Calculus Formulas

Power Rules: $\frac{d}{dx}x^n = nx^{n-1}$ and $\int x^n dx = \frac{x^{n+1}}{n+1} + c$	Product Rule: $\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\cdot g'(x) + f'(x)\cdot g(x)$
Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2}$	Reciprocal Rule: $\frac{d}{dx} \left[\frac{1}{g(x)} \right] = \frac{-g'(x)}{[g(x)]^2}$
Chain Rule: $\frac{d}{dx}(f \circ g)(x) = f'[g(x)] \cdot g'(x)$	Integration-by-Parts: $\int u dv = uv - \int v du$

Trigonometric Functions		Inverse Trigonometric Functions		
Derivative	Integral	Derivative	Integral	
$\frac{d}{dx}\sin x = \cos x$	$\int \sin x dx = -\cos x + c$	$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1 - x^2}}$ $\int \frac{1}{1 - x^2} dx = \sin^{-1}\frac{u}{1 - x^2} + \frac{1}{1 - x^2} dx = \sin^{-1}\frac{u}{1 - x^2} + \frac{1}{1 - x^2} + 1$	$\int \frac{1}{\sqrt{a^2 - u^2}} dx = \sin^{-1} \frac{u}{a} + c$	
$\frac{d}{dx}\cos x = -\sin x$	$\int \cos x dx = \sin x + c$	$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$	$\int \sqrt{a^2 - u^2} dx dx dx$	
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \tan x dx = \ln \sec x + c$ $\int \sec^2 x dx = \tan x + c$	$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\int \frac{1}{a^2 + u^2} dx = \frac{1}{a} \tan^{-1} \frac{u}{a} + c$	
$\frac{d}{dx}\cot x = -\csc^2 x$	$\int \cot x dx = \ln \sin x + c$ $\int \csc^2 x dx = -\cot x + c$	$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$		
$\frac{d}{dx}\sec x = \sec x \cdot \tan x$	$\int \sec x dx = \ln \sec x + \tan x + c$ $\int \sec x \cdot \tan x dx = \sec x + c$	$\frac{d}{dx}\sec^{-1}x = \frac{1}{ x \sqrt{x^2 - 1}}$	$\int \frac{1}{u\sqrt{u^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \frac{u}{a} + c$	
$\frac{d}{dx}\csc x = -\csc x \cdot \cot x$	$\int \csc x dx = \ln \csc x - \cot x + c$ $\int \csc x \cdot \cot x dx = -\csc x + c$	$\frac{d}{dx}\csc^{-1}x = \frac{-1}{ x \sqrt{x^2 - 1}}$	$\int_{u}^{u} \sqrt{u^2 - a^2} \qquad a \qquad a$	

$$\begin{cases}
\sin^2 x + \cos^2 x = 1 & \sin 2x = 2\sin x \cos x & \cos^2 x = \frac{1 + \cos 2x}{2} \\
1 + \cot^2 x = \csc^2 x & \cos 2x = \cos^2 x - \sin^2 x & \sin^2 x = \frac{1 - \cos 2x}{2} \\
\tan^2 x + 1 = \sec^2 x & \cos(x + y) = \cos x \cos y - \sin x \sin y & \sin(x + y) = \sin x \cos y + \cos x \sin y
\end{cases}$$

Exponential Functions		Logarithmic Functions		
Derivative	Integral		Derivative	Integral
$\frac{d}{dx}(e^x) = e^x$	$\int e^x dx = e^x + c$		$\frac{d}{dx} \left(\ln x \right) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$
$\frac{d}{dx}(b^x) = (\ln b)b^x$	$\int b^x dx = \frac{b^x}{\ln b} + c$		$\frac{d}{dx} (\log_b x) = \frac{1}{(\ln b)x}$	
Definition of Log base b: $\log_b N = x \Leftrightarrow b^x = N$		Change of Base Formula: $\log_b x = \frac{\ln x}{\ln b} = \frac{\log x}{\log b}$		

Identities:
$$\begin{cases} \ln(e^x) = x & e^{\ln x} = x & \ln e = \log 10 = \log_b b = 1 \\ \log_b(b^x) = x & b^{\log_b x} = x & \ln 1 = \log 1 = \log_b 1 = 0 \end{cases}$$

CSSS 505

Calculus Summary Formulas

Differentiation Formulas

17. $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$ Chain Rule

$$1. \quad \frac{d}{dx}(x^n) = nx^{n-1}$$

$$2. \quad \frac{d}{dx}(fg) = fg' + gf'$$

3.
$$\frac{d}{dx}(\frac{f}{g}) = \frac{gf' - fg'}{g^2}$$

4.
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

$$5. \quad \frac{d}{dx}(\sin x) = \cos x$$

$$6. \quad \frac{d}{dx}(\cos x) = -\sin x$$

7.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$8. \quad \frac{d}{dx}(\cot x) = -\csc^2 x$$

9.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

10.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$11. \ \frac{d}{dx}(e^x) = e^x$$

$$12. \ \frac{d}{dx}(a^x) = a^x \ln a$$

$$13. \ \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$14. \ \frac{d}{dx}(Arc\sin x) = \frac{1}{\sqrt{1-x^2}}$$

15.
$$\frac{d}{dx}(Arc\tan x) = \frac{1}{1+x^2}$$

16.
$$\frac{d}{dx}(Arc\sec x) = \frac{1}{|x|\sqrt{x^2-1}}$$

Trigonometric Formulas

1.
$$\sin^2\theta + \cos^2\theta = 1$$

2.
$$1 + \tan^2 \theta = \sec^2 \theta$$

3.
$$1 + \cot^2 \theta = \csc^2 \theta$$

4.
$$\sin(-\theta) = -\sin\theta$$

5.
$$\cos(-\theta) = \cos\theta$$

6.
$$\tan(-\theta) = -\tan\theta$$

7.
$$\sin(A+B) = \sin A \cos B + \sin B \cos A$$

8.
$$\sin(A-B) = \sin A \cos B - \sin B \cos A$$

9.
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

10.
$$cos(A - B) = cos A cos B + sin A sin B$$

13.
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\cot \theta}$$

14.
$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$$

15.
$$\sec \theta = \frac{1}{\cos \theta}$$

16.
$$\csc \theta = \frac{1}{\sin \theta}$$

17.
$$\cos(\frac{\pi}{2} - \theta) = \sin \theta$$

18.
$$\sin(\frac{\pi}{2} - \theta) = \cos \theta$$

11.
$$\sin 2\theta = 2\sin\theta\cos\theta$$

12.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$

Integration Formulas

Definition of a Improper Integral

 $\int_{a}^{b} f(x) dx$ is an improper integral if

- 1. f becomes infinite at one or more points of the interval of integration, or
- 2. one or both of the limits of integration is infinite, or
- 3. both (1) and (2) hold.

1.
$$\int a \, dx = ax + C$$

2.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

$$3. \quad \int \frac{1}{x} dx = \ln|x| + C$$

$$4. \quad \int e^x \ dx = e^x + C$$

$$5. \quad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$6. \quad \int \ln x \, dx = x \ln x - x + C$$

$$7. \quad \int \sin x \, dx = -\cos x + C$$

$$8. \quad \int \cos x \, dx = \sin x + C$$

9.
$$\int \tan x \, dx = \ln|\sec x| + C \text{ or } -\ln|\cos x| + C$$

$$10. \int \cot x \, dx = \ln |\sin x| + C$$

11.
$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

12.
$$\int \csc x \, dx = \ln|\csc x - \cot x| + C$$

$$13. \int \sec^2 x \, dx = \tan x + C$$

14.
$$\int \sec x \tan x \, dx = \sec x + C$$

$$15. \int \csc^2 x \, dx = -\cot x + C$$

$$16. \int \csc x \cot x \, dx = -\csc x + C$$

$$17. \int \tan^2 x \, dx = \tan x - x + C$$

18.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} Arc \tan\left(\frac{x}{a}\right) + C$$

$$19. \int \frac{dx}{\sqrt{a^2 - x^2}} = Arc \sin\left(\frac{x}{a}\right) + C$$

20.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} Arc \sec \frac{|x|}{a} + C = \frac{1}{a} Arc \cos \left| \frac{a}{x} \right| + C$$