# **DarioNet**

Improve Tiny Images Classification Through Super Resolution (and vice versa)

Dario Ruggeri, Simone Ercolino, Riccardo Ceccaroni, Romeo Lanzino

### **DATA SOURCE**



#### **Train**

15% of ImageNet

Training set
(~195K images
~500x400, ~21Gb)

#### **Validation**

50% of ImageNet

Validation set
(~25K images ~500x400,
~3.5Gb)

#### **Test**

50% of ImageNet

Validation set
(~25K images ~500x400,
~3.5Gb)



### **Images preprocessing**

- Data augmentation seems to worsen the results and is not so needed since we have a very large dataset of images
- Previously we had random horizontal flip, random vertical flip and random crop at the end



Model's pipeline



Center 256x256 crop



Resize to 256 pixel on the shortest side

# **End-to-end models pipelines**



### **Losses** (1/2)

#### **PSNR**

- Indeed one of the most used loss for this application
- considered unstable for training and seems to lead to blurred images

#### L1

- Manhattan distance
- lead to blurred images

#### Classifier loss

- in our case, ResNet's loss
- images not so beautiful for humans but emphasizing important features
- highest scores

#### Combination of various losses

- tradeoff between aesthetics and performances
- problem: different losses have different order of magnitude

# **Losses (2/2)**



# Results (1/4)



# Results (2/4)

Is it possible to play just right now with DarioNet:

- Apply Super Resolution to an image via Google Colab
- Take a look at test.py in our GitHub repo

Model 1 (no downscaling/ super resolution)

Model 2 (bilinear super resolution)

Model 3 (ESRGAN super resolution)

Model 4 (DarioNet super resolution)

resolution)

Model 3 (ESRGAN super resolution)

resolution)

# Results (3/4)

| Name of the model                   | Average cross entropy loss | Average PSNR | Accuracy | Total time (test) |
|-------------------------------------|----------------------------|--------------|----------|-------------------|
| Model 1 (Original images)           | 0.9112                     | inf          | 0.7676   | 1.5 minutes       |
| Model 2 (bilinear upscaling)        | 1.9864                     | 25.2466 Db   | 0.5446   | 1.5 minutes       |
| Model 3 (ESRGAN super resolution)   | 1.6946                     | 22.5088 Db   | 0.6063   | 28 minutes        |
| Model 4 (DarioNet super resolution) | 1.0931                     | 25.2211 Db   | 0.7275   | 28 minutes        |

# Results (4/4)







### **Conclusions and Future work**

- Starting idea: evaluate the performances of super-resolution on different task.
- Primary interest of our work: improve the results on the classification task starting from low resolution inputs

- A step towards image compression
- Train also ResNet50 (testing on tinylmagenet dataset)
- train DarioNet on new tasks like semantic segmentation or object detection
- See the results when classification has less classes to predict