Analisi Matematica A-B Soluzioni prova scritta parziale n. 1

Laurea in Fisica, a.a. 2023/24 Università di Pisa

16 dicembre 2023

- 1. Sia $B_1 = \{z \in \mathbb{C} : |z| < 1\}$ e sia $f : B_1 \to \mathbb{C}$ la funzione definita da $f(z) = e^z$.
 - (a) Mostrare che f è iniettiva;
 - (b) mostrare che il punto $w = \frac{1+i}{\sqrt{2}}$ appartiene all'immagine di f e calcolare $f^{-1}(w)$.

Soluzione. Se $e^{z_1}=e^{z_2}$ significa che $e^{z_2-z_1}=1$. Ma osserviamo che $e^{x+iy}=e^xe^{iy}=1$ solamente se $e^x=1$ e $y=2k\pi$ con $k\in\mathbb{Z}$. Dunque z_1 e z_2 devono avere la stessa parte reale, mentre la parte immaginaria differisce per un multiplo di 2π . Ma visto che $z_1,z_2\in B_1$, la parte immaginaria deve essere in valore assoluto minore di 1 e dunque le due parti immaginarie non possono avere differenza maggiore di 2. Significa che anch'esse sono uguali e dunque $z_1=z_2$.

Il numero complesso $\frac{1+i}{\sqrt{2}}$ ha modulo 1 e argomento $\frac{\pi}{4}$. Dunque è uguale a $e^{i\frac{\pi}{4}}$. Visto che $|i\frac{\pi}{4}| < 1$ si ha effettivamente $f(i\pi/4) = w$. Dunque w appartiene all'immagine e la sua controimmagine è $i\frac{\pi}{4}$.

- 2. (a) Determinare tutti gli $x \in \mathbb{R}$ per i quali la serie $\sum_{k=0}^{\infty} \frac{(x^2-1)^k}{\sqrt{k+1} + \sqrt{k}}$ converge.
 - (b) Calcolare il limite di $\frac{1}{\sqrt{n}}\sum_{k=0}^n\frac{(x^2-1)^k}{\sqrt{k+1}+\sqrt{k}}$ per $n\to\infty,$ al variare di $x\in\mathbb{R}.$

Soluzione. Posto $y=x^2-1$ e $a_n=\frac{1}{\sqrt{n+1}+\sqrt{n}}$ siamo di fronte ad una serie di potenze $\sum a_n y^n$. E' facile verificare che $a_n\sim\frac{1}{2\sqrt{n}}$ e che quindi $\frac{a_{n+1}}{a_n}\to 1$ per $n\to +\infty$. Significa che la serie di potenze ha raggio di convergenza R=1. Dunque se $|x^2-1|<1$ (cioè $0<|x|<\sqrt{2}$) la serie

converge assolutamente, se $|x^2-1|>1$ (cioè se $|x|>\sqrt{2})$ la serie non converge.

Per x = 0, cioè y = -1, otteniamo la serie

$$\sum \frac{(-1)^n}{\sqrt{n+1} + \sqrt{n}}$$

che è convergente per il teorema di Leibniz visto che $\frac{1}{\sqrt{n+1}+\sqrt{n}}$ è ovviamente decrescente e infinitesima.

Per $x = \pm \sqrt{2}$ cioè y = 1, la serie diventa

$$\sum \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

ed è divergente in quanto per confronto asintotico sappiamo che questa serie ha lo stesso carattere di

$$\sum \frac{1}{2\sqrt{n}} = \frac{1}{2} \sum \frac{1}{\sqrt{n}}$$

che è notoriamente divergente (per il criterio di condensazione di Cauchy). Consideriamo ora le somme parziali:

$$S_n = \sum_{k=0}^n \frac{(x^2 - 1)^k}{\sqrt{n+1} + \sqrt{n}}.$$

Se $|x| < \sqrt{2}$ abbiamo verificato che S_n converge dunque si ha $\frac{S_n}{\sqrt{n}} \to 0$ per $n \to +\infty$.

Se $|x| > \sqrt{2}$ cioè y > 1 sappiamo che $a_n y^n > 0$. Dunque $S_n \ge a_n y^n$ e quindi

$$\frac{S_n}{\sqrt{n}} \ge \frac{y^n}{\sqrt{n} \cdot \left(\sqrt{n+1} + \sqrt{n}\right)} \sim \frac{y^n}{n} \to +\infty.$$

Nel caso $|x|=\sqrt{2}$ cio
è y=1 osserviamo che siamo di fronte ad una serie telescopica:

$$\frac{1}{\sqrt{k+1} + \sqrt{k}} = \sqrt{k+1} - \sqrt{k}$$

da cui

$$\frac{S_n}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{k=0}^n (\sqrt{k+1} - \sqrt{k}) = \frac{\sqrt{n+1} - \sqrt{0}}{\sqrt{n}} \to 1 \quad \text{per } n \to +\infty.$$

3. Si consideri la successione x_n definita per ricorrenza da

$$\begin{cases} x_{n+1} = -\frac{x_n}{x_n^2 + 1} \\ x_0 = 1. \end{cases}$$

- (a) Determinare se la successione ammette limite e, nel caso, calcolarlo;
- (b) determinare se la serie $\sum_{n=0}^{+\infty} x_n$ converge;
- (c) determinare se la serie converge assolutamente.

Soluzione. Notiamo che la successione x_n è a segni alterni: se $x_n>0$ si ha $x_{n+1}=-\frac{x_n}{x_n^2+1}<0$ mentre se $x_n<0$ si ha $x_{n+1}>0$. Posto $a_n=|x_n|$ si ha

 $\begin{cases} a_0 = 1 \\ a_{n+1} = \frac{a_n}{1 + a_n^2}. \end{cases}$

Ovviamente $a_{n+1} = \frac{a_n}{1+a_n^2} \le a_n$ cioè a_n è decrescente. Dunque a_n ha limite $a_n \to \ell$. Visto che $a_n = |x_n| \ge 0$ sia ha $\ell \ge 0$, e visto che a_n è decrescente si ha $\ell < +\infty$.

Passando al limite nell'equazione

$$a_{n+1} = \frac{a_n}{1 + a_n^2}$$

si ottiene

$$\ell = \frac{\ell}{1 + \ell^2}$$

da cui (svolgendo i semplici passaggi algebrici) $\ell=0$. Dunque $a_n=|x_n|\to 0$ e quindi anche $x_n\to 0$.

La serie $\sum x_n$ è convergente per il teorema di Leibniz. Infatti abbiamo già osservato che x_n è a segni alterni, più precisamente $x_n = (-1)^n a_n$. E a_n è decrescente infinitesima, dunque le ipotesi del teorema sono soddisfatte.

Vogliamo ora dimostrare che $\sum a_n = +\infty$ ovvero che non c'è convergenza assoluta di $\sum x_n$. Per fare questo facciamo un confronto con la successione $b_n = \frac{1}{n}$. Osserviamo che $b_1 = a_0 = 1$ e vediamo se

$$b_{n+1} \stackrel{?}{\leq} f(b_n).$$

La precedente disuguaglianza è equivalente a

$$\frac{1}{n+1} \stackrel{?}{\leq} \frac{\frac{1}{n}}{1 + \frac{1}{n^2}}$$

cioè

$$n\left(1+\frac{1}{n^2}\right) \stackrel{?}{\leq} n+1$$

che è equivalente a $n + \frac{1}{n} \le n + 1$ che è vera se $n \ge 1$. Ma se

$$\begin{cases} b_1 = a_0 \\ b_{n+1} \le f(b_n) \end{cases}$$

significa che $b_{n+1} \leq a_n$ in quanto, per induzione, si ha $b_1 \leq a_0$ e se $b_{n+1} \leq a_n$ visto che $a_n, b_{n+1} \in [0,1]$ ed f è crescente su [0,1], risulta $b_{n+2} \leq f(b_{n+1}) \leq f(a_n) = a_{n+1}$.

Visto che $\sum b_n = \sum \frac{1}{n} = +\infty$, per confronto si ha anche $\sum a_n = +\infty$. \square