

3-4 hr

Prof. Shu-Ming Tseng

Outline

- Review: FT, DTFT, DFT, and FFT
- OFDM(A) principle
- Synchronization of DVB-T (an OFDM system)
- Channel estimation of DVB-T (an OFDM system)

Prof. Shu-Ming Tseng

Review: FT, DTFT, DFT, and FFT

Prof. Shu-Ming Tseng

3

離散時間傅立葉轉換

(DTFT , DISCRETE-TIME FOURIER TRANSFORM)

·由於電腦內的資料都是離散 (Discrete) 的形式,因此上面這種連續性積分的公式,並不太適用於電腦資料的運算上,於是便有離散式傳立葉轉換公式的需要。

傅立葉轉換

$$F\left\{f_{sp}\left(t\right)\right\} = \int_{-\infty}^{\infty} \hat{f}\left(t\right)e^{-i\omega t}dt = \int_{-\infty}^{\infty} f\left(nT\right)\delta\left(t-nT\right)e^{-i\omega t}dt$$

取樣序列 f(nT) 的DTFT

$$F_{DTFT}(e^{i\omega T}) = \sum_{n=-\infty}^{\infty} f(nT)e^{-in\omega}$$

Prof. Shu-Ming Tseng

離散時間傳立葉轉換

(DTFT , DISCRETE-TIME FOURIER TRANSFORM)

通常將採樣間隔T=1,得公式:

離散時間傅立葉轉換:

$$F_{DTFT}\left(e^{i\omega}\right) = \sum_{n=-\infty}^{\infty} f(n)e^{-in\omega}$$

離散時間傅立葉逆轉換:

$$f(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_{DTFT}(e^{i\omega}) e^{in\omega} d\omega$$

Prof. Shu-Ming Tseng

5

離散傅立葉轉換

(DFT, DISCRETE FOURIER TRANSFORM)

公式:

離散傅立葉轉換:

$$X[k] = \sum_{n=0}^{N-1} e^{-i\frac{2\pi}{N}nk} x[n], \text{ where } \omega = \frac{2\pi}{N}k \text{ } \sharp \psi \text{ } k = 0,1,...,N-1$$

離散傅立葉逆轉換:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} e^{i\frac{2\pi}{N}nk} X[k]$$
 其中 $n = 0,1,...,N-1$

Prof. Shu-Ming Tseng

日本	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	頻域
FT	連續 非週期性	連續 非週期性
DTFT	離散非週期性	連續週期性
DFT	離散週期性	離散週期性

Prof. Shu-Ming Tseng

7

快速傅立葉轉換 (FFT, FAST FOURIER TRANSFORM)

說明:快速傅立葉轉換是離散傅立葉轉換的快速演算法,也可用於計算離散傅立葉轉換的逆轉換

計算 DFT,所需要的複雜度是 $O(n^2)$,但在 1965 年,有兩位學者提出來一套更精簡的演算法,所需的複雜度只有 $O(n \log n)$,這一套演算法稱為「快速傅立葉轉換」(Fast Fourier Transform,簡稱 FFT),換句話說,FFT 是用來計算 DFT 的快速方法。

Prof. Shu-Ming Tseng

- OFDM: orthogonal frequency division multiplexing
- OFDMA: orthogonal frequency division multiple access (orthogonal +FDMA)

Prof. Shu-Ming Tseng

13

Introduction

- Because the growth in scientific, military, and entertainment applications, cloud computing, and development of 4G result in high-speed, reliable wireless system.
- thus we need multicarrier transmission method (for higher data rate), such OFDMA, and we make an overview of OFDMA here.

Prof. Shu-Ming Tseng

OFDMA= FDMA+orthogonal subcarrier+CP

- The symbol rate on each carrier is lower (1/carrier no)
- A cyclic prefix (CP) or zero prefix can be used to avoid the ISI (frequency-selective fading)
- Simple IFFT and FFT circuits for modulation and demodulation=> OFDM become practical since 1990s

Prof. Shu-Ming Tseng

Cyclic Prefix

- CP >delay spread to prevent ISI.
- CP can convert linear convolution (with channel) into circular convolution (periodic nature); thus we get data multiply DFT(⇔circular convolution, not linear convolution!) of channel.
- CP doesn't contain any information so it reduces throughput. But CP redundancy ratio is reduced as carrier no increases (OFDM symbol duration=non-OFDM symbol duration*carrier no).
- CP can also simplify the synchronization problem (timing and fractional frequency synchronization).
- CP is to prevent inter-carrier interference (ICI) in multipath environment (next page)

Prof. Shu-Ming Tseng

19

Guard interval

- if guard interval = zero padding, A and B are orthogonal, but A' and B are not orthogonal (higher freq components=> $\Delta f \neq 1/T$)!
- If guard interval=cyclic prefix, A' and B are not orthogonal ($\Delta f \neq 1/T$)

A'=Delayed version of A (path2)

Original version of A (path 1)

Original version of B

Prof. Shu-Ming Tseng

OFDM in NG-PON2 (next generation passive optical network 2) and PLC (power line communications)

- Anti-dispersion (色散) In optical fiber, different frequency travel in different speed, so the arrival time is different (dispersion). This is similar to ISI due to multipath in wireless channels, so cyclic prefix can be used.
- Disadvantage: PAPR Source: Networked Communication Program (NCP) newsletter No. 24
- PLC: impedance (50 or 75 Ω) mismatch causes EM wave reflections => multipath fading in PLC

Prof. Shu-Ming Tseng

21

The criterion of carriers $m\Delta f$ and $n\Delta f$ to be orthogonal

If $\Delta f = 1/Ts$, where Ts is OFDM symbol interval then

$$1/Ts \int_0^{Ts} e^{j2\pi n\Delta ft} e^{-j2\pi n\Delta ft} dt = \begin{cases} 1 & m=n\\ 0 & m\neq n \end{cases}$$

proof : skipped (hint : sinc function)

Prof. Shu-Ming Tseng

OFDMA advantages

- higher spectrum efficiency(=>higher data rate)
- Transfer frequency selective fading to a large number of flat fading subchannels (easy to equalize, ex 1-tap equalizer).
- two orthogonal sinusoid are orthogonal even in asynchronous operation (orthogonal criterion: frequency difference=1/T async only affect phase diff), not true for CDMA

+ - + -++++

Prof. Shu-Ming Tseng

23

 The division of signal will provide flexibility needed for future multimedia services (data rate可 微調)

Prof. Shu-Ming Tseng

DFDMA disadvantages

- OFDMA is sensitive to frequency shifts such as Doppler shift and carrier frequency offsets (CFO)
- P.S. OFDMA users may have different CFO due to tuner inaccuracy etc.
- Peak to Average Power Ratio (PAPR) problem for power amplifiers.

Prof. Shu-Mina Tsena

25

DFT IMPLEMENTATION TRANSMITTER

 Transmitted signal can be obtained using a Discrete Fourier Transform

$$\boldsymbol{x}_{b}(t) = \sum_{k=0}^{N-1} a[k] e^{j2\pi k \Delta f t}, \ 0 \le t \le \boldsymbol{T}_{s}$$

• If sampled at a rate of T_s/N,

$$t = n \Delta t = n \frac{Ts}{N} \mathbf{x}_{b}[\mathbf{n}] = \mathbf{x}_{b}(\frac{\mathbf{n}}{N}\mathsf{T}_{s}) = \sum_{k=0}^{N-1} \mathbf{a}[k]e^{j2\pi nk\Delta f\mathsf{T}_{s}/N}$$

• For orthogonality, ∆fT_s = 1

$$x_b[n] = \sum_{k=0}^{N-1} a[k] e^{j2\pi nk/N} = IDFT\{a[k]\}$$

Efficient FFT implementation

DFT IMPLEMENTATION RECEIVER

$$\begin{split} \hat{a}[k] &= \text{DFT}\{x_b[n]\} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} x_b[n] \, e^{-j2\pi nk/N} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} a[m] \, e^{j2\pi n(m-k)/N} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} a[m] \sum_{n=0}^{N-1} \, e^{j2\pi n(m-k)/N} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} a[m] \, N \delta[m-k] \\ &= a[k] \quad \text{Restore original signal} \\ &= \text{Prof. Shu-Ming Tseng} \end{split}$$

27

Study spec well before developing products

Prof. Shu-Ming Tseng

Frame structure (for code rate 2/3, 16QAM, 1/4 CP

Super frame Super frame

frame frame frame frame

OFDM OFDM Symbol Symbol Symbol 67

OFDM Symbol Symbol 67

OFDM Symbol Symbol 67

1 super frame= 4 frames

1 frame=68 OFDM symbols =672 packets (RS codeword)

P.S. 在台灣採用的mode 解資料可以以frame為單位(因為1 OFDM symbol含非整數個packets)

一般來說解資料必須以 superframe為單位 packet

2688 packets (on the next page) per super frame =672 packet per frame

Prof. Shu-Ming Tseng

31

OFDM frame structure

The OFDM frame structure allows for an <u>integer</u> number of Reed-Solomon 204 byte packets to be transmitted <u>in an OFDM super-frame</u> (for all code rate and modulation), and therefore avoids the need for any stuffing, whatever the constellation, the guard interval length, the coding rate or the channel bandwidth may be. See table 16.

Table 16: Number of Reed-Solomon packets per OFDM super-frame for all combinations of guard interval, code rates and modulation forms

Code rate	QPSK		16-	QAM	64-QAM		
	2K mode	8K mode	2K mode	8K mode	2K mode	8K mode	
1/2	252	1008	504	2016	756	3024	
2/3	336	1344	672	2688	1008	4032	
3/4	378	1512	756	3024	1134	4536	
5/6	420	1680	840	3360	1260	5040	
7/8	441	1764	882	3528	1323	5292	

- Introduction
- Fractional frequency offset and symbol timing offset: joint ML by cyclic prefix
- Integral frequency: by continual pilot
- Frame timing: by 16 bits of transmission parameter signaling (<u>TPS</u>)- other bits are code rate, modulation etc.
- Scattered pilots are used in channel estimation, not synchronization.

Prof. Shu-Ming Tseng

9.953Mbps for real-time DVB-T receiver (at Viterbi decoder input)

Table E.5: Useful bitrate (Mbit/s) for all combinations of guard interval, constellation and code rate for non-hierarchical systems for 6 MHz channels

Modulation	Code rate	Guard interval						
		1/4	1/8	1/16	1/32			
	1/2	3,732	4,147	4,391	4,524			
	2/3	4,976	5,529	5,855	6,032			
QPSK	3/4	5,599	6,221	6,587	6,786			
	5/6	6,221	6,912	7,318	7,540			
	7/8	6,532	7,257	7,684	7,917			
16-QAM	1/2	7,465	8,294	8,782	9,048			
	2/3	9,953	11,059	11,709	12,064			
	3/4	11,197	12,441	13,173	13,572			
	5/6	12,441	13,824	14,637	15,080			
	7/8	13,063	14,515	15,369	15,834			
	1/2	11,197	12,441	13,173	13,572			
	2/3	14,929	16,588	17,564	18,096			
64-QAM	3/4	16,796	18,662	19,760	20,358			
	5/6	18,662	20,735	21,955	22,620			
	7/8	19.595	21,772	23.053	23.751			

Figures in italics are approximate values.

For the hierarchical schemes the useful bit rates can be obtained from table E.5 as follows:
HP stream: figures from QPSK columns;
LP stream, 64-QAM: figures from QPSK columns;
LP stream, 64-QAM: figures from 16-QAM columns.

Prof. Shu-Ming Tseng

$$M_{r}(n)=r(n)r^{*}(n-N)=x_{t}(n)x_{t}^{*}(n)e^{j2\pi\epsilon}$$

$$C(\theta)=\frac{1}{CP}\sum_{n=\theta}^{\theta+CP}M_{r}[n]$$

- Θ'= MAX |C(Θ)|
- $\varepsilon = 1/2\pi$ arg $|C(\Theta')|$

Prof. Shu-Ming Tseng

37

38

Prof. Shu-Ming Tseng

Integral frequency synchronization

The same subcarrier index k=0,48,54,... have the same value of the continual pilot. We can take advantage of this property to find integral frequency offset.

Adjacent OFDM symbols (/, /-1), same chrrier index k, same continual pilot

- The set of subcarrier of continue pilot of one symbol is $\Omega(0)$
- Ω(i): i is circular shift of the number of subcarrier
- $\Omega(0)=\{0,48,54,...\}, \Omega(1)=\{1,49,55,...\}$ (Table 7)
- $Z_i = \sum_{k \in \Omega} y_{l,k-i} \bullet y^*_{l-1,k-i}$
- The Integral frequency offset is " i " that make Z is a peak value

Prof. Shu-Ming Tseng

41

TPS pilot (68 carriers)

Table 8: Carrier indices for TPS carriers

		2K mode)					8K n	node			
34	50	209	346	413	34	50	209	346	413	569	595	688
569	595	688	790	901	790	901	1073	1 219	1 262	1 286	1 469	1 594
1 073	1 219	1 262	1 286	1 469	1 687	1 738	1754	1913	2 050	2 117	2 273	2 299
1 594	1 687				2 392	2 494	2 605	2777	2 923	2 966	2 990	3 173
					3 298	3 391	3 442	3 458	3 617	3 754	3 821	3 977
					4 003	4 096	4 198	4 309	4 481	4 627	4 670	4 694
					4 877	5 002	5 095	5 146	5 162	5 321	5 458	5 525
					5 681	5 707	5 800	5 902	6 013	6 185	6 331	6 374
					6 398	6 581	6 706	6 799				

Prof. Shu-Ming Tseng

Frame Timing: 1 frame=68 OFDM symbols

Bit number	Purpose/Content				
s_0	Initialization				
$s_1 - s_{16}$	Synchronization word				
$s_{17} - s_{22}$	Length indicator				
s_{23}, s_{24}	Frame number				
s_{25}, s_{26}	Constellation				
s_{27}, s_{28}, s_{29}	Hierarchy information				
s_{30}, s_{31}, s_{32}	Code rate, HP stream				
s_{33}, s_{34}, s_{35}	Code rate, LP stream				
s_{36}, s_{37}	Guard interval				
s_{38}, s_{39}	transmission mode				
s ₄₀ - s ₅₃	Reserved for future use				
s ₅₄ - s ₆₇	Error protection BO				

- TPS(transmission parameter sequence) is used to record some information of signal.
- 1 frame has 68 OFDM symbol.
 1 OFDM symbol has 1 value of TPS. TPS carriers of 1 OFDM symbol are the same(repeat 68 times in 8K mode)
- It use s₁~s₁₆ to do frame synchronization
- DBPSK modulation (resistant to phase errors)

n BCH codex_{I,k} = $x_{I-1,k}$ (-1)^S/ $k \in \Gamma$ Γ is the location of TPS

l = 0,1,...,67 is the OFDM symbol index within a frame

Prof. Shu-Ming Tseng

43

Frame Timing: 1 superframe=4 frames

synchronization word:

Bits 1 to 16 of the TPS is a

- synchronization word.The first and third TPS block in each super-frame have the following
 - s1 s16 = 0011010111101110.
- The second and fourth TPS block have the following synchronization word:

s1 - s16 = 1100101000010001.

Prof. Shu-Ming Tseng

Scattered pilot

The values of scattered pilot is:
(continual pilot also 4/3, but TPS not because already repeated)
Re(c_{m.l.k}) = 4/3×2 (1/2 - w_k)

 $\operatorname{Im}\{c_{m,l,k,}\}=0$

And the scattered pilot position is permuted as :

$$\{k = K_{\min} + 3 \times (1 \mod 4) + 12p \mid p \text{ integer, } p \ge 0, k \in [K_{\min}; K_{\max}] \}$$

Prof. Shu-Ming Tseng

47

Scattered pilot

One-dimensional linear interpolation : inside 1 OFDM symbol

$$\operatorname{H}[k] = \operatorname{H}[i \cdot S_f] + \left\{\operatorname{H}[(i+1) \cdot S_f] - \operatorname{H}[i \cdot S_f]\right\} \cdot \frac{k - i \cdot S_f}{S_f} \qquad \text{for } i \cdot S_f \leq k \leq (i+1) \cdot S_f$$

Simple but low accuracy.

Amplitude and phase should be interpolated separately And note that 2π phase discontinuity $\mbox{SlopeAC=slopeAB}$

B((i+1)Sf, H((i+1)Sf))

C(k, H(k)) Sf is carrier freq spacing

A(iSf, H(iSf)

Prof. Shu-Ming Tseng

49

One-dimensional linear interpolation + multi OFDM symbol averaging

- very slow-varying channels
- By weak law of large numbers

Prof. Shu-Ming Tseng


```
5 This function calculates the power allocation using water filling
         % algorithm
% The first imput is the individual ENR
% The second imput is the sum of power constraint
% The output is the vector of power allocation
                                                                        \eta = \frac{3}{P_{N_0}} [Q^{-1}(SER_t/4)]^{-2}
In [Wan13] eq(4) 去除P_{N_0}
         n = length(SNR);
%Qo=3/(qfuncinv(.01/4))^2;
8 -
9 10 11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -
20 -
21
                                                          SOITESNE-SOITE(SNE); - 由小到大排列
         | for i=1:n
| Power=1/(SortSNR(i)*Oo)+zeros(1,n);
              for m=1:n

Power(m)=max(0,Power(m)-1/(SNR(m)*Qo));
                                                           sum(power) < P_t
                                                                                                        P_{k,m}^* = \left[\frac{1}{\lambda_k} - \frac{1}{\eta \left| H_{k,m} \right|^2} \right]^+, \forall m \in A_k^{(i)}
                                                      有o個被power
                                                      allocation到
                                                      SNR大
                                                                                                          In [Wan13] eq(16)
                                                       (floor)較低 水較深
```

