Problem Set #2

Ian Bach

2024-08-30

Question #1 1).(2 points) Consider a special linear regression model in which each observation has its own slope coefficient: $y_i = x_i \beta_i + \epsilon_i, \ x_i \neq 0, \ i = 1, \dots, n$. What is the least squares estimator of β_4 ?

- $y_i = x_i \beta_i + \epsilon_i$
- y_i is the dependent variable
- x_i is the independent variable
- β_i is the slope coefficient specific to the *i*-th observation
- ϵ_i is the error term

To estimate $\beta_4,$ focus on the fourth observation: - $y_4 = x_4\beta_4 + \epsilon_4$

The least squares method seeks to minimize the sum of squared residuals. The residual for the 4th observation:

• Residual₄ = $y_4 - x_4\beta_4$

The sum of squared residuals:

• $RSS(\beta_4) = (y_4 - x_4 \beta_4)^2$

To find the minimum, we take the derivative of $RSS(\beta_4)$ with respect to β_4 , set it to zero, and simplify:

• $y_4 = x_4 \beta_4$

The least squares estimate $\hat{\beta}_4 = \frac{y_4}{x_4}$

Question #2

(A) Find the derivative of the objective function with respect to β .

The derivative of a function gives us the slope, or how the function changes as β changes. To minimize the function, we need to find where the slope is zero.

Sum of Squared Errors:

•
$$\frac{\partial}{\partial \beta} \left(\sum_{i=1}^{n} (y_i - x_i \beta)^2 \right)$$

- The derivative of $(y_i x_i \beta)^2$ with respect to β involves taking the derivative of the inner term $(y_i x_i \beta)$ and then multiplying by the derivative of the square:
- $-2\sum_{i=1}^{n} (y_i x_i\beta)$

Penalty:

The penalty term $\lambda \beta^2$ penalizes large values of β .

•
$$\frac{\partial}{\partial \beta} (\lambda \beta^2) = 2\lambda \beta$$

Combining the Derivatives:

$$-\frac{\partial f(\beta)}{\partial \beta} = -2\sum_{i=1}^{n} x_{i} \left(y_{i} - x_{i}\beta\right) + 2\lambda\beta$$

(B) Derive an explicit formula for $\hat{\beta}_{\text{ridge}}$.

Setting the Derivative to Zero:

•
$$\frac{\partial f(\beta)}{\partial \beta} = -2\sum_{i=1}^{n} x_i \left(y_i - x_i \beta\right) + 2\lambda \beta = 0$$

Simplify:

Divide the equation by 2:

•
$$-\sum_{i=1}^{n} x_i (y_i - x_i \beta) + \lambda \beta = 0$$

Rearrange the equation to collect all terms involving β on one side:

•
$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i^2 \beta + \lambda \beta$$

Factor out β on the right side:

•
$$\sum_{i=1}^{n} x_i y_i = \beta \left(\sum_{i=1}^{n} x_i^2 + \lambda \right)$$

Solve for β :

•
$$\hat{\beta}$$
ridge = $\frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2 + \lambda}$

- (C) What happens if $\lambda \to 0$? What Happens if $\lambda \to \infty$?
 - When λ approaches zero, the penalty term $\lambda \beta^2$ becomes negligible. This means that the Ridge Regression estimator approaches the Ordinary Least Squares (OLS) estimator.
 - When $\lambda \to \infty$, the Ridge Regression estimator approaches zero, meaning the model completely shrinks the coefficient and effectively ignores the input.

Question #3

Consider the following problem related to Ridge Regression.

Define the objective function for Ridge Regression:

Given:

The objective function to minimize is $f(\beta) = \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \beta^2$,

where: y_i is the dependent variable x_i is the independent variable β is the coefficient to be estimated λ is the regularization parameter

Define the gradient of the function: The gradient of the objective function is given by:

$$\nabla f(\beta) = 2 \sum_{i=1}^n (x_i \beta - y_i) x_i + 2 \lambda \beta$$

Initialize parameters for implementing gradient descent: The parameters to be initialized include:

 $\lambda=10$: Regularization parameter $\beta_0=0$: Initial value of β $\alpha=0.001$: Learning rate $\epsilon=10^{-4}$: Convergence criterion

```
# Data
X \leftarrow c(2, 4, 6, -2, -2, -6)
y \leftarrow c(2.5, 5.8, 3.7, -1.1, -3.7, -5)
# Parameters
lambda <- 10
beta <- 0
alpha <- 0.001
epsilon <- 10^-4
# To store beta values at each iteration
beta_history <- c(beta)</pre>
# Gradient descent loop
repeat {
  gradient <- 2 * sum(X * (X * beta - y)) + 2 * lambda * beta
  new_beta <- beta - alpha * gradient</pre>
  beta_history <- c(beta_history, new_beta)</pre>
  if (abs(new beta - beta) < epsilon) {</pre>
    break
  beta <- new_beta
}
# Ridge estimate
ridge_estimate <- beta
```

Gradient Descent for Ridge Regression


```
cat("Ridge estimate:", ridge_estimate, "\n")
```

Ridge estimate: 0.8178122

Question #4

(5 points) This question involves the Auto dataset, which is included in the package ISLR2.

(a) Fit a multiple linear regression with mpg as the response and all other variables except name as predictors. Use the summary() function to print the results.

library(ISLR2)

Warning: package 'ISLR2' was built under R version 4.4.1

```
Test <- ISLR2::Auto
model <- lm(mpg ~ . - name, data = Test)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ . - name, data = Test)
##
```

```
## Residuals:
##
      Min
                1Q Median
                                30
                                       Max
                           1.8690 13.0604
##
  -9.5903 -2.1565 -0.1169
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.218435
                             4.644294
                                      -3.707 0.00024 ***
## cylinders
                 -0.493376
                             0.323282
                                       -1.526
                                              0.12780
## displacement
                  0.019896
                             0.007515
                                        2.647
                                               0.00844 **
## horsepower
                 -0.016951
                             0.013787
                                      -1.230
                                               0.21963
## weight
                 -0.006474
                             0.000652
                                       -9.929
                                              < 2e-16 ***
## acceleration
                  0.080576
                                               0.41548
                             0.098845
                                        0.815
                  0.750773
                             0.050973
                                       14.729
                                              < 2e-16 ***
## year
                                        5.127 4.67e-07 ***
## origin
                  1.426141
                             0.278136
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
## F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
```

b) Is there a relationship between the predictors and the response?

Outputs:

F-Statistic: 252.4 (A high value suggests a strong relationship) p-value associated with the F-statistic: < 2.2e-16 (Indicates that it is very unlikely that all predictors have no relationship with mpg) The P-value is extremely low, so we reject the null hypothesis. Conclusion: Yes, there is a relationship between the predictors and the response variable mpg.

(c) For which of the predictors can you reject the null hypothesis $H_0: \beta_i = 0$?

By looking at the P-values from the summary:

Displacement: p-value = 0.00844 Weight: p-value = 2e-16 Year: p-value = 2e-16 Origin: p-value = 4.67e-07 Conclusion: The predictors (Displacement, Weight, Year, and Origin) have p-values less than 0.05, meaning we reject the null hypothesis for these predictors. They are showing statistically significant relationships with mpg.

(d) If I obtain a p-value of 0.03 for the null hypothesis $H_0: \beta_j = 0$, is it correct to interpret it as: given our sample, $\beta_j = 0$ with probability 0.03? Explain.

Explanation: A p-value of 0.03 indicates that if the hypothesis $H_0: \beta_j = 0$ is true, there is a 3% chance of observing a test statistic as extreme as the one observed. It does not mean that the probability of $\beta_j = 0$ is 0.03.

Conclusion: No, it is incorrect to interpret a p-value of 0.03 as the probability that the null hypothesis is true. The p-value represents the probability of obtaining a test statistic at least as extreme as the one observed, assuming that the null hypothesis $H_0: \beta_j = 0$ is true.