Introduction to High-Throughput Sequencing and RNA-seq

L Collado-Torres

March 6th, 2013

High Throughput Sequencing

Sources of variation

DNA^1

¹Wikipedia. DNA. URL: http://en.wikipedia.org/wiki/DNA (visited on 03/05/2013).

Human mRNA²

The structure of a typical human protein coding mRNA including the untranslated regions (UTRs)

 $^{^2} Wikipedia. \textit{Messanger RNA}. \ \, \text{URL: http://en.wikipedia.org/wiki/Messenger_RNA (visited on 03/05/2013)}.$

Panorama³

³Wendy Weijia Soon, Manoj Hariharan, and Michael P. Snyder. "High-throughput sequencing for biology and medicine". In: Molecular Systems Biology 9.1 (). UR

Prepare DNA⁴

Prepare genomic DNA sample

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

⁴Elaine R Mardis. "Next-generation DNA sequencing methods". In: Annual Review of Genomics and Human Genetics 9 (2008). PMID: 18576944.

Amplify⁵

⁵Michael L. Metzker. "Sequencing technologies — the next generation". In: Nat Rev Genet 11.1 (2010).

PCR⁶

Sequencing by synthesis⁷

Analyze cluster images⁸

C A O

Top: CATCGT Bottom: CCCCCC

⁸Michael L. Metzker. "Sequencing technologies — the next generation". In: Nat Rev Genet 11.1 (2010).

HiSeq 2000⁹

⁹ Illumina. HiSeq 2000 Sequencing System. URL: http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf (visited on 03/05/20

HiSeq 2000

More info on this blog post http://www.politigenomics.com/2010/01/hiseq-2000.html

Other 2nd generation sequencers¹⁰

Sequencer	454 GS FLX	HiSeq 2000	SOLiDv4	Sanger 3730xl
Sequencing mechanism	Pyrosequencing	Sequencing by synthesis	Ligation and two-base coding	Dideoxy chain termination
Read length	700 bp	50SE, 50PE, 101PE	50 + 35 bp or 50 + 50 bp	400~900 bp
Accuracy	99.9%*	98%, (100PE)	99.94% *raw data	99.999%
Reads	1 M	3 G	$1200\!\sim\!1400M$	_
Output data/run	0.7 Gb	600 Gb	120 Gb	1.9~84 Kb
Time/run	24 Hours	$3\sim 10$ Days	7 Days for SE 14 Days for PE	20 Mins∼3 Hours
Advantage	Read length, fast	High throughput	Accuracy	High quality, long read length
Disadvantage	Error rate with polybase more than 6, high cost, low throughput	Short read assembly	Short read assembly	High cost low throughput

¹⁰Lin Liu et al. "Comparison of next-generation sequencing systems". In: *Journal of biomedicine & biotechnology* (2012). PMID: 22829749.

High Throughput Sequencing

Sources of variation

Cross-talk¹¹

¹¹ Nava Whiteford et al. "Swift: primary data analysis for the Illumina Solexa sequencing platform". In: Bioinformatics (Oxford, England) 25.17 (2009). PMID: 19549

Phasing and pre-phasing¹²

Figure 3 Phasing and Prephasing

¹²Illumina. Pipeline CASAVA User Guide 15003807 (Pipeline V. 1.4 and Casava V.1.0).

Phasing example¹³

¹³ Nava Whiteford et al. "Swift: primary data analysis for the Illumina Solexa sequencing platform". In: Bioinformatics (Oxford, England) 25.17 (2009). PMID: 19549

Sequence quality¹⁴

Figure 3 SAV Screenshot Showing Excellent Quality Metrics

¹⁴ Illumina. CASAVA User Guide (15011196 D). URL: http://support.illumina.com/downloads/casava_user_guide_15011196.ilm (visited on 03/05/2013).

GC bias¹⁵

¹⁵ Margaret A Taub, Hector Corrada Bravo, and Rafael A Irizarry. "Overcoming bias and systematic errors in next generation sequencing data". In: Genome Medici

2.12 (2010). PMID: 21144010.

Random primers bias¹⁶

¹⁶ Kasper D Hansen, Steven E Brenner, and Sandrine Dudoit. "Biases in Illumina transcriptome sequencing caused by random hexamer priming". In: Nucleic Acids

Library type¹⁷

¹⁷ Joshua Z Levin et al. "Comprehensive comparative analysis of strand-specific RNA sequencing methods". In: Nature Methods 7.9 (2010). PMID: 20711195.

Batch effects¹⁸

¹⁸ Margaret A Taub, Hector Corrada Bravo, and Rafael A Irizarry. "Overcoming bias and systematic errors in next generation sequencing data". In: Genome Medici

Biological variability¹⁹

¹⁹Kasper D Hansen et al. "Sequencing technology does not eliminate biological variability". In: Nature biotechnology 29.7 (2011). PMID: 21747377.

The future

- Further improvements in library preparation
- Single cell sequencing
- Third generation sequencers like Pacific Biosciences

And biostatistical methods =)

Thanks!

- Google Calendar
 https://www.google.com/calendar/embed?src=7hprep991i5prd515ftksbsfb8%
 40group.calendar.google.com&ctz=America/New_York
- Slides at http://www.biostat.jhsph.edu/~lcollado/misc/HTSintro.pdf