

S-11482 TP BB

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
21 February 2002 (21.02.2002)

PCT

(10) International Publication Number
WO 02/15190 A2(51) International Patent Classification⁷: **G11C**(21) International Application Number: **PCT/US01/24063**

(22) International Filing Date: 1 August 2001 (01.08.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/639,195 15 August 2000 (15.08.2000) US(71) Applicant: **MOTOROLA, INC., A CORPORATION OF THE STATE OF DELAWARE [US/US]; 1303 East Algonquin Road, Schaumburg, IL 60196 (US).**(72) Inventors: **HU, Chung-You; 3543 Greystone Drive, N° 1101, Austin, TX 78731 (US). CHANG, Kuo-Tung;**11219 Tracton Lane, Austin, TX 78739 (US). **LIU, Wei-Hua; 10500 Coreopsis Drive, Austin, TX 78733 (US). BURNETT, David; 3804 Laurelledge Lane, Austin, TX 78731 (AU).**(74) Agents: **WUAMETT, Jennifer, B.; Motorola, Inc., P.O. Box.10219, Scottsdale, AZ 85271-0219 et al..(US).**(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,*[Continued on next page]*(54) Title: **NON-VOLATILE MEMORY, METHOD OF MANUFACTURE AND PROGRAMMING**

(57) Abstract: A non-volatile memory includes an array (30) of cells in rows and columns (311-316; 331-336), where the cells of each column (311-316; 331-336) are positioned within a respective isolated p-well region (301, 302, 303). Control gates of sequential memory cells in rows of the array (311, 321, 331; 316, 326, 336) are electrically coupled by common wordlines (3071, 3072, 3076). Bitlines (3091, 3092, 3093) electrically couple drain or source regions of each memory cell in the respective columns (311-316; 331-336). The source lines (3051, 3052, 3053) and at least one memory cell in each column of the array (311-316; 331-336) are electrically coupled to the p-well region (301, 302, 303) corresponding to the column of the source line and cell. Each column of the array (30) is therefore located within an isolated well.

WO 02/15190 A2

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

NON-VOLATILE MEMORY, METHOD OF MANUFACTURE
AND PROGRAMMING

Field of the Invention

5

The present invention relates generally to semiconductor devices and, more particularly, to non-volatile memories and isolated channel programming and array operation.

10

Related Art

Conventional memory arrays, such as an electrically erasable programmable read only memory (EEPROM) array, comprise pluralities of individual memory cells. The memory cells can be programmed for desired logic or memory states. In programming the array, each cell must have either a high or low voltage (i.e., on or off) state. The high voltage state that is desirable is limited by power consumption considerations and physical and materials constraints. The low voltage state that is desirable is likewise limited because it must be differentiated from the high voltage state and, yet, it must not result in cross leakage among neighboring cells in tight memory array cell distributions. The higher the voltage required for accessing the low states, the greater the power consumed by the memory cells.

Conventionally, memory cells are distributed in an array. A simplified example of such an array is shown in FIG. 1. The

example array in FIG. 1 includes only nine individual memory cells, whereas typical memory arrays include many more cells. The small number of cells in the example array of FIG. 1 is, therefore, to be understood as merely exemplary for purposes of illustration and discussion herein. In practice, the same principles described herein are applicable to memory arrays of widely varying size, including much larger arrays of memory cells.

The array of FIG. 1 includes individual memory cells, for example, memory cells 101-109. Each cell of the array, such as, for example, cell 101, is connected with a wordline at its gate, such as wordline (W_1) 121 connected to cell 101 at its gate. Other cells 102 and 103, for example, are also connected to the wordline 121. For reference purposes in FIG. 1, the cells 101, 102, 103 are distributed within the array in a common "row". Common wordlines, such as wordlines (W_1) 121, (W_2) 122, and (W_3) 123, connect cells in common rows, such as cells 101, 102, 103, and 104, 105, 106, and 107, 108, 109, respectively.

A drain of each cell of the row is connected to a separate bitline, for example, the drain of cell 101 is connected to bitline (B_1) 131. The same bitline 131 connects with other cells 104 and 107, for example, of the array. For reference purposes, the cells 101, 104, 107 are distributed in a common "column" of the array. Common bitlines, such as bitlines 131, 132, and 133, connect cells 101, 104, 107 and 102, 105, 108 and 103, 106, 109, respectively, in common columns.

A source of the cell 101 is connected to a source line 125. This source line 125 also connects the source of all other cells 101-109 of the entire array. Thus, it can be understood in FIG. 1, that respective ones of the parallel wordlines 121-123 connect the gate of each of the cells 101-103, 104-106, or 107-109, respectively, distributed in common rows of the array, and whereas respective ones of the parallel bitlines 131-133 connect the drain of each of the cells 101,104,107, or 102,105,108, or 103,106,109, respectively, distributed in common columns of the array. All cells 101-109 of the array are situated in a common well, for instance, a p-well 100 of FIG. 1. In this arrangement, each of the source line 125 and the p-well 100 are common to each of the cells 101-109 of the array.

In programming the foregoing array of cells 101-109, a positive voltage is applied to selected memory cell wordlines and to the selected memory cells bitlines. The selected memory cells are subsequently programmed via hot carrier injection (HCI) thereby altering the threshold voltage of selected memory cells (i.e. altering the amount of charge stored in their floating gates). The change in threshold voltage is periodically sensed during the programming event to detect whether or not a targeted threshold voltage has been achieved for all selected memory cells in the array.

In erasing the foregoing array of cells 101-109, the entire array is erased by applying a negative voltage to each wordline and a positive voltage to either the source line 125 or to the common p-well 100. In this manner, the floating gates for all memory

cells in the array will correspondingly be charged the low threshold voltage state, simultaneously.

Referring to FIG. 2, a plot illustrates threshold voltage among bits represented by memory cells 101-109 of the array under a high threshold voltage state and low threshold voltage state, i.e., corresponding to "off" or "on" states. It is notable that each of the high voltage state and the low voltage state is actually a range of voltage levels in the vicinity of a particular target high voltage and target low voltage, respectively. The ranges of voltage exhibited in FIG. 2 are illustrative of the type of distribution which is exhibited on programming of the conventional array in which all cells share a common well, such as p-well 100. In the distribution of FIG. 2, high threshold voltages are concentrated in a relatively narrow distribution between, for example, 5 to 6 volts. However, the threshold voltage distribution will be much broader for the low threshold voltage state, such as 0.5 volts to 2.5 volts. This broader threshold voltage distribution at the lower threshold voltage state results mainly because all memory cells are erased at the same time as a result of the common p-well in which all the bit cells are located. The process variation, materials defects, and degradation of material properties are all major causes of this broader V_t distribution at the lower threshold state in comparison with the higher threshold state. The wider V_t distribution leads to the requirement of high wordline voltage during read operations, to ensure success of read access of the low V_t state bit cells.

The problems presented include that substantial power is consumed by the requirement of higher wordline voltage to assure achievement of the read access of the low threshold state. Furthermore, to achieve higher wordline voltage, a boost

5 from a low voltage power supply can be required in order to achieve the desired wordline voltage. To reach the desired wordline voltage, even with the boost from the low voltage power supply, can typically require significant amounts of time because of slow boosting if only low power is employed. It would be an

10 advantage to control the voltage range distributions among cell arrays at the lower threshold voltage levels, in order to reduce the required wordline voltage for read access. Controlling the lower voltage range distributions, however, can lead to problems of cross leakage among neighboring cells when all cells of the

15 array are located in a common p-well.

The present invention is a significant improvement and advantage in the art and technology because it provides for limiting lower threshold voltage distributions to a narrower range and further enables faster access by using lower wordline

20 voltage.

Brief Description of the Drawings

The present invention is illustrated by way of example and not limitation in the accompanying figures, in which like

25 references indicate similar elements, and in which:

FIG. 1 includes an illustration of a conventional memory cell array configured in a common p-well;

FIG. 2 includes an illustration of voltage distributions of gate electrodes of memory cells of an array at a low voltage threshold level and a high voltage threshold level;

- 5 FIG. 3 includes an illustration of isolated p-wells for individual bitlines and memory cells of an array, according to embodiments of the present invention;

FIG. 4 includes an illustration of a cross sectional view of a semiconductor device, along a length of an isolated p-well of the array of FIG. 3;

- 10 FIG. 5 includes an illustration of a cross sectional view of a semiconductor device across adjacent cells of respective neighboring isolated p-wells of FIG. 3;

- 15 FIG. 6 includes an illustration of a cross section of a semiconductor device work piece having the orientation of FIG. 5, showing trench formation for the neighboring isolated p-wells;

FIG. 7 includes an illustration of p-well and deep n-well isolation implantation of the device of FIG. 6;

- 20 FIG. 8 includes an illustration of deep n-well isolation and diffusion of p-well in the n-well, followed with gate oxide formation and poly deposition and patterning, of the device of FIG. 7;

FIG. 9 includes an illustration of remaining poly 1 after etch, followed by an oxide nitride oxide (ONO) layer and poly2 deposition, of the device of FIG. 8;

- 25 FIGs. 10A-E include illustrations of exemplary voltage stepping with respect to isolated p-wells of an array in erasing

and programming the array, with representative gate voltage distributions for memory cells at various step voltages; and

FIG. 11 includes an illustration of a cross-section of an alternative embodiment of a semiconductor device having the
5 isolated p-well arrangement, and including a contactless source.

Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other
10 elements to help improve the understanding of the embodiments of the present invention.

Detailed Description

- In accordance with one embodiment of the present invention, a non-volatile memory (NVM) array, such as an electrically-erasable-programmable-read-only-memory (EEPROM) array, includes columns of memory cells formed in separate p-well regions to reduce the programmed threshold voltage distribution width for selected memory cells in the array. For example, a plurality of memory cells sharing a common bitline are formed within a well region, such as a p-well region.
- 5 In one embodiment, each isolated p-well forms a column of memory cells in the array. The p-wells are electrically isolated from each other using shallow trench isolation (STI) structures. The memory cells formed within the separate p-well regions share a common bitline and a common source line. Isolating 10 the memory array into separate p-wells provides improved programming control by allowing the memory cells in the array to be programmed to within a tighter threshold voltage distribution.
- 15 Referring to FIG. 3, a memory cell array 30 includes memory cells 311-316, 321-326, and 331-336. The memory cell array 30 is intended as exemplary in that the array can include more or less individual memory cells than those shown, and the 20 cells can be distributed in any of a wide variety of arrangements of common rows, common columns, or other relative location. In the array, memory cells 311-316 form a first column, memory cells 321-326 form a second column, and memory cells 331-336 25 form a third column.

The memory cells of each column are connected at their respective drains (or drain regions) by a common bitline, for example, memory cells 311-316 are connected by bitline 3091, memory cells 321-326 are connected by bitline 3092, and 5 memory cells 331-336 are connected by bitline 3093.

Corresponding cells in adjacent columns, such as memory cells 311, 321, 331, are each connected at a control gate thereof by a common wordline, for example, wordline 3071 connects the control gate of each of the memory cells 311, 321, 331, wordline 10 3072 connects the control gate of each of the memory cells 312, 322, 332, wordline 3073 connects the control gate of each of the memory cells 313, 323, 333, wordline 3074 connects the control gate of each of the memory cells 314, 324, 334, wordline 3075 connects the control gate of each of the memory cells 315, 325, 15 335, and wordline 3076 connects the control gate of each of the memory cells 316, 326, 336. In accordance with one embodiment, each column of memory cells, for example, memory cells 311-316, is situated within a common well, such as, p-well 301. Memory cells 321-326 are situated in p-well 302, 20 and memory cells 331-336 are situated in p-well 303. Each column of memory cells is electrically isolated from neighboring columns of memory cells via a shallow trench isolation structure (not shown in FIG. 3).

A source line electrically couples to source regions of each 25 of the memory cells of the respective column, such as cells 311-316 of the first column are connected to the source line 3051. In accordance with one embodiment, the source line 3051 and the

p-well region 301 are electrically coupled so as to have an equivalent voltage, as indicated by electrical ties (or straps) 3011 and 3012. Other isolated p-wells 302, 303 of the array 30 include columns of cells 321-326 or 331-336, respectively, and 5 the source regions for the memory cells 321-326 or 331-336 are electrically coupled to the source lines 3052 or 3053. The connections 3021, 3022 and 3031, 3032 respectively indicate electrical coupling, and therefore equivalent voltages, of source line 3052 and p-well 302, on the one hand, and source line 3053 10 and p-well 303, on the other hand. Although the connection of the source line 3051 and p-well 301 are indicated in FIG. 3 as occurring every four cells, i.e., at connections 3011, 3012 on either side of the sequence of memory cells 312-315, this 15 sequence and number of memory cells between the connections is merely exemplary and any of a wide variety of memory cell sequences can intercede between connections 3011 and 3012, 3021 and 3022, and 3031 and 3032, respectively. For example, the connections can occur as desired between every 16 cells, 32 cells, 64 cells, or otherwise depending on the array, its makeup, 20 and the desired arrangement.

The connections provided by the straps, such as 3011 and 3012, help to ensure that the p-well potential remains stable during the read and write operations. Typically, the depth of the p-well does not exceed the depth of the shallow trench isolation structures. Therefore, the sheet resistance of the p-well regions 25 will typically increase as the depth of the shallow trench isolation structures decrease. This can result in instability of the p-well's

potential if there is any leakage current in the p-well. An unstable p-well potential can correspondingly produce undesirable threshold voltage instability. Therefore, the straps, such as 3011 and 3012, help to ensure the potential applied to 5 the source line (and p-well) is equally distributed throughout the p-well region, thereby improving the threshold voltage stability of the memory cells in the p-well.

Referring to FIG. 4, a semiconductor device cross-section comprising the array of FIG. 3 and includes the p-well 301 10 formed within a deep n-well 401. Memory cell source regions and drain regions are connected, via conductive plugs 402, with the source line 3051 and the bitline 3091, respectively. The source regions include the diffusion regions 3112, 3122 and 3132, 3142 and 3152, 3162. The drain regions include the 15 diffusion regions 3111 and 3121, 3131 and 3141, 3151 and 3161. The source to p-well straps include the p-doped regions 3011 and 3012. In accordance with one embodiment, the selected source regions are electrically shorted to the p-well straps by siliciding portions of the semiconductor substrate 20 overlying the selected source regions 3112, 3122, 3152, and 3162 and the p-well straps 3011 and 3012 as shown by silicided regions 32. In alternative embodiments the p-well region 301 can be electrically tied to the selected source regions by siliciding the selected source regions to the extent that they 25 directly short to the p-well region, or alternatively by overetching the contact opening for the selected source region conductive

plugs to the extent that the conductive plug electrically shorts the selective source region and the p-well region.

As shown in FIG. 4, The respective source and drain regions are separated by the channel regions of the memory

- 5 cell's 311, 312, 313, 314, 315, and 316. In accordance with one embodiment, the memory cells comprise a tunnel oxide over the channel region, a floating gate electrode over the tunnel oxide, a control gate dielectric over the floating gate electrode, and a control gate electrode over the control gate dielectric.
- 10 Conductive plugs 402 and interconnects (not shown) connect the respective source and drain regions with electrical signals from, either the bitline 3091 in the case of the drain regions or the source line 3051 in the case of the source regions. Although the bitline 3091 and the source line 3051 are indicated
- 15 schematically in FIG. 4 as electrical wires, it should be understood that appropriate semiconductor interconnections are made at a same or different levels of the device to form the respective bitline 3091 and source line 3051, and the illustration with electrical wires is merely intended for explanation and
- 20 understanding of the electrical conductive effect of the connections and arrangement.

- Referring to FIG. 5, the semiconductor device of FIG. 4, having the electrical configuration of the array 30 of FIG. 3, is shown in cross-section taken across adjacent p-wells 301 and
- 25 302 substantially along sectioning line 305. In accordance with one embodiment, a deep n-well region 401 is formed within a semiconductor device substrate and the columns of p-wells used

to form the array of memory cells is disposed within the deep n-well region. As shown in the cross section of FIG. 5, shallow trench isolation structures 501 and deep n-well region 401 electrically isolate p-well regions 301 and 302. Memory cells 5 311 and 321 overlie the p-well regions 301 and 302, respectively. The memory cells 311 and 321 comprise a tunnel oxide 502, floating gate electrodes 503 and 504, a control gate dielectric layer 505 and control gates formed from portions of the wordline 3071 of FIG. 3. In addition, the wordline 3071 10 interconnects the memory cells 311 and 321.

As is apparent from the cross-section of FIG. 5, the p-well 301 is isolated from the p-well 302. It is understandable that, because of the isolation, biasing potentials of memory cells associated with p-well 301 are not necessarily the same as, and 15 can be independent of, biasing potentials of memory cells associated with the p-well 302. In other words, each separate p-well column is electrically isolated from other p-well columns in the array 30. As will be hereinafter more fully understood, these isolated p-wells enable array programming in such manner as to 20 achieve narrower distribution of threshold voltages, both at the low and the high threshold voltage levels. The isolated p-wells furthermore provide certain other advantages, including reducing chances of cross-over leakage among neighboring cells, that will also hereinafter be more fully understood.

25 Referring to FIGs. 6-9, steps associated with the formation of the device of FIG. 5 are more fully described. Shown in FIG. 6 is a semiconductor device substrate 601. The semiconductor

device substrate 601 can be a monocrystalline semiconductor wafer, a semiconductor on insulator (SOI) substrate, or any other substrate suitable for use to form semiconductor devices. In one specific embodiment, the semiconductor device substrate 5 is a silicon substrate. Isolation structures 501 are formed within the semiconductor device substrate 601. In one specific embodiment, the isolation structures 501 are shallow trench isolation structures. Alternatively, the isolation structures 501 can include local oxidation of silicon (LOCOS) structures or 10 other isolation structures as known to one of ordinary skill. The shallow trench isolation structures 501 serve to isolate p-well regions subsequently formed within the substrate 601. In one embodiment, the shallow trench isolation structures have a depth that is in a range of approximately 0.35 to 0.65 microns 15 deep or alternatively, such other depth and parameters as are appropriate for the application.

Referring to FIG. 7, after formation of the shallow trench isolation structures 501, a p-well implant is performed to form doped regions 701 and 702 within the substrate 601. In 20 accordance with one embodiment, the substrate 601 is implanted using boron or other p-type dopants to form the p-doped regions 701 and 702. After forming the p-doped regions 701 and 702 the substrate 601 is again implanted with phosphorus or other n-type dopants to form the deep n-doped 25 region 703. One of ordinary skill in the art recognizes that the implant energy used to form the deep doped region 703 is

higher as compared to the implant energy used to form the doped regions 701 and 702.

After forming the p-type doped regions 701 and 702 and the deep n-type doped region 703, a tunnel oxide 502 is formed over the substrate surface as shown in FIG 8. (Note, when used in this context "substrate surface" includes the semiconductor device substrate as well as all layers fabricated on the semiconductor device substrate up to the point of processing under discussion. Therefore, substrate surface refers to the present uppermost surface of the substrate, including all structures formed thereon). In accordance with one embodiment, the tunnel oxide is a thermally grown silicon dioxide layer. Alternatively the tunnel oxide can include a high dielectric constant material or a combination of thermally grown silicon dioxide and high dielectric constant materials (for the purposes of this specification a high dielectric constant (high-k) material is a material having a dielectric constant greater than that of silicon dioxide).

In accordance with one embodiment, the semiconductor substrate is then annealed using conventional annealing processes to diffuse and activate the dopants in the substrate 601 (i.e. the p-type regions 701 and 702 and the deep n-type region 703) thereby forming the p-well regions 301 and 302 and the deep n-well region 401 as shown in FIG 8. A first conductive layer 801 is then formed overlying the substrate surface. In accordance with one embodiment the first conductive layer 801 is a layer of polysilicon. Thereafter, a resist layer is deposited and

patterned overlying the first conductive layer 801 as shown in FIG. 8. The first conductive layer 801 and underlying tunnel oxide layer 502 is then etched to form floating gates 503 and 504 as shown in FIG. 9.

5 Turning now to FIG. 9, after forming the floating gate electrodes 503 and 504, a control gate dielectric layer 505 is formed overlying the floating gate electrodes 503 and 504. In accordance with one embodiment, the control gate dielectric layer 505 is a oxide-nitride-oxide (ONO) layer having an equivalent oxide thickness (EOT) of approximately 10-15 nanometers. Thereafter, a second conductive layer is deposited, patterned and etched as desired to form the wordline 3071, which also forms the control gates for the memory cells 311 and 321. In accordance with one embodiment, the second 10 conductive layer is a layer of polysilicon. The wordline 3071 commonly connects the memory cells 311 and 321 (as also shown in FIG. 3). After the wordline 3071 and other wordlines (not shown) are formed, an interlevel dielectric (ILD) layer 901, such a chemically vapor deposition (CVD) silicon oxide formed 15 using tetraethoxysilane (TEOS) as a source gas, or other similar material, is deposited over the substrate surface. Although not shown in FIG. 9, subsequent steps in formation of the semiconductor device include formation of contacts and interconnects to other elements of the array.

20 In an alternative embodiment, as technology continues to scale the features sizes of the memory cells, the area of the deep n-well arrangement disclosed with respect to FIGs. 5-9,

might be too large and result in a slow down of the charge/discharge time for high voltage write and erase operations. To overcome this, the present inventors have recognized that a deep trench structure can be substituted for

5 the shallow trench isolation, such that the each column is fully isolated with respect to both the p-wells and n-wells. This can advantageously reduce the junction capacitance of the n-well to p-type substrate for each individual bitline, which in turn reduces the charge/discharge time for the write/erase operations. In

10 addition, the p-well depth can be increased by increasing the depth of the trench isolation structures. Increasing the p-well depth can have several advantages. First, it reduces the p-well sheet resistance, which helps to reduce instability of the p-well's potential (as discussed previously). Second, it improves

15 manufacturability of the semiconductor device by reducing the requirement of controlling the boron doping profile in the p-well because the deeper trench isolation structures can reduce the leakage path between adjacent bitlines. Third, the deeper p-wells/trench isolation structures additionally reduce the bipolar

20 action of the n+ (source and drain)/p-well/n-well parasitic transistors. The dashed lines 902 of FIG. 9 indicate an example of this deep trench. As shown in FIG. 9, the depth of the deep trench isolation structure extends beyond the depth of the deep n-well region 401. Preferably, the deep trench isolation structure

25 has a depth that is in a range of approximately 0.6-1.1 microns. More preferably, the deep trench isolation structure has a depth that is in a range of approximately 0.8-1.0 microns.

Referring now to FIGs. 10A-E, an embodiment of programming the memory cell array having isolated p-well arrangements is disclosed. Each of the FIGs. 10A-E include an X-Y plot on the left showing threshold voltage (V_T) vs. Number of Bits for the memory cells in the array 30 including the three memory cells 311, 321, and 331 of FIG. 3 and a simplified schematic of the memory array 30 of FIG. 3, on the right, showing representative biasing potentials used to program the memory cells. Collectively the FIGs. 10A-E illustrate how embodiments of the present invention (i.e. using isolated p-wells to form columns in the memory array) can be used to program the memory cells in the array to a low threshold voltage state having a tighter V_T distribution as compared to prior art memory arrays. The programming with respect to the three memory cells 311, 321, 331, and the remaining memory cells in the array 30 and the specific biasing potentials are intended to be non-limiting and only for illustrative purposes. One of ordinary skill in the art recognizes that any number of memory cells in the array can be programmed and that other biasing potentials can be used to program the memory cells.

In accordance with one embodiment, changing the threshold voltage of the memory cell from a high threshold voltage state to a low threshold voltage state programs the memory cells. The high and low threshold voltage state each have a range that constitutes their respective threshold voltage target. For example, in the embodiments described herein, the high threshold voltage target is in the range of from about 4.0

volts to about 5.0 volts; the low threshold voltage target is in the range of from about 1.0 volts to about 1.5 volts and a read voltage level is approximately 3.3 volts. It is notable that the low threshold voltage target using embodiments described herein is

5 tighter than previously obtainable with prior art memory arrays.

The isolated p-wells allow for separate biasing of memory cells in each of the p-wells. The ability to separately bias the memory cells improves the ability to accurately program the memory cells to within the desired threshold voltage range by providing an

10 ability to deselect memory cells in specific p-wells after a desired threshold voltage for that memory cell is obtained.

Referring to FIG. 10A, the X-Y plot illustrates the threshold voltage distribution for the memory cells in FIG. 3 when erased to a high threshold voltage state. Additionally, a simplified

15 schematic of the memory array 30 of FIG. 3 is provided adjacent the X-Y plot. The simplified schematic indicates the respective voltages applied to the bitlines 3091, 3092, 3093, the source lines 3051, 3052, 3053, and the wordlines 3071-3076. The isolated p-wells 301, 302, and 303 (shown in FIG. 3) are biased at the same potential as the respective source line 3051, 3052, and 3053 as a result of connections 3011, 3012 and 3021, 3022 and 3031, 3032. In accordance with one embodiment, as shown in FIG. 10A, prior to programming the memory cells in the array, they are erased via Fowler-Nordheim tunneling by applying a

20 voltage of, for example, -8 volts, to each of the bitlines 3091, 3092, 3093 and source lines 3051, 3052, 3053 and 10 volts to each of the wordlines 3071, 3072, 3073, 3074, 3075, 3076 of the

25

array. The result of this biasing operation erases the memory cells in the array to a high threshold voltage state to a voltage between approximately 4.0-5.0 volts. The threshold voltage distribution is given by the curve 1001. As shown in FIG. 10A,
5 the erased threshold voltages of the memory cells 311, 321, and 331 fall within the distribution of the curve 1001.

Referring to FIGs. 10B-E, after erasing the memory cells to the high threshold voltage state, in accordance with one specific embodiment, the memory cells 311 and 321 are programmed in
10 stepped manner to a low threshold voltage state. One of ordinary skill in the art recognizes that the particular programming sequence for the memory cells 311 and 321 as hereafter described can vary for the memory cells of the array according to the particular threshold voltage state desired. In
15 the example of FIGs. 10A-E, the targeted threshold voltage states for the memory cells in the array are on or programmed (i.e., low voltage threshold state) and off or erased (i.e., high voltage threshold state), respectively.

Referring now to the simplified schematic shown in FIG.
20 10B, after erasing the memory cells in the array as shown in FIG. 10A, the wordline 3071 is biased at approximately -10V and the bitlines 3091 and 3092 and the source lines 3051 and 3052 are incrementally biased from approximately +4 volts toward approximately +8 volts, for example from +4 volts to +5 volts in
25 0.2 volt increments to remove electron charge from the floating gate of memory cells 311 and 321, thereby reducing the threshold voltage of the memory cells 311 and 321. The

wordlines 3072-3076, the bitline 3093, and the source line 3053 are all biased at approximately 0 volts, such that all other memory cells in the array (including memory cell 331) remain erased at a high threshold voltage state. As shown in the X-Y plot of FIG. 10B, the threshold voltage of the memory cells 311 and 321 shifts from within the distribution 1001 toward the Target Programmed V_T Range and the threshold voltage of memory cell 331 remains unchanged, within the distribution 1001.

Referring to FIG. 10C, the bias voltages of the bitlines 3091, 3092 and the source lines 3051, 3052 are again increased, for example, from approximately +5 volts to +6 volts, in increments of 0.2 volts, while maintaining the -10 volt bias potential on the wordline 3071. This continues reducing the threshold voltage of the memory cells 311 and 321 as indicated by the relative change in their positions on the X-Y plots between FIG. 10B and 10C. The wordlines 3072-3076, the bitline 3093, and the source line 3053 all continue to be biased at approximately 0 volts, and consequently, the floating gates of the other memory cells in the array including memory cell 331 remain at a high threshold voltage state (i.e. erased). As shown, for example, in the X-Y plot of FIG. 10C, as a result of the biasing operation, the threshold voltage of the memory cell 311 decreases to within the Target Programmed V_T Range and the threshold voltage of the memory cell 321 decreases to a value that is close to but not within the Target Programmed V_T Range.

Referring to FIG. 10D, after the threshold voltage of the memory cell 311 decreases to within the Target Programmed V_T Range, bias voltages of bitline 3091 and source line 3051 (and the isolated respective p-well 301 shown in FIG. 3 associated with the source line 3051 as a result of the source line to p-well straps 3011 and 3012) are reduced to 0 volts. This maintains the V_T state of the cell 311 within the desired low V_T range without further change. Because the P-well 301 associated with memory cell 311 is isolated from other p-wells (302 and 303 shown in FIG. 3, for example) in the array, the change in bias voltage (i.e. applying 0 volts) to bitline 3091, source line 3051, and p-well 301 effectively stops the threshold voltage shift for memory cell 311 and maintains the threshold voltage of memory cell 311 within the Target Programmed V_T Range. This is accomplished without affecting the ability to program other memory cells associated with other p-wells in the array, such as in this example memory cell 321 in adjacent the adjacent p-well (p-well 302 shown in FIG. 3).

Referring now to FIG. 10E, the bias voltage applied to the bitline 3092 and the source line 3052 continue to be incrementally increased, for example, from approximately +6 volts to +7 volts, in increments of 0.2 volts while maintaining the -10 volt bias potential on the wordline 3071 until the threshold voltage of memory cells 321 is reduced to within the Target Programmed V_T Range as shown in FIG 10E. It is understandable that, because of the isolated wells of the respective cells 311, 321, 331 in accordance with the

embodiments described herein, the cells in each respective isolated well can be programmed to the appropriate threshold voltage state without affecting the threshold voltage state of cells in other neighboring isolated wells. The X-Y plot shown in FIG. 5 10E shows the threshold voltages of memory cells 311, 321, within the Target Programmed V_T Range and the threshold voltage of memory cell 331 within the range of the high threshold voltage distribution along with the other memory cells in the array. This is the programmed state that is desired for the cells 10. 311, 321, and 331 (and remaining cells in the memory array). Although the foregoing example of programming memory cells of the array of FIG. 3 is specifically described, those skilled in the art will know and understand that other programming steps, bias voltage ranges, processes, etc. can be employed with the 15 array and other arrays and devices, all consistent with the concepts of isolated well regions for the various cells or locations of the array or other device.

The present invention has several advantages over the prior art. The present invention can be used for array 20 architectures to operate the memory array by independently biasing each column channel voltage for channel Fowler-Nordheim tunneling to achieve tight V_T distribution for low voltage/low power and high performance applications. By using Fowler-Nordheim tunneling to program and/or erase through the 25 channel region of the bitcells, high drive current (i.e. hot electron injection) and band-to-band tunneling current (i.e. source/drain edge program/erase) used by the prior art can be avoided. The

channel length can be scaled down without high V_{ds} conditions and deep junctions. In addition, erasing to a high threshold voltage state and programming with verify to a low threshold voltage state, depletion bits (i.e. V_T less than or approximately equal to zero volts) due to over-erase to a low V_T state can be avoided. Furthermore, embodiments of the present invention have the advantage of reducing the need to use V_{dd} boosting or charge pumps to boost the wordline voltage during read operation. In addition, embodiments of the present invention can easily be incorporated into current process flows using existing materials and without a need to develop new or elaborate processes.

Referring to FIG. 11, a cross section of an alternate embodiment is disclosed in which the source regions of each of the memory cells in the isolated p-well are tied to an isolated p-well region via an electrical strap between each of the source regions and the isolated p-well region. This embodiment advantageously eliminates a need to form a source interconnect and contacts that electrically couples to the source regions of each of the memory cells, which can significantly reduce the memory cell size. Biasing of the memory cell source regions is accomplished by applying a potential to the isolated p-well region 1101 by way of an electrical interconnect 117, an electrical contact 118, and p-doped region 119. When the isolated p-well is biased at a desired potential, the source regions of each of the memory cells are correspondingly biased at a similar potential by way of the electrical ties (which include

p-doped regions 1120, 1121, 1122 and silicided regions 1123, 1124, and 1125). In one embodiment, the n-type source regions 1126 and 1127, 1128 and 1129, 1130 and 1131 electrically couple to the isolated p-well region 1101 by way of

5 the p-doped regions 1120, 1121, 1122, respectively. In accordance with one specific embodiment, the n-type source regions 1126 and 1127, 1128 and 1129, 1130 and 1131 are electrically shorted to the p-doped regions 1120, 1121, and 1122 by siliciding portions of the substrate 1123, 1124, and 1125

10 overlying the n-type source regions 1126 and 1127, 1128 and 1129, 1130 and 1131 and the p-doped regions 1120, 1121, and 1122 as shown in FIG. 11.

In accordance with one embodiment, a bitline 1132 is electrically connected to the drain regions 1133, 1134, 1135, 1136 of memory cells 111, 112, 113, 114, 115 and 116 and a deep n-well region 1102 is formed below the isolated p-well region 1101. One of ordinary skill in the art recognizes that other methods (instead of silicidation) can be used to electrically tie the isolated p-well region 1101 with the source regions 1126, 1127, 1128, 1129, 1130, and 1131. In this manner, the isolated p-well concepts discussed previously can be used for memory array programming. The device is programmed and erased in substantially a similar manner to that previously described with respect to FIGs. 10A-10E.

25 Although the invention has been described with respect to specific conductivity types or polarity of potentials, skilled artisans appreciate that conductivity types and polarities of

- potentials may be reversed. In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be
- 5 made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention.
- 10 Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are
- 15 not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements
- 20 does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

CLAIMSWhat is Claimed is:

- 5 1. A semiconductor device having an electrically erasable
 programmable read only memory (EEPROM) array
 including rows and columns of memory cells comprising:
 a first p-well region and a second p-well region within a
 semiconductor substrate, wherein the first p-well
10 region and the second p-well region are spaced apart
 and electrically isolated;
 a first column of memory cells positioned within the first p-
 well region;
 a second column of memory cells positioned within the
15 second p-well region;
 a first control gate of a first memory cell in the first column
 of memory cells and a second control gate of a
 second memory cell in the second column of memory
 cells, wherein the first control gate and the second
20 control gate are in a same row and electrically coupled
 via a common wordline;
 a first bitline electrically coupled to drain regions of each
 memory cell in the first column of memory cells,
 a second bitline electrically coupled to drain regions of
25 each memory cell in the second column of memory
 cells;

- a first source line electrically coupled to source regions of each memory cell in the first column of memory cells, wherein the first source line and a source region of at least one memory cell in the first column of memory cells is electrically coupled to the first p-well region;
- 5 and
- a second source line electrically coupled to source regions of each memory cell in the second column of memory cells, wherein the second source line, and a source region of at least one memory cell in the second column of memory cells is electrically coupled to the second p-well region.
- 10
2. The semiconductor device of claim 1, wherein the source regions are further characterized as silicided n-type doped source regions and wherein the first source line is electrically coupled to the first p-well region of the at least one memory cell in the first column of memory cells by way of a silicided p-type doped region positioned adjacent a source region associated with the at least one memory cell in the first column of memory cells .
- 15
- 20
3. The semiconductor device of claim 1, wherein the first p-well region and the second p-well region are spaced apart and electrically isolated by a trench isolation feature.
- 25

4. The semiconductor device of claim 3, further comprising an n-well region below the shallow trench isolation feature that electrically isolates the first p-well region from the second p-well region.
5
5. A semiconductor device having an electrically erasable programmable read only memory (EEPROM) array including rows and columns of memory cells comprising:
10 a p-well region formed within a semiconductor substrate; a column of memory cells, wherein each memory cell has a source region and a drain region positioned within the p-well region, wherein each source region is electrically coupled to the p-well region; wordlines, wherein each wordline is electrically coupled to
15 a control gate of a memory cell in the column of memory cells; and a bitline electrically coupled to drain regions of each memory cell in column of memory cells.
- 20 6. The semiconductor device of claim 5, wherein the source region of each memory cell is silicided and electrically coupled to the p-well region by way of a silicided p-type doped region.
- 25 7. A method for forming an electrically erasable programmable read only memory (EEPROM) array comprising:

- forming a first p-well region and a second p-well region in
a semiconductor substrate, wherein the first p-well
region and the second p-well region are spaced apart
by a shallow trench isolation feature;
- 5 forming a first column of memory cells positioned within
the first p-well region;
- forming a second column of memory cells positioned
within the second p-well region, wherein a first control
gate of a first memory cell in the first column of
10 memory cells and a second control gate of a second
memory cell in the second column of memory cells are
electrically coupled via a common wordline;
- forming a first bitline, wherein the first bitline is electrically
coupled to drain regions of each memory cell in the
15 first column of memory cells,
- forming a second bitline, wherein the second bitline is
electrically coupled to drain regions of each memory
cell in the second column of memory cells;
- 20 forming a first source line, wherein the first source line is
electrically coupled to source regions of each memory
cell in the first column of memory cells, and wherein
the first source line and a source region of at least one
memory cell in the first column of memory cells are
electrically coupled to the first p-well region; and
- 25 forming a second source line, wherein the second source
line is electrically coupled to source regions of each
memory cell in the second column of memory cells,

and wherein the second source line and a source region of at least one memory cell in the second column of memory cells are electrically coupled to the second p-well region.

5

8. The method of claim 7, wherein source regions are n-type doped source regions and wherein the first source line is electrically coupled to the first p-well region by way of a p-type doped region and silicide formed within the source region of the at least one memory cell in the first column of memory cells.
10
9. The method of claim 7 further comprising forming an n-type isolation region below the first p-well region and the second p-well region and the shallow trench isolation region.
15

10. A method of programming an electrically erasable programmable read only memory (EEPROM) array including row and columns of memory cells wherein:
 - 5 each row of memory cells includes a wordline;
 - each column of memory cells includes a source line and a bitline and each column of memory cells is disposed within a separate p-well; wherein adjacent separate p-wells are electrically isolated from each other,
- 10 the source line for each column of memory cells electrically connects to its respective p-well via a p-type region disposed adjacent a source region of at least one memory cell in each column;
- 15 comprising:
 - selecting at least a first bit in a first column and at least a second bit in a second column by:
 - applying a selected wordline potential to the at least a first bit in a first column and the at least a second bit in a second column;
 - applying a first selected bitline potential and a first selected source line potential to the at least a first bit in the first column;
 - applying a second selected bitline potential and a second selected source line potential to the at least a second bit in the second column;
 - 20 pulsing at least one of the first selected bitline potential and the first selected source line
 - 25

potential to shift a first threshold voltage of the at least a first bit from a first threshold voltage potential toward a target threshold voltage potential;

5 pulsing at least one of the second selected bitline potential and the second selected source line potential to shift a second threshold voltage of the at least a second bit from a second threshold voltage potential toward the target threshold

10 voltage potential;
11 the other side of the cell is shifted by

15 and the second selected source line potential to
continue shifting from the second threshold
voltage potential to the target threshold voltage
potential; and

deselecting the at least a second bit in the second column after shifting from the second threshold voltage to the target threshold voltage potential.

1/9

FIG. 1
-PRIOR ART-

FIG. 2
-PRIOR ART-

2/9

FIG. 3

3/9

FIG. 4

FIG. 5

FIG. 6

FIG. 7

5/9

FIG. 8

FIG. 9

6/9

FIG. 10A**FIG. 10B**

719

FIG. 10C

FIG. 10D

8/9

FIG.10E

9/9

FIG. 11

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 February 2002 (21.02.2002)

PCT

(10) International Publication Number
WO 02/015190 A3

- (51) International Patent Classification⁷: H01L 27/115, 21/8247, G11C 16/04, 16/10
- (74) Agents: WUAMETT, Jennifer, B.; Motorola, Inc., P.O. Box 10219, Scottsdale, AZ 85271-0219 et al. (US).
- (21) International Application Number: PCT/US01/24063
- (22) International Filing Date: 1 August 2001 (01.08.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/639,195 15 August 2000 (15.08.2000) US
- (71) Applicant: MOTOROLA, INC., A CORPORATION OF THE STATE OF DELAWARE [US/US]; 1303 East Algonquin Road, Schaumburg, IL 60196 (US).
- (72) Inventors: HU, Chung-You; 3543 Greystone Drive, N° 1101, Austin, TX 78731 (US). CHANG, Kuo-Tung; 11219 Tracton Lane, Austin, TX 78739 (US). LIU, Wei-Hua; 10500 Coreopsis Drive, Austin, TX 78733 (US). BURNETT, David; 3804 Laurelledge Lane, Austin, TX 78731 (AU).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
- Published:
— with international search report
- (88) Date of publication of the international search report:
6 February 2003

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY, METHOD OF MANUFACTURE AND PROGRAMMING

BEST AVAILABLE COPY

WO 02/015190 A3

(57) Abstract: A non-volatile memory includes an array (30) of cells in rows and columns (311-316; 331-336), where the cells of each column (311-316; 331-336) are positioned within a respective isolated p-well region (301, 302, 303). Control gates of sequential memory cells in rows of the array (311, 321, 331; 316, 316, 336) are electrically coupled by common wordlines (3071, 3072, 3076). Bitlines (3091, 3092, 3093) electrically couple drain or source regions of each memory cell in the respective columns (311-316; 331-336). The source lines (3051, 3052, 3053) and at least one memory cell in each column of the array (311-316; 331-336) are electrically coupled to the p-well region (301, 302, 303) corresponding to the column of the source line and cell. Each column of the array (30) is therefore located within an isolated well.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

Inte
nal Application No
PCT/US 01/24063

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01L27/115 H01L21/8247 G11C16/04 G11C16/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G11C H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 198 23 733 A (SIEMENS AG) 2 December 1999 (1999-12-02)	1-9
A	the whole document ---	10
Y	PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09, 30 September 1996 (1996-09-30) & JP 08 130263 A (SONY CORP), 21 May 1996 (1996-05-21)	1-9
A	abstract ---	10
A	EP 0 459 164 A (TEXAS INSTRUMENTS INC) 4 December 1991 (1991-12-04) the whole document ---	1-10
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

7 October 2002

Date of mailing of the international search report

14/10/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Albrecht, C

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 01/24063

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 017, no. 672 (E-1474), 10 December 1993 (1993-12-10) & JP 05 226665 A (FUJITSU LTD), 3 September 1993 (1993-09-03) abstract -----	1,5,7,10
A	US 5 994 732 A (AJIKA NATSUO ET AL) 30 November 1999 (1999-11-30) the whole document -----	1,5,7,10

INTERNATIONAL SEARCH REPORT

Inte	rial Application No
PCT/US 01/24063	

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
DE 19823733	A	02-12-1999	DE WO	19823733 A1 9962128 A1		02-12-1999 02-12-1999
JP 08130263	A	21-05-1996	NONE			
EP 0459164	A	04-12-1991	DE DE EP JP JP US	69121775 D1 69121775 T2 0459164 A2 3288399 B2 4230078 A 5394002 A		10-10-1996 30-01-1997 04-12-1991 04-06-2002 19-08-1992 28-02-1995
JP 05226665	A	03-09-1993	NONE			
US 5994732	A	30-11-1999	JP KR	9307005 A 244406 B1		28-11-1997 01-02-2000

THIS PAGE BLANK (USPTO)