Neuro-Symbolic Artificial Intelligence

Sargur N. Srihari srihari@buffalo.edu

Human and Biological Intelligence

https://www.youtube.com/watch?v=PlevD5Mjeak

Neurons

Number of Neurons

Whole nervous system

Tardigrade	about 200		Brain only		AND .
<u>intestinalis</u> larva (sea squirt)	231	8,617 (central nervous system only)			经济
<u>Caenorhabditis</u> <u>elegans</u> (roundworm)	302	~7,500	is the only organism to have its whole <u>connectome</u> (neuronal "wiring diagram") completed, [10][1	54	[13]
Jellyfish	5,600		Hydra vulgaris (H. attenuate)		[14]
Megaphragma mymaripenne	7,400				[15]
Box jellyfish	8,700–17,500		adult Tripedalia cystophora (8 mm diameter) – does not include 1000 neurons in each of the four rhopalia		រនា
Medicinal <u>leech</u>	10,000				[17]
Pond <u>snail</u>	11,000				[18]
Sea slug	18,000				[19]
Amphioxus	20,000		central nervous system only		[20] [21]
Larval zebrafish	100,000				[22]
Lobster	100,000			-	[23]
Fruit fly					

		51] 51 22] 33]
~1.5×10 ¹⁴	Neurons for average adult	34[55][56]

No of neurons

List of animal species by forebrain (cerebrum or pallium) neuron number

6,775,000,000

Asian elephant

Human

16,340,000,000 21,000,000,000* Isotropic fractionator Optical fractionator

Pallium (cortex) H

Homo sapiens

Stories and Abstraction (YN Harari)

- Success of Homo-Sapiens over other primates
 - Ability to abstract high-level stories
 - Allow collaboration with others at scale
 - Thus have a broader impact/influence
- Abstracting concepts is necessary for stories
 - Conscious decision beyond involuntary reaction
 - To abstract, generalize, and reason about scenarios and concepts that do not physically exist
 - To focus attention to certain, limited set of features and process them in depth, while disregarding others

Foundations of Neurosymbolic Al

775 pages 1,232 pages 499 pages

Topics

- Paradigms of Artificial Intelligence (AI)
- Causal Reasoning
- Deep Learning

Two Paradigms of Al

Reasoning

- It is intuitive and subjective
- Knowledge-based Approach
 - Hard-code knowledge
 - Need to have deep knowledge of the problem domain

$$P(I = 1|J = 1) = 0.0629/(0.0629 + 0.0387) = 0.619$$

Deep Learning

- 1. Neural networks:
 - Inspired by neural networks of the brain
- 2. Learning:
 - Machines to discover rich/useful representations
- 3. Depth:
 - As a composition of learned features and functions

Deep Learning

Understand the world as a hierarchy of concepts

- How these concepts are built on top of each other is deep, with many layers
- Weights \boldsymbol{w} learnt by gradient descent $\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{t} \varepsilon \nabla_{\boldsymbol{w}} L(\boldsymbol{w}^{t})$

Discriminative Model CNN

Generative Model VAE

Al Technologies

Current status of Al

- Human capabilities still lacking in Al
 - Adaptability
 - Generalizability
 - Robustness
 - Explainability
 - Abstraction
 - Common sense
 - Causal reasoning
- Current research addresses these limitations

Research Goal

- Can we embed the causal components?
- Complex and seamless integration of learning and reasoning supported by both implicit and explicit knowledge
- Debate: whether end-to-end DL can achieve this goal or whether we need to integrate ML with symbolic and logic-based AI techniques
- Hypothesis: Integration route is most promising

Cognitive Approach

- Comprehension of how humans have, and have evolved to obtain, these advanced capabilities can inspire innovative ways to imbue AI systems with these competencies
- Study and exploit cognitive theories of human reasoning and decision making as a source of inspiration for the causal source of these capabilities,

Kahneman's Theory

- Human decisions are supported and guided by the cooperation of two main kinds of capabilities
 - System 1: Thinking Fast
 - Provides tools for intuitive, imprecise, fast, and often unconscious decisions
 - System 2: Thinking Slow
 - Handles more complex situations where logical and rational thinking is needed to reach a complex decision

Kahnemann on Two Systems

Kahnemann

Summary of two systems

Source:

https://medium.com/@ryansheffer/founders-need-to-think-slow-move-fast-6b683e94c110

Further Summary

System 1	System 2	
drive a car on highways	drive a car in cities	
come up with a good chess move (if you're a chess master)	point your attention towards the clowns at the circus	
understands simple sentences	understands law clauses	
correlation	causation	
hard to explain	easy to explain	

System 1 Characteristics

- Guided mainly by intuition not deliberation
 - Fast answers to very simple questions.
 - Answers are sometimes wrong, due to unconscious bias or reliance on heuristics
- Usually do not have an explanation
- Able to build models of the world
 - Although inaccurate/imprecise, can fill knowledge gaps through causal inference
 - Allow us to respond well to the many stimuli of our everyday life

Examples of System 1 Tasks

- 1. Finding the answer to a very simple arithmetic calculation
- 2. Reaching out to grab something that is going to fall
- We use our system 1 about 95% of the time when we need to make a decision

Role of System 2

- When the problem is too complex for System 1
- System 2 kicks in
- Solves it with access to:
 - Additional computational resources
 - Full attention, and
 - Sophisticated logical reasoning.

Example of System 2 Task

- Solving a complex arithmetic calculation, or a multicriteria optimization problem
- To do this, humans need to be able to recognize that a problem goes beyond a threshold of cognitive ease and therefore the need to activate a more global and accurate reasoning machinery.
- Hence, introspection is essential in this process

When is System 2 invoked

- A new/difficult problem is handled by system 2
- Certain problems over time pass on to system 1
 - Procedures used by system 2 are used to accumulate examples that system 1 can later use readily with little effort
 - Problems, initially solvable only by system 2 reasoning tools, can become manageable by system 1
 - E.g., Reading text in our own native language
- However, this does not happen with all tasks.
 - Finding correct solution to complex arithmetic

System 2 is supported by System 1

- System 2 does not usually work by itself
 - Supported by system 1 in its elaborate calculations
 - When searching for a solution in a very large solution space, system 2 does not usually explore the whole search space but may employ heuristics that are provided by system 1 and that help in focusing the attention only on the most promising parts of the space.
- This allows system 2 to work with manageable time and space

Data-level causality by System 1

- System 1 also capable of basic causal reasoning
 - Allows it to build a (possibly imprecise and biased) model of the world even if it has incomplete knowledge, and to use it to tackle simple tasks
- System 1 data-level causality skills support more complex/accurate reasoning of system 2 on more complex problems

Multi-tasking by System 1

- System 1 reasoning:
 - At various levels of abstraction
 - Adapt to new environments
 - Generalize from experience to other problems
 - Easily multi-task
- System 2 is sequential
 - Requires full attention to devise/execute appropriate procedure for complex or new problem
 - Only one complex task at a time handled

Local vs Global

- System 1 works at a local level
 - Activates only a specific part of the brain, e.g., recognize a familiar face, or when we speak
- System 2 involves more regions of the brain
 - Combines contributions-- works at a global level
- Multiple specialized agents/components/skills supports the functioning of both systems
 - Not as multi-agent architecture terminology but as metaphors for two broad classes of information processing

Experimental Justification

- Two forms of consciousness (Graziano)
 - 1. I(Information)-consciousness
 - Related to System 2
 - 2. M(Mystery)-consciousness
 - Related to System 1

I(Information)-consciousness

- Ability to solve (possibly complex) problems
 - By recognizing necessary processing steps in specific (even new) context, to tackle a desired problem
- Related to System 2's high-fidelity processing mode
 - Considering a problem and harnessing the relevant faculties of our cognition to devise a plan to solve it

M(Mystery)-consciousness

- Ability to build a simplified, approximate, and subjective model of peoples', both ourselves and others, mind, beliefs and intentions.
- Such low-fidelity model building can be linked to system 1, as system 1 is able to form a rapid but usually inexact model of the world

Humans excel at I-consciouness

- While many animals and primates possess various levels of M-consciousness, and also limited forms of Iconsciousness, humans excel at I-consciousness
- M-consciousness can even sustain in presence of limited I-consciousness, yet, a sophisticated I-consciousness needs to rely on M-consciousness:
 - without a model of the mind (of self and other agents), it is difficult to devise how to adapt to new environments and solve complex problems.

Summary

- Neural networks are what appear to make humans intelligent
- Two paradigms of AI: Causal Reasoning and Deep learning
- Can we embed causal reasoning into neural networks?
- I-consciousness and M-consciousness are two levels
- I-consciousness is what humans excel at