

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2009; month=5; day=28; hr=13; min=13; sec=28; ms=781;]

=====

Application No: 10522074 Version No: 3.0

Input Set:

Output Set:

Started: 2009-05-21 16:33:54.174
Finished: 2009-05-21 16:34:14.524
Elapsed: 0 hr(s) 0 min(s) 20 sec(s) 350 ms
Total Warnings: 40
Total Errors: 0
No. of SeqIDs Defined: 40
Actual SeqID Count: 40

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2009-05-21 16:33:54.174
Finished: 2009-05-21 16:34:14.524
Elapsed: 0 hr(s) 0 min(s) 20 sec(s) 350 ms
Total Warnings: 40
Total Errors: 0
No. of SeqIDs Defined: 40
Actual SeqID Count: 40

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Novozymes Biopharma UK Limited
Sleep, Darrell

<120> Gene and Polypeptide Sequences

<130> 11055.204-US

<140> 10522074

<141> 2005-07-08

<150> GB 0217033.0

<151> 2002-07-23

<150> PCT/GB2003/003273

<151> 2003-07-23

<160> 40

<170> PatentIn version 3.5

<210> 1

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic polypeptide leader sequence

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> CAN BE EITHER Leu OR Val or ALA or Met

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> CAN BE EITHER Ser OR Thr

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> CAN BE EITHER Ile OR Val OR Ala OR Met

<400> 1

Xaa Xaa Xaa Xaa Xaa
1 5

<210> 2

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic polypeptide leader sequence

<220>

<221> MISC_FEATURE

<222> (2)...(2)

<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE

<222> (3)...(3)

<223> CAN BE EITHER Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE

<222> (4)...(4)

<223> CAN BE EITHER Ser OR Thr

<220>

<221> MISC_FEATURE

<222> (5)...(5)

<223> CAN BE EITHER Ile OR Val OR Ala OR Met

<400> 2

Phe Xaa Xaa Xaa Xaa
1 5

<210> 3

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic polypeptide leader sequence

<220>

<221> MISC_FEATURE

<222> (1)...(1)

<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>

<221> MISC_FEATURE

<222> (3)...(3)
<223> CAN BE EITHER Leu OR Val OR Ala OR Met

<220>
<221> MISC_FEATURE
<222> (4)...(4)
<223> CAN BE EITHER Ser OR Thr

<220>
<221> MISC_FEATURE
<222> (5)...(5)
<223> CAN BE EITHER Ile OR Val OR Ala OR Met

<400> 3

Xaa Ile Xaa Xaa Xaa
1 5

<210> 4
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide leader sequence

<220>
<221> MISC_FEATURE
<222> (1)...(1)
<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>
<221> MISC_FEATURE
<222> (2)...(2)
<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>
<221> MISC_FEATURE
<222> (4)...(4)
<223> CAN BE EITHER Ser OR Thr

<220>
<221> MISC_FEATURE
<222> (5)...(5)
<223> CAN BE EITHER Ile OR Val OR Ala OR Met

<400> 4

Xaa Xaa Val Xaa Xaa
1 5

<210> 5
<211> 5
<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic polypeptide leader sequence

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> CAN BE EITHER Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> CAN BE EITHER Ile OR Val OR Ala OR Met

<400> 5

Xaa Xaa Xaa Ser Xaa

1	5
---	---

<210> 6

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic polypeptide leader sequence

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>

<221> MISC_FEATURE

<222> (2)..(2)

<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE

<222> (3)..(3)

<223> CAN BE EITHER Leu OR Val OR Ala OR Met

<220>

<221> MISC_FEATURE
<222> (4)...(4)
<223> CAN BE EITHER Ser OR Thr

<400> 6

Xaa Xaa Xaa Xaa Ile
1 5

<210> 7
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide leader sequence

<400> 7

Phe Ile Val Ser Ile
1 5

<210> 8
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<400> 8

Met Lys Trp Val
1

<210> 9
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<400> 9

Leu Phe Leu Phe Ser Ser Ala Tyr Ser
1 5

<210> 10
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> CAN BE EITHER Ser OR Thr OR Gly OR Tyr OR Ala

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> CAN BE EITHER Ser OR Thr OR Gly OR Tyr OR Ala

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> CAN BE EITHER Ile OR Leu OR Val OR Ala OR Met

<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> CAN BE EITHER Phe OR Trp OR Tyr

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> CAN BE EITHER Ser OR Thr OR Gly OR Tyr OR Ala

<220>
<221> misc_feature
<222> (10)..(10)
<223> Xaa can be any naturally occurring amino acid

<400> 10

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

1

5

10

<210> 11
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<400> 11

Leu Phe Leu Phe Ser Ser Ala Tyr Ser Arg Ser Leu Asp Lys Arg
1 5 10 15

<210> 12
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> any amino acid PREFERABLY Phe

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> any amino acid PREFERABLY Ile

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> any amino acid PREFERABLY Val

<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> any amino acid PREFERABLY Ser OR Thr

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> any amino acid PREFERABLY Ile

<400> 12

Met Lys Trp Val Xaa Xaa Xaa Xaa Xaa Leu Phe Leu Phe Ser Ser Ala
1 5 10 15
Tyr Ser

<210> 13
<211> 18
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> any amino acid PREFERABLY Phe

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> any amino acid PREFERABLY Ile

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> any amino acid PREFERABLY Val

<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> any amino acid PREFERABLY Ser OR Thr

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> any amino acid PREFERABLY Ile

<400> 13

Met Lys Trp Val Xaa Xaa Xaa Xaa Ile Phe Ile Phe Ser Ser Ile
1 5 10 15
Phe Ser

<210> 14
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic polypeptide secretion pre-sequence

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> any amino acid PREFERABLY Phe

<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> any amino acid PREFERABLY Ile

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> any amino acid PREFERABLY Val

<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> any amino acid PREFERABLY Ser OR Thr

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> any amino acid PREFERABLY Ile

<400> 14

Met Lys Trp Val Xaa Xaa Xaa Xaa Leu Phe Leu Phe Ser Ser Ala
1 5 10 15
Tyr Ser Arg Ser Leu Asp Lys Arg
20

<210> 15
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide leader sequence

<220>
<221> misc_feature
<222> (2)..(3)
<223> CAN BE EITHER ty OR gg OR ay

<220>
<221> misc_feature
<222> (4)..(6)
<223> CAN BE EITHER ath OR ttr OR cta OR ctg OR ctc OR ctt OR gta OR
gtg OR gtc OR gtt OR gca OR gcg OR gcc OR gct OR atg

<220>
<221> misc_feature
<222> (7)..(9)
<223> CAN BE EITHER ttr OR cta OR ctg OR ctc OR ctt OR gta OR gtg OR
gtc OR gtt OR gca OR gcg OR gcc OR gct OR atg

<220>
<221> misc_feature

<222> (10)..(12)
<223> CAN BE EITHER agy OR tca OR tcg OR tcc OR tct OR aca OR acg OR
acc OR act

<220>
<221> misc_feature
<222> (13)..(15)
<223> CAN BE EITHER ath OR cta OR ctg OR ctc OR ctt OR gta OR gtg OR
gtc OR gtt OR gca OR gcg OR gcc OR gct OR atg

<400> 15
tnnnnnnnnn nnnnn 15

<210> 16
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide leader sequence

<220>
<221> misc_feature
<222> (9)..(9)
<223> CAN BE EITHER a OR g OR c OR t

<220>
<221> misc_feature
<222> (10)..(12)
<223> CAN BE EITHER tca OR tcg OR tcc OR tct OR agy

<400> 16
ttyathgtnn nnath 15

<210> 17
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide leader sequence

<220>
<221> misc_feature
<222> (2)..(3)
<223> CAN BE EITHER tc OR gg OR ac

<220>
<221> misc_feature
<222> (4)..(6)
<223> CAN BE EITHER aty OR ttg OR gty OR gct OR atg

<220>

```

<221> misc_feature
<222> (7)..(9)
<223> CAN BE EITHER ttg OR gty OR gct OR atg

<220>
<221> misc_feature
<222> (10)..(10)
<223> CAN BE EITHER t OR a

<220>
<221> misc_feature
<222> (11)..(15)
<223> CAN BE EITHER aty OR gty OR gct OR atg

<400> 17
tnnnnnnnn cynnn                                15

<210> 18
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide leader sequence

<400> 18
ttcatygttyt cyaty                                15

<210> 19
<211> 1865
<212> DNA
<213> Artificial Sequence

<220>
<223> s. cerevisiae 5'UTR and synthetic oligonucleotide leader sequence
      and mature human albumin CDS

<400> 19
aagcttaacc taattctaac aagcaaagat gaagtgggtt ttcatcgctc ccattttgtt      60
cttgttctcc tctgcctact ctagatctt ggataagaga gacgctcaca agtccgaagt      120
cgctcacaga ttcaaggact tgggtgaaga aaacttcaag gcttggctc tgatcgctt      180
cgctcaatac ttgcaacaat gtcattcga agatcacgtc aagttggta acgaagttac      240
cgaattcgct aagacttgtt ttgctgacga atctgctgaa aactgtgaca agtccttgca      300
caccttgttc ggtgataagt tgtgtactgt tgctacctt agagaaaacctt acggtaaat      360
ggctgactgt tttgtcaaggc aagaaccaga aagaaacgaa tttttcttgc aacacaaggaa      420
cgacaaccca aacttgcacaa gattggtag accagaagtt gacgtcatgt gtactgctt      480
ccacgacaac gaagaaacctt ttttgcacaa gtacttgcac gaaatttgcac gaaacacccc      540
atacttctac gctccagaat ttttgcacaa cgcttaagaga tacaaggctt ctgcacccga      600
atgttgcacaa gctgcgtata aggctgtttt ttttgcacaa aagttggatg aatttgcacaa      660
cgaaggtaag gcttgcacaa ctaaggcataat atttgcacaa gtacttgcac gaaacacccc      720
tggaaaggactt ttcaaggcataat gggctgtttt tagattgtttt ctttgcacccga      780
atcgctgaa gtttgcacaa ttttgcacaa gtacttgcac gaaacacccc aatgttgcacaa      840
cggtgactt gtttgcacaa gggctgtttt tagattgtttt ctttgcacccga      900
ccaaggactt atcttccat ttttgcacaa aatgttgcacaa aatgttgcacaa      960
tcactgtttt gctgaaggatgaaa aatgttgcacaa aatgttgcacaa      1020

```

tgacttcgtt	gaatctaagg	acgtttgtaa	gaactacgct	gaagctaagg	acgtttctt	1080
gggtatgttc	ttgtacgaat	acgctagaag	acacccagac	tactccgtt	tcttgttgc	1140
gagattggct	aagacctacg	aaactacctt	ggaaaagtgt	tgtgctgctg	ctgaccacaca	1200
cgaatgttac	gctaaggttt	tcgatgaatt	caagccattt	gtcgaagaac	cacaaaactt	1260
gatcaagcaa	aactgtgaat	tgttgcaca	attgggtgaa	tacaagtcc	aaaacgcctt	1320
tttggttaga	tacactaaga	aggtcccaca	agtctccacc	ccaactttgg	ttgaagtctc	1380
tagaaacttg	ggtaaggctcg	gttctaagtgt	ttgtaaagcac	ccagaagcta	agagaatgcc	1440
atgtgctgaa	gattacttgt	ccgtcggttt	gaaccaattt	tgtgttttgc	acgaaaagac	1500
cccagtctct	gatagagtca	ccaagtgtt	tactgaatct	ttggtaaca	gaagaccatg	1560
tttctctgt	tttggaaagt	cgaaaaactt	cggtccaaag	gaattcaac	ctgaaaactt	1620
cacccctccac	gctgatatct	gtacctgtc	cgaaaaggaa	agacaaaatta	agaagcaaac	1680
tgctttgggt	gaattggtca	agcacaagcc	aaaggctact	aaggaacaat	tgaaggctgt	1740
catggatgat	tgcgtgtt	tcgttgaaaa	gtgttgtaag	gctgatgata	aggaaaactt	1800
tttcgctgaa	gaaggttaaga	agttggtcgc	tgcttccaa	gctgctttgg	gtttgtata	1860
agctt						1865

<210> 20
<211> 1773
<212> DNA
<213> Artificial Sequence

<220>
<223> A mature human albumin coding region

<400> 20						
agatctttgg	ataagagaga	cgctcacaag	tccgaagtcg	ctcacagatt	caaggactt	60
ggtaagaaaa	acttcaaggc	tttggcttttgc	atcgcttgc	ctcaataactt	gcaacaatgt	120
ccattcgaag	atcacgtcaa	gttggtcaac	gaagttaccg	aattcgctaa	gacttgcgtt	180
gctgacgaat	ctgctgaaaa	ctgtgacaag	tccttgcaca	ccttgcgttgc	tgataagt	240
tgtactgtt	ctaccttgag	agaaacctac	ggtgaaatgg	ctgactgtt	tgctaagcaa	300
gaaccagaaaa	gaaacgaatg	tttcttgcaa	cacaaggacg	acaacccaaa	cttgc当地	360
ttggtagac	cagaagttga	cgtcatgtt	actgcttcc	acgacaacga	agaaaccc	420
ttgaagaagt	acttgcacg	aattgctaga	agacacccat	acttctacgc	tccagaattt	480
ttgttcttcg	ctaagagata	caaggctgt	ttcaccgaat	gttgtcaagc	tgctgataag	540
gctgcttgc	ttttgc当地	gttggatgaa	ttgagagacg	aaggttaaggc	ttcttccgct	600
aagcaaaagat	tgaagtgtgc	ttcccttgcaa	aagttcggt	aaagagctt	caaggcttgg	660
gctgtcgcta	gattgtctca	aagattccca	aaggctgaat	tcgctgaagt	ttctaagtt	720
gttactgact	tgactaaggt	tcacactgaa	tgttgc当地	gtgacttgc	ggaatgtgt	780
gatgacagag	ctgacttggc	taagtacatc	tgtgaaaacc	aagactctat	ctcttccaa	840
ttgaaggaat	gttggaaaa	gccattgtt	gaaaagtctc	actgtattgc	tgaagtt	900
aacgatgaaaa	tgccagctga	cttgccatct	ttggctgt	acttcgttga	atctaaggac	960
gttggtaaga	actacgctga	agctaaggac	gttcttgc	gtatgttctt	gtacgata	1020
gctagaagac	acccagacta	ctccgttgc	ttgttgc当地	gattggctaa	gacctacgaa	1080
actaccttgg	aaaagtgtt	tgctgtgt	gacccacacg	aatgttacgc	taaggttt	1140
gatgaattca	agccatttgc	cgaagaacca	caaacttga	tcaagcaaaa	ctgtgaattt	1200
ttcgaacaat	ttggtaata	caagttccaa	aacgcttgc	tgtttagata	cactaagaag	1260
gtccccacaag	tctccacccc	aactttgggt	gaagtctcta	gaaacttggg	taaggtcggt	1320
tctaagtgtt	gtaagcaccc	agaagctaag	agaatgc当地	gtgctgaaga	ttacttgc	1380
gtcggtttga	accaatttgc	tgtttgcac	gaaaagaccc	cagtctctga	tagagt	1440
aagtgttgc	ctgaatctt	ggttaacaga	agaccatgtt	tctctgtt	ggaagtgcac	1500
gaaacttacg	ttccaaagga	attcaacgc	gaaacttca	ccttccacgc	tgatatctgt	1560
accttgc当地	aaaaggaaag	acaaattaag	aagcaaactg	cttgggttga	attggtaag	1620
cacaagccaa	aggctactaa	ggaacaattt	aaggctgtca	tggatgattt	cgctgctt	1680
gttggaaaagt	gttggtaaggc	tgtatgata	gaaacttgc	tgctgataag	aggttaagaag	1740
ttggtc当地	tttccaaagc	tgcttgggt	tttgc			1773

```

<210> 21
<211> 1827
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide leader sequence and protein coding
      region

```

<400> 21	
atgaagtggg tttcatcggt ctcatttttgc ttcttggctt cctctgcgtt ctcttagatct	60
ttggataaga gagacgctca caagtcggaa gtcgctcaca gattcaagga cttgggtgaa	120
gaaaacttca aggcttggtt cttgatcgctt tcgctcaat acttgcaaca atgtccattc	180
gaagatcacg tcaagggttggt caacgaagtt accgaattcg ctaagacttg tggtgctgac	240
aatctgctg aaaactgtga caagtccttgc cacaccttgt tcggtgataa gttgtgtact	300
gttgcgttacct tgagagaaac ctacggtgaa atggctgact gttgtgtcaa gcaagaaccca	360
gaaagaaacg aatgtttctt gcaacacaag gacgacaacc caaacttgcc aagattgggt	420
agaccagaag ttgacgtcat gtgtactgct ttccacgaca acgaagaaac cttcttgaag	480
agactacttgt acgaaattgc tagaagacac ccatacttct acgctccaga attgttggtc	540
tgcgttactt gatacaaggc tgctttcacc gaatgttgctt aagctgttga taaggctgt	600
tggttggcgtt caaagggttggaa tgaattgaga gacgaaggta aggcttcttc cgctaagcaa	660
agattgaagt gtgcttcctt gcaaaaagggtt ggtgaaagag cttcaaggc ttgggtgtc	720
gctagattgt ctcaaagatt cccaaaggctt gaattcgctt aagtttctt aa gttggttact	780
gacttgactt aggttccacac tgaatgttg cacgggtact tggttggatg tgctgtatgac	840
agagctgact tggctaaatgtt catctgttga aaccaagact ctatcttcc caagttgaag	900
gaatgttggtggaaaaggccattt gttggaaaag tctcaactgttta ttgttggatgt tgaaaacgat	960
gaaatgccatggacttgcctt atctttggctt gctgacttgc ttgttggatgtt ggacgtttgtt	1020
aagaactacg ctgaagcttggaa ggacgttccat ttgggttatgtt ttttgcgttacgaa atacgcttacgaa	1080
agacacccatggacttccat ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1140
ttggaaaaggatgttggatgttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1200
ttcaagccatggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1260
caattgggttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1320
caagtctccatggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1380
tgttggatgttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1440
ttgttggatgttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1500
tgttggatgttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1560
ttgttggatgttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1620
tccgaaaaggaaatgttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1680
ccaaaggcttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1740
aagtgttggatgttggacttgc ttgttggatgttggacttgc ttgttggatgtt ggacgtttgtt	1800
gctgcttccc aagctgctttt gggttttgc ttgttggatgtt ggacgtttgtt	1827

```

<210> 22
<211> 1827
<212> DNA
<213> Ar

```