

Prof. Me. Stéfano Schwenck Borges Vale Vita

Material adaptado UEM-PR:
Prof. Yandre Maldonado e Gomes da Costa

- Problema: definir um conjunto de cadeias de símbolos;
- Exemplo: conjunto M dos números binários que têm 2 dígitos
 - M={00,01,10,11}

- Representação clara:
 - humanos x computador
- Representação Formal → Computador;
- Um objetivo de LFA é estudar uma maneira <u>precisa e formal</u> de descrever seqüências de símbolos pertencentes à um determinado conjunto;

- Em especial conjuntos que <u>não podem</u> ser trivialmente enumerados;
- Os estudos iniciais foram em torno de Linguagens Naturais (LN);
- Algumas características de LN introduziram dificuldades no tratamento computacional das mesmas:
 - LN é extensa, complexa, não tem sintaxe rígida e semântica bem determinada (rica em ambigüidade);

- Entretanto, os estudos iniciais apresentaram resultados significativos na descrição de linguagens computacionais;
- Linguagens Computacionais são muito mais simples, são linguagens criadas artificialmente de forma que possam ser tratadas computacionalmente de forma satisfatória;

- As maneiras sistemáticas de descrever uma linguagem de programação são:
 - um método que permite construir programas sintaticamente corretos geração (Gramática);
 - um método que permite verificar se um programa escrito está sintaticamente correto reconhecimento (Autômatos);

- o Alfabeto:
 - Conjunto de finito de símbolos;
 - Normalmente descrito por Σ ;
 - Exemplos:
 - Σ ={a, b}
 - $\Sigma = \{1, 2, 3\}$
 - $\Sigma = \{00, 11\}$

- o Símbolo ou letra:
 - é todo elemento pertencente à um alfabeto;
 - $a \in \text{um símbolo de } \Sigma \text{ sse } a \in \Sigma$;
 - Exemplo: dado o alfabeto Σ ={0, 1, 23}
 - 0 é um símbolo de Σ ;
 - 1 é um símbolo de Σ;
 - 23 é um símbolo de Σ ;

 Essas duas primeiras definições são bastante livres. Embora os símbolos também possam ser chamados de letras, eles não precisam ter necessariamente um único caractere. E além disso, os símbolos de um alfabeto não precisam todos ter o mesmo número de caracteres. A única restrição é que o tamanho do símbolo seja finito.

- o Cadeia ou palavra:
 - É uma concatenação de símbolos de um mesmo alfabeto;
 - É uma seqüência finita de símbolos do alfabeto justapostos;
 - Assim, dado um alfabeto Σ e uma seqüência de símbolos x=a₁a₂a₃...a_n, x é uma cadeia sobre Σ sse a_i∈ Σ para i=1,2,...,n

- Conceitos Básicos
 Comprimento de Cadeia ou Tamanho de Palavra:
 - É o número de símbolos que compõem uma dada cadeia (ou palavra).
 - O comprimento de uma cadeia x é denotado por X
 - Então, a cadeia x=a₁a₂a₃...an, tem seu comprimento |x| = n
 - Cadeia nula ou palavra vazia: é um caso especial, ela é denotada por λ (ou ϵ) e tem tamanho igual a zero.

- Exercício: dado o alfabeto Σ={a, b, c, de}, verifique se as cadeias a seguir são formadas sobre este alfabeto, e se for, verifique qual o comprimento das mesmas:
 - x = ababac
 - y = abdec
 - z = abedc
 - w = abdceaba
 - \bullet s = d
 - \bullet t = a

- Exponenciação de Alfabetos: Σ^k é o conjunto de todas as cadeias com tamanho k, formadas sobre o alfabeto Σ.
 - Exemplo: considere $\Sigma = \{0, 1\}$
 - $\Sigma^0 = \{\lambda\}$
 - $\Sigma^1 = \{0, 1\} = \Sigma$
 - $\Sigma^2 = \{00, 01, 10, 11\}$

. . .

• Exercício: encontre Σ^3 para o exemplo anterior.

• Fechamento de um Alfabeto: Seja Σ um alfabeto, então o fechamento de Σ , descrito por Σ^* é definido como

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ... \cup \Sigma^n \cup ...$$

- Σ^* é o conjunto de todas as cadeias possíveis de se formar sobre o alfabeto Σ .
- Fechamento positivo $\Sigma^+ = \Sigma^* \{\lambda\}$

- Concatenação de cadeias: dado o alfabeto Σ e as cadeias x, $y \in \Sigma^*$, a concatenação de x e y, indicada por xy, produz uma cadeia formada pelos símbolos de x seguidos pelos símbolos de y.
- Se $x = a_1 a_2 ... a_n \in \Sigma^* e \ y = b_1 b_2 ... b_m \in \Sigma^*,$ então $xy = a_1 a_2 ... a_n b_1 b_2 ... b_m$

• Exemplos:

```
\Sigma = \{a, b\}

x = abaa, y = ba, z = \lambda

xy = abaaba

yx = baabaa

yz = ba = zy = y
```

 A cadeia nula (λ) é o elemento neutro da concatenação.

- Concatenação sucessiva: concatenação de uma palavra com ela mesma;
 - Representada através de um expoente: wⁿ
 - Onde w é uma palavra e n indica o número de concatenações sucessivas;

- Dado um alfabeto Σ e x, $y \in \Sigma^*$, diz-se que:
 - $x \in \text{um } \underline{\text{prefixo}}$ de y sse $\exists w \in \Sigma^*$ tal que y = xw;
 - $x \in \text{um } \underline{\text{sufixo}} \text{ de } y \text{ sse } \exists w \in \Sigma^* \text{ tal que } y = wx;$
 - $x \in \text{um } \underline{\text{subpalavra}} \text{ de } y \text{ sse } \exists w, u \in \Sigma^* \text{ tal que } y = wxu;$

o Linguagem: dado o alfabeto Σ , o conjunto de palavras L é uma linguagem sobre Σ , sse L $\subset \Sigma^*$.

- Operações sobre linguagens;
- Considere L1 e L2 linguagens definidas sobre
 Σ:
 - União: $L_1 \cup L_2 = \{x \mid x \in L_1 \lor x \in L_2\}$
 - Intersecção: $L_1 \cap L_2 = \{x \mid x \in L_1 \land x \in L_2\}$
 - Diferença: L₁ L₂ = {x | x ∈ L₁ ∧ x ∉ L₂}
 - Concatenação: $L_1 L_2 = \{x \mid x = yz, y \in L_1 \land z \in L_2\}$
 - Complemento: $\overline{L_1} = \{x \mid x \in \Sigma^* \land x \notin L_1\}$

- o Exemplos de operações:
 - Sejam L₁ e L₂ definidas sobre {0,1}:
 - $L_1 = \{0,11\}$
 - $L_2 = \{0, 1, 00\}$
 - $L_1 \cup L_2 = \{0, 1, 00, 11\}$
 - $L_1 \cap L_2 = \{0\}$
 - \bullet L₁ L₂ = {11}
 - \bullet L₁.L₂ = {00, 01, 000, 110, 111, 1100}

Comparando as definições:

Linguagem Natural:

- Uma palavra em português equivale à um símbolo;
- Uma sentença da língua portuguesa é uma cadeia composta por vários símbolos;

Linguagem Computacional:

- Cada programa escrito numa linguagem computacional corresponde a uma cadeia de símbolos que podem ser:
 - identificadores;
 - palavras reservadas;
 - símbolos especiais e operadores;
 - constantes numéricas.

 Uma linguagem computacional como linguagem formal:

Alfabeto da linguagem Pascal

{program, var, integer, real, char, begin, end, if, then, else, for,...,;, ",",:,:=,.,...}

O código fonte de um programa corresponde à uma cadeia formada a partir de símbolos do alfabeto.

Hierarquia de Chomsky

Linguagens Enumeráveis Recursivamente

Linguagens Sensíveis ao Contexto

Linguagens Livres de Contexto

Linguagens Regulares