## ML Week

Introduction

Jeff Abrahamson

23-25 novembre 2016

# **About Machine Learning**

## The literature is overwhelmingly in English

#### **Disclaimer: Time is short**

#### **Definition**

## **Supervised**

## **Unsupervised**

#### Reinforcement

## **Curse of Dimensionality**

## **Machine learning is not magic**

## **Machine learning is mathematics**

#### Mostly, it's these maths:

- Probability
- Statistics
- Linear algebra
- Optimisation theory
- Differential calculus

# **Probability**

# Addition rule: independent events

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

# Addition rule: dependent events

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

# Multiplication rule: independent events

$$Pr(A \cap B) = Pr(A) Pr(B)$$

# Multiplication rule: dependent events

$$Pr(A \cap B) = Pr(A \mid B) Pr(B)$$

# Conditional probability

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$$

# Conditional probability

$$\cup_i A_i = A \quad \land \quad A_i \cap A_j = \emptyset \implies$$

$$P(A_1 \mid B) = \frac{\Pr(B \mid A_1) \Pr(A_1)}{\sum_{i} \Pr(B \mid A_1) \Pr(A_1) + \dots + \Pr(B \mid A_k) \Pr(A_k)}$$

# **Statistics**

#### What is Statistics

- 1 Identify a question or problem.
- 2 Collect relevant data on the topic.
- 3 Analyze the data.
- 4 Form a conclusion.

#### What is Statistics

- 1 Identify a question or problem.
- 2 Collect relevant data on the topic.
- 3 Analyze the data.
- 4 Form a conclusion.

Sadly, sometimes people forget 1.

#### What is Statistics

- 1 Identify a question or problem.
- 2 Collect relevant data on the topic.
- 3 Analyze the data.
- 4 Form a conclusion.

Statistics is about making 2-4 efficient, rigorous, and meaningful.

OpenIntro Statistics, 2nd edition, D. Diez, C. Barr, M. Çetinkaya-Rundel, 2013.

(Exercise: Is this the same question as the last slide?)

- Define the question of interest
- 2 Get the data
- 3 Clean the data
- 4 Explore the data
- 6 Fit statistical models
- 6 Communicate the results
- Make your analysis reproducible

(Exercise: Is this the same question as the last slide?)

- Define the question of interest
- 2 Get the data
- 3 Clean the data
- 4 Explore the data
- 6 Fit statistical models
- 6 Communicate the results
- Make your analysis reproducible

What the public thinks.

(Exercise: Is this the same question as the last slide?)

- Define the question of interest
- 2 Get the data
- 3 Clean the data
- 4 Explore the data
- 6 Fit statistical models
- 6 Communicate the results
- Make your analysis reproducible

Where we spend most of our time.

(Exercise: Is this the same question as the last slide?)

- Define the question of interest
- 2 Get the data
- 3 Clean the data
- 4 Explore the data
- 5 Fit statistical models
- 6 Communicate the results
- Make your analysis reproducible

The easiest part to forget.



#### Anecdote

#### Some properties of anecdote:

- is data
- haphazardly collected
- is generally not representative
- sometimes result of selective retention
- does not accumulate to be representative
- might be true (by chance)
- is ok to use as hypothesis, but be clear that hypothesis is anecdote

# Study Types

- Observational
- Experimental

# Study Types

- Observational
- Experimental

#### What can go wrong?

- Forgetting that association ≠ causation
- Not random
- Confounding variables

# Variable types





High bias, low variance



Low bias, high variance



High bias, high variance



Low bias, low variance

### Mean

- Weighted and unweighted
- Centroid to physicists

#### Mean

- · Weighted and unweighted
- Centroid to physicists



- Weighted and unweighted
- Centroid to physicists



$$\mu = E(X) = \sum w_i x_i = \mathbf{w} \cdot \mathbf{x}$$

- Weighted and unweighted
- Centroid to physicists



$$\mu = E(X) = \sum \Pr(X = x_i)x_i$$

- · Weighted and unweighted
- Centroid to physicists

$$\mu = E(X) = \int x f(x) \, \mathrm{d}x$$

http://telescopes.stardate.org/images/research/teeter-totter/TT4.gif

- Weighted and unweighted
- Centroid to physicists



- Weighted and unweighted
- Centroid to physicists



**Deviation** is distance from mean.

Variance is mean square of deviations

Standard deviation is square root of variance

$$s^2 = \frac{(\overline{x} - x_1)^2 + \cdots (\overline{x} - x_n)^2}{n-1}$$

$$\sigma^2 = \frac{(\overline{X} - X_1)^2 + \cdots (\overline{X} - X_n)^2}{n}$$

$$Var(X) = \sigma^2 = (\overline{X} - X_1)^2 \Pr(X = X_1) + \cdots + (\overline{X} - X_n)^2 \Pr(X = X_n)$$

Given a distribution X, the

**probability distribution function (pdf)** (continuous) or **probability mass function (pmf)** is the probability that the variate has value *x*:

$$Pr(a \leqslant X \leqslant b)$$
or
 $Pr(X = a)$ 

Given a distribution X, the

**cumulative probability function (cdf)** is the probability that the variate is less than *x*:

$$\Pr(X \le x) = \int_{-\infty}^{x} pdf(x) dx \text{ or } \sum_{i \le x} \Pr(X = x)$$

Given a distribution X, the

**percent point function (ppf)** is the inverse of the cdf. Given a probability, what's x? Also called the **inverse distribution**.

Given a distribution X, the

**survival function (sf)** is the probability that the variate takes a value greater than *x*:

$$ss(x) = Pr(X > x) = 1 - cdf(x)$$

Given a distribution X, the

**inverse survival function (isf)** is the inverse of the survival function:

$$\mathsf{isf}(\alpha) = \mathsf{ppf}(\mathsf{1} - \alpha)$$



# **Evaluating Normal Approximations**

Easy technique 1: visually compare to normal plot.



# **Evaluating Normal Approximations**

Easy technique 2: normal probability plot.



Also known as a quantile-quantile plot.

 $\overline{\mathbf{X}} \neq \mu$ 

Running mean. Sequence of partial sums (divided by number in sum).

**Running mean.** Sequence of partial sums (divided by number in sum).



**Running mean.** Sequence of partial sums (divided by number in sum).

**Sampling variation.** Change of  $\overline{x}$  from one sample to the next.

**Running mean.** Sequence of partial sums (divided by number in sum).

**Sampling variation.** Change of  $\overline{x}$  from one sample to the next.

**Sampling distribution.** The distribution of possible point samples of a fixed size from a given population.

# Sampling distribution



#### Confidence intervals

Sample n points, choose an interval around the sample mean.

A 95% confidence interval means if we sample repeatedly, about 95% of the samples will contain the population mean.

#### Confidence intervals

Sample n points, choose an interval around the sample mean.

A 95% confidence interval means if we sample repeatedly, about 95% of the samples will contain the population mean.



#### Confidence intervals

Sample n points, choose an interval around the sample mean.

A 95% confidence interval means if we sample repeatedly, about 95% of the samples will contain the population mean.



# **Linear Algebra**

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$
$$= \begin{cases} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{cases} \in \mathbb{R}^{n \times n}$$

$$u+v=\begin{pmatrix} u_1+v_1\\u_2+v_2\\\vdots\\u_n+v_n\end{pmatrix}$$

$$\alpha \mathbf{V} = \begin{pmatrix} \alpha \mathbf{V}_1 \\ \alpha \mathbf{V}_2 \\ \vdots \\ \alpha \mathbf{V}_n \end{pmatrix} \qquad (\alpha \in \mathbb{R})$$

$$\parallel v \parallel = \sqrt{v_1^2 + \cdots + v_n^2}$$

$$u \cdot v = u_1 \cdot v_1 + \dots + u_n \cdot v_n$$
  
=  $\| u \| \| v \| \cos \theta$ 

$$C = A + B \iff c_{ij} = a_{ij} + b_{ij}$$
  $C = AB \iff c_{ij} = \sum_{k} a_{ik} b_{kj}$   $A = B^T \iff a_{ij} = b_{ji}$ 

 $AA^{-1} = A^{-1}A = \text{diag}(1)$ 

$$Ax = y$$
  $f = T_A : \mathbb{R}^n \to \mathbb{R}^n$ 

$$x = A^{-1}Ax = A^{-1}y$$
  $f^{-1} = T_{A^{-1}} : \mathbb{R}^n \to \mathbb{R}^n$ 

*B* is a basis for *V* iff any of these conditions are met:

- B is a minimal generating set of V
- B is a maximal set of linearly independent vectors
- Every vector  $v \in V$  can be expressed in a unique way as a sum of  $b_i \in B$

(The conditions are equivalent.)

*B* is a basis for *V* iff any of these conditions are met:

- B is a minimal generating set of V
- B is a maximal set of linearly independent vectors
- Every vector  $v \in V$  can be expressed in a unique way as a sum of  $b_i \in B$

(The conditions are equivalent.)

Bases are not unique.

Eigenvectors, eigenvalues:

$$Av = \lambda v$$

Eigenvectors, eigenvalues:

$$Av = \lambda v$$

$$Av = \lambda 1v \iff (A - \lambda 1)v = 0$$

Eigenvectors, eigenvalues:

$$Av = \lambda v$$

Some matrices are diagonalisable. Then

$$A = Q \wedge Q^{-1}$$
 with  $\Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$ 

and 
$$Q = \begin{bmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{bmatrix}$$

## Questions?

ml-week.com/1