Qlapoti:

Simple and Efficient Translation of Quaternion Ideals to Isogenies

Joint work with: Giacomo Borin, Maria Corte-Real Santos, Riccardo Invernizzi, Marzio Mula, Sina Schaeffler and Frederik Vercauteren

Jonathan Komada Eriksen, COSIC, KU Leuven

Qlapoti:

Homomorphisms between projective modules of rank 1

Simple and Efficient Translation of Quaternion Ideals to Isogenies

Joint work with: Giacomo Borin, Maria Corte-Real Santos, Riccardo Invernizzi, Marzio Mula, Sina Schaeffler and Frederik Vercauteren

Jonathan Komada Eriksen, COSIC, KU Leuven

The Deuring Correspondence

$$\operatorname{End}(E_0) = \mathcal{O}_0 \subset B_{p,\infty}$$

Projective, left \mathcal{O}_0 -modules of rank 1 under \mathcal{O}_0 -module homomorphisms

Supersingular curves $E/\bar{\mathbb{F}}_p$, under isogenies

$$Hom(E, E_0)$$

The Deuring Correspondence

$$\operatorname{End}(E_0) = \mathcal{O}_0 \subset B_{p,\infty}$$

Projective, left \mathcal{O}_0 -modules of rank 1 under \mathcal{O}_0 -module homomorphisms

Supersingular curves $E/\bar{\mathbb{F}}_p$, under isogenies

$$I \qquad \longrightarrow \qquad E_I := \varphi_\beta(E_0)$$

$$\beta \in I \text{ defines } h_\beta : I \hookrightarrow \mathcal{O}_0 \text{ by } h_\beta(\alpha) = \alpha \frac{\bar{\beta}}{n(I)}$$
 Define φ_β by $\ker \varphi_\beta = \{P \in E_0 \mid h_\beta(\alpha)(P) = 0, \forall \alpha \in I\}$

SQlsign - Key Generation

Secret key: $I \subset \mathcal{O}_0$

$$E_0$$
 ······ $E_{pk} := E_I$

SQlsign - Commit

Secret key: $I \subset \mathcal{O}_0$

Commitment: $J \subset \mathcal{O}_0$

$$E_{0} \quad \cdots \quad E_{pk} := E_{I}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$E_{com} := E_{J}$$

SQlsign - Challenge

Secret key: $I \subset \mathcal{O}_0$ Challenge: $\varphi: E_{com} \to E_{chal}$

Commitment: $J \subset \mathcal{O}_0$

SQlsign - Response

Secret key: $I \subset \mathcal{O}_0$ Challenge: $\varphi: E_{com} \to E_{chal}$

Commitment: $J\subset \mathcal{O}_0$ Find $h:I\to I'$ corresponding to φ

SQlsign - Response

Secret key: $I \subset \mathcal{O}_0$ Challenge: $\varphi: E_{com} \to E_{chal}$

Commitment: $J\subset \mathcal{O}_0$ Find $h:I\to I'$ corresponding to φ

Compute some $h: J \to I'$, and translate to corresponding isogeny

PRISM - Key Generation (Same as SQIsign)

Secret key: $I \subset \mathcal{O}_0$

PRISM - Signing

Secret key: $I \subset \mathcal{O}_0$

$$E_0 \quad \cdots \quad E_{pk} := E_I$$

Hash message to a random prime q

Compute random $h:I\to I'$ with "degree" q (Same as computing a $J\subset \mathcal{O}_R(I)$ left ideal)

Compute corresponding σ with $\deg \sigma = q$

Part II: Ideals to curves overview

Direct translation

Given $I\subset \mathcal{O}_0$ find a "nice" homomorphism $h:I\to \mathcal{O}_0$

Index of h(I) in \mathcal{O}_0 should be 2^{2e}

Corresponds to finding $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Gives
$$h_{\beta}:I\to \mathcal{O}_0 \\ h_{\beta}(x)=x\overline{\beta}/n(I)$$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

From this point forward, we fix

$$\mathcal{O}_0 = \mathbb{Z} + \mathbb{Z}i + \mathbb{Z}\frac{1+j}{2} + \mathbb{Z}\frac{i+k}{2},$$
 with

$$i^2 = -1, j^2 = -p$$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Let
$$I=\mathcal{O}_0\langle N,\alpha\rangle$$
. Look for an element of the form $\beta=(a+ib)N+\lambda\alpha$ Recall $n(\alpha_1+\alpha_2)=n(\alpha_1)+n(\alpha_2)+t(\alpha_1\bar{\alpha}_2)$ Write $\alpha=a_\alpha+b_\alpha i+c_\alpha j+d_\alpha k$

$$N^{2}(a^{2} + b^{2}) + \lambda^{2}n(\alpha) + 2N\lambda(aa_{\alpha} + bb_{\alpha}) = 2^{e} \cdot N$$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Let $I = \mathcal{O}_0(N, \alpha)$. Look for an element of the form $\beta = (a + ib)N + \lambda \alpha$

$$N(a^{2} + b^{2}) + \lambda^{2}n(\alpha)/N + 2\lambda(aa_{\alpha} + bb_{\alpha}) = 2^{e}$$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Let $I = \mathcal{O}_0(N, \alpha)$. Look for an element of the form $\beta = (a + ib)N + \lambda \alpha$

$$N(a^2 + b^2) + \lambda^2 n(\alpha)/N + 2\lambda(aa_{\alpha} + bb_{\alpha}) = 2^e$$

Step 2: Find α with $a_{\alpha}=b_{\alpha}=0$

$$N(a^2 + b^2) + \lambda^2 n(\alpha)/N = 2^e$$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Let $I = \mathcal{O}_0(N, \alpha)$. Look for an element of the form $\beta = (a + ib)N + \lambda \alpha$

$$N(a^2 + b^2) + \lambda^2 n(\alpha)/N + 2\lambda(aa_{\alpha} + bb_{\alpha}) = 2^e$$

Step 2: Find α with $a_{\alpha}=b_{\alpha}=0$

$$N(a^2 + b^2) + \lambda^2 n(\alpha)/N = 2^e$$

Step 3: Solve for λ mod N, then a, b by Cornacchia

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Step 1: Choose any $\gamma \in \mathcal{O}_0$ s.t. $n(\gamma) = 2^f \cdot N$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Step 1: Choose any $\gamma \in \mathcal{O}_0$ s.t. $n(\gamma) = 2^f \cdot N$

Step 2: Find α with $a_{\alpha}=b_{\alpha}=0$, s.t. $\gamma\alpha\in I$

Let $I=\mathcal{O}_0\langle N,\gamma\alpha\rangle$. Look for an element of the form $\beta_0=(a+ib)N+\lambda\alpha$ Such that $\beta=\gamma\beta_0$ is the desired output

$$N^{2}(a^{2} + b^{2}) + \lambda^{2}n(\alpha) = 2^{e-f}$$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Step 1: Choose any $\gamma \in \mathcal{O}_0$ s.t. $n(\gamma) = 2^f \cdot N$

Step 2: Find α with $a_{\alpha}=b_{\alpha}=0$, s.t. $\gamma\alpha\in I$

Let $I=\mathcal{O}_0\langle N,\gamma\alpha\rangle$. Look for an element of the form $\beta_0=(a+ib)N+\lambda\alpha$ Such that $\beta=\gamma\beta_0$ is the desired output

$$N^{2}(a^{2} + b^{2}) + \lambda^{2}n(\alpha) = 2^{e-f}$$

Step 3: Solve for λ mod N^2 , then a, b by Cornacchia

The proper KLPT algorithm works for $2^e > n^3$

Given $I \subset \mathcal{O}_0$ find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Step 1: Choose any $\gamma \in \mathcal{O}_0$ s.t. $n(\gamma) = 2^f \cdot N$

Step 2: Find α with $a_{\alpha}=b_{\alpha}=0$, s.t. $\gamma\alpha\in I$

Let $I=\mathcal{O}_0\langle N,\gamma\alpha\rangle$. Look for an element of the form $\beta_0=(a+ib)N+\lambda\alpha$ Such that $\beta=\gamma\beta_0$ is the desired output

$$N^{2}(a^{2} + b^{2}) + \lambda^{2}n(\alpha) = 2^{e-f}$$

Step 3: Solve for $\lambda \mod N^2$, then a,b by Cornacchia

Output size: $N \approx 2^f \approx \sqrt{p}$, $n(\alpha) \approx pN^2 \approx p^2$, $\lambda^2 \approx N^4$, so works when $2^e > p^{4.5}$

Clapoti (for quadratic or quaternion ideals)

Given
$$I \subset \mathcal{O}_0$$
 find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Given
$$I \subset \mathcal{O}_0$$
 find $\beta \in I$ such that $n(\beta) = 2^e \cdot n(I)$

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \subset I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$

The norm equation

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$

Step 1: Find the smallest $\beta_1, \beta_2 \in I$ of coprime norm

Step 2: Solve for u, v

The norm equation

Given
$$I \subset \mathcal{O}_0$$
 find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$

Step 1: Find the smallest $\beta_1, \beta_2 \in I$ of coprime norm

Step 2: Solve for u, v

Often a bit larger :(

Expected to find $n(\beta_1) \approx n(\beta_2) \approx p$, and solution is guaranteed when $2^e > n(\beta_1)n(\beta_2)/n(I)^2$

► Must be a few bits smaller than p

Clapoti Issues

The current way of solving the norm equation fails with non-negligible probability

Clapoti Issues

The current way of solving the norm equation fails with non-negligible probability

Leads to a complicated rerandomisation procedure to bring failure probability down to 2^{-60}

Still not negligible in security parameter leads to gap in security proof

Clapoti Issues

The current way of solving the norm equation fails with non-negligible probability

Leads to a complicated rerandomisation procedure to bring failure probability down to 2^{-60}

Still not negligible in security parameter leads to gap in security proof

Random isogenies of degree u and v: QFESTA, done by computing an isogeny in dimension 2.

So currently, translating an ideal to curve requires one $(2^e, 2^e)$ -isogeny and two $(2^f, 2^f)$ -isogenies $(f \approx e/2)$

Part III: Qlapoti-with-a-Q

Clapoti (for quadratic or quaternion ideals)

Given $I \subset \mathcal{O}_0$ find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Given $I = \mathcal{O}_0(N, \alpha)$ find $\beta_1, \beta_2 \in I$ such that $n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$

Given
$$I=\mathcal{O}_0\langle N,\alpha\rangle$$
 find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Very easy algorithm that sort of works: Same as u, v method, but restrict u, v to be sums of squares

Given
$$I=\mathcal{O}_0\langle N,\alpha\rangle$$
 find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

very eacy algorithm that sort of works: Same as u, v method, but restrict u, v to be sums of squares

Failure probability goes from bad to worse.

Given $I=\mathcal{O}_0\langle N,\alpha\rangle$ find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for
$$\beta_1 = (a_1 + ib_1) \cdot N + \alpha$$

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Given $I=\mathcal{O}_0\langle N,\alpha\rangle$ find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for
$$\beta_1 = (a_1 + ib_1) \cdot N + \alpha$$

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Step 1: Find short A, B such that $2(a_{\alpha}A + b_{\alpha}B) \equiv 2^e - 2n(\alpha)/N \pmod{N}$

$$a_1^2 + b_1^2 + (A - a_1)^2 + (B - b_1)^2 = M$$

$$2^e - 2n(\alpha)/N - 2(a_{\alpha}A + b_{\alpha}B))$$

N

Given $I=\mathcal{O}_0\langle N,\alpha\rangle$ find $\beta_1,\beta_2\in I$ such that $n(\beta_1)+n(\beta_2)=2^e\cdot n(I)$

Key: Look for
$$\beta_1 = (a_1 + ib_1) \cdot N + \alpha$$

$$N(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2n(\alpha)/N + 2(a_\alpha(a_1 + a_2) + b_\alpha(b_1 + b_2)) = 2^e$$

Step 1: Find short A, B such that $2(a_{\alpha}A + b_{\alpha}B) \equiv 2^e - 2n(\alpha)/N \pmod{N}$ $a_1^2 + b_1^2 + (A - a_1)^2 + (B - b_1)^2 = M$

Step 2: Use Cornacchia to solve

$$(2a_1 - A)^2 + (2b_1 - B)^2 = 2M - A^2 - B^2$$

$$\text{Given } I = \mathcal{O}_0 \langle N, \alpha \rangle \text{ find } \beta_1, \beta_2 \in I \text{ such that } n(\beta_1) + n(\beta_2) = 2^e \cdot n(I)$$

$$\text{Choose } n(\alpha)/N < 2^e \text{ (Not restrictive, expect to find } n(\alpha)/N \approx \sqrt{p})$$

Expect to find
$$A,B$$
 with $Approx Bpprox \sqrt{N}$

Expect to find A,B with $A\approx B\approx \sqrt{N}$ Step 1: Find short A,B such that $2(a_{\alpha}A+b_{\alpha}B)\equiv 2^e-2n(\alpha)/N\pmod{N}$

$$\frac{2^e - 2n(\alpha)/N - 2(a_{\alpha}A + b_{\alpha}B))}{N}$$

Step 2: Use Cornacchia to solve

$$(2a_1 - A)^2 + (2b_1 - B)^2 = 2M - A^2 - B^2$$

So all we need is $A^2 + B^2 \lesssim 2^e/N$, and we try new α until this is satisfied

Failure probability for SQIsign parameters

NIST level	p	c	e	upper bound on failure rate
I III V	$\begin{array}{ c c c c c } & 2^{248} \cdot 5 - 1 \\ & 2^{376} \cdot 65 - 1 \\ & 2^{500} \cdot 27 - 1 \end{array}$	$2185 \\ 38495 \\ 21484$	246 374 498	$2^{-197} \ 2^{-312} \ 2^{-438}$

Table 3. The final upper bound of the failure rate of Qlapoti applied to the SQlsign parameters.

Results in SageMath

NIST level	Previous work [5]	This work	Improvement
I	0.415s	0.160s	x2.595
III	$0.768 \mathrm{s}$	0.346s	x2.222
V	$1.060 \mathrm{s}$	$0.467 \mathrm{s}$	x2.269

Table 5. Timings comparing IdealTolsogeny using the technique currently used in SQlsign and the one presented in this work, given in wall-clock time. The final column represents the improvement factor.

Results in SageMath

Protocol	$\Big \Big $ Algorithm	Previous work	This work	Improvement
SQIsign-LVLI	KeyGen Signing	0.489s $1.010s$	0.249s $0.522s$	x1.961 x1.935
PRISM-LVLI	KeyGen Signing	0.484s $0.593s$	0.252s $0.322s$	x1.929 x1.673
PRISM-LVL3	KeyGen Signing	0.915s $1.328s$	0.544s $0.808s$	x1.682 x1.644
PRISM-LVL5	KeyGen Signing	$1.436 \mathrm{s}$ $2.017 \mathrm{s}$	0.758s $1.426s$	x1.894 $x1.415$

Table 6. Preliminary benchmarks in SageMath to measure the impact of Qlapoti on the signature schemes SQlsign and PRISM. The comparison with PRISM is with the implementation from [5], while the comparison with SQlsign uses a preliminary proof-of-concept implementation privately shared by the authors.

Results in C

Coming soon...

NIST level	Previous work [10]	This work
Ι	$75, 5~{ m KiB}$	$33, 5 \mathrm{~KiB}$
III	337 KiB	$49, 2~{ m KiB}$
\mathbf{V}	$347~{ m KiB}$	$64,6~{ m KiB}$

Table 7. Heap usage by a reference/Release build of the SQIsign NIST2 implementation with and without Qlapoti. Average over 10 runs. Measures were taken with the sqisign_test_scheme_lvl[x] executable for level x.

qt-PEGASIS:

Applying Qlapoti to PEGASIS

Joint work with Riccardo Invernizzi and Frederik Vercauteren

PEGASIS

In the quadratic (oriented) setting, the best algorithm is also based on Clapoti

Given
$$I \subset \mathfrak{D}$$
 find $\beta_1, \beta_2 \in I$ and $u, v \in \mathbb{Z}_{\geq 0}$, such that $u \cdot n(\beta_1) + v \cdot n(\beta_2) = 2^e \cdot n(I)$, and such that u, v can be written as sums of squares

However, using the starting point of KLaPoTi, it turns out that we can really apply Qlapoti even in the oriented setting!

= qt-PEGASIS

Class group actions where essentially the whole cost at all security levels is a single 4-dimensional isogeny!