CS7602 - MACHINE LEARNING ASSIGNMENT 2

SUBMITTED BY

JAYASREE LAKSHMI NARAYAN 2016103033 AKHILA G P 2016103503

DATE: 28-03-2019

CONTENTS

- 1. SUPPORT VECTOR MACHINES
- 2. PRINCIPAL COMPONENT ANALYSIS

DATASET USED

1. GENDER CLASSIFICATION BASED ON VOICE

A DESCRIPTION ON THE DATASET UNDER STUDY

GENDER DETECTION BASED ON VOICE

DESCRIPTION AND BASIC IDEA

```
In [1]: import pandas as pd
        df = pd.read csv('voice.csv')
       print(df.head(5))
                               median
                                                     Q75
                                                              IQR
          meanfreq
                         sd
                                           025
                                                                        skew \
         0.059781 0.064241 0.032027 0.015071 0.090193 0.075122 12.863462
       1 0.066009 0.067310 0.040229 0.019414 0.092666 0.073252 22.423285
       2 0.077316 0.083829 0.036718 0.008701 0.131908 0.123207 30.757155
       3 0.151228 0.072111 0.158011 0.096582 0.207955 0.111374
                                                                   1.232831
       4 0.135120 0.079146 0.124656 0.078720 0.206045 0.127325
                                                                    1.101174
                                     sfm ...
                                                         meanfun
                                                centroid
                                                                     minfun \
                 kurt
                        sp.ent
          274.402906 0.893369 0.491918 ...
                                                0.059781 0.084279 0.015702
       1
          634.613855 0.892193 0.513724 ...
                                                0.066009 0.107937 0.015826
       2 1024.927705 0.846389 0.478905 ...
                                                0.077316 0.098706 0.015656
             4.177296 0.963322 0.727232 ...
       3
                                                0.151228 0.088965 0.017798
             4.333713 0.971955 0.783568 ...
       4
                                                0.135120 0.106398 0.016931
            maxfun meandom
                               mindom
                                        maxdom dfrange modindx label
       0\quad 0.275862\quad 0.007812\quad 0.007812\quad 0.0007812\quad 0.000000\quad 0.0000000
                                                                    male
       1 0.250000 0.009014 0.007812 0.054688 0.046875 0.052632
                                                                    male
       2 0.271186 0.007990 0.007812 0.015625 0.007812 0.046512
                                                                    male
          0.250000 0.201497 0.007812 0.562500
                                                0.554688
                                                         0.247119
                                                                    male
       4 0.266667 0.712812 0.007812 5.484375 5.476562 0.208274
                                                                    male
       [5 rows x 21 columns]
```

```
In [7]: print "SHAPE : ",
    print df.shape
    print "NULL VALUES : ",
    print df.isnull().values.any()

SHAPE : (3168, 21)
    NULL VALUES : False
```

	monnfron	- d	median	025	075	,
count	meanfreq 3168.000000	sd 3168.000000	median 3168.000000	3168.000000	3168.000000	\
mean	0.180907	0.057126	0.185621	0.140456	0.224765	
std	0.029918	0.016652	0.036360	0.048680	0.023639	
min	0.039363	0.018363	0.010975	0.000229	0.042946	
25%	0.163662	0.041954	0.169593	0.111087	0.208747	
50%	0.184838	0.059155	0.190032	0.140286	0.225684	
75%	0.199146	0.067020	0.210618	0.175939	0.243660	
max	0.251124	0.115273	0.261224	0.247347	0.273469	
	IQR	skew	kurt	sp.ent	sfm	\
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	
mean	0.084309	3.140168	36.568461	0.895127	0.408216	
std	0.042783	4.240529	134.928661	0.044980	0.177521	
min	0.014558	0.141735	2.068455	0.738651	0.036876	
25%	0.042560	1.649569	5.669547	0.861811	0.258041	
50%	0.094280	2.197101	8.318463	0.901767	0.396335	
75%	0.114175	2.931694	13.648905	0.928713	0.533676	
max	0.252225	34.725453	1309.612887	0.981997	0.842936	
	mode	centroid	meanfun	minfun	maxfun	\
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	•
mean	0.165282	0.180907	0.142807	0.036802	0.258842	
std	0.077203	0.029918	0.032304	0.019220	0.030077	
min	0.000000	0.039363	0.055565	0.009775	0.103093	
25%	0.118016	0.163662	0.116998	0.018223	0.253968	
50%	0.186599	0.184838	0.140519	0.046110	0.271186	
75%	0.221104	0.199146	0.169581	0.047904	0.277457	
max	0.280000	0.251124	0.237636	0.204082	0.279114	
	meandom	mindom	maxdom	dfrange	modindx	
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	
mean	0.829211	0.052647	5.047277	4.994630	0.173752	
std	0.525205	0.063299	3.521157	3.520039	0.119454	
min	0.007812	0.004883	0.007812	0.000000	0.000000	
25%	0.419828	0.007812	2.070312	2.044922	0.099766	
50%	0.765795	0.023438	4.992188	4.945312	0.139357	
75%	1.177166	0.070312	7.007812	6.992188	0.209183	
max	2.957682	0.458984	21.867188	21.843750	0.932374	

Illustration 2: Original data distribution

The jupyter notebook with the code is uploaded in Github and the link for the document is https://github.com/Akhilagp/ML_Assignment.

PROCEDURE:

- Support Vectors are the co-ordinates of individual observation. SVM is a frontier which best segregates the two classes (hyper-plane/ line).
- The hyper-plane is selected in such a way that it segregates the two classes better.
- When all the hyper-planes fit well, the best one for classification is chosen by maximizing the distance between nearest data points.
- Kernel trick is used when non linear hyper-planes are needed.
- PARAMETERS VARIED For Understanding
 - 1. Various Kernels
 - 2. Gamma value (tuning)
 - 3. The 'C' parameter soft margin cost function (tuning)
 - 4. Degree of polynomial kernel.
 - 5. The number of Principal Components

OUTPUT:

Classifer	Accuracy	Hyper-parameters tuning		
	with default parameters	С	Accuracy	
	0.9694	0.1	0.9700	
		0.2	0.9691	
SVC with Linear kernel		0.3	0.9690	
		0.4	0.9690	
		0.5	0.9694	
	0.9659	Gamma	Accuracy	
		0.01	0.96815	
		0.02	0.9678	
SVC with RBF kernel		0.03	0.9678	
		0.04	0.9668	
		0.05	0.9659	
		Degree	Accuracy	
		2	0.8506	
	0.9457	3	0.9457	
SVC with polynomial kernel		4	0.8312	
		5	0.8659	
		6	0.7747	

INFERENCE:

Illustration 3: Tuning soft-cost parameter

From illustration 1, it is evident that around C=0-1 and C=7-8, the accuracy hits the peak and at C=2 it falls. Varying the the values for C between 0 and 1, the exact value of C where the accuracy is the highest is found (C=0.1)

From illustration 2, around gamma = 0.0 and 0.02, the accuracy increases and starts to fall after 0.02. In turn, tuning the parameter with values between 0 and 0.02 the highest accuracy is obtained at gamma = 0.01.

From illustration 4, it is evident that the $3^{\rm rd}$ degree polynomial (default value) gives the maximum accuracy.

PRINICIPAL COMPONENT ANALYSIS

ALGORITHM

The Principal Components Analysis Algorithm

- Write N datapoints $\mathbf{x}_i = (\mathbf{x}_{1i}, \mathbf{x}_{2i}, \dots, \mathbf{x}_{Mi})$ as row vectors
- Put these vectors into a matrix **X** (which will have size $N \times M$)
- Centre the data by subtracting off the mean of each column, putting it into matrix B
- Compute the covariance matrix $\mathbf{C} = \frac{1}{N} \mathbf{B}^T \mathbf{B}$
- Compute the eigenvalues and eigenvectors of \mathbf{C} , so $\mathbf{V}^{-1}\mathbf{C}\mathbf{V} = \mathbf{D}$, where \mathbf{V} holds the eigenvectors of \mathbf{C} and \mathbf{D} is the $M \times M$ diagonal eigenvalue matrix
- Sort the columns of ${\bf D}$ into order of decreasing eigenvalues, and apply the same order to the columns of V
- Reject those with eigenvalue less than some η , leaving L dimensions in the data

OUTPUT

Classifer	PCA		
	No. of Principal Components	Accuracy	
	6	0.88328	
	8	0.9526	
SVC with Linear kernel	10	0.9763	
	12	0.9842	
	14	0.9668	
SVC with RBF kernel	6	0.8880	
	8	0.9258	
	10	0.9495	
	12	0.9637	

	14	0.9558
	6	0.9274
	8	0.9479
SVC with polynomial kernel	10	0.9558
	12	0.9495
	14	0.9463

INFERENCE:

- For various kernels, the number of principal components are varied, and the highest accuracy is found.
- For Linear SVM, when using PCA and reducing the dimensionality, the accuracy has increased by 1% (Number of PC = 12).
- For polynomial SVM, when using PCA and reducing the dimensionality, the accuracy has increased by 2% (Number of PC = 10).