Shortest Path Algorithms

Manmath Narayan Sahoo

Shortest-Path Problems

Shortest-Path problems

- Single-pair. Given two vertices, find a shortest path between them.
- Single-source. Find a shortest path from a given source (vertex s) to each of the vertices. Solution to single-source problem solves single-pair problem efficiently, too.
- All-pairs. Find shortest-paths for every pair of vertices.

Relaxation

- For each vertex v in the graph, we maintain D_v , the estimate of the shortest path from s (initialized to ∞ at the start)
- Relaxing an edge (u,v) with cost d_{uv} means testing whether we can improve the shortest path to v found so far by going through u

Dijkstra's Algorithm

- Non-negative edge weights
- Use Q, a priority queue keyed by D_v (BFS used FIFO queue, here we use a PQ, which is reorganized whenever some D decreases)
- Basic idea
 - maintain a set S of solved vertices
 - at each step select "closest" vertex u, add it to S, and relax all edges from u

Dijkstra's Pseudo Code

Input: Graph G, start vertex s

```
Dijkstra(G(V,E),s)
01 for each vertex u \in V
02 	 D_u \leftarrow \infty
03 Parent, ← nil
04 \, \mathbf{D_s} \leftarrow 0
05 S \leftarrow \emptyset // Set S : already solved vertices
06 Q.init(V) // Q, intially contains all nodes in G
07 while not Q.isEmpty()
0.8
       u \leftarrow Q.extractMin() //chose u with minimum D,
09
       S \leftarrow S \cup \{u\}
10
       for each v ∈ u.adjacent() do
                                                            relaxing
11
          Relax(u, v, G)
                                                            edges
```

Dijkstra's Example

```
Dijkstra(G(V,E),s)
01 for each vertex u \in V
02 \mathbf{D_u} \leftarrow \infty
   \texttt{Parent}_n \leftarrow \texttt{nil}
04 \, \mathbf{D_s} \leftarrow 0
05 S \leftarrow \emptyset
06 Q.init(V)
07 while not Q.isEmpty()
   u \leftarrow Q.extractMin() //grey
0.8
09 S \leftarrow S \cup \{u\} //black
10
   for each v \in u.adjacent() do
11
           Relax(u, v, G)
```


Dijkstra's Example (2)

```
Dijkstra(G(V,E),s)
01 for each vertex u \in V
02
   D'' \leftarrow \infty
03
   \texttt{Parent}_n \leftarrow \texttt{nil}
04 \, \mathbf{D_s} \leftarrow 0
05 S \leftarrow \emptyset
06 Q.init(V)
07 while not Q.isEmpty()
   u \leftarrow Q.extractMin() //grey
0.8
09 S \leftarrow S \cup \{u\} //black
10
   for each v \in u.adjacent() do
11
           Relax(u, v, G)
```


Dijkstra's Example (3)

```
Dijkstra(G(V,E),s)
01 for each vertex u \in V
02 \mathbf{D_u} \leftarrow \infty
03
   \texttt{Parent}_n \leftarrow \texttt{nil}
04 \, \mathbf{D_s} \leftarrow 0
05 S \leftarrow \emptyset
06 Q.init(V)
07 while not Q.isEmpty()
0.8
   u \leftarrow Q.extractMin() //grey
09 S \leftarrow S \cup \{u\} //black
10
   for each v \in u.adjacent() do
11
           Relax(u, v, G)
```


Dijkstra's Algorithm

- Dijkstra's Complexity:
 - $O(|V| \times |E|)$

Bellman-Ford Algorithm

Dijkstra's doesn't work when there are negative edges:

- Shortest path from s to v is s→v (cost=2), but actually the shortest path is s→x→y→v (cost=1)
- Bellman-Ford algorithm detects negative cycles (returns false) or returns the shortest path

Relaxation

- For each vertex v in the graph, we maintain D_v , the estimate of the shortest path from s (initialized to ∞ at the start)
- Relaxing an edge (u,v) with cost d_{uv} means testing whether we can improve the shortest path to v found so far by going through u

Bellman-Ford Algorithm

```
Bellman-Ford (G, S)
01 for each vertex u \in V
02 	 D_n \leftarrow \infty
03 Parent, ← NIL
04 \, \mathbf{D_s} \leftarrow 0
05 for i \leftarrow 1 to |V|-1 do
06
         for each edge (u, v) \in E do
07
             Relax (u, v, G)
08 for each edge (u, v) \in E do
         if D_v > D_u + d_{uv} then
09
10
            return false
11 return true
                                  Cycle
                                 detection
```

```
Relax (u, v, G)
if D<sub>v</sub> > D<sub>u</sub>+d<sub>uv</sub> then
D<sub>v</sub> = D<sub>u</sub>+d<sub>uv</sub>
Parent<sub>v</sub> = u
```

Bellman-Ford Example(1)

```
Bellman-Ford(G,s)

01 for each vertex u ∈ V

02 D<sub>u</sub> ← ∞

03 Parent<sub>u</sub> ← NIL

04 D<sub>s</sub> ← 0

05 for i ← 1 to |V|-1 do

06 for each edge (u,v) ∈ E do

07 Relax (u,v,G)

08 for each edge (u,v) ∈ E do

09 if D<sub>v</sub> > D<sub>u</sub>+d<sub>uv</sub> then

10 return false

11 return true
```


Iteration 1

Iteration 2

Iteration 3 (no relax)

Iteration 4 (no relax)

Negative Length cycle example

Bellman-Ford Algorithm

- Bellman-Ford Complexity:
 - -(|V|-1)|E| + |E| = O(|V|x|E|)

Floyd-Warshall Algorithm

- Find all pair shortest paths
- Can be solved by executing Bellman Ford algorithm |V| times with different sources
 - Complexity: $O(|V|^2 \times |E|)$
 - For dense network/graph O(|V|⁴)
- Floyd-Warshall algorithm finds in O(|V|³) complexity

Floyd-Warshall Algorithm - Idea

 $d_{s,t}^{(i)}$ – the shortest path from s to t containing only vertices $v_1, ..., v_i$

$$d_{s,t}^{(0)} = w(s,t)$$

$$d_{s,t}^{(k)} = \begin{cases} w(s,t) & \text{if } k = 0 \\ \min\{d_{s,t}^{(k-1)}, d_{s,k}^{(k-1)} + d_{k,t}^{(k-1)}\} & \text{if } k > 0 \end{cases}$$

$$\mathsf{D}^{(\mathsf{k})} = [\mathsf{d}_{\mathsf{s},\mathsf{t}}^{(\mathsf{k})}]$$

Floyd-Warshall Algorithm

```
FloydWarshall(matrix W, integer n)
   for k \leftarrow 1 to n do
        for i \leftarrow 1 to n do
             for j \leftarrow 1 to n do
                d_{ii}^{(k)} \leftarrow \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
            end
        end
       //D^{(k)} is formed
   end
   return D^{(n)}
```

Floyd-Warshall Algorithm – Example(1)

W

0	3	8	∞	-4
∞	0	∞	1	7
∞	4	0	∞	∞
2	∞	-5	0	∞
∞	∞	∞	6	0

Floyd-Warshall Algorithm – Example(2)

 $\Pi^{(0)} =$

 $\Pi^{(1)} =$

	0	3	8	∞	-4
	8	0	8	1	7
D ⁽⁰⁾ =	8	4	0	8	8
	2	8	-5	0	8
	∞	∞	∞	6	0

0	0	0		0
	0		0	0
	0	0		
0		0	0	
			0	0

0	3	8	∞	-4
∞	0	∞	1	7
∞	4	0	∞	8
2	5	-5	0	-2
∞	∞	∞	6	0

 $D^{(1)} =$

Floyd-Warshall Algorithm – Example(3)

 $\Pi^{(1)} =$

 $\Pi^{(2)} =$

	0	3	8	8	-4
	8	0	∞	1	7
D ⁽¹⁾ =	8	4	0	8	8
	2	5	-5	0	-2
	8	8	∞	6	0
·					

0	0	0		0
	0		0	0
	0	0		
0	1	0	0	1
			0	0

0	3	8	4	-4
∞	0	∞	1	7
∞	4	0	5	11
2	5	-5	0	-2
∞	∞	∞	6	0

 $D^{(2)} =$

Floyd-Warshall Algorithm – Example(4)

 $\Pi^{(2)} =$

 $\Pi^{(3)} =$

	0	3	8	4	-4
	∞	0	∞	1	7
$D^{(2)}=$	∞	4	0	5	11
	2	5	-5	0	-2
	∞	8	∞	6	0

0	0	0	2	0
	0		0	0
	0	0	2	2
0	1	0	0	1
			0	0

0	3	8	4	-4
∞	0	∞	1	7
∞	4	0	5	11
2	-1	-5	0	-2
∞	∞	∞	6	0

 $D^{(3)} =$

Floyd-Warshall Algorithm – Example(5)

 $\Pi^{(3)} =$

 $\Pi^{(4)} =$

	0	3	8	4	-4
	8	0	8	1	7
D ⁽³⁾ =	8	4	0	5	11
	2	-1	-5	0	-2
	8	8	8	6	0
'					

0	0	0	2	0
	0		0	0
	0	0	2	2
0	3	0	0	1
			0	0

0	3	-1	4	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

 $D^{(4)} =$

Floyd-Warshall Algorithm – Example(6)

 $\Pi^{(4)} =$

 $\Pi^{(5)} =$

	0	3	-1	4	-4
	3	0	-4	1	-1
D ⁽⁴⁾ =	7	4	0	5	3
	2	-1	-5	0	-2
	8	5	1	6	0
,					

0	0	4	2	0
4	0	4	0	1
4	0	0	2	1
0	3	0	0	1
4	3	4	0	0

0	3	-1	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

 $D^{(5)} =$