Methode der Reduktion – Lösungen

Alle 4 Aufgaben lassen sich mit der EE-Reduktion lösen und ich habe nur diese Angegeben [Aufgabe 1 und 4] (Ich werde in der nächsten Lektion noch etwas dazu erwähnen).

1. Zeige dass folgende Sprache

 $L = \{ \operatorname{Kod}(M) \# x \# 0^i \mid x \in \{0,1\}^*, i \in \mathbb{N}, M \text{ hat mindestens } i+1 \text{ Zustände}$ und während der Berechnung von M auf x wird der i-te Zustand von M min. einmal erreicht

keine rekursive Sprache ist.

(Aufgabe 5.16 aus dem Buch)

Lösung:

Beweis.

Wir haben in der Vorlesung gesehen, dass $L_{\rm U} \notin \mathcal{L}_{\rm R}$ gilt. Wir zeigen also $L_{\rm U} \leq_{\rm EE}$ L, was $L \notin \mathcal{L}_{\rm R}$ impliziert.

Folgende TM A transformiert eine Eingabe w für $L_{\rm U}$ in eine Eingabe für L:

- Prüfe, ob w = Kod(M) # x für eine TM M und ein Wort x
 - Falls nein, gib λ aus.
 - Falls ja, bestimme i, so dass $q_i = q_{\text{accept}}$ und gib $\text{Kod}(M) \# x \# 0^i$ aus

Wir zeigen nun, dass $w \in L_U \iff A(w) \in L$ gilt:

Sei $w \in L_{U}$:

$$w \in L_{\mathcal{U}} \implies w = \operatorname{Kod}(M) \# x \in L_{\mathcal{U}}$$

 $\implies w \in L(M)$
 $\implies A(w) = \operatorname{Kod}(M) \# x \# 0^i \in L$

Wobei im letzten Schritt verwendet wurde, dass M die Berechnung in q_{accept} beendet, d.h. der i-te Zustand wurde min. einmal erreicht. Ausserdem hat M, genau i+1 Zustände, da q_{accept} der zweit letzte Zustand ist (Definition der TM-Kodierung).

Sei $w \notin L_{\mathrm{U}}$:

Fall 1: w hat nicht die Form Kod(M)#x, also gilt $A(w)=\lambda \notin L$.

Fall 2: w hat die Form Kod(M)#x, also gilt

$$x \notin L(M) \implies A(w) = \operatorname{Kod}(M) \# x \# 0^i \notin L$$

da der i-te Zustand, welcher q_{accept} entspricht, nie erreicht wird.

Somit schliessen wir $L \notin \mathcal{L}_{\mathbf{R}}$.

2. Zeige $L_{\rm U}^C \leq_{\rm EE} L_{\rm Diag}$

Lösung:

Beweis.

Folgende TM B transformiert eine Eingabe x für L_{U}^{C} in eine Eingabe für L_{Diag} :

- \bullet Prüfe, ob $x=\operatorname{Kod}(M)\# w$ für eine T
MM und ein Wort w
 - Falls nein, konstruiere die TM M_{\emptyset} , welche alle Eingaben verwirft.
 - Falls ja, konstruiere die TM \widehat{M} , welche M auf w simuliert und die Eingabe ignoriert.
- Berechne i, so dass M_i die konstruierte TM ist und gib w_i zurück.

Wir zeigen nun, dass $x \in L_{\mathrm{U}}^{\mathbb{C}} \iff B(x) \in L_{\mathrm{Diag}}$ gilt:

Sei $x \in L_{\mathrm{U}}^{C},$ dann haben wir zwei Fälle

Fall 1: x hat nicht die Form Kod(M) # w, somit gilt $B(x) \in L_{\text{Diag}}$, da $M_i = M_{\emptyset}$ kein Wort akzeptiert, insbesondere nicht w_i .

Fall 2: x hat die Form Kod(M) # w:

$$x \in L_{\mathrm{U}}^{C} \implies w \notin L(M)$$

$$\implies \widehat{M} \text{ verwirft alle Eingaben}$$

$$\implies w_{i} \notin \widehat{M} = M_{i}$$

$$\implies B(x) = w_{i} \in L_{\mathrm{Diag}}$$

Sei $x \notin L_{\mathrm{U}}^{C}$, dann gilt:

$$x = \operatorname{Kod}(M) \# w \not\in L_{\operatorname{U}}^{C} \implies w \in L(M)$$

$$\implies \widehat{M} \text{ akzeptiert alle Eingaben}$$

$$\implies w_i \in \widehat{M} = M_i$$

$$\implies B(x) = w_i \not\in L_{\operatorname{Diag}}$$

3. Zeige $L_{\mathrm{H}}^{C} \leq_{\mathrm{EE}} L_{\mathrm{U}}^{C}$

Lösung:

Beweis.

Folgende TM C transformiert eine Eingabe x für L_{H}^{C} in eine Eingabe für L_{U}^{C} :

- Prüfe, ob x = Kod(M) # w für eine TM M und ein Wort w
 - Falls nein, gib λ zurück
 - Falls ja, modifiziere die TM M zu \widehat{M} , in dem alle Transitionen von q_{reject} nach q_{accept} umgeleitet werden und gib $\text{Kod}(\widehat{M}) \# w$ zurück

Wir zeigen nun, dass $x \in L_{\mathrm{H}}^{C} \iff C(x) \in L_{\mathrm{U}}^{C}$ gilt:

Sei $x \in L_{\mathrm{H}}^C$:

Fall 1: x hat nicht die Form Kod(M) # w, somit gilt $C(x) = \lambda \in L_{\text{U}}^{C}$ Fall 2:

$$x = \operatorname{Kod}(M) \# w \in L^{C}_{\mathrm{H}} \implies M \text{ hält nicht auf } w$$

$$\implies \widehat{M} \text{ hält nicht auf } w$$

$$\implies w \not\in L(\widehat{M})$$

$$\implies C(x) = \operatorname{Kod}(\widehat{M}) \# w \in L^{C}_{\mathrm{U}}$$

Sei $x \notin L_{\mathbf{H}}^{\mathbb{C}}$, dann gilt:

$$x = \operatorname{Kod}(M) \# w \not\in L_{\mathrm{H}}^{C} \implies M$$
 hält auf w
$$\implies \widehat{M} \text{ akzeptiert } w$$

$$\implies C(x) = \operatorname{Kod}(\widehat{M}) \# w \not\in L_{\mathrm{U}}^{C}$$

4. Zeige, dass $L_4 \notin \mathcal{L}_R$ ohne den Satz von Rice zu verwenden.

$$L_4 = \{ \operatorname{Kod}(M) \mid M \text{ akzeptiert } 100 \}$$

Lösung:

Beweis.

Wir haben in der Vorlesung gesehen, dass $L_{\rm U} \notin \mathcal{L}_{\rm R}$ gilt. Wir zeigen also $L_{\rm U} \leq_{\rm EE} L_4$, was $L_4 \notin \mathcal{L}_{\rm R}$ impliziert.

Folgende TM D transformiert eine Eingabe x für $L_{\rm U}$ in eine Eingabe für L_4 :

- Prüfe, ob x = Kod(M) # w für eine TM M und ein Wort w
 - Falls nein, gib λ zurück
 - Falls ja, konstruiere die TM \widehat{M} , welche M auf w simuliert und die Eingabe ignoriert; gib $\operatorname{Kod}(\widehat{M})$ zurück.

Wir zeigen nun, dass $x \in L_{\mathrm{U}} \iff D(x) \in L_{4}$ gilt:

Sei $x \in L_{U}$, dann gilt:

$$x = \operatorname{Kod}(M) \# w \in L_{\operatorname{U}} \implies w \in L(M)$$

$$\implies \widehat{M} \text{ akzeptiert alles}$$

$$\implies \widehat{M} \text{ akzeptiert } 100$$

$$\implies D(x) = \operatorname{Kod}(\widehat{M}) \in L_4$$

Sei $x \notin L_{\mathbf{H}}^{C}$, dann haben wir zwei Fälle:

Fall 1: x hat nicht die Form Kod(M) # w, somit gilt $D(x) = \lambda \notin L_4$ Fall 2:

$$x = \operatorname{Kod}(M) \# w \not\in L_{\operatorname{U}} \implies w \not\in L(M)$$

$$\implies \widehat{M} \text{ akzeptiert keine Eingabe}$$

$$\implies 100 \not\in L(\widehat{M})$$

$$\implies D(x) = \operatorname{Kod}(\widehat{M}) \not\in L_4$$