Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 10

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} 3 & -1 & 0 & 1 & 5 \\ -1 & 9 & 1 & -7 & 0 \\ 1 & 0 & -1 & 0 & -3 \end{bmatrix}$$

Solution:

$$3x_1 - x_2 + x_4 = 5$$
$$-x_1 + 9x_2 + x_3 - 7x_4 = 0$$
$$x_1 - x_3 = -3$$

Standard E3.

Mark:

Solve the following linear system.

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 5$$
$$-2x_3 - 4x_4 = 3$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = -1$$

Solution: Let $A = \begin{bmatrix} 4 & 4 & 3 & -6 & 5 \\ 0 & 0 & -2 & -4 & 3 \\ 2 & 2 & 1 & -4 & -1 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. It follows that the system

is inconsistent with no solutions (since the bottom row implies the contradiction 0 = 1).

Find a basis for the solution set to the system of equations

$$x + 2y - 3z = 0$$
$$2x + y - 4z = 0$$
$$3y - 2z = 0$$
$$x - y - z = 0$$

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -4 \\ 0 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{5}{3} \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} \frac{5}{3}a\\ \frac{2}{3}a\\ \frac{1}{3}a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

So a basis is $\left\{ \begin{bmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix} \right\}$.

Standard V1.

Mark:

Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V, c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

Determine if V is a vector space or not.

Solution:

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c\left(dx_1-(d-1)\right)-(c-1),c\left(dy_1-(d-1)\right))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

7)

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

8)

$$(c+d)\odot(x_1,y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$
$$= (cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$$
$$= c\odot(x_1, y_1) \oplus c\odot(x_2, y_2)$$

Therefore V is a vector space.

 ${\bf Additional\ Notes/Marks}$