Gestion des expéditions de véhicules d'urgence et l'optimisation de leurs itinéraires

Yasser Zarhloul Yasser Nabouzi Hamza Mesrar

May 9, 2023

Modélisation

Variables

 x_{ij} : variable binaire indiquant si le véhicule d'urgence i est affecté à l'incident j (1 si oui, 0 sinon).

 y_i : variable binaire indiquant si le véhicule d'urgence i est utilisé (1 si oui, 0 sinon).

 t_{ij} : temps de réponse pour le véhicule d'urgence i lorsqu'il est affecté à l'incident j.

Paramètres

n: nombre total de véhicules d'urgence.

m: nombre total d'incidents.

 d_{ij} : distance entre le véhicule d'urgence i et l'incident j.

 v_{ij} : nombre de virages entre le véhicule d'urgence i et l'incident j.

 C_i : capacité du véhicule d'urgence i.

 L_j : niveau d'urgence de l'incident j.

Fonction objectif

Minimiser la somme des temps de réponse pour tous les véhicules d'urgence et incidents.

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot x_{ij}$$

Contraintes

Chaque incident doit être couvert par au moins un véhicule d'urgence avec une capacité suffisante

$$\sum_{i=1}^{n} C_i \cdot x_{ij} \ge L_j, \forall j$$

Chaque véhicule d'urgence ne peut être affecté qu'à un seul incident

$$\sum_{i=1}^{m} x_{ij} \le 1, \forall i$$

Si un véhicule d'urgence i est affecté à un incident j, alors $y_i = 1$

$$x_{ij} \leq y_i, \forall i, \forall j$$

Le temps de réponse $t_i j$ doit prendre en compte la distance et le nombre de virages :

$$t_{ij} = a \cdot d_{ij} + b \cdot v_{ij}, \forall i, \forall j$$

où a et b sont des constantes représentant le coût en temps par unité de distance et par virage, respectivement.