Report Assignment 1

Fabrizio Rossi, Mina Makar, Matteo Orsini ${\bf November}\ 6,\ 2020$

Question 1.d

1. First Gx, then Gx^T

In this image we can see that applying the convolution of a 1D Gaussian along the x-axis (G_x) and then along the y-axis (G_x^T) we get a 2D Gaussian filter based on the Gaussian separability property, which implies that a n dimensional Gaussian convolution is equivalent to n 1D Gaussian convolutions, so convolving Gx over Gx^T we obtain a 2D Gaussian kernel. Based on the Gaussian separability property we can improve the performances using the following equation:

$$(G_x \otimes G_y) \otimes I = G_x \otimes (G_y \otimes I) \tag{1}$$

where G_x is the Gaussian kernel along the x-axis, G_y is the Gaussian kernel along the y-axis (in our case G_x^T) and I is the source image.

Moreover, in this case we apply first the Gx kernel then the Gy kernel thanks to the commutative property of the convolution operation.

2. First Gx, then Dx^T

Applying first the 1D Gaussian along the x-axis (Gx) we get a single line whose intensity follows a Gaussian distribution. Then applying the transposed derivative filter (Dx^T) we expand the single line vertically increasing the intensity in the top half of the image and decreasing the intensity in the bottom half. Convolving the derivative of the Gaussian function we can identify edges by looking at the maxima and minima of the function.

3. First Dx^T , then Gx

We obtain the same result of the previous experiment because the convolution operation is commutative, so we can first apply the derivative of the Gaussian along the y-axis and than the Gaussian along the x-axis based on the following equation:

$$D_x^T \otimes (G_x \otimes I) = G_x \otimes (D_x^T \otimes I) \tag{2}$$

4. First Dx, then Dx^T

Applying the derivative kernel of a Gaussian function we can first obtain the edges along the x-axis and then reapplying the same function along the y-axis we identify the edges in both directions.

5. First Dx, then Gx^T

We obtain the same result of the second experiment just with swapped axis, since we used the derivative along the x-axis and the Gaussian function along the y-axis.

6. First Gx^T , then Dx

As we said earlier, the convolution operation is commutative so we obtain the same result as the experiment before.

Question 1.e

Convolving the images with the Dx kernel we can identify edges along the x-axis because the derivative of the image increases the gap between low and high values, creating new maxima and minima, allowing us to detect edges by looking at them. The same effect can be obtained using Dy along the y-axis.

Instead, if we compute the gradient of the two derivatives we can roughly detect edges in the original image in all directions. We use the gradient because its direction of the gradient is perpendicular to the edges and its magnitude represents the edge strength. But the edges are too broad and they not follow the requirement of good localization for an edge detector, so to obtain better results we should apply a thinning technique, like the non-maximum suppression in the Canny operator.

In our case, we use a Gaussian function to smooth the image because since the derivative enhances noise we need to reduce it before applying the edge detection otherwise we will see a lot of edges in a noisy region.

Figure 1: DxDy applied to graf.png

Figure 2: DxDy applied to gantrycrane.png

Question 3.c

To conduct our experiments we evaluated the **find_best_match** function using the following parameters:

Distance type						
interse	ct	12		chi2		
Histogram type						
greyscale		rg	rgb		dxdy	
Number of bins						
10	20	30	40		50	

And we obtained these results:

Distance	Histogram	Number	Correct	Recognition
type	type	of bins	matches	rate
12	grayvalue	10	39	0.43
12	grayvalue	20	34	0.38
12	grayvalue	30	36	0.40
12	grayvalue	40	34	0.38
12	grayvalue	50	31	0.34
12	rgb	10	54	0.60
12	rgb	20	42	0.47
12	rgb	30	34	0.38
12	rgb	40	30	0.33
12	rgb	50	30	0.33
12	rg	10	52	0.58
12	rg	20	43	0.48
12	rg	30	39	0.43
12	rg	40	37	0.41
12	rg	50	31	0.34
12	dxdy	10	39	0.43
12	dxdy	20	40	0.44
12	dxdy	30	38	0.42
12	dxdy	40	37	0.41
12	dxdy	50	36	0.40

Distance	Histogram	Number	Correct	Recognition
\mathbf{type}	type	of bins	matches	rate
intersect	grayvalue	10	45	0.50
intersect	grayvalue	20	46	0.51
intersect	grayvalue	30	45	0.50
intersect	grayvalue	40	47	0.52
intersect	grayvalue	50	45	0.50
intersect	rgb	10	70	0.78
intersect	rgb	20	71	0.79
intersect	rgb	30	72	0.80
intersect	rgb	40	70	0.78
intersect	rgb	50	70	0.78
intersect	rg	10	62	0.69
intersect	rg	20	65	0.73
intersect	rg	30	65	0.73
intersect	rg	40	67	0.75
intersect	rg	50	65	0.73
intersect	dxdy	10	52	0.58
intersect	dxdy	20	57	0.64
intersect	dxdy	30	55	0.61
intersect	dxdy	40	56	0.62
intersect	dxdy	50	57	0.64

Distance	Histogram	Number	Correct	Recognition
\mathbf{type}	type	of bins	matches	rate
chi2	grayvalue	10	42	0.47
chi2	grayvalue	20	37	0.41
chi2	grayvalue	30	38	0.42
chi2	grayvalue	40	35	0.39
chi2	grayvalue	50	33	0.37
chi2	rgb	10	60	0.67
chi2	rgb	20	48	0.53
chi2	rgb	30	38	0.42
chi2	rgb	40	34	0.38
chi2	rgb	50	30	0.33
chi2	rg	10	53	0.59
chi2	rg	20	51	0.57
chi2	rg	30	42	0.47
chi2	rg	40	40	0.44
chi2	rg	50	35	0.39
chi2	dxdy	10	42	0.47
chi2	dxdy	20	44	0.49
chi2	dxdy	30	40	0.44
chi2	dxdy	40	38	0.42
chi2	dxdy	50	36	0.40

So, we can see that the best recognition rate is obtained using the intersect function to compare the distance between histograms, which are created using all the three rgb channels and with 30 as the number of bins.

In the Figure 3 we can see the matches produced by the previous parameters.

Figure 3: Results of the matches using the best parameters

From the results we can observe that with the greyvalue histogram type the performance are pretty bad since it's the one that uses the least amount of informations. With the DxDy histogram type we get acceptable performance only when used with the intersect distance.

Finally, the RG and RGB histogram types have a similar trend: they perform well with the intersect measure and only in particolar cases with the other distance types, but the more complexity of the RGB histogram type produces better results.

Question 4.b

From the plots we can see that the greyvalue and dxdy histogram types are the worst, since the ideal curve will have a high recall and precision. Instead, the rg and rgb curves seems to have the same trend so we plotted an in detail comparison in the Figure 5 where we can confirm that the two histogram types are similar.

Figure 4: RP curve for each histogram type and 30 as number of bins

Figure 5: Comparison of the RP curve of the rg and rgb histogram type in the Figure 4