CensusPay.R

rharidas

2021-11-19

```
# Execute the given source code for the project
source("DatasetProcessingCode.R")
```

```
## Loading required package: tidyverse
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purr 0.3.4
## v tibble 3.1.2 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## Loading required package: caret
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
## Loading required package: data.table
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, first, last
## The following object is masked from 'package:purrr':
##
##
      transpose
```

```
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
                      combine
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
                      group_rows
## Warning in set.seed(1, sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used
## Rows: 32,561
## Columns: 15
## $ age
                                                                 <int> 90, 82, 66, 54, 41, 34, 38, 74, 68, 41, 45, 38, 52, 32,~
## $ workclass
                                                                 <chr> "?", "Private", "?", "Private", "Private", "Private", "~
                                                                 <int> 77053, 132870, 186061, 140359, 264663, 216864, 150601, ~
## $ fnlwgt
                                                                 <chr> "HS-grad", "HS-grad", "Some-college", "7th-8th", "Some-~
## $ education
## $ education.num <int> 9, 9, 10, 4, 10, 9, 6, 16, 9, 10, 16, 15, 13, 14, 16, 1~
## $ marital.status <chr> "Widowed", "Widowed", "Widowed", "Divorced", "Separated~
## $ occupation
                                                                 <chr> "?", "Exec-managerial", "?", "Machine-op-inspct", "Prof~
                                                                 <chr> "Not-in-family", "Not-in-family", "Unmarried", "Unmarri~
## $ relationship
                                                                 <chr> "White", "White", "Black", "White", "White", "~
## $ race
                                                                 <chr> "Female", "Fema
## $ sex
## $ capital.gain
                                                                 ## $ capital.loss
                                                                 <int> 4356, 4356, 4356, 3900, 3900, 3770, 3770, 3683, 3683, 3~
## $ hours.per.week <int> 40, 18, 40, 40, 40, 45, 40, 20, 40, 60, 35, 45, 20, 55,~
## $ native.country <chr> "United-States", "United-States, "Unite
## $ income
                                                                  <chr> "<=50K", "
## Rows: 29.170
## Columns: 13
## $ age
                                                              <int> 90, 82, 66, 54, 41, 34, 38, 74, 68, 45, 38, 52, 32, 51, ~
                                                              <int> 77053, 132870, 186061, 140359, 264663, 216864, 150601, 8~
## $ fnlwgt
## $ education
                                                              <fct> HSgrad, HSgrad, Somecollege, 7th8th, Somecollege, HSgrad~
## $ eduyears
                                                              <int> 9, 9, 10, 4, 10, 9, 6, 16, 9, 16, 15, 13, 14, 16, 15, 7,~
## $ maritalstatus <fct> Widowed, Widowed, Widowed, Divorced, Separated, Divorced~
                                                              <fct> Unknown, Execmanagerial, Unknown, Machineopinspct, Profs~
## $ occupation
## $ relationship <fct> Notinfamily, Notinfamily, Unmarried, Unmarried, Ownchild~
## $ race
                                                              <fct> White, White, Black, White, White, White, White, ~
## $ sex
                                                              <fct> Female, Female, Female, Female, Female, Female, Male, Fe~
## $ hoursperweek <int> 40, 18, 40, 40, 40, 45, 40, 20, 40, 35, 45, 20, 55, 40, ~
## $ native
                                                              <chr> "UnitedStates", "UnitedStates", "UnitedStates", "UnitedS~
## $ income
                                                              <fct> AtBelow50K, AtBelow50K, AtBelow50K, AtBelow50K, AtBelow5~
## $ class
                                                              <fct> Unknown, Private, Unknown, Private, Private, Private, Pr~
library(caret)
library(gridExtra)
library(kableExtra)
library(randomForest)
```

```
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
      margin
set.seed(1996,sample.kind="Rounding")
## Warning in set.seed(1996, sample.kind = "Rounding"): non-uniform 'Rounding'
## sampler used
#the simplest possible machine algorithm: quessing the outcome
seat_of_the_pants <- sample(c("Above50K", "AtBelow50K"), length(test_index), replace = TRUE) %>% factor
accuracy_guess <- mean(seat_of_the_pants == adultpayclean_validation$income)</pre>
#build a confusion matrix for this simple model
table(predicted = seat_of_the_pants, actual = adultpayclean_validation$income)
##
              actual
              Above50K AtBelow50K
## predicted
     Above50K
                     347
                               1087
##
     AtBelow50K
                     371
                               1113
#tabulate accuracy by income levels
adultpayclean_validation %>%
  mutate(y_hat = seat_of_the_pants) %>%
  group_by(income) %>%
  summarize(accuracy = mean(y_hat == income))
## # A tibble: 2 x 2
    income accuracy
##
     <fct>
                  <dbl>
## 1 Above50K
                 0.483
## 2 AtBelow50K 0.506
```

```
# confusion matrix using R function
## Confusion Matrix and Statistics
              Reference
##
## Prediction
               Above50K AtBelow50K
                    347
##
    Above50K
                              1087
##
    AtBelow50K
                    371
                              1113
##
##
                 Accuracy : 0.5003
##
                   95% CI: (0.482, 0.5186)
      No Information Rate: 0.7539
##
      P-Value [Acc > NIR] : 1
##
##
##
                    Kappa: -0.0081
##
   Mcnemar's Test P-Value : <2e-16
##
##
              Sensitivity: 0.4833
##
##
              Specificity: 0.5059
           Pos Pred Value: 0.2420
##
           Neg Pred Value: 0.7500
##
               Prevalence: 0.2461
##
##
           Detection Rate: 0.1189
##
     Detection Prevalence: 0.4914
##
        Balanced Accuracy: 0.4946
##
##
          'Positive' Class : Above50K
##
sensitivity_guess <- cm$byClass[["Sensitivity"]]</pre>
specificity_guess <- cm$byClass[["Specificity"]]</pre>
prevalence guess <- cm$byClass[["Prevalence"]]</pre>
#logistic linear model
# create the model
lm_fit <- adultpayclean_train %>%
   mutate(y = as.numeric(income == "Above50K")) %>%
   lm(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, data=.)
# predict using test set
p_hat_logit <- predict(lm_fit, newdata = adultpayclean_validation)</pre>
#translate predicted data into factor
y_hat_logit <- ifelse(p_hat_logit > 0.5, "Above50K", "AtBelow50K") %>% factor
#compare the predicted vs observed values and use confusionMatrix to get the accuracy and other metrics
cm_lm <- confusionMatrix(y_hat_logit, adultpayclean_validation$income)</pre>
accuracy_lm <- confusionMatrix(y_hat_logit, adultpayclean_validation$income)$overall[["Accuracy"]]</pre>
sensitivity_lm <- cm_lm$byClass[["Sensitivity"]]</pre>
```

```
specificity_lm <- cm_lm$byClass[["Specificity"]]</pre>
prevalence_lm <- cm_lm$byClass[["Prevalence"]]</pre>
#general linear model
#create the qlm model
glm_fit <- adultpayclean_train %>%
  mutate(y = as.numeric(income == "Above50K")) %>%
  glm(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, data=., family = "
# predict using validation set
p_hat_logit <- predict(glm_fit, newdata = adultpayclean_validation)</pre>
# translate the predicted data into factor
y_hat_logit <- ifelse(p_hat_logit > 0.5, "Above50K", "AtBelow50K") %>% factor
# compare the predicted vs observed values and use confusionMatrix to get the accuracy and other metric
cm_glm <- confusionMatrix(y_hat_logit, adultpayclean_validation$income)</pre>
accuracy_glm <- confusionMatrix(y_hat_logit, adultpayclean_validation$income)$overall[["Accuracy"]]
sensitivity_glm <- cm_glm$byClass[["Sensitivity"]]</pre>
specificity_glm <- cm_glm$byClass[["Specificity"]]</pre>
prevalence_glm <- cm_glm$byClass[["Prevalence"]]</pre>
# translate income factor into binary outcome
temp <- adultpayclean train %>%
 mutate(y = as.factor(income == "Above50K"))
#k-nearest neighbors with a train control and tuning
set.seed(2008)
# train control to use 10% of the observations each to speed up computations
control <- trainControl(method = "cv", number = 10, p = .9)</pre>
# train the model using knn. choose the best k value using tuning algorithm
train_knn <- train(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, meth
                    data = temp,
                    tuneGrid = data.frame(k = seq(3, 71, 2)),trControl = control)
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
#plot the resulting model
ggplot(train_knn, highlight = TRUE)
```



```
#verify which k value was used
train_knn$bestTune
```

```
## k
## 10 21
```

train_knn\$finalModel

```
## 21-nearest neighbor model
## Training set outcome distribution:
##
## FALSE TRUE
## 19799 6453
```

```
#use this trained model to predict raw knn predictions
y_hat_knn <- predict(train_knn,adultpayclean_validation, type = "raw")

# compare the predicted and observed values using confusionMatrix to get the accuracy and other metrics
cm_knn <- confusionMatrix(y_hat_knn, as.factor(adultpayclean_validation$income == "Above50K"))
accuracy_knn <- confusionMatrix(y_hat_knn, as.factor(adultpayclean_validation$income == "Above50K"))$ov
sensitivity_knn <- cm_knn$byClass[["Sensitivity"]]
specificity_knn <- cm_knn$byClass[["Specificity"]]
prevalence_knn <- cm_knn$byClass[["Prevalence"]]</pre>
```

```
#k-nearest classification using tuning function
set.seed(2008)
ks \leftarrow seq(3, 251, 2)
knntune <- map_df(ks, function(k){</pre>
  temp <- adultpayclean_train %>%
    mutate(y = as.factor(income == "Above50K"))
  temp test <- adultpayclean validation %>%
    mutate(y = as.factor(income == "Above50K"))
  knn_fit <- knn3(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, data =
  y_hat <- predict(knn_fit, temp, type = "class")</pre>
  cm_train <- confusionMatrix(y_hat, temp$y)</pre>
  train_error <- cm_train$overall["Accuracy"]</pre>
  y_hat <- predict(knn_fit, temp_test, type = "class")</pre>
  cm_test <- confusionMatrix(y_hat, temp_test$y)</pre>
  test_error <- cm_test$overall["Accuracy"]</pre>
 tibble(train = train error, test = test error)
})
accuracy_knntune <- max(knntune$test)</pre>
knn_fit <- knn3(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, data = t
y_hat <- predict(knn_fit, temp, type = "class")</pre>
cm_knntune <- confusionMatrix(y_hat, temp$y)</pre>
sensitivity_knntune <- cm_knntune$byClass[["Sensitivity"]]</pre>
specificity_knntune <- cm_knntune$byClass[["Specificity"]]</pre>
prevalence_knntune <- cm_knntune$byClass[["Prevalence"]]</pre>
#k-nearest using knn3
set.seed(2008)
knn3_fit <- knn3(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, data = '
y_hat_knn3 <- predict(knn3_fit, adultpayclean_validation, type = "class")</pre>
cm_knn3 <- confusionMatrix(y_hat_knn3, as.factor(adultpayclean_validation$income == "Above50K"))</pre>
accuracy_knn3 <- confusionMatrix(y_hat_knn3, as.factor(adultpayclean_validation$income == "Above50K"))</pre>
sensitivity_knn3 <- cm_knn3$byClass[["Sensitivity"]]</pre>
specificity_knn3 <- cm_knn3$byClass[["Specificity"]]</pre>
prevalence_knn3 <- cm_knn3$byClass[["Prevalence"]]</pre>
#recursive partitioning using rpart
set.seed(2008)
train_rpart <- train(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship,
                      method = "rpart",
                      tuneGrid = data.frame(cp = seq(0.0, 0.1, len = 25)),
                      data = temp)
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
y_hat <- predict(train_rpart,adultpayclean_validation)</pre>
cm_rpart <- confusionMatrix(y_hat, as.factor(adultpayclean_validation$income == "Above50K"))</pre>
accuracy_rpart <- confusionMatrix(y_hat, as.factor(adultpayclean_validation$income == "Above50K"))$ove
sensitivity_rpart <- cm_rpart$byClass[["Sensitivity"]]</pre>
specificity_rpart <- cm_rpart$byClass[["Specificity"]]</pre>
prevalence_rpart <- cm_rpart$byClass[["Prevalence"]]</pre>
#random forest
set.seed(2008)
train_rf <- randomForest(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship,
cm_rf <- confusionMatrix(predict(train_rf, adultpayclean_validation),</pre>
                         as.factor(adultpayclean_validation$income == "Above50K"))
accuracy_rf <- confusionMatrix(predict(train_rf, adultpayclean_validation),</pre>
                as.factor(adultpayclean_validation$income == "Above50K"))$overall["Accuracy"]
sensitivity_rf <- cm_rf$byClass[["Sensitivity"]]</pre>
specificity_rf <- cm_rf$byClass[["Specificity"]]</pre>
prevalence_rf <- cm_rf$byClass[["Prevalence"]]</pre>
#random forest with tuning
nodesize <- seq(1, 90, 10)
acc <- sapply(nodesize, function(ns){</pre>
  train(y ~ age + eduyears + sex + race + hoursperweek + maritalstatus + relationship, method = "rf", d
        tuneGrid = data.frame(mtry = 2),
        nodesize = ns)$results$Accuracy
})
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

```
## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used

## Warning in (function (kind = NULL, normal.kind = NULL, sample.kind = NULL) :
## non-uniform 'Rounding' sampler used
```

qplot(nodesize, acc)

	Method	Accuracy	Sensitivity	Specificity	Prevalence
1.	Plain old guess	0.50034	0.48329	0.50591	0.24606
2.	linear model	0.81666	0.47911	0.92682	0.24606
3.	General linear model	0.8098	0.38858	0.94727	0.24606
4.	knn	0.80809	0.90364	0.51532	0.75394
5.	knn3	0.80843	0.90136	0.52368	0.75394
6.	knn tune	0.81151	0.90919	0.57043	0.75419
7.	rpart	0.82111	0.91	0.54875	0.75394
8.	rf	0.82351	0.91636	0.539	0.75394
9.	rf tune	0.82248	0.92318	0.51532	0.75394

```
"linear model", round(accuracy_lm,5),round(sensitivity_lm,5), round(specifici

"General linear model", round(accuracy_glm,5),round(sensitivity_glm,5), round

"knn", round(accuracy_knn,5),round(sensitivity_knn,5), round(specificity_knn,

"knn3", round(accuracy_knn3,5),round(sensitivity_knn3,5), round(specificity_k

"knn tune", round(accuracy_knntune,5),round(sensitivity_knntune,5), round(specificity

"rpart", round(accuracy_rpart,5),round(sensitivity_rpart,5), round(specificity

"rf", round(accuracy_rf,5),round(sensitivity_rf,5), round(specificity_rf,5),

"rf tune", round(accuracy_rftune,5),round(sensitivity_rf2,5), round(specificity)

nrow = 9, ncol=5, byrow=TRUE,

dimnames=list(c("1.","2.","3.","4.","5.","6.","7.","8.","9."),c("Method","Accuracy","Sensitivity","Spec

accuracy_results %>% knitr::kable() %>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed"))
```