Eagner	PMF	PDF	CPF	ETX	Varix)
Distrete r.v.	pix) & [0,1]	NOPOF	Yes	Z×p(x) xe suppex)	Z (x-M)2 p(x xeSugger)
	E PCX) =1 X ESUPPEXI				
Continuous r.v		f(x) 210			2
	NO PMF	Sfoodx =1	Yes	Sufixida	IR1 = 1
		Suppos)	Jes	Suppex	

Quantil(x,p) min { x : Fa) > P} X2 F- (p) X St F(x) = P

$$\int (x) = \frac{1}{\sqrt{2}\pi} e^{-\frac{x^2}{2}} = \frac{1}{\sqrt{2}\pi} \frac{1}{e^{x^2/2}}$$

where isit o?

(a) fix 70 x E IR

(b)
$$\int \frac{1}{\sqrt{25}} e^{-\frac{x^2}{2}} dx = 1$$
? No need to lenow.

The Proof:

The Proof:

$$\frac{1}{\sqrt{2\pi}} \int e^{-\frac{x^2}{2}} dx = 1 \qquad \Rightarrow \int e^{\frac{x^2}{2}} dx = \sqrt{2\pi} \Rightarrow \int e^{-u^2} du = \sqrt{\pi}$$

$$= \left(\int e^{-u^2} du \right)^2 = \pi \Rightarrow \int e^{-u^2} du \qquad \int e^{-u^2} du = \pi \qquad \Rightarrow \int e^{-x^2} dx \int e^{-x^2} dy = \pi$$

$$= \int \int e^{-(x^2+y)} dxdy = \int \int e^{-r^2} r dr do = \int e^{-r^2} r dr \int ds$$

$$= \int \int e^{-(x^2+y)} dxdy = \int \int e^{-r^2} r dr do = \int e^{-r^2} r dr \int ds$$

$$= \int \int \int e^{-(x^2+y)} dxdy = \int \int \int e^{-r^2} r dr do = \int \int e^{-r^2} r dr ds = \int \int e^{-r^2} r dr ds$$

$$= \int \int \int e^{-r^2} r dr ds = \int \int \int e^{-r^2} r dr ds = \int e^{-r^2} r dr ds = \int e^{-r^2} r dr ds = \int e^{$$

rdrdo = dA = dxdy

$$\Rightarrow 2\pi \int e^{r^2} r dr \stackrel{?}{=} \pi \Rightarrow \int_0^\infty e^{-r^2} r dr = \frac{1}{2}$$

$$\frac{du}{dr} = 2r \Rightarrow du = 2rdr$$

$$= 2rdr = du$$

=> Se-u dy = = [-e-a] = (e-a) = (-1) = 1-0=1

> 9tg.

M® MIQUELRIUS

Express ... in terms of CDF

F(b)-F(a)

between the stren intervals

$$P(Z \in C-1, 1] = F(1) - F(-1) \approx .68$$

$$P(Z \in C-2,2] = F(2) - F(-2) \approx .95$$

$$P(Z \in C-3,3] = F(3) - F(-3) \approx .997$$

SE[7]2

Exponential and uniform R.V. [Review]

$$x \sim E \times p(\lambda) := \lambda e^{-\lambda x}$$

$$F(x) = 1 - e^{-\lambda x}$$

Continue;

$$F(x)=1-e^{-\lambda x}$$
 $F(x)=\frac{1}{\lambda}$

fix)

 $x) = \frac{x-a}{b-a}$

, ...

$$X \sim Exp(\lambda)$$
 $Y = 2 \times \sim ?$
 $Y = 2 \times \sim ?$

11-4=7-126

M® MIQUELRIUS