Analyse - TD5

Lucie Le Briquer

19 octobre 2017

Exercice 1 - Espace $\mathcal{H}^1(\Omega)$

$$u \in \mathcal{H}^1(\Omega) \quad \Leftrightarrow \quad u \in L^2(\Omega) \text{ et } \exists v_i \in L^2(\Omega),$$

$$\forall \varphi \in \mathcal{C}_c^{\infty}(\Omega), \ \int_{\Omega} u \partial_i \varphi = -\int_{\Omega} v_i \varphi$$

On note $v_i = \partial_i u$.

1.
$$f_n \xrightarrow[n \to +\infty]{} f \text{ dans } \mathcal{H}^1(\Omega) \quad \Leftrightarrow \quad \begin{cases} \|f_n - f\|_2 \xrightarrow[n \to +\infty]{} 0 \\ \forall i \in [1, d], \|\partial_i f_n - \partial_i f\|_2 \xrightarrow[n \to +\infty]{} 0 \end{cases}$$

2. Montrons que $\mathcal{C}^1_c(\Omega) \subset \mathcal{H}^1(\Omega)$. Si $f \in \mathcal{C}^1_c(\Omega)$ on a bien $f \in L^2(\Omega)$ puisque le support de f est compact. Soit $\varphi \in \mathcal{C}^\infty_c(\Omega)$, en notant $\partial_i f$ les dérivées classiques de f, on a :

$$\int_{\Omega} (\partial_i f) arphi = - \int_{\Omega} f(\partial_i arphi) \;\;\; ext{par IPP} \; + \; ext{pas de terme de bord}$$

Donc $(\partial_i f)$ est aussi la dérivée au sens faible. Et $\partial_i f \int \mathcal{C}_c(\Omega) \subset L^2(\Omega)$. Donc $f \in \mathcal{H}^1(\Omega)$.

3. Montrons que $\mathcal{H}^1(\Omega)$ est complet. Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{H}^1(\Omega)^{\mathbb{N}}$ une suite de Cauchy. Comme :

$$||f_n - f_m||_{\mathcal{H}^1(\Omega)}^2 = ||f_n - f_m||_2^2 + \sum_{i=1}^d ||\partial_i f_n - \partial_i f_m||_2^2$$

Donc (f_n) de Cauchy dans L^2 , et $(\partial_i f_n)$ de Cauchy dans L^2 . Comme L^2 est complet, $\exists f \in L^2(\Omega), g_i \in L^2(\Omega)$ tels que :

$$f_n \xrightarrow[n \to +\infty]{} f \text{ dans } L^2 \qquad \partial_i f_n \xrightarrow[n \to +\infty]{} g_i \text{ dans } L^2$$

Il reste à vérifier que $\partial_i f = g_i$.

Soit $\varphi \in \mathcal{C}_c^{\infty}(\Omega)$, on a :

$$\int_{\Omega} f_n \partial_i \varphi = -\int_{\Omega} (\partial_i f_n) \varphi$$

Or,

$$\int_{\Omega} f_n \partial_i \varphi \xrightarrow[n \to +\infty]{} \int_{\Omega} f \partial_i \varphi \quad \text{par continuit\'e du produit scalaire}$$

$$\int_{\Omega} f_n \partial_i \varphi \xrightarrow[n \to +\infty]{} \int_{\Omega} g_i \varphi \quad \text{par continuit\'e du produit scalaire}$$

(Cauchy-Schwarz:
$$|\int (f - f_n)\partial_i \varphi| \le ||f - f_n||_2 ||\partial_i \varphi||_2 \xrightarrow[n \to +\infty]{} 0$$
)

4. Soit $u: x \mapsto |x| \text{ sur } \mathcal{H}^1(]-1,1[). \ u \in L^2(]-1,1[). \text{ Soit } \varphi \in \mathcal{C}_c^{\infty}(]-1,1[)$

$$\begin{split} \int_{-1}^{1}|x|\varphi'(x)dx &= -\int_{-1}^{0}x\varphi'(x)dx + \int_{0}^{1}x\varphi'(x)dx \\ &= \int_{-1}^{0}\varphi(x)dx - \int_{0}^{1}\varphi(x)dx \quad \text{puisque les terms de bord s'annulent} \\ &= -\int_{-1}^{0}\operatorname{sgn}(x)\varphi(x)dx \end{split}$$

et sgn $\in L^2(]-1,1[)$.

Exercice 2 - Espaces de Sobolev en dimension 1

1. Si $f \in \mathcal{C}^1(I) \cap L^p(I)$ et $f' \in L^p(I)$ (dérivée au sens fort). Soit $\varphi \in \mathcal{C}_c^{\infty}(I)$, en particulier φ est à support compact $[c,d] \subset I$.

$$\int_{I} f\varphi' = \int_{c}^{d} f\varphi' = -\int_{c}^{d} f'\varphi = -\int_{I} f'\varphi$$

Comme $f' \in L^p(I), f \in \mathcal{W}^{1,p}(I)$.

- 2. (a) $f(x) = x + |x| \operatorname{sur}] 1, 1[. f \in L^p \ \forall p \in [1, +\infty] \text{ et } f'(x) = 1 + \operatorname{sgn}(x) \text{ (dérivée faible, cf Exercice 1), donc } f' \in L^p. \text{ Ainsi } \mathcal{W}^{1,p}(] 1, 1[).$
 - (b) Soit $\varphi \in \mathcal{C}_c^{\infty}(I)$:

$$\int_{-1}^{1} \varphi'(x)f'(x)dx = \underbrace{\int_{-1}^{1} \varphi'(x)dx}_{=0 \text{ car supp cpct}} + \int_{-1}^{1} \operatorname{sgn}(x)\varphi'(x)dx$$
$$= -2\varphi(0) = -2\delta_{0}(\varphi)$$

A priori $f''=2\delta_0$. Mais $2\delta_0\notin L^p$. Car, si $\exists g\in L^p$ tel que $g=2\delta_0$, on aurait :

$$\forall \varphi \mathcal{C}_c^{\infty}(I), \ \int_I g\varphi = 2\varphi(0)$$

En considérant $(\varphi_n) \in \mathcal{C}_c^{\infty}(I)$ avec $\operatorname{supp} \varphi_n \in \mathcal{B}(0,1/n)$ etc $\varphi_n(0) = 1 \ \forall n \in \mathbb{N}$. Par exemple $f(x) = \frac{1}{\exp(1)} \exp\left(\frac{1}{1-|t|^2}\right)$ et $\varphi_n(x) = f(nx)$, on a $\varphi_n(0) = 1 = \|\varphi_n\|_{\infty}$. Alors par le théorème de convergence dominée $\int_I g\varphi_n \xrightarrow[n \to +\infty]{} 0$. Pourtant $\int_I g\varphi_n = \varphi_n(0) = 1$

- 1. Absurde. Donc $2\delta_0 \notin L^p$.
- 3. Soit $a \in I$. Posons $g(x) = \int_a^x f'(t)dt$. Montrons que g est bien définie, continue et que g' (dérivée au sens faible) est bien f'.
 - $-x \in I$

$$\int_{a}^{x} f(t)dt = \int_{I} f'(t) \mathbb{1}_{]a,x[}(t)dt$$

$$\leq \underset{\text{H\"{o}lder}}{\leq} ||f'||_{p} ||\mathbb{1}_{]a,x[}||_{q} \quad \text{pour } \frac{1}{p} + \frac{1}{q} = 1$$

- Montrons que g est continue.

$$|g(x) - g(y)| = \left| \int_{x}^{y} f'(t)dt \right|$$

$$\leq \int_{I} |f'(t)| \mathbb{1}_{]x,y[}(t)dt$$

$$\leq ||f'||_{p} ||\mathbb{1}_{]x,y[}||_{q} \qquad = ||f'||_{p} \left(\int_{x}^{y} dt \right)^{1/q} \quad \text{avec } \frac{1}{p} + \frac{1}{q} = 1$$

$$\leq ||f'||_{p} |x - y|^{1/q}$$

Donc g est $\frac{1}{q}$ -Hölderienne, donc continue. Donc g est continue sur I. Tout le raisonnement précédent reste vrai dans \overline{I} . Donc $g \in \mathcal{C}(\overline{I})$

– Montrons que la dérivée au sens faible de g est f'. Soit $\varphi \in \mathcal{C}_c^{\infty}(I)$.

$$\begin{split} \int_{I} g((x)\varphi'(x)dx &= \int_{I} \int_{a}^{x} f'(t)dt\varphi'(x)dx \\ &= \int_{I} \int_{a}^{x} f'(t)\varphi'(x)dtdx \\ &= \int_{I\cap]a; +\infty[} \int_{I\cap]a; +\infty[} f'(t)\varphi'(x)\mathbbm{1}_{[a,x]}(t)dtdx \\ &- \int_{I\cap]-\infty; a[} \int_{I\cap]-\infty; a[} f'(t)\varphi'(x)\mathbbm{1}_{[a,x]}(t)dtdx \quad \text{Fubini} \\ &= \int_{I\cap]a; +\infty[} \left(\int_{I\cap]a; +\infty[} \varphi'(x)\mathbbm{1}_{[a,x]}(t)dx \right) f'(t)dt \\ &- \int_{I\cap]-\infty; a[} \left(\int_{I\cap]-\infty; a[} \varphi'(x)\mathbbm{1}_{[a,x]}(t)dx \right) f'(t)dt \quad \text{comme } \mathbbm{1}_{[a,x]}(t) = \mathbbm{1}_{[t,+\infty[}(x)) \\ &= \int_{I\cap]a; +\infty[} \left(\int_{I\cap]t; +\infty[} \varphi'(x)dx \right) f'(t)dt \\ &+ \int_{I\cap]-\infty; a[} \left(\int_{I\cap]-\infty; t[} \varphi'(x)dx \right) f'(t)dt \\ &= - \int_{I\cap]a; +\infty[} \varphi(t)f'(t)dt - \int_{I\cap]-\infty; a[} \varphi(t)f'(t)dt \end{split}$$

Donc g = f'. Or si deux fonctions on les mêmes dérivées faibles alors elles sont égales p.p. (lemme à montrer).