FUNCIONES

Definición: Función

Una **función** f de un conjunto X en otro conjunto Y es una correspondencia que asigna a cada elemento $x \in X$ exactamente un elemento $y \in Y$

Diremos que, \mathbf{y} es la imagen de \mathbf{x} bajo f, denotado por $f(\mathbf{x})$, se lee "f de x"

Notación

$$f: X \to Y \\ x \longmapsto y$$

o

$$f: y = f(x)$$

Definición: Dominio

El **dominio** de f es el conjunto X denotado por dom f.

$$dom f = X$$

Definición: Rango

El **rango** (o recorrido) de f es el conjunto de todas las imágenes f(x) de los elementos $x \in X$.

rgo
$$f = \{y \in Y: y = f(x), x \in dom f\}$$

Definición: Funciones iguales

Dos funciones f y g son **iguales** si y solo si

1.
$$dom f = dom g$$

2.
$$\forall x \in \text{dom } f$$
, $f(x) = g(x)$

GRÁFICA DE UNA FUNCIÓN

La gráfica de una función f definida por la ecuación y = f(x) es el conjunto de todos los puntos del plano IR^2 de coordenadas (x, f(x)).

Observación

Puesto que por definición de función para cada valor de "x" del dominio de f, existe exactamente un valor de "y = f(x)", se sigue que:

"Toda recta vertical corta a la gráfica de una función a lo sumo en un punto".

Esta observación proporciona un criterio geométrico para funciones, llamado **Criterio de la Recta Vertical**.

Ejemplos Gráficos

Definición: Cero de una función

Un número real **a** es un **cero** de la función f si y solo si f(a) = 0, $a \in \text{dom } f$.

Intersecciones con los ejes coordenados

- Intersección con el eje vertical: es el punto (0, f(0)), si $0 \in domf$.
- Intersección con el eje horizontal: son los puntos de la forma (a, 0), con a cero de f.

Definición: Función par

Una función f es **par** si y solo si f(-x) = f(x) para todo x del dominio de f.

Simbólicamente: f es **par** $\Leftrightarrow \forall x \in \text{dom } f$, f(-x) = f(x)

Observación

De la definición surge que si $x \in dom f$ entonces $-x \in dom f$, o sea el dominio de una función par es simétrico respecto del origen.

Gráficamente

Una función f es par si y solo si su gráfica es simétrica respecto del eje vertical. Es decir si el punto P(x, y) pertenece a la gráfica de f, el punto Q(-x, y) también pertenece a la gráfica de f. Ésto significa que la porción de gráfica que está a la izquierda del eje vertical es imagen especular de la porción de gráfica que está a la derecha del eje vertical.

Facultad de Ciencias Exactas y Tecnología

Definición: Función impar

Una función f es **impar** si y solo si f(-x) = -f(x) para todo x del dominio de f.

Simbólicamente: f es **impar** $\Leftrightarrow \forall x \in \text{dom } f$, f(-x) = -f(x)

Observación

El dominio de una función impar también es simétrico respecto del origen.

Gráficamente

Una función f es impar si y solo si su gráfica es simétrica respecto del origen. Es decir si el punto P(x,y) pertenece a la gráfica de f, el punto Q(-x,-y) también pertenece a la gráfica de f. Esto significa que la gráfica queda inalterada por un giro de 180° en torno al origen.

Observación

Las funciones que tienen paridad poseen un dominio simétrico. Por lo tanto, si el dominio de una función no es simétrico, ésta no posee paridad.

Tipos Básicos de Transformaciones (c>0)

Gráfica Original	$\mathbf{y} = \mathbf{f}(\mathbf{x})$
------------------	---------------------------------------

Traslación vertical de c unidades hacia arriba
$$y = f(x) + c$$

Traslación vertical de c unidades hacia abajo
$$y = f(x) - c$$

Traslación horizontal de c unidades a la derecha
$$y = f(x - c)$$

Traslación horizontal de c unidades a la izquierda
$$y = f(x + c)$$

Reflexión (en el eje x)
$$y = -f(x)$$

Función Valor Absoluto

f:
$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

$$dom f = IR$$

$$rgo f = [0, \infty)$$

CLASIFICACIÓN DE FUNCIONES

Hay muchas clasificaciones de funciones. La que adoptaremos para nuestro curso es:

Facultad de Ciencias Exactas y Tecnología

Universidad Nacional de Tucumán

Definición: Funciones Algebraicas

Las **funciones algebraicas** son las que se expresan en términos de un número finito de sumas, diferencias, productos, cocientes y raíces conteniendo la expresión x^n , $n \in IN$.

Definición: Función Polinomial

La **función polinomial de grado n** es de la forma:

Se llaman así porque su regla de correspondencia es un polinomio. Es decir, la función polinómica está definida por un polinomio de grado n donde los números reales a_i con $i=0,1,2,\cdots$, n, se llaman coeficientes del polinomio.

Las características **generales** de las funciones polinómicas son las siguientes:

- a) El dominio es el conjunto de los números reales (IR).
- b) Intersectan al eje x, como máximo, un número de veces igual que el grado del polinomio.
- c) Intersectan el eje y en el punto (0, P(0)), es decir $(0, a_0)$.
- d) Su gráfica no presenta interrupciones.

CASOS PARTICULARES

Entre las funciones polinomiales se encuentran, por ejemplo: las funciones constantes, lineales, cuadráticas, cúbicas; cuyas principales características se describirán a continuación.

1- Función constante o función polinomial de grado nulo (grado 0)

f: f(x) = a (a es un número real fijo) dom f = IRLa gráfica de f es una recta horizontal.

$$rgo f = \{a\}$$

2- Función polinomial de primer grado (grado 1)

$$f: f(x) = ax+b$$
, $a \neq 0$ dom $f = IR$

La gráfica de f es una recta oblicua.

El coeficiente $\bf a$ es la **pendiente** de la recta de ecuación $\bf y=\bf a$ $\bf x+\bf b$, $\bf b$ es la **ordenada en el origen**.

3- Función cuadrática o función polinomial de segundo grado (grado 2)

$$f: f(x) = ax^2 + bx + c$$
, $a \ne 0$ dom $f = IR$

La gráfica de f es una parábola con eje vertical y cuyo vértice designaremos con el punto V(h, k).

La parábola cuadrática intersecta al eje x cuando $\Delta = b^2 - 4ac \ge 0$

Para el caso a > 0

rgo f =
$$[k, ∞)$$

Para el caso a < 0

$$rgo f = (-\infty, k]$$

4- Función cúbica o función polinomial de tercer grado (grado 3)

f:
$$f(x) = a x^3 + b x^2 + c x + d$$
, $a \ne 0$
dom $f = IR$

Ejemplo

a)
$$f: f(x) = x^3$$

Función cúbica particular

5- Funciones polinómicas de grado 4

$$f: f(x) = a x^4 + b x^3 + c x^2 + d x + e, a \neq 0$$
 dom $f = IR$

Ejemplos

a)f:
$$f(x) = x^4 - 3x^2 + 2$$
, domf = IR

b)g:
$$g(x) = -x^4 + 3x^2 - 2$$
, domg = IR

Definición: Función Racional

Una función racional es expresable como cociente de polinomios, es decir,

$$f: f(x) = \frac{P(x)}{Q(x)}$$

donde P y Q son funciones polinomiales

y su dominio es dom $f = \{x \in IR / Q(x) \neq 0\} = IR - \{x / Q(x) = 0\}$

Ejemplos

a) f:
$$f(x) = \frac{1}{x}$$

b) F:
$$F(x) = \frac{1}{x^2}$$

Definición: Función radical

La función $f: f(x) = \sqrt[n]{x}$ se llama **función radical** de índice n, con n natural, $n \ge 2$

Si n es par entonces dom $f = [0, \infty)$.

Si n es impar entonces dom f = IR.

Ejemplos

a) g: g(x) =
$$\sqrt{x}$$

b) h: h(x) = $\sqrt[3]{x}$

Definición: Funciones Trascendentes

Las funciones **trascendentes** son las que no son algebraicas.

FUNCIONES TRIGONOMÉTRICAS

Una particularidad que tienen las funciones trigonométricas es que son periódicas.

Definición de función periódica y de Período de una función

Una función f es **periódica** si existe un número p positivo tal que f(x+p)=f(x) para todo x del dominio de f. El menor de tales números p positivo se llama **período** de f.

Definición: FUNCION SENO

$$f: f(x) = sen x$$
, $dom sen = IR$

Observaciones

i) f es impar

Sea
$$x \in IR$$
, $f(-x) = sen(-x) = -sen x = -f(x)$

por lo tanto, f es impar

- ii) Ceros de f: $a = k\pi$, con $k \in \mathbb{Z}$
- iii) Gráfica, período y rango

Y como la función seno es periódica, con período 2π resulta:

Definición: FUNCION COSENO

$$f: f(x) = \cos x$$
, $dom \cos = IR$

Observaciones

i) f es par

Sea
$$x \in IR$$
, $f(-x) = cos(-x) = cos x = f(x)$

por lo tanto, f es par

- ii) Ceros de f: $a = (2k+1)\frac{\pi}{2}$ con $k \in \mathbb{Z}$
- iii) Gráfica, período y rango

Período: $p = 2\pi$

$$rgo cos = [-1,1]$$

Definición: FUNCION TANGENTE

$$y = f(x) = tg x = \frac{sen x}{cos x}$$
,

dom f = IR -
$$\{x/x = (2k+1)\frac{\pi}{2}, \text{ con } k \in Z\}$$

i) f es impar

Sea
$$x \in \text{dom tg}$$
, $f(-x) = tg(-x) = \frac{\text{sen}(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -tgx = -f(x)$

por lo tanto f es impar

ii) Ceros de f: $a = k\pi$, con $k \in Z$

Ceros de f:

$$a = k \pi$$
, con $k \in \mathbb{Z}$

iii) Gráfica, período y rango

Período: $p = \pi$

rgotg = IR

Definición: FUNCION COTANGENTE

$$y = f(x) = \cot x = \frac{\cos x}{\sin x}$$
,

$$dom f = IR - \{x/x = k \pi, con k \in Z\}$$

i) f es impar

Queda para el alumno, probar la paridad de la función cotangente y especificar su rango.

ii) Ceros de f: $a = k\pi$, con $k \in Z$

Ceros de f:

$$a = (2k + 1)\frac{\pi}{2}$$
, con $k \in \mathbb{Z}$

iii) Gráfica, período y rango

Período: $p = \pi$

rgo cotg = IR

Definición: FUNCION SECANTE

$$f: f(x) = \sec x = \frac{1}{\cos x}$$

$$f{:}\,f(x)=sec\,x=\frac{\scriptscriptstyle 1}{\scriptscriptstyle \cos\,x}\,\,,\qquad\qquad dom\,f=IR-\left\{x/x=(2k+1)\tfrac{\pi}{\scriptscriptstyle 2},\,\,con\,k\,\in Z\right\}$$

i) f es par

Sea
$$x \in domsec$$
 , $f(-x) = sec(-x) = \frac{1}{cos(-x)} = \frac{1}{cosx} = secx = f(x)$

por lo tanto, f es par.

ii) Ceros de f:

No posee

iii) Gráfica, período y rango

Período: $p=2\pi$

 $rgo sec = (-\infty, -1] \cup [1, \infty)$

Definición: FUNCION COSECANTE

f:
$$f(x) = \csc x = \frac{1}{\sec x}$$

$$dom \ f = IR - \{x/x = k \, \pi, \ con \ k \ \in Z\}$$

i) f es impar

Queda para el alumno, probar la paridad de la función cosecante

ii) Ceros de f:

No posee

iii) Gráfica, período y rango

Período: $p = 2\pi$

rgo f = $(-\infty, -1] \cup [1, \infty)$

OTRAS FUNCIONES TRASCENDENTES

Ejemplos

FUNCIÓN SIGNO

$$f: f(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

 $dom \ f = \mathbb{R}$

rgo
$$f = \{-1,0,1\}$$

La función signo es impar

FUNCIÓN ESCALÓN UNIDAD

$$U: U(x) = \begin{cases} 1 & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases}$$

$$dom U = IR$$

rgo
$$U = \{0,1\}$$

