

Bayesian Time Series Regression Using MCMC To Predict The Financial Crisis of 2008

By: Michael Gleyzer, Harishkarthik Pillai, & Mathew Witek

Main Objective

- To see whether Bayesian Methods could have been used to successfully predict the financial crisis of 2008 by looking at delinquency rates on loans
- Specific Bayesian Method Used: Bayesian Structural Time Series (BSTS)

Great Recession

- When the housing bubble burst, the delinquency rates jumped dramatically.
- Delinquency rates especially skyrocketed for home mortgages.
- Main Reasons for the crash :
 - Very complex risky securities such as MBS(mortgage backed securities) were composed of very high risk mortgages.
 - Major financial institutions(the banks) were way overleveraged.
 - Federal Reserve policy wasn't ideal. Perhaps interest rates should have been raised during the housing boom to prevent overheating of the economy.

Bayesian Structural Time Series (BSTS)

- The BSTS model is designed to work with time series data, which is data that is recorded in time order as a new entry.
- Bayesian Structural Time Series is a technique used for time series forecasting, along with feature selection amongst its other uses.

Our Approach

- To see if predicting the future with the use of data without Bayesian Statistics would lead to extrapolation.
- With the use of BSTS, time series forecasting, and feature selection, we are able to take the fit of historical data (2000-2007) on the selected "Total Loans & Leases", and predict the future outcome (2008) without the worry of extrapolation.

Process

- 1. Took quarterly delinquency rate data from 2000-2007 on all loans and fitted a Bayesian structural time series model for trend and seasonal components
- 2. Predicted data for the next 8 quarters(2 years) with a 95% credible interval
- 3. Graphed the actual data from the recession to compare the prediction accuracy of the forecast
- 4. Repeated steps 1-3 again but only used residential loan data this time around

Tools & DataSets

- Used BSTS package in R for modeling data
- Delinquency rates on loans and leases seemed to be a fitting dataset:
 - Federal Reserve
 - Broke years into quarters
 - Separated loans into residential, commercial and farmland loans
- <u>Federal Reserve data</u>

Bayesian Stats in-depth

- The method can be split up into three stages
 - Kalman Filter can add different state variables to the analysis including trend and seasonality
 - Spike and Slab- variable selection
 - o Bayesian Model Averaging- Collect and predict
- In our cases we do the 1st and last stage as there aren't much predictors to select beside one(the time series data)
- The Bayesian Structural Time Series Method primarily depends on the Markov Chain Monte Carlo Method to sample from the posterior

Bayes' Theorem

Given data y and parameters θ , the joint probability is:

$$p(y,\theta) = p(\theta | y)p(y) = p(y | \theta)p(\theta)$$

Eliminating $p(y,\theta)$ gives Bayes' rule:

Fitted Bayesian Models before Recession All Loans V. Residential

ALL LOANS RESIDENTIAL

Predicted vs Observed vs Forecast All Loans V. Residential

ALL LOANS

Predicted Values vs Observed values vs Forecast for All Loans Delinquency rate Actual Fitted Forecast 0 Quarter Starting from 2000: Q1

RESIDENTIAL

Fitted Bayesian Models after Recession All Loans V. Residential

ALL LOANS

RESIDENTIAL LOANS

Analysis

- The relatively low standard deviation and high R-Squared value meaning the fitted model
 - o Is good
 - Has predicted well
- Overall, it seemed as though the BSTS was a good fit
- However, the model predicts a decrease in loan delinquency rates when in reality the recession experienced a large spike in delinquency rates

All	Residential Residential
\$residual.sd	\$residual.sd
[1] 0.0234888	[1] 0.03538668
Sprediction.sd	\$prediction.sd
[1] 0.1193062	[1] 0.1555824
\$rsquare	\$rsquare
[1] 0.9971038	[1] 0.9913592
\$relative.gof	\$relative.gof
[1] -0.004642704	[1] -0.2889068

It's up to you!!!