Pesquisa Operacional

Professor: Yuri Frota

yuri@ic.uff.br

800000000

Metalúrgica: Um metalúrgica produz 2 tipos de ligas metálicas. Cada liga é composta por Cobre, Zinco e Chumbo (em proporções diferentes). Essas quantidades de metais estão em estoque numa quantidade limitada. Queremos determinar o quanto produzir de cada liga metálica, de modo que o lucro seja o máximo possível, satisfazendo as condições impostas pelos dados na tabela abaixo:

Matéria Prima	Liga 1	Liga 2	Estoque
Cobre	50%	30%	3 ton
Zinco	10%	20%	1 ton
Chumbo	40%	50%	3 ton
Preço de Venda	3 milhões	2 milhões	(R\$ por ton)

200000000

Modele como um PPL e diga quanto produzir de cada liga usando o Python-MPI, sabendo que o valor no ponto ótimo é de 18.46.

StartUp: aplicative

: Uma pequena StartUp de tecnologia está considerando 6 possíveis projetos de novos vos para investir. A tabela a seguir apresenta as informações necessárias de cada projeto:						
ojeto	Despesa	Pessoal	Capital de	Valor		
	inicial	necessário	giro médio	presente		
	(+)		1 (4 000)	(+)		

Projeto	Despesa	Pessoal	Capital de	Valor	
	inicial	necessário	giro médio	presente	
	(\$ 000)	(unid.)	anual (\$ 000)	(\$ 000)	
1	700	6	200	300	
2	1080	16	300	440	
3	120	2	20	60	
4	300	4	70	160	
5	680	10	150	380	
6	420	6	90	200	
Exig.	Máximo	Máximo	Mínimo de	Máximo	
	de 2000	de 24	200	possível	

Além disso, sabe-se de antemão que os projetos <u>3 e 4 são mutuamente exclusivos</u> e que o <u>projeto 1 só pode ser</u> realizado se o projeto 6 for. Modele o problema de identificar quais projetos que devem ser selecionados pela StartUp para se ter o máximo valor presente possível usando o Python-MIP, sabendo que o valor da solução ótima é de 940.

<u>FBI:</u> O FBI possui 3 agentes disponíveis e 5 missões para serem realizadas com os seguintes parâmetros: matriz C contém os custos de designar o agente i a tarefa j; e, a matriz A contém quantidade de horas que o agente i precisa para a execução da tarefa j. A capacidade total de horas de cada agente está no vetor b.

Determine o modelo que 1) <u>minimiza o custo</u> de designação de missões a agentes, de forma que 2) <u>as missões sejam executada por exatamente um agente</u> e que 3) <u>a capacidade de horas de cada agente não seja excedida.</u>

$C = [c_{ij}] =$	[15	61	3	94	86]
	21	28	76	48	54
	21	21	46	43	21
$A = [a_{ij}] =$	- 31	69	14	87	51
$A = [a_{ii}] =$	23	20	(71)	86	91
·	20	55	39	60	83
$b = [b_i] = [$					

ex: o agente 2 leva 71 horas para realizar a missão 3

Que agentes realizam que missões, sabendo que o valor da solução ótima é 254.

<u>Caminhão</u>: Considere o problema que você tem um conjunto de itens N com n itens, cada item i \in N possui um valor financeiro p_i . Esses itens tem que ser armazenados em um caminhão para serem transportados e vendidos, porem o caminhão possui m restrições físicas (ex: altura, largura, comprimento, peso, etc...), e para cada restrições física j=1...m, o caminhão possui um limite b_j . Além disso, cada item i ∈ N consome um valor c_{ji} para cada restrição j=1...m do caminhão.

A instancia do problema já está descrita no arquivo código base:

Que itens devem ser armazenados no caminhão, sabendo que o valor da solução ótima é 3800 .

Até a próxima

200000000

