RECEIVED CENTRAL FAX CENTER MAR 2 3 2009

AMENDMENTS TO THE SPECIFICATION

As required by the Examiner, at page 2 of the Office Action, on page 17, after line 26 and before "Specific Embodiments", please delete the following paragraphs purporting to relate to "Example A" and "Table A," which were proffered as amendments in the previous response.

Example A

An electrolysis cell of the general design shown in FIG. I was used to convert an aqueous solution comprising sodium chlorite into an effluent solution comprising chlorine dioxide. The electrolysis cell had a pair of confronting electrodes having a passage gap of about 0.19mm. The anode was made of ES300 titanium, coated with ruthenium exide and iridium exide. The eathede was made of 201 stainless steel. The dimensions of the planar electrodes were 75.2 mm long by 25.4 mm wide.

The aqueous feed solution was prepared by mixing 10 liters of de ionized water with 62.6 gms technical grade sodium chlorite stock (80% active, Aldrich Chemical Company, Inc., Milwaukee, Wis. 53233; Cat No. 24415-5) with a stirring bar until dissolved, forming a 5000 ppm sodium chlorite salt solution. The aqueous feed solution was retained in a 15-liter glass container placed within a light proof box and cooled to 5-degrees Celsius. A peristaltic pump metered the aqueous feed solution from the glass container through the electrolysis cell at a flow rate of 300 ml/minute. A direct current of 5.72 amps was applied across the electroles by a DC power supply to provide a voltage potential of 4.5 volts across the electrolysis cell. The effluent solution was withdrawn from the electrolysis cell and analyzed. The effluent contained 109 ppm chlorine dioxide and 4871 ppm of un reacted sodium chlorite, for a chlorite conversion of 2.9%.

The electrolysis cell of Example A was operated using an aqueous feed solution of either 100 or 500 ppm of sedium chlorite, made from de ionized water. The electrolysis cell has a pair of confronting electrodes having a chamber gap of about 0.3 mm. The resulting chlorine dioxide concentration in the effluent stream is show in Table A.

TABLE A

Flow rate	Sodium-	Anode Area	Watts	Chlorine
	<u>Chlorite</u>			Dioxide
100 ml/min	500 ppm	3 cm²	0.11	0.77 ppm
l 00 ml/min	500 ppm	4.5 om ²	0.32	1.79ppm
100 ml/min	500 ppm	9-cm 3	0.54	2.58-ppm
l 00 ml/min	500 թթm	18 cm²	1.04	4 .81 ppm
100 ml/min	500 ppm	3 om²	0.11	0.57 ppm
4 00ml/min	500 ppm	4 .5 cm 3	0.29	0.72 ppm
100 ml/min	500 ppm	9 cm²	0.50	1.02 ppm
100 ml/min	500 ppm	18 cm²	1.01	1.81 ppm
1 00 ml/min	100 ppm	3 cm ²	0.04	0.14 ppm
l 00 ml/min	100 ppm	4.5 cm ²	0.11	0.32-ррт
l 00 ml/min	100 ppm	9-em²	0.22	0.41 ppm
l 00 ml/min	100 ppm	18 cm ²	0.43	0.74-ppm
100 ml/min	100 ppm	3-cm²	0.04	0.09 ppm
4 00ml/min	100 ppm	4.5 cm ³	0.07	0.12 ppm
1 00 ml/min	100 ррт	9 cm³	0.14	0.19-ppm
l00-ml/min	100 ppm	18 cm ²	0.36	0.30 ppm
	•	,	-	