N₂1

Условие

Постройте непрерывную биекцию $f:[0,1) o S^{-1}$ не являющуюся гомеоморфизмом

Решение

Выкладки

Отображение гомеоморфно, если

- 1. *f* биекция
- 2. *f* непрерывно
- 3. f^{-1} непрерывно

Отображение непрерывно тогда, когда прообраз любого открытого в Y множества открыт в X.

Отображение биективно, если оно инъективно и сюръективно одновременно.

Решение

Для того, чтобы непрерывная биекция не была гомеоморфизмом, необходимо, чтобы f^{-1} не была непрерывной.

Для этого необходимо, чтобы $f^{-1}\left(f^{-1}\left(A|A\in T_X
ight)
ight)
ot \not\in T_Y.$

Зададим функцию $f=(R\cos(2\pi t),R\sin(2\pi t))$, где $t=x|x\in[0,1)$ Зададим функцию f^{-1} :

$$f^{-1} = egin{cases} rctan\left(rac{y}{x}
ight)rac{1}{2\pi} + rac{1}{2} & x \geq 0 \ rac{\left(rctan\left(rac{y}{x}
ight)+\pi
ight)}{2\pi} + rac{1}{2} & x < 0 ext{ and } y > 0 \ rac{rctan\left(rac{y}{x}
ight)}{2\pi} & x < 0 ext{ and } y \leq 0 \ rac{1}{4} + rac{1}{2} & x = 0 ext{ and } y > 0 \ -rac{1}{4} + rac{1}{2} & x = 0 ext{ and } y < 0 \end{cases}$$

Таким образом, мы зададим окружность, где $x \in [0,1)$ будет отвечать за угол поворота точки и где 0 будет начинаться с точки (-1,0)

Поскольку мы смогли найти для f обратную, функцию, то сама функция f является биективной.

Не умаляя общности, будем считать окружность единичной.

Дополнительно возьмём, что $T_{[0,1)}$ - индуцированная из канонической на \mathbb{R} , а T_S - Каноническая топология

Докажем, что f - непрерывна.

Возьмем некоторую дугу U, открытую на окружности.

Для любого элемента из U, найдётся условие из f^{-1} , которому будет соответствовать точка, принадлежащая [0,1)

$$f^{-1}(U) \in T_{[0,1)}$$

Таким образом, f - непрерывно.

Докажем, что f^{-1} - **не** непрерывно

Возьмём отрезок $[0,a)\subset T_{[0,1)}$

Он открыт на топологии ($(k,a|k<0)\cap [0,1)=[0,a)$)

Дуга с граничной точкой f(0) не открыта, так как дугу можно представить как объединение открытой дуги и f(0), а f(0) не открыта на S по построению.

Следовательно, f^{-1} **не** непрерывно.

Что и требовалось доказать.

№2

Условие

Верно ли, что есть ограничение отображения $f: X \to Y$ на любом элементарном покрытии Γ непрерывно, то и само f - непрерывно?

1.
$$X = [0, 2], \; \Gamma = \{[0, 1], (1, 2]\}$$

2.
$$X = [0, 2], \ \Gamma = \{[0, 1], [1, 2]\}$$

Решение

Выкладки

Непрерывность $f:X\to Y$ на элементах покрытия - это непрерывность каждого f|V, где V - элемент покрытия, f|V - ограничение f на V, то есть $f|V:V\to Y, f|V(x)=f(x)$ для любых x из V (подмножества X), а каждое V тут подпространство X, то есть на нем есть топология, индуцированная из X

Ограничение отображения - взятие в качестве области определения множество из покрытия

Решение

А дальше я не знаю, у меня лапки (идей нет)