Maker-Breaker Domination Game

Valentin Gledel

Journées Graphes et Algorithmes

17 Novembre 2017

Avec Eric Duchêne, Aline Parreau, Gabriel Renault and Simon Schmidt

- Deux joueurs: Dominator et Staller
- Choisissent alternativement un sommet du graphe qui domine au moins un nouveau sommet.
- Dominator veut que l'ensemble dominant soit petit.
- Staller veut qu'il soit grand.

 γ_g : Taille de l'ensemble dominant obtenu

- Deux joueurs: Dominator et Staller
- Choisissent alternativement un sommet du graphe qui domine au moins un nouveau sommet.
- Dominator veut que l'ensemble dominant soit petit.
- Staller veut qu'il soit grand.

 $\gamma_{
m g}$: Taille de l'ensemble dominant obtenu

- Deux joueurs: Dominator et Staller
- Choisissent alternativement un sommet du graphe qui domine au moins un nouveau sommet.
- Dominator veut que l'ensemble dominant soit petit.
- Staller veut qu'il soit grand.

 $\gamma_{
m g}$: Taille de l'ensemble dominant obtenu

- Deux joueurs: Dominator et Staller
- Choisissent alternativement un sommet du graphe qui domine au moins un nouveau sommet.
- Dominator veut que l'ensemble dominant soit petit.
- Staller veut qu'il soit grand.

 γ_g : Taille de l'ensemble dominant obtenu

- Deux joueurs: Dominator et Staller
- Choisissent alternativement un sommet du graphe qui domine au moins un nouveau sommet.
- Dominator veut que l'ensemble dominant soit petit.
- Staller veut qu'il soit grand.

 γ_g : Taille de l'ensemble dominant obtenu

Jeu de Domination

Déterminer $\gamma_{\rm g}$ est *PSPACE*-complet dans le cas général (Brešar et al., 2016).

Deux autres jeux de dominations ont été étudiés :

- Game domination number (Alon et al., 2002)
- Disjoint domination number (Bujtás et Tuza, 2014)

Dans ces trois cas, les actions possibles de Dominator et Staller sont les mêmes.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

- Dominator sélectionne des sommets
- Staller interdit des sommets à Dominator
- Si les sommets sélectionnés par Dominator dominent le graphe, il gagne.
- S'il ne peut pas créer d'ensemble dominant, Staller gagne.

Dominator commence		
Staller commence		

	0	
Dominator commence	Dominator	
Staller commence		

Jouons!

Qui gagne dans ces situations :

	0	0 0 0 0		
Dominator commence	Dominator	Dominator	Staller	
Staller commence	Staller	Dominator	Staller	

 \mathcal{N} \mathcal{I}

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

	0	0		
Dominator commence	Dominator	Dominator	Staller	
Staller commence	Staller	Dominator	Staller	
	\mathcal{N}	\mathcal{D}	\mathcal{S}	

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Théorème

Pour le Maker-Breaker Domination Game, il n'y a pas de graphe où le deuxième joueur gagne toujours, quelque soit son rôle.

Preuve:

Problématique

Maker-Breaker Domination Game

Entrée : Un graphe G

Sortie : L'issue du jeu : \mathcal{N} , \mathcal{D} ou \mathcal{S}

Table des issues d'union de graphes :

U	\mathcal{D}	\mathcal{N}	${\cal S}$
$\overline{\mathcal{D}}$	\mathcal{D}	\mathcal{N}	\mathcal{S}
$\mathcal N$	\mathcal{N}	${\cal S}$	${\cal S}$
${\cal S}$	${\cal S}$	${\cal S}$	${\cal S}$

Table des issues d'union de graphes :

\cup	$\mid \mathcal{D} \mid$	$\mathcal N$	${\cal S}$
$\overline{\mathcal{D}}$	\mathcal{D}	\mathcal{N}	\mathcal{S}
$\mathcal N$	\mathcal{N}	${\cal S}$	${\cal S}$
${\cal S}$	\mathcal{S}	${\cal S}$	${\cal S}$

Idée pour $\mathcal{N} \cup \mathcal{N}$:

Table des issues d'union de graphes :

\bigcup	$\mid \mathcal{D} \mid$	$\mathcal N$	${\cal S}$
$\overline{\mathcal{D}}$	\mathcal{D}	\mathcal{N}	\mathcal{S}
$\mathcal N$	\mathcal{N}	${\cal S}$	${\cal S}$
${\cal S}$	\mathcal{S}	${\cal S}$	${\cal S}$

Idée pour $\mathcal{N} \cup \mathcal{N}$:

Table des issues d'union de graphes :

\cup	$\mid \mathcal{D} \mid$	$\mathcal N$	${\cal S}$
$\overline{\mathcal{D}}$	\mathcal{D}	\mathcal{N}	\mathcal{S}
$\mathcal N$	\mathcal{N}	${\cal S}$	${\cal S}$
${\cal S}$	\mathcal{S}	${\cal S}$	${\cal S}$

Idée pour $\mathcal{N} \cup \mathcal{N}$:

Lemme

Théorème

Maker-Breaker Domination Game est PSPACE-complet.

On prouve ce résultat par une réduction à partir du jeu POS-CNF qui est *PSPACE*-complet (Schaeffer, 1978).

- Variables $x_1, x_2, ..., x_n$
- Clauses $C_1, C_2, ..., C_m$ sans littéraux négatifs.
- Dominator: assigne les variables à vrai et gagne si la formule est satisfaite.
- Staller: assigne les variables à faux et gagne si la formule n'est pas satisfaite.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

 $x_1 = , x_2 = , x_3 = , x_4 = , x_5 =$

- Variables $x_1, x_2, ..., x_n$
- Clauses $C_1, C_2, ..., C_m$ sans littéraux négatifs.
- Dominator: assigne les variables à vrai et gagne si la formule est satisfaite.
- Staller: assigne les variables à faux et gagne si la formule n'est pas satisfaite.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

 $x_1 =$ vrai, $x_2 =$, $x_3 =$, $x_4 =$, $x_5 =$

- Variables $x_1, x_2, ..., x_n$
- Clauses $C_1, C_2, ..., C_m$ sans littéraux négatifs.
- Dominator: assigne les variables à vrai et gagne si la formule est satisfaite.
- Staller: assigne les variables à faux et gagne si la formule n'est pas satisfaite.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

 $x_1 =$ rai, $x_2 =$ faux, $x_3 =$, $x_4 =$, $x_5 =$

- Variables $x_1, x_2, ..., x_n$
- Clauses $C_1, C_2, ..., C_m$ sans littéraux négatifs.
- Dominator: assigne les variables à vrai et gagne si la formule est satisfaite.
- Staller: assigne les variables à faux et gagne si la formule n'est pas satisfaite.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

 $x_1 = \text{vrai}, x_2 = \text{faux}, x_3 = , x_4 = , x_5 = \text{vrai}$

Théorème

Théorème

Théorème

Théorème

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

Théorème

Maker-Breaker Domination Game est *PSPACE*-complet.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

Théorème

Maker-Breaker Domination Game est *PSPACE*-complet.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4) \land (x_2 \lor x_4 \lor x_5)$$

Théorème

Maker-Breaker Domination Game est PSPACE-complet.

Théorème

Maker-Breaker Domination Game est linéaire sur les cographes.

Un cographe est défini inductivement :

Théorème

Maker-Breaker Domination Game est linéaire sur les cographes.

Un cographe est défini inductivement :

• Un sommet

0

Théorème

Maker-Breaker Domination Game est linéaire sur les cographes.

Un cographe est défini inductivement :

- Un sommet
- L'union disjointe de deux cographes

0 0

Théorème

Maker-Breaker Domination Game est linéaire sur les cographes.

Un cographe est défini inductivement :

- Un sommet
- L'union disjointe de deux cographes
- Le joint de deux cographes

Théorème

Maker-Breaker Domination Game est linéaire sur les cographes.

Un cographe est défini inductivement :

- Un sommet
- L'union disjointe de deux cographes
- Le joint de deux cographes

Théorème

Le Maker-Breaker Domination Game est linéaire sur les cographes.

L'issue du joint de deux cographes est déterminée de la manière suivante :

Théorème

Le Maker-Breaker Domination Game est linéaire sur les cographes.

L'issue du joint de deux cographes est déterminée de la manière suivante :

ullet Si chacun des graphes a au moins deux sommets, le jeu est ${\mathcal D}$

Théorème

Le Maker-Breaker Domination Game est linéaire sur les cographes.

L'issue du joint de deux cographes est déterminée de la manière suivante :

- ullet Si chacun des graphes a au moins deux sommets, le jeu est ${\cal D}$
- Si un des graphes ne contient qu'un sommet et que l'autre est ${\cal N}$ ou ${\cal D}$, le jeu est ${\cal D}$

Théorème

Le Maker-Breaker Domination Game est linéaire sur les cographes.

L'issue du joint de deux cographes est déterminée de la manière suivante :

- ullet Si chacun des graphes a au moins deux sommets, le jeu est ${\cal D}$
- Si un des graphes ne contient qu'un sommet et que l'autre est $\mathcal N$ ou $\mathcal D$, le jeu est $\mathcal D$
- Si un des graphes ne contient qu'un sommet et que l'autre est \mathcal{S} , le jeu est \mathcal{N}

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Lemme

On peut retirer des P_2 pendants d'un graphe sans en changer l'issue.

Théorème

Maker-Breaker Domination Game est polynomial sur les arbres.

Chaque arbre peut être réduit à l'une des situations suivante :

$$\emptyset$$
 o $K_{1,n}$

Théorème

Maker-Breaker Domination Game est polynomial sur les arbres.

Chaque arbre peut être réduit à l'une des situations suivante :

Conclusion

Autres questions ouvertes

- Un résultat en fonction de la densité du graphe ?
- Que se passe-t-il dans les hypergraphes ?
- Que se passe-t-il si on inverse les objectifs de Dominator et Staller?

