23 Lecture 23: Discrete Linear Dynamical Systems and Markov Chains

23.1 Discrete Linear Dynamical Systems

Definition 23.1. A (first-order homogeneous) matrix **difference equation** is an equation of the form

$$\mathbf{x}_{\ell+1} = \mathbf{A}\mathbf{x}_{\ell},$$

where **A** is an $n \times n$ matrix. An initial condition \mathbf{x}_0 is a vector $\mathbf{x}_0 \in \mathbf{R}^n$. Taken together, the difference equation and the initial condition determine a sequence of vectors $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ such that $\mathbf{x}_{\ell+1} = \mathbf{A}\mathbf{x}_{\ell}$, for all $\ell = 0, 1, 2, 3, \ldots$ This is called a (linear) discrete dynamical system.

Solving a discrete linear dynamical system is to find the sequence of vectors \mathbf{x}_{ℓ} , for all $\ell = 1, 2, 3, \dots$ given the difference equation $\mathbf{x}_{\ell+1} = \mathbf{A}\mathbf{x}_{\ell}$ and the initial condition \mathbf{x}_{ℓ} .

From the difference equation, and the initial condition, we have

$$\mathbf{x}_1 = \mathbf{A}\mathbf{x}_0$$
 $\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1 = \mathbf{A}\mathbf{A}\mathbf{x}_0 = \mathbf{A}^2\mathbf{x}_0$
 $\mathbf{x}_3 = \mathbf{A}\mathbf{x}_2 = \mathbf{A}\mathbf{A}^2\mathbf{x}_0 = \mathbf{A}^3\mathbf{x}_0$
...
 $\mathbf{x}_{\ell} = \mathbf{A}\mathbf{x}_{\ell-1} = \mathbf{A}\mathbf{A}^{\ell-1}\mathbf{x}_0 = \mathbf{A}^{\ell}\mathbf{x}_0$

This shows $\mathbf{x}_{\ell} = \mathbf{A}^{\ell}\mathbf{x}_{0}$, for all $\ell = 0, 1, 2, \dots$ The ℓ^{th} vector of the sequence is calculated from matrix \mathbf{A} and the initial condition \mathbf{x}_{0} .

Assume that matrix \mathbf{A} is diagonalizable and the diagonalization

$$\mathbf{A} = \mathbf{SDS}^{-1},$$

where
$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$
, $\mathbf{S} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$, and $(\lambda_j, \mathbf{v}_j)$ are eigenpairs for all $j = 1$

 $1, 2, \ldots, n$. Then, for all $\ell = 1, 2, \ldots$

$$\mathbf{A}^{\ell} = (\mathbf{S}\mathbf{D}\mathbf{S}^{-1})(\mathbf{S}\mathbf{D}\mathbf{S}^{-1})\dots(\mathbf{S}\mathbf{D}\mathbf{S}^{-1}) = \mathbf{S}\mathbf{D}(\mathbf{S}^{-1}\mathbf{S})\mathbf{D}(\mathbf{S}^{-1}\dots\mathbf{S})\mathbf{D}\mathbf{S}^{-1} = \mathbf{S}\mathbf{D}^{\ell}\mathbf{S}^{-1},$$

where D^{ℓ} is a diagonal matrix given by

$$\mathbf{D}^{\ell} = \begin{bmatrix} \lambda_1^{\ell} & 0 & \dots & 0 \\ 0 & \lambda_2^{\ell} & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n^{\ell} \end{bmatrix}.$$

From this diagonalization of \mathbf{A}^{ℓ} , we can calculate \mathbf{x}_{ℓ} , which is

$$\mathbf{x}_{\ell} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1^{\ell} & 0 & \dots & 0 \\ 0 & \lambda_2^{\ell} & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n^{\ell} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}^{-1} \mathbf{x}_0$$
 (23.1)

Remark 23.1. If we denote $\mathbf{s} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}^{-1} \mathbf{x}_0$, then \mathbf{s} is a vector in \mathbf{R}^n , which is formed by coefficient of \mathbf{x}_0 as a linear combination of eigenvectors. That is,

$$\mathbf{x}_0 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \mathbf{s} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \dots + s_n \mathbf{v}_n.$$

As a result, \mathbf{x}_{ℓ} can be written as

$$\mathbf{x}_{\ell} = s_1 \lambda_1^{\ell} \mathbf{v}_1 + s_2 \lambda_2^{\ell} \mathbf{v}_2 + \ldots + s_n \lambda_n^{\ell} \mathbf{v}_n.$$

Limits as infinity

- If $0 < \lambda < 1$, $\lambda^{\ell} \to 0$ as $\ell \to \infty$
- If $\lambda > 1$, $\lambda^{\ell} \to +\infty$ as $\ell \to \infty$.

Example 23.1. The population of frogs and midges in a pond satisfy the difference equation

$$\mathbf{x}_{\ell+1} = \begin{bmatrix} 0.7 & 0.1 \\ -0.5 & 1.3 \end{bmatrix} \mathbf{x}_{\ell}, \quad where \ \mathbf{x}_{\ell} := \begin{bmatrix} f_{\ell} \\ m_{\ell} \end{bmatrix};$$

 f_{ℓ} and m_{ℓ} are populations of frogs and midges at the year ℓ , respectively. Assume that at the beginning $\ell=0$ the population of frogs and midges are $f_0=7$ and $m_0=9$.

- Find the population of frogs and midges at the year $\ell = 100$?
- Find the ratio between the population of frogs and midges when the time tends to infinity?

Solution: From the problem statement, we have that

$$\mathbf{x}_{\ell+1} = \mathbf{A}\mathbf{x}_{\ell}, \quad \mathbf{A} = \begin{bmatrix} 0.7 & 0.1 \\ -0.5 & 1.3 \end{bmatrix} \mathbf{x}_{\ell}$$

and $\mathbf{x}_0 = \begin{bmatrix} f_0 \\ m_0 \end{bmatrix} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$. From the difference equation, we obtain

$$\mathbf{x}_{\ell} = \mathbf{A}^{\ell} \mathbf{x}_0 = \mathbf{S} \mathbf{D}^{\ell} \mathbf{S}^{-1} \mathbf{x}_0,$$

where $\mathbf{A} = \mathbf{SDS}^{-1}$ is the diagonalization of \mathbf{A} .

To find the diagonalization of \mathbf{A} , we find the eigenvalues and the associated eigenvector, which are

$$\lambda_1 = 1.2, \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \text{and} \quad \lambda_2 = 0.8, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

A has a diagonalization $\mathbf{A} = \mathbf{SDS}^{-1}$, where

$$\mathbf{S} = \begin{bmatrix} 1 & 1 \\ 5 & 1 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 1.2 & 0 \\ 0 & 0.8 \end{bmatrix}, \ \text{and} \ \mathbf{S}^{-1} = \frac{-1}{4} \begin{bmatrix} 1 & -1 \\ -5 & 1 \end{bmatrix}.$$

Thus,

$$\mathbf{x}_{\ell} = \mathbf{S}\mathbf{D}^{\ell}\mathbf{S}^{-1}\mathbf{x}_{0} = -\frac{1}{4} \begin{bmatrix} 1 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1.2^{\ell} & 0 \\ 0 & 0.8^{\ell} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$

$$= \frac{-1}{4} \begin{bmatrix} 1.2^{\ell} & 0.8^{\ell} \\ 5(1.2)^{\ell} & 0.8^{\ell} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = -\frac{1}{4} \begin{bmatrix} 1.2^{\ell} - 5(0.8)^{\ell} & -(1.2)^{\ell} + 0.8^{\ell} \\ 5(1.2^{\ell}) - 5(0.8)^{\ell} & -5(1.2)^{\ell} + 0.8^{\ell} \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1.2^{\ell} + 13(0.8)^{\ell} \\ 5(1.2)^{\ell} + 13(0.8)^{\ell} \end{bmatrix},$$

which implies, the population of frogs and midges at the time ℓ are

$$f_{\ell} = \frac{1.2^{\ell} + 13(0.8)^{\ell}}{2}$$
 and $m_{\ell} = \frac{5(1.2^{\ell}) + 13(0.8)^{\ell}}{2}$.

At
$$\ell = 100$$
, $f_{100} = \frac{1.2^{100} + 13(0.8)^{100}}{2}$ and $m_{100} = \frac{5(1.2^{100}) + 13(0.8)^{100}}{2}$.

At $\ell \to \infty$,

$$\lim_{\ell \to \infty} \frac{f_{\ell}}{m_{\ell}} = \lim_{\ell \to \infty} \frac{1 \cdot 2^{\ell} + 13(0 \cdot 8)^{\ell}}{5(1 \cdot 2^{\ell}) + 13(0 \cdot 8)^{\ell}} = \lim_{\ell \to \infty} \frac{1 + 13(0 \cdot 8/1 \cdot 2)^{\ell}}{5 + 13(0 \cdot 8/1 \cdot 2)^{\ell}} = \frac{1}{5}$$

23.1.1 Application to Fibonacci sequence

The Fibonacci sequence is the series of numbers defined by: $F_0 = 0$, $F_1 = 1$, and the recurrence relation

$$F_{n+2} = F_{n+1} + F_n$$
, for all $n = 0, 1, 2, ...$

A method to find the general formula for F_n is to describe the problem under the form of a discrete dynamical system mentioned below. To do so, we introduce the system

$$\begin{cases} F_{n+2} = F_{n+1} + F_n \\ F_{n+1} = F_{n+1} \end{cases}$$

and define $\mathbf{x} = \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$. Then, the system is written as the difference equation $\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n$, where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

The general formulation for \mathbf{x}_n is

$$\mathbf{x}_n = \mathbf{A}^n \mathbf{x}_0 = \mathbf{S} \mathbf{D}^n \mathbf{S}^{-1} \mathbf{x}_0.$$

Matrix **A** has eigenvalues $\lambda_1 = \frac{1-\sqrt{5}}{2}$ and $\lambda_2 = \frac{1+\sqrt{5}}{2}$, with eigenvectors $\mathbf{v}_1 = \begin{bmatrix} \frac{1-\sqrt{5}}{2} \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} \frac{1-\sqrt{5}}{2} \\ 1 \end{bmatrix}$

$$\begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ 1 \end{bmatrix} \text{ (respectively). We define } \mathbf{S} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \frac{1-\sqrt{5}}{2} & \frac{1+\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{D} = \begin{bmatrix} \frac{1-\sqrt{5}}{2} & 0 \\ 0 & \frac{1+\sqrt{5}}{2} \end{bmatrix}, \text{ then }$$

$$\mathbf{S}^{-1} = \begin{bmatrix} -\frac{\sqrt{5}}{5} & \frac{5+\sqrt{5}}{10} \\ \frac{\sqrt{5}}{5} & \frac{5-\sqrt{5}}{10} \end{bmatrix} \text{ and }$$

$$\mathbf{x}_{n} = \mathbf{S}\mathbf{D}^{n}\mathbf{S}^{-1}\mathbf{x}_{0} = \begin{bmatrix} \frac{1-\sqrt{5}}{2} & \frac{1+\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{1-\sqrt{5}}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1+\sqrt{5}}{2}\right)^{n} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{5}}{5} & \frac{5+\sqrt{5}}{10} \\ \frac{\sqrt{5}}{5} & \frac{5-\sqrt{5}}{10} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} + \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} \\ -\frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2}\right)^{n} + \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2}\right)^{n} \end{bmatrix}$$

Thus,

$$F_n = \frac{\sqrt{5}}{5} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

General second-order linear difference equation

The problem of finding y_n from the given of y_0 , y_1 , and the recurrence relation

$$y_{n+2} = ay_{n+1} + by_n$$

is rewritten in the matrix form

$$\mathbf{x}_{n\perp 1} = \mathbf{A}\mathbf{x}_n$$

where
$$\mathbf{A} = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}$$
 and $\mathbf{x}_n = \begin{bmatrix} y_{n+1} \\ y_n \end{bmatrix}$. Obviously, $\mathbf{x}_0 = \begin{bmatrix} y_1 \\ y_0 \end{bmatrix}$.

General third-order linear difference equation

The problem of finding y_n from the given of y_0, y_1, y_2 and the recurrence relation

$$y_{n+3} = ay_{n+2} + by_{n+1} + cy_n$$

is rewritten in the matrix form

$$\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n$$

where
$$\mathbf{A} = \begin{bmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $\mathbf{x}_n = \begin{bmatrix} y_{n+2} \\ y_{n+1} \\ y_n \end{bmatrix}$. Obviously, $\mathbf{x}_0 = \begin{bmatrix} y_2 \\ y_1 \\ y_0 \end{bmatrix}$.

23.1.2 Graphical Description of Solutions

See the .mlx file on Canvas - common course

23.2 Markov Chains

Definitions 23.1. A vector with nonnegative entries summing to 1 is called a **probability vector**. A **stochastic matrix** is a square matrix whose columns are probability vectors.

A Markov chain is a sequence of probability vectors $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2 \dots$ together with a stochastic matrix \mathbf{P} such that

$$\mathbf{x}_{\ell+1} = \mathbf{P}\mathbf{x}_{\ell}, \quad for \ all \quad \ell = 0, 1, 2, \dots$$

Matrix $\mathbf{P} = [p_{ij}]$ is called the **transition matrix** of the system, where p_{ij} indicates the probability of state j^{th} moves to state i^{th} . Vector \mathbf{x}_{ℓ} is called a **state vector**.

Example 23.2. The sequence $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots$ such that

$$\mathbf{x}_{\ell} = egin{bmatrix} 1-p & 1-q & 1-r & 0 \\ p & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & r & 1 \end{bmatrix} \mathbf{x}_{\ell-1}, \quad 0 \leq p, q, r \leq 1$$

is a Markov chain and $\mathbf{P} = \begin{bmatrix} 1-p & 1-q & 1-r & 0 \\ p & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & r & 1 \end{bmatrix}$ is the transition matrix.

23.2.1 Absorbing states

An absorbing state is the state from which it is impossible to leave. Mathematically, the i^{th} state is an absorbing state if and only if $p_{ii} = 1$.

Example 23.3. Consider a transition matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1-p & p & 0 & 0 \\ p & 0 & 0 & 0 & 0 \\ 1-p & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 1 & 0 \\ 0 & 0 & 1-p & 0 & 1 \end{bmatrix}$$

Then, states 4 and 5 are absorbing states due to $p_{44} = p_{55} = 1$.

Example 23.4. Consider the transition matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then, state 3 is an absorbing matrix due to $p_{33} = 1$, but states 1 and 2 are not absorbing states since $p_{11} = 0 \neq 1$ and $p_{22} = 0 \neq 1$.

23.2.2 Steady distributions and Predicting the Distant Future

The most interesting aspect of Markov chains is the study of a chain's long-term behavior. We consider example below.

Example 23.5. Let
$$\mathbf{P} = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}$$
 and $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Consider a system whose state is

described by the Markov chain $\mathbf{x}_{k+1} = \mathbf{P}\mathbf{x}_k$, for k = 0, 1, ... What happens to the system as time passes? Compute the state vectors $\mathbf{x}_1, ..., \mathbf{x}_{15}$ to find out.

Solution:

$$\mathbf{x}_{1} = \mathbf{P}\mathbf{x}_{0} = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} .5 \\ .3 \\ .2 \end{bmatrix}$$

$$\mathbf{x}_{2} = \mathbf{P}\mathbf{x}_{1} = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix} \begin{bmatrix} .5 \\ .3 \\ .2 \end{bmatrix} = \begin{bmatrix} .37 \\ .45 \\ .18 \end{bmatrix}$$

$$\mathbf{x}_{3} = \mathbf{P}\mathbf{x}_{2} = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix} \begin{bmatrix} .37 \\ .45 \\ .18 \end{bmatrix} = \begin{bmatrix} .329 \\ .525 \\ .146 \end{bmatrix}$$

The results of further calculations are shown below, with entries rounded to four or five significant figures.

$$\mathbf{x}_{4} = \begin{bmatrix} .3133 \\ .5625 \\ .1242 \end{bmatrix}, \quad \mathbf{x}_{5} = \begin{bmatrix} .3064 \\ .5813 \\ .1123 \end{bmatrix}, \quad \mathbf{x}_{6} = \begin{bmatrix} .3032 \\ .5906 \\ .1062 \end{bmatrix}, \quad \mathbf{x}_{7} = \begin{bmatrix} .3016 \\ .5953 \\ .1031 \end{bmatrix}$$

$$\mathbf{x}_{8} = \begin{bmatrix} .3008 \\ .5977 \\ .1016 \end{bmatrix}, \quad \mathbf{x}_{9} = \begin{bmatrix} .3004 \\ .5988 \\ .1008 \end{bmatrix}, \quad \mathbf{x}_{10} = \begin{bmatrix} .3002 \\ .5994 \\ .1004 \end{bmatrix}, \quad \mathbf{x}_{11} = \begin{bmatrix} .3001 \\ .5997 \\ .1002 \end{bmatrix}$$

$$\mathbf{x}_{12} = \begin{bmatrix} .30005 \\ .59985 \\ .10010 \end{bmatrix}, \quad \mathbf{x}_{13} = \begin{bmatrix} .30002 \\ .59993 \\ .10005 \end{bmatrix}, \quad \mathbf{x}_{14} = \begin{bmatrix} .30001 \\ .59996 \\ .10002 \end{bmatrix}, \quad \mathbf{x}_{15} = \begin{bmatrix} .30001 \\ .59998 \\ .10001 \end{bmatrix}$$

These vectors seem to be approaching $\mathbf{q}=\begin{bmatrix} .3\\ .6\\ .1 \end{bmatrix}$. The probabilities are hardly changing from one

value of k to the next. Observe that the following calculation is exact (with no rounding error):

$$P\mathbf{q} = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix} \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix} = \begin{bmatrix} .15 + .12 + .03 \\ .09 + .48 + .03 \\ .06 + 0 + .04 \end{bmatrix} = \begin{bmatrix} .30 \\ .60 \\ .10 \end{bmatrix} = \mathbf{q}$$

When the probability vector is **q**, it is preserved through the system. This vector is called a **stationary distribution** (or a "**steady-state vector**").

A stationary distribution (also known as a "steady-state vector") is a probability vector which is an eigenvector of a transition matrix \mathbf{P} with eigenvalue 1. That is, a probability vector \mathbf{v} such that

$$\mathbf{P}\mathbf{v} = \mathbf{v}$$
.

Stationary distributions of an stochastic matrix always exist due to the following theorem.

Theorem 12. If P is a stochastic matrix, then 1 is an eigenvalue of P.

We say that a stochastic matrix \mathbf{P} is **regular** if some matrix power \mathbf{P}^k contains only strictly positive entries. For example, for matrix \mathbf{P} in Example 23.5.

$$P^2 = \begin{bmatrix} .37 & .26 & .33 \\ .45 & .70 & .45 \\ .18 & .04 & .22 \end{bmatrix}$$

Since every entry in \mathbf{P}^2 is strictly positive, \mathbf{P} is a regular stochastic matrix.

Also, we say that a sequence of vectors, \mathbf{x}_k for k = 1, 2, ..., **converges** to a vector \mathbf{q} as $k \to \infty$, if the entries in \mathbf{x}_k can be made as close as desired to the corresponding entries in \mathbf{q} by taking k sufficiently large.

Theorem 13. If **P** is an $n \times n$ regular stochastic matrix, then **P** has a unique steady-state vector \mathbf{v} . Further, if \mathbf{x}_0 is any initial state vector and $\mathbf{x}_{k+1} = \mathbf{P}\mathbf{x}_k$ for k = 0, 1, 2, ..., then the Markov chain $\{\mathbf{x}_k\}$ converges to \mathbf{v} as $k \to \infty$.

23.3 Suggested problems

Problem 23.1. Suppose

$$x_{n+2} = \frac{1}{3}x_{n+1} + \frac{2}{3}x_n, \ x_1 = 1, \ x_0 = 0$$

- (a) Evaluate x_n , for all $n=2,3,\ldots$
- (b) Calculate

$$\lim_{n\to\infty} x_n$$

Problem 23.2. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

- (a) Diagonalize \mathbf{A}^n , for all n = 2, 3, ...
- (b) Calculate

$$\lim_{n\to\infty}\mathbf{A}^n$$

Problem 23.3. Consider the Markov chain having four states and the transition matrix

$$\mathbf{P} = \begin{bmatrix} 0 & 1-a & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & a & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \text{where } 0 \le \ell \le 1.$$

Assuming that $\mathbf{p}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$, find

$$\lim_{\ell\to\infty}\mathbf{p}_\ell.$$

Problem 23.4. Let $A = \begin{bmatrix} \frac{7}{8} & \frac{1}{8} \\ \frac{1}{9} & \frac{8}{9} \end{bmatrix}$.

- a) Find $\mathbf{P} = \lim_{\ell \to \infty} \mathbf{A}^{\ell}$
- b) Show that **P** is a projection matrix.