Propositional Logic I

An argument is a pattern of inference. It is *valid* if there is no interpretation under which all the argument's premises are true but the conclusion is false. Arguments are valid if they do not produce falsehoods from true premises.

Propositions

A proposition is an entity that has a truth value. It is either true (T) or false (F). Usually, a proposition is expressed in a sentence of a natural language:

- (1) 'Jim likes Wagner' is an English sentence that expresses the proposition *that* Jim likes Wagner; or
- (2) 'Descartes aimait le vin' is a French sentence that expresses the proposition *that* Descartes liked wine.

Preliminaries

- (a) Greek letters (ϕ and ψ) are metavariables, which stand for *any* sentence of the language of propositional logic (PL). They are metalinguistic variables that we use to think about the object language, which is here PL.¹ Occasionally, A, B, and C are used as metavariables.
- (b) There is a distinction between *use* and *mention*. Quotation marks allow us to mention a word or sentence: (i) Socrates has a beard; (ii)* 'Socrates' has a beard; (iii) 'Der Hund bellt' is a German sentence; (iv) The formula 'P v Q' is a sentence in PL; (v)* P means that Socrates is bearded.

Approaching PL

- (3) Jim plays the piano or Jackie sings. Jackie does not sing. So Jim plays the piano.
- (4) (Jim plays the piano) or (Jackie sings). Not (Jackie sings). So (Jim plays the piano).
- (5) Lexicon or interpretation: P = (Jim plays the piano), Q = (Jackie sings)
- (6) *P* or *Q*. Not *Q*. So *P*.
- (7) P v Q, ~Q ∴ P, where '∴' is an inference marker that means 'therefore' in PL.² This is sometimes also put in a vertical way, including a line as the inference marker:

The aim of PL is to represent or express how propositions are connected. Translation into PL can reveal the logical structure of natural languages.

¹ Similarly, 'F' is a metalinguistic symbol too; it does not belong to PL.

² No quotation marks in the object language; in metalanguage: $(P \lor Q)'$, $\sim Q' \models P'$ says that the PL inference which concludes from $(P \lor Q)'$ and $\sim Q'$ to P' is valid.

Syntax of PL

The grammar of PL defines which symbols are meaningful sentences in PL. The syntax sets out what counts as a well-formed formula (wff) in that language.

- (i) Basic sentence letters or atomic formulae: P, Q, R, S, etc. (with or without indices for more sentences)³
- (ii) Connectives or logical constants: &, \vee , \sim , \supset , \equiv (connectives generate complex formulae)
- (iii) Brackets for scope: (,)

Definition of a wff in PL:

- Any atomic formula is a wff.
- If ϕ and ψ are wff, then $(\phi \& \psi)$, $(\phi \lor \psi)$, $\sim \phi$, are also wffs.⁴
- Nothing else is a wff in PL.

Semantics of PL

PL needs an interpretation, which makes its sentences meaningful and available to a truth evaluation. (Remember: propositions have truth values.)

Connective	English	Symbol
Negation ⁵	'it is not the case that'	~ or ¬
Conjunction	'and', 'both'	& or A or ·
Disjunction	'or', 'at least one'	V
Material Implication, Conditional	'if then'	\supset or \rightarrow
Material Equivalence, Biconditional	if and only if	≡ or ↔

Truth Functionality: the truth of a complex formula is a function of the truth of its constituent formulae. The connectives are defined by a specific distribution of truth values (T, F, or 1, 0). There are 16 such distributions for dyadic connectives.

ϕ	~ <i>φ</i>	9	þ	ψ	$\phi \& \psi$	&	Т	1	F		φ	ψ	$\phi \vee \eta$			
Т	F	_		Τ	_	Т				_	Τ	T	T	T		
F	T]	Γ	F	F	F	F		F		Τ	F	Т	F	Τ	F
	1	F	7	Τ	F		•					T	T			
		F	7	F	F						F	F	F			

The *conjunction* of ϕ and ψ is true if and only if ϕ and ψ are both true, and false otherwise. The (inclusive) *disjunction* of ϕ and ψ is true if and only if at least one of ϕ and ψ is true, and false otherwise.

⁵ The negation is a *monadic* 'connective', which only takes one wff. The other connectives are dyadic, and take two wffs.

³ In older English and current German texts, small letters p, q, etc. are often used.

⁴ The sentences $(\phi \supset \psi)$ and $(\phi = \psi)$ are also wffs. But they can be reduced to those mentioned above. Note too that more precisely, we should say: if ϕ and ψ are wff, so is $\lceil (\phi \& \psi) \rceil$. The new quotation marks ('Quine corners') make clearer that the symbols of the object language are mentioned while the metasymbols are used. So, $\lceil (\phi \& \psi) \rceil$ means "the result of writing '(' followed by ϕ (any atomic formula of PL) followed by '&' followed by ψ followed by ')'."