Droplet Coalescence Simulation Results

Problem Statement

Two 1 mm water droplets on a superhydrophobic surface, initially at rest and just touching, collapse into each other. The goal is to determine the resulting jumping velocity and compare it with experimental results.

Superhydrophobic Surface

Diameter = 1mm Velocity = 0 m/s

Program Files

BlockMeshDict

```
boundary(
caxis1 {type symmetryPlane;
       faces ((5 1 2 6));
caxis2 {type symmetryPlane;
faces ((5674));
bottomwall {type wall;
            faces ((5 1 0 4));
atmosphere{type patch;
            faces ((6 2 3 7)
            (1230)
            (4037));
```

alpha.water

```
boundaryField{
caxis1 { type symmetryPlane; }
caxis2 { type symmetryPlane; }
bottomwall { type constantAlphaContactAngle;
             theta 180;
             limit gradient;
             value uniform 180}
atmosphere { type inletOutlet;
             inletValue uniform 0;
             value uniform 0;}
```

Computational Domain

- •The domain is a quarter-symmetric block with half a droplet.
- •Reflection generates two closely spaced droplets.
- •Grid: 120×120×120120 \times 120 \times 120120×120×120 cells.
- •Domain size: 3 mm in each direction.

Result Video

COM Data

S No.	Time in ms	Ycom in m	Vcom in m/sec	Vcom(avg) in m/sec	V(experimental) in m/s	% Error
1	2.5	0.000497301			0.11	20.70%
2	2.6	0.000500689	0.03388			
3	2.7	0.000505048	0.04359			
4	2.8	0.000510769	0.05721			
5	2.9	0.000516811	0.06042			
6	3	0.000523604	0.06793			
7	3.1	0.000530682	0.07078			
8	3.2	0.000538646	0.07964			
9	3.3	0.000547353	0.08707			
10	3.4	0.000556096	0.08743			
11	3.5	0.000565055	0.08959			
12	3.6	0.000573533	0.08478			
13	3.7	0.000581407	0.07874			
14	3.8	0.000589157	0.0775			
15	3.9	0.000596661	0.07504			
16	4	0.000604357	0.07696			
17	4.1	0.000610865	0.06508			

COM Graph

Droplet Impact Simulation Results

Problem Statement

This study investigates the impact dynamics of a **2 mm diameter droplet** on a **superhydrophobic surface**, comparing the spread factor evolution over time through **experiments and numerical simulations**. High-speed imaging will capture experimental data, while **VOF-based simulations in OpenFOAM** will provide numerical insights. The goal is to assess the accuracy of computational models in predicting droplet spreading behavior and understand the influence of superhydrophobicity on impact dynamics

Superhydrphobic Surface

Problem Statement

The droplet of diameter 2mm is kept just above the superhydrophobic surface and is released with the velocity of 0.96 m/s downward direction.

Superhydrophobic Surface

Diameter = 2mm Velocity = 0.96 m/s

- •The domain is a quarter-symmetric block with half a droplet.
- •Reflection generates a full droplets.
- •Grid: 80×240×80.
- •Domain size: 4mm X 12mm X 4mm

COM Graph

