

32032 Feedback Quiz, 2022/23, Week 04: Weight enumerator and $P_{\rm undetect}$ Open-book. 10–15 minutes. Not for credit. To be marked in class.

Some questions below refer to the *weight enumerator*. Recall that the weight enumerator of a linear code C is the polynomial $W_C(x,y)$ in two variables, defined as $W_C(x,y) = \sum_{\underline{c} \in C} x^{n-w(\underline{c})} y^{w(\underline{c})}$,

or equivalently as $A_0x^n + A_1x^{n-1}y + \cdots + A_ny^n$ where n is the length of C and A_i is the number of codevectors of C of weight i.

Consider E_4 , the even weight code of length 4 which is a subspace of \mathbb{F}_2^4 .

Question 1	The weight of E_4 is:					
	$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc$) 4				

Question 2 E_4 is a perfect code:

Question 3 Alice needs to trasmit information (a stream of bits) to Bob over a noisy channel. She wants to use the code E_4 for error detection. In order to do that, Alice needs to split her stream of bits into messages and encode each message into a codevector of E_4 . How many bits should be in each message?

	\bigcirc	\bigcirc		<u> </u>	
() 1	\bigcirc 2	() 3	() 4	() 5	() 8

Question 4 Write down the weight enumerator of E_4 :

$$W_{E_4}(x,y) =$$

A codevector of E_4 is sent via BSC(p). What is the probability $P_{\text{undetect}}(E_4)$ of an undetected error?

$$\bigcirc (1-p)^4 \quad \bigcirc 0 \quad \bigcirc p^4 \quad \bigcirc 6(1-p)^2p^2 + p^4 \quad \bigcirc (1-p)^3$$

Write down the **leading term** of $P_{\text{undetect}}(E_4)$. (The leading term is Ap^d where $A \neq 0$ and $P_{\text{undetect}}(E_4)$ is a polynomial of the form Ap^d +(higher powers of p).

$$P_{\mathrm{undetect}}(E_4) \approx p$$

Question 5 The space \mathbb{F}_2^4 is partitioned into cosets of E_4 . How many cosets?

\bigcirc 1	\bigcirc 2	\bigcirc 4	O8	O 16
--------------	--------------	--------------	----	------