Dinamika tekućina

Ivan Hip

Geotehnički fakultet, Sveučilište u Zagrebu

Lagrangeov i Eulerov pristup

Lagrangeov pristup — prati se određena materijalna točka ili materijalni volumen

Eulerov pristup — uvodi se koncept polja

- fizikalna veličina (na primjer: temperatura, tlak, brzina) definirana je u svakoj točki prostora
- promatra se određeni dio prostora, takozvani kontrolni volumen

U statici su materijalni i kontrolni volumen identični pa nije bilo potrebe raditi razliku.

Materijalni i kontrolni volumen

Slika: a) Materijalni volumen tekućine u 4 vremenska trenutka: pratimo točno određeni volumen tekućine pri istjecanju iz rezervoara. b) Interesira nas što se događa u cijevi — volumen cijevi je kontrolni volumen.

Protok

Slika: Mjerenje protoka

Protok

Srednji volumni protok

Volumen fluida koji u jediničnom vremenu prođe kroz cijev

$$Q \equiv \frac{\Delta V}{\Delta t}$$

Trenutni volumni protok

$$Q = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \frac{dV}{dt}$$

Trenutni maseni protok

$$Q_m = \dot{m} = \lim_{\Delta t \to 0} \frac{\Delta m}{\Delta t} = \frac{dm}{dt}$$

Protok kroz cijev površine presjeka S

$$Q = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \lim_{\Delta t \to 0} \frac{S\Delta r}{\Delta t} = S \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = S \frac{dr}{dt} = Sv$$

Protok kroz proizvoljnu plohu Ω

• u najopćenitijem slučaju kad brzina nije okomita na plohu i nije ista u svim točkama plohe ukupni volumni protok kroz plohu Ω moľemo izračunati integracijom

$$Q_{\Omega} \equiv \iint_{\Omega} \vec{v} \cdot d\vec{S} \qquad \left[\frac{m^3}{s}\right]$$

ullet korisno je uvesti pojam **srednje brzine** kroz plohu arOmega

$$\bar{v} \equiv \frac{Q_{\Omega}}{S} = \frac{1}{S} \iint_{\Omega} \vec{v} \cdot d\vec{S} \qquad \left[\frac{1}{m^2} \cdot \frac{m^3}{s} = \frac{m}{s} \right]$$

ullet u slučaju kad je S površina presjeka cijevi $ar{v}$ je srednja brzina tečenja kroz cijev

Jednadíba kontinuiteta za nestlačivi fluid

Na manjem presjeku brzina je veća!

Vektorska polja brzine i ubrzanja

U Eulerovom pristupu fluid je opisan poljima — temperatura i tlak su skalarna polja u svakoj točki prostora koji je ispunjen fluidom, a vektori brzine i ubrzanja čine vektorska polja brzine i ubrzanja koja su međusobno povezana očekivanom relacijom

$$\vec{a}(x, y, z, t) = \frac{d\vec{v}(x, y, z, t)}{dt}$$

U skladu s teorijom funkcija više varijabli totalni diferencijal polja brzine je

$$d\vec{v}(x,y,z,t) = \frac{\partial \vec{v}}{\partial x}dx + \frac{\partial \vec{v}}{\partial y}dy + \frac{\partial \vec{v}}{\partial z}dz + \frac{\partial \vec{v}}{\partial t}dt$$

pa je polje ubrzanja

$$\vec{a}(x,y,z,t) = v_x \frac{\partial \vec{v}}{\partial x} + v_y \frac{\partial \vec{v}}{\partial y} + v_z \frac{\partial \vec{v}}{\partial z} + \frac{\partial \vec{v}}{\partial t} = (\vec{v} \cdot \vec{\nabla})\vec{v} + \frac{\partial \vec{v}}{\partial t}$$

Lokalno ubrzanje

Lokalno ubrzanje

Član $\frac{\partial \vec{v}}{\partial t}$ različit je od nule ako se polje brzine mijenja u vremenu i naziva se **lokalno ubrzanje**.

Stacionarno tečenje

Ako nema promjene brzine u vremenu, tj. brzina u svakoj pojedinoj točki prostora (kontrolnog volumena) ostaje stalna i ne mijenja se u vremenu (pri čemu je brzina općenito različita u različitim točkama prostora!) tečenje je **stacionarno** i vrijedi

$$\frac{\partial \vec{v}}{\partial t} = 0$$

Prijenosno (konvektivno) ubrzanje

Preostali članovi polja ubrzanja koji ne ovise eksplicitno o vremenu

$$v_{x}\frac{\partial \vec{v}}{\partial x} + v_{y}\frac{\partial \vec{v}}{\partial y} + v_{z}\frac{\partial \vec{v}}{\partial z} = (\vec{v} \cdot \vec{\nabla})\vec{v}$$

nazivaju se prijenosno ili konvektivno ubrzanje.

Dakle, čak i u slučaju stacionarnog tečenja, kad se polje brzine ne mijenja u vremenu, pojedine čestice fluida se na svojoj putanji mogu ubrzavati i usporavati, ovisno o tome u kojoj točki polja se nalaze.

Osnovna jednadžba hidrostatike

Iz uvjeta ravnoteže površinskih i volumenskih sila

$$\sum \vec{F_S} + \sum \vec{F_V} = \vec{0}$$

koje djeluju na mali volumen fluida $\Delta V = \Delta x \, \Delta y \, \Delta z$

$$-\vec{\nabla} p \,\Delta V + \rho \,\vec{g}_{ef} \,\Delta V = \vec{0}$$

izvedena je osnovna jednadžba hidrostatike

$$\vec{\nabla} p = \rho \, \vec{g}_{ef}$$

Eulerova jednadžba

Ako površinske i volumenske sile nisu u ravnoteži onda mora vrijediti 2. Newtonov zakon

$$\sum \vec{F_S} + \sum \vec{F_V} = m\vec{a}$$

to jest

$$-\vec{\nabla} p \, \Delta V + \rho \, \vec{g}_{\mathsf{ef}} \, \Delta V = \rho \, \Delta V \, \vec{\mathsf{a}}$$

pri čemu je $\vec{a}(x, y, z, t)$ polje ubrzanja koje se sastoji od prijenosnog i lokalnog ubrzanja pa slijedi

$$-\vec{\nabla} p + \rho \, \vec{g}_{\mathsf{ef}} = \rho [(\vec{v} \cdot \vec{\nabla}) \vec{v} + \frac{\partial \vec{v}}{\partial t}]$$

i to je Eulerova dinamička jednadžba za strujanje idealne (neviskozne) tekućine

Rješavanje Eulerove jednadžbe

Rješavanje Eulerove jednadžbe je veoma složeno pa ćemo se ograničiti na **stacionarno strujanje** u polju sile teže $(\vec{g}_{ef} = -g \vec{k})$

$$-\vec{\nabla}p + \rho\,\vec{\mathbf{g}} = \rho\,(\vec{\mathbf{v}}\cdot\vec{\nabla})\vec{\mathbf{v}}$$

Matematičkim manipulacijama moguće je taj izraz preformulirati u

$$\vec{\nabla} p + \rho g \vec{k} + \frac{1}{2} \rho \vec{\nabla} (v^2) = \rho [\vec{v} \times (\vec{\nabla} \times \vec{v})]$$

Ako se taj izraz pomnoži s malim pomakom duž putanje (strujnice) $d\vec{r}$ desna strana izraza će zbog svojstva skalarnog produkta (produkt okomitih vektora je nula!) biti nula i ostaje

$$\vec{\nabla} p \cdot d\vec{r} + \rho g \vec{k} \cdot d\vec{r} + \frac{1}{2} \rho \vec{\nabla} (v^2) \cdot d\vec{r} = 0$$

Projekcija na strujnicu

Uvažavajući

$$d\vec{r} = dx \vec{i} + dy \vec{j} + dz \vec{k}$$

i definiciju gradijenta dobije se

$$\vec{\nabla} p \cdot d\vec{r} = \frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz = dp$$

tj. totalni diferencijal od p. Isto tako je $\vec{\nabla}(v^2) \cdot d\vec{r}$ totalni diferencijal od v^2 , a $\vec{k} \cdot d\vec{r} = dz$ zbog ortogonalnost jediničnih vektora \vec{i} , \vec{j} i \vec{k} . Rezultat

$$dp + \rho g dz + \frac{1}{2} \rho d(v^2) = 0$$

je projekcija Eulerove jednadľbe na strujnicu.

Bernoullijeva jednadľba

Dobiveni izraz koji se sastoji samo od totalnih diferencijala mol'e se lako integrirati dul' strujnice, od neke točke A do točke B

$$\int_{A}^{B} dp + \int_{A}^{B} \rho g \, dz + \frac{1}{2} \int_{A}^{B} \rho \, d(v^{2}) = 0$$

i ako uzmemo da su stvarne tekućine praktički nestlačive $(\rho = konst.)$, integracijom (i preslagivanjem) dobije se

$$p_{A} + \rho g z_{A} + \frac{1}{2} \rho v_{A}^{2} = p_{B} + \rho g z_{B} + \frac{1}{2} \rho v_{B}^{2}$$

Kako je izbor točaka A i B na strujnici bio proizvoljan, mora vrijediti

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$

za sve točke duľ strujnice i to je Bernoullijeva jednadľba.

Ograničenja u primjeni Bernoullijeve jednadľbe

Ograničenja u primjeni Bernoullijeve jednadľbe

Zbog pojednostavljenja i aproksimacija koje su načinjene tijekom izvoda primjena Bernoullijeve jednadľbe je ograničena na slučajeve kad su istovremeno ispunjeni svi ovi ograničavajući uvjeti

- neviskozno tečenje, to jest tečenje sa zanemarivim unutarnjim trenjem
- stacionarno tečenje $(\frac{\partial \vec{v}}{\partial t} = 0)$
- nestlačivi fluid ($\rho = konst.$)
- tečenje dul strujnice.

Napomena: U specijalnom slučaju takozvanog bezvrtloľnog polja brzina (kad je ispunjen uvjet $\vec{\nabla} \times \vec{v} = 0$) valjanost Bernoullijeve jednadľbe nije ograničena samo duľ strujnice.

Tlačni oblik Bernoullijeve jednadľbe

U fizici je uobičajen zapis Bernoullijeve jednadľbe

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$

Taj oblik naziva se **tlačni** jer svi članovi imaju dimenziju tlaka i mjere se u paskalima:

$$[\rho] = Pa$$

$$[\rho g z] = [\rho][g][z] = \frac{kg}{m^3} \frac{m}{s^2} m = \frac{N}{m^2} = Pa$$

$$[\frac{1}{2}\rho v^2] = [\rho][v]^2 = \frac{kg}{m^3} \frac{m^2}{s^2} = \frac{N}{m^2} = Pa.$$

Hidraulički, hidrostatički i dinamički tlak

Suma tri člana duž strujnice je konstantna

$$p +
ho gz + rac{1}{2}
ho v^2 = \mathit{konst}.$$

Pojedini članovi imaju svoje nazive:

ρgz je već poznati hidrostatički tlak

 $\frac{1}{2}\rho v^2$ naziva se *dinamički tlak* jer ovisi o brzini (zapravo bi precizniji naziv bio *kinematički tlak*)

p je hidraulički tlak

Fizikalna interpretacija

Dinamički tlak

$$\frac{1}{2}\rho v^2$$

nesumnjivo podsjeća na izraz za kinetičku energiju tijela mase m koje se giba brzinom v

$$E_k = \frac{1}{2}mv^2$$

S obzirom da je $\rho = \frac{m}{V}$ slijedi da je

$$\frac{1}{2}\rho v^2 = \frac{\frac{1}{2}mv^2}{V} = \frac{E_k}{V}$$

tj. kinetička energija po jediničnom volumenu tekućine.

Fizikalna interpretacija

Isto vrijedi i za hidrostatički tlak

$$\rho gz$$

koji podsjeća na izraz za potencijalnu energiju u polju sile teže

$$E_{p,G} = mgz$$

S obzirom da je $ho = \frac{m}{V}$ slijedi da je

$$\rho gz = \frac{mgz}{V} = \frac{E_{p,G}}{V}$$

tj. potencijalna energija sile teže po jediničnom volumenu tekućine.

Specifična energija po jedinici volumena tekućine

Fizikalna interpretacija

Članovi u tlačnom obliku Bernoullijeve jednadí be predstavljaju specifičnu energiju po jedinici volumena tekućine.

Ta interpretacija nije u kontradikciji sa činjenicom da se članovi mjere u paskalima, jer je

$$Pa = \frac{N}{m^2} = \frac{N}{m^2} \cdot \frac{m}{m} = \frac{Nm}{m^3} = \frac{J}{m^3}.$$

Paskal mol'emo interpretirati kao dl'ul po kubnom metru, tj. kao mjeru za energiju po jediničnom volumenu.

Fizikalna interpretacija hidrauličkog tlaka

- volumen tekućina se pod tlakovima koji nisu mnogo veći od atmosferskog tek neznatno smanjuje (tekućine su praktički nestlačive!)
- u proračunima se uzima da su volumen, a time i gustoća tekućina, konstantni
- ipak, tekućine jesu stlačive i u stlačenoj tekućini pohranjena je elastična potencijalna energija — kao što je pohranjena i u stlačenoj opruzi

Hidraulički tlak *p* odgovara **specifičnoj elastičnoj potencijalnoj energiji po jedinici volumena tekućine** koja je stlačena pod tim tlakom.

Specifična energija po jedinici mase

- kad se koristi naziv specifična energija bez da se spomene da se odnosi na jedinični volumen obično se podrazumijeva da se radi o energiji po jediničnoj masi
- jednostavno je Bernoullijevu jednadžbu iz tlačnog oblika preoblikovati tako da pojedini članovi predstavljaju specifičnu energiju po jedinici mase: jednadľbu treba podijeliti s gustoćom tekućine ρ

$$p + \rho gz + \frac{1}{2}v^2 = konst.$$
 / : ρ

$$\frac{p}{\rho} + gz + \frac{1}{2}v^2 = \frac{konst.}{\rho} = \mathcal{E}$$

Specifična energija po jedinici mase

• kad se podijeli s gustoćom ρ energija po jediničnom volumenu postaje energija po jedinici mase

$$\frac{E}{V}$$
: $\rho = \frac{E}{\rho V} = \frac{E}{m}$

izral'eno mjernim jedinicama

$$\frac{J}{m^3}$$
 : $\frac{kg}{m^3} = \frac{J}{m^3} \frac{m^3}{kg} = \frac{J}{kg}$

• ovaj oblik Bernoullijeve jednadľbe se u praksi relativno rijetko koristi i nema neko posebno ime

Visinski oblik Bernoullijeve jednadžbe

• osim sa gustoćom ρ tlačni oblik Bernoullijeve jednadľbe moľe se podijeliti i s ubrzanjem slobodnog pada g

$$p + \rho gz + \frac{1}{2}\rho v^2 = konst.$$
 /: (ρg)

 dobije se oblik u kojem pojedini članovi imaju dimenziju duljine, tj. mjere se u metrima

$$\frac{p}{\rho g} + z + \frac{v^2}{2g} = H$$

postavlja se pitanje fizikalne interpretacije?

Visinski oblik Bernoullijeve jednadžbe

• ako specifičnu energiju po jedinici volumena podijelimo i sa ρ i sa g slijedi

$$\frac{E}{V}$$
 : ρ : $g = \frac{E}{\rho V}$: $g = \frac{E}{m}$: $g = \frac{E}{mg} = \frac{E}{G}$

- nameće se očigledna interpretacija da se u ovom slučaju radi o specifičnoj energiji po jedinici tel'ine tekućine
- lako je pokazati da je metar ekvivalentan dľulu po njutnu

$$m = m \cdot \frac{N}{N} = \frac{Nm}{N} = \frac{J}{N}$$

Visinski oblik Bernoullijeve jednadžbe

Visinski oblik Bernoullijeve jednadžbe je

$$\frac{p}{\rho g} + z + \frac{v^2}{2g} = H$$

Pojedini članovi imaju svoje nazive:

 $\frac{p}{n\sigma}$ je tlačna visina (engl. pressure head)

z je geodetska visina (engl. elevation head)

 $\frac{v^2}{2\sigma}$ je brzinska visina (engl. velocity head)

H je ukupna energijska visina (engl. total head)

Piezometarska visina

- ullet tlačna visina u metrima može se interpretirati kao visina stupca tekućine gustoće ho u polju sile teľe jakosti g uslijed kojeg nastaje tlak p
- geodetska visina z mjeri se u odnosu na referentnu ravninu
- odabir referentne ravnine je zapravo proizvoljan
- suma tlačne i geodetske visine naziva se piezometarska visina (engl. piezometric head)

$$\Pi = \frac{p}{\rho g} + z$$

• taj naziv motiviran je činjenicom da je to upravo ona visina (u odnosu na referentnu ravninu) koja se očitava na piezometru

Piezometar

Pitotova cijev

Venturijeva cijev

Venturijeva cijev

Venturijeva cijev

Torricellijev zakon

Torricellijev zakon