

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

Graphs

- ➤ Definitions and principles
- ➤ Representation of graphs
- **≻**Examples

Motivations

- The Königsberg Bridge Problem
 - ➤ The city of Königsberg (Kaliningrad)
 - o Located on the Pregel river in Prussia.
 - The river divided the city into 4 separate landmasses including the island of Kneiphopf.
 - These 4 regions were linked by seven bridges.
 - > Problem
 - Residents of the city wondered if
 - it were possible to leave home, cross each of the 7 bridges exactly once, and return home.
 - > The Swiss mathematician Leonhard Euler (1707-1783) thought about this problem ...
 - > -> Graph theory

Motivations

- The Königsberg Bridge Problem
 - > From a practical problem to a formal problem...

Applications

Brain connectivity analysis

- > Anatomical information Relationships between areas Direction of the information flow
- Nodes
 - >From/Source
 - ➤ Destination/Sink

Rationale

- We need graph for problems such as:
 - > Finding the Shortest path
- Graphs for the representation of problems used with
 - **≻Greedy** algorithms
 - **≻Dynamic** programming

Definitions

- \triangleright Graph G = (V, E)
 - \circ *V* = set of vertices
 - \circ E = set of edges (arcs) \subseteq ($V \times V$)

- **Undirected**: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
- \circ **Directed**: (u, v) is a edge from u to v, denoted as $u \to v$. Self loops are allowed.
- \circ Weighted: Each edge has an associated weight, given by a weight function $w: E \to \mathbb{R}$.
- Mixed: some edges may be directed and some may be undirected
- Multigraph: multiple edges are two or more edges that connect the same two vertices.
- Dense: $|E| \approx |V|^2$.
- Sparse: $|E| << |V|^2$.

$$\triangleright |E| = O(|V|^2)$$

Definitions

- $\triangleright |V|$: # of vertices
- $\triangleright |E|$: # of edges
- \triangleright If $(u, v) \in E$, then vertex v is **adjacent** to vertex u.
- ➤ Adjacency relationship is:
 - Symmetric if *G* is undirected.
 - Not necessarily so if G is directed.
- \triangleright If G is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1$.
 - \circ if |E| = |V| 1, then G is a tree.

Definitions

- > Degree of a vertex v: the number of edges attached to the vertex v
- >Simple graph
 - Undirected, both multiple edges and loops are disallowed
 - o the edges form a *set*
 - each edge is an unordered pair of distinct vertices.
 - \circ With *n* vertices, the degree of every vertex is at most n-1.

Main types of graphs

- > Connected graphs
 - Every unordered pair of vertices in the graph is connected
 - → there is a path from any point to any other point in the graph
- **➢ Bipartite** graphs
 - Vertices can be divided into 2 disjoint and independent sets U and V
 - Every edge connects a vertex in U to one in V

- Vertices and edges can be drawn in a plane such that no two of the edges intersect
- > Cycle graphs
 - Connected graphs in which the degree of all vertices is 2
- > Tree
 - A connected graph with no cycles

Main types of graphs

- > Regular graphs
 - Each vertex has the same number of neighbors
 - every vertex has the same degree

>Complete graphs

> Finite graphs

The vertex set and the edge set are finite sets

> Eulerian

- o If the graph is both connected and has a closed trail containing all edges of the graph
 - A walk with no repeated edges

- Example
 - ➤ Connected graph

Paths

Definitions

- A Walk: a finite or infinite sequence of edges that joins a sequence of vertices.
- >A Trail: a walk in which all edges are distinct.
- \triangleright A **Path:** a sequence of vertices $v_1, ..., v_k$ where each (v_i, v_{i+1}) is an edge
 - Simple path: A path that does not repeat vertices
- **Path Length**: # of edges in the path
- A Circuit: A path that begins and ends at the same vertex
- A Cycle: A circuit that doesn't repeat vertices
- **Euler path:** A path that travels through **all edges** of a connected graph
- **Euler circuit:** A circuit that visits **all edges** of a connected graph. An Euler circuit starts and ends at the same vertex.

Paths

Some theorems

- ➤ Euler's theorem 1 (Circuit)
 - If a graph has any vertex of **odd** degree → it cannot have an Euler circuit.
 - If a graph is connected and every vertex is of even degree → it has at least 1 Euler circuit.
- ➤ Euler's theorem 2 (Path)
 - \circ If a graph has more than 2 vertices of **odd** degree \rightarrow it cannot have an Euler path.
 - If a graph is connected and has just 2 vertices of odd degree → it has at least one Euler path.
 - Any such path must start at one of the odd-vertices and end at the other odd vertex.

Paths

• Graphical representation of the definitions:

Representation & implementation

Adjacency Lists.

Adjacency Matrix.

Representation & implementation

• Examples:

➤ Graph 1:

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	1 1 0 1

➤ Graph 2:

	1	1 0 0 1 0	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Adjacency lists

Data structure:

- \triangleright Consists of an array Adj of |V| lists.
- ➤One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

Remark:

If weighted arcs, then store weights also in adjacency lists.

Adjacency lists

For directed graphs:

➤ Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = |E| \qquad \text{(out-degree(v): number of edges leaving v)}$$

- \triangleright Total storage: $\Theta(V+E)$
- For undirected graphs:
 - ➤ Sum of lengths of all adj. lists is

$$\sum_{v \in V} degree(v) = 2|E|$$

 \triangleright Total storage: $\Theta(V+E)$

Adjacency lists

Advantages

- ➤ Space-efficient, when a graph is sparse
- ➤ Can be modified to support many types of graphs

Disadvantages

- \triangleright Determining if an edge $(u,v) \in G$: not efficient.
 - Have to search in u's adjacency list $\rightarrow \Theta(\text{degree}(u))$ time.
 - $\circ \Theta(V)$ in the worst case!

Adjacency matrix

■ Matrix A

- \triangleright Size $|V| \times |V|$
- \triangleright Number vertices from 1 to |V| in some arbitrary manner.
- \triangleright A is defined by:

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3 1 1 0 0	4
1	0	1	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

	1	2	3	4
1	0 1 1 1	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

 $A = A^{T}$ for undirected graphs.

→ Triangle for storage

Adjacency matrix

Space:

$$>O(N^2)$$

Edge insertion/deletion:

Find all adjacent vertices to a vertex:

Application

- Example: Brain connectivity analysis
 - ➤ Potential CSci 198 projects ©

Example

- We consider a complete binary tree on 7 vertices
 - ➤ Adjacency list

1:2,3

2:1,4,5

3:1,6,7

4:2

5:2

6:3

7:3.

Adjacency matrix

```
\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}
```

Degree matrix

Definition

- \triangleright We consider a graph G=(V,E) with |V| = n
- > the degree matrix D of G is a diagonal matrix (size n x n)
 - \circ with $d_{ij} = Deg(v_i)$ if i=j, 0 otherwise
- ➤ Special case
 - Directed graph → Degree = InDegree or OutDegree

Example

Laplacian matrix (simple graph)

- We consider a graph G with n vertices
 - The Laplacian matrix L_{nxn} is: L=D-A
 - > Where
 - D: the degree matrix
 - A: the adjacency matrix
 - Simple graph → matrix contains only 0 and 1, diagonal = 0
 - \triangleright L_{ij}=
 - \circ Deg(v_i) if (i==j)
 - \circ -1 if i!=j and v_i is adjacent to v_i
 - 0 otherwise

Incidence matrix

- A graph whose oriented incidence matrix M
 - ➤ Size | E| x| W with element M_{ev}
 - \circ for edge e connecting vertex **i** and **j**, with **i** > **j** and vertex v given by:
 - > M_{ev}= 1 if v==i
 - > M_{ev} = -1 if v = = j
 - > M_{ev} = 0 otherwise
- The Laplacian matrix L=M^TM
 - > > Eigen values of L are all non-negative

Example

Graph

- >→ Adjacency matrix
- ➤ → Degree matrix
- ➤→ Laplacian matrix

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
6 4 5 1	$ \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ 1 & 1 & 0 & 1 & 2 & 0 \end{pmatrix} $
3-0	$ \left($	$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

Conclusion

- Different types of graphs
 - **≻**Important
 - To specify properly the graph that is used for a given problem
 - Set of edges, vertices...
 - ➤ Considerations for the implementation
 - O Number of vertices: fixed or not?
 - Lists
 - Matrix
 - ➤ Graphs with Matrices
 - Advanced techniques → related to Linear Algebra !!

CHALLENGE ACCEPTED

Questions?

- Reading
 - ➤Introduction to Algorithms, Chapter 22.

