宮島研究室 2019 年度 B4 XRD 実験

東京理科大学 理学部 応用物理学科 宮島研究室 B4 渡辺慧

2019年5月17日

目次

1	本研究の目的	1
2	原理	1
2.1	結晶面	1
2.2	逆格子	2
2.3	回折条件	4
2.4	X 線回折	5
2.5	NaCl の結晶構造	7
2.6	2 heta/ heta 法	8
2.7	NaCl 粉末の回折パターン	9
3	NaCl 粉末及び単結晶の回折パターンの観測方法	10
4	NaCl 粉末及び単結晶の回折パターンの解析	12
4.1	NaCl 粉末	12
4.2	NaCl 単結晶	14
5	·····································	17

1 本研究の目的

本研究の目的は、X線回折装置によって、Nacl 結晶の X線回折パターンを測定し、格子定数の 導出を行うことである。

2 原理

2.1 結晶面

図 1(a) のような立方格子を考える。 a_1 、 a_2 、 a_3 を各方向への単位ベクトルと考えた時、位置ベクトルr は $r=ha_1+ka_2+la_3$ と表せる。h,k,l はミラー指数と呼ばれる。このとき、r の方向を [h,k,l] と表記する。[h,k,l] 方向のベクトルと直交する面を格子面と呼ぶ。格子面は、図 1(b) のように等間隔に無限に並ぶ。その間隔を d_{hkl} としたとき、原点から d_{hkl} の距離にある面を (h,k,l) と表記する。また、(h,k,l) と平行な面すべてを内包して $\{h,k,l\}$ と表記する。(h,k,l) は、各方向の単位長さを 1 としたとき、それぞれの軸の $\frac{1}{h}$ 、 $\frac{1}{l}$ の位置を通過する。ただし、方向成分が 0 の方向があるとき、格子面はその方向と平行になる。

図1 結晶面の概形.

2.2 逆格子

結晶の構造においては、単位格子が空間的に繰り返す周期性がある。ここで、並進操作 $r \to r + R$ に対し不変となるベクトル

$$\boldsymbol{R} = n_a \boldsymbol{a_1} + n_b \boldsymbol{a_2} + n_c \boldsymbol{a_3}$$

が存在する。 $m{R}$ を実格子ベクトルと呼ぶ。ここで、結晶と同様の周期性を持つ関数 $\phi(m{r})=\phi(m{r}+m{R})$ を波数ベクトル $m{G}$ でフーリエ展開すると、

$$\phi(\mathbf{r}) = \sum_{\mathbf{G}} \phi_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}} \tag{1}$$

$$\phi(r+R) = \sum_{G} \phi_{G} e^{iG \cdot (r+R)}$$
 (2)

となる。ここで、式 (1) と式 (2) は等しいため、 \mathbf{R} と \mathbf{G} は

$$e^{i\mathbf{G}\cdot\mathbf{R}} = 1 \leftrightarrow \mathbf{G} \cdot \mathbf{R} = 2n\pi \tag{3}$$

を満たさなければならない。このようなGを

$$G = hb_1 + kb_2 + lb_3$$

と定義する。hkl は回折指数である。G を逆格子ベクトルと呼び、(長さ) $^-1$ の次元を持つ。この時、 a_j と b_k の間には、

$$\mathbf{a}_{i} \cdot \mathbf{b}_{k} = \delta_{ik} \tag{4}$$

$$\begin{cases}
\delta_{jk} = 0 (j \neq k) \\
\delta_{jk} = 2\pi (j = k)
\end{cases}$$
(5)

の関係がある。ここで、 $|a_1|=|a_2|=|a_3|$ かつ $|b_1|=|b_2|=|b_3|$ のとき、 $|b_j|=\frac{1}{|a_j|}$ である。l=0 のときの、実格子空間と逆格子空間の簡単な対応を図 2 に示す。

図2 実格子と逆格子の関係.

左が実格子空間、右が逆格子空間である。hkl=210 を見てみると、逆格子ベクトル [210] は、 実格子における (210) と垂直である。また、 G_{hkl} 方向の結晶面の間隔 d_{hkl} は

$$d_{hkl} = \frac{2\pi}{|\boldsymbol{G}_{hkl}|} \times \gcd(h, k, l) \tag{6}$$

と表せる。 $\gcd(h,k,l)$ は (h,k,l) の最大公約数である。最大公約数が 1 であるとき、つまり (h,k,l) の組が互いに素であるとき、回折指数 hkl とミラー指数 (h,k,l) は一致する。

2.3 回折条件

実格子空間での X線の回折の条件を考える。 X線がある結晶面によって散乱を起こすときの光路を図 3(a)に示す。入射光と結晶面の角度を θ 、結晶面の間隔を d としたとき、この時、2 つの光の光路差は $2d\sin\theta$ である。散乱前後で光の波長が変化しないとき、この光路差が X線の波長の整数倍であれば、散乱光は強め合う。よって、実格子空間における X線の回折の条件は

$$2d\sin\theta = n\lambda\tag{7}$$

となる。この条件を Bragg 条件と呼ぶ。

また、逆格子空間での X線の回折の条件を考える。入射 X線の波数ベクトルを k_0 、散乱 X線の波数ベクトルを k とする。逆格子空間における X線の散乱を図 3(b) に示す。 k_0 が逆格子空間の原点を向くベクトルだと考えると、k の終着点は k_0-k で表せる (これを散乱ベクトルと呼ぶ)。ここで、散乱ベクトルが逆格子ベクトル G_{hkl} と等しいとき、つまり、散乱 X線の波数ベクトルの終点が逆格子空間の格子点に等しいとき、回折が起きる。したがって、逆格子空間における X線の回折の条件は、

$$k - k_0 = G_{hkl} \tag{8}$$

となる。この条件を Laue 条件と呼ぶ。

図3 X線の散乱.

2.4 X 線回折

X線は電磁波であり、結晶にX線を入射したとき、X線は構成原子の原子核と電子によって散乱される。荷電粒子による電磁波の散乱には、散乱波の波長が元の波長から変化しない Thomson 散乱と、散乱はの波長が元の波長よりも長くなる Compton 散乱の 2 種類がある。 Thomson 散乱は干渉性散乱、Compton 散乱は非干渉性散乱である。結晶による回折においては、干渉性散乱のみを考えればよいので、Thomson 散乱のみを考える。 Thomson 散乱において、散乱断面積は散乱体の質量の自乗に反比例するため、原子による X 線の散乱は電子による散乱に比べ十分小さくなる。ここから、X 線は電子によって散乱される、とできる。図 4 のように、密度 $\rho(r)$ で空間分布した電子雲によって X 線が散乱される場合を考える。

図4 電子雲による X 線の散乱.

電子雲に平面波の X線が入射して、原点 O と点 P で波数 k から k' に散乱された時、位相差は

$$\delta_1 + \delta_2 = (-k \cdot r) + (k' \cdot r) = K \cdot r \tag{9}$$

と表せる (散乱ベクトル K=k'-k を定義した)。この時、ある散乱先 r' における散乱 X 線の 重ね合わせは

$$A\rho(\mathbf{0})e^{i(\mathbf{k'}\cdot\mathbf{r'})} + A\rho(\mathbf{r})e^{i(\mathbf{k'}\cdot\mathbf{r'} + \delta_1 + \delta_2)} = A[\rho(\mathbf{0})e^{i(\mathbf{K}\cdot\mathbf{0})} + \rho(\mathbf{r})e^{i(\mathbf{K}\cdot\mathbf{r})}]e^{i(\mathbf{k'}\cdot\mathbf{r'})}$$
(10)

となる (A:定数)。ここで、右辺の [] 内の項は、点 O、P で散乱された X 線の振幅に等しい。よって、電子雲全体での散乱振幅は、

$$f = \int \rho(\mathbf{r})e^{i\mathbf{K}\cdot\mathbf{r}}d\mathbf{r} \tag{11}$$

に比例することがわかる。

ところで、 $\rho(\mathbf{r})$ は、結晶の構成原子それぞれの電子密度の和

$$\rho(\mathbf{r}) = \sum_{\mathbf{R}} \sum_{j} \rho_{j} (\mathbf{r} - [\mathbf{R} + \mathbf{r}_{j}])$$
(12)

で表せる (r_i :結晶中の j 番目の原子の位置ベクトル)。これを用いて式 (11) を変形すると、

$$f = \int \rho(\mathbf{r}) = \sum_{\mathbf{R}} \sum_{j} \rho_{j} (\mathbf{r} - \mathbf{R} - \mathbf{r}_{j}) e^{i\mathbf{K} \cdot \mathbf{r}} d\mathbf{r}$$

$$= \sum_{\mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \sum_{j} e^{i\mathbf{K} \cdot \mathbf{r}_{j}} \int \rho_{j} (\mathbf{r} - \mathbf{R} - \mathbf{r}_{j}) e^{i\mathbf{K} \cdot (\mathbf{r} - \mathbf{R} - \mathbf{r}_{j})} d(\mathbf{r})$$

$$= \sum_{\mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \sum_{j} f_{j} e^{i\mathbf{K} \cdot \mathbf{r}_{j}}$$
(13)

となる。式 (11) より、 $\int \rho_j (\boldsymbol{r}-\boldsymbol{R}-\boldsymbol{r}_j) e^{i\boldsymbol{K}\cdot(\boldsymbol{r}-\boldsymbol{R}-\boldsymbol{r}_j)} = f_j$ とした。結晶全体の散乱の和を $\sum_{\boldsymbol{R}} e^{i\boldsymbol{K}\cdot\boldsymbol{R}} \equiv G(\boldsymbol{K})$ 、単位格子中の散乱の和を $\sum_j f_j e^{i\boldsymbol{K}\cdot\boldsymbol{r}_j} \equiv F(\boldsymbol{K})$ と定義する。この時、散乱 X 線の強度は

$$|f|^2 = |G(\mathbf{K})|^2 |F|(\mathbf{K})| \tag{14}$$

に比例する。 a_1 、 a_2 、 a_3 方向の格子数を N_a 、 N_b 、 N_c としたとき、等比級数として計算できる。 $|G(\pmb{K})|^2$ は、

$$|G(\mathbf{K})|^2 = \frac{\sin^2(N_a \mathbf{K} \cdot \mathbf{a}_1/2)}{\sin^2(\mathbf{K} \cdot \mathbf{a}_1/2)} \frac{\sin^2(N_b \mathbf{K} \cdot \mathbf{a}_2/2)}{\sin^2(\mathbf{K} \cdot \mathbf{a}_2/2)} \frac{\sin^2(N_c \mathbf{K} \cdot \mathbf{a}_3/2)}{\sin^2(\mathbf{K} \cdot \mathbf{a}_3/2)}$$
(15)

と表せる。これを Laue 関数と呼ぶ。 $|G(\pmb{K})|^2$ は、波数ベクトル \pmb{K} と各方向成分 $\pmb{a_1}$ 、 $\pmb{a_2}$ 、 $\pmb{a_3}$ の内積が

$$\mathbf{K} \cdot \mathbf{a}_1 = 2\pi h, \ \mathbf{K} \cdot \mathbf{a}_2 = 2\pi k, \ \mathbf{K} \cdot \mathbf{a}_3 = 2\pi l,$$
 (16)

のとき有限の値をとり、それ以外の場合はほぼ 0 である。

 $G(\mathbf{K})$ が Laue 関数であることから、 $F(\mathbf{K})$ について、 $\mathbf{K} = \mathbf{G}_{hkl}$ として計算できる。よって、

$$F_{hkl} = \sum_{j} f_{j} e^{i\mathbf{G}_{hkl} \cdot \mathbf{r}_{j}}$$

$$= \sum_{j} f_{j} e^{2\pi i (h\mathbf{b}_{1} + k\mathbf{b}_{2} + l\mathbf{b}_{3})}$$
(17)

となる。 F_{hkl} を結晶構造因子と呼ぶ。結晶構造因子は Laue 関数と同様、特定の条件を満たすとき有限の値をとり、それ以外の場合は 0 である。したがって、Laue 条件を満たしていても、 $F_{hkl}=0$ のとき回折は観測されない。これを消滅則と呼ぶ。格子の形状によって、有限の値をとる条件が異なるため、結晶構造の解析の際に有用である。

2.5 NaCl の結晶構造

NaCl 結晶は、NaCl 型構造をとる。NaCl の構造の概形を図 5 に示す。

図5 NaClの結晶構造.

NaCl 結晶は、Na サイトの面心立方格子と Cl サイトの面心立方格子が入れ子になった構造になっている。NaCl 結晶における結晶構造因子 F_{hkl} を考える。単位格子において、橙の矢印のように単位ベクトル $\mathbf{a}_i (i=1,2,3)(|a_1|=|a_2|=|a_3|)$ の原点をとると、Na 原子は

$$r_1 = 0, r_2 = \frac{1}{2}a_1 + \frac{1}{2}a_2, r_3 = \frac{1}{2}a_2 + \frac{1}{2}a_3, r_4 = \frac{1}{2}a_3 + \frac{1}{2}a_1$$
 (18)

の 4 つの非等価な位置に存在している。よって、Na 原子による原子散乱因子を f_{Na} とすると、 F_{Na} は

$$F_{\text{Na}} = \sum_{j=1}^{4} f_{\text{Na}} e^{i\mathbf{G}_{hkl} \cdot \mathbf{r}_{j}}$$

$$= f_{\text{Na}} (1 + e^{i\pi(h+k)} + e^{i\pi(k+l)} + e^{i\pi(l+h)})$$
(19)

となる。Cl 原子においては、青の矢印のように $r=\frac{1}{2}a_1+\frac{1}{2}a_2+\frac{1}{2}a_3$ の位置から考える。Cl 原子原子による原子散乱因子を $f_{\rm Cl}$ とすると、 $F_{\rm Cl}$ は

$$F_{\rm Cl} = f_{\rm Cl} \cdot e^{i\pi(h+k+l)} (1 + e^{i\pi(h+k)} + e^{i\pi(k+l)} + e^{i\pi(l+h)})$$
(20)

となる。NaCl 結晶における結晶構造因子は、 F_{Na} と F_{Cl} の合計なので、 F_{hkl} は

$$F_{\text{hkl}} = (f_{\text{Na}} + f_{\text{Cl}} \cdot e^{i\pi(h+k+l)})(1 + e^{i\pi(h+k)} + e^{i\pi(k+l)} + e^{i\pi(l+h)})$$
(21)

となる。NaCl 結晶における F_{hkl} の消滅則は、hkl の組み合わせから、

$$F_{hkl} = \begin{cases} 4(f_{\text{Na}} + f_{\text{Cl}}) & h, k, l \text{ がすべて偶数} \\ 4(f_{\text{Na}} - f_{\text{Cl}}) & h, k, l \text{ がすべて奇数} \\ 0 & その他 \end{cases}$$
 (22a)

となる。

$2.6 \quad 2\theta/\theta$ 法

X線回折装置の概略図を図 6 に示す。試料台に平行な結晶面と入射 X線のなす角 (入射角) が θ のとき、試料に平行な結晶面と散乱 X線のなす角も θ となる。 θ の値を変える時、つまり X線源を動かす時、回折光が観測できるように光検出器も同時に動かす観測方法を $2\theta/\theta$ 法と呼ぶ。試料が単結晶の場合は、図 6(a) のように、試料台に平行な面は (h,k,l)=(0,0,n) の面のみであるため、Laue 条件と消滅則を満たす (0,0,n) 面からの回折のみが観測できる。試料が粉末の場合は、図 6(b) のように、(h,k,l)=(0,0,n) 以外にも試料台に平行な面があるため、Laue 条件と消滅則を満たせば、様々な (h,k,l) からの回折が観測できる。

図 6 X 線回折装置概略図.

2.7 NaCl 粉末の回折パターン

NaCl 粉末の、 2θ の値が 90 よりも小さいときの回折パターンを表 1 に示す。この表は、入射光と回折光のなす角が 2θ の時、どの (h,k,l) 面が試料台に平行で、どの程度の強度で回折光が観測できるかを示している。また、(h,k,l) 面における面間隔も示している。実験データの解析のおいては、この表のデータを参照する。

表 1 NaCl 粉末の回折パターン [1].

$2\theta(\deg)$	h	k	1	Intensity	d-spacing [nm]
26.886	1	1	1	10	0.3312
31.145	2	0	0	99	0.2869
44.629	2	2	0	61	0.2028
52.878	3	1	1	3	0.173
55.426	2	2	2	19	0.1656
64.959	4	0	0	8	0.1434
71.633	3	3	1	2	0.1316
73.797	4	2	0	19	0.1283
82.251	4	2	2	13	0.1171
88.472	5	1	1	2	0.1104

3 NaCl 粉末及び単結晶の回折パターンの観測方法

NaCl 粉末及び単結晶の回折パターンを、X 線回折装置"SmartLab"を用いて、 $2\theta/\theta$ 法で観測した。SmartLab の構造を図 7 に示す。

図7 SmartLab の内部構造.

X線源から放射された光を NaCl 粉末及び単結晶に照射し、光検出器で回折光を観測した。X線源のターゲット金属は Cu である。特性 X線のうち、波長が 1.543 Å の K_{α} 線と、1.392 Å の K_{β} 線を用いた。X線源から等方的に放射された光を、放物面人工多層膜ミラーを用いて単色化・平行化し、2 枚の入射スリットとソーラースリットを用いて発散を制限した。2 枚の出射スリットとソーラースリットを用いて発散を制限した。2 枚の出射スリットとソーラースリットを用いて、試料からの回折光の発散を制限した。2 かの出射スリットとソーラースリットを用いて、試料からの回折光の発散を制限した。2 がの出射スリットとソーラースリットを用いて、式料からの回折光の発散を制限した。2 がの出射スリットとソーラースリットを用いて、2 を変えてゆき、2 が出器に入射する光を減衰させた。2 の実験条件の下、試料ごとに 2 を変えてゆき、回折パターンを測定した。試料は NaCl 粉末と NaCl 単結晶の 2 種類である。単結晶試料の寸法を図 8 に示す。

表 2 実験条件.

実験条件							
入射スリット	1 mm						
出射スリット	$1 \mathrm{\ mm}$						
ソーラースリット	$0.5 \deg$						
X 線波長	1.543 Å, 1.392 Å						

図 8 NaCl 単結晶の寸法.

実験に用いた単結晶は、縦 3.2 mm、横 5.2 mm、高さ 1.1 mm の直方体のものである。この結晶を、最も面積の広い面を下にして試料台に設置した。

4 NaCl 粉末及び単結晶の回折パターンの解析

4.1 NaCl 粉末

NaCl 粉末における回折パターンを図9に示す。

図 9 NaCl 粉末の回折パターン.

横軸は入射光と回折光のなす角、縦軸は回折強度である。グラフから、鋭いピークが複数見られる。これらのピークのうち、頂点における 2θ が、表 1 の値と近いものだけを抜き出したものを表 3 に示す。

表3 NaCl 粉末の格子定数.

$2\theta[\deg]$	$2\theta[\mathrm{rad}]$	G_m	h	k	1	a
27.306	0.4766	1.9223	1	1	1	5.6583
31.646	0.5523	2.2206	2	0	0	5.6561
45.397	0.7923	3.1427	2	2	0	5.6521
53.828	0.9395	3.6865	3	1	1	5.6500
56.419	0.9847	3.8497	2	2	2	5.6510
66.178	1.1550	4.4462	4	0	0	5.6498
73.041	1.2748	4.8466	3	3	1	5.6480
75.259	1.3135	4.9724	4	2	0	5.6482
83.979	1.4657	5.4484	4	2	2	5.6468

逆格子ベクトルの大きさ G_m は

$$G_m = \frac{4\pi}{\lambda} \sin \theta \tag{23}$$

で計算した。 λ は、今回は K_{lpha} 線の波長である 1.543 nm を用いた。格子定数 a は、 G_m から

$$a = \frac{2\pi}{G_m} \sqrt{h^2 + k^2 + l^2} \tag{24}$$

で計算した。各 θ におけるaの平均をとって、格子定数は

$$a = 5.6511$$

と求まった。

4.2 NaCI 単結晶

図 10 に示す。

図 10 NaCl 単結晶の回折パターン.

横軸は A の回転角、縦軸は回折強度である。グラフから、鋭いピークが複数見られる。 $2\theta/\theta$ 法を用いた単結晶の X 線回折測定では、(001) 面に平行な面での回折しか観測できないため、 K_{α} 線及び K_{β} 線の二つの X 線による回折が観測できる。したがって、どのピークが、どの X 線による回折を示しているのか判断ができない。 $2\theta/\theta$ 法を用いた単結晶の X 線回折測定では、(001) 面に平行な面での回折しか観測できないことを利用し、(h,k,l)=(0,0,2n) となるように回折指数をとり、粉末試料で得た格子定数に近い計算結果が得られるよう、 2θ を逆算した。その結果を表 4 に示す。

表 4 2θ の見積もり.

a	λ	1	$\theta[\mathrm{rad}]$	$2\theta[\deg]$
5.6511	1.39	2	0.2485	28.478
5.6511	1.54	2	0.2760	31.628
5.6511	1.39	4	0.5143	58.936
5.6511	1.54	4	0.5764	66.053

表 4 から、 K_{α} 線及び K_{β} 線由来の、(0,0,2n) 面による回折角が見積もれた。図 10 のピークの うち、頂点における 2θ が、表 4 に近いものだけを抜き出したものを表 5 に示す。

$2\theta[\deg]$	$2\theta[\mathrm{rad}]$	$G_{m\beta}$	$G_{m\alpha}$	h	k	1	a_{eta}	a_{α}
28.598	0.4991	2.2317	2.0154	0	0	2	5.6279	6.232
31.739	0.5540	2.4709	2.2313	0	0	2	5.0832	5.6289
59.173	1.0328	4.4614	4.0289	0	0	4	5.6305	6.2350
66.28	1.1568	4.9398	4.4610	0	0	4	5.0852	5.6311

表 5 NaCl 単結晶の格子定数.

逆格子ベクトルの大きさ G_m および格子定数 a は、NaCl 粉末と同様の方法で計算した。 λ は表 4 のように、 K_α 線による回折は 1.543 nm、 K_β 線による回折は 1.392 nm を用いた。各 θ における a の平均をとって、格子定数は

$$a = 5.6296$$

と求まった。

図 5 ににおける K_{α} 線と K_{β} 線による回折のピークを、直線でつないだものを図 11 に示す。

図 11 NaCl 結晶の回折パターン.

片対数グラフにおいて、 K_{α} 線と K_{β} 線のどちらも、回折角が大きくなると回折強度が小さくなっていることが分かる。

式 (14) より、回折光の強度は $|f|^2=|G(\pmb{K})|^2|F(\pmb{K})|^2$ に比例する。今回の回折面は (0,0,2) 面及び (0,0,4) 面である。h=0、k=0 であるため、

$$|G(\mathbf{K})|^2 = \frac{\sin^2(N_c \mathbf{K} \cdot \mathbf{a}_3/2)}{\sin^2(\mathbf{K} \cdot \mathbf{a}_3/2)}$$
(25)

となる。この時、 $|G(\pmb{K})|^2$ の極大値は N_c^2 に比例するが、 N_c の値は l 方向の格子の数であるから、 $|G(\pmb{K})|^2$ は変化しない。 $F(\pmb{K})$ は

$$F_{hkl} = 4(f_{Na} + f_{Cl}) \tag{26}$$

となる。この式における原子散乱因子 $f_{\rm Na}+f_{\rm Cl}$ は図 12 のように $\frac{\sin\theta}{\lambda}$ 依存性を持つ [2]。X 線は原子でなく電子によって散乱されるため、X 線波長 λ が一定の時、回折角 θ が大きくなると、個々の電子による散乱 X 線の位相差も大きくなる。そのため、原子散乱因子は減少する。また、回折角 θ が一定の時、X 線波長 λ が短くなると、波長に対し X 線の光路差が大きくなるため、原子散乱因子が減少する。回折光の強度は原子散乱因子の自乗に比例するため、図 11 において、回折角が大きくなると回折強度が小さくなっている。

図 12 原子散乱因子の θ 及び波長依存性.

5 結論

Nacl 結晶の X 線回折パターンを測定し、格子定数を導出した。

参考文献

- [1] 無機材料データベース AtomWork NaCl (J. Phys. Soc. Jpn.,1983,52,,3506-3513)
- [2] 松村源太郎 訳 X 線回折用論 第 18 刷 p.480
- [3] 早稲田 嘉夫、松原 栄一郎 X 線構造解析 第 3 版 3 刷 p.35-43,p.131-137