

planetmath.org

Math for the people, by the people.

Hausdorff measure

Canonical name HausdorffMeasure Date of creation 2013-03-22 14:27:26 Last modified on 2013-03-22 14:27:26

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 8

Author paolini (1187) Entry type Definition Classification msc 28A78

Related topic HausdorffDimension Related topic LebesgueMeasure

Introduction

Given a real number $\alpha \geq 0$ we are going to define a Borel external measure \mathcal{H}^{α} on \mathbb{R}^n with values in $[0, +\infty]$ which will comprehend and generalize the concepts of length (for $\alpha = 1$), area ($\alpha = 2$) and volume ($\alpha = 3$) of sets in \mathbb{R}^n . In particular if $M \subset \mathbb{R}^n$ is an m-dimensional regular surface then one will show that $\mathcal{H}^m(M)$ is the m-dimensional area of M. However, being an external measure, \mathcal{H}^m is defined not only on regular surfaces but on every subset of \mathbb{R}^n thus generalizing the concepts of length, area and volume. In particular, for m = n, it turns out that the Hausdorff measure \mathcal{H}^n is nothing else than the Lebesgue measure of \mathbb{R}^n .

Given any fixed set $E \subset \mathbb{R}^n$ one can consider the measures $\mathcal{H}^{\alpha}(E)$ with α varying in $[0, +\infty)$. We will see that for a fixed set E there exists at most one value α such that $\mathcal{H}^{\alpha}(E)$ is finite and positive; while for every other value β one will have $\mathcal{H}^{\beta}(E) = 0$ if $\beta > \alpha$ and $\mathcal{H}^{\beta}(E) = +\infty$ if $\beta < \alpha$. For example, if E is a regular 2-dimensional surface then only $\mathcal{H}^2(E)$ (which is the area of the surface) may possibly be finite and different from 0 while, for example, the volume of E will be 0 and the length of E will be infinite.

This can be used to define the dimension of a set E (this is called the Hausdorff dimension). A very interesting fact is the existence of sets with dimension α which is not integer, as happens for most *fractals*.

Also, the measure \mathcal{H}^{α} is naturally defined on every metric space (X, d), not only on \mathbb{R}^n .

Definition

Let (X,d) be a metric space. Given $E \subset X$ we define the diameter of E as

$$\operatorname{diam}(E) := \sup_{x,y \in E} d(x,y).$$

Given a real number α we consider the conventional constant

$$\omega_{\alpha} = \frac{\pi^{\alpha/2}}{\Gamma(\alpha/2 + 1)}$$

where $\Gamma(x)$ is the gamma function.

For all $\delta > 0$, $\alpha \geq 0$ and $E \subset X$ let us define

$$\mathcal{H}^{\alpha}_{\delta}(E) := \inf \left\{ \sum_{j=0}^{\infty} \omega_{\alpha} \left(\frac{\operatorname{diam}(B_{j})}{2} \right)^{\alpha} : B_{j} \subset X, \ \bigcup_{j=0}^{\infty} B_{j} \supset E, \ \operatorname{diam}(B_{j}) \leq \delta \ \forall j = 0, 1, \ldots \right\}.$$

$$\tag{1}$$

The *infimum* is taken over all possible enumerable families of sets $B_0, B_1, \ldots, B_j, \ldots$ which are sufficiently small (diam $B_j \leq \delta$) and which cover E.

Notice that the function $\mathcal{H}^{\alpha}_{\delta}(E)$ is decreasing in δ . In fact given $\delta' > \delta$ the family of sequences B_j considered in the definition of $\mathcal{H}^{\alpha}_{\delta'}$ contains the family of sequences considered in the definition of $\mathcal{H}^{\alpha}_{\delta}$ and hence the infimum is smaller. So the limit in the following definition exists:

$$\mathcal{H}^{\alpha}(E) := \lim_{\delta \to 0^{+}} \mathcal{H}^{\alpha}_{\delta}(E). \tag{2}$$

The number $\mathcal{H}^{\alpha}(E) \in [0, +\infty]$ is called α -dimensional Hausdorff measure of the set $E \subset X$.