ADDITIVITY OF FREE GENUS OF KNOTS

MAKOTO OZAWA

ABSTRACT. We show that free genus of knots is additive under connected sum.

1. Introduction

Let K be a knot in the 3-sphere S^3 . A Seifert surface F for K in S^3 is said to be *free* if the fundamental group $\pi_1(S^3 - F)$ is a free group. We note that all knots bound free Seifert surfaces, e.g. canonical Seifert surfaces constructed by the Seifert's algorithm. We define the *free genus* $g_f(K)$ of K as the minimal genus over all free Seifert surfaces for K ([5]).

For usual genus, Schubert ([9, 2.10 Proposition]) proved that genus of knots is additive under connected sum. In general, the genus of a knot is not equal to the free genus of it. In fact, free genus may have arbitrarily high gaps with genus ([7], [6]).

In this paper, we show the following theorem.

Theorem 1.1. For two knots K_1 , K_2 in S^3 , $g_f(K_1) + g_f(K_2) = g_f(K_1 \# K_2)$.

2. Preliminaries

We can deform a Seifert surface F by an isotopy so that $F \cap N(K) = N(\partial F; F)$. We denote the exterior $cl(S^3 - N(K))$ by E(K), and the exterior $cl(S^3 - N(F))$ or cl(E(K) - N(F)) by E(F). We have the following proposition.

Proposition 2.1. ([2, 5.2], [4, IV.15], [8, Lemma 2.2.]) A Seifert surface F is free if and only if E(F) is a handlebody.

We have the following inequality.

Proposition 2.2. $g_f(K_1) + g_f(K_2) \ge g_f(K_1 \# K_2)$.

Proof. Let F_i (i=1,2) be a free Seifert surface of minimal genus for K_i . We construct a Seifert surface F for $K_1 \# K_2$ as the boundary connected sum of F_1 and F_2 naturally. Then E(F) is obtained by a boundary connected sum of $E(F_1)$ and $E(F_2)$. Therefore the exterior of F is a handlebody, and F is free. Hence we have the desired inequality.

We can specify the +-side and --side of a Seifert surface F for a knot K by the orientability of F. We say that a compressing disk D for F is a +-compressing disk (resp. --compressing disk) if the collar of its boundary lies on the +-side (resp. --side) of F, and F is called +-compressible (resp. --compressible) if F has a +-compressing disk (resp. --compressing disk). A Seifert surface is said to be weakly reducible if there exist a +-compressing disk D^+ and a --compressing disk D^- for F such that $\partial D^+ \cap \partial D^- = \emptyset$. Otherwise F is strongly irreducible. The Seifert surface F is reducible if $\partial D^+ = \partial D^-$. Otherwise F is irreducible.

Proposition 2.3. A free Seifert surface of minimal genus is irreducible.

Proof. Suppose that F is reducible. Then there exist a +-compressing disk D^+ and a --compressing disk D^- for F such that $\partial D^+ = \partial D^-$. By a compression of F along D^+ (this is the same to a compression along D^-), we have a new Seifert surface F'. Since E(F') is homeomorphic to a component of the manifold which is obtained by cutting E(F) along $D^+ \cup D^-$, it is a handlebody. Hence F' is free, but it has a lower genus than F. This contradicts the minimality of F.

For a free Seifert surface F of minimal genus for $K_1 \# K_2$ and a decomposing sphere S for the connected sum of K_1 and K_2 , we will show ultimately that S can be deformed by an isotopy so that S intersects F in a single arc, and we have the equality in Theorem 1. To do this, we divide the proof of Theorem 1 into two cases; (1) F is strongly irreducible, (2) F is weakly reducible. The case (1) is treated in the next section and we consider the case (2) in Section 4.

3. Proof of Theorem 1 (strongly irreducible case)

If a free Seifert surface F of minimal genus for $K_1\#K_2$ is incompressible, then an innermost loop argument shows that a decomposing sphere S for $K_1\#K_2$ can be deformed by an isotopy so that S intersects F in a single arc, and by Proposition 3, we have the equality in Theorem 1.

So, hereafter we suppose that F is compressible and that in this section, F is strongly irreducible. Without loss of generality, we may assume that there is a +-compressing disk for F. Let \mathcal{D}^+ be a +-compressing disk system for F, and let F' be a surface obtained by compressing F along \mathcal{D}^+ . We can retake \mathcal{D}^+ so that F' is connected since E(F) is a handlebody. Take \mathcal{D}^+ to be maximal with respect to above conditions. We deform F' by an isotopy so that $F' \cap F = K$. Put $A = \partial N(K_1 \# K_2) - IntN(F)$, and let H be a closed surface which is obtained by pushing $F \cup A \cup F'$ into the interior of E(F'). Let A_0 be a vertical annulus connecting a core of A and a core of the copy of A in H. Then H bounds a handlebody V in E(F') since V is obtained from E(F) by cutting along \mathcal{D}^+ . The remainder W = E(F') - IntV is a compression body since it is obtained from $N(\partial E(F'); E(F'))$ by adding 1-handles $N(\mathcal{D}^+)$.

Lemma 3.1. F' is incompressible in S^3 .

Proof. We specify the \pm -side of F' endowed from F naturally. Suppose that F' is +-compressible, and let E^+ be a +-compressible disk for F'. Then we can regard E^+ as a ∂ -reducing disk for E(F'). By applying our situation to [1, Lemma 1.1.], we may assume that $E^+ \cap \mathcal{D}^+ = \emptyset$. If ∂E^+ separates F', then E^+ cuts off a handlebody from E(F'), and there is a non-separating disk in it. So, we may assume that ∂E^+ is non-separating in F'. Then $\mathcal{D}^+ \cup E^+$ is a +-compressing disk system satisfying the previous conditions. This contradicts the maximality of \mathcal{D}^+ .

Next, suppose that F' is --compressible, and let E^- be a --compressing disk for F'. Then we can regard E^- as a ∂ -reducing disk for E(F'). By applying our situation to [1, Lemma 1.1.], we may assume that $E^- \cap H = E^- \cap F$ is a single loop, and by exchanging \mathcal{D}^+ if it is necessary, that E^- does not intersect \mathcal{D}^+ . But this contradicts the strongly irreducibility of F.

By Lemma 5, We can deform the decomposing sphere S by an isotopy so that S intersects F' in a single arc. Put $E(S) = S \cap E(F')$. Then E(S) is a ∂ -reducing

FIGURE 1. Construction of a Heegaard splitting of E(F')

disk for E(F'). Otherwise, at least one of K_1 or K_2 is trivial, and Theorem 1 clearly holds. By applying our situation to [1, Lemma 1.1.], we may assume that E(S) intersects H in a single loop, E(S) intersects A_0 in two vertical arc, and by exchanging \mathcal{D}^+ under the previous conditions if it is necessary, that E(S) does not intersects \mathcal{D}^+ . Then S intersects F in a single arc, hence we obtain the inequality $g_f(K_1) + g_f(K_2) \leq g_f(K_1 \# K_2)$. This and Proposition 3 complete the Proof of Theorem 1.

4. Proof of Theorem 1 (Weakly Reducible Case)

In this section, we consider the case that F is weakly compressible.

We use the Hayashi-Shimokawa (HS-) complexity ([3]). Here we review it. Let H be a closed (possibly disconnected) 2-manifold. Put $w(H) = \{genus(T)|T \text{ is a component of } H\}$, where this "multi-set" may contain the same ordered pairs redundantly. We order finite multi-sets as follows: arrange the elements of the multi-set in each one in monotonically non-increasing order, then compare the elements lexicographically. We define the HS-complexity c(H) as a multi-set obtained from w(H) by deleting all the 0 elements. We order c(H) in the same way as w.

Let α be a 1-submanifold of H. Then let $\rho(H, \alpha)$ denote the closed 2-manifold obtained by cutting H along α and capping off the resulting two boundary circles with disks.

Since F is weakly reducible, there exist +-compressing disk D^+ and --compressing disk D^- for F such that $\partial D^+ \cap \partial D^- = \emptyset$. If $c(\rho(F; \partial D^+ \cup \partial D^-)) = c(\rho(F; \partial D^+))$, say, then ∂D^- bounds a +-compressing disk for F. Hence F is reducible, and by Proposition 4, a contradiction.

Therefore there exist non-empty +-compressing disks system \mathcal{D}^+ and --compressing disk system \mathcal{D}^- for F such that

- (1) $\partial \mathcal{D}^+ \cap \partial \mathcal{D}^- = \emptyset$,
- (2) $c(\rho(F; \partial \mathcal{D}^+ \cup \partial \mathcal{D}^-)) < c(\rho(F; \partial \mathcal{D}^+)), c(\rho(F; \partial \mathcal{D}^-)),$

and with $c(\rho(F; \partial \mathcal{D}^+ \cup \partial \mathcal{D}^-))$ minimal subject to these conditions. Moreover we take \mathcal{D}^{\pm} so that $|\mathcal{D}^{\pm}|$ is minimal.

Let F^{\pm} be a 2-manifold obtained by compressing F along \mathcal{D}^{\pm} , and F' be a 2-manifold obtained by compressing F along $\mathcal{D}^{+} \cup \mathcal{D}^{-}$. We deform F^{+} and F^{-} by an isotopy so that $F^{+} \cap F' \cap F^{-} = K$ and $F^{\pm} \cap N(K) = N(\partial F^{\pm}; F^{\pm})$. Put $A = \partial N(K_1 \# K_2) - IntN(F)$, and let H be a closed 2-manifold which is obtained by pushing $F^{+} \cup A \cup F^{-}$ into the interior of E(F'). Let A_0 be a vertical annulus connecting a core of A and a core of the copy of A in H. Then H bounds the union of handlebodies V in E(F') since V is obtained from E(F) by cutting along \mathcal{D}^{\pm} . The remainder W = E(F') - IntV is a union of compression bodies since it is obtained from $N(\partial E(F'); E(F'))$ by adding 1-handles $N(\mathcal{D}^{\pm})$.

Lemma 4.1. There is no 2-sphere component of H.

Proof. Suppose that there is a 2-sphere component H_i of H. We may assume that H does not contain A, and there is a copy of some component of \mathcal{D}^+ in H. Let \mathcal{D}_s^+ be a subsystem of \mathcal{D}^+ the union of whose boundaries separates F. If there is no copy of \mathcal{D}^- in H_i , then we delete any one of \mathcal{D}_s^+ . Then \mathcal{D}^\pm holds the previous conditions, but this contradicts the minimality of $|\mathcal{D}^+|$. If there is a copy of \mathcal{D}^- in H_i , then there is a simple closed curve in H_i which separates $N(\mathcal{D}^+) \cap H_i$ from $N(\mathcal{D}^-) \cap H_i$, and bounds a +-compressing disk and --compressing disk for F. Hence F is reducible, but this contradicts Proposition 4.

Lemma 4.2. Each component of F' is incompressible in S^3 .

Proof. We specify the \pm -side of F^{\pm} and F' endowed from F naturally. Suppose without loss of generality that F' is +-compressible, and let E^+ be a +-compressing disk for F'. Then we can regard E^+ as a ∂ -reducing disk for E(F'). By applying our situation to [1, Lemma 1.1.], we may assume that E^+ intersects H in a single loop which does not intersect A_0 . We deform E^+ by an isotopy so that $E^+ \cap \mathcal{D}^+ = \emptyset$ in S^3 . We take a complete meridian disk system \mathcal{C} of W which includes \mathcal{D}^+ and does not intersect E^+ . Put $\mathcal{C}^- = \mathcal{C} - \mathcal{D}^+$. Then we have $c(\rho(F; \partial E^+ \cup \partial \mathcal{D}^+ \cup \partial \mathcal{C}^-)) < c(\rho(F; \partial \mathcal{D}^+ \cup \partial \mathcal{C}^-))$ since ∂E^+ is essential in F'. Suppose that $c(\rho(F; \partial E^+ \cup \partial \mathcal{D}^+ \cup \partial \mathcal{C}^-)) = c(\rho(F; \partial E^+ \cup \partial \mathcal{D}^+))$. Then each component of $\partial \mathcal{D}^-$ bounds both +-compressing disk and --compressing disk for F. Hence F is reducible, but this contradicts Proposition 2.3. Similarly, if $c(\rho(F; \partial E^+ \cup \partial \mathcal{D}^+ \cup \partial \mathcal{C}^-)) = c(\rho(F; \partial \mathcal{C}^-))$, then we are done. Hence we obtain a \pm -compressing disk system $E^+ \cup \mathcal{D}^+$, \mathcal{C}^- for

FIGURE 2. Construction of a Heegaard splitting of E(F')

F which satisfies the conditions (1), (2) and have more minimal complexity than $\mathcal{D}^+ \cup \mathcal{D}^-$. This contradicts the property of $\mathcal{D}^+ \cup \mathcal{D}^-$.

By Lemma 7, we can deform the decomposing sphere S by an isotopy so that S intersects F' in a single arc. Put $E(S) = S \cap E(F')$. Then E(S) is a ∂ -reducing disk for E(F'). Otherwise, at least one of K_1 and K_2 is trivial, and Theorem 1 clearly holds. Let V_0 and W_0 be components of V and W respectively, where V_0 contains A and W_0 is the next handlebody to V_0 . Put $H_0 = V_0 \cap W_0$. Then H_0 gives a Heegaard splitting of $V_0 \cup W_0$. By Lemma 7, we can deform E(S) by an isotopy so that E(S) is contained in $V_0 \cup W_0$. By applying this situation to [1, Lemma 1.1] or [3, Theorem 1.3], we may assume that E(S) intersects E(S) in a single loop without moving E(S). Moreover, there exist a complete meridian disk system E(S)0 of E(S)1 such that E(S)2 and E(S)3 and E(S)4. Thus E(S)5 intersects E(S)6 in a single arc, hence we have the conclusion.

References

- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology and its Appl. 27 (1987) 275-283.
- [2] J. P. Hempel, 3-Manifolds, Volume 86 of Ann. of Math. Stud. (Princeton Univ. Press, 1976).
- [3] C. Hayashi and K. Shimokawa, Thin position for 1-subminifold in 3-manifold, preprint.
- [4] W. H. Jaco, Lactures on Three-manifold Topology, Volume 43 of CBMS Regional Conf. Ser. in Math. (American Math. Soc., 1980).
- [5] R. Kirby, problemlems in low-dimensional topology, Part 2 of Geometric Topology (ed. W. H. Kazez), Studies in Adv. Math., (Amer. Math. Soc. Inter. Press, 1997).
- [6] M. Kobayashi and T. Kobayashi, On canonical genus and free genus of knot, J. Knot Theory and Its Ramifi. 5 (1996) 77-85.
- [7] Y. Moriah, The free genus of knots, Proc. Amer. Math. Soc. 99 (1987) 373-379.
- [8] M. Ozawa, Synchronism of an incompressible non-free Seifert surface for a knot and an algebraically split closed incompressible surface in the knot complement, to appear in Proc. Amer. Math. Soc.
- [9] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953) 131-286.

Department of Mathematics, School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan

E-mail address: ozawa@mn.waseda.ac.jp