Statistics for the Sciences

Simple Linear Regression Models

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Bivariate numerical data
- Linear correlation
 - Pearson linear correlation
 - Spearman's rank correlation
- Simple Linear Regression
 - ► SIR model
 - LS estimation
 - Statistical inferences
- Coefficient of Determination and ANOVA
- I ab

Bivariate numerical data

- When two variables are measured (not always but usually on a single experimental unit), the resulting data are called bivariate data (or Paired data).
- When both of the variables (X, Y) are quantitative/numerical, call the variable X the *independent variable* or *explanatory variable*, and Y the *dependent variable* or *response*.
 - A random sample is of the form

$$(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n).$$

Scatter plot can be used to check the relationship between X and Y.

Bivariate numerical data

An example

##		cwdbasal	ripdens
##	1	121	1270
##	2	41	1210
##	3	183	1800
##	4	130	1875
##	5	127	1300
##	6	134	2150
##	7	65	1330
##	8	52	964
##	9	12	961
##	10	46	1400
##	11	54	1280
##	12	97	976
##	13	1	771
##	14	4	833
##	15	1	883
##	16	4	956

Bivariate numerical data

- We visualize bivariate data with scatter plot
 - ▶ Scatter plot is used to check the relationship between *X* and *Y*.

When analyzing a scatterplot, you should look for:

- Type of Association
 - ► Straight line?
 - Curve?
 - ► No pattern at all?
- Direction of Association
 - ► Positive or negative?
- Strength of Association
 - Strong or weak?

- Assume that the two random variables X and Y exhibit a linear pattern or form. How do we measure the strength and direction of the linear pattern?
- Parameter: Denote the population **correlation coefficient** by ρ_{XY} which measures the **linear relationship** between X and Y.

- Let X and Y be two numerical random variables. Recall that $\mu_X = \sum_x x P_X(x)$ (discrete) or $= \int_{-\infty}^{\infty} x f_X(x) dx$ (continuous).
- And $\sigma_X^2 = Var(X) = E[(X \mu_X)^2] =$

$$\begin{cases} \sum_{x} (x - \mu_{X})^{2} P_{X}(x) & (\textit{discrete}) \\ \int_{-\infty}^{\infty} (x - \mu_{X})^{2} f_{X}(x) dx & (\textit{continuous}) \end{cases}$$

• **Definition.** The **covariance** of two random variables *X* and *Y* is defined by

$$\sigma_{XY}^2 = Cov(X, Y) = E\left[(X - \mu_X)(Y - \mu_Y)\right].$$

• **Definition.** The **correlation coefficient** of two random variables *X* and *Y* is defined by

$$\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}.$$

 ρ_{XY} measures the **linear relationship** between X and Y.

• Assume that the two random variables X and Y exhibit a linear pattern or form.

Suppose n paired measurements, (x_i, y_i) , i = 1, ..., n are taken on the variables X and Y (for example, the heights and armspans of n individuals).

We can summarize the location (or center) of each variable by the sample means:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

We can summarize the spread of each variable by the sample standard deviations:

$$S_x = \sqrt{S_x^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2} \text{ and } S_y = \sqrt{S_y^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2}.$$

- However, none of these summary measures says anything about the relationship between the two variables.
- One measure of the relationship between X and Y is the **Pearson** correlation which is an estimate of ρ_{XY} .
- Statistic The Pearson correlation between X and Y computed from these data is

$$r = \frac{1}{n-1} \sum_{i=1}^{n} x_i' y_i' = \frac{1}{n-1} \frac{S_{xy}}{S_x S_y},$$

where

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}), \text{ and}$$

$$x_i' = \frac{x_i - \overline{x}}{S_x}$$
 and $y_i' = \frac{y_i - \overline{y}}{S_y}$

are the standardized data.

Properties of Pearson Correlation *r*

- Correlation between X and Y is the same as the correlation between Y and X.
- $-1 \le r \le 1$. Sign of r indicates direction of the linear relationship
- If $r \approx 0$, Weak linear relationship
- If $r \approx 1$ or -1, Strong relationship; either positive or negative
- If r = 1 or 1, All points fall exactly on a straight line
- If $S_x = 0$ and/or $S_y = 0$, we define r to be 0. This is because
 - ► The formula doesn't work in this case (division of 0 by 0)
 - The standard deviation equals 0 if and only if all data values are equal, so
 - ▶ There can be no association since there is no variation.

Properties of Pearson Correlation *r*

The following figures illustrate what Pearson correlation measures.

Linear correlation - statistical inference

- The Pearson correlation coefficient, r, tells us about the strength of the linear relationship between X and Y in the sample data.
- To make inference about the population correlation coefficient ρ , we perform a hypothesis test of the significance of the correlation coefficient to decide whether the evidence in the sample data is strong enough to indicate a significant linear correlation at the population level.
- Generally, we test the null hypothesis $H_0: \rho = 0$ against a two-sided alternative $H_a: \rho \neq 0$. That is, we check if the population correlation coefficient ρ is significantly different from 0.
- To this end, we must assume that the random vector (X, Y) has a bivariate-normal distribution.

Linear correlation - statistical inference

Example: Test of

$$H_0: \rho = 0$$

```
##
## Pearson's product-moment correlation
##
## data: ripdens and cwdbasal
## t = 4.9298, df = 14, p-value = 0.0002216
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4971417 0.9264444
## sample estimates:
## cor
## 0.7965489
```

Spearman's rank correlation

- The Spearman's rank correlation test is a non-parametric test that uses ranks of sample data consisting of matched pairs. It is used to test for the strength of a linear or nonlinear association between two variables.
 - ► The Spearman correlation coefficient is defined as the Pearson correlation coefficient between the rank variables

An example

Test of

$$H_0: \rho = 0$$

```
##
## Spearman's rank correlation rho
##
## data: ripdens and cwdbasal
## S = 89.13, p-value = 1.252e-05
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.8689258
```

Linear Regression - Introduction

 Assume that visual examination of the scatter plot confirms that the points approximate a straight-line pattern

$$y = \beta_0 + \beta_1 x.$$

 However, the bivariate measurements that we observe do not generally fall exactly on a straight line, we choose to use a probabilistic model

$$Y|_{X=x} = \beta_0 + \beta_1 x + \varepsilon,$$

where ε is a random variable possessing a specified probability distribution with mean 0. For example, assume that ε 's are independent normal random variables with mean 0 and common variance σ^2 .

• $\beta_0 + \beta_1 x = E(Y|X=x)$ is the average value of Y for any given value of x.

Linear Regression - Introduction

Simple Linear Regression Model Introductory Statistics (Shafer and Zhang), UC Davis Stat Wiki

• We estimate the population **parameters** β_0 and β_1 using sample information.

Linear Regression - Introduction

- Linear regression assumes that the dependence of Y on the predictors X_1, X_2, \ldots, X_p is linear.
- True regression functions are never linear!

 Although it may seem overly simplistic, linear regression is extremely useful both conceptually and practically.

SLR Point Estimations

• We choose our estimates $\widehat{\beta}_0$ and $\widehat{\beta}_1$ to estimate β_0 and β_1 so that the vertical distances of the points y_i from the line, are minimized. That is, $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are chosen to minimize the sum of squares of deviations

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_i)]^2.$$

• The estimates are call LS (Least Square) estimators.

Fitting a straight line through a set of data points

SLR Point Estimations

Least-Squares Estimators for the Simple Linear Regression Model.

1.
$$\widehat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$
 where $S_{xy} = \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$ and $S_{xx} = \sum_{i=1}^n (x_i - \overline{x})^2$.
2. $\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$.

$$2. \ \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}.$$

SLR Hypothesis testing

- Both $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are random variables, so they have their sampling distributions (we skip the details).
- Let $S = \sqrt{MSE}$. Then under $H_0: \beta_i = \beta_{i0}, i = 0, 1$,

$$T = \frac{\widehat{\beta}_i - \beta_{i0}}{S\sqrt{c_{ii}}}, \quad i = 0, 1$$

possess a Student's t distribution with n-2 df, where $c_{00}=\sum x_i^2/(nS_{xx})$ and $c_{11}=1/S_{xx}$.

• Note that the testing of β_1 is actually to test

 H_0 : There is no relationship between X and Y versus

 H_a : There is some relationship between X and Y

SLR Hypothesis testing

• Test of Hypothesis for β_i :

```
H_0: \beta_i = \beta_{i0}
H_a: \begin{cases} \beta_i > \beta_{i0}, & \text{(upper-tail alternative);} \\ \beta_i < \beta_{i0}, & \text{(lower-tail alternative);} \\ \beta_i \neq \beta_{i0}, & \text{(two-tailed alternative).} \end{cases}
\text{Test statistic: } T = \frac{\widehat{\beta}_i - \beta_{i0}}{S\sqrt{c_{ii}}}
\text{Rejection region: } \begin{cases} t > t_{\alpha}, & \text{(upper-tail rejection region);} \\ t < -t_{\alpha}, & \text{(lower-tail rejection region);} \\ |t| > t_{\alpha/2}, & \text{(two-tailed rejection region).} \end{cases}
        where
                             c_{00} = \sum x_i^2/(nS_{xx}), c_{11} = 1/S_{xx}.
            Notice that the t-distribution is based on (n-2) df.
```

SLR Interval Estimations

• A $100(1-\alpha)\%$ Confidence Interval for β_i

$$\widehat{eta}_i \pm t_{lpha/2,n-2} \mathcal{S} \sqrt{c_{ii}}$$
 where $c_{00} = \sum x_i^2/(n\mathcal{S}_{ ext{xx}}), c_{11} = 1/\mathcal{S}_{ ext{xx}}.$

• One useful application of the hypothesis-testing and confidence interval techniques just presented is to the problem of estimating E(Y), the mean value of Y, for a fixed value of the independent variable $x=x^*$.

A 100(1
$$-\alpha$$
)% Confidence Interval for $E(Y) = \beta_0 + \beta_1 x^*$:
$$\widehat{\beta}_0 + \widehat{\beta}_1 x^* \pm t_{\alpha/2, n-2} S \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}$$

SLR Interval Estimations

• Predicting a particular value of Y:

Let $x=x^*$ be a fixed value of the independent variable. Instead of estimating the mean Y value at $x=x^*$, we wish to predict the particular (individual) response Y that we will observe if the experiment is run at some time in the future (such as next Monday), denoted by Y^* . Then

$$Y^* = \beta_0 + \beta_1 x^* + \varepsilon.$$

It is natural to estimate Y^* by $\widehat{Y^*} = \widehat{\beta}_0 + \widehat{\beta}_1 x^*$.

• A $100(1-\alpha)$ % Prediction Confidence Interval for Y when $x=x^*$

$$\widehat{\beta}_0 + \widehat{\beta}_1 x^* \pm t_{\alpha/2, n-2} S \sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{S_{xx}}}.$$

SLR Interval Estimations

Remark. Prediction intervals for the actual value of Y are longer than confidence intervals for E(Y) if both confidence levels are the same and both are determined for the same value of $x = x^*$.

Some hypothetical data and associated confidence and prediction bands

Overall Accuracy of the Model: Coefficient of Determination

Example:

- There is sufficient evidence of a linear correlation.
- The equation of the line is

$$\hat{y} = 3 + 2x$$

- The sample mean of the *y*-values is 9.
- One of the pairs of sample data is
 x = 5 and y = 19.
- The point (5,13) is on the fitted regression line.

Overall Accuracy of the Model: Coefficient of Determination

It can be shown that

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2.$$

That is,

$$SS_{total} = SSR + SSE$$
.

• The coefficient of determination, denoted by R^2 , is the proportion of the variation in y that is explained by the regression line

$$R^2 = \frac{\text{explained variation}}{\text{total variation}} = \frac{SSR}{SS_{total}} = 1 - \frac{SSE}{SS_{total}}.$$

That is, it is a measure of: How much of the variation in the response is "explained" by the regression (the linear relationship between X and Y).

Analysis of Variance

The procedure of Analysis of Variance for SLR models can be summarized in the following table.

Source	df	SS	MS	F
Regression	1	SSR	MSR = SSR/1	MSR/MSE
Error	n-2	SSE	MSE = SSE/(n-2)	•
Total	n-1	SS_{total}		

Note. The F-test for H_0 : $\beta_1=0$ versus H_a : $\beta_1\neq 0$ is exactly equivalent to the t-test, with

$$t^2 = F$$
.

And the F-test statistic has an F distribution under H_0 with $df_1 = 1$, $df_2 = n - 2$.

- Consider data christ.csv: Christensen et al. (1996) studied the relationships between coarse woody debris (CWD) and shoreline vegetation and lake development in a sample of 16 lakes in North America. The main variables of interest are the density of cabins(no.km⁻¹), density of riparian trees (trees km⁻¹), the basal area of riparian trees (m²km⁻¹), density of coarse woody debris (no. km⁻¹), basal area of coarse woody debris (m²km⁻¹).
- Import the data and then
- In the Variable View, change measure of the response variable cwdbasal from Nominal to Scale

- \bullet Build a scatter plot: Click on Graphs in the top menu \to Select Chart Builder then
 - ► In the Chart Builder dialog box, drag the Scatter/Dot icon from the Gallery tab into the Chart Preview area.
 - Drag the variable you want on the X-axis (independent variable) to the X-Axis? box.
 - Drag the variable you want on the Y-axis (dependent variable) to the Y-Axis? box.

• Scatter plot:

- ullet Or you can get a scatter plot by clicking on Graphs o Regression Variable Plots
- ullet Or click on Graphs o Scatter/Dot $\ldots o$ Simple Scatter

 \bullet To fit a simple linear regression model, Click on Analyze \to Regression \to Linear ...

To fit the model with confidence intervals

 To get residual plot of the standardized residuals against the standardized predicted values

 To get residual plot of the standardized residuals against the standardized predicted values

- Save the residuals and predicted values
- Save confidence interval and prediction confidence interval for each observation

• So six more columns will be added to the data

🔏 lake		cwdba sal	s cabin						
Bay	1270	121	.0	69.60633	51.39367	50.09996	89.11270	-10.69248	149.90514
Bergner	1210	41	.0	62.67537	-21.67537	43.11130	82.23943	-17.63748	142.98821
Crampton	1800	183	.0	130.82985	52.17015	96.91224	164.74745	45.87218	215.78751
Long	1875	130	.0	139.49355	-9.49355	102.42657	176.56053	53.23023	225.75688
Roach	1300	127	.0	73.07181	53.92819	53.42007	92.72355	-7.26244	153.40606
Tenderfoot	2150	134	.6	171.26047	-37.26047	121.89673	220.62422	79.04236	263.47858
Palmer	1330	65	1.9	76.53730	-11.53730	56.62675	96.44784	-3.86066	156.93525
Street	964	52	3.6	34.25841	17.74159	10.13110	58.38573	-47.28623	115.80305
Laura	961	12	4.1	33.91187	-21.91187	9.69523	58.12851	-47.65925	115.48298
Annabelle	1400	46	4.8	84.62342	-38.62342	63.69494	105.55190	3.96735	165.27949
Joyce	1280	54	6.0	70.76149	-16.76149	51.21947	90.30352	-9.54599	151.06897
Lake_hills	976	97	6.7	35.64461	61.35539	11.86837	59.42084	-45.79685	117.08606
Towanda	771	1	11.8	11.96381	-10.96381	-18.89962	42.82724	-71.82134	95.74897
Black oak	833	4	12.3	19.12581	-15.12581	-9.38805	47.63967	-63.82262	102.07423
Johnson	883	1	17.0	24.90161	-23.90161	-1.83182	51.63504	-57.45175	107.25498
Arrowhead	956	4	24.6	33.33429	-29.33429	8.96743	57.70114	-48.28155	114.95012

Model fit results

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.797*	.634	.608	36.318

a. Predictors: (Constant), ripdens

b. Dependent Variable: cwdbasal

$ANOVA^a$

Model		Sum of Squares	df	Mean Square	F	Sig.		
1	Regression	32054.439	1	32054.439	24.303	<.001 ⁶		
	Residual	18465.561	14	1318.969				
	Total	50520.000	15					
B 1								

a. Dependent Variable: cwdbasal

b. Predictors: (Constant), ripdens

Coefficients^a

Xuemao Zhang East Stroudsburg University

	Unstandardized Coefficients			Standardized Coefficients			95.0% Confiden	
Model		В	Std. Error	Beta	- t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-77.099	30.608		-2.519	.025	-142.747	-11.451
	ripdens	.116	.023	.797	4.930	<.001	.065	.166

a. Dependent Variable: cwdbasal

 Standardized residual plot to check two model assumptions: independence and constant variance

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.