List of Figures

1.1	Figure montrant l'évolution des robots mobiles autonomes	3
2.1	Robot mobile pour recharger les vehicules electriques [1]	5
2.2	Exemple d'un robot autonome pour la livraison [3]	6
2.3	Exemple d'un robot autonome pour le tri des stocks [2]	7
2.4	Exemple de la perception d'un robot mobile	9

Contents

1	Intr	roductions génerale	3
2	Mo	délisation et commande d'un robot mobile	Ę
	2.1	Description d'un robot mobile autonome	5
		2.1.1 Quelles différences entre un AMR et un AGV ?	6
	2.2	applications pour ce les robots autonomes	6
	2.3	Caracteristiques des robot mobile	8
	2.4	Structure de la commande d'un robot mobile	Ö
		2.4.1 Perception et modélisation de l'environnement	Ö
		2.4.2 Communication homme machine	10
		2.4.3 Commande	10
	2.5	Navigation autonome d'un robot mobile	10
		2.5.1 Localisation	10
		2.5.2 Planification et exécution de mouvements	10
		2.5.3 Suivi de trajectoire	11
		2.5.4 Evitement d'obstacles et parking	11
3	Mo	délisation et calibrage de cameras	12
	3.1	Introduction:	12
	3.2	Modélisation de la Caméra :	12
		3.2.1 Conception	12
		3.2.2 Composants d'une caméra :	12
	3.3	Calibration D'une Caméra:	13
		3.3.1 Calibrage avec un objet 3D de référence ou une mire :	13
		3.3.2 Calibrage automatique (ou auto-calibrage) :	13
	3.4	Résultat de la calibration de la caméra :	13
	3.5	Définition des repères :	14
	3.6	Résultats de Simulations et discussion :	14
	3.7	.Conclusion :	14
4	Rés	ultats et simulation	15

Introductions génerale

Les robots font désormais partie intégrante de notre quotidien. Les ingénieurs et les chercheurs ont tendance à révolutionner le domaine avec des technologies autonomes très proches des capacités humaines. Des chercheurs de l'Université Cornell ont développé un robot qui comprend ce qui l'entoure et s'adapte pour s'y adapter. Leurs travaux ont été publiés dans Science Robotics.

De manière générale, on regroupe sous l'appellation robots mobiles l'ensemble des robots à base mobile, par opposition notamment aux robots manipulateurs. L'usage veut néanmoins que l'on désigne le plus souvent par ce terme les robots mobiles à roues. Les autres robots mobiles sont en effet le plus souvent désignés par leur type de locomotion, qu'ils soient marcheurs, sous-marins ou aériens.

La robotique mobile autonome vise plus spécifiquement à concevoir des systèmes capables de se déplacer de façon autonome.

Les applications directes se situent notamment dans les domaines de l'automobile, de l'exploration planétaire ou de la robotique de service par exemple.

De nombreuses applications restent à découvrir, qui ne découlent pas directement des avancées de la robotique mais qui utilisent ses méthodes et ses développements.

Figure 1.1: Figure montrant l'évolution des robots mobiles autonomes

Les premiers robots mobiles autonomes (RMA) avaient en fait une autonomie très limitée. Par exemple, les sens et les calculs de Shakey sont encore limités, et planifier une action lui prend des heures. De plus, tout changement dans l'environnement l'obligerait à s'arrêter et à planifier un nouvel évenement . Par exemple, il est impossible de se déplacer en présence d'obstacles mobiles.

La première méthode proposée pour permettre aux RMA de s'autogérer consiste à "aider" les robots industriels en s'adaptant à leur environnement. Avec le développement de la technologie et de la technologie, les robots "voient" plus et plus vite, "pensent" plus vite, et il devient possible d'explorer moins de travail et moins d'espace fixe. La véritable autonomie des robots offrira de nombreuses perspectives, et dans cet espoir, la robotique mobile autonome devenir une discipline scientifique en soi.

Les robots de service (assistance dans les hôpitaux, les aéroports, les bureaux, les usines ou les habitations), robots de maintenance pour les environnements dangereux ou difficiles d'accès pour l'homme (sous-marin, champs de mines, espace, centrales nucléaires), robots de divertissement (comme celui de Sony récemment sorti de Le Japon des chiens robots et même des véhicules intelligents (voitures autonomes ou systèmes d'assistance) sont quelques exemples d'applications Potentiel des RMA.

Modélisation et commande d'un robot mobile

2.1 Description d'un robot mobile autonome

AGV, AMR, Cobots, robots mobiles, exosquelettes, robots collaboratifs . . . la robotique industrielle est devenue un vaste domaine dans lequel il n'est pas évident de se repérer. Cet article traite de la notion de Robot Mobile Autonome, dit AMR.

Figure 2.1: Robot mobile pour recharger les vehicules electriques [1]

L'AMR est un robot collaboratif dans le sens où il fonctionne au plus proche des opérateurs. Ils opèrent au milieu des Hommes et des Machines, au coeur des zones de travail et dans les univers encombrés.

L'AMR est doté d'un haut degré d'autonomie, il peut se déplacer dans un environnement

plus ou moins vaste sans l'intervention humaine. Il se déploie facilement et s'adapte à la configuration d'un site, ne nécessitant pas de modification coûteuse d'infrastructure. De même, si l'infrastructure et le besoin viennent à évoluer, les robots peuvent être reprogrammés facilement. Enfin, ce type de robots permet d'automatiser les tâches de transport et le déplacement de marchandises à l'intérieur d'un bâtiment, et constitue une solution agile pour la transformation vers l'Usine 4.0 et la supply chain digitalisée. Le robot mobile autonome est donc le symbole d'une mobilité industrielle nouvelle génération.

Figure 2.2: Exemple d'un robot autonome pour la livraison [3]

2.1.1 Quelles différences entre un AMR et un AGV ?

Contrairement aux AGV (Automated Guided Vehicle) qui ont des trajectoires dédiées, les AMR sont totalement libres et s'adaptent aux environnements dynamiques. L'AGV est guidé par des rails ou repères au sol, tandis que l'AMR navigue en total autonomie dans un environnement cartographié au préalable. Les robots mobiles autonomes sont dotés de technologies de pointe leur permettant de naviguer avec précision dans un périmètre donnée, d'éviter les obstacles et d'évoluer sans risque de collision. La notion de sécurité est un sujet auquel les constructeurs sont particulièrement vigilants, de part les nombreuses interactions entre l'homme et la machine.

2.2 applications pour ce les robots autonomes

Un AMR peut intervenir autant sur des missions « simples » telles qu'une préparation de commande ou une opération picking, que dans des concepts d'automatisation plus complexes et globaux, en s'interfaçant à des périphériques comme des convoyeurs, des lignes de production, des îlots intégrés, ou des postes de travail. Principalement utilisés dans le monde de l'Industrie pour déplacer de manière autonome des marchandises (usines, ateliers ou entrepôts, ...), l'usage des robots ne sont pas pour autant limités au secteur industriel. Les

gains en mobilité attribués au fil des années et leur grande polyvalence ont permis d'élargir largement les applications :

- Missions de logistique (kitting, alimentation des bords de lignes et de production dans l'Industrie (transferts de pièces).
- Opérations de manutention, de préparation de commandes, de pick and drop dans la Logistique et ses entrepôts.
- L'alimentation des rayonnages ou la préparation Drive dans la Distribution/Retail.
- Dans les univers E-commerce, ils contribuent à la gestion des entrées de colis, la ramasse, le tri, la ventilation, et la gestion des retours et sorties.
- Dans les univers E-commerce, ils contribuent à la gestion des entrées de colis, la ramasse, le tri, la ventilation, et la gestion des retours et sorties.
- Leur flexibilité leur permet également d'intervenir dans une multitude d'autres domaines, comme le transport, les services et les établissements de santé.

Figure 2.3: Exemple d'un robot autonome pour le tri des stocks [2]

Leur flexibilité leur permet également d'intervenir dans une multitude d'autres domaines, comme le transport, les services et les établissements de santé.

2.3 Caracteristiques des robot mobile

Les robots Meanwhile sont dotés de l'intelligence artificielle spécialisée dans la navigation en intérieur (SLAM). Le SLAM, Simultaneous Localisation And Mapping, permet au robot de construire son environnement et de modifier son comportement en fonction des obstacles non cartographiés tout en se localisant en temps réel. Afin de se déplacer en toute autonomie et sans trajectoire prédéfinie, le robot va combiner les informations qui lui sont propre avec les informations de son environnement (renvoyées par ses lasers et capteurs .)

Pour être considéré comme tel, un AMR doit répondre aux caractéristiques suivantes :

Planification de mouvement Pour réaliser sa mission, l'AMR a la capacité d'optimiser son trajet. Sa configuration de départ va définir sa trajectoire globale et va évoluer en fonction des données récupérées en temps réel ce qui va altérer sa trajectoire locale. L'AMR va ainsi calculer, en permanence, son chemin sans collision. En d'autres termes, pour réaliser sa mission, le robot Meanwhile optimise son trajet, qu'il a lui-même défini au départ (trajectoire globale), tout en évitant les obstacles qui se présentent éventuellement à lui (trajectoire locale).

Localisation Pour pouvoir planifier son trajet en toute autonomie, les robots mobiles Meanwhile sont en mesure de se localiser dans leur environnement. Ils utilisent un certain nombre de capteurs embarqués, tel que des scrutateurs lasers, lasers verticaux etc. Pour être en permanence localisés, les robots Meanwhile vont, en temps réel, comparer leur cartographie à l'environnement modélisé par leurs capteurs. Ainsi, tout défaut de positionnement intrinsèque est instantanément corrigé et le robot est en permanence localisé.Par ailleurs, lorsque les environnements de travail sont très dynamiques, il est possible d'améliorer la localisation du robot par un système de triangulation lumineuse, appelé Acuity.

Navigation naturelle Les robots mobiles sont en mesure de calculer les commandes des actionneurs du système permettant de réaliser le mouvement planifié. Le robot planifie sa propre trajectoire. Il suit le chemin prévu (trajectoire globale) tout en évitant les obstacles non cartographiés sur le chemin. Si le robot rencontre des obstacles, il modifie sa trajectoire « locale » pour les éviter mais si ce dernier ne peut pas continuer (par exemple, une porte est fermée), il replanifie globalement son trajet (par exemple, trouver une porte différente.)

Évitement réactif d'obstacles En complément du scrutateur laser principal de sécurité, situé à 200mm du sol, les cobots mobiles Meanwhile sont équipés de différents capteurs leurs permettant de contourner et d'éviter les obstacles :

Un scrutateur laser de « détection de pieds » situé à 60mm du sol. Ce capteur permet au Cobot Mobile de détecter et de contourner tout obstacle situé au niveau du sol.

Une rangée de sonars situés à l'arrière du Cobot Mobile. Ces capteurs permettent un mouvement de recul sécuritaire du Cobot Mobile. A noter que le Cobot Mobile ne recule que dans des zones identifiables et jamais de sa propre initiative (appel d'une fonction au cours d'une séquence) (accostage de la station de charge par exemple).

Les scrutateurs lasers verticaux, permettant de créer deux plans de part et d'autre du Cobot Mobile. Il peut alors détecter de manière fiable tout objet surplombant situé dans un plan différent des scrutateurs horizontaux (fourches de chariots élévateurs, tablettes opérateur, etc...) ainsi que toute déclivité dans le sol. Ces données sont utilisées lors de la navigation et permettent au Cobot Mobile de se mouvoir de façon optimale entre les obstacles dans des environnements complexes.

Déploiement rapide L'installation des robots mobiles autonomes Meanwhile est réalisée dans des délais extrêmement courts car il n'est pas nécessaire de modifier l'infrastructure existante. De même que les robots peuvent être reprogrammés facilement, si l'infrastructure et le besoin évoluent. (Nos clients sont en mesure de modifier eux-mêmes les points de livraisons.)

2.4 Structure de la commande d'un robot mobile

L'objectif de la robotique est d'atteindre un objectif dans son environnement en évitant les obstacles. Le problème que l'on doit résoudre est de déterminer les commandes appropriées en fonction des données capteurs qu'elles commandent doivent être envoyées à chaque instant au robot pour atteindre cet objectif. Donc l'idée est de permettre au robot d'évoluer dans un monde prévue à l'origine pour l'homme.

2.4.1 Perception et modélisation de l'environnement

Le robot doit être muni d'un système de perception capable de fournir des informations précises sur l'état de l'environnement qui l'entoure, afin de pouvoir identifier et regrouper des éléments utiles pour une représentation fiable et consistante de cet environnement.

Figure 2.4: Exemple de la perception d'un robot mobile

2.4.2 Communication homme machine

La communication machine est très essentielle pour cela des interfaces de plus en plus conviviale sont développés. La communication est réalisée à l'aide de multiples supports : écrit, visuel, ou encor sonore. Le module de communication semble prendre de plus en plus d'importance à l'heure actuelle.

2.4.3 Commande

Architecture traditionnelle de décomposition du programme de contrôle du robot en différents modules de fonctionnement est donnée comme suit : caoture decean

Du monde abstrait au monde concret, la planification des actions et le contrôle des déplacements se situent dans le monde idéal, monde perçu et le monde réel cette décomposition est classique pour les systèmes automatiques de commande.

2.5 Navigation autonome d'un robot mobile

Généralement, la navigation d'un robot mobile est une tâche qui consiste à trouver un mouvement libre dans l'espace de configuration sans collision avec les obstacles proche du robot. Ce mouvement amène le robot d'une configuration initiale, vers une position finale désirée. Le robot mobile doit mettre en œuvre certains nombres de fonctionnalités pour exécuter une tâche de navigation autonome :

2.5.1 Localisation

Le succès dans l'exécution d'une tâche associée à un déplacement est directement lié à la capacité des robots de se positionner par rapport à son environnement. Cette localisation doit être la plus précise possible, et dépend de la fiabilité, de la représentation de l'environnement construite par le système et de la perception du robot.

2.5.2 Planification et exécution de mouvements

Le robot doit être capable de se déplacer de façon sûre à travers l'espace libre de l'environnement, tenant compte de la présence d'éventuels obstacles statiques et dynamiques. Le problème de déplacement du robot dans l'environnement rencontre les mêmes difficultés que la localisation et la modélisation liées à la présence d'incertitudes qui font que le déplacement commandé ne sera pas de manière générale exécuté parfaitement. Ces fonctions ne sont pas indépendantes. On note, bien évidemment, que la perception de l'environnement intervient dans toutes. La planification de mouvement s'intéresse au calcul automatique de chemins sans collision pour un robot quelconque (robot mobile, bras manipulateur, etc.) évoluant dans un environnement encombrés d'obstacles. Historiquement les premières études ont été basées sur le cycle classique en intelligence artificielle : perçoit, pense, agit. La décomposition du problème a été à l'origine de nombreux travaux. La présence de multiples modules

attachés chacun à la résolution d'un sous problème nécessite la mise en place d'une organisation permettant la construction d'un système complexe à partir ces briques élémentaires. Cette organisation est appelée architecture de contrôle.

2.5.3 Suivi de trajectoire

Cette étape consiste à calculer les commandes des actionneurs du système permettant de réaliser le mouvement planifié. Un robot étant considéré comme un système dynamique. [On utilise des méthodes de commande à retour d'état pour l'asservissement de système sur une trajectoire de référence].

2.5.4 Evitement d'obstacles et parking

L'évitement des obstacles est un comportement de base présent quasiment dans tous les mouvements des robots mobiles. Cependant pour des anomalies comme une localisation imparfaite, le suivi de la trajectoire planifiée ne garantie pas l'absence de collision avec les objets statique ou dynamique existant. L'étape finale de la navigation autonome s'appelle Parking, elle nécessite une forte précision pour l'atteinte du bute finale.

Modélisation et calibrage de cameras

3.1 Introduction:

Ce chapitre est consacré à la description du modèle qui correspond au processus de formation des images prises par une caméra. C'est pourquoi nous allons présenter le modèle sténopé qui peut nous permettre l'accès aux paramètres extrinsèques et intrinsèques de la caméra ainsi que les techniques utilisées pour son calibrage. Nous présenterons les relations ou les transformations homogènes entre les différents repères à savoir ; le repère caméra, le repère robot et le repère monde.

3.2 Modélisation de la Caméra :

3.2.1 Conception

Une caméra doit réaliser une transformation ponctuelle qui fait passer d'un point physique de l'espace réel 3D à un point 2D sur le plan image. Ce qui revient à une transformation mathématique de R3 vers R2. Il existe plusieurs modèles dans la modélisation de la formation des images numériques. Notre étude prend comme modèle celui du sténopé ; appelé également le modèle perspectif (pin-hole en anglais) ; c'est un dispositif optique et le plus utilisé dans la vision par ordinateur. Ce modèle permet d'établir une relation entre un point de coordonnées 3D de la scène observée et sa projection dans l'image en 2D.

3.2.2 Composants d'une caméra :

Une caméra se compose d'une boîte dont l'une de ses faces est percée d'un trou minuscule qui laisse entrer la lumière comme indique la figure (3.1). L'image vient se former sur la face opposée au trou et celle-ci peut être capturée en y plaçant un support photosensible (papier photographique).

image

Une caméra perspective peut en effet être modélisée grâce au modèle du sténopé comme l'illustre la figure (3.2). Ce modèle associe à la caméra un repère cartésien ; ce repère dont son origine se situe sur le centre optique C est défini comme $Rc = [Oc\ Xc\ Yc\ Zc\]$. La caméra

est représentée par un plan image, le plan image est parallèle aux axes Xc et Yc. Il est situé à une distance f de l'origine C appelée distance focale f de ce plan. La droite passant par le centre de projection et perpendiculaire au plan image est L'axe optique. L'intersection de l'axe optique avec le plan image est appelé point principal.

image

3.3 Calibration D'une Caméra:

Le calibrage consiste à estimer les paramètres intrinsèques et extrinsèques d'un modèle de caméra à partir d'un ensemble de points 3-D et de leur image. Il s'agit donc d'estimer les éléments de la matrice (3.7) ; Cette étape est incontournable pour de nombreuses applications de vision par l'ordinateur.Le calibrage de la caméra a été préalablement traité par la communauté de la photogrammétrie. Par conséquent, de nombreuses méthodes de calibrage ont été proposées dans la littérature. Ces approches sont généralement classifiées en deux catégories :

3.3.1 Calibrage avec un objet 3D de référence ou une mire :

Cette technique utilise l'observation d'objets en 3D avec des coordonnées connues. Les objets de calibrage (mire) (figure (3.7)) sont généralement des points répartis sur des plans orthogonaux ou sur un plan translaté dans la direction de sa normale. Le calcul peut alors être effectué de façon relativement simple [dib11].

3.3.2 Calibrage automatique (ou auto-calibrage) :

Dans cette technique, Le mouvement connu de la caméra filmant une scène statique est utilisé pour poser des contraintes sur les paramètres intrinsèques prenant en compte la rigidité des objets filmés en utilisant uniquement les informations de l'image [dib11]. Nous avons opté pour la première famille ; sachant qu'elle est disponible sur internet " camera calibration toolbox for matlab". Elle consiste à calibrer la caméra à partir de plusieurs images d'une mire. Prises sous des points de vue différents comme indique la figure (3.8).

image1 image2

Les positions des coins de chaque carré de la mire sont alors extraites puis raffinées en cas de distorsion. Ensuite les paramètres de la caméra sont déterminés par optimisation non linéaire.

3.4 Résultat de la calibration de la caméra :

Nous avons utilisé une webcam, type Logitech 720 hp (figure (3.9)) pour avoir un modèle et procéder à l'expérimentation. La caméra est placée sur un robot mobile qui se trouve au niveau du département d'électronique pour déterminer les paramètres intrinsèques de la caméra obtenus lors de la phase de calibrage. Leurs valeurs sont résumées dans le tableau (3.1).

image

tableau

La figure suivante présente le repère de la caméra Rc(Oc,Xc,Yc,Zc). La pyramide rouge correspond au champ de vue effectif de la caméra défini par le plan d'image.

image

Sur cette nouvelle figure, chaque position et orientation de la caméra sont représentées par une pyramide verte par rapport à chaque image de calibration. Estimation relative de la pose d'une caméra par rapport à chaque image de calibration.

image

3.5 Définition des repères :

La modélisation du robot s'appuie sur différents repères Figure (3.11) définis comme suit : R(O,XY,Y): Le repère lié à la scène repère monde) Rr(Or,Xr,Yr,Yr): Le repère lié à la base mobile Rc(Oc,Xc,Yc,Yc): Le repère lié à la caméra

Pour la base mobile ; la position est représentée par les coordonnées (x,y) du point, Or dans le repère Rr tandis que l'orientation est donnée par l'angle T .la position de la caméra dans le repère est décrite par le vecteur Oc Or=(T,O,H). Qb(X0,Y0,Z0,1): Un point de trajectoire est exprimé dans le repère monde. Sa projection dans le plan image est Q1(U1,V1,1) Alors, comme nous l'avons vu la relation :Q1=K*Tcb*Qb Après calibrage, la matrice K est déterminée et le problème consiste ensuite à trouver la Tcb La relation entre le point de l'espace dans le repère monde et repère caméra est : Qc=Tcr*Trb*Qb

3.6 Résultats de Simulations et discussion :

Pour effectuer un asservissement visuel avec les paramètres obtenus, Nous avons procéder à une manipulation qui consiste à fournir au robot mobile les coordonnées échantillonnées d'une trajectoire que nous avons tracé sur une surface bien illuminée. Pour vérifier l'exactitude des coordonnées mesurées, nous avons choisi deux points sur la trajectoire à poursuivre en calculant leurs valeurs et les comparer avec celles mesurées (figure (3.13)). Les résultats de comparaison sont très satisfaisants et l'erreur est presque inexistante. - la position de la caméra par rapport au repère monde est : [X,Y,Z]pow(r) = [20cm, 25cm, 30 cm]pow(T)-L'angle de rotation a été choisi entre le repère caméra et le repère monde.

image tableau

3.7 .Conclusion:

Après avoir présenté la partie calibrage et modélisation de la caméra nous avons procédé au calibrage d'une Webcam caméra que nous avons choisi en tenant compte du prix et de la qualité. Cette étape est nécessaire pour déterminer les paramètres intrinsèques et extrinsèques de la caméra. La modélisation de la caméra présente la projection du point de l'espace 3D à un point 2D sur le plan image par trois transformations élémentaire successives : la transformation rigide, la projection perspective et la transformation affine.

Résultats et simulation

Bibliography

- [1] Description d'un robot mobile autonome Recherche Google.
- [2] Large-scale AMR Sorting System for e-commerce.
- [3]Italian Ingenio. Mobilité et industrie : les robots am
r emballent la révolution.