Fundamentos de desenvolvimento web

Parcerias para desenvolver a sua carreira

AGENDA

- Apresentação da turma
- Regras do jogo
- Como funciona a internet
- Protocolos de comunicação
- Domínio e DNS
- Front end e back end
- Material complementar

APRESENTAÇÃO DA TURMA

Seja bem vindo! Quem é você?

- Nome
- Idade
- Cidade
- Formação
- Experiências com programação

REGRAS DO JOGO

Para tirar o melhor proveito dos nossos estudos, vamos estabelecer algumas regras:

- Não é uma competição!
- Não durma com dúvidas!
- Trabalhe em equipe!
- Não tenha medo de errar!
- Cada um tem seu tempo respeite!

REGRAS DO JOGO

Para tirar o melhor proveito dos nossos estudos, vamos estabelecer algumas regras:

- Para perguntar, use o "levantar a mão"
- Use o chat à vontade!
- Pode me corrigir à vontade!
- Divirta-se!

COMO FUNCIONA A INTERNET

Estamos acostumados a utilizar a internet diariamente, a partir de diversos dispositivos diferentes.

Celulares, computadores, *smart watches*, televisões e até equipamentos domésticos comunicam-se em tempo real e em diversos lugares ao redor do mundo.

Você já parou pra pensar em como funciona essa **arquitetura**? Em como os nossos dispositivos se **comunicam**?

COMO FUNCIONA A INTERNET

A comunicação entre esses dispositivos é realizada através de uma **rede**, onde cada um desses dispositivos possui um endereço e cada informação é transformada em um "pacote", trafegando através de uma infraestrutura física.

Para que toda essa comunicação seja padronizada e funcione corretamente, foi adotado um protocolo de comunicação chamado **protocolo de controle de transmissão**.

De fato, todo o conteúdo que trafega na rede é padronizado por um **protocolo**.

COMO FUNCIONA A INTERNET

Na internet, toda comunicação é realizada através de um computador **cliente** (exemplo, nosso computador) e um **servidor** (exemplo, os computadores da *Google Cloud Platform*).

Existem diversos protocolos de comunicação, sendo os mais comuns:

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)
- Internet Protocol (IP)
- Hyper Text Transfer Protocol (HTTP)
- Simple Mail Transport Protocol (SMTP)
- Post Office Protocol (POP)

Existem diversos protocolos de comunicação, sendo os mais comuns:

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)
- Internet Protocol (IP)
- Hyper Text Transfer Protocol (HTTP)
- Simple Mail Transport Protocol (SMTP)
- Post Office Protocol (POP)

Vamos estudar estes protocolos!

Transmission Control Protocol (TCP)

O protocolo de controle de transmissão faz parte da camada de transporte do conjunto de camadas dos protocolos de rede.

Determina a transmissão da mensagem e garante que haja uma conexão entre um cliente e um servidor.

A mensagem enviada é "quebrada" em pacotes menores (bytes), e uma série de mecanismos para garantia da integridade da mensagem é adotada, ao custo de ser mais lento que outros protocolos especializados.

Internet Protocol (IP)

É o principal protocolo de comunicação de redes. É ele que determina o endereçamento das mensagens dentro da rede.

Uma mensagem na rede possui um cabeçalho, que funciona como um "envelope". Neste cabeçalho estão, dentre outras informações, as informações de endereçamento.

Internet Protocol (IP)

O formato de endereço utilizado pelo protocolo IP é o endereço IP, em sua versão 4. Este endereço é uma identificação única de um dispositivo em uma rede.

Um exemplo de endereço IP:

127.0.0.1

HyperText Transfer Protocol (HTTP)

É o protocolo de comunicação mais comum, e determina o formato de mídia que está sendo trafegado na rede (neste caso, o tipo de **hypertext**).

O tipo Hypertext (hipertexto) é um texto estruturado que utiliza ligações lógicas (links), que referenciam outros documentos do tipo texto dentro da rede.

Uma variação do HTTP é o **HTTPS** (*Hypertext Transfer Protocol Secure*).

Como vimos, cada dispositivo na rede possui um endereço IP para podermos acessar os seus recursos.

Para facilitar a localização desses dispositivos, atribuímos a eles um **nome de domínio** - um endereço amigável e legível que é convertido para um endereço IP.

Essa conversão é realizada em um **DNS - Domain Name Service** (serviço de nome de domínio).

Exemplo de domínio:

https://br.linkedin.com/ → 108.174.10.14

Um **nome de domínio** é formado pelo **subdomínio**, **domínio** e **domínio de alto nível**.

No domínio de alto nível (*TLD*, ou *top level domain*) nós temos o *gTLD* (*generic top level domain*) e o **ccTLD** (*country code top level domain*).

O endereço completo, formado pelo protocolo + subdomínio + domínio + TLD é chamado de **URL** - **Uniform Resource Locator** (localizador uniforme de recursos).

Exemplo de URL:

CHECK POINT

Vamos ver o que aprendemos até aqui?

- O que é o protocolo TCP?
- Qual é o protocolo responsável pelo formato da informação na rede?
- O que faz um Domain Name Service (serviço de nome de domínio)?

Nosso trabalho como desenvolvedores web se divide em várias áreas de atuação, dada a complexidade dos sistemas de hoje em dia.

Podemos classificar nossa atividade em duas áreas principais: desenvolvedores **front end** e **back end**.

APRESENTAÇÃO DA TURMA

Coloquem no chat: o que faz um desenvolvedor **front end**? E um desenvolvedor **back end**?

O **desenvolvedor front end** atua na interface gráfica do sistema web, cuidando do visual e acessibilidade do sistema. Utiliza tecnologias como HTML, CSS, JavaScript, Angular, React, Vue, etc.

O **desenvolvedor back end** atua nas funcionalidades da aplicação, cuidando para que o sistema processe corretamente as entradas de dado (que geralmente vem da interface gráfica).

Utiliza tecnologias como JavaScript, Java, C#, Go, Ruby, Node, Spring Boot, .Net, etc.

O **desenvolvedor full stack** atua em ambas as áreas (front end e back end), e utiliza as tecnologias já citadas anteriormente

Durante o DEVInHouse, você terá aprenderá a desenvolver sistemas de ponta a ponta e se tornará um desenvolvedor full stack.

Boa viagem!

MATERIAL COMPLEMENTAR

- Tipos de protocolos <u>W3Schools Types of Protocols</u>
- História da internet <u>RockContent História da Internet</u>
- Visão geral do HTTP Mozilla Visão geral do HTTP
- Documentário Como funciona a internet <u>How Does the Internet</u> <u>Work?</u>

DEVinHouse

Parcerias para desenvolver a sua carreira

OBRIGADO!

<LAB365>