A presentation on

REAL-TIME DROWSINESS DETECTION WITH ALARM SYSTEM FOR HIGHWAY DRIVERS USING OPENCY, DLIB & PYTHON

Presented by

Student ID: 1702116

Session: 2017

Student ID: 1702127

Session: 2017

Student ID: 1702155

Session: 2017

Supervised by
Dr. Md. Mahabub Hossain
Professor
Dept. of ECE, HSTU

Co-supervised by **Dr. Nasrin Sultana Associate Professor Dept. of ECE, HSTU**

Purpose of the project

- > Issues that inspired building the project: Road Accidents
- **Causes behind the "Road Accident" issue:** Drowsiness
 - Drunkenness
 - Rash Driving
- ✓ Issues of previously proposed methods in solving "Road Accident" issue:
 - Can't provide real-time drowsiness detection
 - Complex algorithm
 - > CAMSHIFT
 - > PERCLOS
 - Complex data processing(DEEP LEARNING BASED)
 - > RNN
 - > CNN
 - Lack of easy optimization features for drivers
 - Light intensity-based issues

> What our proposed method offers:

• Real-time drowsiness detection with almost 100% accuracy rate

 Refined algorithm(that can be implemented in replace of previously proposed methods for reducing their complexity)

- Solutions for light intensity based issues involved in drowsiness detection using polylines
- Alarm system
- Easy optimization features for drivers
- More user friendly and less resource hungry system

>System architecture

Image capturing

Face detection & cropping the image

Morphological processes

Drowsiness detection using EAR calculation

- > Python libraries used in the project:
 - ✓ OpenCV
 - Tool for image processing and performing computer vision tasks
 - Open source library
 - Tasks like face detection, object tracking
 - ✓ DLIB
 - dlib library outputs 68 points on the face
- ➤ Mathematical concept OF EAR

$$EAR = \frac{||p2 - p6|| + ||p3 - p5||}{2||p1 - p4||}$$

Open eye will have more EAR

Closed eye will have less EAR

FLOWCHART

RESULTS

RESEARCH FINDINGS

Figure: Eye detection using polylines

COMPARISON WITH OTHER METHODS

LIMITATIONS/UPGRADATION POSSIBILITIES

- 1. Obstacles between eyes and the camera
- 2. Auto adjustment mode of the camera
- 3.Infrared camera for any lighting conditions

FUTURE WORK

Implementing the prototype in vehicles and building up a total project on "drowsiness detection system with automatic vehicle control" for optimal and effective results.

THANK YOU FOR YOUR KIND ATTENTION AND PATIENCE