Previous Page | Next Page

The UNIVARIATE Procedure

Example 4.22 Fitting Lognormal, Weibull, and Gamma Curves

To determine an appropriate model for a data distribution, you should consider curves from several distribution families. As shown in this example, you can use the HISTOGRAM statement to fit more than one distribution and display the density curves on a histogram. The gap between two plates is measured (in cm) for each of 50 welded assemblies selected at random from the output of a welding process. The following statements save the measurements (*Gap*) in a data set named *Plates*:

```
data Plates;
  label Gap = 'Plate Gap in cm';
  input Gap @0;
  datalines;

0.746  0.357  0.376  0.327  0.485  1.741  0.241  0.777  0.768  0.409

0.252  0.512  0.534  1.656  0.742  0.378  0.714  1.121  0.597  0.231

0.541  0.805  0.682  0.418  0.506  0.501  0.247  0.922  0.880  0.344

0.519  1.302  0.275  0.601  0.388  0.450  0.845  0.319  0.486  0.529

1.547  0.690  0.676  0.314  0.736  0.643  0.483  0.352  0.636  1.080

;
run;
```

The following statements fit three distributions (lognormal, Weibull, and gamma) and display their density curves on a single histogram:

The ODS SELECT statement restricts the output to the "ParameterEstimates," "GoodnessOfFit," and "FitQuantiles" tables; see the section ODS Table Names. The LOGNORMAL, WEIBULL, and GAMMA primary options request superimposed fitted curves on the histogram in Output 4.22.1. Note that a threshold parameter $\theta = 0$ is assumed for each curve. In applications where the threshold is not zero, you can specify θ with the THETA= secondary option.

The LOGNORMAL, WEIBULL, and GAMMA options also produce the summaries for the fitted distributions shown in <u>Output 4.22.2</u> through <u>Output 4.22.4</u>.

Output 4.22.2 provides three EDF goodness-of-fit tests for the lognormal distribution: the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov tests. At the $\alpha=0.10$ significance level, all tests support the conclusion that the two-parameter lognormal distribution with scale parameter $\xi=-0.58$ and shape parameter $\delta=0.50$ provides a good model for the distribution of plate gaps.

Output 4.22.1 Superimposing a Histogram with Fitted Curves

Output 4.22.2 Summary of Fitted Lognormal Distribution

Distribution of Plate Gaps

The UNIVARIATE Procedure Fitted Lognormal Distribution for Gap

Parameters for Lognormal Distribution			
Parameter	neter Symbol Estima		
Threshold	Theta	0	
Scale	Zeta	-0.58375	
Shape	Sigma	0.499546	
Mean		0.631932	
Std Dev		0.336436	

Goodness-of-Fit Tests for Lognormal Distribution				
Test	Statistic		p Valı	ıe
Kolmogorov-Smirnov	D	0.06441431	Pr > D	>0.150
Cramer-von Mises	W-Sq	0.02823022	Pr > W-Sq	>0.500
Anderson-Darling	A-Sq	0.24308402	Pr > A-Sq	>0.500

Quantiles for Lognormal Distribution			
Quantile			

Percent	Observed	Estimated
1.0	0.23100	0.17449
5.0	0.24700	0.24526
10.0	0.29450	0.29407
25.0	0.37800	0.39825
50.0	0.53150	0.55780
75.0	0.74600	0.78129
90.0	1.10050	1.05807
95.0	1.54700	1.26862
99.0	1.74100	1.78313

Output 4.22.3 Summary of Fitted Weibull Distribution

Distribution of Plate Gaps

The UNIVARIATE Procedure Fitted Weibull Distribution for Gap

Parameters for Weibull Distribution			
Parameter	Estimate		
Threshold	Theta	0	
Scale	Sigma	0.719208	
Shape	С	1.961159	
Mean		0.637641	
Std Dev		0.339248	

Goodness-of-Fit Tests for Weibull Distribution				
Test	Statistic		p Valı	ıe
Cramer-von Mises	W-Sq	0.15937281	Pr > W-Sq	0.016
Anderson-Darling	A-Sq	1.15693542	Pr > A-Sq	<0.010

Quantiles for Weibull Distribution			
	Quantile		
Percent	Observed	Estimated	
1.0	0.23100	0.06889	
5.0	0.24700	0.15817	
10.0	0.29450	0.22831	
25.0	0.37800	0.38102	
50.0	0.53150	0.59661	
75.0	0.74600	0.84955	
90.0	1.10050	1.10040	
95.0	1.54700	1.25842	
99.0	1.74100	1.56691	

Output 4.22.4 Summary of Fitted Gamma Distribution

Distribution of Plate Gaps

The UNIVARIATE Procedure Fitted Gamma Distribution for Gap

Parameters for Gamma Distribution				
Parameter	Parameter Symbol Estimat			
Threshold	Theta	0		
Scale	Sigma	0.155198		
Shape	Alpha	4.082646		
Mean		0.63362		
Std Dev		0.313587		

Goodness-of-Fit Tests for Gamma Distribution				
Test	S	statistic	p Value	
Kolmogorov-Smirnov	D	0.09695325	Pr > D	>0.250
Cramer-von Mises	W-Sq	0.07398467	Pr > W-Sq	>0.250
Anderson-Darling	A-Sq	0.58106613	Pr > A-Sq	0.137

Quantiles for Gamma Distribution			
	Quantile		
Percent	Observed	Estimated	
1.0	0.23100	0.13326	
5.0	0.24700	0.21951	
10.0	0.29450	0.27938	
25.0	0.37800	0.40404	
50.0	0.53150	0.58271	
75.0	0.74600	0.80804	
90.0	1.10050	1.05392	
95.0	1.54700	1.22160	
99.0	1.74100	1.57939	

Output 4.22.4 provides three EDF goodness-of-fit tests for the gamma distribution: the Anderson-Darling, the Cramér-von Mises, and the Kolmogorov-Smirnov tests. At the $\alpha=0.10$ significance level, all tests support the conclusion that the gamma distribution with scale parameter $\sigma=0.16$ and shape parameter $\alpha=4.08$ provides a good model for the distribution of plate gaps.

Based on this analysis, the fitted lognormal distribution and the fitted gamma distribution are both good models for the distribution of plate gaps.

A sample program for this example, uniex13.sas, is available in the SAS Sample Library for Base SAS software.

Previous Page | Next Page | Top of Page

Copyright $\ensuremath{\texttt{@}}$ 2007 by SAS Institute Inc., Cary, NC, USA. All rights reserved.