Analyse II

David Wiedemann

Table des matières

1	Inter	égrales généralisées	6	
	1.1	Integrales absoluments convergentes	8	
	1.2	Integrale generalisee sur un intervalle non borne	10	
2	L'espace R^n			
	2.1	Espace vectoriel norme	10	
	2.2	Normes sur \mathbb{R}^n	12	
	2.3	Suites sur \mathbb{R}^n	12	
	2.4	Topologie de \mathbb{R}^n	13	
	2.5	Classification des points d'un ensemble $E \subset \mathbb{R}^n$	13	
	2.6	Caracterisation des ensembles ouverts	14	
	2.7	Caracterisation des ensembles fermes	14	
	2.8	Ensembles compacts	15	
3	Fon	actions de plusieurs variables	15	
	3.1	Notion de limite	15	
	3.2	Caracterisation de limite par suites	16	
	3.3	Proprietes de l'operation de limite	16	
	3.4	Fonctions a valeurs dans R^m	17	
4	Fon	actions continues	17	
		4.0.1 Definitions Equivalentes	17	
	4.1	Prolongement par continuite	17	
5	Der	rivees de fonctions a plusieurs variables	19	
	5.1	Derivees Directionelles	19	
	5.2	Fonctions Differentiables	20	
	5.3	Derivees d'ordre superieur	22	
	5.4	Derivees d'ordre superieur	25	
	5.5	Developpement limite et formule de Taylor	26	

6	Inte	grales qui dependent de parametres	27
	6.1	Integrales sur un intervalle ferme borne	27
	6.2	Integrales avec des bornes variables	29
	6.3	Integrales generalisees	30
7	Fone	ctions Bijectives	31
	7.1	Fonctions Implicites et Hypersurfaces de \mathbb{R}^n	36
		7.1.1 Cas $n = 2$	38
		7.1.2 Cas $n > 1$	40
	7.2	Cas Vectoriel	43
8	Ext	remas de fonctions	47
	8.1	Extremas libres	47
		8.1.1 Cas $n > 1$	49
	8.2	Extremas lies	51
	8.3	Extremas sous contraintes multiples	53
	8.4	Condition suffisante pour extremas locaux lies	55
9	Inte	grales multiples au sens de Riemann	55
	9.1	Caracterisation equivalente de fonctions integrables	60
	9.2	Formule d'integrales iterees	62
	9.3	Integrabilite sur un domaine quelconque	62
	9.4	Proprietes de l'integrale de Riemann	63
	9.5	Ensembles mesurables au sens de Jordan	64
		9.5.1 Caracterisation des ensembles	64
	9.6	Integrabilite sur un domaine quelconque	65
	9.7	Proprietes de l'integrale de Riemann	66
	9.8	Ensembles mesurables au sens de Jordan	67
		9.8.1 Caracterisation des ensembles	67
	9.9	Caracterisation des fonctions integrables	70
	9.10	Proprietes de l'integrale de Riemann	71
	9.11	Formule des integrales iterees	72
		Formule de changement de variables	72
	9.13	Quelques applications	74
		Integrales generalisees	75
10	Equ	ations differentielles ordinaires	76
	10.1	Probleme de Cauchy	77
	10.2	Methode de separation de variables	78

List of Theorems

1	Definition (Intégrales généralisées (sur un intervalle borné non
	$ferm\'e)\)\ \dots\dots\dots\dots\dots\dots\dots \ \ \ \ \ \ \ \ \ \ \ \ \ $
2	Definition (Integrale sur un intervalle borne ouvert)
1	Lemme
3	Lemme (Critere de Comparaison)
4	Theorème (Critere de Comparaison)
3	Definition (Integrale absolument convergente)
6	Theorème (absolument convergente implique convergente) 8
8	Theorème (Critere de comparaison (II))
4	Definition (Integrale sur un intervalle non borne)
5	Definition (Norme d'un vecteur)
6	Definition (Espace vetoriel norme)
7	Definition
8	Definition (Distance)
9	Definition (Produit Scalaire)
9	Theorème (Inegalite de Cauchy-Schwarz)
10	Theorème
10	Definition (Suites convergentes)
12	Lemme
11	Definition (Suites de Cauchy)
13	Theorème
14	Theorème (Bolzano-Weierstrass)
12	Definition (Boule)
13	Definition
14	Definition
15	Definition (Ensemble compact)
15	Theorème (Caracterisation par sous-suites convergentes) 15
16	Theorème (Caracterisation par recouvrements finis) 15
16	Definition (Chemin dans E)
17	Definition (Ensembles connexes par arcs)
18	Definition (Limite)
17	Theorème (Des deux gendarmes)
18	Theorème (Limites/Suites)
19	Theorème (Critere de Cauchy)
19	Definition (Limite)
20	Definition (Continuite en un point)
21	Definition (Continuite sur E)
22	Definition (continuite uniforme sur E)
23	Definition (Prolongement par continuite)
20	Theorème (Prolongement par continuite sur l'adherence) 18

21	Theorème
24	Definition
22	Theorème
23	Theorème
24	Theorème
25	Definition (Derivees directionnelle)
26	Definition (Gradient)
27	Definition (Matrice Jacobienne)
28	Definition (Differentiabilite)
25	Theorème
26	Theorème (Theoreme des accroissements finis dans \mathbb{R}^n)
27	Theorème (Taf dans le cas vectoriel)
29	Definition (Derivees partielles secondes (cas scalaire))
30	Definition (Matrice hessienne)
31	Definition (Espace $C^2(E)$)
32	Definition (Derivees directionnelles secondes)
28	Lemme
29	Theorème (Theoreme de Schwarz) $\dots 2^{2}$
30	Corollaire
32	Theorème
34	Theorème
35	Theorème
33	Definition
36	Theorème
34	Definition (Homeomorphisme)
35	Definition (Diffeomorphisme)
36	Definition (Diffeomorphisme local)
38	Theorème
39	Theorème (Condition necessaire d'inversion locale) 32
40	Theorème
37	1
38	Definition (Norme de frobenius)
41	
42	Theorème (Condition suffisante d'inversion locale)
39	(**
40	,
43	,
44	
48	,
41	,
42	Definition

49	Theorème (Condition suffisant du second ordre)	50
43	Definition (Matrices definies postives)	50
50	Lemme	50
51	Lemme	50
52	Theorème (Condition suffisante d'extremas)	50
55	Theorème (Condition necessaire pour extremas lies)	52
57	Theorème (Conditions necessaires d'optimalite)	53
44	Definition (Partition)	56
45	Definition (Partition tensorielle)	56
46	Definition (Raffinement d'une partition)	57
61	$Lemme \dots \dots$	58
62	$Lemme \dots \dots$	58
47	Definition (Somme de Darboux)	58
63	$Lemme \dots \dots$	58
48	Definition (Fonction integrable au sens de Riemann) $\ \ldots \ \ldots$	59
65	$Lemme \dots \dots$	60
66	Theorème	61
67	Theorème (de Fubini) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	62
68	Corollaire	62
49	Definition	62
50	Definition (Ensemble mesurable au sens de Jordan)	64
70	$Lemme \dots \dots$	64
71	$Lemme \dots \dots$	64
72	Theorème	65
73	Corollaire	65
51	Definition	65
52	Definition (Ensemble mesurable au sens de Jordan)	67
75	Lemme	67
76	$Lemme \dots \dots$	68
77	Theorème	69
78	Corollaire	69
79	Theorème	69
81	Theorème	70
82	Corollaire	70
83	Corollaire	71
53	Definition (Domaine simple)	72
84	Theorème	72
85	Theorème	74
54	Definition (Fonction absolument integrable) \hdots	75
55	Definition (Solution locale) \hdots	78
99	Theorème	70

Lecture 1: Introduction

Mon 22 Feb

1 Intégrales généralisées

Peut-on définir une intégrale sur un intervalle ouvert plutot que sur un intervalle fermé? ie.

$$f: [a, b] \to \mathbb{R} \text{ c.p.m.}$$

Definition 1 (Intégrales généralisées (sur un intervalle borné non fermé))

Soit $f: [a, b] \to \mathbb{R}$ continue par morceaux (a < b).

En particulier, f est c.p.m. sur tout intervalle [a, x], a < x < b Soit $F(x) = \int_a^x f(t)dt$.

On dit que l'integrale generalisee $\int_a^b f(x)dx$ existe (ou converge) si $\lim_{x\to b} F(X)$ existe, dans ce cas, on note

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} F(x) - F(a)$$

 $Si \lim_{x\to b^-} F(x)$ n'existe pas, alors on dit que

$$\int_{a}^{b} f(t)dt$$

diverge. Definition analogue pour le cas]a, b].

On souhaite definir $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} tan(x)dx = 0$.

Dans certains cas cette integrale vaut 0. Mais si on calcule

$$\lim_{\epsilon \to 0} \int_{-\frac{\pi}{2} + \epsilon^2} \frac{\pi}{2} - \epsilon tan(t) dt = \lim_{\epsilon \to 0+} \left(-\ln(\cos(\frac{\pi}{2} - \epsilon)) + \ln(\cos(-\frac{\pi}{2} + \epsilon^2)) \right) = -\infty$$

Il faut donc une definition qui est coherente.

Definition 2 (Integrale sur un intervalle borne ouvert)

Soit $f:]a, b[\to \mathbb{R} \ c.p.m \ et \ c \in]a, b[$.

Si les integrales generalisees $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ existent, alors on definit l'integrale

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Si une des deux integrales diverge, alors le tout diverge.

Lemme 1

La valeur de l'integrale $\int_a^b f(t)dt$ ne depend pas de c, si elle converge.

Preuve

Soit $d \in]a, b[$, different de c, alors on a

$$\int_{a}^{d} f(t)dt = \lim_{x \to a+} \int_{x}^{d} f(t)dt = \lim_{x \to a+} \int_{x}^{c} f(t)dt + \int_{c}^{d} f(t)dt$$

$$= \int_{c}^{d} f(t)dt + \lim_{x \to a+} \int_{x}^{c} f(t)dt$$

Donc l'integrale existe.

Si elle existe, on trouve

$$\begin{split} &\int_a^b f(t)dt = \int_a^d f(t)dt + \int_d^b f(t)dt \\ &= \lim_{x \to a+} \int_x^d f(t)dt + \lim_{y \to b-} \int_d^y f(t)dt \\ &= \int_c^d f(t)dt + \lim_{x \to a+} \int_x^c f(t)dt + \lim_{y \to b-} \int_d^c f(t)dt + \int_c^y f(t)dt \\ &= \int_a^b f(t)dt \end{split}$$

Remarque

Soit $f:]a, b[\to \mathbb{R} \ continue.$

 $Si\ f\ admet\ une\ extension\ par\ continuite\ sur\ [a,b],\ alors\ on\ verifie\ facilement\ que$

$$\int_{a}^{b} f(t)dt$$

existe et coincide avec

$$\int_{a}^{b} \tilde{f}(t)dt$$

ou \tilde{f} est l'extension par continuite de f sur [a,b].

Lemme 3 (Critere de Comparaison)

Soit $f,g:[a,b[\to\mathbb{R}\ continues\ par\ morceaux\ et\ supposons\ qu'il\ existe\ c\in[a,b[\ tel\ que$

$$0 \le f(x) \le g(x) \forall x \in [c, b[$$

et si $\int_c^b g(x)dx$ existe, alors $\int_a^b f(x)dx$ existe aussi. De meme si $\int_c^b f(x)dx$ diverge, alors $\int_a^b f(x)dx$

Lecture 2: Integrales Generalisees

Wed 24 Feb

Theorème 4 (Critere de Comparaison)

Soit $f, g : [a, b] \to \mathbb{R}$ c.p.m. et supposons $\exists c \in [a, b]$ tel que

$$0 \le f(x) \le g(x) \forall x \in [c, b[$$

Si $\int_a^b g(x)dx$ existe alors $\int_a^b f(x)dx$ existe aussi Si $\int_a^b f(x)dx$ diverge alors $\int_a^b g(x)dx$ diverge aussi.

Preuve

Si $\int_a^b g(x)dx$ existe, alors $\int_c^b g(x)dx$ existe.

$$\int_{a}^{b} f(x)dx = \lim_{x \to b-} \int_{a}^{x} f(t)dt$$

$$= \lim_{x \to b-} \left(\int_{a}^{c} f(t)dt + \int_{c}^{x} f(t)dt \right)$$

$$= \int_{a}^{c} f(t)dt + \lim_{x \to b-} \int_{c}^{x} f(t)dt$$

$$\leq \int_{a}^{c} f(t)dt + \lim_{x \to b-} \int_{c}^{x} g(t)dt < +\infty$$

En notant $F(x) = \int_a^x f(t)dt$, F est non decroissante, et bornee superieurement sur l'intervalle $[a,b[\Rightarrow \lim_{x\to b^-} F(x) \text{ existe.}]$

Exemple

 $f(x) = \left| \sin(\frac{1}{x}) \right| \ sur \]0, 1], \ on \ a$

$$0 \le f(x) \le 1$$

1 est integrable, et donc l'integrale de f(x) existe.

1.1 Integrales absoluments convergentes

Definition 3 (Integrale absolument convergente)

Soit I un intervalle du type [a,b[,]a,b] ou]a,b[et $f:I\to\mathbb{R}$ c.p.m. On dit que l'integrale generalisee de f sur I est absolument convergente si

$$\int_{I} |f(x)| dx$$

existe.

Theorème 6 (absolument convergente implique convergente)

Si l'integrale $\int_a^{\dot{b}} f(x)dx$ converge absolument, alors il converge.

Preuve

Notons $f_{+}(x) = \max\{f(x), 0\}$ et $f_{-}(x) = -\min\{f(x), 0\}$ et on $a |f(x)| = f_{+}(x) + f_{-}$.

Donc

$$0 \le f_{+}(x) \le |f(x)| \text{ et } 0 \le f_{-}(x) \le |f(x)| \forall x \in I$$

Par critere de comparaison, si

$$\int_a^b |f(x)| dx \ existe \ \Rightarrow \ alors \ \int_a^b f_+(x) dx, \int_a^b f_-(x) \ existent$$
 et donc
$$\int_a^b f(x) dx \qquad \qquad \Box$$

Remarque

Soit $f: I \to \mathbb{R}$ c.p.m Si f est bornee sur I, alors

$$\int_{I} f(x) dx$$

existe.

Theorème 8 (Critere de comparaison (II))

Soit $f:[a,b[\to \mathbb{R} \ c.p.m.$

S'il existe $\alpha \in]-\infty,1[$ tel que

$$\lim_{x \to b-} f(x)(b-x)^{\alpha} = l \in \mathbb{R}$$

Alors

$$\int_{a}^{b} f(x)dx$$

existe.

S'il existe $\alpha \geq 1$ tel que

$$\lim_{x \to b^{-}} f(x)(b-x)^{\alpha} = l \neq 0$$

alors

$$\int_{a}^{b} f(x)dx$$

diverge.

Preuve

Par definition de la limite $\forall \epsilon > 0, \exists b - a > \delta_{\epsilon} > 0$ tel que

$$|f(x)(b-x)^{\alpha}-l|<\epsilon \forall x$$

$$\Rightarrow l - \epsilon \le f(x)(b - x)^{\alpha} \le l + \epsilon$$

 $et\ donc$

$$0 \le |f(x)| \le \frac{|l| + \epsilon}{(b-x)^{\alpha}}$$

Puisque le terme de droite est integrable, on conclut par le critere de comparaison. Pour la deuxieme partie, soit $\alpha \geq 1$ et $l \neq 0$.

Supposons l > 0, on a

$$l - \epsilon \le f(x)(b - x)^{\alpha}$$

Le meme raisonnement que ci-dessus donne que l'integrale de f diverge. \Box

1.2 Integrale generalisee sur un intervalle non borne

Definition 4 (Integrale sur un intervalle non borne)

Soit $f: [a, +\infty[\to \mathbb{R} \ c.p.m.$

On dit que $\int_a^{+\infty} f(x)dx$ existe si

$$\lim_{x \to +\infty} \int_{a}^{x} f(x) dx$$

existe et dans ce cas, on note

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

idem si $f:]-\infty, a[\to \mathbb{R}$. Soit $f:]a, +\infty[\to \mathbb{R}$ c.p.m. on dit que $\int_a^\infty f(x)dx$ existe s'il existe $c\in]a, \infty[$ tel que

$$\lim_{x \to a+} \int_{x}^{c} f(t)dt \ et \ \lim_{y \to +\infty} \int_{c}^{y} f(t)dt$$

existent.

Lecture 3: L'espace \mathbb{R}^n

Mon 01 Mar

2 L'espace \mathbb{R}^n

2.1 Espace vectoriel norme

Soit un ensemble V sur lequel on definit deux operations

- 1. somme : $+: V \times V \to V$
- 2. multiplication par un scalaire $\mathbb{R} \times V \to V$

On definit R^n par $R^n = \mathbb{R} \times \mathbb{R} \dots \times \mathbb{R}$

Definition 5 (Norme d'un vecteur)

C'est une application $N: V \to \mathbb{R}$, c'est une application qui satisfait

- $-\forall x \in V : N(x) \ge 0 \text{ et } N(x) = 0 \text{ si et seulement si } x = 0.$
- $-\forall \lambda \in \mathbb{R}, x \in V : N(\lambda x) = |\lambda| N(x)$
- $-- \forall x, y \in V, N(x+y) \le N(x) + N(y)$

On utilise souvent la notation N(x) = ||x||

Definition 6 (Espace vetoriel norme)

Un espace vectoriel norme est note (V, ||.||)

Definition 7

Soit V un espace vectoriel et N_1, N_2 deux normes sur V. On dit que N_1 et N_2 sont equivalentes si $\exists c_1, c_2 > 0$ tel que

$$c_1 N_2(x) \le N_1(x) \le c_2 N_2(x) \forall x \in V$$

Definition 8 (Distance)

Soit X un ensemble.

Une distance est une application $d: X \times X \to \mathbb{R}_+$ qui satisfait les proprietes suivantes

- $-\forall x, y \in X, d(x, y) \ge 0, d(x, y) = 0 \iff x = y$
- La distance est symmetrique
- $-\forall x, y, z \in V, d(x, y) \le d(x, z) + d(z, y)$

Un espace X muni d'une distance est appele un espace metrique et est note (X,d).

On peut toujours definir une distance sur un espace vectoriel norme, defini par

$$d(x,y) = ||x - y||$$

On appelle cette distance, la distance induite par la norme.

Tout espace vectoriel norme est aussi un espace metrique.

Definition 9 (Produit Scalaire)

Soit V un espace vectoriel.

Un produit scalaire est une application $b: V \times V \to \mathbb{R}$ qui satisfait les proprietes suivantes

- $\forall x, y \in V, b(x, y) = b(y, x)$
- $\forall x, y \in V, \forall \alpha, \beta \in \mathbb{R}, b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- $-\forall x \in V, b(x,x) \ge 0, b(x,x) = 0 \iff x = 0$

Theorème 9 (Inegalite de Cauchy-Schwarz)

Soit V un espace vectoriel et $b: V \times V \to \mathbb{R}$ un produit scalaire. Alors

$$\forall x, y \in V | b(x, y) \le \sqrt{b(x, x)b(y, y)}$$

Preuve

 $\forall x, y \in V, \alpha \in \mathbb{R}.$

$$0 \le b(\alpha x + y, \alpha x + y) = \alpha^2 b(x, x) + 2\alpha b(x, y) + b(y, y)$$

Donc on a

$$\Delta = b(x,y)^2 - b(x,x)b(y,y)$$

Theorème 10

Soit $b: V \times V \to \mathbb{R}$ un produit scalaire, alors l'application $x \to \sqrt{b(x,x)} = \|x\|_b$ est une norme sur V.

Donc, si V est muni d'un produit scalairel, alors V est un espace norme et donc V est un espace metrique pour la distance induite par le produit scalaire.

2.2 Normes sur \mathbb{R}^n

- La norme euclidienne $||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$
- Norme "max" $||x||_{\infty} = \max |x_i|$
- Norme 1 : $||x||_1 = \sum |x_i|$
- Normes $p \in [1, +\infty[\|x\|_p = (\sum |x_i|^p)^{\frac{1}{p}}]$

Pour p infinie, on retrouve la norme infinie

On montre en exercices que toutes les normes p sont equivalentes.

De meme, on montre que toutes les normes sur \mathbb{R}^n sont equivalentes. Par contre, seulement la norme 2 est deduite d'un produit scalaire.

Definition 10 (Suites convergentes)

Soit
$$\{x^{(k)}\}_{k=0}^{\infty} \subset \mathbb{R}^n$$
.

On dit que cette suite converge s'il existe $x \in \mathbb{R}^n$

$$\lim_{k \to +\infty} \left\| x^{(k)} - x \right\| = 0$$

Lecture 4: Boules sur \mathbb{R}^n

Wed 03 Mar

2.3 Suites sur \mathbb{R}^n

Remarque

Supposons que $\{x^{(k)}\} \to \overrightarrow{x}$ par rapport a la norme euclidienne. Et oit $||| \cdot |||$ une autre norme sur \mathbb{R}^n . Puisque toutes les normes sont equivalentes sur \mathbb{R}^n $|||\overrightarrow{x}||| \le c||\overrightarrow{x}||_2$ Donc toutes les suites converge peu importe la norme.

En particulier, on peut choisir la norme infinie.

Lemme 12

Une suite $\{x^{(k)}\}$ converge si et seulement si toutes les composantes convergent

Definition 11 (Suites de Cauchy)

On dit qu'une suite $\{x^{(k)}\}$ est de Cauchy si

$$\forall \epsilon > 0 \exists N > 0 : \forall k, l \ge N \left\| x^{(k)} - x^{(l)} \right\| \le \epsilon$$

Theorème 13

Une suite converge si et seulement si elle est de Cauchy.

Preuve

Si la suite $x^{(k)}$ converge \iff $\left\{x_i^{(k)}\right\}$ converge pour tout $i=1,\ldots,n$ donc toutes ces suites sont de Cauchy et donc $x^{(k)}$ converge.

Theorème 14 (Bolzano-Weierstrass)

Soit $\{x^{(k)}\}$ une suite bornee.

Alors il existe une sous-suite $\{x^{(k_j)}\}$ qui converge

Preuve

 $Si\left\{x^{(k)}\right\}$ est bornee, en particulier chaque suite $x^{(k)_i}$ sera bornee.

En i = 1, la suite $x^{(k)}$ est bornee, donc il existe une sous-suite convergente vers une valeur x_1 .

On considere les index de cette sous-suite et on reapplique l'argument ci-dessus en i = 2, etc.

2.4 Topologie de \mathbb{R}^n

Definition 12 (Boule)

Pour tout $x \in \mathbb{R}^n$ et $\delta > 0$, la boule ouverte centree en x et de rayon δ

$$B(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| < \delta \}$$

La boule fermee

$$\overline{B}(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| \le \delta \}$$

La sphere centree en x et de rayon δ

$$S(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| = \delta \}$$

2.5 Classification des points d'un ensemble $E \subset \mathbb{R}^n$

Le complementaire de E est

$$E^c = \{ y \in \mathbb{R}^n, y \notin E \}$$

On dit que x est un point interieur de E si $\exists \delta : B(x,\delta) \subset E$, on dit que x est un point frontiere de E si $\forall \delta B(x,\delta) \cap E \neq \emptyset$ et $B(x,\delta) \cap E^c \neq \emptyset$ On dit que E^o est l'ensemble des points interieurs de E, E^o est appele l'interieur de E.

On note ∂E l'ensemble des points frontieres, appele la frontiere ou le bord de E.

On dit que x est un point adherent de E si $\forall \delta > 0, B(x, \delta) \cap E \neq \emptyset$ On note E l'ensemble des points adherents de E, appele l'adherence de E.

On a
$$\bar{E} = E \cup \partial E$$

On dit que x est un point isole si

$$\exists \delta > 0B(x,\delta) \cap E = \{x\}$$

On dit que x est un point d'accumulation de E, si $\forall \delta>0$

$$B(x,\delta)\cap (E\setminus \{x\})\neq \emptyset$$

Donc, en particulier, si on prend $\delta = \frac{1}{k}, k \in \mathbb{N}$

$$\exists x^{(k)} \in E$$
, tel que $\left\| x^{(k)} - x \right\| \le \frac{1}{k}$

La suite $x^{(k)}$ converge vers x.

Definition 13

Soit E un ensemble de \mathbb{R}^n , on dit que E est ouvert si tous ses points sont interieurs

Definition 14

E est ferme si E^c est ouvert.

Lecture 5: Ensembles compacts/connexes par arcs

Mon 08 Mar

2.6 Caracterisation des ensembles ouverts

- $\stackrel{\circ}{E}$ est toujours ouvert.
- E est ouvert si et seulement si $E = \stackrel{\circ}{E}$
- L'union (meme infinie) d'ensembles ouverts est ouverte.

Soit $E = \bigcup_{\alpha \in A} K_{\alpha}$ et K_{α} sont ouverts.

Alors $\forall x \in E, x \in K_{\alpha}$ et donc il existe une boule ouverte centree en x et contenue dans K_{α} .

— L'intersection finie d'ensembles ouverts est ouverte. Soit $E = \bigcap K_i$, alors $\forall x \in E, x \in K_i \forall i$, mais chaque K_i est ouvert, donc en prendant $\delta = \min \{\delta_1, \ldots\}, B(x, \delta) \in E$ et donc E est ouvert.

2.7 Caracterisation des ensembles fermes

- $--\mathbb{R}^n \setminus \overline{E} = \overset{\circ}{E}, \overline{E^c} = \mathbb{R}^n \setminus \overset{\circ}{E}$
- \overline{E} est toujours ferme.
- L'intersection (meme infinie) d'ensembles fermes est fermee.
- L'union finie d'ensembles fermes est fermee.
- E est ferme si et seulement si toute suite $\{x^{(k)}\}$ convergente, converge vers un element $x \in E$.

Preuve

Soit E ferme et $\{x^{(k)}\}$ une suite convergente vers $x \in \mathbb{R}^n$, $\forall \epsilon > 0 \exists N_{\epsilon} : \forall k > N_{\epsilon}, ||x - x^{(k)}|| \leq \epsilon$.

 $Donc \ \forall \epsilon B(x,\epsilon) \cap E \neq \emptyset, \ donc \ x \in \overline{E} = E.$

Supposons que E n'est pas ferme, donc E^c n'est pas ouvert. Donc $\exists x \in E^c : \forall \delta > 0, B(x, \delta) \cap E \neq \emptyset$.

Si on prend $\delta = \frac{1}{k}, k \in \mathbb{N} \exists x^{(k)} \in B(x, \delta) \cap E \text{ et } \{x^{(k)}\} \text{ converge vers } x, \text{ donc } x \in E \not \exists$

2.8 Ensembles compacts

Definition 15 (Ensemble compact)

On dit que E est compact si E est a la fois ferme et borne.

Theorème 15 (Caracterisation par sous-suites convergentes)

Un ensemble non vide $E \subset \mathbb{R}^n$ est compact si et seulement si de toute suite $\{x^{(k)}\}\subset E$ on peut extraire une sous-suite convergente vers un element $x\in E$

Theorème 16 (Caracterisation par recouvrements finis)

Un ensemble non vide $E \subset \mathbb{R}^n$ est compact si et seulement si de toute famille $\{K_{\alpha}, \alpha \in A\}$ d'ouverts tel que $E \subset K_{\alpha}$, on peut extraire une sousfamille finie qui est encore un recouvrement de E.

Definition 16 (Chemin dans E)

Soit $E \subset \mathbb{R}^n$ non vide. On appelle chemin de E une application $\gamma : [0,1] \to E$, $\gamma(t) = (\gamma_1, \ldots)$, tel que γ_i est continu pour tout i.

Definition 17 (Ensembles connexes par arcs)

Un ensemble $E \subset \mathbb{R}^n$ est connexe par arcs si $\forall x, y \in E$, il existe un chemin γ tel que $\gamma(0) = x, \gamma(1) = y$.

3 Fonctions de plusieurs variables

Soit $E \subset \mathbb{R}^n$ non vide. On appelle fonction sur E a valeurs reelles une application $f:E \to \mathbb{R}$

$$\forall x \in E, x \to f(x) \subset \mathbb{R}^n$$

On note D(f) le domaine de f, $\operatorname{Im} f$ l'image, g(f) le graphe .

3.1 Notion de limite

Definition 18 (Limite)

Soit $f: E \to \mathbb{R}$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. On dit que

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

si

$$\forall \epsilon > 0, \exists \delta > 0 : ||x - x_0|| < \delta$$

Alors

$$||f(x) - l|| < \epsilon$$

Theorème 17 (Des deux gendarmes)

Soit $f, g, h : E \to \mathbb{R}^n$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. Si $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l$ et $\exists \alpha > 0$

$$h(x) \le f(x) \le g(x)0 < ||x - x_0|| \le \alpha$$

Alors $\lim_{x\to x_0} f(x)$ existe et est egale a l.

Lecture 6: Fonctions continues

Wed 10 Mar

3.2 Caracterisation de limite par suites

Theorème 18 (Limites/Suites)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. La limite $\lim_{x \to x_0} f(x) = l$ si et seulement si pour toute suite suite $\{x^{(k)}\} \subset E$ qui converge vers x_0 , on a $\lim_{k \to +\infty} f(x^{(k)}) = l$.

Preuve

Soit $\{x^{(k)}: \lim_{k\to+\infty} x^{(k)} = x_0\}$, on sait que $\lim_{x\to x_0} f(x) = l$ donc

$$\forall \epsilon > 0, \exists \delta > 0 \forall x \in E, ||x - x_0|| < \delta, |f(x) - l| < \epsilon$$

il existe N tq $\forall k > n$ tq $||x^{(k)} - x_0|| < \delta$

Si la limite $\lim_{k\to+\infty} f(x^{(k)}) = l$ pour toute suite $x^{(k)}$.

Par l'absurde, supposons que $\lim_{x\to x_0} f(x)$ n'existe pas.

$$\exists \epsilon > 0 \forall \delta > 0 \exists x \in E, x \neq x_0 : ||x - x_0|| < \delta$$

et

$$|f(x) - l| \ge \epsilon$$

Si on prend $\delta = \frac{1}{k}$, alors $\exists x^{(k)} \neq x_0 : ||x^{(k)} - x_0|| < \frac{1}{k} \text{ tel que } |f(x^{(k)}) - l| \ge \epsilon$. Or cette suite $x^{(k)}$ converge vers x_0 , ξ

3.3 Proprietes de l'operation de limite

Soit $f,g: E \subset \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}^n$ un point d'accumulation de E et $\lim_{x\to x_0} f(x) = l_1$, $\lim_{x\to x_0} g(x) = l_2$, alors l'operation de limite est lineaire, respecte les regles de multiplication.

Theorème 19 (Critere de Cauchy)

Idem qu'en analyse I.

3.4 Fonctions a valeurs dans R^m

Soit $f: \mathbb{R}^n \to \mathbb{R}^m$.

Definition 19 (Limite)

On dit que $\lim_{x\to x_0} f(x) = \overrightarrow{l} \in \mathbb{R}^m$ existe si

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in E \setminus \{x_0\}, 0 < \|x - x_0\| < \delta$$

on a

$$||f(x) - l|| < \epsilon$$

De plus, chaque composante de f converge vers la composante correspondante de la limite.

4 Fonctions continues

Definition 20 (Continuite en un point)

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}^m$, et $x_0 \in E$.

Si x_0 est un point d'accumulation de E, on dit que f est continue en x_0 si $\lim_{x\to x_0} f(x) = f(x_0)$.

 $Si x_0$ est un point isole, on admet que f est continue en x_0

4.0.1 Definitions Equivalentes

- $\forall \epsilon > 0, \exists \delta : \forall x \in E, ||x x_0||, ||f(x) f(x_0)|| < \epsilon$
- pour toute suite $x^{(k)} \subset E$ qui converge vers x_0 on a que $\lim_{k \to +\infty} f(x^{(k)}) = f(x_0)$

Definition 21 (Continuite sur E)

On dit que $f: E \to \mathbb{R}^m$ est continue sur E si elle est continue en tout point $x \in E$.

Dans ce cas, on note $f \in C^0(E)$

Definition 22 (continuite uniforme sur E)

On dit que f est uniformement continue sur E si $\forall \epsilon$, $\exists \delta$ tel que $\forall x \in E, \forall y \in E \|y - x\| < \delta$, on a $\|f(y) - f(x)\| < \epsilon$

Evidemment, la continuite uniforme implique la continuite.

Lecture 7: Prolongement par continuite

Mon 15 Mar

4.1 Prolongement par continuite

Definition 23 (Prolongement par continuite)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ continue, avec $E \neq \overline{E}$, soit $x_0 \in \overline{E} \setminus E$. Une fonction $\tilde{f}: E \cup \{x_0\} \to \mathbb{R}^m$ est appellee un prolongement si \tilde{f} est continue en x_0 et

coincide avec f sur E.

Le prolongement par continuite est uniquement defini par $\tilde{f}(x) = f(x)$ si $x \in E$ et $\tilde{f}(x_0) = \lim_{x \to x_0} f(x)$ si la limite existe.

Theorème 20 (Prolongement par continuite sur l'adherence)

Soit $E \subset \mathbb{R}^n$ non vide et $f: E \to \mathbb{R}^n$ continue sur E. Supposons que $\forall x \in \overline{E} \setminus E$ la limite $\lim_{y \to x} f(y)$ existe. Alors on peut definir un prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$, $\tilde{f}(x) = f(x) \forall x \in E$ et $\tilde{f}(x) = \lim_{y \to x} f(y)$ sinon, de plus \tilde{f} est continue sur \overline{E} .

Preuve

Si $x \in E$, f(x) est continue en x donc $\tilde{f}(x) = f(x)$ est continue en x. On a

$$\tilde{f}(x) = \lim_{y \to x, y \in E} f(y) = \lim_{y \to x, y \in E} \tilde{f}(y)$$

Pour montrer que \tilde{f} est continue en x, il faut montrer que $\tilde{f}(x) = \lim_{y \to x, y \in \overline{E}} \tilde{f}(y)$ Il faut montrer que pour toute suite $x^{(k)} \subset \overline{E}$ convergeant en $x \in \overline{E} \setminus E$ on a

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \tilde{f}(x)$$

On construit une deuxieme suite $y^{(k)}$ convergent vers x.

 $Si \ x^{(k)} \in E, \ alors \ y^{(k)} = x^{(k)}.$

 $Si\ x^{(k)} \in \overline{E} \setminus E$ on peut toujours trouver une valeur $y^{(k)} \in E$ tel que $\|y^{(k)-x^{(k)}}\| \le E$

$$2^{-k}, \ \left\| f(y^{(k)} - \tilde{f}(x^{(k)})) \right\| \leq 2^{-k}.$$

On aura donc

$$||y^{(k)} - x|| \le ||y^{(k)} - x^{(k)}|| + ||x^{(k)} - x||$$

Ainsi $y^{(k)} \subset E$ converge vers x, et ainsi

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \lim_{k \to +\infty} (\tilde{f}(x^k) - \tilde{f}(y^k)) + \lim_{k \to +\infty} \tilde{f}(y^{(k)}) = \lim_{k \to +\infty} \tilde{f}(y^{(k)})$$

Theorème 21

Soit $E \subset \mathbb{R}^n$ non vide $f: E \to \mathbb{R}^n$ uniformement continue. Alors f peut etre prolongee par continuite sur \overline{E} et le prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$ est uniformement continu.

Definition 24

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}$ Si $\sup f = \infty$ on dit que f n'est pas bornee superieurement.

Si $M < \infty$ on appelle M la borne superieure de f.

S'il existe $x_M \in E$, $f(x_M) = M$ alors on dit que M est le maximum de f sur E et x_M est un point maximum de f. Meme definition pour borne inferieure.

Theorème 22

Soit E non vide et compact, $f: E \to \mathbb{R}$ continue. Alors f atteint son maximum et son minimum sur E.

Preuve

Par l'absurde f n'est pas bornee, il existe $x^{(k)}$ tel que $|f(x^{(k)})| > k$ Mais E est compact, donc il existe une sous-suite $x^{(k_i)}$ qui converge, or f est continue, donc

$$\lim_{i \to +\infty} f(x^{(k_i)}) = f(x) < \infty \not$$

Supposons que f n'atteint pas ses bornes Il existe $x^{(k)}$ qui converge vers le sup, or E est ferme.

Theorème 23

Soit $E \subset \mathbb{R}^n$ non vide, compact, connexe par arcs, et $f: E \to \mathbb{R}$ continue. Alors f atteint toutes les valeurs entre son minimum et maximum.

Preuve

f est continue sur un compact donc f atteint son min et son max. Puisque E est connexe, il existe γ un chemin du minimum au maximum. On conclut par TVI sur la fonction $f \circ \gamma$

Theorème 24

Soit $E \subset \mathbb{R}^n$ non vide et compact avec $f: E \to \mathbb{R}^m$ continue. Alors f est uniformement continue sur E.

Lecture 8: Derivee partielles et directionnelle

Wed 17 Mar

5 Derivees de fonctions a plusieurs variables

5.1 Derivees Directionelles

Definition 25 (Derivees directionnelle)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $\overrightarrow{x_0} \in \stackrel{\circ}{E}$ et $\overrightarrow{v} \in \mathbb{R}^n$ un vecteur arbitraire. On dit que f est derivable dans la direction \overrightarrow{v} , au point x_0 , si

$$\lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

existe et on note $D_v f(x_0)$.

Si on prend $\|\overrightarrow{v}\|$ (norme euclidienne), alors on appelle $D_v f(x_0)$ la derivee directionnelle de f dans la direction \overrightarrow{v} au point x_0 .

en particulier, on peut prendre $\overrightarrow{v} = e_i$, dans ce cas on utilise la notation

$$D_{e_i} f(x_0) = \frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$$

et on appelle $\frac{\partial f}{\partial x_i}(x_0)$ la i-eme derivee partielle de f au point x_0 .

Definition 26 (Gradient)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}, x_0 \in \check{E}$.

 $Si\ toutes\ les\ derivees\ partielles\ de\ f\ en\ x_0\ existent,\ alors\ on\ appelle\ le\ vecteur\ gradient$

$$\nabla f(x_0) \in \mathbb{R}^n, \nabla f(x_0) = \begin{pmatrix} \frac{\partial f}{\partial x_i}(x_0) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix}$$

Definition 27 (Matrice Jacobienne)

On appelle matrice Jacobienne $Df(x_0) \in \mathbb{R}^{1 \times n}$

$$Df(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right)$$

5.2 Fonctions Differentiables

Definition 28 (Differentiabilite)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $x_0 \in E$. On dit que f est differentiable (ou derivable) en x_0 si il existe une application lineaire $L_{x_0}: \mathbb{R}^n \to \mathbb{R}$ et une fonction $g: E \to \mathbb{R}$ tel que

$$f(x) = f(x_0) + L_{x_0}(x - x_0) + g(x) \forall x \in E$$

 $et \lim_{x \to x_0} \frac{g(x)}{\|x - x_0\|} = 0.$

Theorème 25

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ differentiable en $x_0 \in \overset{\circ}{E}$, alors

- Toutes les derivees partielles de f en x_0 existent.
- On a

$$L_{x_0}(x - x_0) = \sum \frac{\partial f}{\partial x_i}(x_i - x_0) = Df(x_0)(x - x_0)$$

— Toutes les derivees directioneelles existent et

$$D_v f(x_0) = \sum \frac{\partial f}{\partial x_i}(x_0) v_i = \nabla f(x_0)^T \overrightarrow{v} = Df(x_0) \overrightarrow{v}$$

— f est continue en x_0 .

Preuve

— On a

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$$
$$= \lim_{t \to 0} \frac{f(x_0) + L_{x_0}(x_0 + te_i - x_0) + g(x_0 + te_i)}{t}$$

$$= L_{x_0}(e_i) + \lim_{t \to 0} \frac{g(x_0 + te_i)}{t}$$

$$= L_{x_0}a_i$$

$$- On a$$

$$f(x) = f(x_0) + L_{x_0}(x - x_0) + g(x)$$

$$Donc$$

$$\lim_{x \to x_0} f(x) = f(x_0) + \lim_{x \to x_0} L_{x_0}(x - x_0) + \lim_{x \to x_0} g(x) = f(x_0)$$

$$-$$

$$D_v f(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

$$= \lim_{t \to 0} \frac{Df(x_0)tv + g(x_0 + tv)}{t}$$

$$= Df(x_0)\overrightarrow{v}$$

Lecture 9: Derivees secondes

Wed 24 Mar

Cas scalaire:

Soit $E \subset \mathbb{R}^n$ ouvert, $x, y \in E$ et $f : E \to \mathbb{R}$ derivable sur E.

On denote par [x,y] le segment (ferme) entre x et y et]x,y[le segment ouvert entre x et y.

Theorème 26 (Theoreme des accroissements finis dans \mathbb{R}^n)

Soit $x, y \in E \subset \mathbb{R}^n$ et $f : E \to \mathbb{R}$, alors il existe $z \in [x, y]$ tel que

$$f(y) - f(x) = \nabla f(z)^T (y - x) = Df(z)(y - x)$$

Preuve

Soit g(t) = f(x + t(y - x)) pour $t \in [0, 1]$.

On a alors

$$g'(t) = \frac{d}{dt}g(t) = \frac{d}{dt}f(\phi(t))$$

ou phi(t) = x + t(y - x).

Puisque f et ϕ sont derivables, on conclut que g est aussi derivable. Donc

$$g'(t) = Df(\phi(t)) \cdot D\phi(t)$$
$$= \sum_{i} \frac{\partial f}{\partial x_i} (x + t(y - x))(y_i - x_i)$$
$$= \nabla f(x + t(y - x))^T (y - x) = Df(x + t(y - x))(y - x)$$

Le taf applique a g donne $\exists s \in]0,1[$ tel que

$$g(1) - g(0) = g'(s)$$

Donc

$$f(y) - f(x) = Df(x + s(y - x))(y - x)$$

On conclut en posant z = x + s(y - x).

Le cas vectoriel:

Theorème 27 (Taf dans le cas vectoriel)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$

On essaie de representer f(y) - f(x) a l'aide des derivees de f.

On peut ecrire TAF pour chaque composante, mais les z_k ne sont en general pas les memes.

Cependant, on peut toujours ecrire pour $f \in C^1(E)$

$$f(y) - f(x) = \int_0^1 Df(x + s(y - x))(y - x)ds$$

5.3 Derivees d'ordre superieur

Definition 29 (Derivees partielles secondes (cas scalaire))

Soit $f: E \to \mathbb{R}$, E ouvert.

Supposons que pour un indice $i = \{1, ... n\}$ fixe, la derivee partielle $\frac{\partial f}{\partial x_i}(x)$ existe $\forall x \in E$.

Si $\frac{\partial f}{\partial x_i}$ admet la derivee partielle selon x_j , alors on dit que f a une derivee partielle seconde en x et on note

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial}{\partial x_j} (\frac{\partial f}{\partial x_i})(x)$$

Definition 30 (Matrice hessienne)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ tel que toutes les derivees partielles existent que toutes les derivees secondes existent

$$H_f(y) = \begin{pmatrix} \frac{\partial}{\partial x_1} (\frac{\partial f}{\partial x_1})(y) & \frac{\partial}{\partial x_1} (\frac{\partial f}{\partial x_2})(y) & \dots \\ \frac{\partial}{\partial x_2} (\frac{\partial f}{\partial x_1})(y) & \frac{\partial}{\partial x_2} (\frac{\partial f}{\partial x_2})(y) & \dots \\ \frac{\partial}{\partial x_3} (\frac{\partial f}{\partial x_1})(y) & \frac{\partial}{\partial x_3} (\frac{\partial f}{\partial x_2})(y) & \dots \end{pmatrix}$$

Definition 31 (Espace $C^2(E)$)

On dit que $f: E \to \mathbb{R}$ est de classe C^2 si toutes les derivees partielles secondes sont continues.

Definition 32 (Derivees directionnelles secondes)

Soit $v \in \mathbb{R}^n$, ||v|| = 1. Alors, etant donne $D_v f : E \to \mathbb{R}$, on peut essayer de calculer la derivee directionnelle de $D_v f$ dans la direction $w \in \mathbb{R}^n$.

Si une telle derivee exise, on dit que f admet une derivee directionnelle seconde dans les directions v et w au point x et on note

$$D_{wv}f(x) = D_w(D_vf)(x)$$

Lemme 28

Soit $f \in C^2(E)$, E ouvert et $v, w \in \mathbb{R}^n$ tel que ||v|| = ||w|| = 1. Alors $D_{wv}f$ existe en tout $x \in E$ et

$$D_{wv}f(x) = w^{T}H_{f}(x)v$$

$$= \sum_{i=1}^{n} w_{i}(\sum_{j=1}^{n} H_{f}(x)_{ij}v_{j})$$

$$= \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)w_{i}v_{j}$$

Preuve

Si $f \in C^2$ alors $f \in C^1$, alors $D_v f(x) = \nabla f(x)^T v = \sum \frac{\partial f}{\partial x_i}(x) v_i$. Mais puisque $f \in C^2$, $\frac{\partial f}{\partial x_i} \in C^1 \forall i$, donc

$$D_w(D_v f)(x) = \nabla (D_v f)^T w = \sum_{i=1}^n \frac{\partial}{\partial x_i} (D_v f) w_i$$
$$= \sum_{i=1}^n \sum_{j=1}^n \frac{\partial}{\partial x_i} (\frac{\partial f}{\partial x_j} (x)) v_j w_i \qquad \Box$$

Ce qui donne le resultat desire.

Theorème 29 (Theoreme de Schwarz)

Soit $f: E \to \mathbb{R}$. Pour $i, j \in \{1, ..., n\}$ fixes. Supposons que $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$, $\frac{\partial^2 f}{\partial x_j \partial x_i}$ existent sur E et sont continues en $x \in E$. Alors

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$$

Lecture 10: Derivees d'ordre superieur

Mon 29 Mar

Figure 1 – thmschwarz

Preuve

Soit s, t > 0 suffisamment petit tel que

$$x + se_i, x + te_j, x + se_i + te_j \in E$$

Posons

$$\begin{split} \Delta(s,t) &= f(x+se_i+te_j) - f(x+se_i) - f(x+te_j) + f(x) \\ &= \frac{\partial f}{\partial x_j}(x+se_i)t - \frac{\partial f}{\partial x_j}(x)t \\ &= \frac{\partial}{\partial x_i}\frac{\partial^2 f}{\partial x_j}st \\ &= \frac{\partial}{\partial x_i}f(x+te_j)s - \frac{\partial}{\partial x_i}f(x)s \end{split}$$

Plus formellement, on peut ecrire

$$\Delta(s,t) = (f(x + se_i + te_i) - f(x + se_i)) - (f(x + te_i) - f(x))$$

On definit

$$g(\xi) = f(x + \xi e_i + te_i) - f(x + \xi e_i)$$

 $et \ donc$

$$\Delta(s,t) = g(s) - g(0)$$

 $et\ g\ est\ derivable\ car\ f\ est\ derivable$

$$g'(\xi) = \frac{\partial f}{\partial x_i}(x + \xi e_i + t e_j) - \frac{\partial f}{\partial x_i}(x + \xi e_i)$$

par le TAF, on a

$$g(s) - g(0) = g'(\tilde{s})s$$

$$= (\frac{\partial f}{\partial x_i}(x + \tilde{s}e_i + te_j) - \frac{\partial f}{\partial x_i}(x + \tilde{s}e_i))s$$

On definit maintenant

$$\phi(y) = \frac{\partial f}{\partial x_i} (x + \tilde{s}e_i + ye_j)$$

Alors on a

$$\Delta(s,t) = (\phi(t) - \phi(0))s$$

A nouveau, ϕ est derivabe, et donc on a

$$\begin{split} \Delta(s,t) &= \phi'(\tilde{t})ts \\ &= \frac{\partial^2}{\partial x_i \partial x_i} (x + \tilde{s}e_i + \tilde{t}e_j)ts \end{split}$$

 $Si\ on\ prend\ t=s,\ on\ a$

$$\lim_{s \to 0} \frac{1}{s^2} \Delta(s, s) = \lim_{s \to 0} \frac{1}{s^2} \left(\frac{\partial^2 f}{\partial x_j \partial x_i} \left(x + \tilde{s} + \tilde{t} e_j \right) s^2 \right)$$

On peut appliquer exactement le meme raisonnement dans l'autre sens, et on obtient le resultat desire.

5.4 Derivees d'ordre superieur

Soit $E \subset \mathbb{R}^n$ ouvert non vide, $f: E \to \mathbb{R}$ et on fixe $i_1, \ldots, i_p \in \{1, \ldots, n\}$. On definit la derivee partielle par rapport aux variables x_{i_1}, \ldots, x_{i_p} , on note alors

$$\frac{\partial^p f}{\partial x_{i_p} \dots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_p}} (\dots (\frac{\partial}{\partial x_{i_2}} (\frac{\partial f}{\partial x_{i_1}})))(x)$$

Corollaire 30

Soit i_1, \ldots, i_p fixe et σ une permutation des nombres $\{1, \ldots, p\}$. Si $\frac{\partial^p}{\partial x_{i_p} \ldots \partial x_{i_1}}$ et $\frac{\partial^p f}{\partial x_{i_{\sigma(p)}} \ldots \partial x_{i_{\sigma(1)}}}$ existent et sont continues en x pour toute permutation alors ils sont egaux

5.5 Developpement limite et formule de Taylor

On veut generaliser la definition pour la dimension 1, on veut un polynome de degre p dans les variables (x_1, \ldots, x_n) , en utilisant la notation multi-entiers, on note

$$p(x) = \sum_{\alpha = (\alpha_1, \dots, \alpha_n), |\alpha| \le 2} c_{\alpha} x^{\alpha}$$

De maniere generale, on peut donc ecrire

$$q(x) = \sum_{\alpha \in \mathbb{N}^n, |\alpha| \le p} c_{\alpha} x^{\alpha}$$

Le developpement limite d'ordre p d'une fonction $f:E\to\mathbb{R}$ autour d'un point $x\in \overset{\circ}{E},$ aura donc la forme

$$f(y) = \sum_{\alpha \in \mathbb{N}^n, |\alpha| \le p} c_{\alpha} (y - x)^{\alpha} + R_p(y)$$

Ou R_p satisfait

$$\lim_{y \to x} \frac{R_p(y)}{\|y - x\|^p} = 0$$

Soit $f: E \to \mathbb{R}$, $f \in C^{p+1}(E)$, E un ouvert non vide et soient $x, y \in E$ tel que $[x.y] \in E$, soit g(t) = f(x+t(y-x)), pour $t \in [0,1]$, on voit que $g \in C^{p+1}([0,1])$. On peut donc ecrire

$$g(t) = g(0) + g'(0)t + \dots + \frac{g^{p}(0)}{p!}t^{p} + R_{p}(y)$$

On a donc

$$g'(t) = \sum_{i_1=1}^{n} \frac{\partial f}{\partial x_{i_1}}(x_t) \frac{d(x_t)i_1}{dt} = \sum_{i_1=1}^{n} \frac{\partial f}{\partial x_{i_1}}(x_t)(y_{i_1} - x_{i_1}) = \sum_{|\alpha|=1}^{n} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(y - x)^{\alpha}$$

De meme, on trouve

$$g''(t) = \frac{d}{dt} \left(\frac{d}{dt} f(x_t) \right)$$
$$= \sum_{|\alpha|=2} \frac{2!}{\alpha!} \frac{\partial^2 f}{\partial x^{\alpha}} (x_t) (y - x)^{\alpha}$$

La formule de Taylor s'ecrit donc

$$f(y) = g(1) = \sum_{k=0}^{p} \frac{g^{k}(0)}{k!} t + R_{p}(y)$$
$$= \sum_{k=0}^{p} \sum_{|\alpha|=k} \frac{1}{k!} \frac{k!}{\alpha!} \frac{\partial^{\alpha}}{\partial x^{\alpha}} (x) (y-x)^{\alpha} + R_{p}(1)$$

La formule de lagrange donne

$$R_p(1) = \sum_{|\alpha| = p+1} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}} (x + \theta(y - x)) (y - x)^{\alpha}$$

Lecture 11: Integrales qui dependent de parametres

Wed 31 Mar

6 Integrales qui dependent de parametres

Soit un intervalle $I \subset \mathbb{R}$ et un sous-ensemble $E \subset \mathbb{R}^n$, soit $f: I \times E \to \mathbb{R}$, $t \in I$ et $x = (x_1, \ldots)$ tel que $\forall x \in E \int_I f(t, \overrightarrow{x}) dt$ existe. On peut definir la fonction $g: E \to \mathbb{R}$

$$\overrightarrow{x} \rightarrow g(x) = \int_I f(t, \overrightarrow{x}) dt$$

— Si f est continue sur $I \times E$ est-ce que g est continue? Autrement dit, pour $x_0 \in E$

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \int_I f(t, \overrightarrow{x}) dt \underbrace{=}_{?} \int_i \lim_{x \to x_0} f(t, x) dt = g(x_0)$$

— Si $\frac{\partial f}{\partial x_i}$ existe sur $I\times E$ est-ce que $\frac{\partial}{\partial x_i}g$ existe sur E et

$$\frac{\partial g}{\partial x_i}(x) \underbrace{=}_{2} \int_{I} \frac{\partial}{\partial x_i} f(t, x) dt$$

Exemple

Soit $f: \mathbb{R}^2 \to \mathbb{R}, (t, x) \to x^2 e^{-x^2 t}$

Soit

$$g(x) = \int_0^\infty x^2 e^{-x^2 t} dt$$

Pour x = 0, $f(t, 0) = 0 \forall t$, g(0) = 0, pour $x \neq 0$,

$$g(x) = (-e^{-x^2t})|_{t=0}^{\infty} = 1$$

ainsi, g n'est pas continue.

6.1 Integrales sur un intervalle ferme borne

Theorème 32

Soit $E \in \mathbb{R}^n$ ouvert et

$$f:[a,b]\times E\to\mathbb{R}$$

continue.

Alors la fonction $g: E \to \mathbb{R}$

$$g(x) = \int_{a}^{b} f(t, x)dt$$

est bien definie $\forall x \in E$ et est continue sur E..

Preuve

Pour tout $x \in E$, la fonction $t \to f_x(t)$ est continue et donc integrable.

Montrons que g est continue sur E.

Fixons $x_0 \in E$, $\exists \eta > 0\overline{B}(x_0, \eta) \subset E$.

Alors la restriction de f a $A = [a, b] \times \overline{B}(x_0, \eta)$.

Donc A est compact, et donc $f|_A$ est uniformement continue.

$$\forall \epsilon > 0 \exists \delta \in]0, \eta] : \forall (s, y), (t, x) \in A, |s - t| \le \delta, ||y - x|| \le \delta$$

On a

$$|f(s,y) - f(t,x)| \le \epsilon$$

En particulier, on peut choisir $s = t, y = x_0$, alors

$$|g(x) - g(x_0)| = \left| \int_a^b f(t, x) - f(t, x_0) dt \right|$$

$$\leq \int_a^b |f(t, x) - f(t, x_0)| dt$$

$$\leq \epsilon (b - a)$$

Remarque

— Le theoreme est valable aussi si l'ensemble E est ferme, il suffit de considerer $\overline{B}(x,\delta) \cap E$ et meme pour n'importe quel sous-ensemble E.

Theorème 34

Soit a,b fini, $E \subset \mathbb{R}^n$ ouvert, et $f:[a,b] \times E \to \mathbb{R}$ continue tel que, pour i fixe

$$\frac{\partial f}{\partial x_i}: [a,b] \times E \to \mathbb{R}$$

existe et est continue.

Alors $g(x) = \int_a^b f(t,x) dt$ existe pour tout x et $\frac{\partial g}{\partial x_i}(x)$ existe pour tout x et

$$\frac{\partial g}{\partial x_i}(x) = \int_a^b \frac{\partial}{\partial x_i} f(t, x) dt$$

Preuve

Soit $x_0 \in E$ et $\eta > 0 : \overline{B}(x_0, \eta) \subset E$, on definit

$$A = [a, b] \times \overline{B}(x_0, \eta)$$
 un compact

Donc $\frac{\partial f}{\partial x_i}|_A$ est uniformement continue.

On a donc

$$\forall \epsilon > 0, \exists \delta \in]0, \eta] : \forall t \in [a, b], \forall x \in \overline{B}(x_0, \delta)$$
$$\left| \frac{\partial f}{\partial x_i}(t, x) - \frac{\partial f}{\partial x_i}(t, x_0) \right| \le \frac{\epsilon}{b - a}$$

On veut montrer que

$$\frac{\partial g}{\partial x_i}(x_0) = \lim_{s \to 0} \frac{g(x_0 + se_i) - g(x_0)}{s}$$

existe et est egal a

$$\int_{a}^{b} \frac{\partial f}{\partial x_{i}}(t, x_{0}) dt$$

On a donc

$$\begin{split} &|\frac{g(x_0+se_i)-g(x_0)}{s}-\int_a^b\frac{\partial f}{\partial x_i}(t,x_0)dt|\\ &=|\frac{1}{s}\int_a^bf(t,x_0+se_i)-f(t,x_0)dt-\int_a^b\frac{\partial f}{\partial x_i}(t,x_0)dt|\\ &=|\int_a^b\frac{1}{s}\int_0^s\frac{\partial f}{\partial x_i}(t,x-+\sigma e_i)d\sigma-\int_a^b\frac{\partial f}{\partial x_i}(t,x_0)dt|\\ &=|\int_a^b\frac{1}{s}\int_0^s\frac{\partial f}{\partial x_i}(t,x_0+\sigma e_i)-\frac{\partial f}{\partial x_i}(t,x_0)d\sigma dt|\\ &\leq\int_a^b\frac{1}{|s|}\int_0^s|\underbrace{\frac{\partial f}{\partial x_i}(t,x_0+\sigma e_i)-\frac{\partial f}{\partial x_i}(t,x_0)}_{\leq \frac{\epsilon}{b-a}}|d\sigma dt\\ &\leq\underbrace{\int_a^b\frac{1}{|s|}\int_0^s|\underbrace{\frac{\partial f}{\partial x_i}(t,x_0+\sigma e_i)-\frac{\partial f}{\partial x_i}(t,x_0)}_{\leq \frac{\epsilon}{b-a}}|d\sigma dt\\ \end{split}$$

6.2 Integrales avec des bornes variables

Soit

$$g(x) = \int_{a)(x)}^{b(x)} f(t, x)dt$$

On suppose que

$$f:]\alpha,\beta[\times E\to\mathbb{R}$$

et que

$$a, b: E \to]\alpha, \beta[\subset \mathbb{R}$$

Theorème 35

Soit E un ouvert non vide et supposons que tutes les derivees partielles de x_i existent et sont continues pour tout i, de plus supposons que a, b sont $C^1(E)$, alors $g \in C^1(E)$ et

$$\frac{\partial g}{\partial x_i}(x) = \frac{\partial b}{\partial x_i}(x)f(b(x), x) - \frac{\partial a}{\partial x_i}f(a(x), x) + \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x_i}(t, x)dt$$

Sans preuve.

Idee de la demonstration : Reecrire

$$g(x) = \int_{a(x)}^{c} f(t, x)dt + \int_{c}^{b(x)f(t, x)} dt$$

= $G(b(x), x) - G(a(x), x)$, avec $G(s, x) = \int_{c}^{s} f(t, x)dt$

On montre que $G \in C^1$, alors $g \in C^1$ et donc

$$\frac{\partial g}{\partial x_i}(x) = \frac{\partial}{\partial x_i} G(b(x), x) - \frac{\partial}{\partial x_i} G(a(x), x)$$

6.3 Integrales generalisees

Cas I = [a, b] En general, on a pas la continuite de g(x).

Definition 33

Soit $E \subset \mathbb{R}^n$ non vide et $f: [a,b[\times E \to \mathbb{R} \text{ continue. On dit que } \int_a^b f(t,x) dt$ converge uniformement sur E si $\int_a^b f(t,x) dt$ existe $\forall x$ et $\forall \epsilon > 0 \exists \overline{\epsilon} \in]a,b[$ (independent de x) tel que

$$\forall c \in [\overline{c}, b[\ et\ \forall x \in E, |\int_{c}^{b} f(t, x) dt| \le \epsilon$$

Theorème 36

Soit $f:[a,b]\times E\to\mathbb{R}$ continue et l'integrale $\int_a^b f(t,x)dt$ converge uniformement sur E. Alors la fonction $g(x)=\int_a^b f(t,x)dt$ existe $\forall x\in E$ et est continue sur E.

De plus si $\frac{\partial f}{\partial x_i}$ existe, et est continue sur $[a,b[\times E,\,et\,\int_a^b\frac{\partial f}{\partial x_i}(t,x)dt\,\,converge\,\,uniformement,\,\,alors\,\,\frac{\partial g}{\partial x_i}\,\,existe\,\,et\,\,est\,\,continue\,\,sur\,\,E.$

L'idee de la demonstration est

$$|g(x) - g(x_0)| = |\int_a^b (f(t, x) - f(t, x_0))dt|$$

$$\leq \int_a^{\overline{c}} |f(t, x) - f(t, x_0)|dt + \int_{\overline{c}}^b |f(t, x) - f(t, x_0)|dt$$

$$\leq \int_a^{\overline{c}} |f(t, x) - f(t, x_0)|dt + 2\epsilon$$

Et on s'est ramene au cas d'un intervalle ferme.

Remarque

Si il existe $h:[a,b[\rightarrow \mathbb{R} \ integrable \ et \ telle \ que$

$$|f(t, \overrightarrow{x})| \le h(t)$$

Alors f est uniformement integrable.

Lecture 12: Fonctions Bijectives et diffeomorphismes

Mon 12 Apr

7 Fonctions Bijectives

Soit $\overrightarrow{f}: E \subset \mathbb{R}^n \to F \subset \mathbb{R}^n$.

Si \overrightarrow{f} est une bijection entre E et F alors $\forall \overrightarrow{y} \in F, \exists ! \overrightarrow{x} \in E : f(\overrightarrow{x}) = \overrightarrow{y}$ On peut donc definir une application inverse $\overrightarrow{g}: F \to E$ tel que $\forall \overrightarrow{y} \in F, f(g(\overrightarrow{y})) = \overrightarrow{y}$ et de maniere equivalente, $\forall x \in E, g(f(x)) = x$

Pourquoi etudier les bijections?

— Exemple 1

On souhaite resoudre le probleme f(x) = y pour un $y \in F$ donne. Si f est une bijection, on sait qu'il existe une solution.

Changement de variable

Soit $f: E \to F$ bijective et $\phi: F \to \mathbb{R}$.

On peut reccrire ϕ en fonction de variables $x \in E$, $\tilde{\phi} = \phi \circ f$, donc $x \mapsto \tilde{\phi}(x) = \phi(f(x)), \forall x \in E$.

Vice versa etant donne $\tilde{\phi}: E \to \mathbb{R}, \overrightarrow{x} \mapsto \tilde{\phi}(x)$.

On peut la recrire en fonction de $y \in F$.

On aura donc

$$\phi(y) = \tilde{\phi}(g(y))$$

On utilise ceci, en partie pour les coordonnees polaires.

Definition 34 (Homeomorphisme)

Soit $E, F \subset \mathbb{R}^n$ ouverts non-vides. On dit que $f: E \to F$ est un homeomorphisme si elle est bijective et f et son inverse $g: F \to E$ sont continues.

Definition 35 (Diffeomorphisme)

Soit $E, F \subset \mathbb{R}^n$ ouverts non-vides. On dit que $f: E \to F$ est un diffeomorphisme global si elle est bijective et f et son inverse $g: F \to E$ sont C^1 .

De maniere plus generale, on dit que f est un k-diffeomorphisme si f et son inverse sont de classe C^k .

Definition 36 (Diffeomorphisme local)

Soit $E \subset \mathbb{R}^n$ ouvert non vide et $x_0 \in E$ et $f: E \to \mathbb{R}^n$ de classe C^1 .

On dit que f est un diffeomorphisme local en x_0 , si il existe un ouvert $U \subset E$ contenant x_0 et un ouvert $V \subset \mathbb{R}^n$ contenant $y_0 \in f(x_0)$ tel que $\overrightarrow{f}: U \to V$ est un diffeomorphisme.

Clairement, si f est un diffeomorphisme global, c'est en particulier un diffeomorphisme local en tout point $x \in E$, mais la reciproque n'est pas vraie en general. On a toutefois le resultat suivant

Theorème 38

Soit $E, F \subset \mathbb{R}^n$ ouverts non vides et $f: E \to F$ bijective et un diffeomorphisme local en tout point $x \in E$. Alors, f est un diffeomorphisme global.

Question

Sous quelles conditions, \overrightarrow{f} est elle un diffeomorphisme local en $x \in E$. Dans le cas n = 1, f est un diffeomorphisme local en $x_0 \in \mathbb{R}$ si et seulement si $f'(x_0) \neq 0$.

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une fonction affine

$$\overrightarrow{f}(x) = Ax + b$$

Quand est-ce que f est inversible, ou, etant donne $y \in \mathbb{R}^n$, f(x) = y a une solution unique, si et seulement si det $A \neq 0$

De maniere plus generale, vu que f est C^1 , on a

$$f(x) = f(x_0) + Df(x_0)(x - x_0) + R_f(\overrightarrow{x})$$

Autour de x_0 , on a donc

$$f(x) \approx f(x_0) + Df(x_0)(x - x_0)$$

et donc f est un diffeormorphisme local si et seulement si $\det(Df(x_0)) \neq 0$

Theorème 39 (Condition necessaire d'inversion locale)

Soit $f: Esubset \mathbb{R}^n \to \mathbb{R}^n$, avec E ouvert non vide, un diffeomorphisme local en x_0 . Alors, $\det(Df(x_0)) \neq 0$.

Preuve

Par definition de diffeomorphisme local, il existe un ouvert $U \subset E$ contenant x_0 et un ouvert $V \subset \mathbb{R}^n$ contenant $y_0 = f(x_0)$ tel que $f: U \to V$ est une bijection et soit $g: V \to U$ la fonction inverse de classe C^1 par hypothese.

Puisque $g(f(x)) = x \forall x \in U$, on a

$$D(g(f(x))) = Dg(f(x))Df(x) = \operatorname{Id}$$

Et donc $Df(x_0)$ est inversible.

Theorème 40

Soit $K \subset \mathbb{R}^n$ ferme et $\phi: K \to \mathbb{R}^n$ telle que

$$-\phi(K)\subset K$$

— Il existe $\rho \in]0,1[$ tel que $\forall x,y \in K$

$$\|\phi(x) - \phi(y)\| \le \rho \|x - y\|$$

(dans ce cas, on dit que l'application est contractante)

Alors ϕ possede un unique point fixe $\exists ! v \in K$ tel que $v = \phi(v)$

Definition 37 (Norme spectrale)

On definit

$$|||A||| = \sup_{x \in \mathbb{R}^n, ||x|| = 1} ||Ax||$$

Definition 38 (Norme de frobenius)

 $On\ note$

$$\|A\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n A_{ij}^2}$$

Lemme 41

Soit a, b finis et $f:[a,b] \to \mathbb{R}^n$ continue. Alors

$$\left\| \int_{a}^{b} f(t)dt \right\| \leq \int_{a}^{b} \|f(t)\| dt$$

Theorème 42 (Condition suffisante d'inversion locale)

Soit $E \subset \mathbb{R}^n$ un ouvert non vide, $f: E \to \mathbb{R}^n$ de classe C^1 et $x_0 \in E$. Si $\det Df(x_0) \neq 0$, alors f est un diffeomorphisme local en x_0 . De plus si $g: V \to U$ est un inverse local, avec $U \subset E$ un ouvert contenant x_0 et V un ouvert contenant $y_0 = f(x_0)$, on a

$$Dg(f(x)) = Df(x)^{-1} \forall x \in U$$

On va utiliser le theoreme du point fixe de Banach.

Preuve

On montre l'existence d'un inverse local.

Par hypothese $x \to Df(x)$ est continue. Donc

$$\exists r_1, \det(Df(x_0)) \neq 0 \forall x \in B(x_0, r) \cap E$$

Considerons

$$x \to \operatorname{Id} - Df(x_0)^{-1} Df(x) =: A(x)$$

On a a nouveau que A(x) est continue et $A(x_0) = 0$.

Donc, il existe $r_2 > 0$ tel que $\forall x \in B(x_0, r_2) \cap E \frac{-1}{2n} \leq A_{ij}(x) \leq \frac{1}{2n}$ Donc $\forall x \in B(x_0, r_2) \cap E |||A(x)||| \leq ||A(x)||_F = \sqrt{\sum_{ij} A_{ij}(x)^2} \leq \sqrt{\sum_{i,j} \frac{1}{4n^2}} = \frac{1}{2}$. Donc il existe $r \leq \min\{r_1, r_2\}$ tel que

 $-B(x_0,r)\subset E$

 $-\det Df(x) \neq 0 \forall x \in B(x_0, r)$

 $- |||A(x)||| \le \frac{1}{2} \forall x \in B(x0, r)$

On veut montrer que f est localement inversible, donc $\forall y \in V \exists ! x \in U : f(x) = y$.

On a

$$f(x) = y \iff 0 = y - f(x)$$

$$\iff 0 = Df(x_0)^{-1}(y - f(x))$$

$$\iff x = x + Df(x_0)^{-1}(y - f(x))$$

On a

$$D\phi^{y}(x) = D^{y}(x - Df(x_0)^{-1}(f(x) - y)) = A(x)$$

On montre donc que ϕ^y est contractante, donc

$$\forall x_1, x_2 \in \overline{B}(x_0, r)$$

On veut calculer

$$\|\phi^{y}(x_{1}) - \phi^{y}(x_{2})\| = \left\| \int_{0}^{1} D\phi^{y}(x_{1} + t(x_{2} - x_{1}))(x_{2} - x_{1})dt \right\|$$

$$\leq \int_{0}^{1} \|D\phi^{y}(\ldots)(x_{2} - x_{1})dt\|$$

$$\leq \int_{0}^{1} \|\|D\phi^{y}(\ldots)\|\|\|x_{2} - x_{1}\|dt$$

$$\leq \frac{1}{2} \|x_{2} - x_{1}\|$$

Donc ϕ^y est contractante sur $B(x_0, r)$ pour tout $y \in \mathbb{R}^n$. Il nous faut encore montrer que $\phi^y(\overline{B}(x_0, r)) \subset \overline{B}(x_0, r)$

Lecture 13: theoreme d'inversion locale

Wed 14 Apr

Preuve

On a montre l'existence d'une fonction inverse en trouvant un point fixe de la fonction

$$\phi^{y}(x) = x - (Df(x_0))^{-1}(f(x) - y)$$

Il existe r > 0 tel que

- $-\overline{B}(x_0) \subset E$
- $||D\phi^y(x)||| \le \frac{1}{2}$
- $-\det(Df(x)) \neq 0 \forall x \in \overline{B}(x_0, r)$

On a montre que pour tout point $y \in \mathbb{R}^n$, ϕ^y est contractante sur $\overline{B}(x_0, r)$ et que $\phi^y(\overline{B}(x_0, r)) \subset B(x_0, r)$ pour un $y \in B(y_0, \tilde{r})$.

On a donc l'existence d'un unique point $x \in B(x_0, r) : x = \phi^y(x) \iff f(x) = y$, ou encore

$$\forall y \in B(y_0, r) =: V \exists ! x \in B(x_0, r) \cap f^{-1}(V) : f(x) = y$$

Or $B(x_0,r) \cap f^{-1}(V) =: U$ est un ouvert, et donc $f: U \to V$ est inversible et on peut donc definir une fonction inverse g.

Montrons maintenant que g est continue en montrant qu'elle est Lipschitz sur V. On veut montrer qu'il existe L > 0 tel que $\forall y_1, y_2 \in V$

$$||g(y_1) - g(y_2)|| \le L ||y_1 - y_2||$$

En notant $||x_1 - x_2||$ les preimages, on peut recerire

$$||x_1 - x_2|| = ||\phi^{y_1}(x_1) - \phi^{y_2}(x_2)||$$

$$\leq ||\phi^{y_1}(x_1) - \phi^{y_1}(x_2)|| + ||\phi^{y_1}(x_2) - \phi^{y_2}(x_2)||$$

$$\leq \frac{1}{2} ||x_1 - x_2|| + ||Df(x_0)^{-1}(y_2 - y_1)||$$

$$\leq \frac{1}{2} ||x_1 - x_2|| + |||Df(x_0)^{-1}||| ||y_2 - y_1||$$

Et donc on a

$$||x_1 - x_2|| \le 2 ||Df(x_0)^{-1}|| ||y_1 - y_2||$$

On montre que g est de classe C^1 (en utilisant le fait que f est de classe C^1). Soit $y, y_1 \in V$ et $x = g(y), x_1 = g(y_1)$.

On veut montrer que g est differentiable en y. On essaie d'ecrire un developpement limite de g en y.

On a

$$\underbrace{f(x_1)}_{y_1} = \underbrace{f(x)}_{y} + Df(x)(x_1 - x) + R_f(x_1)$$

$$Df(x)(x_1 - x) = y_1 - y - R_f(x_1)$$

$$x_1 - x = Df(x)^{-1}(y_1 - y) - Df(x)^{-1}Rf(x_1)$$

$$g(y_1) - g(y) = Df(x)^{-1}(y_1 - y) - \underbrace{Df(x)^{-1}R_f(x_1)}_{R_g(y_1)}$$

On veut montrer que $\lim_{y_1\to y}\frac{R_g(y_1)}{\|y_1-y\|}=0$

$$\lim_{y_1 \to y} \frac{R_g(y_1)}{\|y_1 - y\|} \le \lim_{y_1 \to y} \frac{\left|\left|\left|Df(x)^{-1}\right|\right|\right| \|R_f(x_1)\|}{\|y_1 - y\|}$$

$$= \lim_{y_1 \to y} \left|\left|\left|Df(x)^{-1}\right|\right|\right| \frac{\|x_1 - x\|}{\|y_1 - y\|} \frac{\|R_f(x_1)\|}{\|x_1 - x\|}$$

$$= \lim_{y_1 \to y} \left|\left|\left|Df(x)^{-1}\right|\right|\right| 2 \left|\left|\left|Df(x_0)^{-1}\right|\right|\right| \frac{\|R_f(x_1)\|}{\|x_1 - x\|}$$

Donc g est differentiable en $y \in V$ et

$$Dg(y) = Df(x)^{-1}$$
 ou $x = g(y)$

7.1 Fonctions Implicites et Hypersurfaces de \mathbb{R}^n

Considerons une fonction $\phi: U \subset \mathbb{R}^2 \to \mathbb{R}$

 $Figure\ 2-hypersurfaces$

En particulier si ϕ est differentiable en $x_0 \in U$, alors

$$\phi(x) = \underbrace{\phi(x_0) + D\phi(x_0)(x - x_0)}_{T_{\phi}^1(x) \text{ function affine en } x} + R_{\phi}(x)$$

Donc le graphe $G(T^1_{\phi,x_0})=\left\{z\in\mathbb{R}^{n+1},z=(x,y),x\in\mathbb{R}^n,y\in T^1_{\phi,x_0}\right\}$ se reecrit comme l'ensemble

$$\left\{ z \in \mathbb{R}^{n+1} : y - y_0 - \sum_{i=1}^n \frac{\partial \phi(x_0)}{\partial x_i} (x - x_0) = 0 \right\}$$

En definissant

$$v = \left(-\frac{\partial \phi}{\partial x_1}(x_0), \dots, 1\right), z = (x_1, x_2, \dots, x_n, y)$$

On peut ecrire

$$G(T_{\phi,x_0}^1) = \left\{ z \in \mathbb{R}^{n+1} : v \cdot (z - z_0) = 0 \right\}$$

Ce graphe definit un hyperplan de \mathbb{R}^{n+1} appele l'hyperplan tangent au graphe de ϕ en $z_0 = (x_0, y_0)$ On essaie de resoudre le probleme inverse, ie. decrire le plan d'une surface comme le plan d'une fonction.

Definition 39 (Hypersurfaces de classe C^k)

On dit que $\Sigma \subset \mathbb{R}^{n+1}$ est une hypersurface de classe C^k autour de z_0 si elle est le graphe d'une fonction de classe C^k autour de z_0 , cad, qu'il existe un ouvert $V \subset \mathbb{R}^{n+1}$ contenant z_0 , un indice $i \in \{1, \ldots, n+1\}$, un ouvert $U \in \mathbb{R}^n$ et une fonction $\phi: U \to \mathbb{R}$ tel que

$$\Sigma \cap V = \left\{ x \in \mathbb{R}^{n+1} : x_i = \phi(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) \right\}$$

En particulier, on considere des surfaces definies par

$$\Sigma = \left\{ x \in \mathbb{R}^{n+1} : f(x) = 0 \right\}$$

On se demande quand est-ce que Σ est une hypersurface (au moins localement autour d'un point z_0).

Si Σ est une hypersurface autour d'un point $z_0 \in \Sigma$, il existe $V \subset \mathbb{R}^{n+1}$ contenant z_0 et $\phi: U \to \mathbb{R}$ tel que

$$\Sigma \cap V = \{x : x_i = \phi(x_{ni})\}\$$

Alors on dit que la fonction ϕ est definie implicitement par la relation f(x) = 0.

Lecture 14: Fonctions Implicites

Definition 40 (Fonction Implicite)

Mon 19 Apr

Soit $f: E \subseteq \mathbb{R}^{n+1} \to \mathbb{R}$, avec E un ouvert non vide.

On definit $\Sigma = \{z \in \mathbb{R}^{n+1}, f(z) = 0\}$, et soit $z_0 = (z_{0,1}, \dots, z_{0,n+1}) \in \Sigma$.

On dit que f definit implicitement une fonction autour de z_0 si il existe un ouvert $V \subset E$ contenant z_0 , un ouvert $U \subset \mathbb{R}^n$ et un indice $i \in \{1, \ldots, n+\}$ et une fonction $\phi: U \to \mathbb{R}$ tel que

$$z_{0,i} = \phi(z_{0,1}, \dots, z_{0,i-1}, z_{0,i+1}, \dots, z_{0,n+1})$$

$$-\forall x \in \Sigma \cap V, x_i = \phi(x_{ni})^{1}$$

Alors le graphe
$$G(\phi) = \{x \in \mathbb{R}^{n+1} : x_i = \phi(x_{ni})\} = \Sigma \cap V$$

Questions

- 1. Quand est-ce que f(x) = 0 definit une fonction implicite?
- 2. Si f definit une fonction implicite, que peut-on dire sur ϕ ?

Commencons par le deuxieme point.

Supposons que f definit une fonction implicite $\phi:U\to\mathbb{R}.$ Supposons aussi que $f,\phi\in C^k.$

7.1.1 Cas n = 2

Soit f = f(x, y) et soit

$$\Sigma = \left\{ (x, y) \in \mathbb{R}^2 : f(x, y) = 0 \right\}$$

et $(x_0, y_0) \in \Sigma$

Figure 3 – voisinage

Supposons qu'il existe $\phi:]x_0-\delta,x_0+\delta[=U\to\mathbb{R}$ tel que

$$G(\phi) = \Sigma \cap V$$

^{1.} Avec la notation $z_{ni} = (z_{0,1}, \dots, z_{0,i-1}, z_{0,i+1}, \dots, z_{0,n+1})$

$$\forall x \in U : f(x, \phi(x)) = 0$$
$$y = \phi(x)$$

On note $\tilde{f}(x) = f(x, \phi(x)) = 0 \forall x \in U$, donc

$$\begin{split} 0 &= \tilde{f}' = \frac{d}{dx}(f(x,\phi(x))) \\ &= \frac{df}{\partial x}(x,\phi(x)) + \frac{df}{\partial y}(x,\phi(x)) \cdot \phi'(x) \end{split}$$

En particulier, en $(x_0, y_0 = \phi(x_0))$, on peut ecrire que

$$\frac{df}{\partial y}(x_0, y_0)\phi'(x_0) = -\frac{df}{\partial x}(x_0, y_0)$$

Donc, si $\frac{df}{\partial y}(x_0, y_0) \neq 0$, alors

$$\phi'(x_0) \coloneqq -\frac{\frac{\partial f}{\partial x}(x_0, y_0)}{\frac{\partial f}{\partial y}(x_0, y_0)}$$

De plus, pour tout x suffisamment proche de x_0

$$\phi'(x) \coloneqq -\frac{\frac{\partial f}{\partial x}(x,\phi(x))}{\frac{\partial f}{\partial y}(x,\phi(x))}$$

par le theoreme de la valeur intermediaire (la derivee partielle selon y) ne s'annulera pas.

On peut iterer l'argument, et donc, si f, ϕ sont de classe C^2 , on peut ecrire

$$0 = \tilde{f}''(x) = \frac{d}{dx}(\tilde{f}'(x))$$

Apres developpement, on remarque que, si $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$, on peut encore calculer la derivee seconde de f:

$$\phi''(x) = -\frac{1}{\frac{\partial f}{\partial y}(x,\phi(x))} \left(\frac{\partial^2 f}{\partial x^2}(x,\phi(x)) + 2\frac{\partial^2 f}{\partial x \partial y}(x,\phi(x))\phi'(x) + \frac{\partial^2 f}{\partial y^2}(x,\phi(x))(\phi'(x))^2 \right)$$

Donc, meme sans connaître ϕ explicitement, on peut construire un developpement limite de ϕ .

Graphiquement

FIGURE 4 – courbe implicite

Theorème 43 (Fonction implicite en dimension 2)

Soit $f: E \subset \mathbb{R}^2 \to \mathbb{R}$, E ouvert non vide, de classe

 C^1 , $\Sigma = \{(x,y) \in E : f(x,y) = 0\}$ et $(x_0,y_0) \in Sigma$ tel que $\frac{\partial f}{\partial y}(x_0,y_0) \neq 0$.

Alors il existe un $\delta > 0$, un ouvert $V \subset E$ contenant (x_0, y_0) et une unique fonction $\phi : U =]x_0 - \delta, x - + \delta[\rightarrow \mathbb{R}$ tel que

- $-y_0 = \phi(x_0)$
- $-f(x,\phi(x)) = 0 \forall x \in U$
- $-G(\phi) = \Sigma \cap V$

On peut facilement generaliser ce theoreme,

7.1.2 Cas n > 1

soit $f: E \subset \mathbb{R}^{n+1} \to \mathbb{R}$ de classe C^1 et $\phi: U \subset \mathbb{R}^n \to \mathbb{R}$ la fonction implicite definie par f (aussi de classe C^1) autour du point $z_0 = (x, y), x \in \mathbb{R}^n, y \in \mathbb{R}$, cad f = f(x, y)

$$f(x,\phi(x)) = 0 \forall x \in U$$

Soit $f(x) = f(x, \phi(x)) = 0 \forall x \in 0$, on a alors

$$0 = \frac{\partial \tilde{f}}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x, \phi(x)) + \frac{\partial f}{\partial y}(x, \phi(x)) \frac{\partial \phi}{\partial x_i}(x)$$

Donc, si $\frac{\partial f}{\partial y}(z_0) \neq 0$, alors pour x suffisamment proche de x_0 , on peut ecrire

$$\frac{\partial \phi}{\partial x_i}(x) = -\frac{\frac{\partial f}{\partial x_i}(x, \phi(x))}{\frac{\partial f}{\partial y}(x, \phi(x))}$$

Theorème 44

Soit $E \subset \mathbb{R}^{n+1}$ ouvert non vide,

 $f: E \to \mathbb{R}$ de classe C^1 , $\Sigma = \{z \in E, f(z) = 0\}$ et $z = (x_0, y_0)$ tel que $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$, Alors il existe $\delta > 0$, un ouvert $V \subset E$ contenant z_0 et une unique fonction $\phi: U = B(x_0, \delta) \to \mathbb{R} \in C^1$ tel que

$$-y_0 = \phi(x_0)$$

$$- \forall x \in U, f(x, \phi(x)) = 0$$

$$-G(\phi) = \Sigma \cap V$$

De plus, si f est de classe C^k , alors ϕ est de classe C^k

Exemple

Soit $f(x,y) = x^2 - y$, $\Sigma = \{(x,y) : x^2 - y = 0\}$, alors

$$y = x^2 = \phi(x)$$

f definit une fonction implicite $y = x^2 \forall x \in \mathbb{R}$.

On peut essayer d'ecrire $x = \phi(y)$

$$x^2 = y \implies x = \pm \sqrt{y}$$

Notons que, dans un voisinage de 0, on ne peut pas decrire Σ comme une fonction de y.

Exemple

Posons maintenant $f(x,y) = xe^y + ye^x$ et $\Sigma = \{(x,y) : f(x,y) = 0\}$. Notons que (x,y) = (0,0), et que

$$\frac{\partial f}{\partial x}(0,0) = 1 \ et \ \frac{\partial f}{\partial y}(0,0) = 1$$

On peut donc expliciter y en fonction de x, $y = \phi(x)$ m et on a que

$$\phi'(0) = -\frac{\frac{\partial f}{\partial x}(0,0)}{\frac{\partial f}{\partial y}(0,0)} = -1$$

Soit $f: E \subset \mathbb{R}^{n+1} \to \mathbb{R}$, $\Sigma = \{z \in E, f(z) = 0\}$, $z_0 \in \Sigma$ tel que $\frac{\partial f}{\partial y}(z_0) \neq 0$. Alors on sait qu'il existe une fonction implicite $\phi: U \subset \mathbb{R}^n \to \mathbb{R}: G(\phi) = \Sigma \cap V$

FIGURE 5 – voisinage de z_0

Alors, on peut construire l'hyperplan tangent au graphe $G(\phi)$ en z_0 qui est aussi l'hyperplan tangent a Σ en z_0 .

$$\begin{split} \Pi_{\phi,z_0} &= \left\{ (x,y) \in \mathbb{R}^{n+1} : y = \phi(x_0) + D\phi(x_0)(x - x_0) \right\} \\ &= \left\{ (x,y) \in \mathbb{R}^{n+1} : y = y_0 + \sum_{i=1}^n \frac{\partial \phi}{\partial x_i}(x_0)(x_i - x_{0i}) \right\} \\ &= \left\{ (x,y) \in \mathbb{R}^{n+1} : y = y_0 + \sum_{i=1}^n -\frac{\frac{\partial f}{\partial x_i}(x_0, y_0)}{\frac{\partial f}{\partial y}(x_0, y_0)}(x_i - x_{0i}) \right\} \\ &= \left\{ (x,y) \in \mathbb{R}^{n+1} : \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0, y_0)(x_i - x_{0i} = 0) \right\} \\ &= \left\{ z \in \mathbb{R}^{n+1} : \frac{\partial f}{\partial z_i}(z_0)(z_i - z_{0i} = 0) \right\} \\ &= \left\{ z \in \mathbb{R}^{n+1} : \nabla f(z_0) \cdot (z - z_0) = 0 \right\} \end{split}$$

Donc l'hyperplan tangent a Σ en z_0 est l'ensemble des point $z \in \mathbb{R}^{n+1}$: $z-z_0 \perp \nabla f$.

Si ∇f est nul, on ne peut pas definir l'hyperplan tangent, et donc on appelle ces points les points critiques de f.

Lecture 15: fonctions implicites-cas vectoriel

Wed 21 Apr

7.2 Cas Vectoriel

Soit $f: E \subset \mathbb{R}^{n+m} \to \mathbb{R}^m$, avec

$$f(z) = \begin{pmatrix} f_1(z) \\ \vdots \\ f_m(z) \end{pmatrix}$$

et soit $\Sigma = \{z \in E : f(z) = 0\},$ on peut reecrire ceci comme

$$\Sigma = \{ z \in E : f_i(z) = 0 \}$$
$$= \bigcap_{i=1}^{m} \Sigma_i$$

ou $\Sigma_i = \{ z \in E : f_i(z) = 0 \}.$

Exemple

Soit $f: E \subset \mathbb{R}^3 \to \mathbb{R}^2$, defini par

$$f(z_1, z_2, z_3) = \begin{pmatrix} f_1(z_1, z_2, z_3) \\ f_2(z_1, z_2, z_3) \end{pmatrix}$$

Alors

$$\Sigma = \Sigma_1 \cap \Sigma_2 = \{(z_1, z_2, z_3) \in Eh: f_1(z_1, z_2, z_3) = 0\} \cap \{(z_1, z_2, z_3) \in E: f_2(z_1, z_2, z_3) = 0\}$$

Figure 6 – surfaces intersection

Peut on representer Σ comme le graphe d'une fonction de n variables? Pour $z = (x, y), x \in \mathbb{R}^n, y \in \mathbb{R}^m$, on veut ecrire

$$y = \phi(x) : G(\phi) = \Sigma \cap V$$

On etudie d'abord le cas d'une fonction affine, soit

$$f_a: \mathbb{R}^{n+m} \to \mathbb{R}^m$$

une fonction affine, on peut donc ecrire

$$f_a(z) = Az + b, \qquad A \in \mathbb{R}^{m \times n + m}, b \in \mathbb{R}^m$$

$$Az + b = [A_1|A_2] \begin{pmatrix} x \\ y \end{pmatrix} = A_1x + A_2y + b$$

On considere maintenant

$$\Sigma = \{ z \in \mathbb{R}^{n+m} : f_a(z) = 0 \}$$

$$= \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^m : A_1 x + A_2 y + b = 0 \}$$

$$= \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^m : A_2 y = -(b + A_1 x) \}$$

Si A_2 est inversible, on peut ecrire y comme fonction unique de x

$$= \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : y = -(A_2)^{-1}(b + A_1 x)\}\$$

Dans le cas general, pour $f: E \subset \mathbb{R}^{n+m} \to \mathbb{R}^m$ de classe C1.

$$\Sigma = \{ z \in E : f(z) = 0 \},$$

On ecrit

$$f(z) = \underbrace{f(z_0) + Df(z_0) \cdot (z - z_0)}_{:=f_a(z)} + R_f(z)$$

$$= f(z_0) + [D_x f(z_0) | D_y f(z_0)] \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + R_f(z)$$

La matrice $D_x f(z_0)$ est de taille $m \times n$ et $D_y f(z_0)$ est de taille $m \times m$, on peut donc ecrire

$$f(z) \approx f_a(z) = f(z_0) + D_x f(z_0)(x - x_0) + D_y f(z_0)(y - y_0)$$

En posant $f_a(z) = 0$, on s'attend a ce que f(z) = 0 definit une fonction implicite $y = \phi(x)$ si $\det(D_y) f(z_0)$

Theorème 48 (Fonctions Implicites - Cas vectoriel)

Soit $E \subset \mathbb{R}^{n+m}$ ouvert non vide, $f: E \to \mathbb{R}^m$ de classe C^1 , $\Sigma = \{z \in E: f(z) = 0\}$, $z_0 \in \Sigma$.

 $Si \ \det(D_y f(z_0)) \neq 0$, alors il existe un ouvert $V \subset E$ contenant z_0 , un ouvert $U \subset \mathbb{R}^n$, et une fonction $\phi: U \to \mathbb{R}^m$ de classe C^1 tel que

- $-\phi(x_0) = y_0$
- $-- \ \forall x \in U, (x,\phi(x)) \subset V, f(x,\phi(x)) = 0$
- $-G(\phi) = \Sigma \cap V$
- $-\det(D_y f(x, \phi(x))) \neq 0 \forall x \in U$

$$D\phi(x) = -D_y f(x, \phi(x))^{-1} D_x f(x, \phi(x))$$

— Si f est de classe C^k , alors ϕ est aussi de classe C^k .

Preuve

On construit la fonction $F: E \to \mathbb{R}^{n+m}$, avec

$$F(x,y) = \begin{pmatrix} x \\ f(x,y) \end{pmatrix} = \begin{pmatrix} u \\ w \end{pmatrix}$$

On veut montrer que f est un diffeomorphisme local autour de $z_0 = (x_0, y_0)$:

$$DF(x_0, y_0) = D \begin{pmatrix} x \\ f(x, y) \end{pmatrix} = \begin{pmatrix} I & 0 \\ D)xf(z_0) & D_y f(z_0) \end{pmatrix}$$

On a

$$\det DF(z_0) = \det D_u f(z_0) \neq 0$$

par hypothese.

 $Donc\ F\ est\ un\ diffeomorphisme\ local.$

Il existe donc $V' \subset E$ contenant $z_0 = (x_0, y_0)$ et un ouvert $U' \subset \mathbb{R}^{n+m}$ contenant $(x_0, 0)$ tel que $F : V' \to U'$ est un diffeomorphisme

FIGURE 7 - V' vers U'

Il existe $\delta, \tilde{\delta} > 0$ tel que $\hat{U} = \left\{ (x,y) : x \in B(x_0,\delta), y \in B(0,\tilde{\delta}) \right\} \subset U'.$ Soit $V = F^{-1}(\hat{U})$ et on considere la restriction $f : V \to \hat{U}$, d'inverse $G : \hat{U} \to V$

$$F(x,y) = \begin{pmatrix} x \\ f(x,y) \end{pmatrix} = \begin{pmatrix} u \\ w \end{pmatrix}$$

On peut donc reecrire ceci comme

$$\begin{cases} x = u \\ y = \psi(u, w) = \psi(x, w) \end{cases}$$

L'existence de $\psi: \hat{U} \to \mathbb{R}^m$ est donnée par hypothèse. Donc la fonction implicitge cherchée est $\phi(x) := \psi(x,0)$. ϕ est definie sur le voisinage de x:

$$\phi: U = B(x_0, \delta) \to \mathbb{R}^m$$

En effet, on veut verifier que $f(x, \phi(x)) = 0 \forall x \in U$, donc

$$(x,0) = F \circ G(x,0) = F(G(x,0)) = F(x,\psi(x,0)) = (x,f(x,\phi(x)))$$

Et donc $f(x, \phi(x)) = 0 \forall x \in U$.

On verifie encore que $\Sigma \cap V \subset G(\phi)$.

 $En\ effet$

$$\forall (x,y) \in \Sigma \cap V$$

$$(x,y) = (G \circ F)(x,y) = G(F(x,yt))$$

$$= G(x,f(x,y)) = G(x,0) = (x,\psi(x,0)) = (x,\phi(x))$$

Donc $(x,y) \in G(\phi)$.

 ϕ est de classe C^1 par la composition de fonctions de classe C^1 .

Puisque F est un diffeomorphisme sur V, il s'ensuit que $\det DF(x,y) \neq 0 \forall (x,y) \in V$, donc en particulier, on a que

$$\det D_y f(x, \phi(x)) \neq 0 \forall x \in U$$

 $On \ pose$

$$\tilde{f}(x) = f(x, \phi(x)) = 0$$

Etant donne que

$$f(x,\phi(x)) = 0 \forall x \in U, \text{ avec } f, \phi \in C^1$$
$$0 = Df(x,\phi(x))$$
$$0 = D_x f(x,\phi(x)) + D_y f(x,\phi(x)) D\phi(x)$$

On en deduit l'egalite

Lecture 16: Extremas de fonctions

Mon 26 Apr

8 Extremas de fonctions

Definition 41 (Extremum d'une fonction)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $x^* \in E$.

On dit que f admet au point x^* un maximum global (ou absolu) si $\forall x \in E, f(x) \leq f(x^*)$

On dit que le maximum global est strict si $\forall x \in f(x) < f(x^*) \forall x \in E \setminus \{x\}.$

Le maximum est local si $\exists \delta > 0 : \forall x \in B(x^*, \delta) \cap E, f(x) \leq f(x^*).$

Le maximum local est strict si $\exists \delta > 0 \forall x \in B(x^*, \delta) \cap E \setminus x^*, f(x) < f(x^*).$

Les definitions sont les memes pour un minimum.

Par extremum local/global on etend un minimum ou un maximum de la fonction.

8.1 Extremas libres

Si l'ensemble E est ouvert

Figure 8 – extremum libre et extremum sous contraint

Soit x^* un point d'extremum pour f. On dit que x^* est libre si $x^* \in \stackrel{\circ}{E}$ et x^* est sous-contraint si $x^* \in \partial E$.

Rappel cas n=1

Soit $f: E \subset \mathbb{R} \to \mathbb{R}$, I ouvert

FIGURE 9 – fonction avec extremas

- Si f est derivable en x^* et x^* est un point d'extremum local de f, alors $f'(x^*)=0$. (condition necessaire du premier ordre).
- Si f est deux fois derivable qen x^* et x^* est minimum local de f, alors $f'(x^*) = 0$, $f''(x^*) \ge 0$ (condition necessaire du second ordre)

- Si f est deux fois differentiable sur I, $x^* \in I$ tel que $f'(x^*) = 0$ et $f''(x^*) > 0$, alors x^* est un point minimum local de f (condition suffisante du second ordre).
- Cas difficile a traiter : $f'(x^*) = 0$, $f''(x^*) = 0$. On peut soit regarder les derivees d'ordre superieur ou bien etudier le signe de $g(x) = f(x) - f(x^*)$.

8.1.1 Cas n > 1

Soit $f = f(x_1, x_2, ..., x_n) : E \subset \mathbb{R}^n \to \mathbb{R}$, E un ouvert non vide.

Figure 10 – fonctions deux variables extremas

Soit $v \in \mathbb{R}^n$, ||v|| = 1. Soit x^* un point de maximum local de f, i.e.

$$\exists \delta > 0 : \forall x \in B(x^*, \delta) \cap E, f(x) \le f(x^*)$$

On peut considerer

$$g_v(t) - f(x^* + tv), \quad t \in]-\delta, \delta[$$

Si f admet un maximum local en x^* , alors $g_v(t)$ admet un maximum local en t = 0.

Si f est differentiable en x^* , alors g_v est derivable en t=0, donc $g_v'(0)=0$.

Mais
$$g'_v(0) = D_v f(x^*) = \nabla f(x^*) \cdot v = 0 \forall v \in \mathbb{R}^n, ||v|| = 1.$$

Donc $\nabla f(x^*) = 0$

Donc la condition necessaire du premier ordre est $\nabla f(x^*) = 0$.

Definition 42

Soit $f: E \to \mathbb{R}$, E ouvert, differentiable en $x^* \in E$. On dit que x^* est un point stationnaire si $\nabla f(x^*) = 0$.

De plus, si f est deux fois differentiable en x^* , alors g_v est aussi deux fois fois differentiable en t = 0, donc $g_v''(0) \le 0$.

Mais $g_v''(0) = D_{vv} f(x^*) = v^T H_f(x^*) v \le 0 \forall v \in \mathbb{R}^n, ||v|| = 1$ Donc la condition necessaire du second ordre est donc que $v^T H_f(x^*) v \le 0 \forall v \in \mathbb{R}^n$ (pour que $f(x^*)$ soit un maximum local).

Theorème 49 (Condition suffisant du second ordre)

Soit $E \subset \mathbb{R}^n$ ouvert non vide, $f: E \to \mathbb{R}$ admettant un extremum local en $x^* \in E$.

Si f est (une fois) differentiable en x^* , alors $\nabla f(x^*) = 0$.

Si f est deux fois differentiable en x^* et

- x^* est un point de maximum local, alors $v^T H_f(x^*) v \leq 0 \forall v \in \mathbb{R}^n$.
- Si x^* est un point de minimum local alors $v^T H_f(x^*) v \geq 0 \forall v \in \mathbb{R}^n$.

Definition 43 (Matrices definies postives)

Soit $A \in \mathbb{R}^{n \times n}$, on dit que

- A est definie positive si $x^T A x > 0 \forall x \in \mathbb{R}^n \setminus \{0\}$
- A est semi-definie positive si $x^T A x \ge 0 \forall x \in \mathbb{R}^n$
- memes definitions pour A (semi-) negative
- A est indefinie si $\exists x, y : x^T A x > 0, y^T A y \leq 0$

A toute matrice $A \in \mathbb{R}^{n \times n}$, on peut associer une forme quadratique $Q_A(x) = x^T A x$, $x \in \mathbb{R}^n$

Lemme 50

Une matrice $A \in \mathbb{R}^{n \times n}$ est definie positive si et seulement si $\exists c > 0$: $x^T A x \ge c \|x\| \, \forall x \in \mathbb{R}^n$

Lemme 51

Soit $A \in \mathbb{R}^{n \times n}$. A est definie positive si et seulement si toutes les valeurs propres sont positives.

De plus c du lemme precedent est la valeur propre minimale.

Theorème 52 (Condition suffisante d'extremas)

Soit $E \subset \mathbb{R}^n$ ouvert non vide, $f: E \to \mathbb{R}$ de classe C^2 sur E, $x^* \in E$ un point stationnaire de f. (cad $\nabla f(x^* = 0)$). Si $H_f(x^*)$ est definie positive, alors x^* est un minimum local de f.

Si $H_f(x^*)$ est definie negative, alors $f(x^*)$ est un maximum local de f.

Preuve

Puisque $f \in C^2(E)$, on peut ecrire un developpement limite de f.

$$f(x) = f(x^*) + \nabla f(x^*) \cdot (x - x^*) + \frac{1}{2} (x - x^*)^T H_f(x^*) (x - x^*) + R_f(x) \forall x \in E.$$

Alors, il existe $\delta > 0$ tel que $\frac{\|R_f(x)\|}{\|x-x^*\|} \le \frac{c}{4} \forall x \in B(x,\delta) \cap E, x \ne x^*.$ Donc $f(x) \ge f(x^*) + \frac{1}{2}c \|x - x^*\|^2 - \frac{c}{4} \|x - x^*\|^2$ $= f(x^*) + \frac{c}{4} \|x - x^*\|$

Donc x^* est un minimum local strict de f.

Lecture 17: Extremas lies

Wed 28 Apr

8.2 Extremas lies

Exemple

Parmi tous les cylindres d'un volume donne \overline{V} , on cherche celui qui a une surface minimale. On a $S(R, H) = 2\pi RH + 2\pi R^2$ et $V(R, H) = \pi R^2 H$, on cherche

$$\min_{R>0, H>0} S(R, H)$$

sous la contrainte $V(R, H) = \overline{V}$

Formulation du probleme

Soit $E \subset \mathbb{R}^n$, E ouvert non vide, $f: E \to \mathbb{R}$ de classe C^1 . $g: E \to \mathbb{R}$ de classe C^1 , on cherche

$$\min_{x \in E} f(x)$$
 sous la contrainte $g(x) = 0$

De facon equivalent, si on pose $\Sigma_g = \{x \in E : g(x) = 0\},\$

$$\min_{x \in \Sigma_q} f(x)$$

Exemple

On cherche

$$\min_{(x,y)\in\mathbb{R}^2} x^2 + y^2$$

tel que x + y - 1 = 0.

Les courbes de niveau de f sont $f(x,y) = c \iff x^2 + y^2 = c$, sous la contrainte $g(x,y) = 0 \iff y = 1 - x$.

 $Si(x^*, y^*)$ est le point de minimum sous-contrainte, alors on a

$$\nabla f(x^*, y^*) \parallel \nabla g(x^*, y^*)$$

Donc $\nabla g(x^*, y^*)$ est un vecteur orthogonal a Σ_g en (x^*, y^*) (vecteur orthogonal a l'hyperplan tangent a Σ_g en (x^*, y^*)).

 $\nabla f(x^*, y^*)$ est un vecteur normal a la courbe de niveau $f(x, y) = f(x^*, y^*)$. Cette affirmation est equivalent a

$$\exists \lambda \in \mathbb{R} : \nabla f(x^*, y^*) = \lambda \nabla g(x^*, y^*)$$

Theorème 55 (Condition necessaire pour extremas lies)

Soit $E \subset \mathbb{R}^n$ ouvert non vide ($n \geq 2$), $f, g : E \to \mathbb{R}$ de classe C^1 , $z^* \in \Sigma_g$ un point d'extremum local lie. Si $\nabla g(z^*) \neq 0$, alors $\exists \lambda \in \mathbb{R}$ tel que

$$\nabla f(z^*) = \lambda \nabla g(z^*).$$

Preuve

Puisque le gradient $\nabla g(z^*) \neq 0$, on peut utiliser le theoreme des fonctions implicites.

$$\nabla g(z^*) \neq 0 \Rightarrow \exists i \in [n] : \frac{\partial g}{\partial z_i}(z^*) \neq 0$$

Supposons i = n, on note $y = z_n$, $x = (z_1, \dots, z_{n-1})$.

Grace au theoreme des fonctions implicites, on sait qu'il existe un ouvert $V \subset E$ contenant z^* , un $\delta > 0$ et $\phi : B(x^*, \delta) \to \mathbb{R}$ tel que

$$- \phi(x^*) = y^*$$

$$- \forall x \in B(x^*, \delta), (x, \phi(x)) \in V, \text{ et } g(x, \phi(x)) = 0.$$

$$-G(\phi) = \Sigma_a \cap V$$

On a

$$g(x,y) = 0 \iff y = \phi(x) \forall x \in B(x^*, \delta)$$

On definit $\tilde{f}(x) = f(x, \phi(x))$.

Si z^* est un point d'extremum local lie de f sur Σ_g , alors x^* est un point d'extremum libre libre de \tilde{f} sur $B(x^*, \delta)$.

 $Donc, \nabla_x \tilde{f}(x^*) = 0, donc$

$$\iff 0 = \frac{\partial \tilde{f}}{\partial x_i}(x^*) = \frac{\partial f}{\partial x_i}(x^*, y^*) + \frac{\partial f}{\partial y}(x^*, y^*) \frac{\partial \phi}{\partial x_i}(x^*)$$

Mais

$$\frac{\partial \phi}{\partial x_i}(x^*) = -\frac{\frac{\partial g}{\partial x_i}(x^*, y^*)}{\frac{\partial g}{\partial y} * x^*, y^*}$$

Donc

$$\frac{\partial f}{\partial x_i}(z^*) - \frac{\partial f}{\partial g}(z^*) \frac{\frac{\partial g}{\partial x_i}}{\frac{\partial g}{\partial g}(z^*)} = 0$$

On pose

$$\lambda = \frac{\partial_y f}{\partial_y g}(z^*) \Rightarrow \frac{\partial f}{\partial x_i}(z^*) = \lambda \frac{\partial g}{\partial x_i}(z^*)$$

Donc toutes les composantes sont proportionnelles et on a

$$\nabla f(z^*) = \lambda \nabla g(z^*)$$

Remarque

Si z^* est un extremum local lie de f sur Σ_g et $\nabla g(z^*) \neq 0$, alors $\exists \lambda \in \mathbb{R}$

$$\begin{cases} \nabla f(z^*) = \lambda \nabla g(z^*) \\ g(z^*) = 0 \end{cases}$$

Ensemble, ceci forme un systeme de n+1 equations.

 λ est appele multiplicateur de Lagrange

On definit la fonction de Lagrange (ou le lagrangien)

$$\mathcal{L}: E \times \mathbb{R}$$
 $\rightarrow \mathbb{R}\mathcal{L}(z, \lambda) = f(z) - \lambda g(z)$

 $On \ a \ que$

$$\nabla_{(z,\lambda)} \mathcal{L}(z,\lambda) = \begin{pmatrix} \nabla_z \mathcal{L} \\ \dots \\ \frac{\partial \mathcal{L}}{\partial \lambda} \end{pmatrix}$$

Donc, si z^* est un extremum local de f sur Σ_g , alors il existe $\lambda^* \in \mathbb{R}$: $\nabla \mathcal{L}(z^*, \lambda^*)$.

Lecture 18: Extremas sous contraintes multiples

Mon 03 May

8.3 Extremas sous contraintes multiples

Soit $E \subset \mathbb{R}^n$ ouvert non vide, et

$$f, g_1, \ldots, g_m : E \to \mathbb{R}$$

On impose m < n, pour que le probleme ne soit pas sur determine. On cherche donc

$$\min_{z \in E} f(z) \text{ sous les contraintes } g_i(z) = 0 \forall 1 \leq i \leq m$$

Soit $g = (g_1, \dots, g_m) : E \to \mathbb{R}^m$, et on definit l'ensemble faisable

$$\Sigma_g = \{ z \in E : g(z) = 0 \}$$

On cherche donc

$$\min_{z \in \Sigma_g} f(z)$$

Theorème 57 (Conditions necessaires d'optimalite)

Soit $E \subset \mathbb{R}^n$ un ouvert non vide, $f, g_1, \ldots, g_m : E \to \mathbb{R}$ de classe C^1 et $z^* \in \Sigma_g$.

Si $Rang(Dg(z^*)) = m$ (cad. les vecteurs $\nabla g_1(z^*), \ldots, \nabla g_m(z^*)$ sont lineairement independants).

Alors il existe $\overrightarrow{\lambda}^* = (\lambda_1^*, \dots, \lambda_m^*)$ tel que

$$\nabla f(z^*) = \sum_{i} \lambda_i^* \nabla g_i(z^*)$$

Donc, (z^*, λ^*) satisfait le système

$$\begin{cases} \frac{\partial f}{\partial z_1}(z^*) = \lambda_1^* \frac{\partial g_1}{\partial z_1} + \lambda_2^* \frac{\partial g_2}{\partial z_1}(z^*) + \dots \\ \frac{\partial f}{\partial z_2}(z^*) = \lambda_1^* \frac{\partial g_1}{\partial z_2} + \lambda_2^* \frac{\partial g_2}{\partial z_2}(z^*) + \dots \\ \vdots \\ \frac{\partial f}{\partial z_n}(z^*) = \lambda_1^* \frac{\partial g_1}{\partial z_n} + \lambda_2^* \frac{\partial g_2}{\partial z_n}(z^*) + \dots \\ g_1(z^*) = 0 \\ \vdots \\ g_m(z^*) = 0 \end{cases}$$

If y a donc n + m equations avec n + m inconnues.

On peut definir un probleme equivalent, en passant par la fonction lagrangienne, notamment (z^*, λ^*) est un point stationnaire de la fonction de Lagrange :

$$\mathcal{L}: E \times \mathbb{R}^m \to \mathbb{R}$$

definie par

$$\mathcal{L}(z,\lambda) = f(z) - \sum_{i=1}^{m} \lambda_i g_i(z) = f(z) - \lambda \cdot g(z)$$

8.4 Condition suffisante pour extremas locaux lies

Figure 11 – extrema local lie

Soit $\gamma(t)$ un chemin sur $\Sigma_g, \gamma(0) = z^*$, et

$$\tilde{f}(t) = f \circ \gamma(t) = f(\gamma(t))$$

si $\tilde{f}''(0) > 0$ pour tout chemin alors z^* est un point de minimum local de f sur Σ_g .

On considere

$$w^{T}(H_{f}(z^{*}))w = D_{ww}f(z^{*})\forall w \in T_{z}(\Sigma_{g}) = \{v \in \mathbb{R}^{n} : Dg(z^{*}) \cdot v = 0\}$$

Si on cherche un minimum on s'attend a ce que

$$D_{ww}f(z^*) > 0$$

Sauf qu'il faut corriger le fait que le chemin puisse etre courbe, donc la condition devient :

Soit $z^* \in \Sigma_g$ qui satisfait la condition necessaire, si

$$w^{T}(H_{f}(z^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} H_{g_{i}}(z^{*}))w > 0$$

Alors z^* est un point de minimum local de f sur Σ_g (lieu aux contraintes $g_i=0 \forall 1 \leq i \leq n$).

9 Integrales multiples au sens de Riemann

But : Etant donne

- Un sousensemble borne $E \subset \mathbb{R}^n$ et
- une fonction bornee $f: E \to \mathbb{R}$

Comme definir

$$\int_{E} f(x)dx$$

On va d'abord definir l'integrale sur un pave de $\mathbb{R}^n,$ cad un sous-ensemble de \mathbb{R}^n de la forme

$$R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$$

ou on suppose $a_i \leq b_i \quad \forall 1 \leq i \leq n$

Le volume de R est defini comme

$$Vol(R) = \prod_{j=1}^{n} (b_j - a_j)$$

On dit que R est un pave degenere s'il existe $k \in [n]$ tel que $a_k = b_k$. Dans ce cas, on aura Vol(R) = 0.

FIGURE 12 – exemple de partition

Definition 44 (Partition)

On appelle partition d'un pave $R \subset \mathbb{R}^n$ une collection finie P de paves tel que

$$- \, \bigcup_{Q \in P} Q = R$$

$$- \ \forall Q, Q' \in PQ \neq Q', \overset{\circ}{Q} \cap \overset{\circ}{Q'} = \emptyset$$

Definition 45 (Partition tensorielle)

Une partition P d'un pave R est dite tensorielle s'il existe pour tout $1 \le j \le n$.

$$a_j = t_j^0 \le t_j^1 \le \dots, t_j^{N_j} = b_j$$

tel~que

$$P = \left\{ [t_1^{\alpha_1}, t_1^{\alpha_1+1}] \times [t_1^{\alpha_2}, t_1^{\alpha_2+1}] \times \dots \times [t_1^{\alpha_n}, t_1^{\alpha_n+1}] \right\} \quad 1 \le \alpha_i \le N_i$$

On note alors

$$P = (t_1^0, \dots, t_1^{N_1}) \otimes (t_2, \dots, t_2^{N_2}) \otimes \dots \otimes (t_n^0, \dots, t_n^{N_n})$$

Definition 46 (Raffinement d'une partition)

Le raffinement d'une partition P d'un pave R.

FIGURE 13 – raffinement d'une partition

Soit P et P' deux partitions d'un pave R

On dit que P' est un raffinement de P si pour tout $Q \in P$, la collection

$$P_Q' = \{Q' \in P' : Q' \subset Q\}$$

est une partition du pave Q.

Remarque

Soit P' un raffinement de P.

 $Si~Q' \in P'~$ n'est inclus dans aucun $Q \in P,~$ alors vol(R) = 0

Remarque

P' est un raffinement de P si et seulement si

$$\forall Q' \in P' \text{ non degenere } \exists Q \in P : Q' \subset Q$$

Remarque

Si P' est un raffinement tensoriel de P, alors pour tout $Q \in P$, la collection

$$P_Q' = \{Q' \in P' : Q' \subset Q\}$$

 $est\ un\ raffinement\ tensoriel\ de\ Q.$

Lemme 61

Soit P, P' deux partitions d'un pave $R \subset \mathbb{R}^n$, alors il existe toujours un raffinement tensoriel P'' de P et P'

Preuve

Pour
$$P = \left\{ [a_1^{i,b_1^i}] \times \dots, i = 1,\dots,k \right\}$$
 et
$$P' = \left\{ [c_1^j,d_1^j] \times \dots, j = 1,\dots,k' \right\}$$

Prenons l'ensemble

$$\begin{split} \left\{a_l^1, b_l^1, \dots, a_l^k, b_l^k, c_l^1, d_l^1, \dots c_l^{k'}, d_l^{k'}\right\} \\ &= \left\{t_l^0, t_l^1, \dots, t_l^{k+k'}\right\} \ tel \ que \ t_l^0 \leq t_l^1 \leq \dots \leq t_l^{k+k'} \end{split}$$

Alors

$$P'' = (t_1^0, \dots, t_2^{k+k'}) \otimes (t_2^0, \dots, t_2^{k+k'}) \otimes \dots$$

est une partition tensorielle qui raffine a la fois P et P'

Lemme 62

Soit P une partition d'un pave $R \subset \mathbb{R}^n$.

Alors

$$vol(R) = \sum_{Q \in P} vol(Q).$$

Lecture 19: integrales multiples

Wed 05 May

Soit
$$R \subset \mathbb{R}^n$$
 un pave $(R = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n])$ et

$$f:R\to\mathbb{R}$$

borne.

Definition 47 (Somme de Darboux)

Soit P une partition du pave R, alors on definit les sommes inferieures $\underline{S}(f,P) = \sum_{Q \in P} \inf_{x \in Q} f(x) Vol(Q)$.

On peut definir les sommes superieures $\overline{S}(f,P) = \sum_{Q \in P} \sup_{x \in Q} f(x) Vol(Q)$

Lemme 63

Soit P une partition de R et P'' un raffinement de P, alors

$$\underline{S}(f, P) \le \underline{S}(f, P'') \le \overline{S}(f, P'') \le \overline{S}(f, P)$$

Pour toute partition P, P' de R on a toujours

$$\underline{S}(f, P) \le \overline{S}(f, P')$$

Preuve

Puisque P'' est un raffinement de P,

$$\forall Q \in P \quad Q = \bigcup_{\substack{Q'' \in P'' \\ Q'' \subset Q}} Q'' \quad Vol(Q) = \sum_{\substack{Q'' \in P'' \\ Q'' \subset Q}} Vol(Q'')$$

On a

$$\underline{S}(f, P) = \sum_{Q \in P} \inf_{x \in Q} f(x) Vol(Q)$$

$$= \sum_{Q \in P} \inf_{x \in Q} f(x) \sum_{\substack{Q'' \in P'' \\ Q'' \subset Q}} Vol(Q'')$$

$$\leq \sum_{Q \in P} \sum_{\substack{Q'' \in P'' \\ Q'' \subset Q}} \inf_{x \in Q''} f(x) Vol(Q'')$$

$$= \sum_{\substack{Q'' \in P'' \\ x \in Q''}} \inf_{x \in Q''} f(x) Vol(Q'') = \underline{S}(f, P'')$$

L'inegalite intermediaire est evidennte, et la troisieme se demontre de la meme maniere.

Il suffit de remarquer que tout couple P, P' de partitions de R admet un raffinement commun, nommons le P'', alors on a

$$\underline{S}(f,P) \le \underline{S}(f,P) \le \overline{S}(f,P'') \le \overline{S}(f,P')$$

Definition 48 (Fonction integrable au sens de Riemann)

Soit $R \subset \mathbb{R}^n$ un pave et $f: R \to \mathbb{R}$ bornee. On appelle integrale de Riemann inferieure $\int_R f(x) dx = \sup \{ \underline{S}(f, P) : P \text{ partition de } R \}.$

On definit de maniere analogue l'integrale de Riemannn superieure

$$\overline{\int}_{R} f(x)dx = \inf \left\{ \overline{S}(f, P) : P \text{ partition de } R \right\}$$

 $Une\ fonction\ f\ est\ dite\ integrable\ au\ sens\ de\ Riemann\ si$

$$\overline{\int}_{R} f(x)dx = \underline{\int}_{R} f(x)dx$$

dans ce cas, on note

$$\int_{R} f(x)dx$$

On note $\mathcal{R}(R)$ l'ensemble des fonctions $f:R\to\mathbb{R}$ bornees et Riemann integrables..

Remarque

Pour toute fonction $f: R \to \mathbb{R}$ bornee,

$$\int_{-R} f(x)dx \ et \ \overline{\int}_{-R} f(x)dx$$

sont bien definies.

Enn effet, $\forall P, P'$ des partitions de R, on a

$$-\infty < \underline{S}(f,P) \le \underline{\int}_R f(x) dx \le \overline{\int}_R f(x) dx \le \overline{S}(f,P') < +\infty$$

9.1 Caracterisation equivalente de fonctions integrables

Lemme 65

Soit $R \subset \mathbb{R}^n$ et $f: R \to \mathbb{R}$ bornee.

f est Riemann-inntegrable si et seulement si $\forall \epsilon > 0$, il existe une partition P_{ϵ}

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) < \epsilon$$

Preuve

f integrable implique qu'il existe une partition P_{ϵ} tel que . . .

$$\int_{R} f(x) = \underbrace{\int_{-R}} f(x) dx = \sup_{P \ partition \ de \ R} \underline{S}(f, P)$$

Alors

$$\exists P_\epsilon': \underline{S}(f,P_\epsilon') \geq \underline{\int}_R f(x) dx - \frac{\epsilon}{2} = \int_R f(x) dx - \frac{\epsilon}{2}$$

et

$$\int_{R} f(x) dx = \overline{\int}_{R} f(x) dx = \inf_{P \ partition \ de \ R} \overline{S}(f, P)$$

 $et\ donc$

$$\exists P_{\epsilon}'' : \overline{S}(f, P_{\epsilon}'') \le \int_{R} f(x) dx + \frac{\epsilon}{2}$$

Soit maintenant P_{ϵ} un raffinement commun de P'_{ϵ} et P''_{ϵ} , alors

$$\overline{S}(f, P_{\epsilon}) \leq \overline{S}(f, P_{\epsilon}'') \leq \int_{R} f(x)dx + \frac{\epsilon}{2}$$

et

$$\underline{S}(f, P_{\epsilon}) \ge \underline{S}(f, P_{\epsilon}) \ge \int_{R} f(x) dx - \frac{\epsilon}{2}$$

On montre la direction inverse

$$\int_{R} f(x)dx \leq \overline{S}(f, P_{\epsilon})$$

$$\int_{R} f(x)dx \geq \underline{S}(f, P_{\epsilon})$$

$$\overline{\int}_{R} f(x)dx - \underline{\int}_{R} f(x)dx \le \overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) \le \epsilon$$

Puise que ϵ est arbitraire, on a que $\overline{\int}_R f(x) dx = \underline{\int}_R f(x) dx$ donc f est Riemann integrable.

Theorème 66

Soit $R \subset \mathbb{R}^n$ un pave et $f: R \to \mathbb{R}$ une fonction continue. Alors f est Riemann-integrable.

Preuve

R est compact, donc f est uniformement continue

$$\forall \epsilon > 0, \exists \delta_{\epsilon} > 0 : \forall x, y \in R, ||x - y|| < \delta_{\epsilon} \Rightarrow |f(x) - f(y)| < \epsilon$$

On peut toujours construire une partition P de R tel que

$$\forall Q \in P, \forall x, y \in Q : ||x - y|| < \delta_{\epsilon}$$

On pose P une partition tensorielle $\forall Q$ a des cotes de longueur h, alors

$$\forall x, y \in Q : ||x - y|| = \sqrt{\sum (x_i - y_i)^2} \le h\sqrt{n} < \delta_{\epsilon}$$

Il suffit donc de prendre $h < \frac{\delta_{\epsilon}}{\sqrt{n}}$

$$\begin{split} \overline{S}(f,P) - \underline{S}(f,P) &= \sum_{Q \in P} (\sup_{x \in Q} f(x) - \inf_{x \in Q} f(x)) Vol(Q) = \sum_{Q \in P} (\max_{x \in Q} f(x) - \min_{x \in Q} f(x)) Vol(Q) \\ &= \sum_{Q \in P} (f(\overline{x}_Q) - f(\underline{x}_Q)) Vol(Q) \\ &< \sum_{Q \in P} \epsilon Vol(Q) = \epsilon Vol(Q) \end{split}$$

Donc $\forall \epsilon > 0$, on a trouve une partition P_{ϵ} tel que

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) < \epsilon$$

 $Donc\ f\ est\ Riemann-integrable.$

Soit $R \subset \mathbb{R}^n$ un pave et $\hat{R} \subset \mathbb{R}^n$ un autre apve tel que $R \subset \hat{R}$.

Soit $f:R\to\mathbb{R}$ bornee et considerons le prolongement par 0 de f sur $\hat{R}:\hat{f}:\hat{R}\to\mathbb{R}.$

Alors, f est Riemann integrable sur R si et seulement si \hat{f} est Riemann-integrable sur \hat{R} .

9.2 Formule d'integrales iterees

Soit
$$R \subset \mathbb{R}^{n+m}$$
, $\forall z \in R : z = \underbrace{(z_1, \dots, z_n, \underbrace{z_{n+1}, \dots, z_{n+m}})}_{x \in \mathbb{R}^n}$.
Notons $R = \underbrace{[a_1, b_1] \times \dots \times [a_n, b_n]}_{R^{(1)}} \times \underbrace{[a_{n+1}, b_{n+1}] \times \dots \times [a_{n+m}, b_{n+m}]}_{R^{(2)}}$

Theorème 67 (de Fubini)

Soit $f: R \to \mathbb{R}$ une fonction bornee et Riemann-integrable,

$$f(x,y), x \in R^{(1)}, y \in R^{(2)}.$$

 $Si \ \forall y \in R^{(2)} \ la \ fonction \ f(\cdot,y) : R^{(1)} \to \mathbb{R} \ est \ Riemann-integrable, \ alors \ la \ fonction$

$$y \mapsto G(y) = \int_{R^{(1)}} f(x, y) dx : R^{(2)} \to \mathbb{R}$$

est aussi Riemann-integrable sur $R^{(2)}$ et

$$\int_{R} f(z)dz = \int_{R^{(2)}} G(y)dy = \int_{R^{(2)}} (\int_{R^{(1)}} f(x,y)dx)dy$$

Corollaire 68

 $Si \ f : \mathbb{R} \to \mathbb{R} \ est \ continue, \ alors$

$$\int_{R} f(z)dz = \int_{R^{(1)}} (\int_{R^{(2)}} f(x,y)dy)dx = \int_{R^{(2)}} (\int_{R^{(1)}} f(x,y)dx)dy$$

Lecture 20: Proprietes de l'integrale de Riemann

Mon 10 May

9.3 Integrabilite sur un domaine quelconque

Definition 49

Soit $E \subset \mathbb{R}^n$ borne et $f: E \to \mathbb{R}$ bornee.

Soit $R \subset \mathbb{R}^n$ un pave contenant E et $\tilde{f}: R \to \mathbb{R}$ le prolongement de f par au dehors de E,

$$\tilde{f}(x) = f(x), x \in E, \tilde{f}(x) = 0$$
si $x \in R \setminus E$

On dit que f est integrable au sens de Riemann sur E, si $\tilde{f} \in \mathcal{R}(R)$ (est Riemann-integrable sur R).

Dans ce cas, on note

$$\int_{E} f(x)dx = \int_{R} \tilde{f}(x)dx$$

Remarque

Cette definition de depend pas du choix de R.

9.4 Proprietes de l'integrale de Riemann

— Linearite : $\forall f, g \in \mathcal{R}(E), \forall \alpha, \beta \in \mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

Il s'ensuit que $\mathcal{R}(E)$ est un espace vectoriel

— Monotonie : $\forall f, g \in \mathcal{R}(E)$, si $f(x) \leq g(x) \forall x \in E$, alors

$$\int_{E} f(x)dx \le \int_{E} g(x)dx$$

— Si $f \in \mathcal{R}(E)$, alors $|f| \in \mathcal{R}(E)$, $f_+ = \max\{f, 0\} \in \mathcal{R}(E)$, $f_- = \max\{-f, 0\} \in \mathcal{R}(E)$ On montre d'abord que $f \in \mathcal{R}(E) \Rightarrow f_+ \in \mathcal{R}(E)$. $f \in \mathcal{R}(E) \Rightarrow \exists R \subset \mathbb{R}^n$ contenant E et $\tilde{f} \in \mathcal{R}(R)$.

Donc $\forall \epsilon$, il existe une partition P_{ϵ} de R tel que

$$\overline{S}(\tilde{f}, P_{\epsilon}) - \underline{S}(\tilde{f}, P_{\epsilon}) < \epsilon$$

$$\forall Q \in P_e \text{ on a } \sup_{Q} \tilde{f}_+ - \inf_{Q} \tilde{f}_+ \leq \sup_{Q} \tilde{f} - \inf_{Q} \tilde{f}$$

Si sup $\tilde{f} \ge \inf_Q \tilde{f} \ge 0$, alors $\tilde{f}_+ = f$ sur Q, et on a egalite.

Si $\inf_Q \tilde{f} \leq \sup_Q \tilde{f} \leq 0$, alors $\tilde{f}_+ = 0$, et on a l'inegalite.

Si
$$\sup_{Q} \tilde{f} \ge 0 \ge \inf_{Q} \tilde{f}$$
, alors $\sup_{Q} \tilde{f}_{+} - \inf_{Q} \tilde{f}_{+} = \sup_{Q} \tilde{f} \le \sup_{Q} \tilde{f} - \inf_{Q} \tilde{f}$

Ce qui montre l'inegalite, et ce qui implique que \tilde{f}_+ est integrable.

Mais alors f_- est integrable et $|f| = f_+ - f_{\in} \mathcal{R}(E)$

— Si $f \in \mathcal{R}(E)$, alors $|\int_E f(x)dx| \leq \int_E |f(x)|dx$ En effet, on a

$$f \in \mathcal{R}(E) \Rightarrow |f| \in \mathcal{R}(E)$$
, de plus

$$f(x) \le |f(x)| \Rightarrow \int_E f(x)dx \le \int_E |f(x)|dx$$
$$-f(x) \le |f| \forall x \in E \Rightarrow -\int_E f(x)dx \le \int_E |f(x)|dx$$

— Si $f, g \in \mathcal{R}(E)$, alors $fg \in \mathcal{R}(E)$ Si $f, g \in \mathcal{R}(E)$, f, g sont bornes. Soit $M \geq 0$: $f(x) \leq M, g(x) \leq M \forall x \in E$, alors $\forall \epsilon > 0$, il existe un pave $R \subset \mathbb{R}^n$ contenant E et une partition P_{ϵ} de R tel que

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) \le \frac{\epsilon}{2M}$$

$$\overline{S}(g, P_{\epsilon}) - \underline{S}(g, P_{\epsilon}) \le \frac{\epsilon}{2M}$$

Maintenant, $\forall Q \in P_{\epsilon}$, alors

$$\sup Qfg - \inf_{Q} fg \le \sup_{Q} f \sup_{Q} g - \inf_{Q} \inf_{g}$$

$$\le \sup_{A \le M} f(\sup g - \inf g) + \inf_{A \le M} g(\sup f - \inf f)$$

9.5 Ensembles mesurables au sens de Jordan

Definition 50 (Ensemble mesurable au sens de Jordan)

On dit que $E \subset \mathbb{R}^n$ borne est mesurable au sens de Jordan (ou Jordan-mesurable) si la fonction $\mathbb{I}_E : E \to \mathbb{R}$, $\mathbb{I}_E(x) = 1 \forall x \in E$ est integrable sur E au sens de Riemann.

Dans ce cas, on pose $Vol(E) = \int_E \mathbb{I}_E(x) dx$.

On dit que E est negligeable si E est Jordan mesurable et Vol(E) = 0.

9.5.1 Caracterisation des ensembles

Ensembles mesurables

E mesurable $\iff \int_E \mathbb{I}_E(x) dx$ existe $\mathbb{I}_E \in \mathcal{R}(E)$, donc, $\forall \epsilon > 0$, il existe un pave $R \subset \mathbb{R}^n$ contenant E et une partition P_{ϵ} de R tel que

$$\begin{split} \overline{S}(\mathbb{I}_{E}, P_{\epsilon}) - \underline{S}(\mathbb{I}_{E}, P_{\epsilon}) &< \epsilon \\ \overline{S}(\mathbb{I}_{E}, P_{\epsilon}) - \underline{S}(\mathbb{I}_{E}, P_{\epsilon}) &= \sum_{Q \in P_{\epsilon}} (\sup_{Q} \mathbb{I}_{E} - \inf_{Q} \mathbb{I}_{E}) Vol(Q) \\ &= \sum_{\substack{Q \in P_{\epsilon} \\ Q \cap B \setminus E \neq \emptyset \\ Q \cap B \setminus E \neq \emptyset}} Vol(Q) \end{split}$$

Lemme 70

Soit $e \subset \mathbb{R}^n$ borne et $R \subset \mathbb{R}^n$ un pave contenant.

Alors E est mesurable au sens de Jordan si et seulement si $\forall \epsilon > 0$, il existe une partition P_{ϵ} de R tel que

$$\sum_{\substack{Q \in P_{\epsilon} \\ Q \cap E \neq \emptyset \\ Q \cap R \setminus E \neq \emptyset}} Vol(Q) < \epsilon$$

Ensembles negligeables

Lemme 71

Soit $E \subset \mathbb{R}^n$ borne, E est negligeable si et seulement si $\forall \epsilon > 0$, il existe $K \in \mathbb{N}^*$ et une collection de paves tel que $E \subset \bigcup_{i=1}^L Q_i$ et $\sum_{i=1}^L \operatorname{Vol}(Q_i) \leq \epsilon$

Preuve

 $E \ mesurable \Rightarrow \exists \{Q_1, \dots, Q_L\} : E \subset \bigcup Q_i, \sum \operatorname{Vol}(Q_i) < \epsilon$ $Donc \ E \ mesurable \iff \mathbb{I}_E \in \mathcal{R}(E) \ et \int_E \mathbb{I}_E dx = 0.$ $Soit \ R \ un \ pave \ contenant \ E, \ \forall \epsilon > 0, \exists P_\epsilon \ de \ R.$

$$\overline{S}(\mathbb{I}_E, P_{\epsilon}) - \underline{S}(\mathbb{I}_E, P_{\epsilon}) \le \epsilon$$

Donc, il faut que $\mathbb{S}(\mathbb{I}_E, P_{\epsilon}) < \epsilon$

$$\mathbb{S}(\mathbb{I}_E, P_{\epsilon}) = \sum_{Q \cap E \neq \emptyset} \operatorname{Vol} Q < \epsilon$$

Supposons que $\forall \epsilon > 0$, il existe une collection $\{Q_1, \ldots, Q_L\}$ telle que $E \subset \bigcup Q_i, \sum_i \operatorname{Vol}(Q_i) < \epsilon$

Il existe toujours une partition tensorielle P tel que

$$Q_i = \bigcup_{\substack{Q \in P \\ Q \in Q_i}} Q$$

$$\mathbb{S}(\mathbb{I}_E, P) = \sum_{\substack{Q \in P \\ Q \cap E \neq \emptyset}} \operatorname{Vol} Q = \sum_{i=1}^L \sum_{\substack{Q \in P_\epsilon \\ Q \subset Q_i}} \operatorname{Vol}(Q) < \epsilon$$

Donc

$$\overline{S}(\mathbb{I}_E, P) - \underline{S}(\mathbb{I}_E, P) < \epsilon$$

$$\overline{S}(\mathbb{I}_E, P) < \epsilon \Rightarrow \square$$

Theorème 72

Un ensemble borne $E \subset \mathbb{R}^n$ est mesurable si et seulement si ∂E est negligeable.

Corollaire 73

Soient $E, F \subset \mathbb{R}^n$ borne et mesurables, alors

 $-E \cap F, E \cup F, E \setminus F, \stackrel{\circ}{E}, \overline{E} \text{ sont mesurables.}$

Preuve

— $\mathbb{I}_{E\cap F} = \mathbb{I}_E\mathbb{I}_F$, idem pour le reste.

Lecture 20: Proprietes de l'integrale de Riemann

Mon 10 May

9.6 Integrabilite sur un domaine quelconque

Definition 51

Soit $E \subset \mathbb{R}^n$ borne et $f: E \to \mathbb{R}$ bornee.

Soit $R \subset \mathbb{R}^n$ un pave contenant E et $\tilde{f}: R \to \mathbb{R}$ le prolongement de f par au dehors de E,

$$\tilde{f}(x) = f(x), x \in E, \tilde{f}(x) = 0$$
si $x \in R \setminus E$

On dit que f est integrable au sens de Riemann sur E, si $\tilde{f} \in \mathcal{R}(R)$ (est Riemann-integrable sur R).

Dans ce cas, on note

$$\int_{E} f(x)dx = \int_{B} \tilde{f}(x)dx$$

Remarque

Cette definition de depend pas du choix de R.

9.7 Proprietes de l'integrale de Riemann

— Linearite : $\forall f, g \in \mathcal{R}(E), \forall \alpha, \beta \in \mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g$$

Il s'ensuit que $\mathcal{R}(E)$ est un espace vectoriel

— Monotonie : $\forall f, g \in \mathcal{R}(E)$, si $f(x) \leq g(x) \forall x \in E$, alors

$$\int_{E} f(x)dx \le \int_{E} g(x)dx$$

— Si $f \in \mathcal{R}(E)$, alors $|f| \in \mathcal{R}(E)$, $f_{+} = \max\{f, 0\} \in \mathcal{R}(E)$, $f_{-} = \max\{-f, 0\} \in \mathcal{R}(E)$ On montre d'abord que $f \in \mathcal{R}(E) \Rightarrow f_{+} \in \mathcal{R}(E)$. $f \in \mathcal{R}(E) \Rightarrow \exists R \subset \mathbb{R}^{n}$ contenant E et $\tilde{f} \in \mathcal{R}(R)$.

Donc $\forall \epsilon$, il existe une partition P_{ϵ} de R tel que

$$\overline{S}(\tilde{f}, P_{\epsilon}) - \underline{S}(\tilde{f}, P_{\epsilon}) < \epsilon$$

$$\forall Q \in P_e \text{ on a } \sup_{Q} \tilde{f}_+ - \inf_{Q} \tilde{f}_+ \leq \sup_{Q} \tilde{f} - \inf_{Q} \tilde{f}$$

Si $\sup \tilde{f} \geq \inf_Q \tilde{f} \geq 0,$ alors $\tilde{f}_+ = f$ sur Q, et on a egalite.

Si $\inf_Q \tilde{f} \leq \sup_Q \tilde{f} \leq 0$, alors $\tilde{f}_+ = 0$, et on a l'inegalite.

$$\operatorname{Si}\sup_{Q}\tilde{f}\geq 0\geq \inf_{Q}\tilde{f},\operatorname{alors}\sup_{Q}\tilde{f}_{+}-\inf_{\stackrel{Q}{\underbrace{Q}}}\tilde{f}_{+}=\sup_{Q}\tilde{f}\leq \sup_{Q}\tilde{f}-\inf_{Q}\tilde{f}$$

Ce qui montre l'inegalite, et ce qui implique que \tilde{f}_+ est integrable.

Mais alors f_- est integrable et $|f| = f_+ - f_{\in} \mathcal{R}(E)$

— Si $f \in \mathcal{R}(E)$, alors $|\int_E f(x)dx| \leq \int_E |f(x)|dx$ En effet, on a

$$\begin{split} f \in \mathcal{R}(E) \Rightarrow |f| \in \mathcal{R}(E), \text{ de plus} \\ f(x) \leq |f(x)| \Rightarrow \int_E f(x) dx \leq \int_E |f(x)| dx \\ -f(x) \leq |f| \forall x \in E \Rightarrow -\int_E f(x) dx \leq \int_E |f(x)| dx \end{split}$$

— Si $f, g \in \mathcal{R}(E)$, alors $fg \in \mathcal{R}(E)$ Si $f, g \in \mathcal{R}(E)$, f, g sont bornes. Soit $M \geq 0$: $f(x) \leq M, g(x) \leq M \forall x \in E$, alors $\forall \epsilon > 0$, il existe un pave $R \subset \mathbb{R}^n$ contenant E et une partition P_{ϵ} de R tel que

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) \le \frac{\epsilon}{2M},$$

$$\overline{S}(g, P_{\epsilon}) - \underline{S}(g, P_{\epsilon}) \le \frac{\epsilon}{2M},$$

Maintenant, $\forall Q \in P_{\epsilon}$, alors

$$\sup Qfg - \inf_{Q} fg \le \sup_{Q} f \sup_{Q} g - \inf_{Q} \inf_{g}$$

$$\le \underbrace{\sup_{\leq M} f(\sup g - \inf g)}_{\le M} + \underbrace{\inf_{\leq M} g(\sup f - \inf f)}_{\le M}$$

9.8 Ensembles mesurables au sens de Jordan

Definition 52 (Ensemble mesurable au sens de Jordan)

On dit que $E \subset \mathbb{R}^n$ borne est mesurable au sens de Jordan (ou Jordan-mesurable) si la fonction $\mathbb{I}_E : E \to \mathbb{R}$, $\mathbb{I}_E(x) = 1 \forall x \in E$ est integrable sur E au sens de Riemann.

Dans ce cas, on pose $Vol(E) = \int_E \mathbb{I}_E(x) dx$.

On dit que E est negligeable si E est Jordan mesurable et $\operatorname{Vol}(E) = 0$.

9.8.1 Caracterisation des ensembles

Ensembles mesurables

E mesurable $\iff \int_E \mathbb{I}_E(x) dx$ existe $\mathbb{I}_E \in \mathcal{R}(E)$, donc, $\forall \epsilon > 0$, il existe un pave $R \subset \mathbb{R}^n$ contenant E et une partition P_{ϵ} de R tel que

$$\begin{split} \overline{S}(\mathbb{I}_{E}, P_{\epsilon}) - \underline{S}(\mathbb{I}_{E}, P_{\epsilon}) &< \epsilon \\ \overline{S}(\mathbb{I}_{E}, P_{\epsilon}) - \underline{S}(\mathbb{I}_{E}, P_{\epsilon}) &= \sum_{Q \in P_{\epsilon}} (\sup_{Q} \mathbb{I}_{E} - \inf_{Q} \mathbb{I}_{E}) Vol(Q) \\ &= \sum_{\substack{Q \in P_{\epsilon} \\ Q \cap E \neq \emptyset \\ Q \cap R \setminus E \neq \emptyset}} Vol(Q) \end{split}$$

Lemme 75

Soit $e \subset \mathbb{R}^n$ borne et $R \subset \mathbb{R}^n$ un pave contenant.

Alors E est mesurable au sens de Jordan si et seulement si $\forall \epsilon > 0$, il existe

une partition P_{ϵ} de R tel que

$$\sum_{\substack{Q \in P_{\epsilon} \\ Q \cap E \neq \emptyset \\ Q \cap R \setminus E \neq \emptyset}} Vol(Q) < \epsilon$$

Ensembles negligeables

Lemme 76

Soit $E \subset \mathbb{R}^n$ borne, E est negligeable si et seulement si $\forall \epsilon > 0$, il existe $K \in \mathbb{N}^*$ et une collection de paves tel que $E \subset \bigcup_{i=1}^L Q_i$ et $\sum_{i=1}^L \operatorname{Vol}(Q_i) \leq \epsilon$

Preuve

 $E \ mesurable \Rightarrow \exists \{Q_1, \dots, Q_L\} : E \subset \bigcup Q_i, \sum \operatorname{Vol}(Q_i) < \epsilon$ $Donc \ E \ mesurable \iff \mathbb{I}_E \in \mathcal{R}(E) \ et \int_E \mathbb{I}_E dx = 0.$ $Soit \ R \ un \ pave \ contenant \ E, \ \forall \epsilon > 0, \exists P_\epsilon \ de \ R.$

$$\overline{S}(\mathbb{I}_E, P_{\epsilon}) - S(\mathbb{I}_E, P_{\epsilon}) < \epsilon$$

Donc, il faut que $\mathbb{S}(\mathbb{I}_E, P_{\epsilon}) < \epsilon$

$$\mathbb{S}(\mathbb{I}_E,P_\epsilon) = \sum_{Q\cap E\neq\emptyset}\operatorname{Vol} Q < \epsilon$$

Supposons que $\forall \epsilon > 0$, il existe une collection $\{Q_1, \ldots, Q_L\}$ telle que $E \subset \bigcup Q_i, \sum_i \operatorname{Vol}(Q_i) < \epsilon$

Il existe toujours une partition tensorielle P tel que

$$Q_i = \bigcup_{\substack{Q \in P \\ Q \in Q_i}} Q$$

$$\mathbb{S}(\mathbb{I}_E, P) = \sum_{\substack{Q \in P \\ Q \cap E \neq \emptyset}} \operatorname{Vol} Q = \sum_{i=1}^L \sum_{\substack{Q \in P_\epsilon \\ Q \subset Q_i}} \operatorname{Vol}(Q) < \epsilon$$

Donc

$$\overline{S}(\mathbb{I}_E, P) - \underline{S}(\mathbb{I}_E, P) < \epsilon$$

$$\overline{S}(\mathbb{I}_E, P) < \epsilon \Rightarrow \square$$

Theorème 77

Un ensemble borne $E \subset \mathbb{R}^n$ est mesurable si et seulement si ∂E est negligeable.

Corollaire 78

Soient $E, F \subset \mathbb{R}^n$ borne et mesurables, alors

 $-E \cap F, E \cup F, E \setminus F, \stackrel{\circ}{E}, \overline{E} \text{ sont mesurables.}$

Preuve

— $\mathbb{I}_{E\cap F} = \mathbb{I}_E \mathbb{I}_F$, idem pour le reste.

Lecture 21: caracterisation des fonctions integrables

Wed 12 May

Theorème 79

Un ensemble borne $E \subset \mathbb{R}^n$ est mesurable au sens de Jordan si et seulement $si \ \partial E \ est \ negligeable.$

Preuve

" \Rightarrow " E mesurable implique ∂E negligeable.

Soit $R \subset \mathbb{R}^n$ un pave contenant E, alors $\mathbb{I}_E \subset \mathcal{R}(R)$, donc $\forall \epsilon > 0$, il existe une partition P_{ϵ} du pave R telle que

$$\overline{S}(\mathbb{I}_E, P_{\epsilon}) - \underline{S}(\mathbb{I}_E, P_{\epsilon}) = \sum_{Q \in P_{\epsilon}} \operatorname{Vol} Q < \epsilon$$

Soit $\mathcal{E} = \{ Q \in P_{\epsilon} : Q \cap E \neq \emptyset, Q \cap R \setminus E \neq \emptyset \}.$

Par hypothese,

$$\sum_{Q \in \mathcal{E}} \operatorname{Vol} Q < \epsilon$$

De plus, si $\forall x \in \partial E$, il existe au moins un $Q \in P_{\epsilon}$ qui le contient. Alors soit $x \in \overset{\circ}{Q}$, soit $x \in \partial Q$. Si $x \in \overset{\circ}{Q} \Rightarrow Q \in \mathcal{E}$.

$$\partial E \subset \bigcup_{\substack{Q \in \mathcal{E} \\ A}} \bigcup_{\substack{Q \in P_{\epsilon} \\ B}} \partial Q$$

Notons que $\forall Q \in P_{\epsilon}, \partial Q = \bigcup_{i=1}^{2n} R_i, \operatorname{Vol} R_i = 0.$

Donc on a recouvert ∂E par un nombre fini de paves et

$$Vol(A \cup B) = Vol A + Vol B \le \epsilon$$

Donc ∂E est negligeable.

 $\Leftarrow \partial E \Rightarrow E \text{ mesurable.}$

 $\partial E \ negligeable \Rightarrow \mathbb{I}_{\partial E} \in \mathcal{R}(R) \ et \int_{R} \mathbb{I}_{\partial E}.$ $\forall \epsilon > 0, \ \exists P_{\epsilon} \ une \ partition \ de \ R \ telle \ que$

$$\overline{S}(\mathbb{I}_{\partial E}, P_{\epsilon}) = \sum_{\substack{Q \in P_{\epsilon} \\ Q \cap \partial E \neq \emptyset}} \operatorname{Vol} Q$$

Remarque

 $Si \ Q \in \mathcal{E}, \ alors \ Q \cap \partial E \neq \emptyset$

Ainsi

$$\overline{S}(\mathbb{I}_{\partial E},P_{\epsilon}) - \underline{\mathbb{I}_{E},P_{\epsilon}} = \sum_{Q \in \mathcal{E}} \operatorname{Vol} Q \leq \sum_{\substack{Q \in P_{\epsilon} \\ Q \cap \partial E \neq \emptyset}} \operatorname{Vol} Q < \epsilon$$

9.9 Caracterisation des fonctions integrables

Theorème 81

Soit $R \subset \mathbb{R}^n$ un pave et $f: R \to \mathbb{R}$ bornee tel que l'ensemble des points de discontinuite de f dans R soit negligeable. Alors $f \in \mathcal{R}(R)$.

Preuve

Soit N l'ensemble des points de discontinuite de f dans R et $M = \sup_{x \in R} |f(x)|$. N negligeable implique que $\forall \epsilon > 0$, il existe une partition P_{ϵ} de R telle que $\mathbb{I}_N \in \mathcal{R}(R)$ et $\int_R \mathbb{I}_N = 0$.

Donc $\overline{S}(\mathbb{I}_N, P_{\epsilon}) < \frac{\epsilon}{1+2M}$.

Soit $K = \bigcup_{\substack{Q \in P_{\epsilon} \\ Q \cap N = \emptyset}} Q$, une union finie de paves compacts, donc K est compact.

De plus, f est uniformement continue sur K.

Donc $\forall \epsilon > 0 \exists \delta_{\epsilon} : \forall x, y \in K, ||x - y|| < \delta_{\epsilon}, \text{ on a que } |f(x) - f(y)| < \frac{\epsilon}{1 + 2\operatorname{Vol}(R)}.$ On peut toujours raffiner la partition

$$P_K = \{ Q \in P_{\epsilon}, Q \subset K \}$$

de telle sorte que $\forall Q \in P_K, \forall x, y \in Q ||x - y|| < \delta_{\epsilon}$. Ainsi, soit $P'_{\epsilon} = \{Q \in P_{\epsilon}, Q \cap N \neq \emptyset\} \cup P_K$

$$\begin{split} \overline{S}(f,P_{\epsilon}) - \underline{S}(f,P_{\epsilon}) &= \sum_{Q \in P_K} (\sup f - \inf f) \operatorname{Vol} Q + \sum_{Q \in P_{\epsilon},Q \cap N \neq \emptyset} (\sup f - \inf f) \operatorname{Vol} Q \\ &\leq \frac{\epsilon}{1 + 2 \operatorname{Vol} R} \sum_{Q \in P_K} + 2M \sum_{Q \in P_{\epsilon},Q \cap N \neq \emptyset} \operatorname{Vol} Q < \epsilon \quad \quad \Box \end{split}$$

Corollaire 82

Soit $E \subset \mathbb{R}^n$ borne et mesurable et $f: E \to \mathbb{R}$ continue sur $\overset{\circ}{E}$ et bornee.

Alors $f \in \mathcal{R}(E)$.

Preuve

Soit $R \subset \mathbb{R}^n$ un pave contenant E, etudions

$$\tilde{f}:R\to\mathbb{R}^n$$

 $le\ prolongement\ par\ 0\ de\ f\ sur\ R.$

L'ensemble \tilde{N} des points de discontinuite de \tilde{f} est surement contenu dans ∂E qui est negligeable, donc $\tilde{f} \in \mathcal{R}(R) \Rightarrow f \in \mathcal{R}(E)$.

Corollaire 83

Soit $E \subset \mathbb{R}^n$ est borne, mesurable et ferme (compact) et $f : E \to \mathbb{R}$ continue. Alors $f \in \mathcal{R}(E)$.

9.10 Proprietes de l'integrale de Riemann

Soit $E \subset \mathbb{R}^n$ borne mesurable et $f: E \to \mathbb{R}$ integrable. Alors

$$\inf_{x \in E} f(x) \operatorname{Vol} E \le \int_{E} f(x) dx \le \sup_{x \in E} f(x) \operatorname{Vol} E$$

Preuve

 $f(x) \leq \sup_{x \in E} f(x) \forall x \in E$, et la fonction constante = $\sup_{y \in E} f(y)$ est integrable, donc

$$\int_{E} f(x)dx \le \int_{E} (\sup_{y \in E} f(y))dy$$

Si $E \subset \mathbb{R}^n$ est borne, mesurable, compact et connexe par arcs et $f \in C^0(E)$, alors

$$\exists x_0 \in E : \int_E f(x)dx = f(x_0) \operatorname{Vol} E$$

Preuve

Par le resultat precedent. on a que

$$\min_{f} \operatorname{Vol} E \leq \int_{E} f(x) dx \leq \max_{E} f \operatorname{Vol} E$$

Puisque f prend toutes les valeurs entre $\min_E f$ et $\max_E f$.

Donc
$$\exists x_0 \in E : f(x_0) \operatorname{Vol} E = \int_E f$$
.

Soit $E_1, E_2 \subset \mathbb{R}^n$ bornes tel que $E_1 \cap E_2$ est negligeable.

Soit $f: E_1 \cup E_2 \to \mathbb{R}$ borne.

Si $f|_{E_1} \in \mathcal{R}(E_1)$ et $f|_{E_2} \in \mathcal{R}(E_2)$, alors $f \in \mathcal{R}(E_1 \cup E_2)$, alors

$$\int_{E_1 \cup E_2} f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx$$

De plus, si E_1, E_2, E sont mesurables, alors $f|_{E_1} \in \mathcal{R}(E_1), f|_{E_2} \in \mathcal{R}(E_2)$ et on a a nouveau

$$\int_{E_1 \cup E_2} f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx$$

9.11 Formule des integrales iterees

Definition 53 (Domaine simple)

Soit $E \subset \mathbb{R}^{n+1}$, $z = (x, y), x \in \mathbb{R}^n, y \in \mathbb{R}$.

On dit que E est un domaine simple par rapport a y s'il existe un compact mesurable $K \subset \mathbb{R}^n$ ($K \in \mathcal{J}(\mathbb{R}^n)$) et deux fonctions $g, h \in K \to \mathbb{R}$ tellles que

$$g(x) \le h(x) \forall x \in K$$

 $et\ E\ a\ la\ forme$

$$E = \{(x, y) \in \mathbb{R}^{n+1} : g(x) \le y \le h(x), x \in K\}$$

Theorème 84

Soit $E \subset \mathbb{R}^{n+1}$ un domaine simple de la forme $E = \{(x, y) \in \mathbb{R}^{n+1}, g(x) \leq y \leq h(x)\}, x \in K$, ou $K \in \mathcal{J}(\mathbb{R}^n)$ et $g, h \in C^0(K)$.

Soit $f: E \to \mathbb{R}$ continue.

Alors $f \in \mathcal{R}(E)$, et

$$\int_E f(x,y) dx dy = \int_K \left(\int_{g(x)}^{h(x)} f(x,y) dy \right) dx$$

En particulier, E est mesurable.

Lecture 22: Changements de variable

Mon 17 May

9.12 Formule de changement de variables

En dimension n=1:

Soit $F = [\alpha, \beta], -\infty < \alpha, \beta < \infty$ et $f : F \to \mathbb{R}$ continue.

On souhaite calculer $\int_F f(x)dx = \int_{\alpha}^{\beta} f(x)dx$

Soit alors E = [a, b] et $\psi : E \to \mathbb{R}$ de classe $C^1(E)$ et telle que $\psi(a) = \alpha, \psi(b) = \beta$. Alors on a

$$\int_{0}^{\beta} f(x)dx = \int_{0}^{b} f(\psi(u))\psi'(u)du$$

Pour generaliser a n > 1, on se restreint a des bijections de classe C^1 , voir a des diffeomorphismes.

Soit ψ un diffeomorphisme entre E = [a, b] et $F = [\alpha, \beta]$.

Puisque ψ est un diffeomorphisme, on a que $\psi' \neq 0$ sur E.

Soit $\psi' > 0$ sur E, alors ψ est strictement croissante sur E, et donc

$$\int_{E} f = \int_{a}^{b} f(\psi(u))|\psi'(u)|du$$

Si $\psi' < 0$ sur E, alors ψ est strictement decroissante, alors

$$\int_{F} f(x)dx = \int_{\alpha}^{\beta} f(x)dx$$

$$= \int_{\psi(b)}^{\psi(b)}$$

$$= \int_{a}^{b} f(\psi(u))|\psi'(u)|du$$

Donc peu importante le signe de ψ' , on a

$$\int_{F} f = \int_{E} \tilde{f}(u) |\psi'(u)| du$$

Considerons maintenant n > 1:

On considere une transformation affine ψ de \mathbb{R}^n .

Donc on peut ecrire

$$x = \psi(u) = Au$$

Alors si on considere un petit carre centre en (u_1, u_2) , il sera transforme en un parallelepipede centre en $A(u_1, u_2)$.

FIGURE 14 – transformation affine

Donc on peut calculer

$$\operatorname{Vol} F = v_1 \times v_2 = (r, Ae_1) \times (r_2 Ae_2) = r_1 r_2 |a_1 \times a_2| = r_1 r_2 |\det A| = \operatorname{Vol} E |\det A|$$

Pour une transformation quelconque, on peut toujours l'ecrire localement comme une transformation lineaire., ie

$$x = \psi(u_0) + D\psi(u - u_0) + R(u) = D\psi(u_0)u + \psi(u_0) - D\psi(u_0) + R(u)$$

Donc on a "en gros" que

"
$$|dx| = |\det D\psi(u_0)||du|$$
"

Theorème 85

Soit $U, V \subset \mathbb{R}^n$ ouvertes et $\psi : U \to V$ tel que

- $-\psi$ est un diffeomorphisme entre U et V
- U et V soient mesurables.
- Pour tout r > 0, $U \cap B(0,r)$ et $V \cap B(0,r)$ soient mesurables.
- Toutes les composantes de $D\psi$ sont bornees sur tout sous-ensemble borne.

Soit encore $E\subset U$ borne non-vide et $F=\psi(E)\subset V$ (aussi un sous-ensemble borne) .

Alors

- 1. E est mesurable (au sens de Jordan) si et seulement si $F = \psi(E)$ est mesurable.
- 2. Si E est mesurable et $f: F = \psi(E) \to \mathbb{R}$ est continue et bornee sur F, alors $f \in \mathcal{R}(F)$ et

$$\int_F f(x) dx = \int_E f(\psi(u)) |\det D\psi(u)| du$$

9.13 Quelques applications

Exemple (1)

Soit $F = \{(x, y) : 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}.$

$$f(x,y) = \frac{1}{1 + x^2 + y^2}$$

On veut calculer $\int_F f(x,y) dx dy$.

On a

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \rho \cos \theta \\ \rho \cos \theta \end{pmatrix} : U =]0, = \infty[\times] - \pi, \pi[\to V = \mathbb{R}^2 \setminus \{y = 0, x \le 0\}$$

On a bien que $E = [1,2] \times [0,\frac{\pi}{2}] = \psi^{-1}(F)$, mesurable et borne.

Toute composante de ψ et $D\psi$ est bornee sur E.

On a

$$|\det D\psi| = \left| \det \begin{pmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & +\rho \cos \theta \end{pmatrix} \right| = |\rho \cos^2 \theta + \rho \sin^2 \theta| = \rho$$

Donc

$$\begin{split} \int_F f(x,y) dx dy &= \int_F \frac{1}{1+x^2+y^2} dx dy \\ &= \int_E \frac{1}{1+\rho^2} |\det D\psi(\rho,\theta) d\rho d\theta \\ &= \int_{[1,2]\times[0,\frac{\pi}{2}]} \frac{1}{1+\rho^2} \rho d\rho d\theta \\ &= \int_1^2 \frac{\pi}{2} \frac{\rho}{1+\rho^2} d\rho \end{split}$$

Exemple (2)

$$F = \{(x,y) : x^2 + y^2 \le 1\}$$
 et $f(x,y) = \frac{1}{1+x^2+y^2}$.

Changement en coordonnees polaires.

f est continue sur F donc $f \in \mathcal{R}(F)$.

Soit
$$\tilde{F} = F \setminus \{y = 0, x \le 0\}.$$

Puisque $F \cap \{y=0, x \leq 0\}$ est un ensemble de mesure nulle, alor \tilde{F} est mesurable et

$$\int_{\tilde{E}} f(x,y)dxdy = \int_{E} f(x,y)dxdy$$

Donc

$$\int_{F} f(x,y)dxdy = \int_{\tilde{F}} f(x,y)dxdy = \int_{\tilde{E}} \frac{1}{1+\rho^{2}} \rho d\rho d\theta = \int_{0}^{1} \left(\int_{-\pi}^{\pi} \frac{\rho}{1+\rho^{2}}\right) d\theta d\rho$$

9.14 Integrales generalisees

Definition 54 (Fonction absolument integrable)

Soit $E \subset \mathbb{R}^n$ ouvert non vide (pas forcement borne) et $f: E \to \mathbb{R}$ (pas forcement borne).

Soit $\{K_j, j \in \mathbb{N}\}$ une suite de sous-ensembles de E tel que

- $-K_j$ est borne, compact et mesurable
- $-K_j \subset K_{j+1}^{\circ}$
- $-\bigcup_{j\in\mathbb{N}} K_j = E$

Soit f borne et integrable sur chaque K_j .

On dit que f est absolument integrable sur E si

$$\lim_{j \to +\infty} \int_{K_j} |f(x)| dx$$

existe (finie).

Dans ce cas, on pose que $\int_E f(x)dx = \lim_{j \to +\infty} \int_{K_j} f(x)dx$ On peut montrer que si f est absolument integrable sur E, alors $\int_E f(x)dx$ ne depend pas du choix de la suite $\{K_j\}_{j \in \mathbb{N}}$.

Lecture 23: Equations differentielles Ordinaires

Wed 19 May

10 Equations differentielles ordinaires

Cas scalaire

Soit $f: I \times E \to \mathbb{R}$, $I \subset \mathbb{R}$ un intervalle ouvert et $E \subset \mathbb{R}$ connexe et ouvert. Soit $u: I \to E \subset \mathbb{R}$ de classe $C^1(I)$.

On dit que u est solution de l'equation differentielle ordinaire definie par f si

$$u'(t) = f(t, u(t)) \quad \forall t \in I$$

Cette equation est appellee equation differentielle ordinaire scalaire du premier ordre.

- equation differentielle : equation qui fait intervenir la fonction inconnue ainsi que ses derivees
- ordinaire : l'inconnue de u depend d'une seule variable.
- scalaire : u est une fonction scalaire.
- premier ordre : l'equation fait uniquement intervenir la derivee premiere.

Cas vectoriel

La solution $\overrightarrow{u}: I \to E \subset \mathbb{R}^n$, avec $E \subset \mathbb{R}^n$ un ouvert.

$$\overrightarrow{u}(t) = (u_1(t), \dots, u_n(t))$$

Et $\overrightarrow{f}: I \times E \to \mathbb{R}^n$.

Et l'EDO vectorielle aura la forme

$$\overrightarrow{u}'(t) = \overrightarrow{f}(t, \overrightarrow{u}(t)) \quad \forall t \in I$$

$$u'_1(t) = f_1(t, u_1(t), \dots, u_n(t))$$

:

$$u'_n(t) = f_n(t, u_1(t), \dots, u_n(t))$$

C'est donc un système de n EDO scalaires couplees.

EDO d'ordre n (scalaire)

On a

$$u:I\to\mathbb{R}$$

de classe $C^n(I)$.

$$f: I \times E \to \mathbb{R}$$
 $E \subset \mathbb{R}^n$ ouvert

Et on peut alors ecrire l'equation differentielle ordinaire d'ordre n

$$u^{(n)} = f(t, u(t), u'(t), \dots, u^{(n-1)}(t)) \quad \forall t \in I$$

La relation entre EDO d'ordre n scalaire et EDO vectorielle de dimension n. On peut toujours recrire une EDO d'ordre n comme systeme d'EDO coupplees : Soit u une solution du systeme.

On introduit les n fonctions

$$u_1(t) = u(t)$$

$$u_2(t) = u'(t)$$

$$\vdots$$

$$u_n(t) = u^{(n-1)}(t)$$

On peut donc ecrire

$$\overrightarrow{u}'(t) = \begin{pmatrix} u_1'(t) \\ \vdots \\ u_n'(t) \end{pmatrix} = \begin{pmatrix} u'(t) \\ u''(t) \\ \vdots \\ u^{(n)}(t) \end{pmatrix} = \begin{pmatrix} u_2(t) \\ u_3(t) \\ \vdots \\ u_n(t) \\ f(t, u_1(t), u_2(t), \dots, u_n(t)) \end{pmatrix}$$

Donc en definissant

$$\overrightarrow{f}: I \times E \to \mathbb{R}^n$$

avec

$$\overrightarrow{f}(t,\overrightarrow{u}) = \begin{pmatrix} u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ f(t, u_1, u_2, \dots, u_n) \end{pmatrix}$$

Alors, on peut ecrire

$$\overrightarrow{u}'(t) = \overrightarrow{f}(t, \overrightarrow{u}(t))$$

10.1 Probleme de Cauchy

Soit $\overrightarrow{f}: I \times E \to \mathbb{R}^n$, $E \subset \mathbb{R}^n$ ouvert. Prenons \overrightarrow{f} continue sur $I \times E$, $(t_0, \overrightarrow{u}_0) \in I \times E$. On cherche $\overrightarrow{u}: I \to \mathbb{R}^n$ telle que

$$\overrightarrow{u}'(t) = \overrightarrow{f}(t, \overrightarrow{u}(t)) \quad \forall t \in I$$

Un probleme de cauchy est une solution $\overrightarrow{u}(t)$ telle que

$$\begin{cases} \overrightarrow{u}'(t) = \overrightarrow{f}(t, \overrightarrow{u}(t)) \\ \overrightarrow{u}(t_0) = \overrightarrow{u}_0 \end{cases}$$

Soit $I_{+} = [t_{0}, T[$,avec $-\infty < t_{0} < T \le +\infty, \overrightarrow{f} : I_{+} \times E \to \mathbb{R}^{n}, E \subset \mathbb{R}^{n}$ ouvert, \overrightarrow{f} continue. On cherche $\overrightarrow{u} : I_{+} \to \mathbb{R}^{n}$ continue sur I_{+} et continument differentiable sur $I_{+} = [t_{0}, T[$ tel que

$$\begin{cases} \overrightarrow{u}'(t) = \overrightarrow{f}(t, \overrightarrow{u}(t)) \\ \overrightarrow{u}(t_0) = \overrightarrow{u}_0 \end{cases}$$

On definit de la meme maniere le probleme a valeurs finales.

Definition 55 (Solution locale)

On appelle solution locale du probleme de Cauchy un couple (J, \overrightarrow{u}) ou J est un intervalle contenu dans I, qui contient t_0 et $\overrightarrow{u} \in C^1(J)$ qui satisfait le probleme de Cauchy.

- On dit qu'une solution locale (K, w) du PC prolonge strictement (J, u) si $J \subset K$, $J \neq K$ et $w(t) = u(t) \forall t \in J$
- On dit que un couple (J, u) est une solution maximale si il n'existe pas d'autres solutions locales qui la prolongent.
- On dit que (J, u) est globale si J = I.

10.2 Methode de separation de variables

Pour une EDO scalaire du premier ordre, si

$$f: I \times E \to \mathbb{R}, I \subset \mathbb{R}, E \subset \mathbb{R}$$

Si f se laisse ecrire comme

$$f(t,x) = g(t)k(x)$$
 $g: I \to \mathbb{R}, k: E \to \mathbb{R}$ continue

On peut considerer le probleme de cauchy

$$\begin{cases} u'(t) = g(t)k(u(t)) \\ u(t_0) = u_0 \end{cases}$$

Methode "informelle"

On cherche

$$\frac{du}{dt} = g(t)k(u)$$

$$\Rightarrow \frac{du}{k(u)} = g(t)dt \int_{u_0}^{u} \frac{du}{k(u)}$$

$$= \int_{t_0}^{t} g(t)dt$$

Si on definit

$$G(t) = \int_{t_0}^t g(s)ds \quad F(u) = \int_{u_0}^u \frac{1}{k(y)} dy$$

Si F est inversible, alors on a

$$u = F^{-1}(G(t) - G(t_0) + F(u_0))$$

Theorème 88

Soit $I, \tilde{E} \subset \mathbb{R}$ des intervalles ouverts, $g: I \to \mathbb{R}$ continue, $K: \tilde{E} \to \mathbb{R}$ continue et tel que $k(u) \neq 0 \forall u \in \tilde{E}$.

Soit $(t_0, u_0) \in I \times \tilde{E}$ et

$$G(t) = \int_{t_0}^t g(s)ds, F(u) = \int_{u_0}^u \frac{1}{k(y)}dy$$

Alors il existe un intervalle $J \subset I$ contenant t_0 tel que $G(J) \subset \operatorname{Im} F$ et une fonction $u: J \to \mathbb{R}$ de classe $C^1(J)$ definie par

$$u(t) = F^{-1}(G(t))$$

et le couple (J,u) est solution du probleme de Cauchy.

De plus, cette solution est unique au sens que tout autre solution locale (K,w) du Probleme de Cauchy satisfait

$$w(t) = u(t) \forall t \in J \cap K$$

tant que $k(u(t)) \neq 0$ alors $F^{-1}(G(t))$ donne une solution de l'equation.