3/5/2

DIALOG(R) File 351: Derwent WPI

(c) 2005 Thomson Derwent. All rts. reserv.

003696795

WPI Acc No: 1983-56778K/*198324*

XRAM Acc No: C83-055134

Aq. hair-cosmetic compsn. - contg. quat. acrylic-based quat. polymeric ammonium salt, monomeric to oligomeric ammonium salt and surfactant

Patent Assignee: CIBA GEIGY AG (CIBA)

Inventor: FEARNLEY C; HUNGERBUHL W; MOLDOVANYL L Number of Countries: 007 Number of Patents: 004

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 80976	A	19830608				198324	В
JP 58103546	А	19830620				198330	
EP 80976	В	19860924				198639	
DE 3273489	G	19861030				198645	

Priority Applications (No Type Date): CH 817655 A 19811130 Cited Patents: 3.Jnl.Ref; EP 45720; EP 47714; GB 1073947; GB 1342176; GB 2027045; JP 53024036; JP 54043211; JP 54135234

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 80976 A G 74

Designated States (Regional): CH DE FR GB IT LI

EP 80976 B G

Designated States (Regional): CH DE FR GB IT LI

Abstract (Basic): EP 80976 A

Aq. cosmetic compsns. having pH 3-8 contain at least (A) an aq. tenside system-soluble or micro-emulsifiable polymeric acrylic-based quat. ammonium salt having mol. wt. distribution 10 power 4 to 10 power 9, provided the mol. wt. of at least 5 (5-60) wt.% of the polymeric salt is 10 power 7 to 10 power 9, (B) a monomeric to oligomeric ammonium salt contg. 1-3 quat. N atoms and having mol. wt. max. 9000 and (C) a nonionic tenside, a tenside having intramolecular positive and negative charge and/or an anionic, opt. zwitter-ionic surfactant.

The salt (A) contains repeat structural units of formula -CH2-CA1(-CO-D1-E1-NR1R2-QY1)- (I)

and opt. in opt. sequence at least 1 of the repeat structural units having formula -CH2-CA2(CONH2)- (Ia), -CH2-CA3G1- (Ib) and -CH2-CA4G2- (Ic) (where A1, A2, A3 and A4 each is H or Me; G1 and G2 differ from another and each is -CN, -COOH or -CO-D2-E2-NR3R4; D1 and D2 each is -O- or -NH-; E1 and E2 each is 1-4C alkylene opt. substd. by OH; R1, R2, R3 and R4 each is Me or Et; Q is alkyl, 1-4C hydroxyalkyl or benzyl and Y1 is a halide-, 1-4C alkyl-sulphate or alkyl-phosphonate anion). On using an anionic tenside as (C), (A) contains structural units having formula (Ia) in addn. to (I) and the anionic tenside is reacted, at least partly, with components (A) and (B) under ion exchange.

The compsns. are used in cosmetics, esp. hair-cosmetics. The compsns. combine good washing- and conditioning effects on hair, e.g. combing out when wet or dry, prevention of static electricity, gloss-retention, vol. and fullness and hand.

Title Terms: AQUEOUS; HAIR; COSMETIC; COMPOSITION; CONTAIN; QUATERNARY; ACRYLIC; BASED; QUATERNARY; POLYMERISE; AMMONIUM; SALT; MONOMERIC; OLIGOMERISE; AMMONIUM; SALT; SURFACTANT

Derwent Class: A96; D21; E16

International Patent Class (Additional): A61K-007/06; C08K-005/19;

C08L-033/04; C11D-003/37

File Segment: CPI

(1) Veröffentlichungsnummer: 0 080 976 **B1**

12

EUROPÄISCHE PATENTSCHRIFT

- Veröffentlichungstag der Patentschrift: 24.09.86
- (5) Int. Cl.4: A 61 K 7/06

- (1) Anmeldenummer: 82810503.1
- (22) Anmeldetag: 24.11.82

- Gemische aus quaternären, polymeren Ammoniumsalzen auf Acrylbasis, aus quaternären, mono- bis oligomeren Ammoniumsalzen und aus Tensiden, deren Herstellung und Verwendung in kosmetischen Mitteln.
- (30) Priorität: 30.11.81 CH 7655/81
- Veröffentlichungstag der Anmeldung: 08.06.83 Patentblatt 83/23
- Bekanntmachung des Hinweises auf die Patenterteilung: 24.09.86 Patentblatt 86/39
- Benannte Vertragsstaaten: CH DE FR GB IT LI
- Entgegenhaltungen: EP-A-0 045 720 EP-A-0 047 714 GB-A-1 073 947 GB-A-1 342 176 GB-A-2 027 045

CHEMICAL ABSTRACTS, Band 89, Nr. 8, 21. August 1978, Seite 332, Spalte 2, Nr. 65141d, Columbus, Ohio, USA

PATENTS ABSTRACTS OF JAPAN, Band 3, Nr. 68(C-48), 13. Juni 1979, Seite 128C48, 2. Zusammenfassung CHEMICAL ABSTRACTS, Band 92, Nr. 14, April 1980, Seite 343, Spalte 2, Zusammenfassung Nr. 116256s, Columbus, Ohio, USA

Die Akte enthält technische Angaben, die nach dem Eingang der Anmeldung eingereicht wurden und die nicht in dieser Patentschrift enthalten sind.

- Patentinhaber: CIBA- GEIGY AG, Klybeckstrasse 141, CH- 4002 Basel (CH)
- Erfinder: Moldovanyi, Laszlo, Dr., Austrasse 78, CH- 4051 Basel (CH) Erfinder: Fearnley, Charles, Dr., Wettsteinanlage 50, CH- 4125 Riehen (CH) Erfinder: Hungerbühler, Walter, Höhenstrasse 8, CH- 4125 Riehen (CH)

Anmerkung: Innerhalb von neun Monaten nach der Bekenntmachung des Hinwelses auf die Erteilung des europäischen Patents im Europäischen Patentblatt kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen.

Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

In der Haarpflege stellt die Reinigung der Haare einen der wichtigsten Vorgänge dar. Neuerdings werden als Reinigungsmittel zweckmässig synthetische Waschrohstoffe eingesetzt, die den Vorteil aufweisen, auch bei hoher Wasserhärte ihre volle Reinigungskraft zu behalten. Bei alleiniger Verwendung von Waschrohstoffen zeigt das behandelte Haar in der Regel keine Konditioniereffekte.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein für kosmetische Zwecke, insbesondere für die Haarpflege geeignetes, kostengünstiges Reinigungsmittel zur Verfügung zu stellen, das neben einer guten Waschwirkung die Erzielung ausgezeichneter Konditioniereffekte auf dem Haar ermöglicht. Diese sog. Konditioniereffekte stellen einen Sammelbegriff für u.a. folgende erwünschte Eigenschaften des behandelten Haares dar:

- leichte Nass- und Trockenkämmbarkeit
- Verhinderung der statischen Aufladung
- keine negative Beeinträchtigung des ursprünglichen Glanzes
- Aspekt, insbesondere Volumen und Fülle
- Griff.

15

25

45

Gute Konditioniereffekte sind mit monomeren bis oligomeren, quaternären Ammoniumsalzen insbesondere in Nachspülmitteln erreichbar. Die Affinität dieser Ammoniumsalze zum Haarkeratin ist jedoch nur in Abwesenheit von synthetischen Waschrohstoffen, insbesondere von anionischen Tensiden, voll gewährleistet so dass der Einsatz solcher Ammoniumsalze in Shampoos kaum in Frage kommt. Um an sich gute Konditioniereffekte zu erzielen, ist es deshalb in der Regel nötig, Haar zuerst zu shampoonieren und in einer getrennten, weiteren Stufe mit einem tensidarmen Nachspülmittel zu behandeln, das das angegebene quaternare Ammoniumsalz enthält. Obwohl die monomeren bis oligomeren, quaternaren Ammoniumsalze an sich im allgemeinen besonders preisgünstig sind, ist ihre begrenzte Formulierungsmöglichkeit ein wesentlicher Nachteil, indem immer ein zweistufiges und damit recht aufwendiges Haarbehandlungsverfahren erforderlich

Auch mit hochmolekularen, polymeren quaternären Ammoniumsalzen sind gute Konditioniereffekte erreichbar, die jedoch im allgemeinen schwächer sind als beim gleichzeitigen Einsatz der monomeren bis oligomeren quaternären Ammoniumsalze. Dies trifft vor allem für die Verhinderung der statischen Aufladung der behandelten Haare zu. Obschon die polymeren, quaternären Ammoniumsalze in Gegenwart von vielen, in der Kosmetikindustrie üblicherweise verwendeten Tensiden ihre Affinität zum Haarkeratin behalten und somit in den meisten Shampooformulierungen einsetzbar sind, weisen sie neben ihrem relativ hohen Preis den wesentlichen Nachteil auf, bei der Haarbehandlung zu unerwünschten Akkumuliereffekten führen zu können.

Durch die Kombination von monomeren bis oligomeren, quaternären Ammoniumsalzen mit ausgewählten, polymeren, quaternären Ammoniumsalzen auf Acrylbasis in Gegenwart von Tensiden in neuartiger Zusammensetzung ist es erfindungsgemäss nun auf unerwartete Weise gelungen, die vorstehend erwähnten Nachteile, wie sie bei der separaten Verwendung der Ammoniumsalze der beiden angegebenen Arten auftraten, weitgehend zu eliminieren.

Erfindungsgemäss werden hochmolekulare, polymere, quaternäre Ammoniumsalze auf Acrylbasis eingesetzt, die eine Molekulargewichtsvertéilung von 104 bis 109 aufweisen, wobei das Molekulargewicht von mindestens 5 % des Polymers 107 bis 109 beträgt.

Aus GB-A-1 073 947 sind Tensidzusammensetzungen bekannt, die jedoch zum Reinigen von z.B. Leder, Glas, Anstrichen und Holz verwendet werden und keine oligomere, quaternäre Ammoniumsalze enthalten. Zudem enthalten die bekannten Zusammensetzungen Polymere auf Acrylbasis, die jedoch nicht quaterniert sind und Molekulargewichte von nur 3 bis 15.108 aufweisen.

Aus GB-A-1 342 176 sind Zusammensetzungen bekannt, die anionische oder nicht-ionogene Tenside, monomere, quaternare Ammoniumsalze und polymere, quaternare Ammoniumsalze auf Acrylbasis enthalten, die jedoch als Waschflotte zum Antistatischmachen von synthetischen Polyamidtextilien verwendet werden. Zudem enthält GB-A-1 342 176 über das Molekulargewicht der eingesetzten polymeren, quaternären Ammoniumsalze keinerlei Angaben.

Aus GB-A-2 027 045 sind Haarshampoos bekannt, die anionische Tenside und polymere, quaternare Ammoniumsalze auf Acrylbasis, jedoch keine monomere bis oligomere Ammoniumsalze enthalten. Zudem beträgt das Molekulargewicht der eingesetzten, polymeren Ammoniumsalze nur 103 bis 106.

Aus JP-A-78 24036 sind Haarnachspülmittel bekannt, die monomere, quaternäre Ammoniumsalze und polymere, quaternäre Ammoniumsalze auf Acrylbasis, jedoch keine weiteren Tenside, wie z.B. anionische oder nicht-ionogene Tenside enthalten. Zudem ist das Molekulargewicht der eingesetzten, polymeren Ammoniumsalze nur 1.104 bis 5.105.

Aus JP-A-54 43211 und JP-A-79 135 234 sind Haarnachspülmittel bekannt, die ein anionisches oder ein nichtionogenes Tensid, ein monomeres bis oligomeres Ammoniumsalz und ein polymeres, quaternäres Ammoniumsalz enthalten, wobei das polymere Ammoniumsalz jedoch nicht auf Acrylbasis, sondern eine kationische Cellulose ist, deren Molekulargewicht nur 103 bis 106 beträgt.

Aus EP-A-0 045 720 und EP-A-0 047 714 sind Haarshampoos bekannt, die Tenside und polymere, quaternäre Ammoniumsalze enthalten, die mit den erfindungsgemäss eingesetzten Tensiden und polymeren, quaternären Ammoniumsalzen identisch sind. Die bekannten Shampoos enthalten jedoch keine monomere bis oligomere Ammoniumsalze und ergeben daher Konditionseffekte auf dem Haar, die schlechter anfallen, als bei

Verwendung der erfindungsgemässen Zusammensetzungen.

Gegenstand der vorliegenden Erfindung ist somit eine wässrige Zusammensetzung aus polymeren, quaternären Ammoniumsalzen, aus monomeren bis oligomeren, quaternären Ammoniumsalzen und aus nichtionischen oder anionischen Tensiden, die dadurch gekennzeichnet ist, dass sie einen pH-Wert von 3 bis 9 aufweist und mindestens (A) ein in wässrigen Tensidsystemen lösliches oder mikroemulgierbares er Ammoniumsalz, das eine Molekulargewichtsverteilung von 10⁴ bis 10⁹ aufweist, wobei das Molekulargewicht von mindestens 5 Gewichtsprozent des polymeren Salzes 10⁷ bis 10⁹ beträgt und das Salz wiederkehrende Strukturelemente der Formel

10

15 (1)
$$-CH_{2} - \begin{matrix} A_{1} \\ -C_{1} - C_{1} \\ C_{0} - D_{1} - E_{1} \end{matrix} \xrightarrow{R_{1}} \begin{matrix} R_{1} \\ R_{2} \\ R_{2} \end{matrix} \xrightarrow{R_{1}} \begin{matrix} C_{1} \\ R_{2} \\ R_{2} \end{matrix}$$

20

und gegebenenfalls in beliebiger Reihemfolge mindestens eines der wiederkehrenden Strukturelemente der 25 **Formeln**

30

(2)
$$-CH_2 - \dot{c}_2 - \dot{c}_0 - NH_2$$

35

(3)

und

45 (4).

50

aufweist, worin A $_1$, A $_2$, A $_3$ und A $_4$ je Wasserstoff oder Methyl, G $_1$ und G $_2$ vonelnander verschieden sind und je

55

- D₁ und D₂ je Sauerstoff oder -NH-, E₁ und E₂ je Alkylen mit 1 bis 4 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl substituiert ist,
- R_1 , R_2 , R_3 und R_4 je Methyl oder Aethyl, Q Alkyl, Hydroxyalkyl mit 1 bis 4 Kohlenstoffatomen oder Benzyl und Y_1^{Θ} ein Halogenid-, Alkylsulfat- oder Alkylphospbonetanion mit 1 bis 4 Kohlenstoffatomen im Alkylrest

bedeuten.

(B) ein Ammoniumsalz, das 1 bis 3 quaternäre Stickstoffatome und ein Molekulargewicht von höchstens 9'000 aufweist und

(C) ein nicht-ionisches Tensid, ein Tensid mit intramolekular je einer positiven und negativen Ladung oder ein anionisches, gegebenenfalls zwitterionisches Tensid oder deren Gemische

enthält,

wobei bei Einsatz eines anionischen Tensides als Komponente (C) das polymere Ammoniumsalz als Komponente (A) ein Copolymerisat ist, das neben Strukturelementen der Formel (1) auch Strukturelemente der Formel (2) aufweist, und das anionische Tensid mindestens teilweise mit den Komponenten (A) und (B) unter Ionenaustausch umgesetzt ist.

Weitere Gegenstände der Erfindung sind das Herstellungsverfahren für die vorstehemd angegebene Zusammensetzung, deren Verwendung in kosmetischen Mitteln, die kosmetischen Mittel (Haarkosmetika), welche die erfindungsgemässen Gemische enthalten und deren Applikationsverfahren, insbesondere Verfahren zum Behandeln von Haar sowie nach den Applikationsverfahren behandeltes Haar, z.B. in Form von Perücken.

Der pH-Wert von 3 bis 9 der erfindungsgemässen Zusammensetzung wird, sofern notwendig, durch Zusatz einer Säure oder Base eingestellt, wobei die Auswahl der Säure bzw. Base nicht kritisch ist.

Die in den erfindungsgemässen Gemischen als Komponente (A) eingesetzten, polymeren Ammoniumsalze dadurch aus, dass sie durch Wasser-in-Oel Emulsionspolymerisation sich Lösungspolymerisation eines quaternären Ammoniumsalzes der Acrylsäurereihe und gegebenenfalls mindestens eines weiteren Comonomers auf Acrylbasis erhältlich sind.

Durch Wasser-in-Oel Emulsionspolymerisation, auch inverse Emulsionspolymerisation genannt, oder durch Lösungspolymerisation, erreicht man den hohen Molekulargewichtsbereich der erfindungsgemäss eingesetzten Polymerisate von 107 bis 109, deren Anteil vorzugsweise 5 bis 60, vor allem 10 bis 60 und insbesondere 20 bis 50 Gewichtsprozent der Copolymerisate innerhalb der breiten Molekulargewichtsvertei-i lung von 104 bis 109 ausmacht. Eine Anreicherung an Anteile eines Molekulargewichtes von 107 bis 109 innerhalb der breiten Molekulargewichtsverteilung von 10⁴ bis 10⁹ kann nötigenfalls auch durch Behandlung des Polymers in einem vorzugsweise mit Oel und Wasser mischbaren Lösungsmittel, z.B. Methanol, Isopropanol oder Aceton, erzielt werden. Eine solche Behandlung wird vor allem nach durchgeführter Lösungspolymerisation durchgeführt. Besonders bevorzugte Polymere weisen 15-45 oder sogar 30-45 Gewichtsprozent Anteile im Molgewichtsbereich 107 bis 109 und weniger als 15 Gewichtsprozent Anteile im Molgewichtsbereich kleiner als 105 auf.

Der Anteil an Strukturelementen der Formel (1) in den Polymerisaten, auch Quatgehalt genannt, bildet neben der Molekulargewichtsverteilung ein weiteres, wesentliches Kennzeichen der eingesetzten Ammoniumsalze, welche durchschnittlich etwa 5 bis 100, vorzugsweise 5 bis 80 und insbesondere 6 bis 40, bzw. 10 bis 30 Mol% Strukturelemente der Formel (I), 0 bis durchschnittlich etwa 95, vorzugsweise 10 bis 95 oder 10 bis 75 und insbesondere 50 bis 90 Mol% Strukturelemente der Formel (2) und 0 bis durchschnittlich etwa 10, vorzugsweise insgesamt 1 bis 8 Mol% Strukturelemente der Formel (3) und gegebenenfalls (4), d.h. (3) und/oder (4) und insbesondere je 1 bis 4 Mol% Strukturelemente der Formeln (3) und (4) enthalten. Ammoniumsalze mit einem Quatgehalt, d.h. einem Gehalt an Strukturelementen der Formel (I), von 100%, stellen Homopolymerisate dar. Der Quatgehalt von 100% ist aber als Idealwert anzusehen, da durch Hydrolyse der Strukturelemente der Formel (I) die Homopolymerisate stets Spuren (z.B. 0,01 bis 0,5 Gewichtsprozent) an Strukturelementen der Formel (4), worin G2 -COOH bedeutet, enthalten. Copolymerisate, die mindestens eines der Strukturelemente (2), (3) und/oder (4) aufweisen, sind den Homopolymerisaten gegenüber als Komponente (A) in den erfindungsgemässen Gemischen bevorzugt, da sie auch in Gegenwart von anionischen Tensiden für sich allein als Komponente (C) zu vollständig klar gelösten Zusammensetzungen aus (A), (B) und (C) führen. Insbesondere enthält bei Einsatz eines anionischen Tensides als Komponente (C) das polymere Ammoniumsalz als Komponente (A) höchstens 80 Mol%, z.B. 5 bis 80 Mol%, Strukturelemente der Formel (1) und mindestens 10 Mol%, z.B. 10 bis 75 Mol%, Strukturelemente der Formel (2).

Als bevorzugte Bedeutungen für die Symbole der Formel (1) gelten für A1 Methyl, für D1 Sauerstoff, für E1 unsubstituiertes n-Propylen oder insbesondere unsubstituiertes Aethylen, für R1 und R2 Methyl und für Q unsubstituiertes Propyl, vorzugsweise Aethyl oder insbesondere Methyl. A2 in Formel (2) steht vorzugsweise für Wasserstoff. Falls Strukturelemente der Formel (3) für sich allein, d.h. in Abwesenheit von Strukturelementen der Formel (4) vorhanden sind, gelten als bevorzugte Bedeutungen für die Symbole in Formel (3):

Methyl für A₃ und -CO-D₂-E₂- N

60

für G_1 , wobei D_2 , E_2 , R_3 und R_4 die gleichen bevorzugten Bedeutungen haben wie für D_1 , E_1 , R_1 und R_2 vorstehend angegeben. Falls Strukturelemente der Formel (4) zusätzlich zu den Strukturelementen der Formel (3) vorhanden sind, bedeuten in Formel (4) A_4 vorzugsweise Wasserstoff und G_2 vorzugsweise -CN oder A_4 insbesondere Methyl und G_2 insbesondere -COOH.

Als bevorzugte Komponenten (B) enthalten die erfindungsgemässen Zusammensetzungen Ammoniumsalze

10
$$L_2 - \frac{L_1}{N} - L_4 \qquad Y_2^{\Theta}$$
15 L_3

5

worin L₁ Wasserstoff, Alkyl oder Alkenyl mit höchstens 4 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl substituiert ist, L₂, L₃ und L₄ je gegebenenfalls verzweigtes Alkyl oder Alkenyl mit höchstens 22 Kohlenstoffatomen, das gegebenenfalls durch Sauerstoffatome oder Säureamidreste unterbrochen ist und gegebenenfalls endständig durch Hydroxyl, Carbamoyl, Dialkylamino, unsubstituiertes Phenyl oder Phenoxy, halogensubstituiertes oder halogenmethylsubstituiertes Phenyl oder Phenoxy substituiert ist, wobei durch -0-oder -CONH- unterbrochene L₂-, L₃- und L₄-Reste insgesamt je höchstens 120 Kohlenstoffatome aufweisen, oder bei Ammioniumsalzen mit zwei quaternären Stickstoffatomen, einer der L₂-, L₃- oder L₄-Reste der angegebenen Art endständig mit einem Di- oder Trialkylammonium-Kation substituiert ist, wobei die Alkylreste in Alkylamino- bzw. Alkylammonium-Substituenten 1 bis 4 Kohlenstoffatome aufweisen und gegebenenfalls durch Hydroxyl substituiert sind, oder L₃ und L₄ zusammen mit dem quaternären Stickstoffatom einen 4,5-Dihydroimidazolring oder einen 3,4,5,6-Tetrahydropyrimidinring bilden, wobei diese Ringe in 2-Stellung mit Alkyl mit 1 bis 22 Kohlenstoffatomen und am quaternären Stickstoffatom mit L₁ und L₂ mit je den angegebenen Bedeutungen substituiert sind, oder bei Ammoniumsalzen mit 3 quaternären Stickstoffatomen L₁ und L₂ die für L₁ angegebenen Bedeutungen haben, L₃ Carbalkoxyalkyl oder Carbalkenyloxyalkyl mit 8 bis 22 Kohlenstoffatomen im Carbalkoxy- oder Carbalkenyloxyteil und 1 oder 2 Kohlenstoffatome im Alkylteil, und

35 L4 einen geradkettigen Alkylrest mit 5 bis 8 Kohlenstoffatomen, der durch 2 quaternäre Stickstoffatome unterbrochen ist, wobei die Stickstoffatome durch Aethylen oder Propylen verbunden sind und jeweils mit L1-und L3-Reste der zuletzt angegebenen Bedeutungen substituiert sind und

Y₂ in Halogenid-, Alkylsulfat- oder Alkylphosphonatanion mit 1 bis 4 Kohlenstoffatomen im Alkylrest oder das Anion einer Alkylcarbonsäure oder einer Oxycarbonsäure mit höchstens 6 Kohlenstoffatomen oder einer Phosphorsäure bedeuten.

Bevorzugte Bedeutungen für L₁ in Formel (5) sind Wasserstoff, Alkenyl mit 3 oder 4 Kohlenstoffatomen, z.B. Allyl, 1- und 2-Butenyl oder Isopropenyl, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, z.B. Hydroxypropyl oder Hydroxyäthyl oder vor allem Alkyl mit 1 bis 4 Kohlenstoffatomen, z.B. Butyl, Isopropyl, Propyl und insbesondere Aethyl und Methyl. Infolge des pH-Wertes von 3 bis 8 der erfindungsgemässen Zusammensetzungen liegen die Verbindungen der Formel (5), insbesondere solche worin L₁ für Wasserstoff steht, stets als quaternäre Ammoniumsalze vor.

Sind L_2 , L_3 und L_4 in Formel (5) Alkyl- oder Alkenylreste, so weisen sie in der Regel 1 bis 22 Kohlenstoffatome auf. Als bevorzuge Alkyl- oder Alkenylreste dieser Art kommen neben der für L_1 angegebenen Bedeutungen z.B. Diallyl, Isoamyl, Cetyl oder vor allem Alkyloder Alkenylreste, die sich von den entsprechenden gesättigten oder ungesättigten Fettsäuren mit 8 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ableiten, in Frage.

Als Beispiele der entsprechenden Fettsäuren seien Capryl-, Caprin-, Arachin- und Behensäure, insbesondere Laurin-, Myristin-, Palmitin- und Stearinsäure oder Myristolein-, Palmitolein-, Elaeostearin-, Clupanodonsäure, insbesondere Oel-, Elaidin-, Eruka-, Linolund Linolensäure genannt. Alkyl- und Alkenylreste für L₂, L₃ und L₄, die sich von technischen Gemischem der genannten gesättigten und/oder ungesättigten Fettsäuren ableiten, sind besonders bevorzugt.

Die durch Säureamidreste unterbrochenen Alkyl- oder Alkenylketten weisen in der Regel nur ein -CONHoder -NHCO-Brückenglied auf, wobei 2 Alkyl- oder Alkenylketten und ein Säureamidbrückenglied insgesamt vorzugsweise höchstens 40 Kohlenstoffatome aufweisen.

Bedeuten L₂, L₃ und L₄ in Formel (5) durch Sauerstoffatome unterbrochene Alkylreste, so handelt es sich hierbei z.B. um Polyalkylen-, vorzugsweise Polypropylen- und insbesondere Polyāthylenketten, die etwa 1 bis 40 Polyalkyleneinheiten aufweisen.

Dialkylamino als endständiger Substituent der Alkyl- oder alkylenketten L₂, L₃ und L₄ weist die Di- oder Trialkylammonium-Substituenten je 1 bis 4 Kohlenstoffatome im Alkylteil, wobei Methyl und Aethyl im Vordergrund des Interesses stehen, auf.

Bevorzugte Ammoniumsalze mit 1 oder 2 quaternären Stickstoffatomen entsprechen demgemäss der Formel

worin L₅ Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen oder Alkenyl mit 3 oder 4 Kohlenstoffatomen, L₆, L₇ und L₈ je Alkyl mit 1 bis 22 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 22 Kohlenstoffatomen oder Reste der Formeln

20

35

55

60

65

(8) $-(CH_2)_{n-1}^{-CH_2-(O)}_{n'-1}^{-1} - (CH_2)_{n''-1}^{-1} \times (CH_2)_{n''-1}^{-1}$

(9)
$$-(CH_2)_a - CONH_2$$
, (10) $-(CH_2)_a - CONH_b - L_9$ oder (11) $-(CH_2)_a - NHCO - L_9$,

worin Lg Hydroxyāthyl oder Alkyl mit 1 bis 22 Kohlenstoffatomen oder Lg eimen Rest der Formel

$$(12) - (CH2)a - O - (CH2 - CHO)b - H oder (CH3)2-n$$

worin L₁₀ und L₁₁ je Methyl, Aethyl oder Hydroxyäthyl und L₁₂ Wasser stoff, Methyl, Aethyl oder Hydroxyäthyl, a 1 bis 22, b 1 bis 40 und c 1 bis 6 oder L₇ und L₈ zusammen mit dem quaternären Stickstoffatom einen Ring der Formel

$$L_{13} = (CH_2)_{n+1}$$

worin L₁₃ Alkyl oder Alkenyl mit 8 bis 22 Kohlenstoffatomen und n, n', n" und n" je 1 oder 2 bedeuten und Y₂9 die angegebenen Bedeutungen hat.

Falls n in Formel (13) für 2 steht, weisen die Ammoniumsalze 2 quatermäre Stickstoffatome auf. In diesem Falle bedeutet nur einer der Reste L₆, L₇ und L₈ in Formel (6) ein durch Säureamidreste unterbrochenes Alkyl einer der Formeln (10) oder (11).

Die Ammoniumsalze, welche 3 quaternäre Stickstoffatome aufweisen, entsprechen der Formel (5), worin L_4 durch Stickstoffatome unterbrochenes Alkyl und L_3 z.B. Carbalkoxyalkyl bedeuten. Bevorzugte Ammoniumsalze dieser Art entsprechen der Formel

(15) $\begin{array}{c} L_{5} & L_{5} & L_{5} \\ & I_{5} & I_{5} & I_{5} \\ & I_{6} & I_{7} & I_{7} \\ & I_{7} & I_{7}$

worin L₅, L₁₃ und Y₂⊖ die angegebenen Bedeutungen haben. Die Ammoniumsalze mit nur einem quaternären Stickstoffatom sind gegenüber solchen mit 3 oder 2 quaternären Stickstoffatomen bevorzugt. Bevorzugte Ammoniumsalze mit einem quaternären Stickstoffatom entsprechen der Formel

(16) $L_{13} \xrightarrow{CH_2} CH_2 \qquad Y_3 \hookrightarrow CH_2 \cap NH-CO-L_{13}$

worin L₅, L₁₃ und c die angegebenen Bedeutungen haben und Y₃[©] ein Chlorid-, Methylsulfat- oder Acetatanion bedeutet.
Andere bevorzugte Ammoniumsalze mit einem quaternären Stickstoffatom entsprechen der Formel

 $\begin{array}{c} L_{14} \\ \downarrow^{1} \\ L_{15} \\ \downarrow^{1} \\ (CH_{2})_{c} - NH - CO - L_{13} \end{array}$

worin L_{14} und L_{15} je Alkyl mit 1 bis 4 Kohlenstoffatomen, L_{16} Wasserstoff, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen oder -CH $_2$ -CO-NH $_2$ und Y $_4$ $^{\ominus}$ ein Chlorid-, Methylsulfat- oder Acetatanion oder sofern L_{16} Wasserstoff ist, ein Citrat-, Lactat- oder Phosphatanion bedeuten und L_{13} und c die angegebenen Bedeutungen haben, oder der Formel

65

5

10

25

30

35

40

50

55

(18)
$$H-(CH_{2}-CHO)_{b}^{L} = N - (CH_{2}-CHO)_{b}^{H-H} = 1$$

$$(CH_{3})_{2-n} = (CH_{2}-CHO)_{b}^{H-H} = 1$$

$$(CH_{3})_{2-n} = (CH_{2}-CHO)_{b}^{H-H} = 1$$

$$(CH_{3})_{2-n}^{H-H} = 1$$

$$(CH_{3})_{2-n}^{H-H} = 1$$

worin b, b' und b" je 1 bis 40, n, n' und n" je 1 oder 2 bedeuten und L₁₄ und Y₃[©] die angegebenen Bedeutung haben. Ein einziges, quaternares Stickstoffatom aufweisende Ammoniumsalze, die im Vordergrund des Interesses stehen, entsprechen indessem der Formel

worin L_{17} Alkyl mit 10 bis 22, vorzugsweise 10 bis 18 Kohlenstoffatomen umd L_{18} Alkyl mit 1 bis 22, vorzugsweise 10 bis 22 Kohlenstoffatomen, Benzyl, Phenoxymethylen oder Phenoxyäthylen bedeuten und L_{10} , L_{11} und Y_3^{\odot} die angegebenen Bedeutungen haben.

Im Vordergrund des Interesses stehen ebenfalls ein einziges quaternäres Stickstoffatom aufweisende Ammoniumsalze der Formel (17), worin L₁₄ umd L₁₅ je Aethyl oder vorzugsweise Methyl umd L₁₆ -CH₂-CO-NH₂ bedeuten und insbesondere Ammoniumsalze, die der Formel (16) entsprechen.

Als spezifische Beispiele der Komponente (B) der erfindungsgemässen Zubereitung seien die folgenden Ammoniumsalze genannt:

40 CH_3 (20) $CH_3 \xrightarrow{CH_3} CH_3$ CH_3

50 CH_3 (21) $CH_3 \xrightarrow{C}_{N} - CH_2 - CH_3$ $C1^{\Theta}$ 55 CH_3

65

60

30

60
$$CH_3$$
 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3

(36)
$$CH_3^{-(CH_2)}_{7}^{-N-(CH_2)}_{1}^{7-CH_3}$$
 $C1^{\Theta}_{CH_3}$

CH₃-(CH₂)₁₇-(CH₂)₁₇-CH₃

(39)

$$(CH_{2}-CH_{2}-O)_{b}-H$$
(40)
$$CH_{3}-(CH_{2}-CH_{2}-O)_{b}-H$$

$$(CH_{2}-CH_{2}-O)_{b}-H$$
(CH₂-CH₂-O)_b-H
(CH₂-CH₂-O)_b-H

10 0 H CH₂CH₂CH₃ CCH₂
$$(CH_2)^{\frac{1}{14-16}}$$
 C-NH-CH₂-CH₂-N CH₂CH₃ C1 \ominus CH₂CH₃

20
$$CH_{3}-(CH_{2})_{7}-CH=CH-(CH_{2})_{7}-CO-NH-(CH_{2})_{3}-\frac{\Theta_{N-CH_{3}}^{l}}{CH_{3}}$$
25

40
$$CH_3$$
 $CH_3 - (CH_2)_{10} - CO - NH - (CH_2)_3 - (CH_2 - CO - NH_2)_{10} CH_3$ CH_3

55

60

· 65

Hierbei stehen die Ammoniumsalze der Formeln (23) bis (32) vorzugsweise (23), (24), (25) und (28), und vor allem der Formeln bis (39), (47) und (48), insbesondere (37), (38), (39) und (48), im Vordergrund des Interesses. Als nicht-ionische Tenside für die Komponente (C) in den erfindungsgemässen Zusammensetzungen kommen alkoxylierte, vorzugsweise propoxylierte und insbesondere äthoxylierte Fettamine, vor allem aber äthoxylierte Fettalkohole, Fettsäuren, Fettsäureamide, Alkylphenole oder Kohlenhydrate, worin die endständigen Hydroxylgruppen gegebenenfalls veräthert sind, und insbesondere als Alkyläther mit 1 bis 20 Kohlenstoffatomen im Aetherteil vorliegen, Addukte (Blockcopolymere) aus Aethylen- und Propylenoxyd,

Phosphorsäurepolyglykolester oder Aminoxyde, die vorzugsweise einen Fettrest aufweisen, in Betracht.

Geeignet sind ferner auch Fettsäureester von 3- bis 6-wertigen Alkoholen (Glycerin, Pentaerythrit, Sorbit, Sorbitan) oder von Monound Disacchariden (Saccharose).

Die als nicht-ionische Tenside verwendeten, äthoxylierten Fettsäuren, Fettsäureamide, Fettalkohole, Alkylphenole oder Kohlenhydrate entsprechen vorzugsweise einer der Formeln

5

(49)
$$H-(O-CH_2-CH_2)_p-OOC-T_1$$
,

10

(50)
$$H-(O-CH_2-CH_2)_p-NH-CO-T_1,$$

¹⁵ (51)
$$H-(O-CH_2-CH_2)_p-O-T_2$$

25 (53)
$$H-(O-CH_2-CH_2)_p-O-CH_2-(CHOH)_s-CHO,$$

worin T1 Alkyl oder Alkenyl mit 7 bis 21, vorzugsweise II bis 17 Kohlenstoffatomen, T2 Alkyl oder Alkenyl mit 8 30 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, T₃ Alkyl oder Alkenyl mit 6 bis 14, vorzugsweise 8 bis 12 Kohlenstoffatomen, p eine ganze Zahl von 1 bis 50, vorzugsweise 1 bis 20, und s 3 oder vorzugsweise 4

In Formel (49) leiten sich die Reste T₁COO- von den entsprechenden gesättigten oder ungesättigten Fettsäuren mit 8 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ab. Hierbei handelt es sich im allgemeinen um die bei der Definition von L2, L3 und L4 der Formel (5) vorstehend genanntem Fettsäurem bzw.

Die Fettsäureamid- und Fettalkoholreste T₁-CO-NH- und T₂-O-in den Formeln (50) und (51) leiten sich vorzugsweise ebenfalls von den entsprechenden erwähnten Fettsäuren ab.

Bevorzugte Alkylreste für T₃ in Formel (52) sind z.B. Alkylreste mit 6 bis 12 Kohlenstoffatomen wie n-Hexyl, i-40 Hexyl, n-Heptyl, n-Octyl, i-Octyl, n-Nonyl, i-Nonyl, n-Decyl, n-Dodecyl, ferner Alkylreste mit 12 bis 14 Kohlenstoffatomen, wie Lauryl und Myristyl, Alkenylreste wie Oleyl und Reste, die sich von dimerisierten Olefinen mit je 6 oder 7 Kohlenstoffatomen ableiten.

Als äthoxylierte Kohlenhydrate kommen je nach dem Wert von s in Formel (53) vor allem äthoxylierte Pentosen und insbesondere Hexosen, z.B. äthoxylierte Glukose, in Betracht.

Gegebenenfalls können die äthoxylierten Tenside der Formel (49) bis (53) auch in verätherter Form (Alkyläther mit 1 bis 20 Kohlenstoffatomen im Aetherteil) vorliegen.

Unter den äthoxylierten, nicht-ionischen Tensiden der Formeln (49) bis (53) sind die äthoxylierten Fettsäuren und Fettalkohole der Formeln (49) und (51) und insbesondere die athoxylierten Alkylphenole der Formel (52) bevorzugt. Als spezifische Beispiele solcher äthoxylierter Alkylphenole sei u.a. das Tensid der Formel

$$H_{19}^{C_{9}} - (CH_{2}^{-CH_{2}^{-0}})^{-H}$$

60

45

50

65

Als nicht-ionisches Tensid für die Komponente (C) des erfindungsgemässen Gemisches sind ebenfalls handelsübliche Produkte aus Aethylenoxyd und Propylenoxyd bevorzugt, die durch Addition von Aethylenoxyd an Additionsprodukte aus Propylenoxyd und Propylenglykol erhältlich sind und Molekulargewichte von etwa 1000 bis etwa 15000 aufweisen. Solche Addukte stellen Blockcopolymerisate dar, die der wahrscheinlichen **Formel**

(55)
$$HO-(CH_2-CH_2-0)_x-(CH_2-CH-0)_y-(CH_2-CH_2-0)_z-H$$

 CH_3

5

10

entsprechen, worin x, y und z gleiche oder voneinander verschiedene, ganze Zahlen bedeuten. Die Werte für x, y und z hängen vom Molekulargewicht des Copolymerisates ab und stellen nur Durchschnittswerte dar. Besonders bevorzugt sind Copolymerisate mit durchschnittlichen Molekulargewichten von 2000 bis 8000, worin die Durchschnittswerte von x und z je zwischen 2 und 60 und von y zwischen 20 und 80 schwanken und somit der wahrscheinlichen Formel

(56)
$$HO-(CH_2-CH_2-O)_{2-60}-(CH_2-CH-O)_{20-80}-(CH_2-CH_2-O)_{2-60}-H$$
 CH_3

entsprechen. 20

Als nicht-ionisches Tensid für die Komponente (C) kommen auch Phosphorsäureester, Phosphorsäurepolyglykolester und Aminoxyde, vor allem solche mit Fettresten, in Frage, wobei die Phosphorsäureester und die Phosphorsäurepolyglykolester vorzugsweise der Formel

25
$$T_{3}^{*}-(O-CH_{2}^{-CH_{2}})_{q-1}^{-O}$$

$$T_{3}^{*}-(O-CH_{2}^{-CH_{2}})_{q-1}^{-O}-P=0$$

$$T_{3}^{**}-(O-CH_{2}^{-CH_{2}})_{q'-1}^{-O}-P=0$$
30

entsprechen, worin T3', T3" und T" voneinander verschieden oder vorzugsweise gleich sind und jeweils Alkyl mit 6 bis 14 Kohlenstoffatomen bedeuten, und q, q' und q" voneinander verschieden oder vorzugsweise gleich sind und eine ganze Zahl von je 1 bis 13, insbesondere 7 bis 13, bedeuten, und Aminoxyde vorzugsweise einer 35 der Formeln

$$_{1}^{\text{CH}}$$
 50 (59) $_{1}^{\text{T}_{1}\text{-CO-NH-(CH}_{2})}$ $_{3}^{\text{-N}}$ $_{\text{CH}_{3}}^{\text{CH}}$

55

60

65

entsprechen, worin T_1 und T_2 die angegebenen Bedeutungen haben.

Geeignet sind ferner auch Fettsäureester von 3- bis 6-wertigen Alkoholen mit 3 bis 6 Kohlenstoffatomen oder von Mono- oder Disacchariden (Saccharose). Die Fettsäurereste leiten sich z.B. von gesättigten oder ungesättigten Fettsäuren mit vorzugsweise 12 bis 18 Kohlenstoffatomen (Laurin-, Palmitim-, Stearim-, Oelsäure) ab. Genannt seien insbesondere die Sorbitan-Fettsäureester.

Die nicht-ionischen Temside der Formeln (49) bis (56), vor allem (49) (51), (52) und (55) und insbesondere (54)

und (56), sind dem nicht-ionischen Tensiden der Formeln (57) bis (59) gegenüber bevorzugt.

Als Komponente (C) kommen auch Tenside mit intramolekular je einer positiven und negetiven Ladung in Betracht, welchen im allgemeinen gegenüber dem nicht-ionischen Tensiden der angegebenen Art der Vorzug

gegeben wird. Bei diesen Tensiden handelt es sich vor allem um Betaine oder Sulfobetaine, die sich von Imidazolinderivaten oder offenkettigen, aliphatischen Aminen ableiten.

Die als Komponente (C) erfindungsgemäss eingesetzten, sich von Imidazolinderivaten ableitenden Betaine oder Sulfobetaine entsprechen vorzugsweise einer der Formeln

5

10 (60)
$$T_1 = CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$$
15

oder

30

worin T_1 die angegebenen Bedeutungen hat.

Als Beispiele spezifischer Vertreter solcher Imidazolimiumbetaine oder -sulfobetaine seien u.a. die Tenside, bzw. technischen Tensidgemische der Formeln

und

45

50

(63)
$$CH_3^{-(CH_2)}_{10-12} \xrightarrow{CH_2^{-CH_2}} CH_2^{-CH_2-CH_2-SO_3} CH_2^{-CH_2-CH_2-OH}$$

55

Die erfindungsgemäss eingesetzten, sich von einem offenkettigen, aliphatischen Amin ableitenden Betainderivate entsprechen vorzugsweise einer der Formeln

(65)
$$T_2 \xrightarrow{\text{CH}_3} \text{CH}_2 - \text{COO}$$
,

5

15

30

35

40

(67)
$$T_2^{-(NH-CH_2-CH_2)}_{t-1}^{-NH-CH_2-CH_2-CH_2-CH_2-COO}$$
,

worin T_1 und T_2 die angegebenen Bedeutungen haben, und t 1 oder 2 bedeutet. Als Beispiele spezifischer Dertreter solcher Betainderivate seien u.a. die Tenside bzw. tecknischen Tensidgemische der Formeln

insbesondere

65 und

(75)
$$CH_3 - (CH_2) \xrightarrow{Q \ 1} (CH_2 - CH_2 - CH_2 - CH_3)$$

5

30

genannt.
Die erfindungsgemäss eingesetzten Sulfobetainderivate, die sich von einem aliphatischen, offenkettigen
Amin ableiten, entsprechen vorzugsweise einer der Formeln

$$\begin{array}{ccc}
\text{CH}_{3} & \text{CH}_{2} - \text{SO}_{3} & \\
\text{CH}_{2} - \text{PI} - \text{CH}_{2} - \text{CH}_{0H} & \\
\text{CH}_{3} & \text{CH}_{2} - \text{SO}_{3} & \\
\text{CH}_{3} & \text{CH}_{2} - \text{CH}_{0H} & \\
\text{CH}_{3} & \text{CH}_{2} - \text{CH}_{0H} & \\
\text{CH}_{3} & \text{CH}_{2} - \text{CH}_{2} & \\
\text{CH}_{3} & \text{CH}_{2} - \text{CH}_{2}$$

(77a)
$$T_2$$
-CO-NH-(CH₂)₃ T_2 -CH₂-SO₃ OH OH

40

(79)

$$T_1$$
-co-N

 CH_2 -CH-O) p -H

 CH_2 -CH-O) p -SO p -CH-O

worin T₁ und T₂ die angegebenen Bedeutungen und p' und p'' die für p angegebenen Bedeutungen haben, wobei p, p' und p'' gleich oder voneinander verschieden sind. Als Beispiele spezifischer Vertreter solcher Sulfobetainderivate seien u.a. die Tenside der Formeln

(81a)
$$C_8 - C_{18} - A1ky1 - CO - NH - (CH_2)_3 - \frac{CH_3}{CH_3} - CH_2 - CH_2 - CH_3$$

 $\rm C_{8}\text{--}C_{18}$ = technisches Gemisch aus Kokosfett aus ca. 15% $\rm C_{8}\text{--}$ und $\rm C_{10}\text{--}Alkyl$

ca. 40% C₁₂-Alkyl

ca. 30% C₁₄-Alkyl umd

ca. 15% C₁₆- und C₁₈-Alkyl.

5

20

25

30

40

45

50

60

Als Komponente (C) des erfindungsgemässen Gemisches stehen nichtionische Tenside der Formeln (56), vor 15 allem (54) und insbesondere Tenside mit intramolekular je einer positiven und negativen Ladung der Formeln (62), (63) und (72) bis (75) im Vordergrund des Interesses.

Anionische, gegebenenfalls zwitterionische Tenside, die als Ausführumgsform der Komponente (C) in den

erfindungsgemässen Zusammensetzungen enthalten sind, entsprechen der Formel

worin Z[®] ein Alkalimetall-, insbesondere Natrium- oder ein Ammoniumkation bedeutet, wobei das Ammoniumkation (NH₄+74) unsubstituiert oder vorzugsweise durch 1, 2 oder vor allen 3 Alkyl- oder Alkanolreste mit je 1 bis 4 Kohlenstoffatomen substituiert ist und X^O für den Rest eines anionischen, gegebenenfalls zwitterionischen Tensids steht.

Anionische Tenside der Formel (82) sind den Betainen oder Sulfobetainen und vor allem den nicht-ionischen

Tensiden der vorstehend angegebenen Art gegenüber bevorzugt.

Falls X⁹ in Formel (82) für den Rest eines anionischen, jedoch nicht zwitterionischen Tensids steht, handelt es sich vorzugsweise um Reste oberflächenaktiver Sarkosinate, Sulfate, z.B. Alkylsulfate, Alkyläthersulfate, Alkylamidsulfate, Alkylamidäthersulfate, Alkylarylpolyäthersulfate oder Monoglyceridsulfate, Sulfonate, z.B. Alkylsulfonate, Alkylamidsulfonate, Alkylarylsulfonate, α-Oelfinsulfonate oder Sulfobernsteinsäurederivate, z.B. Alkylsulfosuccinate, Alkyläthersulfosuccinate, Alkylamidsulfosuccinate, Alkylamidpolyäthersulfosuccinate oder Alkylsulfosuccinamide, ferner auch um Reste von fluorierten Tensiden oder Phosphattensiden, wie z.B. Alkyl- oder Alkylätherphosphaten.

In Frage kommen z.B. für Sarkosinat-Tenside solche der Formel

(83)
$$\Theta_{OOC-CH_2} = N_{CO-T_1}^{CH_3} Z^{\Theta}$$

worin T₁ und 2⁹ die angegebenen Bedeutungen haben.

In Formel (83) leiten sich die Reste T1CO- von dem entsprechenden gesättigten oder ungesättigten Fettsäuren mit 8 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen ab. Hierbei handelt es sich im allgemeinen um die bei der Definition von L2, L3 und L4 der Formel (5) vorstehend erwähnten Fettsäuren bzw. Fettsäure-Gemische. Als spezifische Vertreter von Sarkosinat-Tensiden seien vor allem solche der Formeln

und insbesondere

(85)
$$\Theta_{OOC-CH_2-N}^{CH_3} \xrightarrow{Na}^{\Theta} Na$$

65 genannt.

Falls X[⊕] einen Sulfatrest (von Alkylsulfaten, sowie von Aether-, Ester-, Amid- oder Aminosulfaten) bedeutet, kommen z.B. insbesondere Tenside der Formeln

$$T_1^{-0-(CH_2-CH_2-0)}_{p-1}^{-SO_3}$$

10 (87)
$$T_3 - (CH_2 - CH_2 - O)_q - SO_3 \oplus Z^{\oplus},$$

(88)
$$T_1^{-CO-NH-(CH_2)}r^{-O-SO_3} e_z^{\Theta} \quad oder$$

20 (89)
$$T_1^{-CO-NH-(CH_2-CH_2-0)}_{p}^{-SO_3} \stackrel{\Theta}{\sim}_{2}^{\oplus}$$

in Betracht, worin T₁, T₃ und Z[©] die angegebenen Bedeutungen haben und p eine ganze Zahl von 1 bis 50, q eine ganze Zahl von 6 bis 12 und r eine ganze Zahl von 2 bis 6 bedeuten. Als spezifische Vertreter von Sulfat-Tensiden seien vor allen solche der Formeln

$$\Theta_{0_3S-0-(CH_2)_{2-4}-NH-CO-(CH_2)_{11}-CH_3}^{\Theta}$$

(91)
$$\Theta_{3S-(0-CH_2-CH_2)_{8-10}-NH-CO-(CH_2)_{11}-CH_3}^{\Theta}$$
 Na ^{Θ} ,

(92)
$$\Theta_{0_3}$$
S- $(0-CH_2-CH_2)_{8-10}$ - $0-(CH_2)_8$ - CH_3 Na Θ ,

insbesondere

45 (93)
$$\Theta_{0_3}$$
S-(O-CH₂-CH₂)₂-O-(CH₂)₁₁-CH₃ Na und

 55 genannt. Ist X^{Θ} ein Sulfonatrest, so kommen Tenside der Formeln

$$_{5}^{\text{SO}_{3}^{\bigcirc}}$$
 $_{1}^{\text{SO}_{3}^{\bigcirc}}$
 $_{5}^{\text{(96)}}$
 $_{3}^{\text{T}_{3}\text{-CH-(CH}_{2})}_{\text{r}}\text{-CH}_{3}$
 $_{2}^{\bigoplus}$

15
$$SO_3$$
(99) $T_1^{-CH_2}CH^{-T_1}$, Z^{\oplus} ,

30 in Betracht, worin T_1 , T_3 , Z^Θ und r die angegebenen Bedeutungen haben, T_1' die für T_1 angegebenen Bedeutungen hat, wobei T_1 und T'_1 gleich oder voneinander verschieden sind und t 1 oder 2 bedeutet. Als spezifische Vertreter solcher Sulfonat-Tenside seien vor allem die Reste der Formeln

 $ch_3 - (ch_2)_{11} - ch - (ch_2)_{2-4} - ch_3 Na^{\oplus}$, (102)

(103)
$$\Theta_{0_3}$$
S-(CH₂)₂-00C-(CH₂)₁₀-CH₃ NH₄ Θ_{1}

45 $\Theta_{0_3S-(CH_2)_2} = (CH_3)_7 - CH = CH-(CH_2)_7 - CH_3$ Na , (104)

insbesondere

35

40

50

65 erwähnt.

Bedeutet X⊖ den Rest eines Sulfobernsteinsäurederivats, so entspricht das Tensid z.B. einer der Formeln

(108)
$$T_1$$
-0-(CH₂-CH₂-0)_{p-1}-0C-CH₂-CH-COONa Z^{\bigoplus} so SO_3

worin T₁, T₃, Z⁰, p und t die angegebenen Bedeutungen haben und T₃' die für T₃ angegebenen Bedeutungen hat, wobei T₃ und T'₃ gleich oder voneinander verschieden sind.
Als spezifische Vertreter solcher Tenside seien die Sulfobernsteinsäurederivate der Formeln

$$\Theta_{0_3} = CH_2 - COO - (CH_2)_7 - CH_3$$

$$COO - (CH_2)_7 - CH_3$$
Na

Na

20
$$\Theta_{0_3}^{\text{S}}$$
 CH-CH₂-C00-(CH₂-CH₂-0)₂-(CH₂)₁₁-CH₃ Na $\Theta_{0_3}^{\text{NaOOC}}$

erwähnt.

Als mögliches fluoriertes Tensid kommen z.B. Tenside der Formel

in Frage, worin T_4 perfluoriertes Alkyl oder Alkenyl mit 6 bis 14 Kohlenstoffatomen bedeutet und Z^Θ die angegebenen Bedeutungen hat.

Das perfluorierte Tensid der Formel

$$\Theta_{0_3} S - C_6 H_4 O C_{10} F_{19} Na \Theta$$

stellt ein spezifisches Beispiel solcher Tenside dar. Als Phosphattenside kommen vor allem solche der Formeln

$$[T_3 - (T_1 - 0)]_{2-t} [T_1 - 0]_{t-1} (-CH_2 - CH_2 - 0)_{p} = 0$$

$$[T_3 - (T_1 - 0)]_{t-1} (-CH_2 - CH_2 - 0)_{p} = 0$$

$$[T_3 - (T_1 - 0)]_{t-1} (-CH_2 - CH_2 - 0)_{p} = 0$$

$$[T_3 - (T_1 - 0)]_{t-1} (-CH_2 - CH_2 - 0)_{p} = 0$$

65 oder

$$[OH-]_{2-t}[T_3-(O-CH_2-CH_2)_p^{-1}]_{t-1}\xrightarrow{P-O} Z^{\bigoplus} (CH_2-CH_2^{-O})_p^{-T}_3$$

in Frage worin M Wasserstoff, Ammonium ein Alkalimetall oder Alkyl mit 1 bis 3 Kohlenstoffatomen ist T T₃ T'₃ Z[©] p und t die angegebenen Bedeutungen haben, p' die für p angegebene Bedeutung hat und p und p' gleich oder voneinander verschieden sind.

Als Beispiele solcher Phosphattenside seien solche der Formeln

$$\Theta_{0-P} = \Theta_{0-CH_{2}} = \Theta_{0-CH_{3}} = \Theta_{0-CH_{$$

20 (125) $\Theta_{0-P} = \frac{0}{0 \text{CH}_{2} - \text{CH}_{2}} = \frac{0}{12^{-0} - \text{CH}_{2}} = \frac{0}{8^{-\text{CH}_{3}}} = \frac{0}{8^{-\text$

$$_{30}$$
 (126) $_{0}^{-1}$ $_{$

35
 (127) Θ_{0-P} $O_{O-CH_2-CH_2}$ O_{4} O_{CH_2} O_{10} $O_{$

$$\Theta_{0-P} = \Theta_{0-CH_{2}-CH_{2})_{4}-(CH_{2})_{10}-CH_{3}} \otimes \Theta_{0-CH_{2}-CH_{2})_{4}-(CH_{2})_{10}-CH_{3}} \otimes \Theta_{0-P} = \Theta_{0-CH_{2}-CH_{2})_{4}-(CH_{2})_{10}-CH_{3}} \otimes \Theta_{0-P} = \Theta_{0-P} \otimes \Theta_{0-P} \otimes$$

45

65

50 (129) CO-P-OH2-CH2-CH2)8-CH-CH2)7-CH3 NA

und deren Gemische z.B. technische Gemische von Phosphattensidresten der Formeln (127) und (128), der Formeln (129) und (130) oder der Formeln (131) und (131a) genannt.

Bei den Resten X^Θ in der Bedeutung von Resten zwitterionisch anionischer Tenside in Formel (82) handelt es sich um Tensidreste, die in der Regel eine positive und zwei negative Ladungen aufweisen, d.h. um ampholytische Tensidreste, die stets einen Ueberschuss an negativen Ladungen aufweisen. Als Reste solcher zwitterionisch anionischer Tenside kommen vor allem Reste von oberflächenaktiven N-Alkyl-α-iminodipropionaten und insbesondere von in 2-Stellung alkylsubstituierten Imidazolinium-dicarbonsäurederivaten in Betracht.

Oberflächenaktive, alkylsubstituierte Iminodipropionate entsprechen vorzugsweise der Formel

10

(132)
$$\Theta_{OOC-CH_2-CH_2} \rightarrow H$$
 Z

20 worin T₃ und Z[®] die angegebenen Bedeutungen haben. Als spezifisches Beispiel seien die Tenside der Formeln

$$\Theta_{\text{OOC-}(CH_2)_2 \oplus H}$$

$$\Theta_{\text{OOC-}(CH_2)_2} (CH_2)_{11}^{-CH_3}$$
30

und

40

45

35

oder technische Gemische aus den Tensioen der Formeln (133) und (133a) genannt. Bei den bevorzugten Imidazolinium-Tensiden der angegeben Art handelt es sich vor allem um solche der Formel

55

worin T_3 und Z^{\oplus} die angegebenen Bedeutungen haben. Als spezifische Beispiele seien die Tenside der Formeln

60

oder deren technische Gemische erwähnt.

Im Vordergrund des Interesses stehen als Tenside für die Komponente (C) der erfindungsgemässen Zusammensetzungen oberflächenaktive Sarkosinate, Sulfate, Sulfonate, Sulfobernsteinsäurederivate und Imidazolinium-dicarbonsāurederivate und insbesondere solche der Formeln (85), (92), (94), (96), (105), (106), (121), (135) und (136).

Bevorzugte erfindungsgemässe Zusammensetzungen enthalten die Komponenten (A), (B) und (C) in einem

Gewichtsverhältnis (A):(B):(C) von 1: (1 bis 10): (2 bis 400), insbesondere 1: (2 bis 6): (20 bis 200).

Zur Herstellung der erfindungsgemässen Zusammensetzung wird z.B. so verfahren, dass man ein Monomer der Formel

und gegebenenfalls mindestens ein Comonomer einer der Formeln

65

20

25

30

10

15

25

worin A₁, A₂, A₃, A₄, D₁, E₁, G₁, R₁, R₂ Q und Y₁⊖ die angegebenen Bedeutungen haben, durch Wasser-in-Oel Emulsionspolymerisation in Gegenwart eines Wasser-in-Oel Emulgators und gegebenenfalls eines Emulsionsstabilisators oder durch Lösungspolymerisation, jeweils in Gegenwart eines Polymerisationsinitiators zur Komponente (A) polymerisiert, das Polymerisat mit einem sowohl in Wasser als auch in Oel löslichen Lösungsmittel ausfällt und anschliessend trocknet, wobel das Verfahren dadurch gekennzeichnet ist, dass man das so erhaltene Polymerisat als Komponente (A) einsetzt und in wässrigem Medium mit mindestens einem 1 bis 3 quaternäre Stickstoffatome und ein Molekulargewicht von höchstens 9000 aufweisenden Ammoniumsalz als Komponente (B) sowie mit mindestens einem nicht-ionischen Tensid, einem Tensid mit intramolekular je einer positiven und negativen Ladung oder einem anionischen, gegebenenfalls zwitterionischen Tensid als Komponente (C) bei 10 bis 90° vorzugsweise 10 bis 60° C und einem pH-Wert von 3 bis 9 vermischt, wobei man gleichzeitig, sofern ein anionisches, gegebenenfalls zwitterionisches Tensid als Komponente (C) der Formel (82) eingesetzt wird, das anionische Tensid mit dem unter Einsatz des Comonomeren der Formel (138) hergestellte Copolymerisat als Komponente (A) und mit dem 1 bis 3 quaternäre Stickstoffatome aufweisenden Ammoniumsalz als Komponente (B) unter lonenaustausch mindestens teilweise umsetzt.

Arbeitet man nach der Methode der Lösungspolymerisation, so ist der Einsatz von Emulgatoren und Emulsionsstabilisatoren nicht notwendig. Als Lösungsmittel dient in der Regel Wasser.

Bei der Wasser-in-Oel Emulsionspolymerisation werden für die Oelphase hydrophobe, organische Flüssigkeiten benötigt. Zu diesem Zweck eignen sich z.B. aliphatische oder aromatische Kohlenwasserstoffe, Oele tierischer oder pflanzlicher Herkunft und die entsprechenden denaturierten Oele (.z.B. hydrierte Oele, polymerisierte Oele). Zu den bevorzugten hydrophoben organischen Flüssigkeiten gehören aliphatische Kohlenwasserstoffe wie Kerosin, Paraffin, Isoparaffin und aromatische Kohlenwasserstoffe wie Benzol, Toluol und Xylol. Handelsübliche technische Gemische von vorzugsweise verzweigten Paraffinölen mit einem Siede-Bereich von 160-260° C, vorzugsweise 180 bis 210° C, stchen im Vordergrund des Interesses.

Als bei der inversen Emulsionspolymerisation eingesetzte Wasser-in-Oel Emulgatoren kommen Polyoxyalkylen-, vorzugsweise Polyoxyāthylenaddukte von aliphatischen Alkoholen mit 8 bis 24 Kohlenstoffatomen wie Lauryl-, Cetyl-, Stearyl- und Oleylalkohole, von Fettsäuren mit 8 bid 24 Kohlenstoffatomen der vorstehend angegebenen Art, vorzugsweise Laurin-, Palmitin-, Stearin- umd Oelsäure, von Alkylphenolen mit 8 bis 24 Kohlenstoffatomen im Alkylrest, z.B. Octyl-, Nonyl-, Dodecyl- und Dinonylphenol und von Estern von Fettsäuren der angegebenen Art mit mehrwertigen Alkoholen, z.B. Glycerin, Pentaerythrit, Sorbit und Sorbitan in Betracht. Auch handelsübliche Gemische, d.h. Polyoxyalkylenaddukte von technischen Alkoholgemischen, Fettsäuregemischen, Alkylphenolgenischen und Estergemischen sind als Wasser-in-Oel Emulgatoren besonders geeignet. Besonders bevorzugt sind indessen Ester der Fettsäuren der angegebenen Art bzw. Fettsäuregemische mit mehrwertigen Alkoholen der angegebenen Art, wobei Sorbitmonooleat im Vordergrund des Interesses steht.

In besonderen Fällen hat sich die Verwendung eines Emulsionsstabilisators in der Oelphase als zweckmässig erwiesen. Zu diesem Zweck eignen sich vor allem in der Oelphase lösliche Kautschuke, und zwar sowohl solche natürlicher Herkunft, z.B. Kristallgummi, als auch vorzugsweise solche synthetischer Herkunft, z.B. Polybutadien, Copolymerisate aus Styrol und Butadien und insbesondere Polyisopren, das im Vordergrund des Interesses steht.

In der Regel enthält die Oelphase etwa 2 bis 15 Gewichtsprozent Emulgator und 0 bis etwa 1, vorzugsweise 0,4 bis 0,8 Gewichtsprozent Stabilisator.

Nach dem Vermischen der Oelphase mit der wassrigen Phase, welche die Monomeren der Formel (137) und gegebenenfalls die Comonomeren der Formeln (138), (139) und (140) enthält, wird in der Regel die Polymerisation durch Zugabe eines Polymerisationsinitiators in Gang gesetzt. Als Initiatoren können die üblichen Polymerisationskatalysatoren, vorzugsweise in Form ihrer organischen oder wässrigen Lösung, eingesetzt werden, z.B. Azoverbindungen wie Azobis(iso-butyronitril) oder Azo-bis(dimethylvaleronitril), oxydierende Mittel, vorzugsweise Peroxyde wie Wasserstoffperoxyd oder Benzoylperoxyd oder vorzugsweise Persulfate wie Ammoniumpersulfat, ferner auch Chlorate oder Chromate, reduzierende Mittel, wie Sulfite, Bisulfite, Oxalsäure und Ascorbinsäure, sowie die Kombination, als sogenannte Redoxkatalysatoren, der vorstehend aufgeführten oxydierenden und reduzierenden Mittel. Im vorliegenden Fall eignet sich Natriumsulfit vorzugsweise als wässrige Lösung besonders gut als Initiator.

Die Polymerisation erfolgt in der Regel bei 30 bis 90°C, vorzugsweise 40 bis 70°C, und verläuft exotherm, so dass die Polymerisationstemperatur gegebenenfalls durch Kühlen eingehalten werden muss.

Zur üblichen Aufarbeitung wird das erhaltene Polymerisat in der Regel durch ein vorzugsweise mit Oel und Wasser mischbares Lösungsmittel gefällt, z.B. mit Methanol, Isopropanol oder Aceton, wobei die Fällung im allgemeinen durch Zugabe der Polymerisationslösung bzw. der Wasser-in-Oel Emulsion ins vorgelegte

Lösungsmittel, vorzugsweise bei Raumtemperatur (15 bis 25°C), durchgeführt wird, worauf nach der Filtration das gefällte Polymerisat vorzugsweise bei Temperaturen von höchstens 60°C, insbesondere bei Temperaturen von etwa 30 bis 50°C, zweckmässig unter vermindertem Druck getrocknet wird.

Um nötigenfalls eine Anreicherung an hochmolekulare Anteile (Molekulargewicht von 107 bis 109 innerhalb der breiten Molekulargewichtsverteilung von 104 bis 109) zu bewirken, kann das Polymer einer zusätzlichen Behandlung in den genannten Lösungsmitteln unterworfen werden. Eine solche Behandlung kommt vor allem

für Polymere in Frage, die durch Lösungspolymerisation hergestellt werden.

Die an sich bekannten, so erhaltenen Homo- oder vorzugsweise Copolymerisate der Komponente (A) werden nun nach an sich bekannten Methoden mit den mono- bis oligomeren, quaternären Ammoniumsalzen als Komponente (B) und mit mindestens einem nicht-ionischen Tensid einer der Formeln (49) bis (81) und/oder einem anionischen Tensid einer der Formeln (82) bis (136) als Komponente (C), vorzugsweise bei Raumtemperatur (10 bis 25°C) miteinander vermischt, oder, sofern ein Copolymerisat als Komponente (A) und ein anionisches, gegebenenfalls zwitterionisches Tensid als Komponente (C) eingesetzt wird, bei bevorzugten, leicht erhöhten Temperaturen von 15 bis 90°, vorzugs-weise 15 bis 40°C, während 30 bis 100, insbesondere 60 bis 90 Minuten, mindestens teilweise miteinander umgesetzt, wobei in der Regel ein Ueberschuss mindestens eines anionischen, gegebenenfalls zwitterionischen Tensids der Formel (82), bezogen auf das monomere bis oligomere, quaternäre Ammoni-umsalz, z.B. der Formel (5) und auf das bei der Herstellung des Copolymerisats, angewandte, comonomere, quaternare Ammoniumsalz der Formel (137) eingesetzt wird. Dieser Ueberschuss beträgt etwa 4 bis 500, vorzugsweise 5 bis 120 und insbesondere 7 bis 70 Mol Tensid pro Mol des angewandten monomeren Ammoniumsalzes.

Bei ihrer Verwendung in der Kosmetikindustrie werden die erfindungsgemässen Gemische der

Komponenten (A), (B) und (C) vorzugsweise als Haarkosmetika eingesetzt.

Die erfindungsgemässen kosmetischen Mittel, vorzugsweise haarkosmetische Mittel, liegen in ihrer bevorzugten Ausführungsform als wässrige Lösungen vor, die z.B. 0,05 bis 1,5, vorzugsweise 0,2 bis 1,0 Gewichtsteile, berechnet als Wirksubstanz, mindestens eines polymeren, quaternaren Ammoniumsalzes als Komponente (A), 0,1 bis 10, vorzugsweise 0,2 bis 6 Gewichtsteile, berechnet als Wirksubstanz, mindestens einem monomeren bis oligomeren, quaternären Ammoniumsalzes als Komponente (B) und 5 bis 20, vorzugsweise 8 bis 15, insbesondere 9 bis 12 Gewichtsteile, berechnet als Wirksubstanz, mindestens eines nicht-ionischen Tensides, oder eines Tensides mit intramolekular je einer positiven und negativen Ladung oder eines anionischen, gegebenenfalls zwitterionischen Tensides als Komponente (C) und gegebenenfalls kosmetische Hilfsmittel als Komponente (D) enthalten und mit entionisiertem Wasser auf insgesamt 100 Gewichtsteile verdünnt sind.

Die fakultativen, kosmetischen Hilfsmittel als Komponente (D) sind handelsübliche Mittel, wie sie in der Haarkosmetik eingesetzt werden. In Betracht kommen z.B. Tenside, die von den als Komponente (C) eingesetzten Tensiden der angegebenen Art verschieden sind, wie Polyglycerolester und Polyglykolester von Fettsäuren, insbesondere Polyglycerololeate, im weiteren auch Polyglykole und Schaumstabilisatoren, z.B. synthetischer natürlicher Fettsäurepolyalkanolamide, Verdickungsmittel oder Hydroxypropylmethylcellulose und Polyacrylsäure, Opalisierungsmittel, wie Fettsäuremonoalkanol-amide oder vorzugsweise Glycerinmonostearat, Hautschutzmittel wie Eiweisshydrolysate und Allantoine, ferner auch u.a.

Konservierungsmittel, Parfüms und Perlglanzmittel.

Erforderlichenfalls werden die haarkosmetischen Mittel auf einen pH-Wert von 3 bis 9, vorzugsweise 5 bis 9, vor allem 5 bis 8 und insbesondere 5 bis 6 eingestellt, was zweckmässig durch einen Zusatz von wässrigen Lösungen aus z.B. Natriumhydroxid oder vorzugsweise Zitronensäure erreicht werden kann.

Bei der Applikation der haarkosmetischen Mittel, vorzugsweise auf menschlichem Haar, wird im Haarbehandlungsverfahren das vorstehend beschriebene, wässrige, haarkosmetische Mittel auf mit Leitungswasser angefeuchtetem Haar, in der Regel bei Raumtemperatur bis leicht erhöhter Temperatur, z.B. 20 bīs 40°C, aufgebracht und das Haar anschliessend schampooniert und gleichzeitig konditioniert. Das so

behandelte Haar kann ebenfalls in Form von Perücken oder Toupets vorliegen.

Der wesentliche Vorteil der vorliegenden Erfindung liegt darin, dass bei der Applikation der haarkosmetischen Mittel, welche in neuartiger Kombination sowohl die polymeren als auch die monomeren bis oligomeren, quaternären Ammoniumsalze als Komponenten (A) und (B) neben den Tensiden der angegebenen Art als Komponente (C) enthalten, nicht nur eine gute Reinigung, sondern auch gleichzeitig ausgezeichnete Konditioniereffekte auf dem behandelten Haar erzielt werden. So weisen die mit der erfindungsgemässen Zusammensetzung behandelten Haare antistatische Eigenschaften und eine sehr gute Kämmbarkeit (nass und trocken) auf. Zudem ist bei wiederholter Verwendung der erfindungsgemässen Zusammensetzung keinerlei unerwunschter Akkumuliereffekt unter Beeinträchtigung des Griffs, der Fülle und des Glanzes der behandelten Haare zu beobachten. Im Vergleich zu den Konditioniereffekten auf Haaren, die mit herkömmlichen kosmetischen Mitteln behandelt werden, weisen die mit den erfindungsgemässen haarkosmetischen Mitteln behandelten Haare somit in unerwarteter Weise ausserordentlich gute Konditioniereffekte auf. Die üblichen kosmetischen Mittel enthalten zwar auch Mischungen aus Tensiden und quaternären Ammoniumsalzen, jedoch nicht die neuartige und erfinderische Kombination von polymeren und monomeren bis oligomeren, quaternären Ammoniumsalzen gemäss der vorliegenden Erfindung.

In den nachfolgenden Herstellungsvorschriften und Beispielen angegebene Teile und Prozente sind

Gewichtseinheiten.

Herstellungsvorschriften für die Komponente (A)

Vorschrift A: (Wasser-in-Oel Emulsionscopolymerisat) Die folgende drei Lösungen werden in sauerstofffreier, inerter Stickstoffatmosphäre vorbereitet:

5

Lösung I

(Oelphase) 10

In einem Doppelmantelreaktionsgefäss werden

500 Teile eines verzweigten Paraffinöls (technisches Gemisch, Molekulargewicht 171, Siedebereich 188-206°C) vorgelegt.

140 Teile einer 2,5%igen Lösung eines synthetischen Kautschuks aus Polyisopren (Emulsionsstabilisator) in

Paraffinenöl der angegebenen Art und anschliessend 78 Teile Sorbitanmonooleat (Wasser-in-Oel Emulgator) werden dem vorgelegten Paraffinöl unter Rühren bei 20°C zugegeben.

Man erhält eine klare, gelbe Lösung.

20

25

Lösung II

(wässrige Phase)

568,6 Teile Acrylamid (8 Mol) werden bei 20°C in

700 Teilen entionisiertem, sauerstofffreiem Wasser gelöst. In diese Lösung werden

220 Teile Natriumchlorid unter Rühren eingetragen und anschliessend

1133,2 Teile einer 50%igen, wässrigen Lösung aus Methacryloyl-oxyätyl-trimethylammonium-methylsulfat (2 Mol) zugegeben.

Man erhält eine klare, farblose Lösung.

30

45

60

65

Lösung III

(Initiatorlösung) 35

0,66 Teile Natriumsulfit werden in

40 Teile entionisiertem, sauerstofffreiem Wasser gelöst.

Copolymerisationsreaktion

Unter intensivem Rühren (3000 U/min) wird innerhalb von 10 Minuten in inerter Stickstoffatmosphäre die Lösung II in die vorgelegte Lösung 1 bei 20° C zugegeben. Man erhält eine homogene, weisse Emulsion, die bei 20°C weitergerührt wird, bis die Viskosität einer Emulsionsprobe 14000 mPa.s (Brookfield Viskosimeter LV, Spindel 3, 6 U/min, 25°C) beträgt, was im allgemeinen 10 Minuten in Anspruch nimmt. Hierauf wird das Reaktionsgemisch unter Rühren bei 300 U/min innerhalb von 30 Minuten auf 40°C geheizt. Mittels einer Dosierpumpe wird nun die Lösung III innerhalb von 150 Minuten in das Reaktionsgemisch zugegeben, wobei die Temperatur durch Kühlen auf 40 bis 41°C gehalten wird. Nach Beendigung der Initiatorlösung-Zugabe wird das Reaktionsgemisch bei 40°C und 300 U/min weitergerührt, bis die Viskosität einer Emulsionsprobe auf 7600 mPa.s. (Brookfield Viskosimeter LV, Spindel I, 60 U/min, 25°C) absinkt, was im allgemeinen eine Stunde in Anspruch nimmt.

55 Aufarbeitung

Die erhaltene Emulsion des Copolymerisates wird unter Rühren in 24000 Teilen Aceton bei 20°C gegeben und das Copolymerisat ausgefällt. Das ausgefällte Copolymerisat wird abfiltriert und während 2 Tagen unter vermindertem Druck bei 40°C getrocknet. Man erhält 1100 Teile eines Copolymerisates, das in beliebiger Reihenfolge 80 Mol% Strukturelemente der Formel

20 Mol% Strukturelemente der Formel (142)

5 -CH₂-C-1 COO-(CH₂)₂-N[⊕](CH₃)₃ CH₃SO₄ ⊖ (142)10

enthält, wobei das Molekulargewicht von 37% des Copolymerisates zwischen 107 und 109 liegt. 15 Die molekulare Gewichtsverteilung wird mittels der Gelpermeationschromatographie bestimmt, wobei als Trägermaterial FRACTOGEL® (Handelsmarke von MERCK und EM LABORATORIES) Typ OR-PVA eingesetzt wird, welches zweckmässig in Formamid als Lösungsmittel gequollen wird. Einzelheiten über das Trägermaterial sind aus dem Lehrbuch "Modern Size-Exclusion Chromatography" von W.W. Yau, J.J. Kirkland and D.D. Bly, Seiten 166 bis 173, Verlag John Wiley & Sons (1979) zu entnehmen. Als Detektor dient ein 20 Differenzialrefraktometer.

Die Auswertung der GPC-Chromatogramme erfolgt anhand einer Eichkurve, die mit Polystyrol, Polymethylmethacrylat und den Standard-Polymeren SEPHADEX DEXTRAN® (Handelsmarke der Firmen PHARMACIA UPPSALA und PRESSURE CHEMICAL CORP., Pittsburg) erstellt wird. Die Konzentrationen werden über die unkorrigierten Flächenprozente ermittelt, wobei die Summe aller eluierten Komponenten 100 % beträgt.

30 Vorschrift B:

25

35

40

50

55

(Lösungscopolymerisat) Die folgenden zwei Lösungen werden in sauerstofffreier inerter Stickstoffatmosphäre vorbereitet:

Lösung 1

(Monomerlösung)

In einem Doppelmantelgefäss werden 71.1 Teile Acrylamid (1 Mol) und

141,7 Teile einer 50% igen, wässrigen Lösung aus Methacryloyl-oxyäthyltrimethylammonium-methylsulfat (0,25 Mol) bei 20°C in

228 Teilen entionisiertem, sauerstofffreiem Wasser gelöst.

45 Man erhält eine klare farblose Lösung.

Lösung II

(Initiatorlösung)

0,2 Teile Ammoniumperoxodisulfat werden in 150 Teilen deionisiertem sauerstofffreiem Wasser gelöst.

Copolymerisitionsreaktion

Unter Rühren wird innerhalb 1 Minute in inerter Stickstoffatmosphäre die Hälfte der Lösung II in die vorgelegte Lösung 1 bei 35°C zugegeben. Nach 6 Stunden wird die Reaktionslösung auf 50°C erwärmt und die zweite Hälfte von Lösung II zugegeben. Das Reaktionsgemisch wird solange unter Rühren gehalten, bis nach 2 bis 3 Stunden eine hochviskose Lösung entstanden ist. Ohne Rühren wird das Reaktionsgemisch stehen gelassen. Nach 24 Stunden lässt man das entstandene farblose Gel abkühlen.

65

Aufarbeitung

Das Gel wird zerkleinert und in 1350 Teilen deionisiertem Wasser gelöst. Die hochviskose Lösung wird dann in 18000 Teilen Aceton in dünnem Strang bei 20°C eingepresst und das Copolymerisat ausgefällt. Das Copolymerisat wird dann abfiltriert und nochmals in 1800 Teilen Aceton geknetet, bis es hart und spröde wird. Das Copolymerisat wird wieder abfiltriert und während 2 Tagen unter vermindertem Druck bei 40°C getrocknet. Man erhält 110 Teile eines Copolymerisats, das in beliebiger Folge 80 Mol% Strukturelemente der Formel (141) und 20 Mol% Strukturelemente der Formel (142) enthält, wobei das Molekulargewicht von 12% des Copolymerisats zwischen 107 und 109 liegt. Hierbei wird diese Molekulargewichtsverteilung wie in Vorschrift A angegeben bestimmt.

Vorschrift

15

20

25

40

C: (Behandlung eines Handelsproduktes)

100 Teile eines im Handel erhältlichen Copolymerisates, das zu 75 Mol-% aus Strukturelementen der Formel (141) und zu 25 Mol-% aus Elementen der Formel

(142)
$$\begin{array}{c} CH_{3} \\ -CH_{2} - C - \\ COO - (CH_{2})_{2} - N - (CH_{3})_{3} \end{array} \bigcirc$$

besteht, wobei das Molekulargewicht von 20 % des Copolymerisates zwischen 107 und 109 liegt, werden pulverisiert und mit einem Gemisch von 400 Teilen Methanol und 100 Teilen Wasser bei Raumtemperatur 30 Minuten lang gerührt. Weitere 500 Teile Methanol werden zugesetzt und das Gemisch noch 5 Minuten gerührt und dann eine Stunde stehen gelassen. Der gelige Brei wird dann in einer Drucknutsche unter einem Druck von 3 bar filtriert. Die gelige Masse wird anschliessend mit 100 Teilen Methanol aufgeschlämmt und wieder unter Druck abfiltriert. Nach dreimaliger Behandlung mit Methanol wird das Produkt einen Tag im Vakuum bei 40°C getrocknet. Das Molekulargewicht von 45 % des erhaltenen, umgefällten Copolymerisats liegt zwischen 107 und 109, wobei die Molekulargewichtsverteilung des behandelten Copolymerisats und des Ausgangspolymers (Handelsprodukt) wie in Vorschrift A angegeben bestimmt wird.

Beispiel 1:

2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift A (1,41 m-Aequivalente, bezogen auf den Quatgehalt des Copolymerisats) und 10 Teile des monomeren Ammoniumsalzes der Formel (37) (27,74 mMol) werden bei 25 bis 35°C in kleinen Portionen in 100 Teilen entionisiertem Wasser eingetragen. Es entsteht eine viskose Lösung. 100 Telle des anionischen Tensides der Formel (94) (241 mMol oder 8,27 Mol pro Mol angewandtes Methacryloyl-oxyāthyl-trimethylammonium-methylsulfat und pro Mol monomeres, quaternāres Ammoniumsalz der Formel (94)) werden in 700 Teilen entionisiertem Wasser bei 25°C gelöst. Die Lösung der quaternären Ammoniumsalze wird nun in die Tensidlösung innerhalb von 80 Minuten zugegeben, wobei gleichzeitig die Umsetzung der quaternären Strukturelemente des Copolymerisats und die Umsetzung des monomeren, quaternären Ammoniumsalzes mit dem eingesetzten Tensid unter Ionenaustausch erfolgt. Man erhält 912 Teile einer wässrigen, schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10%iden, wässrigen Zitronensäurelösung auf den pH-Wert von 7,1 eingestellt und mit entionisiertem Wasser auf 1000 Teile verdünnt wird. Die erhaltene, verdünnte, gebrauchsfertige Lösung ist vollständig klar und lagerstabil. Nun wird diese Lösung auf eine mit Leitungswasser angefeuchtete Perücke aus ungebleichtem und ungefärbtem, braunem Menschenhaar europäischer Herkunft bei 40°C in dreimaliger Applikation à 2 Schimponierungen im sogenannten Halbseitentest aufgebricht, worauf das Perückenhaar bei dieser Temperatur schampooniert und gleichzeitig konditioniert wird. Im Halbseitentest wird nur die eine Hälfte der Perücke mit der vorstehend genannten Lösung schampooniert und konditioniert, während die andere Hälfte der Perücke mit einer Lösung unter gleichen Bedingungen schampooniert wird, die kein erfindungsgemässes Gemisch aus den Ammoniumsalzen und dem Tensid, sondern nur das Tensid enthält. In dieser sogenannten Leerformulierung wird die Menge an Ammoniumsalzen durch die entsprechende Menge Tensid ersetzt, so dass z.B. die Leerformulierung als Vergleich 11,2% des Tensides der Formel (94) enthält, wobei der pH-Wert der Leerformulierung ebenfalls mit der wässrigen, 10%-igen Zitronensäurelösung auf den pH-Wert von 7,1 eingestellt wird. Nach jeder Applikation wird die Nass- und Trockenkämmbarkeit der erfindungsgemäss behandelten Perückenhälfte im Vergleich mit der mit der Leerformulierung behandelten Perückenhälfte mit Hilfe der nachfolgenden Notenskala beurteilt:

+3 viel besser als die Leerformulierung

+2 besser als die Leerformulierung

+1 etwas besser als die Leerformulierung

0 kein Unterschied zur Leerformulierung

-1 etwas schlechter als die Leerformulierung

-2 schlechter als die Leerformulierung

-3 viel schlechter als die Leerformulierung. Die erzielten Kämmbarkeitsnoten sind in der nachfolgenden Tabelle I zusammengefasst.

10

5

Tabelle i

	nach der 1. Applikation	nach der 2. Applikation	nach der 3. Applikation
Nasskämmbarkeit	+3	+3	+3
Trockenkämmbarkeit	+2	+2	+2

20

25

35

40

45

50

Zudem weist die erfindungsgemäss behandelte Perückenhälfte bessere antistatische Eigenschaften auf als die mit der Leerformulierung behandelte Perückenhälfte. Die antistatischen Effekte werden qualitativ erfasst, indem die Neigung der Haare zum "Wegfliegen" (fly away) subjektiv beurteilt wird. Auf beiden Perückenhälften können keinerlei Akkumuliereffekte nach 3 Applikationen beobachtet werden.

Beispiel 2: 30

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift B (1,41 m-Aequivalente bezogen auf den Quatgehalt des Copolymerisates), 5 Teile des monomeren Ammoniumsalzes der Formel (48) (6,72 mMol) und 100 Teile des Tensides der Formel (93) (255 mMol oder 31,4 Mol pro Mol angewandte Methacryloyl-oxyathyl-trimethylammonium-methylsulfat und pro Mol monomeres, quaternäres Ammoniumsalz der Formel (48)) ein.

Man erhält 907 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 5%-igen, wässrigen Natriumhydroxydlösung auf den pH-Wert von 7,1 eingestellt und mit entionisiertem Wasser auf 1000

Teile verdünnt wird.

Das Schimpoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle II zusammengefassten Kämmbarkeitsnoten erzielt werden:

Tabelle II

	nach der 1. Applikation	nach der 2. Applikation	nach der 3. Applikation
Nasskämmbarkeit	+3	+3	+3
Trockenkämmbarkeit	+2	+2	+2

55

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 3 Applikationen beobachtet werden können.

Aehnliche Ergebnisse werden beim Ersatz des monomeren, quaternären Ammoniumsalzes der Formel (48) durch diejenigen einer der Formeln (23) bis (32), (35), (36), (37), (38) oder (47) und beim Ersatz des anionischen Tensids der Formel (93) durch diejenigen einer der Formeln (85), (102), (105), (106), (118), (135) oder (136) erzielt. Dies trifft auch zu für den Ersatz des anionischen Tensids der Formel (93) durch nicht-ionische Tenside einer der Formeln (54) oder (56) oder Tenside mit intramolekular je einer positiven und negativen Ladung einer der Formeln (62), (63) oder (72) bis (75). In diesem letzten Fall braucht jedoch die Lösung der quaternären Ammoniumselze nicht langsam in die vorgelegte Lösung des Tensides bei 35°C zugegeben zu werden, da keine

Umsetzung unter Ionenaustausch stattfindet. Die Lösungen der quaternären Ammoniumsalze und die Lösungen der nicht-ionischen Tenside oder der Tenside mit intramolekular je einer positiven und negativen Ladung können somit in beliebiger Reihenfolge bei Raumtemperatur (10 bis 25°C) durch Zugiessen vermischt werden.

5

10

15

Beispiel 3

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift C, 10 Teile des monomeren Ammoniumsalzes der Formel (37) in 100 Teilen entionisiertem Wasser und 150 Teile des Tensides der Formel (94) in 650 Teilen entionisiertem Wasser ein.

Man erhält 912 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensaurelösung auf den pH-Wert von 5,5 eingestellt und mit entionisiertem Wasser auf 1000

Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten klaren lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle III zusammengefassten Kämmbarkeitsnoten erzielt werden.

20

Tabelle III

	nach der 1. Applikation	nach der 2. Applikation
Nasskämmbarkeit	+2	+2
Trockenkämmbarkeit	+1	+1

30

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 2 Applikationen beobachtet werden können.

35

Beispiel 4:

40

45

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des Polymeren Ammoniumsalzes gemäss Vorschrift A, 5 Teile des monomeren Ammoniumsalzes der Formel (25) in 100 Teilen entionisiertem Wasser und 150 Teile des Tensides der Formel (94) in 650 Teilen entionisiertem Wasser ein.

Man erhält 912 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensäurelösung auf den pH-Wert von 8 Oeingestellt und mit entionisiertem Wasser auf 1000 Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle IV zusammengefassten Kämmbarkeitsnoten erzielt werden:

50

Tabelle IV

	nach der 1. Applikation	nach der 2. Applikation	nach der 3. Applikation
Nasskämmbarkeit	+(2-3)	+(2-3)	+(2-3)
Trockenkāmmbarkeit	+2	+2	·+2

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 3 Applikationen beobachtet werden können.

Beispiel 5:

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift A, 5 Teile des monomeren Ammoniumsalzes der Formel(39) in 100 Teilen entionisiertem Wasser und 150 Teile des Tensides der Formel (94) in 650 Teilen entionisiertem Wasser ein.

Man erhält 912 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensäurelösung auf den pH-Wert von 6,0 eingestellt und mit entionisiertem Wasser auf 1000 Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle V zusammengefassten Kämmbarkeitsnoten erzielt werden:

Tabelle V

15

20

25

35

45

	nach der 1. Applikation	nach der 2. Applikation	nach der 3. Applikation	
Nasskämmbarkeit	+3	+3	+3	
Trockenkämmbarkeit	+(2-3)	+(2-3)	+(2-3)	

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 3 Applikationen beobachtet werden können.

Beispiel 6:

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des Polymeren Ammoniumsalzes gemäss Vorschrift C, 5 Teile des monomeren Ammoniumsalzes der Formel (37) und 100 Teile eines Tensidgemisches der Formeln (129) und (130) ein.

Man erhält 907 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensäurelösung auf den pH-Wert von 5,1 eingestellt und mit entionisiertem Wasser auf 1000 Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle VI zusammengefassten Kämmbarkeitsnoten erzielt werden:

Tabelle VI

	nach der 1. Applikation	nach der 2. Applikation	nach der 3. Applikation
Nasskämmbarkeit	+3	+3	+3
Trockenkämmbarkeit	+2	+2	+2

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 3 Applikationen beobachtet werden können.

Gleiche Resultate, insbesondere gleiche Kämmbarkeitsnoten werden erzielt, wenn man anstelle von 100 Teilen eines Tensidgemisches der Formeln (129) und (130) 100 Teile eines anionischen Tensides der Formel (57), worin q, q' und q'' die Zahl 8 und T3', T3" und T3"' Oleyl bedeuten, einsetzt.

Beispiele 7 bis 11

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch jeweils 2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift C, 5 Teile eines monomeren Ammoniumsalzes und 100 Teile eines Tensides oder Tensidgemisches ein, wobei die Formeln des eingesetzten monomeren Ammoniumsalzes und der eingesetzten Tenside in der nachfolgenden Tabelle VII angegeben sind.

Man erhält 907 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensäurelösung auf den ebenfalls in Tabelle VII angegebenen pH-Wert eingestellt und mit entionisiertem Wasser auf 1000 Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, ebenfalls in der nachstehenden Tabelle VII zusammengefassten Kämmbarkeitsnoten erzielt werden.

Zudem weist die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, ebenfalls gute antistatische Eigenschaften auf.

15

Tabelle VII

20						- I I bankait
	Beispiel	monomeres Ammoniumsalz	Tensid .	pH-Wert der verdünnten Lösung	Nasskämmbarkeit	Trockenkämmbarkeit
25	7	(37)	Gemisch aus (131c) und (131d)	5,1	+3	+2
<i>30</i>	8	(39)	(63)	5,5	+3	+1
00	9	(39)	(133)	5,1	+(1-2)	+1
<i>35</i>	10	(39)	Gemisch aus (133) und (133a)	5,1	+2	+(1-2)
	11	(39)	(104)	5,5	+3	0

40

45

Beispiel 12:

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift C, 5 Teile des monomeren Ammoniumsalzes der Formel (39) und 100 Teile des technischen Tensidgemisches der Formel (81a) ein.

Man erhält 907 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensäurelösung auf den pH-Wert von 5,0 eingestellt und mit entionisiertem Wasser auf 1000 Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle VIII zusammengefassten Kämmbarkeitsnoten erzielt werden:

55

Tabelle VIII

	nach der 1. Applikation	nach der 2. Applikation	nach der 3. Applikation
Nasskämmbarkeit	+1	. +1	+1-
Trockenkämmbarkeit	0	+(0-1)	+(0-1)

65

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 3 Applikationen beobachtet werden können.

5

Beispiel 13:

Man verfährt wie im Beispiel 1 angegeben, setzt jedoch 2 Teile des polymeren Ammoniumsalzes gemäss Vorschrift C, 10 Teile des monomeren Ammoniumsalzes der Formel (39), 150 Teile des Tensides der Formel (94) und 30 Teile des Tensides der Formel (58), worin T2 Octadecyl bedeutet, ein, wobei das Gemisch der Tenside der Formein (94) und (58) mit 100 Teilen Wasser gelöst werden.

Man erhält 992 Teile einer schwach opalisierenden und viskosen Lösung, die durch Zugabe einer 10-%igen, wässrigen Zitronensäurelösung auf den pH-Wert von 5,0 eingestellt und mit entionisiertem Wasser auf 1000

Teile verdünnt wird.

Das Schampoonieren und Konditionieren der Perücke im Halbseitentest mit der verdünnten, klaren, lagerstabilen Lösung wird ebenfalls wie in Beispiel 1 durchgeführt, wobei die folgenden, in der nachstehenden Tabelle IX zusammengefassten Kämmbarkeitsnoten erzielt werden:

20

Tabelle IX

25

	nach der 1. Applikation	nach der 2. Applikation	
Nasskämmbarkeit	+2	+(1-2)	
Trockenkämmbarkeit	+(2-3)	+2	

30

35

Die erfindungsgemäss behandelte Perückenhälfte im Vergleich zur Perückenhälfte, die mit der Leerformulierung behandelt wird, weist ebenfalls gute antistatische Eigenschaften auf, wobei auf beiden Perückenhälften keinerlei Akkumuliereffekte nach 2 Applikation beobachtet werden können.

40

Patentansprüche

1. Wässrige Zusammensetzung aus polymeren, quaternären Ammoniumsalzen, aus monomeren bis oligomeren, quaternären Ammoniumsalzen und aus nicht-ionischen oder anionischen Tensiden, dadurch gekennzeichnet, dass sie einen pH-Wert von 3 bis 9 aufweist und mindestens (A) ein in wässrigen Tensidsystemen lösliches oder mikroemulgierbares Ammoniumsalz, das eine Molekulargewichtsverteilung von 104 bis 109 aufwelst, wobei das Molekulargewicht von mindestens 5 Gewichtsprozent insbesondere 5 bis 60 Cewichtsprozent des polymeren Salzes 107 bis 109 beträgt und das Salz wiederkehrende Strukturelemente der

50

55

und gegebenenfalls in beliebiger Reihenfolge mindestens eines der wiederkehrenden Strukturelemente der Formeln

60

und

5

10 -CH₂-¢-

15

20

aufweist, worin A_1 , A_2 , A_3 und A_4 je Wasserstoff oder Methyl, G_1 und G_2 voneinander verschieden sind und je

25 -CN, -COOH oder -CO-D₂-E₂-N R_3 ,

D₁ und D₂ je Sauerstoff oder -NH-, E₁ und E₂ je Alkylen mit 1 bis 4 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl substituiert ist,

R₁, R₂ R₃ und R₄ je Methyl oder Aethyl, Q Alkyl, Hydroxyalkyl mit 1 bis 4 Kohlenstoffatomen oder Benzyl und Y¹⊖ ein Halogenid-, Alkylsulfat- oder Alkylphosphonatani-on mit 1 bis 4 Kohlenstoffatomen im Alkylrest bedeuten,

(B) ein Ammoniumsalz, das 1 bis 3 quaternäre Stickstoffatome und ein Molekulargewicht von höchstens 9'000 aufweist und

(C) ein nicht-ionisches Tensid, ein Tensid mit intramolekular je einer positiven und negativen Ladung oder ein anionisches, gegebenenfalls zwitterionisches Tensid oder deren Gemische enthält,

wobei bei Einsatz eines anionischen Tensides als Komponente (C) das polymere Ammoniumsalz als Komponente (A) neben Strukturelementen der Formel

45

35

$$-CH_{2}-\overset{A_{1}}{\overset{\cdot}{\downarrow}}_{CO-D_{1}}-\overset{R}{\overset{\cdot}{\downarrow}}_{1}-\overset{R}{\overset{\cdot}{\downarrow}}_{1}-\overset{C}{\overset{\cdot}{\downarrow}}_{1}}$$

55

50

auch Strukturelemente der Formel

60

aufweist, und das anionische Tensid mindestens teilweise mit den Komponenten (A) und (B) unter lonenaustausch umgesetzt ist.

2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass sie als Komponente (A) ein Ammoniumsalz enthält, das durchschnittlich 5 bis 100 Mol-% oder, sofern ein anionisches Tensid als Komponente (C) eingesetzt wird, durchschnittlich 5 bis 80 Mol-% Strukturelemente der Formel

0 bis durchschnittlich 95 Mol-% oder, sofern ein anionisches Tensid als Komponente (C) eingesetzt wird, 20 durchschnittlich 10 bis 75 Mol-% Strukturelemente der Formel

· 0 bis durchschnittlich 10 Mol-% Strukturelemente der Formel

aufweist, worin A₁, A₂, A₃, A₄, D₁, E₁, G₁, G₂, R₁, R₂, Q und Y₁^Q die in Anspruch 1 angegebenen Bedeutungen haben.

3. Zusammensetzung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass sie als Komponente (B) ein Ammoniumsalz enthält, welches der Formel

50 L₂ - N L₄ Y₂
$$\ominus$$
 L₅₅

oder vorzugsweise der Formel

5

10

15

60
$$L_{6} - N + L_{8} \qquad Y_{2} - C \qquad \text{entspricht,}$$
65

worin L1 Wasserstoff, Alkyl oder Alkenyl mit höchstens 4 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl substituiert ist, L2, L3 und L4 je gegebenenfalls verzweigtes Alkyl oder Alkenyl mit höchstens 22 Kohlenstoffatomen, das gegebenenfalls durch Sauerstoffatome oder Säureamidreste unterbrochen ist und gegebenenfalls endständig durch Hydroxyl, Carbamoyl, Dialkylamino, unsubstituiertes Phenyl oder Phenoxy, halogensubstituiertes oder halogenmethylsubstituiertes Phenyl oder Phenoxy substituiert ist, wobei durch -Ooder -CONH- unterbrochene L2-, L3- und L4-Reste insgesamt je höchstens 120 Kohlenstoffatome aufweisen, oder bei Ammoniumsalzen mit zwei quaternären Stickstoffatomen, einer der L2-, L3- oder L4-Reste der angegebenen Art endständig mit einem Di- oder Trialkylammonium-Kation substituiert ist, wobei die Alkylreste in Alkylamino- bzw. Alkylammonium-Substituenten 1 bis 4 Kohlenstoffatome aufweisen und gegebenenfalls durch Hydroxyl substituiert sind, oder L₃ und L₄ zusammen mit dem quaternären Stickstoffatom einen 4,5-Dihydroimidazolring oder einen 3,4,5,6-Tetrahydropyrimidinring bilden, wobei diese Ringe in 2-Stellung mit Alkyl mit 1 bis 22 Kohlenstoffatomen und am quaternären Stickstoffatom mit L₁ und L₂ mit je den angegebenen Bedeutungen substituiert sind, oder bei Ammoniumsalzen mit 3 quaternären Stickstoffatomen L₁ und L₂ die für L₁ angegebenen Bedeutungen haben, L₃ Cirbalkoxyalkyl oder Carbalkenyloxyalkyl mit 8 bis 22 Kohlenstoffatomen im Carbalkoxy- oder Carbalkenyloxyteil und 1 oder 2 Kohlenstoffatome im Alkylteil, und

L4 einen geradkettigen Alkylrest mit 5 bis 8 Kohlenstoffatomen, der durch 2 quaternare Stickstoffatome unterbrochen ist, wobei die Stickstoffatome durch Aethylen oder Propylen verbunden sind und jeweils mit L1und L3-Reste der zuletzt angegebenen Bedeutungen substituiert sind, L5 Wasserstoff Alkyl mit 1 bis 4 Kohlenstoffatomen oder Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen oder Alkenyl mit 3 oder 4 Kohlenstoffatomen, L_6 , L_7 und L_8 je Alkyl mit 1 bis 22 Kohlenstoffatomen, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 22 Kohlenstoffatomen oder Reste der Formeln

20

40

45

25
$$\begin{array}{c} (H)_{n-1} \\ -(CH_2)_{a-1} - (CH_2 - CH_2)_{b} - H \\ (CH_3)_{2-n} \end{array}$$

$$-(CH_{2})_{n-1}-CH_{2}-(O)_{n'-1}-\underbrace{\times}_{-\infty}^{(C1)}_{n''-1}$$

$$-(CH_2)_a$$
-CONH₂, $-(CH_2)_a$ -CONH-L₉ oder $-(CH_2)_a$ -NHCO-L₉

worin L₉ Hydroxyäthyl oder Alkyl mit 1 bis 22 Kohlenstoffatomen oder L₉ einen Rest der Formel

50

$$(H)_{n-1}$$

$$-(CH_{2})_{a}-0-(CH_{2}-CH0)_{b}-H$$
oder

55

$$(CH_{3})_{2-n}$$

$$-(CH_{2})_{c}-\bigvee_{n=1}^{L} 11$$

$$(L_{12})_{n-1}$$

worin L₁₀ und L₁₁ je Methyl, Aethyl oder Hydroxyāthyl und L12 Wasserstoff, Methyl, Aethyl oder Hydroxyāthyl,

a 1 bis 22 b 1 bis 40 und c 1 bis 6 oder L_7 und L_8 zusammen mit dem quaternären Stickstoffatom einen Ring der Formel

5

10

15

worin L₁₃ Alkyl oder Alkenyl mit 8 bis 22 Kohlenstoffatomem und n, n', n" und n" je 1 oder 2 bedeuten und Y₂e ein Halogenid-, Alkylsulfat- oder Alkylphosphonatanion mit 1 bis 4 Kohlenstoffatomen im Alkylrest oder das Anion einer Alkylcarbonsäure oder einer Oxycarbonsäure mit höchstens 6 Kohlenstoffatomen oder einer Phosphorsäure bedeuten.

4. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass sie als Komponente (B) ein Ammoniumsalz enthält, welches einer der Formeln

20

30

25

$$L_{15} = \begin{pmatrix} L_{14} & & & \\ \Theta_{N}^{1} - L_{16} & & & Y_{4} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}_{CH_{2}} e^{-NH-CO-L_{13}}$$

oder insbesondere

35

$$L_{11} = N - L_{17} \qquad Y_{3}^{\bigcirc}$$

45

40

entspricht, worin L₁₄ und L₁₅ je Alkyl mit 1 bis 4 Kohlenstoffatomen,L₁₆ Wasserstoff, Alkkl mit 1 bis 4 Kohlenstoffatomen oder -CH₂-CO-NH₂, L₁₇ Alkyl mit 10 bis 22 Kohlenstoffatomen und L₁₈ Alkyl mit 10 bis 22 Kohlenstoffatomen, Benzyl, Phenoxymethylen oder Phenoxyäthylen, Y₃[©] ein Chlorid-, Methylsulfat- oder Acetatanion, Y₄[©] ein Chlorid-, Methylsulfat- oder Acetatanion oder sofern L₁₆ Wasserstoff ist, ein Citrat-, Lactat- oder Phosphatanion bedeuten und L₅, L₁₀, L₁₁, L₁₃ und c die in Anspruch 3 angegebenen Bedeutungen haben.

5. Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als nichtionisches Tensid für die Komponente (C) äthoxylierte Fettsäure, Fettalkohole, Fetttsäureamide, Alkylphenole oder Kohlenhydrate, Addukte aus Aethylen- und Propylenoxyd, Phosphorsäurepolyglykolester oder Aminoxyde

enthält, welche vorzugsweise einer der Formeln

60

$$H-(O-CH_{2}-CH_{2})_{p}-OOC-T_{1},$$

$$H-(O-CH_{2}-CH_{2})_{p}-NH-CO-T_{1},$$

$$H-(O-CH_{2}-CH_{2})_{p}-O-T_{2},$$

$$H-(O-CH_{2}-CH_{2})_{p}-O-T_{2},$$

$$H-(O-CH_{2}-CH_{2})_{p}-O-CH_{2}-(CHOH)_{s}-CHO,$$

$$H-(O-CH_{2}-CH_{2})_{p}-O-CH_{2}-(CHOH)_{s}-CHO,$$

$$HO-(CH_{2}-CH_{2}-O)_{x}-(CH_{2}-CH-O-)_{y}-(CH_{2}-CH_{2}-O)_{z}-H,$$

$$CH_{3}$$

$$T_{3}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-CH_{2}-CH_{2})_{q}-O,$$

$$T_{4}^{*}-(O-C$$

entsprechen, worin T₁ Alkyl oder Alkenyl mit 7 bis 21 Kohlenstoffatomen, T₂ Alkyl oder Alkenyl mit 8 bis 22 Kohlenstoffatomen, T₃,

T'3, T"3 und T"3' je Ālkyl oder Alkenyl mit 6 bis 14 Kohlenstoffatomen,

diese Betaine vorzugsweise einer der Formeln

p eine ganze Zahl von 1 bis 50, q, q' und q" eine ganze Zahl von je 1 bis 13, s 3 oder 4 und x, y und z gleiche oder voneinander verschiedene ganze Zahlen bedeuten.

6. Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als Tensid mit intramolekular je einer positiven und negativen Ladung für die Komponente (C) Betaine oder Sulfobetaine enthält, die sich von einem Imidazolinderivat oder einem offenkettigen, aliphatischen Amin ableiten, wobei

55

T₁-CO-NE-(CH₂)₃-N-(CH₂)_{t-1}-COO[©]
CH₃
CH₃
T₂-N-CH₂-COO[©] 5 10 T_2 -NH₂-CH₂-(CH₂)_{t-1}-COO 15 $\stackrel{\text{T}_2^-\text{(NH-CH}_2-CH}_2)}{\text{t-1}^-\text{NH-CH}_2-\text{CH}_2^-\text{NH}_2-\text{CH}_2-\text{COO}}$ 20 ⊕ CH-COO CH-CH3 25 T₂-CH_{COO}

CH₃

T₂-CH_{COO}

CH₃

T₂-SO₃

T₂-SO₃

CH 30 35 40 CH₃
T₂-N-CH₂-CH
OH . . . 45 $\tau_{2} \xrightarrow{\bigoplus_{N \in \mathbb{N}} (CH_{2}-CH_{2}-O)_{p}-H} \ominus$ oder 50 $T_{1}^{-CO-N} \xrightarrow{(CH_{2}CH-O)-H} \xrightarrow{(CH_{2}-CH-O)} \xrightarrow{(CH_$ 55 60 CH₃

entsprechen, worin T₁ Alkyl oder Alkenyl mit 7 bis 21 Kohlenstoffatomen, T₂ Alkyl oder Alkenyl mit 8 bis 22 Kohlenstoffatomen, p, p' und p'' eine ganze Zahl von je 1 bis 50 und t 1 oder 2 bedeuten.

7. Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als anionisches Tensid für die Komponente (C) ein Tensid der Formel XO ZO enthält, worin XO den Rest eines oberflächenaktiven Sarkosinats, Sulfats (Sulfatäthers), Sulfonats oder Sulfobernsteinsäurederivates, eines fluorierten Tensids oder eines Phosphattensids und ZO ein Alkalimetall- oder ein gegebenenfalls durch 1 bis 3 (C1-C4)-Alkyl- oder -Alkanolreste substituiertes Ammoniumkation bedeuten, wobei das Tensid vorzugsweise einer der Formeln

$$T_{1}\text{-CH-CH-SO}_{3}^{\Theta} \quad Z^{\Theta} \quad ,$$

$$T_{1}\text{-CH-CH}_{2}\text{-SO}_{3}^{\Theta} \quad Z^{\Theta} \quad ,$$

$$T_{3}\text{-OOC-CH-CH}_{2}\text{-COO-}[T_{3}^{*}]^{-}_{\text{t-1}}\text{-}[Na]_{2-t}} \quad Z^{\Theta}$$

$$10 \qquad T_{3}\text{-OOC-CH-CH}_{2}\text{-CCO-}[T_{3}^{*}]^{-}_{\text{t-1}}\text{-}[Na]_{2-t}} \quad Z^{\Theta}$$

$$15 \qquad T_{1}\text{-O-}(CH_{2}\text{-CH}_{2}\text{-OO})_{p-1}\text{-OC-CH}_{2}\text{-CH-COONa}} \quad Z^{\Theta}$$

$$10 \qquad T_{1}\text{-OOC-CH}_{2}\text{-CH-COONa} \quad Z^{\Theta} \quad ,$$

$$10 \qquad T_{1}\text{-OOC-CH}_{2}\text{$$

entspricht, worin T₁ und T'₁ je Alkyl oder Alkenyl mit 7 bis 21 Kohlenstoffatomen, T₂ Alkyl oder Alkenyl mit 8 bis 22 Kohlenstoffatomen, T₃ und T'₃ je Alkyl oder Alkenyl mit 6 bis 14 Kohlenstoffatomen, T₄ perfluoriertes Alkyl oder Alkenyl mit 6 bis 14 Kohlenstoffatomen, M Wasserstoff, Ammonium, ein Alkalimetall oder Alkyl mit 1 bis 3 Kohlenstoffatomen, p und p' je eine ganze Zahl von 2 bis 6, q eine ganze Zahl von 6 bis 12, r eine ganze Zahl von 2 bis 6 und t 1 oder 2 bedeuten und Z[©] die angegebenen Bedeutungen hat.

8. Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als anionisches, zwitterionisches Tensid für die Komponente (C) ein Tensid der Formel XΘ ZΘ enthält, worin XΘ den Rest eines oberflächenaktiven N-alkyl-α-iminodi-propionats oder eines in 2-Stellung alkylsubstituierten Imidazolinium-dicarbonsäurederivats bedeutet, wobei das Tensid vorzugsweise einer der Formeln

entspricht, worin T₃ Alkyl oder Alkenyl mit 6 bis 14 Kohlenstoffatomen bedeutet und Z ^e die in Anspruch 7 angegebenen Bedeutungen hat.

9. Zusammensetzung nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass sie die Komponenten (A), (3) und (C) in einem Gewichtsverhältnis (A):(B):(C) von 1:(1 bis 10): (2 bis 400) enthält.

10. Verfahren zur Herstellung der Zusammensetzung gemäss einem der Ansprüche 1 bis 9, wobei man ein Monomer der Formel

65

60

50

55

und gegebenenfalls mindestens ein Comonomer einer der Formeln

10

worin A₁, A₂, A₃, A₄. D₁, E₁, G₁, R₁, R₂, Q und Y₁ die in Anspruch 1 angegebenen Bedeutungen haben, durch Wasser-in-Oel Emulsionspolymerisation in Gegenwart eines Wasser-in-Oel Emulgators und gegebenenfalls eines Emulsionsstabilisators oder durch Lösungspolymerisation, jeweils in Gegenwart eines Polymerisationsinitiators zur Komponente (A) polymerisiert, das Polymerisat mit einem sowohl in Wasser wie in Oel löslichen Lösugsmittel ausfällt und anschliessend trocknet, dadurch gekennzeichnet, dass man das so erhaltene Polymerisat als Komponente (A) einsetzt und in wässrigem Medium mit mindestens einem 1 bis 3 quaternäre Stickstoffatome und ein Molekulargewicht von höchstens 9000 aufweisenden Ammoniumsalz als Komponente (B) sowie mit mindestens einem nicht-ionischen Tensid, einem Tensid mit intramolekular je einer positiven und negativen Ladung oder einem anionischen, gegebenenfalls zwitterionischen Tensid als Komponente (C) bei 10 bis 90 °C und einem pH-Wert von 3 bis 9 vermischt, wobei man gleichzeitig, sofern ein anionisches, gegebenenfalls zwitterionisches Tensid der Formel X[©]Z[®] gemäss einem der Ansprüche 7 oder 8 als Komponente (C) eingesetzt wird, das anionische Tensid mit dem unter Einsatz des Comonomeren

25

20

30

35

40

hergestelltes Copolymerisat als Komponente (A) und mit dem 1 bis 3 quaternare Stickstoffatome aufweisenden Ammoniumsalz als Komponente (B) unter Ionenaustausch vorzugsweise bei 10 bis 90°C während 30 bis 100 Minuten mindestens teilweise umsetzt.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man einen Ueberschuss von vorzugsweise 4 bis 500 Mol mindestens eines anionischen, gegebenenfalls zwitterionischen Tensids gemäss einem der Ansprüche 7 oder 8 pro Mol des bei der Herstellung der Komponente (A) verwendeten, monomeren, quaternären Ammoniumsalzes und pro Mol Komponente (B), einsetzt.

12. Verwendung der Zusammensetzung gemäss einem der Ansprüche 1 bis 9 in kosmetischen, vorzugsweise

haarkosmetischen Mitteln.

13. Kosmetische, vorzugsweise haarkosmetische Mittel, dadurch gekennzeichnet, dass sie mindestens eine der Zusammensetzungen gemäss einem der Ansprüche 1 bis 9, insbesondere 0,05 bis 1,5 Gewichtsteile, berechnet als Wirksubstanz, mindestens eines polymeren Ammoniumsalzes als Komponente (A) 0,1 bis 10 Gewichtsteile, berechnet als Wirksubstanz, mindestens eines monomeren bis oligomeren Ammoniumsalzes als Komponente (B), 5 bis 20 Gewichtsteile, berechnet als Wirksubstanz, mindestens eines nicht-ionischen Tensides, eines Tensides mit intramolekular je einer positiven und negativen Ladung oder eines anionischen, gegebenenfalls zwitterionischen Tensides als Komponente (C) und gegébenenfalls kosmetische Hilfsmittel enthalten, wobei die Mittel vorzugsweise mit entionisiertem Wasser auf insgesamt 100 Gewichtsteile verdünnt und mit einer wässrigen Lösung aus Natriumhydroxyd oder Zitronensäure auf einen pH-Wert von 5 bis 8, vorzugsweise 5 bis 6, eingestellt sind.

14. Haarbehandlungsverfahren, dadurch gekennzeichnet, dass man ein kosmetisches Mittel gemäss Anspruch 13 auf mit Leitungswasser angefeuchtetem Haar bei 20 bis 40°C aufbringt, das Haar schampooniert und konditioniert.

55

60

Claims

1. Am aqueous composition of polymeric, quaternary ammomium salts, of monomeric to oligomeric, quaternary ammonium salts and of monionic or anionic surfactants, which composition has a pH value of 3 to 9 and contains at least

(A) one ammomium salt which is soluble or micro-emulsifiable im aqueous surfactant systems and has a molecular weight distribution of 104 to 109, the molecular weight of at least 5 per cent by weight of the polymeric salt being 107 to 109, said salt containing recurring structural units of the formula

$$-CH_{2}-\overset{\overset{\wedge}{\downarrow}_{1}}{\overset{\circ}{\downarrow}_{0}}-\overset{\overset{\circ}{\downarrow}_{1}}{\overset{\circ}{\downarrow}_{1}}-\overset{\overset{\circ}{\downarrow}_{1}}{\overset{\circ}{\downarrow}_{1}}-\overset{\overset{\circ}{\downarrow}_{1}}{\overset{\circ}{\downarrow}_{1}}$$

and, optionally, in any order, at least one of the recurring structural units of the formulae 10

5

45

60

65

wherein A₁, A₂, A₃ amd A₄ are each hydrogen or methyl, G₁ and G₂ are different from each other and are 35 each -CN, -COOH or -CO-D₂-E₂-N-3

D₁ and D₂ are each oxygen or -NH-, E₁ and E₂ are each 40 C₁-C₄alkylene which is unsubstituted or substituted by hydroxyl, R₁, R₂, R₃ and R₄ are each methyl or ethyl, Q is alkyl, C₁-C₄hydroxyalkyl or benzyl and Y₁⊖ is a halide, alkylsulfate or

alkylphosphonate anion containing 1 to 4 carbon atoms in the alkyl moiety, (B) an ammonium salt which contains 1 to 3 quaternary nitrogen atoms and has a molecular weight of not

more than 9 000, and (C) a nonionic surfactant, a surfactant having a positive and a negative charge im each molecule or an anionic surfactant which may be im zwitterion form, or mixtures thereof,

with the proviso that if component (C) is an aniomic surfactant, the polymeric ammonium salt used as component (A), im addition to containing structural units of the formula

50
$$-CH_{2}-\overset{A_{1}}{\downarrow} -CH_{2}-\overset{R_{1}}{\downarrow} -\overset{R_{1}}{\downarrow} -\overset{C}{\downarrow} -\overset{R_{1}}{\downarrow} -\overset{C}{\downarrow} -\overset{C$$

also contains structural units of the formula

10

5

and the anionic surfactant has been at least partially reacted by ion exchange with components (A) and (B). 2. A composition according to claim 1, wherein component (A) is an ammonium salt which contains om average 5 to 100 mol %, or, if component (C) is an anionic surfactant, on average 5 to 80 mol %, of structural units of the formula

20

15

25

30

0 to an average of 95 mol %, or, if component (C) is an anionic surfactamt as, on average 10 to 75 mol %, of structural units of the formula

35

and

40

0 to an average of 10 mol % of structural units of the formula

45

50

wherein A_1 , A_2 , A_3 , A_4 , D_1 , E_1 , G_1 , G_2 , R_1 , R_2 , Q and Y_1^{Θ} are as defined in claim 1. 3. A composition according to either of claims 1 or 2, wherein component (B) is an ammonium salt of the formula

55

65

or preferably of the formula

wherein L₁ is hydrogen or alkyl or alkenyl which contains not more than 4 carbon atoms and is unsubstituted, 10 or substituted by hydroxyl, L2, L3 and L4 are each unbranched or branched alkyl or alkenyl which contains not more than 22 carbon atoms and can be interrupted by oxygen atoms or acid amide radicals and can be terminally substituted by hydroxyl, carbamoyl, dialkylamino, unsubstituted phenyl or phenoxy or halogensubstituted or halomethyl-substituted phenyl or phenoxy, said L2, L3 and L4 radicals which are interrupted by -O- or -CONH- each containing a total of not more than 120 carbon atoms or, where the ammonium salt contains two quaternary nitrogen atoms, one of the L_2 , L_3 or L_4 radicals of the indicated kind is terminally substituted by a dialkylammonium or trialkylammonium cation, the alkyl moieties of alkylamino or alkylammonium substituents containing 1 to 4 carbon atoms and being unsubstituted or substituted by hydroxyl, or L₃ amd L₄, together with the quaternary nitrogen atom, form a 4,5-di-hydroimidazole ring or a 3,4,5,6-tetrahydropyrimidine ring, said rings being substituted in the 2-position by alkyl of 1 to 22 carbon atoms 20 and being substituted at the quaternary nitrogen atom by L1 and L2, each of which is as defined, or, where the ammonium salt contains 3 quaternary nitrogen atoms, L1 and L2 are as defined for L1; L3 is carboalkoxyalkyl or carboalkenyloxyalkyl containing 8 to 22 carbon atoms in the carboalkoxy or carboalkenyloxy moiety and 1 or 2 carbon atoms in the alkyl moiety; and L4 is a straight-chain alkyl radical which contains 5 to 8 carbon atoms and is interrupted by 2 quaternary nitrogen atoms which are linked through ethylene or propylene and are each 25 substituted by L₁ and L₃ radicals as defined above, L₅ is hydrogen, C₁-C₄alkyl or C₂-C₄hydroxyalkyl or C₃-C4alkenyl, L6, L7 and L8 are each C1-C22alkyl, C2-C4hydroxyalkyl, C3-C22alkenyl or radicals of the formulae

30
$$(H)_{n-1}$$

$$-(CH_{2})_{a-1}-(CH_{2}-CHO)_{b}-H$$

$$(CH_{3})_{2-n}$$

$$-(CH_{2})_{n-1}-CH_{2}-(O)_{n'-1}-\underbrace{\times}_{-\infty}^{(C1)}_{n''-1}$$

$$-(CH_{2})_{a}-CONH_{2}, -(CH_{2})_{a}-CONH-L_{9} \text{ or } -(CH_{2})_{a}-NHCO-L_{9},$$
45

in which L_g is hydroxyethyl or C_1 - C_{22} alkyl or L_g is a radical of the formula

in which L_{10} and L_{11} are each methyl, ethyl or hydroxyethyl and L_{12} is hydrogen, methyl, ethyl or hydroxyethyl, a is 1 to 22, b is 1 to 40 and c is 1 to 6, or L_7 and L_8 , together with the quaternary nitrogen atom, are a ring of the formula

1,3 (CH₂)_{n+1},

10

15

5

in which L_{13} is alkyl or alkenyl, each of 8 to 22 carbon atoms, and n, n', n'' and n'' are each 1 or 2, and Y_2^Θ is a halide, alkylsulfate or alkylphosphonate anion having 1 to 4 carbon atoms in the alkyl moiety or the anion of an alkylcarboxylic acid or a hydroxycarboxylic acid having not more than 6 carbon atons or a phosphoric acid.

4. A composition according to claim 3, wherein component (B) is an ammoniun salt of the formula

25 30

$$L_{11} - N = L_{17} \qquad Y$$

40

45

50

in which L $_{4}$ and L are each C $_{1}\text{-}\text{C}_{4}\text{alkyl}$ L $_{16}$ is hydrogen, C $_{1}\text{-}\text{C}_{4}\text{alkyl}$

or C_2 - C_4 hydroxyalkyl or -CH -CO-NH L $_7$ is C_1 - C_2 alkyl and L_{18} is C_{10} - C_{22} alkyl, benzyl, phenoxymethylene or phenoxyethylene, Y^{Θ}_3 is a chloride, methylsulfate or acetate ion, and Y_4 is a chloride, methylsulfate or acetate anion or, if L_{16} is hydrogen, is a citrate, lactate or phosphate anion, and L_5 , L_{10} , L_{11} , L_{13} and C_4 are as defined in

5. A composition according to any one of claims 1 to 4, wherein the nonionic surfactant of component (C) is selected from ethoxylated fatty acids, fatty alcohols, fatty acid amides, alkylphenols or carbohydrates, adducts formed from ethylene oxide and propylene oxide, phosphoric acid polyglycol esters or amine oxides, preferably of one of the formulae

55

60

$$H-(O-CH_2-CH_2)_p-NH-CO-T_1,$$

$$^{\text{HO-(CH}_2\text{-CH}_2\text{-O)}_{\text{x}}\text{-(CH}_2\text{-CH-O-)}_{\text{y}}\text{-(CH}_2\text{-CH}_2\text{-O)}_{\text{z}}\text{-H}},$$

$$\begin{array}{c} \text{T}_{3}^{*}-(\text{O-CH}_{2}-\text{CH}_{2})_{q-1}^{-\text{O}} \\ \text{T}_{3}^{*}-(\text{O-CH}_{2}-\text{CH}_{2})_{q-1}^{-\text{O-P=O}} \\ \text{T}_{3}^{*}-(\text{O-CH}_{2}-\text{CH}_{2})_{q}^{*}=0 \end{array}$$

in which T_1 is alkyl or alkenyl, each of 7 to 21 carbon atoms, T_2 is alkyl or alkenyl each of 8 to 22 carbon atoms, T_3 , T_3 , T_3 , and T_3 , are each alkyl or alkenyl of 6 to 14 carbon atoms, p is an integer from 1 to 50, each of q, q and q is an integer from 1 to 13, s is 3 or 4, and x, y and z are identical or different integers.

6. A composition according to any one of claims 1 to 4, wherein the surfactant having a positive and a negative charge in each molecule, as component (C), is selected from betaines or sulfobetaines derived from an imidazoline derivative or from an open-chain, aliphatic amine, said betaines having preferably one of the formulae

65

10

20

35

$$T_{1}^{-CO-NE-(CH_{2})}_{3} \stackrel{CH_{3}}{\stackrel{\circ}{\circ}_{1}} \stackrel{CH_{2}}{\circ}_{1} \stackrel{-CD}{\circ}_{1} \stackrel{-COO}{\circ}_{1}$$

$$T_{2}^{-CH_{3}}^{-CH_{2}-CDO} \stackrel{O}{\circ}_{1}$$

$$T_{2}^{-NH_{2}-CH_{2}-(CH_{2})}_{1-1} \stackrel{-COO}{\circ}_{1}$$

$$T_{2}^{-NH_{2}-CH_{2}-(CH_{2})}_{1-1} \stackrel{-NH-CH_{2}-CH_{2}-CH_{2}-CDO}{\circ}_{1}$$

$$T_{2}^{-NH_{2}-CH_{2}} \stackrel{CH-COO}{\circ}_{1}$$

$$T_{2}^{-NH_{2}-CH_{2}} \stackrel{CH-COO}{\circ}_{1}$$

$$T_{2}^{-NH_{2}-CH_{2}} \stackrel{CH-COO}{\circ}_{1}$$

$$T_{2}^{-NH_{2}-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{2}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{2}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{2}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{2}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{2}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{3}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{4}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-SO_{3}}{\circ}_{1}$$

$$T_{1}^{-CO-N} \stackrel{(CH_{2}-CH_{2}O)}{\circ}_{1} \stackrel{-SO_{3}}{\circ}_{1}$$

$$CH_{3}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-CH_{2}O)}{\circ}_{1} \stackrel{-SO_{3}}{\circ}_{1}$$

$$CH_{3}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-CH_{2}O)}{\circ}_{1} \stackrel{-SO_{3}}{\circ}_{1}$$

$$CH_{3}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-CH_{2}O)}{\circ}_{1} \stackrel{-SO_{3}}{\circ}_{1}$$

$$CH_{3}^{-N-CH_{2}-CH_{2}} \stackrel{CH_{2}-CH_{2}O)}{\circ}_{1} \stackrel{-SO_{3}}{\circ}_{1}$$

in which T_1 is alkyl or alkenyl having 7 to 21 carbon atoms, T_2 is alkylor alkenyl having 8 to 22 atoms and p, p'

and p" are each an integer from 1 to 50, and t is 1 or 2.

7. A composition according to any one of claims 1 to 4, wherein the anionic surfactant of component (C) is a surfactant of the formula X^{Θ} in which X^{Θ} is the radical of a surface-active sarcosinate, a fluorinated surfactant or of a phosphate surfactant and Z^{Θ} is an alkali metal cation or an ammonium cation which is unsubstituted or substituted by 1 to 3 (C₁-C₄)alkyl or (C₁-C₄)alkanol radicals, said surfactant preferably corresponding to one of the formulae

$$T_{1} - \stackrel{\text{CH}}{\text{CH}_{2}} - \text{SO}_{3} \stackrel{\text{O}}{\text{Z}} \stackrel{\text{O}}{\text{Y}} ,$$

$$T_{3} - \text{OOC} - \text{CH}_{2} - \text{COO}_{-} [T_{3}^{1}]_{-1} - [\text{Na}]_{2-1} \stackrel{\text{Z}}{\text{Q}} \stackrel{\text{O}}{\text{Y}}$$

$$T_{1} - \text{OC} - \text{CH}_{2} - \text{CH}_{2} - \text{OO}_{-} [T_{3}^{1}]_{-1} - [\text{Na}]_{2-1} \stackrel{\text{Z}}{\text{Q}} \stackrel{\text{O}}{\text{Y}}$$

$$T_{1} - \text{OC} - \text{CH}_{2} - \text{CH}_{2} - \text{OO}_{-} [T_{3}^{1}]_{-1} - [\text{Na}]_{2-1} \stackrel{\text{Z}}{\text{Q}} \stackrel{\text{O}}{\text{Y}}$$

$$T_{1} - \text{OC} - \text{CH}_{2} - \text{CH}_{2} - \text{OO}_{-} \text{CH}_{2} - \text{CH}_{-} - \text{COONa} \stackrel{\text{Z}}{\text{Q}} \stackrel{\text{O}}{\text{Y}}$$

$$T_{1} - \text{OOC} - \text{CH}_{2} - \text{CH}_{-} - \text{COONa} \stackrel{\text{Z}}{\text{Q}} \stackrel{\text{O}}{\text{Y}} \stackrel{\text{O}$$

$$[T_{3}] \xrightarrow{\bullet - \bullet} -0-]_{2-t} [T_{1}] \xrightarrow{\bullet - \bullet} (-CH_{2}] \xrightarrow{\bullet -0-} p^{-P-O} \xrightarrow{\bullet} Z^{\bigoplus}$$
or
$$[OH-]_{2-t} [T_{3}] \xrightarrow{\bullet -0-} (-CH_{2}] \xrightarrow{\bullet -1} \xrightarrow{\bullet} (-CH_{2}] \xrightarrow{\bullet -1} \xrightarrow{\bullet -1} \xrightarrow{\bullet -1} (-CH_{2}] \xrightarrow{\bullet -1} \xrightarrow{\bullet -1} \xrightarrow{\bullet -1} \xrightarrow{\bullet -1} (-CH_{2}] \xrightarrow{\bullet -1} \xrightarrow{\bullet$$

wherein T_1 and T'_1 are each alkyl or alkenyl of 7 to 21 carbon atoms, T_2 is alkyl or alkenyl, each of 8 to 22 carbon atoms, T_3 and T'_3 are each alkyl or alkenyl of 6 to 14 carbon atoms, T_4 is perfluorinated alkyl or alkenyl, each of 6 to 14 carbon atoms, T_4 is perfluorinated alkyl or alkenyl, each of 6 to 14 carbon atoms, T_4 is a star or alkyl having 1 to 3 carbon atoms, T_4 and T_5 are each an integer from 1 to 50, T_5 is an integer from 2 to 6, T_5 is 1 or 2 and T_5 is as defined above.

8. A composition according to any one of claims 1 to 4, wherein the anionic surfactant in zwitterion form of couponent (C) is a surfactant of the formula XΘ ZΦ in which XΘ is the radical of a surfaceactive N-alkyl-α-iminodipropionate or of an imidazolinium dicarboxylic acid derivative which is substituted by alkyl in the 2-position, said surfactant corresponding preferably to one of the formulae

$$\begin{array}{c}
\mathbf{z}^{\bigoplus \bigcirc} \text{ooc-ch}_2\text{-ch}_2 \oplus \mathbf{H} \\
\bigcirc \text{ooc-ch}_2\text{-ch}_2 & \mathbf{T}_3
\end{array}$$
or
$$\begin{array}{c}
\mathbf{z}^{\bigoplus \bigcirc} \text{ooc-ch}_2\text{-ch}_2 \oplus \mathbf{H} \\
\bigcirc \text{ooc-ch}_2\text{-ch}_2 & \mathbf{T}_3
\end{array}$$

in which T₃ is alkyl or alkenyl each of 6 to 14 carbon atoms, and Z[®] is as defined in claim 7.

9. A composition according to any one of claims 1 to 8, which contains components (A), (B) and (C) in a weight ratio of (A):(B):(C) of 1:(1 to 10):(2 to 400).

10. A process for the preparation of the composition as claimed in any one of claims 1 to 9, by polymerising a monomer of the formula

65

60

20

and, optionally at least one comonomer of one of the formulae

10

15

20

in which A_1 , A_2 , A_3 , A_4 , A_1 , E_1 , G_1 , R_1 , R_2 , Q and Y_1^{\ominus} are as defined in claim 1, by water-in-oil emulsion polymerisation in the presence of a water-in-oil emulsifier and optionally an emulsion stabiliser, or by solution polymerisation, in each case in the presence of a polymerisation initiator, to give component (A), precipitating the polymer with a solvent which is soluble in water and in oil and then drying the precipitate which process comprises using the resultant polymer as component (A) and mixing it in an aqueous medium with at least one ammonium salt containing 1 to 3 quaternary nitrogen atoms and having a molecular weight of not more than 9000, as component (B), and also with at least one nonionic surfactant, a surfactant having a positive and a negative charge in each molecule or an anionic surfactant which may be in zwitterion from, as component (C), in the temperature range from 10 to 90°C and at a pH value of 5 to 9, and, if component (C) is an anionic surfactant which may be in zwitterion form, of the formula XO ZO according to any one of claims 21 to 30, simultaneously reacting the anionic surfactant at least partially by ion exchange with the copolymer which has been prepared using the comonomer

25

30

35

as component (A), and with the ammonium salt containing 1 to 3 quaternary nitrogen atoms as component

(B).

11. A process according to claim 10, which comprises using an excess of preferably 4 to 500 moles of at least one anionic surfactant which nay be in zwitterion form according to either of claims 7 or 8 per mole of monomeric quaternary ammonium salt employed in the preparation of component (A), and per mole of component (B). 12. Use of a composition as claimed in any one of claims 1 to 9 in cosmetic, preferably hair cosmetic,

13. A cosmetic, preferably hair care cosmetic, composition, which contains at least one composition as claimed in any one of claims 1 to 9, preferably 0.05 to 1.5 parts by weight, calculated as active substance, of at least one polymeric ammonium salt as component (A), 0.1 to 10 parts by weight, calculated as active substance, of at least one monomeric to oligomeric ammonium salt as component (B), 5 to 20 parts by weight, calculated as active substance, of at least one nonionic surfactant, of a surfactant that carries one positive and one negative charge in each molecule or of an anionic surfactant which may be in zwitterion form as component (C), and optional cosmetic assistants, which composition is preferably diluted with deionised water to a total of 100 parts by weight and adjusted to a pH value of 5 to 8, preferably 5 to 6, with an aqueous solution

of sodium hydroxide or citric acid.

14. A method of treating hair, which comprises applying a cosmetic composition as claimed in claim 13 at 20° to 40°C to hair which has been moistened with mains water, and shampooing and conditioning said hair.

55

65

Revendications

1. Composition aqueuse à base de sels d'ammonium quaternaire polymères, de sels d'ammonium quaternaire monomères à oligomères et d'agents tensio-actifs non ioniques ou anioniques, caractérisée par le fait qu'elle présente un pH de 3 à 9 et contient au moins

(A) un sel d'ammonium soluble ou micro-émulsifiable dans des systèmes tensio-actifs aqueux, qui présente une distribution de poids moléculaire allant de 104 à 109, le poids moléculaire d'au moins 5% en poids, en particulier de 5 à 60% en poids, du sel polymère allant de 107 à 109, et le sel comportant des motifs structuraux répétitifs de formule

$$-cH_{2}-\begin{matrix}A_{1}\\ -C\\ CO-D_{1}-E_{1}\end{matrix} \xrightarrow{R_{1}} \begin{matrix}R_{1}\\ -C\\ R_{2}\end{matrix} \xrightarrow{R_{2}} \begin{matrix}\Theta\\ 1\end{matrix}$$

et éventuellement, dans un ordre quelconque, au moins un des motifs structuraux répétitifs de formules

10

5

20

15

$$-CH_{2}-\overset{\Lambda}{C}_{1}^{3} \qquad \text{et}$$

25

30

dans lesquelles A₁, A₂, A₃ et A₄ représentent chacun un atome d'hydrogène ou un groupe methyle; G₁ et G₂

35 sont différents l'un de l'autre et représentent chacun -CN, -CCOH ou -CO-D $_2$ -E $_2$ -N $_2$ R $_2$

3;D₁ et D₂ sont chacun un atome d'oxygène ou -NH; E₁ et E₂ représentent chacun un radical alkylène ayant de 1 à 4 atomes de carbone, qui est eventuellement substitué par un groupe hydroxyle; R₁, R₂, R₃ et R₄ représentent chacun un groupe méthyle ou éthyle; Q représente un groupe alkyle, hydroxyalkyle, contenant de 1 à 4 atomes de carbone, ou un groupe benzyle; et

Y₁O représente un anion halogénure, un anion alkylsulfate ou alkylphosphonate ayant de 1 à 4 atomes de carbone dans le radical alkyle;

(B) un sel d'ammonium qui possède de 1 à 3 atomes d'azote quaternaire et qui a un poids moléculaire de 9000 au plus; et

(C) un agent tensio-actif non ionique, un agent tensio-actif ayant dans sa molécule à la fois une charge positive et une charge négative, ou un agent tensio-actif anionique, éventuellement amphotère, ou des mélanges de ceux-ci,

le sel d'ammonium polymère en tant que composant (A) comportant également, dans le cas d'utilisation d'un agent tensio-actif anionique en tant que composant (C), en plus de motifs structuraux de formule

55

50

$$-CH_{2}-\xi^{-1}$$

$$CO-D_{1}-E_{1} \overset{R}{\bigcirc} V_{-Q} \overset{Y}{\downarrow}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

60

des motifs structuraux de formule

5

10

30

45

А₁2 --СН₂--С-1 СО-NI

et l'agent tensio-actif anionique étant mis à réagir au moins en partie avec les composants (A) et (B) par échange d'ions.

2. Composition selon la revendication 1, caractérisée par le fait qu'elle contient en tant que composant (A) un sel d'ammonium qui comporte en moyenne de 5 à 100% en mole ou, dans la mesure où on utilise en tant que composant (C) un agent tensio-actif anionique, en moyenne de 5 à 80% en mole de motifs structuraux de formule

20

A

1

-CH

2-C
R

1

CO-D

1-E

N-Q

Y

R

R

2

de 0 à en moyenne 95% en mole ou, dans la mesure ou on utilise en tant que composant (C) un agent tensioactif anionique, en moyenne 10 à 75% en mole de motifs structuraux de formule

35
-CH₂-C1
CO-NH₂ et

de 0 à en moyenne 10% en mole de motifs structuraux de formule

CH₂-C- et éventuellement de formule -CH₂-C- i C₂

55

A₁, A₂, A₃, A₄, D₁, E₁, G₁, G₂, R₁, R₂, Q et Y₁ ⊕ ayant les significations données dans la revendication 1.

3. Composition selon l'une des revendications 1 ou 2, caracterisée par le fait qu'elle contient en tant que composant (B) un sel d'ammonium qui correspond à la formule

ou de préférence à la formule

5

20

25

30

35

40

50

10 L₆ - 1 L₈ 15

dans lesquelles L1 est un atome d'hydrogène, un radical alkyle ou alcényle, ayant au plus 4 atomes de carbone, qui est éventuellement substitué par un groupe hydroxyle; L2, L3 et L4 représentent chacun un radical alkyle ou alcényle, éventuellement ramifié, contenant au plus 22 atomes de carbone, qui est éventuellement interrompu par des atomes d'oxygène ou par des restes amido et qui est éventuellement substitué en bout de chaîne par un groupe hydroxyle, carbamyle, dialkylamino, phényle ou phénoxy non substitué, phényle ou phénoxy substitué par un atome d'halogène ou substitué par un reste halogénométhyle, les radicaux L2, L3 et L4 interrompus par -O- ou par -CONH- comportant chacun au total 120 atomes de carbone au maximum ou, dans le cas de sels d'ammonium ayant deux atomes d'azote quaternaire, un des radicaux L2, L3 ou L4 de type indiqué est substitué enbout de chaîne par un cation di- ou tri-alkylammonium, les restes alkyle dans les substituants alkylamino ou alkylammonium comportant de 1 à 4 atomes de carbone et étant éventuellement substitues par un groupe hydroxyle, ou bien L3 et L4 forment ensemble, avec l'atome d'azote quaternaire, un cycle 4,5-dihydro-imidazole ou un cycle 3,4,5,6-tétrahydropyrimidine, ces cycles étant substitués en position 2 par un groupe alkyle ayant de 1 à 22 atomes de carbone et, sur l'atome d'azote quaternaire, par L1 et L2 qui ont chacun les significations indiquées ou, dans le cas de sels d'ammonium ayant 3 atomes d'azote quaternaire, L1 et L2 ont les significations données pour L1;

 L_3 représente un radical carbalcoxyalkyle ou carbalconyloxyalkyle, ayant de 8 à 22 atomes de carbone dans la portion carbalcoxy ou carbalcényloxy et 1 ou 2 atomes de carbone dans la portion alkyle; et

L4 représente un radical alkyle à chaîne droite ayant de 5 à 8 atomes de carbone, qui est interrompu par 2 atomes d'azote quaternaire, les atomes d'azote étant reliés par un groupe éthylène ou propylène et étant

chacun substitués par les radicaux L_1 et L_3 qui ont les significations données en dernier lieu; L_5 est un atome d'hydrogène, un groupe alkyle ayant de 1 à 4 atomes de carbone, ou un groupe hydroxyalkyle ayant de 2 à 4 atomes de carbone, ou un groupe alcényle ayant 3 ou 4 atomes de carbone; L6, L7 et L8 représentent chacun un groupe alkyle ayant de 1 à 22 atomes de carbone, un groupe hydroxyalkyle ayant de 2 à 4 atomes de carbone, un groupe alcényle ayant de 3 à 22 atomes de carbone, ou l'un des restes de formules

45

$$(H)_{n-1}$$
 $-(CH_2)_{a-1}^{-(CH_2-CHO)}_{b}^{-H}$
 $(CH_2)_{2-a}^{-(CH_2)}$

 $-(CH_2)_{n-1}-CH_2-(O)_{n'-1}-\underbrace{\overset{\circ}{\sim}\overset{\sim$ 55

$$-(CH2)a-CONH2, -(CH2)a-CONH-L9, ou -(CH2)a-NHCO-L9,$$

dans lesquelles L_9 est un groupement hydroxyéthyle ou alkyle ayant de 1 à 22 atomes de carbone, ou bien L_9 est un radical de formule

5

$$(H)_{n-1}$$

$$-(CH_{2})_{a}-0-(CH_{2}-CHO)_{b}-H$$

$$(CH_{3})_{2-n} \qquad \text{ou de formule}$$
15

$$-(CH_{2})_{c}-\bigcup_{n=1}^{L} L_{11} \qquad Y_{2 \ n-1}^{\Theta}$$
20

dans lesquelles L₁₀ et L₁₁ sont chacun un groupe méthyle, éthyle ou hydroxyéthyle; a va de 1 à 22, b va de 1 à 40 et c va de 1 à 6; ou L₇ et L₈ forment ensemble, avec l'atome d'azote quaternaire, un cycle de formule

dans laquelle L₁₃ est un groupe alkyle ou alcényle ayant de 8 à 22 atomes de carbone, et n, n', n'' et n'''
35 représentent chacun 1 ou 2; et Y₂© représente un anion halogénure, un anion alkylsulfate ou alkylphosphonate ayant de 1 à 4 atomes de carbone dans le radical alkyle, ou l'anion d'un acide alkylcarboxylique ou d'un acide oxycarboxylique, contenant au plus 6 atomes de carbone, ou d'un acide phosphorique.

4. Composition selon la revendication 3, caractérisé par le fait qu'elle contient en tant que composant (B) un sel d'ammonium qui correspond à l'une des formules

40

L₁₃-
$$CH_2$$
 CH_2
 CH

ou en particulier

dans lesquelles L₁₄ et L₁₅ représentent chacun un groupe alkyle ayant de 1 à 4 atomes de carbone; L₁₈ représente un atome d'hydrogène, un groupe alkyle ayant de 1 à 4 atomes de carbone ou un groupe hydroxyalkyle ayant de 2 à 4 atomes de carbone, ou -CH₂-CO-NH₂; L₁₇ représente un radical alkyle ayant de 10 à 22 atomes de carbone; et L₁₈ représente un radical alkyle ayant de 10 à 22 atomes de carbone, un radical benzyle, phénoxyméthylène ou phénoxyéthylène; Y₃[©] représente un anion chlorure, méthylsulfate ou acétate; Y₄[©] représente un anion chlorure, méthylsulfate ou acétate ou, dans la mesure ou L₁₆ est un atome d'hydrogène, un anion citrate, lactate ou phosphate; et L₅, L₁₀, L₁₁ et c ont les significations données dans la revendication 3.

5. Composition selon l'une des revendications 1 à 4, caractérisée par le fait qu'elle contient en tant qu'agent tensio-actif non ionique pour le composant (C) des acides gras, alcools gras, amides gras, alkylphénols ou hydrates de carbone, oxy-éthylés, des produits d'addition d'oxyde d'éthylène et d'oxyde de propylène, des phosphates de polyglycols ou des oxydes d'amines, qui correspondent de préférence à l'une des formules

$$H = (O - CH_{2} - CH_{2})_{p} - OOC - T_{1},$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2},$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2},$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2},$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O - CH_{2} - CH_{2})_{p} - OCH_{2} - (CHOH)_{s} - CHO,$$

$$H = (O -$$

60

dans lesquelles T_1 représente un groupe alkyle ou alcényle ayant de 7à 21 atomes de carbone; T_2 représente un groupe alkyle ou alcényle ayant de 8 à 22 atomes de carbone; T_3 , T_3' , T_3'' et T_3''' représentent chacun un groupe alkyle ou alcényle ayant de 6 à 14 atomes de carbone; p est un nombre entier allant de 1 à 50; q, q' et q'' sont chacun un nombre entier allant de 1 à 13; s est 3 ou 4; et x, y et z représentent des nombres entiers égaux ou différents les uns des autres.

6. Composition selon l'une des revendications 1 à 4, caractérisée par le fait qu'elle contient, pour le composant (C), en tant qu'agent tensio-actif ayant dans sa molécule à la fois une charge positive et une charge négative, des bétaines ou des sulfobétaines qui dérivent d'un dérivé d'imidazoline ou d'une amine aliphatique à chaîne ouverte, ces bétaines correspondant de préférence à l'une des formules

$$\tau_2^{-NH_2-CH_2-(CH_2)}$$

$$T_{2} \xrightarrow{\text{N-CH}_{2}-\text{CH}_{2}} CH_{2}-\text{SO}_{3} CH_{2}-\text{SO}_{3} CH_{2} CH_{2$$

dans lesquelles T₁ représente un groupe alkyle ou alcényle ayant de 7 à 21 atomes de carbone; T₂ représente un groupe alkyle ou alcényle ayant de 8 à 22 atomes de carbone; p, p' et p'' sont chacun un nombre entier allant de 1 à 50; et t est 1 ou 2.

7. Composition selon l'une des revendications 1 à 4, caractérisée par le fait qu'elle contient, en tant qu'agent tensio-actif anionique pour le composant (C), un agent tensio-actif de formule X^O Z^O, dans laquelle X^O représente le reste d'un sarcosinate tensio-actif, d'un sulfats (éther-sulfate) tensio-actif, d'un sulfonate tensio-actif ou d'un dérivé d'acide sulfosuccinique tensio-actif, d'un agent tensio-actif fluoré ou d'un agent tensio-actif phosphaté, et Z^O représente un cation de métal alcalin ou un cation ammonium éventuellement substitué par 1 à 3 restes alkyle en C₁₋₄ ou alcanol en C₁₋₄, l'agent tensio-actif correspondant de préférence à l'une des formules

$$\Theta_{OOC-CH_{2}-N} \xrightarrow{CH_{3}} Z^{\bigoplus},$$

$$T_{1}-O-(CH_{2}-CH_{2}-O)_{p-1}-SO_{3}^{\bigoplus}Z^{\bigoplus},$$

$$T_{3}-\overset{\longleftarrow}{\searrow} -O-(CH_{2}-CH_{2}-O)_{q}-SO_{3}^{\bigoplus}Z^{\bigoplus},$$

$$T_{1}-CO-NH-(CH_{2})_{r}-O-SO_{3}^{\bigoplus}Z^{\bigoplus},$$

$$T_{1}-CO-NH-(CH_{2}-CH_{2}-O)_{p}-SO_{3}^{\bigoplus}Z^{\bigoplus},$$

30

35

5
$$T_{3} = \begin{bmatrix} SO_{3}Na \\ -1 \\ -1 \end{bmatrix} & SO_{3} \\ T_{3} = CH - (CH_{2})_{T} - CH_{3} & Z^{\odot} \\ T_{3} - CH - (CH_{2})_{T} - CH_{3} & Z^{\odot} \\ T_{3} - COO - CH_{2} - CH_{2} - SO_{3} & Z^{\odot} \\ T_{3} - COO - CH_{2} - CH_{2} - SO_{3} & Z^{\odot} \\ T_{3} - COO - CH_{2} - CH_{2} - SO_{3} & Z^{\odot} \\ T_{1} - CH_{2} - CH_{2} - CH_{2} - SO_{3} & Z^{\odot} \\ T_{1} - CH_{2} - CH_{2} - CH_{2} - SO_{3} & Z^{\odot} \\ T_{1} - CH_{2} - CH_{2} - COO - (T_{3}^{-1})_{T} - T_{1} - T_{1} - T_{2} -$$

$$[T_3 - (-CH_2 - CH_2 - CH_2 - O)]_{p-p-O} \xrightarrow{D} Z$$

dans lesquelles T_1 et T_1' représentent chacun un radical alkyle ou alcényls ayant de 7 à 21 atomes de carbone; T_2 représente un radical alkyle ou alcényle ayant de g à 22 atomes de carbone; T_3 et T_3' représentent chacun un radical alkyle ou alcényle ayant de 6 à 14 atomes de carbone; T_4 représente un radical alkyle ou alcényle perfluoré ayant de 6 à 14 atomes de carbone; M représente un atome d'hydrogène, le groupe ammonium, un métal alcalin ou un groupe alkyle ayant de 1 à 3 atomes de carbone; p et p' représentent chacun un nombre entier allant de 2 à 6; q représente un nombre entier allant de 6 à 12; r est un nombre entier allant de 2 à 6; t est 1 ou 2; et Z^{\odot} a les significations données.

co

8. Composition selon l'une des revendications 1 à 4, caractérisée par le fait qu'elle contient, pour le composant (C), en tant qu'agent tensio-actif anionique, amphotère, un agent tensio-actif de formule X^Θ Z^Θ, dans laquelle X^Θ représente le reste d'un N-alkyl-α iminodipropionate tensio-actif ou d'un dérivé d'acide imidazoliniumdicarboxylique substitué en position 2 par un groups alkyle,

. - 3

l'agent tensio-actif correspondant de préference à l'une des formules

10

5

15

35

60

65

dans lesquelles T3 représente un groupe alkyle ou alcényle ayant de 6 à 14 atomes de carbone et Z[®] a les significations données dans la revendication 7.

9. Composition selon l'une des revendications 1 à 8, caractérisés par le fait qu'elle contient les composants

(A), (B) et (C) en une proportion en poids (A):(B):(C) de 1:(1 à 10):(2 à 400).

10. Procédé pour la préparation de la composition selon l'une des revendications 1 à 9, dans lequel on polymérise un monomère de formule

et, éventuellement, au moins un comonomère d'une des formules

dans lesquelles A₁, A₂, A₃, A₄, D₁, E₁, C₁, R₁, R₂, Q et Y₁[©] ont les significations données dans la revendication 45 1, par polymerisation en émulsion eau-dans-huile en présence d'un émulsionnant eau-dans-huile et, éventuellement, d'un stabilisant d'émulsion, ou par polymérisation en solution, en présence chaque fois d'un amorceur de polymérisation, pour aboutir au composant (A), en précipite le polymère avec un solvant soluble aussi bien dans l'eau que dans l'huile, puis on le sèche, caractérisé par le fait que l'on utilise en tant que composant (A) le polymère ainsi obtenu et on le mélange en milieu aqueux avec au moins, en tant que composant (B), un sel d'ammonium comportant de 1 à 3 atomes d'azote quaternaire et ayant un poids moléculaire de 9000 au plus, ainsi qu'avec, en tant que composant (C), au moins un agent tensio-actif non ionique, un agent tensio-actif ayant dans sa molécule à la fois une charge positive et une charge négative, ou un agent tensio-actif anionique, éventuellement amphotère, à une température de 10 à 90°C et à un pH de 3 à 9, en faisant réagir simultanément, au moins en partie, dans la mesure cû on utilise, en tant que composant (C), un agent tensio-actif anionique, éventuellement amphotère, de formule X^O Z^O selon l'une des revendications 7 et 8, l'agent tensio-actif anionique avec, en tant que composant (A), le copolymère préparé par utilisation du comonomère

et avec, en tant que composant (B), le sel d'ammonium comportant de 1 à 3 atomes d'azote quaternaire, par échange d'ions, de préférence à une température de 10 à 90°C, pendant 30 à 100 minutes.

11. Procédé selon la revendication 10, caractérisé par le fait que l'on utilise un excès, de préférence de 4 à 500 moles, d'au moins un agent tensio-actif anionique éventuellement amphotère selon l'une des revendications 7 et 8, par mole du sel d'ammonium quaternaire, monomère, utilisé pour la préparation du

composant (A), et par mole de composant (B).

12. Utilisation de la composition selon l'une des revendications 1 à 9 dans des produits cosmétiques, de

préférence dans des produits cosmétiques capillaires.

- 13. Produits cosmétiques, de préférence produits cosmétiques capillaires, caractérisés par le fait qu'ils contiennent au moins une des compositions selon l'une des revendications 1 à 9, en particulier 0,05 à 1,5 partie en poids, calculée en tant que substance active, d'au moins un sel d'ammonium polymère, en tant que composant (A), 0,1 à 10 parties en poids, calculées en tant que substance active, d'au moins un sel d'ammonium monomère à oligomère, en tant que composant (B), 5 à 20 parties en poids, calculées en tant que substance active, d'au moins un agent tensio-actif non ionique, d'un agent tensio-actif ayant dans sa molècule à la fois une charge positive et une charge négative, ou d'un agent tensio-actif anionique, éventuellement amphotère, en tant que composant (C), et éventuellement des produits cosmétiques auxiliaires, les produits étant de préférence dilués, avec de l'eau désionisée, à 100 parties en poids au total, et ajustés à un pH de 5 à 8, de 5 à 6 de préférence, avec une solution aqueuse d'hydroxyde de sodium ou d'acide citrique.
- 14. Procédé de traitement capillaire, caractérisé par le fait que l'on applique, à 20-40°C, un produit cosmétique selon la revendication 13 sur des cheveux mouillés à l'eau du robinet, shampooigne les cheveux et les conditionne.

5