Artificial Neural Network 101

With Iris dataset and tensorflow

Jian Dai, PhD (daij12@gene.com)

Goal

- In genneral, understand the foundation of artificial neural network including model architecture, and training/optimization using Iris dataset as example and tensorflow as toolkit
- More specifically, **Exercise 1** compute gradient and weight update with single batch, and compare with the result of calling tensorflow for multinomial model to fully understand *gradient descent*
- Exercise 2 compute gradient and weight update with single batch, and compare with the result of calling tensorflow for 1-hidden-layer model to fully understand backpropagation

Plan

- · Iris datase, Tensorflow
- Multinomial regression (aka softmax regression)
 - Gradient descent
- 1-Hidden layer feedback forward neural network
 - Backprogagation
 - Tensor computation
- Some to-do for next steps:
 - Gradient descent with momentum

<u>Iris dataset (https://en.wikipedia.org/wiki/Iris_flower_data_set)</u>

In the following we will use Iris dataset provided by the tensorflow tutorial (https://en.wikipedia.org/wiki/Iris_flower_data_set)

```
In [1]: # Assume these two csv's 'iris_training.csv', 'iris_test.csv' are in the working dir
    # Otherwise download from
    # http://download.tensorflow.org/data/iris_training.csv
    # http://download.tensorflow.org/data/iris_test.csv

import pandas as pd
    training_df = pd.read_csv('iris_training.csv',skiprows=1,header=None)
    training_features = training_df.iloc[:,0:4].values
    training_labels = training_df.iloc[:,4].values
    test_df = pd.read_csv('iris_test.csv',skiprows=1,header=None)
    test_features = test_df.iloc[:,0:4].values
    test_labels = test_df.iloc[:,4].values
    print(training_df.describe())
```

	0	1	2	3	4
count	120.000000	120.000000	120.000000	120.000000	120.000000
mean	5.845000	3.065000	3.739167	1.196667	1.000000
std	0.868578	0.427156	1.822100	0.782039	0.840168
min	4.400000	2.000000	1.000000	0.100000	0.000000
25%	5.075000	2.800000	1.500000	0.300000	0.000000
50%	5.800000	3.000000	4.400000	1.300000	1.000000
75%	6.425000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

For R users, refer the following line for reading the data

```
read.csv('iris_training.csv',skip=1,header=FALSE)
```

```
In [2]: # One-hot coding for class labels
    from tensorflow.contrib.learn.python.learn.datasets.mnist import DataSet, dense_to_one_hot
    training_labels_1h = dense_to_one_hot(training_labels,3)
    training_dataset = DataSet(training_features, training_labels_1h,reshape=False)
    test_labels_1h = dense_to_one_hot(test_labels,3)
    test_dataset = DataSet(test_features, test_labels_1h,reshape=False)

print(training_dataset.num_examples)
print(test_dataset.num_examples)
```

120

30

Tensorflow

https://www.tensorflow.org/ (https://www.tensorflow.org/)

In [3]: import tensorflow as tf

Multinomial regression model

Here is a brief setup for a multinomial regression (aka softmax regression)

Introduce the multinomial logit as

$$\eta_k = x_\mu W_k^\mu$$

where x_{μ}^{i} the input with an implicit sample index i and the feature index μ including the bias term. For Iris data, i indexes 3 classes, μ indexes 4 predictors and the bias, and i indexes the batched sample. There is a summation over μ in the above expression understood. We keep a freedom to specify the summary on a pair of indices implicitly or explicitly. If the summation is implied, the convention is known as $\underline{\textit{Einstein summation}}$ (http://mathworld.wolfram.com/EinsteinSummation.html) which is commonly used in classical tensor analysis in mathematics and physics.

With logit, the conditional probability given data is

$$p_k = rac{e^{\eta_k}}{Z}$$

where $Z=\sum_k e^{\eta k}$ is known as *partition function*. Or if we specify the implicit sample index, $p_k^i=e^{\eta_k^i}/Z^i$. Please be cautious not to confuse superindex and power.

The loss function is defined as

$$l = - iggl(\sum_{k=1}^3 y_k \log p_k iggr)$$

where y the observed class with an implicit sample index i. In this formalism, y is expressed by *one-hot encoding*.

Here the average operation $\langle \dots \rangle$ can be specified differently in different context. For example,

$$igg \langle \dots igg
angle = \int dP(x,y)$$

if the joint distribution is known, or

$$\left\langle \dots \right\rangle = \sum_{i}$$

for batch or mini-batch empirical loss, or just a single case in Stochastic Gradient Descent

(https://en.wikipedia.org/wiki/Stochastic_gradient_descent). Also one can choose a normalization in the average. Commonly used normalization includes 2 for Deviance (https://en.wikipedia.org/wiki/Deviance_(statistics)) in classical statistical analysis, 1/N for categorical cross-entropy (https://en.wikipedia.org/wiki/Cross_entropy) in ML. In our case, we multiple a factor $\log 3$ such the uninformative prediction gives raise to l=1. To restate for our practice and for Iris data

$$l = -rac{1}{N\log 3}\sum_i^N\sum_{k=1}^3 y_k^i\log p_k^i$$

where N is the sample size in a mini batch.

Note the constraints $\sum_k p_k = 1$ and $\sum_k y_k = 1$. And the loss can be transformed to a form which is easier to derive gradient

$$l = -rac{1}{N\log 3} \sum_i^N ig(\sum_{k=1}^3 y_k^i \eta_k^i - \log Z^iig)$$

```
In [4]: # Tensorflow approach to build a Multinomial regression model for Iris data
        # Predictors
        x = tf.placeholder(tf.float32,[None,4])
        # Weight
        W = tf.Variable(tf.random normal([4,3]),tf.float32)
        # bias
        b = tf.Variable(tf.zeros([3]),tf.float32)
        # Logits
        logits = tf.add(tf.matmul(x,W),b)
        # convert to probability
        prob = tf.nn.softmax(logits)
        # Actual class
        y = tf.placeholder(tf.float32,[None,3])
        # Define the loss
        cross_entropy = -tf.reduce_sum(y * tf.log(prob), reduction_indices=[1]) / tf.log(3.)
        # normalize by log(3) just so the ``uninformative'' prob gives cross-entropy 1.
        loss = tf.reduce mean(cross entropy)
```

In [5]: lr = .05
batch_size = 7

```
In [6]: # Define the optimization method
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr)
    fit = optimizer.minimize(loss)
```

Derive the gradient of loss function with respect to the weight

$$rac{\partial ec{l}}{\partial W^{\mu}_{_{k}}} = - \Big\langle x_{\mu}(y_{k}-p_{k}) \Big
angle$$

Gradient descent optimization (https://en.wikipedia.org/wiki/Gradient_descent) is to solve the following auxilary 1st order ODE

$$\dot{W_k^\mu} = -rac{\partial l}{\partial W_k^\mu}$$

where we introduce a pseodo time au and $\dot{f}=df/d au$.

With forward Euler method (https://en.wikipedia.org/wiki/Euler method)

$$W_k^\mu(au_{n+1}) = W_k^\mu(au_n) + \delta au \Big\langle x_\mu(y_k-p_k) \Big
angle$$

which is the standard *Gradient Descent* formalism, where δau is referred as *learning rate*.

```
In [9]: #sess = tf.Session()
sess = tf.InteractiveSession()
```

```
In [12]: # Get next mini batch
btch_x,btch_y = training_dataset.next_batch(batch_size)

In [13]: # Compute the gradient
delta_W, delta_b = sess.run([-lr*grad_W, -lr*grad_b],{x:btch_x,y:btch_y})

In [14]: # tensorflow computed model update
sess.run(fit,{x:btch_x,y:btch_y})

In [15]: # Updated weight per a single batch
W1,b1 = sess.run([W,b])
```

The following two Jupyter Notebook cells compare the tensorflow weight update and our computed weight update

1-hidden layer ANN

Now we add a single hidden layer to our softmax model.

$$h_lpha = \sigma(x_\mu W_lpha^\mu)$$

where $\mu=0,1,\dots,4$ with 0 indexing the bias, and α indexes the hidden nodes with 0 indicating the hidden bias. σ is the standard <u>logistic function</u> (https://en.wikipedia.org/wiki/Logistic_function) aka sigmoid function and for this exercise we choose it as the *activation function*. Note the derivative property $\sigma'=\sigma(1-\sigma)$ that we will use in deriving the backpropagation rule.

Logit for the output layer is given by

$$\eta_k = h_lpha W_k^lpha$$

Probability prediction is

$$p_k = rac{e^{\eta_k}}{Z}$$

Loss function is (again) defined as

$$l = - iggl(\sum_k y_k \log p_k iggr)$$

```
In [18]: # Implement the 1-hidden layer ANN
         x = tf.placeholder(tf.float32,[None,4])
         # input -> hidden
         number of hidden nodes = 5
         W1 = tf.Variable(tf.random_normal([4,number_of_hidden_nodes]),tf.float32)
         b1 = tf.Variable(tf.zeros([number_of_hidden_nodes]),tf.float32)
         eta1 = tf.add(tf.matmul(x,W1),b1)
         h1 = tf.sigmoid(eta1)
         W2 = tf.Variable(tf.random_normal([number_of_hidden_nodes,3]),tf.float32)
         b2 = tf.Variable(tf.zeros([3]),tf.float32)
         eta2 = tf.add(tf.matmul(h1,W2),b2)
         prob = tf.nn.softmax(eta2)
         # Actual class
         y = tf.placeholder(tf.float32,[None,3])
         # Define the loss
         cross_entropy = -tf.reduce_sum(y * tf.log(prob), reduction_indices=[1]) / tf.log(3.)
         # normalize by log(3) just so the ``uninformative'' prob gives cross-entropy 1.
         loss = tf.reduce mean(cross entropy)
```

Backpropagation (https://en.wikipedia.org/wiki/Backpropagation)

Take the 1st order differential of the loss function

$$dl = - iggl(\sum_k (y_k - p_k) d\eta_k iggr)$$

The gradient with respect to the output layer weight is of the same form as that for softmax regression except x is replaced with h

$$rac{\partial l}{\partial W_k^lpha} = -igg\langle h_lpha(y_k-p_k)igg
angle$$

The gradient with respect to the hidden layer weight, however, is computed by <u>chain rule (https://en.wikipedia.org/wiki/Chain_rule)</u> that is referred as *backpropagation* in this context. We spell out all the implicit indices and summation in the following expression

$$rac{\partial l}{\partial W^\mu_lpha} = -rac{1}{N\log 3} \sum_{i=1}^N x^i_\mu \sum_{k=1}^3 (y^i_k - p^i_k) W^lpha_k (\sigma(1-\sigma))^i_lpha$$

Note there is no summation over α and we already used the property $\sigma' = \sigma(1 - \sigma)$.

To implement this particular backpropagation, we first contract class index k, then carry out the element-wise multiplication over α , and then contract on sample index i.

```
In [21]: # Gradient of Loss /w respect to W2
grad_W2 = -tf.matmul(tf.transpose(h1),(y-prob))/tf.log(3.)/batch_size
# Gradient of Loss /w respect to b2
grad_b2 = -tf.matmul(tf.ones([1,batch_size]),(y-prob))/tf.log(3.)/batch_size
# Gradient of Loss /w respect to W1
grad_W1 = -tf.matmul(tf.transpose(x),tf.matmul((y-prob), tf.transpose(W2)) * h1 * (1-h1)) /tf.log(3.)/batch_s
ize
# Gradient of Loss /w respect to b1
grad_b1 = -tf.matmul(tf.ones([1,batch_size]),tf.matmul((y-prob), tf.transpose(W2)) * h1 * (1-h1))
/tf.log(3.)/batch_size
```

```
In [22]: # Initiate the computation
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
```

```
In [23]: # Record the weight before a single batch
W1_0,b1_0,W2_0,b2_0 = sess.run([W1,b1,W2,b2])

In [24]: # Get next mini batch
btch_x,btch_y = training_dataset.next_batch(batch_size)

In [25]: # Compute weight update for the readout layer
delta_W2, delta_b2 = sess.run([-lr*grad_W2, -lr*grad_b2],{x:btch_x,y:btch_y})

In [26]: # Compute weight update for the hidden layer
delta_W1, delta_b1 = sess.run([-lr*grad_W1, -lr*grad_b1],{x:btch_x,y:btch_y})

In [27]: # Run one mini batch
sess.run(fit,{x:btch_x,y:btch_y})

In [28]: # Tf output of the updated weight per a single batch
W1_1,b1_1,W2_1,b2_1 = sess.run([W1,b1,W2,b2])
```

The following two Jupyter Notebook cells compare the tensorflow weight update and our computed weight update

```
In [30]: # Compare the tf weight update and hand-coded weight update in the hidden layer
         W1 1 - W1 0, delta W1, b1 1 - b1 0, delta b1
Out[30]: (array([[ -1.04904175e-04, -4.33474779e-05, -1.72495842e-04,
                   1.39117241e-04, 5.57899475e-05],
                [ -9.52482224e-05, -1.80602074e-05, -1.13487244e-04,
                   9.54866409e-05, 3.00407410e-05],
                9.14186239e-06, -3.50475311e-05, -6.38365746e-05,
                   4.42266464e-05, 3.27825546e-05],
                7.91251659e-06, -9.13441181e-06, -1.21593475e-05,
                   7.49714673e-06, 7.80820847e-06]], dtype=float32),
          array([[ -1.04884326e-04, -4.33545829e-05, -1.72494823e-04,
                   1.39112613e-04, 5.58346910e-05],
                [ -9.52763148e-05, -1.80727347e-05, -1.13459188e-04,
                   9.54725328e-05, 3.00681040e-05],
                9.13818349e-06, -3.50982373e-05, -6.38418787e-05,
                   4.42430755e-05, 3.28093920e-05],
                7.90586910e-06, -9.13498479e-06, -1.21612884e-05,
                   7.49766104e-06, 7.81073322e-06]], dtype=float32),
          array([-0.00545712, -0.00178968, -0.00802938, 0.00656228, 0.00245341], dtype=float32),
          array([[-0.00545712, -0.00178968, -0.00802938, 0.00656228, 0.00245341]], dtype=float32))
```