Graded quiz on Tangent Lines to Functions, Exponents and Logarithms

CALIFICACIÓN DEL ÚLTIMO ENVÍO

100%

1. Convert $\frac{1}{49}$ to exponential form, using 7 as the factor.

1/1 punto

- \bigcirc 49⁻¹
- \bigcirc (7²)
- \odot 7⁻²

✓ Correcto

The rule for a factor to a Negative exponent is to divide by the same factor to a positive exponent with the same absolute value.

2. A light-year (the distance light travels in a vacuum in one year) is 9,460 trillion meters. Express in scientific notation.

- \bigcirc 9.46 imes 10^{15} kilometers
- \odot 9.46×10^{15} meters.
- \bigcirc 9460 \times 10¹² meters
- \bigcirc 0.946 × 10¹⁶

1/1 punto

1/1 punto

- $\bigcirc (x^2)(y)$
- $\bigcirc (x^{-80})(y^{-6})$
- $\bigcirc (x)(y^{-2})$
- $\bigcirc (x^{-2})(y)$

✓ Correcto

By the Division and Negative Powers Rule, this is $(x^{(8-10)})(y^{(3-2)})$

- 4. Simplify $[(x^4)(y^{-6})]^{-1}$
 - $(x^{-4})(y^6)$
 - $\bigcirc (x^3)(y^{-7})$
 - $\bigcirc \frac{(x^4)}{(y^{-6})}$
 - $\bigcirc \ \frac{(x^-4)}{(y^6)}$

✓ Correcto

By the Power to a Power Rule, each of the exponents is multiplied by $\left(-1\right)$

Solve for x:

$$\log_2{(39x)} - \log_2{(x-5)} = 4$$

 $\frac{23}{80}$

$$\left(x^{\frac{1}{2}}\right)^{\frac{-3}{2}}$$

- $\circ x^{-1}$
- $\circ_{x^{\frac{4}{3}}}$
- $\bullet x^{\frac{-3}{4}}$
- $\circ_{x^{\frac{1}{3}}}$

✓ Correcto

We use the Power to a Power Rule -- multiply exponents:

$$x^{rac{1}{2} imesrac{-3}{2}}=x^{rac{-3}{4}}$$

- 7. Simplify $\log_2 8 \log_2 4 (\log_3 4.5 + \log_3 2)$
 - O 1
 - -1
 - O 2
 - \bigcirc 0

✓ Correcto

This is equivalent to:

$$\log_2(\frac{8}{4}) - \log_3(4.5 \times 2) = 1 - 2 = -1$$

1/1 punto

- 0.4347
- \bigcirc 5.216
- **1.304**
- \bigcirc 0.8934

✓ Correcto

To convert from \log_3 to \log_9 , divide by $\log_3 9.$ Which is equal to 2, so the answer is 1.34

 $^{9.}$ If $\log_{10}b=1.8$ and $log_ab=2.5752$, what is a?

1/1 punto

- \bigcirc 4
- §
 5
- \circ 6
- \bigcirc 3

✓ Correcto

To solve for a in the formula;

$$\log_a b = \frac{\log_x b}{\log_x a}$$

$$\log_a b = 2.5752$$
 and $\log_{10} b = 1.8$

Therefore $\log_{10} q$ must equal to $\frac{1.8}{1.8} = 0.69897$

- $^{\rm 10.}$ An investment of 1,600 is worth 7,400 after 8.5 years. What is the continuously compounded rate of return of this investment?
 - 0 19.01%
 - $^{\circ}$ 20.01
 - 0 17.01%
 - **18.02%**

$$\frac{\sqrt{\frac{100}{1600}}}{8.5} = 0.18017$$

 $^{\rm 11.}$ A pearl grows in an oyster at a continuously compounded rate of .24 per year. If a 25-year old pearl weighs 1 gram, what did it weigh when it began to form?

1/1 punto

1/1 punto

- 0.2478
- \bigcirc 0.02478
- **0** 0.002478
- \bigcirc 0.0002478

$$x=rac{1}{(e^{0.24 imes25})}$$

- 0.49185
- **2.03316**
- 0.3508
- 0.82956

$$\frac{\sqrt{\text{Correcto}}}{\log_2 z} =$$

$$(\log_{10} z) \times (\log_2 10) = 3.321928$$

Therefore,
$$\log_{10}z=\ \frac{6.754}{3.321928}=2.03316$$

13. Suppose that $g:\mathbb{R} o\mathbb{R}$ is a function, and that g(1)=10. Suppose that g'(a) is negative for every single value of a. Which of the following could possibly be g(1.5)?

$$g(1.5) = 9.7$$

$$\bigcirc$$
 $g(1.5) = 10.1$

$$\bigcirc$$
 $g(1.5) = 103.4$

$$\bigcirc g(1.5) = 11$$

✓ Correcto

Since the slope of the tangent line to the graph of g is negative everywhere on the graph, we know that g is decreasing function! And therefore we must have g(1.5) < g(1). That is the case here, so this value is at least possible.