Chapitre 12: Correction des tests

Test 1 (Voir solution.)

Déterminer la nature des intégrales suivantes.

$$1. \int_{1}^{+\infty} \frac{t}{t + \sqrt{t}} dt;$$

$$2. \int_{1}^{+\infty} \frac{dt}{e^t + e^{-t}}.$$

Test 2 (Voir solution.)

Déterminer la nature de l'intégrale :

$$\int_{2}^{+\infty} \frac{1}{\ln(t)} dt.$$

Test 3 (Voir solution.)

Déterminer la nature des intégrales suivantes.

$$1. \int_1^{+\infty} \frac{1}{\sqrt{t^2 + t}} dt;$$

2.
$$\int_{2}^{+\infty} \frac{\sqrt{t}}{e^{t} - 1 - t} dt.$$
 3.
$$\int_{0}^{+\infty} \frac{1}{t^{2} + 1} dt.$$

3.
$$\int_0^{+\infty} \frac{1}{t^2 + 1} dt$$

1 Correction des tests

Correction du test 1 (Retour à l'énoncé.)

1. La fonction $t\mapsto \frac{t}{t+\sqrt{t}}$ est continue sur $[1,+\infty[$ donc l'intégrale est impropre en $+\infty$. Soit $t\geqslant 1$. Alors $\sqrt{t}\leqslant t$ donc

$$t + \sqrt{t} \leqslant 2t$$

et par décroissance de la fonction inverse sur $]0, +\infty[$ on en déduit :

$$\forall t \in [1, +\infty[, \frac{t}{t + \sqrt{t}} \geqslant \frac{1}{2}.$$

Les fonctions $t\mapsto \frac{t}{t+\sqrt{t}}$ et $t\mapsto \frac{1}{2}$ sont continues et positives sur $[1,+\infty[$ donc, d'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme $\int_1^{+\infty} \frac{1}{2} dt$ diverge, l'intégrale $\int_1^{+\infty} \frac{t}{t+\sqrt{t}} dt$ diverge aussi.

2. La fonction $t\mapsto \frac{1}{e^t+e^{-t}}$ est continue sur $[1,+\infty[$ donc l'intégrale est impropre en $+\infty.$ Or,

$$\forall t \geqslant 1, \quad \frac{1}{e^t + e^{-t}} \leqslant \frac{1}{e^t} = e^{-t}.$$

Les fonctions $t\mapsto \frac{1}{e^t+e^{-t}}$ et $t\mapsto e^{-t}$ sont continues et positives sur $[1,+\infty[$ donc, d'après le théorème de comparaison pour les intégrales de fonctions continues positives, comme $\int_1^{+\infty} e^{-t} dt$ converge (exemple de référence), l'intégrale $\int_1^{+\infty} \frac{dt}{e^t+e^{-t}}$ converge aussi.

Correction du test 2 (Retour à l'énoncé.)

La fonction $t\mapsto \frac{1}{\ln{(t)}}$ est continue sur $[2,+\infty[$ donc l'intégrale est impropre en $+\infty.$ De plus,

•
$$\lim_{t \to +\infty} \frac{\frac{1}{t}}{\frac{1}{\ln(t)}} = \lim_{t \to +\infty} \frac{\ln(t)}{t} = 0 \ donc \ \frac{1}{t} = \underset{x \to +\infty}{o} \left(\frac{1}{\ln(t)}\right);$$

• les fonctions $t\mapsto \frac{1}{\ln(t)}$ et $t\mapsto \frac{1}{t}$ sont continues et positives sur [2, $+\infty$ [;

•
$$\int_{2}^{+\infty} \frac{1}{t} dt$$
 diverge.

Par le critère de négligeabilité pour les intégrales de fonctions continues positives, on en déduit que $\int_{2}^{+\infty} \frac{1}{\ln(t)} dt$ est divergente.

Correction du test 3 (Retour à l'énoncé.)

1. La fonction $t \mapsto \frac{1}{\sqrt{t^2+t}}$ est continue sur $[1, +\infty[$. L'intégrale est impropre en $+\infty$.

•
$$\sqrt{t^2 + t} \underset{x \to +\infty}{\sim} \sqrt{t^2} = t \ donc \frac{1}{\sqrt{t^2 + t}} \underset{x \to +\infty}{\sim} \frac{1}{t};$$

• les fonctions $t\mapsto \frac{1}{\sqrt{t^2+t}}$ et $t\mapsto \frac{1}{t}$ sont continues et positives sur]0,1]

D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_{1}^{+\infty} \frac{1}{\sqrt{t^2+t}} dt$ et $\int_{1}^{+\infty} \frac{1}{t} dt$ sont de même nature. Comme $\int_{1}^{+\infty} \frac{1}{t} dt$ diverge (intégrale de Riemann), l'intégrale $\int_{1}^{+\infty} \frac{1}{\sqrt{t^2+t}} dt$ diverge aussi.

2. La fonction $t \mapsto \frac{\sqrt{t}}{e^t - 1 - t}$ est continue sur $[2, +\infty[$. L'intégrale est impropre en $+\infty$.

• Par croissance comparée, on sait que

$$e^t - 1 - t = e^t \left(1 - \frac{1+t}{e^t} \right) \underset{+\infty}{\sim} e^t.$$

En particulier, par compatibilité de la relation d'équivalence avec le passage au quotient, on déduit l'équivalent suivant

$$\frac{\sqrt{t}}{e^t - 1 - t} \underset{x \to +\infty}{\sim} \frac{\sqrt{t}}{e^t}.$$

• les fonctions $t\mapsto \frac{\sqrt{t}}{e^t-1-t}$ et $t\mapsto \frac{\sqrt{t}}{e^t}$ sont continues et positives sur $[1,+\infty[$ (attention ce n'est pas trivial pour la première fonction et il faudrait détailler sur une copie).

2

D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_2^{+\infty} \frac{\sqrt{t}}{e^t} dt$ et $\int_2^{+\infty} \frac{\sqrt{t}}{e^t - 1 - t} dt$ sont de même nature.

Par ailleurs, par croissance comparée on sait que :

$$\lim_{x \to +\infty} \frac{t^2 \sqrt{t}}{e^t} = 0.$$

 $Donc \frac{\sqrt{t}}{e^t} = \underset{x \to +\infty}{o} \left(\frac{1}{t^2}\right). \text{ Par le critère de négligeabilité, comme } \int_{2}^{+\infty} \frac{1}{t^2} dt \text{ converge alors } \int_{2}^{+\infty} \frac{\sqrt{t}}{e^t} dt \text{ converge alors } \int_{2}^{+\infty} \frac{1}{e^t} dt \text{ converge } dt$

Finalement $\int_{2}^{+\infty} \frac{\sqrt{t}}{e^{t}-1-t} dt$ converge.

- 3. La fonction $t\mapsto \frac{1}{t^2+1}$ est continue sur $[0,+\infty[$. L'intégrale est donc impropre en $+\infty$.
 - $t^2 + 1 \underset{x \to +\infty}{\sim} t^2 donc \frac{1}{t^2 + 1} \underset{x \to +\infty}{\sim} \frac{1}{t^2}$;
 - les fonctions $t \mapsto \frac{1}{t^2+1}$ et $t \mapsto \frac{1}{t^2}$ sont continues et positives sur $[1, +\infty[$.

D'après le critère d'équivalence pour les intégrales de fonctions continues positives, on en déduit que $\int_1^{+\infty} \frac{1}{t^2+1} dt$ et $\int_1^{+\infty} \frac{1}{t^2} dt$ sont de même nature. Comme $\int_1^{+\infty} \frac{1}{t^2} dt$ converge (intégrale de Riemann convergente en $+\infty$), l'intégrale $\int_1^{+\infty} \frac{1}{t^2+1} dt$ converge aussi.

Enfin, comme $t\mapsto \frac{1}{t^2+1}$ est continue sur [0,1], l'intégrale $\int_0^1 \frac{1}{t^2+1} dt$ est bien définie et par la relation de Chasles on déduit que $\int_0^{+\infty} \frac{1}{t^2+1} dt$ converge.

 \triangle On ne peut pas appliquer directement le critère sur $[0, +\infty[$ car la fonction $t \mapsto \frac{1}{t^2}$ n'est pas continue sur $[0, +\infty[$ (elle n'est pas définie en 0!).