Rzetelność – jak dobrze test mierzy to, co mierzy

Cel zajęć

Po zajęciach powinniście umieć

- podać definicję rzetelności
- wytłumaczyć, o co chodzi z błędem i wynikiem prawdziwym w myśl klasycznej teorii testów
- wskazać źródła błędu w pomiarze testowym
- wskazać metodę badania rzetelności odpowiednią dla danego testu i sytuacji testowej
- obliczyć rzetelność testu z wykorzystaniem wybranych wzorów
- ocenić rzetelność indywidualnego wyniku testowego

Plan

- 1. Klasyczna teoria testów podstawy
- 2. Rzetelność a różnice między oceniającymi
- 3. Rzetelność a próbkowanie czasu: test-retest
- 4. Rzetelność a dobór treści
- 5. Rzetelność a spójność wewnętrzna testu
- 6. Rzetelność testów szybkości
- 7. Ocena rzetelności indywidualnego wyniku
- 8. Podsumowanie

Po co nam wiedza o rzetelności?

- informacje o wynikach uzyskanych przez pacjentów/klientów w testach są nieodłączną częścią pracy psychologa
- odpowiedzialne korzystanie z takich informacji wymaga wiedzy:
 - o tym, że wynik testu nie odzwierciedla idealnie poziomu danej cechy u badanego
 - jak interpretować wynik testowe korzystając z wiedzy o rzetelności i błędzie pomiaru

[•] dzięki dorobkowi psychometrii w tym zakresie testy psychologiczne stają się coraz dokładniejszymi narzędziami pomiaru

Klasyczna teoria testów

Definicja rzetelności wg S. Urbiny (Urbina 2014)

Rzetelność to właściwość wyników testowych sugerująca, że są one wystarczająco stabilne i wolne od błędu pomiaru by były użyteczne.

Definicja rzetelności wg *Standardów* (AERA, APA, and NCME 2007)

Stopień, w jakim wyniki testowe otrzymane dla grupy osób są stabilne oraz nie zmieniają się w kolejnych badaniach tym samym testem; mogą być uznane za powtarzalne i rzetelne dla osoby badanej; także stopień, w jakim wyniki testowe są wolne od błędu pomiaru dla danej grupy.

Burza mózgów!

- Czy istnieje idealne narzędzie pomiarowe?
- Idealne narzędzie pomiarowe czyli jakie?
- Co składa się na wynik uzyskany w teście?
- Co to jest wynik prawdziwy?

Pytanie

Czy istnieje idealne narzędzie pomiarowe? Takie, które daje pomiar nieobarczony błędem?

Co składa się na wynik uzyskany w teście

$$X_O = X_t + X_e$$

 X_O - wynik obserwowany X_t - wynik prawdziwy X_e - błąd

Co to jest wynik prawdziwy - jak go sobie wyobrazić?

Hipotetyczny wynik idealnie odzwierciedlający poziom mierzonej cechy u osoby badanej, czytaj: nieobarczony błędem.

Co to jest wynik prawdziwy w myśl klasycznej teorii testów

Wynik osoby badanej, gdybyśmy przebadali ją tym samym testem nieskończoną liczbę razy.

Założenia klasycznej teorii testów

- $X_{O} = X_{t} + X_{e}$ (na wynik obserwowany składa się wynik prawdziwy i błąd)
- Błąd ma charakter losowy, więc:
 - Gdybyśmy badali tę samą osobę danym testem nieskończenie wiele razy, to średni błąd wynosiłby 0
 - Korelacja błędu i wyniku prawdziwego wynosi 0
 - W dwóch kolejnych badaniach tym samym testem korelacja błędu wynosi zero

Błąd losowy vs błąd systematyczny

- Za każdym razem kiedy się ważysz waga dodaje 1 kg jaki to błąd?
- Zmierzyłeś wysokość swojego pokoju przykładając centymetr krawiecki do ściany. Zrobiłeś to 10 razy i za każdym razem uzyskałeś trochę inny wynik - jaki to błąd?

Definicja rzetelności wzorem

$$r_{xx} = \frac{s_t^2}{s^2}$$

$$s^2 = s_t^2 + s_e^2$$

Jakie są źródła błędu podczas testowania (McIntire and Miller 2007) (Urbina 2014)

- kontekst przeprowadzenia testu
 - ocena testu
- osoby badane
- konstrukcja testu (test sam w sobie)

Rzetelność a różnice między oceniającymi

Rzetelność a różnice między oceniającymi

- PRZYKŁAD:
 - Test, który wymaga wprawy w ocenie jakie znacie testy tego typu?
- JAK OSZACOWAĆ RZETELNOŚĆ:
 - Korelacja pomiędzy ocenami dwóch różnych sędziów
 - Kappa Cohena

Kappa Cohena

- $\kappa = \frac{p_o p_c}{1 p_c}$
- Gdzie:

— p_o — proporcja obserwowana wystąpienia zgodnych próbek

- p_c - proporcja oczekiwana wystąpienia zgodnych próbek

Liczymy!

- $\kappa = \frac{p_o p_c}{1 p_c}$
- Sedzia 1:Tak | Tak | Nie | Tak | Nie | Tak | Tak | Tak |
- Sędzia 2:Tak | Nie | Tak | Tak | Nie | Nie | Tak | Nie |

Tabelka z liczebnościami

	S1 Tak	S1 Nie
S2 Tak	3	1
S2 Nie	3	1

Jak to policzyć?

- proporcja odpowiedzi "tak" dla S1: 0,75
- proporcja odpowiedzi "tak" dla S2: 0,5
- proporcja oczekiwana dla zgodnych odpowiedzi "tak": 0,75 x 0,5=0,375
- proporcja oczekiwana dla zgodnych odpowiedzi "nie": 0,25 x 0,5 = 0,125
- obserwowana proporcja odpowiedzi zgodnych 0,5
- wynik: 0 (przy wartościach od -1 do 1)

Do zastanowienia się...

 Czy współczynnik zgodności podany w podręczniku testowym będzie wyższy czy niższy od współczynnika zgodności oszacowanego dla dwóch sędziów, którzy uczą się dopiero oceniać test?

Rzetelność a próbkowanie czasu: test-retest

Rzetelność a próbkowanie czasu

- PRZYKŁAD:
 - test badający cechę, która z założenia jest stabilna w czasie - znacie taki test?
- JAK OSZACOWAĆ RZETELNOŚĆ:
 - technika test-retest
 - korelacja między wynikami dwukrotnie przeprowadzonego testu

O co chodzi z sigmą

$$\sum_{i=1}^{n} x_i$$

Gdzie:

n - liczebność zbioru - może to być zbiór osób badanych, pozycji testowych itp.

 x_i - i-ty obiekt w zbiorze

Powyższe wyrażenie można rozwinąć tak:

$$x_1 + x_2 \dots + x_i + \dots + x_n$$

Inne znaczki matematyczne

 $ar{x}$ - średnia zmiennej x

Przykład

- Badamy stabilność czasową wyników SES Rosenberga metodą test retest.
- Wyniki w teście podczas pierwszego pomiaru oznaczamy jako T1.
- Wyniki w teście podczas drugiego pomiaru oznaczamy jako T2.
- Uwaga: wyniki dla retestu w podanym przykładzie zostały wygenerowane losowo. Proszę nie traktować ich poważnie:)

Dane

N	Т1	Т2
1	16	17
2	35	34
3	13	10
• •		
n	• •	• •

Jak to policzymy???

Współczynnik korelacji Pearsona dla wyników pierwszego (test) i drugiego (retest) pomiaru.

$$r_{tt} = \frac{\sum_{i=1}^{n} (\bar{t_1} - t_{1i})(\bar{t_2} - t_{2i})}{\sqrt{\sum_{i=1}^{n} (\bar{t_{1i}} - t_{1i})^2} \sqrt{\sum_{i=1}^{n} (\bar{t_2} - t_{2i})^2}}$$

0 - dwa identyczne pomiary

 $r_{tt}=1$

I - dodane trochę błędu do drugiego pomiaru

 $r_{tt} = 0.8906881$

II - dodane więcej błędu do drugiego pomiaru

 $r_{tt} = 0.7064398$

III - całkowicie losowe wyniki w drugim pomiarze

 $r_{tt} = -0.009529104$

Rzetelność a dobór treści

Rzetelność a dobór treści 1

- PRZYKŁAD:
 - test oceniający świadomość zdrowotną, przeprowadzony w grupie studentów, którzy niedawno brali udział w programie edukacyjnym dotyczącym żywienia
- JAK OSZACOWAĆ RZETELNOŚĆ:
 - współczynnik równoważności międzypołówkowej
 - korelacja między połówkami testu
 - ważne pytanie: jak dzielić test na połowy??

Wzór Spearmana-Browna dla połówek testu

Do szacowania rzetelności całego testu na postawie współczynnika równoważności międzypołówkowej (korelacji między połówkami testu)

$$r_{tt} = \frac{2r_{pp}}{1 + r_{pp}}$$

Gdzie: r_{tt} - rzetelność całego testu r_{pp} - rzetelność połówek testu

Zadanko

Współczynnik korelacji między połówkami testu wynosi 0,72. Ile wynosi rzetelność tego testu?

Wzór Spearmana-Browna wersja ogólna

$$r_{nn} = \frac{nr_{cc}}{1+(n-1)r_{cc}}$$

Gdzie:

 r_{nn} – rzetelność testu wydłużonego ${\bf n}$ razy

 r_{cc} – rzetelność testu, którą zmierzyliśmy

Wartość r_{nn} uzyskana ze wzoru Spearmana-Browna nigdy nie będzie większa $% \left(r_{nn}\right)$ od 1. Kto wie dlaczego?

Wzór Spearmana-Browna można wykorzystać, by stwierdzić, ile razy należy wydłużyć test, aby uzyskać zakładaną rzetelność

Rzetelność a próbkowanie treści 2

- PRZYKŁAD:
 - test oceniający umiejętność czytania ze zrozumieniem niektóre fragmenty tekstu mogą być znane w danej grupie
- JAK OSZACOWAĆ RZETELNOŚĆ:
 - korelacja między wynikami uzyskanymi z wykorzystaniem wersji równoległych (alternatywnych)

Rzetelność a spójność wewnętrzna testu

Alfa Cronbacha wygląda tak

$$\alpha = (\frac{k}{k-1})(\frac{s_t^2 - \sum_{i=1}^k s_i^2}{s_t^2})$$

Gdzie:

k - liczba pozycji w teście

 s_t^2 — wariancja wyniku w teście s_i^2 — wariancja wyniku każdej z pozycji testowych

Co się dzieje w hipotetycznym teście, w którym pozycje są idealnie spójne?

n	k1	k2	k3	k4	k5	k6
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3

n	k1	k2	k3	k4	k5	k6
4	4	4	4	4	4	4
5	1	1	1	1	1	1
6	1	1	1	1	1	1

- 1. Liczymy dla każdego badanego wynik ogólny
- 2. Liczymy średnią wyniku ogólnego
- 3. Liczymy dla każdego badanego o ile jego wynik ogólny różni się od średniej i podnosimy uzyskaną różnicę do kwadratu
- 4. Sumujemy kwadraty różnic i dzielimy przez liczbę badanych
- 5. Mamy wariancję wyniku ogólnego w teście s_t^2
- 1. Liczymy średnią dla pierwszej pozycji w teście
- 2. Liczymy dla każdego badanego o ile jego wynik w danej pozycji różni się od średniej i podnosimy uzyskaną różnicę do kwadratu
- 3. Sumujemy kwadraty różnic i dzielimy przez liczbę badanych
- 4. Mamy wariancję pierwszej pozycji w teście s_1^2
- 5. Powtarzamy dla każdej kolejnej pozycji i sumujemy uzyskane wyniki

Jaka jest alfa w hipotetycznym teście, w którym pozycje są idealnie spójne?

$$\alpha = 1$$

Alfa dla RSE

$$\alpha = 0.91$$

$$\bar{t} = 16,30$$

$$s_t = 6,98$$

Liczymy to sami

$$\alpha = (\frac{k}{k-1})(\frac{s_t^2 - \sum_{i=1}^k s_i^2}{s_t^2})$$
 $s_t = 6,98$

Liczba pozycji: 10

SD dla poszczególnych pozycji:

P1 0.86	P2 0.79	P4 0.81	P6 0.92
P7 0.93	P3 0.95	P5 0.98	P8 0.96
P9 0.99	P10 1.07		

Liczymy to sami

$$\alpha = (\frac{k}{k-1})(\frac{s_t^2 - \sum_{i=1}^k s_i^2}{s_t^2}) \\ s_t = 6,98$$

Liczba pozycji: 10

Wariancja dla poszczególnych pozycji:

P1	0.74	P2 0.62	P4	0.66	Р6	0.85
Р7	0.86	P3 0.90	P5	0.96	Р8	0.92
Р9	0.98	P10 1.14				

Za co się stanie, jak dodamy przypadkowy błąd?

	_		_k a	
	t	s_t	$\sum_{i=1}^k s_i^2$	α
	16.30	6.98	8.63	0.91
błąd	16.23	7.64	19.08	0.76
błąd*2	16.30	8.27	28.59	0.65

Wzór K-R20 wygląda tak

$$KR_{20} = (\frac{k}{k-1})(\frac{s_t^2 - \sum_{i=1}^q p_i q_i}{s_t^2})$$

Gdzie:

k - liczba pozycji w teście

 s_t^2 – wariancja wyniku w teście

 p_i - proporcja osób odpowiadających zgodnie z kluczem q_i - proporcja osób odpowiadających NIEzgodnie z kluczem

Rzetelność testów szybkości

Jak zmierzylibyście rzetelność poniższego testu?

- test zawiera k zadań
- zadania te trzeba wykonać w czasie 5 minut
- miarą wyniku osiągniętego w teście jest liczba zadań wykonanych w ramach ustalonego limitu czasu

Co stałoby się, gdybyśmy podzielili test na połowy (pozycje parzyste i nieparzyste) i obliczyli rzetelność na podstawie liczby wykonanych zadań w każdej połowie?

Metody badania rzetelności testów szybkości

- Sposób pierwszy:
 - podział testu na dwie części,

- rozwiązywanie dwóch części osobno w dwukrotnie mniejszym limicie czasu,
- obliczenie korelacji liczby wykonanych zadań dla dwóch części,
- zastosowanie wzoru Spearmana-Browna.

Metody badania rzetelności testów szybkości

- Sposób drugi
 - podzielenie czasu testu na 4 części,
 - dawanie badanym znaku, by po upływie każdej ćwiartki czasu zaznaczali, przy którym pytaniu są,
 - obliczenie korelacji pomiędzy liczbą zadań wykonanych dla dwóch połówek czasu, pierwszej stworzonej z 1 i 4 ćwiartki, a drugiej stworzonej z ćwiartki 2 i 3,
 - zastosowanie wzoru Spearmana-Browna.

Ocena rzetelności indywidualnego wyniku

Standardowy błąd pomiaru

$$SEM = s_r \sqrt{1 - r_{tt}}$$

Gdzie:

 \boldsymbol{s}_{x} – odchylenie standardowe wyników testowych $\boldsymbol{r}_{t}t$ – rzetelność testu

SEM ma rozkład normalny...

...i dlatego:

- 68% wyników mieści się w zakresie +/- 1 SD
- 90% wyników mieści się w zakresie +/- 1,64 SD
- 95% wyników mieści się w zakresie +/- 1,96 SD
- 99% wyników mieści się w zakresie +/- 2,58 SD

Zadanko

Skonstruujcie 95% przedział ufności dla wyniku 100 w teście o odchyleniu standardowym 15 i rzetelności 0,902

$$< X - 1,96SEM, X + 1,96SEM >$$

$$SEM = s_x \sqrt{1 - r_{tt}} \label{eq:seminor}$$

Błąd standardowy różnicy między dwoma wynikami

$$\begin{array}{lcl} SE_{diff} & = \sqrt{SEM_1^2 + SEM_2^2} & SE_{diff} & = \sqrt{s_{x1}^2(1-r_{tt1}) + s_{x2}^2(1-r_{tt2})} & SE_{diff} & = s_x\sqrt{2-r_{tt1}-r_{tt2}} \end{array}$$

SE_{diff} również ma rozkład normalny

…i dlatego mamy 95% szansy, że różnica wynosząca minimum $1,96*SE_{diff}$ jest nieprzypadkowa.

W tym przypadku poziom ufności p wynosi 1-0.95=0.05

Zadanko

W teście o rzetelności 0,9 i odchyleniu standardowym 5 otrzymaliśmy u jednego badanego wynik 25 a u drugiego 35. Czy mamy prawo twierdzić, że te wyniki się różnią? Przyjmijcie p = 0.05 $SE_{diff} = s_x \sqrt{2-r_{tt1}-r_{tt2}}$

Podsumowanie

Jak zwiększać rzetelność? (McIntire and Miller 2007)

- dodanie pytań
- zwiększenie homogeniczności testu
- skrócenie interwału pomiędzy testem i retestem (uwaga na efekt wprawy!)
- zwiększenie efektywności przeprowadzania testu
- ostrożność podczas oceniania
- ograniczenie zgadywania lub odpowiadania nieszczerze / bez zaangażowania

Źródła błędu a rzetelność

- niezgodność/niespójność w ocenach sędziów
- zmienność w czasie
- brak spójności wewnętrznej testu i błędy w doborze treści

Metody szacowania rzetelności vs źródła błędu

Źródło błędu	Metody
Sędziowie	Ocena tego samego materiału przez dwóch sędziów i obliczenie – współczynnika korelacji – kappa Cohena

Źródło błędu	Metody
Zmienność w czasie	Technika test – retest i obliczenie współczynnika korelacji między testem i retestem

Źródło błędu	Metody
Dobór (próbkowanie) i heterogeniczność treści	Ocena korelacji między połówkami testu (pamiętaj o wzorze Spearmana-Browna) Ocena korelacji między wersjami alternatywnymi Ocena spójności wewnętrznej - K-R20 - Alfa Cronbacha

Zadania

Zadanie z artykułami!

- 1. Sorokowska, A., Słowińska, A., Zbieg, A., & Sorokowski, P. (2014). Polska adaptacja testu Ten Item Personality Inventory (TIPI)—TIPI-PL—wersja standardowa i internetowa.
- 2. Łaguna, M., Oleś, P., & Filipiuk, D. (2011). Orientacja pozytywna i jej pomiar: Polska adaptacja Skali Orientacji Pozytywnej. Studia Psychologiczne (Psychological Studies), 49(4), 47-54.
- 3. Łaguna, M., Lachowicz-Tabaczek, K., & Dzwonkowska, I. (2007). Skala samooceny SES Morrisa Rosenberga—polska adaptacja metody. Psychologia Społeczna, 2(02), 164—176.
- 4. Grygiel, P., Humenny, G., Rebisz, S., Świtaj, P., & Sikorska, J. (2013). Validating the polish adaptation of the 11-item De Jong Gierveld loneliness scale. European Journal of Psychological Assessment.

Zadanie domowe 2

- 1. Policz współczynnik równoważności międzypołówkowej (pozycje testu to zmienne Q1-Q26, jak podzielić test na pół?)
- 2. Zastosuj na nim formułę Spearmana-Browna
- 3. Policz alfę Cronbacha

Literatura

Literatura

- AERA, APA, and NCME. 2007. Standardy dla testów stosowanych w psychologii i pedagogice. Gdańsk: Gdańskie Wydawnictwo Psychologiczne.
- McIntire, S A, and L A Miller. 2007. Foundations of Psychological Testing: A Practical Approach. SAGE Publications. https://books.google.pl/books?id=dB0fw5lf0GQC.
- Urbina, S. 2014. Essentials of Psychological Testing. II. Essentials of Behavioral Science. Hoboken: John Wiley & Sons. https://books.google.pl/books?id=UnHrAwAAQBAJ.