Compiladores 2024-1. Notas

Miguel Carrillo

Dudas sobre estas notas: consultar en el grupo o por correo.

August 25, 2023

Contents

1	Mot	tivación	2
2	Un lenguaje de programación simple		
	2.1	Sintaxis de L0	2
	2.2	Semántica de L0	2

1 Motivación

El tema de compiladores implica el conocimiento de conceptos sobre fundamentos de Ciencias de la Computación. El tema de compiladores no implica solamente "Lenguajes de programación".

2 Un lenguaje de programación simple

2.1 Sintaxis de L0

Sintaxis de L0 usando notación BNF.

$$\langle Var \rangle ::= x \mid y \mid z$$

$$\langle VarList \rangle ::= \langle Var \rangle \mid \langle Var \rangle ; \langle VarList \rangle$$

$$\langle Dig \rangle ::= 0 \mid 1 \mid 2 \mid 3$$

$$\langle Exp \rangle ::= \langle Dig \rangle \mid \langle Var \rangle$$

$$\langle Stm \rangle ::= \langle AsigStm \rangle \mid \text{Halt}$$

$$\langle AsigStm \rangle ::= \langle Var \rangle := \langle Exp \rangle$$

$$\langle StmList \rangle ::= \langle Stm \rangle \mid \langle Stm \rangle ; \langle StmList \rangle$$

$$\langle Prog \rangle ::= \text{VAR} \langle VarList \rangle \text{ PROG } \langle StmList \rangle$$

2.2 Semántica de L0

Definición 2.1 (Listas de variables). Sea $lv \in \langle VarList \rangle$.

- 1. Si $m, n \in \mathbb{N}$, el conjunto de naturales de m a n se define: $[m..n] := \{x \in \mathbb{N} \mid m \le x \le n\}.$
- 2. Con |lv| denotamos el número de elementos de lv.
- 3. Para $i \in [1..|lv|]$, usamos lv(i) para denotar el elemento i-esimo de lv.
- 4. Decimos que lv es una lista sin repeticiones si $\forall i, j \in [1...|lv|]: i \neq j \rightarrow lv(i) \neq lv(j)$.

Definición 2.2 (Estados para lv). Sea $lv \in \langle VarList \rangle$ una lista de variables sin repeticiones.

1. El conjunto de estados para lv, se define:

$$S_{lv} := \prod_{i=1}^{i=|lv|} \text{Dom}(lv(i)),$$

donde Dom(v) denota el dominio de $v \in \langle Var \rangle$.

Intuitivamente, $S_{lv} := \{(b_1, b_2, \dots, b_{|lv|}) \mid bi \in \text{Dom}(lv(i))\}.$

2. Si $\sigma \in S_{lv}$, usamos $\sigma(i)$ para denotar el componente i-esimo de σ .

Definición 2.3 (σ con b en la posición de v). Sea $lv \in \langle VarList \rangle$ una lista de variables sin repeticiones.

Y sean $\sigma \in S_{lv}$ es un estado, $v \in lv$, y $b \in \text{Dom}(v)$.

Definimos el estado " σ con b en la posición de v", $\sigma[v \leftarrow b]$, mediante las posiciones de lv:

$$\forall i[1..|lv|] \colon \sigma[v \leftarrow b](i) := \begin{cases} b & \text{si } v = lv(i) \\ \sigma(i) & \text{si } v \neq lv(i) \end{cases}$$

Ejemplo 2.1 (Estados para lv). Sea lv := [x, y, z] (todas las variables posibles en L0).

Si asumimos que, para $v \in \{x, y, z\}$ Dom(v) = [0..9], entonces, el conjunto de estados para lv está dado por

$$S_{lv} := \{(b1, b2, b3) \mid bi \in [0..9]\}.$$

Es decir, $\sharp(S_{lv})=10^3$. El número de estados es exponencial respecto al número de variables.

Definición 2.4 (Singificado de expresiones de L0). Sean: $lv \in \langle VarList \rangle$ una lista de variables sin repeticiones, $\sigma \in S_{lv}$, y $e \in \langle Exp \rangle$ una expresión.

El significado de e en σ , $[\![e]\!]_\sigma$, se define por casos, según e:

1. Si $e \in \langle \text{Dig} \rangle$, $[\![e]\!]_{\sigma} := e \in \mathbb{N}$.

2. Si
$$e \in \langle \operatorname{Var} \rangle$$
, $\llbracket e \rrbracket_{\sigma} := \begin{cases} \sigma(i) & \text{si } \exists i \in [1..|lv|] \colon e = lv(i) \\ \bot & \text{si no.} \end{cases}$.

Definición 2.5 (Estados de un programas de L0). Sea $p \in \langle \text{Prog} \rangle$ un programa de L0, p = VAR lv PROG ls.

El conjunto de estados de p, S_p , se define:

$$S_p := S_{nub(lv)} \cup \{\omega\},\$$

donde:

- i) nub(lv) elimina en lv las últimas repeticiones.
- ii) ω es un estado especial producido por Halt.

Definición 2.6 (Significado de instrucciones en L0). Sean $p \in \langle \text{Prog} \rangle$ un programa de L0, p = VAR lv PROG ls, y S_p el conjunto de estados de p.

Sean $\sigma \in S_p$ un estado de p, y $s \in \langle Stm \rangle$ una instrucción de L0.

El significado s en σ se define por casos según s y σ :

- 1. Si $\sigma = \omega$, entonces $[s]_{\sigma} = \omega$.
- 2. Si s = Halt, entonces $[\![s]\!]_{\sigma} = \omega$.
- 3. Si s = v := e, entonces $[\![s]\!]_{\sigma} = \sigma[v \leftarrow [\![e]\!]]$.
- 4. Si $ls \in \langle StmList \rangle$, entonces el significado de ls en σ , $[\![ls]\!]_{\sigma}$, se define recursivamente:
 - (a) Si $ls = s \in \langle Stm \rangle$, entonces $[\![ls]\!]_{\sigma} = [\![s]\!]_{\sigma}$
 - (b) Si ls = s; ls', entonces $[\![ls]\!]_{\sigma} = [\![ls']\!]_{\sigma'}$, donde $\sigma' = [\![s]\!]_{\sigma}$.

Definición 2.7 (Significado de programas en L0). Sea $p \in \langle \text{Prog} \rangle$ un programa de L0, p = VAR lv PROG ls.