

2015 (I) भौतिक विज्ञान प्रश्न पत्र

विषय कोड

पुस्तिका कोड

समय : 3:00 घंटे

पूर्णाक : 200 अंक

अनुदेश

- आपने हिन्दी को माध्यम चुना है । इस परीक्षा पुस्तिका में पचहत्तर (20 भाग 'A' में + 25 भाग 'B' + 30 भाग 'C' में) बहुल विकल्प प्रश्न (MCQ) दिए गए हैं । आपको भाग 'A' में से अधिकतम 15 और भाग 'B' में 20 तथा भाग 'C' में से 20 प्रश्नों के उत्तर देने हैं । यदि निर्धारित से अधिक प्रश्नों के उत्तर दिए गए तब केवल पहले भाग 'A' से 15, भाग 'B' से 20 तथा भाग 'C' से 20 उत्तरों की जांच की जाएगी।
- ओ. एम. आर. उत्तर पत्रक अलग से दिया गया है । अपना रोल नम्बर और केन्द्र का नाम लिखने से पहले यह जांच लीजिए कि पुस्तिका में पृष्ठ पूरे और सही हैं तथा कहीं से कटे-फटे नहीं हैं । यदि ऐसा है तो आप इन्विजीलेटर से उसी कोड की पुस्तिका बदलने का निवेदन कर सकते हैं । इसी तरह से ओ. एम. आर. उत्तर पत्रक को भी जांच लें । इस पुस्तिका में रफ काम करने के लिए अतिरिक्त पन्ने संलग्न हैं ।
- ओ. एम. आर. उत्तर पत्रक के पृष्ठ 1 में दिए गए स्थान पर अपना रोल नम्बर, नाम तथा इस परीक्षा 3. पुस्तिका का क्रमांक लिखिए, साथ ही अपना हस्ताक्षर भी अवश्य करें ।
- आप अपनी ओ॰एम॰आर॰ उत्तर पत्रक में रोल नंबर, विषय कोड, पुस्तिका कोड और केन्द्र कोड से संबंधित समुचित वृतों को काले बॉल पेन से अवश्य काला करें। यह एक मात्र परीक्षार्थी की जिम्मेदारी हैं कि वह ओ॰ एम॰ आर॰ उत्तर पत्रक में दिए गए निर्देशों का पूरी सावधानी से पालन करें, ऐसा न करने पर कम्प्यूटर विवरणों का सही तरीके से अकूटित नहीं कर पाएगा, जिससे अंततः आपको हानि, जिसमें आपकी ओ.एम.आर. उत्तर पत्रक की अस्वीकृति भी शामिल है, हो सकती है।
- भाग 'A' में प्रत्येक प्रश्न के 2 अंक , भाग 'B' में प्रत्येक प्रश्न के 3.5 अंक तथा 'C' में प्रत्येक प्रश्न 5 5. अंक का है । प्रत्येक गलत उत्तर का ऋणात्मक मूल्यांक 25 % की दर से किया जाएगा ।
- प्रत्येक प्रश्न के नीचे चार विकल्प दिए गए हैं । इनमें से केवल एक विकल्प ही "सही" अथवा 6. "सर्वोत्तम हल" है । आपको प्रत्येक प्रश्न का सही अथवा सर्वोत्तम हल ढूँढना है । 7.
- नकल करते हुए या अनुचित तरीकों का प्रयोग करते हुए पाए जाने वाले परीक्षार्थियों का इस और अन्य भावी परीक्षाओं के लिए अयोग्य ठहराया जा सकता है । 8.
- परीक्षार्थी को उत्तर या रफ पन्नों के अतिरिक्त कहीं और कुछ भी नहीं लिखना चाहिए ।
- केलकूलेटर का उपयोग करने की अनुमति नहीं है । 9.
- परीक्षा समाप्ति पर छिद्र बिन्दु चिन्हित स्थान से ओ.एम.आर. उत्तर पत्रक को विभाजित करें। इन्विजीलेटर को मूल ओ॰एम॰आर॰ उत्तर पत्रक सौंपने के पश्चात आप इसकी कॉर्बनलैस प्रतिलिपि
- हिन्दी माध्यम/संस्करण के प्रश्न में विसंगति होने/पाये जाने पर अंग्रेजी संस्करण प्रमाणिक होगा । 11.
- केवल परीक्षा की पूरी अवधि तक बैठने वाले परीक्षार्थी को ही परीक्षा पुस्तिका साथ ले जाने की अनुमति दी जाएगी ।

रोल नंबर : नाम : OMR उत्तर पत्रक नंबर :	परीक्षार्थी द्वारा भरी गई जानकारी को मैं सत्यापित करता हूँ ।		
15 CRS/15—5AH—1A	इन्विजीलेटर के हस्ताक्षर		

रफ कार्य/ROUGH WORK

उपयोगी म्लभूत नियतांक

m	इलेक्ट्रान का द्रव्यमान	9.11×10^{-31} kg			
h	प्लांक नियतांक 6.63×10^{-3}				
e	इलेक्ट्रान का आवेश	$1.6 \times 10^{-19}C$			
k	मान नियतांक	$1.39 \times 10^{-23} J/K$			
c	प्रकाश का वेग	$3.0 \times 10^8 m/sec$			
IeV amu G	1.6×10^{-19} J 1.67×10^{-27} kg $6.67 \times 10^{-11} Nm^2 kg^{-2}$				
R_y	नियतांक	$1.097 \times 10^7 m^{-1}$			
N_{A}	आवोगाद्रो संख्या 6.023 × 10 ²³ m				
$ \epsilon_o $ $ \mu_o $ $ R $	8.854 × 10 ⁻¹² Fm ⁻¹ 4π × 10 ⁻⁷ Hm ⁻¹ मोलर गैस नियतांक	$8.314JK^{-1}mole^{-1}$			
	USEFUL FUNDAMAENT	AL CONSTANTS			
m	Mass of electron	9.11×10^{-31} kg			
h	Planck's constant	$6.63 \times 10^{-34} J sec$			
e	Charge of electron	1.6×10^{-19} C			
k	Boltzmann constant	$1.38 \times 10^{-23} J/K$			
c	Velocity of Light	$3.0 \times 10^8 m/sec$			
IeV	1.6×10^{-19} J				
amu	$1.67 \times 10^{-27} \text{kg}$				
G	$6.67 \times 10^{-11} Nm^2 kg^{-3}$				
R_y	Rydberg constant	$1.097 \times 10^7 m^{-1}$			
N_A	Avogadro's number	$6.022 \times 10^{23} mole^{-1}$			
ε_o	$8.854 \times 10^{-12} Fm^{-1}$				
μ_o	$4\pi \times 10^{-7} Hm^{-1}$				
R	Molar Gas constant	$8.314JK^{-1}$ $nole^{-1}$			

LIST OF THE ATOMIC WEIGHTS OF THE ELEMENTS

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic	Atomic
Actinium	Ac	89	(227)	Mercury	Hg	Number	Weight
Aluminium	Al	13	26.98	Molybdenum	Mo	80	200.59
Americium	Am	95	(243)	Neodymium	Nd	42	95.94
Antimony	Sb	51	121.75	Neon		60	144.24
Argon	Ar	18	39.948	Neptunium	Ne	10	20.183
Arsenic	As	33	74.92	Nickel	Np	93	(237)
Astatine	At	85	(210)	Nlobium	Ni	28	58.71
Barium	Ba	56	137.34		Nb	41	92.91
Berkelium	Bk	97	(249)	Nitrogen	N	7	14.007
Beryllium	Be	4	9.012	Nobelium	No	102	(253)
Bismuth	Bi	83	208.98	Osmium	Os	76	190.2
Boron	В	5	The second secon	Oxygen	0	- 8	15,9994
Bromine	Br	35	10.81	Palladium	Pd	46	106.4
Cadmium	Cd	48	79.909	Phosphorus	P	15	30.974
Calcium	Ca	20	112.40	Platinum	Pt	78	195.09
Californium	Cf	98	40.08	Plutonium	Pu	94	(242)
Carbon	C		(251)	Polonium	Po	84	(210)
Cerium	Ce	6	12.011	Potassium	K	19	39.102
Cesium	Cs	58	140.12	Prascodymium	Pr	59	140.91
Chlorine	CI	55	132.91	Promethium	Pm	61	(147)
Chromium		17	35.453	Protactinium	Pa	91	(231)
Cobalt	Cr	24	52.00	Radium	Ra	88	(226)
Copper	Co	27	58.93	Radon	Rn	86	(222)
Curium	Cu	29	63.54	Rhenium	Re	75	186.23
	Cm	96	(247)	Rhodium	Rh	45	102.91
Dysprosium	Dy	66	162.50	Rubidium	Rb	37	85.47
Einsteinium Erbium	Es	99	(254)	Ruthenium	Ru	44	101.1
	Er	68	167.26	Samarium	Sm	62	150.35
Europium	Eu	63	151.96	Scandium	Sc	21	44.96
Fermium	Fm	100	(253)	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.09
Francium	Fr	87	(223)	Silver	Ag	47	107.870
Gadolinium	Gd	64	157.25	Sodium	Na	11	22.9898
Gallium	Ga	31	69.72	Strontium	Sr	38	87.62
Germanium	Ge	32	72.59	Sulfur	S	16	32.064
Gold	Au	79	196.97	Tantalum	Ta	73	180.95
Hafnium	Hf	72	178.49	Technetium	Te	43	(99)
Helium	He	2	4.003	Tellurium	Te	52	127.60
Holmium	Но	67	164.93	Terbium	Tb	65	158.92
Hydrogen	H		1.0080	Thallium	TI	81	204.37
Indium	- In	49	114.82	Thorium	Th	90	232.04
lodine	1	53	126.90	Thulium	Tm	69	168.93
Iridium	lr	77	192.2	Tin	Sn	50	
Iron	Fe	26	55.85	Titanium	Ti	22	118.69
Krypton	Kr	36	83.80	Tungsten	W	74	47.90
anthanum	La	57	138.91	Uranium	U	92	183.85
awrencium	Lr	103	(257)	Vanadium	V	23	238.03
_ead	Pb	82	207.19	Xenon	Xe		50.94
ithium	Li	3	6.939	Vtterbium		54	131.30
utetium	Lu	71	174.97	Yttrium	Yb	70	173.04
Magnesium	Mg	12	24.312	Zinc	Y Zn	39	88.91
Manganese	Mn	25	54.94	Zirconium		30	65.37
Mendelevium	Md	101	(256)	zarcomum	Zr	40	91.22

^{*}Based on mass of C¹² at 12.000... The ratio of these weights of those on the order chemical scale (in which oxygen of natural isotopic composition was assigned a mass of 16.0000...) is 1.000050. (Values in parentheses represent the most stable known isotopes)

भाग /PART 'A'

- निम्न प्रत्येक शब्दों के समूहों में एक संख्या छिपी हुई है, जिसके आधार पर आप उन्हें आरोही क्रम में रख सकते हैं। सही उत्तर का चयन कीजिये।
 - I. गलती नहीं की
 - J. 'दोष रहित मानव
 - K. भेडिये करीब आये
 - L. नहीं जी, रोज़ का काम है
 - L, K, J, I
- I. J. K. L.
- K, L, J, I
- K. J. I. L.
- Each of the following pairs of words hides a number, based on which you can arrange them in ascending order. Pick the correct answer:
 - Cloth reel
 - J. Silent wonder
 - K. Good tone
 - L. Bronze rod
 - 1. L, K, J, I
- 2. I, J, K, L
- 3. K, L, J, I
- K, J, I, L
- निम्न में से किस का मान 2²²² 2. 学?
 - 1. 26
- 2222
- Which of the following values is same as 2222?
 - 1. .26
- 2222
- 3. एक 12 m × 4 m की आयाताकार छत चार मीटर लंबे पतले खम्भों पर टिकी है। पूर्व दिशा में 45° के कोण पर छत पर सूर्य की किरणें पड़ती है जोकि धरातल पर छाया बनाती है। छाया का क्षेत्रफल क्या है?
 - 1. 24 m²
- 2. 36 m²
- 3. 48 m^2
- 4. 60 m²
- A 12 m × 4 m rectangular roof is resting on four 4 m tall thin poles. Sunlight falls on the roof at an angle of 45° from the

east, creating a shadow on the ground. What will be the area of the shadow?

- 1. 24 m²
- 2. 36 m²
- 3. 48 m²
- 4. 60 m^2

4. यदि

हैं; यहां a, b, c तथा d दशमलव अंक हैं। तब a + b = ्

1. 4 3. 11 16

4. If

Here a, b, c and d are digits. Then a + b =

1. 4

- 2. 9
- 3. 11
- 16
- उत्तल अष्ट भूज के सब कर्णों के जोड़ों के प्रतिच्छेद बिंद्ओं की अधिकतम संख्या है
 - 3. 120
- 400 2. 190
- 5. The maximum number of points formed by intersection of all pairs of diagonals of convex octagon is
 - 1. 70
- 2. 400
- 3. 120
- 4. 190
- एक बक्से की ऊँचाई ज्ञात कीजिये जिसका धरातल क्षेत्रफल 24 cm × 48 cm है तथा जिसमें अधिकतम 56 cm लंबी छड़ रखी जा सकती है।
 - 1. 8 cm
- 2. 32 cm
- 3. 37.5 cm
- 4. 16 cm
- Find the height of a box of base area 24 cm × 48 cm, in which the longest stick that can be kept is 56 cm long.
 - 1. 8 cm
- 2. 32 cm
- 3. 37.5 cm
- 4. 16 cm

7.	किसी त्रिभुज की परिमिति, इसके अंतर्वृत की
	त्रिज्या तथा एक संख्या का गुणनफल उस
	त्रिभुज के क्षेत्रफल के समान है। संख्या है
	1 1/4

1/3

3. 1/2

4. I

7. The product of the perimeter of a triangle, the radius of its in-circle, and a number gives the area of the triangle. The number is

1. 1/4

2. 1/3

3. 1/2

बक्सों की एक अनंत पंक्ति बनाई गई है। 8. इसके प्रत्येक बक्से का आयतन पिछले बक्से के आयतन का आधा है। यदि सबसे बडे बक्से का आयतन 20 cc है तो बक्सों का कुल आयतन क्या होगा?

1. अनंत

2. 400 cc

3. 40 cc

80 cc

8. An infinite row of boxes is arranged. Each box has half the volume of the previous box. If the largest box has a volume of 20 cc, what is the total volume of all the boxes'?

1. Infinite

400 cc

3. 40 cc

4. 80 cc

दिये गये क्रम के आधार पर ल्प्त तत्व को ज्ञात किजिये

A. \(\begin{array}{c} \text{B.} \\ \d \text{C.} \end{array} \)

A. O B. O C. O

1.

3.

9. Find the missing element based on the given pattern

A. ()

B. Q__

3.

10. दिये गये ग्राफ की सहायता से निम्न में से गलत कथन को ज्ञात कीजिए

- 1. गलनांक दाब के साथ बढता है।
- 2. गलनांक दाब के साथ घटता है।
- 3. क्वथनांक दाब के साथ बढ़ता है।
- 4. ठोस, द्रव व गैस समान दाब व ताप पर सहवास कर सकती हैं।

10. By reading the accompanying graph, determine the INCORRECT statement out of the following.

1. Melting point increases with pressure

2. Melting point decreases with pressure

3. Boiling point increases with pressure

4. Solid, liquid and gas can co-exist at the same pressure and temperature

यदि 10 प्रेक्षणों में से आप सिर्फ एक प्रेक्षण को बदलें तो निम्न में से कौन शर्तिया बदलेगा

1. माध्य

माध्यक

3. उच्चक

मानक विचरण

If you change only one observation from a set of 10 observations, which of the following will definitely change?

1. Mean

2. Median

- 3. Mode
- 4. Standard deviation
- 12. एक व्यक्ति स्थानिक समय 0100 बजे एक दूसरे देश की अपनी यात्रा आरंभ कर दूसरे देश पर स्थानिक समय (1900 बजे, उसी तारीख को पहंचता है। वह अपनी वापसी यात्रा उसी रात्रि स्थानिक समय 2100 बजे श्रू कर अपने मूल स्थान पर समान यात्रा समय में पूरी करता है। यदि उसके प्रवासीय देश का समय काल उसके मूल स्थान के समय काल से 10 घंटे पीछे है तो व्यक्ति अपने मूल स्थान से कुल जितने समय बाहर था वह है
 - 1. 48 घंटे
- 20 घंटे
- 3. 25 घंटे
- 4. 36 घंटे
- 12. A man starts his journey at 0100 Hrs local time to reach another country at 0900 Hrs local time on the same date. He starts a return journey on the same night at 2100 Hrs local time to his original place, taking the same time to travel back. If the time zone of his country of visit lags by 10 hours, the duration for which the man was away from his place is
 - 1. 48 hours
- 20 hours
- 3. 25 hours
- 4. 36 hours
- 13. माना कि r एक धन संख्या है जिसके लिये $r^{(1/1234)} + r^{(-1/1234)} = 2$

 $r^{4321} + r^{-4321} = ?$

- 1. 2
- 2. 2(4321/1234)
- 21234
- Let r be a positive number satisfying $r^{(1/1234)} + r^{(-1/1234)} = 2$ Then

 $r^{4321} + r^{-4321} = ?$

- $3. 2^{3087}$
- 2. 2^(4321/1234) 21234
- 14. एक प्लवक एक नदी में बह रहा है जो कि एक नाव से धारा की दिशा में 10 मीटर आगे है। नाव की स्थिर पानी में गति 10

मी./मिनट है। यदि नाव को धारा की दिशा में चलाया जाये तो प्लवक तक पहंचने में लगने वाला समय

- 1. 1 मिनट होगा
- 2. 1 मिनट से ज्यादा होगा
- 3. । मिनट से कम होगा
- 4. यदि नदी की गति जात हो तभी जात किया जा सकता है।
- 14. A float is drifting in a river, 10 m downstream of a boat that can be rowed at a speed of 10 m/ minute in still water. If the boat is rowed downstream, the time taken to catch up with the float
 - 1. will be 1 minute
 - 2. will be more than 1 min
 - 3. will be less than 1 min
 - 4. can be determined only if the speed of the river is known
- 15. ABC एक लम्ब कोण त्रिभ्ज है जो एक अर्धवृत्त के अंदर अंतर्चित्रित है। भुजाओं BC तथा AC पर भी अर्धवृत्त बनाये जाते हैं। यदि त्रिभ्ज का क्षेत्रफल a है, तो छायित इंदुकों का क्ल क्षेत्रफल क्या है?

1. a 3. a/\pi

- πa 4. $a/2\pi$
- ABC is a right angled triangle inscribed in a semicircle. Smaller semicircles are drawn on sides BC and AC. If the area of the triangle is a, what is the total area of the shaded lumes?

1. a 2. πa 3. a/π 4. $a/2\pi$

- 16. एक चींटी अपने ही आमाप की एक दूसरी चींटी को उठा सकती है जबकि एक हाथी अपने ही आमाप के दूसरे हाथी को उठा नहीं सकता, क्योंकि
 - 1. चींटी की मांसपेशियां हाथी की मांसपेशियों की तुलना में अधिक बलवान है।
 - 2. हाथी की तुलना में चींटी के आनुपातिकत: मोटे पैर होते हैं।
 - 3. आमाप के वर्ग के अनुपात में बल बढ़ता है जबकि आमाप के घन के अन्पात में भार बढ़ता है।
 - 4. चींटियां सहयोगित काम करते हैं जबकि हाथी व्यक्तिगत काम करते हैं।
- An ant can lift another ant of its size whereas an elephant cannot lift another elephant of its size, because
 - 1. ant muscle fibres are stronger than elephant muscle fibres.
 - ant has proportionately thicker legs than elephant
 - strength scales as the square of the size while weight scales as cube of the size
 - 4. ants work cooperatively, whereas elephants work as individuals
- निम्नवत रखे गये अक्षरों पर विचारें:

U_G_C_C S I R

हर अक्षर अपने दायें एक कदम बढ़ता है तथा चरम दायें स्थित अक्षर प्रथम स्थान पर आकर एक आपरेशन पूर्ण करता है। निम्न दिये गये आपरेशन संख्याओं में से किसके बाद दोनों C पास-पास नहीं रहते? 1. 3 2. 10 3. 19 4. 25

17. Consider a series of letters placed in the following way:

U_G_C_C_S_I_R

Each letter moves one step to its right and the extreme right letter takes the

first position, completing one operation. After which of the following numbers of operations do the Cs not sit side by side?

1. 3 3. 19

2. 10 4. 25

18. त्रिज्या R के एक क्षैतिज सिलिंडर पर एक आनत समतल विराम करता है। यदि समतल धरातल से 30° का कोण बनाता है, तो समतल का सिलिंडर पर स्पर्श बिंदु इस ऊँचाई पर है:

1. 1.500 R

1.866 R

1.414 R

1.000 R

18. An inclined plane rests against a horizontal cylinder of radius R. If the plane makes an angle of 30° with the ground, the point of contact of the plane with the cylinder is at a height of

1. 1.500 R

2. 1.866 R

3. 1.414 R

4. 1.000 R

19. व्यास 140 मीटर के एक क्षेत्र में बनाये जा सकने वाले समांतर अनाच्छादित क्रिकेट पिचों की उच्चतम संख्या क्या है, यदि किसी भी पिच के केन्द्र से सीमा की दूरी न्यूनतम 60 मीटर हो?

1. 6

3. 12

19. What is the maximum number of parallel, non-overlapping cricket pitches (length 24 m, width 3 m) that can be laid in a field of diameter 140 m, if the boundary is required to be at least 60 m from the centre of any pitch?

1. 6 3. 12

2. 7 4. 4

खुले खिड़िकयों वाली तेज चलने वाली एक गाड़ी में चालक लगातार अंदर आती हुई पवन को अनुभव करता है। परंतु गाड़ी के अंदर का दाब बढ़ता नहीं देखा जाता, क्योंकि

- 1. आगे की खिड़की से अंदर आने वाली पवन पिछली खिड़की से बाहर चली जाती है।
- 2. पवन हर खिड़की से अंदर आकर बाहर जाती है परंतु चालक के मात्र अंदर आती पवन का अन्भव करता है।

- 3. पवन सचमुच अंदर नहीं आती, तथा पवन का अन्भव भ्रम मात्र है।
- 4. ठंडी हवा ताप को घटाती है, अंत: दाब बढ़ता नहीं है।
- In a fast moving car with open windows, the driver feels a continuous incoming breeze. The pressure inside the car, however, does not keep increasing because,
 - 1. air coming in from the front window goes out from the rear.
 - 2. air comes in as well as goes out through every window but the driver only feels the incoming one.
 - 3. no air actually comes in and the feeling of breeze is an illusion.
 - cool air reduces the temperature therefore the pressure does not increase.

भाग/PART-'B'

21. जैसे कि निम्न चित्र में दर्शाया गया है, आवर्तकाल T युक्त एक आवर्ती फलन f(t)पर विचारें।

 $t = \frac{1}{2}(2n-1)$ पर स्थित $n=0,\pm 1,\pm 2,\cdots$ हैं, बल ± 1 के डेल्टा फलन हैं। फ़्रिये विस्तरण

$$f(t) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n t/T}$$

में आयाम a_n इनसे दिये जाते हैं:

1.
$$(-1)^n$$

3.
$$i \sin \frac{n\pi}{2}$$

21. Consider the periodic function f(t) with time period T as shown in the figure below.

The spikes, located at $t = \frac{1}{2}(2n-1)$, where $n = 0, \pm 1, \pm 2, \cdots$, are Dirac-delta functions of strength ± 1 . The amplitudes a_n in the Fourier expansion

$$f(t) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n t/T}$$

are given by

 $\begin{array}{ll}
2. & \frac{1}{n\pi}\sin\frac{n\pi}{2} \\
4. & n\pi
\end{array}$

1.
$$(-1)^n$$

3. $i \sin \frac{n\pi}{2}$

22. द्विविम में दीर्घवृत्त $x^2 + 4y^2 = 8$ पर एक कण चलता है। यदि किसी क्षण पर वह बिंद (x,y) = (2,1) पर है तथा उसकी गति का x-घटक 6 (उपयुक्त इकाईयों में) है. तो उसकी गति का y-घटक है:

22. A particle moves in two dimensions on the ellipse $x^2 + 4y^2 = 8$. At a particular instant it is at the point (x, y) = (2,1) and the x-component of its velocity is 6 (in suitable units). Then the y-component of its velocity is

$$1. -3$$

23. अवकल समीकरण $\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0$ पर विचारें। यदि t=0 पर x=0 तथा t=1 पर x=1 है, तो t=2 पर x का मान है:

1.
$$e^2 + 1$$

2. $e^2 + e$

3.
$$e + 2$$

23. Consider the differential equation

 $\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0. \text{ If } x = 0 \text{ at } t = 0$ and x = 1 at t = 1, the value of x at t = 2 is

1.
$$e^2 + 1$$

2. $e^2 + e$

3.
$$e + 2$$

4. 2e

24. समाकल $\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$ का मान है:

- 3. $\sqrt{2} \pi$

24. The value of the integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^4}$ is

25. $6t^3 + 3 \sin 4t$ का लाप्लास रूपांतरण है

- 1. $\frac{36}{s^4} + \frac{12}{s^2 + 16}$ 2. $\frac{36}{s^4} + \frac{12}{s^2 16}$ 3. $\frac{18}{s^4} + \frac{12}{s^2 16}$ 4. $\frac{36}{s^3} + \frac{12}{s^2 + 16}$

25. The Laplace transform of $6t^3 + 3\sin 4t$

- 1. $\frac{36}{s^4} + \frac{12}{s^2 + 16}$ 2. $\frac{36}{s^4} + \frac{12}{s^2 16}$ 3. $\frac{18}{s^4} + \frac{12}{s^2 16}$ 4. $\frac{36}{s^3} + \frac{12}{s^2 + 16}$

26. यदि दविविम में एक गतिक तंत्र की लाग्रांजी $L = \frac{1}{2}m\dot{x}^2 + m\dot{x}\dot{y}$ है, तब उसकी हैमिल्टनी

- 1. $H = \frac{1}{m}p_x p_y + \frac{1}{2m}p_y^2$
- 2. $H = \frac{1}{m} p_x p_y + \frac{1}{2m} p_x^2$
- 3. $H = \frac{1}{m} p_x p_y \frac{1}{2m} p_y^2$
- 4. $H = \frac{1}{m} p_x p_y \frac{1}{2m} p_x^2$

26. If the Lagrangian of a dynamical system in two dimensions is $L = \frac{1}{2}m\dot{x}^2 + m\dot{x}\dot{y}$, then its Hamiltonian is

- 1. $H = \frac{1}{m} p_x p_y + \frac{1}{2m} p_y^2$
- 2. $H = \frac{1}{m} p_x p_y + \frac{1}{2m} p_x^2$
- 3. $H = \frac{1}{m} p_x p_y \frac{1}{2m} p_y^2$
- 4. $H = \frac{1}{m} p_x p_y \frac{1}{2m} p_x^2$

27. एक विमी विभव $V(x) = \frac{\alpha}{3}x^3 + \frac{\beta}{4}x^4$, जहां $\alpha, \beta > 0$ हैं. में द्रव्यमान m का एक कण चलता है। साम्यावस्था बिंदुओं में से एक है x = 0 । दूसरी साम्यावस्था बिंदू के आस-पास छोटे दोलनों की कोणिक बारंबारता है:

27. A particle of mass m moves in the onedimensional potential $V(x) = \frac{\alpha}{3}x^3 + \frac{\beta}{4}x^4$ where $\alpha, \beta > 0$. One of the equilibrium points is x = 0. The angular frequency of small oscillations about the other equilibrium point is

- 1. $\frac{2\alpha}{\sqrt{3m\beta}}$ 3. $\frac{\alpha}{\sqrt{12m\beta}}$

- 2. $\frac{\alpha}{\sqrt{m\beta}}$ 4. $\frac{\alpha}{\sqrt{24m\beta}}$

28. एकांक द्रव्यमान का एक कण xy-तल में इस प्रकार चलता है कि $\dot{x}(t) = y(t)$ तथा $\dot{y}(t) =$ -x(t) हैं। हम इस निष्कर्ष पर पहंच सकते हैं कि वह एक संरक्षी बल है जो इस विभव से व्युत्पन्नित है:

- 1. $\frac{1}{2}(x^2 + y^2)$ 2. $\frac{1}{2}(x^2 y^2)$ 3. x + y 4. x y

28. A particle of unit mass moves in the xyplane in such a way that $\dot{x}(t) = y(t)$ and $\dot{y}(t) = -x(t)$. We can conclude that it is in a conservative force-field which can be derived from the potential

- 1. $\frac{1}{2}(x^2 + y^2)$ 2. $\frac{1}{2}(x^2 y^2)$
- 3. x + y

29. तीन जड़त्वीय निर्देश फ्रेमों, A. B तथा C पर विचारें । A से सापेक्ष B गति c/2 के साथ चलता है, तथा B से सापेक्ष C गति c/10 के साथ उसी दिशा में चलता है। A पर मापित C की गति है:

29. Consider three inertial frames of reference A. B and C. The frame B moves with a velocity c/2 with respect to A, and C moves with a velocity c/10 with respect to B in the same direction. The velocity of C as measured in A is

1.
$$\frac{3c}{7}$$
 2. $\frac{4c}{7}$ 3. $\frac{c}{7}$ 4. $\frac{\sqrt{3}}{7}$

- 30. एक समतल विध्युत चुबंकीय तरंग धन z-दिशा में प्रगामी है। x-दिशा में उच्चतम विध्युत क्षेत्र है 10 V/m. प्रति इकाई क्षेत्रफल पर शक्ति एवं चुबंकीय प्रेरण B के सिन्निकटित उच्चतम मान क्रमश: हैं:
 - $1. 3.3 \times 10^{-7} \text{ watts/m}^2$ तथा 10 tesla
 - 2. 3.3×10^{-7} watts/m² तথা 3.3×10^{-8} tesla
 - 3. 0.265 watts/m² तथा 10 tesla
 - 4. 0.265 watts/m² तथा 3.3 × 10⁻⁸ tesla
- 30. A plane electromagnetic wave is travelling along the positive z-direction. The maximum electric field along the x-direction is 10 V/m. The approximate maximum values of the power per unit area and the magnetic induction B, respectively, are
 - 1. 3.3×10^{-7} watts/m² and 10 tesla
 - 2. 3.3×10^{-7} watts/m² and 3.3×10^{-8} tesla
 - 3. 0.265 watts/m² and 10 tesla
 - 4. $0.265 \text{ watts/m}^2 \text{ and } 3.3 \times 10^{-8} \text{ tesla}$
- 31. मार्ने कि yz-तल परावैध्युतांक $\epsilon_{\rm left}$ तथा $\epsilon_{\rm right}$ के दो माध्यमों के बीच का एक आवेशहीन सीमा की संरचना करता है जहां $\epsilon_{\rm left}$: $\epsilon_{\rm right}=1:2$ है। यदि बायें तरफ एकसमान विध्युत क्षेत्र है $\vec{E}_{\rm left}=c(\hat{\imath}+\hat{\jmath}+\hat{k})$ (जहां c अचर है). तो दायें तरफ विध्युत क्षेत्र $\vec{E}_{\rm right}$ है:
 - 1. $c(2\hat{\imath} + \hat{\jmath} + \hat{k})$
 - $2. \quad c\big(\hat{\imath}+2\hat{\jmath}+2\hat{k}\big)$
 - 3. $c\left(\frac{1}{2}\hat{i}+\hat{j}+\hat{k}\right)$
 - 4. $c\left(\hat{\imath} + \frac{1}{2}\hat{\jmath} + \frac{1}{2}\hat{k}\right)$
- 31. Suppose the yz-plane forms a chargeless boundary between two media of permittivities $\epsilon_{\rm left}$ and $\epsilon_{\rm right}$ where $\epsilon_{\rm left}$: $\epsilon_{\rm right}=1:2$. If the uniform electric field on the left is $\vec{E}_{\rm left}=c\left(\hat{\imath}+\hat{\jmath}+\hat{k}\right)$ (where c is a constant), then the electric field on the right $\vec{E}_{\rm right}$ is

1.
$$c(2\hat{\imath} + \hat{\jmath} + \hat{k})$$

- $2. \quad c(\hat{\imath}+2\hat{\jmath}+2\hat{k})$
- 3. $c\left(\frac{1}{2}\hat{\iota}+\hat{\jmath}+\hat{k}\right)$
- 4. $c\left(\hat{\imath} + \frac{1}{2}\hat{\jmath} + \frac{1}{2}\hat{k}\right)$
- 32. धन z-दिशा में 1 tesla चुम्बकीय क्षेत्र में xy-तल पर गति 300 m/s के साथ एक प्रोटॉन एक वृत्तीय कक्षा में चलता है। जब धन y-दिशा में
 - 1 V/m का एक विध्युत क्षेत्र लागू किया जाता
 - है, वृत्तीय कक्षा का केन्द्र
 - 1. अचल रहता है
 - 2. ऋण x-दिशा में 1 m/s गति से चलता है
 - 3. धन z-दिशा में 1 m/s गति से चलता है
 - 4. धन x-दिशा में 1 m/s गति से चलता है
- 32. A proton moves with a speed of 300 m/s in a circular orbit in the xy-plane in a magnetic field 1 tesla along the positive z-direction. When an electric field of 1 V/m is applied along the positive y-direction, the centre of the circular orbit
 - 1. remains stationary
 - moves at 1 m/s along the negative xdirection
 - moves at 1 m/s along the positive zdirection
 - moves at 1 m/s along the positive xdirection
- 33. विध्युत स्थैतिक विभव V तथा सदिश विभव \vec{A} के निम्न रूपांतरणों $(V, \vec{A}) \rightarrow (V', \vec{A}')$ में कौन-सा प्रमापी रूपांतरण है?
 - 1. $(V' = V + ax, \vec{A}' = \vec{A} + at \hat{k})$
 - 2. $(V' = V + ax, \vec{A}' = \vec{A} at \hat{k})$
 - 3. $(V' = V + ax, \vec{A}' = \vec{A} + at \hat{\imath})$
 - 4. $(V' = V + ax, \vec{A}' = \vec{A} at \hat{\imath})$
- 33. Which of the following transformations $(V, \vec{A}) \rightarrow (V', \vec{A}')$ of the electrostatic potential V and the vector potential \vec{A} is a gauge transformation?
 - 1. $(V' = V + ax, \vec{A}' = \vec{A} + at \hat{k})$
 - 2. $(V' = V + ax, \vec{A}' = \vec{A} at \hat{k})$
 - 3. $(V' = V + ax, \vec{A}' = \vec{A} + at \hat{\iota})$
 - 4. $(V' = V + ax, \vec{A}' = \vec{A} at \hat{\imath})$

34. पार्श्व L, L तथा L/2 युक्त एक त्रिविम आयतीय बक्से में स्थित एक कण के लिए प्रथम उत्तेजित अवस्था ऊर्जा E_1 तथा आध्य अवस्था ऊर्जा E_0 का अन्पात है:

2:1

3. 4:1 4. 4:3

34. The ratio of the energy of the first excited state E_1 , to that of the ground state E_0 , of a particle in a three-dimensional rectangular box of sides L, L and L/2, is

1. 3:2

3. 4:1

4. 4:3

35. निर्देशांक निरूपण में एक विमी कण के तरंगफलन को $\psi(x)$ से तथा संवेग निरूपण में $\phi(p) = \int \psi(x)e^{-ipx/\hbar}dx$ से निर्दिष्ट किया जाता है। यदि $\psi(x)$ पर संकारक \hat{T} की क्रिया $\hat{T}\psi(x)=\psi(x+a)$ से दिया जाता है. जहां aअचर है, तो $T\phi(p)$ इससे दिया जाता है

1. $-\frac{1}{h}ap\phi(p)$

- 2. $e^{-iap/h}\phi(p)$
- 3. $e^{+iap/h}\phi(p)$
- 4. $\left(1+\frac{i}{b}ap\right)\phi(p)$
- 35. The wavefunction of a particle in onedimension is denoted by $\psi(x)$ in the coordinate representation and by $\phi(p) =$ $\int \psi(x)e^{-ipx/\hbar}dx$ in the momentum representation. If the action of an operator \hat{T} on $\psi(x)$ is given by $\hat{T}\psi(x) = \psi(x + y)$ a), where a is a constant, then $\hat{T}\phi(p)$ is given by

1. $-\frac{i}{\hbar}ap\phi(p)$

- 2. $e^{-iap/\hbar}\phi(p)$
- 3. $e^{+iap/\hbar}\phi(p)$
- 4. $\left(1+\frac{i}{\hbar}ap\right)\phi(p)$
- 36. यदि कोणीय संवेग संकारक \vec{L} के घटक L_i हैं तो संकारक $\sum_{i=1,2,3}\left[\left[\widetilde{L},\,L_{i}\right],\,L_{i}\right]$ इस समान :3

1. \vec{L}

 $2. \quad 2\vec{L}$

 $3. \quad 3\vec{L}$

36. If L_i are the components of the angular momentum operator \vec{L} , then the operator $\sum_{i=1,2,3} |\vec{L}, L_i|$, equals

1. \vec{L}

 $3. \quad 3\vec{L}$

37. एक विम में एक कण विभव $V = \frac{1}{2}k(t)x^2$ पर चलता हैं, जहां k(t) एक समय-निर्भर प्राचल है। तो $\frac{d}{dt}\langle V \rangle$, विभव ऊर्जा के प्रत्याशित मान $\langle V \rangle$ की परिवर्तन दर है:

1. $\frac{1}{2}\frac{dk}{dt}\langle x^2\rangle + \frac{k}{2m}\langle xp + px\rangle$

- 2. $\frac{1}{2} \frac{dk}{dt} \langle x^2 \rangle + \frac{1}{2m} \langle p^2 \rangle$
- 3. $\frac{k}{2m}\langle xp + px \rangle$ 4. $\frac{1}{2}\frac{dk}{dt}\langle x^2 \rangle$
- 37. A particle moves in one dimension in the potential $V = \frac{1}{2}k(t)x^2$, where k(t) is a time dependent parameter. Then $\frac{d}{dt}\langle V \rangle$, the rate of change of the expectation value $\langle V \rangle$ of the potential energy, is

1. $\frac{1}{2}\frac{dk}{dt}\langle x^2\rangle + \frac{k}{2m}\langle xp + px\rangle$

- 2. $\frac{1}{2} \frac{dk}{dt} \langle x^2 \rangle + \frac{1}{2m} \langle p^2 \rangle$
- 3. $\frac{k}{2m}\langle xp + px \rangle$ 4. $\frac{1}{2}\frac{dk}{dt}\langle x^2 \rangle$
- 38. N विभेध्य कणों के एक तंत्र में, जिसमें हर कण ऊर्जा अवस्थाओं 0 तथा ह दोनों में से एक में हो सकता है। यदि कुल ऊर्जा $n\epsilon$ है जहां n एक पूर्णांक है तो तंत्र का एंट्रापी इसके अन्पात में है:

1. N ln n

3. $\ln\left(\frac{N!}{n!}\right)$

2. $n \ln N$ 4. $\ln \left(\frac{N!}{n!(N-n)!} \right)$

38, A system of N distinguishable particles, each of which can be in one of the two energy levels 0 and ϵ , has a total energy $n\epsilon$, where n is an integer. The entropy of the system is proportional to

1. N ln n

3. $\ln\left(\frac{N!}{n!}\right)$

2. $n \ln N$ 4. $\ln \left(\frac{N!}{n!(N-n)!} \right)$

39. द्रव्यमान m वाले N अन्योन्यक्रियाहीन चिरप्रतिष्ठित कणों के एक तंत्र को रूप $V(r) = \alpha(x^2 + y^2)$ के एक द्विविमी हॉर्मानिक विभवाधीन किया जाता है, जहां α एक धन अचर है। ताप T पर तंत्र का विहित विभाजन फलन है $\left(\beta = \frac{1}{k_B T}\right)$:

1.
$$\left[\left(\frac{\alpha}{2m} \right)^2 \frac{\pi}{\beta} \right]^N$$
3.
$$\left(\frac{\alpha \pi}{2m\beta} \right)^N$$

3.
$$\left(\frac{\alpha \pi}{2m\beta}\right)^N$$

39. A system of N non-interacting classical particles, each of mass m is in a twodimensional harmonic potential of the form $V(r) = \alpha(x^2 + y^2)$ where α is a positive constant. The canonical partition function of the system at temperature T is $\left(\beta = \frac{1}{\nu_n \tau}\right)$:

1.
$$\left[\left(\frac{\alpha}{2m} \right)^2 \frac{\pi}{\beta} \right]^N$$
3. $\left(\frac{\alpha \pi}{2m\beta} \right)^N$

3.
$$\left(\frac{\alpha\pi}{2m\beta}\right)^N$$

40. एक द्वि-अवस्था तंत्र में एक कण की अवस्था । से अवस्था 2 में संक्रमण की गति है t_{12} . तथा अवस्था 2 से अवस्था । में संक्रमण की गति t_{21} है। स्थायी दशा में, कण को अवस्था । में पाने की प्रायिकता है:

1.
$$\frac{t_{21}}{t_{12}+t_{21}}$$

$$3. \quad \frac{t_{12}t_{21}}{t_{12}+t_{21}}$$

40. In a two-state system, the transition rate of a particle from state 1 to state 2 is t_{12} , and the transition rate from state 2 to state 1 is t21. In the steady state, the probability of finding the particle in state 1 is

1.
$$\frac{t_{21}}{t_{12}+t_{21}}$$

$$3. \quad \frac{t_{12}t_{21}}{t_{12}+t_{21}}$$

41. किसी तरल के द्रव और वाष्प की साम्यावस्था के लिये प्रतिबंध, सन्निकटित समीकरण $\frac{dP}{dT} pprox rac{Q_l}{T v_{
m vap}}$ (क्लासियस्-क्लैपेरॉन समीकरण) से दिया जाता है, जहां v_{vap} वाष्प अवस्था में प्रति

कण का आयतन है, तथा Q₁ गुप्त ऊर्जा जो अचर माना जा सकता है। यदि वाष्प आदर्शी गैस विधि का अनुकरण करता है, तो निम्न चित्रों में कौन-सा सही है?

41. The condition for the liquid and vapour phases of a fluid to be in equilibrium is given by the approximate equation $\frac{dP}{dT} \approx \frac{Q_l}{Tv_{\text{vap}}}$ (Clausius-Clayperon equation), where v_{vap} is the volume per particle in the vapour phase, and Q_l is the latent heat, which may be taken to be a constant. If the vapour obeys ideal gas law, which of the following plots is correct?

42. निम्न चित्रों (a) तथा (b) में दर्शाये गये परिपर्थों पर विचारें:

यदि चित्रों (a) तथा (b) में ट्रांसिस्टरों की धारालिब्ध (β_{dc}) क्रमशः 100 तथा 10 हैं, तो वे

- क्रमशः सक्रिय एवं संतृप्त क्षेत्र पर काम करते हैं
- क्रमशः संतृप्त एवं सिक्रिय क्षेत्र पर काम करते हैं
- 3. दोनों संतृप्त क्षेत्र में काम करते हैं
- 4. दोनों सक्रिय क्षेत्र में काम करते हैं
- **42.** Consider the circuits shown in Figures (a) and (b) below.

If the transistors in Figures (a) and (b) have current gain (β_{dc}) of 100 and 10 respectively, then they operate in the

- active region and saturation region respectively
- saturation region and active region respectively
- 3. saturation region in both cases
- 4. active region in both cases

43. द्रव की श्यानता η , प्वाजइ फार्मुला $\eta = \frac{\pi P a^4}{8 l V}$ से दी जाती है। मानें कि l तथा V अत्यंत यथार्थतः मापे जा सकते हैं, परंतु P की वर्ग माध्य मूल त्रुटि l% है तथा त्रिज्या a की एक स्वतंत्र वर्ग माध्य मूल त्रुटि l% है। श्यानता की वर्ग माध्य मूल त्रुटि इसके निकटतम है:

1. 2%

2. 4%

3. 12 %

4. 13 %

43. The viscosity η of a liquid is given by Poiseuille's formula $\eta = \frac{\pi P a^4}{8lV}$. Assume that l and V can be measured very accurately, but the pressure P has an rms error of 1% and the radius a has an independent rms error of 3%. The rms error of the viscosity is closest to

1. 2%

2. 4%

3. 12 %

4. 13 %

44. निम्न परिपथों में से कौन-सा एक नियंत्रित व्युत्क्रमणी जैसे काम करता है?

1. Correct Do o/p

2.

3.

4.

44. Which of the following circuits behaves as a controlled inverter?

1. Up of

45. ताप T में रहते एक नैज-अर्धचालक के लिए इलेक्ट्रोंनों n तथा विवरों p की सांद्रताओं को $n=p=AT^{3/2}\exp\left(-\frac{E_g}{2k_BT}\right)$ द्वारा अभिव्यक्त किया जा सकता है, जहां E_g बैंड-गैप तथा A अचर हैं। यदि दोनों प्रकार के वाहकों की गतिशीलतायें $T^{-3/2}$ के अनुपात में हैं, तो चालकता का लॉग, T^{-1} का एक रैखिक फलन है, इस प्रवणता के साथ:

- 1. $E_g/(2k_B)$
- 2. E_g/k_B
- 3. $-E_g/(2k_B)$
- 4. $-E_g/k_B$

45. The concentration of electrons, n, and holes, p, for an intrinsic semiconductor at a temperature T can be expressed as $n = p = AT^{3/2} \exp\left(-\frac{E_g}{2k_BT}\right)$, where E_g is the band gap and A is a constant. If the mobility of both types of carriers is proportional to $T^{-3/2}$, then the log of the conductivity is a linear function of T^{-1} , with slope

- 1. $E_g/(2k_B)$
- 2. E_g/k_B
- $3. -E_g/(2k_B)$
- 4. $-E_g/k_B$

भाग/PART-'C'

46. तीन वास्तविक चरों a. b तथा c में से हर एक अंतराल [0, 1] में एक एकसमान प्रायिकता बंटन से याद्दिछकत: चुने गये हैं। a+b>2c होने की प्रायिकता है:

- 1. $\frac{3}{4}$ 2. $\frac{2}{3}$ 3. $\frac{1}{2}$ 4. $\frac{1}{4}$
- 46. Three real variables a, b and c are each randomly chosen from a uniform probability distribution in the interval [0, 1]. The probability that a + b > 2c is
 - 1. $\frac{3}{4}$

2. $\frac{2}{3}$

3. $\frac{1}{2}$

4. $\frac{1}{4}$

47. द्विकोटि प्रदिश $x_i x_j$. जहां x_i त्रिविम में स्थिति-सदिश के कार्तीय निर्देशांक हैं, के 6 स्वतंत्र तत्व हैं। घूर्णन के दौरान, ये 6 तत्व, अलघुकरणीय समुच्चयों में अपघटित होते हैं (अर्थात्, हर समुच्चय के तत्व, उसी समुच्चय के तत्वों के रैखिक संयोजनों में ही रूपांतरित होते हैं) जिसमें

- 1. 4 तथा 2 तत्व होते हैं
- 2. 5 तथा। तत्व होते हैं
- 3, 2 तथा । तत्व होते हैं
- 4. 4, 1 तथा । तत्व होते हैं
- 47. The rank-2 tensor $x_i x_j$, where x_i are the Cartesian coordinates of the position vector in three dimensions, has 6 independent elements. Under rotation, these 6 elements decompose into irreducible sets (that is, the elements of each set transform only into linear combinations of elements in that set) containing
 - 1. 4 and 2 elements
 - 2. 5 and 1 elements
 - 3. 3, 2 and 1 elements
 - 4. 4, 1 and 1 elements
- 48. प्रारंभिक प्रतिबंध x=0 पर y=2 के साथ अवकल समीकरण $\frac{dy}{dx}=x^2-y$ पर विचारें। मानें कि $y_{(1)}$ तथा $y_{(1/2)}$, x=1 पर ऑयलर अग्र कलन-विधि से, पग आमाप क्रमशः। तथा $\frac{1}{2}$ के साथ पाये गये हल हैं। $(y_{(1)}-y_{(1/2)})/y_{(1/2)}$ का मान है
 - 1. -1/2
- 2. -1

3. 1/2

4. 1

48. Consider the differential equation $\frac{dy}{dx} = x^2 - y$ with the initial condition y = 2 at x = 0. Let $y_{(1)}$ and $y_{(1/2)}$ be the solutions at x = 1 obtained using Euler's forward algorithm with step size 1 and $\frac{1}{2}$ respectively.

The value of $(y_{(1)} - y_{(1/2)})/y_{(1/2)}$ is

- 1. -1/2
- 2. –

3. 1/2

- 4.
- 49. मानें कि f(x,t) एक-विम तरंग समीकरण $\frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x^2}$ का एक हल है। यदि t = 0 पर सभी x के लिए $f(x,0) = e^{-x^2}$ तथा $\frac{\partial f}{\partial t}(x,0) = 0$ हैं, तो भविष्य के सभी समय t > 0 के लिए f(x,t) का वर्णन इससे होता है:
 - 1. $e^{-(x^2-v^2t^2)}$
 - 2. $e^{-(x-vt)^2}$
 - 3. $\frac{1}{4}e^{-(x-vt)^2} + \frac{3}{4}e^{-(x+vt)^2}$
 - 4. $\frac{1}{2} \left[e^{-(x-vt)^2} + e^{-(x+vt)^2} \right]$
- **49**. Let f(x,t) be a solution of the wave equation $\frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x^2}$ in 1-dimension. If at t = 0, $f(x,0) = e^{-x^2}$ and $\frac{\partial f}{\partial t}(x,0) = 0$ for all x, then f(x,t) for all future times t > 0 is described by
 - 1. $e^{-(x^2-v^2t^2)}$
 - 2. $e^{-(x-vt)^2}$
 - 3. $\frac{1}{4}e^{-(x-vt)^2} + \frac{3}{4}e^{-(x+vt)^2}$
 - 4. $\frac{1}{2} \left[e^{-(x-vt)^2} + e^{-(x+vt)^2} \right]$
- 50. मानें कि q तथा p किसी गतिक तंत्र के विहित निर्देशांक तथा संवेग हैं। निम्न रूपांतरणों में से कौन-सा विहित हैं?
 - Λ: $Q_1 = \frac{1}{\sqrt{2}}q^2$ तथा $P_1 = \frac{1}{\sqrt{2}}p^2$
 - B: $Q_2 = \frac{1}{\sqrt{2}}(p+q)$ নথা $P_2 = \frac{1}{\sqrt{2}}(p-q)$
 - 1. न तो A और न B
 - 2. A तथा B दोनों
 - 3. **केवल** A
 - 4. केवल B

- 50. Let q and p be the canonical coordinate and momentum of a dynamical system. Which of the following transformations is canonical?
 - A: $Q_1 = \frac{1}{\sqrt{2}}q^2$ and $P_1 = \frac{1}{\sqrt{2}}p^2$
 - B: $Q_2 = \frac{1}{\sqrt{2}}(p+q)$ and $P_2 = \frac{1}{\sqrt{2}}(p-q)$
 - 1. neither A nor B
 - 2. both A and B
 - 3. only A
 - 4. only B
- 51. किसी लक्ष्य से प्रकीर्णन के लिए अवकल परिक्षेत्र $\frac{d\sigma}{d\Omega}(\theta, \varphi) = a^2 + b^2 \cos^2 \theta$ से दिया जाता है। यदि अगमनी कणों का फ़लक्स N है तो प्रति एकक समय पर प्रकीर्णत कणों की संख्या है:
 - 1. $\frac{4\pi}{3}N(a^2+b^2)$
 - 2. $4\pi N\left(a^2 + \frac{1}{6}b^2\right)$
 - 3. $4\pi N \left(\frac{1}{2}a^2 + \frac{1}{3}b^2\right)$
 - 4. $4\pi N\left(a^2 + \frac{1}{3}b^2\right)$
- 51. The differential cross-section for scattering by a target is given by $\frac{d\sigma}{d\Omega}(\theta, \varphi) = a^2 + b^2 \cos^2 \theta.$

If *N* is the flux of the incoming particles, the number of particles scattered per unit time is

- 1. $\frac{4\pi}{3}N(a^2+b^2)$
- 2. $4\pi N\left(a^2 + \frac{1}{6}b^2\right)$
- 3. $4\pi N\left(\frac{1}{2}a^2 + \frac{1}{3}b^2\right)$
- 4. $4\pi N\left(a^2 + \frac{1}{3}b^2\right)$
- 52. एक विमी विभव $V(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$ में गितशील किसी कण की अवस्था समष्टि प्रपर्थों (अर्थात् अचर ऊर्जा के कांट्र) का विधिवत प्रतिनिधित्व निम्न चित्रों में कौन-सा करता है?

2.

3.

4.

52. Which of the following figures is a schematic representation of the phase space trajectories (i.e., contours of constant energy) of a particle moving in a one-dimensional potential

$$V(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4?$$

1.

2.

3.

4.

- 53. अनुप्रस्थ परिमाण 2 m × 1 m युक्त एक आयतीय तरंग पथक कोणीय बारंबारता ω = 10° rad/s से चालित है। इस तरंग पथक में कौन-से अनुप्रस्थ विध्युत मोझें (ΤΕ) का प्रसारण होगा?
 - 1. TE10, TE01 3 TE20
 - 2. TE10, TE11 3計र TE20

 - 4. TE₀₁, TE₁₀ 3計र TE₂₂
- 53. Consider a rectangular wave guide with transverse dimensions 2 m \times 1 m driven with an angular frequency $\omega = 10^9$ rad/s. Which transverse electric (TE) modes will propagate in this wave guide?
 - 1. TE₁₀, TE₀₁ and TE₂₀
 - 2. TE₁₀, TE₁₁ and TE₂₀
 - 3. TE_{01} , TE_{10} and TE_{11}
 - 4. TE₀₁, TE₁₀ and TE₂₂
- 54. दैर्घ्य L के एक छड़ पर कुल आवेश Q एकसमानतः बंटित है। यदि इसका प्रेक्षण इसके समांतर गति v से गतिशील एक फ्रेम से किया जाता है, तो (गतिशील प्रेक्षक द्वारा मापा गया) प्रति एकक दैर्घ्य का आवेश है:
 - $1. \quad \frac{Q}{L} \left(1 \frac{v^2}{c^2} \right)$
- $2. \quad \frac{Q}{L} \sqrt{1 \frac{v^2}{c^2}}$
- $3. \quad \frac{Q}{L\sqrt{1-\frac{v^2}{c^2}}}$
- $4. \quad \frac{Q}{L\left(1-\frac{v^2}{c^2}\right)}$

54. A rod of length L carries a total charge Q distributed uniformly. If this is observed in a frame moving with a speed v along the rod, the charge per unit length (as measured by the moving observer) is

1.
$$\frac{Q}{L} \left(1 - \frac{v^2}{c^2} \right)$$
 2. $\frac{Q}{L} \sqrt{1 - \frac{v^2}{c^2}}$ 3. $\frac{Q}{L \sqrt{1 - \frac{v^2}{c^2}}}$ 4. $\frac{Q}{L \left(1 - \frac{v^2}{c^2} \right)}$

55. आवेश-मुक्त प्रदेश z > 0 में विध्युतीय तथा चुंबकीय क्षेत्र

$$\begin{split} \vec{E}(\vec{r},t) &= \quad E_0 e^{-k_1 z} \cos(k_2 x - \omega t) \hat{\jmath} \\ \vec{B}(\vec{r},t) &= \quad \frac{E_0}{\omega} e^{-k_1 z} [k_1 \sin(k_2 x - \omega t) \hat{\imath} \\ &+ k_2 \cos(k_2 x - \omega t) \hat{k}] \end{split}$$

से दिये जाते हैं, जहां ω, k1 तथा k2 धन अचर हैं। x-दिशा में माध्य ऊर्जा प्रवाह है:

- 1. $\frac{E_0^2 k_2}{2\mu_0 \omega} e^{-2k_1 z}$
- 2. $\frac{E_0^2 k_2}{\mu_0 \omega} e^{-2k_1 z}$ 3. $\frac{E_0^2 k_1}{2\mu_0 \omega} e^{-2k_1 z}$

55. The electric and magnetic fields in the charge free region z > 0 are given by

$$\begin{split} \vec{E}(\vec{r},t) &= & E_0 e^{-k_1 z} \cos(k_2 x - \omega t) \hat{\jmath} \\ \vec{B}(\vec{r},t) &= & \frac{E_0}{\omega} e^{-k_1 z} [k_1 \sin(k_2 x - \omega t) \hat{\imath} \\ &+ k_2 \cos(k_2 x - \omega t) \hat{k}] \end{split}$$

where ω , k_1 and k_2 are positive constants. The average energy flow in the x-direction

- 1. $\frac{E_0^2 k_2}{2\mu_0 \omega} e^{-2k_1 z}$
- 2. $\frac{E_0^2 k_2}{\mu_0 \omega} e^{-2k_1 z}$ 3. $\frac{E_0^2 k_1}{2\mu_0 \omega} e^{-2k_1 z}$
- 4. $\frac{1}{2}c\epsilon_0 E_0^2 e^{-2k_1 z}$

😜 56. त्रिज्या 1 cm तथा प्रतिरोध 1 Ω के एक वृत्ताकार तार पाश xy-तल में पडा है। धन z-दिशा में एक एकसमान चुंबकीय क्षेत्र जिसका मान 1 s में क्षेत्र बल 10 tesla से 9 tesla तक कम किया जाता है। तार की किसी भी बिंद् से पारित आवेश है लगभग

- 1. 3.1×10^{-4} coulomb
- 2. 3.4×10^{-4} coulomb
- 3. 4.2×10^{-4} coulomb
- 4. 5.2×10^{-4} coulomb
- 56. A uniform magnetic field in the positive zdirection passes through a circular wire loop of radius 1 cm and resistance 1 Ω lying in the xy-plane. The field strength is reduced from 10 tesla to 9 tesla in 1 s. The charge transferred across any point in the wire is approximately
 - 1. 3.1×10^{-4} coulomb
 - 2. 3.4×10^{-4} coulomb
 - 3. 4.2×10^{-4} coulomb
 - 4. 5.2×10^{-4} coulomb
- 57. मुक्त इलेक्ट्रोन के लिए डिरैक हैमिल्टनी $H = c\vec{\alpha} \cdot \vec{p} + \beta mc^2$ चिरप्रतिष्ठित $E^2 = p^2c^2 + m^2c^4$ से संगत है। एक विध्युत चुंबकीय विभव (ϕ, \vec{A}) में आवेश q के कण के लिए चिरप्रतिष्ठित ऊर्जा-संवेग संबंध है $(E - q\phi)^2 = c^2 (\vec{p} - \frac{q}{c}\vec{A})^2 + m^2 c^4$ । अतः एक विध्युत चुंबकीय क्षेत्र में एक इलेक्ट्रोन के लिए डिरैक हैमिल्टनी है:
 - 1. $c\vec{\alpha} \cdot \vec{p} + \frac{e}{c}\vec{A} \cdot \vec{A} + \beta mc^2 e\phi$
 - 2. $c\vec{\alpha} \cdot (\vec{p} + \frac{e}{\vec{A}}) + \beta mc^2 + e\phi$
 - 3. $c(\vec{\alpha} \cdot \vec{p} + e\phi + \frac{e}{c}|\vec{A}|) + \beta mc^2$
 - 4. $c\vec{\alpha} \cdot (\vec{p} + \frac{e}{c}\vec{A}) + \beta mc^2 e\phi$
- 57. The Dirac Hamiltonian $H = c\vec{\alpha} \cdot \vec{p} +$ βmc2 for a free electron corresponds to the classical relation $E^2 = p^2c^2 + m^2c^4$. The classical energy-momentum relation of a particle of charge q in a potential (ϕ, A) electromagnetic $(E - q\phi)^2 = c^2 (\vec{p} - \frac{q}{c}\vec{A})^2 + m^2 c^4.$ Therefore, the Dirac Hamiltonian for an electron in an electromagnetic field is
 - 1. $c\vec{\alpha} \cdot \vec{p} + \frac{e}{c}\vec{A} \cdot \vec{A} + \beta mc^2 e\phi$
 - 2. $c\vec{\alpha} \cdot (\vec{p} + \frac{e}{c}\vec{A}) + \beta mc^2 + e\phi$
 - 3. $c(\vec{\alpha} \cdot \vec{p} + e\phi + \frac{e}{c}|\vec{A}|) + \beta mc^2$
 - 4. $c\vec{\alpha} \cdot (\vec{p} + \frac{e}{c}\vec{A}) + \beta mc^2 e\phi$

- 58. द्रव्यमान m का एक कण विभव $V=rac{1}{2}m\omega^2 x^2$ में है, जहां ω एक अचर है। मानें कि $\hat{a}=\sqrt{rac{m\omega}{2\hbar}} \Big(\hat{x}+rac{i\hat{p}}{m\omega}\Big)$ । हाईजैनबर्ग चित्र में $rac{d\hat{a}}{dt}$ इससे दिया जाता है:
 - 1. ωâ

2. $-i\omega\hat{a}$

3. ωâ†

4. *iωâ*†

- 58. A particle of mass m is in a potential $V = \frac{1}{2}m\omega^2 x^2$, where ω is a constant. Let
 - $\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i\hat{p}}{m\omega} \right)$. In the Heisenberg picture $\frac{d\hat{a}}{dt}$ is given by
 - 1. ωâ 3. $\omega \hat{a}^{\dagger}$

2. $-i\omega\hat{a}$ 4. $i\omega\hat{a}^{\dagger}$

59. एक प्रतिकर्षी गोलीय विभव

 $V(r) = egin{cases} V_0 & ext{for } r < a \\ 0 & ext{for } r \geq a \end{cases}$ जहां V_0 तथा a धन अचर हैं, द्वारा ऊर्जा E के एक कण का प्रकीर्णन होता है। अल्प ऊर्जा सीमांत में, कुल प्रकीर्णन परिक्षेत्र है $\sigma = 4\pi a^2 \left(\frac{1}{ka} \tanh ka - 1\right)^2$, जहां $k^2 =$ $\frac{2m}{\hbar^2}(V_0-E)>0$ । सीमांत $V_0\to\infty$ में σ , तथा त्रिज्या a के एक गोल से चिरप्रतिष्ठित प्रकीर्णन परिक्षेत्र का अनुपात है:

1. 4

4. 1/2

59. A particle of energy E scatters off a repulsive spherical potential

$$V(r) = \begin{cases} V_0 \text{ for } r < a \\ 0 \text{ for } r \ge a \end{cases}$$

where V_0 and α are positive constants. In the low energy limit, the total scattering crosssection is $\sigma = 4\pi a^2 \left(\frac{1}{ka} \tanh ka - 1\right)^2$, where $k^2 = \frac{2m}{\hbar^2} (V_0 - E) > 0$. In the limit $V_0 \rightarrow \infty$ the ratio of σ to the classical scattering cross-section off a sphere of radius a is

1. 4

3. 1

1/2

60. किसी द्विविम वास्तविक सदिश समष्टि के

 $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ तथा $\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ ये दो भिन्न लांबिक आधार सदिश दिये जाते हैं। इन आधारों में किसी रैखिक संकारक का आव्यूह प्रतिनिधित्व एक ऐकिक रूपांतरण द्वारा संबंधित हैं। ऐकिक आव्यूह का रूप इस प्रकार च्ना जा सकता है:

1. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ 3. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

60. Two different sets of orthogonal basis

 $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \ \text{ and } \ \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ are given for a two-dimensional real vector space. The matrix representation of a linear operator \hat{A} in these bases are related by a unitary transformation. The unitary matrix may be chosen to be

1. $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

3. $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

4. $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

61. समय t = 0 पर, एक विम में अधिक संख्या N के ब्राउनी कण उद्गम से विसरण प्रारंभ करते हैं। विसरण गुणांक है D । दूरी L पर स्थित एक बिंदु से प्रति एकक समय पारित कणों की संख्या L तथा समय t पर इस प्रकार निर्भर है:

$$\frac{N}{\sqrt{4\pi Dt}} e^{-L^2/(4Dt)}$$

- $\frac{NL}{\sqrt{4\pi Dt}}\,e^{-4Dt/L^2}$ 2.
- 4. Ne-4Dt/L2
- 61. A large number N of Brownian particles in one dimension start their diffusive motion from the origin at time t = 0. The diffusion coefficient is D. The number of particles crossing a point at a distance L from the origin, per unit time, depends on L and time t as

1. $\frac{N}{\sqrt{4\pi Dt}}e^{-L^2/(4Dt)}$ 2. $\frac{NL}{\sqrt{4\pi Dt}}e^{-4Dt/L^2}$

4. Ne^{-4Dt/L^2}

62. तीन आईसिंग प्रचक्रणों एक त्रिकोण के शीर्षों में स्थित हैं। हर दो प्रचक्रणों के बीच बल] की लोहचुंबकीय आईसिंग अन्योन्यक्रिया लाग् हैं। ताप T पर तंत्र का विभाजन फलन इससे दिया जाता है $(\beta = \frac{1}{k_B T})$:

1. $2e^{3\beta J} + 6e^{-\beta J}$ 2. $2e^{-3\beta J} + 6e^{\beta J}$

3. $2e^{3\beta J} + 6e^{-3\beta J} + 3e^{\beta J} + 3e^{-\beta J}$

4. $(2 \cosh \beta J)^3$

62. Consider three Ising spins at the vertices of a triangle which interact with each other with a ferromagnetic Ising interaction of strength J. The partition function of the system at temperature T is given by

1. $2e^{3\beta J} + 6e^{-\beta J}$

2. $2e^{-3\beta J} + 6e^{\beta J}$

3. $2e^{3\beta J} + 6e^{-3\beta J} + 3e^{\beta J} + 3e^{-\beta J}$

4. $(2 \cosh \beta I)^3$

63. d-विम में एक आदर्शी बोस गैस परिक्षेपण संबंध $\epsilon(\vec{k}) = Ak^s$, जहां A तथा s अचर हैं, का अनुकरण करता है। बोस-आईन्सटाइन संघनन घटने के लिए उत्तेजित अवस्थाओं का निवेशन

$$N_e = c \int_{0}^{\infty} \frac{e^{(d-s)/s}}{e^{\beta(\epsilon-\mu)} - 1} d\epsilon$$

जहां c एक अचर है, $\mu=0$ के लिए भी परिमित रहना चाहिये। यह हो सकता है जब

 $1. \quad \frac{d}{s} < \frac{1}{4}$ $3. \quad \frac{d}{s} > 1$

2. $\frac{1}{4} < \frac{d}{s} < \frac{1}{2}$ 4. $\frac{1}{2} < \frac{d}{s} < 1$

63. An ideal Bose gas in d-dimensions obeys the dispersion relation $\epsilon(\vec{k}) = Ak^s$, where A and s are constants. For Bose-Einstein condensation to occur, the occupancy of excited states

$$N_e = c \int\limits_0^\infty \frac{\epsilon^{(d-s)/s}}{e^{\beta(\epsilon-\mu)}-1} d\epsilon$$

where c is a constant, should remain finite even for $\mu = 0$. This can happen if

2. $\frac{1}{4} < \frac{d}{s} < \frac{1}{2}$ 4. $\frac{1}{2} < \frac{d}{s} < 1$

64. निम्न चित्र में दर्शीये गये परिपथ एवं निवेश ज्यावक्रीय तरंगरूप के लिए सही निर्गम तरंगरूप क्या है?

(सभी चित्रों में समय आमाप समान हैं।)

64. For the circuit and the input sinusoidal waveform shown in the figures below, which is the correct waveform at the output?

(The time scales in all the plots are the same.)

65. निम्न दिये गये तर्क परिपथ के लिए, दशमलव गणन अनुक्रम एवं ABCD से संगत परिपथ का माड्यूलस हैं:

- 1. $8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 9 \rightarrow 5 \pmod{6}$
- 2. $8 \rightarrow 4 \rightarrow 2 \rightarrow 9 \rightarrow 5 \rightarrow 3 \pmod{6}$
- 3. $2 \rightarrow 5 \rightarrow 9 \rightarrow 1 \rightarrow 3 \pmod{5}$
- 4. $8 \rightarrow 5 \rightarrow 1 \rightarrow 3 \rightarrow 7 \pmod{5}$
- 65. For the logic circuit given below, the decimal count sequence and the modulus of the circuit corresponding to A B C D are

- 1. $8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \stackrel{*}{\rightarrow} 9 \rightarrow 5 \pmod{6}$
- 2. $8 \rightarrow 4 \rightarrow 2 \rightarrow 9 \rightarrow 5 \rightarrow 3 \pmod{6}$
- 3. $2 \rightarrow 5 \rightarrow 9 \rightarrow 1 \rightarrow 3 \pmod{5}$
- 4. $8 \rightarrow 5 \rightarrow 1 \rightarrow 3 \rightarrow 7 \pmod{5}$
- 66. निम्न दिये गय परिपथ में, 25° C पर धर्मिस्टर का प्रतिरोध $3 \text{ k}\Omega$ है। ऊष्मण पर उसका प्रतिरोध प्रति $^{\circ}$ C 150Ω कम होता है। 30° C पर परिपथ का निर्गम वोल्टेज है:

- 1. −3.75 V
- 2. -2.25 V
- 3. 2.25 V
- 4. 3.75 V
- 66. In the circuit given below, the thermistor has a resistance 3 k Ω at 25°C. Its resistance decreases by 150 Ω per °C upon heating. The output voltage of the circuit at 30°C is

- 1. −3.75 V
- 2. -2.25 V
- 3. 2.25 V
- 4. 3.75 V
- 67. ग्रैफ़ीन के एक द्विविम चादर में अल्प-ऊर्जा इलेक्ट्रोनिक उत्तेजन $E(\vec{k}) = \hbar v k$ से दिये जाते हैं, जहां v उत्तेजनों की गति है। अवस्थाओं का घनत्व इसके अनुपात में हैं।
 - 1. E

2. $E^{3/2}$

3. $E^{1/2}$

- $4. E^2$
- 67. The low-energy electronic excitations in a two-dimensional sheet of graphene is given by $E(\vec{k}) = \hbar v k$, where v is the velocity of the excitations. The density of states is proportional to
 - 1. E

2. $E^{3/2}$

- 3. $E^{1/2}$
- $4 E^2$
- 68. जालक अचर a वाले साधारण घन जालक के (111) तल से तरंगदैर्घ्य $\lambda = a$ का X-िकरण परावर्तित होता है। संगत ब्रैग कोण (रेडियन में) है:
 - 1. $\pi/6$

2. $\pi/4$

3. $\pi/3$

4. $\pi/8$

- **68.** X-ray of wavelength $\lambda = a$ is reflected from the (111) plane of a simple cubic lattice. If the lattice constant is a, the corresponding Bragg angle (in radian) is
 - 1. $\pi/6$

2. $\pi/4$

3. $\pi/3$

- 4. $\pi/8$
- 69. ताप 4 K तथा 8 K के लिए अतिचालक के क्रांतिक चुंबकीय क्षेत्र हैं क्रमश: 11 mA/m तथा 5.5 mA/m I संक्रमण ताप है लगभग
 - 1. 8.4 K
- 2. 10.6 K
- 3. 12.9 K
- 4. 15.0 K
- 69. The critical magnetic fields of a superconductor at temperatures 4 K and 8 K are 11 mA/m and 5.5 mA/m respectively. The transition temperature is approximately
 - 1. 8.4 K
- 2. 10.6 K
- 3. 12.9 K
- 4. 15.0 K
- 70. द्विपरमाणुक अणु की कंपनिक अवस्थायें ऊर्जा $E_{\nu}=\hbar\omega\left(\nu+\frac{1}{2}\right)$ तथा घूर्णनिक अवस्थायें ऊर्जा $E_{j}=Bj(j+1)$ के साथ होती हैं, जहां ν तथा j अऋण पूर्णांक हैं। उन संक्रमणों पर विचारें जिनमें प्रारंभिक एवं अंतिम अवस्थायें $\nu \leq 1$ तथा $j \leq 2$ से प्रतिबंधित हैं और चयन विधियों $\Delta \nu = \pm 1$ तथा $\Delta j = \pm 1$ के अधीन हैं। तो संक्रमण से अनुमत उच्चतम ऊर्जा है:
 - 1. $\hbar\omega 3B$
- 2. $\hbar\omega B$
- 3. $\hbar\omega + 4B$
- 4. $2\hbar\omega + B$
- 70. A diatomic molecule has vibrational states with energies $E_{\nu} = \hbar \omega \left(\nu + \frac{1}{2} \right)$ and rotational states with energies $E_{j} = Bj(j+1)$, where ν and j are non-negative integers. Consider the transitions in which both the initial and final states are restricted to $\nu \le 1$ and $j \le 2$ and subject to the selection rules $\Delta \nu = \pm 1$ and $\Delta j = \pm 1$. Then the largest allowed energy of transition is
 - 1. $\hbar\omega 3B$
- 2. $\hbar\omega B$
- 3. $\hbar\omega + 4B$
- 4. $2\hbar\omega + B$
- 71. np^2 आणिवक विन्यासों के निम्न पद प्रतीकों ${}^{1}S_0$, ${}^{3}P_0$, ${}^{3}P_1$, ${}^{3}P_2$ तथा ${}^{1}D_2$, में से कौन-सी आध्यावस्था है ?

- 1. ³P₀ 3. ³P₂
- 71. Of the following term symbols of the np^2 atomic configurations, 1So, 3Po, 3Po, 3Po, 3Po and ¹D₂, which is the ground state?
 - 1. ³P₀

3. ${}^{3}P_{2}$

4. ³P.

- 72. He-Ne लेसर Ne की दो ऊर्जा अवस्थाओं, जो 2.26 eV से भिन्न हैं, के उपयोग करता है। प्रकाशिक पंपन की स्थायी अवस्था स्थितियों में उपरी अवस्था तथा निचली अवस्थाओं में परमाणु संख्याओं का अन्पात 1/20 है। तंत्र का तुल्य ताप है लगभग: (बोल्ट्समान अचर $k_B = 8.6 \times 10^{-5} \text{ eV/K}$
 - 10¹⁰ K

2. 10⁸ K

3. 10⁶ K

4. 104 K

- 72. A He-Ne laser operates by using two energy levels of Ne separated by 2.26 eV. Under steady state conditions of optical pumping, the equivalent temperature of the system at which the ratio of the number of atoms in the upper state to that in the lower state will be 1/20, is approximately (the Boltzmann constant $k_B = 8.6 \times 10^{-5} \text{ eV/K}$
 - 1. 10¹⁰ K

2. 10⁸ K

 $3. 10^6 \, \mathrm{K}$

4. 104 K

- 73. मानें कि हम कोश माडल में नाभिक विभव को एक त्रिविम समदेशिक आवर्त दोलक से सन्निकटित करते हैं। न्यूनतम दो ऊर्जा अवस्थाओं का कोणीय संवेग क्रमश: l=0तथा l=1 हैं, निम्न दो नाभिकों में प्रोटॉनों तथा न्यूट्रॉनों की स्थायित्व (मैजिक) संख्या किनमें हैं ?
 - $1. \ \ ^4_2$ He ਰथਾ $\frac{16}{8}$ O 2. $\frac{2}{1}$ D ਰथਾ $\frac{8}{4}$ Be
 - 3. ੍ਵੇHe ਰਾਬਾ ⁸₄Be 4. ⁴₂He ਰਾਬਾ ¹²₆C
- 73. Let us approximate the nuclear potential in the shell model by a three dimensional isotropic harmonic oscillator. Since the lowest two energy levels have angular momenta l = 0 and l = 1 respectively.

which of the following two nuclei have magic numbers of protons and neutrons?

1. ${}_{2}^{4}$ He and ${}_{8}^{16}$ O 2. ${}_{1}^{2}$ D and ${}_{4}^{8}$ Be

3. ${}_{2}^{4}$ He and ${}_{4}^{8}$ Be 4. ${}_{2}^{4}$ He and ${}_{6}^{12}$ C

74. यदि चार्म क्वार्क की चार्म क्वांटम संख्या C = 1 दी जाती है, तो गेलमान-निशीजिमा फ़ार्म्ला जो विध्युत आवेश के लिए है, को क्वार्क की चार स्रुचियों के लिए किस प्रकार परिवर्तित करना होगा?

1. $I_3 + \frac{1}{2}(B - S - C)$

- 2. $I_3 + \frac{1}{2}(B S + C)$
- 3. $l_3 + \frac{1}{2}(B + S C)$
- 4. $I_3 + \frac{1}{2}(B + S + C)$
- 74. The charm quark is assigned a charm quantum number C = 1. How should the Gellmann-Nishijima formula for electric charge be modified for four flavours of quarks?
 - 1. $I_3 + \frac{1}{2}(B S C)$
 - 2. $l_3 + \frac{1}{2}(B S + C)$
 - 3. $I_3 + \frac{1}{2}(B + S C)$
 - 4. $l_3 + \frac{1}{2}(B + S + C)$
- 75. अभिक्रिया ${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{2}^{4}He + \pi^{0}$ प्रबल अन्योन्यक्रियाओं द्वारा घट नहीं सकता क्योंकि वह इसके संरक्षण का उल्लंघन करता है:
 - 1. कोणीय संवेग
 - 2. विध्युत आवेश
 - 3. बैरियान् संख्या
 - 4. आईसोस्पिन
- 75. The reaction ${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{2}^{4}He + \pi^{0}$ cannot proceed via strong interactions because it violates the conservation of
 - 1. angular momentum
 - electric charge
 - 3. baryon number
 - 4. isospin

रफ कार्य/ROUGH WORK