Introducción

Autómata Off-Lattice: Bandadas de agentes autopropulsados

Camila Di Toro Kevin Catino Iván Chayer

Instituto Técnologico de Buenos Aires [72.27] Simulación de Sistemas

Contenidos

- Introducción
- 2 Implementación
- Simulaciones
- 4 Resultados
- Conclusiones

Introducción •000

Introducción

Sistema Real

Sistema Real

Partículas auto-propulsadas

Objetivo

Investigar su auto-organización a partir de su interacción.

Modelo de partículas auto-propulsadas

Reglas base del modelo:

- Cada partícula se desplaza en cada paso temporal
- Velocidad de módulo constante
- La dirección es un promedio de direcciones de velocidades vecinas en un radio de interacción "r" ^a
- Se adiciona ruido al cálculo de la dirección promedio

^aEl cálculo incluye el angulo de la propia partícula

Modelo de partículas auto-propulsadas

Posición de la i-ésima partícula para cada tiempo t:

$$x_i(t+1) = x_i(t) + v_i(t)\Delta t$$
 (1)

La dirección de la velocidad se obtiene a partir de la expresión:

$$\theta(t+1) = \langle \theta(t) \rangle_r + \Delta \theta$$
 (2)

$\langle \theta(t) \rangle y \Delta \theta$

Cálculo del promedio de los ángulos:

$$\langle \theta(t) \rangle_r = atan2 \left[\frac{\langle sin(\theta(t)) \rangle_r}{\langle cos(\theta(t)) \rangle_r} \right]$$
 (3)

 $\Delta \theta$ es el ruido y se obtiene de una distribución uniforme de intervalo $\left[-\frac{\eta}{2},\frac{\eta}{2}\right]$

Arquitectura

Motor de simulación

Introducción

Utiliza el método getNextBoard de la clase BoardSequence para avanzar en el tiempo y obtener el próximo Board.

Resumen de las operaciones realizadas:

- Cálculo de la nueva velocidad y posición
- Se actualiza la velocidad y posición de la partícula
- Se recalcula las celdas en las que se encuentran las partículas
- Se obtienen los vecinos utilizando Cell Index Method

Introducción

```
Function getNext(v: Velocity, boardLength: Real) ->
   Coordinates:
    nextX = this.x + v.x
   nextY = this.y + v.y
    // se considera la condicion periodica de borde
    nextX = wrapAxis(nextX, boardLength)
    nextY = wrapAxis(nextY, boardLength)
    return Coordinates (nextX, nextY)
```

Actualización de la velocidad

```
getNext(neighbours: list<particle>, noise: double) ->
   Velocity:
    noiseValue = RandomBetween(-noise/2, noise/2)
    angles = new list
    for each particle in neighbours:
        angle = arctan(particle.vy / particle.vx)
        angles.add(angle)
    selfAngle = arctan(this.velocity.y / this.velocity.x)
    angles.add(selfAngle)
    sinAvg = promedio de los senos en 'angles'
    cosAvg = promedio de los cosenos en 'angles'
    nextAngle = arctan(sinAvg / cosAvg) + noiseValue
    nextVx = cos(nextAngle) * modulo de v
    nextVy = sin(nextAngle) * modulo de v
    return Velocity(nextVx, nextVy)
```

Simulaciones •000000000

Modelo Propuesto

Introducción

- ◆ Partículas puntuales en una celda de lado L con condiciones periódicas.
- Módulo de velocidad constante v = 0.03.
- **◄** Directiones θ aleatorias a t = 0, $\theta \in [0, 2\pi]$.
- ◀ Radio de interacción r = 1.
- \blacksquare Generación de N partículas aleatoriamente a t=0.

◀ Velocidad promedio normalizada v_a como observable.

$$v_a = \frac{1}{Nv} \left| \sum_{i=1}^{N} v_i \right|$$

- ▶ Parámetros de interés: ruido η y densidad $\rho = N/L^2$.
- $lack v_a$ tiende a cero para desorden total y a 1 para partículas polarizadas.

- ◀ Variación de v_a en función del ruido (η).
- \triangleleft Variación de v_a en función de la densidad (ρ)

Parámetros

Comportamiento de v_a con ruido

- $\eta \in [0, 5], N \in \{40, 100, 400\}$
- **◄** Densidad constante $\rho = 4$, ajuste L con N.

Comportamiento de v_a con densidad

$$\bullet \ \rho \in [0,10] \text{, } L=20 \text{, } \eta = 2.5$$

Cálculo de v_a y Estado Estacionario

- \triangleleft Se calcula v_a cuando sistema esté estable.
- ◆ Se determina el tiempo estacionario con pruebas.

Baja densidad

$$L = 20$$

$$\eta = 2.5$$

$$N = 200$$

$$\rho = 0.5$$

Alta densidad

$$L = 20$$

$$\eta = 2.5$$

$$N = 2000$$

$$\rho = 5$$

Bajo ruido

$$L = 10$$

$$■ N = 400$$

$$\rho = 4$$

Alto ruido

$$L = 10$$

$$\eta = 5$$

$$\rho = 4$$

Resultados

v_a en función del tiempo

- $\sim N = 400$

- \bullet $\eta \in \{3,5\}$: v_a no se estabiliza.
- \bullet $\eta = 0.1$: v_a se estabiliza desde $t \approx 700$.
- \bullet $\eta = 1$: v_a se estabiliza desde $t \approx 4500$.

v_a en función del tiempo

◄
$$L = 20$$

$$\blacktriangleleft \eta = 2.5$$

- $\rho \in \{5, 10\}$: v_a se estabiliza desde $t \approx 4000$
- \bullet $\rho = 0.5$: v_a no se estabiliza.

Cálculo de v_a

Introducción

Se decide utilizar el siguiente método:

- ◆ Si la variación de v_a en 50 iteraciones consecutivas es < 0.02, se toma ese promedio.
 </p>
- \blacktriangleleft Si al llegar a la iteración 5000 no se cumplió la condición anterior, se calcula v_a como el promedio de las iteraciones 5001 a 6000.

v_a en función del ruido

$$\rho = 4$$

v_a en función de la densidad

$$\eta = 2.5$$

$$L = 20$$

Conclusiones

Conclusiones

 $lack v_a$ es un indicador de polarización de las partículas del sistema.

Relación entre η y v_a

$$\uparrow \eta \implies \downarrow v_a$$

Relación entre ρ y v_a

$$\uparrow \rho \implies \uparrow v_a$$