1 Importing the libraries

```
In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

2 Data

The data is related with the different factors of the crop. The classification goal is to predict the production of the yield.

crop						
	Unnamed: 0	Area	Item	Year	hg/ha_yield	average_rain_fall_mm_per_year
0	0.0	Albania	Maize	1990.0	36613	1485.0
1	1.0	Albania	Potatoes	NaN	NaN	NaN
2	2.0	Albania	Rice, paddy	NaN	NaN	1485.0
3	3.0	Albania	Sorghum	1990.0	12500	1485.0
4	4.0	Albania	Soybeans	1990.0	7000	1485.0
28237	28237.0	Zimbabwe	Rice, paddy	NaN	NaN	NaN
28238	28238.0	Zimbabwe	Sorghum	NaN	NaN	NaN
28239	28239.0	Zimbabwe	Soybeans	2013.0	13142	657.0
28240	28240.0	Zimbabwe	Sweet potatoes	2013.0	22222	657.0
28241	28241.0	Zimbabwe	Wheat	2013.0	22888	657.0

3 Data Preprocessing

In [4]:	crop.h	nead(3))									
ut[4]:	Uni	named: 0	Area	Item	Year	hg/ha_y	/ield	average_	rain_fal	I_mm_per_year	pesticio	des_to
	0	0.0	Albania	Maize	1990.0	36	613			1485.0		
	1	1.0	Albania	Potatoes	NaN		NaN			NaN		
	2	2.0	Albania	Rice,	NaN		NaN			1485.0		
	_		7 11.2 21.11.5	paddy								
n [5]:	crop.t	:ail(3))									
ut[5]:		Unnan	ned: 0	Area	Item	Year	hg/h	a_yield a	verage _.	_rain_fall_mm_p	er_year	pesti
	28239	282	39.0 Zim	nbabwe So	ybeans	2013.0		13142			657.0	
	28240	282	40.0 Zim	nbabwe p	Sweet otatoes	2013.0		22222			657.0	
	28241	282	41.0 Zim	babwe	Wheat	2013.0		22888			657.0	
	4											•
[6]:	crop.i	nfo										
t[6]:		d metho		Frame.in	fo of		Unna	med: 0	Δ	rea	Ite	m
	0		0.0	Albani			laize			36613		
	1		1.0	Albani			itoes			NaN		
	2 3		2.0 3.0	Albani Albani		Rice, p	auuy ghum			NaN 12500		
	4		4.0	Albani			eans			7000		
	• • •			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	50,5	• • •			•••		
	28237	28	3237.0	Zimbabw	e	Rice, p				NaN		
	28238	28	3238.0	Zimbabw			ghum		V	NaN		
	28239	28	3239.0	Zimbabw	e		eans		9	13142		
	28240	28	3240.0	Zimbabw	e Swe	et pota	toes	2013.	9	22222		
	28241	28	3241.0	Zimbabw	e	h	lheat	2013.	9	22888		
		avera	age_rai	n_fall_m		-	esti	.cides_t		avg_temp		
	0				14	85.0		1.	21.00	NaN		
	1					NaN		4	NaN	16.37		
	2					85.0			21.00	16.37		
	3 4					85.0 85.0		1.	21.00 NaN	16.37 16.37		
	• • •									• • •		
	28237					NaN			NaN	NaN		
	28238					NaN			NaN	NaN		
	28239					57.0			50.07	19.76		
	28240					57.0			50.07	19.76		
	28241				6	57.0		25	50.07	19.76		
	[28242	2 rows	x 8 co	lumns]>								

```
In [7]: crop.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 28242 entries, 0 to 28241
          Data columns (total 8 columns):
                Column
                                                  Non-Null Count Dtype
           0
                Unnamed: 0
                                                  28079 non-null
                                                                    float64
           1
                Area
                                                  27359 non-null
                                                                    object
                Item
           2
                                                  27096 non-null
                                                                   object
           3
                Year
                                                  26716 non-null
                                                                   float64
           4
                hg/ha_yield
                                                  26285 non-null
                                                                   object
           5
                average_rain_fall_mm_per_year
                                                  25539 non-null
                                                                   float64
           6
                pesticides_tonnes
                                                  26287 non-null
                                                                  float64
           7
                avg_temp
                                                  25806 non-null float64
          dtypes: float64(5), object(3)
          memory usage: 1.7+ MB
 In [8]: crop.shape
 Out[8]: (28242, 8)
 In [9]: crop.describe(include='all')
 Out[9]:
                   Unnamed: 0
                                Area
                                         Item
                                                      Year hg/ha_yield average_rain_fall_mm_per_year
                                              26716.000000
                                                                26285
            count 28079.000000
                               27359
                                        27096
                                                                                     25539.000000
                                                                10489
           unique
                          NaN
                                 101
                                           10
                                                      NaN
                                                                                             NaN
                                                      NaN
                                                                10000
              top
                          NaN
                                India Potatoes
                                                                                             NaN
                          NaN
                                4039
                                         4070
                                                      NaN
                                                                  94
                                                                                             NaN
             freq
            mean 14127.489120
                                NaN
                                         NaN
                                               2001.551243
                                                                 NaN
                                                                                       1165.771330
                   8157.195199
                                NaN
                                                  7.045317
                                                                 NaN
                                                                                       712.639125
              std
                                         NaN
                      0.000000
                                NaN
                                         NaN
                                               1990.000000
                                                                 NaN
                                                                                        51.000000
             min
             25%
                   7051.500000
                                NaN
                                         NaN
                                               1995.000000
                                                                 NaN
                                                                                       593.000000
             50%
                  14128.000000
                                NaN
                                         NaN
                                               2001.000000
                                                                 NaN
                                                                                       1083.000000
             75%
                 21200.500000
                                NaN
                                         NaN
                                               2008.000000
                                                                 NaN
                                                                                       1668.000000
             max 28241.000000
                                NaN
                                         NaN
                                               2013.000000
                                                                 NaN
                                                                                       3240.000000
In [10]: crop.nunique()
Out[10]: Unnamed: 0
                                               28079
          Area
                                                 101
          Item
                                                  10
          Year
                                                  23
          hg/ha_yield
                                               10489
          average_rain_fall_mm_per_year
                                                  99
```

1606

1785

pesticides_tonnes

avg_temp

dtype: int64

```
(crop.isnull().sum()/(len(crop)))*100
In [11]:
Out[11]: Unnamed: 0
                                           0.577155
         Area
                                           3.126549
         Item
                                           4.057786
         Year
                                           5.403300
         hg/ha_yield
                                           6.929396
         average_rain_fall_mm_per_year
                                           9.570852
         pesticides_tonnes
                                           6.922314
         avg_temp
                                           8.625451
         dtype: float64
In [12]: crop.isnull().sum()
Out[12]: Unnamed: 0
                                            163
         Area
                                            883
         Item
                                           1146
         Year
                                           1526
         hg/ha_yield
                                           1957
         average_rain_fall_mm_per_year
                                           2703
         pesticides_tonnes
                                           1955
         avg_temp
                                           2436
         dtype: int64
In [13]: # Number of years (1990 - 2016)
         len(crop.Year.unique())
Out[13]: 24
In [14]: # Number of countries
         len(crop.Area.unique())
Out[14]: 102
```

Heatmap show the missing values in data

```
In [15]: sns.heatmap(crop.isnull(),yticklabels=False,cmap="Paired")
```

Out[15]: <Axes: >


```
In [16]: crop['Area'].value_counts() #returns object containing counts of unique value
Out[16]: India
                        4039
         Brazil
                        2136
         Mexico
                        1472
         Pakistan
                        1449
         Japan
                         966
         Estonia
                          42
         Belgium
                          39
         Bahrain
                          29
         Sudan
                          28
         Montenegro
                          24
         Name: Area, Length: 101, dtype: int64
```

In [18]: crop

Out[18]:

	Number	Area	Crop Name	Year	Yield (hg/ha)	Rainfall (mm)	pesticides_tonnes	Temperature (Celsius)
0	0.0	Albania	Maize	1990.0	36613	1485.0	121.00	NaN
1	1.0	Albania	Potatoes	NaN	NaN	NaN	NaN	16.37
2	2.0	Albania	Rice, paddy	NaN	NaN	1485.0	121.00	16.37
3	3.0	Albania	Sorghum	1990.0	12500	1485.0	121.00	16.37
4	4.0	Albania	Soybeans	1990.0	7000	1485.0	NaN	16.37
28237	28237.0	Zimbabwe	Rice, paddy	NaN	NaN	NaN	NaN	NaN
28238	28238.0	Zimbabwe	Sorghum	NaN	NaN	NaN	NaN	NaN
28239	28239.0	Zimbabwe	Soybeans	2013.0	13142	657.0	2550.07	19.76
28240	28240.0	Zimbabwe	Sweet potatoes	2013.0	22222	657.0	2550.07	19.76
28241	28241.0	Zimbabwe	Wheat	2013.0	22888	657.0	2550.07	19.76

28242 rows × 8 columns

```
In [19]: crop.isnull().sum()
```

Out[19]: Number 163 Area 883 Crop Name 1146 Year 1526 Yield (hg/ha) 1957 Rainfall (mm) 2703 pesticides_tonnes 1955 Temperature (Celsius) 2436

dtype: int64

crop["Crop Name"].fillna(crop["Crop Name"].mode()[0],inplace=True)

crop["Temperature (Celsius)"].fillna(crop["Temperature (Celsius)"].median(),ing

crop["Rainfall (mm)"].fillna(crop["Rainfall (mm)"].median(),inplace=True)
crop["pesticides_tonnes"].fillna(crop["pesticides_tonnes"].median(),inplace=True)

crop["Year"].ffill(axis=0,inplace=True)

crop["Yield (hg/ha)"].ffill(axis=0,inplace=True)

After treatment their is no missing values in data

In [23]: crop.drop(["Number"],axis=1,inplace=True)

In [24]: crop

Out[24]:

	Area	Crop Name	Year	Yield (hg/ha)	Rainfall (mm)	pesticides_tonnes	Temperature (Celsius)
0	Albania	Maize	1990.0	36613	1485.0	121.00	21.69
1	Albania	Potatoes	1990.0	36613	1083.0	17529.44	16.37
2	Albania	Rice, paddy	1990.0	36613	1485.0	121.00	16.37
3	Albania	Sorghum	1990.0	12500	1485.0	121.00	16.37
4	Albania	Soybeans	1990.0	7000	1485.0	17529.44	16.37
28237	Zimbabwe	Rice, paddy	2013.0	165714	1083.0	17529.44	21.69
28238	Zimbabwe	Sorghum	2013.0	165714	1083.0	17529.44	21.69
28239	Zimbabwe	Soybeans	2013.0	13142	657.0	2550.07	19.76
28240	Zimbabwe	Sweet potatoes	2013.0	22222	657.0	2550.07	19.76
28241	Zimbabwe	Wheat	2013.0	22888	657.0	2550.07	19.76

27339 rows × 7 columns

In [25]: cat_data=crop.select_dtypes(include=object)
num_data=crop.select_dtypes(exclude=object)

show catogorical data column
show numerical data in column

In [26]: cat_data

Out[26]:

	Area	Crop Name	Yield (hg/ha)
0	Albania	Maize	36613
1	Albania	Potatoes	36613
2	Albania	Rice, paddy	36613
3	Albania	Sorghum	12500
4	Albania	Soybeans	7000
28237	Zimbabwe	Rice, paddy	165714
28238	Zimbabwe	Sorghum	165714
28239	Zimbabwe	Soybeans	13142
28240	Zimbabwe	Sweet potatoes	22222
28241	Zimbabwe	Wheat	22888

27339 rows × 3 columns

In [27]: num_data

Out[27]:		Year	Rainfall (mm)	pesticides_tonnes	Temperature (Celsius)
	0	1990.0	1485.0	121.00	21.69
	1	1990.0	1083.0	17529.44	16.37
	2	1990.0	1485.0	121.00	16.37
	3	1990.0	1485.0	121.00	16.37
	4	1990.0	1485.0	17529.44	16.37
	28237	2013.0	1083.0	17529.44	21.69
	28238	2013.0	1083.0	17529.44	21.69

2550.07

2550.07

2550.07

19.76

19.76

19.76

657.0

657.0

657.0

27339 rows × 4 columns

28239 2013.0

28240 2013.0

28241 2013.0

4 Exploratory Data Analysis (EDA)


```
In [29]: sns.set(style="ticks")
    sns.pairplot(crop, diag_kind="kde", markers="o")
    plt.show()
```



```
In [30]: a=crop.sample(250)
sns.lineplot(x="Year",y="pesticides_tonnes",data=a)
plt.show()
```



```
In [31]: a=crop.sample(105)
    sns.lineplot(x="Rainfall (mm)",y="pesticides_tonnes",data=a)
    plt.show()
```



```
In [32]: a=crop.sample(99)
    figsize=(22,10)
    sns.lineplot(x="Area",y="Year",data=a)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [33]: a=crop.sample(99)
    figsize=(22,10)
    sns.lineplot(x="Year",y="Rainfall (mm)",data=a)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [34]: a=crop.sample(99)
    figsize=(50,30)
    sns.lineplot(x="Rainfall (mm)",y="Temperature (Celsius)",data=a)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [35]: corr=num_data.corr()
    msk = np.triu(np.ones_like(corr))
    sns.heatmap(corr,cmap=plt.cm.RdBu_r,annot=True,annot_kws={'size':10},mask=msk)
```

Out[35]: <Axes: >


```
In [36]: sns.histplot(crop["Year"],bins=10,kde=True)
```

Out[36]: <Axes: xlabel='Year', ylabel='Count'>

In [37]: plt.figure(figsize=(16,7))
 sns.histplot(crop["Area"],bins=10,kde=True)
 plt.xticks(rotation=90)
 plt.show()


```
In [38]: b=crop.groupby("Crop Name")["Crop Name"].count()
```

```
In [39]: plt.pie(b,labels=b.index,autopct="%.2f%%")
    plt.xticks(rotation=90)
    plt.title("Average Crop")
    plt.show()
```

Average Crop


```
In [42]: b=crop.groupby("Year")["Year"].count()
```

```
In [43]: sns.barplot(x=b.index,y=b.values)
    plt.xticks(rotation=90)
    plt.title("Count by Year")
    plt.xlabel("Year")
    plt.ylabel("Yield (hg/ha)")
    plt.show()
```



```
In [44]: sns.countplot(x='Crop Name',data=crop)
    plt.xticks(rotation=90)
    plt.show()
```



```
In [46]: crop.loc[crop['Area'] == 'Germany'].groupby('Year').mean().plot()
    plt.show()
```

C:\Users\DD\AppData\Local\Temp\ipykernel_6992\362564267.py:1: FutureWarning:
The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In
a future version, numeric_only will default to False. Either specify numeric_
only or select only columns which should be valid for the function.
 crop.loc[crop['Area'] == 'Germany'].groupby('Year').mean().plot()


```
In [113]: sns.boxplot(x=df_new['Yield (hg/ha)'],color='#005030')
plt.title(f'Box Plot of Preis')
```

Out[113]: Text(0.5, 1.0, 'Box Plot of Preis')


```
In [120]: sns.barplot(x='Crop Name', y='Rainfall (mm)', data=crop, orient='v')
    plt.xticks(rotation=90)
    plt.show()
```



```
In [121]: sns.barplot(x='Crop Name', y='pesticides_tonnes', data=crop, orient='v')
    plt.xticks(rotation=90)
    plt.show()
```



```
In [122]: sns.barplot(x='Crop Name', y='Temperature (Celsius)', data=crop, orient='v')
plt.xticks(rotation=90)
plt.show()
```



```
In [123]: sns.barplot(x='Crop Name', y='Year', data=crop, orient='v')
plt.xticks(rotation=90)
plt.show()
```



```
In [114]: sns.histplot(x=df_new['Yield (hg/ha)'], color='#500050', kde=True)
plt.title(f'Distribution Plot of Preis')
```

Out[114]: Text(0.5, 1.0, 'Distribution Plot of Preis')


```
In [47]: sns.violinplot(x="Year",y="Rainfall (mm)",data=crop)
    plt.xticks(rotation=90)
    plt.show()
```


5 Outlier detection and removal

In [53]: new_df

Out[53]:

	Area	Crop Name	Year	Yield (hg/ha)	Rainfall (mm)	pesticides_tonnes	Temperature (Celsius)
0	Albania	Maize	1990.0	36613	1485.0	121.00	21.69
1	Albania	Potatoes	1990.0	36613	1083.0	17529.44	16.37
2	Albania	Rice, paddy	1990.0	36613	1485.0	121.00	16.37
3	Albania	Sorghum	1990.0	12500	1485.0	121.00	16.37
4	Albania	Soybeans	1990.0	7000	1485.0	17529.44	16.37
28237	Zimbabwe	Rice, paddy	2013.0	165714	1083.0	17529.44	21.69
28238	Zimbabwe	Sorghum	2013.0	165714	1083.0	17529.44	21.69
28239	Zimbabwe	Soybeans	2013.0	13142	657.0	2550.07	19.76
28240	Zimbabwe	Sweet potatoes	2013.0	22222	657.0	2550.07	19.76
28241	Zimbabwe	Wheat	2013.0	22888	657.0	2550.07	19.76

26946 rows × 7 columns

```
In [54]: z_scores=stats.zscore(new_df["Temperature (Celsius)"])
z_score_outlier=(z_scores<-3)|(z_scores>3)
```

In [55]: z_score_outlier_row=new_df[z_score_outlier]
print("outliers detected by Z-score:",z_score_outlier_row)

	rs detected	•		Area	Crop Name	Year	Yield	(h
g/ha)	Rainfall (m	•			_			
17150	Kazakhstan	Maize	1992.0		214	250.0		
17152	Kazakhstan	Potatoes	1992.0	1059		250.0		
17154	Kazakhstan	Rice, paddy	1992.0		915	250.0		
17156	Kazakhstan	Sorghum	1992.0		765	250.0		
17158	Kazakhstan	Soybeans	1992.0		919	250.0		
17160	Kazakhstan	Wheat	1992.0		324	250.0		
17162	Kazakhstan	Maize	1993.0	320	677	250.0		
17164	Kazakhstan	Potatoes	1993.0	963	200	250.0		
17166	Kazakhstan	Rice, paddy	1993.0	368	871	250.0		
17168	Kazakhstan	Sorghum	1993.0	12	500	250.0		
17170	Kazakhstan	Soybeans	1993.0	11:	269	250.0		
17172	Kazakhstan	Wheat	1993.0	9:	178	250.0		
17198	Kazakhstan	Maize	1996.0	16	795	250.0		
17200	Kazakhstan	Potatoes	1996.0	883	347	250.0		
17202	Kazakhstan	Rice, paddy	1996.0	26:	155	250.0		
17204	Kazakhstan	Sorghum	1996.0	8:	255	250.0		
17206	Kazakhstan	Soybeans	1996.0	84	437	250.0		
17208	Kazakhstan	Wheat	1996.0	68	835	250.0		
17382	Kazakhstan	Rice, paddy	2012.0	37	712	250.0		
17384	Kazakhstan	Sorghum	2012.0		750	250.0		
17386	Kazakhstan	Soybeans	2012.0		128	250.0		
17388	Kazakhstan	Wheat	2012.0		929	250.0		
21662	Norway	Potatoes	1993.0	249		1414.0		
21663	Norway	Wheat	1993.0		096	1414.0		
21664	Norway	Potatoes	1994.0	230		1414.0		
21665	Norway	Wheat	1994.0		362	1414.0		
21668	Norway	Potatoes	1996.0	231		1414.0		
21669	Norway	Wheat	1996.0		258	1414.0		
21678	Norway	Potatoes	2001.0	262		1414.0		
21679	Norway	Wheat	2001.0		738	1414.0		
21694	Norway	Potatoes	2010.0	251		1414.0		
21695	Norway	Wheat	2010.0		975	1414.0		
21000	Not way	Mileae	2010.0	13.	3,3	11110		
	pesticides_	tonnes Tempe	rature (Ce	lsius)				
17150	17	182.00		2.78				
17152	17	182.00		2.78				
17154	17	182.00		2.78				
17156		182.00		2.78				
17158	17	182.00		2.78				
17160	17	182.00		2.78				
17162	17	182.00		1.63				
17164	17	182.00		1.63				
17166		182.00		1.63				
17168		182.00		1.63				
17170		182.00		1.63				
17172		182.00		1.63				
17198		8047.00		1.61				
17200		8047.00		1.61				
17202		8047.00		1.61				
17202		3047.00 3047.00		1.61				
17204		8047.00		1.61				
17208		3047.00 3047.00		1.61				
17382		8674.58		2.50				
17384		3674.58		2.50				
17384		3674.58		2.50				
1/200	٥	00/4.30		2.50				

17388	8674.58	2.50
21662	749.00	2.72
21663	749.00	2.72
21664	848.00	2.74
21665	848.00	2.74
21668	698.25	1.88
21669	698.25	1.88
21678	512.66	2.68
21679	512.66	2.68
21694	698.98	1.30
21695	698.98	1.30

In [56]: p=(z_scores>-3)&(z_scores<3)
df_new=new_df[p]</pre>

In [57]: df_new

Out[57]:

	Area	Crop Name	Year	Yield (hg/ha)	Rainfall (mm)	pesticides_tonnes	Temperature (Celsius)
0	Albania	Maize	1990.0	36613	1485.0	121.00	21.69
1	Albania	Potatoes	1990.0	36613	1083.0	17529.44	16.37
2	Albania	Rice, paddy	1990.0	36613	1485.0	121.00	16.37
3	Albania	Sorghum	1990.0	12500	1485.0	121.00	16.37
4	Albania	Soybeans	1990.0	7000	1485.0	17529.44	16.37
28237	Zimbabwe	Rice, paddy	2013.0	165714	1083.0	17529.44	21.69
28238	Zimbabwe	Sorghum	2013.0	165714	1083.0	17529.44	21.69
28239	Zimbabwe	Soybeans	2013.0	13142	657.0	2550.07	19.76
28240	Zimbabwe	Sweet potatoes	2013.0	22222	657.0	2550.07	19.76
28241	Zimbabwe	Wheat	2013.0	22888	657.0	2550.07	19.76

26914 rows × 7 columns

Linear Regression

```
In [58]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
from sklearn.preprocessing import OneHotEncoder,StandardScaler
from sklearn.compose import ColumnTransformer
import joblib
```

In [59]: categorical_cols=['Crop Name']
 encoder=OneHotEncoder(drop='first',sparse=False)
 encoder_cols=pd.DataFrame(encoder.fit_transform(df_new[categorical_cols]),colum
 numerical_cols=['Year','Temperature (Celsius)','Rainfall (mm)','pesticides_tonm
 scaler=StandardScaler()
 scaled_cols=pd.DataFrame(scaler.fit_transform(df_new[numerical_cols]),columns=s

C:\Users\DD\AppData\Local\anaconda3\Lib\site-packages\sklearn\preprocessing_
encoders.py:972: FutureWarning: `sparse` was renamed to `sparse_output` in ve
rsion 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you 1
eave `sparse` to its default value.
 warnings.warn(

In [60]: encoder_cols

Out[60]:

C Name_Soybea	Crop Name_Sorghum	Crop Name_Rice, paddy	Crop Name_Potatoes	Crop Name_Plantains and others	Crop Name_Maize	
	0.0	0.0	0.0	0.0	1.0	0
	0.0	0.0	1.0	0.0	0.0	1
	0.0	1.0	0.0	0.0	0.0	2
	1.0	0.0	0.0	0.0	0.0	3
	0.0	0.0	0.0	0.0	0.0	4
				•••		
	0.0	1.0	0.0	0.0	0.0	26909
	1.0	0.0	0.0	0.0	0.0	26910
	0.0	0.0	0.0	0.0	0.0	26911
	0.0	0.0	0.0	0.0	0.0	26912
	0.0	0.0	0.0	0.0	0.0	26913

26914 rows × 9 columns

In [61]: scaled_cols

Out[61]:		Year	Temperature (Celsius)	Rainfall (mm)	pesticides_tonnes					
	0	-1.642466	0.158301	0.563857	-0.609567					
	1	-1.642466	-0.739669	-0.068228	-0.305626					
	2	-1.642466	-0.739669	0.563857	-0.609567					
	3	-1.642466	-0.739669	0.563857	-0.609567					
	4	-1.642466	-0.739669	0.563857	-0.305626					
	26909	1.624805	0.158301	-0.068228	-0.305626					
	26910	1.624805	0.158301	-0.068228	-0.305626					
	26911	1.624805	-0.167466	-0.738050	-0.567156					
	26912	1.624805	-0.167466	-0.738050	-0.567156					
	26913	1.624805	-0.167466	-0.738050	-0.567156					
	26914 rows × 4 columns									
n [80]:	Y=df_new['Yield (hg/ha)'] = pd.to_numeric(df_new['Yield (hg/ha)'], errors='cod									
	<pre>C:\Users\DD\AppData\Local\Temp\ipykernel_6992\1488642903.py:1: SettingWithCop yWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead</pre>									
	See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)									

Y=df_new['Yield (hg/ha)'] = pd.to_numeric(df_new['Yield (hg/ha)'], errors ='coerce')

```
In [81]: Y.isnull().sum()
```

Out[81]: 0

In [63]: X=pd.concat([encoder_cols,scaled_cols],axis=1)

```
In [64]: X
```

_			
/ \ \ .		I <i>C</i> /	
VИ	11	I D4 I	1
~	~ ~		٠.

	Crop Name_Maize	Crop Name_Plantains and others	Crop Name_Potatoes	Crop Name_Rice, paddy	Crop Name_Sorghum	Name_Soyl
0	1.0	0.0	0.0	0.0	0.0	
1	0.0	0.0	1.0	0.0	0.0	
2	0.0	0.0	0.0	1.0	0.0	
3	0.0	0.0	0.0	0.0	1.0	
4	0.0	0.0	0.0	0.0	0.0	
26909	0.0	0.0	0.0	1.0	0.0	
26910	0.0	0.0	0.0	0.0	1.0	
26911	0.0	0.0	0.0	0.0	0.0	
26912	0.0	0.0	0.0	0.0	0.0	

```
In [82]:
Out[82]: 0
                   36613.0
         1
                   36613.0
         2
                   36613.0
         3
                   12500.0
                    7000.0
         28237
                  165714.0
         28238
                  165714.0
         28239
                   13142.0
         28240
                   22222.0
         28241
                   22888.0
         Name: Yield (hg/ha), Length: 26914, dtype: float64
In [83]: X_train,X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2,random_st
In [84]:
         model=LinearRegression()
         model.fit(X_train,Y_train)
         y_pred=model.predict(X_test)
In [85]: print(model.intercept_) #y-intercept of the model
         156851.2271362113
In [86]: print(model.coef_)
         [-121538.88647677 -42346.96499459
                                               13155.10385344 -113686.42327323
          -136539.98901586 -141092.94767476 -37676.58155463 -129555.73508792
                              8054.82380194 -11850.92087513
           -44732.47751622
                                                                -1870.24920727
             4421.3268142 ]
```

```
In [87]: | mae = mean_absolute_error(Y_test,y_pred)
         mse= mean_squared_error(Y_test, y_pred)
         rmse = np.sqrt(mse)
         r2 = r2_score(Y_test, y_pred)
         print('Mean Absolute Error',mae)
         print('Mean Squared Error',mse)
         print('Root Mean Absolute Error', rmse)
         print('R2 Score',r2)
         Mean Absolute Error 35547.97408069165
         Mean Squared Error 3206317258.1390595
         Root Mean Absolute Error 56624.35216529245
         R2 Score 0.5294891887453548
In [93]: \#adjusted\ r2=1-[(1-r2)*(n-1)/(n-k-1)]
         adjusted_r2=1-((1-0.52948)*(10169-1)/(10169-13-1))
         print('adjusted r2 is :',adjusted_r2)
         adjusted r2 is: 0.5288776602658789
In [89]: y_mean=np.mean(Y_test)
         SSR = np.sum((y_pred - y_mean) ** 2)
Out[89]: 20685991271390.867
In [90]: SST = np.sum((Y_test - y_mean) ** 2)
Out[90]: 36682697586775.5
In [91]: | SSE=SST-SSR
         SSE
Out[91]: 15996706315384.633
```

In [92]: b=pd.DataFrame({"Actual":Y_test,"Predicted":y_pred})
b

Out[92]:

	Actual	Predicted
16402	323558.0	176208.541345
12133	175712.0	159766.670615
8677	97147.0	161492.604764
18737	5856.0	-2383.350356
3713	19488.0	33362.476789
25276	70170.0	2861.511256
5155	57576.0	105.566153
12927	88588.0	111160.234690
17013	27612.0	46429.186531
10169	13185.0	10792.463800

5383 rows × 2 columns

```
In [95]: sns.scatterplot(x=Y_test,y=y_pred)
    plt.xlabel('Actual Yield (hg/ha)')
    plt.ylabel('Predicted Yield (hg/ha)')
    plt.title('Actual Yield (hg/ha) v/s Predicted Yield (hg/ha)')
    plt.show()
```


import some libraries cross val score, GridSearchCV, Ridge, Lasso

```
In [97]: from sklearn.model_selection import cross_val_score,GridSearchCV
    from sklearn.linear_model import Ridge,Lasso

In [98]: lr_model=LinearRegression()
    lr_scores=cross_val_score(lr_model,X_train,Y_train,cv=5)

In [99]: lasso_model=Lasso(alpha=1.0)
    lassso_scores=cross_val_score(lasso_model,X_train,Y_train,cv=5)

In [100]: ridge_model=Ridge(alpha=1.0)
    ridge_scores=cross_val_score(ridge_model,X_train,Y_train,cv=5)
```

```
In [102]: print('Linear mae',lr_mae)
    print('Linear mse',lr_mse)
    print('Linear rmse',lr_rmse)
    print('Linear r2',lr_r2)
```

```
Linear mae 35547.97408069165
Linear mse 3206317258.1390595
Linear rmse 56624.35216529245
Linear r2 0.5294891887453548
```

L1(Lasso)

```
In [103]: lasso_model.fit(X_train,Y_train)
    lasso_prediction =lasso_model.predict(X_test)
    lasso_mae =mean_absolute_error(Y_test,lasso_prediction)
    lasso_mse =mean_squared_error(Y_test,lasso_prediction)
    lasso_rmse = np.sqrt(lasso_mse)
    lasso_r2 = r2_score(Y_test,lr_prediction)
```

```
In [104]: print("LASSO MAE=",lasso_mae)
    print("LASSO MSE=",lasso_mse)
    print("LASSO R2=",lasso_r2)
```

```
LASSO MAE= 35546.35588145759
LASSO MSE= 3206405016.1985655
LASSO R2= 0.5294891887453548
```

L2 (Ridge)

```
In [105]: ridge_model.fit(X_train,Y_train)
    ridge_prediction = ridge_model.predict(X_test)
    ridge_mae = mean_absolute_error(Y_test,ridge_prediction)
    ridge_mse = mean_squared_error(Y_test,ridge_prediction)
    ridge_rmse = np.sqrt(ridge_mse)
    ridge_r2 = r2_score(Y_test,ridge_prediction)
```

```
In [106]:
          print('ridge mae', ridge_mae)
          print('ridge mse',ridge_mse)
          print('ridge rmse', ridge_rmse)
          print('ridge r2',ridge_r2)
          ridge mae 35538.53022624312
          ridge mse 3206764831.5847526
          ridge rmse 56628.3041560027
          ridge r2 0.5294235096100495
In [107]: plt.scatter(Y_test,lr_prediction,alpha=1.0,label='Linear Regression')
          plt.scatter(Y_test,lasso_prediction,alpha=1.0,label='Lasso Regression')
          plt.scatter(Y_test,ridge_prediction,alpha=1.0,label='Ridge Regression')
          plt.xlabel('actual')
          plt.ylabel('predict')
          plt.title('Overview')
          plt.legend()
```

Out[107]: <matplotlib.legend.Legend at 0x209b860c5d0>

Robust Techniques

Huber Regression

```
In [108]: # MM estimator:huberregression
    from sklearn.linear_model import HuberRegressor
    X_scaled = scaler.fit_transform(X_test)
    huber = HuberRegressor(epsilon=1.35)
    huber.fit(X_scaled, Y_test)
    huber_prediction = huber.predict(X_scaled)
    huber_mae = mean_absolute_error(Y_test,huber_prediction)
    huber_mse = mean_squared_error(Y_test,huber_prediction)
    huber_rmse = np.sqrt(huber_mse)
    huber_r2 = r2_score(Y_test,huber_prediction)
    print('huber_mae:',huber_mae)
    print('huber_mse:',huber_mse)
    print('huber_rse:',huber_rmse)
    print('huber_rse:',huber_rmse)
    print('huber_rse:',huber_rrse)
```

huber mae: 33451.99171642028 huber mse: 3346774072.1736135 huber rmse: 57851.310029882756 huber r2: 0.5088778629790464

RANSAC regression

```
In [109]:
          # MM estimate: RANSAC regression
          from sklearn.linear model import RANSACRegressor
          from sklearn.datasets import make_regression
          ransac = RANSACRegressor()
          mm= ransac.fit(X test, Y test)
          mm_estimate_coeff = ransac.estimator_.coef_
          mm_estimate_intercept = ransac.estimator_.intercept_
          mm_prediction = ransac.predict(X_test)
          print("MM Estimate Coefficients:", mm_estimate_coeff)
          print("MM Estimate Intercept:", mm_estimate_intercept)
          mm mae =mean absolute error(Y test,mm prediction)
          mm_mse =mean_squared_error(Y_test,mm_prediction)
          mm_rmse = np.sqrt(mm_mse)
          mm_r2 = r2_score(Y_test,huber_prediction)
          print('mm mae:',mm_mae)
          print('mm mse:',mm_mse)
          print('mm rmse:',mm_rmse)
          print('mm r2:',mm_r2)
          MM Estimate Coefficients: [-9.97334772e+04 -6.55673669e+03 6.29931872e+03 -
           -1.11540580e+05 -1.10192131e+05 1.18199138e+05 -1.03320208e+05
           -9.72602008e+01 1.14568157e+03 -2.66245230e+03 -1.36837117e+03
            2.83075773e+03]
          MM Estimate Intercept: 125463.67892256746
          mm mae: 43403.221712379804
          mm mse: 5231053852.033473
          mm rmse: 72326.0247216275
          mm r2: 0.5088778629790464
```

ITS estimate

```
In [110]: # Lts estimate
          from sklearn.linear_model import RANSACRegressor
          ransac = RANSACRegressor()
          ransac.fit(X_test, Y_test)
          lts_estimate_coeff = ransac.estimator_.coef_
          lts_estimate_intercept = ransac.estimator_.intercept_
          print("LTS Estimate Coefficients:", lts_estimate_coeff)
          print("LTS Estimate Intercept:", lts_estimate_intercept)
          lts_prediction = ransac.predict(X_test)
          lts_mae =mean_absolute_error(Y_test,lts_prediction)
          lts_mse =mean_squared_error(Y_test,lts_prediction)
          lts_rmse = np.sqrt(lts_mse)
          lts r2 = r2 score(Y test, huber prediction)
          print('lts mae:',lts_mae)
          print('lts mse:',lts_mse)
          print('lts rmse:',lts_rmse)
          print('lts r2:',lts_r2)
          LTS Estimate Coefficients: [-17289.44040168 4620.84160864 -18293.88393828
          -6283.85399667
           -26229.75251551 -24974.10657743 47670.97992475 -13454.68735647
            39921.20926608
                              531.24113705 -1189.69880663
                                                              2622.32053759
             2381.95719322]
          LTS Estimate Intercept: 39535.4441124448
          lts mae: 49299.86008848798
          lts mse: 8156187058.658424
          lts rmse: 90311.61087400903
          lts r2: 0.5088778629790464
```

theil sen regressor

```
In [111]: # theil sen regressor
          from sklearn.linear model import TheilSenRegressor
          # Create a Theil-Sen estimator model
          theil sen = TheilSenRegressor()
          # Fit the model to the data
          theil_sen.fit(X_test, Y_test)
          # Get the Theil-Sen estimate of the coefficients
          theil_sen_estimate_intercept = theil_sen.intercept_
          theil_sen_estimate_coefficient = theil_sen.coef_[0]
          print("Theil-Sen Estimate Intercept:", theil_sen_estimate_intercept)
          print("Theil-Sen Estimate Coefficient:", theil_sen_estimate_coefficient)
          ts_prediction = theil_sen.predict(X_test)
          ts_mae =mean_absolute_error(Y_test,ts_prediction)
          ts_mse =mean_squared_error(Y_test,ts_prediction)
          ts_rmse = np.sqrt(ts_mse)
          ts r2 = r2 score(Y test,ts prediction)
          print('ts mae:',ts_mae)
          print('ts mse:',ts_mse)
          print('ts rmse:',ts_rmse)
          print('ts r2:',ts_r2)
          Theil-Sen Estimate Intercept: 97994.38002196976
```

Theil-Sen Estimate Coefficient: -52795.71671417082

ts mae: 39738.459992126 ts mse: 3735502536.107464 ts rmse: 61118.75764532083 ts r2: 0.45183393057996646

One Hot Encoding

```
In [132]: crop.shape
Out[132]: (27339, 7)
In [133]: | from sklearn.preprocessing import OneHotEncoder
          df_onehot = pd.get_dummies(crop, columns=['Area', 'Crop Name'], prefix=['Area']
          crop = df_onehot.loc[:, df_onehot.columns != 'Yield (hg/ha)']
          crop['Yield (hg/ha)'] = df_onehot['Yield (hg/ha)']
In [134]: crop.shape
Out[134]: (27339, 116)
```