

32-bit High Performance 2 Channel ADC Product Datasheet

The Sabre ES9821 is a 32-bit analog-to-digital (A/D) converter targeted for professional audio applications such as recording systems, mixer consoles and digital audio workstations (DAW), test equipment, instruments, audio processors, digital turntables, and consumer applications.

The ES9821 has 2 integrated ADCs which use ESS' patented Hyperstream® II ADC Architecture, which delivers unprecedented audio sound quality and specifications, including a DNR of +120dB & THD+N of -112dB in 2 channel mode.

The SABRE® ADC supports S/PDIF, I2S master/slave, and TDM outputs, and Hardware mode for guick configurations.

The ES9821 has built-in preprogramed filter coefficients to match perfectly with the SABRE PRO Series of DACs including the ES9038PRO. These complimentary filters allow for analog-digital-analog processing with the upmost audio fidelity and minimized time-domain smearing.

The ES9821 has an Ultra-Low Noise Floor Bandwidth of 200kHz. This bandwidth is up to 10 times wider than the competition, enabling higher resolution at higher sample rates.

FEATURE	DESCRIPTION
+120dB DNR per channel w/o PLL -112dB THD+N per channel w/o PLL	Unprecedented dynamic range and ultra-low distortion
High Sample Rates	Up to PCM 768kHz
Customizable filter characteristics	8 presets of digital optimal filters
Multiple Output formats available	PCM, TDM, and S/PDIF outputs are available
I2C, SPI, and Hardware interface control	Configured by microcontroller or other I2C/SPI master, or pins through Hardware Mode
Ultra-Low Noise Floor Bandwidth	200kHz bandwidth enabling higher resolution at higher sample rates
Integrated low noise ADC reference regulators	Reduced BOM cost, PCB area and improved DNR if required
Low Power Consumption	Simplifies power supply design
Low Pin Count Standardized Packaging	5mm x 5mm, 28 pin QFN

Applications

- Professional digital audio workstations Audio Recording
- Very high-quality microphones
- High quality record turntable to USB conversion

Table of Contents

Applications	
Table of Contents	2
List of Figures	5
List of Tables	6
Functional Block Diagram	7
ES9821Q Package	8
28 QFN Pinout	
28 QFN Pin List	9
Configuration Modes	11
Software Mode	11
I ² C	11
SPI	11
Required Software Mode Startup Sequence	11
Hardware Mode	12
Design Information	12
Muting	13
DC Blocking	13
S/PDIF	13
TDM Channel Mapping	13
Hardware Mode Pin Configurations	14
Required Hardware Mode Startup Sequence	16
Digital Features	17
Digital Signal Path	17
Audio Output Formats	17
PCM	17
TDM	18
S/PDIF	18
GPIO Configuration	19
Interrupts	20
THD Compensation	20
Digital Filters	21
PCM Filter Properties	21
PCM Filter Latency	24
PCM Filter Frequency Response	25

PCM Filter Impulse Response	29
64FS Mode	
Clock Distribution	
I2S Master Clock Rate Configurations	
I2S Slave Clock Rate Configurations	
Digital Audio Output Port	
PCM Pin Connections	
TDM Pin Connections	
S/PDIF Pin Connections	
Analog Features	
APLL	
PLL Registers	
Absolute Maximum Ratings	
IO Electrical Characteristics	
Recommended Operating Conditions	
Power Consumption	
Performance	44
Timing Requirements	45
I2C Slave Interface	
SPI Slave Interface	46
SPI Commands	46
PCM/TDM Timing Requirements	47
MCLK edge to BCK edge	47
Register Overview	48
Standard I ² C Slave Interface (Device Address 0x40,0x42,0x44,0x46)	48
Read/Write Registers	48
Read-only Registers	48
Synchronous I ² C Slave Interface (Device Address 0x48,0x4A,0x4C,0x4E)	48
Multi-Byte Registers	48
Register Map	49
Register Listing	
System Registers	
GPIO Registers	59
ADC Registers	
PLL Registers	76
Readback Registers	82

ES9821 Reference Schematic (Hardware Mode)	84
ES9821 Reference Schematic (Software Mode)	85
Internal Pad Circuitry	87
28 QFN Package Dimensions	89
28 QFN Top View Marking	90
Reflow Process Considerations	
Temperature Controlled	91
Manual	92
RPC-1 Classification reflow profile	92
RPC-2 Pb-Free Process – Classification Temperatures (Tc)	93
Ordering Information	94
Revision History	95

List of Figures

Figure 1 – ES9821 Block Diagram	7
Figure 2 – ES9821Q 28 pin QFN pinout	8
Figure 3 – Hardware mode pin configurations	12
Figure 4 – Hardware mode startup sequence for modes	16
Figure 5 – Digital signal path	17
Figure 6 – Left Justified (LJ) subset of PCM mode.	17
Figure 7 – I2S subset of PCM mode	17
Figure 8 – TDM connection of several ES9821 devices in parallel	18
Figure 9 – TDM128 mode	18
Figure 10 – TDM256 mode	18
Figure 11 – Minimum Phase 64FS filter response	33
Figure 12 – Minimum Phase 64FS Impulse response	33
Figure 13 – ES9821 Clock Distribution	34
Figure 14 – Functional Block Diagram of ES9821 APLL	40
Figure 15 – I2C Slave Control Interface Timing	45
Figure 16 – I2C single byte examples of read and write instructions	46
Figure 17 – SPI single byte write	46
Figure 18 – SPI single byte Read	46
Figure 19 – SPI multi-byte read	46
Figure 20 – 45/49MHz MCLK with BCK phase relationship	47
Figure 21 – 22/25MHz MCLK with BCK phase relationship	47
Figure 22 – ES9821Q Reference schematic for normal operation in Hardware (HW) mode	84
Figure 23 – ES9821Q Reference schematic for normal operation in Software (SW) mode	85
Figure 24 – Reference schematic ADC input stage for Single Ended (S/E) and differential input	86
Figure 25 – 28 QFN package dimensions	89
Figure 26 – ES9821Q QFN Marking	90
Figure 27 – IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D 1)	91

List of Tables

Table 1 - 28 QFN pin list	10
Table 2 - Available I2C addresses	11
Table 3- Available SPI commands	11
Table 4 - Hardware mode configurations	15
Table 5 – Standard GPIO Functions	19
Table 6 – PCM Filter Properties	23
Table 7 - Latency of Pre-Programmed Digital Filters	24
Table 8 - PCM Filter Frequency Response	28
Table 9 - PCM Filter Impulse Response	29
Table 10 - Latency of Minimum phase 64FS filter	32
Table 11 – Minimum Phase 64FS Filter Properties	32
Table 12 - I2S Master Clock Rate Configurations	37
Table 13 - I2S Slave Clock Rate Configurations	38
Table 14 - PCM pin connections	39
Table 15 - TDM pin connections	39
Table 16 - S/PDIF pin connections	39
Table 17 - Absolute maximum ratings	41
Table 18 - IO electrical characteristics	41
Table 19 - Recommended operating conditions	42
Table 20 – 49.152MHz MCLK power consumption	43
Table 21 – Performance test results	44
Table 22 - I2C Slave Control Interface Timing definitions	46
Table 23 – Timing relationship for 45/49MHz MCLK & BCK	47
Table 24 – Timing relationship for 22/24MHz MCLK & BCK	47
Table 25 – ES9821 Register Map	50
Table 26 – Internal pad circuitry	88
Table 27 – RPC-1 Classification reflow profile	92
Table 28 – RPC-2 Pb free classification temperatures	93
Table 29 – Ordering information	94

Functional Block Diagram

Figure 1 – ES9821 Block Diagram

ES9821Q Package

28 QFN Pinout

(Pin 29 is QFN package pad, see package dimensions)

ES9821Q (Top View)

Figure 2 - ES9821Q 28 pin QFN pinout

Note: Pin 29 is a package pad, used for heat dissipation and is not electrically connected

28 QFN Pin List

Pin	Name	Pin Type	Reset State	Pin Description
1	MISO/ADDR0/MUTE_MCLK_CTRL	I/O	HiZ	Serial communication for SPI/I2C & HW interface pin, controlled by MODE pin
2	SCLK/SCL/HW1	I/O	HiZ	Serial Clock for SCLK (SPI), SCL (I2C), also HW1 controlled by MODE pin
3	MOSI/SDA/HW0	I/O	HiZ	Serial communication for SPI/I2C & HW0 interface pin, controlled by MODE
4	AVCC	Power	Power	3.3V Supply
5	AGND	Ground	Ground	Analog Ground
6	VREF	Power	Power	Low Noise reference (internal) for bandgap circuitry
7	VREF_BUF	Power	Power	Low Noise regulator output
8	AGND	Ground	Ground	Analog Ground
9	IN_P1	Al	HiZ	ADC Channel 1 differential positive (+) input
10	IN_M1	Al	HiZ	ADC Channel 1 differential negative (-) input
11	IN_M2	Al	HiZ	ADC Channel 2 differential negative (-) input
12	IN_P2	Al	HiZ	ADC Channel 2 differential positive (+) input
13	AVCC_ADC	Power	Power	ADC reference voltage 3.3V Supply
14	CHIP_EN	I/O	HiZ	Active-high chip enable.
15	ACLK2	Al	HiZ	Auxiliary Clock Input 2
16	RT1	I	HiZ	Reserved. Must be connected to DGND for normal operation.
17	ACLK1	Al	HiZ	Auxiliary Clock Input 1
18	MODE	I/O	HiZ	I2C/SPI Control selection or HW mode
19	PLL_HVREG	Power	Power	Low Noise reference for PLL regulator
20	DGND	Ground	Ground	Digital Core Ground
21	AVDD	Power	Power	3.3V, I/O Supply
22	DVDD	Power	Power	Digital Core Supply. Internally Supplied
23	GPIO5/HW4	I/O	HiZ	General I/O w/extended functions, HW4 mode control pin controlled by MODE
24	GPIO4/HW3	I/O	HiZ	General I/O w/extended functions, HW3 mode control pin controlled by MODE
25	DATA2/GPIO3	I/O	HiZ	Serial Data pin, also general I/O w/extended functions
26	DATA1/GPIO2	I/O	HiZ	Serial Data pin, also general I/O w/extended functions

27	DATA_CLK/GPIO1	I/O	HiZ	Serial Clock pin, also general I/O w/extended functions
28	SS/ADDR1/HW2	I/O	HiZ	Serial communication for SPI/I2C & HW2 interface pin, controlled by MODE pin
29*	Package PAD	-	-	Not electrically connected, used for heat dissipation

Table 1 - 28 QFN pin list

Note: Pin 29 is the package pad. See 28 QFN package dimensions for sizing. Connect to DGND if desired.

Configuration Modes

The ES9821 supports hardware and software configuration modes. Hardware mode allows for simplicity, and software mode allows for more configuration flexibility and customization.

Software Mode

The registers for the ES9821 can be accessed either using an I²C or SPI interface.

The MODE pin (pin 18) determines which interface will be used.

I²C

Table 2 - Available I2C addresses

- MODE (Pin 18) GND
- Connect per I²C standard
 - SDA (Pin 3)
 - SCL (Pin 2)
 - ADDR0 (Pin 1)
 - ADDR1 (Pin 28)
- ADDR0 & ADDR1 determine the I²C address

I2C Slave Address	I2C Synchronous Slave Address	ADDR1	ADDR0
0x40	0x48	GND	GND
0x42	0x4A	GND	AVDD
0x44	0x4C	AVDD	GND
0x46	0x4E	AVDD	AVDD

SPI

Table 3- Available SPI commands

The SPI slave interface is used when the MODE pin (pin 18) is high.

- Mode (Pin 18) AVDD
- Connect per SPI standard using pins 1-3, and 28
 - SCLK (Pin 2)
 - SS (Pin 28)
 - MOSI (Pin 3)
 - MISO (Pin 1)

SPI command	First byte
Write to PLL registers	7
Write to standard	3
registers	
Read	1

The 4-wire SPI data format is: Command (1 byte) + Address (1 byte) + Data

Required Software Mode Startup Sequence

ES9821 starts up in master mode, if a clock is on ACLK1, DATA_CLK (bit clock) and DATA1 (frame clock) will drive out PCM clocks. If using the device in slave mode, the following registers need to be set immediately after CHIP_EN is asserted to avoid two masters driving clocks into the same digital serial audio bus:

- 1. Register 29[1:0] = 2'b00, tri-states GPIO1 and GPIO2 outputs.
- 2. Register 26[7:0] = 8'h11, changes GPIO1 and GPIO2 config, from 'Aux outputs' to 'Aux inputs'
- 3. Register 4[7:0] = 8'h00, Sets the ES9821 from master mode to slave mode.

Hardware Mode

The ES9821 has pre-configured modes that can be set with external pin configuration. These modes configure the ADC for different serial data rates and set the ADC muting.

All Hardware modes use ACLK1 and use the default Minimum phase digital filter.

These modes are set with pins:

- MODE (pin 18)
- HW0 (pin 3)
- HW1 (pin 2)
- HW2 (pin 28)
- HW3 (pin 24)
- HW4 (pin 23)

Each hardware mode pin has 4 states:

- 0 Pin directly connected to GND
- 1 Pin directly connected to AVDD
- Pull 0 Pin pulled to GND through 47kΩ resistor
- Pull 1 Pin pulled to AVDD through 47kΩ resistor

Design Information

Each hardware mode pin can be configured either with a pull-up or pull-down resistor. For the pull states a $47k\Omega$ resistor is recommended.

The HW0 and HW1 pins never require a pull up or pull-down resistor.

Figure 3 – Hardware mode pin configurations

Muting

MUTE_MCLK_CTRL (Pin 1) is used to control the muting of the output and MCLK rate while in Hardware Mode:

- 0 Mute, 24.576MHz / 22.579MHz
- 1 Unmuted, 24.576MHz / 22.579MHz
- Pull 0 Mute, 49.152MHz / 45.158MHz
- Pull 1 Unmuted, 49.152MHz / 45.158MHz

DC Blocking

GPIO4/HW3 (Pin 24) is used to control the ADC's DC Blocking feature while in Hardware Mode:

- 0 DC blocking disabled
- 1 DC blocking enabled

S/PDIF

In hardware modes #4-7, S/PDIF is encoded and output from GPIO5/HW4 in addition to the Left Justified data on the digital serial port (DCLK, DATA1, DATA2)

TDM Channel Mapping

In TDM hardware modes, ES9821 supports 4 channels, 8 channels, 16 channels and up to 32 channels per data line through autodetection. For 32 channels, GPIO5/HW4 is used to add 16 to the channel mapped. For example, Hardware modes 16 and 32 are the same hardware configuration except for GPIO5/HW4; HW mode 16 maps the outputs to slots 1 and 2, while HW mode 32 maps the outputs to slots 16 and 17.

Hardware Mode Pin Configurations

HW	FS (kHz)	BCK (MHz)	MCLK (MHz)	BCK/Channel	Channel Slots	MODE	HW2	HW1	HW0
Mode			I2S Mast	er Mode, Ext MCL	_K				
0	MCLK / 128	MCLK / 2	24.576/49.152	32	1,2	Pull 0	0	0	0
1	MCLK / 256	MCLK / 4	24.576/49.152	32	1,2	Pull 0	0	0	1
2	MCLK / 512	MCLK / 8	24.576/49.152	32	1,2	Pull 0	0	1	0
3	MCLK / 1024	MCLK / 16	24.576/49.152	32	1,2	Pull 0	0	1	1
		LJ	Master, EXT MCL	(with S/PDIF en	abled on GI	PIO5/HW4)		
4	MCLK / 128	MCLK / 2	24.576/49.152	32	1,2	Pull 0	Pull 0	0	0
5	MCLK / 256	MCLK / 4	24.576/49.152	32	1,2	Pull 0	Pull 0	0	1
6	MCLK / 512	MCLK / 8	24.576/49.152	32	1,2	Pull 0	Pull 0	1	0
7	MCLK / 1024	MCLK / 16	24.576/49.152	32	1,2	Pull 0	Pull 0	1	1
			I2S Slave, Ext	MCLK, AutoDete	ct FS and B	CK			
8	8 < FS ≤ 384	64FS	24.576/49.152	32	1,2	Pull 0	Pull 1	0	0
			LJ Slave, A	utoDetect FS and	ВСК				
12	8 < FS ≤ 384	64FS	24.576/49.152	32	1,2	Pull 0	1	0	0
		TDM L	eft Justified Slave	e, Autodetect FS a	and BCK, G	PIO5/HW4	1 =0		
16	8 < FS ≤ 384	Auto (64FS, 128FS, 256FS, 512FS, 1024FS)	24.576/49.152	32	1,2	Pull 1	0	0	0
17	8 < FS ≤ 384	Auto (128FS, 256FS, 512FS, 1024FS)	24.576/49.152	32	3,4	Pull 1	0	0	1
18	8 < FS ≤ 384	Auto (256FS, 512FS, 1024FS)	24.576/49.152	32	5,6	Pull 1	0	1	0
19	8 < FS ≤ 384	Auto (256FS, 512FS, 1024FS)	24.576/49.152	32	7,8	Pull 1	0	1	1
20	8 < FS ≤ 384	Auto (512FS, 1024FS)	24.576/49.152	32	9,10	Pull 1	Pull 0	0	0
21	8 < FS ≤ 384	Auto (512FS, 1024FS)	24.576/49.152	32	11,12	Pull 1	Pull 0	0	1
22	8 < FS ≤ 384	Auto (512FS, 1024FS)	24.576/49.152	32	13,14	Pull 1	Pull 0	1	0
23	8 < FS ≤ 384	Auto (512FS, 1024FS)	24.576/49.152	32	15,16	Pull 1	Pull 0	1	1
		TDM Left	Justified Slave, A	utodetect FS and	BCK, GPIO	5/HW4 =0			
24	8 < FS ≤ 384	Auto (32FS, 64FS, 128FS, 256FS, 512FS)	24.576/49.152	16	1,2	Pull 1	Pull 1	0	0

25	8 < FS ≤ 384	Auto (64FS, 128FS, 256FS)	24.576/49.152	16	3,4	Pull 1	Pull 1	0	1
26	8 < FS ≤ 384	Auto (128FS, 256FS, 512FS)	24.576/49.152	16	5,6	Pull 1	Pull 1	1	0
27	8 < FS ≤ 384	Auto (128FS, 256FS, 512FS)	24.576/49.152	16	7,8	Pull 1	Pull 1	1	1
28	8 < FS ≤ 384	Auto (256FS, 512FS)	24.576/49.152	16	9,10	Pull 1	1	0	0
29	8 < FS ≤ 384	Auto (256FS, 512FS)	24.576/49.152	16	11,12	Pull 1	1	0	1
30	8 < FS ≤ 384	Auto (256FS, 512FS, 1024FS)	24.576/49.152	16	13,14	Pull 1	1	1	0
31	8 < FS ≤ 384	Auto (256FS, 512FS)	24.576/49.152	16	15,16	Pull 1	1	1	1
		TDM Left	Justified Slave, A	utodetect FS and	BCK, GPIO	5/HW4 = 1	l		
32	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	17,18	Pull 1	0	0	0
33	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	19,20	Pull 1	0	0	1
34	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	21,22	Pull 1	0	1	0
35	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	23,24	Pull 1	0	1	1
36	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	25,26	Pull 1	Pull 0	0	0
37	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	27,28	Pull 1	Pull 0	0	1
38	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	29,30	Pull 1	Pull 0	1	0
39	8 < FS ≤ 384	Auto (1024FS)	24.576/49.152	32	31,32	Pull 1	Pull 0	1	1
		TDM Left	Justified Slave, A	utodetect FS and	BCK, GPIO	5/HW4 = 1	l		
40	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	17,18	Pull 1	Pull 1	0	0
41	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	19,20	Pull 1	Pull 1	0	1
42	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	21,22	Pull 1	Pull 1	1	0
43	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	23,24	Pull 1	Pull 1	1	1
44	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	25,26	Pull 1	1	0	0
45	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	27,28	Pull 1	1	0	1
46	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	29,30	Pull 1	1	1	0
47	8 < FS ≤ 384	Auto (512FS)	24.576/49.152	16	31,32	Pull 1	1	1	1

Table 4 - Hardware mode configurations

Note 1: In 352.8kHz/384kHz sampling, modes 8,12,16-47 will require a 45.1584Mhz (44.1kHz sampling multiple) or 49.152MHz (48kHz) clock for a 128FS ratio (MCLK/FS ratio).

Note 2: MCLK is shown with a 48kHz multiple clock. If 44.1kHz ratios are required, a clock of 22.5792Mhz/45.1584Mhz should be used.

Required Hardware Mode Startup Sequence

The hardware mode setup sequence is shown below with all hardware pins being defined after CHIP_EN is asserted.

Note: It is recommended that MUTE_CTRL is set low until the HW mode is finalized, then asserted last.

Figure 4 – Hardware mode startup sequence for modes

Digital Features

Digital Signal Path

Figure 5 – Digital signal path

Audio Output Formats

PCM

PCM modes include the subset of I2S and Left-Justified (LJ) modes. These modes are set to carry 2 channels of converted data per digital data line, along with 2 lines of audio clocks, the bit clock, and frame clock.

Figure 6 – Left Justified (LJ) subset of PCM mode.

Figure 7 – I2S subset of PCM mode.

TDM

In TDM modes, several ES9821 are used in parallel to increase the number of channels. Examples of TDM128 and TDM256 are shown below with a single 4 channel and 8 channel data line, respectively. Each ES9821 can be configured in HW or SW mode to output its data to different slots on the TDM DATA line.

Note: In hardware modes, only Left Justified TDM formats are supported. In software mode, the user can configure it to be I2S TDM format.

Figure 8 – TDM connection of several ES9821 devices in parallel

Figure 9 – TDM128 mode

Figure 10 – TDM256 mode

S/PDIF

S/PDIF is transmitted over a single signal line using dual phase encoded data, which allows for clock extraction from the data signal line.

GPIO Configuration

GPIO#_CFG	Function	I/O Direction
0	analog shutdown	Shutdown (default)
1	Aux Inputs	Inputs
2	Aux Outputs	Output
3	PLL_CLK_AVALID	Output
4	PLL_LOCKED	Output
5	Ch1_CLIP_INTERRUPT	-
6	Ch2_CLIP_INTERRUPT	-
7	INTERRUPT (OR of all interrupts)	-
8	S/PDIF data output	Output
9	PWM1	Output
10	PWM2	Output
11	PWM3	Output
12	RESERVED	Output
13	CLK ADC	Output
14	1'b0	Output
15	1'b1	Output

Table 5 – Standard GPIO Functions

Note: GPIOs can be configured using registers 26-31.

For configuring pins as inputs, outputs, or Input/Outputs:

- Input pin
 - o GPIOxx_IE = 1'b1 (Input Enable), Registers 31-29
 - o GPIOxx_OE = 1'b0 (Output Enable), Registers 31-29
- Output pin
 - GPIOxx_IE = 1'b0
 - O GPIOxx_OE = 1'b1
- In/Out pin (Master Mode)
 - GPIOxx_IE = 1'b1
 - o GPIOxx_OE = 1'b1

In Master mode GPIO1 & GPIO 2 should be configured as In/Out pins

Interrupts

Interrupts are enabled using individual configuration registers specific to the interrupt function. For example, the Peak Detection interrupt is enabled via Register 43 ADC_PEAK_DETECTOR_CONFIG.

Once set, interrupts must be manually cleared via Register 12 INTERRUPT.

Register 12 INTERRUPT also allows for masking of the interrupt flag bits in Register 224 READ_SYSTEM_REGISTER_0.

Interrupts can be mapped to GPIO pins using Registers 26-28 GPIO_x/x_CONFIG.

THD Compensation

THD Compensation minimizes the non-linearities of the ADCs and the input stage overall by adding second order and third order terms:

The ES9821 can help compensate for system second and third harmonic distortion. In hardware mode, the coefficients CH1_C2 = CH2_C2 = 6 and CH1_C3=CH2_C3=-13 are used, as they were best to minimize any distortion at large amplitudes.

THD compensation is always enabled but if register values are zero, it will be bypassed.

- Register 56-55, THD COMP C2 CH1
- Register 58-57, THD COMP C3 CH1
- Register 60-59, THD COMP C2 CH2
- Register 62-61, THD COMP C3 CH2

For best results, compensation coefficients should be tuned for each device in-situ.

Digital Filters

The ES9821 has 8 pre-programmed digital filters. The latency for each filter reduces (scales) with increasing sample rates. (See Register 64[4:2])

- Minimum phase (default)
- Linear phase fast roll-off apodizing
- Linear phase fast roll-off
- Linear phase fast roll-off low ripple
- Linear phase slow roll-off
- Minimum phase fast roll-off
- Minimum phase slow roll-off
- Minimum phase slow roll-off low dispersion

Note on Minimum phase filters:

Minimum phase filters are asymmetric filters that work to minimize the pre-echo of the filter, while still maintaining an excellent frequency response and they peak earlier than linear phase filters, resulting in a lower group delay. Minimum phase filters usually feature zero cycles of pre-echo, which can result in improved audio quality.

PCM Filter Properties

Minimum phase					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band				0.46 x fs	Hz
Stop band	-79 dB	0.55 x fs			Hz
Group Delay		2.89/fs		9.23/fs	s
Flatness (ripple)	0.0031				dB

Linear phase fast roll-off apodizing					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band				0.41 x fs	Hz
Stop band	-83 dB	0.50 x fs			Hz
Group Delay			33.25/fs		S
Flatness (ripple)	0.0032				dB

Linear phase fast roll-off

Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band				0.46 x fs	Hz
Stop band	-88 dB	0.54 x fs			Hz
Group Delay			32.88/fs		S
Flatness (ripple)	0.0038				dB

Linear phase fast roll-off low ripple					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band				0.46 x fs	Hz
Stop band	-78 dB	0.55 x fs			Hz
Group Delay			33.00/fs		S
Flatness (ripple)	0.0024				dB

Linear phase slow roll-off					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3 dB			0.50 x fs	Hz
Stop band	-84 dB	0.81 x fs			Hz
Group Delay			5.87/fs		S
Flatness (ripple)	-		-		dB

Minimum phase fast roll-o	off				
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band				0.46 x fs	Hz
Stop band	-86 dB	0.55 x fs			Hz
Group Delay		2.90/fs		9.23/fs	S
Flatness (ripple)	0.0042				dB

Minimum phase slow roll-off					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3 dB			0.43 x fs	Hz
Stop band	-90 dB	0.80 x fs			Hz
Group Delay		2.03/fs		2.53/fs	S
Flatness (ripple)	-		-		dB

Minimum phase slow roll-off low dispersion					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3 dB			0.43 x fs	Hz
Stop band	-89 dB	0.80 x fs			Hz
Group Delay		12.13/fs		12.20/fs	S
Flatness (ripple)	-		-		dB

Table 6 – PCM Filter Properties

PCM Filter Latency

The following table shows the <u>simulated</u> latency of each filter at 44.1kHz sampling rate. The latency was measured at the peak amplitude of the impulse response prior to being down-sampled to 1FS. Latency delay will reduce (scale) with sampling rate.

Digital Filter	Delay(us) @ fs=44.1kHz
Minimum phase (default)	136 us
Linear phase fast roll-off apodizing	825 us
Linear phase fast roll-off	827 us
Linear phase fast roll-off low ripple	819 us
Linear phase slow roll-off	204 us
Minimum phase fast roll-off	147 us
Minimum phase slow roll-off	125 us
Minimum phase slow roll-off low dispersion	349 us

Table 7 - Latency of Pre-Programmed Digital Filters

PCM Filter Frequency Response

The following frequency responses were obtained from software <u>simulations</u> of these filters. Simulation sample rate is 44.1kHz.

Table 8 - PCM Filter Frequency Response

PCM Filter Impulse Response

The following impulse responses were obtained from software <u>simulations</u> of these filters. The impulse responses reported below show the decimation path prior to down-sampling to 1FS and are scaled accordingly.

Table 9 - PCM Filter Impulse Response

64FS Mode

When 64FS (MCLK/FS ratio) is required, it is necessary for the ES9821 to be running in 64FS Mode. If using automatic sample rate detection with Register 0[5] AUTO_FS_DETECT, 64FS Mode cannot be automatically accessed, unless Register 0[6] AUTO_FS_DETECT_BLOCK_64FS is set to 1'b0. 64FS Mode can be manually entered by setting Register 0[4] ENABLE_64FS_MODE to 1'b1, overriding the AUTO_FS_DETECT logic.

- Register 0[6] AUTO_FS_DETECT_BLOCK_64FS
 - 1'b0: Allows AUTO_FS_DETECT to enter 64FS Mode
 - 1'b1: Blocks AUTO_FS_DETECT from entering 64FS mode (default)
- Register 0[5] AUTO FS DETECT
 - o 1'b0: Manually set sample rate with Register 1[6:0]
 - o 1'b1: Automatically determine the sample rate (default)
- Register 0[4] ENABLE_64FS_MODE
 - Use for 64FS ratios, including 705.6/768kHz sample rates

This mode enables the Minimum phase 64FS filter. See filter properties.

Note: 64FS mode is not supported in Hardware mode (HW).

Minimum phase 64FS Mode Latency

The following table shows the <u>simulated</u> latency at 705.6kHz sampling rate. The latency was measured at the peak amplitude of the impulse response prior to being down-sampled to 1FS. Latency delay will reduce (scale) with sampling rate.

Digital Filter	Delay(us) @ fs= 705.6 kHz
Minimum phase 64FS	9us

Table 10 - Latency of Minimum phase 64FS filter

Minimum Phase 64FS Filter Properties

Minimum Phase 64FS					
Parameter	Conditions	MIN	TYP	MAX	UNIT
Pass band	-3 dB			0.57 x fs	Hz
Stop band	-94 dB	0.91 x fs			Hz
Group Delay		1.23/fs		2.68/fs	S
Flatness (ripple)					dB

Table 11 – Minimum Phase 64FS Filter Properties

Minimum Phase 64FS Filter Frequency Response

Figure 11 – Minimum Phase 64FS filter response

Minimum Phase 64FS Impulse Response

The following impulse responses were obtained from software <u>simulations</u> of these filters. The impulse responses reported below show the decimation path prior to down-sampling to 1FS and are scaled accordingly.

Figure 12 – Minimum Phase 64FS Impulse response

Clock Distribution

The ES9821 includes features for selecting and manipulating the input clock source.

The minimum supported external MCLK is 24.576/22.5792MHz. Below this frequency, it is required to use the APLL.

Figure 13 – ES9821 Clock Distribution

The following list shows the various clocks of the ES9821 and the associated registers for configuration.

Analog ADC Clock (ADC_CLK)

ADC_CLK must be maintained to be between 22.5792MHz & 24.576MHz

Reg 2[7] ADC_CLK_DIV2

ADC Back-end Decimation Path Clock (CLK_IADC)

CLK IADC must be maintained to be between 22.5792MHz & 24.576MHz

Reg 2[2:0] SELECT_IADC_NUM

ADC Front-end Decimation Path Clock (CLK_ADC)

- Reg 0[6] AUTO_FS_DETECT_BLOCK_64FS
- Reg 0[5] AUTO_FS_DETECT
- Reg 0[4] ENABLE_64FS_MODE
- Reg 1[6] SELECT_ADC_HALF
- Reg 1[5:0] SELECT_ADC_NUM

Master BCK & WS

- Reg 1[7] AUTO_CH_DETECT
- Reg 3[7] SELECT_I2S_TDM_HALF
- Reg 3[6:0] SELECT I2S TDM NUM
- Reg 4[7] MASTER_BCK_DIV1
- Reg 4[5:4] MASTER_FRAME_LENGTH
- Reg 4[3] MASTER_WS_PULSE_MODE
- Reg 4[2] MASTER_BCK_INVERT
- Reg 4[1] MASTER_WS_INVERT
- Reg 4[0] MASTER_MODE_ENABLE
- Reg 6[7:5] MASTER_WS_SCALE
- Reg 6[4:0] TDM_CH_NUM

TDM Clock (CLK_TDM_ENC)

Reg 0[2] ENABLE_TDM_ENCODE

S/PDIF Clock (CLK SPDIF)

Reg 0[3] ENABLE SPDIF ENCODE

I2S Master Clock Rate Configurations

WS can be scaled down further than shown via Register 6 [7:5] MASTER_WS_SCALE.

When enabling 16-bit mode, the following registers must be modified:

- Register 63 [0:1] enable 16-bit mode on channels 1 and 2
- Register 5 [0] set TDM length to 16-bits
- Register 4 [5:4] set master frame length to 16-bits

MCLK Frequency	WS [kHz]	BCK [MHz]	Bits	Ch	Register 1 [5:0] SELECT_ADC_ NUM		Register 3 [6:0] SELECT_I2S_TDM_N UM	
					Value	Divider	Value	Divider
22.579 MHz	44.1	2.822	32	2	5'd3	4	7'd3	4
	88.2	5.645		2	5'd1	2	7'd1	2
	176.4	11.29 0		2	5'd0	1	7'd0	1
	44.1	1.411	16	2	5'd3	4	7'd3	4
	88.2	2.822		2	5'd1	2	7'd1	2
	176.4	5.645		2	5'd0	1	7'd0	1
24.576 MHz	48	3.072	32	2	5'd3	4	7'd3	4
	96	6.144		2	5'd1	2	7'd1	2
	192	12.28 8		2	5'd0	1	7'd0	1
	48	1.536	16	2	5'd3	4	7'd3	4
	96	3.072		2	5'd1	2	7'd1	2
	192	6.144		2	5'd0	1	7'd0	1
45.158 MHz	44.1	2.822	32	2	5'd7	8	7'd7	8
	88.2	5.645		2	5'd3	4	7'd3	4
	176.4	11.29 0		2	5'd1	2	7'd1	2
	352.8	22.57 9		2	5'd0	1	7'd0	1
	44.1	1.411	16	2	5'd7	8	7'd7	8
	88.2	2.822		2	5'd3	4	7'd3	4
	176.4	5.645		2	5'd1	2	7'd1	2
	352.8	11.29 0		2	5'd0	1	7'd0	1
49.152	48	3.072	32	2	5'd7	8	7'd7	8
MHz	96	6.144		2	5'd3	4	7'd3	4

192	12.28 8		2	5'd1	2	7'd1	2
384	24.57 6		2	5'd0	1	7'd0	1
48	1.536		2	5'd7	8	7'd7	8
96	3.072		2	5'd3	4	7'd3	4
192	6.144	16	2	5'd1	2	7'd1	2
384	12.28 8		2	5'd0	1	7'd0	1

Table 12 - I2S Master Clock Rate Configurations

I2S Slave Clock Rate Configurations

MCLK WS Frequency [kHz]		BCK Ch.		Register [5:0] SELECT_	•		Register 0 [4] ENABLE_2X_MODE		
				Value	Divider	Value	Multiplier		
	44.1	512FS	2	7'd3	4	1'b0	1x		
22.579 MHz	88.2	256FS	2	7'd1	2	1'b0	1x		
22.379 IVITZ	176.4	128FS	2	7'd0	1	1'b0	1x		
	352.8	64FS	2	7'd0	1	1'b1	2x		
	48	512FS	2	7'd3	4	1'b0	1x		
04 570 1411	96	256FS	2	7'd1	2	1'b0	1x		
24.576 MHz	192	128FS	2	7'd0	1	1'b0	1x		
	384	64FS	2	7'd0	1	1'b1	2x		
	44.1	1024FS	2	7'd7	8	1'b0	1x		
45.158 MHz	88.2	512FS	2	7'd3	4	1'b0	1x		
43.130 IVITZ	176.4	256FS	2	7'd1	2	1'b0	1x		
	352.8	128FS	2	7'd0	1	1'b0	1x		
	48	1024FS	2	7'd7	8	1'b0	1x		
49.152 MHz	96	512FS	2	7'd3	4	1'b0	1x		
49.10Z IVIMZ	192	256FS	2	7'd1	2	1'b0	1x		
	384	128FS	2	7'd0	1	1'b0	1x		

Table 13 - I2S Slave Clock Rate Configurations

Digital Audio Output Port

Pins are configured in Master (AUX Output) or Slave (Aux Input) modes through GPIO Configurations.

PCM Pin Connections

See Audio Interface Timing (I2S) for timing criteria. Can select GPIO 4-6 for the datapath.

Pin Name	Function	Description
GPIO1/DATA_CLK	I2S BCLK	I2S clock (Master or Slave)
GPIO2/DATA1	I2S WS	I2S WS (Master or Slave)
GPIO3/DATA2	I2S DATA	I2S DATA out (selectable for 2 channels)

Table 14 - PCM pin connections

TDM Pin Connections

See Registers 7-15 for configuration, Can select GPIO 4-6 for the datapath.

Pin Name	Function	Description
GPIO1/DATA_CLK	TDM BCK	TDM clock (Master or Slave)
GPIO2/DATA1	TDM WS	TDM WS (Master or Slave)
GPIO3/DATA2	TDM DATA	TDM DATA out (default)

Table 15 - TDM pin connections

S/PDIF Pin Connections

S/PDIF Output is provided on GPIOs. Use GPIOx_CFG for S/PDIF output.

Pin Name	Description
GPIOx	GPIOx_CFG setting for GPIO of 4'd8 (S/PDIF output)

Table 16 - S/PDIF pin connections

Analog Features

APLL

Figure 14 - Functional Block Diagram of ES9821 APLL

The ES9821 has a built in Analog PLL (APLL) for generating frequencies that are unavailable externally. For the application note on the APLL, please ask your FAE or distributor.

For calculation of the PLL frequency output, use the following formulas:

$$F_{ref} = \left(\frac{F_{in}}{N_i}\right) \\ F_{vco} = \left(\frac{F_{in}}{N_i}\right) * FBDIV \\ N_{fb} = \frac{2^{25}}{FBDIV} \\ F_{out} = \left(\frac{F_{in}}{N_i}\right) * \frac{N_{fb}}{N_o} \\ F_{out} = \left(\frac{F_{in}}{N_i}\right) * \frac{N_{fb}}{N_i} \\ F_{out} = \left(\frac{F_{in}}{N_i}$$

Where:

- a. FBDIV is a 24-bit number
- b. PLL frequency range requirements:
 - a. Fref requirement: 700kHz < Fref < 12 MHz
 - b. Fvco requirement: 90MHz < Fvco < 110MHz
 - c. Fout requirement: 22.5792/24.576MHz
- c. Ni = input divider
 - Accessible from Reg 202-200[9:1], PLL_CLK_IN_DIV
- d. No = output divider
 - Accessible from Reg 202-200[18:10], PLL_CLK_OUT_DIV
- e. Nfb = feedback divider
 - Accessible from Reg 199-197[23:0], PLL_CLK_FB_DIV

PLL Registers

- NI Register 200-202[9:1] PLL_CLK_IN_DIV
- NO Register 200-202[18:10] PLL CLK OUT DIV
- FBDIV Register 197-199[23:0] PLL_CLK_FB_DIV

Clock Selection

- SEL_PLL_IN Register 193[5:4]
 - Selection of PLL clock source (ACLK1/ACLK2/BCK or DATA CLK)
- SEL_PLL_CLKIN Register 193[3]
 - Enables SEL_PLL_IN source input
- SEL_SYSCLK_IN Register 193[2:1]
 - Selection of the ADC & digital core clock (ACLK1/ACLK2/PLL)

Note: Only set PLL to output 22-24MHz system clock. 45-49MHz system clock is not supported when using the PLL.

Absolute Maximum Ratings

PARAMETER	RATING
Positive Supply Voltage	
AVCC_R/AVCC_LAVCCAVDDDVDD	 +3.6V with respect to Ground +3.6V with respect to Ground +3.6V with respect to Ground +1.4V with respect to Ground
Storage temperature	–65°C to +150°C
Operating Junction Temperature	+125°C
Voltage range for digital input pins	-0.3V to AVDD (nom) + 0.3V
ESD Protection	
Human Body Model (HBM) Charge Device Model (CDM)	2kV 500V

Table 17 - Absolute maximum ratings

WARNING: Stresses beyond those listed under here may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied.

WARNING: Electrostatic Discharge (ESD) can damage this device. Proper procedures must be followed to avoid ESD when handling this device.

IO Electrical Characteristics

PARAMETER	SYMBOL	MINIMUM	MAXIMUM	UNIT	COMMENTS
High-level input voltage	VIH	(AVDD / 2) + 0.4		V	
Low-level input voltage	VIL		0.4	V	
High-level output voltage	VOH	AVDD – 0.2		V	IOH = ((AVDD / 2) +1.4) mA
Low-level output voltage	VOL		0.2	V	IOL = ((AVDD / 2) + 1.7) mA

Table 18 - IO electrical characteristics

Recommended Operating Conditions

These are the recommended operating conditions for the ES9821.

PARAMETER	SYMBOL	CONDITIONS
Operating temperature	TA	–20°C to +85°C
AVCC		3.3V
AVCC_ADC		3.3V
AVDD		3.3V
VREF		Internal
VREF_BUF		Internal
DVDD		Internal
Input DC offset		AVCC/2

Note: The minimum supported external MCLK is 24.576/22.5792MHz. Below this frequency, it is required to use the APLL.

Table 19 - Recommended operating conditions

Power Consumption

Test Conditions (unless otherwise noted)

 $T_A = 25$ °C, AVCC = AVCC_ADC = AVDD = +3.3V, fs = 48kHz, **MCLK = 49.152MHz**, I2S output, with -1dBFS output signal **MCLK of 49.152Mhz will work for all sample rates**

Parameter	Parameter			Max	Unit
	I				
Standby	CHIP_EN = 0				
AVCC			7.1		uA
AVCC_ADC			2.2		uA
AVDD			<1		uA
48kHz, 49.152MHz, HW#3	Master Mode				
AVCC			6.5		mA
AVCC_ADC			6.7		mA
AVDD			12.1		mA
48kHz, 24.576MHz, HW#3	Slave Mode				
AVCC			6.5		mA
AVCC_ADC			6.7		mA
AVDD			7.3		mA

Table 20 – 49.152MHz MCLK power consumption

Performance

Test Conditions (unless otherwise noted)

 $T_A = 25$ °C, AVCC = AVCC_ADC = AVDD = +3.3V, fs = 48kHz, MCLK = 49.152MHz, I2S output, 1kHz

Measurements were done using ESS Evaluation Board (EVB)

Parameter			Min	Тур	Max	Unit
Resolution				32		Bit
0dBFS Input Voltage (differential)				2		Vrms
		·				
THD+N Ratio (w/o PLL) @ fs=48kHz, BW=20Hz-20kHz	O ab was de	-1dBFS		-112	-109	٩D
THD+N Ratio (w/ PLL) @ fs=48kHz, BW=20Hz-20kHz	2 ch mode			-106	-102	dB
DNR A-weighted (w/o PLL)	O ala masa dia	_	117	120		٩D
DNR A-weighted (w/ PLL)	2ch mode	60dBFS	106	110		dB
Interchannel Gain Mismatch				±0.05	±0.1	dB

Table 21 – Performance test results

Timing Requirements

I2C Slave Interface

Figure 15 – I2C Slave Control Interface Timing

Parameter	Symbol	CLK	Standar	d-Mode	Fast-Mode		Unit
		Constraint	MIN	MAX	MIN	MAX	
SCL Clock Frequency	f _{SCL}	< CLK/20	0	100	0	400	kHz
START condition hold time	t _{HD;STA}		4.0	-	0.6	-	μ\$
LOW period of SCL	t _{LOW}	>10/CLK	4.7	-	1.3	-	μs
HIGH period of SCL (>10/CLK)	t _{HIGH}	>10/CLK	4.0	-	0.6	-	μS
START condition setup time (repeat)	tsu;sta		4.7	-	0.6	-	μs
SDA hold time from SCL falling - All except NACK read - NACK read only	t _{HD;DAT}		0 2/CLK	-	0 2/CLK	-	μs s
SDA setup time from SCL rising	tsu;dat		250	-	100	-	ns
Rise time of SDA and SCL	t _r		-	1000		300	ns
Fall time of SDA and SCL	t _f		-	300		300	ns
STOP condition setup time	t _{su;sto}		4	-	0.6	-	μs
Bus free time between transmissions	t _{BUF}		4.7	-	1.3	-	μs
Capacitive load for each bus line	C _b		-	400	-	400	pF

Figure 16 – I2C single byte examples of read and write instructions

SPI Slave Interface

SPI Commands

0x01: Read0x03: Write

o 0x07: Write-only Registers 192-203 (0xC0 – 0xCB)

Figure 17 – SPI single byte write

Figure 18 – SPI single byte Read

Figure 19 – SPI multi-byte read

PCM/TDM Timing Requirements

MCLK edge to BCK edge

The ES9821 has a phase relationship requirement between MCLK (System Clock) and BCK (Bit Clock).

Figure 20 – 45/49MHz MCLK with BCK phase relationship

	Symbol	MCLK [MHz]	Minimum	Maximum	Unit
BCK "↓" to MCLK "↓"	t <i>BFMF</i>	10 150 / 15 1501	-	11	ns
MCLK "↓" to BCK "↓"	t <i>MFBF</i>	49.152 / 45.1584	1.5	-	ns

Table 23 – Timing relationship for 45/49MHz MCLK & BCK

Figure 21 – 22/25MHz MCLK with BCK phase relationship

	Symbol	MCLK [MHz]	Minimum	Maximum	Unit
BCK "↓" to MCLK "↓"	t <i>BFMF</i>	24.576 / 22.5792	-	1	ns
MCLK "↓" to BCK "↓"	t <i>MFBF</i>	24.576 / 22.5792	-	13	ns

Table 24 - Timing relationship for 22/24MHz MCLK & BCK

Register Overview

ES9821 features two different register interfaces. There is a standard I2C slave interface, and a synchronous I2C slave interface. The standard I2C slave interface requires a system clock present through ACLK or from the PLL to write and read registers. The synchronous I2C slave interface does not require a system clock, and allows for write-only configuration of the PLL registers to create a system clock from some reference clock (through DATA_CLK, or ACLK pins).

Standard I²C Slave Interface (Device Address 0x40,0x42,0x44,0x46)

Read/Write Registers

Registers 0-65 (0x00 – 0x41) are read/write registers

Read-only Registers

Registers 224 – 240 (0xE0 – 0xF0) are read only registers.

Synchronous I²C Slave Interface (Device Address 0x48,0x4A,0x4C,0x4E)

This interface contains Write-only registers. These registers can be written even when there is no system clock present. When the device is inactive (CHIP_EN = 0), all peripherals are automatically disabled and all clocks are stopped.

Write-only Registers

Registers 192 - 204 (0xC0 - 0xCC) are write only registers.

Multi-Byte Registers

Multi-byte registers must be written from LSB to MSB. Data is latched when MSB is written.

Multi-byte registers must be read from LSB to MSB. Data is latched when LSB is read.

MSB is always stored in the highest register address.

Register Map

Addr (Hex)	Addr (Dec)	Register	7	6	5	4	3	2	1	0	
0x00	0	SYS CONFIG	SOFT_RESET	AUTO_ FS_DETECT_ BLOCK_64FS	AUTO_ FS_DETECT	ENABLE_ 64FS_MODE	ENABLE_SPDIF _ENCODE	ENABLE_TDM_ ENCODE	ENABLE_ ADC	RESERVED	
0x01	1	ADC CLOCK CONFIG1	AUTO_CH_ DETECT	SELECT_ ADC_HALF			SELECT_	ADC_NUM			
0x02	2	ADC CLOCK CONFIG2	ADC_CLK_DIV2 SELECT I2S	SELECT 12S				SELECT_IADC_NUM			
0x03	3	I2S/TDM MASTER CLK CONFIG	TDM_HALF			S	ELECT_I2S_TDM_NU				
0x04	4	I2S/TDM MASTER MODE CONFIG	MASTER_ BCK_DIV1	MASTER_ WS_IDLE	MASTER_FRA	ME_LENGTH	MASTER_WS_ PULSE_MODE	MASTER_BCK_ INVERT	MASTER_WS_ INVERT	MASTER_ MODE_ENABLE	
0x05	5	TDM CONFIG1			RESERVED			TDM_VALID_ EDGE	TDM_LJ	TDM_LENGTH	
0x06	6	TDM CONFIG2		MASTER_WS_SCALE	SLAVE BCK			TDM_CH_NUM			
0x07	7	TDM SLOT CONFIG CH1	RESE		INVERT			TDM_SLOT_SEL_CH			
0x08 0x09 -	8 9 -	TDM SLOT CONFIG CH2		RESERVED				TDM_SLOT_SEL_CH:	2		
0x0B	11	RESERVED			I WITEDDURT		RVED		- WITEDDURT	LINTERRUPT	
0x0C	12	INTERRUPT	RESE	RVED	INTERRUPT_ CLEAR_CH2_ CLIP_DETECT	INTERRUPT_ CLEAR_CH1_ CLIP_DETECT	RESE	RVED	INTERRUPT_ MASK_CH2_ CLIP_DETECT	INTERRUPT_ MASK_CH1_ CLIP_DETECT	
0x0D 0x0E	13 14						F_CS F CS				
0x0F	15	SPDIF CONFIG					F_CS				
0x10 0x11	16 17						F_CS F CS				
0x12	18	SYNC CONTROL 1	FORCE_ PLL_LOCKED	SYNC_ POSEDGE_ FRAME		<u> </u>	r_cs Rese	RVED			
0x13 - 0x19	19 - 25	RESERVED		110 1112	l .	RESE	RVED				
0x1A	26	GPIO1/2 CONFIG			2_CFG				1_CFG		
0x1B 0x1C	27 28	GPIO3/4 CONFIG GPIO5 CONFIG	GPIO5 READ	GPIO4	4_CFG RESERVED				S_CFG 5 CFG		
0x1C	29	GPIOS CONFIG GPIO SETTINGS 1	GPIO3_SDB	GPIO2_SDB	GPIO1_SDB	GPIO5_OE	GPIO4_OE	GPIO3_OE	GPIO2_OE	GPIO1_OE	
0x1E	30	GPIO SETTINGS 2	INVERT_GPI01	GPIO5_WK_EN	GPIO4_WK_EN	GPIO3_WK_EN	GPIO2_WK_EN	GPIO1_WK_EN	GPIO5_SDB	GPIO4_SDB	
0x1F 0x20	31 32	GPIO SETTINGS 3 PWM1 COUNT	GPIO4_READ	GPIO3_READ	GPIO2_READ	GPIO1_READ PWM1_	INVERT_GPI05 COUNT	INVERT_GPI04	INVERT_GPIO3	INVERT_GPI02	
0x21	33	PWM1 FREQUENCY				PWM1	_FREQ				
0x22	34						_FREQ COUNT				
0x23 0x24	35 36	PWM2 COUNT				PWM2 PWM2					
0x25	37	PWM2 FREQUENCY				PWM2	_FREQ				
0x26 0x27	38 39	PWM3 COUNT				PWM3_ PWM3	COUNT FREQ				
0x28	40	PWM3 FREQUENCY					_FREQ				
0x29	41	ADC DATAPATH CONTROL	RESERVED	ADC_BYPASS_ FIR2X	ADC_BYPASS_ FIR4X		RESERVED ADC_	ADC_	CH1_AVR ADC_	MONO_MODE ADC	
0x2A	42	ADC DC BLOCKING & SCALE CONFIG	ADC_DATA_	SCALE_CH2	ADC_DATA_	SCALE_CH1	SELECT_DC_ BLOCK_CH2	SELECT_DC_ BLOCK_CH1	ENABLE_DC_ BLOCK_CH2	ENABLE_DC_ BLOCK_CH1	
0x2B	43	ADC PEAK DETECTOR CONFIG	ADC_LOCK_ PEAK			ADC_DECAY_RATE			ADC_ ENABLE_PEAK _DETECT_CH2	ADC_ ENABLE_PEAK _DETECT_CH1	
0x2C 0x2D	44 45	ADC CH1 PEAK DETECTOR LEVEL ADC CH2 PEAK DETECTOR LEVEL				ADC_CLIP_	LEVEL_CH1 LEVEL CH2				
0x2E	46	ADC CH1 DC OFFSET				ADC_CH1_I	DC_OFFSET				
0x2F 0x30	47 48	ADO OTT DO OTT OLT				ADC_CH1_I ADC_CH2_I					
0x31	49	ADC CH2 DC OFFSET				ADC_CH2_I	00.0000				
0x32	50	ADC CH1 VOLUME					_VOLUME _VOLUME				
0x33 0x34	51 52	ADO OUR VOLUME					_VOLUME				
0x35	53	ADC CH2 VOLUME					_VOLUME				
0x36 0x37	54 55	ADC VOLUME RATE					JME_RATE 2_CH1				
0x38	56	THD COMP C2 CH1				THD_C	2_CH1				
0x39 0x3A	57 58	THD COMP C3 CH1					3_CH1 3_CH1				
0x3B	59	THD COMP C2 CH2		THD_C3_CH1 THD_C2_CH2							
0x3C 0x3D	60 61		THD_C2_CH2 THD_C3_CH2								
0x3E	62	THD COMP C3 CH2				THD_C	3_CH2				
0x3F 0x40	63 64	RESERVED ADC FIR FILTER		RESERVED			RVED ADC FILTER SHAPE	:	RESE	RVED	
0x40 0x41	65	RESERVED					RVED	•	I INCOL		
0xC0	192	PLL SOFT RESET	AO_SOFT_ RESET	PLL_SOFT_ RESET			RESERVED			PLL_CLK_ PHASE	
0xC1	193	PLL CLOCK SELECT	RESET RESET PRESET PRESET PRESET PRESETVED EN_ADC_CLK SEL_PLL_IN EN_PLL_CLKIN SEL_SYSCLK_IN RES			RESERVED					
0xC2 0xC3	194 195	RESERVED PLL VCO & CP CONFIG		PLL_CP_BIAS_SEL		RESE	RVED RESERVED		PLL VCO PDB	PLL CP PDB	
0xC3	195	PLL VCO & CP CONFIG PLL VCO CONTROL	F	PLL_CP_BIAS_SEL PLL_VCO_BAND_CTR	RL		NLOERVED	RESERVED	FLL_VCO_PDB	FLL_OF_PDB	
0xC5	197	DIT EEEDDAON DIV					(_FB_DIV				
0xC6 0xC7	198 199	PLL FEEDBACK DIV					(_FB_DIV (FB DIV				
0xC8	200	PLL IN & OUT DIV				PLL_CLK_IN_DIV				PLL_FB_ DIV_LOAD	
	1	l								DIV_LUMD	

0xC9	201		RESE	RVED		PLL_CLK	_OUT_DIV		PLL_CLK_IN_DIV	
0xCA	202		PLL_REG_PDB		PLL_RE	G_BYP RESERVED		PLL_CLK_ OUT_DIV_ PHASE_ENB	RESERVED	
0xCB	203	PLL VREF SELECT	RESE	RVED	PLL_DIG_RSTB		RESERVED		PLL_HVREG_VREF_SEL	
0xCC	204	RESERVED				RESE	RVED			
0xE0	224	READ SYSTEM REGISTER 0	CLIP_FLAG_ CLIP_FLAG_ RESERVED							
0xE1	225	CHIP ID				CHI	P_ID			
0xE2 - 0xE6	226 - 230	RESERVED				RESE	RVED			
0xE7	231	TDM VALID READ	RESE	RVED	TDM_VALID			RESERVED		
0xE8	232	GPIO INPUT READ		RESERVED		GPIO5_I_R	GPIO4_I_R	GPIO3_I_R	GPIO2_I_R GPIO1_I_R	
0xE9 - 0xEC	233 - 236	RESERVED	RESERVED							
0xED	237	ADC PEAK CH1	ADC1_PEAK							
0xEE	238	ADC PEAR CHT	ADC1_PEAK							
0xEF	239	ADC PEAK CH2	ADC2_PEAK							
0xF0	240	ADO FLAN OHZ			ADC2_PEAK				·	

Table 25 – ES9821 Register Map

Register Listing

Some RESERVED registers do not default to 0x00 and should not be modified for normal operation. If the value of the reserved registers is changed from the default state, it will be noted. Register defaults are set after CHIP_EN is asserted.

System Registers

Register 0: SYS CONFIG

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0	1'b1	1'b1	1'b0	1'b0	1'b1	1'b0	1'b0

Bits	Mnemonic	Description
[7]	SOFT_RESET	Performs soft reset to digital core except for the PLL REGISTERS. • 1'b0: Disabled (default) • 1'b1: Enabled
[6]	AUTO_FS_DETECT_BLOCK_64FS	Disables AUTO_FS_DETECT from using 64FS mode. • 1'b0: AUTO_FS_DETECT can use 64FS mode • 1'b1: AUTO_FS_DETECT is unable to use 64FS mode (default)
[5]	AUTO_FS_DETECT	 1'b0: Auto FS detect is disabled 1'b1: Auto tune SELECT_ADC_NUM (SYS_CLK/CLK_ADC ratio) according to detected FS (default)
[4]	ENABLE_64FS_MODE	 Enables 64FS mode to run the ADC decimation path at 64FS. 1'b0: 64FS mode disabled (default) 1'b1: 64FS mode enabled Note: This mode should be used for high sample rate (i.e., 705.6/768kHz)
[3]	ENABLE_SPDIF_ENCODE	Enables S/PDIF encoding clock. 1'b0: S/PDIF clock disabled (default) 1'b1: S/PDIF clock enabled
[2]	ENABLE_TDM_ENCODE	Enables I2S/TDM encoding clock. 1'b0: I2S/TDM clock disabled 1'b1: I2S/TDM clock enabled (default)
[1]	ENABLE_ADC	Enables ADC decimation path clocks. 1'b0: Clocks disabled (default) 1'b1: Clocks enabled
[0]	RESERVED	NA

Register 1: ADC CLOCK CONFIG1

Bits	[7]	[6]	[5:0]
Default	1'b0	1'b0	6'd3

Bits	Mnemonic	Description
[7]	AUTO_CH_DETECT	Enables BCK/FRAME ratio auto detect to determine TDM channels. 1'b0: Disabled (default) 1'b1: Auto detect BCK/FRAME ratio to determine the number of TDM channels
[6]	SELECT_ADC_HALF	Specifies whether to half SELECT_ADC_NUM divider. • 1'b0: Divide by SELECT_ADC_NUM + 1 (default) • 1'b1: Divide by half of SELECT_ADC_NUM + 1 Note: Can only produce half of an odd number divide
[5:0]	SELECT_ADC_NUM	Whole number divide value + 1 for CLK_ADC (SYS_CLK/divide_value). • 6'd0: Whole number divide value + 1 = 1 • 6'd3: Whole number divide value + 1 = 4 (default) • 6'd31: Whole number divide value + 1 = 32

Register 2: ADC CLOCK CONFIG2

Bits	[7]	[6:3]	[2:0]
Default	1'b0	4'b0000	3'd0

Bits	Mnemonic	Description
[7]	ADC_CLK_DIV2	Sets ADC clock rate
		1'b0: full rate (default)1'b1: 1/2 rate
[6:3]	RESERVED	NA
[2:0]	SELECT_IADC_NUM	Whole number divide value + 1 for CLK_IADC (SYS_CLK/divide_value).
		 3'd0: Whole number divide value + 1 = 1 (default) 3'd1: Whole number divide value + 1 = 2 3'd7: Whole number divide value + 1 = 8

Register 3: I2S/TDM MASTER CLK CONFIG

Bits	[7]	[6:0]
Default	1'b0	7'd3

Bits	Mnemonic	Description		
[7]	SELECT_I2S_TDM_HALF	Specifies whether to half SELECT_I2S_TDM_NUM divider.		
		 1'b0: Divide by SELECT_I2S_TDM_NUM + 1 (default) 1'b1: Divide by half of SELECT_I2S_TDM_NUM + 1 Note: Can only produce half of an odd number divide 		
[6:0]	SELECT_I2S_TDM_NUM	Whole number divide value + 1 for I2S/TDM master encoding clock (SYS_CLK/divide_value).		
		 7'd0: Whole number divide value + 1 = 1 (default) 7'd1: Whole number divide value + 1 = 2 7'd127: Whole number divide value + 1 = 128 		

Register 4: I2S/TDM MASTER MODE CONFIG

Bits	[7]	[6]	[5:4]	[3]	[2]	[1]	[0]
Default	1'b0	1'b0	2'd0	1'b0	1'b1	1'b1	1'b1

Bits	Mnemonic	Description		
[7]	MASTER_BCK_DIV1	When enabled, master BCK is I2S/TDM master encoding clock. Otherwise, BCK is less than or equal to (I2S/TDM master encoding clock)/2 (unless when ENABLE_64FS_MODE is set).		
		 1'b0: BCK is not I2S/TDM master encoding clock (default) 1'b1: BCK is I2S/TDM master encoding clock 		
[6]	MASTER_WS_IDLE	Sets the value of master WS when WS is idle.		
		1'b0: WS is 0 when idle (default)1'b1: WS is 1 when idle		
[5:4]	MASTER_FRAME_LENGTH	Selects the bit length in each I2S/TDM channel in master mode.		
		 2'd0: 32-bit (default) 2'd2: 16-bit Others: Reserved 		
[3]	MASTER_WS_PULSE_MODE	When enabled, master WS is a pulse signal instead of a 50% duty cycle signal. The pulse width is 1 BCK cycle.		
		1'b0: 50% duty cycle WS signal (default)1'b1: Pulse WS signal		
[2]	MASTER_BCK_INVERT	Inverts master BCK.		
		1'b0: Non-inverted1'b1: Inverted (default)		
[1]	MASTER_WS_INVERT	Inverts master WS.		
		1'b0: Non-inverted1'b1: Inverted (default)		
[0]	MASTER_MODE_ENABLE	Enables I2S/TDM master mode and generates master BCK and master WS.		
		1'b0: Disabled1'b1: Enabled (default)		

Register 5: TDM CONFIG1

Bits	[7:3]	[2]	[1]	[0]
Default	5'd0	1'b1	1'b0	1'b0

Bits	Mnemonic	Description		
[7:3]	RESERVED	NA		
[2]	TDM_VALID_EDGE	Sets on which WS edge the frame starts.		
		 1'b0: Frame starts on posedge of WS 1'b1: Frame starts on negedge of WS (default) 		
[1]	TDM_LJ	Sets left-justified mode.		
		1'b0: Not left-justified (default)1'b1: Left-justified		
[0]	TDM_LENGTH	Sets data length in each channel.		
		1'b0: 32-bit (default)1'b1: 16-bit		

Register 6: TDM CONFIG2

Bits	[7:5]	[4:0]
Default	3'd0	5'd1

Bits	Mnemonic	Description
[7:5]	MASTER_WS_SCALE	In I2S/TDM master mode, tunes master BCK/WS ratio by scaling master WS. It allows more TDM slots in a fixed frame.
		 3'd0: No scale (default) 3'd1: Scale down WS by 2 3'd2: Scale down WS by 4 3'd3: Scale down WS by 8 3'd4: Scale down WS by 16 Others: Reserved
[4:0]	TDM_CH_NUM	Sets number of channels in each frame. • 5'd0: 1 channel • 5'd1: 2 channels (default) • 5'd31: 32 channels

Register 7: TDM SLOT CONFIG CH1

Bits	[7:6]	[5]	[4:0]
Default	2'b00	1'b0	5'd0

Bits	Mnemonic	Description	
[7:6]	RESERVED	NA	
[5]	SLAVE_BCK_INVERT	Slave BCK invert enable. • 1'b0: Non-inverted (default) • 1'b1: Invert BCK input	
[4:0]	TDM_SLOT_SEL_CH1	Selects which TDM channel slot is filled by ADC Ch1 data. • 5'd0: Slot 1 (default) • 5'd1: Slot 2 • 5'd31: Slot 32	

Register 8: TDM SLOT CONFIG CH2

Bits	[7:5]	[4:0]
Default	3'b000	5'd1

Bits	Mnemonic	Description		
[7:5]	RESERVED	NA		
[4:0]	TDM_SLOT_SEL_CH2	Selects which TDM channel slot is filled by ADC Ch2 data. • 5'd0: Slot 1 • 5'd1: Slot 2 (default) • 5'd31: Slot 32		

Register 11-9: RESERVED

Register 12: INTERRUPT

Bits	[7:6]	[5]	[4]	[3:2]	[1]	[0]
Default	2'b00	1'b0	1'b0	2'b00	1'b0	1'b0

Bits	Mnemonic	Description		
[7:6]	RESERVED	NA		
[5]	INTERRUPT_CLEAR_CH2_CLIP_ DETECT	Clears the clip detection interrupt of ADC Ch2 1'b0: Interrupt held if asserted and not masked (default) 1'b1: Interrupt cleared		
[4]	INTERRUPT_CLEAR_CH1_CLIP_ DETECT	Clears the clip detection interrupt of ADC Ch1 1'b0: Interrupt held if asserted and not masked (default) 1'b1: Interrupt cleared		
[3:2]	RESERVED	NA		
[1]	INTERRUPT_MASK_CH2_CLIP_ DETECT	Masks the clip detection interrupt of ADC Ch2 1'b0: Interrupt masked (default) 1'b1: Interrupt held if asserted		
[0]	INTERRUPT_MASK_CH1_CLIP_ DETECT	Masks the clip detection interrupt of ADC Ch1 1'b0: Interrupt masked (default) 1'b1: Interrupt held if asserted		

Register 17-13: SPDIF CONFIG

Bits	[39:0]
Default	40'd0

Bits	Mnemonic	Description
[39:0]	SPDIF_CS	Configures SPDIF sub-code bits.

Register 18: SYNC CONTROL 1

Bits	[7]	[6]	[5:0]
Default	1'b1	1'b0	6'd0

Bits	Mnemonic	Description
[7]	FORCE_PLL_LOCKED	Clock locking status control with PLL_LOCKED.
		 1'b0: clock locking status is determined by PLL_LOCKED 1'b1: ignores PLL_LOCKED signal from PLL and sets clock locking status to 1 (default)
[6]	SYNC_POSEDGE_FRAME	Selects which edge of the sync reference signal is used.
		 1'b0: Sync to negative edge of the sync reference (default) 1'b1: Sync to positive edge of the sync reference
[5:0]	RESERVED	NA

Register 25-19: RESERVED

GPIO Registers

Register 26: GPIO1/2 CONFIG

Bits	[7:4]	[3:0]
Default	4'd2	4'd2

Bits	Mnemonic	Description
[7:4]	GPIO2_CFG	Configure GPIO2 GPIO Function Selection 4'd0: Analog outputs off - shutdown 4'd1: Aux inputs - input 4'd2: Aux outputs - output (default) 4'd3: Clock valid flag - output 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupt - output 4'd7: OR of all interrupts -output 4'd8: S/PDIF data output - output 4'd9: Output PWM1 - output 4'd10: Output PWM2 - output 4'd11: Output PWM3 - output 4'd12: Reserved 4'd13: CLK_ADC - output 4'd14: Output 0 - output
[3:0]	GPIO1_CFG	Configure GPIO1 GPIO Function Selection

 4'd3: Clock valid flag - output 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupt - output 4'd7: OR of all interrupts - output 	 4'd8: S/PDIF data output - output 4'd9: Output PWM1 - output 4'd10: Output PWM2 - output 4'd11: Output PWM3 - output 4'd12: Reserved 4'd13: CLK_ADC - output 		 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupt - output 	
--	---	--	--	--

Register 27: GPIO3/4 CONFIG

Bits	[7:4]	[3:0]
Default	4'd0	4'd2

Bits	Mnemonic	Description
[7:4]	GPIO4_CFG	Configure GPIO4 GPIO Function Selection 4'd0: Analog outputs off - shutdown 4'd1: Aux inputs - input 4'd2: Aux outputs - output 4'd3: Clock valid flag - output 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupt - output 4'd7: OR of all interrupts -output 4'd8: S/PDIF data output - output 4'd9: Output PWM1 - output 4'd10: Output PWM2 - output 4'd11: Output PWM3 - output 4'd12: Reserved 4'd13: CLK_ADC - output 4'd14: Output 0 - output 4'd15: Output 1 - output
[3:0]	GPIO3_CFG	Configure GPIO3

• 4'd0: Analog outputs off - shutdown	GPIO Function Selection
 4'd1: Aux inputs - input 4'd2: Aux outputs - output (default) 4'd3: Clock valid flag - output 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupt - output 4'd7: OR of all interrupts -output 4'd8: S/PDIF data output - output 4'd9: Output PWM1 - output 4'd10: Output PWM2 - output 4'd11: Output PWM3 - output 4'd12: Reserved 4'd13: CLK_ADC - output 4'd14: Output 0 - output 4'd15: Output 1 - output 	 4'd0: Analog outputs off - shutdown 4'd1: Aux inputs - input 4'd2: Aux outputs - output (default) 4'd3: Clock valid flag - output 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupt - output 4'd7: OR of all interrupts - output 4'd8: S/PDIF data output - output 4'd9: Output PWM1 - output 4'd10: Output PWM2 - output 4'd11: Output PWM3 - output 4'd12: Reserved 4'd13: CLK_ADC - output 4'd14: Output 0 - output

Register 28: GPIO5 CONFIG

Bits	[7]	[6:4]	[3:0]
Default	1'b0	3'd0	4'd0

Bits	Mnemonic	Description
[7]	GPIO5_READ	 GPIO5 readback enable. 1'b0: GPIO5 readback disabled (default) 1'b1: Allows readback of GPIO5 input
6:4]	RESERVED	NA
[3:0]	GPIO5_CFG	Configure GPIO5 GPIO Function Selection
		 4'd0: Analog outputs off - shutdown 4'd1: Aux inputs - input 4'd2: Aux outputs - output 4'd3: Clock valid flag - output 4'd4: PLL locked flag - output 4'd5: Ch1 clip interrupt - output 4'd6: Ch2 clip interrupts - output 4'd7: OR of all interrupts - output 4'd8: S/PDIF data output - output 4'd9: Output PWM1 - output 4'd10: Output PWM2 - output 4'd11: Output PWM3 - output 4'd12: Reserved 4'd13: CLK_ADC - output 4'd14: Output 1 - output 4'd15: Output 1 - output

Register 29: GPIO SETTINGS 1

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0	1'b1	1'b1	1'b0	1'b0	1'b1	1'b1	1'b1

Bits	Mnemonic	Description
[7]	GPIO3_SDB	 GPIO3 input enable. 1'b0: GPIO3 input disabled (default) 1'b1: GPIO3 input enabled
[6]	GPIO2_SDB	 GPIO2 input enable. 1'b0: GPIO2 input disabled 1'b1: GPIO2 input enabled (default)
[5]	GPIO1_SDB	 GPIO1 input enable. 1'b0: GPIO1 input disabled 1'b1: GPIO1 input enabled (default)
[4]	GPIO5_OE	 GPIO5 output enable. 1'b0: Tristate GPIO5 output (default) 1'b1: GPIO5 output enabled
[3]	GPIO4_OE	 GPIO4 output enable. 1'b0: Tristate GPIO4 output (default) 1'b1: GPIO4 output enabled
[2]	GPIO3_OE	 GPIO3 output enable. 1'b0: Tristate GPIO3 output 1'b1: GPIO3 output enabled (default)
[1]	GPIO2_OE	 GPIO2 output enable. 1'b0: Tristate GPIO2 output 1'b1: GPIO2 output enabled (default)
[0]	GPIO1_OE	 GPIO1 output enable. 1'b0: Tristate GPIO1 output 1'b1: GPIO1 output enabled(default)

Register 30: GPIO SETTINGS 2

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0							

Bits	Mnemonic	Description
[7]	INVERT_GPI01	GPIO1 invert enable. • 1'b0: Non-invert (default) • 1'b1: Invert GPIO1 output
[6]	GPIO5_WK_EN	GPIO5 weak keeper enable. 1'b0: GPIO5 weak keeper disabled (default) 1'b1: GPIO5 weak keeper enabled
[5]	GPIO4_WK_EN	 GPIO4 weak keeper enable. 1'b0: GPIO4 weak keeper disabled (default) 1'b1: GPIO4 weak keeper enabled
[4]	GPIO3_WK_EN	 GPIO3 weak keeper enable. 1'b0: GPIO3 weak keeper disabled (default) 1'b1: GPIO3 weak keeper enabled
[3]	GPIO2_WK_EN	GPIO2 weak keeper enable. 1'b0: GPIO2 weak keeper disabled (default) 1'b1: GPIO2 weak keeper enabled
[2]	GPIO1_WK_EN	 GPIO1 weak keeper enable. 1'b0: GPIO1 weak keeper disabled (default) 1'b1: GPIO1 weak keeper enabled
[1]	GPIO5_SDB	GPIO5 input enable. 1'b0: GPIO5 input disabled (default) 1'b1: GPIO5 input enabled
[0]	GPIO4_SDB	GPIO4 input enable. 1'b0: GPIO4 input disabled (default) 1'b1: GPIO4 input enabled

Register 31: GPIO SETTINGS 3

Bits	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default	1'b0							

Bits	Mnemonic	Description
[7]	GPIO4_READ	GPIO 4 readback enable. 1'b0: GPIO4 readback disabled (default) 1'b1: Allows readback of GPIO4 input
[6]	GPIO3_READ	GPIO 3 readback enable. 1'b0: GPIO3 readback disabled (default) 1'b1: Allows readback of GPIO3 input
[5]	GPIO2_READ	GPIO 2 readback enable. 1'b0: GPIO2 readback disabled (default) 1'b1: Allows readback of GPIO2 input
[4]	GPIO1_READ	GPIO 1 readback enable. 1'b0: GPIO1 readback disabled (default) 1'b1: Allows readback of GPIO1 input
[3]	INVERT_GPIO5	GPIO5 invert enable. 1'b0: Non-invert (default) 1'b1: Invert GPIO5 output
[2]	INVERT_GPIO4	GPIO4 invert enable. 1'b0: Non-invert (default) 1'b1: Invert GPIO4 output
[1]	INVERT_GPIO3	GPIO3 invert enable. 1'b0: Non-invert (default) 1'b1: Invert GPIO3 output
[0]	INVERT_GPIO2	GPIO2 invert enable. 1'b0: Non-invert (default) 1'b1: Invert GPIO2 output

Register 32: PWM1 COUNT

Bits	[7:0]
Default	8'h00

Bits	Mnemonic	Description
[7:0]	PWM1_COUNT	8-bit value to set the number of SYS_CLK periods the PWM signal is high for.
		8'h00: Disabled (default)8'h01: Minimum8'hFF: Maximum

Register 34-33: PWM1 FREQUENCY

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description	
[15:0]	PWM1_FREQ	16-bit value to set the frequency of the PWM signal in terms of SYS_CLK divisions.	
		 16'h0000: Disabled (default) 16'h0001: Minimum 16'hFFFF: Maximum 	
		$frequency [Hz] = rac{SYS_CLK}{PWM1_FREQ + 1}$ $Duty \ Cycle \ [\%] = \left(rac{PWM1_COUNT}{PWM1_FREQ + 1} ight) imes 100$	

Register 35: PWM2 COUNT

Bits	[7:0]
Default	8'h00

Bits	Mnemonic	Description
[7:0]	PWM2_COUNT	8-bit value to set the number of SYS_CLK periods the PWM signal is high for.
		8'h00: Disabled (default)8'h01: Minimum8'hFF: Maximum

Register 37-36: PWM2 FREQUENCY

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description	
[15:0]	PWM2_FREQ	16-bit value to set the frequency of the PWM signal in terms of SYS_CLK divisions.	
		16'h0000: Disabled (default)16'h0001: Minimum16'hFFFF: Maximum	
		$frequency [Hz] = rac{SYS_CLK}{PWM2_FREQ + 1}$ $Duty Cycle [\%] = \left(rac{PWM2_COUNT}{PWM2_FREQ + 1} ight) imes 100$	

Register 38: PWM3 COUNT

Bits	[7:0]
Default	8'h00

Bits	Mnemonic	Description
[7:0]	PWM3_COUNT	8-bit value to set the number of SYS_CLK periods the PWM signal is high for. • 8'h00: Disabled (default) • 8'h01: Minimum • 8'hFF: Maximum

Register 40-39: PWM3 FREQUENCY

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description	
[15:0]	PWM3_FREQ	16-bit value to set the frequency of the PWM signal in terms of SYS_CLK divisions.	
		16'h0000: Disabled (default)16'h0001: Minimum16'hFFFF: Maximum	
		$frequency [Hz] = \frac{SYS_CLK}{PWM3_FREQ + 1}$	
		$Duty\ Cycle\ [\%] = \left(\frac{PWM3_COUNT}{PWM3_FREQ + 1}\right) \times 100$	

ADC Registers

Register 41: ADC DATAPATH CONTROL

Bits	[7]	[6]	[5]	[4:2]	[1]	[0]
Default	1'b1	1'b0	1'b0	3'b000	1'b0	1'b0

Bits	Mnemonic	Description
[7]	RESERVED	NA
[6]	ADC_BYPASS_FIR2X	DFir_2x bypass control. • 1'b0: Non-bypass (default) • 1'b1: Bypass DFir_2x
[5]	ADC_BYPASS_FIR4X	DFir_4x bypass control. • 1'b0: Non-bypass (default) • 1'b1: Bypass DFir_4x
[4:2]	RESERVED	NA
[1]	CH1_AVR	Use (CH1+CH2)/2 as CH1 data. • 1'b0: Disabled (default) • 1'b1: Enabled
[0]	MONO_MODE	Mute CH2 decimation path. • 1'b0: Disabled (default) • 1'b1: Enabled

Register 42: ADC DC BLOCKING & SCALE CONFIG

Bits	[7:6]	[5:4]	[3]	[2]	[1]	[0]
Default	2'd0	2'd0	1'b0	1'b0	1'b0	1'b0

Bits	Mnemonic	Description			
[7:6]	ADC_DATA_SCALE_CH2	ADC CH2 data scale. • 2'd0: +0dB • 2'd1: +6dB • 2'd2: +12dB • 2'd3: +18dB			
[5:4]	ADC_DATA_SCALE_CH1	ADC CH1 data scale. • 2'd0: +0dB • 2'd1: +6dB • 2'd2: +12dB • 2'd3: +18dB			
[3]	ADC_SELECT_DC_BLOCK_CH2	Controls DC blocking filter output for CH2 decimation path. 1'b0: Bypass DC blocking filter output (default) 1'b1: Use DC blocking filter output			
[2]	ADC_SELECT_DC_BLOCK_CH1	Controls DC blocking filter output for CH1 decimation path. 1'b0: Bypass DC blocking filter output (default) 1'b1: Use DC blocking filter output			
[1]	ADC_ENABLE_DC_BLOCK_CH2	CH2 DC blocking filter control. 1'b0: Disabled (default) 1'b1: Enable DC blocking filter			
[0]	ADC_ENABLE_DC_BLOCK_CH1	 CH1 DC blocking filter control. 1'b0: Disabled (default) 1'b1: Enable DC blocking filter 			

Register 43: ADC PEAK DETECTOR CONFIG

Bits	[7]	[6:2]	[1]	[0]
Default	1'b0	5'd10	1'b0	1'b0

Bits	Mnemonic	Description
[7]	ADC_LOCK_PEAK	Locks the stored value of the peak detectors (CH1/2) for reading back.
		1'b0: Stored value is allowed to update (default)1'b1: Stored value is locked
[6:2]	ADC_DECAY_RATE	Sets the speed at which the stored value of the peak detector will decay when the input signal is below the stored value.
		5'd0: Instant decay5'd10: Default5'd31: Slowest decay
[1]	ADC_ENABLE_PEAK_DETECT_	Enables the ADC CH2 signal peak detector.
	CH2	1'b0: Disabled (default)1'b1: Enabled
[0]	ADC_ENABLE_PEAK_DETECT_	Enables the ADC CH1 signal peak detector.
	CH1	1'b0: Disabled (default)1'b1: Enabled

Register 44: ADC CH1 PEAK DETECTOR LEVEL

Bits	[7:0]
Default	8'hFF

Bits	Mnemonic	Description
[7:0]	ADC_CLIP_LEVEL_CH1	Threshold value of the CH1 clip detector.
		• 8'h01: -48dB
		8'hFF: 0dB (default)

Register 45: ADC CH2 PEAK DETECTOR LEVEL

Bits	[7:0]
Default	8'hFF

Bits	Mnemonic	Description
[7:0]	ADC_CLIP_LEVEL_CH2	Threshold value of the CH2 clip detector.
		• 8'h01: -48dB
		8'hFF: 0dB (default)

Register 47-46: ADC CH1 DC OFFSET

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description
[15:0]	ADC_CH1_DC_OFFSET	 ADC CH1 signed DC offset. Negative offset is valid from 16'h8000 (-30dB) to 16'hFFFF (-114dB). 16'h0000: Zero offset (default) Positive offset is valid from 16'h7FFF (-30dB) to 16'h0001 (-114dB). dc_offset [dB] = 20 * log10 (\frac{ ADC_CH1_DC_OFFSET }{(2^{15} - 1) * 2^5})

Register 49-48: ADC CH2 DC OFFSET

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description
[15:0]	ADC_CH2_DC_OFFSET	 ADC CH2 signed DC offset. Negative offset is valid from 16'h8000 (-30dB) to 16'hFFFF (-114dB). 16'h0000: Zero offset (default) Positive offset is valid from 16'h7FFF (-30dB) to 16'h0001 (-114dB). dc_offset [dB] = 20 * log10 (\frac{ ADC_CH2_DC_OFFSET }{(2^{15} - 1) * 2^5})

Register 51-50: ADC CH1 VOLUME

Bits	[15:0]
Default	16'h7FFF

Bits	Mnemonic	Description
[15:0]	ADC_CH1_VOLUME	Next desired ADC CH1 signed volume coefficient. • 16'h0000: Mute • 16'h0001 (-90dB): Minimum • 16'h7FFF (0dB): Maximum (default) Note: 16'h8000 to 16'hFFFF is a phase inverted version of the volume. $volume [dB] = 20 * log10 \left(\frac{ ADC_CH1_VOLUME }{2^{15}-1} \right)$

Register 53-52: ADC CH2 VOLUME

Bits	[15:0]
Default	16'h7FFF

Bits	Mnemonic	Description
[15:0]	ADC_CH2_VOLUME	Next desired ADC CH2 signed volume coefficient.
		 16'h0000: Mute 16'h0001 (-90dB): Minimum 16'h7FFF (0dB): Maximum (default) Note: 16'h8000 to 16'hFFFF is a phase inverted version of the volume.
		$volume [dB] = 20 * log10 \left(\frac{ ADC_CH2_VOLUME }{2^{15} - 1} \right)$

Register 54: ADC VOLUME RATE

Bits	[7:0]
Default	8'h00

Bits	Mnemonic	Description
[7:0]	ADC_VOLUME_RATE	Value by which the old coefficient value is incremented/decremented to reach the new coefficient.
		 8'h00: Instant (default) 8'h01: Slowest ramp rate 8'hFF: Fastest ramp rate

Register 56-55: THD COMP C2 CH1

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description
[15:0]	THD_C2_CH1	A 16-bit signed coefficient for correcting for the CH1 second harmonic distortion.
		$output = x + c2 * x^2 + c3 * x^3$

Register 58-57: THD COMP C3 CH1

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description
[15:0]	THD_C3_CH1	A 16-bit signed coefficient for correcting for the CH1 third harmonic distortion.
		$output = x + c2 * x^2 + c3 * x^3$

Register 60-59: THD COMP C2 CH2

Bits	[15:0]
Default	16'h0000

Bits Mnemonic Description	
distortion.	ecting for the CH2 second harmonic $c2 * x^2 + c3 * x^3$

Register 62-61: THD COMP C3 CH2

Bits	[15:0]
Default	16'h0000

Bits	Mnemonic	Description
[15:0]	THD_C3_CH2	A 16-bit signed coefficient for correcting for the CH2 third harmonic distortion.
		$output = x + c2 * x^2 + c3 * x^3$

Register 63: RESERVED

Register 64: ADC FIR FILTER

Bits	[7:5]	[4:2]	[1:0]
Default	3'd4	3'd0	2'b00

Bits	Mnemonic	Description
[7:5]	RESERVED	NA
[4:2]	ADC_FILTER_SHAPE	Selects the 8x decimation FIR filter shape. 3'd0: Minimum phase (default) 3'd1: Linear phase fast roll-off apodizing 3'd2: Linear phase fast roll-off 3'd3: Linear phase fast roll-off low ripple 3'd4: Linear phase slow roll-off 3'd5: Minimum phase fast roll-off 3'd6: Minimum phase slow roll-off 3'd7: Minimum phase slow roll-off low dispersion
[1:0]	RESERVED	NA

Register 65: RESERVED

PLL Registers

Register 192: PLL SOFT RESET

Bits	[7]	[6]	[5:1]	[0]
Default	1'b0	1'b0	5'd0	1'b0

Bits	Mnemonic	Description	
[7]	AO_SOFT_RESET	Performs soft reset to the digital core and clocked registers (0-64). • 1'b0: Disabled (default) • 1'b1: Enable	
[6]	PLL_SOFT_RESET	Performs soft reset to only the Always-On Registers (192-203). • 1'b0: Disabled (default) • 1'b1: Enable	
[5:1]	RESERVED	NA	
[0]	PLL_CLK_PHASE	Digital/analog ADC clock invert phase enable. • 1'b0: Digital/analog ADC clocks have inverted phase (defaured by the same phase (recommended value)	

Register 193: PLL CLOCK SELECT

Bits	[7]	[6]	[5:4]	[3]	[2:1]	[0]
Default	1'b0	1'b1	2'b10	1'b0	2'b00	1'b1

Bits	Mnemonic	Description	
[7]	RESERVED	NA	
[6]	EN_ADC_CLK	Enables analog ADC clock.1'b0: Disabled1'b1: Enabled (default)	
[5:4]	SEL_PLL_IN	Selects PLL input clock source when EN_PLL_CLKIN is set. • 2'b00: ACLK1 • 2'b01: ACLK2 • 2'b10: DATA_CLK (default) • 2'b11: Reserved	
[3]	EN_PLL_CLKIN	Allows SEL_PLL_IN to select PLL input clocks. • 1'b0: Disables SEL_PLL_IN (default) • 1'b1: Enables SEL_PLL_IN	
[2:1]	SEL_SYSCLK_IN	Selects digital core and ADC clock source when EN_ANA_CLKIN is set. • 2'b00: ACLK1 (default) • 2'b01: ACLK2 • 2'b10: PLL • 2'b11: Reserved	
[0]	RESERVED	NA	

Register 194: RESERVED

Register 195: PLL VCO & CP CONFIG

Bits	[7:5]	[4:2]	[1]	[0]
Default	3'b111	3'b111	1'b0	1'b0

Bits	Mnemonic	Description	
[7:5]	PLL_CP_BIAS_SEL	Sets the Charge Pump current: • 3'b011: 4uA (recommended value) • 3'b111: 8uA (default)	
[4:2]	RESERVED	NA	
[1]	PLL_VCO_PDB	Enables/disables the PLL voltage-controlled oscillator (VCO). • 1'b0: Disabled (default) • 1'b1: Enabled	
[0]	PLL_CP_PDB	Enables/disables the PLL charge pump.1'b0: Disabled (default)1'b1: Enabled	

Register 196: PLL VCO CONTROL

Bits	[7:5]	[4:0]
Default	3'b011	5'b00011

Bits	Mnemonic	Description	
[7:5]	PLL_VCO_BAND_CTRL	Selects the frequency band of the VCO.	
		3'b010: (recommended value)3'b011: (default)	
[4:0]	RESERVED	NA	

Register 199-197: PLL FEEDBACK DIV

Bits	[23:0]
Default	24'd0

Bits	Mnemonic	Description
[23:0]	PLL_CLK_FB_DIV	Sets the PLL clock feedback divider.
		24'd0: Reserved (default) 24'dn: Divide by 2025/p
		24'dn: Divide by 2^25/n

Register 202-200: PLL IN & OUT DIV

Bits	[23:22]	[21:20]	[19]	[18]	[17:14]	[13:10]	[9:1]	[0]
Default	2'b00	2'b00	1'b1	1'b0	4'd0	4'd0	9'd0	1'b0

Bits	Mnemonic	Description
[23:22]	PLL_REG_PDB	Power Down the PLL regulators. • 2'b00: Disables the PLL regulators • 2'b11: Enables the PLL regulators (Normal Operation) Note: Other options not valid
[21:20]	PLL_REG_BYP	Bypass mode of the PLL regulators. • 2'b00: Normal Operation • 2'b11: Bypass the PLL regulators Note: Other options not valid
[19]	RESERVED	NA
[18]	PLL_CLK_OUT_DIV_PHASE_ENB	 1'b0: Locks the PLL clock output divider phase. (default) 1'b1: Disabled
[17:14]	RESERVED	NA
[13:10]	PLL_CLK_OUT_DIV	Sets the Output Division (No) of the PLL. • 4'd0: Divide by 1 • 4'd1: Divide by 2 (Normal starting value) • 4'd3: Divide by 4 • 4'dn: Divide by (n + 1)
[9:1]	PLL_CLK_IN_DIV	Sets the Input Division (Ni) of the PLL. • 9'd0: Divide by 1 • 9'd1: Divide by 2 (Normal starting value) • 9'd3: Divide by 4 • 9'dn: Divide by (n + 1)
[0]	PLL_FB_DIV_LOAD	Load PLL_CLK_FB_DIV • Write 1'b1 then 1'b0 to load PLL_CLK_FB_DIV value

Register 203: PLL VREF SELECT

Bits	[7:6]	[5]	[4:2]	[1:0]
Default	2'b00	1'b0	3'b010	2'b01

Bits	Mnemonic	Description	
[7:6]	RESERVED	NA	
[5]	PLL_DIG_RSTB	Resets the Digital core of the PLL.	
[4:2]	RESERVED	NA	
[1:0]	PLL_HVREG_VREF_SEL	PLL HVREG reference voltage selection • 2'b00: 1.6V (optimum value) • 2'b01: 1.7V (default)	

Register 204: RESERVED

Readback Registers

Register 224: READ SYSTEM REGISTER 0

Bits	[7]	[6]	[5:0]
Default	-	-	-

Bits	Mnemonic	Description
[7]	CLIP_FLAG_CH2	ADC CH2 clip detection interrupt readback. • 1'b0: Inactive • 1'b1: Active
[6]	CLIP_FLAG_CH1	ADC CH1 clip detection interrupt readback. • 1'b0: Inactive • 1'b1: Active
[5:0]	RESERVED	NA

Register 225: CHIP ID

Bits	[7:0]
Default	8'h88

Bits	Mnemonic	Description
[7:0]	CHIP_ID	Chip ID

Register 230-227: RESERVED

Register 231: TDM VALID READ

Bits	[7:6]	[5]	[4:0]
Default	-	-	-

Bits	Mnemonic	Description
[7:6]	RESERVED	NA
[5]	TDM_VALID	TDM valid flag
[4:0]	RESERVED	NA

Register 232: GPIO INPUT READ

Bits	[7:5]	[4]	[3]	[2]	[1]	[0]
Default	-	-	-	-	-	-

Bits	Mnemonic	Description
[7:5]	RESERVED	NA
[4]	GPIO5_I_R	GPIO5 input readback.
[3]	GPIO4_I_R	GPIO4 input readback.
[2]	GPIO3_I_R	GPIO3 input readback.
[1]	GPIO2_I_R	GPIO2 input readback.
[0]	GPIO1_I_R	GPIO1 input readback.

Register 236-234: RESERVED

Register 238-237: ADC PEAK CH1

Bits	[15:0]
Default	-

Bits	Mnemonic	Description		
[15:0]	ADC1_PEAK	Ch1 detected signal peak value readback.		
		Note: Requires reg43[0] ADC_ENABLE_PEAK_DETECT_CH1 to enable functionality.		

Register 240-239: ADC PEAK CH2

Bits	[15:0]
Default	-

Bits	Mnemonic	Description		
[15:0]	ADC2_PEAK	Ch2 detected signal peak value readback.		
		Note: Requires reg43[1] ADC_ENABLE_PEAK_DETECT_CH2 to enable functionality.		

ES9821 Reference Schematic (Hardware Mode)

See Hardware section for additional details on configuration for Hardware mode

Figure 22 – ES9821Q Reference schematic for normal operation in Hardware (HW) mode Schematic subject to change

Note 1: Pin 29 QFN Package Pad (EPAD) should be connected to DGND

Note 2: See Hardware mode section for additional details on configuration for Hardware mode

ES9821 Reference Schematic (Software Mode)

Figure 23 – ES9821Q Reference schematic for normal operation in Software (SW) mode Schematic subject to change

Note 1: Pin 29 QFN Package Pad (EPAD) should be connected to DGND

Note 2: Pullup resistors are required on the SCL/SDA pins if using the I2C interface

Figure 24 – Reference schematic ADC input stage for Single Ended (S/E) and differential input

Internal Pad Circuitry

Pin	Туре	Pin Number	Equivalent Circuit
AVCC_ADC AVDD AVCC	Power	13 21 4	Power Pad ESD GND
AGND AGND DGND	Ground	5 8 20	ESD Ground Pad
CHIP_EN	Reset	14	PU/PD D Digital I
MISO/ADDR0/MUTE_MCLK_CTRL SCLK/SCL/HW1 MOSI/SDA/HW0 MODE GPIO5/HW4 GPIO4/HW3 DATA2/GPIO3 DATA1/GPIO2 DATA_CLK/GPIO1 SS/ADDR1/HW2	Digital I/O	1 2 3 18 23 24 25 26 27 28	OE DO DO DO DIGITAL I/O R PD DO GND

VREF VREF_BUF	Analog_IO_2 XVDD	6 7	GND ESD Analog I/O VEE
IN_P1 IN_P2 IN_M1 IN_M2	Analog IO ADC	9 12 10 11	Analog I/O Resp GND
DVDD	IO Power	22	ESD Power Pad ESD GND

Table 26 - Internal pad circuitry

28 QFN Package Dimensions

BOTTOM VIEW

SIDE VIEW

(COMMON DIMENSIONS(MM)						
PKG.	W:	VERY VERY	THIN				
REF.	MIN.	NOM.	MAX				
Α	0.70	0.75	0.80				
A1	0.00	_	0.05				
A3	0.2 REF.						
D	4.95	5.00	5.05				
E	4.95	5.00	5.05				
b	0.18	0.23	0.30				
L	0.45	0.55	0.65				
D2	3.00	3.15	3.25				
E2	3.00	3.15	3.25				
е	0.5 BSC						

Figure 25 – 28 QFN package dimensions

28 QFN Top View Marking

	Dimension in mm						
Package Type	Α	В	С	D	Е	F	G
QFN 5mm x 5mm	4.0	1.6	0.2	0.4	0.2	0.1	0.3

Mnemonic	Description
Т	Tracking number
W	Work week
Υ	Last digit of year
L	Lot number
R	Silicon Revision

Marking is subject to change. This drawing is not to scale.

Figure 26 - ES9821Q QFN Marking

Reflow Process Considerations

Temperature Controlled

For lead-free soldering, the characterization and optimization of the reflow process is the most important factor to consider. The lead-free alloy solder has a melting point of 217°C. This alloy requires a minimum reflow temperature of 235°C to ensure good wetting. The maximum reflow temperature is in the 245°C to 260°C range, depending on the package size (RPC-2 Pb-Free Process – Classification Temperatures (Tc)). This narrows the process window for lead-free soldering to 10°C to 20°C.

The increase in peak reflow temperature in combination with the narrow process window makes the development of an optimal reflow profile a critical factor for ensuring a successful lead-free assembly process. The major factors contributing to the development of an optimal thermal profile are the size and weight of the assembly, the density of the components, the mix of large and small components, and the paste chemistry being used.

Reflow profiling needs to be performed by attaching calibrated thermocouples well adhered to the device as well as other critical locations on the board to ensure that all components are heated to temperatures above the minimum reflow temperatures and that smaller components do not exceed the maximum temperature limits (Table RPC-2).

To ensure that all packages can be successfully and reliably assembled, the reflow profiles studied and recommended by ESS are based on the JEDEC/IPC standard J-STD-020 revision D.1.

Figure 27 – IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)

Reflow is allowed 3 times. Caution must be taken to ensure time between re-flow runs does not exceed the allowed time by the moisture sensitivity label. If the time elapsed between the re-flows exceeds the moisture sensitivity time bake the board according to the moisture sensitivity label instructions.

Manual

Allowed up to 2 times with maximum temperature of 350°C no longer than 3 seconds.

RPC-1 Classification reflow profile

Profile Feature	Pb-Free Assembly		
Preheat/Soak			
Temperature Min (Tsmin)	150°C		
Temperature Max (Tsmax)	200°C		
Time (ts) from (Tsmin to Tsmax)	60-120 seconds		
Ramp-up rate (TL to Tp)	3°C / second maximum		
Liquidous temperature (TL)	217°C		
Time (tL) maintained above TL	60-150 seconds		
Peak package body temperature (Tp)	For users Tp must not exceed the classification temp in Table RPC-2. For suppliers Tp must equal or exceed the Classification temp in Table RPC-2.		
Time (tp)* within 5°C of the specified classification temperature (Tc), see Error! Reference source not found.9	30* seconds		
Ramp-down rate (Tp to TL)	6°C / second maximum		
Time 25°C to peak temperature	8 minutes maximum		
* Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.			

Table 27 – RPC-1 Classification reflow profile

All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow (e.g., live-bug). If parts are reflowed in other than the normal live-bug assembly reflow orientation (i.e., dead-bug), Tp shall be within $\pm 2^{\circ}$ C of the live-bug Tp and still meet the Tc requirements, otherwise, the profile shall be adjusted to achieve the latter. To accurately measure actual peak package body temperatures, refer to JEP140 for recommended thermocouple use.

Reflow profiles in this document are for classification/preconditioning and are not meant to specify board assembly profiles. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed the parameters in Table RPC-1.

For example, if Tc is 260°C and time to is 30 seconds, this means the following for the supplier and the user.

For a supplier: The peak temperature must be at least 260°C. The time above 255°C must be at least 30 seconds. For a user: The peak temperature must not exceed 260°C. The time above 255°C must not exceed 30 seconds.

All components in the test load shall meet the classification profile requirements.

RPC-2 Pb-Free Process – Classification Temperatures (Tc)

Package Thickness	Volume mm3, <350	Volume mm3, 350 to 2000	Volume mm3, >2000
<1.6 mm	260°C	260°C	260°C
1.6 mm – 2.5 mm	260°C	250°C	245°C
>2.5 mm	250°C	245°C	245°C

Table 28 – RPC-2 Pb free classification temperatures

At the discretion of the device manufacturer, but not the board assembler/user, the maximum peak package body temperature (Tp) can exceed the values specified in Table RPC-2. The use of a higher Tp does not change the classification temperature (Tc).

Package volume excludes external terminals (e.g., balls, bumps, lands, leads) and/or nonintegral heat sinks.

The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD packages may still exist.

Ordering Information

Part Number	Description	Package
ES9821Q	SABRE 32-bit 2 Channel ADC with built in digital filters, and multiple output formats	5mm x 5mm 28 QFN
ES9821QT* • Inquire for availability	ES9821Q with extended temperature range (-40 deg C to 105 deg C)	5mm x 5mm 28 QFN

Table 29 – Ordering information

Revision History

Current Version 0.4

Rev.	Date	Notes	
0.1.3	Nov 5, 2021	Initial release	
0.1.4	Dec 21, 2021	 Updated Register 42 descriptions for clarity Updated HW/SW schematics with correct AVCC voltage 	
0.2.1	Sept, 2022	 Added HW modes 12-15 to Hardware Mode Pin Configurations Reserved Register 12[6] & [2] Unreserved Register 193[5:4] Update Power Consumption numbers Reserved Register 194 Updated Register 224,225, 32-40, 4[7] Added note to add pullup resistors for I2S software mode Updated Performance Table values Removed PU from Digital I/O equivalent circuit Updated Register 202-200: PLL SETTING 3 [18:1] descriptions Added Analog PLL section 	
0.3.1	Feb, 2023	 Updated Testing Conditions for Analog Performance table Added image and wording to THD compensation section Added Audio Output Formats in Digital Features Added DC Blocking info in Hardware Mode section Added GPIO5 designation in Hardware Mode tables Updated APLL section register reference to correct register Changed "MSB" Justified to "Left" Justified Updated power consumption table Added register overview section Added Timing requirements sections Updated SPI and I2C sections Added Configuration Modes section over Hardware and Software Modes Added design information under Hardware modes Updated Digital Signal Path diagram Added PCM/TDM MCLK/BCLK to timing requirements Unreserved Register 0[6-5], 193[0], updated other registers Added Software Mode recommended startup Moved RC information to Hardware Mode Updated APLL section 	
0.4	May, 2023	 Updated Register 192[0] Updated formatting 	

	 Updated digital filter section Reserved HW modes 9-11, 13-15 Updated Registers 53-46 Updated Clock distribution section Updated HW mode table, added notes Updated HW reference schematic
--	--

© 2021 ESS Technology, Inc.

ESS IC's are not intended, authorized, or warranted for use as components in military applications, medical devices or life support systems. ESS assumes no liability and disclaims any expressed, implied or statutory warranty for use of ESS IC's in such unsuitable applications.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc. ESS Technology, Inc. makes no representations or warranties regarding the content of this document. All specifications are subject to change without prior notice. ESS Technology, Inc. assumes no responsibility for any errors contained herein. U.S. patents pending.