PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-065080

(43)Date of publication of application: 08.03.1994

(51)Int.Cl.

A61K 31/70 A61K 31/70 A23L 1/307 C07H 3/02 C07H 3/04

(21)Application number : **04-355368**

(71)Applicant: GODO SHIYUSEI KK

(22)Date of filing:

21.12.1992

(72)Inventor: SERI KENJI

SANAI KAZUKO NEGISHI KEISOKU AKINO TOSHIRO

(30)Priority

Priority number: 04 86196

96 Priority date: 10.03.1992

Priority country: JP

(54) AGENT FOR PREVENTION AND TREATMENT OF HYPERGLYCEMIA-RELATING DISEASE CONTAINING ALPHA-GLUCOSIDASE INHIBITOR AND HEALTH FOOD

(57)Abstract:

PURPOSE: To provide the subject agent containing a specific sugar having strong sucrase-inhibiting action and maltase-inhibiting action as an active component, having excellent action to suppress an increase in blood sugar after the loading of sugar and continuously applicable over a long period without causing the safety problem.

CONSTITUTION: The objective agent contains a sugar selected from Larabinose, L-fucose, 2-deoxy-D-galactose, D-xylose, L-xylose, D-ribose, D-tagatose, D- ribulose, D-lyxose and D-xylulose as an active component. The sugar is preferably administered at a daily dose of 0.5-3g in divided doses before meal or together with the meal.

LEGAL STATUS

[Date of request for examination]

29.11.1994

[Date of sending the examiner's decision of

11.03.1997

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

09-05242

decision of rejection]

[Date of requesting appeal against examiner's 09.04.1997

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出與公開番号

特開平6-65080

(43)公開日 平成 6年(1994) 3月 8日

(51) hrt.CL*

4

庁内整理番号 微別配号

FΙ

技術表示箇所

A 6 1 K 31/70

ADP

8314-4C

ACN

A23L 1/307 # C07H 3/02

8/04

審査請求 未請求 請求項の数 2(全 7 頁)

(21)出頭番号

特度平4-355368

(22)出戰日

平成4年(1992)12月21日

(31)優先権主張番号 特顯平4-86198

(82)優先日

平 4 (1992) 3 月10日

(83)優先權主張国

日本(17)

(71)出題人 000170473

合同酒精株式会社

東京都中央区銀座6丁目2番10号

(72) 発明者 世利 酸二

埼玉県八湖市八条1587 — 5 —502

(72)発明者 親井 和子

神奈川県座間市相模が丘 5 -14-10-607

(72)発明者 根岸 惠則

埼玉県草加市氷川町470番地 合同酒精草

加茨 3 -204号

(72)発明者 秋野 利郎

埼玉県草加市氷川町470番地 合同酒精社

宅2-402号

(54)【発明の名称】 αーグルコンダーゼ阻害剤を含有する、通血糖付随突患の予防・治療剤、および保健食

【構成】 L-アラビノース、L-フコース、2-デオ キシーローガラクトース、ローキシロース、 L-キシロ __ス_(B-) ボース、D-タガトース、D-リプロー (57) (要約) ス、D-リキソース、およびD-キシルロースよりなる 群より選ばれた、1ないし2以上の糖類を有効成分とし て含有する、過血糖付随疾患の予防および治療剤、並び に保健食。

【効果】 前記穂類の、スクロースおよびスターチ負荷 時における、血糖上昇抑制作用が確認され、これを配合 することにより、長期間継続投与においても、安全性に

懸念のない、過血糖付随疾患の予防および治療剤、並び に保健食が、提供可能となった。

【特許請求の範囲】

【請求項 1】 ローアラビノース、ローフコース、2 ーデオキシーローガラクトース、ローキシロース、ローリガロース、ローリブロース、ローリキソース、およびローキシルロースよりなる群より選ばれた、1 ないし2以上の成分を有効成分とする、過血糖付随疾患の予防および治療剤。

【毎期の経知な影明]

【産業上の利用分野】本発明は、食後の過血糖症状に付随する疾患、例えば糖尿病、前糖尿病、肥満症、高脂血症、動脈硬化症などの子防および治療を目的とした、医薬品並びに保健食に関するものである。

[0002]

【従来の技術および発明が解決しようとする問題点】こ れまでに報告されている αー グルコシダー ゼ阻害剤、特 にスクラーゼ阻害作用およびマルターゼ阻害作用を特徴 とする阻害剤のほとんどは、微生物が産生する二次代謝 物であり、ヒトが通常摂取する食物中には含まれない物 質であった。これらの物質は、そのスクラーゼ阻害作用 およびマルターゼ阻害作用を利用して、食後の血糖上昇 抑制剤としての応用が考えられている(米国特許第4.06 2,950号, 特開平1-156945), しかしながら、これらの 物質は、生体に対しては異物であって、消化管から吸収 されて血液中に入り、全身の臓器に到達した場合の安全 性については、癒念が残されている。特に、肝臓、心 腱、あるいは骨格筋等、糖質分解代謝が活発な主要膜器 においては、長期的安全性に対する懸念が、強く指摘さ れている。このため、通常摂取する食物中に含まれる物 質であって、消化管からは吸収され難く、また、吸収さ れても速やかに排泄されて、体内に貯留しない、生体に とって安全性の高い。 α = グルコシダーゼ阻害剤の出現 が望まれていた。本発明は、以上の如き従来技術の問題 点を解決し、優れた物性と生理概能を有する天然物由来 のローグルコッダーゼ阻害割を有効成分とする。前記議 症状の予防及び治療剤を提供することにある。

[00003]

【問題点を解決するための手段】本発明者らは、天然に存在する種々のベントース、ヘキソースおよび、オリゴ糖について、スクラーゼ阻害作用およびマルターゼ阻害作用を中心とする、αーグルコシダーゼ阻害作用を調査研究するとともに、糖質負荷後の血糖上昇抑制作用を、実験動物を用いて、詳細に検討した。その結果、Lーア

ラビノースを初めとする前記ペントースおよびヘキソー スに、強いスクラーゼ阻害作用およびマルターゼ阻害作 用のあることを見いたし、越質負荷後の血糖上昇抑制 に、著しく有効であること知り、本発明を完成するに到 った。 レーアラピノー ス、 レーフコース、2~デオキシ - D-ガラクト-ス、D-キシロ-ス、L-キシロ-ス、ローリポース、ロータガトース、ローリブロース、 ローリキソースあるいはローキシルロースを有効成分と する、前記諸症状の予防剤または治療剤は、これらのみ で用いるほか、一般的賦形制、安定剤、保存剤、結合 剃、崩壊剃等の適当な添加剤を配合し、液剤、カブセル 剤、顆粒剤、丸剤、散剤、錠剤等の適宜な剤型を選んで 製剤し、経口的あるいは経腸的に投与することができ る。また、これらを適宜な食品に添加して、前記諸症状 の治療を目的とした病人食とすることも、何等妨げるも のでない。 レーアラビノース、 レーフコース、2ーデオ キシー ローガラクトース、ローキシロース、エーキシロ - ス、 D- リボース、 D - タガト- ス、 D- リブロー ス、ローリキソースあるいはローキシルロースは、チュ - インガム、キャラメル、クッキー、パン、ビスケッ ト、チョコレート、ゼリー、ジュースその他の飲料へ、 有効成分として添加することは、容易であり、実効性の ある保健食の提供が可能となる。 L-アラビノースを初 めとする前記ペントースおよびヘキソースは、天然に存 在する単糖であって、ヒトおよび動物に対する毒性につ いての報告はなく、実質的に無害の物質である。特にし - アラビノースは、消化管からは極めて吸収され難いこ とが知られており、長期間の摂取によっても、全身的な 影響はないものとされている。 なお、 L- アラビノ- ス を初めとする、これらのペントースおよびヘキソースの ヒトへの投与は、個々の年齢、体重および症状によって 用法用量が決定されるべきであるが、多くの場合有効な 用重は1日当り0.5-3gで、分割して食前あるいは食事と ともに投与されるのが適当である。

[0004]

【作用】スクロースまたはマルトースを基質とし、ウサギ小陽粘膜ホモジネートによる分解活性に対する阻害作用を調べた実験の結果、本発明で使用する ローアラビノース、ローフコース、2ーデオキシーローガラクトース、ローキシロース、ローリポース、ロータガトース、ローリブロース、ローリキソースあるいはローキシルロースが、スクロースおよびマルトースの加水分解を、強く抑制することが確認された。またこれらの物質は、マウスを用いた給餌実験において、スクロースまたはスターチを経口負荷した場合に起こる血糖上昇を、顕著に抑制することも確認できた。

[.00.05]

【実施例】本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。

【0006】実施例1

(ウサギ小眼粘膜ホモジネートによる糖質分解活性阻害作用) 白色在来種ウサギ (体重 3.0-3.5kg) を配血屠殺し、小眼を摘出した。摘出した小腸を、凍結融解後、5m M EDTA緩衝液(pH 7.0)中でホモジナイズし、60,000×gで60分間透心分離した。生じた沈澱物を回収し、10mMリン酸カリウム緩衝液(pH 7.0)で再懸濁したものを粗酵素液とした。基質としては、スクロース(20mM)またはマル

トース(20mM)を使用した。反応液の組成は、100mMマレイン酸辣衝液(pH 6.8)350 μ I, 基質液100 μ I, 粗酸素液50 μ I, および被験液50 μ I とし、被検物質はマレイン酸緩衝液(pH 6.8)に溶解して用いた。反応は、37℃,15分間とし、生成したグルコース重を、グルコースオキシダーゼ法で測定して、表1に示した。

【0007】 【表1】

表1: 単数(ペッパース)による財質分解酵素阻害作用

 被接物質	满波	ウサギ小湖粘膜装質	分解醛器阻害作用(%)	
	98/41	Sucrase脱音中	Maltese阻害率	
Dーアラピノース	5 C 1 0 C 2 O C	4. 0 8. 8 11. 7	7. 8	
レーアデビノース	2 5 5 0 1 0 0 2 0 0	2 5, 3 3 7, 8 5 2, 0 6 8, 3	28, 5 36, 8 46, 7 47, 4	
D - キシロース	2 5 5 0 1 0 0 2 0 0	2 8, 5 3 5, 6 4 9, 6 5 9, 8	29, 2 36, 4 44, 3 53, 1	
L-キシヮース	5 0 1 0 0 2 0 0	8. 0 11. 9 24. 6	19, 4	
D リポース	2 5 5 0 1 0 0 2 0 0	1 9. 7 1 7. 8 3 4. 0 2 3, 4	1 3, 5 1 8. 4 3 3, 3 4 6, 5	
Dーキシルロース	200	19.9	11. 9	
レーキシルロース	200	1 0. B	6, 4	
D-リプロース	200	21. 7	20, 1	
D-リキソース	200	23,4	22, 3	
Lーリキソース	200	- 0. 2	10.0	

【 O O O 8 】表 1 に示したとおり、阻害作用を検討したペントースのうち、レーアラビノース、ローキシロース、ローリボースが強いスクラーゼ阻害作用およびマルターゼ阻害作用を有し、レーキシロース、ローキシルロース、ローリブロース、ローリキソースが、これに次ぐ阻害作用を示した。また、ローアラビノース、レーリキソース、レーキシルロースには、阻害作用は認められなかった。ヘキソースについては、2 ーデオキシーローガ

ラクトース、Dータガドース、Lーフコースに、強いスクラーゼ阻害作用およびマルターゼ阻害作用が、認められたが、Lーソルボース、Dーフコース、Dータロース、Dーマンノース、Dーガラクトース、Dーガラクトサミンは、阻害作用を有しなかった(表2)。

[00.09]

【42】

表2: 単着(~45-3)による簡質分解酵素阻害作用

	英 发	ウサギ小鳥お裏材質	分解酵素阻害作用(3)	
被 検 物 質	mg/di	Sperage阻害率	Naltase阻害率	
1-Deaxy-D-galaciose	2 5 5 0 1 0 0 2 0 0	1 3. 7 1 6. 5 2 1. 6 9 4. 8	1 1. 2 1 3. 4 1 9. 9 3 2. 8	
D-タガトース	2 6 6 0 1 0 0 2 0 0	8. 9 16. 7 50. 0 36. 6	1 2. 5 1 7. 7 3 0. 3 3 3. 9	
D - 7 = - A	200	8, 7	4, 1	
L-フコース	2 5 5 0 1 0 0 2 0 0	1 1. 6 1 6. 2 3 2. 8 3 0. 7	1 6 4 1 8 4 2 4 8 3 1 0	
D - タロース	200	5, 4	б. 3	
レーソルボース	2 0 0	5. 1	7, 5	
Dーマンノース	5 0 1 0 0 2 0 0 4 0 0	- 0. 7 1 2. 9 1 2. 3 2 7. 8	3. 2 10. 6 25. 1 30. 4	
Dーガラクトース	6 0 1 0 0 2 0 0 4 0 0	- 0. 6 - 0. 9 6. 4 2 C. 2	-0.8 13.9 15.3 11.8	
D-Galectosamine	200	- 6, 5	-4. 5	

【 0 0 1 0】オリゴ糖については、検討した物質の中には、これらの阻害作用を有するものは見出されなかった(表3)。

[0011]

[表3]

表3: オリゴ糖による糖質分解酵素阻害作用

液换物質	換度	994°小翼粘膜转荷分解降家阻害作用 (%)		
\$1 19 P P	he/41	Sacrase阻害率	Valtass阻害率	
ゲンチオピオース	200	- 2. 4	1_ 9	
セロビオース	200	-0,4	2, B	
キシロオリゴ株 β-1.4-(xylose), n=2 n=3 n=4 n=5 n=6	2 0 0 2 0 0 2 0 0 2 0 0 2 0 0	1 0. 7 2. 7 9. 6 - 0. 6 - 7. 9	5. 5 3. 6 2. 0 1. 6 - 6. 1	
マンノオリゴ性 β-1.4-(mannose) _n n = 2 n = 3 n = 4 n = 5	200200200	0, 9 2, 0 -0, 3 4, 0	0. 6 1. 3 0. 7 3, 5	

(糖質負荷後の血糖主臭船制作用)実験には、108系雄マウス(体重30~35g)を、1群5匹として使用した。終夜絶食させた後、各群のマウスにスクロース1g/kgまたはスターチ1g/kgを、経口投与し、同時に被換物質を経口投与した。糖質負荷的および負荷後、30分、60分、120分に、眼底静脈叢より採血し、血漿グルコース濃度を、グルコースオキシダーゼ法で測定した。表4に示したように、スクロース負荷による血糖上昇は、Lーアラビノース、Dーキシロース(投与重はいずれも25、50、100m

8/kg, 経口投与)によって、用量依存的に抑制されるとともに、ロータがトース、2ーデオキシーローガラクトース、レーフコース、レーキシロース、ローリボース、ローリブロース、ローリキソース、ローキシルロース(投与重はいずれも 100mg/kg, 経口投与)によって有意に抑制されることが確認された。また、レーアラビノースは、スターチ負荷による、血糖上昇に対しても、用量依存的抑制作用を示した。

[0013] [表4]

接4: マウスにおける結質負責投の血糖上昇抑制作用

9 数		鋼級	投 到 身 數 量	血. 箱 上 并 (Ang/dl)		
身荷	被	₩t	ar / kg	\$ 0 53	6 O S	120分
٦	按数(水)	5	*	14.9 ± 8.95	B0.4±7.10	28.3±2.69
9	Lーアラヒ*ノース	5 5 5	25 50 100	71.7±8.37*62.9±6.18**41.8±4.16***	19,4±5,73 37,3±6,09° 30,4±4,25°°	25.4±3.76 21.5±3.90 20,3±3.76
-	D-キシャース	5 5 5	25 50 100	76.9±8.97 82.5±6.38** 8*.2±8.38***	55.4±4.75 47.3±4.05 45.2±7.11	27,3±3,99 24,0±2,60 23,4±4,42
(1e' / kg)	D-+カ*トース 2-Depart-D- gx i ac1 e b e L-フコース 1-キシアース D-+ナアース D-+ナア・コス D-+ナア・ス D-+ナアース	ម្នាធម្មាធម្មាធា	100 100 100 100 100 100 100	86.7±7.28° 61.1±7.21° 81.0±8.83° 81.2±7.91° 65.8±5.04° 62.7±5.79° 67.3±4.32°	44,4±3,83 50,8±5,93 44,4±8,63 53,2±4,91 48,5±4,08 56,3±9,85 57,0±5,15 59,7±6,70	26.3±3.38 26.2±3.18 28.3±3.39 27.3±23.08 26.2±3.08 28.1±3.43 28.3±3.18 27.5±3.98
19-4	浴糞(水)	5	*	9\$.5±6.58	71,9±6,54	31.2±2.52
(lx / kg)	L-77t*/-3	5 5 5	25 50 100	81.3±6.87 71.4±5.39° 59.5±4.51°	68,5±5,48 54,6±5,74 48,3±4,32*	29,8±2,41 25.5±2.39 24.5±1,96

血糖上昇の截値: 平均値±標準調差:

(別候 候) 1.0.0 早水気内:" (別候 候) 10.0.0 早水電内:"" (別候 疾) 180.0 Pq 平水電内:""

(マウスの体重増加抑調施別を実験には、生後5週令の) CR系域マウスを、1群10匹として使用した。市販の通常 飼料(オリエンタル酵母工業製: 「マウス・ラット飼育用-MF」)で、1 週間予備飼育した後、レーアラピノースをそれぞれ 0.5 %(A1群), i.0%(A2群), および 2.0%(A3群)添加した、栄 養的に不足する成分がない飼料(同上製: 「マウス・ラット用オリ エンタル配合飼料」の聴質の30%を、ク"ラニュー稿で置換した飼料をベースにした、ペ・レット状特注品)を自由に摂取させた。 対照群のマウスには、レーアラピノースが無添加である 以外は実験群と同一の飼料を、自由に摂取させた。投与 開始から 10日,20日,30日,および60日目に体重を測定し、初期体重からの増加量を求め、群毎に平均値を算出した。また、摂餌量と摂水量も同時に測定した。実験期間中、実験動物の一般的健康状態および行動に、異状はみられず、死亡例も皆無であった。表5に示したように、レーアラビノース添加飼料群では、対照群に比較して、体重増加量が少なく、この効果は用量依存的であった。また、摂餌量および摂水量には、有意な差異は認められなかった。

[0015]

[表5]

表 6: マウスの作 重 増 加 抑 制 作 用

夹鳞群	龍 客 項 目	10日	. 20 B	9 D E	80日
A 1	体重增加 (g)	5, 9	9,2	12.4	15.0
	長餌益(g/日)	2_ 9	3.1	3.4	3.3
	摄水监(8/日)	2.1	t.7	2.8	3, l
	体蓝增加 (g)	5, 3	3 , D'	11.7	13.8
A 2	長額蓋(g/日)	2.8	3,1	3.4	3. \$
	摄水量(g/日)	2.3	2.8	9.0	3. 2
	作意增加 (g)	4.7	7.2	10,2	12,1
АЗ	抵與垂(87日)	2, 1	3.1	3.3	3.7
	扱水墨(s/目)	2.3	2,9	3, 1	3.3
対照	体重增加 (g)	6, 1	10,3	14.5	18. L
	摄露量(g/日)	2.1	9, 3	3.6	3, 9
	摄水量(g/日)	2 _ 1	1.7	2, B	3. Z

【発明の効果】本発明によけ、 ヒーアラビノース、 ヒーフコース、 2ーデオキシー ローガラクトース、 ローキシロース、 ローリボース、 ロータガトース、 ローリブロース、 ローリキソース、 ローキシルロースに、 グルコースあるいはスターチ負荷に対して、 有効

な血糖上昇抑制作用があることが確認された。これらを 有効成分として使用することにより、過血糖付随疾患の 予防および治療剤として、長期間継続控与しても、生 体、特に糖質代謝の活発な臓器にに対し、安全上の概念 のない、予防および治療剤の提供が可能となり、同時に 保健食の提供も可能となった。