Relatório de Teste de Desempenho de Algoritmos de Ordenação

Lucas Azevedo Dias

Introdução:

Este relatório descreve os resultados de testes de desempenho para três algoritmos de ordenação: *Bubble Sort*, *Merge Sort* e *Quick Sort*. O objetivo desses testes é avaliar o desempenho de cada algoritmo em relação ao tempo de ordenação para diferentes quantidades de elementos a serem ordenados.

Testes Realizados:

Foram realizados testes em cinco diferentes tamanhos de conjunto de dados, com variação na quantidade de elementos a serem ordenados.

Resultados:

Bubble Sort	Times	DeltaTime (ms)	TotalIters	TotalSwaps	(TotalIters/Times)	(TotalSwaps/Times)
	50	2	1862	649	3724,00%	1298,00%
	500	8	229041	61311	45808,20%	12262,20%
	1000	9	960039	244964	96003,90%	24496,40%
	5000	45	24265146	6150125	485302,92%	123002,50%
	10000	229	98940105	24889100	989401,05%	248891,00%

Merge Sort	Times	DeltaTime (ms)	TotalIters	TotalSwaps	(TotalIters/Times)	(TotalSwaps/Times)
	50	0	201	6	402,00%	12,00%
	500	1	3627	124	725,40%	24,80%
	1000	2	8226	240	822,60%	24,00%
	5000	2	53175	1045	1063,50%	20,90%
	10000	2	116285	2057	1162,85%	20,57%

Quick Sort	Times	DeltaTime (ms)	TotalIters	TotalSwaps	(TotalIters/Times)	(TotalSwaps/Times)
	50	0	93	82	186,00%	164,00%
	500	0	1342	1208	268,40%	241,60%
	1000	0	2841	2556	284,10%	255,60%
	5000	2	17096	15630	341,92%	312,60%
	10000	3	36103	2057	361,03%	20,57%

Conclusão:

De forma geral, o algoritmo de *Merge Sort* apresentou os melhores resultados, onde por mais que tenha tido mais iterações relativamente a quantidade de inserções, possuiu uma quantidade ínfima de trocas de posições. Assim, garantindo a ele uma vantagem de tempo sobre os outros dois algoritmos apresentados.

Link do GitHub: https://github.com/lucas-azdias/Resolucao-de-Problemas-Estruturados-em-
Computação/tree/main/%5BTAREFAS%5D/TDE%2003%20-%20Ordena%C3%A7%C3%A3o%20RA%2004%20-%204%20hs%20Aula