

Part 15B TEST REPORT

Product Name	3G Quad Band HSDPA/HSUPA PoC enabled mobile phone						
Model Name	Sonim XP5520-A-R1, Sonim XP5520-A-R2, Sonim XP5530-A-R1, Sonim XP5560-A-R1, Sonim XP5560-A-R2, Sonim XP5560-A-R3, Sonim XP5570-A-R1 (P35F008AA)						
Marketing Name	Sonim XP5520 BOLT						
FCC ID	WYPP35F008AA						
Client	Sonim Technologies, Inc.						

TA Technology (Shanghai) Co., Ltd.

Report No.: RZA1109-1686EMC01R1 Page 2 of 33

GENERAL SUMMARY

	3G Quad Band HSDPA/HSUPA PoC enabled	Marketing	Sonim	XP5520				
Product Name	mobile phone	Name	BOLT					
Model Name	Sonim XP5520-A-R1, Sonim XP5520-A-R2, Sonim XP5530-A-R1, Sonim XP5560-A-R1, Sonim XP5560-A-R3, Sonim XP5570-A-R1 (P35F008AA)							
FCC ID	WYPP35F008AA							
Report No.	RZA1109-1686EMC01R1							
Client	Sonim Technologies, Inc.							
Manufacturer	Sonim Technologies, Inc.							
Reference Standard(s)	FCC Code CFR47 Part15B (2010-12) Radio frequence ANSI C63.4 (2003) Methods of Measurement Low-Voltage Electrical and Electronic Equipment in	of Radio-Nois						
Conclusion	This portable wireless equipment has been measurelevant standards. Test results in Chapter 2 of specified in the relevant standards. General Judgment: Pass (Stamp) Date of issue: I	this test repor	t are belo	•				
Comment	The test result only responds to the measured san	nple.	5					

Approved	bv	栖伟中	Revised by	花片粉	Performed by A	5
, .pp. 0 1 0 u	~,_	Director	_	EMC Manager	EMC Enginee	 er

Report No.: RZA1109-1686EMC01R1 Page 3 of 33

TABLE OF CONTENT

4
4
4
5
5
6
7
8
8
9
20
30
31
31
33
- - -

Report No.: RZA1109-1686EMC01R1 Page 4 of 33

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report can not be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology** (Shanghai) Co., Ltd. and the Accreditation Bodies, if it applies.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing laboratory

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Yang Weizhong

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: yangweizhong@ta-shanghai.com

Report No.: RZA1109-1686EMC01R1 Page 5 of 33

1.3. Applicant Information

Company: Sonim Technologies, Inc.

Address: 1875 S. Grant Street, Suite 620

City: San Mateo

Postal Code: Ca 94420

Country: U.S.A

Contact: Sabrina Payonk

Telephone: +1 650 353 9851

Fax: +1 650 378 8190

1.4. Manufacturer Information

Company: Sonim Technologies, Inc.

Address: 875 S. Grant Street, Suite 620

City: San Mateo

Postal Code: Ca 94420

Country: U.S.A

Telephone: +1 650 353 9851

Fax: +1 650 378 8190

Report No.: RZA1109-1686EMC01R1 Page 6 of 33

1.5. Information of EUT

General information

Name of EUT:	3G Quad Band HSDPA/HSUPA PoC enabled mobile phone
IMEI:	001080000527698
Hardware Version:	А
Software Version:	11.0.0-12.0.2-4100-00.0
Antenna Type:	Internal Antenna

Report No.: RZA1109-1686EMC01R1 Page 7 of 33

Auxiliary equipment details

AE1: Battery

Model: BAT-01950-01S

Manufacturer: Sonim Technologies, Inc.

S/N: S1105000105

AE2: Charger

Model: 3202SM

Manufacturer: Salcomp

S/N: /

AE3: Earphone

Model: ME-816B5-C

Manufacturer: Sonim Technologies, Inc.

S/N: /

Equipment Under Test (EUT) is 3G Quad Band HSDPA/HSUPA PoC enabled mobile phone with internal antenna. During the test, the EUT is in charger mode.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. Test Date

The test is performed on October 7, 2011.

Report No.: RZA1109-1686EMC01R1 Page 8 of 33

2. Test Information

2.1. Summary of test results

Number	Test Case	Clause in FCC Rules	Verdict
1	Radiated Emission	15.109, ANSI C63.4-2003	PASS
2	Conducted Emission	15.107, ANSI C63.4-2003	PASS

Report No.: RZA1109-1686EMC01R1 Page 9 of 33

2.2. Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure		
24°C~26°C	45%~50%	102.5kPa		

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2003. Sweep the whole frequency band through the range from 30MHz to 5GHz. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. During the test, EUT is in charger mode.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

Report No.: RZA1109-1686EMC01R1

Page 10 of 33

Test Setup

Below 1GHz

Above 1GHz

Report No.: RZA1109-1686EMC01R1 Page 11 of 33

Limits

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest frequency or 40GHz,which is lower	54 74	Average Peak

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 3.92 dB.

Report No.: RZA1109-1686EMC01R1 Page 12 of 33

Test Results

Charger Mode GSM 850

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
37.360000	22.1	100.0	V	22.0	44.6	-22.5	17.9	40.0
83.390000	25.0	175.0	V	34.0	54	-29.0	15.0	40.0
129.420000	21.8	100.0	V	13.0	52	-30.2	21.7	43.5
194.700000	25.2	221.0	V	12.0	53.9	-28.7	18.3	43.5
323.470000	23.3	175.0	V	157.0	48.2	-24.9	22.7	46.0
663.940000	34.7	100.0	V	194.0	53.1	-18.4	11.3	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Report No.: RZA1109-1686EMC01R1 Page 13 of 33

Note: Blue trace uses the peak detection Green trace uses the average detection

Radiated Emission from 1GHz to 3GHz

Note: Blue trace uses the peak detection

Green trace uses the average detection

Radiated Emission from 3GHz to 5GHz

Report No.: RZA1109-1686EMC01R1

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
36.340000	25.1	125.0	V	54.0	47.8	-22.7	14.9	40.0
82.750000	25.1	116.0	V	50.0	54.3	-29.2	14.9	40.0
144.010000	20.4	100.0	V	299.0	51.3	-30.9	23.1	43.5
194.700000	25.1	225.0	V	15.0	53.8	-28.7	18.4	43.5
519.320000	23.8	100.0	V	148.0	44.6	-20.8	22.2	46.0
666.120000	26.8	100.0	V	170.0	45.2	-18.4	19.2	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Page 14 of 33

Report No.: RZA1109-1686EMC01R1 Page 15 of 33

Note: Blue trace uses the peak detection

Green trace uses the average detection

Radiated Emission from 1GHz to 3GHz

Note: Blue trace uses the peak detection
Green trace uses the average detection

Radiated Emission from 3GHz to 10GHz

Report No.: RZA1109-1686EMC01R1 Page 16 of 33

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
36.260000	21.9	100.0	V	28.0	-22.7	-22.7	18.1	40.0
83.630000	24.0	175.0	V	71.0	-28.9	-28.9	16.0	40.0
144.010000	21.8	100.0	V	0.0	-30.9	-30.9	21.7	43.5
259.610000	27.7	225.0	V	192.0	-26.4	-26.4	18.3	46.0
323.460000	23.5	175.0	V	167.0	-24.9	-24.9	22.5	46.0
666.080000	29.3	100.0	V	188.0	-18.4	-18.4	16.7	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Note: Blue trace uses the peak detection Green trace uses the average detection

Radiated Emission from 1GHz to 3GHz

Note: Blue trace uses the peak detection

Green trace uses the average detection

Radiated Emission from 3GHz to 10GHz

Report No.: RZA1109-1686EMC01R1

Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Height (cm)	Polarization	Azimuth (deg)	Reading value (dBuV/m)	Correct Factor (dB)	Margin (dB)	Limit (dBuV/m)
36.590000	23.6	100.0	V	353.0	46.2	-22.6	16.4	40.0
83.030000	24.3	175.0	V	63.0	53.4	-29.1	15.7	40.0
129.420000	19.2	100.0	V	148.0	49.4	-30.2	24.3	43.5
194.130000	21.5	100.0	V	143.0	50.2	-28.7	22.0	43.5
519.320000	23.7	100.0	V	157.0	44.5	-20.8	22.3	46.0
666.040000	26.6	100.0	V	178.0	45	-18.4	19.4	46.0

Remark: 1. Quasi-Peak = Reading value + Correction factor

- 2. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain)
- 3. Margin = Limit Quasi-Peak

Page 18 of 33

Report No.: RZA1109-1686EMC01R1 Page 19 of 33

Note: Blue trace uses the peak detection

Green trace uses the average detection

Radiated Emission from 1GHz to 3GHz

Note: Blue trace uses the peak detection

Green trace uses the average detection

Radiated Emission from 3GHz to 5GHz

Report No.: RZA1109-1686EMC01R1 Page 20 of 33

2.3. Conducted Emission

Ambient condition

Temperature	Relative humidity	Pressure
24°C ~26°C	50%~55%	102.5kPa

Methods of Measurement

The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2003. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. During the test, EUT is in charger mode.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage from 220V/50Hz to 110V/60Hz.

Report No.: RZA1109-1686EMC01R1 Page 21 of 33

Limits

Frequency	Conducted I	_imits(dΒμV)	
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 to 56 [*]	56 to 46 [*]	
0.5 - 5	56	46	
5 - 30	60	50	
* Decreases with the logarithm of the frequency.			

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.69 dB.

Report No.: RZA1109-1686EMC01R1 Page 22 of 33

Test Results

Charger Mode GSM 850

L line

Final	Measurement	t Doeulte

Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.16171 0.20078 0.24375 0.28281 0.32578 0.44687 0.56796 0.60703	48.00 44.36 41.72 39.26 20.34 20.82 20.44 22.82	65.38 63.58 61.97 60.73 59.56 56.93 56.00	17.38 19.22 20.25 21.47 39.22 36.11 35.56 33.18	L1 L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBμV	dBμV	dB	-	-
0.20078 0.24375 0.36484 0.40781 0.56796 0.60703 9.41562 9.78281	30.11 27.23 19.14 19.14 19.22 20.30 19.07 19.14	53.58 51.97 48.62 47.69 46.00 46.00 50.00	23.47 24.74 29.48 28.55 26.78 25.70 30.93 30.86	L1 L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd gnd gnd

Report No.: RZA1109-1686EMC01R1 Page 23 of 33

Final Measurement Results					
Frequency	QP Level	QP Limit	QP Delta	Phase	
MHz	dΒμV	dΒμV	dB	-	
0.16171	20.80	65.38	44.58	N	
0.20468	20.68	63.42	42.74	N	
0.24375	20.88	61.97	41.09	N	
0.28281	20.94	60.73	39.79	N	
0.56406	21.22	56.00	34.78	N	
2.34531	21.74	56.00	34.26	N	
2.37656	21.74	56.00	34.26	N	
3.30234	20.26	56.00	35.74	N	
Frequency	AV Level	AV Limit	AV Delta	Phase	
MHz	dΒμV	dΒμV	dB	-	
0.16562	19.22	55.18	35.96	N	
0.28281	19.45	50.73	31.28	N	
0.48593	20.44	46.24	25.80	N	
0.56796	19.52	46.00	26.48	N	
0.93125	20.10	46.00	25.90	N	
0.97421	20.24	46.00	25.76	N	
1.05625	19.37	46.00	26.63	N	
1.94687	19.45	46.00	26.55	N	

Report No.: RZA1109-1686EMC01R1

Page 24 of 33

GSM 1900

L line

Fi	nal	Measurement	Results
----	-----	-------------	---------

Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dBµ∨	dBµ∨	dB	-	-
0.16171	20.84	65.38	44.54	L1	gnd
0.20468	20.38	63.42	43.04	L1	gnd
0.24375	20.60	61.97	41.37	L1	gnd
0.28281	20.58	60.73	40.15	L1	gnd
0.32578	20.32	59.56	39.24	L1	gnd
0.44687	21.16	56.93	35.77	L1	gnd
0.5289	21.62	56.00	34.38	L1	gnd
0.61093	23.20	56.00	32.80	L1	gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBµ∨	dBµV	dB	-	-
0.20078	19.22	53.58	34.36	L1	gnd
0.24375	19.22	51.97	32.75	L1	gnd
0.28671	19.22	50.62	31.40	L1	gnd
0.44687	19.45	46.93	27.48	L1	gnd
0.5289	19.74	46.00	26.26	L1	gnd
0.60703	20.51	46.00	25.49	L1	gnd
0.68906	19.52	46.00	26.48	L1	gnd
1.3414	19.22	46.00	26.78	L1	gnd

Report No.: RZA1109-1686EMC01R1 Page 25 of 33

Bµ∨ O		— FCC15QP — -	— - — - — FCC15AV
0			
0			
0			
	1-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A		
~ 			Landelle Marchine and American
لمـــہ د		ANTOTAL STANTON SANA SANA	
)			+
0			
0			
0			
0.15	·	1.0	10.0 30 MHz

N line					
Final Measureme	nt Results				
Frequency MHz	QP Level dBμV	QP Limit dΒμV	QP Delta dB	Phase -	PE -
0.20078 0.24375 0.28281 0.60703 2.42734 3.34531 3.47812 4.35312	20.82 21.20 21.14 24.88 21.52 20.34 20.60 21.02	63.58 61.97 60.73 56.00 56.00 56.00 56.00 56.00	42.76 40.77 39.59 31.12 34.48 35.66 35.40 34.98	N N N N N N	gnd gnd gnd gnd gnd gnd gnd gnd
Frequency MHz	AV Level dBμV	AV Limit dBμV	AV Delta dB	Phase	PE -
0.28671 0.44687 0.525 0.57187 0.61093 0.68906 1.09531	19.45 19.96 20.96 19.67 22.92 20.10 19.45	50.62 46.93 46.00 46.00 46.00 46.00	31.17 26.97 25.04 26.33 23.08 25.90 26.55	N N N N N	gnd gnd gnd gnd gnd gnd gnd
1.29843	19.45	46.00	26.55	N	gnd

Report No.: RZA1109-1686EMC01R1

Page 26 of 33

WCDMA Band II

L line

Final	Measurement	Results
-------	-------------	---------

Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.16171 0.20078 0.24375 0.28281 0.32578 0.40781 0.44687 0.525	20.70 20.62 20.58 20.56 20.52 20.46 20.94 21.78	65.38 63.58 61.97 60.73 59.56 57.69 56.93 56.00	44.68 42.96 41.39 40.17 39.04 37.23 35.99 34.22	L1 L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.16171 0.32578 0.48593 0.525 0.89218 0.93515 1.01328 2.31406	19.30 19.22 19.74 19.74 19.30 19.60 19.45	55.38 49.56 46.24 46.00 46.00 46.00 46.00	36.08 30.34 26.50 26.26 26.70 26.40 26.55 26.55	L1 L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd gnd gnd

Report No.: RZA1109-1686EMC01R1 Page 27 of 33

N line					
Final Measureme	ent Results				
Frequency MHz	QP Level dBµV	QP Limit dΒμV	QP Delta dB	Phase -	PE -
0.20468 0.23984 0.60703 3.4625 4.24375 4.2789 4.30234 4.31796	20.90 21.04 24.98 20.58 21.32 21.10 21.14 21.16	63.42 62.10 56.00 56.00 56.00 56.00 56.00	42.52 41.06 31.02 35.42 34.68 34.90 34.86 34.84	N N N N N N N	gnd gnd gnd gnd gnd gnd gnd gnd
Frequency MHz	AV Level dBμV	AV Limit dBμV	AV Delta dB	Phase	PE -
0.32578 0.525 0.60703 1.38046 1.70468 2.51718 2.62265	19.37 20.96 22.72 19.37 19.14 20.03 19.74	49.56 46.00 46.00 46.00 46.00 46.00	30.19 25.04 23.28 26.63 26.86 25.97 26.26	N N N N N N	gnd gnd gnd gnd gnd gnd gnd
4.24375	19.52	46.00	26.48	N	gnd

Report No.: RZA1109-1686EMC01R1

Page 28 of 33

WCDMA Band V

L line

Final Measurement Results

Frequency MHz	QP Level dBμV	QP Limit dBµV	QP Delta dB	Phase -	PE -
0.16171 0.20078 0.24375 0.5289 0.56796 0.60703 2.77109 3.19296	20.68 20.64 20.90 21.62 20.72 23.08 20.70 20.06	65.38 63.58 61.97 56.00 56.00 56.00 56.00	44.70 42.94 41.07 34.38 35.28 32.92 35.30 35.94	L1 L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.23984 0.5289 0.60703 0.68906 0.84921 1.3414 1.45859 1.50156	19.22 19.89 20.57 19.45 19.30 19.22 19.07 19.14	52.10 46.00 46.00 46.00 46.00 46.00 46.00	32.88 26.11 25.43 26.55 26.70 26.78 26.93 26.86	L1 L1 L1 L1 L1 L1 L1	gnd gnd gnd gnd gnd gnd gnd gnd

Report No.: RZA1109-1686EMC01R1 Page 29 of 33

BμV		— — FC	C15QP		— - — FCC1	15AV
,			İ			i
0						
·				-	 	
- H-V-W	AA	A-44/AMM4P				
A A A A A	MA AMON			K W X		A CONTRACTOR OF THE PARTY OF TH
)						
)		i i i i i 				
0						 !
0						
0.15		1.0			10.0	3 MHz

		N lin	e		
Final Measure	ment Results				
Frequency	QP Level	QP Limit	QP Delta	Phase	PE
MHz	dBμV	dΒμV	dB	-	-
0.16171	20.84	65.38	44.54	N	gnd
0.20468	20.84	63.42	42.58	N	gnd
0.24375	21.12	61.97	40.85	N	gnd
0.28281	20.94	60.73	39.79	N	gnd
0.60703	24.94	56.00	31.06	N	gnd
3.31406	20.28	56.00	35.72	N	gnd
3.74765	21.10	56.00	34.90	N	gnd
4.66562	20.44	56.00	35.56	N	gnd
Frequency	AV Level	AV Limit	AV Delta	Phase	PE
MHz	dBμV	dBµV	dB	-	-
0.16171	19.30	55.38	36.08	N	gnd
0.32578	19.30	49.56	30.26	N	gnd
0.61093	23.17	46.00	22.83	N	gnd
0.97421	20.64	46.00	25.36	N	gnd
1.38046	19.30	46.00	26.70	N	gnd
1.78281	19.22	46.00	26.78	N	gnd
1.79062	19.22	46.00	26.78	N	gnd
2.07187	19.67	46.00	26.33	N	gnd

Report No.: RZA1109-1686EMC01R1 Page 30 of 33

3. Main Test Instruments

No.	Name	Туре	Manufacturer	Serial Number	Calibration Date	Valid Period
01	Signal Analyzer	FSV	R&S	100815	2011-06-27	One year
02	EMI Test Receiver	ESCI	R&S	100948	2011-06-30	One year
03	Trilog Antenna	VULB 9163	SCHWARZB ECK	9163-201	2011-06-29	Two years
04	Horn Antenna	HF907	R&S	100126	2011-07-01	Two years
05	EMI Test Receiver	ESCS30	R&S	100138	2011-01-17	One year
06	LISN	ENV216	R&S	101171	2010-04-16	Two years
07	Semi-Anechoic Chamber	9.6*6.7*6.6m	ETS-Lindgren	NA	NA	NA
08	EMI test software	ES-K1	R&S	NA	NA	NA

*****END OF REPORT BODY*****