

Chapitre 3 Les réseaux et leur topologie

Cours Systèmes et réseaux

- ► Topologie = organisation physique et logique d'un réseau.
- Organisation physique : structure physique du réseau, la façon dont les machines sont connectées
- Organisation logique : comment les informations circulent sur ce réseau physique

représentera un nœud du réseau (donc un terminal, un hub, un switch ou un routeur).

Modes de propagation de l'information

- ▶ 2 modes de propagation de l'information :
- Le mode par diffusion (broadcast)
 - Utilisation d'un seul support de transmission
 - Message envoyé sur le réseau
 - Toutes les unités reçoivent le message
 - ► A la réception :
 - conserver le message
 - l'ignorer si celui-ci ne le concerne pas
 - Concerne les topologies en bus et anneau

- Le support de transmission ne relie qu'une paire d'unités
- Pour que 2 entités communiquent, elles doivent passer par un intermédiaire (élément d'interconnexion)
- A la réception
 - La stocke
 - ▶ La conserve s'il en est le destinataire
 - La retransmet à l'un des ordinateurs qui lui sont associés si nécessaire
- Concerne les topologies en étoile, maillée et hybride

DIFFUSION POINT A POINT

Topologie en bus

Pas de communication simultanée → risque de collision La ligne est appelée bus

- → Du point de vue logique : utilisation de la méthode d'accès CSMA/CD : Organise le droit à la parole
- → Voir tableau

Avantages:

- ► Simple à mettre en œuvre
- Peu coûteux
- La défaillance d'un élément ne met pas le réseau hors service

Inconvénients :

- ▶ Signal non régénéré → longueur du câble limitée
- Limitation du nombre de machines pouvant être connectées ensemble
- La défaillance du câble met le réseau hors service
- Comme toutes les machines utilisent le même câble, la vitesse de transmission est très faible

Topologie en anneau

Ordinateurs ou périphériques sont reliés les uns aux autres il n'y a pas d'extrémités contrairement à un réseau BUS

Topologie logique en anneau : méthode du Token Ring

→ tableau

Avantages :

- ▶ Panne d'un élément → pas de panne du réseau
- ► La défaillance du câble → pas de panne du réseau si le réseau doublé avec 2 anneaux transmettant dans les 2 sens et reconfiguration
- Quantité de câbles minimale
- La technique du jeton évite les collisions
- Signal régénéré à chaque station

Inconvénients :

- ► Si le réseau pas doublé → pas fiable en cas de panne d'un élément
- Pas très efficace : l'élément qui transmet garde le jeton (les autres ne peuvent rien faire). Ce n'est ni rapide, ni efficace.
- Limitation du nombre de machines pouvant être connectées ensemble
- En réalité, les ordinateurs ne sont pas réellement reliés en boucle mais ils sont connectés à un répartiteur qui fournit à chaque station un « temps de parole ».

Topologie en étoile

Liaison point à point généralisée dans laquelle chaque élément est relié à un élément central appelé concentrateur (HUB, switch, routeur) par un câble spécifique

Routeur : uniquement si on a affaire à des réseaux différents

Avantages :

- ► Facilité de câblage : un seul câble entre le PC et le concentrateur
- Réseau OK même si un de ses ordinateurs/éléments périphériques KO
- Si l'élément central le permet, on peut connecter de très nombreuses machines ensemble
- L'évolution du réseau ne nécessite pas de modifications dans le câblage du réseau existant.

Il suffit d'ajouter des câbles supplémentaires

- Des éléments peuvent être ajoutés facilement au réseau
- Pas de risque de collision de données

Inconvénients :

- Réseau inutilisable en cas de panne du concentrateur
- L élément central devient un goulot d'étranglement
- Le coût de ce type de connexion est élevé car le câblage est assez long

Topologies logiques pour une topologie physique en étoile

Ethernet

Token ring

Pour être plus précise sur Ethernet :

Ethernet = norme IEEE 802.3

- = standard de transmission de données pour réseau local
- = Toutes les machines sont connectées à une même ligne de communication constituées de câbles cylindriques

Différentes variantes en fonction du type de câble et de son diamètre :

10Base2 → câble coaxial fin de faible diamètre (thin Ethernet)

10Base5 → câble coaxial de gros diamètre (thick Ethernet)

10Base-T → câble à paires torsadées (le T signifie twisted pair), le débit 10 Mbps,

100Base-FX → fibre optique multimode. Débit 100Mbps (F signifie *Fiber*)

100Base-TX → Comme 10Base-T mais avec débit de 100Mbps

1000Base-T → double paire torsadée (cat 5e) avec débit = 1Gbps

1000Base-SX → fibre optique multimode avec signal de faible longueur d'onde (S signifie short)

1000Base-LX → fibre optique multimode avec signal de longueur d'onde élevé (L signifie *long*)

Nouveauté depuis quelques années : Ethernet commuté (voir plus loin)

Topologie en arbre

- Avantages:
 - Adapté à des réseaux de plus grande taille : divise l'ensemble du réseau en plusieurs parties qui sont facilement gérables
 - Evite le souci des réseaux en étoile qui sont limités par la capacité du noyau central
- Inconvénient :
 - ▶ Une panne sur un switch découpe le réseau en 2 sous-réseaux indépendants

Topologie maillée

Amélioration de la topologie en étoile dans laquelle un poste est connecté à tous les autres

- Avantages:
 - > Système très résistant aux pannes puisqu'on a redondance des chemins
 - Système très évolutif
- Inconvénients :
 - ► Beaucoup de câbles

Topologie hybride

- Exemple: Internet = un réseau hybride car il joint des réseaux en anneau avec des réseaux en bus, en étoile, ...
- D'un point de vue logique, il peut aussi être vu comme un réseau maillé car plusieurs chemins de communication entre 2 postes