IMPLEMENTASI DATA MINING UNTUK MENENTUKAN TINGKAT PENJUALAN PAKET DATA TELKOMSEL MENGGUNAKAN METODE K-MEANS CLUSTERING

¹Suhandio Handoko, ²Fauziah , ³Endah Tri Esti Handayani

Fakultas Teknologi Komunikasi dan Informatika Universitas Nasional Jl. Sawo Manila No.61, Pasar Minggu, Jakarta Selatan, 12520 suhandio@gmail.com, fauziah@civitas.unas.ac.id, endahteh@gmail.com

Abstrak

Perkembangan industri telekomunikasi saat ini sangat pesat karena telekomunikasi sudah menjadi kebutuhan utama bagi masyarakat sehingga banyak perusahaan yang bergerak di industry telekomunikasi. Banyaknya industry Telekomunikasi menuntut para pengembang untuk menemukan strategi atau suatu pola yang dapat meningkatkan penjualan dan pemasaran produk, salah satu strateginya adalah dengan memanfaatkan data transaksi. Paket data merupakan produk dibidang telekomunikasi. Proses Clustering saat ini masih di lakukan secara manual sehingga membutuhkan waktu, proses perhitungan dan ketelitian yang tinggi. Pada penelitian ini dibuat aplikasi berbasis website dengan tujuan untuk mempermudah Clustering data sehingga dapat digunakan sebagai referensi dalam perencanaan promosi produk telkomsel ke berbagai daerah. Metode yang digunakan untuk mengatasi permasalahan tersebut yaitu metode Clustering dengan menggunakan Algoritma K-Means. Algoritma K-Means merupakan algoritma pengelompokkan sejumlah data menjadi menjadi kelompok-kelompok data tertentu. Pada penelitian ini data penjualan dikelompokkan menjadi 3 yaitu data penjualan rendah, data penjualan sedang dan data penjualan tinggi. Pengujian clustering dengan algoritma K-Means pada aplikasi terhadap data transaksi penjualan paket telkomsel diperoleh persentase kesesuaian yaitu 100% dibandingkan dengan clustering manual.

Kata Kunci: algoritma, clustering, K-Means, penjualan

Abstract

The development of telecommunications industry is currently very rapidly because telecommunications have been a main needs for the community so many companies that operate in telecommunication industry. Many telecommunications industry demanded the developers to find a strategy or a pattern that could boost sales and marketing products, one of the strategies is by using transaction data. Data packages are products in the telecommunications sector. Clustering process is currently still done manually so it requires time, calculation process and high accuracy. In research is made application based website for the purpose of ease clustering data so that can be used as a reference in planning telkomsel product promotion to various regions. The method used to overcome these problems is the Clustering method using the K-Means Algorithm. K-Means algorithm is an algorithm of grouping a number of data into specific data groups. In this study sales data are grouped into 3 namely low sales data, medium sales data and high sales data. Testing clustering with the K-Means algorithm on applications against Telkomsel package sales transaction data obtained a percentage of conformity that is 100% compared to manual clustering.

Keywords: algorithm, clustering, K-Means, sales

PENDAHULUAN

Saat ini penggunaan teknologi komunikasi atau internet sangat berpengaruh dalam hal apapun. Manusia sebagai makhluk sosial tidak akan dapat terlepas dari teknologi khususnya penggunaan gadget. Penggunaan gadget seperti smartphone, tablet akan lengkap jika dapat digunakan untuk berkomunikasi dan browsing internet. Keberadaan internet saat ini sangat mempermudah setiap orang untuk melakukan segala aktivitas, misalnya untuk sekedar mencari suatu informasi ataupun bertransaksi jual beli bisa dilakukan dengan mudah. Telkomsel, Indosat, dan XL Axiata merupakan tiga perusahaan operator seluler GSM (Global System for Mobile Communication) terbesar di Indonesia.

Telkomsel mengklaim sebagai operator seluler telekomunikasi seluler terbesar di Indonesia dengan 139,3 juta pelanggan per 31 Desember 2014 dan pangsa pasar sebesar 51 persen per 1 Januari 2007 (Tekno.Liputan6.com). Perusahaan ini menyediakan berbagai layanan, diantaranya tiga kartu prabayar yaitu simPATI, Kartu As dan Loop serta layanan pascabayar yaitu Kartu Halo.

Masalah yang terjadi dialami oleh PT. Telkomsel yaitu kurangnya peninjauan pihak manager terhadap produk layanan yang dijual, layanan apa saja yang dibutuhkan konsumen dan penyimpanan data transaksi yang kurang efektif sehingga setiap daerah masih banyak yang tidak mengetahui layanan yang bagus pada produk telkomsel. Adanya data mining

ditujukan untuk memberikan solusi nyata kepada PT.Telkomsel agar dapat mengetahui layanan terlaris yang diminati konsumen. Pihak manager juga dapat membandingkan penjualan dari berbagai daerah sebagai salah satu dasar informasi yang efektif untuk pengembangan penjualan pada PT. Telkomsel.

Data mining yang biasa disebut sebagai knowledge discovery in database (KDD) merupakan kegiatan yang meliputi pengumpulan, pemakaian data historis untuk menemukan keteraturan, pola hubungan dalam himpunan data yang berukuran besar. Output dari data mining ini dapat digunakan untuk pengambilan keputusan di masa depan. Salah satu teknik yang dikenal dalam data mining yaitu clustering. Clustering merupakan suatu proses pengelompokan sejumlah data atau objek ke dalam cluster (group) sehingga setiap dalam pada suatu cluster yang sama akan berisi data yang semirip mungkin dan berbeda dengan objek dalam cluster yang lainnya.

Sebuah objek/data diyang kelompokkan ke dalam suatu grup akan mempunyai ciri-ciri yang sama berdasarkan kriteria tertentu. Salah satu aktifitas yang dilakukan dalam menganalisa data adalah klasifikasi atau pengelompokkan data ke dalam beberapa kategori, kelompok atau cluster. Pengelompokan data suku cadang dan aksesoris komputer mengunakan metode Kmeans clustering. Data yang didapat dari metode ini akan dikelompokkan ke dalam beberapa *cluster* berdasarkan minat beli konsumen. Data akan dikelompokkan dalam

satu *cluster* apabila memiliki karakteristik yang sama [1].

Semakin berkembangnya persaingan dalam dunia bisnis khususnya dalam industri penjualan *sparepart* mobil dan jasa *service* menuntut para pengembang untuk menemukan suatu pola yang dapat meningkatkan penjualan dan pemasaran barang di perusahaan, salah satunya adalah pemanfaatan data transaksi. CV Terang Jaya merupakan perusahaan yang begerak dalam bidang otomotif yang melayani pembelian, penjualan sparepart mobil serta memberikan service berbagai merek mobil. untuk Namun demikian kurang dalam peninjauan produkproduk apa saja yang dibutuhkan konsumen dan penyimpanan data yang kurang efektif. Permasalahan tersebut di analisis dengan penerapan Clustering dengan menggunakan Algoritma K-Means Clustering.

Pengelompokan data ini bermanfaat bagi pihak perusahaan dapat mengetahui barang paling laris, laris dan tidak laris sehingga tidak terjadi penumpukan barang[2].

Manajemen stok yang dilakukan secara tidak akurat akan menyebabkan biaya simpan yang tinggi dan tidak ekonomis. Hal ini dapat menyebabkan kelebihan atau kekosongan produk tertentu. Hal ini dapat merugikan semua pelaku usaha seperti halnya online shop. Penelitian ini bertujuan untuk mengelompokkan produk yang dijual pada online shop Ragam Jogja menjadi beberapa cluster untuk mengetahui produk mana yang paling diminati oleh konsumen sehingga

jumlah stok barang harus banyak, produk diminati oleh konsumen untuk jumlah stok sedang dan produk yang kurang diminati oleh konsumen untuk jumlah stok sedikit. Metode yang digunakan pada penelitian ini adalah metode K-Means untuk mencari partisi yang optimal dari data dengan meminimalkan kriteria jumlah kesalahan kuadrat dengan prosedur iterasi yang optimal. Variabel yang digunakan adalah kode produk, jumlah transaksi, dan rata-rata penjualan [3].

Clustering banyak digunakan berbagai bidang seperti biologi, psikologi, dan ekonomi. Hasil pengelompokan bervariasi karena jumlah perubahan parameter cluster maka tantangan utama analisis cluster adalah jumlah *cluster* atau jumlah parameter model jarang diketahui, dan harus ditentukan sebelum pengelompokan. Algoritma pengelompokan beberapa telah diajukan salah satunya adalah metode k-means [4,5,6]. Ada banyak metode yang tersedia untuk memperkirakan jumlah cluster antara lain indeks statistik, metode berbasis varians, Teori Informasi, dan metode goodness of fit. Penelitian ini mengeksplorasi enam pendekatan yang berbeda untuk menentukan jumlah cluster yang tepat dalam suatu dataset [6].

Tujuan dari penelitian ini adalah membuat suatu program atau aplikasi yang dapat mengelompokkan sebuah daerah menjadi kategori daerah dengan penjualan paket data Telkomsel tinggi, rendah dan sedikit berdasarkan data transaksi penjualan menggunakan metode *K-Means Clustering*.

Gambar 1. Kerangka Kerja Penelitian

METODE PENELITIAN

Kerangka kerja dalam penelitian ini dapat dilihat pada Gambar 1. Berdasarkan Gambar 1, pada penelitian ini terdiri dari 9 tahap yaitu pengumpulan data, mempelajari studi literatur, analisis data, menyeleksi data, dan penarikan kesimpulan.

Pada penelitian ini sumber data yang digunakan berasal dari data transaksi penjualan PT Telkomsel. Data tersebut akan diproses untuk menghasilkan pengetahuan yang bisa digunakan sebagai pengembangan strategi bisnis. Data awal yang diperoleh dari PT. Telkomsel masih berupa data seluruh pemakai layanan telkomsel di setiap daerah

yang belum diseleksi menjadi data yang siap dipakai dalam penelitian.

Studi literatur dilakukan untuk mengumpulkan pengetahuan dari berbagai macam sumber literatur berupa buku-buku, jurnal dan karya ilmiah yang berkaitan dengan topik yang penulis angkat. Pada tahap analisis data digunakan tahapan KDD (Knowledge Discovery in Database). Tahapan KDD ini meliputi: Seleksi Data, Preprocessing dan Pembersihan Data, Transformasi Data, Data Mining, Evaluasi/Interpretation.

Setelah data selesai dikumpulkan maka tahap selanjutnya penyeleksian pada data layanan yang telah diperoleh dari PT. Telkomsel. Pada tahap penyeleksian data ini dilakukan pemilahan data layanan, karena tidak semua data tersebut akan digunakan dalam penelitian ini. Data yang akan diambil tergantung pada data daerah layanan yang ada di PT. Telkomsel. Data yang akan digunakan ialah data daerah dan data layanan.

Setelah data telah selesai di seleksi, pada data-data tersebut dilakukan preprocessing/ cleaning yaitu proses pemilihan atribut-atribut yang dapat digunakan. Dalam data tersebut terdapat beberapa atribut antara lain nama daerah,volume pemakaian layanan paket data, jenis produk layanan.dan rata-rata penjualan.

Pada tahap ini dilakukan transformasi data sesuai dengan sistem/aplikasi yang akan digunakan dalam analisis data mining. Transformasi ini dilakukan dengan cara memasukkan data transaksi penjualan ke dalam sistem / aplikasi data mining. Dalam metode ini akan dikelompokkan obyek data ke dalam k kelompok atau *cluster*. Untuk melakukan *clustering* ini, nilai k harus ditentukan terlebih dahulu. Biasannya user atau pengguna sudah mempunyai informasi awal tentang obyek data yang sedang dipelajari, termasuk jumlah *cluster* yang paling tepat. Secara detail kita bisa menggunakan ukuran ketidak miripan untuk mengelompokkan obyek data kita. Ketidak miripan bisa diterjemahkan dalam konsep jarak. Jika jarak dua obyek data cukup dekat, maka dua obyek data itu mirip. Semakin dekat berarti semakin tinggi kemiripannya. Semakin tinggi nilai jarak, semakin tinggi ketidak miripannya [5].

Langkah-langkah melakukan *clustering* dengan metode *K-Means Clustering* adalah sebagai berikut:

- 1. Menentukan nilai k untuk jumlah *cluster* yang ingin dibentuk.
- Memilih nilai untuk pusat cluster awal (centroid) sebanyak k.
- 3. Menghitung jarak setiap data input terhadap masing—masing centroid menggunakan rumus jarak *Euclidean* (Euclidean Distance) hingga ditemukan jarak yang paling dekat dari setiap data dengan centroid. Berikut adalah persamaan Euclidian Distance:

$$d(x_i, \mu_j) = \sqrt{\sum (x_i - \mu_j)^2}$$
 (1)

 x_i : data kriteria ke

 μ_i : centroid *cluster* ke-j

 \sum : Penjumlahan

- Mengklasifikasikan/mengelompokan setiap data berdasarkan kedekatannya dengan *centroid* (jarak terkecil).
- Memperbaharui nilai centroid. Nilai centroid baru di peroleh dari rata-rata cluster yang bersangkutan dengan menggunakan rumus:

$$\mu_j(t+1) = \frac{1}{Ns_j} \sum_{j \in sj} x_j \tag{2}$$

 μ_j (t +1): centroid baru pada iterasi ke-(t+1),

 Ns_j : banyak data pada *cluster* Sj.

 Melakukan perulangan dari langkah 3 hingga 5, sampai anggota tiap cluster tidak ada yang berubah.

Jika langkah 6 telah terpenuhi, maka nilai pusat cluster $(\mu \ j)$ pada iterasi terakhir

akan digunakan sebagai parameter untuk menentukan klasifikasi data. Pada penelitian ini dilakukan pengujian dengan menggunakan aplikasi *K-Means Clustering* berbasis Web. Hasil perhitungan yang diperoleh melalui aplikasi digunakan sebagai komparasi dengan perolehan data melalui penghitungan manual sehingga dapat diketahui keakuratan data yang diperoleh aplikasi. Berdasarkan perhitungan Algoritma *K-Means Clustering* dari Aplikasi yang dibangun sehingga menghasilkan keputusan yang digunakan untuk mengambil keputusan dalam penentuan pola penjualan layanan.

HASIL DAN PEMBAHASAN

Pada Tabel 1 berikut disajikan data hasil proses seleksi sebanyak 52 data. Data bersumber dari perusahaan Telkomsel.

Table 1. Daftar data pilihan

No	Area	Jumlah Transaksi	Jumlah Vol Data (Byte)	Rata-rata Penjualan
1	Puma(kartuHALO)	1	29,489,127,424	29,489,127,424
2	Balinusra(simPATI)	5	125,623,335,936	25,124,667,187
3	Sulawesi(LOOP)	14	232,929,964,032	23,292,996,403
4	Balinusra(KartuAS)	3	39,927,040,000	19,963,520,000
5	Eastern Jabotabek(KartuAS)	16	227,271,073,792	18,939,256,149
6	Jabar(LOOP)	27	398,242,689,024	17,314,899,523
7	Central Jabotabek(LOOP)	86	984,850,739,200	16,145,094,085
8	Sumbagut(simPATI)	8	125,616,196,608	15,702,024,576
9	Jatim(simPATI)	14	207,552,093,184	14,825,149,513
10	Sumbagteng(simPATI)	7	93,172,805,632	13,310,400,805
11	Sumbagsel(KartuAS)	24	234,459,030,528	13,025,501,696
12	Eastern Jabotabek(LOOP)	90	880,470,165,504	12,578,145,221
13	Sumbagsel(LOOP)	26	242,963,350,528	12,148,167,526
14	Jateng(LOOP)	29	242,494,959,616	12,124,747,981

15	Eastern Jabotabek(kartuHALO)	173	1,797,594,676,224	11,904,600,505
16	Sulawesi(simPATI)	12	142,272,509,952	11,856,042,496
17	Western Jabotabek(simPATI)	26	303,690,507,264	11,680,404,126
18	Puma(LOOP)	9	81,647,892,480	11,663,984,640
19	Jatim(kartuHALO)	7	58,031,984,640	11,606,396,928
20	Kalimantan(LOOP)	22	169,083,305,984	11,272,220,399
21	Sulawesi(kartuHALO)	4	22,476,572,672	11,238,286,336
22	Sumbagteng(KartuAS)	19	76,935,956,480	10,990,850,926
23	Kalimantan(kartuHALO)	5	43,551,104,000	10,887,776,000
24	Sumbagut(kartuHALO)	4	43,341,971,456	10,835,492,864
25	Jabar(simPATI)	35	376,320,181,248	10,752,005,179
26	Jateng(kartuHALO)	8	72,276,496,384	10,325,213,769
27	Balinusra(kartuHALO)	4	39,572,100,096	9,893,025,024
28	Sumbagsel(kartuHALO)	5	39,242,865,664	9,810,716,416
29	Central Jabotabek(kartuHALO)	195	1,654,350,662,656	9,294,104,846
30	Sumbagteng(LOOP)	29	168,911,970,304	8,890,103,700
31	Jateng(KartuAS)	104	389,213,829,120	8,845,768,844
32	Western Jabotabek(KartuAS)	3	17,042,033,664	8,521,016,832
33	Sumbagut(LOOP)	36	212,363,164,672	8,494,526,587
34	Western Jabotabek(kartuHALO)	27	172,644,697,088	7,847,486,231
35	Jatim(KartuAS)	199	786,810,143,744	7,638,933,434
36	Jabar(KartuAS)	20	63,948,469,248	7,105,385,472
37	Kalimantan(KartuAS)	14	70,183,277,568	7,018,327,757
38	Jatim(LOOP)	65	247,161,452,544	6,865,595,904
39	Western Jabotabek(LOOP)	14	75,493,458,944	6,863,041,722
40	Central Jabotabek(simPATI)	171	1,162,505,902,080	6,798,280,129
41	Jateng(simPATI)	27	178,988,456,960	6,629,202,110
42	Sulawesi(KartuAS)	28	104,799,050,752	6,549,940,672
43	Eastern Jabotabek(simPATI)	119	766,177,708,032	6,438,468,135
44	Balinusra(LOOP)	3	12,816,706,560	6,408,353,280
45	Kalimantan(simPATI)	12	73,889,059,840	6,157,421,653
46	Jabar(kartuHALO)	12	57,559,270,400	5,755,927,040
47	Puma(KartuAS)	5	20,154,857,472	5,038,714,368
48	Central Jabotabek(KartuAS)	6	24,121,854,976	4,824,370,995
49	Sumbagteng(kartuHALO)	3	9,673,355,264	3,224,451,755
50	Sumbagut(KartuAS)	9	8,311,624,704	2,770,541,568
51	Sumbagsel(simPATI)	12	31,474,022,400	2,622,835,200
52	Puma(simPATI)	2	912,057,344	456,028,672

[Sumber : Data dari perusahaan Telkomsel]

Table 3.2. Inisialisasi Cluster

Data	C1 (Tinggi)	C2 (Sedang)	C3 (Rendah)
Jumlah	1	8	2
Transaksi			
Jumlah Vol data	29,489,27,424	72,276,496,384	912,057,344
(Byte)			
Rata-rata	29,489,127,424	10,325,213,769	456,028,672
penjualan			

Perhitungan Clustering

Pada bagian ini diterapkan algoritma klasifikasi K-Means untuk mengelompokan data dengan langkah-langkah berikut:

- Menetapkan jumlah cluster.
 Jumlah cluster ditetapkan adalah
 3 Cluster berdasarkan hasil transaksi penjualan yaitu C1
 (Cluster tinggi), C2 (Cluster sedang), dan C3 (Cluster rendah)
- Inisialisasi pusat cluster (centroid) secara acak berdasarkan data skor hasil survei kelapangan. Nilai pusat cluster dapat dilihat pada table di atas.
- 3. Menghitung jarak setiap data terhadap pusat *cluster*. Misalnya untuk menghitung jarak instance pertama dengan pusat *cluster* pertama adalah:

$$\begin{split} d_{11} &= \\ \sqrt{(1-1)^2 + (29.489.127.424 - 29.489.127.424)^2 + (29.489.127.424 - 29.489.127.424)^2} \\ &= 0.0 \\ d_{12} &= \\ \sqrt{(1-8)^2 + (29.489.127.424 - 72.276.496.384)^2 + (29.489.127.424 - 10.325.213.769)^2} \\ &= 46.882.987.630 \\ d_{13} &= \sqrt{(1-2)^2 + (29.489.127.424 - 912.057.344)^2 + (29.489.127.424 - 456.028.672)^2} \\ &= 40.737.817.289 \end{split}$$

Pada Tabel 2 berikut ditunjukkan hasil perhitungan lengkap dari perhitungan clustering. Kolom C1 adalah cluster tertinggi , C2 adalah cluster sedang , C3 adalah cluster rendah. Kolom cluster yang berisi nilai /

angka adalah nilai jarak terdekat dari pusat cluster, sedangkan *cluster* yang tidak berisi nilai berarti nilai jarak terjauh dari pusat *cluster*. Jadi masing-masing area sudah terkelompokan pada iterasi 1.

Tabel 2. Hasil Perhitungan Jarak *Instance* Pertama

No	Area	C1	C2	C3
1	Puma (c1, kartuHALO)	0		
_		14,131,072,70		
2	Balinusra (c1, KartuAS)	3		
3	Sulawasi (al. IzartuHALO)	19,551,703,87 9		
3	Sulawesi (c1, kartuHALO)	23,318,436,05		
4	Kalimantan (c1 , kartuHALO)	4		
-	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	23,234,874,00		
5	Sumbagut (c1, kartuHALO)	6		
		22,038,002,79		
6	Balinusra (c1 , kartuHALO)	5		
7	Cumbo and (all boutulists O)	21,963,043,26		
7	Sumbagsel (c1, kartuHALO)	5 26,939,514,95		
8	Sumbagsel (c1, simPATI)	20,939,314,93 4		
9	Balinusra (c2, simPATI)	•	55,361,621,288	
10	Sulawesi (c2, LOOP)		161,175,990,935	
10	Eastern Jabotabek (c2,		101,110,770,733	
11	KartuAS)		155,233,761,637	
12	Jabar (c2, LOOP)		326,041,123,865	
13	Central Jabotabek (c2, LOOP)		912,592,800,573	
14	Sumbagut (c2, simPATI)		53,610,015,057	
15	Jatim (c2, simPATI)		135,350,421,171	
16	Sumbagteng (c2, simPATI)		21,108,459,959	
17	Sumbagsel (c2, KartuAS)		162,205,012,057	
18	Eastern Jabotabek (c2, LOOP)		808,196,809,265	
19	Sumbagsel (c2, LOOP)		170,696,588,536	
20	Jateng (c2, LOOP)		170,227,975,223	
	Eastern Jabotabek (c2,			
21	kartuHALO)		1,725,318,902,739	
22	Sulawesi (c2, simPATI)		70,012,751,353	
22	Western Jabotabek (c2,		221 417 070 021	
23	simPATI)		231,417,978,931	
24	Puma (c2, LOOP)		9,466,539,612	
25	Jatim (c2, kartuHALO)		14,302,011,925	
26	Kalimantan (c2, LOOP)		96,811,441,506	
27	Sumbagteng (c2, KartuAS)		4,706,765,472	
28	Jabar (c2, simPATI)		304,043,984,411	
29	Jateng (c2, kartuHALO)		0	
30	Central Jabotabek (c2, kartuHALO)		1,582,074,502,282	
31	Sumbagteng (c2, LOOP)		96,646,129,569	
32	Jateng (c2, KartuAS)		316,940,785,698	
33	Sumbagut (c2, LOOP)		140,098,629,713	
55	Western Jabotabek (c2,		170,070,027,713	
34	kartuHALO)		100,398,779,108	
35	Jatim (c2, KartuAS)		714,538,696,861	

36	Jabar (c2, KartuAS)	8,928,792,205	
37	Kalimantan (c2, KartuAS)	3,913,701,587	
38	Jatim (c2, LOOP)	174,919,172,325	
39	Western Jabotabek (c2, LOOP)	4,726,043,101	
	Central Jabotabek (c2,		
40	simPATI)	1,090,235,110,563	
41	Jateng (c2, simPATI)	106,775,947,817	
42	Sulawesi (c2, KartuAS)	32,740,941,183	
	Eastern Jabotabek (c2,		
43	simPATI)	693,912,096,968	
44	Kalimantan (c2, simPATI)	4,468,875,924	
45	Jabar (c2, kartuHALO)	15,410,227,833	
	Western Jabotabek (c3,		18,033,861,76
46	KartuAS)		3
	/		13,309,802,44
47	Balinusra (c3 , LOOP)		8
40	Desires (-2 - Wester A.C.)		19,780,959,65
48	Puma (c3, KartuAS)		22 617 205 52
49	Central Jabotabek (c3 , KartuAS)		23,617,305,53
	<i>'</i>		~
50	Sumbagteng (c3, kartuHALO)		9,188,280,993
51	Sumbagut (c3, KartuAS)		7,753,100,481
52	Puma (c3, simPATI)		0

Tabel 3. Hasil perhitungan manual dan aplikasi/sistem

Perhitungan	C1 (Cluster Tinggi)	C2 (Cluster Sedang)	C3(Cluster Rendah)
Manual	16	7	29
Aplikasi	16	7	29

Hasil Penelitian

Pada Tabel 3 dapat dilhat hasil pengujian yang dilakukan dengan penghitungan manual dan secara sistem.

Jika hasil di persentasekan, maka kesesuaian antara aplikasi dengan penghitungan manual didapat hasil akurasi 100 % dan untuk kecepatan sistem dalam mengupload data dan menjumlahkan data ke masing-masing region sangat cepat.

Pada Gambar 2 ditunjukkan halaman login bagi *user* dengan memasukkan *user-name* dan *password* dari aplikasi *K-Means*

Clustering bebasis web yang telah dibuat.

Pada Gambar 3 ditunjukan halaman setelah *user* berhasil *login* maka akan masuk ke halaman beranda atau dashboard.

Pada saat *user* memilih button Brand maka akan tampil halaman data brand kartu perdana telkomsel seperti yang ditunjukkan pada Gambar 4.

Gambar 5 merupakan halaman data transaksi penjualan paket data Telkomsel.

Gambar 6 merupakan halaman hasil perhitungan *K-Means Clustering*.

Gambar 2. Halaman Login

Gambar 3. Halaman Beranda setelah berhasil login

Data Brand

Gambar 4. Halaman Data Brand Kartu Perdana Telkomsel

Gambar 5. Halaman Data Transaksi Penjualan Paket

Gambar 6. Halaman Penghitungan K-Means Clustering

KESIMPULAN

🕋 Beranda 🗦 Data Penjualan Paket

Berdasarkan hasil penelitian dapat ditarik kesimpulan bahwa hasil dari metode Algoritma *K-Means Clustering data mining* didapatkan daerah penjualan produk yang tinggi , sedang , dan rendah. Daerah dengan penjualan produk yang rendah akan dilakukan promosi penjualan produk dan untuk daerah

penjualan yang tinggi tidak diadakan promosi.

Aplikasi ini diharapkan dapat mempermudah *clustering* sebuah data transaksi penjualan,sehingga dapat menghemat waktu dan membuat strategi untuk meningkatkan penjualan paket data. Pada penelitian selanjutnya dapat dilakukan pengembangan dengan menambahkan jumlah data dan mencoba *clustering* dengan beberapa metode yang lain.

DAFTAR PUSTAKA

- [1] S. Mulyati, "Penerapan data *mining* dengan metode *clustering* untuk pengelompokan data pengiriman burung," Dalam Prosiding Seminar Ilmiah Nasional Teknologi Komputer, 2015, vol. 1, hal. 30 35.
- [2] S. P. Tamba, F. T. Kesuma, dan Feryanto, "Penerapan data *mining* untuk menentukan penjualan *sparepart* Toyota dengan menggunakan metode *K-means* clustering," *Jurnal Sistem Informasi dan Ilmu Komputer Prima*, vol. 2, no. 2, hal. 67 72, 2019.
- [3] E. Muningsih dan S. Kiswati, "Penerapan metode *K-means* untuk

- clustering produk online shop dalam penentuan stok barang," Jurnal Bianglala Informatika, vol. 3, no. 1, hal. 10-17,2015.
- [4] D. N. Nango, "Penerapan algoritma *K-Means* untuk *clustering* data anggaran pendapatan belanja daerah di Kabupaten XYZ," Skripsi Sarjana, Universitas Negeri Gorontalo, Gorontalo, 2012.
- [5] B. Santosa, *Data mining (Teknik pemanfaatan data untuk keperluan bisnis)*. Yogyakarta: Graha Ilmu, 2007.
- [6] T. Kodinariyah, P. Makwana. (2013). Review on determining number of Cluster in *K-Means Clustering*. Volume 1, Issue 6, November. ISSN: 2321-7782 (Online).