UT Austin CSE 386D

Homework 4

Jonathan Zhang EID: jdz357

Problem 7.1:

Prove that for $f \in H^1(\mathbb{R}^d)$, $||f||_{H^1(\mathbb{R}^d)}$ is equivalent to

$$\left[\int_{\mathbb{R}^d} \left(1 + |\xi|^2\right) |\hat{f}(\xi)|^2 d\xi\right]^{1/2}$$

Generalize to $H^k(\mathbb{R}^d)$?

Solution

Problem 7.2:

Prove that if $f \in H_0^1(0,1)$, then there exists C > 0 such that $||f||_{L^2(0,1)} \le C||f'||_{L^2(0,1)}$. If instead $f \in \left\{g \in H^1(0,1): \int_0^1 g(x) dx = 0\right\}$, provide a similar estimate.

Proof: Go by contradiction. Suppose to the contrary that there exists an $f \in H_0^1(0,1)$ such that for every C > 0, we have

$$||f||_{L^2} > C||f'||_{L^2}.$$

In particular, we could choose C = n for $n \in \mathbb{N}$.

Problem 7.3:

Prove that $\delta_0 \notin (H^1(\mathbb{R}^d))^*$ for $d \geq 2$, but that $\delta_0 \in (H^1(\mathbb{R}))^*$. You will need to define that δ_0 applied to $f \in H^1(\mathbb{R})$ means.

Problem 7.4:

Prove that $H^1(0,1)$ is continuously embedded in $C_B(0,1)$, the set of bounded and continuous functions on (0,1).

Oden Institute 1