

Author Index to Volume 3

Abdallah, E. A. F.
—; Mitkees, A. A.; Hamdy, S. A.; Elsohly, A. A.: Propagation Constant of Microstrip Leaky-Wave Antennas, 435

Abiri, H. See Moheimany, O. R., 372

Abushagur, M. A. G.
Error Effects on the Processing of Adaptive Array Data Using the BOC, 21

Acosta, R. See Zimmerman, M., 233

Ackerman, E. See Kasemset, D., 335

Alehassin, M. See Moheimany, O. R., 372

Altman, Z.
—; Cory, H.; Leviatan, Y.: Cutoff Frequencies of Dielectric Waveguides Using the Multifilament Current Model, 294

Ampole, N. See Bhanthumnavin, V., 239

Andricos, C. See Willems, D., 111

Bahl, I. See Willems, D., 111

Bakalidis, G. N.
—; Georgopoulos, C. J.: Mechanical Displacement Measurement by Single-Mode Fiber Optic and Moving Mirror, 27

Barsotti, E. L.
Effect of Metallization Edge Shape on Conductor Loss of Open Coplanar Waveguide, 389

Betti, S.
—; De Marchis, G.; Iannone, E.; Todaro, M.: Crosstalk in a DPSK FDM System Affected by Laser Phase Noise, 141

Bernard, J. E.
—; Chrostowski, J.; Wartak, M. S.: A Balanced Optical Interferometric Sensor with a Wavelength-Dependent Offset, 427

Bernardi, P.
—; Cicchetti, R.: A Design Technique for Minimizing the Electromagnetic Interference Induced along a Microstrip Line by External Sources, 235

Beyer, J. B. See Martens, J. S., 49

Bhasin, K. B. See Miranda, F. A., 11

Bhanthumnavin, V.
—; Ampole, N.: Theoretical Prediction of Nonlinear Brewster Angle in ADP, 239

—; Lee, C. H.: Reflection and Transmission in Second Harmonic Generation of Light in KDP Crystal, 279

Bhasin, K. B. See Romanovsky, R. R., 117

Bhattacharyya, A. See Ghaderi, M., 370

Bhattacharyya, A. K.
Approximate Formulae for the Surface Wave Numbers in a Grounded Dielectric Structure, 169

Radar Cross Section Reduction of a Flat Plate by RAM Coating, 324

Bosisio, R. G. See Karam, M., 181; Larose, R., 244; Ongareau, E., 317; Xu, Y., 74

Brandão Faria, J. A.
Changes in the Band Structure Pattern of Microstrip Filters Due to Gap Capacitive Effects, 205

Normal Mode Analysis of Asymmetrical Two-Line Microstrip Circuits Using a Perturbation Approach, 366

Brophy, T. J. See Ryley, J. F., 83

Cáceres, J. L.
—; Pérez, J.: Enhanced Scheme for the Small-Signal Physical Simulation of MESFETs, 154

Cameron, K. See Ghafouri-Shiraz, H., 214

Champlin, K. S. See Singh, D. R., 382

Chan, C. H. See Lou, S. H., 150

Chang, D. C. See Hoofar, A., 31

Chang, H.-c.
—; Huang, H. S.; Wang, Y.-C.: On the Various Forms of the Coupled-Mode Theory for Optical Waveguides, 296

Chang, T.-N. See Tan, C.-H., 268

Cheng, F.
—; Xu, X.; Wu, S.; Yu, F. T. S.; Gregory, D. A.: Restoration of Blurred Images Due to Linear Motion Using a Joint Transform Processor, 24

Cheng, K. K. M.
—; Everard, J. K. A.: Compact Semi-Lumped Element Microwave Bandpass Filter with Harmonic Suppression, 212

Cheng, Y.
—; Lin, W.: Dispersion Characteristics of Optical Dielectric Waveguides, 419

Chew, W. C.
A Derivation of the Vector Addition Theorem, 256

Correction to "A Derivation of the Vector Addition Theorem," 446

—; Nie, Z.; Lo, Y. T.: The Effect of Feed on the Input Impedance of a Microstrip Antenna, 79

—; Wang, Y. M.: A Fast Algorithm for Solution of a Scattering Problem Using a Recursive Aggregate-Matrix Method, 164

—; See Wang, Y. M., 102

Chinn, S. See Kasemset, D., 335

Chorey, C. M. See Miranda, F. A., 11

Choudhury, D.
—; Mahapatra, S.: A GaAs Directional Coupler, 70

—; Mahapatra, S.: Performance Evaluation of Two Passive MMIC Components, 127

Chowdhury, S. K.
Reply of the Authors on "Characteristic Impedance of a Curved Microstrip Transmission Line," 192

—; See Roy, J. S., 119

Christodoulou, C. G. See Dunn, D. S., 172; Uhing, J., 290

Chrostowski, J. See Bernard, J. E., 427

Chu, C. Y. J. See Ghafouri-Shiraz, H., 144

Cicchetti, R. See Bernardi, P., 235

Coetzee, J. C.
—; Malherbe, J. A. G.: A Hybrid Near-Optimum Impedance Transition with One Discontinuity, 249

—; Malherbe, J. A. G.: Characteristic Impedance for Double-Sided Slotlines, 85

Coluzzi, M. See Willems, D., 111

Corkish, R.

The Use of Conical Tips to Improve the Impedance Matching of Cassegrain Subreflectors, 310

Corzani, T. See Vescovo, R., 124

Cory, H. See Altman, Z., 294

Crosnier, Y. See Temcamani, F., 195

D'Agostino, S.

—; D'Inzeo, G.; Lambertucci, G.; Marietti, P.; Panariello, G.: A Novel Application in Matrix Distributed Amplifier: The Forward-Feed, 354

Davidson, F. M. See Gilbreath, G. C., 217; Gilbreath, G. C., 445

Davis, M. L. See MacDonald, A. D., 221

Decoster, D. See Elkadi, H., 379; Gouy, J. P., 47

De Marchis, G. See Betti, S., 141

Demers, Y. See Karam, M., 181

de Salles, A. A.

Optical Effects in HEMTs, 350

D'Inzeo, G.

—; Giusto, R.; Petrachi, C.: Active Devices for Microwave Distributed Amplification, 51

—; See D'Agostino, S., 354

Dunn, D. S.

—; Dunn, G. L.; Christodoulou, C. G.: A Simple X-Band Waveguide-to-Microstrip E-Probe Transition, 172

Dunn, G. L. See Dunn, D. S., 172

Dunn, J. M. See Barsotti, E. L., 389

Dutta, A.

—; Mukhopadhyay, D.: Harmonic Generation in II-VI Compound Semiconductors under Hot Electron Condition, 386

East, J. R. See Mehdi, I., 1

Ebihara, B. T. See Miranda, F. A., 11

Elaoud, M.

—; Seshadri, S. R.: Cutoff Attenuator for Azimuthally Symmetric Transverse Electrical Mode in a Cylindrical Waveguide, 95

—; Seshadri, S. R.: Cutoff Attenuator for Azimuthally Symmetric Transverse Magnetic Mode in a Cylindrical Waveguide, 424

Elcrat, A. R.

—; Harder, T. M.; Stonebraker, J. T.: Scattering of a TEM Wave from a Time Varying Surface, 98

Elkadi, H.

—; Vilcot, J. P.; Maricot, S.; Decoster, D.: Microwave Circuit Modeling for Semiconductor Lasers under Large and Small Signal Conditions, 379

El-Rabaie, S.

Simulation of Nonlinear Circuits Using Modified Harmonic Balance Techniques, 13

Elsohly, A. A. See Abdallah, E. A. F., 435

Engvik, A. H. See Loos, J. S., 229

Everard, J. K. A. See Cheng, K. K. M., 212

Fares, D. A.

Performance of Convolutional Codes in Noisy Optical Channels, Using an APD-Viterbi Decoder Receiver, 112

Performance of Convolutional Codes with Multipulse Signaling in Optical Channels, 406

Fatah, R. M. A. See Ghafouri-Shiraz, H., 214

Fralich, R. See Wu, C., 400

Fukai, I. See Kashiwa, T., 203; Kashiwa, T., 416

Fusco, V. F. See Linden, P. A. 343

Georgopoulos, C. J. See Bakalidis, G. N., 27

Ghaderi, M.

—; Bhattacharyya, A.: Investigations on Planar Periodic Structures with Uniform Microstrip Lines, 370

Ghafouri-Shiraz, H.

—; Cameron, K.; Fatah, R. M. A.: Achievement of Low Coupling Loss Between a 1.55 μm Wavelength Laser Diode and a High NA MCVD Single-Mode Fiber by Conical Microlens, 214

—; Chu, C. Y. J.: On Phase-Shift Position and Linewidth of $\lambda/4$ -Shifted DFB Laser Diodes, 144

—; Gong, J.: Analysis of a Gaussian Model for the Far-Field Intensity Pattern of Laser Diodes, 404

Ghannouchi, F. M. See Larose, R., 244; Ongareau, E., 317

Gilbreath, G. C.

—; Davidson, F. M.: Corrections to "Effects of Multi-Pump Beam Coupling on Intensity Enhancement of a Probe Beam in Photorefractive Two-Wave Mixing," 445

—; Davidson, F. M.: Effects of Multi-Pump Beam Coupling on Intensity Enhancement of a Probe Beam in Photorefractive Two-Wave Mixing, 217

Ginley, D. S. See Martens, J. S., 49

Giusto, R. See D'Inzeo, G. 51

Gong, J. See Ghafouri-Shiraz, H., 404

Gordon, R. K. See Joseph, J., 146

Gordon, W. L. See Miranda, F. A., 11

Gouy, J. P.

—; Vilcot, J. P.; Decoster, D.; Riglet, P.; Patillon, J. N.; Martin, G.: Microwave Noise Performance and Frequency Response of PIN GaInAs Photodiodes, 47

Gouzien, P. See Soares, R., 210

Gregory, D. A. See Cheng, F., 24

Gupta, G. S.

—; Nguyen, D. N.; Huang, C. C.: Analysis and Optimization of High Performance Antenna Feed, 286

Gupta, K. C. See Hoofar, A., 31

Habibzadeh, A. See Rahnavard, M. H., 42

Haddad, G. I. See Mehdi, I., 1

Hadjar, M. K.

—; Mendis, F. V. C.; Kooi, P. S.: Prediction of Harmonic Distortion in Semiconductor Lasers Driven below the Threshold, 260

Hamdy, S. A. See Abdallah, E. A. F., 435

Hansen, R. C.

Antenna Mode and Structural Mode RCS: Dipole, 6

Harder, T. M. See Elcrat, A. R., 98

Heinen, V. O. See Miranda, F. A., 11

Herczfeld, P. R. See Madjar, A., 60; Ryley, J. F., 83

Hoefer, W. J. R. See Uher, J., 411

Hoorfar, A.
—; Gupta, K. C.; Chang, D. C.: Radiation and Surface Waves of a Microstrip Antenna Covered with a Dielectric Layer, 31

Houshmand, B. See Zimmerman, M., 233

Hu, L. See Luo, X. B., 116

Huang, C. C. See Gupta, G. S., 286

Huang, H. S. See Chang, H.-c., 296

Huang, K.
—; Lin, W.: Influence of TEM Waves on Dielectric Encapsulated Semiconductor Devices, 388

Huang, Y.
—; Xue, L.; Lin, W.: Accurate Solutions for Planar Transmission Lines by an Improved Singular Integral Equation Technique, 208
—; Xue, L.; Lin, W.: The Singular Integral Equation Technique for Planar Transmission Lines, 157

Huret, F.
—; Pribetich, P.; Kennis, P.: Quasicomplex Modes on Lossy Substrate Boxed Microstrip Lines, 439
—; See Kinowski, D., 338

Iannone, E. See Betti, S., 141

Ibarra, J. See Ojeda-Casteñada, J., 276

Ikäläinen, P.
An Optimized Forward-Coupling Microstrip Hybrid for Millimeter-Wave Circuits, 88

Imaoka, T.
A New Evaluation Method for FT Characteristics of Varactor Diodes, 38

Ishii, T. K. See Taalbi, M., 303

Ishimaru, A. See Lou, S. H., 150

Jackson, D. R. See MacDonald, A. D., 221

Jacobs, J. P. See McNamara, D. A., 106

Janse van Rensburg, D.
—; McNamara, D. A.: On Quasi-Static Source Models for Wire Dipole Antennas, 396

Jia, S.
The New Method of Measuring the RCS of a Target by Means of the Six-Port Reflectometer, 398

Jiang, P. See Zhang, X., 313

Jin, H. See Lin, W., 130, 176

Joseph J.
—; Gordon, R. K.; Mittra, R.: A Finite-Difference Frequency-Domain Approach for Solving Electromagnetic Scattering by Conducting Bodies of Revolution, 146

Karam, M.
—; Demers, Y.; Xu, Y.; Bosisio, R. G.: Theory and Design of Wideband 3-dB Suspended Microstrip Couplers with Floating Conductor, 181

Kasemset, D.
—; Ackerman, E.; Chinn, S.; Wanuga, S.; Krol, M.; Stacy, J.: Microwave Optical Characterization of High-Speed Photodetectors Utilizing Mode-Locked, Pulse-Compresed 1.3-Micron Solid-State Laser, 335

Kashiwa, T.
—; Fukai, I.: A Treatment by the FD-TD Method of the Dispersive Characteristics Associated with Electronic Polarization, 203
—; Ohtomo, Y.; Fukai, I.: A Finite-Difference Time-Domain Formulation for Transient Propagation in Dispersive Media Associated with Cole-Cole's Circular Arc Law, 416

Kasraian, M.
—; Seshadri, S. R.: Effect of a Parasitic Mode on the Characteristics of a Cylindrical Waveguide Mode Converter with Harmonically Varying Radius, 359
—; Seshadri, S. R.: Effect of a Parasitic Mode on the Performance of a Serpentine Waveguide Mode Converter, 224

Kejian, G.
—; Yizun, W.: An Improved All-Fiber 90° Optical Hybrid, 122

Kennis, P. See Huret, F., 439; Kinowski, D., 338; Pribetich, J., 177

Kidner, C. See Mehdi, I., 1

Kim, S.-Y. See Suh, K.-W., 362

Kinowski, D.
—; Huret, F.; Seguinot, C.; Pribetich, P.; Kennis, P.: Performance of Superconducting Interconnections, 338

Knop, C. M.
A Note on the Use of a Beam-Waveguide Feed System as a Phase Shifter for High Power Microwave Dual-Reflector Antennas, 263

Kollipara, R. T.
—; Tripathi, V. K.: Quasi-TEM Spectral Domain Technique for Multiconductor Structures with Rectangular and Trapezoidal Conductor Cross Sections, 4

Kooi, P. S. See Haldar, M. K., 260

Kot, J. S.
Solution of Thin-Wire Integral Equations by Nystrom Methods, 393

Krol, M. See Kasemset, D., 335

Kuester, E. F. See Barsotti, E. L., 389

Kuti, Cs.
—; Turi, L.; Yan, L.; Lee, C. H.: High-Efficiency Diffraction Modulation of Light by Strain-Optic Effect of Piezoelectrically Induced Standing Acoustic Waves in Bulk LiNbO₃ Crystal, 193

Lambertucci, G. See D'Agostino, S., 354

Larose, R.
—; Ghannouchi, F. M.; Bosisio, R.: A Method for Optimizing Efficiency and Power Dissipations in High Power Microwave/Millimeter-Wave Amplifiers, 244

Lee, C. H. See Bhanthumnavin, V., 279

Lee, C. H. See Kuti, Cs., 193

Lee, K. F. See Lee, R. Q., 199

Lee, R. Q.
—; Lee, K. F.: A 16 × 16 Microstrip Array of Electromagnetically Coupled Patches Operating in the High-Grain Region, 199

Lee, S. W. See Zimmerman, M., 233

Leviatan, Y. See Altman, Z., 294

Levine, E.

- ; Shtrikman, S.: Experimental Comparison between Four Dual-Polarized Microstrip Antennas, 17

Lichtenberg, C. L. See MacDonald, A. D., 221

Lin, C. C.

Experimental Determination of the Resonance Frequencies of Suspended-Substrate Microstrip Antennas, 66

Lin, M. S. See Loos, J. S., 229

Lin, W.

- ; Jin, H.: Green's Function for the Poisson Equation in the Domains Bounded by Two Intersecting Spheres, 130
- ; Jin, H.: Solutions to the Electrostatic Problems of a Dielectric Sphere Resting on a Conducting Plane by Inversion Transformation Method, 176
- ; See Cheng, Y., 419; Huang, K., 388; Huang, Y., 157, 208; Luo, X. B., 116; Wang, B. Z., 256

Lindell, I. V. See Oksanen, M., 160

Lindell, I. V. See Viitanen, A. J., 62

Linden, P. A.

- ; Fusco, V. F.: MESFET Small Signal Transfer Functions, 343

Lin-Hendel, C. G. See Loos, J. S., 229

Lippens, D. See Temcamani, F., 195

Litva, J. See Wu, C., 400

Liu, L. See Zhang, L., 242

Lo, Y. T. See Chew, W. C., 79

Long, S. A. See MacDonald, A. D., 221

Loos, J. S.

- ; Engvik, A. H.; Lin, M. S.; Lin-Hendel, C. G.: Measurements of Signal Transmission to 20 GHz and Crosstalk to 10 GHz on Small Copper Microstrips Embedded in Polyimide Dielectric, 229

López-Olazagasti, E. See Ojeda-Castañeda, 375

Lou, S. H.

- ; Tsang, L.; Chan, C. H.; Ishimaru, A.: Monte Carlo Simulations of Scattering of Waves by a Random Rough Surface with the Finite Element Method and the Finite Difference Method, 150

Luk, K. M. See Tam, W. Y., 391

Luo, X. B.

- ; Hu, L.; Lin, W. G.: Very High-Isolation All-Fiber Wavelength-Division Multi/Demultiplexer, 116

Macchiarella, G.

- ; Politi, M.: Graphical Tools for Designing Low-Noise Microwave Amplifiers with Requirements on the Input VSWR, 384

MacDonald, A. D.

- ; Long, S. A.; Williams, J. T.; Jackson, D. R.; Lichtenberg, C. L.; Davis, M. L.; Wosik, J. L.; Wolfe, J. C.: Microwave Characterization of High-Temperature Superconducting Thin Films Using stripline Resonators, 221

Madjar, A.

- ; Herczfeld, P. R.; Paolella, A.: Photoavalanche Effects in a GaAs MESFET, 60

Mahapatra, S. See Choudhury, D., 70., 127

Mäki, H. See Oksanen, M., 160

Malherbe, J. A. G. See Coetzee, J. C., 85; 249

Maricot, S. See Elkadi, H., 379

Marietti, P. See D'Agostino, S., 354

Martens, J. S.

- ; Beyer, J. B.; Nordman, J. E.; Ginley, D. S.: A Broadband Microwave Linear Phase Modulator Made of High T_c Superconductors, 49

Martin, G. See Gouy, J. P., 47

Martinez, J. C. See Romanofsky, R. R., 117

McNamara, D. A.

- ; Jacobs, J. P.: The Utilization of Nonuniform Spacings for Improved Two-Section Monopulse Array Performance, 106
- ; See Janse van Rensburg, D., 396

Mehdi, I.

- ; Kidner, C.; East, J. R.; Haddad, G. I.: Millimeter-Wave Detection Using Resonant Tunnelling Diodes, 1

Mendis, F. V. C. See Haldar, M. K., 260

Meszaros, S. See Soares, R., 210

Michalski, K. A. See Zheng, D., 200

Mitra, R. See Joseph, J., 146

Miranda, F. A.

- ; Gordon, W. L.; Bhasin, K. B.; Ebihara, B. T.; Heinen, V. O.; Chory, C. M.: Complex Permittivity of Lanthanum Aluminate in the 20 to 300 K Temperature Range from 26.5 to 40.0 GHz, 11

Mitkees, A. A. See Abdallah, E. A. F., 435

Moheimany, O. R.

- ; Rahnavard, M. H.; Abiri, H.; Alehassan, M.: Tunability of Cascaded Grating Used in Distributed Feedback Laser, 372

Mukhopadhyay, D. See Dutta, A., 386

Nevels, R. D.

- ; Wheeler, J. E.: Near Field Radiation from Four Coaxial Line Fed Structures, 90

Nguyen, C.

On the Analysis of Parallel Coupled Transmission Lines in an Inhomogeneous Medium, 308

Nguyen, D. N. See Gupta, G. S., 286

Nie, Z. See Chew, W. C., 79

Nordman, J. E. See Martens, J. S., 49

Noyola-Iglesias, A. See Ojeda-Castañeda, J., 430

Ohtomo, Y. See Kashiwa, T., 416

Ojeda-Castañeda, J.

- ; Ibarra, J.: Space-Variant Aberrations; Differential Operator, 276
- ; López-Olazagasti, E.: Ray Trajectories and Caustic: Clairaut's Equation, 375
- ; Noyola-Iglesias, A.: Nondiffracting Wavefields in GRIN and Free-Space, 430

Oksanen, M.

- ; Mäki, H.; Lindell, I. V.: Nonstandard Variational Method for Calculating

Attenuation in Optical Fibers, 160

Ongareau, E.
—; Ghannouchi, F. M.; Bosisio, R. G.: Harmonic Device Line Simulation of Negative Resistance Microwave MESFET Oscillators, 317

Pal, B. P. See Tewari, R., 305

Paoletta, A. See Madjar, A., 60

Panariello, G. See D'Agostino, S., 354

Patillon, J. N. See Gouy, J. P., 47

Pérez, J. See Cáceres, J. L., 154

Petrachi, C. See D'Inzeo, G., 51

Poddar, D. R. See Roy, J. S., 119

Politi, M. See Macchiarella, G., 384

Pollman, M. See Willems, D., 111

Pribetich, J.
—; Kennis, P.; Pribetich, P.: Modelling Microstrip Resonators with a Dielectric Protective Layer for Biomedical Applications, 177

Pribetich, P. See Huret, F., 439; Kinowski, D., 338; Pribetich, J., 177

Ra, J. W. See Suh, K.-W., 362

Rahmat-Samii, Y. See Zimmerman, M., 233

Rahnavard, M. H.
—; Habibzadeh, A.: Total Reflected Millimeter-Wave Power from Moving Strip Illuminated Semiconductor Panel, 42
—; Rusch, W. V. T.: Total field evaluation near the Edge Shadow of an Idealized Inflected Surface, 327
—; See Moheimany, O. R., 372

Raman, S. See Tsay, J., 54

Riglet, P. See Gouy, J. P., 47

Rollman, J. A.
—; Wahid, P. F.: Ka-Band Monolithic GaAs MESFET Amplifier Design, 273

Romanovsky, R. R.
—; Martinez, J. C.; Viergutz, B. J.; Bhasin, K. B.: Ka-Band Propagation Characteristics of Microstrip Lines on GaAs Substrates at Cryogenic Temperatures, 117

Rong, A. S.
A Simple and Efficient Formulation for the Transmission Characteristics of Generalized Suspended Striplines, 433

Rong, Y.
The Bandwidth Characteristics of Ridged Circular Waveguides, 347

Roy, J. S.
—; Poddar, D. R.; Chowdhury, S. K.: Broadband Design of Ring Type Microstrip Power Divider, 119

Roy, R.
Power Stored in the Evanescent Modes of a Rectangular Waveguide Generated by a Narrow Inclined Sidewall Slot, 132

Rusch, W. V. T. See Rahnavard, M. H., 327

Ryley, J. F.
—; Herczfeld, P.; Brophy, T. J.: Organic-on-Inorganic Guided Wave Modulator, 83

Salmer, G. See Temcamani, F., 195

Schoön, M.
Comments on "Characteristic Impedance of a Curved Microstrip Transmission Line", 191

Schwarz, S. E. See Tsay, J., 54

Seguinot, C. See Kinowski, D., 338

Seshadri, S. R. See Elaoud, M., 95, 424; Kasraian, M., 224, 359

Shillue, W. P.
—; Stephan, K. D.: A Technique for the Measurement of Mutual Impedance of Monolithic Solid-State Quasioptical Oscillators, 414

Shtrikman, S. See Levine, E., 17

Sihvola, A. H. See Viitanen, A. J., 62

Singh, D. R.
—; Champlin, K. S.: Quasi-TEM Analysis of a Monolithic Microwave GaAs Phase Shifter, 382

Singh, H. See Tewari, R., 305

Smith, J. S. See, Tsay, J., 54

Soares, R.
—; Gouzien, P.; Meszaros, S.: A Novel Very Wideband 2-Port S-Parameter Calibration Technique, 210

Souza, J. R. See Zabeu, A. C. P., 298

Stacy, J. See Kasemset, D., 335

Stephan, K. D. See Shillue, W. P., 414

Stoeva, A. See Urshev, L., 341

Stonebraker, J. T. See Elcrat, A. R., 98

Suh, K.-W.
—; Kim, S.-Y.; Ra, J.-W.: A New Spatial Slice Theorem for Microwave Imaging, 362

Taalbi, M.
—; Ishii, T. K.: Anomalous Acousto Optic Effects in Acrylic Plastics, 303

Tam, W. Y.
—; Luk, K. M.: Spectral Domain Analysis of Microstrip Antennas with an Airgap, 391

Tan, C.-H.
—; Chang, T.-N.: Analysis of the Microstrip-Like Transmission Lines with Finite Metallization Thickness, 268

Tantod, S. See Willems, D., 111

Temcamani, F.
—; Crosnier, Y.; Lippens, D.; Salmer, G.: Modeling and Experimental Study of Breakdown Mechanisms in Multichannel AlGaAs/GaAs Power HEMTs, 195

Tewari, R.
—; Singh, H.; Pal, B. P.: An Accurate Numerical Technique for the Analysis of ARROW Waveguides, 305

Todaro, M. See Betti, S., 141

Thomas, S. See Uhing, J., 290

Tripathi, V. K. See Kollipara, R. T., 4

Tsang, L. See Lou, S. H., 150

Tsay, J.
—; Schwarz, S. E.; Raman, S.; Smith, J. S.: Multidomain Gunn Diodes, 54

Turi, L. See Kuti, Cs., 193

Uher, J.
—; Hoefer, W. J. R.: Computation of Microwave S-Parameters with the Symmetrical Condensed Node 3D-TLM Method, 411

Uhing, J.
—; Thomas, S.; Christodoulou, C. G.: A Statistical Approach for

Calculating the Concatenated Fiber-Optic Links, 290

Urshev, L.
—; Stoeva, A.: Application of Equivalent Transmission Line Concept to the Method of Lines, 341

Vescovo, R.
—; Corzani, T.: Characteristic Modes for Nonconducting Bodies Having Mutually Orthogonal Symmetry Planes, 124

Viergutz, B. J. See Romanofsky, R. R., 117

Viitanen, A. J.
—; Lindell, I. V.; Sihvola, A. H.: Polarization Correction of Luneburg Lens with Chiral Medium, 62

Viitanen, A. J.
Polarization Correction of Gutman Lens with Chiral Medium, 136

Vilcot, J. P. See Elkadi, H., 379; Gouy, J. P., 47

Wahid, P. F. See Rollman, J. A., 273

Wang, B.-z.
—; Lin, W.: A UTD Formula for *H*-Polarization Plane Wave Diffraction by a Wedge with Impedance Faces, 356

Wang, Y.-C. See Chang, H.-c., 296

Wang, J. See Wu, C., 400

Wang, Y. M.
—; Chew, W. C.: An Efficient Algorithm for Solution of a Scattering Problem, 102
—; See Chew, W. C., 164

Wanuga, S. See Kasemset, D., 335

Wartak, M. S. See Bernard, J. E., 427

Wheeler, J. E. See Nevels, R. D., 90

Willems, D.
—; Bahl, I.; Pollman, M.; Coluzzi, M.; Tantod, S.; Andricos, C.: A Variable-Gain Constant-Phase Dual Gate Amplifier with Series Feedback, 111

Williams, J. T. See MacDonald, A. D., 221

Wolfe, J. C. See MacDonald, A. D., 221

Wosik, J. L. See MacDonald, A. D., 221

Wu, C.
—; Wang, J.; Fralich, R.; Litva, J.: A Rigorous Analysis of an Aperture-Coupled Stacked Microstrip Antenna, 400

Wu, S. See Cheng, F., 24

Wu, T.-K.
Dielectric Properties Measurement of Substrate and Support Materials, 283

Xu, X. See Cheng, F., 24

Xu, Y.
—; Bosisio, R. G.: Calculations on the Increased Sensitivity of Dielectric Constant Measurements Using Open-Ended Coaxial Line with a Hemispherical Center Conductor Extension, 74
—; See Karam, M., 181

Xue, L. See Huang, Y., 157, 208

Yan, L. See Kuti, Cs., 193

Ye, P. See Zhang, J., 19

Yizun, W. See Kejian, G., 122

Yu, F. T. S. See Cheng, F., 24

Zabeu, A. C. P.
—; Souza, J. R.: The Stability of Nonlinear TE₁ Guided Waves Revisited, 298

Zhang, J.
—; Ye, P.: Frequency Chirping in Semiconductor-Optical Fiber Ring Laser, 19

Zhang, L.
—; Liu, L.: Optoelectric Implementation of Local Cellular Logic with Polarization Coding, 242

Zhang, X.
—; Jiang, P.: Differential Detection of Optical Heterodyne DPSK Communication Systems with Intersymbol Interference, 313

Zheng, D.
—; Michalski, K. A.: Analysis of Arbitrarily Shaped Coax-Fed Microstrip Antennas—A Hybrid Mixed-Potential Integral Equation Approach, 200

Zimmerman, M.
—; Lee, S. W.; Houshmand, B.; Rahmant-Samii, Y.; Acosta, R.: A Comparison of Reflector Antenna Designs for Wide-Angle Scanning, 233

Subject Index to Volume 3

Aberrations, 375
Acoustic wave, 193
Acousto optic effect, 303
Acrylic plastics, 303
Active arrays, 414
Adaptive arrays, 21
Amplifier gain, 273
Anomalous effect, 303
Antenna feed, 79, 263, 286
Antenna mode, 6
Antennas, 17, 136
Arbitrary shape scatters, 102
Array, 199
ARROW waveguide, 305, 427
Asymptotic expansions, 439
Attenuation, 160
Avalanche, 60
Avalanche photo detector, 113
Bandpass filters, 212
Bandwidth of waveguides, 347
Beam interaction, 217
BEM, 347
Bias stabilization network, 273
Block diagonalization, 124
Body of revolution, 146
Broadband design, 119
CAD, 341
Calibration techniques, 210
Cascaded grating, 372
Caustic, 375
Characteristic impedance, 85, 119, 191
Chromatic dispersion, 427
Circuit, 98
Circuit optimization, 244
Cluster feed, 233
Coaxial line antenna, 90
Cole-Cole's circular arc law, 416
Complex modes, 439
Complex permittivity, 11
Compound semiconductors, 386
Computer aided analysis, 13
Computerized tomography, 362
Concatenated connector loss, 290
Conductor loss, 389
Convolutional codes, 406
Convolution-backprojection, 362
Coordinate transformation, 176
Coplanar waveguides, 389
Coupled microstrip lines, 338
Coupled-mode theory, 296
Coupler, 181
Couplers, 70
Coupling efficiency, 404
Coupling integral evolutions, 439
Coupling loss, 214
Coupling wave, 144
Crosstalk, 141, 229, 338
Current, 98
Cutoff attenuator, 95, 424
Cutoff frequencies, 294
Cylindrical waveguide, 95, 424
Cylindrical waveguide with
 harmonically varying radius, 359
Delay, 98
Detectors, 1
Device breakdown, 195
Device modeling, 195, 343
Dielectric constant, 283
Device simulation, 54
Dielectric constant measurement, 90
Dielectrics, 85
Dielectric sphere, 176
Dielectric substrate, 283
Dielectric waveguides, 294
Diffraction, 327
Digital integrated circuits, 4
Diode lasers, 260
Dipole antenna, 6, 396
Directional coupler, 88
Dispersion, 268, 341
Dispersion characteristics, 419
Dispersive media, 203, 416
Displacement sensing, 27
Distributed amplifiers, 51, 354
Distributed feedback, 144
Distributed feedback laser, 372
Domain, 130
Dual-gate amplifier, 111
Dual-polarized arrays, 17
Eigenvalue equation for the
 modes, 124
Electromagnetic compatibility, 235
Electromagnetic interference, 235
Electromagnetic scattering, 102,
 150
Electronic polarization, 203
Electrooptic device, 83
Electrostatics, 176
EM wave, 433
E-probe transition, 172
Experimental method, 66
FET amplifier, 244
FET oscillators, 317
FETs, 51
Fiber laser, 19
Fiber-optic link loss, 290
Fiber-optic sensor, 27
Filters, 205, 370
Finite difference method, 150
Finite-difference-time-domain(FD-
 TD) method, 203, 416
Finite element method, 150
Finite-difference, 154
Finite-difference techniques, 146
Finlines, 157
Fourier optics, 276
Fourier transform, 24
Frequency, 98
Frequency chirping, 19
Frequency division multiplexing,
 141
Frequency response, 95, 424
GaAs monolithic, 382
GaAs substrate, 118
GaAs technology, 70
Gaussian distribution, 27
Generalized characteristic
 equation, 208
Geometrical optics, 62, 136, 327
Geometrical theory of diffraction,
 356
Green's function, 130
GRIN, 430
Guided waves, 298
Gunn diodes, 54
Half-wave resonators, 205
Hankel domain analysis, 391
Harmonic balance, 13
Harmonic balance techniques, 317
Harmonic distortion, 260
Harmonic generation, 386
Harmonic suppression, 212
HEMTs, 350
High power amplifier, 244
High power system, 263
High speed modulator, 83
High-speed photodetectors, 335
High T_c , 49
Hot electrons, 386
Illuminated semiconductor panel,
 42
Image processing, 24
Image quality, 276, 375
Impedance matching, 249, 310,
 384
Impedance surface, 356
Inflected surface, 327
Inhomogeneous scatterer, 164
Input impedance, 396
Insertion loss, 95, 424

Integral equations, 200, 393
Integrated optics, 83
Interconnect, 229
Interconnections, 338
Interdigital capacitor, 127
Interferometric sensor, 427
Interinjection-locked oscillators, 414
Inverted configuration, 66
Iteratively effective index method, 419
Joint transform processor, 24
Junction capacitance, 38
Lanthanum aluminate substrates, 11
Laser beam, 303
Laser diode, 144
Laser phase noise, 141
Leaky-wave antenna, 435
Lens, 136
Light modulator, 193
Linear arrays, 106
Linear systems, 430
Linewidth, 144
Local cellular logic, 242
Loss tangent, 283
Lossy cover-layer, 31
Lossy substrate, 439
Low noise, 384
Low temperature microwave measurements, 118
Luneburg lens, 62
Magnetic line-source, 31
Measurement, 398
Measurement techniques, 283
MESFET, 60, 111, 154, 343, 354
Method of moments, 90, 200
Microlens, 214
Microstrip, 17, 88, 119, 191, 199, 229, 268, 435
Microstrip antennas, 66, 79, 169, 200, 391, 400
Microstrip circuits, 366
Microstrip line, 118, 341, 370
Microstrip patch, 31
Microstrip radiator, 177
Microstrip resonator, 177
Microwave amplifier, 384
Microwave circuits and systems, 85, 249, 433
Microwave components, 205
Microwave filters, 212
Microwave hyperthermia, 177
Microwave imaging, 362
Microwave integrated circuits, 235
Microwave lines, 235
Microwave measurements, 11, 210
Microwave-optical interactions, 335, 350
Microwave phase-shifter, 382
Millimeter wave, 1, 42, 88
Millimeter wave generation, 386
Millimeter-wave oscillators, 414
Minimax optimization, 286
MIMIC, 4, 60, 111, 354
MIMICs, 210
Mode converter, 224, 359
Mode locking, 335
Modeling, 379
Mode matching, 286
Mode-matching method, 79
Modified design, 359
Modified scheme, 154
Moment method, 124, 362, 396
Monolithic MIC, 70
Monopulse, 106
Monte Carlo simulations, 150
Multiconductor lines, 4
Multicoupled transmission lines, 308
Multiple scattering, 256
Narrow inclined slot, 133
Negative resistance, 317
Noise, 47
Nondiffracting modes, 430
Nonlinear Brewster angle, 239
Nonlinear microwave circuits, 13
Nonlinear optics, 239, 279, 298
Nonuniform interelement spacings, 106
Normal mode analysis, 366
Notion of quasicomplex modes, 439
Numerical method, 102, 164, 203, 305, 347, 393, 416
1 dB compressed output power, 273
Optical beam coupling, 217
Optical communication, 113, 141
Optical communications, 116, 260, 313, 406
Optical computing, 21
Optical data processing, 21
Optical effects, 350
Optical fibers, 116, 122, 160, 430
Optical hybrid, 122
Optical multi/demultiplexers, 116
Optical waveguides, 296, 305
Optimization, 224
Optoelectronics, 47, 379
Orientation polarization, 416
Oscillators, 54
Parallel coupled lines, 308
Parameter degradation, 388
Parasitic mode, 224, 359
Passive MMICs, 127
Patch antenna, 199
Periodic structure, 370
Perturbation theory, 366
Phase diversity receiver, 122
Phase matched at total reflection, 239
Phase matching, 279
Phase modulator, 49
Phase shift, 372
Phase shifter, 263
Photo-detection, 60
Photodiodes, 47
Photon-photon interaction, 303
Photorefractive two-wave mixing, 217
Physical optics, 327
Piezoelectrically induced strain-optic effect, 193
Planar circuits, 341
Planar transmission lines, 208
Polarization, 62, 122, 136
Poisson equation, 130
Polarization coding, 242
Power divider, 127
Power HEMT, 195
Probability function for connector loss, 290
Propagation constant, 435
Pulse position modulation, 113, 406
Pulse propagation, 338
Q-factor, 118
Quality factor, 38
Quasioptical oscillators, 414
Radar absorbing materials, 324
Radar cross section, 6, 324
Radial wave, 169
Radiated susceptibility, 235
Radiation efficiency, 31
Ray tracing, 375
Receivers, 313
Rectangular dielectric waveguides, 419
Rectangular waveguide sidewall, 133
Reduction of radar cross section, 324
Reflection, 98
Reflection coefficient, 356
Reflectometer, 398
Reflector antenna(s), 233, 263, 310
Regular solution, 208
Relative permittivity, 118
Resistive and reactive loading, 224
Resonance frequencies, 66

Resonant tunnelling diodes, 1
Resonators, 118, 221
Ridged circular waveguide, 347
Ring type power divider, 119
Rough surface scattering, 150
Sampling theorem, 13
Scattering, 6, 164, 327
Schottky contact coplanar waveguide, 382
Second harmonic generation (SHG), 239, 279
Semiconductor devices, 388
Semiconductor laser, 19, 214, 379, 404
Series resistance, 38
Serpentine Cylindrical waveguide, 224
Shift-keying modulation, 313
Short-haul fiber-optic link loss, 290
Signal detection, 313
Signal flow chart, 343
Signal processing, 362
Single-mode fiber, 214, 404
Singular integral equation, 157, 208
Six-port, 398
Slow-wave, 382
Small-signal analysis, 19, 154, 343
Solid-state laser, 335

Source models, 396
S-parameter computation, 411
Space-variant imaging, 276
Spectral domain, 400
Spectral domain approach, 439
Spectral domain techniques, 4
Spiral inductor, 411
Stored power, 133
Stripline, 221
Structural mode, 6
Superconducting electronics, 49
Superconductors, 11, 49, 221, 338
Surface resistivity, 221
Surface wave, 169
Surface-wave power, 31
Suspended stripline, 181, 268, 433
Suspended-substrate, 66
Symmetry and antisymmetry, 124
Systems and applications, 276, 375
Tapered antennas, 249
Tapered sections, 70
 TE_{01} mode, 95
TEM waves, 388
Thick microstrips, 4
Three coupled lines, 308
TLM method, 411
 TM_{01} mode, 424
Transmission characteristics, 433
Transmission line, 229

Transmission lines, 85, 249
Transmission modal analysis, 268
Travelling-wave devices, 51
Traveling-wave antenna, 435
Tuning, 372
Two coupled lines, 308
2-D device simulation, 154
Two intersecting spheres, 130
Two-section feed network, 106
Uniaxial crystal, 239, 279
Uniform asymptotic theory, 324
Varactor diodes, 38
Variational method, 79
Variational methods, 160
Vector analysis, 256
Wave-front aberrations, 276
Waveguide components, 411
Waveguide-to-microstrip transformer, 172
Waveguide-to-microstrip transition, 172
Wave propagation, 256, 430
Wedge, 356
Wide-angle scan, 233
Wideband component, 181
Wire antennas, 393