1	A method for determining the concentration of chloride ions in samples,
2	comprising:
3	preparing an enzyme reagent, said enzyme reagent including:
4	α -amylase that is substantially calcium-free; and
5	an α -amylase activity detecting substrate; and
6	combining the enzyme reagent with sodium ion and a sample containing
7	chloride ion to be assayed, the sodium ion being present in a higher concentration
8	than said chloride ion;
9	assaying the quantity of α-amylase formed due to the presence of sodium ions
10	and chloride ions in said sample; and
11	determining the quantity of said chloride ions by reference to said assay of α -
12	amylaseActivity
13	
14	2. The method according to claim 1, wherein calcium is removed from the α -
15	amylase that is substantially calcium-free by use of a chelating compound.
16	
17	3. The method according to claim-1, wherein calcium is removed from the α -
18	amylase that is substantially calcium-free by use of a compound that forms a covalent bond
19	with calcium.
20	
21	
22	
23	
24	

l	4. The method according to claim 2, wherein said chelating compound is a
2	member selected from the group consisting of ethylenediaminetetraacetic acid, trans-1,2
3	cyclohexanediamine-N,N,N',N'-tetraacetic acid, glycol ether diamine tetraacetic acid
4	iminotetraacetic acid, and diaminopropanetetraacetic acid.
5	
6	5. The method of claim 2, wherein said chelating compound is
7	ethylenediaminetetraacetic acid.
8	
9	6. The method according to claim 1, wherein said α-amylase activity detecting
10	substrate is a member selected from the group consisting of 2-chloro-4-nitrophenyl-α-D
11	maltotrioside, 4-nitrophenyl- α -D-maltopentaoside and α -glucosidase, 2-chloro-4-
12	nitrophenyl- β -D-maltopentaoside and α -glucosidase and β -glucosidase, 4-nitrophenyl- α -D
13	maltoheptaoside, α -glucosidase, and 2-chloro-4-nitrophenyl- β -D-maltoheptaoside and α
14	glucosidase and β -glucosidase.
15	
16	7. The method according to claim 6, wherein said α -amylase activity detecting
17	substrate is 2-chloro-4-nitrophenyl-α-D-maltotrioside.
18	
19	8. The method according to claim 1, wherein said sample is a bodily fluid

20 sample.

22 9. The method according to claim_8, wherein said bodily fluid sample is 23 selected from the group consisting of serum, plasma, or urine.

	1		10. The method of claim 1, wherein said sodium ion compound is so							ound is sodi	um	citrate.			
	2						-	`							
	3		11.	The	method	of	claim	1,	wherein	said	sodium	ion	compound	is	sodium
	4	acetate				~		ک							
	5														
	6														
	7														
	8														
	9														
	10														
	11														
	12														
	13														
	14														
	15														
	16														
	17														
SALT LAKE CITY, UTAH 84111	18														
JITY, UT.	19														
r Lake (20														
SAE.	21														
	22														
	23														

l	12. A composition for use in determining the concentration of chloride ions in a
2	fluid sample, comprising: α -amylase that is substantially calcium-free, sodium ion, and an α -
3	amylase activity detecting substrate.
4	
5	13. A composition as in claim 12 further comprising a compound capable of
6	forming a chelate with a calcium ion and a calcium chelate compound.
7	
8	14. A composition according to claim 13, wherein said compound capable of
9	forming a chelate with a calcium ion is a member selected from the group consisting of
10	ethylenediaminetetraacetic acid, trans-1,2-cyclohexanediamine-N,N,N',N'-tetraacetic acid,
11	glycol ether diamine tetraacetic acid, iminotetraacetic acid, and diaminopropanetetraacetic
12	acid.
13	
14	15. A composition according to claim 13, wherein said compound capable of
15	forming a chelate with a calcium ion is ethylenediaminetetraacetic acid.
16	
17	16. The composition according to claim 13, wherein said calcium chelate
18	compound is calcium-ethylenediaminetetraacetic acid.
19	
20	
21	
22	
23	

1	17. The composition according to claim 12, wherein said α-amylase activity
2	detecting substrate is a member selected from the group consisting of 2-chloro-4-
3	nitrophenyl- α -D-maltotrioside, 4-nitrophenyl- α -D-maltopentaoside and α -glucosidase, 2-
4	chloro-4-nitrophenyl- β -D-maltopentaoside and α -glucosidase and β -glucosidase, 4-
5	nitrophenyl- α -D-maltoheptaoside, α -glucosidase, and 2-chloro-4-nitrophenyl- β -D-
6	maltoheptaoside and α -glucosidase and β -glucosidase.
7	
8	18. The composition according to claim 12, wherein said α -amylase activity
9	detecting substrate is 2-chloro-4-nitrophenyl- α -D-maltotrioside.
10	
11	19. The composition of claim 12, wherein said sodium ion compound is sodium
12	citrate.
13	
14	20. The composition of claim 12, wherein said sodium ion compound is sodium
15	acetate.
16	
17	
18	
19	
20	
21	
22	
23	

	بعدمها م							
1	(21.4 A)	method of ac	ctivating	calcium-fro	ee α-amyla	se for	enzymati	ic activity
2	comprising mixir	ng chloride ion	with ca	lcium-free	α-amylase	in the	presence	of excess
3	sodium ion.							
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								

1	A method for determining the concentration of sodium ions in samples,
2	comprising:
3	preparing an enzyme reagent, said enzyme reagent including:
4	α-amylase that is substantially calcium-free; and
5	an α-amylase activity detecting substrate; and
6	combining the enzyme reagent with excess chloride ion, and a sample
7	containing sodium ion to be assayed, the chloride ion being present in a higher
8	concentration than said sodium ion;
9	assaying the quantity of α-amylase formed due to the presence of sodium ions
10	and chloride ions in said sample; and
11	determining the quantity of said sodium ions by reference to said assay of α -
12	amylase.
13	
14	23. The method of claim 22, wherein a calcium-binding compound is combined
15	with the enzyme reagent, the excess chloride ion, and the sample containing sodium ion to
16	be assayed before the α -amylase quantity is determined.
17	
18	24. The method of claim 22, wherein said calcium-binding compound is
19	ethylenediaminetetraacetic acid.
20	
21	
22	
23	
24	