ECOL/BIOL 3500 - ECOLOGY

Spring Semester 2011

Professor: Gary W. Barrett

Eugene P. Odum Chair in Ecology

gbarrett@uga.edu

706.542.6065

Office: 194A Ecology Building

Office hours: By appointment

Teaching Assistants:

William McDowell

Head Teaching Assistant wgmcdowell@gmail.com

Shafkat Khan shafkat1@uga.edu **James Moree**

moree.james@gmail.com

Text: Fundamentals of Ecology, Fifth Edition, Eugene P. Odum and Gary W. Barrett

Exercise book: Ecology Exercise Book: An Ecosystem Approach, Gary W. Barrett, Terry L. Barrett,

Scott J. Connelly, Andrew S. Mehring, and James O. Moree

Information:

In addition to assignments from the text, you are responsible for information encompassing lecture notes, handouts, DVDs, additional reading assignments, and class discussions. Therefore, attendance is mandatory if you are to maximize your understanding of principles, concepts, mechanisms, and natural laws that are presented in this course. All academic work must meet the standards contained in "a culture of honesty." Students are responsible for informing themselves about those standards before performing any academic work (f.i., Academic Honesty Statement http://www.uga.edu/~vpaa).

It is important to understand that a possible grade for withdrawal both before and after the midpoint of the semester is a WF, which carries the same numerical grade as an F (0 points). A WF will be given 2 school days following the midpoint withdrawal deadline (24 March 2011) to those students who have stopped attending class, failed to take test #2, and consequently are failing the course at that time.

It is your responsibility to make certain that all laboratory assignments are turned in on time, and that you know your grade regarding these assignments. Once the final laboratory grade is turned in to Dr. Barrett, there will be no consideration regarding changing this grade.

SYLLABUS

ECOL/BIOL 3500 - ECOLOGY - Spring Semester 2011 - G. W. Barrett

The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary.

THE SCIENCE OF ECOLOGY

DATE	TOPIC	CONCEPTS	ASSIGNMENT
JANUARY 19 (W)	Introduction: Course objectives; Grading	Learning Pyramid	Foreword, Preface, and Handout materials
	The Scope of Ecology: History; Ecology versus Economics Teaching philosophy	Emergent property principle	Chapter 1
JANUARY 21 (F)	Hierarchy Theory: Holism versus Reductionism	Levels of organization concept; Transcending processes	Chapter 1
JANUARY 24 (M)	DVD: Eugene P. Odum: An Ecologist's Life: History of ecosystem ecology	Study of "oikos"	Chapter 1

ECOSYSTEM ECOLOGY

DATE	TOPIC	CONCEPTS	ASSIGNMENT
JANUARY 26 (W)	Ecosystem Structure: Trophic	Ecosystem concept;	Chapter 2
	structure; Temporal/spatial scale	Biotic diversity	
JANUARY 28 (F) *	Ecosystem Regulation: Models;	Homeostasis versus	Chapter 2
	Cybernetics; P/R ratios	Homeorhesis	
	Ecosystem Types and Scales:	Concept of	Chapter 2
	Micro-, Meso-, and Macrocosms	sustainability;	
		Concept of carrying	
		capacity	
JANUARY 29 (S) **	Ecosystem Function:	Laws of	Chapter 3
	Energetics; Definitions and	thermodynamics;	
	Language; Trophic levels	Subsidy-stress	
		gradient	
JANUARY 31 (M)	The Science of Limnology:	Thermal and oxygen	Chapter 3
	Formation of lakes; Lotic versus	stratification; Lake	
	Lentic systems	zonation; Life forms	
FEBRUARY 2 (W)	Energy Flow Models: Grazing	Concept of net	Chapter 3
	versus Detritus Food Chains; Net	energy; Concept of	
	Primary Production	(eMergy)	
FEBRUARY 4 (F)	TEST 1		
FEBRUARY 7 (M)	Biogeochemical Cycles: Types	Nitrogen cycling;	Chapter 4
	of cycles; Open versus Closed	Watershed concept	

	cycles		
FEBRUARY 9 (W)	Nitrogen, Phosphorus and	Greenhouse effect;	Chapter 4
Alan P. Covich	Carbon Cycles: Gaseous versus	Global climate	
	Sedimentary cycles	change	
FEBRUARY 11 (F)	DVD: Chemistry of a Forest;	Watershed concept;	Chapter 4
	Hydrologic cycle; Nutrient	Buried seed strategy	
	budgets		
FEBRUARY 14 (M)	Limiting and Regulatory	Liebig law of the	Chapter 5
	Factors: Factor compensation	minimum; Shelford	
	and Ecotypes	law of tolerance	
FEBRUARY 16 (W)	Soil: Organizing component for	Concept of biological	Chapter 5
Alan P. Covich	terrestrial ecosystems	magnification	
FEBRUARY 18 (F)	Fire Ecology: Wildfires versus	Fire-adapted	Chapter 5
	Surface fires	systems; Concept of	
		prescribed burning	

POPULATION ECOLOGY

DATE	TOPIC	CONCEPTS	ASSIGNMENT
FEBRUARY 21 (M)	Properties of Populations: Natality versus Mortality	Population survivorship; Age pyramids	Chapter 6
FEBRUARY 23 (W)	Exponential versus Sigmoid growth curves: Rates of natural increase	Concept of carrying capacity (K)	Chapter 6
FEBRUARY 25 (F)	Population Regulation: Intrinsic versus Extrinsic theories	Density-dependent versus Density independent population regulation	Chapter 6
FEBRUARY 28 (M)	Patterns of Dispersal: Home range versus Territory	The Allee principle of aggregation	Chapter 6
MARCH 2 (W)	TEST 2		

COMMUNITY ECOLOGY

DATE	TOPIC	CONCEPTS	ASSIGNMENT
MARCH 4 (F)	Community Ecology: Types of	Concept of	Chapter 7
	interaction	Coevolution	
MARCH 7 (M)	Positive/negative Interactions:	Role of Secondary	Chapter 7
	Predation, Herbivory, and	chemistry	
	Parasitism		
MARCH 9 (W)	Positive Interactions:	Bottom up versus Top	Chapter 7
	Commensalism and Mutualism	down processes	
MARCH 11 (F)	Habitat, Niche, and Guild:	Diversity-stability	Chapter 7
	Types of Niches; Niche breadth	hypothesis; Role of	
	versus Niche overlap	biotic diversity	
MARCH 14-18 (M-F)	SPRINGBREAK		

^{*} Please note that the Friday, 28 January lecture is scheduled to take place at a site to be announced. ** Please note that Saturday, 29 January lecture is scheduled to take place at a site to be announced.

ECOSYSTEM DEVELOPMENT

DATE	TOPIC	CONCEPTS	ASSIGNMENT
MARCH 21 (M)	Strategy of Ecosystem	Primary versus	Chapter 8
	Development : Autogenic versus	Secondary succession	
	Allogenic succession		
MARCH 23 (W)	Trends in Ecological	Concept of climax	Chapter 8
	Development : Youth to maturity	community;	
		Perturbation-	
		dependent systems	
MARCH 25 (F)	Relevance of Ecosystem	Concept of	Chapter 8
	Development to Society: Micro-	heterotrophic	
	versus Macroevolution	succession;	
		Integrating natural	
		and economic capital	

LANDSCAPE ECOLOGY

DATE	TOPIC	CONCEPTS	ASSIGNMENT
MARCH 28 (M)	Landscape Ecology: Landscape	Source/sink	Chapter 9
	elements	dynamics;	
		Connectivity	
MARCH 30 (W)	Island Biogeography:	Role of landscape	Chapter 9
	DVD: Landscape Linkages	corridors	
APRIL 1 (F)	Temporal/Spatial Scale: Alpha,	Concept of scale;	Chapter 9
	Beta, and Gamma diversity	Landscape geometry	
APRIL 4 (M)	Agroecosystem Ecology:	Concepts of LISA and	Chapter 9
	Domesticated landscapes	IPM	
APRIL 6 (W)	TEST 3		

REGIONAL AND GLOBAL ECOLOGY

DATE	TOPIC	CONCEPTS	ASSIGNMENT
APRIL 8 (F)	Technoecosystem: Virtual and	Noösphere concept;	Chapter 9
Terry L. Barrett	Real system	Ecological footprint	
APRIL 11 (M)	DVD: Rachel Carson:	Concept of biological	Chapter 10
	Silent Spring	magnification	
APRIL 13 (W)	Regional Ecology:	Biome concept; Life	Chapter 10
	Biome types	zone concept	
	Terrestrial Biomes: Types	Relationship of	
APRIL 15 (F)	of Classification	precipitation to	Chapter 10
		temperature	
APRIL 18 (M)	Marine Systems: Oceans and	Upwellings; Deep sea	Chapter 10
Alan P. Covich	Estuaries	hydrothermal vents	
APRIL 20 (W)	Global Ecology: Transition	Concept of a	Chapter 11
	from Youth to Maturity	sustainable society	
APRIL 22 (F)	Ecological-Societal Gaps:	Market and nonmarket	Chapter 11
Terry L. Barrett	Culture-sustained vitality and	capital; Concept of	
	Ecological sustainability	aesthetics as economy	
APRIL 25 (M)	Restoration Ecology:	Concept of integrative	Chapter 11
	Scenarios	science	
APRIL 27 (W)	Statistical Thinking:	The ecological study	Chapter 12
R. Cary Tuckfield	Research design	unit	
APRIL 29 (F)	Problem-solving Algorithm:	Weight of evidence	Chapter 12
	Problem identification		
MAY 2 (M)	Overview Comments:	Course evaluation	
	Planning for a sustainable		
	future		
MAY 6 (F)	FINAL EXAM:		
	8:00 AM-11:00 AM		

COURSE INFORMATION

Description: Lecture, discussions, laboratory sessions, and field trips about the science of ecology mainly focus on the following levels of organization: organism, population, community, ecosystem, landscape, biome, and global.

We will meet for lectures from 9:05-9:55 a.m. On Mondays, Wednesdays, and Fridays in the auditorium (Room 201) in the Ecology Building.

Lectures: As summarized in the lecture syllabus, a broad range of topics related to the science of ecology will be covered. The lecture material will assume that you have a basic knowledge of general biology (BIOL 1108 is a prerequisite for this course). This course is also to prepare you for more advanced courses in limnology, population and community ecology, behavioral ecology, and ecosystem ecology.

Textbook: The text *Fundamentals of Ecology*, *Fifth Edition*, by Eugene P. Odum and Gary W. Barrett can be purchased from the University bookstore or from other local bookstores. You are expected to read the appropriate assigned chapters before each lecture is presented. Additional readings may be used as complementary material for lecture, and will be included in exams.

Examinations/Grading: There will be three major tests and a final exam. The final exam (3 hours) is scheduled for 8:00 AM-11:00 AM on Friday, 6 May 2011. Grades will be based on the following criteria:

Test 1	15%	90 - 100% A	Example:
Test 2	15%	80 - 89% B	87% - 89% B+
Test 3	15%	70 - 79% C	83% - 86% B
Lab	30%	60 - 69% D	80% - 82% B-
Final	25%	< 60% F	

The final exam will cover material presented in lectures from 10 January through 2 May. (i.e., Final exam will be comprehensive).

Overview comments: I will periodically provide you with the opportunity to receive "Bonus Points." You must follow instructions to receive bonus points. These points will be added to the next scheduled exam. You will not be permitted to do special projects (e.g., term papers) to improve your grade later in the semester. Attend each lecture and laboratory session, understand course material on a daily basis, and you will perform well in the course. We will make a sincere effort to enrich your learning experience.

Gary W. Barrett

LABORATORY EXERCISES FOR ECOL/BIOL 3500L

You are required to purchase *Ecology Exercise Book: An Ecosystem Approach*, Gary W. Barrett, Terry L. Barrett, Scott J. Connelly, Andrew S. Mehring, and James O. Moree.

Laboratory expectations: Actively participate in your assigned laboratory section. We will be providing learning exercises in the laboratory and in the field to deepen your understanding of the science of ecology. Two major objectives are; (1) to provide hands-on-experience to help you connect the real world with the ecological principles that you learn in lecture, and (2) to teach you to communicate your knowledge through writing. Focus will be on data collecting and writing in scientific format.

In order to maximize your experience in this course, full participation in the exercises, including interaction with other students, and instructor is essential. TAs may have unannounced quizzes at the beginning of the sessions to evaluate your familiarity with the exercises scheduled for that day.

Attendance is mandatory. Tardiness is disrespectful of the other students in class. Driving yourself to laboratory sessions, without prior permission, will be considered evidence of tardiness. If you miss a session, you must have a written documentation of your absence in order to make up the session. A valid excuse is one that is written, verifiable, and covers the date and time of your scheduled laboratory session. In the case of a valid excuse, please contact your TA as soon as possible to see about being assigned to another laboratory section later in the week. If you know in advance that you must miss a session, please inform your assigned TA know as soon as possible, so that s/he may re-assign you to another lab section.

Cellular phone policy: Please turnoff your cellular phone during sessions.

Allergies, athletics, and leaning disabilities: Please keep TAs informed. Most laboratory periods are conducted in the field. If you suffer from allergies, tell TAs so that they can inform you of any possible exposure to allergens. If

you are a member of a university athletic team (varsity, not intramural), please let TAs know when you will be out-of-town to participate in these competitions. So that TAs can accommodate your needs, please provide documentation and information about a learning disability.

Field trips — On field days you must:

- Dress appropriately for the trip and weather; we will go rain or shine.
- Read each ecology exercise prior to attending that specific laboratory session.
- Get to Room 306 5 minutes early; we leave on time.

LABORATORY SCHEDULE (As of 18 January 2011)

DAY	TIME	TEACHING ASSISTANT
Monday	10:10 AM-12:55 PM	William McDowell
Monday	1:25 PM-4:10 PM	William McDowell
Tuesday	8:00 AM-10:45 AM	Shafkat Khan
Tuesday	11:00 AM-1:45 PM	Shafkat Khan
Wednesday	10:10 AM-12:55 PM	James Moree
Wednesday	1:25 PM-4:10 PM	James Moree
Thursday	11:00 AM-1:45 PM	James Moree
Thursday	2:00 PM-4:45 PM	Shafkat Khan

Location: Laboratory sessions are held in the Biological Sciences Building, Room 306 (BioSci 306). The TA will take you to the laboratory location from BioSci 306. It is important that you meet with your laboratory group in BioSci 306, otherwise you may miss important announcements or schedule changes, which the TA is under no obligation to repeat. Vans will leave precisely on time. The van will return to the Ecology Building on time as well.

Laboratory Grading: Laboratories depend on experimental learning. Your laboratory grade is accrued out of 450 total points and is worth 30 percent of the course grade. 390 of the 450 points is based on assignments while the other 60 points are TA discretionary points, which are awarded based on your participation in field and laboratory exercises. Homework will not be accepted by email unless arranged ahead of time with your TA. If an assignment is late, the grade will be lowered 10 percent for each day it is late. If you have any problems with the grading of an assignment, please speak with your assigned TA about your concerns within one week after the assignment is returned.

LABORATORY SYLLABUS (As of 18 January 2011)

NOTE: All laboratory sessions meet in the Biological Sciences Building (BSB) Room 306. Along with your TA, where appropriate you will then proceed to an assigned destination.

DATE	ECOLOGY EXERCISES	DESTINATION	ASSIGNMENT
Week of	Chapter numbers in ()		Date due; Points in ()
JANUARY 10	Orientation	BSB Room 306	
* JANUARY 17	Introduction to scientific writing (1)	BSB Room 306	
JANUARY 24	Experimental design and statistical analysis (2)	BSB Room 306	
JANUARY 31	Adaptation (3)	Botany Greenhouses	Analysis of results (30)
FEBRUARY 7	Lake ecosystem (13, 14, 15)	Lake Herrick	Adaptation (15)
FEBRUARY 14	Forest ecosystem (5)	HorseShoe Bend Experimental Site (HSB)	Science of limnology (15)
FEBRUARY 21	Forest ecosystem (6)	HSB	Population ecology (15)
FEBRUARY 28	Forest ecosystem (4)	The State Botanical Garden of Georgia	Ecosystem structure (30)
MARCH 7	Agroecosystem (16, 17, 18)	Jordan Organic Farm; HSB	Secondary succession (15)
MARCH 14	SPRINGBREAK		
MARCH 21	Stream ecosystem (10, 11, 12)	McNutt Creek	Organic farming (15)
MARCH 28	Stream ecosystem (11, 12)	Tanyard Branch	Stream ecology (30)
APRIL 4	Old field ecosystem (7, 8, 9)	HSB	
APRIL 11	Old field ecosystem (8, 9)	HSB	** Stream ecology final draft (100)
APRIL 18	Urban system (19, 20, 21)	Center for Remote Sensing and Mapping Science; University of Georgia (UGA) Campus; City of Athens Urban Gardens	
APRIL 25	Landscape and Watershed systems (Closing)	BSB Room 306	Urban ecosystem (15) ** Old-field ecology final draft (100)

TOTAL POINTS (380 + 70 TA discretionary points) = 450

^{*} Monday, 17 January, Martin Luther King Jr. Day (*no laboratory sessions*), therefore students attending Monday sessions please choose one of the other laboratory sections during this week.

^{**} Note: An extra week is allowed for completion of the stream ecology final draft (due during the week of 11 April), and old-field ecology final draft (due during the week of 25 April).