TP2 - Competencia Kaggle

Alexander van Tol

Contenido

Data set

Modelo Baseline

Selección modelos

• Descripción final de modelo

Limitaciones y posibles mejoras

Data set

• Tamaño → (977541, 28)

Predecir 'averageRating'

Limpieza de Nans

Modelo Baseline

avg_rating = df['averageRating']
df = df.drop('averageRating', axis = 1)

Solo numérico

Primeras siete columnas

RF = RandomForestRegressor(n_estimators=50) → Accuracy: 20%

Modelo Baseline

Random Forest Regression:

- Combinación Decision Tree y Ensemble learning

- Bootstrapping algorithm

Selección Modelos

Probar otros modelos:

Regressión lineal → 4%

 $KNN \rightarrow 3\%$

DecisionTreeRegressor → 15%

GradientBoostingRegressor → 13%

LabelEncoder() de titleType → 23%

Más preprocesamiento/aumentar tamaño de datos?

Modelo final

Nueva columna 'Years' → diferencia entre 'startYear' y 'endYear'

Procesamiento de Nans en 'episodeNumber' y 'seasonNumber'

directors	writers		airectors	writers
		(0883334	0844784
11110683334	11110644764,11110303603		2291816	1707665
i,nm4930005,nm1746040 nm17076	665,nm0789712,nm0403945,nm1826186,nm0630		0.444005	0444005
nm0414025	nm0414025,nm3692091,nm1620376		2 0414025	0414025
nm2977268	nm2977268,nm0415515	3	2977268	2977268
pm2266662	nm4200500 nm4200020	4	2366663	4290500
	nm0414025	nm0883334 nm0844784,nm0305863 5,nm4930005,nm1746040 nm1707665,nm0789712,nm0403945,nm1826186,nm0630 nm0414025 nm3692091,nm1620376 nm2977268 nm2977268,nm0415515	nm0883334 nm0844784,nm0305863 5,nm4930005,nm1746040 nm1707665,nm0789712,nm0403945,nm1826186,nm0630 nm0414025 nm0414025,nm3692091,nm1620376 nm2977268 nm2977268,nm0415515	nm0883334 nm0844784,nm0305863 0 0883334 5,nm4930005,nm1746040 nm1707665,nm0789712,nm0403945,nm1826186,nm0630 2291816 nm0414025 nm0414025,nm3692091,nm1620376 20414025 nm2977268 nm2977268,nm0415515 32977268 4 2366663 4 2366663

Dummies columna para 'titleType' y 'genres_x' en vez de LabelEncoder()

Modelo final

```
num_6_col = ['numVotes','isAdult', 'Years', 'runtimeMinutes','seasonNumber','episodeNumber']
columns_to_exclude = ['language', 'adult', 'genres_y', 'original_language', 'production_companies', 'production_countries','attributes', 'status','tagline','video']
```

final.shape \rightarrow (977539, 47)

RandomForestRegressor(n_estimators = 50) → ~49%

Private Score (i) Public Score (i)

0.50644 0.50316

Modelo final

Selección de hiper parámetros manual:

→ test_train_split(stratify=avg_rating) para poder validar (val =20% de datos)

Tiempo de entrenamiento largo >10min

100 - 300 n_estimators → solo aumentó 1-2%

min_samples_split/min_samples_leaf → aumentó poco

Limitaciones y posibles mejoras

- Optimización de hiper parámetros

- Más variables a costa del tamaño de los datos? → relaciones sutiles

- Más pre-procesamiento de datos

- Reducir overfitting → max_depth = ~ , min_samples_split/leaf = ~