

OpenMax with Clustering for Open-Set Classification

Dennys Huber February 5, 2024

University of Zurich

Table of contents

- 1. Open-Set
- 2. OpenMax
- 3. Approach & Experiments
- 4. Discussion

Open-Set

Closed-Set Problem

(a) Distribution of the original dataset

(b) Closed-set classification problem

(c) Open-set classification problem

OpenMax

SoftMax

Introducing OpenMax

- Extension of SoftMax during testing
- · Distance based
- · Deep features
- Extreme Value Theory
- Heuristic

Calibrating OpenMax

- Training
- Class representation
- Mean Activation Vector μ
- · Features from penultimate layer Γ
- Correctly classified samples
- · Weibull Distribution
- \cdot Tail size η & Distance Multiplier κ

Projection of MAV

Building a Weibull Distribution

OpenMax Overview

OpenMax in Detail

For a testing sample:

- 1. Sort and select α classes (logit value)
- 2. Weibull Probability ω based on distance μ_i and Γ
- 3. $\hat{z} = z \circ \omega$
- 4. $\hat{z}_{N+1} = \sum_{i} z_i (1 \omega_i)$
- 5. $\operatorname{softmax}(\hat{z})$

Approach & Experiments

Improving OpenMax

- · Handling negative logits
 - · Value Shift
 - Adjust Probabilities
- · Introducing weight factors

 - $\phi_N = \frac{1}{N-1}$ $\phi_\omega = \frac{1}{\sum_i (1 \omega_i)}$
- · Removing alpha parameter

Research Questions 1

RQ1: Can OpenMax performance be enhanced by accounting for negative activation values?

Open-Set Classification Rate

Correct Classification Rate (CCR)

- · Known samples
- Threshold θ

$$CCR(\theta) = \frac{|\{k_c | \operatorname{argmax}_{1 \le n \le N} y_{c,n} = \tau_c \land y_{c,n} \ge \theta\}|}{|K|}$$
(1)

False Positive Rate (FPR)

- · Unknown samples
- Threshold θ

$$\mathsf{FPR}(\theta) = \frac{|\{u_c | \operatorname{argmax}_{1 \le n \le N} y_{c,n} \ge \theta\}|}{|U|} \tag{2}$$

Defining Scoring System

- · Σ-Score Thresholding
- γ -Score $\gamma = \frac{(\gamma^+ + \gamma^-)}{2}$

$$\gamma^{+} = \frac{1}{|K|} \sum_{c=1}^{|K|} y_{\tau_c} \tag{3}$$

$$\gamma^{-} = \frac{1}{|U|} \sum_{c=1}^{|U|} \left(1 - \operatorname{argmax}_{1 \le n \le N} y_{c,n} \right) \tag{4}$$

Baseline (γ)

Rank	α	η	κ	γ	Σ
1	7	1000	1.0	0.805	4.272
2	10	1000	1.0	0.803	3.685
3	5	1000	1.0	0.800	3.669
4	3	1000	1.0	0.718	2.855
5	-1	1000	1.0	0.600	2.899

Baseline (Σ)

Rank	α	η	κ	γ	Σ
1	7	1000	1.0	0.805	4.272
2	10	1000	1.0	0.803	3.685
3	5	1000	1.0	0.800	3.669
4	-1	10	2.3	0.514	2.917
5	3	100	3.0	0.514	2.916

Results RQ1 (γ)

Rank	α	η	κ	ϕ	Negative fix	γ	Σ
1	7	1000	1.0	ϕ_0	Original	0.805	4.272
2	5	1000	1.0	ϕ_{ω}	Value Shift	0.801	3.578
3	5	1000	1.0	ϕ_0	Adjusted Prob.	0.801	3.671
4	3	1000	1.0	ϕ_{ω}	Original	0.792	4.176

Results RQ1 (Σ)

Rank	α	η	κ	φ	Negative fix	γ	Σ
1	7	1000	1.0	ϕ_{0}	Original	0.805	4.272
2	3	1000	1.0	ϕ_{ω}	Original	0.792	4.176
3	3	1000	1.0	ϕ_{ω}	Adjusted Prob.	0.792	4.176
4	5	1000	1.0	ϕ_o	Value Shift	0.749	4.169

Where to apply the clustering?

Introducing Clustering to OpenMax

Input Clustering:

- · Input data
- Per class
- · Each cluster a class

Features Clustering:

- Training Features
- Validation Features
- Per class

Combination of both types

Visualizing Clustering

Research Questions 2

RQ2: Can clustering improve OpenMax's performance?

Results RQ2 (γ)

Rank	α	η	κ	k _{Input}	k _{Feat}	γ	Σ
1	7	100	0.7	1	5	0.829	4.391
2	7	1000	1.0	1	1	0.805	4.272

Results RQ2 (Σ)

Rank	α	η	κ	k _{Input}	<i>k</i> _{Feat}	γ	Σ
1	7	750	1.25	1	6	0.768	4.450
2	7	1000	1.0	1	1	0.805	4.272

Research Questions 3

RQ3: If clustering improves OpenMax, which clustering type is optimal, and by using which parameters?

Results RQ3 (γ)

Rank	Туре	α	η	κ	<i>k</i> _{Input}	<i>k</i> _{Feat}	γ	Σ
1	ITFC	5	100	0.7	2	3	0.841	3.666
2	VFC	7	10	0.5	1	5	0.834	3.774
3	IVFC	5	100	1.25	2	6	0.834	4.478
4	TFC	7	100	0.7	1	5	0.829	4.391
5	IC	5	100	0.5	2	1	0.822	4.247
6	base	7	1000	1.0	1	1	0.805	4.272

Results RQ3 (Σ)

Rank	Туре	α	η	κ	k_{Input}	<i>k</i> _{Feat}	γ	Σ
1	IVFC	5	100	1.0	2	6	0.828	4.483
2	VFC	7	250	1.25	1	5	0.742	4.475
3	TFC	7	750	1.25	1	6	0.768	4.450
4	ITFC	5	1000	1.5	2	3	0.827	4.423
5	IC	7	500	1.0	2	1	0.812	4.307
6	base	7	1000	1.0	1	1	0.805	4.272

Discussion

Limitations & Future Work

- Datasets
- Other Clusetring Algorithms
- Per clusters parameters
- · Costum Loss function

Questions?