

Chapter 2: Estimating the Term Structure

2.3 Smoothing Methods

Interest Rate Models

Damir Filipović

2.3 Smoothing Methods

Exact methods:

- Discount curve is sensitive to small changes in cash flow matrix.
- Discount factors of similar maturity can be very different.
- Leads to ragged forward curves.

Smoothing methods: estimate a smooth forward curve from market rates at the cost of not exactly matching data.

Abstract Formulation

Set spot date $t_0 = 0$ for simplicity.

Data: N yields $y_i = y(0, T_i)$ with maturities $0 < T_1 < \cdots < T_N$.

Aim: find smooth forward curve f(T) = f(0, T) matching the yields optimally

$$\int_0^{T_i} f(u) du = T_i y_i + \epsilon_i$$

for pricing errors ϵ_i subject to being minimized.

Key Criteria for Smoothing Methods

Smoothing methods mainly used by central banks.

- Smoothness: supply a market expectation for monetary policy purposes rather than precise pricing of all bonds in the market.
- Flexibility: sufficiently flexible to capture movements in the underlying term structure.
- Stability: small changes in data at one maturity do not have disproportionate effect on forward rates at other maturities.

Estimation Methods Used by Several Central Banks

Bank for International Settlements 2005: Nelson-Siegel (NS), Svensson (S), weighted prices (wp).

Central bank	Method	Minimized error
Belgium	S or NS	wp
Canada	Exponential spline	wp
Finland	NS	wp
France	S or NS	wp
Germany	S	yields
Italy	NS	wp
Japan	Smoothing spline	prices
Norway	S	yields
Spain	S	wp
Sweden	Smoothing spline or S	yields
Switzerland	S	yields
UK	Smoothing spline	yields
USA	Smoothing spline	bills: wp, bonds: prices

Nelson-Siegel and Svensson Curves

Parametric families of forward curves.

• Nelson-Siegel:

$$f(T) = \beta_0 + \beta_1 e^{-aT} + \beta_2 aT e^{-aT}$$

for parameters $\beta_0, \beta_1, \beta_2$, and a.

Svensson:

$$f(T) = \beta_0 + \beta_1 e^{-a_1 T} + \beta_2 a_1 T e^{-a_1 T} + \beta_3 a_2 T e^{-a_2 T}$$

for parameters $\beta_0, \beta_1, \beta_2, \beta_3$, and a_1, a_2 .

Nelson-Siegel Yield Curves

Nelson-Siegel yield curves are

$$y(T) = \frac{1}{T} \int_0^T f(u) du$$

= $\beta_0 I_0(T) + \beta_1 I_1(T) + \beta_2 I_2(T)$

with basis functions

- $I_0(T) = 1$ (level)
- $I_1(T) = \frac{1 e^{-aT}}{aT}$ (slope)
- $I_2(T) = \frac{1 e^{-aT}}{aT} e^{-aT}$ (curvature).

Issues: flexibility, stability

Figure with a = 0.3:

Smoothing Splines: Hilbert Space Approach

Find forward curve in Hilbert space H consisting of absolutely continuous functions on $[0, T_*]$ with scalar product

$$\langle g,h\rangle_H=g(0)h(0)+\int_0^{T_*}g'(u)h'(u)\,du.$$

Solve optimization problem

$$\min_{f \in H} \int_{0}^{T_{*}} (f'(u))^{2} du + \alpha \sum_{i=1}^{N} \left(T_{i} y_{i} - \int_{0}^{T_{i}} f(u) du \right)^{2}$$
 (P)

where $\alpha > 0$ tunes trade-off between smoothness and correctness of fit.

Lorimier's Theorem

The unique solution f of (P) is a quadratic spline characterized by

$$f(u) = \beta_0 + \sum_{i=1}^N \beta_i h_i(u)$$

where $h_i \in C^1[0, T_*]$ is a quadratic basis spline with

$$h'_i(u) = (T_i - u)^+, \quad h_i(0) = T_i$$

and β_0, \ldots, β_N solve a linear system.

Quadratic basis splines h_1 and h_2 together with first derivatives for $T_1 = 1$ and $T_2 = 2$:

Lorimier's Theorem Continued

Lorimier's theorem continued: β_0, \ldots, β_N solve the linear system of equations

$$\sum_{i=1}^{N} \beta_i T_i = 0,$$

$$\alpha \left(y_i T_i - \beta_0 T_i - \sum_{j=1}^{N} \beta_j \langle h_i, h_j \rangle_H \right) = \beta_i, \quad i = 1, \dots, N.$$

Choice of Parameter α

Smoothing splines satisfy key criteria: smoothness, flexibility, stability.

Parameter α tunes trade-off between smoothness and correctness of fit:

- α → 0: maximal smoothness, constant forward curve f(T) = β₀
- $\alpha \to \infty$: perfect fit subject to minimal $\int_0^{T_*} (f'(u))^2 du$

Choice of α is critical.

Example: Swiss government bond yields in August 2011

