SPAŢII METRICE, SPAŢII TOPOLOGICE

Definiția 1. a) Se numește distanță pe mulțimea nevidă X o funcție $d: X \times X \to \mathbb{R}$ care are următoarele proprietăți:

- i) $d(x, y) = d(y, x) \ \forall x, y \in X$
- ii) $d(x, y) \ge 0 \ \forall x, y \in X$

 $d(x,y) = 0 \Leftrightarrow x = y$

- iii) $d(x, z) \le d(x, y) + d(y, z) \ \forall x, y, z \in X$.
- b) Se numește spațiu metric o mulțime nevidă X pe care se definește o distanță d.

Notație. (X, d)

Definiția 2. Fie (X, d) un spațiu metric, $x_0 \in X$ si r > 0.

- a) Mulțimea $B(x_0,r) = \{x \in X | d(x,x_0) < r\}$ se numește bila deschisă de centru x_0 și rază r.
- b) Mulțimea $B[x_0,r]=\{x\in X|\ d(x,x_0)\leq r\}$ se numește bila închisă de centru x_0 și rază r.

Teorema 1. Orice spațiu metric (X, d) este spațiu topologic.

Distanței $d: X \times X \to \mathbb{R}$ i se asociază topologia $\tau_d = \{\emptyset\} \cup \{G \subseteq X \mid \forall x \in G \exists r > 0 \text{ ast fel } \hat{i}nc\hat{a}t \text{ } B(x_0, r) \subseteq G \}$ $\wp(X)$.

Topologia τ_d se numește topologia asociată distanței d.

Definiția 3. Fie (X, d) un spațiu metric.

- a) Spunem că mulțimea $G \subseteq X$ este deschisă dacă $G \in \tau_d$.
- b) Spunem că mulțimea $F \subseteq X$ este închisă dacă $C_X F = X \setminus F \in \tau_d$.

Remarcă. Oricărei mulțimi $A \subseteq (X, d)$ i se asociază mulțimile:

Teorema 2. Fie (X, d) un spaţiu metric. Sunt adevărate următoarele afirmaţii:

- a) $B(x_0, r)$ este mulțime deschisă $\forall x_0 \in X \text{ si } \forall r > 0.$
- b) $B[x_0, r]$ este mulțime închisă $\forall x_0 \in X \text{ si } \forall r > 0.$
- c) $V \in V_{\tau_d}\left(x_0\right)$ dacă și numai dacă $\exists r>0$ astfel încât $B\left(x_0,r\right)\subseteq V.$
- d) $x_0 \in A$ dacă și numai dacă $\exists r > 0$ astfel încât $B(x_0, r) \subseteq A$.
- e) $x_0 \in \overline{A}$ dacă și numai dacă $B(x_0, r) \cap A \neq \emptyset \ \forall r > 0$
- f) $x_0 \in A'$ dacă și numai dacă $B(x_0, r) \cap (A \setminus \{x_0\}) \neq \emptyset \ \forall r > 0$.

$TOPOLOGIA\ LUI\ \mathbb{R}$

Pe mulțimea numerelor reale \mathbb{R} se definește distanța uzuală $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $\mathbb{R}, d(x, y) = |x - y| \ \forall x, y \in \mathbb{R}.$

Acesteia i se asociază topologia $\tau_d\stackrel{not}{=}\tau_{\mathbb{R}}$ numită topologia uzuală a lui $\mathbb{R}.$

$$B(x_0, r) = (x_0 - r, x_0 + r) \ \forall x_0 \in \mathbb{R}, \forall r > 0$$

$$B[x_0, r] = [x_0 - r, x_0 + r] \forall x_0 \in \mathbb{R}, \forall r > 0$$

$$\tau_{\mathbb{R}} = \{\emptyset\} \cup \{G \subseteq \mathbb{R} | \forall x \in G \exists r > 0 \text{ astfel } \hat{n} \hat{c} \hat{a} t \ (x_0 - r, x_0 + r) \subseteq G\}$$

$TOPOLOGIA\ LUI\ \mathbb{R}^n, n \geq 2$

Pe spaţiul
$$\mathbb{R}^n$$
 se defineşte distanţa uzuală $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, d\left((x_1, x_2, ..., x_n), (y_1, y_2,, y_n)\right) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + + (x_n - y_n)^2}.$

Acesteia i se asociază topologia
$$\tau_d \stackrel{not}{=} \tau_{\mathbb{R}^n}$$
 numită topologia uzuală a lui \mathbb{R}^n .
$$B\left(\left(x_1, x_2,, x_n\right), r\right) = \left\{\left(y_1, y_2, ..., y_n\right) \in \mathbb{R}^n \middle| \left(x_1 - y_1\right)^2 + \left(x_2 - y_2\right)^2 + + \left(x_n - y_n\right)^2 < r^2\right\}$$

$$B\left[\left(x_{1}, x_{2},, x_{n}\right), r\right] = \left\{\left(y_{1}, y_{2}, ..., y_{n}\right) \in \mathbb{R}^{n} \middle| \left(x_{1} - y_{1}\right)^{2} + \left(x_{2} - y_{2}\right)^{2} + + \left(x_{n} - y_{n}\right)^{2} \le r^{2}\right\}$$