Physics formulae and data booklet

Scalars and vectors

force due to gravity (weight) $F_g = mg$

gravitational field strength near the surface

of the Earth $g = 9.8 \text{ N kg}^{-1}$

Linear motion

displacement s = final position - initial position

average speed $v_{av} = \frac{d}{\Delta t}$

average velocity $v_{av} = \frac{s}{\Delta t}$

 $V_{av} = \frac{u+v}{2}$

average acceleration $a_{\rm av} = \frac{\Delta v}{\Delta t}$

equations of motion with constant acceleration v = u + at

 $s = \frac{1}{2} (u + v)t$

 $s=ut+\frac{1}{2}\alpha t^2$

 $s = vt - \frac{1}{2}at^2$

 $v^2 = u^2 + 2as$

acceleration due to gravity at Earth's surface $g = 9.8 \text{ m s}^{-2}$

Momentum and force

Newton's second law $F_{\text{net}} = ma$

 $F_{\text{net}} = \frac{m(v - u)}{\Delta t}$

momentum p = mv

law of conservation of momentum $\Sigma p_{\text{before}} = \Sigma p_{\text{after}}$

where two objects collide and remain separate $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$

where two objects collide and combine together $m_1u_1 + m_2u_2 = m_3v_3$

where one object breaks apart into two

objects in an explosive collision $m_1 u_1 = m_2 v_2 + m_3 v_3$

impulse $I = \Delta p = mv - mu = F\Delta t$

Equilibrium of forces

torque $\tau = r_{\perp}F$

translational equilibrium in one dimension $F_{\text{net}} = 0$

 $F_{\text{net}, x} = 0$ and $F_{\text{net}, y} = 0$ translational equilibrium in two dimensions

 $F_{\rm net}$ = 0 and $\tau_{\rm net}$ = 0 static equilibrium

rotational equilibrium $\Sigma \tau_{\text{clockwise}} = \Sigma \tau_{\text{anticlockwise}}$

Energy, work and power

W = Fswork

 $E_{\rm k} = \frac{1}{2}mv^2$ kinetic energy

 $E_{\rm g} = mg\Delta h$ gravitational potential energy

Hooke's law $F = -k\Delta x$

 $E_{\rm s} = \frac{1}{2} k \Delta x^2$ elastic potential energy

power required to keep an object moving at a constant speed

 $P = FV_{av}$

efficiency (η) = $\frac{\text{useful energy transferred}}{\text{total energy supplied}} \times 100\%$ efficiency of energy transfer (in %)

 $= \frac{\text{useful energy out}}{\text{total energy in}} \times 100\%$