3.3: Derivatives of Trigonometric Functions

The derivative of $\sin x$ is

$$\frac{d}{dx}(\sin x) = \cos x.$$

Example 1. Differentiate $y = x^2 \sin x$.

The derivative of $\cos x$ is

$$\frac{d}{dx}(\cos x) = -\sin x.$$

To find the derivative of $\sin x$ and $\cos x$, we used the limits

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ (see HW 2.2 #4)} \quad \text{and} \quad \lim_{x \to 0} \frac{\cos x - 1}{x} = 0.$$

The derivative of $\tan x$ is

$$\frac{d}{dx}(\tan x) = \sec^2 x.$$

The derivatives of the trigonometric functions are

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\csc x \cot x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Example 2. Differentiate.

(a)
$$y = \sin \theta \cos \theta$$

(b)
$$f(\theta) = \frac{\sec \theta}{1 + \sec \theta}$$

Example 3. Differentiate $f(x) = \frac{\sec x}{1+\tan x}$. For what values of x does the graph of f have a horizontal tangent line?

Example 4. A mass on a spring vibrates horizontally on a smooth level surface (see the figure). Its equation of motion is $x(t) = 8 \sin t$, where t is in seconds and x is in centimeters.

- (a) Find the velocity and acceleration at time t.
- (b) Find the position, velocity, and acceleration of the mass at time $t = 2\pi/3$. In what direction is it moving at that time?

Example 5. Find the 27^{th} derivative of $\cos x$.

Example 6. A ladder 10 ft long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta = \frac{\pi}{3}$?

Example 7. Find $\lim_{x\to 0} \frac{\sin 7x}{4x}$.