

# Lesson 1: Introduction to Portfolio Construction



#### Introduction

- Introduction to portfolio management
- Expected returns and risk for a portfolio
- Portfolio construction with two-security case
- Portfolio construction with N-security case
- Risk diversification with portfolios



# Portfolio Construction with Two Securities: Expected Returns



### **Portfolio Construction with Two Securities**

What is a portfolio and why to invest in it?

- What happens to the (1) expected return and (2) risk when you combine two securities (or multiple securities)?
- What is diversification?
- Investing in mutual funds and index investing
- What is the difference in risk of investing in Nifty-50 vs. HDFC?



Consider a portfolio constructed from two-security case with actual return distributions as  $R_1$  and  $R_2$ 

- The proportionate amounts invested in these assets are  $w_1$  and  $w_2$ , where  $w_1 + w_2 = 1$
- Please also remember that expected returns  $E(R_1) = \overline{R_1}$  and  $E(R_2) = \overline{R_2}$
- Now, let us try to understand the return for the portfolio
- The actual return from the portfolio  $R_p$



#### What about expected returns?

• 
$$E(R_p) = E(w_1 * R_1 + w_2 * R_2)$$
 (2)

• 
$$E(R_p) = E(w_1 * R_1) + E(w_2 * R_2)$$
 (3)

• 
$$E(R_p) = w_1 * E(R_1) + w_2 * E(R_2)$$
 (4)

where  $w_1$  and  $w_2$  are constants. Therefore,  $E(R_1w_1) = w_1E(R_1)$ .

• However,  $R_1$  and  $R_2$  are probabilistic variables with finite distributions.



#### What about expected returns?

• For these variables, the expectation operator returns the probability weightage average. That is,  $E(R_1) = \overline{R_1}$ ; therefore,

$$\overline{R_p} = w_1 * \overline{R_1} + w2 * \overline{R_2} \tag{5}$$

 Expected returns from the portfolio are simply the weighted average of expected returns of individual securities in the portfolio.



#### What about expected returns?

 This can be generalized into three securities and multi-security as well

$$\overline{R_p} = w_1 * \overline{R_1} + w_2 * \overline{R_2} + w_3 * \overline{R_3}$$
, where  $w_1 + w_2 + w_3 = 1$ 

- For "N" securities
- $\overline{R_p} = \sum_{i=1}^N w_i * \overline{R_i}$ , where  $\sum_{i=1}^N w_i = 1$  (6)



# **Expected Returns from Portfolio: A Simple Example**



## **Expected Returns: Case 1 (Different Probabilities)**

| Pt   | Ra     | Rb     | Wa*Ra                                  | Wb*Rb | $R_p$ =Wa*Ra+Wb*Rb | Pt*R <sub>p</sub> |
|------|--------|--------|----------------------------------------|-------|--------------------|-------------------|
| 0.20 | 9.00%  | 6.00%  | 3.60%                                  | 3.60% | 7.20%              | 1.44%             |
| 0.15 | 8.00%  | 5.00%  | 3.20%                                  | 3.00% | 6.20%              | 0.93%             |
| 0.10 | 7.00%  | 8.00%  | 2.80%                                  | 4.80% | 7.60%              | 0.76%             |
| 0.15 | 11.00% | 9.00%  | 4.40%                                  | 5.40% | 9.80%              | 1.47%             |
| 0.25 | 12.00% | 10.00% | 4.80%                                  | 6.00% | 10.80%             | 2.70%             |
| 0.15 | 6.00%  | 11.00% | 2.40%                                  | 6.60% | 9.00%              | 1.35%             |
|      | Wa     | Wb     |                                        |       | Total              | 8.65%             |
|      | 0.40   | 0.60   | $E(R_p)=P1*R_{p1}+P2*R_{p2}+P6*R_{p6}$ |       |                    |                   |



### **Expected Returns: Case 2 (Equal Probabilities)**

| Ra     | Rb     | Wa*Ra                                  | Wb*Rb   | $R_p$ =Wa*Ra+Wb*Rb |
|--------|--------|----------------------------------------|---------|--------------------|
| 9.00%  | 6.00%  | 3.60%                                  | 3.60%   | 7.20%              |
| 8.00%  | 5.00%  | 3.20%                                  | 3.00%   | 6.20%              |
| 7.00%  | 8.00%  | 2.80%                                  | 4.80%   | 7.60%              |
| 11.00% | 9.00%  | 4.40%                                  | 5.40%   | 9.80%              |
| 12.00% | 10.00% | 4.80%                                  | 6.00%   | 10.80%             |
| 6.00%  | 11.00% | 2.40%                                  | 6.60%   | 9.00%              |
| Wa     | Wb     |                                        | Average | 8.43%              |
| 0.40   | 0.60   | $E(R_p)=(1/N)^*(R_{p1}+R_{p2}+R_{p6})$ |         |                    |



# Portfolio Construction with Two Securities: Risk



- Variance  $(\sigma_i^2) = \sum_{t=1}^T P_t (R_{i,t} \overline{R}_i)^2$
- Again, for past observations that are equally likely
- That is,  $P_1 = P_2 = P_3 = P_4 \dots = P_T$ . Since  $\sum_{i=1}^T P_i = 1$ , we have  $P_1 = P_2 = P_3 = P_4 \dots = P_T = \frac{1}{T}$
- Variance  $(\sigma_i^2) = \frac{1}{T} \sum_{t=1}^T (R_{i,t} \overline{R}_i)^2$



- Think of  $(A + B)^2 = A^2 + B^2 + 2AB$
- $\sigma_p^2 = w_1^2 * \sigma_1^2 + w_2^2 * \sigma_2^2 + 2 * (w_1 * \sigma_1)(w_2 * \sigma_2)\rho_{12}$  (7)
- where  $\sigma_p$  is the portfolio standard deviation (SD).  $\sigma_1$  and  $\sigma_2$  are SD of the individual securities.  $w_1$  and  $w_2$  are the investment proportions in each of the securities.  $\rho_{12}$  is the correlation between the two securities, and varies from -1.0 to 1.0
- What if  $\rho_{12} = 1$ ?



The variance of a two-security portfolio

• 
$$\sigma_p^2 = w_1^2 * \sigma_1^2 + w_2^2 * \sigma_2^2 + 2 * w_1 * w_2 * \boldsymbol{\rho_{12}} * \boldsymbol{\sigma_1} * \boldsymbol{\sigma_2}$$
 (7)

- $\rho_{12} * \sigma_1 * \sigma_2$  is called the covariance between securities 1 and 2, also  $\rho_{12} = \rho_{21}$
- This variance (or SD) is less or more than the value given by Eq. (8)?
- For  $\rho_{12}$ =1,  $\sigma_p^2 = (w_1 * \sigma_1 + w_2 * \sigma_2)^2$

$$\bullet \quad \boldsymbol{\sigma_p} = \boldsymbol{w_1} * \boldsymbol{\sigma_1} + \boldsymbol{w_2} * \boldsymbol{\sigma_2} \tag{8}$$

• For all the values of  $\rho_{12}$  (except  $\rho_{12}$  =1), the value of Eq. (7) will be less than that of Eq. (8); What are the implications?



The variance of a two-security portfolio

• 
$$\sigma_p^2 = w_1^2 * \sigma_1^2 + w_2^2 * \sigma_2^2 + 2 * w_1 * w_2 * \boldsymbol{\rho_{12}} * \boldsymbol{\sigma_1} * \boldsymbol{\sigma_2}$$
 (7)

• For 
$$\rho_{12} = -1$$
,  $\sigma_p^2 = (w_1 * \sigma_1 - w_2 * \sigma_2)^2$ 

$$\bullet \quad \boldsymbol{\sigma_p} = \boldsymbol{w_1} * \boldsymbol{\sigma_1} - \boldsymbol{w_2} * \boldsymbol{\sigma_2} \tag{9}$$

• For all the values of  $\rho_{12}$  (except  $\rho_{12} = -1$ ), the value of Eq. (7) will be more than Eq. (9); What are the implications?



$$\sigma_p^2 = w_1^2 * \sigma_1^2 + w_2^2 * \sigma_2^2 + 2 * w_1 * w_2 * \rho_{12} * \sigma_1 * \sigma_2$$

|                                       | 1 $(w_1, \sigma_1)$                           | $2(w_2,\sigma_2)$                             |
|---------------------------------------|-----------------------------------------------|-----------------------------------------------|
| $1 (\mathbf{w}_1, \mathbf{\sigma}_1)$ | $w_1^2 * \sigma_1^2$                          | $\rho_{12} * w_1^* \sigma_1^* w_2^* \sigma_2$ |
| 2 (w <sub>2</sub> , σ <sub>2</sub> )  | $\rho_{12} * w_1^* \sigma_1^* w_2^* \sigma_2$ | $w_2^2 * \sigma_2^2$                          |



# Portfolio Construction with Multiple Securities: Risk



### Risk: Standard Deviation for Multiple Securities

$$\sigma_p^2 = w_1^2 * \sigma_1^2 + w_2^2 * \sigma_2^2 + 2 * w_1 * w_2 * \rho_{12} * \sigma_1 * \sigma_2$$

|                                             | $1 (\mathbf{w}_1, \mathbf{\sigma}_1)$                  | <b>2</b> $(w_2, \sigma_2)$                                  | $3 (w_3, \sigma_3)$                      |
|---------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| 1 (w <sub>1</sub> , σ <sub>1</sub> )        | $w_1^2 * \sigma_1^2$                                   | $ ho_{12} * \ w_1^* \sigma_1^* w_2^* \sigma_2$              | $ ho_{13}$ * $w_1*\sigma_1*w_3*\sigma_3$ |
| $2(\mathbf{w}_2, \mathbf{\sigma}_2)$        | $ ho_{12} * \ w_1^* \sigma_1^* w_2^* \sigma_2$         | $w_2^2 * \sigma_2^2$                                        | $ ho_{23}$ * $w_2*\sigma_2*w_3*\sigma_3$ |
| <b>3</b> (w <sub>3</sub> , σ <sub>3</sub> ) | $ ho_{13} *  ho_{1}^* \sigma_{1}^* w_{3}^* \sigma_{3}$ | $ ho_{23} *  ho_{2} * \sigma_{2} * \sigma_{3} * \sigma_{3}$ | $w_3^2 * \sigma_3^2$                     |



|                                                    | $1 (\mathbf{w_1}, \mathbf{\sigma_1})$ | $2(\mathbf{w}_2, \mathbf{\sigma}_2)$ | <br> | $N(\mathbf{w_N}, \mathbf{\sigma_N})$ |
|----------------------------------------------------|---------------------------------------|--------------------------------------|------|--------------------------------------|
| $1\left(\mathbf{w}_{1},\mathbf{\sigma}_{1}\right)$ |                                       |                                      |      |                                      |
| $2(\mathbf{w}_2, \mathbf{\sigma}_2)$               |                                       |                                      |      |                                      |
|                                                    |                                       |                                      |      |                                      |
|                                                    |                                       |                                      |      |                                      |
| $N(w_N, \sigma_N)$                                 |                                       |                                      |      |                                      |



- There will be "N" such boxes with entries of  $w_i^2 \sigma_i^2$
- Variance terms =  $\sum_{i=1}^{N} w_i^2 \sigma_i^2$
- Also, let us assume that all these stocks we have amounts invested in equal proportion (1/N).
- $\sum_{i=1}^{N} w_i^2 \sigma_i^2 = \sum_{i=1}^{N} \frac{1}{N^2} \sigma_i^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sigma_i^2$  because  $w_i = \frac{1}{N}$
- Define  $\sigma_{\text{avg}}^2 = \sum_{i=1}^N \frac{1}{N} \sigma_i^2$ , Variance terms=  $(\frac{1}{N}) * \sigma_{\text{avg}}^2$



- There will also be " $N^2 N$ " boxes with covariance terms and cross products of weights invested in both the securities with the following entries:  $w_i w_j \sigma_i \sigma_j \rho_{ij}$
- Covariance terms =  $\sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_i \sigma_j \rho_{ij}$ , also  $w_i = w_j = \frac{1}{N}$
- Covariance terms =  $\sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} (\frac{1}{N^2}) \sigma_i \sigma_j \rho_{ij} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} \sigma_i \sigma_j \rho_{ij}$
- $\sigma_{\text{avg-cov}} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} \sigma_i \sigma_j \rho_{ij}$



• Covariance terms = 
$$\sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} (\frac{1}{N^2}) \sigma_i \sigma_j \rho_{ij} = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} \sigma_i \sigma_j \rho_{ij}$$

• 
$$\sigma_{\text{avg-cov}} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} \sigma_i \sigma_j \rho_{ij}$$

• 
$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_i \sigma_j \rho_{ij} = \text{Covariance terms}^* N^2 = \sigma_{\text{avg-cov}}^* N(N-1)$$

• Covariance terms=
$$(N^2-N)*\left(\frac{1}{N}\right)^2*\sigma_{avg-cov}=\left(\frac{N-1}{N}\right)*\sigma_{avg-cov}$$



- Variance terms=  $(\frac{1}{N}) * \sigma_{avg}^2$ ; Covariance terms=  $(\frac{N-1}{N}) * \sigma_{avg-cov}$
- $\sigma_P^2 = (\frac{1}{N}) * \sigma_{\text{avg}}^2 + (\frac{N-1}{N}) * \sigma_{\text{avg-cov}}$
- Now, if N is very large  $(N \to \infty)$ , then variance term will be close to zero
- Covariance term will be close to the average covariance
- The portfolio variance will be close to the average covariance
- $\sigma_P^2 = \sigma_{\text{avg-cov}}$
- What are the implications?

#### **INDIAN INSTITUTE OF TECHNOLOGY KANPUR**



### **Risk Diversification with Portfolios**



#### **Risk Diversification with Portfolios**

- For a well-diversified portfolio with a large number of securities, the variance terms will be close to zero
- Only the average covariances across the stocks will contribute to the portfolio risk

Diversification eliminates specific risk. But there is some risk that diversification *cannot* eliminate. This is called *market risk*.



- These covariances arise due to the correlations between the security returns
- For a portfolio with low correlations across securities, the portfolio risk can be lower



### **Risk Diversification with Portfolios**

- The component associated with variances is called diversifiable risk or specific risk
- Later, we will see that market does not reward this risk
- The risk that is associated with covariances is often called market risk or non-diversifiable risk

Diversification eliminates specific risk. But there is some risk that diversification *cannot* eliminate. This is called *market risk*.



Market only rewards for bearing this non-diversifiable risk (market risk)



# **Example: Computation of Expected Portfolio Returns**

• For example, if we invest 60% of the money in security 1 and 40% of the money in security 2, and the expected returns from security 1 and security 2 are, respectively, 8% and 18.8%. Then, the expected returns from the portfolio are computed as follows:

$$\overline{R_p} = w_1 * \overline{R_1} + w2 * \overline{R_2}$$

• 
$$R_p = 0.60 * 8.0\% + 0.40 * 18.8\% = 12.30\%$$



### **Example: Computation of Expected Portfolio SD**

- Consider the same previous example ( $w_1$  = 60%,  $w_2$  = 40%). Now, some additional information is given to compute the portfolio variance:  $\sigma_1$  = 13.2% and  $\sigma_2$  = 31.0%. Consider five cases of correlation coefficients:  $\rho_{12}$  = -1.0, -0.5, 0, 0.5, and 1. Now, let us compute the SD of the portfolio for all the five scenarios
- $\sigma_p^2 = w_1^2 * \sigma_1^2 + w_2^2 * \sigma_2^2 + 2 * w_1 * w_2 * \rho_{12} * \sigma_1 * \sigma_2$



### **Example: Computation of Expected Portfolio SD**

| Case                  | Variance $(\sigma_P^2)$                                                              | Standard Deviation ( $\sigma_P$ )              |
|-----------------------|--------------------------------------------------------------------------------------|------------------------------------------------|
| ρ <sub>12</sub> =1    | $0.6^2 * 0.132^2 + 0.4^2 * 0.31^2 + 2 * 0.6 * 0.4 * 1$<br>* 0.132 * 0.31 = 0.0413    | 20.32%, which is same as = 0.6*13.2%+0.4*31.0% |
| ρ <sub>12</sub> =0.5  | $0.6^2 * 0.132^2 + 0.4^2 * 0.31^2 + 2 * 0.6 * 0.4 * 0.50$<br>* 0.132 * 0.31 = 0.0315 | 17.74%                                         |
| ρ <sub>12</sub> =0.0  | $0.6^2 * 0.132^2 + 0.4^2 * 0.31^2 + 2 * 0.6 * 0.4 * 0.00$<br>* 0.132 * 0.31 = 0.0217 | 14.71%                                         |
| ρ <sub>12</sub> =-0.5 | $0.6^2 * 0.132^2 + 0.4^2 * 0.31^2 + 2 * 0.6 * 0.4 * -0.5$<br>* 0.132 * 0.31 = 0.0118 | 10.88%                                         |
| ρ <sub>12</sub> =-1.0 | $0.6^2 * 0.132^2 + 0.4^2 * 0.31^2 + 2 * 0.6 * 0.4 * -0.5$<br>* 0.132 * 0.31 = 0.0020 | 4.48%                                          |

#### **INDIAN INSTITUTE OF TECHNOLOGY KANPUR**



# **Summary and Concluding Remarks**



# **Summary and Concluding Remarks**

- Adding more securities that are less correlated (have lower covariance) in the portfolio leads to diversification
- Diversification here means the reduction of stock-specific risk
- The part of the risk that is non-diversifiable is on account of the covariances across securities
- Often this risk is called market risk or systematic risk



# **Summary and Concluding Remarks**

- Markets do not reward for bearing stock-specific diversifiable risks
- Since these risks can be easily mitigated, when we say that we expect certain return for bearing risk, that risk is systematic/non-diversifiable/market risk



# Thanks!