Reinforcement Learning

Lecture 1: Foundations

Chris G. Willcocks

Durham University

Lecture Overview

- 1 Introduction
- definition
- examples
- comparison

2 A Brief History

- learning by trial and error
- optimal control and dynamic programming
- monte carlo tree search
- temporal difference algorithms

3 Key Concepts

- designing rewards
- action spaces
- observability
- information states
- policies
- value functions
- model
- taxonomy

Introduction definition

Richard **Sutton** & Andrew **Barto** [5] summarise:

Definition: Reinforcement Learning

"Reinforcement learning is a computational approach to understanding and automating **goal-directed learning** and **decision making**. It is distinguished from other computational approaches by its emphasis on learning by an **agent** from direct **interaction with its environment**, without requiring exemplary supervision or complete models of the environment"

Introduction examples

Reinforcement Learning

- Learn policies to
 - Play Atari games
- Self-play
 - AlphaGo Zero 🗅
- Simulation to real
 - Control robots
- Surprising the creators!
 - Four examples

Introduction comparison to traditional machine learning

Typical Machine Learning

- Supervisory signal (with a teacher)
 - Immediate feedback
- Learning without a teacher
 - Unsupervised (e.g. clustering)
- i.i.d datasets

Reinforcement Learning

- Reward signal accumulated over time
 - Sparse/delayed feedback
- Not i.i.d
 - sequential where actions change subsequent environment

A Brief History learning by trial and error

Prof. Barto gives an excellent history of the reinforcement learning field in this YouTube video ▶

- Learning by trial and error evaluation
 - Edward L. Thorndike (1874-1949)
 Behaviourism. Law of effect, 1911: do something satisfying, then it becomes more probable. If its discomforting it becomes less probable.

Thorndike's Puzzle Box

A Brief History optimal control and dynamic programming

Cart-Pole Balancing

Barto et al., 1983: Neuronlike elements solve difficult learning control problems [1]

- Richard Bellman (1920-1984)
 - Optimal control theory
 - Dynamic programming, 1953
 - Breadth-first search through state space...
 how big is the state space of Go or StarCraft? ①
 - The Bellman Equation

A Brief History monte carlo tree search

- Monte carlo tree search
 - RL had a reputation of being slow
 - Gerald Tesauro showed in the 1990s multiple MC games can focus DP onto relevant parts of the state space

A Brief History temporal difference algorithms

TD Gammon, 1992

Gerald Tesauro showed a multi-layer neural network with TD learning played competitively with human experts [6]

• Temporal difference learning

- Connection to how dopamine cells work in neuroscience [2]
- Monte Carlo require playing an entire game, TD methods adjust predictions to match later, more accurate, predictions about the future before finishing the game

Key Concepts designing rewards

Designing rewards is a key challenge in reinforcement learning

Definition: Reward

A **reward** $R_t \in \mathbb{R}$ is a scalar feedback signal

- How well the agent is doing at step t
- Agents try to maximize cumulative reward over time into the future

Definition: Reward hypothesis [5]

All goals and purposes can be thought of as the maximization of the expected value of the cumulative sum of a received scalar reward signal

Key Concepts action spaces

The RL challenge is to design an algorithm that chooses the action A_t given an observation O_t that maximizes (future) rewards.

Actions can be:

- **Discrete** for example Go and chess
- Continuous controlling voltage of a robot

Key Concepts observability

At step *t*, the agent:

• Executes an **action** A_t

and also (without control):

- **Observes** O_t the environment
- Receives a **reward** R_t

Key Concepts observability

The **environment** has a state S_t^e

- Typically not used
- Not all visible to the agent

The **agent** has a state S_t^a

- Summarises relevant observations
- Its any function of history $S_t^a = f(H_t)$

Definition: Full observability

This is where:

$$O_t = S_t^a = S_t^e$$
,

unlike **partial observability** where $S^a_t
eq S^e_t$

Key Concepts information states

With the **Markov property** , we can throw away the history and just use the agents state:

Definition: Markov property

A state S_t is **Markov** if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, S_2, ..., S_t)$$

- For example, a chess board
 - We don't need to know how the game was played up to this point
- The state fully characterises the distribution over future events:

$$H_{1:t} \rightarrow S_t \rightarrow H_{t+1:\infty}$$

Key Concepts building agents: policy

Agent component 1:

Definition: Policy

A **policy** is how the agent picks its actions. A policy π can be either **deterministic**, where:

$$a=\pi(s),$$

or it can be **stochastic**, where:

$$a \sim \pi(a|s)$$
.

Key Concepts building agents: value function

Agent component 2:

Definition: Value function

The **value function** is the prediction of expected total **future** rewards:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + ... | S_t = s]$$

value for nought states

Key Concepts building agents: model

Agent component 3:

Definition: Model

The **model** predicts what the environment will do next. It models the joint distribution of the new state and reward:

$$p(s', r|s, a) = P(S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a).$$

The model is optional (**model-based** vs **model-free** learning)

Conclusion taxonomy

This figure does not capture overlap, for example between policy optimsiation and Q-learning algorithms

References I

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson.

Neuronlike adaptive elements that can solve difficult learning control problems.

IEEE transactions on systems, man, and cybernetics, SMC-13(5):834-846. 1983.

[2] W. Schultz, P. Dayan, and P. R. Montague. A neural substrate of prediction and reward. <u>Science</u>, 275(5306):1593–1599, 1997.

[3] D. Silver.
Reinforcement learning lectures.
https://www.davidsilver.uk/teaching/, 2015.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

References II

- [5] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction (second edition). Available online ♣, MIT press, 2018.
- [6] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3):58–68, 1995.