Xilinx Zynq FPGA, TI DSP, MCU 기반의 회로 설계 및 임베디드 전문가 과정

강사 – Innova Lee(이상훈) gcccompil3r@gmail.com

CAN Communication with TMS570 and PC

www.ti.com CAN Bit Timing

27.3 CAN Bit Timing

The DCAN supports bit rates between less than 1 kBit/s and 1000 kBit/s.

Each member of the CAN network has its own clock generator, typically derived from a crystal oscillator. The Bit timing parameters can be configured individually for each CAN node, creating a common Bit rate even though the CAN nodes' oscillator periods (fosc) may be different.

27.3.1 Bit Time and Bit Rate

According to the CAN specification, the Bit time is divided into four segments (see Figure 27-2):

- Synchronization Segment (Sync_Seg)
- Propagation Time Segment (Prop_Seg)
- Phase Buffer Segment 1 (Phase_Seg1)
- Phase Buffer Segment 2 (Phase_Seg2)

Sync_ Prop_Seg Phase_Seg1 Phase_Seg2

Seg 1 time quantum

(tq) Sample point

Figure 27-2. Bit Timing


```
☐ Getting Started
                     window.cpp
                                                      @ window.h
                                       c main.cpp
                                                                      c main.cpp
                                                                                     🚨 mai
  1 #include "HL sys common.h"
  2 #include "HL system.h"
  3 #include "HL can.h"
  4 #include "HL esm.h"
  5 #include "HL sys core.h"
  7 #include "stdio.h"
 9 #define D COUNT
                         8
 10 #define D SIZE
                         8
 11
 12 uint32 cnt = 0;
13 \text{ uint} 32 \text{ error} = 0;
 14 \text{ uint} 32 \text{ tx done} = 0;
 15
 16 uint8_t tx_data[D_COUNT] = {1, 2, 3, 4, 4, 3, 2, 1};
17 uint8 t rx data[D COUNT] = {0};
 18
19 uint32_t checkPackets(uint8_t *src_packet, uint8_t *dst_packet, uint32_t psize);
 21 void delay(int time)
 22 {
 23
       int i;
 24
 25
        for(i = 0; i < time; i++)
 26
 27 }
 28
```

```
29 int main(void)
 30 {
       enable IRQ interrupt ();
 31
       canInit();
 32
 33
       printf("start\n");
 34
       canEnableErrorNotification(canREG1);
 35
 36
       while(1)
 37
 38
           delay(10000000);
 39
           canTransmit(canREG1, canMESSAGE BOX1, (const uint8 *)&tx data[0]);
 40
 41
       }
 42
43
       return 0;
 44 }
 45
 46 void canMessageNotification(canBASE t *node, uint32 t messageBox)
 47 {
       if(node == canREG1)
 48
 49
           while(!canIsRxMessageArrived(canREG1, canMESSAGE_BOX2))
 50
 51
           canGetData(canREG1, canMESSAGE_BOX2, (uint8 *)&rx_data[0]);
 52
 53
           printf("rx data : %x\n", *rx data);
 54
       }
 55 }
 56
```

프로그램은 아래 링크에서 다운 받도록 한다.

http://www.devicemart.co.kr/1323537

Receive CAN Mess	sage				
Transmit Message					Cle
ID(Hexa)	1	V Ext	RTR	Data(Hexa) 23	
ID(Hexa)			RTR		Sen
ID(Hexa)				Data(Hexa)	Send
					Send

```
Configuring CANI MBI, Msg ID-1 to transmi
       canInit();
30
 31
 32
       printf("start\n");
       /** - enabling error interrupts */
 33
        canEnableErrorNotification(canREG1);
 34
 35
        canTransmit(canREG1, canMESSAGE_BOX1, (const ui
       //canGetData(canREG1, canMESSAGE BOX2, rx data)
Console 28
                                                The fall of
can CIO
[CortexR5] start
rx data : 2
rx_data : 23
```

