

Metoda zbiorów odniesienia

Metoda punktów odniesienia -wstęp

Poszukiwane jest rozwiązanie problemów optymalizacji wielokryterialnej typu:

$$[(F_1, ..., F_N): U \rightarrow E] \rightarrow min(\theta)$$
 (1)

gdzie U i E oznaczają odpowiednio przestrzeń decyzji i przestrzeń kryteriów (tj. zbiór, w którym wartości przyjmuje funkcja F), F = (F1, F2, Fn) jest wektorową funkcją celu, a θ jest domkniętym i wypukłym stożkiem, wprowadzającym częściowy porządek w E.

W najbardziej powszechnym przypadku:

$$\theta = IR_{+}^{N}$$
, $E = IR^{N}$

Punkt odniesienia

Punkt odniesienia definiujemy jako element przestrzeni kryteriów reprezentujący wartości kryteriów o szczególnym znaczeniu dla decydenta

Funkcja użyteczności

Definiujemy:

 $\vee : E \longrightarrow \mathbb{R}$

Funkcja v jest silnie monotonicznie rosnąca, tzn:

$$\forall x, y \in E \quad (x \leq_{\theta} y, x \neq y \Rightarrow v(x) < v(y))$$

W konsekwencji minimum funkcji v może być osiągnięte tylko na zbiorze niezdominowanych wartości F: FP(U, θ) i określa najlepsze kompromisowe rozwiązanie problemu (1).

Problem wielokryterialnego podejmowania decyzji dla (1) sprowadza się do znalezienia lub oszacowania v i rozwiązania problemu minimalizacji

$$\vee: (F(U) \rightarrow IR) \rightarrow min (2)$$

Z silnej monotoniczności v wynika, że:

arg min $\{v(x): x \in F(U)\} \subset FP(U)$

Schemat rozwiązania z zastosowaniem zbiorów odniesienia

- 1. Sformułowanie wielokryterialnego problemu optymalizacji
- 2. Wielokryterialne podejmowanie decyzji
- 3. . Wprowadzenie dodatkowej informacji o preferencjach
- -ograniczenia na współczynniki substytucji,
- -punkty odniesienia,
- -ograniczenia w przestrzeni celów.
- 4. Oszacowanie funkcji użyteczności, wygenerowanie propozycji rozwiązania kompromisowego
- 5. Ocena decydenta: prośba o aktualizację rozwiązania, aktualizacja dodatkowej informacji, formułowania problemu, zatwierdzenie rozwiązania.

Interpretacja punktów odniesienia poprzez ich estymowaną użyteczność

Każdy punkt odniesienia można scharakteryzować za pomocą dwóch typów informacji:

-znaczenie dla decydenta, określane na ogół a priori przez ekspertów zaangażowanych we wspomaganie decyzji, zwykle bez brania pod uwagę ograniczeń problemu optymalizacji wektorowej

-relacja do zbioru osiągalnych wartości kryteriów w problemie optymalizacji wektorowej (1)

Klasyfikacja punktów odniesienia

Klasyfikacja oparta o informację przekazaną decydentowi z zewnątrz przez ekspertów:

A₀ - granice optymalności - punkty odniesienia, które określają dolną granicę obszaru Q, gdzie optymalizacja kryteriów ma sens.

Szacowana użyteczność: taka sama jak dla punktów docelowych tj.: $v(A_0) = a_1 > 0$.

A₁ - punkty docelowe (poziomy aspiracji, punkty idealne) - elementy E, które modelują idealne rozwiązanie pożądane przez decydenta.

Szacowana użyteczność: $\vee(A_1) = a_1 > 0$.

A₂ - Rozwiązania status quo (poziomy zastrzeżone, wartości pożądane) - wartości kryteriów, które muszą być przekroczone podczas procesu decyzyjnego.

Szacowana użyteczność: $v(A_2) = a_2$ gdzie $a_2 < a_1$.

A₃ - Antyidealne punkty odniesienia (poziomy porażki) - elementy przestrzeni kryteriów, które odpowiadają rozwiązaniom niekorzystnym.

Szacowana użyteczność: $\overline{V(A_3)} = a_3$, gdzie $a_3 < a_2 < a_1$

Niesprzeczność punktów odniesienia

Racjonalność procesu decyzyjnego

Proces decyzyjny będzie nazwany racjonalnym wtedy i tylko wtedy, gdy prowadzi do niezdominowanego rozwiązania problemu optymalizacji wielokryterialnej

Niesprzeczność procesu decyzyjnego

Proces podejmowania decyzji w oparciu o oszacowane użyteczności jest niesprzeczny wtedy i tylko wtedy, gdy

 $\forall x, y \in E (v^{\land}(x) < v^{\land}(y) \Rightarrow x \leq_{\theta} y \text{ lub } x \sim y)$

gdzie v^(x) jest oszacowaniem użyteczności v dla x, a x ~ y oznacza relację nieporównywalności x i y.

Uwaga: Wartości oszacowane muszą być też zgodne z zasadą użyteczności w skalaryzacji przez odległości z powszechnym rozumieniem pojęcia punktów odniesienia.

Wewnętrzna i wzajemna niesprzeczność punktów odniesienia

Zbiór punktów referencyjnych jest **wewnętrznie niesprzeczny** wtedy i tylko wtedy gdy:

∀q₁, q₂∈A_i q₁ oraz q₂ są nieporównywalne.

Klasy A_i oraz A_{i+1} są **wzajemnie niesprzeczne** jeśli

 $\forall x \in A_i \quad \exists y \in A_{i+1} : x \leq_{\theta} y$

 $\forall y \in A_{j+1} \exists x \in A_j : x \leq_{\theta} y$

Twierdzenie 1. Jeżeli wszystkie klasy punktów odniesienia Ai dla problemu (1),(2) są zarówno wewnętrznie, jak i wzajemnie niesprzeczne, wówczas proces rozwiązania jest niesprzeczny.

Punkty odniesienia –warunki 1-4

Sytuacja w której początkowe oceny decydenta są zgodne z sytuacją rzeczywistą osiągalnych wartości jest przedstawiona poniżej jako Warunki 1-4:

- Warunek 1. Docelowe punkty odniesienia powinny mieć niepustą część wspólną ze zbiorem nieosiągalnych, ściśle dominujących punktów.
- Warunek 2. Rozwiązania status quo powinny być osiągalne.
- Warunek 3. Anty-idealne punkty odniesienia powinny być zdominowane przez co najmniej jeden punkt osiągalny lub powinny być nieporównywalne z FP(U).
- Warunek 4. Dolne granice optymalności powinny być
 częściowo dominujące lub nieporównywalne.

Proces szacowania użyteczności

Proces szacowania użyteczności obejmuje trzy etapy:

- przybliżone obliczenie poziomu użyteczności v dla zbiorów odniesienia A_i,
- określenie dziedziny E, gdzie zdefiniowane jest oszacowanie funkcji użyteczności v^,
- interpolacja v^ w obszarach ograniczonych przez zbiory poziomów.

SFORMUŁOWANIE WIELOKRYTERIALNEGO PROBLEMU DECYZYJNEGO Z UWZGLĘDNIENIEM DODATKOWYCH INFORMACJI O PREFERENCJACH

SPRAWDZANIE NIESPRZECZNOŚCI PUNKTÓW ODNIESIENIA

Sprawdzanie wewnętrznej niesprzeczności dla każdej klasy punktów odniesienia

$$A_i$$
, $0 \le i \le K$

Jeżeli wykryto sprzeczność:

- po raz pierwszy: zaprezentowanie decydentowi możliwych metod usunięcia sprzeczności,
 - w innym przypadku: użycie metody przyjętej wcześniej.

Sprawdzanie wzajemnej niesprzeczności kolejnych klas punktów odniesienia. Automatyczna lub interakcyjna poprawa sprzecznych ustaleń, o ile występują.

OSZACOWANIE FUNKCJI UŻYTECZNOŚCI

Aproksymacja poziomu zbiorów v^{\wedge} i znalezienie zakresu oszacowania Q.

Oszacowanie $FP(U,\theta)$ i znalezienie podobszaru R_j w Q_{i_j} ograniczonego przez A_{j-1} oraz A_j , mającego niepustą część wspólną z FP(U) dla maksymalnej wartości użyteczności w A_i .

Jeżeli właściwa konfiguracja zbiorów dopuszczalnych i zbiorów odniesienia nie jest osiągnięta, wówczas należy dokonać przeklasyfikowania punktów odniesienia

Oszacowanie użyteczności w obszarze Ri.

GENEROWANIE ROZWIĄZANIA KOMPROMISOWEGO

Obliczenie rozwiązania kompromisowego maksymalizującego użyteczność przy użyciu v^ jako funkcji skalaryzującej

Wizualizacja rozwiązania kompromisowego, zbiorów $FP(U) \cap R_j$, A_{j-1} , A_j oraz oszacowanie poziomu zbiorów (level sets) v^* i prezentacja ich decydentowi.

OCENA DECYDENTA