Machine Learning in Finance

Lecture 6
Introduction to Sequence Models

Arnaud de Servigny & Jeremy Chichportich

Outline:

Introducing the concept of Memory

The Embedding Layer

Recurrent Neural Networks

Programming Session

Part 1: Introducing the concept of Memory

Review of the Sentiment Analysis Pipeline

The Preprocessing steps:

Row Data

Document 1 : « There were no wolves in the movie. »

Document 2 : « This movie has one star and that star is Ryan Gosling. Great flick, highly recommend it. »

Document N : « How many times must Willy be freed

before he's freed?. »

Preprocessed Data

Vectorized Data

- The Tensor data is of shape (N, V) after the preprocessing steps.
- Subsequently, we supply the tensor data to either a conventional machine learning algorithm or a neural network composed of a series of densely connected layers..

Limitations of the approach

- 1. The primary limitation arises from the method we employ to encode the sentence into a V-dimensional vector :
 - The encoding is performed regardless of the order in which the words come.
 - For instance, these two sentences will be encoded into the same vector:
 - « Never quit. Do your best. »
 - « Never do your best. Quit. »
- The other limitation comes from the model itself. We feed the entire sequence (encoded into a V-dimensional vector) all at once.

The concept of Memory in Neural Networks

When handling sequential data, the primary limitation of the neural networks we've encountered thus
far is their treatment of each sequence as a singular large vector. These networks are commonly
referred to as feedforward neural networks.

What a great movie
$$\longrightarrow$$
 $[0,1,0,1,\ldots,1,0]$ \longrightarrow sequence

• On the contrary, a **recurrent neural network** (RNN) analyzes sequences by examining them element by element while maintaining a state that retains the information processed so far.

Internal Loop Preprocessing of « What a great movie » **Processing of** Processing of Processing of Processing of « What a great» « What a great movie» « What » « What a » output Recurrent connection **RNN RNN RNN RNN** RNN What great movie a input

A simple example – Part 1 –

- We want to predict whether the stock AAPL is going up or down for the next day, based on D = 4 characteristics of the stock during the last T days.
- At each time step t, let $x_t = [c_t^1, c_t^2, c_t^3, c_t^4]$ denote four features of the stock AAPL at time t.
- Let y_t denote the stock movement at time t:
 - $y_t = 1$ when the stock goes up between t-1 and t.
 - $y_t = 0$ when the stock goes down between t-1 and t.

- Let x_1, \ldots, x_F be the whole sequence of characteristics from 2019 to 2024
- We want to predict the stock movement as follows:
 - From the sequence x_1, \ldots, x_T , we want to predict y_{T+1}
 - From the sequence x_2, \ldots, x_{T+1} , we want to predict y_{T+2}

• From the sequence x_{F-T}, \ldots, x_{F-1} , we want to predict y_F

A simple example – Part 2 –

A simple example – Part 3 –

- The input data tensor is a tensor of shape (N, T, D):
 - Each sample i among the N samples is a sequence s_i of length T with elements of dimension D.
 - We have N = F T sequences.
- The target tensor data is of shape (N,):
 - Each sample i is associated with a target t_i .
 - Each target is a binary output: 1 for « up » and 0 for « down ».

A simple example – Part 4 – The Forward Propagation:

• The loss function associated with the N samples is the following binary cross entropy loss function:

$$J = -\frac{1}{N} \sum_{i=1}^{N} (t_i \log(p_i) + (1 - t_i) \log(1 - p_i))$$

A simple example – Part 4 – The Forward Propagation:

• Let's focus on the evolution of the tensor shape at each layer transformation for the stock movement prediction problem:

- In the previous example, the input data is a 3D tensor representing N sequences of length T. Each sequence is composed of D-dimensional continuous vectors.
- In the Sentiment Analysis problem, the input data comes as sequences of integers.
- In order to use RNN models for the Sentiment Analysis problem, we will need an intermediate layer called the Embedding layer.

Interactive Session

Part 2: The Embedding Layer

The Embedding Space

- The embedding layer aims at mapping each word into a geometric space, called the embedding space.
- Each word is encoded into a D-dimensional vector (D is around 50 or 100).
- In the embedding space, words with similar meaning are encoded into similar word vectors.
- Since we use unsupervised learning to obtain these word vectors, they don't necessarily need to be meaningful to us. They only have to make sense geometrically.
- Commun example of meaningul geometric transformations are « gender ».

$$w_{\rm King} - w_{\rm Man} \approx w_{\rm Queen} - w_{\rm Woman}$$

 $w_{\text{France}} - w_{\text{Paris}} \approx w_{\text{Spain}} - w_{\text{Madrid}}$

Different Word Embeddings

 We can store all the word vectors into a matrix called: The Embedding Matrix.

- The idea of a low dimensional embedding space for words, computed using unsupervised learning was
 initially explored by Bengio et al. in the early 2000s.
- It started to take off in the industry after the release of the **Word2vec** algorithm, explored by Tomas Mikolov at Google in 2013.
- In the previous lecture, we explored the Word2vec algorithm.

 In addition to the Word2vec vectors, there are various pretrained word embeddings that can be downloaded and used, like GloVe and FastText.

The Embedding Layer

- The **Embedding Layer** takes as input the sequences of integers. But all the sequences should be of the same length T, so that we can pack them into the same tensor:
 - Sequences that are shorter than T are padded with zeros.
 - Sequences that are longer that T are truncated.

• The Embedding Layer transforms the 2D input tensor of shape (N, T) into a tensor of shape (N, T, D).

Imperial College Business School

The Sentiment Analysis new Pipeline – Part 1 –

The Sentiment Analysis new Pipeline - Part 2 -

Let's keep track of the evolution of the tensor shape at each layer transformation:

The Forward Propagation

- The next sections will detail the RNN transformation
 - We will first start with a simple RNN model.
 - But the simple RNN model suffers from the vanishing gradient problem
 - We will then explain how to solve the vanishing gradient problem by using a better transformation called the Long Short Term Memory model.

Part 3: Recurrent Neural Networks

A Simple RNN layer – Part 1–

• The input: A sequence of length T, composed of D-dimensional vectors.

$$x_1,\ldots,x_T$$

• The output: A sequence of length T, composed of d-dimensional vectors.

$$h_1,\ldots,h_T$$

• The weights:

$$W_{xh} \in \mathbb{R}^{D \times d}$$
, $W_{hh} \in \mathbb{R}^{d \times d}$ and $b_h \in \mathbb{R}^d$

• The Transformation:

$$h_{1} = \tanh(W_{hh}^{T}h_{0} + W_{xh}^{T}x_{1} + b_{h})$$

$$h_{2} = \tanh(W_{hh}^{T}h_{1} + W_{xh}^{T}x_{2} + b_{h})$$

$$\vdots$$

$$h_{T} = \tanh(W_{hh}^{T}h_{T-1} + W_{xh}^{T}x_{T} + b_{h})$$

Interactive Session

A Simple RNN layer – Part 2–

As usual, we use the Gradient Descent Algorithm to update the weigths.

- Unfortunately, simple RNNs aren't capable of learning « long term dependencies » and it's hard to make h_T influenced by x_1, x_2, x_3 due to the vanishing gradient problem, as explained in:
 - [Hochreiter 1991]: Untersuchungen zu dynamischen neuronalen Netzen
 - [Bengio, et al. 1994]: Learning Long-Term Dependencies with Gradient Descent is Difficult
 - [Bengio et Mikolov 2013]: On the difficulty of training recurrent neural networks

LSTM networks – Part 1 –

- Long Short Term Memory networks (LSTMs) are a special type of RNN explicitly designed to avoid long term dependency problem
- Like the standard RNNs, LSTMs also have the form of a chain of repeating modules of neural networks.

 Unlike the standard RNNs, the repeating module has four single neural network layers, interacting in a special way.

23

Imperial College Business School Imperial means Intelligent Business

LSTM networks – Part 2 –

There are two main concepts in LSTMs:

1. The cell state:

- It's represented by the sequence C_t for $t \in \{1, \ldots, T\}$
- The cell state represents the memory.
- At each step $t-1 \longrightarrow t$, the LSTM will remove some information from the cell state and add some other information using the concept of **gates**.
- The LSTM has 3 gates to protect the cell state.

2. The gates:

- The gate is a way to controle the amount of information we want to keep or change.
- It's composed of a sigmoid neural network and an element wise multiplication.
- For each dimension, the sigmoid layer outputs a value between zero and 1, describing how much we want to let through: « close to zero » means « let nothing through!» and « close to one » means « let everything through! ».

LSTM networks - Part 3 -

To transition from t-1 to t using LSTMs, there are 4 steps:

STEP 1: The forget gate layer:

- This step concerns the information we want to throw away from the cell state.
- For that, we use the forget gate layer: A sigmoid applied to the concatenation of h_{t-1} and x_t outputs the forget vector f_t
- The parameters are: (W_f, b_f)

STEP 2: The input gate layer:

- Conversly, this step concerns the information we want to store in the cell state.
- For that, we use the input gate layer: Again, a sigmoid applied to the concatenation of h_{t-1} and x_t outputs the input vector i_t
- Then, we create a new candidate for the cell state \tilde{C}_t thanks to a \tanh layer.
- The parameters are: (W_i, b_i) and (W_C, b_C)

$$f_t = \sigma(W_f^T[h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i^T[h_{t-1}, x_t] + b_i)$$

 $\tilde{C}_t = \tanh(W_C^T[h_{t-1}, x_t] + b_C)$

LSTM networks – Part 4 –

STEP 3: Updating the cell state:

- We know from the previous steps that by multiplying (element wise)the forget vector (f_t) by the old cell state (C_{t-1}) , we obtain the first part of the uptated cell state: $f_t * C_{t-1}$ corresponding to what we want to forget.
- We also know that $i_t * \tilde{C}_t$ represents the new candidate vector, scaled by how much we want to uptade each dimension of the cell state.

STEP 4: The output gate layer:

- We want to output a filtered version of the updated cell state.
- For that, we use the output gate layer to decide what dimensions of the cell state we want to output: A simple sigmoid function applied to the concatenation of h_{t-1} and x_t gives the output vector o_t
- The output at time t is just the element wise multiplication of the output vector and the updated cell state (after a tanh transformation).
- The parameters are: (W_o, b_o)

$$C_t = f_t * C_{t-1} + i_t * C_t$$

$$o_t = \sigma(W_o^T[h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

LSTM networks – Part 5 –

Summary:

Equations of the LSTM

The gates:

$$f_{t} = \sigma(W_{f}^{T}[h_{t-1}, x_{t}] + b_{f})$$
$$i_{t} = \sigma(W_{i}^{T}[h_{t-1}, x_{t}] + b_{i})$$
$$o_{t} = \sigma(W_{o}^{T}[h_{t-1}, x_{t}] + b_{o})$$

The updates:

$$\tilde{C}_t = \tanh(W_C^T[h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$h_t = o_t * \tanh(C_t)$$

Part 4: Programming Session

Programming Session

