Homework_1.R

fredericronteix1

Thu Mar 8 14:44:27 2018

```
### HOMEWORK 1 ###
rm(list = ls())

setwd("~/Desktop/Taïwan/Cours/Computer statistics/1")

cop_density <- read.table("~/Desktop/Taïwan/Cours/Computer statistics/1/cop_densit
y.txt", header = T, sep = "\t")
copepod1 <- read.table("-/Desktop/Taïwan/Cours/Computer statistics/1/copepod_compo
sition.txt", header = T, sep = "\t")

rownames(cop_density) <- colnames(copepod1) #creating better names for the rows

### 1: Calculate the copepod density for each species for each cruise-station

for (i in 1:34) {
   copepod1[,i] <- (copepod1[,i]/100)*cop_density[i,1] # loop to get the density of
each species at each station
   }

copepod1 #table with the density of each species (number/m3)</pre>
```

##	p1	р3	р4	p6	p13	p16	p19
## 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 3	0.0000	0.0000	0.0000	0.0000	0.0000	4.6706	27.1206
## 4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.0134
## 14	159.5694	80.8253	40.9122	77.2920	69.2776	37.3648	21.0938
## 15	0.0000	0.0000	0.0000	0.0000	4.7348	4.6706	12.0536
## 16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.0134
## 18	0.0000	2.1907	0.0000	0.0000	0.0000	4.6706	3.0134
## 19	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.0134
## 21	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
## 23	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

```
## 160
       0.000000 0.000000
                          0.00000 0.000000 0.000000
## 161
       0.000000 0.000000
                          0.00000 0.000000 0.000000
## 162
       0.000000 0.000000
                          0.13916 0.000000 0.000000
## 163
       0.000000 0.000000
                          0.27335 0.000000 0.000000
## 164
       0.000000 0.025002
                          0.41251 0.193050 0.583375
## 165
       0.000000 0.000000
                          0.41251 0.386100 0.583375
## 166
       0.000000 0.000000
                          1.23753 0.048906 0.872729
## 167
       0.000000 0.000000
                          0.00000 0.000000 0.000000
## 168
       0.000000 0.000000
                          0.00000 0.048906 0.000000
## 169
       0.697058 0.176866
                           4.13007 1.256112 2.473510
## 170
       0.000000 0.000000
                           0.00000 0.000000 0.000000
## 171
       0.000000 0.000000
                          0.00000 0.000000 0.000000
## 172
       0.000000 0.000000
                          0.00000 0.048906 0.000000
## 173 0.000000 0.000000
                          0.00000 0.000000 0.000000
                          0.00000 0.048906 0.000000
## 174
       0.000000 0.000000
## 175
      0.000000 0.000000
                          0.00000 0.000000 0.000000
## 176 0.000000 0.000000
                          0.00000 0.000000 0.000000
## 177
       0.000000 0.000000
                          0.13916 0.000000 0.000000
## 178
      0.000000 0.000000
                          0.00000 0.000000 0.144677
## 179
       0.000000 0.000000
                          0.00000 0.000000 0.144677
## 180 0.000000 0.000000
                          0.13916 0.000000 0.000000
       0.000000 0.000000
                          0.00000 0.000000 0.000000
## 181
```

```
## 2: For each cruise-station, calculate the species richness (number of species)
and Shannon diversity index
copepod2 <- read.table("~/Desktop/Taïwan/Cours/Computer statistics/1/copepod compo</pre>
sition.txt", header = T, sep = "\t")
cop density$richness <- 0 # new column with the number of species/station
# function to fill the richness column
for (j in 1:34) {
 for (i in 1:181){
    if (copepod2[i,j] != 0) {
      cop density$richness[j] <- (cop density$richness[j] +1) # whenever there is</pre>
a spieces in the station, the richness of the station gains +1
 }}}
cop density$shannon <- 0 # new column for the diversity (shannon index)</pre>
cop_density$shannon <- apply(copepod2/100,2,function(x){-sum(x*log(x), na.rm = TRU
E) }) # using the apply function to calculate the shannon index
cop density
```

```
##
       density richness shannon
## p1
      1119.00
                      6 1.080782
## p3
      1153.00
                     12 1.256126
## p4
                     8 1.045406
      1719.00
       855.00
                     9 1.114551
## p6
## p13 1246.00
                     31 2.144528
## p16 2123.00
                    29 1.413396
## p19 1159.00
                     43 2.582107
## p21 1497.00
                     7 1.566761
## p23 1351.00
                     46 2.994586
## p25 960.00
                     39 2.484830
                     39 2.841237
## s18 2946.00
## s19 1900.00
                     41 2.983345
## s20 1508.00
                     32 2.568974
## s22 4043.00
                     25 2.567104
## s23 4919.00
                     32 2.878602
## s25 6332.00
                     41 3.000568
## s27 2101.00
                     40 2.802674
## s29 4823.00
                     23 2.118423
## sA 1588.00
                     47 3.106234
## sB
      2895.00
                     49 2.983319
## sC 3870.00
                     44 2.815962
## sD
      1354.00
                     46 2.937975
      5492.00
                     44 3.020831
## sE
                     38 2.890280
## sF
      7918.00
      1270.00
                     25 1.692271
## sG
                     18 1.978899
## w22 358.10
                     16 1.615811
## w23
       261.78
## w25
       80.67
                     24 1.841939
## w27
       46.06
                     33 2.579666
## w29
        41.74
                     27 2.358688
## wA
         9.26
                     44 2.613131
## wB
         49.70
                     54 2.999801
## wC
        25.74
                     64 3.213878
## wD
         46.67
                     48 3.005535
```

```
on) and calculate the average density for the spring, summer, and winter cruise fo
r each dominant species.
dominant species <- read.table("~/Desktop/Taïwan/Cours/Computer statistics/1/copep</pre>
od composition.txt", header = T, sep = "\t")
species <- data.frame((1:181)*0) # new table with only the species
names(species) <- 'dominant species'</pre>
for (i in 1:34){
  for (j in 1:181){
    if (species [j,1] != 1){ # test to see if the species hasn't already been prov
ed dominant
  species [j,1] <- dominant species[j,i] >= 2 # testing the species is dominant
species$spring density <- 0
species$summer density <- 0
species$winter density <- 0 # creating new columns for the density of the dominant
species
for (j in 1:nrow(species)) {
    species$spring_density [j] <- sum(copepod1[j,1:10])/10</pre>
    species$summer density [j] <- sum(copepod1[j,11:25])/(15)</pre>
    species$winter density [j] <- sum(copepod1[j, 26:34])/(9) # calculate the aver
age density for the spring, summer, and winter cruise for each dominant species
  }
species <- species[-(which (species$dominant species == 0)),]</pre>
species
```

3: Find dominant species (species >=2% of total composition in any cruise-stati

##	dominant_species	spring_density	summer_density	winter_density
## 3	1	8.12533	26.210300	0.20313700
## 5	1	0.00000	67.728267	23.57568900
## 14	1	86.46599	2.500233	4.60278089
## 15	5 1	3.42582	204.692020	1.26660244
## 16	5 1	4.50137	1.903987	0.13661011
## 20) 1	1.27406	42.367393	0.16973356
## 35	5 1	11.92657	63.691307	0.67185067
## 40) 1	11.44634	23.415760	0.68068656
## 51	1	0.00000	28.013247	0.86376644
## 52	2 1	0.00000	5.324420	1.41176278
## 54	1	4.87340	40.484947	0.22946133
## 55	5 1	0.30134	0.726680	0.42130211
## 60) 1	28.35273	41.598293	23.15445778
## 72	2 1	10.71096	156.406840	0.99605678
## 73	3 1	0.30720	31.915367	0.05405211
## 76	5 1	5.54979	3.362153	0.0000000
## 79	1	1.45908	26.636913	0.0000000
## 80	1	3.74408	9.885680	0.0000000
## 81	1	1.76042	13.302267	0.00543400
## 84	1	54.09300	18.917167	9.39986078
## 85	5 1	626.17119	414.204633	18.13617244
## 86	5 1	0.00000	107.269380	0.02491267
## 88	3 1	11.22283	419.718387	0.03758444
## 10	1	0.76840	20.457953	4.46338178
## 11	1	9.93754	4.661253	0.00543400
## 11	12	3.69089	267.764627	0.97009244
## 11	17	0.47348	134.511173	0.0000000
## 11	18	0.23674	53.421613	0.0000000
## 12	20 1	1.24800	16.452867	1.22468522
## 12	23 1	28.78133	83.105013	0.99051589
## 12	26 1	115.08926	38.426887	0.0000000
## 13		7.36190	197.810427	0.0000000
## 14		161.22854		0.0000000
## 14		1.75298	97.267093	0.08584778
## 14		0.00000	75.731147	
## 14		0.97272	21.037573	0.02334622
## 15		0.00000	39.107200	
## 15		3.37813		
## 16		21.42939		
## 16		1.12309		
## 16		1.91489		
## 16			4.435387	
## 16	59 1	33.96802	341.826987	1.25436611

```
### Notes ###

#I am not espacially good with R, I am used to using loops on python... I hope my
skills will get better but for now, I am more confortable using loops than functio
ns I do not know such as 'apply'

# CORRECTION
# spec.richness <- colSums(copepod.com>0)
# c.names <- colnames(copepod.composition)
# spring <- grep("p", c.names)
# for markdown install (knitr)
# use 'apply' function
# cop.density.e <- apply(copepod.composition, 1, function(x){cop.density*x})
# to transpose use 't(data)'</pre>
```