aws re: Invent

AIM 401-R2

Deep Learning Applications Using TensorFlow

Julien Simon
Principal Tech. Evangelist, AI/ML
Amazon Web Services
@julsimon

Kevin Clifford
Senior Product Manager
Advanced Microgrid Solutions

Andrew Martinez
Staff Research Scientist
Advanced Microgrid Solutions

Agenda

Amazon SageMaker

TensorFlow

Case study: Advanced Microgrid Solutions

Resources

Easily build, train, and deploy Machine Learning models

Build

Build

Train

Build Train Deploy

Selected Amazon SageMaker customers

GE Healthcare

Hotels.com

DOW JONES

THOMSON REUTERS

TensorFlow

TensorFlow

- Open source software library for Machine Learning
- Main API in Python, experimental support for other languages
- Built-in support for many network architectures: FC, CNN, LSTM, etc.
- Support for symbolic execution, as well as imperative execution since v1.7 (aka eager execution)
- Complemented by the Keras high-level API

AWS is the place of choice for TensorFlow workloads

"Of 388 projects, 80 percent using TensorFlow and other frameworks are running exclusively on AWS.

88% using only TensorFlow are running exclusively on AWS."

Nucleus Research report,
December 2017

https://aws.amazon.com/tensorflow

TensorFlow on Amazon SageMaker: a first-class citizen

- Built-in TensorFlow containers for training and prediction
 - Code available on Github: https://github.com/aws/sagemaker-tensorflow-containers
 - Build it, run it on your own machine, customize it, etc.
 - Supported versions: 1.4.1, 1.5.0, 1.6.0, 1.7.0, 1.8.0, 1.9.0, 1.10.0, 1.11.0

Advanced features

- Optimized both for GPUs and CPUs (Intel MKL-DNN library)
- Distributed training
- Pipe mode
- TensorBoard
- Keras
- Automatic Model Tuning

Using Keras on Amazon SageMaker

- Keras is a popular API running on top of TF, Theano and Apache MXNet.
- The tf.keras API is natively supported in Amazon SageMaker
- To use Keras itself (keras.*), you need to build a custom container.
- This is not difficult!
 - Write a Dockerfile.
 - Build the container.
 - Push it to Amazon ECR.
 - Use it with sagemaker.estimator.Estimator.
- Full instructions and demo in this AWS Innovate talk: https://www.youtube.com/watch?v=c8Nhwr9VmfM

Example: MNIST with a Fully Connected network

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x train, y train), (x test, y test) = mnist.load data()
x train, x test = x train / 255.0, x test / 255.0
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
model.compile(optimizer='adam',
              loss='sparse categorical crossentropy',
              metrics=['accuracy'])
model.fit(x train, y train, epochs=10)
model.evaluate(x test, y test)
```

Automatic Model Tuning

Finding the optimal set of hyper parameters

- Manual Search ("I know what I'm doing")
- 2. Random Search ("Spray and pray")
- 3. Grid Search ("X marks the spot")
 - Typically training hundreds of models
 - Slow and expensive

- Training fewer models
- Gaussian Process Regression and Bayesian Optimization,

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html

Case study: Advanced Microgrid

Solutions

Senior Product Manager Advanced Microgrid Solutions Andrew Martinez
Staff Research Scientist
Advanced Microgrid Solutions

Advanced Microgrid Solutions (AMS)

Founded in 2013 in San Francisco, CA

Technology-agnostic energy platform and services company that maximizes wholesale energy market revenues for both behind-the-meter and front-of-the-meter assets

Situational and Control and Economic Grid and Asset Health Business Aggregation Optimization Market Management Intelligence Participation

Mission Statement:

To lead a worldwide transformation to a clean energy economy by facilitating the deployment and optimization of clean energy assets

Energy Markets 101

- Electricity is traded in regional "wholesale energy markets"
- Supply = Demand at all times...
 or grid will fail
- Demand varies due to weather and behavioral factors
- Market operator must procure correct amount of supply to meet demand
- Suppliers must decide price and quantity to bid for every trading interval
- Market Price is set at the most expensive supplier needed to meet demand

Energy Technologies 101

Less complex More complex

Thermal (coal, gas, oil)
Bidding at marginal cost

Renewables
(solar, wind)
Bidding at zero marginal
cost + REC value

Hydroelectric
Use-limited
resource bidding at
opportunity cost

Batteries
Use-limited resource
bidding at opportunity
cost across multiple
market products

Use Case

Optimize market participation of clean energy assets in Australia's National Energy Market

Australia's National Energy Market (NEM) facilitates energy production for the 5 east Australian states

- Serves 9M customers
- \$16.6B / 200 TWh traded annually

NEM is a "spot" market

- All parties bid to consume or generate energy during upcoming 5-minute time window
- 9 unique market products for energy and ancillary services

Use Case Challenges

Left with only 180 seconds to:

- 0- Forecast prices for upcoming trading
- 50s intervals
- 90s Determine optimal asset dispatch
- 10s Construct competitive market bids
- 20s Present to user for final confirmation
- 10s Deliver to Market Operator

...which we have to repeat every 5

- Multiple market products
- Considerations across time
- Volatility (timing & magnitude)
- Drift (changing market composition)
- Rapidity (< 20 sec)
- Frequency (5 min)
- Accuracy

Existing Market Forecast, why Machine Learning?

- Spot prices are forecasted by balancing generation and load bids
- Power flow optimization model
- Bids must be supplied through end of day, but can be updated at every market interval (5 minutes)
- Market forecast accuracy is subject to the bidding behavior of market participants

Why Neural Networks?

Complex market dynamics

- Seasonality and common exogenous factors, such as weather
- Network outages & neighboring market conditions

Increasing volatility

 Changing generation portfolio with increasing penetration of (intermittent) renewable

Lago, Jesus, et al. "Forecasting Spot Electricity Prices: Deep Learning Approaches and Empirical Comparison of Traditional Algorithms." *Applied Energy*, vol. 221, 2018, pp. 386–405., doi:10.1016/j.apenergy.2018.02.069.

Green, Richard, and Nicholas Vasilakos. "Market Behaviour with Large Amounts of Intermittent Generation." *Energy Policy*, vol. 38, no. 7, 2010, pp. 3211–3220., doi:10.1016/j.enpol.2009.07.038.

Architecture Overview

- Data ingestion
- Pre-processing
- Model tuning and deployment via Amazon Sagemaker
 + TensorFlow + Keras
- Post-processing
- API wraps individual product models used for inference and scenario generation
- Deployed via AWS Chalice

Amazon S3

AMS Forecast Machine Learning Model

Model design considerations

- 1. Learn the deviation between market forecast and historical prices
- 2. Multi-period forecasts of both point estimates and prediction intervals
- 3. Develop a framework for efficient simulation of price scenarios for stochastic optimization

Benchmark Model

- Learn the deviation between market forecast and historical prices
- Input: market forecast
- Output: multi-step ahead cleared market prices


```
layers = [
    tf.keras.layers.Dense(
        units=units,
        activation=activation,
),
    tf.keras.layers.Dropout(
        rate=dropout_rate,
),
    tf.keras.layers.Dense(
        units=n_forecast_intervals,
),
]
```


Uncertainty Estimation

- Predict both point estimates as well as uncertainty
- Add an output dimension to represent quantiles

```
layers = [
                                      layers = [
    tf.keras.layers.Dense(
                                          tf.keras.layers.Dense(
        units=units,
                                               units=units,
        activation=activation,
                                               activation=activation,
    tf.keras.layers.Dropout(
                                           tf.keras.layers.Dropout(
        rate=dropout rate,
                                               rate=dropout rate,
    tf.keras.layers.Dense(
                                           tf.keras.layers.Dense(
                                               units=n forecast intervals * n quantiles,
        units=n forecast intervals,
    ),
                                           tf.keras.layers.Reshape(
                                               target shape=(n forecast intervals, n quantiles),
```

```
re:Invent
```

Uncertainty Estimation

- Quantile Regression
- Asymmetric (pinball) loss function conditional to quantile, $au \in [0,1]$

```
e = f(x) - y
                                                             Example:
\mathcal{L}_{\tau}(e) = \begin{cases} -\tau \cdot e, & \text{if } e < 0 \\ (1 - \tau) \cdot e, & \text{else} \end{cases}
                                                             Under-prediction, \mathcal{L}_{0.9}(-10) = 9
                                                             Over-prediction, \mathcal{L}_{0.9}(10) = 1
                              \mathcal{L}_{\tau}(e)
                                                             tf.losses.compute_weighted_loss(
                                                                    losses=tf.maximum(
                                                                         -quantile * error,
                                                                         (1- quantile) * error
                                                                   weights=weights,
                                                                    reduction=Reduction.MEAN,
```

Example Forecast

- Single inference
- 300 forecast intervals
- 5 quantiles:10, 30, 50, 70, 90%

Stochastic Scenario Generation

- Develop a framework for efficient simulation of price scenarios for stochastic optimization
- Use test set to derive temporal covariance
- Now sample from a known distribution to generate realistic price scenarios!

```
np.random.multivariate_normal(
    mean=np.zeros(n_forecast_intervals),
    cov=covariance,
    size=n_scenarios
)
```


Benchmark Model Results

Meets requirements

- Improvement on market forecasts
- Single model, capable of quick quantile estimation and scenario generation

Limitations

Densely connected model prone to overfitting when additional features are included

Next steps

- Develop a more robust model, less dependent on regularization methods
- Use intuition for feature & target dependencies to reduce model connectivity

Convolutional Network

Dilated convolutional neural network

- Example
 number of layers = 3
 kernel size = 3
 dilation rate = 3
- Receptive field grows exponentially
- Captures both short and long-term dependencies
- Typically stacked with residual connections

Hyperparameter and Model Tuning

Data parameters

- Missing value imputation method
- Sample weight exponential decay rate

Model architecture

- Filter size
- Kernel size
- Dropout rate
- Dilation rate
- Number of layers (and stacks)
- Skip connections
- Causal vs acausal convolution

Solver parameters

Learning rate

```
tuner = HyperparameterTuner(
    estimator=self.estimator,
    objective metric name='validation-loss',
hyperparameter ranges=hyperparameter ranges,
    metric definitions=[{
        'Name': 'validation-loss',
        'Regex': ', loss = ([+-]?\d+\.\d+)',
    } ],
    strategy='Bayesian',
    objective type='Minimize',
    max jobs=max jobs,
    max parallel jobs=max parallel jobs,
    tags=tags,
    base tuning job name=self.job name,
```

Hyperparameter Tuning

Tuning example

- 36 jobs (3 in parallel)
- 2 hours per training job
- 72 training hours
- ml.p2.xlarge, Tesla K80, \$1.26/hr
- 20% difference in loss among jobs

Accuracy

We follow common model validation practices, splitting the data into three chronologically separated groups
 train – model training
 validate – hyperparameter tuning
 test – final comparison metric, empirical error used to derive covariance matrix, and estimation of future performance

 Case Study: South Australia energy prices, 24-hour point estimates 68% reduction of mean absolute error (against market forecast) 24% reduction of median absolute error

Takeaways

Without prior experience using Deep Learning tools

- Deployed benchmark TensorFlow model on AWS in weeks
- Learned behavioral market patterns improves upon market-generated forecast
- Extended the model to state-of-the-art temporal dilated convolutional network
- Single forecast API provides quantile forecasts and realistic producttemporal-correlated price scenarios for all queried products

Recommendations

- Start simple, extending the examples provided by AWS https://github.com/awslabs/amazon-sagemaker-examples
- Keras allows for quick prototyping
- Parameterize the "art" of Deep Learning architecture and let tuning discover best design

Presenters

Kevin Clifford Andrew Martinez

Corresponding author

Corey Noone (coreyn@advmicrogrid.com)

Shameless plug

We're hiring data scientists and software developers

Advanced Microgrid Solutions

986 Mission St, 4th Floor San Francisco, CA 94103

https://advmicrogrid.com

Resources

Resources

https://ml.aws

https://tensorflow.org/

https://keras.io/

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

https://github.com/aws/sagemaker-python-sdk

https://medium.com/@julsimon

Please complete the session survey in the mobile app.

Thank you!

Julien Simon Principal Tech. Evangelist, AI/ML Amazon Web Services @julsimon Kevin Clifford
Senior Product Manager
Advanced Microgrid Solutions

Andrew Martinez
Staff Research Scientist
Advanced Microgrid Solutions

