Bootstrap and Resampling Methods

Lecture 1: Introduction to the Course

Elia Lapenta (CREST & ENSAE)

January 31st

The goals of this course

- Learn the principles and ideas at the basis of bootstrap, jackknife, and resampling
- ► Learn how to implement such methods in practice
- Learn the mathematical/statistical background at the basis of bootstrap, jackknife, and resampling methods

To this end, we need to

- know the basics of probability theory and statistics I
- learn and use the statistical language *R*.
- Ask questions!

Overview of today's class

Lecture 1: Introduction to Jackknife, Bootstrap, Subsampling and other resampling methods ⇒ These are used to make inference on a parameter that we do not know but we are interested in

The goal of today's class is to broadly present

- ▶ What are the motivations for studying these methods? Why are they useful? How we will apply such methods in practice?
- What are the models we will apply these methods to
- What is the approach we will take in the course

Why Bootstrap, Jackknife, and Subsampling methods are

useful?

Why Bootstrap, Jackknife, and Subsampling are useful? A Road map

- ► The problem of constructing Confidence Intervals and Hypothesis Tests
- Basic approach: exact Confidence Intervals
- Confidence Intervals and Hypothesis Tests by Asymptotic Approximations
- The advantages of the Bootstrap: Automatic estimation of the distribution of a statistic
- ► The advantages of the Jackknife: Automatic Bias and Variance Estimation
- ► The motivations for subsampling: More robust than the bootstrap

less accurate

A General Problem of Inference

- We observe a sample $\{Z_i\}_{i=1}^n$ of iid data from a probability P.
- We are interested in a population parameter θ_0 that is unknown to us.
- We have an estimator of θ_0 , say $\widehat{\theta}$
- ▶ Using $\widehat{\theta}$ we want to make inference on θ_0 , i.e. we want to "discover features of θ_0 "

Example: We want to know $\mathbb{E}Z$ and we estimate it by the sample average $\overline{Z}:=\frac{1}{n}\sum_{i=1}^{n}Z_{i}$

A general problem of inference: consistency is not enough

- ▶ In general, $\widehat{\theta}$ will be a good approximation of θ_0 , in the sense that $\widehat{\theta} \stackrel{P}{\to} \theta_0$
- ▶ But sometimes consistency is not enough! Assume we want to know if $\theta_0 \ge 0$
 - ▶ We might get $\widehat{\theta} < 0$ just because of sampling errors (we are unlucky!) and this might lead us to the wrong conclusion that $\theta_0 < 0$
- ▶ Another example: Assume we want to know if $\theta_0 \neq 0$.
 - ▶ If we get $\hat{\theta} = 0.01$ is this enough to say that $\theta_0 = 0$?
- \Rightarrow Because of sampling errors, consistency is not enough to make inference on a parameter θ_0 !

In other words, consistency does not tell us if the differences between $\widehat{\theta}$ and θ_0 are significant or not!

A general problem of inference: construct CIs

Since consistency of $\widehat{\theta}$ is not enough to make inference about θ_0 , we must rely on other tools.

- To make inference on θ_0 , it would be better to construct some confidence intervals (CIs)
- ▶ To obtain the CIs we use the distribution of $\widehat{\theta}$ that usually depends on θ_0

Example. Assume we observe $\{Z_i\}_{i=1}^n$ that are iid, with $Z_i \sim \mathcal{N}(\theta_0, V)$ and V known. We want to know if $\theta_0 = 0$.

For
$$\widehat{ heta} := \overline{Z}$$
 we have $\widehat{ heta} \sim \mathcal{N}(heta_0, V/n)$ so $\frac{\sqrt{n}(\widehat{ heta} - heta_0)}{\sqrt{V}} \sim \mathcal{N}(0, 1)$

A general problem of inference: exact CIs

From the exact distribution of $\widehat{\theta}$, we can construct CIs about θ_0 : If q_{β} is the β th quantile of $\mathcal{N}(0,1)$, then

$$P\left(q_{lpha/2}<rac{\widehat{ heta}- heta_0}{\sqrt{V/n}}\leq q_{1-lpha/2}
ight)=1-lpha\,.$$

So the $1 - \alpha$ Confidence Interval for θ_0 will be

$$\widehat{CI}(1-lpha) = \left[\widehat{ heta} - q_{1-lpha/2}\sqrt{rac{V}{n}}\,,\,\widehat{ heta} - q_{lpha/2}\sqrt{rac{V}{n}}
ight]$$

In the sense that

$$P\left(\theta_0 \in \widehat{CI}(1-\alpha)\right) = 1-\alpha$$

This is an exact Confidence Interval!

A general problem of inference: CIs by Asymptotic Approximation

However, in the most of the cases, we cannot obtain an exact Confidence Intervals. In the previous example

- $ightharpoonup Z_i \sim \mathcal{N}$ (exact normality) might not hold
- V might be unknown.

When we the distribution of the observations is unknown, we obtain Confidence Intervals for θ_0 by using an Asymptotic Approximation based on the CLT:

Given
$$\widehat{\theta} = \overline{Z}$$
, $\theta_0 = \mathbb{E}Z$, $V = Var(Z)$, we have $\sqrt{n}(\widehat{\theta} - \theta_0) \stackrel{d}{\to} \mathcal{N}(0, V)$ for $n \to \infty$ so that if $\widehat{V} \stackrel{P}{\to} V$ then

$$S_n:=rac{\sqrt{n}(\widehat{ heta}- heta_0)}{\sqrt{\widehat{V}}}\stackrel{d}{ o} \mathcal{N}(0,1)$$
 , as $n o\infty$

A general problem of inference: CIs by Asymptotic Approximation, ct'ed

Idea: The asymptotic distribution provides an approximation to the true distribution of $\sqrt{n}(\widehat{\theta} - \theta_0)/\sqrt{\widehat{V}} \implies \text{Use it to construct CIs.}$

Denote with
$$\Phi$$
 the cdf of $\mathcal{N}(0,1)$. Then, as $n \to \infty$
$$\mathcal{S}_n = \frac{\sqrt{n}(\widehat{\theta} - \theta_0)}{\sqrt{\widehat{\mathcal{V}}}} \overset{d}{\to} \mathcal{N}(0,1) \Longleftrightarrow P\left(S_n \le s\right) \to \Phi(s) \text{ for all } s \in \mathbb{R}$$

Hence, recalling that q_{β} is the β th quantile of $\mathcal{N}(0,1)$, we get

$$P\left(q_{lpha/2}<rac{\sqrt{n}(\widehat{ heta}- heta_0)}{\sqrt{\widehat{V}}}\leq q_{1-lpha/2}
ight) \longrightarrow 1-lpha$$
 asymptotic

A general problem of inference: CIs by Asymptotic Approximation, ct'ed

So, the $1 - \alpha$ asymptotic CI for θ_0 is

$$\widehat{\mathcal{C}\mathcal{U}}^{A}(1-lpha) := \left[\widehat{ heta} - q_{1-lpha/2}\sqrt{rac{\widehat{\mathcal{V}}}{n}}\,,\,\widehat{ heta} - q_{lpha/2}\sqrt{rac{\widehat{\mathcal{V}}}{n}}
ight]$$

in the sense that

$$P\left(heta_0 \in \widehat{CI}^A(1-lpha)
ight)
ightarrow 1-lpha$$

- So far we have focused on CIs
- When we want to test $H_0: \theta_0 = \overline{\theta}$, the decision rule for a test at the α nominal level is Reject H_0 if $\overline{\theta} \notin \widehat{Cl}^A(1-\alpha)$

Issues with the Asymptotic Approximation

$$P\left(\theta_0 \in \widehat{Cl}^A(1-\alpha)\right) \xrightarrow{h \to t \infty} 1-\alpha$$

However,

- \blacktriangleright We need an estimator \widehat{V} of V: in some cases, constructing such estimators is difficult
- ► For finite samples this is an approximation, so there will be an approximation error ⇒ In finite samples it might happen that

$$P\left(heta_0 \in \widehat{\mathit{CI}}^{A}(1-lpha)
ight) ext{ is far from } (1-lpha)$$

- So, $\widehat{Cl}^A(1-\alpha)$ might not contain θ_0 with a sufficiently high probability: We do not have a correct coverage probability!
- ▶ If we test $H_0: \theta_0 = \overline{\theta}$ and the asymptotic approximation is not good, then the probability of rejecting H_0 is higher than α : We do not have a correct size control!

Why is the bootstrap is useful in inference?

Summarizing the approach based on the asymptotic approximation:

- ▶ \widehat{Cl}^A is called asymptotic CI because it has the correct size (1α) only asymptotically, i.e. when $n \to \infty$.
- ► The central idea is to use the asymptotic distribution to approximate the true distribution of the statistic: Since

$$P(S_n \leq \cdot) \approx \Phi(\cdot)$$

we replace the quantiles of the exact distribution of S_n with the quantiles of $\mathcal{N}(0,1)$.

However, this is still an approximation! In finite samples there is an approximation error

Central Question: Is there a better way to approximate the true distribution of the statistic S_n ?

The Bootstrap Principle

Recall that S_n is a function of the data.

- ightharpoonup Central Idea The bootstrap <u>approximates the true distribution of S_n by resampling</u> the data
- Resampling means to generate artificial data (i.e. artificial samples) using the sample data
- ightharpoonup Once an artificial sample has been created, the statistic S_n is computed using such an artificial sample
- We can repeat this process a very large number of times
- This provides an artificial distribution of S_n that is used to approximate the true distribution of S_n

We have 3 main advantages of the Bootstrap! Before we provide an example

Example: Pairwise Bootstrap

Given the sample $\{Z_i\}_{i=1}^n$ we have the statistic

$$S_n := \sqrt{n}(\overline{Z} - \mathbb{E}Z)$$

The pairwise bootstrap works as follows:

- ▶ Draw with replacement *n* observations from $\{Z_i\}_{i=1}^n$, say $\{Z_i^*\}_{i=1}^n$
- Compute the "bootstrap counterpart" of S_n as $S_n^* := \sqrt{n}(\overline{Z^*} |\overline{Z}|)$, where $\overline{Z^*}$ is the average of $\{Z_i^*\}_{i=1}^n$ original sample mean
- ▶ Repeat the two steps above many times, say *B* times

We obtain in such a way a distribution of statistics that is used to approximate the true distribution of S_n get empirical distribution of $S_n^* \longrightarrow q_{1-\frac{\omega}{2}}$,

1st advantage of the Bootstrap ${}^{\varrho}\mathcal{J}$. $\int_{\mathbb{R}^{(\overline{Z}-1)}} \mathbb{E}(\overline{Z}) \xrightarrow{N \to \infty} \mathcal{N}(0, V_{ar}(\overline{z}))$

1st advantage of the bootstrap: asymptotic refinements

When the statistic is asymptotically pitoval, the bootstrap distribution approximates the : Variation true distribution of S_n better than the asymptotic distribution

- A statistic is asymptotically pivotal if its asymptotic distribution does not depend on unknown parameters.
- ▶ In our previous example $S_n \stackrel{d}{\to} \mathcal{N}(0,1)$ and the $\mathcal{N}(0,1)$ does not depend on unknown parameters.
- \triangleright The bootstrap distribution can be used to construct bootstrap CIs for θ_0 : In general they are more precise than the asymptotic CIs.

When a statistic is not asymptotically pivotal, we can use the double bootstrap to obtain refinements

2nd advantage of the Bootstrap

2nd advantage of the bootstrap: no asymptotic approximation

In some cases, the asymptotic distribution of S_n is very intricate \Rightarrow the bootstrap provides an automatic way to approximate such a distribution

Example. We will see that in some specification tests $S_n \stackrel{d}{\to} \mathbb{U}$, where \mathbb{U} is a transformation of a Gaussian process with a continuum of covariances!

The asymptotic distribution is well defined, but cannot be used to approximate the true distribution of S_n

3rd advantage of the Bootstrap

3rd advantage of the bootstrap: difficult expression of the asymptotic variance

In some cases, the asymptotic distribution depends on a parameter with a complicated expression \Rightarrow the bootstrap provides an **automatic** and **easy** way to approximate the true distribution of the statistic.

Example. We have previously seen that $\sqrt{n}(\widehat{\theta} - \theta_0) \stackrel{d}{\to} \mathcal{N}(0, V)$

► If *V* is difficult to estimate, the asymptotic approximation will be difficult to implement.

Let's be careful though! Bootstrapping doesn't always work

There are cases where the bootstrap does not work:

ere are cases where the bootstrap does not work:

e.g.
$$\theta = \underset{\theta \in \Theta}{\operatorname{agmin}} \quad \text{if } \theta = 0$$
,

Nhen the true parameter θ_0 lies on the boundary of the parameter space

not work.

- ▶ When making inference on the upperbound of the support of a random variable ((jwerbound) e.g. $\chi \sim \mathcal{U}([o,\theta])$ With weak Instrumental Variables (if the statistic is not the correct one)
- When it is not able to replicate an asymptotic bias (matching estimator of Average Treatment Effects)

10-10,1]

The Jackknife

The Jackknife is an automatic method used to estimate the (asymptotic) bias and variance of a statistic (or estimator).

However, differently from the bootstrap, it does not estimate the distribution of a statistic

Idea: Each observation is excluded from the sample and the statistic (estimator) is recomputed on the remaining n-1 observations. Then, the resulting statistics are "aggregated" to estimate the bias or variance

Applications

- An estimator is biased and we want to reduce its bias
- ► The asymptotic variance of a statistic has a difficult expression and we want to avoid a difficult computations

Jackknife bias estimation

Let $\widehat{\theta} := G_n(Z_1, \dots, Z_n)$ be a statistic (estimator) used to estimate θ_0 .

- ► The bias of $\widehat{\theta}$ is defined as $b := \mathbb{E}\widehat{\theta} \theta_0$
- ► The jackknife estimator of the bias is

$$b_{jack} := (n-1)\left(\widehat{\widehat{ heta}} - \widehat{ heta}\right)$$

where

$$\overline{\widehat{\theta}}:=\frac{1}{n}\sum_{i=1}^{n}\widehat{\theta}_{n-1,i}\quad\text{and}\quad\widehat{\theta}_{n-1,i}:=G_{n-1}(Z_{1},\ldots,Z_{i-1},Z_{i+1},\ldots,Z_{n})$$

(each $\widehat{\theta}_{n-1,i}$ is the statistic based on all the observations except the *i*th)

▶ The jackknife bias corrected estimator is $\widehat{\theta} - b_{jack}$

Jackknife variance estimation

As we have previously seen

$$rac{\widehat{ heta}- heta_0}{\sigma_n}\stackrel{d}{ o} \mathcal{N}(0,1)$$

 $\sigma_n^2 := \sigma^2/n$, and σ is the (unknown) asymptotic variance of $\widehat{\theta}$.

▶ If we have an estimator $\widehat{\sigma} \stackrel{P}{\rightarrow} \sigma$, then

$$\sqrt{n} \frac{\widehat{\theta} - \theta_0}{\widehat{\sigma}} \stackrel{d}{ o} \mathcal{N}(0, 1)$$

- ▶ However, σ might have a very complicated expression $\Rightarrow \widehat{\sigma}$ might be difficult or not convenient to compute when it is based on the expression of σ (i.e. the sample analog of σ)
- lacksquare The jackknife provides an automatic way to estimate σ

Jackknife variance estimation

The Jackknife variance estimator is

$$v_{jack}^2 := \frac{(n-1)}{n} \sum_{i=1}^n \left[\widehat{\theta}_{n-1,i} - \overline{\widehat{\theta}} \right]^2 \quad \text{ where } \overline{\widehat{\theta}} := \frac{1}{n} \sum_{i=1}^n \widehat{\theta}_{n-1,i}$$

and $\widehat{\theta}_{n-1,i}$ is the estimator based on all the observations but the *i*th.

▶ We will show that $v_{jack}/\sigma_n \stackrel{P}{\rightarrow} 1$ so that

$$rac{\widehat{ heta} - heta_0}{v_{jack}} \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

Subsampling

Subsampling

Motivation: As we have seen, the bootstrap does not work in some cases. The **subsampling** is a method that is more robust than the bootstrap and works under weaker conditions.

Idea: Recall from the example on the pairwise bootstrap that the bootstrap is based on drawing *n* observations from the sample.

Instead of drawing n observations with replacement, the subsampling draws m < n observations without replacement. It then repeats this process many times.

Subsampling Main features of the subsampling

- The subsampling is more robust than the bootstrap and it works under weaker conditions
 - So, it can replace the asymptotic approximation when the bootstrap can't
- ► However, the robustness comes at a price: when the bootstrap works, subsampling is less accurate than the bootstrap
- Moreover, when performing the subsampling, we need to choose m such that $m/n \to 0$: in general, we do not know how to choose m "optimally"

OLS

▶ We observe $\{Y_i, X_i\}_{i=1}^n$, Y_i scalar and X_i vector.

$$Y = X^T \beta_0 + \varepsilon$$
 with $\mathbb{E} X \varepsilon = 0$

 β_0 are the coefficients of the linear projection of Y onto X and are estimated by

$$\widehat{\beta} := \left(\overline{XX^T}\right)^{-1} \overline{XY}$$

From our elementary courses we remember that

$$\sqrt{n}(\widehat{\beta} - \beta_0) \stackrel{d}{\to} \mathcal{N}(0, \Sigma)$$
 where $\Sigma := \mathbb{E}(XX^T)^{-1} \mathbb{E}\varepsilon^2 XX^T \mathbb{E}(XX^T)^{-1}$

We will see that the Jackknife provides a good estimator of Σ , better than the sample analog of Σ (the White-Huber estimator)

2SLS (e.g., Local Average Treatment Effect)

▶ We observe $\{Y_i, X_i, W_i\}_{i=1}^n$, the model is

$$Y = X^T \beta_0 + \varepsilon$$
 with $\mathbb{E}\varepsilon W = 0$

 $\mathbb{E} X \varepsilon \neq 0$, so X is an endogenous regressor

▶ The 2 Stages Least Squares estimator of β_0 is

$$\widehat{\beta}_{2SLS} := \left[(\overline{XW^T}) (\overline{WW^T})^{-1} (\overline{WX^T}) \right]^{-1} (\overline{XW^T}) (\overline{WW^T})^{-1} (\overline{WY})$$

- ▶ Unlike the OLS estimator, $\widehat{\beta}_{2SLS}$ is biased ($\mathbb{E}\widehat{\beta}_{2SLS} \neq \beta_0$) in finite samples.
- \blacktriangleright We will see that the Jackknife provides a good estimator of the bias of $\widehat{\beta}_{2SLS}$

M Estimator

We observe a random sample $\{Z_i\}_{i=1}^n$. Given a mapping $(z, \theta) \mapsto m_{\theta}(z)$, the parameter of interest is

$$heta_0 = rg \max_{ heta \in \Theta} \mathbb{E} m_{ heta}(Z)$$

where Θ is the parameter space.

An M-estimator is

$$\widehat{\theta} = \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} m_{\theta}(Z_i)$$

Examples: Maximum Likelihood, Non Linear Least Squares, etc.

• We will study in detail several bootstrap procedures to approximate the distribution of $\widehat{\theta}$.

NP density estimator

We observe a random sample $\{Z_i\}_{i=1}^n$ and f is the density of each Z_i .

Goal: estimate f without imposing parametric assumptions on it.

A popular estimator is the Kernel estimator:

$$\widehat{f}(z) := rac{1}{nh} \sum_{i=1}^n K\left(rac{Z_i - z}{h}
ight)$$
 keynel smoothing

where K is a user-chosen function that is symmetric about zero with $\int K(u)du = 1$.

▶ We will study several bootstrap schemes for approximating the distribution of \hat{f} . We will then construct CIs for the true f.

Selection of tuning parameters: Smoothing Splines and RKHS

$$Y_i = f_0(X_i) + \varepsilon_i \text{ with } \mathbb{E}\{\varepsilon|X\} = 0$$

Goal: estimate f_0 nonparametrically, i.e. without imposing parametric assumptions on f_0 (e.g., it is linear in X). We just assume that f_0 is a *smooth* function.

$$\widehat{f}_{\lambda} := \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[Y_i - f(X_i) \right]^2 + \lambda \int_0^1 \left| f^{(2)}(x) \right|^2 dx$$

where λ is a penalization parameter, $f^{(2)}$ is the second derivative of f, and

 $\mathcal{F} :=$ Class of functions that are twice continuously differentiable

<u>Choice of λ is crucial</u>: the larger λ the larger the penalty from variations of $f \Longrightarrow$ The bootstrap provides a very attractive method for choosing λ

Specification Testing

We observe a random sample $\{Y_i, Z_i\}_{i=1}^n$ and the model is assumed to be

$$Y = m_{\theta_0}(Z) + \varepsilon$$
 with $\mathbb{E}\{\varepsilon|Z\} = 0$

for some $\theta_0 \in \Theta$. We want to test is the above model is **correctly specified**, i.e. if $\mathbb{E}\{Y|Z\} = m_{\theta_0}(Z)$. We will see that a statistic we can use is

$$S_n := \int \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \left[Y_i - m_{\widehat{\theta}}(Z_i) \right] \varphi_t(Z_i) \right|^2 dt$$

where ϕ_t is a "well chosen" weighting function.

If the model is correctly specified, $S_n \stackrel{d}{\to} \mathbb{U}$, where \mathbb{U} is a transformation of a Gaussian stochastic process.

► The bootstrap is extremely useful in such situation for computing the critical values!

Other applications

There are further applications very similar to those previously listed

- ► Panel data with fixed or random effects
- GMM estimators
- ► NP regression estimators
- ► Semiparametric models (Partly linear, Single-Index, additive separable)
- Models with clusters

The approach we will use throughout the course

- Prove the validity of the Jackknife for variance and bias estimation
- Detailed proofs of the consistency of the bootstrap for constructing CIs and tests of hypothesis
- Intuition about the Edgeworth Expansions (that are used to prove the refinements of the bootstrap)
- ► We will run simulations in R to
 - learn how such methods work
 - realize the advantages of such methods
- We will apply the methods to real data using R

Lecture notes will be provided.