12. Aufgabenblatt

(Besprechung in den Tutorien 23.01.2023–27.01.2023)

Aufgabe 1. CLIQUE and HALF CLIQUE

Eine Clique der Größe k in einem ungerichteten Graphen G=(V,E) ist eine Knotenmenge $V'\subseteq V$ mit |V'|=k und $\{u,v\}\in E$ für alle $u,v\in V'$ mit $u\neq v$.

Beweisen Sie, dass das Problem Half Clique NP-schwer ist.

HALF CLIQUE

Eingabe: Ein ungerichteter Graph G = (V, E).

Frage: Gibt es eine Clique der Größe |V|/2 in G?

Aufgabe 2. Polynomzeitreduktion (Klausuraufgabe 2012)

Betrachten Sie die beiden folgenden Probleme:

CLIQUE

Eingabe: Ein ungerichteter Graph G = (V, E) und $k \in \mathbb{N}$.

Frage: Gibt es eine Clique der Größe k in G

Multicolored Clique

Eingabe: Ein ungerichteter Graph G = (V, E), ein $k \in \mathbb{N}$ und eine Funk-

tion $c: V \to \{1, 2, ..., k\}$.

Frage: Gibt es eine Clique V' der Größe k in G, sodass für alle $i \in$

 $\{1, 2, \dots, k\}$ ein $v \in V'$ existiert mit c(v) = i?

Hinweis: Intuitiv ist MULTICOLORED CLIQUE die Aufgabe, eine Clique V' der Größe k zu finden, wobei es für jede "Farbe" $i \in \{1, 2, ..., k\}$ genau einen Knoten mit Farbe i in V' gibt.

Betrachten Sie die folgende Reduktion von CLIQUE auf MULTICOLORED CLIQUE.

Reduktion: Sei der Graph G=(V,E) und $k\in\mathbb{N}$ eine Eingabe für CLIQUE. Wir konstruieren einen Graph G'=(V',E') zusammen mit einer Färbung $c:V'\to\{1,2,\ldots,k\}$ in 3 Schritten:

- 1. Für jeden Knoten $v \in V$ führe k Knoten v^1, v^2, \dots, v^k in G' ein. Setze $c(v^i) = i$ für alle $i \in \{1, 2, \dots, k\}$.
- 2. Verbinde für jede Kante $\{u,v\} \in E$ und für alle $1 \le i,j \le k$ die Knoten v^i und u^j in G' durch eine Kante.
- 3. Verbinde für alle $1 \leq i < j \leq k$ und Knoten $v \in V$ die Knoten v^i und v^j mit einer Kante.

Wir definieren nun die Polynomzeitreduktion f durch f(G, k) = (G', c, k).

Überprüfen Sie die obige Reduktion auf Korrektheit und korrigieren Sie diese gegebenenfalls. Beweisen Sie anschließend die Korrektheit der (eventuell korrigierten) Reduktion, d. h. zeigen Sie

 $\forall (G,k): (G,k) \in \text{Clique} \Leftrightarrow f(G,k) \in \text{Multicolored Clique}.$

Aufgabe 3. Transitivität von Reduktionen (Klausuraufgabe SoSe 2017)

Im Folgenden seien Σ und Π zwei endliche Alphabete. Betrachten Sie die folgenden beiden Reduktionstypen.

Definition 1. Eine Sprache $A \subseteq \Sigma^*$ heißt linearzeit-reduzierbar bzw. quadratzeit-reduzierbar auf eine Sprache $B \subseteq \Pi^*$ (in Zeichen $A \leq_m^{\ell} B$ bzw. $A \leq_m^{q} B$) genau dann, wenn es eine totale, in linearer Zeit (O(|x|) für jedes $x \in \Sigma^*$) bzw. quadratischer Zeit $(O(|x|^2)$ für jedes $x \in \Sigma^*$) berechenbare Funktion $f: \Sigma^* \to \Pi^*$ gibt, sodass gilt:

$$\forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B.$$

- 1. Begründen Sie die Transitivität für einen der beiden Reduktionstypen.
- 2. Argumentieren Sie kurz (in 2-3 Sätzen), warum Transitivität im Kontext des Vollständigkeitskonzepts eine sinnvolle Eigenschaft für Reduktionen ist.

Aufgabe 4. Erfüllende Belegung Finden

Aus der Vorlesung ist folgendes NP-vollständiges Problem bekannt:

KNF-SAT

Eingabe: Eine aussagenlogische Formel F in konjunktiver Normalform.

Frage: Ist F erfüllbar?

Beweisen Sie folgende Aussage: Wenn P = NP, dann gibt es einen Polynomzeitalgorithmus, der für eine gegebene erfüllbare Formel in KNF eine erfüllende Belegung findet.