

45. Les racines complexes de l'équation $z^2 = 128i$ sont :

- | | | |
|-------------------------|---------------------|-------------------------|
| 1. $\pm 8(1-i)$ | 3. $8\sqrt{2}(1-i)$ | 5. $\pm 8\sqrt{2}(1+i)$ |
| 2. $\pm 8\sqrt{2}(1+i)$ | 4. $\pm 8(1+i)$ | (M. - 86) |

46. Les nombres complexes $1; i; -1; -i$ sont les racines quatrièmes de :

- | | | | | | |
|------|------|--------|---------|---------|-----------|
| 1. 0 | 2. 1 | 3. i | 4. $-i$ | 5. -1 | (M. - 87) |
|------|------|--------|---------|---------|-----------|

47. Calculer $(\sqrt{3} + i)^{18}$ (suggestion appliquer la formule de Moivre).

- | | | | | | |
|-------------|--------------|---------------|--------------|----------|-----------|
| 1. 2^{18} | 2. $2^{18}i$ | 3. $-2^{18}i$ | 4. -2^{18} | 5. $18i$ | (M. - 87) |
|-------------|--------------|---------------|--------------|----------|-----------|

48. On considère dans C une équation de la forme $z^2 + az + b = 0$.

Remarque : le réel $d = a^2 - 4b$ s'appelle aussi discriminant.

La proposition fausse est : (M. - 87)

1. Si a et b sont réels et si $d < 0$; l'équation possède toujours deux racines complexes conjuguées ;
2. Si a et b sont réels, l'équation peut posséder une racine complexe et une racine réelle.
3. Si a et b sont complexes et si $d = 0$; l'équation possède deux racines complexes.
4. Si a et b sont complexes et si $d = 0$; l'équation possède deux racines différentes
5. Si a et b sont complexes et si l'équation possède une racine réelle; l'autre racine est complexe.

www.ecoles-rdc.net

9. Dans le plan de Gauss, les points images de six racines sixièmes de 36 sont les sommes d'un hexagone régulier inscrit dans un cercle centré à l'origine et dont le rayon vaut :

- | | | | | | |
|------------------|--------|---------|------------------|-------------------|-----------|
| 1. $\sqrt[6]{6}$ | 2. 6 | 3. 36 | 4. $\sqrt[3]{6}$ | 5. $\sqrt[3]{36}$ | (B. - 87) |
|------------------|--------|---------|------------------|-------------------|-----------|

10. Soit z un nombre complexe de module 1 . Dans le plan de Gauss, on considère les points $P, Q, R; S$ et T respectivement image de $z, \bar{z}, 1/z, -z, -1/z$. La proposition fausse est :

1. P et S sont symétriques par rapport à l'origine
2. Q coïncide avec R
3. Q et T sont symétriques par rapport à l'origine
4. P et Q sont symétriques par rapport à l'axe réel
5. P et T sont symétriques par rapport à l'axe imaginaire

(M.87)