3. Real-time models: Timed Automata

Renato Neves José Proença

CPC 2022/2023

Cyber Physical Computation

CISTER - ISEP, Porto, Portugal

U.Minho, Braga, Portugal

https://lmf.di.uminho.pt/CyPhyComp2223/ https://haslab.github.io/MFP/PCF/2223/

Specifying an airbag saying that in a car crash the airbag eventually inflates maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Renato Neves, José Proença Motivation 2 / 46

Examples of time-critical systems

Network-based traffic lights

Lights activate at very specific time intervals.

Bounded retransmission protocol

mmunication of large files between a remote control unit and a video/audio equipment.

- transmission and synchronization delays
- time-out values

And many others...

- medical instruments
- hybrid systems (e.g. for cruise controllers)

Renato Neves, José Proença Motivation 3 / 46

Syllabus

- CSS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL tool
 - Specification
 - CTL and Verification

- A simple C-like language
 - Syntax
 - Semantics (operational)
- Hybrid-language: adding differential equations
 - Syntax
 - Semantics
 - Lince tool
 - Specification
 - Analysis
- Monads: semantics with computational effects

Table of contents

- 1. Motivation
- 2. Timed Automata Definition
- 3. Parallel Composition
- 4. Semantics
- 5. Zeno (if there is time)
- 6. Behavioural Equivalence

- timed transition systems, timed Petri nets, timed IO automata, timed process algebras and other formalisms associate lower and upper bounds to transitions, but no time constraints to transverse the automaton.
- Expressive power is often somehow limited and infinite-state LTS (introduced to express dense time models) are difficult to handle in practice

Renato Neves, José Proença Motivation 6 /

Example

Typical process algebra tools are unable to express a system which has one action a which can only occur at time point 5 with the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time measured by a stopwatch:

- 1. Set the stopwatch to 0
- 2. When the stopwatch measures 5, action a can occur. If a occurs go to 1., if not idle forever.

Renato Neves, José Proença Motivation 7 / 46

This suggests resorting to an automaton-based formalism with an explicit notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

- emphasis on decidability of the reachability problem and corresponding practically efficient algorithms
- infinite underlying timed transition systems are converted to finitely large symbolic transition systems where reachability becomes decidable (region or zone graphs)

Associated tools

- <u>UPPAAL</u> [Behrmann, David, Larsen, 04]
- IMITATOR [André, 09]

- PRISM [Parker, Kwiatkowska, 00]
- Kronos [Bozga, 98]

Renato Neves, José Proença Motivation 8 / 46

$$\mathsf{UPPAAL} = (\mathsf{Uppsala}\ \mathsf{University} + \mathsf{Aalborg}\ \mathsf{University})\ [1995]$$

- A toolbox for modeling, simulation and verification of real-time systems
- where systems are modeled as networks of timed automata enriched with integer variables, structured data types, channel syncronisations and urgency annotations
- Properties are specified in a subset of CTL

www.uppaal.org

Renato Neves, José Proença Motivation 9 / 4

Timed Automata Definition

Timed automata

Finite-state machine equipped with a finite set of real-valued clock variables (clocks)

Clocks

- clocks can only be read or
- reset to zero, after which they start increasing their value implicitly as time progresses
- the value of a clock corresponds to time elapsed since its last reset
- all clocks proceed synchronously (at the same rate)

Renato Neves, José Proença Timed Automata Definition 10 / 46

$$\langle L, L_0, Act, C, Tr, Inv \rangle$$

where

- L is a set of locations, and $L_0 \subseteq L$ the set of initial locations
- Act is a set of actions and C a set of clocks
- $Tr \subseteq L \times C(C) \times Act \times P(C) \times L$ is the transition relation

$$\ell_1 \stackrel{g,a,U}{\longrightarrow} \ell_2$$

denotes a transition from location ℓ_1 to ℓ_2 , labelled by a, enabled if guard g is valid, which, when performed, resets the set U of clocks

• $Inv : L \longrightarrow \mathcal{C}(C)$ is the assignment of invariants to locations

where $\mathcal{C}(C)$ denotes the set of clock constraints over a set C of clock variables

Renato Neves, José Proença Timed Automata Definition 11 / 46

Example: the lamp interrupt

(extracted from UPPAAL)

Ex. 3.1: Define $\langle L, L_0, Act, C, Tr, Inv \rangle$.

Renato Neves, José Proença Timed Automata Definition 12 / 46

Clock constraints

 $\mathcal{C}(\mathcal{C})$ denotes the set of clock constraints over a set \mathcal{C} of clock variables. Each constraint is formed according to

$$g ::= x \square n \mid x - y \square n \mid g \wedge g \mid true$$

where
$$x, y \in C, n \in \mathbb{N}$$
 and $\square \in \{<, \leq, >, \geq, =\}$

used in

- transitions as guards (enabling conditions)
 a transition cannot occur if its guard is invalid
- locations as invariants (safety specifications)

 a location must be left before its invariant becomes invalid

Note

Invariants are the only way to force transitions to occur

Guards, updates & invariants

Renato Neves, José Proença Timed Automata Definition

14 / 46

Transition guards & location invariants

Demo (in Uppaal)

Parallel Composition

Parallel composition of timed automata

- Action labels as channel identifiers
- Communication by forced handshacking over a subset of common actions
- Is defined as an automaton construction over a finite set of timed automata originating a so-called network of timed automata

Renato Neves, José Proença Parallel Composition 16 / 46

Parallel composition of timed automata

Let $H = Act_1 \cap Act_2$. The parallel composition of ta_1 and ta_2 synchronizing on H is the timed automata

$$ta_1 \parallel_H ta_2 := \langle L_1 \times L_2, L_{0,1} \times L_{0,2}, Act_{\parallel_H}, C_1 \cup C_2, Tr_{\parallel_H}, Inv_{\parallel_H} \rangle$$

where

- $\bullet \ \textit{Act}_{\parallel_{\textit{H}}} = ((\textit{Act}_1 \cup \textit{Act}_2) \textit{H}) \cup \{\tau\}$
- $Inv_{\parallel_H}\langle \ell_1, \ell_2 \rangle = Inv_1(\ell_1) \wedge Inv_2(\ell_2)$
- Tr_{\parallel_H} is given by:
 - $\langle \ell_1, \ell_2 \rangle \xrightarrow{g,a,U} \langle \ell'_1, \ell_2 \rangle$ if $a \notin H \wedge \ell_1 \xrightarrow{g,a,U} \ell'_1$
 - $\bullet \ \langle \ell_1, \ell_2 \rangle \stackrel{\mathsf{g.a.U}}{\longrightarrow} \langle \ell_1, \ell_2' \rangle \ \text{if} \ \mathsf{a} \not\in \mathsf{H} \wedge \ell_2 \stackrel{\mathsf{g.a.U}}{\longrightarrow} \ell_2'$
 - $\langle \ell_1, \ell_2 \rangle \xrightarrow{g, \tau, U} \langle \ell'_1, \ell'_2 \rangle$ if $a \in H \land \ell_1 \xrightarrow{g_1, a, U_1} \ell'_1 \land \ell_2 \xrightarrow{g_2, a, U_2} \ell'_2$ with $g = g_1 \land g_2$ and $U = U_1 \cup U_2$

Renato Neves, José Proença Parallel Composition 17 / 46

Example: the lamp interrupt as a closed system

Uppaal:

- takes H = Act₁ ∩ Act₂ (actually as complementary actions denoted by the ? and ! annotations)
- only deals with closed systems

Ex. 3.2: Define the TA of the composition.

Renato Neves, José Proença Parallel Composition 18 / 46

Exercise: worker, hammer, nail

Ex. 3.3: Define the TA of the composition.

Renato Neves, José Proença Parallel Composition 19 / 46

Semantics

Timed Labelled Transition Systems

Syntax	Semantics
How to write	How to execute
Process Algebra	LTS (Labelled Transition Systems)
Timed Automaton	TLTS (Timed LTS)

Renato Neves, José Proença Semantics 20 / 46

Timed Labelled Transition Systems

Syntax	Semantics
How to write	How to execute
Process Algebra	LTS (Labelled Transition Systems)
Timed Automaton	TLTS (Timed LTS)

Timed LTS

Introduce delay transitions to capture the passage of time within a LTS:

$$s \xrightarrow{a} s'$$
 for $a \in Act$, are ordinary transitions due to action occurrence $s \xrightarrow{d} s'$ for $d \in \mathcal{R}_0^+$, are delay transitions

subject to a number of constraints, eg,

Renato Neves, José Proença Semantics 20 / 46

Dealing with time in system models

Timed LTS

• time additivity

$$(s \xrightarrow{d} s' \land 0 \le d' \le d) \Rightarrow s \xrightarrow{d'} s'' \xrightarrow{d-d'} s'$$
 for some state s''

• delay transitions are deterministic

$$(s \stackrel{d}{\longrightarrow} s' \wedge s \stackrel{d}{\longrightarrow} s'') \Rightarrow s' = s''$$

Renato Neves, José Proença Semantics 21 / 46

Semantics of Timed Automata

Semantics of TA:

Every TA ta defines a TLTS

 $\mathcal{T}(ta)$

whose states are pairs

(location, clock valuation)

with infinitely, even uncountably many states, and infinite branching

Renato Neves, José Proença Semantics 22 / 46

Clock valuations

Definition

A clock valuation η for a set of clocks C is a function

$$\eta: C \longrightarrow \mathcal{R}_0^+$$

assigning to each clock $x \in C$ its current value ηx .

Satisfaction of clock constraints

$$\frac{\eta}{\models} x \square n \Leftrightarrow \frac{\eta}{\uparrow} x \square n$$

$$\frac{\eta}{\models} x - y \square n \Leftrightarrow (\eta x - \eta y) \square n$$

$$\frac{\eta}{\models} g_1 \wedge g_2 \Leftrightarrow \frac{\eta}{\models} g_1 \wedge \frac{\eta}{\models} g_2$$

Renato Neves, José Proença Semantics 23 / 46

Operations on clock valuations

Delay

For each $d \in \mathcal{R}_0^+$, valuation $\eta + d$ is given by

$$(\eta + d)x = \eta x + d$$

Reset

For each $R \subseteq C$, valuation $\eta[R]$ is given by

$$\begin{cases} \eta[R] x = \eta x & \Leftarrow x \notin R \\ \eta[R] x = 0 & \Leftarrow x \in R \end{cases}$$

From ta to T(ta)

Let $ta = \langle L, L_0, Act, C, Tr, Inv \rangle$

$$\mathcal{T}(ta) = \langle S, S_0 \subseteq S, N, T \rangle$$

where

- $S = \{\langle I, \eta \rangle \in L \times (\mathcal{R}_0^+)^C \mid \eta \models Inv(I)\}$
- $S_0 = \{\langle \ell_0, \frac{\eta}{\eta} \rangle \mid \ell_0 \in L_0 \land \frac{\eta}{\eta} x = 0 \text{ for all } x \in C \}$
- $N = Act \cup \mathcal{R}_0^+$ (ie, transitions can be labelled by actions or delays)
- $T \subseteq S \times N \times S$ is given by:

$$\langle I, \eta \rangle \xrightarrow{a} \langle I', \eta' \rangle \quad \Leftarrow \quad \exists_{I^{\underline{g},\underline{a},U}_{0}I' \in Tr} \quad \eta \models g \ \land \ \eta' = \eta[U] \ \land \ \eta' \models Inv(I')$$

$$\langle I, \eta \rangle \xrightarrow{d} \langle I, \eta + d \rangle \quad \Leftarrow \quad \exists_{d \in \mathcal{R}_{0}^{+}} \quad \eta + d \models Inv(I)$$

Renato Neves, José Proença

Ex. 3.4: Define $\mathcal{T}(SwitchA)$

$$S =$$

Renato Neves, José Proença 26 / 46 Semantics

Ex. 3.4: Define $\mathcal{T}(SwitchA)$

$$S = \{ \langle \textit{off}, \overline{t} \rangle \mid t \in \mathcal{R}_0^+ \} \cup \{ \langle \textit{on}, \overline{t} \rangle \mid 0 \le t \le 2 \}$$

where \overline{t} is a shorthand for η such that $\eta x = t$

Renato Neves, José Proença Semantics 26 / 46

Ex. 3.4: Define $\mathcal{T}(SwitchA)$

$$T = \dots$$

Renato Neves, José Proença Semantics 27 / 46

Ex. 3.4: Define $\mathcal{T}(SwitchA)$

$$\begin{split} \langle \mathit{off}, \overline{t} \rangle & \xrightarrow{d} \langle \mathit{off}, \overline{t} + d \rangle \ \, \text{for all} \, \, t, d \geq 0 \\ & \langle \mathit{off}, \overline{t} \rangle \xrightarrow{in} \langle \mathit{on}, \overline{0} \rangle \ \, \text{for all} \, \, t \geq 0 \\ & \langle \mathit{on}, \overline{t} \rangle \xrightarrow{d} \langle \mathit{on}, \overline{t} + d \rangle \ \, \text{for all} \, \, t, d \geq 0 \, \, \text{and} \, \, t + d \leq 2 \\ & \langle \mathit{on}, \overline{t} \rangle \xrightarrow{out} \langle \mathit{off}, \overline{t} \rangle \ \, \text{for all} \, \, 1 \leq t \leq 2 \end{split}$$

Renato Neves, José Proença Semantics 27 / 46

Zeno (if there is time)

Note

- The elapse of time in timed automata only takes place in locations:
- ... actions take place instantaneously
- Thus, several actions may take place at a single time unit

Renato Neves, José Proença Zeno (if there is time) 28 / 46

Behaviours

- ullet Paths in $\mathcal{T}(ta)$ are discrete representations of continuous-time behaviours in ta
- ... at least they indicate the states immediately before and after the execution of an action
- However, as interval delays may be realised in uncountably many different ways, different paths may represent the same behaviour

Renato Neves, José Proença Zeno (if there is time) 29 / 46

Behaviours

- Paths in $\mathcal{T}(ta)$ are discrete representations of continuous-time behaviours in ta
- ... at least they indicate the states immediately before and after the execution of an action
- However, as interval delays may be realised in uncountably many different ways, different paths may represent the same behaviour
- ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:

- time-convergent paths
- timelock paths
- zeno paths

Renato Neves, José Proença Zeno (if there is time) 29 / 46

Time-convergent paths

$$\langle I, \eta \rangle \xrightarrow{d_1} \langle I, \eta + d_1 \rangle \xrightarrow{d_2} \langle I, \eta + d_1 + d_2 \rangle \xrightarrow{d_3} \langle I, \eta + d_1 + d_2 + d_3 \rangle \xrightarrow{d_4} \cdots$$

such that

$$\forall_{i\in N}.\ d_i>0\ \land\ \sum_{i\in N}d_i=d$$

ie, the infinite sequence of delays converges toward d

- Time-convergent path are conterintuitive; as their existence cannot be avoided, they are simply ignored in the semantics of Timed Automata
- Time-divergent paths are the ones in which time always progresses

Renato Neves, José Proença Zeno (if there is time) 30 / 46

Time-convergent paths

Definition

An infinite path fragment ρ is time-divergent if $\operatorname{ExecTime}(\rho) = \infty$ Otherwise is time-convergent.

where

$$\begin{aligned} &\mathsf{ExecTime}(\rho) \ = \ \sum_{i=0..\infty} \mathsf{ExecTime}(\delta) \\ &\mathsf{ExecTime}(\delta) \ = \ \begin{cases} 0 & \Leftarrow \delta \in \mathit{Act} \\ \delta & \Leftarrow \delta \in \mathcal{R}_0^+ \end{cases} \end{aligned}$$

for ρ a path and δ a label in $\mathcal{T}(ta)$

Timelock paths

Definition

A path is timelock if it contains a state with a timelock, ie, a state from which there is not any time-divergent path

A timelock represents a situation that causes time progress to halt (e.g. when it is impossible to leave a location before its invariant becomes invalid)

- any teminal state (\neq terminal location) in $\mathcal{T}(ta)$ contains a timelock
- ullet ... but not all timelocks arise as terminal states in $\mathcal{T}(ta)$

Renato Neves, José Proença Zeno (if there is time) 32 / 46

Timelock paths

State $\langle on, 2 \rangle$ is reachable through path

$$\langle \textit{off}, 0 \rangle \overset{\textit{s-on}}{\longrightarrow} \langle \textit{on}, 0 \rangle \overset{\textit{2}}{\longrightarrow} \langle \textit{on}, 2 \rangle$$

and is terminal

Renato Neves, José Proença Zeno (if there is time)

33 / 46

Timelock paths

State $\langle on, 2 \rangle$ is not terminal but has a convergent path:

$$\langle \textit{on}, 2 \rangle \langle \textit{on}, 2.9 \rangle \langle \textit{on}, 2.99 \rangle \langle \textit{on}, 2.999 \rangle ...$$

Renato Neves, José Proença Zeno (if there is time) 34 / 46

Zeno

In a Timed Automaton

- The elapse of time only takes place at locations
- Actions occur instantaneously: at a single time instant several actions may take place

... it may perform infinitely many actions in a finite time interval (non realizable because it would require infinitely fast processors)

Renato Neves, José Proença Zeno (if there is time) 35 / 46

Zeno

In a Timed Automaton

- The elapse of time only takes place at locations
- Actions occur instantaneously: at a single time instant several actions may take place

... it may perform infinitely many actions in a finite time interval (non realizable because it would require infinitely fast processors)

Definition

An infinite path fragment ρ is zeno if it is time-convergent and infinitely many actions occur along it

A timed automaton ta is non-zeno if there is not an initial zeno path in $\mathcal{T}(ta)$

Renato Neves, José Proença Zeno (if there is time) 35 / 46

Example

Suppose the user can press the *in* button when the light is *on* in

In doing so clock x is reset to 0 and light stays on for more 2 time units (unless the button is pushed again ...)

Renato Neves, José Proença Zeno (if there is time) 36 / 46

Example

Typical paths: The user presses in infinitely fast:

$$\langle \textit{off} \,, 0 \rangle \xrightarrow{\textit{in}} \langle \textit{on}, 0 \rangle \xrightarrow{\textit{in}} \cdots$$

The user presses in faster and faster:

$$\langle \textit{off}, 0 \rangle \xrightarrow{\textit{in}} \langle \textit{on}, 0 \rangle \xrightarrow{0.5} \langle \textit{on}, 0.5 \rangle \xrightarrow{\textit{in}} \langle \textit{on}, 0 \rangle \xrightarrow{0.25} \langle \textit{on}, 0.25 \rangle \xrightarrow{\textit{in}} \langle \textit{on}, 0 \rangle \xrightarrow{0.125} \cdots$$

How can this be fixed?

Time shall pass!

Renato Neves, José Proença Zeno (if there is time) 37 / 46

Ex. 3.5: Recall our lamp

- 1. Describe a time-divergent path, if it exists.
- 2. Describe a time-convergent path, if it exists.
- 3. Describe a timelock path, if it exists.
- 4. Is this automata non-zeno? Justify.

Renato Neves, José Proença Zeno (if there is time) 38 / 46

Sufficient criterion for nonzenoness

A timed automaton is nonzeno if on any of its control cycles time advances with at least some constant amount (\geq 0). Formally, if for every control cycle

$$\stackrel{\ell_0}{\longrightarrow} \stackrel{g_0,a_0,U_0}{\longrightarrow} \ell_1 \stackrel{g_1,a_1,U_1}{\longrightarrow} \cdots \stackrel{g_n,a_n,U_n}{\longrightarrow} \stackrel{\ell_0}{\longrightarrow}$$

there exists a clock $x \in C$ such that

- 1. $x \in U_i$ (for $0 \le i \le n$)
- 2. for all clock valuations η , there is a $c \in \mathbb{N}_{>0}$ such that

$$\eta(x) < c \implies ((\eta \not\models g_j) \lor \neg Inv(\ell_j)) \text{ for some } 0 \le j \le n$$

Renato Neves, José Proença Zeno (if there is time) 39 / 46

Warning

Both

- timelocks
- zenoness

are modelling flaws and need to be avoided.

Example

In the example above, it is enough to impose a non zero minimal delay between successive button pushings.

Renato Neves, José Proença Zeno (if there is time) 40/46

Behavioural Equivalence

Traces

Definition

A timed trace over a timed LTS is a (finite or infinite) sequence $\langle t_1, a_1 \rangle, \langle t_2, a_2 \rangle, \cdots$ in $\mathcal{R}_0^+ \times Act$ such that there exists a path

$$\langle \ell_0, \eta_0 \rangle \xrightarrow{d_1} \langle \ell_0, \eta_1 \rangle \xrightarrow{a_1} \langle \ell_1, \eta_2 \rangle \xrightarrow{d_2} \langle \ell_1, \eta_3 \rangle \xrightarrow{a_2} \cdots$$

such that

$$t_i = t_{i-1} + d_i$$

with $t_0 = 0$ and, for all clock x, $\eta_0 x = 0$.

Intuitively, each t_i is an absolute time value acting as a time-stamp.

Ex. 3.6: Write 4 possible timed traces

Renato Neves, José Proença Behavioural Equivalence 42 / 46

Traces

Given a timed trace tc, the corresponding untimed trace is $(\pi_2)^{\omega} tc$.

Definition

- two states s₁ and s₂ of a timed LTS are timed-language equivalent if the set of finite timed traces of s₁ and s₂ coincide;
- ... similar definition for untimed-language equivalent ...

Ex. 3.7: Why?

are not timed-language equivalent

Renato Neves, José Proença Behavioural Equivalence 43 / 46

Bisimulation

Timed bisimulation (between states of timed LTS)

A relation R is a timed simulation iff whenever s_1Rs_2 , for any action a and delay d,

$$s_1 \stackrel{\textit{a}}{\longrightarrow} s_1' \ \Rightarrow \ \text{there is a transition} \ \ s_2 \stackrel{\textit{a}}{\longrightarrow} s_2' \wedge s_1' R s_2'$$

$$s_1 \stackrel{d}{\longrightarrow} s_1' \ \Rightarrow \ \text{there is a transition} \ \ s_2 \stackrel{d}{\longrightarrow} s_2' \wedge s_1' R s_2'$$

And a timed bisimulation if its converse is also a timed simulation.

Bisimulation

Example

W1 bisimilar to Z1?

Bisimulation

Example

W1 bisimilar to Z1?

$$\langle\langle W1, \{x\mapsto 0\}\rangle, \langle Z1, \{x\mapsto 0\}\rangle\rangle \in R$$

where

$$R = \{ \langle \langle W1, \{x \mapsto d\} \rangle, \langle Z1, \{x \mapsto d\} \rangle \rangle \mid d \in \mathcal{R}_0^+ \} \cup \{ \langle \langle W2, \{x \mapsto d+1\} \rangle, \langle Z2, \{x \mapsto d\} \rangle \rangle \mid d \in \mathcal{R}_0^+ \} \cup \{ \langle \langle W3, \{x \mapsto d\} \rangle, \langle Z3, \{x \mapsto e\} \rangle \rangle \mid d, e \in \mathcal{R}_0^+ \}$$

Untimed Bisimulation

Untimed bisimulation

A relation R is an untimed simulation iff whenever s_1Rs_2 , for any action a and delay t,

$$s_1 \stackrel{a}{\longrightarrow} s_1' \ \Rightarrow \ \text{there is a transition} \quad s_2 \stackrel{a}{\longrightarrow} s_2' \wedge s_1' R s_2'$$

$$s_1 \stackrel{\textit{d}}{\longrightarrow} s_1' \Rightarrow \text{ there is a transition } s_2 \stackrel{\textit{d'}}{\longrightarrow} s_2' \wedge s_1' R s_2'$$

And it is an untimed bisimulation if its converse is also an untimed simulation.

Alternatively, it can be defined over a modified LTS in which all delays are abstracted on a unique, special transition labelled by ϵ .