THE H BRIDGE

Álgebra Lineal

Introducción

- 1. Matrices y vectores
- 2. Suma, resta y multiplicación por escalares
- 3. Operaciones con vectores
- 4. Representación vectorial de objetos
- 5. Multiplicación de matrices
- 6. Matriz inversa y traspuesta
- 7. Combinaciones lineales

Álgebra Lineal 1. Matrices y Vectores

Matrices

Un conjunto de datos típico en Estadística y Machine Learning

HG F	TAG FTR	HTHG	HTAG HTR	HS	S AS	SH	ST A	AST	HF	AF	Н	СА	СН	Y	Y	IR /	AR E	B365H	B365D	B365A	BWH	BWD	BWA	IWH	IWD	IWA	LBH	LBD	LBA	PSH	PSD	PSA	WHH	WHD	WHA	SJH	SJD	SJA
2	0 H	1	0 H	1	6 1	5	6	2	1	3 6	5	6	5	1	1	0	0	1,73	3,6	4,75	1,72	3,6	4,75	1,7	3,6	4,7	1,66	3,6	5	1,79	3,74	5,12	1,75	3,75	4,5	1,67	3,6	5,
1	0 H	0	0 D	1	9 1	1	1	2	1	5 23	3	9	6	3	5	0	0	1,53	4	6	1,57	4	5,5	1,55	3,9	5,6	1,57	3,75	6	1,56	4,33	6,78	1,55	4	6	1,57	4	(
1	2 A	1	1 D		8 1	3	2	3	10) 8	3	5	5	1	0	0	0	2,5	3,3	2,8	2,6	3,3	2,65	2,4	3,3	2,75	2,6	3,3	2,6	2,69	3,35	2,86	2,5	3,3	2,8	2,63	3,25	2,75
7	0 H	6	0 H	2	2	4	13	1	1	5 16	5	9	3	1	3	0	0	1,08	10	26	1,08	10,5	23	1,1	8	20	1,08	10	23	1,09	14	30	1,08	11	23	1,09	9,5	29
1	2 A	0	2 A	1	4 1	3	5	4	13	5 17	7	7	6	1	4	0	0	2	3,3	3,75	2	3,3	3,8	2	3,3	3,6	2	3,3	3,5	2,13	3,37	3,95	2,15	3,25	3,5	2	3,4	3,8
2	1 H	1	1 D	2	0 1	1	9	4	1	1 20)	5	7	1	2	0	0	1,17	7	17	1,16	7,75	13,5	1,17	6,5	14	1,15	6,5	15	1,16	9	19,3	1,17	7,5	15	1,17	7	17
1	3 A	1	1 D	1	4 1	6	5	6	1	2 13	3	1	9	4	4	0	0	2,8	3,3	2,5	2,7	3,4	2,5	2,6	3,2	2,6	2,75	3,3	2,5	2,89	3,39	2,64	2,8	3,3	2,5	2,63	3,4	2,63
2	3 A	1	0 H	1	5 1	4	2	4	1	7 14	1	6	10	2	0	0	0	2,6	3,2	2,75	2,55	3,25	2,75	2,5	3,3	2,65	2,37	3,2	2,87	2,7	3,32	2,87	2,5	3,2	2,9	2,5	3,25	2,88
2	2 D	1	0 H	1	5	6	10	5	2	3 12	2	7	2	4	4	0	0	2,2	3,2	3,4	2,15	3,4	3,3	2,2	3,3	3,1	2,2	3,3	3,25	2,23	3,33	3,69	2,15	3,25	3,5	2,2	3,3	3,4
3	0 H	2	0 H	1	1	8	5	1	10	5 11	l	3	4	2	2	0	0	2,25	3,25	3,25	2,2	3,3	3,25	2,1	3,3	3,3	2,2	3,3	3,3	2,31	3,42	3,39	2,25	3,3	3,2	2,25	3,25	3,3
2	0 H	1	0 H		8 1	8	2	5	1	5 20)	5	10	2	2	0	0	1,62	3,75	5,5	1,62	3,7	5,75	1,7	3,6	4,7	1,66	3,6	5,5	1,65	4,14	5,82	1,67	3,6	5,5	1,62	4	5,5
2	2 D	1	2 A	1	4 1	6	5	7	1	5 17	7	2	7	2	1	0	0	1,85	3,5	4,2	1,8	3,4	4,6	1,85	3,45	4	1,85	3,5	4,2	1,91	3,63	4,54	1,83	3,5	4,4	1,83	3,6	4,33
1	1 D	1	0 H	1	2 1	1	2	4		9 12	2	4	2	4	3	0	0	3,2	3,4	2,2	3,4	3,3	2,15	3	3,3	2,25	3,2	3,3	2,25	3,32	3,47	2,27	3,2	3,3	2,25	3,13	3,5	2,25
3	1 H	1	1 D	1	3	8	3	2	1	7 12	2	6	3	3	3	0	0	3	3,25	2,38	3,1	3,3	2,25	2,9	3,3	2,3	3,1	3,3	2,3	3,18	3,43	2,41	3,2	3,3	2,25	3	3,4	2,38
2	1 H	1	1 D	1	7	6	6	2	1:	1 25	5	8	3	4	2	0	0	1,85	3,6	4	1,85	3,4	4,33	1,85	3,45	4	1,9	3,4	4	1,88	3,7	4,6	1,85	3,5	4,33	1,83	3,5	4,5
5	0 H	3	0 H	1	4	7	5	1	1	1 9	9	8	3	0	1	0	0	1,29	5,25	10	1,34	4,75	9,25	1,35	4,8	7,6	1,33	5	9	1,32	5,6	11,58	1,33	5	9	1,3	5,25	11
1	2 A	0	0 D	2	0 1	3	6	4		9 18	3 1	2	8	1	3	0	1	1,8	3,5	4,5	1,72	3,7	4,75	1,7	3,7	4,5	1,7	3,6	5	1,86	3,64	4,78	1,75	3,6	4,75	1,73	3,6	5
0	0 D	0	0 D		8 1	8	3	3	1	7 18	3	5	7	3	5	0	0	3,5	3,3	2,1	3,5	3,25	2,1	2,85	3,3	2,35	3,2	3,25	2,25	3,54	3,45	2,21	3,4	3,3	2,15	3,4	3,3	2,2
0	1 A	0	1 A	1	9 1	.5	3	11	14	4 12	2	2 :	11	3	2	0	0	13	6	1,22	14	6,25	1,2	10,3	5,5	1,25	12	6	1,22	13,7	6,78	1,25	12	7	1,2	15	6,5	1,2
0	1 A	0	1 A		8 2	1	3	8	14	4 10)	5	8	4	2	0	0	7,5	5,5	1,33	9,25	5,25	1,3	10	5,2	1,27	9	5,5	1,3	9,11	5,52	1,37	8	5,5	1,33	10	5,5	1,3
2	2 D	2	1 H	1	9 1	.5	5	9	18	3 18	3	4	5	3	5	1	0	2	3,3	3,8	2	3,3	3,8	2,1	3,3	3,3	2,05	3,4	3,5	2,07	3,68	3,79	2,05	3,4	3,6	2,05	3,4	3,8
1	2 A	0	1 A	2	3	6	8	2	14	4 17	7	8	1	4	3	1	0	1,73	3,6	4,75	1,8	3,7	4,2	2	3,3	3,6	1,8	3,5	4,5	1,83	3,74	4,8	1,83	3,75	4	1,83	3,6	4,5
1	1 D	1	0 H	1	7	3	4	1		9 6	5	6	5	1	2	0	0	2,2	3,3	3,3	2,2	3,2	3,4	2,1	3,3	3,3	2,2	3,3	3,3	2,23	3,47	3,53	2,25	3,2	3,3	2,15	3,3	3,6
0	3 A	0	2 A		9 !	9	3	4	1	5 14	1	7	8	3	2	0	0	2,5	3,2	2,88	2,5	3,25	2,8	2,5	3,3	2,65	2,45	3,2	2,87	2,65	3,31	2,93	2,62	3,1	2,8	2,6	3,2	2,88
1	0 H	0	0 D	2	1 1	6	6	0	19	9 8	3 1	0	5	2	2	0	0	2,1	3,3	3,5	2,1	3,3	3,5	2	3,3	3,6	2,15	3,3	3,4	2,27	3,37	3,53	2,25	3,2	3,3	2,1	3,4	3,6
0	0 D	0	0 D	1	0	8	3	3	15	9 14	1	7	7	2	4	0	0	2,05	3,4	3,6	2	3,5	3,6	1,9	3,45	3,8	2,05	3,4	3,5	2,11	3,58	3,76	2,05	3,4	3,6	2	3,5	3,8
3	1 H	2	0 H	2	0 1	2	7	2	1	5 13	3	9	6	1	2	0	0	1,17	7	16	1,16	7,75	13,5	1,2	6,5	10,3	1,18	7,5	12	1,18	8,4	17,8	1,17	7,5	15	1,2	7	15
2	2 D	1	1 D	1	5 1	.5	7	6	1	7 13	3 1	0	1	3	3	0	1	1,62	3,8	5,5	1,57	3,9	5,75	1,65	3,8	4,7	1,66	3,75	5	1,62	4,14	6,27	1,6	4	5,5	1,67	3,75	5,5
1	2 A	0	1 A	1	0 1	6	4	9	19	9 2:	l .	5	5	2	4	0	0	2,9	3,3	2,38	2,8	3,25	2,5	2,75	3,3	2,4	2,87	3,4	2,37	2,88	3,51	2,58	2,8	3,3	2,5	2,75	3,4	2,6
2	3 A	2	3 A	1	6 2	0	10	9	20	0 11	l .	5	7	2	3	0	0	5,5	4,33	1,53	6,25	4,4	1,48	5	3,9			4,33			4,54			4,33	1,55	5,75	4,33	1,57
4	2 H	2	1 H	2	0	7	8	2	1	5 17	7	8	1	2	4	0	0	1,25	6	11	1,26	5,5	11	1,27	5,2	10	1,28	5,5	9,5	1,27	6,32	13,73	1,25	5,5	12	1,25	6,25	12
3	2 H	1	0 H	1	9	7	10	2	1:	2 17	7	6	9	2	5	0	0	1.18	7	15	1.18	7	13.5	1.15	7	15	1.16	7.5	13	1.19	8,48	15.71	1.17	7,5			7,5	

Matrices

Formalmente, tenemos los datos en una matriz de *n* filas (observaciones) y *k* columnas (variables)

$$X = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \end{bmatrix}$$

Matriz 3x2

$$Y = \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \end{bmatrix}$$

Matriz 2x3

$$Y = \begin{bmatrix} y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \end{bmatrix} \qquad M = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1k} \\ m_{21} & m_{21} & \cdots & m_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nk} \end{bmatrix}$$

Matriz $n \times k$

- A veces el principal interés se centra en una sola variable (aprendizaje supervisado)
- Otras veces todas las variables son igual de importantes (aprendizaje no supervisado)

Elementos de una matriz

$$A = \begin{bmatrix} 12 & 87 \\ 25 & -3 \\ -6 & 0 \end{bmatrix}$$

 A_{ij} : valor de la matriz A en la fila i y la columna j

$$A_{12} = 87$$
 $A_{31} = -6$
 $A_{23} = ? \longleftarrow \text{No definido (error)}$

Vectores

Son matrices $n \times 1$

$$v = \begin{vmatrix} 13 \\ 25 \\ 66 \end{vmatrix}$$
 Vector de 4 dimensiones

$$v_1 = 13$$

 $v_3 = 66$

Indexación:

$$v = \begin{bmatrix} v_0 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}$$

Escalar Vector

Matriz

Álgebra Lineal

2. Suma, Resta y Multiplicación por escalares

Suma de Matrices

$$\begin{bmatrix} 1 & 5 \\ 2 & 0 \\ 4 & -1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 3 & 1 \\ 6 & 2 \end{bmatrix}$$

$$3x2 \qquad 3x2 \qquad 3x2$$

$$\begin{bmatrix} 1 & 5 \\ 1 & 2 \end{bmatrix} = \text{error}$$

Multiplicación por un escalar

$$2 \times \begin{bmatrix} 12 & 8 \\ 2 & -3 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 24 & 16 \\ 4 & -6 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 2 & -3 \\ -2 & 0 \end{bmatrix} \times 2$$

$$3 \times 2 \qquad 3 \times 2$$

$$\begin{bmatrix} 4 & 16 \\ 1 & 0 \end{bmatrix} / 4 = \begin{bmatrix} 1 & 4 \\ 0.25 & 0 \end{bmatrix} = \frac{1}{4} \times \begin{bmatrix} 4 & 16 \\ 1 & 0 \end{bmatrix}$$

2x2

2x2

Combinación de operaciones

$$\begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} / 3$$

$$\begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 7 \end{bmatrix}$$

Álgebra Lineal

3. Operaciones con vectores

Producto escalar de dos vectores

Es un número real

$$a = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 $b = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ $\Rightarrow a \cdot b = 1 \times -2 + 3 \times 5 = 13$

$$c = \begin{bmatrix} -1\\0\\2 \end{bmatrix} d = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \Rightarrow c \cdot d = -1 \times 1 + 0 \times 2 + 2 \times 3 = 5$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix} \Rightarrow x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Módulo o norma de un vector

Es un número real mayor o igual a cero

$$a = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \Rightarrow |a| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$b = \begin{bmatrix} -1\\0\\2 \end{bmatrix} \Rightarrow |b| = \sqrt{(-1)^2 + 0^2 + 2^2} = \sqrt{5}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \Rightarrow |x| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$

Vectores unitarios

- Son vectores con norma igual a 1
- Todo vector puede convertirse en unitario al dividirlo por su norma

$$a = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \Rightarrow |a| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$u = \begin{bmatrix} 1 \\ 3 \end{bmatrix} / \sqrt{10} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$$

$$|u| = \sqrt{(\frac{1}{\sqrt{10}})^2 + (\frac{3}{\sqrt{10}})^2} = \sqrt{\frac{1}{10} + \frac{9}{10}} = \sqrt{1} = 1$$

Vectores: representación geométrica

$$a = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \Rightarrow |a| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$u = \begin{bmatrix} 1 \\ 3 \end{bmatrix} / \sqrt{10} = \begin{bmatrix} \frac{1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \end{bmatrix}$$

Vectores: representación geométrica

 El producto escalar de dos vectores también se puede calcular como el producto de sus módulos por el coseno del ángulo que forman

$$a \cdot b = |a| \cdot |b| \cdot \cos(a, b)$$

Esta propiedad nos permite calcular el ángulo entre dos vectores

$$a = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \quad b = \begin{bmatrix} -2 \\ 5 \end{bmatrix} \Rightarrow a \cdot b = 1 \times -2 + 3 \times 5 = 13$$

$$\cos \alpha = \frac{a \cdot b}{|a| \cdot |b|} = \frac{13}{\sqrt{10} \times \sqrt{29}} = 0.76 \Rightarrow \alpha = 40.23^{\circ}$$

$$|a| = \sqrt{1^2 + 3^2} = \sqrt{10}$$

Vectores: representación geométrica

Si dos vectores son ortogonales (perpendiculares), su producto escalar es cero

$$a \cdot b = |a| \cdot |b| \cdot \cos(90) = 0$$

Álgebra Lineal

4. Representación vectorial de objetos

Vectores y puntos

- Un conjunto de n números reales (a_1, a_2, \dots, a_n) se puede representar:
 - Como un punto en el espacio n-dimensional
 - Como un vector con punto inicial en el origen de coordenadas y punto final (a_1, a_2, \dots, a_n)

$$a = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$(0,0) \quad 1$$

Representación vectorial de objetos

- Cualquier objeto puede representarse con un vector n-dimensional, cuyas componentes son los atributos del objeto
- Ejemplos:
 - Alumno = [Marta, 23, Mujer, 7.8] [nombre,edad,sexo,nota media]
 - Empleado = [Juan, Derecho, Financiero, 28.000] [nombre,formación,dpto,salario]
 - Película = [Drama, Acción, Aventura, Ciencia Ficción]
 - Futbolista = [10,5,0,13,1] [pases, pérdidas, goles, asistencias]
- La representación vectorial permite calcular distancias (o similitudes) entre pares de objetos

Representación vectorial de objetos

Las variables categóricas pueden transformarse en numéricas:

Titanic = [Drama, Aventura]
Misión Imposible = [Acción, Ciencia Ficción]

Película	Drama	Acción	Aventura	Ciencia Ficción
Titanic	1	0	1	0
Misión Imposible	0	1	0	1

Pablo = [Hombre, 23, Economía, 23.000] Carmen= [Mujer, 25, Derecho, 23.000]

Nombre	Sexo	Edad	Economía	Derecho	Salario
Pablo	1	23	1	0	23.000
Carmen	0	25	0	1	23.000

Distancia

- La distancia mide lo "lejanos" que están dos puntos u objetos
- Propiedades de una distancia:

i.
$$dist(A, B) = dist(B, A)$$
 y $dist(A, B) \ge 0$

ii.
$$dist(A, A) = 0$$

iii.
$$dist(A, C) \leq dist(A, B) + dist(B, C)$$

Distancia euclídea entre dos puntos A y B

$$A = (1,3)$$

$$B = (2,5)$$

$$d_e(A, B) = \sqrt{(2-1)^2 + (5-3)^2} = \sqrt{5}$$

Distancia

Ejemplo

Remates

Jugador	Remates	Pases					
Benzema	6	1					
Isco	4	2					
Kross	1	8					

d(Benzema, Isco) =
$$\sqrt{(6-4)^2 + (1-2)^2} = \sqrt{5}$$

d(Benzema, Kross) = $\sqrt{(6-1)^2 + (1-8)^2} = \sqrt{74}$
d(Isco, Kross) = $\sqrt{(4-1)^2 + (2-8)^2} = \sqrt{45}$

Distancia

Name	Age	Nationality	Overall	Potentia	al Value	Wage	Special	Preferred F	Internation Weak Foo	t Skill Moves	Work Rate	Body Type	Real Face	Position	Jersey Numl Joined	Loaned Fror Contra	act Val Height	Weight	LS	ST	RS	LW	LF
L. Messi		31 Argentina		94	94 €110.5M	€565K	2202	Left	5	4 4	Medium/ M	Messi	Yes	RF	10 Jul 1, 2004		2021 5'7	159lbs	88+2	88+2	88+2	92+2	93+2
Cristiano Ronaldo		33 Portugal		94	94 €77M	€405K	2228	Right	5	4 5	High/ Low	C. Ronaldo	Yes	ST	7 Jul 10, 2018		2022 6'2	183lbs	91+3	91+3	91+3	89+3	90+3
Neymar Jr		26 Brazil		92	93 €118.5M	€290K	2143	Right	5	5 5	High/ Medic	Neymar	Yes	LW	10 Aug 3, 2017		2022 5'9	150lbs	84+3	84+3	84+3	89+3	89+3
De Gea		27 Spain		91	93 €72M	€260K	1471	Right	4	3 1	Medium/ M	Lean	Yes	GK	1 Jul 1, 2011		2020 6'4	168lbs					
K. De Bruyne		27 Belgium		91	92 €102M	€355K	2281	Right	4	5 4	High/ High	Normal	Yes	RCM	7 Aug 30, 201	5	2023 5'11	154lbs	82+3	82+3	82+3	87+3	87+3
E. Hazard		27 Belgium		91	91 €93M	€340K	2142	Right	4	4 4	High/ Medic	Normal	Yes	LF	10 Jul 1, 2012		2020 5'8	163lbs	83+3	83+3	83+3	89+3	88+3
L. Modrić		32 Croatia		91	91 €67M	€420K	2280	Right	4	4 4	High/ High	Lean	Yes	RCM	10 Aug 1, 2012		2020 5'8	1461bs	77+3	77+3	77+3	85+3	84+3
L. Suárez		31 Uruguay		91	91 €80M	€455K	2346	Right	5	4 3	High/ Medic	Normal	Yes	RS	9 Jul 11, 2014		2021 6'0	190lbs	87+5	87+5	87+5	86+5	87+5
Sergio Ramos		32 Spain		91	91 €51M	€380K	2201	Right	4	3 3	High/ Medic	Normal	Yes	RCB	15 Aug 1, 2005		2020 6'0	181lbs	73+3	73+3	73+3	70+3	71+3
J. Oblak		25 Slovenia		90	93 €68M	€94K	1331	Right	3	3 1	Medium/ M	Normal	Yes	GK	1 Jul 16, 2014		2021 6'2	1921bs					
R. Lewandowski		29 Poland		90	90 €77M	€205K	2152	Right	4	4 4	High/ Medic	Normal	Yes	ST	9 Jul 1, 2014		2021 6'0	176lbs	87+3	87+3	87+3	83+3	86+3
T. Kroos		28 Germany		90	90 €76.5M	€355K	2190	Right	4	5 3	Medium/ M	Normal	Yes	LCM	8 Jul 17, 2014		2022 6'0	168lbs	78+3	78+3	78+3	81+3	82+3
D. Godín		32 Uruguay		90	90 €44M	€125K	1946	Right	3	3 2	Medium/ Hi	Lean	Yes	СВ	10 Aug 4, 2010		2019 6'2	1721bs	64+3	64+3	64+3	61+3	62+3
David Silva		32 Spain		90	90 €60M	€285K	2115	Left	4	2 4	High/ Medic	Normal	Yes	LCM	21 Jul 14, 2010		2020 5'8	148lbs	77+3	77+3	77+3	85+3	84+3
N. Kanté		27 France		89	90 €63M	€225K	2189	Right	3	3 2	Medium/ Hi	Lean	Yes	LDM	13 Jul 16, 2016		2023 5'6	159lbs	72+3	72+3	72+3	77+3	77+3
P. Dybala		24 Argentina		89	94 €89M	€205K	2092	Left	3	3 4	High/ Medic	Normal	Yes	LF	21 Jul 1, 2015		2022 5'10	165lbs	83+3	83+3	83+3	87+3	86+3
H. Kane		24 England		89	91 €83.5M	€205K	2165	Right	3	4 3	High/ High	Normal	Yes	ST	9 Jul 1, 2010		2024 6'2	196lbs	86+3	86+3	86+3	82+3	84+3
A. Griezmann		27 France		89	90 €78M	€145K	2246	Left	4	3 4	High/ High	Lean	Yes	CAM	7 Jul 28, 2014		2023 5'9	161lbs	86+3	86+3	86+3	87+3	87+3
M. ter Stegen		26 Germany		89	92 €58M	€240K	1328	Right	3	4 1	Medium/ M	Normal	Yes	GK	22 Jul 1, 2014		2022 6'2	187lbs					
T. Courtois		26 Belgium		89	90 €53.5M	€240K	1311	Left	4	2 1	Medium/ M	Courtois	Yes	GK	1 Aug 9, 2018		2024 6'6	2121bs					
Sergio Busquets		29 Spain		89	89 €51.5M	€315K	2065	Right	4	3 3	Medium/ M	Lean	Yes	CDM	5 Sep 1, 2008		2023 6'2	168lbs	71+3	71+3	71+3	74+3	76+3
E. Cavani		31 Uruguay		89	89 €60M	€200K	2161	Right	4	4 3	High/ High	Lean	Yes	LS	21 Jul 16, 2013		2020 6'1	170lbs	85+3	85+3	85+3	81+3	83+3
M. Neuer		32 Germany		89	89 €38M	€130K	1473	Right	5	4 1	Medium/ M	Normal	Yes	GK	1 Jul 1, 2011		2021 6'4	2031bs					
S. Agüero		30 Argentina		89	89 €64.5M	€300K	2107	Right	4	4 4	High/ Medic	Stocky	Yes	ST	10 Jul 28, 2011		2021 5'8	154lbs	86+3	86+3	86+3	86+3	87+3
G. Chiellini		33 Italy		89	89 €27M	€215K	1841	Left	4	3 2	Medium/ Hi	Normal	Yes	LCB	3 Jul 1, 2005		2020 6'2	187lbs	58+3	58+3	58+3	54+3	55+3
K. Mbappé		19 France		88	95 €81M	€100K	2118	Right	3	4 5	High/ Medic	Lean	Yes	RM	10 Jul 1, 2018		2022 5'10	161lbs	85+3	85+3	85+3	87+3	87+3
M. Salah		26 Egypt		88	89 €69.5M	€255K	2146	Left	3	3 4	High/ Medic	PLAYER_BO	E Yes	RM	10 Jul 1, 2017		2023 5'9	157lbs	83+3	83+3	83+3	87+3	86+3
Casemiro		26 Brazil		88	90 €59.5M	€285K	2170	Right	3	3 2	Medium/ Hi	Normal	Yes	CDM	14 Jul 11, 2013		2021 6'1	185lbs	72+3	72+3	72+3	69+3	73+3
J. Rodríguez		26 Colombia		88	89 €69.5M	€315K	2171	Left	4	3 4	Medium/ M	Normal	Yes	LAM	10	Real Madric Jun 30), 2019 5'11	172lbs	80+3	80+3	80+3	84+3	83+3
L. Insigne		27 Italy		88	88 €62M	€165K	2017	Right	3	3 4	High/ Medic	Normal	Yes	LW	10 Jul 1, 2010		2022 5'4	130lbs	78+3	78÷3	78+3	86+3	85+3
Isco		26 Spain		88	91 €73.5M	€315K	2137	Right	3	3 4	High/ Medic	Normal	Yes	LW	22 Jul 3, 2013		2022 5'9	174lbs	76+3	76+3	76+3	84+3	83+3
C. Eriksen		26 Denmark		88	91 €73.5M	€205K	2117	Right	3	5 4	High/ Medic	Lean	Yes	CAM	10 Aug 30, 201	3	2020 5'11	168lbs	79+3	79+3	79+3	84+3	84+3
Coutinho		26 Brazil		88	89 €69.5M	€340K	2175	Right	3	4 5	High/ High	Normal	Yes	LW	7 Jan 6, 2018		2023 5'8	150lbs	79+3	79+3	79+3	86+3	85+3
P. Aubameyang		29 Gabon		88	88 €59M	€265K	2069	Right	3	4 4	Medium/Lo	Lean	Yes	LM	14 Jan 31, 2018	3	2021 6'2	176lbs	84+3	84+3	84+3	83+3	83+3
M. Hummels		29 Germany		88	88 €46M	€160K	2038	Right	4	3 3	High/ Medi	Normal	Yes	LCB	5 Jul 1, 2016		2021 6'3	2031bs	69+3	69+3	69+3	68+3	69+3
Marcelo		30 Brazil		88	88 €43M	€285K	2279	Left	4	4 5	High/ Low	Normal	Yes	LB	12 Jan 1, 2007		2022 5'9	176lbs	80+3	80+3	80+3	84+3	83+3
G. Bale		28 Wales		88	88 €60M	€355K	2279	Left	4	3 4	High/ Medic	Lean	Yes	ST	11 Sep 2, 2013		2022 6'1	1811bs	86+3	86+3	86+3	86+3	86+3

Fuente: https://www.kaggle.com/karangadiya/fifa19/version/4

Similitud

- La similitud mide lo "cercanos" que están dos puntos u objetos
- Propiedades de una similitud:

i.
$$simil(A, B) = simil(B, A) \text{ y } 1 \ge simil(A, B) \ge 0$$

$$ii.$$
 $simil(A, A) = 1$

- A partir de una distancia, se puede calcular una similitud: $simil(A, B) = \frac{1}{1 + dist(A, B)}$
- Existen numerosas métricas de similitud, una de ellas es la similitud del coseno

Similitud del coseno

$$simil(X, Y) = cos(\theta) = \frac{v_A v_B}{|v_A| \cdot |v_B|}$$

A y B son los objetos

 v_A y v_B son los vectores que representan los objetos A y B

Ejemplo: Segmentación

Cliente	Income	Age					
Α	1000	18					
В	5000	33					
С	500	21					
D	2500	78					
Е	4200	35					

Álgebra Lineal

5. Multiplicación de matrices

Multiplicaciones de matrices y vectores

$$\begin{bmatrix}
2 & 4 \\
0 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\
5
\end{bmatrix} = \begin{bmatrix}
22 \\
15 \\
-1
\end{bmatrix}$$

$$0 \times 1 + 3 \times 5 = 15$$

$$-1 \times 1 + 0 \times 5 = -1$$

$$3 \times 2$$

$$3 \times 1$$

$$\begin{bmatrix} 2 & 4 & 1 & 0 \\ 1 & 2 & 0 & 3 \\ 0 & 1 & -1 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 5 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 24 \\ 11 \\ 3 \end{bmatrix}$$

$$3x4 \qquad 4x1 \qquad 3x1$$

Multiplicaciones entre matrices

$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 27 & 7 \\ -3 & 5 \end{bmatrix}$$

$$2x2$$

$$2x2$$

Propiedades de la multiplicación de matrices

La multiplicación de matrices no es conmutativa (en general)

$$A \times B \neq B \times A$$

Ejemplo

$$\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 4 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 2 & 0 \end{bmatrix}$$

> Si las matrices tienen diferentes dimensiones:

$$\Rightarrow A \times B \text{ (matriz 3x3)}$$

$$B \times A$$
 (matriz 2x2)

Propiedades de la multiplicación de matrices

La propiedad asociativa sí se cumple en la multiplicación de matrices

$$A \times B \times C = (A \times B) \times C = A \times (B \times C)$$

La propiedad distributiva también se cumple

$$(A + B) \times C = A \times C + B \times C$$

Matriz Identidad

Si pensamos en números reales, solamente existe uno que no altera una multiplicación (el número 1), tal que $1 \times z = z$, para cualquier z

$$0.1 \times 5 = 5$$

$$99 \times 1 = 99$$

Cuando operamos con matrices, denotamos la matriz Identidad, I, tal que $A \times I = I \times A = A$, para cualquier matriz A

$$I_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_{n\times n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matriz Identidad

Ejemplos

$$\begin{bmatrix} 12 & 8 \\ 2 & -3 \\ -2 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 2 & -3 \\ -2 & 0 \end{bmatrix}$$

$$3x2$$

$$2x2$$

$$\begin{bmatrix} 12 & 8 & 2 \\ 1 & -3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 12 & 8 & 2 \\ 1 & -3 & 2 \end{bmatrix}$$

Álgebra Lineal

6. Matriz Inversa y Traspuesta

Matriz inversa

• En el mundo de los números reales...

$$4 \times (4)^{-1} = 1$$
Número inverso $4^{-1} = \frac{1}{4}$

No todos los números tienen inverso

En el mundo de las matrices...

$$\begin{bmatrix} 5 & 0 \\ 2 & 4 \end{bmatrix} \times ? = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\longrightarrow \text{Matriz inversa} \begin{bmatrix} 5 & 0 \\ 2 & 4 \end{bmatrix}^{-1}$$

No todas las matrices tienen inversa

Matriz inversa

• Si A es una matriz cuadrada (nxn), y tiene inversa (A^{-1}), entonces:

$$AA^{-1} = A^{-1}A = I$$

Las matrices que no tienen inversa se conocen como matrices singulares

Matriz traspuesta

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -2 \\ 4 & 0 \end{bmatrix} \Rightarrow A^T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & -2 & 0 \end{bmatrix}$$

• Sea A una matriz $n \times m y B = A^T \Rightarrow B$ es una matriz $m \times n y B_{ij} = A_{ji}$

Álgebra Lineal

7. Combinaciones Lineales

Combinaciones Lineales

- Consiste en combinar las operaciones de suma y multiplicación por escalares
- Ejemplo:

$$y = \begin{bmatrix} 3 \\ 2 \\ 11 \\ 7 \end{bmatrix}$$
 es combinación lineal de los vectores $x_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}$ y $x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$

$$y = 3x_1 + 2x_2 \begin{vmatrix} 3 \times 1 + 2 \times 0 \\ 3 \times 0 + 2 \times 1 \\ 3 \times 3 + 2 \times 1 \\ 3 \times 1 + 2 \times 2 \end{vmatrix} = \begin{vmatrix} 3 \\ 2 \\ 11 \\ 7 \end{vmatrix}$$

Combinaciones Lineales

 Si una matriz tiene combinaciones lineales entre sus filas y/o columnas, no tendrá inversa

• Ejemplo:

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$$
 (la columna 3 es la suma de las dos primeras columnas)

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 4 & 3 & 2 \end{bmatrix}$$
 (la tercera fila es la primera + 2 veces la segunda)

Conclusiones Álgebra Lineal

- 1.1 Matrices y vectores
- 1.2 Suma, resta y multiplicación por escalares
- 1.3 Operaciones con vectores
- 1.4 Representación vectorial de objetos
- 1.5 Multiplicación de matrices
- 1.6 Matriz inversa y traspuesta

Película	Drama	Acción	Aventura
Titanic	1	0	1
El Padrino	1	1	0

$$v = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \quad A = \begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix}$$

$$2v = \begin{bmatrix} 10 \\ 4 \end{bmatrix} \quad 2A = \begin{bmatrix} 6 & 0 \\ -4 & 2 \end{bmatrix}$$

$$v \cdot 2v = 50 + 8 = 58$$

$$|v| = \sqrt{5^2 + 2^2} = \sqrt{29}$$

$$a \cdot b = |a| \cdot |b| \cdot \cos(a, b)$$

$$A \times 2A = \begin{bmatrix} 18 & 0 \\ -16 & 2 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$AA^{-1} = I$$
 $A^{T} = \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}$

¡Gracias!

Contacto: Rafael Zambrano rafael@thebridgeschool.es

