Parcial Algebra lineal

Parcial 2 - Algebra Lineal segunda parte

Nombre:

1. Dada la transformación $T:\mathbb{R}^2 \to \mathbb{R}^2$ tal que

$$T(x, y) = (2x + y, x - 4y),$$

determina si T es una transformación lineal. Si lo es, encuentra su matriz asociada y determine la dimensión del núcleo y la imagen de T.

2. Sean $T_1:\mathbb{R}^2\to\mathbb{R}^2$ y $T_2:\mathbb{R}^2\to\mathbb{R}^2$ dos transformaciones lineales cuyas matrices asociadas son

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

У

$$A_2 = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix},$$

respectivamente. Encuentra la matriz de la transformación $T_3 = T_2 \circ T_1$ y $T_4 = T_1 \circ T_2$, tiene alguna relación entre ellas?

Nota: $T_3 = T_2 \circ T_1$ significa que primero se aplica T_1 y luego T_2 .

3. Sea $T:\mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal con matriz asociada

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$$

en la base canónica. Si la base cambia a

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\},\,$$

encuentra la matriz de T en la nueva base.