

Practical 1st Order Characteristics

Kerstin Wiegand, Stephan Getzin, Maximilian Hesselbarth

Coastal temperate forest on south-eastern Vancouver Island

Shade-tolerant, late-successional western hemlock (left) and western redcedar

Chronosequence

- Douglas-fir
- western hemlock
- western redcedar
- all others

for all trees measured:

- x-y-coordinates, DBH (diameter at breast height)
- height, status

bubble size

~ DBH

- estimate intensity λ by randomly throwing coin (35×)
- ⇒ coin = "moving window"(two groups: 1 Cent & 2 Euro)
- $\Rightarrow \lambda$ = absolute number events in samples / number of samples
- \Rightarrow e.g.: 32 events in m = 35 samples of fixed size $\lambda = 0.914$ events/area

$$P_{\lambda}(n) = \frac{\lambda^{n}}{n!} e^{-\lambda}$$

 \Rightarrow $P_{\lambda}(n)$ = probability to find n trees within a circle (of area B=1 unit) for the estimated intensity λ

$$\Rightarrow P_{0.914}(0) = 0.401 = 40.1\%$$

$$\Rightarrow P_{0.914}(1) = 0.366$$

$$\Rightarrow P_{0.914}(2) = 0.168$$

$$\Rightarrow P_{0.914}(3) = 0.051$$

$$\Rightarrow P_{0.914}(4) = 0.012$$

$$\Rightarrow P_{0.914}(5) = 0.002$$

$$\Rightarrow P_{0.914}(6) = 0.000 = 0.03\%$$

۲.

1st order properties – comparing theoretical Poisson distribution against empirical data

$$P_{\lambda}(n) = \frac{\lambda^{n}}{n!} e^{-\lambda}$$

 \Rightarrow $P_{\lambda}(n)$ = probability to find n trees within a circle (of area B=1 unit) for the estimated intensity λ

$$\Rightarrow P_{0.914}(0) = 0.401 = 40.1\%$$

$$\Rightarrow P_{0.914}(1) = 0.366$$

$$\Rightarrow P_{0.914}(2) = 0.168$$

$$\Rightarrow P_{0.914}(3) = 0.051$$

$$\Rightarrow P_{0.914}(4) = 0.012$$

$$\Rightarrow P_{0.914}(5) = 0.002$$

$$\Rightarrow P_{0.914}(6) = 0.000 = 0.03\%$$

Number (n) of events in sample category	$P_{\lambda}(n)$	· •	Observed number of discoveries <i>x</i> in sample category	of discoveries in
0	0.401	14.04	18	0.514
1	0.366	12.81	13	0.371
2	0.167	5.85	1	0.029
3	0.051	1.78	0	0.000
4	0.012	0.42	0	0.000
5	0.002	0.07	1	0.029
6	0.000	0.00	2	0.057

۲.

1st order properties – comparing theoretical Poisson distribution against empirical data

.....with chi-square test (because of small sample size)

H₀: Western hemlock adult trees are randomly distributed.

H₁: Western hemlock adult trees are not randomly distributed.

.....with chi-square test (because of small sample size)

H₀: Western hemlock adult trees are randomly distributed.

H₁: Western hemlock adult trees are not randomly distributed.

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 O = Observed value

Number (n) of events in sample category	Expected number of discoveries in sample category = $35 \times P_{\lambda}(n)$	Number of observed discoveries in sample category	chi-square (O–E)² E
0 1 2 3 4 5	14.04 12.81 5.85 1.78 0.42 8.21 0.07	18 13 1 0 0 0 5	1.117 0.003
6	0.00 pe a	2	<i>Σ</i> = 3.210

d.f. = k-2 = 1; critical value $\chi^2_{0.95,1d.f.}$ = 3.841 (> 3.210) -> do not reject H_0

0 7 14 04 10	
0 pnous 14.04 18 1 12.81 13	1.117 0.003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.021 0.235

d.f. = k-2 = 2; critical value $\chi^2_{0.95,2d.f.}$ = 5.991 (> 5.376) -> do not reject H_0

м

2nd order properties

Is the pattern is not CSR, but is it clustered or regular?

under CSR the variance
$$\sigma^2 = \overline{x}$$
 Index of dispersion $I = \frac{s^2}{\mu} = \frac{\frac{1}{m-1} \sum_{i=1}^m (x_i - \overline{x})^2}{\frac{1}{m} \sum_{i=1}^m x_i}$

۲,

2nd order properties

Is the pattern is not CSR, but is it clustered or regular?

under CSR the variance
$$\sigma^2 = \overline{x}$$
 Index of dispersion $I = \frac{s^2}{\mu} = \frac{\frac{1}{m-1} \sum_{i=1}^{m} (x_i - \overline{x})^2}{\frac{1}{m} \sum_{i=1}^{m} x_i}$

if l > 1, pattern is clustered

if *I* < 1, pattern is regular

I for Western hemlock adults = 2.726 -> trees are clustered (n.s.)

(at scale of moving window)