Micro B: Problem Set 9

Bayesian Nash Equilibrium*

Anders Munk-Nielsen

Spring 2023

Question 1 (Bayes' Rule). Use Bayes' rule to solve the following problem:

"A cab was involved in a hit and run accident at night. 85% of the cabs in the city are Green and 15% are Blue. A witness later recalls that the cab was Blue, and we know that this witness' memory is reliable 80% of the time."

Calculate the probability that the cab involved in the accident was actually Blue.

Question 2 (Two-player Bayesian Game). Consider the following static game, where a is a real number:

$$\begin{array}{c|cc} & L & R \\ U & 2,1 & 0,a \\ D & 0,1 & 1,a \end{array}$$

- (a) Suppose that a=2. Does any player have a dominant strategy? What about when a=-2?
- (b) Now assume that player 2 knows the value of a, but player 1 only knows that a=2 with probability 0.5 and a=-2 with probability 0.5. Explain how this situation can be modeled as a Bayesian game, describing the players, their action spaces, type spaces, beliefs and payoff functions.
- (c) Find the Bayes-Nash equilibrium of the game described in b).

Question 3 (Cournot with Imperfect Information about Demand). Consider the following Cournot games:

- Players: two firms, $N = \{1, 2\},\$
- Actions: quantities $q_1, q_2 \in [0, \infty) = S_1 = S_2$,
- Payoffs: common marginal cost c > 0 and market demand

$$P(Q; a) = a - Q, \quad a > 0, Q \equiv q_1 + q_2,$$

yielding the ex post profit function

$$\pi_i(q_1, q_2; a) = [P(q_1 + q_2; a) - c]q_i, \quad i = 1, 2.$$

• Types: Firms are uncertain about market demand, parameterized by a. For simplicity, assume that a can take two values, a_L and a_H , $a_L < a_H$, which occurs with probabilities $\Pr(a = a_H) = \theta$, and $\Pr(a = a_L) = 1 - \theta$.

^{*}For prior contributions, thanks to Jeppe Dinsen.

Microeconomics B Problem Set 9

- Firm 1 observes a before choosing its price,
- Firm 2 does not and must choose a price only knowing the distribution of a.
- (a) Solve for the Bayesian Nash equilibrium.

Question 4 (Python). Solve question 3 using Python. To make the game numerically workable, assume that

- $a \in A \equiv \{0.1, 0.5, 1.0, 2.0\}$ with equal probabilities. So $\Pr(a) = \frac{1}{4}$ for all $a \in A$.
- c = 0.1
- Firm action spaces are bounded to the unit interval: $q_1, q_2 \in [0; 1] = S_1 = S_2$.

Solve the following problems:

- (a) Code up the *ex post* profit functions for both players (i.e. conditional on *a*'s realization).

 Hint: This is already done for you in uncertain_demand.ipynb
- (b) Code up the *interrim* expected profit functions.
 - Firm 1: This takes three scalar inputs, q_1 and q_2 and a and returns a scalar: $\pi_1(q_1, q_2; a)$.
 - Firm 2: This takes the two firms' strategies as inputs: the scalar q_2 for firm 2 and the vector $q_1 = (q_1(0.1), q_1(0.5), q_1(1.0), q_1(2.0))$ for firm 1. It returns the expected profit (a scalar):

$$\mathbb{E}_a[\pi_2(q_1, q_2; a)] = \sum_{a \in A} \Pr(a) \pi_2(q_1(a), q_2; a).$$

- (c) Code up the best response functions for both players:
 - Firm 1: Takes two scalars, q_1 and a: $q_1(a) = BR_1(q_2, a)$.
 - Firm 2: Takes the |A|-vector, $(q_1(a))_{a\in A}$ and $A: q_2 = BR_2((q_1(a))_{a\in A})$.
- (d) Find the pure strategy Bayesian Nash equilibrium as the pair of quantities that solve

$$q_1^*(a) = BR_1(q_2^*, a), \quad \forall a \in A$$

 $q_2^* = BR_2(q_1^*).$

In other words,

$$q^* = BR(q^*),$$

where BR is the "stacked" best response functions operating on $q \in \mathbb{R}^5$.

Hint: You can either use the Iterated Best Response algorithm or **fsolve** on the mapping $q \mapsto BR(q) - q$.

Question 5 (Nature chooses the game). Consider the following static Bayesian game:

- (i) Nature determines whether the payoffs are as in Game 1 or as in Game 2, each game being equally likely.
- (ii) Player 1 learns whether nature has drawn Game 1 or Game 2, but player 2 does not.
- (iii) The players must choose actions simultaneously.

Microeconomics B Problem Set 9

Find all the pure-strategy Bayesian Nash equilibria of this game.

$$\begin{array}{c|ccccc} L & R & & L & R \\ T & 1,1 & 0,0 & & & T & 0,0 & 0,0 \\ B & 0,0 & 0,0 & & & B & 0,0 & 2,2 \end{array}$$

Game 1 (probability $\frac{1}{2}$) Game 2 (probability $\frac{1}{2}$)

Question 6 (Python). Solve question 5 using Python.

Hint: Use the Python approach with "wide matrices". You may also want to consider the first problem from the 2021 exam.

Microeconomics B Problem Set 9

If time permits

Question 7 (Repeated Game). Consider the following game G:

	X	Y	Z
A	6, 6	0,8	0, 0
B	7,1	2, 2	5, 1
C	0,0	1,6	4, 5

Suppose that G is repeated infinitely many times, so that we have $G(\infty, \delta)$. Define trigger strategies such that the outcome of all stages is (A, X). Find the smallest value of δ such that these strategies constitute a SPNE.

Question 8. Consider the public goods game from lecture 7. Suppose now instead that there is two-sided incomplete information. In particular, the cost of writing the reference is uniformly distributed between 0 and 2:

$$c_i \sim u(0,2) \text{ for } i = 1,2$$

In this setting, we can show that the players optimally follow a 'cutoff' strategy. Thus, the equilibrium strategies take the form

$$s_{1}^{*}\left(c_{1}\right) = \begin{cases} \text{Write} & \text{if } c_{1} \leq c_{1}^{*} \\ \text{Don't} & \text{if } c_{1} > c_{1}^{*} \end{cases} \qquad s_{2}^{*}\left(c_{2}\right) = \begin{cases} \text{Write} & \text{if } c_{2} \leq c_{2}^{*} \\ \text{Don't} & \text{if } c_{2} > c_{2}^{*} \end{cases}$$

(a) Let $z_{-i}^* = \Pr(s_{-i}^* = \text{Write})$, i.e. the probability that the other players plays Write in equilibrium. Argue that

$$1 - c_i^* = z_{-i}^*$$

Hint: Calculate i's expected payoff from writing the reference and from not writing the reference, conditional on z_{-i}^*

- (b) A standard result on uniform distributions gives the following: if $x \sim u(0,2)$, then $\Pr(x < a) = \frac{a}{2}$. Use this to find z_i^* .

 Hint: Use the equilibrium strategy and your knowledge of the distribution of c_{-i} .
- (c) Use the result from the previous question together with (1) to find (c_1^*, c_2^*) .
- (d) What's the probability of underinvestment (i.e. that nobody writes the reference)? What's the probability of overinvestment (i.e. that both write the reference)?