Convolutional Neural Network

강사:백병인

pi.paek@modulabs.co.kr

모두의연구소 Research Scientist

Convolution Filter Effects

Original

Convolution Filter를 사용하여 원본이미지의 특징을 다양한 관점으로 추출해 낼 수 있다.

Blur

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Edge Detect

-	0	1	0	32
	U	1	U	8
	1	-4	1	Į,
	0	1	0	

Emboss

20	-2	-1	n	è
5	1	1	1	
ž.	0	1	2	<u>-</u>

Convolution Operator

Convolution Layer (1)

activation map

Convolution Layer (2)

activation maps

Convolution Layer (3)

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

ConvNet

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Pooling Layer

- 원본이미지가 바로 feature가 될 수 없는 것은 너무 고차원의 데이터이기 때문이다.
- ConvNet은 지속적으로 차원 축소를 통해, 오히려 축소된 feature map 안에서 유용한 특 징만이 계속 남아서 다음 레이 어로 전달되는 효과를 가진다.
- 어떤 원리로 유용한 특징만을 남길 수 있을까?

Max Pooling

Inference from ConvNet Feature Map

Fully-Connected vs. Convolutional

(생각해 볼 문제)

왜 이미지 분류 문제에는 ConvNet이 FullyConnected-NN보다 훨씬 효과적일까? 네트워크 구조에 따라 Hidden Variable (a.k.a. feature)의 특성은 어떻게 달라질까? ConvNet의 Filter 크기가 원본 이미지 크기와 같다면 어떻게 될까? Logistic Regression과 RNN에서는 각각 위 그림이 어떻게 바뀔까?

1-d convolution for NLP

When we add zero padding, we normally do so on both sides of the sequence (as in image padding)

1-d convolution example

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Apply 3 filters of size 3

3	1	2	-3	1	0
-1	2	1	-3	1	0
1	1	-1	1	0	1

1	0	0	1	1	_1	2	_1
1	0	-1	-1	1	0	-1	3
			1				

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

Could also use (zero)

padding = 2

Also called "wide convolution"

Classification

- Zhang and Wallace (2015) A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification
- https://arxiv.org/pdf/1510.03820.pdf
- 연속된 4,3,2개 단어끼리 짝지어서 얻어 진 feature들 중 가장 중요한 것들만 모아 서 classification
 - eg.)긍정/부정
- state가 아니라, 단어 인접 순서(locality) 에서 얻을 수 있는 구조적인 특징을 feature로 삼아 classification

Model Comparison

CNNs:

- 문장분류(sentence classification)에 적합하다.
- 모델 구성 및 해석의 직관성이 떨어진다.
- GPU를 통한 병렬처리에 유리하다.

RNNs:

- 시차를 두고 발생하는 state 변화를 모델링하기에 유리하다.
- Language Model (next sequence prediction)에 적합하다. 따라서 Text generation이나 translation 등에 유리하다.
- Attention mechanism을 결합하면 엄청나게 강력해진다.

