

African Masters Of Machine Intelligence AMMI

Explaining and harnessing adversarial examples

autors: Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy

Presented by

ENGELBERT TCHINDE

ewamba@aimsammi.org

Supervised by Tutors

August 27, 2021

Overview

- 1. Motivation
- 2. Adversarial example
- 3. Adversarial example for linear model
- 4. Linear perturbation for non-linear model

Motivation Adversarial example Adversarial example for linear model Linear pe

Motivation

- Models are not learning the true underlying properties of the data.
- The cause of adversarial examples is a mystery.
 - Extreme nonlinearity of deep neural networks
 - Insufficient model averaging
 - Insufficient regularization

Adversarial example

Adversarial example for linear model

- In many problems, the precision of an individual input feature is limited.
- Consider a linear model that take an input image x.
- Image: 8 bits for pixel value. 256 pixel values (0-255).
- Perturbation η of each pixel of the image **x**.
 - \bullet $\tilde{\mathbf{X}} = \mathbf{X} + \eta$,
 - $\bullet \ ||\eta||_{\infty} < \epsilon.$
- Why minimization?
 - If we did not minimize η , we could just get a feature vector **x**.
 - We want to keep the semantic (meaning) of the initial picture by applying so many noise.
- By considering the dot product between a weight vector w and an adversarial example $\tilde{\mathbf{x}}$,

$$\mathbf{w}^T \tilde{\mathbf{x}} = \mathbf{w}^T \mathbf{x} + \mathbf{w}^T \eta.$$

Presented by

Adversarial example for linear model

- Why we control $\mathbf{w}^T \eta$?
 - The adversarial perturbation causes the activation to grow by $\mathbf{w}^T \eta$.
- We define the perturbation to be the sign of the weight vector w. Why?
- We are trying to maximize this dot product $\mathbf{w}^T \eta$ s.t. $||\eta||_{\infty} < \epsilon$
- The activation will grow by ϵmn ,
 - $n = dim \mathbf{w}$
 - m = average magnitude of an element of w.
- A simple linear model can have adversarial examples if its input has sufficient dimensionality.

 \boldsymbol{x}

• Select a random real world image x: panda.

- Run the input image **x** into a ConvNet and get a correct classifier as a **panda**.
- Select a random output neuron in the output layer that is different from the true neuron that classifies panda.

- We apply **GD** to the input pixels of our **panda** in order to minimize the classification loss with respect to the newly neuron chosen class neuron.
- Instead of adjusting the network weights in order to optimize our classifier, we ajust the input pixels until they fool the network to make a wrong prediction.

• The final trick is to make sure that our generated image looks as close as possible to the original one such that we can't see the difference.

- We can generate the perturbation η using a Fast Gradient Sign Methode (FGSM),
 - $\eta = \epsilon * sign(\nabla_x J(\theta, \mathbf{x}, y)),$
 - θ the parameter, **x** input vector, y target associated to **x**, J cost function.

x
"panda"
57.7% confidence

 $sign(\nabla_{x}J(\theta, x, y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Experiments

From paper:

epsilon	Error rate	Confidence	Activation	Dataset
0.25	99.9%	79.3%	Softmax	MNIST
0.25	89.4%	97.6%	Maxout	MNIST
0.10	87.15%	96.6%	Maxout	CIFAR-10

Our experiments:

epsilon	Error rate	Confidence	Activation	Dataset
0.25	67.33%	0.29%	LogSoftmax	MNIST
0.1 0	15.36%	0.39%	LogSoftmax	MNIST

epsilon	Error rate	Confidence	Activation	Dataset
0.25	63.79%	99.78%	Softmax	MNIST
0.1 0	14.07%	99.64%	Softmax	MNIST

Motivation Adversarial example Adversarial example for linear model Linear pe

End

THANK YOU!