# Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer (arxiv)

# **Key Highlights**

### 問題

- 這篇論文旨在解決什麼問題?
  - 。論文探討深度循環變壓器(特別是Huginn-3.5B)是否表現出隱含的縱向思維推理(CoT)——即在不外部化步驟的情況下執行多步內部推理
  - 。標準的CoT方法將推理步驟用語言外部化,提高了可解釋性但降低了效率
- 現有方法有哪些,及其局限性是什麼?
  - 。現有的CoT方法明確地提示模型在自然語言中表達中間步驟,這導致冗長並減慢了推理速度
  - 。循環架構旨在將推理內部化於隱含空間,但目前尚不清楚是否真的出現了像 CoT一樣結構化的推理

## 解決方案

- 這篇論文提出了什麽解決方案?
  - 使用探測技術(如logit lens、coda lens、token rank軌跡追踪)系統化分析Huginn的隱藏狀態,以檢測隱含的CoT推理
  - 。引入將深度循環架構"展開"的視角來分析循環步驟中的中間計算
- 這個想法的靈感來源是什麼?是否受到其他論文的影響?
  - 受循環方法有潛力實現隱含推理的啟發,而不需語言外部化
  - 基於Transformer分析工作中的現有logit lens解釋技術
- 哪些理論基礎支持這種方法?
  - 如果存在隱含的CoT,中間結果的token應該在排名軌跡中顯示出與最終答案 的token的時間分離
  - 隱藏狀態語義應該在循環步驟中平滑演變,類似於標準變壓器

## 實驗

#### • 實驗結果如何?

- 。有限的隱含CoT證據:中間結果token與最終結果token之間沒有明顯的時間 分離
- ・ 增加循環深度(4→256步)僅略微提高GSM8K準確性(3.11%→4.93%)
- 表現遠低於明確CoT(GSM8K上的24.87/38.13%)

#### • 這種方法有什麼局限性或假設?

- 分析僅限於簡單的算術任務,由於模型的低準確性(在複合操作中為0.19)
- 為了可解釋性篩選至單位數結果可能會錯過更複雜的推理模式
- 。 探測技術可能無法捕捉細微或分散的推理模式

## 創新

#### • 這篇論文做出了什麼重要或新穎的發現?

- · 探測不一致性:與標準變壓器不同,Huginn在整個循環塊的隱藏狀態語義上 存在劇烈不連續
- ∘ **塊特定可解釋性**:不同的循環塊(R1與R4)編碼不同的信息,可解釋性在很大程度上取決於解碼lens的選擇
- **缺乏隱含CoT證據**:token排名軌跡分析顯示跨循環步驟沒有結構化的推理路 徑

# 評論/批評

#### • 這篇論文有哪些局限性?

- 分析僅限於相對簡單的算術任務,這可能無法捕捉模型的全部推理能力
- 篩選標準(單位數結果、正確答案)顯著減少了數據集大小(2k→67個問題)題)
- 探測方法可能不足以檢測更複雜的隱含推理形式

#### • 論文是否有效地論證了其主張?

- 。缺乏隱含CoT的證據令人信服但並不定性——作者承認推理可能比我們使用的工具檢測到的"更加細微或分散"
- 。 循環深度擴展和明確CoT之間的顯著性能差距提供了強有力的支持證據
- 探測不一致性的發現得到充分證明,代表了關於深度循環架構的重要發現

# **Comprehensive Analysis**

No section notes.

# **References**

No references found.