Assignment 5

1. Given

$$f(x) = rac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

where $x,\mu\in\mathbb{R}^k$, Σ is a k-by-k positive definite matrix and $|\Sigma|$ is its determinant. Show that $\int_{\mathbb{R}^k} f(x) \, dx = 1$.

$$\Sigma$$
 is a positive definite matrix, then $\Sigma = Q \wedge Q^{T}$, where $Q^{T}Q = I$ and $\Lambda = \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ 0 \end{bmatrix}$ (λ_{1} are eigenvalues)

Define $\Sigma^{\frac{1}{2}} = Q \wedge^{\frac{1}{2}} Q^{T}$, where $\Lambda^{\frac{1}{2}} = \begin{bmatrix} \sqrt{\lambda_{1}} \\ \sqrt{\lambda_{2}} \\ 0 \end{bmatrix}$ and $\Sigma^{\frac{1}{2}} = Q \wedge^{\frac{1}{2}} Q^{T}$, where $\Lambda^{\frac{1}{2}} = \begin{bmatrix} \sqrt{\lambda_{1}} \\ \sqrt{\lambda_{2}} \\ \sqrt{\lambda_{k}} \end{bmatrix}$

Then
$$\Sigma^{\pm} \Sigma^{\pm} = \alpha \Lambda^{\pm} \alpha^{T} \alpha \Lambda^{\pm} \alpha^{T} = \alpha \Lambda \alpha^{T} = \Sigma$$
 and $\Sigma^{\pm} \Sigma^{\pm} = \alpha \Lambda^{\pm} \alpha^{T} \alpha \Lambda^{\pm} \alpha^{T} = \alpha \Lambda^{\dagger} \alpha^{T} = \Sigma^{-1}$

Let
$$y = \sum_{i=1}^{n-1} (x_i - \mu_i)$$
.

Then $x = Z^{\frac{1}{2}}y + \mu$ and $dx = |Z^{\frac{1}{2}}| dy = |\Sigma|^{\frac{1}{2}} dy$.

$$\Rightarrow f(x) dx = \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} e^{\frac{1}{2}(\Sigma^{\frac{1}{2}}y)^{T}} \Sigma^{-1}(\Sigma^{\frac{1}{2}}y) |\Sigma|^{\frac{1}{2}} dy$$

$$= \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} e^{\frac{1}{2}y^{T}y} |\Sigma|^{\frac{1}{2}} dy = \frac{1}{(2\pi)^{k/2}} e^{\frac{1}{2}y^{T}y} dy.$$

$$\Rightarrow \int_{\mathbb{R}^{k}} f(x) dx = \int_{\mathbb{R}^{k}} \frac{1}{(2\pi)^{k/2}} e^{\frac{1}{2}y^{T}y} dy$$
where $y = \begin{bmatrix} y_{1} \\ y_{k} \end{bmatrix}$, and $y^{T}y = y_{1}^{2} + y_{2}^{2} + m + y_{k}^{2}$

$$= \int_{\mathbb{R}^{k}} \frac{1}{(2\pi)^{k/2}} e^{\frac{1}{2}\sum_{i=1}^{k} y_{i}^{2}} dy$$

$$= \int_{\mathbb{R}^{k}} \frac{1}{(2\pi)^{k/2}} \prod_{i=1}^{k} e^{\frac{1}{2}y_{i}^{2}} dy$$

$$= \frac{1}{(2\pi)^{k/2}} \prod_{i=1}^{k} \int_{-\infty}^{\infty} e^{\frac{1}{2}y_{i}^{2}} dy$$

$$= \frac{1}{(2\pi)^{k/2}} \cdot (\sqrt{2\pi})^{k} = 1$$

- 2. Let A, B be n-by-n matrices and x be a n-by-1 vector.
 - (a) Show that $\frac{\partial}{\partial A} \operatorname{trace}(AB) = B^T$.
 - (b) Show that $x^T A x = \operatorname{trace}(x x^T A)$.
 - (b) Derive the maximum likelihood estimators for a multivariate Gaussian.

1a) trace(AB) =
$$\sum_{i=1}^{n} (AB)_{ii} = \sum_{i \neq j} A_{ij} B_{ji}$$

 $\frac{\partial}{\partial A_{PQ}} \text{trace } (AB) = \frac{\partial}{\partial A_{PQ}} \sum_{i \neq j} A_{ij} B_{ji} = B_{QP} = (B^{T})_{PQ}$
Hence $\frac{\partial}{\partial A}$ trace $(AB) = B^{T}$.

(b)
$$x^TAx = \sum_{i \neq j} x_i A_{ij} x_j$$
 | since x^TAx is a scalar = trace (\underline{x}^TAx) | trace $AB = \text{trace } BA$, whenever AB and BA are squares

(c) Given data
$$\{x^{(i)}\}_{i=1}^{m}$$
 with $x^{(i)} \sim NIM, \Sigma$)

$$L(M, \Sigma) = \prod_{i=1}^{m} \frac{1}{\sqrt{(2\pi)^{k}|\Sigma|}} \exp\left[-\frac{1}{2}(x^{(i)} - M)^{T} \Sigma^{-1}(x^{(i)} - M)\right]$$

$$\Rightarrow L(M, \Sigma) = \frac{-m}{2} \log|2\pi\Sigma| - \frac{1}{2} \sum_{i=1}^{m} (x^{(i)} - M)^{T} \Sigma^{-1}(x^{(i)} - M)$$

For $f = (x - M)^{T}A(x - M)$, $\frac{\partial f}{\partial M} = -2A(x - M)$

$$\Rightarrow \frac{\partial L}{\partial M} = \sum_{i=1}^{n} \frac{1}{2} (x^{(i)} - M)$$

When $\frac{\partial L}{\partial M} = 0$, $\sum_{i=1}^{m} (x^{(i)} - M) = 0$ $\Rightarrow \hat{M} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$.

$$\frac{\partial}{\partial \Sigma^{1}} \log |\Sigma| = -\Sigma \quad \text{and} \quad \frac{\partial}{\partial \Sigma^{-1}} \operatorname{trace}(\Sigma^{T}S) = S^{T} = S.$$

$$\operatorname{Take} \quad S = \sum_{i=1}^{m} (\chi^{(i)} - \mu)(\chi^{(i)} - \mu)^{T}$$

$$\Rightarrow \frac{\partial \mathcal{L}}{\partial \Sigma^{-1}} = \frac{m}{2} \Sigma - \frac{1}{2} S$$

$$\text{When } \frac{\partial \mathcal{L}}{\partial \Sigma^{-1}} = 0, \quad \Sigma = \frac{1}{m} S \Rightarrow \hat{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (\chi^{(i)} - \hat{\mu})(\chi^{(i)} - \hat{\mu})^{T}$$

3. Unanswered Questions

There are unanswered questions from the lecture, and there are likely more questions we haven't covered.

- Take a moment to think about these questions.
- Write down the ones you find important, confusing, or interesting.
- You do **not** need to answer them—just state them clearly.

What factors affect the performance of softmax regression?
eq. label imbalance? sample size?