What's important in a text? An extensive evaluation of linguistic annotations for summarization

Markus Zopf, Teresa Botschen, Tobias Falke, Benjamin Heinzerling, Ana Marasovic, Todor Mihaylov, Avinesh P.V.S, Eneldo Loza Mencia, Johannes Fürnkranz and Anette Frank https://www.aiphes.tu-darmstadt.de

Heidelberger Institut für Theoretische Studien

Suppose you are a journalist...

AIPHES

Donald Trump

won the election and will become the 45th president

Automatic summarization = reduce text length while preserving most important information

- 1. make text shorter: $|Y| < \sum_{i=1}^{n} |X_i|$
- 2. don't add content: $Y \subseteq \bigcup_{i=1}^{n} X_i$
- 3. maximize a utility: $Y^* = \underset{Y}{\operatorname{argmax}} u(Y)$

Suppose you are a journalist...

Promoted elements are preferred over not promoted elements

document X^i summary Y^i

- promoted elements $P^i = X^i \cap Y^i = \{ \blacksquare \}$
- not promoted elements $N^i = X^i \setminus P^i = \{$

$$\mathbf{u}(\square) = \frac{1}{|E|} \sum_{e \in E} \frac{n(\square > e)}{n(\square > e) + n(\square > e)}$$
$$\mathbf{v}(x_j \in X^i) = \frac{1}{|s|} \sum_{e \in S} v(e)$$

Experimental Setup

Annotations under Investiation

- Unigrams, bigrams, trigrams
- Chunks parts of sentences with specific grammatical meaning
- Concepts detected with open information extraction
- Verb stems {killing, killed} → kill
- FrameNet frame annotations
- Connotation frames subjective roles and relationships
- Discourse Relation Senses, e.g. causation, contrast, or concession

Data used

DUC 2004, TAC 2008, and TAC 2009 summarization dataset

Rankings for importance estimation evaluation

Precision =
$$\frac{x_i \cap Y}{|x_i|}$$

$$\mathbf{R}ecall = \frac{x_i \cap Y}{|Y|}$$

$$\frac{x_4 \quad x_1}{x_2 \quad x_7}$$

$$\frac{x_2 \quad x_7}{x_3 \quad x_4}$$
....

Р	R	_	Р	R
x_4	x_1	_	x_3	x_5
x_2	x_7		x_8	x_1
x_3	x_4	_	x_4	x_4
		_		
target			actual	

Dataset Generation

Evaluation

We measure the distance to the target ranking with three different measures

Kendall's Tau

precision@k

Preference prediction for importance estimation evaluation

$$S_i, S_j \qquad S_i \succ S_j$$
$$S_i \prec S_j$$

Dataset Generation

Evaluation

Ranking on unseen test data shows that simple annotations perform best

	Kendall's Tau		nDCRS		precision@k	
	P	R	P	R	P	R
bigram	.306	.539	.253	.863	.253	.424
cf-effect-object	051	.269	.083	.687	.083	.230
cf-state-subject	054	.284	.083	.697	.083	.234
chunk-concepts	.175	.367	.206	.773	.206	.298
concepts-string	.106	.193	.146	.639	.146	.179
concepts-sim	.093	.225	.135	.669	.135	.225
connotation-frames	011	.335	.089	.739	.089	.267
entity-importance	076	060	.107	.510	.107	.193
entity-links	.135	.264	.169	.709	.169	.261
entity-type-coarse	.031	.100	.138	.582	.138	.155
entity-type-corenlp	.075	.358	.132	.766	.132	.316
entity-type-figer	.122	.272	.165	.709	.165	.243
entity-type-fine	.117	.269	.163	.708	.163	.236
FN-frames	.027	.383	.107	.772	.107	.297
FN-frames-nounsOnly	.116	.474	.133	.836	.133	.364
FN-frames-verbsOnly	.010	.209	.096	.639	.096	.186
sentiment-annos	.068	.215	.148	.673	.148	.222
discours-rel	.011	.234	.133	.646	.133	.174
trigram	.172	.366	.186	.760	.186	.241
unigram	.300	.654	.260	.913	.260	.515
verb-stem	.042	.250	.114	.671	.114	.215

Simple annotations do not perform best at preference prediction on unseen test data

9	DUC 2003	DUC 2004	TAC 2008	TAC 2009	average
bigram	0.573	0.538	0.415	0.445	0.493
cf-effect-object	0.538	0.520	0.663	0.743	0.616
cf-state-subject	0.548	0.439	0.420	0.512	0.480
chunk-concepts	0.641	0.613	0.556	0.602	0.603
concepts-string	0.513	0.429	0.371	0.382	0.424
concepts-sim	0.520	0.468	0.438	0.473	0.475
connotation-frames	0.551	0.556	0.546	0.592	0.561
entity-importance	0.597	0.634	0.655	0.658	0.636
entity-links	0.510	0.450	0.370	0.364	0.424
entity-type-coarse	0.512	0.487	0.664	0.695	0.590
entity-type-corenlp	0.582	0.608	0.551	0.616	0.589
entity-type-figer	0.495	0.487	0.453	0.408	0.461
entity-type-fine	0.497	0.490	0.456	0.405	0.462
FN-frames	0.474	0.497	0.515	0.496	0.496
FN-frames-nounsOnly	0.521	0.537	0.531	0.539	0.532
FN-frames-verbsOnly	0.490	0.487	0.468	0.507	0.488
sentiment-annos	0.430	0.402	0.353	0.356	0.385
discours-rel	0.550	0.608	0.628	0.604	0.598
trigram	0.373	0.285	0.210	0.254	0.281
unigram	0.617	0.601	0.530	0.553	0.575
verb-stem	0.497	0.517	0.515	0.500	0.507

What's important in a text? An extensive evaluation of linguistic annotations for summarization

Summary

- 9
- Information importance estimation is a key problem in summarization

we investigated a wide range of annotations to replace bigrams

annotations close to surface work well for ranking input sentences

they do not work well for preference prediction

Markus Zopf, Teresa Botschen, Tobias Falke, Benjamin Heinzerling, Ana Marasovic, Todor Mihaylov, Avinesh P.V.S, Eneldo Loza Mencia, Johannes Fürnkranz and Anette Frank https://www.aiphes.tu-darmstadt.de

