Aufgaben und Lösungen

Aufgabe 1 - UNION-FIND

8x vorgekommen

Beschreiben Sie jeweils eine Lösung für das Union-Find-Problem mit Laufzeit

- 1. $O(\log n)$ (amortisiert) für UNION und O(1) für FIND
- 2. O(1) für UNION und $O(\log n)$ für FIND

wobei n die Anzahl der Elemente ist. Begründen Sie in beiden Fällen die entsprechenden Laufzeiten.

Lösung

end

```
O(\log n) (amortisiert) für UNION und O(1) für FIND
```

```
name[x] = Name des Blocks der x enthält. 1 \le x \le n
size[1..n]:
                   size[A] = Anzahl Elemente im Block A, initialisiert mit 1
L[1..n]:
                   L[A] = Liste aller Elemente in Block A, initialisiert L[i] = \{i\}
  {\bf Initial isierung:}
  begin
     for i := 1 to n do
        name[i]=i
        size[i]=1
        L[i] = \{i\}
     end
  end
  FIND(x):
  begin
  | return name[x]
  end
  UNION(A,B):
  begin
     if size[A] \leq size[B] then
        foreach i in L/A/ do
         name[i] = B
        size[B] += size[A]
        L[B] = L[B].concat(L[A])
     else
         foreach i in L/B/ do
         name[i] = A
        end
        size[A] += size[B]
        L[A] = L[A].concat(L[B])
```

```
Laufzeit: FIND(x): O(1) \rightarrow Einfacher Zugriff auf ein Feld UNION: <math>O(\log n) \rightarrow x kann maximal \log(n) mal seinen Namen ändern, da es sich nach jeder Namensänderung in einer doppelt so großen Menge befindet. (Die kleinere Menge wird umbenannt)
```

O(1) für UNION und $O(\log n)$ für FIND

```
Feld name[1...n]:
                         name[x] = Name des Blocks mit Wurzel x (hat nur Bedeutung, falls x Wurzel)
                        vater[x] = \begin{cases} Vater \ von \ x \ in \ seinem \ Baum \\ 0, \ falls \ x \ Wurzel \end{cases}
Feld vater[1...n]:
                         wurzel[x] = Wurzel des Blocks mit Namen x
Feld wurzel[1...n]:
Feld size[1..n]:
                         size[x] = Anzahl Knoten im Unterbaum mit Wurzel x
  Initialisierung:
  begin
       for i := 1 to n do
           vater[i]=0
          name[i]=i
          wurzel[i]=i
      \mathbf{end}
  end
  FIND(x):
  begin
       while vater/x != 0 do
       x = vater[x]
       end
      return name[x]
  \mathbf{end}
  UNION(A,B,C):
  begin
      r_1 = \text{wurzel}[A]
      r_2 = \text{wurzel}[B]
      if size[r_1] \le size[r_2] then | vater[r_1] = r_2
           name[r_2] = C
           wurzel[C] = r_2
          \operatorname{size}[r_2] += \operatorname{size}[r_1]
       else
           vater[r_2] = r_1
           name[r_1] = C
           wurzel[C] = r_1
          \operatorname{size}[r_1] += \operatorname{size}[r_2]
       end
```

Laufzeit:

 $\quad \mathbf{end} \quad$

FIND(x): $O(\log n) \to Weighted UNION Rule UNION: <math>O(1) \to Nur Pointer "andern"$

Warum hat der Baum logarithmische Höhe/Tiefe? Im Worst-Case wird ein UNION auf zwei gleich große und gleich tiefe Bäume ausgeführt. Dabei ist die Größe von C doppelt so groß wie die ursprünglichen Bäume, jedoch ist die Tiefe nur um 1 gewachsen $(\log(size(x)) \ge Hoehe(x))$

Aufgabe 2 - Hashing

8x vorgekommen

Entwickeln Sie eine Datenstruktur zur Speicherung von n Schlüsseln aus dem Universum $\{1, ..., N\}$ (wobei n << N), die eine Zugriffszeit von O(1) garantiert. Sie dürfen dabei $O(n^2)$ Speicherplatz verwenden.

5x vorgekommen

(Perfektes Hashing) Verbessern Sie die Datenstruktur aus Aufgabe , so dass nur noch Speicherplatz
 $\mathcal{O}(n)$ benutzt wird.

Hashig durch Verkettung und mit offener Adressierung (Linear Probing:Wie funktioniert Delete())

Lösung

Hashing mit Verkettung

löse Kollisionen nicht auf, speichere mehrere Schlüssel an der gleichen Position

Speichere für jedes Ergebnis der Hashfunktion h eine Liste **Lookup(x)**: lineare Suche in Liste T[h(x)]

- Worst Case: alle Keys in derselben List \rightarrow O(n)
- erwartete Zeit: $O(\frac{n}{m})$
- Belegungsfactor $\beta = \frac{n}{m} \leftarrow$ erw. Länge einer Liste T[x]
- wenn $m \ge n$, d.h. $\beta \le 1$ dann \rightarrow erw. Laufzeit O(1)

Insert(x): $x \notin S$. Füge x an erst freie Stelle in T[h(x)] ein **Delete(x)**: Entferne x aus T[h(x)]

meist wird als Hashfunktion einfaches Modulo verwendet.

Verbesserung Verdopplungs-Strategie:

- Immer wenn $\beta > 2$, verdopple Tafelgröße $\rightarrow 1$ sehr teures Insert (da alle Elemente mit neuer Hashfunktion umgespeichert werden), im Schnitt aber weiter O(1)
- Bei Delete und kleinem β : Tabelle kann halbiert werden \rightarrow Ein sehr teures Delte, im Schnitt aber weiter O(1)

Zusatzaufgabe: Perfektes Hashing

Aaaaalte Aufgabe 5 - Maximales Matching

Erklären Sie die Grundidee des in der Vorlesung behandelten Algorithmus ur Berechnung eines maximalen Matchings eines bipartiten Graphen

Randomisierter Suchbaum

Definition: Randomized Search Tree (RST)

Sei $S = \{x_1, ..., x_n\}$ eine Menge von n Schlüsseln. Jedem x_i wird eine zusätzlich eine Zufallszahl (auch Priorität genannt) $prio(x_i)$ zugeordnet. $prio(x_i)$ sind gleichverteilte reelle Zufallszahlen $\in [0, 1]$ (Implementierung wären int-Zahlen, zB 32-bit).

Ein RST für S ist eine binärer Suchbaum für die Paare $(x_i, prio(x_i), 1 \le i \le n,$ sodass

- 1. normaler Knoten-orientierter Suchbaum für die Schlüssel $x_i, ..., x_n$
- 2. Maximumsheap bzgl der Prioritäten. dh $prio(v) \ge prio(u)$, falls v Parent. $((u,v) \text{ sind Knoten in einem Baum}). \Rightarrow \text{Wurzel enthält maximale Priorität}.$

Existenz durch Algorithmus zum Aufbau (rekursiv).

- Wurzel einthält (x_i, p_i) mit $p_i = prio(x_i)$ maximal
- Linker Unterbaum: RST für $\{(x_i, p_i) | x_j < x_i\}$
- Rechter Unterbaum: RST für $\{(x_k, p_k)|x_k > x_i\}$

Beispiel: $S = \{1, ..., 10\}$

- Schreibe Tabelle mit Prioriäten und Werten.
- Teile die Tabelle beim Maximum und schreibe es in die Wurzel. Wiederhole, bis alle Elemente geschrieben.

 \Rightarrow Wenn sich die Prioritäten genauso oder umgekehrt, wie die Schlüssel verhalten, erhält man einen degenrierten Baum. (bzgl \leq). zB $prio(x_i) = x_i$. Dieser Fall ist sehr unwahrscheinlich, wenn sich bei der Priorität um gleichverteilte Zufallszahlen handelt.

Operationen

- Lookup(x): normale suche in binärem Baum. Kosten $\mathcal{O}(H\ddot{o}he(T))$
- Insert(x): Füge einen neuen Knoten v als Blatt (x, prio(x)) gemäß des Schlüssels in den binären Baum ein, wobei prio(x) neue Zufallszahl (kann die Prio-Ordnung zerstören). Dann: Rotiere v nach oben, bis die Heap-Eigenschaft gilt, also $prio(v) \leq prio(parent(v))$.

Kosten: $\mathcal{O}(\#Rotationen) = \mathcal{O}(H\ddot{o}he(T))$. Alternativ: normales einfügen in binären Baum in absteigender Reihenfolge der Prioritäten.

- DELETE(x): Sei v der knoten mit Schlüssel x (v = Lookup(x)).
 - 1. Rotiere v nach unten, bis v ein Blatt ist. R = linkes Rückgrat des rechten Unterbaums von v. L = rechtes Rückgrat des linken Unterbaums.
 - 2. Entferne das Blatt.

Kosten: $\mathcal{O}(\#Rotationen) = \mathcal{O}(1 + |L| + |R|)$

- Split(y) $\to S_1 = \{x \in S | x \leq y\}, S_2 = \{x \in S | x \geq y\}$ (Teile den Baum, indem y mit maximaler Priorität zur Wurzel rotiert wird)
 - 1. Insert $(y+\epsilon)$ mit Priorität ∞
 - 2. Entferne die Wurzel
- Join (T_1,T_2) : $S \leftarrow S_1 \cup S_2$. T_1 RST für S_1 und T_2 RST für S_2
 - 1. Konstruiere T (Füge y zwischen $Max(S_1)$ und $Min(S_2)$ ein. Voraussetzung: $Max(S_1)$; $Min(S_2)$
 - 2. Lösche die Wurzel (Durch runterrotieren des eingefügten Knotens y)