Alessandro Scala

Quantum Abstract Interpretation

Seminar for the Introduction to Quantum Computing course

Università di Pisa Dipartimento di Informatica

Pisa, 24 Luglio 2023

Roadmap

- Introduction
 Reasons
 Abstract Interpretation
- 2 Preliminaries Density Matrix Reduced Density Matrix
- 3 Abstract Domain Abstraction and Concretization Functions Abstract Operations Assertions
- 4 Conclusions

Introduction

As quantum computing advances, we would like to have some means to prove correctness properties on quantum programs, *especially* since quantum programming is counterintuitive.

The naive way to check properties of a program is to run it and observe its behaviour.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: **exponential** space and time cost.

$$n_{qubits}=1$$

$$|0\rangle\langle 0|$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

 $2^2 = 4$ complex numbers

$$n_{qubits} = 2$$

$$|00\rangle\langle00|$$

$$2^4 = 16$$
 complex numbers

Pisa, 24 Luglio 2023

$$n_{qubits} = 3$$

$$|000\rangle\,\langle000|$$

 $2^6 = 64$ complex numbers

$$n_{qubits} = 300$$

$$\left|0\right>^{\otimes_{300}}\left<0\right|^{\otimes_{300}}$$

?????

$$n_{qubits} = 300$$

$$|0\rangle^{\otimes_{300}} \langle 0|^{\otimes_{300}}$$

 $2^{600} = 41495155688809929585124078636911611510124462322424368 \\ 999956573296906528114129081463997070489471037942881978866113 \\ 007891823951510754117753078868748341139636870611818034015095 \\ 23685376$

Bigger than the number of atoms in the universe.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: **exponential** space and time cost.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: **exponential** space and time cost.

Static checking of programs by hand?

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: **exponential** space and time cost.

Static checking of programs by hand?

Yes, but time consuming. Needs to be adapted to the specific program.

The naive way to check properties of a program is to run it and **observe** its behaviour.

We cannot observe the state of a quantum program!

Could **simulation** on a classical machine solve this issue?

No: **exponential** space and time cost.

Static checking of programs by hand?

Yes, but time consuming. Needs to be adapted to the specific program.

Solution: abstract interpretation

Instead of considering the **concrete domain**, we restrict our analysis to a **more coarse domain**, an **abstract domain**.

Instead of considering the **concrete domain**, we restrict our analysis to a **more coarse domain**, an **abstract domain**.

The abstract domain we consider should be:

Instead of considering the **concrete domain**, we restrict our analysis to a **more coarse domain**, an **abstract domain**.

The abstract domain we consider should be:

fine enough to capture the information we are interested in (e.g. the state of the quantum system belongs to the span of two vectors)

Instead of considering the **concrete domain**, we restrict our analysis to a **more coarse domain**, an **abstract domain**.

The abstract domain we consider should be:

fine enough to capture the information we are interested in (e.g. the state of the quantum system belongs to the span of two vectors)

as coarse as possible to discard information we are not interested in, and thus be substantially more efficient to be analyzed

Pisa, 24 Luglio 2023

Instead of considering the **concrete domain**, we restrict our analysis to a **more coarse domain**, an **abstract domain**.

The abstract domain we consider should be:

fine enough to capture the information we are interested in (e.g. the state of the quantum system belongs to the span of two vectors)

as coarse as possible to discard information we are not interested in, and thus be substantially more efficient to be analyzed

Abstract interpretation is usually sound, but not complete:

- Al returns true ⇒ Property is true
- Al returns false ⇒ Property can be either true or false

Abstract domain

- Abstract domain
 - Abstraction function: from more concrete to more abstract domain

- Abstract domain
 - Abstraction function: from more concrete to more abstract domain
 - Concretization function: from more abstract to more concrete domain

Abstract domain

- Abstraction function: from more concrete to more abstract domain
- Concretization function: from more abstract to more concrete domain
- Abstract operations: to represent concrete operations in the abstract domain

Pisa, 24 Luglio 2023

- Abstract domain
 - Abstraction function: from more concrete to more abstract domain
 - Concretization function: from more abstract to more concrete domain
 - Abstract operations: to represent concrete operations in the abstract domain
- Assertions: properties we can prove with abstract interpretation

Roadmap

- Introduction
 Reasons
 Abstract Interpretation
- Preliminaries
 Density Matrix
 Reduced Density Matrix
- 3 Abstract Domain Abstraction and Concretization Functions Abstract Operations Assertions
- 4 Conclusions

Instead of dealing with a state $|\phi\rangle$ in vector form, we use its density matrix:

$$\rho_{\phi} = |\phi\rangle \langle \phi|$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Instead of dealing with a state $|\phi\rangle$ in vector form, we use its density matrix:

$$ho_{\phi} = \left| \phi \right\rangle \left\langle \phi \right|$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Example:

$$|eta_{00}
angle = rac{|00
angle + |11
angle}{\sqrt{2}}$$

$$\rho_{\beta_{00}} = \left|\beta_{00}\right\rangle \left\langle \beta_{00}\right|$$

Instead of dealing with a state $|\phi\rangle$ in vector form, we use its density matrix:

$$ho_{\phi} = \ket{\phi} \bra{\phi}$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Example:

$$egin{aligned} |eta_{00}
angle &= rac{|00
angle + |11
angle}{\sqrt{2}} \
ho_{eta_{00}} &= |eta_{00}
angle \left$$

Instead of dealing with a state $|\phi\rangle$ in vector form, we use its density matrix:

$$\rho_{\phi} = |\phi\rangle\langle\phi|$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Example:

$$\begin{split} |\beta_{00}\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}} \\ \rho_{\beta_{00}} &= |\beta_{00}\rangle \left\langle \beta_{00} \right| = \frac{1}{2}(|00\rangle + |11\rangle)(\left\langle 00 \right| + \left\langle 11 \right|) \\ &= \frac{1}{2}(|00\rangle \left\langle 00 \right| + |00\rangle \left\langle 11 \right| + |11\rangle \left\langle 00 \right| + |11\rangle \left\langle 11 \right|) \end{split}$$

Pisa, 24 Luglio 2023

Instead of dealing with a state $|\phi\rangle$ in vector form, we use its density matrix:

$$ho_{\phi} = \ket{\phi} \bra{\phi}$$
 (For a pure state)

- positive semi-definite
- $Tr(\rho) = 1$
- projection $(P = P^{\dagger} = P^2)$

Example:

$$\begin{split} |\beta_{00}\rangle &= \frac{|00\rangle + |11\rangle}{\sqrt{2}} \\ \rho_{\beta_{00}} &= |\beta_{00}\rangle \left<\beta_{00}| = \frac{1}{2}(|00\rangle + |11\rangle)(\langle 00| + \langle 11|) \\ &= \frac{1}{2}(|00\rangle \left<00| + |00\rangle \left<11| + |11\rangle \left<00| + |11\rangle \left<11|\right) \\ &= \frac{1}{2}\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

Suppose we have a composite quantum system $AB=A\otimes B$, and we want to focus our attention on a state $|\phi\rangle\in AB$ with respect to subsystem A.

Pisa, 24 Luglio 2023

Suppose we have a composite quantum system $AB=A\otimes B$, and we want to focus our attention on a state $|\phi\rangle\in AB$ with respect to subsystem A.

$$A = \mathbb{C}^{2^n} \times \mathbb{C}^{2^n} \quad B = \mathbb{C}^{2^m} \times \mathbb{C}^{2^m}$$
$$AB = (\mathbb{C}^{2^n} \times \mathbb{C}^{2^n}) \otimes (\mathbb{C}^{2^m} \times \mathbb{C}^{2^m})$$

Suppose we have a composite quantum system $AB = A \otimes B$, and we want to focus our attention on a state $|\phi\rangle \in AB$ with respect to subsystem A.

$$A = \mathbb{C}^{2^{n}} \times \mathbb{C}^{2^{n}} \quad B = \mathbb{C}^{2^{m}} \times \mathbb{C}^{2^{m}}$$

$$AB = (\mathbb{C}^{2^{n}} \times \mathbb{C}^{2^{n}}) \otimes (\mathbb{C}^{2^{m}} \times \mathbb{C}^{2^{m}})$$

$$Tr_{B}[\rho] : AB \to A \qquad Tr_{A}[\rho] : AB \to B$$

$$Tr_{B}[\alpha \otimes \beta] = \alpha \cdot Tr(\beta) \qquad Tr_{A}[\alpha \otimes \beta] = Tr(\alpha) \cdot \beta$$

$$Tr_{S}[\rho + \sigma] = Tr_{S}[\rho] + Tr_{S}[\sigma]$$

$$Tr_{S}[a \cdot \rho] = a \cdot Tr_{S}[\rho]$$

$$Tr_{S}[a \cdot \rho] = a \cdot Tr_{S}[\rho]$$
(Linearity)

Pisa. 24 Luglio 2023

Suppose we have a composite quantum system $AB=A\otimes B$, and we want to focus our attention on a state $|\phi\rangle\in AB$ with respect to subsystem A.

$$A = \mathbb{C}^{2^{n}} \times \mathbb{C}^{2^{n}} \quad B = \mathbb{C}^{2^{m}} \times \mathbb{C}^{2^{m}}$$

$$AB = (\mathbb{C}^{2^{n}} \times \mathbb{C}^{2^{n}}) \otimes (\mathbb{C}^{2^{m}} \times \mathbb{C}^{2^{m}})$$

$$Tr_{B}[\rho] : AB \to A \qquad Tr_{A}[\rho] : AB \to B$$

$$Tr_{B}[\alpha \otimes \beta] = \alpha \cdot Tr(\beta) \qquad Tr_{A}[\alpha \otimes \beta] = Tr(\alpha) \cdot \beta$$

$$Tr_{S}[\rho + \sigma] = Tr_{S}[\rho] + Tr_{S}[\sigma]$$

$$Tr_{S}[a \cdot \rho] = a \cdot Tr_{S}[\rho]$$

$$Tr_{S}[a \cdot \rho] = a \cdot Tr_{S}[\rho]$$
(Linearity)

Partial trace $Tr_B[\rho]$ traces out subsystem B.

Pisa. 24 Luglio 2023

$$\begin{split} A &= \mathbb{C}^2 \times \mathbb{C}^2 \quad B = \mathbb{C}^2 \times \mathbb{C}^2 \quad AB = A \otimes B \\ \rho_{\beta_{00}} &= \left|\beta_{00}\right\rangle \left\langle\beta_{00}\right| = \frac{\left|00\right\rangle \left\langle00\right| + \left|00\right\rangle \left\langle11\right| + \left|11\right\rangle \left\langle00\right| + \left|11\right\rangle \left\langle11\right|}{2} \end{split}$$

$$Tr_B[\rho_{\beta_{00}}] =$$

$$A = \mathbb{C}^2 \times \mathbb{C}^2 \quad B = \mathbb{C}^2 \times \mathbb{C}^2 \quad AB = A \otimes B$$

$$\rho_{\beta_{00}} = |\beta_{00}\rangle \left\langle \beta_{00}| = \frac{|00\rangle \left\langle 00| + |00\rangle \left\langle 11| + |11\rangle \left\langle 00| + |11\rangle \left\langle 11| \right\rangle \right\rangle}{2}$$

$$Tr_{B}[\rho_{\beta_{00}}] = \frac{\left(Tr_{B}[|00\rangle\langle00|] + Tr_{b}[|00\rangle\langle11|] + Tr_{b}[|11\rangle\langle00|] + Tr_{b}[|11\rangle\langle11|]\right)}{2}$$

$$A = \mathbb{C}^2 \times \mathbb{C}^2 \quad B = \mathbb{C}^2 \times \mathbb{C}^2 \quad AB = A \otimes B$$

$$\rho_{\beta_{00}} = |\beta_{00}\rangle \left\langle \beta_{00}| = \frac{|00\rangle \left\langle 00| + |00\rangle \left\langle 11| + |11\rangle \left\langle 00| + |11\rangle \left\langle 11| \right\rangle \right\rangle}{2}$$

$$Tr_{B}[\rho_{\beta_{00}}] = \frac{\left(Tr_{B}[|00\rangle\langle00|] + Tr_{b}[|00\rangle\langle11|] + Tr_{b}[|11\rangle\langle00|] + Tr_{b}[|11\rangle\langle11|]\right)}{2}$$

$$= \frac{\left(|0\rangle\langle0|\cdot\langle0|0\rangle\right) + \left(|0\rangle\langle1|\cdot\langle0|1\rangle\right) + \left(|1\rangle\langle0|\cdot\langle1|0\rangle\right) + \left(|1\rangle\langle1|\cdot\langle1|1\rangle\right)}{2}$$

$$A = \mathbb{C}^2 \times \mathbb{C}^2 \quad B = \mathbb{C}^2 \times \mathbb{C}^2 \quad AB = A \otimes B$$

$$\rho_{\beta_{00}} = |\beta_{00}\rangle \langle \beta_{00}| = \frac{|00\rangle \langle 00| + |00\rangle \langle 11| + |11\rangle \langle 00| + |11\rangle \langle 11|}{2}$$

$$Tr_{B}[\rho_{\beta_{00}}] = \frac{\left(Tr_{B}[|00\rangle\langle00|] + Tr_{b}[|00\rangle\langle11|] + Tr_{b}[|11\rangle\langle00|] + Tr_{b}[|11\rangle\langle11|]\right)}{2}$$

$$= \frac{\left(|0\rangle\langle0|\cdot\langle0|0\rangle\right) + \left(|0\rangle\langle1|\cdot\langle0|1\rangle\right) + \left(|1\rangle\langle0|\cdot\langle1|0\rangle\right) + \left(|1\rangle\langle1|\cdot\langle1|1\rangle\right)}{2}$$

$$A = \mathbb{C}^2 \times \mathbb{C}^2 \quad B = \mathbb{C}^2 \times \mathbb{C}^2 \quad AB = A \otimes B$$

$$\rho_{\beta_{00}} = |\beta_{00}\rangle \left\langle \beta_{00}| = \frac{|00\rangle \left\langle 00| + |00\rangle \left\langle 11| + |11\rangle \left\langle 00| + |11\rangle \left\langle 11| \right\rangle \right\rangle}{2}$$

$$Tr_{B}[\rho_{\beta_{00}}] = \frac{\left(Tr_{B}[|00\rangle\langle00|] + Tr_{b}[|00\rangle\langle11|] + Tr_{b}[|11\rangle\langle00|] + Tr_{b}[|11\rangle\langle11|]\right)}{2}$$

$$= \frac{\left(|0\rangle\langle0| \cdot \langle0|0\rangle\right) + \left(|0\rangle\langle1| \cdot \langle0|1\rangle\right) + \left(|1\rangle\langle0| \cdot \langle1|0\rangle\right) + \left(|1\rangle\langle1| \cdot \langle1|1\rangle\right)}{2}$$

$$= \frac{|0\rangle\langle0| + |1\rangle\langle1|}{2}$$

Loss of precision

Computing a reduced density matrix discards information!

$$\begin{split} \rho_{\beta_{00}} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|00\right\rangle\left\langle11\right| + \left|11\right\rangle\left\langle00\right| + \left|11\right\rangle\left\langle11\right|}{2} & \text{(Pure state)} \\ \rho_{2} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|01\right\rangle\left\langle01\right| + \left|10\right\rangle\left\langle10\right| + \left|11\right\rangle\left\langle11\right|}{4} & \text{(Mixed state)} \end{split}$$

Loss of precision

Computing a reduced density matrix discards information!

$$\begin{split} \rho_{\beta_{00}} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|00\right\rangle\left\langle11\right| + \left|11\right\rangle\left\langle00\right| + \left|11\right\rangle\left\langle11\right|}{2} & \text{(Pure state)} \\ \rho_{2} = & \frac{\left|00\right\rangle\left\langle00\right| + \left|01\right\rangle\left\langle01\right| + \left|10\right\rangle\left\langle10\right| + \left|11\right\rangle\left\langle11\right|}{4} & \text{(Mixed state)} \end{split}$$

$$Tr_{\mathcal{B}}[\rho_{\beta_{00}}] = \frac{|0\rangle \langle 0| + |1\rangle \langle 1|}{2} = Tr_{\mathcal{B}}[\rho_{2}]$$

The partial traces of two different initial states can be equal.

For a state $\rho \in A \otimes B$, even if we know $Tr_B[\rho]$ and $Tr_A[\rho]$, we cannot uniquely determine ρ .

Projection Subspaces

Each projection P corresponds to a linear subspace $S_P = \{v \mid Pv = v\}.$

Projection Subspaces

Each projection P corresponds to a linear subspace $S_P = \{v \mid Pv = v\}.$

The support of a matrix P is the subspace orthogonal to its kernel, i.e., the set $supp(P) = \{v \mid Pv \neq 0\}.$

Projection Subspaces

Each projection P corresponds to a linear subspace $S_P = \{v \mid Pv = v\}.$

The support of a matrix P is the subspace orthogonal to its kernel, i.e., the set $supp(P) = \{v \mid Pv \neq 0\}.$

This duality between projections and subspaces will be employed multiple times and will often be implied.

Roadmap

- Introduction
 Reasons
 Abstract Interpretation
- Preliminaries
 Density Matrix
 Reduced Density Matrix
- 3 Abstract Domain Abstraction and Concretization Functions Abstract Operations Assertions
- 4 Conclusions

$$\mathcal{D} = \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n}, \quad S = (s_1, ..., s_m), \quad 1 \leq m \leq 2^n, \quad s_i \subseteq [n]$$

$$\mathcal{D} = \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n}, \quad S = (s_1, ..., s_m), \quad 1 \leq m \leq 2^n, \quad s_i \subseteq [n]$$
 $AbsDom(S) = \left\{ (P_{s_1}, ..., P_{s_m}) \mid P_{s_i} \text{ is a projection in } \mathbb{C}^{2^{\lfloor s_i \rfloor}} \otimes \mathbb{C}^{2^{\lfloor s_i \rfloor}} \right\}$

$$\mathcal{D} = \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n}, \quad S = (s_1, ..., s_m), \quad 1 \leq m \leq 2^n, \quad s_i \subseteq [n]$$
 $AbsDom(S) = \left\{ (P_{s_1}, ..., P_{s_m}) \mid P_{s_i} \text{ is a projection in } \mathbb{C}^{2^{|s_i|}} \otimes \mathbb{C}^{2^{|s_i|}} \right\}$

Intuitively, given a tuple S of sets of qubits, an abstract state $\overline{\sigma} \in AbsDom(S)$ is a tuple of projections over those qubits.

$$\mathcal{D} = \mathbb{C}^{2^n} \otimes \mathbb{C}^{2^n}, \quad S = (s_1, ..., s_m), \quad 1 \leq m \leq 2^n, \quad s_i \subseteq [n]$$
 $AbsDom(S) = \left\{ (P_{s_1}, ..., P_{s_m}) \mid P_{s_i} \text{ is a projection in } \mathbb{C}^{2^{|s_i|}} \otimes \mathbb{C}^{2^{|s_i|}} \right\}$

Intuitively, given a tuple S of sets of qubits, an abstract state $\overline{\sigma} \in AbsDom(S)$ is a tuple of projections over those qubits.

Special case:

$$T = ([n]) \Rightarrow AbsDom(T) \simeq \mathcal{D}$$

Fineness Relation

Let
$$S=(s_1,...,s_m)$$
 and $T=(t_1,...,t_m)$ (with $1\leq m\leq 2^n$), then:
$$\underbrace{S\unlhd\mathcal{T}}_{\text{"T is finer than S"}} \triangleq \forall i\in[m].\ s_i\subseteq t_i$$

T is "more concrete" than S.

Fineness Relation

Let
$$S=(s_1,...,s_m)$$
 and $T=(t_1,...,t_m)$ (with $1\leq m\leq 2^n$), then:
$$\underbrace{S\unlhd \mathcal{T}}_{\text{"T is finer than S"}} \triangleq \forall i\in[m].\ s_i\subseteq t_i$$

T is "more concrete" than S.

Least element:
$$\bot = (\emptyset, ..., \emptyset)$$
.
Greatest element: $\top = ([n], ...[n]) = [n]^m$.

Fineness Relation

Let
$$S=(s_1,...,s_m)$$
 and $T=(t_1,...,t_m)$ (with $1\leq m\leq 2^n$), then:
$$\underbrace{S\unlhd \mathcal{T}}_{\text{"T is finer than S"}} \triangleq \forall i\in[m].\ s_i\subseteq t_i$$

T is "more concrete" than S.

Least element: $\bot = (\emptyset, ..., \emptyset)$. Greatest element: $\top = ([n], ...[n]) = [n]^m$.

 $AbsDom(\bot)$ corresponds to a state so abstract that it holds no information at all.

 $AbsDom(\top)$ corresponds to tuples where every projection is a concrete state.

 $S \subseteq T \triangleq \forall i \in [m]. \ s_i \subseteq t_i$

 $\alpha_{T \to S} : AbsDom(T) \to AbsDom(S)$

$$S \leq T \triangleq \forall i \in [m]. \ s_i \subseteq t_i$$

$$\alpha_{T \to S} : AbsDom(T) \to AbsDom(S)$$

$$\alpha_{T \to S}(Q_{t_1}, ..., Q_{t_m}) = (P_{s_1}, ..., P_{s_m})$$

$$P_{s_i} = \bigcap_{t_j. \ s_i \subseteq t_J} supp(Tr_{t_j \setminus s_i}[Q_{t_j}])$$

Given an abstract state $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$, we want to compute $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$. For each $i \in [m]$:

$$S riangleleft T riangleleftharpoonup T rianglelef$$

Given an abstract state $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$, we want to compute $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$. For each $i \in [m]$:

1 Find all Q_{t_j} s such that $s_i \subseteq t_j$. We know that at least one exists (for j = i), since $S \subseteq T$.

$$S riangleleft T riangleleftharpoons T ri$$

Given an abstract state $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$, we want to compute $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$. For each $i \in [m]$:

- **1** Find all Q_{t_j} s such that $s_i \subseteq t_j$. We know that at least one exists (for j = i), since $S \subseteq T$.
- **2** For each Q_{t_j} found, trace out the qubits in t_j that are not in S_i .

Given an abstract state $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$, we want to compute $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$. For each $i \in [m]$:

- **1** Find all Q_{t_j} s such that $s_i \subseteq t_j$. We know that at least one exists (for j = i), since $S \subseteq T$.
- **2** For each Q_{t_j} found, trace out the qubits in t_j that are not in S_j .
- Ompute the support of the traced matrices (to preserve the structure of projections).

$$S riangleleft T riangleleftharpoons T ri$$

Given an abstract state $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$, we want to compute $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$. For each $i \in [m]$:

- **1** Find all Q_{t_j} s such that $s_i \subseteq t_j$. We know that at least one exists (for j = i), since $S \subseteq T$.
- **2** For each Q_{t_j} found, trace out the qubits in t_j that are not in $A_i D_j$ S_j .
- 3 Compute the support of the traced matrices (to preserve the structure of projections).
- 4 Compute the intersection of the supports.

$$S \subseteq T \triangleq \forall i \in [m]. \ s_i \subseteq t_i$$

 $\gamma_{S \to T} : AbsDom(S) \to AbsDom(T)$

$$S riangleleft T riangleleftharpoons T : AbsDom(S) o AbsDom(T)
onumber
$$\gamma_{S o T} : AbsDom(S) o AbsDom(T)$$

$$\gamma_{S o T}(P_{s_1}, ..., P_{s_m}) = (Q_{t_1}, ..., Q_{t_m})$$

$$Q_{t_j} = \bigcap_{s_i. \ s_i \subseteq t_j} P_{s_i} \otimes I_{t_j \setminus s_i}$$$$

Given an abstract state $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$, we want to compute $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$. For each $j \in [m]$:

$$S riangleleft T riangleleftharpoons T : AbsDom(S) o AbsDom(T)
onumber
$$\gamma_{S o T} : AbsDom(S) o AbsDom(T)$$

$$\gamma_{S o T}(P_{s_1}, ..., P_{s_m}) = (Q_{t_1}, ..., Q_{t_m})$$

$$Q_{t_j} = \bigcap_{s_i. \ s_i \subset t_j} P_{s_i} \otimes I_{t_j \setminus s_i}$$$$

Given an abstract state $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$, we want to compute $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$. For each $j \in [m]$:

1 Find all P_{s_i} s such that $s_i \subseteq t_j$. We know at least one exists (for i = j), since $S \subseteq T$.

$$S riangleleft T riangleleft orall T = orall i \in [m]. \ s_i \subseteq t_i$$
 $\gamma_{S o T}: AbsDom(S) o AbsDom(T)$ $\gamma_{S o T}(P_{s_1},...,P_{s_m}) = (Q_{t_1},...,Q_{t_m})$ $Q_{t_j} = \bigcap_{s_i. \ s_i \subseteq t_j} P_{s_i} \otimes I_{t_j \setminus s_i}$

Given an abstract state $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$, we want to compute $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$. For each $j \in [m]$:

- Find all P_{s_i} s such that $s_i \subseteq t_j$. We know at least one exists (for i = j), since $S \subseteq T$.
- **2** Extend the projection to the space of all qubits in t_j , by computing the tensor product with the identity matrix.

$$S riangleleft T riangleleftharpoons T : AbsDom(S) o AbsDom(T)
onumber
$$\gamma_{S o T} : AbsDom(S) o AbsDom(T)$$

$$\gamma_{S o T}(P_{s_1}, ..., P_{s_m}) = (Q_{t_1}, ..., Q_{t_m})$$

$$Q_{t_j} = \bigcap_{s_i. \ s_i \subseteq t_j} P_{s_i} \otimes I_{t_j \setminus s_i}$$$$

Given an abstract state $\overline{\sigma} \in AbsDom(S) = (P_{s_1}, ..., P_{s_m})$, we want to compute $\overline{\tau} \in AbsDom(T) = (Q_{t_1}, ..., Q_{t_m})$. For each $j \in [m]$:

- Find all P_{s_i} s such that $s_i \subseteq t_j$. We know at least one exists (for i = j), since $S \subseteq T$.
- **2** Extend the projection to the space of all qubits in t_j , by computing the tensor product with the identity matrix.
- 3 Compute the intersection of the extended projections.

Operations on the concrete domain are unitary operators U. To apply them to a concrete state ρ we compute $U\rho U^{\dagger}$. We want to define $U^{\sharp}: AbsDom(S) \rightarrow AbsDom(S)$.

Operations on the concrete domain are unitary operators U. To apply them to a concrete state ρ we compute $U\rho U^{\dagger}$. We want to define $U^{\sharp}:AbsDom(S)\to AbsDom(S)$.

Let $T = (t_1, ..., t_m)$ s.t. $t_i = s_i \cup s_U$, where s_U denotes the set of qubits that matrix U acts on.

Operations on the concrete domain are unitary operators U. To apply them to a concrete state ρ we compute $U\rho U^{\dagger}$. We want to define $U^{\sharp}: AbsDom(S) \rightarrow AbsDom(S)$.

Let $T=(t_1,...,t_m)$ s.t. $t_i=s_i\cup s_U$, where s_U denotes the set of qubits that matrix U acts on. Let $U^{cg}(\overline{\sigma})=(UT_t,U^\dagger,...,UT_{t_m}U^\dagger)$

Operations on the concrete domain are unitary operators U. To apply them to a concrete state ρ we compute $U\rho U^{\dagger}$. We want to define $U^{\sharp}: AbsDom(S) \rightarrow AbsDom(S)$.

Let $T = (t_1, ..., t_m)$ s.t. $t_i = s_i \cup s_U$, where s_U denotes the set of qubits that matrix U acts on.

Let
$$U^{cg}(\overline{\sigma})=(UT_{t_1}U^{\dagger},...,UT_{t_m}U^{\dagger})$$
, then

$$U^{\sharp} = \alpha_{T \to S} \circ U^{\mathsf{cg}} \circ \gamma_{S \to T}$$

Focus

$$U^{\sharp} = \alpha_{T \to S} \circ U^{\mathsf{cg}} \circ \gamma_{S \to T}$$

$$U^{\sharp} = \alpha_{T \to S} \circ U^{cg} \circ \gamma_{S \to T}$$

$$\textit{AbsDom}(S) \xrightarrow[\mathsf{Focus}]{\gamma_{S \to T}} \textit{AbsDom}(T) \xrightarrow[\mathsf{Apply}]{\textit{Ucg}} \textit{AbsDom}(T) \xrightarrow[\mathsf{Infocus}]{\alpha_{T \to S}} \textit{AbsDom}(S)$$

$$U^{\sharp} = \alpha_{T \to S} \circ U^{cg} \circ \gamma_{S \to T}$$

$$AbsDom(S) \xrightarrow{\gamma_{S \to T}} AbsDom(T) \xrightarrow{U^{cg}} AbsDom(T) \xrightarrow{\alpha_{T \to S}} AbsDom(S)$$

Focus - concretize to a new, finer domain with sufficient precision to accurately represent the operation;

$$U^{\sharp} = \alpha_{T \to S} \circ U^{cg} \circ \gamma_{S \to T}$$

$$AbsDom(S) \xrightarrow{\gamma_{S \to T}} AbsDom(T) \xrightarrow{Q^{cg}} AbsDom(T) \xrightarrow{\alpha_{T \to S}} AbsDom(S)$$

Focus - concretize to a new, finer domain with sufficient precision to accurately represent the operation;

Apply - apply the unitary operator to all the elements in the tuple

$$U^{\sharp} = \alpha_{T \to S} \circ U^{cg} \circ \gamma_{S \to T}$$

$$AbsDom(S) \xrightarrow{\gamma_{S \to T}} AbsDom(T) \xrightarrow{Q^{cg}} AbsDom(T) \xrightarrow{\alpha_{T \to S}} AbsDom(S)$$

Focus - concretize to a new, finer domain with sufficient precision to accurately represent the operation;

Apply - apply the unitary operator to all the elements in the tuple

Unfocus - abstract back to the original abstract domain to keep the representation more compact

Assertions

We want to check that a state of a program lies in the span of two vectors.

Assertions

We want to check that a state of a program lies in the span of two vectors.

We define an assertion as:

$$A = span\{v_1 = |a_1\rangle ... |a_n\rangle, \quad v_2 = |b_1\rangle ... |b_n\rangle\}$$

Assertions

We want to check that a state of a program lies in the span of two vectors.

We define an assertion as:

$$A = span\{v_1 = |a_1\rangle \dots |a_n\rangle, \quad v_2 = |b_1\rangle \dots |b_n\rangle\}$$

And a projection proj(A) onto this subspace, such that:

$$proj(A)v_1 = v_1$$
 $proj(A)v_2 = v_2$

Order Relation on Abstract States

$$1 \leq m \leq 2^{n}, \quad S = (s_{1},...s_{m}), \quad \forall i \in [m]. \ s_{i} \subseteq [n]$$

$$\overline{\sigma} \in AbsDom(S) = (P_{s_{1}},...,P_{s_{m}}), \quad \overline{\tau} \in AbsDom(S) = (Q_{s_{1}},...,Q_{s_{m}})$$

$$\overline{\sigma} \sqsubseteq \overline{\tau} \triangleq \forall i \in [m]. \ \underline{P_{s_i}} \subseteq \underline{Q_{s_i}}$$

Subspace interpretation of projections

Monotonicity and Galois Connection

Monotonicity of abstraction, concretization, and abstract operations:

$$S \subseteq T$$

$$\forall \overline{\sigma}, \overline{\tau} \in AbsDom(T).$$

$$(\overline{\sigma} \sqsubseteq \overline{\tau} \Rightarrow \alpha_{T \to S}(\overline{\sigma}) \sqsubseteq \alpha_{T \to S}(\overline{\tau})$$

$$\wedge$$

$$\overline{\sigma} \sqsubseteq \overline{\tau} \Rightarrow \gamma_{T \to S}(\overline{\sigma}) \sqsubseteq \gamma_{T \to S}(\overline{\tau})$$

$$\wedge$$

$$\overline{\sigma} \sqsubseteq \overline{\tau} \Rightarrow U^{\sharp}(\overline{\sigma}) \sqsubseteq U^{\sharp}(\overline{\tau})$$

Monotonicity and Galois Connection

Monotonicity of abstraction, concretization, and abstract operations:

$$S \subseteq T$$

$$\forall \overline{\sigma}, \overline{\tau} \in AbsDom(T).$$

$$(\overline{\sigma} \sqsubseteq \overline{\tau} \Rightarrow \alpha_{T \to S}(\overline{\sigma}) \sqsubseteq \alpha_{T \to S}(\overline{\tau})$$

$$\wedge$$

$$\overline{\sigma} \sqsubseteq \overline{\tau} \Rightarrow \gamma_{T \to S}(\overline{\sigma}) \sqsubseteq \gamma_{T \to S}(\overline{\tau})$$

$$\wedge$$

$$\overline{\sigma} \sqsubseteq \overline{\tau} \Rightarrow U^{\sharp}(\overline{\sigma}) \sqsubseteq U^{\sharp}(\overline{\tau})$$

Galois connection:

$$\forall \overline{\sigma} \in AbsDom(S). \ \forall \overline{\tau} \in AbsDom([n]^m).$$
$$\overline{\tau} \sqsubseteq \gamma_{S \to [n]^m}(\overline{\sigma}) \quad \Leftrightarrow \quad \alpha_{[n]^m \to S}(\overline{\tau}) \sqsubseteq \overline{\sigma}$$

$$S=(s_1,...,s_m)$$
 S is connected $\triangleq \forall k \in [n-1]. \ \exists r \in [m]. \ k \in s_r \land k+1 \in s_r$

$$S=(s_1,...,s_m)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$n = 5, m = 3$$

 $S = (\{0, 2, 3\}, \{0, 1, 2\}, \{3, 4, 5\})$

$$S=(s_1,...,s_m)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$n = 5, \quad m = 3$$

 $S = (\{0, 2, 3\}, \{0, 1, 2\}, \{3, 4, 5\})$

$$0,1 \in \{0,1,2\}$$

$$S = (s_1, ..., s_m)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$n = 5, m = 3$$

 $S = (\{0, 2, 3\}, \{0, 1, 2\}, \{3, 4, 5\})$

$$1,2 \in \{0,1,2\}$$

$$S=\left(s_{1},...,s_{m}\right)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$n = 5, \quad m = 3$$

 $S = (\{0, 2, 3\}, \{0, 1, 2\}, \{3, 4, 5\})$

$$S=(s_1,...,s_m)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$n = 5, m = 3$$

 $S = (\{0, 2, 3\}, \{0, 1, 2\}, \{3, 4, 5\})$

$$3,4 \in \{3,4,5\}$$

$$S=(s_1,...,s_m)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$S = (s_1, ..., s_m)$$

S is connected $\triangleq \forall k \in [n-1]$. $\exists r \in [m]$. $k \in s_r \land k+1 \in s_r$

Example:

$$n = 5, m = 3$$

 $S = (\{0, 2, 3\}, \{0, 1, 2\}, \{3, 4, 5\})$

For an assertion A, if S is connected, then:

$$proj(A) = \gamma_{S \to [n]^m}(\alpha_{[n]^m \to S}(proj(A)))$$

Assertion Checking

Given an assertion A, if the final state of a computation is v and the final abstract state of the abstract interpretation is $\overline{v} \in AbsDom(S)$, with S connected, then:

$$\overline{v} \sqsubseteq \alpha_{[n]^m \to S}(proj(A)) \quad \Rightarrow \quad v \in A$$

Assertion Checking

Given an assertion A, if the final state of a computation is v and the final abstract state of the abstract interpretation is $\overline{v} \in AbsDom(S)$, with S connected, then:

$$\overline{v} \sqsubseteq \alpha_{[n]^m \to S}(proj(A)) \quad \Rightarrow \quad v \in A$$

Essentially, if the abstract state satisfies the assertion, then the concrete one does as well.

Choice of Tuple S

Fundamental choice for the shape of the abstract domain and, in turn, the success of the analysis.

Choice of Tuple S

Fundamental choice for the shape of the abstract domain and, in turn, the success of the analysis.

Type of S	Pros	Cons
Less, smaller sets	Less computational cost and memory footprint	Less precision
More, bigger sets	More computational cost and memory footprint	More precision

Choice of Tuple S

Fundamental choice for the shape of the abstract domain and, in turn, the success of the analysis.

Type of S	Pros	Cons
Less, smaller sets	Less computational cost and memory footprint	Less precision
More, bigger sets	More computational cost and memory footprint	More precision

Examples:

- $S_0 = \text{all } 2^n \text{ combinations of up to } n \text{ qubits}$
- $S_1 = \text{all } \binom{n}{k}$ combinations of exactly k qubits
- $S_2 = \text{sets that contain qubits used by at least two 3-qubit gates}$
- ...

Choice of Tuple S (ctd.)

Another important factor in the choice for the abstract state is which qubits are put together in projections.

A good choice would make the abstract interpretation flow-sensitive.

Choice of Tuple S (ctd.)

Another important factor in the choice for the abstract state is which qubits are put together in projections.

A good choice would make the abstract interpretation *flow-sensitive*.

Example:

- U_1 acts on qubits $\{1,2,3\}$ with $\{1,2\}$ as input and $\{3\}$ as output.
- U_2 acts on qubits $\{3,4,5\}$ with $\{3,4\}$ as input and $\{5\}$ as output.

Choice of Tuple S (ctd.)

Another important factor in the choice for the abstract state is which qubits are put together in projections.

A good choice would make the abstract interpretation *flow-sensitive*.

Example:

- U_1 acts on qubits $\{1,2,3\}$ with $\{1,2\}$ as input and $\{3\}$ as output.
- U_2 acts on qubits $\{3,4,5\}$ with $\{3,4\}$ as input and $\{5\}$ as output.

A good choice which would improve the precision of the abstract interpretation is to have the set $\{1, 2, 3, 4, 5\}$ in the abstract state.

We want to check (partial) correctness of Grover's algorithm.

We want to check (partial) correctness of Grover's algorithm.

Grover's algorithm steps:

1 Prepare the initial state $|\phi\rangle^{(0)}$

We want to check (partial) correctness of Grover's algorithm.

Grover's algorithm steps:

- **1** Prepare the initial state $|\phi\rangle^{(0)}$
- 2 Repeat approx. $\frac{\pi}{4}\sqrt{N}$ times $|\phi\rangle^{(t+1)}=G\,|\phi\rangle^{(t)}$.

We want to check (partial) correctness of Grover's algorithm.

Grover's algorithm steps:

- **1** Prepare the initial state $|\phi\rangle^{(0)}$
- **2** Repeat approx. $\frac{\pi}{4}\sqrt{N}$ times $|\phi\rangle^{(t+1)} = G|\phi\rangle^{(t)}$.
- **3** Measure in the computational basis.

We want to check (partial) correctness of Grover's algorithm.

Grover's algorithm steps:

- **1** Prepare the initial state $|\phi\rangle^{(0)}$
- **2** Repeat approx. $\frac{\pi}{4}\sqrt{N}$ times $|\phi\rangle^{(t+1)} = G|\phi\rangle^{(t)}$.
- 3 Measure in the computational basis.

With this abstract interpretation framework, we can prove the loop invariant:

$$|\phi\rangle^{(t)} \in A = span\{|\beta\rangle, |\phi\rangle\}$$

$$P(v) \triangleq v \in A = span\{\ket{\beta}, \ket{\phi}\}$$

$$P(v) \triangleq v \in A = span\{|\beta\rangle, |\phi\rangle\}$$

We need to check:

$$P\left(\left| \phi \right\rangle^{(0)} \right)$$

$$P(v) \triangleq v \in A = span\{|\beta\rangle, |\phi\rangle\}$$

We need to check:

$$P(v) \triangleq v \in A = span\{|\beta\rangle, |\phi\rangle\}$$

We need to check:

$$P\left(|\phi\rangle^{(t)}\right) \Rightarrow P\left(|\phi\rangle^{(t+1)}\right)$$

$$P(v) \triangleq v \in A = span\{|\beta\rangle, |\phi\rangle\}$$

We need to check:

$$P(v) \triangleq v \in A = span\{|\beta\rangle, |\phi\rangle\}$$

We need to check:

$$P\left(|\phi\rangle^{(t)}\right) \Rightarrow P\left(|\phi\rangle^{(t+1)}\right) \triangleq |\phi\rangle^{(t)} \in A \Rightarrow G|\phi\rangle^{(t)} \in A$$

$$G |\phi\rangle^{(t)} \in A = G |\beta\rangle \in A \land G |\phi\rangle \in A$$
 By linearity of G and $|\phi\rangle^{(t)} \in A$

Roadmap

- Introduction
 Reasons
 Abstract Interpretation
- Preliminaries
 Density Matrix
 Reduced Density Matrix
- 3 Abstract Domain Abstraction and Concretization Functions Abstract Operations Assertions
- 4 Conclusions

Future developments

- Programs with measurements
- Conditionals
- Loops
- Mix of classical and quantum computation
- Choosing the optimal abstract space
- Other kinds of assertions

Computing the Projection of a Support

[noframenumbering] To compute a projection corresponding to supp(A), we:

- 1 take the rows $\{r_1, ..., r_n\}$ of A;
- **2** extract an orthonormal set of vectors $\{b_1, ..., b_n\}$ that span the same subspace as the rows;
- 4 return BB^{\dagger} .

Computing the Projection of an Intersection

[noframenumbering]

$$\{P_1,...,P_k\}, \quad \forall i \in [k]. \ P_i = C^n \times C^n$$

$$\bigcap_{i \in [k]} P_i \triangleq I_n - supp(kI_n - \sum_{i \in [k]} P_i)$$

Computing the Assertion Projection

[noframenumbering] Given two vectors

$$v_1 = |a_1\rangle ... |a_n\rangle$$

 $v_2 = |b_1\rangle ... |b_n\rangle$

$$\textbf{ 1 Create a matrix } P = \begin{pmatrix} v_1' \\ v_2^T \\ \mathbf{0} \\ \dots \\ \mathbf{0} \end{pmatrix}$$

 \bigcirc Return supp(P)

Partial trace

$$Tr_B[\rho] = \sum_{v=0}^{2^m} (I_A \otimes \langle v |) \rho(I_A \otimes | v \rangle) \quad Tr_A[\rho] = \sum_{v=0}^{2^n} (\langle v | \otimes I_B) \rho(| v \rangle \otimes I_B)$$

Where v labels vectors of an orthonormal basis of the subspace we are tracing out.

Weak Galois Connection

$$S \subseteq T$$

$$\forall \overline{\sigma} \in AbsDom(S). \ \forall \overline{\tau} \in AbsDom(T).$$

$$\overline{\tau} \sqsubseteq \gamma_{S \to T}(\overline{\sigma}) \Rightarrow \alpha_{T \to S}(\overline{\tau}) \sqsubseteq \overline{\sigma}$$

$$\wedge$$

$$(\exists \overline{\rho} \in AbsDom([n]^m). \ \overline{\tau} = \alpha_{[n]^m \to T}(\overline{\rho})) \ \Rightarrow \ \overline{\tau} \sqsubseteq \gamma_{S \to T}(\overline{\sigma}) \Leftrightarrow \alpha_{T \to S}(\overline{\tau}) \sqsubseteq \overline{\sigma}$$

