

22 MAR 2002

FORM PTO-1390

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

ATTORNEY'S DOCKET NUMBER PT-1066 USN

U.S. APPLICATION NO (If know TO BE ASSIGNED

INTERNATIONAL APPLICATION NO. PCT/US00/25643

INTERNATIONAL FILING DATE 19 September 2000

PRIORITY DATE CLAIMED 23 September 1999

TITLE OF INVENTION

MOLECULES FOR DIAGNOSTICS AND THERAPEUTICS

APPLICANT(S) FOR DO/EO/US

HODGSON, David; LINCOLN, Stephen, E.; RUSSO, Frank D.; SPIRO, Peter A.; BANVILLE, Steven C.; BRATCHER, Shawn, R.; DUFOUR, Gerard, E.; COHEN, Howard J.; ROSEN, Bruce H.; SHAH, Purvi; CHALUP, Michael, S.; HILLMAN, Jennifer L.; JONES, Anissa L.; YU, Jimmy Y.; GREENAWALT, Lila B.; PANZER, Scott R.; ROSEBERRY, Ann M.; WRIGHT, Rachel J.; CHEN, Wensheng; LIU, Tommy F.; YAP, Pierre E.; STOCKDREHER, Theresa K.; AMSHEY, Stefan; FONG, Willy T.

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- 1. ☑ This is the FIRST submission of items concerning a filing under 35 U.S C. 371.
- 2.

 This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
- 3.

 This is an express request to promptly begin national examination procedures (35 U.S C. 371 (f)).
- 4. □ The US has been elected by the expiration of 19 months from the priority date (PCT Article 31)
- 5. ⋈ A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. \square is attached hereto (required only if not communicated by the International Bureau)
 - b. \square has been communicated by the International Bureau.
 - c. 🗵 is not required, as the application was filed in the United States Receiving Office (RO/US).
- 6. □ An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).
- 7.

 Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C 371(c)(3))
 - a. \square are attached hereto (required only if not communicated by the International Bureau).
 - b □ have been communicated by the International Bureau.
 - c. \square have not been made, however, the time limit for making such amendments has NOT expired.
 - d. □ have not been made and will not be made.
 - e.

 attached hereto Article 34 Amendment
- 8.

 An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
- 10.□ An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11 to 16 below concern document(s) or information included:

- □ An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
- 12.

 ✓ An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.27 and 3.31 is included.
- 13. □ A FIRST preliminary amendment
 - □ A SECOND or SUBSEQUENT preliminary amendment.
- 14. □ A substitute specification.
- □ A change of power of attorney and/or address letter.
- 16. ☑ Other items or information:
- 1) Transmittal Letter (2 pp, in duplicate)
- 2) Return Postcard
- 3) Express Mail Label No.: <u>EL 856 149 234 US</u>
- 4) Sequence Listing on Diskette
- 5) Sequence Listing Statement
- 6) Copy of International Search Report (PCT/ISA/210)

U.S. APPLICATION NO. (if known, see 37 CFR

INTERNATIONAL APPLICATION NO.: PCT/US00/25643

ATTORNEY'S DOCKET NUMBER PT-1066 USN

TO BE ASSIGNED

JC13 Rec d PCT/PTO 22 MAR 2002

17. ☼ The following fee BASIC NATIONAL F Neither international sea and International see □International prelii USPTO but International prelii but international preliibut international preliibut international preliibut all claims did n □International preliibut all claims did n					
ENTER APPROPRIATE BASIC FEE AMOUNT =				\$710.00	
Surcharge of \$130.00 for furnishing the oath or declaration later than \$\sigma\$ 20 \$ 30\$ months from the earliest claimed priority date (37 CFR 1.492(e)).				\$	
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE		
Total Claims	19 =	0	X \$ 18.00	\$	
Independent Claims	1 =	0	X \$ 80.00	\$	
MULTIPLE DEPENDENT CLAIM(S) (if applicable) + \$270.00				\$	
TOTAL OF ABOVE CALCULATIONS =				\$	
□ Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.				\$	
SUBTOTAL				\$710.00	
Processing fee of \$130.00 for furnishing the English translation later than 20 30 months from the earliest clailmed priority date (37 CFR 1492(f)).				\$	
TOTAL NATIONAL FEE =				\$710.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by the appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +					
TOTAL FEES ENCLOSED =				\$710.00	
				Amount to be Refunded:	\$
				Charged:	\$
a. □ A check in the amount of \$\frac{1}{2}\$ to cover the above fees is enclosed. b. ② Please charge my Deposit Account No. 09-0108 in the amount of \$\frac{5}{10.00}\$ to cover the above fees. c. ③ The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 09-0108. A duplicate copy of this sheet is enclosed. NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.					
SEND ALL CORRE INCYTE GENOMIC 3160 Porter Drive Palo Alto, CA 94304	S, INC.	SIGNATURE	mleftof	7 	
NAME: Diana Hamlet-Cox					
REGISTRATION NUMBER. 33,302					
		DATE:	22 March 2002		

10

15

20

25

30

MOLECULES FOR DIAGNOSTICS AND THERAPEUTICS

TECHNICAL FIELD

The present invention relates to human molecules and to the use of these sequences in the diagnosis, study, prevention, and treatment of diseases associated with, as well as effects of exogenous compounds on, the expression of human molecules.

BACKGROUND OF THE INVENTION

The human genome is comprised of thousands of genes, many encoding gene products that function in the maintenance and growth of the various cells and tissues in the body. Aberrant expression or mutations in these genes and their products is the cause of, or is associated with, a variety of human diseases such as cancer and other cell proliferative disorders, autoimmune/inflammatory disorders, infections, developmental disorders, endocrine disorders, metabolic disorders, neurological disorders, gastrointestinal disorders, transport disorders, and connective tissue disorders. The identification of these genes and their products is the basis of an ever-expanding effort to find markers for early detection of diseases, and targets for their prevention and treatment. Therefore, these genes and their products are useful as diagnostics and therapeutics. These genes may encode, for example, enzyme molecules, molecules associated with growth and development, biochemical pathway molecules, extracellular information transmission molecules, receptor molecules, intracellular signaling molecules, membrane transport molecules, protein modification and maintenance molecules, nucleic acid synthesis and modification molecules, adhesion molecules, antigen recognition molecules, secreted and extracellular matrix molecules, cytoskeletal molecules, ribosomal molecules, electron transfer associated molecules, transcription factor molecules, chromatin molecules, cell membrane molecules, and organelle associated molecules.

For example, cancer represents a type of cell proliferative disorder that affects nearly every tissue in the body. A wide variety of molecules, either aberrantly expressed or mutated, can be the cause of, or involved with, various cancers because tissue growth involves complex and ordered patterns of cell proliferation, cell differentiation, and apoptosis. Cell proliferation must be regulated to maintain both the number of cells and their spatial organization. This regulation depends upon the appropriate expression of proteins which control cell cycle progression in response to extracellular signals such as growth factors and other mitogens, and intracellular cues such as DNA damage or nutrient starvation. Molecules which directly or indirectly modulate cell cycle progression fall into several categories, including growth factors and their receptors, second messenger and signal transduction proteins, oncogene products, tumor-suppressor proteins, and mitosis-promoting factors.

Aberrant expression or mutations in any of these gene products can result in cell proliferative disorders such as cancer. Oncogenes are genes generally derived from normal genes that, through abnormal expression or mutation, can effect the transformation of a normal cell to a malignant one (oncogenesis). Oncoproteins, encoded by oncogenes, can affect cell proliferation in a variety of ways and include growth factors, growth factor receptors, intracellular signal transducers, nuclear transcription factors, and cell-cycle control proteins. In contrast, tumor-suppressor genes are involved in inhibiting cell proliferation. Mutations which cause reduced function or loss of function in tumor-suppressor genes result in aberrant cell proliferation and cancer. Although many different genes and their products have been found to be associated with cell proliferative disorders such as cancer, many more may exist that are yet to be discovered.

DNA-based arrays can provide a simple way to explore the expression of a single polymorphic gene or a large number of genes. When the expression of a single gene is explored, DNA-based arrays are employed to detect the expression of specific gene variants. For example, a p53 tumor suppressor gene array is used to determine whether individuals are carrying mutations that predispose them to cancer. A cytochrome p450 gene array is useful to determine whether individuals have one of a number of specific mutations that could result in increased drug metabolism, drug resistance or drug toxicity.

DNA-based array technology is especially relevant for the rapid screening of expression of a large number of genes. There is a growing awareness that gene expression is affected in a global fashion. A genetic predisposition, disease or therapeutic treatment may affect, directly or indirectly, the expression of a large number of genes. In some cases the interactions may be expected, such as when the genes are part of the same signaling pathway. In other cases, such as when the genes participate in separate signaling pathways, the interactions may be totally unexpected. Therefore, DNA-based arrays can be used to investigate how genetic predisposition, disease, or therapeutic treatment affects the expression of a large number of genes.

25

30

10

15

20

Enzyme Molecules

SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, and SEQ ID NO:8 encode, for example, human enzyme molecules.

The cellular processes of biogenesis and biodegradation involve a number of key enzyme classes including oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. These enzyme classes are each comprised of numerous substrate-specific enzymes having precise and well regulated functions. These enzymes function by facilitating metabolic processes such as glycolysis, the tricarboxylic cycle, and fatty acid metabolism; synthesis or degradation of amino acids, steroids, phospholipids, alcohols, etc.; regulation of cell signalling, proliferation, inflamation, apoptosis, etc.,

and through catalyzing critical steps in DNA replication and repair, and the process of translation.

Oxidoreductases

Many pathways of biogenesis and biodegradation require oxidoreductase (dehydrogenase or reductase) activity, coupled to the reduction or oxidation of a donor or acceptor cofactor. Potential cofactors include cytochromes, oxygen, disulfide, iron-sulfur proteins, flavin adenine dinucleotide (FAD), and the nicotinamide adenine dinucleotides NAD and NADP (Newsholme, E.A. and A.R. Leech (1983) Biochemistry for the Medical Sciences, John Wiley and Sons, Chichester, U.K., pp. 779-793). Reductase activity catalyzes the transfer of electrons between substrate(s) and cofactor(s) with concurrent oxidation of the cofactor. The reverse dehydrogenase reaction catalyzes the reduction of a cofactor and consequent oxidation of the substrate. Oxidoreductase enzymes are a broad superfamily of proteins that catalyze numerous reactions in all cells of organisms ranging from bacteria to plants to humans. These reactions include metabolism of sugar, certain detoxification reactions in the liver, and the synthesis or degradation of fatty acids, amino acids, glucocorticoids, estrogens, androgens, and prostaglandins. Different family members are named according to the direction in which their reactions are typically catalyzed; thus they may be referred to as oxidoreductases, oxidases, reductases, or dehydrogenases. In addition, family members often have distinct cellular localizations, including the cytosol, the plasma membrane, mitochondrial inner or outer membrane, and peroxisomes.

10

15

20

25

30

35

Short-chain alcohol dehydrogenases (SCADs) are a family of dehydrogenases that only share 15% to 30% sequence identity, with similarity predominantly in the coenzyme binding domain and the substrate binding domain. In addition to the well-known role in detoxification of ethanol, SCADs are also involved in synthesis and degradation of fatty acids, steroids, and some prostaglandins, and are therefore implicated in a variety of disorders such as lipid storage disease, myopathy, SCAD deficiency, and certain genetic disorders. For example, retinol dehydrogenase is a SCAD-family member (Simon, A. et al. (1995) J. Biol. Chem. 270:1107-1112) that converts retinol to retinal, the precursor of retinoic acid. Retinoic acid, a regulator of differentiation and apoptosis, has been shown to down-regulate genes involved in cell proliferation and inflammation (Chai, X. et al. (1995) J. Biol. Chem. 270:3900-3904). In addition, retinol dehydrogenase has been linked to hereditary eye diseases such as autosomal recessive childhood-onset severe retinal dystrophy (Simon, A. et al. (1996) Genomics 36:424-430).

Propagation of nerve impulses, modulation of cell proliferation and differentiation, induction of the immune response, and tissue homeostasis involve neurotransmitter metabolism (Weiss, B. (1991) Neurotoxicology 12:379-386; Collins, S.M. et al. (1992) Ann. N.Y. Acad. Sci. 664:415-424; Brown, J.K. and H. Imam (1991) J. Inherit. Metab. Dis. 14:436-458). Many pathways of neurotransmitter metabolism require oxidoreductase activity, coupled to reduction or oxidation of a

cofactor, such as NAD+/NADH (Newsholme, E.A. and A.R. Leech (1983) <u>Biochemistry for the Medical Sciences</u>, John Wiley and Sons, Chichester, U.K. pp. 779-793). Degradation of catecholamines (epinephrine or norepinephrine) requires alcohol dehydrogenase (in the brain) or aldehyde dehydrogenase (in peripheral tissue). NAD+-dependent aldehyde dehydrogenase oxidizes 5-hydroxyindole-3-acetate (the product of 5-hydroxytryptamine (serotonin) metabolism) in the brain, blood platelets, liver and pulmonary endothelium (Newsholme, <u>supra</u>, p. 786). Other neurotransmitter degradation pathways that utilize NAD+/NADH-dependent oxidoreductase activity include those of L-DOPA (precursor of dopamine, a neuronal excitatory compound), glycine (an inhibitory neurotransmitter in the brain and spinal cord), histamine (liberated from mast cells during the inflammatory response), and taurine (an inhibitory neurotransmitter of the brain stem, spinal cord and retina) (Newsholme, <u>supra</u>, pp. 790, 792). Epigenetic or genetic defects in neurotransmitter metabolic pathways can result in a spectrum of disease states in different tissues including Parkinson disease and inherited myoclonus (McCance, K.L. and S.E. Huether (1994) <u>Pathophysiology</u>, Mosby-Year Book, Inc., St. Louis MO, pp. 402-404; Gundlach, A.L. (1990) FASEB J. 4:2761-2766).

10

15

20

25

35

Tetrahydrofolate is a derivatized glutamate molecule that acts as a carrier, providing activated one-carbon units to a wide variety of biosynthetic reactions, including synthesis of purines, pyrimidines, and the amino acid methionine. Tetrahydrofolate is generated by the activity of a holoenzyme complex called tetrahydrofolate synthase, which includes three enzyme activities: tetrahydrofolate dehydrogenase, tetrahydrofolate cyclohydrolase, and tetrahydrofolate synthetase. Thus, tetrahydrofolate dehydrogenase plays an important role in generating building blocks for nucleic and amino acids, crucial to proliferating cells.

3-Hydroxyacyl-CoA dehydrogenase (3HACD) is involved in fatty acid metabolism. It catalyzes the reduction of 3-hydroxyacyl-CoA to 3-oxoacyl-CoA, with concomitant oxidation of NADH, in the mitochondria and peroxisomes of eukaryotic cells. In peroxisomes, 3HACD and enoyl-CoA hydratase form an enzyme complex called bifunctional enzyme, defects in which are associated with peroxisomal bifunctional enzyme deficiency. This interruption in fatty acid metabolism produces accumulation of very-long chain fatty acids, disrupting development of the brain, bone, and adrenal glands. Infants born with this deficiency typically die within 6 months (Watkins, P. et al. (1989) J. Clin. Invest. 83:771-777; Online Mendelian Inheritance in Man (OMIM), #261515). The neurodegeneration that is characteristic of Alzheimer's disease involves development of extracellular plaques in certain brain regions. A major protein component of these plaques is the peptide amyloid- β (β), which is one of several cleavage products of amyloid precursor protein (APP). 3HACD has been shown to bind the β peptide, and is overexpressed in neurons affected in Alzheimer's disease. In addition, an antibody against 3HACD can block the toxic effects of β in a cell culture model of Alzheimer's disease (Yan, S. et al. (1997) Nature 389:689-695; OMIM,

#602057).

10

15

20

25

35

Steroids, such as estrogen, testosterone, corticosterone, and others, are generated from a common precursor, cholesterol, and are interconverted into one another. A wide variety of enzymes act upon cholesterol, including a number of dehydrogenases. Steroid dehydrogenases, such as the hydroxysteroid dehydrogenases, are involved in hypertension, fertility, and cancer (Duax, W.L. and D. Ghosh (1997) Steroids 62:95-100). One such dehydrogenase is 3-oxo-5-α-steroid dehydrogenase (OASD), a microsomal membrane protein highly expressed in prostate and other androgen-responsive tissues. OASD catalyzes the conversion of testosterone into dihydrotestosterone, which is the most potent androgen. Dihydrotestosterone is essential for the formation of the male phenotype during embryogenesis, as well as for proper androgen-mediated growth of tissues such as the prostate and male genitalia. A defect in OASD that prevents the conversion of testosterone into dihydrotestosterone leads to a rare form of male pseudohermaphroditis, characterized by defective formation of the external genitalia (Andersson, S. et al. (1991) Nature 354:159-161; Labrie, F. et al. (1992) Endocrinology 131:1571-1573; OMIM #264600). Thus, OASD plays a central role in sexual differentiation and androgen physiology.

 17β -hydroxysteroid dehydrogenase (17β HSD6) plays an important role in the regulation of the male reproductive hormone, dihydrotestosterone (DHTT). 17β HSD6 acts to reduce levels of DHTT by oxidizing a precursor of DHTT, 3α -diol, to androsterone which is readily glucuronidated and removed from tissues. 17β HSD6 is active with both androgen and estrogen substrates when expressed in embryonic kidney 293 cells. At least five other isozymes of 17β HSD have been identified that catalyze oxidation and/or reduction reactions in various tissues with preferences for different steroid substrates (Biswas, M.G. and D.W. Russell (1997) J. Biol. Chem. 272:15959-15966). For example, 17β HSD1 preferentially reduces estradiol and is abundant in the ovary and placenta. 17β HSD2 catalyzes oxidation of androgens and is present in the endometrium and placenta. 17β HSD3 is exclusively a reductive enzyme in the testis (Geissler, W.M. et al. (1994) Nat. Genet. 7:34-39). An excess of androgens such as DHTT can contribute to certain disease states such as benign prostatic hyperplasia and prostate cancer.

Oxidoreductases are components of the fatty acid metabolism pathways in mitochondria and peroxisomes. The main beta-oxidation pathway degrades both saturated and unsaturated fatty acids, while the auxiliary pathway performs additional steps required for the degradation of unsaturated fatty acids. The auxiliary beta-oxidation enzyme 2,4-dienoyl-CoA reductase catalyzes the removal of even-numbered double bonds from unsaturated fatty acids prior to their entry into the main beta-oxidation pathway. The enzyme may also remove odd-numbered double bonds from unsaturated fatty acids (Koivuranta, K.T. et al. (1994) Biochem. J. 304:787-792; Smeland, T.E. et al. (1992) Proc. Natl. Acad. Sci. USA 89:6673-6677). 2,4-dienoyl-CoA reductase is located in both mitochondria and

peroxisomes. Inherited deficiencies in mitochondrial and peroxisomal beta-oxidation enzymes are associated with severe diseases, some of which manifest themselves soon after birth and lead to death within a few years. Defects in beta-oxidation are associated with Reye's syndrome, Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum's disease, acyl-CoA oxidase deficiency, and bifunctional protein deficiency (Suzuki, Y. et al. (1994) Am. J. Hum. Genet. 54:36-43; Hoefler, supra; Cotran, R.S. et al. (1994) Robbins Pathologic Basis of Disease, W.B. Saunders Co., Philadelphia PA, p.866). Peroxisomal beta-oxidation is impaired in cancerous tissue. Although neoplastic human breast epithelial cells have the same number of peroxisomes as do normal cells, fatty acyl-CoA oxidase activity is lower than in control tissue (el Bouhtoury, F. et al. (1992) J. Pathol. 166:27-35). Human colon carcinomas have fewer peroxisomes than normal colon tissue and have 10 lower fatty-acyl-CoA oxidase and bifunctional enzyme (including enoyl-CoA hydratase) activities than normal tissue (Cable, S. et al. (1992) Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 62:221-226). Another important oxidoreductase is isocitrate dehydrogenase, which catalyzes the conversion of isocitrate to a-ketoglutarate, a substrate of the citric acid cycle. Isocitrate dehydrogenase can be 15 either NAD or NADP dependent, and is found in the cytosol, mitochondria, and peroxisomes. Activity of isocitrate dehydrogenase is regulated developmentally, and by hormones, neurotransmitters, and growth factors.

Hydroxypyruvate reductase (HPR), a peroxisomal 2-hydroxyacid dehydrogenase in the glycolate pathway, catalyzes the conversion of hydroxypyruvate to glycerate with the oxidation of both NADH and NADPH. The reverse dehydrogenase reaction reduces NAD⁺ and NADP⁺. HPR recycles nucleotides and bases back into pathways leading to the synthesis of ATP and GTP. ATP and GTP are used to produce DNA and RNA and to control various aspects of signal transduction and energy metabolism. Inhibitors of purine nucleotide biosynthesis have long been employed as antiproliferative agents to treat cancer and viral diseases. HPR also regulates biochemical synthesis of serine and cellular serine levels available for protein synthesis.

20

25

30

35

The mitochondrial electron transport (or respiratory) chain is a series of oxidoreductase-type enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH through a series of redox centers within these complexes to oxygen, and the coupling of this oxidation to the synthesis of ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving a cell's many energy-requiring reactions. The key complexes in the respiratory chain are NADH:ubiquinone oxidoreductase (complex I), succinate:ubiquinone oxidoreductase (complex II), cytochrome c oxidase (complex IV), and ATP synthase (complex V) (Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing, Inc., New York NY, pp. 677-678). All of these complexes are located on the inner matrix side of the mitochondrial membrane except complex II, which is on the cytosolic

The second secon

WO 01/21836 PCT/US00/25643

side. Complex II transports electrons generated in the citric acid cycle to the respiratory chain. The electrons generated by oxidation of succinate to fumarate in the citric acid cycle are transferred through electron carriers in complex II to membrane bound ubiquinone (Q). Transcriptional regulation of these nuclear-encoded genes appears to be the predominant means for controlling the biogenesis of respiratory enzymes. Defects and altered expression of enzymes in the respiratory chain are associated with a variety of disease conditions.

Other dehydrogenase activities using NAD as a cofactor are also important in mitochondrial function. 3-hydroxyisobutyrate dehydrogenase (3HBD), important in valine catabolism, catalyzes the NAD-dependent oxidation of 3-hydroxyisobutyrate to methylmalonate semialdehyde within mitochondria. Elevated levels of 3-hydroxyisobutyrate have been reported in a number of disease states, including ketoacidosis, methylmalonic acidemia, and other disorders associated with deficiencies in methylmalonate semialdehyde dehydrogenase (Rougraff, P.M. et al. (1989) J. Biol. Chem. 264:5899-5903).

10

15

20

25

30

35

Another mitochondrial dehydrogenase important in amino acid metabolism is the enzyme isovaleryl-CoA-dehydrogenase (IVD). IVD is involved in leucine metabolism and catalyzes the oxidation of isovaleryl-CoA to 3-methylcrotonyl-CoA. Human IVD is a tetrameric flavoprotein that is encoded in the nucleus and synthesized in the cytosol as a 45 kDa precursor with a mitochondrial import signal sequence. A genetic deficiency, caused by a mutation in the gene encoding IVD, results in the condition known as isovaleric acidemia. This mutation results in inefficient mitochondrial import and processing of the IVD precursor (Vockley, J. et al. (1992) J. Biol. Chem. 267:2494-2501). Transferases

Transferases are enzymes that catalyze the transfer of molecular groups. The reaction may involve an oxidation, reduction, or cleavage of covalent bonds, and is often specific to a substrate or to particular sites on a type of substrate. Transferases participate in reactions essential to such functions as synthesis and degradation of cell components, regulation of cell functions including cell signaling, cell proliferation, inflamation, apoptosis, secretion and excretion. Transferases are involved in key steps in disease processes involving these functions. Transferases are frequently classified according to the type of group transferred. For example, methyl transferases transfer one-carbon methyl groups, amino transferases transfer nitrogenous amino groups, and similarly denominated enzymes transfer aldehyde or ketone, acyl, glycosyl, alkyl or aryl, isoprenyl, saccharyl, phosphorous-containing, sulfur-containing, or selenium-containing groups, as well as small enzymatic groups such as Coenzyme A.

Acyl transferases include peroxisomal carnitine octanoyl transferase, which is involved in the fatty acid beta-oxidation pathway, and mitochondrial carnitine palmitoyl transferases, involved in fatty acid metabolism and transport. Choline O-acetyl transferase catalyzes the biosynthesis of the

neurotransmitter acetylcholine.

10

15

20

25

30

35

Amino transferases play key roles in protein synthesis and degradation, and they contribute to other processes as well. For example, the amino transferase 5-aminolevulinic acid synthase catalyzes the addition of succinyl-CoA to glycine, the first step in heme biosynthesis. Other amino transferases participate in pathways important for neurological function and metabolism. For example, glutaminephenylpyruvate amino transferase, also known as glutamine transaminase K (GTK), catalyzes several reactions with a pyridoxal phosphate cofactor. GTK catalyzes the reversible conversion of Lglutamine and phenylpyruvate to 2-oxoglutaramate and L-phenylalanine. Other amino acid substrates for GTK include L-methionine, L-histidine, and L-tyrosine. GTK also catalyzes the conversion of kynurenine to kynurenic acid, a tryptophan metabolite that is an antagonist of the N-methyl-Daspartate (NMDA) receptor in the brain and may exert a neuromodulatory function. Alteration of the kynurenine metabolic pathway may be associated with several neurological disorders. GTK also plays a role in the metabolism of halogenated xenobiotics conjugated to glutathione, leading to nephrotoxicity in rats and neurotoxicity in humans. GTK is expressed in kidney, liver, and brain. Both human and rat GTKs contain a putative pyridoxal phosphate binding site (ExPASy ENZYME: EC 2.6.1.64; Perry, S.J. et al. (1993) Mol. Pharmacol. 43:660-665; Perry, S. et al. (1995) FEBS Lett. 360:277-280; and Alberati-Giani, D. et al. (1995) J. Neurochem. 64:1448-1455). A second amino transferase associated with this pathway is kynurenine/ α -aminoadipate amino transferase (AadAT). AadAT catalyzes the reversible conversion of α -aminoadipate and α -ketoglutarate to α -ketoadipate and L-glutamate during lysine metabolism. AadAT also catalyzes the transamination of kynurenine to kynurenic acid. A cytosolic AadAT is expressed in rat kidney, liver, and brain (Nakatani, Y. et al. (1970) Biochim, Biophys, Acta 198:219-228; Buchli, R. et al. (1995) J. Biol. Chem. 270:29330-29335).

Glycosyl transferases include the mammalian UDP-glucouronosyl transferases, a family of membrane-bound microsomal enzymes catalyzing the transfer of glucouronic acid to lipophilic substrates in reactions that play important roles in detoxification and excretion of drugs, carcinogens, and other foreign substances. Another mammalian glycosyl transferase, mammalian UDP-galactose-ceramide galactosyl transferase, catalyzes the transfer of galactose to ceramide in the synthesis of galactocerebrosides in myelin membranes of the nervous system. The UDP-glycosyl transferases share a conserved signature domain of about 50 amino acid residues (PROSITE: PDOC00359, http://expasy.hcuge.ch/sprot/prosite.html).

Methyl transferases are involved in a variety of pharmacologically important processes. Nicotinamide N-methyl transferase catalyzes the N-methylation of nicotinamides and other pyridines, an important step in the cellular handling of drugs and other foreign compounds.

Phenylethanolamine N-methyl transferase catalyzes the conversion of noradrenalin to adrenalin. 6-O-

methylguanine-DNA methyl transferase reverses DNA methylation, an important step in carcinogenesis. Uroporphyrin-III C-methyl transferase, which catalyzes the transfer of two methyl groups from S-adenosyl-L-methionine to uroporphyrinogen III, is the first specific enzyme in the biosynthesis of cobalamin, a dietary enzyme whose uptake is deficient in pernicious anemia. Protein-arginine methyl transferases catalyze the posttranslational methylation of arginine residues in proteins, resulting in the mono- and dimethylation of arginine on the guanidino group. Substrates include histones, myelin basic protein, and heterogeneous nuclear ribonucleoproteins involved in mRNA processing, splicing, and transport. Protein-arginine methyl transferase interacts with proteins upregulated by mitogens, with proteins involved in chronic lymphocytic leukemia, and with interferon, suggesting an important role for methylation in cytokine receptor signaling (Lin, W.-J. et al. (1996) J. Biol. Chem. 271:15034-15044; Abramovich, C. et al. (1997) EMBO J. 16:260-266; and Scott, H.S. et al. (1998) Genomics 48:330-340).

10

15

20

25

30

35

Phosphotransferases catalyze the transfer of high-energy phosphate groups and are important in energy-requiring and -releasing reactions. The metabolic enzyme creatine kinase catalyzes the reversible phosphate transfer between creatine/creatine phosphate and ATP/ADP. Glycocyamine kinase catalyzes phosphate transfer from ATP to guanidoacetate, and arginine kinase catalyzes phosphate transfer from ATP to arginine. A cysteine-containing active site is conserved in this family (PROSITE: PDOC00103).

Prenyl transferases are heterodimers, consisting of an alpha and a beta subunit, that catalyze the transfer of an isoprenyl group. An example of a prenyl transferase is the mammalian protein farnesyl transferase. The alpha subunit of farnesyl transferase consists of 5 repeats of 34 amino acids each, with each repeat containing an invariant tryptophan (PROSITE: PDOC00703).

Saccharyl transferases are glycating enzymes involved in a variety of metabolic processes. Oligosacchryl transferase-48, for example, is a receptor for advanced glycation endproducts. Accumulation of these endproducts is observed in vascular complications of diabetes, macrovascular disease, renal insufficiency, and Alzheimer's disease (Thornalley, P.J. (1998) Cell Mol. Biol. (Noisy-Le-Grand) 44:1013-1023).

Coenzyme A (CoA) transferase catalyzes the transfer of CoA between two carboxylic acids. Succinyl CoA:3-oxoacid CoA transferase, for example, transfers CoA from succinyl-CoA to a recipient such as acetoacetate. Acetoacetate is essential to the metabolism of ketone bodies, which accumulate in tissues affected by metabolic disorders such as diabetes (PROSITE: PDOC00980). Hydrolases

Hydrolysis is the breaking of a covalent bond in a substrate by introduction of a molecule of water. The reaction involves a nucleophilic attack by the water molecule's oxygen atom on a target bond in the substrate. The water molecule is split across the target bond, breaking the bond and

generating two product molecules. Hydrolases participate in reactions essential to such functions as synthesis and degradation of cell components, and for regulation of cell functions including cell signaling, cell proliferation, inflamation, apoptosis, secretion and excretion. Hydrolases are involved in key steps in disease processes involving these functions. Hydrolytic enzymes, or hydrolases, may be grouped by substrate specificity into classes including phosphatases, peptidases, lysophospholipases, phosphodiesterases, glycosidases, and glyoxalases.

Phosphatases hydrolytically remove phosphate groups from proteins, an energy-providing step that regulates many cellular processes, including intracellular signaling pathways that in turn control cell growth and differentiation, cell-cell contact, the cell cycle, and oncogenesis.

10

15

20

25

30

35

Lysophospholipases (LPLs) regulate intracellular lipids by catalyzing the hydrolysis of ester bonds to remove an acyl group, a key step in lipid degradation. Small LPL isoforms, approximately 15-30 kD, function as hydrolases; larger isoforms function both as hydrolases and transacylases. A particular substrate for LPLs, lysophosphatidylcholine, causes lysis of cell membranes. LPL activity is regulated by signaling molecules important in numerous pathways, including the inflammatory response.

Peptidases, also called proteases, cleave peptide bonds that form the backbone of peptide or protein chains. Proteolytic processing is essential to cell growth, differentiation, remodeling, and homeostasis as well as inflammation and immune response. Since typical protein half-lives range from hours to a few days, peptidases are continually cleaving precursor proteins to their active form, removing signal sequences from targeted proteins, and degrading aged or defective proteins. Peptidases function in bacterial, parasitic, and viral invasion and replication within a host. Examples of peptidases include trypsin and chymotrypsin (components of the complement cascade and the blood-clotting cascade) lysosomal cathepsins, calpains, pepsin, renin, and chymosin (Beynon, R.J. and J.S. Bond (1994) Proteolytic Enzymes: A Practical Approach, Oxford University Press, New York NY, pp. 1-5).

The phosphodiesterases catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. Phosphodiesterases are therefore crucial to a variety of cellular processes. Phosphodiesterases include DNA and RNA endo- and exo-nucleases, which are essential to cell growth and replication as well as protein synthesis. Another phosphodiesterase is acid sphingomyelinase, which hydrolyzes the membrane phospholipid sphingomyelin to ceramide and phosphorylcholine. Phosphorylcholine is used in the synthesis of phosphatidylcholine, which is involved in numerous intracellular signaling pathways. Ceramide is an essential precursor for the generation of gangliosides, membrane lipids found in high concentration in neural tissue. Defective acid sphingomyelinase phosphodiesterase leads to a build-up of sphingomyelin molecules in lysosomes, resulting in Niemann-Pick disease.

Glycosidases catalyze the cleavage of hemiacetyl bonds of glycosides, which are compounds that contain one or more sugar. Mammalian lactase-phlorizin hydrolase, for example, is an intestinal enzyme that splits lactose. Mammalian beta-galactosidase removes the terminal galactose from gangliosides, glycoproteins, and glycosaminoglycans, and deficiency of this enzyme is associated with a gangliosidosis known as Morquio disease type B. Vertebrate lysosomal alpha-glucosidase, which hydrolyzes glycogen, maltose, and isomaltose, and vertebrate intestinal sucrase-isomaltase, which hydrolyzes sucrose, maltose, and isomaltose, are widely distributed members of this family with highly conserved sequences at their active sites.

The glyoxylase system is involved in gluconeogenesis, the production of glucose from storage compounds in the body. It consists of glyoxylase I, which catalyzes the formation of S-D-lactoylglutathione from methyglyoxal, a side product of triose-phosphate energy metabolism, and glyoxylase II, which hydrolyzes S-D-lactoylglutathione to D-lactic acid and reduced glutathione. Glyoxylases are involved in hyperglycemia, non-insulin-dependent diabetes mellitus, the detoxification of bacterial toxins, and in the control of cell proliferation and microtubule assembly. Lyases

10

15

20

25

30

35

Lyases are a class of enzymes that catalyze the cleavage of C-C, C-O, C-N, C-S, C-(halide), P-O or other bonds without hydrolysis or oxidation to form two molecules, at least one of which contains a double bond (Stryer, L. (1995) <u>Biochemistry</u> W.H. Freeman and Co. New York, NY p.620). Lyases are critical components of cellular biochemistry with roles in metabolic energy production including fatty acid metabolism, as well as other diverse enzymatic processes. Further classification of lyases reflects the type of bond cleaved as well as the nature of the cleaved group.

The group of C-C lyases include carboxyl-lyases (decarboxylases), aldehyde-lyases (aldolases), oxo-acid-lyases and others. The C-O lyase group includes hydro-lyases, lyases acting on polysaccharides and other lyases. The C-N lyase group includes ammonia-lyases, amidine-lyases, amine-lyases (deaminases) and other lyases.

Proper regulation of lyases is critical to normal physiology. For example, mutation induced deficiencies in the uroporphyrinogen decarboxylase can lead to photosensitive cutaneous lesions in the genetically-linked disorder familial porphyria cutanea tarda (Mendez, M. et al. (1998) Am. J. Genet. 63:1363-1375). It has also been shown that adenosine deaminase (ADA) deficiency stems from genetic mutations in the ADA gene, resulting in the disorder severe combined immunodeficiency disease (SCID) (Hershfield, M.S. (1998) Semin. Hematol. 35:291-298). Isomerases

Isomerases are a class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. This class includes racemases and epimerases, cis-transisomerases, intramolecular oxidoreductases, intramolecular transferases (mutases) and intramolecular

lyases. Isomerases are critical components of cellular biochemistry with roles in metabolic energy production including glycolysis, as well as other diverse enzymatic processes (Stryer, L. (1995) <u>Biochemistry</u>, W.H. Freeman and Co., New York NY, pp.483-507).

Racemases are a subset of isomerases that catalyze inversion of a molecules configuration around the asymmetric carbon atom in a substrate having a single center of asymmetry, thereby interconverting two racemers. Epimerases are another subset of isomerases that catalyze inversion of configuration around an asymmetric carbon atom in a substrate with more than one center of symmetry, thereby interconverting two epimers. Racemases and epimerases can act on amino acids and derivatives, hydroxy acids and derivatives, as well as carbohydrates and derivatives. The interconversion of UDP-galactose and UDP-glucose is catalyzed by UDP-galactose-4'-epimerase. Proper regulation and function of this epimerase is essential to the synthesis of glycoproteins and glycolipids. Elevated blood galactose levels have been correlated with UDP-galactose-4'-epimerase deficiency in screening programs of infants (Gitzelmann, R. (1972) Helv. Paediat. Acta 27:125-130).

Oxidoreductases can be isomerases as well. Oxidoreductases catalyze the reversible transfer of electrons from a substrate that becomes oxidized to a substrate that becomes reduced. This class of enzymes includes dehydrogenases, hydroxylases, oxidases, oxygenases, peroxidases, and reductases. Proper maintenance of oxidoreductase levels is physiologically important. For example, genetically-linked deficiencies in lipoamide dehydrogenase can result in lactic acidosis (Robinson, B.H. et al. (1977) Pediat. Res. 11:1198-1202).

Another subgroup of isomerases are the transferases (or mutases). Transferases transfer a chemical group from one compound (the donor) to another compound (the acceptor). The types of groups transferred by these enzymes include acyl groups, amino groups, phosphate groups (phosphotransferases or phosphomutases), and others. The transferase carnitine palmitoyltransferase is an important component of fatty acid metabolism. Genetically-linked deficiencies in this transferase can lead to myopathy (Scriver, C.R. et al. (1995) The Metabolic and Molecular Basis of Inherited Disease, McGraw-Hill, New York NY, pp.1501-1533).

Yet another subgroup of isomerases are the topoisomerases. Topoisomerases are enzymes that affect the topological state of DNA. For example, defects in topoisomerases or their regulation can affect normal physiology. Reduced levels of topoisomerase II have been correlated with some of the DNA processing defects associated with the disorder ataxia-telangiectasia (Singh, S.P. et al. (1988) Nucleic Acids Res. 16:3919-3929).

Ligases

10

15

20

25

30

35

Ligases catalyze the formation of a bond between two substrate molecules. The process involves the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. Ligases are classified based on the nature of the type of bond they form, which can include carbon-oxygen,

carbon-sulfur, carbon-nitrogen, carbon-carbon and phosphoric ester bonds.

10

15

20

25

30

Ligases forming carbon-oxygen bonds include the aminoacyl-transfer RNA (tRNA) synthetases which are important RNA-associated enzymes with roles in translation. Protein biosynthesis depends on each amino acid forming a linkage with the appropriate tRNA. The aminoacyl-tRNA synthetases are responsible for the activation and correct attachment of an amino acid with its cognate tRNA. The 20 aminoacyl-tRNA synthetase enzymes can be divided into two structural classes, and each class is characterized by a distinctive topology of the catalytic domain. Class I enzymes contain a catalytic domain based on the nucleotide-binding Rossman fold. Class II enzymes contain a central catalytic domain, which consists of a seven-stranded antiparallel β-sheet motif, as well as N- and C- terminal regulatory domains. Class II enzymes are separated into two groups based on the heterodimeric or homodimeric structure of the enzyme; the latter group is further subdivided by the structure of the N- and C-terminal regulatory domains (Hartlein, M. and S. Cusack (1995) J. Mol. Evol. 40:519-530). Autoantibodies against aminoacyl-tRNAs are generated by patients with dermatomyositis and polymyositis, and correlate strongly with complicating interstitial lung disease (ILD). These antibodies appear to be generated in response to viral infection, and coxsackie virus has been used to induce experimental viral myositis in animals.

Ligases forming carbon-sulfur bonds (Acid-thiol ligases) mediate a large number of cellular biosynthetic intermediary metabolism processes involve intermolecular transfer of carbon atom-containing substrates (carbon substrates). Examples of such reactions include the tricarboxylic acid cycle, synthesis of fatty acids and long-chain phospholipids, synthesis of alcohols and aldehydes, synthesis of intermediary metabolites, and reactions involved in the amino acid degradation pathways. Some of these reactions require input of energy, usually in the form of conversion of ATP to either ADP or AMP and pyrophosphate.

In many cases, a carbon substrate is derived from a small molecule containing at least two carbon atoms. The carbon substrate is often covalently bound to a larger molecule which acts as a carbon substrate carrier molecule within the cell. In the biosynthetic mechanisms described above, the carrier molecule is coenzyme A. Coenzyme A (CoA) is structurally related to derivatives of the nucleotide ADP and consists of 4'-phosphopantetheine linked via a phosphodiester bond to the alpha phosphate group of adenosine 3',5'-bisphosphate. The terminal thiol group of 4'-phosphopantetheine acts as the site for carbon substrate bond formation. The predominant carbon substrates which utilize CoA as a carrier molecule during biosynthesis and intermediary metabolism in the cell are acetyl, succinyl, and propionyl moieties, collectively referred to as acyl groups. Other carbon substrates include enoyl lipid, which acts as a fatty acid oxidation intermediate, and carnitine, which acts as an acetyl-CoA flux regulator/ mitochondrial acyl group transfer protein. Acyl-CoA and acetyl-CoA are synthesized in the cell by acyl-CoA synthetase and acetyl-CoA synthetase, respectively.

Activation of fatty acids is mediated by at least three forms of acyl-CoA synthetase activity:
i) acetyl-CoA synthetase, which activates acetate and several other low molecular weight carboxylic acids and is found in muscle mitochondria and the cytosol of other tissues; ii) medium-chain acyl-CoA synthetase, which activates fatty acids containing between four and eleven carbon atoms (predominantly from dietary sources), and is present only in liver mitochondria; and iii) acyl CoA synthetase, which is specific for long chain fatty acids with between six and twenty carbon atoms, and is found in microsomes and the mitochondria. Proteins associated with acyl-CoA synthetase activity have been identified from many sources including bacteria, yeast, plants, mouse, and man. The activity of acyl-CoA synthetase may be modulated by phosphorylation of the enzyme by cAMP-dependent protein kinase.

Ligases forming carbon-nitrogen bonds include amide synthases such as glutamine synthetase (glutamate-ammonia ligase) that catalyzes the amination of glutamic acid to glutamine by ammonia using the energy of ATP hydrolysis. Glutamine is the primary source for the amino group in various amide transfer reactions involved in de novo pyrimidine nucleotide synthesis and in purine and pyrimidine ribonucleotide interconversions. Overexpression of glutamine synthetase has been observed in primary liver cancer (Christa, L. et al. (1994) Gastroent, 106:1312-1320).

10

15

20

25

30

35

Acid-amino-acid ligases (peptide synthases) are represented by the ubiquitin proteases which are associated with the ubiquitin conjugation system (UCS), a major pathway for the degradation of cellular proteins in eukaryotic cells and some bacteria. The UCS mediates the elimination of abnormal proteins and regulates the half-lives of important regulatory proteins that control cellular processes such as gene transcription and cell cycle progression. In the UCS pathway, proteins targeted for degradation are conjugated to a ubiquitin (Ub), a small heat stable protein. Ub is first activated by a ubiquitin-activating enzyme (E1), and then transferred to one of several Ubconjugating enzymes (E2). E2 then links the Ub molecule through its C-terminal glycine to an internal lysine (acceptor lysine) of a target protein. The ubiquitinated protein is then recognized and degraded by proteasome, a large, multisubunit proteolytic enzyme complex, and ubiquitin is released for reutilization by ubiquitin protease. The UCS is implicated in the degradation of mitotic cyclic kinases, oncoproteins, tumor suppressor genes such as p53, viral proteins, cell surface receptors associated with signal transduction, transcriptional regulators, and mutated or damaged proteins (Ciechanover, A. (1994) Cell 79:13-21). A murine proto-oncogene, Unp, encodes a nuclear ubiquitin protease whose overexpression leads to oncogenic transformation of NIH3T3 cells, and the human homolog of this gene is consistently elevated in small cell tumors and adenocarcinomas of the lung (Gray, D.A. (1995) Oncogene 10:2179-2183).

Cyclo-ligases and other carbon-nitrogen ligases comprise various enzymes and enzyme complexes that participate in the de novo pathways to purine and pyrimidine biosynthesis. Because

these pathways are critical to the synthesis of nucleotides for replication of both RNA and DNA, many of these enzymes have been the targets of clinical agents for the treatment of cell proliferative disorders such as cancer and infectious diseases.

5

10

15

20

25

30

35

Purine biosynthesis occurs de novo from the amino acids glycine and glutamine, and other small molecules. Three of the key reactions in this process are catalyzed by a trifunctional enzyme composed of glycinamide-ribonucleotide synthetase (GARS), aminoimidazole ribonucleotide synthetase (AIRS), and glycinamide ribonucleotide transformylase (GART). Together these three enzymes combine ribosylamine phosphate with glycine to yield phosphoribosyl aminoimidazole, a precursor to both adenylate and guanylate nucleotides. This trifunctional protein has been implicated in the pathology of Downs syndrome (Aimi, J. et al. (1990) Nucleic Acid Res. 18:6665-6672). Adenylosuccinate synthetase catalyzes a later step in purine biosynthesis that converts inosinic acid to adenylosuccinate, a key step on the path to ATP synthesis. This enzyme is also similar to another carbon-nitrogen ligase, argininosuccinate synthetase, that catalyzes a similar reaction in the urea cycle (Powell, S.M. et al. (1992) FEBS Lett. 303:4-10).

Like the de novo biosynthesis of purines, de novo synthesis of the pyrimidine nucleotides uridylate and cytidylate also arises from a common precursor, in this instance the nucleotide orotidylate derived from orotate and phosphoribosyl pyrophosphate (PPRP). Again a trifunctional enzyme comprising three carbon-nitrogen ligases plays a key role in the process. In this case the enzymes aspartate transcarbamylase (ATCase), carbamyl phosphate synthetase II, and dihydroorotase (DHOase) are encoded by a single gene called CAD. Together these three enzymes combine the initial reactants in pyrimidine biosynthesis, glutamine, CO₂ and ATP to form dihydroorotate, the precursor to orotate and orotidylate (Iwahana, H. et al. (1996) Biochem. Biophys. Res. Commun. 219:249-255). Further steps then lead to the synthesis of uridine nucleotides from orotidylate. Cytidine nucleotides are derived from uridine-5'-triphosphate (UTP) by the amidation of UTP using glutamine as the amino donor and the enzyme CTP synthetase. Regulatory mutations in the human CTP synthetase are believed to confer multi-drug resistance to agents widely used in cancer therapy (Yamauchi, M. et al. (1990) EMBO J. 9:2095-2099).

Ligases forming carbon-carbon bonds include the carboxylases acetyl-CoA carboxylase and pyruvate carboxylase. Acetyl-CoA carboxylase catalyzes the carboxylation of acetyl-CoA from CO₂ and H₂O using the energy of ATP hydrolysis. Acetyl-CoA carboxylase is the rate-limiting step in the biogenesis of long-chain fatty acids. Two isoforms of acetyl-CoA carboxylase, types I and types II, are expressed in human in a tissue-specific manner (Ha, J. et al. (1994) Eur. J. Biochem. 219:297-306). Pyruvate carboxylase is a nuclear-encoded mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, a key intermediate in the citric acid cycle.

Ligases forming phosphoric ester bonds include the DNA ligases involved in both DNA

replication and repair. DNA ligases seal phosphodiester bonds between two adjacent nucleotides in a DNA chain using the energy from ATP hydrolysis to first activate the free 5'-phosphate of one nucleotide and then react it with the 3'-OH group of the adjacent nucleotide. This resealing reaction is used in both DNA replication to join small DNA fragments called Okazaki fragments that are transiently formed in the process of replicating new DNA, and in DNA repair. DNA repair is the process by which accidental base changes, such as those produced by oxidative damage, hydrolytic attack, or uncontrolled methylation of DNA, are corrected before replication or transcription of the DNA can occur. Bloom's syndrome is an inherited human disease in which individuals are partially deficient in DNA ligation and consequently have an increased incidence of cancer (Alberts, B. et al. (1994) The Molecular Biology of the Cell, Garland Publishing Inc., New York NY, p. 247).

Molecules Associated with Growth and Development

SEQ ID NO:69, SEQ ID NO:70, and SEQ ID NO:71 encode, for example, molecules associated with growth and development.

Human growth and development requires the spatial and temporal regulation of cell differentiation, cell proliferation, and apoptosis. These processes coordinately control reproduction, aging, embryogenesis, morphogenesis, organogenesis, and tissue repair and maintenance. At the cellular level, growth and development is governed by the cell's decision to enter into or exit from the cell division cycle and by the cell's commitment to a terminally differentiated state. These decisions are made by the cell in response to extracellular signals and other environmental cues it receives. The following discussion focuses on the molecular mechanisms of cell division, reproduction, cell differentiation and proliferation, apoptosis, and aging.

Cell Division

10

15

20

25

30

Cell division is the fundamental process by which all living things grow and reproduce. In unicellular organisms such as yeast and bacteria, each cell division doubles the number of organisms, while in multicellular species many rounds of cell division are required to replace cells lost by wear or by programmed cell death, and for cell differentiation to produce a new tissue or organ. Details of the cell division cycle may vary, but the basic process consists of three principle events. The first event, interphase, involves preparations for cell division, replication of the DNA, and production of essential proteins. In the second event, mitosis, the nuclear material is divided and separates to opposite sides of the cell. The final event, cytokinesis, is division and fission of the cell cytoplasm. The sequence and timing of cell cycle transitions is under the control of the cell cycle regulation system which controls the process by positive or negative regulatory circuits at various check points.

Regulated progression of the cell cycle depends on the integration of growth control pathways

with the basic cell cycle machinery. Cell cycle regulators have been identified by selecting for human and yeast cDNAs that block or activate cell cycle arrest signals in the yeast mating pheromone pathway when they are overexpressed. Known regulators include human CPR (cell cycle progression restoration) genes, such as CPR8 and CPR2, and yeast CDC (cell division control) genes, including CDC91, that block the arrest signals. The CPR genes express a variety of proteins including cyclins, tumor suppressor binding proteins, chaperones, transcription factors, translation factors, and RNA-binding proteins (Edwards, M.C. et al.(1997) Genetics 147:1063-1076).

Several cell cycle transitions, including the entry and exit of a cell from mitosis, are dependent upon the activation and inhibition of cyclin-dependent kinases (Cdks). The Cdks are composed of a kinase subunit, Cdk, and an activating subunit, cyclin, in a complex that is subject to many levels of regulation. There appears to be a single Cdk in Saccharomyces cerevisiae and Saccharomyces pombe whereas mammals have a variety of specialized Cdks. Cyclins act by binding to and activating cyclin-dependent protein kinases which then phosphorylate and activate selected proteins involved in the mitotic process. The Cdk-cyclin complex is both positively and negatively regulated by phosphorylation, and by targeted degradation involving molecules such as CDC4 and CDC53. In addition, Cdks are further regulated by binding to inhibitors and other proteins such as Suc1 that modify their specificity or accessibility to regulators (Patra, D. and W.G. Dunphy (1996) Genes Dev. 10:1503-1515; and Mathias, N. et al. (1996) Mol. Cell Biol. 16:6634-6643).

Reproduction

10

15

20

25

30

The male and female reproductive systems are complex and involve many aspects of growth and development. The anatomy and physiology of the male and female reproductive systems are reviewed in (Guyton, A.C. (1991) <u>Textbook of Medical Physiology</u>, W.B. Saunders Co., Philadelphia PA, pp. 899-928).

The male reproductive system includes the process of spermatogenesis, in which the sperm are formed, and male reproductive functions are regulated by various hormones and their effects on accessory sexual organs, cellular metabolism, growth, and other bodily functions.

Spermatogenesis begins at puberty as a result of stimulation by gonadotropic hormones released from the anterior pituitary. Immature sperm (spermatogonia) undergo several mitotic cell divisions before undergoing meiosis and full maturation. The testes secrete several male sex hormones, the most abundant being testosterone, that is essential for growth and division of the immature sperm, and for the masculine characteristics of the male body. Three other male sex hormones, gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) control sexual function.

The uterus, ovaries, fallopian tubes, vagina, and breasts comprise the female reproductive

system. The ovaries and uterus are the source of ova and the location of fetal development, respectively. The fallopian tubes and vagina are accessory organs attached to the top and bottom of the uterus, respectively. Both the uterus and ovaries have additional roles in the development and loss of reproductive capability during a female's lifetime. The primary role of the breasts is lactation.

Multiple endocrine signals from the ovaries, uterus, pituitary, hypothalamus, adrenal glands, and other tissues coordinate reproduction and lactation. These signals vary during the monthly menstruation cycle and during the female's lifetime. Similarly, the sensitivity of reproductive organs to these endocrine signals varies during the female's lifetime.

A combination of positive and negative feedback to the ovaries, pituitary and hypothalamus glands controls physiologic changes during the monthly ovulation and endometrial cycles. The anterior pituitary secretes two major gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), regulated by negative feedback of steroids, most notably by ovarian estradiol. If fertilization does not occur, estrogen and progesterone levels decrease. This sudden reduction of the ovarian hormones leads to menstruation, the desquamation of the endometrium.

Hormones further govern all the steps of pregnancy, parturition, lactation, and menopause. During pregnancy large quantities of human chorionic gonadotropin (hCG), estrogens, progesterone, and human chorionic somatomammotropin (hCS) are formed by the placenta. hCG, a glycoprotein similar to luteinizing hormone, stimulates the corpus luteum to continue producing more progesterone and estrogens, rather than to involute as occurs if the ovum is not fertilized. hCS is similar to growth hormone and is crucial for fetal nutrition.

The female breast also matures during pregnancy. Large amounts of estrogen secreted by the placenta trigger growth and branching of the breast milk ductal system while lactation is initiated by the secretion of prolactin by the pituitary gland.

Parturition involves several hormonal changes that increase uterine contractility toward the end of pregnancy, as follows. The levels of estrogens increase more than those of progesterone. Oxytocin is secreted by the neurohypophysis. Concomitantly, uterine sensitivity to oxytocin increases. The fetus itself secretes oxytocin, cortisol (from adrenal glands), and prostaglandins.

Menopause occurs when most of the ovarian follicles have degenerated. The ovary then produces less estradiol, reducing the negative feedback on the pituitary and hypothalamus glands. Mean levels of circulating FSH and LH increase, even as ovulatory cycles continue. Therefore, the ovary is less responsive to gonadotropins, and there is an increase in the time between menstrual cycles. Consequently, menstrual bleeding ceases and reproductive capability ends.

Cell Differentiation and Proliferation

10

15

20

25

Tissue growth involves complex and ordered patterns of cell proliferation, cell differentiation,

and apoptosis. Cell proliferation must be regulated to maintain both the number of cells and their spatial organization. This regulation depends upon the appropriate expression of proteins which control cell cycle progression in response to extracellular signals, such as growth factors and other mitogens, and intracellular cues, such as DNA damage or nutrient starvation. Molecules which directly or indirectly modulate cell cycle progression fall into several categories, including growth factors and their receptors, second messenger and signal transduction proteins, oncogene products, tumor-suppressor proteins, and mitosis-promoting factors.

Growth factors were originally described as serum factors required to promote cell proliferation. Most growth factors are large, secreted polypeptides that act on cells in their local environment. Growth factors bind to and activate specific cell surface receptors and initiate intracellular signal transduction cascades. Many growth factor receptors are classified as receptor tyrosine kinases which undergo autophosphorylation upon ligand binding. Autophosphorylation enables the receptor to interact with signal transduction proteins characterized by the presence of SH2 or SH3 domains (Src homology regions 2 or 3). These proteins then modulate the activity state of small G-proteins, such as Ras, Rab, and Rho, along with GTPase activating proteins (GAPs), guanine nucleotide releasing proteins (GNRPs), and other guanine nucleotide exchange factors. Small G proteins act as molecular switches that activate other downstream events, such as mitogen-activated protein kinase (MAP kinase) cascades. MAP kinases ultimately activate transcription of mitosis-promoting genes.

10

20

25

30

In addition to growth factors, small signaling peptides and hormones also influence cell proliferation. These molecules bind primarily to another class of receptor, the trimeric G-protein coupled receptor (GPCR), found predominantly on the surface of immune, neuronal and neuroendocrine cells. Upon ligand binding, the GPCR activates a trimeric G protein which in turn triggers increased levels of intracellular second messengers such as phospholipase C, Ca2+, and cyclic AMP. Most GPCR-mediated signaling pathways indirectly promote cell proliferation by causing the secretion or breakdown of other signaling molecules that have direct mitogenic effects. These signaling cascades often involve activation of kinases and phosphatases. Some growth factors, such as some members of the transforming growth factor beta (TGF-β) family, act on some cells to stimulate cell proliferation and on other cells to inhibit it. Growth factors may also stimulate a cell at one concentration and inhibit the same cell at another concentration. Most growth factors also have a multitude of other actions besides the regulation of cell growth and division: they can control the proliferation, survival, differentiation, migration, or function of cells depending on the circumstance. For example, the tumor necrosis factor/nerve growth factor (TNF/NGF) family can activate or inhibit cell death, as well as regulate proliferation and differentiation. The cell response depends on the type of cell, its stage of

differentiation and transformation status, which surface receptors are stimulated, and the types of stimuli acting on the cell (Smith, A. et al. (1994) Cell 76:959-962; and Nocentini, G. et al. (1997) Proc. Natl. Acad. Sci. USA 94:6216-6221).

Neighboring cells in a tissue compete for growth factors, and when provided with "unlimited" quantities in a perfused system will grow to even higher cell densities before reaching density-dependent inhibition of cell division. Cells often demonstrate an anchorage dependence of cell division as well. This anchorage dependence may be associated with the formation of focal contacts linking the cytoskeleton with the extracellular matrix (ECM). The expression of ECM components can be stimulated by growth factors. For example, TGF-β stimulates fibroblasts to produce a variety of ECM proteins, including fibronectin, collagen, and tenascin (Pearson, C.A. et al. (1988) EMBO J. 7:2677-2981). In fact, for some cell types specific ECM molecules, such as laminin or fibronectin, may act as growth factors. Tenascin-C and -R, expressed in developing and lesioned neural tissue, provide stimulatory/anti-adhesive or inhibitory properties, respectively, for axonal growth (Faissner, A. (1997) Cell Tissue Res. 290:331-341).

Cancers are associated with the activation of oncogenes which are derived from normal cellular genes. These oncogenes encode oncoproteins which convert normal cells into malignant cells. Some oncoproteins are mutant isoforms of the normal protein, and other oncoproteins are abnormally expressed with respect to location or amount of expression. The latter category of oncoprotein causes cancer by altering transcriptional control of cell proliferation. Five classes of oncoproteins are known to affect cell cycle controls. These classes include growth factors, growth factor receptors, intracellular signal transducers, nuclear transcription factors, and cell-cycle control proteins. Viral oncogenes are integrated into the human genome after infection of human cells by certain viruses. Examples of viral oncogenes include v-src, v-abl, and v-fps.

15

20

25

30

Many oncogenes have been identified and characterized. These include sis, erbA, erbB, her-2, mutated G_s , src, abl, ras, crk, jun, fos, myc, and mutated tumor-suppressor genes such as RB, p53, mdm2, Cip1, p16, and cyclin D. Transformation of normal genes to oncogenes may also occur by chromosomal translocation. The Philadelphia chromosome, characteristic of chronic myeloid leukemia and a subset of acute lymphoblastic leukemias, results from a reciprocal translocation between chromosomes 9 and 22 that moves a truncated portion of the proto-oncogene c-abl to the breakpoint cluster region (bcr) on chromosome 22.

Tumor-suppressor genes are involved in regulating cell proliferation. Mutations which cause reduced or loss of function in tumor-suppressor genes result in uncontrolled cell proliferation. For example, the retinoblastoma gene product (RB), in a non-phosphorylated state, binds several early-response genes and suppresses their transcription, thus blocking cell division. Phosphorylation of RB

causes it to dissociate from the genes, releasing the suppression, and allowing cell division to proceed.

Apoptosis

Apoptosis is the genetically controlled process by which unneeded or defective cells undergo programmed cell death. Selective elimination of cells is as important for morphogenesis and tissue remodeling as is cell proliferation and differentiation. Lack of apoptosis may result in hyperplasia and other disorders associated with increased cell proliferation. Apoptosis is also a critical component of the immune response. Immune cells such as cytotoxic T-cells and natural killer cells prevent the spread of disease by inducing apoptosis in tumor cells and virus-infected cells. In addition, immune cells that fail to distinguish self molecules from foreign molecules must be eliminated by apoptosis to avoid an autoimmune response.

Apoptotic cells undergo distinct morphological changes. Hallmarks of apoptosis include cell shrinkage, nuclear and cytoplasmic condensation, and alterations in plasma membrane topology. Biochemically, apoptotic cells are characterized by increased intracellular calcium concentration, fragmentation of chromosomal DNA, and expression of novel cell surface components.

The molecular mechanisms of apoptosis are highly conserved, and many of the key protein regulators and effectors of apoptosis have been identified. Apoptosis generally proceeds in response to a signal which is transduced intracellularly and results in altered patterns of gene expression and protein activity. Signaling molecules such as hormones and cytokines are known both to stimulate and to inhibit apoptosis through interactions with cell surface receptors. Transcription factors also play an important role in the onset of apoptosis. A number of downstream effector molecules, particularly proteases such as the cysteine proteases called caspases, have been implicated in the degradation of cellular components and the proteolytic activation of other apoptotic effectors.

Aging and Senescence

10

15

20

25

30

Studies of the aging process or senescence have shown a number of characteristic cellular and molecular changes (Fauci et al. (1998) <u>Harrison's Principles of Internal Medicine</u>, McGraw-Hill, New York NY, p.37). These characteristics include increases in chromosome structural abnormalities, DNA cross-linking, incidence of single-stranded breaks in DNA, losses in DNA methylation, and degradation of telomere regions. In addition to these DNA changes, post-translational alterations of proteins increase including, deamidation, oxidation, cross-linking, and nonenzymatic glycation. Still further molecular changes occur in the mitochondria of aging cells through deterioration of structure. These changes eventually contribute to decreased function in every organ of the body.

Biochemical Pathway Molecules

SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, and SEQ ID NO:68

encode, for example, biochemical pathway molecules.

Biochemical pathways are responsible for regulating metabolism, growth and development, protein secretion and trafficking, environmental responses, and ecological interactions including immune response and response to parasites.

5 DNA replication

10

15

20

25

30

Deoxyribonucleic acid (DNA), the genetic material, is found in both the nucleus and mitochondria of human cells. The bulk of human DNA is nuclear, in the form of linear chromosomes, while mitochondrial DNA is circular. DNA replication begins at specific sites called origins of replication. Bidirectional synthesis occurs from the origin via two growing forks that move in opposite directions. Replication is semi-conservative, with each daughter duplex containing one old strand and its newly synthesized complementary partner. Proteins involved in DNA replication include DNA polymerases, DNA primase, telomerase, DNA helicase, topoisomerases, DNA ligases, replication factors, and DNA-binding proteins.

DNA Recombination and Repair

Cells are constantly faced with replication errors and environmental assault (such as ultraviolet irradiation) that can produce DNA damage. Damage to DNA consists of any change that modifies the structure of the molecule. Changes to DNA can be divided into two general classes, single base changes and structural distortions. Any damage to DNA can produce a mutation, and the mutation may produce a disorder, such as cancer.

Changes in DNA are recognized by repair systems within the cell. These repair systems act to correct the damage and thus prevent any deleterious affects of a mutational event. Repair systems can be divided into three general types, direct repair, excision repair, and retrieval systems. Proteins involved in DNA repair include DNA polymerase, excision repair proteins, excision and cross link repair proteins, recombination and repair proteins, RAD51 proteins, and BLN and WRN proteins that are homologs of RecQ helicase. When the repair systems are eliminated, cells become exceedingly sensitive to environmental mutagens, such as ultraviolet irradiation. Patients with disorders associated with a loss in DNA repair systems often exhibit a high sensitivity to environmental mutagens. Examples of such disorders include xeroderma pigmentosum (XP), Bloom's syndrome (BS), and Werner's syndrome (WS) (Yamagata, K. et al. (1998) Proc. Natl. Acad. Sci. USA 95:8733-8738), ataxia telangiectasia, Cockayne's syndrome, and Fanconi's anemia.

Recombination is the process whereby new DNA sequences are generated by the movements of large pieces of DNA. In homologous recombination, which occurs during meiosis and DNA repair, parent DNA duplexes align at regions of sequence similarity, and new DNA molecules form by the breakage and joining of homologous segments. Proteins involved include RAD51 recombinase. In site-

specific recombination, two specific but not necessarily homologous DNA sequences are exchanged. In the immune system this process generates a diverse collection of antibody and T cell receptor genes. Proteins involved in site-specific recombination in the immune system include recombination activating genes 1 and 2 (RAG1 and RAG2). A defect in immune system site-specific recombination causes severe combined immunodeficiency disease in mice.

RNA Metabolism

10

15

20

Ribonucleic acid (RNA) is a linear single-stranded polymer of four nucleotides, ATP, CTP, UTP, and GTP. In most organisms, RNA is transcribed as a copy of DNA, the genetic material of the organism. In retroviruses RNA rather than DNA serves as the genetic material. RNA copies of the genetic material encode proteins or serve various structural, catalytic, or regulatory roles in organisms. RNA is classified according to its cellular localization and function. Messenger RNAs (mRNAs) encode polypeptides. Ribosomal RNAs (rRNAs) are assembled, along with ribosomal proteins, into ribosomes, which are cytoplasmic particles that translate mRNA into polypeptides. Transfer RNAs (tRNAs) are cytosolic adaptor molecules that function in mRNA translation by recognizing both an mRNA codon and the amino acid that matches that codon. Heterogeneous nuclear RNAs (hnRNAs) include mRNA precursors and other nuclear RNAs of various sizes. Small nuclear RNAs (snRNAs) are a part of the nuclear spliceosome complex that removes intervening, non-coding sequences (introns) and rejoins exons in pre-mRNAs.

RNA Transcription

The transcription process synthesizes an RNA copy of DNA. Proteins involved include multisubunit RNA polymerases, transcription factors IIA, IIB, IID, IIE, IIF, IIH, and IIJ. Many transcription factors incorporate DNA-binding structural motifs which comprise either α -helices or β -sheets that bind to the major groove of DNA. Four well-characterized structural motifs are helix-turnhelix, zinc finger, leucine zipper, and helix-loop-helix.

25 RNA Processing

Various proteins are necessary for processing of transcribed RNAs in the nucleus. Pre-mRNA processing steps include capping at the 5' end with methylguanosine, polyadenylating the 3' end, and splicing to remove introns. The spliceosomal complex is comprised of five small nuclear ribonucleoprotein particles (snRNPs) designated U1, U2, U4, U5, and U6. Each snRNP contains a single species of snRNA and about ten proteins. The RNA components of some snRNPs recognize and base-pair with intron consensus sequences. The protein components mediate spliceosome assembly and the splicing reaction. Autoantibodies to snRNP proteins are found in the blood of patients with systemic lupus erythematosus (Stryer, L. (1995) <u>Biochemistry</u> W.H. Freeman and Company, New York NY, p. 863).

Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been identified that have roles in splicing, exporting of the mature RNAs to the cytoplasm, and mRNA translation (Biamonti, G. et al. (1998) Clin. Exp. Rheumatol. 16:317-326). Some examples of hnRNPs include the yeast proteins Hrp1p, involved in cleavage and polyadenylation at the 3' end of the RNA; Cbp80p, involved in capping the 5' end of the RNA; and Npl3p, a homolog of mammalian hnRNP A1, involved in export of mRNA from the nucleus (Shen, E.C. et al. (1998) Genes Dev. 12:679-691). HnRNPs have been shown to be important targets of the autoimmune response in rheumatic diseases (Biamonti, supra).

Many snRNP proteins, hnRNP proteins, and alternative splicing factors are characterized by an RNA recognition motif (RRM). (Reviewed in Birney, E. et al. (1993) Nucleic Acids Res. 21:5803-5816.) The RRM is about 80 amino acids in length and forms four β -strands and two α -helices arranged in an α/β sandwich. The RRM contains a core RNP-1 octapeptide motif along with surrounding conserved sequences.

RNA Stability and Degradation

15

20

25

30

RNA helicases alter and regulate RNA conformation and secondary structure by using energy derived from ATP hydrolysis to destabilize and unwind RNA duplexes. The most well-characterized and ubiquitous family of RNA helicases is the DEAD-box family, so named for the conserved B-type ATP-binding motif which is diagnostic of proteins in this family. Over 40 DEAD-box helicases have been identified in organisms as diverse as bacteria, insects, yeast, amphibians, mammals, and plants. DEAD-box helicases function in diverse processes such as translation initiation, splicing, ribosome assembly, and RNA editing, transport, and stability. Some DEAD-box helicases play tissue- and stage-specific roles in spermatogenesis and embryogenesis. (Reviewed in Linder, P. et al. (1989) Nature 337:121-122.)

Overexpression of the DEAD-box 1 protein (DDX1) may play a role in the progression of neuroblastoma (Nb) and retinoblastoma (Rb) tumors. Other DEAD-box helicases have been implicated either directly or indirectly in ultraviolet light-induced tumors, B cell lymphoma, and myeloid malignancies. (Reviewed in Godbout, R. et al. (1998) J. Biol. Chem. 273:21161-21168.)

Ribonucleases (RNases) catalyze the hydrolysis of phosphodiester bonds in RNA chains, thus cleaving the RNA. For example, RNase P is a ribonucleoprotein enzyme which cleaves the 5' end of pre-tRNAs as part of their maturation process. RNase H digests the RNA strand of an RNA/DNA hybrid. Such hybrids occur in cells invaded by retroviruses, and RNase H is an important enzyme in the retroviral replication cycle. RNase H domains are often found as a domain associated with reverse transcriptases. RNase activity in serum and cell extracts is elevated in a variety of cancers and infectious diseases (Schein, C.H. (1997) Nat. Biotechnol. 15:529-536). Regulation of RNase activity is being investigated as a means to control tumor angiogenesis, allergic reactions, viral infection and

replication, and fungal infections.

Protein Translation

10

15

20

25

The eukaryotic ribosome is composed of a 60S (large) subunit and a 40S (small) subunit, which together form the 80S ribosome. In addition to the 18S, 28S, 5S, and 5.8S rRNAs, the ribosome also contains more than fifty proteins. The ribosomal proteins have a prefix which denotes the subunit to which they belong, either L (large) or S (small). Three important sites are identified on the ribosome. The aminoacyl-tRNA site (A site) is where charged tRNAs (with the exception of the initiator-tRNA) bind on arrival at the ribosome. The peptidyl-tRNA site (P site) is where new peptide bonds are formed, as well as where the initiator tRNA binds. The exit site (E site) is where deacylated tRNAs bind prior to their release from the ribosome. (Translation is reviewed in Stryer, L. (1995)

Biochemistry, W.H. Freeman and Company, New York NY, pp. 875-908; and Lodish, H. et al. (1995)

Molecular Cell Biology, Scientific American Books, New York NY, pp. 119-138.)

Protein biosynthesis depends on each amino acid forming a linkage with the appropriate tRNA. The aminoacyl-tRNA synthetases are responsible for the activation and correct attachment of an amino acid with its cognate tRNA. The 20 aminoacyl-tRNA synthetase enzymes can be divided into two structural classes, Class I and Class II. Autoantibodies against aminoacyl-tRNAs are generated by patients with dermatomyositis and polymyositis, and correlate strongly with complicating interstitial lung disease (ILD). These antibodies appear to be generated in response to viral infection, and coxsackie virus has been used to induce experimental viral myositis in animals.

Translation Initiation

Initiation of translation can be divided into three stages. The first stage brings an initiator transfer RNA (Met-tRNA_t) together with the 40S ribosomal subunit to form the 43S preinitiation complex. The second stage binds the 43S preinitiation complex to the mRNA, followed by migration of the complex to the correct AUG initiation codon. The third stage brings the 60S ribosomal subunit to the 40S subunit to generate an 80S ribosome at the initiation codon. Regulation of translation primarily involves the first and second stage in the initiation process (Pain, V.M. (1996) Eur. J. Biochem. 236:747-771).

Several initiation factors, many of which contain multiple subunits, are involved in bringing an initiator tRNA and 40S ribosomal subunit together. eIF2, a guanine nucleotide binding protein, recruits the initiator tRNA to the 40S ribosomal subunit. Only when eIF2 is bound to GTP does it associate with the initiator tRNA. eIF2B, a guanine nucleotide exchange protein, is responsible for converting eIF2 from the GDP-bound inactive form to the GTP-bound active form. Two other factors, eIF1A and eIF3 bind and stabilize the 40S subunit by interacting with 18S ribosomal RNA and specific ribosomal

structural proteins. eIF3 is also involved in association of the 40S ribosomal subunit with mRNA. The Met-tRNA_f, eIF1A, eIF3, and 40S ribosomal subunit together make up the 43S preinitiation complex (Pain, <u>supra</u>).

Additional factors are required for binding of the 43S preinitiation complex to an mRNA molecule, and the process is regulated at several levels. eIF4F is a complex consisting of three proteins: eIF4E, eIF4A, and eIF4G. eIF4E recognizes and binds to the mRNA 5'-terminal m⁷GTP cap, eIF4A is a bidirectional RNA-dependent helicase, and eIF4G is a scaffolding polypeptide. eIF4G has three binding domains. The N-terminal third of eIF4G interacts with eIF4E, the central third interacts with eIF4A, and the C-terminal third interacts with eIF3 bound to the 43S preinitiation complex. Thus, eIF4G acts as a bridge between the 40S ribosomal subunit and the mRNA (Hentze, M.W. (1997) Science 275:500-501).

The ability of eIF4F to initiate binding of the 43S preinitiation complex is regulated by structural features of the mRNA. The mRNA molecule has an untranslated region (UTR) between the 5' cap and the AUG start codon. In some mRNAs this region forms secondary structures that impede binding of the 43S preinitiation complex. The helicase activity of eIF4A is thought to function in removing this secondary structure to facilitate binding of the 43S preinitiation complex (Pain, supra). Translation Elongation

Elongation is the process whereby additional amino acids are joined to the initiator methionine to form the complete polypeptide chain. The elongation factors EF1 α , EF1 β γ , and EF2 are involved in elongating the polypeptide chain following initiation. EF1 α is a GTP-binding protein. In EF1 α 's GTP-bound form, it brings an aminoacyl-tRNA to the ribosome's A site. The amino acid attached to the newly arrived aminoacyl-tRNA forms a peptide bond with the initiator methionine. The GTP on EF1 α is hydrolyzed to GDP, and EF1 α -GDP dissociates from the ribosome. EF1 β γ binds EF1 α -GDP and induces the dissociation of GDP from EF1 α , allowing EF1 α to bind GTP and a new cycle to begin.

As subsequent aminoacyl-tRNAs are brought to the ribosome, EF-G, another GTP-binding protein, catalyzes the translocation of tRNAs from the A site to the P site and finally to the E site of the ribosome. This allows the processivity of translation.

Translation Termination

10

15

20

25

30

The release factor eRF carries out termination of translation. eRF recognizes stop codons in the mRNA, leading to the release of the polypeptide chain from the ribosome.

Post-Translational Pathways

Proteins may be modified after translation by the addition of phosphate, sugar, prenyl, fatty acid, and other chemical groups. These modifications are often required for proper protein activity. Enzymes involved in post-translational modification include kinases, phosphatases,

glycosyltransferases, and prenyltransferases. The conformation of proteins may also be modified after translation by the introduction and rearrangement of disulfide bonds (rearrangement catalyzed by protein disulfide isomerase), the isomerization of proline sidechains by prolyl isomerase, and by interactions with molecular chaperone proteins.

Proteins may also be cleaved by proteases. Such cleavage may result in activation, inactivation, or complete degradation of the protein. Proteases include serine proteases, cysteine proteases, aspartic proteases, and metalloproteases. Signal peptidase in the endoplasmic reticulum (ER) lumen cleaves the signal peptide from membrane or secretory proteins that are imported into the ER. Ubiquitin proteases are associated with the ubiquitin conjugation system (UCS), a major pathway for the degradation of cellular proteins in eukaryotic cells and some bacteria. The UCS mediates the elimination of abnormal proteins and regulates the half-lives of important regulatory proteins that control cellular processes such as gene transcription and cell cycle progression. In the UCS pathway, proteins targeted for degradation are conjugated to a ubiquitin, a small heat stable protein. Proteins involved in the UCS include ubiquitin-activating enzyme, ubiquitin-conjugating enzymes, ubiquitin-ligases, and ubiquitin C-terminal hydrolases. The ubiquitinated protein is then recognized and degraded by the proteasome, a large, multisubunit proteolytic enzyme complex, and ubiquitin is released for reutilization by ubiquitin protease.

Lipid Metabolism

5

10

15

20

25

30

Lipids are water-insoluble, oily or greasy substances that are soluble in nonpolar solvents such as chloroform or ether. Neutral fats (triacylglycerols) serve as major fuels and energy stores. Polar lipids, such as phospholipids, sphingolipids, glycolipids, and cholesterol, are key structural components of cell membranes.

Lipid metabolism is involved in human diseases and disorders. In the arterial disease atherosclerosis, fatty lesions form on the inside of the arterial wall. These lesions promote the loss of arterial flexibility and the formation of blood clots (Guyton, A.C. Textbook of Medical Physiology (1991) W.B. Saunders Company, Philadelphia PA, pp.760-763). In Tay-Sachs disease, the GM₂ ganglioside (a sphingolipid) accumulates in lysosomes of the central nervous system due to a lack of the enzyme N-acetylhexosaminidase. Patients suffer nervous system degeneration leading to early death (Fauci, A.S. et al. (1998) Harrison's Principles of Internal Medicine McGraw-Hill, New York NY, p. 2171). The Niemann-Pick diseases are caused by defects in lipid metabolism. Niemann-Pick diseases types A and B are caused by accumulation of sphingomyelin (a sphingolipid) and other lipids in the central nervous system due to a defect in the enzyme sphingomyelinase, leading to neurodegeneration and lung disease. Niemann-Pick disease type C results from a defect in cholesterol transport, leading to the accumulation of sphingomyelin and cholesterol in lysosomes and a secondary reduction in

sphingomyelinase activity. Neurological symptoms such as grand mal seizures, ataxia, and loss of previously learned speech, manifest 1-2 years after birth. A mutation in the NPC protein, which contains a putative cholesterol-sensing domain, was found in a mouse model of Niemann-Pick disease type C (Fauci, supra, p. 2175; Loftus, S.K. et al. (1997) Science 277:232-235). (Lipid metabolism is reviewed in Stryer, L. (1995) Biochemistry, W.H. Freeman and Company, New York NY; Lehninger, A. (1982) Principles of Biochemistry Worth Publishers, Inc., New York NY; and ExPASy "Biochemical Pathways" index of Boehringer Mannheim World Wide Web site.)

Fatty Acid Synthesis

10

15

20

Fatty acids are long-chain organic acids with a single carboxyl group and a long non-polar hydrocarbon tail. Long-chain fatty acids are essential components of glycolipids, phospholipids, and cholesterol, which are building blocks for biological membranes, and of triglycerides, which are biological fuel molecules. Long-chain fatty acids are also substrates for eicosanoid production, and are important in the functional modification of certain complex carbohydrates and proteins. 16-carbon and 18-carbon fatty acids are the most common.

Fatty acid synthesis occurs in the cytoplasm. In the first step, acetyl-Coenzyme A (CoA) carboxylase (ACC) synthesizes malonyl-CoA from acetyl-CoA and bicarbonate. The enzymes which catalyze the remaining reactions are covalently linked into a single polypeptide chain, referred to as the multifunctional enzyme fatty acid synthase (FAS). FAS catalyzes the synthesis of palmitate from acetyl-CoA and malonyl-CoA. FAS contains acetyl transferase, malonyl transferase, β -ketoacetyl synthase, acyl carrier protein, β -ketoacyl reductase, dehydratase, enoyl reductase, and thioesterase activities. The final product of the FAS reaction is the 16-carbon fatty acid palmitate. Further elongation, as well as unsaturation, of palmitate by accessory enzymes of the ER produces the variety of long chain fatty acids required by the individual cell. These enzymes include a NADH-cytochrome b_5 reductase, cytochrome b_5 , and a desaturase.

25 Phospholipid and Triacylglycerol Synthesis

Triacylglycerols, also known as triglycerides and neutral fats, are major energy stores in animals. Triacylglycerols are esters of glycerol with three fatty acid chains. Glycerol-3-phosphate is produced from dihydroxyacetone phosphate by the enzyme glycerol phosphate dehydrogenase or from glycerol by glycerol kinase. Fatty acid-CoA's are produced from fatty acids by fatty acyl-CoA synthetases. Glyercol-3-phosphate is acylated with two fatty acyl-CoA's by the enzyme glycerol phosphate acyltransferase to give phosphatidate. Phosphatidate phosphatase converts phosphatidate to diacylglycerol, which is subsequently acylated to a triacylglyercol by the enzyme diglyceride acyltransferase. Phosphatidate phosphatase and diglyceride acyltransferase form a triacylglyerol synthetase complex bound to the ER membrane.

A major class of phospholipids are the phosphoglycerides, which are composed of a glycerol backbone, two fatty acid chains, and a phosphorylated alcohol. Phosphoglycerides are components of cell membranes. Principal phosphoglycerides are phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine, phosphatidyl inositol, and diphosphatidyl glycerol. Many enzymes involved in phosphoglyceride synthesis are associated with membranes (Meyers, R.A. (1995) Molecular Biology and Biotechnology, VCH Publishers Inc., New York NY, pp. 494-501). Phosphatidate is converted to CDP-diacylglycerol by the enzyme phosphatidate cytidylyltransferase (ExPASy ENZYME EC 2.7.7.41). Transfer of the diacylglycerol group from CDP-diacylglycerol to serine to yield phosphatidyl serine, or to inositol to yield phosphatidyl inositol, is catalyzed by the enzymes CDP-diacylglycerolserine O-phosphatidyltransferase and CDP-diacylglycerol-inositol 3-phosphatidyltransferase, respectively (ExPASy ENZYME EC 2.7.8.8; ExPASy ENZYME EC 2.7.8.11). The enzyme phosphatidyl serine decarboxylase catalyzes the conversion of phosphatidyl serine to phosphatidyl ethanolamine, using a pyruvate cofactor (Voelker, D.R. (1997) Biochim. Biophys. Acta 1348:236-244). Phosphatidyl choline is formed using diet-derived choline by the reaction of CDP-choline with 1,2diacylglycerol, catalyzed by diacylglycerol cholinephosphotransferase (ExPASy ENZYME 2.7.8.2). Sterol, Steroid, and Isoprenoid Metabolism

10

15

20

25

30

Cholesterol, composed of four fused hydrocarbon rings with an alcohol at one end, moderates the fluidity of membranes in which it is incorporated. In addition, cholesterol is used in the synthesis of steroid hormones such as cortisol, progesterone, estrogen, and testosterone. Bile salts derived from cholesterol facilitate the digestion of lipids. Cholesterol in the skin forms a barrier that prevents excess water evaporation from the body. Farnesyl and geranylgeranyl groups, which are derived from cholesterol biosynthesis intermediates, are post-translationally added to signal transduction proteins such as ras and protein-targeting proteins such as rab. These modifications are important for the activities of these proteins (Guyton, supra; Stryer, supra, pp. 279-280, 691-702, 934).

Mammals obtain cholesterol derived from both <u>de novo</u> biosynthesis and the diet. The liver is the major site of cholesterol biosynthesis in mammals. Two acetyl-CoA molecules initially condense to form acetoacetyl-CoA, catalyzed by a thiolase. Acetoacetyl-CoA condenses with a third acetyl-CoA to form hydroxymethylglutaryl-CoA (HMG-CoA), catalyzed by HMG-CoA synthase. Conversion of HMG-CoA to cholesterol is accomplished via a series of enzymatic steps known as the mevalonate pathway. The rate-limiting step is the conversion of HMG-CoA to mevalonate by HMG-CoA reductase. The drug lovastatin, a potent inhibitor of HMG-CoA reductase, is given to patients to reduce their serum cholesterol levels. Other mevalonate pathway enzymes include mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, isopentenyldiphosphate isomerase, dimethylallyl transferase, geranyl transferase, farnesyl-diphosphate farnesyltransferase, squalene

monooxygenase, lanosterol synthase, lathosterol oxidase, and 7-dehydrocholesterol reductase.

Cholesterol is used in the synthesis of steroid hormones such as cortisol, progesterone, aldosterone, estrogen, and testosterone. First, cholesterol is converted to pregnenolone by cholesterol monooxygenases. The other steroid hormones are synthesized from pregnenolone by a series of enzyme-catalyzed reactions including oxidations, isomerizations, hydroxylations, reductions, and demethylations. Examples of these enzymes include steroid Δ -isomerase, 3β -hydroxy- Δ^5 -steroid dehydrogenase, steroid 21-monooxygenase, steroid 19-hydroxylase, and 3β -hydroxysteroid dehydrogenase. Cholesterol is also the precursor to vitamin D.

Numerous compounds contain 5-carbon isoprene units derived from the mevalonate pathway intermediate isopentenyl pyrophosphate. Isoprenoid groups are found in vitamin K, ubiquinone, retinal, dolichol phosphate (a carrier of oligosaccharides needed for N-linked glycosylation), and farnesyl and geranylgeranyl groups that modify proteins. Enzymes involved include farnesyl transferase, polyprenyl transferases, dolichyl phosphatase, and dolichyl kinase.

Sphingolipid Metabolism

10

15

20

25

30

Sphingolipids are an important class of membrane lipids that contain sphingosine, a long chain amino alcohol. They are composed of one long-chain fatty acid, one polar head alcohol, and sphingosine or sphingosine derivative. The three classes of sphingolipids are sphingomyelins, cerebrosides, and gangliosides. Sphingomyelins, which contain phosphocholine or phosphoethanolamine as their head group, are abundant in the myelin sheath surrounding nerve cells. Galactocerebrosides, which contain a glucose or galactose head group, are characteristic of the brain. Other cerebrosides are found in nonneural tissues. Gangliosides, whose head groups contain multiple sugar units, are abundant in the brain, but are also found in nonneural tissues.

Sphingolipids are built on a sphingosine backbone. Sphingosine is acylated to ceramide by the enzyme sphingosine acetyltransferase. Ceramide and phosphatidyl choline are converted to sphingomyclin by the enzyme ceramide choline phosphotransferase. Cerebrosides are synthesized by the linkage of glucose or galactose to ceramide by a transferase. Sequential addition of sugar residues to ceramide by transferase enzymes yields gangliosides.

Eicosanoid Metabolism

Eicosanoids, including prostaglandins, prostacyclin, thromboxanes, and leukotrienes, are 20-carbon molecules derived from fatty acids. Eicosanoids are signaling molecules which have roles in pain, fever, and inflammation. The precursor of all eicosanoids is arachidonate, which is generated from phospholipids by phospholipase A_2 and from diacylglycerols by diacylglycerol lipase. Leukotrienes are produced from arachidonate by the action of lipoxygenases. Prostaglandin synthase, reductases, and isomerases are responsible for the synthesis of the prostaglandins. Prostaglandins have

roles in inflammation, blood flow, ion transport, synaptic transmission, and sleep. Prostacyclin and the thromboxanes are derived from a precursor prostaglandin by the action of prostacyclin synthase and thromboxane synthases, respectively.

Ketone Body Metabolism

5

10

20

25

30

heart disease.

Pairs of acetyl-CoA molecules derived from fatty acid oxidation in the liver can condense to form acetoacetyl-CoA, which subsequently forms acetoacetate, D-3-hydroxybutyrate, and acetone. These three products are known as ketone bodies. Enzymes involved in ketone body metabolism include HMG-CoA synthetase, HMG-CoA cleavage enzyme, D-3-hydroxybutyrate dehydrogenase, acetoacetate decarboxylase, and 3-ketoacyl-CoA transferase. Ketone bodies are a normal fuel supply of the heart and renal cortex. Acetoacetate produced by the liver is transported to cells where the acetoacetate is converted back to acetyl-CoA and enters the citric acid cycle. In times of starvation, ketone bodies produced from stored triacylglyerols become an important fuel source, especially for the brain. Abnormally high levels of ketone bodies are observed in diabetics. Diabetic coma can result if ketone body levels become too great.

15 Lipid Mobilization

Within cells, fatty acids are transported by cytoplasmic fatty acid binding proteins (Online Mendelian Inheritance in Man (OMIM) *134650 Fatty Acid-Binding Protein 1, Liver; FABP1). Diazepam binding inhibitor (DBI), also known as endozepine and acyl CoA-binding protein, is an endogenous γ-aminobutyric acid (GABA) receptor ligand which is thought to down-regulate the effects of GABA. DBI binds medium- and long-chain acyl-CoA esters with very high affinity and may function as an intracellular carrier of acyl-CoA esters (OMIM *125950 Diazepam Binding Inhibitor; DBI; PROSITE PDOC00686 Acyl-CoA-binding protein signature).

Fat stored in liver and adipose triglycerides may be released by hydrolysis and transported in the blood. Free fatty acids are transported in the blood by albumin. Triacylglycerols and cholesterol esters in the blood are transported in lipoprotein particles. The particles consist of a core of hydrophobic lipids surrounded by a shell of polar lipids and apolipoproteins. The protein components serve in the solubilization of hydrophobic lipids and also contain cell-targeting signals. Lipoproteins include chylomicrons, chylomicron remnants, very-low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). There is a strong inverse correlation between the levels of plasma HDL and risk of premature coronary

Triacylglycerols in chylomicrons and VLDL are hydrolyzed by lipoprotein lipases that line blood vessels in muscle and other tissues that use fatty acids. Cell surface LDL receptors bind LDL particles which are then internalized by endocytosis. Absence of the LDL receptor, the cause of the

disease familial hypercholesterolemia, leads to increased plasma cholesterol levels and ultimately to atherosclerosis. Plasma cholesteryl ester transfer protein mediates the transfer of cholesteryl esters from HDL to apolipoprotein B-containing lipoproteins. Cholesteryl ester transfer protein is important in the reverse cholesterol transport system and may play a role in atherosclerosis (Yamashita, S. et al. (1997) Curr. Opin. Lipidol. 8:101-110). Macrophage scavenger receptors, which bind and internalize modified lipoproteins, play a role in lipid transport and may contribute to atherosclerosis (Greaves, D.R. et al. (1998) Curr. Opin. Lipidol. 9:425-432).

Proteins involved in cholesterol uptake and biosynthesis are tightly regulated in response to cellular cholesterol levels. The sterol regulatory element binding protein (SREBP) is a sterol-responsive transcription factor. Under normal cholesterol conditions, SREBP resides in the ER membrane. When cholesterol levels are low, a regulated cleavage of SREBP occurs which releases the extracellular domain of the protein. This cleaved domain is then transported to the nucleus where it activates the transcription of the LDL receptor gene, and genes encoding enzymes of cholesterol synthesis, by binding the sterol regulatory element (SRE) upstream of the genes (Yang, J. et al. (1995) J. Biol. Chem. 270:12152-12161). Regulation of cholesterol uptake and biosynthesis also occurs via the oxysterol-binding protein (OSBP). OSBP is a high-affinity intracellular receptor for a variety of oxysterols that down-regulate cholesterol synthesis and stimulate cholesterol esterification (Lagace, T.A. et al. (1997) Biochem. J. 326:205-213).

Beta-oxidation

10

15

20

25

30

Mitochondrial and peroxisomal beta-oxidation enzymes degrade saturated and unsaturated fatty acids by sequential removal of two-carbon units from CoA-activated fatty acids. The main beta-oxidation pathway degrades both saturated and unsaturated fatty acids while the auxiliary pathway performs additional steps required for the degradation of unsaturated fatty acids.

The pathways of mitochondrial and peroxisomal beta-oxidation use similar enzymes, but have different substrate specificities and functions. Mitochondria oxidize short-, medium-, and long-chain fatty acids to produce energy for cells. Mitochondrial beta-oxidation is a major energy source for cardiac and skeletal muscle. In liver, it provides ketone bodies to the peripheral circulation when glucose levels are low as in starvation, endurance exercise, and diabetes (Eaton, S. et al. (1996) Biochem. J. 320:345-357). Peroxisomes oxidize medium-, long-, and very-long-chain fatty acids, dicarboxylic fatty acids, branched fatty acids, prostaglandins, xenobiotics, and bile acid intermediates. The chief roles of peroxisomal beta-oxidation are to shorten toxic lipophilic carboxylic acids to facilitate their excretion and to shorten very-long-chain fatty acids prior to mitochondrial beta-oxidation (Mannaerts, G.P. and P.P. van Veldhoven (1993) Biochimie 75:147-158).

Enzymes involved in beta-oxidation include acyl CoA synthetase, carnitine acyltransferase,

acyl CoA dehydrogenases, enoyl CoA hydratases, L-3-hydroxyacyl CoA dehydrogenase, β -ketothiolase, 2,4-dienoyl CoA reductase, and isomerase.

Lipid Cleavage and Degradation

10

15

20

25

Triglycerides are hydrolyzed to fatty acids and glycerol by lipases. Lysophospholipases (LPLs) are widely distributed enzymes that metabolize intracellular lipids, and occur in numerous isoforms. Small isoforms, approximately 15-30 kD, function as hydrolases; large isoforms, those exceeding 60 kD, function both as hydrolases and transacylases. A particular substrate for LPLs, lysophosphatidylcholine, causes lysis of cell membranes when it is formed or imported into a cell. LPLs are regulated by lipid factors including acylcarnitine, arachidonic acid, and phosphatidic acid. These lipid factors are signaling molecules important in numerous pathways, including the inflammatory response. (Anderson, R. et al. (1994) Toxicol. Appl. Pharmacol. 125:176-183; Selle, H. et al. (1993); Eur. J. Biochem. 212:411-416.)

The secretory phospholipase A₂ (PLA2) superfamily comprises a number of heterogeneous enzymes whose common feature is to hydrolyze the sn-2 fatty acid acyl ester bond of phosphoglycerides. Hydrolysis of the glycerophospholipids releases free fatty acids and lysophospholipids. PLA2 activity generates precursors for the biosynthesis of biologically active lipids, hydroxy fatty acids, and platelet-activating factor. PLA2 hydrolysis of the sn-2 ester bond in phospholipids generates free fatty acids, such as arachidonic acid and lysophospholipids.

Carbon and Carbohydrate Metabolism

Carbohydrates, including sugars or saccharides, starch, and cellulose, are aldehyde or ketone compounds with multiple hydroxyl groups. The importance of carbohydrate metabolism is demonstrated by the sensitive regulatory system in place for maintenance of blood glucose levels. Two pancreatic hormones, insulin and glucagon, promote increased glucose uptake and storage by cells, and increased glucose release from cells, respectively. Carbohydrates have three important roles in mammalian cells. First, carbohydrates are used as energy stores, fuels, and metabolic intermediates. Carbohydrates are broken down to form energy in glycolysis and are stored as glycogen for later use. Second, the sugars deoxyribose and ribose form part of the structural support of DNA and RNA, respectively. Third, carbohydrate modifications are added to secreted and membrane proteins and lipids as they traverse the secretory pathway. Cell surface carbohydrate-containing macromolecules, including glycoproteins, glycolipids, and transmembrane proteoglycans, mediate adhesion with other cells and with components of the extracellular matrix. The extracellular matrix is comprised of diverse glycoproteins, glycosaminoglycans (GAGs), and carbohydrate-binding proteins which are secreted from the cell and assembled into an organized meshwork in close association with the cell surface. The interaction of the cell with the surrounding matrix profoundly influences cell shape, strength, flexibility,

motility, and adhesion. These dynamic properties are intimately associated with signal transduction pathways controlling cell proliferation and differentiation, tissue construction, and embryonic development.

Carbohydrate metabolism is altered in several disorders including diabetes mellitus, hyperglycemia, hypoglycemia, galactosemia, galactokinase deficiency, and UDP-galactose-4-epimerase 5 deficiency (Fauci, A.S. et al. (1998) Harrison's Principles of Internal Medicine, McGraw-Hill, New York NY, pp. 2208-2209). Altered carbohydrate metabolism is associated with cancer. Reduced GAG and proteoglycan expression is associated with human lung carcinomas (Nackaerts, K. et al. (1997) Int. J. Cancer 74:335-345). The carbohydrate determinants sially Lewis A and sially Lewis X are frequently expressed on human cancer cells (Kannagi, R. (1997) Glycoconj. J. 14:577-584). 10 Alterations of the N-linked carbohydrate core structure of cell surface glycoproteins are linked to colon and pancreatic cancers (Schwarz, R.E. et al. (1996) Cancer Lett. 107:285-291). Reduced expression of the Sda blood group carbohydrate structure in cell surface glycolipids and glycoproteins is observed in gastrointestinal cancer (Dohi, T. et al. (1996) Int. J. Cancer 67:626-663). (Carbon and 15 carbohydrate metabolism is reviewed in Stryer, L. (1995) Biochemistry W.H. Freeman and Company, New York NY; Lehninger, A.L. (1982) Principles of Biochemistry Worth Publishers Inc., New York NY; and Lodish, H. et al. (1995) Molecular Cell Biology Scientific American Books, New York NY.) **Glycolysis**

Enzymes of the glycolytic pathway convert the sugar glucose to pyruvate while simultaneously producing ATP. The pathway also provides building blocks for the synthesis of cellular components such as long-chain fatty acids. After glycolysis, pyrvuate is converted to acetyl-Coenzyme A, which, in aerobic organisms, enters the citric acid cycle. Glycolytic enzymes include hexokinase, phosphoglucose isomerase, phosphofructokinase, aldolase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase, enolase, and pyruvate kinase. Of these, phosphofructokinase, hexokinase, and pyruvate kinase are important in regulating the rate of glycolysis.

Gluconeogenesis

20

25

30

Gluconeogenesis is the synthesis of glucose from noncarbohydrate precursors such as lactate and amino acids. The pathway, which functions mainly in times of starvation and intense exercise, occurs mostly in the liver and kidney. Responsible enzymes include pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose-6-phosphatase.

Pentose Phosphate Pathway

Pentose phosphate pathway enzymes are responsible for generating the reducing agent NADPH, while at the same time oxidizing glucose-6-phosphate to ribose-5-phosphate. Ribose-5-

phosphate and its derivatives become part of important biological molecules such as ATP, Coenzyme A, NAD⁺, FAD, RNA, and DNA. The pentose phosphate pathway has both oxidative and non-oxidative branches. The oxidative branch steps, which are catalyzed by the enzymes glucose-6-phosphate dehydrogenase, lactonase, and 6-phosphogluconate dehydrogenase, convert glucose-6-phosphate and NADP⁺ to ribulose-6-phosphate and NADPH. The non-oxidative branch steps, which are catalyzed by the enzymes phosphopentose isomerase, phosphopentose epimerase, transketolase, and transaldolase, allow the interconversion of three-, four-, five-, six-, and seven-carbon sugars.

Glucouronate Metabolism

10

15

20

25

Glucuronate is a monosaccharide which, in the form of D-glucuronic acid, is found in the GAGs chondroitin and dermatan. D-glucuronic acid is also important in the detoxification and excretion of foreign organic compounds such as phenol. Enzymes involved in glucuronate metabolism include UDP-glucose dehydrogenase and glucuronate reductase.

Disaccharide Metabolism

Disaccharides must be hydrolyzed to monosaccharides to be digested. Lactose, a disaccharide found in milk, is hydrolyzed to galactose and glucose by the enzyme lactase. Maltose is derived from plant starch and is hydrolyzed to glucose by the enzyme maltase. Sucrose is derived from plants and is hydrolyzed to glucose and fructose by the enzyme sucrase. Trehalose, a disaccharide found mainly in insects and mushrooms, is hydrolyzed to glucose by the enzyme trehalase (OMIM *275360 Trehalase; Ruf, J. et al. (1990) J. Biol. Chem. 265:15034-15039). Lactase, maltase, sucrase, and trehalase are bound to mucosal cells lining the small intestine, where they participate in the digestion of dietary disaccharides. The enzyme lactose synthetase, composed of the catalytic subunit galactosyltransferase and the modifier subunit α -lactalbumin, converts UDP-galactose and glucose to lactose in the mammary glands.

Glycogen, Starch, and Chitin Metabolism

Glycogen is the storage form of carbohydrates in mammals. Mobilization of glycogen maintains glucose levels between meals and during muscular activity. Glycogen is stored mainly in the liver and in skeletal muscle in the form of cytoplasmic granules. These granules contain enzymes that catalyze the synthesis and degradation of glycogen, as well as enzymes that regulate these processes. Enzymes that catalyze the degradation of glycogen include glycogen phosphorylase, a transferase, α -1,6-glucosidase, and phosphoglucomutase. Enzymes that catalyze the synthesis of glycogen include UDP-glucose pyrophosphorylase, glycogen synthetase, a branching enzyme, and nucleoside diphosphokinase. The enzymes of glycogen synthesis and degradation are tightly regulated by the hormones insulin, glucagon, and epinephrine. Starch, a plant-derived polysaccharide, is hydrolyzed to maltose, maltotriose, and α -dextrin by α -amylase, an enzyme secreted by the salivary glands and

pancreas. Chitin is a polysaccharide found in insects and crustacea. A chitotriosidase is secreted by macrophages and may play a role in the degradation of chitin-containing pathogens (Boot, R.G. et al. (1995) J. Biol. Chem. 270:26252-26256).

Peptidoglycans and Glycosaminoglycans

5

10

15

20

25

30

Glycosaminoglycans (GAGs) are anionic linear unbranched polysaccharides composed of repetitive disaccharide units. These repetitive units contain a derivative of an amino sugar, either glucosamine or galactosamine. GAGs exist free or as part of proteoglycans, large molecules composed of a core protein attached to one or more GAGs. GAGs are found on the cell surface, inside cells, and in the extracellular matrix. Changes in GAG levels are associated with several autoimmune diseases including autoimmune thyroid disease, autoimmune diabetes mellitus, and systemic lupus erythematosus (Hansen, C. et al. (1996) Clin. Exp. Rheum. 14 (Suppl. 15):S59-S67). GAGs include chondroitin sulfate, keratan sulfate, heparin, heparan sulfate, dermatan sulfate, and hyaluronan.

The GAG hyaluronan (HA) is found in the extracellular matrix of many cells, especially in soft connective tissues, and is abundant in synovial fluid (Pitsillides, A.A. et al. (1993) Int. J. Exp. Pathol. 74:27-34). HA seems to play important roles in cell regulation, development, and differentiation (Laurent, T.C. and J.R. Fraser (1992) FASEB J. 6:2397-2404). Hyaluronidase is an enzyme that degrades HA to oligosaccharides. Hyaluronidases may function in cell adhesion, infection, angiogenesis, signal transduction, reproduction, cancer, and inflammation.

Proteoglycans, also known as peptidoglycans, are found in the extracellular matrix of connective tissues such as cartilage and are essential for distributing the load in weight-bearing joints. Cell-surface-attached proteoglycans anchor cells to the extracellular matrix. Both extracellular and cell-surface proteoglycans bind growth factors, facilitating their binding to cell-surface receptors and subsequent triggering of signal transduction pathways.

Amino Acid and Nitrogen Metabolism

 NH_4^+ is assimilated into amino acids by the actions of two enzymes, glutamate dehydrogenase and glutamine synthetase. The carbon skeletons of amino acids come from the intermediates of glycolysis, the pentose phosphate pathway, or the citric acid cycle. Of the twenty amino acids used in proteins, humans can synthesize only thirteen (nonessential amino acids). The remaining nine must come from the diet (essential amino acids). Enzymes involved in nonessential amino acid biosynthesis include glutamate kinase dehydrogenase, pyrroline carboxylate reductase, asparagine synthetase, phenylalanine oxygenase, methionine adenosyltransferase, adenosylhomocysteinase, cystathionine β -synthase, cystathionine γ -lyase, phosphoglycerate dehydrogenase, phosphoserine transaminase, phosphoserine phosphatase, serine hydroxylmethyltransferase, and glycine synthase.

Metabolism of amino acids takes place almost entirely in the liver, where the amino group is removed by aminotransferases (transaminases), for example, alanine aminotransferase. The amino group is transferred to α -ketoglutarate to form glutamate. Glutamate dehydrogenase converts glutamate to NH₄⁺ and α -ketoglutarate. NH₄⁺ is converted to urea by the urea cycle which is catalyzed by the enzymes arginase, ornithine transcarbamoylase, arginosuccinate synthetase, and arginosuccinase. Carbamoyl phosphate synthetase is also involved in urea formation. Enzymes involved in the metabolism of the carbon skeleton of amino acids include serine dehydratase, asparaginase, glutaminase, propionyl CoA carboxylase, methylmalonyl CoA mutase, branched-chain α -keto dehydrogenase complex, isovaleryl CoA dehydrogenase, β -methylcrotonyl CoA carboxylase, phenylalanine hydroxylase, p-hydroxylphenylpyruvate hydroxylase, and homogentisate oxidase.

Polyamines, which include spermidine, putrescine, and spermine, bind tightly to nucleic acids and are abundant in rapidly proliferating cells. Enzymes involved in polyamine synthesis include ornithine decarboxylase.

Diseases involved in amino acid and nitrogen metabolism include hyperammonemia, carbamoyl phosphate synthetase deficiency, urea cycle enzyme deficiencies, methylmalonic aciduria, maple syrup disease, alcaptonuria, and phenylketonuria.

Energy Metabolism

10

15

20

25

30

35

Cells derive energy from metabolism of ingested compounds that may be roughly categorized as carbohydrates, fats, or proteins. Energy is also stored in polymers such as triglycerides (fats) and glycogen (carbohydrates). Metabolism proceeds along separate reaction pathways connected by key intermediates such as acetyl coenzyme A (acetyl-CoA). Metabolic pathways feature anaerobic and aerobic degradation, coupled with the energy-requiring reactions such as phosphorylation of adenosine diphosphate (ADP) to the triphosphate (ATP) or analogous phosphorylations of guanosine (GDP/GTP), uridine (UDP/UTP), or cytidine (CDP/CTP). Subsequent dephosphorylation of the triphosphate drives reactions needed for cell maintenance, growth, and proliferation.

Digestive enzymes convert carbohydrates and sugars to glucose; fructose and galactose are converted in the liver to glucose. Enzymes involved in these conversions include galactose-1-phosphate uridyl transferase and UDP-galactose-4 epimerase. In the cytoplasm, glycolysis converts glucose to pyruvate in a series of reactions coupled to ATP synthesis.

Pyruvate is transported into the mitochondria and converted to acetyl-CoA for oxidation via the citric acid cycle, involving pyruvate dehydrogenase components, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Enzymes involved in the citric acid cycle include: citrate synthetase, aconitases, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex including transsuccinylases, succinyl CoA synthetase, succinate dehydrogenase, fumarases, and malate dehydrogenase. Acetyl CoA is oxidized to CO₂ with concomitant formation of NADH, FADH₂, and

GTP. In oxidative phosphorylation, the transport of electrons from NADH and $FADH_2$ to oxygen by dehydrogenases is coupled to the synthesis of ATP from ADP and P_i by the F_0F_1 ATPase complex in the mitochondrial inner membrane. Enzyme complexes responsible for electron transport and ATP synthesis include the F_0F_1 ATPase complex, ubiquinone(CoQ)-cytochrome c reductase, ubiquinone reductase, cytochrome b, cytochrome c_1 , FeS protein, and cytochrome c oxidase.

Triglycerides are hydrolyzed to fatty acids and glycerol by lipases. Glycerol is then phosphorylated to glycerol-3-phosphate by glycerol kinase and glycerol phosphate dehydrogenase, and degraded by the glycolysis. Fatty acids are transported into the mitochondria as fatty acylcarnitine esters and undergo oxidative degradation.

In addition to metabolic disorders such as diabetes and obesity, disorders of energy metabolism are associated with cancers (Dorward, A. et al. (1997) J. Bioenerg. Biomembr. 29:385-392), autism (Lombard, J. (1998) Med. Hypotheses 50:497-500), neurodegenerative disorders (Alexi, T. et al. (1998) Neuroreport 9:R57-64), and neuromuscular disorders (DiMauro, S. et al. (1998) Biochim. Biophys. Acta 1366:199-210). The myocardium is heavily dependent on oxidative metabolism, so metabolic dysfunction often leads to heart disease (DiMauro, S. and M. Hirano (1998) Curr. Opin. Cardiol. 13:190-197).

For a review of energy metabolism enzymes and intermediates, see Stryer, L. et al. (1995) <u>Biochemistry</u>, W.H. Freeman and Co., San Francisco CA, pp. 443-652. For a review of energy metabolism regulation, see Lodish, H. et al. (1995) <u>Molecular Cell Biology</u>, Scientific American Books, New York NY, pp. 744-770.

Cofactor Metabolism

10

15

20

25

30

35

Cofactors, including coenzymes and prosthetic groups, are small molecular weight inorganic or organic compounds that are required for the action of an enzyme. Many cofactors contain vitamins as a component. Cofactors include thiamine pyrophosphate, flavin adenine dinucleotide, flavin mononucleotide, nicotinamide adenine dinucleotide, pyridoxal phosphate, coenzyme A, tetrahydrofolate, lipoamide, and heme. The vitamins biotin and cobalamin are associated with enzymes as well. Heme, a prosthetic group found in myoglobin and hemoglobin, consists of protoporphyrin group bound to iron. Porphyrin groups contain four substituted pyrroles covalently joined in a ring, often with a bound metal atom. Enzymes involved in porphyrin synthesis include δ -aminolevulinate synthase, δ -aminolevulinate dehydrase, porphobilinogen deaminase, and cosynthase. Deficiencies in heme formation cause porphyrias. Heme is broken down as a part of erythrocyte turnover. Enzymes involved in heme degradation include heme oxygenase and biliverdin reductase.

Iron is a required cofactor for many enzymes. Besides the heme-containing enzymes, iron is found in iron-sulfur clusters in proteins including aconitase, succinate dehydrogenase, and NADH-Q reductase. Iron is transported in the blood by the protein transferrin. Binding of transferrin to the

transferrin receptor on cell surfaces allows uptake by receptor mediated endocytosis. Cytosolic iron is bound to ferritin protein.

A molybdenum-containing cofactor (molybdopterin) is found in enzymes including sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Molybdopterin biosynthesis is performed by two molybdenum cofactor synthesizing enzymes. Deficiencies in these enzymes cause mental retardation and lens dislocation. Other diseases caused by defects in cofactor metabolism include pernicious anemia and methylmalonic aciduria.

Secretion and Trafficking

Eukaryotic cells are bound by a lipid bilayer membrane and subdivided into functionally distinct, membrane bound compartments. The membranes maintain the essential differences between the cytosol, the extracellular environment, and the lumenal space of each intracellular organelle. As lipid membranes are highly impermeable to most polar molecules, transport of essential nutrients, metabolic waste products, cell signaling molecules, macromolecules and proteins across lipid membranes and between organelles must be mediated by a variety of transport-associated molecules.

Protein Trafficking

10

15

20

25

30

In eukaryotes, some proteins are synthesized on ER-bound ribosomes, co-translationally imported into the ER, delivered from the ER to the Golgi complex for post-translational processing and sorting, and transported from the Golgi to specific intracellular and extracellular destinations. All cells possess a constitutive transport process which maintains homeostasis between the cell and its environment. In many differentiated cell types, the basic machinery is modified to carry out specific transport functions. For example, in endocrine glands, hormones and other secreted proteins are packaged into secretory granules for regulated exocytosis to the cell exterior. In macrophage, foreign extracellular material is engulfed (phagocytosis) and delivered to lysosomes for degradation. In fat and muscle cells, glucose transporters are stored in vesicles which fuse with the plasma membrane only in response to insulin stimulation.

The Secretory Pathway

Synthesis of most integral membrane proteins, secreted proteins, and proteins destined for the lumen of a particular organelle occurs on ER-bound ribosomes. These proteins are co-translationally imported into the ER. The proteins leave the ER via membrane-bound vesicles which bud off the ER at specific sites and fuse with each other (homotypic fusion) to form the ER-Golgi Intermediate Compartment (ERGIC). The ERGIC matures progressively through the *cis*, *medial*, and *trans* cisternal stacks of the Golgi, modifying the enzyme composition by retrograde transport of specific Golgi enzymes. In this way, proteins moving through the Golgi undergo post-translational modification, such as glycosylation. The final Golgi compartment is the Trans-Golgi Network (TGN), where both

membrane and lumenal proteins are sorted for their final destination. Transport vesicles destined for intracellular compartments, such as the lysosome, bud off the TGN. What remains is a secretory vesicle which contains proteins destined for the plasma membrane, such as receptors, adhesion molecules, and ion channels, and secretory proteins, such as hormones, neurotransmitters, and digestive enzymes. Secretory vesicles eventually fuse with the plasma membrane (Glick, B.S. and V. Malhotra (1998) Cell 95:883-889).

The secretory process can be constitutive or regulated. Most cells have a constitutive pathway for secretion, whereby vesicles derived from maturation of the TGN require no specific signal to fuse with the plasma membrane. In many cells, such as endocrine cells, digestive cells, and neurons, vesicle pools derived from the TGN collect in the cytoplasm and do not fuse with the plasma membrane until they are directed to by a specific signal.

Endocytosis

10

15

20

25

30

Endocytosis, wherein cells internalize material from the extracellular environment, is essential for transmission of neuronal, metabolic, and proliferative signals; uptake of many essential nutrients; and defense against invading organisms. Most cells exhibit two forms of endocytosis. The first, phagocytosis, is an actin-driven process exemplified in macrophage and neutrophils. Material to be endocytosed contacts numerous cell surface receptors which stimulate the plasma membrane to extend and surround the particle, enclosing it in a membrane-bound phagosome. In the mammalian immune system, IgG-coated particles bind Fc receptors on the surface of phagocytic leukocytes. Activation of the Fc receptors initiates a signal cascade involving src-family cytosolic kinases and the monomeric GTP-binding (G) protein Rho. The resulting actin reorganization leads to phagocytosis of the particle. This process is an important component of the humoral immune response, allowing the processing and presentation of bacterial-derived peptides to antigen-specific T-lymphocytes.

The second form of endocytosis, pinocytosis, is a more generalized uptake of material from the external milieu. Like phagocytosis, pinocytosis is activated by ligand binding to cell surface receptors. Activation of individual receptors stimulates an internal response that includes coalescence of the receptor-ligand complexes and formation of clathrin-coated pits. Invagination of the plasma membrane at clathrin-coated pits produces an endocytic vesicle within the cell cytoplasm. These vesicles undergo homotypic fusion to form an early endosomal (EE) compartment. The tubulovesicular EE serves as a sorting site for incoming material. ATP-driven proton pumps in the EE membrane lowers the pH of the EE lumen (pH 6.3-6.8). The acidic environment causes many ligands to dissociate from their receptors. The receptors, along with membrane and other integral membrane proteins, are recycled back to the plasma membrane by budding off the tubular extensions of the EE in recycling vesicles (RV). This selective removal of recycled components produces a carrier vesicle containing ligand and other

material from the external environment. The carrier vesicle fuses with TGN-derived vesicles which contain hydrolytic enzymes. The acidic environment of the resulting late endosome (LE) activates the hydrolytic enzymes which degrade the ligands and other material. As digestion takes place, the LE fuses with the lysosome where digestion is completed (Mellman, I. (1996) Annu. Rev. Cell Dev. Biol. 12:575-625).

Recycling vesicles may return directly to the plasma membrane. Receptors internalized and returned directly to the plasma membrane have a turnover rate of 2-3 minutes. Some RVs undergo microtubule-directed relocation to a perinuclear site, from which they then return to the plasma membrane. Receptors following this route have a turnover rate of 5-10 minutes. Still other RVs are retained within the cell until an appropriate signal is received (Mellman, <u>supra;</u> and James, D.E. et al. (1994) Trends Cell Biol. 4:120-126).

Vesicle Formation

5

10

Several steps in the transit of material along the secretory and endocytic pathways require the formation of transport vesicles. Specifically, vesicles form at the transitional endoplasmic reticulum (tER), the rim of Golgi cisternae, the face of the Trans-Golgi Network (TGN), the plasma membrane 15 (PM), and tubular extensions of the endosomes. The process begins with the budding of a vesicle out of the donor membrane. The membrane-bound vesicle contains proteins to be transported and is surrounded by a protective coat made up of protein subunits recruited from the cytosol. The initial budding and coating processes are controlled by a cytosolic ras-like GTP-binding protein, ADPribosylating factor (Arf), and adapter proteins (AP). Different isoforms of both Arf and AP are 20 involved at different sites of budding. Another small G-protein, dynamin, forms a ring complex around the neck of the forming vesicle and may provide the mechanochemical force to accomplish the final step of the budding process. The coated vesicle complex is then transported through the cytosol. During the transport process, Arf-bound GTP is hydrolyzed to GDP and the coat dissociates from the transport vesicle (West, M.A. et al. (1997) J. Cell Biol. 138:1239-1254). Two different classes of coat protein 25 have also been identified. Clathrin coats form on the TGN and PM surfaces, whereas coatomer or COP coats form on the ER and Golgi. COP coats can further be distinguished as COPI, involved in retrograde traffic through the Golgi and from the Golgi to the ER, and COPII, involved in anterograde traffic from the ER to the Golgi (Mellman, supra). The COP coat consists of two major components, a G-protein (Arf or Sar) and coat protomer (coatomer). Coatomer is an equimolar complex of seven 30 proteins, termed alpha-, beta-, beta-, gamma-, delta-, epsilon- and zeta-COP. (Harter, C. and F.T. Wieland (1998) Proc. Natl. Acad. Sci. USA 95:11649-11654.)

Membrane Fusion

Transport vesicles undergo homotypic or heterotypic fusion in the secretory and endocytotic

pathways. Molecules required for appropriate targeting and fusion of vesicles with their target membrane include proteins incorporated in the vesicle membrane, the target membrane, and proteins recruited from the cytosol. During budding of the vesicle from the donor compartment, an integral membrane protein, VAMP (vesicle-associated membrane protein) is incorporated into the vesicle. Soon after the vesicle uncoats, a cytosolic prenylated GTP-binding protein, Rab (a member of the Ras superfamily), is inserted into the vesicle membrane. GTP-bound Rab proteins are directed into nascent transport vesicles where they interact with VAMP. Following vesicle transport, GTPase activating proteins (GAPs) in the target membrane convert Rab proteins to the GDP-bound form. A cytosolic protein, guanine-nucleotide dissociation inhibitor (GDI) helps return GDP-bound Rab proteins to their membrane of origin. Several Rab isoforms have been identified and appear to associate with specific compartments within the cell. Rab proteins appear to play a role in mediating the function of a viral gene, Rev, which is essential for replication of HIV-1, the virus responsible for AIDS (Flavell, R.A. et al. (1996) Proc. Natl. Acad. Sci. USA 93:4421-4424).

10

15

20

25

30

Docking of the transport vesicle with the target membrane involves the formation of a complex between the vesicle SNAP receptor (v-SNARE), target membrane (t-) SNAREs, and certain other membrane and cytosolic proteins. Many of these other proteins have been identified although their exact functions in the docking complex remain uncertain (Tellam, J.T. et al. (1995) J. Biol. Chem. 270:5857-63; and Hata, Y. and T.C. Sudhof (1995) J. Biol. Chem. 270:13022-28). N-ethylmalcimide sensitive factor (NSF) and soluble NSF-attachment protein (α -SNAP and β -SNAP) are two such proteins that are conserved from yeast to man and function in most intracellular membrane fusion reactions. Sec1 represents a family of yeast proteins that function at many different stages in the secretory pathway including membrane fusion. Recently, mammalian homologs of Sec1, called Munc-18 proteins, have been identified (Katagiri, H. et al. (1995) J. Biol. Chem. 270:4963-4966; Hata et al. supra).

The SNARE complex involves three SNARE molecules, one in the vesicular membrane and two in the target membrane. Synaptotagmin is an integral membrane protein in the synaptic vesicle which associates with the t-SNARE syntaxin in the docking complex. Synaptotagmin binds calcium in a complex with negatively charged phospholipids, which allows the cytosolic SNAP protein to displace synaptotagmin from syntaxin and fusion to occur. Thus, synaptotagmin is a negative regulator of fusion in the neuron (Littleton, J.T. et al. (1993) Cell 74:1125-1134). The most abundant membrane protein of synaptic vesicles appears to be the glycoprotein synaptophysin, a 38 kDa protein with four transmembrane domains.

Specificity between a vesicle and its target is derived from the v-SNARE, t-SNAREs, and associated proteins involved. Different isoforms of SNAREs and Rabs show distinct cellular and

subcellular distributions. VAMP-1/synaptobrevin, membrane-anchored synaptosome-associated protein of 25 kDa (SNAP-25), syntaxin-1, Rab3A, Rab15, and Rab23 are predominantly expressed in the brain and nervous system. Different syntaxin, VAMP, and Rab proteins are associated with distinct subcellular compartments and their vesicular carriers.

Nuclear Transport

5

10

15

20

30

Transport of proteins and RNA between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). NPC-mediated transport occurs in both directions through the nuclear envelope. All nuclear proteins are imported from the cytoplasm, their site of synthesis. tRNA and mRNA are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function. Processing of small nuclear RNAs involves export into the cytoplasm, assembly with proteins and modifications such as hypermethylation to produce small nuclear ribonuclear proteins (snRNPs), and subsequent import of the snRNPs back into the nucleus. The assembly of ribosomes requires the initial import of ribosomal proteins from the cytoplasm, their incorporation with RNA into ribosomal subunits, and export back to the cytoplasm. (Görlich, D. and I.W. Mattaj (1996) Science 271:1513-1518.)

The transport of proteins and mRNAs across the NPC is selective, dependent on nuclear localization signals, and generally requires association with nuclear transport factors. Nuclear localization signals (NLS) consist of short stretches of amino acids enriched in basic residues. NLS are found on proteins that are targeted to the nucleus, such as the glucocorticoid receptor. The NLS is recognized by the NLS receptor, importin, which then interacts with the monomeric GTP-binding protein Ran. This NLS protein/receptor/Ran complex navigates the nuclear pore with the help of the homodimeric protein nuclear transport factor 2 (NTF2). NTF2 binds the GDP-bound form of Ran and to multiple proteins of the nuclear pore complex containing FXFG repeat motifs, such as p62. (Paschal, B. et al. (1997) J. Biol. Chem. 272:21534-21539; and Wong, D.H. et al. (1997) Mol. Cell Biol. 17:3755-3767). Some proteins are dissociated before nuclear mRNAs are transported across the NPC while others are dissociated shortly after nuclear mRNA transport across the NPC and are reimported into the nucleus.

Disease Correlation

The etiology of numerous human diseases and disorders can be attributed to defects in the transport or secretion of proteins. For example, abnormal hormonal secretion is linked to disorders such as diabetes insipidus (vasopressin), hyper- and hypoglycemia (insulin, glucagon), Grave's disease and goiter (thyroid hormone), and Cushing's and Addison's diseases (adrenocorticotropic hormone, ACTH). Moreover, cancer cells secrete excessive amounts of hormones or other biologically active peptides. Disorders related to excessive secretion of biologically active peptides by tumor cells include

fasting hypoglycemia due to increased insulin secretion from insulinoma-islet cell tumors; hypertension due to increased epinephrine and norepinephrine secreted from pheochromocytomas of the adrenal medulla and sympathetic paraganglia; and carcinoid syndrome, which is characterized by abdominal cramps, diarrhea, and valvular heart disease caused by excessive amounts of vasoactive substances such as serotonin, bradykinin, histamine, prostaglandins, and polypeptide hormones, secreted from intestinal tumors. Biologically active peptides that are ectopically synthesized in and secreted from tumor cells include ACTH and vasopressin (lung and pancreatic cancers); parathyroid hormone (lung and bladder cancers); calcitonin (lung and breast cancers); and thyroid-stimulating hormone (medullary thyroid carcinoma). Such peptides may be useful as diagnostic markers for tumorigenesis (Schwartz, M.Z. (1997) Semin. Pediatr. Surg. 3:141-146; and Said, S.I. and G.R. Faloona (1975) N. Engl. J. Med. 293:155-160).

Defective nuclear transport may play a role in cancer. The BRCA1 protein contains three potential NLSs which interact with importin alpha, and is transported into the nucleus by the importin/NPC pathway. In breast cancer cells the BRCA1 protein is aberrantly localized in the cytoplasm. The mislocation of the BRCA1 protein in breast cancer cells may be due to a defect in the NPC nuclear import pathway (Chen, C.F. et al. (1996) J. Biol. Chem. 271:32863-32868).

It has been suggested that in some breast cancers, the tumor-suppressing activity of p53 is inactivated by the sequestration of the protein in the cytoplasm, away from its site of action in the cell nucleus. Cytoplasmic wild-type p53 was also found in human cervical carcinoma cell lines. (Moll, U.M. et al. (1992) Proc. Natl. Acad. Sci. USA 89:7262-7266; and Liang, X.H. et al. (1993) Oncogene 8:2645-2652.)

Environmental Responses

10

15

20

25

30

Organisms respond to the environment by a number of pathways. Heat shock proteins, including hsp 70, hsp60, hsp90, and hsp 40, assist organisms in coping with heat damage to cellular proteins.

Aquaporins (AQP) are channels that transport water and, in some cases, nonionic small solutes such as urea and glycerol. Water movement is important for a number of physiological processes including renal fluid filtration, aqueous humor generation in the eye, cerebrospinal fluid production in the brain, and appropriate hydration of the lung. Aquaporins are members of the major intrinsic protein (MIP) family of membrane transporters (King, L.S. and P. Agre (1996) Annu. Rev. Physiol. 58:619-648; Ishibashi, K. et al. (1997) J. Biol. Chem. 272:20782-20786). The study of aquaporins may have relevance to understanding edema formation and fluid balance in both normal physiology and disease states (King, supra). Mutations in AQP2 cause autosomal recessive nephrogenic diabetes insipidus (OMIM *107777 Aquaporin 2; AQP2). Reduced AQP4 expression in skeletal muscle may be

associated with Duchenne muscular dystrophy (Frigeri, A. et al. (1998) J. Clin. Invest. 102:695-703). Mutations in AQPO cause autosomal dominant cataracts in the mouse (OMIM *154050 Major Intrinsic Protein of Lens Fiber; MIP).

The metallothioneins (MTs) are a group of small (61 amino acids), cysteine-rich proteins that bind heavy metals such as cadmium, zinc, mercury, lead, and copper and are thought to play a role in metal detoxification or the metabolism and homeostasis of metals. Arsenite-resistance proteins have been identified in hamsters that are resistant to toxic levels of arsenite (Rossman, T.G. et al. (1997) Mutat. Res. 386:307-314).

Humans respond to light and odors by specific protein pathways. Proteins involved in light perception include rhodopsin, transducin, and cGMP phosphodiesterase. Proteins involved in odor perception include multiple olfactory receptors. Other proteins are important in human Circadian rhythms and responses to wounds.

Immunity and Host Defense

10

15

20

25

30

All vertebrates have developed sophisticated and complex immune systems that provide protection from viral, bacterial, fungal and parasitic infections. Included in these systems are the processes of humoral immunity, the complement cascade and the inflammatory response (Paul, W.E. (1993) Fundamental Immunology, Raven Press, Ltd., New York NY, pp.1-20).

The cellular components of the humoral immune system include six different types of leukocytes: monocytes, lymphocytes, polymorphonuclear granulocytes (consisting of neutrophils, eosinophils, and basophils) and plasma cells. Additionally, fragments of megakaryocytes, a seventh type of white blood cell in the bone marrow, occur in large numbers in the blood as platelets.

Leukocytes are formed from two stem cell lineages in bone marrow. The myeloid stem cell line produces granulocytes and monocytes and, the lymphoid stem cell produces lymphocytes. Lymphoid cells travel to the thymus, spleen and lymph nodes, where they mature and differentiate into lymphocytes. Leukocytes are responsible for defending the body against invading pathogens. Neutrophils and monocytes attack invading bacteria, viruses, and other pathogens and destroy them by phagocytosis. Monocytes enter tissues and differentiate into macrophages which are extremely phagocytic. Lymphocytes and plasma cells are a part of the immune system which recognizes specific foreign molecules and organisms and inactivates them, as well as signals other cells to attack the invaders.

Granulocytes and monocytes are formed and stored in the bone marrow until needed.

Megakaryocytes are produced in bone marrow, where they fragment into platelets and are released into the bloodstream. The main function of platelets is to activate the blood clotting mechanism.

Lymphocytes and plasma cells are produced in various lymphogenous organs, including the lymph

nodes, spleen, thymus, and tonsils.

5

10

15

20

25

30

35

Both neutrophils and macrophages exhibit chemotaxis towards sites of inflammation. Tissue inflammation in response to pathogen invasion results in production of chemo-attractants for leukocytes, such as endotoxins or other bacterial products, prostaglandins, and products of leukocytes or platelets.

Basophils participate in the release of the chemicals involved in the inflammatory process. The main function of basophils is secretion of these chemicals to such a degree that they have been referred to as "unicellular endocrine glands". A distinct aspect of basophilic secretion is that the contents of granules go directly into the extracellular environment, not into vacuoles as occurs with neutrophils, eosinophils and monocytes. Basophils have receptors for the Fc fragment of immunoglobulin E (IgE) that are not present on other leukocytes. Crosslinking of membrane IgE with anti-IgE or other ligands triggers degranulation.

Eosinophils are bi- or multi-nucleated white blood cells which contain eosinophilic granules. Their plasma membrane is characterized by Ig receptors, particularly IgG and IgE. Generally, eosinophils are stored in the bone marrow until recruited for use at a site of inflammation or invasion. They have specific functions in parasitic infections and allergic reactions, and are thought to detoxify some of the substances released by mast cells and basophils which cause inflammation. Additionally, they phagocytize antigen-antibody complexes and further help prevent spread of the inflammation.

Macrophages are monocytes that have left the blood stream to settle in tissue. Once monocytes have migrated into tissues, they do not re-enter the bloodstream. The mononuclear phagocyte system is comprised of precursor cells in the bone marrow, monocytes in circulation, and macrophages in tissues. The system is capable of very fast and extensive phagocytosis. A macrophage may phagocytize over 100 bacteria, digest them and extrude residues, and then survive for many more months. Macrophages are also capable of ingesting large particles, including red blood cells and malarial parasites. They increase several-fold in size and transform into macrophages that are characteristic of the tissue they have entered, surviving in tissues for several months.

Mononuclear phagocytes are essential in defending the body against invasion by foreign pathogens, particularly intracellular microorganisms such as <u>M. tuberculosis</u>, listeria, leishmania and toxoplasma. Macrophages can also control the growth of tumorous cells, via both phagocytosis and secretion of hydrolytic enzymes. Another important function of macrophages is that of processing antigen and presenting them in a biochemically modified form to lymphocytes.

The immune system responds to invading microorganisms in two major ways: antibody production and cell mediated responses. Antibodies are immunoglobulin proteins produced by B-lymphocytes which bind to specific antigens and cause inactivation or promote destruction of the antigen by other cells. Cell-mediated immune responses involve T-lymphocytes (T cells) that react

with foreign antigen on the surface of infected host cells. Depending on the type of T cell, the infected cell is either killed or signals are secreted which activate macrophages and other cells to destroy the infected cell (Paul, supra).

5

10

15

20

30

35

T-lymphocytes originate in the bone marrow or liver in fetuses. Precursor cells migrate via the blood to the thymus, where they are processed to mature into T-lymphocytes. This processing is crucial because of positive and negative selection of T cells that will react with foreign antigen and not with self molecules. After processing, T cells continuously circulate in the blood and secondary lymphoid tissues, such as lymph nodes, spleen, certain epithelium-associated tissues in the gastrointestinal tract, respiratory tract and skin. When T-lymphocytes are presented with the complementary antigen, they are stimulated to proliferate and release large numbers of activated T cells into the lymph system and the blood system. These activated T cells can survive and circulate for several days. At the same time, T memory cells are created, which remain in the lymphoid tissue for months or years. Upon subsequent exposure to that specific antigen, these memory cells will respond more rapidly and with a stronger response than induced by the original antigen. This creates an "immunological memory" that can provide immunity for years.

There are two major types of T cells: cytotoxic T cells destroy infected host cells, and helper T cells activate other white blood cells via chemical signals. One class of helper cell, T_H1 , activates macrophages to destroy ingested microorganisms, while another, T_H2 , stimulates the production of antibodies by B cells.

Cytotoxic T cells directly attack the infected target cell. In virus-infected cells, peptides derived from viral proteins are generated by the proteasome. These peptides are transported into the ER by the transporter associated with antigen processing (TAP) (Pamer, E. and P. Cresswell (1998) Annu. Rev. Immunol. 16:323-358). Once inside the ER, the peptides bind MHC I chains, and the peptide/MHC I complex is transported to the cell surface. Receptors on the surface of T cells bind to antigen presented on cell surface MHC molecules. Once activated by binding to antigen, T cells secrete γ -interferon, a signal molecule that induces the expression of genes necessary for presenting viral (or other) antigens to cytotoxic T cells. Cytotoxic T cells kill the infected cell by stimulating programmed cell death.

Helper T cells constitute up to 75% of the total T cell population. They regulate the immune functions by producing a variety of lymphokines that act on other cells in the immune system and on bone marrow. Among these lymphokines are: interleukins-2,3,4,5,6; granulocyte-monocyte colony stimulating factor, and γ -interferon.

Helper T cells are required for most B cells to respond to antigen. When an activated helper cell contacts a B cell, its centrosome and Golgi apparatus become oriented toward the B cell, aiding the directing of signal molecules, such as transmembrane-bound protein called CD40 ligand, onto the

B cell surface to interact with the CD40 transmembrane protein. Secreted signals also help B cells to proliferate and mature and, in some cases, to switch the class of antibody being produced.

B-lymphocytes (B cells) produce antibodies which react with specific antigenic proteins presented by pathogens. Once activated, B cells become filled with extensive rough endoplasmic reticulum and are known as plasma cells. As with T cells, interaction of B cells with antigen stimulates proliferation of only those B cells which produce antibody specific to that antigen. There are five classes of antibodies, known as immunoglobulins, which together comprise about 20% of total plasma protein. Each class mediates a characteristic biological response after antigen binding. Upon activation by specific antigen B cells switch from making membrane-bound antibody to secretion of that antibody.

5

10

15

20

25

30

35

Antibodies, or immunoglobulins (Ig), are the founding members of the Ig superfamily and the central components of the humoral immune response. Antibodies are either expressed on the surface of B cells or secreted by B cells into the circulation. Antibodies bind and neutralize blood-borne foreign antigens. The prototypical antibody is a tetramer consisting of two identical heavy polypeptide chains (H-chains) and two identical light polypeptide chains (L-chains) interlinked by disulfide bonds. This arrangement confers the characteristic Y-shape to antibody molecules. Antibodies are classified based on their H-chain composition. The five antibody classes, IgA, IgD, IgE, IgG and IgM, are defined by the α , δ , ϵ , γ , and μ H-chain types. There are two types of L-chains, κ and λ , either of which may associate as a pair with any H-chain pair. IgG, the most common class of antibody found in the circulation, is tetrameric, while the other classes of antibodies are generally variants or multimers of this basic structure.

H-chains and L-chains each contain an N-terminal variable region and a C-terminal constant region. Both H-chains and L-chains contain repeated Ig domains. For example, a typical H-chain contains four Ig domains, three of which occur within the constant region and one of which occurs within the variable region and contributes to the formation of the antigen recognition site. Likewise, a typical L-chain contains two Ig domains, one of which occurs within the constant region and one of which occurs within the variable region. In addition, H chains such as μ have been shown to associate with other polypeptides during differentiation of the B cell.

Antibodies can be described in terms of their two main functional domains. Antigen recognition is mediated by the Fab (antigen binding fragment) region of the antibody, while effector functions are mediated by the Fc (crystallizable fragment) region. Binding of antibody to an antigen, such as a bacterium, triggers the destruction of the antigen by phagocytic white blood cells such as macrophages and neutrophils. These cells express surface receptors that specifically bind to the antibody Fc region and allow the phagocytic cells to engulf, ingest, and degrade the antibody-bound antigen. The Fc receptors expressed by phagocytic cells are single-pass transmembrane glycoproteins

of about 300 to 400 amino acids (Sears, D.W. et al. (1990) J. Immunol. 144:371-378). The extracellular portion of the Fc receptor typically contains two or three Ig domains.

10

15

20

30

35

Diseases which cause over- or under-abundance of any one type of leukocyte usually result in the entire immune defense system becoming involved. A well-known autoimmune disease is AIDS (Acquired Immunodeficiency Syndrome) where the number of helper T cells is depleted, leaving the patient susceptible to infection by microorganisms and parasites. Another widespread medical condition attributable to the immune system is that of allergic reactions to certain antigens. Allergic reactions include: hay fever, asthma, anaphylaxis, and urticaria (hives). Leukemias are an excess production of white blood cells, to the point where a major portion of the body's metabolic resources are directed solely at proliferation of white blood cells, leaving other tissues to starve. Leukopenia or agranulocytosis occurs when the bone marrow stops producing white blood cells. This leaves the body unprotected against foreign microorganisms, including those which normally inhabit skin, mucous membranes, and gastrointestinal tract. If all white blood cell production stops completely, infection will occur within two days and death may follow only 1 to 4 days later.

Impaired phagocytosis occurs in several diseases, including monocytic leukemia, systemic lupus, and granulomatous disease. In such a situation, macrophages can phagocytize normally, but the enveloped organism is not killed. A defect in the plasma membrane enzyme which converts oxygen to lethally reactive forms results in abscess formation in liver, lungs, spleen, lymph nodes, and beneath the skin. Eosinophilia is an excess of eosinophils commonly observed in patients with allergies (hay fever, asthma), allergic reactions to drugs, rheumatoid arthritis, and cancers (Hodgkin's disease, lung, and liver cancer) (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, Inc., New York NY).

Host defense is further augmented by the complement system. The complement system serves as an effector system and is involved in infectious agent recognition. It can function as an independent immune network or in conjunction with other humoral immune responses. The complement system is comprised of numerous plasma and membrane proteins that act in a cascade of reaction sequences whereby one component activates the next. The result is a rapid and amplified response to infection through either an inflammatory response or increased phagocytosis.

The complement system has more than 30 protein components which can be divided into functional groupings including modified serine proteases, membrane-binding proteins and regulators of complement activation. Activation occurs through two different pathways the classical and the alternative. Both pathways serve to destroy infectious agents through distinct triggering mechanisms that eventually merge with the involvement of the component C3.

The classical pathway requires antibody binding to infectious agent antigens. The antibodies serve to define the target and initiate the complement system cascade, culminating in the destruction

of the infectious agent. In this pathway, since the antibody guides initiation of the process, the complement can be seen as an effector arm of the humoral immune system.

The alternative pathway of the complement system does not require the presence of preexisting antibodies for targeting infectious agent destruction. Rather, this pathway, through low levels of an activated component, remains constantly primed and provides surveillance in the nonimmune host to enable targeting and destruction of infectious agents. In this case foreign material triggers the cascade, thereby facilitating phagocytosis or lysis (Paul, supra, pp.918-919).

Another important component of host defense is the process of inflammation. Inflammatory responses are divided into four categories on the basis of pathology and include allergic inflammation, cytotoxic antibody mediated inflammation, immune complex mediated inflammation and monocyte mediated inflammation. Inflammation manifests as a combination of each of these forms with one predominating.

Allergic acute inflammation is observed in individuals wherein specific antigens stimulate IgE antibody production. Mast cells and basophils are subsequently activated by the attachment of antigen-IgE complexes, resulting in the release of cytoplasmic granule contents such as histamine. The products of activated mast cells can increase vascular permeability and constrict the smooth muscle of breathing passages, resulting in anaphylaxis or asthma. Acute inflammation is also mediated by cytotoxic antibodies and can result in the destruction of tissue through the binding of complement-fixing antibodies to cells. The responsible antibodies are of the IgG or IgM types. Resultant clinical disorders include autoimmune hemolytic anemia and thrombocytopenia as associated with systemic lupus erythematosis.

Immune complex mediated acute inflammation involves the IgG or IgM antibody types which combine with antigen to activate the complement cascade. When such immune complexes bind to neutrophils and macrophages they activate the respiratory burst to form protein- and vessel-damaging agents such as hydrogen peroxide, hydroxyl radical, hypochlorous acid, and chloramines. Clinical manifestations include rheumatoid arthritis and systemic lupus erythematosus.

In chronic inflammation or delayed-type hypersensitivity, macrophages are activated and process antigen for presentation to T cells that subsequently produce lymphokines and monokines. This type of inflammatory response is likely important for defense against intracellular parasites and certain viruses. Clinical associations include, granulomatous disease, tuberculosis, leprosy, and sarcoidosis (Paul, W.E., supra, pp.1017-1018).

Extracellular Information Transmission Molecules

10

15

20

25

35

SEQ ID NO:9 encodes, for example, an extracellular information transmission molecule. Intercellular communication is essential for the growth and survival of multicellular

organisms, and in particular, for the function of the endocrine, nervous, and immune systems. In addition, intercellular communication is critical for developmental processes such as tissue construction and organogenesis, in which cell proliferation, cell differentiation, and morphogenesis must be spatially and temporally regulated in a precise and coordinated manner. Cells communicate with one another through the secretion and uptake of diverse types of signaling molecules such as hormones, growth factors, neuropeptides, and cytokines.

Hormones

10

15

20

25

30

Hormones are signaling molecules that coordinately regulate basic physiological processes from embryogenesis throughout adulthood. These processes include metabolism, respiration, reproduction, excretion, fetal tissue differentiation and organogenesis, growth and development, homeostasis, and the stress response. Hormonal secretions and the nervous system are tightly integrated and interdependent. Hormones are secreted by endocrine glands, primarily the hypothalamus and pituitary, the thyroid and parathyroid, the pancreas, the adrenal glands, and the ovaries and testes.

The secretion of hormones into the circulation is tightly controlled. Hormones are often secreted in diurnal, pulsatile, and cyclic patterns. Hormone secretion is regulated by perturbations in blood biochemistry, by other upstream-acting hormones, by neural impulses, and by negative feedback loops. Blood hormone concentrations are constantly monitored and adjusted to maintain optimal, steady-state levels. Once secreted, hormones act only on those target cells that express specific receptors.

Most disorders of the endocrine system are caused by either hyposecretion or hypersecretion of hormones. Hyposecretion often occurs when a hormone's gland of origin is damaged or otherwise impaired. Hypersecretion often results from the proliferation of tumors derived from hormone-secreting cells. Inappropriate hormone levels may also be caused by defects in regulatory feedback loops or in the processing of hormone precursors. Endocrine malfunction may also occur when the target cell fails to respond to the hormone.

Hormones can be classified biochemically as polypeptides, steroids, eicosanoids, or amines. Polypeptides, which include diverse hormones such as insulin and growth hormone, vary in size and function and are often synthesized as inactive precursors that are processed intracellularly into mature, active forms. Amines, which include epinephrine and dopamine, are amino acid derivatives that function in neuroendocrine signaling. Steroids, which include the cholesterol-derived hormones estrogen and testosterone, function in sexual development and reproduction. Eicosanoids, which include prostaglandins and prostacyclins, are fatty acid derivatives that function in a variety of processes. Most polypeptides and some amines are soluble in the circulation where they are highly susceptible to proteolytic degradation within seconds after their secretion. Steroids and lipids are

insoluble and must be transported in the circulation by carrier proteins. The following discussion will focus primarily on polypeptide hormones.

Hormones secreted by the hypothalamus and pituitary gland play a critical role in endocrine function by coordinately regulating hormonal secretions from other endocrine glands in response to neural signals. Hypothalamic hormones include thyrotropin-releasing hormone, gonadotropin-releasing hormone, somatostatin, growth-hormone releasing factor, corticotropin-releasing hormone, substance P, dopamine, and prolactin-releasing hormone. These hormones directly regulate the secretion of hormones from the anterior lobe of the pituitary. Hormones secreted by the anterior pituitary include adrenocorticotropic hormone (ACTH), melanocyte-stimulating hormone, somatotropic hormones such as growth hormone and prolactin, glycoprotein hormones such as thyroid-stimulating hormone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), β -lipotropin, and β -endorphins. These hormones regulate hormonal secretions from the thyroid, pancreas, and adrenal glands, and act directly on the reproductive organs to stimulate ovulation and spermatogenesis. The posterior pituitary synthesizes and secretes antidiuretic hormone (ADH, vasopressin) and oxytocin.

10

15

20

25

30

Disorders of the hypothalamus and pituitary often result from lesions such as primary brain tumors, adenomas, infarction associated with pregnancy, hypophysectomy, aneurysms, vascular malformations, thrombosis, infections, immunological disorders, and complications due to head trauma. Such disorders have profound effects on the function of other endocrine glands. Disorders associated with hypopituitarism include hypogonadism, Sheehan syndrome, diabetes insipidus, Kallman's disease, Hand-Schuller-Christian disease, Letterer-Siwe disease, sarcoidosis, empty sella syndrome, and dwarfism. Disorders associated with hyperpituitarism include acromegaly, giantism, and syndrome of inappropriate ADH secretion (SIADH), often caused by benign adenomas.

Hormones secreted by the thyroid and parathyroid primarily control metabolic rates and the regulation of serum calcium levels, respectively. Thyroid hormones include calcitonin, somatostatin, and thyroid hormone. The parathyroid secretes parathyroid hormone. Disorders associated with hypothyroidism include goiter, myxedema, acute thyroiditis associated with bacterial infection, subacute thyroiditis associated with viral infection, autoimmune thyroiditis (Hashimoto's disease), and cretinism. Disorders associated with hyperthyroidism include thyrotoxicosis and its various forms, Grave's disease, pretibial myxedema, toxic multinodular goiter, thyroid carcinoma, and Plummer's disease. Disorders associated with hyperparathyroidism include Conn disease (chronic hypercalemia) leading to bone resorption and parathyroid hyperplasia.

Hormones secreted by the pancreas regulate blood glucose levels by modulating the rates of carbohydrate, fat, and protein metabolism. Pancreatic hormones include insulin, glucagon, amylin, γ -aminobutyric acid, gastrin, somatostatin, and pancreatic polypeptide. The principal disorder associated

with pancreatic dysfunction is diabetes mellitus caused by insufficient insulin activity. Diabetes mellitus is generally classified as either Type I (insulin-dependent, juvenile diabetes) or Type II (non-insulin-dependent, adult diabetes). The treatment of both forms by insulin replacement therapy is well known. Diabetes mellitus often leads to acute complications such as hypoglycemia (insulin shock), coma, diabetic ketoacidosis, lactic acidosis, and chronic complications leading to disorders of the eye, kidney, skin, bone, joint, cardiovascular system, nervous system, and to decreased resistance to infection.

The anatomy, physiology, and diseases related to hormonal function are reviewed in McCance, K.L. and S.E. Huether (1994) Pathophysiology: The Biological Basis for Disease in Adults and Children, Mosby-Year Book, Inc., St. Louis MO; Greenspan, F.S. and J.D. Baxter (1994) Basic and Clinical Endocrinology, Appleton and Lange, East Norwalk CT.

Growth Factors

10

15

20

25

Growth factors are secreted proteins that mediate intercellular communication. Unlike hormones, which travel great distances via the circulatory system, most growth factors are primarily local mediators that act on neighboring cells. Most growth factors contain a hydrophobic N-terminal signal peptide sequence which directs the growth factor into the secretory pathway. Most growth factors also undergo post-translational modifications within the secretory pathway. These modifications can include proteolysis, glycosylation, phosphorylation, and intramolecular disulfide bond formation. Once secreted, growth factors bind to specific receptors on the surfaces of neighboring target cells, and the bound receptors trigger intracellular signal transduction pathways. These signal transduction pathways elicit specific cellular responses in the target cells. These responses can include the modulation of gene expression and the stimulation or inhibition of cell division, cell differentiation, and cell motility.

Growth factors fall into at least two broad and overlapping classes. The broadest class includes the large polypeptide growth factors, which are wide-ranging in their effects. These factors include epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor- β (TGF- β), insulin-like growth factor (IGF), nerve growth factor (NGF), and platelet-derived growth factor (PDGF), each defining a family of numerous related factors. The large polypeptide growth factors, with the exception of NGF, act as mitogens on diverse cell types to stimulate wound healing, bone synthesis and remodeling, extracellular matrix synthesis, and proliferation of epithelial, epidermal, and connective tissues. Members of the TGF- β , EGF, and FGF families also function as inductive signals in the differentiation of embryonic tissue. NGF functions specifically as a neurotrophic factor, promoting neuronal growth and differentiation.

Another class of growth factors includes the hematopoietic growth factors, which are narrow in

their target specificity. These factors stimulate the proliferation and differentiation of blood cells such as B-lymphocytes, T-lymphocytes, erythrocytes, platelets, eosinophils, basophils, neutrophils, macrophages, and their stem cell precursors. These factors include the colony-stimulating factors (G-CSF, M-CSF, GM-CSF, and CSF1-3), erythropoietin, and the cytokines. The cytokines are specialized hematopoietic factors secreted by cells of the immune system and are discussed in detail below.

Growth factors play critical roles in neoplastic transformation of cells in vitro and in tumor progression in vivo. Overexpression of the large polypeptide growth factors promotes the proliferation and transformation of cells in culture. Inappropriate expression of these growth factors by tumor cells in vivo may contribute to tumor vascularization and metastasis. Inappropriate activity of hematopoietic growth factors can result in anemias, leukemias, and lymphomas. Moreover, growth factors are both structurally and functionally related to oncoproteins, the potentially cancer-causing products of proto-oncogenes. Certain FGF and PDGF family members are themselves homologous to oncoproteins, whereas receptors for some members of the EGF, NGF, and FGF families are encoded by proto-oncogenes. Growth factors also affect the transcriptional regulation of both proto-oncogenes and oncosuppressor genes (Pimentel, E. (1994) Handbook of Growth Factors, CRC Press, Ann Arbor MI; McKay, I. and I. Leigh, eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York NY; Habenicht, A., ed. (1990) Growth Factors, Differentiation Factors, and Cytokines, Springer-Verlag, New York NY).

In addition, some of the large polypeptide growth factors play crucial roles in the induction of the primordial germ layers in the developing embryo. This induction ultimately results in the formation of the embryonic mesoderm, ectoderm, and endoderm which in turn provide the framework for the entire adult body plan. Disruption of this inductive process would be catastrophic to embryonic development.

Small Peptide Factors - Neuropeptides and Vasomediators

10

15

20

25

30

Neuropeptides and vasomediators (NP/VM) comprise a family of small peptide factors, typically of 20 amino acids or less. These factors generally function in neuronal excitation and inhibition of vasoconstriction/vasodilation, muscle contraction, and hormonal secretions from the brain and other endocrine tissues. Included in this family are neuropeptides and neuropeptide hormones such as bombesin, neuropeptide Y, neurotensin, neuromedin N, melanocortins, opioids, galanin, somatostatin, tachykinins, urotensin II and related peptides involved in smooth muscle stimulation, vasopressin, vasoactive intestinal peptide, and circulatory system-borne signaling molecules such as angiotensin, complement, calcitonin, endothelins, formyl-methionyl peptides, glucagon, cholecystokinin, gastrin, and many of the peptide hormones discussed above. NP/VMs can transduce signals directly, modulate the activity or release of other neurotransmitters and hormones, and

act as catalytic enzymes in signaling cascades. The effects of NP/VMs range from extremely brief to long-lasting. (Reviewed in Martin, C.R. et al. (1985) Endocrine Physiology, Oxford University Press, New York NY, pp. 57-62.)

Cytokines

5

10

15

20

25

30

Cytokines comprise a family of signaling molecules that modulate the immune system and the inflammatory response. Cytokines are usually secreted by leukocytes, or white blood cells, in response to injury or infection. Cytokines function as growth and differentiation factors that act primarily on cells of the immune system such as B- and T-lymphocytes, monocytes, macrophages, and granulocytes. Like other signaling molecules, cytokines bind to specific plasma membrane receptors and trigger intracellular signal transduction pathways which alter gene expression patterns. There is considerable potential for the use of cytokines in the treatment of inflammation and immune system disorders.

Cytokine structure and function have been extensively characterized <u>in vitro</u>. Most cytokines are small polypeptides of about 30 kilodaltons or less. Over 50 cytokines have been identified from human and rodent sources. Examples of cytokine subfamilies include the interferons (IFN- α , - β , and - γ), the interleukins (IL1-IL13), the tumor necrosis factors (TNF- α and - β), and the chemokines. Many cytokines have been produced using recombinant DNA techniques, and the activities of individual cytokines have been determined <u>in vitro</u>. These activities include regulation of leukocyte proliferation, differentiation, and motility.

The activity of an individual cytokine <u>in vitro</u> may not reflect the full scope of that cytokine's activity <u>in vivo</u>. Cytokines are not expressed individually <u>in vivo</u> but are instead expressed in combination with a multitude of other cytokines when the organism is challenged with a stimulus. Together, these cytokines collectively modulate the immune response in a manner appropriate for that particular stimulus. Therefore, the physiological activity of a cytokine is determined by the stimulus itself and by complex interactive networks among co-expressed cytokines which may demonstrate both synergistic and antagonistic relationships.

Chemokines comprise a cytokine subfamily with over 30 members. (Reviewed in Wells, T. N.C. and M.C. Peitsch (1997) J. Leukoc. Biol. 61:545-550.) Chemokines were initially identified as chemotactic proteins that recruit monocytes and macrophages to sites of inflammation. Recent evidence indicates that chemokines may also play key roles in hematopoiesis and HIV-1 infection. Chemokines are small proteins which range from about 6-15 kilodaltons in molecular weight. Chemokines are further classified as C, CC, CXC, or CX₃C based on the number and position of critical cysteine residues. The CC chemokines, for example, each contain a conserved motif consisting of two consecutive cysteines followed by two additional cysteines which occur downstream at 24- and 16-residue intervals, respectively (ExPASy PROSITE database, documents PS00472 and PDOC00434).

The presence and spacing of these four cysteine residues are highly conserved, whereas the intervening residues diverge significantly. However, a conserved tyrosine located about 15 residues downstream of the cysteine doublet seems to be important for chemotactic activity. Most of the human genes encoding CC chemokines are clustered on chromosome 17, although there are a few examples of CC chemokine genes that map elsewhere. Other chemokines include lymphotactin (C chemokine); macrophage chemotactic and activating factor (MCAF/MCP-1; CC chemokine); platelet factor 4 and IL-8 (CXC chemokines); and fractalkine and neurotractin (CX₃C chemokines). (Reviewed in Luster, A.D. (1998) N. Engl. J. Med. 338:436-445.)

10 Receptor Molecules

15

20

25

SEQ ID NO:10 and SEQ ID NO:11 encode, for example, receptor molecules.

The term receptor describes proteins that specifically recognize other molecules. The category is broad and includes proteins with a variety of functions. The bulk of receptors are cell surface proteins which bind extracellular ligands and produce cellular responses in the areas of growth, differentiation, endocytosis, and immune response. Other receptors facilitate the selective transport of proteins out of the endoplasmic reticulum and localize enzymes to particular locations in the cell. The term may also be applied to proteins which act as receptors for ligands with known or unknown chemical composition and which interact with other cellular components. For example, the steroid hormone receptors bind to and regulate transcription of DNA.

Regulation of cell proliferation, differentiation, and migration is important for the formation and function of tissues. Regulatory proteins such as growth factors coordinately control these cellular processes and act as mediators in cell-cell signaling pathways. Growth factors are secreted proteins that bind to specific cell-surface receptors on target cells. The bound receptors trigger intracellular signal transduction pathways which activate various downstream effectors that regulate gene expression, cell division, cell differentiation, cell motility, and other cellular processes.

Cell surface receptors are typically integral plasma membrane proteins. These receptors recognize hormones such as catecholamines; peptide hormones; growth and differentiation factors; small peptide factors such as thyrotropin-releasing hormone; galanin, somatostatin, and tachykinins; and circulatory system-borne signaling molecules. Cell surface receptors on immune system cells recognize antigens, antibodies, and major histocompatibility complex (MHC)-bound peptides. Other cell surface receptors bind ligands to be internalized by the cell. This receptor-mediated endocytosis functions in the uptake of low density lipoproteins (LDL), transferrin, glucose- or mannose-terminal glycoproteins, galactose-terminal glycoproteins, immunoglobulins, phosphovitellogenins, fibrin, proteinase-inhibitor complexes, plasminogen activators, and thrombospondin (Lodish, H. et al. (1995)

Molecular Cell Biology, Scientific American Books, New York NY, p. 723; Mikhailenko, I. et al. (1997) J. Biol. Chem. 272:6784-6791).

Receptor Protein Kinases

10

15

20

25

30

Many growth factor receptors, including receptors for epidermal growth factor, platelet-derived growth factor, fibroblast growth factor, as well as the growth modulator α -thrombin, contain intrinsic protein kinase activities. When growth factor binds to the receptor, it triggers the autophosphorylation of a serine, threonine, or tyrosine residue on the receptor. These phosphorylated sites are recognition sites for the binding of other cytoplasmic signaling proteins. These proteins participate in signaling pathways that eventually link the initial receptor activation at the cell surface to the activation of a specific intracellular target molecule. In the case of tyrosine residue autophosphorylation, these signaling proteins contain a common domain referred to as a Src homology (SH) domain. SH2 domains and SH3 domains are found in phospholipase C- γ , PI-3-K p85 regulatory subunit, Ras-GTPase activating protein, and pp60°-src (Lowenstein, E.J. et al. (1992) Cell 70:431-442). The cytokine family of receptors share a different common binding domain and include transmembrane receptors for growth hormone (GH), interleukins, erythropoietin, and prolactin.

Other receptors and second messenger-binding proteins have intrinsic serine/threonine protein kinase activity. These include activin/TGF- β /BMP-superfamily receptors, calcium- and diacylglycerol-activated/phospholipid-dependant protein kinase (PK-C), and RNA-dependant protein kinase (PK-R). In addition, other serine/threonine protein kinases, including nematode Twitchin, have fibronectin-like, immunoglobulin C2-like domains.

G-Protein Coupled Receptors

G-protein coupled receptors (GPCRs) are integral membrane proteins characterized by the presence of seven hydrophobic transmembrane domains which span the plasma membrane and form a bundle of antiparallel alpha (α) helices. These proteins range in size from under 400 to over 1000 amino acids (Strosberg, A.D. (1991) Eur. J. Biochem. 196:1-10; Coughlin, S.R. (1994) Curr. Opin. Cell Biol. 6:191-197). The amino-terminus of the GPCR is extracellular, of variable length and often glycosylated; the carboxy-terminus is cytoplasmic and generally phosphorylated. Extracellular loops of the GPCR alternate with intracellular loops and link the transmembrane domains. The most conserved domains of GPCRs are the transmembrane domains and the first two cytoplasmic loops. The transmembrane domains account for structural and functional features of the receptor. In most cases, the bundle of α helices forms a binding pocket. In addition, the extracellular N-terminal segment or one or more of the three extracellular loops may also participate in ligand binding. Ligand binding activates the receptor by inducing a conformational change in intracellular portions of the receptor. The activated receptor, in turn, interacts with an intracellular heterotrimeric guanine nucleotide binding (G)

protein complex which mediates further intracellular signaling activities, generally the production of second messengers such as cyclic AMP (cAMP), phospholipase C, inositol triphosphate, or interactions with ion channel proteins (Baldwin, J.M. (1994) Curr. Opin. Cell Biol. 6:180-190).

GPCRs include those for acetylcholine, adenosine, epinephrine and norepinephrine, bombesin, bradykinin, chemokines, dopamine, endothelin, γ -aminobutyric acid (GABA), follicle-stimulating hormone (FSH), glutamate, gonadotropin-releasing hormone (GnRH), hepatocyte growth factor, histamine, leukotrienes, melanocortins, neuropeptide Y, opioid peptides, opsins, prostanoids, serotonin, somatostatin, tachykinins, thrombin, thyrotropin-releasing hormone (TRH), vasoactive intestinal polypeptide family, vasopressin and oxytocin, and orphan receptors.

GPCR mutations, which may cause loss of function or constitutive activation, have been associated with numerous human diseases (Coughlin, <u>supra</u>). For instance, retinitis pigmentosa may arise from mutations in the rhodopsin gene. Rhodopsin is the retinal photoreceptor which is located within the discs of the eye rod cell. Parma, J. et al. (1993, Nature 365:649-651) report that somatic activating mutations in the thyrotropin receptor cause hyperfunctioning thyroid adenomas and suggest that certain GPCRs susceptible to constitutive activation may behave as protooncogenes.

Nuclear Receptors

5

10

15

25

30

Nuclear receptors bind small molecules such as hormones or second messengers, leading to increased receptor-binding affinity to specific chromosomal DNA elements. In addition the affinity for other nuclear proteins may also be altered. Such binding and protein-protein interactions may regulate and modulate gene expression. Examples of such receptors include the steroid hormone receptors family, the retinoic acid receptors family, and the thyroid hormone receptors family.

Ligand-Gated Receptor Ion Channels

Ligand-gated receptor ion channels fall into two categories. The first category, extracellular ligand-gated receptor ion channels (ELGs), rapidly transduce neurotransmitter-binding events into electrical signals, such as fast synaptic neurotransmission. ELG function is regulated by post-translational modification. The second category, intracellular ligand-gated receptor ion channels (ILGs), are activated by many intracellular second messengers and do not require post-translational modification(s) to effect a channel-opening response.

ELGs depolarize excitable cells to the threshold of action potential generation. In non-excitable cells, ELGs permit a limited calcium ion-influx during the presence of agonist. ELGs include channels directly gated by neurotransmitters such as acetylcholine, L-glutamate, glycine, ATP, serotonin, GABA, and histamine. ELG genes encode proteins having strong structural and functional similarities. ILGs are encoded by distinct and unrelated gene families and include receptors for cAMP, cGMP, calcium ions, ATP, and metabolites of arachidonic acid.

Macrophage Scavenger Receptors

Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an α-helical coiled-coil domain, and a triple helical collagenous domain. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. USA 87:9133-9137; Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa.

T-Cell Receptors

10

15

20

25

30

T cells play a dual role in the immune system as effectors and regulators, coupling antigen recognition with the transmission of signals that induce cell death in infected cells and stimulate proliferation of other immune cells. Although a population of T cells can recognize a wide range of different antigens, an individual T cell can only recognize a single antigen and only when it is presented to the T cell receptor (TCR) as a peptide complexed with a major histocompatibility molecule (MHC) on the surface of an antigen presenting cell. The TCR on most T cells consists of immunoglobulin-like integral membrane glycoproteins containing two polypeptide subunits, α and β , of similar molecular weight. Both TCR subunits have an extracellular domain containing both variable and constant regions, a transmembrane domain that traverses the membrane once, and a short intracellular domain (Saito, H. et al. (1984) Nature 309:757-762). The genes for the TCR subunits are constructed through somatic rearrangement of different gene segments. Interaction of antigen in the proper MHC context with the TCR initiates signaling cascades that induce the proliferation, maturation, and function of cellular components of the immune system (Weiss, A. (1991) Annu. Rev. Genet. 25:487-510). Rearrangements in TCR genes and alterations in TCR expression have been noted in lymphomas, leukemias, autoimmune disorders, and immunodeficiency disorders (Aisenberg, A.C. et al. (1985) N. Engl. J. Med. 313:529-533; Weiss, supra).

Intracellular Signaling Molecules

SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, and SEQ ID NO:18 encode, for example, intracellular signaling molecules.

Intracellular signaling is the general process by which cells respond to extracellular signals

(hormones, neurotransmitters, growth and differentiation factors, etc.) through a cascade of biochemical reactions that begins with the binding of a signaling molecule to a cell membrane receptor and ends with the activation of an intracellular target molecule. Intermediate steps in the process involve the activation of various cytoplasmic proteins by phosphorylation via protein kinases, and their deactivation by protein phosphatases, and the eventual translocation of some of these activated proteins to the cell nucleus where the transcription of specific genes is triggered. The intracellular signaling process regulates all types of cell functions including cell proliferation, cell differentiation, and gene transcription, and involves a diversity of molecules including protein kinases and phosphatases, and second messenger molecules, such as cyclic nucleotides, calcium-calmodulin, inositol, and various mitogens, that regulate protein phosphorylation.

Protein Phosphorylation

10

15

20

30

35

Protein kinases and phosphatases play a key role in the intracellular signaling process by controlling the phosphorylation and activation of various signaling proteins. The high energy phosphate for this reaction is generally transferred from the adenosine triphosphate molecule (ATP) to a particular protein by a protein kinase and removed from that protein by a protein phosphatase. Protein kinases are roughly divided into two groups: those that phosphorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity for serine/threonine and tyrosine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family (Hardie, G. and S. Hanks (1995) The Protein Kinase Facts Books, Vol I:7-20, Academic Press, San Diego CA).

STKs include the second messenger dependent protein kinases such as the cyclic-AMP dependent protein kinases (PKA), involved in mediating hormone-induced cellular responses; calcium-calmodulin (CaM) dependent protein kinases, involved in regulation of smooth muscle contraction, glycogen breakdown, and neurotransmission; and the mitogen-activated protein kinases (MAP) which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York NY, pp. 416-431, 1887).

PTKs are divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane PTKs are receptors for most growth factors. Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Receptors that function through non-receptor PTKs include those for cytokines and hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes. Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells in which

their activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and N.K. Tonks (1992) Annu. Rev. Cell Biol. 8:463-493).

An additional family of protein kinases previously thought to exist only in procaryotes is the histidine protein kinase family (HPK). HPKs bear little homology with mammalian STKs or PTKs but have distinctive sequence motifs of their own (Davie, J.R. et al. (1995) J. Biol. Chem. 270:19861-19867). A histidine residue in the N-terminal half of the molecule (region I) is an autophosphorylation site. Three additional motifs located in the C-terminal half of the molecule include an invariant asparagine residue in region II and two glycine-rich loops characteristic of nucleotide binding domains in regions III and IV. Recently a branched chain alpha-ketoacid dehydrogenase kinase has been found with characteristics of HPK in rat (Davie, supra).

Protein phosphatases regulate the effects of protein kinases by removing phosphate groups from molecules previously activated by kinases. The two principal categories of protein phosphatases are the protein (serine/threonine) phosphatases (PPs) and the protein tyrosine phosphatases (PTPs). PPs dephosphorylate phosphoscrine/threonine residues and are important regulators of many cAMP-mediated hormone responses (Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508). PTPs reverse the effects of protein tyrosine kinases and play a significant role in cell cycle and cell signaling processes (Charbonneau, supra). As previously noted, many PTKs are encoded by oncogenes, and oncogenesis is often accompanied by increased tyrosine phosphorylation activity. It is therefore possible that PTPs may prevent or reverse cell transformation and the growth of various cancers by controlling the levels of tyrosine phosphorylation in cells. This hypothesis is supported by studies showing that overexpression of PTPs can suppress transformation in cells, and that specific inhibition of PTPs can enhance cell transformation (Charbonneau, supra).

Phospholipid and Inositol-Phosphate Signaling

5

10

15

20

25

30

35

Inositol phospholipids (phosphoinositides) are involved in an intracellular signaling pathway that begins with binding of a signaling molecule to a G-protein linked receptor in the plasma membrane. This leads to the phosphorylation of phosphatidylinositol (PI) residues on the inner side of the plasma membrane to the biphosphate state (PIP₂) by inositol kinases. Simultaneously, the G-protein linked receptor binding stimulates a trimeric G-protein which in turn activates a phosphoinositide-specific phospholipase C- β . Phospholipase C- β then cleaves PIP_2 into two products, inositol triphosphate (IP₃) and diacylglycerol. These two products act as mediators for separate signaling events. IP₃ diffuses through the plasma membrane to induce calcium release from the endoplasmic reticulum (ER), while diacylglycerol remains in the membrane and helps activate protein kinase C, an STK that phosphorylates selected proteins in the target cell. The calcium

response initiated by IP₃ is terminated by the dephosphorylation of IP₃ by specific inositol phosphatases. Cellular responses that are mediated by this pathway are glycogen breakdown in the liver in response to vasopressin, smooth muscle contraction in response to acetylcholine, and thrombin-induced platelet aggregation.

Cyclic Nucleotide Signaling

10

15

20

25

Cyclic nucleotides (cAMP and cGMP) function as intracellular second messengers to transduce a variety of extracellular signals including hormones, light, and neurotransmitters. In particular, cyclic-AMP dependent protein kinases (PKA) are thought to account for all of the effects of cAMP in most mammalian cells, including various hormone-induced cellular responses. Visual excitation and the phototransmission of light signals in the eye is controlled by cyclic-GMP regulated, Ca²⁺-specific channels. Because of the importance of cellular levels of cyclic nucleotides in mediating these various responses, regulating the synthesis and breakdown of cyclic nucleotides is an important matter. Thus adenylyl cyclase, which synthesizes cAMP from AMP, is activated to increase cAMP levels in muscle by binding of adrenaline to β-andrenergic receptors, while activation of guanylate cyclase and increased cGMP levels in photoreceptors leads to reopening of the Ca²⁺-specific channels and recovery of the dark state in the eye. In contrast, hydrolysis of cyclic nucleotides by cAMP and cGMP-specific phosphodiesterases (PDEs) produces the opposite of these and other effects mediated by increased cyclic nucleotide levels. PDEs appear to be particularly important in the regulation of cyclic nucleotides, considering the diversity found in this family of proteins. At least seven families of mammalian PDEs (PDE1-7) have been identified based on substrate specificity and affinity, sensitivity to cofactors, and sensitivity to inhibitory drugs (Beavo, J.A. (1995) Physiological Reviews 75:725-48). PDE inhibitors have been found to be particularly useful in treating various clinical disorders. Rolipram, a specific inhibitor of PDE4, has been used in the treatment of depression, and similar inhibitors are undergoing evaluation as anti-inflammatory agents. Theophylline is a nonspecific PDE inhibitor used in the treatment of bronchial asthma and other respiratory diseases (Banner, K.H. and C.P. Page (1995) Eur. Respir. J. 8:996-1000). **G-Protein Signaling**

Guanine nucleotide binding proteins (G-proteins) are critical mediators of signal transduction between a particular class of extracellular receptors, the G-protein coupled receptors (GPCR), and intracellular second messengers such as cAMP and Ca²⁺. G-proteins are linked to the cytosolic side of a GPCR such that activation of the GPCR by ligand binding stimulates binding of the G-protein to GTP, inducing an "active" state in the G-protein. In the active state, the G-protein acts as a signal to trigger other events in the cell such as the increase of cAMP levels or the release of Ca²⁺ into the cytosol from the ER, which, in turn, regulate phosphorylation and activation of other intracellular proteins. Recycling of the G-protein to the inactive state involves hydrolysis of the bound GTP to

GDP by a GTPase activity in the G-protein. (See Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing, Inc., New York NY, pp.734-759.) Two structurally distinct classes of G-proteins are recognized: heterotrimeric G-proteins, consisting of three different subunits, and monomeric, low molecular weight (LMW), G-proteins consisting of a single polypeptide chain.

The three polypeptide subunits of heterotrimeric G-proteins are the α , β , and γ subunits. The α subunit binds and hydrolyzes GTP. The β and γ subunits form a tight complex that anchors the protein to the inner side of the plasma membrane. The β subunits, also known as G- β proteins or β transducins, contain seven tandem repeats of the WD-repeat sequence motif, a motif found in many proteins with regulatory functions. Mutations and variant expression of β transducin proteins are linked with various disorders (Neer, E.J. et al. (1994) Nature 371:297-300; Margottin, F. et al. (1998) Mol. Cell 1:565-574).

LMW GTP-proteins are GTPases which regulate cell growth, cell cycle control, protein secretion, and intracellular vesicle interaction. They consist of single polypeptides which, like the α subunit of the heterotrimeric G-proteins, are able to bind and hydrolyze GTP, thus cycling between an inactive and an active state. At least sixty members of the LMW G-protein superfamily have been identified and are currently grouped into the six subfamilies of ras, rho, arf, sar1, ran, and rab. Activated ras genes were initially found in human cancers, and subsequent studies confirmed that ras function is critical in determining whether cells continue to grow or become differentiated. Other members of the LMW G-protein superfamily have roles in signal transduction that vary with the function of the activated genes and the locations of the G-proteins.

Guanine nucleotide exchange factors regulate the activities of LMW G-proteins by determining whether GTP or GDP is bound. GTPase-activating protein (GAP) binds to GTP-ras and induces it to hydrolyze GTP to GDP. In contrast, guanine nucleotide releasing protein (GNRP) binds to GDP-ras and induces the release of GDP and the binding of GTP.

Other regulators of G-protein signaling (RGS) also exist that act primarily by negatively regulating the G-protein pathway by an unknown mechanism (Druey, K.M. et al. (1996) Nature 379:742-746). Some 15 members of the RGS family have been identified. RGS family members are related structurally through similarities in an approximately 120 amino acid region termed the RGS domain and functionally by their ability to inhibit the interleukin (cytokine) induction of MAP kinase in cultured mammalian 293T cells (Druey, supra).

Calcium Signaling Molecules

5

10

15

20

25

30

 Ca^{+2} is another second messenger molecule that is even more widely used as an intracellular mediator than cAMP. Two pathways exist by which Ca^{+2} can enter the cytosol in response to extracellular signals: One pathway acts primarily in nerve signal transduction where Ca^{+2} enters a

nerve terminal through a voltage-gated Ca⁺² channel. The second is a more ubiquitous pathway in which Ca⁺² is released from the ER into the cytosol in response to binding of an extracellular signaling molecule to a receptor. Ca²⁺ directly activates regulatory enzymes, such as protein kinase C, which trigger signal transduction pathways. Ca²⁺ also binds to specific Ca²⁺-binding proteins (CBPs) such as calmodulin (CaM) which then activate multiple target proteins in the cell including enzymes, membrane transport pumps, and ion channels. CaM interactions are involved in a multitude of cellular processes including, but not limited to, gene regulation, DNA synthesis, cell cycle progression, mitosis, cytokinesis, cytoskeletal organization, muscle contraction, signal transduction, ion homeostasis, exocytosis, and metabolic regulation (Celio, M.R. et al. (1996) Guidebook to Calcium-binding Proteins, Oxford University Press, Oxford, UK, pp. 15-20). Some CBPs can serve as a storage depot for Ca²⁺ in an inactive state. Calsequestrin is one such CBP that is expressed in isoforms specific to cardiac muscle and skeletal muscle. It is suggested that calsequestrin binds Ca²⁺ in a rapidly exchangeable state that is released during Ca²⁺ -signaling conditions (Celio, M.R. et al. (1996) Guidebook to Calcium-binding Proteins, Oxford University Press, New York NY, pp. 222-224).

Cyclins

10

15

20

30

Cell division is the fundamental process by which all living things grow and reproduce. In most organisms, the cell cycle consists of three principle steps; interphase, mitosis, and cytokinesis. Interphase, involves preparations for cell division, replication of the DNA and production of essential proteins. In mitosis, the nuclear material is divided and separates to opposite sides of the cell. Cytokinesis is the final division and fission of the cell cytoplasm to produce the daughter cells.

The entry and exit of a cell from mitosis is regulated by the synthesis and destruction of a family of activating proteins called cyclins. Cyclins act by binding to and activating a group of cyclin-dependent protein kinases (Cdks) which then phosphorylate and activate selected proteins involved in the mitotic process. Several types of cyclins exist. (Ciechanover, A. (1994) Cell 79:13-21.) Two principle types are mitotic cyclin, or cyclin B, which controls entry of the cell into mitosis, and G1 cyclin, which controls events that drive the cell out of mitosis.

Signal Complex Scaffolding Proteins

Ceretain proteins in intracellular signaling pathways serve to link or cluster other proteins involved in the signaling cascade. A conserved protein domain called the PDZ domain has been identified in various membrane-associated signaling proteins. This domain has been implicated in receptor and ion channel clustering and in the targeting of multiprotein signaling complexes to specialized functional regions of the cytosolic face of the plasma membrane. (For a review of PDZ domain-containing proteins, see Ponting, C.P. et al. (1997) Bioessays 19:469-479.) A large

proportion of PDZ domains are found in the eukaryotic MAGUK (membrane-associated guanylate kinase) protein family, members of which bind to the intracellular domains of receptors and channels. However, PDZ domains are also found in diverse membrane-localized proteins such as protein tyrosine phosphatases, serine/threonine kinases, G-protein cofactors, and synapse-associated proteins such as syntrophins and neuronal nitric oxide synthase (nNOS). Generally, about one to three PDZ domains are found in a given protein, although up to nine PDZ domains have been identified in a single protein.

Membrane Transport Molecules

10

15

20

25

30

35

The plasma membrane acts as a barrier to most molecules. Transport between the cytoplasm and the extracellular environment, and between the cytoplasm and lumenal spaces of cellular organelles requires specific transport proteins. Each transport protein carries a particular class of molecule, such as ions, sugars, or amino acids, and often is specific to a certain molecular species of the class. A variety of human inherited diseases are caused by a mutation in a transport protein. For example, cystinuria is an inherited disease that results from the inability to transport cystine, the disulfide-linked dimer of cysteine, from the urine into the blood. Accumulation of cystine in the urine leads to the formation of cystine stones in the kidneys.

Transport proteins are multi-pass transmembrane proteins, which either actively transport molecules across the membrane or passively allow them to cross. Active transport involves directional pumping of a solute across the membrane, usually against an electrochemical gradient. Active transport is tightly coupled to a source of metabolic energy, such as ATP hydrolysis or an electrochemically favorable ion gradient. Passive transport involves the movement of a solute down its electrochemical gradient. Transport proteins can be further classified as either carrier proteins or channel proteins. Carrier proteins, which can function in active or passive transport, bind to a specific solute to be transported and undergo a conformational change which transfers the bound solute across the membrane. Channel proteins, which only function in passive transport, form hydrophilic pores across the membrane. When the pores open, specific solutes, such as inorganic ions, pass through the membrane and down the electrochemical gradient of the solute.

Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moves into the cell down its electrochemical gradient and brings the solute into the cell with it. The sodium gradient that provides the driving force for solute uptake is maintained by the ubiquitous

Na*/K* ATPase. Sodium-coupled transporters include the mammalian glucose transporter (SGLT1), iodide transporter (NIS), and multivitamin transporter (SMVT). All three transporters have twelve putative transmembrane segments, extracellular glycosylation sites, and cytoplasmically-oriented N-and C-termini. NIS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide thyroid-imaging techniques and for specific targeting of radioisotopes to the thyroid gland (Levy, O. et al. (1997) Proc. Natl. Acad. Sci. USA 94:5568-5573). SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantothenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).

10

15

20

30

Transporters play a major role in the regulation of pH, excretion of drugs, and the cellular K*/Na* balance. Monocarboxylate anion transporters are proton-coupled symporters with a broad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date. The isoforms are predicted to have twelve transmembrane (TM) helical domains with a large intracellular loop between TM6 and TM7, and play a critical role in maintaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis. The best characterized H(+)-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates. Other cells possess H(+)-linked monocarboxylate transporters with differing substrate and inhibitor selectivities. In particular, cardiac muscle and tumor cells have transporters that differ in their K_m values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors. There are Na(+)-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which allow the uptake of lactate, pyruvate, and ketone bodies in these tissues. In addition, there are specific and selective transporters for organic cations and organic anions in organs including the kidney, intestine and liver. Organic anion transporters are selective for hydrophobic, charged molecules with electron-attracting side groups. Organic cation transporters, such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH. (Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol. 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J. Biotechnol. 30: 339-350.)

The largest and most diverse family of transport proteins known is the ATP-binding cassette (ABC) transporters. As a family, ABC transporters can transport substances that differ markedly in chemical structure and size, ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC proteins consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the

energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene, as is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes. When encoded by separate genes, each gene product contains a single NBD and MSD. These "half-molecules" form homo- and heterodimers, such as Tap1 and Tap2, the endoplasmic reticulum-based major histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zellweger syndrome (peroxisomal membrane protein-70, PMP70), and hyperinsulinemic hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, another ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglight, D. and S. Michaelis (1998) Meth. Enzymol. 292:131-163).

Transport of fatty acids across the plasma membrane can occur by diffusion, a high capacity, low affinity process. However, under normal physiological conditions a significant fraction of fatty acid transport appears to occur via a high affinity, low capacity protein-mediated transport process. Fatty acid transport protein (FATP), an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty acids (Hui, T.Y. et al. (1998) J. Biol. Chem. 273:27420-27429).

Ion Channels

10

15

20

25

30

The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form an ion-selective pore within the membrane. There are two basic types of ion channels, ion transporters and gated ion channels. Ion transporters utilize the energy obtained from ATP hydrolysis to actively transport an ion against the ion's concentration gradient. Gated ion channels allow passive flow of an ion down the ion's electrochemical gradient under restricted conditions. Together, these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.

Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient. These transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including Na⁺-K⁺ ATPase, Ca²⁺-ATPase, and H⁺-ATPase, are activated by a

phosphorylation event. P-class ion transporters are responsible for maintaining resting potential distributions such that cytosolic concentrations of Na^+ and Ca^{2+} are low and cytosolic concentration of K^+ is high. The vacuolar (V) class of ion transporters includes H^+ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion transporters are responsible for generating the low pH within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H^+ pumps in the mitochondria. F-class ion transporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (P_i).

The resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels. Carrier proteins utilize the resting potential to transport molecules into and out of the cell. Amino acid and glucose transport into many cells is linked to sodium ion co-transport (symport) so that the movement of Na⁺ down an electrochemical gradient drives transport of the other molecule up a concentration gradient. Similarly, cardiac muscle links transfer of Ca²⁺ out of the cell with transport of Na⁺ into the cell (antiport).

10

15

20

25

30

Ion channels share common structural and mechanistic themes. The channel consists of four or five subunits or protein monomers that are arranged like a barrel in the plasma membrane. Each subunit typically consists of six potential transmembrane segments (S1, S2, S3, S4, S5, and S6). The center of the barrel forms a pore lined by α -helices or β -strands. The side chains of the amino acid residues comprising the α -helices or β -strands establish the charge (cation or anion) selectivity of the channel. The degree of selectivity, or what specific ions are allowed to pass through the channel, depends on the diameter of the narrowest part of the pore.

Gated ion channels control ion flow by regulating the opening and closing of pores. These channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open pores in response to mechanical stress, voltage-gated channels open pores in response to changes in membrane potential, and ligand-gated channels open pores in the presence of a specific ion, nucleotide, or neurotransmitter.

Voltage-gated Na⁺ and K⁺ channels are necessary for the function of electrically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na⁺ and K⁺ ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na⁺ channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na⁺ channels, which propagates the depolarization down the length of the cell. Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change. The open state lasts only about 1 millisecond, at

which time the channel spontaneously converts into an inactive state that cannot be opened irrespective of the membrane potential. Inactivation is mediated by the channel's N-terminus, which acts as a plug that closes the pore. The transition from an inactive to a closed state requires a return to resting potential.

5

10

15

20

30

- 1 - 1

Voltage-gated Na⁺ channels are heterotrimeric complexes composed of a 260 kDa pore forming α subunit that associates with two smaller auxiliary subunits, $\beta 1$ and $\beta 2$. The $\beta 2$ subunit is an integral membrane glycoprotein that contains an extracellular Ig domain, and its association with α and $\beta 1$ subunits correlates with increased functional expression of the channel, a change in its gating properties, and an increase in whole cell capacitance due to an increase in membrane surface area. (Isom, L.L. et al. (1995) Cell 83:433-442.)

Voltage-gated Ca $^{2+}$ channels are involved in presynaptic neurotransmitter release, and heart and skeletal muscle contraction. The voltage-gated Ca $^{2+}$ channels from skeletal muscle (L-type) and brain (N-type) have been purified, and though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The α_1 subunit forms the membrane pore and voltage sensor, while the $\alpha_2\delta$ and β subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel. These subunits are encoded by at least six α_1 , one $\alpha_2\delta$, and four β genes. A fourth subunit, γ , has been identified in skeletal muscle. (Walker, D. et al. (1998) J. Biol. Chem. 273:2361-2367; and Jay, S.D. et al. (1990) Science 248:490-492.)

Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and organelle pH. In secretory epithelial cells, Cl⁻ enters the cell across a basolateral membrane through an Na⁺, K⁺/Cl⁻ cotransporter, accumulating in the cell above its electrochemical equilibrium concentration. Secretion of Cl⁻ from the apical surface, in response to hormonal stimulation, leads to flow of Na⁺ and water into the secretory lumen. The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel encoded by the gene for cystic fibrosis, a common fatal genetic disorder in humans. Loss of CFTR function decreases transepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear. The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and devastating "chronic obstructive pulmonary disease" (Al-Awqati, Q. et al. (1992) J. Exp. Biol. 172:245-266).

Many intracellular organelles contain H⁺-ATPase pumps that generate transmembrane pH and electrochemical differences by moving protons from the cytosol to the organelle lumen. If the membrane of the organelle is permeable to other ions, then the electrochemical gradient can be abrogated without affecting the pH differential. In fact, removal of the electrochemical barrier allows more H⁺ to be pumped across the membrane, increasing the pH differential. Cl⁻ is the sole counterion of H⁺ translocation in a number of organelles, including chromaffin granules, Golgi vesicles,

lysosomes, and endosomes. Functions that require a low vacuolar pH include uptake of small molecules such as biogenic amines in chromaffin granules, processing of vacuolar constituents such as pro-hormones by proteolytic enzymes, and protein degradation in lysosomes (Al-Awqati, <u>supra</u>).

Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to excitatory neurotransmitters, such as acetylcholine, glutamate, and serotonin. This opening causes an influx of Na $^+$ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to inhibitory neurotransmitters, such as γ -aminobutyric acid (GABA) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential.

Ligand-gated channels can be regulated by intracellular second messengers. Calcium-activated K+ channels are gated by internal calcium ions. In nerve cells, an influx of calcium during depolarization opens K+ channels to modulate the magnitude of the action potential (Ishi, T.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11651-11656). Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides. The best examples of these are the cAMP-gated Na+ channels involved in olfaction and the cGMP-gated cation channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell.

Ion channels are expressed in a number of tissues where they are implicated in a variety of processes. CNG channels, while abundantly expressed in photoreceptor and olfactory sensory cells, are also found in kidney, lung, pineal, retinal ganglion cells, testis, aorta, and brain. Calcium-activated K⁺ channels may be responsible for the vasodilatory effects of bradykinin in the kidney and for shunting excess K⁺ from brain capillary endothelial cells into the blood. They are also implicated in repolarizing granulocytes after agonist-stimulated depolarization (Ishi, supra). Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia. Voltage-gated channels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, C.P. and L.S. Narasimhan (1997) Adv. Pharmacol. 39:47-98).

Disease Correlation

5

10

15

20

25

30

The etiology of numerous human diseases and disorders can be attributed to defects in the transport of molecules across membranes. Defects in the trafficking of membrane-bound transporters and ion channels are associated with several disorders, e.g. cystic fibrosis, glucose-galactose

malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small molecules across membranes include, e.g., cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease (van't Hoff, W.G. (1996) Exp. Nephrol. 4:253-262; Talente, G.M. et al. (1994) Ann. Intern. Med. 120:218-226; and Chillon, M. et al. (1995) New Engl. J. Med. 332:1475-1480).

Protein Modification and Maintenance Molecules

SEQ ID NO:34 encodes, for example, a protein modification and maintenance molecule.

The cellular processes regulating modification and maintenance of protein molecules coordinate their conformation, stabilization, and degradation. Each of these processes is mediated by key enzymes or proteins such as proteases, protease inhibitors, transferases, isomerases, and molecular chaperones.

Proteases

5

10

15

20

25

30

Proteases cleave proteins and peptides at the peptide bond that forms the backbone of the peptide and protein chain. Proteolytic processing is essential to cell growth, differentiation, remodeling, and homeostasis as well as inflammation and immune response. Typical protein half-lives range from hours to a few days, so that within all living cells, precursor proteins are being cleaved to their active form, signal sequences proteolytically removed from targeted proteins, and aged or defective proteins degraded by proteolysis. Proteases function in bacterial, parasitic, and viral invasion and replication within a host. Four principal categories of mammalian proteases have been identified based on active site structure, mechanism of action, and overall three-dimensional structure. (Beynon, R.J. and J.S. Bond (1994) <u>Proteolytic Enzymes: A Practical Approach</u>, Oxford University Press, New York NY, pp. 1-5).

The serine proteases (SPs) have a serine residue, usually within a conserved sequence, in an active site composed of the serine, an aspartate, and a histidine residue. SPs include the digestive enzymes trypsin and chymotrypsin, components of the complement cascade and the blood-clotting cascade, and enzymes that control extracellular protein degradation. The main SP sub-families are trypases, which cleave after arginine or lysine; aspartases, which cleave after aspartate; chymases, which cleave after phenylalanine or leucine; metases, which cleavage after methionine; and serases which cleave after serine. Enterokinase, the initiator of intestinal digestion, is a serine protease found in the intestinal brush border, where it cleaves the acidic propeptide from trypsinogen to yield active trypsin (Kitamoto, Y. et al. (1994) Proc. Natl. Acad. Sci. USA 91:7588-7592).

Prolylcarboxypeptidase, a lysosomal serine peptidase that cleaves peptides such as angiotensin II and III and [des-Arg9] bradykinin, shares sequence homology with members of both the serine

carboxypeptidase and prolylendopeptidase families (Tan, F. et al. (1993) J. Biol. Chem. 268:16631-16638).

Cysteine proteases (CPs) have a cysteine as the major catalytic residue at an active site where catalysis proceeds via an intermediate thiol ester and is facilitated by adjacent histidine and aspartic acid residues. CPs are involved in diverse cellular processes ranging from the processing of precursor proteins to intracellular degradation. Mammalian CPs include lysosomal cathepsins and cytosolic calcium activated proteases, calpains. CPs are produced by monocytes, macrophages and other cells of the immune system which migrate to sites of inflammation and secrete molecules involved in tissue repair. Overabundance of these repair molecules plays a role in certain disorders. In autoimmune diseases such as rheumatoid arthritis, secretion of the cysteine peptidase cathepsin C degrades collagen, laminin, elastin and other structural proteins found in the extracellular matrix of bones.

10

15

20

25

30

Aspartic proteases are members of the cathepsin family of lysosomal proteases and include pepsin A, gastricsin, chymosin, renin, and cathepsins D and E. Aspartic proteases have a pair of aspartic acid residues in the active site, and are most active in the pH 2 - 3 range, in which one of the aspartate residues is ionized, the other un-ionized. Aspartic proteases include bacterial penicillopepsin, mammalian pepsin, renin, chymosin, and certain fungal proteases. Abnormal regulation and expression of cathepsins is evident in various inflammatory disease states. In cells isolated from inflamed synovia, the mRNA for stromelysin, cytokines, TIMP-1, cathepsin, gelatinase, and other molecules is preferentially expressed. Expression of cathepsins L and D is elevated in synovial tissues from patients with rheumatoid arthritis and osteoarthritis. Cathepsin L expression may also contribute to the influx of mononuclear cells which exacerbates the destruction of the rheumatoid synovium. (Keyszer, G.M. (1995) Arthritis Rheum. 38:976-984.) The increased expression and differential regulation of the cathepsins are linked to the metastatic potential of a variety of cancers and as such are of therapeutic and prognostic interest (Chambers, A.F. et al. (1993) Crit. Rev. Oncog. 4:95-114).

Metalloproteases have active sites that include two glutamic acid residues and one histidine residue that serve as binding sites for zinc. Carboxypeptidases A and B are the principal mammalian metalloproteases. Both are exoproteases of similar structure and active sites. Carboxypeptidase A, like chymotrypsin, prefers C-terminal aromatic and aliphatic side chains of hydrophobic nature, whereas carboxypeptidase B is directed toward basic arginine and lysine residues. Glycoprotease (GCP), or O-sialoglycoprotein endopeptidase, is a metallopeptidase which specifically cleaves O-sialoglycoproteins such as glycophorin A. Another metallopeptidase, placental leucine aminopeptidase (P-LAP) degrades several peptide hormones such as oxytocin and vasopressin,

suggesting a role in maintaining homeostasis during pregnancy, and is expressed in several tissues (Rogi, T. et al. (1996) J. Biol. Chem. 271:56-61).

Ubiquitin proteases are associated with the ubiquitin conjugation system (UCS), a major pathway for the degradation of cellular proteins in eukaryotic cells and some bacteria. The UCS mediates the elimination of abnormal proteins and regulates the half-lives of important regulatory proteins that control cellular processes such as gene transcription and cell cycle progression. In the UCS pathway, proteins targeted for degradation are conjugated to a ubiquitin, a small heat stable protein. The ubiquitinated protein is then recognized and degraded by proteasome, a large, multisubunit proteolytic enzyme complex, and ubiquitin is released for reutilization by ubiquitin protease. The UCS is implicated in the degradation of mitotic cyclic kinases, oncoproteins, tumor suppressor genes such as p53, viral proteins, cell surface receptors associated with signal transduction, transcriptional regulators, and mutated or damaged proteins (Ciechanover, A. (1994) Cell 79:13-21). A murine proto-oncogene, Unp, encodes a nuclear ubiquitin protease whose overexpression leads to oncogenic transformation of NIH3T3 cells, and the human homolog of this gene is consistently elevated in small cell tumors and adenocarcinomas of the lung (Gray, D.A. (1995) Oncogene 10:2179-2183).

Signal Peptidases

10

20

25

30

The mechanism for the translocation process into the endoplasmic reticulum (ER) involves the recognition of an N-terminal signal peptide on the elongating protein. The signal peptide directs the protein and attached ribosome to a receptor on the ER membrane. The polypeptide chain passes through a pore in the ER membrane into the lumen while the N-terminal signal peptide remains attached at the membrane surface. The process is completed when signal peptidase located inside the ER cleaves the signal peptide from the protein and releases the protein into the lumen.

Protease Inhibitors

Protease inhibitors and other regulators of protease activity control the activity and effects of proteases. Protease inhibitors have been shown to control pathogenesis in animal models of proteolytic disorders (Murphy, G. (1991) Agents Actions Suppl. 35:69-76). Low levels of the cystatins, low molecular weight inhibitors of the cysteine proteases, correlate with malignant progression of tumors. (Calkins, C. et al (1995) Biol. Biochem. Hoppe Seyler 376:71-80). Serpins are inhibitors of mammalian plasma serine proteases. Many serpins serve to regulate the blood clotting cascade and/or the complement cascade in mammals. Sp32 is a positive regulator of the mammalian acrosomal protease, acrosin, that binds the proenzyme, proacrosin, and thereby aides in packaging the enzyme into the acrosomal matrix (Baba, T. et al. (1994) J. Biol. Chem. 269:10133-10140). The Kunitz family of serine protease inhibitors are characterized by one or more "Kunitz domains" containing a series of cysteine residues that are regularly spaced over approximately 50

amino acid residues and form three intrachain disulfide bonds. Members of this family include aprotinin, tissue factor pathway inhibitor (TFPI-1 and TFPI-2), inter-α-trypsin inhibitor, and bikunin. (Marlor, C.W. et al. (1997) J. Biol. Chem. 272:12202-12208.) Members of this family are potent inhibitors (in the nanomolar range) against serine proteases such as kallikrein and plasmin. Aprotinin has clinical utility in reduction of perioperative blood loss.

A major portion of all proteins synthesized in eukaryotic cells are synthesized on the cytosolic surface of the endoplasmic reticulum (ER). Before these immature proteins are distributed to other organelles in the cell or are secreted, they must be transported into the interior lumen of the ER where post-translational modifications are performed. These modifications include protein folding and the formation of disulfide bonds, and N-linked glycosylations.

Protein Isomerases

10

15

25

30

Protein folding in the ER is aided by two principal types of protein isomerases, protein disulfide isomerase (PDI), and peptidyl-prolyl isomerase (PPI). PDI catalyzes the oxidation of free sulfhydryl groups in cysteine residues to form intramolecular disulfide bonds in proteins. PPI, an enzyme that catalyzes the isomerization of certain proline imidic bonds in oligopeptides and proteins, is considered to govern one of the rate limiting steps in the folding of many proteins to their final functional conformation. The cyclophilins represent a major class of PPI that was originally identified as the major receptor for the immunosuppressive drug cyclosporin A (Handschumacher, R.E. et al. (1984) Science 226: 544-547).

20 Protein Glycosylation

The glycosylation of most soluble secreted and membrane-bound proteins by oligosaccharides linked to asparagine residues in proteins is also performed in the ER. This reaction is catalyzed by a membrane-bound enzyme, oligosaccharyl transferase. Although the exact purpose of this "N-linked" glycosylation is unknown, the presence of oligosaccharides tends to make a glycoprotein resistant to protease digestion. In addition, oligosaccharides attached to cell-surface proteins called selectins are known to function in cell-cell adhesion processes (Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing Co., New York NY, p.608). "O-linked" glycosylation of proteins also occurs in the ER by the addition of N-acetylgalactosamine to the hydroxyl group of a serine or threonine residue followed by the sequential addition of other sugar residues to the first. This process is catalysed by a series of glycosyltransferases each specific for a particular donor sugar nucleotide and acceptor molecule (Lodish, H. et al. (1995) Molecular Cell Biology, W.H. Freeman and Co., New York NY, pp.700-708). In many cases, both N- and O-linked oligosaccharides appear to be required for the secretion of proteins or the movement of plasma membrane glycoproteins to the cell surface.

An additional glycosylation mechanism operates in the ER specifically to target lysosomal enzymes to lysosomes and prevent their secretion. Lysosomal enzymes in the ER receive an N-linked oligosaccharide, like plasma membrane and secreted proteins, but are then phosphorylated on one or two mannose residues. The phosphorylation of mannose residues occurs in two steps, the first step being the addition of an N-acetylglucosamine phosphate residue by N-acetylglucosamine phosphotransferase, and the second the removal of the N-acetylglucosamine group by phosphodiesterase. The phosphorylated mannose residue then targets the lysosomal enzyme to a mannose 6-phosphate receptor which transports it to a lysosome vesicle (Lodish, supra, pp. 708-711). Chaperones

Molecular chaperones are proteins that aid in the proper folding of immature proteins and refolding of improperly folded ones, the assembly of protein subunits, and in the transport of unfolded proteins across membranes. Chaperones are also called heat-shock proteins (hsp) because of their tendency to be expressed in dramatically increased amounts following brief exposure of cells to elevated temperatures. This latter property most likely reflects their need in the refolding of proteins that have become denatured by the high temperatures. Chaperones may be divided into several classes according to their location, function, and molecular weight, and include hsp60, TCP1, hsp70, hsp40 (also called DnaJ), and hsp90. For example, hsp90 binds to steroid hormone receptors, represses transcription in the absence of the ligand, and provides proper folding of the ligand-binding domain of the receptor in the presence of the hormone (Burston, S.G. and A.R. Clarke (1995) Essays Biochem. 29:125-136). Hsp60 and hsp70 chaperones aid in the transport and folding of newly synthesized proteins. Hsp70 acts early in protein folding, binding a newly synthesized protein before it leaves the ribosome and transporting the protein to the mitochondria or ER before releasing the folded protein. Hsp60, along with hsp10, binds misfolded proteins and gives them the opportunity to refold correctly. All chaperones share an affinity for hydrophobic patches on incompletely folded proteins and the ability to hydrolyze ATP. The energy of ATP hydrolysis is used to release the hspbound protein in its properly folded state (Alberts, supra, pp 214, 571-572).

Nucleic Acid Synthesis and Modification Molecules

SEQ ID NO:35 and SEQ ID NO:36 encode, for example, nucleic acid synthesis and modification molecules.

Polymerases

10

15

20

30

35

DNA and RNA replication are critical processes for cell replication and function. DNA and RNA replication are mediated by the enzymes DNA and RNA polymerase, respectively, by a "templating" process in which the nucleotide sequence of a DNA or RNA strand is copied by complementary base-pairing into a complementary nucleic acid sequence of either DNA or RNA.

However, there are fundamental differences between the two processes.

DNA polymerase catalyzes the stepwise addition of a deoxyribonucleotide to the 3'-OH end of a polynucleotide strand (the primer strand) that is paired to a second (template) strand. The new DNA strand therefore grows in the 5' to 3' direction (Alberts, B. et al. (1994) The Molecular Biology of the Cell, Garland Publishing Inc., New York NY, pp. 251-254). The substrates for the polymerization reaction are the corresponding deoxynucleotide triphosphates which must base-pair with the correct nucleotide on the template strand in order to be recognized by the polymerase. Because DNA exists as a double-stranded helix, each of the two strands may serve as a template for the formation of a new complementary strand. Each of the two daughter cells of the dividing cell therefore inherits a new DNA double helix containing one old and one new strand. Thus, DNA is said to be replicated "semiconservatively" by DNA polymerase. In addition to the synthesis of new DNA, DNA polymerase is also involved in the repair of damaged DNA as discussed below under "Ligases."

In contrast to DNA polymerase, RNA polymerase uses a DNA template strand to "transcribe" DNA into RNA using ribonucleotide triphosphates as substrates. Like DNA polymerization, RNA polymerization proceeds in a 5' to 3' direction by addition of a ribonucleoside monophosphate to the 3'-OH end of a growing RNA chain. DNA transcription generates messenger RNAs (mRNA) that carry information for protein synthesis, as well as the transfer, ribosomal, and other RNAs that have structural or catalytic functions. In eukaryotes, three discrete RNA polymerases synthesize the three different types of RNA (Alberts, supra, pp. 367-368). RNA polymerase I makes the large ribosomal RNAs, RNA polymerase II makes the mRNAs that will be translated into proteins, and RNA polymerase III makes a variety of small, stable RNAs, including 5S ribosomal RNA and the transfer RNAs (tRNA). In all cases, RNA synthesis is initiated by binding of the RNA polymerase to a promoter region on the DNA and synthesis begins at a start site within the promoter. Synthesis is completed at a broad, general stop or termination region in the DNA where both the polymerase and the completed RNA chain are released.

Ligases

10

15

20

30

35

DNA repair is the process by which accidental base changes, such as those produced by oxidative damage, hydrolytic attack, or uncontrolled methylation of DNA are corrected before replication or transcription of the DNA can occur. Because of the efficiency of the DNA repair process, fewer than one in one thousand accidental base changes causes a mutation (Alberts, <u>supra</u>, pp. 245-249). The three steps common to most types of DNA repair are (1) excision of the damaged or altered base or nucleotide by DNA nucleases, leaving a gap; (2) insertion of the correct nucleotide in this gap by DNA polymerase using the complementary strand as the template; and (3) sealing the break left between the inserted nucleotide(s) and the existing DNA strand by DNA ligase. In the last

reaction, DNA ligase uses the energy from ATP hydrolysis to activate the 5' end of the broken phosphodiester bond before forming the new bond with the 3'-OH of the DNA strand. In Bloom's syndrome, an inherited human disease, individuals are partially deficient in DNA ligation and consequently have an increased incidence of cancer (Alberts, supra, p. 247).

Nucleases

5

10

15

20

25

35

Nucleases comprise both enzymes that hydrolyze DNA (DNase) and RNA (RNase). They serve different purposes in nucleic acid metabolism. Nucleases hydrolyze the phosphodiester bonds between adjacent nucleotides either at internal positions (endonucleases) or at the terminal 3' or 5' nucleotide positions (exonucleases). A DNA exonuclease activity in DNA polymerase, for example, serves to remove improperly paired nucleotides attached to the 3'-OH end of the growing DNA strand by the polymerase and thereby serves a "proofreading" function. As mentioned above, DNA endonuclease activity is involved in the excision step of the DNA repair process.

RNases also serve a variety of functions. For example, RNase P is a ribonucleoprotein enzyme which cleaves the 5' end of pre-tRNAs as part of their maturation process. RNase H digests the RNA strand of an RNA/DNA hybrid. Such hybrids occur in cells invaded by retroviruses, and RNase H is an important enzyme in the retroviral replication cycle. Pancreatic RNase secreted by the pancreas into the intestine hydrolyzes RNA present in ingested foods. RNase activity in serum and cell extracts is elevated in a variety of cancers and infectious diseases (Schein, C.H. (1997) Nat. Biotechnol. 15:529-536). Regulation of RNase activity is being investigated as a means to control tumor angiogenesis, allergic reactions, viral infection and replication, and fungal infections.

Methylases

Methylation of specific nucleotides occurs in both DNA and RNA, and serves different functions in the two macromolecules. Methylation of cytosine residues to form 5-methyl cytosine in DNA occurs specifically at CG sequences which are base-paired with one another in the DNA double-helix. This pattern of methylation is passed from generation to generation during DNA replication by an enzyme called "maintenance methylase" that acts preferentially on those CG sequences that are base-paired with a CG sequence that is already methylated. Such methylation appears to distinguish active from inactive genes by preventing the binding of regulatory proteins that "turn on" the gene, but permit the binding of proteins that inactivate the gene (Alberts, supra, pp. 448-451). In RNA methylase" produces one of several nucleotide modifications in tRNA that affect the conformation and base-pairing of the molecule and facilitate the recognition of the appropriate mRNA codons by specific tRNAs. The primary methylation pattern is the dimethylation of guanine residues to form N,N-dimethyl guanine.

Helicases and Single-Stranded Binding Proteins

Helicases are enzymes that destabilize and unwind double helix structures in both DNA and

RNA. Since DNA replication occurs more or less simultaneously on both strands, the two strands must first separate to generate a replication "fork" for DNA polymerase to act on. Two types of replication proteins contribute to this process, DNA helicases and single-stranded binding proteins. DNA helicases hydrolyze ATP and use the energy of hydrolysis to separate the DNA strands. Single-stranded binding proteins (SSBs) then bind to the exposed DNA strands without covering the bases, thereby temporarily stabilizing them for templating by the DNA polymerase (Alberts, <u>supra</u>, pp. 255-256).

RNA helicases also alter and regulate RNA conformation and secondary structure. Like the DNA helicases, RNA helicases utilize energy derived from ATP hydrolysis to destabilize and unwind RNA duplexes. The most well-characterized and ubiquitous family of RNA helicases is the DEAD-10 box family, so named for the conserved B-type ATP-binding motif which is diagnostic of proteins in this family. Over 40 DEAD-box helicases have been identified in organisms as diverse as bacteria, insects, yeast, amphibians, mammals, and plants. DEAD-box helicases function in diverse processes such as translation initiation, splicing, ribosome assembly, and RNA editing, transport, and stability. Some DEAD-box helicases play tissue- and stage-specific roles in spermatogenesis and 15 embryogenesis. Overexpression of the DEAD-box 1 protein (DDX1) may play a role in the progression of neuroblastoma (Nb) and retinoblastoma (Rb) tumors (Godbout, R. et al. (1998) J. Biol. Chem. 273:21161-21168). These observations suggest that DDX1 may promote or enhance tumor progression by altering the normal secondary structure and expression levels of RNA in cancer cells. Other DEAD-box helicases have been implicated either directly or indirectly in tumorigenesis 20 (Discussed in Godbout, supra). For example, murine p68 is mutated in ultraviolet light-induced tumors, and human DDX6 is located at a chromosomal breakpoint associated with B-cell lymphoma. Similarly, a chimeric protein comprised of DDX10 and NUP98, a nucleoporin protein, may be involved in the pathogenesis of certain myeloid malignancies.

25 Topoisomerases

30

35

Besides the need to separate DNA strands prior to replication, the two strands must be "unwound" from one another prior to their separation by DNA helicases. This function is performed by proteins known as DNA topoisomerases. DNA topoisomerase effectively acts as a reversible nuclease that hydrolyzes a phosphodiesterase bond in a DNA strand, permitting the two strands to rotate freely about one another to remove the strain of the helix, and then rejoins the original phosphodiester bond between the two strands. Two types of DNA topoisomerase exist, types I and II. DNA Topoisomerase I causes a single-strand break in a DNA helix to allow the rotation of the two strands of the helix about the remaining phosphodiester bond in the opposite strand. DNA topoisomerase II causes a transient break in both strands of a DNA helix where two double helices cross over one another. This type of topoisomerase can efficiently separate two interlocked DNA

circles (Alberts, <u>supra</u>, pp.260-262). Type II topoisomerases are largely confined to proliferating cells in eukaryotes, such as cancer cells. For this reason they are targets for anticancer drugs. Topoisomerase II has been implicated in multi-drug resistance (MDR) as it appears to aid in the repair of DNA damage inflicted by DNA binding agents such as doxorubicin and vincristine.

Recombinases

5

10

15

25

35

Genetic recombination is the process of rearranging DNA sequences within an organism's genome to provide genetic variation for the organism in response to changes in the environment. DNA recombination allows variation in the particular combination of genes present in an individual's genome, as well as the timing and level of expression of these genes (see Alberts, supra, pp. 263-273). Two broad classes of genetic recombination are commonly recognized, general recombination and site-specific recombination. General recombination involves genetic exchange between any homologous pair of DNA sequences usually located on two copies of the same chromosome. The process is aided by enzymes called recombinases that "nick" one strand of a DNA duplex more or less randomly and permit exchange with the complementary strand of another duplex. The process does not normally change the arrangement of genes on a chromosome. In site-specific recombination, the recombinase recognizes specific nucleotide sequences present in one or both of the recombining molecules. Base-pairing is not involved in this form of recombination and therefore does not require DNA homology between the recombining molecules. Unlike general recombination, this form of recombination can alter the relative positions of nucleotide sequences in chromosomes.

20 Splicing Factors

Various proteins are necessary for processing of transcribed RNAs in the nucleus. PremRNA processing steps include capping at the 5' end with methylguanosine, polyadenylating the 3' end, and splicing to remove introns. The primary RNA transcript from DNA is a faithful copy of the gene containing both exon and intron sequences, and the latter sequences must be cut out of the RNA transcript to produce an mRNA that codes for a protein. This "splicing" of the mRNA sequence takes place in the nucleus with the aid of a large, multicomponent ribonucleoprotein complex known as a spliceosome. The spliceosomal complex is composed of five small nuclear ribonucleoprotein particles (snRNPs) designated U1, U2, U4, U5, and U6, and a number of additional proteins. Each snRNP contains a single species of snRNA and about ten proteins. The RNA components of some snRNPs recognize and base pair with intron consensus sequences. The protein components mediate spliceosome assembly and the splicing reaction. Autoantibodies to snRNP proteins are found in the blood of patients with systemic lupus erythematosus (Stryer, L. (1995) Biochemistry, W.H. Freeman and Company, New York NY, p. 863).

Adhesion Molecules

The surface of a cell is rich in transmembrane proteoglycans, glycoproteins, glycolipids, and receptors. These macromolecules mediate adhesion with other cells and with components of the extracellular matrix (ECM). The interaction of the cell with its surroundings profoundly influences cell shape, strength, flexibility, motility, and adhesion. These dynamic properties are intimately associated with signal transduction pathways controlling cell proliferation and differentiation, tissue construction, and embryonic development.

Cadherins

10

15

20

25

30

35

Cadherins comprise a family of calcium-dependent glycoproteins that function in mediating cell-cell adhesion in virtually all solid tissues of multicellular organisms. These proteins share multiple repeats of a cadherin-specific motif, and the repeats form the folding units of the cadherin extracellular domain. Cadherin molecules cooperate to form focal contacts, or adhesion plaques, between adjacent epithelial cells. The cadherin family includes the classical cadherins and protocadherins. Classical cadherins include the E-cadherin, N-cadherin, and P-cadherin subfamilies. E-cadherin is present on many types of epithelial cells and is especially important for embryonic development. N-cadherin is present on nerve, muscle, and lens cells and is also critical for embryonic development. P-cadherin is present on cells of the placenta and epidermis. Recent studies report that protocadherins are involved in a variety of cell-cell interactions (Suzuki, S.T. (1996) J. Cell Sci. 109:2609-2611). The intracellular anchorage of cadherins is regulated by their dynamic association with catenins, a family of cytoplasmic signal transduction proteins associated with the actin cytoskeleton. The anchorage of cadherins to the actin cytoskeleton appears to be regulated by protein tyrosine phosphorylation, and the cadherins are the target of phosphorylation-induced junctional disassembly (Aberle, H. et al. (1996) J. Cell. Biochem. 61:514-523).

Integrins

Integrins are ubiquitous transmembrane adhesion molecules that link the ECM to the internal cytoskeleton. Integrins are composed of two noncovalently associated transmembrane glycoprotein subunits called α and β . Integrins function as receptors that play a role in signal transduction. For example, binding of integrin to its extracellular ligand may stimulate changes in intracellular calcium levels or protein kinase activity (Sjaastad, M.D. and W.J. Nelson (1997) BioEssays 19:47-55). At least ten cell surface receptors of the integrin family recognize the ECM component fibronectin, which is involved in many different biological processes including cell migration and embryogenesis (Johansson, S. et al. (1997) Front. Biosci. 2:D126-D146).

Lectins

Lectins comprise a ubiquitous family of extracellular glycoproteins which bind cell surface carbohydrates specifically and reversibly, resulting in the agglutination of cells (reviewed in Drickamer, K. and M.E. Taylor (1993) Annu. Rev. Cell Biol. 9:237-264). This function is

particularly important for activation of the immune response. Lectins mediate the agglutination and mitogenic stimulation of lymphocytes at sites of inflammation (Lasky, L.A. (1991) J. Cell. Biochem. 45:139-146; Paietta, E. et al. (1989) J. Immunol. 143:2850-2857).

Lectins are further classified into subfamilies based on carbohydrate-binding specificity and other criteria. The galectin subfamily, in particular, includes lectins that bind β -galactoside carbohydrate moieties in a thiol-dependent manner (reviewed in Hadari, Y.R. et al. (1998) J. Biol. Chem. 270:3447-3453). Galectins are widely expressed and developmentally regulated. Because all galectins lack an N-terminal signal peptide, it is suggested that galectins are externalized through an atypical secretory mechanism. Two classes of galectins have been defined based on molecular weight and oligomerization properties. Small galectins form homodimers and are about 14 to 16 kilodaltons in mass, while large galectins are monomeric and about 29-37 kilodaltons.

Galectins contain a characteristic carbohydrate recognition domain (CRD). The CRD is about 140 amino acids and contains several stretches of about 1 - 10 amino acids which are highly conserved among all galectins. A particular 6-amino acid motif within the CRD contains conserved tryptophan and arginine residues which are critical for carbohydrate binding. The CRD of some galectins also contains cysteine residues which may be important for disulfide bond formation. Secondary structure predictions indicate that the CRD forms several β-sheets.

Galectins play a number of roles in diseases and conditions associated with cell-cell and cell-matrix interactions. For example, certain galectins associate with sites of inflammation and bind to cell surface immunoglobulin E molecules. In addition, galectins may play an important role in cancer metastasis. Galectin overexpression is correlated with the metastatic potential of cancers in humans and mice. Moreover, anti-galectin antibodies inhibit processes associated with cell transformation, such as cell aggregation and anchorage-independent growth (See, for example, Su, Z.-Z. et al. (1996) Proc. Natl. Acad. Sci. USA 93:7252-7257).

Selectins

5

10

15

20

25

30

35

Selectins, or LEC-CAMs, comprise a specialized lectin subfamily involved primarily in inflammation and leukocyte adhesion (Reviewed in Lasky, <u>supra</u>). Selectins mediate the recruitment of leukocytes from the circulation to sites of acute inflammation and are expressed on the surface of vascular endothelial cells in response to cytokine signaling. Selectins bind to specific ligands on the leukocyte cell membrane and enable the leukocyte to adhere to and migrate along the endothelial surface. Binding of selectin to its ligand leads to polarized rearrangement of the actin cytoskeleton and stimulates signal transduction within the leukocyte (Brenner, B. et al. (1997) Biochem. Biophys. Res. Commun. 231:802-807; Hidari, K.I. et al. (1997) J. Biol. Chem. 272:28750-28756). Members of the selectin family possess three characteristic motifs: a lectin or carbohydrate recognition domain; an epidermal growth factor-like domain; and a variable number of short consensus repeats (scr or

"sushi" repeats) which are also present in complement regulatory proteins. The selectins include lymphocyte adhesion molecule-1 (Lam-1 or L-selectin), endothelial leukocyte adhesion molecule-1 (ELAM-1 or E-selectin), and granule membrane protein-140 (GMP-140 or P-selectin) (Johnston, G.I. et al. (1989) Cell 56:1033-1044).

Antigen Recognition Molecules

5

10

15

20

25

30

35

SEQ ID NO:37 encodes, for example, an antigen recognition molecule.

All vertebrates have developed sophisticated and complex immune systems that provide protection from viral, bacterial, fungal, and parasitic infections. A key feature of the immune system is its ability to distinguish foreign molecules, or antigens, from "self" molecules. This ability is mediated primarily by secreted and transmembrane proteins expressed by leukocytes (white blood cells) such as lymphocytes, granulocytes, and monocytes. Most of these proteins belong to the immunoglobulin (Ig) superfamily, members of which contain one or more repeats of a conserved structural domain. This Ig domain is comprised of antiparallel β sheets joined by a disulfide bond in an arrangement called the Ig fold. Members of the Ig superfamily include T-cell receptors, major histocompatibility (MHC) proteins, antibodies, and immune cell-specific surface markers such as CD4, CD8, and CD28.

MHC proteins are cell surface markers that bind to and present foreign antigens to T cells. MHC molecules are classified as either class I or class II. Class I MHC molecules (MHC I) are expressed on the surface of almost all cells and are involved in the presentation of antigen to cytotoxic T cells. For example, a cell infected with virus will degrade intracellular viral proteins and express the protein fragments bound to MHC I molecules on the cell surface. The MHC I/antigen complex is recognized by cytotoxic T-cells which destroy the infected cell and the virus within. Class II MHC molecules are expressed primarily on specialized antigen-presenting cells of the immune system, such as B-cells and macrophages. These cells ingest foreign proteins from the extracellular fluid and express MHC II/antigen complex on the cell surface. This complex activates helper T-cells, which then secrete cytokines and other factors that stimulate the immune response. MHC molecules also play an important role in organ rejection following transplantation. Rejection occurs when the recipient's T-cells respond to foreign MHC molecules on the transplanted organ in the same way as to self MHC molecules bound to foreign antigen. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing, New York NY, pp. 1229-1246.)

Antibodies, or immunoglobulins, are either expressed on the surface of B-cells or secreted by B-cells into the circulation. Antibodies bind and neutralize foreign antigens in the blood and other extracellular fluids. The prototypical antibody is a tetramer consisting of two identical heavy polypeptide chains (H-chains) and two identical light polypeptide chains (L-chains) interlinked by

disulfide bonds. This arrangement confers the characteristic Y-shape to antibody molecules. Antibodies are classified based on their H-chain composition. The five antibody classes, IgA, IgD, IgE, IgG and IgM, are defined by the α , δ , ϵ , γ , and μ H-chain types. There are two types of L-chains, κ and λ , either of which may associate as a pair with any H-chain pair. IgG, the most common class of antibody found in the circulation, is tetrameric, while the other classes of antibodies are generally variants or multimers of this basic structure.

H-chains and L-chains each contain an N-terminal variable region and a C-terminal constant region. The constant region consists of about 110 amino acids in L-chains and about 330 or 440 amino acids in H-chains. The amino acid sequence of the constant region is nearly identical among H- or L-chains of a particular class. The variable region consists of about 110 amino acids in both H- and L-chains. However, the amino acid sequence of the variable region differs among H- or L-chains of a particular class. Within each H- or L-chain variable region are three hypervariable regions of extensive sequence diversity, each consisting of about 5 to 10 amino acids. In the antibody molecule, the H- and L-chain hypervariable regions come together to form the antigen recognition site. (Reviewed in Alberts, supra, pp. 1206-1213 and 1216-1217.)

10

15

20

25

30

35

Both H-chains and L-chains contain repeated Ig domains. For example, a typical H-chain contains four Ig domains, three of which occur within the constant region and one of which occurs within the variable region and contributes to the formation of the antigen recognition site. Likewise, a typical L-chain contains two Ig domains, one of which occurs within the constant region and one of which occurs within the variable region.

The immune system is capable of recognizing and responding to any foreign molecule that enters the body. Therefore, the immune system must be armed with a full repertoire of antibodies against all potential antigens. Such antibody diversity is generated by somatic rearrangement of gene segments encoding variable and constant regions. These gene segments are joined together by site-specific recombination which occurs between highly conserved DNA sequences that flank each gene segment. Because there are hundreds of different gene segments, millions of unique genes can be generated combinatorially. In addition, imprecise joining of these segments and an unusually high rate of somatic mutation within these segments further contribute to the generation of a diverse antibody population.

T-cell receptors are both structurally and functionally related to antibodies. (Reviewed in Alberts, supra, pp. 1228-1229.) T-cell receptors are cell surface proteins that bind foreign antigens and mediate diverse aspects of the immune response. A typical T-cell receptor is a heterodimer comprised of two disulfide-linked polypeptide chains called α and β . Each chain is about 280 amino acids in length and contains one variable region and one constant region. Each variable or constant region folds into an Ig domain. The variable regions from the α and β chains come together in the heterodimer to

form the antigen recognition site. T-cell receptor diversity is generated by somatic rearrangement of gene segments encoding the α and β chains. T-cell receptors recognize small peptide antigens that are expressed on the surface of antigen-presenting cells and pathogen-infected cells. These peptide antigens are presented on the cell surface in association with major histocompatibility proteins which provide the proper context for antigen recognition.

Secreted and Extracellular Matrix Molecules

10

15

20

25

30

SEQ ID NO:38 and SEQ ID NO:39 encode, for example, secreted/extracellular matrix molecules.

Protein secretion is essential for cellular function. Protein secretion is mediated by a signal peptide located at the amino terminus of the protein to be secreted. The signal peptide is comprised of about ten to twenty hydrophobic amino acids which target the nascent protein from the ribosome to the endoplasmic reticulum (ER). Proteins targeted to the ER may either proceed through the secretory pathway or remain in any of the secretory organelles such as the ER, Golgi apparatus, or lysosomes. Proteins that transit through the secretory pathway are either secreted into the extracellular space or retained in the plasma membrane. Secreted proteins are often synthesized as inactive precursors that are activated by post-translational processing events during transit through the secretory pathway. Such events include glycosylation, proteolysis, and removal of the signal peptide by a signal peptidase. Other events that may occur during protein transport include chaperone-dependent unfolding and folding of the nascent protein and interaction of the protein with a receptor or pore complex. Examples of secreted proteins with amino terminal signal peptides include receptors, extracellular matrix molecules, cytokines, hormones, growth and differentiation factors, neuropeptides, vasomediators, ion channels, transporters/pumps, and proteases. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York NY, pp. 557-560, 582-592.)

The extracellular matrix (ECM) is a complex network of glycoproteins, polysaccharides, proteoglycans, and other macromolecules that are secreted from the cell into the extracellular space. The ECM remains in close association with the cell surface and provides a supportive meshwork that profoundly influences cell shape, motility, strength, flexibility, and adhesion. In fact, adhesion of a cell to its surrounding matrix is required for cell survival except in the case of metastatic tumor cells, which have overcome the need for cell-ECM anchorage. This phenomenon suggests that the ECM plays a critical role in the molecular mechanisms of growth control and metastasis. (Reviewed in Ruoslahti, E. (1996) Sci. Am. 275:72-77.) Furthermore, the ECM determines the structure and physical properties of connective tissue and is particularly important for morphogenesis and other processes associated with embryonic development and pattern formation.

The collagens comprise a family of ECM proteins that provide structure to bone, teeth, skin, ligaments, tendons, cartilage, blood vessels, and basement membranes. Multiple collagen proteins have been identified. Three collagen molecules fold together in a triple helix stabilized by interchain disulfide bonds. Bundles of these triple helices then associate to form fibrils. Collagen primary structure consists of hundreds of (Gly-X-Y) repeats where about a third of the X and Y residues are Pro. Glycines are crucial to helix formation as the bulkier amino acid sidechains cannot fold into the triple helical conformation. Because of these strict sequence requirements, mutations in collagen genes have severe consequences. Osteogenesis imperfecta patients have brittle bones that fracture easily; in severe cases patients die in utero or at birth. Ehlers-Danlos syndrome patients have hyperelastic skin, hypermobile joints, and susceptibility to aortic and intestinal rupture. Chondrodysplasia patients have short stature and ocular disorders. Alport syndrome patients have hematuria, sensorineural deafness, and eye lens deformation. (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, Inc., New York NY, pp. 2105-2117; and Creighton, T.E. (1984) Proteins, Structures and Molecular Principles, W.H. Freeman and Company, New York NY, pp. 191-197.)

10

15

20

30

Elastin and related proteins confer elasticity to tissues such as skin, blood vessels, and lungs. Elastin is a highly hydrophobic protein of about 750 amino acids that is rich in proline and glycine residues. Elastin molecules are highly cross-linked, forming an extensive extracellular network of fibers and sheets. Elastin fibers are surrounded by a sheath of microfibrils which are composed of a number of glycoproteins, including fibrillin. Mutations in the gene encoding fibrillin are responsible for Marfan's syndrome, a genetic disorder characterized by defects in connective tissue. In severe cases, the aortas of afflicted individuals are prone to rupture. (Reviewed in Alberts, supra, pp. 984-986.)

Fibronectin is a large ECM glycoprotein found in all vertebrates. Fibronectin exists as a dimer of two subunits, each containing about 2,500 amino acids. Each subunit folds into a rod-like structure containing multiple domains. The domains each contain multiple repeated modules, the most common of which is the type III fibronectin repeat. The type III fibronectin repeat is about 90 amino acids in length and is also found in other ECM proteins and in some plasma membrane and cytoplasmic proteins. Furthermore, some type III fibronectin repeats contain a characteristic tripeptide consisting of Arginine-Glycine-Aspartic acid (RGD). The RGD sequence is recognized by the integrin family of cell surface receptors and is also found in other ECM proteins. Disruption of both copies of the gene encoding fibronectin causes early embryonic lethality in mice. The mutant embryos display extensive morphological defects, including defects in the formation of the notochord, somites, heart, blood vessels, neural tube, and extraembryonic structures. (Reviewed in Alberts, supra, pp. 986-987.)

Laminin is a major glycoprotein component of the basal lamina which underlies and supports epithelial cell sheets. Laminin is one of the first ECM proteins synthesized in the developing embryo.

Laminin is an 850 kilodalton protein composed of three polypeptide chains joined in the shape of a cross by disulfide bonds. Laminin is especially important for angiogenesis and in particular, for guiding the formation of capillaries. (Reviewed in Alberts, <u>supra</u>, pp. 990-991.)

There are many other types of proteinaceous ECM components, most of which can be classified as proteoglycans. Proteoglycans are composed of unbranched polysaccharide chains (glycosaminoglycans) attached to protein cores. Common proteoglycans include aggrecan, betaglycan, decorin, perlecan, serglycin, and syndecan-1. Some of these molecules not only provide mechanical support, but also bind to extracellular signaling molecules, such as fibroblast growth factor and transforming growth factor β , suggesting a role for proteoglycans in cell-cell communication and cell growth. (Reviewed in Alberts, <u>supra</u>, pp. 973-978.) Likewise, the glycoproteins tenascin-C and tenascin-R are expressed in developing and lesioned neural tissue and provide stimulatory and anti-adhesive (inhibitory) properties, respectively, for axonal growth. (Faissner, A. (1997) Cell Tissue Res. 290:331-341.)

15 Cytoskeletal Molecules

5

10

20

25

30

SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, and SEQ ID NO:45 encode, for example, cytoskeletal molecules.

The cytoskeleton is a cytoplasmic network of protein fibers that mediate cell shape, structure, and movement. The cytoskeleton supports the cell membrane and forms tracks along which organelles and other elements move in the cytosol. The cytoskeleton is a dynamic structure that allows cells to adopt various shapes and to carry out directed movements. Major cytoskeletal fibers include the microtubules, the microfilaments, and the intermediate filaments. Motor proteins, including myosin, dynein, and kinesin, drive movement of or along the fibers. The motor protein dynamin drives the formation of membrane vesicles. Accessory or associated proteins modify the structure or activity of the fibers while cytoskeletal membrane anchors connect the fibers to the cell membrane.

Tubulins

Microtubules, cytoskeletal fibers with a diameter of about 24 nm, have multiple roles in the cell. Bundles of microtubules form cilia and flagella, which are whip-like extensions of the cell membrane that are necessary for sweeping materials across an epithelium and for swimming of sperm, respectively. Marginal bands of microtubules in red blood cells and platelets are important for these cells' pliability. Organelles, membrane vesicles, and proteins are transported in the cell along tracks of microtubules. For example, microtubules run through nerve cell axons, allowing bidirectional transport of materials and membrane vesicles between the cell body and the nerve

terminal. Failure to supply the nerve terminal with these vesicles blocks the transmission of neural signals. Microtubules are also critical to chromosomal movement during cell division. Both stable and short-lived populations of microtubules exist in the cell.

Microtubules are polymers of GTP-binding tubulin protein subunits. Each subunit is a heterodimer of α - and β - tubulin, multiple isoforms of which exist. The hydrolysis of GTP is linked to the addition of tubulin subunits at the end of a microtubule. The subunits interact head to tail to form protofilaments; the protofilaments interact side to side to form a microtubule. A microtubule is polarized, one end ringed with α -tubulin and the other with β -tubulin, and the two ends differ in their rates of assembly. Generally, each microtubule is composed of 13 protofilaments although 11 or 15 protofilament-microtubules are sometimes found. Cilia and flagella contain doublet microtubules. Microtubules grow from specialized structures known as centrosomes or microtubule-organizing centers (MTOCs). MTOCs may contain one or two centrioles, which are pinwheel arrays of triplet microtubules. The basal body, the organizing center located at the base of a cilium or flagellum, contains one centriole. Gamma tubulin present in the MTOC is important for nucleating the polymerization of α - and β - tubulin heterodimers but does not polymerize into microtubules. Microtubule-Associated Proteins

10

15

20

30

Microtubule-associated proteins (MAPs) have roles in the assembly and stabilization of microtubules. One major family of MAPs, assembly MAPs, can be identified in neurons as well as non-neuronal cells. Assembly MAPs are responsible for cross-linking microtubules in the cytosol. These MAPs are organized into two domains: a basic microtubule-binding domain and an acidic projection domain. The projection domain is the binding site for membranes, intermediate filaments, or other microtubules. Based on sequence analysis, assembly MAPs can be further grouped into two types: Type I and Type II. Type I MAPs, which include MAP1A and MAP1B, are large, filamentous molecules that co-purify with microtubules and are abundantly expressed in brain and testes. Type I MAPs contain several repeats of a positively-charged amino acid sequence motif that binds and neutralizes negatively charged tubulin, leading to stabilization of microtubules. MAP1A and MAP1B are each derived from a single precursor polypeptide that is subsequently proteolytically processed to generate one heavy chain and one light chain.

Another light chain, LC3, is a 16.4 kDa molecule that binds MAP1A, MAP1B, and microtubules. It is suggested that LC3 is synthesized from a source other than the MAP1A or MAP1B transcripts, and that the expression of LC3 may be important in regulating the microtubule binding activity of MAP1A and MAP1B during cell proliferation (Mann, S.S. et al. (1994) J. Biol. Chem. 269:11492-11497).

Type II MAPs, which include MAP2a, MAP2b, MAP2c, MAP4, and Tau, are characterized

by three to four copies of an 18-residue sequence in the microtubule-binding domain. MAP2a, MAP2b, and MAP2c are found only in dendrites, MAP4 is found in non-neuronal cells, and Tau is found in axons and dendrites of nerve cells. Alternative splicing of the Tau mRNA leads to the existence of multiple forms of Tau protein. Tau phosphorylation is altered in neurodegenerative disorders such as Alzheimer's disease, Pick's disease, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia and Parkinsonism linked to chromosome 17. The altered Tau phosphorylation leads to a collapse of the microtubule network and the formation of intraneuronal Tau aggregates (Spillantini, M.G. and M. Goedert (1998) Trends Neurosci. 21:428-433).

The protein pericentrin is found in the MTOC and has a role in microtubule assembly.

10 Actins

15

20

25

30

35

Microfilaments, cytoskeletal filaments with a diameter of about 7-9 nm, are vital to cell locomotion, cell shape, cell adhesion, cell division, and muscle contraction. Assembly and disassembly of the microfilaments allow cells to change their morphology. Microfilaments are the polymerized form of actin, the most abundant intracellular protein in the eukaryotic cell. Human cells contain six isoforms of actin. The three α -actins are found in different kinds of muscle, nonmuscle β -actin and nonmuscle γ -actin are found in nonmuscle cells, and another γ -actin is found in intestinal smooth muscle cells. G-actin, the monomeric form of actin, polymerizes into polarized, helical F-actin filaments, accompanied by the hydrolysis of ATP to ADP. Actin filaments associate to form bundles and networks, providing a framework to support the plasma membrane and determine cell shape. These bundles and networks are connected to the cell membrane. In muscle cells, thin filaments containing actin slide past thick filaments containing the motor protein myosin during contraction. A family of actin-related proteins exist that are not part of the actin cytoskeleton, but rather associate with microtubules and dynein.

Actin-Associated Proteins

Actin-associated proteins have roles in cross-linking, severing, and stabilization of actin filaments and in sequestering actin monomers. Several of the actin-associated proteins have multiple functions. Bundles and networks of actin filaments are held together by actin cross-linking proteins. These proteins have two actin-binding sites, one for each filament. Short cross-linking proteins promote bundle formation while longer, more flexible cross-linking proteins promote network formation. Calmodulin-like calcium-binding domains in actin cross-linking proteins allow calcium regulation of cross-linking. Group I cross-linking proteins have unique actin-binding domains and include the 30 kD protein, EF-1a, fascin, and scruin. Group II cross-linking proteins have a 7,000-MW actin-binding domain and include villin and dematin. Group III cross-linking proteins have pairs of a 26,000-MW actin-binding domain and include fimbrin, spectrin, dystrophin, ABP 120, and filamin.

Severing proteins regulate the length of actin filaments by breaking them into short pieces or by blocking their ends. Severing proteins include gCAP39, severin (fragmin), gelsolin, and villin. Capping proteins can cap the ends of actin filaments, but cannot break filaments. Capping proteins include CapZ and tropomodulin. The proteins thymosin and profilin sequester actin monomers in the cytosol, allowing a pool of unpolymerized actin to exist. The actin-associated proteins tropomyosin, troponin, and caldesmon regulate muscle contraction in response to calcium.

Intermediate Filaments and Associated Proteins

20

25

30

Intermediate filaments (IFs) are cytoskeletal fibers with a diameter of about 10 nm, intermediate between that of microfilaments and microtubules. IFs serve structural roles in the cell, reinforcing cells and organizing cells into tissues. IFs are particularly abundant in epidermal cells and in neurons. IFs are extremely stable, and, in contrast to microfilaments and microtubules, do not function in cell motility.

Five types of IF proteins are known in mammals. Type I and Type II proteins are the acidic and basic keratins, respectively. Heterodimers of the acidic and basic keratins are the building blocks of keratin IFs. Keratins are abundant in soft epithelia such as skin and cornea, hard epithelia such as nails and hair, and in epithelia that line internal body cavities. Mutations in keratin genes lead to epithelial diseases including epidermolysis bullosa simplex, bullous congenital ichthyosiform erythroderma (epidermolytic hyperkeratosis), non-epidermolytic and epidermolytic palmoplantar keratoderma, ichthyosis bullosa of Siemens, pachyonychia congenita, and white sponge nevus. Some of these diseases result in severe skin blistering. (See, e.g., Wawersik, M. et al. (1997) J. Biol. Chem. 272:32557-32565; and Corden L.D. and W.H. McLean (1996) Exp. Dermatol. 5:297-307.)

Type III IF proteins include desmin, glial fibrillary acidic protein, vimentin, and peripherin. Desmin filaments in muscle cells link myofibrils into bundles and stabilize sarcomeres in contracting muscle. Glial fibrillary acidic protein filaments are found in the glial cells that surround neurons and astrocytes. Vimentin filaments are found in blood vessel endothelial cells, some epithelial cells, and mesenchymal cells such as fibroblasts, and are commonly associated with microtubules. Vimentin filaments may have roles in keeping the nucleus and other organelles in place in the cell. Type IV IFs include the neurofilaments and nestin. Neurofilaments, composed of three polypeptides NF-L, NF-M, and NF-H, are frequently associated with microtubules in axons. Neurofilaments are responsible for the radial growth and diameter of an axon, and ultimately for the speed of nerve impulse transmission. Changes in phosphorylation and metabolism of neurofilaments are observed in neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease (Julien, J.P. and W.E. Mushynski (1998) Prog. Nucleic Acid Res. Mol. Biol. 61:1-23). Type V IFs, the lamins, are found in the nucleus where they support the nuclear membrane.

IFs have a central α -helical rod region interrupted by short nonhelical linker segments. The rod region is bracketed, in most cases, by non-helical head and tail domains. The rod regions of intermediate filament proteins associate to form a coiled-coil dimer. A highly ordered assembly process leads from the dimers to the IFs. Neither ATP nor GTP is needed for IF assembly, unlike that of microfilaments and microtubules.

IF-associated proteins (IFAPs) mediate the interactions of IFs with one another and with other cell structures. IFAPs cross-link IFs into a bundle, into a network, or to the plasma membrane, and may cross-link IFs to the microfilament and microtubule cytoskeleton. Microtubules and IFs are in particular closely associated. IFAPs include BPAG1, plakoglobin, desmoplakin I, desmoplakin II, plectin, ankyrin, filaggrin, and lamin B receptor.

Cytoskeletal-Membrane Anchors

5

10

15

20

25

30

Cytoskeletal fibers are attached to the plasma membrane by specific proteins. These attachments are important for maintaining cell shape and for muscle contraction. In erythrocytes, the spectrin-actin cytoskeleton is attached to cell membrane by three proteins, band 4.1, ankyrin, and adducin. Defects in this attachment result in abnormally shaped cells which are more rapidly degraded by the spleen, leading to anemia. In platelets, the spectrin-actin cytoskeleton is also linked to the membrane by ankyrin; a second actin network is anchored to the membrane by filamin. In muscle cells the protein dystrophin links actin filaments to the plasma membrane; mutations in the dystrophin gene lead to Duchenne muscular dystrophy. In adherens junctions and adhesion plaques the peripheral membrane proteins α -actinin and vinculin attach actin filaments to the cell membrane.

IFs are also attached to membranes by cytoskeletal-membrane anchors. The nuclear lamina is attached to the inner surface of the nuclear membrane by the lamin B receptor. Vimentin IFs are attached to the plasma membrane by ankyrin and plectin. Desmosome and hemidesmosome membrane junctions hold together epithelial cells of organs and skin. These membrane junctions allow shear forces to be distributed across the entire epithelial cell layer, thus providing strength and rigidity to the epithelium. IFs in epithelial cells are attached to the desmosome by plakoglobin and desmoplakins. The proteins that link IFs to hemidesmosomes are not known. Desmin IFs surround the sarcomere in muscle and are linked to the plasma membrane by paranemin, synemin, and ankyrin. Myosin-related Motor Proteins

Myosins are actin-activated ATPases, found in eukaryotic cells, that couple hydrolysis of ATP with motion. Myosin provides the motor function for muscle contraction and intracellular movements such as phagocytosis and rearrangement of cell contents during mitotic cell division (cytokinesis). The contractile unit of skeletal muscle, termed the sarcomere, consists of highly ordered arrays of thin actin-containing filaments and thick myosin-containing filaments. Crossbridges form

between the thick and thin filaments, and the ATP-dependent movement of myosin heads within the thick filaments pulls the thin filaments, shortening the sarcomere and thus the muscle fiber.

Myosins are composed of one or two heavy chains and associated light chains. Myosin heavy chains contain an amino-terminal motor or head domain, a neck that is the site of light-chain binding, and a carboxy-terminal tail domain. The tail domains may associate to form an α -helical coiled coil. Conventional myosins, such as those found in muscle tissue, are composed of two myosin heavy-chain subunits, each associated with two light-chain subunits that bind at the neck region and play a regulatory role. Unconventional myosins, believed to function in intracellular motion, may contain either one or two heavy chains and associated light chains. There is evidence for about 25 myosin heavy chain genes in vertebrates, more than half of them unconventional.

Dynein-related Motor Proteins

10

15

20

25

30

Dyneins are (-) end-directed motor proteins which act on microtubules. Two classes of dyneins, cytosolic and axonemal, have been identified. Cytosolic dyneins are responsible for translocation of materials along cytoplasmic microtubules, for example, transport from the nerve terminal to the cell body and transport of endocytic vesicles to lysosomes. Cytoplasmic dyneins are also reported to play a role in mitosis. Axonemal dyneins are responsible for the beating of flagella and cilia. Dynein on one microtubule doublet walks along the adjacent microtubule doublet. This sliding force produces bending forces that cause the flagellum or cilium to beat. Dyneins have a native mass between 1000 and 2000 kDa and contain either two or three force-producing heads driven by the hydrolysis of ATP. The heads are linked via stalks to a basal domain which is composed of a highly variable number of accessory intermediate and light chains.

Kinesin-related Motor Proteins

Kinesins are (+) end-directed motor proteins which act on microtubules. The prototypical kinesin molecule is involved in the transport of membrane-bound vesicles and organelles. This function is particularly important for axonal transport in neurons. Kinesin is also important in all cell types for the transport of vesicles from the Golgi complex to the endoplasmic reticulum. This role is critical for maintaining the identity and functionality of these secretory organelles.

Kinesins define a ubiquitous, conserved family of over 50 proteins that can be classified into at least 8 subfamilies based on primary amino acid sequence, domain structure, velocity of movement, and cellular function. (Reviewed in Moore, J.D. and S.A. Endow (1996) Bioessays 18:207-219; and Hoyt, A.M. (1994) Curr. Opin. Cell Biol. 6:63-68.) The prototypical kinesin molecule is a heterotetramer comprised of two heavy polypeptide chains (KHCs) and two light polypeptide chains (KLCs). The KHC subunits are typically referred to as "kinesin." KHC is about 1000 amino acids in length, and KLC is about 550 amino acids in length. Two KHCs dimerize to form a rod-shaped molecule with

three distinct regions of secondary structure. At one end of the molecule is a globular motor domain that functions in ATP hydrolysis and microtubule binding. Kinesin motor domains are highly conserved and share over 70% identity. Beyond the motor domain is an α -helical coiled-coil region which mediates dimerization. At the other end of the molecule is a fan-shaped tail that associates with molecular cargo. The tail is formed by the interaction of the KHC C-termini with the two KLCs.

Members of the more divergent subfamilies of kinesins are called kinesin-related proteins (KRPs), many of which function during mitosis in eukaryotes (Hoyt, <u>supra</u>). Some KRPs are required for assembly of the mitotic spindle. <u>In vivo</u> and <u>in vitro</u> analyses suggest that these KRPs exert force on microtubules that comprise the mitotic spindle, resulting in the separation of spindle poles. Phosphorylation of KRP is required for this activity. Failure to assemble the mitotic spindle results in abortive mitosis and chromosomal aneuploidy, the latter condition being characteristic of cancer cells. In addition, a unique KRP, centromere protein E, localizes to the kinetochore of human mitotic chromosomes and may play a role in their segregation to opposite spindle poles.

Dynamin-related Motor Proteins

10

15

20

25

30

Dynamin is a large GTPase motor protein that functions as a "molecular pinchase," generating a mechanochemical force used to sever membranes. This activity is important in forming clathrin-coated vesicles from coated pits in endocytosis and in the biogenesis of synaptic vesicles in neurons. Binding of dynamin to a membrane leads to dynamin's self-assembly into spirals that may act to constrict a flat membrane surface into a tubule. GTP hydrolysis induces a change in conformation of the dynamin polymer that pinches the membrane tubule, leading to severing of the membrane tubule and formation of a membrane vesicle. Release of GDP and inorganic phosphate leads to dynamin disassembly. Following disassembly the dynamin may either dissociate from the membrane or remain associated to the vesicle and be transported to another region of the cell. Three homologous dynamin genes have been discovered, in addition to several dynamin-related proteins. Conserved dynamin regions are the N-terminal GTP-binding domain, a central pleckstrin homology domain that binds membranes, a central coiled-coil region that may activate dynamin's GTPase activity, and a C-terminal proline-rich domain that contains several motifs that bind SH3 domains on other proteins. Some dynamin-related proteins do not contain the pleckstrin homology domain or the proline-rich domain. (See McNiven, M.A. (1998) Cell 94:151-154; Scaife, R.M. and R.L. Margolis (1997) Cell. Signal. 9:395-401.)

The cytoskeleton is reviewed in Lodish, H. et al. (1995) <u>Molecular Cell Biology</u>, Scientific American Books, New York NY.

Ribosomal Molecules

SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, and SEQ ID NO:53 encode, for example, ribosomal molecules.

Ribosomal RNAs (rRNAs) are assembled, along with ribosomal proteins, into ribosomes, which are cytoplasmic particles that translate messenger RNA into polypeptides. The eukaryotic ribosome is composed of a 60S (large) subunit and a 40S (small) subunit, which together form the 80S ribosome. In addition to the 18S, 28S, 5S, and 5.8S rRNAs, the ribosome also contains more than fifty proteins. The ribosomal proteins have a prefix which denotes the subunit to which they belong, either L (large) or S (small). Ribosomal protein activities include binding rRNA and organizing the conformation of the junctions between rRNA helices (Woodson, S.A. and N.B. Leontis (1998) Curr. Opin. Struct. Biol. 8:294-300; Ramakrishnan, V. and S.W. White (1998) Trends Biochem. Sci. 23:208-212.) Three important sites are identified on the ribosome. The aminoacyl-tRNA site (A site) is where charged tRNAs (with the exception of the initiator-tRNA) bind on arrival at the ribosome. The peptidyl-tRNA site (P site) is where new peptide bonds are formed, as well as where the initiator tRNA binds. The exit site (E site) is where deacylated tRNAs bind prior to their release from the ribosome. (The ribosome is reviewed in Stryer, L. (1995) Biochemistry W.H. Freeman and Company, New York NY, pp. 888-908; and Lodish, H. et al. (1995) Molecular Cell Biology Scientific American Books, New York NY, pp. 119-138.)

Chromatin Molecules

10

15

20

25

30

The nuclear DNA of eukaryotes is organized into chromatin. Two types of chromatin are observed: euchromatin, some of which may be transcribed, and heterochromatin so densely packed that much of it is inaccessible to transcription. Chromatin packing thus serves to regulate protein expression in eukaryotes. Bacteria lack chromatin and the chromatin-packing level of gene regulation.

The fundamental unit of chromatin is the nucleosome of 200 DNA base pairs associated with two copies each of histones H2A, H2B, H3, and H4. Adjascent nucleosomes are linked by another class of histones, H1. Low molecular weight non-histone proteins called the high mobility group (HMG), associated with chromatin, may function in the unwinding of DNA and stabilization of single-stranded DNA. Chromodomain proteins function in compaction of chromatin into its transcriptionally silent heterochromatin form.

During mitosis, all DNA is compacted into heterochromatin and transcription ceases. Transcription in interphase begins with the activation of a region of chromatin. Active chromatin is decondensed. Decondensation appears to be accompanied by changes in binding coefficient, phosphorylation and acetylation states of chromatin histones. HMG proteins HMG13 and HMG17 selectively bind activated chromatin. Topoisomerases remove superhelical tension on DNA. The

activated region decondenses, allowing gene regulatory proteins and transcription factors to assemble on the DNA.

Patterns of chromatin structure can be stably inherited, producing heritable patterns of gene expression. In mammals, one of the two X chromosomes in each female cell is inactivated by condensation to heterochromatin during zygote development. The inactive state of this chromosome is inherited, so that adult females are mosaics of clusters of paternal-X and maternal-X clonal cell groups. The condensed X chromosome is reactivated in meiosis.

Chromatin is associated with disorders of protein expression such as thalassemia, a genetic anemia resulting from the removal of the locus control region (LCR) required for decondensation of the globin gene locus.

For a review of chromatin structure and function see Alberts, B. et al. (1994) <u>Molecular Cell Biology</u>, third edition, Garland Publishing, Inc., New York NY, pp. 351-354, 433-439.

Electron Transfer Associated Molecules

10

15

20

25

Electron carriers such as cytochromes accept electrons from NADH or FADH₂ and donate them to other electron carriers. Most electron-transferring proteins, except ubiquinone, are prosthetic groups such as flavins, heme, FeS clusters, and copper, bound to inner membrane proteins. Adrenodoxin, for example, is an FeS protein that forms a complex with NADPH:adrenodoxin reductase and cytochrome p450. Cytochromes contain a heme prosthetic group, a porphyrin ring containing a tightly bound iron atom. Electron transfer reactions play a crucial role in cellular energy production.

Energy is produced by the oxidation of glucose and fatty acids. Glucose is initially converted to pyruvate in the cytoplasm. Fatty acids and pyruvate are transported to the mitochondria for complete oxidation to CO_2 coupled by enzymes to the transport of electrons from NADH and FADH₂ to oxygen and to the synthesis of ATP (oxidative phosphorylation) from ADP and P_i.

Pyruvate is transported into the mitochondria and converted to acetyl-CoA for oxidation via the citric acid cycle, involving pyruvate dehydrogenase components, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Enzymes involved in the citric acid cycle include: citrate synthetase, aconitases, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex including transsuccinylases, succinyl CoA synthetase, succinate dehydrogenase, fumarases, and malate dehydrogenase. Acetyl CoA is oxidized to CO₂ with concomitant formation of NADH, FADH₂, and GTP. In oxidative phosphorylation, the transfer of electrons from NADH and FADH₂ to oxygen by dehydrogenases is coupled to the synthesis of ATP from ADP and P_i by the F₀F₁ ATPase complex in the mitochondrial inner membrane. Enzyme complexes responsible for electron transport and ATP

synthesis include the F_0F_1 ATPase complex, ubiquinone(CoQ)-cytochrome c reductase, ubiquinone reductase, cytochrome b, cytochrome c_1 , FeS protein, and cytochrome c oxidase.

ATP synthesis requires membrane transport enzymes including the phosphate transporter and the ATP-ADP antiport protein. The ATP-binding casette (ABC) superfamily has also been suggested as belonging to the mitochondrial transport group (Hogue, D.L. et al. (1999) J. Mol. Biol. 285:379-389). Brown fat uncoupling protein dissipates oxidative energy as heat, and may be involved the fever response to infection and trauma (Cannon, B. et al. (1998) Ann. NY Acad. Sci. 856:171-187).

Mitochondria are oval-shaped organelles comprising an outer membrane, a tightly folded inner membrane, an intermembrane space between the outer and inner membranes, and a matrix inside the inner membrane. The outer membrane contains many porin molecules that allow ions and charged molecules to enter the intermembrane space, while the inner membrane contains a variety of transport proteins that transfer only selected molecules. Mitochondria are the primary sites of energy production in cells.

10

15

20

25

30

35

Mitochondria contain a small amount of DNA. Human mitochondrial DNA encodes 13 proteins, 22 tRNAs, and 2 rRNAs. Mitochondrial-DNA encoded proteins include NADH-Q reductase, a cytochrome reductase subunit, cytochrome oxidase subunits, and ATP synthase subunits.

Electron-transfer reactions also occur outside the mitochondria in locations such as the endoplasmic reticulum, which plays a crucial role in lipid and protein biosynthesis. Cytochrome b5 is a central electron donor for various reductive reactions occurring on the cytoplasmic surface of liver endoplasmic reticulum. Cytochrome b5 has been found in Golgi, plasma, endoplasmic reticulum (ER), and microbody membranes.

For a review of mitochondrial metabolism and regulation, see Lodish, H. et al. (1995)

<u>Molecular Cell Biology</u>, Scientific American Books, New York NY, pp. 745-797 and Stryer (1995)

<u>Biochemistry</u>, W.H. Freeman and Co., San Francisco CA, pp 529-558, 988-989.

The majority of mitochondrial proteins are encoded by nuclear genes, are synthesized on cytosolic ribosomes, and are imported into the mitochondria. Nuclear-encoded proteins which are destined for the mitochondrial matrix typically contain positively-charged amino terminal signal sequences. Import of these preproteins from the cytoplasm requires a multisubunit protein complex in the outer membrane known as the translocase of outer mitochondrial membrane (TOM; previously designated MOM; Pfanner, N. et al. (1996) Trends Biochem. Sci. 21:51-52) and at least three inner membrane proteins which comprise the translocase of inner mitochondrial membrane (TIM; previously designated MIM; Pfanner, supra). An inside-negative membrane potential across the inner mitochondrial membrane is also required for preprotein import. Preproteins are recognized by surface receptor components of the TOM complex and are translocated through a proteinaceous pore formed by other TOM components. Proteins targeted to the matrix are then recognized by the import

machinery of the TIM complex. The import systems of the outer and inner membranes can function independently (Segui-Real, B. et al. (1993) EMBO J. 12:2211-2218).

Once precursor proteins are in the mitochondria, the leader peptide is cleaved by a signal peptidase to generate the mature protein. Most leader peptides are removed in a one step process by a protease termed mitochondrial processing peptidase (MPP) (Paces, V. et al. (1993) Proc. Natl. Acad. Sci. USA 90:5355-5358). In some cases a two-step process occurs in which MPP generates an intermediate precursor form which is cleaved by a second enzyme, mitochondrial intermediate peptidase, to generate the mature protein.

Mitochondrial dysfunction leads to impaired calcium buffering, generation of free radicals that may participate in deleterious intracellular and extracellular processes, changes in mitochondrial permeability and oxidative damage which is observed in several neurodegenerative diseases. Neurodegenerative diseases linked to mitochondrial dysfunction include some forms of Alzheimer's disease, Friedreich's ataxia, familial amyotrophic lateral sclerosis, and Huntington's disease (Beal, M.F. (1998) Biochim. Biophys. Acta 1366:211-213). The myocardium is heavily dependent on oxidative metabolism, so mitochondrial dysfunction often leads to heart disease (DiMauro, S. and M. Hirano (1998) Curr. Opin. Cardiol 13:190-197). Mitochondria are implicated in disorders of cell proliferation, since they play an important role in a cell's decision to proliferate or self-destruct through apoptosis. The oncoprotein Bcl-2, for example, promotes cell proliferation by stabilizing mitochondrial membranes so that apoptosis signals are not released (Susin, S.A. (1998) Biochim. Biophys. Acta 1366:151-165).

Transcription Factor Molecules

10

15

20

25

30

35

SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, and SEQ ID NO:33 encode, for example, transcription factor molecules.

Multicellular organisms are comprised of diverse cell types that differ dramatically both in structure and function. The identity of a cell is determined by its characteristic pattern of gene expression, and different cell types express overlapping but distinctive sets of genes throughout development. Spatial and temporal regulation of gene expression is critical for the control of cell proliferation, cell differentiation, apoptosis, and other processes that contribute to organismal development. Furthermore, gene expression is regulated in response to extracellular signals that mediate cell-cell communication and coordinate the activities of different cell types. Appropriate gene regulation also ensures that cells function efficiently by expressing only those genes whose functions are required at a given time.

Transcriptional regulatory proteins are essential for the control of gene expression. Some of these proteins function as transcription factors that initiate, activate, repress, or terminate gene transcription. Transcription factors generally bind to the promoter, enhancer, and upstream regulatory regions of a gene in a sequence-specific manner, although some factors bind regulatory elements within or downstream of a gene's coding region. Transcription factors may bind to a specific region of DNA singly or as a complex with other accessory factors. (Reviewed in Lewin, B. (1990) Genes IV, Oxford University Press, New York NY, and Cell Press, Cambridge MA, pp. 554-570.)

The double helix structure and repeated sequences of DNA create topological and chemical features which can be recognized by transcription factors. These features are hydrogen bond donor and acceptor groups, hydrophobic patches, major and minor grooves, and regular, repeated stretches of sequence which induce distinct bends in the helix. Typically, transcription factors recognize specific DNA sequence motifs of about 20 nucleotides in length. Multiple, adjacent transcription factor-binding motifs may be required for gene regulation.

10

15

20

25

30

Many transcription factors incorporate DNA-binding structural motifs which comprise either α helices or β sheets that bind to the major groove of DNA. Four well-characterized structural motifs are helix-turn-helix, zinc finger, leucine zipper, and helix-loop-helix. Proteins containing these motifs may act alone as monomers, or they may form homo- or heterodimers that interact with DNA.

The helix-turn-helix motif consists of two α helices connected at a fixed angle by a short chain of amino acids. One of the helices binds to the major groove. Helix-turn-helix motifs are exemplified by the homeobox motif which is present in homeodomain proteins. These proteins are critical for specifying the anterior-posterior body axis during development and are conserved throughout the animal kingdom. The Antennapedia and Ultrabithorax proteins of Drosophila melanogaster are prototypical homeodomain proteins (Pabo, C.O. and R.T. Sauer (1992) Annu. Rev. Biochem. 61:1053-1095).

The zinc finger motif, which binds zinc ions, generally contains tandem repeats of about 30 amino acids consisting of periodically spaced cysteine and histidine residues. Examples of this sequence pattern, designated C2H2 and C3HC4 ("RING" finger), have been described (Lewin, supra). Zinc finger proteins each contain an α helix and an antiparallel β sheet whose proximity and conformation are maintained by the zinc ion. Contact with DNA is made by the arginine prece ding the α helix and by the second, third, and sixth residues of the α helix. Variants of the zinc finger motif include poorly defined cysteine-rich motifs which bind zinc or other metal ions. These motifs may not contain histidine residues and are generally nonrepetitive.

The leucine zipper motif comprises a stretch of amino acids rich in leucine which can form an amphipathic α helix. This structure provides the basis for dimerization of two leucine zipper

proteins. The region adjacent to the leucine zipper is usually basic, and upon protein dimerization, is optimally positioned for binding to the major groove. Proteins containing such motifs are generally referred to as bZIP transcription factors.

The helix-loop-helix motif (HLH) consists of a short α helix connected by a loop to a longer α helix. The loop is flexible and allows the two helices to fold back against each other and to bind to DNA. The transcription factor Myc contains a prototypical HLH motif.

5

10

15

20

25

30

Most transcription factors contain characteristic DNA binding motifs, and variations on the above motifs and new motifs have been and are currently being characterized (Faisst, S. and S. Meyer (1992) Nucleic Acids Res. 20:3-26).

Many neoplastic disorders in humans can be attributed to inappropriate gene expression. Malignant cell growth may result from either excessive expression of tumor promoting genes or insufficient expression of tumor suppressor genes (Cleary, M.L. (1992) Cancer Surv. 15:89-104). Chromosomal translocations may also produce chimeric loci which fuse the coding sequence of one gene with the regulatory regions of a second unrelated gene. Such an arrangement likely results in inappropriate gene transcription, potentially contributing to malignancy.

In addition, the immune system responds to infection or trauma by activating a cascade of events that coordinate the progressive selection, amplification, and mobilization of cellular defense mechanisms. A complex and balanced program of gene activation and repression is involved in this process. However, hyperactivity of the immune system as a result of improper or insufficient regulation of gene expression may result in considerable tissue or organ damage. This damage is well documented in immunological responses associated with arthritis, allergens, heart attack, stroke, and infections (Isselbacher, K.J. et al. (1996) <u>Harrison's Principles of Internal Medicine</u>, 13/e, McGraw Hill, Inc. and Teton Data Systems Software).

Furthermore, the generation of multicellular organisms is based upon the induction and coordination of cell differentiation at the appropriate stages of development. Central to this process is differential gene expression, which confers the distinct identities of cells and tissues throughout the body. Failure to regulate gene expression during development can result in developmental disorders. Human developmental disorders caused by mutations in zinc finger-type transcriptional regulators include: urogenenital developmental abnormalities associated with WT1; Greig cephalopolysyndactyly, Pallister-Hall syndrome, and postaxial polydactyly type A (GLI3); and Townes-Brocks syndrome, characterized by anal, renal, limb, and ear abnormalities (SALL1) (Engelkamp, D. and V. van Heyningen (1996) Curr. Opin. Genet. Dev. 6:334-342; Kohlhase, J. et al. (1999) Am. J. Hum. Genet. 64:435-445).

Cell Membrane Molecules

5

10

15

20

25

30

35

SEQ ID NO:46, SEQ ID NO:47, and SEQ ID NO:48 encode, for example, cell membrane molecules.

Eukaryotic cells are surrounded by plasma membranes which enclose the cell and maintain an environment inside the cell that is distinct from its surroundings. In addition, eukaryotic organisms are distinct from prokaryotes in possessing many intracellular organelle and vesicle structures. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these structures. The plasma membrane and the membranes surrounding organelles and vesicles are composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. These components confer identity and functionality to the membranes with which they associate.

Integral Membrane Proteins

The majority of known integral membrane proteins are transmembrane proteins (TM) which are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α -helical conformation. TM proteins are classified as bitopic (Types I and II) and polytopic (Types III and IV) (Singer, S.J. (1990) Annu. Rev. Cell Biol. 6:247-296). Bitopic proteins span the membrane once while polytopic proteins contain multiple membrane-spanning segments. TM proteins function as cell-surface receptors, receptor-interacting proteins, transporters of ions or metabolites, ion channels, cell anchoring proteins, and cell type-specific surface antigens.

Many membrane proteins (MPs) contain amino acid sequence motifs that target these proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science 279:377-380). Furthermore, MPs may also contain amino acid sequence motifs, such as the carbohydrate recognition domain (CRD), that mediate interactions with extracellular or intracellular molecules.

G-Protein Coupled Receptors

G-protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators. The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane regions, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. Cysteine disulfide bridges connect the second and third extracellular loops. The most conserved regions of GPCRs are the transmembrane regions and

the first two cytoplasmic loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp. 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.

Scavenger Receptors

10

15

25

30

35

Macrophage scavenger receptors with broad ligand specificity may participate in the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer region, an α-helical coiled-coil region, and a triple helical collagen-like region. These receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. USA 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host defense by binding bacterial endotoxins, bacteria, and protozoa.

20 Tetraspan Family Proteins

The transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene family encoding type III integral membrane proteins (Wright, M.D. and M.G. Tomlinson (1994) Immunol. Today 15:588-594). The TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor-associated antigens, and surface proteins of the schistosome parasites (Jankowski, S.A. (1994) Oncogene 9:1205-1211). Members of the TM4SF share about 25-30% amino acid sequence identity with one another.

A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors and the level of expression may be altered when cells are growing or activated. Tumor Antigens

Tumor antigens are cell surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells

and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) Int. J. Cancer 61:706-715; Liu, E. et al. (1992) Oncogene 7:1027-1032).

Leukocyte Antigens

Other types of cell surface antigens include those identified on leukocytic cells of the immune system. These antigens have been identified using systematic, monoclonal antibody (mAb)-based "shot gun" techniques. These techniques have resulted in the production of hundreds of mAbs directed against unknown cell surface leukocytic antigens. These antigens have been grouped into "clusters of differentiation" based on common immunocytochemical localization patterns in various differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "cluster of differentiation" or "CD" designation. Some of the genes encoding proteins identified by CD antigens have been cloned and verified by standard molecular biology techniques. CD antigens have been characterized as both transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI). (Reviewed in Barclay, A.N. et al. (1995) The Leucocyte Antigen Facts Book, Academic Press, San

Diego CA, pp. 17-20.)

Ion Channels

10

15

20

25

35

Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes. Chloride channels also regulate the pH of organelles such as the Golgi apparatus and endosomes (see, e.g., Greger, R. (1988) Annu. Rev. Physiol. 50:111-122). Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators. suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.

Many ion channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, skeletal muscle, and other organ systems. **Proton Pumps**

Proton ATPases comprise a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na+, K+, or Cl-) or to maintain organelle

pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases. The vacuolar ATPases establish and maintain an acidic pH within various organelles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Annu. Rev. Biochem. 55:663-700).

Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorption of peptides using an electrochemical H⁺ gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and J.J Manaco (1996) Curr. Opin. Hematol. 3:19-26).

ABC Transporters

5

10

15

20

25

30

35

The ATP-binding cassette (ABC) transporters, also called the "traffic ATPases", comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C.F. (1992) Annu. Rev. Cell Biol. 8:67-113). ABC proteins share a similar overall structure and significant sequence homology. All ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoleukodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.

Peripheral and Anchored Membrane Proteins

Some membrane proteins are not membrane-spanning but are attached to the plasma membrane via membrane anchors or interactions with integral membrane proteins. Membrane anchors are covalently joined to a protein post-translationally and include such moieties as prenyl, myristyl, and glycosylphosphatidyl inositol groups. Membrane localization of peripheral and anchored proteins is important for their function in processes such as receptor-mediated signal transduction. For example, prenylation of Ras is required for its localization to the plasma membrane and for its normal and oncogenic functions in signal transduction.

Vesicle Coat Proteins

Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein

signaling molecules. The uptake of proteins into the cell is achieved by the endocytic pathway, in which the interaction of extracellular signaling molecules with plasma membrane receptors results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. These transport vesicles fuse with and mature into endosomal and lysosomal (digestive) compartments. The secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell proceed through the secretory pathway. In this pathway, molecules transit from the ER to the Golgi apparatus and finally to the plasma membrane, where they are secreted from the cell.

Several steps in the transit of material along the secretory and endocytic pathways require the formation of transport vesicles. Specifically, vesicles form at the transitional endoplasmic reticulum (tER), the rim of Golgi cisternae, the face of the Trans-Golgi Network (TGN), the plasma membrane (PM), and tubular extensions of the endosomes. Vesicle formation occurs when a region of membrane buds off from the donor organelle. The membrane-bound vesicle contains proteins to be transported and is surrounded by a proteinaceous coat, the components of which are recruited from the cytosol. Two different classes of coat protein have been identified. Clathrin coats form on vesicles derived from the TGN and PM, whereas coatomer (COP) coats form on vesicles derived from the ER and Golgi. COP coats can be further classified as COPI, involved in retrograde traffic through the Golgi and from the Golgi to the ER, and COPII, involved in anterograde traffic from the ER to the Golgi (Mellman, supra).

10

15

20

25

30

In clathrin-based vesicle formation, adapter proteins bring vesicle cargo and coat proteins together at the surface of the budding membrane. Adapter protein-1 and -2 select cargo from the TGN and plasma membrane, respectively, based on molecular information encoded on the cytoplasmic tail of integral membrane cargo proteins. Adapter proteins also recruit clathrin to the bud site. Clathrin is a protein complex consisting of three large and three small polypeptide chains arranged in a three-legged structure called a triskelion. Multiple triskelions and other coat proteins appear to self-assemble on the membrane to form a coated pit. This assembly process may serve to deform the membrane into a budding vesicle. GTP-bound ADP-ribosylation factor (Arf) is also incorporated into the coated assembly. Another small G-protein, dynamin, forms a ring complex around the neck of the forming vesicle and may provide the mechanochemical force to seal the bud, thereby releasing the vesicle. The coated vesicle complex is then transported through the cytosol. During the transport process, Arf-bound GTP is hydrolyzed to GDP, and the coat dissociates from the transport vesicle (West, M.A. et al. (1997) J. Cell Biol. 138:1239-1254).

Vesicles which bud from the ER and the Golgi are covered with a protein coat similar to the clathrin coat of endocytic and TGN vesicles. The coat protein (COP) is assembled from cytosolic precursor molecules at specific budding regions on the organelle. The COP coat consists of two major components, a G-protein (Arf or Sar) and coat protomer (coatomer). Coatomer is an equimolar

complex of seven proteins, termed alpha-, beta-, beta'-, gamma-, delta-, epsilon- and zeta-COP. The coatomer complex binds to dilysine motifs contained on the cytoplasmic tails of integral membrane proteins. These include the KKXX retrieval motif of membrane proteins of the ER and dibasic/diphenylamine motifs of members of the p24 family. The p24 family of type I membrane proteins represent the major membrane proteins of COPI vesicles (Harter, C. and F.T. Wieland (1998) Proc. Natl. Acad. Sci. USA 95:11649-11654).

Organelle Associated Molecules

10

15

20

30

35

SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, and SEQ ID NO:63 encode, for example, organelle associated molecules.

Eukaryotic cells are organized into various cellular organelles which has the effect of separating specific molecules and their functions from one another and from the cytosol. Within the cell, various membrane structures surround and define these organelles while allowing them to interact with one another and the cell environment through both active and passive transport processes. Important cell organelles include the nucleus, the Golgi apparatus, the endoplasmic reticulum, mitochondria, peroxisomes, lysosomes, endosomes, and secretory vesicles.

Nucleus

The cell nucleus contains all of the genetic information of the cell in the form of DNA, and the components and machinery necessary for replication of DNA and for transcription of DNA into RNA. (See Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing Inc., New York NY, pp. 335-399.) DNA is organized into compact structures in the nucleus by interactions with various DNA-binding proteins such as histones and non-histone chromosomal proteins. DNA-specific nucleases, DNAses, partially degrade these compacted structures prior to DNA replication or transcription. DNA replication takes place with the aid of DNA helicases which unwind the double-stranded DNA helix, and DNA polymerases that duplicate the separated DNA strands.

Transcriptional regulatory proteins are essential for the control of gene expression. Some of these proteins function as transcription factors that initiate, activate, repress, or terminate gene transcription. Transcription factors generally bind to the promoter, enhancer, and upstream regulatory regions of a gene in a sequence-specific manner, although some factors bind regulatory elements within or downstream of a gene's coding region. Transcription factors may bind to a specific region of DNA singly or as a complex with other accessory factors. (Reviewed in Lewin, B. (1990) Genes IV, Oxford University Press, New York NY, and Cell Press, Cambridge MA, pp. 554-570.) Many transcription factors incorporate DNA-binding structural motifs which comprise either α

helices or ß sheets that bind to the major groove of DNA. Four well-characterized structural motifs are helix-turn-helix, zinc finger, leucine zipper, and helix-loop-helix. Proteins containing these motifs may act alone as monomers, or they may form homo- or heterodimers that interact with DNA.

Many neoplastic disorders in humans can be attributed to inappropriate gene expression. Malignant cell growth may result from either excessive expression of tumor promoting genes or insufficient expression of tumor suppressor genes (Cleary, M.L. (1992) Cancer Surv. 15:89-104). Chromosomal translocations may also produce chimeric loci which fuse the coding sequence of one gene with the regulatory regions of a second unrelated gene. Such an arrangement likely results in inappropriate gene transcription, potentially contributing to malignancy.

In addition, the immune system responds to infection or trauma by activating a cascade of events that coordinate the progressive selection, amplification, and mobilization of cellular defense mechanisms. A complex and balanced program of gene activation and repression is involved in this process. However, hyperactivity of the immune system as a result of improper or insufficient regulation of gene expression may result in considerable tissue or organ damage. This damage is well documented in immunological responses associated with arthritis, allergens, heart attack, stroke, and infections (Isselbacher, K.J. et al. (1996) Harrison's Principles of Internal Medicine, 13/e, McGraw Hill, Inc. and Teton Data Systems Software).

Transcription of DNA into RNA also takes place in the nucleus catalyzed by RNA polymerases. Three types of RNA polymerase exist. RNA polymerase I makes large ribosomal RNAs, while RNA polymerase III makes a variety of small, stable RNAs including 5S ribosomal RNA and the transfer RNAs (tRNA). RNA polymerase II transcribes genes that will be translated into proteins. The primary transcript of RNA polymerase II is called heterogenous nuclear RNA (hnRNA), and must be further processed by splicing to remove non-coding sequences called introns. RNA splicing is mediated by small nuclear ribonucleoprotein complexes, or snRNPs, producing mature messenger RNA (mRNA) which is then transported out of the nucleus for translation into proteins.

Nucleolus

10

15

20

25

35

The nucleolus is a highly organized subcompartment in the nucleus that contains high concentrations of RNA and proteins and functions mainly in ribosomal RNA synthesis and assembly (Alberts, et al. supra, pp. 379-382). Ribosomal RNA (rRNA) is a structural RNA that is complexed with proteins to form ribonucleoprotein structures called ribosomes. Ribosomes provide the platform on which protein synthesis takes place.

Ribosomes are assembled in the nucleolus initially from a large, 45S rRNA combined with a variety of proteins imported from the cytoplasm, as well as smaller, 5S rRNAs. Later processing of the immature ribosome results in formation of smaller ribosomal subunits which are transported from

the nucleolus to the cytoplasm where they are assembled into functional ribosomes. Endoplasmic Reticulum

In eukaryotes, proteins are synthesized within the endoplasmic reticulum (ER), delivered from the ER to the Golgi apparatus for post-translational processing and sorting, and transported from the Golgi to specific intracellular and extracellular destinations. Synthesis of integral membrane proteins, secreted proteins, and proteins destined for the lumen of a particular organelle occurs on the rough endoplasmic reticulum (ER). The rough ER is so named because of the rough appearance in electron micrographs imparted by the attached ribosomes on which protein synthesis proceeds. Synthesis of proteins destined for the ER actually begins in the cytosol with the synthesis of a specific signal peptide which directs the growing polypeptide and its attached ribosome to the ER membrane where the signal peptide is removed and protein synthesis is completed. Soluble proteins destined for the ER lumen, for secretion, or for transport to the lumen of other organelles pass completely into the ER lumen. Transmembrane proteins destined for the ER or for other cell membranes are translocated across the ER membrane but remain anchored in the lipid bilayer of the membrane by one or more membrane-spanning α -helical regions.

Translocated polypeptide chains destined for other organelles or for secretion also fold and assemble in the ER lumen with the aid of certain "resident" ER proteins. Protein folding in the ER is aided by two principal types of protein isomerases, protein disulfide isomerase (PDI), and peptidyl-prolyl isomerase (PPI). PDI catalyzes the oxidation of free sulfhydryl groups in cysteine residues to form intramolecular disulfide bonds in proteins. PPI, an enzyme that catalyzes the isomerization of certain proline imide bonds in oligopeptides and proteins, is considered to govern one of the rate limiting steps in the folding of many proteins to their final functional conformation. The cyclophilins represent a major class of PPI that was originally identified as the major receptor for the immunosuppressive drug cyclosporin A (Handschumacher, R.E. et al. (1984) Science 226:544-547). Molecular "chaperones" such as BiP (binding protein) in the ER recognize incorrectly folded proteins as well as proteins not yet folded into their final form and bind to them, both to prevent improper aggregation between them, and to promote proper folding.

The "N-linked" glycosylation of most soluble secreted and membrane-bound proteins by oligosacchrides linked to asparagine residues in proteins is also performed in the ER. This reaction is catalyzed by a membrane-bound enzyme, oligosaccharyl transferase.

Golgi Apparatus

10

15

20

30

The Golgi apparatus is a complex structure that lies adjacent to the ER in eukaryotic cells and serves primarily as a sorting and dispatching station for products of the ER (Alberts, et al. <u>supra</u>, pp. 600-610). Additional posttranslational processing, principally additional glycosylation, also occurs in

the Golgi. Indeed, the Golgi is a major site of carbohydrate synthesis, including most of the glycosaminoglycans of the extracellular matrix. N-linked oligosaccharides, added to proteins in the ER, are also further modified in the Golgi by the addition of more sugar residues to form complex N-linked oligosaccharides. "O-linked" glycosylation of proteins also occurs in the Golgi by the addition of N-acetylgalactosamine to the hydroxyl group of a serine or threonine residue followed by the sequential addition of other sugar residues to the first. This process is catalyzed by a series of glycosyltransferases each specific for a particular donor sugar nucleotide and acceptor molecule (Lodish, H. et al. (1995) Molecular Cell Biology, W.H. Freeman and Co., New York NY, pp.700-708). In many cases, both N- and O-linked oligosaccharides appear to be required for the secretion of proteins or the movement of plasma membrane glycoproteins to the cell surface.

The terminal compartment of the Golgi is the Trans-Golgi Network (TGN), where both membrane and lumenal proteins are sorted for their final destination. Transport (or secretory) vesicles destined for intracellular compartments, such as lysosomes, bud off of the TGN. Other transport vesicles bud off containing proteins destined for the plasma membrane, such as receptors, adhesion molecules, and ion channels, and secretory proteins, such as hormones, neurotransmitters, and digestive enzymes.

Vacuoles

10

15

20

25

The vacuole system is a collection of membrane bound compartments in eukaryotic cells that functions in the processes of endocytosis and exocytosis. They include phagosomes, lysosomes, endosomes, and secretory vesicles. Endocytosis is the process in cells of internalizing nutrients, solutes or small particles (pinocytosis) or large particles such as internalized receptors, viruses, bacteria, or bacterial toxins (phagocytosis). Exocytosis is the process of transporting molecules to the cell surface. It facilitates placement or localization of membrane-bound receptors or other membrane proteins and secretion of hormones, neurotransmitters, digestive enzymes, wastes, etc.

A common property of all of these vacuoles is an acidic pH environment ranging from approximately pH 4.5-5.0. This acidity is maintained by the presence of a proton ATPase that uses the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane (Mellman, I. et al. (1986) Annu. Rev. Biochem. 55:663-700). Eukaryotic vacuolar proton ATPase (vp-ATPase) is a multimeric enzyme composed of 3-10 different subunits. One of these subunits is a highly hydrophobic polypeptide of approximately 16 kDa that is similar to the proteolipid component of vp-ATPases from eubacteria, fungi, and plant vacuoles (Mandel, M. et al. (1988) Proc. Natl. Acad. Sci. USA 85:5521-5524). The 16 kDa proteolipid component is the major subunit of the membrane portion of vp-ATPase and functions in the transport of protons across the membrane.

Lysosomes

Lysosomes are membranous vesicles containing various hydrolytic enzymes used for the controlled intracellular digestion of macromolecules. Lysosomes contain some 40 types of enzymes including proteases, nucleases, glycosidases, lipases, phospholipases, phosphatases, and sulfatases, all of which are acid hydrolases that function at a pH of about 5. Lysosomes are surrounded by a unique membrane containing transport proteins that allow the final products of macromolecule degradation, such as sugars, amino acids, and nucleotides, to be transported to the cytosol where they may be either excreted or reutilized by the cell. A vp-ATPase, such as that described above, maintains the acidic environment necessary for hydrolytic activity (Alberts, supra, pp. 610-611).

Endosomes

5

10

15

20

25

30

Endosomes are another type of acidic vacuole that is used to transport substances from the cell surface to the interior of the cell in the process of endocytosis. Like lysosomes, endosomes have an acidic environment provided by a vp-ATPase (Alberts et al. supra, pp. 610-618). Two types of endosomes are apparent based on tracer uptake studies that distinguish their time of formation in the cell and their cellular location. Early endosomes are found near the plasma membrane and appear to function primarily in the recycling of internalized receptors back to the cell surface. Late endosomes appear later in the endocytic process close to the Golgi apparatus and the nucleus, and appear to be associated with delivery of endocytosed material to lysosomes or to the TGN where they may be recycled. Specific proteins are associated with particular transport vesicles and their target compartments that may provide selectivity in targeting vesicles to their proper compartments. A cytosolic prenylated GTP-binding protein, Rab, is one such protein. Rabs 4, 5, and 11 are associated with the early endosome, whereas Rabs 7 and 9 associate with the late endosome.

Mitochondria

Mitochondria are oval-shaped organelles comprising an outer membrane, a tightly folded inner membrane, an intermembrane space between the outer and inner membranes, and a matrix inside the inner membrane. The outer membrane contains many porin molecules that allow ions and charged molecules to enter the intermembrane space, while the inner membrane contains a variety of transport proteins that transfer only selected molecules. Mitochondria are the primary sites of energy production in cells.

Energy is produced by the oxidation of glucose and fatty acids. Glucose is initially converted to pyruvate in the cytoplasm. Fatty acids and pyruvate are transported to the mitochondria for complete oxidation to CO₂ coupled by enzymes to the transport of electrons from NADH and FADH₂ to oxygen and to the synthesis of ATP (oxidative phosphorylation) from ADP and P_i.

Pyruvate is transported into the mitochondria and converted to acetyl-CoA for oxidation via the citric acid cycle, involving pyruvate dehydrogenase components, dihydrolipoyl transacetylase, and

dihydrolipoyl dehydrogenase. Enzymes involved in the citric acid cycle include: citrate synthetase, aconitases, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex including transsuccinylases, succinyl CoA synthetase, succinate dehydrogenase, fumarases, and malate dehydrogenase. Acetyl CoA is oxidized to CO_2 with concomitant formation of NADH, FADH₂, and GTP. In oxidative phosphorylation, the transfer of electrons from NADH and FADH₂ to oxygen by dehydrogenases is coupled to the synthesis of ATP from ADP and P_i by the F_0F_1 ATPase complex in the mitochondrial inner membrane. Enzyme complexes responsible for electron transport and ATP synthesis include the F_0F_1 ATPase complex, ubiquinone(CoQ)-cytochrome c reductase, ubiquinone reductase, cytochrome b, cytochrome c_1 , FeS protein, and cytochrome c oxidase.

10 Peroxisomes

15

20

25

30

Peroxisomes, like mitochondria, are a major site of oxygen utilization. They contain one or more enzymes, such as catalase and urate oxidase, that use molecular oxygen to remove hydrogen atoms from specific organic substrates in an oxidative reaction that produces hydrogen peroxide (Alberts, supra, pp. 574-577). Catalase oxidizes a variety of substrates including phenols, formic acid, formaldehyde, and alcohol and is important in peroxisomes of liver and kidney cells for detoxifying various toxic molecules that enter the bloodstream. Another major function of oxidative reactions in peroxisomes is the breakdown of fatty acids in a process called β oxidation. β oxidation results in shortening of the alkyl chain of fatty acids by blocks of two carbon atoms that are converted to acetyl CoA and exported to the cytosol for reuse in biosynthetic reactions.

Also like mitochondria, peroxisomes import their proteins from the cytosol using a specific signal sequence located near the C-terminus of the protein. The importance of this import process is evident in the inherited human disease Zellweger syndrome, in which a defect in importing proteins into perixosomes leads to a perixosomal deficiency resulting in severe abnormalities in the brain, liver, and kidneys, and death soon after birth. One form of this disease has been shown to be due to a mutation in the gene encoding a perixosomal integral membrane protein called peroxisome assembly factor-1.

The discovery of new human molecules satisfies a need in the art by providing new compositions which are useful in the diagnosis, study, prevention, and treatment of diseases associated with, as well as effects of exogenous compounds on, the expression of human molecules.

SUMMARY OF THE INVENTION

The present invention relates to nucleic acid sequences comprising human diagnostic and therapeutic polynucleotides (dithp) as presented in the Sequence Listing. Some of the dithp uniquely identify genes encoding human structural, functional, and regulatory molecules.

The invention provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d). In one alternative, the polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71. In another alternative, the polynucleotide comprises at least 60 contiguous nucleotides of a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d). The invention further provides a composition for the detection of expression of human diagnostic and therapeutic polynucleotides, comprising at least one isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d); and a detectable label.

10

15

20

30

The invention also provides a method for detecting a target polynucleotide in a sample, said target polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof. In one alternative, the probe comprises at least 30 contiguous nucleotides. In another alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a recombinant polynucleotide comprising a promoter sequence

operably linked to an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d). In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide. In a further alternative, the invention provides a method for producing a human diagnostic and therapeutic polypeptide, the method comprising a) culturing a cell under conditions suitable for expression of the human diagnostic and therapeutic polypeptide, wherein said cell is transformed with the recombinant polynucleotide, and b) recovering the human diagnostic and therapeutic polypeptide so expressed.

10

15

20

25

30

The invention also provides a purified human diagnostic and therapeutic polypeptide (DITHP) encoded by at least one polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71. Additionally, the invention provides an isolated antibody which specifically binds to the human diagnostic and therapeutic polypeptide. The invention further provides a method of identifying a test compound which specifically binds to the human diagnostic and therapeutic polypeptide, the method comprising the steps of a) providing a test compound; b) combining the human diagnostic and therapeutic polypeptide with the test compound for a sufficient time and under suitable conditions for binding; and c) detecting binding of the human diagnostic and therapeutic polypeptide to the test compound, thereby identifying the test compound which specifically binds the human diagnostic and therapeutic polypeptide.

The invention further provides a microarray wherein at least one element of the microarray is an isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d). The invention also provides a method for generating a transcript image of a sample which contains polynucleotides. The method comprises a) labeling the polynucleotides of the sample, b) contacting the elements of the microarray with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.

Additionally, the invention provides a method for screening a compound for effectiveness in

altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; c) a polynucleotide sequence complementary to a); d) a polynucleotide sequence complementary to b); and e) an RNA equivalent of a) through d). The method comprises a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; ii) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence selected from the group consisting of i) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; ii) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71; iii) a polynucleotide sequence complementary to i), iv) a polynucleotide sequence complementary to ii), and v) an RNA equivalent of i)-iv), and alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i-v above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

DESCRIPTION OF THE TABLES

10

15

20

25

30

Table 1 shows the sequence identification numbers (SEQ ID NO:s) and template identification numbers (template IDs) corresponding to the polynucleotides of the present invention, along with their GenBank hits (GI Numbers), probability scores, and functional annotations corresponding to the GenBank hits.

Table 2 shows the sequence identification numbers (SEQ ID NO:s) and template identification numbers (template IDs) corresponding to the polynucleotides of the present invention, along with polynucleotide segments of each template sequence as defined by the indicated "start" and "stop" nucleotide positions. The reading frames of the polynucleotide segments and the Pfam hits, Pfam descriptions, and E-values corresponding to the polypeptide domains encoded by the polynucleotide segments are indicated.

Table 3 shows the sequence identification numbers (SEQ ID NO:s) and template identification numbers (template IDs) corresponding to the polynucleotides of the present invention, along with polynucleotide segments of each template sequence as defined by the indicated "start" and "stop" nucleotide positions. The reading frames of the polynucleotide segments are shown, and the polypeptides encoded by the polynucleotide segments constitute either signal peptide (SP) or transmembrane (TM) domains, as indicated.

Table 4 shows the sequence identification numbers (SEQ ID NO:s) and template identification numbers (template IDs) corresponding to the polynucleotides of the present invention, along with component sequence identification numbers (component IDs) corresponding to each template. The component sequences, which were used to assemble the template sequences, are defined by the indicated "start" and "stop" nucleotide positions along each template.

Table 5 shows the tissue distribution profiles for the templates of the invention.

Table 6 summarizes the bioinformatics tools which are useful for analysis of the polynucleotides of the present invention. The first column of Table 6 lists analytical tools, programs, and algorithms, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences).

DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

Before the nucleic acid sequences and methods are presented, it is to be understood that this invention is not limited to the particular machines, methods, and materials described. Although particular embodiments are described, machines, methods, and materials similar or equivalent to these embodiments may be used to practice the invention. The preferred machines, methods, and materials set forth are not intended to limit the scope of the invention which is limited only by the appended claims.

The singular forms "a", "an", and "the" include plural reference unless the context clearly

dictates otherwise. All technical and scientific terms have the meanings commonly understood by one of ordinary skill in the art. All publications are incorporated by reference for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are presented and which might be used in connection with the invention. Nothing in the specification is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

Definitions

10

15

20

25

30

As used herein, the lower case "dithp" refers to a nucleic acid sequence, while the upper case "DITHP" refers to an amino acid sequence encoded by dithp. A "full-length" dithp refers to a nucleic acid sequence containing the entire coding region of a gene endogenously expressed in human tissue.

"Adjuvants" are materials such as Freund's adjuvant, mineral gels (aluminum hydroxide), and surface active substances (lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol) which may be administered to increase a host's immunological response.

"Allele" refers to an alternative form of a nucleic acid sequence. Alleles result from a "mutation," a change or an alternative reading of the genetic code. Any given gene may have none, one, or many allelic forms. Mutations which give rise to alleles include deletions, additions, or substitutions of nucleotides. Each of these changes may occur alone, or in combination with the others, one or more times in a given nucleic acid sequence. The present invention encompasses allelic dithp.

"Amino acid sequence" refers to a peptide, a polypeptide, or a protein of either natural or synthetic origin. The amino acid sequence is not limited to the complete, endogenous amino acid sequence and may be a fragment, epitope, variant, or derivative of a protein expressed by a nucleic acid sequence.

"Amplification" refers to the production of additional copies of a sequence and is carried out using polymerase chain reaction (PCR) technologies well known in the art.

"Antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind DITHP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or peptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

"Antisense sequence" refers to a sequence capable of specifically hybridizing to a target

sequence. The antisense sequence may include DNA, RNA, or any nucleic acid mimic or analog such as peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.

"Antisense sequence" refers to a sequence capable of specifically hybridizing to a target sequence. The antisense sequence can be DNA, RNA, or any nucleic acid mimic or analog.

5

10

15

20

25

30

"Antisense technology" refers to any technology which relies on the specific hybridization of an antisense sequence to a target sequence.

A "bin" is a portion of computer memory space used by a computer program for storage of data, and bounded in such a manner that data stored in a bin may be retrieved by the program.

"Biologically active" refers to an amino acid sequence having a structural, regulatory, or biochemical function of a naturally occurring amino acid sequence.

"Clone joining" is a process for combining gene bins based upon the bins' containing sequence information from the same clone. The sequences may assemble into a primary gene transcript as well as one or more splice variants.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing (5'-A-G-T-3' pairs with its complement 3'-T-C-A-5').

A "component sequence" is a nucleic acid sequence selected by a computer program such as PHRED and used to assemble a consensus or template sequence from one or more component sequences.

A "consensus sequence" or "template sequence" is a nucleic acid sequence which has been assembled from overlapping sequences, using a computer program for fragment assembly such as the GELVIEW fragment assembly system (Genetics Computer Group (GCG), Madison WI) or using a relational database management system (RDMS).

"Conservative amino acid substitutions" are those substitutions that, when made, least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative substitutions.

	Original Residue	Conservative Substitution	
	Ala	Gly, Ser	
	Arg	His, Lys	
35	Asn	Asp, Gln, His	

	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
5	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
10	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
15	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

20

25

30

35

Conservative substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

"Deletion" refers to a change in either a nucleic or amino acid sequence in which at least one nucleotide or amino acid residue, respectively, is absent.

"Derivative" refers to the chemical modification of a nucleic acid sequence, such as by replacement of hydrogen by an alkyl, acyl, amino, hydroxyl, or other group.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

"E-value" refers to the statistical probability that a match between two sequences occurred by chance.

A "fragment" is a unique portion of dithp or DITHP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 10 to 1000 contiguous amino acid residues or nucleotides. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous amino acid residues or nucleotides in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.

Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing and the figures, may be encompassed by the present embodiments.

A fragment of dithp comprises a region of unique polynucleotide sequence that specifically identifies dithp, for example, as distinct from any other sequence in the same genome. A fragment of dithp is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish dithp from related polynucleotide sequences. The precise length of a fragment of dithp and the region of dithp to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of DITHP is encoded by a fragment of dithp. A fragment of DITHP comprises a region of unique amino acid sequence that specifically identifies DITHP. For example, a fragment of DITHP is useful as an immunogenic peptide for the development of antibodies that specifically recognize DITHP. The precise length of a fragment of DITHP and the region of DITHP to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

10

15

25

30

A "full length" nucleotide sequence is one containing at least a start site for translation to a protein sequence, followed by an open reading frame and a stop site, and encoding a "full length" polypeptide.

"Hit" refers to a sequence whose annotation will be used to describe a given template. Criteria for selecting the top hit are as follows: if the template has one or more exact nucleic acid matches, the top hit is the exact match with highest percent identity. If the template has no exact matches but has significant protein hits, the top hit is the protein hit with the lowest E-value. If the template has no significant protein hits, but does have significant non-exact nucleotide hits, the top hit is the nucleotide hit with the lowest E-value.

"Homology" refers to sequence similarity either between a reference nucleic acid sequence and at least a fragment of a dithp or between a reference amino acid sequence and a fragment of a DITHP.

"Hybridization" refers to the process by which a strand of nucleotides anneals with a complementary strand through base pairing. Specific hybridization is an indication that two nucleic acid sequences share a high degree of identity. Specific hybridization complexes form under defined annealing conditions, and remain hybridized after the "washing" step. The defined hybridization conditions include the annealing conditions and the washing step(s), the latter of which is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid probes that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely

determinable and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency.

Generally, stringency of hybridization is expressed with reference to the temperature under which the wash step is carried out. Generally, such wash temperatures are selected to be about 5°C to 20° C lower than the thermal melting point ($T_{\rm m}$) for the specific sequence at a defined ionic strength and pH. The $T_{\rm m}$ is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating $T_{\rm m}$ and conditions for nucleic acid hybridization is well known and can be found in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, $2^{\rm nd}$ ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

10

15

20

25

30

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68° C in the presence of about $0.2 \times SSC$ and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65° C, 60° C, or 55° C may be used. SSC concentration may be varied from about 0.2 to $2 \times SSC$, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, denatured salmon sperm DNA at about $100\text{-}200 \,\mu\text{g/ml}$. Useful variations on these conditions will be readily apparent to those skilled in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their resultant proteins.

Other parameters, such as temperature, salt concentration, and detergent concentration may be varied to achieve the desired stringency. Denaturants, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as RNA:DNA hybridizations. Appropriate hybridization conditions are routinely determinable by one of ordinary skill in the art.

"Immunogenic" describes the potential for a natural, recombinant, or synthetic peptide, epitope, polypeptide, or protein to induce antibody production in appropriate animals, cells, or cell lines.

"Insertion" or "addition" refers to a change in either a nucleic or amino acid sequence in which at least one nucleotide or residue, respectively, is added to the sequence.

"Labeling" refers to the covalent or noncovalent joining of a polynucleotide, polypeptide, or antibody with a reporter molecule capable of producing a detectable or measurable signal.

"Microarray" is any arrangement of nucleic acids, amino acids, antibodies, etc., on a substrate. The substrate may be a solid support such as beads, glass, paper, nitrocellulose, nylon, or an appropriate membrane.

"Linkers" are short stretches of nucleotide sequence which may be added to a vector or a dithp to create restriction endonuclease sites to facilitate cloning. "Polylinkers" are engineered to incorporate

multiple restriction enzyme sites and to provide for the use of enzymes which leave 5' or 3' overhangs (e.g., BamHI, EcoRI, and HindIII) and those which provide blunt ends (e.g., EcoRV, SnaBI, and StuI).

"Naturally occurring" refers to an endogenous polynucleotide or polypeptide that may be isolated from viruses or prokaryotic or eukaryotic cells.

5

10

15

20

25

30

"Nucleic acid sequence" refers to the specific order of nucleotides joined by phosphodiester bonds in a linear, polymeric arrangement. Depending on the number of nucleotides, the nucleic acid sequence can be considered an oligomer, oligonucleotide, or polynucleotide. The nucleic acid can be DNA, RNA, or any nucleic acid analog, such as PNA, may be of genomic or synthetic origin, may be either double-stranded or single-stranded, and can represent either the sense or antisense (complementary) strand.

"Oligomer" refers to a nucleic acid sequence of at least about 6 nucleotides and as many as about 60 nucleotides, preferably about 15 to 40 nucleotides, and most preferably between about 20 and 30 nucleotides, that may be used in hybridization or amplification technologies. Oligomers may be used as, e.g., primers for PCR, and are usually chemically synthesized.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to a DNA mimic in which nucleotide bases are attached to a pseudopeptide backbone to increase stability. PNAs, also designated antigene agents, can prevent gene expression by targeting complementary messenger RNA.

The phrases "percent identity" and "% identity", as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is

PCT/US00/25643 WO 01/21836

selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequence pairs.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search 5 Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to determine alignment between a known polynucleotide sequence and other sequences on a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 10 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2/. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such default parameters may be, for example: 15

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

20

25

30

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEO ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in figures or Sequence Listings, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

PCT/US00/25643 WO 01/21836

The phrases "percent identity" and "% identity", as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the hydrophobicity and acidity of the substituted residue, thus preserving the structure (and therefore function) of the folded polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalty

Gap x drop-off: 50

Expect: 10

10

15

20

25

30

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in figures or Sequence Listings, may be used to describe a length over which percentage identity may be measured.

"Post-translational modification" of a DITHP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu and the DITHP.

"Probe" refers to dithp or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the figures and Sequence Listing, may be used.

10

15

20

25

30

Methods for preparing and using probes and primers are described in the references, for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel et al.,1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge

UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

"Purified" refers to molecules, either polynucleotides or polypeptides that are isolated or separated from their natural environment and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other compounds with which they are naturally associated.

10

15

20

25

30

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, <u>supra</u>. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

"Regulatory element" refers to a nucleic acid sequence from nontranslated regions of a gene, and includes enhancers, promoters, introns, and 3' untranslated regions, which interact with host proteins to carry out or regulate transcription or translation.

"Reporter" molecules are chemical or biochemical moieties used for labeling a nucleic acid, an amino acid, or an antibody. They include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

"Sample" is used in its broadest sense. Samples may contain nucleic or amino acids, antibodies, or other materials, and may be derived from any source (e.g., bodily fluids including, but not limited to, saliva, blood, and urine; chromosome(s), organelles, or membranes isolated from a cell; genomic DNA, RNA, or cDNA in solution or bound to a substrate; and cleared cells or tissues or blots or imprints from such cells or tissues).

"Specific binding" or "specifically binding" refers to the interaction between a protein or peptide and its agonist, antibody, antagonist, or other binding partner. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

10

15

20

25

30

"Substitution" refers to the replacement of at least one nucleotide or amino acid by a different nucleotide or amino acid.

"Substrate" refers to any suitable rigid or semi-rigid support including, e.g., membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles or capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular tissue or cell type under given conditions at a given time.

"Transformation" refers to a process by which exogenous DNA enters a recipient cell.

Transformation may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the host cell being transformed.

"Transformants" include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as cells which transiently express inserted DNA or RNA.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization,

but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, and plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 25% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 30%, at least 50%, at least 60%, at least 70%, at least 80%, at least 95% or even at least 98% or greater sequence identity over a certain defined length. The variant may result in "conservative" amino acid changes which do not affect structural and/or chemical properties. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

10

15

20

25

30

In an alternative, variants of the polynucleotides of the present invention may be generated through recombinant methods. One possible method is a DNA shuffling technique such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of DITHP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and

selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

10

15

20

25

30

In a particular embodiment, cDNA sequences derived from human tissues and cell lines were aligned based on nucleotide sequence identity and assembled into "consensus" or "template" sequences which are designated by the template identification numbers (template IDs) in column 2 of Table 1. The sequence identification numbers (SEQ ID NO:s) corresponding to the template IDs are shown in column 1. The template sequences have similarity to GenBank sequences, or "hits," as designated by the GI Numbers in column 3. The statistical probability of each GenBank hit is indicated by a probability score in column 4, and the functional annotation corresponding to each GenBank hit is listed in column 5.

The invention incorporates the nucleic acid sequences of these templates as disclosed in the Sequence Listing and the use of these sequences in the diagnosis and treatment of disease states characterized by defects in human molecules. The invention further utilizes these sequences in hybridization and amplification technologies, and in particular, in technologies which assess gene expression patterns correlated with specific cells or tissues and their responses <u>in vivo</u> or <u>in vitro</u> to pharmaceutical agents, toxins, and other treatments. In this manner, the sequences of the present invention are used to develop a transcript image for a particular cell or tissue.

Derivation of Nucleic Acid Sequences

cDNA was isolated from libraries constructed using RNA derived from normal and diseased human tissues and cell lines. The human tissues and cell lines used for cDNA library construction were selected from a broad range of sources to provide a diverse population of cDNAs representative of gene

transcription throughout the human body. Descriptions of the human tissues and cell lines used for cDNA library construction are provided in the LIFESEQ database (Incyte Genomics, Inc. (Incyte), Palo Alto CA). Human tissues were broadly selected from, for example, cardiovascular, dermatologic, endocrine, gastrointestinal, hematopoietic/immune system, musculoskeletal, neural, reproductive, and urologic sources.

Cell lines used for cDNA library construction were derived from, for example, leukemic cells, teratocarcinomas, neuroepitheliomas, cervical carcinoma, lung fibroblasts, and endothelial cells. Such cell lines include, for example, THP-1, Jurkat, HUVEC, hNT2, WI38, HeLa, and other cell lines commonly used and available from public depositories (American Type Culture Collection, Manassas VA). Prior to mRNA isolation, cell lines were untreated, treated with a pharmaceutical agent such as 5'-aza-2'-deoxycytidine, treated with an activating agent such as lipopolysaccharide in the case of leukocytic cell lines, or, in the case of endothelial cell lines, subjected to shear stress.

Sequencing of the cDNAs

10

15

20

25

30

Methods for DNA sequencing are well known in the art. Conventional enzymatic methods employ the Klenow fragment of DNA polymerase I, SEQUENASE DNA polymerase (U.S. Biochemical Corporation, Cleveland OH), Taq polymerase (PE Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Inc. (Amersham Pharmacia Biotech), Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies Inc. (Life Technologies), Gaithersburg MD), to extend the nucleic acid sequence from an oligonucleotide primer annealed to the DNA template of interest. Methods have been developed for the use of both single-stranded and double-stranded templates. Chain termination reaction products may be electrophoresed on urea-polyacrylamide gels and detected either by autoradiography (for radioisotope-labeled nucleotides) or by fluorescence (for fluorophore-labeled nucleotides). Automated methods for mechanized reaction preparation, sequencing, and analysis using fluorescence detection methods have been developed. Machines used to prepare cDNAs for sequencing can include the MICROLAB 2200 liquid transfer system (Hamilton Company (Hamilton), Reno NV), Peltier thermal cycler (PTC200; MJ Research, Inc. (MJ Research), Watertown MA), and ABI CATALYST 800 thermal cycler (PE Biosystems). Sequencing can be carried out using, for example, the ABI 373 or 377 (PE Biosystems) or MEGABACE 1000 (Molecular Dynamics, Inc. (Molecular Dynamics), Sunnyvale CA) DNA sequencing systems, or other automated and manual sequencing systems well known in the art.

The nucleotide sequences of the Sequence Listing have been prepared by current, state-of-theart, automated methods and, as such, may contain occasional sequencing errors or unidentified

nucleotides. Such unidentified nucleotides are designated by an N. These infrequent unidentified bases do not represent a hindrance to practicing the invention for those skilled in the art. Several methods employing standard recombinant techniques may be used to correct errors and complete the missing sequence information. (See, e.g., those described in Ausubel, F.M. et al. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY; and Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY.)

Assembly of cDNA Sequences

10

15

20

25

30

Human polynucleotide sequences may be assembled using programs or algorithms well known in the art. Sequences to be assembled are related, wholly or in part, and may be derived from a single or many different transcripts. Assembly of the sequences can be performed using such programs as PHRAP (Phils Revised Assembly Program) and the GELVIEW fragment assembly system (GCG), or other methods known in the art.

Alternatively, cDNA sequences are used as "component" sequences that are assembled into "template" or "consensus" sequences as follows. Sequence chromatograms are processed, verified, and quality scores are obtained using PHRED. Raw sequences are edited using an editing pathway known as Block 1 (See, e.g., the LIFESEQ Assembled User Guide, Incyte Genomics, Palo Alto, CA). A series of BLAST comparisons is performed and low-information segments and repetitive elements (e.g., dinucleotide repeats, Alu repeats, etc.) are replaced by "n's", or masked, to prevent spurious matches. Mitochondrial and ribosomal RNA sequences are also removed. The processed sequences are then loaded into a relational database management system (RDMS) which assigns edited sequences to existing templates, if available. When additional sequences are added into the RDMS, a process is initiated which modifies existing templates or creates new templates from works in progress (i.e., nonfinal assembled sequences) containing queued sequences or the sequences themselves. After the new sequences have been assigned to templates, the templates can be merged into bins. If multiple templates exist in one bin, the bin can be split and the templates reannotated.

Once gene bins have been generated based upon sequence alignments, bins are "clone joined" based upon clone information. Clone joining occurs when the 5' sequence of one clone is present in one bin and the 3' sequence from the same clone is present in a different bin, indicating that the two bins should be merged into a single bin. Only bins which share at least two different clones are merged.

A resultant template sequence may contain either a partial or a full length open reading frame, or all or part of a genetic regulatory element. This variation is due in part to the fact that the full length cDNAs of many genes are several hundred, and sometimes several thousand, bases in length. With current technology, cDNAs comprising the coding regions of large genes cannot be cloned because of

vector limitations, incomplete reverse transcription of the mRNA, or incomplete "second strand" synthesis. Template sequences may be extended to include additional contiguous sequences derived from the parent RNA transcript using a variety of methods known to those of skill in the art. Extension may thus be used to achieve the full length coding sequence of a gene.

Analysis of the cDNA Sequences

5

10

15

20

25

The cDNA sequences are analyzed using a variety of programs and algorithms which are well known in the art. (See, e.g., Ausubel, 1997, supra, Chapter 7.7; Meyers, R.A. (Ed.) (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853; and Table 6.) These analyses comprise both reading frame determinations, e.g., based on triplet codon periodicity for particular organisms (Fickett, J.W. (1982) Nucleic Acids Res. 10:5303-5318); analyses of potential start and stop codons; and homology searches.

Computer programs known to those of skill in the art for performing computer-assisted searches for amino acid and nucleic acid sequence similarity, include, for example, Basic Local Alignment Search Tool (BLAST; Altschul, S.F. (1993) J. Mol. Evol. 36:290-300; Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410). BLAST is especially useful in determining exact matches and comparing two sequence fragments of arbitrary but equal lengths, whose alignment is locally maximal and for which the alignment score meets or exceeds a threshold or cutoff score set by the user (Karlin, S. et al. (1988) Proc. Natl. Acad. Sci. USA 85:841-845). Using an appropriate search tool (e.g., BLAST or HMM), GenBank, SwissProt, BLOCKS, PFAM and other databases may be searched for sequences containing regions of homology to a query dithp or DITHP of the present invention.

Other approaches to the identification, assembly, storage, and display of nucleotide and polypeptide sequences are provided in "Relational Database for Storing Biomolecule Information," U.S.S.N. 08/947,845, filed October 9, 1997; "Project-Based Full-Length Biomolecular Sequence Database," U.S.S.N. 08/811,758, filed March 6, 1997; and "Relational Database and System for Storing Information Relating to Biomolecular Sequences," U.S.S.N. 09/034,807, filed March 4, 1998, all of which are incorporated by reference herein in their entirety.

Protein hierarchies can be assigned to the putative encoded polypeptide based on, e.g., motif, BLAST, or biological analysis. Methods for assigning these hierarchies are described, for example, in "Database System Employing Protein Function Hierarchies for Viewing Biomolecular Sequence Data," U.S.S.N. 08/812,290, filed March 6, 1997, incorporated herein by reference.

Identification of Human Diagnostic and Therapeutic Molecules Encoded by dithp

PCT/US00/25643 WO 01/21836

The identities of the DITHP encoded by the dithp of the present invention were obtained by analysis of the assembled cDNA sequences. SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, and SEQ ID NO:8 encode, for example, human enzyme molecules. SEO ID NO:9 encodes, for example, an extracellular information transmission molecule. SEQ ID NO:10 and SEQ ID NO:11 encode, for example, receptor molecules. SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, and SEQ ID NO:18 encode, for example, intracellular signaling molecules. SEQ ID NO:19, SEQ ID NO:20, SEO ID NO:21, SEO ID NO:22, SEO ID NO:23, SEO ID NO:24, SEO ID NO:25, SEO ID NO:26, SEO ID NO:27, SEO ID NO:28, SEO ID NO:29, SEO ID NO:30, SEO ID NO:31, SEO ID NO:32, and SEQ ID NO:33 encode, for example, transcription factor molecules. SEQ ID NO:34 encodes, for example, a protein modification and maintenance molecule. SEQ ID NO:35 and SEQ ID NO:36 encode, for example, nucleic acid synthesis and modification molecules. SEQ ID NO:37 encodes, for example, an antigen recognition molecule. SEQ ID NO:38 and SEQ ID NO:39 encode, for example, secreted/extracellular matrix molecules. SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, and SEQ ID NO:45 encode, for example, cytoskeletal molecules. SEQ ID 15 NO:46, SEQ ID NO:47, and SEQ ID NO:48 encode, for example, cell membrane molecules. SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, and SEQ ID NO:53 encode, for example, ribosomal molecules. SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEO ID NO:59, SEO ID NO:60, SEO ID NO:61, SEO ID NO:62, and SEO ID NO:63 encode, for example, organelle associated molecules. SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:67, and SEO ID NO:68 encode, for example, biochemical pathway molecules. SEQ ID NO:69, SEQ ID NO:70, and SEQ ID NO:71 encode, for example, molecules associated with growth and development.

Sequences of Human Diagnostic and Therapeutic Molecules 25

10

30

The dithp of the present invention may be used for a variety of diagnostic and therapeutic purposes. For example, a dithp may be used to diagnose a particular condition, disease, or disorder associated with human molecules. Such conditions, diseases, and disorders include, but are not limited to, a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall . bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid,

penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; an autoimmune/inflammatory disorder, such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, episodic lymphopenia with lymphocytotoxins, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoporosis, pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; an infection caused by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, reovirus, retrovirus, rhabdovirus, or togavirus; an infection caused by a bacterial agent classified as pneumococcus, staphylococcus, streptococcus, bacillus, corynebacterium, clostridium, meningococcus, gonococcus, listeria, moraxella, kingella, haemophilus, legionella, bordetella, gramnegative enterobacterium including shigella, salmonella, or campylobacter, pseudomonas, vibrio, brucella, francisella, yersinia, bartonella, norcardium, actinomyces, mycobacterium, spirochaetale, rickettsia, chlamydia, or mycoplasma; an infection caused by a fungal agent classified as aspergillus, blastomyces, dermatophytes, cryptococcus, coccidioides, malasezzia, histoplasma, or other mycosiscausing fungal agent; and an infection caused by a parasite classified as plasmodium or malariacausing, parasitic entamoeba, leishmania, trypanosoma, toxoplasma, pneumocystis carinii, intestinal protozoa such as giardia, trichomonas, tissue nematode such as trichinella, intestinal nematode such as ascaris, lymphatic filarial nematode, trematode such as schistosoma, and cestrode such as tapeworm; a developmental disorder such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy,

10

15

20

25

30

spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; an endocrine disorder such as a disorder of the hypothalamus and/or pituitary resulting from lesions such as a primary brain tumor, adenoma, infarction associated with pregnancy, hypophysectomy, aneurysm, vascular malformation, thrombosis, infection, immunological disorder, and complication due to head trauma; a disorder associated with hypopituitarism including hypogonadism, Sheehan syndrome, diabetes insipidus, Kallman's disease, Hand-Schuller-Christian disease, Letterer-Siwe disease, sarcoidosis, empty sella syndrome, and dwarfism; a disorder associated with hyperpituitarism including acromegaly, giantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH) often caused by benign adenoma; a disorder associated with hypothyroidism including goiter, myxedema, acute thyroiditis associated with bacterial infection, subacute thyroiditis associated with viral infection, autoimmune thyroiditis (Hashimoto's disease), and cretinism; a disorder associated with hyperthyroidism including thyrotoxicosis and its various forms, Grave's disease, pretibial myxedema, toxic multinodular goiter, thyroid carcinoma, and Plummer's disease; a disorder associated with hyperparathyroidism including Conn disease (chronic hypercalemia); a pancreatic disorder such as Type I or Type II diabetes mellitus and associated complications; a disorder associated with the adrenals such as hyperplasia, carcinoma, or adenoma of the adrenal cortex, hypertension associated with alkalosis, amyloidosis, hypokalemia, Cushing's disease, Liddle's syndrome, and Arnold-Healy-Gordon syndrome, pheochromocytoma tumors, and Addison's disease; a disorder associated with gonadal steroid hormones such as: in women, abnormal prolactin production, infertility, endometriosis, perturbation of the menstrual cycle, polycystic ovarian disease, hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, and, in post-menopausal women, osteoporosis; and, in men, Leydig cell deficiency, male climacteric phase, and germinal cell aplasia, a hypergonadal disorder associated with Leydig cell tumors, androgen resistance associated with absence of androgen receptors, syndrome of 5 α-reductase, and gynecomastia; a metabolic disorder such as Addison's disease, cerebrotendinous xanthomatosis, congenital adrenal hyperplasia, coumarin resistance, cystic fibrosis, diabetes, fatty hepatocirrhosis, fructose-1,6-diphosphatase deficiency, galactosemia, goiter, glucagonoma, glycogen storage diseases, hereditary fructose intolerance, hyperadrenalism, hypoadrenalism, hyperparathyroidism, hypoparathyroidism, hypercholesterolemia, hyperthyroidism, hypoglycemia, hypothyroidism, hyperlipidemia, hyperlipemia, lipid myopathies, lipodystrophies, lysosomal storage diseases, mannosidosis, neuraminidase deficiency, obesity, pentosuria phenylketonuria, pseudovitamin D-deficiency rickets; disorders of carbohydrate metabolism such as congenital type II dyserythropoietic anemia, diabetes, insulin-dependent diabetes mellitus, non-insulin-dependent diabetes mellitus, fructose-1,6-diphosphatase deficiency, galactosemia,

10

15

20

25

glucagonoma, hereditary fructose intolerance, hypoglycemia, mannosidosis, neuraminidase deficiency, obesity, galactose epimerase deficiency, glycogen storage diseases, lysosomal storage diseases, fructosuria, pentosuria, and inherited abnormalities of pyruvate metabolism; disorders of lipid metabolism such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM₂ gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity; and disorders of copper metabolism such as Menke's disease, Wilson's disease, and Ehlers-Danlos syndrome type IX; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathy, myasthenia gravis, periodic paralysis, a mental disorder including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder including ulcerative colitis, gastric and duodenal ulcers, cystinuria, dibasicaminoaciduria, hypercystinuria, lysinuria, hartnup disease, tryptophan malabsorption, methionine malabsorption, histidinuria, iminoglycinuria, dicarboxylicaminoaciduria, cystinosis, renal

10

15

20

25

PCT/US00/25643 WO 01/21836

glycosuria, hypouricemia, familial hypophophatemic rickets, congenital chloridorrhea, distal renal tubular acidosis, Menkes' disease, Wilson's disease, lethal diarrhea, juvenile pernicious anemia. folate malabsorption, adrenoleukodystrophy, hereditary myoglobinuria, and Zellweger syndrome; a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrythmia, tachyarrythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, and polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia. Grave's disease, goiter, glucose-galactose malabsorption syndrome, hypercholesterolemia, Cushing's disease, and Addison's disease; and a connective tissue disorder such as osteogenesis imperfecta, Ehlers-Danlos syndrome, chondrodysplasias, Marfan syndrome, Alport syndrome, familial aortic aneurysm, achondroplasia, mucopolysaccharidoses, osteoporosis, osteopetrosis, Paget's disease, rickets, osteomalacia, hyperparathyroidism, renal osteodystrophy, osteonecrosis, osteomyelitis, osteoma, osteoid osteoma, osteoblastoma, osteosarcoma. osteochondroma, chondroma, chondroblastoma, chondromyxoid fibroma, chondrosarcoma, fibrous cortical defect, nonossifying fibroma, fibrous dysplasia, fibrosarcoma, malignant fibrous 25 histiocytoma, Ewing's sarcoma, primitive neuroectodermal tumor, giant cell tumor, osteoarthritis, rheumatoid arthritis, ankylosing spondyloarthritis, Reiter's syndrome, psoriatic arthritis, enteropathic arthritis, infectious arthritis, gout, gouty arthritis, calcium pyrophosphate crystal deposition disease, ganglion, synovial cyst, villonodular synovitis, systemic sclerosis, Dupuytren's contracture, hepatic fibrosis, lupus erythematosus, mixed connective tissue disease, epidermolysis bullosa simplex, bullous 30 congenital ichthyosiform erythroderma (epidermolytic hyperkeratosis), non-epidermolytic and epidermolytic palmoplantar keratoderma, ichthyosis bullosa of Siemens, pachyonychia congenita, and white sponge nevus. The dithp can be used to detect the presence of, or to quantify the amount of, a dithp-related polynucleotide in a sample. This information is then compared to information obtained

10

15

from appropriate reference samples, and a diagnosis is established. Alternatively, a polynucleotide complementary to a given dithp can inhibit or inactivate a therapeutically relevant gene related to the dithp.

5 Analysis of dithp Expression Patterns

10

15

20

30

The expression of dithp may be routinely assessed by hybridization-based methods to determine, for example, the tissue-specificity, disease-specificity, or developmental stage-specificity of dithp expression. For example, the level of expression of dithp may be compared among different cell types or tissues, among diseased and normal cell types or tissues, among cell types or tissues at different developmental stages, or among cell types or tissues undergoing various treatments. This type of analysis is useful, for example, to assess the relative levels of dithp expression in fully or partially differentiated cells or tissues, to determine if changes in dithp expression levels are correlated with the development or progression of specific disease states, and to assess the response of a cell or tissue to a specific therapy, for example, in pharmacological or toxicological studies. Methods for the analysis of dithp expression are based on hybridization and amplification technologies and include membrane-based procedures such as northern blot analysis, high-throughput procedures that utilize, for example, microarrays, and PCR-based procedures.

Hybridization and Genetic Analysis

The dithp, their fragments, or complementary sequences, may be used to identify the presence of and/or to determine the degree of similarity between two (or more) nucleic acid sequences. The dithp may be hybridized to naturally occurring or recombinant nucleic acid sequences under appropriately selected temperatures and salt concentrations. Hybridization with a probe based on the nucleic acid sequence of at least one of the dithp allows for the detection of nucleic acid sequences, including genomic sequences, which are identical or related to the dithp of the Sequence Listing. Probes may be selected from non-conserved or unique regions of at least one of the polynucleotides of SEQ ID NO:1-71 and tested for their ability to identify or amplify the target nucleic acid sequence using standard protocols.

Polynucleotide sequences that are capable of hybridizing, in particular, to those shown in SEQ ID NO:1-71 and fragments thereof, can be identified using various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions are discussed in "Definitions."

A probe for use in Southern or northern hybridization may be derived from a fragment of a dithp sequence, or its complement, that is up to several hundred nucleotides in length and is either

single-stranded or double-stranded. Such probes may be hybridized in solution to biological materials such as plasmids, bacterial, yeast, or human artificial chromosomes, cleared or sectioned tissues, or to artificial substrates containing dithp. Microarrays are particularly suitable for identifying the presence of and detecting the level of expression for multiple genes of interest by examining gene expression correlated with, e.g., various stages of development, treatment with a drug or compound, or disease progression. An array analogous to a dot or slot blot may be used to arrange and link polynucleotides to the surface of a substrate using one or more of the following: mechanical (vacuum), chemical, thermal, or UV bonding procedures. Such an array may contain any number of dithp and may be produced by hand or by using available devices, materials, and machines.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

Probes may be labeled by either PCR or enzymatic techniques using a variety of commercially available reporter molecules. For example, commercial kits are available for radioactive and chemiluminescent labeling (Amersham Pharmacia Biotech) and for alkaline phosphatase labeling (Life Technologies). Alternatively, dithp may be cloned into commercially available vectors for the production of RNA probes. Such probes may be transcribed in the presence of at least one labeled nucleotide (e.g., ³²P-ATP, Amersham Pharmacia Biotech).

Additionally the polynucleotides of SEQ ID NO:1-71 or suitable fragments thereof can be used to isolate full length cDNA sequences utilizing hybridization and/or amplification procedures well known in the art, e.g., cDNA library screening, PCR amplification, etc. The molecular cloning of such full length cDNA sequences may employ the method of cDNA library screening with probes using the hybridization, stringency, washing, and probing strategies described above and in Ausubel, supra, Chapters 3, 5, and 6. These procedures may also be employed with genomic libraries to isolate genomic sequences of dithp in order to analyze, e.g., regulatory elements.

Genetic Mapping

10

15

20

30

Gene identification and mapping are important in the investigation and treatment of almost all conditions, diseases, and disorders. Cancer, cardiovascular disease, Alzheimer's disease, arthritis, diabetes, and mental illnesses are of particular interest. Each of these conditions is more complex than the single gene defects of sickle cell anemia or cystic fibrosis, with select groups of genes being predictive of predisposition for a particular condition, disease, or disorder. For example,

cardiovascular disease may result from malfunctioning receptor molecules that fail to clear cholesterol from the bloodstream, and diabetes may result when a particular individual's immune system is activated by an infection and attacks the insulin-producing cells of the pancreas. In some studies, Alzheimer's disease has been linked to a gene on chromosome 21; other studies predict a different gene and location. Mapping of disease genes is a complex and reiterative process and generally proceeds from genetic linkage analysis to physical mapping.

As a condition is noted among members of a family, a genetic linkage map traces parts of chromosomes that are inherited in the same pattern as the condition. Statistics link the inheritance of particular conditions to particular regions of chromosomes, as defined by RFLP or other markers. (See, for example, Lander, E. S. and Botstein, D. (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.) Occasionally, genetic markers and their locations are known from previous studies. More often, however, the markers are simply stretches of DNA that differ among individuals. Examples of genetic linkage maps can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site.

10

15

20

25

30

In another embodiment of the invention, dithp sequences may be used to generate hybridization probes useful in chromosomal mapping of naturally occurring genomic sequences. Either coding or noncoding sequences of dithp may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a dithp coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent <u>in situ</u> hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Meyers, <u>supra</u>, pp. 965-968.) Correlation between the location of dithp on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The dithp sequences may also be used to detect polymorphisms that are genetically linked to the inheritance of a particular condition, disease, or disorder.

<u>In situ</u> hybridization of chromosomal preparations and genetic mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending existing genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as

mouse, may reveal associated markers even if the number or arm of the corresponding human chromosome is not known. These new marker sequences can be mapped to human chromosomes and may provide valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once a disease or syndrome has been crudely correlated by genetic linkage with a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequences of the subject invention may also be used to detect differences in chromosomal architecture due to translocation, inversion, etc., among normal, carrier, or affected individuals.

Once a disease-associated gene is mapped to a chromosomal region, the gene must be cloned in order to identify mutations or other alterations (e.g., translocations or inversions) that may be correlated with disease. This process requires a physical map of the chromosomal region containing the disease-gene of interest along with associated markers. A physical map is necessary for determining the nucleotide sequence of and order of marker genes on a particular chromosomal region. Physical mapping techniques are well known in the art and require the generation of overlapping sets of cloned DNA fragments from a particular organelle, chromosome, or genome. These clones are analyzed to reconstruct and catalog their order. Once the position of a marker is determined, the DNA from that region is obtained by consulting the catalog and selecting clones from that region. The gene of interest is located through positional cloning techniques using hybridization or similar methods.

20

25

30

10

15

Diagnostic Uses

The dithp of the present invention may be used to design probes useful in diagnostic assays. Such assays, well known to those skilled in the art, may be used to detect or confirm conditions, disorders, or diseases associated with abnormal levels of dithp expression. Labeled probes developed from dithp sequences are added to a sample under hybridizing conditions of desired stringency. In some instances, dithp, or fragments or oligonucleotides derived from dithp, may be used as primers in amplification steps prior to hybridization. The amount of hybridization complex formed is quantified and compared with standards for that cell or tissue. If dithp expression varies significantly from the standard, the assay indicates the presence of the condition, disorder, or disease. Qualitative or quantitative diagnostic methods may include northern, dot blot, or other membrane or dip-stick based technologies or multiple-sample format technologies such as PCR, enzyme-linked immunosorbent assay (ELISA)-like, pin, or chip-based assays.

The probes described above may also be used to monitor the progress of conditions, disorders, or diseases associated with abnormal levels of dithp expression, or to evaluate the efficacy of a

particular therapeutic treatment. The candidate probe may be identified from the dithp that are specific to a given human tissue and have not been observed in GenBank or other genome databases. Such a probe may be used in animal studies, preclinical tests, clinical trials, or in monitoring the treatment of an individual patient. In a typical process, standard expression is established by methods well known in the art for use as a basis of comparison, samples from patients affected by the disorder or disease are combined with the probe to evaluate any deviation from the standard profile, and a therapeutic agent is administered and effects are monitored to generate a treatment profile. Efficacy is evaluated by determining whether the expression progresses toward or returns to the standard normal pattern. Treatment profiles may be generated over a period of several days or several months. Statistical methods well known to those skilled in the art may be use to determine the significance of such therapeutic agents.

10

15

20

25

30

The polynucleotides are also useful for identifying individuals from minute biological samples, for example, by matching the RFLP pattern of a sample's DNA to that of an individual's DNA. The polynucleotides of the present invention can also be used to determine the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, an individual can be identified through a unique set of DNA sequences. Once a unique ID database is established for an individual, positive identification of that individual can be made from extremely small tissue samples.

In a particular aspect, oligonucleotide primers derived from the dithp of the invention may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from dithp are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequences of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence

chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

DNA-based identification techniques are critical in forensic technology. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using, e.g., PCR, to identify individuals. (See, e.g., Erlich, H. (1992) PCR Technology, Freeman and Co., New York, NY). Similarly, polynucleotides of the present invention can be used as polymorphic markers.

There is also a need for reagents capable of identifying the source of a particular tissue. Appropriate reagents can comprise, for example, DNA probes or primers prepared from the sequences of the present invention that are specific for particular tissues. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

The polynucleotides of the present invention can also be used as molecular weight markers on nucleic acid gels or Southern blots, as diagnostic probes for the presence of a specific mRNA in a particular cell type, in the creation of subtracted cDNA libraries which aid in the discovery of novel polynucleotides, in selection and synthesis of oligomers for attachment to an array or other support, and as an antigen to elicit an immune response.

Disease Model Systems Using dithp

10

15

20

25

The dithp of the invention or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent Number 5,175,383 and U.S. Patent Number 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination.

Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

The dithp of the invention may also be manipulated <u>in vitro</u> in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

The dithp of the invention can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of dithp is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.

Transformed cells are injected into blastulae, and the blastulae are implanted as described above.

Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress dithp, resulting, e.g., in the secretion of DITHP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

15 Screening Assays

20

30

DITHP encoded by polynucleotides of the present invention may be used to screen for molecules that bind to or are bound by the encoded polypeptides. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the bound molecule. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a ligand or fragment thereof, a natural substrate, or a structural or functional mimetic. (See, Coligan et al., (1991) <u>Current Protocols in Immunology</u> 1(2): Chapter 5.) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or to at least a fragment of the receptor, e.g., the active site. In either case, the molecule can be rationally designed using known techniques. Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, <u>Drosophila</u>, or <u>E. coli</u>. Cells expressing the polypeptide or cell membrane fractions which contain the expressed polypeptide are then contacted with a test compound and binding, stimulation, or inhibition of activity of either the polypeptide or the molecule is analyzed.

An assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. Alternatively, the assay may assess binding in the presence of a labeled competitor.

Additionally, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay using, e.g., a monoclonal or polyclonal antibody, can measure polypeptide level in a sample. The antibody can measure polypeptide level by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of the above assays can be used in a diagnostic or prognostic context. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

15 Transcript Imaging and Toxicological Testing

5

10

20

25

30

Another embodiment relates to the use of dithp to develop a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene

Transcript images which profile dithp expression may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect dithp expression <u>in vivo</u>, as in the case of a tissue or biopsy sample, or <u>in vitro</u>, as in the case of a cell line.

activity pertaining to human molecules for diagnostics and therapeutics.

Transcript images which profile dithp expression may also be used in conjunction with <u>in vitro</u> model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are

indicative of mechanisms of action and toxicity (Nuwaysir, E. F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and Anderson, N. L. (2000) Toxicol. Lett. 112-113:467-71, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

10

15

25

30

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of DITHP encoded by polynucleotides of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is

generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for DITHP to quantify the levels of DITHP expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-11; Mendoze, L. G. et al. (1999) Biotechniques 27:778-88). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or aminoreactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

10

15

20

25

30

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N. L. and Seilhamer, J. (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the DITHP encoded by polynucleotides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the DITHP encoded by polynucleotides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological

sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Transcript images may be used to profile dithp expression in distinct tissue types. This process can be used to determine human molecule activity in a particular tissue type relative to this activity in a different tissue type. Transcript images may be used to generate a profile of dithp expression characteristic of diseased tissue. Transcript images of tissues before and after treatment may be used for diagnostic purposes, to monitor the progression of disease, and to monitor the efficacy of drug treatments for diseases which affect the activity of human molecules.

Transcript images of cell lines can be used to assess human molecule activity and/or to identify cell lines that lack or misregulate this activity. Such cell lines may then be treated with pharmaceutical agents, and a transcript image following treatment may indicate the efficacy of these agents in restoring desired levels of this activity. A similar approach may be used to assess the toxicity of pharmaceutical agents as reflected by undesirable changes in human molecule activity. Candidate pharmaceutical agents may be evaluated by comparing their associated transcript images with those of pharmaceutical agents of known effectiveness.

Antisense Molecules

5

10

15

20

25

30

The polynucleotides of the present invention are useful in antisense technology. Antisense technology or therapy relies on the modulation of expression of a target protein through the specific binding of an antisense sequence to a target sequence encoding the target protein or directing its expression. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ; Alama, A. et al. (1997) Pharmacol. Res. 36(3):171-178; Crooke, S.T. (1997) Adv. Pharmacol. 40:1-49; Sharma, H.W. and R. Narayanan (1995) Bioessays 17(12):1055-1063; and Lavrosky, Y. et al. (1997) Biochem. Mol. Med. 62(1):11-22.) An antisense sequence is a polynucleotide sequence capable of specifically hybridizing to at least a portion of the target sequence. Antisense sequences bind to cellular mRNA and/or genomic DNA, affecting translation and/or transcription. Antisense sequences can be DNA, RNA, or nucleic acid mimics and analogs. (See, e.g., Rossi, J.J. et al. (1991) Antisense Res. Dev. 1(3):285-288; Lee, R. et al. (1998) Biochemistry 37(3):900-1010; Pardridge, W.M. et al. (1995) Proc. Natl. Acad. Sci. USA 92(12):5592-5596; and Nielsen, P. E. and Haaima, G. (1997) Chem. Soc. Rev. 96:73-78.) Typically, the binding which results in modulation of expression occurs through hybridization or binding of complementary base pairs. Antisense sequences can also bind to DNA duplexes through specific interactions in the major groove of the double helix.

The polynucleotides of the present invention and fragments thereof can be used as antisense sequences to modify the expression of the polypeptide encoded by dithp. The antisense sequences can be produced <u>ex vivo</u>, such as by using any of the ABI nucleic acid synthesizer series (PE Biosystems) or other automated systems known in the art. Antisense sequences can also be produced biologically, such as by transforming an appropriate host cell with an expression vector containing the sequence of interest. (See, e.g., Agrawal, <u>supra.</u>)

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E., et al. (1998) J. Allergy Clin. Immunol. 102(3):469-475; and Scanlon, K.J., et al. (1995) 9(13):1288-1296.)

Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)

20 Expression

10

15

25

30

In order to express a biologically active DITHP, the nucleotide sequences encoding DITHP or fragments thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding DITHP and appropriate transcriptional and translational control elements. These methods include <u>in vitro</u> recombinant DNA techniques, synthetic techniques, and <u>in vivo</u> genetic recombination. (See, e.g., Sambrook, <u>supra</u>, Chapters 4, 8, 16, and 17; and Ausubel, <u>supra</u>, Chapters 9, 10, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding DITHP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or

animal (mammalian) cell systems. (See, e.g., Sambrook, supra; Ausubel, 1995, supra, Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, C.A. et al. (1994) Bio/Technology 12:181-184; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al., (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.

For long term production of recombinant proteins in mammalian systems, stable expression of DITHP in cell lines is preferred. For example, sequences encoding DITHP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Any number of selection systems may be used to recover transformed cell lines. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.; Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14; Hartman, S.C. and R.C.Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051; Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

25

30

10

15

20

Therapeutic Uses of dithp

The dithp of the invention may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassemias, familial hypercholesterolemia, and hemophilia resulting from Factor

VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and Somia, N. (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in dithp expression or regulation causes disease, the expression of dithp from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

10

25

30

In a further embodiment of the invention, diseases or disorders caused by deficiencies in dithp are treated by constructing mammalian expression vectors comprising dithp and introducing these vectors by mechanical means into dithp-deficient cells. Mechanical transfer technologies for use with cells <u>in vivo</u> or <u>ex vitro</u> include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and Anderson, W.F. (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and Récipon, H. (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of dithp include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). The dithp of the invention may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and Bujard, H. (1992) Proc. Natl. Acad. Sci. U.S.A. 89:5547-5551; Gossen, M. et al., (1995) Science 268:1766-1769; Rossi, F.M.V. and Blau, H.M. (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. supra), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding DITHP from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental

parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and Eb, A.J. (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

5

10

15

20

25

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to dithp expression are treated by constructing a retrovirus vector consisting of (i) dithp under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and Miller, A.D. (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver dithp to cells which have one or more genetic abnormalities with respect to the expression of dithp. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and Somia, N. (1997) Nature 18:389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver dithp to target cells which have one or more genetic abnormalities with respect to the expression of dithp. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing dithp to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res.169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W. F. et al. 1999 J. Virol. 73:519-532 and Xu, H. et al., (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

10

15

20

25

30

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver dithp to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and Li, K-J. (1998) Curr. Opin. Biotech. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full-length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting dithp into the alphavirus genome in place of the capsid-coding region results in the production of a large number of dithp RNAs and the synthesis of high levels of DITHP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of dithp into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA

transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Antibodies

5

10

15

20

25

30

Anti-DITHP antibodies may be used to analyze protein expression levels. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, and Fab fragments. For descriptions of and protocols of antibody technologies, see, e.g., Pound J.D. (1998) <u>Immunochemical</u> Protocols, Humana Press, Totowa, NJ.

The amino acid sequence encoded by the dithp of the Sequence Listing may be analyzed by appropriate software (e.g., LASERGENE NAVIGATOR software, DNASTAR) to determine regions of high immunogenicity. The optimal sequences for immunization are selected from the C-terminus, the N-terminus, and those intervening, hydrophilic regions of the polypeptide which are likely to be exposed to the external environment when the polypeptide is in its natural conformation. Analysis used to select appropriate epitopes is also described by Ausubel (1997, supra, Chapter 11.7). Peptides used for antibody induction do not need to have biological activity; however, they must be antigenic. Peptides used to induce specific antibodies may have an amino acid sequence consisting of at five amino acids, preferably at least 10 amino acids, and most preferably 15 amino acids. A peptide which mimics an antigenic fragment of the natural polypeptide may be fused with another protein such as keyhole limpet cyanin (KLH; Sigma, St. Louis MO) for antibody production. A peptide encompassing an antigenic region may be expressed from a dithp, synthesized as described above, or purified from human cells.

Procedures well known in the art may be used for the production of antibodies. Various hosts including mice, goats, and rabbits, may be immunized by injection with a peptide. Depending on the host species, various adjuvants may be used to increase immunological response.

In one procedure, peptides about 15 residues in length may be synthesized using an ABI 431A peptide synthesizer (PE Biosystems) using fmoc-chemistry and coupled to KLH (Sigma) by reaction with M-maleimidobenzoyl-N-hydroxysuccinimide ester (Ausubel, 1995, supra). Rabbits are immunized with the peptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity by binding the peptide to plastic, blocking with 1% bovine serum albumin (BSA), reacting with rabbit antisera, washing, and reacting with radioiodinated goat anti-rabbit IgG. Antisera with antipeptide activity are tested for anti-DITHP activity using protocols well known in the art, including ELISA, radioimmunoassay (RIA), and immunoblotting.

In another procedure, isolated and purified peptide may be used to immunize mice (about 100 µg of peptide) or rabbits (about 1 mg of peptide). Subsequently, the peptide is radioiodinated and used to screen the immunized animals' B-lymphocytes for production of antipeptide antibodies. Positive

cells are then used to produce hybridomas using standard techniques. About 20 mg of peptide is sufficient for labeling and screening several thousand clones. Hybridomas of interest are detected by screening with radioiodinated peptide to identify those fusions producing peptide-specific monoclonal antibody. In a typical protocol, wells of a multi-well plate (FAST, Becton-Dickinson, Palo Alto, CA) are coated with affinity-purified, specific rabbit-anti-mouse (or suitable anti-species IgG) antibodies at 10 mg/ml. The coated wells are blocked with 1% BSA and washed and exposed to supernatants from hybridomas. After incubation, the wells are exposed to radiolabeled peptide at 1 mg/ml.

Clones producing antibodies bind a quantity of labeled peptide that is detectable above background. Such clones are expanded and subjected to 2 cycles of cloning. Cloned hybridomas are injected into pristane-treated mice to produce ascites, and monoclonal antibody is purified from the ascitic fluid by affinity chromatography on protein A (Amersham Pharmacia Biotech). Several procedures for the production of monoclonal antibodies, including in vitro production, are described in Pound (supra). Monoclonal antibodies with antipeptide activity are tested for anti-DITHP activity using protocols well known in the art, including ELISA, RIA, and immunoblotting.

Antibody fragments containing specific binding sites for an epitope may also be generated. For example, such fragments include, but are not limited to, the F(ab')2 fragments produced by pepsin digestion of the antibody molecule, and the Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, construction of Fab expression libraries in filamentous bacteriophage allows rapid and easy identification of monoclonal fragments with desired specificity (Pound, supra, Chaps. 45-47). Antibodies generated against polypeptide encoded by dithp can be used to purify and characterize full-length DITHP protein and its activity, binding partners, etc.

Assays Using Antibodies

10

15

20

25

30

Anti-DITHP antibodies may be used in assays to quantify the amount of DITHP found in a particular human cell. Such assays include methods utilizing the antibody and a label to detect expression level under normal or disease conditions. The peptides and antibodies of the invention may be used with or without modification or labeled by joining them, either covalently or noncovalently, with a reporter molecule.

Protocols for detecting and measuring protein expression using either polyclonal or monoclonal antibodies are well known in the art. Examples include ELISA, RIA, and fluorescent activated cell sorting (FACS). Such immunoassays typically involve the formation of complexes between the DITHP and its specific antibody and the measurement of such complexes. These and other assays are described in Pound (supra).

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below, in particular U.S. Ser. No. 60/156,294, U.S. Ser. No. 60/155,760, U.S. Ser. No. 60/155,939, U.S. Ser. No. 60/156,565, U.S. Ser. No. 60/156,624, U.S. Ser. No. 60/156,625, U.S. Ser. No. 60/167,542, U.S. Ser. No. 60/167,522, U.S. Ser. No. 60/167,453, U.S. Ser. No. 60/167,517, U.S. Ser. No. 60/167,943, U.S. Ser. No. 60/167,945, U.S. Ser. No. 60/167,520, U.S. Ser. No. 60/168,468, U.S. Ser. No. 60/168,599, U.S. Ser. No. 60/167,410, U.S. Ser. No. 60/168,265, U.S. Ser. No. 60/168,429, U.S. Ser. No. 60/168,432, U.S. Ser. No. 60/167,521, U.S. Ser. No. 60/168,857, U.S. Ser. No. 60/168,197, U.S. Ser. No. 60/168,611, and U.S. Ser. No. 60/168,613 are hereby expressly incorporated by reference.

EXAMPLES

15 I. Construction of cDNA Libraries

5

10

20

25

30

RNA was purchased from CLONTECH Laboratories, Inc. (Palo Alto CA) or isolated from various tissues. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In most cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega Corporation (Promega), Madison WI), OLIGOTEX latex particles (QIAGEN, Inc. (QIAGEN), Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Inc., Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene Cloning Systems, Inc. (Stratagene), La Jolla CA) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, Chapters 5.1 through 6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For

most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte). Recombinant plasmids were transformed into competent <u>E. coli</u> cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

10

15

20

25

30

Plasmids were recovered from host cells by <u>in vivo</u> excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: the Magic or WIZARD Minipreps DNA purification system (Promega); the AGTC Miniprep purification kit (Edge BioSystems, Gaithersburg MD); and the QIAWELL 8, QIAWELL 8 Plus, and QIAWELL 8 Ultra plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit (QIAGEN). Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format. (Rao, V.B. (1994) Anal. Biochem. 216:1-14.) Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Inc. (Molecular Probes), Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 thermal cycler (PE Biosystems) or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific Corp., Sunnyvale CA) or the MICROLAB 2200 liquid transfer system (Hamilton). cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (PE Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art.

Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, <u>supra</u>, Chapter 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

IV. Assembly and Analysis of Sequences

5

10

15

20

25

30

Component sequences from chromatograms were subject to PHRED analysis and assigned a quality score. The sequences having at least a required quality score were subject to various pre-processing editing pathways to eliminate, e.g., low quality 3' ends, vector and linker sequences, polyA tails, Alu repeats, mitochondrial and ribosomal sequences, bacterial contamination sequences, and sequences smaller than 50 base pairs. In particular, low-information sequences and repetitive elements (e.g., dinucleotide repeats, Alu repeats, etc.) were replaced by "n's", or masked, to prevent spurious matches.

Processed sequences were then subject to assembly procedures in which the sequences were assigned to gene bins (bins). Each sequence could only belong to one bin. Sequences in each gene bin were assembled to produce consensus sequences (templates). Subsequent new sequences were added to existing bins using BLASTn (v.1.4 WashU) and CROSSMATCH. Candidate pairs were identified as all BLAST hits having a quality score greater than or equal to 150. Alignments of at least 82% local identity were accepted into the bin. The component sequences from each bin were assembled using a version of PHRAP. Bins with several overlapping component sequences were assembled using DEEP PHRAP. The orientation (sense or antisense) of each assembled template was determined based on the number and orientation of its component sequences. Template sequences as disclosed in the sequence listing correspond to sense strand sequences (the "forward" reading frames), to the best determination. The complementary (antisense) strands are inherently disclosed herein. The component sequences which were used to assemble each template consensus sequence are listed in Table 4, along with their positions along the template nucleotide sequences.

Bins were compared against each other and those having local similarity of at least 82% were combined and reassembled. Reassembled bins having templates of insufficient overlap (less than 95% local identity) were re-split. Assembled templates were also subject to analysis by STITCHER/EXON MAPPER algorithms which analyze the probabilities of the presence of splice variants, alternatively spliced exons, splice junctions, differential expression of alternative spliced genes across tissue types or disease states, etc. These resulting bins were subject to several rounds of the above assembly procedures.

Once gene bins were generated based upon sequence alignments, bins were clone joined based upon clone information. If the 5' sequence of one clone was present in one bin and the 3' sequence from

the same clone was present in a different bin, it was likely that the two bins actually belonged together in a single bin. The resulting combined bins underwent assembly procedures to regenerate the consensus sequences.

The final assembled templates were subsequently annotated using the following procedure. Template sequences were analyzed using BLASTn (v2.0, NCBI) versus gbpri (GenBank version 118). "Hits" were defined as an exact match having from 95% local identity over 200 base pairs through 100% local identity over 100 base pairs, or a homolog match having an E-value, i.e. a probability score, of $\leq 1 \times 10^{-8}$. The hits were subject to frameshift FASTx versus GENPEPT (GenBank version 118). (See Table 6). In this analysis, a homolog match was defined as having an E-value of $\leq 1 \times 10^{-8}$. The assembly method used above was described in "System and Methods for Analyzing Biomolecular Sequences," U.S.S.N. 09/276,534, filed March 25, 1999, and the LIFESEQ Gold user manual (Incyte) both incorporated by reference herein.

10

15

20

30

Following assembly, template sequences were subjected to motif, BLAST, and functional analyses, and categorized in protein hierarchies using methods described in, e.g., "Database System Employing Protein Function Hierarchies for Viewing Biomolecular Sequence Data," U.S.S.N. 08/812,290, filed March 6, 1997; "Relational Database for Storing Biomolecular Information," U.S.S.N. 08/947,845, filed October 9, 1997; "Project-Based Full-Length Biomolecular Sequence Database," U.S.S.N. 08/811,758, filed March 6, 1997; and "Relational Database and System for Storing Information Relating to Biomolecular Sequences," U.S.S.N. 09/034,807, filed March 4, 1998, all of which are incorporated by reference herein.

The template sequences were further analyzed by translating each template in all three forward reading frames and searching each translation against the Pfam database of hidden Markov model-based protein families and domains using the HMMER software package (available to the public from Washington University School of Medicine, St. Louis MO). Regions of templates which, when translated, contain similarity to Pfam consensus sequences are reported in Table 2, along with descriptions of Pfam protein domains and families. Only those Pfam hits with an E-value of $\leq 1 \times 10^{-3}$ are reported. (See also World Wide Web site http://pfam.wustl.edu/ for detailed descriptions of Pfam protein domains and families.)

Additionally, the template sequences were translated in all three forward reading frames, and each translation was searched against hidden Markov models for signal peptide and transmembrane domains using the HMMER software package. Construction of hidden Markov models and their usage in sequence analysis has been described. (See, for example, Eddy, S.R. (1996) Curr. Opin. Str. Biol. 6:361-365.) Regions of templates which, when translated, contain similarity to signal peptide or transmembrane domain consensus sequences are reported in Table 3. Only those signal peptide or

transmembrane hits with a cutoff score of 11 bits or greater are reported. A cutoff score of 11 bits or greater corresponds to at least about 91-94% true-positives in signal peptide prediction, and at least about 75% true-positives in transmembrane domain prediction.

The results of HMMER analysis as reported in Tables 2 and 3 may support the results of BLAST analysis as reported in Table 1 or may suggest alternative or additional properties of template-encoded polypeptides not previously uncovered by BLAST or other analyses.

Template sequences are further analyzed using the bioinformatics tools listed in Table 6, or using sequence analysis software known in the art such as MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Template sequences may be further queried against public databases such as the GenBank rodent, mammalian, vertebrate, prokaryote, and eukaryote databases.

V. Analysis of Polynucleotide Expression

5

10

15

20

25

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel, 1995, <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

BLAST Score x Percent Identity

5 x minimum {length(Seq. 1), length(Seq. 2)}

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For

example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

VI. Tissue Distribution Profiling

5

10

15

20

25

30

A tissue distribution profile is determined for each template by compiling the cDNA library tissue classifications of its component cDNA sequences. Each component sequence, is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. Template sequences, component sequences, and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

Table 5 shows the tissue distribution profile for the templates of the invention. For each template, the three most frequently observed tissue categories are shown in column 3, along with the percentage of component sequences belonging to each category. Only tissue categories with percentage values of $\geq 10\%$ are shown. A tissue distribution of "widely distributed" in column 3 indicates percentage values of <10% in all tissue categories.

VII. Transcript Image Analysis

Transcript images are generated as described in Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, incorporated herein by reference.

VIII. Extension of Polynucleotide Sequences and Isolation of a Full-length cDNA

Oligonucleotide primers designed using a dithp of the Sequence Listing are used to extend the nucleic acid sequence. One primer is synthesized to initiate 5' extension of the template, and the other primer, to initiate 3' extension of the template. The initial primers may be designed using OLIGO 4.06 software (National Biosciences, Inc. (National Biosciences), Plymouth MN), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations are avoided. Selected human

cDNA libraries are used to extend the sequence. If more than one extension is necessary or desired, additional or nested sets of primers are designed.

High fidelity amplification is obtained by PCR using methods well known in the art. PCR is performed in 96-well plates using the PTC-200 thermal cycler (MJ Research). The reaction mix contains DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ are as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

10

15

20

25

30

The concentration of DNA in each well is determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v); Molecular Probes) dissolved in 1X Tris-EDTA (TE) and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Incorporated (Corning), Corning NY), allowing the DNA to bind to the reagent. The plate is scanned in a FLUOROSKAN II (Labsystems Oy) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture is analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions are successful in extending the sequence.

The extended nucleotides are desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides are separated on low concentration (0.6 to 0.8%) agarose gels, fragments are excised, and agar digested with AGAR ACE (Promega). Extended clones are religated using T4 ligase (New England Biolabs, Inc., Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells are selected on antibiotic-containing media, individual colonies are picked and cultured overnight at 37°C in 384-well plates in LB/2x carbenicillin liquid media.

The cells are lysed, and DNA is amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA is quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries are reamplified

using the same conditions as described above. Samples are diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).

In like manner, the dithp is used to obtain regulatory sequences (promoters, introns, and enhancers) using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Labeling of Probes and Southern Hybridization Analyses

5

10

15

20

25

30

Hybridization probes derived from the dithp of the Sequence Listing are employed for screening cDNAs, mRNAs, or genomic DNA. The labeling of probe nucleotides between 100 and 1000 nucleotides in length is specifically described, but essentially the same procedure may be used with larger cDNA fragments. Probe sequences are labeled at room temperature for 30 minutes using a T4 polynucleotide kinase, γ^{32} P-ATP, and 0.5X One-Phor-All Plus (Amersham Pharmacia Biotech) buffer and purified using a ProbeQuant G-50 Microcolumn (Amersham Pharmacia Biotech). The probe mixture is diluted to 10^7 dpm/ μ g/ml hybridization buffer and used in a typical membrane-based hybridization analysis.

The DNA is digested with a restriction endonuclease such as Eco RV and is electrophoresed through a 0.7% agarose gel. The DNA fragments are transferred from the agarose to nylon membrane (NYTRAN Plus, Schleicher & Schuell, Inc., Keene NH) using procedures specified by the manufacturer of the membrane. Prehybridization is carried out for three or more hours at 68°C, and hybridization is carried out overnight at 68°C. To remove non-specific signals, blots are sequentially washed at room temperature under increasingly stringent conditions, up to 0.1x saline sodium citrate (SSC) and 0.5% sodium dodecyl sulfate. After the blots are placed in a PHOSPHORIMAGER cassette (Molecular Dynamics) or are exposed to autoradiography film, hybridization patterns of standard and experimental lanes are compared. Essentially the same procedure is employed when screening RNA.

X. Chromosome Mapping of dithp

The cDNA sequences which were used to assemble SEQ ID NO:1-71 are compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that match SEQ ID NO:1-71 are assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as PHRAP (Table 6). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome

The state of the s

WO 01/21836 PCT/US00/25643

Research (WIGR), and Généthon are used to determine if any of the clustered sequences have been previously mapped. Inclusion of a mapped sequence in a cluster will result in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location. The genetic map locations of SEQ ID NO:1-71 are described as ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's parm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.

XI. Microarray Analysis

5

10

15

25

30

Probe Preparation from Tissue or Cell Samples

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and polyA+ RNA is purified using the oligo (dT) cellulose method. Each polyA+ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/µl oligo-dT primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng polyA+ RNA with GEMBRIGHT kits (Incyte). Specific control polyA+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA (W. Lei, unpublished). As quantitative controls, the control mRNAs at 0.002 ng, 0.02 ng, 0.2 ng, and 2 ng are diluted into reverse transcription reaction at ratios of 1:100,000, 1:10,000, 1:1000, 1:100 (w/w) to sample mRNA respectively. The control mRNAs are diluted into reverse transcription reaction at ratios of 1:3, 3:1, 1:10, 10:1, 1:25, 25:1 (w/w) to sample mRNA differential expression patterns. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Probes are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The probe is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 µl 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μ g. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester, PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 μ l of the array element DNA, at an average concentration of 100 ng/ μ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford, MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

10

15

20

25

30

Hybridization reactions contain 9 μ l of probe mixture consisting of 0.2 μ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The probe mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μ l of 5x SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

Detection

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is

focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the probe mix at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two probes from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood, MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XII. Complementary Nucleic Acids

5

10

15

20

25

30

Sequences complementary to the dithp are used to detect, decrease, or inhibit expression of the naturally occurring nucleotide. The use of oligonucleotides comprising from about 15 to 30 base pairs

is typical in the art. However, smaller or larger sequence fragments can also be used. Appropriate oligonucleotides are designed from the dithp using OLIGO 4.06 software (National Biosciences) or other appropriate programs and are synthesized using methods standard in the art or ordered from a commercial supplier. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent transcription factor binding to the promoter sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding and processing of the transcript.

XIII. Expression of DITHP

5

10

15

25

30

Expression and purification of DITHP is accomplished using bacterial or virus-based expression systems. For expression of DITHP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express DITHP upon induction with isopropyl beta-Dthiogalactopyranoside (IPTG). Expression of DITHP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding DITHP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See e.g., Engelhard, supra; and Sandig, supra.)

In most expression systems, DITHP is synthesized as a fusion protein with, e.g., glutathione Stransferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from DITHP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak Company, Rochester NY). 6-His, a stretch of six consecutive histidine residues, enables purification on

metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, <u>supra</u>, Chapters 10 and 16). Purified DITHP obtained by these methods can be used directly in the following activity assay.

5 XIV. Demonstration of DITHP Activity

10

15

20

25

30

DITHP activity is demonstrated through a variety of specific assays, some of which are outlined below.

Oxidoreductase activity of DITHP is measured by the increase in extinction coefficient of NAD(P)H coenzyme at 340 nm for the measurement of oxidation activity, or the decrease in extinction coefficient of NAD(P)H coenzyme at 340 nm for the measurement of reduction activity (Dalziel, K. (1963) J. Biol. Chem. 238:2850-2858). One of three substrates may be used: Asn- β Gal, biocytidine, or ubiquinone-10. The respective subunits of the enzyme reaction, for example, cytochtome c_1 -b oxidoreductase and cytochrome c_1 -b oxidoreductase and cytochrome c_1 -during the enzyme reaction mixture contains a)1-2 mg/ml DITHP; and b) 15 mM substrate, 2.4 mM NAD(P)+ in 0.1 M phosphate buffer, pH 7.1 (oxidation reaction), or 2.0 mM NAD(P)H, in 0.1 M Na₂HPO₄ buffer, pH 7.4 (reduction reaction); in a total volume of 0.1 ml. Changes in absorbance at 340 nm (A₃₄₀) are measured at 23.5° C using a recording spectrophotometer (Shimadzu Scientific Instruments, Inc., Pleasanton CA). The amount of NAD(P)H is stoichiometrically equivalent to the amount of substrate initially present, and the change in A₃₄₀ is a direct measure of the amount of NAD(P)H produced; Δ A₃₄₀ = 6620[NADH]. Oxidoreductase activity of DITHP activity is proportional to the amount of NAD(P)H present in the assay.

Transferase activity of DITHP is measured through assays such as a methyl transferase assay in which the transfer of radiolabeled methyl groups between a donor substrate and an acceptor substrate is measured (Bokar, J.A. et al. (1994) J. Biol. Chem. 269:17697-17704). Reaction mixtures (50 μl final volume) contain 15 mM HEPES, pH 7.9, 1.5 mM MgCl₂, 10 mM dithiothreitol, 3% polyvinylalcohol, 1.5 μCi [methyl-³H]AdoMet (0.375 μM AdoMet) (DuPont-NEN), 0.6 μg DITHP, and acceptor substrate (0.4 μg [³5S]RNA or 6-mercaptopurine (6-MP) to 1 mM final concentration). Reaction mixtures are incubated at 30°C for 30 minutes, then 65°C for 5 minutes. The products are separated by chromatography or electrophoresis and the level of methyl transferase activity is determined by quantification of methyl-³H recovery.

DITHP hydrolase activity is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules in which the degree of hydrolysis is quantified by spectrophotometric (or fluorometric) absorption of the released chromophore. (Beynon, R.J. and J.S. Bond (1994) <u>Proteolytic Enzymes: A Practical Approach</u>, Oxford University Press, New York NY, pp. 25-55) Peptide substrates are designed according to the category of protease activity as

endopeptidase (serine, cysteine, aspartic proteases), animopeptidase (leucine aminopeptidase), or carboxypeptidase (Carboxypeptidase A and B, procollagen C-proteinase).

by an enzyme assay described by Rahfeld, J.U., et al. (1994) (FEBS Lett. 352: 180-184). The assay is performed at 10°C in 35 mM HEPES buffer, pH 7.8, containing chymotrypsin (0.5 mg/ml) and DITHP at a variety of concentrations. Under these assay conditions, the substrate, Suc-Ala-Xaa-Pro-Phe-4-NA, is in equilibrium with respect to the prolyl bond, with 80-95% in *trans* and 5-20% in *cis* conformation. An aliquot (2 ul) of the substrate dissolved in dimethyl sulfoxide (10 mg/ml) is added to the reaction mixture described above. Only the *cis* isomer of the substrate is a substrate for cleavage by chymotrypsin. Thus, as the substrate is isomerized by DITHP, the product is cleaved by chymotrypsin to produce 4-nitroanilide, which is detected by it's absorbance at 390 nm. 4-Nitroanilide appears in a time-dependent and a DITHP concentration-dependent manner.

10

15

20

25

30

An assay for DITHP activity associated with growth and development measures cell proliferation as the amount of newly initiated DNA synthesis in Swiss mouse 3T3 cells. A plasmid containing polynucleotides encoding DITHP is transfected into quiescent 3T3 cultured cells using methods well known in the art. The transiently transfected cells are then incubated in the presence of [3H]thymidine, a radioactive DNA precursor. Where applicable, varying amounts of DITHP ligand are added to the transfected cells. Incorporation of [3H]thymidine into acid-precipitable DNA is measured over an appropriate time interval, and the amount incorporated is directly proportional to the amount of newly synthesized DNA.

Growth factor activity of DITHP is measured by the stimulation of DNA synthesis in Swiss mouse 3T3 cells (McKay, I. and I. Leigh, eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York NY). Initiation of DNA synthesis indicates the cells' entry into the mitotic cycle and their commitment to undergo later division. 3T3 cells are competent to respond to most growth factors, not only those that are mitogenic, but also those that are involved in embryonic induction. This competence is possible because the in vivo specificity demonstrated by some growth factors is not necessarily inherent but is determined by the responding tissue. In this assay, varying amounts of DITHP are added to quiescent 3T3 cultured cells in the presence of [³H]thymidine, a radioactive DNA precursor. DITHP for this assay can be obtained by recombinant means or from biochemical preparations. Incorporation of [³H]thymidine into acid-precipitable DNA is measured over an appropriate time interval, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold DITHP concentration range is indicative of growth factor activity. One unit of activity per milliliter is defined

as the concentration of DITHP producing a 50% response level, where 100% represents maximal incorporation of [³H]thymidine into acid-precipitable DNA.

Alternatively, an assay for cytokine activity of DITHP measures the proliferation of leukocytes. In this assay, the amount of tritiated thymidine incorporated into newly synthesized DNA is used to estimate proliferative activity. Varying amounts of DITHP are added to cultured leukocytes, such as granulocytes, monocytes, or lymphocytes, in the presence of [³H]thymidine, a radioactive DNA precursor. DITHP for this assay can be obtained by recombinant means or from biochemical preparations. Incorporation of [³H]thymidine into acid-precipitable DNA is measured over an appropriate time interval, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold DITHP concentration range is indicative of DITHP activity. One unit of activity per milliliter is conventionally defined as the concentration of DITHP producing a 50% response level, where 100% represents maximal incorporation of [³H]thymidine into acid-precipitable DNA.

10

15

20

25

An alternative assay for DITHP cytokine activity utilizes a Boyden micro chamber (Neuroprobe, Cabin John MD) to measure leukocyte chemotaxis (Vicari, supra). In this assay, about 10^5 migratory cells such as macrophages or monocytes are placed in cell culture media in the upper compartment of the chamber. Varying dilutions of DITHP are placed in the lower compartment. The two compartments are separated by a 5 or 8 micron pore polycarbonate filter (Nucleopore, Pleasanton CA). After incubation at 37 °C for 80 to 120 minutes, the filters are fixed in methanol and stained with appropriate labeling agents. Cells which migrate to the other side of the filter are counted using standard microscopy. The chemotactic index is calculated by dividing the number of migratory cells counted when DITHP is present in the lower compartment by the number of migratory cells counted when only media is present in the lower compartment. The chemotactic index is proportional to the activity of DITHP.

Alternatively, cell lines or tissues transformed with a vector containing dithp can be assayed for DITHP activity by immunoblotting. Cells are denatured in SDS in the presence of β -mercaptoethanol, nucleic acids removed by ethanol precipitation, and proteins purified by acetone precipitation. Pellets are resuspended in 20 mM tris buffer at pH 7.5 and incubated with Protein G-Sepharose pre-coated with an antibody specific for DITHP. After washing, the Sepharose beads are boiled in electrophoresis sample buffer, and the eluted proteins subjected to SDS-PAGE. The SDS-PAGE is transferred to a nitrocellulose membrane for immunoblotting, and the DITHP activity is assessed by visualizing and quantifying bands on the blot using the antibody specific for DITHP as the primary antibody and 125 I-labeled IgG specific for the primary antibody as the secondary antibody.

DITHP kinase activity is measured by phosphorylation of a protein substrate using γ -labeled [32 P]-ATP and quantitation of the incorporated radioactivity using a radioisotope counter. DITHP is incubated with the protein substrate, [32 P]-ATP, and an appropriate kinase buffer. The [32 P] incorporated into the product is separated from free [32 P]-ATP by electrophoresis and the incorporated [32 P] is counted. The amount of [32 P] recovered is proportional to the kinase activity of DITHP in the assay. A determination of the specific amino acid residue phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.

In the alternative, DITHP activity is measured by the increase in cell proliferation resulting from transformation of a mammalian cell line such as COS7, HeLa or CHO with an eukaryotic expression vector encoding DITHP. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression of DITHP. Phase microscopy is then used to compare the mitotic index of transformed versus control cells. An increase in the mitotic index indicates DITHP activity.

10

15

20

25

30

In a further alternative, an assay for DITHP signaling activity is based upon the ability of GPCR family proteins to modulate G protein-activated second messenger signal transduction pathways (e.g., cAMP; Gaudin, P. et al. (1998) J. Biol. Chem. 273:4990-4996). A plasmid encoding full length DITHP is transfected into a mammalian cell line (e.g., Chinese hamster ovary (CHO) or human embryonic kidney (HEK-293) cell lines) using methods well-known in the art. Transfected cells are grown in 12-well trays in culture medium for 48 hours, then the culture medium is discarded, and the attached cells are gently washed with PBS. The cells are then incubated in culture medium with or without ligand for 30 minutes, then the medium is removed and cells lysed by treatment with 1 M perchloric acid. The cAMP levels in the lysate are measured by radioimmunoassay using methods well-known in the art. Changes in the levels of cAMP in the lysate from cells exposed to ligand compared to those without ligand are proportional to the amount of DITHP present in the transfected cells.

Alternatively, an assay for DITHP protein phosphatase activity measures the hydrolysis of P-nitrophenyl phosphate (PNPP). DITHP is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1% β -mercaptoethanol at 37°C for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH, and the increase in light absorbance of the reaction mixture at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the phosphatase activity of DITHP in the assay (Diamond, R.H. et al (1994) Mol Cell Biol 14:3752-3762).

An alternative assay measures DITHP-mediated G-protein signaling activity by monitoring the mobilization of Ca⁺⁺ as an indicator of the signal transduction pathway stimulation. (See, e.g., Grynkievicz, G. et al. (1985) J. Biol. Chem. 260:3440; McColl, S. et al. (1993) J. Immunol. 150:4550-4555; and Aussel, C. et al. (1988) J. Immunol. 140:215-220). The assay requires preloading neutrophils or T cells with a fluorescent dye such as FURA-2 or BCECF (Universal Imaging Corp, Westchester PA) whose emission characteristics are altered by Ca⁺⁺ binding. When the cells are exposed to one or more activating stimuli artificially (e.g., anti-CD3 antibody ligation of the T cell receptor) or physiologically (e.g., by allogeneic stimulation), Ca⁺⁺ flux takes place. This flux can be observed and quantified by assaying the cells in a fluorometer or fluorescent activated cell sorter. Measurements of Ca⁺⁺ flux are compared between cells in their normal state and those transfected with DITHP. Increased Ca⁺⁺ mobilization attributable to increased DITHP concentration is proportional to DITHP activity.

10

15

25

30

DITHP transport activity is assayed by measuring uptake of labeled substrates into <u>Xenopus</u> laevis oocytes. Oocytes at stages V and VI are injected with DITHP mRNA (10 ng per oocyte) and incubated for 3 days at 18°C in OR2 medium (82.5mM NaCl, 2.5 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 1mM Na₂HPO₄, 5 mM Hepes, 3.8 mM NaOH, 50μg/ml gentamycin, pH 7.8) to allow expression of DITHP protein. Oocytes are then transferred to standard uptake medium (100mM NaCl, 2 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 10 mM Hepes/Tris pH 7.5). Uptake of various substrates (e.g., amino acids, sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g. radiolabeled with ³H, fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times in Na⁺-free medium, measuring the incorporated label, and comparing with controls. DITHP transport activity is proportional to the level of internalized labeled substrate.

DITHP transferase activity is demonstrated by a test for galactosyltransferase activity. This can be determined by measuring the transfer of radiolabeled galactose from UDP-galactose to a GlcNAc-terminated oligosaccharide chain (Kolbinger, F. et al. (1998) J. Biol. Chem. 273:58-65). The sample is incubated with 14 μl of assay stock solution (180 mM sodium cacodylate, pH 6.5, 1 mg/ml bovine serum albumin, 0.26 mM UDP-galactose, 2 μl of UDP-[³H]galactose), 1 μl of MnCl₂ (500 mM), and 2.5 μl of GlcNAcβO-(CH₂)₈-CO₂Me (37 mg/ml in dimethyl sulfoxide) for 60 minutes at 37°C. The reaction is quenched by the addition of 1 ml of water and loaded on a C18 Sep-Pak cartridge (Waters), and the column is washed twice with 5 ml of water to remove unreacted UDP-[³H]galactose. The [³H]galactosylated GlcNAcβO-(CH₂)₈-CO₂Me remains bound to the column during the water washes and is eluted with 5 ml of methanol. Radioactivity in the eluted material is measured

by liquid scintillation counting and is proportional to galactosyltransferase activity in the starting sample.

In the alternative, DITHP induction by heat or toxins may be demonstrated using primary cultures of human fibroblasts or human cell lines such as CCL-13, HEK293, or HEP G2 (ATCC). To heat induce DITHP expression, aliquots of cells are incubated at 42 °C for 15, 30, or 60 minutes. Control aliquots are incubated at 37 °C for the same time periods. To induce DITHP expression by toxins, aliquots of cells are treated with 100 µM arsenite or 20 mM azetidine-2-carboxylic acid for 0, 3, 6, or 12 hours. After exposure to heat, arsenite, or the amino acid analogue, samples of the treated cells are harvested and cell lysates prepared for analysis by western blot. Cells are lysed in lysis buffer containing 1% Nonidet P-40, 0.15 M NaCl, 50 mM Tris-HCl, 5 mM EDTA, 2 mM N-ethylmaleimide, 2 mM phenylmethylsulfonyl fluoride, 1 mg/ml leupeptin, and 1 mg/ml pepstatin. Twenty micrograms of the cell lysate is separated on an 8% SDS-PAGE gel and transferred to a membrane. After blocking with 5% nonfat dry milk/phosphate-buffered saline for 1 h, the membrane is incubated overnight at 4°C or at room temperature for 2-4 hours with a 1:1000 dilution of anti-DITHP serum in 2% nonfat dry milk/phosphate-buffered saline. The membrane is then washed and incubated with a 1:1000 dilution of horseradish peroxidase-conjugated goat anti-rabbit IgG in 2% dry milk/phosphate-buffered saline. After washing with 0.1% Tween 20 in phosphate-buffered saline, the DITHP protein is detected and compared to controls using chemiluminescence.

10

15

20

25

30

35

Alternatively, DITHP protease activity is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules in which the degree of hydrolysis is quantified by spectrophotometric (or fluorometric) absorption of the released chromophore (Beynon, R.J. and J.S. Bond (1994) Proteolytic Enzymes: A Practical Approach, Oxford University Press, New York, NY, pp.25-55). Peptide substrates are designed according to the category of protease activity as endopeptidase (serine, cysteine, aspartic proteases, or metalloproteases), aminopeptidase (leucine aminopeptidase), or carboxypeptidase (carboxypeptidases A and B, procollagen C-proteinase). Commonly used chromogens are 2-naphthylamine, 4-nitroaniline, and furylacrylic acid. Assays are performed at ambient temperature and contain an aliquot of the enzyme and the appropriate substrate in a suitable buffer. Reactions are carried out in an optical cuvette, and the increase/decrease in absorbance of the chromogen released during hydrolysis of the peptide substrate is measured. The change in absorbance is proportional to the DITHP protease activity in the assay.

In the alternative, an assay for DITHP protease activity takes advantage of fluorescence resonance energy transfer (FRET) that occurs when one donor and one acceptor fluorophore with an appropriate spectral overlap are in close proximity. A flexible peptide linker containing a cleavage site specific for PRTS is fused between a red-shifted variant (RSGFP4) and a blue variant (BFP5) of

Green Fluorescent Protein. This fusion protein has spectral properties that suggest energy transfer is occurring from BFP5 to RSGFP4. When the fusion protein is incubated with DITHP, the substrate is cleaved, and the two fluorescent proteins dissociate. This is accompanied by a marked decrease in energy transfer which is quantified by comparing the emission spectra before and after the addition of DITHP (Mitra, R.D. et al (1996) Gene 173:13-17). This assay can also be performed in living cells. In this case the fluorescent substrate protein is expressed constitutively in cells and DITHP is introduced on an inducible vector so that FRET can be monitored in the presence and absence of DITHP (Sagot, I. et al (1999) FEBS Lett. 447:53-57).

A method to determine the nucleic acid binding activity of DITHP involves a polyacrylamide gel mobility-shift assay. In preparation for this assay, DITHP is expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector containing DITHP cDNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of DITHP. Extracts containing solubilized proteins can be prepared from cells expressing DITHP by methods well known in the art. Portions of the extract containing DITHP are added to [32P]-labeled RNA or DNA. Radioactive nucleic acid can be synthesized in vitro by techniques well known in the art. The mixtures are incubated at 25 °C in the presence of RNase- and DNase-inhibitors under buffered conditions for 5-10 minutes. After incubation, the samples are analyzed by polyacrylamide gel electrophoresis followed by autoradiography. The presence of a band on the autoradiogram indicates the formation of a complex between DITHP and the radioactive transcript. A band of similar mobility will not be present in samples prepared using control extracts prepared from untransformed cells.

10

15

20

25

30

35

In the alternative, a method to determine the methylase activity of a DITHP measures transfer of radiolabeled methyl groups between a donor substrate and an acceptor substrate. Reaction mixtures (50 μl final volume) contain 15 mM HEPES, pH 7.9, 1.5 mM MgCl ₂, 10 mM dithiothreitol, 3% polyvinylalcohol, 1.5 μCi [methyl-³H]AdoMet (0.375 μM AdoMet) (DuPont-NEN), 0.6 μg DITHP, and acceptor substrate (e.g., 0.4 μg [³5S]RNA, or 6-mercaptopurine (6-MP) to 1 mM final concentration). Reaction mixtures are incubated at 30°C for 30 minutes, then 65°C for 5 minutes. Analysis of [methyl-³H]RNA is as follows: 1) 50 μl of 2 x loading buffer (20 mM Tris-HCl, pH 7.6, 1 M LiCl, 1 mM EDTA, 1% sodium dodecyl sulphate (SDS)) and 50 μl oligo d(T)-cellulose (10 mg/ml in 1 x loading buffer) are added to the reaction mixture, and incubated at ambient temperature with shaking for 30 minutes. 2) Reaction mixtures are transferred to a 96-well filtration plate attached to a vacuum apparatus. 3) Each sample is washed sequentially with three 2.4 ml aliquots of 1 x oligo d(T) loading buffer containing 0.5% SDS, 0.1% SDS, or no SDS. and 4) RNA is eluted with 300 μl of water into a 96-well collection plate, transferred to scintillation vials containing liquid scintillant, and radioactivity determined. Analysis of [methyl-³H]6-MP is as follows: 1) 500 μl 0.5 M borate buffer,

pH 10.0, and then 2.5 ml of 20% (v/v) isoamyl alcohol in toluene are added to the reaction mixtures.

2) The samples mixed by vigorous vortexing for ten seconds. 3) After centrifugation at 700g for 10 minutes, 1.5 ml of the organic phase is transferred to scintillation vials containing 0.5 ml absolute ethanol and liquid scintillant, and radioactivity determined. and 4) Results are corrected for the extraction of 6-MP into the organic phase (approximately 41%).

5

10

15

20

25

30

An assay for adhesion activity of DITHP measures the disruption of cytoskeletal filament networks upon overexpression of DITHP in cultured cell lines (Rezniczek, G.A. et al. (1998) J. Cell Biol. 141:209-225). cDNA encoding DITHP is subcloned into a mammalian expression vector that drives high levels of cDNA expression. This construct is transfected into cultured cells, such as rat kangaroo PtK2 or rat bladder carcinoma 804G cells. Actin filaments and intermediate filaments such as keratin and vimentin are visualized by immunofluorescence microscopy using antibodies and techniques well known in the art. The configuration and abundance of cytoskeletal filaments can be assessed and quantified using confocal imaging techniques. In particular, the bundling and collapse of cytoskeletal filament networks is indicative of DITHP adhesion activity.

Alternatively, an assay for DITHP activity measures the expression of DITHP on the cell surface. cDNA encoding DITHP is transfected into a non-leukocytic cell line. Cell surface proteins are labeled with biotin (de la Fuente, M.A. et al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using DITHP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of DITHP expressed on the cell surface.

Alternatively, an assay for DITHP activity measures the amount of cell aggregation induced by overexpression of DITHP. In this assay, cultured cells such as NIH3T3 are transfected with cDNA encoding DITHP contained within a suitable mammalian expression vector under control of a strong promoter. Cotransfection with cDNA encoding a fluorescent marker protein, such as Green Fluorescent Protein (CLONTECH), is useful for identifying stable transfectants. The amount of cell agglutination, or clumping, associated with transfected cells is compared with that associated with untransfected cells. The amount of cell agglutination is a direct measure of DITHP activity.

DITHP may recognize and precipitate antigen from serum. This activity can be measured by the quantitative precipitin reaction (Golub, E.S. et al. (1987) Immunology: A Synthesis, Sinauer Associates, Sunderland MA, pages 113-115). DITHP is isotopically labeled using methods known in the art. Various serum concentrations are added to constant amounts of labeled DITHP. DITHP-antigen complexes precipitate out of solution and are collected by centrifugation. The amount of precipitable DITHP-antigen complex is proportional to the amount of radioisotope detected in the precipitate. The amount of precipitable DITHP-antigen complex is plotted against the serum

concentration. For various serum concentrations, a characteristic precipitation curve is obtained, in which the amount of precipitable DITHP-antigen complex initially increases proportionately with increasing serum concentration, peaks at the equivalence point, and then decreases proportionately with further increases in serum concentration. Thus, the amount of precipitable DITHP-antigen complex is a measure of DITHP activity which is characterized by sensitivity to both limiting and excess quantities of antigen.

A microtubule motility assay for DITHP measures motor protein activity. In this assay, recombinant DITHP is immobilized onto a glass slide or similar substrate. Taxol-stabilized bovine brain microtubules (commercially available) in a solution containing ATP and cytosolic extract are perfused onto the slide. Movement of microtubules as driven by DITHP motor activity can be visualized and quantified using video-enhanced light microscopy and image analysis techniques. DITHP motor protein activity is directly proportional to the frequency and velocity of microtubule movement.

10

15

20

25

30

Alternatively, an assay for DITHP measures the formation of protein filaments <u>in vitro</u>. A solution of DITHP at a concentration greater than the "critical concentration" for polymer assembly is applied to carbon-coated grids. Appropriate nucleation sites may be supplied in the solution. The grids are negative stained with 0.7% (w/v) aqueous uranyl acetate and examined by electron microscopy. The appearance of filaments of approximately 25 nm (microtubules), 8 nm (actin), or 10 nm (intermediate filaments) is a demonstration of protein activity.

DITHP electron transfer activity is demonstrated by oxidation or reduction of NADP. Substrates such as Asn- β Gal, biocytidine, or ubiquinone-10 may be used. The reaction mixture contains 1-2 mg/ml HORP, 15 mM substrate, and 2.4 mM NAD(P)+ in 0.1 M phosphate buffer, pH 7.1 (oxidation reaction), or 2.0 mM NAD(P)H, in 0.1 M Na₂HPO₄ buffer, pH 7.4 (reduction reaction); in a total volume of 0.1 ml. FAD may be included with NAD, according to methods well known in the art. Changes in absorbance are measured using a recording spectrophotometer. The amount of NAD(P)H is stoichiometrically equivalent to the amount of substrate initially present, and the change in A₃₄₀ is a direct measure of the amount of NAD(P)H produced; Δ A₃₄₀ = 6620[NADH]. DITHP activity is proportional to the amount of NAD(P)H present in the assay. The increase in extinction coefficient of NAD(P)H coenzyme at 340 nm is a measure of oxidation activity, or the decrease in extinction coefficient of NAD(P)H coenzyme at 340 nm is a measure of reduction activity (Dalziel, K. (1963) J. Biol. Chem. 238:2850-2858).

DITHP transcription factor activity is measured by its ability to stimulate transcription of a reporter gene (Liu, H.Y. et al. (1997) EMBO J. 16:5289-5298). The assay entails the use of a well characterized reporter gene construct, LexA_{op}-LacZ, that consists of LexA DNA transcriptional control

elements ($LexA_{op}$) fused to sequences encoding the <u>E. coli</u> LacZ enzyme. The methods for constructing and expressing fusion genes, introducing them into cells, and measuring LacZ enzyme activity, are well known to those skilled in the art. Sequences encoding DITHP are cloned into a plasmid that directs the synthesis of a fusion protein, LexA-DITHP, consisting of DITHP and a DNA binding domain derived from the LexA transcription factor. The resulting plasmid, encoding a LexA-DITHP fusion protein, is introduced into yeast cells along with a plasmid containing the LexA_{op}-LacZ reporter gene. The amount of LacZ enzyme activity associated with LexA-DITHP transfected cells, relative to control cells, is proportional to the amount of transcription stimulated by the DITHP.

Chromatin activity of DITHP is demonstrated by measuring sensitivity to DNase I (Dawson, B.A. et al. (1989) J. Biol. Chem. 264:12830-12837). Samples are treated with DNase I, followed by insertion of a cleavable biotinylated nucleotide analog, 5-[(N-biotinamido)hexanoamido-ethyl-1,3-thiopropionyl-3-aminoallyl]-2'-deoxyuridine 5'-triphosphate using nick-repair techniques well known to those skilled in the art. Following purification and digestion with EcoRI restriction endonuclease, biotinylated sequences are affinity isolated by sequential binding to streptavidin and biotincellulose.

Another specific assay demonstrates the ion conductance capacity of DITHP using an electrophysiological assay. DITHP is expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding DITHP. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. A small amount of a second plasmid, which expresses any one of a number of marker genes such as β -galactosidase, is co-transformed into the cells in order to allow rapid identification of those cells which have taken up and expressed the foreign DNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of DITHP and β-galactosidase. Transformed cells expressing βgalactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are well known in the art. Stained cells are tested for differences in membrane conductance due to various ions by electrophysiological techniques that are well known in the art. Untransformed cells, and/or cells transformed with either vector sequences alone or \(\beta \)-galactosidase sequences alone, are used as controls and tested in parallel. The contribution of DITHP to cation or anion conductance can be shown by incubating the cells using antibodies specific for either DITHP. The respective antibodies will bind to the extracellular side of DITHP, thereby blocking the pore in the ion channel, and the associated conductance.

XV. Functional Assays

10

15

20

25

30

DITHP function is assessed by expressing dithp at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen Corporation, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.

Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; CLONTECH), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties.

FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of DITHP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding DITHP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Inc., Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding DITHP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XVI. Production of Antibodies

10

15

25

30

DITHP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the DITHP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding peptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, Chapter 11.)

Typically, peptides 15 residues in length are synthesized using an ABI 431A peptide synthesizer (PE Biosystems) using fmoc-chemistry and coupled to KLH (Sigma) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, supra.) Rabbits are immunized with the peptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG. Antisera with antipeptide activity are tested for anti-DITHP activity using protocols well known in the art, including ELISA, RIA, and immunoblotting.

XVII. Purification of Naturally Occurring DITHP Using Specific Antibodies

10

20

25

Naturally occurring or recombinant DITHP is substantially purified by immunoaffinity chromatography using antibodies specific for DITHP. An immunoaffinity column is constructed by covalently coupling anti-DITHP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing DITHP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of DITHP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/DITHP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and DITHP is collected.

30 XVIII. Identification of Molecules Which Interact with DITHP

DITHP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled DITHP, washed, and any wells with labeled DITHP complex are assayed. Data obtained using different concentrations of

DITHP are used to calculate values for the number, affinity, and association of DITHP with the candidate molecules.

Alternatively, molecules interacting with DITHP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (CLONTECH).

DITHP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

10

15

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

Щ	
œ	
ZBB	
_	

																					•			,00,	25	743	
Annotation	Similarity to Yeast D-lactate dehydrogenase (SW:DLD1_YEAST); cDNA EST EMBL:C12235 comes from this gene; cDNA EST EMBL:C10532 comes from this gene; cDNA EST EMBL:C10532 comes from this gene; cDNA EST EMBL:C10979 comes from this gene; cDNA EST y	hydroxypyruvate reductase (Homo sapiens)	cystathionine gamma-lyase, cystathionase (possibly alternatively spliced) {EC 4.4.1.1} (human, liver, Peptide, 405 aa)	CG10509 gene product (Drosophila melanogaster)	ribitol kinase	unnamed protein product (Homo sapiens)	frehalase	Homo sapiens cDNA FLJ10830 fis, clone NT2RP4001143, weakly similar to SUCCINYL- DIAMINOPIMFI ATF DESILCCINYI ASF (FC 3.5.1.18).	fibroblast growth factor (FGF-18)	tumor necrosis factor receptor-like gene 2 (Homo sapiens)	chemokine receptor	CDK5 activator-binding protein (Rattus norvegicus)	protein phosphatase 4 regulatory subunit 2 (Homo sapiens)	esk kinase	protein kinase C epsilon	serine/threonine protein phosphatase 7 catalytic subunit	protein tyrosine phosphatase TD14	kinase (Gallus gallus)	zinc finger protein (Mus musculus)	zinc finger protein (Mus musculus)	ZNF202 beta	zinc finger protein	zinc finger protein ZNF137	zinc finger protein	OZF	dJ228H13.3 (Zinc Finger Protein)	zinc finger protein
Probability Score	2.30E-36	3.00E-92	1.80E-186	5.00E-70	1.10E-49	0	1.20E-244	0	3.60E-81	4.00E-16	4.60E-146	6.00E-25	4.00E-72	7.00E-250	2.20E-197	2.5e-313	1.60E-18	4.00E-20	6.00E-18	2.00E-13	1.00E-278	7.20E-105	3.40E-71	1.80E-21	6.50E-65	7.80E-12	1,70E-80
GI Number	g3876615	g5669919	g262476	g7291276	g2905643	g7022797	g2789461	g7023108	g3355904	g4098959	g3851699	g7330736	g8250239	g193110	g35495	g2967685	g3598974	g1370092	g286105	g454158	g3869259	g1237278	g488557	g498721	g4469277	g5360985	g2306773
Template ID	405310.1.oct	480731.6.oct	334751.2.dec	237330.8.dec			334808.1.dec	997089.7.dec	237152.1.dec	232851.7.dec	083804.1.dec	272721.6.oct		332465.2.dec	445175.3.dec	980541.1.dec	237996.1.dec	243267.9.dec	242082.10.dec	019239.1.dec	899943.1.dec	443551.1.dec	897957.1.dec	900911.1.dec	999296.1.dec	442286.1.dec	901978.1.dec
SEQ ID NO:	_	2	ო	4	5			ω	ο	2	= 178	12	13	14								7 72					27

_
ш
コ
a
1
₽
•

Annotation	zinc finger protein ZFP113 (Mus musculus)	DNA binding protein (Homo sapiens) VDNB sing factor protein: Mothod: concount of translation a policy by author	nkab zinc ilinger profein, ivjernog, conceptual iransanio isappilea by adino. Human Krimpel-associated box (KPAB) mRNA, partial cds. clone BRc1744.	zinc finger protein	zinc finger protein	25 kDa trypsin inhibitor	R27090_2 (Homo sapiens)	Contains similarity to pre-mRNA processing protein PRP39 gb L29224 from S. cerevisiae.	lg variable region (VDJ)	Human apolipoprotein E mRNA, complete cds.	pregnancy-specific beta-1-glycoprotein	Human tropomyosin mRNA, complete cds.	KIAA0925 protein (Homo saplens)	dJ777L9.2 (kinesin superfamily protein (KIF)) (Homo sapiens)	predicted using Genefinder; Similarity to Mouse ankyrin (PIR Acc. No. S37771); cDNA EST	EMBL:T01923 comes from this gene; cDNA EST EMBL:D32335 comes from this gene; cDNA EST	EMBL:D32723 comes from this gene; cDNA EST EMBL:D33269 comes from thi	p116Rip	predicted using Genefinder; Similarity to Mouse ankyrin (PIR Acc. No. S37771); cDNA EST	EMBL:T01923 comes from this gene; cDNA EST EMBL:D32335 comes from this gene; cDNA EST	EMBL:D32723 comes from this gene; cDNA EST EMBL:D33269 comes from thi	GT334 protein (Homo sapiens)	similar to polyposis locus protein 1 (SP:DP1_HUMAN, Q00765)	golgi membrane protein GP73 (Homo sapiens)	Human ribosomal protein L35 mRNA, complete cds.	Human mRNA for ribosomal protein S12.	ribosomal protein L31 (AA 1-125)	Human ribosomal protein L37 mRNA, complete cds.	Yhr148wp	similar to KIAA0855; similar to BAA74878 (PID:g4240199) (Homo saplens)
Probability Score	1.00E-72	1.00E-115	0.90E-09	1.20E-93	3.40E-113	1.10E-123	2.00E-56	8.60E-29	2.10E-33	0	1.00E-143	9.00E-32	4.00E-89	0	1.80E-34			7.40E-98	2.30E-97			0	4.00E-19	2.00E-22	0	2.00E-59	4.10E-45	9.00E-85	3,00E-29	1.00E-08
GI Number	g5640017	g1020145	g1049301 c186632	g347906	g498721	g2943716	g2443870	g3142300	g33583	g178848	g190647	g339943	g4589482	g6522736	g3879121			g1657837	g3879156			g2145122	g849238	g7271867	g562073	g36145	g57115	g292440	g500654	g7684537
Template ID	479346.1.dec	481750.1.dec	9004151 dec	900680.2.dec	902791.3.dec	053826.1.dec	204932.4.dec	400607.19.dec	444248.7.dec	346599.9.dec	480344.2.dec	411396.24.dec	302819.4.dec	238734.2.dec	399525.3.dec			222795.6.dec	410628.5.dec			053649.6.dec	221914.2.dec	347748.2.dec	401482.2.oct	274551.1.oct	411408.20.dec	035973.1.dec	456536.1.dec	387807.4.oct
SEQ ID NO:	28	8 8	જ દ	32 2	33	34	35	36	37	38	36	4	14	당 179	43			44	45			46	47	48	46	20		52	જ	28

PCT/US00/25643

Annotation	heme A:farnesyltransferase	SA3	DBI-related protein (Homo saplens)	RNA-binding protein alpha-CP1 (Mus musculus)	NSD1 protein (Mus musculus)	PHD finger DNA binding protein isoform 1	AHNAK nucleoprotein	AHNAK nucleoprotein	heterogeneous nuclear ribonucleoprotein, alternate transcript (Homo sapiens)	oxysterol-binding protein	Homo sapiens SYBL1 gene, exons 6-8.	hypothetical protein (Canis familiaris)	UBIQUINONE/MENAQUINONE BIOSYNTHESIS METHLYTRANSFERASE UBIE (udie)	Human 33 kDa Vamp-associated protein (VAP33) mRNA, complete cds.	thyroid hormone receptor-associated protein complex component TRAP80	cell division control protein 16 (Homo sapiens)	tumor suppressing STF cDNA 4
Probability Score	2.80E-72	1.80E-15	1.00E-159	3.00E-14	0	3.20E-117	0	1,6e-313	1.00E-07	1.40E-13	3.00E-22	3.00E-35	1.10E-34	0	2.26-312	3.00E-80	2.30E-123
GI Number	g495493	g3090423	g3193336	g5805273	g3329465	g3342452	g178281	g178281	g6164674	g189403	g4165269	g5441607	g3861217	g4191318	g4530435	g5533375	g4567068
SEQ ID NO: Template ID GI Number	406790.3.dec	412420.63.dec	196623.3.dec	427916.8.dec	264633,8,dec	337822.4.dec	902943.1.dec	256009.2.dec	231892.12.dec	197445.1.oct	348775.1.oct	336239,5.dec	215660.4.dec	391940.2.dec	978302.3.dec	228629.11.dec	011211.5.dec
SEQ ID NO:	55	26	22	58	69	8	19	62		2	65	8	67	89	\$ 18(2	۲۲

ш
\Box
$\mathbf{\omega}$
4
\vdash

E-value 1.80E-30 3.50E-175 1.80E-08 2.90E-07 8.00E-89 1.50E-11 9.90E-78 3.00E-85 4.10E-12 1.80E-25 1.40E-11 6.80E-93 1.60E-06 5.70E-06 5.5
Pfam Description PF00389 D-Isomer specific 2-hydroxyacid de Cys/Met metabolism PLP-dependent enzyme Cys/Met metabolism PLP-dependent enzyme FGCY family of carbohydrate kinases Trehalase Trehalase Trehalase Trehalase family M20/M25/M40 Flbroblast growth factor TNFR/NGFR cysteine-rich region The Peptidase family M20/M25/M40 Flbroblast growth factor TNFR/NGFR cysteine-rich region The Roysteine-rich region The Proposition by the second family by Eukaryotic protein kinase domain C2 domain Phorbal esters/diacy/glyceral binding domain (C1 domain) Eukaryotic protein kinase domain Ser/Thr protein phosphatase Bromodomain Zinc finger, C2H2 type
Pfam Hit 2-Hacid_DH Cys_Met_Meta_PP Cys_Met_Meta_PP FGGY Trehalase Trehalase Trehalase Trehalase Trehalase Peptidase_M20 FGF TNFR_c6 7tm_1 pkinase C2 DAG_PE-bind pkinase C2 DAG_PE-bind pkinase C2 TC2H2 Zf-C2H2 KRAB Zf-C2H2 KRAB Zf-C2H2 KRAB Zf-C2H2 KRAB Zf-C2H2 KRAB Zf-C2H2 KRAB
Frame forward 1 forward 3 forward 2 forward 2 forward 1 forward 1 forward 1 forward 1 forward 1 forward 2 forward 2 forward 2 forward 2 forward 3
Stop 537 1234 1234 1233 1555 1318 1655 1318 1676 1365 598 546 1011 2478 1090 1651 1824 478 1090 1651 128 352 528 434 1061 741 1467 545
Start 292 194 468 1452 65 117 117 117 193 215 229 215 229 236 941 1436 817 209 209 60 284 729 135 343 253 1399 357 357
Template ID 480731.6.oct 334751.2.dec 334751.2.dec 334808.1.dec 334808.1.dec 334808.1.dec 237152.1.dec 232851.7.dec 232851.7.dec 445175.3.dec 445175.3.dec 445175.3.dec 243267.9.dec 243267.9.dec 243267.9.dec 243267.1.dec 243267.1.dec 697957.1.dec 697978.1.dec 697978.1.dec 697978.1.dec 6779346.1.dec 6779346.1.dec
181 O O O O O O O O O O O O O O O O O O O

8
щ
쩞
.≪

E-value	1.20E-06	5.10E-16	4.70E-19	2.30E-41	1.10E-06	1.00E-19	1.20E-06	1.90E-06	1.10E-17	2.40E-10	4.00E-33	4.60E-26	4.40E-08	6.40E-04	7.20E-08	3.50E-06	6.00E-170	1.10E-08	1.10E-07	5.00E-11	3.30E-64	6.10E-40	6.20E-09	7.50E-06	2.00E-07	1.90E-20	3.20E-14	2.50E-43	4.70E-14	7.20E-15	7.20E-15	1.30E-121
Pfam Description	Zinc finger, C2H2 type	KRAB box	KRAB box	KRAB box	Zinc finger, C2H2 type	KRAB box	Zinc finger, C2H2 type	Zinc finger, C2H2 type	SCP-like extracellular protein	SCP-like extracellular protein	DEAD/DEAH box helicase	Helicases conserved C-terminal domain	Immunoglobulin domain	Apolipoprotein A1/A4/E family	Immunoglobulin domain	WD domain, G-beta repeat	Kinesin motor domain	Ank repeat	Ank repeat	Ank repeat	Ribosomal protein L31e	Acyl CoA binding protein	Enoyl-CoA hydratase/isomerase family	KH domain	PHD-finger	PWWP domain	PWWP domain	SET domain	RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)	PF00169 PH (pleckstrin homology) domain	PF00169 PH (pleckstrin homology) domain	ubiE/COQ5 methyltransferase family
Pfam Hit	zf-C2H2	KRAB	KRAB	KRAB	zf-C2H2	KRAB	zf-C2H2	zf-C2H2	SS	SCP	DEAD	helicase_C	Ō	Apolipoprotein	Ō	WD40	kinesIn	ank	ank	ank	Ribosomal_L31e	ACBP	끖	KH-domain	뫂	PWWP	PWWP	SET	LI LI	壬	푼	Ubie_methy(tran
Frame	forward 3	forward 1	forward 1	forward 3	forward 3	forward 1	forward 3	forward 2	forward 3	forward 2	forward 3	forward 1	forward 3	forward 2	forward 2	forward 3	forward 1	forward 1	forward 2	forward 1	forward 3	forward 2	forward 2	forward 3	forward 2	forward 2	forward 3	forward 2	forward 1	forward 3	forward 3	forward 1
Stop	1439	459	396	383	851	456	935	709	1103	805	617	963	386	499	1030	392	1233	861	1513	1545	674	397	907	389	2776	3010	1178	3709	612	530	230	863
Start	1371	319	247	195	783	274	867	641	831	470	171	718	135	131	881	273	67	793	1415	1447	330	143	479	285	2642	2780	948	3317	418	243	243	184
Template ID	481750.1.dec	900917.2.dec	999415.1.dec	900680.2.dec	900680.2.dec	902791.3.dec	902791.3.dec	902791.3.dec	053826.1.dec	053826.1.dec	204932,4,dec	204932.4.dec	444248.7.dec	346599.9.dec	480344.2.dec	302819.4.dec	238734.2.dec	399525.3.dec	399525.3.dec	410628.5.dec	411408.20.dec	196623.3.dec	196623.3.dec	427916.8.dec	264633.8.dec	264633.8.dec	264633.8.dec	264633.8.dec	231892.12.dec	197445.1.oct	197445.1.oct	215660.4.dec
SEQ ID NO:	29	99	33	32	32	33	33	33	34	34	35	35	37	38	8		45	43				22	22							2	2	29

SEQ ID NO:	Template ID	Start	Stop	Frame	Domain Type
1	405310.1.oct	1091	1159	forward 2	SP
1	405310.1.oct	1027	1089	forward 1	SP
1	405310.1.oct	2079	2150	forward 3	TM
1	405310.1.oct	1217	1276	forward 2	SP
1	405310.1.oct	1094	1165	forward 2	TM
1	405310.1.oct	2062	2151	forward 1	SP
1	405310.1.oct	2919	2972	forward 3	TM
1	405310.1.oct	2732	2788	forward 2	TM
1	405310.1.oct	1076	1135	forward 2	TM
1	405310.1.oct	2246	2302	forward 2	TM
1	405310.1.oct	1419	1487	forward 3	SP
1	405310.1.oct	2952	3020	forward 3	TM
i	405310.1.oct	2086	2154	forward 1	SP
ì	405310.1.oct	2934	2993	forward 3	TM
i	405310.1.oct	2940	3020	forward 3	TM
i	405310.1.oct	887	955	forward 2	SP
i	405310.1.oct	2934	2996	forward 3	TM
i	405310.1.oct	1091	1159	forward 2	SP
i	405310.1.oct	1027	1089	forward 1	SP
i	405310.1.oct	2079	2150	forward 3	TM
i	405310.1.oct	1217	1276	forward 2	SP
i	405310.1.oct	1094	1165	forward 2	TM
i	405310.1.oct	2062	2151	forward 1	SP
i	405310.1.oct	2919	2972	forward 3	TM
i	405310.1.oct	2732	2772 2788	forward 2	TM
1	405310.1.oct	1076	1135	forward 2	TM
1	405310.1.oct	2246	2302	forward 2	TM
		1419	2302 1487		SP
1	405310.1.oct 405310.1.oct		3020	forward 3	
		2952		forward 3	M
1	405310.1.oct	2086	2154	forward 1	SP
1	405310.1.oct	2934	2993	forward 3	TM
1	405310.1.oct	2940	3020	forward 3	TM
1	405310.1.oct	887	955	forward 2	SP
1	405310.1.oct	2934	2996	forward 3	TM
3	334751.2.dec	1476	1532	forward 3	M
3	334751.2.dec	675	731	forward 3	SP
3 3 3 3 3	334751.2.dec	1532	1606	forward 2	SP
3	334751.2.dec	2	85 25 7	forward 2	SP
3	334751.2.dec	795	857	forward 3	SP
3	334751.2.dec	675	737	forward 3	SP
3	334751.2.dec	1625	1681	forward 2	TM
	334751.2.dec	783	857	forward 3	SP
4	237330.8.dec	683	730	forward 2	SP
5	053778.11.dec	1627	1686	forward 1	SP
5	053778.11.dec	1306	1374	forward 1	SP
5	053778.11.dec	1594	1686	forward 1	SP
5	053778.11.dec	1279	1374	forward 1	SP
6	360645.10.dec	385	453	forward 1	SP
6	360645.10.dec	415	495	forward 1	SP
7	334808.1.dec	529	609	forward 1	SP

SEQ ID NO:	Template ID	Start	Stop	Frame	Domain Type
7	334808.1.dec	1734	1817	forward 3	SP
7	3348081.dec	56	106	forward 2	SP
7	334808.1.dec	56	112	forward 2	SP
7	334808.1.dec	56	130	forward 2	SP
7	334808.1.dec	56	124	forward 2	SP
7	334808.1.dec	56	118	forward 2	SP
10	232851.7.dec	987	1052	forward 3	TM
10	232851.7.dec	993	1043	forward 3	TM
10	232851.7.dec	987	1043	forward 3	TM
11	083804.1.dec	841	897	forward 1	TM
11	083804.1.dec	565	630	forward 1	SP
11	083804.1.dec	706	786	forward 1	TM
11	083804.1.dec	235	303	forward 1	TM
11	083804.1.dec	829	882	forward 1	TM
11	083804.1.dec	218	274	forward 2	SP
11	083804.1.dec	244	303	forward 1	TM
11	083804.1.dec	968	1039	forward 2	SP
11	083804.1.dec	439	522	forward 1	TM
11	083804.1.dec	565	648	forward 1	SP
11	083804.1.dec	829	900	forward 1	TM
11	083804.1.dec	197	289	forward 2	SP
11	083804.1.dec	218	298	forward 2	SP
11	083804.1.dec	238	291	forward 1	TM
11	083804.1.dec	218	2 7 7	forward 2	SP
11	083804.1.dec	730	789	forward 1	TM
11	083804.1.dec	247	309	forward 1	TM
11	083804.1.dec	959	1045	forward 2	SP
12	272721.6.oct	3078	3149	forward 3	SP
12	272721.6.oct	936	992	forward 3	TM
12	272721.6.oct	1027	1086	forward 1	TM
13	461603.4.oct	2291	2359	forward 2	TM
13	461603.4.oct	2309	2356	forward 2	TM
14	332465.2.dec	2826	2882	forward 3	SP
14	332465.2.dec	2657	2719	forward 2	TM
19	242082.10.dec	1840	1923	forward 1	SP
20	019239.1.dec	2043	2123	forward 3	TM
21	899943.1.dec	3543	3617	forward 3	SP
21	899943.1.dec	3530	3610	forward 2	SP
21	899943.1.dec	2824	2877	forward 1	TM
21	899943.1.dec	3321	3380	forward 3	SP
21	899943.1.dec	3543	3602	forward 3	SP
21	899943.1.dec	2836	2892	forward 1	TM
27	901978.1.dec	1250	1309	forward 2	SP
28	479346.1.dec	467	553	forward 2	SP
29	481750.1.dec	664	717	forward 1	SP
32	900680.2.dec	27	717 77	forward 3	TM
34	053826.1.dec	179	253	forward 2	TM
34	053826.1.dec	1354	255 1416	forward 1	SP
34	053826.1.dec	1354	1416	forward 1	
34	053826.1.dec	1354	1401	forward 1	TM
04	000020.1.UEC	1001	1401	ioiwaia I	. TM

SEQ ID NO:	Template ID	Start	Stop	Frame	Domain Type
34	053826.1.dec	485	556	forward 2	SP
34	053826.1.dec	485	547	forward 2	SP
34	053826.1.dec	1250	1324	forward 2	TM
34	053826.1.dec	194	271	forward 2	TM
34	053826.1.dec	485	541	forward 2	SP
34	053826.1.dec	173	226	forward 2	TM
34	053826.1.dec	485	550	forward 2	SP
34	053826.1.dec	1363	1422	forward 1	TM
34	053826.1.dec	194	253	forward 2	TM
36	400607.19.dec	1192	1248	forward 1	TM
36	400607.19.dec	1198	1248	forward 1	TM
36	400607.19.dec	1174	1245	forward 1	TM
37	444248.7.dec	36	98	forward 3	SP
37	444248.7.dec	36	83	forward 3	SP
37	444248.7.dec	15	92	forward 3	SP
37	444248.7.dec	15	92	forward 3	SP
37	444248.7.dec	36	92	forward 3	SP
38	346599.9.dec	122	181	forward 2	SP
38	346599.9.dec	128	172	forward 2	SP
38	346599.9.dec	128	196	forward 2	SP
38	346599.9.dec	128	181	forward 2	SP
39	480344.2.dec	1105	1158	forward 1	TM
39	480344.2.dec	122	223	forward 2	SP
40	411396.24.dec	1347	1403	forward 3	SP
40	411396.24.dec	1347	1412	forward 3	SP
40	411396.24.dec	1347	1409	forward 3	SP
41	302819.4.dec	2612	2680	forward 2	SP
42	238734.2.dec	1532	1597	forward 2	SP
43	399525.3.dec	1235	1285	forward 2	SP
45	410628.5.dec	1388	1438	forward 2	TM
45	410628.5.dec	209	274	forward 2	SP
45	410628.5.dec	235	318	forward 1	SP
46	053649.6.dec	6042	6116	forward 3	TM
46	053649.6.dec	4699	4755	forward 1	TM
46	053649.6.dec	4025	4105	forward 2	TM
46	053649.6.dec	4684	4734	forward 1	TM
46	053649.6.dec	6676	6726	forward 1	TM
46	053649.6.dec	4702	4776	forward 1	TM
46	053649.6.dec	6688	6735	forward 1	SP
46	053649.6.dec	3060	3122	forward 3	TM
46	053649.6.dec	8806	6138	forward 1	TM
47	221914.2.dec	430	483	forward 1	TM
47	221914.2.dec	932	979	forward 2	SP
47	221914.2.dec	544	597	forward 1	SP
47	221914.2.dec	430	501	forward 1	SP
47	221914.2.dec	544	603	forward 1	TM
47	221914.2.dec	442	495	forward 1	SP
47	221914.2.dec	430	495	forward 1	SP
48	347748.2.dec	345	389	forward 3	SP
48	347748.2.dec	315	389	forward 3	SP

SEQ ID NO:	Template ID	Start	Stop	Frame	Domain Type
48	347748.2.dec	333	389	forward 3	SP
48	347748.2.dec	351	410	forward 3	TM
48	347748.2.dec	324	389	forward 3	SP
48	347748.2.dec	330	398	forward 3	TM
48	347748.2.dec	327	389	forward 3	SP
48	347748.2.dec	342	392	forward 3	TM
48	347748.2.dec	303	389	forward 3	SP
48	347748.2.dec	333	395	forward 3	TM
51	411408.20.dec	372	422	forward 3	SP
51	411408.20.dec	661	732	forward 1	SP
51	411408.20.dec	369	434	forward 3	SP
51	411408.20.dec	318	428	forward 3	SP
51	411408.20.dec	369	428	forward 3	SP
51	411408.20.dec	369	422	forward 3	SP
52	035973.1.dec	138	224	forward 3	SP
54	387807.4.oct	469	543	forward 1	SP
54	387807.4.oct	346	396	forward 1	SP
54	387807.4.oct	346	402	forward 1	SP
54	387807.4.oct	56	148	forward 2	SP
55	406790.3.dec	792	854	forward 3	TM
57	196623.3.dec	737	808	forward 2	TM
59	264633.8.dec	5524	5583	forward 1	SP
59	264633.8.dec	5209	5277	forward 1	TM
59	264633.8.dec	5195	5248	forward 2	TM
59	264633.8.dec	4877	4939	forward 2	TM
59	264633.8.dec	5178	5249	forward 3	TM
59	264633.8.dec	7156	7218	forward 1	SP
59	264633.8.dec	5203	5280	forward 1	TM
59	264633.8.dec	6597	6647	forward 3	TM
59	264633.8.dec	703	759	forward 1	TM
59 59	264633.8.dec	5186	5260	forward 2	TM
59 59	264633.8.dec	5544	5618	forward 3	SP
59 59	264633.8.dec	5204	5263	forward 2	TM
59 59	264633.8.dec	520 4 5218	5277	forward 1	TM
59 59	264633.8.dec	4877	4933	forward 2	TM
60	337822.4.dec	1461	1532	forward 3	SP
60	337822.4.dec	209	286	forward 2	TM
60		210	281	forward 3	TM
62	337822.4.dec 256009.2.dec	6728	6790	forward 2	SP
62	256009.2.dec	1974	2033	forward 3	SP
62		1317	1409	forward 3	SP
	256009.2.dec			forward 3	
62	256009.2.dec 231892.12.dec	3693	3746		TM
63		1009	1071	forward 1	TM
63	231892.12.dec	467	556	forward 2	SP
63	231892.12.dec	985	1056	forward 1	TM
64	197445.1.oct	2155	2217	forward 1	TM
64	197445.1.oct	2146	2196	forward 1	TM
64	197445.1.oct	2380	2436	forward 1	TM
64	197445.1.oct	2158	2214	forward 1	TM
64	197445.1.oct	2155	2217	forward 1	TM

SEQ ID NO:	Template ID	Start	Stop	Frame	Domain Type
64	197445.1.oct	2146	2196	forward 1	TM
64	197445.1.oct	2380	2436	forward 1	TM
64	197445.1.oct	2158	2214	forward 1	TM
65	348775.1.oct	232	288	forward 1	TM
65	348775.1.oct	937	999	forward 1	TM
65	348775.1.oct	253	306	forward 1	SP
65	348775.1.oct	1523	1582	forward 2	TM
65	348775.1.oct	942	1010	forward 3	TM
65	348775.1.oct	989	1048	forward 2	TM
65	348775.1.oct	235	282	forward 1	TM
65	348775.1.oct	967	1017	forward 1	TM
65	348775.1.oct	907	975	forward 1	TM
66	336239.5.dec	1670	1744	forward 2	SP
66	336239.5.dec	1317	1379	forward 3	TM
66	336239.5.dec	2417	2485	forward 2	SP
66	336239.5.dec	1217	1279	forward 2	TM
66	336239.5.dec	2217	2282	forward 3	SP
66	336239.5.dec	1725	1784	forward 3	TM
66	336239.5.dec	2211	2273	forward 3	TM
66	336239.5.dec	852	935	forward 3	TM
66	336239.5.dec	2226	2276	forward 3	TM
68	391940.2.dec	2125	2211	forward 1	SP
69	978302.3.dec	2319	2372	forward 3	TM
70	228629.11.dec	917	979	forward 2	TM
70	228629.11.dec	944	997	forward 2	TM
70	228629.11.dec	917	1009	forward 2	SP
71	011211.5.dec	1515	1580	forward 3	SP
71	011211.5.dec	1515	1586	forward 3	SP
71	011211.5.dec	1515	1598	forward 3	SP
71	011211.5.dec	1515	1577	forward 3	SP

Table 4 **SEQ SEQ** ID Stop Template ID Component ID Template ID Compohent Start Stop Start NO: NO: ID ID 405310.1.oct 410151H1 211 405310.1.oct q2115162 1882 2117 1 1 1 1 405310.1.oct 5392348H1 142 379 1 405310.1.oct g2877111 1896 2109 405310.1.oct 4876648H1 1898 2038 5486608H1 242 484 1 405310.1.oct 1 1903 2146 1 405310.1.oct 2435181H1 389 625 1 405310.1.oct 626104H1 1936 2102 1 405310.1.oct 5194023H1 404 563 1 405310.1.oct 1833293H1 1939 2098 1 405310.1.oct 5184118H1 404 649 1 405310.1.oct 4215846H1 405310.1.oct 4504865H1 399 650 405310.1.oct 4702761H1 1975 2227 1 1 5677166H1 1600 1654 1 405310.1.oct 3593593H1 1988 2295 1 405310.1.oct 1654 5272056H1 1996 2248 1 405310.1.oct a2525894 1533 1 405310.1.oct 2021 2102 1600 1681 1 3523585H1 1 405310.1.oct 4128628H1 405310.1.oct 3112863H1 2039 2323 405310.1.oct 1494882H1 1534 1654 1 405310.1.oct 1 2082 2282 1 405310.1.oct 1867328H1 1603 1654 1 405310.1.oct 1670574H1 2082 2635 1867591H1 1603 1654 1 405310.1.oct 1670638F6 405310.1.oct 1 4007319H1 1615 1684 1 405310.1.oct 1670638H1 2082 2314 405310.1.oct 3135544H1 2121 2382 g1195786 1654 2102 1 405310.1.oct 405310.1.oct 1657 2109 405310.1.oct 748992H1 2175 2417 405310.1.oct q4078042 1 3322490H1 2175 2435 5704240H1 1552 1654 1 405310.1.oct 1 405310.1.oct 405310.1.oct 1905111T6 1670 2064 1 405310.1.oct 2430370H1 2261 2450 1 2320 2585 3133191H1 405310.1.oct 2452004T6 1671 2064 1 405310.1.oct 1671 1831 1 405310.1.oct 769462H1 2339 2556 405310.1.oct 3720904H1 1 2371 2455 1905111F6 1677 2102 1 405310.1.oct 5151412H1 405310.1.oct 405310.1.oct 1905111H1 405310.1.oct 1921573H1 2392 2663 1677 1944 1 1 716050H1 1552 1654 1 405310.1.oct g1517034 2464 2749 405310.1.oct 2272758H1 2470 2701 1677 2014 1 405310.1.oct 1 405310.1.oct g865579 g836413 2490 2856 405310.1.oct 3253763H1 1676 1923 1 405310.1.oct 1 1679 2510 2782 1905 4942363H1 1 405310.1.oct 3522354H1 1 405310.1.oct 2596 2703160H1 1681 1745 1 405310.1.oct 5570061H1 2790 1 405310.1.oct 835422H1 1681 1767 1 405310.1.oct 5568056H1 2596 2832 405310.1.oct 4106821H1 2599 2873 1 405310.1.oct 5704432H1 1552 1654 1 405310 1 oct 1768 1670638T6 2643 3169 1 405310.1.oct 1783049H1 1681 1 405310.1.oct 2645 2928 1 405310.1.oct 3423108H1 1681 1810 1 405310.1.oct 958627H1 2645 3124 2896508H1 1683 1882 1 405310.1.oct 958627R6 405310.1.oct 1 2645 3171 1 405310.1.oct 149167H1 1553 1673 1 405310.1.oct 958627T6 3727895H1 2721 3002 1691 2102 1 405310.1.oct g4072834 1 405310.1.oct 1 405310.1.oct 2911475H1 1692 1886 405310.1.oct 4209155H1 2728 2997 1693 1 405310.1.oct 4318706H1 2734 3022 1 405310.1.oct g4187331 2106 q4089320 1554 1654 1 405310.1.oct 3730224H1 2748 3041 1 405310.1.oct 2773 3189 1 405310.1.oct g3700844 1693 2109 1 405310.1.oct 3727895T1 g2900790 1565 1654 1 405310.1.oct q2880876 2791 3217 1 405310.1.oct 1 405310.1.oct 4651002H1 1719 1910 1 405310.1.oct 5493990H1 2796 3059 1720 1 405310.1.oct 2558339H1 2801 2960 2104 1 405310.1.oct g3896271 1724 405310.1.oct 1546674H1 2815 3012 1 405310.1.oct 3318258H1 1991 1 1566 1654 1 g3804535 2843 3217 1 405310.1.oct g2553217 405310.1.oct q1163748 2850 3210 405310.1.oct 2943433H1 1731 2016 1 405310.1.oct 1 2853 3210 405310.1.oct 5223241H1 1746 2026 1 405310.1.oct g1517033 g1693600 g1239155 1574 1703 1 405310.1.oct 2879 3210 1 405310.1.oct 405310.1.oct 292818H1 1747 2076 1 405310.1.oct 2571458H1 2900 3155 5898551H1 2901 3178 1751 2046 1 405310.1.oct g1687172 405310.1.oct 4711255H1 2002 5895283H1 2901 3188 1 405310.1.oct 1751 405310.1.oct 1751 2139 1 3379601H1 2951 3211 1 405310.1.oct g1693699 405310.1.oct 3036 2769236H1 1771 1998 1 405310.1.oct q395843 3209 1 405310.1.oct 405310.1.oct 1973096H1 1772 1948 1 405310.1.oct 5118304H1 436 722 1576 1654 442 692 405310.1.oct 4270574H1 4935563H1 1 405310.1.oct 405310.1.oct 4176157H1 1770 2047 1 405310.1.oct 4548805H1 442 714 442 690 1776 1953 4550621H1 405310.1.oct 1927291H1 1 405310.1.oct g2156621 405310.1.oct 1776 2105 1 405310.1.oct 2927758H2 404 509 1 405310.1.oct 2075838H1 1784 2033 1 405310.1.oct g1750493 444 817 g2408853 405310.1.oct 1796 2105 1 405310.1.oct 4888637H1 405 685 1 g2525343 1799 2110 405310.1.oct 3138852H1 446 706 405310.1.oct 1 1 2409983H1 1813 2038 1 405310.1.oct 1352316F6 446 886 1 405310.1.oct 405310.1.oct g2280202 1846 1985 405310.1.oct 1352316F1 446 959 1 405310.1.oct 3138101H1 1589 1654 405310.1.oct 6380007H1 446 734

1

405310.1.oct

1352316H1

446

714

1859 2102

405310.1.oct

g2819423

					Table 4				
1	405310.1.oct	6074745H1	405	706	1	405310.1.oct	2946253H1	417	517
1	405310.1.oct	039251H1	451	669	1	405310.1.oct	4563856H1	417	665
1	405310.1.oct	5121253H1	450	695	1	405310.1.oct	3326068H1	1057	1335
1	405310.1.oct	4270476H1	453	706	1	405310.1.oct	4899592H1	1059	1211
1	405310.1.oct 405310.1.oct	4136482H1	405 451	718	1 1	405310.1.oct	3595144H1 1793730R6	419 1064	698 1511
i	405310.1.oct	036587H1 4536311H1	454	646 704	1	405310.1.oct 405310.1.oct	2480410H1	420	636
i	405310.1.oct	4268715H1	459	718	i	405310.1.oct	1793730H1	1064	1352
1	405310.1.oct	4792149H1	405	661	1	405310.1.oct	4005512H1	1064	1352
1	405310.1.oct	2477096H1	477	691	1	405310.1.oct	3593659H1	1065	1381
1	405310.1.oct	3359690H1	405	683	1	405310.1.oct	3136794H1	422	693
1	405310.1.oct	1944194H1	478	718	1	405310.1.oct	4549670H1	1090	1203
1	405310.1.oct	1944191H1	478	700	1	405310.1.oct	730124H1	1093	
1	405310.1.oct	2475259H1 5684940H1	478 405	698 677	1	405310.1.oct 405310.1.oct	420650H1 841493H1	422 1144	694 1338
1	405310.1.oct 405310.1.oct	4853101H1	479	681	1	405310.1.oct	1428150H1		1385
i	405310.1.oct	2479725H1	477	718	i	405310.1.oct	4704846H1	423	584
1	405310.1.oct	6385825H1	481	749	1	405310.1.oct	5850619H1	1178	1435
1	405310.1.oct	4979110H1	488	749	1	405310.1.oct	1209815R1	1198	1654
1	405310.1.oct	g1958128	406	745	1	405310.1.oct	1209815H1		1437
1	405310.1.oct	4267935H1	491	569	1	405310.1.oct	2547589H2	423	680
1	405310.1.oct	2835323H1	494	749	1	405310.1.oct	3295109H1	1199 1208	1450
1	405310.1.oct	g827193 4620818H1	407 495	554 773	1	405310.1.oct 405310.1.oct	2452004F6 267034H1	1208 427	1474 771
i	405310.1.oct 405310.1.oct	5393907H1	508	773 780	1	405310.1.oct	6381865H1	427	712
i	405310.1.oct	3661721H1	507	772	i	405310.1.oct	g2028035	431	717
1	405310.1.oct	3294452H1	509	756	1	405310.1.oct	2452004H1	1208	
1	405310.1.oct	524384H1	515	772	1	405310.1.oct	708404H1	1214	1469
1	405310.1.oct	2136648F6	407	630	1	405310.1.oct	4661117H1		1468
1	405310.1.oct	1297578F1	605	1008	1	405310.1.oct	705729H1		1492
1	405310.1.oct	2136648H1	407	655	1	405310.1.oct	4825369H1		1494
1	405310.1.oct 405310.1.oct	1447711H1 1299735H1	405 605	638 837	1	405310.1.oct 405310.1.oct	3162430H1 4839764H2	1228 435	1494 527
1	405310.1.oct	1297578H1	605	832	1	405310.1.oct	g2009002	436	749
1	405310.1.oct	3401463H1	405	647	- i	405310.1.oct	4661505H1	1251	1406
1	405310.1.oct	1447711F6	405	889	1	405310.1.oct	4082148H1		1528
1	405310.1.oct	2554486H1	613	840	1	405310.1.oct	150983H1		1470
1	405310.1.oct	3172973H1	405	638	1	405310.1.oct	4120301H1		1563
1	405310.1.oct	g4264239	714	1177	1	405310.1.oct	3749156H1		1534
1	405310.1.oct	5906958H1	407	697	1 1	405310.1.oct	2744148H1		1565 1615
1	405310.1.oct 405310.1.oct	5396462H1 g2590966	756 765	1004 1075	1	405310.1.oct 405310.1.oct	3137803H1 1352316T6		1654
i	405310.1.oct	5713913H1	766	1057	i	405310.1.oct	5218866H1		1613
1	405310.1.oct	4272548H1	786	1058	i	405310.1.oct	2478116H1	1379	1613
1	405310.1.oct	5399390H1	791	930	1	405310.1.oct	4375135H1		1679
1	405310.1.oct	2856043H1	410	673	1	405310.1.oct	3138370H1		1671
1	405310.1.oct	863574H1	804	1038	1	405310.1.oct	2797645H1		1682
1	405310.1.oct	5056396H1	804	1078	1	405310.1.oct 405310.1.oct	4273096H1 2136648T6	1466 1488	1654 1654
1	405310.1.oct 405310.1.oct	4129546H2 5597093H1	811 409	1141 633	1	405310.1.oct	2180731F6		
i	405310.1.oct	4270814H1	811	1065	1	405310.1.oct	2180731H1	1494	
i	405310.1.oct	3619064H1	813	1080	i	405310.1.oct	q1748137	1499	1654
1	405310.1.oct	1506438H1	856	1060	1	405310.1.oct	3706106H1		1668
1	405310.1.oct	4268123H1	858	1037	1	405310.1.oct	5507254H1	1524	1683
1	405310.1.oct	2894836H1	861	1120	1	405310.1.oct	5086666H1	1531	1754
1	405310.1.oct	1506438F6	865	1246	2	480731.6.oct	4094569H1	408	558
1	405310.1.oct	4272641H1	419	671	2	480731.6.oct	4643563H1	1	254
1	405310.1.oct 405310.1.oct	1424032H1 5450772H1	875 413	1115	2	480731.6.oct 480731.6.oct	4510511H1 3452658H1	3 17	242
1	405310.1.oct	2481246H1	924	646 1134	2 2	480731.6.oct	1251446F1	26	192 623
1	405310.1.oct	5596983H1	413	607	2	480731.6.oct	2515178H1	38	333
i	405310.1.oct	4853694H1	415	687	2	480731.6.oct	2215784H1	52	272
1	405310.1.oct	g2025894	960	1373	2	480731.6.oct	4841602H1	56	299
1	405310.1.oct	3680309H1	977	1284	2	480731.6.oct	g1961426	56	344
1	405310.1.oct	2479705H1	1048		2	480731.6.oct	4571077H1	57	305
1	405310.1.oct	4786425H1	415	546	2 2	480731.6.oct 480731.6.oct	5216391H1	67 115	304
1	405310.1.oct	2985689H1	1049	1322	190	-00701.0.00t	6137527H1	115	405

					Table 4				
2	480731.6.oct	1857910H1	189	464	4	237330.8.dec	2267343H1	167	411
2	480731.6.oct	1615885H1	189	390	4	237330.8.dec	2264570H1	167	419
2	480731.6.oct	086869H1	221	522	4	237330.8.dec	1349494H1	167	400
2	480731.6.oct	833867H1	237	534	4	237330.8.dec	492130H1	167	391
2	480731.6.oct	1653119H1	239	467	4	237330.8.dec	3235447H1	168	414
2	480731.6.oct	4123871H1	246	356	4	237330.8.dec	4710462H1	169	431
2 2	480731.6.oct	2627432H1	251	478	4	237330.8.dec	2513527H1	174	509
2	480731.6.oct 480731.6.oct	2687760H1	260 267	534 528	4 4	237330.8.dec 237330.8.dec	1569995H1 1572713H1	172 173	379 384
2	480731.6.oct	1902726H1 687003H1	274	493	4	237330.8.dec	3314911H1	177	416
2	480731.6.oct	878552H1	303	530	4	237330.8.dec	929441R1	178	743
2	480731.6.oct	g3280822	332	742	4	237330.8.dec	5925219H1	178	482
3	334751.2.dec	5853587H1	1	230	4	237330.8.dec	5020460H1	178	432
3	334751.2.dec	5731183H1	1	252	4	237330.8.dec	2508605F6	180	617
3	334751.2.dec	5523486H1	4	256	4	237330.8.dec	4987563H1	180	480
3	334751.2.dec	5926513H1	4	309	4	237330.8.dec	929575H1	178	415
3	334751.2.dec	2984592H1	11	268	4	237330.8.dec	3460237H1	179	414
3	334751.2.dec	g262475	107	1435	4	237330.8.dec	4836356H1	181	446
3	334751.2.dec	5732475H1	212	278	4	237330.8.dec	5894639H1	179	431
3	334751.2.dec	2667745F6	216	510	4 4	237330.8.dec	5897417H1	179	264
3 3	334751.2.dec 334751.2.dec	2667745H1 4418353H1	216 335	447 570	4	237330.8.dec 237330.8.dec	6382184H1 2508605H1	180 180	427 426
3	334751.2.dec	4882526H1	385	678	4	237330.8.dec	3417412H1	180	421
3	334751.2.dec	5612571H1	516	774	4	237330.8.dec	3373931H1	182	407
3	334751.2.dec	g2240470	551	906	4	237330.8.dec	1318328H1	180	304
3	334751.2.dec	1538335H1	605	820	4	237330.8.dec	3373939H1	181	424
3	334751.2.dec	4287276H1	627	849	4	237330.8.dec	4446212H1	183	424
3	334751.2.dec	4155393H1	811	1048	4	237330.8.dec	2448266H1	183	413
3	334751.2.dec	665879R6	858	1385	4	237330.8.dec	4910938H1	180	446
3	334751.2.dec	666190R6	858	1360	4	237330.8.dec	5378511H1	186	430
3	334751.2.dec	666190H1	858	1108	4	237330.8.dec	4940385H1	189	432
3	334751.2.dec	g759142	962	1235	4	237330.8.dec	4727560H1	196	288
3	334751.2.dec	g759141	962 1024	1228	4 4	237330.8.dec	763343R1	191	741 372
3 3	334751.2.dec 334751.2.dec	4218923F6 4822560H1		1304	4	237330.8.dec 237330.8.dec	763343H1 2731076H1	191 193	450
3	334751.2.dec	4218923H1		1305	4	237330.8.dec	g1087562	193	555
3	334751.2.dec	4218789H1		1278	4	237330.8.dec	g901772	195	568
3	334751.2.dec	4608784H1		1300	4	237330.8.dec	g2100307	1134	1311
3	334751.2.dec	2959829H1		1289	4	237330.8.dec	g656838	1156	1327
3	334751.2.dec	4218923T6	1176	1697	4	237330.8.dec	g884572	1168	1308
3	334751.2.dec	665879T6	1180	1690	4	237330.8.dec	2149085H1	1200	1254
3	334751.2.dec	666190T6		1689	4	237330.8.dec	g1230914	1205	1317
3	334751.2.dec	5273796H1	1239	1515	4	237330.8.dec	g1761688	197	545
3	334751.2.dec	4538019H1	1254	1509	4	237330.8.dec	g942887	196	545
3	334751.2.dec	g4107592		1724	4	237330.8.dec	g991000	196	510
3	334751.2.dec 334751.2.dec	955598H1		1518	4 4	237330.8.dec 237330.8.dec	3314193H1	196	445
3 3	334751.2.dec	g3756020 g4268857		1738 1724	4	237330.8.dec	g1735949 3683715H1	195 198	317 519
3	334751.2.dec	g3447131		1734	4	237330.8.dec	5031235H2	200	456
3	334751.2.dec	4635851H1	1429	1687	4	237330.8.dec	5082666H1	199	301
3	334751.2.dec	g2218832		1743	4	237330.8.dec	g2024669	204	495
3	334751.2.dec	g4269639		1724	4	237330.8.dec	3459624H1	206	465
3	334751.2.dec	g5449529	1483	1824	4	237330.8.dec	1786353H1	209	475
3	334751.2.dec	2878294T6		1697	4	237330.8.dec	g657002	211	543
3	334751.2.dec	2878294H1		1738	4	237330.8.dec	3903221H1	212	485
3	334751.2.dec	g759089		1800	4	237330.8.dec	3449748H1	214	453
3	334751.2.dec	g759090		1800	4	237330.8.dec	6537544H1	214	313
3	334751.2.dec	5521719H1		1779	4	237330.8.dec	492371H1	216	457
4	237330.8.dec 237330.8.dec	2990340H1	1	234	4 4	237330.8.dec	2381611H1	218	474
4 4	237330.8.dec	g1694307 g1694113	159 160	548 546	4	237330.8.dec 237330.8.dec	1318641H1 g884603	217 224	468 509
4	237330.8.dec	g1509705	161	549	4	237330.8.dec	129382R1	253	749
4	237330.8.dec	5322487H1	167	394	4	237330.8.dec	129382H1	253 253	463
4	237330.8.dec	3376316H1	165	425	4	237330.8.dec	6128764H1	267	806
4	237330.8.dec	5480679H1	167	457	4	237330.8.dec	g2142067	266	702
4	237330.8.dec	4505409H1	167	414	4	237330.8.dec	2394231H1	291	535
4	237330.8.dec	1349494F1	167	749	4	237330.8.dec	1335369H1	327	594

					Table 4				
4	237330.8.dec	6384070H1	350	583	5	053778.11.dec	g2265074	1522	1995
4	237330.8.dec	g1241171	366	702	5	053778.11.dec	5499060H1	1521	1786
4	237330.8.dec	3807596H1	368	635	5	053778.11.dec	2371063T6	1553	1953
4	237330.8.dec	644413H1	400	642	5	053778.11.dec	233933F1	1568	1991
4 4	237330.8.dec 237330.8.dec	2186284H1	471 479	750 746	5 5	053778.11.dec 053778.11.dec	g2350599 g1267430	1569 1574	1987 1987
4	237330.8.dec	2182717H1 5025181H1	597	833	5	053778.11.dec	1346284T6	1575	1942
4	237330.8.dec	639569H1	604	858	5	053778.11.dec	3992844H1	1591	1835
4	237330.8.dec	3503846H1	627	786	5	053778.11.dec	3992844T6	1591	1965
4	237330.8.dec	2875484H1	673	939	5	053778.11.dec	3992844R6	1591	1986
4	237330.8.dec	6383024H1	674	982	5	053778.11.dec	g2898212	1603	1992
4	237330.8.dec	6386424H1	674	955	5	053778.11.dec	g1874440		
4	237330.8.dec	3020991H1	685	899	5	053778.11.dec	5290716H1	1416	1666
4 4	237330.8.dec	3054160H1	702 717	1008 926	5 5	053778.11.dec 053778.11.dec	2603745T6 g3146614	1428 1427	1964 1806
4	237330.8.dec 237330.8.dec	977821H1 977821R1	728	1277	5 5	053778.11.dec	2110970T6	1454	1956
4	237330.8.dec	5579589H1	729	990	5	053778.11.dec	3254961R6	62	612
4	237330.8.dec	5579466H1	729	975	5	053778.11.dec	g1897652	1	173
4	237330.8.dec	1376061F1	753	1068	5	053778.11.dec	4220161H1	29	330
4	237330.8.dec	1376061H1	753	1009	5	053778.11.dec	g4536327	1716	1991
4	237330.8.dec	3383765H1	753	992	5	053778.11.dec	g836512	1721	1987
4	237330.8.dec	1842579T6	765	1270	5	053778.11.dec	5744941H1	1231	1543
4 4	237330.8.dec 237330.8.dec	1842579R6 1842579H1	771 771	1151 1037	5 5	053778.11.dec 053778.11.dec	5490135H1 3992831H1	1372 1231	1478 1531
4	237330.8.dec	g2537725	805	1203	5	053778.11.dec	4535093T1	1414	1956
4	237330.8.dec	g2035761	837	1057	· 5	053778.11.dec	818859H1	941	1117
4	237330.8.dec	129382F1	852	1307	5	053778.11.dec	5396767T1	1126	1573
4	237330.8.dec	6372716H1	880	1175	5	053778.11.dec	4800742H1	1207	1468
4	237330.8.dec	g2670115	896	1308	5	053778.11.dec	5734965H1	1092	1345
4	237330.8.dec	1533561H1	904	1116	5	053778.11.dec	4111667H1	1101	1374
4	237330.8.dec	1732858F6	914	1308	5	053778.11.dec	2371063H1	1463	1711
4 4	237330.8.dec 237330.8.dec	4187146H1 2352296H1	925 926	1165 1159	5 5	053778.11.dec 053778.11.dec	731630H1 2371063F6	1464 1463	1720 1965
4	237330.8.dec	2285290H1	932	1203	5	053778.11.dec	3254961H1	62	319
4	237330.8.dec	g1761689	937	.1307	5	053778.11.dec	088182H1	340	587
4	237330.8.dec	g1694008	947	1318	5	053778.11.dec	4824479H1	414	593
4	237330.8.dec	617499H1	973	1210	5	053778.11.dec	4289569H1	536	797
4	237330.8.dec	g1618214	972	1279	5	053778.11.dec	g1791805	591	772
4	237330.8.dec	g1954982	978	1309	5	053778.11.dec	3484191H1	638	913
4	237330.8.dec	g2159857	989	1309	5	053778.11.dec	4996602H1 4173566H1	991	1219 1296
4 4	237330.8.dec 237330.8.dec	g1735863 g4268658	989 991	1277 1308	5 5	053778.11.dec 053778.11.dec	g760965	1017 1029	1094
4	237330.8.dec	g1694197	995	1318	5	053778.11.dec	g2568941	1069	1494
4	237330.8.dec	g1516005	996	1300	5	053778.11.dec	2603745H1	1071	1312
4	237330.8.dec	g3678657	997	1308	5	053778.11.dec	2603745F6	1071	1448
4	237330.8.dec	2273601H1	1030	1307	5	053778.11.dec	g1218133	940	1251
4	237330.8.dec	g4086537		1311	5	053778.11.dec	1346284F6	867	1355
4	237330.8.dec	g5540679	1036	1308	5	053778.11.dec	1346284H1	867	1104
4	237330.8.dec 237330.8.dec	g3843834 478018H1	1057 1061	1308 1307	5 6	053778.11.dec 360645.10.dec	4535093H1 5554128H1	843 1294	972 1562
4 4	237330.8.dec	1730765H1	1084		6	360645.10.dec	3852884H1		1581
4	237330.8.dec	1732858H1		1300	6	360645.10.dec	5161636H1		1666
4	237330.8.dec	g2106685		1300	6	360645.10.dec	1507670F6		1901
5	053778.11.dec	g4190552	1810	1993	6	360645.10.dec	1507670H1	1432	1635
5	053778.11.dec	g5638928		1991	6	360645.10.dec	1532088T6	1447	
5	053778.11.dec	2310855H1		1965	6	360645.10.dec	1655614H1	1454	1583
5	053778.11.dec	g3785357		1993	6	360645.10.dec	4548374H1	1498	1642
5 5	053778.11.dec 053778.11.dec	3289364H1 5693319H1	715 717	957 954	6 6	360645.10.dec 360645.10.dec	3246721H1 6477162H1	68 70	328 637
5	053778.11.dec	5603012H1	684	919	6	360645.10.dec	1532088H1	107	295
5	053778.11.dec			1993	6	360645.10.dec	5016056H1	115	337
5	053778.11.dec			1993	6	360645.10.dec	g3932189	136	551
5	053778.11.dec	g2903963	1710	1993	6	360645.10.dec	4862779H1	141	422
5	053778.11.dec	3549629H1		1961	6	360645.10.dec	6256968H1	168	275
5	053778.11.dec	5276241H1	680	909	6	360645.10.dec	4988340H1	236	509
5 5	053778.11.dec 053778.11.dec	3254961T6 3098021H1		1955 1799	6 6	360645.10.dec 360645.10.dec	1532088F6 g4307092	107 100	494 555
J	000770.11.UEC	JUJUUZ ITTI	1500	1199	101	- 10.uec	9730708Z	100	555

					Table 4				
6	360645.10.dec	750638H1	236	457	8	997089.7.dec	1576186F6	1098	1373
6	360645.10.dec	4141768H1	382	652	8	997089.7.dec	1576186H1	1098	1322
6	360645.10.dec	3292408H1	455	707	8	997089.7.dec	2538386H1		1351
6	360645.10.dec	3316570H1	478	740	8	997089.7.dec	4822363H1	1106	1367
6	360645.10.dec	4779693H1	1	100	8	997089.7.dec	3485650H1	915	1162
6 6	360645.10.dec	492034H1	1	111	8	997089.7.dec	1786234H1	945	1188
6	360645.10.dec 360645.10.dec	3433917H1	1 7	242	8	997089.7.dec	5593308H1	948	1203
6	360645.10.dec	6389468H1 3943544H1	1923	308 2190	8 8	997089.7.dec 997089.7.dec	g1976837	820 830	1136 1298
6	360645.10.dec	5622513H1	1793	2055	8	997089.7.dec	6406736H1 4063260H1	863	1028
6	360645.10.dec	g813345	1181	1448	8	997089.7.dec	4539449H1	861	1139
6	360645.10.dec	2185958F6	1183	1645	8	997089.7.dec	809033H1	868	940
6	360645.10.dec	2185958H1		1461	8	997089.7.dec	3699229H1	873	1171
6	360645.10.dec	5471220H1	1255	1455	8	997089.7.dec	g1556965	876	1186
6	360645.10.dec	4907477H1	1269	1500	8	997089.7.dec	4691278H1	878	1129
6	360645.10.dec	4931374H1		1552	8	997089.7.dec	1426405H1	886	1085
6	360645.10.dec	853610H1		1253	8	997089.7.dec	4847630H1	887	1152
6	360645.10.dec	858390H1		1215	8	997089.7.dec	3467813H1	896	1135
6 6	360645.10.dec	4118032H1	1002		8	997089.7.dec	g2020678	1019	1284
6	360645.10.dec 360645.10.dec	3484111H1 3749318H1	1003 1080	1316 1381	8 8	997089.7.dec 997089.7.dec	3819954H1 2104288H1		1297 1112
6	360645.10.dec	3870739H1	921	1195	8	997089.7.dec	2808341H1	1024	1307
6	360645.10.dec	2069602H1	713	997	8	997089.7.dec	4066658H1	1032	1289
6	360645.10.dec	4595933H1	866	1109	8	997089.7.dec	5309516H1	1052	1306
6	360645.10.dec	g1989917	889	1109	8	997089.7.dec	5592153H1		1392
6	360645.10.dec	2741388H1	912	1038	8	997089.7.dec	4978966H1	1134	1414
6	360645.10.dec	g793668	929	1212	8	997089.7.dec	g616650	1141	1418
6	360645.10.dec	4328833H1	942	1196	8	997089.7.dec	4912405H1	1152	1438
6	360645.10.dec	5730961H1	950	1223	8	997089.7.dec	4337708H1		1442
6	360645.10.dec	g928494	961	1126	8	997089.7.dec	3940620H1		1425
6	360645.10.dec	3945858H1	980	1249	8	997089.7.dec	g2003478	1156	1533
6 6	360645.10.dec 360645.10.dec	2757979H1 2607858F6	992 29	1268 368	8 8	997089.7.dec	755318H1	1161	1374
6	360645.10.dec	2607858H1	29	285	8	997089.7.dec 997089.7.dec	1252324H1 5435704H1	1242 1242	1469 1496
6	360645.10.dec	3346552H1	33	145	8	997089.7.dec	4539673H1	1263	1493
6	360645.10.dec	3286166H2	33	136	8	997089.7.dec	5331905H1	1231	1475
6	360645.10.dec	3111874H1	33	167	8	997089.7.dec	5052492H1	1236	1463
6	360645.10.dec	3392281H1	40	317	8	997089.7.dec	g389176	1238	1467
6	360645.10.dec	4003719H1	58	110	8	997089.7.dec	1872382F6	951	1432
6	360645.10.dec	2419778H1	622	849	8	997089.7.dec	1872382H1	951	1216
6	360645.10.dec	2069602F6	713	1121	8	997089.7.dec	g2001948	956	1341
7	334808.1.dec	1630022F6	1019	1491	8	997089.7.dec	g2785527	961	1184
7	334808.1.dec	4173650H1	1060	1351	8	997089.7.dec	g2785350	967	1045
7 7	334808.1.dec	6497920H1 1501183H1	1131 1170	1695 1360	8 8	997089.7.dec 997089.7.dec	3416911H1	972	1221
7	334808.1.dec 334808.1.dec	5946616H1		1444	8	997089.7.dec	1692077H1 3586654H1	982 992	1064 1315
7	334808.1.dec	3536430H1		1583	8	997089.7.dec	4256810H1	995	1275
7	334808.1.dec	6113586H1	1334	1506	8	997089.7.dec	q1970619		1276
7	334808.1.dec	g5178927	1484	1869	8	997089.7.dec	2742103H1	1006	1256
7	334808.1.dec	2240592H1	58	266	8	997089.7.dec	701814H1		1731
7	334808.1.dec	4053310H1	644	809	8	997089.7.dec	4336416H1	1486	1774
7	334808.1.dec	2182165H1	815	1074	8	997089.7.dec	2624908H1	1491	1713
7	334808.1.dec	4517464H1	847	1058	8	997089.7.dec	1849263H1	1491	1584
7	334808.1.dec	5068320H1	936	1209	8	997089.7.dec	g573048		1856
7	334808.1.dec	1630016H1	1019	1217	8	997089.7.dec	1613441H1		1705
7 7	334808.1.dec 334808.1.dec	g3849718 1633870F6	1493 1561	1865 1862	8	997089.7.dec 997089.7.dec	g672219 1809483H1		1845
7	334808.1.dec	1633870H1	1561	1768	8 8	997089.7.dec	3943866H1	753	1755 1015
7	334808.1.dec	g2789460	1	1855	8	997089.7.dec	a3889303	753 753	958
7	334808.1.dec	4671034H1	48	319	8	997089.7.dec	5995872H1	762	1049
7	334808.1.dec	2240592F6	58	398	8	997089.7.dec	723432R1	764	1342
8	997089.7.dec	2728454H1	1266	1518	8	997089.7.dec	723432H1	764	955
8	997089.7.dec	3325820H1	1266	1537	8	997089.7.dec	3332343H1	769	1019
8	997089.7.dec	1619209H1	1266	1476	8	997089.7.dec	1960570H1	775	1062
8	997089.7.dec	4398554H1	1268	1523	8	997089.7.dec	6482560H1	782	1326
8	997089.7.dec	3772613H1	1286	1547	8	997089.7.dec	598929H1	785	899
8	997089.7.dec	4336363H1	1094	1366	8	997089.7.dec	2558439H1	1222	1473

				Т	able 4				
8	997089.7.dec	1575796H1	1222		8	997089.7.dec	899613H1	1483	1735
8	997089.7.dec			1502	8	997089.7.dec	755318R1	1161	1689
8	997089.7.dec			1506	8	997089.7.dec	g825993		1536
8	997089.7.dec			1493	8	997089.7.dec	3821487H1	1174	1287
8 8	997089.7.dec	1731008H1		1734	8	997089.7.dec	3293579H1	1182	1416
8	997089.7.dec 997089.7.dec	g1740574 5527051H1		1685 1766	8 8	997089.7.dec 997089.7.dec	3441662H1 1239073H1	1183 1191	1410 1432
8	997089.7.dec	6398114H1		1751	8	997089.7.dec	g3840776		1762
8	997089.7.dec		1524		8	997089.7.dec	4871671H1		1701
8	997089.7.dec	5186537H1		1706	8	997089.7.dec	2253321H1	1808	1876
8	997089.7.dec	5432074H1	1532	1779	8	997089.7.dec	1794040H1	1808	1876
8	997089.7.dec	3942839H1	1537	1810	8	997089.7.dec	g2018816	1823	1876
8	997089.7.dec		812	1020	8	997089.7.dec	g685621	717	1020
8	997089.7.dec		813	1111	8	997089.7.dec	2700859H1	723	995
8	997089.7.dec	3330642H1	813	1081	8	997089.7.dec	3513894H1	749 1293	990
8 8	997089.7.dec 997089.7.dec	4332312H1 6521581H1	576 616	838 988	8 8	997089.7.dec 997089.7.dec	292713H1 1864784H1	1302	
8	997089.7.dec	5656215H1	639	901	8	997089.7.dec	g942975	1310	
8	997089.7.dec	3336136H1	652	895	8	997089.7.dec	2360739H1	1326	1567
8	997089.7.dec	1428142F6	669	1144	8	997089.7.dec	5731187H1		1589
8	997089.7.dec	1428142H1	669	919	8	997089.7.dec	1733703H1	1336	1552
8	997089.7.dec	g389543	708	1100	8	997089.7.dec	5690180H1		1529
8	997089.7.dec	3668538H1	713	997	8	997089.7.dec	1863109H1	1702	
8	997089.7.dec	5042704H1	714	949	8	997089.7.dec	2102105H1		1850
8	997089.7.dec	3699552H1	717 51	999	8	997089.7.dec	4339688H1	1703 1694	
8 8	997089.7.dec 997089.7.dec	5156683H1 g2020020	84	295 533	8 8	997089.7.dec 997089.7.dec	3817576H1 5353591H1		1850 1850
8	997089.7.dec	6302085H1	228	530	8	997089.7.dec	3798035H1	1736	1850
8	997089.7.dec	4444078H1	288	515	8	997089.7.dec	4399365H1	1737	
8	997089.7.dec	5623338H1	507	827	8	997089.7.dec	4521845H1	1737	
8	997089.7.dec	4329118H1	576	821	8	997089.7.dec	1629818H1	1748	1850
8	997089.7.dec	g698738	1498	1841	8	997089.7.dec	6480664H1		1879
8	997089.7.dec	g698716	1499	1824	8	997089.7.dec	3055643H1	1674	1850
8	997089.7.dec	3796755H1	1391	1705	8	997089.7.dec	707490H1	1680	1849
8	997089.7.dec	3772065H1	1393	1683	8	997089.7.dec	1945259H1	1682	1863 1850
8 8	997089.7.dec 997089.7.dec	2921912H1 1338386H1	1400 1406	1679 1640	8 8	997089.7.dec 997089.7.dec	3127913H1 1483348H1		1850
8	997089.7.dec	2208068H1	1792	1876	8	997089.7.dec	554627H1		1850
8.	997089.7.dec	2909601H1		1876	8	997089.7.dec	704029H1		1782
8	997089.7.dec	2415770H1	1800	1855	8	997089.7.dec	1004810H1		1834
8	997089.7.dec	3857026H1	1801	1868	8	997089.7.dec	g616388	1637	1850
8	997089.7.dec	2455789H1	5	224	8	997089.7.dec	982190H1		1850
8	997089.7.dec	6602471H1	5	143	8	997089.7.dec	3803295H1	1652	1782
8	997089.7.dec	924429H1	1	170	8 -		3750923H1		1850
8	997089.7.dec	6477763H1	1	564	8	997089.7.dec	1533117H1 5042002H1		1800
8 8	997089.7.dec 997089.7.dec	3687663H1 4423309H1	9 22	307 307	8 8	997089.7.dec 997089.7.dec	2103420H1		1845 1729
8	997089.7.dec	5044370H1	22	287	8	997089.7.dec	1628004H1		1791
8	997089.7.dec	3834620H1	23	302	8	997089.7.dec	761529H1		1849
8	997089.7.dec	659525H1	1363	1640	8	997089.7.dec	4212159H1	1612	
8	997089.7.dec	5527891H1	1364	1473	8	997089.7.dec	3846656H1	1623	1850
8	997089.7.dec	2532712H1	1377	1691	8	997089.7.dec	5546414H1	. 1194	1388
8	997089.7.dec	4321548H1		1653	8	997089.7.dec	4073632H1	1202	
8	997089.7.dec	1427885H1	1437		8	997089.7.dec	1703681H1		1394
8	997089.7.dec	4063504H1	1443		8	997089.7.dec	4441637H1		1407
8 8	997089.7.dec 997089.7.dec	2326755H1 1793547H1	1447 1454		8 8	997089.7.dec 997089.7.dec	g1988696 5677789H1	1214	1646
8	997089.7.dec	755323R1	1462		8	997089.7.dec	2019819H1		1396
8	997089.7.dec	755323H1		1675	8	997089.7.dec	4515993H1		1551
8	997089.7.dec	3942852H1	1538		8	997089.7.dec	4420186H1		1596
8	997089.7.dec	3943170H1	1538	1803	8	997089.7.dec	1995894H1		1588
8	997089.7.dec	4823018H1	1541	1686	8	997089.7.dec	5338351H1		1810
8	997089.7.dec	6166630H1	1562		8	997089.7.dec	g1716174		1721
8	997089.7.dec	4049271H1	1351	1534	8	997089.7.dec	6166622H1		1876
8	997089.7.dec	3674696H1	1357		8	997089.7.dec	1483801H1		1842
8	997089.7.dec 997089.7.dec	4144117H1 5733971H1		1752 17 2 9	8 8	997089.7.dec 997089.7.dec	1294123H1		1796
8	397 003.7.ueC	3/338/1111	14/0	1/29		391), 1.600 i 66	4770575H1	15/0	1845
					193				

Table 4 997089.7.dec 6484611H1 232851.7.dec 4854011H1 8 1572 1879 10 236 489 8 997089.7.dec 232851.7.dec 4898831H1 346 1985045R6 1577 1876 10 58 8 1209 997089.7.dec 1985088H1 1578 1829 10 232851.7.dec 4590044H1 939 8 997089.7.dec 2863664H1 1578 1883 10 232851.7.dec g990847 1044 1426 232851.7.dec 8 997089.7.dec 1604 3295858H1 1584 1811 10 2633312F6 1061 8 997089.7.dec 232851.7.dec 2633312H1 1061 1248 5320722H1 1757 1851 10 8 997089.7.dec 3880543H1 5481892H1 1757 1850 10 232851.7.dec 1200 1470 8 997089.7.dec 4644039H1 1756 1850 10 232851.7.dec 5001383H1 1197 1459 8 997089.7.dec 1450379F6 1767 1863 10 232851.7.dec 3089512H1 1374 1658 8 997089.7.dec 1379 1767 1855 10 232851.7.dec 2950963H1 1667 5575661H1 8 997089.7.dec 1450379H1 1767 1850 10 232851.7.dec 2269908H1 1492 1738 8 997089.7.dec 1850 10 1394 1406936H1 1767 232851.7.dec 5874154H1 1671 8 997089.7.dec 3841989H1 1770 1850 10 232851.7.dec 875919R1 1397 1815 8 997089.7.dec 857233H1 1781 1876 10 232851.7.dec 875919H1 1397 1626 8 997089.7.dec 1384904H1 1784 1850 10 232851.7.dec 134999H1 1410 1569 8 997089.7.dec 1384944H1 1784 1855 10 232851.7.dec 3165201H1 1430 1694 8 997089.7.dec 6299830H1 1787 10 232851.7.dec 2211323H1 1440 1673 1876 237152.1.dec 232851.7.dec 9 1044 10 6516735H1 1440 1803 g3687842 9 237152.1.dec 68 10 232851.7.dec 3180284H1 1460 1750 a3355903 691 9 1474 237152.1.dec 313182R6 185 705 10 232851.7.dec 5528389H1 1627 9 1505 237152.1.dec 313182H1 185 370 10 232851.7.dec 2749071H1 1764 9 237152.1.dec a5663312 396 527 10 232851.7.dec 4447784H1 1508 1768 9 237152.1.dec 313182T6 433 911 10 232851.7.dec g2740439 1593 2002 9 237152.1.dec 1006 232851.7.dec 1914536H1 275 a3677047 558 10 9 237152.1.dec g3931239 566 928 10 232851.7.dec 2193227F6 43 420 9 g5111586 2193227H1 237152.1.dec 593 1047 10 232851.7.dec 43 291 9 593 1028 083804.1.dec 237152.1.dec g4070077 11 g2231165 1 1807 9 593 083804.1.dec 237152.1.dec g4630148 1019 11 g2245579 1 180 9 237152.1.dec q4891722 593 994 11 083804.1.dec q1468978 38 2382 9 237152.1.dec g3202771 593 986 11 083804.1.dec 2505102H1 48 281 9 g3744753 g2626807 50 1475 237152.1.dec 593 991 11 083804.1.dec 9 g1487039 593 982 083804.1.dec g3764994 1553 1910 237152.1.dec 11 q 237152.1.dec 593 11 083804.1.dec 2139585H1 1835 2094 g1225112 981 9 237152.1.dec q1268065 593 808 11 083804.1.dec 4670914H1 1931 2177 9 237152.1.dec g1272058 673 1040 12 272721.6.oct 3440665H2 2422 2746 9 237152.1.dec g1858070 742 1045 12 272721.6.oct 1879622T6 2423 2899 g1487086 9 237152.1.dec 780 1035 12 272721.6.oct 4697847H1 2424 2686 9 237152.1.dec 819 1039 12 272721.6.oct 6365882H1 2436 2760 q1302749 9 820 237152.1.dec 1814203F6 1241 12 272721.6.oct g2717112 2439 2941 9 237152.1.dec 1814199H1 820 1018 12 272721.6.oct 6156113H1 2446 2767 9 237152.1.dec 894609H1 821 1068 12 272721.6.oct 1614372H1 2447 2659 9 237152.1.dec g3322196 885 1037 12 272721.6.oct 2669613H1 2450 2701 9 1003 1109 272721.6.oct 2992666H1 2452 2747 237152.1.dec 3802778H1 12 9 237152.1.dec g5364335 1062 1505 12 272721.6.oct 3606557H1 2457 2747 9 1067 1333 12 272721.6.oct 2383864T6 2461 2889 237152.1.dec 6379454H1 9 237152.1.dec g3835124 1075 1514 12 272721.6.oct g2017289 2464 2763 9 1095 2464 2731 237152.1.dec g4899943 1513 12 272721.6.oct 4771302H1 9 237152.1.dec q1856934 1098 1513 12 272721.6.oct 1626533H1 2470 2679 9 237152.1.dec g3931985 1107 1514 12 272721.6.oct 2081464H1 2475 2746 g3933174 9 237152.1.dec 1291 1517 12 272721.6.oct 1443934R1 2646 2946 10 232851.7.dec 1971311F6 361 824 12 272721.6.oct g847460 2646 2941 2646 2946 10 232851.7.dec 4377213H1 632 869 12 272721.6.oct g3191774 2647 10 232851.7.dec 4372757H1 698 989 12 272721.6.oct g1670679 2951 10 232851.7.dec 1971311H1 361 605 12 272721.6.oct 818394H1 2651 2930 g2958359 10 232851.7.dec 3236558H2 382 578 12 272721.6.oct 2658 2939 10 232851.7.dec 3646182H1 386 668 12 272721.6.oct g2197785 2659 2941 10 232851.7.dec g1633875 391 2668 2917 657 12 272721.6.oct 207900H1 10 232851.7.dec 3743671H1 896 1207 12 272721.6.oct q1664674 2679 2945 10 232851.7.dec g2106789 443 676 12 272721.6.oct g2218503 2680 2930 10 232851.7.dec 4363458H1 491 574 12 272721.6.oct g765746 2686 2948 10 232851.7.dec 4589686H1 525 784 12 272721.6.oct 4632778H1 2687 2928 1514410H6 10 232851.7.dec 570 2693 2877 776 12 272721.6.oct 853091T1 10 232851.7.dec 1514410F6 570 973 12 272721.6.oct q4330145 2694 2943 232851.7.dec g2080694 10 2704 2919 62 176 12 272721.6.oct 853091H1 10 232851.7.dec 2560491H1 82 341 12 272721.6.oct 858358H1 2704 2919 10 232851.7.dec 431388H1 87 310 12 272721.6.oct 1738239H1 2716 2934 10 232851.7.dec 4634517H1 114 409 12 272721.6.oct 2722 2944 255380H1

					Table 4				
12	272721.6.oct	4174516H1	2721	2919	12	272721.6.oct	4881036H1	440	671
12	272721.6.oct	2909246H1	2722		12	272721.6.oct	5614719H1	540	818
12	272721.6.oct	255435H1	2722		12	272721.6.oct	5197812H2	542	761
12	272721.6.oct	g1154004	2732		12	272721.6.oct	3556769H1	544	734
12	272721.6.oct	g3922704	2733	2937	12	272721.6.oct	861316H1	570	801
12	272721.6.oct	g4196202	2735		12	272721.6.oct	5158893H2	574	753
12 12	272721.6.oct 272721.6.oct	g4306565 g4535419	2736 2737		12 12	272721.6.oct 272721.6.oct	1336222H1 1337943F6	589 589	836 840
12	272721.6.oct	g3743992	2738		12	272721.6.oct	1337943H1	589	823
12	272721.6.oct	g2704053	2757		12	272721.6.oct	1335885H1	589	818
12	272721.6.oct	4504538H1	2765		12	272721.6.oct	2549642H1	3	223
12	272721.6.oct	206466H1	2768	2941	12	272721.6.oct	3421029H1	1	252
12	272721.6.oct	4517424H1	2775		12	272721.6.oct	3462469H1	4	262
12	272721.6.oct	g1733236	2783		12	272721.6.oct	3530456H1	7	311
12	272721.6.oct	2318583H1	2783		12	272721.6.oct	5494835H1	11	253
12 12	272721.6.oct 272721.6.oct	5528408H1	2787		12 12	272721.6.oct	2103317H1	9	246
12	272721.6.oct	4983352H1 1624794H1	2801 2801	2930 3003	12	272721.6.oct 272721.6.oct	4251547H1 1880511H1	10	227 2316
12	272721.6.oct	4637844H1	2809	2946	12	272721.6.oct	2608041H1		2296
12	272721.6.oct	4590517H1	2855		12	272721.6.oct	886448R1	2058	
12	272721.6.oct	899136T1	2861		12	272721.6.oct	g847286		2263
12	272721.6.oct	899136H1	2861	2949	12	272721.6.oct	g847459	2063	2406
12	272721.6.oct	899136R1	2861	2949	12	272721.6.oct	4858132H1	2064	2320
12	272721.6.oct	5117025H1	2023		12	272721.6.oct	5922776H1		2330
12	272721.6.oct	5683880H1	2025		12	272721.6.oct	3172609H1		2342
12	272721.6.oct	3359193H1	2025		12	272721.6.oct	4093703H1	2068	
12 12	272721.6.oct 272721.6.oct	4198026H1 3140673H1	2025 2027		12 12	272721.6.oct 272721.6.oct	3380145H1		2263 2478
12	272721.6.oct	5189358H1		2272	12	272721.6.0ct	g1187212 4514781H1		2344
12	272721.6.oct	5714512H1	2032		12	272721.6.oct	1812403H1		2312
12	272721.6.oct	309502H1	2034		12	272721.6.oct	3631939H1	2085	
12	272721.6.oct	1532541H1	2038		12	272721.6.oct	310785H1		2257
12	272721.6.oct	4321903H1	2041	2311	12	272721.6.oct	4876369H1	2091	2288
12	272721.6.oct	g1717680		2346	12	272721.6.oct	2796749H1	2091	2374
12	272721.6.oct	g1956033	2046		12	272721.6.oct	5041972H1	2096	2320
12	272721.6.oct	4544903H1		2306	12	272721.6.oct	620219H1		2368
12	272721.6.oct	g2030407	2048		12	272721.6.oct	4761379H1		2368
12 12	272721.6.oct 272721.6.oct	4649950H1 1688977H1	2048	2289	12 12	272721.6.oct 272721.6.oct	5086430H1	2105 2116	
12	272721.6.oct	485575H1	2052		12	272721.6.oct	4195205H1 2824550H1		
12	272721.6.oct	3806025H1	2055		12	272721.6.oct	5887053H1		2382
12	272721.6.oct	336429H1	2057		12	272721.6.oct	5568231H1		2382
12	272721.6.oct	886448H1		2304	12	272721.6.oct	1419784H1		2359
12	272721.6.oct	5984480H1	11	195	12	272721.6.oct	1701231H1	2127	2345
12	272721.6.oct	4177301H1	16	278	12	272721.6.oct	850902R1	2129	2726
12	272721.6.oct	2632475H1	17	266	12	272721.6.oct	5890366H1		2258
12	272721.6.oct	5043035H1	19	269	12	272721.6.oct	850902H1		2357
12 12	272721.6.oct 272721.6.oct	3373560H1 2852069H1	19 22	284 240	12 12	272721.6.oct 272721.6.oct	964020H1 5883243H1	2129 2131	
12	272721.6.oct	4837381H1	22	276	12	272721.6.oct	1979478R6	2133	
12	272721.6.oct	654603H1	22	275	12	272721.6.oct	623173H1		2388
12	272721.6.oct	4836245H1	22	263	12	272721.6.oct	4304636H1		2348
12	272721.6.oct	5082455H1	22	205	12	272721.6.oct	4304619H1		2355
12	272721.6.oct	6101447H1	24	302	12	272721.6.oct	1211746H1		2376
12	272721.6.oct	3697626H1	28	302	12	272721.6.oct	1211746R1		2584
12	272721.6.oct	3747069H1	29	321	12	272721.6.oct	544305H1		2289
12	272721.6.oct	1389988H1	46	269	12	272721.6.oct	959104H1		2306
12	272721.6.oct	4672018H1	48	213	12	272721.6.oct	2737633H1		2397
12 12	272721.6.oct 272721.6.oct	g2111559 4558830H1	142 144	587 270	12 12	272721.6.oct 272721.6.oct	4243666H1 1784361H1	2168	
12	272721.6.oct	4739703H1	170	396	12	272721.6.oct	689468H1		2452 2423
12	272721.6.oct	3349536H1	176	446	12	272721.6.oct	5618378H1		2375
12	272721.6.oct	2883139F6	226	616	12	272721.6.oct	2707953H1		2481
12	272721.6.oct	1818319H1	317	570	12	272721.6.oct	4182894H1		2428
12	272721.6.oct	5500902H1	426	567	12	272721.6.oct	1808379H1		2400
12	272721.6.oct	5500602H1	427	661	12	272721.6.oct	3648072H1	2192	2491
12	272721.6.oct	2383864F6	427	876	12	272721.6.oct	g2069859	2190	2624
					195				

					Table 4				
12	272721.6.oct	3651272H1	2193	2488	12	272721.6.oct	3511433H1	1596	1868
12	272721.6.oct	544858H1	2193	2427	12	272721.6.oct	3443682H1	1633	1900
12	272721.6.oct	359974H1	2193	2423	12	272721.6.oct	3554817H1	1634	1917
12	272721.6.oct	806833H1	2197		12	272721.6.oct	4795906H1	1635	1856
12	272721.6.oct	1800635H1	2198	2387	12	272721.6.oct	1689619F6	1640	1958
12	272721.6.oct	4126223H1	2198		12	272721.6.oct	1689619H1	1640	1844
12	272721.6.oct	409008H1	2199	2379	12	272721.6.oct	5425548H1	1643	1748
12	272721.6.oct	4630512H1	2206		12	272721.6.oct	3238705H1	1644	1898
12	272721.6.oct	4121202H1	2227		12	272721.6.oct	3766967H1	1658	1951
12	272721.6.oct	5953089H1		2269	12	272721.6.oct	3049524H1	1663	1954
12	272721.6.oct	5952929H1		2296	12	272721.6.oct	3566758H1	1666	1968
12	272721.6.oct	4507393H1	1993	2262	12	272721.6.oct	2596290H1	1672	1917
12	272721.6.oct	4301314H1	2003	2273	12	272721.6.oct 272721.6.oct	3160455H1	1676 1690	1956
12 12	272721.6.oct	961005H1 961005R2	2004 2004	2553	12 12		5265155H1		1944 1967
12	272721.6.oct 272721.6.oct	g2218572		2176	12	272721.6.oct 272721.6.oct	2073037H1 4888491H1	1696	1949
12	272721.6.oct	1638726H1		2215	12	272721.6.oct	2796725H1	1696	1956
12	272721.6.oct	4375107H1	2013		12	272721.6.oct	4211481H1	2341	
12	272721.6.oct	1638757H1	2013	2220	12	272721.6.oct	4547403H1	2344	
12	272721.6.oct	4168120H1	2018		12	272721.6.oct	g1626091	2345	
12	272721.6.oct	5152124H1	2018		12	272721.6.oct	290356T6	2354	
12	272721.6.oct	157823H1	2018		12	272721.6.oct	g1996936	2358	
12	272721.6.oct	157823R1	2018	2293	12	272721.6.oct	387322H1	2362	2642
12	272721.6.oct	3564117H1	2019	2319	12	272721.6.oct	3532652H1	2368	2616
12	272721.6.oct	206466F1	2020	2639	12	272721.6.oct	5787013H1	2370	2644
12	272721.6.oct	4646215H1	1902	2174	12	272721.6.oct	5784572H1	2370	2676
12	272721.6.oct	4646289H1	1902	2072	12	272721.6.oct	5789842H1	2370	2660
12	272721.6.oct	4855045H1		2096	12	272721.6.oct	5794037H1	2370	2671
12	272721.6.oct	2108791H1	1903		12	272721.6.oct	5788592H1	2370	
12	272721.6.oct	2584487H1		2070	12	272721.6.oct	5787092H1	2370	2645
12	272721.6.oct	g734039	1903		12	272721.6.oct	3408832H1	2374	
12	272721.6.oct	2822283H1		2106	12	272721.6.oct	2932187H1	2378	
12	272721.6.oct	4508977H1	1906		12	272721.6.oct	5465681H1	2381	2547
12	272721.6.oct	1534302H1		2124	12	272721.6.oct	g1979728	2388	
12	272721.6.oct	1531421H1		2110	12	272721.6.oct	3500620H1	2389	2671
12	272721.6.oct	1531611H1		2117 2240	12	272721.6.oct	1979478T6	2392	2892
12 12	272721.6.oct 272721.6.oct	3560701H1 g1957940	1914	2295	12 12	272721.6.oct 272721.6.oct	6373060H1 206466R1	2399	2647 2941
12	272721.6.oct	4370273H1		2150	12	272721.6.oct	1709367H1	2408	2623
12	272721.6.oct	4370270H1		2192	12	272721.6.oct	5137771H1	2416	2675
12	272721.6.oct	3954918H1		2195	12	272721.6.oct	1906004H1	2419	2675
12	272721.6.oct	3955545H1		2194	12	272721.6.oct	2419956H1	2419	2659
12	272721.6.oct	4742017H1		2070	12	272721.6.oct	4709480H1	631	755
12	272721.6.oct	2946355H1		2254	12	272721.6.oct	4759041H1	634	856
12	272721.6.oct	3341847H1		2166	12	272721.6.oct	2212119H1	644	890
12	272721.6.oct	3629088H1	1935	2211	12	272721.6.oct	4875152H1	653	838
12	272721.6.oct	857934H1	1937	2186	12	272721.6.oct	1794525H1	675	943
12	272721.6.oct	4218690H1		2043	12	272721.6.oct	1697241H1	685	928
12	272721.6.oct	g1664571		2356	12	272721.6.oct	3556564H1	689	972
12	272721.6.oct	g1792741		2291	12	272721.6.oct	4444063H1	731	963
12	272721.6.oct	2255504H1		2178	12	272721.6.oct	4205033H1	737	862
12	272721.6.oct	2180294H1	1955	2076	12	272721.6.oct	3170922H1	741	1007
12	272721.6.oct	4442810H1		2233	12	272721.6.oct	2540429H1	771	1004
12	272721.6.oct	g1745686		2294	12	272721.6.oct	3209223H1	781	1065
12	272721.6.oct	5069083H1		2246	12	272721.6.oct	4779512H1	803	948
12	272721.6.oct	4605016H1		2228	12	272721.6.oct	5038225H1	810	884
12	272721.6.oct	949436H1		2190	12 12	272721.6.oct	4760088H1	810	881
12	272721.6.oct	948233H1		2221 2252	12	272721.6.oct	4794851H1	831	1067
12 12	272721.6.oct 272721.6.oct	1798444H1 176025H1		2252	12 12	272721.6.oct 272721.6.oct	g1961401 993703H1	872 881	1287 1101
12	272721.6.0ct	2203232H1		2222	12	272721.6.0ct	3802142H1	890	1155
12	272721.6.oct	g1670678		1968	12	272721.6.0ct	5436252H1	892	1092
12	272721.6.oct	909010H1	1578	1866	12	272721.6.oct	g1984201	898	1344
12	272721.6.oct	5390293H1		1810	12	272721.6.oct	657267H1	944	1186
12	272721.6.oct	5038305H1		1849	12	272721.6.oct	2531018H1	956	1178
12	272721.6.oct	3975017H1	1584	1861	12	272721.6.oct	3686443H1	969	1257
12	272721.6.oct	5681103H1		1851	12	272721.6.oct	2821084H1	970	1263

					Table 4				
12	272721.6.oct	5391261H1	990	1130	12	272721.6.oct	g4085144	2492	2940
12	272721.6.oct	860948H1	992	1237	12.	272721.6.oct	g3245239	2491	2940
12	272721.6.oct	4602249H1	996	1250	12	272721.6.oct	1629148T6	2500	2899
12	272721.6.oct	2258436H1	998	1215	12	272721.6.oct	3375874H1	2500	2762
12	272721.6.oct	g1979122	1002	1404	12	272721.6.oct	g4107892	2506	2956
12	272721.6.oct	g2030330	1006	1373	12	272721.6.oct	g3796949	2507	2930
12	272721.6.oct	3049484H1	1016	1296	12	272721.6.oct	g2342174	2517	2936
12	272721.6.oct	5422806H1	1015	1277	12	272721.6.oct	3705402H1	2518	2744
12	272721.6.oct	4875712H1	1017	1283	12	272721.6.oct	3665055H1	2522	
12	272721.6.oct	2930958H1	1038	1321	12	272721.6.oct	g518303		2946
12	272721.6.oct	939670H1	1040	1283	12	272721.6.oct	g1664375	2524	
12 12	272721.6.oct	3785755H1	1047	1231	12	272721.6.oct	g4531573	2531	2946
12	272721.6.oct	3552260H1	1064 1069	1369	12 12	272721.6.oct	415664H1	2535	2761
12	272721.6.oct 272721.6.oct	1443934H1 2119473H1	1009	1329 1301	12 12	272721.6.oct 272721.6.oct	414600H1 g2716083	2535 2536	2748 2948
12	272721.6.oct	3359947H1	1086	1331	12	272721.6.oct	5426832H1	2534	
12	272721.6.oct	5205141H2	1087	1238	12	272721.6.oct	3713386H1	2545	
12	272721.6.oct	3725856H1		1436	12	272721.6.oct	g1577334	2546	
12	272721.6.oct	4543655H1	1134	1376	12	272721.6.oct	5809476H1	2551	2823
12	272721.6.oct	881722R1	1134	1711	12	272721.6.oct	1680089H1	2552	2768
12	272721.6.oct	881722H1	1134	1256	12	272721.6.oct	g4536024	2556	2944
12	272721.6.oct	568864H1	1149	1408	12	272721.6.oct	232188H1	2561	2894
12	272721.6.oct	2734131H1	1149	1405	12	272721.6.oct	231662H1	2563	2743
12	272721.6.oct	5445609H1	1166	1365	12	272721.6.oct	232222H1	2563	2731
12	272721.6.oct	4894901H1	1176	1406	12	272721.6.oct	g2779419	2563	2930
12	272721.6.oct	g1860192	2578	2937	12	272721.6.oct	2883139T6	2566	2902
12	272721.6.oct	1940615T6		2902	12	272721.6.oct	g4452467	2567	2949
12	272721.6.oct	5068437H1	2579	2852	12	272721.6.oct	g3405917	2576	
12	272721.6.oct	1940615R6	2583	2939	12	272721.6.oct	197888H1	1697	1915
12	272721.6.oct	1940615H1	2583		12	272721.6.oct	5072033H1	1703	1970
12	272721.6.oct	g4222524	2588	2936	12	272721.6.oct	2613968H1		1939
12	272721.6.oct	4950868H1	2589	2841	12	272721.6.oct	962056R1	1703	
12	272721.6.oct	g4110048	2590	2947	12	272721.6.oct	962056H1	1703	1993
12 12	272721.6.oct 272721.6.oct	600791H1 4981557H1	2591 2595	2836 2850	12 12	272721.6.oct 272721.6.oct	6095332H1 2244263H1	1714	2026 1940
12	272721.6.oct	q4452122	2596	2939	12	272721.6.oct	1865981H1		1991
12	272721.6.oct	g1114427	2602		12	272721.6.oct	5659364H1	1736	
12	272721.6.oct	g4451191	2599	2940	12	272721.6.oct	4299096H1	1737	1929
12	272721.6.oct	g892675		2957	12	272721.6.oct	g1521980	1754	2096
12	272721.6.oct	g3424444		2945	12	272721.6.oct	5665880H1	1759	2008
12	272721.6.oct	g2111560		2950	12	272721.6.oct	3926250H1	1767	2045
12	272721.6.oct	g1982175	2608	2946	12	272721.6.oct	3846571H1	1783	2077
12	272721.6.oct	g3919967	2606	2942	12	272721.6.oct	1752970H1	1791	2049
12	272721.6.oct	g4391891	2606	2941	12	272721.6.oct	2421660H1	1791	2025
12	272721.6.oct	3624992H1	2608	2896	12	272721.6.oct	1751279H1	1791	2021
12	272721.6.oct	g3918885		2938	12	272721.6.oct	1294519H1	1795	
12	272721.6.oct	4635746H1		2867	12	272721.6.oct	5286768H1		1984
12	272721.6.oct	885047T1		2896	12	272721.6.oct	2505278H1		2030
12	272721.6.oct	885047H1		2919	12	272721.6.oct	1851982H1	1802	
12	272721.6.oct	2397225H1	2613		12	272721.6.oct	5658144H1		2014
12	272721.6.oct	g2397616		2934	12	272721.6.oct	5779914H1		2062
12 12	272721.6.oct 272721.6.oct	g2212530 4362360H1	2621	2961 2904	12 12	272721.6.oct 272721.6.oct	5531864H1 4742181H1		2086 2097
12	272721.6.oct	g1522152		2861	12	272721.6.0ct	5217356H1		2097
12	272721.6.oct	386546H1	2631		12	272721.6.oct	5159607H1	1839	
12	272721.6.oct	g3117517		2950	12	272721.6.oct	5619214H1		2133
12	272721.6.oct	g1157968		2941	12	272721.6.oct	1629148F6		2270
12	272721.6.oct	344052H1		2821	12	272721.6.oct	1629141H1		2049
12	272721.6.oct	2632475T6		2896	12	272721.6.oct	5607027H1		2059
12	272721.6.oct	g4114251		2940	12	272721.6.oct	5139939H1		2112
12	272721.6.oct	g4136680		2949	12	272721.6.oct	5679332H1		2128
12	272721.6.oct	g3017010		2930	12	272721.6.oct	5592590H1	1855	
12	272721.6.oct	g4284054		2946	12	272721.6.oct	2918819H1		2124
12	272721.6.oct	389040H1		2941	12	272721.6.oct	.3256891H1	1869	2123
12	272721.6.oct	g4328908		2951	12	272721.6.oct	1563141H1		2090
12	272721.6.oct	2271363T6		2901	12	272721.6.oct	2652784H1	1876	
12	272721.6.oct	1549356H1	2486	2610	12	272721.6.oct	4371853H1	1876	2152

					Table 4				
12	272721.6.oct	1399608H1	1878	2128	12	272721.6.oct	6429277H1	2266	2655
12	272721.6.oct	541556H1	1883	2120	12	272721.6.oct	6098047H1	2272	
12	272721.6.oct	g2017461	1891	2176	12	272721.6.oct	2308651H1		2524
12	272721.6.oct	4727656H1	1898	2168	12	272721.6.oct	3014469H1		2552
12	272721.6.oct	g3003890	2872	3204	12	272721.6.oct	786983R1	2277	
12	272721.6.oct	564887H1	2875	3001	12	272721.6.oct	786983H1	2277 2277	2537
12	272721.6.oct	g2932091	2875	2996	12	272721.6.oct	830695H1	2277	
12	272721.6.oct	g500166	2875	3008	12 12	272721.6.oct	1858762H1 g1026279	2293	
12 12	272721.6.oct 272721.6.oct	5525644H2 1881380T6	2908 2928	3182 3385	12	272721.6.oct 272721.6.oct	4303854H1	2302	
12	272721.6.oct	4941268H1	2228	2490	12	272721.6.oct	1662959H1		2534
12	272721.6.oct	1730067H1		2459	12	272721.6.oct	g1792740	2306	
12	272721.6.oct	1294012H1		2504	12	272721.6.oct	3596126H1	2312	
12	272721.6.oct	1293975F1		2827	12	272721.6.oct	1689619T6	2307	2903
12	272721.6.oct	1293975H1	2252		12	272721.6.oct	1820290H1	2317	2572
12	272721.6.oct	1272847H1	2252	2500	12	272721.6.oct	1820281H1		2573
12	272721.6.oct	2957128H1	2252	2545	12	272721.6.oct	1873055H1	2324	2555
12	272721.6.oct	2439817H1	2255	2485	12	272721.6.oct	3298163H1	2325	
12	272721.6.oct	2040137H1		2519	12	272721.6.oct	805746T1	2326	
12	272721.6.oct	2264921H1	2257		12	272721.6.oct	5527791H1	2332	
12	272721.6.oct	2268728H1	2257		12	272721.6.oct	3831404H1	2336	
12	272721.6.oct	1690407H1	2259		12	272721.6.oct	3840984H1	2338	
12	272721.6.oct	763923H1		2536	12	272721.6.oct	805746H1	2338	
12	272721.6.oct	4894289H1	1176	1459	12	272721.6.oct 461603.4.oct	2201471H1	2337 1512	
12	272721.6.oct	2556183H1	1181	1433 1519	13 13	461603.4.oct	2667533H1 1862102H1	1523	
12	272721.6.oct	3319651H1 831550H1	1250	1452	13	461603.4.oct	2355465H1		1665
12 12	272721.6.oct 272721.6.oct	3118134H1	1275	1558	13	461603.4.oct	g3645529		
12	272721.6.oct	5902550H1	1283		13	461603.4.oct	3293621H1		1906
12	272721.6.oct	4996858H1	1283	1563	13	461603.4.oct	g2335995	1736	2089
12	272721.6.oct	6113602H1	1295	1617	13	461603.4.oct	3752905H1	1758	
12	272721.6.oct	4518784H1	1297	1551	13	461603.4.oct	6094776H1	1908	2151
12	272721.6.oct	1989226H1	1311	1571	13	461603.4.oct	418011H1	1922	2103
12	272721.6.oct	956338H1	1317	1413	13	461603.4.oct	417150H1	1922	2101
12	272721.6.oct	4669770H1	1322	1560	13	461603.4.oct	418870H1	1922	
12	272721.6.oct	2821261H1	1324			461603.4.oct	413059H1	1922	
12	272721.6.oct	1567553H1	1336	1535		461603.4.oct	413059R1		
12	272721.6.oct	4880720H1	1352			461603.4.oct	418870R6	1922	
12	272721.6.oct	3881948H1	1359			461603.4.oct	417906H1	1922	
12	272721.6.oct	3156706H1	1362			461603.4.oct	696345H1	1964	
12	272721.6.oct	5040118H1	1380			461603.4.oct	5694066H1	1987 2019	2177 2288
12	272721.6.oct	3788560H1	1382			461603.4.oct 461603.4.oct	2637796H1 3596965H1	2019	2223
12 12	272721.6.oct 272721.6.oct	3806687H1 1282584H1	1389 1425			461603.4.oct	2673521H1	2077	2325
12	272721.6.oct	1703878H1	1441	1664		461603.4.oct	3405821H1	2085	2349
12	272721.6.oct	859573R1	1445			461603.4.oct	482251H1		2335
12	272721.6.oct	859573H1		1679		461603.4.oct	484926R6	2100	
12	272721.6.oct	4848606H2		1695		461603.4.oct	5693609H1		2272
12	272721.6.oct	1558344H1	1446			461603.4.oct	g1188364	2133	2267
12	272721.6.oct	3720883H1	1454	1628	13	461603.4.oct	3070461H1	2171	2336
12	272721.6.oct	3720892H1	1454	1739	13	461603.4.oct	g2779413	2210	
12	272721.6.oct	026143H1	1456	1796		461603.4.oct	3356374T6		2437
12	272721.6.oct	5030608H1	1457			461603.4.oct	g1780256		2624
12	272721.6.oct	4674029H1	1470			461603.4.oct	1756956H1		2651
12	272721.6.oct	2634326H1	1484			461603.4.oct	1250711F1		2798
12	272721.6.oct	5830504H1	1489			461603.4.oct	5005176H1		2684
12	272721.6.oct	5435568H1	1494			461603.4.oct	3001108F6		3018
12	272721.6.oct	290356R6	1494			461603.4.oct	1252411H1	2583	2798
12	272721.6.oct	3356346H1	1507			461603.4.oct	1951691H1		2725
12	272721.6.oct	3342545H1 4847556H1	1531 1552			461603.4.oct 461603.4.oct	1786802H1 1250711H1		2725
12 12	272721.6.oct 272721.6.oct	g2156699	1574			461603.4.oct	3001108H1		3018
12	272721.6.oct	2503041H1	1574			461603.4.oct	3154469H1	2841	3111
12	272721.6.oct	4883822H2		2537		461603.4.oct	g4525001	1	365
12	272721.6.oct	1542559H1		2478		461603.4.oct	g4148045	2	441
12	272721.6.oct	6430113H1		2655		461603.4.oct	g3846311	5	228
12	272721.6.oct	4341009H1		2586		461603.4.oct	g4136972	5	365

				-	Γable 4				
13	461603.4.oct	g1005259	33	338	14	332465.2.dec	5544928H1	949	1161
13	461603.4.oct	2704364T6	44	404	14	332465.2.dec	5615805R8	1117	1510
13	461603.4.oct	2254891T6	44	561	14	332465.2.dec	4815011H1		1483
13	461603.4.oct	2645122T6	46	510	14	332465.2.dec	g827150		1543
13	461603.4.oct	g2620015	88	297	14	332465.2.dec	g312815		2494
13	461603.4.oct	2013516R6	126	582	14	332465.2.dec	5283470H1		1869
13 13	461603.4.oct	4369011H1	145	424	14 14	332465.2.dec 332465.2.dec	4370131H1 1342780F6	1680 1700	1946
13	461603.4.oct 461603.4.oct	g2071015 5992740H1	195 210	603 508	14	332465.2.dec	g2737583		1775
13	461603.4.oct	2013516H1	402	582	14	332465.2.dec	2505440H2	1833	
13	461603.4.oct	2451916H1	429	656	14	332465.2.dec	1452693H1	1872	
13	461603.4.oct	2451916F6	429	593	14	332465.2.dec	4402015H1	1947	2190
13	461603.4.oct	657:176H1	438	686	14	332465.2.dec	2453792H1	1952	
13	461603.4.oct	492501H1	446	742	14	332465.2.dec	3463132T6	2045	2595
13	461603.4.oct	4916755H1	445	723	14	332465.2.dec	032987H1	2156	
13	461603.4.oct	1682473H1	450	568	14	332465.2.dec	2133608F6 2133608H1	2160 2160	
13 13	461603.4.oct	4662505H1 1387072H1	446 452	698 597	14 14	332465.2.dec 332465.2.dec	g2100470	2231	
13	461603.4.oct 461603.4.oct	2984524H1	454	721	14	332465.2.dec	g816859	2271	2642
13	461603.4.oct	3298213H1	459	646	14	332465.2.dec	4968476H1	2320	
13	461603.4.oct	4520106H1	472	717	14	332465.2.dec	3876373H1	2345	2604
13	461603.4.oct	803599H1	490	721	14	332465.2.dec	1342780T6	2363	2931
13	461603.4.oct	4714474H1	518	770	14	332465.2.dec	2292663H1	2371	2624
13	461603.4.oct	3339447H1	534	784	14	332465.2.dec	3579379T6	2374	
13	461603.4.oct	3339447F6	534	1020	14	332465.2.dec	g2783310	2501	
13	461603.4.oct	g1958411	586	1034	14	332465.2.dec	g4074219 3055317H1	2506 2515	
13 13	461603.4.oct	1701488H1 2254891R6	629 657	804 1102	14 14	332465.2.dec 332465.2.dec	g2197386	2513	
13	461603.4.oct 461603.4.oct	4042479H1	685	983	14	332465.2.dec	2012009H1	2530	
13	461603.4.oct	3231432H1	909	1048	14	332465.2.dec	g5110989	2533	
13	461603.4.oct	g3693474	702	1154	14	332465.2.dec	g4334290	2537	
13	461603.4.oct	5915013H1	913	1080	14	332465.2.dec	2133608T6	2555	
13	461603.4.oct	4175420H1	751	1061	14	332465.2.dec	g1678702	2596	
13	461603.4.oct	g1067303	959	1150	14	332465.2.dec	g4888123	2597	
13	461603.4.oct	5489546H1	1084	1362	14	332465.2.dec	g3778643	2596	
13	461603.4.oct	g2783417	1178	1396	14 14	332465.2.dec	3815651H1 g4629965	2603 2638	
13 13	461603.4.oct 461603.4.oct	5489828H1 g1968244	778 1305	1061 1710	14	332465.2.dec 332465.2.dec	g2875811	2678	
13	461603.4.oct	4712047H1	1308	1563	14	332465.2.dec	1334255T6	2694	
13	461603.4.oct	738669H1	1315	1583	14	332465.2.dec	1334255H1	2701	
13	461603.4.oct	5152886H1	780	1022	14	332465.2.dec	1334255F6	2701	2980
13	461603.4.oct	g3043083	785	846	14	332465.2.dec	g2752991	2773	
13	461603.4.oct	g1401520	1341	1597	14	332465.2.dec	g2912342	2792	
13	461603.4.oct	5429668H1	1420	1600	15	445175.3.dec	g2753580	31	93
13	461603.4.oct	4201935H1	808	1061	15 15	445175.3.dec	g3842531 g3835415	1	42 96
13 13	461603.4.oct 461603.4.oct	2455871F6 2911386H1	855	1597 1125	15	445175.3.dec 445175.3.dec	g4435437	1	144
13	461603.4.oct	012355H1	1481	1804	15	445175.3.dec	g5233483	1	126
13	461603.4.oct	5544019H1	1492	1695	15	445175.3.dec	g3154963	1	104
13	461603.4.oct	2254891H1	871	1102	15	445175.3.dec	g4452651	13	263
13	461603.4.oct	g1401616	908	1236	15	445175.3.dec	g2904826	22	90
14	332465.2.dec	g340010	1	2969	15	445175.3.dec	g2818451	1	48
14	332465.2.dec	3463132F6	1	343	15	445175.3.dec	g2816891	1	148
14	332465.2.dec	3463132H1	1	165	15	445175.3.dec	5741828H1 g1951684	1	287
14	332465.2.dec	4968429H1	14 30	190 333	15 15	445175.3.dec 445175.3.dec	g35494	112 206	331 2449
14 14	332465.2.dec 332465.2.dec	3579379H1 3579379F6	31	185	15	445175.3.dec	651077H1	988	1254
14	332465.2.dec	171789H1	77	231	15	445175.3.dec	3926047F6	1179	1711
14	332465.2.dec	g1678816	91	451	15	445175.3.dec	3926047H1	1179	1363
14	332465.2.dec	2472213F6	149	589	15	445175.3.dec	3926047T6		2070
14	332465.2.dec	2472213H1	149	253	16	980541.1.dec	g2340868	1	2878
14	332465.2.dec	g3180548	184	641	16	980541.1.dec	g2967684	250	2878
14	332465.2.dec	g3180312	264	641	16	980541.1.dec	g2586410	402	2878
14	332465.2.dec	5581933H1	360	620	16	980541.1.dec	6269227H1		1941
14 14	332465.2.dec 332465.2.dec	5669667H1 g769408	467 779	714 1045	16 16	980541.1.dec 980541.1.dec	g885094 g2166303		2107 2377
14	332465.2.dec	4531284H1	832	11043	16	980541.1.dec	g777428		2637
, -							g		- -

					Table 4				
16	980541.1.dec	g2525285	2467	2887	19	242082.10.dec	g2359154	1208	1464
16	980541.1.dec	g883161	2494	2869	19	242082.10.dec	g3179415	1246	1469
16	980541.1.dec	g779712	2494		19	242082.10.dec	673956H1	1283	
16	980541.1.dec	g2163763	2508		19	242082.10.dec	5482918H1	1286	
16	980541.1.dec	g873216	2549		19 19	242082.10.dec	1395173T6	1287 1301	1558
16 16	980541.1.dec 980541.1.dec	g764624 g876367	2544 2544		19	242082.10.dec 242082.10.dec	2202416H1 2202416F6	1301	
16	980541.1.dec	g830021	2550	2897	19	242082.10.dec	g1765329	1314	
16	980541.1.dec	g756279	2551	2813	19	242082.10.dec	g1190219	1368	
16	980541.1.dec	g885095	2784	2898	19	242082.10.dec	600663F1	1369	1973
17	237996.1.dec	g5056707	1	334	19	242082.10.dec	g2589750	1404	1464
17	237996.1.dec	4531252H1	1	276	19	242082.10.dec	2133344H1		1545
17	237996.1.dec	3614216H1	4	238	19	242082.10.dec	5024752H1		1522
17	237996.1.dec	3111306H1	14	222	19	242082.10.dec	632098H1	1457	
17	237996.1.dec	3604478H1	200	420	19 19	242082.10.dec 242082.10.dec	2202416T6 3091754H1	1466 1480	1953 1752
17 17	237996.1.dec 237996.1.dec	6152381H1 2937960H1	355 544	630 802	19	242082.10.dec	1926130H1	1487	
18	243267.9.dec	429897H1	1	168	19	242082.10.dec	1926130R6	1487	
18	243267.9.dec	3277737H1	9	250	19	242082.10.dec	2292755H1	1505	
18	243267.9.dec	5052754H1	134	381	19	242082.10.dec	2867724H1		1805
18	243267.9.dec	5984361H1	203	400	19	242082.10.dec	g5438605	1519	
18	243267.9.dec	1754639T6	353	616	19	242082.10.dec	g728298	1521	1734
18	243267.9.dec	1754905F6	360	667	19	242082.10.dec	g4003740	1527	
18	243267.9.dec	1754639H1	360 1	605 267	19 19	242082.10.dec 242082.10.dec	g1678437 g3445912		1873 1976
19 19	242082.10.dec 242082.10.dec	1962272H1 1710521H1	9	212	19	242082.10.dec	g4188129		1977
19	242082.10.dec	1710521F6	9	361	19	242082.10.dec	g4002844		1974
19	242082.10.dec	924352H1	77	425	19	242082.10.dec	g1686101	1559	
19	242082.10.dec	5121112H1	148	424	19	242082.10.dec	466459T6	1594	1932
19	242082.10.dec	4270649H1	254	505	19	242082.10.dec	466459H1		1828
19	242082.10.dec	1299353H1	286	498	19	242082.10.dec	466459R6		1973
19	242082.10.dec	3373518H1	288	559	19	242082.10.dec	468718H1		1828
19	242082.10.dec	g2159501	304	511	19 19	242082.10.dec	g2186213 1220035R6	1621 1671	1988 1973
19 19	242082.10.dec 242082.10.dec	3748635H1 g835896	314 371	569 613	19	242082.10.dec 242082.10.dec	3881469H1		1964
19	242082.10.dec	g784665	372	466	19	242082.10.dec	g1266171		1973
19	242082.10.dec	1374464H1	528	747	19	242082.10.dec	059532H1	1699	1905
19	242082.10.dec	5451856H1	569	799	19	242082.10.dec	g1189494	1711	1974
19	242082.10.dec	g1324135	592	1037	19	242082.10.dec	g1056493	1751	1988
19	242082.10.dec	5216316H1	659	906	19	242082.10.dec	g3232610	1797	1985
19	242082.10.dec	g1056590	757 777	998	19	242082.10.dec	g1226704	1839	1978
19	242082.10.dec	6429773H1	777 844	1312	20 20	019239.1.dec 019239.1.dec	g2037390 1297333F6	1 1	291 491
19 19	242082.10.dec 242082.10.dec	2127293H1 5579027H2	844 868	1091 1140	20	019239.1.dec	1297333H1	1	263
19	242082.10.dec		900	1263	20	019239.1.dec	3331976H1	407	597
19	242082.10.dec		905	1206		019239.1.dec	3040041F6	523	770
19	242082.10.dec	1898869H1	918	1197		019239.1.dec	3040041H1	523	788
19	242082.10.dec	g5234067	993	1464		019239.1.dec	4938596H1	658	815
19	242082.10.dec	g2159502	1005			019239.1.dec	g677095	684	892
19	242082.10.dec	g5396677	1009			019239.1.dec	503922H1	692 692	921
19	242082.10.dec 242082.10.dec	g5671070 g1384768	1020 1038			019239.1.dec 019239.1.dec	503922R1 5318750H1	866	1098 1056
19 19	242082.10.dec	g3785412	1049			019239.1.dec	3693495H1	888	1098
19	242082.10.dec	600663H1		1346		019239.1.dec	3693495F6	888	1331
19	242082.10.dec	600663R6	1062			019239.1.dec	618665H1	1020	1287
19	242082.10.dec	600663R1	1062	1545	20	019239.1.dec	2158372H1	1020	1273
19	242082.10.dec	g2185852	1074	1330		019239.1.dec	1297470F6		1583
19	242082.10.dec	•	1074			019239.1.dec	689278H1		1365
19	242082.10.dec	-	1120			019239.1.dec	1297470H1		1286
19	242082.10.dec		1150			019239.1.dec	3775993H1		1393 1789
19 19	242082.10.dec 242082.10.dec			1408 1414		019239.1.dec 019239.1.dec	1297470T6 g2557145		1404
19	242082.10.dec			1463		019239.1.dec	6343003H1		1451
19	242082.10.dec			1415		019239.1.dec	4769071H1	1271	1509
19	242082.10.dec		1169			019239.1.dec	3040041T6	1302	1754
19	242082.10.dec	2754527H1	1202			019239.1.dec	2840627F6		2050
19	242082.10.dec	3891815H1	1207	1439	20	019239.1.dec	2840627H1	1510	1760

					Table 4				
20	019239.1.dec	g703791	1567	1844	21	899943.1.dec	6400248H1	2535	2708
20	019239.1.dec	3022511H1	1730	1972	21	899943.1.dec	g1719353	2544	2985
20	019239.1.dec	3693495T6	1858	2211	21	899943.1.dec	g1960091	2579	3079
20	019239.1.dec	g703718	1941	2323	21	899943.1.dec	2367903F6	2743	
20	019239.1.dec	g2657422	1936		21	899943.1.dec	494011F1	2790	3333
20	019239.1.dec	g2904422	1944	2328	21	899943.1.dec	1398685H1	2833	3081
20	019239.1.dec	g3417623		2328	21	899943.1.dec	1380634H1	2837	3083
20	019239.1.dec	2945454H1	1968	2268	21	899943.1.dec	5138789H1	2847	
20	019239.1.dec	g3331297	1970	3323	21 21	899943.1.dec 899943.1.dec	5067594H1 494011T6	2856 2868	3041 3293
21 21	899943.1.dec 899943.1.dec	3117949H1 2756752H1	3144 3200	3462	21	899943.1.dec	g2051891	2874	
21	899943.1.dec	495759F1	3217	3767	21	899943.1.dec	g4738083	2883	
21	899943.1.dec	1332986T6	3230	3287	21	899943.1.dec	6489656H1	2893	
21	899943.1.dec	3297117H1	3311	3563	21	899943.1.dec	g3419253	2900	
21	899943.1.dec	2485552H1	1	212	21	899943.1.dec	g5656805	2920	
21	899943.1.dec	g3869258	157	4209	21	899943.1.dec	ğ1444847	2925	3334
21	899943.1.dec	g3869256	157	4209	21	899943.1.dec	g3416160	2941	
21	899943.1.dec	2693067H1	514	768	21	899943.1.dec	g1719354	2952	
21	899943.1.dec	2535607H1	793	1049	21	899943.1.dec	g1780421	2962	
21	899943.1.dec	3502278H1	1004	1306	21	899943.1.dec	g654349	3042	
21	899943.1.dec	g1779649	1165	1612	21	899943.1.dec	g758975	3051	
21	899943.1.dec	495759R1	1254	1720	21	899943.1.dec	g564984	3050	
21	899943.1.dec	495759R6	1255	1621	21	899943.1.dec	g1357788	3057	
21	899943.1.dec	495759H1	1255	1499	21	899943.1.dec	g2931035	3072 3074	
21	899943.1.dec	494011R1	1627	2049 1996	21 21	899943.1.dec 899943.1.dec	155875T6 3874011H1		3346
21 21	899943.1.dec 899943.1.dec	494011R6 494011H1	1627 1627	1857	21	899943.1.dec	g1190099	3111	
21	899943.1.dec	g3896433		2013	21	899943.1.dec	g2959267	3312	
21	899943.1.dec	994895R1	1671	2179	21	899943.1.dec	g3836196	3344	3771
21	899943.1.dec	994895H1	1671	1941	21	899943.1.dec	154612T6		3733
21	899943.1.dec	680754H1	1716	1981	21	899943.1.dec	g2877501	3399	3771
21	899943.1.dec	2367903H1		2973	21	899943.1.dec	g3838447	3423	3771
21	899943.1.dec	3488220H1		2009	21	899943.1.dec	g1187596	3476	3767
21	899943.1.dec	1332986F6	1799	2106	21	899943.1.dec	6192804H1	3498	3767
21	899943.1.dec	1332986H1	1799	2031	21	899943.1.dec	6194735H1	3498	3767
21	899943.1.dec	1964279H1	1900	2175	21	899943.1.dec	6194703H1	3498	3752
21	899943.1.dec	g1357787	2020	2620	21	899943.1.dec	495759T6		3724
21	899943.1.dec	5874572H1	2031	2289	21	899943.1.dec	g4737879	3527	3767
21	899943.1.dec	2598088F6		2692	21	899943.1.dec	g758939		3748
21	899943.1.dec	g573567		2455	21 21	899943.1.dec	g3895731 g1079906		3771 3817
21 21	899943.1.dec	2598088H1 2598088T6		2210 3316	21	899943.1.dec 899943.1.dec	767355H1		3926
21	899943.1.dec 899943.1.dec	6409839H1		2685	21	899943.1.dec	g1115031	3784	4214
21	899943.1.dec	5035552H1		2458	22	443551.1.dec	381281H1	1	276
21	899943.1.dec	1997937R6		2728	22	443551.1.dec	491740R1	1	496
21	899943.1.dec	1997937H1		2503	22	443551.1.dec	491740H1	1	233
21	899943.1.dec	g3887783	2268	2695	22	443551.1.dec	5545931T6	231	680
21	899943.1.dec	1997937T6	2320	2860		443551.1.dec	5511796H1	388	617
21	899943.1.dec	g1280977		2848		443551.1.dec	2727051H1	416	710
21	899943.1.dec	155875R6		2806		443551.1.dec	g3888654	417	693
21	899943.1.dec	155875H1		2539		443551.1.dec	4307033H1	501	639
21	899943.1.dec	6096636H1		2589		443551.1.dec	491740R6	1	403
21	899943.1.dec	2370164T6		3288		443551.1.dec	g1196460	1	494
21	899943.1.dec	5876310H1		2706 2686		443551.1.dec 897957.1.dec	g2522501	351 110	499 341
21	899943.1.dec	4895030H1		2849		897957.1.dec	1332888H1 g2595651	1	335
21 21	899943.1.dec 899943.1.dec	g1941651 g658182		2678		897957.1.dec	2862618T6	1	569
21	899943.1.dec	g2718978		2885		897957.1.dec	1332888F6	110	562
21	899943.1.dec	5298571H1		2721		897957.1.dec	452282H1	311	525
21	899943.1.dec	5298771H1		2706		897957.1.dec	g1951500	443	756
21	899943.1.dec	5298612H1		2574		897957.1.dec	g3245520	599	1047
21	899943.1.dec	4749511H1		2740		897957.1.dec	g2873952	701	1041
21	899943.1.dec	g715365		2775		897957.1.dec	4797192F6	794	1163
21	899943.1.dec	g1471133		2886		897957.1.dec	1330155H1	110	344
21	899943.1.dec	6555238H1		3021		900911.1.dec	1398471H1	1	238
21	899943.1.dec	6556278H1		2986		900911.1.dec	2694772F6	125	338
21	899943.1.dec	2913641H1	2517	2778	24	900911.1.dec	g4690049	1	195

					Table 4				
24	900911.1.dec	g3034163	1	86	28	479346.1.dec	6477244H1	65	627
24	900911.1.dec	1398471F6	1	410	28	479346.1.dec	6484883H1	172	748
24	900911.1.dec	2694772H1	126	337	28	479346.1.dec	5347152H1	265	513
24	900911.1.dec	4018267H1	135	429	28	479346.1.dec	4044595H1	282	624
24	900911.1.dec	4018267F6	135	426	28	479346.1.dec	g1844136	286	628
24	900911.1.dec	2927224H2	209	509	28	479346.1.dec	495945H1	248	498
24	900911.1.dec	3382640H1	351	440	28	479346.1.dec	495945R6	295	796
24	900911.1.dec	2110417H1	409	676	28	479346.1.dec	270352H1	329	675 829
24	900911.1.dec	1399832H1	1	227 536	28 28	479346.1.dec 479346.1.dec	2556546F6 2556546H1	342 342	587
25 25	999296.1.dec 999296.1.dec	569710T6 1914106H1	225 219	469	28 28	479346.1.dec	4003594R6	359	841
25	999296.1.dec	g2317768	1	543	28	479346.1.dec	g2156015	388	624
25	999296.1.dec	1923296H1	i	276	28	479346.1.dec	5607740H1	408	655
25	999296.1.dec	1923488H1	i	255	28	479346.1.dec	g992251	374	696
25	999296.1.dec	4768094T6	42	583	28	479346.1.dec	5629488H1	434	687
25	999296.1.dec	g2522505	86	250	28	479346.1.dec	g1198731	634	862
25	999296.1.dec	1923488T6	96	557	28	479346.1.dec	1437357F6	711	1213
25	999296.1.dec	1335071H1	95	341	28	479346.1.dec	g814289	870	1286
25	999296.1.dec	g3896841	156	513	28	479346.1.dec	493568R1	1135	
25	999296.1.dec	5085341H1	162	365	28	479346.1.dec	493568H1		1369
25	999296.1.dec	5643520R8	166	440	28	479346.1.dec	g1060060		1512
25	999296.1.dec	4874348H1	174	449	28	479346.1.dec	2208031H1 g2156002	1459 445	1701 566
25	999296.1.dec	1784584H1	195	460	29 29	481750.1.dec 481750.1.dec	6121404H1	1174	
25 25	999296.1.dec	2912050H1 3322736H1	229 379	532 646	29 29	481750.1.dec	6118209H1	1174	
25 25	999296.1.dec 999296.1.dec	1923488R6	1	405	29	481750.1.dec	g5370030	2067	
26	442286.1.dec	1379688F6	i	322	29	481750.1.dec	6051387J1	1788	
26	442286.1.dec	1375814F1	1	381	29	481750.1.dec	5813882H1	175	326
26	442286.1.dec	g715910	11	316	29	481750.1.dec	g2328990	735	986
26	442286.1.dec	1379688T6	41	580	29	481750.1.dec	g4573711	2069	2459
26	442286.1.dec	g697373	372	587	29	481750.1.dec	g1921216	2068	
26	442286.1.dec	3790789H1	407	656	29	481750.1.dec	5814345H1	175	399
26	442286.1.dec	1375814H1	1	240	29	481750.1.dec	6118412H1	1174	
26	442286.1.dec	1379688H1	1	222	29	481750.1.dec	5819550H1	175	254
27	901978.1.dec	446871R6	565	849	29	481750.1.dec	5821510H1	175	410
27	901978.1.dec	3128415F6	1	466	29	481750.1.dec	3392427H1	726 1353	1011 1554
27	901978.1.dec	4031889H1	1 1	234 462	29 29	481750.1.dec 481750.1.dec	310596H1 5108871H1	1	246
27 27	901978.1.dec 901978.1.dec	4031889F6 5668166H1	100	338	29 29	481750.1.dec	1914622H1	90	331
27	901978.1.dec	4129275H2	135	401	29	481750.1.dec	4028002H1	131	413
27	901978.1.dec	6553482H1	148	447	29	481750.1.dec	5821402H1	134	436
27	901978.1.dec	g2154384	209	447	29	481750.1.dec	5813479H1	134	414
27	901978.1.dec	ž997522H1	213	468	29	481750.1.dec	4784933H2	143	409
27	901978.1.dec	g1696284	220	560	29	481750.1.dec	4820753F6	164	736
27	901978.1.dec	3295381H1	223	461	29	481750.1.dec	4820753H1	164	433
27	901978.1.dec	2007652H1	226	416	29	481750.1.dec	3561080H1	165	291
27	901978.1.dec	2007652R6	226	485	29	481750.1.dec	258608H1	168	349
27	901978.1.dec	2007652T6	226	454	29 29	481750.1.dec 481750.1.dec	1390606H1 3199745H1	196 278	456 503
27	901978.1.dec	g2141617	285 303	485 511	29 29	481750.1.dec	q3229581	464	833
27 27	901978.1.dec 901978.1.dec	2827425H2 4528583F6	397	794	29	481750.1.dec	g3118358	508	985
27	901978.1.dec	4528583H1	398	643	29	481750.1.dec	4200727H1	648	949
27	901978.1.dec	444179R6	570	978	29	481750.1.dec	426001H1	687	950
27	901978.1.dec	446871H1	570	908	29	481750.1.dec	429190H1	682	805
27	901978.1.dec	g4970407	852	1278	29	481750.1.dec	424948H1	687	927
27	901978.1.dec	2715520F6	891	1358	29	481750.1.dec	g1995962	688	1055
27	901978.1.dec	g1442764	989	1214		481750.1.dec	3392402F6	729	1089
27	901978.1.dec	444179H1	565	870	29	481750.1.dec	3392402H1	728	1030
27	901978.1.dec	2715520H1	886	1120		481750.1.dec	g2112377	833	1273
28	479346.1.dec	4003594H1	64	265	29	481750.1.dec	6560051H1	833	1383
28	479346.1.dec	493568R6	1132			481750.1.dec	1691842H1	925	1167
28	479346.1.dec	1437357H1	709 78	962 252	29 29	481750.1.dec 481750.1.dec	1691166H1 6051387H1	1111 1184	1203 1768
28 28	479346.1.dec 479346.1.dec	g4331920 g4311455	1	337	29 29	481750.1.dec	5004434H1		1433
28 28	479346.1.dec	g2953332	i	224	29 29	481750.1.dec	2041133H1	1488	
28	479346.1.dec	6172546H1	1	300	29	481750.1.dec	g1745471		1897
28	479346.1.dec	3256006H1	1	261	29	481750.1.dec	g1291764		2107
					202				

					Table 4				
29	481750.1.dec	3392402T6	1656		33	902791.3.dec	3429917H1	1821	2046
29	481750.1.dec	4181819T8		2172	33	902791.3.dec	1449768F6		2167
29	481750.1.dec	g3960862	1725	2116	33	902791.3.dec	1449751R1	1865	2167
29	481750.1.dec	6051495J1	1763	2337	33	902791.3.dec	4858660H1	1900	
29	481750.1.dec	3514153H1		2042	33	902791.3.dec	3519949H1	1920	
29	481750.1.dec	1793831R6		2194	33	902791.3.dec	873395H1	1923	
29	481750.1.dec	1793831H1		2095	33	902791.3.dec	g2350764	1946	
29	481750.1.dec	4129281T6	1886		. 33	902791.3.dec	176175H1	2052	
29	481750.1.dec	3725148H1	1901	2193	33	902791.3.dec	898974H1 g848299		1790 1723
29 29	481750.1.dec	4820753T6	1929 1946	2464	33 33	902791.3.dec 902791.3.dec	6512815H1		1595
29	481750.1.dec 481750.1.dec	1793831T6 g1745418		2193	33	902791.3.dec	4374584H1	782	1043
29	481750.1.dec	6454265H1		2424	33	902791.3.dec	898974T1		2047
29	481750.1.dec	g1241685	1995	2108	33	902791.3.dec	g1367706	1575	1842
29	481750.1.dec	g4573702	2061	2494	33	902791.3.dec	141702H1	1563	1787
29	481750.1.dec	3705964H1	2069	2338	33	902791.3.dec	450088H1	764	995
29	481750.1.dec	g2112268	2085	2495	33	902791.3.dec	3508596H1	1	212
29	481750.1.dec	3276661H1	2251		33	902791.3.dec	1390970H1	1	218
29	481750.1.dec	6051495H1	1163	1638	33	902791.3.dec	4575303H1	40	321
29	481750.1.dec	5814635H1	175	391	33	902791.3.dec	g1964700	85 00	525
30	900917.2.dec	492415R6	1	469	33	902791.3.dec	3974703H1	86	362
30	900917.2.dec	492415H1	1	226	33 33	902791.3.dec 902791.3.dec	6051917J1 6133494H1	143 172	615 469
30	900917.2.dec	g1265162 3365206H1	8 11	427 246	33 33	902791.3.dec	071200H1	204	383
30 30	900917.2.dec 900917.2.dec	3110432H1	46	322	33	902791.3.dec	g761186	265	582
30	900917.2.dec	3469861H1	99	369	33	902791.3.dec	3210822F6	422	948
31	999415.1.dec	2554389F6	1	428	33	902791.3.dec	3210822H1	423	603
31	999415.1.dec	2554389H1	1	251	33	902791.3.dec	4232346H2	501	748
31	999415.1.dec	5347358H1	2	261	33	902791.3.dec	1946681H1	506	737
31	999415.1.dec	2554389T6	6	393	33	902791.3.dec	5078577H1	546	773
31	999415.1.dec	2733444H1	46	287	33	902791.3.dec	2947767H1	554	858
31	999415.1.dec	g1637277	159	376	33	902791.3.dec	6364645H1	656	946
31	999415.1.dec	2767114F6	281	702	33	902791.3.dec	1709770H1	688	909
31	999415.1.dec	5791156H1	380	682	33	902791.3.dec	450088R6	772 772	1110 1365
32	900680.2.dec	2882704F6	1	490	33 33	902791.3.dec 902791.3.dec	450088R1 1420607H1	824	1056
32 32	900680.2.dec 900680.2.dec	5518860H1 263959H1	21 53	294 361	33	902791.3.dec	3973901H1	831	1142
32 32	900680.2.dec	269967H1	55	367	33	902791.3.dec	4891459H1	950	1226
32	900680.2.dec	g681529	56	376	33	902791.3.dec	1676067H1	1012	
32	900680.2.dec	263959R6	56	500	33	902791.3.dec	1676067F6		1524
32	900680.2.dec	3385441H1	57	304	33	902791.3.dec	3370236H1	1032	1157
32	900680.2.dec	6486823H1	62	645	33	902791.3.dec	2557147H1		1272
32	900680.2.dec	4742910H1	85	350	33	902791.3.dec	g2159741	1042	
32	900680.2.dec	4526902H1	90	362	33	902791.3.dec	2227620H1		1363
32	900680.2.dec	g680873	325	609	33	902791.3.dec	g4982966		1595
32	900680.2.dec	180567R6	351	796	33	902791.3.dec	3527710H1		1500
32	900680.2.dec	180718R6	417	796	33 33	902791.3.dec 902791.3.dec	g2017626 663715H1		1549 1463
32	900680.2.dec	180567H1	561 736	814 1012	33	902791.3.dec	1742349H1		1585
32 32	900680.2.dec 900680.2.dec	3742288H1 267454H1	730 77	436	33	902791.3.dec	4974283H1		1572
32	900680.2.dec	2882704H1	2	260	33	902791.3.dec	4889859H1		1593
32	900680.2.dec	180718H1	688	780	33	902791.3.dec	6267412H1	1359	
33	902791.3.dec	g2350726	1752	2098		902791.3.dec	6599047H1	1397	1925
33	902791.3.dec	g666724	1059			902791.3.dec	2958222H1		1714
33	902791.3.dec	g712297	1903	2098		902791.3.dec	393523T6		1796
33	902791.3.dec	4375518H1	782	1044		902791.3.dec	393523R6		1842
33	902791.3.dec	g1382485	1736			902791.3.dec	g5660784		1856
33	902791.3.dec	365699H1		1863		902791.3.dec	3507311H1		1750
33	902791.3.dec	g5633687		2168		902791.3.dec	4584726H1	1459	
33	902791.3.dec	1989220H1		1934		902791.3.dec	1676067T6		2106 2167
33	902791.3.dec	g2156365 g2165832		2170 2173		902791.3.dec 902791.3.dec	450088F1 g3038831	1521	
33 33	902791.3.dec 902791.3.dec	3728909H1		2085		902791.3.dec	g3038830		1847
33	902791.3.dec	g3178980		2170		902791.3.dec	g712296		1785
33	902791.3.dec	4729789H1		2064		902791.3.dec	g756240		1783
33	902791.3.dec	4858660F6		2160	33	902791.3.dec	4829913H2	1550	1844
33	902791.3.dec	g756133		2145	33	902791.3.dec	1863570H1	1561	1855
					202				

					Table 4				
33	902791.3.dec	1863570F6	1561	1967	35	204932.4.dec	5784025H1	887	1156
33	902791.3.dec	6436307H1	1553	1990	35	204932.4.dec	5790319H1		1153
33	902791.3.dec	g5545931	1573		35	204932.4.dec	4855759H2		1154
33	902791.3.dec	3210822T6	1587		35	204932.4.dec	4864225H1		1156
33	902791.3.dec	g2657609		1943	35	204932.4.dec	3151981H1		1194
33	902791.3.dec	g3254813	1577	1833	35	204932.4.dec	4066587H1		986 1194
33 33	902791.3.dec	141702R1	1598 1641	1932	35 35	204932.4.dec 204932.4.dec	5942136H1 4753538H1		1153
33	902791.3.dec 902791.3.dec	2317494H1 322090H1		1909	35 35	204932.4.dec	4858795H1		1194
33	902791.3.dec	g3094372		2166	35 35	204932.4.dec	4274791H1		1288
33	902791.3.dec	108881H1	1660	1920	35	204932.4.dec	3965157H1		1320
33	902791.3.dec	108880H1	1661	1919	35	204932.4.dec	3965144H1	1029	1207
33	902791.3.dec	492499H1	1676	1993	35	204932.4.dec	4547779H1		1304
33	902791.3.dec	1917344H1	1698	2002	35	204932.4.dec	5297978H1		1311
33	902791.3.dec	3046230H1		2001	35	204932.4.dec	5297878H1		1311
33	902791.3.dec	g659991	1730	2168	35	204932.4.dec	6355143H1	1057	
33	902791.3.dec	g3836821	1731		35	204932.4.dec	4319912H1	1078 1087	
33	902791.3.dec	g2354545 g848165	1733 665	2167 831	35 35	204932.4.dec 204932.4.dec	2353679F6 2353679H1	1087	
33 33	902791.3.dec 902791.3.dec	9646165 1647786H1	1007	1208	35 35	204932.4.dec	430232H1		1388
33	902791.3.dec	q848164	1777		35	204932.4.dec	1320009T6	1097	
33	902791.3.dec	5741921H1	1577	1844	35	204932.4.dec	1690478T6	1112	
33	902791.3.dec	g3056452	1848		35	204932.4.dec	3343643H1	1124	
33	902791.3.dec	1405954F6	1578	2008	35	204932.4.dec	3285682H1	1128	1367
33	902791.3.dec	2663411H1	1353	1587	35	204932.4.dec	1998431R6		1650
33	902791.3.dec	5541935H1	821	1025	35	204932.4.dec	1998431H1	1133	
33	902791.3.dec	g2217589	1694	2097	35	204932.4.dec	5991660H1	1140	
33	902791.3.dec	095210H1	140	361	35	204932.4.dec	5882654H1	1145	
33	902791.3.dec	1449768H1	1803		35 35	204932.4.dec	732402H1	1158 1163	1342
33	902791.3.dec	1405954H1	1578	1837 2075	35 35	204932.4.dec 204932.4.dec	1479435T6 1998431T6		1675
33 33	902791.3.dec 902791.3.dec	g848230 1449751H1	1803		35 35	204932.4.dec 204932.4.dec	1889468H1	1187	
33	902791.3.dec	3687926H1	1191	1471	35	204932.4.dec	1889585H1	1187	
33	902791.3.dec	962224H1	1524		35	204932.4.dec	4916307H1		1510
34	053826.1.dec	g2943715	1	1445	35	204932.4.dec	3200452H1	1209	1455
34	053826.1.dec	6487571H1	657	1158	35	204932.4.dec	819071H1		1480
34	053826.1.dec	1544823H1	692	895	35	204932.4.dec	2235851T6		1688
34	053826.1.dec	1544823R6	692	1178	35	204932.4.dec	2353679T6		1672
34	053826.1.dec	g4686743	876	1324	35	204932.4.dec	1355911H1	1257	
34	053826.1.dec	6476403H1	995	1520	35 05	204932.4.dec	g3678268 2369972H1	1264 1271	1506
35	204932.4.dec	g4264955 541266H1	1476 1481	1714 1680	35 35	204932.4.dec 204932.4.dec	2369972H1		1499
35 35	204932.4.dec 204932.4.dec	g4150552	1493		35 35	204932.4.dec	1289944T6		1687
35	204932.4.dec	g3108908	1500		35	204932.4.dec	g4630098	1307	
35	204932.4.dec	4188420H1		1721	35	204932.4.dec	6268273H1	1306	1549
35	204932.4.dec	g2197690		1715		204932.4.dec	g1330828	1312	
35	204932.4.dec	5097766H1	651	904	35	204932.4.dec	3860841H1	1337	
35	204932.4.dec	6015096H1	656	782	35	204932.4.dec	g3240929	1337	
35	204932.4.dec	1479435F6	672	1239	35	204932.4.dec	3868841H1	1337	
35	204932.4.dec	1479435H1	679	891	35	204932.4.dec	g2347994	1337	
35	204932.4.dec	1479435H6	679	855	35 25	204932.4.dec	g2343842	1349 1352	
35	204932.4.dec	751351H1	704 723	935 1021	35 35	204932.4.dec 204932.4.dec	g2189625 g4070372	1380	
35 35	204932.4.dec 204932.4.dec	3028675H1 2304351H1	737	1003		204932.4.dec	g5449165	1383	
35 35	204932.4.dec	016985H1	740	998	35	204932.4.dec	1851746F6	1410	
35	204932.4.dec	019239H1	740	846	35	204932.4.dec	1851746H1	1410	
35	204932.4.dec	700106H1	755	979	35	204932.4.dec	1851746T6	1410	1682
35	204932.4.dec	g2011955	792	1077	35	204932.4.dec	1725847T6		1667
35	204932.4.dec	3970532H1	799	1090		204932.4.dec	g5113636	1420	
35	204932.4.dec	4120265H1	798	1066		204932.4.dec	g2278725	1426	
35	204932.4.dec	3713639H1	851	1117		204932.4.dec	g2030838		1714
35	204932.4.dec	5784260H1	887	1177		204932.4.dec	g3096526		1722
35	204932.4.dec	5786467H1	887	1175		204932.4.dec	g1792426		1722 1722
35	204932.4.dec	5790638H1	887 887	1198		204932.4.dec 204932.4.dec	g518176	1462	210
35 35	204932.4.dec 204932.4.dec	5785877H1 5788012H1	887 887	1173 1168		204932.4.dec	3583757H1 1320009F6	11	507
35 35	204932.4.dec	5786237H1	887	1163		204932.4.dec	1320009H1	11	249
55	004.000		:		204				

204

					Table 4				
35	204932.4.dec	4936650H1	11	145	37	444248.7.dec	1532422H1	15	212
35	204932.4.dec	4874178H1	75	338	37	444248.7.dec	1533172H1	15	233
35	204932.4.dec	4960796H1	188	463	37	444248.7.dec	778480H1	16	221
35	204932.4.dec	4984123H1	241	534	37	444248.7.dec	776391H1	16	237
35	204932.4.dec	2791753H1	246	544	37	444248.7.dec	3237823H1	17	259
35	204932.4.dec	2235851F6	249	672	37	444248.7.dec	1695590H1	14	239
35 35	204932.4.dec 204932.4.dec	2235851H1	249 294	500 540	37 37	444248.7.dec 444248.7.dec	2998348H1 369401H1	16 21	293 182
35	204932.4.dec	5314874H1 1690478F6	324	902	37 37	444248.7.dec	1438256H1	18	287
35	204932.4.dec	1690478H1	324	549	37 37	444248.7.dec	1692514H1	120	333
35	204932.4.dec	2623640H1	351	571	37	444248.7.dec	1238138H1	1	286
35	204932.4.dec	2115765H1	364	632	37	444248.7.dec	3475673H1	9	310
35	204932.4.dec	1559647H1	372	488	37	444248.7.dec	3392650H1	11	318
35	204932.4.dec	3111240H1	376	614	37	444248.7.dec	4677717H1	12	314
35	204932.4.dec	5942343H1	404	682	37	444248.7.dec	1515147H1	12	212
35	204932.4.dec	1434326H1	407	652	37	444248.7.dec	5076477H1	12	297
35	204932.4.dec	4434460H1	407	677	37 37	444248.7.dec 444248.7.dec	3392320H1 1695554H1	12 12	315 255
35 35	204932.4.dec 204932.4.dec	5942375H1 1725847F6	408 413	682 701	37 37	444248.7.dec	3775912H1	12	341
35	204932.4.dec	1725847H1	413	631	37	444248.7.dec	1436523H1	12	285
35	204932.4.dec	712325H1	415	581	37	444248.7.dec	1435848F6	14	480
35	204932.4.dec	6118873H1	459	1025	37	444248.7.dec	4048084H1	12	169
35	204932.4.dec	1344768H1	493	744	37	444248.7.dec	2661035H1	12	280
35	204932.4.dec	3211184H1	502	696	37	444248.7.dec	1437814H1	12	300
35	204932.4.dec	3955839H1	503	788	37	444248.7.dec	2632679H1	12	300
35	204932.4.dec	1341743H1	542	768	37	444248.7.dec	2681312H1	15	350
35	204932.4.dec	3845847H1	554	858	37	444248.7.dec	2347774H1	12	290
35	204932.4.dec	2484267H1	609	740	37	444248.7.dec	994711H1 4380030H1	14 15	255 297
35 35	204932.4.dec 204932.4.dec	3046336H1 3273541H1	643 651	916 888	37 37	444248.7.dec 444248.7.dec	5158504H1	13	283
36	400607.19.dec	5372609H1		1264	37 37	444248.7.dec	366639H1	13	316
36	400607.19.dec	5522590R6	441	917	37	444248.7.dec	1695566H1	14	277
36	400607.19.dec	6051163J1	1075	1600	37	444248.7.dec	3046267H1	16	340
36	400607.19.dec	044309H1	1151	1443	37	444248.7.dec	369624H1	13	359
36	400607.19.dec	3071036T6	533	675	37	444248.7.dec	g610262	14	278
36	400607.19.dec	6452713H1	797	1087	37	444248.7.dec	2180115H1	15	306
36	400607.19.dec	265709H1	837	1144	37	444248.7.dec	171713H1	14	224
36	400607.19.dec	g1198101	1196	1427	37	444248.7.dec	369649H1	15 15	341 315
36 36	400607.19.dec 400607.19.dec	6051163H1 g1938960	864 861	1366 1277	37 37	444248.7.dec 444248.7.dec	2180095H1 775276H1	15 15	262
36	400607.19.dec	5466843H1	948	1155		444248.7.dec	1438177H1	16	311
36	400607.19.dec	5090216H1	989	1255	37	444248.7.dec	2860455H1	16	296
36	400607.19.dec	703912H1		1446	37	444248.7.dec	2896853H1	17	288
36	400607.19.dec	g2879168	1223	1447	37	444248.7.dec	369074H1	17	324
36	400607.19.dec	1542073H1		1553	37	444248.7.dec	1434834H1	17	296
36	400607.19.dec	5735728H1		1622	37	444248.7.dec	4643424H1	16	297
36	400607.19.dec	4884751H1		1660	37	444248.7.dec	2648482H1	16	293
36	400607.19.dec	4970739H1	25	313	37 37	444248.7.dec 444248.7.dec	1661048H1 1821754H1	17 16	293 260
36 36	400607.19.dec 400607.19.dec	4970746H1 3371686H1	27 9	318 250	37 37	444248.7.dec	3118115H1	18	340
36	400607.19.dec	q1775491	32	121	37	444248.7.dec	3340141H1	18	296
36	400607.19.dec	6540907H1	59	520	37	444248.7.dec	2182036H1	18	302
36	400607.19.dec	6115923H1	58	370	37	444248.7.dec	2634076H1	18	304
36	400607.19.dec	5522590H1	69	323	37	444248.7.dec	2897344H1	19	321
36	400607.19.dec	4575104H1	349	622	37	444248.7.dec	2897344F6	19	474
36	400607.19.dec	3455027H1	1	178	37	444248.7.dec	1437855H1	21	296
36	400607.19.dec	5628012H1	9	266	37	444248.7.dec	1692892H1	20	263
36	400607.19.dec	593471H1	8	253	37	444248.7.dec	3339956H1	21	311
36	400607.19.dec	3071036H1	9	246	37	444248.7.dec	2461339H1 3339085H1	21 21	292 298
36 27	400607.19.dec	3071036F6 170389H1	9 21	359 240	37 37	444248.7.dec 444248.7.dec	4400849H1	21	217
37 37	444248.7.dec 444248.7.dec	1655929H1	18	208	37 37	444248.7.dec	1820977H1	21	321
37	444248.7.dec	1439566H1	62	315	37 37	444248.7.dec	3979337H1	22	320
37	444248.7.dec	2994742H1	27	293	37	444248.7.dec	1558436H1	26	274
37	444248.7.dec	3213073H1	54	335	37	444248.7.dec	2897306H1	28	334
37	444248.7.dec	2898196H1	17	292	37	444248.7.dec	768768H1	31	312
37	444248.7.dec	1563083H1	23	228	37	444248.7.dec	4577849H1	31	320
					205				

Table 4 444248.7.dec 1820284H1 320 37 31 40 411396.24.dec 483899T6 1058 1514 444248.7.dec 2463163T6 4549096T1 1060 37 49 504 40 411396.24.dec 1500 444248.7.dec 37 5433096H1 411396.24.dec 1089 1336 89 342 40 1717178H1 37 444248.7.dec 1692729H1 156 366 40 411396.24.dec q3645294 1094 1538 g4853243 37 444248.7.dec 4577774H1 179 274 40 411396.24.dec 1097 1538 37 40 444248.7.dec 5070606H1 393 655 411396.24.dec 2291135T6 1097 1501 37 444248.7.dec 40 1126 3798947H1 14 311 411396.24.dec g4649467 1540 37 444248.7.dec 1798841H1 47 293 40 411396.24.dec g4195074 1132 1541 37 444248.7.dec 4301418H1 19 284 40 411396.24.dec 2486118H1 1140 1374 37 444248.7.dec 4301419H1 19 281 40 411396.24.dec g2881577 1155 1538 1163 1540 37 444248.7.dec 40 g2401496 3115509H1 18 129 411396.24.dec 38 346599.9.dec 40 690555H1 1167 1259 3863294H1 1 253 411396.24.dec 1541 38 40 1181 346599.9.dec 3746375H1 1 261 411396.24.dec g2179339 38 346599.9.dec 2514968F6 6 423 40 411396.24.dec 2611377H1 1184 1423 38 1184 1440 346599.9.dec 2514968H1 6 168 40 411396.24.dec 5337142H1 38 40 411396.24.dec 1698746H1 1189 1386 346599.9.dec 2308505H1 17 282 38 346599.9.dec 2308637H1 17 253 40 411396.24.dec 2563483H1 1203 1467 38 40 g1891890 1233 1541 346599.9.dec 3863323H1 21 284 411396.24.dec 38 23 40 411396.24.dec g3734944 1235 1538 346599.9.dec 866960H1 277 22 1237 1455 38 40 715929H1 346599.9.dec 2561387H1 289 411396.24.dec 38 1242 346599.9.dec 2523135H1 30 276 40 411396.24.dec 5580235H2 1505 1246 1508 38 346599.9.dec 2518183H1 35 285 40 411396.24.dec 854921H1 38 346599.9.dec 5027445H1 54 40 411396.24.dec g2186094 1247 1542 261 38 346599.9.dec 4155177H1 73 338 40 411396.24.dec g1550426 1274 1538 g1203733 38 2561908H1 123 400 40 411396.24.dec 1277 1539 346599.9.dec 38 346599.9.dec 5020830H1 129 402 40 411396.24.dec g2016376 1287 1538 1302 1540 40 411396.24.dec 702514H1 38 346599.9.dec 2962428H1 130 392 411396.24.dec 1321 1546 38 346599.9.dec q4891117 144 397 40 g2211872 38 346599.9.dec g5554144 174 385 40 411396.24.dec 2753527H1 1342 1544 g1203730 38 5156541H1 180 428 40 411396.24.dec 1391 1539 346599.9.dec 38 346599.9.dec 1490922H1 197 417 40 411396.24.dec 1326642H1 1397 1589 38 208 472 **4**0 411396.24.dec q5445022 1403 1605 346599.9.dec 2316064H1 3778081H1 38 346599.9.dec q922819 212 418 40 411396.24.dec 1410 1538 40 38 1444 1538 346599.9.dec 374753H1 216 423 411396.24.dec g3002301 g4125232 38 346599.9.dec 3424858H1 228 499 40 411396.24.dec 1471 1538 411396.24.dec 38 346599.9.dec q2968918 226 418 40 1640624H1 1499 1687 38 g2985496 249 418 40 411396.24.dec 1640663F6 1499 1687 346599.9.dec 264 40 411396.24.dec 4588787H1 1499 1690 38 346599.9.dec g1063879 477 39 40 411396.24.dec 1640663H1 1498 1687 480344.2.dec 180805H1 1 195 39 480344.2.dec 065943H1 2 232 40 411396.24.dec 721969H1 1499 1613 39 480344.2.dec 064251H1 31 213 40 411396.24.dec g2344373 1 388 39 480344.2.dec 071220H1 36 236 40 411396.24.dec 4305707H1 285 1 480344.2.dec 39 178296R6 37 272 40 411396.24.dec 2500749H1 32 285 g190646 40 45 39 53 411396.24.dec 4107921H1 240 480344.2.dec 1555 39 40 411396.24.dec 4529582H1 46 300 480344.2.dec 071770H1 61 290 40 47 39 480344.2.dec 459 801 411396.24.dec g2033066 345 g848952 39 480344.2.dec a850712 476 738 40 411396.24.dec 4198728H1 46 344 40 46 39 480344.2.dec g853560 509 839 411396.24.dec 4298375H1 273 39 480344.2.dec g748042 511 40 411396.24.dec 2265581H1 46 270 712 39 480344.2.dec g1443831 525 745 40 411396.24.dec q1971997 46 294 47 39 526 806 40 411396.24.dec 2847731H1 302 480344.2.dec g848374 705 480344.2.dec 1064 40 411396.24.dec 213859H1 48 39 g611543 199 40 39 480344.2.dec 746 947 411396.24.dec 3246963H1 49 300 062174H1 39 480344.2.dec 063483H1 746 940 40 411396.24.dec 4080908H1 50 328 39 480344.2.dec 063548H1 747 952 40 411396.24.dec 749419H1 52 300 882 1094 40 6027207H1 52 343 39 480344.2.dec g839495 411396.24.dec 39 480344.2.dec g840023 1252 1556 40 411396.24.dec 2076551H1 54 263 39 g850541 1282 1556 40 67 384 480344.2.dec 411396.24.dec g1390868 g650883 g2955514 39 480344.2.dec 1350 1553 40 411396.24.dec 69 440 39 480344.2.dec g651032 1396 1553 40 411396.24.dec g4268541 70 434 40 959 1205 40 270 411396.24.dec 3469388H1 411396.24.dec 2908517H1 79 40 411396.24.dec 4032662H1 973 1232 40 411396.24.dec g2197932 78 424 1000 1236 40 40 411396.24.dec 2265224H1 411396.24.dec 78 387 g5636493 g5176779 40 411396.24.dec g1527442 1006 1429 40 411396.24.dec 81 393 40 40 411396.24.dec 4583720H1 1035 1331 411396.24.dec g4892654 83 388 40 411396.24.dec 4147459H1 1050 1276 40 411396.24.dec g3429293 88 431 40 411396.24.dec 4548896T1 1053 1502 40 411396.24.dec g2198197 89 390

PCT/US00/25643 WO 01/21836

Table 4										
40	411396.24.dec	g1784744	100	404	41	302819.4.dec	2864086F6		1444	
40	411396.24.dec	g1390758	103	376	41	302819.4.dec	2864086H1		1322	
40	411396.24.dec	6518113H1	108	634	41	302819.4.dec	g2835403		1587	
40	411396.24.dec	2685370H1	131	374	41	302819.4.dec	3944612F6 3944612H1		1887 1654	
40 40	411396.24.dec 411396.24.dec	g3149351 3601094H1	136 138	390 383	41 41	302819.4.dec 302819.4.dec	4311375F6		1852	
40	411396.24.dec	g3149496	136	388	41	302819.4.dec	4311375H1	1414		
40	411396.24.dec	3693617H1	182	458	41	302819.4.dec	1229839H1	1577		
40	411396.24.dec	5292656H2	206	376	41	302819.4.dec	5497516H1	1627	1809	
40	411396.24.dec	4743230H1	209	390	41	302819.4.dec	4178395H1		1933	
40	411396.24.dec	g3069995	216	390	41	302819.4.dec	g575006		2061	
40	411396.24.dec	3143092H1	233	432	41 41	302819.4.dec 302819.4.dec	6382656H1 2152931H1	1834 3 1941 3		
40 40	411396.24.dec 411396.24.dec	4369528H1 4335203H1	251 278	511 568	41	302819.4.dec	g791921	1957		
40	411396.24.dec	1871893H1	280	537	41	302819.4.dec	4785922H1	1958		
40	411396.24.dec	q2186404	287	666	41	302819.4.dec	g953672	1966	2287	
40	411396.24.dec	g2184660	287	665	41	302819.4.dec	g1987264	1968		
40	411396.24.dec	1947248H1	306	548	41	302819.4.dec	5449040H1	2016		
40	411396.24.dec	4643925H1	341	608	41	302819.4.dec	5449083H1	2016 2099		
40	411396.24.dec	g1400216	348	424	41 41	302819.4.dec 302819.4.dec	4017288F6 4017288H1	2099		
40 40	411396.24.dec 411396.24.dec	2991447H1 g2930061	485 485	793 954	41	302819.4.dec	648666H1	2106		
40	411396.24.dec	174444H1	541	753	41	302819.4.dec	1614398H1	2139		
40	411396.24.dec	174444R6	541	967	41	302819.4.dec	4244096F8	2141		
40	411396.24.dec	173477H1	541	733	41	302819.4.dec	4754748H1	2165		
40	411396.24.dec	4717029H1	564	805	41	302819.4.dec	5268831H1	2194		
40	411396.24.dec	2053919H1	570	827	41	302819.4.dec	5857347H1	2203 2204		
40	411396.24.dec	1565945H1	571 587	777 814	41 41	302819.4.dec 302819.4.dec	5835683H1 4330775H1	2205		
40 40	411396.24.dec 411396.24.dec	3436125H1 4057202H1	588	859	41	302819.4.dec	1288189F6	2275		
40	411396.24.dec	5016627H1	594	876	41	302819.4.dec	1288189H1	2275		
40	411396.24.dec	1007141H1	602	866	41	302819.4.dec	g1626001	2286		
40	411396.24.dec	5594568H1	608	843	41	302819.4.dec	5113638H1	2298		
40	411396.24.dec	6523363H1	617	1131	41	302819.4.dec	g991068	2299		
40	411396.24.dec	066953H1	636	821	41	302819.4.dec	5404686H1	2431 2439	2650	
40	411396.24.dec	6559965H1 2904638H1	637 676	1204 965	41 41	302819.4.dec 302819.4.dec	2705579H1 4690513H1		2679	
40 40	411396.24.dec 411396.24.dec	g1891889	679	951	41	302819.4.dec	1848103H1	2539		
40	411396.24.dec	1689134H1	737	976	41	302819.4.dec	4180730H1		2744	
40	411396.24.dec	5946816H1	809	1086	41	302819.4.dec	6409441H1		3089	
40	411396.24.dec	5550984H1	823	1043	41	302819.4.dec	2569213H1		2873	
40	411396.24.dec	2428835H1	843	1068	41	302819.4.dec	4145445H1		2924	
40	411396.24.dec	6408161H1	872	1145 1197	41 41	302819.4.dec 302819.4.dec	6269094H1 3944612T6		3208 3284	
40 40	411396.24.dec 411396.24.dec	g1238949 g1238951	917 917	1126	41	302819.4.dec	g1885415	2709		
40	411396.24.dec	•	923	1224	41	302819.4.dec	g1295339	2731		
40	411396.24.dec	2291135R6	924	1299	41	302819.4.dec	1288189T6	2747		
40	411396.24.dec	2291135H1	924	1145	41	302819.4.dec	5845876H1	2757		
40	411396.24.dec	3716726H1	933	1247	41	302819.4.dec	3762741H1			
40	411396.24.dec		943	1140 1166	41 41	302819.4.dec 302819.4.dec	2426329H1 4017288T6	2777 2797	3294	
40 41	411396.24.dec 302819.4.dec	5210085H1 4101941H1	951 1	186	41	302819.4.dec	4310250H1	2803		
41	302819.4.dec	q4107114	21	1636	41	302819.4.dec	4310267H1	2803		
41	302819.4.dec	g4589481	50	3333	41	302819.4.dec	4942836H1	2806	3077	
41	302819.4.dec	6061022H1	218	755	41	302819.4.dec	4203668H1	2812		
41	302819.4.dec	5481035H1	281	557	41	302819.4.dec	6296936H1	2850		
41	302819.4.dec	5481071H1	281	553	41	302819.4.dec	1742377H1	2853		
41	302819.4.dec	5478467H1	281	522 512	41 41	302819.4.dec 302819.4.dec	4311375T6 g3154601	2858 2859		
41 41	302819.4.dec 302819.4.dec	5476596H1 5481219H1	281 281	450	41	302819.4.dec	5478457H1	2866		
41	302819.4.dec	5692922H1	411	57 7	41	302819.4.dec	5482073H1	2867		
41	302819.4.dec	5091536H1	826	909	41	302819.4.dec	5482223H1	2867	3094	
41	302819.4.dec	5093136H1	825	1088	41	302819.4.dec	5480273H1	2867		
41	302819.4.dec	4710301H1	856	1147	41	302819.4.dec	5480023H1	2867		
41	302819.4.dec	3330968H1	938	1192	41 41	302819.4.dec 302819.4.dec	g4373364 g3411895	2892 2897	3335	
41	302819.4.dec 302819.4.dec	6366367H1 5844722H1	954 970	1220 1252	41	302819.4.dec	2151761H1		3168	
41	3020 13.4.UEC	JU74166111	310	1202	207	552575.7.060	2.5.751111	_007	2.20	
					201					

					Table 4				
41	302819.4.dec	2157650F6	2912		43	399525.3.dec	180563R1	680	1157
41	302819.4.dec	2157650H1	2912	3026	43	399525.3.dec	180563H1	680	997
41	302819.4.dec	5408984H1	2915	3123	43	399525.3.dec	180563R6	680	1075
41	302819.4.dec	2312364H1	2925	3005	43	399525.3.dec	2009268H1	1284	1486
41	302819.4.dec	g1625899	2955	3332	43	399525.3.dec	1629941H1	1293	1491
41	302819.4.dec	g3400238		3343	43	399525.3.dec	180563T6	1341	1687
41	302819.4.dec	g4687972		3337	43	399525.3.dec	5469050H1	1371	1623
41	302819.4.dec	1940575H1	3026	3227	43	399525.3.dec	5469049H1	1371	1531
41	302819.4.dec	2328673H1		3265	43	399525.3.dec	5674214H1	1077	1344
41	302819.4.dec	g4300411	3043	3335	43	399525.3.dec	g828577	1126	1362 1723
41	302819.4.dec	g4267943	3046	3336	43	399525.3.dec	180563F1 1267377T6	1185 1250	1684
41	302819.4.dec	g825048	3051	3341	43 43	399525.3.dec 399525.3.dec	1267377F6	102	584
41	302819.4.dec	g991036 g567561	3052 3097	3334	43	399525.3.dec	1267377F1	102	515
41 41	302819.4.dec 302819.4.dec	g1898761	3121	3336	43	399525.3.dec	g2358795	127	184
41	302819.4.dec	g953400	3215	3338	43	399525.3.dec	5533757H1	452	689
41	302819.4.dec	1712751F6	3235	3334	43	399525.3.dec	5521485H1	499	718
41	302819.4.dec	1712751H1	3235		43	399525.3.dec	5624724H1	519	815
41	302819.4.dec	1712751T6	3239	3296	43	399525.3.dec	1267377H1	102	361
41	302819.4.dec	2107049H1	3257	3334	43	399525.3.dec	5173655H1	651	908
41	302819.4.dec	g4532014	2983	3333	44	222795.6.dec	g5231568	1	380
41	302819.4.dec	5839592H1	2990	3212	44	222795.6.dec	g4438873	1	420
41	302819.4.dec	g4685396		3337	44	222795.6.dec	6478906H1	1	373
41	302819.4.dec	g4299064	2964	3333	44	222795.6.dec	g4888931	8	353
41	302819.4.dec	g4599081	2965		44	222795.6.dec	g5178893	8	400
41	302819.4.dec	g1265092	2965	3331	44	222795.6.dec	g4301971	8	432
41	302819.4.dec	240555H1	2977	3157	44	222795.6.dec	g4436204	8 8	328 316
42	238734.2.dec	g2307091	1	691	44 44	222795.6.dec	g3401868 g4196406	8	271
42	238734.2.dec	6507926H1 4447563H1	1 19	352 290	44	222795.6.dec 222795.6.dec	3404674H1	17	79
42 42	238734.2.dec 238734.2.dec	2027993H1	168	440	44	222795.6.dec	3595184H1	28	317
42	238734.2.dec	2027993R6	168	644	44	222795.6.dec	1616015H1	62	278
42	238734.2.dec	6075427H1	277	593	44	222795.6.dec	1616788F6	62	384
42	238734.2.dec	1403261H1	544	797	44	222795.6.dec	2642562H1	85	331
42	238734.2.dec	1403261F6	544	930	44	222795.6.dec	2642562F6	85	248
42	238734.2.dec	6454693H1	693	1320	44	222795.6.dec	3935234H1	146	420
42	238734.2.dec	6512287H1	1018	1563	44	222795.6.dec	5862138H1	160	420
42	238734.2.dec	5868348H1	1160	1439	44	222795.6.dec	5636483H1	183	432
42	238734.2.dec	5868348F6	1159	1660	44	222795.6.dec	5517092H1	182	390
42	238734.2.dec	902143R1	1458	1956	44	222795.6.dec	6404623H1	395	606
42	238734.2.dec	902143H1	1458		44	222795.6.dec	5349471F6	186	639
42	238734.2.dec	1403261T6		2240	44	222795.6.dec	5349471H1	186	436
42	238734.2.dec	531505T6		2112	44	222795.6.dec 222795.6.dec	6323776H1	372 378	571 622
42	238734.2.dec 238734.2.dec	1511070H1 1511070F6		2037 2183	44 44	222795.6.dec	3748145H1 6552507H1	590	701
42 42	238734.2.dec	2569110H1		2154	44	222795.6.dec	6564675H1	592	779
42	238734.2.dec	2568849H1		2154	44	222795.6.dec	6181144H1	625	910
42	238734.2.dec	6260538H1		2248	44	222795.6.dec	3519117H1	705	976
43	399525.3.dec	6120694H1	754	1295	44	222795.6.dec	6429178H1	726	877
43	399525.3.dec	2468280H1	710	947	44	222795.6.dec	3774768H1	893	1190
43	399525.3.dec	4844519H1	1	269	44	222795.6.dec	2214563H1	1114	
43	399525.3.dec	3747370H1	37	337	45	410628.5.dec	5469732H1	1	256
43	399525.3.dec	341021H1	59	272	45	410628.5.dec	180125H1	2	220
43	399525.3.dec	5983547H1	78	335	45	410628.5.dec	g2008865	154	461
43	399525.3.dec	5522163H1	88	326	45	410628.5.dec	3364980H1	185	440
43	399525.3.dec	492858H1	858	1088	45	410628.5.dec	5912578H1	239	513
43	399525.3.dec	2928668F6	877	1159	45 45	410628.5.dec	2829339F6	378	776 642
43	399525.3.dec	2928668H1	878	1163	45 45	410628.5.dec	2829339H1	378 389	692
43	399525.3.dec	4289136H1	879	1140	45 45	410628.5.dec 410628.5.dec	3807945H1 4008525H1	639	896
43	399525.3.dec	5544612H2 405758H1	893 900	970 1121	45 45	410628.5.dec	1852093F6	707	1214
43 43	399525.3.dec 399525.3.dec	g1685821	910	1234		410628.5.dec	1852093H1	707	974
43	399525.3.dec	3034576F6	950	1476		410628.5.dec	2068781H1	727	1017
43	399525.3.dec	3034576F7	950	1418		410628.5.dec	2131281H1	727	959
43	399525.3.dec	3034576H1	951	1250		410628.5.dec	3483874H1	749	1023
43	399525.3.dec	6157370H1	985	1233		410628.5.dec	1956841H1	759	1021
43	399525.3.dec	6588995H1		1558		410628.5.dec	2928243H1	778	1037
					208				

Table 4										
45	410628.5.dec	3893475H1	908	1148	46	053649.6.dec	2907550H1		5144	
45	410628.5.dec	077976H1	909	1059	46	053649.6.dec	6349673H2		5135	
45	410628.5.dec	2187402H1	927	1197	46	053649.6.dec	3933835H1		5204	
45	410628.5.dec	g1639418	934	1256	46	053649.6.dec	3685046H1		5172	
45	410628.5.dec	1910319H1	955	1197	46	053649.6.dec	4312063H1		5233	
45	410628.5.dec	2433701H1	1023	1250	46	053649.6.dec	1582279H1	4957 4982		
45	410628.5.dec	1688079H1		1249	46 46	053649.6.dec 053649.6.dec	g3988652 795706H1		5228	
45 45	410628.5.dec	2928651H1		1142 1381	46 46	053649.6.dec	1871289T6		5412	
45 45	410628.5.dec 410628.5.dec	5856935H1 6045234H1		1591	46	053649.6.dec	4433271H1		5281	
45	410628.5.dec	6324874H1		1176	46	053649.6.dec	1947703H1	5099		
45	410628.5.dec	g1638026		1432	46	053649.6.dec	g4763477	5110	5454	
45	410628.5.dec	1907874H1		1418	46	053649.6.dec	1876550H1	5134		
45	410628.5.dec	1964088R6	1200	1575	46	053649.6.dec	2427603H1	5155		
45	410628.5.dec	1964088H1	1200	1470	46	053649.6.dec	g3848344	5168		
45	410628.5.dec	1352433H1	1201	1414	46	053649.6.dec	5274403H1		5436	
45	410628.5.dec	6045234J1	1205	1805	46	053649.6.dec	2441651H1	5200		
45	410628.5.dec	3752470H1	1214	1507	46 46	053649.6.dec	454016R6 454016H1	5209 5209		
45	410628.5.dec	4720194H1	1231	1485 1808	46 46	053649.6.dec 053649.6.dec	3975767H1	5228		
45 45	410628.5.dec	2829339T6 591385H1	1238 1269	1495	46	053649.6.dec	g5526998	5242		
45 45	410628.5.dec 410628.5.dec	3766513H1	1286	1580	46	053649.6.dec	2777135H1	5244		
45	410628.5.dec	2674849H1		1596	46	053649.6.dec	g1266554	5245		
45	410628.5.dec	3266918H1	1373	1653	46	053649.6.dec	6209668H1	5299	5610	
45	410628.5.dec	g5232075	1373	1840	46	053649.6.dec	282574H1	5302		
45	410628.5.dec	3412689H1	1374	1617	46	053649.6.dec	528280H1	5344		
45	410628.5.dec	4502789H1	1377	1571	46	053649.6.dec	g1623674	5351		
45	410628.5.dec	3962818H1	1378	1675	46	053649.6.dec	g2023447	5386		
45	410628.5.dec	g2322969	1399	1831	46	053649.6.dec	4996368H1	5418		
45	410628.5.dec	g2432892	1455	1829	46	053649.6.dec	4873622H1	5441 5462	5700 5730	
45	410628.5.dec	1964088T6	1485	1822	46 46	053649.6.dec	1918585H1 394998R6	5483		
45	410628.5.dec	g4734424	1491 1493	1942 1815	46 46	053649.6.dec 053649.6.dec	2608003H1	5528		
45 45	410628.5.dec 410628.5.dec	1710011T6 g1955137	1511	1816	46	053649.6.dec	2869213H1	5536		
45 45	410628.5.dec	2604776F6		2027	46	053649.6.dec	2846562H1		5809	
45	410628.5.dec	2604776H1	1522			053649.6.dec	3549988H1	5536	5775	
45	410628.5.dec	5636411H1	1523			053649.6.dec	2878203H1	5538	5804	
45	410628.5.dec	g2736627	1555	1948	46	053649.6.dec	038436H1	5551	5798	
45	410628.5.dec	g5632819	1568	1884	46	053649.6.dec	2859240H1	5556		
45	410628.5.dec	3738912H1	1574	1881	46	053649.6.dec	447581H1		5777	
45	410628.5.dec	g4331385	1574		46	053649.6.dec	6543240H1	5619		
45	410628.5.dec	g2002540	1592			053649.6.dec	1924182R6	5631 5631	5923 5853	
45	410628.5.dec	g2255929	1638	1837 2104		053649.6.dec 053649.6.dec	1924182H1 454016T6	5637		
45	410628.5.dec	g4310985 g1955138		1883		053649.6.dec	2857928H1	5651	5916	
45 45	410628.5.dec 410628.5.dec	4085875H1		1943		053649.6.dec	6518276H1	5654		
45 45	410628.5.dec	g4703429		2283		053649.6.dec	3093841H1	5656		
46	053649.6.dec	g2140414		5138		053649.6.dec	g2155719	5667	5875	
46	053649.6.dec	g2752467		5141		053649.6.dec	1924182T6	5689	6258	
46	053649.6.dec	g3738044	4718	5139	46	053649.6.dec	3116771H1	5729	6000	
46	053649.6.dec	4823575H1		4978		053649.6.dec	3510740T6	5789		
46	053649.6.dec	6158080H1	4721			053649.6.dec	2357646F6	5787		
46	053649.6.dec	g4607123		5134		053649.6.dec	2357646H1	5787 5780	6079	
46	053649.6.dec	3535641H1		5025		053649.6.dec	018607H1 017537H1		6050	
46	053649.6.dec	604476H1		4991		053649.6.dec 053649.6.dec	017937H1		6038	
46 46	053649.6.dec	607312H1		4997 5022		053649.6.dec	016285H1	5789	6052	
46 46	053649.6.dec 053649.6.dec	2865773H1 g2877086		5141	_	053649.6.dec	621377R6	5821		
46 46	053649.6.dec	1562789T6		5129		053649.6.dec	621377T6	5821	6258	
46	053649.6.dec	1399654H1		5034		053649.6.dec	621377H1	5821		
46	053649.6.dec	g1957074		5061		053649.6.dec	g2197952	5853	6298	
46	053649.6.dec	3039382H1		5050		053649.6.dec	g1859838		6289	
46	053649.6.dec	g4329155	4800	5133	3 46	053649.6.dec	g4982575		6297	
46	053649.6.dec	3116891H1		5054		053649.6.dec	g5632069		6303	
46	053649.6.dec	2351206H1		5029		053649.6.dec	3331637H1		6123	
46	053649.6.dec	4593993H1		5096		053649.6.dec	g3917437		6304	
46	053649.6.dec	4618056H1	4835	5084	1 46	053649.6.dec	3320110H1	5881	6166	

PCT/US00/25643 WO 01/21836

					Table 4				
46	053649.6.dec	470544H1	5881		46	053649.6.dec	2285180H1	4464	4717
46	053649.6.dec	g4260778	5892		46	053649.6.dec	2285180R6	4465	
46	053649.6.dec	061289H1	5901	6055	46	053649.6.dec	4381173H1	4489	
46	053649.6.dec	g5526193	5903	6303	46	053649.6.dec	3071901H1	4490 4497	
46 46	053649.6.dec	3200859H1	5937 5960	6216 6177	46 46	053649.6.dec 053649.6.dec	2246853H1 2519418H1	4503	
46 46	053649.6.dec 053649.6.dec	2463691H1 2378781H1	5963	6184	46	053649.6.dec	2589642H1	4503	
46	053649.6.dec	849937H1	6881	7000	46	053649.6.dec	1684996H1	4503	
46	053649.6.dec	6396030H1	6458		46	053649.6.dec	6109482H1	4561	
46	053649.6.dec	g3094377	6488	6953	46	053649.6.dec	1509877H1	4561	
46	053649.6.dec	g4606923	6500		46	053649.6.dec	5091092H1	4588	
46	053649.6.dec	g751556		6702	46 46	053649.6.dec 053649.6.dec	5074194H1 3770734H1	4621 4644	
46 46	053649.6.dec 053649.6.dec	g4291182 g3849739	6509 6509		46 46	053649.6.dec	655534H1	4649	
46	053649.6.dec	g5671130	6517		46	053649.6.dec	3865590H1	4643	
46	053649.6.dec	g3764849	6530	6954	46	053649.6.dec	2751219H1	6404	
46	053649.6.dec	Ž230287H1	6551	6799	46	053649.6.dec	1463185H1	6085	
46	053649.6.dec	g1218106		6953	46	053649.6.dec	1463209T6	6085	
46	053649.6.dec	g3756320		6959	46	053649.6.dec	447899H1	6097 6121	
46 46	053649.6.dec	g2188518 4000865H1		6910 6917	46 46	053649.6.dec 053649.6.dec	394998T6 126467H1	6122	
46 46	053649.6.dec 053649.6.dec	q2270783		6971	46	053649.6.dec	2603006H1		6456
46	053649.6.dec	5709816H1	6073		46	053649.6.dec	582896H1	6194	
46	053649.6.dec	2469521H1	6085		46	053649.6.dec	3630189H1		6389
46	053649.6.dec	4256123H1		6240	46	053649.6.dec	4629688H1		6357
46	053649.6.dec	4245703H1		6255	46	053649.6.dec	g4326882	6226	6674 6680
46	053649.6.dec	g5446227		6348 6256	46 46	053649.6.dec 053649.6.dec	g4852252 g4074077	6250	6679
46 46	053649.6.dec 053649.6.dec	4091718H1 2357646T6	6065		46	053649.6.dec	4744510H1		6495
46	053649.6.dec	g1778032	1	6659	46	053649.6.dec	2602237F6	6709	6953
46	053649.6.dec	1271488H1	270	501	46	053649.6.dec	2602237H1	6709	6980
46	053649.6.dec	6177281H1	282	549	46	053649.6.dec	2602237T6	6710	
46	053649.6.dec	4535853H1	1492		46	053649.6.dec	505561H1	6772	
46	053649.6.dec	2998346H1	1576		46	053649.6.dec	1463209R6	6085 6708	
46	053649.6.dec	183990H1 2416184H1	1784	1957 2137	46 47	053649.6.dec 221914.2.dec	g3770766 2692351H1	66	317
46 46	053649.6.dec 053649.6.dec	5537614H1		2376	47	221914.2.dec	3324937H1	40	301
46	053649.6.dec	g2817443		2770	47	221914.2.dec	1510086H1	42	260
46	053649.6.dec	2015073H1		2562	47	221914.2.dec	1521573H1	47	236
46	053649.6.dec	g3644396	2346		47	221914.2.dec	3402411H1	65	235
46	053649.6.dec	g4270510		2770	47	221914.2.dec	2991821H1	205 240	426 480
46	053649.6.dec	5080263H1 4872695H1	2919 2991		47 47	221914.2.dec 221914.2.dec	3417004H1 3393041H1	275	543
46 46	053649.6.dec 053649.6.dec	4398050H1	3001		47	221914.2.dec	g3405497	405	701
46	053649.6.dec	2723988H1	3048		47	221914.2.dec	4515647H1	468	682
46	053649.6.dec	2836887H1	3186	3441	47	221914.2.dec	4121840H1	504	719
46	053649.6.dec	3901067H1		3594	47	221914.2.dec	3422922H1	504	728
46	053649.6.dec	3510740F6		3957	47	221914.2.dec	4514527H1	516 608	761 883
46 46	053649.6.dec 053649.6.dec	3510740H1 3340558H1	3517 3636		47 47	221914.2.dec 221914.2.dec	1957812H1 2137153F6	1	168
46 46	053649.6.dec	4347614H1	3688			221914.2.dec	2137153H1	1	236
46	053649.6.dec	1562789F6	3799			221914.2.dec	3615140H1	6	287
46	053649.6.dec	1562781H1	3799	4019		221914.2.dec	2017382H1	17	145
46	053649.6.dec	1562789H1		4021	47	221914.2.dec	3508367H1	17	116
46	053649.6.dec	2431585H1		4046		221914.2.dec	3748348H1	17 27	188
46	053649.6.dec	5408836H1 4350359H1	3906 3911	4164 4166		221914.2.dec 221914.2.dec	1491036H1 2520837H1	37 38	210 265
46 46	053649.6.dec 053649.6.dec	881810H1		4180		221914.2.dec	1957812F6	608	1033
46	053649.6.dec	6408412H1		4490		221914.2.dec	1871603H1	706	831
46	053649.6.dec	6454776H1		4455		221914.2.dec	3939407H1	821	925
46	053649.6.dec	1708247H1	4017	4242	48	347748.2.dec	3272638H1	1	235
46	053649.6.dec	1376453H1		4238		347748.2.dec	3568428H1	5	318
46	053649.6.dec	2917695H1		4396		347748.2.dec	1591195H1	17 17	220 242
46 46 -	053649.6.dec 053649.6.dec	4913391H1 2433842H1		3 4316 1 4349		347748.2.dec 347748.2.dec	1591381H1 3108209H1	18	112
46	053649.6.dec	6477331H1		7 4751		347748.2.dec	6369107H1	24	471
46	053649.6.dec	2285180T6		5094		347748.2.dec	3436985H1	25	112
					210				

Table 4											
48	347748.2.dec	3472447H1	31	267	. 49	401482.2.oct	4363412H1	140	231		
48	347748.2.dec	3271083H1	171	402	49	401482.2.oct	592882H1	140	262		
48	347748.2.dec	4181728H1	195	281	49	401482.2.oct	4128816H1	140	306		
48	347748.2.dec	6477761H1	229	407	49	401482.2.oct	5066972H1	141	237		
48	347748.2.dec	g3778189	312	759	49	401482.2.oct	6375187H1	140	221		
48	347748.2.dec	g3179263	312	497	49	401482.2.oct	4057141H1	140	268		
48	347748.2.dec	g3050805	314	558	49	401482.2.oct	368551H1	143	294 292		
48	347748.2.dec	g3174659	315	812	49 49	401482.2.oct 401482.2.oct	5262823H1 4008852H1	140 <i>*</i> 140	292 272		
48 48	347748.2.dec 347748.2.dec	512461H1 512461R6	338 338	542 686	49 49	401482.2.oct	4563645H1	140	220		
48	347748.2.dec	446066H1	338	579	49	401482.2.oct	4982802H1	148	301		
48	347748.2.dec	442400H1	339	579	49	401482.2.oct	3490679H1	140	303		
48	347748.2.dec	3097735H1	484	712	49	401482.2.oct	3142629H1	143	265		
48	347748.2.dec	3540123H1	509	787	49	401482.2.oct	820429H1	142	238		
48	347748.2.dec	3319530H1	576	637	49	401482.2.oct	1268873H1	140	304		
48	347748.2.dec	g1970848	599	927	49	401482.2.oct	2839681H2	140	269		
48	347748.2.dec	g1970843	599	872	49	401482.2.oct	3865664H1	141	257		
48	347748.2.dec	g2000224	609	870	49	401482.2.oct	4662861H1	141	207 250		
48	347748.2.dec	425094H1	803	951	49 49	401482.2.oct 401482.2.oct	1708280H1 g1983680	136 136	299		
48	347748.2.dec	424797H1 428193H1	803 803	1010 1019	49	401482.2.oct	3897334H1	135	304		
48 48	347748.2.dec 347748.2.dec	2552119H1	853	1114	49	401482.2.oct	q1996315	135	323		
48	347748.2.dec	5511770H1	617	861	49	401482.2.oct	4743463H1	135	277		
48	347748.2.dec	6489362H1	689	1258	49	401482.2.oct	3570680H1	135	274		
48	347748.2.dec	4674740H1	690	990	49	401482.2.oct	3891485H1	129	293		
48	347748.2.dec	1405304H1	972	1249	49	401482.2.oct	983595H1	129	239		
48	347748.2.dec	2868023H1	999	1231	49	401482.2.oct	4956529H1	129	290		
48	347748.2.dec	g2011228	715	1019	49	401482.2.oct	1681495H1	129	311		
48	347748.2.dec	4774949H1	727	871	49	401482.2.oct	5376752H1	124	296		
48	347748.2.dec	5004188H1	791	1031	49	401482.2.oct	1308930H1	129 129	238 332		
48	347748.2.dec	2687450H1	801	1060 1166	49 49	401482.2.oct 401482.2.oct	3881848H1 1643328H1	129	311		
48 48	347748.2.dec 347748.2.dec	428193R6 424588H1	803 803	871	49 49	401482.2.oct	3927505H1	130	304		
48 48	347748.2.dec	425651H1	803	1024	49	401482.2.oct	5389939H1	129	296		
48	347748.2.dec	428193T6	1121	1733	49	401482.2.oct	4612035H1	124	384		
48	347748.2.dec	5089180H1	1169	1430	49	401482.2.oct	5687077H1	124	381		
48	347748.2.dec	2111317H1	1292	1552	49	401482.2.oct	2378181H1	127	346		
49	401482.2.oct	3380414H1	141	264	49	401482.2.oct	2457930H1	127	280		
49	401482.2.oct	3806831H1	141	260	49	401482.2.oct	3889660H1	130	304		
49	401482.2.oct	3152624H1	140	323	49	401482.2.oct	4460811H1	130	243		
49	401482.2.oct	6008631H1	140	311	49	401482.2.oct	3878648H1	130 129	248 311		
49	401482.2.oct	1599727H1	140	304	49 49	401482.2.oct 401482.2.oct	868503H1 1642356H1	129	332		
49 49	401482.2.oct 401482.2.oct	4536938H1 3606772H1	140 140	258 252	49 49	401482.2.oct	2739322H1	129	311		
49 49	401482.2.oct	4830281H1	141	230	49	401482.2.oct	2353257H1	129	281		
49	401482.2.oct	1308766H1	140	294	49	401482.2.oct	5043438H1	146	271		
49	401482.2.oct	2666290H1	140	250	49	401482.2.oct	1721132H1	129	311		
49	401482.2.oct	2072576H1	140	304	49	401482.2.oct	194897H1	129	350		
49	401482.2.oct	4974839H1	140	304	49	401482.2.oct	4528304H1	129	270		
49	401482.2.oct	3807429H1	141	304	49	401482.2.oct	2859113H1	129	332		
49	401482.2.oct	2524335H1	140	311	49	401482.2.oct	3777804H1	130	269		
49	401482.2.oct	1527079H1	140	261	49	401482.2.oct	2777981H1	129	380		
49	401482.2.oct	137226H1	140	311	49 49	401482.2.oct 401482.2.oct	1480087H1 814473H1	129 129	311 212		
49	401482.2.oct 401482.2.oct	3081905H1 2286712H1	140 140	288 294	. 49	401482.2.oct	1375967H1	129	323		
49 49	401482.2.oct	2189156H1	140	248	49	401482.2.oct	1556743H1	129	323		
49	401482.2.oct	1550788H1	140	304	49	401482.2.oct	1912456H1	129	332		
49	401482.2.oct	2736933H1	140	230	49	401482.2.oct	3861078H1	129	258		
49	401482.2.oct	592827H1	140	268	49	401482.2.oct	371153H1	129	304		
49	401482.2.oct	2074671H1	140	301	49	401482.2.oct	373185H1	129	323		
49	401482.2.oct	6105031H1	140	255	49	401482.2.oct	4058394H1	129	235		
49	401482.2.oct	4563727H1	140	311	49	401482.2.oct	116195H1	129	299		
49	401482.2.oct	2741386H1	140	266	49	401482.2.oct	5106028H1	131	232		
49	401482.2.oct	3807627H1	140	265	49	401482.2.oct	4549024H1	130	304		
49	401482.2.oct	2854386H1	140	237	49	401482.2.oct	586154H1	129	371 219		
49	401482.2.oct	4833902H1	140 140	277 311	49 49	401482.2.oct 401482.2.oct	2073746H1 128113H1	129 131	219		
49	401482.2.oct	540768H1	140	311	49	70 1702.2.UCL	120113011	131	240		

					Table 4				
49	401482.2.oct	4585185H1	129	364	49	401482.2.oct	g2325824	1	234
49	401482.2.oct	1892064H1	129	304	49	401482.2.oct	5794810H1	32	300
49	401482.2.oct	1625250H1	129	218	49	401482.2.oct	5792265H1	51	300
49	401482.2.oct	2357189H1	129	261	49	401482.2.oct	5947232H1	121	353
49	401482.2.oct	4630841H1	134	272	49	401482.2.oct	807770H1	122 122	224 223
49	401482.2.oct	5699535H1	129	375	49	401482.2.oct 401482.2.oct	5947296H1 3358464H1	128	419
49	401482.2.oct	2071024H1	129 127	323 304	49 49	401482.2.oct	q1614987	147	549
49 49	401482.2.oct 401482.2.oct	2808648H1 4632985H1	129	385	49	401482.2.oct	q1614885	235	579
49	401482.2.oct	948410H1	129	311	49	401482.2.oct	2096459H1	132	288
49	401482.2.oct	2650195H1	129	311	49	401482.2.oct	5077509H1	132	311
49	401482.2.oct	1911720H1	129	282	49	401482.2.oct	3672962H1	132	267
49	401482.2.oct	5557203H1	129	303	49	401482.2.oct	2495269H1	133	292
49	401482.2.oct	5187021H1	129	280	49	401482.2.oct	5582685H1	133	299
49	401482.2.oct	4343951H1	129	282	49	401482.2.oct	2237565H1	133	231
49	401482.2.oct	g1734245	129	221	49	401482.2.oct	4409210H1	133	283
49	401482.2.oct	g1734234	129	221	49	401482.2.oct	4455694H1	133 133	323 273
49	401482.2.oct	4550125H1	130	392	49 49	401482.2.oct 401482.2.oct	082693H1 1738401H1	133	244
49	401482.2.oct	2026970H1 3056876H1	149 129	204 339	49 49	401482.2.oct	g1816100	133	293
49 49	401482.2.oct 401482.2.oct	4721629H1	130	247	49	401482.2.oct	1372579H1	133	237
49	401482.2.oct	4347191H1	128	302	49	401482.2.oct	g2005112	132	311
49	401482.2.oct	5978251H1	130	180	49	401482.2.oct	4379011H1	132	301
49	401482.2.oct	4815016H1	130	311	49	401482.2.oct	5162976H1	132	237
49	401482.2.oct	3430533H1	129	337	49	401482.2.oct	2518933H1	132	223
49	401482.2.oct	1578109H1	129	347	49	401482.2.oct	405083H1	132	266
49	401482.2.oct	4580668H1	129	274	49	401482.2.oct	2383796H1	132	301
49	401482.2.oct	4349130H1	129	330	49	401482.2.oct	4585939H1	132 132	293 249
49	401482.2.oct	1610424H1	129	304	49 49	401482.2.oct 401482.2.oct	g1439429 5556467H1	135	300
49	401482.2.oct	3364209H1	129 130	260 271	49 49	401482.2.oct	3117637H1	136	304
49 49	401482.2.oct 401482.2.oct	6136479H1 3398472H1	130	239	49	401482.2.oct	3230457H1	136	304
49 49	401482.2.oct	3015102H1	129	223	49	401482.2.oct	3153383H1	135	311
49	401482.2.oct	5081859H1	129	299	49	401482.2.oct	637896H1	143	376
49	401482.2.oct	4338871H1	129	284	50	274551.1.oct	g4325750	1	103
49	401482.2.oct	4585911H1	130	264	50	274551.1.oct	4290049F6	1	353
49	401482.2.oct	113024H1	130	303	50	274551.1.oct	4290049H1	1	124
49	401482.2.oct	540069H1	136	200	50	274551.1.oct	5493752H1	172	444
49	401482.2.oct	6139403H1	130	332	51	411408.20.dec	936827H1	525	638
49	401482.2.oct	2652958H1	130	255	51	411408.20.dec	2375133H1 2300942H1	443 492	614 621
49	401482.2.oct	4702083H1	130 132	234 289	51 51	411408.20.dec 411408.20.dec	5023109H1	442	622
49 49	401482.2.oct 401482.2.oct	3918683H1 4821911H1	129	280	51	411408.20.dec	4418917H1	174	410
49 49	401482.2.oct	4501456H1	129	323	51	411408.20.dec	3674792H1	393	749
49	401482.2.oct	1899608H1	129	260	51	411408.20.dec	2805943H1	393	756
49	401482.2.oct	1610410H1	129	311	51	411408.20.dec	1966865H1	391	720
49	401482.2.oct	3891265H1	144	251	51	411408.20.dec	4653403H1	393	734
49	401482.2.oct	4502830H1	143	270	51	411408.20.dec	4956215H1	393	718
49	401482.2.oct	2924159H1	141	243	51	411408.20.dec	4109951H1	393	726
49	401482.2.oct	2106528H1	141	285	51	411408.20.dec	2812018H1	393	719 742
49	401482.2.oct	1895746H1	141	293	51 51	411408.20.dec 411408.20.dec	402737H1 3770868H1	393 394	765
49	401482.2.oct	1799893H1 3440365H1	141 141	223 311	51	411408.20.dec		392	737
49 49	401482.2.oct 401482.2.oct	697099H1	141	276	51	411408.20.dec	1403444H1	393	738
49	401482.2.oct	5220546H1	141	311	51	411408.20.dec	3667386H1	393	744
49	401482.2.oct	4640268H1	131	304	51	411408.20.dec	3153604H1	394	671
49	401482.2.oct	1591126H1	131	304	51	411408.20.dec		392	746
49	401482.2.oct	1591132H1	131	304	51	411408.20.dec		393	587
49	401482.2.oct	g1270001	133	205		411408.20.dec		392	734
49	401482.2.oct	4346815H1	131	244	51	411408.20.dec		393	764
49	401482.2.oct	3959778H2	132	323		411408.20.dec		392	743
49	401482.2.oct	117063H1	133	244		411408.20.dec		393	743 701
49	401482.2.oct	389507H1	131	235		411408.20.dec 411408.20.dec		393 402	701 740
49	401482.2.oct 401482.2.oct	2737221H1 5573958H1	132 130	304 344		411408.20.dec		395	758
49 49	401482.2.oct	3604159H1	130	280		411408.20.dec		392	701
49	401482.2.oct	6099064H1	130			411408.20.dec		394	742

PCT/US00/25643 WO 01/21836

					Table 4				
51	411408.20.dec	g2252026	396	814	51	411408.20.dec	3477204H1	387	804
51	411408.20.dec	6132793H1	392	724	51	411408.20.dec	g1357803	390	1071
51	411408.20 dec	2907546H1	395	782	51	411408.20.dec	4946208H1	388	685
51	411408.20.dec	785404H1	396	742	51	411408.20.dec	1576142H1	388	678
51	411408.20.dec	185321H1	397	613	51	411408.20.dec	g2619527	389	792
51	411408.20.dec	389185H1	396	743	51 51	411408.20.dec 411408.20.dec	743255H1 4958275H1	388 389	719 719
51 51	411408.20.dec 411408.20.dec	3534063H1 3996765H1	396 396	799 659	51 51	411408.20.dec	2552783H1	389	692
51	411408.20.dec	3053279H1	398	516	51	411408.20.dec	5098761H1	389	710
51	411408.20.dec	1807609H1	399	736	51	411408.20.dec	1478849H1	389	680
51	411408.20.dec	2523052H1	399	737	51	411408.20.dec	2856522H1	392	721
51	411408.20.dec	4977531H1	399	735	51	411408.20.dec	5687388H1	390	708
51	411408.20.dec	3858932H1	400	740	51	411408.20.dec	4523823H1	390	716
51	411408.20.dec	1845501H1	398	658	51	411408.20.dec	3490029H1	390	750 700
51	411408.20.dec	816386H1	399	746	51	411408.20.dec	5046950H1	390	726 713
51	411408.20.dec	4198843H1	399 398	743 724	51 51	411408.20.dec 411408.20.dec	4586244H1 2459258H1	390 390	708
51 51	411408.20.dec 411408.20.dec	4042101H1 3750944H1	400	758	51 51	411408.20.dec	1858361H1	390	709
51	411408.20.dec	937287H1	400	738	51	411408.20.dec	4416909H1	389	717
51	411408.20.dec	3810490H1	400	740	51	411408.20.dec	4523905H1	389	703
51	411408.20.dec	3114955H1	401	756	51	411408.20.dec	2760918H1	390	762
51	411408.20.dec	4566634H1	401	753	51	411408.20.dec	4385055H1	390	713
51	411408.20.dec	3705807H1	402	773	51	411408.20.dec	4853641H1	390	746
51	411408.20.dec	4066846H1	401	743	51	411408.20.dec	4819893H1	388	701
51	411408.20.dec	371959H1	403	562	51 51	411408.20.dec	3918493H1	390 391	726 703
51	411408.20.dec	4626333H1	403 403	736 742	51 51	411408.20.dec 411408.20.dec	4367949H1 4525882H1	391	703
51 51	411408.20.dec 411408.20.dec	4956823H1 3670548H1	406	742	51 51	411408.20.dec	4154002H1	391	718
51	411408.20.dec	3051835H1	403	768	51	411408.20.dec	5671105H1	392	590
51	411408.20.dec	029644H1	405	745	51	411408.20.dec	5574281H1	391	703
51	411408.20.dec	1535449H1	404	654	51	411408.20.dec	4981071H1	391	745
51	411408.20.dec	3592104H1	405	756	51	411408.20.dec	4895035H1	391	744
51	411408.20.dec	3993941H2	405	748	51	411408.20.dec	5122182H1	392	727
51	411408.20.dec	5028325H1	406	750	51	411408.20.dec	4329866H1	391	700
51	411408.20.dec	3808513H1	419	811	51	411408.20.dec	5199638H1	392	544 687
51	411408.20.dec	3076490H1	423	753 750	51 51	411408.20.dec 411408.20.dec	2548578H1 4730925H1	391 391	717
51 51	411408.20.dec 411408.20.dec	5020492H1 2318857H1	423 423	764	51	411408.20.dec	3495911H1	391	743
51 51	411408.20.dec	506742H1	424	565	51	411408.20.dec	2116906H1	391	713
51	411408.20.dec	3995849H1	423	768	51	411408.20.dec	2555366H1	391	691
51	411408.20.dec	4126641H1	427	781	51	411408.20.dec	4544977H1	391	690
51	411408.20.dec	3930274H1	430	700	51	411408.20.dec	3373476H1	391	709
51	411408.20.dec	2463303H1	436	756	51	411408.20.dec	2966550H1	392	682
51	411408.20.dec	3137131H1	436	781	51	411408.20.dec	2763323H1	391	692 719
51	411408.20.dec	767735H1	448	735	51 51	411408.20.dec 411408.20.dec	4874466H1 2548853H1	391 392	712
51	411408.20.dec 411408.20.dec		461 468	951 749	51 51	411408.20.dec	4841824H1	391	746
51 51	411408.20.dec		470	746	51	411408.20.dec	4953663H1	391	695
51	411408.20.dec		527	801	51	411408.20.dec	5115420H1	392	735
51	411408.20.dec		530	791	51	411408.20.dec	4845489H1	391	633
51	411408.20.dec	1597375T6	704	861	51	411408.20.dec		391	694
51	411408.20.dec	5700996H1	385	736	51	411408.20.dec		392	723
51	411408.20.dec		385	716	51	411408.20.dec		392	698
51	411408.20.dec		385	717	51	411408.20.dec		391 390	700 736
51	411408.20.dec		386	713 705	51 51	411408.20.dec 411408.20.dec		391	704
51 51	411408.20.dec 411408.20.dec		385 392	830	51	411408.20.dec		391	726
51	411408.20.dec		386	704	51	411408.20.dec		391	742
51	411408.20.dec		386	650	51	411408.20.dec		392	718
51	411408.20.dec		386	712	51	411408.20.dec		392	746
51	411408.20.dec		386	724	51	411408.20.dec		391	712
51	411408.20.dec	5946551H1	386	746	51	411408.20.dec		392	709
51	411408.20.dec		387	703	51	411408.20.dec		390	713
51	411408.20.dec		387	714	51	411408.20.dec		392	565 745
51	411408.20.dec		388	859	51 51	411408.20.dec		392 392	745 745
51 61	411408.20.dec 411408.20.dec		391 388	700 758	51 51	411408.20.dec 411408.20.dec		392	745 731
51	+11400.20.de0	3017310011	300	, 56		+11+00.20.0 0 0	4377370111	332	
					213				

					Table 4				
51	411408.20.dec	3456074H1	392	711	51	411408.20.dec	2591832H1	367	654
51	411408.20.dec	4765640H1	392	710	51	411408.20.dec	2155019H1	361	448
51	411408.20.dec	2544077H1	392	743	51	411408.20.dec	1709953H1	373	663
51	411408.20.dec	5175221H1	392	546	51	411408.20.dec	4083858H1	373	712
51	411408.20.dec	2649975H1	393	709	51	411408.20.dec	2554967H1	374	663
51	411408.20.dec	780432H1	392	526	51 51	411408.20.dec	3993314H1	374	743 724
51 51	411408.20.dec	1613961H1	393	517 734	51 51	411408.20.dec 411408.20.dec	4975109H1 646957H1	373 380	72 4 717
51 51	411408.20.dec 411408.20.dec	780667H1 4976638H1	392 391	734 723	51 51	411408.20.dec	2150550H1	383	736
51	411408.20.dec	4955591H1	392	735	51 51	411408.20.dec	3179540H1	382	768
51	411408.20.dec	4917657H1	392	735	51	411408.20.dec	1970802H1	381	731
51	411408.20.dec	2211455H1	393	714	51	411408.20.dec	3737635H1	382	759
51	411408.20.dec	4750777H1	392	737	51	411408.20.dec	4521821H1	382	703
51	411408.20.dec	4372262H1	392	729	51	411408.20.dec	4556748H1	382	700
51	411408.20.dec	2502217H1	392	698	51	411408.20.dec	1798726H1	382	691
51	411408.20.dec	4564914H1	392	695	51	411408.20.dec	4145903H1	382	789
51	411408.20.dec	4546001H1	392	754	51	411408.20.dec	4150946H1	382	703
51	411408.20.dec	4124159H1	392	729	51 51	411408.20.dec	3118151H1	383 383	749 704
51	411408.20.dec	3976845H1	392	613	51 51	411408.20.dec 411408.20.dec	1973414H1 3621844H1	382	704
51 51	411408.20.dec 411408.20.dec	4503808H1 3055191H1	390 391	713 743	51	411408.20.dec	2156096H1	387	686
51	411408.20.dec	4662503H1	392	703	51	411408.20.dec	4150328H1	381	718
51	411408.20.dec	2605825H1	392	736	51	411408.20.dec	2806959H1	382	661
51	411408.20.dec	1005043H1	392	720	51	411408.20.dec	5059914H1	382	716
51	411408.20.dec	2446394H1	393	674	51	411408.20.dec	5053073H1	384	603
51	411408.20.dec	4990021H1	392	726	51	411408.20.dec	3898664H1	383	705
51	411408.20.dec	4148690H1	392	729	51	411408.20.dec	2668117H1	382	710
51	411408.20.dec	3607084H1	392	663	51	411408.20.dec	3023657H1	382	724
51	411408.20.dec	5085183H1	391	704	51	411408.20.dec	2551978H1	383	712
51	411408.20.dec	2857082H1	392	711	51	411408.20.dec	4710332H1	384	736
51	411408.20.dec	2632563H1	392	734	51 51	411408.20.dec 411408.20.dec	4138190H1 5684104H1	384 385	751 727
51 51	411408.20.dec 411408.20.dec	4906727H2 2700833H1	392 392	759 658	51 51	411408.20.dec	4797725H1	386	714
51	411408.20.dec	2535528H1	392	657	51	411408.20.dec	5669575H1	390	627
51	411408.20.dec	3490780H1	392	759	51	411408.20.dec	598827H1	442	552
51	411408.20.dec	3894336H1	392	761	51	411408.20.dec	891997H1	443	578
51	411408.20.dec	3970513H1	392	758	51	411408.20.dec	753453H1	491	588
51	411408.20.dec	3171791H1	392	618	51	411408.20.dec	2465958H1	483	593
51	411408.20.dec	1723460H1	392	611	51	411408.20.dec	4831218H1	444	579
51	411408.20.dec	3476891H1	392	807	51	411408.20.dec	598686H1	442	601
51	411408.20.dec	4981057H1	392	749	52	035973.1.dec	5401350H1	1	105
51	411408.20.dec	4802806H1	392	749	52 50	035973.1.dec	6057617H1	56	643 782
51	411408.20.dec	4110394H1	392	588	52 52	035973.1.dec 035973.1.dec	g3214092 3524102H1	406 479	762 779
51	411408.20.dec	3575464H1 1729387H1	392 1	565 113	52 53	456536.1.dec	g819467	922	1236
51 51	411408.20.dec 411408.20.dec	3000408H1	5	303	53	456536.1.dec	4591941H1	925	1184
51	411408.20.dec		18	112	53	456536.1.dec	g2055674	926	1224
51	411408.20.dec		123	458	53	456536.1.dec	g916274	926	1222
51	411408.20.dec		126	448	53	456536.1.dec	g4124213	927	1224
51	411408.20.dec	3747433H1	130	439	53	456536.1.dec	3981295H1	927	1202
51	411408.20.dec	3640626H1	132	448	53	456536.1.dec	3980095H1	928	1201
51	411408.20.dec		135	447	53	456536.1.dec	2512416H1	121	379
51	411408.20.dec		140	439	53	456536.1.dec	2725087H1	121	368
51	411408.20.dec		144	448	53	456536.1.dec	3112706H1	121	409
51	411408.20.dec		144	448	53	456536.1.dec	2822459H1 g2835002	118 866	436 1221
51 51	411408.20.dec		147	459	53 53	456536.1.dec 456536.1.dec	g2955714	867	1226
51 51	411408.20.dec		151 155	449 448	53 53	456536.1.dec	g2557444	964	1221
51 51	411408.20.dec 411408.20.dec		161	448	53 53	456536.1.dec	g2874235	964	1226
51	411408.20.dec		164	452	53	456536.1.dec	3691459H1	121	411
51	411408.20.dec		167	451	53	456536.1.dec	965168H1	121	402
51	411408.20.dec		195	448	53	456536.1.dec	1959390H1	121	374
51	411408.20.dec		322	432	53	456536.1.dec	3482520H1	118	456
51	411408.20.dec		351	711	53	456536.1.dec	g2670144	741	1221
51	411408.20.dec		354	623	53	456536.1.dec	2835861H1	741	1007
51	411408.20.dec		361	719	53	456536.1.dec	g2942564	744	1227
51	411408.20.dec	2052284H1	361	677	.53	456536.1.dec	g3191676	750	1223

Table 4											
53	456536.1.dec	g5425871	757	1220	53	456536.1.dec	g1303540	639	955		
53	456536.1.dec	5153284H1	758	865	53	456536.1.dec	489544F1	652	1221		
53	456536.1.dec	4125006H1	758	945	53	456536.1.dec	2503442H2	658	895		
53	456536.1.dec	1686462H1	758	972	53	456536.1.dec	1959390T6	658	1175		
53	456536.1.dec	758546R1	121	664	53	456536.1.dec	6409986H1	666	1145		
53	456536.1.dec	758546H1	121	389	53	456536.1.dec	3344840H1		1221		
53	456536.1.dec	2113769H1	121	386	53	456536.1.dec	1001990H1		1229 1224		
53	456536.1.dec	1213489H1	702	942	53 53	456536.1.dec	g1238126	1106 1161	1219		
53	456536.1.dec	g1386725	712	1095	53 53	456536.1.dec 456536.1.dec	5693765H1 860067H1		1235		
53 53	456536.1.dec 456536.1.dec	g2064435 2540285H1	682 689	1100 926	53 53	456536.1.dec	1858344H1		1221		
53	456536.1.dec	g1977953	698	1076	53	456536.1.dec	530775H1	121	368		
53	456536.1.dec	g1383416	712	1028	53	456536.1.dec	2945472H1	121	220		
53	456536.1.dec	1360265H1	716	954	53	456536.1.dec	2558137H1	121	226		
53	456536.1.dec	637686H1	715	967	53	456536.1.dec	638639H1	121	364		
53	456536.1.dec	g2003985	737	1054	53	456536.1.dec	6299236H1	121	398		
53	456536.1.dec	5993414H1	1	149	53	456536.1.dec	3458160H1	121	379		
53	456536.1.dec	113167H1	46	210	53	456536.1.dec	607838H1	147	422		
53	456536.1.dec	2657989H1	45	278	53	456536.1.dec	607791H1	147	399		
53	456536.1.dec	g2563639	961	1241	53	456536.1.dec	3369291H1	149	398		
53	456536.1.dec	g4268409	962	1230	53	456536.1.dec	g2466663	883	1221		
53	456536.1.dec	g1774925	965	1152	53 53	456536.1.dec	1969383H1 g831904	887 892	1097 1229		
53	456536.1.dec	g1690531	964	1193	53 53	456536.1.dec 456536.1.dec	985686H1	121	212		
53	456536.1.dec	3106368H1	953 956	1215 1190	53 53	456536.1.dec	2772065H1	124	372		
53 53	456536.1.dec 456536.1.dec	2091224H1 g4876275	936	1222	53	456536.1.dec	1577745H1	124	343		
53	456536.1.dec	g1470764	937	1222	53	456536.1.dec	2553453H1	121	371		
53	456536.1.dec	4466881H1	939	1119	53	456536.1.dec	2642987H1	121	314		
53	456536.1.dec	3146434H1	935	1206	53	456536.1.dec	g4606944	937	1221		
53	456536.1.dec	g5365316	936	1221	53	456536.1.dec	1782414H1	904	1183		
53	456536.1.dec	g2069572	930	1226	53	456536.1.dec	755891H1	904	1126		
53	456536.1.dec	3182477H1	934	1221	53	456536.1.dec	755891R1	904	1221		
53	456536.1.dec	g2464429	854	1223	53	456536.1.dec	4369088H1	905	1176		
53	456536.1.dec	g4453913	855	949	53	456536.1.dec	g989963	908	1221		
53	456536.1.dec	g3042518	858	1224	53	456536.1.dec	g2934621	964	1230		
53	456536.1.dec	g3076962	859	1221	53	456536.1.dec	g1774926	964	1223		
53	456536.1.dec	g2555484	860	1214	53	456536.1.dec	g2957365	964	1221		
53	456536.1.dec	g832016	862	1225	53 53	456536.1.dec	g3886653 g3784917	965 971	1191 1221		
53	456536.1.dec	g3927282	865	1219 356	53 53	456536.1.dec 456536.1.dec	915765H1	976	1182		
53 53	456536.1.dec	849449H1 g1470763	95 93	460	53 53	456536.1.dec	6377118H1	981	1213		
53	456536.1.dec 456536.1.dec	2616647H1	96	343	53	456536.1.dec	q562504	986	1221		
53	456536.1.dec	g3118059	893	1220	53	456536.1.dec	g691376	879	1214		
53	456536.1.dec	g3988602	893	1228	53	456536.1.dec	2601535H1	92	375		
53	456536.1.dec	g3693926	894	1221	53	456536.1.dec	3445778H2	91	352		
53	456536.1.dec	1292136H1	894	1152	53	456536.1.dec	1571555H1	92	305		
53	456536.1.dec	g1383360	844	1220	53	456536.1.dec	2685889H1	92	277		
53	456536.1.dec	g2254713	846	1221	53	456536.1.dec	2729095H1	91	324		
53	456536.1.dec	6318065H1	848	1144	53	456536.1.dec	1555001H1	92	311		
53	456536.1.dec	g3127629	850	1224	53	456536.1.dec	527138H1	93	350 575		
53	456536.1.dec	g517694	849	1221	53 50	456536.1.dec	3416617H1 2270687H1	315 339	575 574		
53	456536.1.dec	814355T1 814355H1	853	1182	53 53	456536.1.dec 456536.1.dec	1685377H1	346	566		
53 53	456536.1.dec	814355R1	853 853	1084 1221	53 53	456536.1.dec	g2834102	364	566		
53	456536.1.dec 456536.1.dec	992822H1	148	456	53	456536.1.dec	3268340H1	365	594		
53	456536.1.dec	3470485H1	149	416	53	456536.1.dec	1265564H1	394	683		
53	456536.1.dec	2874206H1	149	420	53	456536.1.dec	g830474	122	428		
53	456536.1.dec	3180244H1	149	465	53	456536.1.dec	446372H1	127	406		
53	456536.1.dec	2478440H1	153	380	53	456536.1.dec	g1966035	125	411		
53	456536.1.dec	843190H1	163	395	53	456536.1.dec	Ž813111H1	128	444		
53	456536.1.dec	3793502H1	163	458	53	456536.1.dec	g3038659	988	1221		
53	456536.1.dec	2925558H1	163	445	53	456536.1.dec	g3145662	993	1222		
53	456536.1.dec	2998580H1	153	402	53	456536.1.dec	g4901439	996	1210		
53	456536.1.dec	3541085H1	153	433	53	456536.1.dec	g3148826	996	1209		
53	456536.1.dec	g1146696	171	403	53	456536.1.dec	2327682H1	998	1165		
53	456536.1.dec	g2163374	171	580	53 53	456536.1.dec	g762685	1006			
53	456536.1.dec	4864007H1	648	930	53	456536.1.dec	g671512	1010	1221		

				7	Γable 4				
53	456536.1.dec	g3039948	1092	1223	53	456536.1.dec	2720282H1	143	389
53	456536.1.dec	g791539	111	365	53	456536.1.dec	992871H1	147	418
53	456536.1.dec	4408366H1	113	283	53	456536.1.dec	866692H1	148	413
53	456536.1.dec	1559916H1	113	323	53	456536.1.dec	2561964H1	133	402
53	456536.1.dec	g671972	118	289	53	456536.1.dec	2525342H1	134	384
53	456536.1.dec	4115322H1	121	384	53	456536.1.dec	3492927H1	134	405
53	456536.1.dec	2408852H1	121	356	53	456536.1.dec	3616606H1	134	403
53	456536.1.dec	2551211H1	121	236	53	456536.1.dec	2198749H1	135	285
53	456536.1.dec	g2163212	795	1221	53	456536.1.dec	1404036H1	97 102	354 437
53	456536.1.dec	g1332029 6096487H1	801 795	1227 1077	53 53	456536.1.dec 456536.1.dec	489544R1 489544H1	102	361
53 53	456536.1.dec 456536.1.dec	g2986849	804	1225	53 53	456536.1.dec	2559140H1	101	357
53	456536.1.dec	g2341340	808	1221	53	456536.1.dec	1274175H1	104	239
53	456536.1.dec	g3804367	808	1214	53	456536.1.dec	1751413H1	108	323
53	456536.1.dec	g1382418	808	1230	53	456536.1.dec	1421202H1	107	290
53	456536.1.dec	346594H1	547	750	53	456536.1.dec	g3899530	810	1219
53	456536.1.dec	g2017833	558	929	53	456536.1.dec	g2952603	870	1227
53	456536.1.dec	g762177	92	307	53	456536.1.dec	3273308H1	74	322
53	456536.1.dec	1710041H1	93	343	53	456536.1.dec	g782097	74	255
53	456536.1.dec	3703053H1	93	397	53	456536.1.dec	2963221H1	91	392
53	456536.1.dec	526563H1	93	337	53	456536.1.dec	3395218H1	89	364
53	456536.1.dec	3357188H1	93	373	53	456536.1.dec	2969539H1	91	363
53	456536.1.dec	3493591H1	93	373	53	456536.1.dec	3096426H1	94	389
53	456536.1.dec	3402819H1	93	325	53 53	456536.1.dec	3444439H1	97 99	367 360
53	456536.1.dec	3181845H1	93	408	53 53	456536.1.dec	3295828H1	100	230
53	456536.1.dec	g1887396	235	355 530	53 53	456536.1.dec 456536.1.dec	1348565H1 3593237H1	99	388
53 53	456536.1.dec	3884276H1 2667252H1	267 268	522	53 53	456536.1.dec	3374783H1	97	358
53	456536.1.dec 456536.1.dec	3427814H1	111	335	53	456536.1.dec	g2055775	95	461
53	456536.1.dec	3485715H1	108	407	53	456536.1.dec	3620638H1	97	378
53	456536.1.dec	2620446H1	112	366	53	456536.1.dec	4714533H1	97	161
53	456536.1.dec	g677182	90	294	53	456536.1.dec	1299948H1	97	254
53	456536.1.dec	3268726H1	91	338	53	456536.1.dec	3160308H1	97	385
53	456536.1.dec	g2837163	899	1221	53	456536.1.dec	1754560H1	96	337
53	456536.1.dec	g986639	902	1191	53	456536.1.dec	1319244H1	97	349
53	456536.1.dec	618412H1	904	1152	53	456536.1.dec	606322H1	97	385
53	456536.1.dec	g1887333	1065	1221	53	456536.1.dec	g1988765	97	312
53	456536.1.dec	g3004027	1072	1227	53 53	456536.1.dec	2833520H2	93	322 399
53	456536.1.dec	1982066H1	1082 1082	1221 1221	53 53	456536.1.dec 456536.1.dec	2565261H1 3358036H1	121 124	293
53 53	456536.1.dec 456536.1.dec	g1265864 g4265582	1088	1221	53 53	456536.1.dec	1784984H1	541	705
53 53	456536.1.dec	1830441H1	568	823	53	456536.1.dec	566397H1	545	824
53	456536.1.dec	6291752H1	599	815	53	456536.1.dec	3524691H1	547	847
53	456536.1.dec	1620616H1	609	849	53	456536.1.dec	2533048H1	481	818
53	456536.1.dec	g4114551	612	999	53	456536.1.dec	5113612H1	490	786
53	456536.1.dec	5444332H1	633	877	53	456536.1.dec	1493584H1	493	713
53	456536.1.dec	4075596H1	633	905	53	456536.1.dec	6593451H1	504	995
53	456536.1.dec	3766586H1	94	383	53	456536.1.dec	1863502H1	496	782
53	456536.1.dec	2732225H1	95	355	53	456536.1.dec	1863502F6	496	1033
53	456536.1.dec	2823702H1	96	402	53	456536.1.dec	436142H1	504	603
53	456536.1.dec	913725H1	1012		53 53	456536.1.dec 456536.1.dec	3453989H1 2907327H1	534 540	806 739
53	456536.1.dec	948147H1	1013 1023		53 53	456536.1.dec	5732233H1	415	685
53 53	456536.1.dec 456536.1.dec	g2325668 g3181113	1023		53 53	456536.1.dec	4632451H1	426	684
53	456536.1.dec	g2102970	1043		53	456536.1.dec	g990010	428	684
53	456536.1.dec	2987426H1	231	508	53	456536.1.dec	2395270H1	438	665
53	456536.1.dec	3377045H1	127	377	53	456536.1.dec	1488271H1	479	743
53	456536.1.dec	1899725H1	123	379	53	456536.1.dec	4208981H1	404	537
53	456536.1.dec	1900788H1	123	366	53	456536.1.dec	4727980H1	417	678
53	456536.1.dec	g1298038	126	378	53	456536.1.dec	2560321H1	401	663
53	456536.1.dec	449807H1	131	296	53	456536.1.dec	1575881H1	70	187
53	456536.1.dec	3460674H1	108	331	53	456536.1.dec	3747523H1	70	371
53	456536.1.dec	1751340H1	108	312	53	456536.1.dec	1450986H1	69	322
53	456536.1.dec	2110208H1	109	366	53 50	456536.1.dec	3024440H1	69 70	312
53	456536.1.dec	5865275H1	121	406 456	53 53	456536.1.dec	2651171H1	73 57	208
53	456536.1.dec	g831903	134	456	53 53	456536.1.dec 456536.1.dec	1225060H1 6298584H1	57 64	292 309
53	456536.1.dec	744457H1	135	388	216	100000.1.ueC	0230004111	U -1	553
					/ 113				

					Table 4				
53	456536.1.dec	540325H1	67	275	55	406790.3.dec	5812480H1	19	295
53	456536.1.dec	3537964H1	68	368	55	406790.3.dec	3458385H1	19	249
53	456536.1.dec	3456808H1	68	311	55	406790.3.dec	6433130H1	45	638
53	456536.1.dec	3189412H1	70	389	55	406790.3.dec	995381T6	207	791
53	456536.1.dec	g4899087	812	949	55	406790.3.dec	5594655H1	375	625
53	456536.1.dec	g3753281	812	1221	55	406790.3.dec	g2341498	402	767
53	456536.1.dec	g3598298	812	1225	55	406790.3.dec	g4664630	422	859
53	456536.1.dec	g4113780	812	1221	55	406790.3.dec	g5396183	431	859
53	456536.1.dec	2202050H1	794	1047	55	406790.3.dec	g4311961	435	856
53	456536.1.dec	1863502T6	794	1174	55	406790.3.dec	g3840805	503	859
53	456536.1.dec	g3676957	787	1221	56	412420.63.dec	g666234	1	279
53	456536.1.dec	g2007458	779	1090	56 50	412420.63.dec	g4487110	1 1	296 228
53	456536.1.dec	g2787281	782	949	56 56	412420.63.dec 412420.63.dec	g1977452 g2805755	í	83
53 53	456536.1.dec	g3649015 1923568H1	784 761	1227 1024	56	412420.63.dec	2898360H1	i	99
53	456536.1.dec 456536.1.dec	g3924137	763	1222	57	196623.3.dec	2517648H1	i	231
53	456536.1.dec	g2835063	763	1215	57	196623.3.dec	5686895H1	1	273
53	456536.1.dec	2752626H1	759	1037	57	196623.3.dec	4645207H1	3	207
53	456536.1.dec	g3330927	776	1217	57	196623.3.dec	4605887H1	4	259
53	456536.1.dec	1687386H1	833	1041	57	196623.3.dec	2901373F6	5	502
53	456536.1.dec	g4650333	834	949	57	196623.3.dec	2901373H1	5	293
53	456536.1.dec	6166167H1	843	1222	57	196623.3.dec	1394016F6	5	393
53	456536.1.dec	g5392951	841	1222	57	196623.3.dec	1600290H1	7	202
53	456536.1.dec	1982079T6	814	1180	57	196623.3.dec	1394016H1	5	261
53	456536.1.dec	1982079H1	814	1038	57	196623.3.dec	1395280H1	5	254
53	456536.1.dec	g2656831	813	1221	57 57	196623.3.dec	2696714H1	6	236
53	456536.1.dec	g2753183	815	949	57 57	196623.3.dec 196623.3.dec	g2032778 3874480H1	11 13	208 267
53	456536.1.dec	1982079R6	814 831	1164 949	57 57	196623.3.dec	5676590H1	15	276
53 53	456536.1.dec	g4096028 g3924307	812	1214	57 57	196623.3.dec	5410878H1	17	272
54	456536.1.dec 387807.4.oct	3702147H1	1	291	57	196623.3.dec	1552649H1	17	210
54	387807.4.oct	g3307321	221	621	57	196623.3.dec	4823454H1	18	179
54	387807.4.oct	g3644993	223	518	57	196623.3.dec	4506764H1	26	295
54	387807.4.oct	g2836106	227	596	57	196623.3.dec	4302206H1	24	279
54	387807.4.oct	g3431952	226	573	57	196623.3.dec	6515768H1	30	490
54	387807.4.oct	g2714088	228	633	57	196623.3.dec	2716365H1	26	286
54	387807.4.oct	4560443T6	333	631	57	196623.3.dec	5866818H1	27	279
54	387807.4.oct	5980275H1	342	631	57	196623.3.dec	3136703H1	26	312
54	387807.4.oct	292878H1	416	521	57	196623.3.dec	3873631H1	26	330
54	387807.4.oct	1419003T6	427	527	57	196623.3.dec	3765014H1	28	321 281
54	387807.4.oct	5039911H1	498	740	57 57	196623.3.dec 196623.3.dec	3352194H1 2659790H1	26 26	252
54	387807.4.oct	4893519H1	536 638	615 889	57 57	196623.3.dec	4876834H1	29	300
54 54	387807.4.oct 387807.4.oct	4532934H1 3188491H1	643	867	57 57	196623.3.dec	3770415H1	29	341
54	387807.4.oct	3188491R6	643	986	57 57	196623.3.dec	4530091H1	31	274
54	387807.4.oct	2274775H1	643	798	57	196623.3.dec	1631018H1	29	147
54	387807.4.oct	1419003F6	643	1075		196623.3.dec	5440130H1	32	245
54	387807.4.oct	3491191H1	643	732	57	196623.3.dec	3893567H1	31	199
54	387807.4.oct	6322166H1	643	827	57	196623.3.dec	3633822H1	33	314
54	387807.4.oct	g1984547	654	954	57	196623.3.dec	2210577H1	32	291
54	387807.4.oct	5272773H1	683	764	57	196623.3.dec	4668793H1	34	297
54	387807.4.oct	5098260H1	697	962	57	196623.3.dec	3456796H1	33	274
54	387807.4.oct	4245582H1	784	1019		196623.3.dec	223764R1	33	631
54	387807.4.oct	4403414H1	790	922	57	196623.3.dec	3833345H1	33 33	300 279
54	387807.4.oct	1419059H1	851	1075		196623.3.dec 196623.3.dec	6377178H1 223764H1	33	279 256
54	387807.4.oct	1419003H1	861 901	1075 1194		196623.3.dec	225430H1	33	248
54 54	387807.4.oct 387807.4.oct	6102706H1 g2629621	914	1312		196623.3.dec	067067H1	33	178
54	387807.4.oct	2490348H1		1342		196623.3.dec	g1728813	36	284
54	387807.4.oct	3617390H1	1143			196623.3.dec	2403139H1	33	271
55	406790.3.dec	366111H1	1	236	57	196623.3.dec	801372H1	38	259
55	406790.3.dec	g2055030	2	422	57	196623.3.dec	2411122H1	38	254
55	406790.3.dec	2817564H1	16	272	57	196623.3.dec	3596160H1	38	312
55	406790.3.dec	3449061H1	17	259	57	196623.3.dec	067065H1	41	194
55	406790.3.dec	995381R6	18	553	57	196623.3.dec	3584836H1	35	312
55	406790.3.dec	995381H1	18	326	57	196623.3.dec	167565H1	56 50	371
55	406790.3.dec	6433084H1	45	462	57	196623.3.dec	3859670H1	58	338

Table 4											
57	196623.3.dec	g2032705	59	366		9	264633.8.dec	3580034F6		3319	
57	196623.3.dec	g4737259	137	499	5	9	264633.8.dec	3580034H1		3246	
57	196623.3.dec	4092207H1	226	474	5	9	264633.8.dec	5273111H1		3231	
57	196623.3.dec	4581304H1	236	481		9	264633.8.dec	906926H1		3173	
57	196623.3.dec	898109R6	241	647		59	264633.8.dec	1439286H1		3307	
57	196623.3.dec	898109H1	241	492		59	264633.8.dec	169981R1		3365	
57	196623.3.dec	030943H1	568	844		59	264633.8.dec	169981F1		3366 3320	
57	196623.3.dec	2006252H1	568	727		59	264633.8.dec	169981H1 6493338H1		3608	
57	196623.3.dec	3901332H1	581 655	810 838		59 59	264633.8.dec 264633.8.dec	1320776H1		3388	
57 57	196623.3.dec 196623.3.dec	2007562H1 3858113H1	655 759	1038		59	264633.8.dec	492151H1		3409	
57 57	196623.3.dec	4422306H1	759	1021		59	264633.8.dec	3460677H1	3158		
58	427916.8.dec	1413110H1	1	161		59	264633.8.dec	4741080H1		3370	
58	427916.8.dec	1413110F6	1	457		59	264633.8.dec	5616847H1	3175	3284	
58	427916.8.dec	2483841H1	1	196	5	59	264633.8.dec	6306822H1	3225	3669	
58	427916.8.dec	1415706H1	1	182	5	59	264633.8.dec	5313464H1		3301	
58	427916.8.dec	g389421	1	251	5	59	264633.8.dec	1558226F6	3236		
58	427916.8.dec	4434759H1	26	282		59	264633.8.dec	3450312H1		3532	
58	427916.8.dec	5529558H1	32	309		59	264633.8.dec	1669451H1	3295		
58	427916.8.dec	3360746H1	34	291		59	264633.8.dec	6546636H1	3352		
58	427916.8.dec	3039830H1	87	370		59	264633.8.dec	2753410T6	3317 3323	3910	
58	427916.8.dec	5357136H1	138	317		59 50	264633.8.dec	5906384H1 g1736130	3367		
58	427916.8.dec	5310884H1	161	386		59 59	264633.8.dec 264633.8.dec	g1689800		3578	
58	427916.8.dec	2227664H1	163 212	341 340		59 59	264633.8.dec	3639891H1	3518	3788	
58 50	427916.8.dec 264633.8.dec	4289094H1 2760074H1	2557	2829		59	264633.8.dec	4182954H1	3564		
59 59	264633.8.dec	5477979H1	2625			59	264633.8.dec	5615577H1	3592		
5 9	264633.8.dec	g3041476	4970			59	264633.8.dec	4958507H1	3619	3783	
59	264633.8.dec	g2881327	5011	5285		59	264633.8.dec	g1558771	3639	4036	
59	264633.8.dec	4005052H2	3711	3945		59	264633.8.dec	5084130H1	3643	3871	
59	264633.8.dec	g5123788	1	7677		59	264633.8.dec	1645888F6	3673	4069	
59	264633.8.dec	2939613H1	1	92	!	59	264633.8.dec	g5452540	4101	4355	
59	264633.8.dec	g3839173	7222	7683		59	264633.8.dec	-g4987546	5067	5285	
59	264633.8.dec	g3959822	7238			59	264633.8.dec	g1734159	5073	5285	
59	264633.8.dec	g4332118	7244			59	264633.8.dec	1499149H1	5076	5285	
59	264633.8.dec	2203534H1	7461	7671		59	264633.8.dec	6111175H1	5078		
59	264633.8.dec	2753410R6		3017		59	264633.8.dec	2214010H1	5097	5342	
59	264633.8.dec	2753410H1		2701		59	264633.8.dec	2119572H1	5046	5285	
59	264633.8.dec	3669959H1		6495		59 50	264633.8.dec	3178947H1 g4738584	5047 5049	5285	
59	264633.8.dec	g2878174	4505			59 59	264633.8.dec 264633.8.dec	4888703H1	5064	5341	
59 50	264633.8.dec	6245402H1 027321H1	4477	5044 4746		59	264633.8.dec	g2241797	7304	7680	
59 59	264633.8.dec 264633.8.dec	g2240505	4505			59	264633.8.dec	g3843660	7321	7697	
59	264633.8.dec	4884709H1	4860			59	264633.8.dec	6386767H1	5770	6050	
59	264633.8.dec	g1736131	4841			59	264633.8.dec	4547233H1	5699	5962	
59	264633.8.dec	2053603H1	4841			59	264633.8.dec	5193918F6	5913	6294	
59	264633.8.dec	4825493H1	4851	5103		59	264633.8.dec	1903050H1	5043	5287	
59	264633.8.dec	2047635H1		5046		59	264633.8.dec	4706229H1		2663	
59	264633.8.dec	g2566999		5246		59	264633.8.dec	5193918H1		6179	
59	264633.8.dec	2688383H1	4752	5008		59	264633.8.dec	645727H1		5362	
59	264633.8.dec	g2705809	4781			59	264633.8.dec	861167H1		5452	
59	264633.8.dec	625590H1		4777		59	264633.8.dec	2834470H1		5491	
59	264633.8.dec	3375634H1		4814		59	264633.8.dec	2263921H1	5231	5460	
59	264633.8.dec	2986212H1		4795		59	264633.8.dec 264633.8.dec	1669519H1	5280	5508 5285	
59	264633.8.dec	1891014H1		4935		59	264633.8.dec	g3756312 g3734545		4355	
59	264633.8.dec	3622936H1		4948 7397		59 59	264633.8.dec	g2816934		4376	
59 50	264633.8.dec	5838668H1		7478		59	264633.8.dec	g1558712		5285	
59 59	264633.8.dec 264633.8.dec	2964536H1 5889738H1		6544		59	264633.8.dec	g4312948		5217	
59	264633.8.dec	5882902H1		6547		59	264633.8.dec	q3896413		5285	
59	264633.8.dec	2936459H1	7383			59	264633.8.dec	g3432963		5285	
59	264633.8.dec	g1010200	7376			59	264633.8.dec	g3753704		5285	
59	264633.8.dec	g1011545	7394			59	264633.8.dec	g3040420	3945		
59	264633.8.dec	g1026402	7401			59	264633.8.dec	g3917139	3960	4355	
59	264633.8.dec	g2902950		4337		59	264633.8.dec	g3835247	3937		
59	264633.8.dec	2055804H1		4329		59	264633.8.dec	g4896231	3944		
59	264633.8.dec	g2788822	4078	3 4376	.	59	264633.8.dec	g1958739	7059	7443	

					Table 4				
59	264633.8.dec	5153385H1	7130		59	264633.8.dec	4004375H1	3853	4015
59	264633.8.dec	5735626H1	7042		59	264633.8.dec	3314920H1		3960
59	264633.8.dec	g2360618		7445	59	264633.8.dec	g2567000	4974	
59	264633.8.dec	5620491R8	4132		59	264633.8.dec	1903050T6	5000	
59	264633.8.dec	g1713052	4134		59	264633.8.dec	g5236647	3912	
59	264633.8.dec	1645888H1	3673	3833	59 50	264633.8.dec	g2908547	3915 3928	
59	264633.8.dec	g3805397	3679		59 59	264633.8.dec 264633.8.dec	2831092H1 5882023H1	6260	
59 59	264633.8.dec 264633.8.dec	009055R6 009055H1	7360 7360		59 59	264633.8.dec	5887277H1	6260	
59	264633.8.dec	g4453396	7361		59	264633.8.dec	3931164H1	6224	
59	264633.8.dec	g1379240		7680	59	264633.8.dec	5545540H1	2633	
59	264633.8.dec	6321696H1	1962	2237	59	264633.8.dec	5546368H1	2643	
59	264633.8.dec	3339964H1	2174		59	264633.8.dec	g4522792	7268	
59	264633.8.dec	4910157H1		2112	59	264633.8.dec	3839760H1	7275	
59	264633.8.dec	g1977752	1628	1793	59	264633.8.dec	g1623287		7693
59	264633.8.dec	g5689516		4405	59 50	264633.8.dec	g752466	7403 7401	7663
59	264633.8.dec	g4076602		7703 7689	59 59	264633.8.dec 264633.8.dec	g991482 g2877698	3985	
59 59	264633.8.dec 264633.8.dec	g5707037 2149426H1		7674	59	264633.8.dec	g2876827	4035	
59	264633.8.dec	1669010H1	5280	5510	59	264633.8.dec	2055804R6	4072	
59	264633.8.dec	g2008277		5615	59	264633.8.dec	g5529021	3985	4355
59	264633.8.dec	4178644H1	5659	5912	59	264633.8.dec	401718H1	7001	7266
59	264633.8.dec	6181567H1	5672	5898	59	264633.8.dec	g5591949	7006	
59	264633.8.dec	6209982H1	7225		59	264633.8.dec	g2328920	7012	
59	264633.8.dec	5020453T1	7252		59	264633.8.dec	2649891H1	7029 6986	
59	264633.8.dec	g3246288		7684	59 59	264633.8.dec 264633.8.dec	g1623286 g2902964	6987	
59	264633.8.dec	g4982958 5193918T6	7248 7257	7639 7678	59 59	264633.8.dec	5020453H1	6854	
59 59	264633.8.dec 264633.8.dec	g2957486	7258	7445	59	264633.8.dec	5093687H1	6891	
59	264633.8.dec	055084H1	7269	7435	59	264633.8.dec	g1026722	6895	
59	264633.8.dec	067973H1		7458	59	264633.8.dec	g1025017	6895	
59	264633.8.dec	3867461H1	6384	6511	59	264633.8.dec	5094369H1	6929	
59	264633.8.dec	5807225H1		6491	59	264633.8.dec	2653154H1	6938	
59	264633.8.dec	g2589262		4915	59	264633.8.dec	3172174H1	6957	
59	264633.8.dec	g4901330		4874	59 50	264633.8.dec	6209435H1	6983 6984	7231 7221
59	264633.8.dec	g1928177	4469 4876		59 59	264633.8.dec 264633.8.dec	2518677H1 2896833H1	6696	
59 59	264633.8.dec 264633.8.dec	g1524709 1903050F6		5287	59 59	264633.8.dec	g752465	6709	6988
59	264633.8.dec	5881559H1		6525	59	264633.8.dec	3403481H1	6715	
59	264633.8.dec	5883369H1		6522	59	264633.8.dec	5040507H1	6715	6952
59	264633.8.dec	2412358H1	6332	6579	59	264633.8.dec	5041590H1	6716	6961
59	264633.8.dec	5544024H1	6356	6554	59	264633.8.dec	3988731H1	6719	
59	264633.8.dec	4554593H1		6601	59	264633.8.dec	3645638H1	6726	7013
59	264633.8.dec	260539H1		6707	59	264633.8.dec	1891273H1	6729	6974
59	264633.8.dec	5566205H1		3004	59 50	264633.8.dec 264633.8.dec	946530H1 g1011156	6745 6786	6979 7036
59 50	264633.8.dec 264633.8.dec	6357475H1 6327349H1		4212 4221	59 59	264633.8.dec	6593361H1	•	7223
59 59	264633.8.dec	g775274		6067		264633.8.dec	g4243143		7273
59	264633.8.dec	g3249712	273	7688		264633.8.dec	4212002H1		7124
59	264633.8.dec	g319009	1369			264633.8.dec	1489550F6	6537	7023
59	264633.8.dec	ğ1921891	1499	1947	59	264633.8.dec	1489550H1		6790
59	264633.8.dec	g3595619	3924	4355		264633.8.dec	4501054H1		6794
59	264633.8.dec	g4888293		4392		264633.8.dec	3044125H1		6853
59	264633.8.dec	009055T6		7664		264633.8.dec	5452322H1		6835 6884
59	264633.8.dec	g4070420		4896		264633.8.dec	g1010248 g1010260		6825
59	264633.8.dec	g3803677 g4895931		4802 4889		264633.8.dec 264633.8.dec	1470385F6	6641	7087
59 59	264633.8.dec 264633.8.dec	g5595323		4119		264633.8.dec	1470385H1		6830
59	264633.8.dec	2872515H1		4866		264633.8.dec	3606436H1		6866
59	264633.8.dec	1740929H1		4919		264633.8.dec	5025468H1		6967
59	264633.8.dec	g1524770		5139		264633.8.dec	5150604H1		6934
59	264633.8.dec	2023182H1	4743	4996	59	264633.8.dec	1456829H1	6687	
59	264633.8.dec	g1734256		3955		264633.8.dec	5913938H1	6529	
59	264633.8.dec	g2934347		4337		264633.8.dec	g2254985	7461	
59 50	264633.8.dec	g2433925		3962		264633.8.dec	g4378013	33 74	7691 399
59 59	264633.8.dec 264633.8.dec	6544483H1 g4395405		2 4274 3 3955		264633.8.dec 264633.8.dec	g1976686 3358612H1	6392	
23	204000.0.086	9-000-00	3010	, 0000	219	_5 .555.0.000	5555512.11	J.J.L	

					Table 4				
59	264633.8.dec	g990828	6479		61	902943.1.dec	6490801H1	2516	3033
59	264633.8.dec	4522981H1		5221	61	902943.1.dec	6489463H1		3084
59	264633.8.dec	g2255600		7680	61	902943.1.dec	g2012148	2641	2972
59	264633.8.dec	g5446131	7336	7683	61	902943.1.dec	6486889H1		3182
59	264633.8.dec	g4222673	7348		61	902943.1.dec	6482904H1		3106
59	264633.8.dec	g3043107	3694	3955	61	902943.1.dec	5873213H1		3167
59	264633.8.dec	5731062H1	6047		61	902943.1.dec	5873221H1		3167
59	264633.8.dec	3584229H1		6331	61	902943.1.dec	6432615H1		3555
59	264633.8.dec	g2014008	6133		61	902943.1.dec	6354243H1		3608 3554
59	264633.8.dec	626375H1	6029	6230	61	902943.1.dec	5637909H1 5644969H1		3574 3574
59	264633.8.dec	626519H1	6029	6136	61 61	902943.1.dec 902943.1.dec	4457090H1		3563
59 59	264633.8.dec 264633.8.dec	1489550T6 5478430H1	7421 5957	7653 6209	61 61	902943.1.dec	5642514H1		3612
59 59	264633.8.dec	g900129	5978		61	902943.1.dec	6170624H1		3821
59	264633.8.dec	g908380	6015	6283	61	902943.1.dec	5092668F6		4104
59	264633.8.dec	5889703H1	6260	6456	61	902943.1.dec	5092668H1		3784
59	264633.8.dec	5882091H1	6260	6342	61	902943.1.dec	4455573H1		3908
59	264633.8.dec	5884167H1	6261	6515	61	902943.1.dec	2415341H1	3936	
59	264633.8.dec	g3797785	4931	5290	61	902943.1.dec	2415341F6	3936	
59	264633.8.dec	g1689718	4957	5286	61	902943.1.dec	5644569R8	4000	
59	264633.8.dec	g3015912	4959		61	902943.1.dec	5637811H1	3999	
59	264633.8.dec	6008118H1		7680	61	902943.1.dec	5092668R6	4232	
59	264633.8.dec	2556025H1		7642	61	902943.1.dec	4455573R8	4303 6803	
60	337822.4.dec	g3755755	581	888	62 63	256009.2.dec 256009.2.dec	3686313H1 2895979H1	6802	
60	337822.4.dec	g667395	768	882	62 62	256009.2.dec	2129702H1		7076
60 60	337822.4.dec 337822.4.dec	2833833H1 g395543	823 941	1081 1212	62	256009.2.dec	1655677H1	6803	
60	337822.4.dec	g2825241	1067	1260	62	256009.2.dec	g2021489	6804	
60	337822.4.dec	g2064264	1102	1430	62	256009.2.dec	2884943H1		7059
60	337822.4.dec	2915382H1	7	140	62	256009.2.dec	3637254H1	6804	7017
60	337822.4.dec	g1269991	26	194	62	256009.2.dec	854050H1	6804	7046
60	337822.4.dec	g875782	172	415	62	256009.2.dec	3243241H1	6803	7045
60	337822.4.dec	g3283993	210	1576	62	256009.2.dec	3693242H1	6804	
60	337822.4.dec	g5110760	423	884	62	256009.2.dec	609587H1	6804	
60	337822.4.dec	g3753613	474	883	62	256009.2.dec	g4664567	6805	
60	337822.4.dec	4740515H2	558	827	62	256009.2.dec	2172480H1	6807	
60	337822.4.dec	4738945H1	558	705	62	256009.2.dec	2228032H1	6804	
60	337822.4.dec	2080490H1	1140	1413	62	256009.2.dec	5915452H1	6804 6804	
60	337822.4.dec	3280776H1	1	181	62 62	256009.2.dec 256009.2.dec	1373349H1 3433122H1	6803	
60 60	337822.4.dec	2915382F6	1 5	318 250	62 62	256009.2.dec	5293637H2	6808	
60 61	337822.4.dec 902943.1.dec	3252911H1 5638959H1	1	209	62 62	256009.2.dec	2272963H1	6806	
61	902943.1.dec	6491718H1	157	634	62 62	256009.2.dec	1687974H1		7053
61	902943.1.dec	2415341T6	518	1042	62	256009.2.dec	2317928H1	6806	
61	902943.1.dec	6428735H1	867	1184	62	256009.2.dec	854024H1	6804	6999
61	902943.1.dec	g2834117	922	1236	62	256009.2.dec	1616977H1	6805	7024
61	902943.1.dec	6426168H1	943	1312	62	256009.2.dec	726262H1	6805	
61	902943.1.dec	5639272H1	1027		62	256009.2.dec	3254175H1	6805	
61	902943.1.dec	5642514R8	1089	1441	62	256009.2.dec	4950837H1	6806	
61	902943.1.dec	6492034H1		1686	62	256009.2.dec	3098257H1	6805	
61	902943.1.dec	358895H1		1689	62	256009.2.dec	3015006H1		7089
61	902943.1.dec	6487975H1		2076	62	256009.2.dec	1544438R6		7187 7043
61	902943.1.dec	5091951H1		1649 1873	62 62	256009.2.dec 256009.2.dec	1227986H1 2729617H1		7043
61	902943.1.dec	6264350H1 4455276F6		2225	62	256009.2.dec	1385926H1		7020
61 61	902943.1.dec 902943.1.dec	4455276H1		1979	62	256009.2.dec	2079647H1		7056
61	902943.1.dec	5089810H1		2265	62 62	256009.2.dec	6543764H1		7200
61	902943.1.dec	6344967H1		2274	62	256009.2.dec	q1954438		7194
61	902943.1.dec	6171524H1		2321	62	256009.2.dec	1293789H1		7027
61	902943.1.dec	6005774H1		2358		256009.2.dec	1417792H1		7022
61	902943.1.dec	3426344F6		2452		256009.2.dec	2741429H1	6808	7060
61	902943.1.dec	3426344H1	2095	2334	62	256009.2.dec	3391859H1		7099
61	902943.1.dec	5642539H1		2370		256009.2.dec	4083084H1		7065
61	902943.1.dec	6427209H1		2810		256009.2.dec	758913H1		7082
61	902943.1.dec	5627532H1		2466		256009.2.dec	2730231H1		7041
61	902943.1.dec	g2243717		2559		256009.2.dec	605554H1	6808	7050
61	902943.1.dec	4284624H1	2302	2557		256009.2.dec	924108H1	6809	7019
					220				

Table 4											
62	256009.2.dec	599887H1	6806	7048	62	256009.2.dec	2079972H1	6809	7072		
62	256009.2.dec	1293789F1	680 <u>8</u>	7215	62	256009.2.dec	3168974H1	6809	7005		
62	256009.2.dec	2266615H1	6808	7046	62	256009.2.dec	6541086H1	6809	7215		
62	256009.2.dec	1581702H1	6809	7005	62	256009.2.dec	1915024H1	6809	7052		
62	256009.2.dec	2242319H1		7057	62	256009.2.dec 256009.2.dec	3010414H1 3366620H1	6809 6809	7101 7080		
62 62	256009.2.dec 256009.2.dec	4046218H1	6809 6809	7104 7054	62 62	256009.2.dec	2920709H2		7084		
62	256009.2.dec	1875482H1 2454454H1	6809	7034	62	256009.2.dec	3982991H1	6809	7078		
62	256009.2.dec	4227366H1	6806		62	256009.2.dec	2307565H1	6809	7027		
62	256009.2.dec	865153H1		7065	62	256009.2.dec	3685780H1	6809	7027		
62	256009.2.dec	3705575H1	6808	7091	62	256009.2.dec	990361H1	6809	7081		
62	256009.2.dec	2921451H1	6808	7092	62	256009.2.dec	1704728H1	6809	6980		
62	256009.2.dec	3012201H1	6809	7097	62	256009.2.dec	1968166H1	6809	7087		
62	256009.2.dec	2238257H1	6807		62	256009.2.dec	5794878H1	6809	7044		
62	256009.2.dec	5174485H1	6809	7070	62 62	256009.2.dec	1318627H1 1543140T1	6809 6809	7032 7170		
62	256009.2.dec	3291912H1 4739453H1	6809 6809	7075 7022	62 62	256009.2.dec 256009.2.dec	1209524R1	6809	7215		
62 62	256009.2.dec 256009.2.dec	4506287H1		7075	62	256009.2.dec	3042117H1	6809	7047		
62	256009.2.dec	1544435H1	6808		62	256009.2.dec	2364635H1	6809	7029		
62	256009.2.dec	805905H1	6809	7024	62	256009.2.dec	3013148H1	6809	7031		
62	256009.2.dec	4210490H1	6808	7073	62	256009.2.dec	3199578H1	6809	6917		
62	256009.2.dec	3430794H1	6808	7047	62	256009.2.dec	4058217H1	6814			
62	256009.2.dec	712348H1	6809		62	256009.2.dec	726606H1		7028		
62	256009.2.dec	4454989H1	6808	7051	62	256009.2.dec	1844481H1	6814	7063		
62	256009.2.dec	646904H1	6809	7022	62	256009.2.dec	3942420H1	6814			
62	256009.2 dec	1581619H1	6809		62	256009.2.dec 256009.2.dec	853931H1 2413378H1		6978 7026		
62	256009.2.dec	5287054H1 1543140H1	6808	7061 7002	62 62	256009.2.dec 256009.2.dec	2766178H1	6814	6946		
62 62	256009.2.dec 256009.2.dec	2771665H1	6809	7055	62	256009.2.dec	808678H1		7089		
62	256009.2.dec	2223625H1	6809	6983	62	256009.2.dec	2778183H1		7044		
62	256009.2.dec	5887790H1	6809	7069	62	256009.2.dec	2545037H2	6814	7084		
62	256009.2.dec	918247H1	6809		62	256009.2.dec	796402R1	6814	7208		
62	256009.2.dec	2486090H1	6809	7030	62	256009.2.dec	1284285H1	6814	7070		
62	256009.2.dec	1225955H1	6809		62	256009.2.dec	808678R1	6814	7215		
62	256009.2.dec	1255796H1		7037	62	256009.2.dec	3040759H1		7106		
62	256009.2.dec	1500991H1	6809		62	256009.2.dec	6377702H1	6814	7106		
62	256009.2.dec	1591365H1	6809		62 62	256009.2.dec 256009.2.dec	990071H1 1259740H1	6814	7155 6945		
62 62	256009.2.dec 256009.2.dec	918252R1 645991H1	6809 6809		62 62	256009.2.dec	2923289H1		7054		
62	256009.2.dec	1255141H1		7019	62	256009.2.dec	4165467H1		7100		
62	256009.2.dec	691144H1	6809		62	256009.2.dec	591114H1		6992		
62	256009.2.dec	2626844H1		7044	62	256009.2.dec	2586985H1	6814	7069		
62	256009.2.dec	1957222H1	6809	7045	62	256009.2.dec	g1365385	6816			
62	256009.2.dec	4080495H1		7073	62	256009.2.dec	3170840H1		7098		
62	256009.2.dec	5598895H1		7009	62	256009.2.dec	1657713H1		6994		
62	256009.2.dec	957630T1		7178	62	256009.2.dec	584601H1 714218H1		7060 7041		
62	256009.2.dec	2029004H1		7069 7084	62 62	256009.2.dec 256009.2.dec	1496788H1		7041		
62 62	256009.2.dec 256009.2.dec	3370122H1 907620T1		7179	62	256009.2.dec	1722939H1		7069		
62	256009.2.dec	3169225H1		7091	62	256009.2.dec	4405027H1		7085		
62	256009.2.dec	4018584H1		7093	62	256009.2.dec	856073R6		6947		
62	256009.2.dec	5886851H1		7063	62	256009.2.dec	1283845H1	6816	7090		
62	256009.2.dec	2726816H1	6809	7058	· 62	256009.2.dec	2800890H1		7078		
62	256009.2.dec	5168407H1		7060	62	256009.2.dec	990071R1		7195		
62	256009.2.dec	2081887H1		7063	62	256009.2.dec	2837884H1		7058		
62	256009.2.dec	2627004H1		7052	62	256009.2.dec	820298H1		7109		
62	256009.2.dec	1864684H1		7064	62 62	256009.2.dec 256009.2.dec	3960201H2 1001763H1		7087 7093		
62	256009.2.dec 256009.2.dec	907620R2 2218517H1		7215 7050	62	256009.2.dec	990071T1		7177		
62 62	256009.2.dec	1992968H1		7001	62	256009.2.dec	688055H1		7090		
62	256009.2.dec	1865389H1		7068	62	256009.2.dec	1967463H1		7098		
62	256009.2.dec	2053436H1		7059	62	256009.2.dec	1993519H1		7000		
62	256009.2.dec	3809520H1		7103		256009.2.dec	1359721H1		6991		
62	256009.2.dec	907620H1	6809	7103	62	256009.2.dec	1001763R1		7214		
62	256009.2.dec	1867532H1		6992		256009.2.dec	2690995H1		7052		
62	256009.2.dec	3015059H1		7107		256009.2.dec	5171812F6		7215		
62	256009.2.dec	2148431H1	6809	7048		256009.2.dec	3779566H1	6816	7108		
					221		•				

					Table 4				
62	256009.2.dec	1910133H1	6819	7050	62	256009.2.dec	g2269938	6841	7216
62	256009.2.dec	2884456H1	6819	7091	62	256009.2.dec	463130H1		7061
62	256009.2.dec	g5366891	6819	7223	62	256009.2.dec	3803431H1	6816	
62	256009.2.dec	g3805623	6819	7221	62	256009.2.dec	913629H1		7050
62	256009.2.dec	4306424H1	6819	7107	62	256009.2.dec	972591H1	6817	
62	256009.2.dec	g5363952		7220	62	256009.2.dec	g1638139	6816	
62	256009.2.dec	6587039H1		7156	62	256009.2.dec	g5366184		7212
62	256009.2.dec	711967H1	6820	7036	62	256009.2.dec	3449063H1	6817 6819	7018 7089
62	256009.2.dec	g2834392	6819	7215	62 62	256009.2.dec 256009.2.dec	1907880H1 g1390452		7003 7077
62 62	256009.2.dec 256009.2.dec	2328184H1 2561102H1	6820 6820	7060 7093	62	256009.2.dec	g2839645		7219
62	256009.2.dec	195463H1	6821	6988	62	256009.2.dec	g2539812		7218
62	256009.2.dec	2996434H1	6820	7050	62	256009.2.dec	g1442388	6845	
62	256009.2.dec	4185190H1	6820	7156	62	256009.2.dec	g1492911		7012
62	256009.2.dec	2780680H2	6820	7008	62	256009.2.dec	g2584157	6845	7215
62	256009.2.dec	2259974H1	6820	7068	62	256009.2.dec	1711465H1	6845	7066
62	256009.2.dec	g1924526	6820	7128	62	256009.2.dec	896723H1		7036
62	256009.2.dec	1476613H1	6821	7070	62	256009.2.dec	711668H1		7071
62	256009.2.dec	1726084T6	6821	7184	62	256009.2.dec	4215980H1		7084
62	256009.2.dec	1337992H1	6821	7020	62	256009.2.dec	4542159H1		7061
62	256009.2.dec	1682252T7	6821	7167	62	256009.2.dec	1879840H1		7088
62	256009.2.dec	1359209H1	6822	7067	62	256009.2.dec	g1634214	6847	7228 7176
62	256009.2.dec	060152H1	6822	6994	62 63	256009.2.dec	5020933T1		7176 7215
62	256009.2.dec	232161H1		7155	62 62	256009.2.dec 256009.2.dec	918292R1 1858904H1		7048
62	256009.2.dec	6407668H1 6407636H1	6822	7074 7061	62	256009.2.dec	1426132H1		7063
62 62	256009.2.dec 256009.2.dec	3408813H1	6825	7063	62	256009.2.dec	1572120H1		6997
62	256009.2.dec	2487681H1	6827	7053	62	256009.2.dec	2841084H1		7078
62	256009.2.dec	q4889718	6826	7220	62	256009.2.dec	6545425H1		7215
62	256009.2.dec	g1987626	6827		62	256009.2.dec	421303H1	680 9	7086
62	256009.2.dec	g1987624	6827		62	256009.2.dec	5098032H1	6809	7040
62	256009.2.dec	1425242H1	6827	7077	62	256009.2.dec	4126959H1	6809	7047
62	256009.2.dec	3098659H1	6826	7125	62	256009.2.dec	2589220H1		7033
62	256009.2.dec	009294H1	6827	7112	62	256009.2.dec	6193555H1	6809	
62	256009.2.dec	g2194854	6827			256009.2.dec	3348521H1		7074
62	256009.2.dec	638747H1		7091	62	256009.2.dec	1209525H1		7035
62	256009.2.dec	705477H1		7079	62	256009.2.dec	3624280H1		7036
62	256009.2.dec	1568307H1	6828		62 63	256009.2.dec	1798023H1 2448821H1		6944 7036
62	256009.2.dec	1781381H1	6828 6828			256009.2.dec 256009.2.dec	971894H1		7105
62	256009.2.dec 256009.2.dec	1571440H1 q4565404		7020	62	256009.2.dec	4653692H1		7076
62 62	256009.2.dec	g4703912	6832			256009.2.dec	4084177H1	6809	7082
62	256009.2.dec	617791H1	6832			256009.2.dec	5790781H1		7103
62	256009.2.dec	6592449H1	6832			256009.2.dec	805905T1	6809	7177
62	256009.2.dec	5164934H1	6833			256009.2.dec	2738926H1	6809	7039
62	256009.2.dec	5071984H1	6834	7121	62	256009.2.dec	3552248H1	6809	7048
62	256009.2.dec	382723H1	6837	7058		256009.2.dec	1754254H1		7039
62	256009.2.dec	4180764H1		7105		256009.2.dec	1335049H1		7073
62	256009.2.dec	849037H1		7054		256009.2.dec	1569773H1	6808	7008
62	256009.2.dec	g3957743		7119		256009.2.dec	1818743H1		7073
62	256009.2.dec	g3741345		7215		256009.2.dec	g1687094		7202
62	256009.2.dec	g2005160		7199		256009.2.dec	5194662T6 3122117H1		7204 7117
62	256009.2.dec	782337R1		7220		256009.2.dec 256009.2.dec	710232H1	6809	7063
62	256009.2.dec	3995839H1		7130 7065		256009.2.dec	1528530H1	6809	7008
62 62	256009.2.dec 256009.2.dec	782337H1 4729332H1		6923		256009.2.dec	2685153H1	6809	7066
62	256009.2.dec	849037T1		7179		256009.2.dec	1988864H1	6809	7009
62	256009.2.dec	4624859H1		7054		256009.2.dec	5790126H1	6809	7101
62	256009.2.dec	3752695H1	6836			256009.2.dec	1815060H1	6809	7072
62	256009.2.dec	2553947H1		7085		256009.2.dec	3013278H1		7099
62	256009.2.dec	g1384814	6837			256009.2.dec	2751927H1	6809	7070
62	256009.2.dec	g3745176		7220		256009.2.dec	902835H1		7107
62	256009.2.dec	2316580H1		7083		256009.2.dec	3048722H1	6809	7116
62	256009.2.dec	g3047695		7218	62	256009.2.dec	806953H1	6809	7061
62	256009.2.dec	1678739H1	6840			256009.2.dec	957630H1	6809	7054
62	256009.2.dec	009111H1	6841			256009.2.dec	935771H1	6809	7065
62	256009.2.dec	2023418H1	6841	7052	62	256009.2.dec	1887355H1	6809	7071

					Table 4				
62	256009.2.dec	5785036H1	6809	7095	62	256009.2.dec	1317325H1	6811	7069
62	256009.2.dec	2748363H1	6809	7071	62	256009.2.dec	571696H1		7045
62	256009.2.dec	629827H1	6809	7059	62	256009.2.dec	824777R1		7215
62	256009.2.dec	2632019H1		7055	62	256009.2.dec	1997827H1	6814	
62	256009.2.dec	3091228H1	6809	7091	62	256009.2.dec	1273812H1		7054
62	256009.2.dec	4300892H1	6809	7066	62	256009.2.dec	869832R1 1273829H1	6812 6812	7049
62 62	256009.2.dec	5489154H1	6808	6990 7062	62 62	256009.2.dec 256009.2.dec	3171537H1		7045
62	256009.2.dec 256009.2.dec	1899411H1 5060193H1	6809 6809	7090	62	256009.2.dec	5879195H1		7083
62	256009.2.dec	972090H1	6809	7001	62	256009.2.dec	799290H1		7053
62	256009.2.dec	586858H1	6809	7063	62	256009.2.dec	801133H1		7053
62	256009.2.dec	2297454H1	6809	6903	62	256009.2.dec	2257124H1		7028
62	256009.2.dec	1253701H1	6809	6948	62	256009.2.dec	1968416H1	6812	
62	256009.2.dec	1315631H1	6809	6949	62	256009.2.dec	g1497186		7025
62	256009.2.dec	5345844H1	6809	7042	62	256009.2.dec	586836H1	6814	
62	256009.2.dec	3037654H1	6811	6991	62	256009.2.dec	1752747H1	6813	
62	256009.2.dec	3943490H1	6810	7074	62	256009.2.dec	991986H1	6813 6813	7101
62	256009.2.dec	1316820H1	6809 6809	7037 7053	62 62	256009.2.dec 256009.2.dec	1416160H1 2079716H1	6813	
62 62	256009.2.dec 256009.2.dec	1316792H1 3406855H1	6810	7053	62	256009.2.dec	g4890156	6813	
62	256009.2.dec	819837H1		7047	62	256009.2.dec	5297941H1		6930
62	256009.2.dec	862304H1	6809	7061	62	256009.2.dec	3220925H1	6813	
62	256009.2.dec	2276745H1	6809	7082	62	256009.2.dec	g1270234	6813	
62	256009.2.dec	990385H1	6809	7130	62	256009.2.dec	2346929H1	6813	7016
62	256009.2.dec	2121103H1	6811	7064	62	256009.2.dec	5391711H1		7101
62	256009.2.dec	3049389H1	6809	7042	62	256009.2.dec	2230794H1	6813	7026
62	256009.2.dec	3601234H1	6810		62	256009.2.dec	218469H1	6814	
62	256009.2.dec	908681H1		7101	62	256009.2.dec	4373191H1	6523	
62	256009.2.dec	3880787H1	6810	7086	62 63	256009.2.dec	871243H1	6525 6534	6764
62	256009.2.dec	3011719H1	6810 6810	7088 7088	62 62	256009.2.dec 256009.2.dec	2972356H1 463304H1	6541	
62 62	256009.2.dec 256009.2.dec	2600096H1 2924309H1	6809		62 62	256009.2.dec	4625565F6	6555	
62	256009.2.dec	5791558H1	6809		62	256009.2.dec	5114016H1	6556	
62	256009.2.dec	3283883H1	6810		62	256009.2.dec	3947921H1	6572	
62	256009.2.dec	4153912H1	6809		62	256009.2.dec	1682252F7	6575	
62	256009.2.dec	3047406H1	6810	7104	62	256009.2.dec	1682252H1	6575	6750
62	256009.2.dec	5885375H1	6810	7062	62	256009.2.dec	1682229H1		6757
62	256009.2.dec	4239810H1	6810		62	256009.2.dec	2932355H1	6581	6811
62	256009.2.dec	589315H1	6809		62	256009.2.dec	6408071H1	6586	
62	256009.2.dec	4185609H1			62	256009.2.dec	1499581H1	6585	6793
62	256009.2.dec	2812373H1	6809	7072 7052	62 62	256009.2.dec 256009.2.dec	4362986H1 5044811H1		6842 6730
62 62	256009.2.dec 256009.2.dec	2520870H1 3884579H1	6811 6810		62 62	256009.2.dec	3706863H1	6592	
62	256009.2.dec	1845847H1	6809		62 62	256009.2.dec	2659266H1	6599	6829
62	256009.2.dec	2708924H1		7122	62	256009.2.dec	4359709H1	6599	6852
62	256009.2.dec	4046820H1		7089	62	256009.2.dec	5375710H1	6602	6861
62	256009.2.dec	1960912H1	6809	7085	62	256009.2.dec	4109048H1		6900
62	256009.2.dec	3049275H1	6810			256009.2.dec	3740282T6	6621	7168
62	256009.2.dec	3215251H1		7100		256009.2.dec	1227552H1		6832
62	256009.2.dec	4365729H1	6811			256009.2.dec	1263359H1		6909
62	256009.2.dec	4117120H1		6975		256009.2.dec	1263359R1 1601346T6	6642 6643	7181 7179
62	256009.2.dec	g2194573	6811		62 62	256009.2.dec 256009.2.dec	5286950H1		6822
62 62	256009.2.dec 256009.2.dec	5091046H1 1857590H1	6811 6811			256009.2.dec	6587440H1		7200
62	256009.2.dec	1695556H1	6811			256009.2.dec	3988491H1	6650	
62	256009.2.dec	869832H1	6811			256009.2.dec	6396383H1		6960
62	256009.2.dec	2318919H1	6811			256009.2.dec	2121123H1	6651	6897
62	256009.2.dec	1693022H1	6811			256009.2.dec	3963377H1	6651	6936
62	256009.2.dec	1273812F1	6812	7215	62	256009.2.dec	3965396H1	6651	6842
62	256009.2.dec	2367176H1		7031		256009.2.dec	5281655H1	6658	
62	256009.2.dec	824777H1	6811			256009.2.dec	3170987H1	6666	
62	, 256009.2.dec	3114091H1	6810			256009.2.dec	1260390H1		6901
62	256009.2.dec	824777T1	6811			256009.2.dec	5577548H1		6923
62	256009.2.dec	g2265297	6811			256009.2.dec 256009.2.dec	818983R1 818983T1	6671 6671	7223 7176
62 62	256009.2.dec 256009.2.dec	704635H1 5090855H1	6811 6811			256009.2.dec	818983H1	6671	6859
62	256009.2.dec	1496555H1	6811			256009.2.dec	2049005H1	6672	6955
		 							

Table 4											
62	256009.2.dec	870733H1	6672	6917	62	256009.2.dec	1301095H1	6800	7056		
62	256009.2.dec	990641H1	6674	6982	62	256009.2.dec	3389837H1	6800	7061		
62	256009.2.dec	947048H1	6677	6832	62	256009.2.dec	4229811H1	6800	7084		
62	256009.2.dec	206785H1	6677		62	256009.2.dec	g1365272	6801	7224		
62	256009.2.dec	g1506961		6872	62	256009.2.dec	933491T1		7177		
62	256009.2.dec	5006831H1		6807	62	256009.2.dec	1955431H1	6800	7075 7070		
62 62	256009.2.dec 256009.2.dec	3699713H1 4824777H1		6856 6925	62 62	256009.2.dec 256009.2.dec	2265155H1 3352558H1	6801 6801	7093		
62	256009.2.dec	4407873H1	6694		62	256009.2.dec	4242674H1	6800			
62	256009.2.dec	3706839H1		6968	62	256009.2.dec	555446H1	6802			
62	256009.2.dec	663677H1		6935	62	256009.2.dec	933491H1		7072		
62	256009.2.dec	1456470H1		6972	62	256009.2.dec	2972455H2	6801	7098		
62	256009.2.dec	968683H1	6703	6976	62	256009.2.dec	3726151H1	6802	6923		
62	256009.2.dec	6221267H1		6979	62	256009.2.dec	3369242H1	6802			
62	256009.2.dec	2099129H1		6960	62	256009.2.dec	4880939H1	6802			
62	256009.2.dec	2429628H1		6939	62	256009.2.dec	953686R1	6802			
62	256009.2.dec	895220R1	6707	7113 6926	62 62	256009.2.dec 256009.2.dec	1445580H1 2530970H1	6802 6802			
62 62	256009.2.dec 256009.2.dec	895220H1 2971992H1		7001	62	256009.2.dec	2639476H1	6802			
62	256009.2.dec	2354602H1	6713	6935	62	256009.2.dec	953686H1	6802			
62	256009.2.dec	3441955H1		6959	62	256009.2.dec	4507544H1	6802			
62	256009.2.dec	3704091H1		6980	62	256009.2.dec	3726182H1	6802	7055		
62	256009.2.dec	3705591H1	6714	6991	62	256009.2.dec	g1390836	6803	7209		
62	256009.2.dec	3481169H1		6854	62	256009.2.dec	4815838H1	6802			
62	256009.2.dec	2647507H1		6971	62	256009.2.dec	2508350H1	6803			
62	256009.2.dec	2260986H1		6943	62	256009.2.dec	2061029H1	6802			
62	256009.2.dec	2366005H1		6956	62	256009.2.dec	2910492H1	6803			
62	256009.2.dec	344692H1	6730	6929 6990	62 62	256009.2.dec 256009.2.dec	2061029R6 g5112634	6802 6803	7124 7218		
62 62	256009.2.dec 256009.2.dec	4629622H1 4625565T6	6751	7201	62	256009.2.dec	3282530H1	6804			
62	256009.2.dec	4383604H1	6755	7001	62 62	256009.2.dec	4879137H1	5767	6051		
62	256009.2.dec	385999H1	6763	7029	62	256009.2.dec	2579142H1	5789	6048		
62	256009.2.dec	2913295H2		7035	62	256009.2.dec	3286303H2	5797			
62	256009.2.dec	478883H1	6764	7049	62	256009.2.dec	3405455H1	5802	6041		
62	256009.2.dec	3287375H1	6767	7010	62	256009.2.dec	6521704H1		5885		
62	256009.2.dec	6311868H1	6767		62	256009.2.dec	1986283H1	5822			
62	256009.2.dec	2903120H1		7068	62	256009.2.dec	2911956H1	5829			
62	256009.2.dec	6484690H1		7215	62	256009.2.dec	1403913H1	5833			
62	256009.2.dec	1727418H1	6779		62	256009.2.dec	5437246H1	5842			
62 62	256009.2.dec 256009.2.dec	4654772H1 666300H1		7027 6997	62 62	256009.2.dec 256009.2.dec	6492553H1 3025734H1	5852	6377		
62	256009.2.dec	g921826		7192	62	256009.2.dec	4456910H1		6130		
62	256009.2.dec	4351905H1		6948	62	256009.2.dec	5093151H1	5870			
62	256009.2.dec	1596705H1	6789		62	256009.2.dec	3423758H1	5871			
62	256009.2.dec	2998188H1		7046	62	256009.2.dec	3761955H1	5880	6181		
62	256009.2.dec	2998354H1	6789	7047	62	256009.2.dec	5301333H1	5882	6083		
62	256009.2.dec	5450729H1		7059	62	256009.2.dec	6380485H1		6153		
62	256009.2.dec	1406482H1		7024	62	256009.2.dec	2842710H1		6164		
62	256009.2.dec	g864197		7137	62 62	256009.2.dec	4138977H1		6162		
62 62	256009.2.dec	1880440H1		7039 7200	62 62	256009.2.dec 256009.2.dec	4353518H1 5048915H1		6065 6153		
62	256009.2.dec 256009.2.dec	g995262 g1847140		7184	62	256009.2.dec	4874435H1		6170		
62	256009.2.dec	5328912H1		7039	62	256009.2.dec	2552601H1		6166		
62	256009.2.dec	g2005208		7103	62	256009.2.dec	2970306H2		6239		
62	256009.2.dec	862304T1		7167	62	256009.2.dec	2095611H1		6188		
62	256009.2.dec	4382949H1	6798	7052	62	256009.2.dec	2253545H1	5921	6158		
62	256009.2.dec	1209525T1	6797	7174	62	256009.2.dec	3404668H1		6161		
62	256009.2.dec	545331H1		7032	62	256009.2.dec	3886564H1	5927			
62	256009.2.dec	4070318H1		6924	62	256009.2.dec	5550359H1		6178		
62	256009.2.dec	567575H1	6799		62	256009.2.dec	366241H1		6121		
62	256009.2.dec	2180691H1	6799			256009.2.dec	5173270H1		6224		
62 62	256009.2.dec	1559402H1 3487562H1	6799 6799	7018 7084	62 62	256009.2.dec 256009.2.dec	3281852H1 3678857H1		6211 6209		
62	256009.2.dec 256009.2.dec	g5397606		7004	62 62	256009.2.dec	3321667H1		6276		
62	256009.2.dec	5182883H1		6959	62	256009.2.dec	2095264H1		6272		
62	256009.2.dec	5478393H1	6799		62	256009.2.dec	4361881H1	5999			
62	256009.2.dec	933491R1		7215	62	256009.2.dec	4357478H1	6014	6094		
					224						

					Table 4				
62	256009.2.dec	3688656H1	6020	6310	62	256009.2.dec	3172462H1	6411	6614
62	256009.2.dec	2790077H2	6025	6309	62	256009.2.dec	425389H1	6411	6553
62	256009.2.dec	552252H1	6038	6271	62	256009.2.dec	1334229H1	-	6630
62	256009.2.dec	1601346F6	6038	6367	62	256009.2.dec	2187059H1		6646
62	256009.2.dec	1601346H1	6038	6247	62	256009.2.dec	1450113H1		6609
62	256009.2.dec	214224H1	6053		62	256009.2.dec	425476H1	6411	6562
62	256009.2.dec	5466354H1	6056	6319	62	256009.2.dec	4274885H1		6606
62	256009.2.dec	4574252H1		6322	62	256009.2.dec	455157H1		6632 6698
62	256009.2.dec	5505467H1	6070 6091	6309 6605	62 62	256009.2.dec 256009.2.dec	4359206H1 4181068H1		6691
62 62	256009.2.dec 256009.2.dec	6246193H1 4539817H1	6114	6250	62 62	256009.2.dec	6325161H1		6643
62	256009.2.dec	6411666H1	6119	6560	62	256009.2.dec	2310850H1	6424	
62	256009.2.dec	6372383H1		6313	62	256009.2.dec	2672163H1		6671
62	256009.2.dec	427415H1		6336	62	256009.2.dec	3984431H1	6433	
62	256009.2.dec	2121658H1		6384	62	256009.2.dec	5175841H1	6434	
62	256009.2.dec	5333389H1		6373	62	256009.2.dec	3740961H1	6436	6744
62	256009.2.dec	1726084H1	6153	6374	62	256009.2.dec	3528730H1	6437	
62	256009.2.dec	1726084F6	6153	6674	62	256009.2.dec	2250643H1	6439	
62	256009.2.dec	4291681H1	6154	6329	62	256009.2.dec	911369H1	6457	
62	256009.2.dec	387731H1		6384	62	256009.2.dec	2782975H1	6458	
62	256009.2.dec	446703H1		6384	62	256009.2.dec	g2156125	6454	
62	256009.2.dec	387605H1		6384	62	256009.2.dec	4645746H1	6459	
62	256009.2.dec	4171129H1	6159	6384	62	256009.2.dec	3790144H1	6462	
62	256009.2.dec	712351H1		6378	62	256009.2.dec	3098026H1	6464 6464	
62	256009.2.dec	4895530H1		6467	62 62	256009.2.dec	3786369H1 g2111938	6463	
62	256009.2.dec	2840332H1	6169	6384 6700	62 62	256009.2.dec 256009.2.dec	4302140H1	6491	6732
62 62	256009.2.dec 256009.2.dec	6493278H1 4608210H1		6445	62 62	256009.2.dec	3441270H1	6511	6751
62	256009.2.dec	4325384H1		6312	62 62	256009.2.dec	g2207135	6510	
62	256009.2.dec	2879614H1		6499	62	256009.2.dec	4881155H1	6519	
62	256009.2.dec	3884625H1	6203		62	256009.2.dec	360503H1	2194	
62	256009.2.dec	4355435H1		6384	62	256009.2.dec	g2356298	2458	
62	256009.2.dec	5136475H1		6491	62	256009.2.dec	5059091H1	2496	2760
62	256009.2.dec	3724538H1	6214	6509	62	256009.2.dec	g178282	2535	6589
62	256009.2.dec	4881090H1	6217	6481	62	256009.2.dec	5629802H1	2775	2913
62	256009.2.dec	5134096H1	6231	6484	62	256009.2.dec	4778995H1	2765	3088
62	256009.2.dec	960344H1		6384	62	256009.2.dec	g2021107	2806	3052
62	256009.2.dec	3426474H1		6509	62	256009.2.dec	1521307H1		3137
62	256009.2.dec	g1634324		6620	62	256009.2.dec	1521719H1		3115
62	256009.2.dec	3682063H1	6255		62	256009.2.dec	2786057H1	2945	3189
62	256009.2.dec	4150782H1		6505	62	256009.2.dec	6488485H1	3028 3032	3528 3280
62	256009.2.dec	3774534H1	6263		62 62	256009.2.dec 256009.2.dec	5637372H1 5637260H1	3032	3294
62	256009.2.dec	6409346H1 2611942H1	6285	6584 6537		256009.2.dec	5518962H1	3096	3354
62 62	256009.2.dec 256009.2.dec	786520H1		6498		256009.2.dec	4454257H1	3101	3275
62	256009.2.dec	4010059H1		6559	62	256009.2.dec	5642023H1	3263	3497
62	256009.2.dec	965650H1		6384		256009.2.dec	1599061H1		3482
62	256009.2.dec	4327206H1	6301			256009.2.dec	5155543H1	3292	
62	256009.2.dec	762834H1		6491	62	256009.2.dec	6078401H1	3318	3615
62	256009.2.dec	3235055H1	6313	6560		256009.2.dec	5847863H1	3323	3578
62	256009.2.dec	3041143H1		6570		256009.2.dec	5642649H1	3408	3666
62	256009.2.dec	1814602H1		6558		256009.2.dec	5520057H1		3803
62	256009.2.dec	4373041H1		6385		256009.2.dec	5642541H1		3787
62	256009.2.dec	5218032H1		6573		256009.2.dec	3068454H1	3577	
62	256009.2.dec	5432981H1		6522		256009.2.dec	3068454F6		4018
62	256009.2.dec	5432864H1		6524		256009.2.dec	6488494H1		4142
62	256009.2.dec	4856094H1		6571	62	256009.2.dec	3200011H1		3894 4153
62	256009.2.dec	1907445H1		6568 6653		256009.2.dec 256009.2.dec	6479761H1 2697253H1	3719	
62 62	256009.2.dec 256009.2.dec	2645473H1 424883H1		6568		256009.2.dec	5522487H1	3719	
62 62	256009.2.dec 256009.2.dec	2225449H1	6411			256009.2.dec	5089970H1	3801	
62	256009.2.dec	1456922H1		6564		256009.2.dec	6348817H1		4089
62	256009.2.dec	3047472H1	6411			256009.2.dec	1257838H1		4062
62	256009.2.dec	5069778H1	6411			256009.2.dec	5043875H1		4190
62	256009.2.dec	2855974H1		6610		256009.2.dec	960370H1		4247
62	256009.2.dec	2102283H1		6638	62	256009.2.dec	5438883H1	4065	4315
62	256009.2.dec	427953H1	6411	6565		256009.2.dec	3600706H1	4135	4355
	•				225				

					Table 4				
62	256009.2.dec	3441916H1	4173	4434	62	256009.2.dec	6077457H1	5478	5788
62	256009.2.dec	5065557H2	4193	4446	62	256009.2.dec	6077468H1	5479	5780
62	256009.2.dec	6407410H1	4199	4494	62	256009.2.dec	g625007		5734
62	256009.2.dec	5644707R8	4205		62	256009.2.dec	2631148H1		5614
62	256009.2.dec	3352414H1	4225		62	256009.2.dec	5638339H1		5685
62	256009.2.dec	6389610H1	4230		62	256009.2.dec	3203663H1	5509 5525	
62 62	256009.2.dec 256009.2.dec	5640341H1 2643454H1	4355 4375		62 62	256009.2.dec 256009.2.dec	3209149H1 1673237H1	5546	
62	256009.2.dec	3285115H1	4375	4619	62	256009.2.dec	5043372H1	5552	
62	256009.2.dec	3432281H1	4401	4635	62	256009.2.dec	476250H1	5565	
62	256009.2.dec	6113754H1	4434		62	256009.2.dec	6513254H1	5572	
62	256009.2.dec	2182372H1	4449		62	256009.2.dec	5000485H1	5576	5838
62	256009.2.dec	3529034H1	4498	4802	62	256009.2.dec	4820523H1	5577	5863
62	256009.2.dec	6491824H1	4541	4783	62	256009.2.dec	2853117H1	5580	
62	256009.2.dec	6483681H1	4541	5017	62	256009.2.dec	5512281H1	5582	
62	256009.2.dec	2124605H1	4574		62	256009.2.dec	899007H1		5802
62	256009.2.dec	2122823H1	4602		62	256009.2.dec	3425387H1	5588 5629	
62	256009.2.dec	3788796H1 5159083H1	4634 4641	4909 4795	62 62	256009.2.dec 256009.2.dec	4902802H1 240687H1	5640	
62 62	256009.2.dec 256009.2.dec	g610938	4663	5048	62	256009.2.dec	5642467H1	5660	
62	256009.2.dec	1517151H1	4700	4896	62	256009.2.dec	4516914H1	5690	
62	256009.2.dec	4284867H1		5020	62	256009.2.dec	5173253H1	5691	
62	256009.2.dec	6076896H1	4721	5013	62	256009.2.dec	3285110H1	5702	
62	256009.2.dec	4351039H1		5046	62	256009.2.dec	4254424H1	5723	6000
62	256009.2.dec	2162143H1	4776	4941	62	256009.2.dec	5510107H1		
62	256009.2.dec	4820360H1		5045	62	256009.2.dec	2943137H1	5727	
62	256009.2.dec	3426167H1	4791	4910	62	256009.2.dec	1556574H1	5729	
62	256009.2.dec	5522528H1		5123	62	256009.2.dec	1603021H1	5754	
62	256009.2.dec	3424683H1	4873	4958	62	256009.2.dec	g1522250		5996
62	256009.2.dec	2923879H1		5148	62 62	256009.2.dec	4624485H1 g2111876	5766 6849	7223
62 62	256009.2.dec 256009.2.dec	g819017 1431243H1		5068 5143	62 62	256009.2.dec 256009.2.dec	g2718730	6849	
62	256009.2.dec	6523601H1		5442	62	256009.2.dec	g1023224	6849	
62	256009.2.dec	3740282H1		5248	62	256009.2.dec	849037R1		7209
62	256009.2.dec	3740282F6	4959	5255	62	256009.2.dec	437146H1		7059
62	256009.2.dec	2805285H1	4974	5257	62	256009.2.dec	4189371H1	6848	7204
62	256009.2.dec	3725454H1	4989	5263	62	256009.2.dec	918287H1		7127
62	256009.2.dec	3126237H1		5297	62	256009.2.dec	713272H1	6850	
62	256009.2.dec	198113H1		5216	62	256009.2.dec	g2584215		7215
62	256009.2.dec	5088534H1		5320	62	256009.2.dec	g3741328	6850	
62	256009.2.dec	3379972H1		5303	62 60	256009.2.dec	2484109H1 q3232181	6850 6851	
62	256009.2.dec	g707978	5088	5372 5270	62 62	256009.2.dec 256009.2.dec	g663701	6852	
62 62	256009.2.dec 256009.2.dec	5344949H1 3423665H1		5384	62	256009.2.dec	3836834H1	6853	
62	256009.2.dec	3095983H1		5405	62	256009.2.dec	6552959H1	6858	
62	256009.2.dec	6490210H1		5484	62	256009.2.dec	1973258H1	6860	
62	256009.2.dec	3761375H1		5367	62	256009.2.dec	6372054H1	6861	
62	256009.2.dec	3394437H1		5422	62	256009.2.dec	4907179H2	6863	
62	256009.2.dec	4519489H1		5435	62	256009.2.dec	g3840340	6888	
62	256009.2.dec	3200302H1		5498	62	256009.2.dec	214414H1	6863	
62	256009.2.dec	4353128H1		5444	62	256009.2.dec	2718318H1	6864	
62	256009.2.dec	6485349H1		5819	62	256009.2.dec	2803011H1	6864	7113
62	256009.2.dec	4324278H1 4788337H1		5504 5512	62 62	256009.2.dec 256009.2.dec	g2279342 g659626	6868	
62 62	256009.2.dec 256009.2.dec	3424089H1		5492	62	256009.2.dec	611772H1		7115
62	256009.2.dec	5201949H1		5479	62 62	256009.2.dec	g4573987		7215
62	256009.2.dec	5136679H1		5585		256009.2.dec	g1679120		7219
62	256009.2.dec	3740789H1		5547		256009.2.dec	6296239H1		7072
62	256009.2.dec	3360092H1		5620		256009.2.dec	g5362892		7223
62	256009.2.dec	5349521H1	5364	5600	62	256009.2.dec	g1390671	6876	7123
62	256009.2.dec	2399428H1	5373	5607		256009.2.dec	g5056412		7214
62	256009.2.dec	3227657H1	5381			256009.2.dec	g2821748		7059
62	256009.2.dec	4459036H1		5635		256009.2.dec	6408315H1		
62	256009.2.dec	2844896H1		5634		256009.2.dec	2584013H1		7129
62	256009.2.dec 256009.2.dec	2845249H1 4949540H1		5677 5661	62 62	256009.2.dec 256009.2.dec	g5547977 4820791H1	6881 6880	7215 7149
62 62	256009.2.dec	4923246H1		5667		256009.2.dec	2541637H1		7108
JE	20000.2.000		J-7EU	3001	226			5500	

					Table 4				
62	256009.2.dec	g5233772	6881	7220	62	256009.2.dec	5339947H1	6972	7215
62	256009.2.dec	ğ2002728	6882	7215	62	256009.2.dec	853197H1	6973	7215
62	256009.2.dec	6403535H1		7170	62	256009.2.dec	g2211699	6974	7219
62	256009.2.dec	2757642H1		7141	62	256009.2.dec	477163H1		7213
62	256009.2.dec	g3431012	6885		62	256009.2.dec	3519575H1		7216
62	256009.2.dec	2061029T6	6885	7175	62	256009.2.dec	571449H1	6975	7220
62	256009.2.dec	1456470R1		7215	62 60	256009.2.dec	4418748H1		7214
62 62	256009.2.dec 256009.2.dec	g5547986 g4089043	6887 6887	7215 7219	62 62	256009.2.dec 256009.2.dec	2024855H1 g1847139		7215 7215
62	256009.2.dec	2299044H1	6888	7123	62	256009.2.dec	g5635569		7215
62	256009.2.dec	231439F1	6889	7214	62	256009.2.dec	6219701H1		7194
62	256009.2.dec	231439H1	6889	7056	62	256009.2.dec	1998187H1	6992	
62	256009.2.dec	g2194515	6890	7215	62	256009.2.dec	1297531H1	6996	7220
62	256009.2.dec	g4565079	6891	7215	62	256009.2.dec	668356H1	6996	7212
62	256009.2.dec	2646878H1	6892	7149	62	256009.2.dec	1297531F1	6996	7215
62	256009.2.dec	g5152227	6893	7215	62	256009.2.dec	2022823H1		7215 '
62	256009.2.dec	g3958452	6893	7215	62	256009.2.dec	936753H1	6996	
62	256009.2.dec	4081731H1	6894	7181	62	256009.2.dec	4764627H1	6997	
62	256009.2.dec	916243H1	6896	7214	62	256009.2.dec	1251487H1		7215
62	256009.2.dec	g3446745	6895	7223	62	256009.2.dec	2047571H1	7000	7204
62	256009.2.dec	916243T1		7172	62	256009.2.dec	1251487F1	7000	
62	256009.2.dec	6566649H1	6900	7215	62 62	256009.2.dec 256009.2.dec	5054809H1		7286 7217
62	256009.2.dec	916243R1		7214 7215	62 62	256009.2.dec 256009.2.dec	5056688H1 6483288H1	1	470
62 62	256009.2.dec 256009.2.dec	g3016042 1844640H1		7172	62	256009.2.dec	g4196104	362	769
62	256009.2.dec	g1166675		7336	62	256009.2.dec	5643206H1	425	684
62	256009.2.dec	g2224108	6897		62	256009.2.dec	g2264001	436	849
62	256009.2.dec	4370277H1		7136	62	256009.2.dec	6487378H1	463	965
62	256009.2.dec	630279H1		7147	62	256009.2.dec	g4330828	485	734
62	256009.2.dec	4367694H1	6898	7145	62	256009.2.dec	4705323H1	541	794
62	256009.2.dec	6414051H1	6900	7222	62	256009.2.dec	3072025F6	600	886
62	256009.2.dec	4921996H1	6898	7168	62	256009.2.dec	3072025H1	601	891
62	256009.2.dec	3201114H1	6908	7187	62	256009.2.dec	5090601H1	642	921
62	256009.2.dec	148475H1	6909	7122	62	256009.2.dec	2629979H1	647	890
62	256009.2.dec	g4986417		7215	62	256009.2.dec	g535176	650	2250
62	256009.2.dec	g5037266		7217	62	256009.2.dec	5642794H1	762	1011
62	256009.2.dec	2295604H1		7132	62	256009.2.dec	6430548H1	909	1280
62	256009.2.dec	g995210	6925	7208 7193	62 62	256009.2.dec 256009.2.dec	5637918H1 5868585H1	1118	1271 1379
62 62	256009.2.dec 256009.2.dec	2909721H1 647214H1	6925	7178	62 62	256009.2.dec	5631903H1		1340
62	256009.2.dec	1963727H1	6926	7208	62	256009.2.dec	5042264H1	1147	1242
62	256009.2.dec	5219907H1		7178	62	256009.2.dec	5641815H1		1462
62	256009.2.dec	2638578H1	6930		62	256009.2.dec	4285984H1		1439
62	256009.2.dec	6316385H1	6930	7218	62	256009.2.dec	6492444H1	1375	1780
62	256009.2.dec	796402F1	6930	7208	62	256009.2.dec	5637104H1	1429	1634
62	256009.2.dec	g4619637		7214	62	256009.2.dec	g2620140	1457	1713
62	256009.2.dec	544499H1		7180	62	256009.2.dec	g828506		1713
62	256009.2.dec	g4294531		7215	62	256009.2.dec	5092421H1		1784
62	256009.2.dec	791519H1			62	256009.2.dec	5638723R8		1844
62	256009.2.dec	935673H1	6936		62	256009.2.dec	5627419R8		2020
62	256009.2.dec	2127078H1		7206	62	256009.2.dec	5510689H1		1854
62	256009.2.dec	g1424954 5286993H1		7215 7193	62 62	256009.2.dec 256009.2.dec	5091905H1 g5674686		2100 2286
62 62	256009.2.dec 256009.2.dec	417350H1	6945			256009.2.dec	5640121H1		2180
62	256009.2.dec	3091273H1		7154		256009.2.dec	5090519H1		2309
62	256009.2.dec	1907434H1		7187		256009.2.dec	6492949H1		2609
62	256009.2.dec	355108H1	6949			256009.2.dec	4165853H1		7215
62	256009.2.dec	353642H1	6949		62	256009.2.dec	g1497138		7215
62	256009.2.dec	6325058H1	6948		62	256009.2.dec	2234013H1		7215
62	256009.2.dec	2765275H1	6950			256009.2.dec	3108980H1		7207
62	256009.2.dec	6592881H1	6951	7215	62	256009.2.dec	1899702H1		7220
62	256009.2.dec	g2021488	6954	7216		256009.2.dec	g1023225		7211
62	256009.2.dec	g5370352	6954			256009.2.dec	789178H1		7202
62	256009.2.dec	3233506H1		7200		256009.2.dec	1685886H1		7215
62	256009.2.dec	2947006H2	6964			256009.2.dec	789178R1		7214
62	256009.2.dec	3047916H1		7216		256009.2.dec	3410258H1		7196
62	256009.2.dec	g2402018	09/2	7215	62 227	256009.2.dec	5996209H1	7024	7215

					Table 4					
62	256009.2.dec	g4088409	7033	7217	62	2	256009.2.dec	2544852H2	7136	
62	256009.2.dec	5701245H1	7033	7215	62	2	256009.2.dec	560899H1	7148	
62	256009.2.dec	2772612H1	7031	7214	62	2	256009.2.dec	2412770H1	7148	
62	256009.2.dec	1801172H1	7031		62		256009.2.dec	3095646H1	7153	
62	256009.2.dec	2772426H1	7031	7220	62		256009.2.dec	2673970H1	7159	7215
62	256009.2.dec	1518474H1	7032		62		256009.2.dec	4275683H1	7161	7215
62	256009.2.dec	1999308H1	7033		63		231892.12.dec	2204333H1	60 60	316 311
62	256009.2.dec	3705212H1	7033 7033	7215	63 63		231892.12.dec 231892.12.dec	3335919H1 3270313H1	60 62	317
62 62	256009.2.dec 256009.2.dec	971310H1 1679673H1		7215	63		231892.12.dec	661159H1	60	333
62	256009.2.dec	g1492912	7039		63		231892.12.dec	3153473H1	57	332
62	256009.2.dec	473713H1	7042		63		231892.12.dec	g1924359	57	410
62	256009.2.dec	4081296H1	7044		63		231892.12.dec	3748222H1	142	388
62	256009.2.dec	g4900868	7045	7215	63	3	231892.12.dec	2618557H1	142	344
62	256009.2.dec	723293R1	7047	7215	63	3	231892.12.dec	3576547H1	142	437
62	256009.2.dec	6360023H2		7215	63		231892.12.dec	3423159H1	142	402
62	256009.2.dec	1257619H1		7214	63		231892.12.dec	2705336H1	68	337
62	256009.2.dec	855352H1		7217	63		231892.12.dec	3180333H1	61	385
62	256009.2.dec	3885147H1		7214	63		231892.12.dec	2378646H1	66 74	295 395
62	256009.2.dec	2680924H1 g2251970		7215 7215	63 63		231892.12.dec 231892.12.dec	g880445 g2100238	101	521
62 62	256009.2.dec 256009.2.dec	3248338H1		7215	63		231892.12.dec	g2719117	110	318
62	256009.2.dec	2701674H1		7215	63		231892.12.dec	g1167090	99	319
62	256009.2.dec	277311H1		7215	6		231892.12.dec	q3040712	1106	1582
62	256009.2.dec	g2195319		7215	6:		231892.12.dec	5208359H1	1107	1341
62	256009.2.dec	3433206H1	7056	7202	6	3	231892.12.dec	1989582H1	1107	1364
62	256009.2.dec	1680415H1		7215	6		231892.12.dec	g2933999	1109	1583
62	256009.2.dec	768346H1		7186	6		231892.12.dec	1850596F6	1113	1583
62	256009.2.dec	2252941H1		7215	6		231892.12.dec	g4113786		1583
62	256009.2.dec	4506553H1		7215	6:		231892.12.dec	g5396231	1121	1582
62	256009.2.dec	583974H1	7063	7215	6:		231892.12.dec	g3049283	1123	1594
62	256009.2.dec	6372154H1		7313 7215	6: 6:		231892.12.dec 231892.12.dec	3809994H1 5151961H1	1124 1126	1324 1376
62 62	256009.2.dec 256009.2.dec	3706262H1 5303990H1		7215	6:		231892.12.dec	g3049285	1125	1602
62	256009.2.dec	1928975H1		7215	6:		231892.12.dec	g3593701	1126	1589
62	256009.2.dec	1955027H1		7171	6		231892.12.dec	652419H1	1127	1263
62	256009.2.dec	833093H1		7215	6		231892.12.dec	652839H1	1127	1385
62	256009.2.dec	6172447H1	7073		6	3	231892.12.dec	3413937H1	937	1180
62	256009.2.dec	959475H1		7167	6	3	231892.12.dec	538069R6	934	1440
62	256009.2.dec	2322503H1	7077	7215	6		231892.12.dec	1325071H1	942	1171
62	256009.2.dec	4186918H1		7215	6		231892.12.dec	1732753H1	946	1131
62	256009.2.dec	2104727H1		7216	6		231892.12.dec	1861768H1	944	1206
62	256009.2.dec	3016971H1	7086	7209	6 6		231892.12.dec	3601675H1	949	1243 1282
62	256009.2.dec	2006146H1 3091710H1		7214 7216	6		231892.12.dec 231892.12.dec	5032777H1 3417428H1	1020 1020	1255
62 62	256009.2.dec 256009.2.dec	4363543H1		7183		3	231892.12.dec			1279
62	256009.2.dec	3206917H1		7220		3	231892.12.dec	2396782H1		1215
62	256009.2.dec	551977H1		7214		3	231892.12.dec	g2163696	1421	1590
62	256009.2.dec	g2243889		7220		3	231892.12.dec	g4523144	1416	1583
62	256009.2.dec	4207320H1	7106	7221	6	3	231892.12.dec	6219253H1	1427	1583
62	256009.2.dec	g789052	7106	7167		3	231892.12.dec	g2558408		1590
62	256009.2.dec	426912H1		7252		3	231892.12.dec	1850596H1		1587
62	256009.2.dec	6402354H1	7108			3	231892.12.dec	g5176544		1585
62	256009.2.dec	2784877H1		7215		3	231892.12.dec	g5674817	1151	1583
62	256009.2.dec	2684285H1		7216		3	231892.12.dec	2723201H1	1151	1415
62	256009.2.dec 256009.2.dec	g5367272 5078648H1	7127	7216 7212		:3 :3	231892.12.dec 231892.12.dec	g2881444 4628729H1		1376 1405
62 62	256009.2.dec	769716H1		7215		3	231892.12.dec	2008891H1		1338
62	256009.2.dec	g2155990		7220		3	231892.12.dec	a1968990		1476
62	256009.2.dec	2662275F6		7215		3	231892.12.dec	g4373423	1161	1583
62	256009.2.dec	757227H1		7215		3	231892.12.dec	6571162H1		1586
62	256009.2.dec	4508279H1		7215		3	231892.12.dec	g3917275	1165	
62	256009.2.dec	1966145H1	7128	7219	6	3	231892.12.dec	1294451H1	1170	1381
62	256009.2.dec	2356529H1		7215		3	231892.12.dec	g5632359	1170	
62	256009.2.dec	4187420H1		7215		3	231892.12.dec	6114459H1	1171	1426
62	256009.2.dec	2648339H1		7215		3	231892.12.dec	638561H1	1171	1443
62	256009.2.dec	5002755H1	7138	7227	220	3	231892.12.dec	638534H1	1171	1430

					Table 4				
63	231892.12.dec	g1138914	1172		63	231892.12.dec	3598237H1	52	349
63	231892.12.dec	g4003828	1174	1587	63	231892.12.dec	2458456H1	53	292
63	231892.12.dec	g5446602	1175	1583	63	231892.12.dec	3394221H1	53	331
63	231892.12.dec	g4080829	1177	1592	63	231892.12.dec	3052244H1	53	331
63	231892.12.dec	g3777716		1556	63	231892.12.dec	2137522H1	54	289
63	231892.12.dec	2410203H1		1395	63	231892.12.dec	3115206H1	55	292
63	231892.12.dec	6350290H2	1182		63	231892.12.dec	1892023H1	55	302
63	231892.12.dec	892507H1	1182		63	231892.12.dec	2457265H1	53	304
63	231892.12.dec	g3110005	1182		63	231892.12.dec	3126695H2	55	353
63	231892.12.dec	2009233H1		1283	63 63	231892.12.dec	g2715524		1588
63	231892.12.dec	g4892874	1189		63 63	231892.12.dec	g3203893		1583 1483
63 63	231892.12.dec	g2884766	1191 1192		63 63	231892.12.dec 231892.12.dec	588058H1 g5364810		1596
63	231892.12.dec	6426273H1 g3415976	1191	1587	63	231892.12.dec	q3934453	1213	
63	231892.12.dec 231892.12.dec	g5631151	1194		63	231892.12.dec	g5633690		1585
63	231892.12.dec	g2348544	1193		63	231892.12.dec	g5670959		1583
63	231892.12.dec	2706868H1	1201	1483	63	231892.12.dec	g4112640		1583
63	231892.12.dec	1671991H1	1207		63	231892.12.dec	g3446656		1587
63	231892.12.dec	4839470H1		1465	. 63	231892.12.dec	~	1135	1589
63	231892.12.dec	g2945978	1207	1587	63	231892.12.dec	1385090H1	1134	1374
63	231892.12.dec	g4525143	1209	1584	63	231892.12.dec	4087769H1	1134	1404
63	231892.12.dec	g1152000	1328	1583	63	231892.12.dec	1469989T6	1136	1546
63	231892.12.dec	g3845862	1331	1584	63	231892.12.dec	g4523247		1583
63	231892.12.dec	2403166T6		1545	63	231892.12.dec	g3031143		1583
63	231892.12.dec	4150694H1		1583	63	231892.12.dec	g4267211		1583
63	231892.12.dec	5272824H1		1583	63	231892.12.dec	5095945H2	1138	1397
63	231892.12.dec	g3086175	1337		63	231892.12.dec	g3238357		1589
63	231892.12.dec	g2229832	1341	1580	63	231892.12.dec	g4390111 g4077508	1141	1590
63	231892.12.dec			1583	63 63	231892.12.dec	4515238H1	1140	1368 1404
63	231892.12.dec	2126862H1	1351 1290	1580 1582	63	231892.12.dec 231892.12.dec	g2229837		1551
63 63	231892.12.dec 231892.12.dec	6356509H1 335774H1	1352		63	231892.12.dec	g3330195	1150	1583
63		605403H1		1580	63	231892.12.dec	2818513H1	249	475
63	231892.12.dec	1881336T6		1543	63	231892.12.dec	2455113H1	251	495
63	231892.12.dec	g3050327	1365		63	231892.12.dec	3537402H1	257	491
63	231892.12.dec	g5591239		1583	63	231892.12.dec	3537450H1	257	548
63	231892.12.dec	g5591232		1583	63	231892.12.dec	3365926H1	259	491
63	231892.12.dec	g3959585	1372	1591	63	231892.12.dec	713333H1	259	485
63	231892.12.dec	g2229948	1374	1583	63	231892.12.dec	2444890H1	259	474
63	231892.12.dec	g2898260		1585	63	231892.12.dec	g2165426	256	681
63	231892.12.dec	g651121		1563	63	231892.12.dec	712519H1	260	317
63	231892.12.dec	g2115189		1586	63	231892.12.dec	5941877H1	262	409
63	231892.12.dec	g1124380		1585	63	231892.12.dec	3341189H1	270	528
63	231892.12.dec	g708377		1589	63	231892.12.dec	2849094H1	272	527 555
63	231892.12.dec	3344031H1		1580	63 63	231892.12.dec	3503142H1	273 277	555 483
63 63	231892.12.dec			1595 1584	63	231892.12.dec 231892.12.dec	3762075H1	278	564
63 63	231892.12.dec 231892.12.dec	g2877306		1583	63	231892.12.dec	1418549H1	279	453
63	231892.12.dec	<u> </u>		1571	63	231892.12.dec	1418090H1	279	528
63	231892.12.dec			1583	63	231892.12.dec	1881336F6	281	712
63	231892.12.dec	g1148108		1589	63	231892.12.dec	1418926H1	692	926
63	231892.12.dec			1583	63	231892.12.dec	g2558192	692	778
63	231892.12.dec	g1833004		1586	63	231892.12.dec	1647830H1	698	899
63	231892.12.dec	2921838H1	1298	1569	63	231892.12.dec	2746136H1	699	933
63	231892.12.dec	g1201653	1298	1584	63	231892.12.dec	1299324H1	700	921
63	231892.12.dec	g2054698		1583	63	231892.12.dec	880929H1	778	896
63	231892.12.dec			1607	63	231892.12.dec	g2163948	786	1137
63	231892.12.dec			1582	63	231892.12.dec	2901409H1	863	1167
63	231892.12.dec			1583	63	231892.12.dec	2458906H1	380	598
63	231892.12.dec			1594	63	231892.12.dec		386	584
63	231892.12.dec			1588	63 63	231892.12.dec	2662336H1	387	620
63	231892.12.dec	•		1583	63 63	231892.12.dec	3800385H1	390 394	651 663
63 63	231892.12.dec 231892.12.dec	~		1583 1588	63	231892.12.dec 231892.12.dec	g1616396 2637438H1	394 405	638
63 63	231892.12.dec	•	30	198	63	231892.12.dec		426	687
63	231892.12.dec		32	206	63	231892.12.dec		426	675
63	231892.12.dec		40	492	63	231892.12.dec		429	697
		g			220				

					Table 4				
63	231892.12.dec	2779339H1	432	678	63	231892.12.dec	g3038947		1583
63	231892.12.dec	2925313H1	456	725	63	231892.12.dec	g2411416		1585
63	231892.12.dec	1271944H1	464	708	63	231892.12.dec	g4874602		1588
63	231892.12.dec	1232955H1	464	685 777	63 63	231892.12.dec 231892.12.dec	g3148716		1583 1583
63 63	231892.12.dec 231892.12.dec	3223737H1 1484712H1	469 478	777 638	63	231892.12.dec	g3042883 3745735H1		1631
63	231892.12.dec	3695508H1	493	774	63	231892.12.dec	g3110113		1584
63	231892.12.dec	3500611H1	493	773	63	231892.12.dec	g3039527		1587
63	231892.12.dec	3349768H1	499	765	63	231892.12.dec	3590479H1		1584
63	231892.12.dec	1674505H1	502	714	63	231892.12.dec	6028077H1	1497	_
63	231892.12.dec	2382249H1	559	791	63	231892.12.dec	g1696451		1588
63	231892.12.dec	1375225H1	587 587	842	63 63	231892.12.dec 231892.12.dec	g2251530 g4389717		1582 1583
63 63	231892.12.dec 231892.12.dec	1375225F6 3190172H1	587 635	758 950	63	231892.12.dec	g3055876	1521	1583
63	231892.12.dec	1574338H1	639	849	63	231892.12.dec	1881336H1	281	497
63	231892.12.dec	g1189551	667	917	63	231892.12.dec	1730571H1	283	531
63	231892.12.dec	ž844332H1	670	940	63	231892.12.dec	3585953H1	285	501
63	231892.12.dec	402145H1	690	926	63	231892.12.dec	3336679H1	286	535
63	231892.12.dec	3753514H1	314	616	63	231892.12.dec	3602419H1	294	555
63	231892.12.dec	2557616H1	323	595 510	63 63	231892.12.dec	2053611H1	313 1214	572 1457
63	231892.12.dec	1341814H1 731683R1	323 323	519 669	63 63	231892.12.dec 231892.12.dec	2050642H1 q4076833	1214	
63 63	231892.12.dec 231892.12.dec	g708378	326	660	63	231892.12.dec	g3433968	1214	
63	231892.12.dec	g2115395	335	628	63	231892.12.dec	g1920922	1215	
63	231892.12.dec	2545989H1	348	530	63	231892.12.dec	g4264197	1216	1583
63	231892.12.dec	2403449H1	348	569	63	231892.12.dec	g5676296	1217	
63	231892.12.dec	2779994H1	349	600	63	231892.12.dec	g4243864	1220	
63	231892.12.dec	5285550H1	349	461	63	231892.12.dec	g3895704	1219	
63	231892.12.dec	2771977H1	353	599 506	63 63	231892.12.dec	g5554320	1220 1225	
63	231892.12.dec	2286386H1	359 363	596 600	63 63	231892.12.dec 231892.12.dec	g3917870 g3644268	1225	1584
63 63	231892.12.dec 231892.12.dec	2058238H1 3189574H1	364	660	63	231892.12.dec	•	1227	
63	231892.12.dec	g1727293	371	486	63	231892.12.dec	1375225T6	1227	
63	231892.12.dec	g1774709	371	558	63	231892.12.dec			1586
63	231892.12.dec	2692980H1	374	636	63	231892.12.dec	347608H1	1230	1468
63	231892.12.dec	g2100130	1	209	63	231892.12.dec	g4649732	1232	
63	231892.12.dec	6301221H1	1_	116	63	231892.12.dec	g3869737	1235	
63	231892.12.dec	3576472H1	5	293	63	231892.12.dec	1638737H1	1237	
63	231892.12.dec	2403166H1	4 6	114 141	63 63	231892.12.dec 231892.12.dec	g2754388 1636071H1	1238 1237	1587 1464
63 63	231892.12.dec 231892.12.dec	1870381H1 1804755H1	10	237	63	231892.12.dec		863	1143
63	231892.12.dec	6606210H1	1	380	63	231892.12.dec	3571728H1	868	1139
63	231892.12.dec	g2353927	1281	1583	63	231892.12.dec	g651120	868	1151
63	231892.12.dec	g4687116	1282	1583	63	231892.12.dec	3766854H1	872	1173
63	231892.12.dec			1583	63	231892.12.dec	1560301H1	885	1089
63	231892.12.dec			1588	63 63	231892.12.dec		887	1140
63	231892.12.dec	g2725785		1583 1588	63 63	231892.12.dec 231892.12.dec		905 911	1139 1167
63 63	231892.12.dec 231892.12.dec	g4004820 g1736316		1592	63	231892.12.dec	1651958H1	912	1145
63	231892.12.dec	g1733403		1591	63	231892.12.dec		912	1199
63	231892.12.dec	g4070065		1583	63	231892.12.dec		912	1178
63	231892.12.dec	g2910317	1280	1376	63	231892.12.dec	2955448H1	913	1144
63	231892.12.dec	g4194161	1288		63	231892.12.dec		913	1343
63	231892.12.dec	g2321061		1558	63	231892.12.dec		918	1098
63	231892.12.dec	g4308757		1584	63	231892.12.dec		921	1124
63	231892.12.dec			1591 1583	63 63	231892.12.dec 231892.12.dec		926 926	1145 1190
63 63	231892.12.dec 231892.12.dec	g2726125 1311118H1		1583	63	231892.12.dec		926	1150
63	231892.12.dec			1583	63	231892.12.dec		1067	1336
63	231892.12.dec			1580	63	231892.12.dec		1068	1283
63	231892.12.dec			1586	63	231892.12.dec		1068	1340
63	231892.12.dec	g4394615		1583	63	231892.12.dec			
63	231892.12.dec	· · · · · · · · · · · · · · · · · · ·		1587		231892.12.dec			1347
63	231892.12.dec			1594	63 63	231892.12.dec			1576
63	231892.12.dec			1583		231892.12.dec 231892.12.dec			1395 1575
63 63	231892.12.dec 231892.12.dec			1543 1584	63	231892.12.dec	•		1324
J	20.002.12.000	5	. 701	. 554				.555	

					Table 4				
63	231892.12.dec	540418H1	1093	1335	63	231892.12.dec	2617909H1	142	355
63	231892.12.dec	6160336H1		1367	63	231892.12.dec	6385750H1	145	430
63	231892.12.dec	g1349663	1098	1579	63	231892.12.dec	g2240872	156	399
63	231892.12.dec	3391333H1	1100	1326	63	231892.12.dec	3180671H1	163	436
63	231892.12.dec	g1289604	1107	1590	63	231892.12.dec	3255568H1	169	421
63	231892.12.dec	g5178166	1102	1584	63	231892.12.dec	1785058H1	176	268
63	231892.12.dec	1886761H1		1369	63	231892.12.dec	3455258H1	182	463
63	231892.12.dec	1878271H1		1294	63	231892.12.dec	g3334898	182	1583
63	231892.12.dec	3188440H1		1281	63	231892.12.dec	2846213H1	187	448 398
63	231892.12.dec	1736789H1		1225	63	231892.12.dec	1532971H1	189 191	520
63	231892.12.dec	1557363H1		1197	63 63	231892.12.dec 231892.12.dec	g1203619	195	428
63	231892.12.dec	1850596T6		1546 1264	63 63	231892.12.dec	g847234 878859H1	200	452
63 63	231892.12.dec 231892.12.dec	1853066H1 633615H1		1227	63	231892.12.dec	g1697121	196	562
63	231892.12.dec	1735065H1	1035	1218	63	231892.12.dec	2291868H1	200	385
63	231892.12.dec	2650227H1	1035	1229	63	231892.12.dec	2615766H1	208	484
63	231892.12.dec	2650258H1		1240	63	231892.12.dec	4440531H1	216	410
63	231892.12.dec	4596520H1		1261	63	231892.12.dec	g1733402	224	342
63	231892.12.dec	3540242H1		1269	63	231892.12.dec	6169874H1	229	408
63	231892.12.dec	2759310H1	1035	1234	63	231892.12.dec	1444781H1	230	445
63	231892.12.dec	5186822H1	1039	1203	63	231892.12.dec	3563740H1	238	518
63	231892.12.dec	2989463T6	1040	1546	63	231892.12.dec	5678361H1	239	417
63	231892.12.dec	3801691H1	1042	1341	63	231892.12.dec	2484857H1	241	484
63	231892.12.dec	3802491H1	1042	1380	63	231892.12.dec	855867H1	248	469
63	231892.12.dec	3089740H1	1047		63	231892.12.dec	5626936H1	248	450
63	231892.12.dec	5340828H1	1048	1325	63	231892.12.dec	g1303150	248	560
63	231892.12.dec	3128579H1	1048	1340	63	231892.12.dec	g4175728		1589
63	231892.12.dec	349802H1	1051	1317	63	231892.12.dec	g2659270	1238	1376 1586
63	231892.12.dec	1469950H1	1055	1155	63 63	231892.12.dec	g4113163 6296673H1	1239 1241	1542
63	231892.12.dec	5605748H1	1057	1297 1310	63	231892.12.dec 231892.12.dec	g4194287	1241	1587
63	231892.12.dec	4244841H1 351340H1	1057 1060	1179	63	231892.12.dec	g3399839		1583
63 63	231892.12.dec 231892.12.dec	1977654H1	1059	1338	63	231892.12.dec	1958239H1	1249	1507
63	231892.12.dec	1418488H1	1432	1580	63	231892.12.dec	4671164H1	1249	1512
63	231892.12.dec	3575324H1	59	350	63	231892.12.dec	g3428911	1249	1405
63	231892.12.dec	3437716H1	57	298	63	231892.12.dec	1927463H1	1249	1368
63	231892.12.dec	2696837H1	56	354	63	231892.12.dec	g1616285	1250	1488
63	231892.12.dec	1892118H1	56	289	63	231892.12.dec	g3918480	1251	1587
63	231892.12.dec	3347754H1	54	299	63	231892.12.dec	g3279206	1254	1590
63	231892.12.dec	2264065H1	55	316	63	231892.12.dec	4551689H1	1255	1474
63	231892.12.dec	1478070H1	54	314	63	231892.12.dec	g2784478		1376
63	231892.12.dec	3082709H1	56	351	63	231892.12.dec	2426256H1	1255	1493
63	231892.12.dec	1341563H1	56	278	63	231892.12.dec	g3694470	1257	1586
63	231892.12.dec	1855681H1	56	326	63	231892.12.dec	g826517	1264	1592
63	231892.12.dec	2526504H1	56 57	287	63 63	231892.12.dec 231892.12.dec	g3000871	1264	1582 1582
63	231892.12.dec	2463905H1	57	316 300	63	231892.12.dec			1546
63 63	231892.12.dec 231892.12.dec	3077148H1	57 57	320	63	231892.12.dec	5854044H1		1528
63	231892.12.dec	3239038H1	57	299	63	231892.12.dec	g4391003		1583
63	231892.12.dec		57	502	63	231892.12.dec	1364761H1		1516
63	231892.12.dec		54	388	63	231892.12.dec			1422
63	231892.12.dec		60	282	63	231892.12.dec		1272	1587
63	231892.12.dec		57	358	63	231892.12.dec	g3883945		1376
63	231892.12.dec		56	115	63	231892.12.dec	3876771H1	1273	1562
63	231892.12.dec	2467634H1	60	288	63	231892.12.dec	g517972	1281	1592
63	231892.12.dec	1393338H1	59	314	63	231892.12.dec	g4628861		1586
63	231892.12.dec	1711695H1	59	278	63	231892.12.dec	g2788430		1376
63	231892.12.dec	2991815H1	56	322	63	231892.12.dec	g2062988		1587
63	231892.12.dec		57	303	63	231892.12.dec	6009646H1		1553
63	231892.12.dec		60	320	63	231892.12.dec			1586
63	231892.12.dec		59	268	64	197445.1.oct	3493649H1		1955
63	231892.12.dec		56	303	64	197445.1.oct	g3870474		2330
63	231892.12.dec		61	311	64	197445.1.oct	g3840082		2324
63	231892.12.dec		57	301	64	197445.1.oct	g4311546		2329
63	231892.12.dec		142	360	64 64	197445.1.oct	g2210698		2356
63	231892.12.dec		142 142	370 384	64 64	197445.1.oct 197445.1.oct	3254759H1 4632923H1	1331	2154 1601
63	231892.12.dec	2700956H1	144	J04	04	197443.1.001	400Z7Z3NI	1331	1001

					Table 4				
64	197445.1.oct	3721127H1	1342	1645	64	197445.1.oct	2216768H1	1791	1955
64	197445.1.oct	2600188H1	1374	1534	64	197445.1.oct	1285672H1	1806	1944
64	197445.1.oct	776569H1	1440	1682	64	197445.1.oct	2958707H1	1517	1755
64	197445.1.oct	4213103H1	1255	1513	64	197445.1.oct	g1779556	1554	1964
64	197445.1.oct	2286618H1	1268	1500	64	197445.1.oct	5579394H1	1563	1785
64	197445.1.oct	5743342H1	1302	1574	64	197445.1.oct	463695T6	1571	1918
64	197445.1.oct	g4307960	1	483	64	197445.1.oct	1546362H1	1603	1805
64	197445.1.oct	g4243527	1	495	64	197445.1.oct	5076525H1	1225	1498
64	197445.1.oct	g4186422	1	486	64	197445.1.oct	4163716H1	1232	1503
64	197445.1.oct	g4074327	1	507	64	197445.1.oct	g3034044	1239	1307
64	197445.1.oct	3810949H1	1048	1239	64	197445.1.oct	5075231H1		1427
64	197445.1.oct	1517215H1	1613	1789	64	197445.1.oct	4158314H1	1645	1888
64	197445.1.oct	g4452855	1640	1955	64 64	197445.1.oct	2201582H1 g2583246	1651 1673	1882 1961
64 64	197445.1.oct 197445.1.oct	4158512H1 4158413H1	1645 1645	1909 1867	64	197445.1.oct 197445.1.oct	5897546H1	1460	1755
64	197445.1.oct	1686311F6	1998	2326	64	197445.1.oct	g2539095	1487	1963
64	197445.1.oct	5519702H1	202	427	64	197445.1.oct	1833214H1		1772
64	197445.1.oct	g3917499	19	484	64	197445.1.oct	g3538527		1959
64	197445.1.oct	g1069368	64	381	64	197445.1.oct	2440656H1	1674	1927
64	197445.1.oct	3383583H1	100	215	64	197445.1.oct	1353593T6	1677	1916
64	197445.1.oct	1590911H1	104	306	64	197445.1.oct	g779497	1679	1864
64	197445.1.oct	g1810091	155	400	64	197445.1.oct	1353593H1	1684	1940
64	197445.1.oct	g1313174	158	552	64	197445.1.oct	1353593F6	1684	1959
64	197445.1.oct	709779H1	192	434	64	197445.1.oct	1353593F1		1959
64	197445.1.oct	g1383698	218	551	64	197445.1.oct	4907774H1	1710	1967
64	197445.1.oct	g3743490	269	455	64	197445.1.oct	2659172H1	915	1155
64	197445.1.oct	g4078298	1	455	64	197445.1.oct	463695R6	916	1268
64	197445.1.oct	g3888019	1	453	64	197445.1.oct	463695H1	916	1160
64	197445.1.oct	1833139T6	1808		64	197445.1.oct	g2874288	918	1307
64	197445.1.oct	1287809F1		2321	64 64	197445.1.oct	4215357H1	919 1012	1207 1273
64 64	197445.1.oct	3790190H1	1910 1932		64 64	197445.1.oct 197445.1.oct	4841176H1 g2819160	1034	1238
64	197445.1.oct 197445.1.oct	g1366863 g3837964	1964	2323	64	197445.1.oct	g3837611	1	498
64	197445.1.oct	g2211068		2356	64	197445.1.oct	g3834905	i	464
64	197445.1.oct	g3108713	1981	2340	64	197445.1.oct	g4085770	i 1	408
64	197445.1.oct	054382H1		2183	64	197445.1.oct	g3841825	i	454
64	197445.1.oct	1686311T6	1991	2289	64	197445.1.oct	g3838085	i	463
64	197445.1.oct	1683894H1	1998	2221	64	197445.1.oct	g3917812	1	477
64	197445.1.oct	3152839H1	552	834	64	197445.1.oct	1833139H1	754	1009
64	197445.1.oct	5084942H1	564	814	64	197445.1.oct	g2114631	769	1231
64	197445.1.oct	3627622H1	579	882	64	197445.1.oct	g3803455	831	1230
64	197445.1.oct	5657362H1	635	878	64	197445.1.oct	g1350319	882	1447
64	197445.1.oct	g2114928	704	1107	64	197445.1.oct	g1954291	889	1209
64	197445.1.oct	g2167371	706	1212	64	197445.1.oct	3334792H1	898	1059
64	197445.1.oct	g2210757	722	1166	64	197445.1.oct	3810949F6	1046	1481
64	197445.1.oct	g2210776	722	1167	64	197445.1.oct	2915878H1	1075	1260
64	197445.1.oct	1833139R6 4694156H1	754 1514	1217 1761	64 64	197445.1.oct 197445.1.oct	665838H1 000077H1		1301 1635
64 64	197445.1.oct 197445.1.oct	4694145H1	1514	1762	64	197445.1.oct	4750730H1	1170	1413
64	197445.1.oct	5289647H1		2531	64	197445.1.oct	2101538H1	1208	1437
64	197445.1.oct	g2575310		2718	64	197445.1.oct	4334028H1	1207	1472
64	197445.1.oct	193222T6	2216	2279	64	197445.1.oct	q1069422	285	571
64	197445.1.oct	g1209957	2228	2631	64	197445.1.oct	g1382633	328	537
64	197445.1.oct	g2742820	2263	2326	64	197445.1.oct	g2188701	408	799
64	197445.1.oct	g2185069		2329	64	197445.1.oct	368533H1	453	612
64	197445.1.oct	1686311H1		2211	64	197445.1.oct	193222H1	467	669
64	197445.1.oct	1458660H1	2024	2301	64	197445.1.oct	5089936H1	538	711
64	197445.1.oct	2507791H1	2037	2266	64	197445.1.oct	g1241975	548	746
64	197445.1.oct	2293052H1	2048		65	348775.1.oct	5273123H1	1	260
64	197445.1.oct	2450647H1		2129	65	348775.1.oct	g4457572	1	254
64	197445.1.oct	1287809H1		2321	65	348775.1.oct	4247889H1	10	269
64	197445.1.oct	2767430H1		2320	65	348775.1.oct	4247889F6	10	350
64	197445.1.oct	1288563H1		2321	65	348775.1.oct	4314064F6	18	243
64	197445.1.oct	g3173735		2320	65 65	348775.1.oct	4314064H1	18	247
64	197445.1.oct	g1614963		2318	65 65	348775.1.oct	4249504R6	34	233
64 64	197445.1.oct	5113750H1	1715	1985 1960	65	348775.1.oct 348775.1.oct	2020732H1	62	170
64	197445.1.oct	g2825974	1736	1900	00	J40775.1.0C[144037H1	72	380

					Table 4				
65	348775.1.oct	g274251	71	372	66	336239.5.dec	5192237H1	1420	1532
65	348775.1.oct	g1977679	80	397	66	336239.5.dec	g5441351	443	531
65	348775.1.oct	3050367H1	107	237	66	336239.5.dec	5169837H1	1420	1548
65	348775.1.oct	1256650F6	118	624	66	336239.5.dec	2520827H1	450	655
65	348775.1.oct	3872405F6	131	544	66	336239.5.dec	1544946H1	459	652
65	348775.1.oct	2855002H1	145	217	66	336239.5.dec	4182131H1	465 466	755
65 65	348775.1.oct	g1400673	169	278	66 66	336239.5.dec 336239.5.dec	2646187H1 5608246H1	466 471	701 629
65 65	348775.1.oct 348775.1.oct	g1152145 g2261947	169 179	572 605	66	336239.5.dec	3171008H1	476	759
65	348775.1.oct	g3202759	185	567	66	336239.5.dec	q4664883	494	950
65	348775.1.oct	g3401799	187	619	66	336239.5.dec	g2112500	512	927
65	348775.1.oct	3872405H1	188	237	66	336239.5.dec	g3214688	566	959
65	348775.1.oct		188	500	66	336239.5.dec	2661626H1	575	808
65	348775.1.oct	g1212614	188	614	66	336239.5.dec	044432H1	597	910
65	348775.1.oct	g1152143	242	572	66	336239.5.dec	g3849291	598	963
65	348775.1.oct	5280125H1	321	571	66	336239.5.dec	5218272H1	603	831
65	348775.1.oct	3872405T6	409	641	66	336239.5.dec	3735235H1	634	894
65	348775.1.oct	3144983R6	464	830	66	336239.5.dec	4130911H2	657	911
65	348775.1.oct	g656518	472	792	66	336239.5.dec	2306365H1	659 670	878 1079
65 65	348775.1.oct	3144983T6	502 517	830	66 66	336239.5.dec 336239.5.dec	g1966688 2915502T6	670 701	920
65 65	348775.1.oct	4540767H1 3144983H1	517 532	625 830	66	336239.5.dec	g1577965	928	1294
65	348775.1.oct 348775.1.oct	g1080557	657	983	66	336239.5.dec	g4109343	1003	1396
65	348775.1.oct	g656605	677	921	66	336239.5.dec	5222952T6	1059	1613
65	348775.1.oct	667904R6	801	1177	66	336239.5.dec	4919185H1	1065	1318
65	348775.1.oct	667211H1	801	1018	66	336239.5.dec	354404H1	1132	1471
65	348775.1.oct	667904H1	801	983	66	336239.5.dec	g2874782	1159	1393
65	348775.1.oct	2122331H1	858	1132	66	336239.5.dec	5431484H1	1166	1389
65	348775.1.oct	2122331F6	858	1296	66	336239.5.dec	2319558H1	1176	1313
65	348775.1.oct	667904T6	918	1181	6 6	336239.5.dec	1450614H1	1189	1440
65	348775.1.oct	2122331T6	1039	1601	66	336239.5.dec	g5366948	1220	1639
65	348775.1.oct	2851162H1	1071	1330	66	336239.5.dec	g1963150	1228	1613
65	348775.1.oct	g1238775	1087	1410	66 66	336239.5.dec	2364195H1	1247 1450	1444 1719
65 65	348775.1.oct	g1025865 5834437H1	1094 1139	1360 1387	66 66	336239.5.dec 336239.5.dec	4030903H1 2056165H1	1457	1699
65 65	348775.1.oct 348775.1.oct	g3367287	1315	1640	66	336239.5.dec	2873622H1	1487	1761
66	336239.5.dec	g3051635	1261	1629	66	336239.5.dec	2884714H1	1495	1760
66	336239.5.dec	5470996H1	1266	1442	66	336239.5.dec	g2179137	1506	1932
66	336239.5.dec	1270035F1	1305	1629	66	336239.5.dec	5665189H1	1546	1784
66	336239.5.dec	1270035H1	1305	1563	66	336239.5.dec	g789870	1592	1821
66	336239.5.dec	2663702H1	1309	1486	66	336239.5.dec	3957532H2	1597	1892
66	336239.5.dec	g3861735	1327		66	336239.5.dec	680626H1	1594	1831
66	336239.5.dec	6141686H1	1340	1629	66	336239.5.dec	6367040H1	1637	1993
66	336239.5.dec	3574537H1	1	284	66	336239.5.dec	g1860417	1642	2022 1912
66	336239.5.dec	2477405H1	29	257	66 66	336239.5.dec	g896896 3323385H1		1912
66	336239.5.dec	2861426H1 2861426F6	57 57	329 181	66 66	336239.5.dec 336239.5.dec	1719741F6		2142
66 66	336239.5.dec 336239.5.dec	g1623654	55	390	66	336239.5.dec	1719741H1	1679	1911
66	336239.5.dec	3029277H1	64	359	66	336239.5.dec	2733751H1	1680	1939
66	336239.5.dec	2388525H1	107	323	66	336239.5.dec	2801762H1	1717	1981
66	336239.5.dec	2276938H1	107	311	66	336239.5.dec	2220513H1	1755	1988
66	336239.5.dec	g1957295	210	607	66	336239.5.dec	608639H1		2053
66	336239.5.dec	2915502F6	224	736	66	336239.5.dec	4356319H1		2114
66	336239.5.dec	g2204397	1341	1634	66	336239.5.dec	1923732R6		2293
66	336239.5.dec	2915502H1	224	507	66	336239.5.dec	1923732H1	1840	
66	336239.5.dec	616538R6	265	847	66	336239.5.dec	4210965H1		2040
66	336239.5.dec	616538H1	265	562	66 66	336239.5.dec	1785944H1		2057 2435
66	336239.5.dec	6377253H1	265	544 1629	66 66	336239.5.dec 336239.5.dec	1267976F1 1267976H1	1899	2155
66 66	336239.5.dec	g2350584 616538T6	1369 281	922	66	336239.5.dec	g2737159	1904	
66 66	.336239.5.dec 336239.5.dec	g2079319	300	603	66	336239.5.dec	5449665H1		2164
66	336239.5.dec	2968881H1	1369		66	336239.5.dec	6122507H1		2495
66	336239.5.dec	g1614213	316	655	66	336239.5.dec	6122807H1		1985
66	336239.5.dec	g2015301	364	613	66	336239.5.dec	3698691H1		2191
66	336239.5.dec	4373981H1	400	659	66	336239.5.dec	2871258H1	1947	2224
66	336239.5.dec	3117904H1	1398			336239.5.dec	g3004362		2329
66	336239.5.dec	4120062H1	411	666	66	336239.5.dec	4584944H1	2021	2274
					233				

					Table 4				
66	336239.5.dec	3013346H1	2080	2354	67	215660.4.dec	q1147549	667	1066
66	336239.5.dec	3502187H1		2367	67	215660.4.dec	g894725	673	993
66	336239.5.dec	2861426T6		2556	67	215660.4.dec	g1938999	406	892
66	336239.5.dec	995243H1	2097	2354	67	215660.4.dec	g2307107	410	845
66	336239.5.dec	1821619F6	2098		67	215660.4.dec	2235577H1	428	669
66	336239.5.dec	1821619H1	2098		67	215660.4.dec	4976668H1	683	948
66	336239.5.dec	1923732T6	2115		67	215660.4.dec	1857506F6	18	356
66	336239.5.dec	4650712H1	2116		67	215660.4.dec	986459H1	18	311
66	336239.5.dec	1719741T6	2129		67	215660.4.dec	3674390H1	18	298
66	336239.5.dec	2651489H1	2130		67 67	215660.4.dec	1894195H1 5347189H1	37 37	265 236
66 66	336239.5.dec	g1849169 g3367258	2133 2147	2578	67	215660.4.dec 215660.4.dec	g1966826	314	749
66	336239.5.dec 336239.5.dec	g4270156	2154	2606	67	215660.4.dec	g1968580	338	769
66	336239.5.dec	g4486416	2159		67	215660.4.dec	3722329H1	403	696
66	336239.5.dec	1821619T6	2168		67	215660.4.dec	1917371H1	622	888
66	336239.5.dec	q5394396	2167		67	215660.4.dec	4205106H1	636	929
66	336239.5.dec	4088855H1	2170	2443	67	215660.4.dec	2523041H1	1	231
66	336239.5.dec	g4373611	2172	2602	67	215660.4.dec	2559345H1	3	257
66	336239.5.dec	g5630634	2175		67	215660.4.dec	5426049H1	4	225
66	336239.5.dec	2448329H1	2183		67	215660.4.dec	3136554H1	18	299
66	336239.5.dec	2126858H1	2186		67 67	215660.4.dec	2540242H1	18	251
66	336239.5.dec	g3052869	2189		67 67	215660.4.dec 215660.4.dec	2612738H1 3900056H1	19 19	259 257
66 66	336239.5.dec	2597895F6	2200 2200	2606 2503	67 67	215660.4.dec	g1928635	529	953
66 66	336239.5.dec 336239.5.dec	4896837H1 2597895H1		2466	67	215660.4.dec	4309267H1	543	852
66	336239.5.dec	5986132H1		2416	67	215660.4.dec	g1406532	559	684
66	336239.5.dec	g4438961		2595	67	215660.4.dec	603142R1	597	1220
66	336239.5.dec	g2537971	2213		67	215660.4.dec	603142H1	597	842
66	336239.5.dec	g4453236	2218	2555	67	215660.4.dec	5280718H1	599	801
66	336239.5.dec	g1860418	2229	2604	67	215660.4.dec	g1194412	516	871
66	336239.5.dec	g3839639		2555	67	215660.4.dec	3045477H1	22	294
66	336239.5.dec	g4762107		2602	67	215660.4.dec	2528789H1	26	189
66	336239.5.dec	g4435892		2604	67	215660.4.dec	2532406H1	28	266
66	336239.5.dec	g4900173		2552	67 67	215660.4.dec	3053059H1 1363259H1	219 236	515 506
66	336239.5.dec	g4569426		2555 2605	67	215660.4.dec 215660.4.dec	4112589H1	208	467
66 66	336239.5.dec 336239.5.dec	g3190842 4022527H1		2651	67	215660.4.dec	4923710H1	159	431
66	336239.5.dec	3945770H1		2650	67	215660.4.dec	4308020H1	170	434
66	336239.5.dec	g2905130	2378	2602	67	215660.4.dec	4307924H1	170	516
66	336239.5.dec	g789334		2567	67	215660.4.dec	2417463H1	201	439
66	336239.5.dec	g2584105	2473	2602	67	215660.4.dec	2416965H1	201	424
67	215660.4.dec	4728087H1	150	415	67	215660.4.dec	g727016	463	735
67	215660.4.dec	g1638041	158	389	67	215660.4.dec	g2165443	463	824
67	215660.4.dec	3949305H1	38	322	67	215660.4.dec	4213686H1	465	649
67	215660.4.dec	g689887		468	67	215660.4.dec 215660.4.dec	1686857H1	466 467	671 778
67	215660.4.dec 215660.4.dec	3325969H1 3799417H1	236 238	479 524	67 67	215660.4.dec	4194806H1 5158759H1	445	666
67 67	215660.4.dec	g1557211	246	675	67	215660.4.dec	3968785H1	616	882
67	215660.4.dec	3676390H1	18	296	67	215660.4.dec	g1312114	741	795
67	215660.4.dec	3797049H1	17	233	67	215660.4.dec	g3042998	1110	1505
67	215660.4.dec	1857506H1	18	181	67	215660.4.dec	4558627H1	748	1011
67	215660.4.dec	2498312H1	18	257	67	215660.4.dec	4558506H1	748	1009
67	215660.4.dec	3255981H1	28	264	67	215660.4.dec	1388105H1	751	989
67	215660.4.dec	g1954009	35	393	67	215660.4.dec	3719731H1	800	943
67	215660.4.dec	3333763H1	37	322	67	215660.4.dec	g2163719	1115	1507
67	215660.4.dec	1893878H1	37	274	67 67	215660.4.dec	g1448573	825 827	1028 1034
67	215660.4.dec	946626H1	19	231	67 67	215660.4.dec 215660.4.dec	344302H1 g1425193	837	1287
67 67	215660.4.dec 215660.4.dec	g1990338 804328H1	20 21	389 263	67	215660.4.dec	3021782H1	852	1130
67	215660.4.dec	g1648082	20	258	67	215660.4.dec	5437401H1	857	1100
67	215660.4.dec	5604792H1	715	962	67	215660.4.dec	6536839H1	880	1399
67	215660.4.dec	4886452H1	728	958	67	215660.4.dec	1857506T6	902	1464
67	215660.4.dec	5950537H1	610	856	67	215660.4.dec	g2964295	1115	1505
67	215660.4.dec	3971078H1	616	885	67	215660.4.dec	g3888385	1119	1502
67	215660.4.dec	g2007990	48	279	67	215660.4.dec	g4331608	1121	1504
67	215660.4.dec	799172H1	66	300	67	215660.4.dec	g3431247	1123	1503
67	215660.4.dec	2814381H1	638	874	67	215660.4.dec	402462H1	934	1186
					234				

Table 4											
67	215660.4.dec	g3230003	1124	1502		67	215660.4.dec	4797457H1	15	240	
67	215660.4.dec	g1406428	1139	1503	€	57	215660.4.dec	3324029H1	13	319	
67	215660.4.dec	g825910		1511	€	57	215660.4.dec	5668158H1	12	243	
67	215660.4.dec	2407832H1	953	1223		57	215660.4.dec	2666214H1	15	273	
67	215660.4.dec	3453858H2	1146	1357		57	215660.4.dec	4919274H1	17	275	
67	215660.4.dec	g4510545	1149	1510		67 57	215660.4.dec	1632851H1	17 517	429 778	
67 67	215660.4.dec	3813776H1	1151	1446 1507		67 68	215660.4.dec 391940.2.dec	2128217H1 g1557429		2737	
67 67	215660.4.dec 215660.4.dec	g2778848 g2954358	1153 1153	1507		58	391940.2.dec	2085379H1	2676		
67	215660.4.dec	g3146548	1156	1507		68	391940.2.dec	q1693291	2675	3128	
67	215660.4.dec	g3884641	1163	1507		68	391940.2.dec	g3167046	2680	3127	
67	215660.4.dec	3845459H1	962	1273	€	68	391940.2.dec	g751398	2763	2859	
67	215660.4.dec	2679285H1	962	1237	6	68	391940.2.dec	2702823H1	2693		
67	215660.4.dec	g2208751	1166	1510		68	391940.2.dec	1000364H1	2696		
67	215660.4.dec	g3051605	1169	1503		86	391940.2.dec	g1425705	2698		
67	215660.4.dec	1570357H1	962	1150		68 co	391940.2.dec	5741371H1	2702 2712		
67	215660.4.dec	2132352T6	1174 1179	1469 1453		68 68	391940.2.dec 391940.2.dec	1689136F6 1689136H1	2712		
67 67	215660.4.dec 215660.4.dec	2132352H1 2132352R6	1179	1503		68	391940.2.dec	1476678H1	2543		
67	215660.4.dec	1570364H1	962	1146	-	68	391940.2.dec	909385H1	2587		
67	215660.4.dec	g3250250	1202	1503		68	391940.2.dec	217954H1	2589	2811	
67	215660.4.dec	g1125205	1205	1501	•	68	391940.2.dec	214949H1	2589	2767	
67	215660.4.dec	g1928636	1205	1503		68	391940.2.dec	3813492H1	2604		
67	215660.4.dec	g1423883	1209	1492		68	391940.2.dec	g2988090	2610		
67	215660.4.dec	g2278880		1503		68 68	391940.2.dec	2847338H1	2621 2621	2769 2769	
67	215660.4.dec	6521070H1	1224	1502		68 68	391940.2.dec 391940.2.dec	2568270H1 652869H1	2633		
67 67	215660.4.dec 215660.4.dec	2426163H1 a3154845	973 1229	1200 1505		68	391940.2.dec	g4393629	2671	2769	
67	215660.4.dec	g4089301	1239	1509		68	391940.2.dec	4333183H1	2645	2780	
67	215660.4.dec	g928688	979	1244		68	391940.2.dec	g698302	2646		
67	215660.4.dec	g1491527	990	1270		68	391940.2.dec	5710267H2	2656	2792	
67	215660.4.dec	5907448H1	994	1312		68	391940.2.dec	5404183H1		2235	
67	215660.4.dec	523987H1	1019	1252		68	391940.2.dec	4138469H1	2130	2423	
67	215660.4.dec	3603891H1	1025	1312		68	391940.2.dec	2817316H1	2135	2447	
67	215660.4.dec	2274209H1	1026	1310		68	391940.2.dec	2817316F6		2639 2414	
67	215660.4.dec	g2880850	1030	1503 1290		68 68	391940.2.dec 391940.2.dec	3692035H1 1329527H1	2140	2337	
67 67	215660.4.dec 215660.4.dec	2839076H1 g2824743	1035 1036	1508		68 68	391940.2.dec	2633655H1	2215	2471	
67 67	215660.4.dec	641418H1	1038	1294		68	391940.2.dec	2612237H1	2217		
67	215660.4.dec	q3015820	1043	1506		68	391940.2.dec	2507857H1		2484	
67	215660.4.dec	2561189H1	1047	1317		68	391940.2.dec	3498770H1	2228	2427	
67	215660.4.dec	g1367968	1047	1485		68	391940.2.dec	5309067H1		2424	
67	215660.4.dec	118537H1	1049	1199		68	391940.2.dec	5309085H1	2229	2387	
67	215660.4.dec	g4005382	1059	1511		68	391940.2.dec	3591236H1	2249	2556	
67	215660.4.dec	g1367910		1503		68	391940.2.dec	668908H1 3617329H1		2542 2513	
67	215660.4.dec	008834H1		1364		68 68	391940.2.dec 391940.2.dec	g2464153		2683	
67 67	215660.4.dec 215660.4.dec	g3401747 g2779406	1079	1512 1504		68	391940.2.dec	g1275547	2309		
67	215660.4.dec	g5112548	1089	1503		68	391940.2.dec	3595319H1		2643	
67	215660.4.dec	q5177242	1091	1512		68	391940.2.dec	g1242878		2685	
67	215660.4.dec	Ž157703T6	1099	1465		68	391940.2.dec	g2241102		2744	
67	215660.4.dec	g4077133		1511		68	391940.2.dec	3813492F6		2831	
67	215660.4.dec	g2557366		1501		68	391940.2.dec	526033H1		2704	
67	215660.4.dec	g2839461		1512		68	391940.2.dec	2846889H1		2705	
67	215660.4.dec	g1491453		1503		68	391940.2.dec	526010H1	2449	2688 2690	
67 67	215660.4.dec	g894679 g726966		1491 1498		68 68	391940.2.dec 391940.2.dec	1975137H1 g982969		2625	
67 67	215660.4.dec 215660.4.dec	g2969821		1504		68	391940.2.dec	g3070059		2952	
67	215660.4.dec	g3150603		1503		68	391940.2.dec	g4738191		2952	
67	215660.4.dec	g2736776		1385		68	391940.2.dec	g4648157		2769	
67	215660.4.dec	g1271203		1515		68	391940.2.dec	g4682847	2713	2952	
67	215660.4.dec	g3778319	1355	1502		68	391940.2.dec	g1224334		3154	
67	215660.4.dec	608744H1		1503		68	391940.2.dec	5157173H2	1	110	
67	215660.4.dec	g4525841		1508		68	391940.2.dec	4648337F6	1	552	
67	215660.4.dec	1980051H1		1502		68 68	391940.2.dec	4648337H1	2 79	223 312	
67 67	215660.4.dec 215660.4.dec	g2704354 g1189214		1505 1512		68 68	391940.2.dec 391940.2.dec	3153717H1 6263536H1	160	627	
67	213000.4.UEC	g1103214	1410	1312	235	55	331070.2.080	J200000111	.50	<i></i>	
					~55						

					Table 4				
68	391940.2.dec	5322043H1	158	420	68	391940.2.dec	789364R1	350	884
68	391940.2.dec	g317583	297	578	68	391940.2.dec	789364H1	350	566
68	391940.2.dec	4782861T6	327	859	68	391940.2.dec	3596716H1	377	586
68	391940.2.dec	4648337T6	328	866	68 68	391940.2.dec 391940.2.dec	114511H1 569933H1	400 446	579 511
68 68	391940.2.dec 391940.2.dec	4731271T6 789364R6	348 350	864 665	68	391940.2.dec	5605517H1	510	681
68	391940.2.dec	199073H1	3203	3255	68	391940.2.dec	g1858975	549	953
68	391940.2.dec	g3959096	3222	3303	68	391940.2.dec	6431523H1	680	1142
68	391940.2.dec	2546814H1	3237	3326	68	391940.2.dec	4020548H1	741	845
68	391940.2.dec	1612728H1	3248	3326	68	391940.2.dec	2489839H1	738	991
68	391940.2.dec	6432229H1	3034	3326	68	391940.2.dec	3128649H1	802	868
68	391940.2.dec	g1061926	3042	3256	68	391940.2.dec	3341237H1	806	1053
68	391940.2.dec	6427691H1	3050	3326	68	391940.2.dec	6351274H2	807 843	1158 1332
68 68	391940.2.dec 391940.2.dec	2667645H1 2824232H1	3050 3053	3281 3349	68 68	391940.2.dec 391940.2.dec	6505585H1 5004941H1	886	1143
68	391940.2.dec	g2988010	3055	3261	68	391940.2.dec	4099113H1	961	1262
68	391940.2.dec	g2984791	3062	3256	68	391940.2.dec	3205913H1	968	1247
68	391940.2.dec	g647798	3064	3330	68	391940.2.dec	g774270	979	1347
68	391940.2.dec	966393H1	3117	3326	68	391940.2.dec	2069671H1	1066	1322
68	391940.2.dec	3010912H1	3121	3323	68	391940.2.dec	2069671F6	1066	1377
68	391940.2.dec	g2358957	3137	3326	68	391940.2.dec	3939276H1	1084	1247
68	391940.2.dec	3874648H1	3147		68 68	391940.2.dec	2633121H1		1436 1464
68 68	391940.2.dec 391940.2.dec	g1061927 209520H1	2713 2748	2898 2896	68 68	391940.2.dec 391940.2.dec	2631615H1 5312304H1		1415
68	391940.2.dec	4422068H1	2768		68	391940.2.dec	g775835		1567
68	391940.2.dec	788564T6	2810	3212	68	391940.2.dec	3433173H1		1532
68	391940.2.dec	g3889856	2819	3256	68	391940.2.dec	3036880H1	1328	1598
68	391940.2.dec	g1243333	2876	3250	68	391940.2.dec	5091289H1		1633
68	391940.2.dec	g2002565	2883		68	391940.2.dec	g705608		1697
68	391940.2.dec	g969305	2893	3041	68	391940.2.dec	g5452920	1391	1856
68	391940.2.dec	g823322	2909	3263	68 68	391940.2.dec	2077084F6	1395 1395	1813 1662
68	391940.2.dec	g4535621 2077084T6	2953 2984	3250 3213	68 68	391940.2.dec 391940.2.dec	2077084H1 g1858926	1445	1833
68 68	391940.2.dec 391940.2.dec	g1694279	2989	3255	68	391940.2.dec	3473107H1	1463	1711
68	391940.2.dec	3519539H1	2998	3198	68	391940.2.dec	2170438H1	1536	1771
68	391940.2.dec	6436535H1	3005	3255	68	391940.2.dec	3978711H1	1549	1831
68	391940.2.dec	g799773	3009	3255	68	391940.2.dec	3602690H1	1618	1908
68	391940.2.dec	3101145H1	3010	3297	68	391940.2.dec	5263190H1	1663	1894
68	391940.2.dec	g4901206	3028	3254	68	391940.2.dec	788564H1		1904
68	391940.2.dec	2069671T6	3029	3218	68 68	391940.2.dec	g983004		2113 2108
68 68	391940.2.dec 391940.2.dec	2534382H2 q4629916	3029 3029	3200 3255	68 68	391940.2.dec 391940.2.dec	6106301H1 3573367H1		2084
68 68	391940.2.dec	3650567H1	3029	3246	68	391940.2.dec	g983003		1972
68	391940.2.dec	g678131	3029	3255	68	391940.2.dec	2494274H1		2100
68	391940.2.dec	2817316T6	3029	3217	68	391940.2.dec	3357432H1	1832	2088
68	391940.2.dec	g4850987		3255	68	391940.2.dec	366335R6		2226
68	391940.2.dec	g1693240		3255	68	391940.2.dec	366335H1		2108
68	391940.2.dec	g2241050	3030	3255	68	391940.2.dec	4674184H1		2139 2122
68	391940.2.dec	g2553045	3030 3030		68 68	391940.2.dec 391940.2.dec	2273833H1 2686781H1		2076
68 68	391940.2.dec 391940.2.dec	6324661H1 3841263H1		3170		391940.2.dec	2687319H1		2139
68	391940.2.dec	2687078H1	3159			391940.2.dec	g769399		2174
68	391940.2.dec	4080534H1		3326		391940.2.dec	657187H1		2172
68	391940.2.dec	6569059H1	3030			391940.2.dec	4819935H1		2197
68	391940.2.dec	336881F1		3255		391940.2.dec	3952060H1		2189
68	391940.2.dec	336896H1		3250		391940.2.dec	5742076H1		2216
68	391940.2.dec	g4084228		3255		391940.2.dec	1318431H1	1981	
68	391940.2.dec	928254H1		3326		391940.2.dec	2432247H1	1989	
68 68	391940.2.dec	6350218H2		3119 3326		978302.3.dec 978302.3.dec	3070474H1 3580385H1	55 52	311 314
68 68	391940.2.dec 391940.2.dec	3120274F6 g1694387		3194		978302.3.dec	3456668H1	52 55	234
68	391940.2.dec	g5636347		3255		978302.3.dec	g4530434	64	2553
68	391940.2.dec	g1965608		3255		978302.3.dec	2893122H1	62	321
68	391940.2.dec	3120258H1	3178	3305	69	978302.3.dec	g1966219	66	416
68	391940.2.dec	5495516H1	3189			978302.3.dec	3089177H1	84	356
68	391940.2.dec	3798874H1		3111		978302.3.dec	3673761H1	88	245
68	391940.2.dec	148197H1	\$194	3305	69 236	978302.3.dec	5542071H1	98	306

Table 4											
69	978302.3.dec	4049703H1	97	382	69	978302.3.dec	5504612H1	41	112		
69	978302.3.dec	3273789H1	110	357	69	978302.3.dec	1903639H1	42	296		
69	978302.3.dec	4803070H1	311	568	69	978302.3.dec	3580385F6	52	446		
69	978302.3.dec	5502955R6	345	751	69	978302.3.dec	5537637H1	51	229		
69	978302.3.dec	g3330490	449	844	69	978302.3.dec	904267R2	1840			
69	978302.3.dec	g916384	496	716	69	978302.3.dec	004607H1	1842	2021 2354		
69	978302.3.dec	4570560H1	508	772	69	978302.3.dec	g2141685	1866	2354		
69	978302.3.dec	4799067H1	536	814	69 69	978302.3.dec 978302.3.dec	g2111916 5314445H1	1877 1895	2139		
69 69	978302.3.dec	5990884H1	554 684	849 1179	69	978302.3.dec	575430T6	1938			
69	978302.3.dec 978302.3.dec	6421386H1 449422H1	709	952	69	978302.3.dec	2962839H1	1947			
69	978302.3.dec	1303054H1	746	977	69	978302.3.dec	3580385T6	1949			
69	978302.3.dec	3494973H1	826	1129	69	978302.3.dec	469485F1	1956			
69	978302.3.dec	2762433H1	883	1137	69	978302.3.dec	629855H1	1972			
69	978302.3.dec	671218H1	883	1139	69	978302.3.dec	6590117H1		2552		
69	978302.3.dec	5374645H1	943	1204	69	978302.3.dec	6590017H1	1976	2505		
69	978302.3.dec	4293786H1	962	1115	69	978302.3.dec	4508845H1	2014	2296		
69	978302.3.dec	g30733	1008	1310	69	978302.3.dec	2878353H1		2175		
69	978302.3.dec	1556785H1	1045	1237	69	978302.3.dec	2573374H1		2280		
69	978302.3.dec	1557004H1	1045	1247	69	978302.3.dec	2573245H1	2027			
69	978302.3.dec	1554631H1	1045	1214	69	978302.3.dec	412698H1	2043			
69	978302.3.dec	g4220895		2218	69	978302.3.dec	g4302126		2552		
69	978302.3.dec	2667190H1	1096	1343	69	978302.3.dec	g3884354		2554 2552		
69	978302.3.dec	3389771H1	1115	1406	69 60	978302.3.dec	g3434749		2552 2551		
69	978302.3.dec	g1296252	1145	1477 1392	69 69	978302.3.dec 978302.3.dec	g5100695 4914418H1		2363		
69	978302.3.dec	495467H1 495467R6	1144	1621	69	978302.3.dec	816019R1		2548		
69 69	978302.3.dec 978302.3.dec	469485R1	1184	1693	69	978302.3.dec	816019R6		2481		
69	978302.3.dec	469485H1		1418	69	978302.3.dec	816019H1		2363		
69	978302.3.dec	g2783215	1290	1698	69	978302.3.dec	g2727063		2488		
69	978302.3.dec	5117988H1	1427	1697	69	978302.3.dec	g5631519	2140	2552		
69	978302.3.dec	2656968H1	1447	1679	69	978302.3.dec	g4268066		2552		
69	978302.3.dec	044893H1	1457	1621	69	978302.3.dec	g3038701		2554		
69	978302.3.dec	g2023688	1493	1815	69	978302.3.dec	g2905509		2552		
69	978302.3.dec	2649157H1	1493	1722	69	978302.3.dec	g2337320		2553		
69	978302.3.dec	5392455H1	1535		69	978302.3.dec	g5392280		2554		
69	978302.3.dec	2972663H2	1540		69	978302.3.dec	g2433438		2551		
69	978302.3.dec	4887906H1	1548		69	978302.3.dec	g4764364		2551		
69	978302.3.dec	1494628H1	1565		69	978302.3.dec	g4900354	2181			
69	978302.3.dec	4123045H2	1577		69	978302.3.dec	3455054H1 3406692H1		2459 2456		
69	978302.3.dec	598817H1	1592		69 69	978302.3.dec 978302.3.dec	g2767388	2211			
69	978302.3.dec	g1697464 2782445H1	1592 1595		69	978302.3.dec	g3960728		2552		
69 69	978302.3.dec 978302.3.dec	3071188H1	1599		69	978302.3.dec	1627118T6	2212			
69	978302.3.dec	1499678F6	1611	1983	69	978302.3.dec	g2751958		2543		
69.	978302.3.dec	1499678H1	1611	1833	69	978302.3.dec	g2969710		2555		
69	978302.3.dec	3605819H1		1786	69	978302.3.dec	g2839836	2219	2552		
69	978302.3.dec	2603477H1	1645		69	978302.3.dec	1499678T6		2506		
69	978302.3.dec	5396451H1	1714	1966	69	978302.3.dec	2244852T6		2510		
69	978302.3.dec	g1925214		2183	69	978302.3.dec	g2849258		2552		
69	978302.3.dec	6410645H1		2080	69	978302.3.dec	2780422H1		2476		
69	978302.3.dec	g1923462		2117	69	978302.3.dec	5037261H1		2433		
69	978302.3.dec	5563939H1		1949	69	978302.3.dec	g1924159		2552		
69	978302.3.dec	3901151H1		2017	69	978302.3.dec	g5657243		2552		
69	978302.3.dec	3467260H1		1865	69 60	978302.3.dec	g2111854		2559 2563		
69	978302.3.dec	2153778H1		1913 2120	69 69	978302.3.dec 978302.3.dec	g1925215 g824152		2563		
69	978302.3.dec	2363625F6		2020	69	978302.3.dec	2511077H1		2549		
69	978302.3.dec 978302.3.dec	2363625H1 6167007H1		2363	69	978302.3.dec	g1265044		2552		
69 69	978302.3.dec	2363625T6		2354	69	978302.3.dec	627673H1		2549		
69	978302.3.dec	043817H1		2062	69	978302.3.dec	g3118123	2331	2552		
69	978302.3.dec	1627118H1		1935	69	978302.3.dec	927354R1		2599		
69	978302.3.dec	1627118F6		2274	69	978302.3.dec	927354H1		2593		
69	978302.3.dec	904267H1		2062	69	978302.3.dec	3241557T6	2366	2510		
69	978302.3.dec	4921037H1	1	290	69	978302.3.dec	790882R1		2552		
69	978302.3.dec	4913159H1	31	294	69	978302.3.dec	790882F1		2552		
69	978302.3.dec	g4838128	44	2568	69	978302.3.dec	039176H1	2375	2542		
					227						

					Table 4				
69	978302.3.dec	g1218452	2418	2554	70	228629.11.dec	312757H1	1437	1655
69	978302.3.dec	1649824H1	2444	2585	70	228629.11.dec	312451H1	1438	1604
69	978302.3.dec	g1957671	2454	2599	70	228629.11.dec	312476H1		1604
69	978302.3.dec	g3960735	2464	2552	70	228629.11.dec			1688
69	978302.3.dec	4274132H1	2471		70	228629.11.dec			1816
70 70	228629.11.dec	g2934289	1704		70	228629.11.dec		1457	
70	228629.11.dec	g2102954	1705		70 70	228629.11.dec	4344049H1		1753
70 70	228629.11.dec	g3147325	1707 1699		70 70	228629.11.dec	3771512H1	1462 1473	1733
70	228629.11.dec 228629.11.dec	001420H1 1294966H1		2104 1358	70 70	228629.11.dec 228629.11.dec	2099424H1 025702H1		1388
70	228629.11.dec	6374472H1		1359	70 70	228629.11.dec	882702H1	1372	
70	228629.11.dec	2743486H1	1193		70 70	228629.11.dec	g5365368	1864	
70	228629.11.dec	4531151H1		1400	70	228629.11.dec	3088319H1	1868	
70	228629.11.dec	6359587H2	1197	1749	70	228629.11.dec		1882	
70	228629.11.dec	5734367H1	1175	1374	70	228629.11.dec	3932184H1	1452	1729
70	228629.11.dec	892335H1	1758	1948	70	228629.11.dec	6587364H1	1378	1921
70	228629.11.dec	g648436	1762		70	228629.11.dec	1296630H1	1380	
70	228629.11.dec	975009H1	1776		70	228629.11.dec			1655
70	228629.11.dec	g3889950	1810		70 70	228629.11.dec	1979479H1		1654
70	228629.11.dec	887059H1	1839	2085	70 70	228629.11.dec		1324	
70 70	228629.11.dec	869989H1	1840	2086	70 70	228629.11.dec			1509
70 70	228629.11.dec 228629.11.dec	869854H1 g1626689	1840 1735	2083	70 70	228629.11.dec 228629.11.dec			1648 1858
70	228629.11.dec	g3921132	1743	2093	70 70	228629.11.dec	1225607H1		1788
70	228629.11.dec	856889H1	1754	1937	70 70	228629.11.dec			1648
70	228629.11.dec	3614651H1	1	217	70	228629.11.dec			1610
70	228629.11.dec	2689769H1	17	269	70	228629.11.dec			1675
70	228629.11.dec	2689769F6	17	478	70	228629.11.dec	3502894H1	1447	1731
70	228629.11.dec	6112670H1	27	280	70	228629.11.dec	1800594H1	1518	1729
70	228629.11.dec	g603230	50	2085	70	228629.11.dec	g1331191	1522	
70	228629.11.dec	6534961H1	63	490	70	228629.11.dec	1800568H1	1518	
70	228629.11.dec	410074H1	129	368	70	228629.11.dec			1922
70 70	228629.11.dec	3717155H1	246	474	70 70	228629.11.dec	1752755H1	1661	1913
70 70	228629.11.dec	5301716H1	322	592	70 70	228629.11.dec	1754354H1	1661	1907
70 70		6290096H1	577 590	811	70 70	228629.11.dec	g834745		1935 1890
70 70	228629.11.dec 228629.11.dec	2911910H1 1300552H1	607	856 836	70 70	228629.11.dec 228629.11.dec	g838552 g4686244		2085
70	228629.11.dec	1413704H1	625	902	70 70	228629.11.dec	4730903H1	1612	
70	228629.11.dec	3661737H1	659	934	70	228629.11.dec	g4188496		2090
70	228629.11.dec	4434566H1	735	990	70	228629.11.dec	•		1885
70	228629.11.dec	1976292H1	796	1038	70	228629.11.dec		1581	1877
70	228629.11.dec	6297547H1	804	1068	70	228629.11.dec	4596660H1	1583	1841
70	228629.11.dec	910262H1	827	1122	70	228629.11.dec	5951768H1	1588	1934
70	228629.11.dec	1701222H1	827	1038	70	228629.11.dec	5321992H1	1598	1863
70		6131544H1	850	1153	70	228629.11.dec	5004692H1	1598	1839
70	228629.11.dec	6361603H2	891	1430	70	228629.11.dec	6103423H1		1851
70 70	228629.11.dec	1433660H1	898	1136	70 70	228629.11.dec			1656
70 70	228629.11.dec	1395790H1	951	1201	70 70	228629.11.dec	3450038H1	1555	
70 70	228629.11.dec 228629.11.dec	3253094H1 4710208H1	959 974	1157 1235	70 70	228629.11.dec 228629.11.dec		1575 1575	1796
70	228629.11.dec	6490580H1	1001	1377	70 70	228629.11.dec			1645
70	228629.11.dec	6490280H1	1001	1460	70 70	228629.11.dec	5927924H1	1387	
70	228629.11.dec	4749725H1	1006	1274	70	228629.11.dec	1496306H1		1650
70	228629.11.dec	1651252H1	1006	1249	70	228629.11.dec			1943
70	228629.11.dec	1974061H1	1031	1295	70	228629.11.dec	1751734H1		1922
70	228629.11.dec	2412754H1	1033	1259	70	228629.11.dec	3164903H1	1698	1985
70	228629.11.dec	4438041H1		1290	71	011211.5.dec	g3229245		1675
70	228629.11.dec	4437941H1		1293	71	011211.5.dec	g3055421		1677
70	228629.11.dec	g715781		1395	71	011211.5.dec	g2355252	1517	1668
70	228629.11.dec	g2141297	1480	1638	71	011211.5.dec	g4307448	1534	1669
70 70	228629.11.dec	3228693T6		2060	71	011211.5.dec	4422963H1	252	499
70 70	228629.11.dec	207391H1		2085	71 71	011211.5.dec	4422989H1	252	485 534
70 70	228629.11.dec 228629.11.dec	211562H1 3566051H1		2085 1651	71 71	011211.5.dec 011211.5.dec	3899914H1	266 291	534 508
70 70	228629.11.dec	388535H1	1415	1701	71	011211.5.dec	1796354H1 g1329775	291 351	625
70 70	228629.11.dec	505367H1	1432	1643	71	011211.5.dec	3248726H1	374	682
70	228629.11.dec	1358153H1		1682	71	011211.5.dec	4583315H1	395	674
-	–				220				

					Table 4				
71	011211.5.dec	730632H1	414	637	71	011211.5.dec	g2785911	1312	1665
71	011211.5.dec	790391R1	429	1010	71	011211.5.dec	2500452F6	1	490
71	011211.5.dec	790391H1	429	671	71	011211.5.dec	2500452H1	1	267
71	011211.5.dec	4518427H1	442	687	71	011211.5.dec	2504526H1	50	289
71	011211.5.dec	2935816H1	445	695	71	011211.5.dec	2485204H1	130	370
71	011211.5.dec	2722677F6	470	965	71	011211.5.dec	4590655H1	205	450
71 71	011211.5.dec	1788251H1	563	812	71	011211.5.dec	1686319H1	205	396
71	011211.5.dec 011211.5.dec	5116027H1 5116074H1	567 567	827	71 71	011211.5.dec	3211206H1	205	327
71	011211.5.dec	3986358H1	596	821 792	71	011211.5.dec 011211.5.dec	3411833H1 3271955H1	205 205	437 464
71	011211.5.dec	4203841H1	612	909	71	011211.5.dec	g2161312	1211	1669
71	011211.5.dec	5314859H1	675	815	71	011211.5.dec	g1358211	1227	1675
71	011211.5.dec	3740285H1	1313	1599	71	011211.5.dec	g1801782	1241	1670
71	011211.5.dec	5121062T6	1314	1660	71	011211.5.dec	g4153547	1241	1669
71	011211.5.dec	g4664357	1318	1671	71	011211.5.dec	g1317339	1255	1669
71	011211.5.dec	g1940230	1324	1650	71	011211.5.dec	2395410T6		1632
71	011211.5.dec	g2184545	1324	1650	71	011211.5.dec	1811608T6		1629
71	011211.5.dec	g3665509	1326	1676	71	011211.5.dec	3488381T6	1262	
71	011211.5.dec	2722677T6	1338	1627	71	011211.5.dec	g5674690	1262	
71 71	011211.5.dec 011211.5.dec	g2952637 2474881H1	1338 173	1673 407	71 71	011211.5.dec 011211.5.dec	536468H1		1522
71	011211.5.dec	3580753H1	177	489	71 71	011211.5.dec	730632F1 g5637214	1185 1207	1671
71	011211.5.dec	3581452H1	177	467	71	011211.5.dec	1639808H1	1207	
71	011211.5.dec	486671H1	187	473	71	011211.5.dec	g5659631		1668
71	011211.5.dec	2544119H1	194	447	71	011211.5.dec	2750833H1		1190
71	011211.5.dec	6370602H1	204	312	71	011211.5.dec	2750833R6	1052	
71	011211.5.dec	5898419H1	204	489	71	011211.5.dec	6176275H1	1064	
71	011211.5.dec	3438381H1	204	455	71	011211.5.dec	628273H1	1064	1288
71	011211.5.dec	5121062F6	205	670	71	011211.5.dec	2525968H1	1067	
71	011211.5.dec	3784294H1	205	502	71	011211.5.dec	5954055H1	1090	
71	011211.5.dec	2107539H1	207	458	71	011211.5.dec	1534852T6		1626
71	011211.5.dec	3732863H1	205	469	71	011211.5.dec	2354626H1	1110	
71 71	011211.5.dec	1721414H1	207	420	71 71	011211.5.dec	6603759H1		1673 1583
71	011211.5.dec 011211.5.dec	g1357922 2211136H1	205 208	599 407	71 71	011211.5.dec 011211.5.dec	6603659H1 5206520T6	1126 1140	
71	011211.5.dec	2722677H1	470	713	71	011211.5.dec	780467T6	1157	
71	011211.5.dec	1811608F6	478	915	71	011211.5.dec	4837615H1	1160	
71	011211.5.dec	1811608H1	478	721	71	011211.5.dec	538428H1		1311
71	011211.5.dec	1809182H1	504	669	71	011211.5.dec	6393337H1	813	1108
71	011211.5.dec	1979530H1	510	755	71	011211.5.dec	3438482H1	851	1098
71	011211.5.dec	6557538H1	516	1108	71	011211.5.dec	4185657H1	871	1086
71	011211.5.dec	5119348H1	522	817	71	011211.5.dec	6428245H1	891	1480
71	011211.5.dec	5313378H1	241	379	71	011211.5.dec	g2188554	894	1044
71	011211.5.dec	3342386H1	243	497	71	011211.5.dec	1212647H1	920	1152
71 71	011211.5.dec	4896741H1 1514966H1	252 229	543	71	011211.5.dec	2772091F6	929	1255
71 71	011211.5.dec 011211.5.dec	3982780H1	234	402 509	71 71	011211.5.dec 011211.5.dec	2772091H1 3179605H1	929 945	1176 1247
71	011211.5.dec	4731415H1	239	512	71	011211.5.dec	5816063H1	946	1181
71	011211.5.dec	g2659808	1475	1671	71	011211.5.dec	4691156H1	954	1182
71	011211.5.dec	g4307315	1488	1669	71	011211.5.dec	3411470H1	956	1210
71	011211.5.dec	2562177H1	205	462	71	011211.5.dec	4278241H1	970	1200
71	011211.5.dec	1865272H1	205	449	71	011211.5.dec	2920077H1	1021	1284
71	011211.5.dec	1865272F6	205	602	71	011211.5.dec	5119720H1		1297
71	011211.5.dec	3053770H1	220	511	71	011211.5.dec	4939387H1	1037	1282
71	011211.5.dec	3057158H1	220	425	71	011211.5.dec	2750833T6	1041	1626
71	011211.5.dec	g1315022	224	665	71 71	011211.5.dec	2500452T6	1045	1623
71	011211.5.dec	2395410F6	224	572	71	011211.5.dec	1904368H1	1047	1338
71 71	011211.5.dec 011211.5.dec	2395410H1	224	463	71	011211.5.dec	1904368F6	1047	1344
71	011211.5.dec	5374094H1 g1802011	224 227	437 661	71 71	011211.5.dec	g5540370	1392 1398	1672°
71	011211.5.dec	g831726	229	661 623	71	011211.5.dec 011211.5.dec	1865272T6 2772091T6	1403	1839 1625
71	011211.5.dec	g5636952	1271	1671	71	011211.5.dec	2158516H1		1547
71	011211.5.dec	g5530755	1282	1673	7. 71	011211.5.dec	g2321614	1427	
71	011211.5.dec	g5659613	1283	1668	71	011211.5.dec	g4565430	1434	1669
71	011211.5.dec	2589181H1	1304	1531	71	011211.5.dec	790391F1	1443	1669
71	011211.5.dec	g3214484	1309	1674	71	011211.5.dec	g2021003	1472	1659
71	011211.5.dec	g2354244	1310	1668	71	011211.5.dec	4129420H1	209	384

WO 01/21836

PCT/US00/25643

7	ra	h	le	4
	23	"	11	4

71	011211.5.dec	4931939H1	213	502
71	011211.5.dec	5299520H1	212	447
71	011211.5.dec	778131H1	213	424
71	011211.5.dec	2995677H1	212	463
71	011211.5.dec	3528587H1	213	504
71	011211.5.dec	4192842H1	213	507
71	011211.5.dec	2828929H1	214	474
71	011211.5.dec	4689695H1	218	443
71	011211.5.dec	5299661H1	219	392
71	011211.5.dec	3783536H1	219	526
71	011211.5.dec	2432292H1	219	438
71	011211.5.dec	2230623H1	679	906
71	011211.5.dec	5578645H1	734	999
71	011211.5.dec	4884278H1	752	1013
71	011211.5.dec	3489306H1	756	1044
71	011211.5.dec	4859162H1	760	1036
71	011211.5.dec	3451104H1	765	1019
71	011211.5.dec	2605496H1	766	1012
71	011211.5.dec	4199159H1	782	1056
71	011211.5.dec	4858453H1	783	962
71	011211.5.dec	g5634460	792	878
71	011211.5.dec	1605934H1	809	1037
71	011211.5.dec	5106375H1	811	1052
71	011211.5.dec	1904368T6	1371	1629
71	011211.5.dec	g2875270	1371	1595
71	011211.5.dec	g2540410	1373	1672
71	011211.5.dec	g831607	1356	1680
71	011211.5.dec	6394443H1	1348	1612
71	011211.5.dec	g2184320	1375	1667

TABLE 5

SEQ ID NO:	Template ID	Tissue Distribution
1	405310.1.oct	Cardiovascular System - 16%, Germ Cells - 12%
2	480731.6.oct	Liver - 25%, Connective Tissue - 17%, Male Genitalia - 15%
⁻ 3	334751.2.dec	Germ Cells - 33%, Liver - 24%, Endocrine System - 13%
4	237330.8.dec	Respiratory System - 60%, Male Genitalia - 40%
5	053778.11.dec	Embryonic Structures - 67%, Nervous System - 17%, Digestive System - 17%
6	360645.10.dec	Embryonic Structures - 67%, Nervous System - 11%
8	997089.7.dec	Sense Organs - 11%
9	237152.1.dec	Unclassified/Mixed - 41%, Germ Cells - 19%, Embryonic Structures - 13%, Respiratory System - 13%
10	232851.7.dec	Hemic and Immune System - 100%
11	083804.1.dec	Germ Cells - 70%, Connective Tissue - 16%
12	272721.6.oct	Digestive System - 10%
13	461603.4.oct	Germ Cells - 17%, Sense Organs - 14%, Musculoskeletal System - 10%
14	332465.2.dec	Connective Tissue - 100%
15	445175.3.dec	Germ Cells - 58%, Embryonic Structures - 20%, Male Genitalia - 17%
16	980541.1.dec	Nervous System - 50%, Embryonic Structures - 43%
17	237996.1.dec	Cardiovascular System - 21%, Exocrine Glands - 21%, Respiratory
		System - 16%, Digestive System - 16%, Hemic and Immune System - 16%
19	242082.10.dec	Female Genitalia - 75%, Hemic and Immune System - 25%
20	019239.1.dec	Exocrine Glands - 26%, Endocrine System - 17%, Hemic and Immune System - 17%
21	899943.1.dec	Sense Organs - 14%, Musculoskeletal System - 12%
22	443551.1.dec	Unclassified/Mixed - 50%, Nervous System - 27%, Female Genitalia - 14%
23	897957.1.dec	Pancreas - 44%, Liver - 27%, Male Genitalia - 10%
24	900911.1.dec	Germ Cells - 69%, Nervous System - 12%
25	999296.1.dec	Exocrine Glands - 22%, Endocrine System - 16%, Female Genitalia - 16%
26	442286.1.dec	Respiratory System - 50%, Exocrine Glands - 33%, Hemic and Immune System - 17%
27	901978.1.dec	Musculoskeletal System - 25%, Unclassified/Mixed - 18%, Hemic and Immune System - 13%
28	479346.1.dec	Unclassified/Mixed - 27%, Embryonic Structures - 20%, Skin - 14%
29	481750.1.dec	Male Genitalia - 29%, Urinary Tract - 13%, Skin - 11%
30	900917.2.dec	Respiratory System - 100%
31	999415.1.dec	Connective Tissue - 32%, Cardiovascular System - 32%, Exocrine Glands - 16%
32	900680.2.dec	Embryonic Structures - 34%, Liver - 19%, Unclassified/Mixed - 16%
33	902791.3.dec	Urinary Tract - 72%, Nervous System - 17%, Hemic and Immune System - 11%
34	053826.1.dec	Germ Cells - 69%, Unclassified/Mixed - 22%
35	204932.4.dec	NO DATA
36	400607.19.dec	Musculoskeletal System - 50%, Cardiovascular System - 29%, Nervous System - 21%
37	444248.7.dec	Exocrine Glands - 57%, Digestive System - 43%
38	346599.9.dec	Liver - 30%, Pancreas - 26%, Respiratory System - 21%
40	411396.24.dec	Male Genitalia - 100%
41	302819.4.dec	Exocrine Glands - 100%

pp. en.

TABLE 5

SEQ ID NO:	Template ID	Tissue Distribution
42	238734.2.dec	Skin - 94%
43	399525.3.dec	Unclassified/Mixed - 34%, Connective Tissue - 25%, Exocrine Glands - 13%
44	222795.6.dec	widely distributed
45	410628.5.dec	Sense Organs - 32%, Nervous System - 12%, Urinary Tract - 11%, Connective Tissue - 11%
46	053649.6.dec	Skin - 89%, Male Genitalia - 11%
47	221914.2.dec	Connective Tissue - 18%, Skin - 18%, Exocrine Glands - 13%
49	401482.2.oct	Skin - 12%, Connective Tissue - 10%
50	274551.1.oct	Nervous System - 60%, Hemic and Immune System - 40%
51	411408.20.dec	Connective Tissue - 12%, Cardiovascular System - 11%
52	035973.1.dec	Embryonic Structures - 67%, Nervous System - 17%, Digestive System - 17%
53	456536.1.dec	widely distributed
54	387807.4.oct	Sense Organs - 33%, Skin - 11%, Male Genitalia - 10%
55	406790.3.dec	Unclassified/Mixed - 32%, Urinary Tract - 25%, Musculoskeletal System - 10%
56	412420.63.dec	Sense Organs - 40%
57	196623.3.dec	widely distributed
58	427916.8.dec	Nervous System - 100%
59	264633.8.dec	Embryonic Structures - 86%, Hemic and Immune System - 14%
61	902943.1.dec	Unclassified/Mixed - 38%, Female Genitalia - 19%, Respiratory System - 10%
64	197445.1.oct	Unclassified/Mixed - 28%
65	348775.1.oct	Skin - 28%, Connective Tissue - 15%, Nervous System - 15%
66	336239.5.dec	Hemic and Immune System - 100%
67	215660.4.dec	Nervous System - 100%
68	391940.2.dec	Hemic and Immune System - 58%, Male Genitalia - 26%, Respiratory System - 16%
69	978302.3.dec	Sense Organs - 16%, Germ Cells - 11%, Embryonic Structures - 11%
70	228629.11.dec	Digestive System - 60%, Hemic and Immune System - 40%
71	011211.5.dec	Musculoskeletal System - 32%, Endocrine System - 27%, Nervous System - 18%

		Table 6	
Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	PE Biosystems, Foster City, CA.	
ABIPARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	PE Biosystems, Foster City, CA;	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	PE Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence Altschul, S.F. et al. (1990) J. Mol. Biol. similarity search for amino acid and nucleic acid 215:403-410; Altschul, S.F. et al. (1997 sequences. BLAST includes five functions: blastp, Nucleic Acids Res. 25:3389-3402. blastn, blastx, tblastn, and tblastx.	e Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	ESTs: Probability value= 1.0E-8 or less; Full Length sequences: Probability value= 1.0E- 10 or less
FASTA ATA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. ESTs: fasta E value=1.06E-6; Assembled Natl. Acad Sci. USA 85:2444-2448; ESTs: fasta Identity=95% or greater and Pearson, W.R. (1990) Methods Enzymol. Match length=200 bases or greater; fastx 183:63-98; and Smith, T.F. and M.S. value=1.0E-8 or less; Full Length sequenc Waterman (1981) Adv. Appl. Math. 2:482- fastx score=100 or greater 489.	ESTs: fasta E value=1.06E-6; Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less; Full Length sequences: fastx score=100 or greater

applicable, Probability value= 1.0E-3 or less Score=10-50 bits for PFAM hits, depending against those in BLOCKS, PRINTS, DOMO, PRODOM, Nucleic Acids Res. 19:6565-6572; Henikoff, Score/Strength = 0.75 or larger; and, if Score=1000 or greater; Ratio of on individual protein families al. (1997) J. Chem. Inf. Comput. Sci. 37:417-Enzymol. 266:88-105; and Attwood, T.K. et 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322. Henikoff, S. and J.G. Henikoff (1991) J.G. and S. Henikoff (1996) Methods Krogh, A. et al. (1994) J. Mol. Biol. A BLocks IMProved Searcher that matches a sequence sequence homology, and structural fingerprint regions. An algorithm for searching a query sequence against protein family consensus sequences, such as PFAM. hidden Markov model (HMM)-based databases of and PFAM databases to search for gene families,

BLIMPS

HIMMER

The first of the second of the

		Table 6	Clothood Theodor
Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score SGCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195- 202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering Score=3.5 or greater 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

CLAIMS

What is claimed is:

10

25

- 1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
 - a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71,
 - b) a naturally occurring polynucleotide sequence having at least 90% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:1-71,
 - c) a polynucleotide sequence complementary to a),
 - d) a polynucleotide sequence complementary to b), and
 - e) an RNA equivalent of a) through d).
- An isolated polynucleotide of claim 1, comprising a polynucleotide sequence selected from
 the group consisting of SEQ ID NO:1-71.
 - 3. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 1.
- 4. A composition for the detection of expression of diagnostic and therapeutic polynucleotides comprising at least one of the polynucleotides of claim 1 and a detectable label.
 - 5. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 1, the method comprising:
 - a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
 - b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
 - 6. A method for detecting a target polynucleotide in a sample, said target polynucleotide comprising a sequence of a polynucleotide of claim 1, the method comprising:
 - a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe

specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and

- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
 - 7. A method of claim 5, wherein the probe comprises at least 30 contiguous nucleotides.
 - 8. A method of claim 5, wherein the probe comprises at least 60 contiguous nucleotides.
- 9. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 1.

5

15

20

- 10. A cell transformed with a recombinant polynucleotide of claim 9.
- 11. A transgenic organism comprising a recombinant polynucleotide of claim 9.
 - 12. A method for producing a diagnostic and therapeutic polypeptide, the method comprising:
- a) culturing a cell under conditions suitable for expression of the diagnostic and therapeutic polypeptide, wherein said cell is transformed with a recombinant polynucleotide of claim 9, and:
 - b) recovering the diagnostic and therapeutic polypeptide so expressed.
- 13. A purified diagnostic and therapeutic polypeptide encoded by at least one of the polynucleotides of claim 2.
- 25 14. An isolated antibody which specifically binds to a diagnostic and therapeutic polypeptide of claim 13.
 - 15. A method of identifying a test compound which specifically binds to the diagnostic and therapeutic polypeptide of claim 13, the method comprising the steps of:
 - a) providing a test compound;
 - b) combining the diagnostic and therapeutic polypeptide with the test compound for a sufficient time and under suitable conditions for binding; and

c) detecting binding of the diagnostic and therapeutic polypeptide to the test compound, thereby identifying the test compound which specifically binds the diagnostic and therapeutic polypeptide.

- 16. A microarray wherein at least one element of the microarray is a polynucleotide of claim 3.
- 17. A method for generating a transcript image of a sample which contains polynucleotides, the method comprising the steps of:
 - a) labeling the polynucleotides of the sample,

5

10

20

25

- b) contacting the elements of the microarray of claim 16 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and
 - c) quantifying the expression of the polynucleotides in the sample.
- 18. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence of claim 1, the method comprising:
 - a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
 - b) detecting altered expression of the target polynucleotide, and
 - c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
 - 19. A method for assessing toxicity of a test compound, said method comprising:
 - a) treating a biological sample containing nucleic acids with the test compound;
 - b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 1 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 1 or fragment thereof;
 - c) quantifying the amount of hybridization complex; and
 - d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 March 2001 (29.03.2001)

PCT

(10) International Publication Number WO 01/21836 A2

(51)	International Pa	tent Classification7:	C12Q 1	1/68	US	60/156,565 (CIP)
(51)	Thee macional i a	tent Classification .	C12Q	1/00	Filed on	28 September 1999 (28.09.1999)
(21)	Tutomotional Au	mliantina Nasahasa 1	PCT/US00/25	5642	US	60/156,624 (CIP)
(21)	international Ap	pplication Number:	PC 170300/2.	3043	Filed on	28 September 1999 (28.09.1999)
(0.0)	T				US	60/156,625 (CIP)
(22)	International Fi	0	000 (10 00 0	000)	Filed on	28 September 1999 (28.09.1999)
		19 September 2	2000 (19.09.2	000)	US	60/167,542 (CIP)
					Filed on	24 November 1999 (24.11.1999)
(25)	Filing Language	:	En	glish	US	60/167,522 (CIP)
					Filed on	24 November 1999 (24.11.1999)
(26)	Publication Lan	guage:	En	glish	US	60/167,453 (CIP)
					Filed on	24 November 1999 (24.11.1999)
(30)	Priority Data:				US	60/167,517 (CIP)
	60/155,760	23 September 1999 (2	,	US	Filed on	24 November 1999 (24.11.1999)
	60/156,294	24 September 1999 (2		US	US	60/167,520 (CIP)
	60/155,939	24 September 1999 (2	•	US	Filed on	24 November 1999 (24.11.1999)
	60/156,565	28 September 1999 (2		US	US	60/167,410 (CIP)
	60/156,624	28 September 1999 (2		US	Filed on	24 November 1999 (24.11.1999)
	60/156,625	28 September 1999 (2		US	US	60/167,521 (CIP)
	60/167,542	24 November 1999 (2		US	Filed on	24 November 1999 (24.11.1999)
	60/167,522	24 November 1999 (2		US	US	60/167,943 (CIP)
	60/167,453	24 November 1999 (2		US	Filed on	29 November 1999 (29.11.1999)
	60/167,517	24 November 1999 (2	,	US	US	60/167,945 (CIP)
=	60/167,520	24 November 1999 (2		US	Filed on	29 November 1999 (29.11.1999)
	60/167,410	24 November 1999 (2		US	US	60/168,265 (CIP)
	60/167,521	24 November 1999 (2		US	Filed on	30 November 1999 (30.11.1999)
	60/167,943	29 November 1999 (2	,	US	US	60/168,429 (CIP)
	60/167,945	29 November 1999 (2	,	US	Filed on	30 November 1999 (30.11.1999)
=	60/168,265	30 November 1999 (3		US	US	60/168,432 (CIP)
	60/168,429	30 November 1999 (3	,	US US	. Filed on	30 November 1999 (30.11.1999)
	60/168,432	30 November 1999 (3			US	60/168,197 (CIP)
	60/168,197	30 November 1999 (3	,	US US	Filed on	30 November 1999 (30.11.1999)
=	60/168,468	1 December 1999 (0	,	US	US	60/168,468 (CIP)
	60/168,599	1 December 1999 (0	*		Filed on	1 December 1999 (01.12.1999)
	60/168,857	2 December 1999 (0 2 December 1999 (0		US US	US	60/168,599 (CIP)
譶	60/168,611 60/168,613	2 December 1999 (C		US	Filed on	1 December 1999 (01.12.1999)
(63)	00/108,013	Z December 1999 (C	14.14.1777)	US	US	60/168,857 (CIP)
=	Th. 1.4.3.2		45		Filed on	2 December 1999 (02.12.1999)
(63)		inuation (CON) or con	tinuation-in-	part	US	60/168,611 (CIP)
	(CIP) to earlier		(0)11 EE 7(0)	CID)	Filed on	2 December 1999 (02.12.1999)
	US		60/155,760 (US	60/168,613 (CIP)
•	Filed on	23 September 1	•	,	Filed on	2 December 1999 (02.12.1999)
	US	040 + 1	60/156,294 ((71) A I' / / /	II I I Co

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

[Continued on next page]

(54) Title: MOLECULES FOR DIAGNOSTICS AND THERAPEUTICS

24 September 1999 (24.09.1999)

24 September 1999 (24.09.1999)

60/155,939 (CIP)

(57) Abstract: The present invention provides purified human polynucleotides for diagnostics and therapeutics (dithp). Also encompassed are the polypeptides (DITHP) encoded by dithp. The invention also provides for the use of dithp, or complements, oligonucleotides, or fragments thereof in diagnostic assays. The invention further provides for vectors and host cells containing dithp for the expression of DITHP. The invention additionally provides for the use of isolated and purified DITHP to induce antibodies and to screen libraries of compounds and the use of anti-DITHP antibodies in diagnostic assays. Also provided are microarrays containing dithp and methods of use.

Filed on

Filed on

US

(72) Inventors; and

(75) Inventors/Applicants (for US only): HODGSON, David, M. [US/US]; 567 Addison Avenue, Palo Alto, CA 94301 (US). LINCOLN, Stephen, E. [US/US]; 725 Sapphire Street, Redwood City, CA 94061 (US). RUSSO, Frank, D. [US/US]; 1583 Courdillaeras Road, Redwood City, CA 94062 (US). SPIRO, Peter, A. [US/US]; Apt. B16, 3875 Park Boulevard, Palo Alto, CA 94306 (US). BANVILLE, Steven, C. [US/US]; 604 San Diego Avenue, Sunnyvale, CA 94086 (US). BRATCHER, Shawn, R. [US/US]; 550 Ortega Avenue #B321, Mountain View, CA 94040 (US). DUFOUR, Gerard, E. [US/US]; 5327 Greenridge Road, Castro Valley, CA 94552-2619 (US). COHEN, Howard, J. [US/US]; 3272 Cowper Street, Palo Alto, CA 94306-3004 (US). ROSEN, Bruce, H. [US/US]; 177 Hanna Way, Menlo Park, CA 94025 (US). SHAH, Purvi [IN/US]; 859 Salt Lake Drive, San Jose, CA 95133 (US). CHALUP, Michael, S. [US/US]; Apt. 6, 183 Acalanes Drive, Sunnyvale, CA 94086 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #17, Mountain View, CA 94040 (US). JONES, Anissa, Lee [US/US]; 445 South 15th Street, San Jose, CA 95112 (US). YU, Jimmy, Y. [US/US]; 37330 Portico Terrace, Fremont, CA 94536-7901 (US). GREENAWALT, Lila, B. [US/US]; 1596 Ballantree Way, San Jose, CA 95118-2106 (US). PANZER, Scott, R. [US/US]; 965 East El Camino #621, Sunnyvale, CA 94087 (US). ROSEBERRY, Ann, M. [US/US]; 725 Sapphire Street, Redwood City, CA 94061 (US). WRIGHT, Rachel, J. [NZ/US]; 339 Anna Way, Mountain View, CA 94043 (US). CHEN, Wensheng [CN/US]; 210 Easy Street #25, Mountain View, CA 94043 (US). LIU, Tommy, F. [US/US]; 201 Ottilia Street, Daly City, CA 94014 (US). YAP, Pierre, E. [US/US]; 201 Happy Hollow Court, Lafayette, CA 94549-6243 (US).

STOCKDREHER, Theresa, K. [US/US]; 1596 Ontario Drive #2, Sunnyvale, CA 94087 (US). AMSHEY, Stefan [US/US]; 1541 Canna Court, Mountain View, CA 94043 (US). FONG, Willy, T. [US/US]; 572 Cambridge Street, San Francisco, CA 94134 (US).

- (74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Docket No.: PT-1066 USN

DECLARATION AND POWER OF ATTORNEY FOR UNITED STATES PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, and

I believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a United States patent is sought on the invention entitled

MOLECULES FOR DIAGNOSTICS AND THERAPEUTICS

the specification of wh	nich:		
// is attached her	eto.		
// was filed on _ contains an X //, w	as appl as amended on	ication Serial No.	and if this box
on September 19, 2000	O, if this box contains a	n X /_/, was amended or	on No. PCT/US00/25643 n under Patent Cooperation was amended on
specification, including I acknowledge	g the claims, as amende my duty to disclose inf	ed by any amendment re	rial to the examination of
I hereby claim foreign application(s): Cooperation Treaty int United States indicated patent or inventor's cerdesignating at least one	the benefit under Title for patent or inventor's ternational applications I below and have also in tificate and Patent Cooke country other than the	35, United States Code, certificate indicated below (s) designating at least of dentified below any fore peration Treaty internation United States for the same	§119 or §365(a)-(b) of any ow and of any Patent ne country other than the eign application(s) for ional application(s)
Country	Number	Filing Date	Priority Claimed //Yes //No //Yes //No

1

I hereby claim the benefit under Title 35, United States Code, §119(e) of any United States provisional application(s) listed below.

Application		Status (Pending,
Serial No.	Filed	Abandoned, Patented)
60/156,294	9/24/99	Expired
60/155,760	9/23/99	Expired
60/155,939	9/24/99	Expired
60/156,565	9/28/99	Expired
60/156,624	9/28/99	Expired
60/156,625	9/28/99	Expired
60/167,542	11/24/99	Expired
60/167,522	11/24/99	Expired
60/167,453	11/24/99	Expired
60/167,517	11/24/99	Expired
60/167,943	11/25/99	Expired
60/167,945	11/25/99	Expired
60/167,520	11/24/99	Expired
60/168,468	12/1/99	Expired
60/168,599	12/1/99	Expired
60/167,410	11/24/99	Expired
60/168,265	11/30/99	Expired
60/168,429	11/30/99	Expired
60/168,432	11/30/99	Expired
60/167,52,1	11/24/99	Expired
60/168,857	12/2/99	Expired
60/168,197	11/30/99	Expired
60/168,611	12/2/99	Expired
60/168,613	12/2/99	Expired

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in said prior application(s) in the manner required by the first paragraph of Title 35, United States Code §112, I acknowledge my duty to disclose material information as defined in Title 37 Code of Federal Regulations, §1.56(a) which occurred between the filing date(s) of the prior application(s) and the national or Patent Cooperation Treaty international filing date of this application:

Application		Status (Pending,
Serial No.	Filed	Abandoned, Patented)

I hereby appoint the following:

Lucy J. Billings	Reg. No. 36,749
Michael C. Cerrone	Reg. No. 39,132
Diana Hamlet-Cox	Reg. No. 33,302
Richard C. Ekstrom	Reg. No. 37,027
Barrie D. Greene	Reg. No. 46,740
Matthew R. Kaser	Reg. No. 44,817
Lynn E. Murry	Reg. No. 42,918,
Shirley A. Recipon	Reg. No. 4 <u>7,016</u>
Susan K. Sather	Reg. No. 44,316
Michelle M. Stempien	Reg. No. 41,327
David G. Streeter	Reg. No. 43,168
Stephen Todd	Reg. No. 47,139
Christopher Turner	Reg. No. 45,167
P. Ben Wang	Reg. No. 41,420
1.201	

respectively and individually, as my patent attorneys and/or agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith. Please address all communications to:

LEGAL DEPARTMENT INCYTE GENOMICS, INC. 3160 PORTER DRIVE, PALO ALTO, CA 94304

TEL: 650-855-0555 FAX: 650-849-8886 or 650-845-4166

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

First Joint Inventor:	Full name:	David M. Hodgson
,00	Signature:	1) stoon
$l^{\sigma \sigma}$	Date:	Feb 13,2001
,	Citizenship	Great Britain
	Residence:	Ann Arbor, Michigan
	P.O. Address:	2795 Windwood Drive, Apt. 165 Ann Arbor, Michigan 48105

Second Joint Inventor:	20	Full name:	Stephen E. Lincoln
	200	Signature:	Calula
	V	Date:	Feb (,2001
		Citizenship	United States of America
		Residence:	Redwood City, California
		P.O. Address:	725 Sapphire Street Redwood City, California 94061
Third Joint Inventor:	,	Full name:	Frank D. Russo
initi joint inventor.	280	Signature:	Jun Holm
	V	Date:	16 Feb , 2001
		Citizenship	United States of America
		Residence:	Sunnyvale, California CA
		P.O. Address:	939 Rosette Court
			Sunnyvale, California 94086
	\ <i>~</i> \		
Fourth Joint Inventor:	1/00	Full name:	Peter A. Spiro
	•	Signature:	1 to fre
		Date:	Mar 6,2001
		Citizenship	United States of America
		Residence:	Palo Alto, California 🥂 🗡
		P.O. Address:	410 Sheridan Ave. #333 Palo Alto, California 94306

Fifth Joint Inventor:	400	Full name:	Steven C. Banville
	9	Signature:	Steven Marmill
		Date:	Feb 2,2001
		Citizenship	United States of America
		Residence:	Sunnyvale (1) H Palo Alto, California
		P.O. Address:	1004 San Diego Avenue 365 Monroe Drive
			Palo Alto, California 94306
			Sunnyale, CA 94085-304
	જી		a
Sixth Joint Inventor:	100	Full name:	Shawn R. Bratcher
	•	Signature:	Ahar Brotcher
		Date:	Feb 2, 2001
		Citizenship	United Štates of America
		Residence:	Mountain View, California
		P.O. Address:	550 Ortega Ave., #B321,
			Mountain View, California 94040
	$\sim \xi$	↑ Full name:	Gerard E <u>. Dufø</u> ur
Seventh Joint Inventor:	1		N OK D
		Signature:	2001
		Date:	Feb. 16, 2001
		Citizenship	United States of America
		Residence:	Castro Valley, California
		P.O. Address:	5327 Greenridge Rd.
			Castro Valley, California
			94552-2619

Eighth Joint Inventor:	OPP	Full name:	Howard J. Cohen
Eighth John Hivehon.	0		
		Signature:	Kanzis Sha
		Date:	5 Feb , 2001
		Citizenship	United States of America
		Residence:	Palo Alto, California UK
		P.O. Address:	3272 Cowper Street
			Palo Alto, California 94306-3004
	Ω,		
Ninth Joint Inventor:	de	Full name:	Bruce H. Rosen
	·	Signature:	Delle
		Date:	Fb 14 ,2001
		Citizenship	United States of America
		Residence:	Menlo Park, California C
		P.O. Address:	177 Hanna Way
			Menlo Park, California 94025
	\mathcal{A})	
Tenth Joint Inventor:	120	Full name:	Purvi Shah
	V	Signature:	Parishal
		Date:	Feb 23 ,2001
		Citizenship	India (1 ft)
		Residence:	San Jose, California
		P.O. Address:	859 Salt Lake Drive
			San Jose, California 95133

Eleventh Joint Inventor: $1/0$	Full name:	Michael S. Chalup
1,	Signature:	Mitmed & Un
	Date:	Feb 6 ,2001
	Citizenship	United States of America
	Residence:	Sunnyvale, California CH
	P.O. Address:	183 Abalønes Dr., Apt. 6 Sunnyvale, California 94086
Twelfth Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Jennifer L. Hillman White States of America Mountain View, California 230 Monroe Drive, #17 Mountain View, California 94040
Thirteenth Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Anissa L. Jones (Anissa L. Jo

7

Fourteenth Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Jimmy Y. Yu Jmmy Y. Yu Felo 1b , 2001 United States of America Fremont, California P 3655 Wyndham Dr. Fremont, California 94536
Fifteenth Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Lila B. Greenawalt FENNY 9, 2001 United States of America San Jose, California (1) 1596 Ballantree Way San Jose, California 95118-2106
Sixteenth Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Scott R. Panzer Jwa Paw 5 Feb , 2001 United States of America Sunnyvale, California (*) 571 Bobolink Circle Sunnyvale, California 94087

Seventeenth Joint Inventor:	Full name: Signature: Date: Citizenship Residence: P.O. Address:	Ann M. Roseberry Commons 5, 2001 United States of America Redwood City, California
	1.0.71441 633.	725 Sapphire Street Redwood City, California 94061
Eighteenth Joint Inventor:	Full name: Signature:	Rachel J. Wright 2.2. W. L.t. Kbenas 14 ~ ,2001
	Date: Citizenship	New Zealand 0 N
	Residence:	Mountain View, California
	P.O. Address:	333 Anna Ave. Mountain View, California 94043
Nineteenth Joint Inventor:	N Full name:	Wensheng Chen
((Signature:	Muller.
	Date:	Fel 2 , 2001
	Citizenship	China
	Residence:	Mountain View, California
	P.O. Address:	210 Easy Street #25 Mountain View, California 94043

√\)	
Twentieth Joint Inventor:	Full name:	Tommy F. Liu
7	Signature:	Towery to tunto
	Date:	/ Jao (6 , 2001
	Citizenship	United States of America
	Residence:	Daly City, California
	P.O. Address:	201 Ottilia Street
		Daly City, California 94014
.*		
Twenty-First Joint Inventor:	Full name:	Pierre E. Yap
'V	Signature:	Pray 8- 7
	Date:	feb, (3) , 2001
	Citizenship	United States of America
	Residence:	Lafayette, California
	P.O. Address:	201 Happy Hollow Court
		Lafayette, California 94549-6243
		74347-0243
Twenty-Second Joint Inventor:	Full name:	Theresa K. Stockdreher
2 case	Signature:	Thereson K. Stockdreher
	Date:	FEB 08 ,2001
	Citizenship	United States of America
	Residence:	Sunnyvale, California (**)
	P.O. Address:	1596 Ontario Drive, #2
		Sunnyvale, California 94087

572 Cambridge Street

San Francisco, California 94134

Docket No.: PT-1066 USN

, K ⁰		
Twenty-Third Joint Inventor:	Full name:	Stefan Amshey
70	Signature:	Stefen au
	Date:	February 12, 2001
	Citizenship	United States of America San Francisco Chi Mountain View, California SRA
	Residence:	Mountain View, California
	P.O. Address:	1541 Canna Court Mountain View, California 94043
	•	1605 Zoth St.
\mathcal{J}_{i}		1605 Zoth St. San Francisco, CA 94107
Twenty-Fourth Joint Inventor	Full name:	Willy T. Fong
· V	Signature:	Willy J. Jany
	Date:	Felhon 12 0,2001
	Citizenship	United States of America
	Residence:	San Francisco, California

P.O. Address:

100 MM 51.

SEQUENCE LISTING:

```
<110> INCYTE GENOMICS, INC.
         HODGSON, David M.
LINCOLN, Stephen E.
         RUSSO, Frank D.
         SPIRO, Peter A.
         BANVILLE, Steve C. BRATCHER, Shawn R.
         DUFOUR, Gerard E.
         COHEN, Howard J.
ROSEN, Bruce H.
SHAH, Purvi
         CHALUP, Michael S.
         HILLMAN, Jennifer L.
         JONES, Anissa L.
         YU, Jimmy Y.
         GREENAWALT, Lila B.
         PANZER, Scott R.
                                                                               • .-
         ROSEBERRY, Ann M.
         WRIGHT, Rachel J.
        CHEN, Wensheng
LIU, Tommy F.
YAP, Pierre E.
         STOCKDREHER, Theresa K.
         AMSHEY, Stefan
         FONG, Willy T.
<120> MOLECULES FOR DIAGNOSTICS AND THERAPEUTICS
<130> PT-1066 PCT
<140> To Be Assigned
<141> Herewith
<150> 60/156,294; 60/155,760; 60/155,939; 60/156,565; 60/156,624;
         60/156,625; 60/167,542; 60/167,522; 60/167,453; 60/167,517;
         60/167,943; 60/167,945; 60/167,520; 60/168,468; 60/168,599; 60/167,410; 60/168,265; 60/168,429; 60/168,432; 60/167,521; 60/168,857; 60/168,197; 60/168,611; 60/168,613
<151> 1999-09-24; 1999-09-23; 1999-09-24; 1999-09-28; 1999-09-28; 1999-09-28; 1999-11-24; 1999-11-24; 1999-11-24; 1999-11-24; 1999-11-24; 1999-11-24; 1999-11-20; 1999-11-20; 1999-11-30; 1999-11-30; 1999-11-30; 1999-11-30; 1999-11-30;
         1999-12-02; 1999-11-30; 1999-12-02; 1999-12-02
<160> 71
<170> PERL Program
<210> 1
<211> 3211
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 405310.1.oct
<220>
<221> unsure
<222> 91, 105, 119, 122, 124, 131, 139, 143, 211, 262, 288, 318, 342, 347, 399, 414, 416, 421 <223> a, t, c, g, or other
<400> 1
```

```
aaattaagat taattttcac taaccagctg aatactattg agtactatca agtgttgcaa 60 caaatcttac cttctaataa aggtggctca ncctcaaagt tgttnccata gaaaggctna 120
gntnaagetg nagtatatne etnagttgge tggtaaatet geeeggtgta tggetgttgt 180
ggctgcatca tgtctggagg gacaaatctg nettgctcga atagtcatag ccagcatact 240 gttatagggt cctccacttc enceataatc ataggactge tgtgactnat catcgatget 300
gtaacttgte tggtaganat ccgtgtttaa gttttcaaag entgacnttg caaataatca 360 aactetgagg etgegetgae ggcaaaggca gtagettene taateccata caancaccaa 420
negetggtte agggtetgaa acagagtttg ggggttgttt gggattagtg aagetactge 480 etttgeegee agegeageet cagagtttga ttatttgeaa tgteaggett tgaaaactta 540
aacacggatt totaccagac aagttacagc atcgatgatc agtcacagca gtcctatgat 600
tatggaggaa gtggaggacc ctatagcaaa cagtatgctg gctatgacta ttcgcagcaa 660
ggcagatttg tecetecaga catgatgcag ccacaacage catacacegg gcagatttac 720
cagecaacte aggeatatae tecagettea ecteageett tetatggaaa caaetttgag 780
gatgagccac ctttattaga agagttaggt atcaattttg accacatctg gcaaaaaaca 840
ctaacagtat tacatccgtt aaaagtagca gatggcagca tcatgaatga aactgatttg 900
gcaggtccaa tggttttttg ccttgctttt ggagccacat tgctactggc tggcaaaatc 960
cagtttggct atgtatacgg gatcagtgca attggatgtc taggaatgtt ttgtttatta 1020 aacttaatga gtatgacagg tgtttcattt ggttgtgtg caagtgtcct tgggatattg 1080 tcttctgccc atgatcctac tttccagctt tgcagtgata ttttctttgc aaggaatggt 1140
aggaatcatt ctcactgctg ggattattgg atggtgtagt ttttctgctt ccaaaatatt 1200
tatttetgea ttageeatgg aaggacagea acttttagta geatateett gegetttgtt 1260 atatggagte tttgeeetga ttteegtett ttgaaaattt atetgggatg tggacateag 1320
tgggccagat gtacaaaaag gaccttgaac tcttaaattg gaccagcaaa ctgctgcagc 1380
gcaactetca tgcagattta catttgactg ttggagcaat gaaagtaaac gtgtatetet 1440 tgttcatttt tatagaactt ttgcatacta tattggattt acctgcggtg tgactagett 1500 taaatgtttg tgtttataca gataagaaat gctatttett tetggtteet gcagccattg 1560
aaaaaccttt ttccttgcaa attataatgt ttttgataga tttttatcaa ctgtgggaaa 1620
ccaaacacaa agctgataac ctttcttaaa aacgacccag tcacagtaaa gaagacacaa 1680 gacttactgc aaaaatattt ttccaaggat ttaggaaaga aaaattgcct tgtattctca 1740
agtcaggtaa ctcaaagcaa aaaagtgatc caaatgtaga gtatgagttt gcactccaaa 1800
aatttgacat tactgtaaat tatctcatgg aatttttgct aaaattcaga gatacgggaa 1860
gttcacaatc taccttattg tagacatgaa atgcgaacac ttacttacat attaatgtta 1920 actcaacctt agggacctgg aatggttgca ttaatgctat aatcgttgga tcgccacatt 1980
tcccaaaaat aataaaaaaa tcactaacct tttttaagga aaatatttaa agttttacaa 2040
aattcaatat tgcaattatc aatgtaaagt acatttgaat gcttattaaa actttcccaa 2100 ttaattttaa ctgtgttatt gaatttactt ttactaaact actgttctct ttgtctcttt 2160 tttaactagg ctctgatttt gacccctaat ttaagcttta agaatagaaa tcagctaata 2220
tagaatcaga caaaaagggg attaaatgag cagtttgagt tacattattt tattqtatta 2280
aatttatttg atttatattg tcatgttctc ttgccagaga gaatctgtag gaaaatactg 2340 tatcttgtat actgatcatt ggcttttct agaaaaactg tctctgattc tggacaaagc 2400 tcagttatag ttacgagaaa gatatggtac agggaggaaa atactgcctt tttttttt 2460
ttaaagagat tttcagacta aatagaaatg tcaaaatgat gtatcaatgg ttctttttta 2520
gaacaagttt tcaaagcata aaaagaggtt gagagaaata acatatttat tgattcacat 2580 aagtatgttt ttcttcatta atcgtctgga gaaacccact tgtcattaat ttgttttggg 2640 ctaggttttc aaacttacca aattgcttta aaaaagcaat ttggaaggta atttgatagg 2700
ctttccaact taaccaaatt ttttattgta attcttggat agtatttttg tctttttcaa 2760
ttcatttgtc tttttcagta tagtttttgt taaggcaaat gtcttccctt aatatccaaa 2820 tattgctaat aaacggtaga agatgctttg gaaattaaaa ttatctcgct gttggttaga 2880 cttaacactg ttaatcttca gccaaatatc acatatggat caaattattt tcttttttgt 2940
tgtttaccct atcctcaaca acatttttag tttaaattat tgtagagatt ttttttgtgg 3000 tggttatttt ttattttgct ccaaaataat aaggtgcaaa gctattttat gcttaactgt 3060 tgctctgtca aaacagctat gcagtggagt tgcatttgat gttctagagt ttgattacat 3120
gcagagttgt atatagccaa aacttctctt atcaaactct gttatgtagg catatttata 3180
tatacattaa agactgttgt actgtgtctc a
<210> 2
<211> 742
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 480731.6.oct
<400> 2
agettetgta etgecaggte egggteggeg getgeactge ggatgagace ggtgegacte 60
atgaaggtgt tegteaceeg caggataeee geegagggta gggtegeget egeeegggeg 120
```

```
gcagactgtg aggtggagca gtgggactcg gatgagccca tccctgccaa ggagctagag 180
cqaqqtqtqg cgggggcca cggcctgctc tgcctcctct ccgaccacgt ggacaagagg 240
atcetggatg etgeagggge caateteaaa gteateagea eeatgtetgt gggeategae 300
cacttggctt tggatgaaat caagaagcgt gggatccgag ttggctacac cccagatgtc 360 ctgacagata ccaccgccga actcgcagtc tccctgctac ttaccacctg ccgccggttg 420
ccggaggcca tcgaggaagt gaagaatggt ggctggacct cgtggaagcc cctctggctg 480
tgtggetatg gactcacgca gagcactgtc ggcatcatcg ggctggggcg cataggtgag 540
geteceaceg geoegettge eegeceegge teteacageg tggtttgeat eeetggeace 600 aegtgtetga aggetgagaa gacceacatg etgteaggge aetttgettg eagtagagat 660
atctctaatg agggatacag ctttgtaaaa cacaggcaaa tacataaata aaccaaagca 720
gccttcctta agaactcaaa aa
                                                                              742
<210> 3
<211> 1779
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 334751.2.dec
<400> 3
gtgcgctcgc cgtcggctct acctgcgtgc tttagctcct tctcgcctga tccttctgtc 60
teteceaace eeggacaece ggettegaet ggttatatet teggtgttet ttteetetet 120 tettetteg eggtteagea tgeaggaaaa agaegeetee teacaaggtt teetgeeaca 180
cttccaacat ttcgccacgc aggcgatcca tgtgggccag gatccagagc aatggacctc 240
cagggetgta gtgccccca teteaetgte caccaegtte aagcaagggg cgcetggeca 300
gcactegggt tttgaatata geegttetgg aaateecact aggaattgee ttgaaaaage 360
agtggcagca ctggatgggg ctaagtactg tttggccttt gcttcaggtt tagcagccac 420
tgtaactatt acccatcttt taaaagcagg agaccaaatt atttgtatgg atgatgtgta 480
tggaggtaca aacaggtact tcaggcaagt ggcatctgaa tttggattaa agatttcttt 540
tgttgattgt tccaaaatca aattactaga ggcagcaatt acaccagaaa ccaagcttgt 600
ttggatcgaa accccacaa accccacca gaaggtgatt gacattgaag gctgtgcaca 660
tattgtcat aagcatggag acattattt ggtcgtggat aacactttta tgtcaccata 720 tttccagcgc cctttggctc tgggagctga tattctatg tattctgcaa caaaatacat 780 gaatggccac agtgatgttg taatgggcct ggtgtctgtt aattgtgaaa gccttcataa 840
tagacttegt teettgeaaa actetettgg ageagtteea teteetattg attgttacet 900
ctgcaatcga ggtctgaaga ctctacatgt ccgaatggaa aagcatttca aaaacggaat 960
ggcagttgcc cagttcctgg aatctaatcc ttgggtagaa aaggttattt atcctgggct 1020
gccctctcat ccacagcatg agttggtgaa gcgtcagtgt acaggttgta cagggatggt 1080
caccttttat attaagggca citcttcagc atgetgagat ttteetcaag aacctaaage 1140
tatttactct ggccgagagc ttgggaggat tcgaaagcct tgctgagctt ccggcaatca 1200
tgactcatgc atcagttett aagaatgaca gagatgteet tggaattagt gacacactga 1260
ttcgactttc tgtgggctta gaggatgagg aagacctact ggaagatcta gatcaagctt 1320
tqaaqqcaqc acaccttca agtggaagtc acagctagta ttccagagct gctattagaa 1380
gctgcttcct gtgaagatca aatcttcctg agtaattaaa tggaccaaca atgagccttt 1440
gcaaaatttt caageggaaa ttttaaggca ceteattate ttteataaet gtaattttet 1500
tagggatcat ctctgttaaa aagttttetg tatgtcatgt tataattaca ggtcaattct 1560
gttaatatet tittgttaat titgetetat gtttgeetet gaaggaggtg agattigtge 1620 taetitggga gattatgtte tittteatg tetaagatti attitgatea tgtttataat 1680 ataatggtaa tieatittig atgittigtg aagaatttaa attitaaacga atgitettaa 1740
atcaagtgtg atttttttgc atatcattga aaagaacat
<210> 4
<211> 1305
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 237330.8.dec
<400> 4
ggaaatggag aaacgctgaa aacgcacaac actttggttg gttaaattag ggttccgcca 60
agageeggag eggtgtgeea agtgaaaact acattteeca eggggeageg ggteaegtea 120
cagaggaacg actacgcatg cgtgcaaggt cctccgcgcg cgactacgct cataaaagga 180
aaaaaagegt gtgeggttet egacgtgeeg ceaatetteg aaegeaggte tgtgatgeat 240
```

```
cegeagacte egaaaaaggg ttegaggaac gegeetgete eestegtege agtttecage 300
ccgacgaget tgttttgtcc cggactcggt gcccctgtag acaatggccc tcgtgtctgc 360
cgattcccgc attgcagaac ttctcacaga gctccatcag ctgatcaaac aaacccagga 420
agagogtteg eggagogaac acaacttagt gaacatccag aagacccatg ageggatgca 480
gacagagaac aagatttete eetattaeeg gacaaagetg egtggeetet acacaacege 540 caaggeegat geagaggetg agtgeaacat eetteggaaa getetggaca agategegga 600
aatcaagtct ctgttggaag agaggcggat tgcggccaag attgccggtc tctacaatga 660
cteggageca ecceggaaga ccatgegeag aggggtgetg atgaceetge tgeageagte 720
ggccatgacc ctgcccctgt ggatcgggaa gcctggtgac aagcccccac ccctctgtgg 780 ggccatccct gcctcaggag actacgtggc cagacctgga gacaaggtgg ctgcccgggt 840
gaaggeegtg gatggggaeg ageagtggat eetggeegag gtggteagtt acageeatge 900
caccaacaag tatgaggtag atgacatcga tgaagaaggc aaagagagac acaccctgag 960
ceggegeegt gteatecege tgccceagtg gaaggecaac ceggagaegg accetgagge 1020 cttgttccag aaggageage tegtgetgge cetgtatece cagactacet gettetaceg 1080
egecetgate catgegeece cacageggee ceaggatgae tacteggtee tgtttgaaga 1140
cacetectat geagatgget atteceetee ceteaatgtg geteagagat aegtggtgge 1200 ttgtaaggaa cecaagaaaa agtgatgeeg cetggeagae tegeeateee ceaaegacae 1260 agggeaggae ageagaggae gtgetgggat taaaeacatt ceeee 1305
<210> 5
<211> 1991
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 053778.11.dec
<220>
<221> unsure
<222> 83-84, 87, 97, 129, 131
<223> a, t, c, g, or other
<400> 5
cgcaccgcag aggagagget tetecaacce ggcceggeee tteetteeee ttteegeag 60 tegttgeete eteeteeet etnntentee teecetneet eeteetggee gettagtete 120 acaccegeng ngccgttgtt eeegagacgt tgttgagtee eetgtgteet ettetgggtg 180
gaggaactgc aatgtctggt ggagaacaga aaccagagag gtactatgtg ggtgtggacg 240
ttggaacagg cagtgtccgt gcagctctgg tggaccagag tggggtcctg ttggcttttg 300 cagaccagcc aattaagaat tgggagccc agttcaacca ccatgagcag tcctcgagg 360 acatctgggc tgcgtgctgt gttgtcacaa agaaagttgt acaagggatt gatttaaacc 420
aaattcgagg acttgggttt gatgccacgt gttctctggt tgttttggat aagcagtttc 480 acccattacc agtcaaccag taaggggatt cccatcgaaa cgtcatcatg tggctggacc 540 atcgagcagt cagtcaagtt aacaggatca atgagaccaa gcacagtgtc ctccagtacg 600
tcgggggggt gatgtctgtg gaaatgcagg ccccgaaact tctgtggctg aaagagaact 660
tgagagagat ttgctgggat aaggcgggac atttctttga tctcccggac ttcttatcgt 720
ggaaggcaac aggtgtcaca gcacggtctc tctgctccct ggtgtgtaag tggacatatt 780 cagcagagaa aggctgggac gacagtttct ggaaaatgat tggtttggaa gactttgttg 840 cagataatta cagcaaaata ggaaaccaag tgctacctcc tggagcttct cttggaaatg 900
ggetcacace agaggeagea agagacettg geetteteee tgggattgeg gtegeagett 960
cactcattga tgcccatgca ggaggactag gagtgattgg ggcagatgtg agagggcacg 1020 gcctcatctg tgaggggcag ccagtgacgt cacggctggc tgtcatctgt ggaacgtctt 1080
cttgtcacat ggggatcagc aaagacccga tttttgtacc aggcgtctgg gggccttatt 1140
tctcagccat ggtacctggg ttctggctga atgaaggtgg tcagagcgtt actggaaaat 1200
tgatagacca catggtacaa ggccatgctg cttttccaga actacaagta aaggccacag 1260 ccagatgcca gagtatatat gcatatttga acagtcacct ggatctgatt aagaaggctc 1320 agcctgtggg tttccttact gttgatttac atgtttggcc agatttccat ggcaaccggt 1380
etecettage agatetgaca etaaagggea tggteaeegg attgaaaetg teteaggace 1440
ttgatgatet tgccattete tacetggeea eagtteaage cattgetttg gggaeteget 1500 teattataga agccatggag geageaggge acteaateag tactettte etatgtggag 1560 geeteageaa gaateeett tttgtgeaaa tgeatgegga eattactgge atgeetgtgg 1620
teetgtegea agaggtggag teegttettg tgggtgetge tgttetgggt geetgtgeet 1680
caggggattt cgcttctgta caggaagcaa tggcaaaaat gagcaaagtt gggaaagttg 1740 tgttcccgag actacaggat aaaaaatact atgataagaa ataccaagta ttcctgaagc 1800
tggttgaaca ccagaaggag tatttggcga tcatgaatga tgactgaaca gggcttgcag 1860
gtgctgatgc cagaagcttc tgtgccattg cattaaagac ttctgtcatt tgatccatgt 1920 tcaagaccct tgaggtattg tttcatcatt tctgtattgt ctttcaataa agaaaacaaa 1980
```

```
catgtgcaac c
                                                                                          1991
<210>6
<211> 2055
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 360645.10.dec
cggaggcgag cggagggttt cccgcggcgg atttctgaca gtcagacttg tccacaagaa 60
ctcaactggc aaggctgctt ttctgtgcta aaactgggga gctagtgggc accatgaaga 120
tettetgeag tegggeeaat eegaceaegg ggtetgtgga gtggetggag gaggatgaac 180
actatgatta ccaccaggag attgcaaggt catcttatgc agatatgcta catgacaaag 240
acagaaatgt aaaatactac caaggtatcc gggctgccgt gagcagggtg aaggacagag 300
gacagaagge ettggttete gacattggea etggeaeggg aetettgtea atgatggegg 360
tcacagcagg tgccgacttc tgctatgcca tcgaggtttt caagcctatg gctgatgctg 420
ctgtgaagat tgtggagaaa aatggcttta gtgataagat taaggttatc aacaagcatt 480
ccaccgaggt gactgtaggt ccagagggtg acatgccatg ccgtgccaac atcctggtca 540 cagagttgtt tgacacagag ctgatcgggg aggggggct gcctcctat gagcacgcac 600
acaggeatet egtggaggaa aattgtgagg eegtgeecca eagageeace gtetatgeae 660
agetggtgga gteegggagg atgtggtegt ggaacaaget attteecate caegtgeaga 720 ceageetegg agageaggte ategteete eegttgaegt ggagagetge eetggegeae 780 cetetgtetg tgacatteag etgaaccagg tgteaceage egaetttaca gteetcageg 840
atgtgctgcc catgttcagc atagacttca gcaagcaagt cagtagctca gcagcctgcc 900
atagcaggcg gtttgaacct ctgacatctg gccgagctca ggtggttctc tcgtggtggg 960 acattgaaat ggaccctgag gggaagatca agtgcaccat ggccccttc tgggcacact 1020 cagacccaga ggagatgcag tggcgggacc actggatgca gtgtgtgtac ttcctgccac 1080
aagaggagcc tgtggtgcag ggctcagcgc tctatctggt agcccaccac gatgactact 1140
gegtatggta cageetgeag aggaceagee etgaaaagaa tgagagagte egecagatge 1200 geecegtgtg tgaetgeeag geteacetge tetggaaceg geeteggttt ggagagatea 1260
atgaccagga cagaactgat cgatacgtcc aggetctgag gaccgtgctg aagccagaca 1320
gegtgtgeet gtgtgteage gatggeagee tgeteteegt getggeecat cacetggggg 1380
tggagcaggt gtttacagtc gagagttcag cagcttctca caaactgttg agaaaaatct 1440 tcaaggctaa ccacttggaa gataaaatta acatcataga gaaacggccg gaattattaa 1500
caaatgagga cctacagggc agaaaggtct ctctcctcct gggcgagccg ttcttcacta 1560
ccagcetget geogtggeac aacetetaet tetggtaegt geggaeeget gtggaeeage 1620
acctggggcc aggtgccatg gtgatgcccc aggcagcctc gctgcacgct gtggttgtgg 1680 agttcagggt gtgcagggaa cagcaagatg tgcctcttgt tcttgctgcc acgcttccct 1740
gtgtcctggc gggcgggtgt ggatggggct gctccttcct cacaggacct gtggcggatc 1800
cggagccct gtggtgactg cgaaggcttc gacgtgcaca tcatggatga catgagttag 1860 gtaggcaggg ccacactctg catagtccc ccgacctgct cctgtatcgc aggcctctca 1920 cagggtccca gcttgggcag cacaggctct tctgttgggg gcagtgaggt cagggtgctgc 1980
cattttgtgt ggttcaacat gagcattgct tggtaccagc cctgttcttg gctccgtgct 2040
gtcaccctgt gtcag
                                                                                          2055
<210> 7
<211> 1862
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 334808.1.dec
<400> 7
gaatteeggg eegaaggtge etgggettge teatteagte acagteacag eeaccatgee 60
agggaggace tgggagetgt geetgetaet getgetgggg etgggaetgg ggteceagga 120 ggeeetaece ceaecetgtg agagtgagat ttaetgeeae ggggagetee taaaceaagt 180
tcaaatggcc aagctctacc aggatgacaa gcagtttgtg gacatgccac tgtctatagc 240
tecagaacaa gteetgeaga eetteactga getgtecagg gaccacaate acagcatece 300
cagggagcag ctgcaggcgt ttgtccacga acacttccag gccaaggggc aggagctgca 360 gccctggacc cctgcagact ggaaagacag ccccagttc ctgcagaaga tttcagatgc 420
caaactgcgt gcctgggcag ggcagctgca tcagctctgg aagaagctgg ggaagaagat 480
gaagccagag gttctcagcc accetgageg gttctctctc atatactcag aacatccttt 540
```

```
cattgtgcct ggcggtcgct ttgttgagtt ctactactgg gactcctact gggtcatgga 600 gggtctgctc ctctcagaga tggctgagac ggtgaagggc atgctgcaga acttcttgga 660
 cctggtgaaa acctatgggc atgtccccaa tggtgggcgc gtgtactacc tgcagcggag 720
 ccagccccca ctcttgaccc tcatgatgga ttgctacttg actcacacca atgacaccgc 780
 ctttctacag gaaaacattg aaacactagc cttggaattg gacttttgga ccaagaacag 840 gactgtctct gtgagcttgg agggaaagaa ctacctcctg aatcgctatt atgtccctta 900
 tgggggaccc aggcctgagt cctacagcaa agatgtggag ttggctgaca ccttgccaga 960
 aggagacegg gaggetetgt gggetgaget caaggetggg ggetgagtet ggetgggaet 1020 tetetteacg etggeteatt ggaggeceaa acceaacte gettagegge ateegaacaa 1080 geaaactggt geetgttgae etgaatgeet teetatgeea ageagaggag etgatgagea 1140
 acttetatte caggetgggg aacgaetece aggecaegaa gtacagaate etgeggtege 1200
 agcgcttggc cgccctgaac acagtcctgt gggatgagca gaccggagcc tggttcgatt 1260
 acgacettga gaagaagaag aaaaaceggg agttttacce atccaacete actccactet 1320
 gggccgggtg tttctctgac cctggcgtgg cggacaaggc tctgaaatac ctggaggaca 1380
 accggatect gacttaccag tatgggatec cgacetetet ccagaagaca ggccagcagt 1440
 gggatttccc caatgcctgg gccccctgc aggacctggt catcagaggc ctggccaagg 1500 cacctttacg tcgggcccag gaagtggctt tccagctggc tcagaattgg atccgaacca 1560
 attttgatgt ctactcgcag aagtcagcca tgtatgagaa gtatgacgtc agcaacggtg 1620
 gacagecegg tgggggagga gaatatgaag tteaggaggg atttggetgg aegaatggtg 1680 tggteetgat getgetggae egetatggtg aeeggetgae eteaggggee aagetggett 1740 teetggagee eeaetgeetg geggeeaeee ttetgeeeag eeteetget ageeteetge 1800 eatggtgaea geeeteetet eeteaeetgg eeecagetee tgeeeeatta aaeetetgea 1800
                                                                                                                   1862
 <210> 8
 <211> 1879
 <212> DNA
 <213> Homo sapiens
 <221> misc_feature
 <223> Incyte ID No: 997089.7.dec
 ggccgggaca cgtggtacgg aaccggcgcc gcgcttgctg ctggtaacag ggccttgcct 60 agtgggcctt ccttcccaga accttcgaga tctgcggtct ggggtctggt tgaaagatgg 120
eggeeeteae taccetgttt aagtacatag atgaaaatca ggategetae attaagaaac 180
tegeaaatg ggtggetate cagagtgtgt etgegtggee eggagaagag aggegaaate 240 aggagggatga tggaagttge tgetgeagat gttaageagt tggggggete tgtggaactg 300 gtggatateg gaaaacaaaa geteeetgat ggeteggaga teeegeetee teetattetg 360
 ctcggcaggc tgggctccga cccacagaag aagaccgtgt gcatttacgg gcacctggat 420
gtgcagcctg cagccctgga ggacggctgg gacagcgagc ccttcaccct ggtggagcga 480 gacggcaagc tgcatgggag aggttcgact gatgataagg gcccggtggc cggctggata 540 aacgccctgg aagcgtatca gaaaacaggc caggagattc ctgtcaacgt ccgattctgc 600
ctcgaaggca tggaggagtc aggctctgag ggcctagacg agctgattt tgcccggaaa 660 gacacattct ttaaggatgt ggactacgtc tgcattctg acaattactg gctgggaaag 720
aagaageeet geateaceta eggeeteagg ggeatttget aettttteat egaggtggag 780 tgeageaaca aagaceteea ttetggggtg taeggggget eggtgeatga ggeeatgaet 840
gateteattt tgetgatggg etetttggtg gacaagaggg ggaacateet gateeegge 900 attaaegagg ecgtggeege egteaeggaa gaggageaca agetgtaega egacategae 960 tttgacatag aggagttge eaaggatgtg ggggegeaga teeteetgea eageeacaag 1020 aaagacatee teatgeaegg atggeggtae eegtetetgt eeeteeatgg eategaagge 1080
geettetetg ggtetgggge caagacegtg atteccagga aggtggttgg caagttetee 1140
atcaggeteg tgeegaacat gaeteetgaa gtegteggeg ageaggteae aagetaceta 1200 actaagaagt ttgetgaact aegeageeee aatgagttea aggtgtacat gggeeaeggt 1260
gggaagecet gggtetecga etteagteae ceteattace tggetgggag aagagecatg 1320 aagacagttt ttggtgttga gecagaettg aecagggaag geggeagtat tecegtgace 1380
ttgaccttte aggaggecae gggcaagaae gtcatgetge tgeetgtggg gteageggat 1440 gaeggagece aeteceagaa tgaaaagete aacaggtata aetacataga gggaaccaag 1500
atgctggccg cgtacctgta tgaggtctcc cagctgaagg actaggccaa gccctctgtg 1560
tgccatetec aatgagaagg aatcetgece teaceteace ettttccaae ttgcccaggg 1620
aagtggaggt tecetettte ettteeetet tgteaggtea teeatgaett tagagaacag 1680 acacaagtgt ateeagetgt ceaegggtgg agetaceegt tgggettatg agtgaeetgg 1740 agtgaeaget gagteaecet gggtaagtte teagagtggt caggatgget tgaeetgcag 1800
aagataccca aggtccaaaa gcacaaggtc tgcggaaagt tctggttgtc ggctgggcac 1860
cacggetcae acctataat
                                                                                                                  1879
```

```
<210> 9
<211> 1517
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 237152.1.dec
<220>
<221> unsure
<222> 1059, 1076
<223> a, t, c, g, or other
<400> 9
gtcccggccg cgcggagcgg acatgtgcag gctgggctag gagccgccgc ctccctcccg 60 cccagcgatg tattcagcgc cctccgcctg cacttgcctg tgtttacact tcctgctgct 120 gtgcttccag gtacaggtgc tggttgccga ggagaacgtg gacttccgca tccacgtgga 180
gaaccagacg egggeteggg acgatgtgag eegtaageag etgeggetgt accageteta 240 cageeggace agtgggaaac acatecaggt eetgggeege aggateagtg eeegeggega 300
ggatggggac aagtatgccc agctcctagt ggagacagac accttcggta gtcaagtccg 360 gatcaagggc aaggagacgg aattctacct gtgcatgaac cgcaaaggca agctcgtggg 420
gaagcccgat ggcaccagca aggagtgtgt gttcatcgag aaggttctgg agaacaacta 480
cacggccctg atgtcggcta agtactccgg ctggtacgtg ggcttcacca agaaggggcg 540 gccgcggaag ggccccaaga cccgggagaa ccagcaggac gtgcatttca tgaagcgcta 600 ccccaagggg cagccggagc ttcagaagcc cttcaagtac acgacggtga ccaagaggtc 660
ccgtcggatc cggcccacac accctgccta ggccaccccg ccgcggcccc tcaggtcgcc 720
ctggccacac tcacactccc agaaaactgc atcagaggaa tatttttaca tgaaaaataa 780
ggaagaagct ctatttttgt acattgtgtt taaaagaaga caaaaactga accaaaactc 840
ttggggggag gggtgataag gattttattg ttgacttgaa acccccgatg acaaaagact 900 cacgcaaagg gactgtagtc aacccacagg tgcttgtctc tctctaggaa cagacaactc 960 taaactcgtc cccagaggag gacttgaatg aggaaaccaa cactttgaga aaccaaagtc 1020 ctttttccca aaggttctga aaggaatcaa aaaaaaaaanc aaaaaaaaag aaaacncaaa 1080
gagaaagtag tactccgccc accaacaac tccccctaac tttcccaatc ctctgttcct 1140
gccccaaact ccaacaaaa tcgctctctg gtttgcagtc atttatttat tgtccgctgc 1200 aagccgcccc gagacaccgc gcagggaagg cgtgcccctg ggaattctcc gcgcctcgac 1260 ctcccgacga cagacgcctc gtccaatcat ggtgaccctg ccttgctcgc agttctggag 1320
gatgetgeta tegacettee gtgacteaeg tgacetagta caceaatgat aagggaatat 1380 tttaaaacca getatattat atatattata tatatataag etatttattt cacetetetg 1440 tatattgeag ttteatgaac caagtattae agecacaaca attaaaaaca acagacaaat 1500
tatttaaaaa accaaaa
                                                                                                                 1517
<210> 10
<211> 1815
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 232851.7.dec
<400> 10
gaagtttacc ctgttcagca gaagctgaga tgggaacagg aaacccacag ggccccttta 60
tteggcaaaa atgteagta gegeeeeggg gagcageega gggteeetga gtgteegeag 120 caatgggege tgagtteete tgetggagtt cateetgeta getgggttee egagetgeeg 180 gtetgageet gaggeatgga geeteetgga gaetggggge eteeteetg gagateeace 240
cecagaaceg aegtettgag getggtgetg tateteacet teetgggage eccetgetae 300
gececagete tgeegteetg caaggaggae gagtacecag tgggeteega gtgetgeece 360
aagtgcagtc caggttatcg tgtgaaggag gcctgcgggg agctgacggg cacagtgtgt 420 gaaccetgcc ctccaggcac ctacattgcc cacctcaatg gcctaagcaa gtgtctgcag 480 tgccaaatgt gtgacccagc catgggcctg cgcgcgagcc ggaactgctc caggacagag 540
aacgccgtgt gtggctgcag cccaggccac ttctgcatcg tccaggacgg ggaccactgc 600
geogetyce gegettaege caceteeage eegggeeaga gggtgeagaa gggaggeace 660 gagagteagg acaecetyty teagaactyc eeeecgggga cettetete caatgggace 720
ctggaggaat gtcagcacca gaccaaccga gcttggaaaa gtcagacaga cctctgaggt 780
cteatectgg agetgecace ageceagect ceetgggace tgtetteact geetggggee 840
ctgggagcca gggaggctcc ctgaggctga gtgaacactg ggcgctgcac ctgcctctcc 900
```

```
cacgtcctcg gccccactcc cgcaggtgca gctggctggt gacgaaggcc ggagctggga 960
ccagcagete ccactgggta tggtggttte teteagggag cetegteate gteattgttt 1020
gctccacagt tggcctaatc atatgtgtga aaagaagaaa gccaaggggt gagcacacgg 1080
eggececate agggeteatg tecceagecg teacetettg gagetetgte acceeaagee 1140 tgggaggtgg ecceagaget tttecaggat eegeggetee teccagggea gecactgeag 1200
gctggggcag gtgatgtagt caaggtgate gteteegtee aggtattgat ceteeteee 1260 eteteetee eceteeeee tteeeacet eceteteee getggggetg gtgtttetgg 1320 tgtacatggt gggggeteee agttetetga gggteetgag tettteaagt acagecacgg 1380 tagetcagga aagaaceca eceeteaac tgaaageagt aaaatgaace egagaacetg 1440
gagtcccagg ggggcctgag caggcagggt ctccacgatt cgtgtgctca cagcggaaaa 1500
gacaggaggc agaaggtgag gccacagtca ttgaggccct gcaggcccct ccggacgtca 1560
ccacggtggc cgtggaggag acaataccct cattcacggg gaggagccca aaccactgac 1620 ccacagactc tgcaccccga cgccagagat acctggagcg acggctgctg aaagaggctg 1680
tecacetgge ggaaceaeeg gageeeggag gettggggge teegeeetgg getggettee 1740
gtctcctcca gtggagggag aggtggggcc ccctgctggg gtagagctgg ggacgccacg 1800
tgccattccc atggc
<210> 11
<211> 2382
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 083804.1.dec
<220>
<221> unsure
<222> 2042
<223> a, t, c, g, or other
ctccagagag gctgctgctc attgagctgc actcacatga ggatacagac tttgtgaaga 60
aggaattggc aacactgaaa cetecagaac aaaggetgte actaaggtee egetgeettg 120
atggattata cacttgacct cagtgtgaca acagtgaccg actactacta ccctgatatc 180 ttctcaagcc cctgtgatgc ggaacttatt cagacaaatg gcaagttgct ccttgctgtc 240
ttttattgcc tcctgtttgt attcagtctt ctgggaaaca gcctqqtcat cctqqtcctt 300
gtggtctgca agaagctgag gagcatcaca gatgtatacc tcttgaacct ggccctgtct 360 gacctgcttt ttgtcttctc cttccccttt cagacctact atctgctgga ccagtgggtg 420
tttgggactg taatgtgcaa agtggtgtct ggcttttatt acattggctt ctacaqcaqc 480
atgrittate teacecteat gagtgtggae aggtacetgg etgttgteea tgeegtgtat 540 geeetaaagg tgaggaegat eaggatggge acaaegetgt geetggeagt atggetaace 600 geeattatgg etaceatee attgetagtg ttttaceaag tggeetetga agatggtgtt 660 etacagtgtt atteatttta caateaacag actttgaagt ggaagatett caccaactte 720 aaaatgaaca ttttaggett gttgateeca tteaceatet ttatggett etacattaaa 780
atcetgeace agetgaagag gtgtcaaaac cacaacaaga ccaaggecat caggttggtg 840 ctcattgtgg tcattgcate tttactttte tgggtcccat tcaacgtggt tetttteete 900
acttecttge acagtatgea catcttggat ggatgtagea taagceaaca getgacttat 960
gecacceatg teacagaaat cattteettt acteaetget gtgtgaacce tgttatetat 1020
gettttgttg gggagaagtt caagaaacac etetcagaaa tatttcagaa aagttgcage 1080
caaatcttca actacctagg aagacaaatg cctagggaga gctgtgaaaa gtcatcatcc 1140
tgccagcagc actoctccg ttcctccagc gtagactaca ttttgtgagg atcaatgaag 1200
actaaatata aaaaacattt tottgaatgg catgotagta goagtgagca aaggtgtggg 1260
tgtgaaaggt ttccaaaaaa agttcagcat gaaggatgcc atatatgttg ttgccaacac 1320 ttggaacaca atgactaaag acatagttgt gcatgcctgg cacaacatca agcctgtgat 1380
tgtgtttatt gatgatgttg aacaagtggt aactttaaag gattctgtat gccaagtgaa 1440
aaaaaaagat gtctgacctc cttacatatg caaaaatata ccttcagaga ctgtcagtag 1500
gctggaagaa gtggatattg aagttttgac atcaatgatg aggctccagt tgtctattca 1560 ttgactgatg gtgaaatggc tggagtgatt ctgaatcaag gtgattgtga ttatagtgac 1620 aatgaagatg atgctattaa tactgcataa aaagtgcctg tagatgacat ggtgaaaata 1680
tttgacaggc ttatggaagg actacagcag cacgcattca taacagaaca agaaattatg 1740
tcagettata aaatcaaaca gagaetteta gacaaaaace attgttgatg aggeagatge 1800 etctagaaga gaegtttaaa agecatcaaa cacaatgeet eatetteeet ggaggaecea 1860
cttcctgatc cctcaactgt gtctgatgtt tcttctcatg taagaaataa aaaataaaaa 1920
taaaaaaata tatattggta tgtaactaca ggaaaaaaat aaaaaatata tagtggacag 1980
taacetttca atcaaaacac agcattgtaa gtggagactg aaagactacc attgcttgtt 2040 antgctgttg cttaacagct gatacaggta ttctggtgat gctactgtgc tgcctagtta 2100
```

```
cccccaacac atgattttt cactgtaata gtggtatgtc atgttgttta ctcttaagta 2160
cttatgtatg aataagtgta agaaaatgat tgcttatcag tagtatcaat gatttactca 2220
atatetgaat eacettgatt cagaaceatt teagetgttt eaceateagt eaatgaataa 2280
cagoctcatt gatgtcaaaa acttcaatat ccacttcttt cagoctactg tagactctgg 2340
aagtatactt tttgcatatg taaggaagtc agatttttt tt
<210> 12
<211> 3385
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 272721.6.oct
gaggaaagat ggaggtgtgg ggacaggagc tgggtgtgct ggggactggc cgcggacccc 60
taacctgtgt ctccggtctc cctccgggag cggctcaacc cagcccatcg ctctggaccc 120
cgttctggcc ctgcagggtg gtggttggga cgttgaaatg agcgcgcgag tggtacgtcc 180 tctctccggc gctcacgcc cccttcctca ccgtgtttcc cgccaggacc atcagcacgt 240
geccategae atecagaeca geaagetget egattggetg gtggaeagaa ggeaetgeag 300
cetgaaatgg cagagtetgg tgetgaegat cegegagaag atcaatgetg ceatecagga 360
catgccagag agcgaagaga tcgcccagct gctgtctggg tcctacattc actactttca 420
ctgcctaaga atcctggacc ttctcaaagg cacagaggcc tccacgaaga atatttttgg 480 ccgatactct tcacagcgga tgaaggattg gcaggagatt atagctctgt atgagaagga 540 caacacctac ttaggtaaag tggcccggcc tgggagccct ggtatccatg gggaagccca 600
ctctcagagt tctgagatac caggcttata ggaggcacag tctgtgagtg ggaagagact 660 ggagtgtaga tgttgcccat ttgtaggtgg taaaatcaat tgtttttgat ggaattgatt 720 ttccctgagt ggagtgctgg gggaaggagg aggtccaggc cggtagtggc cattcgccgt 780
geeteagega geaggtgtgt gtgggteete caccacteae etettggtta gegggagtgt 840
getgeecea ecceacece egeacecea ttetacacaa ggeagaagag geacgggttt 900 teetgggage gaatateaag tgeetgagag caactacagg actaactgtg tttgggttgg 960 gtgtagtata aataataata atggetaata ttteetgage atetactaaa tgeaaggaat 1020
tgtgcttggt gtgtcatgtg gattctctct tgcatcttca tgataaatgt tattgtcgct 1080
gttttaccga tgagggttgg attagagggg ttaaacaact tgtccttagg ctccacagct 1140 gggaacaagt ggggctggga agctgacttc gtgctcttca ccaccacaaa ggatgtgtgt 1200
gcatcctggg gcatgcctgc ctcatgtggg ggtgtcctgg gctgaatttc ctgggcactt 1260
ctcagtggaa ctctctagcc tcctggttcg gaatgtcaac tatgagatcc cctcactgaa 1320
gaagcagatt gccaagtgcc agcagctgca gcaagaatac agccgcaagg aggaggagtg 1380 ccaggcaggg gctgccgaga tgcgggagca gttctaccac tcctgcaagc agtatggcat 1440
cacgggcgaa aatgtccgag gagaactgct ggccctggtg aaggacctgc cgagtcagct 1500
ggctgagatt ggggcagcgg ctcagcagtc cctgggggaa gccattgacg tgtaccaggc 1560
gtctgtgggg tttgtgtgtg agaggtagag aggcctcaag cttctcctgg tgggggtgct 1620 ttgcctgtgt tccccagctc atgaccettc tccagttgtc ttgttcccat ataacatttg 1680
aactetttae acacetgaac etgtggggge ettgeceatt tgaceatgtg geeeaggeea 1740
aagcccagtg ttggccttac gcatggttcg gcaggagagt cagttgtgtg ctctgttgaa 1800
gccccacaga gcaggtgttg ccaatgctgc ggttcgtgca gaagcgggga aactcaacgg 1860 tgtacgagtg gaggacaggg acagagccct ctgtggtgga acgaccccac ctcgaggagc 1920
ttcctgagca ggtggcagaa gatgcgattg actggggcga ctttggggta gaggcaqtgt 1980
ctgaggggac tgactctggg catctctgcc gaggctgctg gaatcgactg gggcatcttc 2040
ccggaatcag attcaaagga tcctggaggt gatgggatag actggggaga cgatgctgtt 2100 gctttgcaga tgcacagtgc tggaagcagg aacccaggct ccagaaggtg ttgccagggg 2160
cccagatgcc ctgacactgc ttgaatacac tgagacccgg aatcagttcc ttgatgagct 2220
catggagctt gagatcttct tagcccagag agcagtggag ttgagtgagg aggcagatgt 2280
cetgtetgtg agccagttee agetggetee agccateetg cagggecaga ceaaagagaa 2340 gatggttace atggtgteag tgetggagga tetgattgge aagettacea gtetteaget 2400
geaacacetg tttatgatee tggeeteace aaggtatgtg gacegagtga etgaatteet 2460
ccagcaaaag ctgaagcagt cccagctgct ggctttgaag aaagagctga tggtgcagaa 2520 gcagcaggag gcacttgagg agcaggcggc tctggagcct aagctggacc tgctactgga 2580
gaagaccaag gagctgcaga agctgattga agctgacatc tccaagaggt acagcgggcg 2640
ecetgtgaac etgatgggaa cetetetgtg acacecteeg tgttettgee tgcecatett 2700
ctccgctttt gggatgaaga tgatagccag ggctgttgtt ttgggggccct tcaaggcaaa 2760
agaccagget gactggaaga tggaaagca caggaaggaa geggcacctg atggtgatet 2820 tggcactet catgttetet acaagaaget gtggtgattg geeetgtggt etateaggeg 2880 aaaaccacag atteetett tattaagtee getatactaa etagaaggag aatetgtggt 2940
tttcgcctga tagaccacag ggccaatcac cacagettet tgtagagaac atggagagtg 3000 ccaagatcac catcaggtge cgcttcctte ctgtggettt ccatctteca gtcagectgg 3060
```

```
tettttgeet ettggagatg teagetteaa teagettetg eageteettg gtetteteea 3120
gtagcaggtc cagcttaggc tecagagecg cetgeteetc aagtgeetec tgetgettet 3180
gcaccatcag ctctttcttc aaagccagca gctgggactg cttcagcttt tgctggagga 3240
attcagtcac teggtecaca tacettggtg aggecaggat cataaacagg tgttgcaget 3300
gaagactggt aagcttgcca atcagatctc cagcactgac accatggtaa ccatcttctc 3360
tttggtctgg cctgcaagga tggct
                                                                                      3385
<210> 13
<211> 3111
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 461603.4.oct
<220>
<221> unsure
<222> 1605, 2212
<223> a, t, c, g, or other
<400> 13
ttttactgta caaatgcttt atttctattc aatatttaga agacagttat aaacaagatg 60
cattcaatag catggtggca gatgaacatc aggaaggaac atccatgagc ttccatccac 120
ggaacctcac catggatacg cttgtgatca agggcctggt ctcccctcaa gacacggtca 180
cagatcagag gccacaccat cctagcagtg gagcaggacc agctgggaca gggtccttct 240
gtgacacetg etgeateace aggetgggtg aaeggacaca attgeeagaa eteacagaat 300
agaagtatca gcaccgaaac ctcacaggaa aaatggtaag ttctaagttt ctccattaat 360 agtaactctc agattaatct ctgtcatcca tcgcttctcc aagaaatgac tttttagggt 420
gatgtgccag gcgccatgtt ggagggctgg tggtagcggc ttggggaggt gctcactctg 480
teggteteac teteteacae getteceetg getecetteg tteeeceeca ceecaettgg 540
cctgcgtgct ggagggtgtg cgagggagtg ggagggcgtc ggggggtggg gggaggcgtt 600 ccggtcccca agagacccgc ggagggaggc ggaggctgtg agggactccg ggaagccatg 660
gacgtcgaga ggctccagga ggcgctggaa gattttgaga agagggggaa aaaggaagtt 720
tgtcctgtcc tggatcagtt tctttgtcat gtagccaaga ctggagaaac aatgattcag 780
tggtcccaat ttaaaggcta ttttattttc aaactggaga aagtgatgga tgatttcaga 840
acttcagete etgegecaag aggteeteee aacectaatg tegaatatat teeetttgat 900
gaaacaaagg gaagaatact gaaaactgtc actgggattt aatggtatcc cttttactat 960 tcagcgacta tgtgaattgt taacagatcc aaggagaaac tatacaggaa cagacaaatt 1020 tctcagagga gtagaaaaga atgtgatggt tgttagctgt gtttatcctt cttcagagaa 1080 aaacaattcc aatagtttaa atcgaatgaa tggtgtgatg tttcctggaa attcaccaag 1140
ctatactgag aggtctaata taaatgggcc tgggacaccc agcaacctta atcgaccaaa 1200
ggtttctttg tcagcccccc atgaccaaca aatgggttgc ctgagagcac agacagcaaa 1260
aaggaaggcc aaaaaatttt tgcccccagg ccaaaaaaaa ttggaaggga agaaaaaaa 1320
aatcacagtg actettegae etetgaatca gaagttteet cagtgageee titgaaaaat 1380
aaacatccag atgaagatgc tgtggaagct gaggggcatg aggtaaaaag actcaggttt 1440
gacaaagaag gtgaagtcag agaaacagcc agtcaaacga cttccagcga aatttcttca 1500 gttatggtag gagaaacaga agcatcatct tcatctcagg ataaagacaa agatagccgt 1560
tgtacccggc agcactgtac agaagaggat gaagaagagg atgangagga agaagaagag 1620
tettttatga cateaagaga aatgateeca gaaagaaaaa atcaagaaaa agaatetgat 1680
gatgccttaa ctgtgaatga agagacttct gaggaaaata atcaaatgga ggaatctgat 1740 gtgtctcaag ctgagaaaga tttgctacat tctgaaggta gtgaaaacga aggccctgta 1800
agtagtagtt cttctgactg ccgtgaaaca gaagaattag taggatccaa ttccagtaaa 1860
actggagaga ttctttcaga atcatccatg gaaaatgatg acgaagccac agaagtcacc 1920 gatgaaccaa tggaacaaga ctaactattt agaaacattt agatgcagta ttttacatac 1980
agttctggtt ttaacactgt ataaaacttt tgtgtaataa aatggacctt tagttttaca 2040
agagaagcag gttgtaaaat aaagtacttt atggataatt cctgaaagag ttgtacatgt 2100
aagaactgtg aatatcaget cetetgggte etgettacet tacegetgae ttttettet 2160
ttctttttt ggtctgggca aatcagtggt ttgtgtatag atttttttt tncttttaa 2220 tttaggattg aagttttaa actggaaggt aattacaatt ttgaaaagtt ttttgagatt 2280
atcacattta gtttatacat atgcaagaag ctttttgtct tgtctctttc tgatagctct 2340
agcagttttc atattttggt catagtttca acattttaac atgtgaataa tagagtttca 2400
tgctggtttc cagatgttat tgttcagcta catacaatgg aacattaagt tatattctaa 2460 ggggggaaat gttatatttt tctgtttcta taagagatga atacagtgga tactttttct 2520
attortaatg attgagttca cetetttcag aagacatttt etttetette tgagtaactg 2580
aaataaaatc tggcctttgt gaaaccctgg aaataccacg acccacaact agaaacacca 2640 ataccagctc ctccgcgagt ttccagctcc acaacctaag acatcagagg cagcattggt 2700
```

```
tectcaegta gagteeaget eegggaeeet catatttgaa eegeagggee ateteateee 2760
tggatctcca getgcaccac actcaaatta gaacaacatc agttcctccc caggtctcca 2820
ectgeacage cetegaaagg gaacgteage teeteeeegg gteteeaget gtaggteeet 2880
aaaactagaa catcagetce egeetgggte gecageagea ceacectcaa actggaacat 2940 cagateecca egggteteca getgeaggge ceteaaactg gaacatcage teceaaccag 3000 atetecaget geaeggacet caaactggaa catcagetee eegeegggte tecagetgea 3060
ctgcctgcaa actggaacat gagctccctg ccgggtctcc agctgcatgg t
<210> 14
<211> 2980
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 332465.2.dec
agegaegggg aaatteaaac gtgtttgegg aaaggagttt gggtteeate tttteattte 60
cccagcgcag tttctgtaga aatggaatcc gaggatttaa gtggcagaga attgacaatt 120 gattccataa tgaacaaagt gagagacatt aaaaataagt ttaaaaatga agaccttact 180
gatgaactaa gettgaataa aatttetget gatactacag ataacteggg aactgttaac 240
caaattatga tgatggcaaa caacccagag gactggttga gtttgttgct caaactagag 300 aaaaaacagtg ttccgctaag tgatgctctt ttaaataaat tgattggtcg ttacagtcaa 360 gcaattgaag cgcttcccc agataaatat ggccaaaatg agagttttgc tagaattcaa 420
gtgagatttg ctgaattaaa agctattcaa gagccagatg atgcacgtga ctactttcaa 480 atggccagag caaactgcaa gaaatttgct tttgttcata tatcttttgc acaatttgaa 540
ctgtcacaag gtaatgtcaa aaaaagtaaa caacttette aaaaagetgt agaaegtgga 600 gcagtaccac tagaaatget ggaaattgee etgeggaatt taaaceteca aaaaaageag 660
ctgctttcag aggaggaaaa gaagaattta tcagcatcta cggtattaac tqcccaaqaa 720
tcattttccg gttcacttgg gcatttacag aataggaaca acagttgtga ttccagagga 780 cagactacta aagccaggtt tttatatgga gagaacatgc caccacaaga tgcagaaata 840 ggttaccgga attcattgag acaaactaac aaaactaaac agtcatgccc atttggaaga 900
cettgtttta tgaaaagaca aacetetaga teagaatgee gagatttggt tgtgeetgga 1020 tetaaaceaa gtggaaatga tteetgtgaa ttaagaaatt taaagtetgt teaaaatagt 1080 cattteaagg aacetetggt gteagatgaa aagagttetg aacttattat taetgattea 1140
ataaccetga agaataaaac ggaatcaagt ettetageta aattagaaga aactaaagag 1200
tatcaagaac cagaagttec agaagataac cagaaacagt ggcaatctaa gagaaagtca 1260 gagtgtatta accagaatcc tgctgcatct tcaaatcact ggcagattec ggagttagcc 1320 cgaaaagtta atacagagca gaaacatacc acttttgagc aacctgtctt ttcagtttca 1380
aaacagtcac caccaatatc aacatctaaa tggtttgacc caaaatctat ttgtaagaca 1440
ccaagcagca ataccttgga tgattacatg agctgtttta gaactccagt tgtaaagaat 1500 gactttccac ctgcttgtca gttgtcaaca ccttatggcc aacctgcctg tttccagcag 1560
caacagcatc aaatacttgc cactccactt caaaatttac aggttttagc atcttcttca 1620
gcaaatgaat gcatttcggt taaaggaaga atttattcca tattaaagca gataggaagt 1680
ggaggttcaa gcaaggtatt tcaggtgtta aatgaaaaga aacagatata tgctataaaa 1740
tatgtgaact tagaagaagc agataaccaa actettgata gttaceggaa egaaataget 1800
tatttgaata aactacaaca acacagtgat aagatcatcc gactttatga ttatgaaatc 1860
acggaccagt acatetacat ggtaatggag tgtggaaata ttgatettaa tagttggett 1920
aaaaagaaaa aatccattga tccatgggaa cgcaagagtt actggaaaaa tatgttagag 1980 gcagttcaca caatccatca acatggcatt gttcacagtg atcttaaacc agctaacttt 2040
ctgatagttg atggaatgct aaagctaatt gattttggga ttgcaaacca aatgcaacca 2100
gatacaacaa gtgttgttaa agattctcag gttggcacag ttaattatat gccaccagaa 2160 gcaatcaaag atatgtcttc ctccagagag aatgggaaat ctaagtcaaa gataagcccc 2220 aaaagtgatg tttggtcctt aggatgtatt ttgtactata tgacttacgg gaaaacacca 2280 tttcagcaga taattaatca gatttctaaa ttacatgcca taattgatcc taatcatgaa 2340
attgaatttc ccgatattcc agagaaagat cttcaagatg tgttaaagtg ttgtttaaaa 2400
agggacccaa aacagaggat atccattcct gagctcctgg ctcatccata tgttcaaatt 2460 caaactcatc cagttaacca aatggccaag ggaaccactg aagaaatgaa atatgttctg 2520
ggccaacttg ttggtctgaa ttctcctaac tccattttga aagctgctaa aactttatat 2580
gaacactata gtggtggtga aagtcataat tetteateet eeaagaettt tgaaaaaaaa 2640
aggggaaaaa aatgatttgc agttattcgt aatgtcagat accacctata aaatatattg 2700 gactgttata ctcttgaatc cctgtggaaa tctacatttg aagacaacat cactctgaag 2760
tgttatcagc aaaaaaaatt cagtagatta tctttaaaag aaaactgtaa aaatagcaac 2820
cacttatggc actgtatata ttgtagactt gttttctctg ttttatgctc ttgtgtaatc 2880
tacttgacat cattttactc ttggaatagt gggtggatag caagtatatt ctaaaaaact 2940
```

```
ttgtaaataa agttttgtgg ctaaaatgac actaacattt
                                                                                                 2980
<210> 15
<211> 2070
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 445175.3.dec
<400> 15
ccccctccc tgttttccgt taggaacccg gcgaggaaat acatgcactg gctgagaatc 60 gcccgcgcca gggcgcaacg ccacaaggtg tagggagtgt gcggggtggg gcgaaagggg 120
acceaagagt coctgtggct eggagtgeeg ggegteggt tetteattee tgeecteggg 180 geagaeggag tgacceegge ecceaetee egeceegace atggtagtgt teaatggeet 240 tettaagate aaaatetgeg aggeegtgag ettgaageee acageetggt egetgegeea 300 tgeggtggga ecceggeege agaettteet tetegaeeee tacattgeee teaatgtgga 360
cgactcgcgc atcggccaaa cggccaccaa gcagaagacc aacagcccgg cctggcacga 420
cgagttcgtc accgatgtgt gcaacggacg caagatcgag ctggctgtct ttcacgatgc 480 ccccataggc tacgacgact tcgtggccaa ctgcaccatc cagtttgagg agctgctgca 540
gaacgggage egecactteg aggactggat tgatetggag ccagaaggaa gagtgtatgt 600
gatcatcgat ctctcagggt cgtcgggtga agcccctaaa gacaatgaag agcgtgtgtt 660
cagggaacgc atgcggccga ggaagcggca gggggccgtc aggcgcaggg tccatcaggt 720 caacggccac aagttcatgg ccacctatct tcggcagccc acctactgct cccattgcag 780
agacttcatc tggggtgtca taggaaagca gggataccag tgtcaagtct gcacctgcgt 840
ggtccacaag cggtgccacg agctcataat cacaaagtgt gctgggttaa agaagcagga 900 gacccccgac caggtgggct cccagcggtt cagcgtcaac atgccccaca agttcggtat 960 ccacaactac aaggtcccta ccttctgcga tcactgtggg tccctgctct ggggactctt 1020
qcggcaqqqt ttqcaqtqta aaqtctqcaa aatgaatqtt caccqtcqat qtqaqaccaa 1080
cgtggctccc aactgtggag tggatgccag aggaatcgcc aaagtactgg ccgacctggg 1140
cgttacccca gacaaaatca ccaacagcgg ccagagaagg aaaaagctca ttgctggtgc 1200 cgagtccccg cagcctgctt ctggaagctc accatctgag gaagatcgat ccaagtcagc 1260
acceaectee eettgtgace aggaaataaa agaaettgag aacaacatte ggaaageett 1320
caagggcaaa gatgaagtat atgctgtgaa ggtcttaaag aaggacgtca tccttcagga 1560
tgatgacgtg gactgcacaa tgacagagaa gaggattttg gctctggcac ggaaacaccc 1620 gtaccttacc caactctact gctgcttcca gaccaaggta tgttaggaag aagctggctg 1680 gctgccatgt tggggcatct tgactatcag ataaaatacc aattttagac cctctacatt 1740
gttctctcaa agactttgta aagtgggatg ggttttaccc ttgaaaagat caggatgtat 1800 ttgaacagca tcttctttt tagggcacag gattttccat tcaaggttgt gcttgtgaag 1860 ggatgagaga gctgtagaat tctttgcagc cagagttgga caaagccaaa tggctaaact 1920
cactgtttgc tcattggaaa aaccaacaag tgtggttagt ccttgctctg ctcctaactt 1980
tctatcacta atcaaatcac ttaacttcta agttattttc atgtcatatg aaaaagagta 2040
aaggccacct taatctcttc taatctgtgt
<210> 16
<211> 2923
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 980541.1.dec
<400> 16
tgccgtgaag attacaaatg agactgggaa accetettca ataagacetg tgtgatgata 60
gattgtgtcc tgagcccgca gtcaggctga aagagtcaac aaccagcaaa gtgaagatct 120
aggagtetgt teccegaace tgtgtggace tgateaaace tegagggaaa ggetgggaga 180
acacatecet ggteagetgt aggaaageea gagageattt gagaagagge tgaagettga 240
attttgcaaa cacacaagce etetgcattt eeccagagag aaggtttttt tetegtette 310 attteetttg aaacacetgg ggtgaggaaa aacetetaca ttggccaage agaagaaaca 360 gaatetatga etgaagagga teggetaaga gtggtteete geagettaaa gggaggcaet 420
tttcacacte tgtettaaaa teagaagttg aatteatgaa cacatatgat ttagatagaa 480
gtcatgggat gcagcagttc ttcaacgaaa accaggagat ctgacacatc actgagagct 540
```

```
gcgttgatca tccagaactg gtaccgaggt tacaaagctc gactgaaggc cagacaacac 600
tatgecetca ecatetteca gtecategaa tatgetgatg aacaaggeea aatgeagtta 660
tccaccttct tttccttcat gttggaaaac tacacacata tacataagga agagctagaa 720
ttaagaaatc agtotottga aagcgaacag gacatgaggg atagatggga ttatgtggac 780 tcgatagatg teccagacte ctataatggt ceteggetac aattteetet caettgtacg 840
gatattgatt tacttettga ggcetteaag gaacaacaga tactteatge ceattatgte 900
ttagaggtgc tatttgaaac caagaaagtc ctgaagcaaa tgccgaattt cactcacata 960
caaacttctc cctccaaaga ggtaacaatc tgtggtgatt tgcatgggaa actggatgat 1020 ctttttttga tcttctacaa gaatggtctc ccctcagaga ggaacccgta tgtttttaat 1080
ggtgactttg tagatcgagg aaagaattcc atagagatcc taatgatcct gtgtgtgagt 1140
tttcttgtct accccaatga cctgcacttg aacagaggga accacgaaga ttttatgatg 1200 aatctgaggt atggcttcac gaaagaaatt ttgcataaat ataagctaca tggaaaaaga 1260 atcttacaaa tcttggaaga attctatgcc tggctcccaa tcggtacaat cgttgacaat 1320
gaaateetgg teateeatgg tgggatatea gagaceaeag aettgaattt aeteeaeegt 1380
gtagagagga acaagatgaa atctgtgctg ataccaccaa cggaaacaaa cagagaccat 1440
gacactgact cgaagcacaa taaagtaggt gtgactttta atgcacatgg aagaatcaaa 1500
acaaatggat cicciactga acacitaaca gagcatgaat gggaacagat taitgatatt 1560
ctgtggagtg atcccagagg caaaaatggc tgttttccaa atacgtgccg aggagggggc 1620 tgctattttg gaccagatgt tacttccaag attcttaata aataccagtt gaagatgctc 1680 atcaggtctc atgaatgtaa gcccgaaggg tatgaaatct gtcatgatgg gaaggtggtg 1740 actatatttt ctgcttctaa ttattatgaa gaaggcagca atcgaggagc ttacatcaaa 1800
ctatgttcta gtacaactcc tcgatttttc cagtaccaag taactaaagc aacgtgcttt 1860
cagcetette gecaaagagt ggatactatg gaaaacageg ceateaagat attaagagag 1920 agagtgattt caegaaaaag tgacettaet egtgetttee aactteaaga ceacagaaaa 1980
tcaggaaaac tttctgtgag ccagtgggct ttttgcatgg agaacatttt ggggctgaac 2040
ttaccatgga gatccctcag ttcgaatctg gtaaacatag accaaaatgg aaacgttgaa 2100 tacatgtcca gcttccagaa tatccgcatt gaaaaacctg tacaagaggc tcattctact 2160 ctagttgaaa ctctgtacag atacagatct gacctggaaa tcatatttaa tgccattgac 2220
actgatcact caggectgat ctccgtggaa gaatttcgtg ccatgtggaa actttttagt 2280
teteactaca atgiteacat tgatgattee caagteaata agettgeeaa cataatggae 2340 tigaacaaag atggaageat tgaetttaat gagttittaa aggetteeta tgtagtgeat 2400 agatatgaag aettgatgaa aeetgatgte aeeaacettg getaaacaa aatgagaget 2400
teceteagge tecetgaaac agetaggeee aaateacaag tacagteett tecaacacee 2520
ctgaaattca tagtcagtag cagagaaaag cagatcccaa ttcatcccca tcccacaaac 2580 agatgcatag tatgggtttt ggaagtccct agcaagctgt tattggtaag attaggttaa 2640
atgtcagtaa taggatttgg tttcagcatt agtacctaca tattgccagt gagaaactgg 2700
gttggaccta gtggtgttgt cgtgagtgcc acctaaccag gaggccagag cggtttgaaa 2760 acatcctgaa aggaactcat acagcacaag agaaaactac taagcttgac atctgtgagt 2820 gactgaggga gacaggagga ataccaggtt attcatggaa taaagtcttt ccatctttaa 2880
actgigatet tettiggaga tittataage cagtgateet caa
                                                                                                  2923
<210> 17
<211> 802
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 237996.1.dec
<220>
<221> unsure
<222> 632
<223> a, t, c, g, or other
<400> 17
cgtggctgag ccagcagctg cagcagctac gggagtggcc gggtggccgg cgggtgccag 60
ccgccatgga ggccgtgccc cgcatgccca tgatctggct ggacctgaag gaggccggtg 120
actttcactt ccagccagct gtgaagaagt ttgtcctgaa gaattatgga gagaacccag 180
aagcetacaa tgaagaactg aagaagetgg agttgeteag acagaatget gteegtgtee 240
cacgagactt tgagggctgt agtgtcctcc gcaagtacct cggccagctt cattacctgc 300
agagtegggt ecceatggge tegggeeagg aggeegetgt ecctgteace tggaeagaga 360 tetteteagg eaagtetgtg geecatgagg acateaagta egageaggee tgtattetet 420
acaacettgg agegetgeac tecatgetgg gggeeatgga caagegggtg tetgaggagg 480
gcatgaaggt ctcctgtacc catttccagt gcgcaccggc gccttcgcct acctacggga 540
geactteect caageetaca gegtegacat gageegeeag atcettacge teaacgteaa 600 ceteatgetg ggeeaggete aggagtgeet entggagaag tegatgttgg acaacaggaa 660
```

```
gagetttetg gtggeeegea teagtgeaca ggtggtagat tactacaagg aggeatgeeg 720
ggccttggag aaccccgaca ctgcctcact gctgggccgg atccagaagg actggaagaa 780
acttgtgcca gatgaagatc ta
<210> 18
<211> 667
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 243267.9.dec
aatgtgcatg ggatcactag catgtctgcg gagagcggcc ctggggacga gattgagaaa 60 tctgccagta atgggggatg gactagaaac ttcccaaatg tctacaacac aggcccaggc 120 ccaaccccag ccagccaacg cagccagcac caacccccg ccccagaga cctccaaccc 180
taacaagccc aagaggcaga ccaaccaact gcaatacctg ctcagagtgg tgctcaagac 240
actatggaaa caccagtttg catggccttt ccagcagcct gtggatgccg tcaagctgaa 300
cctccctgat tactataaga tcattaaaac gcctatggat atgggaacaa taaagaagcg 360 cttggaaaac aactattact ggaatgctca ggaatgtatc caggacttca acactatgtt 420
tacaaattgt tacatctaca acaagcctgg agatgacata gtcttaatgg cagaagctct 480
ggaaaagctc ttcttgcaaa aaataaatga gctacccaca gaagaaaccg agatcatgat 540
agtccaggca aaaggaagag gacgtgggag aaaagaaagt gggttatcaa gggtgatttg 600 aaattttctg cagcattaaa gctggcgctt aataagaata agtaataata aagaaatttc 660
taacaaa
                                                                                             667
<210> 19
<211> 1973
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 242082.10.dec
gccatcgtga aaaagaaagc tgagctcatt aaagggaatt acaagtgcaa cgtgtgctct 60
cgaaccttct tetecgaaaa tggceteegg gaacatatge agacceaect aggeeetgte 120 aaacactaca tgtgeeetat ttgeggagag eggttteeet eeetttaac tettaetgaa 180
cacaaagtca cgcatagtaa gagtcttgat actggaaact gccggatttg caagatgcct 240
ctccagagtg aagaggagtt tttagagcat tgccaaatgc accetgactt gaggaattcc 300
ctgacaggct ttcgctgcgt ggtgtgcatg cagacagtga cctccacctt ggaactcaaa 360 atccatggga cgttccacat gcaaaagaca gggaatgggt ctgcagttca gaccacaggg 420
cggggccagc acgtccaaaa actgtataag tgcgcatctt gcctcaaaga attccgttcc 480
aagcaagate tggtgaaact tgatateaat ggeetgeeat atggtetgtg tgeeggetge 540
gtgaatetea gtaagagege caccecagge attaaegtee etcecggeae gaatagacea 600 ggettgggee agaatgagaa tetgagtgee attgagggga aaggeaaggt ggggggaetg 660 aagacaeget getetagetg caaegttaag tttgagtetg aaagtgaaet ceagaaceae 720
atccaaacca tccaccgaga gctcgtgcca gacagcaaca gcacacagtt gaaaacgccc 780 caagtatcac caatgcccag aatcagtccc tcccagtcgg atgagaagaa gacctatcaa 840 tgcatcaaat gtcagatggt tttctacaat gaatgggata ttcaggttca tgttgcaaat 900
cacatgattg atgaaggact gaaccatgaa tgcaaactct gcagccagac ctttgactct 960
cctgccaaac tccagtgcca cctgatagag cacagcttcg aagggatggg aggcaccttc 1020 aagtgtccag tctgctttac agtatttgtt caagcaaaca agttgcagca gcatattttc 1080
tetgeccatg gacaagaaga caagatetat gactgtacac aatgtecaca gaagttttte 1140
ttccaaacag agctgcagaa tcatacaatg acccaacaca gcagttagtg caagtacagt 1200
ctctcaagga gaattgattt tgtggcacaa aaagggaaca tgttttactc tttgcacgaa 1260
actttcattg ttaatgtata ttattcagaa acattgtatt gtaccataaa acttgtatta 1320 tcaaactgtt ggatgttcat gtgtttgaac ttttgcgcac cggatagacc ccttgtatat 1380
aaagtgttgc acatgtatta tgtcgtctga tactaaaatg gtcttataaa gacaagtgga 1440
cttgggccct attcaggcaa gattaaaaaa aaaaaaagac tatgaccaaa atggcttaag 1500
ataaagtatt tttaaggaag aaagattaaa aacaactgtt atacatgaga ctatggttgg 1560 acttcctttt ctttacactt aagcctagaa tttctcttta ggtatatcag cgcttaaatc 1620
caagactatt ttttattgct gaagattctt gcaaaccatg aagagatgtt ctcacagaac 1680
agaaccccac agctggataa ggcccgtata tatatatttg taagccttgc aatgtgacag 1740
gtagcatcac tatatatgca atagttgtta tgtagactgt caaagaattt ttttttccct 1800
```

```
qqatacattt qaaqctttga gtgttcaaqg ttttccttaa tgatttcacg cagccaaatt 1860
cttgaatcag ttgaactaac ctgtatgtta ctgttattaa tgtttactct gcagtctgaa 1920
cctggagatt actggaattg ttttccaaga ggaaataaat tcagtttacc att
<210> 20
<211> 2328
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 019239.1.dec
<220>
<221> unsure
<222> 360
<223> a, t, c, g, or other
<400> 20
tgaatgtgat gtttgcagaa aagccttcag ccatcatgca tcactcactc aacatcaaag 60 agtacattct ggagaaaagc cttttaagtg taaagagtgc ggaaaagctt ttaggcagaa 120
tatacacctt gccagtcatt taaggattca tactggggag aagccttttg aatgtgtgga 180
gtgtggaaaa teetteagea teagttetea gettgeeaet cateagagaa teeataetgg 240
agagaageee tatgaatgta aggtttgtag taaagegtte acceagaagg etcacettte 300 acageateag aaaaceeata caggagagaa accatatgag tgcaaggaat geggtaaaan 360
cttcagccag accacacc tcattccaac atcagagagt tcccactggt gagaaaccct 420
ataaatgtat ggaatgtggg aaggcetttg gtgataacte atcetgtact caacatcaaa 480 gactgcacac tgggccaaag acettatgaa tgtattgagt gtggaaaggc attcaagaca 540 aaatcetcce ttatttgtca tcgcagaagt catactggag aaaaacetta tgaatgcagt 600
gtgtgtggca aagcetttag teategteaa teeettagtg tacateagag aateeattet 660
ggaaagaaac catatgaatg taaggaatgt aggaaaacct tcatccaaat tggacacctt 720 aatcaacata agagagttca tactggagag agatcttata actataagaa aagcagaaaa 780 gtcttcaggc aaactgctca cttagctcat catcagcgaa ttcatactgg agagtcgtca 840
acatgeeect etttacette caegteaaat eetgtggate tgttteecaa atttetetgg 900
aatccatcct ccctccatc accatagect cgagacgtea tttetgtttg actactccag 960 cagtttaaaa ccccatctc ctgccctttt gttttetttt tgtcccttat tagttagttc 1020 ttcacataag tgtaaatgta acttattcac tcctcttgta aaacttatag tttctttaaa 1080
ttggttaatg tgtgagatet geteageaca gtgeetggte ceatagtaag tgeteagtaa 1140 acttagetgt tttaaaaact ttgtatttga acattgaaaa gttacagtag teagetetga 1200 taaaaaaatg atgeagtagg gtgagggtag gaaaaageac atttetate aggaacagaa 1260 tteteeagta gtgggtgagg ttttgeettt gttggtttta aaacttgatt etataatgee 1320
aagttagītt īgīggeītie cateīgacee tatgtgaatg taaggtgatg tgacettgtt 1380
ggtgagaaaa ttaaacttta catttgactt gatttgtttt agaaagtcta gggaccatga 1440 atgaataggc cagctgggac aaatgaattt aaaaaatcag aaaaatgcaa gatttatatg 1500
catgaagtta aaacaactga tgttactcaa gaattagaaa actttgcaag atttgacttg 1560
tttaaaaatc acatttataa gtgaaccgta ttaaaacttt taaggaacca ttcattgtga 1620
ggtaaactga tecagaatag gggteageaa actatgaete atggeeacag teteaetgae 1680 tgtttttgta tggteeatga tetagaattt aaaaaaattt taaagggttg aaaaaagtga 1740
aaagaatatt ttcaacatga aaattatatg aaatttaagt tttggtgtct gtaaataaag 1800
ttttgttggc ttcagccaca cagtgattta caccttgatt gtgctgcttc caggctgtag 1860 cagcagagtt gagcagttgt gacaggagac catgtggcct gcagagccca aatatctact 1920 gtctgatcct acacagaaaa tgtgtgtgat ccctgctatg gagcagaggt tatcaaacta 1980
aageceatgg accaaateet atetgetget tgtttttgta aatagagttt tateaaacea 2040
cagocatget tacttgttta getattgact atggetgett tagacaactg tgacagacta 2100
tatggctcgc aaaactgcaa atatttccta tcctttaaca gaaagtttgc caacctctgc 2160
tctagagtag agaaaaatgt ataaaagatt ttaattttat gagggcaata caactgtcac 2220
atcagaaaca agaaaacaaa tgataaagga actcatttat caatagaggt gaaaggaaat 2280
                                                                                                   2328
tattaaacta tattgaaaaa taaagatgtc aataaaagga gaaatgat
<210> 21
<211> 4209
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 899943.1.dec
```

<220> <221> unsure <222> 27, 3938 <223> a, t, c, g, or other <400> 21 gctgtttcgg tcqqqaqtqq qtqqqanaqa aqccqqqqca qqqqaqqaqc cqccqqaqct 60 gtcggagccg gcccttggaa gaaaatcctc gctgtgtcca ggctgaggcg gggggctaat 120 gacagtgtga gctctagatg gtgtgagacc accccaaagc caagaaatgg ctacagccgt 180 ggaaccagag gaccaggatc tttgggaaga agagggaatt ctgatggtga aactggaaga 240 tgattteacc tgteggecag agtetgtett acagagggat gacceggtge tggaaaccte 300 ccaccagaac ttccgacget tccgctacca ggaggcagca agccctagag aagctctcat 360 cagactecga gaactttgte accagtgget gagaceagag aggeggacaa aggageagat 420 ectagagetg ettgtgetgg aacaatttet tacegteeta eetggagaac tacagagetg 480 ggtgcggggc caacggccag aaagtggcga ggaggcagtg acgctggtgg agggtttgca 540 gaaacaaccc aggagaccaa ggcggtgggt gactgtccat gttcacggcc aggaagtcct 600 gtcagaggag acggtgcatt taggagtgga gcctgagtca cctaatgagc tgcaggatcc 660 tgtgcaaage tegaceeceg ageagtetee tgaggaaace acacagagee cagatetggg 720 ggcaccggca gagcagcgtc cacaccagga agaggagctc cagaccctgc aggagagcga 780 ggtcccagtg cccgaggacc cagacettee tgcagagagg agetetggag actcagagat 840 ggttgctett ettactgete tgtcacaggg actggtaacg ttcaaggatg tggccgtatg 900 ettttcccag gaccagtgga gtgatetgga cccaacacag aaagagttet atggagaata 960 tgtcttggaa gaaagactgt ggaattgttg tctctctgtc atttccaatc cccagacctg 1020 atgagatete ecaggttaga gaggaagage ettgggteee agatateeaa gageeteagg 1080 agaeteaaga gecagaaate etgagttta eetacacagg agataggagt aaagatgagg 1140 aagagtgtct ggagcaggaa gatctgagtt tggaggatat acacaggcct gttttgggag 1200 aaccagaaat tcaccagact ccagattggg aaatagtctt tgaggacaat ccaggtagac 1260 ttaatgaaag aagatttggt actaatattt ctcaagtgaa tagttttgtg aaccttcggg 1320 gaaactacac ccgtccaccc cctgttaggg aggcatcatg actgttctgt gtgtggaaag 1380 agetteactt gtaacteeca cettgttaga cacetgagga etcacacagg agagaaacec 1440 tataaatgta tggaatgtgg aaaaagttac acacgaagct cacatcttgc cagggcacca 1500 aaaggttcac aaggatgaac gcgccttaca aatatcccct aaaccggaag aatttggaag 1560 agacctcccc tgtgacacag gctgagagaa ctccatcagt ggagaaaccc tatagatgtg 1620 atgattgcgg aaagcacttc cgctggactt cagaccttgt cagacatcag aggacacata 1680 ctggagaaaa accettettt tgtactattt gtggcaaaag etteageeag aaatetgtgt 1740 taacaacaca ccaaagaatc cacctgggag gcaaacccta cttgtgtgga gagtgtggtg 1800 aggacttcag tgaacacagg cggtacctgg cgcaccggaa gacgcacgct gctgaggaac 1860 tetacetety cagegagtge gggegetget teacecacag egeagegtte gecaageact 1920 tgagaggaca egeeteagtg aggeeetgee gatgeaacga atgtgggaag agetteagte 1980 geagggacea cetegteagg cateagagaa eacacactgg ggagaaacca tteacgtgee 2040 etacetgtgg aaaaagette ageagaggat ateacttaat taggeateag aggaeecact 2100 cagaaaagac ctcctagcta ggtcccatg tgaggagatc tgctttcagc cctcacctaa 2160 gggaggtgag gaagaggaaa agccctcttg tcagcctggg aagacctttt cgagggagtc 2220 tccctgacct gctcagatct gacattacct cttcctgcaa ctaaacacga gcctgggcag 2280 aacctetcag cetteeteta egeettgagg ggatgtttea tecaaagtae aacctgaatt 2340 gaggettete etteaetgga gtgeaeetge etetaeetea tgggtataaa gtaggagaae 2400 taagagactt aagaggtcgt ggttcctata tcgtccaaaa aataggctgt tacatatcct 2460 aaagactgct caacagcttc aagttgaaag tggccaagga cagcccctta ggtttgggaa 2520 gggacgagcc tgaaggattc tgtctttact ggggtcaaat cttaaagcac acagctctgg 2580 actcaagaca ggaggtttgc gtcctgatgg ctttgccaca cattcacagg ataactgcat 2640 agateceteg etgtetgatt eaettettae eatgeaettt eetttgatge tgaggagaaa 2700 tggaagtggg egaaaaatet eaaggetget teatgtggae ettgteaage tgeteeetee 2760 cccagegica aattgttate aggigecaaa cactgetaga aaggagggee tagteagaag 2820 cctctttcca tacgagtttt ggttttgttt ttaatatttt tttctattaa aatactcatg 2880 catttaacct tcccgttatt caaccagtct cttggttgca tccctagcac ttctactaca 2940 agtgagatgg tagtgtttga gtgcttattg agtaaagcat aattcggtca taatgaaatc 3000 gttcacattc cctcatatgc acaagcccac caaccccttc acaccccct tcacaggggt 3060 cgtatgagta aggggatttg gaaactgtca acttacaaag gcactataac aattacagaa 3120 tcatgattgc catgggccac tttatttaca tgaagacaac tggagaacga ctaagaccaa 3180 attatggaaa ataagaaaaa gctgttgctg gcaagaccat caagactgtt ctgacaccct 3240 gteeccatea teectgactg agtactetga cateacggaa agtgttgaac etgggaceet 3300 gaggaattea ceaggagtaa atggetttea tgtattigtg tigittigett titettaegt 3360 gattttatgt tcatagagct agaaagtagc atctcatgat ggcccaacaa tctctgttgc 3420 cagttaaagg ttccttggag atgaggctga ataattatga acctcacctt ctctgattgt 3480 gggagtggca agaactgggg agacgtcctc cataagtgga gcacagggta tggggttaaa 3540 gcatgacagg gagagtette tgtgeetggt ttetteteet etateteata atgeattatg 3600 ggeeegagga ataggggagg gttaataaga etceaaceet aatggeeeaa cagggaaatt 3660

```
ctcattttgg tcgatgatat tctgatggac tggtttggtc ttaataccag tcaaccgttg 3720
teettetgga aatatacata tatgaaataa ataaaggtaa caettgcage caagtteeet 3780
ggtttctggg acttcccatc ttacccattc cttttccagg gcttccagtg tcctgatact 3840 tctgagggtg gttcatactc caaattagat tctggggagt tacagagtaa ttttttcctt 3900
gagggaaagg gaagggttgg gggatggatt taggcagnag ttccggtgga aacattattt 3960 gcactctgag ataagatcca agcctggagt ttgcagaaga tactgtccta ataagcaggc 4020
atttetaaae caagtateta ageetaagea cagettgtee tgggtgaaat gtetgeeaca 4080
aaagatagtt teteetaget cagaettaac catttataaa ggttggtaaa atactggeag 4140 tgacaacaaa ttgaetttt aattteetta tttgeattat teeaataaat gaaaatetgt 4200
cagagttcg
                                                                                           4209
<210> 22
<211> 710
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 443551.1.dec
gtttctttca tatatcagaa cttcatattc attggagaga ccatacagga gagaaggtct 60
ataaatgtga tgattgtggt aaggatttta gcactacaac aaaacttaat agacataaga 120
aaatccacac agtggagaag ccctataaat gttacgagtg tggcaaagct tcaattggag 180 ctcccatctt caaattcata tgagagttca tacaggtgag aaaccgtatg tctgtagtga 240
gtgtggaagg ggctttagta atagttcaaa cctttgcatg catcagagag tccacaccgg 300
agagaagccc tttaaatgtg aagagtgtgg gaaggccttc aggcacacct ccagcctctg 360 catgcatcaa agagtccaca caggagagaa accctataaa tgttatgagt gtgggaaggc 420 gttcagtcag agttcgagcc tctgcatcca ccagagagtc cacactggag agaaacccta 480
tagatgttgt ggatgtggga aggeetteag teagagtteg ageetgtgea tecaceagag 540
agtccacaca ggagagaaac ctttcaaatg tgatgagtgc ggaaaggcct tcagtcagag 600
tacgagecte tgcatecace agagagteca cacaaaggag agaaaccate teaaaatate 660 agttatataa aacgttttge taagagttta aaatettaaa acceataagt 710
<210> 23
<211> 1047
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 897957.1.dec
<220>
<221> unsure
<222> 64, 71
<223> a, t, c, g, or other
<400> 23
aagaatgtga tgaagctttc agattcaaat caacccttga tagtcatgga attcatacta 60
gagnggaacc nttagcagtg taatgaacgt ggcaaaggtt ttaaatcaaa aagcaaagct 120 tgcacatcat catagaattc atactggaga taaacgttac aaatgtgaag catgtgacaa 180
agtttacagt cgcaaatcaa gcctcgaaag acaggagaat tcatactgga gagaaaqctt 240
acatatgtga agaatgtcac caagttttca gtcacactca aaccttgaaa gacacagcag 300
aattoctact ggagagatag cataaaaatg taagagtttg tgacaagget tteaggeata 360 attegeacet ggeacaacat cetagaatte acattggaga gaaagettae aagtataatg 420
aatgtgacag gtctttagtg ggcagtcaac acttgtttac catcaggcaa tccatggtgt 480
agggaaactt tacttatgta atgattgtca caaagtcttc agttacacta caaccattgc 540
gaatcattgg agaatccata atgaagagag atcatactag tttaataaat ttggcaaatt 600 tttcagacat tgttcataac ttgcagttca tcggcgaact cgtactggag agaaacctta 660
caaatatcat gactgtggca aggtcttcag tcaagcttca tcctatgcaa aacataggag 720
gaattcatac aggagagaaa cctcacaagt gtgatgattg tggcaaagtc ttgacttcac 780 gttcacacct cattagacat cagagaatcc atactggaca taaatcttac aaatgtctta 840
agtgcaacaa ggtcttcagt ctgtgggcac tccatgcaga acatcagaaa attcatttt 900
gagataactq ttccaaatac agtgactata gaagatcata aagctttaat tgacattaga 960
gccaaatagg cattgacttg agattgagtt gacttaacct tgagtttaag aattaattta 1020
cattaaagtg tttatgttaa gaagaaa
                                                                                           1047
```

577

WO 01/21836 PCT/US00/25643 <210> 24 <211> 676 <212> DNA <213> Homo sapiens <220> <221> misc_feature <223> Incyte ID No: 900911.1.dec <400> 24 ttccgttttc gcgtggttct tttgcaaget ctggattctc tggagtttga atgcatccag 60 tattggaacc ccaccaagta ggactgatca ggtcttacaa ttctaaaacc atgacctgtt 120 ttcaggaatt agtgacattc agggatgtgg ccatagactt ctctcggcag gagtgggaat 180 acctggaccc taatcagagg gacttataca gggatgtgat gttggagaac tatagaaacc 240 tggtatcact gggaggacat tccatttcta aaccagttgt ggttgattta ctggagcgag 300 gaaaagagee etggatgatt ttgagggaag aaacacagtt cacagatttg gatttacagt 360 gtgagataat cagetacata gaagtaceea ettatgaaac agatatatee tetacacaac 420 ttcagagcat atataagaga gagaaactct atgaatgtaa gaaatgtcag aagaaattta 480 gtagtggtta tcaacttatt ctacatcaca ggtttcatgt cattgagaga ccctatgaat 540 gcaaagagtg tgggaagaac tttcgtagtg gctatcaact tactctacat caaagatttc 600 atactggtga gaaaccctat gaatgtacag aatgtgggaa gaactttaga agtggttatc 660 agctgactgt gcatca <210> 25 <211> 631 <212> DNA <213> Homo sapiens <220> <221> misc_feature <223> Incyte ID No: 999296.1.dec <400> 25 atgagtttgg gaaaccattt taccattgtg catcctatgt tgtaaccccc tttaagtgta 60 atcagtgtgg acaagacttc agtcataaat ttgacctcat tagacatgag cgaattcatg 120 ctggagagaa accttacgaa tgtaaagaat gtggaaaagc cttcagtagg aaggaaaatc 180 ttattacaca tcagaaaatt catactgggg aaaaaccgta taagtgtaat gaatgtggaa 240 aagettteat teagatgtea aacettatta gacaccacag aatteatact ggggagaaac 300 ettatgeatg taaggattgt tggaaageet teagteagaa ateaaatete attgaacatg 360 agegaattea caetggagag aaaceetatg aatgtaatga atgtgggaaa teetteagee 420 agaagcaaaa tettattgag catcagaaaa tteataetgg ggagaaacet tatgeatgta 480 atgaatgtgg aaaagcette agteaaagca tgeatettat tgtacateag agaagceata 540 ctggaaaaaa ccctatgagt gtagtcaatg tggaaaagcc ttagtaagag ctcaactctt 600 accctacatc agcgaaatca cactggagaa a 631 <210> 26 <211> 577 <212> DNA <213> Homo sapiens <220> <221> misc_feature <223> Incyte ID No: 442286.1.dec gegatgtgge gettgegate tetegeegee ggeagagget eetegaagag egacaegggg 60 ctgaccaggc acggtggtca aagccgcaga gggagagcgg gaccggtcgt gagatcgtct 120 ggggagaagg gcggaggcaa agccgaggag gtgcgggttg tggtccattc tggaggacgc 180 tgatcgaatg ccccaaactt cccggaatgt gtgtggaccc ttctagcctg aggagtcctg 240

<210> 27

caggtgtgaa getecacaee tgeetecata geaetttgee tgteeetaag agggeteate 300 ggagaagaaa gaatggetgt cagecacetg ceaaceatgg tecaggaate ggtgaeette 360 aaggatgtgg etataetgtt cacecaggaa gagtggggge agetgageee egeecagagg 420 geeetgtaca gggaegtgat getggagaae tacageaaee tggteteaet gggaetetta 480 ggaeeeaaae cagataegtt tteccageta gaaaaaaggg aagtgtggat geeagaggae 540

acccetggag gettetgtet tgatggagte teactet

```
<211> 1349
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No: 901978.1.dec
<220>
<221> unsure
<222> 1267, 1324, 1329, 1341
<223> a, t, c, g, or other
gcagcccgag agggaggagg ccacggagac ttggagcatt cccgtttctt ccagagcgct 60
gegggataaa ggaggaaegt eetgetteee ggetgeeetg ttgetgtegg agteaeagga 120 tggeggetgt cateetgeee tegaetgetg etcegtette eetgtteeea geeteteage 180
aaaaaggaca cacacagggc ggagagctgg ttaatgagct cctgacaagc tggctacggg 240
gettggtgge etttgaggat gtggeagtga aetteaecea ggaggagtgg getttgetgg 300
atcettggca gaaaaaacte tacagagatg tgatgetgga aacetatagg aacetggett 360 cagtagggtg tegtgttaat aaacecagte tgatateeca gttggaacaa gacaagaagg 420
tggtgacaga ggaaagagga attctaccaa gcacctgtcc agatttggag actctactta 480
aagccaaatg gttaactcct aagaagaatg ttttcagaaa agaacagtct aaaggtgtaa 540 aaacggaaag aagtcatcgt ggagtgaaac tcaatgaatg taatcagtgt tttaaagtct 600 tcagcacgaa atctaaccta actcagcaca agagaattca tactggagaa aaaccctatg 660
actgtagtca atgtgggaag teetteagta geagatetta eettaetatt cataagagaa 720
tecataatgg ggagaaacce tatgaatgea ateaetgtgg gaaagcattt agtgateeet 780
catecettag actgeatttg agaatteaca etggagaaaa accetatgaa tgtaaceagt 840 gtttteacgt ttteegeace agttgtaace teaaaageca eaagaggatt cacaeggggg 900
agaatcacca tgaatgtaat cagtgtggaa aagctttcag cacaaggtcc tetetcactg 960
ggcacaatag cattcataca ggggagaaac cttatgaatg tcacgattgt gggaaaacct 1020 tcaggaagag ctcctatctg acacagcacg taagaactca tactggagaa aaaccctatg 1080 aatgtaacga gtgtgggaaa tccttcagca gtagcttttc tcttactgtg cacaagagaa 1140
tacatacegg agagaaacec tacgagtgca gtgactgtgg aaaageettt aataatetet 1200
cagctgtgaa gaaacactta agaactcaca ctggagaaaa accctatgaa tgtaatcatt 1260 gtggganatc cttcacaagt aactcctatc ttttctgtgc acaagaggat acataataga 1320
tggnttgant tactgcaggg ncttctgga
                                                                                           1349
<210> 28
<211> 1696
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 479346.1.dec
<220>
<221> unsure
<222> 1089, 1237, 1283
<223> a, t, c, g, or other
cgccataggc cagtgccggg gtttaagggc caggaaagga agcattcagg gaatttaggt 60
gtagccagaa gaaaatcagg teetggetee eeagaagcaa gagagtteaa gtgaaggaag 120 gaggaggtte etggatgtgg atgteateat ttetgggaac actettaaat ggagaeteag 180
atticttage caaaatttag ggaggateca gaagaaacca aagacgaage atcccagtte 240
ttgggtatīt cctgaaacag aagaaatga caaaggccca ggtaacttīt ggtttgtttt 300
attettaaet egatteeetg atggatttgt ggaagtetga agaaateagt teatttaeat 360 taaaagtata aattggaaaa aatgagetet ggggagaaae agaettagae tgtaeettta 420
atccaggaca aagtgggatc acaaatactt tgttcacata gttcacatgt gaccagtgtt 480
ggaatataat gtgcgactet gccagaccet gttggctaca ttaagtgtca gcttgtgtcc 540
aaaatetttg gecaecatea eaceeagaga ateatggaat eactgaecet ggaggatgtg 600 getgtggaet teacetggga ggagtggeag tteetgagee etgeteagaa ggaectgtae 660
egggatgtga tgttggagaa etacageaac ettgtgteag tggggtatea ageeggeaaa 720
cctgatgccc tcaccaagtt ggaacaagga gaaccactat ggacactaga agatgaaatc 780
cacagtccag cccacccaga aattgagaaa gctgatgatc atctgcagca gcccttgcaa 840
```

```
aaccaaaaaa tactgaagag gacgggacaa cgctatgaac acggaagaac tttgaaatca 900
tatttaggtt taaccaacca gagcagaaga tacaacagaa aggagcctgc tgagtttaat 960
ggagatggag etttteteea tgataateat gaacaaatge etaeggaaat tgaatteeet 1020
gaaagtagaa aacccatcag caccaagtca caattcctta aacatcagca aacacacaac 1080 atagagaang cccatgaatg cactgactgt gggaaagctt tcctcaagaa gtctcagctc 1140
actgagcata agagaattca tacaggaaag aaaccccacg tgtgtagctt gtgtgggaaa 1200
gccttctaca agaagtacag gctcactgaa cacgagngag ctcacagagg aggagaaacc 1260
ccacgggtgt agcttgtgtg ggnaaagcct tctacaagag gtacaggctc actgaacacg 1320 agagagctca caaaggagag gaaaccatac gggtgcagtg aatgtgggaa agccttcccc 1380
aggaaatetg agettaetga acateaaagg atteacaegg gaattaagee ceateaatge 1440
agegaatgtg ggagagettt etecagaaaa teactacteg ttgtacatea gegaacteat 1500
acaggagaga agceteatae atgeagtgaa tgtggaaaag getteattea gaagggeaat 1560 etcaacatae atcaacgaae teacaetgga gagaaaeett atggatgeat tgaetgtgge 1620
aaggeettea geeagaagte ttgeettgta geacateaga gatateatae aggaaagaet 1680
                                                                                                      1696
ccctttgtat gtcctg
<210> 29
<211> 2459
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 481750.1.dec
<400> 29
cattaagaat cctagcatta ttggccacag gtataaaatc cgctggggct ccaaacaaag 60 gtatatagtt aactatattg ggggcattgc tttaagatga gtgcctagca gcagtgacag 120
tatctgggcc tggaaaaaat gtaccactta cattgaattt gctcttcaac ccacaggttc 180
tgactectca ggagcaaaaa acataacetg aagagggagg aagtggattt ggggttcace 240
atttettggg gcacacttga ttgaaaactg agacttetga agagaaggec agaagataca 300 aagacagacc atcccagttg aatgetgtet tecaagaaca gaagaaaatg atccaggece 360
aggaatccat aacactggag gatgtggctg tggacttcac ttgggaggag tggcaactcc 420
tgggcgctgc tcagaaggac ctgtaccggg atgtgatgtt ggagaactac agcaacctgg 480
tggcagtggg gtatcaagcc agcaaaccgg atgcactett caagttggaa caaggagaac 540 aactgtggac aattgaagat ggaatccaca gtggagcctg ttcagacata tggaaagttg 600
atcatgtget ggagcgcttg cagagtgaaa gcctggtgaa cagaaggaaa ccatgtcatg 660 aacatgatgc atttgaaaat attgttcatt gcagcaaaag tcagtttctg ttagggcaaa 720 atcatgatat atttgactta cgtggaaaaa gtttgaaatc caatttaact ttagttaacc 780 agagcaaagg ctatgaaata aagaactctg ttgagtttac tggaaatggg gactcctttc 840
ttcatqctaa ccatqaacga cttcatactg caattaaatt ccctgcaagt caaaaactca 900
tragractaa gtrccaattr atragtrcca agratragaa aaracgaaaa ttagagaage 960
atcatgtgtg cagtgaatgt gggaaagcct tcatcaagaa gtcttggcta actgatcacc 1020 aggtaatgca tacaggagag aaaccccaca gatgtagtct atgtgagaaa gccttctcca 1080
gaaagtteat gettaetgaa eateagegaa eteataeagg agaaaaacet tatgaatgee 1140
ctgaatgtgg caaagccttt ctcaagaaat cacggctcaa catacatcag aaaacacata 1200 ccggagagaa accctatata tgcagtgaat gtggaaaagg cttcatccag aaaggaaatc 1260 tcattgtaca ccagcgaatt catacaggtg agaaacctta tatatgcaat gaatgtggaa 1320
aaggetteat teagaagaeg tgteteatag cacateagag attteacaea ggaaagaege 1380
cctttgtgtg cagtgaatgt ggaaaatcct gttctcagaa atcaggtctc attaaacatc 1440
aaagaattca cacaggagag aaaccetttg aatgtagtga atgtgggaaa geetttagca 1500 caaagcaaaa getcattgte catcaaagga etcatacagg agagagacee tatggetgta 1560
acgagtgtgg gaaagcgttt gtgtatatgt cgtgtctggt taagcataag agaatacaca 1620
caaggagaa acaagaggca gccaaggtgg aaaatcctcc tgcagagagg cacagctcat 1680 tacacaccag tgatgtcatg caggagaaaa actctgctaa cggggcgact acacaagtgc 1740 cttctgtggc ccctcagaca tcattaaaca tcagcggcct cctcgcaaac aggaacgtag 1800
tccttgtggg acagccagtg gtcagatgtg cagcctcagg agataacaga ggatttgcac 1860 aggacagaaa ccttgtgaat gcagtgaatg tggttgtgcc ttccgtgatc aattatgtct 1920 tattttatgt tacagaaaac ccataggaag aaaactcaga tctatgtgga aaagggttga 1980
gcaaaaattt gtagttcatt atgtggccga aaagcataca ctgagagaac atgtataagg 2040
ctgagatagc ctgataaact catcctatta aaatgtatgc tgtgatacac aggcaaattt 2100
gatgttaacc taagcacata cacagcaatt gctcgactgt gtcaattaaa tgagtaaagg 2160 aagcccaagt acttttaagt ggaggaaatg aagtactgtg aatttttaaa acagatgaga 2220 taattggtgt cgggagtgtt gcagtgactg aaaagcttca taaggggcag ttggtgggaa 2280
agggetaata etgtaatggt ggaatgtggg acacatatgt gteaatteag ttteettaga 2340
ccagtgccag tgtggaggat taattgaaaa ccaggaccat aaactttcag aactttgtat 2400 tatgcagagg gatctgtgaa actagtcaat ttgtttcatt aaacaaatat tttaaaaatt 2459
```

```
<210> 30
<211> 469
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 900917.2.dec
<400> 30
ccatctttac cggctgtggc tcagcatggt cagtgccgtt taacctttat tgtggtggag 60
tecaceege tgtgggeete agataaeeet gtacaaaggg gaatggagat tgeetgtate 120 cacetagatt cataagetge eetgaggega tettggeate aagaaagaca geattgagge 180
acateteace ateagettea gaggatgtea geetttgata tgteecatgg gtttttteec 240
agggaaccaa totgtoottt tgaagaaaag acaaagatag gaacgatggt agaggaccac 300 cggtcaaatt ottaccagga ttcagtgacg tttgatgatg tggctgtgga gttcacccca 360 gaggagtggg otttactgga cacaactcag aaatacctct acaggagtgt gatgctggag 420
aactacatqa acctqqcctc tgtggatttc tttttctgct taacttcag
                                                                                              469
<210> 31
<211> 682
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 999415.1.dec
<220>
<221> unsure
<222> 382
<223> a, t, c, g, or other
<400> 31
ccaccatctt ttgggtccgg gaggattgag tcatcgggct ccaatgcgtg gggatgttta 60 ccgccgttta tccgggatag agactccatc gtgctgacag catcctttta ttcaccgcct 120
ccqaatttqc aaaqaqqaqq aaqgagggac ttcttgqctt ctcccagcat agccccagtt 180
atgccatctc agaactatga cettececag aagaageagg agaaaatgae caagttteag 240 gaggetgtga catteaagga tgtggetgtg gtetteteca gggaggaact gegaetgete 300 gatettacec agaggaaget gtacegagat gteatggtgg agaactteaa gaacetggtt 360
gcagtgggca gcaagcatca anaattaagg atggaaacac tccaaaaatt tgcattaaaa 420
tacctttcaa atcaagagct gtcctgctgg caaatctgga aacaggttgc aagtgaatta 480 accaggtgtc ttcaggggaa gagttcccag ttattacaag gtgactctat tcaggtttct 540 gaaaatgaga acaatataat gaaccctaaa ggagatagct ctatttatat tgaaaatcaa 600
gagtttccat tttggagaac ccagcattct tgcgggaata catatctgag tgagtcacag 660
attcagagta gaggtaagca aa
<210> 32
<211> 996
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 900680.2.dec
<400> 32
ggttggette egggatetgg egeggegttt teetetgget eetgegaggg ettggtttag 60
 ggetteaget etetgegtte teggeteegg gaggeetegg tgatteagee acageetetg 120
cctcccgttg ctctgtgacc tgagggtatt ggacaatttg tagctaagac tcccggatac 180
 cctgaagtcg ggaaatggaa ctcgtaacat tcagggatgt ggccatagaa ttctcccctg 240
aagagtggaa atgtctggac cctgcccagc agaatttgta tagagatgtg atgttggaga 300 actacaggaa cctggtctcc ctgggttttg tgatctctaa cccagacctg gtcacctgtc 360
 tggagcaaat aaaagagccc tgcaatttga agatacatga gacagcagcc aaacccccag 420
 ctatatgtte teettteage caagacettt caecagtgea ggggatagaa gatteattee 480
acaaacttat actgaaaaga tacgagaaat gtggacatga gaatttacaa ttaagaaaag 540 gctgtaaacg tgtgaatgag tgtaaggtgc agaaaggagt taataatgga gtttaccagt 600
```

```
gcttgtcaac tacccagagc aaaatatttc aatgtaatac atgtgttaaa gtttttagta 660
aattttcaaa ttcaaacaaa cataagataa gacatactgg agagaaaccc tttaaatgta 720
cagaatgtgg cagatcgttt tacatgtcac acctaactca acatacagga attcatgctg 780
gagagaaacc ctacaaatgt gaaaaatgtg gcaaagcctt taataggtcc acatcactta 840
gtaaacataa gagaatteat actggagaga aaccetacac atgtgaagaa tgtggcaaag 900
cctttagacq qtccacaqtt ctqaacqaac ataagaaaat tcatactgga gagaaaccct 960
acaaatgtga agaatgtggc aaagccttta caaggt
<210> 33
<211> 2098
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 902791.3.dec
ggetgaegeg geggetetat eteeegtaae tgtgaeaegg gtgeaegeaa gegteattgg 60
gggtgatggg ggccgtgctc ggtgcgcttc tgcaccggtg acgcaaccgc tgtgtctccg 120
ccagtccgcg caggccagca tccttcagaa aaagcatccc cgaggaggaa gacgaatcgt 180
taaacatett aggteagete tageeteteg gaatttgtet tetteagtgg aaaceeegag 240
aagactgatc agttcttcag ttctaaaaca atggcccagg gtttggtgac gttcgccgac 300 gtagccatag acttttctca ggaggagtgg gcctgtctga actctgctca gagggacctg 360 tactgggacg tgatgctgga gaactacagt aacttggtct cactggattt ggagtcagca 420
tatgaaaata agagtttacc tacagaaaaa aacattcatg aaataagggc ttccaaaagg 480
aattcagata gaagaagtaa atcccttggc cgtaactgga tatgtgaagg tacgcttgaa 540
agaccacage getecagagg gaggtatgte aatcagatga teatcaatta tgteaaaaga 600 cetgetaeta gagaaggeae eeetteetag aacacateag agacateata aggagaatte 660
ctttgaatgt aaggactgtg ggaaggeett tagtegtgge tateaactta gteaacatea 720
gaaaatccat actggtgaga aaccttatga atgtaaagaa tgtaagaagg ccttccgttg 780 gggcaatcag cttactcaac atcaaaaaat tcatactggg gagaagccct acgaatgtaa 840 agactgtggg aaggcttttc gatggggctc aagcctcgtt attcataaga ggattcatac 900
tgggtgaaaa accctatgaa tgtaaagact gtggaaaggc ctttcggcgt ggtgatgagc 960
tcactcagca ccagagattc cacactgggg agaaagacta cgaatgcaaa gactgtggga 1020 agacctttag ccgtgtgtat aaacttattc agcacaagag aattcatagt ggggagaagc 1080
cttacgagtg taaagactgt gggaaggctt ttatttgtgg ttcaagcctc attcagcata 1140
aaagaattca cacaggtgag aaaccctatg aatgtcaaga atgtgggaag gcctttactc 1200 gagtcaatta ccttactcag catcagaaga tccacaccgg tgagaagcct cacgaatgta 1260 aggagtgtgg gaaggccttt cgctggggtt cgagcctcgt taagcacgag aggatacata 1320
cgggcgagaa gccgtacaag tgcacagaat gtgggaaggc cttcaattgt ggctatcacc 1380
tcactcagca cgagagaatc cacacaggcg aaaccccgta taaatgtaag gagtgtggga 1440 aggctttcat ttatggatcg agcctcgtga aacatgagag aattcatacc ggggtgaaac 1500
cctatgggtg tacagaatgt gggaagagct ttagtcacgg ccatcagctt acacaacatc 1560
agaaaacgca cagtggggcg aaatcctacg aatgtaagga gtgcgggaag gcatgtaacc 1620 acctaaacca tctccgagaa catcagagga tccacaacag ttgaagagcc ttttgaacgc 1680 agtagccgc tcgtatctat ggtttcgctt tccacagttt gttacctgca gtcaactgca 1740 gttcaaaaat attaaatgga aaattccaga aataaagaat tttaagtctc aaatggtgtg 1800
cccttctgag tagcgtgatg aaatctctcg ctgtccggct ccagccggcc ggggatgtga 1860
gtcatccett ggtccagcac atccacgctg tatacgccac ccaccetgct agtgacttag 1920 tagccgtctt ggtgatcaga tcaactatcc cagcatcaca gtgcctgtgc ccaagcagtc 1980 ctcactttgc ttaacagtgg ccccagagag caggagtagt gatgctggtg attcggatat 2040
gccaaagaga agccacaaag tgcttccttt taaatgaaaa ggtgaaagtt ctcaactt
 <210> 34
<211> 1520
 <212> DNA
 <213> Homo sapiens
 <221> misc_feature
 <223> Incyte ID No: 053826.1.dec
 <220>
 <221> unsure
 <222> 1479
 <223> a, t, c, g, or other
```

```
gaatteecee eeceeece teacttggtg tgtetatatg tetggeagae attateagea 60 cattetetgt tgttacetgt gatteatttt ttetteacte teeaggtgaa ttteaattge 120
tgaaaatttc ccactgaaaa tatgcagtaa tatattttgt ggttcagaca tttggggcaa 180
atggttcaca ttcattttag ggttagtggt catgctgttt atttttctct gctatacaaa 240
gttcctctta ggggtctgcc tcatgacact aaaaaatgaa tagagattct actgtaggtt 300
atctcctagg cttgagttca acatttgttt ggatttttga agaaagtcaa atcaagcaat 360
gctcccaaat gatgtctttg taaattcata ccctctggcc ctatttttt tcatagaccc 420
taactctacc tttctgcttt aaagcaaagt aaacteggtg gcctcttctt ctccacccct 480
caaaatgata gcaatctctg ccgtcagcag tgcactcctg ttctcccttc tctgtgaagc 540
aagtaccgtc gtcctactca attccactga ctcatccccg ccaaccaata atttcactga 600 tattgaagca gctctgaaag cacaattaga ttcagcggat atccccaaag ccaggcggaa 660
gegetacatt tegeagaatg acatgatege cattettgat tateataate aagttegggg 720
caaagtgttc ccaccggcag caaatatgga atatatggtt tgggatgaaa atcttgcaaa 780
atcggcagag gcttgggcgg ctacttgcat ttgggaccat ggaccttctt acttactgag 840 atttttgggc caaaatctat ctgtacgcac tggaaggtag gaaatatcgc tctattctcc 900
agttggtcaa gccatggtat gatgaagtga aagattatgc ttttccatat ccccaggatt 960
gcaacccag atgtcctatg agatgttttg gtcccatgtg cacacattat acgcagatgg 1020 tttgggccac ttccaatcgg ataggatgcg caattcatac ttgccaaaac atgaatgttt 1080 ggggatctgt gtggcgacgt gcagtttact tggtatgcaa ctatgcccca aagggcaatt 1140
ggattggaga agcaccatat aaagtagggg taccatgttc atcttgtcct ccaagttatg 1200 ggggatcttg tactgacaat ctgtgttttc caggagttac gtcaaactac ctgtactggt 1260 ttaaataagt ttaccttttc ctccaggaaa tataatgatt tctgggaaca tgggcatgta 1320
tatatatata tggagagaga attttgcaca tattatacat attttgtgct aatcttttc 1380
ctcttagtat tcctttgtat aaattagtgt ttgtctagca tgtttgttta atcctttgaa 1440
atatttgaaa catcaatttc tattttctga actctaagnc taaattaaga tattgtatat 1500
gtaatgatga catagttgat
<210> 35
<211> 1722
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 204932.4.dec
<220>
<221> unsure
<222> 45
<223> a, t, c, g, or other
<400> 35
ggggccccta caagcggcca caaggatggc aggcttcgcg gactncgggc tgtcatcgtg 60
gctcgtggaa caatgtcggc agctgggttt gaagcagccc acgcccgtgc agctcggctg 120
cateceegee atectggagg aagetgtetg aggateeeta tggeatette tgeetegtee 180
tgacacccac cagggagetg gcctaccaga tegcagagca gttccgggtc ctggggaagc 240
ctctagggct gaaagactgc atcatcgtcg gtggcatgga catggtggcc caggcgctgg 300
ageteteteg gaaaccacac gtggteateg ceaegeeggg gegeetggea gateacetge 360 geageteeaa caettttagt ataaagaaga teegetteet ggtgatggat gaggeagace 420
ggetgetgga acagggetge actgaettea eegtggaeet ggaggeeate etggeggetg 480
tgccggccg caggcagaca ctgctgttca gcgccacgct gaccgacaca ctccgggagc 540 tgcagggtct ggccaccaac cagcccttct tctgggaagc acaggccccg gtgagcaccg 600 tggagcagct ggaccagcgc tacctgctgg tggcctgaga aggtcaagga cgcctacctg 660
gtecacetga tecagegett ecaggatgag caegaggaet ggtecattat catetteace 720
aacacgtgca agacctgcca gattctgtgc atgatgctgc gcaaattcag cttccccacc 780 gtggctctgc actccatgat gaagcagaaa gaacgctttg ccgccctagc caagttcaag 840 tccagcatct accggatcct gatcgcaaca gacgtggcct cccggggcct ggacatccct 900
acggtacagg tggtcatcaa ccacaacacc cccgggctcc ccaagatcta catccaccga 960
gtcggccgga cggcccgtgg cagggcggca gggtcaggcc atcacgctgg tgacacagta 1020
cgacatccac ctggtgcacg ccatcgagga gcagatcaag aagaagctgg aggagttctc 1080 cgtggaagag gccgaggtgc tacagatcct cacacaggtc aacgtggtgc gaagagagtg 1140
 tgagatcaaa ctggaggcgg cccactttga cgaaaagaag gagatcaaca aacggaagca 1200
gctgatcctg gaggggaagg accctgacct ggaggccaag cgcaaggctg agctgggcca 1260
agatcaagca gaagaaccgg cgcttcaagg agaaggtgga ggagacgctg aagcgacaga 1320 aggctggcag ggctggccac aaggggcgtc cacccaggac accgtctggg tcccactcag 1380
geocagtece eteccaggge etggtetgag ecceacaegg coatetgee agteettgae 1440
```

```
tegtecatgg agetgagggt eggaggaace tteettgggg geageageee tteeeggggg 1500
cctacccagt gccccacage agaacccgtg ggcgctcgtg ttgtgcgggc cctgctcctc 1560
tgccccgaaa ccactggctg gccccttccc tgagccctgg ccaagattca ggctgcaggg 1620
<210> 36
<211> 1622
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 400607.19.dec
tggaccaggc ggccgtggcg cgggtggcgg ctgctgtgct gggctgtggg gaccggaggc 60
gqtqaaqtgc catcttcggc taggtcgtca caggctccgg ctcatggcat caagtggcat 120
ccatcataag atcgttaact gaagacaata tgcaaaattc tcacatggat gaatacagaa 180
attctagtaa tggcagcaca ggcaacagtt cagaggtagt ggtagaacat cctactgatt 240
tcagtactga gattatgaac gttacagaaa tggaacagtc acctgatgac tctcccaatg 300
tgaatgcatc tacagaagaa actgaaatgg caagtgctgt ggaccttcca gtgacgctga 360 cagaaacaga agcaaatttc cctccagaat atgaaaaatt ttggaaaact gtagaaaata 420 atcctcagga ttttacaggc tgggtatatt tgcttcaata tgtagaacag gagaatcact 480
tgatggctgc caggaaggca tttgacagat ttttcataca ctatccgtat tgctatggtt 540
actggaaaaa gtatgcagac cttgaaaagc ggcacgacaa cattaaacca tcagatgagg 600
tgcgttaaac etetacagtt tgtcaagett tgcagtgcaa geetetgtat tacaetgcag 660 ettaacaaac getgtcattg atgetetaat gggtetgtge eetatggtet gtaacecaaa 720
geetgeecac acaacceggt cagaatgeag ggactgtgeg etttgaagat caagactetg 780
cacgtgggga tcagaacatt gccatgttct atccaacctc cacccaaatg gtttatcggc 840
gggggcttca ggcaatacct cttagtgttg acctttggat acattatata aacttcttaa 900
aagaaacatt ggaccctggt gatcctgaga caaacaatac aataagagga acttttgagc 960
atgctgttct agctgcagga acagatttcc gttctgacag actgtgggaa atgtatataa 1020
actgggaaaa tgagcaggga aacctgagag aagttacagc tatatatgat cgtattcttg 1080 gtattccaac acagctgtat agtcatcatt ttcagagatt taaagaacat gtacagaata 1140
atttgcctag agatctitta actggtgaac agtttattca gttgcgaagg gaattagctt 1200
ctgtaaatgg tcatagtggt gatgatggtc ctcctggtga tgatctacca tcgggaattg 1260
aagacataac cgatcctgca aagctaatta cagaaataga aaacatgaga catagaatca 1320
ttgagattca tcaagaaatg tttaattata atgagcatga agttagtaaa aggtggacat 1380
ttgaagaagg tattaaaaga ccttactttc atgtgaaacc tttggaaaag gcacaactaa 1440
aaaactggaa agaatactta gaatttgaaa ttgaaaatgg gactcatgaa cgagttgtgg 1500
ttetetttga aagatgtgte atateatgtg eeetetatga ggagttttgg attaagtatg 1560 eeaagtacat ggaaaaceat ageattgaag gagtgaggea tgetteagea gagettgaet 1620
                                                                              1622
at.
<210> 37
<211> 619
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 444248.7.dec
qctttctqaq agtcatggac ctcctgtgca agaacatgaa gcacctgtgg tttttcctcc 60
tgctggtggc agctcccaga tgggtcctgt cccaggtgca gctgcaggag tcgggcccag 120
gactggtgaa gccttcggag accetgtece teacetgege tgtetetggt tactccatea 180 geagtggtta etactgggge tggatccgge agececeagg gaaggggetg gagtggattg 240
ggagtatcta tcatagtggg agcacctact acaacccgtc cctcaagagt cgactcgcca 300
tatcagtaga cacgtccaag agccagttgt ccctgaagct gagctctgtg accgccgcgg 360
acacggccgt gtattactgt gcgactttct actatgatga aagtagtggc catatccttg 420 actactgggg ccagggaacc ctggtcaccg cctcctcagc atccccgacc agccccaagg 480
tetteceget gageetetge ageaeceage cagatgggaa egtggteate geetgeetgg 540
tccagggctt cttcccccag gagccactca gtgtgacctg gagcgaaagg gacagggcgt 600
gaccgccaga aattcccac
```

```
<210> 38
<211> 499
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 346599.9.dec
<400> 38
ggacgteett eeceaggage eggtgagaag egeagteggg ggeaegggga tgageteagg 60
ggcctctaga aagagctggg accctgggaa cccctggcct ccagactggc caatcacagg 120 caggaagatg aaggttctgt gggctgcgtt gctggtcaca ttcctggcag gatgccaggc 180
caaggtggag caagcggtgg agacagagce ggageeegag etgegeeage agacegagtg 240 geagagegge cagegetggg aactggeact gggtegettt tgggattace tgegetgggt 300 geagacactg tetgageagg tgeaggagga getgeteage teccaggtea eccaggaact 360
gagggegetg atggacgaga ccatgaagga gttgaaggee tacaaategg aactggagga 420
acaactgace ceggtggegg aggagaegeg ggeaeggetg tecaaggaet geaageggeg 480
caageeegg etgggegeg
<210> 39
<211> 1555
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 480344.2.dec
<400> 39
ettecceggg aagagtetea gegeagaagg aggaaggaea geacagetga eageegtget 60
ctggaagett ctggatecta ggeteatete cacagaggag aacatgeacg cageagagat 120
catggggccc ctctcagccc ctccctgcac agagcacatc aaatggaagg ggctcctgct 180
cacagcatta ettttaaact tetggaactt geetaceact geecaagtea tgattgaage 240 ceagecacec aaagtgteeg aggggaagga tgttetteta ettgteeaca atttgeecea 300
gaatettact ggetacatet ggtacaaagg geaaateagg gaeetetace attacattae 360
atcatatgta gtagacggtc aaataattat atatggaccg gcatacagtg gacgagaaac 420 agtatattcc aatgcatccc tgctgatcca gaatgtcacc cgggaggacg caggatccta 480 caccttacac atcataaagc gaggtgatgg gactagagga gtaactggat atttcacctt 540 caccttatac ctggagactc ccaagccctc catctccagc agcaacttaa accccaggga 600
ggccatggag actgtgatct taacctgtaa tcctgagact ccggacgcaa gctacctgtg 660 gtggatgaat ggtcagagcc tccctatgac tcataggatg cagctgtctg aaaccaacag 720 gaccctcttt ctatttggtg tcacaaagta tactgcagga ccctatgaat gtgaaatatg 780
gaactcaggg agtgccagcc gcagtgaccc agtcaccctg aatctcctcc atggtccaga 840
cctccccaga attitccctt cagtcacctc ttactattca ggagagaacc tcgacttgtc 900
ctgcttcgca aactctaacc caccagcaca gtattcttgg acaattaatg ggaagtttca 960 gctatcagga caaaagctct ttatccctca gattactcca aagcataatg ggctctatgc 1020
ttgctctgct cgtaactcag ccactggcga ggaaagctcc acatccttga caatcagagt 1080
cattgctct ccaggattag gaactttttg ctttcaataa tccaagtagc agccctgatg 1140 tcatttttgt atttcaggaa gactggcagg agatttatgg aaaagactat gaaaaggact 1200 cttgaataca agttcctgat aacttcaaga tcataccact ggactaagaa ctttcaaaat 1260
tttgatgaac aggetgatac etteatgaaa tteaagacaa agaagaaaag aacteeattt 1320
cattggacta aataacaaaa ggataatgtt ttcataattt tttattggaa aatgtgctga 1380 ttttttgaat gttttatcct ccagatttat gaatttttt cttcagcaat tggtaaagta 1440
tacttttgta aacaaaaatt gaaacatttg cttttgctct ctgagtgccc cagaattggg 1500
aatctattca tgaatattca tatgtttatg gtaataaagt tatttgcaca agttt
<210> 40
<211> 1687
 <212> DNA
<213> Homo sapiens
<220>
 <221> misc_feature
<223> Incyte ID No: 411396.24.dec
```

<220>

```
<221> unsure
<222> 1653
<223> a, t, c, g, or other
egegetaett aaggteetge tgegtgagee attgaegtgt ttggagetgg agaeggeetg 60
ggtgctggcg aacggaggcc ggagtaagaa gactgttaga atgccctcgg taacacagag 120
getgagagat cetgacataa ateettgttt gteggaatet gatgetteea eeagatgtet 180 ggatgaaaat aactatgaca gggaaaggtg ttecaettae ttettgaggt acaaaaactg 240
coggagatto toggaattota togtgatgoa gagaagaaag aacggagtga agccatttat 300
gcctacggca gcagaaagag atgaaatctt gagagcagtg ggaaatatgc cctattgaat 360
gtttgcatta aaagtgttta tataacttag aagcagatga atatttctaa taaatgattg 420 ctgtaatatt taagactgta cacccctcac ccagacagac cttaagttct tcaagtggag 480
acagtgaagt caccocgtgt cetttttgct tgctctcagt gccatgccga tggtatgttg 540
aagagtgtga ggcaagagaa gctggaacca cattcagaga gtatcctgta gattgctcca 780
cctagaatct caggtgggtg gagcagtggt gggagaagac tggaaaggta agttgaaggt 840 aaggaatgtg tggtgggcct cagatcccag gctcattcct caaatcactt cttacttccc 900 tcacttatct ttgtttaaat aaggttagta cattcactag gggcaaatgg gtttttctaa 960
ataaatgaca taaaaaagaa ctggttgtct ttctttaaag aaagtcttag ttacaggatt 1020
ctgtgattaa aatcettaaa tattgggttg cettetgeag etgtagtate agtttttgaa 1080 ceacagtaat gggaagaaag acaaatggat teeettagaa gtaagattte tatttgeagg 1140
atgagttggg cagggaaaag ggtcagggtt catcaggtga actcaacact gggatgagac 1200
tagaacttca ctttatgata taaacacaat acgattattc aatgtggtga ctggggtaga 1260
ctgtgaagca gccctcctta tgcccactgc cttttagaat cgtttgtttt attcatggta 1320 gttttatgaa gacatactat tattgaatga aatttaatgt gtacttgaaa acattgcttt 1380 tgtcccttct cttcatctgg tcttgggtca agaacattgt tttaatggct gccgacaatg 1440 aactgtctgt ctgagtctaa aaccaagctc aggttttctaa gccacatgac cttgatgtt 1560
aaatqattca ttitttattc aaatataact acatttaaca atcaaggtca tgtggcttag 1560
aaacctgage ttggttttag actcagacag acagttcatt gteggcagee attaaaacaa 1620
tggtcttggg tcaagaacat tgttttaatg gcngccgaca atgttcttga cccaagacca 1680
gatgaag
<210> 41
<211> 3334
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 302819.4.dec
<220>
<221> unsure
<222> 122, 163, 170, 177
<223> a, t, c, g, or other
 <400> 41
atttctagaa tctgttgggg ttcctgagag agagagagca cctgccactg gcattgaaaa 60
agatgtectg gegteegeaa tacegtaget ecaagtteeg gaatgtetae gggaaggtgg 120
cnaaccggga gcactgcttc gatgggatcc ccatcaccaa gantgtgcan gacaacnatt 180 ctgtgccgtc aacacccgct tcctggccat cgtcaccgag agcgcagtgg ggcggctcct 240 tcctcgtcat ccccctggag cagacaggca ggattgaacc caactacccc aaggtctgcg 300
 gccaccaggg caatgtgctg gatatcaaat ggaacccctt catcgacaac atcattgcct 360
 cgtgctcgga ggacacgtcg gtgcggatct gggagatccc cgagggcggg ctgaagcgga 420
 acatgacgga ggcgctcctg gagctgcacg ggcacagccg gcgtgtgggg ctggtcgagt 480 ggcaccccac caccaacaac atcctgttca gcgctggcta cgactacaag gtcctcatct 540
 ggaacctgga tgtgggtgag ccggtgaaga tgattgactg ccacacggga tgtgactccc 600
tettgcattg teettteaa caeggaegge ageeetgete accaecaegt caaggaeaag 660 aagetgegtg ttgattgage eeegetetgg eeeggttggt teetggeeag gaaggeeaac 720 tgeaaaacca cagagtaace gggtggtgtt eetggggaac atgaagegge teetcaegac 780
 aggggtetee aggtggaaca caagacagat tgeeetetgg gaccaggagg acetetecat 840
 gccctgatc gaagaggaaa ttcatgggct ctctggcctc ctgttcccct tctatgatgc 900
 tgacaccac atgetetace tggetggaaa gggtgatgga aacateeggt actacgagat 960 cagcactgag aageeetace tgagttacet catggagtte egeteeceag ceeegcagaa 1020
```

```
aggcctaggg gtcatgccca agcacgggct ggatgtgtca gcctgcgagg tgttccgctt 1080
ctacaagetg gtgactetea agggeetgat tgageecate tecatgateg tgeeceggag 1140
gtcagattcc taccaggaag acatttaccc aatgacacca ggcacggagc cagcactgac 1200
qqtcaacgga ataqatttat taqaaaatgt cccacccagg acagagaatg agetcetteg 1380
aatgttette eggeageagg atgagatteg aeggttgaaa gaggagetgg eecagaagga 1440
catecgcatt eggeagetee agetggaact gaaaaacttg egcaacagee ecaagaactg 1500 ttageteece agetgggetg ttttetaage egatetetee gtegttteta etcatecett 1560
aactteteee ttaccagtga eeccagagac agagecagga caggagtggg ggecageetg 1620
aggaccccg cctaccacct cgagaactgg aagccaacct ctaacctcct gacctcatgc 1680
taataaaagt ccccagcttc tggagacccc ctgccggcag cgccctttcc ctgccacccc 1740 aggagccagg cttcccctca gctgggtgaa gactacagac tccctggggt tggcaggggc 1800
tccatctcag tggaccagga agcaagaggg gaagcgggat cccagctaga cttagaactt 1860
ggacttttcc cctgtgaagg gggctgccag gacatctcag cactcccgcc tggagctctc 1920 agcatcactg aaggtaccac agtgtaagtg ctggactgca ggctgcagtg atccctcttt 1980 cgtcccaccc cctcttccct cagcagccc ggaagcctgc ctcacccgac gaggacagcg 2040
ageggeeegg etectitetg tetetteeet teeegeeete tigtetteag ggaatteaga 2100
ggattgctct ccaaggccat aatgacccct tgccttcccc atgattctct acaaagctct 2160 tgcacaccct tttcccattc aatttgtgag ccaggcaggg tagggattag tgtccccctt 2220 tgacaaatga cagaactgag ggttgcaatg gggaaatgac ttataaagtc acccagcagg 2280 tcaacaatgg gccacgacc aagaccctgg gtgttcagac cccaaggcca gggcctttcc 2340
cgctgcatca agatgccaat ccctttgtgg gcttcaccag tgcccaagtc tctatggaga 2400 atgagaactg gaagccactg ctaccgtcta cccagcacca gtagtgccga tgtgccacac 2460
tgcccagttg aggcccctca cgctctgtgc ccctagatcc ttcaggtccc caccctcagc 2520
tgtcaccacc accetececa ggggacteca tetgagatga ggcetegtec teetggaage 2580
tgaggetgag aagggtggag ettggeeetg gggaaggeag accagggtet gatggettet 2640 agggatgete tgegtgtgte teageacege tateteagee acttteagee ttatgeaegt 2700
agaatgacca cagccactcg catccgtata gcactttaaa gtttctgcag tcctttgaca 2760
cataggatet categageet caegtetaet ceettetgea gatgaggaaa eegagagaag 2820 tggeecaagg teaegeaact etgagatgee acattteatt tgatettgta caeattteet 2880 tttatteett ettttteet eettteattt eecactaege acaaagagtt tataaacaet 2940
gttctcagaa gagtcacagt ttggggtgag atctggaaat caagaaatgg gtgtccactc 3000 ttttctttca ttagctagga tctactagat gcattatact ccatacctgc ttttccatg 3060 gccgcctac ggaaaatcc atccacagag gccagggcta cccaagccc tccaggtgag 3120 ctgggccttt cctttatgaa cctccatcct cccagccagc tacagtaggg cctcctcacc 3240
cegtacecea cagetagaca gtgteageac teateteete eteceacatt tetggagett 3240
ttittttcc ttccccattg acctttgtgg tcttctgtga ttatttatgc tgcctcccaa 3300
ggatagaatt gaaataaaat gttttcaact tatc
                                                                                                      3334
 <210> 42
 <211> 2248
 <212> DNA
<213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 238734.2.dec
 <400> 42
 gcgatctgag tagccagcgt cgccggcgac cgcggagttc tgggctagtg ggaccccgcg 60
 cgggctggtt cgggatgagc gatggcatcg gtcaaggtgg ccgtgagggt ccggcccatg 120
aatcgcaggg aaaaggactt ggaggccaag ttcattattc agatggagaa aagcaaaacg 180 acaatcacaa acttaaagat accagaagga ggcactgggg actcaggaag agaacggacc 240 aagaccttca cctatgactt ttcttttat tctgctgata caaaaagccc agattacgtt 300
 tcacaaqaaa tggttttcaa aaccctcggc acagatgtcg tgaagtctgc atttgaaggt 360
 tataatgctt gtgtctttgc atatgggcaa actggatctg gaaagtcata cactatgatg 420
ggaaattetg gagattetgg ettaatacet eggatetgtg aaggaetett eagteggata 480 aatgaaacea eeagatggga tgaagettet tttegaaetg aagteageta ettagagatt 540
 tataacgaac gtgtgagaga tctacttcgg cggaagtcat ctaaaacctt caatttgaga 600
 gtccgtgagc atcccaaaga aggcccttat gttgaggatt tatccaaaca tttagtacag 660
aattatggtg acgtagaaga acttatggat gcgggcaata tcaaccggac caccgcagcg 720 actgggatga acgacgtcag tagcaggtct catgccatct tcaccatcaa gttcactcag 780 gctaaatttg attctgaaat gccatgtgaa accgtcagta agatccactt ggttgatctt 840
 gccggaagtg agcgtgcaga tgccaccgga gccaccgggg ttaggctaaa ggaaggggga 900
 aatattaaca agtccctcgt gactctgggg aacgtcattt ctgccttagc tgatttatct 960 caggatgctg caaatactct tgcaaagaag aagcaagttt tcgtgcctta cagggattct 1020
```

```
gtgttgactt ggttgttaaa agatagcctt ggaggaaact ctaaaactat catgattgcc 1080
accatttcac ctgctgatgt caattatgga gaaaccctaa gtactcttcg ctatgcaaat 1140
agagccaaaa acatcatcaa caagcctacc attaatgagg atgccaacgt caaacttatc 1200 cgtgagctgc gagctgaaat agccagactg aaaacgctgc ttgctcaagg gaatcagatt 1260
gecetettag actececcae agetttaagt atggaggaaa aaetteagea gaatgaagea 1320
agagttcaag aattgaccaa ggaatggaca aataagtgga atgaaaccca aaatattttg 1380
aaagaacaaa ctctagccct caggaaagaa gggattggag ttgttttgga ttctgaactg 1440 cctcatttga taggcatcga tgatgacctt ttgagtactg gaatcatctt atatcattta 1500
aaggaaggte agacatacgt tggtagagac gatgetteea eggageaaga tattgttett 1560
catggcettg acttggagag tgagcattgc atetttgaaa atateggggg gaeagtgaet 1620
ctgatacccc tgagtgggtc ccagtgctct gtgaatggtg ttcagatcgt ggaggccaca 1680 catctaaatc aaggtgctgt gattctcttg ggaagaacca atatgtttcg ctttaaccat 1740
ccaaaggaag ccgccaagct cagggagaag aggaagagtg gccttctgtc ctccttcagc 1800
ttgtccatga ccgacctctc gaagtcccgt gagaacctgt ctgcagtcat gttgtataac 1860
cccggacttg aatttgagag gcaacagcgt gaagaacttg aaaaattaga aagtaaaagg 1920 aaactcatag aagaaatgga ggaaaagcag aaatcagaca aggctgaact ggagcggatg 1980
cagcaggagg tggagaccca gcgcaaggag acagaaatcg tgcagctcca gattcgcaag 2040
caggaggaga gcctcaaacg ccgcagcttc cacatcgaga acaagctaaa ggatttactt 2100
gcggagaagg aaaaatttga agaggagagg ctgagggaac agcaggaaat cgagctgcag 2160 aagaagagac aagaagaaga gacctttctc cgcgtccaag aagaactcca acgactcaaa 2220
                                                                                         2248
gaactcaaca acaacgagaa ggctgaga
<210> 43
<211> 1723
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 399525.3.dec
<221> unsure
<222> 30
<223> a, t, c, g, or other
<400> 43
ggacgcggcg ctggatttca agttggcggn tgccgtgctg aggaccgggg gtggaggtgg 60
tgcctctggc agtgacgagg acgaatgtcc gaggttgaat catttattt ggaccaagaa 120
gatetggata acceagiget taaaacaaca teagagatat tettateaag taetgeagaa 180
ggagcagact tacgcactgt ggatccagag acacaggcac gactagaagc attgctagaa 240
gcagcaggaa ttggcaaatt gtcaactgct gatggtaaag cttttgcaga tcctgaggta 300 ctccggagac tgacatcctc agttagttgt gcactggatg aagctgctgc tgcactgaca 360
cggatgaaag cagaaaacag ccacaatgca ggacaagtgg acactcgcag tctagcagaa 420
gettgttcag atggggatgt taatgetgtt egtaaattge tagatgaagg cagaagtgta 480 aatgaacata cagaagaagg agaaageetg etgtgtttgg ettgttcage agggtattat 540 gaattageac aagtattget tgetatgeat getaatgttg aagategagg gaataaaagga 600
gacataactc ccctgatggc agcttccagt ggaggttact tagatattgt gaaattatta 660
cttcttcatg atgctgatgt caactcccag tctgcaacag gaaacactgc gctaacttat 720 gcatgtgctg gaggatttgt tgacattgtt aaagtgctcc ttaatgaagg tgcaaatata 780
gaagatcata atgaaaatgg acatactccc ttaatggaag cagccagtgc aggtcatgtg 840
gaagttgcaa gagttetttt agateatggt geaggeatea acaeteatte taatgaatte 900 aaagaaagtg etetaacaet tgettgetae aaaggeeatt tggatatggt tegettteta 960
cttgaagctg gtgcagatca agagcacaaa acagatgaga tgcacactgc cttaatggag 1020
geetgeatgg atggacatgt agaggtggea cgtttgettt tggatagtgg tgetcaagtg 1080
aacatgeetg cagatteatt tgaateteea ttgaegetag etgeetgtgg aggacatgtt 1140
gaattggcag ctctacttat tgaaagggga gcaaatcttg aagaagttaa tgatgaagga 1200
 tacactccct tgatggaagc tgcccgggaa ggacatgaag aaatggttgg cactactctt 1260
agcacaagga gcaaatataa atgcccagac agaagaaact caagaaactg ctcttacttt 1320
ggcttgctgt ggaggatttt ctgaagttgc agactttctt attaaggcag gggctgatat 1380 agaacttggc tgctccacac ctctgatgga ggcatctcag gagggacacc tggaattggt 1440
taaatatttg ctggcttctg gcgctaatgt gcatgctaca acagcaacag gagacacagc 1500 cttaacctat gcttgtgaaa atggacatac ggatgttgca gatgttttac ttcaagcagg 1560
ggctgattta gacaagcagg aggacatgaa gactattttg gagggcatag atccggccaa 1620
gcatcagcca agaagttcca ggaccctgct gggtgacaaa ggaaatcctc ttcaattgaa 1680 aaagattatg aagtcccaat aaaaagagat ttgtattgct ggt 1723
```

```
<210> 44
<211> 1383
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 222795.6.dec
<220>
<221> unsure
<222> 559-560, 569-570, 1009-1012, 1022, 1056-1057
<223> a, t, c, g, or other
<400> 44
cagacgegee gaccatgteg geagecaagg agaaceegtg eaggaaatte eaggeeaaca 60 tetteaacaa gagcaagtgt eagaactget teaageeeeg egagtegeat etgeteaacg 120
acgaggacct gacgcaggca aaacccattt atggcggttg gctgctcctg gctccagatg 180
ggaccgactt tgacaaccca gtgcaccggt ctcggaaatg gcagcgacgg ttcttcatcc 240 tttacgagca cggcctcttg cgctacgccc tggatgagat gcccacgacc cttcctcagg 300 gcaccatcaa catgaaccag tgcacagatg tggtggatgg ggagggccgc acggggccag 360 aagttctccc tgtgtattct gacgcctgag aaggagcatt tcatccgggc ggagaccaag 420
gagategtea gtgggtgget ggagatgete atggtetate eeeggaceaa caageagaat 480
cagaagaaga aacggaaagt ggagccccc acaccacagg agcctgggcc tgccaaggtg 540
getgttacca geageagenn geageagenn geageageaa cateeceagt getgagaaag 600
tececaceae caagtecaca etetggeagg aagaaatgag gaccaaggae cagecagatg 660
gcagcagcct gagtccagct cagagtccca gccagagcca gcctcctgct gccagctccc 720 tgcgggaacc tggggctaga gagcaaagaa gaggagagcg ccatgagtag cgaccgcatg 780
gactgtggcc gcaaagtccg ggtggagagc ggctacttct ctctggagaa gaccaaacag 840
gacttgaagg ctgaagaaca gcagctgccc ccgccgctct cccctcccag ccccagcacc 900
cccaaccaca ggtacagttg ccccgagtcc gccctcccag gagctcggtg gtcctcttcc 960 ttccccaggt cctcgactcc cccaccaaat ggtctgcagc atctccctnn nntccttgga 1020
cntggccage cagecacetg cetaegtgga etetgnnage actaggggge gggggacaga 1080
gagactgggg agegeetttg cetttaaage cageaggeaa tatgecacee tggeegaegt 1140
ccctaaggcc atcaggatca gccaccgaga agccttccag gtggagagaa ggcggctgga 1200 gcgtagaact cgggcccgga gccctggcag ggaggaggtg gcccgtctgt ttggcaacga 1260 gcggaggagg tcccaggtga ttgaaaagtt tgaggccttg gacattgaga aggcagagca 1320
catggagacc aatgcagtgg ggccctcacc atccagcgac acacgccagg gccgcagcga 1380
qaa
                                                                                      1383
<210> 45
<211> 2027
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 410628.5.dec
<220>
<221> unsure
<222> 20, 1971
<223> a, t, c, g, or other
cagaaagtag aacgagagtn acaactgaaa actcagcagc agctaaaaaa gcagtatcta 60
gaggttaaag ctcaaagaat tcaacttcag caacagcagc aacagtcttg ccaacacctg 120
ggattactaa ctcctgttgg agttggagag cagctttctg agggagacta tgcacggtta 180
cagcaagtgg atcctgtttt acttaaagat gaaccccagc agactgctgc tcagatgggt 240
tttgcgccaa tccagcctct ggcgatgcct caagctttgc ctctggcggc aggtcccttg 300
cctccagggt ccatcgcaaa tcttacagaa ctgcaaggag tgatagttgg acagccagta 360
ctgggccaag cacagttggc agggctgggg caaggaattc tgacagaaac acaacaaggg 420 ttaatggtag ccagccctgc tcagaccctc aatgacacgc tggatgacat catggcagca 480
gtcagtggaa gagcatctgc aatgtcaaac actcctaccc acagtattgc tgcatccatt 540
teceaacete agactecaac tecaagteet atcatetete etteageeat getteetate 600
taccetgeca ttgatattga tgeacagact gagagtaate atgacaegge getaacaett 660
qcctgtgctg gtggccacga gqaactggta caaacactgc tagagagagg agctagtata 720
```

```
gagcaccgag acaagaaagg ttttactcca ctcatcttgg ctgccacagc tggtcatgtt 780
ggtgttgtgg aaatattget ggacaatggt gcagacattg aagcccagtc tgaaagaacc 840
aaggacacac cacteteett ggettgttet gggggaagac aggaggtggt ggagetattg 900
ttagctcgag gggcaaataa agagcacagg aatgtttctg attacacacc tctaagtctg 960 gctgcttctg gtggctatgt gaacatcatc aaaatattac taaatgcagg agctgagatt 1020
aactetagaa etggtageaa attgggeate teteetetga tgttageage tatgaatggg 1080
catacagetg etgttaaget cetgttagae atgggetetg acataaatge teagatagaa 1140
accaatcgga acactgccct tactttagcc tgcttccaag gaagaactga agtggttagt 1200 cttctgcttg atagaaaagc aaatgttgaa cacagagcta agactggtct cacaccacta 1260
atggaagetg ectetggtgg atatgeggag gtgggeegag ttettttgga taaaggtget 1320
gatgttaatg cccctccagt tccctcctca agagatacag ctttaaccat agcagcagat 1380
aaagggcatt acaaattctg tgagcttctt attggcaggg gagctcatat tgatgtacgt 1440 aacaagaagg ggaacactcc attgtggcta gcagcaaatg gtggacacct cgatgtggtt 1500 cagttactgg tgcaagcagg tgcagatgtg gatgcagcag ataaccgcaa gataactcct 1560
cttatggcag catttagaaa gggtcatgtg aaggtggtgc gctacttagt caaagaagtc 1620
aatcagtttc catcagattc tgaatgtatg agatacatag caaccatcac tgataaggag 1680 atgctgaaga agtgtcatct ttgtatggag tcaatagtac aagccaaaga tagacaggct 1740
gctgaagcaa acaaaaacgc cagcattttg ttagaggagt tagacttgga aaagttaagg 1800
aagaaaaagg aagaacaaag aaggaaacta gaagaaattg aagccaaaaa taaagagaac 1920 tttgaactcc aagctgctca agaaaaagaa aagcttaaag ttgaagatga ncctgaagtc 1980
ttgacagaac ctccaagtgc ccacaaccac tactaccata ggtatat
                                                                                                2027
<210> 46
<211> 6968
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 053649.6.dec
<220>
<221> unsure
<222> 6955, 6964
<223> a, t, c, g, or other
<400> 46
geagegggeg geagetgegg egeaacegge teeggagetg eetggegegg eeggggg 60 ggegeegete aggeteggge teeggetggg eeeggeggg eetegggget geeeategeg 120
cgcggcgggc cgggccggtg acgccggacg cccatggacg cctctgagga gccgctgccg 180
ccggtgatct acaccatgga gaacaagccc atcgtcacct gtgctggaga tcagaattta 240
tttacctctg tttatccaac gctctctcag cagcttccaa gagaaccaat ggaatggaga 300 aggtcctatg gccgggctcc gaagatgatt cacctagagt ctaactttgt tcaattcaaa 360
gaggagetge tgeccaaaga aggaaacaaa getetgetea egttteeett eetecatatt 420
tactggacag agtgctgtga taccgaagtg tataaagcta cagtaaaaga tgacctcacc 480 aagtggcaga atgttctgaa ggctcatagc tctgtggact ggttaatagt gatagttgaa 540 aatgatgcca agaaaaaaa caaaaccaac atccttcccc gaacctctat tgtggacaaa 600
ataagaaatg attttgtaa taaacagagt gacaggtgtg ttgtgctctc cgaccccttg 660 aaggactctt ctcgaactca ggaatcctgg aatgccttcc tgaccaaact caggacattg 720 cttcttatgt cttttaccaa aaacctaggc aagtttgagg atgacatgag aaccttgagg 780 gagaagagga ctgagccagg ctggagcttt tgtgaatatt tcatggttca ggaggagctt 840
geettigtti tegagatget geageagite gaggaegeee tggtgeagia egaegaactg 900 gaegeeetet teteteagia tgtggteaac tieggggeeg gggatggtge eaactggetg 960 actititiet geeageeagt gaagagetgg aacggattga teeteegaaa acceatagat 1020
atggagaage gggaategat ceagaggega gaagceacee tgttagatet gegeagttae 1080
etgttetete gecagtgeae ettgetgete tteetgeaga ggeegtggga ggtggeecag 1140
cgcgccctag agctgctgca caactgcgtg caggaactga agctcttaga agtctctgtc 1200 ccacctggtg ctctggactg ctgggtgttt ctgagctgtc tggaggtgtt gcagaggata 1260
gaaggetget gtgaceggge acagategae teaaacattg eccacactgt ggggetatgg 1320
agctatgcca cagaaaagtt aaagtccttg ggctatctat gtggacttgt gtcagagaaa 1380 ggacctaact cagaagatct caacaggaca gttgaccttt tggcaggttt gggagctgag 1440
cgaccagaaa cagccaacac agctcagagt ccttataaga aactgaaaga agcattatcg 1500
tcagtggaag cttttgaaaa acactactta gatttgtccc atgccaccat tgaaatgtat 1560
acaagcattg ggaggattcg atctgctaag tttgttggaa aagatctggc agagttttac 1620
atgaggaaaa aggctccaca aaaggcagaa atctatcttc aaggagcact gaaaaactac 1680
ctggctgagg gctgggcact ccccatcaca cacacaagga agcagctggc cgaatgtcaa 1740
```

aagcaccttg gacaaattga aaactacctg cagaccagca gcctcttagc cagtgaccac 1800 cacctcactg aagaggagcg caagcacttc tgccaggaga tacttgactt tgccagccaq 1860 ccgtcagaca gcccaggtca taagatagtg ctacccatgc attcctttgc acaactgcga 1920 gatetecatt ttgatecete caatgeegtg gtecaegtgg geggegtttt gtgegttgag 1980 ataaceatgt acageeagat geetgtgeet gtteaegtgg ageagattgt ggteaatgte 2040 cacttcagca tggagaaaaa cagctaccgg aagactgcgg agtggcttac caagcacaag 2100 acgtccaatg ggatcattaa ctttccaccc gagaccgcac ctttccctgt atcccaaaac 2160 agtttgcccg cgctggagtt gtatgaaatg tttgagagaa gcccatctga taactccttg 2220 aacacgactg ggattatctg cagaaacgtc cacatgctcc tgagaaggca ggagagcagc 2280 tectetetag agatgeeete aggggtgget etggaggagg gtgeeeaegt getgaggtge 2340 agecaegtga eeetggaace aggggeeaae cagataacat teaggaetet aggeeaagga 2400 acetggaacg tatacactca ggcagetgtg egecteggtg ggcteegtgt ggttegteet 2460 cecteacate taceceattg tgcagtacga egtgtaetea caggageece agetgeacgt 2520 ggageegetg getgatagee ttetggeagg catteeteag agagteaagt teaetgteae 2580 taccggccat tatacgataa agaatggaga cagcctgcag cttagcaatg ccgaagccat 2640 gctcatcctg tgccaggcgg agagcagggc cgtggtctac tccaacacga gagaacagtc 2700 ttctgaggcc gcgctccgga ttcagtcctc cgacaaggtc acgagcatca gtctgcctgt 2760 tgcgcctgcg taccacgtga tcgaatttga actggaagtt ctctctttac cttcagcccc 2820 agcactegga ggggagagtg acatgetggg gatggcagag ccccacagga agcataagga 2880 ccaacagaga actggccgct gcatggttac cacagaccac aaagtgtcga ttgactgccc 2940 gtggtccatc tactccacag tcatcgcact gaccttcagc gtacccttca ggaccacaca 3000 cageeteetg teeteaggaa caeggaaata tgtteaagtt tgtgteeaga atttgteaga 3060 acttgacttt cagctgtcag atagttatct tgtagatacc ggtgatagta ccgacctgca 3120 actagtacca ctgaacacgc agtcccagca gcccatctac agcaagcagt cggtgttctt 3180 cgtctgggaa ctcaagtgga cagaagagcc tccccttct ctgcattgcc ggttctctgt 3240 tggattttcc ccagcttctg aggaacagct gtctatctcc ttaaagccgt atacttatga 3300 atttaaagtg gaaaattttt ttacattata caacgtgaag gctgagatct ttcccccttc 3360 gggaatggag tattgcagaa caggctccct ctgctccctg gaggttttga tcacgaggct 3420 ctcagacctc ttggaggtgg ataaagatga agcactgact gaatctgatg agcatttttc 3480 gacaaagett atgtatgaag ttgtcgacaa cagtagcaac tgggcagtgt gtgggaaaag 3540 ctgcggtgtc atctccatgc cagtggctgc tcgggccact cacagggtcc acatggaagt 3600 gatgeegete ttegeegggt ateteceet geeggaegte aggetgttea agtaceteee 3660 ccatcattet geacacteet eccaactgga egetgacage tggatagaaa acgacageet 3720 gtcagtagac aagcacgggg acgaccagcc ggacagcagc agcctcaaga gcaggggcag 3780 cgtgcattcg gcctgcagca gcgagcacaa aggcctaccc atgccccggc tgcaggcact 3840 gccggccggc caggtettca actccagctc gggcacacaa gtcctggtca tccccagcca 3900 agatgaccae gteetggaag teagtgtaac atgacaaege cagggtgaac acaegecaet 3960 toccagetag gagtgcactt tatgggactg tgactggact etteegetet ggetecagee 4020 agacetteag tggteetgee tggeegtggg gacateagag agtgteatea egeagetgge 4080 cagetgagtt etgttgttgt ttteatgeeg eetgtgatet eagatteetg etttteteae 4140 cccqtccca tqctqqtqtc cqacqccqct tactcagagc cctggcctcc ctccccctac 4200 ctcacacgct gctcatgaaa gtttccaccc acgctgtctc cacggaacag cctccgtctg 4260 ctggctcttc gtggaaggcc atttgtcttt caggtagaca ctcagcagcc ctcacggtct 4320 tagtgacgtg tgtgcctttc tggtcacaca gctgcccagt ttcctgatcg gggtggattt 4380 gtgtccccta aggggtaaaa cagccgttta ccgcagatcc tctcattgtg cttttctaga 4440 ataacacct totaggggag gegggtgggg gagggaggga toataaccc ttotgtgoot 4500 tgggatgccg gagctggggg acctggaggc coatcagccg gagccacgtg aaaggtactg 4560 aagaaagctg agacccggct gtgaggagcg cotcagcggt gaggtggttt agggataaat 4620 qtttctqqaa ccctqtqqtc ccccataatg ttgatagaat atcatatgca ctgggagtta 4680 aatatattta atttaatgat cattatatat gtgggggtta atatgttgtt tttctgtccc 4740 tttaaagtet ttacatgtaa ttgtagetgt ataategtta tttttetttt geatettaag 4800 tettagaaat taagatatte categtgagg atgagagagg teeteagtgt gtttttggte 4860 tggttgtagg gaaggactca agtcctggaa tgtcctccac tggtctactg agttgcagtc 4920 acactgttcc aatggattat ttgctttcgg ttgtaaattt aattgtacat atggttgatt 4980 tattattttt aaaaatacag actaactgat gtaatgttta tgtataagtt gcaccaaaaa 5040 tcaaggacaa aaataagtgt gtttgttttt acaggtgtga aagtcacagc ttgtaaataa 5100 gtgttgtatg tattaaacct tttccagttc tccaaagcga tgtatttttg tacacttgaa 5160 atagagtact cttaatttac tgggcaaatg tgcttggaat tgaacttgac aagattagct 5220 caagcagata gagtcgggtc cagcagtggg tggccctcgt gtgaatcccc gtggatgtgc 5280 aagttgtgga gagaaggagc accgggttcc tgcccagcac tgtgcttgcg ggaggcggtg 5340 gggcatggga ggaaggaggc acagaccggg gaaatatgac agccgtcatt tccagtattc 5400 totgtgttgt ottttagete atteaataaa taaaggtggt gtgattttt ttteeteetg 5460 tetttteat tigtagaaac tiggagacgtig taaagaagat aaataattigt gtaattaaac 5520 titteeagaaa tittatettee teatigtigeag tittaacaaac tiggicaaac tagttageaa 5580 attagaactt cagaatctaa tgatagttta gggtttctaa aataaggttt tttattgtaa 5640 aaattgacga ttgccctgca tttctaccaa gtcctgtgaa taaagagatg ggagatttga 5700 ttccgtcaga agagactgta atccgtgtcg tcagcctggg agccttcccc agtgtaatgt 5760

```
agetttetet ettacettet ggaagaggga atgttteatt tattactgtt tgattttett 5820
gtatetggtt ctaeteccag gatgaaatta tecaaetaca tatatattta gaggaagaaa 5880
gtgaagggga aatttaaaat gtttacggcg cttaattgcc tggaaatgaa atgaaatcaa 5940
atttatcagt ttttttcccc ctaattaccc aaaagatctt ttgcaaacta tgttacatga 6000
atgettetge etetttaaga caaagaagaa tgteacecaa aattgteatt tttttettaa 6060
tgitcatcat aaaagtccta aaagagtaac tgtaattgga tgtttattgt ttttatctaa 6120
agtaaggtgt atgtgtttga gacaagctgg ttttgttgat aaagagatgt taaataattg 6180
ttcatgggat gtcctatgat tggaaaaatt ataactcttc tgattctaat gtggaaattg 6360
ttgtatttaa tctgaaaatg actttaccta caacagttcc attgtcagca cagcctagga 6420
gggtcagatt cctgtattaa ttactcttag tggagatgcc agatatccca tacagaatta 6480 gcagagaaaa tacacacagg cttctattca aattttcttt agtgcttaaa attaagtttt 6540
aaaatgaaat cagacactgc aggtttgtat ataaaatgaa aagctatact actttttata 6600
aaagggcaaa ctgggctgat gtaaatgttt tactttcaac tgtgttcttt aaaataaatc 6660 ctacctggtt tttaaatttt attttcatg aaaatgctcc tttctctaca tttattcatc 6720 ctatatacat caggctgtaa gaccccccc agtcatcatt aatacaatgt gttgggattc 6780
tgtgactgga aaaggtgaca agttggtgac tttgacactg caggtattcc attttcatgg 6840
tttactatga aaagtcattt ttcatattat gtaatatatt gttagattaa aaccattgta 6900
ttaagacttt aaaatgtaag cattgtaatt ctgaaaatac acattttaag aaganaaaaa 6960
                                                                                 6968
aaanaaaa
<210> 47
<211> 1033
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 221914.2.dec
<220>
<221> unsure
<222> 1027
<223> a, t, c, g, or other
cagcactegg tteegtgeaa ettteaagtg agttgegaac teegeeetgt aggeeggtge 60
tggtggcccg gcgcgctgga accgcggcga cccgctccag cgcgggacca gcagcaaggg 120
ccgagcgcca ggttctccgc ggcagaaagg gcgggtggga gctgtaactg ccccggccgc 180 ggggcgcgcc cgctcccaag tcggcttct ccccgccggg gccgctttgc ctcgggtctc 240
cccattetee aggteecetg aactgeacag teggaggeeg tgggeggegg getetgeete 300 egeeggagga cageeggate geeetetge tteeegcaae tgeeetgate acceeegte 360
ccagccettg agtgaacgte ettetgageg getteetggg gteeteeca egteecaaag 420
gccggcaaga tggtgtcctg gatgatctgt cgcctggtgg tgctggtgtt tgggatgctg 480
tgtccagctt atgcttccta taaggctgtg aagaccaaga acattcgtga atatgtgcgg 540 tggatgatgt actggattgt ttttgcactc ttcatggcag cagagatcgt tacagacatt 600
tttatctcct ggttcccttt ctactatgag atcaagatgg ccttcgtgct gtggctgctc 660 tcaccctaca ccaagggcgc cagctggctt taccgcaagt ttgtccaccc gtccctgtcc 720
cgccatgaga aggtacccca gggggaagcg ggaagggagg cttaggggtg ggtatgaggg 780 aaagagccct ggacctggga tttaggatgc tggggacacc ggggttctat cccagtcctg 840
ctgctattgg aggggcagga ccttgacagg gcccagccta cctcatcttc tgggataatc 900
aggtggggt acacatgaat gacctttgag gatggaaatt ggtttggggg tagtggtggc 960
ggcagctgga gcatgggcca cttcatggag gtgtgagcgg gtggcagccc tgctcttggg 1020
                                                                                 1033
tetgtgnttg tgg
<210> 48
<211> 1733
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 347748.2.dec
<400> 48
caaccgtgag gtgttgggtt tgggggacgc tggcagctgg gttctcccgg ttcccttggg 60
```

```
caggtgcagg gtcgggttca aagcctccgg aacgcgtttt ggcctgattt gaggaggggg 120
geggggaggg acctgegget tgeggeeeeg eccettete eggetegeag eegaeeggta 180
agcccgcctc ctccctcggc cggccctggg gccgtgtccg ccgggcaact ccagccgagg 240 cctgggcttc tgcctgcagg tgtctgcggc gaggccccta gggtacagcc cgatttggcc 300
ccalggtggg tttcggggcc aaccggcggg ctggccgcct gccctctctc gtgctggtgg 360
tgctgctggt ggtgatcgtc gtcctcgcct tcaactactg gagcatctcc tcccgccacg 420 tcctgcttca ggaggaggtg gccgagctgc agggccaggt ccagcgcacc gaagtggccc 480 gcgggcggct ggaaaagcgc aattcggacc tcttgctgtt ggtggacacg cacaagaaac 540
agategacea gaaggaggee qaetacqqee geeteageag eeggetgeag geeagagagg 600
gcctcgggaa gagatgcgag gatgacaagg ttaaactaca gaacaacata tcgtatcaga 660 tggcagacat acatcattta aaggagcaac ttgctgagct tcgtcaggaa tttcttcgac 720 aagaagacca gcttcaggac tataggaaga acaatactta ccttgtgaag aggttagaat 780
atgaaagttt tcagtgtgga cagcagatga aggaattgag agcacagcat gaagaaaata 840
ttaaaaagtt agcagaccag tttttagagg aacaaaagca agagacccaa aagattcaat 900
caaatgatgg aaaggaattg gatataaaca atcaagtagt acctaaaaat attccaaaag 960 tagctgagaa tgttgcagat aagaatgaag aaccctcaag caatcatatt ccacatggga 1020
aagaacaaat caaaagaggt ggtgatgcag ggatgcctgg aatagaagag aatgacctag 1080 caaaagttga tgatcttccc cctgctttaa ggaagcctcc tatttcagtt tctcaacatg 1140 aaagtcatca agcaatctcc catcttccaa ctggacaacc tctctccca aatatgcctc 1200
cagattcaca cataaaccac aatggaaacc ccggtacttc aaaacagaat ccttccagtc 1260
ctcttcagcg tttaattcca ggctcaaact tggacagtga acccagaatt caaacagata 1320
tactaaagca ggctaccaag gacagagtca gtgatttcca taaattgaag caaagccgat 1380 tctttgatga aaatgaatcc cctgttgatc cgcagcatgg ctctaaactg gcggattata 1440 atggggatga tggtaacgta ggtgagtatg aggcagacaa gcaggctgag ctggcttaca 1500
atgaggaaga agatggtgat ggtggagagg aagacgtcca agatgatgaa gaacgagagc 1560
ttcaaatgga teetgeagae tatggaaage aacatttcaa tgatgteett taagteetaa 1620 aggaatgett cagaaaacet aaagtgetgt aaaatgaaat cattetaett tgteetttet 1680
gacttttgtt gtaaagacga attgtatcag ttgtaaagat acattgagat aga
                                                                                               1733
<210> 49
<211> 574
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 401482.2.oct
tctgctataa atatttttgt acacatttgt tgaagacata tattttcatt tttttctggg 60
catgtacttg ccgtatcatt aggtaagttt atatttgaat ctacgetett teceteggag 120
egggeggege ggeggegteg geggettgtg cageaatgge caagateaag getegagate 180
ttcgcgggaa gaagaaggag gagctgctga aacagctgga cgacctgaag gtggagctgt 240
cccagctgcg cgtcgccaaa gtgacaggcg gtgcggcctc caagctctct aagatccgag 300 tcgttcgcaa agtctatcgc ccgagtcctc actgttatta accagactca aaaagaaaac 360
ctcaggaaat tctacaaggg caagaaatac aagcccctag acctgcgacc caagaagact 420
agagecatge geegeeggte accaageacg aggagaaget gaagaceaag aageageage 480
ggaaggageg getgtateet etgegeaagt atgeagteaa ggeetgagat gacaaegaca 540
ataaagtgcg agactgactg gcaaaaaaaa aaaa
<210> 50
<211> 444
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 274551.1.oct
<400> 50
gtcacatcct tggcctgaaa ttctttgctg tagcccttca ctgtgacaca actgcaacca 60
accactttac aaagttttcc ttgtctatca gttttacaaa ggcttagcca tgtctctggt 120
ttcttaaggt catcaacctt aattgggttg atttggtgtt cggcacaaag ggccaccct 180
agettgacat acataggete tteacatttg gatgeaagea egeaaagatg ggettggeee 240 ttgtetaagg etttggeage tttgeaggtt ceacetgeta ggeeateatg getgagggeg 300 gtetteagte tettgtagag eagtattaat atceattaca ceteeageag egtgtettee 360
 ttggcatggt ggtgggtaca ggtgaaggtg aatcttgagc cactcaactt ctgctctgag 420
```

```
444
catgttgcca tgcagagaaa gaga
<210> 51
<211> 852
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 411408.20.dec
ggaaggcaat tttataactt tatttgatct gacgatcagc gattagttct catccacatt 60
gactgtctgt agatttttga aagtggtaac aggtacatag gtaaccaaag tatatagctt 120
atttggtgaa teeteattae gttttetgga eageegeaca eggatteggt atggeacatt 180 eettatteet ttggeeeaga eagetttgtt gageetggtg teaatgegea eatetggagt 240
teccatetee treatggeaa attreegaat etetttgagt geeegaggtg eaegettett 300
gaageceact ceatgggatg egettgtgaa tgttgaatgg tgtatteteg ggttaaceae 360
ttegttgeat ggccagaacg geeettttte ttetegeeae cettetttge gggageeatt 420
ctgcagcgtc caagtgggta acccgagaat acaccatcaa cattcacaag cgcatccatg 480
gagtgggctt caagaagcgt gcacctcggg cactcaaaga gattcggaaa tttgccatga 540
aggagatggg aactccagat gtgcgcattg acaccaggct caacaaagct gtctgggcca 600
aaggaataag gaatgtgcca taccgaatcc gtgtgcggct gtccagaaaa cgtaatgagg 660 atgaagattc accaaataag ctatatactt tggttaccta tgtacctgtt accactttca 720
aaagtaagtt ctccatccca taaagccatt taaattcatt agaaaaaatg tcctaacctc 780
ttaaaatgtg aatccatctg ttaagctagg ggtgacacac gtcattgtac cctttttaaa 840
ttgttggtgt gg
<210> 52
<211> 779
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 035973.1.dec
<400> 52
tatagggtaa acatecaatt aaaaggcaga tattggctat cettggggag gecagcaaat 60
ttccggataa gggaagctgg tgggcaggaa aaaggcatgc aatgggcctc atgagccaga 120
agaatagctg ctgactgatg cctgggggac caagcccata attgtggagc tggagccgca 180
ctgtgtccct tgcttcagtc tgatctttgg ggagcctgca cagttctgac ctcagttaag 240 agctaaggga agagatttgg gaatgtttgg ccctgtgtaa cagcaaaagg attcattggt 300
gagggtgtct ggcaggtatc cgtaaagata ataagatgaa gggaacatcg ccgtttggaa 360
agtgtcgtga tatgatacac aagttgtgct gcctctgtgg ctctaaggca taccaccttc 420 agaagtcaac ctgtggcaaa tgtggctccc ctgccaagcg caagagaaag tgtaactgga 480 ctgccacggc taaaagaaaa taccacggcg actggttgaa tgaagcacct aaacattgta 540
tactgcagat ttaggcatgg attetttgca ggaacaacac ctacacccaa gagggcagca 600
gttgtgtcat ccagttcatc ttaagaattt caatgattag tcacacaata aatattccgg 660
tttttaaaaa tgtatatatt ttaaacatat atatgtttat atgtatatgt tatatctgta 720
ttacatatat gigaaaagag gcagagattg tcagattgga ttaaaaaagct gtctgtaag 779
<210> 53
<211> 1229
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 456536.1.dec
<400> 53
gttctagatc gcgagcgccg ctttttttca ttggccaggg gtcccaggcc gtccaggtct 60
tggggcgccg cggcggaaat cgcgcggatg ccagaacgcg ctctcagctt tcgggtcctg 120
gcggctgcgg ctgccgccat catggtgcgg aagcttaagt tccacgaggc agaagctgct 180 gaagcaggtg gacttcctga actgggaggt caccgaccac aaacctgcac gagctgcgcg 240
tgctgcgggc gttaccggct gcagcggcgg gaggactaca cgcgctacaa ccagctgagc 300
```

```
cgtgccgtgc gtgagctggc gcggcgcctg cgcgacctgc ccgaacgcga ccagttcccg 360
egtgegeget teggeegege tgetggacaa getgtatget eteggettigg tgeecaegeg 420
eggttegetg gagetetgeg acttegteae ggeetegtee ttetgeegee geegeeteee 480
caccgtgctc ctcaagctgc gcatggcgca gcaccttcag gctgccgtgg cctttgtgga 540 gcaaggggca cgtacgcgtg gggccctgac gtggttaccg accccgcctt ccttgtcacg 600
egeageatgg aggaetttgt caettgggtg gaetegteca agateaageg geaegtgeta 660
gagtacaatg aggagcgcga tgacttcgat ctggaagcct agcggatctc ccactttgca 720
tggctgtctt ttacagatgg gaaaactgag gcctgatgct ggagattcta tgagggtgct 780 ctcctcaagg gtatcagacg gtcgtaggtt cttaagaatt tgattcatca gtggcaggcc 840 atgcatagag ccacgggagg tgcgtccttg ttttccagga aatgttctta gaacttggac 900
tactgattat taattgactg tgccttggga aacagtggga agtaacttgg tgcagcactg 960
gggtattgtt ggcttcttgt gttggaaact ttgtaatgta aaaggaaaaa ctggaaatcc 1020 ccacgccctg tttcccttta tcgtcttgtg gttggactgg ttcaattcgt ttaactcgaa 1080 ttcttgctcc tggccgtggt taagctgtgt acagatgatg gagagtttgg cctcaagttt 1140 ttataaactg agcgagacta gtgttcagga tctcctcct tgtttaaatg tcaataaatg 1200
ccccaactgc tttgtaagtg caacttttt
<210> 54
<211> 1342
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 387807.4.oct
<220>
<221> unsure
<222> 1195
<223> a, t, c, g, or other
atataagagt ttgagaggta ctggtgcact tcttcacact aacagacgtg tgaggatgta 60
tgactctaaa ccacatggca tacagttcct gcctacttaa tgtttacttt tctacctctg 120
cetetggttt tggteeetgg cagetgetga ttettggcaa aaceteagag ettggagtea 180 gaagaetgag ttteaaagtt eeagtattge ettttettt tttttteta geeatgatat 240
caateettet cagteactaa atgagtgtga caacacettg taeggttgtt ggtggcatta 300
aaccagatgg tgtataagag tattitgtca aaactataaa ggaggatgtg gctgtagggg 360 ctgatagtte teatgagtat tactgetett ettteecaca gttaaaagaa tattggeaga 420
gaaaccgccc tggtgttcca gcagcagcga agaggaacac gaaagcaaat ggcagtagcc 480
ctgacacage cacttetggt ggttgccact catetgagge tgtgagtett geetggacag 540 gettttgggg acaggggge caaggagcag tagaeggtaa tegttaagat tgtggatgga 600 etgttgggta etggtgaagg attetggatt tgaateetge eteteegtet getaagaatt 660 gattagggat tgattageat atgatttagg geaagttget tgagetettt gggeetetgt 720
tttcacgtct gtatgataga ggtggtattg tttgacttgt atttgtgaag tttcaatgag 780
attgataatt gtcgatttta tgttaatccc tagtacatgg cctgctgtca acacccagga 840 cacccaggat atggtctttg ctgtttgatt ttcctcatcc ccagtctcaa gggggaagcca 900
ggacaatgag aacagccact tcccatcagg agtcactgca aggcccccag ggtgggatgg 960
tggggagata agaaccgtga gagaagttgg cacaaaggag ttatgggaca aagggtccaa 1020
gataggcaga aaagaaaatg ttgccagttg atggggaaga aaggaagtca gagggctcag 1080 acactgtggg ggacagaaca tctgcatgtg cactctcatc tcttgtagtc agcaacaggt 1140 atccacaggg agggccctac atcatctgct accctgaagg atctggaggt aagangctct 1200
ggggagaggt gcagtgaccc tgcaggccag ccctccaacc tcctcccaca gtggacaccg 1260
catgececte tgecagetga gacageceae acacacecea geettaatga ttgttetete 1320 taeeteteee ceaeteetee te 1342
<210> 55
<211> 859
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 406790.3.dec
<400> 55
ccacaggggg gcggggaagg aagatggcgg cgcccagcgt cccgtgagga qagaggacac 60
```

```
agggateeeg gggageggee ceagactegt aaattatgge egeateteeg cacactetet 120
cctcacgcct cctgacaggt tgcgtaggag gctctgtctg gtatcttgaa agaagaacta 180
tacaggacte eceteacaag tiettacate tteteaggaa tgteaataag eagtggatta 240
catttcagca ctttagcttc ctcaaacgca tgtatgtcac acagctgaac agaagccaca 300
accagcaagt aagacccaag ccagaaccag tagcatctcc tttccttgaa aaaacatctt 360
caggtcaagc caaagcagaa atatatgaga tgagacctct ctcaccgccc agcctatctt 420
tgtccagaaa gccaaatgaa aaggaattga tagaactaga gccagactca gtaattgaag 480
actcaataga tgtagggaaa gagacaaaag aggaaaagcg gtggaaagag atgaagctgc 540 aagtgtatga tttgccagga attttggctc gactatccaa aatcaaactc acaggtactt 600
tgtttttctg atatacttac ttatttgaaa ctctatcttt agtgaaacaa aaagctaatt 660
ttatttacca cctgaaaaga ataatttgga actgcaggtc ctgtcttagt atttttcctc 720
tcttcaattt aactgggatt tgaaattaaa ttttctgaat tctatttaca cagaattgta 780
ttgaatgttt atcctgctt
<210> 56
<211> 279
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 412420.63.dec
aggtectatg cacaacagee agagttatet etgtgtatgt cacettgete tecacaaaga 60
aggacageag aagetggaag aaagteetet gggeaeetgg getetggegt tgetetette 120 cacceategt tettateteg cacteagggt agaaaagttt ceagtacaga aatteaeeca 180
cagcagagge caggeeteaa ttagaggeet acacaaatgg ggtagaeget etcacagtee 240
acgtccatca gcaccccttc catgttcttt aaggataag
                                                                             279
<210> 57
<211> 1038
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 196623.3.dec
cccccgcagc cctagagccg cccaagggat ggcgatggcg tacttggctt ggagactggc 60
geggegtteg tgteegagtt etetgeaggt cactagttte eeggtagtte agetgeacat 120
gaatagaaca gcaatgagag ccagtcagaa ggactttgaa aattcaatga atcaagtgaa 180
actettgaaa aaggateeag gaaacgaagt gaagetaaaa etetaegege tatataagea 240
ggccactgaa ggaccttgta acatgcccaa accaggtgta tttgacttga tcaacaaggc 300
caaatgggac gcatggaatg cccttggcag cctgcccaag gaagctgcca ggcagaacta 360 tgtggatttg gtgtccagtt tgagtccttc attggaatcc tctagtcagg tggagcctgg 420
aacagacagg aaatcaactg ggtttgaaac tctggtggtg acctccgaag atggcatcac 480 aaagatcatg ttcaaccggc ccaaaaagaa aaatgccata aacactgaga tgtatcatga 540
aattatgcgt gcacttaaag ctgccagcaa ggatgactca atcatcactg ttttaacagg 600
aaatggtgac tattacagta gtgggaatga tctgactaac ttcactgata ttccccctgg 660
tggagtagag gagaaagcta aaaataatgc cgttttactg agggaatttg tgggctgttt 720 tatagatttt cctaagcctc tgattgcagt ggtcaatggt ccagctgtgg gcatctccgt 780 caccctcctt gggctattcg atgccgtgta tgcatctgac agggcaacag agatgcttat 840
ttttggaaag aagttaacag cgggagaggc atgtgctcaa ggacttgtta ctgaagtttt 900
ecctgatage actiticaga aagaagtetg gaccaggetg aaggeatitg caaagetice 960
cccaaatgcc ttgagaattt caaaagaggt aatcaggaaa agagagagag aaaaactaca 1020
cgctgttaat gctgaaga
                                                                             1038
<210> 58
<211> 457 <212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
```

```
<223> Incyte ID No: 427916.8.dec
<220>
<221> unsure
<222> 398
<223> a, t, c, g, or other
<400> 58
gacageeeca gegaggeeat ttecageaca tagaagagag attggaaace aacgtgcaga 60
actgccagtc ccctgacacg ctgtgcccca cccactgcag cccagtgctg aatgaaccct 120
gcccagaggt gtctgtagtg agcttctgcc ctagtgactt ttgagccggc caggttgcag 180 cgcggacaca ctcgcaggtc gctgtggccc cagcctcgcc tgacagaatg agcggctcgg 240
acgggggact ggaggaggag ccagagetca gcatcaccet cacgetgegg atgetgatge 300
acgggaagga agtgggcagc atcatcggga agaagggcga gactgtaaag cgaatccggg 360
agcagagcag tgcccggatc accatctccg agggctcntg cctgaacgca tcaccaccat 420
cacegggtet acageagetg tettecatge agtetee
                                                                                 457
<210> 59 <211> 7680
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 264633.8.dec
<220>
<221> unsure
<222> 6249
<223> a, t, c, g, or other
ggaattgcag gtgtgagcca ctgcacccgg cccttgcctc atgtttgaat gataatttac 60 ctgggcataa aattctggac acttgtggtg gcacgagctg tctgctttc tgtggagact 120 gcgggttgca gacaccagca gcccctatt gctgcacgtc aggtgtcctc cacctcagta 180
ctgtggacat ctcgggccgc atagccctgt tgcgcgggca tcctgtgcgt tgcaggagat 240
gcagcagcat ccatgaccgc aacccatcag agtgttctaa gaacggaagc atctgggctg 300
gatggaattt agcatcaagc agagtcccct ttctgttcag agtgttgtaa agtgcataaa 360
gatgaagcag gcaccagaaa teetteggca gtgccaacgg gaagacteeg agetgegagg 420
tgaaccgcga gtgttctgtg ttcctcagca aagcccagct ctccagtagc ctgcaggagg 480
gggtcatgca gaagtttaac ggccacgacg ccctgccctt tattccagcc gacaagctga 540 aagatcttac ttcccgggtg tttaatggag aacccggcgc acacgatgcc aaactgcgtt 600
ttgagtccca ggaaatgaaa gggattggga caccccctaa cactacccct atcaaaaatg 660
getetecaga aattaagetg aaaateacea aaacatacat gaatgggaag cetetetttg 720
aatottocat ttgtggtgac agtgctgctg atgtgtctca gtcagaagaa aatggacaaa 780
aaccagaaaa caaggcgaga aggaacagga agaggagcat aaaatatgac teettgetgg 840
agcagggeet tgtegaagea getettgtgt etaagatete aagteettea gataaaaaga 900
ttccagctaa gaaagagtet tgtccaaaca ctggaagaga caaagaccac ctgttgaaat 960
acaacgttgg tgatttggtg tggtccaaag tgtcgggtta cccttggtgg ccttgcatgg 1020 tttctgcaga tccactcctt cacagctata ccaaacttaa aggtcagaaa aagagtgcac 1080
gccagtatca cgtacagttc tttggtgacg ccccagaaag agcttggata tttgagaaga 1140
gcctcgtagc ttttgaagga gaaggacagt ttgaaaaatt atgccaggaa agtgccaagc 1200
aggcacccac gaaagctgag aaaattaagc tattgaaacc aatttcaggg aaattgaggg 1260 cccagtggga aatgggcatt gttcaagcag aagaagctgc aagcatgtca gtggaggagc 1320
ggaaagccaa gttcaccttt ctctatgtgg gggaccagct tcatctcaac cctcaagtag 1380
ccaaggagge tggcattget gcagagtett tgggagaaat ggcagaatce tcaggagtca 1440
gtgaagaagc tgctgaaaac cccaagtctg tgagagaaga gtgcattccc atgaagagaa 1500 ggcggagggc caaactgtgt agctctgcag agaccctgga gagtcacccc gacataggga 1560
agagtactcc tcaaaagacg gcagaggctg accccagaag aggagtaggg tctcctcctg 1620
ggaggaagaa gaccacagtc tccatgccac gaagcaggaa gggagatgca gcatcccagt 1680
ttttggtctt ctgtcaaaaa cacagggatg aggtggtagc tgagcaccca gatgcttcag 1740 gtgaggagat tgaagagctg ctcaggtcac agtggagtct gctgagtgag aagcagagag 1800
cacgetacaa caccaagttt gccctggtgg cccctgtcca ggctgaagaa gactctggta 1860
atgtaaatgg gaaaaaaaga aaccacacaa agaggataca ggaccctaca gaagatgctg 1920
aagetgagga cacacccagg aaaagactca ggacggacaa gcacagtett eggaagagag 1980
acacaatcac tgacaaaacg gccagaacaa gctcttacaa ggccatggag gcagcctcct 2040
cgctcaagag ccaggcagca acgaaaaatc tgtctgatgc atgtaaacca ctgaagaagc 2100
```

gaaateggge ttecaeggea geatetteag etettgggtt tageaaaagt teateteett 2160 ctgcatcett aactgagaat gaggtetegg acageeeggg agaegageee teggagteee 2220 catacgaaag tgcagaegaa acacaaactg aagtatetgt etcateeaaa aagtetgage 2280 gaggagtgac tgccaaaaag gagtatgtgt gccagctgtg tgagaagccg ggcagcctcc 2340 tgetetgtga aggaccetge tgeggagttt ecacetegee tgeettggge ttteeeggag 2400 gccagaaggg aggttcacct gcagcgagtg tgcctcaggg attcactcat gtttcgtgtg 2460 taaagagagc aagacagatg ttaagcgctg tgtggtaact cagtgtggaa aattttacca 2520 tgaggcttgt gtgaaaaaat accetctgac tgtatttgag agccgaggtt tccgctgccc 2580 cetecacage tgtgtgaget gecatgette caaceettea aacecaagge egteaaaagg 2640 taaaatgatg eggtgtgtee getgeeeegt tgeetateae ageggggatg ettgtetgge 2700 ageaggatge teagtgateg ecteeaacag eateatetge actgeeeact teaetgeteg 2760 gaaggggaag egacaceaeg eccaegteaa egtgagetgg tgettegtgt geteeaaagg 2820 ggggageett etgtgetgtg agteetgeee ageggeette caccetgaet geetgaacat 2880 cgagatgcct gacggcagct ggttctgcaa tgactgcagg gctgggaaga agctgcactt 2940 ccaggatatc atttgggtga aacttgggaa ctacagatgg tggccggcag aagtttgcca 3000 teccaaaaat gtteeccaa atatteagaa aatgaageae gagattggag aatteectgt 3060 gttttcttt gggtctaaag attattactg gacgcatcag gcgcgagtgt tcccgtacat 3120 ggagggggac cggggcagcc gctaccaggg ggtcagaggg atcggaagag tcttcaaaaa 3180 cgcactgcaa gaagctgaag ctcgttttcg tgaaattaag cttcagaggg aagcccgaga 3240 aacacaggag agcgagcgca agcccccacc atacaagcac atcaaggtga ataagcctta 3300 cgggaaagtc cagatctaca cagcggatat ttcagaaatc cctaagtgca actgcaagcc 3360 cacagatgag aatcettgtg getttgatte ggagtgtetg aacaggatge tgatgtttga 3420 gtgecacecg caggtgtgte eegegggega gttetgecag aaccagtget teaccaageg 3480 ccagtaccca gagaccaaga tcatcaagac agatggcaaa gggtggggcc tggtcgccaa 3540 gagggacatc agaaagggag aatttgttaa cgagtacgtt ggggagctga tcgacgagga 3600 ggagtgcatg gcgagaatca agcacgcaca cgagaacgac atcacccact tctacatgct 3660 cactatagac aaggaccgta taatagacgc tggccccaaa ggaaactact ctcgatttat 3720 gaatcacage tgccagecca actgtgagae ectcaagtgg acagtgaatg gggacacteg 3780 tgtgggeetg tttgeegtet gtgacattee tgcagggaeg gagetgaett ttaactacaa 3840 cctcgattgt ctgggcaatg aaaaaacggt ctgccggtgt ggagcctcca attgcagtgg 3900 attecteggg gatagaccaa agacetegae gaceetttea teagaggaaa agggeaaaaa 3960 gaccaagaag aaaacgaggc ggcgcagagc aaaaggggaa gggaagaggc agtcagagga 4020 cgagtgette egetgeggtg atggegggea getggtgetg tgtgacegea agttetgeae 4080. caaggeetae eacetgteet geetgggeet tggeaagegg eeetteggga agtgggaatg 4140 tecttggeat cattgtgacg tgtgtggcaa accttcgact tcattttgcc acctctgccc 4200 caattegtte tgtaaggage accaggaegg gacageette agetgeacce eggaegggeg 4260 gtcctactgc tgtgagcatg acttaggggc ggcatcggtc agaagcacca agactgagaa 4320 gccccccca gagccaggga agccgaaggg gaagaggcgg cgacggaggg gctggcggag 4380 agtcacagag ggcaaatagc gccaggcggc cgcttggccg gatccagggg cggtgcaggg 4440 cggccggccc tgcctgcggg agagggcgag catgaactgg cccggaggac ccagctcgag 4500 cegecaggae acagaegtae aggeeteete gggagggage geeteecae caetgageea 4560 teeteageag egteegetge gtetgeaetg atgaeegtet gageecaget cagegtteet 4620ggacaaacag cctcactcct cagcgttacc gccacacttg aatttctccg aatgtcaagg 4680 ttecetecca etetatttt ttaggttaaa gttaattgge atatggaatg ttttaatete 4740 etetgaaatg tgtagegtag gettttecca agggtegeta gaaactegte ttegegttge 4800 cccctttctg gctctcagcg ccgtcgccac tcgggagagg ctgggtgagg cccgtgtgag 4860 gactgaccet ggattecteg aaactgecat tgtgateatt actetgetet ttggaaatgg 4920 ctgtatcatt tttttgtact aatgtgaatt gttcctcaga aacgcttctt ttccatccta 4980 gtgagaagct ggccctgcag gtggtggcag caatggtgtt gtaagatttc ctcccgtagt 5040 tttttctcct catggatttg aatgaaatgc caataacacg tccactttca acgtgtagtt 5100 tacgcggage actitcgagg cctggccggg ttgggcctac ttctcacctg ggcctatett 5160 ctgaactcgc taggttctta tcaacatttg ggggataact ttgtatattt ttttcatttg 5220 gcttttcttt accagtttct gatttttatt ctcaatatat ttttgctaaa cctattcac 5280 aaatcaccac cgactgaagt gtgtgtttac tgatgcggcc ctgagctcca tggcgaaagg 5340 agtgactttg cagggcgtga gaccgcagtc tgcttagagc acaggaagtg acaacttagg 5400 gageceegta ggegetgeag geeeegggga eeceageaeg tgggtetaaa gagagaegga 5460 gtetagetet eetgeeaeee agagtggett eeateteage atetgtgggt etggtgatgg 5520 aagatgeagt etetgetgat cacatgtgee etetgeeagg geacetactg agaggtgegg 5580 teetgggggt ggaggeetge etggeaggtg tgegtgeete gtaegtgtgt tatgggeact 5640 ggtetaggee aggtatgaea eceaetetee tgtgagattt eaetttagtt tttaaaaggt 5700 ccagttctac agagtgagac ctatctatct gagtactaca tatgttttaa gacttggttc 5760 ttttttgag ggatccttga ccctgggaag tctggagcac cctgagaagg gggcaccatg 5820 tgtgcctttg cccacgtgtc ctgaggggct gcttgtctgg gagggaggga gagaacattc 5880 agcagcaggt gctttttat ggccttttct taaaataacc taagggggac acatccatct 5940 tgcagagaag tttacagaac tccccttgaa aactgctgct gaggctcctg ttaaattttc 6000 tgtggcatct tttatgcctt ggtaaaaact gcagtgtctt tggacctgag agtggctact 6060 ccgtggtttt gtgacctgta agcgtggggt tcaggggtgt gtggccctgc agggtcccac 6120

```
gcctccctga gcactgactg gaagtttcac tggctggtgg ctgtcccttc tcccatcagg 6180
gtccccagca aagttaacta cacagaggac ccaggggaaa cgagctgtgt agccactgac 6240
ttgetegene ggeegtggee tetgagggge actegeeggt taagacaggg tgggagtagt 6300
gcittecagt teagacteta acticieca aagtgteeta agaaaataet ggateggete 6360
atagatttat geteettatg atgeeetaae ttggaaggtt gitetaggga eaggeeggge 6420
agtgtcccca cacacctt agagtcgaag gccccagggc cccgctgtca cttgcccaaa 6480
agatccette eggeaggtaa gggactaeca atgettaegt caaaacagea gaateggett 6540 tgeagtgeae tttggggage agatattaae ttatttttgt gttggacagt agtgaaatet 6600
tgtgattttt aatcgctttg ataatacttc caaattttat gatttttctg aaggaaataa 6660
tgcaaacatt ttaaatatgt ttctcccct ttccaaaaac tgttaaacta atgagcaagt 6720
aacactaact ttgaatgtct ctacaatacc cgttgataac tcagtggagc caggctttgg 6780
ggtageggee etgagettge agggtttete gecaetgggg etgaceaege eeceagetgt 6840
gaccgtgggt gtggctggct ctcggccctg cccagctttg ttctgaggac gtggtgactt 6900
cetgaacate agetteaate etecateatt aatgtgaage aaaacacaaa aacegeecca 6960
atcectcagg attecttgge atcegaaacc ageatetgea cetaaaccca taccaacccg 7020 tgtgegecca cagggggatg tgtccgaatg ggcagettaa aatgtggtea cetgtggggg 7080 aaactettea ggcacetgaa gtgagaacce agetgteegt ceteaggeeg geetttette 7140
eggegacace egtecatgge tggetgggte ceettegeag tgtttgtetg tettgacate 7200
taaaccccgg cgtgtgcagt gcccatcttc caggactacc ttattttcca gaattaaacc 7260 tgttttataa ttcaagttaa tgcaaatgac tgtcagttgc caaatatctt gatcctatga 7320
gtgtagttga tgactgtttg ttagtcagta gagtaaaatg ctgtgtccac ggggtgtcac 7380
agceteacea taccetgttg aggtgtgaaa tgeecegtea gaaattaaat acaaaettaa 7440 atgtgeetat tggtgtetaa actteataea atgtaaggte agatteettt taggaataet 7500
gggtgctgtc accaggtttg atagttagac ttaaaaactt gaaattcact ttttgggggg 7560
agggatatac tgaaatagag agttgagact tgccagttgg gggaaaatag catttaaaat 7620 ggaaagctgt gtttggaaaa ttgtgtatga gtatttttgt attaaaaaca ttttaaaggc 7680
<210> 60
<211> 1576
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 337822.4.dec
<400> 60
qqqaqaacat tctaaacaac tqatqqaqqt tcttqtggcc aggcaagttt cagtagagct 60
gaggtagatg gagttgcttg ggaataagga ccatagagac taaaagaaag gtctaaggag 120
catattttgc agaggcccaa gtccataata aactggaata accettettt gccccaggtt 180
atttecattt ccagateegg cactetagat acteetttta ttttetggge etetaggatt 240
tateteetge tttettttte aatgetgtea eetattattt etgaetaagg gttttetett 300
tataaatcca ctctgagatg gaattctttt ttccctaaat cccttttgaa atatttctaa 360
cagatgacac taaatatggg aaagcatatt gggaccaaaa atataccatt ctttgttctt 420
ctttcttcct ttaaaaagtt agttgccatg tttaaaaaga aaagtggaca tgtgctcttc 480 tcctttctgg tcctatccct tcctccccat catatcctac tgtaaactgg ctctggggca 540 gataaaaatc aaggaaagca aggggaagtg aatttttgta gtattgggtg ggctttcaag 600
tataagggcc ttatatatga aagttaagtt agggtctact atgtatatgt gttcagtttt 660
taaaatttta gttaattttt ttaaaaattt aggtttatgt ctgggaaaga aataaagaag 720 aagaagcatt tgtttgggtt gcgaattcgt gttcctcctg tgccaccaaa tgtggctttc 780 aaagcagaga aagaacctga aggaacatct catgaattta aaattaaagg cagaaaggca 840
tccaaaccta tatctgattc aagggaagta agcaatggca tagaaaaaaa aggaaagaaa 900
aaatetgtag gtegteeace tggeecatat acaagaaaaa tgatteaaaa aactgetgag 960 ceaettttgg ataaggaate aattteagag aateetaett tggatttace ttgttetata 1020 gggagaactg agggaactge acatteatee aataceteag atgtggattt caegggtget 1080
tccagtgcaa aagaaactac ctcgtctagc atttccaggc attatggatt atctgactcc 1140
agaaaaagaa cgcgtacagg aagatettgg cetgetgeaa taccacattt geggagaaga 1200
agaggtcgtc ticcaagaag agcactccag actcagaact cagaaattgt aaaagatgat 1260
gaaggcaaag aagattatca gtttgatgaa ctcaacacag agattctgaa taacttagca 1320
gatcaggagt tacaactcaa tcatctaaag aactccatta ccagttattt tggtgctgca 1380
ggtagaatag catgtggcga aaaataccga gttttggcac gtcgggtgac acttgatgga 1440 aaggtgcagt atcttgtgga atgggaagga gcaactgcat cctgactgta ggactgaaca 1500
ttatgttcac tgcactctga ttttctgtag gtacagttca aagccctaaa ggagtctggc 1560
ttttactatc tttctt
                                                                                        1576
<210> 61
<211> 4744
```

39/50

```
<212> DNA
<213> Homo sapiens
<2220>
<221> misc_feature
<223> Incyte ID No: 902943.1.dec
<220>
<221> unsure
<222> 49
<223> a, t, c, g, or other
<400> 61
cttcaaagca gagggccctg aagtggatgt gaacctgccc aaggctgang ttgatgtctc 60
aggececaaa gtggaegttg aaggeeetga tgttaaeatt gaaggaeeag agggaaagtt 120 gaaagggeee aagtteaaga tgeeagagat gaatateaaa geeeeeaaga teteeatgee 180
tgactttgat ttgcatctga aaggtcccaa ggtgaagggc gatgtggatg tttctctgcc 240
caaagtggaa ggtgacctca agggccccga agttgacatc aaggggccca aagtggatat 300
taatgeeeca gatgtgggtg tteaaggeee agactggeae etgaagatge eeaaggtgaa 360 aatgeeeaag tteageatge etggetteaa aggagagggt eeagatgtgg atgtgaaget 420
geccaagget gacettgatg teteaggace caaagtggac gttgatgtee tgatgttaac 480
tattgaagga ccagagggaa agttgaaagg gcctaagttc aagatgccag agatgaatat 540 caaagcccc aagatctcca tgcctgatat tgaccttaat ctgaaaggac ccaaagtgaa 600 gggtgatgtg gatgtttccc ttgctaaagt ggaagtgacc tcaagggccc agaagttgac 660
atcaagggcc caaaagtgga cattgacgca cctgatgttg atgttcatgg cccagactgg 720
cacctaaaga tgcccaagat aaaaatgccc aagatcagca tgcctggctt caaaggagaa 780
ggtccagatg tggacgtgaa cctgcccaag gctgacattg atgtctcagg accgaaagtg 840
gatgttgaat gtcccgatgt gaatatcgaa ggacctgaag gaaagtggaa aagtccaaag 900
tttaagatge cagagatgea ttttaagact ccaaagatat ccatgecaga tattgacetg 960
aateteacag gteeaaaaat aaaaggagat gtggatgtta caggeeetaa ggtagaggga 1020
gatctgaaag gtcctgaagt tgacatcagg ggtcccaaag tggacattga tgtcccggat 1080 gtgggcgttc aaggcccaga ctggcacctg aagatgccca aagtgaaaat gcccaaattc 1140
agcatgcctg gcttcaaagg agagggccca gatgtggatg tgaacctgcc caaggctgac 1200
cttgatgtct caggacccaa ggtggacatt gatgttccag atgtgaatat cgaaggccca 1260 gagggaaagt tgaaaggtcc caaattcaaa atgcctgaga tgaacatcaa agcccccaag 1320
atctccatgc ctgacattga tcttaacctg aaaggtccca aagtgaaggg tgacatggat 1380
gtgtctctgc caaaagtgga aggtgacatg aaagttcctg acgtggatat taaaggcccc 1440
aaagtggata ttaatgcccc agatgtggat gttcaaggcc cagactggca cctgaagatg 1500. cctaaaataa aaatgcccaa gatcagcatg cctggcttca aaggagaagg tccagaagtg 1560.
gacgtgaacc tgcccaaggc tgaccttgac gtctcaggac ccaaggtgga cgttgatgtt 1620
ccagatgtga atattgaagg tccagatgcg aaactgaagg gccctaaatt caagatgcca 1680
gagatgaaca ttaaaggete etaaaatate aatgeetgat ttggacetea atettaaagg 1740 eectaaaatg aaaggagagg tggatgtte aettgeaaat gtagaaggtg atttgaaagg 1800
acctgctctt gacataaaag gcccaaagat agatgtagat gctccagata ttgacattca 1860
tggcccagat gccaaattaa aaggtccaaa actgaagatg cctgacatgc atgtaaacat 1920
gcccaagatc tccatgccag aaattgactt gaatttgaaa ggctcaaagc ttaagggaga 1980
tgttgatgtc tctgggccca agttggaagg tgacattaaa gctcccagtt tggatataaa 2040
gggcccagaa gtggacgttt ccggtcctaa gcttaatatc gaaggcaagt caaagaaatc 2100
tcgttttaag cttcccaaat ttaatttttc gggctctaaa gttcagacac ctgaagtgga 2160 tgtcaaaggt aaaaagccag atattgacat aacaggtcca aaagttgata ttaatgctcc 2220
tgatgtegag gtecaaggaa aagtgaaagg atccaagttt aaaatgeett teetgagtat 2280
ttcatctccc aaagtttcta tgcctgacgt ggagctaaat ttgaaaagtc ccaaagtcaa 2340 aggagactta gatattgcag gtcccaattt agaaggtgac tttaaaggcc ccaaagtgga 2400
tattaaggca ccagaagtca atcttaatgc acctgatgtg gatgttcatg gtccagactg 2460 gaatctgaaa atgcccaaga tgaaaatgcc caaattcagt gtgtctggct taaaagcaga 2520
agggccagat gtagctgtgg atctaccaaa aggagacatc aacatagagg gcccaagtat 2580
gaacattgag ggcccagatc tcaatgtgga aggtccggag ggaggcttga aaggtcccaa 2640 attcaagatg cctgacatga atatcaaagc tcccaagatc tccatgcctg acattgactt 2700 aaacttgaaa ggccccaagg tgaaaggtga tgtggatatt tctcttccca aacttgaagg 2760
ggatctgaaa gggccagagg ttgatatcaa aggccctaaa gtggacatca atgccccaga 2820
tgtggatgtt catggtccag actggcatct gaagatgccc aaagtgaaaa tgcccaagtt 2880 cagcatgcct ggcttcaaag gagaaggccc tgaagtcgat gttaccctcc ctaaagctga 2940 cattgacatt tctggtccca atgtagacgt tgatgttcca gacgtgaata ttgaaggtcc 3000
agatgcaaag ctgaagggcc ccaagttcaa gatgcctgag atgaacatca aagcccccaa 3060
gatetecatg etggaaatta ttgaacetga acttgaaggg acceaaaatg aagggtgatg 3120
tggatgtttc ccttcctaaa gtggaaggtg acctcaaggg cccagaagtt gacatcaagg 3180 gcccaaaagt ggacattgac gcacctgatg tctgatgtct cagtggccca gactggcacc 3240
```

```
taaagatgcc caagatgaaa atgcccaagt tcagcatgcc tggcttcaaa gcagagggcc 3300
ctgaagctgg aatgtgaacc tgcccaaggc tgacgttgat gtctcagggc ccaaagtgga 3360
tattgatgcc ccagatgtgg gtgttcaagg cccagactgg cacctgaaga tgcccaaggt 3420 gaaaatgccc aagttcagca tgcctggctt caaaggagag ggcccagatg gggatgtgaa 3480
gctgcccaag gctgacattg atgtctcagg acccaaagtg gacattgaag gccctgatgt 3540
taacattgaa ggaccagagg gaaagttgaa gggccccaag ttcaagatgc ctgagatgca 3600 cttcaagacc cccaagaact ccatgcctga tgttgatttc aatttaaagg gacccaaaat 3660 caaaggagat gttgatgttt ctgccccaaa gctggaggga gagttaaaag gtccagaatt 3720
ggatgtcaaa ggtcccaaat tagatgctga catgccagaa gtagctgtgg aaggcccaaa 3780
tggcaagtgg aaaactccta agttcaagat gccagatatg cactttaaag ctcccaaaat 3840
ctctatgcca gacctcgatc tacacttgaa gagccccaag gcaaaaggag aggtggatgt 3900 agatgttccc aaattggaag gggaccttaa agggccacat gtggatgtca gtgggccaga 3960
cattgacatt gagggaccag agggcaaatt gaaaggccct aagttcaaga tgcctgatat 4020
gcatttcaaa gcccccaata tttctatgcc tgatgttgat ctaaatctca aaggacccaa 4080
aatcaagggg gatgtggatg tgtctgtgcc tgaggtagaa ggtaaacttg aagtaccaga 4140 tatgaacatc aggggccca aagttgatgt aaatgcccc gatgtccaag ctccagactg 4200 gcacctgaag atgcccaaga tgaaaatgcc caagttcagc atgcctggct tcaaagcaga 4260
ggaccetgaa gtagaegtea aettgeetaa ggetgaegtt gacateteag gacceaaggt 4320
ggacattgaa ggccctgatg ttaatattga aggaccagag ggaaagttga aagggcctaa 4380 gttaaagatg ccagagatga acatcaaagc ccccaagatc tccatgcctg actttgattt 4440
gcatctgaaa ggtcccaagg tgaagggcga tgtggatgtt tctctgccca aagtggaagg 4500
tgacctcaag ggccccgaag ttgacatcaa ggggcccaaa gtggatatta atgccccaga 4560
tgtgggtgtt caaggcccag actggcacct gaagatgccc aaggtgaaaa tgccaaagtt 4620 cagtatgcct ggcttcaaag gagagggcc agatggggat gtgaagctgc ccaaggctga 4680
cattgatgtc tcaggaccca aagtggacat tgaaggccct gatgttaaca ttgaaggacc 4740
gtgg
<210> 62
<211> 7313
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 256009.2.dec
<400> 62
aaagtggaag gcgacctcaa gggccccgaa gttgacatca gggaccccaa agtggacatt 60
gatgtcccag atgtggacgt tcaaggccca gactggcacc taaaaatgcc caaagtgaaa 120
atgcccaagt teageatgce tggcttcaaa ggagagggce cagatgtgga tgtgaacetg 180
cccaaggctg acattgatgt ctcaggaccc aaagtggacg ttgatgttcc tgatgtggat 240
ategaaggte cagatgegaa aetgaaggge eecaagttea agatgeetga gatgageate
aaageeeca agateteeat geetgatatt gaettaaate tgaaaggaee etagggtgaa 360
gggagatgtg gctgtttctc tgcctaagat ggaaggtgat ctagaggccc ctgaagttga 420
catcaagggc cccaaagtgg acattgatgc cccagatgtg gatgttcatg gcccagactg 480 gcacctgaag atgcccaagg tgaaaatgcc caaattcagc atgccaggat ttaaaggaga 540
gggcccagaa gtggatgtta atttgcccaa agctgacatt gatgtctcag gacccaaagt 600
ggacattgac actectgata ttgatattca tggtccagaa gggaaactga agggccccaa 660
atttaaaatg cetgacetge aceteaagge acegaagate tetatgeetg aagttgacet 720 gaatetgaaa ggtecaaaga tgaagggega egtggacgtt tetetgeeca aagtggaagg 780
cgacctcaag ggccctgaag ttgacatcaa gggccccaaa gtggacattg atgtcccaga 840
tgtggacgtt caaggcccag actggcactt aaaaatgccc aaagtgaaaa tgcccaagtt 900
cagcatgcct ggcttcaaag gagagggccc agatgtggat gtgaacctgc ccaaggctga 960 ccttgacgtc tcaggaccca aggtggacat tgatgttcct gatgtgaata tcgaaggtcc 1020
agatgegaaa ctaaagggee ctaaatteaa gatgeetgag atgaacatea aageeeccaa 1080
gatetecatg cetgaetitg atttgeatet gaaaggteee aaggtgaagg gtgatgtgga 1140
tgtttccctt cctaaagtgg aaggtgacct caagggccca gaagttgaca tcaagggccc 1200 caaagtggac atcgatgccc ctgatgtaga tgttcatggc ccagactggc acctgaagat 1260
gcccaaggtg aaaatgccca aattcagcat gccaggattc aaaggagagg gcccagatgt 1320
ggatgttacc cttcctaagg ctgacattga gatttctggc cccaaagtgg acattgatgc 1380
ccctgatgtc agtatcgaag gtccagatgc aaaactcaag ggtccaaagt tcaagatgcc 1440 agagatgaac atcaaggccc ccaaaatctc catgcctgac attgacttta acttgaaggg 1500
tcccaaagtg aaaggtgatg tggatgtctc tctgcccaaa gtggaaggtg atctcaaggg 1560
ccctgaaatt gacataaaag gccccagttt ggacattgac acacctgatg tcaatattga 1620
aggtccggaa ggaaaattga aggggcccaa atttaagatg cctgagatga acatcaaagc 1680
teccaaaate tetatgeetg actitigatit geacetgaaa ggteecaagg tgaagggtga 1740
```

tgtggatgtt tcactaccta aggtggaaag tgatctgaaa gggccagagg tagacattga 1800

```
aggtcctgaa gggaagctca aaggtcccaa gtttaagatg cctgatgtac atttcaaaag 1860
cccacaaatc tccatqaqtq acattqattt qaatttqaaa qqacctaaga taaaaggaga 1920
tatggacatt tccgttccta aactggaggg agatctgaaa ggtcccaaag tggatgtcaa 1980
aggccctaaa gtgggcattg acactcctga tattgacatt catggtccag aagggaaact 2040 gaagggcccc aaatttaaaa tgcctgactt acacctcaag gcaccgaaga tctctatgcc 2100
tgaagttgac ctgaatctga aaggtccaaa ggtgaagggc gacatggaca tttctctgcc 2160
caaagtggaa ggcgacctca agggccccga agttgacatc agggacccca aagtggacat 2220
tgatgtccca gatgtggacg ttcaaggccc agactggcac ctaaaaatgc ccaaagtgaa 2280 aatgcccaag ttcagcatgc ctggcttcaa aggagagggc ccagatgtgg atgtgaacct 2340
qcccaaqqct gacattgatq tctcaqqacc caaagtggac gttgatgttc ctgatgtgaa 2400
tategaaggt ccagatgega aactaaaggg ccccaagtte aagatgeetg agatgageat 2460 caaageecce aagateteea tgeetgatat tgaettaaac etgaaaggae ecaaagtgaa 2520 gggegatgtg gatgttacce tteetaaagt ggaaggtgae etcaagggee cagaagetga 2580
attcaagatg cotgagatga gcatcaaagc coccaagatc tocatgootg atattgactt 2880
aaacctgaaa ggacccaaag tgaagggcga tgtggatgtt acccttccta aagtggaagg 2940
tgacctcaag ggcccagaag ctgacatcaa gggcccaaaa gtggacatca acaccctga 3000 tgtggatgtt catggcccag actggcacct gaagatgccc aaggtgaaaa tgcccaaatt 3060
cagcatgcct ggcttcaaag gagaaggtcc agatgtggat gtgagcctgc ccaaggccga 3120
categatgte tegggaceca aggtggacgt tgatatteca gatgtgaata tegaaggtee 3180
agacgcaaaa ctgaagggcc ccaagttcaa gatgcctgaa ataaatatca aagctcccaa 3240
gatctccata cctgatgttg acctggattt gaaaggaccc aaagtaaaag gagattttga 3300
tgtgtctgtc cctaaggttg aagggacttt gaaaggccca gaagtagatc ttaaaggtcc 3360 acgtctggat ttcgaaggcc ctgatgccaa actcagtggc ccatctttga agatgccatc 3420 gctggagata tctgctccta aagtaactgc tcctgatgtt gatttgcatc tcaaggcacc 3480
aaaaattqqa ttttcaggtc cgaagttaga aggtggtgaa gtggacctca agggacccaa 3540
agttgaaget ccaagettag atgtacacat ggacagecca gatattaaca tegaagggee 3600
agatgttaaa atccccaaat ttaagaaacc caagtttgga tttggggcaa aaagccccaa 3660 agctgacatc aagtcacctt cactggatgt cactgttcct gaggcagagc tgaaccttga 3720
qactcctgaa attagtgttg gtggcaaggg caagaaaagt aagtttaaaa tgcctaaaat 3780
tcatatgagt ggtcctaaga ttaaggccaa aaaaacaggg atttgacctg aatgttcctg 3840 ggggtgaaat tgatgccagc ctcaaggctc cggatgtaga tgtcaacatc gcagggccgg 3900
atgetgeact caaagtegae gtgaaatege ceaaaaceaa gaaaaegatg tttggaaaaa 3960
tgtacttccc agatgtagag tttgacatta aatcacctaa atttaaagct gaggccctc 4020 tccctagccc caaactggag ggtgaactcc aggcacctga tctggaactt tctttgccag 4080 cgattcacgt cgaaggtctt gacatcaagg cgaaggctcc caaggtcaag atgccagatg 4140
 tggacatete agtgecaaaa atagagggtg acetgaaagg ceceaaagtg caggeaaact 4200
 tgggtgcacc tgacatcaac atcgaaggcc tagatgctaa agtcaaaaca ccgtccttcg 4260
gcatttctgc ccctcaagtc tccatccctg atgtgaatgt aaacttgaaa ggaccaaaga 4320 taaagggtga tgtccccagc gtgggactgg aaggaccaga tgtagatctg caaggtccag 4380 aagcaaaaat taagttcccc aagttttcca tgcccaagat cggcatccca ggtgtgaaaa 4440
tggaggtgg gggagccgag gtccatgccc agctacctc tcttgaagga gacttgagag 4500 gaccagatgt taagctcgaa gggcccgatg tttctctaaa ggggccagga gtagacttgc 4560 cttcagtgaa cctctctatg ccaaaagtct ctgggcctga ccttgatctg aacttgaaag 4620 gaccaagttt gaagggagac ctggatgcat ctgttcccag catgaaggtg catgctccag 4680
ggctcaacct cagtggtgtc ggtggcaaaa tgcaggtggg aggagacggt gtgaaagtgc 4740
 cagggatcga tgccacaaca aagcttaacg ttggggcacc agatgtgaca ctgaggggac 4800 caagcctgca gggagatctg gctgtctctg gtgacatcaa atgccctaaa gtatccgtag 4860
 gageteetga tetaagettg gaggeateeg aaggeageat taaaetteee aaaatgaage 4920
 tgccccaatt tggcatctct actccggggt ccgacttgca cgtcaatgcc aaggggccac 4980
 aggtttctgg cgaactgaag gggccaggtg tggatgtgaa cctgaaaggg cctcggattt 5040 cagcaccgaa tgtggacttt aacttggaag gaccaaaagt gaaagggagc cttggggcca 5100
 ctggtgagat caaaggcccc actgtcggag gaggtcttcc aggcattggt gttcaaggcc 5160
ttaatatggc atctcctgag tcagattttg gcatcaactt gaagggccca aaaatcaaag 5400
 gaggtgcgga tgtttcaggg ggtgtcagtg ccccagacat cagccttggt gaagggcatt 5460
 tgagtgttaa aggttccggg ggtgagtgga agggacccca agtctcctct gctctcaact 5520 tggacacatc taagtttggc tggggggcct tcatttctca ggaccaaagg tggaaggagg 5580
 tgtgaaagga ggtcagattg gactccaggc tectgggctg agtgtgtetg ggcctcaagg 5640
tcacttggaa agtggatctg gaaaagtaac attccctaaa atgaagatcc ccaaatttac 5700 tttctctggc cgtgagctgg ttggcagaga aatgggggtg gatgttcact tccctaaagc 5760 agaggccagc atccaagctg gtgctggaga cggcgagtgg gaagagtctg aagtcaaact 5820
```

```
gaaaaagtcc aagatcaaaa tgcccaagtt taatttttcc aaacctaaag ggaaaggtgg 5880
tgtcactggc tcaccagaag catcaatttc tgggtccaaa ggtgacctga aaagttcaaa 5940
ggccagcctg ggctctctgg aaggagaggc agaggccgaa gcctcttcac cgaaaggcaa 6000
attotootta tttaaaagta agaagcoacg ggcaccgctc aaattoatto agtgatgaaa 6060
gagagttete tggacettee acceegacgg ggacgetgga gtttgaaggt ggggaagtgt 6120
ctctggaagg tgggaaagtt aaagggaaac acgggaagct gaaattcggt acctttggtg 6180
gattggggtc aaagagcaaa ggtcattatg aggtgactgg gagcgatgat gagacaggca 6240 agttacaggg gagtggggtg tccctggcct ctaagaagtc ccgactgtcc tcctcttcta 6300
gcaatgacag tgggaataag gttggcatcc agcttcccga ggtggagctg tcagtttcca 6360
caaagaaaga gtagcaggcc tttgtatgtg tgtacatata tatatata acaaaacatc 6420
agcettgggt ggtgtgttcc tatataaact ccaaagggaa acacaccgac tgcctcagca 6480 atcatgcaaa gacettgcct ggcccggtgg caagcgctga aaaaccgacc gcctgtaggc 6540
tcctggaact atacagatag gtaaagagtt ccaagttcgt ccagcccatg tgcaaagtca 6600
acagtatttg cettaagatt teatatata atatttttt geattgaetg etgagagete 6660 etgtttaeta ageaagettt tgtgtttatt ateeteattt ttaetgaaca ttgttagttt 6720 tggggtaatg gaaacccaet tttteattgt aatgaetttg ggggettttg ttagtaaggg 6780 tgggtggggt gatgggttge agaeggaggt eaggtettee tettteetga gaetggatet 6840
gttcaaacag caaacgccca cagatggccc agaggtggtg gtagtcaggg tgtgtgggtg 6900 tttttagggt tctttagtgt tgtttctttc acccaggggt ggtggtccca gccagtttgg 6960 tgctgacggt gagaggaaat tagaatctgt ttgcaaattg tccaacccac cccctcaaca 7020
tgaggggctt ccattttctg tgttttgtaa gggaactgtt tccttcatgc cgccatgttc 7080
ctgatattag ttctgatttc tttttaacaa atgttatcat gattaagaaa atttccagca 7140 ctttaatggc caattaactg agaatgtaag aaaattgatg ctgtacaagg caaataaagc 7200 tgtttattaa ccttgtacag catcaatttt cttccatttt ctgtgttatg taagggaact 7260
                                                                                               7313
atttccttca tgccgccatg ttcctgatat tagtactgat ttctttttaa caa
<210> 63
<211> 1602
<212> DNA
<213> Homo sapiens
<221> misc_feature
<223> Incyte ID No: 231892.12.dec
<220>
<221> unsure
 <222> 118
<223> a, t, c, g, or other
<400> 63
geeggeegag ggeagggete geggttgegg ggetegegee getgteagtg eggegggeg 60
cgcgagcggc gccagcttcg gggcagcgga acccagagaa gctgaggggg cggtagcngc 120
ggcgacggcg acgacgacga ctcccggcgc tgtgcccagc ctcttcccgc cgcagccgcc 180
ctttteetee etecettaeg teecegagtg eggeagtaee geeteettee eageegegeg 240 getteeteea gaeetetegg egegggtgag eestatteee agaggeaggt ggtgetgaee 300 etgtaaceea aaggaggaaa eagetggeta ageteateat tgttaetggt gggeaeeatg 360
tccttgaage ttcaggcaag caatgtaace aacaagaatg accccaagte catcaactet 420 cgagtettea ttggaaacet caacacaget etggtgaaga aatcagatgt ggagaceate 480 ttctctaagt atggccgtgt ggccggetgt tetgtgcaca agggctatge etttgtteag 540
 tactccaatg agggccatgc cogggcaget gtgctgggag agaatgggeg ggtgctggcc 600
gggcagaccc tggacatcaa catggctgga gagcctaagc ctgacagacc caaggggcta 660
aagagagcag catctgccat atacaggctc ttcgactacc ggggccgtct gtcgcccgtg 720 ccagtgccca gggcggtccc tgtgaagcga ccccgggtca cagtcccttt ggtccggcgt 780
gtcaaaacta acgtacctgt caagctcttt gcccgctcca cagctgtcac caccagctca 840
gccaagatca agttaaagag cagtgagctg caggccatca agacggagct gacacagatc 900
 aagtecaata tegatgeeet getgageege ttggageaga tegetgegga geaaaaggee 960
 aatccagatg gcaagaagaa gggtgatgga ggtggcgccg gcggggcggc ggtggtggtg 1020
gcagcggtgg cggtggcagt ggtggtggcg gtggcggtgg cagcagccgg ccaccagccc 1080
 cccaagagaa cacaacttct gaggcaggcc tgccccaggg ggaagcacgg acccgagacg 1140
acggcgatga ggaagggctc ctgacacaca gcgaggaaga gctggaacac agccaggaca 1200 cagacgcgga tgatggggcc ttgcagtaag cagcctgaca ggagcaatgg ccaccagcag 1260
 qtqaaqqqa tcqctqccc aqqcctcaag ccgggcaccc aaccctggat gccaccccc 1320
 agegggtace agaggaaage tggcagcagg egectectee cecaacgeat eccagecagt 1380
 gccatgtcct ctgcaggtgg agttactggc ctactccttc cccatgagcc ctccctgtct 1440
gcactgccca ggccagaggg tagagcacag gggtttcccc atactacctc ccctcccag 1500 gacactccca ggcttgggtt ttttctatag gtttggcggg gggccacagg gaggggaccc 1560
```

```
tgacaataaa gagattggat cccaaaaaaa aaaaaaaagc gg
                                                                                          1602
<210> 64
<211> 2718
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 197445.1.oct
<400> 64
geggeegeeg eegeegagge ttaceeggga atgtetggge eegegeeteg eggeeeceaa 60
getecacget gegeeegetg teeeggeete taaaggeege cacgteeetg eggegegeg 120
aggcagaaag cggcttcgtg ccggcggagg gggcccgggc gggccgggag gggctgcccc 180
aggecetgeg cetaceceat cacegegge gggeceggge egggaggatg egeggtgteg 240 ggetetgaag categgaggg gtgttgtaca agtggaceaa etateteaca ggetggeage 300 etegttggtt tgttttagat aatggaatet tateetaeta tgatteacaa gatgatgttt 360
gcaaaggaag caaaggaagc ataaagatgg cagtttgtga aattaaagtt cattcagcag 420
acaacacaag aatggaatta atcattcctg gagagcagca tttctacatg aaggcagtga 480 atgcagctga aagacagagg tggctggtcg ctctggggag ctccaaagca tgtttgactg 540
atacaaggac taaaaaagaa aaagaaataa gtgaaaccag tgaatcgctg aaaaccaaaa 600
tgtctgaact tcgcctctac tgtgacctct taatgcagca agttcataca atacaggaat 660 ttgttcacca tgatgagaat cattcatctc ctagtgcaga gaacatgaat gaagcctctt 720
ctctgcttag tgccacgtgt aacacattca tcacaacgct tgaggaatgt gtgaagatag 780
ccaatgccaa gtttaaacct gagatgtttc aactgcacca tccggatccc ttagtttctc 840
ctgtgtcacc ttctcctgtt caaatgatga agcgttctgt cagccaccct ggttcttgca 900 gttcagagag gagtagccac tctataaaag aaccagtatc tacacttcac cgactctccc 960
agegaegeeg aagaacetae teagatacag attettgtag tgatatteet ettgaagace 1020
cagatagacc tgttcactgt tcaaaaaata cacttaatgg agatttggca tcagcaacca 1080
ttcctgaaga aagcagactt atggccaaaa aacaatctga atcagaagat actcttccat 1140 ccttctcttc ctgaagaaac tgaagtgtcc aacttcctct aagtattgct atgcaaaagc 1200
tgctgtaatt aaactattgt tatagggagt agttttttcc cttaggactc tgcactttat 1260
agaatgttgt aaaacagaca aacaagaaaa caaaccacat acttttgaag tgtattttat 1320
ctttatatag tttgtttgca agagtatttt cctaataact tcacagtatg aatgtgcatc 1380 ttttttttt gaacaaatga tggtgtaaca ttttgacatc cataaggaca aatgtagata 1440
tttttcttaa aaactctgag gggactgaca gcatggtcag ggtgtattgt agcttataaa 1500
catgaaatct tataaggttt cagtttgaca gaagtgtgat atatgtaact tgtgccatgg 1560
accaaatggt cactttacca cagctaaaaa tgagttacga tagcagcttg atggtgattg 1620 tattgtattc ctttaatcaa aaaggaaaca caatattcta agtatctta gcccaaatac 1680
catgacatat tgagcatctt taaataacca gactgtattg tccttcatat gtgaagttga 1740
tracttarar tagagaaata aaraacttir aatggaagag aattttagtg ctttttttt 1980
cctaaaatag atattaagct gctgttgtaa agtattgttt gcagctcttt ccaatatcta 2040 gagacatttt tatttatgaa tatttataca aaaaggaatt ctgtcaagat gactgctcta 2100
tatcacttga gaatggcatt atttaattaa agaacaaata gcattttttg gtagtgcctg 2160 tccataccta ttgtcattgt ttgccttgta atctgttttt ttgaattcat tttgggctga 2220
tagttttgtt taaggttttg gataaggagc actttaaaac aaactggtgt gttgttttta 2280 agttaatcat atgtttaata aatgcgtggt ttttgcattc aaacacatca tataatacat 2340
tgtatttttt acattcattg atattctgtc taatctttat taggcactaa tataattcta 2400
atggatttga gtttgtttgt atatttaggc ctgctggtga agacacaaat gaagcataat 2460
ttttgttgcc tgtgagctta gaatggtgtg acctatttca tttgatttca atttatcttg 2520 taagtttatg tgggatattt taaaataatt aatatttggt atttgtttaa aaaactgtaa 2580 ttataggcct tccatcttaa gtttaagatg gacataaaca gtctatacat taatatggt 2640
 ttgggtaaac tgtatgctac ttgaagtgtt agtaatttta aataacacac aggtcatcag 2700
actactctat atacaatg
<210> 65
 <211> 1601
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 348775.1.oct
```

```
<220>
<221> unsure
<222> 631, 633, 635, 1339, 1343, 1353
<223> a, t, c, g, or other
<400> 65
ttcaccctqt acttttatqt tqcaqaqatt gcttctttcc ttaaacctca tgaaccaacc 60
tctaacagct tcaaattttt cttctgcagc ttctttacct ctcagtgttc acagaattga 120 ggagagtcaa atccagaggt ctttctctgg attagacttt ggcttaagga aatattgtga 180
ctggtttgat cttctatcca gaccactaaa atttttccat ataagcaata agactgtttt 240
getttettae teatgtgtte actgggagta gtaettetaa tttettteaa gaacaetteg 300 tttgcattea caacttgget aagtgtttgt tgeatgaggt etagetaetg geetgtettg 360 ettacageat geetteetea etaaggetta attattett eettttggtt taaagtgaca 420
gacatgcaac tettettea ettgaacata tagaggetat agtagggtta ttaattggee 480
acattttaat gttaataaaa ggaageetga gaaaaagaga aagagaaatg geeegttggt 540 tgggcagtca gaacaaacge atttgtcaat tgtttgetgt ettateetgg tgtgatttgt 600 ggtteecaaa acaatgacaa cagtageatt nangnteact gattacagat caecacaaca 660
gattcaataa taaaaatctt aaaatactgt gagaatgacc gaaatgtgac acagagacgt 720
gaagtgagca cgtgctgtag gaacaatggg tgcccagtga gacctgctta ttgcagggtg 780
gccacaaacc ttcaatacgt aaaacacatg gtcacaaaac acaataaagc aaagtgcagt 840 gaaacaagat gtgtctgtct tttgatagac tctgacaatc tctacctttg aattggtaca 900
ttcataccat taacattcaa agtgattatt gatatcattg gattaatatc tactatattt 960
gttactgttt tctattcatt ctcctcagtc ttcattcttt tgtctaccac tctttttctg 1020 ccttttgcag ttttcattga tgattttaga tgactccatt ttccctgtct ttcttagtac 1080 atacttctct ttttaaaact tttttttaac tagttgccac agaatttgca atatacattt 1140
acaaccaatt caagtccact ttcaaataac actatcccac tatcccacaa ataggactac 1200
ctgcttaaca aacaaaacac ctaattcctc aatatacatt tacaaccaat tcaagtccac 1260
tttcaaataa cactatccca ctatcccaca aataagacta cctgcttaac aaagaaaaca 1320
cetgattect cecteceane etnecattee atnecttgta ttattgttee ttattteeet 1380
tgtgtataag catacataat ctatctgtgt gtatttattg ttatctacaa acttattggt 1440 cagatcaatt atgaataaat acatgtttt attttaccac aattcctccc tcccatcctt 1500
ccattccatt ccttgtatta gtgttactca tttcacttgt gtataagcat acataatcta 1560 tctgtgtgta tttgttattg tctgtgaact tcttggtcag a 1601
<210> 66
<211> 2606
<212> DNA
<213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 336239.5.dec
 qctqcacttc ccaggcccca ccagccgcgg ctccggctcg tagcccacag cccactgccg 60
geggetggge getgeegagg eteggggege gegeagttgg egtetgeeag tgeeaagaet 120 gtgeegeece cacageegag gegegaaagg gggaegeeeg geetetggge egetgeette 180 getttetett egttgttgeg aaegeegtee geteaggagg egeeeegega eeggegegat 240
 qaqtqccaac gaggaccagg agatggaact agaagcatta cgctctattt atgaaggaga 300
 tgaaagtttc cgggaattaa gtccagtttc ttttcaatat aggataggtg aaaatggtga 360
 tcccaaagcc ttcttaatag agatttcctg gacagaaaca tatccccaaa cacctccaat 420 tctatctatg aacgcttttt ttaacaacac catatcatca gctgtaaagc agagtatatt 480
 agccaagcta caggaagcag tagaagctaa tcttggaacc gctatgacct atacattgtt 540
 tgaatatgcc aaagacaata aagagcagtt catggagaat cacaatccca tcaattccgc 600
 aacatcgata agcaatatca totcaattga aactcctaat acagccccat caagtaagaa 660
 aaaagacaaa aaagaacaac tttcaaaaagc ccagaagcgt aagctggcag acaaaacaga 720
 tcacaaagga gaacttcctc gaggctggaa ctgggttgat gttgtgaagc atttaagcaa 780
 aactggctct aaggatgatg agtagcactt ggaatttgag acaaggaaag agcattcttt 840 aaagagtaaa actgggttca aaatctttca ttactatttt ctggtattga ggcgactttt 900
 tataaaacac aatttttgt atgtttctta cattaaaaag gttgtaagtt gaaagttcat 960
 gaagagatet tottotatta aattatttte acaaacttge ettaataaaa ggtgaaaatg 1020
 ttactgttta gtatacttta tgaagcccct tgagctttat aaatggacag gcatggggaa 1080 taagaatcag tgttaattta aatgatctta tcctggtgga tgtgctattt tcttaaagga 1140
 qtatqaaqcc cttttcaaac tatcatccca gtggagcgga gtactcagtg aacagttact 1200
 ccatagtgca atccatatta ataggettet tetettaagt etteatetet tettitgett 1260
 aattactgaa ccgtaaatta cttcagagaa atttaaatgc tggtatttga actttataca 1320
 tqatactitt tgtagtttct tttaattttt gaaagatgaa ctgcttcctt ttaataaatt 1380
```

```
aatatctatt tatacttttc tcttgatttg ggtcaagatg tttgatcatg agtgctttga 1440
gtggtatgtg gaataggaga atataaaaac aaatctgcca aatacactag aaagcatttt 1500
agtaagaaat getggeeett tettaaaaca tttetettge atataccagg atgggagtaa 1560
aagatgcctt aatatttagt ttttgtattg ttggagacat tgattttaat aaaatcctat 1620
ttatctgctg ttgtgtgctt ttagttgttg gataactgag gtctcctaaa tggttcaaca 1680 taaaaccaca tttcaagtct tgtttctttt tggagtgtct tttcaagtat tcaaatgtat 1740
ttctcaacct gagcatcttt ttaatcatat acatgggagt cttttaaatg ctgaactgtt 1800 acacatgctt gatttaaaaa taataataat agaggaaact attggtctag ttgtgccaag 1860 aaaagtttct gatgttatg tgtgatgtac agtgattttg tatatgcgcc cagctttaag 1920
aacacataaa actattacqt ctqqtaqqaa gattqttagt gcctcaagtt acacctgtgc 1980
agettgggte tgagttttga tagaacagta aacatttaaa gaagttaaga geagtttgag 2040
ctgtatccgc ggtttttact cgttaactga cttcagctaa atagtttgaa ttatagagta 2100
agtataatta cagcaaagga gttaatctca ttttcaaagc tgtttctcat tttattctt 2160
gaattaatgt agagcaaaac atgttaaaat tcaggaccac tggaatatgg caacttatgt 2220
ttcagggttg tgtgtgggta gtatttgtgg ttgtattggt ttgttttttg tttttggaga 2280 aacatctgct agtggaataa aatactttgt tttgctctga agagactgaa attgttcagg 2340
cttattatgg ctcatagatt acagagaatg atgctagtta catgccaatg aactattttt 2400
actetttta tatgaaatgt aaaaatttgt aggggttetg gtgatggtgg tacetettat 2460 tacettatgt aaaacacttg aacageetea teaatattge egteatetgt ttaacactee 2520
cagtatatit teteaatgte tgtttaetta aaattttgtg gagtgacata attaataage 2580
aataaagtct gaaattatac ccagtg
                                                                                              2606
<210> 67
<211> 1502
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 215660.4.dec
cactegacta ccaagatgge ggccccggg agetgtgccc tatggageta ttgcggccgt 60
gggtggtcgc gggcgatgcg gggctgccag ctcctcgggc ttcgtagctc ttggcccggg 120 gacctactaa gtgctcggct cttgtcccaa gagaagcggg cagcggaaac gcactttggg 180 tttgagactg tgtcggaaga ggagaagggg ggcaaagtct atcaggtgtt tgaaagtgtg 240
gctaagaagt atgatgtgat gaatgatatg atgagtcttg gtatccatcg tgtttggaag 300 gatttgctgc tctggaagat gcacccgctt cctgggaccc agctgcttga tgttgctgga 360 ggcacaggtg acattgcatt ccggttcctt aattatgttc agtcccagca tcagagaaaa 420
cagaagaggc agttaagggc ccaacaaaat ttatcctggg aagaaattgc caaagagtac 480
 cagaatgaag aagatteett gggegggtet egtgtegtgg tgtgtgacat caacaaggag 540
atgctaaagg ttggaaagca gaaagccttg gctcaaggat acagagctgg acttgcatgg 600 gtattaggag atgctgaaga actgcccttt gatgatgaca agtttgatat ttacaccatt 660
 gcctttggga tccggaatgt cacacacatt gatcaggcac tccaggaagc tcatcgggtg 720
 ctgaaaccag gaggacggtt tctctgtctg gaatttagcc aagtgaacaa tcccctcata 780
 tocaggettt atgatetata tagetteeag gteateeetg teetgggaga ggteateget 840 ggagaetgga agteetatea gtaeettgta gagagtatee gaaggtttee gteteaggaa 900
gagttcaagg acatgataga agatgcaggc tttcacaagg tgacttacga aagtctaaca 960 tcaggcattg tggccattca ttctggcttc aaactttaat tcctttccta tcatggagca 1020
 tgaaccagtc atatectgtt gaaagcetgg aactgaagga taatetggca aatgagacag 1080 cagcagagca teteetetta aggatacgtg cettggactc atgtttgaat egaacagtet 1140
 caaagtggaa gaacaaattc tigtcacttt tttacagctt tctttggagc tgcttcagtc 1200
 catctcccag aggcatttgg tetgtatett tgctcaactg ctaatttete ttggctgtag 1260 ggtgtgtggt taaggtacaa ccaccctaa agctcagttt tgaagtgagt gtatttatag 1320
 cttctctgct ggtgctgcct tctagaggga tgatagatca tttgaaccca gtgacaattt 1380
 ttaaccagaa aatttaattg tacctgaatc aacctttcag cctaggacga agtctaggcc 1440
 caagtcagag tattaatgat catgagaatt gtgtgctgaa ccagtaaacg agtttacctt 1500
                                                                                              1502
 tc
 <210> 68
 <211> 3349
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 391940.2.dec
```

PCT/US00/25643

WO 01/21836

<220>

```
<221> unsure
<222> 2986
<223> a, t, c, g, or other
<400> 68
atttatcaag actttttatg agaataggta aaccaagcaa taacttccta ggactgaatc 60
accaccccag aagagcgaga ggctcctttc atatgcctga ggccacaccc cttaacctgt 120
tctgacaaaa tagtggctgg cccatgtacc agctccattc agaaattcag gaagagaaaa 180
gacagecetg ttgtcacaca aaceggtgtg ggggagggtg gageetggte tgcacggeag 240
teetggtgge eeetgtggag gacaggeagg getggeagea tageetttgt tgeeacacaa 300
ccggaatttg ctccccagg actgtgggag ccagtgtccc agctgaaatc tttttagtgt 360 gtggctctga atggcactca cattccattt tggctcacat gaaactaact gaagcccttt 420
gttcaagctt caggctctta ggcatggaaa tgagaatgtg actgtggctg tcttacagga 480
aaattettgt ttgteeetga atgagageac agaggeattg aatteacaga getgeaaact 540 tgeetgataa atgagggagt ggeagtttat agataggtea tetttttee tteetecagg 600
tgtccttgcc tttcttcca aagtcattca tttctgatga gtatatgaat cccctcttg 660
ctagtaaggt tctatttggg ctaaaacaag gctgaatttt taaagagtat ttgaatatat 720
tttagaatca aattgagget ataaattgca teaatetgga caatteeatt geaggaataa 780 tatgttaaaa accaatgggg agaageacce acatetetee tgtageacte egtgteteat 840
aagcaatttg aagacactta caagtaactg attccagtca aattaggatt aactgactca 900
aaaaatggtg tcaagtttct ttaatgtttt tatgttagaa gtgagtttaa cagacttgaa 960
gaaaactgtt atcttttcct gctgtgagtt tacacaaatg attccagagc agaatgaaag 1020 cagaaagctg ttggttacaa tattctttta acctctctgc agcattttac acttactggg 1080
aaccttatga ttcaccgtaa gagtggaaat atacctgagt tcgtgtccta atggtctcta 1140
attcacattg gatcgtgggc aaatcacctc acctcttga gcctgttccc tcctcttaga 1200
ccatctctaa gaccacttca tctatttaca catcatttgc ttgaacattg ctgaacatct 1260 gcgtgaactt ggcctctcca gcccttgcag gtggaaacag ctgtgtcaag gctcaaggct 1320 cacgctgagg ggacttggag ggagggggct tctgcattaa gctttcctgg tgaagaccct 1340 tgatcttgtc caaagccctg tgtctttgac tggcttctct tcagagtccc ggtgtgaa
gtaagaccct tgctgtttgg agggtggtct tgtgactgtg gcagctgctg gccgctggaa 1500 tgaggagcct atctccatcc tccagtgtga ctcaggcaga gcattgagaa ttcccagggg 1560
cagaaatect teetgeteag gettteatte taaaactaca gtetteatta aagetgaact 1620.
ttctgggtag ctgagcttat atgcccggca tctgaatgag agctctcttt gtaactgtgt 1680 gacttgagat ctagtttgcc agctcctggg aaacaataca tgtgttcttg tttgtgtttg 1740
 ctcagcaagc agatgtctga gatgtaagaa gcttttcttt tcctgtggca ttgattctga 1800
cttagagetg aagtaaagat cactgaaaca tcacgtcaag ttgaagtcac tcataggtct 1860 ttgtccttta ggcaggacag gagagtcatt aagaagcatt tcactgtage attctatcac 1920 aatatcatct ggaattgttt tctttgccca gaaagcctta acttgcctct agagaatccc 1980
 tggtattaca acgatattgc ggcattagaa ttccaactct tctgctgtgg aagtttgaag 2040
 cgaagetgea geaaaaceag agaattteet caagtggeet gtaggeteet tgttatetta 2100
 tgccccacc cctccctcaa caatatgagt gatccagaac tggcccaaac acctcagctc 2160 tggtcccttt ttgcccttct tggccttact ctgttgttca aagccacttt ggattgcttg 2220
 gatgettega acagecatga aaagtageet geetgtggea tttagaggee aageaattga 2280
 cagaaagggt ttcttctacc tctgttatct aagcagaggg aagtaaactt ctcaccgccc 2340
ctgcttcctt ccttcccctc tgctgctgct gcctcggaac gctgcagccc aggcttcctc 2520
ccacagtggc ccttggaagc aggccgcaga gtagacagct gctccttttg gaagagtcag 2580 tcccctgtgt tttctgaact gttttccta gcatgtatgt gggtagagct ttcatgcatc 2640 tctagtaata ataagctgaa attagtttt tttttaattc tccaatttaa aacttttaat 2700
 taaaaagtaa attttaatgt cgaaaatgca aacttgggga gggcagaaag atcacacaca 2760
aggetgteac tteacacttg gaggattgea cageageegg geaaaggete teeteactte 2820 ecagatgggg gegggegggg cageagagae geaceteact cettagacag tgeggeagee 2880 aggeagaggg ggeteeteat ateceagaeg atgggeggee caggeagaga egeteeteae 2940 tteeceagat ggggeggete eegggaageg gggeteete aetteneeag acagggtgge 3000
 caggcagagg tgctcctcac ttcccagaac aattctttat gaatttgata aaggactgaa
 gtgcaactga aagctgctag tgatgatctg gtaatataca atttgtccag tagccagttt gtttttattg tgttttctaa ccataagaga tcattaaagg caaagcctgt atgacgctgt
                                                                                                3120
 acacacacaa aaaaatggtc accgcaggcc atactaccaa tgaaatggta ggtaaacaaa 3240
 tottotggto aagagaaaaa aaaaagaaat agcactotgo atgotttgot otacaagatg 3300
                                                                                                 3349
 aatttcccta gaaagaatcc aatgaaggcc gggcatagtg gctcactcc
 <210> 69
 <211> 2599
 <212> DNA
 <213> Homo sapiens
```

```
<221> misc_feature
<223> Incyte ID No: 978302.3.dec
gggaaccetg ggagetteeg egeetgeeea gttttgetee gaaagaetta eegaggaggg 60
agettgeggt gegttetggg aaagttgetg gggceagete etttgtttee agtetgageg 120 ttgegttegg ttteeegagg gtettetgag geacegegge tgegggette tgagtteeeg 180
geteteegea gggaageete etetteqtae etegtttttt ggetegtggg gggteeteee 240
accgctggcc gacgcagcca gcatgtccgg ggtgcgcgca gtgcggatca gcatcgaatc 300 ggcctgcgag aagcaggtcc atgaggtggg cctggatggc accgagacgt acctgcccc 360 gctgtccatg tcgcagaatc tggcgcgtct ggcccagcgg atagacttca gccagggttc 420
gggctccgaa gaagaggagg cggcggggac cgaggggcgac gcgcaggagt ggccgggcgc 480
cgggtccagc gcagaccagg acgacgagga aggagtggta aaatttcagc cttccctttg 540
gccttgggac tcagtgagga acaatttgag aagtgccctg acagagatgt gtgttctcta 600 tgatgttctc agtattgtta gggataaaaa atttatgact cttgatcctg tctctcagga 660
tgcacttcct ccaaaacaga atcctcagac gttgcaattg atatctaaaa agaagtcact 720
tgctggagca gcacaaatct tattgaaggg ggcagaaaga ctgactaaat cagttaccga 780 aaaccaagaa aacaagctac aaagagactt caattctgag cttttgcgat tacggcaaca 840 ctggaaactt cgaaaagttg gagataaaat tctcggagat ctgagctaca gaagtgcagg 900
atctctcttt cctcatcatg gtacatttga agtaataaag aatacagatc tcgatctgga 960 taaaaagata cctgaagatt actgtcctct tgatgtccaa attcctagtg atttagaggg 1020 gtctgcatat atcaaggttt caatacaaaa acaggctcca gatataggtg acctcggcac 1080 agttaacctc ttcaaacgac ctttgcccaa atccaaacca ggttccccac attggcagac 1140
aaaattagaa geggeacaga atgttetett atgtaaagaa atttttgeac ageteteteg 1200
ggaagetgtt caaattaaat cacaagteee teacattgtg gtgaaaaace agattatete 1260 teageeettt eegagettge agttatetat ttetttgtge catteeteaa atgataagaa 1320
atcecaaaaa ttigetaeig agaagcaatg teeggaggae cacetttatg teetagagea 1380
taatttgcat ctactgatta gagagtttca taaacagacc ttgagttcca tcatgatgcc 1440
tcatccagca agtgcacctt ttggccacaa gagaatgaga ctttcgggtc ctcaagcttt 1500 tgataaaaat gaaattaatt cattacagtc cagtgaaggg cttctggaaa aaataattaa 1560
acaagcaaag catatttttc taaggagtag agctgctgca accattgaca gcttagcaag 1620
ccgaattgag gatectcaga tacaggetca ttggtcaaat atcaatgatg tttatgaate 1680
tagtgtgaaa gttttaatca catcacaagg ctatgaacaa atatgcaagt ccattcaact 1740 gcaattgaat attggagttg agcagattcg agttgtacat agagatggaa gagtaattac 1800
actgtettat caggageagg agetacagga ttttettetg tetcagatgt cacageacea 1860
ggtacatgca gttcagcaac tcgccaaggt tatgggctgg caagtactga gcttcagtaa 1920 tcatgtggga cttggaccta tagagagcat tggtaatgca tctgccatca cggtggcctc 1980.
cccaagtggt gactatgcta tttcagttcg taatggacct gaaagtggca gcaagattat 2040
ggttcagttt cctcgtaacc aatgtaaaga ccttccaaaa agtgatgttt tacaagataa 2100
caaatggagt catcttcgtg ggccattcaa agaagttcag tggaataaaa tggaaggtcg aaattttgtt tataaaatgg agctgcttat gtctgcactt agcccttgtc tactatgatt
ttttccagat gtttcctaaa gaagtttcca gaaactttga cttgaaatgt ttgcagatca 2280
actataagca caaagaagag ataacttcca aaagagtgct gtttttaaaa ataataatta 2340
ggaaatgttt atttagcact ttcaaacttt tcactttata aatgacaagt gctttgaaat 2400
gcagaagttt atgtacagtt gtatatacag tatgacaaga tgtaaaataa tatgtttttc
atgcagttta aaatattact aacttaaggg tttctatgtg ctttttaaaa tattccttct 2520
ttgatgttga catcaaataa agtatgtggt ttaaaaaaaat ctccaaatac ctttttttcc 2580
ccccaaatac tttctaaac
                                                                                                   2599
<210> 70
<211> 2085
 <212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 228629.11.dec
<400> 70
gggcggggtg cttagggtgc aggaggcgcg cgcctagcgg cggagtgtgg cgtgaggccg 60 ggcccgcgcc gccatgaacc tagagcgct gcggaagcgc gtccggcagt acctcgacca 120
gcaacagtat caaagtgete tattttggge agataaagta getteaetet etegtgaaga 180
accecaggae atetattggt tggeteaatg tetttacetg acageacaat ateacagage 240
cgcccatgca cttcggtcac gaaaactgga caaattgtat gaagcatgtc gttaccttgc 300 agctaggtgc cattatgctg caaaagagca ccagcaggcc cttgatgttc ttgacatgga 360 agagcccatc aataaaagat tatttgaaaa atacttgaag gatgaaagtg gcttcaaaga 420
```

```
tecetecage gaetgggaaa tgteacagte tteaataaag agttetatet gtettetaeg 480
cgggaaaatc tatgatgctc tagataaccg aaccctgcta cctacagcta caaagaagct 540
ttgaagettg atgtetactg ttttgaageg ttegatettt taacateaca teacatgetg 600 acageacaag aagaaaaaga acttettgaa teactacece ttagcaaget gtgtaatgaa 660
gaacaggaat tgctgcgttt tctatttgag aacaaattga aaaaatataa taagcctagt 720
gaaacggtca tccctgaatc tgtagatggc ttgcaagaga atctggatgt ggtagtgtct 780
ttagctgaga gacattatta taactgtgat tttaaaatgt gctacaagct tacttctgta 840 gtaatggaga aagatccttt ccatgcaagt tgtttacctg tacatatagg gacgcttgta 900 gagctgaata aagccaatga actttctat ctttctcata aactggtgga tttatatcct 960
agtaateetg tgiettggit tgeagtggga tgttaetate teatggtegg teataaaaat 1020
gaacatgcca gaagatatet cagcaaagce acaacacttg agaaaaccta tggacctgca 1080 tggatagcet atggacatte atttgcggtg gagagtgage acgaccaage gatggetgct 1140 tacttcacag cagcacaget gatgaaaggg tgtcatttgc ctatgctgta tattggatta 1200
gaatatggtt tgaccaataa ctcaaaacta gctgaaaggt tetteageca agetetgage 1260
attgcaccgg aagaccettt tgttatgcat gaggteggeg tggttgcatt teagaatgga 1320 gaatggaaaa cagecgaaaa atggtttett gatgetttgg aaaaaattaa ageaattggg 1380 aacgaggtaa cagttgacaa atgggaacct ttgttgaaca acttggggca tgtetgcaga 1440
aaacttaaaa agtatgetga ggcettggat taccaccgtc aggcactggt gttgatteet 1500
cagaacgcat ccacctactc tgctattgga tatatccaca gtctgatggg caactttgaa 1560 aatgctgtgg actacttcca cacagccctt ggtcttaggc gagatgatac attttctgtt 1620 acaatgcttg gtcattgcat cgaaatgtac attggtgatt ctgaagctta tattggagca 1680
gacattaaag acaaattaaa atgttatgac tttgatgtgc atacaatgaa gacactaaaa 1740
aacattattt cacctccgtg ggatttcagg gaatttgaag tagaaaaaca gactgcagaa 1800 gaaacggggc ttacgccatt ggaaacctca aggaaaactc cagattccag accttccttg 1860
gaagaaacct ttgaaattga aatgaatgaa agtgacatga tgttagagac atctatgtca 1920
gaccacagca cgtgactcca gtcagtggtc ctggtcccac tgtcccagtg taggaacaga 1980
gaccegeett aagagaetgg ategeacaee tttgeaacag atgtgttetg attetetgaa 2040 cetacaaaat agttatacat agtggaataa agaaggtaaa eeate 2085
<210> 71
<211> 1673
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No: 011211.5.dec
<220>
<221> unsure
<222> 188
<223> a, t, c, g, or other
gcttccgagc cggacccaag ggccggggcg tggaggagta gaggggcgag cgcatgcgca 60
caggactaca cgtcccgaca ggcgtcggga gcggcggccc agttccttgt gggagctgta 120 gttctgcagg cgcggaagcc gtggtgctcg gccggcagag cactcggttt cccagagggc 180
tgagegenee geaeggaggt geggegegg aceaagatgg agaetgeega geageettga 240
gccgttgagc agctgaacag aggccatgc gggggcactc cgaggcctga gacgaccacg 300 cctgtgccgc tgaggacctt catcagggct ccgtccactt ggcccgcttg gctgtccaat 360 cacactccag tgtcaaccac tggcacccag cagccaagag aggtgtggcg tggccctggg 420
gacgcatggc tgaggcagga acaggtgagc cgtcccccag cgtggagggc gaacacggga 480
cggagtatga cacgetgeet tecgacacag teteceteag tgaeteggae tetgaeetea 540 gettgeeegg tggtgetgaa gtggaageae tgteeeegat ggggetgeet ggggaggagg 600 atteaggtee tgatgageeg eeeteaeeee egteaggeet eeteeeagee aeggtgeage 660
cattccatct gagaggcatg agetecacct teteccageg cageegtgae atetttgact 720
gcctggaggg ggcggccaga cgggctccat cctctgtggc ccacaccagc atgagtgaca 780
 acqqaqqctt caaqcqqccc ctaqcqccct caqqccggtc tccagtggaa ggcctgggca 840
gggcccatcg gagccctgcc tcaccaaggg tgcctccggt ccccgactac gtggcacacc 900
cegagegetg gaceaagtac ageetggaag atgtgacega ggtcagegag cagageaate 960
aggecacege cetgggeett cetgggetee cagageetgg getgeeeca etgactgegt 1020
gtcctccttc aaccaggatc cctccagctg tggggagggg agggtcatct tcaccaaacc 1080 agtccgaggg gtcgaagcca gacacgagag gaagagggtc ctggggaagg tgggagagcc 1140
aggeaggge gacettggga atcetgeeae agacagggge gagggeeetg tggagetgge 1200
 ccatctggcc gggcccggga gcccagaggc tgaggagtgg ggcagccccc atggaggcct 1260
geaggaggtg gaggeactgt cagggtetgt ceacagtggg tetgtgecag gtetecegee 1320 ggtggaaact gttggettee atggeageag gaageggagt egagaceaet teeggaacaa 1380
```

gagcagcagc	cccgaggacc	caggtgctga	ggtctgagag	ggagatggcc	cagcctgacc	1440
ccactggcca	ctgccatcct	gctgccttcc	cagtggggct	ggtcaggggg	cagcctggcc	1500
actgcctagc	tggaatggga	ggaagcctgc	aggtggcacc	ggtggccctg	gctgcagttc	1560
					ggtgtgggct	
				gtctttctga		1673