Алгебра, семинар №1 вшЭ, осень, первый курс

- **1.** Сколько существует функций $f:\{1,\ldots,5\} \to \{1,\ldots,5\}$, таких что $\#f^{-1}(k) \le 2$ для всех $k=1,\ldots,5$?
- 2. Раскройте скобки и приведите подобные члены в выражениях:

$$(a+b)^n$$
, $(a+b+c)^3$, $(a_1+\cdots+a_m)^n$.

3. Докажите (по-возможности, комбинаторно) следующие равенства:

a).
$$\sum_{i=0}^{n} {x+i \choose i} = {x+n+1 \choose n},$$
6).
$$\sum_{i=0}^{n} i {n \choose i} = n2^{n-1}.$$

- **4.** а). Сколько существует путей на плоскости из точки (0,0) в точку $(n_1,n_2), n_1, n_2 \ge 0$, состоящих из отрезков (1,0) и (0,1)?
- б). Обобщите пункт а) на высшие размерности (пути в d-мерном пространстве).
- **5.** При каких n, m биномиальный коэффициент $\binom{n}{m}$ нечётный? При каких n все биномиальные коэффициенты $\binom{n}{m}, 0 \le m \le n$ нечётны?
- **6.** Назовём разложением числа n равенство вида $n=a_1+\dots+a_k,\,a_i>0.$ Например, число 3 имеет ровно 4 разложения $3=3,\,3=2+1,\,3=1+2,\,3=1+1+1.$ Числа a_i называются частями разложения.
- а). Найдите число разложений числа n.
- б). Найдите число разложений числа n, имеющих чётное число чётных частей.