DSC 40B Theoretical Foundations II

Lecture 8 | Part 1

Dynamic Sets

Bookkeeping

Door...cep....g

► How do you store your books?

Bookkeeping

► How do you store your books?

Bookkeeping

How do you store your books?

Bookkeeping: Tradeoffs

- Messy:
 - ► No upfront cost.
 - Cost to search is high.
- Organized
 - Big upfront cost.
 - Cost to search is low.

"Right" choice depends on how often we search.

Data Structures and Algorithms

- Data structures are ways of organizing data to make certain operations faster.
- Come with an upfront cost (preprocessing).
- "Right" choice of data structure depends on what operations we'll be doing in the future.

Queries: Easy to Hard

- We've been thinking about queries.
 - Given a collection of data, is x in the collection?
- Querying is a fundamental operation.
 - Useful in a data science sense.
 - But also frequently performed in algorithms.
- ▶ There are several situations to think about.

Situation #1: Static Set, One Query

- ► **Given**: a collection of *n* numbers (or strings, etc.).
- In future, you will be asked single query.
- ▶ Best approach: linear search, $\Theta(n)$ worst case.

Situation #2: Static Set, Many Queries

- ▶ **Given**: a collection of *n* numbers (or strings, etc.).
- In future, you will be asked **many** queries.
- Best approach: sort + binary search
 - \triangleright $\Theta(n \log n)$ time preprocessing
 - \triangleright $\Theta(\log n)$ worst case for subsequent queries

Exercise

Suppose you have a static set of n items. How long will it take^a to perform k queries in total with:

- 1. linear search?
- 2. sort + binary search?

If k = n/10, which should you use? What if $k = \log n$?

^aOn average. Assume the best case is rare.

Situation #3: Dynamic Set, Many Queries

- ▶ **Given**: a collection of *n* numbers (or strings, etc.).
- In future, you will be asked **many** queries *and* to **insert** new elements.

Best approach: ?

Binary Search?

- Can we still use binary search?
- Problem: To us binary search, we must maintain array in sorted order as we insert new elements.
- ▶ Inserting into array takes $\Theta(n)$ time in worst case.
 - Must "make room" for new element.
 - Can we use linked list with binary search?

Exercise

Suppose we have a collection of n elements. We make n/4 insertions and n/4 queries. How long will this take in total with

- 1. append to linked list append + linear search?
- 2. maintain sorted array + binary search?

Today

- Introduce (or review) binary search trees.
- BSTs support fast queries and insertions.
- Preserve sorted order of data after insertion.
- Can be modified to solve many problems efficiently.
 - Example: finding order statistics.

DSC 40B Theoretical Foundation II

Lecture 8 | Part 2

Binary Search Trees

Trees

Binary Trees

Each node has at most two children (left and right).

Binary Search Tree

- A binary search tree (BST) is a binary tree that satisfies the following for any node x:
- ▶ if y is in x's **left** subtree:

▶ if y is in x's **right** subtree:

Assumption (for simplicity)

- We'll assume keys are unique (no duplicates).
- ▶ if y is in x's **left** subtree:

▶ if y is in x's **right** subtree:

Example

► This **is** a BST.

Example

► This is **not** a BST.

Exercise

Is this is a BST?

Height

- ► The height of a tree is the number of edges from the root to any leaf.
- Suppose a binary tree has n nodes.
- ► The **tallest** it can be is $\approx n$
- ► The **shortest** it can be is $\approx \log_2 n$

In Python

```
class Node:
    def __init__(self, key, parent=None):
        self.kev = kev
        self.parent = parent
        self.left = None
        self.right = None
class BinarySearchTree:
    def init (self, root: Node):
        self.root = root
```

In Python

```
root = Node(6)

n1 = Node(12, parent=root)
root.left = n1
n2 = Node(33, parent=root)
root.right = n2
tree = BinarySearchTree(root)
```

DSC 40B Theoretical Foundations II

Lecture 8 | Part 3

Queries and Insertions in BSTs

Why?

- BSTs impose structure on data.
- "Not quite sorted".
- Preprocessing for making insertions and queries faster.

Operations on BSTs

- ► We will want to:
 - query a key (is it in the tree?)
 - ▶ insert a new key

Queries

► **Given**: a BST and a target, t.

► **Return**: True or False, is the target in the collection?

Queries

▶ Is 36 in the tree? 65? 23?

Queries

- Start walking from root.
- If current node is:
 - equal to target, return True;
 - too large (> target), follow left edge;
 - too small (< target), follow right edge;</p>
 - None, return False

Queries, in Python

```
def guerv(self. target):
    """As method of BinarySearchTree."""
    current node = self.root
    while current node is not None:
        if current node.kev == target:
            return current node
        elif current node.key < target:</pre>
            current node = current node.right
        else:
            current node = current node.left
    return None
```

Exercise

Complete the recursive version of query.

```
def query_recursive(node, target):
    """As a 'free function'."""
    if node is None:
        return False

    if node.key == target:
        ...
    elif ...:
    else:
```

Queries (Recursive)

```
def query_recursive(node, target):
    """As a 'free function'."""
    if node is None:
         return False
    if node.key == target:
         return node
    elif node.kev < target:</pre>
         return query recursive(node.right, target)
    else:
         return query recursive(node.left, target)
```

Queries, Analyzed

 \triangleright Best case: Θ(1).

 \blacktriangleright Worst case: $\Theta(h)$, where h is **height** of tree.

Insertion

► **Given**: a BST and a new key, *k*.

► **Modify**: the BST, inserting *k*.

Must maintain the BST properties.

Insertion

► Insert 23 into the BST.

Insertion (The Idea)

Traverse the tree as in query to find empty spot where new key should go, keeping track of last node seen.

- Create new node; make last node seen the parent, update parent's children.
- Be careful about inserting into empty tree!

```
def insert(self, new key):
    # assume new key is unique
   current_node = self.root
    parent = None
    # find place to insert the new node
   while current node is not None:
        parent = current node
        if current node.kev < new kev:</pre>
            current node = current node.right
        else: # current node.kev > new kev
            current node = current node.left
    # create the new node
    new node = Node(key=new key, parent=parent)
    # if parent is None. this is the root. Otherwise, update the
    # parent's left or right child as appropriate
   if parent is None:
        self.root = new_node
    elif parent.key < new key:
        parent.right = new node
   else:
        parent.left = new node
```

Insertion, Analyzed

▶ Worst case: $\Theta(h)$, where h is **height** of tree.

Main Idea

Querying and insertion take $\Theta(h)$ time in the worst case, where h is the height of the tree.

DSC 40B Theoretical Foundations II

Lecture 8 | Part 4

Balanced and Unbalanced BSTs

Binary Tree Height

- ▶ In case of very balanced tree, $h = \Theta(\log n)$.
 - Powery, insertion take worst case $\Theta(\log n)$ time in a balanced tree.

Binary Tree Height

- In the case of very unbalanced tree, $h = \Theta(n)$.
 - Powery, insertion take worst case $\Theta(n)$ time in unbalanced trees.

Unbalanced Trees

- Occurs if we insert items in (close to) sorted or reverse sorted order.
- ► This is a **common** situation.

Example

Insert 1, 2, 3, 4, 5, 6, 7, 8 (in that order).

Time Complexities

query $\Theta(h)$ insertion $\Theta(h)$

Where h is height, and $h = \Omega(\log n)$ and h = O(n).

Time Complexities (Balanced)

query $O(\log n)$ insertion $O(\log n)$

Where h is height, and $h = \Omega(\log n)$ and h = O(n).

Worst Case Time Complexities (Unbalanced)

```
query \Theta(n) insertion \Theta(n)
```

- ► The worst case is bad.
 - Worse than using a sorted array!
- The worst case is not rare.

Main Idea

The operations take linear time in the worst case **unless** we can somehow ensure that the tree is **balanced**.

Self-Balancing Trees

- There are variants of BSTs that are self-balancing.
 - Red-Black Trees, AVL Trees, etc.
- Quite complicated to implement correctly.
- ▶ But their height is **guaranteed** to be $\sim \log n$.
- \triangleright So insertion, query take $\Theta(\log n)$ in worst case.

Warning!

If asked for the time complexity of a BST operation, be careful! A common mistake is to say that insertion/query are $\Theta(\log n)$ without being told that the tree is balanced.

Main Idea

In general, insertion/query take $\Theta(h)$ time in worst case. If tree is balanced, $h = \Theta(\log n)$, so they take $\Theta(\log n)$ time. If tree is badly unbalanced, h = O(n), and they can take O(n) time.

DSC 40B Theoretical Foundations II

Lecture 8 | Part 5

Augmenting BSTs

Modifying BSTs

Perhaps more than most other data structures, BSTs must be modified (augmented) to solve unique problems.

Order Statistics

For the five of th

Example

```
[99, 42, -77, -12, 101]
```

- ► 1st order statistic:
- 2nd order statistic:
- 4th order statistic:

Dynamic Set, Many Order Statistics

- Quickselect finds any order statistic in linear expected time.
- This is efficient for a static set.

Inefficient if set is dynamic.

Goal

Create a dynamic set data structure that supports fast computation of any order statistic.

BST Solution

► For each node, keep attribute .size, containing # of nodes in subtree rooted at current node

```
Property:1
x.size = x.left.size + x.right.size + 1
```

¹If a left or right child doesn't exist, consider its size zero.

Computing Sizes

```
def add_sizes_to_tree(node):
    if node is None:
        return 0
    left_size = add_sizes_to_tree(node.left)
    right_size = add_sizes_to_tree(node.right)
    node.size = left_size + right_size + 1
    return node.size
```

Note

► Also need to maintain size upon inserting a node.

Computing Order Statistics

▶ 8th? 2nd? 12th

Augmenting Data Structures

- This is just one example, but many more.
- Understanding how BSTs work is key to augmenting them.