Akademia Górniczo-Hutnicza im. S.Staszica w Krakowie

LABORATORIUM MASZYN I NAPĘDU ELEKTRYCZNEGO

Elektrotechnika z Napędami Elektrycznymi

Ćwiczenie EA10 Silnik indukcyjny sterowany falownikiem

Wyo	dz. EAIiIB kier.AiR rok II	Grupa ćwicz: B	Grupa laborat: 4b		
Lp	Imię i nazwisko	Ocena	Data zaliczenia		
1	Aleksandra Stachniak				
2	Martyna Wolny				
3	Julita Wójcik				
4	Tomisław Tarnawski				
5	Jakub Szczypek				
6	Piotr Stosik				

Data i	siaboa	prowadzącego:	Uwagi:

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z możliwościami pracy i podstawowymi charakterystykami silnika komutatorowego szeregowego o małej mocy. Silniki tego typu są powszechnie stosowane do napędów różnych drobnych urządzeń przy zasilaniu z sieci napięcia przemiennego 220 V. W mniejszym stopniu używane są w układach sterowania i regulacji.

2. Wykonanie ćwiczenia

2.1 Zasilanie silnika przez prostownik dwudrogowy

Przy zmianie rezystancji na zaciskach prądnicy hamulcowej dokonywaliśmy pomiaru:

- napięcia zasilania U [V]
- prądu zasilania I [A]

- mocy pobieraną P_{pob} (z watomierza)
- napięcia na zaciskach prądnicy hamulcowej $U_{\mathcal{p}}$
- prądu na zaciskach prądnicy $I_{\mathcal{p}}$
- prędkości obrotowej zespołu n [obr/min]

Korzystając z powyższych danych, dla każdego punktu pomiarowego obliczono:

- straty w uzwojeniu wirnika prądnicy hamulcowej, zgodnie ze wzorem:

$$P_{cu} = R_a * I^2 [W] \tag{1}$$

gdzie:

$$R_a = 26 \, [\Omega]$$

- straty mechaniczne prądnicy hamulcowej i tachoprądnicy oraz straty w żelazie prądnicy na podstawie zależności:

$$P_0 = 1.2 * n^2 * 10^{-6} + 1.1 * n * 10^{-3} [W]$$
 (2)

- moc oddawaną przez prądnice zgodnie ze wzorem:

$$P_{od} = U * I [W] \tag{3}$$

W celu wyznaczenia charakterystyki mechanicznej n(T) konieczne było obliczenie:

- mocy pobieranej przez prądnice oraz oddawanej przez silnik, danej wzorem:

$$P_{pobp} = P_{od} + P_{cu} + P_0 = P_{odsil} \tag{4}$$

- momentu na wale:

$$T = \frac{P_{pobp}}{\omega} \tag{5}$$

gdzie:

$$\omega = \frac{(\pi * n)}{30} \tag{6}$$

Ostatnim etapem obliczeń było wyliczenie sprawności silnika:

$$\eta = \frac{P_{odsil}}{P_{pobsil}} \tag{7}$$

Wyniki na podstawie powyższych wzorów zamieściliśmy w tabeli 1.

Tabela 1. Pomiary przy zasilaniu przez prostownik

n [obr/min]	P_pobsil [W]	I_p A4 [A]	U_p V1 [V]	P_od [W]	P_cu [W]	P_0 [W]	P_pob [W]	T [Nm]	η	ω [rad/s]
5000	70,4	0,14	124	15,4	0,5096	35,5	56,72	0,108327	0,73025	523,5987
4500	79,2	0,16	118	17,6	0,6656	29,25	50,37	0,106888	0,599944	471,2388
4000	86,9	0,22	107	24,2	1,2584	23,6	48,58	0,115976	0,564539	418,8789
3500	99	0,28	88	30,8	2,0384	18,55	47,22	0,128834	0,519075	366,5191
3000	107,8	0,35	65	38,5	3,185	14,1	39,93	0,127101	0,517486	314,1592
2500	121	0,41	52	45,1	4,3706	10,25	33,75	0,128916	0,493559	261,7993

Wyznaczono charakterystykę mechaniczną n(T), oraz charakterystykę n(P_{odsil}).

2.2 Zasilanie silnika napięciem przemiennym

Wykonano analogiczne pomiary o obliczenia jak przy zasilaniu przez prostownik. Wyniki zestawiono w tabeli 2.

Tabela 2. Pomiary przy zasilaniu silnika napięciem przemiennym

n [obr/min]	P_pobsil	I_p A2 [A]	U_p V2 [V]	P_od	P_cu	P_0	P_pob [W]	Т	η
5000	71,3	0,13	122	15,86	0,4394	35,5	53, 55	0,09893	0,726499
4500	82,8	0,19	104	19,76	0,9386	29,25	50,74	0,105994	0,603244
4000	88,55	0,24	91	21,84	1,4976	23,6	49,86	0,112055	0,530069
3500	96,6	0,3	76	22,8	2,34	18,55	48,88	0,119203	0,452277
3000	103,5	0,36	61	21,96	3,3696	14,1	40,51	0,125508	0,380962
2500	109,25	0,42	48	20,16	4,5864	10,25	35,21	0,133676	0,320333

Stworzono analogiczne charakterystyki mechaniczną n(T), oraz charakterystykę n(P_{odsil}).

2.3 Zasilanie silnika regulatorem tyrystorowym

Wykonano analogiczne pomiary o obliczenia jak przy zasilaniu przez prostownik. Wyniki zestawiono w tabeli 3.

Tabela 3. Pomiary przy zasilaniu silnika regulatorem tyrystorowym

n [obr/min]	I_p A3 [A]	U_p V4 [V]	P_od	P_cu	P_0	ω [rad/s]	Т
5000	0,36	265	95,4	3,3696	35,5	523,5986667	0,256436
4500	0,38	262,5	99,75	3,7544	29,25	471,2388	0,281714
4000	0,4	260	104	4,16	23,6	418,8789333	0,314554
3500	0,42	255	107,1	4,5864	18,55	366,5190667	0,355333
3000	0,44	255	112,2	5,0336	14,1	314,1592	0,418048
2500	0,46	252,5	116,15	5,5016	10,25	261,7993333	0,503827

Stworzono analogiczną charakterystyki mechaniczną n(T).

3. Wnioski

Wykonując powyższe ćwiczenie zapoznaliśmy się z działaniem silnika uniwersalnego, z jego możliwościami użycia oraz charakterystykami. W trakcie przebiegu laboratorium silnik zasilaliśmy 3 różnymi sposobami: z prostownika, napięciem sinusoidalnym oraz generatorem terystorowym. Dla każdego z napięć wykonaliśmy obliczenia na podstawie zebranych danych, a następnie wykonaliśmy charakterystyki w programie Matlab. Po przeanalizowaniu otrzymanych wykresów doszliśmy do wniosku, że niektóre z nich nie do końca przedstawiają to co spodziewaliśmy się uzyskać. Powodem mogą być niedokładności oraz drobne błędy podczas odczytu wartości pomiarowych lub zbyt mała ilość dokonanych pomiarów.