Session 1

Reinforcement Learning

KAUSHIK LAKSHMINARASIMHAN

Bibliography

02/22: Chapters 3-4

- Markov Decision Process
- Model-based Methods (planning)

03/01: Chapters 5-8

- Model-Free Methods (learning)
- Links to Neuroscience

Group discussion (5 mins)

What is the maximum total from top to bottom? You can only pick one number from each row by moving to one of the adjacent numbers on the row below like so.

```
17 47 82
                 18 35 87 10
               20 04 82 47 65
             19 01 23 75 03 34
            88 02 77 73 07 63 67
          99 65 04 28 06 16 70 92
         41 41 26 56 83 40 80 70 33
       41 48 72 33 47 32 37 16 94 29
      53 71 44 65 25 43 91 52 97 51 14
    70 11 33 28 77 73 17 78 39 68 17 57
   91 71 52 38 17 14 91 43 58 50 27 29 48
 63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
```

Objective of reinforcement learning

To maximize expected *return*:

$$\max G_t \doteq \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

where $0 \le \gamma \le 1$ is a parameter, called the discount factor

Special case ($\gamma = 1$): maximize expected *cumulative reward*:

$$\max \sum_{k=0}^{\infty} R_{t+k+1}$$

Markov property

$$p(s',r|s,a) \doteq \Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\},$$
 for all $s \in \mathcal{S}$, $r \in \mathcal{R}$, $a \in \mathcal{A}$

p(s',r|s,a) is usually called the *model* of the world or the *dynamics* of the MDP

Markov property

$$p(s',r|s,a) \doteq \Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\},$$
 for all $s \in \mathcal{S}$, $r \in \mathcal{R}$, $a \in \mathcal{A}$

p(s',r|s,a) is usually called the *model* of the world or the *dynamics* of the MDP

Note: Markov property is a restriction on the state, not on the decision process itself

p(s',r|s,a) is usually called the *model* of the world or the *dynamics* of the MDP

Policy and Value function

A *policy* is a mapping from states to the probabilities of selecting each possible action

Policy and Value function

A *policy* is a mapping from states to the probabilities of selecting each possible action

State-value of a state s under a policy π is the expected return when starting from s and following π thereafter

Group discussion (10 mins)

Given policy π and dynamics p, derive a recursive relationship between the value of state s, $v_{\pi}(s)$, and the value at its possible successor state s', $v_{\pi}(s')$

Hint: $G_t = R_{t+1} + \gamma G_{t+1}$

Bellman Expectation Equation

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Group discussion (5 mins)

Use the bellman expectation equation to evaluate the top-most node of the triangle on the right under a random walk policy


```
75
95 64
17 47 82
18 35 87 10
```

Use the bellman expectation equation to evaluate the top-most node of the triangle on the right under a random walk policy

Optimal Value function and Optimal Policy

For any Markov Decision Process

- There exists a deterministic optimal policy π^* that is at least as good as all other policies, $\pi^* \geq \pi$, $\forall \pi$
- All optimal policies achieve the optimal value function, $v_{\pi^*}(s) = v_*(s)$

Optimal Value function and Optimal Policy

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

Any policy that is *greedy* with respect to the optimal value function $v_*(s)$ is an optimal policy

Optimal Value function and Optimal Policy

Bellman Optimality Equation

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

Any policy that is *greedy* with respect to the optimal value function $v_*(s)$ is an optimal policy

Bellman Expectation Equation

- Linear, has a closed-form solution
- Used for policy evaluation or prediction

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Bellman Optimality Equation

- Non-linear, no closed-form solution
- Used for computing an optimal policy or control

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

Bellman Optimality Equation

Solution Methods

- Policy Iteration
- Value Iteration

Model-based algorithms (planning)

- Monte Carlo Methods
- Temporal Difference

Model-free algorithms

(learning)

Bellman Optimality Equation

Solution Methods

- Policy Iteration
- Value Iteration
- Monte Carlo Methods
- Temporal Difference

Policy Iteration

Random initialization:

$$V(s) \in \mathbb{R}, \pi(s) \in \mathcal{A}(s)$$

Loop until $\pi(s)$ is stable:

1. Policy evaluation:

Loop until convergence:

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$$
 for each $s \in S$

2. Policy improvement:

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] \text{ for each } s \in \mathcal{S}$$

Policy Iteration

Random initialization:

$$V(s) \in \mathbb{R}, \pi(s) \in \mathcal{A}(s)$$

Loop until convergence:

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r + \gamma V(s')]$$
 for each $s \in S$

 $v = v_{\pi}$

 $\pi = \operatorname{greedy}(v)$

2. Policy improvement:

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')] \text{ for each } s \in \mathcal{S}$$

Bellman Optimality Equation

Solution Methods

- Policy Iteration
- Value Iteration
- Monte Carlo Methods
- Temporal Difference

Value Iteration

Random initialization:

$$V(s) \in \mathbb{R}, \pi(s) \in \mathcal{A}(s)$$

Loop until V(s) is stable (combines *evaluation* and *improvement*): $V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')]$ for each $s \in \mathcal{S}$

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$$

Group discussion (5 mins)


```
75
95 64
17 47 82
18 35 87 10
```


Try on your own

Write a program that uses *value iteration* to maximize the total from top to bottom

```
75
                    95 64
                  17 47 82
                 18 35 87 10
               20 04 82 47 65
              19 01 23 75 03 34
            88 02 77 73 07 63 67
          99 65 04 28 06 16 70 92
         41 41 26 56 83 40 80 70 33
       41 48 72 33 47 32 37 16 94 29
      53 71 44 65 25 43 91 52 97 51 14
    70 11 33 28 77 73 17 78 39 68 17 57
   91 71 52 38 17 14 91 43 58 50 27 29 48
 63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
```