

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DA FRONTEIRA SUL PRÓ-REITORIA DE GRADUAÇÃO

Rodovia SC 484, km 02, Fronteira Sul, Chapecó-SC, CEP 89815-899, 49 2049-3710 www.uffs.edu.br

PLANO DE ENSINO

1. IDENTIFICAÇÃO

Componente Curricular: GEX109 - Inteligência artificial					
Créditos: 4	Número da turma: 28707	Ano/semestre: 2020.2			
Carga horária total: 60	Períodos de aula: 72				
Curso(s)/fase de oferta:	1101 - CIÊNCIA DA COMPUTAÇÃO / 7ª fase				
Professor(as): A DRIANO S	CANICY DADII HA				

Professor(es): ADRIANO SANICK PADILHA

Horário de atendimento ao estudante: Segundas-feiras das 18h às 19h ou com agendamento prévio pelo e-mail: padilha@uffs.edu.br

2. EMENTA

Técnicas de inteligência artificial aplicadas à resolução de problemas. Representação de conhecimento. Sistemas baseados em conhecimento. Aprendizagem de máquina. Arquiteturas de sistemas de Inteligência Artificial.

3. OBJETIVOS

3.1 GERAL

Adquirir o conhecimento básico para trabalhar com as abordagens diferenciadas da Inteligência Artificial objetivando simular comportamento inteligente através da máquina.

3.2 ESPECÍFICOS

- Conhecer as noções básicas de Inteligência Artificial de forma a compreender a suas aplicações.
- Conhecer as principais formas de representação de conhecimento e a importância desta representação para a área.
- Conhecer as principais técnicas de resolução de problemas e suas aplicações.
- Conhecer as principais técnicas de aprendizado de máquina de forma a poder fazer uma escolha fundamentada da técnica mais adequada a uma aplicação.

4. CRONOGRAMA E CONTEÚDOS PROGRAMÁTICOS

Nº	Períodos*	Conteúdo	Totais por tipo
1	4	Discussão e reestruturação do plano de ensino. Introdução à Sistemas Especialistas (4h Síncronas + 4h Assíncronas).	F1. 4
2	16	Sistemas Especialistas. Técnicas de aquisição e representação do conhecimento. Validação e verificação de Sistemas Especialistas. implementação de protótipos (8h Síncronas + 8h Assíncronas).	PT: 8, PP: 8
3	8	Introdução à Redes Neurais Artificiais. (4h Síncronas + 4h Assíncronas).	PT: 4, PP: 4
4	20	Introdução à Deep Learning. Redes Convolucionais, Redes Recorrentes e Redes Adversárias Generativas (GANs). (12h Síncronas + 12h Assíncronas).	
5	8	Processamento de Linguagem Natural (8h Síncronas + 8h Assíncronas).	PT: 4, PP: 4

N°	Períodos*	Conteúdo	Totais por tipo
6	4	Aprendizado de Máquina (4h Síncronas).	PT: 4
7	4	Aprendizagem por Reforço (4h Síncronas).	PT: 4
8	4	Agentes Inteligentes (4h Síncronas).	PT: 4
9	4	Algoritmos Genéticos (4h Síncronas).	PT: 4

Legenda:

PT Presencial teórica PP Presencial prática NP Não presencial Est Atividade de estágio Pes Atividade de pesquisa Ext Atividade de extensão

5. PROCEDIMENTOS METODOLÓGICOS

Google Meet, apoiando-se no livro texto adotado e na bibliografía complementar. Os conceitos apresentados serão trabalhados de forma colaborativa com os alunos, referencialmente em grupos pequenos, de forma síncrona e assíncrona. Também será disposto material de apoio com o objetivo de provocar reflexões constantes sobre o conteúdo e também propiciar pesquisas e autoria de alunos. Ao longo do semestre será utilizado o ambiente Moodle como ferramenta de apoio ao ensino não presencial assíncrono. No ambiente serão disponibilizados os materiais digitais a serem entregues aos estudantes tais como slides, textos de apoio, artigos e gravações dos conteúdos teóricos das aulas. Será utilizado também o ambiente de chat e o fórum presente no ambiente para auxiliar a comunicação e a eliminação de dúvidas referente aos conteúdos ministrados.

6. AVALIAÇÃO DO PROCESSO DE ENSINO E APRENDIZAGEM

Por meio de fóruns de discussão, mensagens diretas e comentários durante as aulas é possível identificar o que o estudante sabe e o que precisa aperfeiçoar. Através das plataformas utilizadas (Moodle, Google Classroom, etc.) será possível obter dados de engajamento, como o número de acessos, tempo de permanência nas aulas e quantidade de interações com os conteúdos. Assim será composta uma nota de participação/engajamento (NE) do acadêmico. A segunda nota será obtida pela média aritmética dos diversos trabalhos (NT) ao longo dos semestre. A nota final será a médias destas avaliações: NF=(NE+NT)/2. O acadêmico terá a aprovação da disciplina se a sua NF for igual ou superior a 6,0 e tiver no mínimo 75% de frequência nas aulas (síncronas e assíncronas).

6.1 NOVAS OPORTUNIDADES DE APRENDIZAGEM E AVALIAÇÃO

A avaliação do aluno ocorrerá de forma contínua, de modo que a condução da disciplina evolua ativamente ao longo do semestre. A frequência de avaliação deve oferecer um feedback constante, auxiliando o professor entender as lacunas na aprendizagem, identificar de pontos a melhorar e revisar as fragilidades pedagógicas. Desta forma, estabelecendo metas e planos de melhoria das notas de cada acadêmico durante o semestre. Em termos de operacionalização, considera-se que a avaliação contínua do acadêmico na disciplina deve, idealmente, contemplar os seguintes aspectos: breve feedback do aluno relacionado a cada aula (ou conteúdo) ministrada, podendo ser realizado, por exemplo, na forma de questão de múltipla escolha, emoji, comentário em texto, etc.

7. REFERÊNCIAS

7.1 BÁSICA

BITTENCOURT, G. Inteligência Artificial. 3. ed. Florianópolis: UFSC, 2006.

LUGER, G. F. Artificial Intelligence Structures And Strategies For Complex Problem Solving. Addison Wesley, 2008.

COPPIN, B. Inteligência Artificial. São Paulo: LTC, 2010.

RUSSEL, S.; NORVIG, P. Inteligência Artificial. Rio de Janeiro: Campus, 2004.

7.2 COMPLEMENTAR

WINSTON, Patrick H. Artificial Intelligence. 3. ed. Addisons-Wesley Publishing, 1992.

ROWE, N. C. Artificial Intelligence Through Prolog. Prentice Hall, 1988.

NILSSON, N. J. Principles of Artificial Inteligence. Springer-Verlag, 1982.

^{*} Cada período de aula equivale a 50 minutos.

NIKOLOPOULOS, C. Expert Systems: Introduction to first and second generation and hybrid knowledge-based systems. Marcel Decker Inc. Press, 1997.

CLOCKSIN, H. F.; MELLISH, C. S. Programming in Prolog. Berlim: Spring-Verlag, 1984.

Obs: Este documento só tem validade mediante carimbo e assinatura de um servidor da SECAC.