STAT3811/3955 Survival Analysis Assignment 1

Kei Ikegami

February 22, 2017

1 Q1

1.1 (a)

$$\begin{split} E[T|T>t] &= \int_t^\infty T f(T|T>t) \mathrm{d}T = \int_t^\infty T \frac{f(T)}{1-F(t)} \mathrm{d}T \\ &= \frac{1}{1-F(t)} \left(\int_0^\infty T f(T) \mathrm{d}T - \int_0^t T f(T) \mathrm{d}T \right) = \frac{1}{1-F(t)} \left(\mu - tF(t) + \int_0^t F(T) \mathrm{d}T \right) \end{split}$$

So I get the below derivative of m(t).

$$m'(t) = \frac{1}{(1 - F(t))^2} \left\{ (-F(t) - tf(t) + F(t)) (1 - F(t)) + (\mu - tF(t) + \int_0^t F(T)dT) f(t) \right\} - 1$$

Then the following calculation leads to the result.

$$\frac{1+m^{'}(t)}{m(t)} = \frac{f(t)\left(\mu - tF(t) + \int_{0}^{t} F(T)dT - t(1-F(t))\right)}{(1-F(t))\left(\mu - tF(t) + \int_{0}^{t} F(T)dT\right) - t(1-F(t))^{2}} = \frac{f(t)}{1-F(t)} = \lambda(t)$$

1.2 (b)

Since $\int_0^t F(T) dT = \int_0^t (-S(T) + 1) dT = -\int_0^t S(T) dT + t$, then

$$m(t) = \frac{1}{S(t)} \int_0^\infty (T - t) f(T) dT = \frac{1}{S(t)} \left(\int_0^\infty (T - t) f(T) dT - \int_0^t (T - t) f(T) dT \right)$$
$$= \frac{1}{S(t)} \left(\mu - t + \int_0^t F(T) dT \right) = \frac{1}{S(t)} \left(\mu - \int_0^t S(u) du \right)$$

- 1.3 (c)
- 1.4 (d)
- 1.5 (e)
- 2 Q3
- 2.1 (a)
- 2.2 (b)
- 2.3 (c)
- 3 Q5
- 3.1 (a)
- 3.2 (b)
- 3.3 (c)
- 3.4 (d)
- 3.5 (e)
- 3.6 (f)
- 3.7 (g)
- 3.8 (h)
- 3.9 (i)
- 3.10 (j)