How To Solve Go?

Liangqu LONG

Deep Q-Learning

Represent value function by deep Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

▶ Define objective function by mean-squared error in Q-values

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma \max_{a'} Q(s', a', w)}_{\text{target}} - Q(s, a, w)\right)^{2}\right]$$

► Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

▶ Optimise objective end-to-end by SGD, using $\frac{\partial L(w)}{\partial w}$

DQN

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,

Seaquest, Beam Rider

Sove Go in DQN NO.... r(s,a) = Unkown!!!

Value Iteration VS Policy Iteration

- 1. Directly Policy Search, converge faster $\Pi \iff \operatorname{argmax}(Q(s,a))$
- 2. Dimension Explosion Go: 19*19 + 1 = 362

Policy Gradient Methods: Overview

Problem:

maximize
$$E[R \mid \pi_{\theta}]$$

Intuitions: collect a bunch of trajectories, and ...

- 1. Make the good trajectories more probable¹
- 2. Make the good actions more probable
- 3. Push the actions towards good actions (DPG², SVG³)

¹R. J. Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning". *Machine learning* (1992); R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. "Policy gradient methods for reinforcement learning with function approximation". *NIPS*. MIT Press, 2000.

²D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. "Deterministic Policy Gradient Algorithms". *ICML*. 2014.

Score Function Gradient Estimator

▶ Consider an expectation $E_{x \sim p(x \mid \theta)}[f(x)]$. Want to compute gradient wrt θ

$$\nabla_{\theta} E_{x}[f(x)] = \nabla_{\theta} \int dx \ p(x \mid \theta) f(x)$$

$$= \int dx \ \nabla_{\theta} p(x \mid \theta) f(x)$$

$$= \int dx \ p(x \mid \theta) \frac{\nabla_{\theta} p(x \mid \theta)}{p(x \mid \theta)} f(x)$$

$$= \int dx \ p(x \mid \theta) \nabla_{\theta} \log p(x \mid \theta) f(x)$$

$$= E_{x}[f(x) \nabla_{\theta} \log p(x \mid \theta)].$$

- Last expression gives us an unbiased gradient estimator. Just sample $x_i \sim p(x \mid \theta)$, and compute $\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i \mid \theta)$.
- ▶ Need to be able to compute and differentiate density $p(x \mid \theta)$ wrt θ

Score Function Gradient Estimator for Policies

Now random variable x is a whole trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$

$$\nabla_{\theta} E_{\tau}[R(\tau)] = E_{\tau}[\nabla_{\theta} \log p(\tau \mid \theta) R(\tau)]$$

• Just need to write out $p(\tau \mid \theta)$:

$$p(\tau \mid \theta) = \mu(s_0) \prod_{t=0}^{T-1} [\pi(a_t \mid s_t, \theta) P(s_{t+1}, r_t \mid s_t, a_t)]$$

$$\log p(\tau \mid \theta) = \log \mu(s_0) + \sum_{t=0}^{T-1} [\log \pi(a_t \mid s_t, \theta) + \log P(s_{t+1}, r_t \mid s_t, a_t)]$$

$$\nabla_{\theta} \log p(\tau \mid \theta) = \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta)$$

$$\nabla_{\theta} \mathbb{E}_{\tau} [R] = \mathbb{E}_{\tau} \left[R \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta) \right]$$

Interpretation: using good trajectories (high R) as supervised examples in classification / regression

Vanilla Policy Gradient Not occured yet!

AlphaGo Solution

What is the problem in previous approach?

Learn from both bad and good moves, both winner and loser's moves!

Policy Gradient Method

RL policy network won more than 80% of games against SL policy network.

RL policy network won 85% of games against Pachi (the strongest Go Al before alphago).

Pure RL policy network Al without any tree search!!!

Just like a man with purely Intuition!!!

Policy Gradient: Introduce Baseline

▶ Further reduce variance by introducing a baseline b(s)

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] = \mathbb{E}_{ au} \left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t)
ight)
ight]$$

- ▶ For any choice of *b*, gradient estimator is unbiased.
- Near optimal choice is expected return, $b(s_t) \approx \mathbb{E}\left[r_t + r_{t+1} + r_{t+2} + \cdots + r_{T-1}\right]$
- Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

Introduce Bias to reduce Maniance

AlphaGo Solution

Can we get Evaluation Function? Yes !!! With similar CNN!

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

Supervised Regression Problem

Input: 19 X 19 matrix with -1, 0, 1

Output: scalar to represent the value of board.

Training Data: state-outcome pairs (s, z) from games played by using policy p for both players.

Pretrained + Fast Rollout + Policy + Value

NO MCTS yet!

Sove GO with only Actor-Critic:
Policy: sum[R * delta{ logP(s|a) }]
Value: r_t = Z_T

Policy Improvement: MCTS

AlphaGo Solution

Searching with policy and value networks

$$a_t = \operatorname{argmax}(Q(s_t, a) + u(s_t, a))$$

$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

$$V(s_L) = (1 - \lambda)v_{\theta}(s_L) + \lambda z_L$$

$$V(s_L) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i)$$

$$Q(s, a) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i)$$

AlphaGo

MCTS

How to play Chess Games?

MinMax Tree Search

Win or Lose is destined!

Choose Best Step for both player.

MCTS

How to play Chess Games?

How to play Chess Games?

Why we need Board Evaluation Function?

Search space is about $35^{80} \approx 10^{47}$, can NOT search the full space.

Deep Blue Solution (very brutal):

- > Human Experts Engine red Evaluation Function.
- > Alpha-Beta Tree Search up to 12 steps.

Why Go game is so hard?

Go VS. Chess

Larger board: 19 X 19 8 X 8

➤ Average branching factor: 250 35

> Average depth: 150 80

> State Space Complexity: 10¹⁷¹ 10⁴⁷

Impossible to search multiple steps even with alpha-beta pruning!!!

- > Every piece is equal.
- Global Impact of every single move.

Impossible to build an evaluation function!!!

Go Tree

AlphaGo Zero

那么这次的AlphaGo Zero 为啥就与众不同了呢?

因为它啥也不知道

Zero vs AlphaGo

- 1. Self-play vs Play with older system
- 2. No Rollout
- 3. No Supevised pre-train
- 4. ResNet
- 5. Input maps 48 >> 17

Forward

one step

$$U(s,a) = c_{\text{puct}} P(s,a) \frac{\sqrt{\sum_b N(s,b)}}{1 + N(s,a)}$$

$$W(s_t, a_t) = W(s_t, a_t) + v, Q(s_t, a_t) = \frac{W(s_t, a_t)}{N(s_t, a_t)}$$

11+

Backward

$$l = (z - v)^2 - \pi^{\top} \log \mathbf{p} + c \|\theta\|^2$$

b Neural network training

AlphaGo Zero In One Diagram

ALPHAGO ZERO CHEAT SHEET

AlphaGo is just a intermediate product!

Ke Jie is defeated in April, and Zero paper is submitted in Mayday.

AlphaGo Zero

Thanks.

Merry Christmas!