COLLE 26 = ALGÈBRE LINÉAIRE, ANALYSE ASYMPTOTIQUE ET ÉQUATIONS DIFFÉRENTIELLES

Exercices mixtes:

Exercice 1.

Soit n un entier naturel tel que $n \geq 2$. Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n. On pose : $\forall P \in E, \ f(P) = P - P'$

- 1. Justifier que f est un automorphisme sans utiliser de matrice de f.
- 2. Donner la matrice A de f dans la base canonique de E.
- 3. Soit $Q \in E$. Trouver P tel que f(P) = Q. (Indication : $si\ P \in E$, quel est le polynôme $P^{(n+1)}$?)
- 4. Existe-t-il une base β de E telle que la matrice de f dans cette base soit la matrice I_{n+1} .

Exercice 2.

Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus Kerf \Rightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff Kerf = Kerf^2$.
 - (b) Démontrer que : Im $f = \text{Im } f^2 \Rightarrow E = \text{Im } f \oplus Kerf$.
 - (c) Que pouvez-vous conclure?

Exercice 3.

Soit la matrice $A=\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M)=AM.

- 1. Déterminer une base de Kerf.
- 2. f est-il surjectif?
- 3. Déterminer une base de $\operatorname{Im} f$.
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = Kerf \oplus Im f$?

Exercice 4.

Soit $n \in \mathbb{N}$, on note (u_n) la suite définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$: $u_{n+1} = \sqrt{u_n + n^2}$. Montrer que :

$$u_n \underset{n \to +\infty}{=} n - \frac{1}{2} - \frac{3}{8n} + o\left(\frac{1}{n}\right)$$

Exercice 5.

Soit $n \in \mathbb{N}$, on note (u_n) la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$: $u_{n+1} = u_n + \frac{1}{u_n}$.

Montrer que :

$$u_n \underset{n \to +\infty}{=} \sqrt{2n} + O\left(\frac{\ln(n)}{\sqrt{n}}\right)$$

Exercice 6.

- 1. Justifier que pour tout $\varepsilon > 0$, l'équation $e^{-\varepsilon x} = x$ d'inconnue x possède une et une seule solution x_{ε} dans R^+ .
- 2. Montrer que :

$$x_{\varepsilon} \underset{\varepsilon \to 0}{=} 1 - \varepsilon + \frac{3\varepsilon^2}{2} + o(\varepsilon^2)$$

Niveau: Première année de PCSI

Exercice 7.

- 1. Déterminer une primitive de $x \longmapsto \cos^4(x)$
- 2. Résoudre sur $\mathbb R$ l'équation différentielle : $y''+y=\cos^3(x)$ en utilisant la méthode de variation des constantes.