Abstract Algebra
Reading Project: Summer of Science
Indian Institute of Technology Bombay

Swayam Chube Mentor: Eeshan Jain

Last Compiled: May 5, 2022

Contents

1	Universal Approximation and Barron's Theorem		
	1.1	Universal Approximation	2
	1.2	Barron's Theorem	3

Chapter 1

Universal Approximation and Barron's Theorem

1.1 Universal Approximation

A deep network may be represented by the following function:

$$f(x;w) = \sigma_L(w_L\sigma_{L-1}(\ldots\sigma_1(w_1x+b_1)\ldots))$$

where each σ_i is a vectorized non-linear activation function. Some examples are the Rectified Linear Unit (ReLU) activation function given by $\max\{0, x\}$ and the Sigmoid function given by $\frac{1}{1+e^{-x}}$.

We define the *depth* as L and the *width* as $\max_i d_i$.

We shall show in this section that *all continuous functions* can be expressed with deep networks to sufficient accuracy.

Definition 1.1 (Universal Approximator). A class of functions \mathcal{H} is a *universal approximator* if for any continuous function g and compact domain D and any $\varepsilon > 0$, there is $f \in \mathcal{H}$ such that

$$|f(x) - g(x)| \le \varepsilon \quad \forall x \in D$$

The following theorem helps characterize universal approximators:

Theorem 1.2. Suppose \mathcal{H} satisfies the following propositions:

- 1. each $f \in H$ is continuous over D
- 2. for all $x \in D$, there is $f \in \mathcal{H}$ with $f(x) \neq 0$
- 3. for all $x \neq x' \in D$, there is $f \in \mathcal{H}$ with $f(x) \neq f(x')$
- 4. H is closed under \times and vector space operations

then \mathcal{H} is a universal approximator.

A major theorem related to this is due to Hornik et al.

Theorem 1.3 (Hornik et al. 1989). For any continuous activation function $\sigma \colon \mathbb{R} \to \mathbb{R}$ with

$$\lim_{z \to -\infty} \sigma(z) = 0 \qquad \lim_{z \to \infty} \sigma(z) = 1$$

the depth two feedforward networks of unbounded width are universal approximators.

Theorem 1.4 (Park et al.). For any square integrable function $f: \mathbb{R}^d \to \mathbb{R}$ and any $\varepsilon > 0$, there is a width d+1 network with ReLU activations such that

$$\int |f(x) - \hat{f}(x)|^2 dx \le \varepsilon$$

1.2 Barron's Theorem