(b)
$$X = AGTACA$$
 $Y = AGTAA$

(ii) x : NG -

y = Ac. C

2) Gaps in Y arise due to moving horizontally in the Scoring matrix (provided Y is aligned vertically to the left of the matrix).

Therefore, having the rule,
$$H_{x-1}, y-1 + m$$
 if $x_i = y_i$
 $H_{x-1}, y-1 - s$ if $x_i \neq y_i$
 $H_{x,y-1} - d$

Using this quile makes sure there are no horizontal movements and hence, the global alignment of Y will have no gaps.

Here, we want the court of
$$y=1$$
 since that implies that the individual has phenotype y . $y=0$ implies that individuals with therefore, $SNP_{x_1} = \frac{8+4+4}{100}$ a particular SNP do not have phenotype $SNP_{x_2} = \frac{5+10+1}{100}$ y .

 $SNP_{x_3} = \frac{14+2+0}{100}$

:.
$$SNP_{x_1} = 0.16$$

 $SNP_{x_2} = 0.16$
 $SNP_{x_3} = 0.16$
:. Answer = 0.16

(b)
$$y = g(\beta, x^0 + \beta z x^1 + \beta z x^2)$$
 where $g(.)$ is sigmoid function.

The decision boundary is the straight line $L = \beta_1 x^2 + \beta_2 x^2 + \beta_3 x^2.$

For
$$SNP_{R_1}$$
: $\beta_1 70; \beta_2 70; \beta_3 70$
 SNP_{R_2} : $\beta_1 70; \beta_2 70; \beta_3 70$
 SNP_{R_3} : $\beta_1 70; \beta_2 70; \beta_3 = 0$