

SymPy

Installing Sympy

Practical 12

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2019 Week 13

Where We Are?

SymPy Installing Sympy

Practical 12

Saha, Chapter 4: Sympy

- Doing symbolic math with Python
- Note: we may have to use Python2 to study the libraries.

What is Symbolic Math?

SymPy Installing Sympy

Practical 12

- Can you see the difference between 2.8284271247461903 and 2*sqrt(2)?
 - These are both the results of $\sqrt{8}$
 - One is easier to follow than another
- Using a large floating point value may have eventual rounding errors and is difficult to track when following the steps in working out mathematical work
- SymPy makes working with math easier as the notation is conserved during the work.

Complication without Complexity

SymPy Installing Sympy

Practical 12

Solve for x

$$a * x^{2} + b * x + c = 0$$

$$a = 3, b = 2, c = 3, x = ?$$
(1)

Solve for x, y, z

$$x + 2 * y + 0 * z = 1$$

$$3 * x + 2 * y + 2 * z = 1$$

$$2 * x + 0 * y + 0 * z = 1$$

$$x = ?, y = ?, z = ?$$
(2)

What is SymPy?

SymPy

Installing Sympy

Practical 12

https://www.sympy.org

- Sympy is a symbolic manipulation library for python.
- Solve mathematical problems using non-numeric data types
- You can work with math where the computed values remain in the contexts of fractions, equations, etc (otherwise these values would be immediately converted to floating points, for example)

What is SymPy?

SymPy

Installing Sympy

Practical 12

Points to consider

- Enter expressions in symbolic form with symbolic data types.
- Expand or simplify symbolic expressions.
- Find symbolic roots, limits, minima, maxima, etc.
- Differentiate and integrate symbolic functions.
- Generate Taylor series of functions (among other tools).
- Solve algebraic and differential equations symbolically.
- Solve simultaneous equations (even some nonlinear).
- Do variable precision arithmetic.
- Create graphical representations of symbolic functions.

Installing SymPy

SymPy

Installing Sympy

Practical 12

Installing Software

75%

Websites

- https://docs.sympy.org/latest/tutorial/intro.html
- https://www.sympy.org/en/index.html

Installation Commands from Bash or Command Prompt

```
python3 -m pip install -U pip # install PIP
# python3 -m pip install --user --upgrade pip # alternative
```

```
python3 -m pip install -U sympy #install Sympy core
# python3 -m pip install -U --user sympy # alternative
```


Checking the Version

 ${\sf SymPy}$

Installing Sympy

Practical 12

Checking the Version

```
import sympy
print(sympy.__version__) # '1.4'
```


Simplifying Square Roots

 SymPy

Installing Sympy

Practical 12

```
Using Python
```

```
import sympy sympy sympy sqrt(8)
```

Input:

√8

Input:

 $\sqrt{20}$

Exact result:

 $2\sqrt{2}$

Exact result:

2√5

Decimal approximation:

Decimal approximation:

2.8284271247461900976033774

4.4721359549995793928183

Graphics from: https://www.wolframalpha.com

Study the Steps of Simplification

SymPy

Installing Sympy

Practical 12

The Step-By-Step Way

• When you work each step of the math by hand, you can see how the results are generated.

Using Python

•
$$\sqrt{8} = \sqrt{4 * 2} = \sqrt{4} * \sqrt{2} = 2 * \sqrt{2} = 2.83$$

•
$$\sqrt{20} = \sqrt{4*5} = \sqrt{4}*\sqrt{5} = 2*\sqrt{5} = 4.47$$

Endless Possibilities

What else can this system do?! (you tell me!)

Study the Steps of Simplification Simple examples

SymPy

Installing Sympy

Practical 12

```
from sympy import Symbol
x = Symbol('x')
y = Symbol('y')
s = x*y + x*y
print(s)
```

```
from sympy import Symbol
x = Symbol('x')
p = (x + 2)*(x + 3)
print(p)
```

```
from sympy import pprint, Symbol
x = Symbol('x')
y = Symbol('y')
expr = x*x + 2*x*y + y*y
pprint(expr)
```


Practical 12 Explore on your own

SymPy

Installing Sympy

Practical 12

Practical 12, GitHub Repository

Since we will not be meeting on Friday, we will have our practical today. Due without exceptions at 2pm, 25^{th} November 2019

https://classroom.github.com/a/AwN13f3p

Practical 12

Explore on your own

SymPy Installing Sympy

Practical 12

What to do: Follow a portion of the SymPy tutorial!

- Follow the intro tutorial to get the overall
 - https://docs.sympy.org/latest/tutorial/intro.html
- Now, pick an area to follow another tutorial
 - https://docs.sympy.org/latest/tutorial/
 - Use the interactive interpreter to play with the code or use your local python installation.
 - Respond to the questions in writing/miniReflection.md

