# 2023 年全國大專校院智慧創新暨跨域整合創作競賽

## 作品簡介

--- Fun 一夏

1. 系統名稱

便"捷"e 起來 (英文:SubwayEaseUp)

## 2. 系統目的與範圍

2.1 車廂壅擠提醒

我們透過車載攝像機和擁擠程度識別技術改善捷運環境,讓乘客能在進入車廂前,在車站面 板上提前了解列車擁擠情況,選擇較為不壅擠的車廂。

2.2 提供車站設施和出口的相對位置

我們優化車輛內顯示面板,除了在車輛行進中會顯示預計到達時間,車像進站時會顯示「車站配置圖和出口信息」與所在車門的相對位置,增加便利性。

2.3 聲音異常和氣體異常的警示

系統加入了毒氣感測,預防管道洩漏事故,還通過麥克風傳感器節錄車廂內聲音,數據會上傳至電腦分析音頻,識別異常情況。當異常發生時會顯示警示在該車廂內面板和即將進站的車站面板上,提高安全預警效率,保障乘客安全。

#### 3. 特點

3.1 節省成本和提升效率

我們作品利用車載傳感器將車廂照片傳輸至電腦,採用圖像識別技術計算車廂擁擠程度。相較市場產品需要在每節車廂底下安裝感測器的壓力感測器方式,我們更為節省成本和提升效率。

3.2 圖像識別技術

透過圖像識別,準確量測車廂剩餘空間,評估擁擠情況。我們的系統經過大量訓練,結合AlphaPose 人體姿態分析框架,提供90%左右的準確度。

3.3 毒氣外洩和異常聲音監測功能

我們的系統能夠即時監測可能發生的突發事件,一旦感測到有毒氣體外洩或異常聲音,系統 會立即提醒其他乘客,提高了乘客的安全性和意識。

這些功能在市場相關產品中較為罕見,突顯了我們的競爭優勢。

#### 4. 技術

4.1 系統架構



#### 4.2 前端設計

使用 Flask+Jinja2 開發前端顯示即時監測信息。



#### 4.3 擁擠程度判定

我們使用樹莓派專用攝像機作為視覺感知中心,並運用 OpenCV 進行畫面處理。利用 YOLO 物體檢測和 Alphapose 姿態分析技術,實現對車廂內物體和乘客的準確監控。





## 4.4 硬體設備

## 4.4.1 加速度感測器

我們配備先進的加速度感測器,即時監測車輛加速度變化,提供精確的離站和進站信號。

## 4.4.2 樹莓派專用攝像頭

每輛車裝有高品質攝像頭感測器,捕獲車廂畫面,通過影像處理評估擁擠程度。

## 4.4.3 聲音感測器

聲音感測器進行 10 秒錄音,透過模型判斷異常聲音,必要時進一步處理和警示。

## 4.4.4 毒氣感測器

高效毒氣感測器可辨識 5 種有毒氣體,資料將傳送至 arduino。每輛車裝有樹莓派,整合來自 arduino 的訊息和攝像頭信息,將其傳遞至電腦進行處理和分析。



## 4.5 異常聲音判定

我們利用大量網路資料集訓練了一個深度學習模型(CNN),使其能在僅 10 秒的聲音片段中準

確偵測異常聲音。該模型透過聲音頻譜圖,辨識各種聲音模式,提取關鍵特徵,並與已知的 異常聲音模式進行對比,了解目前是否有異常聲音。這保證了在不同環境下系統的高效穩定 運作。

## 5. 未來展望

5.1 技術優化和升級

我們將持續引入最新科技,包括物體檢測算法、高解析度攝像機、強大嵌入式系統等,以 提升系統性能和準確性。

5.2 擴大應用範圍

除了捷運,我們將擴展至其他公共交通工具,如台鐵,提供更廣泛的服務。

5.3 數據分析和預測

透過機器學習和數據分析,優化預測模型,提供更準確的人潮擁擠判別,並提供運營建議。

5.4 使用者介面、互動和反饋

引入使用者介面和互動功能,接受乘客反饋,持續改進系統,提升用戶體驗。

5.5 緊急應變和安全強化

強化緊急應變能力,提供準確安全指示,必要時向相關單位發出警報。

5.6 節能環保

採用節能技術和環保材料,降低能耗,減少對環境影響。

5.7 國際合作

積極尋求國際合作,推動智慧交通發展,實現更高效、便捷、安全的城市交通。