

Emotion Detection

Table of Content

- 1. Choice of Models 5 models (baseline & advanced models)
- 2. Parameter tuning cross validation, PCA
- 3. Results and comparison visualization
- 4. Conclusion & limitations

Baseline Model - GBM

- Test set accuracy: 31%
- Train set accuracy: 62%
- Running time
 - Training: 8.42s
 - Predicting: 9.99s
- Limitation of GBM
 - GBMs are more sensitive to overfitting if the data is noisy.
 - Training generally takes longer because of the fact that trees are built sequentially.
 - GBMs are harder to tune than RF. There are typically three parameters: number of trees, depth of trees and learning rate, and each tree built is generally shallow.

Naive Bayes Classifier

- Test set accuracy: 22.4%
- Train set accuracy: 22.7%
- Running time
 - Training: 2.11s
 - Predicting: 6.78s

Limitations:

- The strong assumption about the features to be independent which is hardly true in real life applications.
- Chances of loss of accuracy.
- Zero Frequency i.e. if the category of any categorical variable is not seen in training data set then model assigns a zero probability to that category and then a prediction cannot be made.

XGboost

Best accuracy on test set: 33% Best accuracy on train set: 55%

------ With PCA -----

Best accuracy on test set: 34%

Best accuracy on train set: 47.45%

Running time:

training 18m 29s, predicting 6.75s

Applied 10-fold cross validation with Parameter Tuning using Grid Search

PCA does not improve
XGboost model a lot as
it's already a
correlation robust
algorithm!

Both **xgboost** and **gbm** follows the principle of **gradient boosting**. There are however, the difference in modeling details. Specifically, xgboost used a **more regularized model formalization to control over-fitting**, which gives it better performance.

Advanced Model: SVM

Accuracy on test set: 49% Accuracy on train set: 99%

----- With PCA -----

- Reducing features by Keeping 94% of the original data.

- Using only 21 features selected by PCA

Accuracy on test set: 42.4% Accuracy on train set: 47.2% (applied 10-fold cross validation)

Confusion Matrix

Prediction

Take a guess?

Deep Learning - CNN

Test set accuracy: 47.4%

Train set accuracy: 47.3%

Batch size: 200

Epochs: 10

Running time

Training: 17.06s

Predicting: 2.06s

Limitations:

- CNNs perform poorly with less data.
- CNNs have millions of parameters and with small dataset, would run into an overfitting problem because they need massive amount of data to quench the thirst.

Model: "sequential_4"

Layer (type)	Output	Shape	Param #
convld_10 (ConvlD)	(None,	35, 64)	256
convld_11 (ConvlD)	(None,	33, 64)	12352
convld_12 (ConvlD)	(None,	31, 64)	12352
flatten_4 (Flatten)	(None,	1984)	0
dense_7 (Dense)	(None,	100)	198500
dense_8 (Dense)	(None,	22)	2222

Total params: 225,682 Trainable params: 225,682 Non-trainable params: 0

Model Comparison & Conclusion

	GBM	XGB	Naive Bayes	SVM	CNN
Training Accuracy	62%	47.45%	22.9%	47.2%	47.3%
Test Accuracy	31%	34%	20.8%	42.4%	47.4%
Computational Time(train)	9.99s	18min 29s	6.78s	12.6s	17.06s
Computational Memory(train)	480 MiB	312.81 MiB	497 MiB	462.5 MiB	574.51MiB
Test running cost	8.42s	6.57s	4.4s	1.14s	2.06s