Supplement to Solutions of HW7

Problem 4.8. Show that the set $N \times N \times N$ is countable, where N is the set of natural numbers.

Alternative Proof: We have seen that the set $N \times N$ is countable, thus there exists a bijection (one-to-one correspondence) $f: N \times N \to N$. Define $g: N \times N \times N \to N$ as g(x,y,z) = f(f(x,y),z), then g is a bijection, because the composition of bijections is a bijection. Thus, $N \times N \times N$ is countable.

Problem 4.11. Show that the set $INFINITE_{PDA}$ is decidable.

Comment: The useless variables in the grammar should removed before converting to Chomsky NF.

Problem 4.13. Let $A = \{\langle R, S \rangle \mid R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}$. Show A is decidable.

Proof: Since $X \subseteq Y$ iff $X \cap \overline{Y} = \emptyset$ and we have a decider S for E_{DFA} (the emptyness of problems of DFAs), we can construct a TM M that decides A as follows:

M= "On input $\langle R,S\rangle$ where R and S are regular expressions: 1. Construct a DFA X such that $L(X)=L(R)\cap \overline{L(S)};$ Run the decider S for E_{DFA} on input $\langle X\rangle$ and return the output of S."

Since X can be constructed in a finite number of steps and S exists, M is a decider. Hence, A is decidable.

Problem 4.21. Let $L = \{\langle D \rangle \mid D \text{ is a DFA that accepts }^R \text{ whenever it accepts } \}$. Show that S is decidable.

Proof: We construct a TM T that decides L, using the decider S for EQ_{DFA} (the equivalence problem of DFAs).

T= "On input $\langle D \rangle$ where D is a DFA: Construct DFA E that recognizes $L^R(D)$, the reverse of L(D); Run S for EQ_{DFA} on the input $\langle D, E \rangle$ and return the output of S.

This decider works by accepting only DFA $\langle D \rangle$ where $L(D) = L^R(D)$ (D accepts both a word and its reverse).

Problem 4.24. Let $USELESS_{PDA} = \{\langle P \rangle \mid P \text{ is a PDA that has useless states } \}$. Since we have a decider S for E_{CFG} (the emptyness problem for CFGs), we use S to construct a decider T for $USELESS_{PDA}$.

T= "On input $\langle P \rangle$ where P is a PDA: For each state p of P, Construct PDA P' from P by replacing the definition of $\delta(p,a,b)$ by $\delta(p,a,\epsilon)=\{(p,\epsilon)\}$ for any $a\in\Sigma$ and $b\in\Gamma$, and

```
using p as the only accepting state.
Convert P' into equvialent CFG G;
Run S for E_{PDA} on the input \langle G \rangle;
If S accepts, accept.
At the end of loop, reject.
```

In T, we treat in turn each p as the only accepting state. The decider T works because if p is uselss, then it will not be reached and no strings can be accepted if p is the only accepting state.

Problem 4.29. Let $C_{CFG} = \{ \langle G, k \rangle \mid G \text{ is a CFG and } L(G) \text{ contains exactly } k \text{ strings where } k \geq 0 \text{ or } k = \infty \}.$

Proof: Since we have a decider M for $INFINITE_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) \text{ is an infinite language}\}$, we use M to show a decider T for C_{CFG} . The following

- T "On input $\langle G, k \rangle$, where G is a CFG and k is a natural number:
 - 1. Check if L(G) is infinite using decider M. If L(G) is infinite, accept when $k = \infty$ and reject when $k \neq \infty$. If L(G) is finite, reject when $k = \infty$ and continue when $k \neq \infty$.
 - 2. Convert G into Chomsky NF and derive from the start variable of G all the terminal strings, and count them. If the number of distinct terminal strings is equal to k, accept; otherwise reject."

The above TM T decides C_{CFG} by first chekcing if L(G) is infinite or not using decider M. If L(G) is finite and $k \neq \infty$, we simplify G into CNF and derive all the strings in L(G) and count them. Since G is simplified and L(G) is finite, the derivation cannot have infinite sequences. If L(G) has exactly K strings, we accept. K will terminate after a finite number of steps. Thus, K is decidable.