

(1) Publication number: 0 399 666 B1

12

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 28.07.93 Bulletin 93/30

(f) Int. Cl.⁵: **C12N 15/62**, C07K 13/00, C12P 21/02

(21) Application number: 90304575.5

(22) Date of filing: 26.04.90

54) Fusion proteins containing N-terminal fragments of human serum albumin.

Consolidated with 90907285.2/0470165 (European application No./publication No.) by decision dated 20.07.92.

- 30 Priority: 29.04.89 GB 8909919
- (43) Date of publication of application : 28.11.90 Bulletin 90/48
- (45) Publication of the grant of the patent : 28.07.93 Bulletin 93/30
- (84) Designated Contracting States: AT BE CH DE DK ES FR GR IT LI LU NL SE

(56) References cited : EP-A- 0 308 381 EP-A- 0 322 094

- (3) Proprietor: Delta Biotechnology Limited Castle Court, Castle Boulevard Nottingham NG7 1FD (GB)
- (72) Inventor: Ballance, David James11 South RoadWest Bridgford, Nottingham NG2 7AG (GB)
- (74) Representative: Bassett, Richard Simon et al ERIC POTTER & CLARKSON St. Mary's Court St. Mary's Gate Nottingham NG1 1LE (GB)

99 666 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

10

25

35

The present invention relates to fusion polypeptides where two individual polypeptides or parts thereof are fused to form a single amino acid chain. Such fusion may arise from the expression of a single continuous coding sequence formed by recombinant DNA techniques.

Fusion polypeptides are known, for example those where a polypeptide which is the ultimately desired product of the process is expressed with an N-terminal "leader sequence" which encourages or allows secretion of the polypeptide from the cell. An example is disclosed in EP-A-116 201 (Chiron).

Human serum albumin (HSA) is a known protein found in the blood. EP-A-147 198 (Delta Biotechnology) discloses its expression in a transformed host, in this case yeast. Our earlier application EP-A-322 094 discloses N-terminal fragments of HSA, namely those consisting of residues 1-n where n is 369 to 419, which have therapeutic utility. The application also mentions the possibility of fusing the C-terminal residue of such molecules to other, unnamed, polypeptides.

One aspect of the present invention provides a fusion polypeptide comprising, as at least part of the N-terminal portion thereof, an N-terminal portion of HSA or a variant thereof and, as at least part of the C-terminal portion thereof, another polypeptide except that, when the said N-terminal portion of HSA is the 1-n portion where n is 369 to 419 or a variant thereof then the said polypeptide is (a) the 585 to 1578 portion of human fibronectin or a variant thereof, (b) the 1 to 368 portion of CD4 or a variant thereof, (c) platelet derived growth factor, or a variant thereof, (d) transforming growth factor, or a variant thereof, (e) the 1-261 portion of mature human plasma fibronectin or a variant thereof, (g) the 1-272 portion of mature human von Willebrand's Factor or a variant thereof, or (h) alpha-1-antitrypsin or a variant thereof.

The N-terminal portion of HSA is preferably the said 1-n portion, the 1-177 portion (up to and including the cysteine), the 1-200 portion (up to but excluding the cysteine) or a portion intermediate 1-177 and 1-200.

The term "human serum albumin" (HSA) is intended to include (but not necessarily to be restricted to) known or yet-to-be-discovered polymorphic forms of HSA. For example, albumin Naskapi has Lys-372 in place of Glu-372 and pro-albumin Christchurch has an altered pro-sequence. The term "variants" is intended to include (but not necessarily to be restricted to) minor artificial variations in sequence (such as molecules lacking one or a few residues, having conservative substitutions or minor insertions of residues, or having minor variations of amino acid structure). Thus polypeptides which have 80%, preferably 85%, 90%, 95% or 99%, homology with HSA are deemed to be "variants". It is also preferred for such variants to be physiologically equivalent to HSA; that is to say, variants preferably share at least one pharmacological utility with HSA. Furthermore, any putative variant which is to be used pharmacologically should be non-immunogenic in the animal (especially human) being treated.

Conservative substitutions are those where one or more amino acids are substituted for others having similar properties such that one skilled in the art of polypeptide chemistry would expect at least the secondary structure, and preferably the tertiary structure, of the polypeptide to be substantially unchanged. For example, typical such substitutions include asparagine for glutamine, serine for asparagine and arginine for lysine. Variants may alternatively, or as well, lack up to ten (preferably only one or two) intermediate amino acid residues (ie not at the termini of the said N-terminal portion of HSA) in comparison with the corresponding portion of natural HSA; preferably any such omissions occur in the 100 to 369 portion of the molecule (relative to mature HSA itself) (if present). Similarly, up to ten, but preferably only one or two, amino acids may be added, again in the 100 to 369 portion for preference (if present). The term "physiologically functional equivalents" also encompasses larger molecules comprising the said sequence plus a further sequence at the N-terminal (for example, pro-HSA, pre-pro-HSA and met-HSA).

Clearly, the said "another polypeptide" in the fusion compounds of the invention cannot be the remaining portion of HSA, since otherwise the whole polypeptide would be HSA, which would not then be a "fusion polypeptide".

Even when the HSA-like portion is not the said 1-n portion of HSA, it is preferred for the non-HSA portion to be one of the said (a) to (h) entities.

The 1 to 368 portion of CD4 represents the first four disulphide-linked immunoglobulin-like domains of the human T lymphocyte CD4 protein, the gene for and amino acid sequence of which are disclosed in D. Smith et al (1987) Science 328, 1704-1707. It is used to combat HIV infections.

The sequence of human platelet-derived growth factor (PDGF) is described in Collins <u>et al</u> (1985) Nature <u>316</u>, 748-750. Similarly, the sequence of transforming growth factors β (TGF- β) is described in Derynck <u>et al</u> (1985) Nature <u>316</u>, 701-705. These growth factors are useful for wound-healing.

A cDNA sequence for the 1-261 portion of Fn was disclosed in EP-A-207 751 (obtained from plasmid pFH6 with endonuclease Pvull). This portion binds fibrin and can be used to direct fused compounds to blood clots.

A cDNA sequence for the 278-578 portion of Fn, which contains a collagen-binding domain, was disclosed by R.J. Owens and F.E. Baralle in 1986 E.M.B.O.J. 5, 2825-2830. This portion will bind to platelets.

The 1-272 portion of von Willebrand's Factor binds and stabilises factor VIII. The sequence is given in Bontham et al, Nucl. Acids Res. 14, 7125-7127.

Variants of alpha-1-antitrypsin include those disclosed by Rosenburg et al (1984) Nature 312, 77-80. In particular, the present invention includes the Pittsburgh variant (Met³⁵⁸ is mutated to Arg) and the variant where Pro³⁵⁷ and Met³⁵⁸ are mutated to alanine and arginine respectively. These compounds are useful in the treatment of septic shock and lung disorders.

Variants of the non-HSA portion of the polypeptides of the invention include variations as discussed above in relation to the HSA portion, including those with conservative amino acid substitutions, and also homologues from other species.

The fusion polypeptides of the invention may have N-terminal amino acids which extend beyond the portion corresponding to the N-terminal portion of HSA. For example, if the HSA-like portion corresponds to an N-terminal portion of mature HSA, then pre-, pro-, or pre-pro sequences may be added thereto, for example the yeast alpha-factor leader sequence. The fused leader portions of WO 90/01063 may be used. The polypeptide which is fused to the HSA portion may be a naturally-occurring polypeptide, a fragment thereof or a novel polypeptide, including a fusion polypeptide. For example, in Example 3 below, a fragment of fibronectin is fused to the HSA portion via a 4 amino acid linker.

It has been found that the amino terminal portion of the HSA molecule is so structured as to favour particularly efficient translocation and export of the fusion compounds of the invention in eukaryotic cells.

A second aspect of the invention provides a transformed host having a nucleotide sequence so arranged as to express a fusion polypeptide as described above. By "so arranged", we mean, for example, that the nucleotide sequence is in correct reading frame with an appropriate RNA polymerase binding site and translation start sequence and is under the control of a suitable promoter. The promoter may be homologous with or heterologous to the host. Downstream (3') regulatory sequences may be included if desired, as is known. The host is preferably yeast (for example Saccharomyces spp., e.g. S. cerevisiae; Kluyveromyces spp., e.g. K. lactis; Pichia spp.; or Schizosaccharomyces spp., e.g. S. pombe) but may be any other suitable host such as E. coli, B. subtilis, Aspergillus spp., mammalian cells, plant cells or insect cells.

A third aspect of the invention provides a process for preparing a fusion polypeptide according to the first aspect of the invention by cultivation of a transformed host according to the second aspect of the invention, followed by separation of the fusion polypeptide in a useful form.

A fourth aspect of the invention provides therapeutic methods of treatment of the human or other animal body comprising administration of such a fusion polypeptide.

In the methods of the invention we are particularly concerned to improve the efficiency of secretion of useful therapeutic human proteins from yeast and have conceived the idea of fusing to amino-terminal portions of HSA those proteins which may ordinarily be only inefficiently secreted. One such protein is a potentially valuable wound-healing polypeptide representing amino acids 585 to 1578 of human fibronectin (referred to herein as Fn 585-1578). As we have described in a separate application (filed simultaneously herewith) this molecule contains cell spreading, chemotactic and chemokinetic activities useful in healing wounds. The fusion polypeptides of the present invention wherein the C-terminal portion is Fn 585-1578 can be used for wound healing applications as biosynthesised, especially where the hybrid human protein will be topically applied. However, the portion representing amino acids 585 to 1578 of human fibronectin can if desired be recovered from the fusion protein by preceding the first amino acid of the fibronectin portion by amino acids comprising a factor X cleavage site. After isolation of the fusion protein from culture supernatant, the desired molecule is released by factor X cleavage and purified by suitable chromatography (e.g. ion-exchange chromatography). Other sites providing for enzymatic or chemical cleavage can be provided, either by appropriate juxtaposition of the N-terminal and C-terminal portions or by the insertion therebetween of an appropriate linker.

At least some of the fusion polypeptides of the invention, especially those including the said CD4 and vWF fragments, PDGF and α_1 AT, also have an increased half-life in the blood and therefore have advantages and therapeutic utilities themselves, namely the therapeutic utility of the non-HSA portion of the molecule. In the case of α_1 AT and others, the compound will normally be administered as a one-off dose or only a few doses over a short period, rather than over a long period, and therefore the compounds are less likely to cause an immune response.

EXAMPLES: SUMMARY

50

Standard recombinant DNA procedures were as described by Maniatis et al (1982 and recent 2nd edition) unless otherwise stated. Construction and analysis of phage M13 recombinant clones was as described by

Messing (1983) and Sanger et al (1977).

DNA sequences encoding portions of human serum albumin used in the construction of the following molecules are derived from the plasmids mHOB12 and pDBD2 (EP-A-322 094, Delta Biotechnology Ltd, relevant portions of which are reproduced below) or by synthesis of oligonucleotides equivalent to parts of this sequence. DNA sequences encoding portions of human fibronectin are derived from the plasmid pFHDEL1, or by synthesis of oligonucleotides equivalent to parts of this sequence. Plasmid pFHDEL1, which contains the complete human cDNA encoding plasma fibronectin, was obtained by ligation of DNA derived from plasmids pFH6, 16, 54, 154 and 1 (EP-A-207 751; Delta Biotechnology Ltd).

This DNA represents an mRNA variant which does not contain the 'ED' sequence and had an 89-amino acid variant of the III-CS region (R.J. Owens, A.R. Kornblihtt and F.E. Baralle (1986) Oxford Surveys on Eukaryotic Genes <u>3</u> 141-160). The map of this vector is disclosed in Fig. 11 and the protein sequence of the mature polypeptide produced by expression of this cDNA is shown in Fig. 5.

Oligonucleotides were synthesised on an Applied Biosystems 380B oligonucleotide synthesiser according to the manufacturer's recommendations (Applied Biosystems, Warrington, Cheshire, UK).

An expression vector was constructed in which DNA encoding the HSA secretion signal and mature HSA up to and including the 387th amino acid, leucine, fused in frame to DNA encoding a segment of human fibronectin representing amino acids 585 to 1578 inclusive, was placed downstream of the hybrid promoter of EPA-258 067 (Delta Biotechnology), which is a highly efficient galactose-inducible promoter functional in Saccharomyces cerevisiae. The codon for the 1578th amino acid of human fibronectin was directly followed by a stop codon (TAA) and then the S. cerevisiae phosphoglycerate kinase (PGK) gene transcription terminator. This vector was then introduced into S. cerevisiae by transformation, wherein it directed the expression and secretion from the cells of a hybrid molecule representing the N-terminal 387 amino acids of HSA C-terminally fused to amino acids 585 to 1578 of human fibronectin.

In a second example a similar vector is constructed so as to enable secretion by <u>S. cerevisiae</u> of a hybrid molecule representing the N-terminal 195 amino acids of HSA C-terminally fused to amino acids 585 to 1578 of human fibronectin.

Aspects of the present invention will now be described by way of example and with reference to the accompanying drawings, in which:

Figure 1 (on two sheets) depicts the amino acid sequence currently thought to be the most representative of natural HSA, with (boxed) the alternative C-termini of HSA(1-n);

Figure 2 (on two sheets) depicts the DNA sequence coding for mature HSA, wherein the sequence included in Linker 3 is underlined;

Figure 3 illustrates, diagrammatically, the construction of mHOB16;

Figure 4 illustrates, diagrammatically, the construction of pHOB31;

Figure 5 (on 6 sheets) illustrates the mature protein sequence encoded by the Fn plasmid pFHDEL1;

Figure 6 illustrates Linker 5, showing the eight constituent oligonucleotides;

Figure 7 shows schematically the construction of plasmid pDBDF2;

Figure 8 shows schematically the construction of plasmid pDBDF5;

Figure 9 shows schematically the construction of plasmid pDBDF9;

Figure 10 shows schematically the construction of plasmid DBDF12, using plasmid pFHDEL1; and Figure 11 shows a map of plasmid pFHDEL1.

EXAMPLE 1: HSA 1-387 FUSED TO Fn 585-1578

The following is an account of a preparation of plasmids comprising sequences encoding a portion of HSA, as is disclosed in EP-A-322 094.

The human serum albumin coding sequence used in the construction of the following molecules is derived from the plasmid M13mp19.7 (EP-A-201 239, Delta Biotech- nology Ltd.) or by synthesis of oligonucleotides equivalent to parts of this sequence. Oligonucleotides were synthesised using phosphoramidite chemistry on an Applied Biosystems 380B oligonucleotide synthesizer according to the manufacturer's recommendations (AB Inc., Warrington, Cheshire, England).

An oligonucleotide was synthesised (Linker A) which represented a part of the known HSA coding sequence (Figure 2) from the <u>Pstl</u> site (1235-1240, Figure 2) to the codon for valine 381 wherein that codon was changed from GTG to GTC:

55

30

40

Linker 1

			D	P	Н	E	С	Y
5	5′		GAT	CCT	CAT	GAA	TGC	TAT
	3' ACGT	?	CTA	GGA	GTA	CTT	ACG	ATA
10				1	24,7			
	A	K	v	F	D	E	F	ĸ
15	GCC	AAA	GTG	TTC	GAT	GAA	TTT	AAA
	CGG	TTT	CAC	AAG	CTA	CTT	AAA	$\mathbf{T}\mathbf{T}\mathbf{T}$
			126	57				
20	P	L	V					
	CTT	GTC	3′					
25	GGA	CAG	5 ′					

Linker 1 was ligated into the vector M13mp19 (Norrander et al, 1983) which had been digested with Pstl and Hincll and the ligation mixture was used to transfect E.coli strain XL1-Blue (Stratagene Cloning Systems, San Diego, CA). Recombinant clones were identified by their failure to evolve a blue colour on medium containing the chromogenic indicator X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside) in the present of IPTG (isopropylthio-β-galactoside). DNA sequence analysis of template DNA prepared from bacteriophage particles of recombinant clones identified a molecule with the required DNA sequence, designated mHOB12 (Figure 3).

M13mp19.7 consists of the coding region of mature HSA in M13mp19 (Norrander et al, 1983) such that the codon for the first amino acid of HSA, GAT, overlaps a unique Xhol site thus:

35

50

55

							1	Asj	Ò	1	Ala	3	
	5′	С	T	С	G	A	G	A	T	G	С	A	3 ′
40	3′	G	A	G	С	T	С	T	A	С	G	T	5′
			2	Kho	οI								

(EP-A-210 239). M13mp19.7 was digested with Xhol and made flush-ended by S1-nuclease treatment and was then ligated with the following oligonucleotide (Linker 2):

Linker 2

5' T C T T T T A T C C A A G C T T G G A T A A A A G A 3
3' A G A A A A T A G G T T C G A A C C T A T T T C T 5

HindIII

The ligation mix was then used to transfect E.coli XL1-Blue and template DNA was prepared from several

plaques and then analysed by DNA sequencing to identify a clone, pDBD1 (Figure 4), with the correct sequence.

A 1.1 kb <u>HindIII</u> to <u>PstI</u> fragment representing the 5' end of the HSA coding region and one half of the inserted oligonucleotide linker was isolated from pDBD1 by agarose gel electrophoresis. This fragment was then ligated with double stranded mHOB12 previously digested with <u>HindIII</u> and <u>PstI</u> and the ligation mix was then used to transfect <u>E.coli</u> XL1-Blue. Single stranded template DNA was prepared from mature bacteriophage particles of several plaques. The DNA was made double stranded <u>in vitro</u> by extension from annealed sequencing primer with the Klenow fragment of DNA polymerase I in the presence of deoxynucleoside triphosphates. Restriction enzyme analysis of this DNA permitted the identification of a clone with the correct configuration, mHOB15 (Figure 4).

The following oligonucleotide (Linker 3) represents from the codon for the 382nd amino acid of mature HSA (glutamate, GAA) to the codon for lysine 389 which is followed by a stop codon (TAA) and a <u>HindIII</u> site and then a <u>BamHI</u> cohesive end:

15 Linker 3

10

25

30

35

E E P Q N L I K J

5' GAA GAG CCT CAG AAT TTA ATC AAA TAA GCTTG 3'

3' CTT CTC GGA GTC TTA AAT TAG TTT ATT CGAACCTAG 5'

This was ligated into double stranded mHOB15, previously digested with <u>Hincll</u> and <u>BamHI</u>. After ligation, the DNA was digested with <u>Hincll</u> to destroy all non-recombinant molecules and then used to transfect <u>E.coli</u> XL1-Blue. Single stranded DNA was prepared from bacteriophage particles of a number of clones and subjected to DNA sequence analysis. One clone having the correct DNA sequence was designated mHOB16 (Figure 4).

A molecule in which the mature HSA coding region was fused to the HSA secretion signal was created by insertion of Linker 4 into <u>BamH</u> and Xhol digested M13mp19.7 to form pDBD2 (Figure 4).

Linker 4

M K V S W F GATCC ATG AAG TGG GTA AGC TTT 40 G TAC TTC ACC CAT TCG AAA Ι S L L F L F S 45 ATT TCC CTT CTT TTT TTT AGC TAA AGG GAA GAA AAA GAG AAA TCG

55

50

S	A	Y	S	R	G	V	F
TCG	GCT	TAT	TCC	AGG	GGT	GTG	TTT
AGC	CGA	ATA	AGG	TCC	CCA	CAC	AAA

R R CG 3'

15

25

40

45

55

In this linker the codon for the fourth amino acid after the initial methionine, ACC for threonine in the HSA pre-pro leader sequence (Lawn et al., 1981), has been changed to AGC for serine to create a HindIII site.

A sequence of synthetic DNA representing a part of the known HSA coding sequence (Lawn et al., 1981) (amino acids 382 to 387, Fig. 2), fused to part of the known fibronectin coding sequence (Kornblihtt et al., 1985) (amino acids 585 to 640, Fig. 2), was prepared by synthesising six oligonucleotides (Linker 5, Fig. 6). The oligonucleotides 2, 3, 4, 6, 7 and 8 were phosphorylated using T4 polynucleotide kinase and then the oligonucleotides were annealed under standard conditions in pairs, i.e. 1+8, 2+7, 3+6 and 4+5. The annealed oligonucleotides were then mixed together and ligated with mHOB12 which had previously been digested with the restriction enzymes Hincll and EcoRl. The ligation mixture was then used to transfect E.coli XL1-Blue (Stratagene Cloning Systems, San Diego, CA). Single stranded template DNA was then prepared from mature bacteriophage particles derived from several independent plaques and then was analysed by DNA sequencing. A clone in which a linker of the expected sequence had been correctly inserted into the vector was designated pDBDF1 (Fig. 7). This plasmid was then digested with Pstl and EcoRl and the approx. 0.24kb fragment was purified and then ligated with the 1.29kb BamHI-Pstl fragment of pDBD2 (Fig. 7) and BamHI + EcoRl digested pUC19 (Yanisch-Perron, et al., 1985) to form pDBDF2 (Fig. 7).

A plasmid containing a DNA sequence encoding full length human fibronectin, pFHDEL1, was digested with <u>EcoRl</u> and <u>Xhol</u> and a 0.77kb <u>EcoRl-xhol</u> fragment (Fig. 8) was isolated and then ligated with <u>EcoRl</u> and <u>sall</u> digested M13 mp18 (Norrander et al., 1983) to form pDBDF3 (Fig. 8).

The following oligonucleotide linker (Linker 6) was synthesised, representing from the <u>Pstl</u> site at 4784-4791 of the fibronectin sequence of EP-A-207 751 to the codon for tyrosine 1578 (Fig. 5) which is followed by a stop codon (TAA), a <u>HindIII</u> site and then a <u>Bam</u>HI cohesive end:

Linker 6

G P D Q T E M T I E G L

GGT CCA GAT CAA ACA GAA ATG ACT ATT GAA GGC TTG

A CGT CCA GGT CTA GTT TGT CTT TAC TGA TAA CTT CCG AAC

Q P T V E Y Stop

CAG CCC ACA GTG GAG TAT TAA GCTTG

GTC GGG TGT CAC CTC ATA ATT CGAACCTAG

This linker was then ligated with <u>Pstl</u> and <u>HindIII</u> digested pDBDF3 to form pDBDF4 (Fig. 8). The following DNA fragments were then ligated together with <u>BglII</u> digested pKV50 (EP-A-258 067) as shown in Fig. 8: 0.68kb <u>EcoRI-BamHI fragment of pDBDF4</u>, 1.5kb <u>BamHI-Stul</u> fragment of pDBDF2 and the 2.2kb <u>Stul-EcoRI fragment of pFHDEL1</u>. The resultant plasmid pDBDF5 (Fig. 8) includes the promoter of EP-A-258 067 to direct the ex-

pression of the HSA secretion signal fused to DNA encoding amino acids 1-387 of mature HSA, in turn fused directly and in frame with DNA encoding amino acids 585-1578 of human fibronectin, after which translation would terminate at the stop codon TAA. This is then followed by the <u>S.cerevisiae PGK</u> gene transcription terminator. The plasmid also contains sequences which permit selection and maintenance in <u>Escherichia coli</u> and <u>S.cerevisiae</u> (EP-A-258 067).

This plasmid was introduced into <u>S.cerevisiae</u> S150-2B (<u>leu2-3</u> leu2-112 <u>ura3-52 trp1-289 his3-1</u>) by standard procedures (Beggs, 1978). Transformants were subsequently analysed and found to produce the HSA-fibronectin fusion protein.

10 EXAMPLE 2 : HSA 1-195 FUSED TO Fn 585-1578

In this second example the first domain of human serum albumin (amino acids 1-195) is fused to amino acids 585-1578 of human fibronectin.

The plasmid pDBD2 was digested with <u>Bam</u>HI and <u>BgI</u>II and the 0.79kb fragment was purified and then ligated with <u>Bam</u>HI-digested M13mp19 to form pDBDF6 (Fig. 6). The following oligonucleotide:

5'-C C A A A G C T C G A G G A A C T T C G-3'

was used as a mutagenic primer to create a Xhol site in pDBDF6 by in vitro mutagenesis using a kit supplied by Amersham International PLC. This site was created by changing base number 696 of HSA from a T to a G (Fig. 2). The plasmid thus formed was designated pDBDF7 (Fig. 9). The following linker was then synthesised to represent from this newly created Xhol site to the codon for lysine 195 of HSA (AAA) and then from the codon for isoleucine 585 of fibronectin to the ends of oligonucleotides 1 and 8 shown in Fig. 6.

25 Linker 7

15

20

45

50

55

D S K Ε L R D E G K S Α TC GAT GAA CTT CGG GAT GAA GGG AAG GCT TCG TCT GCC AAA 30 A CTT GAA GCC CTA CTT CCC TTC CGA AGC AGA CGG TTT 35 Ι T E S N S H ATC ACT GAG ACT CCG AGT CAG C TAG TGA CTC TGA GGC TCA GTC GGG TTG AGG GTG G 40

This linker was ligated with the annealed oligonucleotides shown in Fig. 3, i.e. 2+7, 3+6 and 4+5 together with Xhol and EcoRl digested pDBDF7 to form pDBDF8 (Fig. 9). Note that in order to recreate the original HSA DNA sequence, and hence amino acid sequence, insertion of linker 7 and the other oligonucleotides into pDBDF7 does not recreate the Xhol site.

The 0.83kb <u>BamHi-Stul</u> fragment of pDBDF8 was purified and then was ligated with the 0.68kb <u>EcoRI-BamHI</u> fragment of pDBDF2 and the 2.22kb <u>Stul-EcoRI</u> fragment of pFHDEL1 into <u>BglII-digested pKV50</u> to form pDBDF9 (Fig. 9). This plasmid is similar to pDBDF5 except that it specifies only residues 1-195 of HSA rather than 1-387 as in pDBDF5.

When introduced into <u>S.cerevisiae</u> S150-2B as above, the plasmid directed the expression and secretion of a hybrid molecule composed of residues 1-195 of HSA fused to residues 585-1578 of fibronectin.

EXAMPLE 3: HSA 1-387 FUSED TO Fn 585-1578, AS CLEAVABLE MOLECULE

In order to facilitate production of large amounts of residues 585-1578 of fibronectin, a construct was made in which DNA encoding residues 1-387 of HSA was separated from DNA encoding residues 585-1578 of fibronectin by the sequence

I E G R

ATT GAA GGT AGA

TAA CTT CCA TCT

which specifies the cleavage recognition site for the blood clotting Factor X. Consequently the purified secreted product can be treated with Factor X and then the fibronectin part of the molecule can be separated from the HSA part.

To do this two oligonucleotides were synthesised and then annealed to form Linker 8.

Linker 8

5

15	E	E	P	Q	N	L	I	E	G
	GAA	GAG	CCT	CAG	AAT	TTA	ATT	GAA	GGT
20	CTT	CTC	GGA	GTC	TTA	AAT	TAA	CTT	CCA
	·								
	R	r	T	E	T	P	s	Q	P
25	AGA	ATC	ACT	GAG	ACT	CCG	AGT	CAG	C
	TCT	TAG	TGA	CTC	TGA	GGC	TCA	GTC	GGG
30	N	s	Н						
35	TTG	AGG	GTG	G					

This linker was then ligated with the annealed oligonucleotides shown in Fig. 6, i.e. 2+7, 3+6 and 4+5 into HinclI and EcoRI digested mHOB12, to form pDBDF10 (Fig. 7). The plasmid was then digested with PstI and EcoRI and the roughly 0.24kb fragment was purified and then ligated with the 1.29kb BamHI-PstI fragment of pDBD2 and BamHI and EcoRI digested pUC19 to form pDBDF11 (Fig. 10).

The 1.5kb <u>BamHI-Stul</u> fragment of pDBDF11 was then ligated with the 0.68kb <u>EcoRI-BamH1</u> fragment of pDBDF4 and the 2.22kb <u>Stul-EcoRI</u> fragment of pFHDEL1 into <u>BgI</u>II-digested pKV50 to form pDBDF12 (Fig. 10). This plasmid was then introduced into <u>S.cerevisiae</u> S150-2B. The purified secreted fusion protein was treated with Factor X to liberate the fibronectin fragment representing residues 585-1578 of the native molecule.

REFERENCES

40

45

50

55

Beggs, J.D. (1978) Nature 275, 104-109

Kornblihtt et al. (1985) EMBO J. 4, 1755-1759

Lawn, R.M. et al. (1981) Nucl. Acid. Res. 9, 6103-6114

Maniatis, T. et al. (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Messing, J. (1983) Methods Enzymol. 101, 20-78

Norrander, J. et al. (1983) Gene 26, 101-106

Sanger, F. et al. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467

Yanisch-Perron, C. (1985) Gene 33, 103-119

Claims

Claims for the following Contracting States: AT, BE, CH, LI, DE, DK, FR, IT, LU, NL, SE

- A fusion polypeptide comprising, as at least part of the N-terminal portion thereof, an N-terminal portion of HSA or a variant thereof and, as at least part of the C-terminal portion thereof, another polypeptide except that, when the said N-terminal portion of HSA is the 1-n portion where n is 369 to 419 or a variant thereof then the said polypeptide is (a) the 585 to 1578 portion of human fibronectin or a variant thereof, (b) the 1 to 368 portion of CD4 or a variant thereof, (c) platelet derived growth factor or a variant thereof, (d) transforming growth factor β or a variant thereof, (e) the 1-261 portion of mature human plasma fibronectin or a variant thereof, (f) the 278-578 portion of mature human plasma fibronectin or a variant thereof, (g) the 1-272 portion of mature human von Willebrand's Factor or a variant thereof, or (h) alphantitrypsin or a variant thereof.
- 2. A fusion polypeptide according to Claim 1 additionally comprising at least one N-terminal amino acid extending beyond the portion corresponding to the N-terminal portion of HSA.
 - 3. A fusion polypeptide according to Claim 1 or 2 wherein there is a cleavable region at the junction of the said N-terminal or C-terminal portions.
- 4. A fusion polypeptide according to any one of the preceding claims wherein the said C-terminal portion is the 585 to 1578 portion of human plasma fibronectin or a variant thereof.
 - 5. A transformed or transfected host having a nucleotide sequence so arranged as to express a fusion polypeptide according to any one of the preceding claims.
 - 6. A process for preparing a fusion polypeptide by cultivation of a host according to Claim 5, followed by separation of the fusion polypeptide in a useful form.
 - 7. A fusion polypeptide according to any one of Claims 1 to 4 for use in therapy.

Claims for the following Contracting States: ES, GR

- 1. A process for preparing a fusion polypeptide by (i) cultivation of a transformed or transfected host having a nucleotide sequence so arranged as to express a fusion polypeptide, followed by (ii) separation of the fusion polypeptide in a useful form, characterised in that the fusion polypeptide comprises as at least part of the N-terminal portion thereof, an N-terminal portion of HSA or a variant thereof and, as at least part of the C-terminal portion thereof, another polypeptide except that, when the said N-terminal portion of HSA is the 1-n portion where n is 369 to 419 or a variant thereof then the said polypeptide is (a) the 585 to 1578 portion of human fibronectin or a variant thereof, (b) the 1 to 368 portion of CD4 or a variant thereof, (c) platelet derived growth factor or a variant thereof, (d) transforming growth factor β or a variant thereof, (e) the 1-261 portion of mature human plasma fibronectin or a variant thereof, (f) the 278-578 portion of mature human plasma fibronectin or a variant thereof.
- A process according to Claim 1, wherein the fusion polypeptide additionally comprising at least one Nterminal amino acid extending beyond the portion corresponding to the N-terminal portion of HSA.
 - A process according to Claim 1 or 2 wherein, in the fusion polypeptide, there is a cleavable region at the junction of the said N-terminal or C-terminal portions.
- 4. A process according to any one of the preceding claims wherein the said C-terminal portion is the 585 to 1578 portion of human plasma fibronectin or a variant thereof.

25

30

35

40

Patentansprüche

Patentansprüche für folgende Vertragsstaaten: AT, BE, CH, DE, DK, FR, IT, LU, NL, SE

- fusionspolypeptid, umfassend als mindestens einen Teil seines N-terminalen Teils einen N-terminalen Teil von HSA oder eine Variante davon und als mindestens einen Teil seines C-terminalen Teils ein weiteres Polypeptid mit der Ausnahme, daß wenn es sich bei dem N-terminalen Teil von HSA um den Teil 1-n mit n = 369 bis 419 oder eine Variante davon handelt, das Polypeptid aus
 - (a) dem Teil 585 bis 1578 von Humanfibronectin oder einer Variante davon,
 - (b) dem Teil 1 bis 368 von CD4 oder einer Variante davon,
 - (c) dem "Platelet Derived Growth Factor" (PDGF) oder einer Variante davon,
 - (d) dem "Transforming Growth Factor β " (TGF β) oder einer Variante davon,
 - (e) dem Teil 1-261 von reifem Humanplasmafibronectin oder einer Variante davon,
 - (f) dem Teil 278-578 von reifem Humanplasmafibronectin oder einer Variante davon,
 - (g) dem Teil 1-272 von reifem Human-von Willebrand's-Faktor oder einer Variante davon oder
 - (h) Alpha-1-Antitrypsin oder einer Variante davon, besteht.
 - Fusionspolypeptid nach Anspruch 1, zusätzlich umfassend mindestens eine N-terminale Aminosäure, die länger als der dem N-terminalen Teil von HSA entsprechende Teil ist.
 - Fusionspolypeptid nach Anspruch 1 oder 2, bei dem sich an der Verbindung der N-terminalen oder Cterminalen Teile eine spaltbare Region befindet.
- Fusionspolypeptid nach einem der vorhergehenden Ansprüche, wobei der C-terminale Teil aus dem Teil
 585 bis 1578 von Humanplasmafibronectin oder einer Variante davon besteht.
 - Transformierter oder transfizierter Wirt mit einer Nukleotidsequenz, die so angeordnet ist, daß sie ein Fusionspolypeptid nach einem der vorhergehenden Ansprüche exprimieren kann.
- Verfahren zur Herstellung eines Fusionspolypeptids durch Kultivieren eines Wirts nach Anspruch 5 und anschließendes Abtrennen des Fusionspolypeptids in einer geeigneten Form.
 - 7. Fusionspolypeptid nach einem der Ansprüche 1 bis 4 zur therapeutischen Verwendung.

Patentansprüche für folgende Vertragsstaaten: ES, GR

35

40

45

50

55

10

15

20

- 1. Verfahren zur Herstellung eines Fusionspolypeptids durch
 - (i) Kultivieren eines transformierten oder transfektierten Wirts mit einer Nukleotidsequenz, die so angeordnet ist, daß sie ein Fusionspolypeptid exprimiert, und
 - (ii) anschließendes Abtrennen des Fusionspolypeptids in einer geeigneten Form,
 - dadurch gekennzeichnet, daß das Fusionspolypeptid als mindestens einen Teil seines N-terminalen Teils einen N-terminalen Teil von HSA oder eine Variante davon und als mindestens einen Teil seines C-terminalen Teils ein weiteres Polypeptid umfaßt, mit der Ausnahme, daß wenn es sich bei dem N-terminalen Teil von HSA um den Teil 1-n mit n= 369 bis 419 oder eine Variante davon handelt, das Polypeptid aus
 - (a) dem Teil 585-1578 von Humanfibronectin oder einer Variante davon,
 - (b) dem Teil 1-368 von CD4 oder einer Variante davon,
 - (c) dem Platelet Derived Growth Factor oder einer Variante davon,
 - (d) dem Transforming Growth Factor β oder einer Variante davon,
 - (e) dem Teil 1-261 von reifem Humanplasmafibronectin oder einer Variante davon,
 - (f) dem Teil 278-578 von reifem Humanplasmafibronectin oder einer Variante davon,
 - (g) dem Teil 1-272 von reifem Human-von Willebrand's-Faktor oder einer Variante davon oder
 - (h) α -1-Antitrypsin oder einer Variante davon besteht.
- Verfahren nach Anspruch 1, wobei das Fusionspolypeptid zusätzlich mindestens eine N-terminale Aminosäure, die länger als der dem N-terminalen Teil von HSA entsprechende Teil ist, umfaßt.
- 3. Verfahren nach Anspruch 1 oder 2, wobei sich in dem Fusionspolypeptid an der Verbindung der N-terminalen oder C-terminalen Teile eine spaltbare Region befindet.

 Verfahren nach einem der vor hergehenden Ansprüche, wobei der C-terminale Teil aus dem Teil 585-1578 von Humanplasmafibronectin oder einer Variante davon besteht.

5 Revendications

30

35

40

45

50

55

Revendications pour les Etats contractants suivants : AT, BE, CH, DE, DK, FR, IT, LU, NL, SE

- Polypeptide fusionné comprenant en tant qu'au moins une partie de sa portion N-terminale, une portion N-terminale de HSA ou d'un variant de celle-ci et, en tant qu'au moins une partie de sa portion C-terminale, un autre polypeptide sauf que, lorsque cette portion N-terminale de HSA est la portion 1-n dans laquelle n est 369 à 419 ou un variant de celle-ci, ce polypeptide est (a) la portion 585 à 1578 de la fibronectine humaine ou un variant de celle-ci, (b) la portion 1 à 368 de CD4 ou un variant de celle-ci, (c) le facteur de croissance dérivé des plaquettes sanguines ou un variant de celui-ci, (d) le facteur de croissance β de transformation ou un variant de celui-ci, (e) la portion 1-261 de la fibronectine mature de plasma humain ou un variant de celle-ci, (f) la portion 278-578 de la fibronectine mature de plasma humain ou un variant de celle-ci, (g) la portion 1-272 du facteur humain mature de von Willebrand ou un variant de celle-ci, ou (h) l'alpha-1-antitrypsine ou un variant de celle-ci.
- Polypeptide fusionné suivant la revendication 1, comprenant de plus au moins un acide aminé N-terminal se prolongeant au-delà de la portion correspondant à la portion N-terminale de HSA.
 - Polypeptide fusionné suivant les revendications 1 ou 2, dans lequel il y a une région susceptible d'être coupée à la jonction de ces portions N-terminale et C-terminale.
- Polypeptide fusionné suivant l'une quelconque des revendications précédentes, dans lequel cette portion
 C-terminale est la portion 585 à 1578 de la fibronectine de plasma humain ou un variant de celle-ci.
 - 5. Hôte transformé ou transfecté ayant une séquence de nucléotides arrangée de façon à exprimer un polypeptide fusionné suivant l'une quelconque des revendications précédentes.
 - 6. Procédé pour préparer un polypeptide fusionné par culture d'un hôte suivant la revendication 5, suivie de la séparation du polypeptide fusionné sous une forme utile.
 - 7. Polypeptide fusionné suivant l'une quelconque des revendications 1 à 4 utilisable en thérapie.

Revendications pour les Etats contractants suivants : ES, GR

- 1. Procédé pour préparer un polypeptide fusionné par (i) la culture d'un hôte transformé ou transfecté ayant une séquence de nucléotides arrangée de façon à exprimer un polypeptide fusionné, suivie de (ii) la séparation du polypeptide fusionné sous une forme utilie, caractérisé en ce que le polypeptide fusionné comprend, en tant qu'au moins une partie de sa portion N-terminale, une portion N-terminale de HSA ou d'un variant de celle-ci et, en tant qu'au moins une partie de sa portion C-terminale, un autre polypeptide sauf que, lorsque cette portion N-terminale de HSA est la portion 1-n dans laquelle n est 369 à 419 ou un variant de celle-ci, ce polypeptide est alors (a) la portion 585 à 1578 de la fibronectine humaine ou un variant de celle-ci, (b) la portion 1 à 368 de CD4 ou un variant de celle-ci, (c) le facteur de croissance dérivé des plaquettes sanguines ou un variant de celui-ci, (d) le facteur de croissance β de transformation ou un variant de celui-ci, (e) la portion 1-261 de la fibronectine mature de plasma humain ou un variant de celle-ci, (g) la portion 278-578 de la fibronectine mature de plasma humain ou un variant de celle-ci, (g) la portion 1-272 du facteur humain mature de von Willebrand ou un variant de celle-ci, ou (h) l'alpha-1-antitrypsine ou un variant de celle-ci.
 - Procédé suivant la revendication 1, dans lequel le polypeptide fusionné comprend de plus au moins un acide aminé N-terminal se prolongeant au-delà de la portion correspondant à la portion N-terminale de HSA
- 3. Procédé suivant les revendications 1 ou 2 dans lequel, dans le polypeptide fusionné, il y a une région susceptible d'être coupée à la jonction de ces portions N-terminale et C-terminale.

est la portion 585 à 1578 de la fibronectine de plasma humain ou un variant de celle-ci.

5

4. Procédé suivant l'une quelconque des revendications précédentes, dans lequel cette portion C-terminale

10				
15				
	·			
20				
25				
30		•		
35				
40				
45				
50				
55				

FIGURE 1

λs	p Al	a Hi	s Ly	·s 56	er Gl	lu Va	l Al	a Hi	s Ar		e Ly	s As	p Le	u Gl	y G1	u Gl	ú As	n Ph	2 Le Ly
λl	a Le	u Va	l Le	u Il	e Al	a Ph	e Al	a Gla	30 TYT		u Gl	n Gl	n Cy	s Pr	o Ph	e Gl	u As	p Hi	4) .s Va.
Lys	s Le	u Va	l As	n Gl	.u. Va	l Th	r Gl	u Phe	50 a Ala		s Th	r Cy	s Va.	ו או	a As	p Gl	u Se	r al	бб a Glu
ÀST	ı Cy	s As	p Ly	s Se	r Le	u Si	s Thi	r Lei	70 1 Phe		y As	p Ly:	s Lei	ı Cy	s Th	r Va	l Al	a Th	80 181 =
Arç	Gl:	ı Th	г Ту	r Gl	y Gl	u Mei	t Ala	a Asī	90 Cys		: Als	ı Ly:	s Glr	ı Glu	ı Pr	o Gl	u Ar	g As	ioo n Glu
Cys	; Phe	e Le	u Gl	n Hi	s Ly	s ysi) Asi	p Asn	110 Pro		ı Lev	ı Pro	o Arg	, Le	ı Va.	l Aro	g Pr	o Gl	120 u Val
Asç	val	l Me	t Cys	s Th	r Al	a Phe	His	s Ast	130 Asn		Glu	ı Th:	. Phe	. Leu	ı Lys	s Lys	Ty:	c Le	140 1 Tyr
Glu	Ile	e Ala	a Arq	g Ar	g Hi	s Pro	туг	- Phe	150 Tyr		Pro	Glu	ı Leu	Lec	ı Phe	e Phe	e Ala	ı Lys	160 3 Arg
TYT	- Lys	; Alá	a Alá	a Phe	e Thi	r Glu	. Cys	Cys	170 Gl:		λla	Asç) Lys	λla	Ala	ı Cys	i Leu	ı Lev	180 Pro
Ļys	Leu	ı Asç	Glu	ı Lei	ı Arq	y Asp	Glu	Gly	190 Lys	Ala	Ser	Seŗ	Ala	Lys	- Glr	. Arg	r Leu	ı Lys	200 Cys
Ala	Ser	Leu	ı Gla	ı. Lys	: Phe	e Gly	Glu	Arg	210 Ala	Phe	Lys	λla	Trp	Ala	Val	λla	Arg	Leu	220 Ser
Gln	λrg	Phe	Pro	ŗÀa	: Ala	Glu	Phe	λla	230 Glu	Val	Ser	Ļys	ŗeu	Val	Thr	ąsk.	Leu	Thr	240 Lys
/al	His	Thr	Glu	Cys	Cys	His	Gly	Asp	250 Leu	Leu	Glu	Cys	λla	λsp	φzڊ	λrg	Ala	çεk	250 Leu
la	Lys	Tyr	Ile	Cys	Glu	Asn	Gln	Asp	270 Se <u>r</u>	Ile	Ser	Ser	ŗĀ2	Leu	Lys	Glu	Суѕ	C75	280 Glu
·'ns	250	Leu	Leu	Glu	Lys	Ser	His	Cys	290 Ile	λla	Glu	Val	Glu	λsn	Asp	Glu	Меt	Pro	300 Ala
ça.	Lau	Pro	Ser	Leu	Ala	Ala	λsp	Phe	310 Val	Glu	Ser	Lys	λsp	Val	Cys	Lys	λsπ	Tyr	320 Ala
lu	āla	Lys	ςz.	∀a <u>l</u>	₽he	Геп	Gly	Met	330 Phe	Lau	Tyr	Glu	Tyr	Ala	Arg	Arg	His	520	340 Asp
γr	Ser	Val	Vai	Leu	Lau	Leu	Arg	Leu	350 [.] Ala	Lys	The	Tyr	Glu	Thr	Thr	Leu	Glu	Lys.	360 Cys
vs	Ala	àla	Ala	λsp	Pro	Sis '	Glu		370 Tyr	ala i	Lys	val	?he	Aso	Glu	?he	Lys	 ?ro	380 Leu

Vai Glu Glu Pro Gin Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu

Tyr Lys Phe Gln Asn Ala Leu Lau Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr

Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His

Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu

Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser

Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys

Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu

Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Vai Lys His Lys Cys Cys Lys His

550

Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys

Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln

Ala Ala Leu Glv Leu

FIGURE 2 DNA sequence coding for mature HSA

			-				
10	20	30	40	50	60	70	80
GATGCACACAAGAG							
DARKS	E V A	3 K 2	X 0 L G	7 7 N	r K A L	V L :	A :
90	100	110	120	130	140	150	160
TGCTCAGTATCTTC							
AQYL	QQCF	FED	HVK	L V N E	VTE	FAKT	С
170	180	190	200	210	220	230	240
TTGCTGATGAGTCA							
V A. D E S	A E N	CDKS	L H T	LFG) K L C	TVAT	Ŀ
250	250	270	280	290	300	310	320
CGTGAAACCTATGG							
R E.T Y G	E M A	эсс .	A K Q E	PER	N E C F	L Q H	מ א
330	340	350	360	370	380	390	400
TGACAACCCAAACC				•		CAATGAAGAG	
D N P N I	L P R L	V R P	EVDV	M C T	A F H D	NEE	T
410	420	430	440	450	460	470	480
TTTTGAAAAAATACT	TATATGAAA		-				
F L K K Y	LYE	I A R R	н в х	F Y A P	E L L	F F A K	R
490	500	510	520	530	540	550	560
TATAAAGCTGCTTTT	•						
YKAAF	T E C	CQAA	л р к а	A C L	LPKL	DELF	۵ ۱
570	580	590	600	610	620	630	640
TGAAGGGAAGGCTTC						and the second second	CAT
E G K A S	S A K	Q R L	K C A S	r O x	FGER	A F K	λ
650	660	670	680	690	700	710	720
GGGCAGTGGCTCGCC	TGAGCCAGAG	АТТТСССААА	GCTGAGTTTG	LAGAAGTTTCC	:AAGTTAGTGA	CAGATOTTACO	AAA
W A V A R	LSQR	F P K	A E F A	A E V S	K L V	r D L T	K
730	740	750	760 -	770	780	790	800
GTCCACACGGAATGC:						. • •	
VHTEC	C H G	D L L E	C A D	D R A D	L A K	$\Sigma = \Sigma = \Sigma + \Sigma$	N
810	820	830	840	850	860	870 . 8	880
TCAGGATTCGATCTCC			•				
QDSIS							v .
890 AAAATGATGAGATGCO	900 TCCTG2CTTC	910 ::::::::::::::::::::::::::::::::::::		_930 TGTTG3AAGT			960 :CT
E N D E M P							
970	980 #66#6666	990		_			40
GAGGCAAAGGATGTCT E A K D V							
					<u>.</u>	. , , ,	

FIGURE 2 Cont. 1050 1060 1.1.1.0 GAGACTTGCCAAGACATATGAAACCACTCTAGAGAAGTGCTGTGCCGCTGCAGATCCTCATGAATGCTATGCCAAAGTGT RLAKTYETTLEKCCAAADPHECYAKV FDEFKPLVEEPQNLIKQNCELFEQLGE TACAAATTCCAGAATGCGCTATTAGTTCGTTACACCAAGAAAGTACCCCAAGTGTCAACTCCAACTCTTGTAGAGGGTCTC Y K F Q N A L L V R Y T K K V P Q V S T P T L V E V S R'NLGKVGSKCCKHPEAKRMPCAEDYL CCGTGGTCCTGAACCAGTTATGTGTGTGTGCATGAGAAAACGCCAGTAAGTGACAGAGTCACAAAATGCTGCACAGAGTCC S V V L N O L C V L H E K T P V S D R V T K C C T E S 15:0 $\tt TTGGTGAACAGGCGACCATGCTTTTCAGGTCTGGAAGTCGATGAAACATACGTTCCCAAAGAGTTTAATGCTGAAACATT$ LVNRRPCFSALEVDETYVPKEFNAETF TFHADICTLSEKERQIKKQTALVELV :670 AACACAAGCCCAAGGCAACAAAAGAGCAACTGAAAGCTGTTATGGATGATTTCGCAGCTTTTTGTAGAGAAGTGCTGCAAG K H K P K A T ·K E Q L K A V M D D F A A F V E K C C K . GCTGACGATAAGGAGACCTGCTTTGCCGAGGAGGGTAAAAAACTTGTTGCTGCAAGTCAAGCTGCCTTAGGCTTATAACA A D D K E T C F A E E G K K L V A A S Q A A L G L

TCTACATTTAAAAGCATCTCAG

FIGURE 3 Construction of mHO816

FIGURE 4 Construction of p80831

Fig. 5A

0<u>₽</u>0 0 수 구 9. 8. 9. **%**200 260 A B 320 340 Phe Phe <u>A</u>8 850 220 ASn 280 Asp £88 380 P.S.n 6In Pro Gin Ser Pro Val Ala Val Ser Gin Ser Lys Pro Giy Lys Asp Arg Let Ala Zet Arg IIe Gly Asp Thr Trp Ser Lys Lys Asp Ą Gly Ash Gly Arg Gly Glu Trp Lys Cys Gly Pro Pine Thr Asp Val Arg 늗 Ė Ser 본 Ą 290 Gin Trp Leu Lys Thr Gin Giy Asn Lys Gin מ Cys Gin Giu Thr Ala Val Thr Gin Thr Ş ام Gly G S Lys Trp Thr Cys Lys Pro 11e Ala Glu Lys Cys Phe Asp His Trp Met <u>5</u> Arg Asn 270 Gin Pro Pro Tyr Gly HIS Cys Val Leu Pro Phe Thr Tyr Asn Gly Arg Thr Thr Asn His Ė Pro His Glu Threly Gly Tyr Met Leu Glu Cys Val F Phe Asn Cys Glu Arg Pro Lys Asp Ser Met IIe Trp Asp Cys Thr Cys IIe Gly Ala Ţ Š 370 Cys Thr Asp His Thr Val Leu Val Gly Asn Thr Tyr Arg 170 Trp Glu Lys Pro Tyr GIn Gly Asn <u>√</u> 190 Gly Arg Ile Thr Cys Thr Ser 11e Ala Asn Arg Cys His Glu Gly Gly Gln Ser Gly His Leu Trp Cys Ser <u>alu</u> Phe Leu Tyr Asn Met Lys Trp Cys d'L בה GIŞ Arg <u>ה</u> Gly Ser Phe Pro Asn Ser Cys Phe Asp Lys Tyr Thr Gin 118 250 Ser Cys Tyr Gly Gly £ S<u>§</u> 350 Asp SE SE <u>ლა</u> ნუ Cys Ile Cys Gin Pro Gin Pro His Pro Gly Glu Thr Glu Gly Ser Asp Gin Asp Thr Arg Thr Ser Tyr His Thr Ser Val GIn Thr Thr Ser Tyr Ser Val Gly Met <u>8</u> Glu Pro Cys Cys Thr Thr Glu Gly Arg Gin Glu Gin Asp Gin Lys Tyr Ser Phe Asn Ely Ala Leu Cys Glu Gly Arg Arg Ļ Asn Gly His Lys Ė <u>8</u> Cys Thr Cys Leu Gly Asn Leu Leu Gin Tyr Va! Val Cys Leu Gly Gly Asn Ser Asn Gly Cys Gin Ala Gin Gin Met 卢 Glu Glu Thr Trp Arg Arg Gly Lys Gly Glu <u>></u> Ser Cys Asn Leu Val <u>8</u> Asn Ser Asp Cys Thr Asp <u>₹</u> χ Ile Ser Thr Ser Cys Thr <u>s</u> <u>8</u> Ser Asp Arg Ser GΙΥ Ŋ 잣

Fig. 5B

520 617 617 617 85 × 86 600 Asn 220 640 700 II.e Arg Gly Ala T'P Phe Gin Lys Phe Gly Phe Cys Pro Met Ala Ala His Giu Giu Ile Cys を辞 Q S S AB Arg <u>ე</u> Ser 卢 Pro Ser Asn Asp Thr Ϋ́ 돳 Ile Lys Gly Asn Val 첫 Asp G S Phe Ser Asn Asn <u>8</u> GIn Pro Asn Ser His Pro Ile Gin Gly His Ę Ser Gly Tyr Cys Ę <u>8</u> E S Gin 보 Leu Pro Ely Arg Lys Tyr Ile Val Ser 610 Byr Ile Leu Arg Trp Arg Pro Lys Ser 690 Leu Val Ala Thr Ser Glu Ser Val 730 Asp Glu Pro Gin Tyr Leu Asp Leu <u>8</u> Ser Ser Gin Thr Thr Leu Ser Pro Gla Asp 11e Thr Tyr Asn Val 630 Gly His Leu Asn Ser Tyr Thr 790 Gin Val Asp Asp Thr Ser Ile 530 Cys Gin Asp Ser Glu Thr Gly 650 Leu Ile Ser Ile Gin Gin Tyr Glu Trp Thr Phe Gly 550 His Gly Val Arg Tyr Gln Cys Fro Ser Է 710 Val Ser Ala Ser Asp Thr Val Trp Asp Lys ઝ્રે Pro Val Çs Тyг 770 Leu IIe Leu Ser Thr Ŋ Ύα G S Gin Thr 늗 Asn Cys Thr 830 Thr Ala Asn Ser BIO Tyr Arg Ile Val Asp Gin Gly Arg Thr Ser Leu 85 85 0₹₽ 2₹5 850 PS-4 510 Ec. 20 52 70 70 590 887 \$670 Ser Asp Gln Thr Glu Leu Asn Leu Pro Glu Tyr Arg Ile G Y Trp His Cys GIn His Ile Ser Lys Ale Thr Ile Pro È Pro Phe Ser Pro Phe Val Val Ser Trp Asn Ile Pro Asp Leu Asp Ala Pro Pro Asp Pro Thr Val Asp Asp GIn Cys Ile Val Glu Glu Gly His Met Thr Pro ᅙ Glu Asp Gly Glu Gin Ser Trp Glu Lys Tyr Val Glu Glu Gly Pro 11e Thr Gly \$ Tyr Glu Gly Asp Phe Thr Thr Sys Phe Ile Thr Glu Trp Lys Cys Asp Pro Val Zet 뵨 Glu Leu Ser . S <u>უ</u> Ala Κa טום **√**8/ Glu Thr Thr Gin Pro Ser Asp <u>ره</u> Phe Gin Leu Arg Ser <u>k</u> G S Arg Lys <u>0</u> Lys Arg His Gly Asp Ser Arg Trp Pro Gly ⊒ E Pro Thr Ser Elu Val Ser Glu Tyr Gin 11e Ser Gly Tyr Asp Pro Ash Arg Ļ Ą Ala Ser Lys Arg Gly Ser

Fig. 50

945 17 Pro Arg Glu Val 980 AI& 980 Ser 020 Tyr 1060 1 Teo 2.8 8.9 55 54 186 54 G Jy Pro Pro Pro His . S Ę Thr Val Ser Leu Val Ala Ile Lys Age Ė . О Ser Ser Pro Leu Thr GIU Thr Asp Leu Thr Thr Val Glu Tyr Val Gin Val Leu Arg Asp Giy Gin Giu Arg Asp Ala Pro Ile Val Asn Lys Val <u>8</u> Pro Pro Glu Pro Ser Ser Ser Р <u>n</u> G Ş Arg Ile Thr Ala Pro Asp <u>5</u> Pro Ė Ser Arg ळ G Y 뉴 Ŗ GIZ Asp Thr 47 Trp Ser Leu ioso Glu Tyr Thr Val Ser Leu Val ioso Val Phe Thr Thr Leu Gln Pro Glu Ala Ala Glu Glu Asn Gln Lys Thr Val **6** Leu Gin Phe Val Asn Τζ Ser Val 7.0 Gly Leu Thr Pro Gly Val <u>k</u> Gin Tyr Asn Val Gly Pro Thr Ile Met Pro His Asn Leu Ile Pro Ala Thr Gly <u>S</u> Thr Ile Val Ile Thr ېځ ۲ Glu Ser Asp 1090 Pro Ser Gin Gly Gly 1150 Pro Pro Thr Asn Leu His Leu Glu Ala Asn Š Gin Ile Thr Ser Trp Glu Arg Ser Thr Thr Pro Asp Ile Thr Gly 1210 Leu Glu Tyr Asn Val Thr Met Ang Val 190 Leu Glu Glu Val Ser Gly Arg Pro Val Glu Val <u>8</u> Pro Arg Thr Ile Lys Val Ala 990 Arg Ala (His Asn 930 Pre 970 177 57년 1년 1년 1110 Ser 1250 Asp જત્વ જત્વ A M Asp Ξe Gin Thr Thr Lys Leu Asp Ala Pro Asp **P** GIU Asn Thr. ∑ Se Gly Pro Pro Arg Ser Gly Ser Ile Val Val Asn Ser Pro Gly Ile Ser Lys Ala Thr Gly 卢 뉴 보 Pro Ala **₹** Arg Ile Gly Phe Lys Leu Gly Val Leu Arg Asn Leu Gin Pro Ala 투 Ą Gin Pro Gin Tyr Asn Ile 부 Va J Arg P, P Leu Val Arg Trp Thr Phe Asp Asn Leu Ser Phe Thr Asn Ile Tyr Asn Thr Glu Val GIN GIY פור D D Ser Val Š <u>ନ</u> ጟ Arg Lys Pro <u>ה</u> Ser <u>کھ</u> GIZ Pro 11e Phe Leu Thr Ang Ser <u>ว</u> 부 Ser Ser Asn Gly 0 u nal ξ Asn Gln Glu Ser Asp Lys Pro Leu Leu Arg <u>8</u> Ala Αg Asp <u>8</u> 5 卢 Val Pro

Fig. 5D

1560 Gly 1400 Val Ala Leu Trp Asp Ala Pro 500 Ser 1540 Gly 1580 Ser 1480 Leu Lys Pro Gly ser Pro Val 1320 Pro Leu Arg 1640 Pro Lys Glu Lys Asp lle Thr Ą ř Ala Tyr Ser Pro Val Lys Asn Glu Glu Asp £ Tyr Ang Ile Asp Val Ser 卢 Lys Thr Ala <u>8</u> Se Gin Val Leu Leu Pro Ala Ser Sec ۷ Ala Val Pro Val Χa Asn Met Lea <u>ka</u> Þ ઝ્રે Tyr Ala Leu Lys Asp Thr G L Ser Val Leu Thr Asn Ser Gly Ė 卢 Š Ser Ser O O Ser Gly Şe Gin Pro Leu Val Gin Thr <u>ay</u> <u>V</u> Thr Gly Ile Asp Phe Pro Gly Pro Thr Lys Arg Val Arg Val <u>ກ</u> 1350 Pro Arg Ala Thr Ile Thr 1370 Pro Arg Glu Asp Arg Val 후 1490 Ile Thr Val Tyr Ala Val Thr Gly Arg Gly Asp 1530 Lys Trp Leu Pro Ser Ser Ser Ser Leu Leu Ile Se Ile Asp Lys Pro Ser Glu Thr Gly 1610 Thr Gin Vai Thr Pro Thr Thr Leu Thr Asn Lau Thr Pro Gly Thr Glu Tyr Val Val 1570 Gly Leu Gln Pro Thr Val GIN HIS Se Ser Lys Ser Thr Ala Thr Ile Se Pro Asp Ser Gin Gin <u>₹</u> giu Tyr Gly Ala 1430 Pro Thr ڄ Ş. Gly % % Asp Ash 0<u>18</u>0 Pro Lys Asn Gly 630 Gly 1330 Pro Tyr Arg Ile Thr 1670 Ser 1270 Arg 1650 Asn Leu Ala 470 ם ב Ala Pro Thr Asp Leu Lys Phe Ile Glu Pro Asn Val Gin Leu Thr Leu Glu Val Val Ala Ala Thr Ser His Trp Ile Ala Pro Leu Leu Ser Ile Asp Leu Thr Asn Phe Leu Val Gly Leu Asp Ser GIU HIS Phe Ser Gly Arg È Asp Asn Ser Ile Ser Val alu Val G S Ş Arg Ser 9 Gly Pro Met Lys Glu Ile Glu Met Thr ۷ Pro Gly Asn Pro Ser Ile Asn Tyr Val Ala Thr Lys Tyr Ė Ser Ser Arg Glu Glu Ser ķ Arg Val 후 누 কূ Val G n Ser ζs ᅣ Glu Phe Thr Th ନ୍ଧ 후 Ę Val Thr Val Pro Gln Ϋ́ Asp Val Gin <u>~</u> Glu Leu Pro Αg Asp S S Asp Leu Met Arg Ser Asp ٦ ص 본 Asn Si Z Asn Ser Val

Fig. 5E

900 Pro Pro Pro Arg Arg Ala Arg 710 The Ser Trp Arg Thr Lys Thr GIU Thr Tie Asp Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Thr Asp Tyr Lys Ile 989 5 1920 Gly 1960 Ala 1970 Pro Phe Gin Aso Thr Ser Glu Tyr Ile Ile Ser 2007 17.00 17.00 2010 Gly Ala Thr Tyr Asn Ile Ile Val Glu Ala Leu 2040 Asn 1800 Pro Asn Ser Leu Leu Val 2060 Giu Giy Leu Asn Gin Pro Thr Asp Asp Ser Cys Phe Asp Pro Tyr Thr Val Ser His Tyr 1820 Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr Glu Lys Pro Gly 2070 Ser Glu Ser Gly Phe Lys Leu Leu Cys Gln Cys 2100 Gly His Phe Arg Cys Asp Ser Ser Arg Trp Cys His Asp Ash Gly . Ile 1910 Gly Asn Gly Ile Gln Leu Pro Gly Thr Ser 1930 Ile Phe Glu Glu His Gly Phe Arg Arg Thr Ser Tyr Val Ile Ala Leu Lys Asn Asn Gin' 1870 Thr Aso Glu Leu Pro Gin Leu Vai Thr Leu 1990 Pro Val Gly Thr Asp Glu Glu Pro Leu Gln Phe Arg Val Pro Gly Thr Ser 1890 His Pro Asn Leu His Gly Pro Glu Ile Leu Asp Val Pro Ser Thr Val Gln Lys Thr <u>8</u> 1950 His Arg Pro Arg Pro Tyr Pro Pro Asn Val 1770 Arg Ser Ser Pro Val Val Ile Asp Ala 2030 Lys Asp Gin Gin Arg His Lys Val Arg Elu Giu Val Val Thr Val Gly Asn Ser Arg Pro Gly Val Thr Glu Ala Thr G Ş Ser Gly Leu Gin Pro 1790 Phe Lau Ala Thr Thr 1690 Val Val Thr Thr Leu Glu Asn Val 1850 11e 1830 Pro Thr Glu Thr Thr 11e Asp Ala Pro Ser Asn Lau Arg Glu Pro Leu Ile Gly Arg Lys Lys Pro Ser Val Gly Gin Gin Met Thr Leu Thr Gly Leu Thr Arg Val Pro Arg Tyr Thr Ile Tyr Leu Tyr Thr Lau Asn Asp Asn Ala Gly Leu Glu Pro Gly Thr Glu Tyr Thr Thr His Pro Gly Tyr Asp Thr Pro Ile Arg Leu Ser Gin Thr Thr Ile Ser Trp Ala Asp Glu Trp Glu Arg Met Ser Ala Thr Glu Val GIN GIY Arg Phe Gin Val Ser Asp Ala G Siy Pro Arg Thr Thr Asp Val Gly Şe Ala Val Ser Ser

Cys Thr Cys Leu Gly Asn Gly Lys Gly Glu Phe Lys Cys Asp Pro His Glu Ala Thr Cys 2150

Tyr Asp Asp Gly Lys Thr Tyr His Val Gly Glu Gln Trp Gln Lys Glu Tyr Leu Gly Ala 2170

Ile Cys Ser Cys Thr Cys Phe Gly Gly Gln Arg Gly Trp Arg Cys Asp Asn Cys Arg Arg Pro Gly Gly Gly Glu Pro Ser Pro Glu Gly Thr Thr Gly Gln Ser Tyr Asn Gln Tyr Ser Gln Arg Tyr His Gln Arg Thr Asn Val Asn Cys Pro Leu 2220

Arg Tyr His Gln Arg Thr Asn Thr Asn Val Asn Cys Pro Ile Glu Cys Phe Met Pro Leu 2120 Val Asn Tyr Lys Ile Gly Glu Lys Trp Asp Arg Gln Gly Glu Asn Gly Gln Met Met Ser 2230 GIn Ala Asp Arg Glu Asp Ser Arg Glu Asp Val

Fig. SF

Figure 6 Linker 5 showing the eight constituent oligonucleotides

Fig. 7 Construction of pDBDF2

Fig. 8 Construction of pDBDF5

Fig. 9 Construction of pDBDF9

Figure 11

Name:

pFHDEL1

Vector:

pUC18 Amp^{fy} 2860bp

Insert:

hFNcDNA - 7630bp

