Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Table of Contents

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Nondeterministic Finite Automata

Announcements

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

- The slide is just a short summary
- Follow the discussion and the boardwork
- Solve problems (apart from those we dish out in class)

Table of Contents

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Nondeterministic Finite Automata

Nondeterministic Finite Automata

- $(Q, \Sigma, \Delta, S, F)$
 - Q : set of states
 - \bullet Σ : Alphabet
 - ullet Δ : transition relation (function) defined as

$$\Delta: Q \times \Sigma \rightarrow 2^Q$$

 $2^Q = \{A | A \subseteq Q\}$: captures multiple possible reactions to an input

• $S \subseteq Q$: set of initial states

Extend Δ (inductively) to the multi-step version

 $\hat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ using the rules

- \bullet $\hat{\Delta}(A,\lambda) = A$ for any $A \subseteq Q$
- \bullet $\hat{\Delta}(A, xa) = \bigcup \Delta(q, a)$ $q \in \hat{\Delta}(A,x)$
- Example ??

Language of NFA

An NFA N accepts the language

$$L(N) = \{ x \in \Sigma^* \mid \hat{\Delta}(S, x) \cap F \neq \Phi \}$$

Formal Language and Automata Theory (CS21004)

> Soumvaiit Dev CSE. IIT Kharagpur

Announcements

Soumyajit Dey CSE, IIT Kharagpur

Announcements

- $\forall x, y \in \Sigma^*$ and $A \subseteq \Sigma$, $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$ **proof:** by applying induction on |y| and using definition of $\Delta, \hat{\Delta}$
- $\hat{\Delta}$ commutes with \bigcup : $\hat{\Delta}(\bigcup_i A_i, x) = \bigcup_i \hat{\Delta}(A_i, x)$, $A_i \subseteq Q$ **proof:** by applying induction on |x| and using definition of $\Delta, \hat{\Delta}$

$$A \subseteq \Sigma$$
, $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$

- Basis $(y = \lambda)$: $\hat{\Delta}(A, x\lambda) = \hat{\Delta}(A, x) = \hat{\Delta}(\hat{\Delta}(A, x), \lambda)$
- Induction step: For $x, y \in \Sigma^*$, $a \in \Sigma$, let $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$

$$\hat{\Delta}(A, xya) = \bigcup_{q \in \hat{\Delta}(A, xy)} \Delta(q, a)$$
 by definition of $\hat{\Delta}$

$$= \bigcup_{q \in \hat{\Delta}(\hat{\Delta}(A, x), y)} \Delta(q, a) \text{ induction hypothesis}$$

$$= \hat{\Delta}(\hat{\Delta}(A, x), ya))$$
 by definition of $\hat{\Delta}$

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

$$\hat{\Delta}(\bigcup_{i}A_{i},x)=\bigcup_{i}\hat{\Delta}(A_{i},x),\ A_{i}\subseteq Q$$

$$\bullet \ \hat{\Delta}(\bigcup_{i} A_{i}, \lambda) = \bigcup_{i} A_{i} = \bigcup_{i} \hat{\Delta}(A_{i}, \lambda)$$

•

$$\begin{split} \hat{\Delta}(\bigcup_i A_i, xa) &= \bigcup_{p \in \hat{\Delta}(\bigcup_i A_i, x)} \Delta(p, a) \quad \text{by definition of } \hat{\Delta} \\ &= \bigcup_{p \in \bigcup_i \hat{\Delta}(A_i, x)} \Delta(p, a) \quad \text{induction hypothesis} \\ &= \bigcup_i \bigcup_{p \in \hat{\Delta}(A_i, x)} \Delta(p, a) \\ &= \bigcup_i \hat{\Delta}(A_i, xa) \quad \text{by definition of } \hat{\Delta} \end{split}$$

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE. IIT Kharagpur

Announcements

Nondeterministic Finite Automata

Formalize NFA \Leftrightarrow DFA using $\hat{\Delta}$

Given NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$, the **equivalent** DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ is defined as follows.

- $Q_M = 2^{Q_N}$
- $\delta_M(A, a) = \hat{\Delta}_N(A, a)$
- \bullet $s_M = S_N$
- $F_M = \{A \subset Q_N \mid A \cap F_N \neq \bot\}$

¹equivalence is based on language acceptance

Formalize NFA \Leftrightarrow DFA using $\hat{\Delta}$

Given NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$, and the **equivalent** DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M),$

- $\forall A \subseteq Q_N$ and any $x \in \Sigma^*$, $\hat{\Delta}_M(A, x) = \hat{\Delta}_N(A, x)$ show by induction on |x|
- \bullet L(M) = L(N)

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE. IIT Kharagpur

Announcements

The machine can make a move without scanning ANY input.

• NFA $+ \lambda$ transitions \equiv NFA w/o λ transitions, DFA

 $\bullet \ \Delta : Q \times \Sigma \cup \lambda \to 2^Q$

 $L = \{b, bb, bbb\}$. With λ transitions it becomes trivial to construct FA for L^* given FA for L

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Consider $L = \{x \in \{0,1\}^* \mid 2\text{nd symbol from the right is } 1\}$

Figure: NFA for L

Let us revisit the NFA-DFA conversion example.

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Compute all possible **subsets**:

$$\{\{\}, \{s_1\}, \{s_2\}, \{f\}, \{s_1, s_2\}, \{s_2, f\}, \{s_1, f\}, \{s_1, s_2, f\}\}$$

 compute single step reachability among subsets for i/ps 0,1

δ	0	1
$\{s_1\}$	$ \{s_1\} $	$\{s_1, s_2\}$
$\{s_1,s_2\}$	$ \{s_1,f\}$	$\{s_1,s_2,f\}$
$\{s_1,f\}$	$ \{s_1\}$	$\{s_1,s_2\}$
$\{s_1, s_2, f\}$	$ \{s_1,f\}$	$\{s_1, s_2, f\}$

DFA should have 4 states:

$${a_1, a_2, a_3, a_4} = {\{s_1\}, \{s_1, s_2\}, \{s_1, f\}, \{s_1, s_2, f\}\}}$$

Initial state is same.

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE. IIT Kharagpur

Announcements

$\{s_1\}$ $|\{s_1\}$ $\{s_1, s_2\}$ $\{s_1, s_2\}$ $|\{s_1, f\}| \{s_1, s_2, f\}$ $\{s_1, f\}$ $|\{s_1\}$ $\{s_1, s_2\}$ $\{s_1, s_2, f\} \mid \{s_1, f\} \mid \{s_1, s_2, f\}$ a_1 a_1 a_2 a_2 *a*₃ **a**4 a_1 **a**3 a_2 a_3 a_4 a_4

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

NFA to DFA

δ	0	1
a_1	$ a_1 $	a_2
a_2	$ a_3 $	a 4
a 3	$ a_1 $	a_2
a_4	$ a_3 $	a_4

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE, IIT Kharagpur

Announcements

 λ -closure of set S of states in NFA = collection of states reachable from any state in S using only λ transitions = λ -close(S) say.

- Compute λ -close(S) where S is NFA initial state this is DFA initial state I
- Keep computing λ -closures for every reachable state

Formal Language and Automata Theory (CS21004)

Soumyajit Dey CSE. IIT Kharagpur

Announcements

$$I = \lambda - close(0) = \{0, 1, 3\}$$

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements

$$\lambda$$
-close({ $\Delta(0, a), \Delta(1, a), \Delta(3, a)$ }) = λ -close({1, 2}) = {1, 2, 3}
Hence
{0, 1, 3} $\stackrel{a}{\to}$ {1, 2, 3}

$$\lambda - close(\{\Delta(1,a),\Delta(2,a),\Delta(3,a)\}) = \lambda - close(\{\}) = \{\}$$
 Hence
$$\{1,2,3\} \xrightarrow{a} \{\}$$

Formal Language and Automata Theory (CS21004)

> Soumyajit Dey CSE, IIT Kharagpur

Announcements