Asymptotic Analysis

Think Big

UTEC - Competitive Programming

Complexity

- When describing the performance of an algorithm, the word complexity is commonly used.
- Complexity can be considered as the amount of resources my algorithm will consume:
 - Time Complexity: How long will my program take to run for a given input.
 - **Space Complexity:** How much memory will my program consume for a given input.
- In many cases there exists a trade-off between space and time complexity. More memory = Less time

Lets find a solution for the following problem:

Lets find a solution for the following problem:

Given an array a with n elements, find the smallest one. $n \le 10^6$

• How long will your solution take if $n = 10^3, 10^5, 10^6$

2

Lets find a solution for the following problem:

- How long will your solution take if $n = 10^3, 10^5, 10^6$
- How many solutions there are to this problem?

Lets find a solution for the following problem:

- How long will your solution take if $n = 10^3, 10^5, 10^6$
- How many solutions there are to this problem?
- Is this solution the best solution?

Lets find a solution for the following problem:

- How long will your solution take if $n = 10^3, 10^5, 10^6$
- How many solutions there are to this problem?
- Is this solution the best solution?
- How can we compare solutions?

Measuring Complexity

Sampling and Extrapolation

- One first approach to measuring complexity can be to manually measure how long our solution takes to run for different inputs.
- We can then try to extrapolate our measurments and attempt to predict the time our program will take for other inputs.
- Let's try it out!

Sampling and Extrapolation - Problems

- Easy to miss corner cases.
- Takes a lot of time.
- Requires a lot of guessing.
- Sometimes it is really hard to generate input.

Changing Perspective

- Lets define the function T(x) as the time our algorithm takes to run for an input x.
- Lets also define N(x), as the number of instructions our algorithm takes for an input x.
- It is simple to see that $T(x)\alpha N(x)$

Changing Perspective

• Overall, we can say that:

$$T(x) = kN(x)$$

- What would k represent in this equation?
- $k_{C++} \approx 10^8$, $k_{py} \approx 10^6$
- Counting the number of steps is esay! ... usually

Counting instructions

- The goal is to count how many basic instructions are executed during an algorithm.
- Assume that basic instructions are those that can be executed natively by the computer:
 - · addition, subtraction, multiplication, division, remainder
 - modifying and calling variables
 - calling functions
 - etc...
- We assume that all instructions take the same time.
- ullet Find N(n) for the following solutions

Counting instructions - Practice

```
1 int main() {
    int n;
2
    cin >> n;
3
4
       int a[n];
5
       for (int i = 0; i < n; i++) {</pre>
6
           cin >> a[i];
7
       }
8
9
10
       int smallest = INT MAX;
       for (int i = 0; i < n; i++) {</pre>
11
            smallest = min(smallest, a[i]);
12
       }
13
14
       cout << smallest << endl;</pre>
15
       return 0;
16
17 }
```

Counting instructions - Practice

```
1 int main() {
    int n;
2
    cin >> n;
3
4
      int a[n];
5
       for (int i = 0; i < n; i++) {</pre>
6
          cin >> a[i];
7
       }
8
9
       sort(a, a + n);
10
       cout << a[0] << endl;</pre>
11
12
    return 0;
13 }
```

Asymptotic Analysis

Asymptotic Analysis - Introduction

- It is a method for defining the mathemathical boundry of the run-time performance of an algorithm.
- Using asymptotic analysis we look to find:
 - Lower Bound $\Omega(f(n))$ Big Omega Notation
 - Tight Bound $\Theta(f(n))$ Big Theta Notation
 - $\bullet \ \ \textbf{Upper Bound -} \ O(f(n)) \ \textbf{Big Oh Notation}$
- In competitive programming we only care about O(n). Why?

Big Oh - A Formal Introduction

- O(f(n)) is a set that contains all functions that are asymptotically smaller than f(n).
- Formally:

$$f(n) = O(g(n)) \to f(n) < kg(n)$$

For $n > n_0$, $n_0 \in \mathbb{N}$ and k > 0

Big Oh - In Practice

 In general lets say we can estimate that our program has a time complexity of:

$$T(n) = a_m n^m a_{m-1} n^{m-1} + \ldots + a_1 n + a_0$$

- It is simple to see that as n gets bigger, T(n) will be more heavily dominated by its largest term.
- Therefore, $T(n) \approx n^m$, for sufficiently large n.
- We can also realize that $T(n) = O(n^m)$. Why?
- \bullet Now that we know we only care about the largest term calculating T(n) should be much faster!

Using Asymptotic Analysis

In general, from the constrains of a problem we can get the expected complexity our solution should have. For example:

Input Size	Maximum Valid Complexity
$n \le 10$	O(n!)
$n \le 20$	$O(2^n)$
$n \le 500$	$O(n^3)$
$n \le 5000$	$O(n^2)$
$n \le 10^6$	O(nlgn)
$n \le 10^7$	O(n)
$n > 10^{7}$	O(1) or $O(lgn)$