PATENT ABSTRACTS OF JAPAN

(43)Date of publication of application: 31.03.2000

(11)Publication number :

(51)Int.CI.

G02F 1/1335 G02F 1/1343

(21)Application number: 10-253560 (22)Date of filing:

08.09.1998

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(72)Inventor:

IWAI YOSHIO

SAKURAI YOSHINOBU YAMAGUCHI HISANORI **SEKIME TOMOAKI**

OGAWA TETSU

(54) REFLECTIVE LIQUID CRYSTAL DISPLAY DEVICE AND ITS MANUFACTURE

PROBLEM TO BE SOLVED: To realize a reflective liquid crystal display device with high diffuse reflectivity and high contrast and a method for its manufacturing.

SOLUTION: The second substrate part P2 formed by laminating a color filter 4, a transparent electrode 5 and an alignment layer 6a on a counter substrate 3 and the first substrate part P1 formed by laminating a TFT 13, interlayer insulating films 15 and 17, a reflective electrode 8A and an alignment layer 6b on a reflective substrate 10 are manufactured. A reflective liquid crystal display device is made by filling liquid crystal between the first and the second substrate parts. In this case, a part of a surface of the interlayer insulating film 17 is irradiated with an ultraviolet ray using a specified photomask and is made concave-shaped with an etchant. Succeedingly the reflective electrode 8A is made by film forming with aluminum. Thereby mirror parts and concave diffusion parts are formed simultaneously and contrast is improved without being influenced by polarization characteristics of a liquid crystal cell.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

This Page Blank (uspto)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-89217 (P2000-89217A)

(43)公開日 平成12年3月31日(2000.3.31)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G02F 1/1335

335

520

G 0 2 F 1/1335

520

2H091

1/1343

1/1343

J 2

2H092

審査請求 未請求 請求項の数9 OL (全 10 頁)

(21)出願番号

特願平10-253560

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(22)出顧日 平成10年9月8日(1998.9.8)

(72) 発明者 岩井 義夫

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 櫻井 芳豆

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100084364

弁理士 岡本 宜喜

最終頁に続く

(54) 【発明の名称】 反射型液晶表示装置とその製造方法

(57)【要約】

【課題】 拡散反射率が高く、かつコントラストの高い 反射型液晶表示装置とその製造力法を実現すること。

【解決手段】 対向基板3に対してカラーフィルタ4、透明電極5、配向膜6aを積層した第2の基板部P2と、反射基板10に対してTFT13、層間絶縁膜15及び17、反射電極8A、配向膜6bを積層した第1の基板部P1とを製造し、第1及び第の基板部に液晶を充填して反射型液晶装置とする。このとき層間絶縁膜17の表面の一部を、所定のフォトマスクを用いて紫外線を照射し、エッチング液を用いて凹面状にする。そしてアルミニュウムを成膜し、反射電極8Aとする。こうすると、鏡面の平坦部と、拡散用凹面が同時に形成され、液晶セルの偏光特性に左右されないでコントラストを向上することができる。

【特許請求の範囲】

【請求項1】 第1の基板にアクティブ素子と画素電極 とが形成された第1の基板部と、

透明な第2の基板にカラーフィルタと透明電極が形成された第2の基板部と、

前記第1の基板部と第2の基板部の間隙に充填された液晶層と、を其備する反射型液晶表示装置であって、 前記画素電極は、

導電性材料で画素単位で薄膜状に形成され、

前記アクティブ素子の出力端と結合されるコンタクトホ 10 ール部と、

前記アクティブ素子の入力ラインと無機の層間絶縁膜及び有機の層間絶縁膜を介して隔離され、前記液晶層と対向する面の複数箇所に平坦面と拡散用凹面とが所定の面積比率で形成された反射電極部と、を有するものであることを特徴とする反射型液晶表示装置。

【請求項2】 前記反射電極部の拡散用凹面は、

前記無機の屬間絶縁膜より膜厚の大きい有機の層間絶縁膜の表面に形成され、前記コンタクトホール部の形成に用いるフォトエッチング処理と同一のフォトエッチング 20 処理により、前記有機の層間絶縁膜の表面を部分的に凹面状に除去し、前記拡散用凹面と前記平坦面が形成された後に、光反射率の高い導電性材料で塗膜されたものであることを特徴とする請求項1記載の反射型液晶表示装置。

【請求項3】 1画素の面積をS1とし、前記拡散用凹面の面積をS2、前記拡散用凹面の1画素当たりの個数をNとした場合、S2×N/S1が0.5以上0.8以下であることを特徴とする請求項1又は2記載の反射型液晶表示装置。

【請求項4】 前記反射電極部は、

前記拡散用凹面の平均深さをd1、前記コンタクトホール部の平均深さをd2とすると、d1 < d2なる関係を満たし、かつ0. 5μ m < d1 < 1μ m であることを特徴とする請求項1~3のいずれか1項記載の反射型液晶表示装置。

【請求項5】 第1の基板にアクティブ素子と画素電極とが形成された第1の基板部と、透明な第2の基板にカラーフィルタと透明電極が形成された第2の基板部と、前記第1の基板部と第2の基板部の間隙に充填された液晶層と、を具備する反射型液晶表示装置の製造方法であって

前記第1の基板にゲート線とソース線とドレイン電極と を有する薄膜トランジスタをマトリクス状に配置して形成する第1の工程と、

前記第1の工程で得られた基板の上面に対し、無機材料を用いて第1の層間絶縁膜を形成し、前記第1の層間絶縁膜の上層に感光性樹脂を塗膜して第2の層間絶縁膜を形成する第2の工程と、

前記感光性樹脂をフォトマスクを用いて露光及び現像を

行い、前記ドレイン電極の部分にコンタクトホールを形 · 成し、反射電極となる部分に前記コンタクトホールより 浅いホールを形成する第3の工程と、

前記ホールが形成された第2の層間絶縁膜に対して紫外線を照射し、更に第2の層間絶縁膜に第1の熱処理を施して、前記感光性樹脂の上層部を溶融させ、上面が略円形状であり、断面が略円弧状の拡散用凹面を形成する第4の工程と、

前記第4の工程後の前記感光性樹脂に対し、第2の熱処理を施して架橋反応させる第5の工程と、

前記第5の工程で得られた基板の最上面に対して、光反射率の高い導電性材料を塗膜することにより、前記コンタクトホールを介して前記ドレイン電極と接続された反射電極を形成する第6の工程と、を有することを特徴とする反射型液晶表示装置の製造方法。

【請求項6】 前記第3の工程において、

前記ホールの露光量をW1とし、前記コンタクトホールの露光量をW2とすると、W1<W2の関係式を満たすことを特徴とする請求項5記載の反射型液晶表示装置の製造方法。

【請求項7】 前記第3の工程における前記ホールと前 記コンタクトホールで露光量を異ならしめる方法とし て、前記ホールと前記コンタクトホールで光線透過量の 異なるフォトマスクを用いることを特徴とする請求項5 又は6記載の反射型液晶表示装置の製造方法。

【請求項8】 前記第3の工程における前記ホールと前 記コンタクトホールで露光量を異ならしめる方法とし て、前記ホールと前記コンタクトホールで、光線透過面 積の異なるフォトマスクを用いたことを特徴とする請求 30 項5 Xは6 記載の反射型液晶表示装置の製造方法。

【請求項9】 第1の基板にアクティブ素子と画素電極 とが形成された第1の基板部と、透明な第2の基板にカ ラーフィルタと透明電極が形成された第2の基板部と、 前記第1の基板部と第2の基板部の間隙に充填された液 晶層と、を具備する反射型液晶表示装置の製造方法であ って、

前記第1の基板にゲート線とソース線とドレイン電極と を有する薄膜トランジスタをマトリクス状に配置して形 成する第1の工程と、

40 前記第1の工程で得られた基板の上面に対し、無機材料 を用いて第1の層間絶縁膜を、前記ドレイン電極の形成 面より高くなるまで形成する第2の工程と、

前記第2の工程で形成された第1の層間絶縁膜に対し、 フォトマスクを用いて露光及び現像を行い、前記ドレイ ン電極の部分にホールを形成し、反射電極となる部分に 凹部を形成する第3の工程と、

前記第3の工程で加工された第1の層間絶縁膜に第2の 層間絶縁膜として感光性樹脂を塗膜することにより、反 射電極となる部分に拡散用凹面を形成する第4の工程

50 と、

3

前記第4の工程で塗膜された感光性樹脂に対してフォトマスクを用いて露光及び現像を行い、前記ドレイン電極の部分にコンタクトホールを形成する第5の工程と、前記第5の工程後の前記感光性樹脂に対し、第2の熱処理を施して架橋反応させる第6の工程と、

前記第6の工程で得られた基板の最上面に対して、光反射率の高い導電性材料を塗膜することにより、前記コンタクトホールを介して前記ドレイン電極と接続された反射電極を形成する第7の工程と、を有することを特徴とする反射型液晶表示装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、散乱反射率を高め、かつ反射面での偏光変化を抑制してコントラスト低下を防ぐことのできる反射型液晶表示装置とその製造方法に関するものである。

[0002]

【従来の技術】反射型液晶表示装置(以下、反射型LC Dという)は、パネル前面より入射した外光を液晶パネルにより変調し、液晶パネル裏面に設けた反射板によっ 20 て反射させて表示を行うものである。このため反射型L CDは、透過型液晶表示装置(以下、透過型LCDという)に不可欠なバックライトが不要であり、消費電力の低減が可能である。この意味で携帯情報端末や携帯機器に最適と言える。

【0003】しかし、外光の反射により表示を行う反射型LCDでは、液晶パネルに対する入射光の調節機能がない。このため外光の照度が弱い場合、例えば、屋内や夜間に反射型LCDを使用する場合では、表示画面が非常に暗くなり、視認性が劣化する欠点がある。このため、反射型LCDでは、入射した外光をできるだけ効率よく反射させるように、反射率を高める工夫が必要がある。

【0004】反射率を高める手段として、液晶セルや光学部材での光の伝搬ロスを防ぐことと、反射板での反射率を高める方法がある。また液晶セルや光学部材による光の伝播ロスを低減する方法としては、偏光板での光の透過損失がもっとも大きいことに着目して、偏光板を用いないゲストホスト型表示方式がある(特開平7-146469号参照)。また偏光板を1枚にした1枚偏光板40方式がある(特開平7-84252号参照)。

【0005】また、反射板での反射率を高める方法として、従来は液晶セルの外側に設けてい反射板を液晶セルの内部に設け、かつ反射板の構成材料として、反射率が高く、電気抵抗値の低いアルミニュウムを用いて、反射板としての機能と電極としての機能を兼ね備えた反射電極を形成する方式が開示されている(特開平8-101384号参照)。さらに、反射電極面に凹凸を設けて光散乱機能を付与し、液晶セルと位相板と偏光板を用いて表示を行う方式がある(特開平5-217701号参

照)。更に及び反射電極の凹凸をメルト法により形成する方式が開示されている(特開平9-146087号参照)。

【0006】反射電極面に凹凸を設けた従来の反射型し CDとして、図7に示すようなものがある。この反射型 LCDは、外光の入射面から順に列挙すると、偏光板 1、ガラス基板3、カラーフィルタ4、透明電極5、配 向膜6a、液晶7、配向膜6b、凹凸状の反射電極8、 層間絶縁膜17、薄膜トランジスタ (以下、TFTとい 10 う) 13、ガラス基板10により構成されている。この 反射型LCDは、偏光板を1枚にした1枚偏光板方式 と、凹凸状の反射電極8を液晶セル内に設ける方式とを 併用したものであり、反射電極8に散乱性を付与して拡 散反射率を高め、視認性の向上を意図したものである。 反射電極8は、凹凸状の層間絶縁膜17上に形成され、 層間絶縁膜17の一部に設けられたされたコンタクトホ ール16を通して、TFT13のドレイン電極14と電 気的に接続されている。反射電極8はTFT13のゲー ト電極11とソース電極12に対するスイッチング動作 によりパルス駆動され、液晶(液晶セル) 7に対して画 素信号に応じた駆動電圧を与える。

[0007]

【発明が解決しようとする課題】上記の反射型LCDに入射した光は、偏光板1を通過して直線偏光になり、液晶層で変調された後、凹凸状の反射電極8の表面で反射し、再度液晶層を通過して偏光板1に達する。1枚の偏光板1で白、黒の表示を行うには、反射電極8面での反射光は、黒表示の場合には円偏光となり、白表示の場合には直線偏光となることが必要である。

【0008】一般に金属反射面に斜めから光を入射させると、反射光のP波、S波間で位相差が発生することが知られている。位相差は入射角依存性があり、入射角(反射角)が大きくなるにつれて、位相差も大きくなる。上記構成で用いられる凹凸状の反射電極8の表面でも同様な現象が発生する。すなわち、拡散性の大きな反射電極8ほど位相差が大きくなる。このため、偏光を用いる液晶パネルでは、凹凸状の反射電極8で反射光の偏光状態が変化し、コントラストが低下するという問題点があった。

【0009】本発明は、このような従来の問題点に鑑みてなされたものであって、散乱反射率を高め、かつ反射電極面での偏光変化を抑制し、コントラスト低下を防ぐことのできる反射型液晶表示装置と、その製造方法を実現することを目的とする。

[0010]

【課題を解決するための手段】このような課題を解決するために、本願の請求項1の発明は、第1の基板にアクティブ素子と画素電極とが形成された第1の基板部と、透明な第2の基板にカラーフィルタと透明電極が形成された第2の基板部と、前記第1の基板部と第2の基板部

10

30

の間隙に充填された液晶層と、を具備する反射型液晶表 示装置であって、前記画素電極は、導電性材料で画素単 位で薄膜状に形成され、前記アクティブ素子の出力端と 結合されるコンタクトホール部と、前記アクティブ素子 の入力ラインと無機の層間絶縁膜及び有機の層間絶縁膜 を介して隔離され、前記液晶層と対向する面の複数箇所 に平坦面と拡散用凹面とが所定の面積比率で形成された 反射電極部と、を有することを特徴とするものである。

【0011】本願の請求項2の発明は、請求項1の反射 型液晶表示装置において、前記反射電極部の拡散用凹面 は、前記無機の層間絶縁膜より膜厚の大きい有機の層間 絶縁膜の表面に形成され、前記コンタクトホール部の形 成に用いるフォトエッチング処理と同一のフォトエッチ ング処理により、前記有機の層間絶縁膜の表面を部分的 に凹面状に除去し、前記拡散用凹面と前記平坦面が形成 された後に、光反射率の高い導電性材料で塗膜されたこ とを特徴とするものである。

【0012】本願の請求項3の発明は、請求項1又は2 の反射型液晶表示装置において、1両素の面積をS1と し、前記拡散用凹面の面積を52、前記拡散用凹面の1 画素当たりの個数をNとした場合、S2×N/S1が 0. 5以 LO. 8以下であることを特徴とするものであ

【0013】本願の請求項4の発明は、請求項1~3の いずれか1項の反射型液晶表示装置において、前記反射 電極部は、前記拡散用凹面の平均深さをd1、前記コン タクトホール部の平均深さを d 2 とすると、 d 1 < d 2 なる関係を満たし、かつ0.5μm<d1<1μmであ ることを特徴とするものである。

【0014】本願の請求項5の発明は、第1の基板にア クティブ素子と画素電極とが形成された第1の基板部 と、透明な第2の基板にカラーフィルタと透明電極が形 成された第2の基板部と、前記第1の基板部と第2の基 板部の間隙に充填された液晶層と、を具備する反射型液 晶表示装置の製造方法であって、前記第1の基板にゲー ト線とソース線とドレイン電極とを有する薄膜トランジ スタをマトリクス状に配置して形成する第1の工程と、 前記第1の工程で得られた基板の上面に対し、無機材料 を用いて第1の層間絶縁膜を形成し、前記第1の層間絶 縁膜の上層に感光性樹脂を塗膜して第2の層間絶縁膜を 形成する第2の工程と、前記感光性樹脂をフォトマスク を用いて露光及び現像を行い、前記ドレイン電極の部分 にコンタクトホールを形成し、反射電極となる部分に前 記コンタクトホールより浅いホールを形成する第3の工 程と、前記ホールが形成された第2の層間絶縁膜に対し て紫外線を照射し、更に第2の層間絶縁膜に第1の熱処 理を施して、前記感光性樹脂の上層部を溶融させ、上面 が略円形状であり、断面が略円弧状の拡散用凹面を形成 する第4の工程と、前記第4の工程後の前記感光性樹脂 に対し、第2の熱処理を施して架橋反応させる第5の工 50

程と、前記第5の工程で得られた基板の最上面に対し て、光反射率の高い導電性材料を塗膜することにより、 前記コンタクトホールを介して前記ドレイン電極と接続 された反射電極を形成する第6の工程と、を有すること を特徴とするものである。

【0015】本願の請求項6の発明は、請求項5の反射 型液晶表示装置の製造方法において、前記第3の工程 は、前記ホールの露光量をW1とし、前記コンタクトホ ールの露光量をW2とすると、W1<W2の関係式を満 たすことを特徴とするものである。

【0016】本願の請求項7の発明は、請求項5义は6 の反射型液晶表示装置の製造方法において、前記第3の 工程における前記ホールと前記コンタクトホールで露光 量を異ならしめる方法として、前記ホールと前記コンタ クトホールで光線透過量の異なるフォトマスクを用いる ことを特徴とするものである。

【0017】本願の請求項8の発明は、請求項5又は6 の反射型液晶表示装置の製造方法において、前記第3の 工程における前記ホールと前記コンタクトホールで露光 量を異ならしめる方法として、前記ホールと前記コンタ クトホールで、光線透過面積の異なるフォトマスクを用 いたことを特徴とするものである。

【0018】本願の請求項9の発明は、第1の基板にア クティブ素子と画素電極とが形成された第1の基板部 と、透明な第2の基板にカラーフィルタと透明電極が形 成された第2の基板部と、前記第1の基板部と第2の基 板部の間隙に充填された液晶層と、を具備する反射型液 晶表示装置の製造方法であって、前記第1の基板にゲー ト線とソース線とドレイン電極とを有する薄膜トランジ スタをマトリクス状に配置して形成する第1の工程と、 前記第1の工程で得られた基板の上面に対し、無機材料 を用いて第1の層間絶縁膜を、前記ドレイン電極の形成 面より高くなるまで形成する第2の工程と、前記第2の 工程で形成された第1の層間絶縁膜に対し、フォトマス クを用いて露光及び現像を行い、前記ドレイン電極の部 分にホールを形成し、反射電極となる部分に凹部を形成 する第3の工程と、前記第3の工程で加工された第1の 層間絶縁膜に第2の層間絶縁膜として感光性樹脂を塗膜 することにより、反射電極となる部分に拡散用凹面を形 成する第4の工程と、前記第4の工程で塗膜された感光 性樹脂に対してフォトマスクを用いて露光及び現像を行 い、前記ドレイン電極の部分にコンタクトホールを形成 する第5の工程と、前記第5の工程後の前記感光性樹脂 に対し、第2の熱処理を施して架橋反応させる第6の工 程と、前記第6の工程で得られた基板の最上面に対し て、光反射率の高い導電性材料を塗膜することにより、 前記コンタクトホールを介して前記ドレイン電極と接続 された反射電極を形成する第7の工程と、を有すること を特徴とするものである。

[0019]

10

30

7

【発明の実施の形態】(実施の形態 1)本発明の実施の形態 1 における反射型液晶表示装置について図面を参照しつつ説明する。図 1 は本実施の形態における反射型液晶表示装置の構成図であり、特に 1 画素部分の断面構造を示している。なお本図において従来例と同一部分は同一の符号を付けている。反射型液晶表示装置(反射型 L C D)は構造的に、第 1 の基板にアクティブ素子及び画素電極が形成された第 2 の基板部 P 2 と、第 1 及び第 2 の基板部に挟持された液晶層 C と から構成される。アクティブ素子及び画素電極は画素単位でマトリクス状に配置され、図 1 はその 1 画素部分を示す断面図である。

【0020】第2の基板部P2は、ガラス基板である対向基板3の上面に偏光フィルム1と2/4波長板2とを設け、対向基板3の下面にカラーフィルタ4、透明電極5、配向膜6aを形成したものである。第1の基板部P1は、反射基板10の上面の一部に、ゲート電極112及びゾース線12a、ドレイン電極14を含むTFT13と、反射基板10の上面全体に形成した第1の層間絶縁膜15及び第2の層間絶縁膜170上層に形成した反射電極8A及び配向膜6bとを有するものである。そして第2の基板部P2側より入射した光を液晶セル7で変調し、変調光を第1の基板部P1の反射電極8Aで反射させ、第2の基板部P2の外側方向に出射させて各画素の表示を行う。

【0021】次に、このような構造の反射型LCDの製造方法について説明する。まず、第2の基板部P2を構成要素である対向基板3として無アルカリガラスを用い、この対向基板3上に顔料分散レジストからなる赤、緑、青のカラーフィルタ4をストライブ状に形成する。その後、カラーフィルタ4上に酸化インジュウム錫(以下、ITOという)膜を成膜し、透明電極5を形成する。

【0022】次に、第1の基板部P1の構成要素である反射基板10として無アルカリガラスを用い、その上の一部にアクティブ素子を形成する。アクティブ素子は、アルミニュウムとタンタルからなるゲート電極11及びゲート線11aと、チタンとアルミニュウムからなるソース電極12及びソース線12aと、チタンとアルミニュウムからなるドレイン電極14とを有し、ゲート線11aとソース線12aとの各交差部に、アモルファスシリコンからなるTFT13を形成したものである。

【0023】次にアクティブ素子の上面と、アクティブ トと所定のフォトマスクを用いた。 本子が形成されない反射基板10の上面に、窒化シリコ 後燐酸系のエッチング液を用いた。 この場合の反射電極8 Aの 膜厚で形成する。 そして、フォトレジストと所定のフォ 来の反射型LCDと異なり、銀トマスクを用いて紫外線を照射し、その後ドライエッチ 拡散性を有する拡散用凹面18 ングにより、成膜された窒化シリコンの一部をエッチン 50 規則な位置に多数形成された。

グし、ドレイン電極14上にコンタクトホール16aを 形成する。残された無機の層間絶縁膜15は、TFT1 3の層間絶縁膜として機能すると共に、図示しないドラ イバ実装部分での電極保護膜としても機能する。

【0024】次に、層間絶縁膜15の上部全面に、感光性アクリル樹脂(例えば、PC302:JSR(株)製)を塗布して、膜厚約 3μ mの有機の層間絶縁膜17を形成する。そして面内に、一辺が 10μ mの正方形状であり、多数の拡散用凹面形成用パターンが設けられたフォトマスクを用い、紫外線を $20\sim30$ m J/c m² 照射する。ここで1 画素あたりの拡散用凹面18 の総面積が、1 画素の而積に対して0. 6になるように拡散用凹面18 のパターン数Nを決定する。

【0026】次に、層間絶縁膜17の全面に1J/cm ² ~2 J / c m² の紫外線を照射した後、110℃の温 度に保たれたホットプレート上で5分間硬化した。この 処理で拡散用凹面18となる部分は、角穴形状から凹面 形状、即ち上面が略円形状で断面が円弧状に変化した。 ホットプレートの温度が100℃以下では、層間絶縁膜 17が溶融せず、拡散用凹面18の断面形状は、現像後 の形状のまま変化せず、逆台形状のままであった。逆に 130℃以上の温度では、急激に溶融し、拡散用凹面1 8が埋められて消失した。110℃~120℃の温度範 囲で、拡散用凹面18の内面は凹状の曲面となった。ま た、紫外線を照射しなければ、110℃から急激に溶融 していまい、曲面形状を得る温度範囲が極めて狭くな り、かつ面内で形状が不均一になった。以上のことが ら、一定量以上の紫外線を照射することで、溶融を抑制 し、曲面形状を得るための温度範囲を拡大できることが 分かった。その後、200℃のクリーンオーブンの中で 第1の基板部P1の熱処理を行い、感光性アクリル樹脂 を架橋させた。

【0027】次に、有機の層間絶縁膜17上に、光学的に反射率の高いアルミニュウムを成膜し、フォトレジストと所定のフォトマスクを用いて紫外線を照射し、その後燐酸系のエッチング液を用いて反射電極8Aを形成した。この場合の反射電極8Aの反射面は、図7に示す従来の反射型LCDと異なり、鏡面性を有する平坦部と、拡散性を有する拡散用凹面18とが、1画素範囲内で不規則な位置に多数形成された。

【0028】次に第2の基板部P2の透明電極5の下 面、及び第1の基板部P1の反射電極8A上面に対し、 固形分濃度5 (重量%) のポリアミック酸溶液 (SE-7211:口産化学工業(株))を印刷し、220℃で 硬化した。そしてTN配向になるようにレーヨン布を用 いて回転ラビングにより配向処理を行い、ポリイミド膜 を形成した。反射電極8Aに形成したポリイミド膜を配 向膜 6 b とし、その膜厚を 1 2 0 n m とする。 同様に透 明電極5に形成したポリイミド膜を配向膜6aとし、そ の膜厚を120nmとする。

【0029】次に対向基板3の周辺部に、熱硬化型のシ ール材 (例えばストラクトボンド:三井東圧化学(株) 製)を印刷し、液晶注入口を設けた。そして第1の基板 部P1の上面には、直径3μmのプラスチックからなる 球状のスペーサを150~200個/mm²分散させ、第 1の基板部P1と第2の基板部P2とを、反射基板10 と対向基板3との部分でシール材を用いて互いに貼り合 わせ、150℃でシール材を硬化させた。次に屈折率異 方性が 0.09 であるフッ素系ネマチック液晶組成物に カイラル組成物を添加した液晶を真空注入して、紫外線 硬化樹脂により注入口を封止した。こうして各画素部に 液晶セルフを形成した。このように形成した液晶層Cの 対向基板 3 に、 λ / 4 波長板 2 を積層した偏光フィルム 1を貼付け、アクティブマトリクスタイプの反射型LC Dを製造した。

【0030】図2は、反射型LCDにおける画素部の平 面図である。各画素内のTFT13が形成される部分に はゲート線11aが走り、コンタクトホール16が形成 される。各画素内には、上面が略円形状である拡散用凹 面18が多数形成されている。網点で示す平坦部19は 鏡面性の反射特性を有し、拡散用凹面18は散乱性の反 射特性を有する。

【0031】本実施の形態における反射電極8Aの反射 特性を図3に示す。この反射特性は図4に示す測定系に より行った。反射型LCDに対し、反射電極8Aの法線 に対して-40°方向に光源しを設け、光源しから反射 電極8Aに対して光を照射し、反射電極8Aの法線に対 して $+\theta$ 。方向に受光器Dを設ける。この θ 。を視角と して、 $\theta = 0$ ° から $\theta = +90$ ° の範囲で反射率を測定 すると、図3のような特性が得られた。破線で示す比較 例1は、凹構造部8Aを設けない反射電極の反射特性を 示し、視角が外光の入射角と等しいとき、極めて高い反 射光が得られるが、視角が40°+10°以上、及び4 0°-10°以下になると、反射光は極端に少なくな る。また一点鎖線で示す比較例2は、従来例の反射型し CDのように、凹凸反射電極が形成された場合の反射特 性を示し、視角が広いものの、反射率そのものは決して 高くない。これに対して実線で示す本実施の形態では、 鏡面成分と拡散成分の両方の特性を有している。更に視 角が40°-20°~40°+20°の範囲では、比較 50 態1と同一部分は同一の符号を付け、説明を省略する。

例2以上の反射率が確保されていることが判る。尚、上 ・ 記の反射率の測定は、反射電極8Aの上に直接、円偏光 板1を置き、そのときの反射率を測定した結果である。 測定には色彩測色計 (CM-508D 、ミノルタ株式会社製) を使用し、標準白色板を基準に用いた。

【0032】液晶を封入した本実施の形態の反射型しじ Dでは、視角40°における反射率は1.5%であり、 比較例2の凹凸反射電極を用いた反射型LCDでは、視 角40°における反射率3.9%であった。このことか ら視角40°における反射率を十分低い値にすることが できた。また1画素面積をS1とし、1画素内での拡散 用凹面の面積を52とし、1画素内の拡散用凹面の個数 をNとした場合、拡散用凹面の面積比率(S2×N/S 1)が0.5以下では、拡散反射成分が弱く、また0. 9以上では拡散反射成分が強すぎ、偏光変化が大きかっ た。このことから、面積比率として0.5以上、0.8 以下が好ましいことが判った。本実施の形態のアクティ ブマトリクス型の反射型LCDを駆動して、拡散光源下 でのパネル反射率を測定したところ、黒状態で反射率が 1. 8%、白状態で反射率が16. 3%になり、反射率 の高い良好なパネル反射特性が実現できた。

【0033】本実施の形態の場合、拡散用凹面18とコ ンタクトホール16の形成に、2枚のフォトマスクを用 いた。このとき拡散用凹面の露光量をW1とし、コンタ クトホールの露光量をW2とし、W1<W2になるよう 露光量を変えたが、1枚のマスクを用いて露光量を変え るようにしてもよい。即ち、1枚のマスク中に拡散用凹 面の透過パターンと、コンタクトホールの透過パターン を同時に設け、拡散用凹面の透過パターンでは、コンタ クトホールの透過パターンよりも光の透過率を低くした ものを用いる。その具体例を図5に示す。1つの拡散用 凹面のパターンを5×5=25分割して、透過領域A1 と非透過領域A0を設け、光線透過率を面積的に制御す る。図5 (a) は透過領域A1と非透過領域A0との面 積比率を9:16にし、図5(b)は13:12にした 例である。コンタクトホールの透過パターンを完全に開 口したものとすると、図5 (a) では拡散用凹面の透過 パターンコンタクトホールの透過パターンの約36%に なり、図5(b)では52%になる。このように透過領 域A1と非透過領域A0の面積を適宜に設定することに より、フォトマスクの光線透過量を調節することができ る。こうすれば、1種類のフォトマスクと1回の露光処 理により、深さ d 1, d 2 の異なる 2 種類のホールを形 成することができる。

【0034】 (実施の形態2) 次に本発明の実施の形態 2における反射型液晶表示装置(反射型LCD)につい て図面を参照しつつ説明する。図6は本実施の形態にお ける反射型液晶表示装置の構成図であり、特に1両素部 分の断面構造を示している。なお本図において実施の形

本実施の形態の反射型LCDも構造的に、第1の基板に 対してアクティブ素子及び画素電極が形成された第1の 基板部P1と、第2の基板に対して対向電極画及びカラ ーフィルタが形成された第2の基板部P2と、第1及び 第2の基板部に挟持された液晶層 Cとから構成される が、図1とは断面形状の異なる第1の層間絶縁膜15A 及び第2の層間絶縁膜17Aを用いて拡散用凹面18A を形成したことを特徴とする。

【0035】この反射型LCDの製造工程に従って具体 的に説明する。実施の形態1と同様に、第2の基板部P 10 2として、無アルカリガラスからなる対向基板3上にカ ラーフィルタ4を形成し、更にカラーフィルタ4の全面 に透明電極5を形成した。次に、次に、第1の基板部P 1の一部を構成する反射基板10として、無アルカリガ ラスを用い、その上の一部にアクティブ素子を形成す る。アクティブ素子は、アルミニュウムとタンタルから なるゲート電極11及びゲート線11aと、チタンとア ルミニュウムからなるソース電極12及びソース線12 aと、チタンとアルミニュウムからなるドレイン電極1 4とを有し、ゲート線11aとソース線12aとの各交 20 差部に、アモルファスシリコンからなるTFT13を形 成したものである。

【0036】次に反射基板10上に窒化シリコンからな る膜厚2μmの無機の層間絶縁膜15Αを形成した。次 に、コンタクトホールと拡散用凹面のパターンを有する フォトマスクを用いて、所定のバターンニングを行い、 その後ドライエッチングにより窒化シリコンをエッチン グレ、ドレイン電極上14にコンタクトホール16bを 形成し、TFT以外の部分に凹部15aと凸部15bと を形成した。この状態では、実施の形態1の層間絶縁膜 30 す部分断面図である。 15と異なり、その表面形状がTFT13の部分のみな らず、画素電極部にも凹凸が形成される。

【0037】次に、無機の層間絶縁膜15A上に感光性 アクリル樹脂 (例えば、FVR:富士薬品工業 (株) 製)からなる層間絶縁膜17Αを約1μmの膜厚で形成 する。そしてコンタクトホール16cの部分のみを開口 した別のフォトマスクを用いて露光及び現像を行い、感 光性樹脂を除去した。その後、200℃のクリーンオー ブン中で熱処理を行い、感光性樹脂を架橋させた。

【0038】次に、凹凸が形成された有機の層間絶縁膜 40 17A上に、光学的に反射率の高いアルミニュウムを成 膜し、フォトレジストと所定のフォトマスクを用いて紫 外線を照射した。そして、燐酸系のエッチング液を用い て、各画素に対する反射電極8Bを形成した。本実施の 形態では、層間絶縁膜15A中に形成された凹部15a は、層間絶縁膜17Aによって埋められ、図6に示すよ うに曲面状になり、層間絶縁膜15A中に形成された凸 部15bの上部は平面状になっているのが確認された。 また拡散用凹面18Αの平均深さは約0.6μm~0.

より、アクティブマトリクスタイプの反射型しCDを製 造した..

【0039】上記の反射型LCDを駆動して、パネル反 射率を測定したところ、黒状態で反射率が1.5%であ り、白状態で反射率が16.5%であり、実施の形態1 と同様に白の反射率の高く、コントラストの低下の少な い良好なパネル反射特性が実現できた。また、本実施の 形態では、拡散用凹面を窒化シリコン膜から形成した が、有機の層間絶縁膜を用いても十分可能である。

[0040]

【発明の効果】以上のように本発明によれば、平坦な反 射電極面に上面が略円形状で、断面が円弧状である拡散 用凹面を複数設けることにより、拡散反射率が高くかつ コントラスト低下の少ない反射型液晶表示装置を実現す ることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態1における反射型液晶表示 装置の構造を示す部分断面図である。

【図2】実施の形態1の反射型液晶表示装置において、 画素部の構成を示す平面図である。

【図3】実施の形態1の反射型液晶表示装置において、 反射電極の視角変化に対する反射特性図である。

【図4】 反射電極の反射特性を得るための測定系であ

【図5】本実施の形態の反射電極を形成する際に用いら れるフォトマスクのパターン図である。

【図6】本発明の実施の形態2における反射型液晶表示 装置の構造を示す部分断面図である。

【図7】従来例における反射型液晶表示装置の構成を示

【符号の説明】

- 1 偏光フィルム
- 2 λ/4波長板
- 3 対向基板
- 4 カラーフィルタ
- 5 透明電極
- 6a, 6b 配向膜
- 7 液晶セル
- 8A、8B 反射電極
- 10 反射基板
 - 11 ゲート電極
 - 11a ゲート線
 - 12 ソース電極
 - 12a ソース線
 - 13 TFT
 - 14 ドレイン電極
 - 15,15A 無機の層間絶縁膜膜
 - 15a 凹部
 - 156 凸部
- 8 μ m であった。その後、実施の形態 1 と同様の手順に 50 16, 16 a, 16 c コンタクトホール

(8)

特開2000-89217

14

17,17A 有機の層間絶縁膜

13

18, 18A 拡散用凹面

19 平坦部

L 光源

D 受光器

A 0 非透過領域

A 1 透過領域

P1 第1の基板部

P2 第の基板部

C 液晶層

【図1】

【図5】

フロントページの続き

(72) 発明者 山口 久典

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 関目 智明

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 小川 鉄

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

Fターム(参考) 2H091 FA02Y FA14Y FA31Y FB08

FC10 FC23 FC26 FD01 GA01

GA03 GA06 GA08 GA09 GA13

LA16 LA17

2H092 GA19 HA05 JA24 JA40 JA44

JA46 KA05 KB22 KB25 MA13

MA17 MA19 PA12