You are the way you (structurally) talk: Structural-temporal neighbourhoods of posts to characterize users in online forums

Alberto Lumbreras Jouve B., Velcin J., Guégan, M.

May 3, 2016

Overview

Introduction

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

The data

Reddit. A forum of forums

Download monthly dumps from:

http://couch.whatbox.ca:36975/reddit/comments/monthly/

Extract forum of interest:

```
\label{eq:www.reddit.com/r/science} www.reddit.com/r/france\\ www.reddit.com/r/sociology\\ www.reddit.com/r/complexsystems\\ www.reddit.com/r/gameofthrones \leftarrow \text{in this presentation}\\ www.reddit.com/r/podemos \leftarrow \text{in this presentation}\\
```

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

Graph representations

Graph of user interactions (a social network)

7/33

Graph representations

Trees of posts

Graph representations

Conversations are trees

- Explicit structure.
- Dynamic (order, time)

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

Intuition

Hypothesis: different individuals have tendency towards different types of conversations and these types are reflected in the structure of their interactions.

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures Comparing neighbourhoods

Conversation-based clustering

Triadic structures

Triads are not enough

Motif	 ••	\wedge	\triangle					\triangle						
Motif ID		36	164	12	14	6	78	38	174	166	46	238	102	140

Triads in trees of posts:

Only 3 possible triads (dyad, chain and star)

Triads in social graph:

Order (therefore dynamic) is missing.

We need something richer that captures the dynamics of conversations.

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

Order-based neighbourhoods

Definition

- ▶ 1. Extract neighbourhood of post i with radius r.
- ▶ 2. Keep only the *n* posts that are closest (in time) to post *i*.

16/33

Time-based neighbourhoods

Definition

- ▶ 1. Extract neighbourhood of post *i* with radius *r*.
- 2. Detect changes of speed (vertical/horizontal changepoints) (PELT algo)
- ▶ 3. From *i*, get the posts around until a changepoint is found.

Colouring

Label special nodes:

- ► Red: ego.
- Yellow: parent of ego (and posts of same author)
- Orange: other posts by ego author
- ▶ White: root

Some frequent neighbourhoods

Some frequent neighbourhoods

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

Frequency distribution

Time-based (black) reduces the space w.r.t structure-based (blue)

Frequency distribution

Cumulative census distribution (Game of Thrones)

Discrepancies

Time-based vs Order-based neighbourhood

Discrepancies

Basic neighbourhood vs Time-based neighbourhood

Structure-based vs Order-based vs Time-based

Structure-based:

▶ too big (and too many) neighbourhoods.

Order-based:

▶ Dominance of monoid hides richer conversational structures.

Time-based:

- Space more reduced than simple structure-based.
- Criteria to choose radius dynamically (r = until conversation slows down)

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

Methodology

- Create a user × neighborhood matrix of counts.
- Z-normalize (users characterized by their deviation from the mean)
- Cluster!

Conversation-based clustering

Time-based

Conversation-based clustering

Interpretation

Greens:

Reds:

Blues (avoid these motifs):

The data

The graph representations of the data

Structures of conversations

Basic idea

Triadic structures

Neighbourhood structures

Comparing neighbourhoods

Conversation-based clustering

- Q: Can we use graph structure to characterise users?
- A: Yes!
- ► Q: By using triads?
- A: No. They are not useful in trees.
- Q: So, what kind of structure?
- A: Posts neighbourhoods that are time/order sensitive.
- Q: What about language?
- A: It's ok, but structure is more directly linked to thread dynamics (future work)

Merci!

