

信陽解氣學院 数学与统计学院

第10章 数据统计分析

砂 讲授人: 牛言涛 **炒 日期**: 2020年4月7日

第10章 数据统计分析知识点思维导图

计算随机变量 $X \leq K$ 的概率之和(累积概率值),函数cdf

- cdf('name', K, A)
- cdf('name', K, A, B)
- cdf('name', K, A, B, C)
- 说明:返回以name为分布、随机变量 $X \le K$ 的概率之和的累积概率值,name的取值见常见分布函数表。

累积概率函数就是分布函数 $F(x) = P\{X \le x\}$ 在x处的值。

例1: 求标准正态分布随机变量X落在区间($-\infty$, 0.4)内的概率(该值就是概率统计教材中的附表:标准正态数值表)。

<u>例2</u>: 求自由度为16的卡方分布随机变量落在[0, 6.91]内的概率。

```
>>p = cdf('chi2',6.91,16)
p =
0.0250
```



```
>> mu = 0;
>> sigma = 1;
```

% makedist生成指定分布的对象

>> pd = makedist('Normal','mu',mu,'sigma',sigma);

$$>> x = [-2:0.2:2];$$

%cdf第一个参数以makedist对象

- >> y = cdf(pd,x);
- >> stairs(x,y,'LineWidth',1)
- >> title('累积分布图')

%实现同样的功能

- >> y2 = cdf('Normal',x,mu,sigma);
- >> plot(x,y2,'r-','LineWidth',1)
- >> title('累积分布曲线')

例3:设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} ce^{-(3x+4y)}, & x > 0, y > 0 \\ 0, & otherwise \end{cases}$$

- (1) 求常数c;
- (2) 求(X,Y)的联合分布函数;
- (3) 求P{0 < X < 1, 0 < Y < 2};
- (4) $P\{X + Y \ge 1\}$;
- (5) 边缘分布 $f_X(x)$

- >> syms x y c
- >> fh = c*exp(-3*x-4*y);
- >> ccoff = solve(int(int(fh,x,0,inf),y,0,inf) == 1,c) %归一性

C =

12

>> fh = subs(fh,c,ccoff) %密度函数

fh =

12*exp(-3*x - 4*y)

$$(\exp(-3*x) - 1)*(\exp(-4*y) - 1)$$

$$P3 =$$

$$(\exp(-3) - 1)*(\exp(-8) - 1)$$

$$>> P3 = vpa(P3,15)$$

$$P3 =$$

0.949894170705024

$$P3 =$$

0.949894170705024

$$4*exp(-3) - 3*exp(-4)$$

$$>> P4 = vpa(P4,15)$$

0.144201356805253

%求边缘分布密度

$$>> fx = int(fh,y,0,inf)$$

$$fx =$$

3*exp(-3*x)

函数名	调用形式	数学与 注 释
unifcdf	unifcdf (x, a, b)	[a,b]上均匀分布(连续)累积分布函数值 F(x)=P{X≤x}
unidcdf	unidcdf(x,n)	均匀分布(离散)累积分布函数值 F(x)=P{X≤x}
expcdf	expcdf(x, Lambda)	参数为Lambda的指数分布累积分布函数值 F(x)=P{X≤x}
normcdf	normcdf(x, mu, sigma)	参数为mu, sigma的正态分布累积分布函数值 F(x)=P{X≤x}
chi2cdf	chi2cdf(x, n)	自由度为n的卡方分布累积分布函数值 F(x)=P{X≤x}
tcdf	tcdf(x, n)	自由度为n的t分布累积分布函数值 F(x)=P{X≤x}
fcdf	fcdf(x, n ₁ , n ₂)	第一自由度为n ₁ ,第二自由度为n ₂ 的F分布累积分布函数值
gamcdf	gamcdf(x, a, b)	参数为a, b的 分布γ累积分布函数值 F(x)=P{X≤x}
betacdf	betacdf(x, a, b)	参数为a, b的 分布β累积分布函数值 F(x)=P{X≤x}
logncdf	logncdf(x, mu, sigma)	参数为mu, sigma的对数正态分布累积分布函数值

函数名	调用形式	数学与 注 释
nbincdf	nbincdf(x, R, P)	参数为R, P的负二项式分布概累积分布函数值 F(x)=P{X≤x}
ncfcdf	ncfcdf(x, n ₁ , n ₂ , delta)	参数为n ₁ ,n ₂ ,delta的非中心F分布累积分布函数值
nctcdf	nctcdf(x, n, delta)	参数为n, delta的非中心t分布累积分布函数值 F(x)=P{X≤x}
ncx2cdf	ncx2cdf(x, n, delta)	参数为n,delta的非中心卡方分布累积分布函数值
raylcdf	raylcdf(x, b)	参数为b的瑞利分布累积分布函数值 F(x)=P{X≤x}
wblcdf	wblcdf(x, a, b)	参数为a, b的韦伯分布累积分布函数值 F(x)=P{X≤x}
binocdf	binocdf(x,n,p)	参数为n, p的二项分布的累积分布函数值 F(x)=P{X≤x}
geocdf	geocdf(x,p)	参数为 p的几何分布的累积分布函数值 F(x)=P{X≤x}
hygecdf	hygecdf(x,M,K,N)	参数为 M,K,N的超几何分布的累积分布函数值
poisscdf	poisscdf(x,Lambda)	参数为Lambda的泊松分布的累积分布函数值 F(x)=P{X≤x}

分布律

80

100

94: 某人向空中抛硬币100次,落下为正面的概率为0.5。这100次中正面向上的次数记为X:

- (1)试计算x = 45的概率和 $x \le 45$ 的概率;
- (2)绘制分布函数图象和分布列图象。
- >> px=binopdf(45,100,0.5) % 计算x=45的概率值
- px = 0.0485
- >> fx=binocdf(45,100,0.5) % 计算x≤45的累计概率值
- fx = 0.1841
- >> subplot(1,2,1);
- >> x=1:100;
- >> p1=binocdf(x,100,0.5); plot(x,p1,'+'); title('累积分布函数图')
- >> subplot(1,2,2);
- >> p2=binopdf(x,100,0.5); plot(x,p2,'*r'); title('分布律')

<u>例5</u>: 设*X~N*(2, 0. 5)

- (1) 求概率P{1 < X < 2.5};
- (2)绘制分布函数图象和分布密度图象;
- (3)画出区间[1.5,1.9]上的分布密度曲线下方区域。
- >> p=normcdf(2.5,2,0.5)-normcdf(1,2,0.5) p = 0.8186
- >> x=0:0.1:4; %绘制分布函数图象和分布密度图象;
- >> px=normpdf(x,2,0.5);
- >> fx = normcdf(x,2,0.5);
- >> plot(x,px,'+b'); hold on;
- >> plot(x,fx,'*r');
- >> legend('正态分布函数','正态分布密度');
- >> specs=[1.5,1.9]; %画出区间[1.5,1.9]上的分布密度曲线下方区域
- >> pp=normspec(specs,2,0.5)

感谢聆听