

3A & 3B Mathematics

50 minutes + 2 minutes reading
samm $\delta 0$ marks
Test 1 2009

- дате

1. [2, 1, 2, 2 marks]

A winery produces a fine liquer which is predicted to increase in value by 4.8% p.a.

(a) How much will a bottle of liquer be worth in 2 years time, if it presently sells for \$45?

(b) How much will a bottle of liquer be worth in n years time, if it presently sells for \$45?

(c) The winemarker plans to release the liquer when it reaches a value of \$100. How long will they have to wait for this to be the case?

(a) Another red wine produced by the winery is increasing in value at 2.3% p.a. If a large flagon presently sells for \$74, how long will it be before the Liquer becomes more expensive than the flagon?

[2, 1, 2, 2 marks]

Given p(x) = 5x + 3 and q(x) = 2 - x, find the following:

(a) the point of intersection of the two lines,

(t))d (q

((t-)b)d (:

(d) the value of k for which p(k) = -2.

(q)		
(5)		
q)		
e)		
9		
Ż		
)) - · · · ·		
, 		
A		
)		
)		
,		
_		

3. [1, 1, 3 marks]

A function has a defining rule $y = 2x^2$

Determine the defining rule for the new function if the graph of this function is

- (i) moved 2 units left,
- (ii) reflected in the y-axis,
- (iii) reflected in the x-axis, then moved 3 units right and then 1 unit up.

4. [4 marks]

A cubic polynomial intersects the x-axis at x = -2, 3, 5.

Given that the graph goes through the point (4, 2) find the equation for the polynomial in the form, $y = ax^3 + bx^2 + cx + d$.

5. [6 marks]

With the sid of a graphic calculator produce a sketch of $\ensuremath{\mathsf{N}}$

$$\lambda = x_3 - 3x^2 + 4$$

Indicate any turning points , intercepts with the axes and points of inflection. If any rounding is necessary give answers correct to Σ decimal places.

ε

[2, 2, 2, 2, 2 marks]

Match each of the graphs below with its corresponding function. Choose from the functions listed below, where a, b, c, d and e are positive integers:

- 3. $y = -ax^3 + x^2 + dx$
- 4. $y = x^3 ax b$ 5. $y = c^{x-1}$ 6. $y = \frac{1}{x+c}$
- 7. $y=x^2+x-e$ 8. $y=x^2-x-d$ 9. $y=\frac{1}{x-b}+a$

- 10. y + ax = b 11. $y = \frac{1}{x-a}$ 12. y = x + c

7. [2, 3, 3 marks]

State the domain and range for the following functions:

(b)
$$y = x^2 + 4x + 3$$

(c)
$$y = \frac{1}{2x-3} + 1$$

[3 marks]

Given the graphs for $f(x) = ax^3 + bx^2 + cx + d$ and $g(x) = ex^2 + fx + g$, for real constants a, b, ...,g, solve to 1 decimal place, the equation f(x) = g(x).