# **CAPITOLO 7**

- 7.1 Retta tangente, derivata
- 7.2 Derivata destra e sinistra, punto angoloso e cuspide
- 7.3 Proprietà elementari della derivata
- 7.4 Derivate delle funzioni elementari
- 7.5 Calcolo delle derivate (ESERCIZI ESEMPIO SUL LIBRO)
- 7.6 Estremi locali e derivate (TEOREMI)
- 7.7 Teorema del valor medio e applicazioni (TEOREMI)
- 7.8 Derivate successive
- 7.9 Funzioni convesse e concave (GUARDA FOGLIO STUDIO DI FUNSIZONI)
- 7.10 Studio di funzione (GUARDA FOGLIO STUDIO DI FUNSIZONI)
- 7.11 Polinomio di Taylor
- 7.12 Applicazioni del teorema di Peano
- 7.13 Approssimazione di funzioni con polinomi di Taylor

# LE DERIVATE $\rightarrow y = f(x)$ la derivata di f(x) sarà $y^I = f^I(x)$

### **Definizione:**

• La derivata di una funzione è il limite, se esiste ed è finito, per h che tende a 0 del rapporto incrementale.

$$f^{I}(x) = \lim_{h \to 0} \frac{Dy}{Dx} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

## Significato geometrico:

• Il significato geometrico della derivata è il coefficiente angolare della retta tangente



### Perché calcoliamo le derivate?

• Conoscere l'andamento dei coefficienti angolari di una funzione ci aiuta. A capire dove la funzione è crescente e dove è decrescente. Inoltre ci consente di stabilire i punti di massimo e minimo della funzione che stiamo studiando.

#### Come le calcoliamo:

• Avendo f(x) derivabile  $\forall x \in A$  allora diremo che è derivabile in A e scriveremo  $y = f^{I}(x_0)$  e andremo a chiamarla derivata prima.

#### Derivata destra e sinistra, punto angoloso, cuspidi e flessi a tangente verticale

• Possiamo calcolarci i **punti di non derivabilità**, per farlo ci servirà calcolarci la derivata destra e sinistra.

$$f'_{+}(x_0) := \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} \to \text{derivata destra}$$

$$f'_{-}(x_0) := \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \to \text{derivata sinistra}$$

- Esistono 3 tipi di punti di non derivabilità
  - **Punto angoloso** → se i due limiti sono entrambi finiti ma assumono valori diversi
  - Cuspide  $\rightarrow$  se i due limiti sono entrambi infiniti, in particolar modo se sono infiniti di segno opposto (cioè uno  $+\infty$  e l'altro  $-\infty$ )

- Flesso a tangente verticale  $\rightarrow$  se i due limiti sono infiniti dello stesso segno (cioè entrambi  $+\infty$  o entrambi  $-\infty$ )

| Punti di non<br>derivabilità   | Grafico                                 | Derivata                                                                                             |
|--------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|
| Flesso a tangente<br>verticale | y y y y o o o o o o o o o o o o o o o o | a) $f'_{-}(c) = f'_{+}(c) = +\infty$<br>b) $f'_{-}(c) = f'_{+}(c) = -\infty$                         |
| Cuspide                        | a. Verso il basso.                      | a) $f'_{-}(c) = -\infty$ , $f'_{+}(c) = +\infty$<br>b) $f'_{-}(c) = +\infty$ , $f'_{+}(c) = -\infty$ |
| Punto angoloso                 | y y y y o c x                           | $f'(c) \neq f'_+(c)$ a) entrambe finite b) una finita, l'altra infinita                              |

## Proprietà elementari della derivata

- $(f' \circ g')(x_0) = f'(g(x_0))g'(x_0) \rightarrow \text{derivata di una funzione composta}$
- $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$  dove  $y_0 = f(x_0) \rightarrow$  derivata della funzione inversa

# Derivate delle funzioni elementari

Chiamiamo  $f(x) = y e f^{I}(x_0) = y^{I}$ 

| FUNZIONI                                | DERIVATE                            |
|-----------------------------------------|-------------------------------------|
| $y = K$ $dove \ k \ e \ una \ costante$ | $y^I = 0$                           |
|                                         |                                     |
| $y = x^n$                               | $y^{I} = n (per) x^{n-1}$           |
| $y = e^x$                               | $y^I = e^x$                         |
| $y = a^x$                               | $y^{I}=a^{x}\left( per ight) \ln a$ |
|                                         |                                     |

| $y = \ln x$                   | $y^I = \frac{1}{x}$                   |
|-------------------------------|---------------------------------------|
| $y = log_a x$                 | $y^I = \frac{1}{x \ln a}$             |
| $y = \sqrt{x}$                | $y^I = \frac{1}{2\sqrt{x}}$           |
| $y = \sqrt[n]{x}$             | $y^I = \frac{1}{n \sqrt[n]{x^{n-1}}}$ |
| $y = \sin x$                  | $y^{I} = \cos x$                      |
| $y = \cos x$                  | $y^{I} = -\sin x$                     |
| y = tan x                     | $y^I = \frac{1}{\cos^2 x}$            |
| $y = \cot x$                  | $y^{I} = -\frac{1}{\sin^{2} x}$       |
| $y = \arcsin x$               | $y^I = \frac{1}{\sqrt{1 - x^2}}$      |
| $y = \arccos x$               | $y^I = -\frac{1}{\sqrt{1-x^2}}$       |
| y = arctan x                  | $y^I = \frac{1}{1 + x^2}$             |
| $y = \operatorname{arccot} x$ | $y^I = -\frac{1}{1+x^2}$              |

## **Derivate successive**

• Possiamo considerare f 'come una semplice funzione da derivare (nuovamente) e si indica con il simbolo f '' e verrà chiamata derivata seconda.

$$f''(x) := \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

• Possiamo anche calcolarci la derivata n-esima di f in x, o derivata di ordine n+1 in x, e si scrive...

$$f^{(n+1)}(x) := \lim_{h \to 0} \frac{f^{(n)}(x+h) - f^{(n)}(x)}{h}$$