Opérades

1 Notions introductives

1.1 Définitions et exemples

Définition. (Catégorie monoidale symétrique) Catégorie \mathcal{M} munie d'un bifoncteur produit tensoriel $\otimes: \mathcal{M} \times \mathcal{M} \to \mathcal{M}$, d'une unité $I \in \mathcal{M}$, d'un isomorphisme naturel α dit associateur de $(-\otimes -)\otimes -$ vers $-\otimes (-\otimes -)$ **Exemples.** Ens munie du produit cartésien, Top munie du produit cartésien et de la topologie produit, R-Mod munie du produit tensoriel \otimes_R , dg-R-Mod de même, Ch(R) munie du produit tensoriel de complexes de chaînes.

Définition. (Opérade) Un opérade \mathcal{P} dans \mathcal{M} est une collection d'objets $(\mathcal{P}(r))_{r\in\mathbb{N}}\in\mathcal{M}^{\mathbb{N}}$ dont les éléments $p\in\mathcal{P}(r)$ représentent des opérations r-aire à une seule sortie. De plus, on a des produits... Les opérades se représentent plutôt bien avec des arbres.

Fait. Un opérade se définit aussi par présentation par $\mathcal{P} = \mathcal{F}(M)/(R)$ où \mathcal{F} est l'opérade libre qui collecte toutes les compositions formelles d'opérations génératrices, M la collection qui collecte les opérations génératrices et R l'idéal généré par les relations génératrices entre les composées de relations génératrices.

$\mathbf{Exemples}.$

1. Ass = $\mathcal{F}(\mathbb{K}\mu(x_1, x_2) \oplus \mathbb{K}\mu(x_2, x_1))/(\mu_1 \circ_1 \mu - \mu \circ_2 \mu) \ (i.e. \ (\mu(\mu(x_1, x_2), x_3)) - \mu_1 = \mu_2 = \mu_1 = \mu_2 = \mu_2 = \mu_1 = \mu_2 = \mu$

 $\mu(x_1,\mu(x_2,x_3)) \text{ où } \mu \text{ est le produit. Alors } \operatorname{Ass}(r) = \bigoplus_{(i_1,\ldots,i_r)\in\mathfrak{S}_r} \mathbb{K}X_{i_1}\ldots X_{i_r}$ (les variables ne commutant pas!).

2. Com = $\mathcal{F}(\mathbb{K}\mu(x_1,x_2))/(\mu_1\circ_1\mu-\mu\circ_2\mu)$. Alors $\operatorname{Com}(r)=\mathbb{K}X_1\ldots X_r$.

3. Lie = $\mathcal{F}(\mathbb{K}\lambda(x_1,x_2))/(\lambda(\lambda(x_1,x_2),x_3)-\lambda(\lambda(x_1,x_3),x_2)-\lambda(x_1,\lambda(x_2,x_3)))$ (i.e. $\lambda\circ_1\lambda-(23).\lambda\circ_1\lambda-\lambda\circ_2\lambda$) où λ est le crochet. Alors $\operatorname{Lie}(r)=1$

Let $= \mathcal{F}(\mathbb{K}\lambda(x_1,x_2))/(\lambda(\lambda(x_1,x_2),x_3) - \lambda(\lambda(x_1,x_3),x_2) - \lambda(x_1,\lambda(x_2,x_3)))$ $(i.e. \ \lambda \circ_1 \ \lambda - (23).\lambda \circ_1 \ \lambda - \lambda \circ_2 \ \lambda)$ où λ est le crochet. Alors Lie $(r) = \bigoplus_{(i_1,...,i_r) \in \mathfrak{S}_r, i_1 = 1} \mathbb{K}[...[X_{i_1}X_{i_2}]X_{i_3}]...X_{i_r}]$ les polynôme de Lie à r variables de $(i_1,...,i_r) \in \mathfrak{S}_r, i_1 = 1$

chaque degré relatif 1.

Définition. L'opérade des n-disques/cubes est donné par $C_n(r) \in \text{Top}$ l'espace dont les éléments sont les r-tuples $(c_1,...,c_r)$ de plongements rectilignes qui ne se recupent pas de petits n-cubes $c_i: I^n \longrightarrow I^n, (t_1,...,t_n) \mapsto (a_1,...,a_n) + (\lambda t_1,...,\lambda t_n)$. Le produit de composition est donné par $C_n(k) \times C_n(l) \to C_n(k+l)$. Un E_n -opérade dans Top est un opérade homotopiquement équivalent à C_n . L'idée est que $\underline{c} \in C_n(r)$ donne une oépration $\mu_{\underline{c}}: \Omega^n X \times \Omega^n X \to \Omega^n X$.

Théorème. (May-Boardman-Vogt) Si $Y \in \text{Top}_*$ est connexe et $C_n \cap Y$, il existe $X \in \text{Top}_*$ tel que $Y \sim \Omega^n X$. **Définition.** (Calcul des plongements de Goodwillie-Weiss) Plong_c($\mathbb{R}^m, \mathbb{R}^n$).

Théorème. (Boavida-Weiss) $\overline{Plong_c}(\mathbb{R}^m,\mathbb{R}^n) \sim \Omega^{m-1} \mathrm{Hom}(E_m,E_n)$ pour $n-m \geqslant 3$. D'où une description combinatoire de $\mathrm{Hom}(E_m,E_n)$.