Pandas Review

Pandas is a Python package for organizing and analyzing data. In one sense, it is a generalization of NumPy, on which it is based.

NumPy is fantastic for working with numerical data that are "well behaved". For example, if you are analyzing data from a tightly controlled laboratory experiment, then NumPy might be perfect.

In the broader world of behavioral data science, however, data can be complicated. Variables can be of multiple types, values can be missing, etc. Pandas was developed to make it easier for us to work with data sets in general, not just numerical arrays.

If you have experience in R then, in a nutshell, pandas gives you an equivalent to R in Python (some data scientists use both, picking one or the other depending on the project, but most people prefer sticking with one language if they can).

Pandas Data

The main data object in pandas is the DataFrame . It is a table of data in which each column has a name, generally corresponding to a specific real-world variable.

Just as we can think about a NumPy array as a spatial layout of a Python list of lists, we can think of a pandas DataFrame as a spatial layout of a Python dictionary.

Consider the following Python dictionary:

'gender': ['m', 'f', 'n'], 'age': [95, 95, 93]}

On the one hand, this is a nice organized *container* of data. But on the other hand, it is not much else. If we wanted to compute anything, like the mean age of all non-male characters, we'd have to start writing code from scratch.

Let's make our dictionary into a DataFrame . First, we'll import pandas.

```
In [3]: import pandas as pd
```

Importing pandas as pd is conventional, like importing numpy as np, so there's no reason to do anything else.

Now we can convert our data to a DataFrame using pd.DataFrame().

```
In [4]: dis_df = pd.DataFrame(dis_chars)
```

And let's look at our new creation!

```
In [5]: dis_df
Out[5]:
```

ge
95
95

Pluto

Now we have a nice organized table of data, in which each column corresponds to a variable, and can be referred to by name.

93

Further, it makes it relatively easy for us to do lots of analyses "out of the box". For example:

Here, we just grabbed a column of data by name (dis_df['age']), and then computed its mean with the built-in mean() method.

The DataFrame isn't the only type of object in pandas, but it's the biggie. If you have experience in R, then you'll be in familiar territory, because the DataFrame in Python is modeled after the data frame (or tibble) in R.

```
In [8]: type(dis_df)
```

Out[8]: pandas.core.frame.DataFrame

Each column of a DataFrame is a pandas Series.

```
In [9]: dis_age_s = dis_df['age']
dis_age_s

Out[9]: 0     95
     1     95
     2     93
     Name: age, dtype: int64

In [10]: type(dis_age_s)

Out[10]: pandas.core.series.Series
```

And each series is a collection of more fundamental objects. So if we look at the last age in our series...

```
In [11]: a = dis_age_s[2]
a
```

Out[11]: 93

And check the type...

```
In [12]: type(a)
Out[12]: numpy.int64
```

We see that it is a numpy integer; a hint that pandas is indeed built from NumPy!

If we check the type of one of the other values:

```
In [13]: type(dis_df['gender'][2])
Out[13]: str
```

We see that it is a Python string object. (Take a moment to dissect that line of code, and see how it is doing exactly the same thing as we did to get the type of an age value, just in one go.)

In the code cell below, get the very first name in our Disney DataFrame .

```
In [15]: # At first, Mickey's name was going to be Mortimer Mouse. I know, right?
dis_df['name'][0]
Out[15]: 'Mickey'
```

One great thing about pandas is that, if we want to add a column, we just act like it already exists and assign values to it. Like this:

```
In [16]: dis_df['wearsBow'] = [False, True, False]
dis_df
```

Out[16]:

	name	gender	age	wearsBow
0	Mickey	m	95	False
1	Minnie	f	95	True
2	Pluto	n	93	False

Notice that we are addressing a 'wearsBow' column just like we would an existing column such as 'name'. Pandas, rather than complain and be annoying, just creates the column for us!

Data i/o (Input and Output)

One of the really great things about pandas is that it makes reading, inspecting, and writing data files in common formats very easy.

Importing (input)

Following the pandas documentation, let's look at some data about the passengers on the RMS Titanic.

Download the titanic.csv and place in folder named 'data' that is in the same folder as you have this notebook.

Now, loading it is as easy as calling pd.read_csv():

```
In [17]: In [2]: titanic = pd.read_csv("data/titanic.csv")
```

There are lots of other formats that pandas can read, including excel and html.

It can even read data from the clipboard! Try it! Go to the <u>Wikepedia page for Austin (https://en.wikipedia.org/wiki/Austin, Texas)</u>, scroll to the demographics section, and select the three columns (including the headers) down to 2020, and copy them to your clipboard.

Now run the code below.

```
In [21]: atx_pop = pd.read_clipboard()
```

In [22]: atx_pop

Out[22]:

	Census	Pop.	Note	%±
0	1850	629	NaN	_
1	1860	3,494	NaN	455.5%
2	1870	4,428	NaN	26.7%
3	1880	11,013	NaN	148.7%
4	1890	14,575	NaN	32.3%
5	1900	22,258	NaN	52.7%
6	1910	29,860	NaN	34.2%
7	1920	34,876	NaN	16.8%
8	1930	53,120	NaN	52.3%
9	1940	87,930	NaN	65.5%
10	1950	132,459	NaN	50.6%
11	1960	186,545	NaN	40.8%
12	1970	253,539	NaN	35.9%
13	1980	345,890	NaN	36.4%
14	1990	465,622	NaN	34.6%
15	2000	656,562	NaN	41.0%
16	2010	790,390	NaN	20.4%
17	2020	961,855	NaN	21.7%

Inspecting

It's important to peek at any imported data to make sure nothing looks funny (like we just did with the Austin population data). So let's peek at the RMS Titanic data.

In [23]: titanic

Out[23]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

A nice thing about pandas DataFrames is that, by default, they show you their first and last 5 rows (their head and tail), and then tell you how big they are (891x12 in this case).

We can look at as much of the head or tail as we want with the <code>head()</code> and <code>tail()</code> methods.

In [24]: titanic.tail(9)

Out[24]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	7552	10.5167	NaN	S
883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./SOTON 34068	10.5000	NaN	S
884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTON/OQ 392076	7.0500	NaN	S
885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	382652	29.1250	NaN	Q
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

Use the cell below to display the first 11 rows of the titanic data.

In [25]: # but these rows go to 11...
titanic.head(11)

Out[25]:

	Passengerld	Survivad	Dolace	Name	Sov	٨٥٥	SibSp	Daroh	Ticket	Fare	Cahin	Embarked
	rassengenu	Surviveu	rciass	Name	Jex	Age	SibSp	raicii	TICKEL	гаге	Cabiii	Lilibarkeu
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S

We can also look at the data types:

```
In [26]: titanic.dtypes
Out[26]: PassengerId
                          int64
                          int64
         Survived
         Pclass
                          int64
         Name
                         object
         Sex
                         object
         Age
                        float64
         SibSp
                          int64
         Parch
                          int64
         Ticket
                         object
                        float64
         Fare
         Cabin
                         object
         Embarked
                         object
         dtype: object
```

(the columns listed as "object" seem to be strings)

We can also get more detailed information using the info() method:

```
In [27]: titanic.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)
memo	ry usage: 83.	7+ KB	

This gives us a nice summary of the types of data in the columns and, in particular, how many valid (non-missing) values are in each. We can see that "Cabin", for example, has many missing values.

Exporting (output)

The to_ methods, such as to_csv(), to_excel(), etc., allow us to export data in many ways. As an example, let's export the titanic data as a Microsoft Excel file.

In the cell below, use $titanic.to_excel(...)$ to export the data to an Excel spreadsheet.

```
In [30]: # exporting an Excel file!
titanic.to_excel('titanic_data.xlsx')
```

Open the file in Excel to verify that the export worked.

Selecting Data

In numpy, we select data by primarily by row and column indexes. In pandas, we generally address columns (corresponding to real world variables) by *name* and rows by one or more *criteria*.

Getting columns

As we did above with our little toy Disney data, we can compute the mean age of the passengers by grabbing that column of data by name, and then computing the mean of it.

```
In [31]: ages = titanic['Age']
ages.mean()
Out[31]: 29.69911764705882
```

In the cell below, compute the mean age in one line of code (i.e., not creating the temporary 'age' object).

```
In [32]: # average age of passengers on the RMS Titanic
titanic['Age'].mean()
Out[32]: 29.69911764705882
```

We can get multiple columns by indexing our DataFrame with a Python list of column names. We can do this in two lines for readability.

```
In [33]: wanted_cols = ['Fare', 'Survived']
fare_surv = titanic[wanted_cols]
```

In [34]: fare_surv

Out[34]:

	Fare	Survived
0	7.2500	0
1	71.2833	1
2	7.9250	1
3	53.1000	1
4	8.0500	0
886	13.0000	0
887	30.0000	1
888	23.4500	0
889	30.0000	1
890	7.7500	0

891 rows × 2 columns

But more commonly we do it in a single line.

```
In [35]: fare_surv = titanic[['Fare', 'Survived']]
```

Your initial reaction might be "Why the double brackets? Why not single brackets?", and the reason should be clear if we look back at the two line example: the <code>DataFrame</code> expects a Python list, not separate strings. So the outer set of brackets are indexing brackets, and the inner set defines a Python list.

Getting rows

We generally extract rows of interest by placing one or more criterea on a particular column.

```
In [36]: my_critereon = fare_surv['Fare'] > 20
rich = fare_surv[my_critereon]
```

What is actually happening here is that the logical test fare_surv['Fare'] > 20 is creating a pandas series that is True for the rows in which the fare paid was greater than 20 pounds sterling, and False otherwise.

Let's look at my_critereon:

```
In [37]: my critereon
Out[37]: 0
                 False
                  True
          1
          2
                 False
          3
                  True
          4
                 False
                 . . .
          886
                 False
          887
                  True
          888
                  True
          889
                  True
          890
                 False
         Name: Fare, Length: 891, dtype: bool
```

This series is then used to get all the rows of fare_surv that correspond to the True values, and these are placed in rich.

This is known as *logical indexing*, and is widely used in data analysis!

As with fetching columns, we can do this one line instead of two.

```
In [38]: rich = fare_surv[fare_surv['Fare'] > 20]
```

Whether you make a separate indexing series like my_critereon or put the test inside the indexing brackets is up to you. For simple tests, putting the test inside the brackets doesn't hurt the readability of the code at all. For more complicated tests – if you wanted all the cases of female passengers that paid between 20 and 50 lbs. for their fare, and had no siblings and two parents aboard, say – then you might want to make the test series first, and then do the indexing.

In the cell below, get the passenger class (Pclass) and survival status of passengers that paid more than 20 pounds for their voyage.

In [44]: # passenger class and survival of high fares
 rich = titanic[titanic['Fare']>20]
 print('This the passenger class and survival status of passengers that paid more than 20 pounds for the rich[['Pclass', 'Survived']]

This the passenger class and survival status of passengers that paid more than 20 pounds for their voyage:

Out[44]:

	Pclass	Survived
1	1	1
3	1	1
6	1	0
7	3	0
9	2	1
880	2	1
885	3	0
887	1	1
888	3	0
889	1	1

376 rows × 2 columns

Now fetch the same for passengers that paid 20 pounds or less for their voyage.

```
In [45]: # passenger class and survival of low fares
poor = titanic[titanic['Fare']<20]
print('This is the passenger class and survival status of people who paid less than 20 pounds for the:
poor[['Pclass', 'Survived']]</pre>
```

This is the passenger class and survival status of people who paid less than 20 pounds for their vo yage:

Out[45]:

	Pclass	Survived
0	3	0
2	3	1
4	3	0
5	3	0
8	3	1
882	3	0
883	2	0
884	3	0
886	2	0
890	3	0

515 rows × 2 columns

Finally, get the class and survival status for passengers that paid either less than 10 lbs. or more than 50 lbs. for their fare.

```
In [51]: # ppl paying a little *or* a lot
  less10more50 = titanic[(titanic['Fare']<10)|(titanic['Fare']>50)]
  less10more50[['Pclass', 'Survived']]
```

Out[51]:

	Pclass	Survived
0	3	0
1	1	1
2	3	1
3	1	1
4	3	0
878	3	0
879	1	1
881	3	0
884	3	0
890	3	0

496 rows × 2 columns

```
In [56]: titanic[(titanic['Fare']<10)|(titanic['Fare']>50)][['Pclass', 'Survived']]
```

Out[56]:

	Pclass	Survived
0	3	0
1	1	1
2	3	1
3	1	1
4	3	0
878	3	0
879	1	1
881	3	0
884	3	0
890	3	0

496 rows × 2 columns

If you did the above in two steps, see if you can do it in one go instead! There are hints just above.

Basic Plotting

DataFrame objects know how to plot themselves! Or, more precisely, DataFrame objects have methods for plotting. Let's try!

In [76]: import matplotlib.pyplot as plt
fare_surv.plot()

Out[76]: <AxesSubplot:>

As a graph, this one isn't very informative, but it does show us what the default <code>DataFrame.plot()</code> method does: it plots (numerical) data by row index. This could be quite useful if a data frame were sorted on a particular variable...

Other type of plots are reached through plot, like fare_surv.plot.scatter() or similar. We can see what methods are available by hitting the <TAB> key after DataFrame.plot.

Do this below;

In []: fare_surv.plot.

So there is a scatter() available, along with many of our other matplotlib friends.

Let's try a scatter plot Fare vs. Survival.

```
In [77]: fare_surv.plot.scatter(x="Survived", y="Fare", alpha = 0.1)
```

Out[77]: <AxesSubplot:xlabel='Survived', ylabel='Fare'>

Looks like those 500 lb. fares were worth it.

Use the cell below to make a box plot of the ${\it column}$ Fare ${\it by}$ the variable Survived .

```
In [79]: # boxplot of Fare paid by Survival status
    fare_surv.plot.box('Survived')
    plt.title('Fare by Survival')
    plt.xlabel('Survival')
    plt.ylabel('Fare')
```

Out[79]: Text(0, 0.5, 'Fare')

Calculating New Columns

We often want to compute new columns based on existing ones. Pandas makes this really easy!

Let's use numpy to make a toy data set of annual wages and income-from-interest for 10 people.

```
In [67]: import numpy as np
```

In following code, you should be able to understand the numpy bit up top. The pandas bit further down should sort of make sense, but don't worry if you don't fully understand it. You can come back and look at it again after you've finished this tutorial.

```
In [68]: # make some incomes in thousands of US dollars
    rng = np.random.default_rng(seed=42)
    raw_dat = rng.integers(0,100,size=(10, 2))
    raw_dat[:,0] = raw_dat[:,0] + 100
    raw_dat[4,1] = raw_dat[4,1] + 200

# make initial column names
    col_names = ['wage', 'interest']

# make the initial pandas data frame
    incomes = pd.DataFrame(raw_dat, columns = col_names)

# add a gender column
    gender = ['f', 'm', 'n', 'f', 'f', 'm', 'm', 'f', 'f']
    incomes['gender'] = gender

# look at our new data frame
    incomes
```

Out[68]:

	wage	interest	gender
0	108	77	f
1	165	43	m
2	143	85	n
3	108	69	f
4	120	209	f
5	152	97	n
6	173	76	m
7	171	78	m
8	151	12	f
9	183	45	f

One obvious thing to look at from a behavioral science perspective would be total income. After all, money is money...

So we'll make a new column for total income, and set it to the sum of the wage and interest columns. To do this, we address our desired column as though it already exists, and make it equal to what we want (the sum of wage and interest income, in this case).

```
In [72]: incomes['total'] = incomes['wage'] + incomes['interest']
incomes
```

Out[72]:

	wage	interest	gender	total
0	108	77	f	185
1	165	43	m	208
2	143	85	n	228
3	108	69	f	177
4	120	209	f	329
5	152	97	n	249
6	173	76	m	249
7	171	78	m	249
8	151	12	f	163
9	183	45	f	228

All of the arithmetic and logical operators can be used to create new columns based on existing ones.

We can also use scaler multipliers or addends, etc. (like we did when we created the raw data with numpy just above). The scaler will be "broadcast" to each element of the column.

For example, if we wanted to know the total income in Euros, we could do this:

```
In [73]: dol2eu = 0.94 # 0.94 euros per US dollar (early 2023)
  incomes['total_eu'] = dol2eu * incomes['total']
  incomes
```

Out[73]:

	wage	interest	gender	total	total_eu
0	108	77	f	185	173.90
1	165	43	m	208	195.52
2	143	85	n	228	214.32
3	108	69	f	177	166.38
4	120	209	f	329	309.26
5	152	97	n	249	234.06
6	173	76	m	249	234.06
7	171	78	m	249	234.06
8	151	12	f	163	153.22
9	183	45	f	228	214.32

In the cell below, add a Boolean (True/False) column that shows if each person's wages exceeds their income from interest.

```
In [82]: # adding a wages vs incomes comparison column
incomes['wageExceedInt'] = incomes['wage']>incomes['interest']
incomes
```

Out[82]:

	wage	interest	gender	total	total_eu	wageExceedInt
0	108	77	f	185	173.90	True
1	165	43	m	208	195.52	True
2	143	85	n	228	214.32	True
3	108	69	f	177	166.38	True
4	120	209	f	329	309.26	False
5	152	97	n	249	234.06	True
6	173	76	m	249	234.06	True
7	171	78	m	249	234.06	True
8	151	12	f	163	153.22	True
9	183	45	f	228	214.32	True

Summary Statistics

Getting summary statistics is also something that pandas makes really easy.

Simple descriptive statistics

We can get a quick look an entire DataFrame With its describe() method (similar to summary() in R).

```
In [83]: incomes.describe()
```

Out[83]:

	wage	interest	total	total_eu
count	10.000000	10.000000	10.000000	10.000000
mean	147.400000	79.100000	226.500000	212.910000
std	27.281251	51.977452	47.815037	44.946135
min	108.000000	12.000000	163.000000	153.220000
25%	125.750000	51.000000	190.750000	179.305000
50%	151.500000	76.500000	228.000000	214.320000
75%	169.500000	83.250000	249.000000	234.060000
max	183.000000	209.000000	329.000000	309.260000

Notice that describe() handled the presence of a string column gracefully by ignoring it rather than producing an error.

If we hit the <TAB> key after incomes., we'll see that DataFrame objects have a LOT of methods!

```
In [ ]: incomes.
```

If we browse around a little, we see that all the common summary statistics like mean, median, standard deviation, etc. are there, and they all have reasonable names. Let's compute the mean

```
In [84]: incomes.mean()
```

/var/folders/18/y5p3lwcd31j2dw1d0_k3lqsh0000gp/T/ipykernel_1463/1563429750.py:1: FutureWarning: Dro pping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. incomes.mean()

Out[84]: wage 147.40 interest 79.10 total 226.50 total_eu 212.91 wageExceedInt dtype: float64

That worked, but it complained (at least my version of pandas did). It wants us to pick only valid (numeric) columns over which to compute the mean. Okay.

```
In [85]: incomes[['wage', 'interest']].mean()
Out[85]: wage     147.4
     interest     79.1
     dtype: float64
```

Compute the standard deviation of total income (in Euros, if you prefer)

```
In [86]: # deviation of total income
incomes['total'].std()
Out[86]: 47.81503715127468
```

Pro tip: if you do want to compute a statistic on all the numeric columns on large data frame, you can save typing with DataFrame.mean(numeric_only = True). Try it!

Computing statistics by group

We can also easily compute statistics separately based on a grouping variable, like 'gender' for the incomes data.

Here's our grouping variable:

```
In [88]: incomes['gender']
Out[88]:
          0
                f
          1
               m
               n
          3
               f
          4
               f
               m
          8
               f
          Name: gender, dtype: object
          And now we'll use it in our data frame's groupby() method. Like this.
In [89]: incomes[['total', 'gender']].groupby('gender').mean()
Out[89]:
                       total
           gender
```

f 216.400000

-
- m 235.333333
- n 238.500000

If you are coming from the R/tidyverse world (e.g. if you took PSY420 recently), you'll recognize this command as similar to using the pipe (%>%).

What's happening is that

- incomes[['total', 'gender']] creates a data frame
- groupby ('gender') creates another data frame grouped by gender
- mean() computes the mean on the grouped data frame

So we could (almost) turn this directly into R code that uses the pipe:

```
incomes[['total', 'gender']] %>%
groupby('gender') %>%
mean()
```

How many people were in each group? Just use the value counts() method!

In the cell below, compute the survival rate for passengers on the RMS Titanic grouped by passenger class.

(hint - having the Survived variable coded as 0 or 1 works to your advantage)

Multiple statistics using aggregation

We can compute many things at once using the agg() (aggregate) method. To use this method, we pass it a dictionary in which the keys are column names and the values are lists of valid statistics (i.e. methods that DataFrames know about). Like this.

```
In [94]: 
my_stats_dict = {
          "wage": ["mean", "std"],
          "interest": ["mean", "std"],
          "total": ["mean", "std"]
}
incomes.agg(my_stats_dict)
```

Out[94]:

	wage	interest	total
mean	147.400000	79.100000	226.500000
std	27 281251	51 977452	47 815037

You can do the above in one go (rather than defining a separate my_stats_dict object), but it looks a bit messy in our opinion.