()()()

015

047

049

041

054

Decentralized Online Learning: Exchanging Local Models to Track Dynamics

Anonymous Authors¹

Abstract

In this paper, we consider online learning in the decentralized setting, which is motivated by the application scenario where users want to take benefits from the data from other users, but do not want to share their private data to a third party or other users. Instead, they can only share their private prediction model, e.g., recommendation model. We study the decentralized online gradient method in which each user maintains a private model and share its private model with its neighbors (or users he/she trusts) periodically. In addition, to consider more practical scenario we allow users' interest changing over time (it means that the optimal model changes over time), unlike most online works which assume that the optimal prediction model is constant. We show that decentralized online gradient (DOG) can efficiently and effectively propagate the values in all private data without sharing them to track the dynamics of users' interest, by proving a tight dynamic regret $\mathcal{O}\left(n\sqrt{TMG}+\sqrt{nTM}\sigma\right)$ for DOG where n is the number of users, T is the number of time steps, M measures the dynamics (this is, how much the users' interest changes over time), G measures the magnitude of the adversarial component in the private data, and σ measures the randomness of the private data. Empirical studies are also conducted to validate our analysis. This study indicates the possibility of a new framework of data service: all users can take benefit from their private data without sharing them.

1. Introduction

Online learning has been studied for decades of years in machine learning literatures (????????). The goal of online learning generally is to incrementally learn predictions

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

models to minimize the sum of all the online loss functions (cumulative loss), which is usually determined by a squence of examples that arrives sequentially. To quantify the efficacy of an online learning algorithm, the community introduced a performance measure called static regret, which is the difference between the cumulative losses suffered by the online algorithm and that suffered by the best model which can observe all the loss functions. The best static regret of a sequential online convex optimization method is $\mathcal{O}\left(\sqrt{T}\right)$ and $\mathcal{O}\left(\log T\right)$ for convex and strongly convex loss functions, respectively (???).

Different from traditional online learning, online learning in decentralized networks (or Decentralized Online Learning) assumes that a network of computational nodes can communicate between neighors to solve an online learning problem, in which each computational node will receive a stream of online losses. Suppose we have n workers, among which the *i*-th one will receive the *t*-th loss $f_{i,t}$ at the *t*-th iteration. Then, the goal of Decentralized Online Learning usually is to minimize its static regret, which is defined as the difference between the cumulative loss over all the nodes and steps and that of the best model which knows all the loss function beforehand; Decentralized Online Learning enjoys many advantages for real-world large-scale applications. Firstly, it avoid collecting all the loss functions to one node, which will result in heavy communication cost for the network and extremely high computational cost for one node. Secondly, it can help many data providers collaborate to better minimize their cumulative loss, while at the same time protect the data privacy as much as possible.

The static regret assumes that the best model keeps unchaged during the entire learning process, however this does not hold in some real applications. For example, one's favorite style of musics may change over time as his/her situation. To solve this issue, the dynamic regret is introduced, which generally measure the different between the cumulative loss suffered by the decentralized online learning algorithm and that suffered by a dynamic sequence of models. This dynamic sequence of models can not only observe all the loss functions beforehand, but also changes over time with the amount of changes less than a budget. In this paper, we mainly prove that decentralized online gradient can achieve a dynamic regret of $\mathcal{O}\left(n\sqrt{TM}+\sqrt{nTM}\sigma\right)$ where n is

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

058 059 060

068

069

070

075

081

084

109

the number of users, T is the number of time steps, M measures the dynamics budget, and σ measures the randomness of the private data.

Notations and definitions In the paper, we make the following notations.

• For any $i \in [n]$ and $t \in [T]$, the random variable $\xi_{i,t}$ is subject to a distribution $D_{i,t}$, that is, $\xi_{i,t} \sim D_{i,t}$. Besides, a set of random variables $\Xi_{n,T}$ and the corresponding set of distributions are defined by

$$\Xi_{n,T} = \{\xi_{i,t}\}_{1 \le i \le n, 1 \le t \le T}, \text{ and } \mathcal{D}_{n,T} = \{D_{i,t}\}_{1 \le t \le T},$$

respectively. For math brevity, we use the notation $\Xi_{n,T} \sim \mathcal{D}_{n,T}$ to represent that $\xi_{i,t} \sim D_{i,t}$ holds for any $i \in [n]$ and $t \in [T]$. \mathbb{E} represents mathematical expectation.

- For a decentralized network, we use $\mathbf{W} \in \mathbb{R}^{n \times n}$ to represent its confusion matrix. It is a symmetric doublely stochastic matrix, which implies that every element of W is non-negative, W1 = 1, and $1^TW = 1^T$. We use $\{\lambda_i\}_{i=1}^n$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ to represent its eigenvalues.
- ∇ represents gradient operator. $\|\cdot\|$ represents the ℓ_2 norm in default.
- \(\simeq \text{represents "less than equal up to a constant factor".} \)
- A represents the set of all online algorithms.

2. Related work

Online learning has been studied for decades of years. The static regret of a sequential online convex optimization method can achieve $\mathcal{O}\left(\sqrt{T}\right)$ and $\mathcal{O}\left(\log T\right)$ bounds for convex and strongly convex loss functions, respectively (???). Recently, both the decentralized online learing and the dynamic regret have drawn much attention due to their wide existence in the practical big data scenarios.

2.1. Decentralized online learning

Online learning in a decentralized network has been studied in (?????????). ? studies decentralized online mirror descent, and provides $\mathcal{O}\left(n\sqrt{nTM}\right)$ dynamic regret. Here, n, T, and M represent the number of nodes in the newtork, the number of iterations, and the budget of dynamics, respectively. When the Bregman divergence in the decentralized online mirror descent is chosen appropriately, the decentralized online mirror descent becomes identical to the decentralized online gradient descent. Using the same definition of dynamic regret (defined in (??)), our method

obtains $\mathcal{O}\left(n\sqrt{TM}\right)$ dynamic regret for a decentralized online gradient descent, which is better than $\mathcal{O}\left(n\sqrt{nTM}\right)$ in?. The improvement of our bound benefits from a better bound of network error (see Lemma ??). ? studies decentralized online prediction, and presents $\mathcal{O}\left(\sqrt{nT}\right)$ static regret. It assumes that all data, used to yielded the loss, is generated from an unknown distribution. The strong assumption is not practical in the dynamic environment, and thus limits its novelity for a general online learning task. Additionally, many decentralized online optimization methods are proposed, for example, decentralized online multi-task learning (?), decentralized online ADMM (?), decentralized online gradient descent (?), decentralized continuous-time online saddle-point method (?), decentralized online Nesterov's primal-dual method (??), and online distributed dual averaging(?). Those previous methods are proved to yield $\mathcal{O}\left(\sqrt{T}\right)$ static regret, which do not have theoretical guarantee of regret in the dynamic environment. Besides, ? provides necessary and sufficient conditions to preserve privacy for decentralized online learning methods, which is interesting to extend our method to be privacy-preserving in the future work.

2.2. Dynamic regret

Dynamic regret has been widely studied for decades of years (?????????). For any an online algorithm $A \in \mathcal{A}$, ? first define the dynamic regret \mathcal{R}_T^A by

$$\widetilde{\mathcal{R}}_T^A := \sum_{t=1}^T \left(f_t(\mathbf{x}_{i,t}) - f_t(\mathbf{x}_t^*) \right), \tag{1}$$

subject to $\sum_{t=1}^{T-1} \|\mathbf{x}_{t+1}^* - \mathbf{x}_t^*\| \leq M$. They then propose an online gradient descent method, which yields $\mathcal{O}\left(\sqrt{TM} + \sqrt{T}\right)$ regret by choosing an appropriate learning rate. The following researches achieve the sublinear dynamic regret, but extend the analysis of regret by using different reference points. For example, ?? choose the reference points $\{\mathbf{x}_t^*\}_{t=1}^T$ satisfying $\sum_{t=1}^{T-1} \|\mathbf{x}_{t+1}^* - \Phi(\mathbf{x}_t^*)\| \le M$, where $\Phi(\mathbf{x}_t^*)$ is the predictive optimal modelmodel. When the function Φ predicts accurately, a small M is enough to bound the dynamics. The dynamic regret is thus effectively decreased. ?????? chooses the reference points $\{\mathbf{y}_t^*\}_{t=1}^T$ with $\mathbf{y}_t^* = \operatorname{argmin}_{\mathbf{z} \in \mathcal{X}} f_t(\mathbf{z})$, where f_t is the loss function at the t-th iteration. ? provides a new analysis framework, which achieves $\mathcal{O}\left(\sqrt{TM} + \sqrt{T}\right)$ dynamic regret1 for any given reference points. Besides, ? presents that the lower bound of the dynamic regret is $\Omega\left(\sqrt{TM} + \sqrt{T}\right)$.

^{1?} uses the notation of "shifting regret" instead of "dynamic regret". In the paper, we keep using "dynamic regret" as used in most previous literatures.

The previous definition of the regret, i.e., (??), is a special case of our new definition. Our analysis achieves the tight regret $\mathcal{O}\left(\sqrt{TM}+\sqrt{T}\right)$ for the case of n=1.

In some literatures, the regret in a dynamic environment is measured by the number of changes of a reference point over time. It is usually denoted by shifting regret or tracking regret (?????????). Both the shifting regret and the tracking regret can be considered as a variation of the dynamic regret, and is usually studied in the setting of "learning with expert advice". But, the dynamic regret is usually studied in a general setting of online learning.

3. Problem formulation

Suppose that there are n users. Each user maintains a local predictive model, and only talk to his/her neighbors. Let $\mathbf{x}_{i,t}$ denote the local model for user i at iteration t. In iteration t user i applies the local model $\mathbf{x}_{i,t}$ to a function $f_{i,t}(\cdot;\xi_{i,t})$ and receives the loss $f_{i,t}(\cdot;\xi_{i,t})$. $\xi_{i,t}$'s are independent to each other in terms of i and t, charactering the random component in the function $f_{i,t}(\cdot;\xi_{i,t})$, while the subscripts i and t of f (as well ξ) indicate the adversarial component, for example, the user's profile, location, local time, and etc. The random component in the function is usually To Peilin: please provide some examples here.

Communication network. Users do not want to share the information to others and can only share their private models to their neighbors (or friends). The graph is denoted by $\mathcal{G} = (\text{nodes:}[n], \text{edges:}E)$. Chen: please use this notation to define the confusion matrix in next section.

Dynamic regret. The commonly used regret used in online learning is *static*:

$$\widetilde{\mathcal{R}}_{T}^{A} := \mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \left[\sum_{i=1}^{n} \sum_{t=1}^{T} \left(f_{i,t}(\mathbf{x}_{i,t}) - f_{i,t}(\mathbf{x}^{*}) \right) \right], \quad (2)$$

where the optimal model \mathbf{x}^* is defined by It essentially assumes that the optimal model would not change over time. However, in many practical online learning application scenarios, the optimal model may evolve over time. For example, when we want to conduct music recommendation to a user, user's preference to music may change over time as his/her situation. Thus, the optimal model \mathbf{x}^* should change over time. It leads to the dynamics of the optimal recommendation model. Therefore, for any an online algorithm $A \in \mathcal{A}$, we choose to use the *dynamic* regret as the metric:

$$\mathcal{R}_T^A := \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \left[\sum_{i=1}^n \sum_{t=1}^T f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right]$$

$$-\min_{\{\mathbf{x}_t^{\star}\}_{t=1}^T \in \mathcal{L}_M^T} \mathbb{E}_{n,T} \left[\sum_{i=1}^n \sum_{t=1}^T f_{i,t}(\mathbf{x}_t^{\star}; \xi_{i,t}) \right],$$
(3)

where \mathcal{L}_{M}^{T} is defined by

$$\mathcal{L}_{M}^{T} = \left\{ \{ \mathbf{z}_{t} \}_{t=1}^{T} : \sum_{t=1}^{T-1} \| \mathbf{z}_{t+1} - \mathbf{z}_{t} \| \leq M \right\}.$$

 \mathcal{L}_M^T restricts how much the optimal model may change over time. When M=0, the dynamic regret degenerates to the static regret.

4. Decentralized online gradient (DOG) algorithm

In the section, we introduce the DOG algorithm, followed by the analysis for the dynamic regret.

4.1. Algorithm description

Algorithm 1 DOG: Decentralized Online Gradient method.

Require: Learning rate η , number of iterations T, and the confusion matrix W.

- 1: Initialize $\mathbf{x}_{i,1} = \mathbf{0}$ for all $i \in [n]$.
- 2: **for** t = 1, 2, ..., T **do**
- 3: // For all users (say the *i*-th node $i \in [n]$)
- 4: Query the neighbors' local models $\{\mathbf{x}_{j,t}\}_{j\in \text{user }i\text{'s neighbor set}};$
- 5: Observe the loss function $f_{i,t}$, and suffer loss $f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})$.
- 6: Query the gradient $\nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})$
- 7: Update the local model by

$$\mathbf{x}_{i,t+1} = \sum_{i=1}^{n} \mathbf{W}_{i,j} \mathbf{x}_{j,t} - \eta \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).$$

8: end for

In the DOG algorithm, users exchange their local models periodically. In each iteration, each user runs the following steps:

- (Query) Query the local models from his/her all neighbors:
- (**Gradient**) Apply the local model to $f_{i,t}(\cdot; \xi_{i,t})$ and obtain the gradient;
- (**Update**) Update the local model by taking average with neighbors' models followed by a gradient step.

The detailed description of the DOG algorithm can be found in Algorithm ??. W is the confusion matrix. To Chen and Yawei, explain W appropriately.

4.2. Dynamic regret of DOG

Next we show the dynamic regret of DOG in the following. Before that, we first make some common assumption used in our analysis.

$$F_{i,t}(\cdot) := \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} f_{i,t}(\cdot; \xi_{i,t}).$$

Assumption 1. We make following assumptions throughout this paper:

• For any $i \in [n]$, $t \in [T]$, and \mathbf{x} , there exist constants G and σ^2 such that

$$\mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \left\| \nabla f_{i,t}(\mathbf{x}; \xi_{i,t}) \right\|^2 \leq G^2,$$

and

$$\mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \left\| \nabla f_{i,t}(\mathbf{x}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}) \right\|^2 \le \sigma^2.$$

- For given vectors \mathbf{x} and \mathbf{y} , we assume $\|\mathbf{x} \mathbf{y}\|^2 \leq R$.
- For any $i \in [n]$ and $t \in [T]$, we assume the function $f_{i,t}$ is convex, and has L-Lipschitz gradient.
- The confusion matrix **W** is symmetric and doubly stochastic. Let ρ be $\rho := \max\{|\lambda_2(\mathbf{W})|, |\lambda_n(\mathbf{W})|\}$ and assume $\rho < 1$.

G essentially gives the upper bound for the adversarial component in $f_{i,t}(\cdot;\xi_{i,t})$. The random component is bounded by σ^2 . Note that if there is no random component, G is nothing but the upper bound of the gradient like the setting in many online learning literature. It is important for our analysis to split these two components, which will be clear very soon.

The last assumption about W is an essential assumption for the decentralized setting. The largest eigenvalue for a doubly stochastic matrix is 1. $1-\rho$ is the spectral gap, measuring how fast the information can propagate within the network (the larger the faster).

Now we are ready present the dynamic regret for DOG.

Theorem 1. Let the constant C be

$$C := \frac{L + 2\eta L^2 + 4L^2\eta}{(1-\rho)^2} + 2L.$$

Choosing $\eta > 0$ in Algorithm ??, under Assumption ?? we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_{t}^{*}; \xi_{i,t})$$

$$\leq 20\eta T nG + \eta T \sigma^{2} + C nT \eta^{2} G + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right).$$

By choosing an approximate learning rate η , we obtain sublinear regret as follows.

Corollary 1. Using Assumption ??, and choosing

$$\eta = \sqrt{\frac{(1 - \rho)\left(nM\sqrt{R} + nR\right)}{nTG + T\sigma^2}}$$

in Algorithm ??, we have

$$\mathcal{R}_{T}^{\text{DOG}} \tag{4}$$

$$\lesssim n\sqrt{T\left(M+\sqrt{R}\right)G} + \sqrt{nT\left(M+\sqrt{R}\right)\sigma^{2}} + \frac{n\left(M+\sqrt{R}\right)}{1-\rho} + \sqrt{\frac{T\left(M+\sqrt{R}\right)(n^{2}G+n\sigma^{2})}{1-\rho}}.$$

For simpler discussion, let us treat R, G, and $1-\rho$ as constants. The dynamic regret can simplified into $O(n\sqrt{MT}G+\sqrt{nMT}\sigma)$. If M, the dynamic regret degenerates the static regret $O(n\sqrt{T}G+\sqrt{nT}\sigma)$. The discussion for the dynamic regret is conducted in the following

- (**Tightness**) To see the tightness, we consider a few special cases:
 - $(\sigma = 0 \text{ and } n = 1)$ It degenerates to the vanilla online learning setting but with dynamic regret. The implied static regret $O(\sqrt{TM}G)$ is consistent with the dynamic regret result in ?, which is proven to be optimum.
 - (G=0 and M=0) It degenerates to the decentralized optimization scenario? The static regret $O(\sqrt{nT}\sigma)$ implies the convergence rate σ/\sqrt{nT} , which is consistent with the result in?
 - probably more.
- (Insight) Consider the baseline that all users do not communicate but only run local online gradient. It is not hard to see that the static regret for this baseline approach is $O(n\sqrt{T}G+n\sqrt{T}\sigma)$. Recall that G measures the magnitude of the adversarial component and σ measures the random component.
- (Improve)
- (Improve)

First, Corollary $\ref{eq:corollary:eq:corol$

When <1, the regret $\mathcal{R}_T^{\rm DOG}$ has $\sqrt{nTM\sigma^2}$ dependence on 220 221 σ^2 , instead of $\sqrt{n^2TM\sigma^2}$. It benefits from the communica-222 tion among nodes in the decentralized setting. Since every 223 node shares its model with its neighbours, the variance of 224 the average of stochastic gradients $\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})$ 225 is decreased to be $\frac{\sigma^2}{n}$, thus eventually reducing the regret 226 caused by the stochastic part of data. Additionally, the re-227 gret is affected by the topology of the network, which is 228 measured by ρ with $0 \le \rho < 1$. For a fully connected net-229 work², $\rho = 0$, then the regret is better than those for other 230 topologies. 231 232 4.3. Discussions with previous work 233 234 **Dependence on** n. ? investigates the dynamic regret \mathcal{R}_T^{DOG} 235 236 237 238

239

240

241 242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

259

261

262

263

264

265

266

267

269

270

271

272

273

274

by using DOG, and provide the following sublinear regret. Theorem 2 (Implied by Theorem 3 and Corollary 4 in ?). Use Assumption ??, and choose $\eta = \sqrt{\frac{(1-\rho)M}{T}}$ in Algorithm \ref{loop} . The dynamic regret $\widetilde{\mathcal{R}}_T^{DOG}$ is bounded by $\mathcal{O}\left(n^{\frac{3}{2}}\sqrt{\frac{MT}{1-\rho}}\right).$

As illustrated in Theorem ??, ? has provided a $\mathcal{O}\left(n\sqrt{nTM}\right)$ regret for DOG by using the previous dynamic regret defined in (??). Compared with the result in ?, our regret enjoys the state-of-the-art dependence on T and M, and meanwhile improves the dependence on n. This improvement is achieved by a better bound on the difference between $\mathbf{x}_{i,t}$ and $\bar{\mathbf{x}}_t^3$.

Lemma 1. Using Assumption ??, and setting $\eta > 0$ in Algorithm ??, we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \le \frac{nT\eta^{2}G}{(1-\rho)^{2}}.$$

Dependence on σ^2 . Previous researches (???) view all data as the adversary data, ignoring the potential relations among local models. They usually assume gradient of the loss function $\nabla f_{i,t}$ is bounded, e.g., $\|\nabla f_{i,t}(\mathbf{x}; \zeta_{i,t}, \xi_{i,t})\|^2 \leq G$, which implies $\|\nabla h_t(\mathbf{x}; \xi_{i,t})\|^2 \leq G$, and $\mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \|\nabla h_t(\mathbf{x}; \xi_{i,t})\|^2 \leq \sigma^2 + G$ according to Lemma ??.

Lemma 2. Assume $\|\nabla h_t(\mathbf{x}; \xi_{i,t})\|^2 \leq G$. It implies

$$\mathbb{E}_{\xi_{i,t} \sim D_{i,t}} \|\nabla h_t(\mathbf{x}; \xi_{i,t})\|^2 \le \sigma^2 + G.$$

Using this assumption in previous analysis frameworks, the regret $\mathcal{R}_T^{\mathrm{DOG}}$ has the same dependence on both G and σ^2

Figure 1. An illustration of the dynmaics caused by the timevarying distributions of data. Data distributions 1 and 2 satisify $N(1+\sin(t),1)$ and $N(-1+\sin(t),1)$, respectively. Suppose we want to conduct classification between data drawn from distributions 1 and 2, respectively. The optimal classification model should change over time.

even in the static environment. However, our new analysis shows that the regret \mathcal{R}_T^{DOG} has $\sqrt{n\sigma^2}$ dependence on σ^2 , and $\sqrt{n^2G}$ dependence on G. The reason is that the variance of the average of stochastic gradients, i.e., $\nabla h_t(\cdot, \xi_{i,t})$ with $i \in [n]$, is decreased effectively when every node shares its local model to others.

5. Empirical studies

For simplicity, in the experiments we only consider online logistic regression with squared ℓ_2 norm regularization, i.e., $f_{i,t}(\mathbf{x}; \xi_{i,t}) = \log \left(1 + \exp(-\mathbf{y}_{i,t}\mathbf{A}_{i,t}^{\mathrm{T}}\mathbf{x})\right) + \frac{\gamma}{2} \|\mathbf{x}\|^2$, where $\gamma = 10^{-3}$ is a given hyper-parameter. Under this setting, we compare the proposed Decentralized Online Gradient method (DOG) and the Centralized Online Gradient method (COG).

M is fixed as 10 to determine the space of reference points. The learning rate η is tuned to be optimal for each dataset sperately. We evaluate the learning performance by measuring the average loss $\frac{1}{nT}\sum_{i=1}^{n}\sum_{t=1}^{T}f_{i,t}(\mathbf{x}_{i,t};\xi_{i,t})$, instead of the dynamic regret $\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{i=1}^{n} \sum_{t=1}^{T} (f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_{t}^{*})),$ since the optimal reference point $\{\mathbf{x}_{t}^{*}\}_{t=1}^{T}$ is the same for both DOG and COG.

5.1. Datasets

To test the proposed algorithm, we utilized a toy dataset and three real-world datasets, whose details are presented as follows.

Synthetic Data For the *i*-th node, a data matrix $A_i \in$ $R^{10\times T}$ is generated, s.t. $\mathbf{A}_i = 0.1\tilde{\mathbf{A}}_i + 0.9\hat{\mathbf{A}}_i$, where $\tilde{\mathbf{A}}_i$ represents the adversary part of data, and $\hat{\mathbf{A}}_i$ represents the stochastic part of data. Specifically, elements of A_i is uniformly sampled from the interval $[-0.5 + \sin(i), 0.5 +$ $\sin(i)$]. Note that $\tilde{\mathbf{A}}_i$ and $\tilde{\mathbf{A}}_j$ with $i \neq j$ are drawn from different distributions. $\hat{\mathbf{A}}_{i,t}$ is generated according to $\mathbf{y}_{i,t} \in \{1,-1\}$ which is generated uniformly. When

²When a network is fully connected, a decentralized method de-generates to a centralized method.

³? denotes $\|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_t\|$ by "network error".

Figure 2. The average loss yielded by DOG is comparable to that yielded by COG.

 $\mathbf{y}_{i,t}=1$, $\hat{\mathbf{A}}_{i,t}$ is generated by sampling from a time-varying distribution $N((1+0.5\sin(t))\cdot\mathbf{1},\mathbf{I})$. When $\mathbf{y}_{i,t}=-1$, $\hat{\mathbf{A}}_{i,t}$ is generated by sampling from another time-varying distribution $N((-1+0.5\sin(t))\cdot\mathbf{1},\mathbf{I})$. Due to this correlation, $y_{i,t}$ can be considered as the label of the instance $\hat{\mathbf{A}}_{i,t}$. The above dynamics of time-varying distributions are illustrated in Figure ??, which shows the change of the optimal learning model over time and the importance of studying the dynamic regret.

Real Data Three real public datasets are *room-occupancy*⁴, *usenet2*⁵, and *spam*⁶. *room-occupancy* is a time-series dataset, which is from a natural dynamic environment. Both *usenet2* and *spam* are "concept drift" (?) datasets, for which the optimal model changes over time. Before conducting experiments, we conduct clustering for all instances, and then place all the instances within a cluster in a node to guarantee the distribution of instances for every node is different.

5.2. Results

First, Figure ?? summarizes the performance of DOG compared with COG on all the datasets. For the synthetic dataset, we simulated a decentralized network consisting of 10000 nodes, where every node is randomly connected with other 15 nodes. For the three real datasets, we simulated a network consisting of 5 nodes. In these networks, the nodes are connected by a ring topology. Under these settings, we can observe that both DOG and COG are effective for the online learning tasks on all the datasets, while DOG achieves slightly worse performance.

Second, Figure ?? summarizes the effect of the network size on the performance of DOG. We change the number of nodes from 5000 to 10000 on the synthetic dataset, and from 5 to 20 on the real datasets. The synthetic dataset is

	ρ	NC	FC	Ring	WS(1)	Ws(0.5)
٠	synthetic data	1	0	0.99	0.37	0.58
	real data	1	0	0.96	0.83	0.76

Table 1. ρ in different topologies used in our experiment. "NC" represents the *No connected* topology, "FC" represents the *Fully connected* topology, and "WS" represents the *WattsStrogatz* topology.

tested by using the random topology, and those real datasets are tested by using the ring topology. Figure ?? draws the curves of average loss over time steps. We observe that the average loss curves are mostly overlapped with different nodes. It shows that DOG is robust to the network size (or number of users), which validates our theory, that is, the average regret does not increase with the number of nodes. Furthermore, we observe that the average loss becomes large with the increase of the variance of stochastic data, which validates our theoretical result nicely.

Third, Figure ?? shows the effect of the topology of the network on the performance of DOG, where five different topologies are used. Besides the ring topology, the *No connected* topology means there are no edges in the network, and every node does not share its local model to others. The *Fully connected* topology means all nodes are connected, where DOG de-generates to be COG. The topology *WattsStrogatz* represents a Watts-Strogatz small-world graph, for which we can use a parameter to control the number of random edges (set as 0.5 and 1 in this paper). The result shows *Fully connected* enjoys the best performance, because that $\rho=0$ for it while $\rho>0$ for other topologies. Specifically, ρ in those topologies is presented in Table ??. A small ρ leads to a good performance of DOG, which validates our theoretical result nicely.

6. Conclusion

We investigate a new online learning problem in a decentralized network, where the loss incurs by both adversary and stochastic data. We provide a new analysis framework,

⁴https://archive.ics.uci.edu/ml/datasets/
Occupancy+Detection+

⁵http://mlkd.csd.auth.gr/concept_drift. html

⁶http://mlkd.csd.auth.gr/concept_drift. html

Figure 3. The average loss yielded by DOG is insensitive to the network size.

Figure 4. The average loss yielded by DOG is insensitive to the topology of the network.

which achieves sublinear regret. Extensive empirical studies varify the theoretical result.

References

- D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk. A closer look at adaptive regret. *Journal of Machine Learning Research*, 17(23):1–21, 2016.
- M. Akbari, B. Gharesifard, and T. Linder. Distributed online convex optimization on time-varying directed graphs. *IEEE Transactions on Control of Network Systems*, 4(3): 417–428, Sep. 2017.
- F. Bach and V. Perchet. Highly-Smooth Zero-th Order Online Optimization Vianney Perchet. arXiv.org, May 2016.
- A. S. Bedi, P. Sarma, and K. Rajawat. Tracking moving agents via inexact online gradient descent algorithm. *IEEE Journal of Selected Topics in Signal Processing*, 12 (1):202–217, Feb 2018.
- A. A. Benczúr, L. Kocsis, and R. Pálovics. Online Machine Learning in Big Data Streams. *CoRR*, 2018.
- S. Bubeck. Introduction to online optimization, December 2011.
- N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz. Mirror Descent Meets Fixed Share (and feels no regret). In *NIPS* 2012, page Paper 471, 2012.

- N. Chen, G. Goel, and A. Wierman. Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent. *arXiv.org*, Mar. 2018.
- A. György and C. Szepesvári. Shifting regret, mirror descent, and matrices. In *Proceedings of the 33rd International Conference on International Conference on Machine Learning Volume 48*, ICML'16, pages 2943–2951. JMLR.org, 2016.
- A. György, T. Linder, and G. Lugosi. Tracking the Best of Many Experts. *Proceedings of Conference on Learning Theory (COLT)*, 2005.
- A. Gyorgy, T. Linder, and G. Lugosi. Efficient tracking of large classes of experts. *IEEE Transactions on Information Theory*, 58(11):6709–6725, Nov 2012.
- E. C. Hall and R. Willett. Dynamical Models and tracking regret in online convex programming. In *Proceedings of International Conference on International Conference on Machine Learning (ICML)*, 2013.
- E. C. Hall and R. M. Willett. Online Convex Optimization in Dynamic Environments. *IEEE Journal of Selected Topics in Signal Processing*, 9(4):647–662, 2015.
- E. Hazan. Introduction to online convex optimization. *Foundations and Trends in Optimization*, 2(3-4):157–325, 2016.

M. Herbster and M. K. Warmuth. Tracking the best expert.
 Machine Learning, 32(2):151–178, Aug 1998.

387

388

389

390

395

396

397

398

399

400

401

402

403

404

405

406 407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433 434

435

436

437

438

439

- N. Ho-Nguyen and F. Kilinc-Karzan. Exploiting Problem Structure in Optimization under Uncertainty via Online Convex Optimization. *arXiv.org*, (3):741–35, Sept. 2017.
- S. Hosseini, A. Chapman, and M. Mesbahi. Online distributed optimization via dual averaging. In *52nd IEEE Conference on Decision and Control*, pages 1484–1489, Dec 2013.
- A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan. Online Optimization: Competing with Dynamic Comparators. In *Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS)*, pages 398–406, 2015.
- K.-S. Jun, F. Orabona, S. Wright, and R. Willett. Improved strongly adaptive online learning using coin betting. In A. Singh and J. Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 54, pages 943–951, 20–22 Apr 2017.
- M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Sharfman. Communication-efficient distributed online prediction by dynamic model synchronization. In *Proceedings of the 2014th European Conference on Machine Learning and Knowledge Discovery in Databases Volume Part I*, ECMLPKDD'14, pages 623–639, Berlin, Heidelberg, 2014. Springer-Verlag.
- I. Katakis, G. Tsoumakas, and I. Vlahavas. Tracking recurring contexts using ensemble classifiers: An application to email filtering. *Knowledge and Information Systems*, 22(3):371–391, 2010.
- A. Koppel, S. Paternain, C. Richard, and A. Ribeiro. Decentralized online learning with kernels. *IEEE Transactions on Signal Processing*, 66(12):3240–3255, June 2018.
- S. Lee, A. Ribeiro, and M. M. Zavlanos. Distributed continuous-time online optimization using saddle-point methods. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 4314–4319, Dec 2016.
- S. Lee, A. Nedić, and M. Raginsky. Coordinate dual averaging for decentralized online optimization with nonseparable global objectives. *IEEE Transactions on Control of Network Systems*, 5(1):34–44, March 2018.
- M. Mohri and S. Yang. Competing with automata-based expert sequences. In A. Storkey and F. Perez-Cruz, editors, *Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics*, volume 84, pages 1732–1740, 09–11 Apr 2018.

- A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro. Online optimization in dynamic environments: Improved regret rates for strongly convex problems. In *Proceedings of IEEE Conference on Decision and Control (CDC)*, pages 7195–7201. IEEE, 2016.
- J. Mourtada and O.-A. Maillard. Efficient tracking of a growing number of experts. *arXiv.org*, Aug. 2017.
- A. Nedić, S. Lee, and M. Raginsky. Decentralized online optimization with global objectives and local communication. In *2015 American Control Conference (ACC)*, pages 4497–4503, July 2015.
- M. J. Neely and H. Yu. Online Convex Optimization with Time-Varying Constraints. *arXiv.org*, Feb. 2017.
- F. Orabona, J. Luo, and B. Caputo. Multi Kernel Learning with Online-Batch Optimization. *Journal of Machine Learning Research*, 2012.
- S. Paternain and A. Ribeiro. Online Learning of Feasible Strategies in Unknown Environments. *arXiv.org*, Apr. 2016.
- S. Shahrampour and A. Jadbabaie. Distributed online optimization in dynamic environments using mirror descent. *IEEE Transactions on Automatic Control*, 63(3):714–725, March 2018.
- S. Shalev-Shwartz. Online Learning and Online Convex Optimization. *Foundations and Trends*® *in Machine Learning*, 4(2):107–194, 2012.
- H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication Compression for Decentralized Training. arXiv.org, Mar. 2018.
- C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Tracking the best expert in non-stationary stochastic environments. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, *Proceedings of Advances in Neural Information Processing Systems*, pages 3972–3980, 2016.
- H.-F. Xu, Q. Ling, and A. Ribeiro. Online learning over a decentralized network through admm. *Journal of the Operations Research Society of China*, 3(4):537–562, Dec 2015.
- F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi. Distributed autonomous online learning: Regrets and intrinsic privacy-preserving properties. *IEEE Transactions on Knowledge and Data Engineering*, 25(11):2483–2493, Nov 2013.
- T. Yang, L. Zhang, R. Jin, and J. Yi. Tracking Slowly Moving Clairvoyant - Optimal Dynamic Regret of Online Learning with True and Noisy Gradient. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*, 2016.

C. Zhang, P. Zhao, S. Hao, Y. C. Soh, B. S. Lee, C. Miao,
 and S. C. H. Hoi. Distributed multi-task classification: a
 decentralized online learning approach. *Machine Learning*, 107(4):727–747, Apr 2018a.

- L. Zhang, T. Yang, J. Yi, R. Jin, and Z.-H. Zhou. Improved Dynamic Regret for Non-degenerate Functions. In *Proceedings of Neural Information Processing Systems (NIPS)*, 2017a.
- L. Zhang, T. Yang, rong jin, and Z.-H. Zhou. Dynamic regret of strongly adaptive methods. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, pages 5882–5891, 10–15 Jul 2018b.
- W. Zhang, P. Zhao, W. Zhu, S. C. H. Hoi, and T. Zhang. Projection-free distributed online learning in networks. In D. Precup and Y. W. Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, pages 4054–4062, International Convention Centre, Sydney, Australia, 06–11 Aug 2017b.
- Y. Zhao, S. Qiu, and J. Liu. Proximal Online Gradient is Optimum for Dynamic Regret. *CoRR*, cs.LG, 2018.
- M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of Interna*tional Conference on Machine Learning (ICML), pages 928–935, 2003.

Appendix

Proof to Theorem ??:

Proof. From the regret definition, we have

$$\mathbb{E}_{n,t} \sim \mathcal{D}_{n,t} \frac{1}{n} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_{t}^{*}; \xi_{i,t})$$

$$\leq \mathbb{E}_{\mathbf{\Xi}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} \langle \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \mathbf{x}_{t}^{*} \rangle$$

$$= \mathbb{E}_{\mathbf{\Xi}_{n,t} \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^{n} (\langle \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \rangle + \langle \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \rangle)$$

$$= \mathbb{E}_{\mathbf{\Sigma}_{n,t} \sim \mathcal{D}_{n,t}} \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle.$$

$$= \mathbb{E}_{\mathbf{\Sigma}_{n,t} \sim \mathcal{D}_{n,t}} \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle.$$

Now, we begin to bound $I_1(t)$.

$$I_1(t) = \left(\underbrace{\mathbb{E}_{n,t \sim \mathcal{D}_{n,t}} \frac{1}{n} \sum_{i=1}^n \left\langle \nabla f_{i,t}(\mathbf{x}_{i,t}; \boldsymbol{\xi}_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_t \right\rangle}_{J_1(t)} + \underbrace{\mathbb{E}_{n,t \sim \mathcal{D}_{n,t}} \left\langle \frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \boldsymbol{\xi}_{i,t}), \bar{\mathbf{x}}_t - \bar{\mathbf{x}}_{t+1} \right\rangle}_{J_2(t)}\right).$$

For $J_1(t)$, we have

$$J_{1}(t)$$

$$= \frac{1}{n} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$= \frac{1}{n} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \frac{1}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$= \frac{1}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\langle \nabla F_{i,t}(\mathbf{x}_{i,t}) - \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle + \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$\stackrel{\text{\tiny C}}{\oplus} \underbrace{L}_{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2}.$$

① holds due to $F_{i,t}$ has L-Lipschitz gradients, and $\bar{\mathbf{x}}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_{i,t}$.

For $J_2(t)$, we have

$$\begin{split} &J_{2}(t) \\ &= \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\rangle \\ &\leq & \frac{\eta}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \end{split}$$

$$\leq \frac{\eta}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}) + \nabla F_{i,t}(\mathbf{x}_{i,t}) \right) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\leq \eta \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}) \right) \right\|^{2} + \eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla F_{i,t}(\mathbf{x}_{i,t}) \right\|^{2}$$

$$+ \frac{1}{2\eta} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\stackrel{\bullet}{\leq} \frac{\eta}{n} \sigma^{2} + \eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla F_{i,t}(\mathbf{x}_{i,t}) - \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) + \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\leq \frac{\eta}{n} \sigma^{2} + 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^{n} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{i,t}) - \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

$$\leq \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t,t} - \bar{\mathbf{x}}_{t} \right\|^{2} + 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}$$

(I) holds due to

$$\mathbb{E}_{\Xi_{n,t}\sim\mathcal{D}_{n,t}} \left\| \frac{1}{n} \sum_{i=1}^{n} \left(\nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}) \right) \right\|^{2}$$

$$= \frac{1}{n^{2}} \mathbb{E}_{\Xi_{n,t-1}\sim\mathcal{D}_{t-1}} \left(\sum_{i=1}^{n} \mathbb{E}_{\xi_{i,t}\sim\mathcal{D}_{i,t}} \left\| \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} \right)$$

$$+ \frac{1}{n^{2}} \mathbb{E}_{\Xi_{n,t-1}\sim\mathcal{D}_{t-1}} \left(2 \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} \left\langle \mathbb{E}_{\xi_{i,t}\sim\mathcal{D}_{i,t}} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}), \mathbb{E}_{\xi_{j,t}\sim\mathcal{D}_{j,t}} \nabla f_{i,t}(\mathbf{x}_{j,t}; \xi_{j,t}) - \nabla F_{j,t}(\mathbf{x}_{j,t}) \right\rangle \right)$$

$$= \frac{1}{n^{2}} \mathbb{E}_{\Xi_{n,t-1}\sim\mathcal{D}_{t-1}} \sum_{i=1}^{n} \mathbb{E}_{\xi_{i,t}\sim\mathcal{D}_{i,t}} \left\| \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} + 0$$

$$\leq \frac{1}{n} \sigma^{2}.$$

② holds due to $F_{i,t}$ has L Lipschitz gradients.

Therefore, we obtain

$$\begin{split} &I_{1}(t) \\ &= &(J_{1}(t) + J_{2}(t)) \\ &= \left(\frac{L}{n} \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + \frac{\eta}{n} \sigma^{2} + \frac{2\eta L^{2}}{n} \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \right) \\ &+ \left(2\eta \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2} + \frac{1}{2\eta} \mathop{\mathbb{E}}_{\Xi_{n,t} \sim \mathcal{D}_{n,t}} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2} \right) \\ &\leq \left(\frac{L}{n} + \frac{2\eta L^{2}}{n}\right) \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + 2\eta \mathop{\mathbb{E}}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2} \end{split}$$

$$+ \frac{\eta \sigma^2}{n} + \frac{1}{2\eta} \underset{\Xi_n}{\mathbb{E}} \underset{t \sim \mathcal{D}_n}{\mathbb{E}} \|\bar{\mathbf{x}}_t - \bar{\mathbf{x}}_{t+1}\|^2.$$

Therefore, we have

$$\sum_{t=1}^{T} I_{1}(t) \leq \left(\frac{L}{n} + \frac{2\eta L^{2}}{n}\right) \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2} + \frac{T\eta\sigma^{2}}{n} + \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \sum_{t=1}^{T} \|\bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1}\|^{2}.$$

Now, we begin to bound $I_2(t)$. Recall that the update rule is

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{ij} \mathbf{x}_{j,t} - \eta \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).$$

According to Lemma ??, we have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right). \tag{5}$$

Denote a new auxiliary function $\phi(\mathbf{z})$ as

$$\phi(\mathbf{z}) = \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{z} \right\rangle + \frac{1}{2\eta} \|\mathbf{z} - \bar{\mathbf{x}}_{t}\|^{2}.$$

It is trivial to verify that (??) satisfies the first-order optimality condition of the optimization problem: $\min_{\mathbf{z} \in \mathbb{R}^d} \phi(\mathbf{z})$, that is,

$$\nabla \phi(\bar{\mathbf{x}}_{t+1}) = \mathbf{0}.$$

We thus have

$$\begin{split} \bar{\mathbf{x}}_{t+1} &= \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^d} \phi(\mathbf{z}) \\ &= \operatorname*{argmin}_{\mathbf{z} \in \mathbb{R}^d} \left\langle \frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \mathbf{z} \right\rangle + \frac{1}{2\eta} \left\| \mathbf{z} - \bar{\mathbf{x}}_t \right\|^2. \end{split}$$

Furthermore, denote a new auxiliary variable $\bar{\mathbf{x}}_{\tau}$ as

$$\bar{\mathbf{x}}_{\tau} = \bar{\mathbf{x}}_{t+1} + \tau \left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1} \right),$$

where $0 < \tau \le 1$. According to the optimality of $\bar{\mathbf{x}}_{t+1}$, we have

$$\begin{split} &0 \leq \phi(\bar{\mathbf{x}}_{\tau}) - \phi(\bar{\mathbf{x}}_{t+1}) \\ &= \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{\tau} - \bar{\mathbf{x}}_{t+1} \right\rangle + \frac{1}{2\eta} \left(\left\| \bar{\mathbf{x}}_{\tau} - \bar{\mathbf{x}}_{t} \right\|^{2} - \left\| \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\|^{2} \right) \\ &= \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \tau\left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}\right) \right\rangle + \frac{1}{2\eta} \left(\left\| \bar{\mathbf{x}}_{t+1} + \tau\left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}\right) - \bar{\mathbf{x}}_{t} \right\|^{2} - \left\| \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\|^{2} \right) \\ &= \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \tau\left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}\right) \right\rangle + \frac{1}{2\eta} \left(\left\| \tau\left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}\right) \right\|^{2} + 2 \left\langle \tau\left(\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}\right), \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle \right). \end{split}$$

Note that the above inequality holds for any $0 < \tau \le 1$. Divide τ on both sides, and we have

$$I_{2}(t) = \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}), \bar{\mathbf{x}}_{t+1} - \mathbf{x}_{t}^{*} \right\rangle$$

$$\leq \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(\lim_{\tau \to 0^{+}} \tau \left\| (\mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}) \right\|^{2} + 2 \left\langle \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}, \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle \right)$$

$$= \frac{1}{\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1}, \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle$$

$$= \frac{1}{2\eta} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(\left\| \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t} \right\|^{2} - \left\| \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1} \right\|^{2} - \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \right). \tag{6}$$

Besides, we have

$$\begin{aligned} & \left\| \mathbf{x}_{t+1}^{*} - \bar{\mathbf{x}}_{t+1} \right\|^{2} - \left\| \mathbf{x}_{t}^{*} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \\ &= \left\| \mathbf{x}_{t+1}^{*} \right\|^{2} - \left\| \mathbf{x}_{t}^{*} \right\|^{2} - 2 \left\langle \bar{\mathbf{x}}_{t+1}, -\mathbf{x}_{t}^{*} + \mathbf{x}_{t+1}^{*} \right\rangle \\ &= \left(\left\| \mathbf{x}_{t+1}^{*} \right\| - \left\| \mathbf{x}_{t}^{*} \right\| \right) \left(\left\| \mathbf{x}_{t+1}^{*} \right\| + \left\| \mathbf{x}_{t}^{*} \right\| \right) - 2 \left\langle \bar{\mathbf{x}}_{t+1}, -\mathbf{x}_{t}^{*} + \mathbf{x}_{t+1}^{*} \right\rangle \\ &\leq \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\| \left(\left\| \mathbf{x}_{t+1}^{*} \right\| + \left\| \mathbf{x}_{t}^{*} \right\| \right) + 2 \left\| \bar{\mathbf{x}}_{t+1} \right\| \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\| \\ &\leq 4 \sqrt{R} \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\|. \end{aligned}$$

The last inequality holds due to our assumption, that is, $\|\mathbf{x}_{t+1}^*\| = \|\mathbf{x}_{t+1}^* - \mathbf{0}\| \le \sqrt{R}$, $\|\mathbf{x}_t^*\| = \|\mathbf{x}_t^* - \mathbf{0}\| \le \sqrt{R}$, and $\|\bar{\mathbf{x}}_{t+1}\| = \|\bar{\mathbf{x}}_{t+1} - \mathbf{0}\| \le \sqrt{R}$.

Thus, telescoping $I_2(t)$ over $t \in [T]$, we have

$$\begin{split} \sum_{t=1}^{T} I_{2}(t) \leq & \frac{1}{2\eta} \mathop{\mathbb{E}}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \left(4\sqrt{R} \sum_{t=1}^{T} \left\| \mathbf{x}_{t+1}^{*} - \mathbf{x}_{t}^{*} \right\| + \left\| \bar{\mathbf{x}}_{1}^{*} - \bar{\mathbf{x}}_{1} \right\|^{2} - \left\| \bar{\mathbf{x}}_{T}^{*} - \bar{\mathbf{x}}_{T+1} \right\|^{2} \right) - \frac{1}{2\eta} \mathop{\mathbb{E}}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2} \\ \leq & \frac{1}{2\eta} \left(4\sqrt{R}M + R \right) - \frac{1}{2\eta} \mathop{\mathbb{E}}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left\| \bar{\mathbf{x}}_{t} - \bar{\mathbf{x}}_{t+1} \right\|^{2}. \end{split}$$

Here, M the budget of the dynamics, which is defined in (??).

Combining those bounds of $I_1(t)$, and $I_2(t)$ together, we finally obtain

$$\begin{array}{ll}
\frac{695}{696} & \mathbb{E}_{n,T} \sim \mathcal{D}_{n,T} \sum_{t=1}^{T} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_{t}^{*}; \xi_{i,t}) \\
\frac{698}{699} & \leq n \sum_{t=1}^{T} \left(I_{1}(t) + I_{2}(t) \right) \\
\frac{701}{702} & \leq \left(\frac{L}{n} + \frac{2\eta L^{2}}{n} \right) \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} + 2\eta \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2} + \frac{T\eta\sigma^{2}}{n} + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right) \\
\frac{C}{703} & \frac{C}{2} \eta T\sigma^{2} + 4n \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left(F_{i,t}(\bar{\mathbf{x}}_{t}) - F_{i,t}(\bar{\mathbf{x}}_{t+1}) \right) + \left(L + 2\eta L^{2} + 4L^{2}\eta \right) \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} \\
+ 4n \left(4T\eta G + \frac{TGL\eta^{2}}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right) \\
\frac{C}{703} & \frac{C}{2} \eta T\sigma^{2} + 4n \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left(F_{i,t}(\bar{\mathbf{x}}_{t}) - F_{i,t}(\bar{\mathbf{x}}_{t+1}) \right) + \left(L + 2\eta L^{2} + 4L^{2}\eta \right) \frac{nT\eta^{2}G}{(1-\rho)^{2}} \\
+ 4n \left(4T\eta G + \frac{TGL\eta^{2}}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right)
\end{array}$$

$$\begin{array}{ll} 715 & \underbrace{\Im}_{\leq 1} \eta T \sigma^2 + 4nT \eta G + \left(L + 2\eta L^2 + 4L^2 \eta \right) \frac{nT \eta^2 G}{(1-\rho)^2} + 4n \left(4T \eta G + \frac{TGL \eta^2}{2} \right) + \frac{n}{2\eta} \left(4\sqrt{R}M + R \right). \end{array}$$

(1) holds due to Lemma ??. That is, we have

$$\frac{\eta}{2} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2}$$

$$\leq \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} (F_{i,t}(\bar{\mathbf{x}}_{t}) - F_{i,t}(\bar{\mathbf{x}}_{t+1})) + 4T\eta G + \frac{L^{2}\eta}{n} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{i=1}^{T} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{TGL\eta^{2}}{2}.$$

2) holds due to Lemma ??

$$\mathbb{E}_{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2} \le \frac{nT\eta^{2}G}{(1-\rho)^{2}}.$$

(3) holds due to

$$\begin{split} & \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(F_{i,t}(\bar{\mathbf{x}}_t) - F_{i,t}(\bar{\mathbf{x}}_{t+1}) \right) \\ & \leq \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_t), \bar{\mathbf{x}}_t - \bar{\mathbf{x}}_{t+1} \right\rangle \\ & = \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_t), \frac{\eta}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle \\ & \leq \eta \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(\frac{1}{2} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_t) \right\|^2 + \frac{1}{2} \left\| \frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^2 \right) \\ & \leq \eta \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left(\frac{1}{2} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_t) \right\|^2 + \frac{1}{2n} \sum_{i=1}^n \left\| \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^2 \right) \\ & \leq \eta G. \end{split}$$

Re-arranging items, we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) - f_{i,t}(\mathbf{x}_{t}^{*}; \xi_{i,t}) \\
\leq 20\eta T nG + \eta T \sigma^{2} + \left(\frac{L + 2\eta L^{2} + 4L^{2}\eta}{(1 - \rho)^{2}} + 2L\right) nT \eta^{2}G + \frac{n}{2\eta} \left(4\sqrt{R}M + R\right).$$

It completes the proof.

Lemma 3. Using Assumption ??, and setting $\eta > 0$ in Algorithm ??, we have

$$\frac{\eta}{2} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2}$$

$$\leq \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} (F_{i,t}(\bar{\mathbf{x}}_{t}) - F_{i,t}(\bar{\mathbf{x}}_{t+1})) + 4T\eta G + \frac{L^{2}\eta}{n} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{TGL\eta^{2}}{2}.$$
(7)

Proof. We have

$$\mathbb{E}_{n,t} \sim \mathcal{D}_{n,t} F_{i,t}(\bar{\mathbf{x}}_{t+1})$$

770
$$\leq \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} F_{i,t}(\bar{\mathbf{x}}_{t}) + \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \right\|^{2}$$
772
$$= \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} F_{i,t}(\bar{\mathbf{x}}_{t}) + \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{\eta}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2}$$
775
$$= \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} F_{i,t}(\bar{\mathbf{x}}_{t}) + \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{\eta}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} .$$
778

Besides, we have

$$\mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_{t}), -\frac{\eta}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle$$

$$= \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(\left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} - \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2} - \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} \right)$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) + \nabla F_{i,t}(\mathbf{x}_{i,t}) \right\|^{2} \right) - \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2}$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + 2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla F_{i,t}(\mathbf{x}_{i,t}) \right\|^{2}$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{2}{n} \sum_{i=1}^{n} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \nabla F_{i,t}(\mathbf{x}_{i,t}) \right\|^{2}$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{2L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2}$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{2L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2}$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(2 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) - \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{2L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2}$$

$$\leq \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(4 \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2} + 4 \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} + \frac{2L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2}$$

$$= \mathbb{E}_{\mathbf{x}_{n,t-1} \sim \mathcal{D}_{t-1}} \frac{\eta}{2} \left(8G + \frac{2L^{2}}{n} \sum_{i=1}^{n} \left\| \bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t} \right\|^{2} \right) - \mathbb{E}_{\mathbf{x}_{n,t} \sim \mathcal{D}_{n,t}} \frac{\eta}{2} \left\| \nabla F_{i,t}(\bar{\mathbf{x}}_{t}) \right\|^{2}$$

$$= \mathbb{E}$$

(I) holds due to

$$\mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \left\| \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} \le \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}} \left\| \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^{2} \le G.$$

Recall that

$$\underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^2 \le G. \tag{10}$$

Substituting (??) and (??) into (??), and telescoping $t \in [T]$, we obtain

$$\mathbb{E}_{\mathbf{\Xi}_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} F_{i,t}(\bar{\mathbf{x}}_{t+1})$$

$$\leq \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} F_{i,t}(\bar{\mathbf{x}}_t) + \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \left\langle \nabla F_{i,t}(\bar{\mathbf{x}}_t), -\frac{\eta}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\rangle + \frac{L}{2} \underset{\Xi_{n,t} \sim \mathcal{D}_{n,t}}{\mathbb{E}} \left\| \frac{\eta}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right\|^2 \\
\leq \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} F_{i,t}(\bar{\mathbf{x}}_t) + \left(\underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \frac{\eta}{2} \left(8G + \frac{2L^2}{n} \sum_{i=1}^n \|\bar{\mathbf{x}}_t - \mathbf{x}_{i,t}\|^2 \right) - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \frac{\eta}{2} \|\nabla F_{i,t}(\bar{\mathbf{x}}_t)\|^2 \right) + \frac{GL\eta^2}{2} \\
= \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} F_{i,t}(\bar{\mathbf{x}}_t) + \left(4\eta G + \frac{L^2\eta}{n} \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \sum_{i=1}^n \|\bar{\mathbf{x}}_t - \mathbf{x}_{i,t}\|^2 - \underset{\Xi_{n,t-1} \sim \mathcal{D}_{t-1}}{\mathbb{E}} \frac{\eta}{2} \|\nabla F_{i,t}(\bar{\mathbf{x}}_t)\|^2 \right) + \frac{GL\eta^2}{2}.$$

Telescoping over $t \in [T]$, we have

$$\frac{\eta}{2} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \|\nabla F_{i,t}(\bar{\mathbf{x}}_{t})\|^{2}
\leq \underset{\Xi_{n,T} \sim \mathcal{D}_{n,T}}{\mathbb{E}} \sum_{t=1}^{T} \left(F_{i,t}(\bar{\mathbf{x}}_{t}) - F_{i,t}(\bar{\mathbf{x}}_{t+1})\right) + 4T\eta G + \frac{L^{2}\eta}{n} \underset{\Xi_{n,T-1} \sim \mathcal{D}_{n,T-1}}{\mathbb{E}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{TGL\eta^{2}}{2}.$$
(11)

It completes the proof.

Lemma 4. Denote $\bar{\mathbf{x}}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_{i,t}$. We have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right).$$

Proof. Denote by

$$\mathbf{X}_{t} = [\mathbf{x}_{1,t}, \mathbf{x}_{2,t}, ..., \mathbf{x}_{n,t}] \in \mathbb{R}^{d \times n},$$

$$\mathbf{G}_{t} = [\nabla f_{1,t}(\mathbf{x}_{1,t}; \zeta_{1,t}, \xi_{1,t}), \nabla f_{2,t}(\mathbf{x}_{2,t}; \zeta_{2,t}, \xi_{2,t}), ..., \nabla f_{n,t}(\mathbf{x}_{n,t}; \zeta_{n,t}, \xi_{n,t})] \in \mathbb{R}^{d \times n}.$$

Recall that

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{ij} \mathbf{x}_{j,t} - \eta \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}).$$

Equivalently, we re-formulate the update rule as

$$\mathbf{X}_{t+1} = \mathbf{X}_t \mathbf{W} - \eta \mathbf{G}_t.$$

Since the confusion matrix W is doublely stochastic, we have

$$\mathbf{W1} = \mathbf{1}$$
.

Thus, we have

$$\bar{\mathbf{x}}_{t+1} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i,t+1}$$

$$= \mathbf{X}_{t+1} \frac{1}{n}$$

$$= \mathbf{X}_{t} \mathbf{W} \frac{1}{n} - \eta \mathbf{G}_{t} \frac{1}{n}$$

$$= \mathbf{X}_{t} \frac{1}{n} - \eta \mathbf{G}_{t} \frac{1}{n}$$

$$= \bar{\mathbf{x}}_{t} - \eta \left(\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right).$$

It completes the proof.

Lemma 5 (Lemma 5 in (?)). For any matrix $\mathbf{X}_t \in \mathbb{R}^{d \times n}$, decompose the confusion matrix \mathbf{W} as $\mathbf{W} = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^{\mathrm{T}} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{\mathrm{T}}$, where $\mathbf{P} = [\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n] \in \mathbb{R}^{n \times n}$, \mathbf{v}_i is the normalized eigenvector of λ_i . $\mathbf{\Lambda}$ is a diagonal matrix, and λ_i be its i-th element. We have

where
$$\rho = \max\{|\lambda_2(\mathbf{W})|, |\lambda_n(\mathbf{W})|\}.$$

 $\left\|\mathbf{X}_{t}\mathbf{W}^{t}-\mathbf{X}_{t}\mathbf{v}_{1}\mathbf{v}_{1}^{\mathrm{T}}\right\|_{F}^{2}\leq\left\|\rho^{t}\mathbf{X}_{t}\right\|_{F}^{2},$

where $\rho = \max\{|\lambda_2(\mathbf{W})|, |\lambda_n(\mathbf{W})|\}.$

Lemma 6 (Lemma 6 in (?)). Given two non-negative sequences $\{a_t\}_{t=1}^{\infty}$ and $\{b_t\}_{t=1}^{\infty}$ that satisfying

$$a_t = \sum_{s=1}^t \rho^{t-s} b_s,$$

with $\rho \in [0, 1)$, we have

$$\sum_{t=1}^{k} a_t^2 \le \frac{1}{(1-\rho)^2} \sum_{s=1}^{k} b_s^2.$$

Proof to Lemma ??:

Proof. Recall that

Denote by

$$\mathbf{x}_{i,t+1} = \sum_{j=1}^{n} \mathbf{W}_{ij} \mathbf{x}_{j,t} - \eta \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}),$$

and according to Lemma ??, we have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right).$$

 $\mathbf{X}_{t} = [\mathbf{x}_{1:t}, \mathbf{x}_{2:t}, ..., \mathbf{x}_{n:t}] \in \mathbb{R}^{d \times n}$

$$\mathbf{G}_{t} = [\nabla f_{1,t}(\mathbf{x}_{1,t}; \zeta_{1,t}, \xi_{1,t}), \nabla f_{2,t}(\mathbf{x}_{2,t}; \zeta_{2,t}, \xi_{2,t}), ..., \nabla f_{n,t}(\mathbf{x}_{n,t}; \zeta_{n,t}, \xi_{n,t})] \in \mathbb{R}^{d \times n}.$$

By letting $\mathbf{x}_{i,1} = \mathbf{0}$ for any $i \in [n]$, the update rule is re-formulated as

$$\mathbf{X}_{t+1} = \mathbf{X}_t \mathbf{W} - \eta \mathbf{G}_t = -\sum_{t=1}^{t} \eta \mathbf{G}_s \mathbf{W}^{t-s}.$$

Similarly, denote $\bar{\mathbf{G}}_t = \frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})$, and we have

$$\bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t}) \right) = -\sum_{s=1}^t \eta \bar{\mathbf{G}}_s.$$

Therefore, we obtain

$$\sum_{i=1}^{n} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2}$$

$$\stackrel{\text{(1)}}{=} \sum_{i=1}^{n} \left\| \sum_{s=1}^{t-1} \eta \bar{\mathbf{G}}_{s} - \eta \mathbf{G}_{s} \mathbf{W}^{t-s-1} \mathbf{e}_{i} \right\|^{2}$$

$$\frac{2}{s} \left\| \sum_{s=1}^{t-1} \eta \mathbf{G}_{s} \mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}} - \eta \mathbf{G}_{s} \mathbf{W}^{t-s-1} \right\|_{F}^{2}$$

$$\frac{3}{s} \left(\eta \rho^{t-s-1} \left\| \sum_{s=1}^{t-1} \mathbf{G}_{s} \right\|_{F} \right)^{2}$$

$$\leq \left(\sum_{s=1}^{t-1} \eta \rho^{t-s-1} \left\| \mathbf{G}_{s} \right\|_{F} \right)^{2}.$$

① holds due to \mathbf{e}_i is a unit basis vector, whose *i*-th element is 1 and other elements are 0s. ② holds due to $\mathbf{v}_1 = \frac{\mathbf{1}_n}{\sqrt{n}}$. ③ holds due to Lemma ??.

Thus, we have

$$\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{i=1}^{n} \sum_{t=1}^{T} \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_{t}\|^{2}$$

$$\leq \mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \left(\sum_{s=1}^{t-1} \eta \rho^{t-s-1} \|\mathbf{G}_{s}\|_{F} \right)^{2}$$

$$\mathbb{C} \frac{\eta^{2}}{(1-\rho)^{2}} \mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \left(\sum_{t=1}^{T} \|\mathbf{G}_{t}\|_{F}^{2} \right)$$

$$= \frac{\eta^{2}}{(1-\rho)^{2}} \left(\mathbb{E}_{\Xi_{n,T} \sim \mathcal{D}_{n,T}} \sum_{t=1}^{T} \sum_{i=1}^{n} \|\nabla f_{i,t}(\mathbf{x}_{i,t}; \xi_{i,t})\|^{2} \right)$$

$$\mathbb{C} \frac{nT\eta^{2}G}{(1-\rho)^{2}}.$$

(1) holds due to Lemma ??.

Proof to Lemma ??:

Proof. We have

$$\begin{split} & \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} \\ & = \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_{t}(\mathbf{x}; \xi_{i,t}) - \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) + \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} \\ & = \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_{t}(\mathbf{x}; \xi_{i,t}) - \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} + \left\| \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} \\ & + 2 \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\langle \nabla h_{t}(\mathbf{x}; \xi_{i,t}) - \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}), \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\rangle \\ & = \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_{t}(\mathbf{x}; \xi_{i,t}) - \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} + \left\| \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} \\ & \leq \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_{t}(\mathbf{x}; \xi_{i,t}) - \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} + \underset{\xi_{i,t} \sim D_{i,t}}{\mathbb{E}} \left\| \nabla h_{t}(\mathbf{x}; \xi_{i,t}) \right\|^{2} \\ & \leq \sigma^{2} + G. \end{split}$$

It thus completes the proof.