Dynamic Programming

Rod Cutting Problem

- A company buys long steel rods and cut them into shorter rods. Cutting is free
- The company sells each rod of length x for p_x dollars for $x \in \{1,...,k\}$.
- ▶ Input: n, k, p₁,...,pk
- Output (easy): the maximum revenue obtainable by cutting a rod of length n and selling the pieces
- Output (hard): optimal cutting

Divide and Conquer

- f(x): the max revenue of rod of length x
- ▶ Termination: If x=0, return 0.
- ▶ Divide: Let $y_i = f(x-i)$ for $i \in \{1,...,min(k,x)\}$
 - \blacktriangleright Let k'=min(k,x).
- ▶ Conquer: Compute yi
- Combine: return $max(p_1+y_1,...,p_{k'}+y_{k'})$

$$f(x) = \max_{1 \le i \le \min(k,x)} \left(f(x-i) + p_i \right)$$

Example: k=3

The problem will be solved in $\Omega(c^n)$ -time for some c>1!

Observation: some subproblems are identical!

Example: k=3

If we only compute f(x-i) once for each i...

O(kn)?

Memoization

- ▶ Store the answers to the subproblems.
- All overlapping subproblems are only computed once.
 - Look up the table!
- Note: the authors of the textbook insist memoization is not a misspelling!

Bottom-Up

- If the problem is not small enough, then we need to solve smaller subproblems.
- ▶ Solve the smallest subproblem first.
- Solve the other subproblems in ascending order.
- Iterative approach!
- Incremental approach??

$$f(1)=max_{1\leq i\leq 1}(f(1-i)+p_i)=2$$

$$f(2)=max_{1\leq i\leq 2}(f(2-i)+p_i)=max(2+2,0+3)=4$$

$$f(3)=max_{1\leq i\leq 3}(f(3-i)+p_i)=max(4+2,2+4,0+8)=8$$

$$f(4)=max_{1\leq i\leq 4}(f(4-i)+p_i)=max(8+2,4+4,2+8,0+9)=10$$

İ	1	2	3	4	5	6	7	8	9	10
pi	1	5	8	9	10	17	17	20	24	25
f(i)										

Practice: top-down & bottom up

İ	1	2	3	4	5	6	7	8	9	10
pi	1	5	8	9	10	17	17	20	24	25
f(i)	1	5	8	10	13	17	18	22	25	27

The maximum revenue is found, but how to find the optimal cutting?

Divide and conquer: the LAST cut

i	1	2	3	4	5	6	7	8	9	10
pi	1	5	8	9	10	17	17	20	24	25
f(i)	1	5	8	10	13	17	18	22	25	27
d(i)	1	2	3	2	2	6	1	2	1	2

$$f(x) = \max_{1 \le i \le \min(k,x)} (f(x-i) + p_i) = f(x - d(i)) + p_{d(i)}$$

Note: d(i) isn't necessarily unique!

i	1	2	3	4	5	6	7	8	9	10
pi	1	5	8	9	10	17	17	20	24	25
f(i)	1	5	8	10	13	17	18	22	25	27
d(i)	1	2	3	2	2	6	1	2	1	2

$$d(10)=2$$
, $d(10-d(10))=d(8)=2$, $d(8-d(8))=d(6)=6$

Optimal cutting for rods of length 10: (2,2,6)

Complexity

- ▶ #subproblems: Θ(n)
- ▶ Constructing optimal solution: O(n)
- ▶ Total: O(n²)

Dynamic Programming

- Characterize the structure of an optimal solution. A particular optimal solution is sufficient.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution.
- Construct an optimal solution from computed information.

Practice

- Suppose cutting is not free anymore!
- Q1. The cost is a constant. Ex: 1
- Q2. The cost is a function of the length of rod. (x is the length) Ex: c(x)=x
- ▶ Q3. The cost is a function of the length of rod and the cut point p. (Cut the rod into two pieces whose length are p and x-p) Ex: max(x-p,p)

Matrix-Chain Multiplication

- $\ \ \langle A_1,...,A_n\rangle$: a sequence of matrices
- $A_1A_2...A_{n-1}A_n$ denotes the product.
- Matrix multiplication is associative.
 - \rightarrow ABC=(AB)C=A(BC)
- If A is a p-by-q matrix and B is a q-by-r matrix, then computing AB needs pqr multiplications.

Ordinary matrix multiplication

Associativity

- There are 5 ways to compute A₁A₂A₃A₄.
 - $(A_1(A_2(A_3A_4)))$
 - $(A_1((A_2A_3)A_4))$
 - $((A_1A_2)(A_3A_4))$
 - $((A_1(A_2A_3))A_4)$
 - $(((A_1A_2)A_3)A_4)$

Matrix-Chain Multiplication

$$A_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, A_2 = (d e f), A_3 = \begin{pmatrix} g \\ h \\ i \end{pmatrix}, A_4 = (j k \ell)$$

$$(A_1(A_2(A_3A_4))): 3 \times 1 \times 3 + 1 \times 3 \times 3 + 3 \times 1 \times 3 = 27$$

$$(A_1((A_2A_3)A_4)): 3 \times 1 \times 3 + 1 \times 3 \times 1 + 1 \times 1 \times 3 = 15$$

$$((A_1A_2)(A_3A_4)): 3 \times 1 \times 3 + 3 \times 3 \times 3 + 3 \times 1 \times 3 = 45$$

$$((A_1(A_2A_3))A_4): 3 \times 1 \times 1 + 1 \times 3 \times 1 + 3 \times 1 \times 3 = 15$$

$$(((A_1A_2)A_3)A_4): 3 \times 1 \times 3 + 3 \times 3 \times 1 + 3 \times 1 \times 3 = 27$$

Matrix-Chain Multiplication

- Question: How to minimize the number of multiplications?
- Input: $(n,\langle p_0,p_1,...,p_n\rangle)$
 - A_i is a p_{i-1} -by- p_i matrix.
- Output: The minimum number of multiplications & how to achieve

Idea

- ▶ The candidates of LAST multiplication
 - $A_1 \times (A_2...A_n), (A_1A_2) \times (A_3...A_n), ..., (A_1...A_{n-2}) \times (A_{n-1}A_n), (A_1...A_{n-1}) \times A_n$
- ▶ If we know all optimal solutions of $A_1...A_i$ and $A_{i+1}...A_n$ where i∈{1,...,n-1}, then we can decide which multiplication should be the LAST one.

Divide and Conquer

- ▶ Termination: If n=1, return 0.
- ▶ Divide: $A_1...A_i$ & $A_{i+1}...A_n$ for $i \in \{1,...,n-1\}$
- Conquer: Compute the answers
 - Let f(i) be the answer of $A_1...A_i$
 - ▶ Let g(i) be the answer of A_{i+1}...A_n
- Combine:

```
return \min_{1 \le i \le n-1} (f(i)+g(i)+p_0p_ip_n)
```

Example

Form of subproblems: A_L...A_R

Optimal solution of $A_L...A_R$: h(L,R)

Without Table

- C(n): The number of ways to multiply n matrices. $C(n) = \frac{1}{n} \binom{2n-2}{n-1}$
 - C(1)=C(2)=1
 - $ightharpoonup C(n) = \sum_{1 \le i < n} C(i)C(n-i) \text{ for } i > 2$
 - $C(n) = \Omega(n^{1.5}4^n)$
- \blacktriangleright n-th Catalan number = C(n+1)
- ▶ How to solve the recurrence?
 - Generating function

$$h(L,R) = \min_{L \le i < R} h(L,i) + h(i+1,R) + p_{L-1}p_ip_R$$

$$\langle p_0, p_1, p_2, p_3, p_4 \rangle = \langle 3, 1, 3, 1, 3 \rangle$$

$$h(L,R) = \min_{L \le i < R} h(L,i) + h(i+1,R) + p_{L-1}p_ip_R$$

$$\langle p_0, p_1, p_2, p_3, p_4 \rangle = \langle 3, 1, 3, 1, 3 \rangle$$

$$h(L,R) = \min_{L \le i < R} h(L,i) + h(i+1,R) + p_{L-1}p_ip_R$$

$$9+0+3\times3\times1=18$$

$$\langle p_0, p_1, p_2, p_3, p_4 \rangle = \langle 3, 1, 3, 1, 3 \rangle$$

$$h(L,R) = min_{L \le i < R} h(L,i) + h(i+1,R) + p_{L-1} p_i p_R$$

R 1 2 3 4

1 0 9 6

2 0 3 6

3 0 9

 $|0+9+1\times3\times3=18|$

 $3+0+1\times1\times3=6$

$$\langle p_0, p_1, p_2, p_3, p_4 \rangle = \langle 3, 1, 3, 1, 3 \rangle$$

$$\langle p_0, p_1, p_2, p_3, p_4 \rangle = \langle 3, 1, 3, 1, 3 \rangle$$

Optimal solution: $A_1((A_2A_3)A_4)$

Bottom-Up Order

Practice

 $\langle p_0, p_1, p_2, p_3, p_4, p_5, p_6 \rangle = \langle 6, 7, 3, 1, 2, 4, 5 \rangle$

Practice

		h(L,R	.)			d(L,R)						
L^{R}	1	2	3	4	5	6	LR	1	2	3	4	5	6
1	0	126	63	75	95	121	1		1	1	3	3	3
2		0	21	35	57	84	2			2	3	3	3
3			0	6	20	43	3				3	3	3
4				0	8	28	4					4	5
5			,		0	40	5			·			5
6				,		0	6				,		

$$\langle p_0, p_1, p_2, p_3, p_4, p_5, p_6 \rangle = \langle 6, 7, 3, 1, 2, 4, 5 \rangle$$

Complexity

- ▶ #subproblems: Θ(n²)
- ▶ Compute the value of a subproblem: O(n)
- \blacktriangleright Construct optimal solution: $\Theta(n)$?
- ▶ Total: O(n³)

► Convex polygon P: if $p=(x_p,y_p)$ and $q=(x_q,y_q)$ are two points inside P, then $cp+(1-c)q=(cx_p+(1-c)x_q,cy_p+(1-c)y_q)$ is inside P, for every $c\in[0,1]$.

- Triangulation: Partition the polygon into triangles.
- Cost Ex: length of the line segments, the variance of the area of the triangles, etc.

- Goal: Find an optimal partition achieve minimum/maximum cost
- ▶ How?

- Homework 2-2
 - Input: $(n, p_1, ..., p_n)$ where $p_i=(x_i,y_i)$ are given in the clockwise order.
- Cost: length of the line segments
- ▶ Goal: minimization
- ▶ How to solve?
 - The idea of "the last cut"

Last Cut

- ▶ Termination: If n=3, return o.
- Divide-and-Conquer: Solve subproblems
 - $> s_1 = (n-1, p_2, ..., p_n)$
 - $> s_i = (n-1, p_1, ..., p_{i-1}, p_{i+1}, ..., p_n) i \in (1,n)$
 - $> s_n = (n-1, p_1, ..., p_{n-1})$
- ▶ Combine: return $min_{1 \le i \le n}(opt(s_i) + L_i)$ where L_i is the length of line segment connecting p_{i-1} and p_{i+1} .

- ▶ How many subproblems?
 - ► All ≥3-subsets of $\{p_1,...,p_n\} \le 2^n$
- Solving a subproblem needs to choose the best answer from n candidates.
- Time complexity: O(n2ⁿ)
- ▶ Capable to solve the basic case
- ▶ How to solve the hard case?
 - Hint: matrix-chain multiplication

Elements of DP

- Optimal substructure
 - An optimal solution contains within it optimal solutions of subproblems
- Overlapping subproblems
 - What if the subproblems do not overlap?

Longest Common Subsequence

- ▶ For sequence $\langle a_1,...,a_n \rangle$:
 - $\langle c_1,...,c_k \rangle$ is a subsequence of $\langle a_1,...,a_n \rangle$ if $c_j=a_{i[j]}$ where $1 \leq i[1] < i[2] < ... < i[k] \leq n$.
- $\langle c_1,...,c_k\rangle \ is \ a \ common \ subsequence \ of \\ \langle a_1,...,a_n\rangle \ and \ \langle b_1,...,b_m\rangle \ if$
 - $ightharpoonup \langle c_1,...,c_k \rangle$ is a subsequence of $\langle a_1,...,a_n \rangle$.
 - $ightharpoonup \langle c_1,...,c_k \rangle$ is a subsequence of $\langle b_1,...,b_m \rangle$.

Compute the Length

- ► Input: $s=(n,m,a_1,...,a_n,b_1,...,b_m)$
- ▶ Termination: If n=0 or m=0, return 0.
- Divide-and-Conquer: Solve subproblems
 - \rightarrow s_A=(n-1,m,a₁,...,a_{n-1},b₁,...,b_m)
 - \rightarrow s_B=(n,m-1,a₁,...,a_n,b₁,...,b_{m-1})
 - \rightarrow s_E=(n-1,m-1,a₁,...,a_{n-1},b₁,...,b_{m-1})
- Combine: If $a_n=b_m$ then return $max(opt(s_A),opt(s_B),opt(s_E)+1)$. Otherwise, return $max(opt(s_A),opt(s_B))$.

Subproblems

- \triangleright s_A=(n-1,m,a₁,...,a_{n-1},b₁,...,b_m):
 - \rightarrow opt(s)=opt(s_A) if a_n is not in LCS.
- $> s_B = (n, m-1, a_1, ..., a_n, b_1, ..., b_{m-1})$
 - \rightarrow opt(s)=opt(s_B) if b_m is not in LCS.
- \triangleright s_E=(n-1,m-1,a₁,...,a_{n-1},b₁,...,b_{m-1})
 - \rightarrow opt(s)=opt(s_E)+1 if a_n=b_m is in LCS.
- ► Homework: Show that if $a_n=b_m$, then opt(s_E)+1≥max(opt(s_A),opt(s_B)).

Example

	i	0	1	2	3	4	5	6	7
j		ai	A	В	C	В	D	Α	В
0	b_j								
1	В								
2	D								
3	C								
4	A								
5	В								
6	A								

Terminal Condition

	i	0	1	2	3	4	5	6	7
j		ai	Α	В	C	В	D	Α	В
0	bj	0	0	0	0	0	0	0	0
1	В	0							
2	D	0							
3	C	0							
4	A	0							
5	В	0							
6	A	0							

	i	0	1	2	3	4	5	6	7
j		ai	Α	В	C	В	D	Α	В
0	bj	0	0	0	0	0	0	0	0
1	В	0	← 0	~ 1	1	~ 1	1	← 1	~ 1
2	D	0	← 0	† 1	1 1	← 1	\ 2	← 2	← 2
3	C	0	← 0	† 1	\ 2	← 2	← 2	← 2	← 2
4	A	0	K 1	← 1	† 2	← 2	← 2	~ 3	← 3
5	В	0	† 1	\ 2	← 2	~ 3	← 3	← 3	~ 4
6	A	0	\^ 1	1 2	← 2	1 3	← 3	^ 4	← 4

Construct Solution

LCS of ABCBDAB and BDCABA: BCBA

	i	0	1	2	3	4	5	6	7
j		ai	Α	В	C	В	D	Α	В
0	b_j	0	0	0	0	0	0	0	0
1	В	0	← 0	~ 1	↓ 1	K 1	1	1 1	~ 1
2	D	0	← 0	† 1	← 1	← 1	\ 2	← 2	← 2
3	C	0	← 0	† 1	\ 2	← 2	← 2	← 2	← 2
4	Α	0	~ 1	← 1	† 2	← 2	← 2	~ 3	← 3
5	В	0	† 1	\ 2	← 2	~ 3	← 3	← 3	~ 4
6	A	0	~ 1	† 2	← 2	† 3	← 3	~ 4	← 4

Time Complexity

- ▶ #subproblems: Θ(nm)
- Compute the value of a subproblem: $\Theta(1)$
- ▶ Construct optimal solution: Θ(n+m)
- Total: $\Theta(nm)$

Longest Non-Decreasing Subsequence

- ► HW2-1
- Given an array A[1..n]
- Output the length of the longest nondecreasing subsequence of A:
 - Non-decreasing subsequence: $A[i_1] \le A[i_2] \le ... \le A[i_{k-1}] \le A[i_k]$
- ▶ How to compute the sequence?
 - Sorting + LCS: O(n²)

Solution by DP

- Let L[k] be the maximum length of non-decreasing subsequences of A[1..k] which ends at A[k].
- ▶ L[1]=1
- $L[k]=\max(1, \max_{j< k, A[j] \le A[k]}(L[j]+1))$
- The answer: $\max_{1 \le k \le n} (L[k])$
- Time complexity? O(n²)
- Space complexity: Θ(n)

Examples

i	1	2	3	4	5	6	7	8	9	10
A[i]	2	2	0	5	6	4	9	8	1	7
L[i]										
d[i]										
							Ī			
i	1	2	3	4	5	6	7	8	9	10
A[i]	2	9	0	8	6	7	3	9	0	4
L[i]										
d[i]										

i	1	2	3	4	5	6	7	8	9	10
A[i]	2	2	0	5	6	4	9	8	1	7
L[i]	1	2	1	3	4	3	5	5	2	5
d[i]	0	1	0	2	4	2	5	5	1/3	5
							<u> </u>		<u> </u>	
i	1	2	3	4	5	6	7	8	9	10
A[i]	2	9	0	8	6	7	3	9	0	4
L[i]	1	2	1	2	2	3	2	4	2	3
d[i]	0	1	0	1	1	5	1/3	6	3	7/9

Construct Solution

i	1	2	3	4	5	6	7	8	9	10
A[i]	2	2	0	5	6	4	9	8	1	7
L[i]	1	2	1	3	4	3	5	5	2	5
d[i]	0	1	0	2	4	2	5	5	1/3	5
•	1	2	2	1	-	(_	0		10
I	l	2	3	4	5	6	/	8	9	10
A[i]	2	9	0	8	6	7	3	9	0	4
L[i]	1	2	1	2	2	3	2	4	2	3
d[i]	0	1	0	1	1	5	1/3	6	3	7/9

Construct Solution

LNDS of $\langle 2, 2, 0, 5, 6, 4, 9, 8, 1, 7 \rangle$: $\langle 2, 2, 5, 6, 7 \rangle$

i	1	2	3	4	5	6	7	8	9	10
A[i]	2	2	0	5	6	4	9	8	1	7
L[i]	1	2	1	3	4	3	5	5	2	5
d[i]	0	1	0	2	4	2	5	5	1/3	5
							<u> </u>			
i	1	2	3	4	5	6	7	8	9	10
A[i]	2	9	0	8	6	7	3	9	0	4
L[i]	1	2	1	2	2	3	2	4	2	3
d[i]	0	1	0	1	1	5	1/3	6	3	7/9

LNDS of $\langle 2,9,0,8,6,7,3,9,0,4 \rangle$: $\langle 2,6,7,9 \rangle$

Complexity

- ▶ #subproblems: Θ(n)
- Compute the value of a subproblem: $\Theta(n)$
- \blacktriangleright Construct optimal solution: $\Theta(n)$
- ▶ Total: Θ(n²)

0-1 Knapsack Problem

- ▶ A bad guy robs a store and finds n items
 - The i-th item has weight w_i kg.
 - ▶ The i-th item has value v_i dollars.
 - Each item cannot be divided into smaller pieces.
 - He can only carry at most W with his knapsack.
- ▶ How to achieve the maximum total value?

0-1 Knapsack Problem

- ▶ Input: $s=(n,W,v_1,w_1,...,v_n,w_n)$
- Termination: If n=0 or W≤0, return 0.
- Divide-and-Conquer: Solve subproblems
 - \triangleright sc=(n-1,W-w_n,v₁,w₁,...,v_{n-1},w_{n-1})
 - \triangleright s_P=(n-1,W,v₁,w₁,...,v_{n-1},w_{n-1})
- Combine: $max(opt(s_C)+v_n,opt(s_P))$.

i∖W	≤0	1	2	3	4	5	6	7	8
0									
1									
2									
3									
4									
5									
6									

Terminal Condition

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0								
2	0								
3	0								
4	0								
5	0								
6	0								

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P							
2	0								
3	0								
4	0								
5	0								
6	0								

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P	0,P						
2	0								
3	0								
4	0								
5	0								
6	0								

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P	0,P	5,C					
2	0								
3	0								
4	0								
5	0								
6	0								

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P	0,P	5,C	5,C	5,C	5,C	5,C	5,C
2	0	0,P	0,P	5,P	6,C	6,C	6,C	11,C	
3	0								
4	0								
5	0								
6	0								

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P	0,P	5,C	5,C	5,C	5,C	5,C	5,C
2	0	0,P	0,P	5,P	6,C	6,C	6,C	11,C	11,C
3	0	0,P	0,P	5,P	6,P	6,P	6,P	11,P	11,P
4	0	0,P	0,P	5,P	6,P	6,C P			
5	0								
6	0								

i∖W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P	0,P	5,C	5,C	5,C	5,C	5,C	5,C
2	0	0,P	0,P	5,P	6,C	6,C	6,C	11,C	11,C
3	0	0,P	0,P	5,P	6,P	6,P	6,P	11,P	11,P
4	0	0,P	0,P	5,P	6,P	6,C P	6,C P	11,P	11,C P
5	0	0,P	3,C	5,P	6,P	8,C	9,C	11,P	11,P
6	0	0,P	3,C P	5,P	6,C P	8,C P	9,C P	11,C P	12,C

Construct Solution

(6,8,5,3,6,4,4,3,6,5,3,2,3,2)

i\W	≤0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0,P	0,P	5,C	5,C	5,C	5,C	5,C	5,C
2	0	0,P	0,P	5,P	6,C	6,C	6,C	11,C	11,C
3	0	0,P	0,P	5,P	6,P	6,P	6,P	11,P	11,P
4	0	0,P	0,P	5,P	6,P	6,C P	6,C P	11,P	11,C P
5	0	0,P	3,C	5,P	6,P	8,C	9,C	11,P	11,P
6	0	0,P	3,C P	5,P	6,C P	8,C P	9,C P	11,C P	12,C

Take items 2,5,6

Time Complexity

- ▶ #subproblems: Θ(nW)
- Compute the value of a subproblem: $\Theta(1)$
- \blacktriangleright Construct optimal solution: $\Theta(n)$
- ▶ Total: Θ(nW)
- ▶ Problems:
 - ▶ What if W>>n? What if W>2ⁿ?
 - ▶ What if W is not integral?