標準化学 補足事項プリント 第4回

1.「逆滴定」の問題の解法

- ① 登場する酸・塩基を書き出す
- ② 全ての酸が出す H⁺の mol=全ての塩基が出す OH⁻の mol(全ての塩基が受け取る H⁺の mol)
- ※ 線分図を描くと分かりやすい。

(例) アンモニア(気体)を硫酸 0.010 mol に吸収させたのち,吸収させたものを 0.10 mol/L 水酸化ナトリウム水溶液で滴定したところ,20 mL だった。吸収させたアンモニア(気体)の標準状態での体積は? <解法>

①登場する酸 : 硫酸 H₂SO₄ 0.010 mol登場する塩基: アンモニア x mL, 0.10 mol/L 水酸化ナトリウム水溶液 20 mL

② 10 mmol
$$\times$$
 2 = $\frac{x \, [\text{mL}]}{22.4 \, [\text{L/mol}]} \times \text{I}$ + 0.10 mol/L \times 20 mL \times I
 硫酸 \rightarrow H⁺ mmol NH₃ \rightarrow OH⁻ mmol(I 価) NaOH \rightarrow OH⁻ mmol $\therefore x = 22.4 \times (20 - 2) \doteq 4.0 \times \text{IO}^2 \text{ mL}$

2. 「二段(階)滴定」の問題の解法

① I 段階目: NaOH + HCI → NaCI + H₂O
Na₂CO₃ + HCI → NaHCO₃ + NaCI
2 段階目: NaHCO₃ + HCI → NaCI + H₂O + CO₂

② (I 段階目の HCI の量) - (2 段階目の HCI の量) = (NaOH の分)

※ グラフを描くと分かりやすい。

3. 多価の酸・塩基

基本的に一個ずつ H^+ (あるいは OH^-)を放出していく。電離度はだんだん小さくなっていく。 (例 I) H_2S

$$H_2S \rightleftarrows H^+ + HS^- \qquad \qquad K_{\alpha I} = \frac{[H^+][HS^-]}{[H_2S]} \div IO^{-7} \text{ mol/L}$$

$$HS^- \rightleftarrows H^+ + S^{2-}$$
 $K_{\alpha 2} = \frac{[H^+][S^{2-}]}{[HS^-]} \stackrel{.}{=} I \ 0^{-14} \ mol/L$

(例 2) H₃PO₄

$$H_3PO_4 \rightleftarrows H^+ + H_2PO_4^- \qquad \qquad K_{\alpha 1} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]} \div 7.5 \times 10^{-3} \text{ mol/L}$$

$$H_2PO_4^- \rightleftarrows H^+ + HPO_4^{2-}$$
 $K_{\alpha 2} = \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^-]} \div 6.2 \times 10^{-8} \text{ mol/L}$

$$HPO_{4}^{2-} \rightleftarrows H^{+} + PO_{4}^{3-} \qquad \qquad K_{\alpha 3} = \frac{[H^{+}][PO_{4}^{3-}]}{[HPO_{4}^{2-}]} \\ \stackrel{:}{\div} 4.8 \times 10^{-13} \; mol/L$$

4. 指示薬の理論

(酸塩基, pH) 指示薬 … ちょうど反応が終わった時点を決定するための試薬 通常は指示薬をあらかじめ反応物に添加しておく。

(例) フェノールフタレイン pH が①:無色 pH が公:赤色 変色域 pH=8.0~9.8メチルオレンジ pH が②:赤色 pH が公:黄色 変色域 pH=3.1~4.4

<滴定曲線>

標準化学 補足事項プリント 第4回

5. (発展) 平衡の問題の機械的解法

- ① 電気的中性の式
- ② 物質収支式
- ③ 適宜近似

(例) 炭酸水素ナトリウム水溶液

NaHCO₃ → Na⁺ + HCO₃⁻ (塩は完全電離)

 $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$

 $HCO_3^- \rightleftarrows H^+ + CO_3^{2-}$

溶液中に存在するのは, Na+, HCO₃-, H₂O, H₂CO₃, H+, OH-, CO₃²-。

① 溶液中の陽イオンの電荷の総和 = 溶液中の陰イオンの電荷の総和

 $[Na^+]+[H^+] = [HCO_3^-] + [OH^-]+ [CO_3^2] \times 2$

② H_2CO_3 , $CO_3{}^2$ は $HCO_3{}^-$ から生じたものであり,その $HCO_3{}^-$ は $NaHCO_3$ の電離で生じている。 $NaHCO_3$ の電離では $HCO_3{}^-$ と同じ mol の Na^+ が生じている。

 $[Na^{+}] = [HCO_{3}^{-}] + [H_{2}CO_{3}] + [CO_{3}^{2-}]$

③ 問題設定による。例えば, [Na⁺]≫ [H⁺], [OH⁻] のときには[H⁺], [OH⁻]の項は無視。

この考え方は特に関西の大学を受けるときに習得すると良い。

6. 工業的製法のまとめ

	ハーバーボッシュ法	オストワルト法	接触法
原料	N_2 , H_2	NH ₃	S (FeS₂など)
生成物	NH₃	HNO ₃	H ₂ SO ₄
触媒	Fe 系(Fe₃O₄など)	Pt	V ₂ O ₅

	アンモニアソーダ法	鉄の精製	ホール・エルー法
			(アルミニウムの精製)
原料	NaCl, CaCO₃	Fe ₂ O ₃	Al ₂ O ₃
生成物	Na ₂ CO ₃ , (CaCl ₂)	Fe	Al
注釈			溶融(融解)塩電解

7. オキソ酸

Oを含む酸。分子中の酸素原子は-OH あるいは =O として含まれている。

非金属酸化物(酸性酸化物)+水の生成物。

		(1010) 1 NO EM10.			THE ST. IS
	化学式	構造式		化学式	構造式
炭酸	H ₂ CO ₃	H_O_C_O_H	リン酸	H₃PO₄	но Р ОН
硫酸	H ₂ SO ₄	О 	過塩素酸	HCIO ₄	O = CI O O O
亜硫酸	H ₂ SO ₃	O S OH OH	塩素酸	HCIO₃	O NOH
硝酸	HNO ₃	O=N-OH	亜塩素酸	HCIO ₂	O=CI-OH
亜硝酸	HNO ₂	O=N-OH	次亜塩素酸	HCIO	CI-O-H

^{※ |} つの原子の周りが8個の電子になっていないものも多い。

[※] 二重結合のところは→で表記されることもある。その場合,配位している様子を表す。