REPRESENTAÇÃO DE IMAGENS, QUANTIZAÇÃO, SISTEMAS DE CORES, CONVERSÃO COLORIDO-ESCALA DE CINZA

ES235 - Aula 02 João Marcelo Teixeira Willams Costa

REPRESENTAÇÃO DE IMAGENS

380	V 649 B 6495	G % Y% O%	R %
Color	Wavelength	Frequency	Photon energy
Violet	380–450 nm	680–790 THz	2.95-3.10 eV
Blue	450–485 nm	620–680 THz	2.64-2.75 eV
Cyan	485–500 nm	600–620 THz	2.48-2.52 eV
Green	500–565 nm	530–600 THz	2.25-2.34 eV
Yellow	565–590 nm	510–530 THz	2.10-2.17 eV
Orange	590–625 nm	480–510 THz	2.00-2.10 eV
Red	625–740 nm	405–480 THz	1.65–2.00 eV

REPRESENTAÇÃO DE IMAGENS

Enganando o olho humano...

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

REPRESENTAÇÃO DE IMAGENS

Mais ilusões...

b d

FIGURE 2.9 Some well-known optical illusions.

QUANTIZAÇÃO

An example image in 24-bit RGB color

The same image reduced to a palette of 16 colors specifically chosen to best represent the image; the selected palette is shown by the squares above

QUANTIZAÇÃO

SISTEMAS DE CORES

Aditivo (RGB)

Subtrativo (CMYK)

Color printing typically uses ink of four colors: cyan, magenta, yellow, and black.

When CMY "primaries" are combined at full strength, the resulting "secondary" mixtures are red, green, and blue.
Mixing all three gives an imperfect black or a perfect grey.

RGB

LAB

YCrCb

HSV

CONVERSÃO COLORIDO-ESCALA DE CINZA

RGB[A] to Gray: $Y \leftarrow 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$

Gray to RGB[A]: $R \leftarrow Y, G \leftarrow Y, B \leftarrow Y, A \leftarrow \max(ChannelRange)$

OUTRAS CONVERSÕES

In case of 8-bit and 16-bit images, R, G, and B are converted to the floating-point format and scaled to fit the 0 to 1 range.

$$egin{aligned} V \leftarrow max(R,G,B) \ S \leftarrow egin{cases} rac{V-min(R,G,B)}{V} & ext{if } V
eq 0 \ 0 & ext{otherwise} \end{cases} \ H \leftarrow egin{cases} 60(G-B)/(V-min(R,G,B)) & ext{if } V = R \ 120+60(B-R)/(V-min(R,G,B)) & ext{if } V = G \ 240+60(R-G)/(V-min(R,G,B)) & ext{if } V = B \end{cases} \end{aligned}$$

If H < 0 then $H \leftarrow H + 360$. On output $0 \leq V \leq$ 1, $0 \leq S \leq$ 1, $0 \leq H \leq 360$.

The values are then converted to the destination data type:

- 8-bit images: $V \leftarrow 255V, S \leftarrow 255S, H \leftarrow H/2 (ext{to fit to } 0 ext{ to } 255)$
- ullet 16-bit images: (currently not supported) V < -65535V, S < -65535S, H < -H
- 32-bit images: H, S, and V are left as is

REFERÊNCIAS

Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/