Otherwise, $w^* = 0$, and u^* is a feasible solution of (P2). Since $(u^*, 0_m)$ is a basic feasible solution of (\widehat{P}) the columns corresponding to nonzero components of u^* are linearly independent. Some of the coordinates of u^* could be equal to 0, but since A has rank m we can add columns of A to obtain a basis K^* associated with u^* , and u^* is indeed a basic feasible solution of (P2).

Running the simplex algorithm on the Linear Program \widehat{P} to obtain an initial feasible solution (u_0, K_0) of the linear program (P2) is called *Phase I* of the simplex algorithm. Running the simplex algorithm on the Linear Program (P2) with some initial feasible solution (u_0, K_0) is called *Phase II* of the simplex algorithm. If a feasible solution of the Linear Program (P2) is readily available then Phase I is skipped. Sometimes, at the end of Phase I, an optimal solution of (P2) is already obtained.

In summary, we proved the following fact worth recording.

Proposition 46.1. For any Linear Program (P2)

maximize
$$cx$$

subject to $Ax = b$ and $x \ge 0$,

in standard form, where A is an $m \times n$ matrix of rank m and $b \geq 0$, consider the Linear Program (\widehat{P}) in standard form

maximize
$$-(x_{n+1} + \cdots + x_{n+m})$$

subject to $\widehat{A} \widehat{x} = b$ and $\widehat{x} \ge 0$.

The simplex algorithm with a pivot rule that prevents cycling started on the basic feasible solution $\hat{x} = (0_n, b)$ of (\hat{P}) terminates with an optimal solution (u^*, w^*) .

- (1) If $w^* \neq 0$, then $\mathcal{P}(A, b) = \emptyset$, that is, the Linear Program (P2) has no feasible solution.
- (2) If $w^* = 0$, then $\mathcal{P}(A, b) \neq \emptyset$, and u^* is a basic feasible solution of (P2) associated with some basis K.

Proposition 46.1 shows that determining whether the polyhedron $\mathcal{P}(A, b)$ defined by a system of equations Ax = b and inequalities $x \geq 0$ is nonempty is decidable. This decision procedure uses a fail-safe version of the simplex algorithm (that prevents cycling), and the proof that it always terminates and returns an answer is nontrivial.

46.3 How to Perform a Pivoting Step Efficiently

We now discuss briefly how to perform the computation of (u^+, K^+) from a basic feasible solution (u, K).

In order to avoid applying permutation matrices it is preferable to allow a basis K to be a sequence of indices, possibly out of order. Thus, for any $m \times n$ matrix A (with $m \le n$)