Esercitazione: compito di esame

giovedì 7 novembre 2024 18:05

Noto:
$$a, b, d=45^{\circ}$$
 $M, (k, E) + f \text{ NOTA. DIRECTIONE}$
 $KB = bl_2$

APPLICATA A 3

- Richiesto: 1) Valutere P in modo che a sia epulli ottotico
 - 2) Applicate PSE => DCL BEF. HOP caso M, ReloF

AFV.: RCP, MCP
RAX, RAY
P 5 (NCOG. # 3 EQN)

MCP =0

$$\frac{\text{corpo 2}}{\text{AS}} = \frac{M}{a} \frac{1}{\sin a} = \frac{M}{a} \frac{N^2}{a} \times 0$$

CORPO 3

X:
$$P - Rc \cos \alpha = 0$$

Y: $RcP - Rc \sin \alpha = 0$

$$\int P = Rc \cos \alpha = \frac{M}{a} \sqrt{2} \sqrt{2} = \frac{M}{a} = P^{1} T \cos \alpha$$

$$RcP = Rc \sin \alpha = \frac{H}{a}$$

DOL DEF I CASO

$$P^{l} = \frac{H}{a}$$

II CASO

DCL P.

ERNI CORPO 2

$$C^{5} \begin{cases} +F\frac{b}{2} - RB \sin \alpha b = 0 \\ -RB + F\sqrt{2} + Rcx = 0 \end{cases} \rightarrow RB = \frac{F}{2}\frac{2}{\sqrt{2}} = \frac{F}{\sqrt{2}}$$

$$X: \begin{cases} -RB + F\sqrt{2} + Rcx = 0 \\ -RB + F\sqrt{2} + Rcx = 0 \end{cases} \rightarrow RCx = RB - \frac{F}{2}\frac{2}{\sqrt{2}} = \frac{F}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{2}\right) = 0$$

$$Y: \begin{cases} RCy - F \sin \alpha = 0 \end{cases} \rightarrow RCy = \frac{F}{2}\frac{\sqrt{2}}{2}$$

EQNI CORPO 3

NI CORPO 3

X!
$$\int -Rcx + P = 0$$
 $\rightarrow P = 6 = P^{II}$

Y! $\int Rcp -Rcy = 0$ $\rightarrow Rcp = Rcy = F.Nz_2$

DCL DEF.

$$\Rightarrow P = P' + P'' = P' = \frac{M}{\alpha}$$