Digital Signal Processing for Music

Part 25: Waveform Coding

alexander lerch

- goal:
 - encode waveform in a way that the decoded waveform is as close to the original waveform as possible
- approaches
 - PCM (analogue to digital)
 - non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?
 - DPCM & ADPCM

- goal:
 - encode waveform in a way that the decoded waveform is as close to the original waveform as possible
- approaches:
 - PCM (analogue to digital)
 - non-linear quantizatio
 - Question: how is the principle of non-linear quantization related to Entropy coding?
 - DPCM & ADPCM

goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?
- DPCM & ADPCM

goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?
- DPCM & ADPCM

goal:

 encode waveform in a way that the decoded waveform is as close to the original waveform as possible

approaches:

- PCM (analogue to digital)
- non-linear quantization
 - Question: how is the principle of non-linear quantization related to Entropy coding?
- DPCM & ADPCM

waveform coding DPCM

- predictor is updated from reconstructed signal
 - no transmission of predictor coefficients necessary
 - reconstruction error

$$r(i) = x(i) - y(i)$$

= $x(i) - (\hat{x}(i) + e_Q(i))$
= $e_P(i) - e_Q(i)$
= $q(i)$

⇒ reconstruction error **identical** to quantization error

waveform coding ADPCM

- ADPCM:
 - coefficient adaptation for every block of samples
 - quantization step size (scale) adjusts to signal power
- forward adaptive implementation
 - coefficients are calculated from the input signal and transmitted
 - robust against transmission errors
 - requires additional side information (coefficients)
- backward adaptive implementation
 - coefficients are calculated from the reconstructed signal
 - no additional side information
 - error propagation

waveform coding

ADPCM:

- coefficient adaptation for every block of samples
- quantization step size (scale) adjusts to signal power

forward adaptive implementation

- coefficients are calculated from the input signal and transmitted
- robust against transmission errors
- requires additional side information (coefficients)

backward adaptive implementation

- coefficients are calculated from the reconstructed signal
- no additional side information
- error propagation

waveform coding

ADPCM:

- coefficient adaptation for every block of samples
- quantization step size (scale) adjusts to signal power

forward adaptive implementation

- coefficients are calculated from the input signal and transmitted
- robust against transmission errors
- requires additional side information (coefficients)

backward adaptive implementation

- coefficients are calculated from the reconstructed signal
- no additional side information
- error propagation

waveform coding summary

- waveform coding aims at efficiently representing the time domain signal
- idea: non-redundant parts are quantized (lossy) according to transmission bandwidth
- advantages
 - low latency
 - low complexity
 - high quality at high bitrates
- disadvantage:
 - quality loss is attempted to minimize waveform similarity
 - ⇒ not perceptually meaningfu

waveform coding summary

- waveform coding aims at efficiently representing the time domain signal
- idea: non-redundant parts are quantized (lossy) according to transmission bandwidth
- advantages:
 - low latency
 - low complexity
 - high quality at high bitrates
- disadvantage:
 - quality loss is attempted to minimize waveform similarity
 - ⇒ not perceptually meaningful

waveform coding summary

- waveform coding aims at efficiently representing the time domain signal
- idea: non-redundant parts are quantized (lossy) according to transmission bandwidth

advantages:

- low latency
- low complexity
- high quality at high bitrates

disadvantage:

- quality loss is attempted to minimize waveform similarity
- ⇒ not perceptually meaningful