A TM m, is not guaranteed to halt and there exists no algorithm to construct one that is guaranteed to do so.

A TM configuration can be expressed as a 4-tuple: state, tape letters up to scanned square, scanned square, tape letters following scanned square.

Example Configurations

Can combine basic machines to form larger ones.

To do this, we need two forms:

- $\bullet M_1M_2$
 - Begin in start state of M_1 , run M_1 until halts, begin M_2 in start state, run M_2 until halts, then halt. If either fails to halt, then M_1M_2 fails to halt.

$$\bullet M_1 \xrightarrow{} M_2$$

 The same, except that <condition> is checked to move from M₁ to M₂.

Example:

$$>M_1$$
 a M_2 b M_3

- Start in the start state of M_1 . (">" marks the beginning)
- Compute until M₁ reaches a halt state.
- Examine the tape and take the appropriate transition.
- Start in the start state of the next machine, etc.
- Halt if any component reaches a halt state and has no place to go.
- If any component fails to halt, then the entire machine may fail to halt.

SHORTHANDS

Shorthands

Symbol writing machines

For each $x \in \Gamma$, define M_x , written just x, to be a machine that writes x, then halts.

Head moving machines

R: for each
$$x \in \Gamma$$
, $\delta(s, x) = (s, x, \rightarrow)$

L: for each
$$x \in \Gamma$$
, $\delta(s, x) = (s, x, \leftarrow)$

- Machines that simply halt:
 - h, which simply halts.
 - n, which halts and rejects.
 - y, which halts and accepts.