Mössbauer Spectroscopy

Yichao Yu

MIT

March 6, 2013

Mössbauer effect and Mössbauer spectroscopy.

- Nuclear γ spectrum.
- Simple setup.
- Super high resolution. (10¹²)

Mössbauer spectrum of FeC_2O_4 .

Mössbauer effect and Mössbauer spectroscopy.

- Nuclear γ spectrum.
- Simple setup.
- Super high resolution. (10^{12})

Mössbauer spectrum of FeC_2O_4 .

Mössbauer effect and Mössbauer spectroscopy.

- Nuclear γ spectrum.
- Simple setup.
- Super high resolution. (10^{12})

Mössbauer spectrum of FeC_2O_4 .

- Apparatus and samples.
- Result of Rotation Curve.

Nuclear spectrum and recoil.

- Radio active element radiate γ -ray at characteristic frequencies.
- Radiation \rightarrow Absorption.
- Recoil momentum and doppler shift.

Nuclear spectrum and recoil.

- Radio active element radiate γ -ray at characteristic frequencies.
- Radiation \rightarrow Absorption.
- Recoil momentum and doppler shift.

Nuclear spectrum and recoil.

- Radio active element radiate γ -ray at characteristic frequencies.
- Radiation \rightarrow Absorption.
- Recoil momentum and doppler shift.

- Discoveried in 1957 by Mössbauer.
- Momentum transfer with the whole cristal. → Recoilless.
- Scanning frequency using doppler effect.

- Discoveried in 1957 by Mössbauer.
- Momentum transfer with the whole cristal. → Recoilless.
- Scanning frequency using doppler effect.

- Discoveried in 1957 by Mössbauer.
- Momentum transfer with the whole cristal. → Recoilless.
- Scanning frequency using doppler effect.

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- FeSO₄
- \bullet $Fe_2(SO_4)_3$
- Fe₂O₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- \bullet $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- Fe₂O₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- Fe₂O₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Finding out the Maximum Doppler Shift.

Velocity distribution at Galactic Longitude $\gamma=50^\circ$

vt-find.png

Finding out the Maximum Doppler Shift.

(Maximum relative velocities)
Contour plot of velocity distribution

../milkyway/data/gal_1_contour.png

Finding out the Maximum Doppler Shift.

(Maximum relative velocities) Contour plot of velocity distribution	(Transform into Absolute velocity) Rotation curve of the Milky Way
/milkyway/data/gal_1_cont	ouքարիներyway/data/gal_1_rot-

- Measured the 21cm spectrum for different longitude in the galactic plane.
- Calculated the rotation curve of the Galaxy from 21cm spectrum.
- Saw the signature of dark matter.

- Measured the 21cm spectrum for different longitude in the galactic plane.
- Calculated the rotation curve of the Galaxy from 21cm spectrum.
- Saw the signature of dark matter.

- Measured the 21cm spectrum for different longitude in the galactic plane.
- Calculated the rotation curve of the Galaxy from 21cm spectrum.
- Saw the signature of dark matter.