

ЛЕКЦИЯ 1. ЦИФРОВАЯ
ОБРАБОТКА ИЗОБРАЖЕНИЙ.
ОСНОВНЫЕ ПОНЯТИЯ И
ОПРЕДЕЛЕНИЯ. ЦВЕТОВЫЕ
МОДЕЛИ

Демидов Д.В.

Обработка аудиовизуальной информации. Бакалавры, 6 семестр. Магистры, 9 семестр

План лекции

- Области применения цифровой обработки изображений
- □ Цветовые модели
- Технические средства ввода и обработки изображений. Их основные характеристики, достоинства и недостатки
- □ Передискретизация
- Форматы файлов изображений
- Bonus: Пример ОСК для глифового языка

Области применения цифровой обработки изображений

- □ Улучшений фотографий
- □ Оптическое распознавание текста
- □ Распознавание образов
- □ Компьютерное зрение
- Информационный поиск по изображениям
- □ Оценка качества изображений
- Обработка биометрической информации
- Извлечение структурированной информации из сканов документов

4

Цветовые модели – Color spaces

RGB

CIE XYZ, CIE LAB

HSL, HSI, HSV, HSB

YUV

CMYK

YCbCr, Y'CbCr, YPbPr

Основные понятия и определения

□ Цветовая модель - математическая модель описания представления цветов в виде кортежей чисел (обычно из трёх, реже — четырёх значений), называемых цветовыми компонентами или цветовыми координатами. Все возможные значения цветов, задаваемые моделью, определяют цветовое пространство.

Хроматическая диаграмма (диаграмма цветности)

CIE 1931 XYZ color space – то, что видит глаз

CIE RGB color space – то, что показывают мониторы

Цветовая модель CIE XYZ 1931

- □ Разработана Международной комиссией по освещению (Commission Internationale de l'Eclairage, CIE)
- Для того, чтобы разработанная модель могла отражать все видимые человеком цвета пришлось ввести отрицательное количество базовых цветов. Чтобы уйти от отрицательных значений СІЕ, ввела т.н. нереальные или мнимые основные цвета: X, Y, Z
- Для относительных координат x+y+z=1, что позволяет задавать любой цвет по двум составляющим, а третью вычислять.
- Тогда цветовое пространство можно отобразить на плоскости. Треугольник СІЕ задаёт все цветовые тона.
- □ Для описания яркости вводят дополнительную ось, проходящую через точку белого с координатами (1/3; 1/3). Получают цветовое тело СІЕ.

Цветовая модель CIE XYZ 1931

Цвет ХҮZ задаётся следующим образом:

$$X = \int_{380}^{780} I(\lambda) \overline{x}(\lambda) d\lambda$$
$$Y = \int_{380}^{780} I(\lambda) \overline{y}(\lambda) d\lambda$$
$$Z = \int_{380}^{780} I(\lambda) \overline{z}(\lambda) d\lambda$$

- где I спектральная плотность какой-либо энергетической фотометрической величины.
- □ Y визуальная яркость сигнала,
- □ Z отклик «синих» колбочек,
- X смесь откликов, всегда неотрицательная величина.
- Кривые отклика нормируются таким образом, чтобы площадь под всеми тремя кривыми была одинаковой.

Переход к XYZ от RGB

□ Вариант Ковалёвой И.Л., Текстурные признаки изображений, БНТУ, 2010:

```
    X = 0,607R + 0,174G + 0,200B;
    Y = 0,299R + 0,587G + 0,114B;
    Z = 0,066G + 1,111B
    x = X / (X+Y+Z)
    y = Y / (X+Y+Z)
    x + y + z = 1
```

 Вариант Фисенко В.Т., Фисенко Т.Ю., Компьютерная обработка и распознавание изображений, ИТМО, 2008:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0,49 & 0,31 & 0,1999646 \\ 0,17695983 & 0,81242258 & 0,0106175 \\ 0 & 0,01008 & 0,989913 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Цветовая модель CIE LAB 1976

- □ LAB (CIE LAB, CIE L*a*b*) последователь цветовой модели CIE XYZ и однозначно вычисляется на её основе.
- Значение светлоты отделено от значения хроматической составляющей цвета.
- Светлота (Luminance) изменяется от 0 до 100, то есть от самого темного до самого светлого
- Хроматическая составляющая определяется двумя координатами:
 - а положение цвета в диапазоне от зеленого до красного,
 - b положение цвета в диапазоне от синего до зеленого.
- Однозначно определяет цвет, в отличие от СМҮК и RGB, зависящих от аппаратуры (принтера, экрана)

Связь LAB с RGB

- Вариант Фисенко В.Т., Фисенко Т.Ю., Компьютерная обработка и распознавание
 - L* яркость цвета
 - □ а* соотношение красного и зелёного
 - □ b* соотношение синего и зеленого

Вариант Фисенко В.Т., Фисенко Т.Ю., Компьютерная обработка и распознавание изображений, ИТМО, 2008:
$$a^* = 250 \left(f \left(\frac{Y}{Y_0} \right)^{\frac{1}{3}} - 16, \quad \frac{Y}{Y_0} > 0,008856 \right)$$

$$b^* - \text{ соотношение красного и зелёного}$$

$$b^* - \text{ соотношение синего и зеленого}$$

$$f \left(t^{\frac{1}{3}} \right) = \begin{cases} t^{\frac{1}{3}}, & t > 0,008856 \\ f \left(\frac{X}{X_0} \right)^{\frac{1}{3}} - f \left(\frac{Y}{Y_0} \right)^{\frac{1}{3}} \end{cases}$$

 X_0, Y_0, Z_0 – white

Цветовая модель RGB

- RGB red, green, blue цветовая модель, определяющая способ кодирования изображения с помощью трёх основных каналов.
- Цвета получаются путём добавления к чёрному.

 Смешение всех основных цветов даёт белый цвет.

Базовые цвета в кубе RGB

- Базовые цвета расположены по углам куба:
 - (0, 0, 0) Чёрный
 - (1, 1, 1) Белый
 - (1, 0, 0) Красный
 - □ (0, 1, 0) Зелёный
 - □ (0, 0, 1) Синий
 - □ (1, 1, 0) Жёлтый
 - □ (1, 0, 1) Пурпурный
 - □ (0, 1, 1) Голубой
- На диагонали от чёрного к белому лежат оттенки серого

Цветовая модель HSI (HSL)

- Сориентируем RGB-куб так, чтобы главная диагональ была направлена вверх.
- □ Рассмотрим проекцию вершин куба на плоскость.
- Введём цилиндрическую систему координат H, S, L
- \Box $H \in [0^{\circ}, 360^{\circ}], S_{HSI} \in [0, 1], I \in [0, 1]$

Цветовая модель HSL (2)

- HSL hue, saturation, lightness цветовая модель, в которой цветовыми координатами являются тон, насыщенность и светлота.
- Тон (оттенок, hue) направление вектора цветности на диаграмме цветности с началом в точке белого и концом в данной цветности.
 Задаётся углом поворота вокруг оси яркости. Тон определяет название цвета, например «красный», «синий», «зелёный».

- □ Насыщенность (saturation) удаленность от оси яркости, интенсивность тона, задается в процентах. Любой ненасыщенный тон будет оттенком серого.
- Светлота (lightness, intensity) субъективная яркость участка изображения, отнесённая к субъективной яркости белого. Положение на оси от чёрного до белого.

Связь HSL с RGB и вариации

□ Формулы расчёта HSL по RGB:

$$H = egin{cases} heta; \ B \leq G \ 360 - heta; \ B > G \end{cases}$$
 где $heta = \arccos{(rac{1}{2}*((R-G)+(R-B)))} \ rac{1}{\sqrt{(R-G)^2+(R-B)(G-B)}} \end{cases}$ $S = 1 - rac{3}{(R+G+B)} \min{(R,G,B)}$

 Если занулить Н и S, то из цветного изображения получится полутоновое.

HSL cylinder HSV cylinder

HSL bicone

HSV cone

Регулировка характеристик в HSL

Алексей Горьков https://habrahabr.ru/post/181580/

Цветовая модель СМҮК

- CMYK Cyan, Magenta, Yellow, Key color.
- Субтрактивная модель для полиграфии.
- Базовые дополнительные цвета получаются путём вычитания базовых цветов модели RGB из белого.

М

- \Box Cyan = White Red
- Magenta = White Green
- Yellow = White Blue
- На цветовом кубе RGB цвета CMY лежат на углах, противоположных RGB.

Цветовая модель YUV

- ▼UV цветовая модель, в которой цвет представляется как три компонента яркость Y [0; 1] и две цветоразностных U и V [-0.5; 0.5].
- Яркостная компонента содержит «черно-белое» (в оттенках серого) изображение, а оставшиеся две компоненты содержат информацию для восстановления требуемого цвета.
- Для кодирования U и V требуется меньшая разрядность, что даёт экономию при передаче

Связь YUV с RGB

SDTV with BT.601

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix},$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}.$$

□ HDTV with BT.709

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.2126 & 0.7152 & 0.0722 \\ -0.09991 & -0.33609 & 0.436 \\ 0.615 & -0.55861 & -0.05639 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.28033 \\ 1 & -0.21482 & -0.38059 \\ 1 & 2.12798 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}$$

Модели YCbCr, Y'CbCr

- YCbCr, Y'CbCr, или Y Pb/Cb Pr/Cr, также пишется как Y'C_BC_R или YC_BC_R семейство цветовых пространств, которые используются для передачи цветных изображений в компонентом видео (с раздельной передачей цветности) и цифровой фотографии.
 - Y' компонента яркости. Отличается от Y, которой обозначают яркость без предыскажения. Апостроф означает, что интенсивность света кодируется нелинейно с помощью гамма-коррекции.
 - С_в и С_к являются синей и красной цветоразностными компонентами.
- □ https://ru.wikipedia.org/wiki/YCbCr

Связь Y'CbCr c RGB

Цифровые компоненты Y'CbCr (8 бит)
 рассчитываются из аналоговых R'G'B' [0;1]
 следующим образом:

$$Y' = 16+$$
 $(65.481 \cdot R' + 128.553 \cdot G' + 24.966 \cdot B')$
 $C_B = 128+$ $(-37.797 \cdot R' - 74.203 \cdot G' + 112.0 \cdot B')$
 $C_R = 128+$ $(112.0 \cdot R' - 93.786 \cdot G' - 18.214 \cdot B')$

□ Плоскость CbCr при разных значениях яркости Y' [0;1]

Цветовое расстояние

- Математическое представление, позволяющее численно выразить различие между двумя цветами;
- Распространенные определения цветового различия обычно используют формулу вычисления расстояния в Евклидовом пространстве;
- Не любое цветовое пространство является евклидовым.
- $lue{}$ Говорят об *ощущении,* пишут $\Delta \mathrm{E}$ (Empfindung)

Формулы цветового отличия

CIE76

Используя координаты (L1*a1*b1*) и (L2*a2*b2*) в цветовом пространстве L*a*b*:

$$\Delta E_{ab}^* = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}$$

Где значение 2.3 примерно соответствует минимально различимому для человеческого глаза отличию между цветами.

CIE94

 \square ΔE (1994) задавалось в цветовом пространстве LCH (L*C*h).

$$\Delta E_{94}^* = \sqrt{\left(rac{L_2^* - L_1^*}{K_L}
ight)^2 + \left(rac{C_2^* - C_1^*}{1 + K_1C_1^*}
ight)^2 + \left(rac{h_2 - h_1}{1 + K_2C_1^*}
ight)^2}$$

где весовой коэффициент **К** зависит от области применения

	Искусство	Промышленность
K L	1	2
K 1	0.045	0.048
K 2	0.015	0.014

Ещё есть очень громоздкий стандарт CIEDE2000

Что почитать

- https://sonikelf.ru/znakomimsya-s-cvetom-vsyo-o-cvetovyx-modelyax-rgb-cmyk-hsvhsl-lab/
- https://wolfcrow.com/blog/what-is-the-difference-between-cie-lab-cie-rgb-cie-xyy-and-cie-xyz/
- Цветовые модели
- https://ru.wikipedia.org/wiki/%D0%A6%D0%B2%D0%B5%D1%82 %D0%BE%D0%B2%D0%B0%D1%8F %D0%BC%D0%BE%D0%B 4%D0%B5%D0%BB%D1%8C
- Формулы цветового отличия

Бонус 1. Шутки Microsoft Word

Английская буква «А»,
 напечатанная чёрным цветом
 шрифтом Times New Roman, 22

A

- Она же, многократно увеличенная в Paint
- Видим около десятка цветов и оттенков

Технические средства ввода изображений

Достоинства и недостатки

Технические средства ввода и обработки изображений

- Средства ввода изображений:
 - Сканер
 - □ Факс
 - □ Цифровое фото
 - □ Цифровое видео
- □ Изображения:
 - □ Бинарные (монохромные, черно-белые)
 - Полутоновые (256 оттенков серого)
 - □ Цветные (True color 24bit, Deep color 48bit)

Достоинства и недостатки

	Факс	Сканер	Фото (несжатое, с зеркалки)	Видеозахват
Разрешение	Очень низкое	Очень высокое	Высокое	Низкое
Цветопередача	ЧБ	Очень высокое	Отлична	Высокая- средняя
Шумы	Очень большие	Шумы на оригинале + шумы от стекла устройства (жир, пыль, ворс)	Зависят от условий съёмки	Сильно зависят от условий съёмки
Искажения	Очень большие	Поворот, нелинейные искажения	Трапеция, поворот, зернистость	Дрожание, слаба яркость
Общее качество	Худшее	Лучшее	Лучшее	Хорошее

Особенности обработки

	Бинарные	Полутоновые	С палитрой (индексирова нные)	Полноцветны е
Объём	Очень малый, 1 бит на пиксель	Малый, в 8 раз больше бинарного	Средний	Очень большой, в 32 раза больше бинарного
Количество цветов	2	256	По разному	4 млн
Информативн ость	Минималь ная	Средняя	Высокая	Максимальна я
Алгоритмы	Простые	Средней сложности	Сложные	Сложные
Вычисления	O(n*m)	O(n*m*c)	O(n*m*c)	O(n*m*c)

Форматы файлов изображений

BMP, JPEG, PNG, TIFF, GIF, RAW

Семейство форматов ВМР

- □ Монохромный
 - 1 бит на пиксель
- □ 16-цветный
 - □ Палитры, в которой 16 цветов заданы в true color
 - 4-битный индекс цвета в палитре.
- 256-цветный
 - 8-битная палитра
- 24-разрядный (true color)
 - □ 8-бит на каждый цвет

Формат RAW

- Содержит необработанные (сырые) данные об электрических сигналах с фотоматрицы цифрового фотоаппарата или кинокамеры;
- Играют роль цифрового негатива;
- При конвертации в то или иное цветовое пространство применяются настройки баланса белого, светочувствительности, яркости, контраста, насыщенности, контурной резкости.
- После конвертации изображение пригодно для просмотра и печати.

Режимы Image библиотеки PIL

Режим	Описание
1	1-bit pixels, black and white, stored with one pixel per byte
L	8-bit pixels, black and white
P	8-bit pixels, mapped to any other mode using a color palette
RGB	3x8-bit pixels, true color
RGBA	4x8-bit pixels, true color with transparency mask
CMYK	4x8-bit pixels, color separation
YCbCr	3x8-bit pixels, color video format. Refers to the JPEG, and not the ITU-R BT.2020, standard
LAB	3x8-bit pixels, the L*a*b color space
HSV	3x8-bit pixels, Hue, Saturation, Value color space
1	32-bit signed integer pixels
F	32-bit floating point pixels

Передискретизация

Интерполяция Децимация

Передискретизация

- □ Передискретизация (Resampling) изменение ширины и высоты изображения.
- Интерполяция (растяжение, upsampling) повышение частоты дискретизации
- Децимация (сжатие, downsampling) уменьшение частоты дискретизации путём прореживания его отсчётов (изначально казнь каждого десятого по жребию).
- Передискретизация с рациональным коэффициентом = комбинация растяжения и сжатия с разными целыми коэффициентами

Однопроходная передискретизация

- Размер выходного изображения задаётся рациональным числом (M/N).
- Для каждого пикселя выходного изображения цвет рассчитывается на основе исходного изображения по формуле:

$$I(x,y) = I\left(\left[x\frac{N}{M}\right], \left[y\frac{N}{M}\right]\right)$$

$$x \in [0..W\frac{M}{N} - 1]$$

$$y \in [0..H\frac{M}{N} - 1]$$

Цифровые фильтры для передискретизации

- □ Применимы в частных случаях:
 - □ Растяжение или сжатие с целым коэффициентом
 - Передискретизация с рациональным коэффициентом
- □ Классы фильтров
 - Фильтры нижних частот (оконные sinc-фильтры)
 - Линейные интерполяторы и интерполяторыЛагранжа
 - СІС-фильтры (каскады гребёнчатых фильтров и интеграторов)

Артефакты передискретизации

- При интерполяции
 - □ Пикселизация (blocking)

■ Звон (каёмка, ringing)

Pазмытие (blurring)

При уменьшении разрешения

- Алиасинг (aliasing):
- □ Эффект муара:

Бонус 2. О роли Matlab в истории

□ КовёрСерпинскогоразмерностью2048 пикселей

□ Он же *Треугольник Паскаля,* где

нечётные числа
покрашены
чёрным

О роли Matlab в истории (2)

- □ 16 строк кода
- 1 час работы

```
function serpinski(n)
 m = zeros(n, n);
 m(1:n, 1) = 1;
 m(1, 1:n) = 1;
 for k = 3:n
    for x = 2:(k-1)
     y = k - x + 1;
     m(x, y) = xor(m(x-1, y), m(x, y-1));
    end
 end
 m = (1-m)*255; %% for painting
 image(m);
 axis off
 axis image
  imwrite(m, 'I:\\dd\\matlab\\serpinski triangle.png');
end
```

Основная литература

- 621.37 Г44 Гетманов В.Г. Цифровая обработка нестационарных колебательных сигналов на основе локальных и сплайновых моделей: монография, В. Г. Гетманов, Москва: НИЯУ МИФИ, 2010
- 517 Б82 Нечитайло В.А., Борисенко Н.А. Обработка цифровых сигналов и изображений с помощью вейвлетов: тексты лекций, Н. А. Борисенко, В. А. Нечитайло, Москва: НИЯУ МИФИ, 2011

Дополнительная литература

621.39 Д24 Дворянкин С.В. Цифровая шумоочистка аудиоинформации: , С. В. Дворянкин; ред. А. В. Петраков, Москва: РадиоСофт, 2011

 004 С32 Сергиенко А.Б. Цифровая обработка сигналов: учебное пособие для вузов, Санкт-

Петербург: БХВ - Петербург, 2011