Contrôle continu 2

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours) Soit E et F deux espaces vectoriels normés et $a \in E$.

1. Donner la définition de la dérivée directionnelle d'une fonction $f: E \to F$. Une fonction qui admet des dérivées partielles en a est-elle nécessairement continue en a (justifier)?

2. Donner la définition d'un C^1 -difféomorphisme de E sur F. En donner une caractérisation (autrement dit, énoncer le "théorème d'inversion globale").

Exercice 2. Forme quadratique Les formes quadratiques suivantes sont elles positives? sont elles définies? : $1. \ q(x,y,z,t) = 2xz + 2xy + x^2 + 2tx$

2.
$$q(x,y,z) = -2(x+y)^2 + (x+y+z)^2 + (x+y-z)^2$$

3.
$$q(x,y) = e^{\sqrt{\pi}x^2} + \ln(1+e)y^2 - xy$$

Exercice 3. (Étude de fonctions de plusieurs variables) Soit $m \in \mathbb{N} \setminus \{0\}$ et $f : \mathbb{R}^2 \to \mathbb{R}$ la fonction définie comme suit :

$$f(x,y) = \begin{cases} \frac{x^m y^2}{x^2 + y^2} & \text{si } \mathbb{R}^2 \setminus \{(0,0)\} \\ 0 & \text{sinon.} \end{cases}$$

- 1. Étude de la fonction sur $\mathbb{R}^2 \setminus \{(0,0)\}$:
 (a) Montrer que f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N} \setminus \{0\}$
 - (b) Calculer le gradient de f pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N} \setminus \{0\}$;

	(c)	Montrer que f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N} \setminus \{0\}$;
	(d)	Que peut-on conclure sur la différentiabilité de f sur $\mathbb{R}^2 \setminus \{(0,0)\}$?
2.	Étue (a)	de de la fonction en $(0,0)$: Pour quelles valeurs de $m \in \mathbb{N} \setminus \{0\}$ la fonction f est-elle continue en $(0,0)$?

(b) La fonction f admet-elle des dérivées partielles en (0,0) pour tout $m \in \mathbb{N} \setminus \{0\}$? si oui, les calculer.

((c)	Pour	quelles	valeurs	de m	$\in \mathbb{N} \setminus$	{0}	la	fonction	f	est-elle	différer	ntiable	en	(0,	(0)	?

(d) Pour quelles valeurs de $m \in \mathbb{N} \setminus \{0\}$ la fonction f est-elle de classe C^1 en (0,0)?