly Trp 130 135 140

- Arg Glu Met Ala Val Leu Thr Ala Leu Val Leu Ile Ala Leu Phe Gly
 145 150 155 160
 - Leu Gly Ala Arg Pro Ala Asn Leu Leu Thr Phe Trp Ala Ala Pro Ala 50 165 170 175

5	Leu Leu Ser Ala Leu Gln Leu Phe Thr Phe Gly Thr Trp Leu Pro His 180 185 190
	Arg His Thr Asp Gln Pro Phe Ala Asp Ala His His Ala Arg Ser Ser 195 200 205
10	Gly Tyr Gly Pro Val Leu Ser Leu Leu Thr Cys Phe His Phe Gly Arg 210 220
15	His His Glu His His Leu Ser Pro Trp Arg Pro Trp Trp Arg Leu Trp 225 230 235 240
20	Arg Gly Glu Ser
	<210> 43
25	<211> 690
	<212> DNA
30	<213> Nodularia spumigena NSOR10
	<220>
35	<221> CDS
	<222> (1)(690)
40	<223>
45	<pre><400> 43 atg gcg atc gcc att att agt ata tgg gct atc agc cta ggt ttg tta</pre>
50	ctt tat att gat ata tcc caa ttc aag ttt tgg atg ttg tta ccg ctc 96 Leu Tyr Ile Asp Ile Ser Gln Phe Lys Phe Trp Met Leu Pro Leu 20 25 30

5	ata Ile	ttt Phe	tgg Trp 35	caa Gln	aca Thr	ttt Phe	tta Leu	tat Tyr 40	acg Thr	gga Gly	tta Leu	ttt Phe	att Ile 45	aca Thr	gct Ala	cat His		144
J	gat Asp	gcc Ala 50	atg Met	cat His	GJÀ aaa	gta Val	gtt Val 55	ttt Phe	ccc Pro	aaa Lys	aat Asn	ccc Pro 60	aaa Lys	atc Ile	aac Asn	cat His		192
10	ttc Phe 65	att Ile	ggc Gly	tca Ser	ttg Leu	tgc Cys 70	ctg Leu	ttt Phe	ctt Leu	tat Tyr	ggt Gly 75	ctt Leu	tta Leu	cct Pro	tat Tyr	caa Gln 80		240
15	aaa Lys	ctt Leu	tta Leu	aaa Lys	aag Lys 85	cat His	tgg Trp	cta Leu	cat His	cac His 90	cat His	aat Asn	cca Pro	gcc Ala	agt Ser 95	gaa Glu		288
20	aca Thr	gat Asp	cca Pro	gat Asp 100	ttt Phe	cac His	aac Asn	GJÀ aaa	aag Lys 105	cag Gln	aaa Lys	aac Asn	ttt Phe	ttt Phe 110	gct Ala	tgg Trp		336
25	Tyr	Leu	Tyr 115	Phe	atg Met	Lys	Arg	Tyr 120	Trp	Ser	Trp	Leu	Gln 125	Ile	Ile	Thr	_	384
	tta Leu	atg Met 130	att Ile	Ile	tat Tyr	aac Asn	tta Leu 135	cta Leu	aaa Lys	tat Tyr	ata Ile	tgg Trp 140	cat His	ttt •Phe	cca Pro	gag Glu		432
30	gat Asp 145	aat Asn	atg Met	act Thr	tat Tyr	ttt Phe 150	tgg Trp	gta Val	gtt Val	ccc Pro	tca Ser 155	att Ile	tta Leu	agt Ser	tct Ser	tta Leu 160		480
35	caa Gln	tta Leu	ttt Phe	tat Tyr	ttt Phe 165	gga Gly	act Thr	ttt Phe	cta Leu	ccc Pro 170	cac His	agt Ser	gag Glu	Pro	gta Val 175	gaa Glu		528
40	ggt Gly	tat Tyr	aaa Lys	gag Glu 180	cct Pro	cat His	cgt Arg	tcc Ser	caa Gln 185	act Thr	att Ile	agc Ser	cgt Arg	ccc Pro 190	att Ile	tgg Trp		576
45					act Thr													624
	gaa Glu	tac Tyr 210	ccc Pro	cat His	gtt Val	cct Pro	tgg Trp 215	tgg Trp	caa Gln	tta Leu	cca Pro	gaa Glu 220	att Ile	tat Tyr	aaa Lys	atg Met		672
50	tct	aaa	tca	aat	ttg	tga												690

Ser Lys Ser Asn Leu 225

5 <210> 44

<211> 229

<212> PRT

10

<213> Nodularia spumigena NSOR10

15 <400> 44

Met Ala Ile Ala Ile Ile Ser Ile Trp Ala Ile Ser Leu Gly Leu Leu 1 5 10 15

20

40

Leu Tyr Ile Asp Ile Ser Gln Phe Lys Phe Trp Met Leu Leu Pro Leu 20 25 30

- 25 Ile Phe Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His / 35 40 45
- Asp Ala Met His Gly Val Val Phe Pro Lys Asn Pro Lys Ile Asn His 30 50 55 60
- Phe Ile Gly Ser Leu Cys Leu Phe Leu Tyr Gly Leu Leu Pro Tyr Gln 65 70 75 80
 - Lys Leu Leu Lys Lys His Trp Leu His His His Asn Pro Ala Ser Glu 85 90 95

Thr Asp Pro Asp Phe His Asn Gly Lys Gln Lys Asn Phe Phe Ala Trp

- 45 Tyr Leu Tyr Phe Met Lys Arg Tyr Trp Ser Trp Leu Gln Ile Ile Thr
 115 120 125
- Leu Met Ile Ile Tyr Asn Leu Leu Lys Tyr Ile Tro His Phe Pro Glu
 130 135 140

5	Asp Asn Met Thr Tyr Phe Trp Val Val Pro Ser Ile Leu Ser Ser Leu 145 150 155 160	
40	Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Ser Glu Pro Val Glu 165 170 175	
10	Gly Tyr Lys Glu Pro His Arg Ser Gln Thr Ile Ser Arg Pro Ile Trp 180 185 190	
15	Trp Ser Phe Ile Thr Cys Tyr His Phe Gly Tyr His Tyr Glu His His 195 200 205	
20	Glu Tyr Pro His Val Pro Trp Trp Gln Leu Pro Glu Ile Tyr Lys Met 210 215 220	
25	Ser Lys Ser Asn Leu 225	
	<210> 45	
20	<211> 789	
30	<212> DNA	
	<213> Nostoc punctiforme ATCC 29133	
35		
	· <220>	
,	<221> CDS	
40	<222> (1)(789)	
	<223>	
45		
	<400> 45	
	ttg aat ttt tgt gat aaa cca gtt agc tat tat gtt gca ata gag caa 48	ļ
50	Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 5 10 15	

	tta agt gct aaa gaa gat act gtt tgg ggg ctg gtg att gtc ata gta Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 20 25 30	96
5	att att agt ctt tgg gta gct agt ttg gct ttt tta cta gct att aat Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 35 40 45	144
10	tat gcc aaa gtc cca att tgg ttg ata cct att gca ata gtt tgg caa Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln 50 55 60	192
15	atg ttc ctt tat aca ggg cta ttt att act gca cat gat gct atg cat Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80	240 ·
20	ggg tca gtt tat cgt aaa aat ccc aaa att aat aat ttt atc ggt tca Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95	288
25	cta gct gta gcg ctt tac gct gtg ttt cca tat caa cag atg tta aag Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys 100 105 110	336
	aat cat tgc tta cat cat cgt cat cct gct agc gaa gtt gac cca gat Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 115 120 125	384
30	ttt cat gat ggt aag aga aca aac gct att ttc tgg tat ctc cat ttc Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 130 135 140	432
35	atg ata gaa tac tcc agt tgg caa cag tta ata gta cta act atc cta Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160	480
40	ttt aat tta gct aaa tac gtt ttg cac atc cat caa ata aat ctc atc Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175	528
45	tta ttt tgg agt att cct cca att tta agt tcc att caa ctg ttt tat Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr 180 185 190	576
70	ttc gga aca ttt ttg cct cat cga gaa ccc aag aaa gga tat gtt tat Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr 195 200 205	62 4
50	O ccc cat tgc agc caa aca ata aaa ttg cca act ttt ttg tca ttt atc	. 672

	Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile 210 215 220	
5	gct tgc tac cac ttt ggt tat cat gaa gaa cat cat gag tat ccc cat Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240	720
10	gta cct tgg tgg caa ctt cca tct gta tat aag cag aga gta ttc aac Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 245 250 255	768
	aat tca gta acc aat tcg taa Asn Ser Val Thr Asn Ser 260 .	789
15		
	<210> 46 <211> 262	
20	<212> PRT	
	<213> Nostoc punctiforme ATCC 29133	
25		
30	<pre><400> 46 Leu Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 5 10 15</pre>	
35	Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 20 25 30	
	Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 35 40 45	
40	Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln 50 55 60	
45	Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80	
50	Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95	

5	Leu	Ala	Val	Ala 100	Leu	Tyr	Ala		Phe 105	Pro	Tyr	Gln	Gln	Met 110	Leu	Lys
	Asn	His	Cys 115	Leu	His	His	Arg	His 120	Pro	Ala	Ser	Glu	Val 125	Asp	Pro	Asp
10	Phe	His 130	Asp	Gly	Lys	Arg	Thr 135	Asn	Ala	Ile	Phe	Trp 140	Tyr	Leu	His	Phe
15	Met 145		Glu	Tyr	Ser	Ser	Trp	Gln	Gln	Leu	Ile 155		Leu	Thr	Ile	Leu 160
20	Phe	: Asn	Leu	Ala	Lys 165	Туг	Val	Leu	His	Ile 170		Gln	lle	: Asn	Leu 175	Ile
25	Lev	ı Phe	e Trp	Ser 180		Pro	Pro) Ile	Leu 185		: Ser	: Ile	e Glr	1 Leu 190		Tyr
	Phe	e Gly	7 Thi 195		e Leu	Pro	His	Arg 200		Pro	Lys	s Lys	3 Gly		· Val	. Tyr
30	Pro	о Ні: 21		s Sei	r Glm	n Thr	21!		s Lei	ı Pro	o Th	r Pho 22		u Sei	r Phe	e Ile
35	A1.		з Ту	r Hi	s Phe	∈ Gly 230		r His	s Gl	ı Gl	u Hi 23		s Gl	и Ту	r Pr	o His 240
40	Va	l Pr	o Tr	p Tr	p Gl: 24		u Pr	o Se	r Va	1 Ty 25		s Gl	n Ar	g Va	1 Ph 25	e Ası 5
45	As	n Se	er Va	1 Th 26		n Se	r									
	<2	210>	47													
50	<2	211>	762	2					٠							

		<212>	DNA	1															
		<213>	Nos	stoc	pun	nctif	orme	ATC	CC 25	9133									
	5																		
		<220>																	
	10	<221>	CDS	3															
	10	<222>	(1)) (762))													
		<223>																	
	15																		
		<400>	47												a+-	- at	.		48
)	20	gtg at Val II 1			eu (_			_		Leu				40
		gta ct		-															96
	25			2	20		•			25					30			/	
		att gt Ile Va		er A	_		_		_	_	_								144
	30	atc to		-					_		_								192
		Ile Se		ys I	Leu	Lys	Phe	Trp 55	Met	Leu	Leu	Pro	Val 60	Ile	Leu	Trp	Gln		
	35	aca to Thr Pi																	240
	40	Gly V																	288
		ttg a Leu T		Leu :															336
	45	aaa c	at f	caa	tta	cac	cac	cac	aat	cca	qca	age	tca	ata	qac	CCG	gat		384
		Lys H										-							

ttt cac aat ggt aaa cac caa agt ttc ttt gct tgg tat ttt cat ttt

125 ·

	Phe His Asn Gly I	Lys His Gln Ser P 135	ne Phe Ala Trp Tyr Pho 140	e His Phe
5	atg aaa ggt tac t Met Lys Gly Tyr '	tgg agt tgg ggg c Trp Ser Trp Gly G 150	aa ata att gcg ttg ac ln Ile Ile Ala Leu Th 155	t att att 480 r Ile Ile 160
10	Tyr Asn Phe Ala		at atc cca agt gat aa is Ile Pro Ser Asp As 170	
15		Leu Pro Ser Leu I	ta agt tca tta caa tt eu Ser Ser Leu Gln Le .85	u Phe Tyr
10			gaa cca ata ggg ggt ta Blu Pro Ile Gly Gly Ty 205	
20			egt ect att tgg tgg to Arg Pro Ile Trp Trp So 220	
25			gag gaa cat cac gaa t Glu Glu His His Glu T 235	
30			att tac aaa gca aaa t Ile Tyr Lys Ala Lys 250	ag 762
35	<210> 48			
	<212> PRT	ounctiforme ATCC 2	20133	
40		· · ·		
45	<400> 48 Val Ile Gln Leu 1	ı Glu Gln Pro Leu 5	Ser His Gln Ala Lys	Leu Thr Pro 15
50	Val Leu Arg Ser 20	r Lys Ser Gln Phe	Lys Gly Leu Phe Ile 25	Ala Ile Val 30

	5	Ile	Val	Se:		a Tr	p V	al I		Ser 40	Leu	Ser	. Leu	Leu	Leu 45	. Sei	r Le	u As	sp
		Ile	Ser	: Ьу	s Le	eu Ly	ys P		Frp 55	Met	Leu	. Le	u Pro	Val	Ile	e Le	u Tr	pG:	ln
•	10	Thr 65	Pho	e Le	eu T	yr T		31y 70	Leu	Phe	ıle	e Th	r Se: 75	r His	s Asj	p Al	a Me	et H 8	is O
	15	Gly	v Va	l Va	al P		ro (Ġln	Asn	Thi	Ly:	s Il	.e As	n Hi:	s Le	u II	Le G 9	ly T 5	'hr
	20	Lev	ı Th	r L		Ser I	Leu	Tyr	Gly	∕ Le	u Le 10		ro Ty	r Gl	n Ly	s L	eu I 10	eu I	Ā
	25	Ly	s Hi		rp :	Leu :	His	His	His	s As 12		ro A	la S	er Se	er I:	le A 25	sp 1	ero i	Asp
		Ph		is A	lsn.	Gly	Lys	His	G1:		er Pl	he P	he A	la Ti	rp T 40	yr 'I	Phe :	His	Phe
	30	Me 14		ys (Gly	Tyr	Trp	Ser		p G	ly G	ln 1	Ile I	le A	la I	eu '	Thr	Ile	Ile 160
	35	Τλ	γr Ά	sn	Phe	Ala	Lys 165		r Il	le L	eu H	is :	Ile 1 170	?ro S	er I	\sp	Asn	Leu 175	Thr
	40		yr E	he	Trp	Val 180		ı Pr	o Se	er I		Leu 185	Ser	Ser I	Geu (Gln	Leu 190	Phe	Tyr
	45		he (Зlу	Thr 195		. Le	u Pr	ю н		Ser (Glu	Pro	Ile (Gly	Gly 205	Tyr	Val	Gln
		P		His 210	Суз	s Ala	a Gl	n Tì		le :	Ser	Arg	Pro	Ile	Trp 220	Trp	Ser	Phe	e Ile
	50)																	

									0.1						
Thr 225	Сув	Tyr	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His	Glu	Tyr	Pro	His 240
Ile	Ser	Trp	Trp	Gln	Leu	Pro	Glu	Ile	Tyr	Lys	Ala	Lys			

5 Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250

<210> 49

10

<211> 1536

<212> DNA

15 <213> Deinococcus radiodurans R1

<220>

20

<221> CDS

<222> (1)..(1536)

25 <223>

<400> 49 atg ccg gat tac gac ctg atc gtc atg ggc gcg ggc cac aac gcg ctg 48 30 Met Pro Asp Tyr Asp Leu Ile Val Met Gly Ala Gly His Asn Ala Leu 10 gtg act gct gcc tac gcc gcc cgg gcg ggc ctg aaa gtc ggc gtg ttc 96 Val Thr Ala Ala Tyr Ala Ala Arg Ala Gly Leu Lys Val Gly Val Phe 35 30 25 20 gag egg egg cac ete gte gge ggg geg gte age ace gag gag gte gtg 144 Glu Arg Arg His Leu Val Gly Gly Ala Val Ser Thr Glu Glu Val Val 45 40 40 35 192 ccc ggt tac cgc ttc gac tac ggc ggc agc gcc cac atc ctg att cgg Pro Gly Tyr Arg Phe Asp Tyr Gly Gly Ser Ala His Ile Leu Ile Arg 55 45 240 atg acg ccc atc gtg cgc gaa ctc gaa ctc acg cgg cac ggg ctg cat Met Thr Pro Ile Val Arg Glu Leu Glu Leu Thr Arg His Gly Leu His 80 70 75 65

tac etc gaa gtg gac eet atg ttt cac get tec gac ggt gaa acg eec

		-	_	~1	T		D	34- A	5 1	•••	22-	0	3	01	~1	m1	Dwo		
		Tyr	Leu	GIU	Val	Asp 85	Pro	Met	Pne	HIS	90	ser	Asp	Gly		95	PIO		
		tgg	ttc	att.	cac	cgc	gac	gcc	999	cgg	acc	atc	cgc	gaa	ctg	gac	gaa		336
	5	Trp	Phe	Ile	His	Arg	Asp	Ala	Gly	Arg	Thr	Ile	Arg	Glu	Leu	Asp	Glu		
					100					105					110				
		aag	ttt	ccc	999	cag	ggc	gac	gcc	tac	999	cgc	ttt	ctc	gac	gat	tgg		384
		Lys	Phe		Gly	Gln	Gly	Asp		Tyr	Gly	Arg	Phe	Leu	Asp	Asp	Trp		
7	0			115					120					125					
		aca	ccc	ttc	gcg	cgc	gcc	gtg	gcc	gac	ctg	ttc	aac	tcg	gcg	ccg	ggg		432
		Thr		Phe	Ala	Arg	Ala		Ala	Asp	Leu	Phe		Ser	Ala	Pro	Gly		
	15		130					135					140						
		ccq	ctc	gac	ctq	ggc	aaa	atq	qtq	atq	cqc	agc	qqc	cag	qqc	aag	gac		480
		_		_						_		_		Gln					•
		145					150					155					160		
	20	•																	E00
4	20				_		_	_		_				ggc Gly	_				528
		11,0	ASII	Giu	GIII	165		ang .	116	Deu	170	FIO	171	GLY	пор	175			
																•			
		_							_			_		_			atg		576
	25	Arg	Glu	Tyr			Glu	Glu	Arg			Ala	Pro	Leu		Trp	Met	./	
					180					185					190				
		gcg	gcc	cag	agc	ggc	ccc	cca	ccc	tcg	gac	ccg	r ctg	agc	gcg	ccc	ttt		624
		Ala	Ala	Gln	Ser	Gly	Pro	Pro	Pro	Ser	Asp	Pro	Lev	Ser	Ala	Pro	Phe		
	30			195					200					205					
		++~	ata	, +aa			ata		a a c	~~~	999		ato				aaa		672
		_	_							_							Lys		0,2
			210	_				215			_	-	220		_		-		
	35																		
																	gcc		720
		225	-	sei	GIY	, ст	230		rÀs	AL3	тет	235		ALA	TIL	GIC	1 Ala 240		
	40 °	gaa	ggd	ggc	gag	gto	: ttc	acc	gac	geg	acc	gto	aag	g gaa	att	cts	ggtc		768
		Glu	r Gl ⁷	, Gly	Glu			e Thr	Asp	Ala			l Ly	3 Glu	ı Ile		ı Val		
						245	5				250	ס				25!	5		
		aac	r can	a a a a	aac	a acc	r cad	a aac	: ato	c cac	a cto	g gaa	a ao	a a a	gad	ace	g tac		816
	45																r Tyr		
		_			260	כ				269	5				270)			
						_				_		_							0.00
			_	_	_												g aat a Asn		864
	50	LUI	. Ali	275		_ va.	. va.	_ 061	28		- 444,	·	- 11 -	289			4.6341		

5	gcc Ala					Tyr						a A							912	
3	ggc Gly 305											a I					Va		960	
10				cac His							Ar						Le		1008	
15				aac Asn 340															1056	
20				ccc					Pro										1104	
25			. Asp	gac				Pro											1152	
		Ala		tac Tyr			Phe				a T						u 7		1200	-
30				gaa Glu		Arg					u A						s '		1248	
35	Ala	a Pr	o Gly	Thi 420	Arg	g Ası	o Thi	r Il	e Va 42	1 G) 5	ly (Glu	Leu	Val	1 Gl: 43	n Th	r	Pro	1296	
40	Gli	ı Tr	p Le ⁴³	•	ı Th:	r As:	n Le	u Gl 44	y Le O	u H	is A	Arg	Gly	44!	n Va 5	1 Me	et	His	1344	
45			u Me	g tc t Se:				n Me						g Pr					1392	
		a Se		g ta n Ty			p Pr						Le						1440	
50	gc	c aç	gc ac	c ca	.c cc	c gg	lc gg	ja gg	gc at	tc a	ıtg	ggo	gc.	c to	g gg	ja c	gc	aac	1488	

	Ala Ser Thr His Pro Gly Gly Gly Ile Met Gly Ala Ser Gly Arg Asn 485 490 495	
5	gcg gcg cgg gtc atc gtg aag gac ctg acg cgg agg cgc tgg aaa tga Ala Ala Arg Val Ile Val Lys Asp Leu Thr Arg Arg Arg Trp Lys 500 505 510	.536
10	<210> 50 <211> 511 <212> PRT	
15	<213> Deinococcus radiodurans R1	
20	<pre><400> 50 Met Pro Asp Tyr Asp Leu Ile Val Met Gly Ala Gly His Asn Ala Leu 1 5 10 15</pre>	
25	Val Thr Ala Ala Tyr Ala Ala Arg Ala Gly Leu Lys Val Gly Val Phe / 20 25 30	
30	Glu Arg Arg His Leu Val Gly Gly Ala Val Ser Thr Glu Glu Val Val 35 40 45	
35	Pro Gly Tyr Arg Phe Asp Tyr Gly Gly Ser Ala His Ile Leu Ile Arg 50 55 60	
	Met Thr Pro Ile Val Arg Glu Leu Glu Leu Thr Arg His Gly Leu His 65 70 75 80	
40	Tyr Leu Glu Val Asp Pro Met Phe His Ala Ser Asp Gly Glu Thr Pro	

45 Trp Phe Ile His Arg Asp Ala Gly Arg Thr Ile Arg Glu Leu Asp Glu . 105

120

Lys Phe Pro Gly Gln Gly Asp Ala Tyr Gly Arg Phe Leu Asp Asp Trp

125

100

5	Thr Pro Phe Ala Arg Ala Val Ala Asp Leu Phe Asn Ser Ala Pro Gly 130 135 140
	Pro Leu Asp Leu Gly Lys Met Val Met Arg Ser Gly Gln Gly Lys Asp 145 150 155 160
10	Trp Asn Glu Gln Leu Pro Arg Ile Leu Arg Pro Tyr Gly Asp Val Ala 165 170 . 175
15	Arg Glu Tyr Phe Ser Glu Glu Arg Val Arg Ala Pro Leu Thr Trp Met 180 185 190
20	Ala Ala Gln Ser Gly Pro Pro Pro Ser Asp Pro Leu Ser Ala Pro Phe 195 200 205
25	Leu Leu Trp His Pro Leu Tyr His Glu Gly Gly Val Ala Arg Pro Lys 210 215 220
	Gly Gly Ser Gly Gly Leu Thr Lys Ala Leu Arg Arg Ala Thr Glu Ala 225 230 235 240
30	Glu Gly Gly Glu Val Phe Thr Asp Ala Pro Val Lys Glu Ile Leu Val 245 250 255
35	Lys Asp Gly Lys Ala Gln Gly Ile Arg Leu Glu Ser Gly Glu Thr Tyr 260 265 270
40	Thr Ala Arg Ala Val Val Ser Gly Val His Ile Leu Thr Thr Ala Asn 275. 280 285
4	Ala Leu Pro Ala Glu Tyr Val Pro Ser Ala Ala Arg Asn Val Arg Val 290 295 300
	Gly Asn Gly Phe Gly Met Ile Leu Arg Leu Ala Leu Ser Glu Lys Val 305 310 315 320
5	0 .

Lys	Tyr	Arg	His	His	Thr	Glu	Pro	Asp	Ser	Arg	Ile	Gly	Leu	Gly	Leu
				325					330					335	

- 5 Leu Ile Lys Asn Glu Arg Gln Ile Met Gln Gly Tyr Gly Glu Tyr Leu 340 345 350
- Ala Gly Gln Pro Thr Thr Asp Pro Pro Leu Val Ala Met Ser Phe Ser 10 355 360 365
- Ala Val Asp Asp Ser Leu Ala Pro Pro Asn Gly Asp Val Leu Trp Leu 370 375 380

Trp Ala Gln Tyr Tyr Pro Phe Glu Leu Ala Thr Gly Ser Trp Glu Thr 385 390 395 400

- 20
 Arg Thr Ala Glu Ala Arg Glu Asn Ile Leu Arg Ala Phe Glu His Tyr
 405
 410
 415
- 25 Ala Pro Gly Thr Arg Asp Thr Ile Val Gly Glu Leu Val Gln Thr Pro
 420 425 430

. .

- Gln Trp Leu Glu Thr Asn Leu Gly Leu His Arg Gly Asn Val Met His 30 445
- Leu Glu Met Ser Phe Asp Gln Met Phe Ser Phe Arg Pro Trp Leu Lys
 450 455 460

Ala Ser Gln Tyr Arg Trp Pro Gly Val Gln Gly Leu Tyr Leu Thr Gly
465 470 475 480

- Ala Ser Thr His Pro Gly Gly Gly Ile Met Gly Ala Ser Gly Arg Asn
 485
 490
 495
- 45 Ala Ala Arg Val Ile Val Lys Asp Leu Thr Arg Arg Arg Trp Lys 500 505 510

<210> 51

<211> 1608 <212> DNA <213> Haematococcus pluvialis 5 <220> 10 CDS <221> (3)..(971) <222> 15 <223> <400> 51 ct aca ttt cac aag ccc gtg agc ggt gca agc gct ctg ccc cac atc 47 20 Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile 95 ggc cca cct cct cat ctc cat cgg tca ttt gct gct acc acg atg ctg Gly Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu 25 25 20 teg aag ctg cag tca atc agc gtc aag gcc cgc cgc gtt gaa cta gcc 143 Ser Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala 30 35 191 cgc gac atc acg cgg ccc aaa gtc tgc ctg cat gct cag cgg tgc tcg Arg Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser 55 50 35 tta gtt cgg ctg cga gtg gca gca cca cag aca gag gag gcg ctg gga 239 Leu Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly 75 70 65 acc gtg cag gct gcc ggc gcg ggc gat gag cac agc gcc gat gta gca 287 40 Thr Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala 95 85 ctc cag cag ctt gac cgg gct atc gca gag cgt cgt gcc cgg cgc aaa 335 Leu Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Lys 45 105 100

egg gag cag ctg tca tac cag gct gcc gcc att gca gca tca att ggc

Arg Glu Gln Leu Ser Tyr Gln Ala Ala Ala Ile Ala Ala Ser Ile Gly

50

115

120

383

5	gtg Val						Phe i			-								431
J					ggc Gly	Ala												479
10		_			ggt Gly													527
15	_				atc Ile 180													575
20	_	_			aca Thr										Asp			623
25		-		Ile										Thr		ggc	/	671
			Ļeu										Gly			ctg Leu		719
30		Ile	_				_	_		_		val				ctg Leu 255		767
35						Pro					Ala					atg Met		815
40					· Val					ı His					в Ту	e ggt r Gly		863
45		_	_	Tr					ı Gly					u Gl		c att s Ile		911
			y Ala					L Gl					u Gl			c tgg p Trp		959
50	tc	c aa	g cg	g ta	g ggt	gcgg	gaac	cag	gcac	gct	ggtt	tcac	ac c	tcat	gcct	g		1011

Ser Lys Arg 320

_	tgataaggtg	tggctagagc	gatgcgtgtg	agacgggtat	gtcacggtcg	actggtctga	1071
5	tggccaatgg	catcggccat	gtctggtcat	cacgggctgg	ttgcctgggt	gaaggtgatg	1131
	cacatcatca	tgtgcggttg	gaggggctgg	cacagtgtgg	gctgaactgg	agcagttgtc	1191
10	caggctggcg	ttgaatcagt	gägggtttgt	gattggcggt	tgtgaagcaa	tgactccgcc	1251
	catattctat	ttgtgggagc	tgagatgatg	gcatgcttgg	gatgtgcatg	gatcatggta	1311
1 E	gtgcagcaaa	ctatattcac	ctagggctgt	tggtaggatc	aggtgaggcc	ttgcacattg	1371
15	catgatgtac	tegtcatggt	gtgttggtga	gaggatggat	gtggatggat	gtgtattctc	1431
	agacgtagac	cttgactgga	ggcttgatcg	agagagtggg	ccgtattctt	tgagagggga	1491
20	ggctcgtgcc	agaaatggtg	agtggatgac	tgtgacgctg	tacattgcag	gcaggtgaga	155
	tgcactgtct	: cgattgtaaa	. atacattcag	g atgcaaaaaa	aaaaaaaaa	a aaaaaaa	160

25 <210> 52

<211> 322

<212> PRT

30

<213> Haematococcus pluvialis

35 <400> 52

Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile Gly
1 5 10 15

Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser 20 25 30

45 Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala Arg 35 40 45

Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser Leu 50 55 60

5	Val 65	Arg	Leu	Arg	Val	Ala 70	Ala	Pro	Gln	Thr	75	GIU	AIG	nec	((1)	80	_
	Val	Gln	Ala	Ala	Gly 85	Ala	Gly	Asp	Glu	His 90	Ser	Ala	Asp	Va:	95	a Le	u
10	Gln	Gln	Leu	Asp 100	Arg	Ala	Ile	Ala	Glu 105	Arg	Arg	Ala	. Arg	11	g Ly 0	s Ar	:g
15	Glu	Gln	Leu 115		Tyr	Gln	Ala	Ala 120		Ile	e Ala	a Ala	12!	r Il 5	e Gl	.y Va	al .
20	ser	: Gly		e Ala	ı Ile	. Phe	Ala 135		с Туз	: Le	u Ar	g Pho		a Me	et Hi	is M	et
25	Thr 145		l Gly	y Gly	y Ala	a Val		Tr	p Gl	y Gl	u Va 15	1 Al 5	a Gl	у Т	hr L	eu I 1	eu 60
	Let	u Va	l Va	l Gl	y Gl		a Le	u Gl	у Ме	t G]		et Ty	r Al	la ,A	rg I	yr 1 .75	Ala
30	ні	s Ly	s Al	a Il 18		рHi	s Gl	u Se	er Pr 18		eu Gi	ly T	cp L	eu I	.ец I	łis :	Lys
35	Se	r Hi	ls Hi 19		ır Pı	o Ar	g Th		ly Pi 00	co P	he G	lu A	la A 2	sn 1	Asp :	Leu	Phe
40	A]		le I: 10	le As	sn G	ly Le		co A 15	la M	et I	eu I	eu C	ys 7 20	hr :	Phe	Gly	Phe
45	2:	rp L 25	eu P	ro A	sn V		eu G 30	ly A	la A	la (Cys I	Phe 0	Bly A	Ala	Gly	Leu	Gly 240
	I	le T	hr L	eu T		ly M 45	et A	la T	ryr N	let :	Phe ' 250	Val 1	His .	Asp	Gly	Leu 255	Val
50)																

										91									
	His	Arg	Arg	Phe 260	Pro	Thr	Gly	Pro	11e 265	Ala	Gly	Leu	Pro	Tyr 270	Met	Ly	'S		
5	Arg	Leu	Thr 275	Val	Ala	His	Gln	Leu 280	His	His	Ser	Gly	Lys 285		Gly	/ G]	Ly		
10	Ala	Pro 290	Trp	Gly	Met	Phe	Leu 295	Gly	Pro	Glr	ı Glu	1 Leu 300		His	: Ile	e P:	ro		
15	Gly 305	Ala	Ala	Glu	Glu	Val		Arg	Leu	ı Val	1 Let 319		ı Lev	ı Ası	Tr	p S 3	er 20		
	Lys	Arg																	
20	<21	.0>	53		•														
	<21	11> .	1503	3															
25	<21	L2>	DNA															. ′	
	<2	13>	Toma	ate										. •					
30	-2	20>																	
					•														
	<2	21>	CDS																
35	<2	22>	(1)	(1	503)														•
	<2	23>			•														
40																			
	at	:00> :g ga	t ac	t tt	g tt:	g aa	aa ac	20 00	ca a	at a	ac c	tt g	aa t	tt c	tg a	ıac	cca		48
	M∈ 1	t As	p Th	r Le	u Le 5	eu Ly	ys Th	nr P	ro A	sn A	sn L .0	eu G	lu P	he L	eu 7	lsn L5	Pro		
45										~ + ~		++ 5	as t	ct o	ao a	aacr	cat		96
	Са Нј	at ca is Hi	s G	gt tt Ly Pl 20	ne A	la V	al L	ys A	la S	er 1 5	hr F	he A	rg S	er G	lu l	Lys	His		
50	Cá	at aa	at ti	ct g	gt t	ct a	gg a	ag t	tt t	gt g	jaa' a	ict t	tg g	ıgt a	aga i	agt	gtt		144

	His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val 35 40 45	
5	tgt gtt aag ggt agt agt agt gct ctt tta gag ctt gta cct gag acc Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60	192
10	aaa aag gag aat ctt gat ttt gag ctt cct atg tat gac cct tca aaa Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80	240
	ggg gtt gtt gtg gat ctt gct gtg gtt ggt ggc cct gca gga ctt Gly Val Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95	288
15	gct gtt gca cag caa gtt tct gaa gca gga ctc tct gtt tgt tca att Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile 100 105 110	336
20	gat ccg aat cct aaa ttg ata tgg cct aat aac tat ggt gtt tgg gtg Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125	384
25	gat gaa ttt gag gct atg gac ttg tta gat tgt cta gat gct acc tgg Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp 130 135 140	432
30	tct ggt gca gca gtg tac att gat gat aat acg gct aaa gat ctt cat Ser Gly Ala Ala Val Tyr Ile Asp Asp Asn Thr Ala Lys Asp Leu His 145 150 150 155	480
	aga cct tat gga agg gtt aac cgg aaa cag ctg aaa tcg aaa atg atg Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met 165 170 175	528
35	cag aaa tgt ata atg aat ggt gtt aaa ttc cac caa gcc aaa gtt ata Gln Lys Cys Ile Met Asn Gly Val Lys Phe His Gln Ala Lys Val Ile 180 185 190	576
40	Daag gtg att cat gag gaa tcg aaa tcc atg ttg ata tgc aat gat ggt Lys Val Ile His Glu Glu Ser Lys Ser Met Leu Ile Cys Asn Asp Gly 195 .200 205	624
4	att act att cag gca acg gtg gtg ctc gat gca act ggc ttc tct aga 5 Ile Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg 210 215 220	672
5	tct ctt gtt cag tat gat aag cct tat aac ccc ggg tat caa gtt gct Ser Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala O 225 230 235 240	720

		tat Tyr	ggc Gly	att Ile	ttg Leu	gct Ala 245	gaa Glu	gtg Val	gaa Glu	gag Glu	cac His 250	ccc Pro	ttt Phe	gat Asp	gta Val	aac Asn 255	aa Ly	g 's	768
	5	atg Met	gtt Val	ttc Phe	atg Met 260	gat Asp	tgg Trp	cga Arg	gat Asp	tct Ser 265	cat His	ttg Leu	aag Lys	aac Asn	aat Asn 270	act Thr	ga As	at sp	816
	10				Arg	aat Asn													864
	15			Sez		agg Arg			Leu					Leu					912
	20	cct Pro 305	Gl	c ttg y Le	u Arq	z ata g Ile	gat Asp 310	Asp	att	caa Glr	ı gaz	a cga a Arg 31	g Met	g gtg : Val	gct Ala	cgt Arg	J L	ta eu 20	960
	25	aac Asr	ca Hi	t tt s Le	g gg	g ata y Ile 325	E Lys	a gtg s Val	g aag L Lys	g ago	c att	e Gl	a gaa u Gl	a gat u Ası	gaa Glu	a ca u Hi 33	s C	gt Ys	1008
	25	cta Le:	a at ı Il	a cc e Pr	a at o Me	g gg t Gl;	ggt y Gl	t cca	a ct	t cc u Pr 34	o Va	a tt l Le	a cc u Pr	t cag	g ag n,Ar 35	g Va	c 9	gtt Val	1056
	30	gg:	a at y Il	c gg e Gl	Ly Gl	rt ac .y Th	a gc r Al	t gg a Gl	c at y Me 36	t Va	t ca l Hi	t co s Pr	a to	c ac r Th 36	r Gl	t ta y Ty	t i	atg Met	1104
)	35	gt Va	1 A	ca aq la Ai 70	gg ac cg Tì	ca ct nr Le	a go u Al	t go a Al	a Al	t co a Pr	t gt	t gt	al Al	la As	t go n Al	c at a II	ia le	att Ile	1152
	40	ca G1 38	n T	ac c yr L	tc g eu G	gt to ly Se	et ga er Gl	u Ar	ga ag ng Se	gt ca er H:	at to is Se	er G	gt aa ly As 95	at ga sn Gl	a ti lu Le	ta to ≥u S	cc er	aca Thr 400	1200
	45	go Al	t g La V	tt t al T	gg a rp L	aa ga ys As	at ti sp Le	tg tg eu Ti	gg co	ct a ro I	le G	ag a lu A 10	gg a rg A	ga co	gt c rg G	ln A	ga rg 15	gag Glu	1248
	40	tt Pl	tc t ne P	tc t	ys F	tc gohe G	gt a ly M	tg g et A	at a sp I	le L	tt c eu L 25	tg a eu I	ag c ys L	tt g eu A	sp L	ta c eu F 30	ro	gct Ala	1296
	50	a	ca a	ıga a	ıgg t	tc t	tt g	at g	ca t	tc t	tt g	rac t	ta g	gaa c	ct c	gt t	at	tgg	1344

	Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp 435 440 445	
5	cat ggc ttc tta tcg tct cga ttg ttt cta cct gaa ctc ata gtt ttt His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe 450 455 460	1392
10	ggg ctg tct cta ttc tct cat gct tca aat act tct aga ttt gag ata Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu Ile 465 470 475 480	1440
15	atg aca aag gga act gtt cca tta gta aat atg atc aac aat ttg tta Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495	1488
15	cag gat aaa gaa tga Gln Asp Lys Glu 500	1503
20	<210> 54	
25	<211> 500 <212> PRT	
	<213> Tomate	
30	<400> 54	
35	Met Asp Thr Leu Leu Lys Thr Pro Asn Asn Leu Glu Phe Leu Asn Pro 1 5 10 15	
40	His His Gly Phe Ala Val Lys Ala Ser Thr Phe Arg Ser Glu Lys His 20 25 30	
40	His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val	
45	Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 55 60	
50	Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 65 70 75 80	

5	Gly	Val	Val	Val	Asp 85	Leu	Ala	Val	Val	. G] 90		∋ly (Gly	Pro	Al	a G: 9:		eu
	Ala	Val	Ala	Gln 100	Gln	Val	Ser	Glu	Ala 105		ly I	Leu	Ser	Val	Су 11		er 1	le
10	Asp	Pro	Asn 115	Pro	Lys	Leu	Ile	Trp 120		o A	sn i	Asn	Tyr	Gly 125		al T	'rp '	Jal
15	Asp	Glu 130		Glu	Ala	Met	Asp 135		ı Le	u A	ap	Cys	Leu 140		A.	la 1	Chr '	Trp
20	Ser 145		Ala	Ala	Val	. Tyr 150		e Asj	p As	sp P	Asn	Thr 155	Ala	. Ly	s A	sp :	Leu	His 160
25	Arg	Pro	э Туг	Gly	7 Arg		L Ası	n Ar	g rž		31n 170	Leu	. Lys	s Se	r L	ys	Met 175	Met
23	Glr	ı Ly:	s Cy:	3 Ile 180		t Ası	n Gl	y Va		ys : 85	Phe	His	Gl:	n Al	a.I	rao Ja	Val	Ile
30	Lys	s Va	l Il 19		s Gl	u Gl	u Se		ys S OO	er	Met	Lei	1 Il		/s /	Asn	Asp	Gly
35	Ile	e Th 21		e Gl	n Al	a Th	ır Va 21		al I	eu	Asp	Ala	a Th 22		ly	Phe	Ser	Arg
· 40	Se 22		u Va	il Gl	n Ty	/r As 23		ys P	ro 1	ſyr	Asr	n Pr 23		у Т	уr	Gln	. Val	. Ala 240
45	ту	r Gl	Ly II	le L∈		la Gl 45	lu V	al G	lu (3lu	Hi:		o Pl	ne P	ds.	Val	. Ası 25!	n Lys
	M∈	et V	al P		et A	sp T	rp A	rg P		Ser 265		s Le	eu L	ys 2	Asn	Asr 270	n Th	r Asp
50																		

	Leu Lys Glu Arg Asn Ser Arg Ile Pro Thr Phe Leu Tyr Ala Met Pro 275 280 285	o
5	Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Ar 290 295 300	g
10	Pro Gly Leu Arg Ile Asp Asp Ile Gln Glu Arg Met Val Ala Arg Le 305 310 315 32	:u
15	Asn His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cy 325 330 335	γs
	Leu Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Va 340 345 350	al
20	Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr M 355 360 . 365	let
25	Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile I 370 375 380	le
30	Gln Tyr Leu Gly Ser Glu Arg Ser His Ser Gly Asn Glu Leu Ser 335 390 395	Thr 400
3!	Ala Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Arg Gln Arg 6	Glu
	Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro 420 425 430	Ala
4	Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr 435 440 445	Trp
4	His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val 450 455 460	Phe
	Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu	Ile

_	Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495	
5	Gln Asp Lys Glu 500	
10	<210> 55	
	<211> 1125	
15	<212> DNA	٠
	<213> Lycopersicon esculentum	
20	<220>	
	<221> CDS	
25	<222> (20)(946)	
	<223>	
30		
	<pre><400> 55 ttggtcatct ccacaatca atg gct gcc gcc aga atc tcc gcc tcc tct Met Ala Ala Ala Arg Ile Ser Ala Ser Ser 1</pre>	52
35	acc tca cga act ttt tat ttc cgt cat tca ccg ttt ctt ggc cca aaa 1 Thr Ser Arg Thr Phe Tyr Phe Arg His Ser Pro Phe Leu Gly Pro Lys 15 20 25	00
40	cct act tcg aca acc tca cat gtt tct cca atc tct cct ttt tct ctt Pro Thr Ser Thr Thr Ser His Val Ser Pro Ile Ser Pro Phe Ser Leu 30 35 40	.48
45	aat cta ggc cca att ttg agg tct aga aga aa ccc agg bb gbb yol	196
50	Cys Phe Val Leu Glu Asp Glu Lys Leu Lys Pro Gln Phe Asp Asp Glu	244

5	gct Ala				gaa Glu 80													292
J					ctg Leu												•	340
10					atg Met													388
15			Tyr		aga Arg													436
20	Val 140	Thr	Glu	Met	ttg Leu	Gly 145	Thr	Phe	Ala	Leu	Ser 150	Val	Gly	Ala	Ala	Val 155		484
25	Gly	Met	: Glu	Ph∈	160	Ala	. Arg	Trp	Ala	. His 165	Lys	ala	. Lev	Trp	His 170			532
	Ser	Let	ı Tr <u>j</u>) His	s Met	: His	s Glu	ı Sei	180	His	. Lys	Pro	o Arg	185 185	ı Gly	e cct		580
30	Ph∈	e Gl	19	u As: O	n Asp	y Va:	l Phe	2 Ala 19	a Ile 5	e Thi	c As:	n Ala	a Va 20	l Pro O	o Ala	a ata a Ile		628
35	Ala	20	u Le 5	u As	n Ty:	r Gl	y Ph 21	e Ph O	e Hi	s Ly:	s Gl	y Le 21	u Il 5	e Al	a Gl	a cta y Leu		676
40	Су: 22	s Ph O	e Gl	y Al	a Gl	y Le 22	u Gl 5	у I1	e Th	r Va	1 Ph 23	e Gl	у Ме	t Al	а Ту	c atg r Met 235		724 772
45	Ph	e Va	1 Hi	s As	sp Gl 24	0 V Le	eu Va	.l Hi	s Ly	s Ar 24	g Pi 5	ie Pi	o Va	l Gl	у Рт 25			
	Al	a As	sn Va	al Pi 25	со Ту 55	r Le	eu Ar	g Ly	75 Va 26	l Al SO	.a A:	la A	la Hi	ls Se 20	er Le 55	t cat eu His		820
50	ca	c to	ca ga	ag a	ag tt	c a	at g	gt gi	ta a	ca ta	at g	gc t	tg ti	tc tt	c g	ga cct	:	868

	His Ser Glu Lys 270		al Pro Tyr Gl 75	y Leu Phe Phe Gly 280	Pro
5	aag gaa ctg gaa Lys Glu Leu Glu 285	gaa gta gga g Glu Val Gly G 290	gg acg gaa ga ly Thr Glu Gl	g ttg gaa aag gaa u Leu Glu Lys Glu 295	gtg 916 Val
10	ata cga agg acg Ile Arg Arg Thr 300			gaacgattg ttcataaa	ca 966
	tagaatgtca tttt	acactt cttates	atg aggaaggg	ng atttttgatg tatt	tgatag 1026
15	tagagaaaaa tgta	gctctc ttgatga	aaat gaatttgt	at ttatgtaggc tctt	cttatt 1086
13	cagtaagatt tttt	cttttt tttgate	ctcg tgccgaat	t	1125
20	<210> 56				
	<211> 309				
	<212> PRT				
25	<213> Lycoper	sicon esculent	um		
	<400> 56			. •	·
30	Met Ala Ala Al 1	a Ala Arg Ile 5	Ser Ala Ser 8	Ser Thr Ser Arg Th	
35	Tyr Phe Arg Hi		Leu Gly Pro	Lys Pro Thr Ser Th 30	nr Thr
40	Ser His Val Se	er Pro Ile Ser	Pro Phe Ser	Leu Asn Leu Gly Pr 45	ro Ile
45	Leu Arg Ser A	rg Arg Lys Pro 55	Ser Phe Thr	Val Cys Phe Val L	eu Glu
	Asp Glu Lys L 65	70	n Phe Asp Asp	Glu Ala Glu Asp'P 75	he Glu · 80
50					

. 50

										100						
	Lys	Lys	Ile	Glu ,	Glu 85	Gln	Ile	Leu	Ala	Thr 90	Arg	Leu	Ala	Glu	Lys 95	Leu
5	Ala	Arg	Lys	Lys 100	Ser	Glu	Arg	Phe	Thr 105	туг	Leu	Val	Ala	Ala 110	Ile	Met
10	ser	Ser	Phe 115		Ile	Thr	Ser	Met 120	Ala	Val	Met	Ala	Val 125	Tyr	Tyr	Arg
15	Phe	ser 130		Gln	Met	Glu	Gly 135		Glu	Val	. Pro	Val 140	Thr	Glu	Met	Leu
	Gly 145		Phe	e Ala	. Leu	Ser 150	Val	. Gly	Ala	Ala	155		Met	Glu	. Phe	160
20	Ala	. Arg	Tr	Ala	His		Ala	ı Lev	ı Trp	17		a Ser	Leu	Tr) His	Met
25	His	s Glı	u Se:	r His		. Lys	Pro	o Arg	3 Gl: 18:		y Pro	o Phe	e Glı	1 Let 190		n Asp
30	۷a	l Ph	e Al 19		e Thi	c Asr	a Al	a Va 20		o Al	a Il	e Ala	a Le:		u As	n Tyr
35	Gl	y Ph 21		e Hi	в Ly:	s Gly	y Le 21		e Al	a Gl	y Le	u Cy 22		e Gl	y Al	a Gly
	Le 22		y Il	e Th	r Va	1 Pho 23		y Me	t Al	.а Ту	yr Me 23		e Va	l Hi	s As	sp Gly 240
40	Le	eu Va	al Hi	is Ly	rs Ar 24		e Pı	co Va	al G		ro Va 50	al Al	la As	sn Va	al Pi 25	co Ty:
45	Le	eu Ai	rg Ly		al Al 50	a Al	a A	la H:		er L 65	eu H	is H:	is Se		lu L; 70	ys Ph

Asn Gly Val Pro Tyr Gly Leu Phe Phe Gly Pro Lys Glu Leu Glu Glu

Val Gly Gly Thr Glu Glu Leu Glu Lys Glu Val Ile Arg Arg Thr Arg 300 290 295 5 Leu Ser Lys Gly Ser 305 10 <210> 57 <211> 1666 15 <212> DNA <213> Lycopersicon esculentum 20 <220> <221> CDS 25 (1)..(1494) <222> <223> 30 <400> 57 atg gaa get ett ete aag eet tit eea tet ett tia ett tee tet eet 48 Met Glu Ala Leu Leu Lys Pro Phe Pro Ser Leu Leu Leu Ser Ser Pro 10 35 96 aca ccc cat agg tct att ttc caa caa aat ccc tct ttt cta agt ccc Thr Pro His Arg Ser Ile Phe Gln Gln Asn Pro Ser Phe Leu Ser Pro 30 25 20 acc acc aaa aaa aaa tca aga aaa tgt ctt ctt aga aac aaa agt agt 144 40 Thr Thr Lys Lys Lys Ser Arg Lys Cys Leu Leu Arg Asn Lys Ser Ser 40 192 aaa ctt ttt tgt agc ttt ctt gat tta gca ccc aca tca aag cca gag Lys Leu Phe Cys Ser Phe Leu Asp Leu Ala Pro Thr Ser Lys Pro Glu 45 60 55 50 240 tot tha gat gtt aac atc toa tgg gtt gat cot aat tcg aat cgg gct Ser Leu Asp Val Asn Ile Ser Trp Val Asp Pro Asn Ser Asn Arg Ala 80 50 75 65

5	caa ttc gac gtg atc att atc gga gct ggc cct gct ggg ctc agg cta Gln Phe Asp Val Ile Ile Ile Gly Ala Gly Pro Ala Gly Leu Arg Leu 85 90 95	288
5	gct gaa caa gtt tct aaa tat ggt att aag gta tgt tgt gtt gac cct Ala Glu Gln Val Ser Lys Tyr Gly Ile Lys Val Cys Cys Val Asp Pro 100 105 110	336
10	tca cca ctc tcc atg tgg cca aat aat tat ggt gtt tgg gtt gat gag Ser Pro Leu Ser Met Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu 115 120 125	384
15	ttt gag aat tta gga ctg gaa aat tgt tta gat cat aaa tgg cct atg Phe Glu Asn Leu Gly Leu Glu Asn Cys Leu Asp His Lys Trp Pro Met 130 135 140	432
20	act tgt gtg cat ata aat gat aac aaa act aag tat ttg gga aga cca Thr Cys Val His Ile Asn Asp Asn Lys Thr Lys Tyr Leu Gly Arg Pro 145 150 155 160	480
25	tat ggt aga gtt agt aga aag aag ctg aag ttg aaa ttg ttg aat agt Tyr Gly Arg Val Ser Arg Lys Lys Leu Lys Leu Lys Leu Leu Asn Ser 165 170 175	528
20	tgt gtt gag aac aga gtg aag ttt tat aaa gct aag gtt tgg aaa gtg Cys Val Glu Asn Arg Val Lys Phe Tyr Lys Ala Lys Val Trp Lys Val 180 185 190	576
30	gaa cat gaa gaa ttt gag tct tca att gtt tgt gat gat ggt aag aag Glu His Glu Glu Phe Glu Ser Ser Ile Val Cys Asp Asp Gly Lys Lys 195 200 205	624
35	ata aga ggt agt ttg gtt gtg gat gca agt ggt ttt gct agt gat ttt Ile Arg Gly Ser Leu Val Val Asp Ala Ser Gly Phe Ala Ser Asp Phe 210 215 220	672
40	ata gag tat gac agg cca aga aac cat ggt tat caa att gct cat ggg Ile Glu Tyr Asp Arg Pro Arg Asn His Gly Tyr Gln Ile Ala His Gly 225 230 235 240	720
45	gtt tta gta gaa gtt gat aat cat cca ttt gat ttg gat aaa atg gtg Val Leu Val Glu Val Asp Asn His Pro Phe Asp Leu Asp Lys Met Val 245 250 255	768
.3	ctt atg gat tgg agg gat tct cat ttg ggt aat gag cca tat tta agg Leu Met Asp Trp Arg Asp Ser His Leu Gly Asn Glu Pro Tyr Leu Arg 260 265 270	816
50	gtg aat aat gct aaa gaa cca aca ttc ttg tat gca atg cca ttt gat	864

	Val	Asn	Asn 275	Ala	Lys	Glu	Pro	Thr 280	Phe	Leu	Tyr	Ala	Met 285	Pro	o Pł	ne A	sp	
5			Leu		ttc Phe													912
10					gaa Glu											rg 1		960
15					gtg Val 325	Lys					Glu				s V			1008
.0					a cca / Pro					Pro					et A			1056
20				n Se	a ggg				Pro					r Me				1104
25			r Me		t tt: a Le			val					a Il					1152
30		u Gl			a ag ir Ar		t Il					n Le						1200
35						p Pr					g Cy						tat Tyr	1248
00				Ly Me						s Le				ys C			agg Arg	1296
40			eu P						sp Le				ys T				a ggg n Gly	
45		ne L					eu S					eu G					c ttg r Leu	
50	C	gt c ys L 65	tt t eu P	tc g he G	ga c ly H	is G	gc t ly s 70	ca aa er A	ac a sn M	tg a et T	hr A	gg t rg L 75	tg g eu <i>P</i>	lat Asp	att Ile	gt Va	t aca l Thr 480	

	Lys Cys Pro Leu Pro Leu Val Arg Leu Ile Gly Asn Leu Ala Ile Glu 485 490 495	1400
5	agc ctt tgaatgtgaa aagtttgaat cattttcttc attttaattt ctttgattat Ser Leu	1544
10	tttcatattt tctcaattgc aaaagtgaga taagagctac atactgtcaa caaataaact	1604
	actattggaa agttaaaata tgtgtttgtt gtatgttatt ctaatggaat ggattttgta	1664
15	aa	1666
	<210> 58	
20	<211> 498	
	<212> PRT	
25	<213> Lycopersicon esculentum	
	<400> 58	
30	Met Glu Ala Leu Leu Lys Pro Phe Pro Ser Leu Leu Leu Ser Ser Pro 1 5 10 15	
35	Thr Pro His Arg Ser Ile Phe Gln Gln Asn Pro Ser Phe Leu Ser Pro 20 25 30	
	Thr Thr Lys Lys Lys Ser Arg Lys Cys Leu Leu Arg Asn Lys Ser Ser	
40	Lys Leu Phe Cys Ser Phe Leu Asp Leu Ala Pro Thr Ser Lys Pro Glu 50 55 60	
45	Ser Leu Asp Val Asn Ile Ser Trp Val Asp Pro Asn Ser Asn Arg Ala 65 70 75 80	
50	Gln Phe Asp Val Ile Ile Ile Gly Ala Gly Pro Ala Gly Leu Arg Leu	

5	Ala Glu Gln Val Ser Lys Tyr Gly Ile Lys Val Cys Cys Val Asp Pro 100 105 110
5	Ser Pro Leu Ser Met Trp Pro Asn Asn Tyr Gly Val Trp Val Asp Glu 115 120 125
10	Phe Glu Asn Leu Gly Leu Glu Asn Cys Leu Asp His Lys Trp Pro Met 130 135 140
15	Thr Cys Val His Ile Asn Asp Asn Lys Thr Lys Tyr Leu Gly Arg Pro 145 150 155 160
20	Tyr Gly Arg Val Ser Arg Lys Lys Leu Lys Leu Lys Leu Leu Asn Ser 165 170 175
25	Cys Val Glu Asn Arg Val Lys Phe Tyr Lys Ala Lys Val Trp Lys Val 180 185 190
	Glu His Glu Glu Phe Glu Ser Ser Ile Val Cys Asp Asp Gly Lys Lys 195 200 205
30	Ile Arg Gly Ser Leu Val Val Asp Ala Ser Gly Phe Ala Ser Asp Phe 210 215 220
35	Ile Glu Tyr Asp Arg Pro Arg Asn His Gly Tyr Gln Ile Ala His Gly 225 230 235 240
40	Val Leu Val Glu Val Asp Asn His Pro Phe Asp Leu Asp Lys Met Val 255 255
4	Leu Met Asp Trp Arg Asp Ser His Leu Gly Asn Glu Pro Tyr Leu Arg 260 265 270
	Val Asn Asn Ala Lys Glu Pro Thr Phe Leu Tyr Ala Met Pro Phe Asp 275 280 285
5	0

	Arg	Asp 290		eu	Val	Phe	Leu	Gl: 29:		lu '	Thr	Sei	. L		/al 300	Ser	· A:	rg	Pro	Va	.1
5	Leu 305	Se	r I	ľγr	Met	Glu	Val 310	Lγ	s P	Arg	Arg	Me		al 1 15	Ala	Arg	, L	eu	Arg	7 Hi	Ls 20
10	Leu	G1	у :	Ile	Lys	Vál 325	Lys	Se	r T	Val	Ile	G1 33		lu ·	Glu	Ly	s C	'ys	Va]		le
15	Pro	Ме	t (Gly	Gly 340		Lev	ı Pr	. O	Arg	Ile 345			∃ln	Asn	Va ··		1et 350	Ala	a I	le
	Gly	Gl		Asn 355		Gly	/ Ile	e Va	al	His 360	Pro	o Se	er '	Thr	Gly	Ту 36		мet	۷a	1 A	la
20	Arg		er 70	Met	Ala	. Le	u Ala		ro 75	Val	Le	u A.	la	Glu	Ala 380		.e '	Val	. Gl	u C	Sly
25	Le:		ly	Ser	Th:	r Ar	g Me 39		le	Arg	Gl	y s	er	Gln 395	Lev	1 T)	γ r 		s Ai	g \	Val 400
30	Tr	ρA	sn	Gly	y Le	u Tr 40	p Pr 5	o I	eu	Asp	Ar		rg 10	Cys	Va:	1 A:	rg	Glı	1 C;	ys 15	Tyr
35	Se	r P	he	Gl:	y Me 42		u Tì	ır I	ieu	. Le	ı Ly 42		eu	Asp	Le:	u L	ys	Gl;		hr	Arg
	Ar	g I	eu	Ph 43		p Al	la Pl	ne l	Phe	. Asj 44		eu A	Asp	Pro	. Ly		'yr .45	Tr	рG	ln	Gly
40	Ph		Leu 150		r Se	er A	rg L		Ser 455		1 L;	ys (3lu	Le	Gl 46		Leu	Le	u S	er	Lev
45	Су 4 б		Leu	ı Ph	ne Gl	гу н	is G 4	ly 70	Se	r As	in M	et	Thr	Ar 47		eu i	Asp) I]	Le V	/al	Th:
50	_	ys (Cys	s Pi	co L		ro I 85	eu	Va:	l Ar	rg L		Ile 490		у А	sn i	Lev	ı A.	la :	Ile 495	Gl

```
Ser Leu
5
    <210> 59
     <211> 37
10
     <212> DNA
     <213> Künstliche Sequenz
15
     <220>
     <221> Primer
20
           (1)..(37)
     <222>
     <223>
25
      <400> 59
      gcgcatgcat ctagaaatga tccagttaga acaacca
 30
      <210> 60
      <211> 37
 35
      <212> DNA
      <213> Künstliche Sequenz
 40
      <220>
       <221> Primer
 45
       <222> (1)..(37)
       <223>
```

	<400> 60 gegeatgete tagaetattt tgetttgtaa atttetg	37
5	<210> 61	
	<211> 792	
10	<212> DNA	
10	<213> Nostoc punctiforme ATCC 29133	
15	<220>	
	<221> CDS .	
20	<222> (5)(775)	
	<223>	
25	<pre><400> 61 gcgc atg cat cta gaa atg atc cag tta gaa caa cca ctc agt cat caa Met His Leu Glu Met Ile Gln Leu Glu Gln Pro Leu Ser His Gln</pre>	49
30	gca aaa ctg act cca gta ctg aga agt aaa tct cag ttt aag ggg ctt Ala Lys Leu Thr Pro Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu 20 25 30	97
35	ttc att gct att gtc att gtt agc gca tgg gtc att agc ctg agt tta Phe Ile Ala Ile Val Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu 35 40 45	145
40	tta ctt tcc ctt gac atc tca aag cta aaa ttt tgg atg tta ttg cct Leu Leu Ser Leu Asp Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro 50 55 60	193
AE	gtt ata cta tgg caa aca ttt tta tat acg gga tta ttt att aca tct Val Ile Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser 65 70 75	241
45	cat gat gcc atg cat ggc gta gta ttt ccc caa aac acc aag att aat His Asp Ala Met His Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn 80 85 90 95	289
5	O cat ttg att gga aca ttg acc cta tcc ctt tat ggt ctt tta cca tat	33'

										•	109									
		His	Leu	Ile	Gly	Thr 100	Leu	Thr	Leu :	Ser	Leu 105	Tyr	Gly	Leu	Leu	Pro 110	Tyr			
	5	caa Gln	aaa Lys	cta Leu	ttg Leu 115	aaa Lys	aaa Lys	cat His	Trp	tta Leu 120	cac His	cac His	cac His	aat Asn	cca Pro 125	gca Ala	agc Ser		385	
1	10	tca Ser	ata Ile	gac Asp	Pro	gat Asp	ttt Phe	cac His	aat Asn 135	ggt Gly	aaa Lys	cac His	caa Gln	agt Ser 140	ttc Phe	ttt Phe	gct Ala		433	
	15	tgg Trp	tat Tyr 145	Phe	cat His	ttt Phe	atg Met	aaa Lys 150	ggt Gly	tac Tyr	tgg Trp	agt Ser	tgg Trp 155	Gly	caa Gln	ata Ile	att : Ile		481	
	15	gcg Ala	. Le	g act	t att	att	tat Tyr 165	Asn	ttt Phe	gct Ala	aaa Lys	tac Tyr 170	· Ile	cto Lev	cat His	ato Ile	c.cca Pro 175		529	
	20	agt Ser	ga : As	t aa p As	t cta n Le	a act u Thi 180	Tyr	ttt Phe	tgg Trp	gtg Val	teta Leta 185	ı Pro	tcg Ser	g ctt	tta 1 Le:	a ag 1 Se: 19	t tca r Ser 0		577	
	25	tta Le	a ca ı Gl	a tt n Le	a tt u Ph 19	е Ту	ttt r Phe	ggt Gly	act Thr	200	e Le	a cc	с са о Ні	t ag s Se	t gai	u Pr	a ata o Ile		625	
	30	G1;	λ G) a aa	rt ta y Ty 21	r Va	t ca	g cci	t cat	t tgt s Cys 215	s Al	c ca a Gl	a ac n Th	a at	t ag e Se 22	c cg	t co	t att	: e	673	
		tg .Tr	p T	gg to cp Se 25	ca tt er Pl	t at ne Il	c ac e Th	g tg r Cy 23	s Ty	t ca r Hi	t tt s Ph	t gg ie Gl	jc ta .y Ty 23	r Hi	ıc ga .s Gl	g ga u Gl	aa cat lu His	s s	721	
	35	са Ні 24	s G	aa ta lu T	at co	ct ca ro Hi	t at s Il. 24	e Se	t tg r Tr	g tg p Tr	ub Gj	in Le	eu Pr	ca ga co Gi	aa at Lu II	t ta	ac aa yr Ly 25	s	769	1
	40	_	a a la L		agtc	tagaç	g cat	.gegc	:										792	2
	45		210>														•			
		_ '	- דוכ	. 25	. 7															

<211> 257

<212> PRT

<213> Nostoc punctiforme ATCC 29133

5	<400	> 6	52													
	Met 1	His	Leu	Glu	Met 5	Ile	Gln	Leu	Glu	Gln 10	Pro	Leu	Ser	His	Gln . 15	Ala
10	Lys	Leu	Thr	Pro 20	Val	Leu	Arg	Ser	Lys 25	Ser	Gln	Phe	Lys	Gly 30	Leu	Phe
15	Ile	Ala	Ile 35	Val	Ile	Val	Ser	Ala 40	Trp	Val	Ile	Ser	Leu 45	Ser	Leu	Leu
20	Leu	Ser 50	Leu	Asp	Ile	Ser	Lys 55	Leu	Lys	Phe	Trp	Met 60	Leu	Leu	Pro	Val
25	Ile 65	Leu	Trp	Gln	Thr	Phe 70	Leu	Tyr	Thr	Gly	Leu 75	Phe	Ile	Thr	Ser	His 80
	Asp	Ala	Met	His	Gly 85	Val	Val	Phe	Pro	Gln 90	Asn	Thr	Lys ·	.Ile	Asn 95	His
30	Leu	Ile	Gly	Thr		Thr	Leu	Ser	Leu 105	-	Gly	Leu	Leu	Pro 110		Gln
35	Lys	Leu	. Leu 115	_	Lys	His	Trp	Leu 120		His	His	Asn	Pro 125		Ser	Ser
40	Ile	Asp 130		asp	Phe	His	Asn 135		' Lys	; His	: Gln	Ser 140		e Phe	e Ala	Trp
45	Tyr 145		e His	Ph∈	. Met	Lys 150		Туг	Tr	ser	Trp 155		Glr	ı Ile	e Ile	160
	Ĺeu	t Thi	c Ile	e Ile	Tyr		n Phe	a Ala	Lys	₃ Tyı	r Ile	e Lev	ı His	s Ile	e Pro	Ser

50 -

										111									
	Asp	Asn	Leu	Thr 180	туг	Phe	Trp	Val	Leu 185	Pro	Ser	Leu	Leu	Ser 190	Ser	Leu			
5	Gln	Leu	Phe 195	туг	Phe	Gly	Thr	Phe 200	Leu	Pro	His	Ser	Glu 205	Pro	Ile	Gly			
10	Gly	Туг 210		Gln	Pro	His	Cys 215		Gln	Thr	Ile	Ser .220	Arg	Pro	Ile	Trp			
15	Trp 225		Phe	Ile	Thr	Cys 230		His	Phe	: Gly	Tyr 235		Glu	. Glu	His	His 240			
	Glu	туг	r Pro	His	3 Ile 245		Trp	Tr	Glr	250	Pro	Glu	ı Ile	туг	Lys 255	: Ala			
20	Lys	5														,			
25	<2	10>	63														/		
	<2	11>	26											. •					٠
30	<2	12>	DNA	-					·										
	<2	13>	Kün	stli	.che	Sequ	enz												
					•	•													
35	<2	20>																	
	<2	221>	Pri	imer															
40	<2	222>	(1) (:	26)														
70	<2	223>																	
45			63 ccct		ttaa	tgag	ata	tgc										2	6
									•										

<210> 64 50

	<211>	27		
	<212>	DNA		
5	<213>	Künstliche Sequenz		
	<220>			
10	<221>	Primer	·	
	<222>	(1)(27)	•	
15	<223>			
	<400>	64	•	27
20	ctcga	gettg gacaatcagt aaattga		
	<210:	• 65 ·		
25		> 210	,	
20		> DNA		
		> Agrobacterium tumefaciens		
30	<213	> Agrobacoczam como		
	<220			
35		> Terminator		
		2> (1)(210)		
40	<22.)	3>		
	<40 gto	0> 65 gaccctg ctttaatgag atatgcgaga cgcctatgat cgcatgatat	ttgctttcaa	60
45	_	tgttgtg cacgttgtaa aaaacctgag catgtgtagc tcagatcctt		120
		gttcatt ctaatgaata tatcacccgt tactatcgta tttttatgaa		180
5		tcaattt actgattgtc caagctcgag		210
-	_			

```
<210> 66
    <211> 35
5
    <212> DNA
    <213> Künstliche Sequenz
10
     <220>
     <221> Primer
15
     <222> (1)..(35)
     <223>
20
      <400> 66
     gcgcatgcat ctagaaatgg ttcagtgtca accat
25
      <210> 67
      <211> 35
 30
      <212> DNA
      <213> Künstliche Sequenz
 35
       <220>
       <221> Primer
  40
       <222> (1)..(35)
       <223>
  45
       <400> 67
       gcgcatgctc tagaccttat aaagatattt tgtga
```

35

	<210>	68																
	<211>	809																
5	<212>	DNA																
	<213>	Nost	coc 1	PCC	7120													
10	<220>																	
	<221>	CDS																
15	<222>	(5)	(7	790)														
	<223>																	
20																		
	<400: gcgc	atg (Met)	cat His	cta Leu	gaa Glu	atg Met 5	gtt Val	cag Gln	tgt Cys	caa Gln	cca Pro 10	tca Ser	tct Ser	ctg Leu	cat His	tca Ser 15	,	49
25		aaa c Lys I	tg c	al I	ta t Leu I 20	tg t Leu :	ca t Ser s	cg a	rnr .	atc a Ile <i>I</i> 25	aga 9 Arg 1	gat g Asp 1	gat a Asp·I	- U L	aat a Asn 3	itt [le		97 .
30) aat Asn	aag g	Gly :	ata Ile 35	ttt Phe	att Ile	gcc Ala	tgc Cys	ttt Phe 40	atc Ile	tta Leu	ttt Phe	Dea	tgg Trp 45	gca (Ala	att Ile		145
3	agt 5 Ser	tta i	atc Ile 50	tta Leu	tta Leu	ctc Leu	tca Ser	ata Ile 55	gat Asp	aca Thr	tcc Ser	ata Ile	att Ile 60	cat His	aag Lys	agc Ser		193
4	tta Leu 0	tta Leu 65	ggt Gly	ata Ile	gcc Ala	atg Met	ctt Leu 70	tgg Trp	cag Gln	acc Thr	ttc Phe	tta Leu 75	tat Tyr	aca Thr	ggt Gly	tta Leu		241
	Phe 80	att	act Thr	gct Ala	cat His	gat Asp 85	gcc	atg Met	cac His	ggc	gta Val 90	gtt Val	tat Tyr	ccc Pro	aaa Lys	aat Asn 95		289
2	l5 ccc Pro	aga Arg	ata Ile	aat Asn	aat Asn 100	ı Phe	ata	ggt Gly	: aag y Lys	ctc Leu 105	LIII	cta Lev	ato l Ile	ttg Lev	tat Tyr 110			337
ļ	50 ati	a ctc	: cct	: tat	. aaa	a gat	tt:	a tt	g aaa	a aaa	a cat	t tgg	g tta	a cad	cac	gga		385

										115								
	Leu	Leu	Pro	Tyr 115	Lys	Asp	Leu	Leu	Lys 120	Lys	His	Trp	Leu	His 125	His	Gly		
5				act Thr			-		_									433
10				ctt Leu						_	_			-	_			481
15	_			ttc Phe				_								_		529
10				cca Pro													. ,	577
20			_	tca Ser 195	-									-				625
25		_			-				Asn			_		Arg	_	atc Ile	/	673
30			Pro					Phe	_		_		His			tac Tyr		721
35		Lys	_			_	Tyr					Trp		•		cct Pro 255		769
				aaa Lys		ser			iggtc	tag	agca	ıtgeg	łc					809
40	<21	0>	69															
45	<21 <21		262 PRT															
	<21	.3>	Nost	oc I	PCC 7	7120												

< 40	0>	69
------	----	----

Met	His	Leu	Glu	Met	Val	Gln	Cys	Gln	Pro	Ser	Ser	Leu	His	Ser	Glu
1				5					10					13	

Lys Leu Val Leu Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn

Lys Gly Ile Phe Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser

Leu Ile Leu Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu

Leu Gly Ile Ala Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe

Ile Thr Ala His Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro

Arg Ile Asn Asn Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu

Leu Pro Tyr Lys Asp Leu Leu Lys Lys His Trp Leu His His Gly His

Pro Gly Thr Asp Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn

Phe Phe Leu Trp Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr

Gln Ile Phe Gly Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val

His Ile Pro Glu Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile

		Leu	Ser	Ser 195	Val	Gln	Leu	Phe	Tyr 200	Phe	Gly	Thr	Phe	Leu 205	Pro	His	ГÀа		
	5	Lys	Leu 210		Gly	Gly	Tyr	Thr 215	Asn	Pro	His	Cys	Ala 220	Arg	Ser	Ile	Pro		
•	10	Leu 225		Leu	Phe	Trp	Ser 230	Phe	Val	Thr	Cys	Туг 235	His	Phe	Gly	туг	His 240		
	15	Ьys	s Glı	ı His	His	3 Glu 245		Pro	Glr	ı Lei	250	Trj	Tr	, Lys	s Lev	25!	o Glu 5		
		Ala	a Hi	s Ly:	5 Ile 26		r Le	1											
	20	<2	10>	70															
		<2	211>	39					•										
	25	<2	212>	DNA											•	•		/	
		<2	213>	Kür	nstli	che	Seq	ienz							. •				
	30		220>																
		<	221>	Pr	imer	•													
	35	i <	:222>	(1	.) ((39)						•							
		<	:223	•															
	40		<400 gcgc	> 70 atgc	O at C	taga	aatg	a at	tttt	gtga	. taa	acca	gt					·	39
	4	5	<210	> 7	1		•												
			<211	.> 3	7														
			<212	2> E	NA														

<213> Künstliche Sequenz

5	<220>	
	<221>	Primer
10	<222>	(1)(37)

<223>

15 <400> 71

gcgcatgctc tagattacga attggttact gaattgt

<220> 30 <221> CDS

<222> (5)..(802)

35

35 <223>

50

40 gcgc atg cat cta gaa atg aat ttt tgt gat aaa cca gtt agc tat tat

Met His Leu Glu Met Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr

1 5 10 15

gtt gca ata gag caa tta agt gct aaa gaa gat act gtt tgg ggg ctg

Val Ala Ile Glu Gln Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu

20 25 30

gtg att gtc ata gta att att agt ctt tgg gta gct agt ttg gct ttt

Val Ile Val Ile Val Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe

5			gct Ala 50				Ala		_				_					193
ŭ	_		gtt Val															241
10		_	gct Ala	_						_								289
15			atc Ile				_	_				_						337
20		_	atg Met		_			_				_			-	_		385
25	_	_	gac Asp 130	Pro							_						_	433
			ctc			_		_			_		Gln	_				481
30	_	Leu	act Thr				Asn		_			· Val	_					529
35						Leu			_		Pro					tcc Ser		577
40					туг					e Lev					ı Pro	aag Lys		625
45				Val					s Sez					s Lev		a act o Thr		673
		_	. Ser			-	_	Ty:					r Hi			a cat ı His		721
50	cat	gag	g tat	ccc	cat	gta	a cci	tg:	g tg	g caa	a cti	t cc	a tc	t gt	a ta	t aag		769

	His G 240	lu 1	ryr I	Pro F		Val 245	Pro '	rrp	Trp (Leu 1 250	Pro S	er V	al 1		ys 55		
5	cag a Gln A			Phe 1					Thr			taato	etaga	ig ca	atgcg	rc	1	319
10	<210>		3 66															
15	<212>		RT osto	c pu	ncti	form	ne Al	'CC 2	29133	.								
20	<400: Met 1		Leu	Glu	Met 5	Asn	Phe	Cys	Asp	Lys 10	Pro	Val	Ser	Tyr	Туг 15	Val		
25 ်	Ala	Ile	Glu	Gln 20	Leu	Ser	Ala	Lys	Glu 25	Asp	Thr	Val	Trp	30	Leu	Val	,	
30	Ile	Val	Ile 35	Val	Ile	Ile	Ser	Leu 40	Trp	Val	Ala	Ser	Leu 45	Ala	Phe	Leu		
35		Ala 50	Ile	Asn	Tyr	Ala	Lys 55	Val	. Pro	Ile	Trp	Leu 60	Ile	Pro	Ile	Ala		
	Ile 65	Val	Trp	Gln	Met	Phe 70	. Leu	Тут	Thr	Gly	Leu 75	Phe	Ile	Thr	Ala	His 80		
40	Asp	Ala	Met	His	Gly 85	Ser	Val	туз	r Arg	90 90	asn	. Pro	Lys	Ile	Asn 95	Asn		
45	Phe	Ile	Gly	Ser 100		Ala	ı Val	. Ala	a Lev 105		: Ala	. Val	Phe	Pro 110		Gln		
50	Gln	Met	Leu 115		Asn	His	s Суз	: Le:		s His	s Arg	, His	Pro 125		Ser	Glu		

5	Val	Asp 130	Pro	Asp	Phe	His	Asp 135	Gly	Lys	Arg	Thr	Asn 140	Ala	Ile	Phe	Trp
	Tyr 145	Leu	His	Phe	Met	Ile 150	Glu	Tyr	Ser	Ser	Trp 155	Gln	Gln	Leu	Ile	Val 160
10	Leu	Thr	Ile	Leu	Phe 165	Asn	Leu	Ala	Lys	Tyr 170	Val	Leu	His	Ile	His 175	Gln
15	Ile	Asn	Leu	Ile 180	Leu	Phe	Trp	Ser	Ile 185	Pro	Pro	Ile	Leu	Ser 190	Ser	Ile
20	Gln	Leu	Phe 195	_	Phe	Gly	Thr	Phe 200	Leu	Pro	His	Arg	Glu 205	Pro	Lys	Lys
25	Gly	Туг 210		Tyr	Pro	His	Cys 215		Gln	Thr	Ile	Lys 220		Pro	Thr	Phe
	Leu 225		Phe	Ile	Ala	Cys 230		His	Phe	Gly	Tyr 235		Glų	,Glu	His	His 240
30	Glu	. Tyr	Pro	His	Val 245		Trp	Trp	Gln	. Leu 250		ser	· Val	Туг	Lys 255	
35	Arg	Val	. Phe	260	Asn	Ser	Val	. Thr	265		:					
40	<21	.0>	74													
40	<21	.1>	33													
	<21	.2>	DNA							•						
45	<21	L3>	Küns	stlid	che s	eque	enz									
50	<22	20>	٠													

```
<221> Primer
           (1)..(33)
    <222>
5
    <223>
     <400> 74
10
    gcgcatgcat ctagaaatgg cgatcgccat tat
                                                                         33
    <210> 75
15
    <211> 32
     <212> DNA
     <213> Künstliche Sequenz
20
     <220>
25
     <221> Primer
           (1)..(32)
     <222>
     <223>
30
     <400> 75
                                                                          32
     gcgcatgctc tagatcacaa atttgattta ga
35
     <210> 76
     <211>
           720
40
     <212> DNA
     <213> Nodularia spumigena NSOR10
45
     <220>
     <221> CDS
50
```

<222> (5)..(703) <223>

5			•															
10	<400 gcgc	atg	cat			_						agt Ser						49
15	•		_						_			caa Gln		ràs				97
15	_	_		_								tta Leu		-	-			145
20				_		-	_				_	gtt Val						193
25										_	_	ctg Leu 75					/	241
30												tgg Trp			_			289
35			-	_	_		_		_			aac Asn						337
00					Trp					Met	_	cgt Arg			Ser			385
40				Ile					Ile			tta Leu		. Lys				433
45			Phe	_				Met					Val			tca Ser		481
50		Lev					Lev					/ Thr				cac His		529

	agt Ser	gag Glu	cct Pro	gta Val	gaa Glu 180	ggt Gly	tat Tyr	aaa Lys	gag Glu	cct Pro 18	o Hi	t cg s Ar	t tc g Se	c ca r Gl	пт	ct hr 90	Ile	E 8	5//
5	agc Ser	cgt Arg	ccc	att Ile 195	tgg Trp	tgg Trp	tca Ser	ttt Phe	ata : Ile 200	Th	t tg r Cy	rt ta rs Ty	c ca r Hi	LS PI	t g ne G	gt	ta Ty	t r	625
10	cat His	tac Tyr	gaa Glu 210	His	cat His	gaa Glu	tao Ty	21:	o Hi	t gt s Va	t co	et to	CP T	gg c rp G 20	aa t ln I	ta Seu	Pr	a o	673
15	gaa Glu	att Ile 225	ту	aaa r Lys	a atg	g tct t Sei	23	s Se	a aa r As	t tt n Le	g t	gato	taga	g ca	tgc	gc			720
20	<21	LO>	77																
	<2	11>	233																
	<2	12>	PRT	•															_
25	<2	13>	Noc	lular	ria s	pumi	.gena	a NS	OR10										
														. •					,
	<4	00>	77																
30	Me 1	et Hi	s L	eu G	lu Mo 5		la I	le A	la I		Ile 10	Ser	Ile	Trp	Ala	11 15	.e :	Ser	
35	L€	eu Gi	ly L		eu L 0	eu T	yr I	le P		íle 25	Ser	Gln	Phe	Lys	Phe	TI.	p i	Met	
40	L	eu L		ro I	eu I	le P	he T		3ln ' 40	Thr	Phe	Leu	Tyr	Thr 45	Gly	, Pe	eu	Phe	
45			hr 1	Ala P	Ais A	Asp <i>I</i>		Met 55	His	Gly	Val	Val	Phe 60	Pro	Ly	s A	sn	Pro	
		ys I 5	(le)	Asn l	His :		Ile 70	Gly	Ser	Leu	Cys	Leu 75	Phe	. Lev	ту	r G	Sly	Leu 80	
50)																		

Leu	Pro	Tyr	Gln	Lys 85	Leu	Leu	Lys	Lys	H1S 90	Trp	Leu	His	HIS	95	ASII	
Pro	Ala	Ser	Glu 100	Thr	Asp	Pro	Asp	Phe 105	His	Asn	Gly	Lys	Gln 110	Lys	Asn	
Phe	Phe	Ala 115	Trp	Tyr	Leu	Tyr	Phe 120	Met	Lys	Arg	Tyr	Trp 125	Ser	Trp	Leu	
Gln	Ile 130	Ile	Thr	Leu	Met	Ile 135	Ile	Tyr	Asn	Leu	Leu 140	Lys	Tyr	Ile	Trp	
His 145	Phe	Pro	Glu	Asp	Asn 150	Met	Thr	Tyr	Phe	Trp 155	Val	Val	Pro	Ser	Ile 160	
Leu	Ser	Ser	Leu			Phe	Tyr	Phe	-		Phe	Leu	Pro	His 175	Ser	
Glu	Pro	Val		_	Tyr	Lys	Glu			Arg	Ser		190		Ser	
Arg	Pro		_	Trp	Ser	Phe			Cys	Tyr	His			Tyr	His	
Tyr			His	Glu	Tyr			Val	Pro	Trp			. Lev	Pro	Glu	
		. Lys	. Met	Ser			Asn	Leu	ı							
<21	0>	78														
		24														
<21	.2>	DNA														
	Pro Phe Gln His 145 Leu Glu Arg Tyr 11e 225 <21	Pro Ala Phe Phe Gln Ile 130 His Phe 145 Leu Ser Glu Pro Arg Pro Tyr Glu 210	Pro Ala Ser Phe Phe Ala 115 Gln Ile Ile 130 His Phe Pro 145 Leu Ser Ser Glu Pro Val Arg Pro Ile 195 Tyr Glu His 210 Ile Tyr Lys 225 <210> 78 <211> 24	Pro Ala Ser Glu 100 Phe Phe Ala Trp 115 Gln Ile Ile Thr 130 His Phe Pro Glu 145 Leu Ser Ser Leu Glu Pro Val Glu 180 Arg Pro Ile Trp 195 Tyr Glu His His 210 Ile Tyr Lys Met 225 <210> 78 <211> 24	Pro Ala Ser Glu Thr 100 Phe Phe Ala Trp Tyr 115 Gln Ile Ile Thr Leu 130 His Phe Pro Glu Asp 145 Leu Ser Ser Leu Gln 165 Glu Pro Val Glu Gly 180 Arg Pro Ile Trp Trp 195 Tyr Glu His His Glu 210 Ile Tyr Lys Met Ser 225 <210> 78 <211> 24	Pro Ala Ser Glu Thr Asp 100 Phe Phe Ala Trp Tyr Leu 115 Gln Ile Ile Thr Leu Met 130 His Phe Pro Glu Asp Asn 150 Leu Ser Ser Leu Gln Leu 165 Glu Pro Val Glu Gly Tyr 180 Arg Pro Ile Trp Trp Ser 195 Tyr Glu His His Glu Tyr 210 Ile Tyr Lys Met Ser Lys 230 <210> 78 <211> 24	Pro Ala Ser Glu Thr Asp Pro 100 Phe Phe Ala Trp Tyr Leu Tyr 115 Gln Ile Ile Thr Leu Met Ile 130 His Phe Pro Glu Asp Asn Met 145 Leu Ser Ser Leu Gln Leu Phe 165 Glu Pro Val Glu Gly Tyr Lys 180 Arg Pro Ile Trp Trp Ser Phe 195 Tyr Glu His His Glu Tyr Pro 210 Ile Tyr Lys Met Ser Lys Ser 225 <210> 78 <211> 24	S5	## Pro Ala Ser Glu Thr Asp Pro Asp Phe 105 Phe Phe Ala Trp Tyr Leu Tyr Phe Met 120 Gln Ile Ile Thr Leu Met Ile Ile Tyr 135 His Phe Pro Glu Asp Asn Met Thr Tyr 150 Leu Ser Ser Leu Gln Leu Phe Tyr Phe 165 Glu Pro Val Glu Gly Tyr Lys Glu Pro 185 Arg Pro Ile Trp Trp Ser Phe Ile Thr 195 Tyr Glu His His Glu Tyr Pro His Val 210 Ile Tyr Lys Met Ser Lys Ser Asn Leu 225 <210> 78 <211> 24	Pro Ala Ser Glu Thr Asp Pro Asp Phe His 100 Phe Phe Ala Trp 1yr Leu Tyr Phe Met Lys 115 Thr Leu Met Ile Ile Tyr Asn 135 Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn 130 Thr Leu Met Ile Ile Tyr Asn 135 His Phe Pro Glu Asp Asn Met Thr Tyr Phe 145 Thr Tyr Phe Gly 165 Leu Ser Ser Leu Gln Leu Phe Tyr Phe Gly 165 Thr Tyr Phe Gly 170 Glu Pro Val Glu Gly Tyr Lys Glu Pro His 185 185 Arg Pro Ile Trp Trp Ser Phe Ile Thr Cys 200 Tyr Glu His His Glu Tyr Pro His Val Pro 215 Ile Tyr Lys Met Ser Lys Ser Asn Leu 230 230 <210> 78 221>	SS	Pro Ala Ser Glu Thr Asp Pro Asp Phe His Asn Gly 100 Phe Phe Ala Trp 115 Tyr Leu Tyr Phe Met Lys Arg Tyr 120 Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn Leu Leu 130 135 His Phe Pro Glu Asp Asn Met Thr Tyr Phe Trp Val 145 Leu Ser Ser Leu Gln Leu Phe Tyr Phe Gly Thr Phe 165 Glu Pro Val Glu Gly Tyr Lys Glu Pro His Arg Ser 185 Arg Pro Ile Trp Trp Ser Phe Ile Thr Cys Tyr His 195 Tyr Glu His His Glu Tyr Pro His Val Pro Trp 2215 Ile Tyr Lys Met Ser Lys Ser Asn Leu 225 <210> 78 <211> 24	Pro Ala Ser Glu Thr Asp Pro Asp Phe His Asn Gly Lys 100 Thr 105 Trp 125 Phe Phe Ala Trp Tyr Leu Tyr Phe Met Lys Arg Tyr Trp 120 125 Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn Leu Leu Lys 130 140 His Phe Pro Glu Asp Asn Met Thr Tyr Phe Trp Val Val 145 Leu Ser Ser Leu Gln Leu Phe Tyr Phe Gly Thr Phe Leu 165 170 Glu Pro Val Glu Gly Tyr Lys Glu Pro His Arg Ser Gln 180 Arg Pro Ile Trp Trp Ser Phe Ile Thr Cys Tyr His Phe 195 Tyr Glu His His Glu Tyr Pro His Val Pro Trp Trp Glr 210 Tle Tyr Lys Met Ser Lys Ser Asn Leu 230 <210> 78 <211> 24	Pro Ala Ser Glu Thr Asp Pro Asp Phe His Asn Gly Lys Gln 110 Phe Phe Ala Trp Tyr Leu Tyr Phe Met Lys Arg Tyr Trp Ser 125 Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn Leu Leu Lys Tyr 130 His Phe Pro Glu Asp Asn Met Thr Tyr Phe Trp Val Val Pro 145 Leu Ser Ser Leu Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro 165 Glu Pro Val Glu Gly Tyr Lys Glu Pro His Arg Ser Gln Thr 180 Arg Pro Ile Trp Trp Ser Phe Ile Thr Cys Tyr His Phe Gly 195 Tyr Glu His His Glu Tyr Pro His Val Pro Trp Trp Gln Leu 210 Ile Tyr Lys Met Ser Lys Ser Asn Leu 220 <210> 78 <2210> 78 <2210> 78 <2211> 24	Pro Ala Ser Glu Thr Asp Pro Asp Phe His Asn Gly Lys Gln Lys 100 Phe Phe Ala Trp Tyr Leu Tyr Phe Met Lys Arg Tyr Trp Ser Trp 115 Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn Leu Leu Lys Tyr Ile 130 His Phe Pro Glu Asp Asn Met Thr Tyr Phe Trp Val Val Pro Ser 155 Leu Ser Ser Leu Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His 165 Glu Pro Val Glu Gly Tyr Lys Glu Pro His Arg Ser Gln Thr Ile 180 Arg Pro Ile Trp Trp Ser Phe Ile Thr Cys Tyr His Phe Gly Tyr 205 Tyr Glu His His Glu Tyr Pro His Val Pro Trp Trp Gln Leu Pro 210 78 <210> 78 <211> 24	Pro Ala Ser Glu Thr Asp Pro Asp Phe His Asn Gly Lys Gln Lys Asn 100 Phe Phe Ala Trp Tyr Leu Tyr Phe Met Lys Arg Tyr Trp Ser Trp Leu 115 Gln Ile Ile Thr Leu Met Ile Ile Tyr Asn Leu Leu Lys Tyr Ile Trp 130 His Phe Pro Glu Asp Asn Met Thr Tyr Phe Trp Val Val Pro Ser Ile 150 Leu Ser Ser Leu Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Ser 175 Glu Pro Val Glu Gly Tyr Lys Glu Pro His Arg Ser Gln Thr Ile Ser 180 Arg Pro Ile Trp Trp Ser Phe Ile Thr Cys Tyr His Phe Gly Tyr His 200 Tyr Glu His His Glu Tyr Pro His Val Pro Trp Gln Leu Pro Glu 210 Tle Tyr Lys Met Ser Lys Ser Asn Leu 221

<220>

<221> Primer

<222> (1)..(24) 5

<223>

10

<400> 78

gaattcctgc aatagaatgt tgag

<210> 79 15

<211> 25

<212> DNA

20

<213> Künstliche Sequenz

25 <220>

<221> Primer

<222> (1)..(25)

30

<223>

35 <400> 79 ctcgagctta cgagcatttt ctaag

<210> 80

40

<211> 307

<212> DNA

<213> Vicia faba 45

<220>

50

24

		<221> Terminator	
		<222> (1)(307)	
	5	<223>	
	10	<400> 80 gaatteetge aatagaatgt tgaggtgaee actttetgta ataaaataat tataaaataa	60
		atttagaatt gotgtagtoa agaacatoag ttotaaaata ttaataaagt tatggoottt	120
	15	tgacatatgt gtttcgataa aaaaatcaaa ataaattgag atttattcga aatacaatga	180
	15	aagtttgcag atatgagata tgtttctaca aaataataac ttaaaactca actatatgct	240
		aatgtttttc ttggtgtgtt tcatagaaaa ttgtatccgt ttcttagaaa atgctcgtaa	300
	20	gctcgag	307
		<210> 81	
	25	<211> 26	
	20		
		<212> DNA <213> Künstliche Sequenz	
	30		
		<220>	
	35	<221> Primer	
ı	55	<222> (1)(26)	
		<223>	
	40	42237	
		<400> 81	
	45	aagcttgaat ttggatccgc caccgt	26
	. •	<210> 82	
		<211> 25	
	50		

-2125	בער	
<213>	Künstliche Sequenz	
<220>		
<221>	Primer	
<222>	(1)(25)	
<223>		
•		
<400> gaatto	82 ccaa taataatcta cagcc	25
<210>	83	
<211>	1040	
<212>	DNA · · /	
<213>	Lycopersicon esculentum	
	···	
<220>		
<221>	CDS	
<222>	(29)(970)	
<223>		
<400>	83	
aagct	tgaat ttggateege eacegtee atg geg gee gga att tea gee tee Met Ala Ala Gly Ile Ser Ala Ser 1 5	52
Ala S	er Ser Arg Thr Ile Arg Leu Arg His Asn Pro Phe Leu Ser Pro	100
aaa t	ce gee tea ace gee eeg eeg gtt etg tte tte tet eeg tta act	148
	<220> <221> <222> <223> <400> gaatto <210> <211> <212> <213> <222> <223> <400 aagct gct aala S	<pre><212> DNA <213> Künstliche Sequenz <220> <221> Primer <222> (1)(25) <223> <400> 82 gaattccaa taataatcta cagcc <210> 83 <221> Indo <212> DNA <213> Lycopersicon esculentum <220> <221> CDS <222> (29)(970) <223> <400 83 aagcttgaat ttggatccgc caccgtcc atg gcg gcg gga att tca gcc tcc Met Ala Ala Gly Ile Ser Ala Ser Indo gct agt tcc cga acc att cgc ctc cgt cat aac ccg ttt ctc agt cca Ala Ser Ser Arg Thr Ile Arg Leu Arg His Asn Pro Phe Leu Ser Pro</pre>

	Lys 25	Ser	Ala	Ser	Thr	Ala 30	Pro	Pro	Val	Leu	Phe 35	Phe	Ser	Pro	Leu	Thr 40		
5													ccg Pro					196
10												_	act Thr			_		244
15	_										_		att Ile 85					292
.0								_				_	gcg Ala		_			340
20													tct Ser					388
25													ttt Phe			Gln	/	436
30										Glu	_		gct Ala		Phe	act Thr		484
35									Met					Arg		gct Ala		532
30			Ala					Ser				_				cac His		580
40		Arg		_			Pro		-	_		ı Asp				ata Ile 200		628
45			_			Ala					ı Sei					cat His		676
50					Pro					Gly	_				, Ile	aca Thr		724

5	gta ttt ggg atg gct tac atg ttc gtt cac gat gga ctg gtt cat aag Val Phe Gly Met Ala Tyr Met Phe Val His Asp Gly Leu Val His Lys 235 240 245	772
-	aga ttt ccc gta ggg cct att gcc aac gtg cct tac ttt cgg agg gta Arg Phe Pro Val Gly Pro Ile Ala Asn Val Pro Tyr Phe Arg Arg Val 250 255 260	820
10	gct gca gca cat cag ctt cat cac tcg gac aaa ttt gat ggt gtc cca Ala Ala Ala His Gln Leu His His Ser Asp Lys Phe Asp Gly Val Pro 265 270 275 280	868
15	tat ggc ttg ttt cta gga cct aag gaa ttg gaa gaa gta gga gga ctt Tyr Gly Leu Phe Leu Gly Pro Lys Glu Leu Glu Glu Val Gly Gly Leu 285 290 295	916
20	gaa gag tta gaa aag gaa gtc aac cga agg att aaa att tct aag gga Glu Glu Leu Glu Lys Glu Val Asn Arg Arg Ile Lys Ile Ser Lys Gly 300 305 310	964
25	tta tta tgatcaaaag atacgtctga taataataaa atgcgattgt atttaggctg Leu Leu	1020
	tagattatta ttgggaattc	1040
30	<211> 314 <212> PRT	
35	<213> Lycopersicon esculentum	
40	<400> 84 Met Ala Ala Gly Ile Ser Ala Ser Ala Ser Ser Arg Thr Ile Arg Leu	•
AE.	1 5 10 15	
45	Arg His Asn Pro Phe Leu Ser Pro Lys Ser Ala Ser Thr Ala Pro Pro 20 25 30	
50	Val Leu Phe Phe Ser Pro Leu Thr Arg Asn Phe Gly Ala Ile Leu Leu 35 40 45	

5	Ser	Arg 50	Arg	Lys	Pro		Leu 55	Ala	Val	Cys	Phe	Val 60	Leu	Glu	Asn	Glu
	Lys 65	Leu	Asn	Ser	Thr	Ile 70	Glu	Ser	Glu	Ser	Glu 75	Val	Ile	Glu	Asp	Arg 80
10	Ile	Gln	Val	Glu	Ile 85	Asn	Glu	Glu		Ser 90	Leu	Ala	Ala	Ser	Trp 95	Leu
15	Ala	Glu	Lys	Leu 100	Ala	Arg	Lys	Lys	Ser 105	Glu	Arg	Phe	Thr	туr 110	Leu	Val
20	Ala	Ala	Val		Ser	Ser	Leu	Gly 120	Ile	Thr	Ser	Met	Ala 125	Ile	Leu	Ala
25	Val	Туг 130		Arg	Phe	Ser	Trp 135		Met	Glu	Gly	Gly 140		Val	Pro	Phe
	Ser 145		ı Met	. Leu	Ala	Thr 150	Phe	Thr	Leu	Ser	Phe 155		Ala	'Ala	. Val	Gly 160
30	Met	: Glu	а Туг	Trp	Ala 165		Tr) Ala	. His	170		Leu	Trp	His	175	Ser
35	Lev	ı Tr <u>ı</u>	o His	3 Met 180		Glu	Se1	His	His 185		g Pro	Arg	g Glu	190) Phe
40	Glı	ı Met	L Ası 19		Val	. Phe	e Ala	a Ile 200		c Ası	n Ala	a Val	L Pro 205		a Ile	e Gly
45	Lei	1 Le: 21:		r Ty	r Gl	/ Phe	e Ph 21		s Ly:	s Gl	y Ile	e Va:		o Gly	y Le	u Cys
	Pho 22:		y Al	a Gl	y Lei	1 Gly 230			r Va	l Ph	e Gl; 23		t Ala	а Ту	r Me	t Phe

	Val H	is	Asp	Gly	Leu 245	Val	His	Lys	Arg	Phe 250	Pro	Val	Gly	Pro	Ile 255	Ala		
5	Asn V	al	Pro	Тут 260	Phe	Arg	Arg	Val	Ala 265	Ala	Ala	His	Gln	Leu 270	His	His		
10	Ser A		Lys 275	Phe	Asp	Gly	Val	Pro 280	Tyr	Gly	Leu	Phe	Leu 285	Gly	Pro	Lys		
15	Glu I	≟eu 290	Glu	Glu	Val	Gly	Gly 295		Glu	Glu	Leu	Glu 300		Glu	Val	Asn		
20	Arg #	Arg	Ile	Lys	Ile	Ser 310	Lys	Gly	Leu	Leu								
20	<210:	> {	85															
	<211:	> :	34															
25	<212	> 1	DNA														/	
	<213	> :	Küns	tlic	he S	eque	nz							. •				
30	<220	>																
	<221	>	Prim	er														
35	<222	>	(1).	. (34	1)													
	<223	>																
40	<400 ccat		85 lagc	teti	tete	aag (cctt	ttcc	at c	tct								34
45	<210)>	86															
	<211	L>	34													•		
50	<212	2>	DNA												•			

<213> Künstliche Sequenz

5 <220>

<221> Primer

<222> (1)..(34)

10 <223>

15 <400> 86

ggatecteaa aggeteteta ttgetagatt geca

<210> 87

20

<211> 1505

<212> DNA

25 <213> Lycopersicon esculentum

<220>

30

<221> .CDS

<222> (3)..(1505)

35 <223>

<400> 87

40 cc atg gaa gct ctt ctc aag cct ttt cca tct ctt tta ctt tcc tct

Met Glu Ala Leu Leu Lys Pro Phe Pro Ser Leu Leu Ser Ser

1 5 10 15

cct aca ccc cat agg tct att ttc caa caa aat ccc tct ttt cta agt 95
45 Pro Thr Pro His Arg Ser Ile Phe Gln Gln Asn Pro Ser Phe Leu Ser
20 25 30

47

ccc acc acc aaa aaa tca aga aaa tgt ctt ctt aga aac aaa agt 143
Pro Thr Thr Lys Lys Lys Ser Arg Lys Cys Leu Leu Arg Asn Lys Ser

50 35 40 45

	_				tgt Cys				_		_						1	.91
5			50					55					60					
				_	gtt Val					_	_			_			2	239
10	_				gtg Val					_							2	287
15		_	-		gtt Val 100						_	_	_				:	335
20 .					tcc Ser	_							_		-		:	383
				Asn	tta Leu		_	_		_		-						431
25	_		Cys					Asp				_	Tyr			aga Arg		479
30		Tyr		_	_	_	Arg	_	_	_	-	Leu				aat Asn 175		527
35	_	-	_			Arg		_			Lys	_				g aaa Lys		575
40		_			Glu					: Ile					Gly	aag Lys		623
45				g Gl					. Ası					a Ala		gat Asp		671
			e Gl					o Arg					r Gli			t cat a His		719
50	gg	g gti	t tt	a gta	a gaa	a gtt	ga:	t aat	cat	c cca	a tt	t ga	t tt	g ga	t aa	a atg		767

	Gly 240	Val	Leu	Val	Glu	Val 245	Asp	Asn	His	Pro	Phe 250	Asp	Leu	Asp	Lys	Met 255	
5	5 5		-	_	tgg Trp 260		_			-							815
10	Arg				gct Ala		_				_		_	_			863
15	Asp	_	_	_	gtt Val							_					911
10	gtt		Ser		atg Met	_	_		_		_			_			959
20		Lev			aaa Lys												1007
25											Pro					gct Ala	1055
30	Ile				Ser			_		Pro					Met	gtg Val	1103
35	Ala		_	Met	_		_		Val			-		Ile		gag L Glu	1151
	gg		ı Gly					Ile					Lev			t aga s Arg	1199
40	_	l Tr					Pro					у Су				a tgt u Cys 415	1247
4						Gli					s Le					g act y Thr 0	1295
5	Ar				e Asj					o Le					r Tr	g caa p Gln	1343

5			ctt Leu 450														1391
J			ctt Leu														1439
10			tgt Cys														1487
15			ctt Leu	tga		tcc Ser 500											1505
20	<21		88 498														
25	<21 <21		PRT Lyco	pers	icon	esc	ulen	tum						•			1
30	<40	0>	88														
	Met 1	Glu	a Ala	Leu	Leu 5	. Lys	Pro	Ph∈	Pro	Ser 10	: Leu	Lev		Sei	15	Pro	
35	Thr	Pro	His	Arg 20	Ser	Ile	. Phe	e Gli	n Glr 25	n Ası	ı Pro	sei	r Phe	Let 30	ı Se:	r Pro	
40	Thi	Th:	c Lys 35	Lys	Lys	s Ser	Arg	40	s Cys	s Let	ı Le	ı Ar	g Ası 45	ı Ly	s Se	r Ser	
45	Lys	5 Le	u Phe	e Cys	s Sei	r Phe	E Lei	u As	p Le	u Ala	a Pro	5 Th:	r Se:	c Ly	s Pr	o Glu	
	Se:	r Le	u Asp	va:	l Ası	70	e Se:	r Tr	p Va	l As	p Pr 75	o As	n Se	r As	n Ar	g Ala 80	

										137						
	Gln	Phe	Asp	Val	Ile 85	Ile	Ile	Gly	Ala	90 Gly	Pro	Ala	Gly	Leu	Arg 95	Leu
5	Ala	Glu	Gln	Val 100	Ser	Lys	Tyr	Gly	Ile 105	Lys	Val	Cys	Cys	Val 110	Asp	Pro
10	Ser	Pro	Leu 115	Ser	Met	Trp	Pro	Asn 120	Asn	Tyr	Gly	Val	Trp 125	Val	Asp	Glu
15	Phe	Glu 130	Asn	Leu	Gly	Leu	Glu 135	Asn	Cys ·	Leu	Asp	His 140	Lys	Trp	Pro	Met
	Thr 145	Cys	Val	His	Ile	Asn 150	Asp	Asn	Lys	Thr	Lys 155	Tyr	Leu	Gly	Arg	Pro 160
20	Tyr	Gly	Arg	Val	Ser 165	Arg	Lys	Lys	Leu	Lys 170	Leu	Lys	Leu	Leu	Asn 175	Ser
25	Cyş	Val	Glu	Asn 180	Arg	Val	Lys	Phe	Tyr 185	Lys	Ala	Lys		Trp 190	Lys	Val
30	Glu	His	Glu 195	Glu	Phe	Glu	Ser	Ser 200	Ile	Val	Суз	Asp	Asp 205	Gly	Lys	Lys
35	Ile	Arg 210	Gly	Ser	Leu	Val	Val 215	_	Ala	Ser	Gly	Phe 220		Ser	Asp	Phe
40	Ile 225		Tyr	Asp	Arg	Pro 230	Arg	Asn	His	Gly	Tyr 235		Ile	Ala	His	Gly 240
40	Val	Leu	. Val	Glu	Val 245	_	Asn	His	Pro	Phe 250	_	Leu	Asp	. Lys	Met 255	
45	Leu	Met	Asp	Trp 260	_	Asp	Ser	· His	Leu 265		Asr	. Glu	Prc	туr 270		Arg
50	Val	Asn	Asn 275		. Lys	Glu	Pro	280		: Lev	туг	Ala	Met 285		Phe	. Asp

5	Arg	Asp 290	Leu	Val	Phe	Leu	Glu 295	Glu	Thr	Ser	Leu	Val 300	Ser	Arg	Pro	Val
	Leu 305	Ser	Tyr	Met	Glu	Val 310	Lys	Arg	Arg	Met	Val 315	Ala	Arg	Leu	Arg	His 320
10	Leu	Gly	Ile	Ĺys	Val 325	Lys	Ser	Val	Ile	Glu 330	Glu	Glu	Lys	Cys	Val 335	Ile
15	Pro	Met	Gly	Gly 340	Pro	Leu	Pro	Arg	Ile 345		Gln	Asn	Val	Met 350	Ala	Ile
20	Gly	Gly	Asn 355	Ser	Gly	Ile	Val	His 360		Ser	Thr	Gly	Туr 365		Val	Ala
25	Arg	Ser 370		Ala	Leu	Ala	Pro 375		. Lev	ı Ala	Glu	Ala 380		: Val	Glu	Gly
	Leu 385		y Ser	Thr	Arg	390		e Arç	gly	, Ser	395		тут	'His	a Arg	y Val 400
30	Tr) Ası	n Gly	/ Lev	Try 409		o Lei	a Asj	o Arg	3 Arg 410		s Val	Arg	g Glv	ı Cys 415	Tyr
35	Sei	r Ph	e Gl	y Met 420		u Th	r Le	u Le	u Ly: 42		u As	b Fe	ı Ly:	s Gl; 43		r Arg
40	Ar	g Le	u Ph 43		o Ala	a Ph	e Ph	e As 44		u As	p Pr	o Ly	s Ty 44		p Gl:	n Gly
45	Ph	e Le 45		r Se	r Ar	g Le	u Se 45		l Ly	s Gl	u Le	u Gl 46		u Le	u Se	r Leu
	Су 46		eu Ph	e Gl	y Hi	s Gl 47		er As	n Me	et Th	ır Ar 47		u As	p Il	e Va	1 Thr 480

```
139
```

Lys Cys Pro Leu Pro Leu Val Arg Leu Ile Gly Asn Leu Ala Ile Glu 490 485

5 Ser Leu

<210> 89

10 <211> 37

<212> DNA

<213> Künstliche Sequenz 15

<220>

20

<221> Primer

(1)..(37) <222>

25 <223>

<400> 89

gagetegata tetttgccag tattacaaca gettata 30

<210> 90

<211> 31 35

<212> DNA

<213> Künstliche Sequenz

40

<220>

<221> Primer 45

<222> (1)..(31)

<223>

50

į	5	<400> 90 cccgggttta ctgaaaaata acagtaaaac c	1
		<210> 91	
1	0	<211> 2096	
•	U	<212> DNA	
		<213> Lycopersicon esculentum	
1	5		
		<220>	
	20	<221> Promotor	
•		<222> (1)(2096)	
		<223>	
	25		
		<400> 91 gagetegata tetttgeeag tattacaaca gettatatgt tgageaggta aaagetteaa	60
	30	tgccctattc tttctacagt tatcaatgtt gctcgtctaa tatctggtgt tcttctcgaa	120
		atgtcaattg gcttgcagca cattgtcctc taatatccat tcaagcttct tagatgatga	180
		aacatttgtc aaatttatta atttcatagt gttcagtctc aattctttag ctgtttcctc	240
ì	35	atagtaaagt tgtctaatat gaaatgaaaa tgttctgtgt gttgtactaa tacooboo	300
		tggttgtcta tagaacgtcg atgaagagcc aaacagaaac tattttgggc tgcgatttct	360
	40	-	420
		atatggagcc gagtatgagg aatgctggga atcagttgtg cttcgcgtgc taggactttt	480
		ccttcctggt atttctgccc acagcccagt tgattacgtg aactccgtca gacttggaaa	540
	4	ggagagaagt acccaaatgt cgtcttttta gaaatacttt tgtcacaaaa tagoggggoo	600
		tacagctaca gaagatcatg cagaaggegt ccagtttagt ttttgaaggt tgtttggagt	660
	5	60 ttatttatct aaagtaaact taaatcagct ttttgtttat gagttcagtg aactatatgt	720

	tcaaataaga	cttccctttg	tagaatatgt	gtttttttt	gttgttgagc	actttgtgtg	780
5	cattggataa	acccccaacg	tgtaataget	accatacaag	agaagtaact	cgcactgtcc	840
3	atgtcttatg	tggctcgact	cagaaagcat	tcagggggat	tgataaccac	cctccaaacc	900
	aactgaacca	ttgtgaataa	ccaccettca	aatcaaccga	gtcctcgtga	aggacaaata	960
10	tgtggtttta	tatacatțaa	attttgtttt	tacatgcttc	ctcttacttc	tttagttttc	.1020
	ttgaccatat	cttcttttc	ccttctgtaa	ttgacatttt	cttcaaacca	tccagcaatg	1080
15	tggaagettg	acgattttcc	ttcagagtag	aaattgaaaa	gaatcaacta	aaaaggatag	1140
10	tccttcgatt	tgatttccgg	cttaaaaata	aactaataag	aatgagagag	cgaataatag	1200
	aatattttga	aattttaaag	atattcaact	atgttaaatt	gcgttataaa	tttcttaaat	1260
20	tagtagcacc	taatagttta	gttctcaaaa	gtcaaaacta	ctacataatg	tgctcatttt	1320
	tcacattaaa	atgcctacat	gatgtaaaag	taaaactegt	agcattctac	gtgttttact	1380
25	caactcaaac	atcctgttca	ttttaataaa	cgtacgatga	gettetetet	ccaattttct	1440
	tttcttttt	ttttttaaaa	aaatatttt	ttttatatca	. atccaaatgg	getecaattt	1500
	atcataaatt	aggtagaaac	ttagatatta	. aagaaagaaa	agggtttato	: tcgcaagtgt	1560
30	ggctatggtg	ggacgtgtca	aattttggat	tgtagccaaa	catgagattt	gatttaaagg	1620
	gaattggcca	aatcaccgaa	. agcaggcato	: ttcatcataa	attagtttgt	ttatttatac	1680
35	agaattatac	gcttttacta	gttatagcat	teggtatett	: tttctgggta	a actgccaaac	1740
	caccacaaat	: ttcaagtttc	catttaacto	ttcaacttca	acccaaccaa	a atttatttgc	1800
	ttaattgtgc	agaaccacto	cctatatctt	ctaggtgctt	tcattcgtto	c cgaggtaaga	1860
40	aaagatttt	: gtttctttge	atgetttate	g ccactcgttt	aacttctga	g gtttgtggat	1920
	cttttaggcg	g acttitttt	tttttgtat	g taaaatttg	t ttcataaat	g cttctcaaca	1980
45	taaatcttga	a caaagagaaq	gaattttac	c aagtatttag	g gttcagaaa	t ggataatttt	2040
40	cttactgtga	a aatatcctta	a tggcaggtt	t tactgttat	t tttcagtaa	a cccggg	2096

<211> 25

<212> DNA

<213> Künstliche Sequenz 5

<220>

10

<221> Primer

<222> (1)..(25)

<223> 15

<400> 92

taagcttttt gttgaagaga tttgg 20

<210> 93

25 <211> 24

<212> DNA

<213> Künstliche Sequenz

30

<220>

<221> Primer 35

<222> (1)..(24)

<223>

40

<400> 93

gaattcctgc aatagaatgt tgag

45

24

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/008624

International filing date: 31 July 2004 (31.07.2004)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: PCT/EP/03/09107

Filing date: 18 August 2003 (18.08.2003)

Date of receipt at the International Bureau: 24 January 2005 (24.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.