		peech Signal Processing
)		isies: Physikalische Größen
		Signal hat:
	A	· Amplitude max. Ausschlag einer harmonischen Schwingun vom arithmetiselen mittel
	J	· Frequent [HZ]: Anzahl der Schwingungen pro Sekvade
	E.	· Time-Domain[s] · Peit i.d.R. auf der y-Achse
Phi	φ.	Phase Position den Signals innerhalb den tyklus. Anjabe in Grad (°) oder Radian (rad)
mega	w.	Kreisfrequent Phonenumkel pro feit, abh. von Frequent
Phase (°	0 /	Periode Irlaner) IsT: kleinstes Intervally nach dem sich eine 180° 30° 30° Schwingung wiederhott.
ما الما الما		f(x) = Sin(x)
A.		
P. /		
1 nase (-	
	Pen	odendare v T
	G .	Pegel ((Laut-) Stärke [dB]: Logarithmus den Druckunterschieden der Schallwellen und dem Normalwert, der "Schalldruck"
		Warum logarithmisch? -> der von Merschen wahrnehmbare
		Lautstärke-Bereich ist sehr geoß und nicht gut auf einer linearen Skala derstellbar.
		Was bedeutet das?
		· Ein Unterschied von = 10 dB entspricht etwa einer
		Verdepplung / Halbierung des Lautstänke
		· ~ 30 dB emptinden wir als ruling (schlatzimmer bei Nach
		· ~ 60 dB normaler Sprechen
		· ~ 60 dB normaler Sprechen · ~ 70 dB Staubsauger
		· ~ 60 dB mounder Sprechen

we can model the vocal tract on a filter through
which the excitation signal passer.
this model is an immuse simplification
Smplified
tube model of the 8,5cm Nose
vocal trackt:
Glottis
17cm
the length of the tuber correspond to certain frequency ranger called formants
· these formants (renonance frequencies) can be mathematically described using a vocal tract transfer function
> the filtering is represented by a consolution of the excitation signal and the vocal tract impulse response in the time demain
S(n) = e(n) * h(n)
or a multiplication of the excitation spectrum and the vocal tract transfer function in the frequency domain
$S(f) = E(f) \cdot H(f)$
the spectrum of the excitation signal consists of the fundamental frequency to and a set of harmonics at integer multiples of so.
- Formants appear on spectral peaks in the transfer function
the final signal, became the transfer function samples the transfer function at disrete points.
-> fundamental frequency to: intonation and proceedy ino meaning,
Le formant frequencies: added through the traster function, allowing. The harmonics of the excitation signal to resonate within their formant freq. regions
MMX A = MmM
fra [Ha] fra (Ha)
xcitation c(n) x vocal tract transfer = spectrum s(n)