第2章: 关系数据库

Relational Databases

邹兆年

哈尔滨工业大学 计算机科学与技术学院 海量数据计算研究中心 电子邮件: znzou@hit.edu.cn

2020年春

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

1 / 63

教学内容1

- 1 关系数据模型
 - ▶ 关系数据结构
 - ▶ 关系操作
 - ▶ 关系完整性约束
- ② 关系代数
 - ▶ 基本关系代数操作
 - ▶ 派生关系代数操作
 - ▶ 扩展关系代数操作
- ③ 关系演算
 - ▶ 元组关系演算
 - ▶ 域关系演算

1课件更新于2020年2月25日

第2章: 关系数据库

2020年春

2.1 关系数据模型

Relational Data Model

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

3 / 63

关系数据模型(Relational Data Model)

- 关系数据模型是一种被广泛使用的实现数据模型(implementation data model)
- 关系数据模型是众多关系数据库管理系统的模型基础

关系数据模型的三要素

- ❶ 关系数据结构
- 2 关系操作
- ③ 关系完整性约束

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

关系数据模型要素1:关系数据结构

关系数据模型的三要素

- ① 关系数据结构
- ② 关系操作
- ③ 关系完整性约束
- 关系数据模型使用唯一的数据结构—关系(relation)
- 不严格地讲,关系就是一张二维表(table)
 - ▶ 行(row)—元组(tuple)/记录(record),表示对象
 - ▶ 列(column)—属性(attribute)/域(field),表示对象的性质

Student

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

邹兆年 (CS@HIT)

52章・关系数据库

2020年表

E / 62

关系(Relation)的定义

Definition (关系)

设 D_1, D_2, \ldots, D_n 是n个值域(domain), $D_1 \times D_2 \times \cdots \times D_n$ 的子集R称作 D_1, D_2, \ldots, D_n 上的关系(relation),记作 $R(D_1, D_2, \ldots, D_n)$ 。

- R—关系名
- *n*—关系*R*的度(degree)
- $(d_1, d_2, ..., d_n) \in R$ —关系R的元组(tuple),其中 d_i 是元组的分量(component)

 $D_1 =$ 学号集合, $D_2 =$ 姓名集合, $D_3 = \{M, F\}$, $D_4 = \mathbb{N}$, $D_5 =$ 系名集合

Student					
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

 $Student \subseteq D_1 \times D_2 \times D_3 \times D_4 \times D_5$

关系的正确性

- $D_1 \times D_2 \times \cdots \times D_n$ 的任意子集都是关系,但未必都是正确的关系
- 只有符合客观实际的关系才是正确的关系

\boldsymbol{c} .				
Sti	ıd	Δ	n	+
ンロ	uч	$\overline{}$	11	L

PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math
MA-002	Cindy	F	20	Math

上面的Student关系是不正确的,因为一个人不能同时有2个年龄

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

7 / 63

关系的属性(Attributes)

Definition (属性)

由于域可能相同,为了加以区分,可为关系 $R(D_1,D_2,\ldots,D_n)$ 的每个域 D_i 起一个不同的名字 A_i ,称作属性(attribute),故关系R常表示为 $R(A_1,A_2,\ldots,A_n)$ 。

Student

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

属性Sno的域是学号集合, 属性Sname的域是姓名集合, 属性Ssex的域是 $\{M,F\}$, 属性Sage的域是 \mathbb{N} , 属性Sdept的域是系名集合

关系的键(Keys)

关系的某些属性集合具有区分不同元组的作用,称作键(key)

Definition (超键)

如果关系的某一组属性的值能唯一标识每个元组,则称该组属性为超键(super key)。

例: 在关系SC(Sno, Cno, Grade)中,属性组{Sno, Cno}和{Sno, Cno, Grade}都是超键

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	4 □

邹兆年 (CS@HIT)

2章: 关系数据库

2020年春

0 / 62

候选键(Candidate Keys)

Definition (候选键)

如果一个超键的任意真子集都不是超键,则称该超键为候选键(candidate key)。候选键=极小的(minimal)超键。

• 例: Sno和Cno都不是关系Sno的超键,故{Sno, Cno}是Sno的候选键

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

候选键是关系数据库规范化理论(第5章)中的重要概念!

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

主键(Primary Keys)

Definition (主键)

每个关系都有至少一个候选键,人为指定其中一个作为主键(primary key)。

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

←□▶ ←□▶ ←■▶ ←■▶ ←■▶ ○■

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

11 / 63

外键(Foreign Keys)

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

Definition (外键)

设F是关系R的属性子集。若F与关系S的主健K相对应,则称F是R的外键(foreign key)

- R—参照关系(referring relation)
- S—被参照关系(referred relation)
- R与S可以是同一关系(什么情况下可以?)

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

Department

Dept	Addr
Physics	B1
CS	B2
Math	B3

{Sdept}是Student的外键,它参照Department的主键{Dept}

4□ > 4□ > 4 = > 4 = > = 900

关系数据模型要素2:关系操作

关系数据模型的三要素

- 关系数据结构
- 2 关系操作
- 3 关系完整性约束
 - 查询操作: 从关系数据库中查找数据
 - 更新操作: 对关系数据库进行更新
 - ▶ 插入数据
 - ▶ 修改数据
 - ▶ 删除数据

邹兆年 (CS@HIT)

第2章・关系数据库

2020年春

13 / 63

查询语言(Query Languages)

查询语言是用于表示关系操作的语言查询语言的类型

- 关系代数(relational algebra) (第2.2节)
 - ▶ 使用关系代数表达式明确给出查询的执行过程
- 关系演算(relational calculus) (第2.3节)
 - ▶ 使用谓词逻辑表达式描述查询
 - ▶ 元组关系演算(tuple relational calculus): 谓词逻辑变量是元组
 - ▶ 域关系演算(domain relational calculus): 谓词逻辑变量是域
- 结构化查询语言SQL (第3章)
 - ▶ 具有关系代数和关系演算的双重特点
 - ▶ 集DDL、DML、DCL于一体

关系数据模型要素3:关系完整性约束

关系数据模型的三要素

- 关系数据结构
- 2 关系操作
- 3 关系完整性约束
- 完整性约束(integrity constraints): 关系数据库中的所有数据必须满足的约束条件
- 完整性约束的类型
 - ① 实体完整性(entity integrity)
 - ② 参照完整性(referential integrity)
 - ③ 用户定义完整性(user-defined integrity)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

邹兆年 (CS@HIT)

第2章・关系数据库

2020年春

15 / 63

实体完整性约束

实体完整性约束规则

- ① 关系中任意元组的主键值必须唯一(unique)
- ② 关系中任意元组在主键中的属性值非空(not null)
 - 室值(null)表示值不存在,它既不是0,也不是空串

Student

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

参照完整性约束

不同关系中的元组可以存在联系,这种联系是通过外键建立起来的

参照完整性约束规则

设F是关系R的外键,F参照关系S的主键,则R中任意元组的F属性值必须满足以下两个条件之一:

- ① F的值为空
- ② 若F的值不为空,则F的值必须在S中存在

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19		

Department	
Addr	
B1	
B2	
B3	

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春 17 / 63

用户定义完整性约束

根据应用需求定义的完整性约束条件

- 考试成绩在0-100分之间
- 性别必须为'M'或'F'

关系的模式(Schema)与实例(Instance)

- 关系的模式(schema)是对关系的结构与语义的描述
 - ▶ 关系名、属性名、属性值域、主键、完整性约束、属性依赖关系等
 - ▶ 关系模式是不经常变化的
- 关系的实例(instance)是关系在某一时刻的取值
 - ▶ 关系实例必须符合关系模式
 - ▶ 关系实例是动态变化的
- 关系模式与关系实例的关系如同面向对象程序设计中类(class)与对象(object)的关系

Student关系模式

Sno Sname	Ssex	Sage	Sdept
-----------	------	------	-------

Student关系实例

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19 4	□ Math →

邹兆年 (CS@HIT)

第2章:关系数据库

4 € ► € ¥) q

2020年春 19 / 63

2.2 关系代数

Relational Algebra

关系代数(Relational Algebra)

- 关系代数是一种使用关系代数操作表达式来表示查询的语言
- 关系代数表达式明确给出了查询的执行过程
- 关系代数操作的操作数: 关系
- 关系代数操作的结果: 关系
- 关系代数操作的操作符: 选择 σ 、投影 Π 、并U、差-、笛卡尔积 \times 、重命名 ρ 、交 Ω 、内连接 Ω 、外连接 Ω 等

Example

关系代数表达式: $\sigma_{Student.Sno=SC.Sno}(Student \times SC)$

- 关系Student和SC是关系代数操作×(笛卡尔积)的操作数
- Student \times SC的结果也是关系,它是关系代数操作 σ (选择)的操作数
- 上述关系代数表达式给出了执行过程: 先执行×操作, 后执行σ操作

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

21 / 63

基本关系代数操作

基本关系代数操作

- \rm 选择σ
- ② 投影□
- 3 并∪
- 4 差-
- ⑤ 笛卡尔积×
- 重命名ρ

电影《一代宗师》剧照 [以由其本关系代料操作构成

除一些特殊查询外,关系代数查询均可以由基本关系代数操作构成。

邹兆年 (CS@HIT)

第2音, 关系数据库

2020年春

选择操作(Selection)

- 功能: 从一个关系中选出满足给定条件的元组
- 语法: σ_θ(R)
 - σ—选择操作符
 - ▶ R—关系名
 - ▶ θ —条件表达式,形如A = 10, B > 5的简单逻辑表达式,或由与 Λ 、 或>、非「逻辑运算构成的复杂逻辑表达式

Example

- 找出计算机系的全体学生 $\sigma_{Sdept='CS'}(Student)$
- 2 找出计算机系的全体男同学 $\sigma_{Sdept='CS' \land Ssex='M'}(Student)$

Student				
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

查询1的结	果			
Sno	Sname	Ssex	Sage	Sdept
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
查询2的结果				
Sno	Sname	Ssex	Sage	Sdept
CS-002	Ed	M	19	CS

邹兆年 (CS@HIT)

2020年春

投影操作(Projection)

- 功能: 从一个关系中选出指定的列,并去掉重复元组
- 语法: Π_L(R)
 - ▶ П—投影操作符
 - ▶ R—关系名
 - ▶ L—投影属性列表

Example

- 找出全体学生的学号和姓名 $\Pi_{Sno,Sname}(Student)$
- ② 找出全部的系 П_{Sdept}(Student)

Stuc	lent
	Sno

Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

杏询1的结果

旦門口口	/ ►	
Sno	Sname	查询2的结果
PH-001	Nick	Sdept
CS-001	Elsa	Physics
CS-002	Eric	CS
MA-001	Abby	Math
MA-002	Cindy	

并操作(Union)

• 功能: 计算关系R和S的并集

语法: R∪S

▶ R, S—关系名

▶ ∪—并操作符

• 要求:

① R和S必须具有相同个数的属性

② R和S对应属性的值域必须相容

Example

① 找出计算机系和数学系的学生 $\sigma_{Sdept='CS'}(Student) \cup \sigma_{Sdept='MA'}(Student)$ (还有什么方法?)

 $\sigma_{Sdept='CS'}(Student)$

	Sno	Sname	Ssex	Sage	Sdept
	CS-001	Elsa	F	19	CS
	CS-002	Ed	М	19	CS
	$\sigma_{Sdept='MA'}(Student)$				
	Sno	Sname	Ssex	Sage	Sdept
ſ	MA-001	Abby	F	18	Math

19

查询1的结果

Sno	Sname	Ssex	Sage	Sdept
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

邹兆年 (CS@HIT)

Cindy

MA-002

第2章: 关系数据库

Math

2020年春

25 / 63

差操作(Difference)

• 功能: 计算关系R和S的差集

● 语法: R – S

► R.S—关系名

▶ ---差操作符

要求

■ R和S必须具有相同个数的属性

② R和S对应属性的值域必须相容

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

Example

① 查询选修了1002号课程,但没有选修3006号课程的学生的学号 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) - \Pi_{Sno}(\sigma_{Cno='3006'}(SC))$

 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) \quad \Pi_{Sno}(\sigma_{Cno='3006'}(SC))$

Sno
PH-001
CS-001
MA-001

查询1的结果 Sno MA-001

笛卡尔积操作

• 功能: 计算两个关系的笛卡尔积

• 语法: R×S

▶ R, S—关系名

▶ × — 笛卡尔积操作符

Student							
Sno	Sname	Ssex	Sage	Sdept			
PH-001	Nick	М	20	Physics			
CS-001	Elsa	F	19	CS			
CS-002	Ed	М	19	CS			
MA-001	Abby	F	18	Math			
MA-002	Cindy	F	19	Math			

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

	Student imes SC						
Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
PH-001	Nick	М	20	Physics	CS-001	1002	95
PH-001	Nick	М	20	Physics	CS-001	3006	90
PH-001	Nick	М	20	Physics	CS-002	3006	80
					4 □ → 4 Ё	₽ ▶ . ∢ . 늘 →	∢ ≣ →

邹兆年 (CS@HIT)

52章: 关系数据库

2020年春

27 / 63

笛卡尔积操作

- 笛卡尔积的作用仅仅是将R和S中的元组无条件地连接起来
- 笛卡尔积操作通常和选择操作一起使用,即连接(join)

Example

① 查询已选课学生的信息 $\sigma_{Student.Sno=SC.Sno}(Student \times SC)$

查询1的结果

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

重命名操作(Renaming)

- 功能: 修改关系名和(或)属性名
- 语法:
 - $ρ_{B \leftarrow A}(R)$: 将关系R的属性A更名为B
 - ② ρ_S(R): 将关系R更名为S
 - **③** *ρ_{S(A₁,A₂,...,A_n)}(R)*: 将关系R更名为S, 并将R的全部属性更名 为A₁, A₂,...,A_n
- 当把一个关系和它自身进行自连接(self-join)时,需要区分同一个关系的两个副本。在这种情况下,重命名操作发挥着重要作用。

Example

- 事关系SC的属性名Grade修改为Score ρ_{Score←Grade}(SC)
- ② 找出和Elsa在同一个系学习的学生的学号和姓名 $\Pi_{S2.Sno,S2.Sname}(\sigma_{S1.Sname='Elsa' \land S1.Sdept=S2.Sdept}(\rho_{S1}(Student) \times \rho_{S2}(Student)))$
- ③ ** 找出3006号课程的最高分(课后练习)

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

29 / 63

基本关系代数习题 |

使用关系代数运算器² 在数据库(Database Systems The Complete Book - Exercise 2.4.1)上完成下列习题

选择

- What PC models have a speed of at least 3.00 and ram of at lest 1024MB?
- What PC models have a speed of at least 3.00 or ram of at lest 1024MB?

投影

- What are the manufacturers?
- 2 What models does the manufacturer A produce?
- Find the model numbers of all color laser printers

并

• Find the model numbers and price of all PC's and all laptops

基本关系代数习题 ||

差

Find the manufacturers that sell laptops but not PC's

笛卡尔积

- What manufactures make laptops with a hard disk of at least 100GB?
- What PC models with a price less than \$500 does the manufacturer A produce?

重命名

- Rename the hd attribute of a PC to ssd
- 2 ** Find the model numbers of all printers that are cheaper than the printer model 3002

²https://dbis-uibk.github.io/relax/calc.htm <□ > <♂ > < ≧ > < ≥ > < ◇

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

31 / 63

派生关系代数操作

- 目的: 只用基本关系代数操作来编写复杂查询是非常繁琐的,因此 我们引入派生(derived)关系代数操作来简化查询编写
- 任何一项派生关系代数操作都可以用基本关系代数操作来表示

派生关系代数操作

- ① 交∩
- ② θ连接⋈θ
- 3 自然连接⋈
- ④ 外连接: 左外连接≥
- ⑤ 除÷

交操作(Intersection)

• 功能: 计算关系R和S的交集

语法: R∩S

▶ R, S—关系名

▶ ∩—交操作符

• 要求:

- ① R和S必须具有相同个数的属性
- ② R和S对应属性的值域必须相容
- 等价变换: $R \cap S = R (R S)$

Example

① 查询既选修了1002号课程,又选修了3006号课程的学生的学号 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC)) \cap \Pi_{Sno}(\sigma_{Cno='3006'}(SC))$

 $\Pi_{Sno}(\sigma_{Cno='1002'}(SC))$ $\Pi_{Sno}(\sigma_{Cno='3006'}(SC))$

Sno
PH-001
CS-001
MA-001

Sno
PH-001
CS-001
CS-002

查询1的结果 Sno PH-001 CS-001

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

33 / 63

θ 连接(θ -Join)

- 功能: 将关系R和S中满足给定连接条件θ的元组进行连接
- 语法: R ⋈_θ S
 - ▶ N—内连接操作符
 - lackbrack heta—连接条件,条件表达式的语法与选择操作条件相同
- R ⋈ S的结果包含R和S中的全部属性, 同名属性加关系名前缀

	S	tudent		
Sno	Sname	Ssex	Sage	Sdept
PH-001	Nick	М	20	Physics
CS-001	Elsa	F	19	CS
CS-002	Ed	М	19	CS
MA-001	Abby	F	18	Math
MA-002	Cindy	F	19	Math

Student $\bowtie_{Student.Sno=SC.Sno} SC$

	Sno	Cno	Grade
	PH-001	1002	92
	PH-001	2003	85
SC	PH-001	3006	88
50	CS-001	1002	95
	CS-001	3006	90
	CS-002	3006	80
	MA-001	1002	

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	◆ ≣ →

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

θ 连接(θ -Join)

Property

 $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$

Example

① 查询计算机系学生的选课情况,列出学号、姓名、课号、得分 Π_{Student.Sno,Sname,Cno,Grade}(σ_{Sdept='}CS'(Student ⋈_{Student.Sno=SC.Sno}SC))

Student $\bowtie_{Student.Sno=SC.Sno} SC$

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	M	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	M	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	

等值连接(equi-join): 连接条件仅涉及相等比较的连接称作等值连接

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年表

✓) Q (~35 / 63

自然连接(Natural Join)

- 功能: 设 $\{A_1,A_2,\ldots,A_k\}$ 是关系R和S的同名属性集合 $R.A_1=S.A_1\land R.A_2=S.A_2\land\cdots\land R.A_k=S.A_k$
 - 从连接结果中去掉重复的同名属性(为什么?)
- 语法: R ⋈ S

Student							
Sno	Sname	Ssex	Sage	Sdept			
PH-001	Nick	М	20	Physics			
CS-001	Elsa	F	19	CS			
CS-002	Ed	М	19	CS			
MA-001	Abby	F	18	Math			
MA-002	Cindy	F	19	Math			

	Sno	Cno	Grade
	PH-001	1002	92
	PH-001	2003	85
SC	PH-001	3006	88
50	CS-001	1002	95
	CS-001	3006	90
	CS-002	3006	80
	MA-001	1002	

Student ⋈ SC

		Stude	III N SC	-		
Student.Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

自然连接(Natural Join)

• 自然连接与θ连接的区别

	自然连接	θ连接
连接条件	隐含给出	明确给出
连接结果的属性	去除重复的同名属性	保留重复的同名属性

Example

① 查询计算机系学生的选课情况,列出学号、姓名、课号、得分 $\Pi_{Sno,Sname,Cno,Grade}(\sigma_{Sdept='CS'}(Student \bowtie SC))$

Student	\bowtie	SC
---------	-----------	----

Student.Sno	Sname	Ssex	Sage	Sdept	Cno	Grade
PH-001	Nick	М	20	Physics	1002	92
PH-001	Nick	М	20	Physics	2003	85
PH-001	Nick	М	20	Physics	3006	88
CS-001	Elsa	F	19	CS	1002	95
CS-001	Elsa	F	19	CS	3006	90
CS-002	Ed	М	19	CS	3006	80
MA-001	Abby	F	18	Math	1002	

邹兆年 (CS@HIT)

第2章, 关系数据库

2020年春

37 / 63

左外连接(Left Outer Join)

• 目的: R ×θ S(内连接)的结果只包含R和S中满足连接条件θ的元组,有些情况下我们需要在连接结果中保留R或(和)S中的全部元组,例如学校想了解学生的选课情况,既要知道哪些学生选了哪些课,也要知道哪些学生没选课

Student					
Sno	Sname	Ssex	Sage	Sdept	
PH-001	Nick	М	20	Physics	
CS-001	Elsa	F	19	CS	
CS-002	Ed	М	19	CS	
MA-001	Abby	F	18	Math	
MA-002	Cindy	F	19	Math	

想要的查询结果↓

	Sno	Cno	Grade
	PH-001	1002	92
	PH-001	2003	85
sc	PH-001	3006	88
J C	CS-001	1002	95
	CS-001	3006	90
	CS-002	3006	80
	MA-001	1002	

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	
MA-002	Cindy	F	19	Math	40 \ 45		, - .

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

左外连接(Left Outer Join)

- 指定R为左关系(left relation), S为右关系(right relation)
- 功能:
 - ① 将R和S中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于R中不满足给定连接条件θ的元组, 左外连接结果中也包含该元组, 只不过S中属性的值都为空(null)
- 语法: R ⋈_θ S

Example

① 找出没选过课的同学的学号和姓名

 $\Pi_{Sno,Sname}(\sigma_{Cno=NULL}(Student \bowtie_{Student.Sno=SC.Sno} SC))$

	Student	\bowtie Studen	t.Sno=SC.Sno	, SC
<u> </u>	Ssex	Sage	Sdept	SC

Student.Sno	Sname	Ssex	Sage	Sdept	SC.Sno	Cno	Grade
PH-001	Nick	М	20	Physics	PH-001	1002	92
PH-001	Nick	М	20	Physics	PH-001	2003	85
PH-001	Nick	М	20	Physics	PH-001	3006	88
CS-001	Elsa	F	19	CS	CS-001	1002	95
CS-001	Elsa	F	19	CS	CS-001	3006	90
CS-002	Ed	М	19	CS	CS-002	3006	80
MA-001	Abby	F	18	Math	MA-001	1002	
MΔ_002	Cindy	F	10	Math			

邹兆年 (CS@HIT)

つ音、兰系粉捉店

2020年表

39 / 63

右外连接(Right Outer Join)

- 指定R为左关系(left relation), S为右关系(right relation)
- 功能:
 - lacktriangle 将R和S中满足给定连接条件heta的元组进行连接,即计算 $R \bowtie_{ heta} S$
 - ② 对于S中不满足给定连接条件θ的元组,右外连接结果中也包含该元组,只不过R中属性的值都为空(null)
- 语法: R ⋈_θ S
 - ▶ ⋈—右外连接操作符

全外连接(Full Outer Join)

- 指定R为左关系(left relation), S为右关系(right relation)
- 功能:
 - \bullet 将R和S中满足给定连接条件 θ 的元组进行连接,即计算 $R \bowtie_{\theta} S$
 - ② 对于R中不满足给定连接条件θ的元组,全外连接结果中也包含该元组,只不过S中属性的值都为空(null)
 - ③ 对于S中不满足给定连接条件θ的元组,全外连接结果中也包含该元组,只不过R中属性的值都为空(null)
- 语法: R INTA S
 - ▶ 」▼二一全外连接操作符

Property

 $R \bowtie_{\theta} S = R \bowtie_{\theta} S \cup R \bowtie_{\theta} S$

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

41 / 63

除(Division)

- 目的:我们经常要做下面这种查询:找出选修了所有课程的学生。用基本关系代数操作来编写这种查询非常不便,因此引入除操作。
- 整数除法: 设x和y为正整数, $x \div y$ 的商是使得 $yz \le x$ 的最大的整数z
- 关系除法
 - ▶ R÷S的结果是一个关系,它只包含R中的属性,但不包含S中的属性
 - ▶ $R \div S$ 的结果是使得 $S \times T \subseteq R$ 的最大的关系T
- 语法: R÷S
 - ▶ :--除操作符

Sno	Cno]			
PH-001	1002]			
PH-001	2003]	Cno]	Sno
PH-001	3006]	1002] =	PH-001
CS-001	1002	•	3006	_	CS-001
CS-001	3006		3000	J	C3-001
CS-002	3006				
MA-001	1002				

除(Division)

Example

① 找出选修了所有课程的学生的学号 $\Pi_{Sno,Cno}(SC)$ ÷ Course

 $\Pi_{Sno,Cno}(SC)$

Cno
1002
2003
3006
1002
3006
3006
1002

邹兆年 (CS@HIT)

第2章, 关系数据库

2020年春

43 / 63

派生关系代数习题 |

使用关系代数运算器³ 在数据库(Database Systems The Complete Book - Exercise 2.4.1)上完成下列习题

交

- ① Find the manufacturers that sell both laptops and PC's heta连接
 - Find those pairs of PC models that have both the same speed and RAM. A pair should be listed only once
 - ② ★ Find those hard-disk sizes that occur in two or more PC's
 - 3 ★★ Find the PC model with the highest available speed
- \P ** Find the manufacturers of PC's with at least three different speeds 自然连接
 - What manufacturers make laptops with a hard disk of at least 100GB?
 - $2 \star Explain the result of Product <math>\bowtie Printer$

◆ロ ト ◆ 個 ト ◆ 夏 ト ◆ 夏 ・ 夕 Q で

派生关系代数习题 ||

左外连接

- **1** Execute *Product* $\bowtie PC$
- ② ** Find the PC model with the highest available speed (第2次出现, 上一次怎么做的?)

右外连接

1 Execute *Product* \bowtie *PC*

全外连接

1 Execute *Product* \bowtie *PC*

除

1 What manufacturers make all types of products (PC, laptop, and printer)?

³https://dbis-uibk.github.io/relax/calc.htm ←□ → ←□ → ← ■ →

邹兆年 (CS@HIT)

第2章: 关系数据库

扩展关系代数操作

• 目的: 用基本关系代数操作能够实现的查询功能有限, 为了增强关 系代数的查询表示能力,我们引入扩展(extended)关系代数操作

扩展关系代数操作

- ① 分组操作γ
- ② 赋值操作=

分组操作(Group-By)

目的: 我们经常需要对数据进行统计,例如统计每名学生的选课数和平均分。基本关系代数操作无法实现这种功能,因此需要引入分组操作。

• 功能:

- 根据指定的分组属性,对一个关系中的元组进行分组,分组属性值相同元组的分为一组
- ② 对每个组中元组的非分组属性的值进行聚集(aggregation)—计数count、求最小值min、求最大值max、求和sum、求平均值avg
- 聚集函数只作用于非空(null)值, count(*)除外(它计算分组内所有元组的数量)

	SC	
Sno	Cno	Grade
PH-001	1002	92
PH-001	2003	85
PH-001	3006	88
CS-001	1002	95
CS-001	3006	90
CS-002	3006	80
MA-001	1002	

每名学生的选课数和平均分

Sno	Amount	AvgGrade
PH-001	3	83.3
CS-001	2	92.5
CS-002	1	80
MA-001	1	

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

口 人 《圖 》 《 意 》 《 意 》

17 / 62

分组操作(Group-By)

- 语法: γ_{L;agg}(R)
 - ► γ—分组操作符
 - ▶ R—关系名
 - ▶ L—分组属性列表,用逗号分隔
 - ► agg—聚集函数表达式列表,用逗号分隔,每个聚集函数表达式形如sum(score) → TotalScore (计算score属性值的和,并将结果命名为属性TotalScore)

Example

- ① 统计每个系的男生人数和女生人数 $\gamma_{Sdept,Ssex;count(*) \rightarrow Amt}(Student)$
- ② 统计每名已选课学生的选课数和平均分

 $\gamma_{Sno;count(*) o Amt,avg(Grade) o Score}(SC)$

	SC	
Sdept	Ssex	Amt
Physics	М	1
CS	F	1
CS	М	1
Math	F	2

查询2的结果

Sno	Amt	Score	
PH-001	3	83.3	
CS-001	2	92.5	
CS-002	1	80	
MA-001	1		

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

赋值操作(Assignment)

- 目的: 仅用一个关系代数表达式来编写复杂查询通常会太冗长,不 易理解。为了便于理解,需要将一个冗长的关系代数查询表达式分 解为一系列简单的表达式,这需要暂存一些中间结果。
- 功能: 将关系代数查询表达式的结果赋值给临时关系
- 语法: *R* = *expr*
 - ▶ R—临时关系名
 - ▶ =—赋值操作符
 - ▶ expr—关系代数查询表达式

4 D > 4 B > 4 E > 4 E > 9 Q @

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

49 / 63

扩展关系代数习题 |

使用关系代数运算器⁴ 在数据库(Database Systems The Complete Book - Exercise 2.4.1)上完成下列习题

分组

- How many models does every manufacturer have?
- ② How many models does every manufacturer have for every type of products?
- ★★ Find those hard-disk sizes that occur in two or more PC's (第2次出现,上一次是怎么做的?)
- ★★ What manufacturers make all types of products (PC, laptop, and printer)? (第2次出现,上一次是怎么做的?)

赋值

① ** What manufacturers make all types of products (PC, laptop, and printer)? (第3次出现,以前两次是怎么做的?)

4https://dbis-uibk.github.io/relax/calc.htm < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --> < --

2.3 关系演算

Relational Calculus

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

51 / 63

元组关系演算(Tuple Relational Calculus)

元组关系演算(tuple relational calculus)用形如 $\{t|P(t)\}$ 的表达式表示查询

- t: 元组变量(tuple variable)
- P: 谓词(predicate)
- 元组关系演算表达式的结果是所有使谓词P为真的元组t的集合

记法

- t[A]: 元组t中属性A的值
- $t \in R$: t是关系R中的元组
- ∧: 合取
- V: 析取
- ¬: 否定
- ⇒:逻辑蕴含
- ∀t(Q(t)): 任意元组t均使谓词Q为真
- ∃t(Q(t)): 存在元组t使谓词Q为真

邹兆年 (CS@HIT)

2020年春

元组关系演算

Example

- ① 找出计算机系的全体学生 $\{t|t \in Student \land t[Sdept] = 'CS'\}$
- ② 找出计算机系和数学系的学生 $\{t|t \in Student \land (t[Sdept] = 'CS' \lor t[Sdept] = 'MA')\}$
- ③ 找出全体学生的学号和姓名 $\{t|\exists s \in Student(t[Sno] = s[Sno] \land t[Sname] = s[Sname])\}$
- ④ 查询既选修了1002号课程,又选修了3006号课程的学生的学号 $\{t|\exists s\in SC\exists s'\in SC(t[Sno]=s[Sno]=s'[Sno]\land s[Cno]='1002'\land s'[Cno]='3006'))\}$
- **⑤** 查询选修了1002号课程,但没有选修3006号课程的学生的学号 $\{t|\exists s \in SC \forall s' \in SC(t[Sno] = s[Sno] = s'[Sno] ∧ s[Cno] = '1002' ∧ s'[Cno] ≠ '3006'))}$

◆□▶ ◆□▶ ◆■▶ ■ り90

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春 5

元组关系演算

Example

- ① 查询已选课学生的学号和姓名 $\{t|\exists s \in Student \exists r \in SC(t[Sno] = s[Sno] = r[Sno] \land t[Sname] = s[Sname])\}$
- ② 找出没选过课的同学的学号和姓名 $\{t|\exists s \in Student \forall r \in SC(t[Sno] = s[Sno] \land t[Sname] = s[Sname] \land s[Sno] \neq r[Sno])\}$
- ③ 找出选修了所有课程的学生的学号 $\{t|\exists s \in SC \forall c \in Course(t[Sno] = s[Sno] \land s[Cno] = c[Cno])\}$
- ④ 查询选修了CS-001号同学选修的所有课程的同学的学号 $\{t|\forall s\in SC(\exists s'\in SC(s'[Sno]=t[Sno]\land((s[Sno]='CS-001')\Longrightarrow(s'[Cno]=s[Cno])))\}$

域关系演算(Domain Relational Calculus)

- 域关系演算(domain relational calculus)表达式与元组关系演算表达 式的定义类似,不同之处是表达式中使用域变量(domain variable),而不是元组变量
- 域关系演算表达式的一般形式为 $\{(x_1, x_2, \dots, x_n) | P(x_1, x_2, \dots, x_n)\}$
 - ▶ *x*₁, *x*₂, . . . , *x*_n: 域变量
 - ▶ P: 域关系演算公式
 - ▶ 域关系演算表达式的结果是所有使 $P(x_1, x_2, ..., x_n)$ 为真的元组 $(x_1, x_2, ..., x_n)$ 的集合
- 记法
 - ▶ (x₁, x₂,...,x_n): 域变量x₁, x₂,...,x_n构成的元组
 - ▶ $(x_1, x_2, ..., x_n) \in R$: $(x_1, x_2, ..., x_n)$ 是关系R中的元组
 - ▶ ∧: 合取
 - ▶ ∨: 析取
 - ▶ ¬: 否定
 - ▶ ⇒: 逻辑蕴含
 - ▶ ∀: 全称量词
 - ▶ ∃: 存在量词

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春 55 / 6

域关系演算

Example

- ① 找出计算机系的全体学生 $\{(n, m, s, a, d) | (n, m, s, a, d) \in Student \land d = 'CS'\}$
- ② 找出计算机系和数学系的学生 $\{(n, m, s, a, d) | (n, m, s, a, d) \in Student \land (d = 'CS' \lor d = 'MA')\}$
- ③ 找出全体学生的学号和姓名 $\{(n,m)|\exists s, a, d((n,m,s,a,d) \in Student)\}$
- ④ 查询既选修了1002号课程,又选修了3006号课程的学生的学号 $\{(n)|\exists g((n,'1002',g)\in SC)\land\exists g'((n,'3006',g')\in SC))\}$
- **⑤** 查询选修了1002号课程,但没有选修3006号课程的学生的学号 $\{(n)|\exists g((n, '1002', g) \in SC) \land \forall g'(\neg((n, '3006', g') \in SC)))\}$

域关系演算

Example

- ① 查询已选课学生的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d)\in Student)\land\exists c,g((n,c,g)\in SC)\}$
- ② 找出没选过课的同学的学号和姓名 $\{(n,m)|\exists s,a,d((n,m,s,a,d)\in Student)\land\exists c,g(\neg((n,c,g)\in SC))\}$
- ③ 找出选修了所有课程的学生的学号 $\{n | \forall c((c) \in Course \land \exists g((n, c, g) \in SC))\}$
- ④ 查询选修了CS-001号同学选修的所有课程的同学的学号 $\{(n)|\forall c(\exists g\exists g'((('CS-001',c,g)\in SC)))\}$

邹兆年 (CS@HIT)

82章: 关系数据库

2020年春

57 / 63

总结

❶ 关系数据模型

- ▶ 关系数据结构:关系、属性、键
- ▶ 关系操作: 查询操作、更新操作(插入、修改、删除)、查询语言(关系代数、关系演算、SQL)
- ▶ 关系完整性约束: 实体完整性、参照完整性、用户定义完整性
- ② 关系代数
 - ightharpoonup 基本关系代数操作: 选择 σ 、投影 Π 、笛卡尔积 \times 、并U、差-、重命 a
 ho
 - ▶ 派生关系代数操作: 交∩、内连接⋈0、自然连接⋈0、外连接(左外连接⋈0、右外连接⋈0、全外连接⋈0、除÷
 - ▶ 扩展关系代数操作: 分组操作γ、赋值操作=
- ③ 关系演算
 - ▶ 元组关系演算
 - ▶ 域关系演算
- 在线练习: https://dbis-uibk.github.io/relax/calc.htm

习题 |

- 用基本关系代数操作表示下列关系代数表达式
 - \triangleright $R \bowtie S$
 - ► *R* ÷ *S*
 - $ightharpoonup R \bowtie S$
- ② 判断下列命题是否成立。若不成立,请给出反例。
 - $\bullet \quad \sigma_{\theta_1}(\sigma_{\theta_2}(R)) = \sigma_{\theta_2}(\sigma_{\theta_1}(R)) = \sigma_{\theta_1 \wedge \theta_2}(R)$

 - $\bullet \quad \sigma_{\theta}(R \cap S) = \sigma_{\theta}(R) \cap S = R \cap \sigma_{\theta}(S)$
 - $\sigma_{\theta}(R-S) = \sigma_{\theta}(R) S = R \sigma_{\theta}(S)$
- ③ 设关系R(A,B)中包含r > 0个元组,关系S(B,C)中包含s > 0个元组,求下列关系代数表达式的结果中元组数的最小值和最大值

4□ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q ○

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

59 / 63

习题 ||

关系代数表达式	元组数最小值	元组数最大值
$\sigma_{A < B}(R)$		
$\Pi_A(R)$		
$R \bowtie S$		
$R \bowtie S$		
$R \bowtie S$		
$\Pi_B(R) \cup \Pi_B(S)$		
$\Pi_B(R) \cap \Pi_B(S)$		
$\Pi_B(R) - \Pi_B(S)$		
$R \div \Pi_B(S)$		
$\gamma_{A;count(B)\to D}(R)$		

❹ 设属性K是关系R的主键,写一个关系代数表达式来验证R的实例是否违反实体完整性约束,说明如何用该关系代数表达式的结果来完成验证。

习题 |||

- ⑤ 设属性K是关系R的主键,关系S的外键F参照R.K,写一个关系代数表达式来验证R和S的实例是否违反参照完整性约束,说明如何用该关系代数表达式的结果来完成验证。
- ⑥ 在课上用的College数据库上,用关系代数查询3006号课程的最高分
 - ▶ 方法1: 只用基本关系代数操作
 - ▶ 方法2: 用外连接

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● める()

邹兆年 (CS@HIT)

第2章: 关系数据库

2020年春

61 / 63

答疑

- ① 一个关系的外键可以参照该关系自身的主键吗? 答: 可以。考虑关系Student(Sno, Sname, Ssex, Sage, Sdept, Mno), 其中Sno是主键,Mno是学生的班长的学号。因为班长也是学生, 所以Mno是Student的外键,它参照Student的主键Sno。但是,一个 关系的外键不能参照该外键自身。
- ② 一个关系的主键可以同时是这个关系的外键吗? 答: 可以。考虑关系Club(Sno, JoinDate), 其中Sno是主键, 同时Sno也是外键,参照Student关系的主键Sno。

致谢

- 感谢李治霖同学指出课件中的错误
- 感谢龚利锋、王梓宣、肖潇、李一鸣同学提供课堂练习题的笔记

邹兆年 (CS@HIT)

2020年春 63 / 63