

Unidades de Medidas de Almacenamiento

Medida	Simbologia	Equivalencia	Equivalente en Bytes 1 byte	
byte	b	8 bits		
kilobyte	Kb	1024 bytes	1 024 bytes	
megabyte	MB	1024 KB	1 048 576 bytes	
gigabyte	GB	1024 MB	1 073 741 824 bytes	
terabyte	TB	1024 GB	1 099 511 627 776 bytes	
Petabyte	PB PB	1024 TB	1 125 899 906 842 624 bytes	
Exabyte	EB	1024 PB	1 152 921 504 606 846 976 bytes	
Zetabyte	ZB	1024 EB	1 180 591 620 717 411 303 424 bytes	
Yottabyte	YB	1024 ZB	1 208 925 819 614 629 174 706 176 bytes	
Brontobyte	BB	1024 YB	1 237 940 039 285 380 274 899 124 224 bytes	
Geopbyte	GB	1024 88	1 267 650 600 228 229 401 496 703 205 376 bytes	

www.tiposdecomputadora.wordpress.com

1 Exabyte = 36,000 hours of HD video

IF THE 11 OZ COFFEE ON YOUR DESK EQUALS ONE GIGABYTE

A ZETTABYTE

would have

THE SAME VOLUME AS

THE GREAT WALL OF CHINA

Cisco expects Internet traffic to hit 2 **zettabytes** annually by 2019.

the Internet is currently experiencing a 23 percent compound annual growth rate in traffic.

Telecom

- Nearly 5 billion mobile-phone subscriptions worldwide
- Over 3 billion people accessing the internet.
- The world's effective capacity to exchange information through <u>telecommunication</u> networks:
 - 281 <u>petabytes</u> in 1986,
 - 471 petabytes in 1993,
 - 2.2 exabytes in 2000,
 - 65 <u>exabytes</u> in 2007^[8]
 - predicted to reach
 667 exabytes
 annually by 2014. (Wiki)

Video Surveillance

- Up to 5.9 million closed-circuit television cameras in UK
- Including 750,000 in <u>"sensitive locations" such</u> as schools, hospitals and care homes.
- 1 camera for every 11 people
- A few GB/camera/day

Space Exploration

- Square Kilometer Array (SKA) project
- Radio telescopes spread over 1 sq km area
- "sensitive enough to detect airport radar on a planet 50 light years away"
- Generates 750 terabytes every SECOND!

DATA in modern world

- Data as the <u>fourth pillar of science</u>
- The first 3 pillars are:
 - Theory
 - Experiment
 - Computation

Jobs!

- Needed by 2018, in US alone:
 - 140,000 to 190,000 big data analysts
 - 1.5 million managers who understand big data

file:///D:/BACKUPD/courses/biol_data/intro/Big_data_McKinsey_Company.htm#sthash.2NWbgp5G.dpuf

Big Data Jobs in India

- Number of analytics jobs in India had doubled since last year (2016)
- 50,000 jobs available in Big Data in 2017
- India currently contributes to 12 per cent of worldwide analytics and data science job openings, making it the largest analytics hub in the world, outside the US.
- Amazon, Citi, HCL, Goldman Sachs and IBM stand out to be the leading organisations with most number of analytics openings

SLAC's Linac Coherent Light Source (LCLS) X-ray laser

A Big Data place

- The European Bioinformatics Institute (EBI) in Hinxton, UK,
 - part of the European Molecular Biology Laboratory
 - one of the world's largest biology-data repositories,
 - currently stores 20 petabytes of data and back-ups
 - Data about genes, proteins and small molecules.

...Where is it all coming from?

Another Big Data place

- Beijing Genomics Institute (BG) in Shenzen, China
- "The Sequence Factory"
- 157 genome sequencing instruments working 24X7
- Samples from people, plants, animals and microbes.
- Each day, it generates 6 terabytes of genomic data.
- Every instrument can decode one human genome per week (used to take months or years and many staff).
- (Storage for 1 human genome = 200 GB)

THE 'OM'ICS

HUMAN GENOMICS

Human Genome Project

- Aim
 - Identify sequence of bases on all 23 human chromosomes (3 billion bases/3Gb)
 - Identify genes within those sequences (~30 000 genes)
 - Locate the position of the genes on the chromosomes
- \$6 bn, 1000 scientists, 50 countries, 10+ years!
- Human genome can now be sequenced in a few days on the 'next-generation sequencing' (NGS) machines
- Full genome data being collected from disease conditions
 - the combined cancer genome and normal genome from a single patient constitutes about 1 terabyte (10¹² bytes)
 - a million genomes would generate an exabyte (10¹⁸ bytes). "

Types of Genomics

- Disease genomics
 - Millions of patients per disease
- DNA profiling
 - Family lineages, parenting, forensics etc
- Comparative genomics
- Plant genomics
- Bacterial genomics
- Viral genomics

Transcriptome

- The set of all RNA molecules in a given cell, population of cells or an organism
- A single gene may produce many different types of mRNA molecules, so a transcriptome is much more complex than the genome that encodes it.

Proteins

- Peptide: a chain of amino acids (AAs)
- Assuming an average size of 200 AAs, number of possible proteins is $20^{200} > \#$ protons in the universe
- Assume:
 - there are 10⁷–10⁸ species on Earth and
 - -10^3-10^5 genes/species,
 - → there are 10^{10} – 10^{13} unique protein sequences,
 - <<possible sequence space,</p>
 - >> known protein number (about 1 billion)

https://www.ncbi.nlm.nih.gov/genbank/statistics/

Single Protein Study

- Structure prediction
 - Secondary structure
 - Tertiary structure
 - Quaternary Structure
- Can be quite complex
 - P53 tumor suppression gene assoc protein
 - P53 mutation database exists
 - 60,000 publications on p53 alone!!!

Proteomics

 The full complement of proteins expressed in a cell, organ or an organism

Interactome

is the whole set of molecular interactions in a

NOW... LET'S GET TO THE <u>CELL</u> LEVEL

Structure of a Typical Neuron

Neurons come in different Shapes

Neuromorph

The Connectome Project

- To find out the complete wiring diagram of the brain
- Human brain
 - Has 100 billion neurons
 - Each neuron has about 1k-10k connections
- Feasible for smaller organisms

Human Connectome Project

- 1200 individuals
- fMRI + dMRI +
- + MRI + MEG
- -Washington U + U. Minnesota

http://www.humanconnectome.org/

Connectome Data Sizes

HCP Data Sizes (per Subject)		
Session	Format	.zip File Size
Structural	Unprocessed	70.99 MB
	Preprocessed	1.19 GB
Resting State fMRI	Unprocessed	2 GB
(each of 2 sessions)	Preprocessed	3.24 GB
Task fMRI (avg per Task)	Unprocessed	490 MB
	Preprocessed	771 MB
(all 7 Tasks)	Unprocessed	3.43 GB
	Preprocessed	5.4 GB
Diffusion	Unprocessed	2.18 GB
	Preprocessed	2.81 GB
Group-Average on Unrelated 20	Additionally	289 MB
	Processed	
Total (per Subject)	Unprocessed	9.81 GB
	Preprocessed	15.77 GB
	Both	25.58 GB
Total (5 Subjects)	Unprocessed	62.16 GB
	Preprocessed	78.83 GB
	Both	141 GB
Total (20 Subjects)	Unprocessed	247.34 GB
	Preprocessed	315.05 GB
	Both	562.39 GB
Total (68 Subjects)	Unprocessed	815.4 GB
	Preprocessed	1.058 TB
	Both	1.873 TB

For 68 subjects: 1.8 Terabytes!!

The Hierarchy

Large scale networks Tissue/organ Microcircuits Cell (e.g. neuron) Proteome Metabolome/ Interactome Transcriptome Regulatory **Networks** Genome

ANALYZE THAT!

Questions?

- How to represent a DATA OBJECT?
- How to compare objects?
 - Same type or different?
 - How different?
- How to group/cluster objects based on similarity?
- How to assign objects to classes?
- How to compare groups of objects?
 - Are two groups of objects really different?

Course Structure

- Mathematical Preliminaries
 - Vectors, vector spaces
 - Eigenvalues and eigenvectors
 - Derivatives in higher dimensions
 - Linear Least Squares problem
 - Optimization
 - Lagrange multipliers
 - Probability and Bayes theorem

3. Find x.

Unsupervised Learning methods

- Clustering
 - K-means
 - Hierarchical clustering
 - Scale-based clustering
 - Fuzzy clustering
 - Graph based clustering
 - Self-organizing map
- Dimensionality reduction
 - PCA and ICA

Classification

- Prototype-based classification
 - K Nearest-neighbor classifier
 - Learning Vector Classification

Classification

- Discriminant-based classification
 - Linear Discriminant Analysis
 - Neural Networks
 - Multilayer perceptron
 - Radial Basis Function Network
 - Deep neural networks
 - Support Vector Machines
 - Bayesian Classifier

Text Books

- Introduction to Data Mining Tan/Steinbach/Kumar
- Neural Networks: A classroom approach –
 Satish Kumar
- Analysis of Biological Data Whitlock/Schluter

Grading

- Quiz I 20
- Quiz 2 20
- Assignments 20
- Endsem 40

Grading policy – RG!!!

