第1章 凸集合と凸関数の基本

1 アファイン接続と凸性

M を多様体、∇を M 上のアファイン接続とする。

定義 1.1 (平坦アファイン接続). M の開部分集合 $O \subset M$ 上の座標であって、それに関する ∇ の接続係数がすべて 0 となるものを、O 上の ∇ -アファイン座標 (∇ -affine coordinates) という。

各 p ∈ M に対し、p のまわりの ∇ -アファイン座標が存在するとき、 ∇ は M 上**平坦** (flat) であるという。

命題-定義 1.2 (U 上の標準的な平坦アファイン接続). [TODO] 書き方を修正 U $\stackrel{\text{open}}{\subset} M$ とする。U 上のアファイン接続 $D\colon \Gamma(TU)\to \Gamma(T^\vee U\otimes TU)$ を、次の規則で well-defined に定めることができる:

• 各 $X \in \Gamma(TU)$ に対し、W の基底が定めるU 上の座標 x^i ($i=1,\ldots,m$) をひとつ選び、

$$DX := dX^i \otimes \frac{\partial}{\partial x^i} \in \Gamma(T^{\vee}U \otimes TU)$$
 (1.1)

と定める。ただし、X の成分表示を $X=X^i\frac{\partial}{\partial x^i}$ とおいた。

さらに、この D は U 上のアファイン接続として平坦である。D を U 上の**標準的な平坦アファイン接続** (standard flat affine connection) という。

証明 写像として well-defined であることを一旦認め、先に \mathbb{R} -線型性、Leibniz 則、平坦性を確かめる。D の \mathbb{R} -線型性と Leibniz 則は、外微分 d の \mathbb{R} -線型性と Leibniz 則から従う。平坦性は、式 (1.1) で用いた座標 x^i が D-アファイン座標となることから従う。最後に、D が写像として well-defined であることを示す。 y^α ($\alpha=1,\ldots,m$) を W の基底が定める U 上の座標とすると、

$$dX^{i} \otimes \frac{\partial}{\partial x^{i}} = d\left(X^{\alpha} \frac{\partial x^{i}}{\partial y^{\alpha}}\right) \otimes \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial}{\partial y^{\alpha}}$$

$$(1.2)$$

$$= \left(\frac{\partial x^{i}}{\partial y^{\alpha}} dX^{\alpha} + X^{\alpha} \underbrace{d\left(\frac{\partial x^{i}}{\partial y^{\alpha}}\right)}\right) \otimes \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial}{\partial y^{\alpha}}$$
(1.3)

$$=dX^{\alpha}\otimes\frac{\partial}{\partial y^{\alpha}}\tag{1.4}$$

となる。ただし「=0」の部分は x^i と y^α の間の座標変換がアファイン変換となることを用いた。これで well-defined 性も示された。

定義 1.3 (∇ -凸集合). 部分集合 $S \subset M$ が ∇ -凸 (∇ -convex) であるとは、任意の $p,q \in S$ に対し、p から q への S 内の ∇ -測地線がただひとつ存在することをいう。

定義 1.4 (∇ -凸関数). $U \subset M$ を ∇ -凸開集合とする。関数 $f \in C^{\infty}(U)$ が ∇ -凸 (∇ -convex) であるとは、U 内の任意の ∇ -測地線 $\gamma \colon [0,1] \to U$ に対し、 $f \circ \gamma \colon [0,1] \to \mathbb{R}$ が凸関数であることをいう。

2 Hessian

W を m 次元 \mathbb{R} -ベクトル空間 ($m \in \mathbb{Z}_{\geq 0}$)、 $U \overset{\text{open}}{\subset} W$ を開部分集合、D を U 上の標準的な平坦アファイン接続とする。

定義 2.1 (Hessian). C^{∞} 関数 $f: U \to \mathbb{R}$ に対し、f の Hessian を

$$\operatorname{Hess} f := Ddf \in \Gamma(T^{\vee}U \otimes T^{\vee}U) \tag{2.1}$$

と定義する。

D-アファイン座標を用いると、Hessian の成分表示は簡単な形になる。

命題 2.2 (Hessian の成分表示). x^i $(i=1,\ldots,m)$ を U 上の D-アファイン座標とする。このとき、座標 x^i に関する Hess f の成分表示は

$$\operatorname{Hess} f = \frac{\partial^2 f}{\partial x^i \partial x^j} dx^i \otimes dx^j \tag{2.2}$$

となる。とくに f の C^{∞} 性より Hess f は対称テンソルである。

証明 (Hess
$$f$$
) $(\partial_i, \partial_j) = \langle D_{\partial_i} df, \partial_j \rangle = \partial_i \langle df, \partial_j \rangle - \langle df, D_{\partial_i} \partial_j \rangle = \partial_i (\partial_j f) = \frac{\partial^2 f}{\partial x^i \partial x^j}$ より従う。

3 Legendre 変換

定義 3.1 (Legendre 変換). $U \subset W$ を開集合、 $f: U \to \mathbb{R}$ を C^{∞} 関数であって $\nabla f: U \to W^{\vee}$ が単射であるものとする。関数

$$f^{\vee} \colon U' \to \mathbb{R}, \quad y \mapsto \left\langle (\nabla f)^{-1}(y), y \right\rangle - f((\nabla f)^{-1}(y)) \quad \text{where} \quad U' \coloneqq \nabla f(U)$$
 (3.1)

を f の Legendre 変換 (Legendre transform) という。

例 3.2 (Legendre 変換の例). 具体的な指数型分布族に対し、対数分配関数の Legendre 変換を計算してみる。

- Bernoulli 分布族 (i.e. 2 元集合上の full support な確率分布の族): 対数分配関数は $\psi: \mathbb{R} \to \mathbb{R}$, $\theta \mapsto \log(1 + \exp \theta)$ であった。よって $\nabla \psi(\theta) = \frac{\exp \theta}{1 + \exp \theta}$ であり、 $(\nabla \psi)^{-1}(\eta) = \log \eta \log(1 \eta)$ である。したがって $\psi^{\vee}(\eta) = \eta \log \eta + (1 \eta) \log(1 \eta)$ である。
- 正規分布族: 対数分配関数は ψ : $\mathbb{R} \times \mathbb{R}_{<0} \to \mathbb{R}$, $\theta \mapsto -\frac{(\theta^1)^2}{4\theta^2} \frac{1}{2}\log(-\theta^2) + \frac{1}{2}\log\pi$ であった。 よって $\nabla \psi(\theta) = \left(-\frac{\theta^1}{2\theta^2} \frac{(\theta^1)^2}{4(\theta^2)^2} \frac{1}{2\theta^2}\right)$ であり、 $(\nabla \psi)^{-1}(\eta) = \frac{1}{\eta_2 (\eta_1)^2} \begin{pmatrix} \eta_1 \\ -1/2 \end{pmatrix}$ である。したがって

$$\psi^{\vee}(\eta) = -\frac{1}{2} \left(1 + \log 2\pi + \log(\eta_2 - (\eta_1)^2) \right)$$
 である。

本稿では、とくに次の状況を考えることになる。

命題 3.3. [TODO] 単射の証明などは補題に切り出す $U \subset W$ を凸開集合、 $f: U \to \mathbb{R}$ を C^∞ 関数であって Hess f が $U \bot$ 各点で (対称であることも含む意味で) 正定値であるものとする。このとき、次が成り立つ:

- (1) ∇f は局所微分同相である。とくに $U' \coloneqq \nabla f(U)$ は W^{\vee} の開集合である。
- (2) $\nabla f: U \to U'$ は微分同相である。とくに ∇f は単射である。

したがって f^{\vee} が定義でき、 f^{\vee} は次をみたす:

- (3) $f^{\vee}: U' \to \mathbb{R}$ は C^{∞} 関数である。
- (4) $\nabla f^{\vee} = (\nabla f)^{-1}$ が成り立つ。とくに ∇f^{\vee} は単射である。
- (5) 各 $y \in U'$ に対し $(\text{Hess } f)_y = ((\text{Hess } f)_x)^{-1}$ が成り立つ (ただし $x \coloneqq (\nabla f)^{-1}(y)$)。 とくに $(\text{Hess } f^{\vee})_y$ は 正定値である。

証明 (1) 命題の仮定より Hess f は U 上各点で正定値だから、 ∇f の微分は各点で線型同型である。したがって ∇f は局所微分同相であり、とくに開写像である。よって $U' = \nabla f(U)$ は W^{\vee} の開集合である。

(2) $u, \widetilde{u} \in U$, $u \neq \widetilde{u}$ を固定し、[0,1] を含む \mathbb{R} の開区間 I であって、すべての $t \in I$ に対し $(1-t)u+t\widetilde{u}$ が U に属するようなものをひとつ選ぶ (U は W の凸開集合だからこれは可能)。さらに $\varphi: I \to U$, $t \mapsto f((1-t)u+t\widetilde{u})$ と定めると、平均値定理より、ある $\tau \in (0,1)$ が存在して

$$\langle \nabla f(\widetilde{u}) - \nabla f(u), \widetilde{u} - u \rangle = \varphi'(1) - \varphi'(0) \tag{3.2}$$

$$= \varphi''(\tau) \qquad (平均値定理) \tag{3.3}$$

$$= \left\langle (\operatorname{Hess} f)_{(1-\tau)u+\tau\widetilde{u}}, (\widetilde{u}-u)^2 \right\rangle \tag{3.4}$$

$$>0$$
 (Hess f は正定値) (3.5)

が成り立つ。よって $\nabla f(\widehat{u}) \neq \nabla f(u)$ である。したがって ∇f は単射である。このことと (1) より $\nabla f \colon U \to U'$ は微分同相である。

- (3) $\nabla f: U \to U'$ が微分同相ゆえに $(\nabla f)^{-1}: U' \to U$ は C^{∞} だから、 f^{\vee} は C^{∞} 関数である。
- (4) f^{\vee} の定義式を ∇ で微分すると、すべての $y \in U'$ に対し

$$(\nabla f^{\vee})(y) = (\nabla f)^{-1}(y) + \langle y, \nabla(\nabla f)^{-1}(y) \rangle - \langle (\nabla f)((\nabla f)^{-1}(y)), \nabla(\nabla f)^{-1}(y) \rangle = (\nabla f)^{-1}(y)$$
(3.6)

が成り立つ。よって $(\nabla f)^{-1} = \nabla f^{\vee}$ である。

(5) (4) より

$$(\operatorname{Hess} f^{\vee})_{y} = d(\nabla f^{\vee})_{y} \tag{3.7}$$

$$=d((\nabla f)^{-1})_{y} \tag{3.8}$$

$$= (d(\nabla f)_x)^{-1} \tag{3.9}$$

$$= ((\text{Hess } f)_x)^{-1} \tag{3.10}$$

となる。

系 3.4 (Legendre 変換の対合性). $f^{\vee\vee} = f$.

証明 Legendre 変換の定義より、すべての $x \in U$ に対し

$$f^{\vee\vee}(x) = \left\langle x, (\nabla f^{\vee})^{-1}(x) \right\rangle - f^{\vee}((\nabla f^{\vee})^{-1}(x)) \tag{3.11}$$

$$= \langle x, \nabla f(x) \rangle - f^{\vee}(\nabla f(x)) \qquad (\nabla f^{\vee} = (\nabla f)^{-1})$$
(3.12)

$$= \langle x, \nabla f(x) \rangle - \left(\left\langle \nabla f(x), (\nabla f)^{-1}(\nabla f(x)) \right\rangle - f((\nabla f)^{-1}(\nabla f(x))) \right) \tag{3.13}$$

$$= f(x) \tag{3.14}$$

が成り立つ。よって
$$f^{\vee\vee} = f$$
 である。

4 Fourier-Laplace 変換

[TODO] ちゃんと書く。cf. [?]

定義 4.1 (Fourier-Laplace 変換). V を有限次元 \mathbb{R} -ベクトル空間、 μ を V 上の測度とする。

$$L_{\mu}(\theta) := \int_{v \in V} e^{\langle \theta, v \rangle} d\mu(v) \quad (\theta \in V^{\vee} \otimes \mathbb{C})$$
(4.1)

と定め、 L_μ を Fourier-Laplace 変換 (Fourier-Laplace transform) という。