

DATASHEET

6 PIN DIP ZERO-CROSS TRIAC DRIVER PHOTOCOUPLER EL303X, EL304X, EL306X, EL308X Series

Features:

- Peak breakdown voltage
 - 250V: EL303X
 - 400V: EL304X
 - 600V: EL306X
 - 800V: EL308X
- High isolation voltage between input and output (Viso=5000 V rms)
- Zero voltage crossing
- Pb free and RoHS compliant.
- UL approved (No. E214129)
- VDE approved (No.132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CSA approved

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Terminal
- 5. Substrate (do not connect)
- 6. Terminal

Description

The EL303X, EL304X, EL306X and EL308X series of devices each consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon zero voltage crossing photo triac.

They are designed for use with a discrete power triac in the interface of logic systems to equipment powered from 110 to 380 VAC lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances.

Applications

- Solenoid/valve controls
- Light controls
- Static power switch
- AC motor drivers
- E.M. contactors
- Temperature controls
- AC Motor starters

R

www.everlight.com

Copyright © 2010, Everlight All Rights Reserved. Release Date : May 13, 2013. Issue No: DPC-0000208 Rev.4

LifecyclePhase: Approved

Absolute Maximum Ratings (Ta=25)

	Parameter		Symbol	Rating	Unit
Input	Forward current		I _F	60	mA
	Reverse voltage		V _R	6	V
	Power dissipation		-	100	mW
	Derating factor (above	$T_a = 85^{\circ}C$	P _D -	3.8	mW /°C
Output		EL303X		250	
	Off-state Output	EL304X		400	_
	Terminal Voltage	EL306X	– V _{DRM} –	600	- V
		EL308X		800	_
	Peak Repetitive Surge (pw=1ms,120pps)	Current	I _{TSM}	1	A
	On-State RMS Current		I _{T(RMS)}	100	mA
	Power dissipation		D	300	mW
	Derating factor (above	$T_a = 85^{\circ}C$	P _C -	7.6	mW/
Total pow	ver dissipation		P _{TOT}	330	mW
Isolation voltage *1			V _{ISO}	5000	Vrms
Operating temperature			T _{OPR}	-55 to 100	
Storage temperature			T _{STG}	-55 to 125	
Soldering	g Temperature* ²		T _{SOL}	260	

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2&3 are shorted together, and pins 4, 5 & 6 are shorted together.

^{*2} For 10 seconds

Electro-Optical Characteristics (Ta=25 unless specified otherwise)

Input

Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Forward Voltage	V_{F}	-	-	1.5	V	I _F = 30mA
Reverse Leakage current	I _R	-	-	10	μΑ	V _R = 6V

Output

Parameter		Symbo I	Min.	Тур.*	Max.	Unit	Condition
Peak Blocking	EL303X EL304X				100	A	V _{DRM} = Rated V _{DRM}
Current	EL306X EL308X	- I _{DRM1}		-	500	nA	I _F = 0mA
Peak On-state \	Peak On-state Voltage V-		-	-	3	V	I _{TM} =100mA peak, I _F =Rated I _{FT}
Critical Rate of Rise off-state	EL303X EL304X EL306X	dv/dt	1000	-	-	V/µS	V _{PEAK} =Rated V _{DRM} , I _F =0 (Fig. 10)
Voltage	EL308X		600	-			(Fig. 10)
Inhibit Voltage (MT1-MT2 voltage above which device will not trigger)		V_{INH}		31	20	V	I _F = Rated I _{FT}
Leakage in Inhibited State		I _{DRM2}			500	μΑ	I_F = Rated I_{FT} , V_{DRM} =Rated V_{DRM} , off state

Transfer Characteristics

Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
	EL3031 EL3041 EL3061 EL3081	– - I _{FT} -	-	-	15	- mA	Main terminal Voltage=3V
LED Trigger Current	EL3032 EL3042 EL3062 EL3082		-	-	10		
	EL3033 EL3043 EL3063 EL3083		-	-	5		
Holding Current		l _Η	-	280	-	μΑ	

^{*} Typical values at T_a = 25°C

Typical Electro-Optical Characteristics Curves

Figure 7. Off-State Output Terminal Voltage
vs. Ambient Temperature

1.4

Normalized to T_A = 25°C

1.3

1.3

1.0

Normalized to T_A = 25°C

Ambient Temperature, T_A (°C)

Figure 10. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_T is monitored using a x100 scope probe. By varying R_{TEST} , the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τ_{RC} is recorded and the dv/dt calculated.

$$dv/dt = \frac{0.632 \times V_{PEAK}}{\tau_{RC}}$$

For example, $V_{PEAK} = 600V$ for EL306X series. The dv/dt value is calculated as follows:

$$dv/dt = \frac{0.63 \times 600}{\tau_{RC}} = \frac{378}{\tau_{RC}}$$

Order Information

Part Number

EL303XY(Z)-V or EL304XY(Z)-V or EL306XY(Z)-V or EL308XY(Z)-V

Note

X = Part No. (1, 2 or 3)

Y = Lead form option (S, S1, M or none)

Z = Tape and reel option (TA, TB or none).

V = VDE safety approved option

Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

Package Dimension (Dimensions in mm)

Standard DIP Type

Option M Type

Option S Type

Option S1 Type

Recommended pad layout for surface mount leadform

Device Marking

Notes

EL denotes Everlight
3083 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE option

Tape & Reel Packing Specifications

Option TA

Direction of feed from reel

Option TB

Direction of feed from reel

Tape dimensions

Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.4±0.1	7.5±0.1	1.5±0.1	1.5+0.1/-0	1.75±0.1	7.5±0.1

Dimension No.	Ро	P1	P2	t	w	К
Dimension (mm)	4.0±0.15	12±0.1	2.0±0.1	0.35±0.03	16.0±0.2	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note: Reference: IPC/JEDEC J-STD-020D

Preheat

Temperature min (T_{smin}) 150 °C

Temperature max (T_{smax}) 200 °C

Time $(T_{smin} \text{ to } T_{smax})$ (t_s) 60-120 seconds

Average ramp-up rate $(T_{smax} to T_p)$ 3 °C/second max

Other

Liquidus Temperature (T_L)

Time above Liquidus Temperature (t L) 60-1

Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

Time 25°C to peak temperature

Reflow times

217 °C

60-100 sec

260°C

30 s

6°C /second max.

8 minutes max.

3 times

12

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.

