Numerical segmences and series.

Def A sepecte (pn) in a metric space X is convergent to a pt $p \in X$ if for $Y \in X$ 0, there $\exists N$ integer s.t. $N \ni N$ implies $d(p_{ij}, p) \in E$.

Say p is a limit of (pu), (pu) conveyent to p.

Rmt Depends on X. (pn=/h) conveyed in R but not in 120.

We could (p_n) is divergent if (p_n) is not convergent. (p_n) is bounded if the range is bounded.

Example (a) $\lim_{n\to\infty} S_n = 0$ if $S_n = \frac{1}{n} \in \mathbb{R}$ has infinite range.

(b) lim Sn=1 if Sn=1∈ 1R

Thus Let (Pn) be a sequence in a metric space X,

- (a) (p_n) converges to $p \in X$: If every nock of p contains p_n for all but finitely many n.
- (b) If $p, p' \in X$ and (p_n) converges to p and p', then p = p'.
- (c) If (pn) conveyes then (Pn) bounded.
- (d) If $E \subset X$ and if p is a limit pl of E, then there is a sequence (P_n) in E such that $D = P_{inn} D$.

Proof (a) $\stackrel{\circ}{=}$ Any hold $N_p(r)$ of p, choose Σcr , there is N_r , $d(p,p_n) \in \Sigma$ for $h>N_r$ " $\stackrel{\circ}{=}$ " For any $\Sigma>0$, only finitely many p_n not in $N_p(\Sigma)$, ... $\stackrel{\circ}{=} N>0$ $d(p_n,p) \in \Sigma$.

- but for n sufficiently large. $p_n \in N_p(\Sigma)$, $N_p(\Sigma) \cap N_{pr}(\Sigma) = \emptyset$ i.e. $p \in N_p(\Sigma) \cap N_p(\Sigma) = \emptyset$, which is a contradiction.
- (c) This is a collarry of (a). Say $p_1, p_2, ..., p_k$ are those note in $N_p(\epsilon)$. Then let $r = \max\{\epsilon, d(p,p_1), ..., d(p,p_k)\}$. (p_n) is resilaind in $N_p(r)$.
- (d) By def. Np(Nn) contains a point $p_n \in E$ $p_n \neq p$. $p_n \rightarrow p$. We can study the algebraic relation for sequences on R.

Then Suppose (Sn) (ta) are two real sequences and limsy=s limty=t

- (n) lim (Sy+ly)=S+2
- (b) lin CSn= (\$ for any constant c.
- (c) ling sorth= St

(d) tim 5, = 3, provided that S, +0, and S+0.

Proof 19 For 500, there exists NI, NI

$$n \rightarrow N_1 \Rightarrow \left| S_n - S \right| < \varepsilon /_2$$

$$n > N_2 =) \qquad (t_n - t) < \frac{s}{2}$$

(b) For 270, shere exists N, n3/2)|sn-5|< 3/c if c+0.

if (=0, this is trivial.

For ≥ 70 , there is $N, 97N \rightarrow |s_n-s| < \sqrt{2}$ $|t_n-t| < \sqrt{2}$

$$\Rightarrow$$
 $|(S_n S)(t_n - t)| < \Sigma$ i.e. $\lim_{n \to \infty} (S_n - S)(t_n - t) = 0$

lîm (nth-st) = lîm (sn-s) (ton-t) + lim S(+n-t) + lim + (sn-s) = 0 i.e. lîm Sntn=st

(d) Chaosing m such that $|s_n-s| < \frac{1}{2}|s|$ if $n \ge n$, we see that $|s_n| > \frac{1}{2}|s|$

Given $\xi>0$, there is N>0, N>N= $(5n-9) < \frac{1}{2}|5|^2 \xi$. $\left|\frac{1}{5n} - \frac{1}{5}\right| = \left|\frac{3n-5}{5n\cdot 5}\right| < \frac{2}{2}|5| \cdot 2 / \frac{1}{2}|5|^2 = 2$.

Def Griven a sequence (p_n) , consider subset of positive integes $n_1 < n_2 < n_3 < \infty$

The sequence (Pui) is called a subsequence (Pu). If (Pu) orweges, its limit called subsequential limit of (Pu).

Clemby, (pn) converges iff every subseque of cpn) converges.

This If (p_n) is a sequence in a compact nettric space X, then some subsequence converges to a point in X

(b) Every bounded sequence in \mathbb{R}^k contains a convergent subsquere. Proof (a) Let E be the range of (p_n) , If \hat{E} is finite then $\exists n_i c n_i c \cdots s$ such that $p_{n_i} = p_{n_i} = \cdots = p$.

If E is infinite, when E has a limit pt (Thm 2-37) in

Pudin. Choose Nichzer Such that dip, Pai) < 1. Then

(P.) convenes to a

The subsequential limits of a sequence (Pa) in a westric speed X form a closed subset.

Proof Let E= 3 the subsequential limits of (Pm) } and p is a that pt. We have to show that pEE.

Choose μ_i , $\mu_i \neq \rho$. Let $\delta = d(\rho_{n_i}, \rho)$. Haven chosen $\mu_{n_i}, \mu_{n_i}, \dots, \mu_{n_i}$. There is a $x \in E$ such that $d(\rho_{n_i}, \infty) \subset \frac{\delta}{2i}$

Since x is a subsquestial limit, $\exists N :> N := 1$, $d(p_n; \infty) < \sqrt{2^i}$. $d(p, p_n;) = d(p, \infty) + d(x_i, p_i) = \sqrt{2^{i-1}}$.

We see that $(F_{n_i}) \rightarrow P$.