Contents

1	Functions			2
	1.1	poly.factor — 多項式の因数分解		2
		1.1.1	brute force search – 総当たりで因数分解を探す	2
		1.1.2	divisibility_test – 可除性テスト	2
			minimum absolute injection — 係数を絶対値最小表現に	
			- 渡す	2
		1.1.4	padic factorization – p 進分解	3
		1.1.5	upper bound of coefficient –Landau-Mignotte の係数の	
			上界	3
		1.1.6	zassenhaus - Zassenhaus 法による平方因子のない整数係	
			数多項式の因数分解・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
		1.1.7	integer polynomial factorization - 整数多項式の因数分解	

Chapter 1

Functions

1.1 poly.factor – 多項式の因数分解

factor モジュールは整数係数一変数多項式の因数分解のためのもの. このモジュールは以下に示す型を使用:

polynomial:

polynomial は poly.uniutil.polynomial によって生成された多項式.

1.1.1 brute force search – 総当たりで因数分解を探す

 $fp_factors$ 上でいくつかの積の組み合わせである因数を探すことにより f の因数分解を見つける. この組み合わせは総当たりで探される.

引数 fp_factors は poly.uniutil.FinitePrimeFieldPolynomial のリストです.

1.1.2 divisibility test - 可除性テスト

```
\textbf{divisibility} \quad \textbf{test(f:} \ \textit{polynomial}, \ \textbf{g:} \ \textit{polynomial}) \rightarrow \textit{bool}
```

多項式において、fがgで割り切れるかどうか、Boolean値を返す.

1.1.3 minimum _absolute _injection – 係数を絶対値最小表現 に渡す

 $ext{minimum absolute injection(f: } polynomial)
ightarrow F$

各係数を絶対値最小表現に渡す $\mathbf{Z}/p\mathbf{Z}$ 係数多項式 \mathbf{f} の単射により整数係数多項式 \mathbf{F} を返す.

与えられた多項式 f の係数環は Integer Residue Class Ring または Finite Prime-Field でなければならない.

1.1.4 padic factorization - p 進分解

 $\operatorname{padic_factorization}(\operatorname{f:}\ polynomial) \rightarrow p,\ factors$

素数 p と, 与えられた平方因子を含まない整数係数多項式 f の p 進分解を返す. 結果である factors は整数係数を持ち, \mathbb{F}_p からその絶対値最小表現に写されている

- †素数は以下のように選ばれる:
- 1. f mod p でも平方因子を持たない,
- 2. 因数の数は次の素数を超えない.

与えられた多項式 f は poly.uniutil.IntegerPolynomial でなければならない.

1.1.5 upper_bound_of_coefficient -Landau-Mignotte の 係数の上界

 $\textbf{upper bound of coefficient(f:} \ \textit{polynomial}) \rightarrow \textit{long}$

次数は与えられた f の次数の半分を超えない大きさである Landau-Mignotte の 因数の係数の上界を計算.

与えられた多項式 f は整数係数多項式でなければならない.

1.1.6 zassenhaus – Zassenhaus 法による平方因子のない整数係 数多項式の因数分解

 $zassenhaus(f: polynomial) \rightarrow list \ of \ factors \ f$

Berlekamp-Zassenhaus 法による平方数のない整数係数の多項式 f の因数.

1.1.7 integerpolynomialfactorization – 整数多項式の因数分解

integer polynomial factorization (f: polynomial)
ightarrow factor

Berlekamp-Zassenhaus 法により整数係数多項式 f を因数分解.

因数は (factor, index) という形式のタプルのリストの形式で出力される.

Bibliography