Kaggle - Two Sigma Connect: Rental Listing Inquiries

-Tarantino

Overview:

- To determine on what criteria the interest level showed by the tenants depends
- The outcome is what would be a "good listing" that would get the maximum interest
- Performed exploratory data analysis
- Performed data cleaning, preprocessing and generated new features
- Use the different ML algorithms to generate accuracy and log loss
- Compared the log loss score and selected the best approach
- Tools and Libraries used: Python, Scikit Learn, Numpy, Pandas, NLTK, Matplotlib, Plotly, Gpxpy

Data Cleaning and Preprocessing:

Data cleaning

- ➤ Removed usernames, URL, HTML tags, hashtags, punctuation, stop words and special characters
- **≻**Stemming
- ➤ Slang Conversion
- ➤ Tokenization
- ➤ Tf-Idf Vectorization
- ➤ Label Encoding using Preprocessing

Training and Testing

- \succ K Fold Cross Validation (k = 10/100)
- \triangleright Stratified K Fold Cross Validation (k = 10/100)

Disparity in the data:

- The data given is highly skewed
- Use stratified k-fold approach for taking equal portions of data of each class
- Make the class names into labels for easier processing –
 - 1 high , 2 medium, 3 low
- Having unbalanced data might cause performance variation and results tend to go towards the label with more training examples

Removing outliers based on price:

50000

Price vs Interest:

Listing ID vs Interest:

Repeated Managers and Buildings in the data:

Time of the Day vs Interest Level:

Interest Level based on Latitude and Longitude: High: Medium:

Interest based on features and photos:

No. of Features: No. of Photos:

Analysis on the number of bedrooms:

Classifiers used and Results:

Classifier	Accuracy	Log Loss
Random Forests Classifier (n = 100)	78.90%	0.61
Extra Trees Classifier (n = 100)	75.96%	1.1
AdaBoost Classifier	76.59%	0.92
Logistic Regression	72.32%	0.69
Soft Voting Classifier (RF, ET, AdaB & LR)	79.02%	0.62
XGBoost Classifier	81.2%	0.57

