Les Generalités Sur Les Fonctions

Mohammed Amine Chennoufi

12 – 11 – 2022

Contents

Ι	Definitions	2
	I.1 Definition de la fonction numérique	2
	I.2 Definiton de domaine de definition	2
Π	Domaines de definitions de fonctions usuelles	2
II	ILes tableaus de variations des fonctions usuelles:	3
	III.1 Tableau de variations de fonction polynome de degrée 2:	3
	III.2 Tableau de variations d'une fonction homographique:	3
	III.3 Tableau de variations d'une fonction $x \to \sqrt{x+a}$	
IV	Les courbes de fonctions usuelles	4
	IV.1 La courbe du fonction polynome de degrée 2	4
	IV.2 La courbe du fonction homographique:	5
	IV.3 La courbe du fonction $x \to \sqrt{x+a}$	

I- Definitions

I.1- Definition de la fonction numérique

Définition

On dit que $f: \mathbb{R} \to \mathbb{R}$ est une fonction numerique si et seulement si $\forall x \in \mathbb{R}$ admet **au plus** une image dans \mathbb{R}

I.2- Definition de domaine de definition

Définition

L'ensemble des elements de \mathbb{R} qui ont des images par f sont appelés l'ensemble de definition de f et on le note D_f ou D et On a:

$$D_f = \{ x \in \mathbb{R} / f(x) \in \mathbb{R} \}$$

II- Domaines de definitions de fonctions usuelles

propriétés

On a des domaines de définition usuelles comme:

• $D_f = \mathbb{R}$ si la fonction est une fonction polynome écrit sous la forme:

$$f: x \to ax^2 + bx + c$$

• $D_f = \{x \in \mathbb{R}/x \neq 0\}$ si la fonction est une fonction quotient écrit sous la forme:

$$f: x \to \frac{ax+b}{x}$$

• $D_f = [-a; +\infty]$ si la fonction est une foction écrit sous la forme:

$$f: x \to \sqrt{x+a}$$

• $D_f = \mathbb{R} - \left\{ \frac{-d}{c} \right\}$ si la fonction est une fonction homographique écrit sous la forme:

2

$$f: x \to \frac{ax+b}{cx+d}$$

III- Les tableaus de variations des fonctions usuelles:

III.1- Tableau de variations de fonction polynome de degrée 2:

• Si $x \ge 0$:

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
$f(x) = ax^2 + bx + c$		$f(\frac{-b}{2a})$,

• Si $x \leq 0$:

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
$f(x) = ax^2 + bx + c$	/	$f(\frac{-b}{2a})$	

III.2- Tableau de variations d'une fonction homographique:

On a:

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

• si $\Delta \geq 0$:

x	$-\infty$	_	$+\infty$
$f(x) = \frac{ax+b}{cx+d}$			

• si $\Delta \leq 0$:

x	$-\infty$ $=$	$+\infty$
$f(x) = \frac{ax+b}{cx+d}$		

III.3- Tableau de variations d'une fonction $x \to \sqrt{x+a}$

x	$-\infty$ $+\infty$
$f(x) = \sqrt{x+a}$	0

IV- Les courbes de fonctions usuelles

IV.1- La courbe du fonction polynome de degrée 2

fonction IV.2- La courbe $d\mathbf{u}$ homographique: 20 15 10 5 -205 -15-1010 15 -520 -5-10-15-20

