Session 10. Survival analysis

Alex Sanchez, Miriam Mota, Mireia Ferrer and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca 20/05/2021

Outline

- Introduction to Survival analysis
- Data structure
- Survival & hazard functions
- Kaplan-Meier Estimation
- Plotting survival curves
- Comparing survival curves

What do we need in survival analysis?

Group of individuals followed from a time point(origin) up to an event in time T

Birth or entry time Remission HIV Infection Disease diagnosis

Event

Death
Recurrence
Aids
Healing

Objectives of survival analysis

Calculate probability of event free at time T
 (ESTIMATION)

Compare survival experiences among groups

(HYPOTHESIS TEST)

Analyse risk factors related to survival

(REGRESSION)

Required Data

Origin

Infection, Hospital Admission, Randomized time, Diagnosis, Surgery etc.

Time Scale

Years, Months, Days, Seconds

Event

AIDS, Cancer onset, Cure, Recurrence, Death

Problem with Data

Censoring

Truncating

Survival Function

 $S(t)=Prob(Survive\ t)=P\{T>t\}=1-P(die\ before\ t)$ f(t)= instantaneous probability of death (density)

Hazard Rate $\lambda(t) = h(t)$

Instantaneous probability of death in an infinitesimal interval knowing to be alive at the beginning

$$\lambda(t) = Prob(rac{ ext{die between } t, t + \triangle t)}{ ext{Alive at } t} = f(t)/S(t)$$

Cumulative Hazard Rate

$$\Lambda(t) = H(t) = \int \lambda(u)d(u) = -\log(S(t)) \ S(t) = e^{\Lambda(t)}$$

Interpretation of Survival and Hazard

Hazard = Speed of ocorrence of events

Survival= Percentage of alive at a time

Brown Data

• Example data with 10 cases in 2 groups

Required libraries

```
library(readxl)
library(dplyr)
library(ggplot2)
library(plotly)

library(survival)
library(survminer)
library(gtsummary)
```

Create data

Graph the Data in R

Probability to die at t / alive at t-

Probability to die at t / alive at t-

Probability to pass t / alive at t-

By Cumulating prob of each point we get survival probability at each point 10-9 -8 -2/3 7 -3/4 6 5/6 5 -4/5 4 -3 -7/8 2 -8/9 9/10 21 22 23 24 25 26 27 28 29

Calendario

Sujetos

- No censoring
 S(t)= N° survivors after t/individuals at the beginning of follow-up
- Censoring. Kaplan-Meier Estimator

$$S_{K-M}\left(t\right) = \prod_{t_i < t} \left(1 - \frac{I_i}{R_i}\right)^{\delta_i}$$

Time	At Risk at t R _i	P(event t/ alive t) q _i	P(alive after t/ alive t) p;=1-q;	Kaplan Meierat t KM
5	9	1/9	8/9	9/10*8/9
7	8	1/8	7/8	9/10*8/9*7/8
12	6	1/7	6/7	9/10*8/9*7/8*6/7
18	5	1/5	4/5	9/10*8/9*7/8*6/7*4/5
19	4	1/4	4/3	9/10*8/9*7/8*6/7*4/5*4/3
20	3	1/3	2/3	9/10*8/9*7/8*6/7*4/5*4/3*2/3

Define Survival data

```
KM_fit <- survfit(Surv(time, exitus=="Death") ~ 1, data =dat)</pre>
KM fit
## Call: survfit(formula = Surv(time, exitus == "Death") ~ 1. data = dat)
##
        n events median 0.95LCL 0.95UCL
##
##
       10
                7
                      18
                               7
                                     NΑ
summary(KM_fit)
## Call: survfit(formula = Surv(time, exitus == "Death") ~ 1. data = dat)
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      3
                         0.900 0.0949
                                            0.7320
                                                         1.000
##
            10
##
      5
                    1 0.800 0.1265
                                            0.5868
                                                         1.000
                    1 0.700 0.1449
                                           0.4665
                                                         1.000
##
                   1 0.583 0.1610
##
     12
                                           0.3396
                                                         1.000
                    1 0.467 0.1658
##
     18
                                           0.2326
                                                         0.936
                    1 0.350 0.1602
##
     19
                                           0.1427
                                                       0.858
     20
                    1 0.233 0.1431
                                            0.0701
                                                       0.776
##
```

Plot Kaplan-Meier curve

```
ggsurvplot(KM_fit, data = dat,risk.table = TRUE )
```


Plot Kaplan-Meier curve (Cumulative events)

ggsurvplot(KM_fit, data = dat,risk.table = TRUE ,fun="event")

Plot Kaplan-Meier curve (Cumulative hazard)

ggsurvplot(KM_fit, data = dat,risk.table = TRUE ,fun="cumhaz")

Compare Curves

```
KM_fit2 <- survfit(Surv(time, exitus=="Death") ~ group, data =dat)</pre>
KM_fit2
## Call: survfit(formula = Surv(time, exitus == "Death") ~ group, data = dat)
##
##
         n events median 0.95LCL 0.95UCL
## group=A 5
                                   NΑ
## group=B 5 3
                    20 19
                                  NΑ
summary(KM_fit2)
## Call: survfit(formula = Surv(time, exitus == "Death") ~ group, data = dat)
##
##
                group=A
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
                  1
                         0.8 0.179
                                         0.516
                   1 0.6 0.219 0.293
##
                       0.4 0.219 0.137
##
    18 1
                   1
                       0.0 NaN
                                            NA
                                                        NA
##
##
##
                group=B
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
##
     12
                   1
                         0.8 0.179
                                         0.516
                       0.6 0.219
##
     19
                   1
                                        0.293
        3 1
     20
                       0.4 0.219
                                        0.137
##
```

Plot Kaplan-Meier curves and compare

```
ggsurvplot(KM_fit2, data = dat,
    pval = TRUE, conf.int = TRUE,
    risk.table = TRUE, # Add risk table)
    risk.table.col = "strata", # Change risk table color by groups
    linetype = "strata", # Change line type by groups
    surv.median.line = "hv") # Specify median survival
```


Plot Kaplan-Meier curves and compare cum hazar

```
ggsurvplot(KM_fit2, data = dat,
    pval = TRUE, conf.int = TRUE, fun="cumhaz",
    risk.table = TRUE, # Add risk table)
    risk.table.col = "strata", # Change risk table color by groups
    linetype = "strata", # Change line type by groups
    surv.median.line = "hv") # Specify median survival
```


Exercise 1

- Read Diabetes data
- Calculate global survival curve (time=tempsviu, death=mort)
- Plot Kaplan Meier curve
- Are differences between ecg and chd?
- Calculate tables and plots

Read Diabetes Data

```
diabetes <- read_excel("datasets/diabetes.xls")
sapply(diabetes, class)
##
   numpacie
                    mort tempsviu
                                          edat
                                                       bmi
                                                             edatdiag
  "numeric" "character"
                         "numeric" "numeric" "numeric"
                                                            "numeric"
        tabac
##
                     sbp
                                dbp
                                                       chd
                                           ecg
## "character" "numeric" "numeric" "character" "character"
diabetes_factor <- diabetes %>%
 mutate if (sapply(diabetes, is.character), as.factor) %>%
 select (-numpacie)
sapply(diabetes_factor, class)
       mort tempsviu edat bmi edatdiag tabac
## "factor" "numeric" "numeric" "numeric" "numeric" "factor" "numeric" "numeric"
##
        ecg
                 chd
  "factor" "factor"
dat2<-diabetes_factor
```

Define Survival data

```
KM_fit <- survfit(Surv(tempsviu, mort=="Muerto") ~ 1, data =dat2)</pre>
KM_fit
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ 1, data = dat2)
##
        n events median 0.95LCL 0.95UCL
##
##
      149
               25
                      NA
                              NA
                                     NΑ
summary(KM_fit,times=c(0,2,4,6,8,10))
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ 1, data = dat2)
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
      0
         149
                    0 1.000 0.00000
                                             1.000
                                                         1.000
##
##
         142
                    1 0.993 0.00702
                                             0.979
                                                         1.000
                    3 0.972 0.01404
##
        133
                                           0.944
                                                         0.999
                    3 0.949 0.01880
      6 123
                                           0.913
                                                       0.987
##
                                                      0.954
                    6 0.901 0.02609
      8
        110
                                           0.851
##
        102
##
     10
                    2 0.884 0.02837
                                            0.830
                                                         0.941
```

Plot Kaplan-Meier curve

```
ggsurvplot(KM_fit, data = dat2,risk.table = TRUE )
```


Compare Curves

```
KM fit2 <- survfit(Surv(tempsviu, mort=="Muerto") ~ ecg. data =dat2)
KM_fit2
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ ecg. data = dat2)
##
                 n events median 0.95LCL 0.95UCL
##
## ecg=Anormal 11
                             7.2
                                     5.5
                                              NΑ
## ecg=Frontera 27
                        4
                              NA
                                      NA
                                              NΑ
## ecg=Normal 111
                              NΑ
                                      NΑ
                       14
                                              NA
summary(KM_fit2, times=c(0,5,10))
## Call: survfit(formula = Surv(tempsviu, mort == "Muerto") ~ ecg, data = dat2)
##
##
                  ecg=Anormal
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      0
            11
                     0
                          1.000
                                  0.000
                                               1.000
                     2 0.762
##
      5
             6
                                  0.148
                                               0.521
                                                                1
     10
                     5 0.000
                                    NaN
                                                 NΑ
                                                              NA
##
##
##
                  ecg=Frontera
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
            27
##
      0
                     0 1.000 0.0000
                                               1.000
##
            21
                     2 0.916 0.0567
                                              0.812
     10
           14
                    1 0.873 0.0688
                                             0.748
##
##
                  ecg=Normal
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
           111
                     0 1.000 0.00000
                                               1.000
                                                           1.000
##
           102
                     1 0.991 0.00922
                                               0.973
                                                           1.000
##
     10
            87
                          0.949 0.02212
                                               0.907
                                                           0.994
```

Plot Kaplan-Meier curves and compare

Some useful Web pages

- https://www.emilyzabor.com/tutorials/survival_analysis_in_ r_tutorial.html
- http://www.sthda.com/english/wiki/survival-analysis-basics
- http://www.sthda.com/english/wiki/survminer-r-packagesurvival-data-analysis-and-visualization