Analyse 1 2020/2021 - Ugeseddel 1

23. april 2021

Forelæsninger: Søren Eilers, eilers@math.ku.dk Øvelser: Johannes Agerskov, johannes-as@math.ku.dk

Forelæsning tirsdag	1a1	1a2	1a3	1a4	1a5	1a6	
Opgaver tirsdag	1.1	1.2	1.3	1.4			
Forelæsning torsdag	1b1	1b2	1b3	1b4	1b5	1b6	1b7
Opgaver torsdag	1.5	1.6	1.7	1.8	1.9		
Forankringsspørgsmål	(1.x)	(1.y)	(1.z)				

Forelæsningsprogram

I løbet af kursets første uge dækker vi MC Afsnit 1.1–1.4. Afsnit 1.1 er en generel diskussion af analyse i de komplekse tal \mathbb{C} , navnlig for funktioner fra (en delmængde af) \mathbb{R} to \mathbb{C} , og Afsnit 1.2 og 1.3 dækker to fundamentale begreber om talfølger: Fortætningspunkter og konvergens. Alt stof der gennemgås i denne uge er fuldstændig fundamentalt for alt hvad der følger i kursets løb, måske med undtagelse af Lemma 1.8 og Proposition 1.30 hvis beviser vi henholdsvis overspringer og gennemgår lidt overfladisk i forelæsningsvideoerne.

Deltagerne bedes bide særligt mærke i hvordan vi bygger videre på Analyse 0 dels i forhold til at give mening til differentiabilitet og integration for funktioner med værdier i \mathbb{C} ved at sammen ligne med teorien for differentiabilitet og integration for funktioner med værdier i \mathbb{R}^2 , og ved at inddage viden om grænseovergang i Analyse 0-forstand til at konkludere om grænseovergang i Analyse 1-forstand.

I forelæsningsvideo 1b3 opstiller og beviser vi "Klemmelemmaet" der fortjener at blive eksplicit nævnt her til brug ved opgaveregningen:

Klemmelemmaet Lad tre reelle følger $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}, \{c_n\}_{n\in\mathbb{N}}$ være givet med

$$a_n \le b_n \le c_n$$

for alle $n \in \mathbb{N}$. Hvis $\{a_n\}_{n \in \mathbb{N}}$ og $\{c_n\}_{n \in \mathbb{N}}$ er konvergente med

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = d$$

så er også $\{b_n\}_{n\in\mathbb{N}}$ konvergent med

$$\lim_{n \to \infty} b_n = d.$$

Forankringsspørgsmål

- (1.x) Gælder det at $\frac{d}{dx}(e^{zx}) = ze^{zx}$ for alle fastholdte $z \in \mathbb{C}$?
- (1.y) Hvad er forskellen på at vide at a_n konvergerer og på at kunne bestemme grænseværdien? Hvad skal der til ud over konvergens til at for at fx bestemme de første 5 betydende cifre af grænseværdien? Hvordan relaterer dette sig til ideen om approksimation?
- (1.z) Vi har bemærket at An0-udsagnet $\lim_{x\to\infty} f(x) = a$ er logisk stærkere end An1-udsagnet $\lim_{n\to\infty} f(n) = a$. Hvordan kan det så være at det ofte er lettere for os at etablere at An0-udsagnet er sandt?

Opgaver

Opgave 1.1. Algebra og komplekse tal

a) Skriv følgende komplekse tal på formen $a + bi \mod a, b \in \mathbb{R}$.

- i) $(3+2i)-(6-\sqrt{13}i)$
- $iii) \frac{3+2i}{6-\sqrt{13}i}$

v) i^{2021}

- ii) $(3+2i) \cdot (6-\sqrt{13}i)$

- vi) $(1+i)^{2021}$
- b) Lad $x = \frac{1}{\sqrt{2}}(\sqrt{3} + i)$. Skitsér i hånden følgende punkter i planen, for $n = 1, \dots, 8$:
 - i) $(\operatorname{Re}(x^n), \operatorname{Im}(x^n))$
- ii) $(n, \operatorname{Re}(x^n))$

iii) $(n, \operatorname{Im}(x^n))$

Opgave 1.2. Differentiation og integration af komplekse funktioner

- a) Lad $I \subset \mathbb{R}$ være et åbent interval. Vis formlen (fg)' = f'g + fg' for differentiable funktioner $f, g : I \to \mathbb{C}$ på to måder:
 - i Opskriv Re(fg) og Im(fg) ud fra Re(f), Re(g), Im(f) og Im(g), og benyt almindelige regneregler for differentiation af produkt.
 - ii Inspicer beviset for den almindelige regneregel for differentiation af produkt (Sætning 4.9 i [EHM]) og argumenter for, at beviset også gælder for funktioner $f: I \to \mathbb{C}$ "mutatis mutandis" 1.
- b) Lad $n \in \mathbb{Z}$. Betragt funktionen $f : \mathbb{R} \to \mathbb{C}$ givet ved $f(x) = xe^{inx}$ for alle $x \in \mathbb{R}$. Find f'(x) for etheret $x \in \mathbb{R}$.
- c) Find en stamfunktion til f.
- d) Lad $g:[0,2\pi]\to\mathbb{C}$ og $h:[0,2\pi]\to\mathbb{C}$ være givet ved $g(x)=\mathrm{Re}f(x)$ og $h(x)=\mathrm{Im}f(x)$ for alle $x\in[0,2\pi]$. Argumenter for at g og h er Riemann integrable og udregn $\int_0^{2\pi} x e^{inx} dx$

Opgave 1.3. Rekursiv versus direkte definition af talfølger

a) Følgen $\{a_n\}_{n\in\mathbb{N}}$ er givet direkte ved

$$a_n = (-1)^n$$
.

Find en rekursiv definition af $\{a_n\}_{n\in\mathbb{N}}$.

b) Følgen $\{b_n\}_{n\in\mathbb{N}}$ er givet rekursivt ved

$$b_1 = 1$$
 $b_n = b_{n-1} + n, n > 1$

Find en direkte definition af $\{b_n\}_{n\in\mathbb{N}}$.

Opgave 1.4. Newtons metode

- a) Beregn afstanden fra $\sqrt{2}$ til den n'te approksimation af $\sqrt{2}$ givet i Eksempel 1.15, for n mellem 1 og 15. Lav et plot der illustrerer, hvor hurtigt denne metode konvergerer. Forslag: Lav et semilogaritmisk plot.
- b) Betragt nu istedet følgen $x_0 = 2$, $x_n = \frac{1}{3} \left(\frac{2}{x_{n-1}^2} + 2x_{n-1} \right)$, for $n = 1, 2, 3, \dots$ Beregn x_1, x_2, \dots, x_{10} . Hvilken rod af 2 ser denne følge ud til at approksimere?

Opgave 1.5. Konvergens

a) Find grænseværdierne for nedenstående talfølger (n = 1, 2, 3, ...):

i)
$$\frac{n^3}{2^{-n} + 3n^3}$$

iii)
$$3\sin(1/n) + \frac{\pi}{2 + 1/n^4}$$
 vi) $\frac{(n!)^2}{(2n)!}$

vi)
$$\frac{(n!)^2}{(2n)!}$$

iv)
$$\sin(1/n)n$$

vii)
$$\frac{n + in^2}{2n - n^2 + 1}$$

ii)
$$\frac{\cos(n)}{n}$$

v)
$$\frac{((\log(n))^{2021}}{n}$$

viii)
$$e^{i2\pi(n+1/n)}$$

¹Slå "mutatis mutandis" op hvis du ikke ved, hvad det betyder.

Opgave 1.6. Trekantsuligheden

a) Vis, at der for alle komplekse tal z og w gælder $|z-w| \ge ||z|-|w||$. Begrund herudfra, at hvis $\{z_n\}_{n\in\mathbb{N}}$ er en kompleks følge, der konvergerer mod z, så vil følgen $\{|z_n|\}_{n\in\mathbb{N}}$ konvergere mod |z|.

Opgave 1.7. Forståelse af konvergens, divergens og fortætningspunkter

- a) Lad $a_n = \frac{1}{n^2}$. Følgen $\{a_n\}_{n \in \mathbb{N}}$ konvergerer. Angiv dens grænseværdi a, og find for hvert $\varepsilon > 0$, et $N \in \mathbb{N}$ sådan at der for alle $n \geq N$ gælder $|a_n a| < \varepsilon$ (med andre ord: giv et eksplicit bevis for konvergensen mod a).
- b) Lad $b_n = n^2$. Find for hvert K > 0 et $N \in \mathbb{N}$, sådan at der for alle n > N gælder $b_n > K$ (med andre ord: giv et eksplicit bevis for, at $\{b_n\}_{n \in \mathbb{N}}$ divergerer mod $+\infty$).
- c) Lad $c_n = (-1)^n + \frac{1}{2^n}$. Angiv alle fortætningspunkterne for følgen $\{c_n\}_{n \in \mathbb{N}}$. Vis, for hvert fortætningspunkt \tilde{c} , at der for hvert $\varepsilon > 0$ findes uendeligt mange $n \in \mathbb{N}$ med $|c_n \tilde{c}| < \varepsilon$ (med andre ord: giv et eksplicit bevis for, at \tilde{c} er fortætningspunkt). Vis tilsvarende eksplicit, at ingen andre punkter er fortætningspunkter for følgen.

Opgave 1.8. Mere om divergens og fortætningspunkter

a) Lad $\{a_n\}_{n\in\mathbb{N}}$ og $\{b_n\}_{n\in\mathbb{N}}$ være komplekse talfølger givet ved

$$a_n = \begin{cases} 0 & n \text{ lige} \\ 1 & n \text{ ulige} \end{cases}, \qquad b_n = e^{\frac{2\pi ni}{3}}.$$

Bestem alle fortætningspunkter for følgerne. Hvorfor kan du med det samme konkludere, at begge følger er divergente?

- b) Lad $\{a_n\}_{n\in\mathbb{N}}$ være en følge som divergerer mod ∞ , og lad $\{b_n\}_{n\in\mathbb{N}}$ være en følge som opfylder $b_n\geq a_n$ for alle $n\in\mathbb{N}$.
 - i) Vis, at $\{b_n\}_{n\in\mathbb{N}}$ divergerer mod ∞ .
 - ii) Vis, at ingen af følgerne har nogen fortætningspunkter.

Er det sandt, at enhver reel talfølge, der ikke har nogen fortætningspunkter, enten divergerer mod ∞ eller mod $-\infty$?

c) Find en talfølge, for hvilken mængden af fortætningspunkter består af alle de naturlige tal, N.

Opgave 1.9. Bernoullis ulighed

Betragt nedenstående følger

$$\{a_n\}_{n\in\mathbb{N}}$$
, hvor $a_n = \left(1 + \frac{1}{n}\right)^n$, $\{b_n\}_{n\in\mathbb{N}}$, hvor $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$

a) Lad $x \in \mathbb{R}$ og $n \in \mathbb{N}$. Vis at for $x \geq -1$ haves

$$(1+x)^n > 1 + nx$$

b) Vis, at $\{a_n\}_{n\in\mathbb{N}}$ og $\{b_n\}_{n\in\mathbb{N}}$ begge er begrænsede og monotone. Har de to følger samme grænse? **Vink**: Lad $n\in\mathbb{N}$ være vilkårlig. Betragt så $(a_{n+1}-a_n)$ og (b_n-b_{n+1}) . Benyt i begge tilfælde Bernoullis ulighed fra 1.9.a) til at konkludere, at følgerne hver især er enten voksende eller aftagende.

3

c) Bestem Eulers tal, e, ned til fjerde decimal.