All rings are commutative and unital.

Exercise 1. Let A be a ring and $f \in A$. Consider the localised ring $A_f = A[x]/(xf-1)$. Show that $A_f = 0$ if and only if f is nilpotent in A.

Exercise 2. Let $\varphi \colon A \to B$ be a ring morphism such that each element of ker φ is nilpotent. Show that Spec $\varphi \colon \operatorname{Spec} B \to \operatorname{Spec} A$ is a homeomorphism under any of the following assumptions:

- (i) The morphism φ is surjective.
- (ii) Let p be a prime number such that $p \cdot 1 = 0$ in A. For each $b \in B$ we may find an integer $n \geq 0$ such that $b^{p^n} \in \operatorname{im} \varphi$.

Exercise 3. Let k be an algebraically closed field. Show that every quasi-projective variety over k is covered by open affine varieties. [Hint: use the covering of \mathbb{P}_k^n by n+1 copies of \mathbb{A}_k^n .]

Exercise 4. Let n be an integer ≥ 2 and k an algebraically closed field.

- (i) Show that the morphism $\mathcal{O}(\mathbb{A}^n_k) \to \mathcal{O}(\mathbb{A}^n_k 0)$ is bijective. [Hint: use Exercise 1 of the previous sheet, and the opens $U_{X_i} = \mathbb{A}^n_k Z(X_i)$.]
- (ii) Deduce that the variety $\mathbb{A}^n_k 0$ is not affine.
- (iii) Let $f \in \mathcal{O}(\mathbb{A}_k^n 0)$. Assume that f is k^{\times} -invariant, in other words that for every $\lambda \in k^{\times}$ and $(x_1, \ldots, x_n) \in k^n \{0\}$ we have $f(\lambda x_1, \ldots, \lambda x_n) = f(x_1, \ldots, x_n)$. Show that f is constant.
- (iv) Deduce that $\mathcal{O}(\mathbb{P}_k^{n-1}) = k$.