

# CSC380: Principles of Data Science

**Nonlinear Models 1** 

Xinchen Yu

- Fill out SCS (<a href="https://scsonline.oia.arizona.edu/">https://scsonline.oia.arizona.edu/</a>) if 80% responses, will add 5 points to the homework with lowest grade.
- HW7 due next Wednesday, Nov 22 by 11:59pm.
- The final project will be out next Tuesday, Nov 21. The due date is Friday, Dec 8.
- Lecture on next Tuesday will be on <u>Zoom</u>.

## Review: Logistic Regression

### Model:

$$y \sim Bernoulli(p = \sigma(w^T x))$$

**Train**: compute the MLE  $\widehat{w}$ 

**Test**: Given test point  $x^*$  compute

$$y^* = \arg \max_{v \in \{-1,1\}} p(y = v \mid x^*; \widehat{w})$$

Equivalent to  $y^* = \mathbf{I}\{\widehat{w}^{\mathsf{T}}x^* \geq 0\}$ 



$$\sigma(w^T x) = \frac{\exp(w^T x)}{1 + \exp(w^T x)}$$

- Basis Functions
- Support Vector Machine
- Neural Networks



**Linear Regression** Fit a *linear function* to the data,

$$y = w^T x$$

[ Image: Hastie et al. (2001) ]



**Logistic Regression** Learn a decision boundary that is *linear in the data*,

$$y = \mathbf{I}\{w^{\mathsf{T}}x \ge 0\}$$





What if our data are *not* well-described by a linear function?

What if classes cannot be well-distinguished by a linear function?

## Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our data are given by,





## Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our data are given by,



• Recall: for 1d problem, we embedded the feature:  $x' = (x, 1) \in \mathbb{R}^2$  so we can encode the intercept term.

$$\phi_0(x) = 1$$
  $\phi_1(x) = x$   $y = \mathbf{w}^\mathsf{T} \Phi_\mathsf{lin}(x) = \phi_0(x) w_0 + \phi_1(x) w_1 = w_0 + w_1 x$ 

• Recall: for 1d problem, we embedded the feature:  $x' = (x, 1) \in \mathbb{R}^2$  so we can encode the intercept term.

$$\phi_0(x) = 1$$
  $\phi_1(x) = x$   $y = \mathbf{w}^\mathsf{T} \Phi_\mathsf{lin}(x) = \phi_0(x) w_0 + \phi_1(x) w_1 = w_0 + w_1 x$ 

- Actually, the embedding trick is stronger.
  - $(x^2, x, 1)$ : 2<sup>nd</sup> order polynomial with respect to x
  - $(x^d, x^{d-1}, ..., 1)$ : d-th order polynomial (= degree d)

$$\phi_0(x) = 1 \qquad \phi_1(x) = x \qquad \phi_2(x) = x^2$$

$$y = \mathbf{w}^{\mathsf{T}} \Phi_{\mathsf{lin}}(x) = \phi_0(x) w_0 + \phi_1(x) w_1 + \phi_2(x) w_2 = w_0 + w_1 x + w_2 x^2$$

## Feature embedding trick



higher-order polynomial = higher complexity = prone to overfitting!

## **Basis Functions**

- A basis function can be any function of the input features X
- Define a set of *B* basis functions  $\phi_1(x), \ldots, \phi_B(x)$
- Fit a linear regression model in terms of basis functions,

$$y = \sum_{b=1}^{B} w_b \phi_b(x) = w^T \phi(x) \qquad \text{notation:} \\ \phi(x) \coloneqq [\phi_1(x), ..., \phi_B(x)]$$

- The model is *linear* in the transformed basis/induced features  $\phi(x)$ .
- The model is *nonlinear* in the data X

## Linear Regression

Recall the ordinary least squares solution is given by,

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1D} \\ 1 & x_{21} & \dots & x_{2D} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{m1} & \dots & x_{mD} \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \qquad \mathbf{w}^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{y} = \left( egin{array}{c} y_1 \ dots \ y_m \end{array} 
ight)$$

$$w^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

**Design Matrix** ( each training input on a column )

Vector of Training labels

Can similarly solve in terms of basis functions,

$$\mathbf{\Phi} = \begin{pmatrix} 1 & \phi_1(x_1) & \dots & \phi_B(x_1) \\ 1 & \phi_1(x_2) & \dots & \phi_B(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \phi_1(x_m) & \dots & \phi_B(x_m) \end{pmatrix} \qquad \mathbf{w}^{\text{OLS}} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

$$w^{\mathrm{OLS}} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

## sklearn.preprocessing.PolynomialFeatures

### degree : int or tuple (min\_degree, max\_degree), default=2

If a single int is given, it specifies the maximal degree of the polynomial features. If a tuple (min\_degree, max\_degree) is passed, then min\_degree is the minimum and max\_degree is the maximum polynomial degree of the generated features. Note that min\_degree=0 and min\_degree=1 are equivalent as outputting the degree zero term is determined by include bias.

### interaction\_only: bool, default=False

If True, only interaction features are produced: features that are products of at most degree *distinct* input features, i.e. terms with power of 2 or higher of the same input feature are excluded:

- included: x[0], x[1], x[0] \* x[1], etc.
- excluded: x[0] \*\* 2, x[0] \*\* 2 \* x[1], etc.

### include\_bias : bool, default=True

If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model).

#### order: {'C', 'F'}, default='C'

Order of output array in the dense case. 'F' order is faster to compute, but may slow down subsequent estimators.

## Example: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features  $(1, x_1, x_2, x_1^2, x_1x_2, x_2^2)$ ,

These are now our new data and ready to fit a model...

## Example: Polynomial Basis Functions

Create a 3-rd order polynomial (cubic) function,

```
f = lambda x: (x-1)*(x-2)*(x-3)
import numpy.random as ra
ra.seed(20)
train_x = np.arange(5)
train_y = f(train_x) + 1*ra.randn(len(train_x))
train_y

    0.3s

array([-5.11610689, 0.19586502, 0.35753652, -2.34326191, 4.91516741])
```

Plot train set and the actual function

```
test_x = np.linspace(-1,5,400)

from matplotlib import pyplot as plt
plt.scatter(train_x,train_y)

plt.plot(test_x, f(test_x))
plt.legend(['train set', 'true'])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
```



## Example: Polynomial Basis Functions

Create cubic features  $(1, x, x^2, x^3)$ 

### Perform linear regression; plot it

```
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(train_xx, train_y)
test_x = np.linspace(-1,5,400)
test_xx = poly.fit_transform(test_x[:,np.newaxis])
pred_y = model.predict(test_xx)

plt.scatter(train_x,train_y)
plt.plot(test_x, f(test_x))
plt.plot(test_x, pred_y)
plt.legend(['train set', 'true', 'fitted'])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
```



## **Data Preprocessing**

- Generally the first step in data science involves preprocessing or transforming data in some way
  - Filling in missing values (imputation)
  - Centering / normalizing / standardizing
  - Etc.
- We then fit our models to this preprocessed data
- •One way to view preprocessing is simply as computing some basis function  $\phi(x)$  nothing more

## **Basis Functions**

## **PROs**

- More flexible modeling that is nonlinear in the original data
- Increases model expressivity

### **CONs**

- Typically requires more parameters to be learned
- More sensitive to overfitting training data (due to expressivity)
- Requires more regularization to avoid overfitting
- Need to find good basis functions (feature engineering)

- Basis Functions
- Support Vector Machine
- Neural Networks

## **Linear Decision Boundary**

Forget about the 'regression' point of view for now..

At the end of the day, we just want a line that separates the two classes well.



## **Linear Decision Boundary**

Note: Any boundary that separates classes is equivalently good on training data



Q: but if you have to choose one, which one will you choose?

## Classifier Margin



The **margin** measures minimum distance between each class and the decision boundary

**Observation** Decision boundaries with larger margins are more likely to generalize to unseen data

**Idea** Learn the classifier with the largest margin that still separates the data...

...we call this a *max-margin classifier* 



For now, let's focus on the case where the data is **linearly separable** 

(Otherwise, there is no margin to talk about!)

# Hyperplane

A linear discriminant function in D dimensions is given by a hyperplane, defined as follows:

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$
  
=  $w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$ 

For points that lie on the hyperlane, we have:

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$



## Separating Hyperplane

A hyperplane h(x) splits the original d-dimensional space into two half-spaces. If the input dataset is linearly separable:

$$y = \begin{cases} +1 & \text{if } h(\mathbf{x}) > 0 \\ -1 & \text{if } h(\mathbf{x}) < 0 \end{cases}$$

Example:

$$h(x) = x_1 + 2x_2 - 4$$



# Separating Hyperplane: weight vector

Let  $a_1$  and  $a_2$  be two arbitrary points that lie on the hyperplane, we have:

$$h(\mathbf{a}_1) = \mathbf{w}^T \mathbf{a}_1 + b = 0$$
$$h(\mathbf{a}_2) = \mathbf{w}^T \mathbf{a}_2 + b = 0$$

Subtracting one from the other:

$$\mathbf{w}^T(\mathbf{a}_1 - \mathbf{a}_2) = 0$$

The weight vector **w** is orthogonal to the hyperplane.



Consider a point X not on the hyperplane. Let  $X_p$  be the projection of X on the hyperplane.

Let r be the steps need to walk from  $X_p$  to X.

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

Q: how many steps/direct distance do we need to walk?



Consider a point X not on the hyperplane. Let  $X_p$  be the projection of X on the hyperplane.

Let r be the steps need to walk from  $X_{p}$  to X.

$$h(\mathbf{x}) = h(\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|})$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + b$$

$$= \underbrace{\mathbf{w}^T \mathbf{x}_p + b}_{h(\mathbf{x}_p)} + r \frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= \underbrace{h(\mathbf{x}_p)}_{0} + r \|\mathbf{w}\|$$

$$= r \|\mathbf{w}\|$$

$$r = \frac{h(\mathbf{x})}{\|\mathbf{w}\|}$$



Q: What is the direct distance from origin (x=0) to the hyperplane?

$$r = \frac{h(\mathbf{x})}{\|\mathbf{w}\|}$$
  $r = \frac{h(\mathbf{0})}{\|\mathbf{w}\|} = \frac{\mathbf{w}^T \mathbf{0} + b}{\|\mathbf{w}\|} = \frac{b}{\|\mathbf{w}\|}$ 

Example:

$$h(x) = x_1 + 2x_2 - 4$$

$$w^T x + b = (1 \ 2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - 4$$

$$\frac{b}{\|w\|} = -\frac{4}{\sqrt{5}}$$

Q: how to deal with negative distance?



Q: How to deal with negative distance?

$$r = \frac{h(\mathbf{x})}{\|\mathbf{w}\|}$$

$$y = \begin{cases} +1 & \text{if } h(\mathbf{x}) > 0 \\ -1 & \text{if } h(\mathbf{x}) < 0 \end{cases}$$

$$\delta = y \ r = \frac{y \ h(\mathbf{x})}{\|\mathbf{w}\|}$$

Example (when point is the origin):

$$(-1)\cdot\frac{b}{\|w\|}=\frac{4}{\sqrt{5}}$$



# Margin and Support Vectors

Over all the n points, the *margin* of the linear classifier is the minimum distance of a point from the separating hyperplane:

$$\delta^* = \min_{\mathbf{x}_i} \left\{ \frac{y_i(\mathbf{w}^T \mathbf{x}_i + b)}{\|\mathbf{w}\|} \right\}$$

All the points that achieve this minimum distance are called *support vectors*.

$$\delta^* = \frac{y^*(\mathbf{w}^T \mathbf{x}^* + b)}{\|\mathbf{w}\|}$$



## Max-Margin Classifier (Linear Separable Case)

For training data  $\{(x^{(i)},y^{(i)})\}_{i=1}^m$ , a classifier  $f(x)=w^{\rm T}x+b$  with 0 train error will satisfy

$$y^{(i)}f\big(x^{(i)}\big) = y^{(i)}\big(w^{\top}x^{(i)} + b\big) > 0$$

↓ negative margin when misclassifying it!

The distance for (x<sup>(i)</sup>, y<sup>(i)</sup>) to separating hyperplane

$$\frac{y^{(i)}(w^{\top}x^{(i)}+b)}{\|w\|}$$

The margin of a classifier f(x) is

$$\min_{i} \frac{y^{(i)}(w^{\top}x^{(i)} + b)}{\|w\|}$$

Find f that maximize margin

$$\arg \max_{w,b} \min_{i} \frac{y^{(i)}(w^{T}x^{(i)} + b)}{\|w\|}$$



Find the parameters (w,b) that **maximize** the **smallest margin** over all the training data

## Canonical Hyperplane

**Issue**: infinite equivalent hyperplanes result in infinite solutions:

 Multiplying on both sides by some scalars yields an equivalent hyperplane

$$s h(\mathbf{x}) = s \mathbf{w}^T \mathbf{x} + s b$$

Example of equivalent hyperplanes:

$$h(x) = x_1 + 2x_2 - 4$$
  
$$h(x) = 2x_1 + 4x_2 - 8$$

