D/A0430 690-009492-US (PAR)

Patent Application Papers Of:

Joseph A. Swift

Donald Stanton

For:

SMOOTH SURFACE TRANSFUSE BELTS AND PROCESS FOR PREPARING SAME

D/A0430 690-009492-US (PAR)

SMOOTH SURFACE TRANSFUSE BELTS AND PROCESS FOR PREPARING 5 SAME

BACKGROUND OF THE INVENTION

10

15

25

1. Field of the Invention:

The present invention relates to novel electrostatic or intermediate transfer belts, transfuse belts, receiving toner images from a photoreceptor toner imageforming member and transfusing said images to a copy member such as a paper copy sheet to form fixed images thereon.

2. State of the Art: 20

such machines printing Electrostatographic photocopiers, laser printers, facsimile machines and the like incorporating intermediate transfuse systems belts are well known in the art, as illustrated by 5,922,440; 5,991,590; U.S. Patents of embodiments 5,434,657 and 5,459,008, for example. Transfuse systems and copy machines incorporate an intermediate continuous to the is receptive which belt having a surface of images from toner electrostatic transfer 30 generally by applying photoreceptor belt or drum, charge to the intermediate belt which is opposite to the toner-imaged images. The of the toner charge intermediate transfuse belt is then continuously cycled

10

15

20

25

30

through the pressure nip between a heated roller and a pressure roller, in surface contact with a copy sheet whereby the toner images are heat-fused to the surface of the copy sheet and transferred from the surface of the transfuse belt when the belt and copy sheet exit the pressure nip.

In electrostatographic printing machines in which the toner image is transferred from the intermediate transfer member to the image receiving substrate, it is important that the transfer of the toner particles from the intermediate transfer member receiving to the image substrate be substantially 100 percent. Less the image receiving substrate complete transfer to image degradation low resolution. and in results Completely efficient transfer is particularly important when the imaging process involves generating full color images since undesirable color deterioration in the final colors can occur when the color images are not completely transferred from the intermediate transfer member.

important that the intermediate transfer Thus, it is member surface has excellent release characteristics with respect to the toner particles. Conventional materials known in the art for use as intermediate transfer members often possess the strength, conformability and electrical conductivity necessary for use as intermediate transfer poor toner suffer from members, but can characteristics, especially with respect to higher gloss image receiving substrates, and poor adhesion to the substrate, particularly under the effects of heat.

Although continuous application of a liquid release agent to the belt surface increases toner transfer, the transfer member outer layer can swell upon repeated addition of the release agents. For example, it has been shown that silicon rubber performs well as a transfer layer, but swells significantly in the presence of hydrocarbon fluid release agents and loses adhesion to the support belt, particularly when heated. Also, release properties have been shown to decay from repeated interaction with certain release agents such as hydrocarbon release agents.

10

15

20

25

U.S. Pat. No. 5,459,008 discloses an intermediate transfer member in combination with a thin film coating of a release agent material comprising a polyolefin, a silicon polymer, or grafts of these polymers, and mixtures thereof.

U.S. Patent No. 5,922,440 discloses an intermediate toner-transfer belt having a polyimide film support, an adhesive binder layer or prime coat, a polymer layer such as a fluoropolymer, polyimide or silicone rubber, and an outer release layer of a similar polymer. While the optional adhesive binder layer provides some degree of improved mechanical adhesion to the polyimide film substrate, the mechanical adhesion to the belt support and/or to the polymer layer is subject to failure after repeated use in the transfusion transfer process whereby the useful life of the belt is reduced.

A need remains for an intermediate transfer member that exhibits substantially 100 percent toner fusion and transfer, without system failure, to image receiving substrates having glosses ranging from low to very high, over a prolonged life of use at elevated temperatures without delamination and breakdown. Further, a need

remains for a combination of a transfer member surface layer and a release agent that does not result in significant swelling and separation of the outer layer of the transfer member. In addition, it is desired to present a transfusion belt in which the transfer properties of the belt do not significantly decay or degrade over repeated reuse at elevated temperatures.

Finally, it is desirable that the release surface of the transfusion belt remains smooth and glossy after repeated reuse in order to continue to produce 100% transfer of the toner images and the formation of copy images which have glossy surfaces and have a pleasing appearance over the lifespan of the belt.

15

20

25

10

SUMMARY OF THE INVENTION

The present invention relates to an improved reusable intermediate transfuse belt for use in the electrostatic process of forming toner images thereon and heating sufficiently to fuse the images and transfer them as glossy-surfaced images to a copy sheet in contact therewith, which belt is resistant to heat-degradation and delamination over an extended life of repeated reuse.

The novel transfuse belts of the present invention have an elastomer-coated, continuous seamless fabric belt support and a conformable release layer of an elastomer polymer having a smooth glossy surface, characterized by the presence of an intermediate hydrolyzed polyfunctional moisture-cured silicone primer layer which is chemically-bonded to both the elastomer-coated belt support and to the elastomer release layer present thereon to prevent

any separation or delamination of the elastomer release layer over prolonged reuse of the transfuse belt at elevated fusion temperatures up to at least about 200°C.

5

The Drawings

In the accompanying drawings:

Fig. 1 is a schematic view of an image development 10 apparatus incorporating an intermediate transfuse belt according to the present invention, and

Fig. 2 is a cross-sectional view of a transfuse belt according to an embodiment of the present invention.

15

20

Detailed Description

novel transfuse belts of the present invention comprise a conventional elastomer-integrated fiber fabric support since such supports have exceptional strength and resistance to elongation even when heated to the elevated temperatures of the electrostatographic toner-transfusion copying process which range up to about 200°C. The 25 present transfuse belts support a conventional conformable elastomer polymer release layer οf an characterized by the use of an intermediate chemical bonding layer of a polyfunctional primer material which is with the elastomeric material which reactive integrated, penetrated or impregnated into the fibrous support, and is also reactive with the elastomer of the conformable top layer to form a chemical bond between the the fabric belt support. layer and top

Fabric materials are made from fibers or threads and woven, knitted or pressed into a cloth or felt type Woven, as used herein, refers to fabrics of structure. fibers closely oriented by warp and filler strands at Nonwoven, as used herein, right angles to each other. refers to randomly integrated fibers or filaments. fabric material useful as the substrate herein must be suitable for allowing a high operating temperature (i.e., greater than about 180° C., preferable greater than 200° C.), capable of exhibiting high mechanical strength, 10 providing heat insulating properties (this, in turn, improves the thermal efficiency of the proposed fusing system), and possessing electrical insulating properties. In addition, it is preferred that the fabric substrate have a flexural strength of from about 200,000 to about 15 3,000,000 psi, and a flexural modulus of from about 25,000 to about 55,000 psi. Examples of suitable fabrics include woven or nonwoven cotton fabric, wool fabric, carbon fiber fabric, graphite fabric, fiberglass, woven or nonwoven 20 polyimide (for example KELVAR® available from DuPont), nylon nonwoven polyamide, such as woven orpolyphenylene isophthalamide (for example, NOMEX® of E.I. Wilmington, Del.), polyester, polycarbonate, DuPont of polyacryl, polystyrene, polyethylene, polypropylene, co-25 polymers of the above, with and without reinforcing

In an electrostatographic printing machine, each image being transferred is formed on an imaging member. The imaging member can take conventional forms such as a photoreceptor belt or drum, an ionographic belt or drum, and the like. The image may then be developed by contacting the latent image with a toner or developer at a developing station. The development system can be either

filters, and the like.

wet or dry. The developed image is then transferred to an intermediate transfer member. The image can be either a single image or a multi-image. In a multi-image system, each of the images may be formed on the imaging member and transferred sequentially and then developed intermediate transfer member, or in an alternative method, each image may be formed on the imaging member, developed, and transferred in registration to the intermediate transfer member.

10

20

25

In a typical electrostatographic reproducing apparatus, a light image of an original to be copied is recorded in the electrostatic latent image upon of an form photosensitive member and the latent image is subsequently 15 rendered visible by the application of electroscopic thermoplastic resin particles which are commonly referred Specifically, a photoreceptor is charged on to as toner. its surface by means of a charger to which a voltage has been supplied from a power supply. The photoreceptor is then imagewise exposed to light from an optical system or an image input apparatus, such as a laser and light emitting diode, to form an electrostatic latent Generally, the elctrostatic latent thereon. developed by bringing a developer mixture from a developer Development can station into contact therewith. effected by use of a magnetic brush, powder cloud, other known development process. A dry developer mixture usually comprises carrier granules having toner particles Toner particles are adhering triboelectrically thereto. attracted from the carrier granules to the latent image Alternatively, a forming a toner powder image thereon. liquid developer material may be employed, which includes a liquid carrier having toner particles dispersed therein. The liquid developer material is advanced into contact

30

the electrostatic latent image and the toner with particles are deposited thereon in image configuration.

After the toner particles have been deposited on the 5 photoconductive surface, in image configuration, they are transferred to an intermediate transfer member, or bias transfer member, and subsequently transferred to and heat Examples of copy substrates fused on a copy sheet. include paper, transparency material such as polyester, 10 polycarbonate, or the like, cloth, wood, metal, or any other desired material upon which the finished image will be situated.

Transfer and fusing occur simultaneously in a transfix As shown in Fig. 1, a transfer apparatus 15 configuration. 15 is depicted as transfix belt 4 being held in position by driver rollers 22 and heated roller 2. Heated roller 2 Transfix belt 4 is driven comprises a heater element 3. by driving rollers 22 in the direction of arrow 8. 20 developed image from photoreceptor 10, which is driven in direction 7 by rollers 1, is transferred to transfix belt 4 when contact with photoreceptor 10 and belt 4 occurs. Pressure roller 5 aids in transfer of the developed image from photoreceptor 10 to transfix belt 4. The transferred image is subsequently transferred to copy substrate 16 and simultaneously fixed to copy substrate 16 by passing the copy substrate 16 between belt 4 (containing the developed image) and pressure roller 9. A nip is formed by heated roller 2 with heating element 3 contained therein and pressure roller 9. Copy substrate 16 passes through the nip formed by heated roller 2 and pressure roller 9, and simultaneous transfer and fusing of the developed image to the copy substrate 16 occurs. In some cases it may be necessary, optionally, to cool the belt 4 before it recontacts the photoreceptor 10 by an appropriate mechanism pre-disposed between rollers 22.

- Fig. 2 illustrates a length of the present transfuse belt 25, comprising a fibrous fabric support 26, an integrated elastomeric surface layer 27, a chemically-bonded primer layer 28 and an elastomeric top release layer 29 which is also chemically bonded to the primer layer 28.
- 10 The essential primer layer 28 is a continuous, thin layer or coating of a polyfunctional, hydrolyzable, moisture-curable silane or siloxane which is applied from dilute solution and allowed to hydrolyze and chemically-bond to the surface of the elastomer layer 27 which is integrated into the surface of the fabric support 26. A preferred primer material is 3-amino triethoxysilane. While the primer layer may be effective in a non-continuous layer, the continuous layer is preferred.
- 20 Preferred elastomer materials for the outer conformable layer 29 include relatively low surface energy elastomeric polymers, preferably fluroelastomers such as those sold under the tradename VITON® such as copolymers terpolymers of vinylidenefluoride, hexafluoropropylene and 25 tetrafluoroethylene, which are known commercially under various designations as VITON A®, VITON E® VITON E60C®, VITON E45®, VITON E430®, VITON B910®, VITON GH®, VITON The VITON® designation B50[®], VITON E45[®], and VITON GF[®]. is a Trademark of E.I. DuPont de Nemours, Inc. Preferred known fluoroelastomers are (1) a class of copolymers of 30 hexafluoropropylene and vinylidenefluoride, tetrafluoroethylene, known commercialy as VITON A®, (2) a vinylidenefluroide, terpolymers οf class and tetrafluoroethylene known hexafluoropropylene

commercially as VITON B®, and (3) a class of tetrapolymers hexafluoropropylene, vinylidenefluroide, of tetrafluoroethylene and a cure site monomer. VITON A®, and VITON B®, and other VITON® designations are trademarks of E.I. DuPont de Nemours and Company. In another the fluoroelastomer is preferred embodiment, of quantity tetrapolymer having a relatively low vinylidenefluoride, . An example is VITON GF®, available from E.I. EuPond de Nemours, Inc. The VITON GF® has 35 10 mole percent of vinylidenefluoride, 34 mole percent of mole of 29 percent hexafluoropropylene and tetrafluoroethylene with 2 percent cure site monomer. The cure site monomer can be those available from DuPont such 1,1-dihydro-4-4-bromoperfluorobutene-1, 15 bromoperfluorobutene-1, 3-bromoperfluoropropene-1, dihydro-3-bromoperfluoropropene-1, or any other suitable, known, commercially available cure site monomer.

The outer conformable layer is coated on the primer-coated substrate in any suitable known manner. Typical techniques for coating such materials on the reinforcing member include liquid and dry powder spray coating, dip coating, wire wound rod coating, fluidized bed coating, powder coating, electrostatic spraying, sonic spraying, blade coating, molding, laminating, and the like. It is preferred to spray or flow coat the outer material when the thickness desired is about 25 to about 125 µm.

The elastomer support coating 27, of natural or synthetic rubber, preferably includes electrically conductive particles dispersed in the coating. These electrically conductive particles decrease the resistivity of the support fabric belt 26 into the desired surface

resistivity range of from about 102 to less than about 10^{14} , preferably from about 10^6 to about 10^{13} , and more preferably from about 10^{10} to about 10^{12} ohms-sq. desired volume resistivity is from about 10^5 to about 10^{13} , 5 preferably from about 10^7 to about 10^{11} ohm-cm. The desired resistivity can be provided by varying concentration of the conductive filler. It is important to have the resistivity within this desired range. transfuse belt 25 will exhibit undesirable effects if the 10 resistivity is not within the required range, including nonconformance at the contact nip, poor toner releasing properties resulting in copy contamination, and generation of contaminant during charging. Other problems include resistivity that is susceptible to changes in temperature, 15 relative humidity, running time, and leaching out of contamination to photoconductors. The substrate material 26/27 and the conforming layer material 29 preferably possess the desired resistivity enabling a field to be created for transfer, and discharge of the field before the next imaging cycle. The field created preferably is 20 able to transfer dry toner or liquid ink from one substrate to another. Further, the preferred outer layer is preferably thin enough to create and dissipate a field, yet insulative enough to prevent electrical shorts from 25 pin holes in transferring substrates. It is desired that the outer layer 29 of the transfer or transfix belt 25 has a resistivity falling within the ranges disclosed above.

In a preferred embodiment, a release agent is used in combination with the intermediate transfer member or transfix member 25. Particularly preferred release agents are aqueous silicone polymer release agents such as aqueous polydimethyl siloxane, fluorosilicone, fluoropolymers, and the like. In a particularly preferred

embodiment, the release agent is polydimethyl siloxane release agent that is a liquid emulsion instead of oilbased or wax-based, and comprises cationic electrical control agents or metallic end group polymers to impart conductivity. Examples electrical cationic commercially available silicone release agents include GE Antistat[®], General Electric Silicone SM2167 DF1040, SF1147, SF1265, SF1706, SF18-350, SF96, SM2013, SM2145, SF1154, SM3030, DF104, SF1921, SF1925, SF69, SM2101, SM2658, SF1173, SF1202 and SF1204.

The release agent material may or may not comprise conductive fillers for antistatic properties. Suitable conductive fillers include carbon black; graphite; boron nitride; metal oxides such as copper oxide, zinc oxide, titanium dioxide, silicone dioxide, and the like, and mixtures thereof. If a filler is present in the release agent material, it is preferably present in an amount of from about 0.5 to about 40 percent, preferably from about 20 0.5 to about 15 percent by weight of total solids.

The release agent is applied to the transfer member as a relatively thin outer coating layer prior to transfer of the developer material or toner images. Preferably, the release agent is applied to the transfer member by a wick, roller, or other known application member. The release agent is supplied in an amount of from about 0.01 to about $15~\mu 1/\text{copy}$, preferably from about 0.1 to about 2 $\mu 1/\text{copy}$, as a thin film covering the outer layer of the transfer member.

The following example illustrates the preparation of a transfuse belt according to a preferred embodiment.

10

15

20

25

Example

A conventional, commercially-available fuser belt support is used, consisting of a fibrous fabric endless belt which is impregnated with a synthetic elastomer, cured and ground to a fine finish surface layer of the desired thickness. The surface is washed with a suitable solvent on a cotton pad to remove contaminants, and is air-dried while mounted on a rotatable mandril within a spray booth.

A primer composition is sprayed in two passes over the elastomer surface of the fabric belt, comprising a tetra-hydroxyalkyl silane, followed by air hydrolysis for a period of 72 hours during which the silane chemically bonds to the surface of the elastomer.

Next a curable elastomeric polymer layer is sprayed over the primer layer in two applications, the first application containing conductive carbon to form a layer which drains any static charge produced during high-speed operation of the belt, and the second application forming the smooth surface top release layer.

The first application spray composition preferably comprises 400 gms of a dispersion of 70 gms Viton GF and 2.8 gms of conductive carbon in 680 gms with 360 qms \mathtt{mixed} methylisobutyl ketone, NMP (N-methyl methylisobutyl ketone, 30 gms of pyrrolidone) and 0.36 gms of A0700 (curing agent). In order to assure a uniform layer, the composition is sprayed onto the primer layer in several passes,

30

10

with 30 second intervals between passes, then dried at room temperature for 1 or more hours, then cured at 230° for 16 hours.

It should be understood that the above description is merely illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from this invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.