Dominik Wawszczak numer indeksu: 440014 numer grupy: 1

Zadanie 1

Stwórzmy nowy nieskierowany graf G' taki, że

$$V(G') := V(G) \cup \{t\} \text{ oraz } E(G') := E(G) \cup \{xt : x \in V(G)\}.$$

Niech funkcja kosztu $c: V(G') \to \mathbb{Z}_{\geq 0}$ będzie następująca:

$$c(xy) := \begin{cases} g(xy), & \text{jeżeli } xy \in E(G), \\ f(x), & \text{gdy } y = t, \\ f(y), & \text{dla } x = t. \end{cases}$$

<u>Lemat 1</u> Każdy zbiór $X \subseteq V(G)$ zawierający v_0 odpowiada pewnemu przekrojowi sieci przepływowej (G', c, v_0, t) , w taki sposób, że koszt(X) jest równy przepustowości tego przekroju.

<u>Dowód lematu 1</u> Dla konkretnego zbioru $X \subseteq V(G)$ zawierającego v_0 weźmiemy S = X i $T = (V(G) \setminus X) \cup \{t\}$. Wtedy oczywiście $V(G') = S \cup T$ oraz $S \cap T = \emptyset$. Przepustowością tego przekroju jest wówczas

$$\sum_{x \in S \ \land \ y \in T} c(xy) \ = \ \sum_{x \in X} c(xt) + \sum_{x \in X \ \land \ y \in V(G) \backslash X} c(xy) \ = \ \sum_{x \in X} f(x) + \sum_{x \in X \ \land \ y \in V(G) \backslash x} g(xy),$$

czyli koszt(X), co kończy dowód lematu.

Dla dowolnego przekroju (S, T) sieci (G', c, v_0, t) , biorąc X = S znowu otrzymamy, że koszt(X) jest równy przepustowości tego przekroju, zatem również każdemu przekrojowi odpowiada podzbiór wierzchołków grafu G zawierający v_0 .

Z powyższego wynika, że minimalny możliwy koszt zbioru $X \subseteq V(G)$ zawierającego v_0 jest równy przepustowości minimalnego przekroju sieci (G', c, v_0, t) , czyli wartości maksymalnego przepływu tej sieci. Maksymalny przepływ możemy znaleźć algorytmem Dinica mającym złożoność czasową $O(|V(G')|^2|E(G')|)$.

Żeby odzyskać zbiór X wystarczy podzielić zbiór wierzchołków grafu G' na dwa zbiory: S – wierzchołki do których istnieje ścieżka z v_0 w sieci rezydualnej z maksymalnym przepływem oraz T – pozostałe wierzchołki. Można to zrealizować zwykłym algorytmem DFS w czasie O(|V(G')| + |E(G')|). Wówczas S jest szukanym zbiorem.

Ponieważ zachodzi |V(G')| = |V(G)| + 1 oraz |E(G')| = |E(G)| + |V(G)|, to całkowita złożoność naszego algorytmu to $O(|V(G)|^2(|V(G)| + |E(G)|))$.

Zadanie 2

<u>Lemat 1</u> Istnieje k parami rozłącznych krawędziowo ścieżek prostych z s do t.

<u>Dowód lematu 1</u> Rozpatrzmy sieć przepływową $(G, \lambda xy.1, s, t)$. Zauważmy, że każdemu cięciu $Z \subseteq E(G)$ odpowiada pewien przekrój (S, T) tej sieci, ponieważ możemy wziąć

```
S = \{v : \text{ istnieje ścieżka z } s \text{ do } v \text{ niezawierająca krawędzi z } Z\} oraz T = V(G) \setminus S.
```

Jeśli dodatkowo cięcie Z jest minimalne, czyli |Z|=k, to każda krawędź $xy\in Z$ spełnia warunek $x\in S \ \land \ y\in T$, gdyż w przeciwnym razie mamy jeden z dwóch przypadków:

- $x \in T$, wówczas krawędź xy jest redundantna i istnieje mniejsze cięcie $Z \setminus \{xy\}$, ponieważ i tak nie da się dojść z s do x;
- $y \in S$, wtedy podobnie krawędź xy nic nie zmienia i istnieje mniejsze cięcie $Z \setminus \{xy\}$, albowiem krawędź ta nie nakłada żadnych ograniczeń, jako że i tak istnieje inna ścieżka z s do y.

W analogiczny sposób każdemu przekrojowi odpowiada pewne cięcie, z czego wynika, że przepustowość minimalnego przekroju wynosi k, skąd wartość maksymalnego przepływu również wynosi k. Na wykładzie było dowodzone, że przepływ ten rozkłada się na ścieżki i cykle, przy czym cykle możemy po prostu zignorować, a o ścieżkach założyć, że na każdej z nich wartość przepływu jest całkowita, czyli wynosi 1, ponieważ algorytm Forda-Fulkersona jest poprawny. Wnioskujemy stąd, że ścieżki te są parami rozłączne krawędziowo, gdyż w przeciwnym wypadku istniałaby krawędź, dla której funkcja przepływu przekraczałaby funkcję przepustowości. Otrzymaliśmy rodzinę k parami rozłącznych krawędziowo ścieżek prostych z s do t: $P = \{(s = v_{1,1}, v_{1,2}, \ldots, v_{1,l_1} = t), (s = v_{2,1}, v_{2,2}, \ldots, v_{2,l_2} = t), \ldots, (s = v_{k,1}, v_{k,2}, \ldots, v_{k,l_k} = t)\}$, co kończy dowód lematu.

Lemat 2 Każde k-cięcie zawiera po dokładnie jednej krawędzi na każdej ścieżce z P i nie zawiera żadnych innych krawędzi.

Dowód lematu 2 Każde k-cięcie musi zawierać po co najmniej jednej krawędzi na każdej ścieżce z P, ponieważ w przeciwnym wypadku nie byłoby cięciem. Ponadto, jeśli zawiera dwie krawędzie z którejś ścieżki lub pewną krawędź nienależącą do żadnej ze ścieżek, to ma rozmiar większy niż k, czyli sprzeczność, co kończy dowód lematu.

Niech $A \subseteq V(G)$ będzie zbiorem zawierającym takie wierzchołki v, że w dowolnym k-cięciu zachodzi $v \in S$, gdzie (S,T) jest odpowiadającym temu cięciu przekrojem. Podobnie definiujemy B, z tym że zbiór ten zawiera wierzchołki, które dla każdego k-cięcia są w T.

<u>Lemat 3</u> Dla każdego $i=1,2,\ldots,k$ istnieje $p_i\in\{1,2,\ldots,l_i-1\}$ takie, że $v_{i,1},v_{i,2},\ldots,v_{i,p_i}\in A$ oraz $v_{i,p_i+1},v_{i,p_i+2},\ldots,v_{i,l_i}\notin A$.

Dowód lematu 3 Nie ulega wątpliwości, że $s=v_{i,1}\in A$. Przypuśćmy nie wprost, że istnieją $a,b\in\{1,2,\ldots,l_i-1\}$ takie, że a< b oraz $v_{i,a}\notin A \wedge v_{i,b}\in A$. Weźmy k-cięcie Z, dla którego $v_{i,a}\in T$. Z lematu 2 wnioskujemy, że dla pewnego $c\in\{1,2,\ldots a-1\}$ zachodzi $v_{i,c}v_{i,c+1}\in Z$, przy czym jest to jedyna krawędź na tej ścieżce należąca do Z. Oczywiście $v_{i,b}\in S$, zatem istnieje pewna ścieżka z s do $v_{i,b}$ niezawierająca krawędzi z z. Możemy tę ścieżkę przedłużyć o $v_{i,b}$ 0 niezawierająca krawędzi z z0 niezawierającą krawędzi z z1, czyli sprzeczność, co kończy dowód lematu.

<u>Lemat 4</u> Dla każdego $i=1,2,\ldots,k$ istnieje $q_i\in\{2,3\ldots,l_i\}$ takie, że $v_{i,q_i},v_{i,q_i+1},\ldots,v_{i,l_i}\in B$ oraz $v_{i,1},v_{i,2},\ldots,v_{i,q_i-1}\notin B$.

Dowód lematu 4 Analogiczny jak lematu 3.

Niech

$$Z_A = \{v_{i,p_i}v_{i,p_i+1} : i = 1, 2, \dots, k\}$$
 oraz $Z_B = \{v_{i,q_{i-1}}v_{i,q_i} : i = 1, 2, \dots, k\}.$

<u>Lemat 5</u> Z_A i Z_B są k-cięciami.

Dowód lematu 5 Przypuśćmy nie wprost, że istnieje ścieżka $(s=v_1,v_2,\ldots,v_l=t)$, taka że żadna z krawędzi v_jv_{j+1} nie należy do Z_A , dla $j=1,\ldots,l-1$. Weźmy największe takie $p\in\{1,2,\ldots,l-1\}$, że $v_1,v_2,\ldots,v_p\in A$. Wtedy z lematu 3 krawędź v_pv_{p+1} nie leży na żadnej ścieżce z P, zatem z lematu 2 nie jest w żadnym k-cięciu, skąd wnioskujemy, że $v_{p+1}\in A$, ponieważ $v_p\in A$, czyli sprzeczność, toteż Z_A jest k-cięciem. Analogicznie dowodzimy, że Z_B również jest k-cięciem, co kończy dowód lematu.

Z założeń $Z_A \cap Z_B \neq \emptyset$, co oznacza, że istnieje i, dla którego $p_i + 1 = q_i$. Krawędź $v_{i,p_i}v_{i,q_i}$ jest więc szukaną krawędzią, ponieważ gdyby istniało k-cięcie Z takie, że $v_{i,p_i}v_{i,q_i} \notin Z$, to spełnione by było $v_{i,q_i} \in S$, gdyż $v_{i,p_i} \in A$, co przeczy warunkowi $v_{i,q_i} \in B$. Otrzymana sprzeczność kończy rozwiązanie zadania.