# **Produits scalaires**

## Exercice 1 ★★

Prouver que les applications suivantes sont des produits scalaires sur E :

**1.** pour  $n \in \mathbb{N}$ , sur  $E = \mathbb{R}_n[X]$ , pour  $x_0, \dots, x_n \in \mathbb{R}$  deux à deux distincts,

$$\Psi: (P,Q) \mapsto \sum_{k=0}^{n} P(x_k)Q(x_k);$$

**2.** pour  $n \in \mathbb{N}$ , sur  $E = \mathbb{R}_n[X]$ , pour  $a_0, \dots, a_n \in \mathbb{R}$ ,

$$(P, Q) \mapsto \varphi(P, Q) = \sum_{k=0}^{n} P^{(k)}(a_k) Q^{(k)}(a_k);$$

**3.** pour  $n \in \mathbb{N}$ , sur  $E = \mathbb{R}_n[X]$ ,

$$(P,Q) \mapsto \langle P|Q \rangle = \int_0^1 P(t)Q(t)dt;$$

**4.** pour  $n \in \mathbb{N}$ , sur  $E = M_n(\mathbb{R})$ ,

$$\langle A|B\rangle = tr(A^{\mathsf{T}}B)$$
;

**5.** sur  $E = \mathcal{C}^1([0,1], \mathbb{R}),$ 

$$(f,g) \mapsto \langle f|g\rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt;$$

**6.** sur  $E = \mathcal{C}^1([0,1], \mathbb{R}),$ 

$$(f,g) \mapsto \langle f|g\rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t))dt.$$

# Inégalités

#### Exercice 2 ★

Un espace fonctionnel

On définit sur l'espace vectoriel réel E des fonctions de classe  $\mathcal{C}^1$  de [0,1] dans  $\mathbb{R}$  ,

$$\langle f|g\rangle = f(1)g(1) + \int_0^1 f'(t)g'(t)dt.$$

- 1. Montrer que l'on définit ainsi un produit scalaire sur E.
- **2.** Etablir que  $\forall f \in E$ ,

$$\left(f(1) + \int_0^1 f'(t)dt\right)^2 \le 2\left(f^2(1) + \int_0^1 f'^2(t)dt\right)$$

#### Exercice 3 ★★

Inégalité de Ptolémée

Soit E un espace euclidien. On pose  $f: E\setminus\{0\} \to E\setminus\{0\}$  .  $x\mapsto \frac{x}{\|x\|^2}$ 

- **1.** Montrer que pour  $x, y \in E \setminus \{0\}, ||f(x) f(y)|| = \frac{||x y||}{||x|| ||y||}$ .
- **2.** Soient  $a, b, c, d \in E$ . Montrer que

$$||a - c|| ||b - d|| \le ||a - b|| ||c - d|| + ||b - c|| ||a - d||.$$

# Exercice 4 ★★★

Inégalité d'Hadamard

Soit E un espace euclidien de dimension  $n \in \mathbb{N}^*$  et de base orthonormée  $\mathcal{B}$ . Soient  $(x_1, \dots, x_n)$  une famille de n vecteurs de E. Montrer que

$$|\det_{\mathcal{B}}(x_1,\ldots,x_n)| \leq \prod_{i=1}^n ||x_i||$$

#### Exercice 5 ★

Soit  $n \ge 1$ . Prouver que

$$\left[1 + \frac{1}{2} + \dots + \frac{1}{n}\right]^2 \le n\left[1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right].$$

Exercice 6 ★

Soient  $n \ge 1$  et  $x_1, \dots, x_n > 0$ . Prouver que

$$\left[\sum_{k=1}^n x_k\right] \left[\sum_{k=1}^n \frac{1}{x_k}\right] \geqslant n^2.$$

Exercice 7 ★★ Technique

Soit  $n \ge 2$ . Prouver que

$$\frac{2}{n(n-1)} \left( \sum_{k=1}^{n-1} \frac{k}{n-k} \right)^2 \leqslant \sum_{k=1}^{n-1} \frac{k}{(n-k)^2}.$$

### **Exercice 8**

On considère l'ensemble E des fonctions continues et strictement positives sur [a,b]. Montrer que :

$$\inf_{f \in \mathbb{E}} \left( \int_{a}^{b} f(x) dx \int_{a}^{b} \frac{dx}{f(x)} \right)$$

existe et est atteint.

## Exercice 9

Soit f une fonction  $\mathcal{C}^1$  sur [a,b] à valeurs dans  $\mathbb{R}$ . On suppose f(a)=0. Montrer que

$$\int_{a}^{b} f^{2}(u)du \leqslant \frac{(b-a)^{2}}{2} \int_{a}^{b} f'^{2}(u)du.$$

# **Bases orthonormales**

### Exercice 10 ★★

**Immédiat** 

Produit mixte et produit vectoriel

Soit E un espace euclidien orienté de dimension  $n \ge 1$ .

- **1.** Soient  $\mathcal{B}$  et  $\mathcal{B}'$  deux bases orthonormées directes de E. Montrer que  $\det_{\mathcal{B}}(\mathcal{B}') = 1$ .
- **2.** En déduire que  $\det_{\mathcal{B}} = \det_{\mathcal{B}'}$ .
- **3.** Soient  $x_1, \ldots, x_{n-1}$  n-1 vecteurs de E. Montrer que l'application  $x \in E \mapsto \det_{\mathcal{B}}(x_1, \ldots, x_{n-1}, x)$  est une forme linéaire sur E.
- **4.** En déduire qu'il existe un unique vecteur  $u \in E$  tel que pour tout  $x \in E$ ,  $\det_{\mathcal{B}}(x_1, \dots, x_{n-1}, x) \in \langle u, x \rangle$ . On appelle u le produit vectoriel des vecteur  $x_1, \dots, x_{n-1}$  et on note  $u = x_1 \wedge x_2 \wedge \dots \wedge x_{n-1}$ .
- **5.** Montrer que l'application  $(x_1, ..., x_{n-1}) \in E^{n-1} \mapsto x_1 \wedge x_2 \wedge ... \wedge x_{n-1}$  est une application n-1-linéaire alternée.

### Exercice 11 \*\*\*

**1.** Soient  $n \in \mathbb{N}$  et  $a \in \mathbb{R}$ . Montrer que l'application  $\langle .,. \rangle$  de  $\mathbb{R}_n[X]^2$  dans  $\mathbb{R}$  définie par

$$\forall (P,Q) \in \mathbb{R}_n[X]^2, \langle P,Q \rangle = \sum_{k=0}^n \frac{P^{(k)}(a)Q^{(k)}(a)}{(k!)^2}$$

est un produit scalaire sur  $\mathbb{R}_n[X]$ .

**2.** Donner sans calcul une base orthonormale de  $\mathbb{R}_n[X]$ .

#### Exercice 12 \*\*\*

Soient E un espace euclidien de dimension  $n \in \mathbb{N}^*$  et  $e_1, \dots, e_n$  des vecteurs non nuls de E tels que

$$\forall x \in \mathcal{E}, \ \|x\|^2 = \sum_{k=1}^n \langle x, e_k \rangle^2$$

1. Montrer que

$$\forall (x, y) \in E^2, \ \langle x|y \rangle = \sum_{i=1}^n \langle x|e_i \rangle \langle y|e_i \rangle.$$

2. En déduire que

$$\forall x \in E, \ x = \sum_{i=1}^{n} \langle x | e_i \rangle e_i.$$

**3.** Etablir que  $(e_k)_{1 \le k \le n}$  est une base orthonormée de E.

#### Exercice 13 ★

Retour aux polynômes

Sur l'espace vectoriel réel  $E = \mathbb{R}_2[X]$ , on définit

$$\langle P|Q\rangle = P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1).$$

- 1. Montrer qu'il s'agit d'un produit scalaire.
- **2.** Trouver une base orthonormée de E par le procédé d'orthonormalisation de Schmidt appliqué à la base canonique de E.
- **3.** Trouver une *autre* base orthonormée de E en utilisant les polynômes interpolateurs de Lagrange.

# **Sous-espaces orthongonaux**

Exercice 14 ★

Posé à Centrale

Soit  $E = \mathcal{C}([0,1], \mathbb{R})$ . Pour tout  $(f,g) \in E^2$ , on pose

$$\langle f|g\rangle = \int_0^1 f(t)g(t)dt.$$

- **1.** Prouver  $\langle \cdot | \cdot \rangle$  est un produit scalaire sur E.
- **2.** On pose

$$F = \{ f \in E \mid f(0) = 0 \}.$$

- **a.** Soit  $f \in F^{\perp}$ . Montrer que  $f^2 \in F^{\perp}$ .
- **b.** Prouver que  $F^{\perp} = \{0\}$ .
- **3.** E est-il de dimension finie?

#### Exercice 15 ★★

Montrer que  $s: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{M} & \longmapsto & \mathrm{M}^\top \end{array} \right.$  est une symétrie orthogonale pour le produit scalaire sur  $\mathcal{M}_n(\mathbb{R})$  pour le produit scalaire défini par  $\langle \mathrm{A}, \mathrm{B} \rangle = \mathrm{tr}(\mathrm{A}^\top \mathrm{B})$  pour  $\mathrm{A}, \mathrm{B} \in \mathcal{M}_n(\mathbb{R})$ .

## Exercice 16 ★★

Soit E un espace euclidien et  $f \in \mathcal{L}(E)$  tel que  $\forall (x,y) \in E^2$ ,  $\langle f(x),y \rangle = \langle x,f(y) \rangle$ .

- 1. Soit  $\mathcal B$  une base orthonormale de E. Montrer que la matrice de f dans la base  $\mathcal B$  est symétrique.
- **2.** Montrer que Ker  $f = (\operatorname{Im} f)^{\perp}$ .

### Exercice 17 ★★

Soient F et G deux sous-espaces vectoriels d'un espace préhilbertien réel E.

- 1. Montrer que  $F \subset G \implies G^{\perp} \subset F^{\perp}$  et que, si F et G sont de dimension finie,  $G^{\perp} \subset F^{\perp} \implies F \subset G$ .
- **2.** Montrer que  $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$ .
- 3. Montrer que  $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$  et que, si E est de dimension finie,  $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$ .

# **Projecteurs orthogonaux**

## Exercice 18 ★★

Soit u un vecteur unitaire d'un espace euclidien E. On note U le vecteur colonne représentant u dans une base orthonormée  $\mathcal B$  de E. Déterminer la matrice de la projection orthogonale sur vect(u) dans  $\mathcal B$ .

#### Exercice 19 ★★

## Caractérisations des projections orthogonales

Soient E un espace euclidien et p une projection de E. Etablir l'équivalence des trois propriétés suivantes :

- **1.** *p* est orthogonale;
- **2.**  $\forall x, y \in E$ ,  $\langle p(x)|y \rangle = \langle x|p(y) \rangle$ ;
- **3.**  $\forall x \in E, \|p(x)\| \le \|x\|.$

## Exercice 20 ★

# Calcul d'une projection orthogonale

On munit  $\mathbb{R}^4$  de son produit scalaire usuel. Donner la matrice dans la base canonique du projecteur orthogonal sur le sous-espace vectoriel F d'équations,

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

# **Optimisation**

## Exercice 21 ★

Un calcul de distance

Soit  $E = \mathbb{R}_2[X]$  muni de sa structure euclidienne canonique (ie la base canonique est orthonormée). On note F le sous-espace vectoriel de E des polynômes s'annulant en 1.

- 1. Déterminer une base de F.
- 2. Calculer  $\delta = \inf_{P \in F} \|X P\|$ .

#### Exercice 22 ★★★

Calculer le minimum de  $\phi$  :  $\mathbb{R}^2 \to \mathbb{R}$  .  $(a,b) \mapsto \int_0^\pi (\sin x - ax^2 - bx)^2 \, \mathrm{d}x$ 

#### Exercice 23 \*\*\*

Soient  $m, n \in \mathbb{N}^*$ . On munit  $\mathcal{M}_{m,1}(\mathbb{R})$  (resp.  $\mathcal{M}_{n,1}(\mathbb{R})$ ) du produit scalaire  $(X, Y) \mapsto X^T Y$ . On se donne  $A \in \mathcal{M}_{m,n}(\mathbb{R})$  et  $B \in \mathbb{R}^m$ . On pose  $E = \{\|AX - B\|^2, X \in \mathbb{R}^n\}$  et  $K = \inf E$ .

- 1. Justifier l'existence de K.
- **2.** On considère le système linéaire (S): AX = B. On appelle *pseudo-solution* de S tout élément Y de  $\mathcal{M}_{n,1}(\mathbb{R})$  tel que  $\|AY B\|^2 = K$ . Montrer que si (S) admet une solution, les pseudo-solutions de (S) sont les solutions de (S).
- **3.** On associe à (S) le système (S'):  $A^TAX = A^TB$ . Montrer qu'un élément X de  $\mathcal{M}_{n,1}(\mathbb{R})$  est pseudo-solution de (S) si et seulement si il est solution de (S').
- **4.** Montrer que  $\operatorname{rg} A^{\mathsf{T}} A = \operatorname{rg} A$ .
- **5.** Montrer que si rg A = n, (S) admet une unique pseudo-solution.

# Exercice 24 \*\*\*

**ENS MP 2010** 

Soient E un espace euclidien et  $x_1, \ldots, x_p$  des vecteurs de E. Pour  $x \in E$ , on pose  $f(x) = \sum_{i=1}^p \|x - x_i\|^2$ . Montrer que f atteint son minimum en un unique point que l'on précisera.

# Exercice 25 ★★★

Soient E un espace euclidien et  $x_1, \dots, x_p$  des vecteurs de E. Pour  $x \in E$ , on pose  $f(x) = \sum_{i=1}^p \|x - x_i\|^2$ . Montrer que f atteint son minimum en  $m = \frac{1}{p} \sum_{i=1}^p x_i$ .

# **Automorphismes orthogonaux**

### Exercice 26 ★

Un premier exemple

Soient E un espace euclidien orienté de dimension trois muni d'une base orthonormée directe

$$\mathcal{B} = (\vec{u}, \vec{v}, \vec{w}).$$

On note f la rotation d'axe  $\vec{u} + \vec{v} + \vec{w}$  et d'angle  $\frac{2\pi}{3}$ . Calculer la matrice de f relativement à la base  $\mathcal{B}$ .

#### Exercice 27 ★

Calculs dans  $O_3(\mathbb{R})$ 

Soient E un plan vectoriel euclidien orienté, r une rotation de E et s une réflexion. Calculer  $s \circ r \circ s$  et  $r \circ s \circ r$ .

#### Exercice 28 ★

Déterminer la nature et les caractéristiques de l'endomorphisme de  $\mathbb{R}^3$  dont la matrice dans la base canonique vaut

$$\operatorname{mat}_{\mathcal{B}}(f) = \frac{1}{4} \left( \begin{array}{ccc} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{array} \right).$$

# Exercice 29 ★★★

Soient E un espace euclidien et  $u \in \mathcal{L}(E)$ . Prouver l'équivalence des trois propriétés suivantes :

- 1.  $\langle x|y\rangle = 0 \Rightarrow \langle u(x)|u(y)\rangle = 0$ ;
- **2.**  $\exists k \ge 0, \ \forall x \in E, \ \|u(x)\| = k\|x\|;$
- 3. *u* est la composée d'une homothétie et d'une isométrie.

# Exercice 30 \*\*\*

Soient H et K deux hyperplans d'un espace euclidien E. On note  $s_H$  et  $s_K$  les symétries orthogonales par rapport à H et K. Montrer que  $s_H$  et  $s_K$  commutent si et seulement si H = K ou H $^{\perp}$   $\subset$  K.

### Exercice 31 ★★

Soit E un espace euclidien orienté de dimension 3.

1. Trouver les  $f \in \mathcal{L}(E)$  tels que

$$\forall u, v \in E, \ f(u \land v) = f(u) \land f(v)$$

**2.** Trouver les  $f \in \mathcal{L}(E)$  tels que

$$\forall u, v \in E, \ f(u \wedge v) = -f(u) \wedge f(v)$$

#### Exercice 32 ★★

Déterminer la matrice de la symétrie orthogonale par rapport au plan d'équation x + 2y - 3z = 0 dans la base canonique de  $\mathbb{R}^3$ .

#### Exercice 33 \*\*\*

Soit E un espace euclidien de dimension 2.

- 1. On sait que la matrice d'une réflexion de E dans une base orthonormée est de la forme  $\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$ . Quelle est l'interprétation géométrique de  $\theta$ ?
- **2.** Déterminer une condition portant sur l'angle entre leurs axes pour que la *somme* de deux réflexions soit encore une réflexion.

# Exercice 34 ★★

**Petites Mines 2009** 

Soit u un automorphisme orthogonal d'un espace euclidien E. On pose  $v = Id_E - u$ .

- 1. Montrer que  $\operatorname{Im} v$  et  $\operatorname{Ker} v$  sont orthogonaux et supplémentaires.
- **2.** Montrer que pour tout  $k \in \mathbb{N}$ ,  $u^k$  est un automorphisme orthogonal.

#### Exercice 35 ★★

Soit E le sous-espace vectoriel de  $\mathcal{C}(\mathbb{R})$  engendré par la famille  $(e_1,e_2,e_3)$  où

$$e_1: t \mapsto \frac{1}{\sqrt{2}}$$
  $e_2: t \mapsto \cos(2\pi t)$   $e_3: t \mapsto \sin(2\pi t)$ 

- 1. Montrer que  $\Phi$  :  $(f,g)\mapsto 2\int_0^1 f(t)g(t)\;\mathrm{d}t$  est un produit scalaire sur E.
- 2. Montrer que  $(e_1, e_2, e_3)$  est une base orthonormée de E.
- 3. Pour tout réel x, on définit l'application  $\tau_x$  qui à tout élément f de E associe g tel que

$$\forall t \in \mathbb{R}, \ g(t) = f(x - t)$$

- **a.** Montrer que  $\tau_x$  est un endomorphisme de E. Donner sa matrice relativement à  $\mathcal{B}$ .
- **b.** Montrer que  $\tau_x$  est un automorphisme orthogonal de E.
- **c.** Caractériser géométriquement  $\tau_x$ .

## Exercice 36 \*\*\*

Soit E un espace euclidien et f une application de E dans E (non supposée linéaire) telle que

$$\forall (x, y) \in E^2, \ \|f(x) - f(y)\| = \|x - y\|$$

Montrer que f est la composée d'une translation et d'un automorphisme orthogonal.

# Exercice 37 ★

Soient E un espace euclidien et  $f \in \mathcal{L}(E)$ . On note A la matrice de f dans une base orthonormale  $\mathcal{B}$  de E. Montrer que f est une symétrie orthogonale si et seulement si A est une matrice orthogonale symétrique.

# **Matrices orthogonales**

#### Exercice 38 \*\*

Soit A =  $(a_{i,i})_{1 \le i,j \le n} \in \mathcal{O}_n(\mathbb{R})$ . Montrer que

$$\sum_{1 \leqslant i, j \leqslant n} |a_{i,j}| \leqslant n\sqrt{n}.$$

## Exercice 39 \*\*\*

Soit O =  $\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$  une matrice orthogonale réelle de taille n où A et D sont deux blocs carrés de tailles respectives p et q. Montrer que  $(\det A)^2 = (\det D)^2$ .

#### Exercice 40 ★

Soient A et B les matrices, dans deux bases orthonormales, d'un endomorphisme d'un espace euclidien. Montrer que  $tr(A^TA) = tr(B^TB)$ .

## Exercice 41 ★★

- **1.** Soit X une matrice colonne réelle de taille n. Montrer que  $X^TX \in \mathbb{R}_+$  et que  $X^TX = 0$  implique X = 0.
- **2.** Soit M une matrice antisymétrique réelle de taille n. Montrer que  $I_n + M$  est inversible.
- 3. On pose  $A = (I_n M)(I_n + M)^{-1}$ . Montrer que A est orthogonale.

# Exercice 42 ★★★

Soient  $n \in \mathbb{N} \setminus \{0, 1, 2\}$  et  $A \in \mathcal{M}_n(\mathbb{R})$ . Montrer que A = com(A) si et seulement si A = 0 ou  $A \in SO(n)$ .

# Familles de vecteurs

## Exercice 43 \*\*\*

#### Déterminants de Gram

Soit E un espace euclidien. A une famille  $(x_1, \dots, x_p)$  de p vecteurs de E, on associe la matrice  $G_p(x_1, \dots, x_p) = ((x_i|x_j))_{1 \le i,j \le p}$ .

- 1. Montrer que la famille  $(x_1, \dots, x_p)$  est liée si et seulement si det  $G_p(x_1, \dots, x_p) = 0$ .
- **2.** On suppose maintenant que la famille  $(x_1, \dots, x_p)$  est libre et on note  $F = \text{vect}(x_1, \dots, x_p)$ 
  - **a.** Soit  $\mathcal{B} = (e_1, \dots, e_p)$  une base orthonormée de F et  $A = \max_{\mathcal{B}}(x_1, \dots, x_p)$ . Montrer que  $G_p(x_1, \dots, x_p) = A^T A$ .
  - **b.** En déduire que det  $G_p(x_1, ..., x_p) > 0$ .
- **3.** Soit  $x \in E$ . On note  $\pi$  la projection orthogonale sur F.
  - **a.** Montrer que det  $G_{p+1}(x, x_1, ..., x_p) = \det G_{p+1}(x \pi(x), x_1, ..., x_p)$ .
  - **b.** Montrer que

$$d(x, F)^{2} = \frac{\det G_{p+1}(x, x_{1}, \dots, x_{p})}{\det G_{p}(x_{1}, \dots, x_{p})}$$

### Exercice 44 \*\*\*

Soient E un espace euclidien, p un entier naturel supérieur ou égal à 2 et  $x_1, \dots, x_p$  des vecteurs de E tels que

$$\forall i, j \in [1, p], i \neq j \implies \langle x_i, x_j \rangle < 0$$

- **1.** Soient  $\alpha_1, \ldots, \alpha_{p-1}$  des réels tels que  $\sum_{i=1}^{p-1} \alpha_i x_i = 0$ . On pose  $\mathbf{I} = \{i \in [1, p-1] \mid \alpha_i > 0\}$  et  $\mathbf{J} = \{j \in [1, p-1] \mid \alpha_j < 0\}$ . En considérant  $u = \sum_{i \in \mathbf{I}} \alpha_i x_i$  et  $v = \sum_{j \in \mathbf{J}} \alpha_j x_j$ , montrer que l'un des ensembles  $\mathbf{I}$  ou  $\mathbf{J}$  est vide (on convient qu'une somme indexée sur l'ensemble vide est nulle).
- 2. Montrer que I et J sont vides.
- **3.** En déduire que la famille  $(x_1, \dots, x_{p-1})$  est libre.

#### Exercice 45 ★★★

#### Déterminants de Gram

Soit E un espace euclidien. A toute famille  $(x_1, \dots, x_p)$  de p vecteurs de E, on associe la matrice  $G(x_1, \dots, x_p) = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq p}$ .

- **1.** Soit  $\mathcal{B} = (e_1, \dots, e_n)$  une base orthonormée de  $F = \text{vect}(x_1, \dots, x_p)$ . On note  $A = \text{mat}_{\mathcal{B}}(x_1, \dots, x_p)$ . Montrer que  $G(x_1, \dots, x_p) = A^T A$ .
- **2.** En déduire que  $\det G(x_1,\ldots,x_p)\geq 0$  et que  $(x_1,\ldots,x_p)$  est liée si et seulement si  $\det G(x_1,\ldots,x_p)=0$ .
- 3. On se donne  $x \in E$ . Montrer que

$$\det G(x_1, ..., x_p, x) = d(x, F)^2 \det G(x_1, ..., x_p)$$

#### Exercice 46 \*\*\*

On pose  $Q_n = (1 - X^2)^n = (1 + X)^n (1 - X)^n$  pour  $n \in \mathbb{N}$ .

- **1.** Montrer que  $\varphi$ :  $(P,Q) \mapsto \int_{-1}^{1} P(t)Q(t) dt$  est un produit scalaire sur  $\mathbb{R}_n[X]$ . On notera  $\varphi(P,Q) = \langle P,Q \rangle$  par la suite.
- 2. Soit n et k deux entiers tels que  $0 \le k < n$ . Montrer que  $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ .
- **3.** On pose  $P_n = Q_n^{(n)}$  pour  $n \in \mathbb{N}$ . Montrer que  $(P_k)_{0 \le k \le n}$  est une base orthogonale de  $\mathbb{R}_n[X]$ .

# **Endomorphismes remarquables**

#### Exercice 47 ★★

Soit E un espace euclidien de dimension  $n \ge 2$ . Une application  $u : E \to E$  est dite antisymétrique si

$$\forall (x, y) \in E^2, \langle x, u(y) \rangle + \langle y, u(x) \rangle = 0$$

On note A(E) l'ensemble des applications antisymétriques de E.

REMARQUE. Rien à voir avec les applications multilinéaires antisymétriques!

- **1.** Soit  $u \in A(E)$ . Montrer que u est linéaire.
- **2.** Soit  $u : E \to E$ . Démontrer l'équivalence entre les propositions suivantes :
  - (i) u est linéaire et  $\forall x \in E, \langle u(x), x \rangle = 0$ ;
  - (ii) *u* est antisymétrique;
  - (iii) u est linéaire et sa matrice dans une base orthonormée est antisymétrique.
- **3.** Montrer que A(E) est un  $\mathbb{R}$ -espace vectoriel et déterminer sa dimension.
- **4.** Soit  $u \in A(E)$ . Montrer que Im u est l'orthogonal de Ker u.
- **5.** Montrer que si F est un sous-espace vectoriel de E stable par u alors  $F^{\perp}$  est également stable par u.

# Exercice 48 ★★

Soient E un espace euclidien, p une projection orthogonale et  $\mathcal B$  une base orthonormale de E. Montrer que la matrice A de p dans la base  $\mathcal B$  est symétrique.

# Exercice 49 ★★★

Montrer que le rang d'une matrice antisymétrique réelle est pair.

# Exercice 50 ★★

Soient E un espace euclidien et  $u \in \mathcal{L}(E)$  tel que

$$\forall x \in E, \langle u(x)|x\rangle = 0.$$

Montrer que

$$(\operatorname{Ker}(u))^{\perp} = \operatorname{Im}(u).$$

### Exercice 51 ★★

Soit E un espace vectoriel euclidien de dimension n, n étant un entier naturel supérieur ou égal à 2. Soit (a, b) une famille libre de E. Soit f l'application

$$x \longmapsto \langle a|x\rangle b + \langle b|x\rangle a$$
.

**1.** Montrer que  $f \in \mathcal{L}(E)$  et que

$$\forall (x, y) \in E^2, \ \langle f(x)|y\rangle = \langle x|f(y)\rangle.$$

- **2.** Déterminer le noyau et le rang de f.
- **3.** On pose F = Im(f).
  - **a.** Montrer que F est un sous-espace vectoriel de E stable par f et en donner une base.
  - **b.** Déterminer la matrice de l'endomorphisme g induit par f sur F dans cette base.

## Exercice 52 \*\*\*

**Endomorphismes 1-lipschitziens** 

Soient E un espace euclidien et  $u \in \mathcal{L}(E)$  tel que

$$\forall x \in E, \ \|u(x)\| \le \|x\|.$$

Etablir que

$$E = Ker(u - id_{E}) \oplus Im(u - id_{E}).$$

# **Divers**

# Exercice 53 ★★★

Soit  $n \in \mathbb{N}^*$ . On travaille dans l'espace des matrices  $\mathcal{M}_n(\mathbb{R})$ .

- **1.** Montrer que l'application  $(A, B) \mapsto tr(A^T B)$  est un produit scalaire sur  $\mathcal{M}_n(\mathbb{R})$ . Que peut-on dire de la base canonique de  $\mathcal{M}_n(\mathbb{R})$ .
- **2.** Montrer que pour toute matrice  $A \in \mathcal{M}_n(\mathbb{R})$ , on a  $|\operatorname{tr}(A)| \leq \sqrt{n} ||A||$ .
- **3.** a. Quel est l'orthogonal de l'espace  $S_n(\mathbb{R})$  des matrices symétriques?
  - **b.** Soit  $A \in \mathcal{M}_n(\mathbb{R})$ . Exprimer la distance de A à  $S_n(\mathbb{R})$  en fonction des coefficients de A?
- **4.** Soit  $U \in \mathcal{O}_n(\mathbb{R})$ . Montrer que pour tout  $A \in \mathcal{M}_n(\mathbb{R})$ , ||UA|| = ||AU|| = ||A||.
- **5.** Montrer que pour A, B  $\in \mathcal{M}_n(\mathbb{R})$ ,  $||AB|| \leq ||A|| ||B||$ .

### Exercice 54 ★★★

Soit E un espace euclidien de dimension n et  $u_1, \ldots, u_{n+1}$  des vecteurs non nuls de E faisant un angle constant  $\alpha_n$  (non nul) deux à deux. Que vaut  $\alpha_n$ ?

# Exercice 55 \*\*\*

Soit  $A \in \mathcal{M}_{n,p}(\mathbb{R})$ . Montrer que  $rg(A^TA) = rg(AA^T) = rg A$ .

# Exercice 56 \*\*\*

1. Montrer qu'on définit un produit scalaire sur  $\mathbb{R}[X]$  en posant

$$\langle \mathbf{P}, \mathbf{Q} \rangle = \sum_{n=0}^{+\infty} a_n b_n$$

pour P = 
$$\sum_{n=0}^{+\infty} a_n X^n$$
 et Q =  $\sum_{n=0}^{+\infty} b_n X^n$ .

- **2.** On pose  $F = \text{vect}(1 + X^n, n \in \mathbb{N}^*)$ . Montrer que F est un hyperplan de  $\mathbb{R}[X]$ .
- 3. Montrer que  $F^{\perp} = \{0\}$ . Conclusion?