Title: Hyperparameter Tuning in LSTM Network

BACKGROUND

Dataset Used: IMDB Review dataset

HYPERPARAMETERS USED

- 1. Learning rate
- 2. Number of hidden units
- 3. Input Length
- 4. Number of Epochs

SEARCH METHODS USED

- 1. Random Search (RS)
- 2. Bayesian Optimization (BO)
- 3. Genetic Algorithm (GA)
- 4. Grid Search (GS)

RESEARCH QUESTIONS

- **RQ1**: How do the hyperparameter tuning techniques compare with each other?
- RQ2: Which set of above-mentioned hyperparameters yields the best results for LSTM?

RANDOM SEARCH

Arbitrary search in random search space.

BAYESIAN OPTIMIZATION

Guided search in random search space.

GENETIC ALGORITHM

- Approach-I
- From 20 pass top one, create new 19,
 Relatively more difference in probability
 between high and poor performing models.
- Approach-II
- From 20 pass best 10, create new 10.
 Relatively more difference in probability between high and poor performing models.
- Approach-III
- From 20 pass best 10, create new 10.
 Relatively more difference in probability
 between high and poor performing models.

GRID SEARCH

5 top models [GA-I, GA-II. GA-III, RS, BO]

* Figure 1 taken from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Genetic Algorithm provides best result

for finding and tuning hyperparameters

for an LSTM network.

Figure 2: System Workflow

Method	Identified Optimum Hyperparameters				AUC	Time Taken
	α	numHidden	numEpochs	maxLength		
Random Search	0.018	464	5	458	0.896	1h14m
Bayesian Optimization	0.0031	278	7	422	0.9350	1h28m
GA Approach-I	0.012	54	3	429	0.9378	23h30m
GA Approach-II	0.017	112	4	418	0.934	8h46m
GA Approach-III	0.0075	85	3	475	0.946	14h22m
Final Grid Search	0.0075	85	3	475	0.946	7h5m

Fig: Validation accuracy for GA approach-III by generation

Fig: Area Under Precision-Recall Curve for GA approach-III

Fig: Confusion Matrix for GA approach-III

RESULTS

- Our approach for Genetic Algorithm yielded the best results.
- The best model has:
 AUC value: 0.946.
 Precision: 0.90, Recall: 0.85 and F1 score: 0.88.

DISCUSSION

- Different approach to hyperparameter tuning were compared with respect to time and quality of results.
- Random search was the quickest whereas genetic algorithm gave the best result.
- Prabesh Poudel, Prabesh Pathak, Binish Koirala, Bishal Neupane