

Contact:

Dr. Michael Affenzeller FH OOE - School of Informatics, Communications and Media Heuristic and Evolutionary Algorithms Lab (HEAL) Softwarepark 11, A-4232 Hagenberg

e-mail:

<u>michael.affenzeller@fh-hagenberg.at</u>
Web:

http://heal.heuristiclab.com http://heureka.heuristiclab.com

Model-based approach

- Induce a Model h: X → Y from data D
- Use h for new queries

Instance-based approach

- Maintain a set of instances S
- Answer queries with instances of S
- Inference: Learning by remembering examples and 'extrapolate' them

Nearest Neighbor (NN) classification:

- Estimate the class of x_0 by the use the observation $x \in S$ most similar to x_0
- Assumption: similar objects have similar classes
- Requirement: reasonable similarity measure
- e.g. with Voronoi Diagram:

k-Nearest Neighbor (k-NN) classification:

- Learning: save all training examples
- Classification/Prediction of new cases
 - Find the k-nearest (or most similar) neighbors $x_1,...,x_k$ in the trainings instances of a new instance (x_0)
 - Prediction:
 - Discrete (classification):
 predict the class, which occurs most frequently in the k-nearest neighbors (voting)
 - Continuous (numerical prediction):
 return the arithmetic mean of the k-nearest neighbors as prediction
 - » Possible simplification: weighted sums (inverse of distance to x_0)

Advantages:

- Very simple Method
- No assumption about the model class necessary
- Training is very fast (lazy learning)
- Flexible (decision limits)
- Good statistic properties (only with idealistic assumptions)

Poisadvantages:

- Slow at query time
- Danger of overfitting is high (with small k)
- "Curse of Dimensionality": required number of observations increases exponentially with the dimension of X
- Easily fooled by irrelevant attributes (no feature selection)

Extension:

- Editing strategies (maintaining the set of instances)
- Method to adapt the similarity measure, locale measures
- Method to find the 'optimal k'
- Efficient search for the next neighbors

Goal of editing strategies:

- Save only few examples (efficiency)
- Save only examples, which can be classified 'well'