FAC SIMILE 1

15 dicembre 2021

Indice

1	Dom	ande
	1.1	Domande su automi a stati finiti
	1.2	Domande su epsilon chiusure
	1.3	Domande su espressioni regolari
	1.4	Domande su pumping lemma
		Domande su grammatiche
	1.6	Domande su derivazioni
	1.7	Domande su automi a pila
	1.8	Domande su grammatiche LL(1)
	1.9	Domande su attributi
	1.10	Domande su analisi statica
2 Esercizi		cizi
	2.1	Esercizi su minimizzazione
	2.2	Esercizi su espressioni regolari
	2.3	Esercizi su grammatiche
	2.4	Esercizi su grammatiche LL(1)
	2.5	Esercizi su traduzione

1 Domande

1.1 Domande su automi a stati finiti

1. Automi a stati finiti 1

MULTI 1 point 0 penalty Single Shuffle

Dato il DFA A

determinare quale delle seguenti stringhe è accettata da A.

- 00001 (100%)
- 00000
- 00101
- 10001

Total of marks: 1

1.2 Domande su epsilon chiusure

1. **Automi 1**

MULTI 1 point 0 penalty Single Shuffle

Detta δ la funzione di transizione dell'automa seguente

quale dei seguenti insiemi corrisponde a $\hat{\delta}(q_2, 10)$?

- $\{q_2, q_3\}$ (100%)
- $\{q_1, q_3\}$
- $\bullet \quad \{q_2, q_4\}$
- $\bullet \quad \{q_0, q_3\}$

1.3 Domande su espressioni regolari

1. Espressioni regolari 3

MULTI 1 point 0 penalty Single Shuffle

Data l'espressione regolare $E = ((0+2)1^*0^*)^*$ sull'alfabeto $\{0,1,2\}$, determinare quale delle seguenti stringhe appartiene al linguaggio generato da E.

- 01 (100%)
- 120
- 10
- 122

Total of marks: 3

1.4 Domande su pumping lemma

1. Pumping lemma 1

MULTI 1 point 0 penalty Single Shuffle

Si supponga di voler dimostrare il pumping lemma per il linguaggio regolare L riconosciuto dal seguente DFA con 5 stati:

	0	1	2
0	0	0	0
* 1	0	0	0
* 2	0	0	3
3	1	2	0
$\rightarrow 4$	1	2	0

Si consideri ora la stringa $w=12120\in L$ di lunghezza 5. Per concludere la dimostrazione vista a lezione viene scelta una particolare scomposizione xyz di w. Quale?

- x = 1, y = 21, z = 20 (100%)
- x = 1, y = 212, z = 0
- x = 1, y = 2, z = 120
- x = 12, y = 1, z = 20

Total of marks: 4

1.5 Domande su grammatiche

1. Grammatiche 1

MULTI 1 point 0 penalty Single Shuffle

Data la grammatica G avente simbolo iniziale E

$$\begin{array}{ccc} C & \rightarrow & E \mid DCb \\ D & \rightarrow & E \\ E & \rightarrow & \varepsilon \mid aC \end{array}$$

individuare quale, tra le seguenti, è una stringa generata da G.

- aaa (100%)
- aba
- *b*

Total of marks: 5

1.6 Domande su derivazioni

1. Derivazioni 1

MULTI 1 point 0 penalty Single Shuffle

Data la grammatica G

$$\begin{array}{ccc} A & \rightarrow & CB \\ B & \rightarrow & \varepsilon \\ C & \rightarrow & E \mid DcC \\ D & \rightarrow & A \\ E & \rightarrow & \varepsilon \end{array}$$

individuare quale, tra le seguenti, è una derivazione canonica **sinistra** di ${\cal G}.$

- $A \Rightarrow CB \Rightarrow DcCB \Rightarrow AcCB \Rightarrow CBcCB (100\%)$
- $\bullet \quad A \Rightarrow CB \Rightarrow C \Rightarrow E \Rightarrow \varepsilon$
- $\bullet \quad A \Rightarrow CB \Rightarrow EB \Rightarrow E \Rightarrow \varepsilon$
- $A \Rightarrow CB \Rightarrow C \Rightarrow DcC \Rightarrow DcDcC$

Total of marks: 6

1.7 Domande su automi a pila

1. Automi a pila 1

Sia $P=(\{q\},\{a,b\},\{a,b,B,E\},\delta,q,B,\{q\})$ un automa a pila che esegue la mossa

$$(q, aa, aB) \vdash_P (q, a, B)$$

Quale delle seguenti relazioni giustifica questa mossa?

•
$$(q, \varepsilon) \in \delta(q, a, a)$$
 (100%)

- $(q, a) \in \delta(q, \varepsilon, E)$
- $(q, \varepsilon) \in \delta(q, b, b)$
- $(q, \varepsilon) \in \delta(q, \varepsilon, B)$

Total of marks: 7

1.8 Domande su grammatiche LL(1)

1. Grammatiche LL(1) 2

Le seguenti produzioni appartengono a una grammatica G avente simbolo iniziale D:

$$A \rightarrow d \mid \varepsilon \mid BCA$$

Quale tra le seguenti relazioni è sicuramente vera senza conoscere l'intera grammatica?

- $d \in FOLLOW(C)$ (100%)
- $FOLLOW(C) \subseteq FOLLOW(D)$
- $FOLLOW(B) \subseteq FOLLOW(A)$

Total of marks: 8

1.9 Domande su attributi

1. Attributi 1

La seguente produzione con associate regole semantiche

$$A \rightarrow BCD \{A.s_1 = B.s_0, A.s_2 = D.s_1, D.e_1 = B.s_1\}$$

in cui gli s_i (se presenti) sono attributi **sintetizzati** e gli e_i (se presenti) sono attributi **ereditati**, appartiene a una SDD:

- che può essere S-attribuita
- che può essere L-attribuita ma non S-attribuita (100%)
- che non è L-attribuita

1.10 Domande su analisi statica

1. Analisi statica 1

MULTI 1 point 0 penalty Single Shuffle

Ricordando le SDD viste a lezione per il calcolo dell'attributo stack, determinare il numero massimo di operandi contemporaneamente presenti sulla pila durante la valutazione della seguente espressione.

$$z + 10 / 7 + 6$$

Nota: per interpretare correttamente la struttura dell'espressione è fondamentale tenere presenti le usuali convenzioni di priorità e associatività di operatori e connettivi, elencati di seguito in ordine crescente di priorità: $|\cdot|$, &&, relazioni, !, + e -, \star e /. Tutti gli operatori e i connettivi binari sono associativi a sinistra.

- 3 (100%)
- 1
- 4
- 2

Total of marks: 10

2 Esercizi

2.1 Esercizi su minimizzazione

1. Minimizzazione 1

ESSAY 4 points 0 penalty monospaced

Minimizzare il seguente DFA. Mostrare la **tabella di transizione completa** del DFA minimo i cui stati sono le classi di equivalenza risultanti dalla minimizzazione, anche nel caso in cui il DFA proposto sia già minimo.

	a	b
0	0	0
* 1	0	0
* 2	1	0
3	2	3
$\rightarrow 4$	2	3

Notes for grader:

SOLUZIONE

Total of marks: 14

2.2 Esercizi su espressioni regolari

1. Espressioni regolari ab2

Sia k la **più piccola cifra non nulla** del proprio numero di matricola. Definire un'espressione regolare sull'alfabeto $\{a,b\}$ che generi il linguaggio delle stringhe in cui ogni a è immediatamente seguita da **non più** di k b.

Esempi: Se k = 2 allora:

- ε appartiene al linguaggio
- a appartiene al linguaggio
- ba appartiene al linguaggio
- aab appartiene al linguaggio
- aaaa appartiene al linguaggio
- aabaa appartiene al linguaggio
- abbb non appartiene al linguaggio
- abbbb non appartiene al linguaggio
- aaabbb non appartiene al linguaggio

Usare la seguente sintassi per scrivere l'espressione regolare, in cui eps rappresenta l'espressione regolare ε ed n rappresenta un simbolo dell'alfabeto. Ogni deviazione dalla sintassi indicata verrà considerata un **errore**.

$$E \rightarrow eps \mid n \mid E + E \mid EE \mid E* \mid (E)$$

Notes for grader:

• SOLUZIONE PER
$$k=2$$

b* (a(b + eps) (b + eps)) *

2.3 Esercizi su grammatiche

1. Grammatiche libere

ESSAY 4 points 0 penalty monospaced

Definire una grammatica libera dal contesto che generi il linguaggio $\{a^mb^{m+n}c^n \mid m, n \ge 0\}$. Nel riportare la soluzione adottare le seguenti convenzioni:

- Usare le lettere maiuscole A–Z per indicare **variabili** e le lettere minuscole a–z per indicare **simboli terminali**.
- Usare la sequenza di caratteri -> per separare la testa dal corpo di una produzione.
- Scrivere **esclusivamente** le produzioni della grammatica, una per riga e senza lasciare righe vuote tra esse. È comunque consentito l'utilizzo della barra verticale | per definire sulla stessa riga più produzioni con la stessa testa.
- Si intende che il **simbolo iniziale** della grammatica è la variabile che compare in testa alla **prima produzione** scritta.

Ad esempio, la grammatica con produzioni $S \to \varepsilon \mid aSb$ che genera il linguaggio $\{a^nb^n \mid n \geq 0\}$ può essere scritta come

S ->

S -> aSb

oppure come

S -> | aSb

Notes for grader:

• S -> XY

X -> | aXb

Y -> | bYc

Total of marks: 22

2.4 Esercizi su grammatiche LL(1)

1. Grammatiche LL(1) 1

ESSAY 4 points 0 penalty monospaced

Data la seguente grammatica, il cui simbolo iniziale è A, mostrare FIRST e FOLLOW di tutte le variabili e gli insiemi guida di tutte le produzioni. La grammatica è LL(1)?

$$\begin{array}{ccc} A & \to & DDc \\ B & \to & \varepsilon \end{array}$$

$$D \rightarrow aB \mid b \mid \varepsilon$$

Notes for grader:

• RELAZIONI (MOSTRATE PER COMPLETEZZA, MA NON RICHIESTE)

$$\begin{array}{cccc} \$ & \in & \mathrm{FOLLOW}(A) \\ a & \in & \mathrm{FOLLOW}(D) \\ b & \in & \mathrm{FOLLOW}(D) \\ c & \in & \mathrm{FOLLOW}(D) \\ \mathrm{FOLLOW}(D) & \subseteq & \mathrm{FOLLOW}(B) \end{array}$$

• NULL, FIRST e FOLLOW

	NULL	FIRST	FOLLOW
\overline{A}		$\{a,b,c\}$	{\$}
B	\checkmark	Ø	$\{a,b,c\}$
D	\checkmark	$\{a,b\}$	$\{a,b,c\}$

• INSIEMI GUIDA

$$\begin{array}{ccc|c} A & \rightarrow & DDc & \{a,b,c\} \\ B & \rightarrow & \varepsilon & \{a,b,c\} \\ D & \rightarrow & aB & \{a\} \\ D & \rightarrow & b & \{b\} \\ D & \rightarrow & \varepsilon & \{a,b,c\} \end{array}$$

• La grammatica **non è** LL(1)

Total of marks: 26

2.5 Esercizi su traduzione

1. Traduzione inversa 1

Qual è il comando che viene tradotto nel codice seguente?

```
iload x
iload z
if icmplt L0
goto L1
L0:
iload x
istore z
goto STOP
L1:
ldc 1
istore z
goto STOP
```

Fare riferimento alle SDD per la generazione del codice intermedio viste a lezione, riportate in parte nella tabella in calce all'esercizio. Si assuma che STOP sia il valore dell'attributo ereditato S.next alla radice dell'albero sintattico annotato del comando tradotto.

Produzioni	Regole semantiche		
$E o \mathtt{n}$	E.code = 1dc n. v		
$E \to x$	$E.code = \mathtt{iload}x$		
$B \to E_1 R E_2$	$B.code = E_1.code \parallel E_2.code \parallel ext{if icmp} R \ B.true \parallel ext{goto} \ B.false$		
$S \to x = E;$	$S.code = E.code \parallel \texttt{istore} \ x \parallel \texttt{goto} \ S.next$		
$S o \mathtt{if}\ (B)\ S_1\ \mathtt{else}\ S_2$	B.true = newlabel()		
	B.false = newlabel()		
	$S_1.next = S.next$		
	$S_2.next = S.next$		
	$S.code = B.code \parallel B.true : S_1.code \parallel B.false : S_2.code$		
$S ightarrow \mathtt{while}\ (B)\ S_1$	B.true = newlabel()		
	B.false = S.next		
	$S_1.next = newlabel()$		
	$S.code = S_1.next : B.code \parallel B.true : S_1.code$		

Notes for grader:

• if
$$(x < z) z = x$$
; else $z = 1$;