SIMON says: Machine learning for everyone!

Adriana Tomic Systems Immunology | Oxford Vaccine Group

SIMON training course @Big Data Institute Part I - May 5th, 2021

@TomicAdriana

adriana.tomic@paediatrics.ox.ac.uk

Training course - overview

Part I – SIMON, pattern recognition and knowledge extraction platform (May 5th 2021)

- · Machine learning and AI what is all the fuss about?
- What is SIMON?
- Case study example 1 (dealing with missing values, overfitting, model performance)

Theoretical part - 15min

- Perform SIMON analysis using provided dataset
- Performance metrics, evaluation and selection of high-quality models

Hands-on – 30min

Questions? 15min

Part II – Exploratory analysis (May 12th 2021)

- · Feature selection: scoring and elimination
- · Correlation and clustering analysis

Hands-on - 30min

- · Feature processing methods to avoid 'curse of dimensionality'
- Case studies example 2

Theoretical part - 15min

Questions? 15min

2

Part I. SIMON, pattern recognition and knowledge extraction platform

Knowledge data discovery process* *the extraction of patterns representing knowledge Preparation Model training Exploratory Ingestion analysis ETL Multi-set perations Data partitioning Database Clean features intersection importance Data visualization Raw Impute features Data Principal Correlation **Learning Algorithm** Dataset Data distribution Gradient boosting , Significance **Training Data** Train Model Feature Engineering Clustering Data cleaning New Data **Evaluate Model**

Leading statistical programming languages in data science - available ML tools

R-project (https://www.r-project.org/):

- Mlr3 (https://mlr3.mlr-org.com)
- Classification and regression training (CARET) (https://rdrr.io/cran/caret)

python

Python (https://www.python.org/):

- Scikit-learn (https://scikit-learn.org)
- mIPy(<u>https://mlpy.fbk.eu</u>)
- SciPy (https://www.scipy.org/)

Extensive programming experience and general knowledge of R or Python essential, making them inaccessible for many life science researchers

Deep learning libraries:

https://keras.io/

11

Available ML software

Commercial software

- Google's cloud-based AutoML (https://cloud.google.com/automl)
- DataRobot (https://www.datarobot.com/)
- BigML (https://bigml.com/)
- MLjar (https://mljar.com)
- RapidMiner (https://rapidminer.com/)

Academia-released software

- Waikato Environment for Knowledge Analysis (WEKA) (https://www.cs.waikato.ac.nz/~ml/weka/),
- Orange (https://orange.biolab.si/)
- Konstanz Information Miner (KNIME) https://www.knime.com/)
- ELKI (https://elki-project.github.io/)

Features

- Closed source unknown/hidden ML methods and algorithms
- No specific algorithms to deal with biomedical datasets (missingness, heterogenous data types, etc)
- High price (DataRobot\$50k/licence!)

Features

- Free and open source explained/published
 ML methods and algorithms
- · Requires knowledge of ML process
- Lack some of the advance features of commercial software (autoML)

The "BIG" problem: Highly percentage of missing data

How to select optimal number of donors and optimal number of features?

SUBSAMPLING

19

The alternative solution to cope with high sparsity

A fully automated script for feature subset selection, dimensionality reduction and data sampling

Join open-source community supporting SIMON!

Project	How To Help	Next Step
Localization (English, German, French, Chinese, Arabic)	Help us translate SIMON into your language. If some translation is missing or incorrect you can easily help us by correcting it.	Join our Translation Community
Tutorials	Help others use and understand SIMON	Write a tutorial or record it, with usage examples
Organizing	Ask questions on recently opened GitHub issues to move the discussion forward	Go to GitHub Issues
Write article	Help other understand what is Machine Learning & how can they apply it, by publishing blog post	e-mail us

Check out SIMON at genular.org

