Amendments to the Claims

Please cancel claim 8.

Please amend claims 2, 4 and 6 as shown below.

Listing of Claims

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Original) A delay jitter reducing device, comprising:

a receiving unit sequentially receiving chronological data segments through a network;

a time detecting unit for obtaining a reception time of each data segment received by said receiving unit;

transmission time estimating means for estimating transmission time of each data segment received by said receiving unit;

a delay time estimating unit for estimating a delay time required for transmitting each data segment based on said reception time and said transmission time of each data segment;

a minimum delay time estimating unit for estimating a minimum delay time in transmitting a data segment through the network from the estimated values of delay time of a plurality of data segments obtained from said delay time estimating unit;

relative delay time computing means for obtaining a relative delay time by subtracting said minimum delay time from the estimated value of delay time of a data segment estimated by said delay time estimating unit; and delay means for obtaining an amount of holding time corresponding to each data segment by subtracting the relative delay time of each data segment from a maximum delay time to be reduced, and outputting each data segment after delaying each data segment for the amount of holding time corresponding to each data segment.

Application no. 09/827,639

Amendment dated: February 4, 2005

Reply to office action dated: November 4, 2004

2. (Currently amended) A delay jitter reducing device according to claim 1, wherein said receiving unit receives a plurality of training data segments before receiving a data segment to which deference delay time is to be applied; and wherein said minimum delay estimating unit estimates said minimum delay time from estimated values of delay time for said plurality of training data segments.

3. (Original) A delay jitter reducing device according to claim 1, wherein said minimum delay time estimating unit obtains estimated values of delay time for a plurality of data segments that are received in a certain period and estimates said minimum delay time from these estimated values.

4. (Currently amended) A delay jitter reducing device according to claim 3, wherein said data segment is data segments are a data unit representing voice.

5. (Original) A delay jitter reducing device according to claim 1, wherein said receiving unit alternately receives a data segment belonging to a first section that requires continuity and a data segment belonging to a second section that does not require continuity; and wherein said minimum delay time estimating unit estimates, at the point of receiving a first data segment belonging to the first section, said minimum delay time for data segments that have been receive up to the time point.

- 6. (Currently amended) A delay jitter reducing device according to claim 1, wherein said delay time estimating unit estimates delay time of said <u>each</u> data segment based on transmission time information or any clue information for transmission time accompanied by said data segment and reception time thereof.
- 7. (Original) A delay jitter reducing method, comprising:

Application no. 09/827,639

Amendment dated: February 4, 2005

Reply to office action dated: November 4, 2004

a receiving process sequentially receiving chronological data segments through a network;

a time detecting process for obtaining a reception time of each data segment received by a receiving unit;

a transmission time estimating process for estimating transmission time of each data segment received by said receiving unit;

a delay time estimating process for estimating delay time required for transmitting each data segment based on said reception time and said transmission time of each data segment;

a minimum delay time estimating process for estimating a minimum delay time in transmitting a data segment through the network from the estimated values of delay time of a plurality of data segments obtained from said delay time estimating unit;

a relative delay time computing process for obtaining a relative delay time by subtracting said minimum delay time from the estimated value of delay time of a data segment estimated by said delay time estimating unit; and a delay process for obtaining an amount of holding time corresponding to each data segment by subtracting the relative delay time of each data segment from a maximum delay time to be reduced, and outputting each data segment after delaying each data segment for the amount of holding time corresponding to each data segment.

8. (Cancelled)

9. (Original) A computer-readable recording medium that has recorded a program for making a network-connected computer execute:

a receiving process sequentially receiving chronological data segments through the network;

a time detecting process for obtaining a reception time of each data segment received by a receiving unit;

Application no. 09/827,639

Amendment dated: February 4, 2005

Reply to office action dated: November 4, 2004

a transmission time estimating process for estimating transmission time of each data segment received by said receiving unit;

a delay time estimating process for estimating delay time required for transmitting each data segment based on said reception time and said transmission time of each data segment;

a minimum delay time estimating process for estimating a minimum delay time in transmitting a data segment through the network from the estimated values of delay time of a plurality of data segments obtained from a delay time estimating unit;

a relative delay time computing process for obtaining a relative delay time by subtracting said minimum delay time from the estimated value of delay time of a data segment estimated by said delay time estimating unit; and a delay process for obtaining an amount of holding time corresponding to each data segment by subtracting the relative delay time of each data segment from a maximum delay time to be reduced, and outputting each data segment after delaying each data segment for the amount of holding time corresponding to each data segment.